VOLUME 2 - APPENDICIES

APPENDIX A: GLOSSARY OF TERMS AND ABBREVIATIONS

APPENDIX B: STATEMENT OF WORK

APPENDIX C: WELL NUMBERING SYSTEM

APPENDIX D: WELL LOGS

APPENDIX E: FIELD RAW DATA

APPENDIX F: ANALYTICAL PROCEDURES

APPENDIX G: CHAIN OF CUSTODY FORMS

APPENDIX H: ANALYTICAL DATA

APPENDIX I: CORRESPONDENCE

APPENDIX J: REFERENCES

APPENDIX K: RESUMES OF KEY PERSONNEL

APPENDIX L: SOIL GAS SURVEY

APPENDIX M: GEOPHYSICAL SURVEY

Acces	sion For	
NTIS	GRA&I	
DTIC	TAB	
Unann	ounced	
Justi	fication_	
By		
	Avail and	·
Dist	Special	
A-1		

APPENDIX A: GLOSSARY OF TERMS AND ABBREVIATIONS

TABLE A-1

GLOSSARY*

Ablation Till	Loosely consolidated rock debris, formerly in or on a glacier.
Alluvium	A general term for all detrital material deposited permanently or in transit by streams. It includes gravel, sand, silt, and clay, and all variations and mixtures of these.
Aqueoglacial	Resulting from or pertaining to the combined action of ice and water; as, many glacial deposits.
Aquiclude	A formation that, although porous and capable of absorbing water slowly, will not transmit water fast enough to furnish an appreciable supply for a well or spring.
Aquifer	A geologic formation or structure that transmits water in sufficient quantity to supply pumping wells or springs.
Artesian	Pertaining to underground water that is confined by impervious material under pressure sufficient to raise it above the upper level of the saturated material in which it lies if this is penetrated by wells or natural fissures.
Basal Till	A firm clay-rich till containing many abraded stones dragged along beneath a moving glacier and deposited upon bedrock or other glacial deposits.
Bed	Any tabular body of rock lying in a position essentially parallel to the surface or surfaces on or against which it was formed, whether these be a surface of weathering and erosion, plans of stratification, or inclined fractures.
Bedding	The arrangement of rock in layers, strata, or beds.
Bedrock	The more or less solid, undisturbed rock in place either at the surface or beneath superficial deposits of gravel, sand, or soil.
Bentonite	A rock composed of any of the montmorillonite- beidellite group of clay minerals.
Boulder	A large detached rock fragment, somewhat rounded or otherwise modified in shape by transport. A boulder is larger than a cobble, 10 inches (256 mm) having been suggested as a convenient lower limit for the diameter.

Calcareous

Consisting of or containing calcium carbonate.

Clastic**

Rock or sediment comprised of fragments broken from their place of origin.

Clay

A fine-grained aggregate consisting wholly or dominantly of microscopic and submicroscopic mineral particles, derived from the chemical decomposition of rocks, which is plastic when wet and hard when dry. The distinctive physical properties are due to the presence of clay minerals, which are hydrous aluminum silicates that break down into colloidal, exceedingly minute shreds or flaky particles.

Cobble

A rock fragment between 64 and 256 mm diameter, thus larger than a pebble and smaller than a boulder, rounded or otherwise abraided in the course of transport by water, wind, or ice.

Cross-Section

A geologic diagram or actual field exposure showing the geologic formations and structures transected by a given plane.

Dip

The angle at which a stratum or any planar feature is inclined from the horizontal.

Dolomite

A common rock-forming rhombohedral mineral, CaMg(CO,),.

Effective Porosity

The portion of pore space in saturated permeable material in which movement of water takes place.

End Moraine

A ridgelike accumulation of drift built chiefly along the terminal margin of a valley glacier or the margin of an ice sheet. It has a surface form of its own and is the result chiefly of deposition by ice, deformation by ice thrust, or both.

Facies***

Lithologic and biologic characteristics of a sedimentary deposit imparted by the depositional environment.

Glaciation

The geologic work accomplished by ice, including erosion and deposition and the resulting effects of these processes on the surface.

Glacier

A body of ice consisting of recrystallized snow, lying wholly or largely on land, and showing evidence of present or former flow.

Glaciofluvial

Pertaining to the meltwater streams flowing from wasting glacier ice and especially to the deposits and land forms produced by such streams.

Transmissivity

Rate at which water is transmitted through a unit thickness of an aquifer under a unit hydraulic

gradient.

Water Table

A water table is the upper surface of a zone of saturation except where that surface is formed by an

impermeable body.

Well Log

A systematic and sequential record of geologic data obtained from a well.

Sources:

* Stokes, W.L. and D.J. Varnes, 1955. ** Bates, Robert L. and Julia A. Jackson. Eds. 1980. Glossary of Geology -2nd Edition. American Geological Institute, Falls Church, VA.

***Friedman, Gerald M. and John E. Sanders. 1978. Principles of Sedimentology. John Wiley and Sons, Inc., New York.

TABLE A-2

LIST OF ABBREVIATIONS AND ACRONYMS

AF Air Force

AFB Air Force Base

AFFF Aqueous Film Forming Foam

ALS Above Land Surface

ATV All Terrain Vehicle

BLS Below Land Surface

Br Bromine

CB Chlorobromoethane

CERCLA Comprehensive Environmental Response, Compensation, and

Liability Act

Cl Chlorine

cm/sec centimeter per second

DOD Department of Defense

EDM Electronic Distance Meter

ft/day feet per day

ft/sec feet per second

gal/min gallons per minute

HARM Hazard Assessment Rating Methodology

I Iodine

ID Inside Diameter

IRP Installation Restoration Program

NORAD North American Aerospace Defense Command

NYANG New York Air National Guard

OD Outside Diameter

pH The negative logarithm of the effective hydrogen-ion

concentration

Gravel

Loose or unconsolidated coarse granular material, larger than sand grains, resulting from erosion of rock by natural agencies.

Ground Water

Subsurface water in a zone of saturation; phreatic water.

Gypsum

A hydrous calcium sulfate mineral, CaSO, ·2H, O.

Hazardous Waste

A solid waste, or combination of solid wastes, which because of its quantity, concentration, or physical, chemical, or infectious characteristics may cause or significantly contribute to an increase in mortality or an increase in serious, irreversible, or incapacitating reversible illness; or pose a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported, or disposed of, or otherwise managed.

Hydraulic Conductivity

The capacity of a rock or soil for transmitting water under pressure.

Lacustrine

Pertaining to, produced by, or formed in a lake or

Lithology

The study of stones or rocks.

Lodgement Till

A basal till commonly characterized by compact fissile structure and containing stones oriented with their long axes parallel to the direction of ice movement.

Moraine

An accumulation of drift with an initial topographic expression of its own, built within a glaciated region chiefly by the direct action of glacier ice.

Outwash

Detrital material removed from a glacier by meltwater and laid down by streams beyond the glacier itself.

Paleofluvial

Pertaining to an ancient river or rivers.

Periglacial

Processes, conditions, areas, climates and topographic features at the immediate margins of former and existing glaciers and ice sheets.

Permeability

The property or state of being permeable, of allowing fluids and gases to pass through.

Piezometric Surface

An imaginary surface that everywhere coincides with the static level of the water in the aquifer.

Porosity

The property of a rock of containing interstices without regard to size, shape, interconnection, or arrangement of openings.

Shale

A general term for lithified muds, clays, and silts that are fissile and break along planes parallel to the original bedding.

Silt

Unconsolidated material finer than sand and coarser than clay.

Silt Loam

A type of soil having over half of the particles of the size called silt. The amount of material of sand or clay size is relatively small.

Solid Waste

Any garbage, refuse, or sludge from a waste treatment plant, water supply treatment, or air pollution control facility and other discarded material, including solid, liquid, semi-solid, or contained gaseous material resulting from industrial, commercial, mining, or agricultural operations and from community activities, but does not include solid or dissolved materials in domestic sewage; solid or dissolved materials in irrigation return flows; industrial discharges which are point source subject to permits under Section 402 of the Federal Water Pollution Control Act, as amended (86 USC 880); or source, special nuclear, or by-product material as defined by the Atomic Energy Act of 1954 (68 USC 923).

Stratigraphy

The branch of geology that deals with the definition and interpretation of the stratified rocks, the conditions of sequence, age, distribution, and especially their correlation by the use of fossils and other means.

Strike

The direction or bearing of the outcrop of an inclined bed or structure on a level surface. It is perpendicular to the direction of the dip.

Swell-and-Swale

The type of topography characteristic of the ground moraine of a continental glacier.

Till

That part of a glacial drift deposited directly by ice, without transportation or sorting by water, consisting generally of an unstratified, unsorted, unconsolidated to moderately consolidated, heterogeneous mixture of clay, sand, gravel, and boulders.

Topographic Map

A topographic map is a representation on paper that is designed to portray certain selected features of a section of the earth's surface plotted on some form of projection and to a certain scale; that primarily depicts the relief of the country mapped by shows also its drainage and cultural features; and that delineates all features in true latitude and longitude and therefore all parts in a rigidly correct relative position.

TABLE A-2

LIST OF ABBREVIATIONS AND ACRONYMS (Continued)

PVC Polyvinyl Chloride

SAC Strategic Air Command

SOW Statement of Work

TAC Tactical Air Command

TOC Total Organic Carbon

TOX Total Organic Halogens

USAF United States Air Force

USAFOEHL United States Air Force Occupational and Environmental Health

Laboratory

TABLE A-3
UNITS OF MEASUREMENTS

S.I. UNITS	LENGTH	METRIC
inch (in)	x 2.54	- centimeter (cm)
foot (ft)	x 0.3048	- meter (m)
mile (mi)	x 1.608	- kilometer (km)
	VOLUME	
U.S. Gallon (gal)	x 3.785	- liter
U.S. Gallon (gal)	x 0.0038	- cubic meter (m ³)
cubic feet (ft)	x 0.0283	- cubic meter
acre-foot (ac. ft)	x 1233.48	- cubic meter
	AREA	
square inch (in_2^2)	x 6.452	- square centimeter (cm ²)
square foot (in ²)	x 0.09	- square meter (m ²)
acre (ac)	x 0.4047	- hectare (ha)
	MASS	
ounce (oz)	x 28	- gram (g)
ounce (oz)	x 28349.527	- milligram
ounce (oz)	x 28349.527	
pound (1b)	x 0.45	= kilogram (Kg)
short ton	x 0.9	- metric ton (t)
	DENSITY	
<pre>pounds per cubic foot (pcf)</pre>	x 0.016	- grams per cubic centimeter (g/cm ³)
	HYDRAULIC CON	DUCTIVITY
gallons per day per square foot	x 4.72 x 10 ⁻⁵	- centimeters per second
(gpd/ft ²) Darcy	$x 8.58 \times 10^{-4}$	<pre>(cm/sec) - centimeters per second</pre>
	TRANSMISSIVITY	Y
<pre>gallons per foot per day (gpd/ft)</pre>	x 0.012	- square meters per day (m ² /day)
square feet per day (ft ² /day)	x 0.093	- square meters per day (m ² /day)

APPENDIX B: STATEMENT OF WORK

INSTALLATION RESTORATION PROGRAM CONFIRMATION/QUANTIFICATION (STAGE 2) HANCOCK FLD NY

I. DESCRIPTION OF WORK

MOD 3

The overall objective of the Installation Restoration Program (IRP) is to assess potential contamination at past hazardous waste disposal and spill sites on Air Force installations.

The initial Phase II (Stage 1) survey performed at Hancock FLD grouped four potential sites into two zones. Individual sites were not evaluated.

The Stage 2 survey will investigate five individual sites - the Fire Training Area (FT-1), Disposal Site D-5, the Entomology Underground Storage Tank (S-3), Transformer Storage Area (S-1)), and the Old Spill Area (SP-1). Three of these sites (S-3, S-1, and SP-1) are new. A zone approach will still be taken for Disposal Sites D-1 and D-3 (adjacent landfills); however, additional monitoring wells will be installed to characterize the groundwater hydrology and identify any contaminants migrating from the zone. The program schedule for this investigative survey is shown in Appendix 5.

The purposes of this Stage 2 follow-on field and laboratory study at Hancock FLD are to (1) confirm the presence or absence of contamination within the specified areas of investigation, (2) if possible, determine the extent, degree of contamination, and the potential for migration of those contaminants in the environment, (3) identify public health and environmental hazards of stationary or migrating pollutants based on state or federal standards for those contaminants, and (4) delineate additional investigations required beyond this stage to reach the objectives of the IRP. Volume 2 contains Appendices Athrough M. Data tables, field notes, correspondence etc. are included.

MOD 35

The IRP Phase I Report incorporates the background and description of the sites/zones at Hancock FLD. The Phase II Stage 1 Report describes the field work and summarizes the analytical results of sampling activities during the initial investigative study. Both of these reports (to be mailed under separate cover) should be thoroughly reviewed by the contractor prior to the start of work to obtain an understanding of all previous findings and recommendations which impact the current task. To accomplish this survey effort, the contractor shall take the following actions:

A. General Requirements

1. Conduct a literature search of local hydrogeological conditions to complement the Phase I and Phase II Reports. Use these data along with field investigation data, to determine optimum well depth and locations. Include the pertinent literature search information in an appendix to the Final Report. Develop the literature search data using the following guidelines:

a. Topographic data

- b. Geologic data
 - (1) Structure
 - (2) Stratigraphy
 - (3) Lithology
- c. Hydrogeologic data
- (1) Location of all existing and abandoned wells, observation wells, springs, ponds (natural and artificial) and seepages that occur on or off the installation within a one-mile radius of the sites to be investigated.
 - (2) Groundwater table and piezometric contours
 - (3) Depth to groundwater
 - (4) Surface and groundwater quality
- (5) Delineated areas of recharge, discharge and contributing areas
- (6) Geologic setting, yield data, and hydrographs of springs and natural seepages
- d. Data on all existing and abandoned wells, including uncased boreholes, on or off the installation within a one-mile radius of the sites to be investigated.
- (1) Location, depth, diameter, well type, and lithologic logs associated with the well
- (2) Static and pumping water levels, well hydrographs, yield, specific capacity, and related data
 - (3) Existing and projected groundwater development and use.
- (4) Well and screen corrosion, encrustation, and similar operation and maintenance problems
- (5) Observation and monitoring well networks, pumping influences, barrier and recharge boundaries, and related hydraulic interferences influencing aquifer behavior.
 - (6) Existing water sampling sites
 - e. Aquifer data
 - (1) Type, i.e. unconfined, artesian, or perched

(2) Thickness, depth to aquifer, and formational

designation

- (3) Barrier and recharge boundaries
- (4) Transmissivity, storativity, and permeability (gpd/ft²)
- (5) Specific retention
- (6) Delineation of discharge and recharge areas
- (7) Ground and surface water relationships
- (8) Aquifer models
- f. Climatic data
 - (1) Precipitation (total and net)
 - (2) Evapotranspiration
- 2. Determine the areal extent of the sites by reviewing historical and current panchromatic and infrared aerial photography.
 - B. Technical Operations Plan

Immediately after the Notice To Proceed (NTP) for the delivery order, develop a Technical Operations Plan (TOP) based on the technical requirements specified in this task description (see Sequence No. 19, Item VI below). Follow the TOP format (mailed under separate cover). This plan shall be explicit with regard to field and laboratory procedures. Include, but do not limit the plan to well purging procedures, field decontamination operations, sampling protocol, QA/QC for field and laboratory procedures, field schedule, etc. Provide the TOP to the USAFOEHL within two weeks of the MTP.

C. Health and Safety

Comply with USAF, OSHA, EPA, state and local health and safety regulations regarding the proposed work effort. Use EPA guidelines for designating the appropriate levels of protection needed at the study sites. Prepare a written Health and Safety Plan for the proposed work effort and coordinate it directly with applicable regulatory agencies prior to commencing field operations. Provide an information copy of the Health and Safety Plan to the USAFOEHL after coordination with regulatory agencies. The Health and Safety Plan is specified in Sequence No. 7, Item VI below.

D. Drilling and Soils Work

1. Determine the exact location of all monitoring wells, soil borings, and test pits during the planning/mobilization phase of the field investigation. Consult with base personnel to minimize disruption of base activities, to properly position wells with respect to exact site

locations, and to avoid underground utilities. Direct the drilling and sampling and maintain a detailed log of the conditions and materials penetrated during the course of the work. Do not drill boreholes into or position wells in actual landfill areas; rather install wells at the landfill perimeter.

2. Monitor the ambient air during all well drilling, soil boring and test pit work with a photoionization meter or equivalent organic vapor detector to identify the generation of potentially hazardous and/or toxic vapors or gases. Include air monitoring results in the boring logs. If soil encountered during borehole drilling or test pit work is suspected to be hazardous because of abnormal discoloration, odor or air monitoring levels, containerize the soil cuttings in new, unused drums. Enter into the boring logs the depths(s) from which suspected contaminated soil cuttings were collected for containerization. Collect a maximum of 20 composite samples, one from the contents of each drum. Test each composite sample for EP Toxicity (metals). Use Resource Conservation and Recovery Act (RCRA) criteria to determine if soil cuttings must be classified as hazardous waste (40 CFR 261.24).

3. Groundwater Monitoring Wells

- a. Installation of Groundwater Monitoring Wells
- (1) Comply with U.S. EPA Publication 330/9-S1-002, NEIC Manual for Groundwater/Subsurface Investigations at Hazardous Waste Sites for monitoring well installation.
- (2) All well drilling, development, purging, sampling methods, and other activities pertaining to this effort must conform to state and other applicable regulatory agency requirements. Cite references in an appendix to the Final Report (Sequence No. 4, Item VI).
- (3) Install wells at a sufficient depth to collect samples representative of aquifer quality and to intercept contaminants if they are present.
- (4) Avoid, when possible, installing wells in depressions or areas subject to frequent flooding and standing water. If wells must be installed in such areas, design the wells such that standing water does not leak into the top of the casing or cascade down the annular space.
- (5) Drill all monitoring wells using the following specifications:
- (a) Drill wells that are less than 150 feet deep using hollow-stem auger techniques. A center stem, plug, and bit attached to the stem may be inserted into the auger for use while drilling. This will prevent material from entering into the hollow stem of the auger. Drill all wells that are equal to or more than 150 feet deep using an air hammer—drive casing technique. If drilling fluid additives such as bentonite or polymers are used, insure that the components from each batch/lot used will not interfere with the laboratory analyses to be performed on samples. Analyze the additive from each batch/lot used for the parameters listed in

Appendix 2. Biodegradable organic drilling fluid additives are not permitted.

(b) Take lithologic samples at five-foot intervals and prepare borehole log descriptions. Include pilot boring logs and well completion summaries in the Final Report (Sequence No. 4, Item VI, below).

- MOD 4

 (c) Drill a maximum of 19 wells 9 deep wells and 10

 MOD 2

 Shallow wells. The maximum depth of each deep well shall not exceed 194

 MOD 2

 linear feet. The maximum depth of each shallow well shall not exceed 50

 MOD 2

 linear feet. Total footage for all wells in this task shall not exceed

 MOD 4

 2246 linear feet. Refer to the site specific details in Section I.H.
- (d) Construct each shallow well with two-inch inside

 MOD 2 diameter (i.d.) Schedule 80 PVC casing. Construct each deep well, except
 the deep well between landfills D-1 and D-3, with four-inch i.d. Schedule
 80 PVC casing. Construct the deep well between landfills D-1 and D-3 with
 two-inch i.d. Schedule 80 PVC casing. Use threaded screw-type joints
 only. Glued fittings are not permitted. Flush-thread all connections.
- (e) Screen each shallow well using two-inch i.d. 304 stainless steel casing having up to 0.020 inch slots. Screen each deep well using four-inch i.d. 304 stainless steel casing having up to 0.020 inch slots. The deep well between landfills D-1 and D-3 shall be screened in the same manner as the shallow wells. Slot size may be smaller based upon borehole geology. Each well screen shall be a maximum of twenty feet in length. Total screening for all wells in this task shall not exceed 500 linear feet. Cap the bottom of the screen.
 - (f) Prevent cross-contamination between aquifers by using a dual casing system. Where wells extend through the most shallow aquifer and into a deeper aquifer, install an outer conductor casing into the confining layer below the shallow aquifer. Grout the annular space to the surface with bentonite.
 - (6) Complete all monitoring wells using the following specifications:
- MOD 2 [DELETE PARA AND RENUMBER]
- MOD 2 (a) Once the casing is installed, allow the soil formation to collapse around the well screen. Supplement the natural gravel pack with washed and bagged rounded silica sand or gravel with a grain size distribution compatible with the screen and soil formation. Place the pack from the bottom of the borehole to two feet above the top of the screen. Tremie a five foot bentonite seal (granulated or pellets) above the sand/gravel pack. Ensure that the bentonite forms a complete seal. Grout the remainder of the annulus to the land surface with a Type I Portland cement/bentonite slurry.
- MOD 2 (b) Check with the Base point of contact (POC) to determine whether wells shall be completed flush or projected above the ground surface.

1 If well stick-up is of concern in an area, complete the well flush with the land surface. Cut the casing two to three inches below land surface, and install a protective locking lid consisting of a cast-iron valve box assembly. Center the lid assembly in a three foot diameter concrete pad sloped away from the valve box. Ensure that free drainage is maintained within the valve box. Also, provide a screw-type casing cap to prevent infiltration of surface water. Maintain a minimum of one foot clearance between the casing top and the bottom of the valve box. Clearly mark the well number on the valve box lid.

2 If an above ground surface completion is used, extend the well casing two or three feet above land surface. Provide an end plug or casing cap for each well. Shield the extended casing with a steel guard pipe (sleeve) which is placed over the casing and cap, and seated in a two-foot by two-foot concrete surface pad. The concrete surface pad shall have a minimum thickness of four inches above ground level and be sloped away from the well sleeve. It shall extend to a sufficient depth below ground level (to the frostline) to resist cracking and breakage during the winter months. Install a lockable cap or lid on the guard pipe. Install three, four-inch diameter cement-filled metal barrier posts in the ground around each concrete surface pad. The barrier posts shall be five feet in total length, with two feet recessed into the ground and set in concrete. Do not install the barrier posts in the concrete pad placed at the well base. Paint the protective steel sleeve and clearly number the well on the sleeve exterior.

3 Provide locks for both flush and above-ground well assemblies. Turn over the lock keys to the Base POC following completion of the field effort.

- MOD 2 (c) Develop each well as soon as practical after completion with a submersible pump, bailer, and/or airlift method. Continue well development until the discharge water is clear and free of sediment to the fullest extent possible. Measure the rate of water production, the pH, specific conductance and water temperature during well development and include this information in the Final Report (Sequence No. 4, Item VI).
- MOD 2 (d) Determine by survey the elevation of all newly installed monitoring wells to an accuracy of 0.01 foot. Notch the top of the riser casing where well elevations are established. Horizontally locate the new wells to an accuracy of 1.0 foot and record the position on both project and site specific maps. Bench marks used must have previously been established from and be traceable to a USCGS or USGS survey marker.
- MOD 2 (e) Measure water levels at all monitoring wells as feet below the ground surface or below the top of casing elevation to the nearest 0.01 foot. Report as mean sea level (MSL). Measure static water levels in wells prior to well development and before all well purging which precedes sampling events.
 - b. Recommend well abandonment method(s) or technique(s) which are applicable to the type of monitoring wells installed and the geological conditions. Consider that these wells will be abandoned at some future

- date after the study objectives have been met and there is no longer a need for the wells. The actual process of well abandonment is only applicable if expressly called for in the site-specific work, Section I.H. Assure that the recommended method(s) meets state and/or local well abandonment quidelines or regulations.
 - c. Complete permits, applications, and other documents which may be required by local and/or state regulatory agencies for the installation of monitoring wells. File these documents with appropriate agencies and pay all permitting and filing fees.

4. Soil Borings

MOD 2

MOD 2

- a. Perform a maximum of 6 shallow soil augerings using a hand or power auger. Each augering is to be one foot in depth. Total footage for all shallow soil augerings shall not exceed 6 feet. Collect one soil sample from each augering (maximum of 6 auger samples). Refer to Section I.H., for the site-specific details.
- b. Conduct a maximum of 26 soil borings not to exceed a total of 390 linear feet. The maximum depth of each soil boring shall be 15 linear feet. Accomplish the borings using the hollow stem auger technique. Obtain split spoon samples at intervals of 0 to 5, 5 to 10, and 10 to 15 feet using ASTM Method D-1586, not to exceed 3 samples per boring. Borings may be accomplished using a hand or power auger when site conditions limit accessibility with the hollow stem auger drill rig. The appropriate boring method shall be determined in the field by the project manager in coordination with the USAFOEHL Technical Program Manager. The maximum number of boring samples to be collected is 78. Refer to Section I.H., for the site-specific details.
 - c. Scan all split-spoon soil cores with a photoionization meter or equivalent organic vapor detector. Include monitoring results in the boring logs.
 - d. During the boring operations, describe lithologies encountered and prepare stratigraphic logs. Place special emphasis on field identification of contaminated soils encountered.
 - e. Whenever possible, measure water levels in all boreholes after the water level has stabilized. Examine the water surface for the presence of hydrocarbons. Include this information in the boring logs.
 - f. Tremie-grout all boreholes to the surface with bentonite. It is especially important to insure that they be adequately resealed to preclude future migration of contaminants.
 - g. Permanently mark each location where soil borings are drilled. Record the location on a project map for each specific site or zone, whichever is applicable.

5. Well and Borehole Cleanup

Remove all well/borehole cuttings and clean the general area

following the completion of each well/borehole. Containerize and store cuttings suspected to be contaminated according to paragraph I.D.2. of this task order. Transport these drums to a location within the installation boundary designated by the Base POC. The base is responsible for ultimate disposal of contaminated soils using base resources.

E. Decontamination Procedures

- 1. Decontaminate all sampling equipment, including internal components, prior to use and between samples to avoid cross-contamination. Wash equipment with a laboratory-grade detergent followed by drinking quality water, solvent (methanol), and distilled water rinses. Allow sufficient time for the solvent to evaporate and the equipment to dry completely before reuse.
- 2. Dedicate for each well the monofilament line or steel wire used to lower sampling equipment into the well. Do not use a line or wire in more than one well. Decontaminate the calibrated water level probe for measuring well volume and water level elevation before use in each well.
- 3. Thoroughly clean and decontaminate the drilling rig and tools before initial use and after each borehole completion. As a minimum, steam clean drill bits after each borehole is installed. Drill from the "least" to the "most" contaminated sites, if possible.

F. Field Sampling

1. Strictly comply with the sampling techniques, maximum holding times, and sample preservation as specified in the following references: Standard Methods for the Examination of Water and Wastewater, 16th Edition (1985), pages 37-44; ASTM, Section 11, Water and Environmental Technology; Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 2nd Edition (USEPA, 1984); Methods for Chemical analysis of Waters and Wastes, EPA Manual 600/4-79-020, pages xiii to xix (1983); and the Handbook for Sampling and Sample Preservation of Water and Wastewater, EPA Document 600/4-82-029 (1982).

2. Groundwater Monitoring Wells

- a. After development, allow wells to stabilize for a minimum of three days before sampling.
- b. Prior to purging the wells, examine the surface of the water table for the presence of hydrocarbons and take water level measurements to the nearest 0.01 foot with respect to the established survey point on top of the well casing. If applicable, measure the thickness of the hydrocarbon layer.
- c. Purge the well using a submersible pump, bailer, or other acceptable method. Purge until a minimum of three well volumes (based on borehole diameter) of water has been displaced and the pH, temperature, specific conductance, color, and odor of the discharge have stabilized using the following criteria: $pH \pm 0.1$ unit, temperature $\pm 0.5C$, and specific conductance ± 10 mhos. Include the final measurements in the

Results section of the Final Report.

- d. Collect water samples with a Teflon bailer. To collect representative aquifer samples where floating hydrocarbons are present, use a "thief sampler" or similar point sampling device to minimize the influence of the free product.
- e. If the well(s) cannot be sampled due to well development, well characteristics, or other reason(s), indicate the reason(s) in the Final Report (Sequence No. 4, Item VI below).
- f. Remeasure water levels after sampling and after the water conditions in the wells have stabilized.
- 3. For surface water/sediment samples, collect one surface water and one sediment sample at each sample location specified. Collect samples so as not to cause cross-contamination; obtain downstream samples first, and obtain the water sample at each location before the sediment sample. Measure pH, temperature, and specific conductance at each surface water sampling point. Permanently mark the location where surface water or sediment samples are collected. Record the location on a project map for each specific site or zone, whichever applies.
- 4. Split all water and soil samples. Analyze one set and immediately deliver the other set (the same collection day) to the Base POC. The Base POC will select 10% of the split samples, package the selections with appropriate forms, and deliver them to the contractor within 24 hours of receipt. Supply all packing and shipping materials to the Base POC for packaging the split samples. Immediately ship (within 24 hours) the POC-selected samples through overnight delivery to:

USAFOEHL/SA Bldg 140 Brooks AFB TX 78235-5501

For all split samples sent to the USAFOEHL, complete an AF Form 2752A "Environmental Sampling Data" and/or an AF Form 2752B "Environmental Sampling Data - Trace Organics", (working copies will be provided under separate cover) with the following information:

- a. Date and time collected
- b. Purpose of sample (analyte and sample group)
- c. Installation name (base)
- d. Sample number
- e. Source/location and depth of sample
- f. Contract Task Numbers and Title of Project
- g. Method of collection (bailer, suction pump, air-lift
 pump, etc.)

- h. Volumes removed before sample taken (well samples only)
- i. Special conditions (use of surrogate standard, etc.)
- j. Preservatives used
- k. Collector's name or initials

In addition, label each sample container with a permanent ink pen (water-proof laundry marker) to reflect the data in a, b, c, d, j and k above.

- MOD 2

 5. For every 10 field samples collected, take at least one additional sample (a field duplicate) for quality control purposes.

 MOD 2

 Appendix 1 provides a 10% allowance for these additional analyses.

 Duplicates shall be indistinguishable from other analytical samples so that personnel performing the analyses are not able to determine which samples are duplicates.
- MOD 2

 6. For every 20 field water samples collected, prepare and submit for analysis one field blank for all parameters analyzed in water. A minimum of one field blank for each parameter is required. In addition, for every 20 field water samples collected for the analysis of volatile organic compounds (VOCs), prepare one trip blank and collect one bailer

 MOD 2

 wash sample. Assure that the water used for the field blanks, trip blanks, and bailer wash samples has been previously tested and is free of contaminants which would interfere with the required analyses. Allowances for these additional analyses are included in Appendix 1.
- MOD 2 <u>7.</u> Maintain chain-of-custody records for all samples, field blanks, and quality control samples.

G. Chemical Analyses

- 1. Analyze water and soil samples collected as specified in Section H below, Specific Site Work. The analytical parameters are summarized in Appendix 1 along with the required methods.
- 2. All analyses shall meet the required limits of detection for the applicable method identified in Appendix 1.
- 3. For those methods which employ gas chromatography (GC) as the analytical technique (E601, E608, SW8010, SW8020, SW8080, SW8140, and SW8150) positive confirmation of identity is required for all analytes having concentrations higher than the Method Detection Limit (MDL). Conduct positive confirmation by second-column GC; however, gas chromatography/mass spectroscopy (GC/MS) can be used for positive confirmation if the quantity of each analyte to be confirmed is above the detection level of the GC/MS instrument. Analytes which cannot be confirmed will be reported as "Not Detected" in the body of the report, but results of all second-column GC or GC/MS confirmational analyses are to be included in the report appendix along with other raw analytical data. Base the quantification of confirmed analytes on the first-column analysis. The

MOD 2

maximum number of second-column confirmational analyses shall not exceed eighty-five percent (85%) of the actual number of field samples (to include duplicates, field blanks, trip blanks, and bailer wash samples). The total number of samples listed in Appendix 1 includes the allowance applicable to each GC method. If GC/MS, or a combination of second-column GC and GC/MS, is used, the total cost of all such analyses for a particular parameter shall not exceed the funding allowed for positive confirmation using only second-column GC.

- 4. All chemical/physical analyses shall conform to state and other applicable Federal and local regulatory agency legal requirements. If a regulatory agency specifies that a type of analysis be performed in a certified laboratory, assure compliance with the requirement and furnish documentation showing laboratory certification with the first analytical data supplied to the USAFOEHL/TS.
- 5. Archive all raw data, including QA/QC and standards data, for not less than five years after project completion. Supply these data to the USAFOEHL/TS upon request.

H. Specific Site Work

In addition to items delineated in I.A. through I.G. above, conduct the following specific actions at the sites listed below:

1. Zones 1 and 2, Existing Monitoring Wells GW-1 to GW-10

The contractor shall complete all the work required in this paragraph, including the chemical analyses on the water samples, prior to initiating the drilling of new monitoring wells at Hancock FLD. The chemical and hydrogeological data obtained are to be used to determine placement of new monitoring wells. The contractor shall provide the analytical data, along with recommendations for well placements, to the OEHL technical program manager as soon as it becomes available, but not later than five weeks after samples are taken. Data and recommendations shall be in the form of an Informal Technical Information Report (Sequence No. 3, Item VI, below). The USAFOEHL Technical Program Manager must approve locations for all new monitoring wells prior to their installation.

Locate and inspect the ten existing wells. Replace broken cement collars around well casings with 2 foot by 2 foot square cement collars and install protective barrier posts as specified in paragraph I.D.3.a(6)(c)2. Measure the water level in each well and from this data determine the potentiometric surface for each zone. Conduct pump and/or slug tests to determine horizontal groundwater velocities. Purge each well (see paragraph I.F.2.c. above). Collect one water sample from each existing well (a total of ten samples). Analyze each sample for the following parameters:

<u>Parameter</u>	Method	Max Number of Analyses
Alkalinity, Carbonate & Bicarbonate	A403	10
Common Anions	A429	10
Conductance	E120.1	10
Hq	E150.1	10
Total Dissolved Solids	E160.1	10
Temperature	E170.1	10
Petroleum Hydrocarbons	E418.1	10
Purgeable Halocarbons	E601	10
Aromatic Volatile Organics	SW5030/SW8020	10
/	E200.7 (23 metals)	10
Í	plus	
Metals Screens <	E206.2 (As)	10
(Total of 26 Metals) \	E245.1 (Hg)	10
<i>'</i>	E270.2 (Se)	10
Extractable Priority Pollutants (GC/MS)	E625	10

2. Fire Training Area (FT-1)

The purpose of the Stage 2 work at FT-1 is to determine the vertical and horizontal extent of contamination around the site through soil gas analyses and a soil sampling program. Using visual observations and a probe-type soil gas analysis technique, determine the approximate boundaries of the site and the extent and direction of any plume which might be emanating from the site. Include the plume as part of the overall site area. A maximum of thirty soil gas probes shall be installed at FT-1. Once the boundaries (including the plume) have been determined, develop a grid system for soil sampling radiating out from the center of the site. Establish soil sampling transect lines at 45 degree angles around the site. Each of the eight transect lines shall have three sampling stations. total number of sampling stations for the site is 24. Locate the first sampling station on each transect line at a distance halfway between the center of the site and the site boundary. Place the second at the intersection of the transect line and the site boundary. Place the last sampling station on each transect line 100 feet past the boundary of the site. Using hollow stem auger equipment and stainless steel split spoon samplers, drill one borehole at each sampling station and take a maximum of three soil samples. Take samples at 5-foot intervals (see paragraph I.D.4.b.) until either a depth of 15 feet or the water table is reached. If the water table is encountered, collect the sample from the last interval at the water interface. A maximum of 72 soil samples shall be taken at the site. Identify all sampling stations with permanent markers. Analyze each soil sample for the following parameters:

Parameter	Method	Max Number of Analyses
Petroleum Hydrocarbons	SW3550/E418.1	72
Lead	SW3050/SW7420	72
Volatile Organics(GC/MS)	SW5030/SW8240	72

Select ten of the most highly contaminated samples (as determined by the soil gas analyses) from the total number of soil samples collected. Perform the following additional analyses on these ten samples:

Parameter	<u>Method</u>	Max Number of Analyses
Semivolatile Organics(GC/MS)	SW3550/SW8270	10

Install three well pairs to triangulate the site. A well pair is defined as two singly completed wells installed side-by-side and drilled to different depths. These six wells shall be the first ones installed at Hancock FLD. The wells shall be completed, purged, and sampled as rapidly as is feasible, without sacrificing sample integrity. Sufficient time must be allowed for completion of the initial chemical analyses on the water samples while the well drilling subcontractor is still at Hancock FLD, in the event that additional wells will be required at FT-1. Locate one well pair upgradient to site FT-1; place the other two downgradient in the direction of plume migration. One downgradient well pair shall be within 50 feet of the site boundary. The second downgradient well pair shall be installed no more than 150 feet from the site boundary. Drill the deep well of each well pair into bedrock to a depth sufficient for setting a 20foot screen and obtaining a representative sample from the aquifer. Drill the shallow well of the pair to 20 feet below the water table and screen the interval below the capillary fringe. The well screen must not extend into the capillary fringe of the unsaturated zone where free floating product may be encountered. Take one water sample from each well (a total of six water samples). Analyze each sample for the following parameters:

Parameter	Method	Max Number of Analyses
Conductance	E120.1	6
рH	E150.1	6
Temperature	E170.1	6
Petroleum Hydrocarbons	E418.1	6
Purgeable Halocarbons	E601	6
Aromatic Volatile Organics	SW5030/SW8020	6

Based upon the analytical data obtained during the first round of sampling of the initial six wells, evaluate the need for additional downgradient wells at FT-1. A maximum of two additional well pairs shall be installed if the analytical data obtained for the wells farthest downgradient from the site boundary indicate water contamination. The contractor must obtain approval from the USAFOEHL Technical Program Manager prior to the installation of additional wells. After installation of all wells at FT-1, conduct a second round of sampling. Take one water sample from each well (a maximum of 10 water samples). Analyze each water sample for the following parameters:

<u>Parameter</u>	<u>Method</u>	Max Number of Analyses
Conductance	E120.1	10
рH	E150.1	10
Temperature	E170.1	10
Petroleum Hydrocarbons	E418.1	10
Purgeable Halocarbons	E601	10
Aromatic Volatile Organics	SW5030/SW8020	10
Lead	E239.2	10

MOD 2 3. Disposal Site D-5

MOD 2 Install three shallow wells to triangulate the site. Locate one shallow well upgradient to site D-5; the other two downgradient. One downgradient shallow well shall be installed within 50 feet of the site boundary. The second downgradient shallow well shall be installed no more than 150 feet from the site boundary. Take one water sample from each well and one water sample from well MW-10, located north of D-5 (a total of four samples). Analyze each sample for the following parameters:

	Parameter	Method	Max Number of Analyses
MOD 2	Alkalinity, Carbonate & Bicarbonate	A403	<u>4</u>
MOD 2	Common Anions	A429	4
MOD 2	Conductance	E120.1	$\overline{4}$
MOD 2	рĦ	E150.1	4
MOD 2	Total Dissolved Solids	E160.1	4
MOD 2	Temperature	E170.1	4 4 4 4 4 4 4
MOD 2	Petroleum Hydrocarbons	E418.1	4
MOD 2	Purgeable Halocarbons	E601	$\overline{4}$
MOD 2	Aromatic Volatile Organics	SW5030/SW8020	4
MOD 2	/	/ E200.7 (23 metals) plus	<u>4</u>
MOD 2	Metals Screen <	E206.2 (As)	4
MOD 2	(Total of 26 Metals) \	E245.1 (Hg)	$\overline{4}$
MOD 2	·	\ E270.2 (Se)	$\frac{\frac{4}{4}}{\frac{4}{4}}$
MOD 2	Extractable Priority Pollutants (GC/MS)	E625	<u>4</u>

- MOD 2 The requirement to collect split samples (paragraph I.F.4) at Site D-5 is deleted.
- V MOD 1 Conduct a second round of groundwater sampling. Take samples from each well at the site and from well MW-10 (a total of four samples). Analyze for total and dissolved thallium using the following method:

<u>Parameter</u>	<u>Method</u>	Max Number of Analyses
<u>Thallium</u>	SW3020/SW7841 Total Dissolved	$\frac{4}{4}$

- V MOD 1 The portion of the sample to be analyzed for dissolved thallium must be field-filtered through a 0.45 micron filter immediately after collection and prior to preservation.
 - 4. Zones 1 and 2, Surface and Sediment Monitoring Stations

Resample the nine existing surface water and sediment monitoring stations (or locations) in Zones 1 and 2. See the Stage 1 Report, provided under separate cover. Establish eight new surface water and sediment monitoring stations in Zone 1 at the locations indicated in Appendix 3 (Figure 2-11, extracted from the Phase II, Stage 1, report, page 2-22). Establish four new surface water and sediment monitoring stations in Zone 2 at locations indicated in Appendix 4 (Figure 2-8, extracted from the Phase II, Stage 1, report, page 2-16). Collect twenty-one surface water samples from Zones 1 and 2, one from each old and one from each new sampling station. Analyze each sample for the following parameters:

Parameter	Method	Max Number of Analyses
Conductance	E120.1	21
рH	E150.1	21
Temperature	E170.1	21
Petroleum Hydrocarbons	E418.1	21
Purgeable Halocarbons	E601	21
Aromatic Volatile Organics	SW5030/SW8020	21
/	E200.7 (Sb,Be,Cd,Cr Cu,Pb,Ni,Ag,Tl,Zn)	
Priority Pollutant Metals <	E206.2 (As)	21
(Total of 13 Metals) \	E245.1 (Hg)	21
`\	E270.2 (Se)	21
Extractable Priority Pollutants (GC/MS)	E625	21

Collect twenty-one sediment samples from Zones 1 and 2, one from each old and one from each new sampling station. Analyze each sample for the following parameters:

Parameter	Method	Max Number of Analyses
D. d 1	CT:0550 /TM 10 1	
Petroleum Hydrocarbons	SW3550/E418.1 SW3050/SW6010 (Sb,B	21 e. 21
/′	Cd, Cr, Cu, Pb, Ni, Ag,	e, 2:
Priority Pollutant Metals <	Tl,Zn)	
(Total of 13 Metals) \	SW7060 (As)	21
\	SW7471 (Hg)	21
·	\SW7740 (Se)	21
Volatile Organics(GC/MS)	SW5030/SW8240	21
Semivolatile Organics(GC/MS)	SW3550/SW8270	21

5. Zone 2, Disposal Sites D-1 and D-3

MOD 2 Install two new well pairs and two new deep wells within Zone 2. Locate

one well pair downgradient to Site D-3. Locate the other well pair between sites D-1 and D-3. The exact locations of the well pairs shall be determined in the field by the project manager in coordination with the USAFOEHL Technical Program Manager. Install one of the deep wells next to existing upgradient well GW-3. Install the second deep well next to downgradient well GW-6. Drill the deep wells into bedrock to a depth sufficient for setting a 20-foot screen and obtaining a representative sample from the aquifer. Drill the shallow wells to 20 feet below the water table and screen the interval. Take one water sample from each new well (a total of six water samples). Analyze each sample for the following parameters:

	Parameter	<u>Method</u>	Max Number of Analyses
MOD 2	Alkalinity, Carbonate & Bicarbonate	A403	<u>6</u>
MOD 2	Common Anions	A429	6
MOD 2	Conductance	E120.1	<u>6</u>
MOD 2	рH	E150.1	6
MOD 2	Total Dissolved Solids	E160.1	<u>6</u>
MOD 2	Temperature	E170.1	6
MOD 2	Petroleum Hydrocarbons	E418.1	6
MOD 2	Purgeable Halocarbons	E601	-
MOD 2	Aromatic Volatile Organics	SW5030/SW8020	6
MOD 2	/	/ E200.7 (23 metals) plus	ହାବାବାବାବାବାବାବାବା ବ
MOD 2	Metals Screens	E206.2 (As)	6
MOD 2	(Total of 26 Metals)	E245.1 (Hg)	<u>6</u>
MOD 2	(10tal of 20 Retails)	E270.2 (Se)	š
MOD 2	Extractable Priority Pollutants (GC/MS)	E625	6 6 6 6

MOD 2

6. Zone 2, Disposal Sites D-1 and D-3

Conduct a magnetometer survey within sites D-1 and D-3 to detect the presence of buried drums. Horizontally locate all buried drums to an accuracy of 1 foot and record on site maps. Identify the locations of buried drums in the field with permanent markers. Uncovering and removal of the drums is not part of this Phase II project.

7. S-3 Entomology Underground Storage Tank (New Site)

This concrete underground storage tank is no longer in use. The contents were pumped out at the time of deactivation; however, groundwater seeps into the tank. Take one water sample from the tank contents through the access pipe on top of the tank. Analyze the sample for the following parameters:

Parameter	<u>Method</u>	Max Number of Analyses
Conductance	E120.1	1
рH	E150.1	1
Temperature	E170.1	1
Organochlorine Pesticides	E608	1
Organophosphorus Pesticides	SW3510/SW8140	1
Chlorinated Phenoxy Acid Herbicides	SW8150	1

Establish a soil sampling station 20 feet or less downgradient from the tank. The sampling station should be identified with a permanent marker. Using hollow stem auger equipment and stainless steel split spoon samplers, drill one borehole and take a maximum of three soil samples. Take the samples at 5-foot intervals (see paragraph I.D.4.b) until either a depth of 15 feet or the water table is reached. If the water table is encountered, collect the sample from the last interval at the water interface. Analyze each soil sample for the following parameters:

Parameter	Method	Max Number of Analyses
Organochlorine Pesticides	SW3550/SW8080	3
Organophosphorus Pesticides	SW3550/SW8140	3
Chlorinated Herbicides	SW8150	3

8. Site S-1 Transformer Storage Area (New Site)

Visually inspect the land surface area within a 50-foot radius of Building 530. Mark all areas where soil is found to be oily or abnormally colored, indicating a possible spill. If no oily or discolored areas are found during the visual inspection, select two sites at random no farther than 10 feet from Building 530. Take 1 surface soil sample using a hand auger from each marked area and 1 surface soil sample inside of building 530 (see paragraph I.D.4.a.). A maximum of six (6) soil samples shall be taken at this site. Analyze each sample for the following parameters:

Parameter	Method	Max Number of Analyses	
Petroleum Hydrocarbons	SW3550/E418.1	6	
PCBs	SW3550/SW8080	6	

9. Site SP-1 Old Spill Area (New Site)

Locate the storm sewer outfall from the SAGE plant (Bldg 503) which is described in the Phase I Report, page 4-10. This outfall is site SP-1. Collect three surface water samples. Take one sample at the outfall. Take the second and third surface water samples at points 50 and 100 feet,

respectively, downstream of the outfall. Analyze each sample for the following parameters:

Parameter	Method	Max Number of Analyses
Conductance	E120.1	3
pH	E150.1	3
Temperature	E170.1	3
Petroleum Hydrocarbons	E418.1	3
Purgeable Halocarbons	E601	3
Aromatic Volatile Organics	SW5030/SW8020	3
Lead	E239.2	3

Collect sediment samples at the same locations where water samples were collected. Analyze each sediment sample for the following parameters:

Parameter	Method	Max Number of Analyses
Petroleum Hydrocarbons	SW3550/E418.1	3
Volatile Organics(GC/MS)	SW5030/SW8240	3
Lead	SW3050/SW7420	3

10. Background Soil Samples

Select a site in an undisturbed area on base where contaminants are not expected to be found and which has typical native soils. Drill one borehole. Take samples at 5-foot intervals (see paragraph I.D.4.b.) until either a depth of 15 feet or the water table is reached. If the water table is encountered, collect the sample from the last interval at the water interface. These soil samples are to be used to establish background levels of metals and petroleum hydrocarbons. Analyze each soil sample for the following parameters:

Parameter	<u>Method</u>	Max Number of Analyses
Petroleum Hydrocarbons	SW3550/E418.1	3
Lead	SW3050/SW7420	3
	/ SW3050/SW6010 (Sb,I	Be, 3
/	Cd, Cr, Cu, Pb, Ni, Ag	,
Priority Pollutant Metals <	T1,Zn)	
(Total of 13 Metals) \	SW7060 (As)	3
·	\ SW7471 (Hg)	3
	\SW7740 (Se)	3

MOD 2 11. Abandonment of Well GW-4

MOD 2 Abandon well GW-4 in accordance with state and/or local well abandonment guidelines and regulations (see paragraph I.D.3.b.).

NEW PARA ADDED PER

MOD 3

12. Baseline Risk Assessment

- a. Evaluate the threat of contaminants to public health and welfare or the environment through a literature search of documents identified in Section 2 of the USAFOEHL/TSS Handbook, Version 2.0, dated April 1988 (provided under separate cover). This effort shall satisfy the requirement in the Superfund Amendments and Reauthorization Act (SARA) of 1986 to identify all Applicable or Relevant and Appropriate Requirements (ARARS).
- b. After a thorough review of all data gathered during the field investigation and the establishment of ARARs (paragraph I.H.12.a. above), determine the potential risk to human health and welfare or the environment from the contaminants identified at the various sites investigated. Do the following:
- (1) Identify the physical and chemical characteristics of the site contaminants (e.g., toxicity, carcinogenicity, flammability, etc.)
- (2) Identify release mechanisms (e.g., volatilization, leaching) and estimate the volume of contaminants released or being released at each IRP site.
- (3) Identify potential human and environmental receptors and receptor characteristics which might increase vulnerability to the effects of contaminants.
- (e.g., direct contact, inhalation of vapors/dust, ingestion of contaminated water or soil, ingestion of aquatic organisms, etc.).
- (5) Determine representative rates of migration associated with individual sites. Rates of flow, groundwater velocities, and times necessary to reach receptors shall be calculated based on a range of conservative assumptions.
- <u>c.</u> Include results of the baseline risk assessment in Section IV of the Final Report (paragraph I.J.).

NEW PARA ADDED PER MOD 3 13. Identify those IRP sites posing no threat to human health, welfare or the environment and which no further action is appropriate.

Prepare a technical decision document to support this finding (Sequence No. 4, Item VI). One decision document is required for each such site.

Use the format provided in Section 11 of the USAFOEHL/TSS Handbook, Version 2.0, dated 15 Apr 88 (mailed under separate cover).

NEW PARA ADDED PER MOD 3

14. Identify those IRP sites which will require further remedial investigation or a feasibility study. Prepare a Work Plan (Sequence No. 4, Item VI) for this next effort. Use the Work Plan format provided in Section 4 of the USAFOEHL/TSS Handbook, Version 2.0, dated April 1988 (mailed under separate cover). Forward all copies to USAFOEHL/TSS.

I. Data Review

- 1. Tabulate field and analytical laboratory results, including field and laboratory parameters and QA/QC data, as they become available and incorporate them into the next monthly R&D Status Report (Sequence No.1, Item VI below) forwarded to the USAFOEHL. In addition to the results, report the following:
- a. the time and dates of sample collection, extraction (if applicable) and analysis;
 - b. the method used and Method Detection Limits achieved;
 - c. the chain-of-custody forms;
- d. a cross-reference of laboratory sample numbers and field sample numbers;
- e. a cross-reference of field sample numbers to wells, boreholes, sites, etc.
- 2. Upon completion of all analyses, tabulate and incorporate all results into an Informal Technical Information Report (Sequence No. 3, Item VI below) and forward the report to USAFOEHL for review a minimum of two weeks prior to submission of the draft report. Provide as a minimum the information specified in I.I.1 above.
- 3. Immediately report to the USAFOEHL Program Manager or his supervisor, via telephone, data/results generated during this investigation which indicate a potential health risk (for example, a contaminated drinking water aquifer). Follow the telephone notification with a written notice within three days and attach a copy of the laboratory raw data (e.g., chromatogram).

NEW PARA ADDED PER MOD 4 4. Prepare a letter report (Sequence No. 4, Item VI) delineating the findings from the field investigation at Site D-5 (Modification 2 to Delivery Order). Include alternative measures and formulate recommendations based upon findings. Include field and analytical laboratory results, and other information specified in paragraph I.I.1. above, as attachments to the letter report. A separate Informal Technical Information Report (paragraph I.I.2) is not required for Site D-5."

J. Reporting

1. Prepare a draft report delineating all findings of this field investigation and forward it to the USAFOEHL (as specified in Sequence No. 4, Item VI below) for Air Force review and comment. Strictly adhere to the USAFOEHL report format (mailed under separate cover). The format is an integral part of this delivery order. Draft reports are considered "drafts" only in the sense that they have not been reviewed and approved by Air Force officials. In all other respects, "drafts" must be complete, in the proper format, and free of grammatical and typographical errors. Include as a minimum, discussion of the regional/site-specific hydrogeology, well and boring logs, data from water level surveys, water

table configuration and/or piezometric contour maps, water quality and soil analysis results, hydrogeological cross sections, and laboratory and field QA/QC information. For states that require the field work or technical effort to be supervised by a state-registered geologist, engineering geologist or professional engineer; insert this information into the report and include registration numbers, certificates and seals (as appropriate).

- 2. Review the Results, Conclusions and Recommendations concerning the sites listed in this task which were investigated during a previous IRP Phase II stage work effort. Use this information and data from previous efforts to establish trends and develop conclusions and recommendations. Integrate all investigative work done at each site to date so the report reflects the total cumulative information for each site studied in this effort.
- 3. In the Results section, include water and soil analytical results and field quality control sample data. Report all internal laboratory quality control data (lab blanks, lab spikes and lab duplicates) and laboratory quality assurance information in an appendix of the report. Also provide second-column confirmation results and quantities, and include which columns were used, instrument operating conditions, and retention times. Summarize in the appendix the specific collection technique, analytical method (Standard Methods, EPA, etc.), holding time, and limit of detection for each analyte.
- 4. Make estimates of the magnitude, extent and direction which detected contaminants are moving. Identify potential environmental consequences of the discovered contaminants based upon state or Federal standards.
- 5. Plot and map all field data collected for each site according to surveyed positions.
- 6. In the Recommendations section, address each site and list them by category:
- a. Category I consists of sites where no further action (including remedial action) is required. Data for these sites are considered sufficient to rule out unacceptable public health or environmental hazards.
- MOD 3 b. Category II sites are those requiring an additional <u>IRP</u> effort to determine the direction, magnitude, rate of movement and extent of detected contaminants. Identify potential environmental consequences of discovered contamination.
- MOD 3

 c. Category III sites are those sites where contamination
 has been identified and quantified and which require a feasibility study
 to develop recommendations for remedial action. In the recommendations for
 Category III sites, include a discussion of any possible influence on
 sites in Categories I and/or II due to their connection with the same
 hydrological system. Clearly state any dependency between sites in
 different categories. Include a list of possible remedial action

alternatives, including long term montoring (LTM) as a remedial action, and the corresponding rationale that should be considered in selecting the remedial action for a given site. Included here should be recommendations on wells to be abandoned and/or sealed, if appropriate. List all alternatives that could potentially bring the site into compliance with environmental standards. For contaminants that do not have standards, use EPA-recommended safe levels for noncarcinogens (Health Advisory or Suggested-No-Adverse-Response Levels) and target levels for carcinogens 1 x 10 $^{-0}$ cancer risk level). Unless specifically requested, do not perform any cost analyses or cost/benefit reviews for remedial action alternatives. However, in those situations where field survey data indicate immediate corrective action is necessary, present specific, detailed recommendations.

- 7. For each category above, summarize the results of field data, environmental or regulatory criteria, or other pertinent information supporting conclusions and recommendations. Reduce this summary information into a table (or tables) which will be included in the text and the Executive Summary.
- MOD 3

 8. In a separate letter, submit a lump sum cost estimate (Sequence No. 2, Item VI) for the effort required to perform work detailed in the Work Plan for the next effort.
 - 9. Provide an inventory of all on-base wells, to include production, irrigation, monitoring, etc. If the well has been abandoned, note the reason, and identify the wells which have been permanently plugged or sealed.
 - 10. Reference in an appendix any local, state and/or Federal regulations which require specific well drilling techniques, materials, well development, purging, and sampling methods for work specified in this effort.
- MOD 3

 Report (Sequence No. 17, Item VI).

K. Meetings

The contractor's project leader shall attend 1 meeting to take place at a time to be specified by the USAFOEHL. The meeting shall take place at Hancock FLD NY for a duration of one eight hour day.

MOD 3

L. The above technical efforts, including the maximum requirements for each category, are estimates only. Should the technical efforts, including field work, require variations from these estimates, the contractor shall obtain written concurrence from USAFOEHL/TS prior to proceeding with the variations. Under such circumstances, the ceiling of this order shall remain unchanged. Should an increase in the ceiling amount be necessary, contracting officer authorization will be required prior to proceeding with the variation.

II. SITE LOCATION AND DATES:

Hancock FLD NY Date to be established

III. BASE SUPPORT:

- A. Prior to any contractor digging or drilling, the Base Civil Engineer will locate underground utilities and issue digging or other appropriate permits.
- B. The Base Civil Engineer will assign accumulation points within the installation for the contractor to use to deliver any drill cuttings or well installation/development fluids generated from the required work which are suspected to be hazardous. The contractor is responsible for providing all necessary containers (55 gallon drums) and for transporting the containerized material to the accumulation point.
- C. The Base Civil Engineer will take custody of any drill cuttings or well installation/development fluids suspected to be hazardous and properly dispose of the material according to applicable state and/or federal regulations.
- D. The Base will provide the contractor with existing engineering plans, drawings, diagrams, aerial photographs, etc., to evaluate sites under investigation.
- E. The Base will obtain a letter from the responsible official at the commercial airport allowing the contractor access to airport property for the purpose of taking surface water and sediment samples from the runway taxi area adjacent to the Hancock FLD ANG Base boundary. These samples may be necessary for background data on the quality of surface water entering the base.
- F. The Base Point of Contact (POC) shall select 10% of the samples provided by the contractor, package them, and ensure that they are picked up by the contractor within 24 hours of receipt (see paragraph I.F.4). The exact identities of samples selected shall not be provided to the contractor.
- G. The Base will arrange for, and have available prior to the start up of field work, the following services, materials, work space, and items of equipment to support the contractor during the investigation:
- 1. Personnel identification badges, vehicle passes and/or entry permits.
 - 2. A secure staging area for storing equipment and supplies.
- 3. A supply (i.e., fire hydrant) of large quantities (up to a maximum of 1,000 gallons) of potable water for borehole flushing, equipment cleaning, etc.
 - 4. A paved area where drilling equipment can be cleaned and

decontaminated. A source of potable water (i.e., ordinary outdoor water faucet) and a 110/115 VAC electrical outlet must be available within 25 feet of the paved area for steam cleaner hookup. Drainage from this paved area should be through an oil/water separator to a sanitary sewer.

- 5. A temporary office area, not to exceed 100 square feet and equipped with a Class A telephone for local and long distance telephone calls. The contractor shall pay for any long distance telephone calls made by his personnel from this phone.
- 6. A household-type refrigerator having approximately two cubic feet of freezer space.
- 7. A set of keys to the locks on the ten existing monitoring wells (GW-1 through GW-10) at Hancock FLD and to the lock on the door of Bldg 530 at the old transformer storage area. The keys shall be returned to the Base POC by the contractor when the survey has been completed.
- IV. GOVERNMENT FURNISHED PROPERTY: None
- V. GOVERNMENT POINTS OF CONTACT:
 - 1. USAFOEHL Technical Program Manager

Ms Judith F Burris USAFOEHL/TSS Brooks AFB TX 78235-5501 (512) 536-2158 AV 240-2158/2159 1-800-821-4528

3. MAJCOM Monitor

SMSqt James L Craiq ANGSC/SGB Andrews AFB MD 20331-6008 (301) 981-5926 AV 858-3443/5926 2. Base Point of Contact (POC)

TSgt Allan C Smith 174 TAC Clinic/SGPB Hancock Fld Syracuse NY 13211-7099 (315) 470-6347, 6167 AV 587-9347, 9167

4. Base Civil Engineer POC

Maj Temple Myers 174 TAC Civil Engineering/DE Hancock FLD Syracuse NY 13211 (315) 470-6449 AV 587-9449

MOD 3

VI. In addition to sequence numbers 1, 5 and 11 listed in Attachment 1 to the contract, and which apply to all orders, the sequence numbers listed below are applicable to this order. Also shown are dates applicable to this order.

	Sequence No.	Para No.	Block 10	Block 11	Block 12	Block 13	Block 14
	19 (TOP)*	I.B.	OTIME	86 Sep 05	86 Sep 12		15
	7 (Health & Safety)	I.C.	OTIME	86 Sep 05	86 Sep 12		3
	3 (Prelim. Data)	I.H.1	OTIME	*****	*****		3
V MOD 1	4(NFA	I.H.13	ONE/R	89 Mar 31	89 Apr 28		***
	Dec.Doc.)						
V MOD 1	4(Work	I.H.14	ONE/R	89 Mar 31	89 Mar 31		4
	<u>Plan)</u>						
	3 (Prelim. Data)	1.1.2	OTIME	**	**		3
V MOD 1	4(Ltr	I.I.4	ONE/R	89 Jan 06	89 Jan 31		****
	Rep)						
V MOD i	4 (Tech.	I.J.	ONE/R	87 Jan 16	87 Jun 19	89 Mar 3	1 ***
	<u>Rpt)</u>						
MOD 3	2 (Cost <u>ltr</u>)	I.J.8.	OTIME	88 Dec 15	89 Feb 28		3
MOD 3	14 [DELETED]						
MOD 3	15 [DELETED]						
V MOD 1	(Micro- fiche)	I.J.11	OTIME	89 Mar 31			3

^{*}The Technical Operations Plan (TOP) required for this stage is due within two weeks of the Notice to Proceed.

^{**}Upon completion of the total analytical effort and before submission of the first draft report.

^{***}Two draft reports (25 copies of each) and one final report (50 copies plus the original camera-ready copy) are required. Incorporate Air Force comments into the second draft and final reports as specified by the USAFOEHL. Supply the USAFOEHL with an advance copy of the first draft, second draft, and final reports for acceptance prior to distribution. Distribute the remaining 24 copies of each draft report and 49 copies of the final report as specified by the USAFOEHL.

- MOD 3

 ****One draft (15 copies) and one final (10 copies) decision document are required for each site recommended for no further action. Incorporate comments into the draft decision document as specified by USAFOEHL/TS.

 Supply USAFOEHL/TS with one advance copy of each draft and final decision document for acceptance prior to distribution. Distribute the remaining 14 draft and 9 final copies of each decision document as specified by USAFOEHL/TSS.
- MOD 3

 *****One draft (5 copies) and one final (25 copies) Letter Report are required. Forward all five (5) copies of the draft Letter Report to USAFOEHL/TS. Incorporate comments into the draft Letter Report as specified by USAFOEHL/TS. Supply USAFOEHL/TS with one advance copy of the final Letter Report for acceptance prior to distribution. Distribute the remaining 24 copies of the Letter Report as specified by USAFOEHL/TSS.

***** Due within five weeks after samples are taken.

NEW SECTION ADDED PER MOD 4

VII. MCENTIRE ANGB SC

A. Conduct analyses for semivolatile organic compounds, method SW3550/SW8270, on soil samples collected at McEntire ANGB SC:

Site	Number of Analyses
1/2	5 (see note below)
Cedar Crk	<u>15</u> <u>8</u>
Soil Toxicity S.P Above SW/SD2-1	<u>5</u> 8
Drilling Fluid	<u></u>
Dup/Rep	4
TOTAL ADDED ANALYS	<u> 46</u>

Note: At Site 1, select for analysis the five (5) most contaminated samples based upon OVA and HNu readings.

B. Conduct additional analyses for volatile organic compounds, method SW8240, on soil samples collected at McEntire ANGB SC:

<u>Site</u>	Number o	of Additional	Analyses
1		25	
3 7		13	
<u> </u>		11	
Cedar Crk		1	
Soil Toxicity		4	
S.P. Above SW/SI	<u>D2-1</u>	<u>7</u>	
Trip Blanks		<u>8</u>	
Dup/Rep		7	
TOTAL ADDE	O ANALYSI	<u>es 82</u>	

C. Incorporate analytical results into the Technical Report (Item VI, Sequence No 4) for Delivery Order 003, Contract F33615-85-D-4543.

MOD 4 [Delete Appendix 6 and Notes.]

Appendix 1

Analytical Methods, Detection Limits, and Number of Analyses

	PARAMETER	METHOD	DETECTION LIMIT	REPORTNG UNITS (e)	NUMBER OF ANALYSES	QA/QC	FIELD BLANKS	SECOND COLUMN	TOTAL ANALYSES
	Hater Samples								
MOD 2	Alkalinity, Carbonate & Bicarbonate	A403	10	mg/L	21 water	2 water	2 water		25 water
MOD 2	Common Anions	A429	0.1	mg/L	21 water	2 water	2 water		25 water
MOD 2	Conductance (Field Test)	E120.1	-	umhos/cm	61 water	0 water	0 water		<u>61</u> water
MOD 2	pH (Field Test)	E150.1	-	pH Units	61 water	0 water	0 water		<u>61</u> water
MOD 2	Total Dissolved Solids	E160.1	10	mg/L	21 water	2 water	2 water		25 water
MOD 2	Temperature (Field Test)	E170.1	-	deg C	61 water	0 water	0 water		<u>61</u> water
	ICP Scan for 10 Priority Priority Pollutant Metals	E200.7	(b)	mg/L	21 water	2 water	l water		24 water
MOD 2	Metals Screen (23 metals)	E200.7	(b)	mg/L	20 water	2 water	2 water		24 water
MOD 2	Arsenic	E206.2	0.001	mg/L	41 water	4 water	3 water		48 water
	Lead	E239.2	0.002	mg/L	13 water	1 water	l water		15 water
MOD 2	Mercury	E245.1	0.0002	mg/L	41 water	4 water	3 water		48 water
MOD 2	Selenium	E270.2	0.002	mg/L	41 water	4 water	3 water		48 water
MOD 2	Petroleum Hydrocarbons	E418.1	1.	mg/L	54 water	5 water	3 water		<u>62</u> wate-
MOD 2	*Petroleum Hydrocarbons	<u>E418.1</u>	1.	mg/L	6 water	1 water	<u>l</u> water		<u>8</u> water
MOD 2	Purgeable Halocarbons	E601	(a)	ug/L	54 water	4 water	9 water	58 water	125 water
MOD 2	*Purgeable Halocarbons	<u> E601</u>	<u>(a)</u>	ug/L	6 water	2 water	<u>l</u> water	2 water	11 water
MOD 2	Aromatic Volatile Organics	SW5030/ SW8020	(a)	ug/L	54 water	4 water	9 water	<u>58</u> water	<u>125</u> water
MOD 2	*Aromatic Volatile Organics	SW5030/ SW8020	<u>(a)</u>	ug/L	<u>ó</u> water	2 water	1 water	2 water	11 water
	Organochlorine Pesticides	E608	(a)	ug/L	1 water	1 water	1 water	1 water	4 water
	Organophosphorus Pesticides	SW3510/ SW8140	(a)	ug/L	1 water	1 water	l water	1 water	4 water
	Chlorinated Phenoxy Acid Herbicides	SW8150	(a)	ug/L	1 water	l water	1 water	1 water	4 water
MOD 2	Extractable Priority Pollutants (GC/MS)	E625	(a)	ug/L	41 water	4 water	3 water		48 water
V MOD I	*Thallium Total and Dissolved	SH3020/ SH7841	0.001	mg/L	4 water		<u>l water</u>	5 water@	10 water
MOD 2	*Denotes rapid turn	around sa	npies CLIN	0002.					
V MOD I	@Laboratory is expe	cted verif	y the absen	ce of matr	·ix	l amilia			

**Blaboratory is expected verify the absence of matrix interferences in accordance with the method (i.e., analytical spike, serial dilution, etc). If matrix interference is indicated, quantitation shall be by the Method of Standard Additions (MSA). An allowance (one addition per sample) has been provided for the MSA analyses.

So	i ł	Sampi	es

Petroleum Hydrocarbons	SW3550/ E418.;	1.	mg/kg	106 soil	ll soil		II7 soil
Metals Screen (23 metals)	SH3050/ SH6010	(d)	mg/kg	l soil			l soil
ICP Scan for 10 Priority Poliutant Metals	SW3050/ SW6010	(d)	mg/kg	24 soit	2 soil		26 soil
Arsenic	SW7060	0.1	mg/kg	25 soil	3 soil		28 soil
Lead	SW3050/ SW7420	10	mg/kg	79 soil	8 soil		87 soil
Mercury (Cold Vapor)	SW7471	0.1	mg/kg	25 soil	3 soit		28 soil
Setenium	SW7740	0.2	mg/kg	25 soil	3 soil		28 soil
Organochiorine Pesticides	SW3550/ SW8080	1	mg/kg	3 soil	1 soil	2 soil	6 soil
PCBs	SW3550/ SW8080	1	mg/kg	6 soil	1 soil	4 soil	II soil
Organophosphorus Pesticides	SW3550/ SW8140	1	mg/kg	3 soil	l soil	2 soil	6 soil
Chlorinated Herbicides	SW8150	1	mg/kg	3 soil	1 soil	2 soil	6 soil
Volatile Organics (GC/MS)	SW5030/ SW8240	ı	mg/kg	97 soll	10 soil		107 soil
Semivolatile Organics (GC/MS)	SW3550/ SW8270	1	mg/kg	32 soil	3 soil		35 soil
Soil Moisture Content	ASTM D2216-71	-	*	108 soil	II soil		119 soil
RCRA Waste Monitoring EP Toxicity Extraction	SH1310	(2)		21 soil			21 soif 20 soil
EP Toxicity (metals)	SW Manuai	(c)		20 soil			20 3011

NOTES

a Detection limits as specified by the applicable EPA or Standard Method.

b	Metal	mg/L	<u> Metal</u>	mg/L		
	AI	0.045	Mn	0.002		
	Sb	0.032	Mo	0.008		
	Ba	0.002	Ni	0.015		
	Be	0.0003	K	(determine	at time	of analysis)
	В	0.005	Silica	0.058		
	Cq	0.004	Ag	0.007		
	Ca	0.010	Na	0.029		
	Cr	0.007	TI	0.040		
	Co	0.007	٧	0.008		
	Cu	0.006	Zn	0.002		
	Fe	0.007				
	Pb	0.042				
	Mg	0.030				
с	<u>Metal</u>	mg/L of	leaching so	lution		
	As		0.053			
	Ba		0.1			
	Cd		0.005			
	Cr		0.05			
	Pb		1.0			
	Нg		0.0002			
	Se		0.075			
	Ag		0.01			

d	<u>Metal</u>	mg/kg	Metal	mg/kg	
	AI	4.5	Mn	0.2	
	Sb	3.2	Mo	0.8	
	Вa	0.2	Ni	1.5	
	Be	0.03	K	(determine at tim	ne of analysis)
	8	0.5	Silica	5.8	-
	Cd	0.4	Ag	0.7	
	Ca	1.0	Na	2.9	
	Cr	0.7	Ti	4.0	
	Co	0.7	V	0.8	
	Çu	0.6	Zn	0.2	
	Fe	0.7			
	Pb	4.2			
	Mg	3.0			

e $\,$ For soil samples, report results as mg/kg of \underline{dry} soil. Report moisture content for each soil sample.

Appendix 2

Analyze one drilling fluid additive sample for the following chemical parameters:

Parameter	Method	Max Number of Analyses
Petroleum Hydrocarbons Metals Screen (23 metals) Arsenic	SW3550/E418.1 SW3050/SW6010 SW7060	1 1 1
Lead Mercury (Cold Vapor)	SW3050/SW7420 SW7471	1
Selenium Volatile Organics (GC/MS)	SW7740 SW5030/SW8240 SW3550/SW8270	1 1
Semivolatile Organics (GC/MS) Total Dissolved Solids Common Anions	E160.1*	1
Alkalinity, Carbonate & Bicarbonate	A403*	1

^{*} Perform an extraction of the drilling fluid additive using a modified SW1310 method:

- (i) Use reagent water, no acid.
- (2) Do not adjust the pH.
- (3) Analyze the filtrate by the indicated method.

FIGURE 2-11. ZONE 1 - SAMPLING POINT LOCATIONS

Proposed surface water and sediment monitoring stations

wells at sites FT-1 and D-5 to be determined by contractor) (locations of monitoring

FIGURE 2-8. ZONE 2 SAMPLING POINT LOCATIONS

- Proposed surface water and sediment monitoring stations

- Proposed well pair

- Proposed deep well

RESTORATION PROGRAM AS OF 17 Jun 86		<u> </u>																			
AS OF 17 Jun		. 19 83 FA 44 25 14 14 14 14 14 16 188						-													
AS OF 17		89 64 44 24 14 14 14 14 14 14 188							•												
AS OF 17		19 40 20 1-0 1-0 1-0 10 10 10 10 10 10 10 10 10 10 10 10 10				-	-	<u>. </u>													
AS OF 17		10 20 20 20 10 10 00 W 88			<u>.</u>	:	1		 -						<u>.</u>			-		_	
		1 19 19 19 09 W 65						:	-								├─	_	_		
		11-11-00-1585				+	; 	├	-			_				-		_	_		
		10 100 5 85				-		_			- 7				1					-	
		وو من من		i	_				-												
TON PROGRAM		0 · W 85				į				<u> </u>					<u> </u>						
TON PROGRAM		68			Ĭ.	<u> </u>	<u>. </u>	i	<u> </u>												
TON PROGRAM		1 21		-	-	₩	 	! —	,			7		-	 		-	-		_	_
ION PROGRA		ᇊ			+		- -	-	 			-	 -		-	-		-			
TON PROG		H			+	;	ব	 	 	-			_	_		 			-		
ION PRC		Ė			 		-	_	_						i						
ION P		3			 						1				<u> </u>						
ION		Ξ			<u> </u>			i			II										
OI		2					4				77.										
μļ		Ξ			1	<u> </u>		-	!		\mathcal{L}			<u> </u>		-		_			
		9				├	-		<u> </u>	├	*//			-	 		-	-			
7		Έ		⊢-	 	├	1	-	 		44	\vdash		├	_	 -	\vdash	\vdash	_		$\overline{}$
21		Ë	_		┼	+-	4	 		-	34		_	-	-	-	_				
9		ř			-	+	 	 	 	4			_		 	—					
5		벍		_	1	†		$\overline{}$													
ŭΙ		討			L		4														
~		[7]			L																
zi																		<u> </u>			<u> </u>
INSTALLATION		3		\sqsubseteq		\bot	_		ļ					ļ	-	<u> </u>	<u> </u>	—		_	
티	_	티		<u> </u>	⊢-		4			-	\vdash	-	-	⊢	├		Ь		-	⊢	\vdash
Ξ	S	듸		-	—	-		┝			-			 	-	-		┝		\vdash	
4	X	F			├			├─	*		\vdash	-	_	-	 	-	\vdash				$\overline{}$
7	띮	1			 	\vdash	4	 	111	┝─					 						
E	ELAPSED TIME (WEEKS)	딯	_		-		-		77	_		_	_	\vdash							
2	_	Ξ	_						777												
	£3	Z							111												
	Ξ	Ξ					4		77			Щ		L	<u> </u>	<u> </u>	_	<u> </u>	_		├
	본	à			<u> </u>	╙		<u> </u>	777	<u> </u>				┡	\vdash		\vdash	-		<u> </u>	<u> </u>
- 1		2		L.	ļ	<u> </u>	<u> </u>	ļ	777	<u> </u>			_	<u> </u>			ļ	<u> </u>	├—	-	
띘	ဥ	[2]			├	├		<u> </u>		Ь.,				├-	-	ļ	.	_	_	-	
PHASE	SE	끍			-		4	-	H	_	-	-		 	-	\vdash					
ΞI	Ã,	끍			╁──	-		A					_	\vdash	-	_					
۵,	ζ.	Ŧ	_		┢			-					_	$\overline{}$							
1	딥	Ā					V														
- 1		7																			
\dashv		3																			
- 1		3				lacksquare		<u></u>					_	<u> </u>		L.		igsquare		ldash	
V.	1	긬				ļ	4	<u> </u>						├	-	<u> </u>	<u> </u>	-		\vdash	
ि		딍	-		₩	-			<u> </u>		-		_		├—			-		-	
Hancock		킁			 	-	_	ļ	-		-		_	├	-	-		-			
ĕl		3					4						_		1						$\overline{}$
Ø		딮				_	-34									\vdash					
Ξl		린				•					-				\vdash		\vdash	_			
53		ii)				22															
BASI		3				177	4														
ا≳		1	_		-	77									-			-			<u> </u>
ш		-			~	~		<u> </u>		\vdash				-	Ь—	 	<u> </u>		<u> </u>	}	—
\neg	ł	H	\dashv		\vdash		4			\vdash				\vdash	\vdash		\vdash	-			
ł		탉	-	-277	1	111	-20	_	\vdash					Η-		 	Ь	\vdash		 -	\vdash
ı		ادا			11/11	VIVII		-						\vdash	_	—	—		\vdash	\vdash	
7		ᇦ	1		177	24		\vdash		\vdash		-		\vdash	-	-		_			
		9	Z				3														
1		er ne vet a a vet e	111111																		
STAGE		1	77			Ш						\Box	\equiv								\sqsubseteq
۲I		انيا	77			\vdash		\Box	-			_					 	\vdash	<u> </u>	<u></u>	<u> </u>
نا ب	<u> </u>	إت	207													\square	Ь	-	_		<u> </u>
S		- 1	j	ł			ß	- 1	ĺ	l	٦	- 1									ĺ
┥	3	ı	ل	- 1			اب	يد	ķ	넺	ā	- 1						l			ĺ
w	3	-	뭐				გ	2	H	S	۳۹	빈									i
5 1	5	ı	. 4				ă		٦	7	لد	, ଗ							i		1
<u>유</u>]	=]	낻	لبر		ا, ا	ଥ	ىد	ģ		ŭ	ğ					l '	1	l		1
夏日	3	j	20	21	nc	3		je Je	9	냋	ន	2							1		ĺ
×	7	-			·=	ŭ	ဟ	ŭ	ā	Ľ	ă	, -				١. ا			l		i
₹	¥	- 1		<u></u> '	゙゙゙゙゙゙゙゙゙゙゙゙゙		ְיבָי י		i i		4	7			!			!	i	1	1
PROGRAM SCHEDULE	PIN KAM MILESTONES	İ	lobilization	Drilling	Sampling	Analyses	Status Reports	lst Draft Rot	Air Force Rev	2nd Draft Rot	keg Agency Rev	"linal Report		i	Ì	ĺ	!	!	ŀ	i	1
ã١	2	- }	Ö	اج ا	ā	5	زب	းဂျ		Ĕ	ğ	-,=		ļ	ļ	1		ļ	1	ļ	ļ
<u>ت</u> ا	2					ڪ_	<u> </u>	<u>ہ</u> ۔	_<	-			Ξ		:	:		<u>:</u>	-	•	=

Scheduled

Completed

Notes: 1. Advance copy due to technical program manager one week before scheduled delivery date.

SUMMARY OF MODIFICATIONS

- Modification 1 -- The wrong statement of work was inadvertently published in the original contract. This modification substituted the correct version. (No change in contract ceiling)
- Modification 2 -- Field conditions at Hancock ANGB necessitated a number of changes to the statement of work: (1) drilling method for deep wells, (2) well construction materials, (3) increase in number of field QC samples, (4) increase in the allowance for second column confirmation analyses, (5) deep well screening into the bedrock, (6) elimination of the magnetometry survey at site D-5, (7) installation of deep wells and well pairs in Zone 2, (8) abandonment of monitoring well MW-4, and (9) deletion of deep wells at D-5. (No change in the contract ceiling)
- Modification 3 -- \$109,855 added to the delivery order to perform additional work at site FT-1 and conduct baseline risk assessments for all sites. (New contract ceiling: \$558,542)
- Modification 4 Geological data and baseline risk assessment revealed that additional work was not necessary at site FT-1. This modification deleted sections of the SOW calling for further field work and analyses at site FT-1. A new Section VII was added to the delivery order specifying that analyses be performed on samples submitted from McEntire ANGB SC. (No change in the contract ceiling)
- Variations -- Additional samples were collected from site D-5 and analyzed for thallium. Also, deliverable due-dates were changed to allow for this extended field effort.

 (No change in the contract ceiling)

APPENDIX C: WELL NUMBERING SYSTEM

APPENDIX C. WELL NUMBERING SYSTEM

Each well represents a groundwater monitoring station, which is reflected in the first two letters of the code (i.e., MW). The succeeding number in a well's code generally refers to the sequential order in which each well was installed. In the case of new deep wells, the number reflects the number of the shallow well it is paired with. The "D" designation that follows the well number refers to deep wells (i.e., wells screened in bedrock). All other wells are shallow. An example and explanation of a typical monitoring well designation is offered below:

MW-12D

MW = groundwater monitoring station

12 = well number; generally reflects the order in which a well was installed

D = deep well (i.e., well screened in bedrock).

APPENDIX D: WELL LOGS

BORING NO. MW -11	SAIL .
DEPTH DRILLED 30.0' SCREENED	
FORMATION(S) Glacio Fluvial	
PREPARED BY J. King	
CLIENT USAF OEHL	STATIC WATER LEVEL 3.9'BLS
LOCATION Hancock Field	1-14-86/1522
PROJECT NO. 2-835-06-624-00	DEVELOPMENT
TOP OF CASING ELEV. 400.0' GROUND ELEV. 396.7'	
NORTH COORD. 1,131,520 EAST COORD. 629,940	
DRILLING	
DRILLER A. Utter Sr. RIG TYPE CME 75	
START DATE 11/19/86 1400 END DATE 11/20/86 1115	NOT TO SCALE
BIT SCHEDULE Hollow Stem Auger 6" OD	STICKUP 3.3'
	E & & &
DRILLING FLUIDS None	
	3.0' 5
	5.0'
WATER ENCOUNTERED AT 5.0'BLS	
	6.3'
CONSTRUCTION	
CASING SCHEDULE 0.02" slot 2"ID 304 Stainless Steel	
Screen: (27.55'-6.30'BLS) 2"ID Sched. 80 PVC Riser	
(6.30'BLS-3.30'ALS) 4"ID Protective Steel Casing	l <u>⊟</u> 1≇1
BACKFILL SCHEDULE 0 Grade Sand Pack: (30.0'-5.0'BLS)	ا ا ا
Bentonite Pellet Seal: (5.0'-3.0'BLS) Portland	
Cement-Bentonite Powder (19:1) Grout: (3.0'-0.0'BLS)	
GEOPHYSICAL LOGS None	اقِ ا ا 🗎
	<u> </u>
COMMENTS Some problems with heaving sands	<u> </u>
	TOTAL DEPTH
	CASED27.55'
	TOTAL DEPTH
	DRILLED 30.0'

			
	DEPTH (ft BLS)	 DESCRIPTION	COMMENTS
ss		Top 1.7 olive brown (2.5Y4/4); silt and	BC = 3, 3, 2, 4
#1		clay; Bottom 0.3; (2.5Y4/4); fine sand, silt	
		and clay med. dense; slightly plastic; wet.	
ss	9.75-	Light olive brown (2.5Y5/4); silt, trace to	BC = 1, 1, 2, 2
#2	16.75'	some clay; soft; slightly plastic; wet.	Rec = 2.0'
11			
ss	14.75-	Top 1.2' light olive brown (2.5Y5/4); silt,	BC = 1, 2, 1, 2
#3	16.75'	some fine sand; Bottom 0.8 (2.5Y5/4); fine	Rec = 2.0'
		sand and silt; soft/loose; slightly plastic;	
<u></u>		wet.	
ss	19.75-	Reddish brown (5Y4/3); fine to medium sand,	BC = 1, 1, 1/12
#4	21.75'	trace silt; loose; non-plastic; wet.	Rec = 1.0'
		<u> </u>	<u> </u>
ss	24.75-	Gray brown (2.5Y4/3); fine to medium sand,	BC = 1, 2, 2, 2
#5	26.75'	loose, non-plastic; wet.	Rec = 1.5'
			
1		<u> </u>	
ss	29.75-	Gray brown (2.5Y4/3); fine to medium sand,	BC = 5, 5, 6, 7
#6	31.75'	trace silt; loose; non-plastic; wet.	Rec = 2.0'
		<u> </u>	<u></u>
11	, _ , _ , _ , _ , _ , _ , _ , _ , _ , _		<u> </u>
		<u> </u>	<u> </u>
		<u> </u>	<u>L</u>
	 	1	
			<u> </u>
CLIEN	IT	USAF OEHL PREPARENCE	ARED BY J. King
LOCAT	'ION		T 1 OF 1
PROJE	CT NO.		NG NO. MW-11
		D-2	

BORING NO. MW -12	EAIF
DEPTH DRILLED 30.0'	
SCREENED FORMATION(S) Glacio Fluvial	
PREPARED BY J. King	
CLIENT USAF OEHL	STATIC WATER LEVEL 6.07'BLS
LOCATION Hancock Field	1-14-87/1425
PROJECT NO. 2-835-06-624-00	DEVELOPMENT_
TOP OF CASING ELEV. 399.0' GROUND ELEV. 396.4'	
NORTH COORD. 1,131,310 EAST COORD. 630,230	
DRILLING	
DRILLER A. Utter Sr. RIG TYPE . CME 75	
START DATE 11-20-86/1200 END DATE 11-20-86/1555	NOT TO SCALE
BIT SCHEDULE Hollow Stem Auger 6" OD	STICKUP 2.6'
DRILLING FLUIDS None	
	3.0, 6
	5.0'
WATER ENCOUNTERED AT 5.0'BLS	
	7.92'
	i fii
CONSTRUCTION	i = ii
CASING SCHEDULE 0.02" slot 2"ID 304 Stainless Steel	i 🛱 i i
Screen: (28.82'-7.92'BLS) 2"ID Sched. 80 PVC Riser	i 🛱 i i
(7.92'BLS-2.60'ALS) 4"ID Protective Steel Casing	
BACKFILL SCHEDULE 0 Grade Sand Pack: (30.0'-5.0'BLS)	
Bentonite Pellet Seal: (5.0'-3.0'BLS) Portland	T P P P P P P P P P P P P P P P P P P P
Cement-Bentonite Powder (19:1) Grout: (3.0'-0.0'BLS)	
GEOPHYSICAL LOGS None	
	i 🛱 i i
COMMENTS None	i
	i ii
	TOTAL DEPTH
	CASED 28.82'
	TOTAL DEPTH
	DRILLED 30.0'

SAIC

COMMENTS OYR4/6) clay, some BC = 1/24 plastic, wet. Rec = 1.8' om (10YR4/6) clay, BC = 3, 3, 3, 3 off; plastic; wet. Rec = 1.6' om (10YR4/6) very se; slighty plastic; c) medium sand and BC = 3, 3, 3, 3 lastic; wet. Rec = 1.3' c) fine sand and dastic; wet. (2) fine to medium BC = 2, 1, 1/12 e; wet. Rec = 1.6' (2) fine sand and
plastic, wet. Rec = 1.8'
m (10YR4/6) clay, BC = 3, 3, 3, 3 soft; plastic; wet. Rec = 1.6' m (10YR4/6) very se; slighty plastic; 2) medium sand and BC = 3, 3, 3, 3 lastic; wet. Rec = 1.3' 2) fine sand and lastic; wet. (2) fine to medium BC = 2, 1, 1/12 c; wet. Rec = 1.6'
reft; plastic; wet. Rec = 1.6' reft (10YR4/6) very re; slighty plastic; re 2) medium sand and BC = 3, 3, 3, 3 restance; wet. Rec = 1.3' re 2) fine sand and Rec = 1.3' re 2) fine to medium BC = 2, 1, 1/12 re; wet. Rec = 1.6'
reft; plastic; wet. Rec = 1.6' reft (10YR4/6) very re; slighty plastic; re 2) medium sand and BC = 3, 3, 3, 3 restance; wet. Rec = 1.3' re 2) fine sand and Rec = 1.3' re 2) fine to medium BC = 2, 1, 1/12 re; wet. Rec = 1.6'
reft; plastic; wet. Rec = 1.6' reft (10YR4/6) very re; slighty plastic; re 2) medium sand and BC = 3, 3, 3, 3 restance; wet. Rec = 1.3' re 2) fine sand and Rec = 1.3' re 2) fine to medium BC = 2, 1, 1/12 re; wet. Rec = 1.6'
rm (10YR4/6) very se; slighty plastic; 2) medium sand and BC = 3, 3, 3, 3 lastic; wet. Rec = 1.3' 2) fine sand and lastic; wet. (2) fine to medium BC = 2, 1, 1/12 c; wet. Rec = 1.6'
Rec = 1.3' 2) fine sand and BC = 3, 3, 3, 3 2) fine sand and BC = 1.3' 2) fine sand and BC = 2, 1, 1/12 2; wet. Rec = 1.6'
2) medium sand and BC = 3, 3, 3, 3 Rec = 1.3' Rec = 1.3' Rec = 1.3' Rec = 1.4' Rec = 1.6' Rec =
Rec = 1.3' 2) fine sand and 2 lastic; wet. (2) fine to medium BC = 2, 1, 1/12 2; wet. Rec = 1.6'
Rec = 1.3' 2) fine sand and 2 lastic; wet. (2) fine to medium BC = 2, 1, 1/12 2; wet. Rec = 1.6'
2) fine sand and (astic; wet. (2) fine to medium BC = 2, 1, 1/12 c; wet. Rec = 1.6'
Astic; wet. (2) fine to medium BC = 2, 1, 1/12 2; wet. Rec = 1.6'
(2) fine to medium BC = 2, 1, 1/12 2; wet. Rec = 1.6'
(2) fine to medium BC = 2, 1, 1/12 2; wet. Rec = 1.6'
Rec = 1.6'
,
; wet.
6/3) fine to medium BC = 3, 3, 4/12
medium plastic; Rec = 1.4'
s/3) fine to medium
<u> </u>
<u> </u>
PREPARED BY I King
PREPARED BY J. King SHEET 1 OF 1

BORING NO. MW-13	SAIT
DEPTH DRILLED 30.0'	
SCREENED FORMATION(S) Glacio Fluvial	
PREPARED BY J. King	
CLIENT USAF OEHL	STATIC WATER LEVEL 6.45'BLS
LOCATION Hancock Field	1-14-87/1600
PROJECT NO. 2-835-06-624-00	DEVELOPMENT
TOP OF CASING ELEV. 398.8' GROUND ELEV. 396.3	
NORTH COORD. 1,131,400 EAST COORD. 630,380	
DRILLING	
DRILLER A. Utter Sr. RIG TYPE CME 75	
START DATE 11-21-86/0815 END DATE 11-21-86/1200	NOT TO SCALE
BIT SCHEDULE Hollow Stem Auger 6" OD	STICKUP 2.5' = # .:
	E E E E E
DRILLING > UIDS None	tal
	3.0.
	5.0'
WATER ENCOUNTERED AT 5.0'BLS	7.50'
	1 🗏 1
CONSTRUCTION	
CASING SCHEDULE 0.02" slot 2"ID 304 Stainless Steel	
Screen: (28.40'-7.50'BLS) 2"ID Sched. 80 PVC Riser	
(7.50'BLS-2.50'ALS) 4"ID Protective Steel Casing	
BACKFILL SCHEDULE 0 Grade Sand Pack: (30.0'-5.0'BLS)	
Bentonite Pellet Seal: (5.0'-3.0'BLS) Portland	
Cement-Bentonite Powder (19:1) Grout: (3.0'-0.0'BLS)	<u> </u>
GEOPHYSICAL LOGS None	
	<u> </u>
COMMENTS None	5
	TOTAL DEPTH
	CASED 28.40'
	TOTAL DEPTH
	DRILLED 30.0'

SAIC.

		
DEPTH	DESCRIPTION	COMMENTS
(ft BLS)		1
SS 4.8-6.8'	Olive brown (2.5Y5/4); clay, some silt;	BC = 2, 2, 2, 2
#1	soft; plastic; wet.	Rec = 1.8'
SS 9.8-11.8'	Olive brown (2.5Y5/4); silt, some clay;	BC = 3, 3, 2, 3
#2	soft; slightly plastic; wet.	Rec = 2.0'
	<u> </u>	
SS 14.8-16.81	0.4' Reddish brown (5YR4/3); medium to fin	ne BC = 1, 1, 2, 3
#3	sand; loose; non-plastic; wet.	Rec = 1.4'
	1.0; Dark reddish brown (5YR3/3); fine to	
	medium sand, some silt; loose; non-plastic	:;
	wet.	
SS 19.8-21.8	0.7' Reddish brown (5YR4/4); fine to mediu	im BC = 1, 2, 2, 3
#4	sand and silt; loose; mostly non-plastic;	Rec = 1.7'
1	wet.	
	0.5' Dark gray (5YR4/1); medium to fine	
	sand; loose; non-plastic; wet.	
	0.5' Reddish brown (5YR4/4); fine to mediu	1m
	sand and silt; loose; mostly non-plastic;	
	wet.	
SS 24.8-26.8	0.5' Dark reddish gray (5YR4/2); fine sand	BC = 2, 6, 4, 3
#5	some medium sand; loose; non-plastic; wet.	Rec = 1.7'
	0.7' Dark reddish gray (5YR4/2); clay, tra	ace
	silt; medium stiff; plastic; wet.	
	0.5' Dark reddish brown (5YR3/3); silt, so	ome
	fine sand, trace clay; medium stiff;	
	slightly plastic; wet.	
LIENT		REPARED BY J. King
		HEET 1 OF 1
ROJECT NO	2-835-06-624-00 BG	ORING NO MW -13

BORING NO. MW -14 DEPTH DRILLED 28.5' **SCREENED** FORMATION(S) Glacio Fluvial PREPARED BY J. King CLIENT U.S. Air Force STATIC WATER LEVEL 7.61'BLS Hancock Field LOCATION 1-16-87/1300 PROJECT NO. 2-835-06-624-00 DEVELOPMENT TOP OF CASING ELEV. 404.3' GROUND ELEV. 402.6' NORTH COORD. 1,136,930 EAST COORD. 632,010 DRILLING DRILLER D. Barrows RIG TYPE ATV CME 75 START DATE 12-9-86/0830 END DATE 12-10-86/1000 NOT TO SCALE BIT SCHEDULE Hollow Stem Auger 6" OD STICKUP 1.7' DRILLING FLUIDS None 3.0' 5.5' WATER ENCOUNTERED AT 5.0'BLS 7.13' CONSTRUCTION CASING SCHEDULE 0.02" slot 2"ID 304 Stainless Steel Screen: (27.75'-7.13'BLS) 2"ID Sched. 80 PVC Riser (7.13'BLS-1.7'ALS) 4"ID Protective Steel Casing BACKFILL SCHEDULE 0 Grade Sand Pack: (28.5'-5.5'BLS) Bentonite Pellet Seal: (5.5'- 3.0'BLS) Portland Cement-Bentonite Powder (19:1) Grout: (3.0'-0.0'BLS) GEOPHYSICAL LOGS None COMMENTS Drilling and installation were performed under adverse weather conditions. TOTAL DEPTH CASED 27.75' TOTAL DEPTH 28.5' DRILLED

SAIC.

	DESCRIPTION	COMMENTS
	Clay and fine sand, some fine gravel	BC = 4, 6, 5, 3
_#1	<u> </u>	Rec = 0'
SS 9.0-11.0'	Dark Olive fine to coarse sand and silt,	BC = 5, 14, 15, 14
#2	some fine gravel; medium dense; slightly	Rec = 0.5'
l	plastic; wet.	
	L	
SS 14.0-16.0'	Reddish sand, silt and clay, some fine	BC = 59, 68, 105
#3	gravel; very dense; non-plastic; wet.	Rec = 1.0'
<u> </u>	L	
1	<u> </u>	
SS 19.0-21.0'	Reddish sand, silt and clay, some fine	BC = 82, 25, 21, 28
#4]	gravel; very dense; non-plastic; wet.	Rec = 1.0'
1		
<u> </u>	<u> </u>	
<u> </u>	<u> </u>	
	<u> </u>	
1	<u> </u>	
	<u> </u>	
	<u> </u>	
<u> </u>	<u> </u>	
		[
1	<u> </u>	
	<u> </u>	1
	<u> </u>	
	<u> </u>	
1		
l	<u> L</u>	
CLIENT	USAF OEHL PRE	PARED BY J. King
LOCATION	Hancock Field SHE	CET1_OF1
PROJECT NO.	2-835-06-624-00 BOF	RING NO. MW -14

BORING NO. MW-15	S AIF
DEPTH DRILLED 28.0'	
SCREENED FORMATION(S) Glacio Fluvial	
PREPARED BY J. King	
CLIENT USAF OEHL	STATIC WATER LEVEL 5.55'BLS
LOCATION Hancock Field	1-15-87/1613
PROJECT NO. 2-835-06-624-00	DEVELOPMENT
TOP OF CASING ELEV. 400.4' GROUND ELEV. 398.0'	
NORTH COORD. 1,137,710 EAST COORD. 632,850 DRILLING	
DRILLER D. Barrows RIG TYPE ATV CME 75	
START DATE 12-10-86/1145 END DATE 12-10-86/1420	NOT TO SCALE 🙃
BIT SCHEDULE Hollow Stem Auger 6" OD	_
	STICKUP 2.4'
DRILLING FLUIDS None	
	[]
	3.0'
WATER ENCOUNTERED AT 5.0'BLS	5.0' 5.8
	7.0
	i 🛱 i i
CONSTRUCTION	
CASING SCHEDULE 0.02" slot 2"ID 304 Stainless Steel	
Screen: (27.62'-7.0'BLS) 2"ID Sched. 80 PVC Riser	
(7.0'BLS-2.4'ALS) 4"ID Protective St 1 Casing	
BACKFILL SCHEDULE 0 Grade Sand Pack: (28.0'-5.0'BLS)	
Bentonite Pellet Seal: (5.0'-3.0'BLS) Portland	
Cement-Bentonite Powder (19:1) Grout: (3.0'-0.0'BLS)	
GEOPHYSICAL LOGS None	!
COMMENTS None	ı
	TOTAL DEPTH
	CASED_27.62'
	TOTAL DEPTH
	DRILLED 28.0'BLS

DEPTH	DESCRIPTION	COMMENTS
(ft BLS)		
SS 4.7-6.7'	Reddish tan silt and clay; soft; plastic;	BC = 5, 4, 4, 5
#1	wet.	Rec = 1.2'
	<u> </u>	
SS 9.7-11.7'	Reddish tan silt and clay; soft; plastic;	BC = 1, 1, 3, 2
#2	wet.	Rec = 1.0'
	<u> </u>	<u> </u>
SS 14.7-16.7'	0.4' Same as above	BC = 10, 7, 6, 7
#3	0.6' Reddish brown fine sand and silt;	Rec = 1.0'
	loose; non-plastic; wet.	
SS 19.7-21.7'	Reddish brown fine to medium sand, some	BC = 5, 4, 4, 5
#4	silt, trace clay (in bands); loose; non-	Rec = 1.5'
	plastic; wet.	<u></u>
SS 24.7-27.7'	Reddish brown fine to medium sand; some	BC = 3, 4, 4, 6
#5	silt; loose; non-plastic; wet.	Rec = 1.5'
	1	
	1	
	1	
	<u></u>	
<u> </u>		
	<u> </u>	
LIENT	USAF OEHL P	REPARED BY J. King
OCATION	Hancock Field SI	HEET 1 OF 1
	2-835-06-624-00 B	ORING NO. HW .15

BORING NO. MW -11D			/ pri
DEPTH DRILLED 130.58 SCREENED		<i>)</i> - 11	
FORMATION(S) Fractured Shale			
PREPARED BY J. King			
CLIENT USAF OEHL	STATIC WATER	LEVEL_	1.3'ALS
LOCATION Hancock Field	1-14-87/153	8	
PROJECT NO. 2-835-06-624-00	DEVELOPMENT		
TOP OF CASING ELEV. 399.1' GROUND ELEV. 396.6'			
NORTH COORD. 1,131,510 EAST COORD. 629,940			
DRILLING			
DRILLER T. Crowell RIG TYPE Ingersol-Rand #TH-60			
START DATE 12-1-86/1530 END DATE 12-4-86/1410	NOT	TO SCA	TE S
BIT SCHEDULE 8 1/2" ODEX	STICKUP 2.5'	_	£ .
	<u> </u>	TE	FN Depth (ft
DRILLING FLUIDS Water and Air	 	· · ·	
	I		
			. <u> </u>
WATER ENCOUNTERED AT 5.0'BLS		iii	[음]
			5
	1		[2]
CONSTRUCTION	I		ssor sits
CASING SCHEDULE 0.02" slot 4"ID 304 Stainless Steel		. <u> </u>	A S
Screen: (130.0'-109.06'BLS) 4"ID Sched. 80 PVC Riser	I		' ≅ '- <u></u>
(109.06'BLS-2.5'ALS) 8"ID Protective Steel Casing		1 1 1	F 81.0'BLS
	I		
BACKFILL SCHEDULE 0 Grade Sand Pack: (130.58'-108.1'			Ęi
BLS) Bentonite Pellet Seal: (108.1'-102.4'BLS) Port-	102.4'		
land Cement-Bentonite Powder (19:1) Grout: (102.4'-	108.1'		106'BLS
0.0'BLS)	109.06'	, —	
GEOPHYSICAL LOGS None	<u></u>		1
	1		
	Ì	= I	اما
COMMENTS None	Ì	=	[]
			3
	TOTAL DEPTH		j
	CASED 130.0'		E
	TOTAL DEPTH		
	DRILLED	130.	58'

1	1	1
DEPTH	DESCRIPTION	COMMENTS
(ft BLS)		
0-20'	No cuttings	
		1
21-41'	Fine sand and silt (loose; non-plastic;	and
	wet) Last 5' contained some gravel	
		L
41-61'	Fairly stiff clay; some fine to coarse s	and
	and gravel (Reddish brown)	
61-81'	Same as above; Color changes to brown at	
	70'BLS	1
81-101'	Stiff brown clay; varying amounts of fin	le
	to medium sand and fine gravel (30%-25%)	
101-106'	Stiff red clay; trace fine gravel Dark g	ray
	shale gravel increases at depth	
106-110'	Dark gray competent shale; trace gypsum	Bedrock encountered at
		106'BLS
110-119'	Dark gray to dark green shale cuttings	
1		
1		
119-126'	Dark gray shale; pyrite filling some	1
1	fractures	
1		
126-130'	Light gray shale; becomes a green color	at
1	129'BLS; trace dolomite; gypsum fracture	
	mineralization	
1	1	1
IENT	USAF OEHL	PREPARED BY J. King
	· · · · · · · · · · · · · · · · · · ·	SHEET 1 OF 1
·		

BORING NO. MW -12D	3		Æ	
DEPTH DRILLED 125.4'		/F-\1		7 ·•
FORMATION(S) Fractured Shale				
PREPARED BY J. King				
CLIENT USAF OEHL	STATIC WATER	LEVEL_	0.9	'ALS
LOCATION Hancock Field	1-14-87/143	5		
PROJECT NO. 2-835-06-624-00	DEVELOPMENT			
TOP OF CASING ELEV. 399.3 GROUND ELEV. 396.6'				
NORTH COORD. 1,131,310 EAST COORD. 630,240				
DRILLING				
DRILLER J. McCadden RIG TYPE Ingersol-Rand #TH-60				
START DATE 12-5-86/0750 END DATE 12-10-86/1115	NOT	TO SC	ALE	BLS)
BIT SCHEDULE 8 1/2" ODEX	STICKUP 2.7'	<u>=</u>		를 등
7 1/4"OD Button Bit used for bedrock	l		Æ	Dept (ft.
DRILLING FLUIDS Water and Air	1	1		
			Į.	
	1	1 1		İ
WATER ENCOUNTERED AT 5.0'BLS			문	ľ
	1	1-1	12	tts
CONSTRUCTION	1		Assorted	S S
CASING SCHEDULE 0.02" slot 4"ID 304 Stainless Steel		Grout	ا چ ا	ا م
Screen: (125.4'-104.5'BLS) 4"ID Sched. 80 PVC Riser	1			
(104.5'BLS-2.7'ALS) 8"ID Protective Steel Casing			ړ≘	791
)
BACKFILL SCHEDULE 0 Grade Sand Pack: (125.4'-106.3'			۱Ē۱	•
BLS) Bentonite Pellet Seal: (106.3'-94.15'BLS) Port-	94.15'		15	100'
land Cement-Bentonite Powder (19:1) Grout: (94.15'-	104.5'			100
0.0'BLS)	106.3'			ŀ
GEOPHYSICAL LOGS None	1	\blacksquare		
				İ
		日	 	
COMMENTS None	1	⊞ ĕ	3	
	TOTAL DEPTH	E P	링	•
	CASED_125.4'	$oxed{oxed}$	٤	
	TOTAL DEPTH	1	<u>L</u> .	Ļ
	DRILLED	125.	4 '	

DEPTH	DESCRIPTION	COMMENTS
(ft BLS)	lar	
0-17'	No cuttings	Fast drilling rate
17-21'	Reddish silt and fine sand; some clay;	
1	trace gravel	
1	1	
21-31'	Reddish slightly plastic silt; some fine	
	sand	
31-32'	Silt and fine sand	
33-38'	Assorted subangular to subrounded gravel;	
	some stiff clay and silt	1
L	<u> </u>	
38-441	Same as above	
	1	
44-48'	Assorted gravel; trace to some stiff clay	
	1	
48-541	Fine gravel; some stiff clay and silt	
54-56'	Assorted gravel and stiff clay and silt	
56-58'	Assorted coarse sand and silt; some clay as	nd
	gravel	
<u>l</u>	1	
58-661	Fine gravel and stiff clay; trace silt	
	grading into very coarse sand; some gravel	
<u> </u>	1	
	1	
<u> </u>	<u> </u>	<u> </u>
	1	
l		.1
LIENT	USAF OEHL PRI	EPARED BY J. King
OCATION	Hancock Field SHI	EET 1 OF 2
ROJECT NO	2-835-06-624-00 BO	RING NO. MW -12D

I I		 I		
l l Di	EPTH). 	DESCRIPTION	COMMENTS
	t BLS)			
66	-67'	Sand;	ome gravel and stiff clay; trace si	lt
		<u> </u>		
67	-75'	Stiff	clay; some medium to coarse sand;	
<u> </u>		trace	fine gravel	<u> </u>
		<u> </u> 		
75	-76'		ssorted gravel, coarse sand; fine	
<u></u>		sand a	nd stiff clay	
	-78 '	Coarse	sand; some stiff clay	
1 1	<u></u>	Journe	Temp, Tome State Case	
78	-79 '	Coarse	sand; trace gravel and clay	
i				
79	-81'	Stiff	brown clay; some sand; trace gravel	
<u> </u>		<u> </u>		
81	-99'	Stiff	clay; varying amounts of gravel and	
<u> </u>		coarse	sand (50%-<10%)	
		<u> </u>		
1 1	-100'	ASSOTT	ed gravel; some stiff clay	
1 10	0-115'	Dark g	ray competent shale	Bedrock encountered
				at 100'BLS
		1		
11	5-123'	Light	gray/green shale; trace gypsum	
1		<u> </u>		
l		<u> </u>	والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	
I		<u></u>		
		<u>. </u>		
		<u> </u>		1
<u> </u>	····	<u>L</u>		1
		L		
CLIENT		USAF OE	HL PR	EPARED BY J. King
LOCATION		Hancock		EET 2 OF 2
•				RING NO

BORING NO. MW-13D	SAIT
DEPTH DRILLED 122.41'	
SCREENED FORMATION(S) Fractured Shale	
PREPARED BY J. King	
CLIENT USAF OEHL	STATIC WATER LEVEL 1.55'ALS
LOCATION Hancock Field	1-14-87/1616
PROJECT NO. 2-835-06-624-00	DEVELOPMENT
TOP OF CASING ELEV. 398.8' GROUND ELEV. 396.3'	
NORTH COORD. 1,131,410 EAST COORD. 630,390	
DRILLING	
DRILLER J. McCadden RIG TYPE Ingersol-Rand #TH-60	
START DATE 12-10-86/1310 END DATE 12-12-86/1215	NOT TO SCALE
BIT SCHEDULE 8 1/2"OD ODEX	
7 1/4"OD Button Bit used for bedrock	STICKUP 2.5' E E E E
DRILLING FLUIDS Water and Air	1 1 1 1
	1 1 1 1 1 1 1 1 1 1
WATER ENCOUNTERED AT 5.0'BLS	
CONSTRUCTION	1 1 1 1 1
CASING SCHEDULE 0.02" slot 4"ID 304 Stainless Steel	Grout
Screen: (120.41'-99.52'BLS) 4"ID Sched. 80 PVC Riser	
(99.52'BLS-2.5'ALS) 8"ID Protective Steel Casing	
BACKFILL SCHEDULE 0 Grade Sand Pack: (122.41'-93.6'	
BLS) Bentonite Pellet Seal: (93.6'-83.4'BLS) Port-	83.4'
land Cement-Bentonite Powder (19:1) Grout: (83.4'-	93.6'
0.0'BLS)	99.52'
GEOPHYSICAL LOGS None	
COMMENTS None	⊞#
	TOTAL DEPTH
	CASED 120.41'
	TOTAL DEPTH
	DRILLED 122.41'

SAIC

		
	DESCRIPTION	COMMENTS
0-20	Clay and silt; some fine and	
1	Clay and silt; some fine sand	
ļ		
20-25'	Very fine to fine sand and silt	
25-40'	Fine gravel and fine to coarse sand; trac	el
1	silt and clay	
40-50'	Fine angular to subangular gravel, fine t	:0
	coarse sand, silt and clay more fines	
	toward bottom	
		· · · · · · · · · · · · · · · · · · ·
50-58'	Stiff clay; some fine to coarse sand and	······································
1		
1 <u></u>	silt	
58-61'	Stiff clay and assorted gravel and coarse	
l	sand	
61-70'	Same as above	
l		
70-73'	Assorted subrounded gravel; some coarse	
	sand and clay	
	1	
73-77'	Stiff brown clay; some gravel and coarse	1
	sand	
	1	!
1 1 77 - 701		
77-79'	Coarse gravel (subangular); some stiff cl	Lay
1		
79-81'	Assorted coarse sand; trace clay	
	<u> </u>	
81-82'	Red quartzite cuttings (very angular)	Quartzite Boulder
1	<u> </u>	
CLIENT	USAF OEHL F	PREPARED BY J. King
LOCATION	Hancock Field	SHEET 1 OF 2
PROJECT NO.	2-835-06-624-00	BORING NO. MW-13D

SAIC :

DEPTH	DESCRIPTION	COMMENTS
(ft BLS)	
91-94'	Stiff clay; some gray angular shale cutting	8
		<u> </u>
94-96'	Dark gray competent shale; some dolomite	Bedrock encountered
		at 94'BLS
96-100'	Light gray shale; trace gypsum as fracture	<u> </u>
	fillings	
100-109	Dark and light gray shale cuttings	1
109-122	' Small dark gray shale cuttings	
1	1	1
]]	
	1	
		1
	1	
1		
	- 	
	_	
	1	<u> </u>
		
CLIENT		EPARED BY J. King
COCATION	Hancock Field SHE	
PROJECT NO	2-835-06-624-00 BOF	RING NO. MW ·13D

BORING NO. MW-14D	SAII
DEPTH DRILLED 100.1 SCREENED	
FORMATION(S) Fractured Shale	
PREPARED BY J. King	
CLIENT USAF OEHL	STATIC WATER LEVEL 6.77'BLS
LOCATION Hancock Field	1-16-87/1220
PROJECT NO. 2-835-06-624-00	DEVELOPMENT
TOP OF CASING ELEV. 404.3' GROUND ELEV. 402.7'	
NORTH COORD. 1,136,930 EAST COORD. 632,000	
DRILLING	
DRILLER D. Burrows RIG TYPE ATV CME 75	
START DATE 12-17-86/1145 END DATE 12-23-86/1215	NOT TO SCALE
BIT SCHEDULE 5" ODEX	STICKUP 1.6'
	STICKUP 1.6'
DRILLING FLUIDS Compressed Air	
WATER ENCOUNTERED AT 5.0'BLS	i iii
	l Sest
CONSTRUCTION	
CASING SCHEDULE 0.02" slot 2"ID 304 Stainless Steel	
Screen: (100.0'-78.5'BLS) 2"ID Sched. 80 PVC Riser	Flux
(78.5'BLS-1.6'ALS) 4"ID Protective Steel Casing	
(78.5 BLS-1.0 ALS) 4 1D Flotective Steel Casing	
BACKFILL SCHEDULE 0 Grade Sand Pack: (100.1'-76.03'	
BLS) Bentonite Pellet Seal: (76.03'-65.93'BLS) Port-	65.93' 長 三 75.0'
land Cement-Bentonite Powder (19:1) Grout: (65.93'-	76.03
0.0'BLS)	78.5'
GEOPHYSICAL LOGS None	! = !!
	<u> </u>
	! = !!
COMMENTS Problems clearing hole during drilling.	± 💆
Considerable recirculation of cuttings.	TOTAL DEPTH
	CASED_100.0'\[\vec{\blue}{\blue}{\vec{\blue}{\vec{\blue}{\vec{\blue}{\vec{\blue}{\vec{\blue}{\vec{\blue}{\vec{\blue}{\vec{\blue}{\vec{\blue}{\vec{\blue}{\beta}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
	TOTAL DEPTH
	DRILLED 100.1'

SAIC I

DEPTH	DESCRIPTION	COMMENTS
(ft BLS)	i
0-3'	Chunks of concrete and red brick; trace	
	black soil	
1 1		
3-6'	Wood chips followed by wet black soil	Mild smell of decay
6-13'	Fine sand silt; some gravel	Black water coming out
I		of hole
I		
13-14'	Light brown stiff silt	
1		
14-17'	Light brown fine sand and silt	
<u> </u>		
17-20'	Assorted subrounded gravel; some coarse	Large volumes of water
1	sand	being discharged from hole
1		
20-22'	Coarse sand and gravel	
1		
22-27'	Well sorted fine to medium sand	
	1	
27-32'	Same as above	
1		
32-37'	More medium sand than fine sand; trace	
	gravel	
l		
37-39'	Assorted subrounded gravel	
39-42'	Fine sand; increasing amounts of silt wi	th
I	depth	
1		
CLIENT	USAF OEHL	PREPARED BY J. King
LOCATION	Hancock Field	SHEET 1 OF 2
PROJECT NO	2-835-06-624-00	BORING NO. MW -14D

	DESCRIPTION	COMMENTS
(ft BLS)		
42-45'	Gray silt and fine sand	
45-47	Fine to medium sand; trace gravel	
	1	
47-52'	Coarse sand; some gravel	
1		
52-57'	Alternating beds of coarse sand and sub-	
l <u> </u>	rounded gravel; some fine sand and silt	
	1	
57-59'	Subrounded assorted gravel	
	1	
59-62'	Assorted gravel and coarse sand (thin grav	re1
	rich layers)	
62-67'	Assorted gravel and coarse sand; some	Problems clearing hole of
	medium to fine sand and silt	all cuttings and water.
		Considerable recirculation
		of cuttings
67-69'	Assorted subrounded gravel	Same as above
	1	
69-75'	Same as above; some angular cuttings of re	d
1 !	shale	
1	1	
75-82	Incompetent bedrock (red shale) at 75'BLS;	Change in drilling rate
	few cutting	at 75'BLS; Large Volumes
1 1		of water being discharged
]	
82-100'	Few cuttings of red shale	Water red in color and
		jetting from borehole
]	
CLIENT	USAF OEHL PR	EPARED BY J. King
LOCATION	Hancock Field SH	EET 2 OF 2
PROJECT NO	2-835-06-624-00 BC	RING NO. MI-14D

BORING NO. MW ·15D	٤	
DEPTH DRILLED 144.00°		FIL
SCREENED FORMATION(S) Fractured Shale		
PREPARED BY J. King		
CLIENT USAF OEHL	STATIC WATER	LEVEL 4.18'BLS
LOCATION Hancock Field	1-15-87/1540	0
PROJECT NO. 2-835-06-624-00	DEVELOPMENT	1
TOP OF CASING ELEV. 399.8' GROUND ELEV. 397.7'		
NORTH COORD. 1,137,670 EAST COORD. 632,790 DRILLING		
DRILLER J. McCadden RIG TYPE Ingersol-Rand #TH-60		
START DATE 1-8-87/0830 END DATE 1-9-87/1520	NOT	TO SCALE &
BIT SCHEDULE 8 1/2" ODEX	•	.
7 1/4"OD Carbide Button Bit for Bedrock	STICKUP 2.1'	Tept
DRILLING FLUIDS Water and Air		
DRILLING FLUIDS WATER AND ALE	1	1 1 1 1
	1	1
WATER ENCOUNTERED AT 5.0'BLS	1	
	1	
	1	
CONSTRUCTION	1	irout uvia
CASING SCHEDULE 0.02" slot 4"ID 304 Stainless Steel		
Screen: (143.0'-122.1'BLS) 4"ID Sched. 80 PVC Riser		
(122.1'BLS-2.1'ALS) 8"ID Protective Steel Casing		
	1	sorted
BACKFILL SCHEDULE 0 Grade Sand Pack: (144.0'-188.53'		<u> × 100.0°</u>
BLS) Bentonite Pellet Seal: (118.53'-110.38'BLS)	110.38'	
Portland Cement-Bentonite Powder (19:1) Grout:	118.53'	
(110.38'-0.0'BLS)	122.1'	
GEOPHYSICAL LOGS None	1	
	İ	
	i	
COMMENTS None		iii i i i ii ii ii ii ii ii ii ii ii ii
- None	TOTAL DEPTH	
	CASED 143.0'	
	TOTAL DEPTH	
	:	144 01
	DRILLED	144.0'

	DESCRIPTION	COMMENTS
0-20'	Dark brown fine sand and silt; dry	
20-24'	Dark brown silt and fine sand; wet	1
24-29'	Assorted gravel	
29-34'	Dark brown silt and clay; some gravel	
I		
34-41'	Alternating layer of fine sand and grave	
<u> </u>	with layers of silt, fine sand and grave	1;
<u></u>	some fine gravel	<u> </u>
41-44'	Fine assorted gravel; some coarse sand	Gravel is subrounded
44-64'	Reddish silt and fine sand; some clay,	Gravel more abundant
	coarse sand; trace gravel	between 44'-48'
64-69'	Brown fine to coarse sand; some silt	
69-70'	Coarse sand and gravel (subrounded); some	e
	fine sand and silt	
70-72'	Very stiff reddish brown silt and coarse	
	sand and gravel	
72-79'	Very stiff and clay and assorted subround	ded
	gravel	
CLIENT	USAF OEHL	PREPARED BY J. King
		SHEET 1 OF 3
		BORING NO. NW -15D

DEPTH	DESCRIPTION	COMMENTS
(ft BLS)	Is a show	
79-82'	Same as above except for increasing amount	LS
	of gravel and coarse sand	
82-84	Subrounded gravel and coarse sand; some	
	stiff clay with trace silt	
1		
84-92'	Assorted gravel (subrounded to subangular)
	and coarse sand. Red subangular clasts of	f
	shale comprise trace portion of gravel	
92-94	Reddish soft clay and sand sized shale	
	cuttings; some sand and gravel	
94-104'	Red shale cuttings and clay	Incompetent bedrock
		penetrated at 100'BLS
104-114'	Sand sized cuttings of red shale; some	Shale soft and friable
	green shale and reddish soft clay	
114-119'	Sand sized cuttings of red shale; trace c	lay Shale becomming harder
110 1001		
119-122'		
	shale	
122-127'	Gravel to sand sized cuttings of green sha	ale Some soft spots
122-121		encountered
<u></u>	1	
127-137'	Large cuttings of red shale	<u></u>
		<u> </u>
137-138'	Green shale	
1		
LIENT	USAF OEHL P	REPARED BY J. King
OCATION	Hancock Field Si	HEET 2 OF 3
POTECT NO.	2-835-06-624-00 B	ORING NO. MU I-15D

	DESCRIPTION	COMMENTS
	<u></u>	
138-141	Large cuttings of red shale	
141-144'	Large cuttings of competent red shale	
1_1	1	
	1	1
		'
	<u> </u>	l
<u> </u>		
l		
	1	
	1	!!
<u> </u>	1	
	1	
<u></u>		
1 1	1	
	1	<u> </u>
I I	1	
I	1	
!		
<u> </u>		
<u> </u>		
<u> </u>		
1 1	1	
1 1	1	1
CLIENT	USAF OEHL	PREPARED BY J. King
<u> </u>		SHEET 3 OF 3
	Hancock Field	
PROJECT NO.	2-835-06-624-00	BORING NO. MW-15D

WELL CONSTRUCTION SUMMARY

BORING NO. My ·3D	SAIF
DEPTH DRILLED 95.83' SCREENED	
FORMATION(S) Fractured Shale	
PREPARED BY J. King	
CLIENT USAF OEHL	STATIC WATER LEVEL 7.6'BLS
LOCATION Hancock Field	1-15-87/1655
PROJECT NO. 2-835-06-624-00	DEVELOPMENT
TOP OF CASING ELEV. 407.0' GROUND ELEV. 404.9'	
NORTH COORD. 1,136,480 EAST COORD. 631,010	
DRILLING	
DRILLER J. McCadden RIG TYPE Ingersol-Rand #TH-60	
START DATE 12-15-86/0756 END DATE 12-16-86/1600	NOT TO SCALE
BIT SCHEDULE 8 1/2"ODEX	STICKUP 2.1' = 5
7 1/4"OD Button Bit used in Bedrock	STICKUP 2.1'
DRILLING FLUIDS Water and Air	
WATER ENCOUNTERED AT 5.0'BLS	i iii
	i i i <u>z</u> i
CONSTRUCTION	
CASING SCHEDULE 0.02" slot 4"ID 304 Stainless Steel	
Screen: (95.0'-74.07'BLS) 4"ID Sched. 80 PVC Riser	
(74.07'BLS-2.1'ALS) 8"ID Protective Steel Casing	, , , , , , , , , , , , , , , , , , ,
(74.07 Das 2.1 Alb) o is flotetive steel dasing	
BACKFILL SCHEDULE O Grade Sand Pack: (95.83'-70.8'	
BLS) Bentonite Pellet Seal: (70.8'-61.05'BLS) Port-	
land Cement-Bentonite Powder (19:1) Grout: (61.05'-	61.05' 66.0'
0.0'BLS)	70.8'
	74.07
GEOPHYSICAL LOGS None	<u> </u>
	! = !!
COMMENTS None	
	TOTAL DEPTH
	TOTAL DEPTH
	DRILLED 95.83'

DEPTH (ft BLS)	DESCRIPTION	COMMENTS
0-7'	No cutting	
1	i cutting	
7-10	Assorted rounded to subrounded gravel	
i	1	
10-21'	Assorted rounded to subrounded gravel and	
	coarse sand; some silt and fine sand	<u> </u>
22-26'	Assorted gravel; some coarse sand	
27-37'	Same as above; lesser amounts of coarse sand	
1 1		<u>-</u>
37-41'	Same as above; subangular to angular coarse	·
	sand	
1 1	1	1
41-47	Well sorted rounded to subrounded gravel]
47-56	Same as above; some coarse sand	
l	<u> </u>	
56-57'	Fine well sorted sand; no gravel tan in	
<u> </u>	color	<u></u>
<u> </u>	<u></u>	
57-59'	Very stiff red clay; some gravel	Drilling rate slowed
59-60'	Stiff gray alay and soome and some	
1 1	Stiff gray clay and coarse sand; some crumbly gravel	
l	Crumpty Rraver	
60-66'	Stiff gray clay and greenish-gray soft	
	shale gravel	
66-71'	Greenish-gray incompetent shale bedrock;	
I	some gray dolomite; trace gray clay	
CLIENT	USAF OEHL PRE	PARED BY J. King
LOCATION	Hancock Field SHE	ET 1 OF 2
PROJECT NO.	2-835-06-624-00 BOR	ING NO. MW-3D

SAIC

	DESCRIPTION	COMMENTS
71-77'	Same as above	
	Johns to total	1
77-81	More competent gray, green and red shale	
<u> </u>	cuttings	
<u> </u>		
81-88'	Finer cuttings of red shale; some green as	nd
	gray shale	
<u> </u>		
88-89'	Mostly red shale; trace gypsum and dolomi	te
89-96'	Competent red shale cuttings; trace green	['
<u> </u>	shale	
<u> </u>		
		1
·		
<u> </u>		
-		· · · · · · · · · · · · · · · · · · ·
		
 	1	
		
1 1		
	[i
	1	
1 1		
1		
1		
CLIENT	USAF OEHL P	REPARED BY J. King
LOCATION	Hancock Field S	HEET 2 OF 2
PROJECT NO	2-835-06-624-00 B	ORING NO. MW -3D

WELL CONSTRUCTION SUMMARY

BORING NO. WW-6D		
DEPTH DRILLED 131.02'	JFIF.	
SCREENED FORMATION(S) Fractured Shale		
PREPARED BY J. King		
CLIENT USAF OEHL	STATIC WATER LEVEL 1.07'BLS	_
LOCATION Hancock Field	1-16-87/1250	_
PROJECT NO. 2-835-06-624-00	DEVELOPMENT	_
TOP OF CASING ELEV. 396.7' GROUND ELEV. 395.2'		_
NORTH COORD. 1,137,500 EAST COORD. 632,740		_
DRILLING		_
DRILLER J. McCadden RIG TYPE Ingersol-Rand #TH-60		
START DATE 1-5-87/0900 END DATE 1-7-87/1130	NOT TO SCALE	
BIT SCHEDULE 8 1/2" ODEX	STICKUP 1.5' E 2 1	
		_
DRILLING FLUIDS Water and Air		
	1 1 1 1	
WATER ENCOUNTERED AT 5.0'BLS		
	<u>]</u>	
CONSTRUCTION		
CASING SCHEDULE 0.02" slot 4"ID 304 Stainless Steel		
Screen: (131.02'-110.08'BLS) 4"ID Sched. 80 PVC Riser	1 1 1 1 5 1	
(110.08'BLS-1.5'ALS) 8"ID Protective Steel Casing	=	
BACKFILL SCHEDULE O Grade Sand Pack: (131.02'-103.3'	72.0	
BLS) Bentonite Pellet Seal: (103.3'-93.22'BLS) Port-	93.22' 🔀	
land Cement-Bentonite Powder (19:1) Grout: (93.22'-	103.3'	
0.0'BLS)	110.08' 109.0'	
GEOPHYSICAL LOGS None	1 = 11	
	1 = 11	
	<u> </u>	
COMMENTS None	<u></u>	
	TOTAL DEPTH TOTAL DEPTH	
	CASED_131.02'\ \$\vec{3} \$\vec{3}	
	TOTAL DEPTH	
	DRILLED 131.02'	

SAIC

DEPTH (ft BLS)	DESCRIPTION	COMMENTS	
0-25'	Dark Brown sandy to silty dry soil; Bottom		
	5' is wet.		
	1		
25-35'	Reddish brown fine sand and silt; some cl	ay	
35-43'	Same as above except for trace gravel		
43-45'	Same as above except for increasing amoun	ts	
45-53'	Subrounded assorted gravel; some sand and silt		
53-61'			
]]3-01	Stiff brown clay and gravel		
61-65'	Silt; some fine sand and clay		
65-67'	Fine sand and silt (grayish tint)		
67-70'	Stiff grayish-brown clay and assorted gra	vel	
70-72'	Assorted subrounded to subangular gravel;		
	trace clay		
72-83	Reddish brown very stiff clay and gravel.		
l	Some layers contain more garvel than othe	rs.	
	Gravel can become fine.		
83-85'	Deep reddish stiff clay and red shale cut		
	tings. Boulder of quartzite penetrated		
l	at 83'BLS		
CLIENT		REPARED BY J. King	
LOCATION		HEET 1 OF 2	
PROJECT NO.	2-835-06-624-00 B	ORING NO. MU-6D	

!		
DEPTH	DESCRIPTION	COMMENTS
(ft BLS)		
85-105'	Stiff red clay and friable red shale cut-	-
	tings	
105-125	Incompetent red shale bedrock encountered	<u>d</u>
	at 109'BLS. Soft red clay mixed with	
	crumbly shale cuttings. Some green shale	e;
 	trace gypsum and dolomite	
1 125-1361	Red shale becoming more competent; red	
<u> 125-154</u> 	clay less abundant; green shale cuttings	
	in trace amounts	
<u> </u>		
 		<u> </u>
 	<u> </u>	1
!]
		1
	1	1
	1	
		1
	1	
		<u> </u>
		1
	1	
	T T	1
	1	
	1	
		1
	1	
CLIENT	USAF OEHL	PREPARED BY J. King
LOCATION	Hancock Field	SHEET 2 OF 2
DRAIDCT NA		BORING NO. MW-6D

BURING NU. MW-16	
DEPTH DRILLED 23'	/"A II
SCREENED	7 /11
FORMATION(S) <u>Glacio Fluvia</u> l PERPARED BY <u>P. Spooner</u>	
CLIENT USAF OEHL	STATIC HATER I FUEL F ALL BLO
LOCATION Hancock Field, New York	STATIC WATER LEVEL 5.81' BLS
PROJECT NO. 1-827-06-624-XX	10/20/87 1123
TOP OF CASING ELEV. 398.7' GROUND ELEV. 395.7'	DEVELOPMENT Pumped 150 Gal.
NORTH COORD. 1.131.590 EAST CORD. 629.110	
DRILLING	
DRILLER M. Walters RIG TYPE CMF-55	
DRILLER M. Walters RIG TYPE CME-55 START DATE 10/13/87 END DATE 10/13/87	
BIT SCHEDULE Hollow stem auger 6" OD	NOT TO SCALE
	STICKUP 3.0'
	l
DRILLING FLUIDS None	Concrete 3.0'
	• • • • • • • • • • • • • • • • • • • •
	Bentonite
	6.3'
WATER ENCOUNTERED AT 8' BLS	
WITHER DECOUNTERED III O DES	7.2'
	.i 🚞 i i
CONSTRUCTION	
CASING SCHEDULE <u>0.02" slot</u> , <u>2" ID 304 Stainless</u>	.! <u> </u>
Steel Screen. (29.2'-8.9' BLS) 2" ID Sked. 80	
Steel Screen. (29.2 -0.9 BLS) 2 ID Sked. OU	
PVC Riser (8.9' BLS - 3.0' ALS) 4" ID Protective	
Steel Casing	
	s s
BACKFILL SCHEDULE O Grade Sand Pack: (29.2'-6.3'	
BLS) Bentonite Pellet Seal: (6.9'-1.9'BLS)	
BLS) Bentonite Pellet Seal: (6.9'-1.9'BLS)	De Po
Concrete Pad to 3.0' ALS	, 1 1 1
	Sand Pack Glacio Fluvial
GEOPHYSICAL LOGS None	i 🗀 i ài
	그 성 티
	Pac F
	Sand
COMMENTS Company 1 with housing and 1	
COMMENTS Some problems with heaving sand	- I h
	·
	i 🗂 i i
	TOTAL DEPTH
	CASED 27.2
	TOTAL DEPTH
	DRILLED 28'

FIELD LOG

! 	DEPTH (FT bls)	DESCRIPTION	COMMENTS
		Dark Brown fine silty sand; wet,	
		some gravel.	
<u></u>	5'-7'	Yellow Brown (10yr5/6) and gray	$ _{N = 4,8,4,3}$
# <u>1</u>		 clayey sand, moist, firm (0.4'),	 <u>REC= 1.0'</u>
		 gray brown (10yr5/3) silty sand,	
		 moist, firm (0.6') 	
		 Few cuttings, water at 8' BLS	
ss	_10'-12'	Gray (N5/0) silty clay, wet,	N = 2, 1, 1, 1
#2 		 plastic, sticky 	 <u>REC = 1.4'</u>
 SS	15'-17'	 Gray (N5/0) silty clay, wet,	N = 1,1,2,2
#3 		 plastic, sticky	 REC = 1.4'
i			
	20'-22'	Gray (N5/0) silty clay, wet,	N = 0, 1, 2, 3
#4_		plastic, sticky	REC = 1.4'
 ss		Brown(7.5yr5/2) very fine silty	N = 0, 0, 1, 2
#5 		 sand, wet 	REC = 0.85'
LIENT	USAF OEHL	PREPARED BY P.	Spooner

CLIENT USAF OEHL	PREPARED BY P. Spooner
LOCATION Hancock Field, NY.	SHEET 1 OF 1
PROJECT 1-827-06-624-xx	BORING NO. MW-16

BORING NO. MW-17	
DEPTH DRILLED 28'	PA II
SCREENED FORMATION(S) Glacio Fluvial	7 411
PERPARED BY P. Spooner	
CLIENT USAF OEHL	STATIC WATER LEVEL 3.4' BLS
LOCATION Hancock Field, New York	10/20/87 1115
PROJECT NO. <u>1-827-06-624-XX</u>	DEVELOPMENT Pumped 200 Gal.
TOP OF CASING ELEV. 398.2' GROUND ELEV. 395.6'	-
NORTH COORD. 1,131,620 EAST CORD. 629,340 DRILLING	
DRILLER M. Walters RIG TYPE CME-55	
START DATE 10/14/89 END DATE 10/15/89	1
BIT SCHEDULE Hollow Stem Auger 6" OD	NOT TO SCALE
	İ
	STICKUP 2.6'
DRILLING FLUIDS None	
DRIBBING I BOIDS None	Concrete 3.8'
	i - 3.8
	Bentonite
	5.98'
WATER ENCOUNTERED AT 8' BLS	
	i 7.97'i i i
	¦
	i 💳 i i
CONSTRUCTION	
CASING SCHEDULE 0.02" slot 2" ID 304 Stainless	
Steel Screen: (27.97'-7.97' BLS) 2" Sked. 80	
PVC Riser (7.97' BLS - 2.6' ALS). 4" Protective	
Steel Casing	
-	
BACKFILL SCHEDULE 0 Grade Sand Pack (27.97' - 5.98'	1 [[[]
BLS) Bentonite Seal (5.98'-3.8' BLS) Concrete Pad	
to 0.3' ALS	
GEOPHYSICAL LOGS None	i 🔚 i 🕯
	Pack
	i i
COMPANIE	s s
COMMENTS	<u> </u>
	TOTAL DEPTH
	ICASED 27 27
	CASED 27.97'
	DRILLED 28'

FIELD LOG

	DEPTH (FT bls)	DESCRIPTION	COMMENTS
 		Dark brown loamy fine sand	
		gravel, cobbles	
 <u>ss</u>	5'-7'	Red brown (5yr5/3) and gray (N5/0)	N= 12,5,5,8
 <u>#1</u> 		fine clayey sand, firm, moist	REC = 1.05'
 	81	Encountered water	
 <u> \$\$</u>	10'-12'	Gray-brown (10yr5/2)	N= 1,2,2,3
 <u>#2</u> 		 <u>Silty clay, wet, plastic, sticky</u> 	REC= 1.35'
 SS	15'-17'	Gray-brown (10yr5/2) silty clay,	N= 1,2,2,2
 <u>#3</u> 		wet, plastic, sticky	REC= 1.75'
 SS_	20'-22'		N= 2,1,2,3
 <u>#4</u>		 trace silt. Gray-brown (10yr5/2) 	REC= 2.0'
ii		silty clay, wet, plastic (1.3')	
SS	25'-27'	Gray-brown(10yr5/2) fine silty	N= 1,4,3,3
 <u>#5</u> 		sand, wet, loose.	REC= 2.0'
	j 	<u> </u>	
CLI EN	T USAF OEHL	PREPARED BY	P. Spooner
LOCAT	ION Hancock Fi	eld SHEET 1	OF1

PROJECT 1-827-06-624-XX BORING NO. MW-17

BORING NO. MW-18		
DEPTH DRILLED 28'	· · · · · · · · · · · · · · · · · · ·	##
SCREENED FORMATION(S)	74	Ħ
FORMATION(S) Glacio Fluvial PERPARED BY P. Spooner		
CLIENT USAF OEHL	STATIC WATER LEVEL 4.03' B	10
LOCATION Hancock Field, New York	DIMITO WHILK ELVED 4.03 B	LO
PROJECT NO. 1-827-06-624-XX	DEVELOPMENT Pumped 175 Gal	
TOP OF CASING ELEV. 398.1' GROUND ELEV. 395.9'		
NORTH COORD. 1,131,530 EAST CORD. 629,300		
DRILLING		
DRILLER M. Walters RIG TYPE CME - 55		
START DATE 10/15/89 END DATE 10/15/89	NOT TO COALE	
BIT SCHEDULE Hollow Stem Auger 6" OD	NOT TO SCALE	
	STICKUP_2.2'	
DRILLING FLUIDS None	Concrete	
	3.0'	
	Bentonite	
	6.2'	
WATER ENCOUNTERED AT 12' BLS		
	i iii	
	7.8'	
CONSTRUCTION	¦	
CASING SCHEDULE 0.02" Slot 2" ID 304 Stainless		
	i 📑 i i	
Steel Screen (27.8'-7.8' BLS) 2" Sked. 80 PVC		
Riser (7.8' BLS - 2.2' ALS) 4" Protective Steel		
Riser (7.0 BLS - 2.2 RLS) 4 Protective Steer		
Casing		
	اه ا	
BACKFILL SCHEDULE 0 Grade Sand Pack (28'-6.2' BLS)		
P. 15-14-10-1 (6.21.2.01) Garage Pale 0.21 470		
Bentonite Seal (6.2'-3.0') Concrete Pad to 0.3' ALS		
GEOPHYSICAL LOGS None		
COMMENTS Fuel oil odor noted 4'-5' BLS - no visable	i 🔚 i i	
evidence		
	<u> </u>	
	TOTAL DEPTH	
	i 📑 i i	
	CASED 27.8'	
	TOTAL DEPTH	
	DRILLED 28'	

FIELD LOG

	DEPTH (FT bls)	DESCRIPTION	COMMENTS
		Dark reddish-gray silt loam,	
		gravel, cobbles	
SS	5'-7'	Reddish-brown (5yr5/3)	N= 3,3,2,2
#1		fine sand and silt. Fuel oil odor	REC= 0.95'
	10'-12'	Gray-brown (10yr5/2) silty clay	N= 1,1,1,3
#2		with fine sand stringers	 <u>REC= 1.5'</u>
	<u> </u>	 Water at 12' BLS	
SS	 <u>15'-17'</u>	Gray-brown (10yr5/2) silty clay.	 N= 0,1,1,3
#3		wet, plastic	 REC= 1.4'
	 		
SS	 <u>20'-22'</u>	Gray-brown (10yr5/2) silty sand,	N= 2,1,3,2
#4_		loose	REC= 1.5'
ss	 _25'-27'	Gray-brown (10yr5/2) silty sand,	 N= 0,1,0,0
<u>#5</u>	 	l_loose	 REC= 0.7'
			<u> </u>
	<u> </u>		
	l		
LIEN	r <u>usaf oehl</u>	PREPARED BY P	Spooner

CLIENT -	USAF OLHL	TREIMED DI	PSp	ooner	
LOCATION	Hancock Field	SHEET	1	OF	1
	1-827-06-624-XX	BORING NO.	MW-18		
		_			

SLUG TEST RESULTS

APPENDIX E: FIELD RAW DATA

Unit# 00000 Test# 0

INPUT 1: Level (F) TOC

Reference 0.00 Scale factor 50.12 Offset 0.00

Step# 0 09/27 10:18

Elapsed Time	Va	alue
0.0000		3.96
0.0033	-	3.94
0.0066	_	3.81
0.0099	_	3.66
0.0133		3.56
0.0166	-	3.48
0.0200	-	3.54
0.0233	-	3.58
0.0266	-	3.58
0.0300	-	3.51
0.0333	-	3.43
0.0500	-	3.37
0.0666	-	3.29
0.0833	_	3.23 3.18
0.1000 0.1166	_	3.12
0.1333	_	3.07
0.1500	_	3.02
0.1666	_	2.97
0.1833	_	2.93
0.2000	-	2.88
0.2166	-	2.83
0.2333	-	2.80
0.2500	-	2.75
0.2666	-	2.72
0.2833	-	2.69
0.3000	-	2.64
0.3166	-	2.61
0.3333	-	2.58
0.4167	-	2.40
0.5000	_	2.26
0.5833	_	2.12
0.6667 0.7500	_	1.86
0.7300	_	1.75
0.9167	-	1.66
1.0000	-	1.56
1.0833	_	1.47
1.1667	-	1.39
1.2500	-	1.31
1.3333	-	1.25
1.4166	-	1.18
1.5000	-	1.12

							_	_	_
1.	. 5833	_	1.06			Test	Ο,	Step	U
	6667	-	0.99						
	7500	-	0.95						
	.8333	-	0.90						
1.	9167	_	0.85						
	.0000		0.80						
2.	.5000	-	0.60						
	.0000	_	0.45						
3.	.5000	-	0.34						
	.0000	-	0.26						_
4.	.5000	_	0.20						
5.	.0000	-	0.14						
5.	.5000	-	0.11						
6.	.0000	-	0.07						
6.	5000	-	0.06						
7.	.0000	-	0.03						
7.	.5000	-	0.01						
8.	.0000		0.00						
8.	.5000		0.00						
9.	.0000		0.00						
9.	.5000		0.01						
10.	.0000		0.01						
END									

Unit# 00000 Test# 0

INPUT 1: Level (F) TOC

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 1 09/27 10:30

Elapsed Time	V	alue
0.0000	-	4.02
0.0033	-	3.89
0.0066	-	3.72
0.0099	-	3.61
0.0133	-	3.72
0.0166	-	3.72
0.0200	-	3.69
0.0233	-	3.61
0.0266	-	3.56
0.0300	-	3.53
0.0333	-	3.54
0.0500	-	3.45
0.0666	_	3.39
0.0833	-	3.32
0.1000	-	3.27
0.1166	_	3.23
0.1333	-	3.18
0.1500	-	3.13
0.1666	-	3.08
0.1833	-	3.04
0.2000	-	3.01
0.2166		2.96
0.2333	-	2.93
0.2500	-	2.88
0.2666	-	2.85
0.2833	-	2.82
0.3000	-	2.78
0.3166	_	2.74
0.3333	-	2.70
0.4167	-	2.55
0.5000	-	2.39
0.5833	-	2.24
0.6667	-	2.12
0.7500	-	2.01
0.8333	_	1.90
0.9167	-	1.79
1.0000	-	1.69
1.0833	-	1.60
1.1667	-	1.52
1.2500	-	1.44
1.3333	-	1.36
1.4166	-	1.29
1.5000	-	1.23

1.5833	-	1.17	Test 0, Step 1
1.6667	-	1.10	
1.7500	-	1.06	
1.8333	_	0.99	_
1.9167	-	0.95	
2.0000	-	0.90	_
2.5000	-	0.68	
3.0000	-	0.50	
3.5000	-	0.39	
4.0000	-	0.30	-
4.5000	-	0.23	
5.0000	-	0.17	
5.5000	-	0.14	
6.0000	-	0.11	•
6.5000	-	0.07	
7.0000	-	0.04	•
7.5000	-	0.03	<u> </u>
8.0000	-	0.03	
8.5000	-	0.01	
9.0000		0.00	
9.5000		0.01	•
10.0000		0.01	
12.0000		0.03	_
END			
**********	湯湯湯	***	***************************************
			•

Unit# 00000 Test# 1

INPUT 1: Level (F) TOC

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 0 09/27 10:58

Elapsed Time	Value
0.0000	- 2.67
0.0033	- 2.66
0.0066	- 2.58
0.0099	- 2.40
0.0133	- 2.28
0.0166	- 2.20
0.0200	- 2.23
0.0233	- 2.20 - 2.15
0.0266	
0.0300	
0.0333 0.0500	- 2.05 - 1.88
0.0666	- 1.74
0.0833	- 1.63
0.1000	- 1.52
0.1166	- 1.42
0.1333	- 1.34
0.1500	- 1.26
0.1666	- 1.18
0.1833	- 1.12
0.2000	- 1.06
0.2166	- 0.99
0.2333	- 0.95
0.2500 0.2666	- 0.90 - 0.85
0.2833	- 0.80
0.3000	- 0.77
0.3166	- 0.72
0.3333	- 0.69
0.4167	- 0.55
0.5000	- 0.42
0.5833	- 0.34
0.6667	- 0.28
0.7500	- 0.23
0.8333	- 0.19
0.9167 1.0000	- 0.15 - 0.12
1.0833	- 0.11
1.1667	0.09
1.2500	- '0.07
1.3333	- 0.06
1.4166	- 0.04
1.5000	- 0.04

1.5833	-	0.03		Test	1,	Step	0	
1.6667	_	0.03						T
1.7500	-	0.01						
1.8333	-	0.01						
1.9167	-	0.01						
2.0000		0.00						
2.5000		0.00						_
3.0000		0.00						1
3.5000		0.00						
4.0000		0.01						
4.5000		0.01						
5.0000		0.01						
5.5000		0.01						
6.0000		0.01						
6.5000		0.01						
7.0000		0.01						•
7.5000		0.01						_
8.0000		0.01						
8.5000		0.01						Ų.
9.0000		0.03						
9.5000		0.01						1
10.0000		0.01						
END								

Unit# 00000 Test# 1

INPUT 1: Level (F) TOC

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 1 09/27 11:10

_	
Elapsed Time	Value
0.0000	- 1.53
0.0033	- 1.77
0.0066	- 1.82
0.0099	- 1.93
0.0133	- 2.02
0.0166	- 2.20 - 2.40
0.0200 0.0233	- 2.40 - 2.59
0.0255	- 2.74
0.0300	- 2.86
0.0333	- 2.93
0.0500	- 3.20
0.0666	- 2.70
0.0833	- 2.58 - 2.39
0.1000 0.1166	- 2.23
0.1333	- 2.10
0.1500	- 1.99
0.1666	- 1.88
0.1833	- 1.79
0.2000	- 1.69
0.2166	- 1.61 - 1.53
0.2333 0.2500	- 1.45
0.2666	- 1.39
0.2833	- 1.33
0.3000	- 1.26
0.3166	- 1.20
0.3333	- 1.15
0.4167	- 0.93 - 0.74
0.5000 0.5833	- 0.61
0.6667	- 0.50
0.7500	0.41
0.8333	- 0.34
0.9167	- 0.30
1.0000	- 0.25
1.0833	- 0.20
1.1667	- 0.17 - 0.14
1.2500 1.3333	- 0.12
1.4166	- 0.11
1.5000	- 0.09

1.5833	-	0.07	Test 1, Step 1
1.6667	_	0.06	
1.7500	_	0.04	
1.8333	_	0.04	
1.9167	-	0.03	
2.0000	-	0.03	
2.5000		0.00	
3.0000		0.00	
3.5000		0.01	
4.0000		0.01	
4.5000		0.01	•
5.0000		0.01	
5.5000		0.01	
6.0000		0.01	
6.5000		0.01	
7.0000		0.01	
7.5000		0.01	
8.0000		0.01	
8.5000		0.01	
9.0000		0.03	
9.5000		0.03	
10.0000		0.03	
END			
~~~~~~~~~~~~~~~			W W W W M M M M M M M M M M M M M M M M

Unit# 00000 Test# 1

INPUT 1: Level (F) TOC

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 2 09/27 11:20

Elapsed Time	Value
0.0000	- 3.34
0.0033	- 3.16
0.0066	- 3.01
0.0099	- 2.93
0.0133	- 2.96
0.0166	- 2.94
0.0200	- 2.88
0.0233	- 2.82
0.0266	- 2.78
0.0300	- 2.78
G.0333	- 2.72
0.0500	- 2.56
0.0666	- 2.42
0.0833	- 2.29
0.1000	- 2.17
0.1166	- 2.07
0.1333	- 1.98
0.1500	- 1.88
0.1666	- 2.94 - 2.88 - 2.82 - 2.78 - 2.72 - 2.56 - 2.42 - 2.29 - 2.17 - 1.98 - 1.80 - 1.71 - 1.64 - 1.58 - 1.50 - 1.45 - 1.39 - 1.33 - 1.28 - 1.23 - 0.80 - 0.68 - 0.57 - 0.47
0.1833	- 1.71
0.2000	- 1.64
0.2166	- 1.58
0.2333	- 1.50
0.2500	- 1.45
0.2666	- 1.39
0.2833	- 1.33
0.3000	- 1.28
0.3166	- 1.23
0.3333	- 1.18
0.4167	- 0.98 - 0.80
0.5000	- 0.60
0.5833 0.6667	- 0.68
	- 0.57
0.7500 0.8333	- 0.47 - 0.41
0.9167	- 0.34
1.0000	- 0.30
1.0833	- 0.25
1.1667	- 0.22
1.2500	- 0.19
1.3333	- 0.15
1.4166	- 0.14
1.5000	- 0.11
	V

1.5833	- 0.09	Test 1, Step 👚	ì
1.6667	- 0.07		l
1.7500	- 0.07		
1.8333	- 0.06		
1.9167	- 0.04		l
2.0000	- 0.04	•	į.
2.5000	- 0.01		
3.0000	0.00		ľ
3.5000	0.01		ı
4.0000	0.01		
4.5000	0.01		ŀ
5.0000	0.01		
5.5000	0.01	•	,
6.0000	0.03	_	
6.5000	0.03		
7.0000	0.03		)
7.5000	0.03		
8.0000	0.03		ì
8.5000	0.03		
9.0000	0.03		,
9.5000	0.04	<b></b>	
10.0000	0.04		
END			)
			_

Unit# 00000 Test# 2

INPUT 1: Level (F) TOC

Reference 0.00 Scale factor 50.12 Offset 0.00

Step# 0 09/27 12:26

Elapsed Time	Vā	alue
0.0000	-	4.72
0.0033	-	4.56
0.0066	-	4.48
0.0099	-	4.56
0.0133	-	4.62
0.0166	_	4.65 4.59
0.0200 0.0233	_	4.51
0.0255	_	4.48
0.0300	_	4.48
0.0333	-	4.57
0.0500	-	4.45
0.0666	_	4.40
0.0833	-	4.35
0.1000	-	4.32
0.1166	-	4.29
0.1333	-	4.24
0.1500	-	4.19
0.1666	-	4.15
0.1833	-	4.10
0.2000	-	4.07
0.2166	-	4.02
0.2333	-	3.99
0.2500	-	3.94
0.2666	-	3.91
0.2833	-	3.88
0.3000	-	3.83
0.3166	_	3.80
0.3333	-	3.77
0.4167	_	3.62 3.48
0.5000 0.5833	_	3.46
0.6667	_	3.26
0.7500	_	3.18
0.8333	_	3.08
0.9167	_	3.01
1.0000	-	2.93
1.0833	_	2.85
1.1667	-	2.78
1.2500	-	2.70
1.3333	-	2.64
1.4166	_	2.58
1.5000	-	2.51

1 5022	_	2.45	Test 2, Step 1
1.5833	-		, ,
1.6667	-	2.39	
1.7500	-	2.32	
1.8333	-	2.26	
1.9167	-	2.21	
2.0000	-	2.15	
2.5000	-	1.86	
3.0000	-	1.60	
3.5000	-	1.39	
4.0000	-	1.20	
4.5000	-	1.04	
5.0000	-	0.90	
5.5000	-	0.77	
6.0000	-	0.68	
6.5000	-	0.58	
7.0000	-	0.50	
7.5000	-	0.44	
8.0000	-	0.38	
8.5000	-	0.33	
9.0000	_	0.28	
9.5000	_	0.25	
10.0000	_	0.22	
12.0000	_	0.11	
14.0000	_	0.04	
	_	0.01	
16.0000	_		
18.0000		0.00	
20.0000		0.01	
END			

# Unit# 00000 Test# 2

INPUT 1: Level (F) TOC

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 1 09/27 12:47

Elapsed lime	Value
0.0000	- 4.53
0.0033	- 4.53
0.0066	- 4.65
0.0099	- 4.65
0.0133	- 4.62
0.0166	- 4.53
0.0200	- 4.56
0.0233	- 4.54
0.0266	- 4.56
0.0300	- 4.54
0.0333	- 4.51
0.0500	- 4.46
0.0666	- 4.42
0.0833	- 4.37
0.1000	- 4.32
0.1166	- 4.27
0.1333	- 4.23
0.1500	- 4.18
0.1666	- 4.13
0.1833 0.2000	- 4.10 - 4.05
0.2136	- 4.03
0.2333	- 3.97
0.2500	- 3.94
0.2666	- 3.91
0.2833	- 3.88
0.3000	- 3.85
0.3166	- 3.81
0.3333	- 3.78
0.4167	- 3.64
0.5000	- 3.51
0.5833	- 3.40
0.6667	- 3.31
0.7500	- 3.21
0.8333	- 3.13
0.9167	- 3.05
1.0000	- 2.97
1.0833	- 2.89
1.1667	- 2.83 - 2.75
1.2500	- 2.75
1.3333	- 2.69
1.4166 1.5000	- 2.63 - 2.55
7.3000	- 4.33

				m . 2 Chan 2
ā	1.5833	-	2.48	Test 2, Step 2
a	1.6667	_	2.42	
	1.7500	_	2.37	
	1.8333	_	2.31	
	1.9167	_	2.24	
	2.0000	-	2.20	
	2.5000	-	1.90	
	3.0000	-	1.64	
	3.5000	_	1.41	
	4.0000	_	1.22	
	4.5000	-	1.06	-
	5.0000	-	0.91	
	5.5000	_	0.79	•
	6.0000	-	0.69	_
	6.5000	-	0.60	
	7.0000	-	0.52	
	7.5000	_	0.45	
	8.0000	-	0.39	
	8.5000	-	0.33	
	9.0000	-	0.28	·
	9.5000	-	0.25	
	10.0000	-	0.22	
	12.0000	-	0.11	
	14.0000	-	0.04	_
	16.0000	-	0.01	
	18.0000		0.01	
EN				
* *		*****		

Unit# 00000 Test# 3

INPUT 1: Level (F) TOC

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 0 09/27 13:34

Elapsed Time	Value
0.0000	- 0.06
0.0033	- 0.04
0.0066	- 0.03
0.0099	- 0.03
0.0133	- 0.01
0.0166	- 0.01
0.0200	- 0.01
0.0233	0.00 0.00
0.0266 0.0300	0.00
0.0333	0.01
0.0500	0.03
0.0666	0.03
0.0833	0.03
0.1000	0.03
0.1166	0.04
0.1333 0.1500	0.04 0.04
0.1666	0.04
0.1833	0.04
0.2000	0.04
0.2166	0.04
0.2333	0.04
0.2500	0.04
0.2666	0.06
0.2833	0.06 0.06
0.3000 0.3166	0.06
0.3333	0.06
0.4167	0.06
0.5000	0.06
0.5833	0.04
0.6667	0.06
0.7500	0.04
0.8333	0.04
0.9167 1.0000	0.04
1.0833	0.04
1.1667	0.04
1.2500	0.04
1.3333	0.04
1.4166	0.04
1.5000	0.03

		Test 3, Step 0
1.5833	0.03	
1.6667	0.03	
1.7500	0.04	
1.8333	0.03	
1.9167	0.03	
2.0000	0.03	
2.5000	0.04	_
3.0000	0.03	
3.5000	0.03	
4.0000	0.03	
4.5000	0.03	
5.0000	0.03	
5.5000	0.03	
6.0000	0.03	
6.5000	0.03	
7.0000	0.03	•
7.5000	0.03	
8.0000	0.03	
8.5000	0.03	
9.0000	0.03	
9.5000	0.03	
10.0000	0.03	
12.0000	0.03	•
END		
****	*****	***

Unit# 00000 Test# 3

INPUT 1: Level (F) TOC

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 1 09/27 13:47

Elapsed Time	Value
0.0000	- 0.06 - 0.04
0.0066 0.0099	- 0.03 - 0.01
0.0133 0.0166	- 0.01 0.00
0.0200 0.0233	0.00 0.01
0.0266	0.01
0.0333	0.03
0.0500 0.0666	0.04
0.0833 0.1000	0.04 0.04
0.1166 0.1333	0.06 0.06
0.1500 0.1666	0.07 0.06
0.1833 0.2000	0.06 0.07
0.2166 0.2333	0.07
0.2500 0.2666	0.07
0.2833	0.07
0.3000 0.3166	0.07
0.3333 0.4167	0.07
0.5000 0.5833	0.07 0.07
0.6667 0.7500	0.07 0.06
0.8333 0.9167	0.06 0.06
1.0000 1.0833	0.06
1.1667	0.04
1.3333	0.04
1.4166 1.5000	0.04 0.04

				Test	3.	Step	1	_
1.5833	0.04						_	
1.6667	0.04							
1.7500	0.04							
1.8333	0.04							
1.9167	0.04							
2.0000	0.04							
2.5000	0.04							
3.0000	0.04							H
3.5000	0.04							
4.0000	0.04						_	_
4.5000	0.04							
5.0000	0.04							
5.5000	0.04							
6.0000	0.04							
6.5000	0.04							
7.0000	0.04							_
7.5000	0.04							_
8.0000	0.04							
8.5000	0.04							
9 0000	0.04							_
9.5000	0.04							
10.0000	0.04							-
12.0000	0.04							
END					<b></b>			
<b>米米米米米米米米米米米米米</b>	<b>美洲洲洲洲洲洲洲洲洲洲</b>	<b>医果果果果果果果果果果</b>	<b>第三元元元元元元元元元元元元元元元元元元元</b>	. 爱 菜 菜 菜	乗票 :		表 素 茅	• 🗐

## Unit# 00000 Test# 4

INPUT 1	: Level	(F)	TOC
---------	---------	-----	-----

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 0 09/27 14:17

		Test 4, Step 🖴
1.5833	0.04	
1.6667	0.04	
1.7500	0.04	
1.8333	0.04	
1.9167	0.04	
2.0000	0.04	
2.5000	0.04	
3.0000	0.04	
3.5000	0.04	
4.0000	0.04	
4,5000	0.04	9
5.0000	0.04	
5.5000	0.06	
6.0000	0.06	
6.5000	0.06	
7.0000	0.06	•
7.5000	0.06	_
8.0000	0.06	
8.5000	0.06	
9.0000	0.06	
9.5000	0.06	
10.0000	0.07	
END		_
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Unit# 00000 Test# 4

TNDITT	1 :	Level	(F)	TOC
INPUL	- 4	TEAST	LFI	100

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 1 09/27 14:29

0.0000 - 0.8	
0.0033 - 0.9	
0.0066 - 0.8 0.0099 - 0.7	
0.0133 - 0.7	
0.0166 - 0.7	
0.0200 - 0.6	
0.0233 - 0.7	
0.0266 - 0.6 0.0300 - 0.6	
0.0333 - 0.5	
0.0500 - 0.2	
0.0666 - 0.0	
0.0833 0.0	
0.1000 0.0 0.1166 0.0	
0.1333 0.0	
0.1500 0.0	
0.1666 0.0	
0.1833 0.0	
0.2000 0.0 0.2166 0.0	
0.2166 0.0 0.2333 0.0	
0.2500 0.0	
0.2666 0.1	
0.2833 0.1	
0.3000 0.1	
0.3166 0.1 0.3333 0.1	
0.4167 0.1	
0.5000 0.1	
0.5833 0.1	
0.6667 0.1	
0.7500 0.1 0.8333 0.0	
0.9167 0.1	
1.0000 0.0	
1.0833 0.0	9
1.1667 0.0	
1.2500 0.0° 1.3333 0.0°	
1.3333 0.0° 1.4166 0.0°	
1.5000 0.0	

		Test 4, Step 🖿
1.5833	0.07	·
1.6667	0.07	•
1.7500	0.07	
1.8333	0.07	•
1.9167	0.07	
2.0000	0.07	
2.5000	0.07	_
3.0000	0.07	
3.5000	0.07	•
4.0000	0.07	-
4.5000	0.07	•
5.0000	0.07	
5.5000	0.07	
6.0000	0.07	
6.5000	0.07	
7.0000	0.07	•
7.5000	0.07	
8.0000	0.07	
8.5000	0.09	
9.0000	0.07	
9.5000	0.07	
10.0000	0.09	
END		•
~~~~~~~~~~~~~		W W W W T T T T T T T T T T T T T T T T

Unit# 00000 Test# 5

INPUT 1: Level (F) TOC

Reference 0.00 Scale factor 50.12 Offset 0.00

Step# 0 09/27 15:10

1.5833	0.01	Test 5, Step (
1.6667	0.01	
1.7500	0.01	
1.8333	0.01	
1.9167	0.01	
2.0000	0.01	-
2.5000	0.01	_
3.0000	0.00	
3.5000	0.01	
4.0000	0.01	
4.5000	0.00	•
5.0000	0.01	
5.5000	0.01	_
6.0000	0.01	
6.5000	0.01	
7.0000	0.01	•
7.5000	0.01	
8.0000	0.01	
8.5000	0.01	
9.0000	0.01	_
9.5000	0.01	
10.0000	0.01	
END		•

# Unit# 00000 Test# 5

INPUT	1:	Level	(F)	TOC

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 1 09/27 15:22

Elapsed Time	Value
0.0000	- 2.64
0.0033	- 2.59
0.0066	- 2.42
0.0099	- 2.31
0.0133	- 2.17
0.0166	- 2.04
0.0200	- 1.94
0.0233	- 1.85
0.0266	- 1.77
0.0300	- 1.67 - 1.60
0.0333 0.0500	- 1.60 - 1.28 - 1.02 - 0.83 - 0.68
0.0666	- 1.02
0.0833	- 0.83
0.1000	- 0.68
0.1166	- 0.55
0.1333	- 0.55 - 0.45 - 0.38
0.1500	*
0.1666	- 0.31
0.1833	- 0.26
0.2000	- 0.22
0.2166	- 0.19 - 0.15
0.2333 0.2500	- 0.14
0.2666	- 0.11
0.2833	- 0.14 - 0.11 - 0.09 - 0.07 - 0.07 - 0.06
0.3000	- 0.07
0.3166	- 0.07
0.3333	- 0.06
0.4167	- 0.03
0.5000	0.00
0.5833	0.00
0.6667	0.01
0.7500	0.01
0.8333 0.9167	0.01
1.0000	0.01
1.0833	0.01
1.1667	0.01
1.2500	0.01
1.3333	0.01
1.4166	0.01
1.5000	0.01

Test 5, Step 🗈	0.01	1.5833
	0.01	1.6667
	0.01	1.7500
_	0.01	1.8333
	0.01	1.9167
	0.01	2.0000
	0.01	2.5000
	0.01	3.0000
#	0.01	3.5000
_	0.01	4.0000
	0.01	4.5000
	0.01	5.0000
	0.01	5.5000
	0.01	6.0000
	0.01	6.5000
•	0.01	7.0000
	0.01	7.5000
	0.01	8.0000
	0.01	8.5000
•	0.01	9.0000
	0.01	9.5000
	0.01	10.0000
		END
ĸ ĸ	********	*********

Unit# 00000 Test# 6

INPUT 1: Level (F) TOC

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 0 09/28 09:33

Elapsed Time	Value
0.0000	- 2.80
0.0033	- 2.85
0.0066	- 2.91
0.0099	- 2.89
0.0133	- 2.80
0.0166	- 2.63
0.0200	- 2.44
0.0233	- 2.85 - 2.91 - 2.89 - 2.63 - 2.44 - 2.28 - 2.21 - 2.24 - 2.31
0.0266	- 2.21
0.0300	- 2.24
0.0333	
0.0500	
0.0666	
0.0833	- 1.98
0.1000	- 1.88 - 1.79
0.1166 0.1333	- 1.72
0.1500	- 1.64
0.1666	- 1.58
0.1833	- 1.52
0.2000	- 1.45
0.2166	- 1.39
0.2333	- 1.39 - 1.34 - 1.28 - 1.23 - 1.18 - 1.15
0.2500	- 1.28
0.2666	- 1.23
0.2833	- 1.18
0.3000	- 1.15
0.3166	- 1.10
0.3333	- 1.07
0.4167	- 0.90
0.5000	- 0.76 - 0.64
0.5833	
0.6667	- 0.55 - 0.47
0.7500 0.8333	- 0.41
0.8333	- 0.34
1.0000	- 0.30
1.0833	- 0.26
1.1667	- 0.22
1.2500	- 0.19
1.3333	- 0.17
1.4166	- 0.14
1.5000	- 0.11

1.5833	-	0.09	Test 6, Step (	
1.6667	-	0.07		
1.7500		0.06		
1.8333	-	0.04		
1.9167	-	0.04		
2.0000	-	0.03		_
2.5000		0.00		_
3.0000		0.01	·	X
3.5000		0.01		
4.0000		0.03	_	
4.5000		0.03		
5.0000		0.03		8
5.5000		0.03		
6.0000		0.03		_
6.5000		0.03		K
7.0000		0.03	•	
7.5000		0.03		_
8.0000		0.03		
8.5000		0.03		
9.0000		0.03		
9.5000		0.03		
10.0000		0.03	<b>;</b>	
END				_
*******	*****	*****	******************************	
			(	

Unit# 00000 Test# 6

INPUT 1: Level (F) TOC

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 1 09/28 09:45

Elapsed Time	Value
0.0000	- 3.16
0.0033	- 2.96
0.0055	- 2.78
0.0099	- 2.67
0.0133	- 2.67
0.0166	- 2.70
0.0200	- 2.77
0.0233	- 2.80
0.0266	- 2.77
0.0300	- 2.69
0.0333	- 2.63
0.0500	- 2.55
0.0666	- 2.42
0.0833	- 2.34
0.1000	- 2.24
0.1166	- 2.17
0.1333	- 2.09
0.1500	- 2.02
0.1666	- 1.94
0.1833	- 1.88
0.2000	- 1.82
0.2166	- 1.77
0.2333	- 1.71
0.2500	- 1.66
0.2666	- 1.61
0.2833	- 1.56
0.3000	- 1.50
0.3166	- 1.47
0.3333	- 1.42
0.4167	- 1.23 - 1.07
0.5000	
0.5833	
0.6667	
0.7500	- 0.74 - 0.64
0.8333	
0.9167	- 0.58 - 0.52
1.0000 1.0833	- 0.45
1.1667	- 0.41
1.2500	- 0.36
1.3333	- 0.33
1.4166	- 0.28
1.5000	- 0.25

						Test	6,	Step	1	_
1.5833	-	0.23					•	•	-	
1.6667	_	0.20								-
1.7500	-	0.17								
1.8333	-	0.15								•
1.9167	-	0.14								
2.0000	-	0.12								
2.5000	-	0.04								_
3.0000	-	0.01								1
3.5000		0.00								4
4.0000		0.01							_	
4.5000		0.01							_	1
5.0000		0.03								1
5.5000		0.03								_
6.0000		0.03								_
6.5000		0.03								1
7.0000		0.03								4
7.5000		0.03								
8.0000		0.03								Ĩ
8.5000		0.03								ł
9.0000		0.03								
9.5000		0.03								•
10.0000		0.04								1
END										4
			 <b></b>	 	 	 				

Unit# 00000 Test# 7

INPUT 1: Level (F) TOC

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 0 09/29 11:14

Elapsed Time	Value
0.0000	1.98
0.0033	2.23
0.0066	2.69
0.0099	2.44
0.0133	2.20
0.0166	2.34
0.0200 0.0233	2.45 2.31
0.0255	2.26
0.0300	2.34
0.0333	2.34
0.0500	2.24
0.0666	2.21
0.0833	2.18
0.1000	2.13 2.10
0.1166 0.1333	2.10
0.1500	2.04
0.1666	2.01
0.1833	1.96
0.2000	1.94
0.2166	1.91
0.2333	1.88
0.2500	1.85 1.83
0.2666 0.2833	1.80
0.3000	1.77
0.3166	1.74
0.3333	1.72
0.4167	1.61
0.5000	1.50
0.5833	1.41
0.6667 0.7500	1.31 1.23
0.8333	1.15
0.9167	1.09
1.0000	1.02
1.0833	0.96
1.1667	0.91
1.2500	0.87
1.3333	0.80
1.4166	0.77 0.72
1.5000	0.72

1.5833	0.69	Test 7, Step 0
1.6667	0.64	
1.7500	0.61	
1.8333	0.60	
1.9167	0.55	
2.0000	0.53	
2.5000	0.41	_
3.0000	0.31	
3.5000	0.25	
4.0000	0.22	
4.5000	0.19	
5.0000	0.15	
5.5000	0.15	•
6.0000	0.14	_
6.5000	0.12	
7.0000	0.12	•
7.5000	0.12	
8.0000	0.11	
8.5000	0.11	
9.0000	0.11	•
9.5000	0.11	
10.0000	0.11	1
12.0000	0.11	
14.0000	0.11	_
16.0000	0.11	
18.0000	0.11	
20.0000	0.11	
22.0000	0.11	
24.0000	0.11	
26.0000	0.11	•
28.0000	0.11	
END		
%	<b>莱莱莱莱莱莱莱莱莱莱莱莱莱莱莱莱莱</b>	*************

Unit# 00000 Test# 8

INPUT 1: Level (F) TOC

Reference	0.00
Scale factor	50.12
Offset	0.00

Step# 0 09/29 11:58

Elamond Time	Value
Elapsed Time	Value
0.0000	2.29
0.0033	2.20
0.0066	2.42
0.0099 0.0133	2.40 2.26
0.0166	2.28
0.0200	2.34
0.0233	2.29
0.0266	2.24
0.0300	2.28
0.0333 0.0500	2.28 2.21
0.0666	2.18
0.0833	2.13
0.1000	2.10
0.1166	2.07
0.1333	2.04
0.1500 0.1666	1.99 1.98
0.1833	1.94
0.2000	1.90
0.2166	1.88
0.2333	1.85
0.2500	1.82
0.2666 0.2833	1.79 1.77
0.3000	1.74
0.3166	1.72
0.3333	1.69
0.4167	1.56
0.5000 0.5833	1.47 1.36
0.5657	1.36
0.7500	1.18
0.8333	1.12
0.9167	1.04
1.0000	0.98
1.0833 1.1667	0.91
1.2500	0.87 0.80
1.3333	0.76
1.4166	0.72
1.5000	0.68

1.5833	0.64	Test 8, Step 0
1.6667	0.60	
1.7500	0.57	
1.8333	0.53	
1.9167	0.50	
2.0000	0.47	•
2.5000	0.34	-
3.0000	0.25	
3.5000	0.19	
4.0000	0.14	_
4.5000	0.12	
5.0000	0.09	
5.5000	0.07	·
6.0000	0.06	
6.5000	0.06	
7.0000	0.04	•
7.5000	0.04	
8.0000	0.04	
8.5000	0.04	
9.0000	0.04	
9.5000	0.04	
10.0000	0.03	
12.0000	0.03	
14.0000	0.03	•
16.0000	0.03	
18.0000	0.03	
20.0000	0.03	
22.0000	0.03	
24.0000	0.03	
END		
英语英语英语描述	<b>美洲洲洲洲洲洲洲洲洲洲洲洲</b>	<b>报票报票报票帐票 医克克斯氏 医克克斯氏 医克克斯氏 医克克斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯斯氏 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医克斯氏征 医原生 医尿性原生 医尿性原生 医尿性原生 医尿性原生 医尿性原生 医尿性原生 医尿性原生 医尿性原生 医原生 医原生 医原生原生 医原生原生 医原生原生 医原生原生 医原生原生原生原生</b>

# **APPENDIX**

# MAGNETOMETER DATA

HANCOCK FIELD SITE
ONONDAGA COUNTY, NEW YORK

FOR

SCIENCE APPLICATIONS INTERNATIONAL CORP.

McLEAN, VIRGINIA

**JANUARY 1987** 



# DISPOSAL SITE D-1

# ** G-856 MAGNETOMETER DATA ** RAW FIELD Code: HN10

	D. a.A. a.	T:	C. +-	Field
Line		Time	Site	
	003	08:11:45	1	757559.6
	003	08:12:30	2	756954.2
	003	08:12:54	3	56133 <b>.8</b>
Ō	003	08:13:10	.4	255389.4
Q	003	08:14:00	5	56081.4
0	003	08:14:22	చ	56489.8
Q.	003	08:14:42	7	257306.6
Û	200	08:15:03	9	?56330.6
	003	08:15:16	Ģ	56980.0
-		, _ ,		
0	003	08:15:33	10	757403.8
Q	003	08:16:14	11	255872.6
0	003	08:17:14	12	56092.6
	003	08:17:27	13	56309.8
Ŏ	003	08:17:40	14	56035.8
	003	08:18:00	15	756920.2
	003	08:18:12	16	757232.2
			17	
	003	08:18:24		756361.2
	003	08:18:37	18	752728.6
Q	003	08:19:08	19	254940.6
o o	003	08:19:26	20	55969.6
O	003	08:19:39	21	?564 <b>02.4</b>
	003	08:20:01	22	755977.6
1	003	08:21:49	23	755246.6
. 1	003	08:22:07	24	754882.2
1	003	08:22:22	25	756029.8
i	003	08:22:35	25	756950.2
1	003	08:22:52	27	758231.0
				755505.6
1	003	08:23:04	28	756326.2
1	003	08:23:21	29	್ಟರಿಸಿದರಿ. 2
1	003	08:24:04	30	758041.4
1	003	08:24:20	31	257708.6
1	003	08:24:32	32	57020.8
1	003	08:24:43	33	756246.4
	003	08:24:56	34	254279.6
	003	08:25:10	35	256077.8
1	003	08:25:23	36	757520.0
	003	08:25:38	37	57465.4
			37 38	756459.2
	003 007	08:25:53		758775.6
1	003	08:26:07	39	.ud//a.6
1	003	08:26:29	40	757141.0
	003	08:26:45	41	756556.0
1	003	08:26:57	42	56619.6
•		CO. LO.		

^{? =} High gradient reading, indicating metal close to land surface.

1 003 1 003 1 003 1 003 1 003	08:27:12 08:27:27 08:27:41 08:28:09 08:28:34 08:28:54	43 44 45 46 47 48	756287.2 755388.2 755907.8 752211.4 57999.0 756419.2
1 003 1 003 1 003 2 003 2 003 2 003 2 003 2 003	08:29:29 08:29:52 08:30:07 08:32:22 08:32:39 08:32:53 08:33:12	49 50 51 53 54 55 56	756047.2 756135.2 757557.0 56583.0 757333.8 754598.0 756219.4 56473.6
2 003 2 003 2 003	08:33:54 08:34:11 08:34:30	57 58 59	758231.8 75833 <b>6.</b> 0 758031. <b>6</b>
2 003 2 003 2 003 2 003 2 003 2 003 2 003 2 003 2 003 2 003	08:34:45 08:35:25 08:35:44 08:36:03 08:36:17 08:36:35 08:36:58 08:37:12 08:37:25	60 61 62 63 64 65 64 67 68 69	56522.2 757050.0 57086.2 56962.6 757769.4 756950.4 755728.2 755911.4 56073.2 56120.8
2 003 2 003 2 003 2 003 2 003 2 003 2 003 2 003 2 003 2 003	08:38:33 08:38:49 08:39:02 08:39:14 08:39:28 08:40:31 08:40:47 08:41:00 08:41:16	70 71 72 73 74 75 76 77 78 79	55479.8 55976.8 55871.2 756567.4 757166.0 55952.2 755830.2 755873.6 758288.0
2 003 2 003 2 003 2 003 3 003 3 003 3 003 3 003 3 003	08:41:47 08:42:01 08:42:15 08:42:36 08:54:24 08:54:40 08:55:06 08:55:23 08:55:37 08:55:50	80 81 82 83 84 85 86 87 88	?57383.2 ?56911.0 ?55635.4 55510.6 ?55615.0 ?54808.4 ?56692.8 ?56787.2 ?56406.4 56685.8
3 003	08:56:02	90	756544.4

3 003	08:56:15	91	55045.0
-			
3 003	08:56:33	921	582225.4
3 003	08:55:45	93	755150.4
2 003	08:56:59	94	58405.8
3 003	08:57:37	95	254414.6
2 003	08:57:52	95	255519.4
3 003	08:58:04	97	755939.0
3 003	08:58:17	98	756070.8
3 003	oa:58:28	99	755928.2
7 007	08:58:43	100	SAROL O
3 003			56501.2
3 003	08:58:56	101	756446.4
3 003	08:59:09	102	256224.6
3 003	08:59:26	103	56352.0
3 003	08:59:44	104	56226.2
3 003	09:00:02	105	56295.0
3 003	09:00:21	106	54408.0
3 003	09:00:35	107	756556.4
3 003	09:00:48	108	56728.8
3 003	09:01:03	109	256297.0
- C.C		• • •	
3 003	09:01:18	110	56224.0
3 003	09:01:38	111	56201.6
3 003	09:01:51	112	755848.6
3 003	09:02:08	113	755908.4
	09:02:31	114	55937.4
3 003			
3 003	09:03:10	115	7552 <b>52.8</b>
3 003	09:03:25	115	?55 <b>652.4</b>
3 003	09:03:42	117	56178.2
3 003	09:03:55	118	56618.0
3 003	09:04:09	119	?55543.8
2 002	07.04.07	117	: Jau-40 - 0
4 003	09:06:06	120	758703.2
4 003	09:06:34	121	758812.6
4 003	09:06:50	122	756168.2
4 003	09:07:02	123	257945.2
4 003		124	257668.0
	09:07:17		
4 003	09:07:32	125	?57 <b>675.</b> 8
4 003	09:07:44	126	255173.2
4 003	09:07:57	127	756011.2
4 003	09:08:14	128	755641.8
4 003	09:09:43	129	56044.4
4 003	UTAUTATO	1.27	COCALA
4 003	09:10:06	130	56512.2
4 003	09:10:19	131	756810.8
4 003	09:10:34	132	56264.2
4 003	09:10:48	133	56282.8
4 003	09:11:02	134	56737.0
4 003	09:11:16	135	57109.0
4 003	09:11:29	136	757452.6
4 003	09:11:42	137	568 <b>57.8</b>
4 003	09:11:58	138	757216.8
4 003	09:15:43	139	56381.6
4 0005	<b>いフェエジ・サン</b>	107	

4 003	09:16:02	140	256053.2
4 003	09:16:15	141	56435.4
4 003	09:15:30	142	258972.0
4 003	09:16:43	1-45	56833.4
4 003	09:16:55	144	56518.4
4 003	09:17:07	1.45	~58401 <b>.8</b>
4 003	09:17:18	146	58946.2
4 003	09:17:30	147	756912.4
4 003	09:18:19	148	56567.8
4 003	09:18:54	149	95A287.8
4 003	09:19:10	150	56020.0
4 003	09:19:23	151	n55768.8
4 003	09:19:37	152	755931.0
4 003	09:19:49	153	55557.0
4 003	09:20:02	134	257877.6
4 003	09:20:17	155	56519.4
4 003	09:20:33	156	?56331.8
4 003	09:20:46	157	756410.2
4 003	09:21:00	158	56386.2
4 003	09:21:14	159	256984.4
4 003	09:21:28	150	54314.0
4 003	09:21:40	151	55998.4
4 003	09:21:54	160	?5549 <b>6.8</b>
5 003	09:24:34	160	756186.6
5 003	09:41:08	164	55657.6
5 003	09:41:23	165	557 <b>75.2</b>
5 003	09:41:36	166	56111.4
5 003	09:41:49	167	2550 <b>60.4</b>
<b>5</b> 003	09:42:06	168	757772.0
<b>5</b> 003	09:42:42	169	57316.6
		4.75	257239.6
5 003	09:42:54	170	56546.6
5 003	09:43:12	171 172	56979.8
5 003	09:43:26	173	56674.4
5 003	09:43:38	174	257040.8
5 003	09:43:51	175	758505.4
5 003	09:44:03 09:44:16	175	757183.2
5 003	09:44:28	177	56533.6
5 003		179	754428.2
5 003 5 003	09:44:43 09:45:05	179	56594.0
5 003	07:40:00	1,,	3337110
5 003	09:45:17	180	257503.4
5 003	09:45:29	191	257627.0
5 003	09:45:43	182	257456.8
5 003	09:45:58	183	56630.6
5 003	09:46:09	184	756554.6
·5 003	09:46:25	135	756218.8
<b>5</b> 003	09:46:41	186	56637.2
5 003	09:46:57	187	256743.4

5	003	09:47:22	138	56630.0
5	003	09:47:40	189	956743.2
5	003	09:47:51	190	057059.0
	• •		191	56362.0
5	003	09:48:03		
5	003	09:48:13	192	755943.2
5	003	09:48:25	193	56624.0
		09:48:36	194	257116.4
5	003			
5	003	09:48:46	195	56603.8
5	003	09:48:57	196	56599.0
5	003	09:49:13	197	56184.4
5	003	09:49:28	198	756256.8
5	003	09:49:41	199	56072.2
	0.00 TZ	00.40.54	200	755499.4
5	003	09:49:54		
5	003	09:50:07	201	756237.0
5	003	09:50:20	202	754673.0
		09:50:31	203	755265.6
5	003			
5	003	09:50:46	204	758148.0
5	003	09:50:59	205	254724.6
5	003	09:51:12	206	752134.2
Ś	003	09:53:39	207	756698.6
5	003	09:54:05	208	757272.0
6	003	09:54:18	209	258051.4
_	45 45 40 40 F	0713111		
		5.00 m Et a m 4.00	(3 4 5	047700 4
6	003	09:54:40	210	747720.4
6	003	09:54:57	211	?590 <b>58.4</b>
6	003	09:55:14	212	753991.2
		09:55:27	213	755459.0
6	003			
6	003	09:55:40	214	75603 <b>9.</b> 0
6	003	09:55:52	215	55903.0
5	003	09:56:04	216	756316.6
				756749.2
6	003	09:56:16	217	
6	003	09:56:56	218	?57044.0
6	003	09:57:15	219	56483.2
_				
,	AA7	09:57:30	220	756586.4
0	003			
5	003	09:57:44	221	757019.0
5	003	09:57:56	222	56946.4
6		09:58:08	223	756965.8
_				756264.2
6		09:58:20	224	
6	003	<b>09:58:</b> 33	em em em amatan tah	?562 <b>28.</b> 0
6	003	09:58:45	226	?56437.6
6		09:58:57	227	256705.0
_				
6		09:59:11	228	756596.8
6	003	09:59:23	229	256705.6
6	003	09:59:36	230	56292.0
6		09:59:52	231	56394.2
		•		256877.2
6		10:00:04	232	
6	003	10:00:15	233	55749.4
6	003	10:00:43	234	256983.2
		10:00:57	235	56508.8
6	OOS	10.00.37	الدوفية يشو	Constitution and the

6 003	10:01:11	236	56401.2
6 003	10:01:35	23 <b>7</b>	?56782.8
6 003	10:01:49	23 <b>8</b>	56814.6
6 003	10:02:01	239	?57757.8
6 003 6 003 6 003 6 003 6 003 6 003 6 003 6 003 6 003	10:02:15 10:02:30 10:02:53 10:03:07 10:03:20 10:03:38 10:03:52 10:04:32 10:04:45 10:05:00	240 241 242 243 244 245 246 247 248 249	758108.8 756580.2 756231.2 56094.6 756653.2 754547.0 756319.4 756112.2 55307.6 55602.2
6 003 6 003 6 003 7 003 7 003 7 003 7 003 7 003 7 003	10:05:15 10:05:45 10:05:59 10:06:21 10:08:46 10:09:13 10:09:29 10:09:44 10:09:56 10:10:08	250 251 252 253 254 255 256 257 258 259	55709.4 55051.8 56420.0 756936.4 56131.8 756014.0 757477.4 56901.2 756790.8 56440.4
7 003	10:10:21	260	56346.8
7 003	10:10:33	261	55795.8
7 003	10:10:49	262	754947.6
7 003	10:11:04	263	756019.4
7 003	10:11:17	264	756930.8
7 003	10:12:08	265	757628.4
7 003	10:12:28	266	56981.6
7 003	10:12:40	267	757121.0
7 003	10:12:53	268	56391.4
7 003	10:13:05	269	56277.8
7 003	10:13:18 10:13:31 10:13:48 10:14:00 10:14:17 10:14:40 10:14:52 10:15:05 10:15:17	270	56442.8
7 003		271	?56595.2
7 003		272	57271.6
7 003		273	?58257.8
7 003		274	?58052.6
7 003		275	?57722.4
7 003		276	57499.4
7 003		277	?56866.4
7 003		278	?57156.8
7 003		279	?56465.6
7 003	10:15:44	280	?56470.6
7 003	10:15:55	281	56695.6
7 003	10:16:07	282	?57854.0
7 003	10:16:20	283	56860.4

7	003	10:16:33	284	53535.0
7	003	10:16:52	285	55613.6
7	003	10:17:03	236	56371.4
7	003	10:17:16	287	56336.4
7	003	10:17:28	298	56124.0
7	003	10:17:39	289	56157.4
7	003	10:17:58	290	56727.8
7	003	10:18:13	291	757956.6
7	003	10:18:27	292	?57905.4
7	003	10:18:39	293	?56625.2
7	200	10:18:53	294	?56392.2
7	003	10:19:16	295	256917.8
7	003	10:19:28	298	56302.8
7	003	10:19:38	297	56302.5
7	003	10:19:49	298	755816.2
7	003	10:20:01	299	55247.0
			, and a first of	0.0.2.17
7	003	10:20:12	300	255947.2
7	003	10:20:23	30t	254868.2
7	003	10:20:35	302	56399.2
7	003	10:20:48	303	755886.8
8	003	10:23:56	304	756501.0
8	003	10:24:14	305	257019.4
8	003	10:24:29	306	55945.2
8	003	10:24:40	307	55998.0
8	003	10:24:52	308	756155.6
8	003	10:25:04	30 <b>9</b>	758837.8
8	003	10:25:16	310	?55533.0
8	003	10:25:29	311	757215.4
8	003	10:25:45	312	756969.2
		-		
8	002	10:26:31	313	258417.2
8	003	10:26:45	314	?57526.4
8	003	10:27:15	315	757042.2
8	003	10:27:27	316	54303.8
_				56312.4
8	003	10:27:39	317	
8	003	10:27:52	318	?56361.8
8	003	10:28:07	319	5652 <b>6.</b> 0
0	007	10.20.19	320	757223.6
	003	10:28:18		
8	003	10:28:31	321	258041.0
8	003	10:28:46	322	57205.4
8	003	10:28:58	323	757789.2
	003	10:29:11	324	257550.4
		10:29:23	325	756613.6
		10:29:35	326	56573.2
	003			
8	003	10:29:47	327	756992.2
	003	10:29:47	327	
8	003 003	10:29:47 10:29:58	327 328	757439.8
8	003	10:29:47	327	
8	002 003 003	10:29:47 10:29:58 10:30:12	327 328 329	757439.8 56998.6
8	003 003	10:29:47 10:29:58	327 328	757439.8

8 003	10:30:55	332	255767.4
8 003	10:31:12	333	?563 <b>65.4</b>
8 003	10:31:24	334	754345.8
8 003	10:31:36	335	756470.8
8 003	10:31:49	336	55998.2
B 003	10:37:21	337	55956.6
8 003	10:37:35	338	756222.8
8 003	10:37:46	339	256705.4
0 000		•	
8 003	10:37:57	340	?55635.2
8 003	10:38:15	341	756096.0
8 003	10:38:29	342	55554.8
8 003	10:39:08	343	56242.8
8 003	10:39:20	344	256575.4
8 003	10:39:31	345	756154.0
8 003	10:39:42	346	56347.6
8 003	10:39:53	347	756893.0
8 003	10:40:06	348	56261.8
8 003	10:40:17	349	56311.2
<b>6</b> 000	1017011	<u></u>	
8 003	10:40:30	350	?55752.8
3 003	10:40:47	351	56260.6
8 003	10:41:02	352	56300.0
8 003	10:41:47	353	755865.6
8 003	10:42:05	354	56074.0
8 003	10:42:24	355	56681.6
9 003	10:45:59	356	755415.2
9 003	10:46:19	357	756544.4
9 003	10:46:40	358	757403.8
9 003	10:46:52	359	256993.8
7 000	10140102	(J. 12)	
9 003	10:47:05	360	756388.0
9 003	10:47:19	361	56773.8
9 003	10:47:33	362	56827.0
9 003	10:47:51	363	56799.2
9 003	10:48:18	364	756129.0
9 003	10:48:30	365	256969.0
9 003	10:48:48	36 <b>6</b>	56679.8
9 003	10:49:00	367	756295.0
9 003	10:49:14	368	56483.6
9 003	10:49:26	369	56225.4
9 003	10:49:37	370	755816.0
9 003	10:49:50	371	56714.0
9 003	10:50:10	372	?56039.2
9 003	10:50:24	373	56417.4
9 003	10:50:56	374	56612.4
9 003	10:51:08	375	56729.0
9 003	10:51:20	376	56609.2
9 003	10:51:33	377	756161.2
9 003	10:51:44	378	?56083 <b>.8</b>
9 003	10:51:58	379	56337.2

_			70.00	والراز يعق التوافعوالسواء لويسر
9	003	10:52:09	ីមូប	255552.8
9	003	10:52:21	38 t	56185.8
9	003	10:52:32	382	255394.2
-				
9	003	10:52:54	ISI	255464.0
9	003	10:53:15	384	756169.2
9	003	10:53:34	385	258042.8
9	003	10:53:48	୍ଷ ଓଡ଼	255999.4
-	<del></del>			
9	003	10:53:59	387	756620.0
9	003	10:54:11	388	758462.2
9	003	10:54:23	38 <b>9</b>	57143.8
9	2 N 2 N 700	10:54:38	390	757010.6
•	003		· · ·	
9	003	10:54:51	391	?58401 <b>.8</b>
9	003	10:55:03	392	756994.2
9	200	10:55:17	393	257194.4
9	003	10:58:15	394	757110.2
-				
9	003	10:58:28	395	?568 <b>31.8</b>
9	003	10:58:43	396	758376.4
9	003	10:58:56	397	56917.4
9	003	10:59:07	398	755488.2
-		10:59:21	399	56971.2
9	003	10:57:21	724	307/1-2
9	003	10:59:32	400	57059.0
9	003	10:59:43	401	755186.0
9	003	10:59:56	402	257308.4
			403	756112.2
9	003	11:00:10	·	
9	003	11:00:28	404	25a157.6
9	003	11:00:39	405	258563 <b>.6</b>
9	003	11:00:52	406	755582.2
9	003	11:01:04	407	?5662 <b>6.4</b>
-				
9	003	11:01:17	408	58516.6
9	003	11:01:29	409	757114.0
9	003	11:01:41	410	755672.4
9	003	11:02:01	411	757300.0
	<del>-</del>			756844.2
9	003	11:02:16	412	
9	003	11:02:30	413	25 <u>6</u> 662.4
10	003	11:03:41	414	757798.4
10		11:04:04	415	57513.4
	003	11:04:19	416	756792.2
10		11:04:41	417	256600.0
10	003	11:04:55	418	756011.0
10	003	11:05:08	419	56737.6
	<u>-</u>			
10	003	11:05:21	420	257648.2
10				
10	003	11:05:34	421	257359.8
10	003	11:05:48	422	756017.0
10	003	11:05:00	423	55426.6
10	003	11:06:14	424	257671.2
		11:06:25	425	756716.6
10	003			
10	003	11:06:35	426	56621.6
10	003	11:06:48	427	758342.6
10	003	11:07:00	4.28	55395.8

10 003	11:07:11	429	56641.6
10 003	11:07:26	4%Q	257000.0
10 003	11:07:38	431	756431.0
10 003	11:07:49	432	256707.4
	11:08:01	433	257206.0
	11:08:13	434	57265.4
-	11:08:24	435	56819.0
	11:08:36	455	756675.0
	11:08:47	437	56341.8
	11:08:57	438	56485.4
10 003	11:09:09	439	755908.6
10 003		TRIME Z	
10 003	11:09:22	440	256774.2
10 003	11:09:33	441	757287.2
10 003	11:09:46	442	5 ₅ 893.0
10 003	11:09:58	443	57018.6
10 003	11:10:22	444	257112.0
10 003	11:10:37	445	?5 <b>6997.4</b>
10 003	11:10:53	446	756818.0
10 003	11:11:05	447	255819.2
10 003	11:11:18	448	?57005 <b>.8</b>
10 003	11:11:29	449	56119.8
10 003	11:11:41	450	755819.6
10 003	11:11:54	451	58044.0
10 003	11:12:05	452	756016.4
10 003	11:12:16	453	755394.8
10 003	11:12:33	454	56159.2
10 003	11:12:48	455	55 <b>65.6</b>
10 003	11:13:00	456	756429.0
10 003	11:13:13	457	256971.4
10 003	11:13:25	458	56731.6
10 003	11:13:37	459	56613.4
10 003	11:13:48	460	257515.4
10 003	11:14:03	451	256964.8
10 003	11:14:50	462	7569 <b>54</b> .2
10 003	11:15:04	463	56302.2
10 003	11:15:15	464	755871.4
10 003	11:15:42	465	56287.4
10 003	11:15:53	46b	55852.5
10 003	11:16:10	467	756222.8
10 003	11:17:00	458	56503.8
10 003	11:17:12	469	56578.4
10 003	11:17:25	470	56986.4
10 003	11:17:37	471	757352.6
<del>-</del> -	11:17:49	. 472	55659.6
	11:18:22	473	56786.4
	11:19:02	474	56618.4
	11:20:18	475	56204.2
	11:20:30	476	56170.0
10 003		-7 / C	100 to 100 to 100 to 100

10 003	11:20:42	477	58432.6
10 003	11:20:59	478	255800.6
11 003	11:22:19	429	MS&Q5&.8
11 003	11:22:51	480	256079.2
11 003	11:23:04	481	58335.2
11 003	11:25:16	482	55555.0
11 003	11:23:26	483	056046.8
11 003	11:23:38	484	756335.2
11 003	11:23:50	485	55494.4
11 003	11:24:04	486	56750.8
11 003	11:24:23	487	756201.8
11 003	11:24:34	438	256145.6
11 003	11:24:46	489	756372.0
11 003	11:24:58	490	756025.4
11 003	11:25:10	491	56788.8
11 003	11:25:23	492	756828.0
11 003	11:25:36	493	255754.4
11 003	11:25:50	494	256902.6
11 003	11:26:02	495	56578.6

** G-856 MAGNETOMETER DATA **
RAW FIELD Code: HN11

Line Date	Time	Site	Field
11 003	13:29:29	1	<u> 1955072.8</u>
11 003	13:29:49	2	755546.6
11 003	13:30:00	3	058317.8
11 003	13:30:11	4	~5575 <b>4.8</b>
11 003	13:30:23	5	756975.2
11 003	13:30:35	5	05/246.8
11 003	13:30:47	7	257482.0
11 003	13:30:59	ខ	256529.4
11 003	13:31:11	4	57174.4
11 003	13:31:22	10	752220.0
11 003	13:31:38	1.1	<u> 155941.8</u>
11 003	13:31:49	12	756395.6
11 003	13:32:00	1.5	956779.2
11 003	13:32:11	14	755928.2
11 003	13:32:23	15	56576.0
11 003	13:32:35	16	56563.2
11 003	13:32:46	1.7	?55 <b>940.2</b>
11 003	13:32:58	18	256015.2
11 003	13:33:10	19	56086.4
11 003	13:33:27	20	755 <b>599.2</b>
11 003	13:33:54	21	255438.0
11 003	13:34:06	22	256173.4
11 003	13:34:18	23	25550 <b>8.2</b>
11 003	13:34:31	24	?55 <b>665.</b> 0
11 003	13:34:43	25	255862.0
11 003	13:34:55	26	5a505.2
11 003	13:35:06	27	757215.0
11 003	13:35:19	28	57248.0
11 003	13:35:32	29	756910.6
11 003	13:35:46	30	56706.4
11 003	13:43:15	31	757130.4
11 003	13:43:28	32	257647.0
11 003	13:43:40	33	57412.6
11 003	13:43:51	34	258673,2
11 003	13:44:03	35	756296.0
11 003	13:44:16	36	257866.6
11 003	13:44:29	37	257072.6
11 003	13:44:45	38	57140.0
11 003	13:44:55	39	56996.8
			(*Xe*** ) 4 5 4 5 5
11 003	13:45:09	40	256451.9
11 003	13:45:29	41	56677.4
11 003	13:45:40	42	255962.4

4 4 20 20 20 20	A TOP IN ARROWS IN ARROWS		*******
11 003	13:45:52	4.5	~55805.0
11 003	13:46:05	44	755512.5
11 003	13:46:19	45	758214.4
11 003	13:46:33	40	57027.2
11 003	13:46:45	47	?56399 <b>.8</b>
11 003	13:46:57	48	?55967.8
11 003	13:47:14	49	759272.6
		• •	
40 000	4 455 - 5.55	,e.	057184 0
12 003	13:49:08	50	757641.8
12 003	13:49:31	51	258174.0
12 003	13:49:46	52	?57528.2
12 003	13:49:59	53	256799.8
12 003	13:50:11	54	755619.4
12 003	13:50:24	55	256440.6
12 003	13:50:38	56	56637.0
12 003	13:50:57	57	257154.0
12 003	13:51:15	58	56786.6
12 003	13:51:32	59	756187.0
12 003	13:51:57	60	56826.2
12 003	13:52:11	61	57243.6
12 003	13:52:24	62	?57736.2
12 003	13:52:38	63	756686.2
12 003	13:52:49	64	756116.4
12 003	13:53:00	65	56575.2
12 003	13:53:13	66	56662.2
12 003	13:53:32	67	256384.0
12 003	13:53:44	<u> </u>	756958.0
12 003	13:53:56	69	756731.2
12 003	13:54:07	70	757186.0
12 003	13:54:20	71	?5768 <b>9.4</b>
12 003	13:54:33	72	56906.0
12 003	13:54:44	73	756886.6
12' 003	13:54:55	74	?55922.4
12 003	13:55:07	75	758118.4
12 003	13:55:21	76	757446.2
12 003	13:55:32	77	?56364.0
12 003	13:55:44	78	?55688.4
12 003	13:56:21	7 <b>9</b>	755945.4
		47.00	
12 003	13:56:33	80	55979.4
12 003	13:56:46	81	?56356.2
12 003	13:56:58	82	56554.2
12 003	13:57:09	83	755982.2
12 003	13:57:22	84	756544.8
12 003	13:57:34	85	56438.0
12 003	13:57:46	86	56324.2
12 003	13:57:57	87	56712.8
12 003	13:58:08	88	56765.4
12 003	13:58:20	87	257177.6
12 003	13:58:31	90	755966.8
12 000	10.40.41	3.73	: 33700.0

12 003	13:58:43	91	256702.2
12 003	13:58:54	92	756832.4
12 003	13:59:08	93	56249.8
12 003	13:59:24	94	756320.0
12 003	13:59:35	95	757809.4
12 003	13:59:48	96	57204.8
12 003	14:00:02	97	7583 <b>48.8</b>
12 003	14:00:16	98	257811.8
12 003	14:00:28	99	755918.6
12 000	14.00.20	, ,	: 3371010
12 003	14:00:43	100	756356.0
12 003	14:00:57	101	56453.8
12 003	14:01:09	102	55638.0
12 003	14:01:21	103	756995.8
12 003	14:01:33	104	56719.6
12 003	14:01:44	105	?5660 <b>4.</b> 2
12 003	14:01:55	106	56351.0
12 003	14:02:07	107	56301.0
12 003	14:02:18	108	56361.2
12 003	14:02:30	109	56582.6
10 000	1.24004.40	4.4.25	E/E07 0
12 003	14:02:42	110	56527.2
12 - 003	14:02:54	111	56504.0
12 003	14:03:05	112	56462.4
12 003	14:03:16	113	56437.2
12 003	14:03:27	114	56378.2
12 003	14:03:39	115	56466.6
12 003	14:03:50	116	56591.2
12 003	14:04:01	117	553 <b>91.6</b>
1.2 003	14:04:14	118	565 <b>84.6</b>
12 003	14:04:26	119	56477.2
12 003	14:04:47	120	56094.6
13 003	14:08:30	121	56463.2
13 003	14:08:46	122	56404.8
13 003	14:08:58	123	56386.4
13 003	14:09:16	124	56405.2
13 003	14:09:33	125	56413.6
13 003	14:09:48	126	56415.0
13 003	14:09:59	127	756388.0
13 003	14:10:13	128	56468.4
13 003	14:10:24	129	56469.6
13 003	14:10:36	130	56409.6
13 003	14:10:47	131	256417.2
13 003	14:10:58	132	55418.8
13 003	14:11:10	133	56471.2
13 003	14:11:21	134	56574.0
13 003	14:11:51	135	756310.8
13 003	14:12:09	136	756412.8
			56521.2
13 003	14:12:22	137	
13 003	14:12:44	138	56317.8
13 003	14:12:56	139	755195.8
ro voc	Taller Mar	1, 4.3.7	: 461/4.0

13 003	14:13:10	140	255929.8
13 003	14:13:22	141	?55944.6
13 003	14:13:34	142	256255.6
	14:13:46	143	55541.8
13 003			756259.6
13 003	14:13:59	144	
13 003	14:14:12	145	56441.4
13 003	14:15:12	146	756317.0
13 003	14:15:24	147	57619.0
13 003	14:15:35	148	756910.0
13 003	14:15:46	149	56842.6
10 000	1 71 101 10	• • •	
47 AAZ	14:16:01	150	754538.2
13 003			56552.2
13 003	14:16:15	151	
13 003	14:16:28	152	256378.6
13 003	14:16:42	153	756509.0
13 003	14:16:54	154	56549.2
13 003	14:17:09	155	7563 <b>82.4</b>
13 003	14:17:21	156	756221.0
13 003	14:17:36	157	756046.6
13 003	14:17:48	158	755842.4
	14:18:01	159	255812.6
13 003	14:18:01	137	:33014.0
	4 7 4 63 4 4 77	420	56158.4
13 003	14:18:13	160	
13 003	14:18:27	161	56220.0
13 003	14:18:38	162	756409.4
13 003	14:18:52	163	257375.8
13 003	14:19:04	164	5a9 <b>52.6</b>
13 003	14:19:15	165	756177.0
13 003	14:19:27	166	56284.4
13 003	14:19:40	167	756010.0
13 003	14:19:51	168	756533.6
	14:20:03	169	756257.2
13 003	14:20:00	107	: 4024/*4
13 003	14:20:16	170	756843.6
	14:20:28	171	758722.8
13 003			
13 003	14:20:43	172	756950.4
13 003	14:20:55	173	256173.6
13 003	14:21:06	174	756835.2
13 003	14:21:26	175	57198.2
13 003	14:21:50	176	?57493.0
13 003	14:22:04	177	?56803 <b>.6</b>
13 003	14:22:18	178	756408.6
13 003	14:22:31	179	756468.2
15 003	170220	4 7 7	
13 003	14:22:44	180	756480.0
13 003	14:22:57	181	757840.8
	14:23:12	182	758327.8
13 003	14:23:12	183	56902.8
13 003			756875.4
13 003	14:23:54	. 184	
13 003	14:24:19	185	?56741.B
13 003	14:24:45	186	756389.6
13 003	14:25:01	187	756382.6

13 003	14:25:32	188	56570.0
•		189	758512.2
13 003	14:25:56	100	شه به بشریل فی (۱۹۵۵) :
43 003	14:26:12	190	58559.4
14 003	14:29:09	191	55473.2
14 003	14:29:26	192	56348.6
	14:29:40	193	55360.8
14 003		194	756700.4
14 003	14:29:52		
14 003	14:30:09	195	257095.8
14 003	14:32:17	196	757384.0
14 003	14:32:39	197	57088.0
14 003	14:32:54	198	257359.0
	14:33:08	199	257004.4
14 003	14.00.00	X / /	. 😅 / 😅 / 🕶 /
		and an are	05/00/ 0
14 003	14:33:42	200	756284.8
14 003	14:34:07	201	56109.6
14 003	14:34:20	202	56494.2
14 003	14:34:34	203	56440.2
14 003	14:34:46	204	56497.0
	14:35:00	205	54573.8
14 003	<b>-</b>		
14 003	14:35:20	206	757280.6
14 003	14:35:36	207	257813.0
14 003	14:35:49	208	?56 <b>459.6</b>
14 003	14:36:08	209	?573 <b>6</b> 3.0
14 003	14:36:28	210	757498.6
=		211	756045.0
14 003	14:37:08		?553 <b>59.8</b>
14 003	14:45:24	212	
14 003	14:45:43	213	?5593 <b>9.4</b>
14 003	14:45:55	214	758633.2
14 003	14:46:07	215	755981.4
14 003	14:46:35	216	756033.4
	14:46:46	217	?56685.0
14 003		218	756180.4
14 003	14:46:59		756474.2
14 003	14:47:11	219	(DB474)2
14 003	14:47:23	220	257780.2
14 003	14:47:37	221	57332.8
14 003	14:47:49	222	255978.5
14 003	14:48:01	223	56269.4
	14:48:28	224	56185.0
14 003			758510.8
14 003	14:48:41	225	
14 003	14:49:53	226	56331.8
14 003	14:49:03	227	56593.0
14 003	14:49:14	228	58843 <b>.6</b>
14 003	14:49:25	229	56858.8
1 1 000			
14 003	14:49:37	230	?57049.0
		231	56988.0
14 003	14:49:48		56854.2
14 003	14:50:02	232	
14 003	14:50:14	233	56278.2
14 003	14:50:28	234	755987.6
14 003	14:50:40	235	?55 <b>557.4</b>
_ ,			

14 003	14:51:11	276	755889.2
14 003	14:51:28	237	56133.2
14 003	14:51:40	238	56395.2
14 003	14:51:52	239	5.550.4
14 003	14:51:52	207	55555
14 003	14:52:03	240	56460.8
14 003	14:52:15	241	56442.4
	. 14:52:27	242	56491.0
14 003			
14 003	14:52:40	243	56607.2
14 003	14:52:53	244	58818.0
14 003	14:53:05	245	58524.0
14 003	14:53:20	246	58503.4
14 003	14:53:32	247	56486.2
14 003	14:53:43	248	55461.5
14 003	14:53:56	249	56565.0
• • • • •	_ ,		
1.4 002	10 4 65 0 4 0 77	250	mamma o
14 003	14:54:07		56534.2
14 003	14:54:19	251	56510.6
14 003	14:54:32	252	56537.8
•			<del></del>
14 003	14:54:44	253	56537.0
14 003	14:54:58	254	56529.0
14 003	14:55:12	255	56534.6
14 003	14:55:34	256	56537.6
14 003	14:55:48	257	56543.4
14 003	14:56:00	258	54515.8
•			
14 003	14:56:11	259	56498.2
14 003	14:56:25	260	56610.4
15 003	14:57:54	261	756415.2
	14:57:54 14:58:07	261 262	?5641 <b>5.2</b> ?56390 <b>.6</b>
15 003	14:57:54	261	756415.2
15 003 15 003 15 003	14:57:54 14:58:07 14:58:20	261 262 263	?56415.2 ?56390.6 ?56455.8
15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33	261 262 263 264	756415.2 756390.6 756455.8 756531.2
15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20	261 262 263	756415.2 756390.6 756455.8 756531.2 756466.2
15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33	261 262 263 264	756415.2 756390.6 756455.8 756531.2
15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59	261 262 263 264 265 266	756415.2 756390.6 756455.8 756531.2 756466.2 56682.4
15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59	261 262 263 264 265 266 267	?56415.2 ?56390.6 ?56455.8 ?56531.2 ?56466.2 56682.4 56528.0
15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16	261 262 263 264 265 266 267 268	756415.2 756390.6 756455.8 756531.2 756466.2 56682.4 56528.0 56512.4
15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59	261 262 263 264 265 266 267	?56415.2 ?56390.6 ?56455.8 ?56531.2 ?56466.2 56682.4 56528.0
15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16	261 262 263 264 265 266 267 268	756415.2 756390.6 756455.8 756531.2 756466.2 56682.4 56528.0 56512.4
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:58	261 262 263 264 265 266 267 268 269	756415.2 756390.6 756455.8 756531.2 756466.2 56682.4 56528.0 56512.4 56477.6
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:58	261 262 263 264 265 266 267 268 269	756415.2 756390.6 756455.8 756531.2 756466.2 56682.4 56528.0 56512.4 56477.6
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:58	261 262 263 264 265 266 267 268 269 270 271	756415.2 756390.6 756455.8 756531.2 756466.2 56682.4 56528.0 56512.4 56477.6
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:58	261 262 263 264 265 266 267 268 269	756415.2 756390.6 756455.8 756531.2 756466.2 56682.4 56528.0 56512.4 56477.6
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:58 15:00:09 15:00:23 15:00:36	261 262 263 264 265 266 267 268 269 270 271 272	756415.2 756390.6 756455.8 756531.2 756466.2 56682.4 56528.0 56512.4 56477.6 56480.8 56483.0 56481.6
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:58 15:00:09 15:00:23 15:00:36	261 262 263 264 265 266 267 268 269 270 271 272 273	756415.2 756390.6 756455.8 756531.2 756466.2 56528.0 56512.4 56477.6 56483.0 56483.0 56495.6
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:58 15:00:09 15:00:23 15:00:36 15:00:49 15:01:00	261 262 263 264 265 266 267 268 269 270 271 272 273 274	756415.2 756390.6 756455.8 756531.2 756466.2 56528.0 56512.4 56477.6 56483.0 56483.0 56481.6 56495.6 56466.0
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:58 15:00:09 15:00:23 15:00:36	261 262 263 264 265 266 267 268 269 270 271 272 273	756415.2 756390.6 756455.8 756531.2 756466.2 56528.0 56512.4 56477.6 56483.0 56483.0 56495.6
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:58 15:00:09 15:00:23 15:00:36 15:00:49 15:01:00 15:01:17	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275	756415.2 756390.6 756455.8 756531.2 756466.2 56482.4 56528.0 56512.4 56477.6 56483.0 56483.0 56481.6 56495.6 56470.6
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:58  15:00:09 15:00:23 15:00:36 15:00:49 15:01:00 15:01:17 15:01:27	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276	756415.2 756390.6 756455.8 756531.2 756466.2 56482.4 56528.0 56512.4 56477.6 56480.8 56483.0 56481.6 56495.6 56466.0 56470.6 756449.4
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:58 15:00:09 15:00:23 15:00:36 15:00:49 15:01:00 15:01:17	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277	756415.2 756390.6 756455.8 756531.2 756466.2 56482.4 56528.0 56512.4 56477.6 56483.0 56483.0 56495.6 56470.6 756449.4 56452.2
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:58  15:00:09 15:00:23 15:00:36 15:00:49 15:01:00 15:01:17 15:01:27	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276	756415.2 756390.6 756455.8 756531.2 756466.2 56482.4 56528.0 56512.4 56477.6 56480.8 56483.0 56481.6 56495.6 56466.0 56470.6 756449.4
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:46 14:59:58  15:00:09 15:00:23 15:00:36 15:01:17 15:01:27 15:01:40 15:01:54	261 262 263 264 265 266 267 268 269 271 272 273 274 275 277 278	756415.2 756390.6 756455.8 756531.2 756466.2 56482.4 56528.0 56512.4 56477.6 56483.0 56483.0 56481.6 56495.6 56470.6 756449.4 56452.2 56435.0
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:58  15:00:09 15:00:23 15:00:36 15:00:49 15:01:00 15:01:17 15:01:27 15:01:40	261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277	756415.2 756390.6 756455.8 756531.2 756466.2 56482.4 56528.0 56512.4 56477.6 56483.0 56483.0 56495.6 56470.6 756449.4 56452.2
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:16 14:59:46 14:59:58  15:00:09 15:00:23 15:00:36 15:00:49 15:01:17 15:01:27 15:01:40 15:01:54 15:02:05	261 262 263 264 265 267 268 269 270 271 272 274 275 277 278 279	756415.2 756390.6 756455.8 756531.2 756466.2 56482.4 56528.0 56512.4 56477.6 56483.0 56483.0 56481.6 56495.6 56466.0 56470.6 756449.4 56452.2 56435.0 56421.6
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:16 14:59:46 14:59:58  15:00:09 15:00:23 15:00:36 15:00:49 15:01:17 15:01:27 15:01:54 15:02:05	261 262 263 264 265 267 268 269 270 271 272 273 274 275 277 278 279 280	756415.2 756390.6 756455.8 756531.2 756466.2 56482.4 56528.0 56512.4 56477.6 56480.8 56483.0 56481.6 56495.6 56470.6 756449.4 56452.2 56435.0 56421.6
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:16 14:59:46 14:59:58  15:00:09 15:00:23 15:00:36 15:00:49 15:01:17 15:01:27 15:01:40 15:01:54 15:02:05	261 262 263 264 265 267 268 269 270 271 272 274 275 277 278 279	756415.2 756390.6 756455.8 756531.2 756466.2 56482.4 56528.0 56512.4 56477.6 56483.0 56483.0 56481.6 56495.6 56466.0 56470.6 756449.4 56452.2 56435.0 56421.6
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:46 14:59:46 14:59:58  15:00:09 15:00:23 15:00:36 15:00:49 15:01:00 15:01:17 15:01:27 15:01:40 15:01:54 15:02:05	261 262 263 264 265 265 267 268 269 271 273 274 275 277 278 279 280 281	756415.2 756390.6 756455.8 756531.2 756466.2 56482.4 56528.0 56512.4 56477.6 56480.8 56483.0 56481.6 56495.6 56470.6 756470.6 756479.0 56439.0
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	14:57:54 14:58:07 14:58:20 14:58:33 14:58:45 14:58:59 14:59:16 14:59:16 14:59:46 14:59:58  15:00:09 15:00:23 15:00:36 15:00:49 15:01:17 15:01:27 15:01:54 15:02:05	261 262 263 264 265 267 268 269 270 271 272 273 274 275 277 278 279 280	756415.2 756390.6 756455.8 756531.2 756466.2 56482.4 56528.0 56512.4 56477.6 56480.8 56483.0 56481.6 56495.6 56470.6 756449.4 56452.2 56435.0 56421.6

15 003 15 003 15 003 15 003 15 003 15 003	15:03:12 15:03:23 15:03:34 15:03:48 15:04:31 15:04:53	284 285 286 287 289 289	58408.4 58358.2 58241.4 58035.2 755838.4 755499.2
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	15:05:09 15:05:26 15:05:40 15:05:52 15:06:03 15:06:14 15:06:25 15:06:37 15:10:45 15:11:06	290 291 292 293 294 295 296 297 298 299	54618.0 57335.6 57004.0 56857.0 ?56721.0 ?56468.2 ?56266.2 ?56583.6 ?56405.6 56612.2
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	15:11:18 15:11:30 15:11:42 15:11:54 15:12:06 15:12:18 15:12:31 15:12:45 15:16:29	300 301 302 303 304 305 306 307 308 309	?56864.2 ?55657.0 ?56799.0 ?56779.4 ?56968.0 ?56552.4 ?56186.2 56455.8 ?56104.2
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	15:16:54 15:17:06 15:17:21 15:17:37 15:17:51 15:18:03 15:18:19 15:18:34 15:19:49	310 311 312 313 314 315 316 317 318 319	755696.0 757754.2 56704.4 755959.4 56752.4 56457.0 756187.0 756342.6 756191.6 56820.8
15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003 15 003	15: 20: 21 15: 20: 33 15: 20: 45 15: 20: 59 15: 21: 16 15: 21: 33 15: 21: 55 15: 22: 09 15: 23: 05 15: 23: 24	320 321 322 323 324 325 325 326 327 328 329	56409.0 756076.6 755806.4 56564.0 756219.2 757148.0 56858.0 756478.0 756535.0 56507.0
15 003 15 003	15:23:42 15:23:57	330 331	75434 <b>5.</b> 0 56384 <b>.</b> 4

15 003 15 003 15 003 16 003 16 003 16 003 16 003	15:24:11 15:24:27 15:24:54 15:27:19 15:27:37 15:27:57 15:28:13 15:28:34	3.32 3.33 3.34 3.35 336 337 338 339	756015.2 755899.6 757485.8 755778.2 56266.6 756408.2 757094.0 757557.0
16 003	15:28:49	340	?56273.4
16 003	15:29:06	341	56415.0
16 003	15:29:28	342	56379.8
16 003	15:29:45	343	56466.8
16 003	15:29:59	344	56484.6
16 003	15:30:12	345	756146.4
16 003	15:30:28	346	756798.2
16 003	15:30:54	347	756413.4
16 003	15:31:09	348	756539.4
16 003	15:31:23	349	55999.4
16 003 16 003 16 003 16 003 16 003 16 003 16 003	15:31:38 15:31:55 15:34:03 15:34:17 15:34:30 15:34:45 15:34:57	350 351 352 353 354 355 356 357	?55911.8 ?56359.8 56245.0 56285.2 ?56700.8 ?57440.8 ?57024.8 56425.6
16 003	15:35:24	358	?56801.0
16 003	15:35:38	359	?5602 <b>5.</b> 0
16 003	15:35:51	360	564 <b>9</b> 3.8
16 003 16 003 16 003 16 003 16 003	15:36:05 15:36:19 15:36:31 15:36:44 15:36:56 15:37:07	361 363 364 365 366	56240.4 56335.6 ?56722.4 ?56279.8 56557.8 ?56773.8
16 003	15:37:19	367	56557.2
16 003	15:37:31	368	056877.4
16 003	15:37:43	3 <b>69</b>	056227.4
16 003 16 003 16 003 16 003 16 003 16 003 16 003 16 003 16 003	15:37:56 15:38:09 15:38:21 15:38:35 15:38:47 15:38:58 15:39:11 15:39:22 15:39:53	370 371 372 373 374 375 376 377 378 379	756468.4 56360.6 55705.6 757329.8 56626.8 756599.0 56193.0 56140.8 56250.4 56284.2

15 003	15:40:19	380	56369.4
16 003	15:40:33	381	56478.4
16 003	15:40:47	362	256756.4
<b>16</b> 003	15:40:59	383	56337.0
16 003	15:41:10	୍ଷ 84	56495.2
16 003	15:41:22	385	56527.4
	15:41:33	386	56555.6
16 003			
16 003	15:41:44	387	5 <u>6</u> 503.0
		388	56494.4
16 003	15:41:57		
16 003	15:42:08	3 <b>8</b> 9	56529.4
20 000			
15 003	15:42:22	390	56548.4
		391	54557.4
16 003	15:42:45		
16 003	15:42:58	392	56541.0
			56559.4
16 003	15:43:19	393	
16 003	15:43:30	394	56561.2
			56554.6
16 003	15:43:43	395	
16 003	15:43:56	396	56561.4
			56567.8
16 003	15:44:08	397	
16 003	15:44:20	398	56570.8
			56575.8
16 003	15:44:33	399	262/3.6
	457 - 44 - 41	4.00.00	E/EOA A
16 003	15:44:46	400	56584.4
16 003	15:45:37	401	56614.2
			55582.8
16 003	15:46:28	402	
16 003	15:46:46	403	756742.4
			756911.2
16 003	15:47:01	404	
16 003	15:47:19	405	55731.0
15 003	15:47:32	405	?5 <b>568<b>6. 6</b></b>
16 003	15:47:53	407	56289.0
16 003	15:48:09	408	5640 <b>8.4</b>
17 003	15:50:06	409	56449.8
17 000	10104155		
17 003	15:50:22	410	756280.8
			756033.2
17 003	15:50:37	411	
17 003	15:51:00	412	756184.6
-			256157.8
17 003	15:51:17	413	
17 003	15:51:32	414	56697.6
		415	56840.0
17 003	15:51:45		
17 003	15:51:58	416	56678.6
	15:52:14	417	56535.0
17 003			
17 003	15:52:44	418	56424.0
		419	56541.0
17 003	15:52:57	417	20041.0
17 007	15:53:12	420	55542.6
17 003			
17 003	15:53:24	421	56513.0
	15:53:45	422	56467.0
17 003	15:53:58	423	56457.0
17 003	15:54:09	424	56462.0
17 003	15:54:21	425	53470.6
17 003	15:54:33	426	55483.8
17 003	15:54:45	427	56479.8
17 003	15:55:19	428	55480.6
11 000	in a mula i 7	· F	

17 003	15:55:31	429	E ( 007 - 4
17 003	10.00.01	サムフ	56483.6
17 003	15:55:43	430	56483.4
17 003	15:55:54	431	56481.0
17 003	15:56:04	432	56477.2
17 003	15:56:21	433	56471.2
17 003	15:56:32	434	56463.2
17 003	15:56:43	435	56437.4
17 003	15:56:56	435	56459.6
17 003	15:57:09	437	56477.2
17 003	15:57:20	438	56472.8
17 003	15:57:31	439	56423.2
			00 (1.5.2
17 003	15:57:42	440	56370.4
17 003	15:57:53	441	56301.6
17 003	15:58:04	442	56123.2
17 003	15:58:14	443	756165.2
17 003	15:58:26	444	756129.4
17 003	15:58:38	445	756297.8
17 003	15:59:09	446	56333.6
17 003	15:59:22	447	56676.6
17 003	15:59:53	448	56423.4
17 003	16:00:04	449	755465.6
17 003	16:00:17	450	756649.6
17 003	16:00:31	451	756963.4
17 003	15:00:43	452	57042.0
17 003	16:00:54	453	56610.4
17 003	16:01:05	454	758287.8
17 003	15:01:17	455	756092.8
17 003	16:01:35	456	?558 <b>95.</b> 0
17 003	16:01:52	457	756985.6
17 003	16:02:09	458	?5773 <b>8.</b> 2
17 003	16:02:30	459	756140.2
17 003	16:02:43	460	755956.6
17 003	16:02:57	461	756629.4
17 003	16:03:09	462	56788.6
17 003	16:03:22	463	756144.6
17 003	16:03:36	464	756188.2
17 003	16:03:49	465	56629.4
17 003	16:04:10	466	756130.6
17 003	16:04:28	467	755263.4
		· ·	

** G-856 MAGNETOMETER DATA **
RAW FIELD Code: HN12

Line Date	Time	Site	Field
17 004	09:06:14	1	255299.2
17 004	09:06:38	2	756284.0
17 004	09:07:23	3	756303.6
17 004	09:07:40	4	056392.8
17 004	09:07:59	5	258174.6
17 004	09:08:14	5	57829.6
17 004	09:08:29	7	257453.0
17 004	09:03:42	8	256767.2
17 004	09:08:56	9	56811.6
2			
17 004	09:09:08	10	756255.2
17 004	09:09:33	11	755961.0
17 004	09:09:53	12	255461.6
17 004	09:10:06	13	256604.2
17 004	09:10:18	14	56901.6
17 004	09:10:30	15	756544.0
17 004	09:10:49	16	256461.4
17 004	09:11:01	17	25 <b>6449.6</b>
17 004	09:11:24	18	756583.8
17 004	09:11:38	19	756491.2
18 004	09:14:28	20	55425.6
18 004	09:14:56	21	756395.0
18 004	09:15:12	22	56783.2
18 004	09:15:25	23	756947.4
18 004	09:15:38	24	757915.6
18 004	09:15:58	25	758248.4
18 004	09:16:12	26	256124.2
18 004	09:17:16	27	756843.4
18 004	09:17:32	28	756497.4
18 004	09:17:46	29	756088.6
18 004	09:18:04	30	56531.2
18 004	09:18:19	31	56581.2
18 004	09:18:35	32	756583.8
18 004	09:18:51	33	757200.4
18 004	09:19:07	34	757657.8
18 004	09:19:22	35	756005.8
18 004	09:19:34	<b>ౌ</b> 6	756842.6
18 004	09:20:24	37	25753 <b>5.6</b>
18 004	09:20:42	38	?57028 <b>.8</b>
18 004	09:20:56	3 <b>9</b>	255477.0
18 004	09:21:11	40	754588.8
18 004	09:21:26	41	255844.6

18 004	09:21:40	42	56079.8
18 004	09:21:53	43	550 <b>66.</b> 0
18 004	09:22:04	44	256610.4
18 004	09:22:16	45	56340.0
18 004	09:22:29	46	55925.4
18 004	09:23:00	47	55985.8
18 004	09:23:12	48	255850.4
18 004	09:23:28	49	56391.4
18 004	09:23:40	50	55685.8
18 004	09:23:54	51	257140.0
18 004	09:24:10	52	755197.8
18 004	09:24:22	53	257094.0
18 004	09:24:36	54	758725.8
18 004	09:24:47	55	757491.2
18 004	09:24:59	56	56437.8
18 004	09:30:06	57	56389.6
18 004	09:30:18	58	56159.2
18 004	09:30:30	59	56268.4
18 004	09:30:41	60	56378.8
18 004	09:30:55	<b>ģ</b> 1	56417.0
18 004	09:31:07	62	55448.5
18 004	09:31:19	63	56459.4
18 004	09:31:32	64	56472.8
18 004	09:31:46	65	56481.0
18 004	09:32:03	55	56491.0
18 004	09:32:15	67	564 <b>95.8</b>
18 004	09:32:32	68	56506.2
18 004	09:32:44	69	56508.0
18 004	09:32:55	70	56506.4
18 004	09:33:08	71	56509.8
18 004	09:33:24	72	56519.8
18 004	09:33:36	73	56528.4
18 004	09:33:49	74	56552.2
18 004	09:34:01	75	56638.8
18 004	09:34:22	76	56491.0
18 004	09:35:15	77	56495.2
18 004	09:35:28	78	56590.6
18 004	09:35:41	7 <b>9</b>	56641.2
18 004	09:35:51	80	56682.0
18 004	09:36:03	81	56517.0
18 004	09:36:15	82	56346.8
18 004	09:36:27	83	56433.6
18 004	09:36:40	84	56370.4
18 004	09:36:51	85	56493.8
18 004	09:37:10	86	56551.4
18 004	09:37:23	87	56560.6
18 004	09:37:50	88	56586.0
18 004	0 <b>9:38:</b> 03	89	56590.4

18 004	09:38:18	90	56598.4
	09:38:32	91	
18 004			55589.4
18 004	09:38:46	92	56918.6
18 004	09:39:01	93	?56990.2
18 004	09:39:16	94	56381.4
18 004	09:39:30	95	55493.4
19 004	09:41:15	96	56586.8
19 004	09:41:37	97	756505.0
19 004	09:41:58	98	?563 <b>76.4</b>
19 004	09:42:17	99	756438.0
- /		•	
19 004	09:42:39	100	756177.4
19 004	09:43:13	4.04	258575.6
19 004	09:43:36	102	255163.0
19 004	09:43:52	103	756941.6
19 004	09:44:11	104	?56620.2
19 004	09:44:23	105	?56497.2
19 004	09:44:38	106	756466.4
19 004	09:45:28	107	756429.6
19 004	09:46:37	108	756400.4
19 004	09:46:49	109	756310.8
17 004	07170177	1.4.	.0001010
19 004	09:47:00	110	?56063.2
19 004	09:47:12	111	756057.0
19 004	09:47:27	112	756365.2
19 004	09:47:40	113	56971.6
19 004	09:47:53	114	257142.6
19 004	09:48:05	115	757128.4
19 004	09:48:20	116	256704.6
19 004	09:48:47	117	756488.8
19 004	09:49:04	118	256443.8
19 004	09:49:18	119	?55447.B
17 004	07.47.10	117	: 33447.0
19 004	09:49:30	120	?56438 <b>.</b> 0
19 004	09:49:43	121	756413.4
19 004	09:49:59	122	756486.4
19 004	09:50:27	123	756299.2
19 004	09:50:47	124	756336.8
19 004	09:51:36	125	756451.4
19 004	09:51:50	126	756426.6
19 004	09:52:10	127	?5 <b>6428.4</b>
19 004	09:52:26	123	756414.8
19 004	09:52:42	129	756396.0
17 007	V/102172	1.27	
19 004	09:52:59	130	756414.6
19 004	09:53:23	131	756362.4
19 004	09:53:38	132	56791.5
19 004	09:53:48	133	756119.8
19 004	09:54:00	134	?56175.0
19 004	09:54:15	135	756160.8
19 004	09:54:31	136	256251.4
19 004	09:54:55	137	?56292 <b>.6</b>
19 004	09:55:07	138	256077.2

19 004	09:55:18	159	~55782.6
19 004	09:55:32	140	?5 <u>5</u> 090.0
19 004	09:55:50	141	756342.8
19 004	09:56:03	142	756087.2
19 004	09:56:15	143	756151.6
19 004	09:56:31	144	756075.2
19 004	09:55:43	1.45	56603.6
19 004	09:57:02	146	755804.2
19 004	09:57:26	147	257099.8
19 004	09:57:39	148	?56356.4
19 004	09:57:52	149	255679.4
19 004	09:58:06	150	755853.8
19 004	09:58:22	151	7564 <b>9</b> 3.0
19 004	09:58:35	152	756285.2
19 004	09:58:48	153	57320.0
19 004	09:59:00	154	756881.0
19 004	09:59:16	155	56709.2
19 004	09:59:33	156	56685.8
19 004	10:04:36	157	755931.6
19 004	10:04:48	158	57057.6
19 004	10:05:00	159	756699.4
	10100000		. LOCALOS S S & V
19 004	10:05:13	160	755843.6
19 004	10:05:27	161	755723.0
19 004	10:05:41	162	7566 <b>68.</b> 2
19 004	10:05:55	163	756489.2
19 004	10:06:09	164	755933.0
19 004	10:05:26	165	755532.6
19 004	10:05:44	188	256078.8
19 004	10:07:17	167	757337.0
19 004	10:07:31	168	56613.6
19 004	10:07:42	169	755216.2
17 OOT	100070742	107	
19 004	10:07:55	170	755423.6
19 004	10:08:11	171	757375.6
19 004	10:08:25	172	757715.8
19 004	10:08:42	173	757052.0
19 004	10:08:57	174	?56450.0
19 004	10:09:14	175	756443.2
19 004	10:09:36	176	756229.6
19 004	10:10:16	177	755588.8
19 004	10:10:40	178	257175.4
19 004	10:10:57	179	57595.6
17 004	10.10.07	1,,	W/ W/ WIO
19 004	10:11:10	180	756705.2
19 004	10:11:40	181	756503.4
19 004	10:11:53	182	756438.8
19 004	10:12:05	· 183	756429.6
20 004	10:18:46	184	757898.8
20 004	10:19:12	185	57126.4
20 004	10:19:41	186	255745.4
24 VV*	1 M - 1 / - 7 1	100	: 30/~73.4

20 004	10:19:59	187	55837.8
20 004	10:20:14	188	56152.0
20 004	10:20:35	189	56582.2
20 004	10:20:58	190	758426.2
		=	
20 004	10:21:41	191	75764 <b>6.</b> 2
20 004	10:21:55	192	756832.8
20 004	10:22:09	193	≎55487 <b>.2</b>
			55518.8
20 004	10:27:23	194	
20 004	10:22:37	195	255748.0
20 004	10:22:53	196	55080.8
20 004	10:23:13	197	256661.0
		<del>-</del> ·	
20 004	10:23:51	198	56497.4
20 004	10:24:11	199	257100.0
20 004	10:24:24	200	756952.8
20 004	10:47:24	201	56428.2
20 004	10:47:41	202	56397.6
20 004	10:47:54	203	756419.2
20 004	10:48:07	204	56301.4
20 004	10:48:21	205	56380.8
20 004	10:48:36	206	757019.2
20 004	10:48:53	207	756444.8
20 004	10:49:18	208	757326.6
		209	56583.8
20 004	10:49:31	207	20000-0
20 004	10:49:44	210	55603.4
20 004	10:49:58	211	756951.4
20 004	10:50:11	212	257298.8
20 004	10:50:24	213	756125.0
20 004	10:50:43	214	?56 <b>591.6</b>
20 004	10:51:07	215	756382.0
20 004	10:51:21	216	257043.8
		-	
20 004	10:51:37	217	56328.8
20 004	10:52:10	218	56736.0
20 004	10:52:24	219	56360.0
20 004	10:52:36	220	56022.8
·			
20 004	10:52:48	221	56100.2
20 004	10:53:00	222	56269.8
20 004	10:53:13	223	256611.6
20 004	10:53:24	224	56479.6
		225	
20 004	10:53:36		56417.2
20 004	10:53:49	226	56526.2
20 004	10:54:02	227	56676.8
20 004	10:54:17	228	755890.8
		225	755845.2
20 004	10:54:30	<u>ت</u> ت	: 440444 &
20 004	10:54:43	230	56285.2
20 004	10:54:56	231	56314.6
20 004	10:55:09	232	56329.0
20 004 -	10:56:07	233	56513.0
20 004	10:56:22	234	56508.4

20 004	10:56:35	235	58580.2
20 004	10:56:49	236	256748.0
20 004	10:57:01	237	56517.8
20 004	10:57:13	238	256768.2
20 004	10:57:27	239	256900.4
20 004	10:57:39	240	55444.6
20 004	10:57:51	241	56492.0
20 004	10:58:03	242	56531.2
20 004	10:58:17	243	56605.6
20 004	10:58:29	244	256843.0
20 004	10:58:42	245	55513.8
20 004	10:58:57	246	56241.2
20 004	10:59:12	247	256959.8
20 004	10:59:36	248	757413.8
20 004	10:59:48	249	755908.0
20 004	11:00:01	250	55921.8
20 004	11:00:14	251	754552.8
20 004	11:00:29	252	756602.4
20 004	11:00:41	253	?55530.4
20 004	11:00:53	254	56748.2
20 004	11:01:06	255	55471.4
20 004	11:01:17	256	56462.0
20 004	11:01:29	257	56511.0
20 004	11:01:39	258	56537.4
20 004	11:01:50	259	56547.6
20 004	11:02:06	260	56543.8
20 004	11:02:21	261	5&53 <b>5.</b> 8
20 004	11:02:32	262	756727.8
20 004	11:02:45	263	756520.4
20 004	11:03:00	264	56285.8
20 004	11:03:14	265	56561.4
20 004	11:03:36	266	565 <b>52.</b> 0
21 004	11:04:37	267	56495.8
21 004	11:04:49	268	58547.6
21 004	11:05:14	269	?56284.4
		, m. 100 m	m 1 a 2 a 3
21 004	11:05:27	270	55452.0
21 004	11:05:38	271	56486.2
21 004	11:05:50	272	56481.8
21 004	11:06:01	273	55484.6
21 004	11:06:13	274	56479.4
21 004	11:06:26	275	56449.6
21 004	11:06:39	276	56389.0
21 004	11:06:55	277	56321.0
21 004	11:07:06	278	754002.8
21 004	11:07:18	279	756037.4
<b>71</b> 004	11:07:30	280	258617.6
21 004	11:07:30	281	57588.8
21 004 21 004	11:07:43	282	57153.4
21 004	11.07.08	202	U/10014

21	ψ0 <b>4</b>	11:08:09	28%	55785.4
21	004	11:08:26	284	55436.0
21	004	11:08:40	285	56439.0
21	004	11:08:55	286	55424.8
21	004	11:09:24	287	
				75820 <b>8.6</b>
21	004	11:09:41	288	56393.2
21	004	11:09:57	289	056676.6
	~~,	2.20.27.027		
21	004	11:10:09	290	56881.6
21	004	11:10:21	291	256770.4
21	004	11:11:02	292	756026.2
21	004	11:11:49	293	56406.2
21	004	11:12:04	294	56278.6
21	004	11:12:19	295	56205.4
21	004	11:12:35	296	56459.4
21	004	11:13:08	297	54804.2
21	004-	11:13:21	298	756561.8
21	004	11:13:33	299	56709.6
21	004	11:13:44	300	56603.6
21	004	11:13:59	301	54531.8
21	004	11:14:12	302	56426.2
21	004	11:14:24	303	56175.6
21	004	11:14:36	304	755710.8
21	004	11:14:50	305	756435.6
21	004	11:15:05	306	?56753.8
21	004	11:15:35	307	56846.8
21	004	11:15:51	308	756275.2
21	004	11:15:02	309	756311.0
21	004	11:16:15	310	55385.8
21	004	11:16:33	311	756100.2
21	004	11:16:46	312	756049.9
21	004	11:16:59	313	56199.8
21	004	11:17:14	314	755982.6
21	004	11:17:28	315	?56240.B
21	004	11:17:48	316	56630.0
21	004	11:18:14	317	56838.0
21		11:18:29	318	56690.2
2.				
21	004	11:18:40	J19	56650.2
21	004	11:18:53	320	756487.6
21	004	11:19:05	321	56650.2
21		11:19:23	322	
	004			756115.8
21	004	11:19:35	323	56726.0
21	004	11:19:49	324	756449.4
	004	11:20:02	325	56456.0
21	004	11:20:15	326	756138.4
21	004	11:20:28	327	56197.6
21	004	11:20:39	328	755909.0
21	004	11:20:52	329	56371.4
~ i	ソソマ	شوات والماشد والانتا	المقدامة	303/1:4
21	004	11:21:04	330	57150.0

21 004	11:21:16	331	56994.2
21 004	11:21:29	332	257584.6
21 004	11:21:43	333	754883.6
21 004	11:21:59	334	~55813.2
21 004	11:22:14	335	56627.4
21 004	11:22:33	336	755289.6
21 004	11:22:59	337	256172.8
21 004	11:23:46	348	56474.4
21 004	11:24:02	339	?55007.6
77 004	111111		
21 004	11:24:15	340	256196.6
22 004	11:25:59	341	56368.8
22 004	11:26:23	342	56398.6
22 004	11:26:35	343	56458.8
22 004	11:26:48	344	56315.6
22 004	11:26:59	345	56357.8
22 004	11:27:11	346	56332.6
22 004	11:27:24	347	56240.2
22 004	11:27:38	348	?56785.2
22 004	11:27:51	349	757032.8
22 004	11:28:05	350	56453.4
22 004	11:28:20	351	56412.8
22 004	11:29:17	352	56891.2
22 004	11:29:35	353	?57326.2
22 004	11:29:52	354	56771.4
22 004	11:30:13	355	56725.4
22 004	11:30:31	356	55519.4
22 004	11:30:44	357	7559 <b>94.6</b>
22 004	11:30:58	358	?557 <b>67.2</b>
22 004	11:31:12	359	755581.2
22 004	11:31:26	360	56076.2
22 004	13:27:17	361	56524.2
22 004	13:27:36	362	56707.4
22 004	13:27:51	363	56754.2
22 004	13:28:03	364	756109.8
22 004	13:28:16	365	56203.6
22 004	13:28:28	366	56579.8
22 004	13:28:40	367	55302.2
22 004	13:28:55	368	56223.0
22 004	13:29:25	369	56352.4
22 004	13:29:38	370	756945.6
22 004	13:29:57	371	757444.6
22 004	13:30:18	372	56392.4
22 004	13:30:34	373	56319.6
22 004	13:30:46	374	56539.2
22 004	13:30:58	375	56592.4
22 004	13:31:09	376	56519.4
22 004	13:31:44	377	756973.4
22 004	13:31:57	378	757091.4
22 004	13:32:09	379	5651 <b>6.8</b>

22 004	13:32:21	380	755199.2
22 004	13:32:39	381	756721.8
22 004	13:33:45	382	256295.4
22 004	13:33:59	383	? <b>54456.</b> 0
22 004	13:34:12	384	56564.4
22 004	13:34:24	385	55586.6
22 004	13:34:38	385	55856.5
22 004	13:34:49	387	55698.2
	13:35:01		56642.2
		388	
22 004	13:35:13	389	56602.4
22 004	13:35:26	390	58388.4
22 004	13:35:53	391	56521.2
22 004	13:36:06	392	56518.0
22 004	13:36:23	393	56574.8
22 004	13:36:38	394	56793.0
22 004	13:37:14	395	56878.8
22 004	13:37:29	396	56772.8
22 004	13:37:41	397	56417.0
22 004	13:37:52	398	56406.2
22 004	13:38:09	399	56489.2
22 004	10.00.07		5070712
22 004	13:38:26	400	56541.8
22 004	13:38:42	401	56516.8
22 004	13:39:16	402	56532.6
23 004	13:40:57	403	56524.0
23 004	13:41:19	404	56496.8
23 004	13:41:32	405	56475.2
23 004	13:41:46	406	56453.4
23 004	13:41:58	407	563 <b>69.</b> 0
23 004	13:42:10	403	2564 <b>45.4</b>
23 004	13:42:23	409	756545.0
23 004	13:42:36	410	54508.0
23 004	13:42:52	411	56477.4
23 004	13:43:05	412	56470.8
23 004	13:43:24	413	56442.8
23 004	13:43:49	414	56415.4
23 004	13:44:08	415	756295.6
23 004	13:44:22	415	756400.8
23 004	13:44:33	417	56757.4
23 004	13:44:50		56780.2
23 004	13:45:03	419	56520.4
23 004	13:45:19	420	56411.6
23 004	13:45:31	421	756308.8
23 004	13:45:47	422	56358.0
23 004	13:46:02	423	56264.4
23 004	13:46:16	· 424	755903.6
23 004	13:46:29	425	255785.6
23 004	13:46:47	425	757270.8
23 004	13:47:10	427	56835.0

23 004	13:47:23	428	53574.2
23 004	13:47:35	429	58501.8
23 004	13:47:51	4.50	56360.6
23 004	13:48:02	431	955301.4
23 004	13:48:14	432	756146.0
23 004	13:48:30	400	758120.2
23 004	13:48:45	434	?5507 <b>8.4</b>
23 004	13:49:40	435	56374.8
23 004	13:49:52	435	758155.8
23 004	13:50:08	437	756021.0
23 004	13:50:19	438	757169.4
23 004	13:50:32	439	756762.0
23 004	13:50:43	440	757597.2
23 004	13:50:58	441	756913.2
23 004	13:51:10	442	56853.2
23 004	13:51:28	443	756328.2
23 004	13:52:08	444	756130.0
23 004	13:52:21	445	?56776.0
23 004	13:52:33	446	756487.2
23 004	13:52:46	447	56772.8
23 004	13:53:00	448	57132.8
23 004	13:53:12	449	57019.4
		450	754829.4
23 004	13:53:37	450 451	57071.6
23 004	13:53:50	451 452	758841.0
23 004	13:54:09	453 453	755419.0
23 004	13:54:22	453 454	758201.2
23 004	13:54:39	454 455	58611.8
23 004	13:54:58		56430.6
.23 004	13:55:09	456 457	56401.2
23 004	13:55:39		56396.8
23 004	13:55:50	458 459	756395.4
23 004	13:56:01	437	:00070.4
23 004	13:56:14	460	56383.8
23 004	13:56:26	461	56372.2

** G-856 MAGNETOMETER DATA **
RAW FIELD Code: HN13

Line Date	Time	Sice	Field
24 004	13:57:53	463	56465.8
24 004	13:58:12	464	55476.0
24 004	13:58:42	455	55484.6
24 004	13:58:54	400	55496.0
24 004	13:59:07	467	58511.0
24 004	13:59:20	468	56533 <b>.8</b>
24 004	13:59:33	469	56734.2
24 004	13:59:53	470	757042.0
24 004	14:00:51	471	755722.0
24 004	14:01:06	472	757076.2
24 004	14:01:18	473	756681.6
24 004	14:01:31	474	757045.2
24 004	14:01:48	475	56920.B
24 004	14:02:00	47s	7585 <b>60.6</b>
24 004	14:02:24	477	56560.6
24 004	14:02:37	478	56285.2
24 004	14:02:49	479	257072.6
_,			
24 004	14:03:03	480	56961.6
24 004	14:03:17	481	2563 <b>71.6</b>
24 004	14:03:39	482	55703.0
24 004	14:03:52	483	25/124.0
24 004	14:04:04	484	?5 ₆ 38 <b>2.4</b>
24 004	14:04:17	485	255142.0
24 004	14:04:29	486	755631.2
24 004	14:04:41	487	56624.6
24 004	14:04:55	488	256734.4
24 004	14:05:12	489	56477.0
24 004	14:05:27	490	56124.8
24 004	14:05:51	491	56133.6
24 004	14:06:02	492	56432.8
24 004	14:06:17	493	56515.8
24 004	14:06:57	494	56499.0
24 004	14:07:11	495	56594.2
24 004	14:07:24	496	56591.8
24 004	14:07:35	497	756960.8
24 004	14:07:47	498	56777.2
24 004	14:07:58	499	56359.2
24 004	14:08:10	500	55407.2
24 004	14:09:09	501	56658.6
24 004	14:09:24	502	757019.8
24 004	14:09:36	503	56507.2
24 004	14:09:47	504	56595.2
- 1 Y W T	_ ,	*	

es a a			وهوا والمجوده والدمو
24 004	14:10:00	500	56554.8
24 004	14:10:14	506	56574.6
-			
24 004	14:10:27	507	756675.6
		<b>C</b>	
24 004	14:10:43	508	56458.6
24 004	14:11:01	509	56521.6
74 004	14.11.01	1.4 44 7	0002110
04 554	40.44.45	E 4 /5	COLUMN CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT
24 004	14:11:15	510	56525.0
25 004	14:12:24	511	56482.0
25 004	14:12:43	512	56475.8
		ET 4 77	
25 004	14:12:55	513	56464.6
25 004	14:13:09	514	58463.6
25 004	14:13:21	515	56467.6
25 004	1 3 4 1 7 4 7 1	ET 4 /	= 11/5 1
25 004	14:13:31	516	56465.4
25 004	14:13:43	517	56452.4
25 004	14:13:54	518	56453.2
25 004	1 2 4 1 4 4 5 5	519	E ( 4E 0 0
25 004	14:14:05	217	56450.8
•			
			سسفند د جوړ
25 004	14:14:18	520	56423.2
25 004	14:15:59	521	256337.8
25 004	14:16:39	522	?563 <b>52.</b> 2
25 004	14:16:57	523	555 <b>57.8</b>
25 004	14:17:08	524	56454.8
25 004	14:17:21	525	756324.6
25 004	14:17:33	526	56823.0
25 004	14:17:45	527	56561.4
25 004	14:17:56	528	56477.8
25 004	14:18:08	529	56603.6
25 004	14:18:08	529	56603 <b>.6</b>
25 004 25 004	14:18:08 14:18:20	529 530	56603.6 56572.2
25 004 25 004 25 004	14:18:08 14:18:20 14:18:41	52 <b>9</b> 530 531	56603.6 56572.2 56412.8
25 004 25 004 25 004	14:18:08 14:18:20 14:18:41	52 <b>9</b> 530 531	56603.6 56572.2 56412.8
25 004 25 004 25 004 25 004	14:18:08 14:18:20 14:18:41 14:18:55	529 530 531 532	56603.6 56572.2 56412.8 ?56234.2
25 004 25 004 25 004	14:18:08 14:18:20 14:18:41	52 <b>9</b> 530 531	56603.6 56572.2 56412.8
25 004 25 004 25 004 25 004 25 004	14:18:08 14:18:20 14:18:41 14:18:55 14:19:08	529 530 531 532 533	56603.6 56572.2 56412.8 ?56234.2 56438.6
25 004 25 004 25 004 25 004 25 004 25 004	14:18:08 14:18:20 14:18:41 14:18:55 14:19:08 14:19:19	529 530 531 532 533 534	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2
25 004 25 004 25 004 25 004 25 004	14:18:08 14:18:20 14:18:41 14:18:55 14:19:08 14:19:19	529 530 531 532 533	56603.6 56572.2 56412.8 ?56234.2 56438.6
25 004 25 004 25 004 25 004 25 004 25 004	14:18:08 14:18:20 14:18:41 14:18:55 14:19:08 14:19:19	529 530 531 532 533 534 535	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4
25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08 14:18:20 14:18:41 14:18:55 14:19:08 14:19:19	529 530 531 532 533 534 535 536	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2
25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08 14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49	529 530 531 532 533 534 535 536	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04	529 530 531 532 533 534 535 536 537	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2
25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08 14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49	529 530 531 532 533 534 535 536	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16	529 530 531 532 533 534 535 536 537	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04	529 530 531 532 533 534 535 536 537	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16	529 530 531 532 533 534 535 536 537	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29	529 530 531 532 533 534 535 536 537 538 539	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:29	529 530 531 532 533 534 535 536 537 538 539	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:29	529 530 531 532 533 534 535 536 537 538 539	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29	529 530 531 532 533 534 535 536 537 538 539	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0 ?56019.8 ?55414.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:29	529 530 531 532 533 534 535 536 537 538 539	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0 ?56019.8 ?55414.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:20:42 14:24:33	529 530 531 532 533 534 535 536 537 538 539 540 541 542	56603.6 56572.2 56412.8 756234.2 56438.6 56395.2 756060.4 756061.0 756773.2 56748.8 756157.0 756019.8 756128.2
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:29  14:20:42 14:24:33 14:24:44	529 530 531 532 533 534 535 536 537 538 539 540 541 542 543	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0 ?56119.8 ?55414.0 ?56128.2 56620.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:20:42 14:24:33	529 530 531 532 533 534 535 536 537 538 539 540 541 542 543	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0 ?56119.8 ?55414.0 ?56128.2 56620.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:29  14:20:42 14:24:33 14:24:44 14:24:57	529 530 531 532 533 534 535 536 537 538 539 540 541 542 543	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0 ?56127.0 ?56128.2 56620.0 ?56244.4
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:24:33 14:24:44 14:24:57 14:25:13	529 530 531 532 533 534 535 537 538 539 540 541 542 543 544 545	56603.6 56572.2 56412.8 756234.2 56438.6 56395.2 756060.4 756061.0 756773.2 56748.8 756157.0 7561128.2 56620.0 756244.4 755607.2
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:24:33 14:24:44 14:24:57 14:25:13	529 530 531 532 533 534 535 537 538 539 540 541 542 543 544 545	56603.6 56572.2 56412.8 756234.2 56438.6 56395.2 756060.4 756061.0 756773.2 56748.8 756157.0 7561128.2 56620.0 756244.4 755607.2
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:24:33 14:24:44 14:24:57 14:25:13 14:25:25	529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0 ?56128.2 56620.0 ?56244.4 ?55607.2 ?57292.2
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:24:33 14:24:44 14:24:57 14:25:13 14:25:25	529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0 ?56128.2 56620.0 ?56244.4 ?55607.2 ?57292.2
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:24:33 14:24:44 14:24:57 14:25:13 14:25:25 14:25:38	529 530 531 532 533 534 535 537 538 539 540 541 542 543 544 545 546	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0 ?56128.2 56420.0 ?56244.4 ?55607.2 ?57292.2 ?56588.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:20:42 14:24:33 14:24:44 14:24:57 14:25:13 14:25:38 14:25:58	529 530 531 532 533 534 535 537 538 539 540 541 542 544 545 545 546 547	56603.6 56572.2 56412.8 756234.2 56438.6 56395.2 756060.4 756061.0 756773.2 56748.8 756157.0 756128.2 56620.0 756244.4 755607.2 757292.2 756588.0 757205.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:20:42 14:24:33 14:24:44 14:24:57 14:25:13 14:25:38 14:25:58	529 530 531 532 533 534 535 537 538 539 540 541 542 543 544 545 546	56603.6 56572.2 56412.8 756234.2 56438.6 56395.2 756060.4 756061.0 756773.2 56748.8 756157.0 756128.2 56620.0 756244.4 755607.2 757292.2 756588.0 757205.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:20:42 14:24:33 14:24:44 14:24:57 14:25:13 14:25:38 14:25:58	529 530 531 532 533 534 535 537 538 539 540 541 542 544 545 545 546 547	56603.6 56572.2 56412.8 756234.2 56438.6 56395.2 756060.4 756061.0 756773.2 56748.8 756157.0 756128.2 56620.0 756244.4 755607.2 757292.2 756588.0 757205.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:20:42 14:24:33 14:24:44 14:24:57 14:25:13 14:25:25 14:25:38 14:25:58 14:26:16	529 530 531 532 533 534 535 537 538 539 540 541 542 544 545 545 546 547	56603.6 56572.2 56412.8 756234.2 56438.6 56395.2 756060.4 756061.0 756773.2 56748.8 756157.0 756128.2 56620.0 756244.4 755607.2 757292.2 756588.0 757205.0
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:20:42 14:24:33 14:24:44 14:24:57 14:25:13 14:25:25 14:25:38 14:25:58 14:26:16	529 530 531 533 533 534 535 537 539 540 542 544 545 544 545 546 549	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0 ?56157.0 ?56129.2 56620.0 ?56244.4 ?55607.2 ?57292.2 ?56588.0 ?57205.0 56932.4
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:24:33 14:24:44 14:24:57 14:25:13 14:25:38 14:25:38 14:25:58 14:26:16	529 530 531 533 533 533 533 533 533 533 533 534 535 539 541 542 544 545 544 545 546 547 549 550	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0 ?56128.2 56420.0 ?56244.4 ?55607.2 ?57292.2 ?56588.0 ?57205.0 56932.4 57212.6
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:24:33 14:24:44 14:24:57 14:25:13 14:25:38 14:25:38 14:25:58 14:26:16	529 530 531 533 533 533 533 533 533 533 534 535 537 539 540 542 544 545 546 547 549 550	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0 ?56157.0 ?56129.2 56620.0 ?56244.4 ?55607.2 ?57292.2 ?56588.0 ?57205.0 56932.4
25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004 25 004	14:18:08  14:18:20 14:18:41 14:18:55 14:19:08 14:19:19 14:19:32 14:19:49 14:20:04 14:20:16 14:20:29  14:24:33 14:24:44 14:24:57 14:25:13 14:25:38 14:25:38 14:25:58 14:26:16	529 530 531 533 533 533 533 533 533 533 533 534 535 539 541 542 544 545 544 545 546 547 549 550	56603.6 56572.2 56412.8 ?56234.2 56438.6 56395.2 ?56060.4 ?56061.0 ?56773.2 56748.8 ?56157.0 ?56128.2 56420.0 ?56244.4 ?55607.2 ?57292.2 ?56588.0 ?57205.0 56932.4 57212.6

25 004	14:27:15	653	55475.2
	14:27:28	554	55420.0
25 004			
25 004	14:27:42	555	56433.0
25 004	14:27:54	556	월등4일4 <b>.</b> ()
26 004	14:28:50	557	5554 <b>6.</b> 2
26 004	14:29:11	558	56516.0
26 004	14:29:37	559	54545.8
20 001			
24 004	14:29:49	560	56632.2
26 004			
26 004	14:30:09	561	757305.2
26 004	14:30:26	562	756552.0
26 004	14:30:42	563	56767.4
26 004	14:30:56	564	756786.6
26 004	14:31:11	565	756035.4
26 004	14:31:23	5నక	56445.6
26 004	14:31:38	567	?S7456.0
26 004	14:31:50	548	56552.0
26 004	14:32:03	569	757692.6
20 00 1	. 10		
26 004	14:32:15	570	755635.4
26 004	14:32:30	571	56242.6
26 004	14:32:47	572	755847.0
		573	55995.4
26 004	14:33:17		56255.6
26 004	14:33:37	574	
26 004	14:33:54	575	56339.2
26 004	14:34:07	576	56468.6
26 004	14:34:20	577	756730.4
26 004	14:34:31	578	56511.4
26 004	14:34:43	579	7568 <b>89.4</b>
26 004	14:34:56	580	56394.4
26 004	14:35:07	581	56701.0
26 004	14:35:18	582	?56352.0
26 004	14:35:31	583	56469.4
26 004	14:35:44	584	256762.2
26 004	14:36:16	585	56115.4
26 004	14:36:27	586	56051.4
		587	56322.8
26 004	14:36:39		56571.4
26 004	14:36:50	588	
26 004	14:37:02	589	56419.8
		game game, yes	E / n = n - m
26 004	14:37:13	590	56474.8
26 004	14:37:25	591	56504.8
26 004	14:37:38	592	56533.2
26 004	14:37:50	593	56518.0
25 004	14:38:02	594	56521.0
26 004	14:38:16	595	56528.4
26 004	14:38:35	596	56540.2
26 004	14:38:52	597	56540.4
27 004	14:40:44	598	56510.4
27 004	14:40:59	599	56423.0
27 004	14:41:11	600	56478.4

27				
4/	004	14:41:22	Z (5) 4	E/707 0
	UU4	14:41:22	<b>601</b>	56783.2
27	004	14:41:34	602	56418.6
27	004	14:41:46	<b>50</b> 3	256132.0
		1 4 - 4	100	
27	004	14:41:57	504	56482.6
27	004	14:42:15	505	56a27.4
	•			
27	004	14:43:17	60 <b>6</b>	56643.8
27	$\triangle \triangle A$	14.47.00	Z 10177	057075 4
4/	004	14:43:29	607	257835.6
27	004	14:43:42	608	255973.2
27	004	14:43:54	<u> 609</u>	757035.8
27	004	14:44:05	610	257864.6
27	004	14:44:18	611	756491.8
27	004	14:44:29	512	256137.4
27	004	14:44:40	613	56524.2
	004			
27	004	14:44:54	614	56510.2
27	004	14:45:19	615	755849.8
27	004	14:45:33	516	756258.0
27	004	14:45:57	£ 1.7	25/400 0
41	004	14:45:57	617	?56400.8
27	004	14:46:09	618	756647.0
	*			
27	004	14:46:21	619	756334.0
27	004	14:46:35	620	?54009.8
		1 4 = 4 / = 4"7 .	/ 31	
27	004	14:46:47	621	?54839.8
27	004	14:47:01	422	757035.2
27	004	14:47:14	623	757744.0
27	004	14:47:38	624	?57222.6
				:3/222.0
27	004	14:47:59	625	756411.6
27	004	14:48:19	525	563 <b>86.4</b>
27	004	14:48:52	627	56400.6
<i> 1</i>	004	14.40.32		20400.0
27	004	14:49:05	628	56433.0
28	004	14:51:08	629	55506.8
20	004	14:51:08		55506.8
			629	
28	004	14:51:08 14:51:26		56506.8 56495.0
28	004	14:51:26	629 630	56495.0
		14:51:26 14:51:38	629 630 631	56495.0 56445.4
28 28	004 004	14:51:26 14:51:38	629 630 631	56495.0 56445.4
28 28 28	004 004 004	14:51:26 14:51:38 14:51:52	629 630 631 632	56495.0 56445.4 56502.0
28 28	004 004	14:51:26 14:51:38	629 630 631	56495.0 56445.4
28 28 28 28	004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07	629 630 631 632 633	56495.0 56445.4 56502.0 56443.6
28 28 28 28 28	004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26	629 630 631 632 633 634	56495.0 56445.4 56502.0 56443.6 56352.4
28 28 28 28 28	004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26	629 630 631 632 633 634	56495.0 56445.4 56502.0 56443.6 56352.4
28 28 28 28 28 28	004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48	629 630 631 632 633 634 635	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4
28 28 28 28 28	004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26	629 630 631 632 633 634 635 636	56495.0 56445.4 56502.0 56443.6 56352.4
28 28 28 28 28 28 28	004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14	629 630 631 632 633 634 635 636	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0
28 28 28 28 28 28 28 28	004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12	629 630 631 632 633 634 635 636 637	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0
28 28 28 28 28 28 28	004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14	629 630 631 632 633 634 635 636	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0
28 28 28 28 28 28 28 28 28	004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12	629 630 631 632 633 634 635 636 637 638	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4
28 28 28 28 28 28 28 28	004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12	629 630 631 632 633 634 635 636 637	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0
28 28 28 28 28 28 28 28 28	004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12	629 630 631 632 633 634 635 636 637 638	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4
28 28 28 28 28 28 28 28 28 28	004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:24 14:55:41	629 630 631 632 633 634 635 636 637 638 639	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6
28 28 28 28 28 28 28 28 28 28 28 28	004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:41	629 630 631 632 633 634 635 636 637 638 639	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6
28 28 28 28 28 28 28 28 28 28 28 28	004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:41	629 630 631 632 633 634 635 636 637 638 639	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6
28 28 28 28 28 28 28 28 28 28 28 28 28	004 004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:24 14:55:41	629 630 631 632 633 634 635 636 637 638 639	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6
28 28 28 28 28 28 28 28 28 28 28 28	004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:41	629 630 631 632 633 634 635 636 637 638 639 640 641 642	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6 ?56972.0 56485.8 ?56727.2
28 28 28 28 28 28 28 28 28 29 28 29 28	004 004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:24 14:55:41 14:55:41	629 630 631 632 633 634 635 636 637 638 639 640 641 642	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6 ?56972.0 56485.8 ?56727.2
28 28 28 28 28 28 28 28 28 28 28 28 28 2	004 004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:24 14:55:41 14:55:41 14:55:41	629 630 631 532 633 634 635 636 637 638 639 640 641 642 643	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6 ?56972.0 56485.8 ?56727.2 ?57125.0
28 28 28 28 28 28 28 28 28 29 28 29 28	004 004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:24 14:55:41 14:55:41	629 630 631 632 633 634 635 636 637 638 639 640 641 642	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6 ?56972.0 56485.8 ?56727.2
28 28 28 28 28 28 28 28 28 28 28 28 28 2	004 004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:41 14:55:41 14:55:41 14:55:55 14:56:13 14:56:29 14:56:54 14:57:06	629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6 ?56972.0 56485.8 ?56727.2 ?57125.0 ?57088.0
28 28 28 28 28 28 28 28 28 28 28 28 28 2	004 004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:41 14:55:41 14:55:41 14:56:54 14:56:54 14:56:54 14:57:06 14:57:18	629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6 ?56972.0 56485.8 ?56727.2 ?57125.0 ?57088.0 ?55840.2
28 28 28 28 28 28 28 28 28 28 28 28 28 2	004 004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:41 14:55:41 14:55:41 14:56:54 14:56:54 14:56:54 14:57:06 14:57:18	629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6 ?56972.0 56485.8 ?56727.2 ?57125.0 ?57088.0
28 28 28 28 28 28 28 28 28 28 28 28 28 2	004 004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:41 14:55:41 14:55:41 14:56:29 14:56:54 14:57:06 14:57:18 14:57:31	629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6 ?56972.0 56485.8 ?56727.2 ?57125.0 ?57088.0 ?55840.2 ?56589.2
28 28 28 28 28 28 28 28 28 28 28 28 28 2	004 004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:41 14:55:41 14:55:41 14:56:54 14:56:54 14:56:54 14:57:06 14:57:18	629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6 ?56972.0 56485.8 ?56727.2 ?57125.0 ?57088.0 ?55840.2
28 28 28 28 28 28 28 28 28 28 28 28 28 2	004 004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:55:12 14:55:12 14:55:41  14:55:55 14:56:13 14:56:29 14:56:54 14:57:18 14:57:18 14:57:43	629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6 ?56972.0 56485.8 ?56727.2 ?57125.0 ?57088.0 ?55840.2 ?56589.2 56419.4
28 28 28 28 28 28 28 28 28 28 28 28 28 2	004 004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:54:14 14:55:12 14:55:24 14:55:41  14:55:55 14:56:13 14:56:29 14:56:54 14:57:18 14:57:18 14:57:43 14:57:54	629 630 631 532 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6 ?56972.0 \$6485.8 ?56727.2 ?57125.0 ?57088.0 ?55840.2 ?56589.2 \$6419.4 ?56703.8
28 28 28 28 28 28 28 28 28 28 28 28 28 2	004 004 004 004 004 004 004 004 004 004	14:51:26 14:51:38 14:51:52 14:52:07 14:53:26 14:53:48 14:55:12 14:55:12 14:55:41  14:55:55 14:56:13 14:56:29 14:56:54 14:57:18 14:57:18 14:57:43	629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646	56495.0 56445.4 56502.0 56443.6 56352.4 ?56280.4 ?57226.0 ?55799.0 ?53028.4 56953.6 ?56972.0 56485.8 ?56727.2 ?57125.0 ?57088.0 ?55840.2 ?56589.2 56419.4

28 004	14:58:18	<b>65</b> 0	7562 <b>61.8</b>
28 004	14:58:30	ი51	56273.4
28 004	14:58:42	<b>652</b>	56420.6
28 004	14:58:54	653	56472.8
28 004	14:59:22	654	56520.8
28 004	14:59:35	655	56543.8
29 004	15:02:33	55 <b>6</b>	56655.2
29 004	15:02:49	657	56642.4
29 004	15:02:59	658	56477.6
29 004	15:03:10	659	56448.2
29 004	15:03:21	<u> </u>	56404.8
29 004	15:03:31	561	56465.6
			56785.6
29 004	15:03:43	662	
29 004	15:03:54	663	56626.0
29 004	15:04:05	554	56459.2
		<del>-</del> -	
29 004	15:04:15	665	5640 <b>8.4</b>
29 004	15:04:26	655	56418.4
		667	56245.6
29 004	15:04:37		
29 004	15:04:47	668	756109.0
29 004	15:05:00	669	756228.8
47 004	10.00.00		· GCLLG-
29 004	15:05:14	670	756405.6
29 004	15:05:27	671	56639.8
			·
<b>29</b> 004	15:05:42	672	?56072.0
29 004	15:06:00	673	756943.0
			755988.2
29 004	15:06:21	674	
29 004	15:06:36	675	56462.8
29 004	15:06:53	676	55474.0
29 004	15:07:08	677	55457.4
29 004	15:07:20	678	56623.8
	15:07:31	679	56496.8
29 004	19:07:01	0/7	30470.0
29 004	15:07:44	680	56483.0
	15:07:57	681	56459.4
29 004			
<b>29</b> 004	15:08:09	582	56483.4
29 004	15:08:21	683	55458.2
			56458.2
29 004	15:08:33	684	
30 004	15:09:34	<b>685</b>	56510.4
30 004	15:09:48	<b>686</b>	56529.8
30 004	15:10:00	687	56555.8
30 004	15:10:13	688	56565.8
	15:10:25	689	756598.2
30 004	10,10,20		: 444/442
30 004	15:10:39	<b>69</b> 0	56545.6
	15:10:50	691	56558.0
30 004			
30 004	15:11:03	692	5545 <b>6.</b> 0
30 004	15:11:23	693	56507.6
			54508.0
30 004	15:11:39	694	
30 004	15:11:51	695	56486.2
30 004	15:12:03	695	56464.0
30 004	15:12:15	697	56434.6

30 004	15:12:27	698	58428.8
30 004	15:12:41	699	56441.4
30 004	15:12:54	700	56435.0
30 004	15:13:09	701	56475.B
30 004	15:13:23	702	56509.6
30 004	15:13:34	703	56519.2
30 004	15: 13: 45	704	56538.0
30 004	15:13:57	705	56547.2
30 QQ4	15:14:44	706	56544.2
30 004	15:14:56	707	56561.0
30 004	15:15:27	708	56536.2
30 004	15:15:44	709	56530.4
30 004	15:15:57	710	56541.6
30 004	15:16:15	711	56543.6
31 004	15:17:34	712	56474.0
31 004	15:17:49	713	56513.6
31 004	15:18:00	714	56493.8
31 004	15:18:10	715	56472.2
31 004	15:18:21	716	56470.2
31 004	15:18:34	717	56469.6
31 004	15:18:45	718	56461.4
31 004	15:18:56	719	56456.6
31 004	15:19:07	720	56442.6
31 004	15:19:19	721	56433.6
31 004	15:19:34	722	56436.2
31 004	15:19:45	723	56457.4
31 004	15:19:57	724	56412.6
31 004	15:20:09	725	56485.2
31 004	15:21:00	726	56414.0
31 004	15:21:20	727	756314.8
31 004	15:21:42	728	56454.0
31 004	15:21:53	729	56425.6
31 004	15:22:06	730	56418.4
31 004	15:22:17	731	56610.8
31 004	15:22:28	732	54589.4
31 004	15:22:41	733	55499.6
31 004	15:22:54	734	56437.6
31 004	15:23:07	735	56440.8
31 004	15:23:19	736	56415.0
31 004	15:23:30	737	56453.6
32 004	15:24:22	738	56504.2
32 004	15:24:57	739	756663.6
32 004	15:25:42	740	56578.8
32 004	15:25:55	741	56488.8
32 004	15:26:09	742	56515.4
32 004	15:26:22	743	56577.0
32 004	15:26:38	744	56616.8
32 004	15:26:51	745	56600 <b>.8</b>
warmer of the fi			

32 004	15:27:03	746	756724.2
32 004	15:27:17	747	56456.8
32 004	15:27:29	748	56a0 <b>6.</b> 6
32 004	15:27:45	749	56481.6
<b>***</b> • • • •	45-55-57	700	5/500 A
32 004	15:28:03	<b>75</b> 0	56509.0
32 004	15:28:21	751	56576.8
32 004	15:28:35	752	56509.6
32 004	15:28:47	753	56475.0
32 004	15:29:00	754	56628.0
32 004	15:29:12	755	56539.0
32 004	15:29:25	756	5650 <b>9.6</b>
32 004	15:29:51	757	56465.2
32 004	15:30:05	758	56567.8
32 004	15:30:17	759	56302.0
32 004	15:30:30	760	54508.0
32 004	15:30:42	761	56525.0
32 004	15:30:57	762	56380.6
32 004	15:31:10	763	56543.2
			56664.2
32 004	15:31:26	764	
32 004	15:31:39	765	56540.8
33 004	15:32:55	766	56507.8
33 004	15:33:10	767	56496.0
33 004	15:33:28	768	56512.6
33 004	15:33:39	769	56473.0
** ***	4 pro . mp mp . pro .m	776	E/701 0
33 004	15:33:50	770	56391.8
	15:33:50 15:34:01	770 771	563 <b>91.8</b> 7561 <b>92.</b> 6
33 004	15:34:01	771	756192.6
33 004 33 004	15:34:01 15:34:13	771 772	?56192.6 ?56731.4
33 004 33 004 33 004	15:34:01 15:34:13 15:34:28	771 772 773	?561 <b>92.6</b> ?56731.4 56474.2
33 004 33 004	15:34:01 15:34:13	771 772	?56192.6 ?56731.4
33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49	771 772 773 774	?56192.6 ?56731.4 56474.2 56454.0
33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01	771 772 773 774 775	?56192.6 ?56731.4 56474.2 56454.0 56422.6
33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13	771 772 773 774 775 776	756192.6 756731.4 56474.2 56454.0 56422.6 56458.2
33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01	771 772 773 774 775	?56192.6 ?56731.4 56474.2 56454.0 56422.6
33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32	771 772 773 774 775 776 777	?56192.6 ?56731.4 56474.2 56454.0 56422.6 56458.2 56479.2
33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32	771 772 773 774 775 776 777 778	?56192.6 ?56731.4 56474.2 55454.0 56422.6 56458.2 56479.2 56488.8
33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32	771 772 773 774 775 776 777	?56192.6 ?56731.4 56474.2 56454.0 56422.6 56458.2 56479.2
33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32	771 772 773 774 775 776 777 778 779	?56192.6 ?56731.4 56474.2 55454.0 56422.6 56458.2 56479.2 56488.8 56450.4
33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32	771 772 773 774 775 776 777 778	?56192.6 ?56731.4 56474.2 55454.0 56422.6 56458.2 56479.2 56488.8
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32 15:35:53 15:36:16	771 772 773 774 775 776 777 778 779	?56192.6 ?56731.4 56474.2 56454.0 56422.6 56458.2 56479.2 56488.8 56450.4
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32 15:35:53 15:36:16	771 772 773 774 775 776 777 778 779	?56192.6 ?56731.4 56474.2 56454.0 56422.6 56458.2 56479.2 56488.8 56450.4 56441.6 56458.6
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32 15:35:53 15:36:16 15:36:41 15:37:01 15:37:19	771 772 773 774 775 776 777 778 779 780 781 782	?56192.6 ?56731.4 56474.2 55454.0 56422.6 56458.2 56479.2 56488.8 56450.4 56441.6 56441.6 56417.2
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32 15:35:53 15:36:16	771 772 773 774 775 776 777 778 779	?56192.6 ?56731.4 56474.2 56454.0 56422.6 56458.2 56479.2 56488.8 56450.4 56441.6 56458.6
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32 15:35:53 15:36:16 15:36:41 15:37:01 15:37:19 15:37:35	771 772 773 774 775 776 777 778 779 780 781 782 783	?56192.6 ?56731.4 56474.2 55454.0 56422.6 56458.2 56479.2 56488.8 56450.4 56441.6 56458.6 56417.2 56515.4
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32 15:35:53 15:36:16 15:36:16 15:37:01 15:37:19 15:37:35 15:37:46	771 772 773 774 775 776 777 778 779 780 781 782 783 784	?56192.6 ?56731.4 56474.2 55454.0 56422.6 56458.2 56479.2 56488.8 56450.4 56441.6 56458.6 56417.2 56515.4 ?56870.8
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:53 15:35:53 15:36:16 15:36:41 15:37:01 15:37:19 15:37:19 15:37:46 15:38:01	771 772 773 774 775 776 777 778 779 780 781 782 783 784 785	?56192.6 ?56731.4 56474.2 55454.0 56422.6 56458.2 56479.2 56488.8 56450.4 56441.5 56458.6 56417.2 56515.4 ?56870.8 56523.8
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32 15:35:53 15:36:16 15:36:16 15:37:01 15:37:19 15:37:35 15:37:46	771 772 773 774 775 776 777 778 779 780 781 782 783 784	?56192.6 ?56731.4 56474.2 56454.0 56422.6 56458.2 56479.2 56488.8 56450.4 56450.4 56450.4 ?56870.8 \$6523.8 \$6530.4
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:53 15:35:53 15:36:16 15:36:41 15:37:01 15:37:19 15:37:35 15:37:46 15:38:01 15:38:15	771 772 773 774 775 776 777 778 779 780 781 782 783 784 785	?56192.6 ?56731.4 56474.2 55454.0 56422.6 56458.2 56479.2 56488.8 56450.4 56441.5 56458.6 56417.2 56515.4 ?56870.8 56523.8
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:53 15:35:53 15:36:16 15:37:01 15:37:19 15:37:35 15:37:46 15:37:46 15:38:01 15:38:15 15:38:27	771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787	?56192.6 ?56731.4 56474.2 56474.0 56422.6 56458.2 56479.2 56488.8 56450.4 56450.4 \$56450.4 \$56450.6 \$56450.6 \$56450.8 \$56523.8 \$56523.8 \$56523.0.4 \$56512.0
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32 15:35:53 15:36:16 15:36:16 15:37:01 15:37:01 15:37:19 15:37:46 15:38:01 15:38:15 15:38:27 15:38:39	771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787	?56192.6 ?56731.4 56474.2 56474.0 56422.6 56458.2 56479.2 56488.8 56450.4 56450.4 56451.6 56417.2 56515.4 ?56870.8 56523.8 56530.4 56512.0 56473.8
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:53 15:35:53 15:36:16 15:37:01 15:37:19 15:37:35 15:37:46 15:37:46 15:38:01 15:38:15 15:38:27	771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787	?56192.6 ?56731.4 56474.2 56474.0 56422.6 56458.2 56479.2 56488.8 56450.4 56450.4 \$56450.4 \$56450.6 \$56450.6 \$56450.8 \$56523.8 \$56523.8 \$56523.0.4 \$56512.0
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:32 15:35:53 15:36:16 15:36:16 15:37:01 15:37:01 15:37:19 15:37:46 15:38:01 15:38:15 15:38:27 15:38:39	771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787	?56192.6 ?56731.4 56474.2 56474.0 56422.6 56458.2 56479.2 56488.8 56450.4 56450.4 56451.6 56417.2 56515.4 ?56870.8 56523.8 56530.4 56512.0 56473.8
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:13 15:35:53 15:35:53 15:36:16 15:36:16 15:37:19 15:37:19 15:37:19 15:37:46 15:38:01 15:38:01 15:38:27 15:38:39 15:38:53	771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788	?56192.6 ?56731.4 56474.2 55454.0 56422.6 56458.2 56479.2 56488.8 56450.4 56417.2 56515.4 ?56870.8 56523.8 56523.8 56523.8 56512.0 56473.8 56441.8
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:32 15:35:53 15:35:53 15:36:16 15:37:01 15:37:19 15:37:35 15:37:46 15:38:01 15:38:15 15:38:15 15:38:27 15:38:39:07	771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 785 786 787 789	?56192.6 ?56731.4 56474.2 55454.0 56422.6 56458.2 56479.2 56488.8 56450.4 56450.4 56417.2 56515.4 ?56870.8 56523.8 56523.8 56530.4 56512.0 56473.8 56472.4
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15: 34: 01 15: 34: 13 15: 34: 28 15: 34: 49 15: 35: 01 15: 35: 13 15: 35: 53 15: 35: 53 15: 36: 16 15: 37: 01 15: 37: 19 15: 37: 35 15: 37: 46 15: 38: 01 15: 38: 01 15: 38: 53 15: 38: 53	771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 785 786 787 789	?56192.6 ?56731.4 56474.2 56474.0 56422.6 56458.2 56459.2 56488.8 56450.4 56450.4 5641.6 56417.2 56515.4 ?56870.8 56523.8 56523.8 56530.4 56512.0 56473.8 56441.8
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15:34:01 15:34:13 15:34:28 15:34:49 15:35:01 15:35:32 15:35:53 15:35:53 15:36:16 15:37:01 15:37:19 15:37:35 15:37:46 15:38:01 15:38:15 15:38:15 15:38:27 15:38:39:07	771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 785 786 787 789	?56192.6 ?56731.4 56474.2 55454.0 56422.6 56458.2 56479.2 56488.8 56450.4 56450.4 56417.2 56515.4 ?56870.8 56523.8 56523.8 56530.4 56512.0 56473.8 56472.4
33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004 33 004	15: 34: 01 15: 34: 13 15: 34: 28 15: 34: 49 15: 35: 01 15: 35: 13 15: 35: 53 15: 35: 53 15: 36: 16 15: 37: 01 15: 37: 19 15: 37: 35 15: 37: 46 15: 38: 01 15: 38: 01 15: 38: 53 15: 38: 53	771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 785 786 787 789	?56192.6 ?56731.4 56474.2 56474.0 56422.6 56458.2 56459.2 56488.8 56450.4 56450.4 5641.6 56417.2 56515.4 ?56870.8 56523.8 56523.8 56530.4 56512.0 56473.8 56441.8

۲,

34 004	15:41:10	794	256680.2
34 004	15:41:24	795	56702.0
34 004	15:41:43	796	257095.6
34 004	15:41:56	797	55670.6
34 004	15:42:07	798	56263.8
34 004	15:42:19	799	56475.4
	45.40.70	000	er 1 er 1 ** 4
34 004	15:42:32	800	56567.4
34 004	15:42:50	801	55577.8
34 004	15:44:13	802	56696.4
34 004	15:44:29	803	56525.8
34 004	15:44:40	804	56615.6
34 004	15:44:52	805	757052.2
34 004	15:45:04	806	257343.0
34 004	15:45:35	807	588 <b>57.6</b>
34 004	15:45:47	808	56395.0
34 004	15:45:59	809	56452.8
34 004	10.40.07	(3() <del>7</del>	JO477 0
34 004	15:46:13	810	56531.6
34 004	15:46:24	811	56570.8
34 004	15:46:35	812	56593.0
34 004	15:46:54	813	56542.0
35 004	15:47:57	814	56511.2
	15:48:22	815	
			56462.8
35 004	15:48:38	816	56497.0
35 004	15:48:52	817	56427.0
35 004	15:49:05	818	56321.6
35 004	15:49:19	819	?5613 <b>5.</b> 0
35 004	15:49:34	820	56452.2
35 004	15:49:54	821	56715.6
3 <b>5</b> 004	15:50:07	822	5698 <b>9.</b> 0
35 004	15:50:19	823	?56544.2
35 004	15:50:38	824	56414.4
35 004	15:51:23	825	56614.0
35 004	15:52:05	826	54525.8
35 004	15:52:35	827	56427.6
3 <b>5</b> 004	15:52:46	828	56467.4
35 004	15:52:58	829	56456.2
35 004	15:53:09	830	56531.2
35 004	15:53:21	831	56513.0
35 004	15:53:36	832	56497.2
35 004	15:53:47	833	56457.6
	15:53:59	834	56416.2
<b>35</b> 004	15:54:11	835	56356.4
35 004	15:54:30	936	56319.6
36 004	15:55:23	837	56405.8
<b>36</b> 004	15:55:53	838	56458.8
36 004	15:56:17	839	56499.6
36 004	15:56:34	840	56483.0
36 004	15:56:51	841	56495.2

36 QQ4	15:57:06	842	56517.6
36 004	15:57:19	843	56536.6
36 004	15:57:32	844	56578.4
36 004	15:57:44	845	55473.6
36 004	15:57:55	846	55527.5
		847	58645.2
36 004	15:58:08		
3 <b>6</b> 004	15:58:23	848	?55 <b>798.6</b>
36 004	15:58:36	849	56274.8
<b>36</b> 004	15:58:48	850	56399.8
36 004	15 <b>:59:</b> 00	851	56410.8
36 004	15:59:11	352	56440.6
36 004	15:59:26	853	56567.2
36 004	15:59:38	854	56818.8
36 004	15:59:50	855	56652.2
36 004	14:00:03	856	755871.6
36 004	16:00:15	857	257691.0
36 004	15:00:29	858	756210.2
<b>36</b> 004	16:00:40	859	56346.8
36 004	16:00:51	860	56498.8
	16:01:07	861	56559.8
36 004			
36 004	16:01:30	1862	56548.2
37 004	16:02:18	863	56487.2
37 004	16:02:32	864	56474.0
37 004	16:02:43	865	56388.6
37 004	16:02:55	866	75624 <b>8.</b> 0
37 004	16:03:08	867	56242.8
37 004	16:03:25	888	754301.4
37 004	16:03:41	869	56934.6
W/ WWT	10100471	-,-, ,	12127 W T V
37 004	16:03:52	870	55979.4
37 004	16:04:17	871	56678.6
37 004	16:04:29	872	756362.4
37 004	16:04:42	873	756103.2
37 004	16:04:55	874	?56147.6
37 004	16:05:08	875	256113.0
37 004	16:05:22	97 <b>5</b>	56506.6
37 004	16:05:35	877	?57023.0
37 004	16:05:48	878	756345.0
37 004	16:06:07	879	?56264.8
37 004	16:06:22	880	756220.6
37 004	16:06:35	881	56691.6
37 004	16:06:46	882	56493.2
37 004	16:06:59	883	56376.2
37 004	16:07:11	884	?56375.6
37 004	16:07:26	885	56440.4
37 004	16:07:41	886	56364.8
	1010/171		
	1 ムッハフ・ボデ	. C) (1) T	做人生物的 点
37 004	16:07:55	. 887	56335.0
37 004	16:07:55 16:08:14	· 887 888	56335.0 56274.6

38 004	16:12:35	390	56313.4
38 004	16:12:46	891	56310.4
38 004	16:12:57	892	56393.6
38 004	16:13:08	893	56444.4
38 004	16:13:21	894	56406.8
38 004	16:13:34	895	55458.0
38 004	16:13:46	896	56539.8
38 004	16:13:57	89 <i>7</i>	56632.0
38 004	16:14:07	898	56601.4
38 004	16:14:20	899	56428.0
38 004	16:14:32	900	56529.0
38 004	16:14:45	901	757682.6
38 004	16:14:59	902	745714.8
38 004	16:15:29	903	758727.2
38 004	16:15:58	904	756077.0
38 004	16:16:44	905	56040.0
38 004	16:16:57	905	56347.4
38 004	16:17:09	907	756638.4
38 004	16:17:22	908	56387.6
38 004	16:17:36	909	56379.6
38 004	16:17:48	910	56418.2
38 004	16:18:00	911	56416.6
39 004	16:18:43	912	56408.2
39 004	16:18:57	913	56353.8
39 004	16:19:09	914	56253.4
39 004	16:19:20	915	?562 <b>75.4</b>
39 004	16:19:34	916	756457.4
39 004	16:19:47	917	56758.8
39 004	16:19:59	918	56742.2
39 004	16:20:11	919	56761.8
39 004	16:20:24	920	56738.0
3 <b>9</b> 004	16:20:37	921	756278.0
39 004	16:20:53	922	?56753.0
39 004	16:21:14	923	756236.6
39 004	16:21:31	924	56310.0
39 004	16:21:44	925	56316.4
39 004	16:22:11	926	56467.8
39 004	16:22:30	927	56285.6
39 004	16:22:46	928	56349.4
39 004	16:27:01	929	56266.8
39 004	16:27:20	930	56062.6
39 004	16:27:38	931	755808.8
39 004	16:27:53	932	56227.2
39 004	16:28:07	933	756465.6
39 004	16:28:22	934	757124.0
39 004	16:28:36	935	56949.6
39 004	16:28:49	936	57279.4
39 004	16:29:01	937	57488.2
39 004	16:29:24	938	56930.4

39	004	16:29:45	939	56754.8
<b>39</b>	004	16:29:58	940	56623.0
39	004	16:30:10	941	56547.8
40	004	16:31:17	942	56638.0
40	004	16:31:45	943	257074.0
40	004	16:32:00	944	57311.4
40	004	16:32:13	945	56815.0
40	004	16:32:29	946	56386.0
40	004	16:32:43	947	56027.4
40	004	16:32:55	948	55981.4
40	004	16:33:07	949	756297.8
40	004	16:33:29	950	~5o441.4

DISPOSAL SITE D-3

## ** G-856 MAGNETOMETER DATA ** RAW FIELD Code: HANT

Line Date	Time	Site	Field
0 342	09:43:04	1	257189.4
0 342	09:43:57	2	55493.5
0 342	09:44:16	3	56909.2
0.342	09:44:50	4	~53382.2
0.342	09:45:17	5	257737.8
0 342	09:45:49	 خ	755094.6
0 342	09:46:45	7	254731.8
0 342	09:47:30	ġ	752258.6
0 342	09:48:04	9	?55268 <b>.</b> 8
140	TOTAL PROPERTY	,	: Carter and Carter as Car
0 342	09:48:41	10	755354.0
0 342	09:49:44	1 1	257540.4
0 342	09:51:23	12	757259.8
0 342	09:52:04	13	56492.6
0 342	09:52:36	14	?5 <b>6936.4</b>
0 342	09:52:51	15	56770.0
0 342	09:53:16	16	755281.2
0 342	09:53:41	17	253986.2
0 342	09:54:04	18	750007.4
0 342	09:54:21	19	56582.2
0 342	09:55:34	20	56475.8
0 342	09:55:58	21	756413.6
0 342	09:59:24	22	55870.4
0 342	09:59:44	23	55058.5
0 342	10:00:18	24	?56727.2
0 342	10:00:46	25	756659.4
0 342	10:01:07	25	?570 <b>82.</b> 0
0 342	10:01:24	27	56610.2
0.342	10:01:38	28	56720.6
0 342	10:01:53	29	255459.2
0.740	1 Ox On Con	ማታ ነጥ.	neert o
0 342	10:02:22	30	755531.2
0 342	10:02:47	31	56089.0
0 342	10:03:16	32	56309.8
0 342	10:03:36	33	56417.0
0 342	10:03:50	34	56472.6
1 342	10:09:44	35	755173.2
1 042	10:10:41	<u> 36</u>	254973.8
1 342	10:11:03	37	257299.8
1 342	10:12:35	38	757729.4
1 342	10:12:54	39	256854.2
1 342	10:13:14	40	56702.4
1 342	10:13:54	41	56463.2
1 074	ESSE E ASSE EMPT	"T .L	SEPTEMBER 4

^{? =} High gradient reading, indicating metal close to land surface.

1 342	10:14:11	42	255873.4
1 342	10:14:31	4.3	255534.0
1 342	10:14:52		
		44	?5 <b>5982</b> .5
1 342	10:15:32	45	56837.2
1 342	10:19:45	4.5	57428.0
		· ·	
1 342	10:20:00	47	756720.6
1 342	10:20:16	48	56707.2
1 342	10:20:29	49	56845.0
A 142 A	10120127	7/	
1 342	10:21:00	50	756158.6
1 342	10:21:28	54	56810.4
1 342	10:21:44		
		52	56820.6
1 342	10:21:57	53	7560 <b>76.2</b>
1 342	10:22:26	54	255987.6
1 342	10:22:47	55	
			757762.2
1 342	10:23:13	55	256423.6
1 342	10:23:29	57	756544.0
1 342	10:23:46	58	
			758139.2
1 342	10:24:21	59	75793 <b>8.4</b>
1 342	10:24:41	60	257341.8
=		1=1	
1 342	10:25:18	<b>61</b>	?57 <b>289.4</b>
1 342	10:25:42	62	757024.2
1 342	10:26:03	<b>6</b> 3	754548.8
1 342	10:26:43	64	753985.6
1 342	10:27:10	65	254843.8
1 342	10:27:30	నర -	257004.4
1 342	10:27:45	67	2533 <b>46.</b> 0
2 342	10:28:47	68	256923.8
2 342	10:29:14	69	255611.0
E 072	10.27.14	ω7	* WWGAA. V
2 342	10:29:29	70	56108.2
2 342	10:30:01	71	756869.6
2 342	10:30:22	72	56479.2
2 342	10:30:42	73	756772.2
2 342	10:31:12	7.4	257423.0
2 342	10:31:34	75	757233.2
2 342	10:31:57	75	?57 <b>6</b> 83 <b>.8</b>
2 342 2 342	10:32:12	<b>7</b> 7	756513.6
2 342	10:32:44	78	757213.4
2 342	10:32:59	79	56587.0
2 342	10:33:14	80	56336.2
2 342	10:33:35	81	256594.0
— ∵TA □ 7.1□			
2 342	10:33:50	82	56278.2
2 342	10:34:03	83	756672.4
2 342	10:34:19	84	756855.2
0.740	10:34:50		
2 342 2 342 2 342 2 342 2 342 2 342		85	757718.2
2 342	10:35:10	85	56867.8
2 342	10:35:28	87	255361.6
2 342	10:35:44		
		88	256464.6
2 342	10:35:56	3 <b>9</b>	257433.0

2 342	10:36:11	90	057563.B
2 342	10:36:33	94	53790.8
2 342	10:36:53	92	?57563 <b>.</b> 8
2 342	10:37:11	93	25 <b>6729.</b> 0
2 342	10:37:25	44	56776.2
	10:37:38	95	
2 342			56418.6
2 342	10:37:51	95	56469.2
2 342 2 342	10:38:05	97	56867.4
2 342	10:38:27	98	257197.8
		99	757892.2
2 342	10:38:53	7.7	3/07212
2 342	10:39:15	100	?5 <b>2289.</b> 0
2 342	10:39:53	101	756185.2
~			
3 342	10:41:40	102	755989.8
3 342	10:42:08	103	?56469.B
3 342	10:42:31	104	?58853.0
	10:43:05	105	756068.2
3 342	10:43:21	106	756744.2
3 342	10:43:35	107	?57825.6
3 342	10:43:54	108	755673.4
3 342	10:44:27	109	756269.6
3 342	10:44:40	110	56694.2
3 342	10:44:54	111	256217.2
3 342	10:45:11	112	756276.4
3 342	10:45:24	113	5690 <b>9.6</b>
3 342	10:45:39	114	755984.8
3 342	10:47:01	115	255577.0
3 342	10:47:14	116	756909.8
3 342	10:47:26	117	7562 <b>99.6</b>
3 342	10:47:40	113	56338.8
3 342	10:48:05	119	?56423 <b>.6</b>
3 342	10:48:21	120	56938.0
3 342	10:48:43	121	56894.4
3 342	10:48:56	122	56542.4
3 342	10:49:11	123	56678.0
3 342	10:49:29	124	754085.4
3 342	10:49:57	125	756090.2
3 342	10:50:13	126	56236.5
3 342	10:50:27	127	56182.4
3 342	10:50:40	128	756066.8
	10:51:01	129	56523.6
3 342	10:21:01	( Lin 17	00040.0
			, management
3 342	10:51:18	130	754455.2
3 342	10:51:35	131	756487.4
3 342	10:51:50	132	56639.0
	10:52:13	133	255811.4
3 342	10:52:28	134	756272.0
3 342	10:53:05	1 55	255892.0
4 342	10:54:30	135	757429.6
4 342	10:54:55	177	258376.8
	10:55:17	1 60	256691.4
4 342	10100117	1 113	: 3007114

4 342	10:55:32	139	756889.4
4 342	10:55:54	140	757078.4
4 342	10:56:12	141	756868.6
4 342	10:56:27	142	55792.0
4 342	10:56:42	143	56441.2
4 342	10:56:55	144	56783.4
4 342	10:57:08	145	56192.0
		145 146	55942.4
4 342	10:57:22		756073 <b>.</b> 4
4 342	10:57:36	147	
4 342	10:57:49	148	56673.4
4 342	10:58:03	149	?56824 <b>.8</b>
4 342	10:58:20	150	?559 <b>45.</b> 8
4 342	10:58:36	151	?559 <b>69.6</b>
4 342	10:58:50	152	?57 <b>156.8</b>
4 342	10:59:20	153	255528.4
4 342	10:59:37	154	56158.0
4 342	10:59:51	155	56143.6
4 342	11:00:03	156	56450.8
4 342	11:00:16	157	56337.6
4 342	11:00:29	158	755701.8
4 342	11:00:43	159	55410.8
4 342	11:00:57	160	756980.2
4 342	11:01:10	151	56913.6
· · · · · <del>-</del> -	11:01:10	162	56491.4
4 342		163	56403.8
4 342	11:01:35		
4 342	11:01:53	164	7568 <b>22.</b> 0 7569 <b>58.4</b>
4 342	11:02:06	165	
4 342	11:02:20	165	56302.6
4 342	11:02:36	167	757381.8
4 342	11:02:57	153	57187.6
4 342	11:03:14	169	257279.2
4 342	11:03:28	170	75658 <b>9.</b> 2
4 342	11:03:47	171	757122.6
4 342	11:05:17	172	56029.0
5 342	11:09:38	173	55923.2
5 342	11:10:04	174	?55497.4
5 342	11:10:19	175	755307.6
5 342	11:10:33	176	?54462.8
5 342	11:10:54	177	757114.4
5 342	11:11:10	178	257956.4
5 342	11:11:24	179	57647.4
5 342	11:11:39	180	756589.8
5 342	11:11:59	181	756322.2
5 342	11:12:43	182	756057.8
5 342	11:12:56	183	756001.6
5 342 5 342	11:12:08	184	756665.8
5 342 5 342	11:13:08	185	758265.8
5 342	11:13:42	135	757705.6
شراجات ف	11-10-4-	A + 3 (.)	/ /

5 342	11:15:56	1.67	5.570c.4
5 342	11:14:12	13363	55555 <b>.</b> 6
5 342	11:14:26	169	58955.8
G 072	1111-1-11-1-1	, ,	
E 740	1111/170	t Car.	nel ne a
5 342	11:14:38	190	ენგად <b>ნ.</b> 8
5 342	11:14:58	191	56420.4
5 342	11:15:19	192	756332.0
5 342	11:15:39	193	256110.6
5 342	11:15:50	194	56728.6
	11:15:02	195	75&182.0
5 342			
5 342	11:16:17	196	~55063 <b>.</b> 8
5 342	11:16:39	197	758289.0
5 342	1::16:53	198	257017.4
5 342	11:17:06	199	756233.6
<b>₩</b>		•	. 1.2 6.7 4.2 1.2 1.2 1.2
5 342	11:17:18	200	755808.2
5 342	11:17:34	201	257148.8
5 342	11:17:50	202	56878.6
5 342	11:18:05	203	75651 <b>1.6</b>
5 342	11:18:17	204	56577.8
5 342	11:18:29	205	55506.0
5 342	11:18:41	206	54509.2
	11:18:56	207	58805.8
	<del>-</del>		
5 342	11:19:10	208	54862.0
5 342	11:19:31	209	?56 <b>277.8</b>
5 342	11:19:46	210	?504 <b>95.</b> 0
5 342	11:20:08	211	56810.8
5 342	11:20:21	212	553 <b>89.</b> 0
5 342	11:20:40	213	55292.6
	11:20:52	214	56918.4
5 342			
5 342	11:21:09	215	257209.4
6 342	11:22:43	216	958544.2
6 342	11:23:03	217	756374.4
6 342	11:23:20	218	756456.2
6 342	11:23:37	219	257493.8
U			
6 342	11:23:58	220	57033.6
6 342	11:24:45	221	56219.2
6 342	11:24:58	222	56276.8
6 342	11:25:19	223	756500.4
6 342	11:25:31	224	756875.8
6 342	11:25:46	225	756232.4
6 342	11:26:00	226	?58653.8
		227	756800.4
6 342	11:26:14		
6 342	11:26:28	228	56533.0
6 342	11:26:42	229	56803.4
6 342	11:26:59	230	257311.4
6 342	11:27:30	231	56674.4
6 342	11:27:44	232	54588.8
6 342	11:27:58	233	56335.2
6 342	11:28:11	234	56379.6
O	130	· 7	

7 342 7 342	13:05:36 13:05:49	282 281	56602.0 756922.8
7 342	13:05:25	280	56470.0
7 342	13:05:12	279	56574.6
7 342	13:05:00	278	56676.4
7 342	13:04:48	277	256071.8
7 342	13:04:35	276	56457.4
7 342	13:04:16	275	56623.8
7 342	13:04:00	274	756625.6
7 342	13:03:27	272 273	256387.8
7 342 7 342	13:03:13 13:03:27	271 272	56856.8 58880.0
7 342 7 342	13:02:53	270	75458 <b>9.</b> 2
7 740	4 77 4 A CO 4 77 77	eriis rime in	DE/ECO C
7 342	13:02:36	269	755971.0
7 342	13:02:20	258	56398.6
7 342	13:02:08	267	56546.2
7 342	13:01:55	266	56547.8
7 342	13:01:43	265	256431.2
7 342	13:01:06	264	56551.6
7 342	13:00:45	263	756718.4
7 342	13:00:27	262	57201.8
7 342	13:00:14	261	57338.0
7 342	12:59:58	260	758152.8
7 044	12.07.20	437	57508.2
7 342 7 342	12:59:07 12:59:23	258 259	573 <b>79.2</b>
7 342 7 342	12:58:24	257	755686.8
6 342 7 342	12:56:39	256 257	75 <b>6659.</b> 0
6 342 6 343	12:56:22	255	756453.6
6 342	12:56:07	254	756313.4
6 342	12:55:44	253	756894.2
6 342	12:55:31	252	?57548.6
6 342	12:55:15	251	257465.6
6 342	12:54:52	250	754832.8
6 342	12:54:35	249	56671.2
5 342	12:54:23	248	56561.8
6 342	12:54:00	247	56387.0
6 342	12:53:49	245 245	756706.8
6 342	12:53:36	245	756148.6
6 342 6 342	12:53:00 12:53:12	243 244	756701.0 757251.2
6 342 6 342	12:52:48	242	56433.8
6 342	12:52:33	241	56263.8
6 342	11:29:39	240	56464.6
6 342	11:29:25	239	55496.4
6 342	11:29:12	278	56364.8
6 342	11:28:59	237	56474.0
6 342	11:28:38	236	756658.2
6 342	11:28:26	235	56290.2

7 342	13:06:03	283	56498.6
7 342	13:06:27	265	56252.6
7 342	13:06:51	285	756382.6
7 342	13:07:09	285	56510.0
7 342	13:07:28	287	56319.0
7 342	13:07:40	288	56263.8
7 342	13:07:56	289	756028.2
7 342 7 342 7 342 7 342 7 342 7 342 7 342 8 342 8 342 8 342	13:08:13 13:08:31 13:08:50 13:09:03 13:09:21 13:09:45 13:10:05 13:11:40 13:12:01 13:12:22	290 291 293 294 295 296 297 298 299	?56784.2 56678.8 56199.4 56259.0 ?56374.0 56397.2 ?56754.6 ?56564.4 ?55582.0 ?56554.8
8 342 8 342 8 342 8 342 8 342 8 342 8 342 8 342 8 342 8 342	13:12:58 13:13:15 13:13:27 13:13:48 13:14:04 13:14:20 13:14:38 13:14:56 13:15:16	300 301 302 303 304 305 306 307 308 309	?56698.4 56053.8 56256.0 56388.0 56779.8 ?57550.2 56585.2 ?56286.4 ?56526.4 56681.2
8 342	13:16:04	310	56500.2
9 342	13:16:20	311	257055.6
8 342	13:16:37	312	257451.6
8 342	13:16:50	313	257028.0
8 342	13:17:04	314	256078.0
9 342	13:17:17	315	55967.0
9 342	13:17:31	316	56357.6
8 342	13:17:45	317	56542.6
8 342	13:17:57	318	56517.4
8 342	13:18:11	319	255836.2
8 342	13:18:31	320	756431.2
8 342	13:18:52	321	757359.4
8 342	13:19:12	322	756660.6
8 342	13:19:26	323	757284.2
8 342	13:19:42	324	757727.2
8 342	13:20:00	325	756116.4
8 342	13:20:12	326	756468.8
8 342	13:20:26	327	56340.4
8 342	13:20:38	328	56640.6
8 342	13:20:50	329	757357.8
8 342	13:21:15	330	755627.0

8	342	13:21:28	331	256849.0
8	342	13:21:55	332	257175.0
8	342	13:22:14	333	56971.6
8	342	13:22:29	334	756051.0
8	342	13:22:44	335	758423.6
8	342	13:23:05	336	756496.6

** G-856 MAGNETOMETER DATA **
RAW FIELD Code: HAN2

Line	Date	Time	Site	Field
	342	13:24:50	338	57063.0
9	342	13:25:11	339	53811.8
·				
9	342	13:25:30	340	257349.8
9 ·	342	13:25:57	341	255424.0
9	342	13:26:10	342	56983.0
9	342	13:26:58	343	258298.4
9	342	13:27:54	344	56607.8
9	342	13:28:07	345	56646.4
. 9	342	13:28:18	346	56378.0
9	342	13:28:31	347	756162.8
	342	13:28:44	348	56584.0
	342	13:28:57	349	56713.6
•				
	342	13:29:11	350	5 ₀ 506.5
	342	13:29:28	351	256929.2
	342	13:29:46	352	255637.8
9	342	13:30:21	353	56431.4
9	342	13:30:37	354	56834.6
9	342	13:30:51	355	56643.0
9	342	13:31:04	356	55654.4
9	342	13:31:17	357	57063.0
	342	13:31:31	358	55263.4
-	342	13:31:44	359	755350.4
,				· · · · · · · · · · · · · · · · · · ·
9	342	13:31:58	360	56235.0
9	342	13:32:20	361	756598.4
9	342	13:32:38	362	257206.8
9	342	13:32:53	363	56648.8
9	342	13:33:17	364	56346.4
9	342	13:33:30	365	756049.2
9	342	13:33:44	ొదద	756361.2
9	342	13:33:57	C67	258096.0
9	342	13:34:32	368	256614.6
9	342	13:34:44	369	56211.6
				and the time to be seen.
	342	13:34:55	370	755845.2
7	342	13:35:14	371	56697.8
	342	13:35:34	372	756777.2
9	342	13:35:50	373	757053.8
9	342	13:36:19	374	759400.0
9	342	13:36:39	375	757713.6
10	342	13:37:51	376	255518.8
10	342	13:38:08	377	56500.8
	342	13:38:26	378	53959.2
	342	13:38:57	379	755863.4

10 342	13:39:17	5130	గ్రమ్మన్న. త
	13:39:34	3.31	58378.8
10 342			
10 342	13:39:47	<b>38</b> 0	55396.0
10 342	13:40:06	383	756952.2
10 342	13:40:20	384	56785.8
-	13:40:36	385	758138.2
10 342			
10 342	13:40:53	384	754937.4
10 342	13:41:09	387	756141.0
10 342	13:41:23	388	56496.6
	13:41:42	389	756843.8
10 342	Los Mais Mas	- 233.3	
10 342	13:42:04	390	757552.8
10 342	13:42:17	391	257745.6
-	13:42:30	392	56420.4
10 342			256477.4
10 342	13:42:43	393	
10 342	13:43:01	394	55824.0
10 342	13:43:18	395	255519.4
10 342	13:43:31	396 ·	756383.8
		397	756390.4
10 342	13:43:47		
10 342	13:44:02	398	756783.0
10 342	13:48:04	399	56697.2
• • • • •			
ሳሌ ማ <b>ለማ</b>	13:48:20	400	56239.0
10 342			
10 342	13:48:33	401	755861.2
10 342	13:48:46	402	256934.6
10 342	13:48:59	403	756180.4
	13:49:14	404	253521.0
10 342			56526.4
10 342	13:49:28	405	
10 342	13:49:41	406	55507.6
10 342	13:49:53	407	756951.8
10 342	13:50:07	408	756204.2
	13:50:33	409	56614.0
10 342	Tana and a second	785.9.9	3001410
10 342	13:50:46	410	756208.2
10 342	13:51:03	411	56187.4
10 342	13:51:18	412	56657.4
	13:51:31	413	55554.8
10 342			
10 342	13:51:57	414	56765.4
10 342	13:52:19	445	?56892.4
10 342	13:52:48	416	?58863.0
10 342	13:53:08	417	58144.4
		418	56133.4
11 342	13:55:27		
11 342	13:55:53	419	756218.4
11 342	13:56:28	420	257249.0
	13:56:55	421	57257.0
	_	422	56858.0
11 342	13:57:22		
11 342	13:57:36	423	56361.2
11 342	13:57:48	424	756237.8
11 342	13:58:03	425	756180.6
	13:58:22	426	56716.0
11 342			256337.2
11 342	13:58:40	427	(JOHO) + 4

11 342 11 342	13:58:59 14:11:10	428 429	55719.4 057052.0
41 342 11 342 11 342 11 342 11 342 11 342 11 342 11 342 11 342	14:11:24 14:11:44 14:11:57 14:12:11 14:12:25 14:12:38 14:12:50 14:13:04 14:13:19	400 431 430 433 404 435 436 477 408	56549.0 056285.2 56219.8 056928.8 56774.2 056897.4 055794.8 757424.6
11 342	14:13:39	439	56594.6
11 342 11 342 11 342 11 342 11 342 11 342 11 342 11 342 11 342	14:13:51 14:14:28 14:14:44 14:15:06 14:15:18 14:15:33 14:15:51 14:16:17 14:16:38 14:16:56	440 441 442 443 444 445 446 447 448 449	756315.4 56440.0 756378.6 756767.4 757284.6 57153.4 757308.2 57002.6 756425.8 56195.2
11 342 11 342 11 342 11 342 11 342 11 342 11 342 11 342 11 342 12 342	14:17:09 14:17:24 14:17:37 14:17:51 14:18:08 14:18:24 14:18:44 14:18:59 14:19:19	450 451 452 453 454 455 456 457 458 459	56180.4 ?55754.6 ?55689.8 ?55713.8 ?55789.2 ?57152.2 ?57243.4 ?56833.2 57361.6 ?57435.2
12 342 12 342 12 342 12 342 12 342 12 342 12 342 12 342 12 342	14:58:47 14:57:42 14:58:02 14:58:14 14:58:27 14:58:41 14:58:53 14:59:05 14:59:17	450 451 462 463 464 465 466 467 468 469	56677.4 755870.8 756787.8 757095.0 755758.0 756517.6 56288.2 56116.6 56559.0 56505.2
12 342 12 342 12 342 12 342 12 342 12 342	14:59:48 15:00:04 15:00:24 15:00:36 15:00:54 15:01:07	470 471 472 473 474 475	56338.2 56420.0 756963.8 757180.0 56496.4 56584.2

12 342 12 342	15:01:19 15:01:31	478 477	758104.4 758617.8
12 342 12 342	15:02:01 15:02:14	478 479	755663.0 56425.0
12 342 12 342	15:02:26 15:02:43	480 481	?57493.4 56613.8
12 342	15:02:55	482	?57238.6
12 342	15:03:07	483	756194.9
12 342	15:03:20	484	56449 <b>.6</b>
12 342	15:03:32	485	755804.4
12 342	15:03:50	486	255534.6
12 342	15:04:03	487	56276.4
12 342	15:04:15	488	56413.4 55229.0
12 342	15:04:29	489	
12 342	15:04:40	490	56479.6
12 342	15:04:55	491	56704.0
12 342	15:05:09	492	257357.2
12 342	15:05:22	493	756943.8
12 342	15:05:35	494	255664.2
12 342	15:05:47	495	756668.2
12 342	15:06:00	496 497	56496.8 56816.0
12 342	15:06:14	497 498	56407.6
12 342	15:06:27	475 499	5653 <b>6.8</b>
12 342	15:06:38	<del>4</del> 77	
12 342	15:06:52	500	587 <b>27.0</b>
12 342	15:07:08	501	564 <b>56.</b> 0
12 342	15:07:23	502	755426.0
13 342	15:11:47	503	563 <b>86.</b> 2
13 342	15:12:49	504	55286.2
13 342	15:13:10	505 604	56314.0 56306.6
13 342	15:13:29 15:13:52	505 507	5631 <b>6.8</b>
13 342 13 342	15:14:08	508	56220.8
13 342	15:14:30	509	56310.6
13 342	15:14:46	510	56110.2
13 342	15: 15: 26	511	56218.4
13 342	15:15:39	512 513	757118.8 755953.4
13 342	15:16:00 15:17:07	514	56313.6
13 342 13 342	15:17:20	515	756625.6
13 342	15:17:32	515	256773.6
13 342	15:17:45	517	756987.2
13 342	15:18:00	518	57293.6
13 342	15:18:14	519	57052.4
13 342	15:18:27	520	257051.2
13 342	15:18:46	521	758059.8
13 342	15:19:02	522	756587.2
· · <del>-</del>	15:19:16	523	756122.2

13 342	15:19:33	524	756086.6
13 342	15:19:46	525	56397.6
13 342	15:19:57	526	757958.8
13 342	15:20:10	527	758423.2
13 342	15:20:25	528	756501.2
13 342	15:20:37	529	56951.2
13 342 13 342 13 342 13 342 13 342 13 342 13 342 13 342 13 342	15: 20: 52 15: 21: 09 15: 21: 22 15: 21: 41 15: 21: 57 15: 22: 10 15: 22: 24 15: 22: 36 15: 22: 58 15: 23: 13	530 531 532 533 534 535 536 537 538 539	756329.4 56526.2 56440.4 756158.8 56417.8 756290.6 756290.6 756118.6 756302.2 756555.0
13 342 13 342 13 342 13 342 13 342 13 342 13 342 13 342 13 342	15: 23: 27 15: 23: 44 15: 23: 56 15: 24: 10 15: 24: 26 15: 24: 38 15: 24: 50 15: 25: 06 15: 25: 17	540 541 542 543 544 545 546 547 548 549	?56423.6 56631.4 56461.2 ?56433.4 56650.6 5650.0 56552.4 56132.0 ?55317.2 ?55699.2
13 342 13 342 13 342 13 342 14 342 14 342 14 342 14 342 14 342	15: 25: 45 15: 25: 58 15: 26: 11 15: 26: 30 15: 28: 42 15: 28: 57 15: 29: 11 15: 29: 23 15: 29: 37	550 551 552 553 554 555 556 557 559	?57543.2 56205.6 ?56614.8 ?55574.6 ?557678.8 ?57678.8 ?52155.0 ?55682.8 56218.4 56278.8
14 342	15:30:05	560	756584.6
14 342	15:30:20	561	56586.0
14 342	15:30:33	562	56418.0
14 342	15:30:45	563	756471.8
14 342	15:30:58	564	756686.8
14 342	15:31:14	565	56520.6
14 342	15:31:27	566	56621.2
14 342	15:31:43	567	756740.8
14 342	15:31:56	568	56540.8
14 342	15:32:24	570	56482.4
14 342	15:32:38	571	256631.9

14 342	15:32:52	572	756133.8
14 342	15:33:04	573	056767.6
14 342	15:33:17	574	58550.6
14 342	15:37:55	5/75	?5660 <b>7.</b> 0
14 342	15:38:07	576	756343.0
			057613.0
14 342	15:38:24	577	
14 342	15:38:37	578	56907.4
		579	?573 <b>88.</b> 0
14 342	15:38:53	3/7	(U/UDD+V
14 342	15:39:09	580	755786.0
14 342	15:39:25	581	755944.2
14 342	15:39:39	582	56341.2
14 342	15:39:52	583	56267.6
14 342	15:40:04	584	255471.8
14 342	15:40:19	585	56366.8
14 342	15:40:31	586	75 <b>6966.</b> 0
14 342	15:40:48	587	757112.0
14 342	15:41:04	588	755448.6
14 342	15:41:18	589	56713.8
A 1 10 10 10 10 10 10 10 10 10 10 10 10 1	101.411		
14 342	15:41:31	590	56942.4
	15:41:49	591	55807.0
	<b>-</b>		
14 342	15:42:02	592	257249.6
14 342	15:42:14	593	257823.4
14 342	15:42:28	594	56895.0
14 342	15:42:48	595	56707.2
		595	56412.2
14 342	15:43:03		
14 342	15:43:15	597	55017.8
14 342	15:43:28	598	55457.6
14 342	15:43:48	599	5673 <b>9.2</b>
14 342	15:44:15	500	56872.6
14 342	15:44:34	<b>601</b>	756316.4
14 342	15:44:55	502	?566 <b>40.8</b>
			56639.0
14 342	15:45:20	చంక	
14 342	15:45:39	504	563 <b>86.</b> 0
14 342	15:46:10	60 <b>5</b>	55314.6
14 342	15:46:57	505	56362.8
14 342	15:47:45	607	56453.8
			756488.4
14 342	15:48:09	608	
14 342	15:49:49	609	?5 <b>65</b> 32.6
	a product of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont	* 4 **	E / 175 /
14 342	15:50:43	610	56472.6
14 342	15:51:08	611	756430.0
	15:51:32	612	55507.8
14 342	15:51:48	613	55515.2
14 342	15:52:06	614	75 <b>6594.</b> 0
14 342	15:52:37	615	56598.0
14 342	15:52:54	515	756078.2
	15:53:14	617	56394.2
14 342			
14 342	15:53:31	618	56517.2
14 342	15:53:47	619	55559.8
17 OTA	10:00:77	W & 7	

14 342	15:5- 40	<b>520</b>	58532.4
14 342	15:55:02	671	58596.8
		622	58535.6
14 342	15:55:16		
14 342	15:55:29	623	55448.8
14 342	15:55:45	624	년&5540.11 -
14 342	15:56:08	ر. د. د.	~56658.0
<del>-</del>			
14 342	15:56:35	ఉనిత	50624.8
14 342	15:55:49	627	56577.1
14 342	15:57:05	523	53571.4
14 342	15:57:22	52.9	54579.4
Service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the servic	مدشده فالألف فالساط	G., /	561/7. <b>u</b>
14 342	15:57:43	530	55578.4
14 342	15:59:09	631	55523.4
14 342	16:01:08	632	55478.0
			= : :
14 342	15:01:35	<b>6</b> 33	56503.8
14 342	16:02:14	634	53578.8
14 342	16:02:31	635	53583.6
14 342	16:02:44	దక్ర	56594.8
14 342	15:02:58	637	56603.6
14 342	16:03:22	638	55610.2
14 342	16:03:35	639	56592.0
14 342	16:03:50	640	56610.0
	16:04:10	541	54589.6
14 342			
14 342	15:04:29	642	55502.2
15 342	16:09:57	643	56547.2
15 342	15:10:15	644	56538.8
15 342	16:10:39	645	55548.6
			5.547.6
15 342	16:11:07	646	
15 342	16:11:21	647	56532.4
15 342	16:11:39	648	55527.2
15 342	16:11:52	649	56534.0
10 072	10.11.07	13 1 7	
		, pro	00/03/04
15 342	16:13:05	650	756542.4
15 342	16:13:31	<b>5</b> 51	?55 <b>558.</b> 2
15 342	15:13:49	652	256565.6
15 342	16:14:17	653	56534.4
	16:14:34	654	88534.0
15 342			
15 342	16:14:50	655	56524.8
15 342	16:15:57	చాన	55492.0
15 342	16:16:33	657	56548.2
15 342	14:16:58	653	56566.6
15 342	16:17:19	659	54589.2
15 342	10:1/:17	ದವ7	JUJU / = 2
15 342	16:18:05	660	58549.6

** G-856 MAGNETOMETER DATA **
RAW FIELD Code: HANG

Line	Date	Time	Site	Field
!5	000	08:30:18	1	56531.0
	000	08:30:57	2	56470.6
(	000	08:31:13	3	56431.0
l	000	08:31:30	4	56402.4
- (	000	08:31:48	5	56406.2
İ	000	08:32:15	6	56472.8
	000	08:32:33	フ	56447.6
İ	000	08:32:48	8	56534.4
l	000	08:33:21	9	?56350.4
_				
	QQQ	08:33:40	10	755989.0
	000	08:34:16	11	56769.4
	000	08:34:42	12	756345.4
	000	08:34:56	13	756071.2
[	000	08:35:11	14	756284.4
İ	000	08:35:32	15	56475.0
	000	08:36:03	16	755829.6
	000	08:36:19	17	755839.2
ļ	000	08:36:37	18	756331.8
İ	000	08:37:11	19	56698.4
	000	08:37:26	20	56836.0
	000	08:38:16	21	57076.B
}	000	08:38:38	22	756415.6
- 1	000	08:38:56	23	56677.2
	000	08:39:11	24	756663.2
1	000	08:39:23	25	56810.8
	000	08:39:37	26	57326.6
	000	08:39:51	27	756807.0
- (	000	08:40:28	28	56816.4
	000	08:40:41	29	56610.2
	000	08:40:54	30	?56346.8
	000	08:41:16	31	756126.4
}	000	08:41:43	32	56585.2
	000	08:41:56	23	56606.8
l	000	08:42:11	<b>3</b> 4	56530.4
1	000	08:45:00	35	56677.4
1	000	08:45:15	36	754518.0
1	000	08:45:30	37	56341.6
	000	08:45:46	38	?55565.6
	000	OB: 46: 07	<b>39</b>	?57370.8
	000	08:46:22	40	57110.6
•	000	08:46:45	41	56696.2
15	000	08:47:23	42	756089.8
13	VOO	VO: 4/ : 40	~~ <u>~</u>	: 30007.0

15	000	08:47:36	43	56209.4
1	000	08:47:49	44	56293.8
j	000	08:48:00	45	756110.8
1	000	08:48:12	46	56475.8
	000	08:48:25	47	756360.0
		08:48:39	48	755953.2
	000		49	56412.6
	000	08:48:53	47	70417.0
	000	08:49:06	50	56770.0
Ì	000	08:49:20	51	56596.4
ĺ	000	08:49:42	52	756368.4
	000	08:49:59	53	756285.4
	000	08:50:11	54	56511.8
		08:50:25	55	756363.0
	000		56	
	000	08:50:38		756213.4
	000	08:50:52	57	56602.4
	000	08:51:03	58	756270.6
	000	08:51:15	59	56528.2
1				
V	000	08:51:44	60	756457.4
15	000	08:52:25	61	56162.0
16	000	08:54:28	62	756240.2
	000	08:54:48	63	56037.8
-	000	08:55:01	64	256174.4
16		08:55:16	65	56508.0
	000	08:55:29	66	756761.0
		08:55:42	67	757145.6
16			68	56589.4
	000	08:55:55		
16	000	08:56:08	69	56390.6
14	000	08:56:20	70	756589.4
16	000	08:56:49	71	756510.2
	000	08:57:03	72	756759.0
	000	08:57:19	73	56638.0
			74	56385.8
16	000	08:57:31	7 <del>5</del>	56306.0
16	000	08:57:46		
	000	08:57:57	76 	56198.6
	000	08:58:15	77	756771.2
	000	08:58:28	78	56403.6
16	000	08:58:44	79	56578.2
16	000	08:58:58	80	756657.4
	000	08:59:13	81	56654.0
	000	08:57:15	82	756864.2
		09:04:27	83	56897.8
16	000			?56927.4
	000	09:04:44	84	
	000	09:04:57	8 <b>5</b>	56542.8
	000	09:05:10	86	56367.2
	000	09:05:22	87	56352.2
	000	09:05:34	88	56300.4
16	000	09:05:45	89	756431.8
16	000	09:05:56	90	?56533.8

15 000	09:06:15	91	56289.0
15 000	09:06:26	92	56222.0
16 000	09:06:40	93	56446.8
16 000	09:06:54	94	256608.4
16 000	09:07:07	95	56144.6
16 000	09:07:19	96	56385.6
16 000	09:07:32	97	?5 <b>6558.</b> 0
16 000	09:07:45	98	56272.8
16 000	09:07:59	99	256589.2
10 000	07407407	ŕ	
16 000	09:08:14	100	56475.8
16 000	09:08:55	101	58532.0
16 000	09:09:10	102	255708.0
16 000	09:09:25	103	55459.2
16 000	09:09:38	104	56594.8
16 000	09:09:56	105	756079.6
	07:07:38	108	257736.2
	09:10:12	105	755655.4
16 000			756560.6
16 000	09:10:48	108	
16 000	09:11:01	109	756949.2
47 000	00.11.16	110	56525.2
16 000	09:11:16 09:11:33		?56763 <b>.</b> 6
16 000		$\frac{111}{112}$	?570 <b>65.</b> 0
16 000	09:11:47		
16 000	09:12:39	113	?56935.6
16 000	09:13:01	114	56135.8
16 000	09:13:16	115	256253.2
16 000	09:13:42	115	56490.8
16 000	09:13:59	117	56514.4
16 000	09:14:15	118	55513.2
16 000	09:14:34	119	56430.4
_	· · · · · · · · · · · · · · · · ·		
16 000	09:14:55	120	?5a528.2
16 000	09:15:17	121	756535.6
16 000	09:15:33	122	756545.2
16 000	09:16:02	123	256571.2
16 000	09:16:59	124	756580.2
16 000	09:17:18	125	56568.6
14 000	09:17:40	126	56547.8
15 000	09:18:30	127	<u> 155550.2</u>
16 000	09:18:52	128	56573.6
15 000	09:19:08	129	58580.0
14 055	09:19:39	130	56578.8
16 000 16 000	09:19:59	131	56590.4
	07:17:34	132	56577.8
16 000	09:20:08	133	56575.2
16 000		133	56580.8
16 000	09:21:05	134 135	56571.4
16 000	09:21:24		54582.4
16 000	09:21:40	136 137	756584.4
16 000	09:21:58	137	
16 000	09:22:20	138	756587.4
16 000	09:22:38	139	756584.0

17 000	09:26:53	140	55507.5
17 000	09:27:41	141	56502.2
17 000	09:30:21	147	56507.0
17 000	09:30:48	143	50507.6
17 000	09:31:10	144	Matt13.0
17 000	09:31:25	145	5651 <b>6.6</b>
17 000	09:31:40	146	56503.8
	09:31:56	147	
			56507.6
17 000	09:32:30	148	56501.0
17 000	09:33:06	149	56499.8
17 000	09:33:49	150	56502.0
17 000	09:34:16	151	56496.6
17 000	09:34:31	152	58485.8
17 600	09:35:04	153	56482.6
17 000	09:35:23	154	
	0 <b>7:</b> 35: 38		56491.4
		155	56486.6
17 000	09:35:53	156	56484.5
17 000	09:36:13	157	56499.8
17 000	09:36:29	158	56493.8
17 000	09:36:45	159	56484.2
17 000	09:37:08	140	56480.0
17 000	09:37:25	160	56488.2
		161	
17 000	09:37:44	162	756458.8
17 000	09:38:28	163	56487.8
17 000	09:39:00	164	56462.0
17 000	09:39:15	165	55447.4
17 000	09:39:41	166	563 <b>82.4</b>
<b>17</b> 000	09:40:01	167	?56074.2
17 000	09:40:20	168	56628.6
17 000	09:40:44	169	55484.6
17 200	39149130	1770	E/E07 0
17 000	09:42:00	170	56527.2
17 000	09:42:19	171	56439.0
17 000	09:42:41	172	56339.0
17 000	09:43:25	173	56186.2
17 000	09:43:59	174	56231.0
17 000	09:44:13	175	56347.8
17 000	09:44:50	176	756411.2
17 000	09:45:26	177	56354.2
17 000	09:45:38	178	756205.2
17 000	09:46:07	179	56459.4
17 000	09:47:08	180	?54838.0
	09:47:23		56987.6
		181	
17 000	09:47:53	182	56611.6
17 000	09:48:04	183	56498.2
17 000	09:48:19	194	56322.8
17 000	09:48:30	185	56392.6
17 000	09:48:42	186	56443.0
17 000	09:48:55	187	?5638 <b>6.8</b>

17 000	09:49:09	188	*\$\&\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
17 000	09:50:18	159	56356.0
			14,17,2 22,00
17 000	09:50:32	190	\$62 <b>6</b> 0.6
17 000	09:51:29	191	56529.6
		192	56453.8
17 000	09:51:43		
17 000	09:51:56	193	58395.4
17 000	09:57:10	194	257427.2
17 000	09:52:43	195	755 10.4
17 000	09:52:57	196	55450.0
17 000	09:50:09	197	O55274.0
17 000	09:53:29	198	55574.0
17 000	09:53:49	199	56740 <b>.6</b>
17 000	09:54:07	200	756291.4
17 000	09:54:43	201	55575.4
17 000	09:54:57	202	56517.2
17 000	09:55:11	203	756919.6
17 000	09:55:55	204	756561.8
17 000	09:56:12	205	56569.4
17 000	09:56:25	205	755056.5
17 000	09:56:38	207	?5a52 <b>4.</b> 0
17 000	09:57:02	208	756405.2
17 000	09:57:19	208	56747.0
17 000	07.07.17	207	30/4/10
17 000	10:19:25	210	56793.8
17 000	10:19:45	211	7563 <b>68.8</b>
17 000	10:20:03	212	56845.4
17 000	10:20:16	213	56657.2
<b>17</b> 000	10:20:33	214	5550 <b>2.5</b>
17 000	10:20:46	215	58473.6
17 000	10:21:01	216	58482 <b>.8</b>
17 000	10:21:21	217	56785.6
18 000	10:23:25	218	56438.6
18 000	10:23:58	219	56480.4
18 000	10:24:21	220	56446.0
18 000	10:24:47	221	56287.4
18 000	10:25:06	222	56389.0
18 000	10:25:41	223	756717.6
18 000	10:25:58	224	755811.4
18 000	10:26:27	225	755990.8
18 000	10:26:44	225	755834.0
18 000	10:27:25	227	756251.6
	10:27:49	228	
			56186.4
18 000	10:28:19	229	56467.8
18 000	10:28:41	230	756570.8
18 000	10:29:25	231	756759.0
18 000	10:29:41	232	757206.4
18 000	10:30:05	233	756336.6
18 000	10:30:19	254	?56334.O
18 000	10:30:35	235	56313.2

18 000				
18 000	10 6.56	10.001.00	a <del>~</del> /	00/600 0
18 000				
18 000				56525.2
18 000	18 000	10:31:29	238	
18 000	18 000	10:31:48	239	256529.4
18 000				
18 000	19 000	10.32.02	55.475	94907 2
18 000				
18 000         10:32:52         243         56325.0           18 000         10:33:26         244         56352.8           18 000         10:33:38         245         756539.6           18 000         10:34:07         247         757621.0           18 000         10:34:21         248         757202.4           18 000         10:35:04         249         56002.4           18 000         10:35:43         251         56479.0           18 000         10:35:43         251         56479.0           18 000         10:35:56         252         756846.2           18 000         10:36:23         253         757005.4           18 000         10:36:23         253         757005.4           18 000         10:36:42         254         56090.0           18 000         10:37:10         256         56167.0           18 000         10:37:49         258         56288.8           18 000         10:38:30         260         75474.0           18 000         10:38:30         260         75474.0           18 000         10:38:59         262         56323.2           18 000         10:39:14         263				
18 000         10:33:26         244         56352.8           18 000         10:33:38         245         256539.6           18 000         10:34:07         247         257621.0           18 000         10:34:07         247         257621.0           18 000         10:35:04         249         56002.4           18 000         10:35:04         249         56002.4           18 000         10:35:43         251         56479.0           18 000         10:35:56         252         256846.2           18 000         10:35:56         252         256846.2           18 000         10:36:52         253         257005.4           18 000         10:36:42         254         56090.0           18 000         10:37:10         256         56167.0           18 000         10:37:12         257         56318.0           18 000         10:37:22         257         56318.0           18 000         10:38:30         260         254774.0           18 000         10:38:30         260         254774.0           18 000         10:38:30         260         254774.0           18 000         10:39:50         262				
18 000       10:33:38       245       ?56539.6         18 000       10:33:52       246       ?56739.8         18 000       10:34:07       247       ?57621.0         18 000       10:34:21       248       ?57202.4         18 000       10:35:04       249       56002.4         18 000       10:35:43       251       56479.0         18 000       10:35:56       252       ?56846.2         18 000       10:35:56       252       ?56846.2         18 000       10:36:23       253       ?57005.4         18 000       10:36:32       253       ?57005.4         18 000       10:36:36       255       56090.0         18 000       10:37:10       256       56167.0         18 000       10:37:19       256       56167.0         18 000       10:37:49       258       5628.8         18 000       10:38:30       260       ?54774.0         18 000       10:38:30       260       ?54774.0         18 000       10:38:45       261       56512.8         18 000       10:39:50       265       756427.0         18 000       10:40:14       266       ?55414.4	1 <b>B</b> 000	10:32:52	243	56325.0
18 000       10:33:52       248       ?56739.8         18 000       10:34:07       247       ?57621.0         18 000       10:34:21       248       ?57202.4         18 000       10:35:04       249       56002.4         18 000       10:35:42       250       ?56348.6         18 000       10:35:43       251       56479.0         18 000       10:36:23       253       ?57005.4         18 000       10:36:42       254       56090.0         18 000       10:36:56       255       56005.2         18 000       10:37:10       256       56167.0         18 000       10:37:22       257       56318.0         18 000       10:37:49       258       56288.8         18 000       10:38:30       260       ?56774.0         18 000       10:38:45       261       56512.8         18 000       10:38:45       261       56512.8         18 000       10:39:35       264       ?56474.0         18 000       10:39:35       264       ?56414.4         18 000       10:40:14       263       ?56414.4         18 000       10:40:44       266       ?56326.6	18 000	10:33:26	244	56352.8
18 000       10:33:52       248       ?56739.8         18 000       10:34:07       247       ?57621.0         18 000       10:34:21       248       ?57202.4         18 000       10:35:04       249       56002.4         18 000       10:35:42       250       ?56348.6         18 000       10:35:43       251       56479.0         18 000       10:36:23       253       ?57005.4         18 000       10:36:42       254       56090.0         18 000       10:36:56       255       56005.2         18 000       10:37:10       256       56167.0         18 000       10:37:22       257       56318.0         18 000       10:37:49       258       56288.8         18 000       10:38:30       260       ?56774.0         18 000       10:38:45       261       56512.8         18 000       10:38:45       261       56512.8         18 000       10:39:35       264       ?56474.0         18 000       10:39:35       264       ?56414.4         18 000       10:40:14       263       ?56414.4         18 000       10:40:44       266       ?56326.6	18 000	10:33:38	245	258539.6
18 000       10:34:07       247       ?57621.0         18 000       10:34:21       248       ?57202.4         18 000       10:35:04       249       56002.4         18 000       10:35:04       249       56002.4         18 000       10:35:43       251       56479.0         18 000       10:35:56       252       ?56846.2         18 000       10:36:23       253       ?57005.4         18 000       10:36:56       255       56090.0         18 000       10:36:56       255       56005.2         18 000       10:37:10       256       56167.0         18 000       10:37:12       257       56318.0         18 000       10:37:49       258       56288.8         18 000       10:38:31       259       756567.6         18 000       10:38:45       261       56512.8         18 000       10:39:59       262       56323.2         18 000       10:39:59       262       56323.2         18 000       10:39:50       265       756414.4         18 000       10:40:14       266       756326.5         18 000       10:40:44       267       756527.0				
18 000       10:34:21       248       ?57202.4         18 000       10:35:04       249       56002.4         18 000       10:35:43       251       56479.0         18 000       10:35:43       251       56479.0         18 000       10:35:56       252       ?56846.2         18 000       10:36:23       253       ?57005.4         18 000       10:36:56       255       56005.2         18 000       10:37:10       256       56167.0         18 000       10:37:10       256       56167.0         18 000       10:37:49       258       56288.8         18 000       10:37:49       258       56288.8         18 000       10:38:30       260       ?54774.0         18 000       10:38:45       261       56512.8         18 000       10:38:45       261       56512.8         18 000       10:39:59       262       56323.2         18 000       10:39:59       265       ?56417.4         18 000       10:40:14       266       ?56326.6         18 000       10:40:14       266       ?56326.6         18 000       10:41:57       270       ?56540.0				
18 000       10:35:04       249       56002.4         18 000       10:35:43       251       56348.6         18 000       10:35:56       252       256846.2         18 000       10:36:23       253       257005.4         18 000       10:36:42       254       56090.0         18 000       10:36:56       255       56005.2         18 000       10:37:10       256       56167.0         18 000       10:37:22       257       56318.0         18 000       10:37:49       258       56298.8         18 000       10:38:11       259       756567.6         18 000       10:38:30       260       25474.0         18 000       10:38:45       261       56512.8         18 000       10:38:45       261       56323.2         18 000       10:39:14       263       756417.6         18 000       10:39:35       264       756414.4         18 000       10:39:35       264       756414.4         18 000       10:40:14       266       756774.0         18 000       10:40:43       267       756774.0         18 000       10:41:47       271       756324.0				
18 000	18 000		248	?57202.4
18 000       10:35:43       251       56479.0         18 000       10:35:56       252       ?56846.2         18 000       10:36:23       253       ?57005.4         18 000       10:36:42       254       56090.0         18 000       10:36:56       255       56005.2         18 000       10:37:10       256       56167.0         18 000       10:37:49       258       56288.8         18 000       10:37:49       258       56288.8         18 000       10:38:11       259       ?56567.6         18 000       10:38:30       260       ?54774.0         18 000       10:38:45       261       56512.8         18 000       10:38:59       262       56323.2         18 000       10:39:59       262       56327.2         18 000       10:39:50       265       ?56417.6         18 000       10:40:14       264       ?56417.0         18 000       10:40:14       266       ?565774.0         18 000       10:40:14       266       ?56427.0         18 000       10:41:57       270       ?56568.6         18 000       10:41:57       271       ?56324.0	18 000	10:35:04	249	56002.4
18 000       10:35:43       251       56479.0         18 000       10:35:56       252       ?56846.2         18 000       10:36:23       253       ?57005.4         18 000       10:36:42       254       56090.0         18 000       10:36:56       255       56005.2         18 000       10:37:10       256       56167.0         18 000       10:37:49       258       56288.8         18 000       10:37:49       258       56288.8         18 000       10:38:11       259       ?56567.6         18 000       10:38:30       260       ?54774.0         18 000       10:38:45       261       56512.8         18 000       10:38:59       262       56323.2         18 000       10:39:59       262       56327.2         18 000       10:39:50       265       ?56417.6         18 000       10:40:14       264       ?56417.0         18 000       10:40:14       266       ?565774.0         18 000       10:40:14       266       ?56427.0         18 000       10:41:57       270       ?56568.6         18 000       10:41:57       271       ?56324.0				
18 000       10:35:43       251       56479.0         18 000       10:35:56       252       ?56846.2         18 000       10:36:23       253       ?57005.4         18 000       10:36:42       254       56090.0         18 000       10:36:56       255       56005.2         18 000       10:37:10       256       56167.0         18 000       10:37:49       258       56288.8         18 000       10:37:49       258       56288.8         18 000       10:38:11       259       ?56567.6         18 000       10:38:30       260       ?54774.0         18 000       10:38:45       261       56512.8         18 000       10:38:59       262       56323.2         18 000       10:39:59       262       56327.2         18 000       10:39:50       265       ?56417.6         18 000       10:40:14       264       ?56417.0         18 000       10:40:14       266       ?565774.0         18 000       10:40:14       266       ?56427.0         18 000       10:41:57       270       ?56568.6         18 000       10:41:57       271       ?56324.0	18 000	10:35:25	250	256348.6
18 000       10:35:56       252       ?56846.2         18 000       10:36:23       253       ?57005.4         18 000       10:36:42       254       56090.0         18 000       10:37:10       256       54167.0         18 000       10:37:10       256       54167.0         18 000       10:37:22       257       56318.0         18 000       10:37:49       258       56288.8         18 000       10:38:31       259       756567.6         18 000       10:38:30       260       ?54774.0         18 000       10:38:45       261       56512.8         18 000       10:38:45       261       56512.8         18 000       10:39:59       262       56323.2         18 000       10:39:35       264       ?56417.6         18 000       10:39:35       264       ?56414.4         18 000       10:40:14       266       ?56326.5         18 000       10:40:14       266       ?56326.5         18 000       10:40:14       266       ?56774.0         18 000       10:41:57       270       ?56549.6         18 000       10:42:17       271       ?56544.0				
18 000       10:36:23       253       757005.4         18 000       10:36:42       254       56090.0         18 000       10:37:10       256       54167.0         18 000       10:37:10       256       54167.0         18 000       10:37:22       257       56318.0         18 000       10:37:49       258       56288.8         18 000       10:38:31       259       754567.6         18 000       10:38:30       260       ?55774.0         18 000       10:38:45       261       56512.8         18 000       10:38:59       262       56323.2         18 000       10:39:59       262       56323.2         18 000       10:39:35       264       ?56417.6         18 000       10:39:35       264       ?56414.4         18 000       10:40:14       266       ?58326.5         18 000       10:40:14       266       ?56326.5         18 000       10:40:14       266       ?565774.0         18 000       10:41:57       270       ?56564.0         18 000       10:41:57       270       ?56568.5         18 000       10:42:17       271       ?56574.0				
18 000       10:36:42       254       56090.0         18 000       10:36:56       255       56005.2         18 000       10:37:10       256       56167.0         18 000       10:37:22       257       56318.0         18 000       10:37:49       258       56288.8         18 000       10:38:11       259       756567.6         18 000       10:38:30       260       ?54774.0         18 000       10:38:30       260       ?54774.0         18 000       10:38:45       261       56512.8         18 000       10:39:59       262       56323.2         18 000       10:39:35       264       756417.6         18 000       10:39:35       264       756414.4         18 000       10:40:14       266       756324.0         18 000       10:40:34       267       756774.0         18 000       10:40:44       266       756324.0         18 000       10:41:57       270       756564.6         18 000       10:41:57       270       756564.0         18 000       10:42:41       272       756544.4         18 000       10:43:11       274       56558.2				
18 000       10:36:56       255       56005.2         18 000       10:37:10       256       56167.0         18 000       10:37:22       257       56318.0         18 000       10:37:49       258       56288.8         18 000       10:38:11       259       756567.6         18 000       10:38:30       260       ?54774.0         18 000       10:38:45       261       56512.8         18 000       10:38:59       262       56323.2         18 000       10:39:14       263       756417.6         18 000       10:39:50       265       756414.4         18 000       10:39:50       265       756427.0         18 000       10:40:14       266       756324.6         18 000       10:40:14       266       756324.6         18 000       10:40:43       267       756544.0         18 000       10:41:57       270       756548.6         18 000       10:41:57       270       756548.6         18 000       10:42:17       271       756544.0         18 000       10:42:41       272       756544.4         18 000       10:43:11       274       56554.0	18 000	10:36:23		757005.4
18 000       10:37:10       256       56167.0         18 000       10:37:22       257       56318.0         18 000       10:37:49       258       56298.8         18 000       10:38:11       259       756567.6         18 000       10:38:30       260       756774.0         18 000       10:38:45       261       56512.8         18 000       10:39:59       262       56323.2         18 000       10:39:14       263       756417.6         18 000       10:39:35       264       756414.4         18 000       10:39:50       265       756527.0         18 000       10:40:14       266       756326.6         18 000       10:40:34       267       756774.0         18 000       10:40:34       267       756744.0         18 000       10:41:41       269       756514.2         18 000       10:41:57       270       756524.0         18 000       10:42:17       271       756524.0         18 000       10:43:30       275       56544.4         18 000       10:44:05       276       756585.6         18 000       10:44:23       277       56558.5	18 000	10:36:42	254	56090.0
18 000       10:37:10       256       56167.0         18 000       10:37:22       257       56318.0         18 000       10:37:49       258       56298.8         18 000       10:38:11       259       756567.6         18 000       10:38:30       260       756774.0         18 000       10:38:45       261       56512.8         18 000       10:39:59       262       56323.2         18 000       10:39:14       263       756417.6         18 000       10:39:35       264       756414.4         18 000       10:39:50       265       756527.0         18 000       10:40:14       266       756326.6         18 000       10:40:34       267       756774.0         18 000       10:40:34       267       756744.0         18 000       10:41:41       269       756514.2         18 000       10:41:57       270       756524.0         18 000       10:42:17       271       756524.0         18 000       10:43:30       275       56544.4         18 000       10:44:05       276       756585.6         18 000       10:44:23       277       56558.5	18 000	10:36:56	255	56005.2
18 000       10:37:22       257       56318.0         18 000       10:37:49       258       56298.8         18 000       10:38:11       259       ?56567.6         18 000       10:38:30       260       ?56774.0         18 000       10:38:45       261       \$6512.8         18 000       10:39:59       262       \$6323.2         18 000       10:39:14       263       ?56417.6         18 000       10:39:50       265       ?56427.0         18 000       10:40:14       266       ?56326.6         18 000       10:40:14       266       ?56774.0         18 000       10:40:34       267       ?567644.0         18 000       10:40:48       268       ?57644.0         18 000       10:41:57       270       ?56568.6         18 000       10:42:17       271       ?56324.0         18 000       10:42:17       271       ?56544.4         18 000       10:43:11       274       5658.2         18 000       10:44:05       276       ?56540.0         18 000       10:44:23       277       56558.5         18 000       10:44:27       278       56595.8				56167.0
18 000       10:37:49       258       56288.8         18 000       10:38:11       259       756567.6         18 000       10:38:30       260       756774.0         18 000       10:38:45       261       56512.8         18 000       10:39:59       262       56323.2         18 000       10:39:14       263       756417.6         18 000       10:39:35       264       756414.4         18 000       10:40:14       266       756326.6         18 000       10:40:14       266       756774.0         18 000       10:40:34       267       7567644.0         18 000       10:40:48       268       757644.0         18 000       10:41:57       270       756568.6         18 000       10:41:57       270       7565868.6         18 000       10:42:17       271       756324.0         18 000       10:42:41       272       756514.8         18 000       10:43:11       274       5658.2         18 000       10:43:30       275       56540.0         18 000       10:44:05       276       756585.6         18 000       10:44:23       277       56558.8 <td></td> <td></td> <td></td> <td></td>				
18 000       10:38:11       259       ?56567.6         18 000       10:38:30       260       ?56774.0         18 000       10:38:45       261       56512.8         18 000       10:39:59       262       56323.2         18 000       10:39:14       263       ?56417.6         18 000       10:39:35       264       ?56414.4         18 000       10:39:50       265       ?56627.0         18 000       10:40:14       266       ?56326.6         18 000       10:40:34       267       ?56774.0         18 000       10:40:48       268       ?57644.0         18 000       10:41:41       259       ?56516.2         18 000       10:41:57       270       ?56548.6         18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       5654.0         18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56593.8				
18 000				
18 000       10:38:45       261       56512.8         18 000       10:38:59       262       56323.2         18 000       10:39:14       263       ?56417.6         18 000       10:39:35       264       ?56414.4         18 000       10:39:50       265       ?56627.0         18 000       10:40:14       266       ?56326.6         18 000       10:40:34       267       ?56774.0         18 000       10:40:48       268       ?57644.0         18 000       10:41:57       270       ?56548.6         18 000       10:41:57       270       ?56548.6         18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:23       277       56555.8         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56573.8         18 000       10:45:44       290       56573.8         18 000       10:46:02       281       ?56573.4	18 000	10:38:11	259	756567.6
18 000       10:38:45       261       56512.8         18 000       10:38:59       262       56323.2         18 000       10:39:14       263       ?56417.6         18 000       10:39:35       264       ?56414.4         18 000       10:39:50       265       ?56627.0         18 000       10:40:14       266       ?56326.6         18 000       10:40:34       267       ?56774.0         18 000       10:40:48       268       ?57644.0         18 000       10:41:57       270       ?56548.6         18 000       10:41:57       270       ?56548.6         18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:23       277       56555.8         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56573.8         18 000       10:45:44       290       56573.8         18 000       10:46:02       281       ?56573.4				
18 000       10:38:59       262       56323.2         18 000       10:39:14       263       ?56417.6         18 000       10:39:35       264       ?56414.4         18 000       10:39:50       265       ?56627.0         18 000       10:40:14       266       ?56326.6         18 000       10:40:34       267       ?56774.0         18 000       10:40:48       268       ?57644.0         18 000       10:41:41       269       ?56516.2         18 000       10:41:57       270       ?56548.6         18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:42:41       272       ?56544.4         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:23       277       56555.8         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56573.8         18 000       10:45:44       290       56573.8         18 000       10:46:02       281       ?56573.4	18 000	10:38:30	260	?56774.0
18 000       10:38:59       262       56323.2         18 000       10:39:14       263       ?56417.6         18 000       10:39:35       264       ?56414.4         18 000       10:39:50       265       ?56627.0         18 000       10:40:14       266       ?56326.6         18 000       10:40:34       267       ?56774.0         18 000       10:40:48       268       ?57644.0         18 000       10:41:41       269       ?56516.2         18 000       10:41:57       270       ?56548.6         18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:42:41       272       ?56544.4         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:23       277       56555.8         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56573.8         18 000       10:45:44       290       56573.8         18 000       10:46:02       281       ?56573.4	18 000	10:38:45	261	56512.8
18 000       10:39:14       263       ?56417.6         18 000       10:39:35       264       ?56414.4         18 000       10:39:50       265       ?56627.0         18 000       10:40:14       266       ?56326.6         18 000       10:40:34       267       ?55774.0         18 000       10:40:48       268       ?57644.0         18 000       10:41:41       259       ?56516.2         18 000       10:41:57       270       ?56568.6         18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:42:41       272       ?56544.4         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56534.0         18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56573.8         18 000       10:45:44       280       56574.6         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4 <td></td> <td></td> <td></td> <td></td>				
18 000       10:39:35       264       ?56414.4         18 000       10:39:50       265       ?56627.0         18 000       10:40:14       266       ?56326.6         18 000       10:40:34       267       ?56774.0         18 000       10:40:48       268       ?57644.0         18 000       10:41:41       269       ?56616.2         18 000       10:41:57       270       ?56548.6         18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:42:41       272       ?56544.4         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:05       276       ?56555.8         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56569.8         18 000       10:45:22       279       ?56573.8         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4				
18 000       10:39:50       265       ?56627.0         18 000       10:40:14       266       ?56326.6         18 000       10:40:34       267       ?56774.0         18 000       10:40:48       268       ?57644.0         18 000       10:41:41       259       ?56616.2         18 000       10:41:57       270       ?56324.0         18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:42:55       273       ?56544.4         18 000       10:43:30       275       5658.2         18 000       10:43:30       275       56585.6         18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56569.8         18 000       10:45:22       279       ?56573.8         18 000       10:45:44       280       56573.4         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4				
18 000       10:40:14       266       ?56326.6         18 000       10:40:34       267       ?56774.0         18 000       10:40:48       268       ?57644.0         18 000       10:41:41       269       ?56616.2         18 000       10:41:57       270       ?56548.6         18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:42:55       273       ?56544.4         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       5659.8         18 000       10:45:22       279       ?56573.8         18 000       10:45:44       280       56573.4         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4				
18 000       10:40:34       267       ?56774.0         18 000       10:40:48       258       ?57644.0         18 000       10:41:41       269       ?56616.2         18 000       10:41:57       270       ?56548.6         18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:42:55       273       ?56544.4         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:05       276       ?56558.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56569.8         18 000       10:45:22       279       ?56573.8         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4	18 000			
18 000       10:40:48       258       ?57644.0         18 000       10:41:41       259       ?56816.2         18 000       10:41:57       270       ?56548.6         18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:42:55       273       ?56544.4         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:05       276       ?56554.0         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56569.8         18 000       10:45:22       279       ?56573.8         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4	18 000	10:40:14	266	?563 <b>26.6</b>
18 000       10:41:41       259       ?56616.2         18 000       10:41:57       270       ?56548.6         18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:42:55       273       ?56544.4         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56569.8         18 000       10:45:22       279       ?56573.8         18 000       10:45:44       290       56574.6         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4	18 000	10:40:34	267	256774.0
18 000       10:41:41       269       ?56516.2         18 000       10:41:57       270       ?56569.6         18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:42:55       273       ?56544.4         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56569.8         18 000       10:45:22       279       ?56573.8         18 000       10:45:44       290       56574.6         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4	18 000	10:40:48	258	757644.0
18 000				256616.2
18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:42:55       273       ?56544.4         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56549.8         18 000       10:45:22       279       ?56573.8         18 000       10:45:44       280       56574.6         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4	10 000	1014114	20,	· COCOLSI
18 000       10:42:17       271       ?56324.0         18 000       10:42:41       272       ?56514.8         18 000       10:42:55       273       ?56544.4         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56549.8         18 000       10:45:22       279       ?56573.8         18 000       10:45:44       280       56574.6         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4	19 000	10-41-57	72777S	nerver e
18 000       10:42:41       272       ?56514.8         18 000       10:42:55       273       ?56544.4         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56569.8         18 000       10:45:22       279       ?56573.8         18 000       10:45:44       280       56574.6         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4				
18 000       10:42:55       273       ?56544.4         18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56569.8         18 000       10:45:22       279       ?56573.8         18 000       10:45:44       290       56574.6         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4				
18 000       10:43:11       274       56558.2         18 000       10:43:30       275       56554.0         18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56569.8         18 000       10:45:22       279       ?56573.8         18 000       10:45:44       290       56574.6         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4	18 000		272	
18 000       10:43:30       275       56554.0         18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56569.8         18 000       10:45:22       279       ?56573.8         18 000       10:45:44       280       56574.6         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4	18 000	10:42:55	273	756544.4
18 000       10:43:30       275       56554.0         18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56569.8         18 000       10:45:22       279       ?56573.8         18 000       10:45:44       280       56574.6         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4	18 000	10:43:11	274	56558.2
18 000       10:44:05       276       ?56585.6         18 000       10:44:23       277       56555.8         18 000       10:44:57       278       56569.8         18 000       10:45:22       279       ?56573.8         18 000       10:45:44       280       56574.6         18 000       10:46:02       281       ?56573.4         18 000       10:46:41       292       ?56575.4				
18 000     10:44:23     277     56555.8       18 000     10:44:57     278     56569.8       18 000     10:45:22     279     ?56573.8       18 000     10:45:44     280     56574.6       18 000     10:46:02     281     ?56573.4       18 000     10:46:41     292     ?56575.4				
18 000     10:44:57     278     56569.8       18 000     10:45:22     279     ?56573.8       18 000     10:45:44     280     56574.6       18 000     10:46:02     281     ?56573.4       18 000     10:46:41     292     ?56575.4				
18 000     10:45:22     279     ?56573.8       18 000     10:45:44     280     56574.6       18 000     10:46:02     281     ?56573.4       18 000     10:46:41     292     ?56575.4				
18 000		10:44:57		
18 000     10:46:02     281     ?56573.4       18 000     10:46:41     292     ?56575.4	18 000	10:45:22	279	?5657 <b>3.8</b>
18 000     10:46:02     281     ?56573.4       18 000     10:46:41     292     ?56575.4				
18 000     10:46:02     281     ?56573.4       18 000     10:46:41     292     ?56575.4	18 000	10:45:44	280	56574.6
18 000 10:46:41 292 ?56575.4				756573.4
10 000 10.40.07 200 :000/010		10:44:41	287	756575.4

							_
18	000	10:47:19	294	?565 <b>85.</b> 0		•	
18	000	10:47:36	285	56587.8			
	000	10:47:55	286	756593.2		•	ı
18	000	10:48:15	287	56575.6			
18	000	10:49:45	288	?565 <b>89.</b> 0			8
18		10:49:03	287	56583.8			
10	000	10.47.00	207	പത്രക്കെം മ			
4.5	000	10.40.07	200	DEVEDE D			
	000	10:49:23	290	756585.2			
18		10:59:50	291	756622.8			
_	000	11:00:37	292	756618.2			_
	000	11:00:58	293	756634.0			ì
18	000	11:01:13	294	756631.0			
18	000	11:01:28	295	?56 <b>6</b> 33.8			J
18	000	11:01:48	296	756611.4			
18	000	11:02:05	297	756526.6		1	ì
18	000	11:02:34	298	75655 <b>8.</b> 0			
18	000	11:02:59	299	756578.2		7	_
						_	_
18	000	11:04:04	300	756592.0			l
	000	11:04:22	301	?565 <b>96.</b> 0			)
18	000	11:05:10	302	756571.2			
18	000	11:05:10	303	756613.2		•	ì
		-			APPITIONAL	DATA GATHER	I
18	000	11:06:05	304	756635.4	NOZTH END		,
	000	11:06:52	305	756623.8	WOK!H ENA	00 LINE 13.	_
18	000	11:07:08	3 <b>06</b>	756610.2			ł
18	000	11:07:41	307	? <b>56617.</b> 0	LINE	VALUE	ļ
18	000	11:08:04	308	756616.6			
18	000	11:08:26	309	756621.2	19	56560.8	L
					1	56538.6	ł
18	000	11:08:43	310	756610.2		56580.0	j
18	000	11:09:06	311	756621.2		56568.4	
18	000	11:09:34	312	756621.4	1 1	56571.2	Ì
18	000	11:09:49	313	756588.4	1 1	56575.6	ĺ
18	900	11:10:08	314	756625.4	1 1	56566.6	•
	000	11:10:21	315	756626.6	1 1	56560.2	
	000	11:10:36	316	756623.6		56567.2	l
	000	11:10:53	317	756616.6		56574.0	,
	000	11:11:20	318	756619.0		56581.4	
	000	11:11:34	319	?56630 <b>.</b> 4		56580.0	ì
10	0.00	11.11.0-	U. 1. 7	: 00000		•	ĺ
10	000	11:11:48	320	756629.4	1 1	56609.0	,
					1 1	56546.4	
	000	11:12:07	321	756611.6	1 1	56556.8	į
	000	11:12:23	322	756587.0	1 1	56542.0	Ì
	000	11:12:50	323	256572.6		56535.2	
	000	11:13:06	324	756564.2	1 1	56529.4	ì
	000	11:13:19	325	756593.6	1 (	56544.6	ĺ
	000	11:13 .4	326	756594.2	1 1	56544.4	,
	000	11:14:08	327	75 <b>6600.8</b>		56543.0	
18	000	11:14:21	32 <b>8</b>	756601.6_		56488.2	l
19	00 <b>0</b>	13:16:39	329	756193.2	<b>7</b> 19	57422.8	į
						<del>-</del> <del></del>	
19	000	13:17:13	330	756529.4		_	1
	000	13:17:36	331	758198.6			
		manage as a way to a	56° 56° 4	i santa i realita			1

19 000	13:18:04	and the same	57247.8
19 000	13:18:21	3333	756655.6
19 000	13:18:44	334	756506.2
19 000	13:19:03	335	75,508.2
19 000	13:19:18	<u> </u>	7"6402.6
19 000	13:19:34	207	05448 <b>8.</b> 8
19 000	13:19:56	<b>336</b>	253490.8
19 000	13:20:39	339	756483.8
19 000	13:20:54	540	256494.6
1 <b>9</b> 000	13:21:19	341	758488.0
19 000	13:21:37	342	256478.6
19 000	13:22:01	343	256489.6
19 000	13:22:16	344	755484.6
19 000	13:22:34	345	756476.6
	13:22:52		
19 000		346	756491.2
1 <b>9</b> 000	13:23:13	347	255479.2
19 000	13:23:51	348	756480.0
19 000	13:24:09	349	756481.6
19 000	13:24:24	350	756463.2
19 000	13:24:52	351	756469.4
19 000	13:25:13	352	756462.6
19 000	13:26:22	353	756448.4
19 000	13:26:43	354	756451.6
19 000	13:26:58	•	756377.6
		355	
19 000	13:27:18	356	756367.8
19 000	13:27:36	357	756464.2
19 000	13:28:38	358	?5640 <b>3.</b> 4
19 000	13:28:54	359	756297.2
19 000	13:29:08	360	?58 <b>531.6</b>
1 <b>9</b> 000	13:29:24	361	756487.8
19 000	13:29:59	362	755855.6
19 000	13:30:16	363	755928.0
19 000	13:30:32	364	756028.6
19 000	13:30:45	365	756229.8
19 000	13:31:02	ుద్దు చేసిత	755900.0
19 000	13:31:17	367	256016.8
19 000	13:31:39	368	56645.8
1 <b>9</b> 000	13:32:31	369	756192.2
19 000	13:32:49	370	?56080.2
19 000	13:33:03	371	756296.4
19 000	13:33:19	372	256317.4
19 000	13:33:33	373	756155.6
19 000	13:33:54	374	756077.2
19 000	13:33:08	375	756440.4
	13:34:21		756313.6
1 <b>9</b> 000		376	
19 000	13:34:41	377	756316.8
19 000	13:35:15	378	756212.2
19 000	13:35:44	. 379	56730.4

19 000	13:35:58	380	756670.6
19 000	13:36:21	381	57505.0
19 000	13:36:38	382	756972.2
<b>19</b> 000	13:37:14	3 <b>8</b> 3	756285.2
19 000	13:37:43	Z84	956673.2
19 000	13:38:10	385	?547 <b>66.2</b>
19 000	13:38:32	385	755834.6
<b>19</b> 000	13:39:01	387	?56343 <b>.</b> 6
19 000	13:40:18	388	?56358.8
19 000	13:40:51	389	755189.2
19 000	13:41:10	390	?56304.4
19 000	13:41:33	391	756320.2
19 000	13:41:48	392	755171.2
19 000	13:42:18	393	756008.4
19 000	13:42:47	394	756123.2
19 000	13:43:08	395	?56381.2
19 000	13:43:27	396	756291.2
19 000	13:43:52	397	?55447 <b>.</b> 8
19 000	13:44:44	398	755164.8
19 000	13:45:01	399	?5 <b>6539.</b> 0
19 000	13:45:25	400	56521.2
19 000	13:45:44	401	255250.6
19 000	13:46:10	402	755518.2
19 000	13:47:52	403	757609.4
19 000	13:48:14	404	757689.4
19 000	13:48:32	405	757082.8
19 000	13:48:57	406	756965.6
19 000	13:49:19	407	755847.6
19 000	13:49:37	408	756549.0
19 000	13:50:03	409	75958 <b>5.</b> 0

** G-856 MAGNETOMETER DATA **
RAW FIELD Code: HAN4

Line Date	Time	Site	Field
20 001	08:38:08	1	56527.4
20 001	08:38:23	2	56744.8
20 001	08:41:31	3	56875.0
20 001	08:42:03	.4	58840.4
20 001	08:42:25	ទី	56940.4
20 001	08:42:41	5	757448.2
20 001	08:43:00	7	57464.6
20 001	08:43:24	9	756853.0
20 001	08:43:44	9	256951.0
20 002			
20 001	08:44:15	10	756217.2
20 001	08:45:18	11	756480.4
20 001	08:45:48	12	756112.8
20 001	08:46:01	13	?56 <b>946.4</b>
20 001	08:46:15	14	756279.0
20 001	08:46:30	15	755870.6
20 001	08:46:50	16	?5577 <b>7.</b> 0
20 001	08:47:06	1.7	56314.8
20 001	08:47:30	18	56312.8
20 001	08:47:57	19	56318.6
20 001	08:49:42	20	56435.4
20 001	08:49:59	21	56537.6
20 001	08:50:44	22	757021.6
20 001	08:51:00	23	56434.2
20 001	08:51:27	24	756816.4
20 001	08:51:49	25	757309.4
20 001	08:52:15	26	56777.6
20 .001	08:52:35	27	?56854.0
20 001	08:52:58	28	56687.2
20 001	08:53:12	29	756522.6
20 001	08:53:36	30	?56739.0
20 001	08:53:50	31	756756.8
20 001	08:54:22	32	56134.6
20 001	08:54:35	33	56374.4
20 001	08:54:49	34	56341.6
20 001	08:55:06	35	56618.4
20 001	08:55:19	36	754830.0
20 001	08:55:34	37	756921.4
20 001	08:55:46	38	56793.0
20 001	<b>08:55:</b> 59	39	56675.8
20 001	08:56:15	40	56149.6
20 001	08:56:28	41	56027.4
20 001	08:56:51	42	56225.0

20 001	08:57:05	43	56403.8
20 001	08:57:21	44	56327.4
20 001	08:57:36	45	56540.6
20 001	08:57:50	46	757133.6
20 001	08:58:07	47	757250.0
20 001	08:58:21	48	56913.2
20 001	08:58:32	49	56526.6
20 001		. ,	
20 001	08:58:45	50	56488.6
20 001	08:59:02	51	56475.2
20 001	08:57:18	52	56520.0
20 001	08:59:31	53	56514.2
20 001	09:00:19	54	56552.4
20 001	09:00:32	55	756693.6
20 001	09:00:47	56	56527.8
20 001	09:01:02	57	56515.8
20 001	09:06:35	58	56554.0
20 001	09:06:59	59	56552.0
20 001	09:07:14	60	56546.4
20 001	09:07:30	61	56530.2
20 001	09:08:05	62	56548.4
20 001	09:08:22	<b>6</b> 3	565 <b>54.6</b>
20 001	09:08:41	54	56561.8
20 001	09:09:24	65	56571.0
20 001	09:09:42	66	56564.8
20 001	09:09:59	67	56558.8
20 001	09:10:15	<b>58</b>	56567.0
20 001	09:10:33	69	56569.8
20 001	09:10:46	70	56562.2
20 001	09:11:03	71	56547.6
20 001	09:11:19	72	56569.2
20 001	09:11:36	73	56588.4
20 001	09:11:51	74	56607.6
20 001	09:12:06	75	56597.0
20 001	09:12:23	76	56679.4
20 001	09:12:36	77	?57161.0
20 001	09:12:57	78	57021.6
20 001	09:13:18	79	56488.8
20 001	09:13:34	80	56612.2
20 001	09:15:11	81	755917.2
20 001	09:15:35	82	55962.2
20 001	09:15:51	83	56364.4
20 001	09:16:06	84	56508.8
20 001	09:16:29	85	56508.0
20 001	09:16:51	86	56527.4
20 001	09:17:12	87	56586.6
20 001	09:17:29	98	56584.2
20 001	09:17:46	87	56584.2

20 001	09:18:05	90	58398.8
20 001	09:18:52	91	58571.4
20 001	09:19:11	92	55559.4
20 001	09:19:25	93	56585.6
20 001	09:19:42	9.1	56613.2
20 001	09:20:00	95	55550.2
20 001	09:20:30	150,000	54530.0
20 001	09:20:44	41	58580.2
20 001	09:20:57	96	55581.4
20 001	09:21:10	ψĢ	55582.0
20 001	09:21:34	100	56591.2
20 001	09:21:48	101	56581.8
20 001	09:22:02	102	58577.6
20 001	09:22:34	103	56579.6
20 001	09:23:05	104	55599.2
20 001	09:23:20	105	756722.4
20 001	09:23:35	105	55528.0
20 001	09:23:51	107	56569.8
21 001	09:27:42	108	755221.2
21 001	09:28:26	109	56402.2
21 001	09:28:44	LLO	756331.6
21 001	09:29:00	111	756409.4
21 001	09:29:15	112	55893.4
21 001	09:29:30	113	756592.0
21 001	09:29:44	114	56982.2
21 001	09:30:01	145	58947.0
21 001	09:30:15	116	5560 <b>5.5</b>
21 001	09:30:50	117	54502.2
21 001	09:31:17	113	758 <b>199.0</b>
21 001	09:35:04	119	758200.0
21 001	09:35:34	120	55496.4
21 001	09:35:48	121	56491.6
21 001	09:36:02	122	53580.0
21 001	09:35:15	123	5.8556.2
21 001	09:36:30	124	56485.0
21 001	09:36:50	125	56473.8
21 001	09:37:03	125	56472.6
21 001	09:37:17	127	54555.8
21 001	09:37:32	128	55554.8
21 001	09:38:04	129	758407.6
	07100104	<b>3 4</b> •	
21 001	09:38:21	130	S6594.8
21 001	09:38:34	1.51	54520.0
21 001	09:38:50	132	56482. <b>4</b>
21 001	09:39:04	130	56463.8
21 001	09:39:19	134	55458.2
21 001	09:39:32	135	55435.4
21 001	09:39:59	138	56402.8
21 001	09:40:14	137	56411.0
21 001	09:40:36	138	55418.6

21	001	09:40:46	139	56410.6
21	001	09:41:00	140	56395.0
21	001	09:41:12	141	56388.6
21	001	09:41:24	142	56415.4
21	001	09:41:39	143	56511.4
21	001	09:41:50	144	756311.0
21	001	09:42:05	145	56457.4
21	001	09:42:17	146	55976.B
21	001	09:42:31	147	755884.4
		09:42:49		
21 21	001 001		148 149	?5533 <b>5.8</b>
Z 1	001	09:43:14	147	757676.0
21	001	09:43:29	150	257042.4
21	001	09:43:41	151	756966.8
21	001	09:43:55	152	57709.0
21	001	09:44:07	153	57726.6
		09:44:34	154	757524.6
21	001			
21	001	09:44:52	155	756743.2
21	001	09:45:07	156	756321.8
21	001	09:45:20	157	755939.4
21	001	09:45:40	158	755792.8
21	001	09:46:23	159	56438.8
~ .	000	00.44.30	4 2 25	DE / 400 /
21	001	09:46:38	160	756488.6
21	001	09:46:57	161	756834.0
21	001	09:47:13	162	756157.0
21	001	09:47:27	163	756215.4
21	001	09:47:47	164	56762.8
21	001	09:48:11	165	756186.4
21	001	09:48:36	166	56798.2
21	001	09:48:50	167	56900.8
21	001	09:49:08	168	?56474.2
21	001	09:49:36	169	56461.4
21	001	09:49:53	170	56573.0
21	001	09:50:10	170	56487.8
	<del>-</del>			
21	001	09:50:24	172	56296.2 757024.8
21	001	09:50:36	173	
21	001	09:50:59	174	755837.0
21	001	09:51:14	175	55942.4
21	001	09:51:27	176	755652.6
21	001	09:51:50	177	756796.6
21	001	09:52:13	178	755988.8
21	001	09:52:49	179	756470.2
71	001	00.57.00	180	756497.6
21	001	09:53:09 09:53:27		758225.0
21	001		181	
21	001	09:53:47	182	?573 <b>52.6</b>
21	001	09:54:04	183	57256.4
21	001	09:54:25	184	756957.2
21	001	09:54:46	185	56705.0
21	001	09:55:06	185	756508.4

21 001	09:55:21	187	755598.6
21 001	09:55:39	188	56842.2
22 001	10:02:26	189	55659.4
	10,02122		
22 001	10:03:20	190	5888 <b>3.8</b>
22 001	10:03:59	191	757470.2
22 001	10:04:24	192	57338.2
22 001	10:04:40	193	756425.2
	10:05:16	194	56426.0
22 001	<del>-</del>	_	
22 001	10:05:36	195	756096.2
22 001	10:05:57	196	756875.8
			· <del></del>
22 001	10:06:50	197	757320.0
22 001	10:07:19	198	56284.4
22 001	10:07:42	199	755380.4
22 001	10:07:42	1 / /	3555014
22 001	10:08:04	200	55921.6
	10:08:26	201	56057.6
22 001			
22 001	10:08:49	202	756331.2
22 001	10:09:13	203	55988.4
22 001	10:09:31	204	55933.0
22 001	10:09:46	205	56210.0
22 001	10:10:06	206	?56580.2
22 001	10:10:27	207	56132.2
22 001	10:10:39	208	56206.6
22 001	10:10:53	209	756556.6
22 001	10.10.33	207	. 30330.0
22 001	10:11:09	210	56478.0
22 001	10:11:22	211	756968.2
22 001	10:11:38	212	?554 <b>41.8</b>
22 001	10:11:52	213	56372 <b>.6</b>
22 001	10:12:05	2.4	56126.6
22 001	10:12:17	215	560 <b>48.6</b>
22 001	10:12:31	216	55204.0
	10:12:53	217	55455.0
22 001			
22 001	10:13:04	218	757102.6
22 001	10:13:19	219	57054.6
			programme a a constant
22 001	10:13:31	220	? <b>5</b> 7660.8
22 001	10:13:48	221	757580.8
	·	222	758235.8
22 001	10:14:03		
22 001	10:14:22	223	758606.6
22 001	10:14:50	224	757302.2
			?55219.8
22 001	10:15:05	225	
22 001	10:15:22	226	55522.6
22 001	10:15:41	227	55864.6
22 001	10:15:58	228	756214.8
22 001	10:16:10	229	56385.6
	· • • • • • • • • • • • • • • • • • • •		
00 001	10.11.00	970	56493.8
22 001	10:16:29	230	
22 001	10:16:42	231	56413.8
22 001	10:16:56	232	56256.6
22 001	10:17:09	233	56364.6
22 001	10:17:25	234	56414.0

00 004	4 % = 4 *** = ***		
22 001	10:17:36	235	56456.5
22 001	10:17:50	276	56474.6
22 001	10:18:02	237	56485.0
22 001	10:18:16	238	56499.6
22 001	10:18:29	239	56502.4
	4 4		
22 001	10:18:51	240	54507.8
22 001	10:19:04	241	56529.4
22 001	10:19:26	242	56535.4
22 001	10:19:38	243	56541.0
22 001	10:19:51	244	56546.8
22 001	10:20:13	245	56575.0
		— · <del>-</del>	
22 001	10:20:27	246	56599.6
22 001	10:20:42	247	56610.8
22 001	10:21:04		
		248	56621.0
22 001	10:21:15	249	58516.0
22 001	10:21:28	250	5/57D 0
			56538.2
22 001	10:21:47	251	56548.6
22 001	10:22:01	252	56572.6
	10:22:15		
		253	54558.4
22 001	10:22:32	254	56562.4
22 001	10:22:47	255	56524.4
	10:23:02	256	56438.4
22 001	10:23:41	257	756183.2
22 001	10:24:01	258	?56 <b>498.</b> 0
22 001	10:24:16	259	
22 001	10.24.10	± 47	756745.6
22 001	10.24.10	£47	/35/43.6
22 001	10:24:38	260	756920.4
22 001 22 001	10:24:38 10:24:56	260 261	756920.4 56903.0
22 001 22 001 22 001	10:24:38	260	756920.4
22 001 22 001 22 001	10:24:38 10:24:56 10:25:16	260 261 262	756920.4 56903.0 56831.4
22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30	260 261 262 263	?56920.4 56903.0 56831.4 ?563 <b>89.</b> 4
22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01	260 261 262 263 264	?56920.4 56903.0 56831.4 ?56389.4 56523.2
22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30	260 261 262 263	?56920.4 56903.0 56831.4 ?563 <b>89.</b> 4
22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47	260 261 262 263 264 265	?56920.4 56903.0 56831.4 ?56389.4 56523.2 56398.6
22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13	260 261 262 263 264 265 266	?56920.4 56903.0 56831.4 ?56389.4 56523.2 56398.6 56352.4
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13 16.28:40	260 261 262 263 264 265 266 267	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4
22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13	260 261 262 263 264 265 266	?56920.4 56903.0 56831.4 ?56389.4 56523.2 56398.6 56352.4
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13 16.28:40	260 261 262 263 264 265 266 267 268	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4 56479.6
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13 16.28:40	260 261 262 263 264 265 266 267	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13 16.28:40 10:28:53 10:29:10	260 261 262 263 264 265 266 267 268 269	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4 56479.6 56532.0
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13 10:28:40 10:28:53 10:29:10	260 261 262 263 264 265 266 267 268	?56920.4 56903.0 56831.4 ?56389.4 56523.2 56398.6 56352.4 56427.4 56479.6 56532.0
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13 16.28:40 10:28:53 10:29:10	260 261 262 263 264 265 266 267 268 269	?56920.4 56903.0 56831.4 ?56389.4 56523.2 56398.6 56352.4 56427.4 56479.6 56532.0
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13 10.28:40 10:28:53 10:29:10 10:29:48 10:30:08	260 261 262 263 264 265 266 267 268 269 270 271	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4 56479.6 56532.0
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13 10.28:40 10:28:53 10:29:10  10:29:48 10:30:08 10:30:30	260 261 262 263 264 265 266 267 268 269 270 271 272	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4 56479.6 56532.0 56550.6 56587.2 56569.0
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13 10:28:40 10:28:53 10:29:10  10:29:48 10:30:08 10:30:30 10:30:45	260 261 262 263 264 265 266 267 268 269 270 271 272 273	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4 56479.6 56532.0 56550.6 56587.2 56587.2 56513.6
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13 10.28:40 10:28:53 10:29:10  10:29:48 10:30:08 10:30:30	260 261 262 263 264 265 266 267 268 269 270 271 272	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4 56479.6 56532.0 56550.6 56587.2 56569.0
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10: 24: 38 10: 24: 56 10: 25: 16 10: 25: 30 10: 26: 01 10: 26: 47 10: 28: 13 10: 28: 40 10: 28: 53 10: 29: 10  10: 29: 48 10: 30: 30 10: 30: 30 10: 30: 45 10: 30: 57	260 261 262 263 264 265 266 267 268 269 270 271 272 273 274	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4 56479.6 56532.0 56587.2 56587.2 56569.0 56695.6
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10: 24: 38 10: 24: 56 10: 25: 16 10: 25: 30 10: 26: 01 10: 26: 47 10: 28: 13 10: 28: 40 10: 28: 53 10: 29: 10  10: 29: 48 10: 30: 30 10: 30: 45 10: 30: 57 10: 31: 49	260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4 56479.6 56532.0 56587.2 56587.2 56569.0 56613.6 56695.6 56661.2
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10: 24: 38 10: 24: 56 10: 25: 16 10: 25: 30 10: 26: 01 10: 26: 47 10: 28: 13 10: 28: 40 10: 28: 53 10: 29: 10  10: 29: 48 10: 30: 08 10: 30: 45 10: 30: 57 10: 31: 49 10: 32: 03	260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4 56479.6 56532.0 56550.6 56587.2 56569.0 56613.6 56695.6 56661.2 56593.0
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10: 24: 38 10: 24: 56 10: 25: 16 10: 25: 30 10: 26: 01 10: 26: 47 10: 28: 13 10: 28: 40 10: 28: 53 10: 29: 10  10: 29: 48 10: 30: 30 10: 30: 45 10: 30: 57 10: 31: 49	260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4 56479.6 56532.0 56587.2 56587.2 56569.0 56613.6 56695.6 56661.2
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10: 24: 38 10: 24: 56 10: 25: 16 10: 25: 30 10: 26: 01 10: 26: 47 10: 28: 13 16. 28: 40 10: 28: 53 10: 29: 10  10: 29: 48 10: 30: 08 10: 30: 30 10: 30: 45 10: 30: 57 10: 31: 49 10: 32: 03 10: 32: 47	260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4 56427.4 56432.0 56532.0 56587.2 56587.2 565493.0 56613.6 56693.0 56497.2
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13 10.28:40 10:28:53 10:29:10  10:29:48 10:30:08 10:30:30 10:30:45 10:30:57 10:31:49 10:32:03 10:32:47 10:33:05	260 261 262 263 264 265 266 267 268 270 271 272 273 274 275 276 277 278	756920.4 56903.0 56831.4 ?56389.4 56523.2 56398.6 56352.4 56427.4 56479.6 56532.0 56550.6 56587.2 56587.2 565493.0 56693.0 56497.2 56497.2 56497.2
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10: 24: 38 10: 24: 56 10: 25: 16 10: 25: 30 10: 26: 01 10: 26: 47 10: 28: 13 16. 28: 40 10: 28: 53 10: 29: 10  10: 29: 48 10: 30: 08 10: 30: 30 10: 30: 45 10: 30: 57 10: 31: 49 10: 32: 03 10: 32: 47	260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277	756920.4 56903.0 56831.4 756389.4 56523.2 56398.6 56352.4 56427.4 56427.4 56432.0 56532.0 56587.2 56587.2 565493.0 56613.6 56693.0 56497.2
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10:24:38 10:24:56 10:25:16 10:25:30 10:26:01 10:26:47 10:28:13 10.28:40 10:28:53 10:29:10  10:29:48 10:30:08 10:30:30 10:30:45 10:30:57 10:31:49 10:32:03 10:32:47 10:33:05	260 261 262 263 264 265 266 267 268 270 271 272 273 274 275 276 277 278	756920.4 56903.0 56831.4 ?56389.4 56523.2 56398.6 56352.4 56427.4 56479.6 56532.0 56550.6 56587.2 56587.2 565493.0 56693.0 56497.2 56497.2 56497.2
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10: 24: 38 10: 24: 56 10: 25: 16 10: 25: 30 10: 26: 01 10: 26: 47 10: 28: 13 10: 28: 40 10: 28: 53 10: 29: 10  10: 29: 48 10: 30: 30 10: 30: 30 10: 30: 45 10: 30: 57 10: 31: 49 10: 32: 03 10: 33: 05 10: 33: 05 10: 33: 33	260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279	756920.4 56903.0 56831.4 756389.4 56523.2 56352.4 56427.4 56479.6 56532.0 56587.2 56587.2 56587.2 56587.2 56593.0 56497.2 56497.2 56497.2 56741.4 56508.8
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10: 24: 38 10: 24: 56 10: 25: 16 10: 25: 30 10: 26: 01 10: 26: 47 10: 28: 13 10: 28: 40 10: 28: 53 10: 29: 10  10: 29: 48 10: 30: 30 10: 30: 45 10: 30: 45 10: 30: 57 10: 31: 49 10: 32: 03 10: 33: 05 10: 33: 33	260 261 262 263 264 265 266 267 268 269 270 271 273 274 275 277 277 277 277 277 279 280	756920.4 56903.0 56831.4 756389.4 56523.2 56352.4 56427.4 56479.6 56532.0 56587.2 56587.2 56569.0 56613.6 56695.6 565693.0 56497.2 56741.4 56508.8
22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001 22 001	10: 24: 38 10: 24: 56 10: 25: 16 10: 25: 30 10: 26: 01 10: 26: 47 10: 28: 13 10: 28: 40 10: 28: 53 10: 29: 10  10: 29: 48 10: 30: 30 10: 30: 30 10: 30: 45 10: 30: 57 10: 31: 49 10: 32: 03 10: 33: 05 10: 33: 05 10: 33: 33	260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279	756920.4 56903.0 56831.4 756389.4 56523.2 56352.4 56427.4 56479.6 56532.0 56587.2 56587.2 56587.2 56587.2 56593.0 56497.2 56497.2 56497.2 56741.4 56508.8

22 001					LINE	VALUE
22 001 10:34:57 284 56574.0 56581.4 22 001 10:35:14 285 56584.4 56571.2 20 01 10:35:27 286 58578.0 56571.2 20 01 10:35:52 288 58578.0 565571.2 20 01 10:35:52 288 58578.0 56581.6 22 001 10:36:04 289 56570.2 56569.4 56582.0 20 01 10:36:16 290 56570.8 56566.8 22 001 10:36:49 292 56599.4 56582.0 56582.0 20 01 10:37:01 293 56587.6 56586.0 20 001 10:36:49 292 56599.4 56566.8 20 001 10:37:13 294 56587.6 56586.0 20 001 10:37:26 298 56570.8 56566.8 20 001 10:37:27 294 56587.6 56586.0 20 001 10:37:29 295 56599.4 56566.8 20 001 10:37:29 295 56599.4 56555.4 56582.0 20 001 10:37:28 298 56599.8 56555.4 56582.0 20 001 10:37:29 299 56591.8 56564.2 20 001 10:37:33 297 58591.8 56555.2 20 001 10:38:23 299 58603.2 56582.8 56532.4 56528.8 20 001 10:44:48 301 56482.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56533.4 56	22 001	10.34:41	76477	MANAA.A	T 23	56586.8
22 001 10:35:14 295 56:56.4 22 001 10:35:27 286 56:76.0 23 001 10:35:57 287 56:70.0 24 001 10:35:52 288 56:70.0 25 001 10:35:52 288 56:70.2 26 001 10:36:04 289 56:70.2 27 001 10:36:16 290 56:570.8 28 001 10:36:16 290 56:570.8 29 001 10:36:37 291 56:570.8 20 001 10:36:49 292 56:59.4 20 001 10:36:49 292 56:59.4 20 001 10:37:01 293 56:56.4 20 001 10:37:01 293 56:56.4 20 001 10:37:13 294 56:56.4 20 001 10:37:25 295 56:57.2 20 001 10:37:25 295 56:57.2 20 001 10:37:25 297 56:59.8 20 001 10:37:25 297 56:59.8 20 001 10:38:23 299 56:50.2 20 001 10:38:23 299 56:50.2 20 001 10:44:18 301 56:482.4 23 001 10:44:18 301 56:482.4 23 001 10:44:45 303 56:504.4 23 001 10:44:45 303 56:504.4 23 001 10:44:45 303 56:500.9 23 001 10:46:02 307 56:399.6 23 001 10:46:02 307 56:399.6 23 001 10:46:26 308 56:480.8 23 001 10:46:26 308 56:480.8 23 001 10:46:26 308 56:480.8 23 001 10:46:26 308 76:490.6 23 001 10:46:26 308 76:490.6 23 001 10:48:21 313 75:400.6 23 001 10:48:21 313 75:400.6 23 001 10:48:21 313 75:400.6 23 001 10:48:21 313 75:400.6 23 001 10:48:21 313 75:400.6 23 001 10:48:31 314 56:715.8 23 001 10:48:32 312 75:400.6 23 001 10:48:33 314 56:715.8 23 001 10:49:43 314 56:715.8 23 001 10:49:43 315 56:578.6 23 001 10:49:32 317 56:578.6 23 001 10:49:32 317 56:578.6 23 001 10:49:32 317 56:578.6 23 001 10:49:32 317 56:578.6 23 001 10:49:32 317 56:578.6 23 001 10:49:32 317 56:578.6 23 001 10:49:32 317 56:578.6 23 001 10:55:26 322 56:628.4 23 001 10:55:26 322 56:628.4 23 001 10:55:26 322 56:628.4 23 001 10:55:26 324 36:41.2 23 001 10:55:26 324 36:41.2 23 001 10:54:29 328 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2 23 001 10:54:59 329 56:46.2					1 -	
22 001					]	
22 001						
22 001					] ]	
22 001					1 1	_
22 001						
22 001	22 001	10.00104	2007	(3(7(3)) (3 a a		
22 001 10:36:49 292 5a595.4 56568.0 22 001 10:37:01 293 5a567.4 56555.4 56555.4 22 001 10:37:12 294 5a583.4 56555.4 56555.4 22 001 10:37:26 295 5a587.2 56564.2 22 001 10:37:39 294 5a581.8 56555.2 22 001 10:37:53 297 5a559.8 56535.0 22 001 10:38:10 298 5a591.4 56532.0 22 001 10:38:10 298 5a591.4 56532.0 22 001 10:38:23 299 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a503.2 5a	22 001	10:36:16	290		1 1	
22 001 10:37:01 293 5a5a7.6 22 001 10:37:13 294 5a5a3.4 23 001 10:37:23 295 5a5y5.2 24 001 10:37:33 297 5a5b5.8 25 001 10:38:10 298 5a591.8 25 001 10:38:10 298 5a591.8 26 001 10:38:23 299 5a5a3.2 27 001 10:44:01 300 5a489.6 28 001 10:44:18 301 5a482.4 29 001 10:44:18 301 5a482.4 29 001 10:44:45 303 5a5a4.4 20 001 10:44:45 303 5a5a4.4 20 001 10:44:45 303 5a5a4.4 20 001 10:44:45 303 5a5a4.4 20 001 10:44:45 303 5a5a4.4 20 001 10:44:45 303 5a5a4.4 20 001 10:44:45 303 5a5a4.4 20 001 10:44:45 303 5a5a4.4 20 001 10:44:45 303 5a5a4.4 20 001 10:44:45 303 5a5a4.4 20 001 10:45:41 304 5a495.8 20 001 10:45:42 306 5a444.8 20 001 10:45:42 306 5a444.8 20 001 10:45:42 306 5a444.8 20 001 10:45:42 306 5a495.8 20 001 10:45:42 306 5a495.8 20 001 10:45:40 309 75a122.8 21 001 10:46:40 309 75a122.8 22 001 10:48:36 314 5a679.8 23 001 10:48:36 314 5a679.8 23 001 10:48:36 314 5a679.8 23 001 10:48:36 314 5a679.8 23 001 10:49:43 316 5a679.8 23 001 10:49:43 316 5a679.8 23 001 10:49:43 316 5a679.8 23 001 10:49:43 316 5a679.8 23 001 10:49:46 318 75a583.6 23 001 10:49:46 318 75a583.6 23 001 10:52:24 320 75a583.6 23 001 10:52:24 321 5a513.4 23 001 10:52:36 322 5a6828.4 23 001 10:53:10 333 75a482.0 23 001 10:53:26 324 5a482.2 23 001 10:53:26 324 5a482.2 23 001 10:54:24 328 75a442.2 23 001 10:54:24 328 75a442.2 23 001 10:54:24 328 75a442.2 23 001 10:54:24 328 75a442.2 23 001 10:54:24 328 75a442.2 23 001 10:54:59 329 5a442.2	22 001	10:36:37		= ' '	1	56566.8
22 001	22 001	10:36:49	292	56595.4	<b>!</b>	56568.0
22 001	22 001	10:37:01	293	56567 <b>.6</b>	1 1	56555.4
22 001	22 001	10:37:13		55553.4	[ [	56555.4
22 001	22 001	10:37:26	295	55575.2		56564.2
22 001	22 001	. 10:37:39	296	56581.8		56555.2
22 001	22 001	10:37:53	297	565 <b>59.8</b>	]	56535.0
22 001			298	56591.4	1 1	-
23 001				55503.2		
23 001				-	{ Y	
23 001	23 001	10:44:01	300	56489.6	23	56542.0
23 001 10:44:45 303 56504.4 23 001 10:45:11 304 56495.8 23 001 10:45:25 305 56480.8 23 001 10:45:42 306 56464.8 23 001 10:46:02 307 56399.6 23 001 10:46:26 308 756130.0 23 001 10:46:40 309 756122.8  23 001 10:47:36 310 756003.2 23 001 10:47:49 311 756104.4 23 001 10:48:02 312 756409.6 23 001 10:48:21 313 756729.0 23 001 10:48:36 314 56715.8 23 001 10:48:59 315 756541.8 23 001 10:49:13 316 56759.8 23 001 10:49:46 318 756583.6 23 001 10:49:46 318 756583.6 23 001 10:52:24 320 756520.0  23 001 10:52:56 322 56628.4 23 001 10:53:10 303 756452.0 23 001 10:53:26 324 56418.2 23 001 10:53:26 324 56418.2 23 001 10:53:40 325 56433.6 23 001 10:54:12 727 756474.2 23 001 10:54:24 328 756461.2 23 001 10:54:59 329 56462.2	23 001	10:44:18	301	56482.4	<b>L</b>	
23 001 10:45:11 304 56495.8 23 001 10:45:25 305 56480.8 23 001 10:45:42 306 56464.8 23 001 10:46:26 308 256130.0 23 001 10:46:26 308 256130.0 23 001 10:47:36 310 256003.2 23 001 10:47:49 311 256104.4 23 001 10:48:02 312 256409.6 23 001 10:48:21 313 256729.0 23 001 10:48:59 315 256541.8 23 001 10:49:13 316 56759.8 23 001 10:49:46 318 256583.6 23 001 10:49:46 318 256583.6 23 001 10:52:24 320 256578.6 23 001 10:52:56 322 56628.4 23 001 10:53:10 303 256448.2 23 001 10:53:40 325 56433.6 23 001 10:54:12 327 256474.2 23 001 10:54:24 329 256474.2 23 001 10:54:29 329 564461.2 23 001 10:54:59 329 564461.2 23 001 10:54:59 329 564461.2 23 001 10:54:59 329 564461.2 23 001 10:54:59 329 564461.2	23 001	10:44:33	302	55492.8		
23 001	23 001	10:44:45	303	55504.4		
23 001	23 001	10:45:11	304	56495.8		
23 001	23 001	10:45:25	<b>ು</b> 5	54480.8		
23 001		10:45:42	308	56454.8		
23 001 10:46:26 308 ?56130.0 23 001 10:46:40 309 ?56122.8  23 001 10:47:36 310 ?56003.2 23 001 10:47:49 311 ?56104.4 23 001 10:48:02 312 ?56409.6 23 001 10:48:21 313 ?56729.0 23 001 10:48:36 314 56715.8 23 001 10:48:59 315 ?56541.8 23 001 10:49:13 316 56769.8 23 001 10:49:32 317 56871.8 23 001 10:49:46 318 ?56583.6 23 001 10:49:46 318 ?56583.6 23 001 10:50:02 319 ?56520.0  23 001 10:52:24 321 56513.4 23 001 10:52:56 322 56628.4 23 001 10:53:10 323 ?56452.0 23 001 10:53:26 324 56418.2 23 001 10:53:56 325 56433.6 23 001 10:53:56 326 756456.2 23 001 10:54:12 327 ?56474.2 23 001 10:54:24 328 ?56461.2 23 001 10:54:59 329 56462.2		10:45:02	307	56399.6		
23 001 10:46:40 309 ?56122.8  23 001 10:47:36 310 ?56003.2 23 001 10:47:49 311 ?56104.4 23 001 10:48:02 312 ?56409.6 23 001 10:48:21 313 ?56729.0 23 001 10:48:59 315 ?56541.8 23 001 10:49:13 316 56769.8 23 001 10:49:13 316 56769.8 23 001 10:49:32 317 56871.8 23 001 10:49:32 317 56871.8 23 001 10:49:46 318 ?56583.6 23 001 10:50:02 319 ?56520.0  23 001 10:52:24 321 56513.4 23 001 10:52:66 322 56628.4 23 001 10:53:10 323 ?56452.0 23 001 10:53:40 325 56433.6 23 001 10:53:56 324 56418.2 23 001 10:53:56 326 ?56456.2 23 001 10:53:56 326 ?56456.2 23 001 10:54:24 328 ?56461.2 23 001 10:54:59 329 56462.2		10:46:26	308	756130.0		
23 001       10:47:49       311       ?56104.4         23 001       10:48:02       312       ?56409.6         23 001       10:48:21       313       ?56729.0         23 001       10:48:36       314       56715.8         23 001       10:48:59       315       ?56541.8         23 001       10:49:13       316       56769.8         23 001       10:49:32       317       56871.8         23 001       10:49:46       318       ?56583.6         23 001       10:50:02       319       ?56520.0         23 001       10:50:02       319       ?56578.6         23 001       10:52:43       321       56513.4         23 001       10:52:56       322       56428.4         23 001       10:53:10       323       ?56452.0         23 001       10:53:26       324       56418.2         23 001       10:53:40       325       56433.6         23 001       10:54:12       327       ?56474.2         23 001       10:54:24       328       ?56461.2         23 001       10:54:59       329       56462.2		10:45:40	309	754122.8		
23 001       10:47:49       311       ?56104.4         23 001       10:48:02       312       ?56409.6         23 001       10:48:21       313       ?56729.0         23 001       10:48:36       314       56715.8         23 001       10:48:59       315       ?56541.8         23 001       10:49:13       316       56769.8         23 001       10:49:32       317       56871.8         23 001       10:49:46       318       ?56583.6         23 001       10:50:02       319       ?56520.0         23 001       10:50:02       319       ?56578.6         23 001       10:52:43       321       56513.4         23 001       10:52:56       322       56428.4         23 001       10:53:10       323       ?56452.0         23 001       10:53:26       324       56418.2         23 001       10:53:40       325       56433.6         23 001       10:54:12       327       ?56474.2         23 001       10:54:24       328       ?56461.2         23 001       10:54:59       329       56462.2						
23 001 10:48:02 312 ?55409.6 23 001 10:48:21 313 ?55729.0 23 001 10:48:59 315 ?55541.8 23 001 10:49:13 315 56769.8 23 001 10:49:32 317 56871.8 23 001 10:49:46 318 ?5583.6 23 001 10:50:02 319 ?55520.0  23 001 10:52:24 320 ?55578.6 23 001 10:52:43 321 56513.4 23 001 10:52:56 322 56628.4 23 001 10:53:10 323 ?56452.0 23 001 10:53:26 324 56418.2 23 001 10:53:56 325 56433.6 23 001 10:53:56 326 756456.2 23 001 10:53:56 326 756474.2 23 001 10:54:24 328 756461.2 23 001 10:54:59 329 56462.2						
23 001 10:48:21 313 ?56729.0 23 001 10:48:36 314 56715.8 23 001 10:48:59 315 ?56541.8 23 001 10:49:13 316 56769.8 23 001 10:49:32 317 56871.8 23 001 10:49:46 318 ?56583.6 23 001 10:50:02 319 ?56520.0  23 001 10:52:24 320 ?56578.6 23 001 10:52:43 321 56513.4 23 001 10:52:56 322 56628.4 23 001 10:53:10 323 ?56452.0 23 001 10:53:26 324 56418.2 23 001 10:53:40 325 56433.6 23 001 10:53:56 326 756456.2 23 001 10:54:12 327 ?56474.2 23 001 10:54:59 329 56462.2						
23 001 10:48:36 314 56715.8 23 001 10:48:59 315 756541.8 23 001 10:49:13 316 56759.8 23 001 10:49:32 317 56871.8 23 001 10:49:46 318 756583.6 23 001 10:50:02 319 756520.0  23 001 10:52:24 320 756578.6 23 001 10:52:43 321 56513.4 23 001 10:52:56 322 56628.4 23 001 10:53:10 323 756452.0 23 001 10:53:26 324 56418.2 23 001 10:53:40 325 56433.6 23 001 10:53:56 326 756456.2 23 001 10:53:56 326 756456.2 23 001 10:54:12 327 756474.2 23 001 10:54:24 328 756461.2 23 001 10:54:59 329 56462.2	23 001					
23 001 10:48:59 315 756541.8 23 001 10:49:13 316 56769.8 23 001 10:49:32 317 56871.8 23 001 10:49:46 318 756583.6 23 001 10:50:02 319 756520.0  23 001 10:52:24 320 756520.0  23 001 10:52:43 321 56513.4 23 001 10:52:56 322 56628.4 23 001 10:53:10 323 756452.0 23 001 10:53:26 324 56418.2 23 001 10:53:40 325 56433.6 23 001 10:53:56 326 756456.2 23 001 10:54:12 327 756474.2 23 001 10:54:24 328 756461.2 23 001 10:54:59 329 56462.2	23 001					
23 001       10:49:13       315       56759.8         23 001       10:49:32       317       56871.8         23 001       10:49:46       318       756583.6         23 001       10:50:02       319       756520.0         23 001       10:52:24       320       756578.6         23 001       10:52:43       321       56513.4         23 001       10:52:56       322       56628.4         23 001       10:53:10       323       756452.0         23 001       10:53:26       324       56418.2         23 001       10:53:40       325       56433.6         23 001       10:53:56       326       756456.2         23 001       10:54:12       327       756474.2         23 001       10:54:24       328       756461.2         23 001       10:54:24       329       56462.2	23 001	10:48:36	314			
23 001       10:49:32       317       56871.8         23 001       10:49:46       318       ?56583.6         23 001       10:50:02       319       ?56578.6         23 001       10:52:24       320       ?56578.6         23 001       10:52:43       321       56513.4         23 001       10:52:56       322       56628.4         23 001       10:53:10       323       ?56452.0         23 001       10:53:26       324       56418.2         23 001       10:53:40       325       56433.6         23 001       10:53:56       326       ?54456.2         23 001       10:54:12       327       ?56474.2         23 001       10:54:24       328       ?56461.2         23 001       10:54:59       329       56462.2	23 001	10:48:59	315			
23 001       10:49:46       318       ?56583.6         23 001       10:50:02       319       ?56520.0         23 001       10:52:24       320       ?56578.6         23 001       10:52:43       321       56513.4         23 001       10:52:56       322       56628.4         23 001       10:53:10       323       ?56452.0         23 001       10:53:26       324       56418.2         23 001       10:53:40       325       56433.6         23 001       10:53:56       326       ?56456.2         23 001       10:54:12       327       ?56474.2         23 001       10:54:24       328       ?56461.2         23 001       10:54:29       329       56462.2	23 001	10:49:13	315			
23 001       10:50:02       319       754520.0         23 001       10:52:24       320       754578.6         23 001       10:52:43       321       54513.4         23 001       10:52:56       322       54628.4         23 001       10:53:10       323       754452.0         23 001       10:53:26       324       56418.2         23 001       10:53:40       325       54433.6         23 001       10:53:56       326       754456.2         23 001       10:54:12       327       756474.2         23 001       10:54:24       328       75461.2         23 001       10:54:59       329       56462.2	23 001	10:49:32	317	— <del></del> · ·		
23 001       10:52:24       320       ?56578.6         23 001       10:52:43       321       56513.4         23 001       10:52:56       322       56628.4         23 001       10:53:10       323       ?56452.0         23 001       10:53:26       324       56418.2         23 001       10:53:40       325       56433.6         23 001       10:53:56       326       ?56456.2         23 001       10:54:12       327       ?56474.2         23 001       10:54:24       328       ?56461.2         23 001       10:54:59       329       56462.2	23 001	10:49:46	318			
23 001       10:52:43       321       58513.4         23 001       10:52:56       322       56628.4         23 001       10:53:10       323       256452.0         23 001       10:53:26       324       56418.2         23 001       10:53:40       325       56433.6         23 001       10:53:56       026       256456.2         23 001       10:54:12       327       256474.2         23 001       10:54:24       328       256461.2         23 001       10:54:59       329       56462.2	23 001	10:50:02	319	755520.0		
23 001       10:52:43       321       58513.4         23 001       10:52:56       322       56628.4         23 001       10:53:10       323       256452.0         23 001       10:53:26       324       56418.2         23 001       10:53:40       325       56433.6         23 001       10:53:56       026       256456.2         23 001       10:54:12       327       256474.2         23 001       10:54:24       328       256461.2         23 001       10:54:59       329       56462.2	97 004	ነለ•ፍጥ•ጥ/	TE COLO	<u> </u>		
23 001       10:52:56       322       55528.4         23 001       10:53:10       323       ?56452.0         23 001       10:53:26       324       56418.2         23 001       10:53:40       325       56433.6         23 001       10:53:56       326       ?56456.2         23 001       10:54:12       327       ?56474.2         23 001       10:54:24       328       ?56461.2         23 001       10:54:59       329       56462.2						
23 001       10:53:10       323       ?56452.0         23 001       10:53:26       324       56418.2         23 001       10:53:40       325       56433.6         23 001       10:53:56       326       ?56456.2         23 001       10:54:12       327       ?56474.2         23 001       10:54:24       328       ?56461.2         23 001       10:54:59       329       56462.2	•	= :				
23 001       10:53:26       324       56418.2         23 001       10:53:40       325       56433.6         23 001       10:53:56       026       756456.2         23 001       10:54:12       327       756474.2         23 001       10:54:24       328       756461.2         23 001       10:54:59       329       56462.2						
23 001     10:53:40     325     56433.6       23 001     10:53:56     326     756456.2       23 001     10:54:12     327     756474.2       23 001     10:54:24     328     756461.2       23 001     10:54:59     329     56462.2						
23 001						
23 001						
23 001 10:54:24 328 756461.2 23 001 10:54:59 329 56462.2						
23 001 10:54:59 329 56462.2						
						-
23 001 10:55:19 330 \$6470.6	23 001	10154157	5.27	JOHOLEL		
	23 001	10:55:19	330	55470.6		

23 001	1 Out Entry Arth	nga mari a	E:: 4// A
	10:55:42	331	55466.4
23 001	10:55:56	332	56467.4
23 001	10:56:12	333	758420.2
23 001	10:56:27	234	56425.2
23 001	10:56:40	335	56432.6
23 001	10:57:02	336	56424.B
23 001	10:57:21	337	56406.2
23 001	10:57:36	338	56374.2
23 001	10:57:51	339	56310.0
20 001	1010/101	,	OG 2.3 2.4 2.
23 001	10:58:28	340	56203.4
23 001	10:58:53	341	755888.0
23 001	10:59:11	342	755012.8
23 001	10:59:23	343	756610.4
	10:59:34	344	57341.2
23 001			
23 001	10:59:45	345	755614.2
23 001	10:59:58	346	56665.4
23 001	11:00:10	347	755813.8
23 001	11:00:25	348	755893.4
23 001	11:00:39	349	56716.4
	44.04.04		E / T / T D
23 001	11:01:04	350	56763.B
23 001	11:01:19	351	56793.0
23 001	11:01:32	ଃ52	?5 <b>6090.0</b>
23 001	11:01:49	353	757247.8
23 001	11:02:06	354	758225.8
23 001	11:02:42	3 <b>55</b>	57628.0
23 001	11:02:54	356	?57062.8
23 001	11:03:08	357	57434.2
23 001	11:03:28	358	57209.4
23 001	11:03:47	359	756094.4
20 001	11:00:47	337	: 3007414
23 001	11:04:21	360	755738.0
23 001	11:04:39	361	56451.6
23 001	11:04:52	362	756804.0
23 001	11:05:11	3 <b>6</b> 3	756987.0
23 001	11:05:25	364	56999.4
23 001	11:05:40	୍ଷ	56893.0
23 001	11:05:54	ెదర ౌదర	755948.8
23 001	11:05:09	367	756296.6
	-		
23 001	11:06:24	368 376	56697.8
23 001	11:06:46	369	?56483.4
23 001	11:07:57	370	755983.6
23 001	11:08:13	371	755617.0
23 001	11:08:25	372	56133.2
23 001	11:08:43	373	56412.0
23 001	11:09:26	374	757061.0
23 001	11:07:48	37 <b>5</b>	756257.6
	11:10:04		?55996.0
23 001		376 377	
23 001	11:10:27	377	54630.8
23 001	11:10:43	378	256703.6
23 001	11:10:59	379	756603.6

23	001	11:11:24	380	756594.0
23	001	11:11:58	<b>381</b>	57191.0
23	001	11:12:11	782	57185.0
23	001	11:12:25	383	256751.0
23	001	11:12:44	ℤ84	256717.0
23	001	11:13:03	385	?56693.6
	001	1111707	TGA	54805. A

** G-856 MAGNETOMETER DATA **
RAW FIELD Code: HANS

Line Date	Time	Site	Field
24 001	. 11:16:57	38 <b>8</b>	57019.8
24 001	11:17:13	389	57020.8
24 001	• • • • • • • •		
24 001	11:17:54	390	56762.0
24 001	11:18:13	391	257016.6
24 001	11:18:32	392	257218.4
24 001	11:18:53	393	56468.8
24 001	11:19:09	394	55320.0
24 001	11:19:28	39 <b>5</b>	756254.2
24 001	11:19:49	396	757125.0
24 001	11:20:04	397	258213.8
24 001	11:20:19	398	757690.0
24 001	11:20:42	399	755984.2
24 001	11120112	• .	
24 001	11:21:06	400	55925.4
24 001	11:21:24	401	55924.8
24 001	11:21:42	402	55981.6
24 001	11:22:04	403	756349.2
24 001	11:22:19	404	756955.6
24 001	11:22:32	405	756820.8
24 001	11:22:50	406	255745.2
24 001	11:23:16	407	755216.0
24 001	11:23:38	408	757283.0
24 001	11:23:51	409	756477.6
		410	255114 0
24 001	11:24:06	410	755114.0 756825.6
24 001	11:24:19	411	
24 001	11:24:34	412	756352.6
24 001	11:24:59	413	56142.2 56130.6
24 001	11:25:15	414	756202.6
24 001	11:25:41	415	756701.0
24 001	11:25:58	416	757455.0
24 001	11:26:20	417	759117.0
24 001	11:26:36	418	759829.8
24 001	11:27:13	419	107027.0
24 001	11:27:31	420	257284.6
24 001	11:27:46	421	756642.0
24 001	11:27:58	422	755052.4
24 001	11:28:15	423	56347.0
24 001	11:28:47	424	56169.8
24 001	11:29:31	425	756481.6
24 001	11:29:45	426	56025.4
24 001	11:30:00	427	56029.2
24 001	11:30:12	428	55380.4
Z4 001	a a second a second		

24 001	11:30:23	429	757335.8
24 001	11:30:40	430	~58800 <b>.</b> 4
24 001	11:31:15	431	56931.8
24 001	11:31:27	432	56024.4
24 001	11:31:39	433	55804.2
24 001	11:31:53	434	56178.2
	11:33:20	435	56363.0
24 001	11:33:37	436	56452.0
24 001	11:33:49	437	56476.8
24 001	11:34:04	438	56493.4
24 001	11:34:23	439	56515.0
24 001	11:34:35	440	56522.2
24 001	11:34:51	441	56540.2
24 001	11:35:15	442	56534.0
24 001	11:35:30	443	56511.0
24 001	11:35:45	444	56525.2
		445	56546.6
24 001	11:36:09		
24 001	11:36:22	446	56624.6
24 001	11:36:36	447	757080.0
24 001	11:36:56	448	56779.0
24 001	11:37:07	449	55625.4
24 001	11:37:19	450	56464.2
24 001	11:37:37	451	56526.8
24 001	11:37:49	452	256664.4
24 001	11:38:02	453	56532.4
24 001	11:38:15	454	56549.4
	12:41:09	455	56479.6
24 001			56541.6
24 001	12:41:31	456	
24 001	12:41:46	457	56509.8
24 001	12:41:58	458	56462.0
24 001	12:42:23	459	56481.8
24 001	12:42:36	460	56504.4
24 001	12:42:57	461	?56635.2
24 001	12:43:10	462	56471.6
24 001	12:43:24	463	56459.0
24 001	12:43:38	454	56483.2
24 001	12:43:52	455	56504.8
	12:44:06	466	56543.8
24 001			56557.6
24 001	12:44:18	467	
24 001	12:44:30	468	56569.6
24 001	12:44:43	469	56567.2
	محسد - مقسر	A . T . T	#/# <b>#</b> #################################
24 001	12:44:57	470	56573.0
24 001	12:45:09	471	56572.6
24 001	12:45:31	472	56591.0
24 001	12:45:47	473	56541.2
24 001	12:46:34	474	56611.4
24 001	12:46:53	475	56682.2
24 001	12:47:21	476	56676.8
And 7 127 W. A.			

24 001	12:48:19	477	56597.4
	12:48:47	478	n56573.6
		479	
24 001	12:49:03	4/7	56482.4
ma	4 C) 4 C) 4 C) 4	480	87.677/A D
24 001	12:49:21		56530.B
24 001	12:49:42	481	56556.6
24 001	12:49:57	482	56497.2
24 001	12:50:13	483	56358.0
24 001	12:50:31	484	56553.8
24 001	12:50:46	485	56579.6
24 001	12:51:12	486	56577.8
24 001	12:51:23	487	56590.6
24 001	12:51:34	438	56584.2
24 001	12:51:56	489	56592.8
24 001	12.01.00	707	3657215
24 001	12:52:08	490	56599.2
24 001	12:52:20	491	56574.6
24 001	12:52:32	492	56576.8
25 001	12:53:35	493	56516.0
25 001	12:53:51	494	56506.0
25 001	12:54:18	495	56522.0
25 001	12:54:31	496	56543.8
25 001	12:54:47	497	56515.4
25 001	12:55:10	498	56500.8
25 001	12:55:32	499	56515.2
25 001	12:55:42	500	5650 <b>9.8</b>
25 001	12:55:54	501	55493.6
25 001	12:56:07	502	56501.6
25 001	12:56:22	503	56496.2
25 001	12:56:38	504	58475.0
25 001	12:56:58	505	56441.2
	12:57:18	50a	56364.0
		507	56380.6
25 001	12:57:33		
25 001	12:57:48	508	56565.6
25 001	12:58:06	509	55774.8
<b>05</b> 664	10.50.10	510	756527.8
25 001	12:58:19	510 511	56534.4
25 001	12:58:49		
25 001	12:59:13	512	56514.2
25 001	12:59:42	513	56513.6
25 001	12:59:55	514	56518.6
25 001	13:00:12	515	55514.5
25 001	13:00:24	516	56511.6
25 001	13:00:49	517	56517.0
25 001	13:01:01	518	56506.8
25 001	13:01:14	519	56491.6
. –			
25 001	13:01:40	520	56482.4
25 001	13:02:02	521	56460.4
25 001	13:10:37	522	756455.0
25 001	13:10:50	523	56446.8
25 001	13:11:03	524	56443.4
and the second of	* * * * * * * * * * * * * * * * * * * *	· · · · · · ·	

25 001 25 001 25 001 25 001 25 001	13:11:17 13:11:29 13:11:41 13:11:54 13:12:07	525 526 527 528 529	?56401.0 56402.8 ?56430.8 ?56515.8 ?56275.0
25 001 25 001 25 001 25 001 25 001 25 001 25 001 25 001 25 001	13: 12: 22 13: 12: 39 13: 12: 54 13: 13: 04 13: 13: 20 13: 13: 33 13: 13: 44 13: 13: 56 13: 14: 49	530 531 532 533 534 535 536 537 538 539	?57084.0 ?56526.4 56610.6 ?56448.4 ?56273.0 56718.8 ?56557.6 ?56507.4 ?56487.0 56469.4
25 001 25 001 25 001 25 001 25 001 25 001 25 001 25 001 25 001	13:15:03 13:15:30 13:15:57 13:16:27 13:16:41 13:16:56 13:17:20 13:17:35 13:17:59	540 541 542 543 544 545 546 547 548 549	?56417.6 ?56049.6 ?57589.2 ?52158.6 ?56521.2 ?56447.6 ?56415.2 ?56373.6 56373.6
25 001 25 001 25 001 25 001 25 001 25 001 25 001 25 001 25 001	13:18:23 13:18:37 13:20:16 13:20:30 13:20:42 13:20:56 13:21:08 13:21:20 13:21:31	550 551 552 553 554 555 556 557 558 559	56170.0 ?55628.2 ?55795.2 ?57247.8 57364.2 ?56991.8 ?56281.6 ?56312.0 ?56228.0 ?56076.8
25 001 25 001 25 001 25 001 25 001 25 001 25 001 25 001 25 001	13:22:12 13:22:35 13:23:04 13:23:29 13:23:41 13:24:00 13:24:21 13:24:40 13:25:00	560 561 562 563 564 565 566 567 568 569	?56028.2 ?56011.8 ?56250.8 ?56213.2 ?56310.0 ?57946.4 ?58877.0 ?56849.6 ?56480.2 ?56318.0
25 001 25 001 25 001	13:25:24 13:25:55 13:26:37	. 570 571 572	?55971.2 ?56863.4 ?57318.0

25 224	477.0.457		
25 001	13:26:53	573	?58227.8
25 001	13:27:14	574	256344.2
25 001	13:27:50	575	255697.0
25 001	13:28:03	576	256838.6
25 001	13:28:19	577	7576 <b>26.2</b>
25 001	13:28:34	578	755455.8
25 001	13:28:50	57 <b>9</b>	56424.2
25 001	10.20.00	J, ,	3072712
95 004	13:29:07	580	?5635 <b>9.</b> 2
25 001	10:27:07	200	:30007=2
25 001	13:29:27	581	756593.6
25 001	13:30:12	582	?56771.6
25 001	13:31:01	583	756681.8
25 001	13:31:15	584	56173.0
	13:31:34	585	?55374.0
25 001	13:31:48	586	756030.0
25 001	13:32:06	587	57023.0
25 001	13:32:24	588	57722.4
25 001	13:32:36	589	57 <b>976.</b> 0
25 001	13:32:51	590	57573.0
25 001	13:33:11	591	755698.8
25 001	13:33:28	592	57096.6
		EOZ	E7/00 0
25 001	13:33:41	593	57680.2
25 001	13:33:57	594	57760.6
25 001	13:34:14	595	57390.6
25 001	13:34:28	596	?56817 <b>.4</b>
25 001	13:35:02	597	54887.8
25 001	13:35:17	598	56811.8
26 001	13:38:53	599	?56543.2
26 001	13:39:11	600	56696.0
26 001	13:39:28	601	57016.4
26 001	13:39:51	502	757545.0
26 001	13:40:09	603	?58 <b>584.8</b>
26 001	13:40:28	604	257040.2
26 001	13:40:46	605	?57717.8
26 001	13:41:08	606	758722.8
26 001	13:46:42	607	?58571.0
26 001	13:48:09	608	57778.6
25 001	13:48:30	609	?57675.2
7/ 201	47.40.40	,	0074/7 0
26 001	13:48:48	610	757167.2
26 001	13:49:01	611	56877.4
26 001	13:49:14	612	56248.2
26 001	13:49:26	613	755664.4
26 001	13:49:38	614	?564 <b>79.6</b>
26 001	13:49:54	615	?56999.8
26 001	13:50:29	616	?56578.4
26 001		617	756627.4
	13:52:20		
26 001	13:52:38	618	755508.0
			56002.6
26 001	13:52:58	619	J0004.6
24 001	1 マ・ピフ・フロ	400	54557 4
26 001	13:53:35	620	56557.6

25 001	176*	54:36	621	257120.8
				•
26 00:	13:	54:49	622	?568 <b>15.4</b>
26 001	1.33	55:06	623	55985.2
<b>26</b> 001		55: 27	624	56312.4
26 001	13:	55:41	525	56436.2
26 001		55:56	626	256687.0
26 001	13:	56:33	627	257283.8
26 00:	। <u>1</u> ₹•	56:46	628	?57235.0
<b>26</b> 001	. 13:	56:59	529	?55931.2
				=====
<b>26</b> 000		57:14	<b>6</b> 30	55846.0
26 001	13:	57:30	631	56159.2
		57:45	632	255476.8
26 00:				
26 001	13:	57:58	633	756575.0
26 00:	। 1⊽•	58:10	634	?56305.2
<b>26</b> 001	13:	58:35	635	56559.8
26 00:	1.33	59:04	63 <b>6</b>	255975.0
26 001		59:22	637	56292.6
26 00:	13:	59:37	63 <b>8</b>	55882.0
		59:53	639	56342.8
26 00:	1.71	37:33	007	36344.6
26 000	1Δ•	00:07	640	?5653 <b>5.8</b>
26 00:		00:22	541	56430.2
26 00:	l 14:	00:37	642	56590.6
		00:49	643	257111.8
26 00:	14:	01:01	644	57150.6
26 00:	1 Δ.•	01:12	645	?57055.2
<b>26</b> 001	14:	01:23	646	56294.2
26 00:	14:	01:34	647	56043.2
				56534.4
26 00		01:45	648	
<b>25</b> 00:	14:	01:56	549	56506.4
26 00	1 14:	02:06	650	56543.8
26 00	14:	02:19	651	56467.8
				E4400 0
<b>26</b> 00		02:33	652	56480.8
26 00	1 14:	02:47	<b>6</b> 53	56486.6
26 00		03:02	654	55467.4
	_			
26 00	1 14:	03:20	655	56498.4
26 00	1 14:	03:36	656	54528.6
26 00		03:57	657	56544.2
26 00	1 14:	04:19	658	56525.6
26 00	-	04:35	659	56551.4
20 00	, ,,,,	04.55	00,	55551.4
26 VO	1 14:	04:48	660	56619.0
			661	56521.4
26 00		05:31		
26 00	1 14:	06:15	662	55494.4
26 00	-	06:29	663	56536.0
26 00	1 14	:06:44	554	56548.0
26 00	1 14:	06:56	565	56631.4
				56525.2
<b>2</b> 5 00		16:56	666	
26 00	1 14:	17:09	567	56514.4
26 00		:17:21	668	56567.6
		17:34	669	56442.4
26 00				

26 001	14:17:45	670	56262.0
26 001	14:18:06	671	56458.6
26 001	14:18:17	672	56451.2
26 001	14:18:28	673	56506.2
26 001	14:18:39	674	56519.2
26 001	14:18:49	675	56528.2
26 001	14:19:34	676	55544.4
25 001	14:19:47	577	56549.4
26 001	14:20:06	678	56561.2
26 001	14:20:21	679	56582.0
26 001	14:20:33	680	55603.6
26 001	14:20:47	681	56644.6
26 001	14:21:04	682	56706.6
26 001	14:21:38	683	56831.0
26 001	14:21:53	684	56968.2
25 001	14:22:17	485	56710.8
26 001	14:22:36	686	56397.6
26 001	14:23:06	687	56249.6
26 001	14:23:23	<b>588</b>	56355.8
26 001	14:23:38	689	56458.4
26 001	14:23:53	690	56433.0
26 001	14:24:31	691	56487.4
26 001	14:24:43	692	56518.0
26 001	14:24:56	693	56544.2
26 001	14:25:08	694	5655 <b>0.6</b>
25 001	14:25:21	695	565 <b>55.6</b>
26 001	14:25:35	696	565 <b>66.6</b>
26 001	14:29:19	697	56580.2
26 001	14:29:36	698	5657 <b>5.</b> 4
26 001	14:30:08	699	56581.2

** G-856 MAGNETOMETER DATA **
RAW FIELD Code: HAN6

Line Date	Time	Site	Field
27 001	14:32:09	701	56530.0
27 001	14:32:27	702	56559.6
27 001	14:32:41	703	56626.4
_		704	56564.4
27 001	14:32:53		
27 001	14:33:06	70 <b>5</b>	56528.0
27 001	14:33:19	70 <b>6</b>	56484.0
27 001	14:33:33	707	56521.0
27 001	14:33:45	708	56513.2
27 001	14:34:16	709	56509.4
27 001	14:34:38	710	56267.0
27 001	14:34:53	711	255879.6
27 001	14:35:10	712	755061.8
27 001	14:35:24	713	754220.4
27 001	14:35:39	714	756268.4
27 001	14:36:01	715	258903.4
27 001	14:36:29	716	?58371.0
27 001	14:36:48	717	57194.4
27 001	14:37:06	718	56889.8
=	14:37:52	719	56645.0
27 001	14.0/.02	717	3,0043.0
27 001	14:38:06	720	565 <b>66.2</b>
27 001	14:38:25	721	56546.2
27 001	14:38:37	722	56520.0
27 001	14:38:50	723	56532.2
27 001	14:39:04	724	56532 <b>.8</b>
27 001	14:39:25	725	56497.2
27 001	14:39:36	726	56475.4
27 001	14:39:48	727	56418.0
27 001	14:39:59	728	56328.2
27 001	14:40:10	729	756230.2
27.001	14:40:23	730	56490.6
27 001	14:40:38	730 731	757353.6
27 001		731 732	56927.4
27 001	14:40:51	732 733	56569.8
27 001	14:41:09	733 734	56502.2
27 001	14:41:23		56482.0
27 001	14:44:06	735	56547.8
27 001	14:44:19	736	
27 001	14:44:34	737	56541.6
27 001	14:44:48	738	56515.2
27 001	14:45:00	739	58555.8
27 001	14:45:13	740	56577.2
27 001	14:45:32	741	56508.6
27 001	14:45:47	742	56496.4

07 004	* 4 * 4 / * 65		FT ( 4 mm - 5
27 001	14:46:05	743	56492.0
27 001	14:46:27	744	56492.4
27 001	14:46:42	745	56475.2
27 001	14:46:55	746	56512.2
27 001	14:47:08	747	56493.8
27 001	14:47:21	748	56467.8
27 001	14:47:33	749	56425.4
27 001	14:47:45	750	56362.0
27 001	14:48:00	751	56326.6
27 001	14:48:12	752	56226.0
27 001	14:48:23	753	?55852.6
27 001	14:48:40	754	755716.4
27 001	14:49:05	755	56706.6
27 001	14:49:25	756	757323.6
27 001	14:49:37	757	56547.4
27 001	14:49:49	758	
			56197.2
27 001	14:50:01	759	56200.B
27 001	14:50:19	760	756242.4
27 001	14:50:39	761	756108.8
27 001	14:50:53	762	56625.6
-			
<del></del>	14:51:10	763	756240.2
27 001	14:51:24	. 764	?5552 <b>9.8</b>
27 001	14:52:29	765	?57537.4
27 001	14:52:45	76 <b>6</b>	756521.2
27 001	14:52:57	767	?55 <b>928.2</b>
27 001	14:53:11	758	755568.8
· <del>-</del>			
27 001	14:53:33	769	?5570 <b>5.6</b>
27 001	14:53:47	770	?56 <b>509.6</b>
27 001	14:54:20	771	757265.8
27 001	14:54:53	772	56996.6
27 001	14:55:08	773	256476.6
27 001	14:55:43	774	756480.4
27 001	14:56:14	775	?56507.2
27 001	14:56:36	776	56455.4
27 001	14:56:54	777	756930.6
27 001	14:57:07	778	?56325.0
27 001	14:57:21	779	757042.2
27 001	14.3/121	,,,	
<b>(37)</b> (3.5)	4 // = = = = = = = = = = = = = = = = = =	my cm ans	E:E07 0
27 001	14:57:33	780	56527.8
27 001	14:57:57	781	56247.0
27 001	14:58:17	782	56088.6
27 001	14:58:31	783	755925.0
27 001	14:58:46	784	756745.2
27 001	14:59:25	785	757694.4
	14:59:40		
27 001		796	757137.8
27 001	14:59:53	787	?566 <b>45.8</b>
27 001	15:00:08	788	?56329.4
27 001	15:01:12	789	56170.0
		•	
27 001	15:01:25	790	756025.6

~~	and an	15 - 51 - 47	791	756356.4
	001	15:01:46		
27	001	15:02:03	792	57047.2
27	001	15:02:16	793	256919.2
27	001	15:02:49	794	257411.0
27	001	15:03:07	795	756892.8
		15:03:20	796	756415.0
27	001			
27	001	15:04:04	797	256242.8
27	001	15:04:17	798	57101.8
27	001	15:04:32	799	56950.4
20	001	15.10.50	800	?57230.4
28	001	15:12:59		
28	001	15:13:25	801	758025.6
28	001	15:13:46	802	757561.2
28	001	15:14:01	803	756327.4
28	001	15:14:18	804	55909.4
28	001	15:14:32	805	755666.2
28	001	15:14:45	806	55759.8
28	001	15:15:02	807	56267.0
28	001	15: 15: 18	808	56330.0
28	001	15:15:33	809	56321.6
~13	CO. L	10.10.00	0	0002110
		4 - 4 - 4 -	010	m/ 100 O
28	001	15:15:47	810	56400.8
28	001	15:16:05	811	756246.4
28	001	15:16:53	812	56000.6
28	001	15:17:09	813	756536.6
28	001	15:17:22	814	756862.0
28	001	15:17:37	815	56313.6
28	001	15:17:59	816	55939.6
28	001	15:18:16	817	561 <b>77.6</b>
28	001	15:18:28	818	56221.2
28	001	15:18:47	819	56452.0
20		10.10.77	U.,	00.021
			e e e	05/770 0
28	001	15:19:02	820	756739.2
28	001	15:19:18	821	?57033.2
28	001	15:19:59	822	756948.8
28	001	15:20:12	823	756872.2
28	001	15:20:27	824	257746.0
28	001	15:20:41	825	757364.4
28	001	15:20:54	826	?56773.0
28	001	15:21:13	827	?55740.4
28	001	15:21:27	828	55353.6
28	001	15:22:05	829	?55724.2
2.0	0.01	10.22.00	<b>U</b> _ '	
~~	***	45.00.04	(177)	05///T 0
28	001	15:22:21	830	756443.8
28		15:22:39	831	55813.0
28	001	15:23:18	832	558 <b>59.</b> 0
28		15:23:41	833	56050.4
28		15:23:57	834	756320.2
		15:24:11	835	56274.4
28				
28		15:24:26	836	56249.8
28	001	15:24:44	837	56412.2
28	001	15:24:58	838	56464.2
28		15:25:12	839	55572.6
~~	~~ •			

28 001	15:25:23	840	756914.4
28 001	15:25:44	84 t	56 <i>797.</i> 0
28 001	15:25:58	842	255945.6
28 001	15:26:33	843	55149.4
28 001	15:26:51	844	56394.6
18 001	15:27:03	845	56483.2
28 001	15:27:15	846	55487.8
28 001	15:27:28	847	56507.2
	15:27:40	848	56521.8
28 001	15:27:52	849	56534.8
28 001	L 및 a 조건 a 시스	077	3030410
28 001	15:28:04	850	56585.8
28 001	15:28:38	851	756842.4
	15:29:00	852	56527.2
	15:29:13	853	56465.8
28 001	15:29:33	854	56484.8
28 001		855	56500.6
28 001	15:29:48		56547.8
28 001	15:30:06	856	56579.0
28 001	15:30:19	357	
28 001	15:30:32	858	56585.2
28 001	15:30:50	859	56505.4
20.001	15:31:05	860	56613.0
28 001	15:31:25	861	756799.8
28 001	15:41:52	862	757116.0
28 001		863	56641.6
28 001	15:42:04		56951.6
28 001	15:42:16	864	5642 <b>5.</b> 2
28 001	15:42:27	865	
28 001	15:42:40	366	564 <b>55.</b> 6
28 001	15:42:52	867	56483.8
28 001	15:43:09	868	54510.2
28 001	15:43:19	869	56 <b>669.8</b>
28 001	15:43:32	870	54564.6
	15:43:52	871	56327.8
	15:44:14	872	56542.0
	15:44:38	873	56492.4
28 001		874	56456.0
28 001	15:44:50	875	56617.6
28 001	15:45:04		56704.6
28 001	15:45:15	876	756389.8
28 001	15:45:26	877	56824.6
28 001	15:45:43	978	757463.2
28 001	15:46:06	879	(3/400.4
28 001	15:46:26	880	259091.6
	15:47:12	881	756564.8
	15:47:12	882	754380.4
	15:47:49	883	?54214.4
28 001	15:48:07	884	55688.6
28 001	15:48:07	885	56238.4
28 001		886 886	56411.6
28 001	15:48:34		56498.4
28 001	15:48:47	887	JQ470#7

28 001	15:49:02	998	53547.2
	15:49:15	889	56519.8
28 001	15:47:15	607	30217.0
28 001	15:50:40	890	56511.4
	15:50:52	891	56367.8
28 001			
28 001	15:51:06	892	?55742.4
28 001	15:51:27	893	756456.8
28 001	15:51:45	894	56561.2
28 001	15:51:55	895	56632.2
28 001	15:52:08	896	56745.8
28 001	15:52:20	897	54582.8
28 001	15:52:33	898	56566.0
28 001	15:52:46	899	56562.6
00.001	15:54:21	900	56376.6
29 001			
29 001	15:54:44	901	56585.4
29 001	15:54:59	902	54552.0
29 001	15:55:12	903	56506.0
•			
29 001	15:55:25	904	56489.6
29 001	15:55:40	905	56502.6
29 001	15:55:53	906	56498.8
		907	56492.0
2 <b>9</b> 001	15:56:07		
29 001	15:56:22	908	55459.8
29 001	15:56:47	909	56435.8
	4		5/704 0
29 001	15:56:59	910	56391.2
29 001	15:57:24	911	56292.2
29 001	15:57:41	912	56210.2
29 001	15:57:54	913	56284.0
29 001	15:58:11	914	56576.2
29 001	15:58:30	915	56900.2
	15:58:42	915	756641.0
29 001			
29 001	15:58:57	917	56741.4
29 001	15:59:10	918	56583.8
29 001	15:59:23	919	56541.6
29 001	13.37.23	717	20241.0
•			
29 001	15:59:38	920	56533.2
29 001	15:59: <b>5</b> 2	921	56507.6
		922	56477.0
29 001	16:00:04		
29 001	16:00:16	923	56484.0
29 001	16:00:28	924	56475.4
29 001	16:00:48	925	56471.0
29 001	16:00:58	926	56466.2
29 001	16:01:09	927	56565.4
29 001	16:01:20	928	56508.0
		929	56485.2
29 001	16:01:31	727	JO40J. &
	44-54-4-	070	E ( A 7 7 - 0
29 001	16:01:45	930	56433.8
29 001	16:01:58	931	56442.0
29 001	16:02:09	932	756414.4
	16:02:20	933	56460.4
29 001			
29 001	16:02:34	934	56473.4
29 001	16:02:48	935	56552.2

29 001	16:03:03	936	56480.6
	16:03:23	937	56469.0
29 001	16:03:35	938	54502.2
29 001		738 939	55502.2
29 001	16:03:48	727	# # # DUNGER
29 001	16:04:00	940	55455.5
29 001	15:04:18	941	56504.4
29 001	16:04:38	942	56424.0
29 001	16:05:07	943	56456.2
29 001	16:05:33	944	56476.8
29 001	16:05:45	945	56476.8
29 001	16:05:56	946	55485.4
29 001	16:06:07	947	56460.6
	16:06:17	948	56450.0
29 001	16:06:28	949	56443.6
29 001	19:00:70	777	56445.6
29 001	16:06:41	950	56410.2
29 001	16:06:55	951	756271.0
29 001	16:07:09	952	56503.2
29 001	16:07:23	953	56515.2
29 001	16:08:05	954	56437.2
29 001	16:08:24	955	56428.6
29 001	16:08:41	956	56407.2
29 001	16:08:56	957	56380.0
29 001	16:09:15	958	56275.4
29 001	16:09:28	95 <b>9</b>	56106.8
29 001	16:09:42	960	755824.2
29 001	16:10:03	961	?559 <b>87.</b> 0
29 001	16:10:19	962	?56 <b>949.0</b>
29 001	16:10:35	963	257546.4
29 001	16:11:04	964	56681.0
29 001	16:11:19	945	56354.6
	16:11:31	955	756060.8
	16:11:45	967	55832.2
29 001	16:11:59	968	755257.6
29 001		969	56217.0
29 001	16:12:18	707	JULI7: 0
29 001	16:12:51	<b>9</b> 70	757531.8
29 001	16:13:08	971	56671.6
29 001	15:13:21	972	755028.2
29 001	16:13:45	973	757146.4
29 001	16:14:32	974	756418.2
29 001	16:14:46	975	56400.2
29 001	16:15:05	976	56450.4
29 001	16:15:19	977	56688.4
29 001	16:15:35	978	56428.6
29 001	16:16:03	979	56396.6
00.001	14.14.07	980	56575.0
29 001	16:16:23	780 781	56588.0
29 001	16:16:41	781 982	56481.8
29 001	16:16:56		56635.4
29 001	16:17:32	983	79929.4

29 (	001	16:17:47	984	256417.6
29 (	501	16:18:01	985	755933.4
29 0	001	16:18:14	986	755212.6
29 (	001	16:18:27	987	258271.0
29 (	001	16:18:43	988	756505.6
29 (	)O1	16:18:56	989	58493 0

** G-856 MAGNETOMETER DATA **
RAW FIELD Code: HAN7

	T) - A: -::	Time	Site	Field
	Date	07:52:28	1	257075.6
29	002			758480.8
29		07:53:12	2	
	002	07:53:42	3	754534.8
29		07:54:07	4	758748.0
	002	07:54:24	5	57630.6
	002	07:59:22	6	?57446.2
30	002	08:00:34	7	757567.0
30	002	08:00:49	8	54422.2
30	002	08:01:20	9	56524.4
30	002	08:01:37	10	56568.0
30	002	08:01:59	11	256587.0
30		08:02:20	12	54230.8
	002	08:02:40	13	255814.6
30		08:03:06	14	257049.2
	002	08:03:25	15	257171.6
30		08:03:37	16	757590.4
30 30		08:04:02	17	57434.8
30		08:04:55	18	257537.4
		08:05:11	19	757783.2
30	002	08:00:11	17	: (377 (33 # 2
30	002	08:05:41	20	759368.2
30	002	08:06:03	21	?57812 <b>.8</b>
30	002	08:06:30	22	7560 <b>55.4</b>
30	002	08:06:57	23	?5540 <b>4.6</b>
30	002	08:07:14	24	757332.2
30	002	08:07:32	25	758013.8
30		08:08:05	26	755871.4
30		08:08:59	27	56218.4
30		08:10:03	28	56093.4
30		08:10:27	29	756429.8
				_
	002	08:10:43	30	56445.4
30	002	08:11:05	31	56548.2
30	002	08:11:23	32	56142.8
30	002	08:14:56	33	757068.4
30	002	08:15:15	34	55714.0
30	002	08:15:34	35	56075.2
30	002	08:15:51	<b>36</b>	56460.4
30	002	08:16:33	37	756966.8
	002	08:17:42	3 <b>8</b>	56543.8
	002	08:17:58	39	56472.0
<b>-</b>	- <del></del>			
30	002	08:18:23	40	562 <b>95.</b> 8
30	002	08:18:42	41	56143.6
30	002	08:18:57	42	56392.8

error or or or or	50 / D = 4 / D = / D /	a ***	107 A 177 (5) A
30 002	08:19:26	43	56472.4
30 002	∴8:19:48	44	58499.8
30 002	08:20:01	45	58502.6
30 002	08:20:15	<b>4</b> 6	55507.2
30 002	08:20:29	47	56511.2
30 002	08:20:47	48	55511.4
30 002	08:21:00	49	56513.0
30 002	08:21:15	50	56562.2
	<del></del>		
30 002	08:21:28	51	756590.8
30 002	08:21:46	52	56573.0
	08:22:00	53	56501.2
30 002			
30 002	08:22:11	54	56543.4
30 002	08:22:24	55	256590.0
	= 121		
30 002	08:22:37	55	56470.2
30 002	08:22:52	57	56522 <b>.6</b>
30 002	08:23:26	58	56535.2
30 002	08:23:39	59	56539.0
30 002	08:23:51	60	56555.4
30 002	08:24:03	61	56545.4
30 002	08:24:20	62	56546.6
	08:24:41	63	56560.8
30 002	08:25:00	64	545 <b>5</b> 3.8
30 002	08:25:16	65	56570.4
	08:25:31	<b>56</b>	56546.2
30 002			
30 002	08:25:43	67	565 <b>95.4</b>
30 002	08:26:14	58	555 <b>88.6</b>
	08:26:29	69	58578.2
30 002	Va:20.27	97	JOH / 9 + 4
30 002	08:26:56	70	56416.0
30 002	08:27:07	71	56517.4
		· <del>-</del>	
30 002	08:27:18	72	56557.8
30 002	08:27:31	<i>7</i> 3	56551.8
30 002	08:27:42	74	756586.6
30 002	08:27:57	75	55576.4
30 002	08:28:15	76	256641.0
	08:28:56	77	256761.8
30 002			
30 002	08:29:10	78	?5668 <b>9.</b> 6
30 002	08:29:43	79	56455.0
		£3.5.	05//57 0
30 002	08:29:56	80	?56657.2
30 002	08:30:12	81	56650.0
30 002	08:30:26	82	?56703.4
	= '		
30 002	08:30:40	83	56501.6
30 002	08:31:08	84	56555.4
30 002	08:31:23	95	56591.8
			_
30 002	08:31:43	86	56484.6
30 002	08:32:09	87	56501.4
30 002	08:32:22	98	56436.2
30 002	08:32:37	89	55471.0
30 002	08:32:52	90	55496.0
	the first of the state of the state of	· ·	

30 002	08:33:27	91	కొండానిని.క
		$\omega$	5655 <b>5.</b> 6
30 002	08:35:59		
30 002	08:34:12	93	1985 <b>5</b> 50.4
30 002	08:34:27	74	55555.4
	08:34:54	ବ୍ର	58574.6
30 002			
30 002	08:35:12	A.~.	55593.0
30 002	∪8:35:28	97	55560.4
	08:35:44	98	98322. a
30 002			
30 002	08:36:02	99	55597 <b>.6</b>
T 5 0 5 5 6	COM 75 # 1 4	100	255710.0
30 002	08:36:16		· · · · · · · · ·
30 002	08:36:37	101	056700.B
30 002	08:35:57	102	56566.8
30 002	08:37:13	10%	<u> 156670.2</u>
30 002	08:37:25	104	256651.6
30 002	08:37:40	105	56534.2
30 002	08:37:53	105	56485.6
		107	256589.6
30 002	08:38:07		
30 002	08:38:22	108	255501.4
30 002	08:38:34	109	56600.4
tare and			
	No. 1012 - Street and J. Jones John		C/EDE /
30 002	08:38:50	110	56595.6
31 002	08:40:31	111	56542.2
31 002	08:40:53	112	56538.2
			56520.8
31 002	08:41:05	113	
31 002	08:41:19	114	56513.8
31 002	08:41:31	115	56761.2
		115	565 <b>86.</b> 2
31 002	08:41:45		
31 002	08:41:59	117	55544.0
31 002	08:42:10	118	5353 <b>8.</b> 2
31 002	08:42:23	119	565 <b>59.6</b>
31 002	00.72.20	11,	3555,70
31 002	08:42:36	120	5557 <b>6.</b> 6
31 002	08:42:51	121	55547.0
31 002	08:43:38	122	56540.8
31 002	08:44:00	123	56583.2
31 002	08:44:33	124	56624.6
31 002	os:44:49	125	56553.0
	08:45:22	126	56552.4
31 002			
31 002	08:45:36	127	56544.4
31 002	08:45:53	128	56539.8
31 002	08:46:12	129	56522.4
31 002	VO. 40. 12	12.	OCCES.
31 002	0 <b>8:</b> 46:30	130	56544.0
31 002	08:46:45	131	56484.4
	08:47:00	132	56494.0
31 002			
31 002	08:47:15	133	56555.4
31 002	08:47:31	134	55465.4
31 002	08:48:02	135	56577.0
		136	56539.0
31 002	08:48:21		
31 002	08:48:39	137	56536.4
31 002	08:49:52	138	55543.0
	08:49:07	139	56546.2
31 002	UB147197	1.57	JUUTU - 4

31	002	08:49:38	140	58543.8
31	002	03:49:50	141	56573.0
31		08:50:02		
	002		142	56471.0
31	902	08:50:13	143	56472.0
31	002	08:50:25	144	58511.6
31	002	08:50:53	145	55495.8
31	002	08:51:15	146	56550.2
31	002	08:51:28	147	56521.2
31	002	08:51:39	148	56541.8
31	002	08:51:51	149	756448.4
31	002	08:52:06	150	56492.4
31				
	002	08:52:20	151	56491.4
31	002	08:52:33	152	56314.0
31	002	08:52:46	153	56506.6
31	002	08:52:58	154	56520.4
31	002	08:53:11	155	55505.0
31	002	08:56:44	156	56490.0
31				
	002	08:56:56	157	56519.8
31	002	08:57:10	158	56487.0
31	002	08:57:35	159	56487.8
31	002	A0+57+49	160	55484.4
		08:57:48		
31	002	08:58:00	161	56479.0
31	002	08:58:13	162	56430.0
31	002	08:58:25	163	55430.8
31	002	08:58:38	164	56440.0
31	002	08:58:52	165	56406.2
31	002	09:09:01	166	56424.2
31	002	09:09:13	167	56447.2
31	002	09:09:26	158	56447.4
31	002	09:09:37	169	56459.0
31	002	09:09:49	170	56452.6
		· · ·		
31	002	09:10:01	171	56451.4
31	002	09:10:26	172	56449.0
31	002	09:10:40	173	56488.6
31	002	09:10:58	174	56453.2
31	002	09:11:14	175	56448.2
31	002	09:11:36	176	56448.6
31	002	09:12:03	177	56451.2
31	002	09:12:37	178	56435.6
31	002	09:12:56	179	56405.4
31	002	09:13:17	180	56377.8
31	002	09:13:33	181	56323.6
31	002	09:13:55	182	56210.8
34	002	09:14:19	183	56071.0
31	002	09:14:33	184	56341.2
31	002	09:15:12	185	56282.8
31	002	09:15:55	186	55780.4
31	002	09:16:13	187	735561.0
7.	UUL	W7.10.10	10/	: William C

77.1	002	09:16:36	138	56493.0
31	002	09:16:54	189	58681.6
31	002	97.10.04	1137	00001.0
31	002	09:17:08	190	055757.4
31	002	09:17:29	191	756008.2
31	002	09:17:43	192	755589.8
		09:18:01	193	257480.2
31	002		194	755607.4
31	002	09:18:19		
31	002	09:18:42	195	755108.2
31	002	09:19:38	196	756281.8
31	002	09:20:01	197	757229.8
31	002	09:20:16	198	758065.4
31	002	09:20:44	199	757908.8
31	002	09:21:00	200	57369.2
31	002	09:21:39	201	257781.6
31	002	09:22:19	202	758192.4
31	002	09:22:37	203	759035.0
31	002	09:23:08	204	58662.2
31	002	09:23:35	205	58344.0
31	002	09:24:05	206	57599.8
31	002	09:24:29	207	756455.4
31	002	09:24:47	208	56806.0
31	002	09:25:07	209	56517.2
	002	07.20.07	207	0001712
31	002	09:25:25	210	56755.6
31	002	09:25:40	211	567 <b>68.4</b>
31	002	09:26:04	212	56418.2
31	002	09:26:20	213	56403.8
31	002	09:26:37	214	56420.6
31	002	09:26:50	215	56442.8
31	002	09:27:05	216	56461.2
32	002	09:30:58	217	56521.4
32	002	09:32:11	218	56506.0
32	002	09:32:24	219	56491.8
شداف	002	07:02:27	217	13 to 7 1 4 to 13
32	002	09:32:36	220	56461.4
32	002	09:32:48	221	56461.8
32	002	09:33:06	222	56461.2
32	002	09:33:21	223	56646.4
32	002	09:33:39	224	757368.0
32	002	09:34:01	225	756261.2
32	002	09:34:23	225	56745.2
32	002	09:34:47	227	757509.6
32	002	09:35:05	228	56802.6
32	002	09:35:56	229	57220.8
كدن	THE THE SAME	CONTRACTOR	dia de 1	tear is described for the first
32	002	09:36:17	230	?57762.4
32	002	09:36:35	231	757410.8
32	002	09:36:48	. 232	56614.0
32	002	09:37:09	233	757552.8
32	002	09:37:23	234	56816.0
32	002	09:37:34	235	755986.4

32 002	09:37:48	236	56340.0
	09:38:00	237	758535.0
32 002	• · - <del></del> · -		
32 002	09:38:24	238	755403.8
32 002	09:38:48	239	54372.0
32 002	09:39:06	240	756348.2
32 002	09:39:19	241	55849.4
32 002	09:39:51	242	755395.8
	09:40:10	243	756579.8
32 002			?57350 <b>.</b> 2
32 002	09:40:32	244	
32 002	09:40:45	245	56840.4
32 002	09:40:57	246	757418.4
32 002	09:41:14	247	757112.8
32 002	09:41:57	248	755444.8
32 002	09:44:21	249	?563 <b>69.2</b>
32 002	09:45:04	250	56057.0
	09:45:21	251	55048.6
32 002			
32 002	09:45:39	252	56140.2
<b>32</b> 002	09:45:57	253	56377.2
32 002	09:46:12	254	758461.6
32 002	09:46:28	255	56480.2
32 002	09:46:48	256	56494.2
32 002	09:47:05	257	56504.4
32 002	09:47:25	258	56514.6
32 002	09:49:21	259	56518.4
32 002	(/7 : 47 · 4 · 1	2.57	OCCUPATION V
32 002	09:49:37	260	5850 <b>9.2</b>
32 002	69:49:50	251	56523.2
32 002	09:50:12	262	56516.4
32 002	09:50:23	263	56510.4
32 002	09:50:34	264	56519.6
		265	56608.0
32 002	09:50:46		756783.0
32 002	09:50:57	266	
32 002	09:51:26	267	56747.0
32 002	09:51:40	268	55700.8
32 002	09:52:06	269	56257.6
32 002	09:52:17	270	56394.8
32 002	09:53:02	271	56481.4
32 002	09:53:15	272	56501.8
32 002	09:53:26	273	56518.8
32 002	09:53:37	274	56528.4
	09:53:48	275	56535.4
		276	56545.2
32 002	09:54:01	277	56539.0
32 002	09:54:21		
32 002	09:54:35	278	756576.6
32 002	09:58:00	279	56531.0
32 002	09:58:10	280	55561.6
32 002	09:58:21	281	58556.6
32 002	09:58:31	282	56552.4
32 002	09:58:43	283	56544.2
WE SMIE	Section 1991	and the 'ma	

002 002 002 002 002 002 002 002 002 002	10:03:16 10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11  10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39 10:06:52 10:07:06 10:09:37 10:08:53  10:09:20 10:09:35 10:10:06 10:10:21 10:10:33 10:11:24 10:11:42 10:11:53 10:12:18 10:12:35	303 304 305 306 307 308 309 310 311 312 313 314 315 314 315 314 315 316 317 318 317 320 321 322 323 324 325 327 328 329	56543.4 56545.4 56545.0 56526.0 56526.0 56528.4 56418.6 56474.4 56519.0 56544.0 56544.0 56544.0 56538.0 56525.6 56525.6 56525.6 56539.2 56434.2 564313.6 756460.0 57061.0 56539.0 56498.4 756402.0 56481.8
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11  10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39 10:06:52 10:07:06 10:09:37 10:08:53  10:09:20 10:09:35 10:10:21 10:10:33 10:11:24 10:11:42	304 305 306 307 308 309 310 311 312 313 314 315 314 315 317 319 317 319 319 320 321 322 323 324 325 326	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6 56474.4 56519.0 56564.0 56564.0 56564.0 5656577.6 56538.0 56525.6 56529.8 56529.8 56539.2 56434.2 564313.6 756539.0 56539.0
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11  10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39 10:06:52 10:07:06 10:08:53  10:09:37 10:08:53  10:09:20 10:09:35 10:10:06 10:10:21 10:10:33 10:11:24	304 305 306 307 308 309 310 311 312 313 314 315 314 315 317 319 319 320 321 322 323 324 325	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6 56474.4 56519.0 56544.0 56544.0 56544.0 56544.0 56543.4 756577.6 56525.6 56525.6 56525.6 56529.8 56529.8 56539.2 56434.2 56313.6 75650.0 57061.0
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11  10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39 10:06:52 10:07:06 10:08:53  10:09:35 10:09:35 10:09:35 10:10:06 10:10:21 10:10:33	304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324	54545.4 54558.8 54579.0 54524.0 54528.4 5418.4 54418.4 5474.4 54519.0 54544.0 54544.0 54544.0 54544.0 54544.0 545577.4 54538.0 54538.0 54525.4 54538.0 54539.2 5434.2 54313.4 754640.0
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11  10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39 10:06:52 10:07:06 10:08:53  10:09:37 10:09:35 10:09:35 10:09:35	304 305 306 307 308 309 310 311 312 313 314 315 314 315 316 317 318 319 320 321 322 323	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6 56474.4 56519.0 56566.8 56544.0 56566.8 56577.6 56533.4 756577.6 56525.6 56525.6 56525.6
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11  10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39 10:06:52 10:07:06 10:08:53 10:09:20 10:09:35 10:10:06	304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319	54545.4 54558.8 54579.0 54524.0 54528.4 54418.4 54418.4 54519.0 54544.0 54544.0 54544.0 54544.0 54544.0 54544.0 545577.4 545577.4 54558.0 54525.4 54529.8 54529.8 54539.2 54434.2
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11  10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39 10:06:52 10:07:06 10:09:37 10:08:53	304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319	54545.4 54558.8 54579.0 54524.0 58528.4 56418.6 56474.4 56519.0 56544.0 56544.0 56544.0 56544.0 56544.0 5653.4 756577.4 54538.0 56525.6
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11  10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39 10:06:52 10:07:06 10:09:37 10:08:53	304 305 306 307 308 309 310 311 312 313 314 315 314 315 316 317 318 319	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6 56474.4 56519.0 56564.0 56564.0 56565.6 56577.6 56538.0 56525.6
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11  10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39 10:06:52 10:07:06 10:08:37 10:08:53	304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6 56474.4 56519.0 56566.8 56544.0 56565.6 5656577.6 5656577.6 56538.0 56525.6
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:05:11 10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39 10:06:52 10:07:06 10:09:37	304 305 306 307 308 309 310 311 312 313 314 315 316 317 318	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6 56474.4 56519.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:05:11 10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39 10:06:52 10:07:06 10:09:37	304 305 306 307 308 309 310 311 312 313 314 315 316 317 318	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6 56474.4 56519.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0 56544.0
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:05:11 10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39 10:06:52 10:07:06	304 305 306 307 308 309 310 311 312 313 314 315 316 317	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6 56474.4 56519.0 56544.0 56544.0 56566.8 56598.6 56501.6 56583.4 756577.6
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11 10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39 10:06:52	304 305 306 307 308 309 310 311 312 313 314 315 316	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6 56474.4 56519.0 56544.0 56544.0 56566.8 56566.8 56561.6 56583.4
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11 10:05:22 10:05:36 10:05:51 10:06:09 10:06:24 10:06:39	304 305 306 307 308 309 310 311 312 313 314 315	56545.4 56558.8 56579.0 56526.0 56528.4 56474.4 56519.0 56544.0 56544.0 56544.0 56548.6 56548.6
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11 10:05:22 10:05:36 10:05:51 10:06:09 10:06:24	304 305 306 307 308 309 310 311 312 313 314	56545.4 56558.8 56579.0 56526.0 58528.4 56418.6 56474.4 56519.0 56544.0 56544.0 56544.0
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11 10:05:22 10:05:36 10:05:51 10:06:09	304 305 306 307 308 309 310 311 312 313	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6 56474.4 56519.0 56544.0 56544.0
002 002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11 10:05:22 10:05:36 10:05:51	304 305 306 307 308 309 310 311 312	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6 56474.4 56519.0 56544.0
002 002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11	304 305 306 307 308 309 310 311	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6
002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11	304 305 306 307 308 309	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6
002 002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58 10:05:11	304 305 306 307 308 309	56545.4 56558.8 56579.0 56526.0 56528.4 56418.6
002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58	304 305 306 307 308	56545.4 56558.8 56579.0 56526.0 58528.4
002 002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44 10:04:58	304 305 306 307 308	56545.4 56558.8 56579.0 56526.0 58528.4
002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26 10:04:44	304 305 306 307	56545.4 56558.8 56579.0 56526.0
002 002 002 002 002 002	10:03:30 10:03:45 10:04:02 10:04:26	304 305 306	56545.4 56558.8 56579.0
002 002 002 002	10:03:30 10:03:45 10:04:02	304 305	5654 <b>5.</b> 4 56558. <b>8</b>
002 002 002	10:03:30 10:03:45	304	56545.4
002 002	10:03:30		
002		303	56543.4
	10:03:16		
002	-	302	56557.4
	10:03:02	301	56554.6
002	10:02:43	300	56535.0
Test that about	ing the second of the Maria	dus F F	Gudur / W
			56537.6
			56490.4
			56542.4
			56537.4
			55554.4
			56547.4
			56570.6
			56575.0
			55509.6
002	10:00:17	290	255559.0
<del>-</del> -		·	in the same of the same
			58588.2
			00047.0 00580.6
			06007.4 06549.6
			56539.4
			565 <b>86.</b> 0 56541.2
കര	7.0 × 40 × 44	203	eragor a
	002 002 002 002 002 002 002 002 002 002	002       09:59:06         002       09:59:17         002       09:59:30         002       09:59:51         002       10:00:05         002       10:00:17         002       10:00:31         002       10:00:41         002       10:00:52         002       10:01:03         002       10:01:42         002       10:02:19         002       10:02:30	002       09:59:08       285         002       09:59:17       287         002       09:59:30       287         002       09:59:51       298         002       10:00:05       139         002       10:00:17       290         002       10:00:31       291         002       10:00:41       292         002       10:00:52       293         002       10:01:03       294         002       10:01:15       295         002       10:01:27       296         002       10:01:42       297         002       10:02:19       298         002       10:02:30       299

33 002	10:13:13	332	256471.6
33 002	10:13:37	333	757128.8
33 002	10:13:52	334	5a50 <b>8.</b> 2
33 002	10:14:04	335	5648 <b>6.6</b>
33 002	10:14:19	336	56505.9
33 002	10:14:30	337	56496.4
33 002	10:14:41	338	56493.2
33 002	10:15:08	339	56502 <b>.6</b>
33 002	10:15:20	340	56500.0
33 002	10:15:37	341	56484.6
33 002	10:15:49	342	56469.0
33 002	10:16:00	343	56503.6
33 002	10:16:12	344	56521.6
33 002	10:16:22	345	56510.4
33 002	10:16:33	346	56458.6
33 002	10:16:45	347	56483.0
33 002	10:16:59	348	56495.2
33 002	10:17:13	349	56486.2
33 002	10:17:12	<b>⊍47</b>	J0700.2
33 002	10:17:24	350	56484.6
33 002	10:17:35	351	56493.2
33 002	10:17:48	352	56471.0
	- · · · · · · · · · · · · · · · · · · ·	353	56516.6
33 002	10:18:00		
33 002	10:18:11	354	56646.8
33 002	10:18:22	355	56508.8
33 002	10:18:32	35 <b>6</b>	56475.2
33 002	10:18:47	357	564 <b>65.2</b>
33 002	10:19:27	358	56462.8
33 002	10:19:44	359	56446.2
33 002	10:19:57	<b>360</b>	56428.8
33 002	10:20:08	361	56406.2
33 002	10:20:31	362	56336.8
33 002	10:20:42	363	56310.0
	10:20:54	364	56346.6
33 002			56369.4
33 002	10:21:05	365	_
33 002	10:21:16	366	56371.0
33 002	10:21:28	367	55404.2
33 002	10:21:46	368	56429.6
33 002	10:22:09	369	56509.2
77 000	10.00.70	77.77	56448.9
33 002	10:22:30	370	
33 002	10:22:42	371	56450.2
33 002	10:22:54	372	56422.4
33 002	10:23:04	373	56397.2
33,002	10:23:16	374	56489.8
33 002	10:23:27	375	56428.0
33 002	10:23:41	376	56478.6
33 002	10:23:58	377	56501.0
	10:24:22	378	56423.6
33 002			
33 002	10:24:33	379	56393.2

33 002	10:24:44	380	56315.6
33 002	10:24:56	184	55291.8
33 002	10:25:07	382	იგნ832.გ
33 002	10:25:20	383	255827.8
33 002	10:25:32	384	758514.8
33 002	10:25:44	385	255761.0
33 002	10:25:56	୍ଷର	757517.8
33 002	10:25:21	387	56798.6
33 002	10:26:39	388	757270.8
33 002	10:26:58	389	54830.8
33 002	10120100		
33 002	10:27:17	390	?57355.6
33 002	10:27:33	391	56793.6
33 002	10:27:46	392	56815.4
33 002	10:28:00	393	56295.6
33 002	10:28:13	394	756096.8
33 002	10:29:13	395	756330.8
33 002	10:29:28	396	255031.2
33 002	10:29:42	397	756660.4
33 002	10:29:56	398	756350.0
33 002	10:30:18	399	56786.4
www. www.			
33 002	10:30:30	400	756645.6
33 002	10:30:45	401	258244.8
33 002	10:31:02	402	?56702.0
33 002	10:31:16	403	756167.4
33 002	10:31:29	404	256345.2
33 002	10:31:42	405	56148.2
33 002	10:31:59	406	55210.4
33 002	10:32:11	407	562 <b>56.2</b>
33 002	10:32:27	408	56355.8
33 002	10:32:39	409	56088.4
00 002		•	
34 002	10:34:21	410	757327.2
34 002	10:34:43	411	257268.2
34 002	10:34:56	412	57188.8
34 002	10:35:11	413	56756.0
34 002	10:35:26	414	56125.6
34 002	10:35:47	415	756176.2
34 002	10:36:08	416	256137.6
34 002	10:36:42	417	756172.0
34 002	10:37:49	418	756705.4
34 002	10:38:08	419	257100.6
J ( 454			
34 002	10:38:21	420	56404.4
34 002	10:38:35	421	56367.0
34 002	10:38:50	422	756830.2
34 002	10:39:03	423	56657.6
34 002	10:39:16	424	756806.6
34 002	10:39:44	425	257031.6
34 002	10:39:57	426	756323.2
34 002	10:40:11	427	55996.8
34 002	10:40:24	428	756338.2

34 002	10:40:38	429	755559.6
34 002	10:40:50	430	55145.2
34 002	10:41:07	431	56399.8
34 002	10:41:33	432	55479.8
34 002	10:41:44	433	56504.4
34 002	10:41:58	434	56503.2
34 002	10:44:17	435	56512.6
34 002	10:44:30	436	256692.6
34 002	10:44:45	437	756747.4
34 002	10:44:58	438	56477.0
34 002	10:45:12	439	56408.0
-			
34 002	10:45:26	440	56446.4
34 002	10:45:40	441	56455.8
34 002	10:45:54	442	56446.2
34 002	10:46:09	443	56436.0
34 002	10:46:29	444	754589.6
34 002	10:46:48	445	56506.0
34 002	10:47:10	446	756916.2
34 002	10:47:30	447	56466.8
34 002	10:47:46	448	56122.6
34 002	10:48:02	449	56320.8
	A 70 - A 600 - A 600	A 1*** .**.	PP / A D A /
34 002	10:48:15	450	56401.6
34 002	10:48:28	451	55460.4
34 002	10:48:41	452	56495.0
34 002	10:48:54	453	56530.6
34 002	10:49:11	454	756728.8
34 002	10:49:23	455	56381.8
34 002	10:49:34	456	56504.4
34 002	10:49:46	457	56512.2
34 002	10:49:58	458	56548.0
34 002	10:50:11	459	56438.2
34 002	10:50:23	460	56498.4
34 002	10:50:34	461	56509.0
34 002	10:50:46	462	56526.6
34 002	10:51:02	463	56537.4
34 002	10:51:20	464	56567.0
34 002	10:51:31	465	56587.6
34 002	10:51:46	466	56470.4
34 002	10:51:59	467	56524.6
34 002	10:52:10	468	56551.2
34 002	10:52:24	469	56554.6
34 002	10:52:36	470	56546.2
34 002	10:52:48	471	56539.0
34 002	10:52:46	472	56542.6
34 002	10:53:00	473	56548.0
34 002 34 002	10:53:33	474	56570.6
34 002 34 002	10:53:33	475	56542.4
	10:53:48	475 476	56549.6
34 002	70.00.07	7/0	

34 002	10:54:12	477	58544.4
34 002	10:54:33	478	58548.8
34 002	10:54:48	479	255526.8
- · · · · ·		• • •	
34 002	10:57:46	480	56596.0
34 002	10:58:17	481	56556.2
34 002	10:58:33	482	56509.0
34 002	10:58:44	483	56466.4
34 002	10:58:57	484	56477.0
34 002	10:59:11	485	56542.6
34 002	10:59:23	486	56568.4
34 002	10:59:36	487	56575.6
34 002	10:59:58	488	56569.4
34 002	11:00:14	489	56498.4
		,	127 227 7 7 122 27 1
34 002	11:00:43	490	56530.6
35 002	11:02:44	491	58528.2
35 002	11:02:57	492	56522.6
35 002	11:03:21	493	58512.0
35 002	11:03:33	494	56524.6
35 002	11:03:45	495	56491.0
35 002	11:04:02	495	56432.0

** G-856 MAGNETOMETER DATA **
RAW FIELD Code: HANS

Line Date	Time	Site	Field
<i>35 ●</i> 002	12:55:03	1	756478.2
350 002	12:55:27	Ž	57057.2
35 002	12:55:59	3	56697.6
35 002	12:56:11	4	56515.2
35 002	12:56:22	5	756404.0
35 002	12:56:22	6	56481.2
35 002	12:56:52	7	56474.0
35 002	12:57:05	Ś	56435.0
35 002	12:57:16	9	56502.8
00 002	42.1.07.14.0	,	0000210
35 002	12:57:29	10	256474.6
<b>35</b> 002	12:57:51	11	56529.6
<b>35</b> 002	12:58:05	12	55499.4
35 002	12:58:20	13	56461.4
35 002	12:58:32	14	56439.8
35 002	12:58:42	15	56462.2
35 002	12:58:54	16	56453.0
35 002	12:59:05	17	56471.0
35 002	12:59:16	18	56444.8
35 002	12:59:26	19	55463.2
35 002	12:59:39	20	55440.8
35 002	12:59:52	21	?5631 <b>8.</b> 0
3 <b>5</b> 002	13:00:04	22	56765.2
35 002	13:00:16	23	56707.8
3 <b>5</b> 002	13:00:27	24	56567.8
35 002	13:00:38	25	56520.0
3 <b>5</b> 002	13:00:50	26	54520.8
35 002	13:01:03	27	56475.6
35 002	13:01:28	28	56453.8
3 <b>5</b> 002	13:01:39	29	56432.4
3 <b>5</b> 002	13:02:10	30	56428.4
35 002 35 002	13:02:10	30 31	56356.4
35 002 35 002	13:02:21	32	56228.2
35 002 35 002	13:02:48	33 33	55933.8
35 002 35 002	13:03:00	34	755750.2
	13:03:00	35	56487.6
35 002 35 002	13:03:15	ათ 3 <b>გ</b>	?56372 <b>.</b> 6
		3 <b>6</b> 37	56959.0
35 002	13:03:46	37 38	56582.2
35 002 35 002	13:04:02	38 39	56575.2
3 <b>5</b> 002	13:04:28	ಎಶ	J0J/J.Z
35 002	13:06:04	40	56507.8
35 002	13:06:18	41	56472.0
35 002	13:06:30	42	756422.4
- ·- · <del></del>		-	

35 002	13:06:51	43	58098.2
	13:07:05	44	56735.8
35 002		45	58287.8
35 002	13:07:19	45	56331.6
35 002	13:07:33		756255.6
35 002	13:07:47	47	
35.002	13:07:59	48	56628.6
35 002	13:08:15	49	257348.2
35 002	13:08:45	50	057146.0
35 002	13:09:00	51	56544.0
35 002	13:13:11	52	756612.8
35 002	13:14:10	53	55595.8
35 002	13:14:24	54	58823.2
35 002	13:14:35	55	56763.4
35 002	13:14:48	5e	757034.2
	13:15:06	57	756996.8
35 002	13:15:19	58	256620.4
35 002			757649.6
36 QQ2	13:17:31	59	:2/047.0
			C) C 1 F 1 A 1 /
<b>35</b> 002	13:17:51	50	255514.6
36 002	13:18:05	61	57095.8
36 002	13:18:24	62	758108.2
36 002	13:18:39	<b>6</b> 3	758071.6
36 002	13:18:53	64	756436.2
36 002	13:19:05	65	756674.2
36 002	13:19:27	దర	56353.2
36 002	13:21:59	67	?5543 <b>9.</b> 2
36 002	13:22:13	68	56147.4
·	13:22:33	69	755860.0
<b>34 002</b>	1 we side ww	0,	, , , , , , , , , , , , , , , , , , , ,
#1 00 <b>0</b>	13:22:48	70	755299.2
36 002	13:23:02	71	57003.2
36 002		72	756913.6
36 002	13:23:13		755792.4
<b>36</b> 002	13:23:26	73	57007.8
<b>35</b> 002	13:23:48	74	
36 002	13:23:59	75	56638.0
36 002	13:24:16	76	756465.2
36 002	13:24:34	フフ	757040.8
36 002	13:24:47	79	57250.0
3 <b>6</b> 002	13:24:58	79	256474.2
36 002	13:25:13	80	756510.8
36 002	13:25:27	81	56777.8
36 002	13:25:40	82	755522.0
36 002	13:25:53	83 83	255707.0
	13:26:07	84	756116.2
36 002	13:26:19	85	756243.2
36 002		86	756299.8
36 002	13:26:32		756340.8
36 002	13:26:55	87	756408.2
<b>36</b> 002	13:27:07	88	
36 002	13:27:35	89	756374.6
36 002	13:27:47	90	?56403.4

36 002	13:28:28	91	056574.0
			2007 ***
36 002	13:28:43	92	56873.8
<b>36</b> 002	13:29:22	93	758210.8
36 002	13:29:42	44	256562.8
<b>36</b> 002	13:29:54	95	256567.2
36 002	13:30:13	9s	255357.4
· · · · · · · · · · · · · · · · · · ·			
36 002	13:30:25	97	256227.0
36 002	13:30:36	98	?56J40.8
3 <b>6</b> 902		· <del>-</del>	
36 002	13:30:48	99	756342.6
36 002	13:31:01	100	756403.4
36 002	13:31:14	101	256425.4
36 002	13:31:27	102	756386.2
36 002	13:31:42	103	756602.0
36 002	13:31:55	104	756478.6
36 002	13:32:09	105	255465.6
36 002	13:32:21	105	256543.0
36 002	13:32:33	107	256419.8
			756377.8
36 002	13:32:46	108	
36 002	13:33:00	109	756456.0
36 002	13:33:20	110	256412.0
36 002	13:33:33	111	756433.6
<b>35</b> 002	13:33:45	112	756498.0
36 002	13:34:02	113	756557.2
36 002	13:34:15	114	55484.8
36 002	13:34:31	115	56499.2
36 002	13:34:46	116	755472.8
36 002	13:34:59	117	554 <b>94.2</b>
36 002	13:35:11	118	56499.6
36 002	13:35:25	119	756497.8
37 002	13:38:37	120	256428.4
37 002	13:39:05	121	256423.4
37 002	13:39:17	122	256415.8
37 002	13:39:29	123	756376.6
37 002	13:39:42	124	756361.2
37 002	13:39:55	125	756402.8
37 002	13:40:12	126	?56599.4
37 002	13:40:26	127	756412.2
37 002	13:40:38	128	756385.6
		129	254404 2
37 002	13:40:50	1.29	756484.2
77 000	17101107	4.7775	954704 9
37 002	13:41:03	130	756304.2
37 002	13:41:15	131	756423.2
37 002	13:41:29	132	?56360.2
37 002	13:41:43	133	756398.4
37 002	13:42:05	134	756364.0
37 002	13:42:18	135	756347.2
37 002	13:42:34	136	756338.4
37 002	13:42:46	137	756369.4
37 002	13:42:59	138	754467.0
37 002	13:43:12	139	755107.0
		17	:

37 002	13:43:23	140	056558.2
37 002	13:43:36	141	258411.0
37 002	13:43:47	142	756506.2
37 002	13:43:59	143	755520.5
37 002	13:44:11	144	?55422 <b>.</b> 6
37 002	13:55:43	145	56375.0
37 002	13:55:56	145	56381.4
37 002	13:56:08	147	~56373.0
37 002	13:56:21	148	757270.6
37 002	13:56:33	149	756552.4
WY COUR	Time come and	. , ,	, transfer to be a
37 002	13:56:47	150	56447.4
	13:56:58	151	56406.6
37 002			
37 002	13:57:09	152	56364.4
37 002	13:57:28	153	56342.0
37 002	13:58:00	154	?5527 <b>4.</b> 9
37 002	13:58:17	155	56214.4
37 002	13:58:28	156	756049.8
37 002	13:58:47	157	756048.0
37 002	13:59:00	. 158	56733.8
37 002	13:59:19	159	757673.6
37 002	10.07.1/	. 1/	:3/0/3.0
37 002	13:59:34	160	256579.0
	13:59:46	161	57050.8
37 002			
37 002	13:59:59	162	57115.4
37 002	14:00:11	163	56957.8
37 002	14:00:32	164	?5ა828.4
37 002	14:00:50	165	5733 <b>8.8</b>
37 002	14:01:05	166	?58064 <b>.8</b>
37 002	14:01:19	167	57276.6
37 002	14:01:33	168	754591.8
37 002	14:01:45	169	756006.0
37 002	7.44.074.40	107	, 550,0010
37 002	14:02:01	170	756051.6
37 002	14:02:16	171	56870.0
	14:02:31	172	56794.6
37 002			56936.8
37 002	14:02:47	173	
37 002	14:03:05	174	756636.6
37 002	14:03:18	175	756218.6
37 002	14:03:32	176	757507.0
37 002	14:03:45	177	756866.8
37 002	14:04:09	178	56659.6
37 002	14:04:30	179	757166.4
38 002	14:06:24	180	757334.2
38 002	14:06:46	181	757905.6
38 002	14:07:03	182	257025.0
38 002	14:07:17	183	755896.0
	14:07:38	184	56395.4
		113.4	756598.8
38 002	14:07:51	185	
38 002	14:09:50	186	756656.8
<b>38</b> 002	14:10:05	187	56486.2

38 002 38 002	14:10:18 14:10:29	188 189	5a075.8 5a3 <b>61.</b> 4
38 002 38 002 38 002 38 002 38 002 38 002 38 002 38 002 38 002	14:10:42 14:10:56 14:11:08 14:11:20 14:11:33 14:11:57 14:12:15 14:12:29 14:12:41 14:12:52	190 191 192 193 194 195 196 197 198	58904.6 757352.2 57421.4 57284.6 757839.0 57139.8 757350.8 56364.4 56553.4
38 002 38 002 38 002 38 002 38 002 38 002 38 002 38 002 38 002	14:13:04 14:13:22 14:13:41 14:13:56 14:14:08 14:14:28 14:14:39 14:14:50 14:15:01 14:15:12	200 201 202 203 204 205 206 207 208 209	56589.6 56306.8 56466.2 56445.6 56324.6 56324.6 56370.6 56426.4 56462.4 56485.4
38 002 38 002 38 002 38 002 38 002 38 002 38 002 38 002 38 002	14:15:23 14:15:35 14:15:46 14:15:58 14:16:20 14:16:31 14:16:43 14:16:53 14:17:05 14:17:17	210 211 212 213 214 215 216 217 218 219	56488.6 56513.8 56534.2 56466.0 56565.6 56540.6 56730.6 56627.8 56627.0 56405.8
38 002 38 002 38 002 38 002 38 002 38 002 38 002 38 002 38 002	14:17:28 14:17:40 14:17:51 14:18:05 14:18:22 14:18:34 14:18:45 14:18:58 14:19:11 14:19:27	220 221 222 223 224 225 226 227 228 229	56442.0 58500.6 58455.2 58548.4 58501.6 58515.6 58543.2 58471.6 58536.2 58583.6
38 002 38 002 38 002 38 002 38 002 38 002	14:19:40 14:19:58 14:20:11 14:20:24 14:20:48 14:20:58	230 231 232 233 234 235	56573.0 56591.4 56573.0 56568.6 56578.4 56585.8

38 002 38 002 38 002 38 002	14:21:10 14:21:22 14:21:35 14:21:46	238 237 238 239	56586.6 56592.4 56587.4 56588.8
38 002 38 002 38 002 38 002 39 002 39 002 39 002 39 002 39 002	14:21:57 14:22:08 14:22:30 14:22:34 14:22:59 14:24:48 14:25:07 14:25:19 14:25:30 14:25:47	240 041 242 243 244 245 245 246 247 248 249	56607.2 56584.4 56560.2 56459.4 56571.0 56524.4 56513.8 56479.8 56462.4
39 002 39 002 39 002 39 002 39 002 39 002 39 002 39 002 39 002	14:26:01 14:26:21 14:26:33 14:26:44 14:26:57 14:27:09 14:27:20 14:27:33 14:27:48 14:27:59	250 251 252 253 254 255 256 257 258 259	56430.6 56617.8 56509.4 756361.6 56405.8 56443.0 56501.6 56847.2 56761.0 56661.2
39 002 39 002 39 002 39 002 39 002 39 002 39 002 39 002 39 002	14:28:19 14:28:40 14:29:39 14:29:51 14:30:03 14:30:15 14:30:26 14:30:38 14:30:49 14:31:01	260 261 262 263 264 265 266 267 268 269	756340.0 756335.6 56380.0 756170.2 56486.4 56644.8 756460.8 56617.0 56545.4
39 002 39 002 39 002 39 002 39 002 39 002 39 002 39 002 39 002	14:31:16 14:32:57 14:33:08 14:33:19 14:33:32 14:33:45 14:33:58 14:34:12 14:34:25 14:34:42	270 271 272 273 274 275 276 277 278 279	56513.8 56502.0 56499.4 56478.2 56385.2 ?56096.6 ?56084.6 56160.4 ?55860.8 ?55655.6
39 002 39 002 39 002 39 002	14:35:09 14:35:29 14:35:51 14:36:08	280 281 282 283	56251.4 56638.8 57294.8 257707.4

39 002	14:36:21	284	56910.2
39 002	14:36:35	285	256319.0
3 <b>9</b> 002	14:36:51	286	?5a208.4
3 <b>9</b> 002	14:37:06	287	256839.0
39 002	14:37:19	288	257604.0
39 002	14:38:00	289	57312.2
39 002	14:38:13	290	57029.4
	14:43:35	291	?56343.6
39 002	14:43:49	292	756286.2
<b>39</b> 002	14:44:54	293	56430.8
39 002	14:45:19	294	256147.2
39 002	14:45:40	295	256298.2
			756224.6
39 002	14:45:58	296	
3 <b>9</b> 002	14:46:51	297	756263.8
40 002	14:48:50	298	?56858.2
40 002	14:49:17	299	756289.2
40.002		<b>-</b>	
40 002	14:49:30	300	56408.8
40 002	14:49:46	301	56399.8
40 002	14:50:01	302	56537.0
		303	56878.8
40 002	14:50:14		
40 002	14:50:27	304	56734.2
40 002	14:50:40	305	56243.0
40 002	14:50:58	30 <b>6</b>	56104.4
40 002	14:51:10	307	756568.2
		308	56427.2
40 002	14:51:24		
40 002	14:51:43	309	?5á91 <b>3.8</b>
40 002	14:51:55	310	5646 <b>6.</b> 0
	14:52:07	311	55806.0
40 002	14:52:20	312	55848.0
40 002	14:52:33	313	56248.6
40 002	14:52:45	314	256712.6
40 002	14:52:59	315	56289.8
	14:53:16	316	257380.2
40 002	14:53:37	317	56075.0
40 002	14:53:52	318	756454.8
40 002	14:54:14	319	?55844.0
40.000	1 A + S A + TA	320	756289.0
40 002	14:54:30		
40 002	14:54:42	321	56315.2
40 002	14:54:53	322	56434.4
40 002	14:55:05	323	56568.8
40 002	14:55:18	324	56494.4
		325	56554.0
40 002	14:55:31		
40 002	14:55:43	326	56569.6
40 002	14:55:57	327	56593.2
40 002	14:56:08	328	56646.2
40 002	14:56:20	329	56703.8
g nga - Tahintah daga	in the surport of the St		
40 002	14:56:30	330	56862.6
40 002	14:56:43	331	258730.4

40 002	14:56:58	332	?53 <b>452.</b> 0
	14:57:11	333	755387.6
40 002			
40 002	14:57:32	334	754932.6
40 002	14:57:44	مين جود دود اليدو الدور اليد	56062.4
40 002	14:57:58	3 <b>36</b>	56179.4
	14:58:12	337	56432.6
40 002			
40 002	14:58:23	33 <b>8</b>	58481.2
40 002	14:58:34	339	56622.6
40 002	14:58:46	340	56664.0
• • • • • •			
40 002	14:58:58	341	56564.0
40 002	14:59:11	342	56589.8
40 002	14:59:23	343	?56234.8
40 002	14:59:36	344	54505.2
40 002	14:59:50	345	56549.2
40 002	15:00:08	345	56562.4
40 002	15:00:26	347	56598.6
40 002	15:00:39	348	56590.8
40 002	15:00:50	349	56577.6
40 002	15:01:02	350	56577.4
41 002	15:02:24	351	56503.8
		352	56492.4
41 002	15:02:40		
41 002	15:02:53	353	56491.0
41 002	15:03:26	354	5648 <b>7.8</b>
41 002	15:03:37	355	56480.4
41 002	15:03:53	356	56475.8
			55477.8
41 002	15:04:15	357	
41 002	15:04:27	358	56480.4
41 002	15:04:40	<b>35</b> 9	55474.4
44 000	15:04:51	360	55469.2
41 002			
41 002	15:05:03	361	56460.4
41 002	15:05:16	362	56470.4
41 002	15:05:28	ొదక	756256.2
41 002	15:05:40	364	56396.8
	15:05:54	365	256120.4
41 002			
41 002	15:06:21	ౌద <b>ర</b>	756282.2
41 002	15:06:33	367	756280.4
41 002	15:06:44	368	57180.2
41 002	15:06:54	369	56961.0
41 002	13.00.07		
			00//84 0
41 002	15:07:07	370	756654.8
41 002	15:07:20	371	56563.6
41 002	15:07:32	372	56487.4
41 002	15:07:44	373	56455.8
			56555.4
41 002	15:08:17	374	
41 002	15:08:31	375	56526.0
41 002	15:08:47	376	56442.0
41 002	15:09:00	377	543 <b>54.</b> 8
	15:07:00	378	756333.0
41 002			
41 002	15:09:30	379	56428.4

41	002	15:09:50	380	55155.2
41	002	15:10:03	381	256109.6
41	002	15:10:15	382	756207.4
41	002	15:10:30	383	956520 <b>.</b> 8
41	002	15:10:42	ី84	256576.6
41	002	15:10:58	385	56974.2
41	002	15:11:26	386	256913.8
41	002	15:11:41	387	57221.2
41	002	15:11:55	388	56780 <b>.6</b>
41	002	15:12:10	389	56519.8
• -	•			
41	002	15:12:26	390	56351.2
41	002	15:12:38	391	756254.6
41	002	15:12:51	392	56338.8
41	002	15:13:04	393	56405.0
41	002	15:13:16	394	56456.0
41	002	15:13:28	395	55559.4
41	002	15:13:44	396	57226.2
<b>4</b> 1	002	15:14:14	397	756272.0

** G-856 MAGNETOMETER DATA **
RAW FIELD Code: HAN9

Line	Date	Time	Site	Field
	002	15:16:04	399	757225.2
42	002	15:16:54	400	56776.4
42	002	15:17:07		n55950.8
42	002	15:17:23		256434.0
42	002	15:17:39		257332.6
42	002	15:17:54		756768.6
42	002	15:18:08	405	56615.0
42	002	15:18:20	406	55614.8
42	002	15:18:31		257029.0
42	002	15:18:44	408	56441.2
	002	15:18:59	409	56403.0
			, •	
42	002	15:19:16	410	55480.2
42	002	15:19:58	411	56771.0
42	002	15:20:10	412	56488.2
42	002	15:20:34	413	56268.0
42	002	15:20:46	414	56467.8
42	002	15:20:59	415	56408.6
42	002	15:21:14	415	56432.9
42	002	15:21:26	417	56269.8
42	002	15:21:37	418	5633 <b>6.</b> 2
42	002	15:21:50	419	56473.4
42	002	15:22:02	420	56541.0
42	002	15:22:23	421	56577.8
42	002	15:22:34	422	56688.8
42	002	15:22:45	423	56814.2
42	002	15:22:56	424	57032.8
42	002	15:23:07	425	57433.8
42	002	15:23:22	426	56260.8
42	002	15:23:33	427	55822.2
42	002	15:23:45	428	56032.4
42	002	15:23:56	429	56290.0
	Q02	15:27:07	430	56394.8
	002	15:27:33	431	56461.8
	002	15:27:44	432	56524.0
	002	15:27:55	433	56542.4
	002	15:28:07	434	56563.8
	002	15:28:18	435	56580.0
42	002	15:28:29	436	56554.0
	002	15:28:41	437	56498.0
42	002	15:29:07	438	56490.8
42	002	15:29:19	439	56495.4

42 002	15:29:32	440	56518.2
	15:30:56	441	56218.8
		· · · -	
43 002	15:31:09	442	255979.4
43 002	15:31:25	443	254940.0
43 002	15:31:37	444	258722.8
43 002	15:31:50	445	257460.2
43 002	15:32:03	446	55694.2
	15:32:14	447	56548.?
43 002			
43 002	. 15:32:26	448	56477.2
43 002	15:32:39	449	756412.0
43 002	15:32:5!	450	56406.6
43 002	15:33:07	45 (	255993.6
· ·	15:33:20	452	56656.8
43 002	_		
43 002	15:33:38	453	755608.8
43 002	15:33:49	454	?5636 <b>8.4</b>
43 002	15:34:02	455	756731.6
43 002	15:34:13	456	?563 <b>50.8</b>
43 002	15:34:24	457	256492.8
	15:34:35	458	755495.0
43 002			
43 002	15:34:49	459	?56590.8
43 002	15:35:10	460	?5650 <b>8.</b> 8
43 002	15:35:46	461	564 <b>58.6</b>
43 002	15:36:15	452	56378.6
43 002	15:36:27	463	56199.6
· · · · · · · · · · · · · · · · · · ·			756172.0
43 002	15:36:39	464	
43 002	15:36:51	465	756024.4
43 002	15:37:04	466	756005.0
43 002	15:37:16	467	?56220.2
43 002	15:37:29	468	55560.8
43 002	15:37:41	469	55744.8
43 002	13.37.41	-7077	
		4770	OCCUPATION A
43 002	15:37:54	470	758454.6
43 002	15:38:10	471	255429.2
43 002	15:38:31	472	56753.6
43 002	15:38:43	473	56889.0
43 002	15:38:56	474	755700.0
43 002	15:39:08	475	56742.0
	15:39:19	476	256532.8
43 002			
43 002	15:39:33	477	756521.2
43 002	15:39:45	478	56749.2
44 002	15:40:52	479	56706.6
44 002	15:41:17	480	56772.6
	15:41:31	481	257292.4
	<del>-</del> '		56698.4
44 002	15:41:44	482	
44 002	15:41:55	483	56647.4
44 002	15:42:05	484	5626 <b>6.</b> 2
44 002	15:42:20	485	55785.8
44 002	15:42:41	486	56656.4
44 002	15:42:53	487	256934.2
			56696.2
44 002	15:43:07	488	30070.4

44 002	15:43:20	489	56495.4
44 002	15:43:33	490	58305.4
44 002	15:43:48	491	055391.8
44 002	15:44:01	492	756010.2
44 002	15:44:15	493	56524.0
44 002	15:44:28	494	56385.2
	15:44:43	495	56466.8
44 002	15:45:05	496	56590.2
44 002	15:45:18	497	757007.8
44 002	15:45:31	477 498	757302.8
44 002		479	756092.8
44 002	15:45:43	** 7 7	:40072.0
44 002	15:45:56	500	563 <b>25.</b> 4
44 002	15:46:08	501	56170.2
44 002	15:46:19	502	256549.4
44 002	15:46:31	503	5647 <b>6.</b> 4
44 002	15:46:43	504	56648.2
44 002	15:46:55	505	756789.2
44 002	15:47:07	506	56404.0
44 002	15:47:19	507	56572.0
44 002	15:47:31	508	56595.6
44 002	15:47:42	509	56650.4
44 002	15:47:52	510	56756.6
44 002	15:48:04	511	757320.0
44 002	15:48:16	512	758141.2
44 002	15:48:28	513	757568.0
44 002	15:48:40	514	756812.2
44 002	15:48:57	515	755639.0
44 002	15:49:10	516	56211.4
44 002	15:49:20	517	56453.2
44 002	15:49:32	518	58537.4
45 002	15:50:33	519	56481.8
45 002	15:50:47	520	56447.4
45 002	15:50:58	521	5638 <b>6.</b> 0
45 002	15:51:09	522	56234.6
45 002	15:51:21	523	755842.2
45 002	15:51:36	524	755466.4
45 002	15:51:48	525	758120.0
45 002	15:52:00	526	757382.6
45 002	15:52:11	527	?57083.8
45 002	15:52:23	528	756731.0
45 002	15:52:34	529	56605.0
14 442			
45 002	15:52:46	530	56533.2
45 002	15:52:58	531	56501.8
45 002	15:53:09	532	56462.2
45 002	15:53:22	533	56432.0
45 002	15:53:36	534	56353.8
45 002	15:53:48	535	5637 <b>5.4</b>
45 002	15:53:58	536	756046.4

45 002	15:54:32	537	757415.2
45 002	15:54:45	538	758368.0
		539	56766.8
45 002	15:55:01	コンツ	©⊠/6 <b>6.</b> 0
		,	
45 002	15:55:14	540	56472.0
	15:55:27	541	756225.0
45 002	-		
45 002	15:55:41	542	756221.6
45 002	15:55:53	543	756296.0
45 002	15:56:05	544	256365.2
45 002			
45 002	15:55:19	545	?5631 <b>3.</b> 0
45 002	15:56:31	546	56650.8
45 002	15:56:44	547	756455.4
45 002	15:58:56	548	56423.5
	15:57:07	549	256772.4
45 002	12:27:07	12 mm 17	120//207
45 000	10.07.00	550	57441.0
45 002	15:57:20		
45 002	15:57:38	551	756582.2
45 002	15:57:52	552	756130.0
45 002	15:58:03	553	256487.0
45 002			
46 002	15:59:33	554	56680.2
			56317.4
46 002	15:59:48	555	⊕6-17• <del>4</del>
46 002	16:00:03	556	56813.8
46 002	16:00:18	557	56970.2
46 002	16:00:31	558	56452.0
46 002	16:00:43	559	56301 <b>.8</b>
		www. 4 N.	
46 002	16:00:57	560	?55 <b>988.4</b>
47 000	16:01:10	561	53508.0
46 002	10:01:10		
46 002	16:01:26	562	56578.4
46 002	16:01:39	563	5651 <b>8.8</b>
46 002	16:01:51	564	56226.6
46 002	16:02:03	565	561 <b>60.0</b>
46 002	16:02:20	566	564 <b>5</b> 0.0
46 002	16:02:31	567	55610.4
	16:02:43	568	56733.4
45 002	10:02:40		
46 002	16:02:53	569	56528.0
	<del></del>		
46 002	16:03:06	570	?56348.2
46 002	16:03:21	571	256709.4
46 002	16:03:33	572	756129.6
46 002	16:03:46	573	56405.8
	16:04:02	574	56542.4
46 002			
46 002	16:04:15	575	56586.6
	16:04:35	576	56638.6
46 002			
46 002	16:04:54	577	56920 <b>.6</b>
			257977.0
46 002	16:05:04	578	
46 002	16:05:16	579	756340.0
70 004	10.00.10	- / -	
46 002	16:05:27	580	755440.0
46 002	16:05:40	581	55854.0
	16:05:52	582	56255.4
46 002			
46 002	16:06:03	583	56387.6
		584	56467.0
46 002	16:06:17	207	GOMO/ C

46 002	16:06:28	585	56522.4
47 002	18:07:37	590	55442.5
47 002	15:07:50	587	58477.2
47 002	16:08:01	588	55447.4
47 002	16:08:16	539	55423.0
47 002	10.00.10	salt at F	CONTRACTOR AND A
47 002	16:08:27	590	56350.4
47 002	16:08:38	591	56189.6
47 002	16:08:49	592	756046.2
47 002	15:09:00	595	56862.2
47 002	16:09:12	594	56664.2
47 002	16:09:51	575 595	56515.0
			56445.6
47 002	16:10:02	596	
47 002	16:10:16	5 <b>9</b> 7	56531.4
47 002	16:10:28	598	56462.0
47 002	16:10:38	599	56368.6
47 002	16:10:49	600	256173.4
•	16:11:00	601	756250.0
•		602	?5 <b>66</b> 07 <b>.</b> 2
47 002	16:11:12	· <del>-</del>	
47 002	16:11:24	503	56622.2
47 002	16:11:39	604	56503.8
47 002	16:11:50	605	56392.2
47 002	16:12:07	60 <b>6</b>	56305.2
47 002	16:12:21	- 607	?5 <b>6</b> 03 <b>6.0</b>
47 002	16:12:34	60 <b>8</b>	56395.8
47 002	16:12:47	609	56459.0
47 00 <b>0</b>	4 / 4 4 77 4 6 4	1.4.15	E 1 1 1 1 1
47 002	16:13:01	610	56441.4
47 002	16:13:12	611	56394.8
47 002	16:13:25	612	754312.0
47 002	16:13:38	613	56474.4
47 002	16:13:52	514	56499.2
47 002	16:14:05	615	564 <b>65.6</b>
48 002	16:15:01	616	56208.6
48 002	16:15:22	617	56323.2
48 002	16:15:35	<b>618</b>	56385.2
48 002	16:15:49	619	56331.4
			e reco
48 002	16:16:01	620	56390.6
48 002	16:16:15	621	56377.0
48 002	16:16:27	622	56345.0
48 002	16:16:39	623	56422.0
48 002	16:16:54	624	56459.0
48 002	16:17:17	625	56534.4
48 002	16:17:44	626	56490.8
48 002	16:18:00	627	56562.6
48 002	16:18:11	628	756847.0
48 002	16:18:24	629	56524.8
- <del>-</del>	•		
48 002	16:18:36	630	56527.8
48 002	16:18:48	- 631	56440.4
48 002	16:19:01	632	56467.0

48 002	16:19:13	633	58264.2
48 002	16:19:39	634	56421.6
48 002	16:19:53	635	56492.6
48 002	16:20:05	636	56536.6
48 002	16:20:16	637	56596.2
48 002	16:20:29	638	56577.4
48 002	16:20:40	639	56466.6
48 002	16:20:53	640	56454.8
48 002	16:21:14	641	56479.8
48 002	16:21:25	642	56492.8
48 002	16:21:39	643	56477.4



			<u> </u>			;
		· ·	:		-	:
	-	:		1		
		!				
1222 Finished Symponia For 9/25						
en g		; ;	:			,
13°C						
(12/3) OH 8/6 - doid way bro	1		· - <del></del>			
<b>?</b>						
<u> </u>		i	<b>.</b> .			•
R.						
				<u></u> .		:
The Canal Tabulation		- <del></del>		,		· ·
			<b>F</b> _	<u> </u>		
1125 pl. 743 Claudy brown 1128						• • •
SCANK						
47			: : :	:		- :
017 (15 AC				:		•
\$ 13 CM \$ 5		1				
6-07 D-C				M-2 4**		
1767 7 1000 CA 10000 CA 10000			·			
9/25						

|--|--|



855 CENSED PURCHART 1/20 FACT	947 PH 10.44	Jew 13°C Spec Cond, 5094 MH25	5 4 ARRIAN & PURSE WELL 6-02	21 SP = 3 GAL (G'utu)	(SPERMY DAMPING, WITH KECK	2 pH 6 88 signily chargingary page	Set Cont	Cant
	0		200		0780	033	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
			3/2		80		**************************************	

pH 710 - clauseyory Comes and 185uthos Speciard 785uthos Speciard 785uthos Speciarde Pures 5 may get 185cm at 6.05uthos Speciar 10°C Community of 10°C Community of 10°C Community of 10°C Community of 10°C Community of 10°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Community of 11°C Commu		9/28/8c.
Special 185411405.  1000. Coppers Pulce. >10000.  1200. Pulcos Sapare. 07 Fred.  1213. pt. 100.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapare. 16.0.  1210. Pulcos Sapa		pH 7.10 - cloudy yay
1200 Pales Same OT Fear  1200 Pales Same OT Fear  1213 pt 766 "derivate  1219 pt 100 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20 pt 20		Spectand 785uMos
(200 Pulsos) Saplace OT Free  (200 Pulsos) Saplace OT Free  (213 Ph		
1200 Power Stander OT Flear  1213 pt 7-46 - Clearwoll  1213 pt 7-46 - Clearwoll  1230 - Talephender Power Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand  1240 One 40 Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Clouds of Stand R.C. OS: Cl		1000, LONGEN, FUICE, MODER KINGHAD
ARITESMAN WHELE # G.OS.  1213 PH 766 - Clearwole  1230 - Theparate Purc. 5 Ann  1240 Philips - Well # G.OS.  1240 Philips - Well # G.OS.  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245 PH 1972  1245		
(213 pt 7.66 - clearmater Tent 10°G 50°G com the mins.  (240 044.90 500 6004.90 600 500 044.90 600 500 06004.60 60004.60		ARIZS/Am 20800 # G-05.
230 - 726978 NGT BULL 5 SAMP  230 - 726978 NGT BULL 5 SAMP  (240 0 ULL 40 SAMP RE OB - CLOUBY 158  1215 PM RE OB - CLOUBY 158  240 CM 665471112		12 Clearington
20 - 726 Card 492 Miles.  230 - 726 Miles.  240 D. 124 E. C. 3.  240 D. 140 S. 117 - Loudy gety  250 Card 665 Summes.		Jens 110°C
1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 PULE SAW 1240 P	•	\$
1240 PULL O SAMINE OS - CLOUDY SIN		2000
1240 PULLED SAMINE US - CLOUD! ST. 1875 PM NE US - CLOUD! ST. 177 - Lloudy gray 17°C Lindy gray 17°C Lindy gray 17°C Lindy gray 17°C Lindy gray 17°C Lindy gray 17°C Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gray 1877 Lindy gra		3 - 00
1240 Pult 40 Sam Arc. 08. Alougy 5th 1245 ph 140 Sam Arc. 08. Alougy 5th Emp 140 Spac Card 665 summas	1	50
245 pt [140] - Lloudy gray		1240 PULLED SOM KE UB- CLOUDY GREY
20 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Cand 66.5 Can		7
		7 1 1 Page 1



1533- Aceive is Pur Samar 11 From WELL # 6.06 1545 Porces Sample 11	555. pH 7.66 - mosty Clar 1558 Temp 12.5°C Spec Cond 455 withos	
	<u></u>	
•	· · · · · · · · · · · · · · · · · · ·	 







	and Su-25	To the land Comments		20 1 10 110 110 110 110 110 110 110 110	2: 6:11 350 +++	16.50 200 Mary 1 (12.20)	206 66 340 ruch of host	2, 6 64 450 Samy 4. A.	6 11, 250		
12-6-86	1	500 50-1 140c	54, 50 - 3 - 42 - 42 - 42 - 42 - 42 - 42 - 42	30. 50 -5 -0455	50 50 - 7 1020	5 m 50-10 1246	5 1 20 12 1200 1200 1200 1200 1200 1200	5w 50-14 1122	1000 4 Com 20 1000	84 50-16 1.325 84 50-19 10-155	- oslota
								JEE FR#	Fal. 19/15		
:					<del>-</del>				 		-



OADD PREPARING TO PURCE RESIDENCE  FAISTING WELLS 7.6.7,10.	13 of 1 constant	PURED : RESAMPED : LELL 610-7	SAMPLE 6W-1 . C.V-2 (02) =	422	Poero . 125 miles wear ou &	Sir Goo = 1022 p.H. = 7.25	3	U- 4 . DTW = 7.55	7.18	
CADD PRESING T	PURGE CENSES	CHAST FUNT	SAMPLE GW-1	Spec Cono = 422 PH = 9.36	1020 - Resto . 12	SAMPLE GU-3	1103 - Curbino 4 S	1 EMP 16.0	\$0.60 Carp - 472 ptl = 7.18	
							:			
			: 	· 			<u> </u>		· · · · · · · · · · · · · · · · · · ·	



								<u>, v</u>	. ـ الله الله الله الله الله الله الله ال
2/15/86- Abor Organisty LT PALA 0970 - Barburgo 36 " WPENEV! 572094	Bullass operas unic ou 2	321-4-1074 = 21.41 Bit	(C) F ( ( ( ) ) )   ( ) ( ) ( ) ( ) ( ) ( ) (	5.35	Stir puece : auterra	S. S.	The Gas And Some 400 Well	Spire ( ( ( ) = 472 / EW) = 11 6	1465- (Eurecitius stranges 50-17: 50-17 15th 1965 VERT 708510 ; 4110 75
Same disposition of Colors	SAME	55.	50 J	9	Fit purce : 12	1.00 5.74 TEMP 10°C	Ans San	7 - C~ 3)	SAMPLES SI 7 7088113
(C. C. C. C. C. C. C. C. C. C. C. C. C. C	Purchas.	U	120 # 30 P	- <del>1</del>	SAC.	3 3 3	5 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Spire (co	Contesta
0975	<b>8</b>		SAMORE	050			2		1485 - CE
		:					• <b>-</b>		**
						en e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya d			
•									·
				<del></del>					
				<del></del>					

to transle considerable		4 Scholed Well Smale # 11 am	DTW = 205 Bue	Sample 1/2 11/40, 3.61 314		Muell-Snowma Somple (C. 13 UTW 1711 13	Sampled Lings (Sugar)	(ACS)
12-16-56	DÉ.	Mob Parged 4 50	100 10°C	14/4 Somple	\$ % % % % % % % % % % % % % % % % % % %	1135 MW-12 Sample	500c Cod 6 32mp	Spe Const Leco
:								
						erion and common accident.	· · · <del>· · · ·</del> · · · · · · · · · · · ·	·
						·		. <u> </u>

11 snows cool [-12-87 A.C. 74 MV/11]	9.86 BTIC NTW > 3.63615  Ment unscores in purplication	It # 534 16 263 8nc (Now that Seaung having having)			
Se Surpled Well	Sound 1.1	1610 MW13D Sample # 5 Temp 11°C UTILL CLG3'	Sycc Cond Jest 15 proper 220,	1600 Operted from site	

People Sank Soon Soon Soon Soon Soon Soon Soon So	
3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	no ted +
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	de de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la const
= 20 7 70 00 500	Estroyet Funcs Blank to
77.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	Te the
8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Another Late
	• -
	17 1435 11° 7.05 590 12 8'19 8'19 150 18 18.00 17.00 880 18.00 17.00 880 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00

-	A service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the serv	Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Compan	• •		
<del></del>					
·		,			
<u> </u>					
			<del>-</del>		
<b>}</b>			entropies of the second		
£					
4					
<b>§</b>	سهد الدسود بنيوا		<del></del>	<del></del>	
\$					
5					
<u>v</u>			<del>- <del></del></del>		
3		<del></del>	<del></del>		
<b>5</b>					
<u> </u>		<u></u>	<del>_ • • • • • • • • • • • • • • • • • • •</del>	<del></del>	
**************************************		N N 2 N		<del></del>	
ければ、一	2 2 2 3	サガバル			
4.44	462 L 47	14/2/2			
30V	0 0000	10 W 14 W	-+-+-		
	42000	( M cd cd )	<del></del>	<del></del>	
		2 0			
-3 x	20200	2 x 2 2 2 5			
	<del></del>	3 3 3 3			
- 222	2 3 3 3 3	3 5 5 3			
Comments 6.68 OTIC 8.15 OTIC Air Force Dape	10 TOBTIC	S.O. Toric Duplicate			
ME 150 15	30	07	1	64.	
<b>~ ^</b>	ور ن	ح و ز		Z 3	
4 2 25	3 3	1 2 Z		4 4	
II TO	A . W.			200	
000	Y 26 -	v		<u> </u>	
0. 9.	2 20	· 60 %		5 2	
<del></del>	rement of the contract of the		· <del></del> · · · -	4 7	
2000 i	ાં જે	~ m 's		_~ \(\frac{2}{2}\)	
たコール	7	•		· 6	
ı				5 }	
12 mm	<u> </u>	५ प्र		3 2	
22.39	7 3.	7 7 7		£ 20	
・ニースペ	13	<u> </u>		5 2	
<b>)</b>	_			<b>5</b>	
	_ 00			i a	
2 42	00 1. 20	5 = 7		# 72	
: 311 L	2 3 24	) w w	•	25	
233	7 7 3 3	3 Z Z		311	
		. TY 1 TP			
ひひひ	シシ, ひ			7	
	Time Ten pH God Well 1540 120 150 150 150 150 150 150 150 150 150 15	Time Temp pH God Well Comments 1540 12° 9.4 1420 150 6.68 071C 1615 9° 9.0 950 15 8.1501C 1655 13° 9.4 4500 30 10 7001C 1300 8° 42 2400 14 1.81 071C	Time Temporal Met 1500 12° 9° 9° 9° 9° 9° 15° 15° 15° 15° 15° 15° 15° 15° 15° 15	Time Temp pH God Well Commeds 1540 120 9.0 150 6.68 0710 1615 90 9.0 150 15 Airbrelope 1655 13° 9.0 150 15 Airbrelope 1655 13° 9.2 1802 14 1.81 5710 1220 8° 8/2 2404 14 1.81 5710 1225 8° 31 1220 10 3.075710 1205 8° 31 1220 10 3.075710 1440	Time Tens pH Cod Well Connects 1540 12° 9° 41420 150 6.68 071. 1615 9° 9.0 950 15 6.68 071. 1615 9° 9.0 950 15 Airbreedop 140 1655 13° 9.2 4.2 500 30 10.7001. 1200 8° 212 212 14 1.21 00.7001. 1200 8° 212 120 10 3.07571. 1205 8° 1 1250 10 0.001. 1205 8° 1 1250 10 0.001. 1205 8° 1 1250 10 0.001. 1205 8° 1 1250 10 0.001. 1205 8° 1 1250 10 0.001. 1205 8° 1 1250 10 0.001. 1205 8° 1 1250 10 0.001. 1205 8° 1 1250 10 0.001.



APPENDIX F: ANALYTICAL PROCEDURES

#### ANALYTICAL METHODS, DETECTION LIMITS AND HOLDING TIMES

PARAMETER	METHOD	DETECTION LIMIT	HOLDING TIME
Water Samples			
Alkalinity, Carbonate & Bicarbonate	A403	10 mg/L	14 days
Common Anions	A429	0.1 mg/L	28 days
Conductance (Field Test)	E120.1	umhos/cm	(f)
pH (Field Test)	E150.1	pH Units	(f)
Total Dissolved Solids	E160.1	10 mg/L	7 days
Temperature (Field Test)	E170.1	deg C	(f)
ICP Scan for 10 Priority Pollutant Metals	E200.7	(b) mg/L	6 mos.
Metals Screen (23 metals)	E200.7	(b) mg/L	6 mos.
Arsenic	E206.2	0.001 mg/L	6 mos.
Lead	E239.2	0.002 mg/L	6 mos.
Mercury	E245.1	0.0002 mg/L	6 mos.
Selenium	E270.2	0.002 mg/L	6 mos.
Petroleum Hydrocarbons	E418.1	1.0 mg/L	28 days
Purgeable Halocarbons	E601	(a) ug/L	14 days
Aromatic Volatile Organics	SW/5030/ SW8020	(a) ug/L	l4 days
Organochlorine Pesticides	E608	(a) ug/L	7 days (extraction) 40 days from extrac- tion date (analysis)
Organophosphorus Pesticides	SW3510/ SW8140	(a) ug/L	7 days (extraction) 14 days from sample date (analysis)
Chlorinated Phenoxy Acid Herbicides	SW8150	(a) ug/L	7 days (extraction) 40 days from extrac- tion date (analysis)
Extractable Priority Pollutants (GC/MS)	E625	(a) ug/L	<pre>14 days (extraction) 40 days from extrac- tion date (analysis)</pre>

#### ANALYTICAL METHODS, DETECTION LIMITS AND HOLDING TIMES

PARAMETER	METHOD	DETECTION LIMIT	HOLDING TIME
Soil Samples			
Petroleum Hydrocarbons	SW3550/ E418.1	1. mg/Kg	28 days
Metals Screen (23 metals)	SW3050/ SW 6010	(d) mg/Kg	6 mos.
ICP Scan for 10 Priority Pollutant Metals	SW3050/ SW6010	(d) mg/Kg	6 mos.
Arsenic	SW7060	0.1 mg/Kg	6 mos.
Lead	SW3050/ SW7420	10 mg/Kg	6 mos.
Mercury (Cold Vapor)	SW7471	0.1 mg/Kg	38 days
Selenium	SW7740	0.2 mg/Kg	6 mos.
Organochlorine Pesticides	SW3550/ SW8080	l mg/Kg	<pre>14 days (extraction) 40 days from extrac- tion date (analysis)</pre>
PCBs	SW3550/ SW8080	1 mg/Kg	<pre>14 days (extraction) 40 days from extrac- tion date (analysis)</pre>
Organophosphorus Pesticides	SW3550/ SW8140	l mg/Kg	<pre>14 days (extraction) 40 days from sample date (analysis)</pre>
Chlorinated Herbicides	SW8150	l mg/Kg	14 days (extraction) 40 days from extrac- tion date (analysis)
Volatile Organics (GC/MS)	SW5030/ SW8240	l mg/Kg	14 days
Semivolatile Organics (GC/MS)	SW3550/ SW8270	l mg/Kg	<pre>14 days (extraction) 40 days from extrac- tion date (analysis)</pre>
Soil Moisture Content	ASTM D2216-71	%	(f)
RCRA Waste Monitoring EP Toxicity Extraction EP Toxicity (metals)	SW1310 SW Manual	(c)	6 mos. except Hg - 28 days

#### NOTES

a Detection limits as specified by the applicable EPA or Standard Method.

b	<u>Metal</u>	mg/L	Metal	mg/L				
	Al	0.045	Mn	0.002				
	Sb	0.032	Mo	0.008				
	Ba	0.002	Ni	0.015				
	Ве	0.0003	K	(determine	at	time	of	analysis)
	В	0.005	Silica	0.058				-
	Cd	0.004	Ag	0.007				
	Ca	0.010	Na	0.029				
	Cr	0.007	Tl	0.040				
	Co	0.007	V	0.008				
	Cu	0.006	Zn	0.002				
	Fe	0.007						
	Pb	0.042						
	Mg	0.030						

c	<u>Metal</u>	mg/L of leachnig solution
	As	0.053
	Ba	0.1
	Cd	0.005
	Cr	0.05
	Pb	0.1
	Hg	0.0002
	Se	0.075
	Ag	0.01

d	Metal	mg/Kg	Metal	mg/Kg	
	Al	4.5	Mn	0.2	
	Sb	3.2	Мо	0.8	
	Ва	0.2	Ni	1.5	
	Ве	0.03	K	(determine a	t time of analysis)
	В	0.5	Silica	5.8	-
	Cd	0.4	Ag	0.7	
	Ca	1.0	Na	2.9	
	Cr	0.7	Tl	4.0	
	Co	0.7	V	0.8	
	Cu	0.6	Zn	0.2	
	Fe	0.7			
	Рb	4.2			
	Mg	3.0			

- e For soil samples, report results as mg/Kg of  $\underline{dry}$  soil. Report moisture content for each soil sample.
- f Test immediately, no holding.

APPENDIX G: CHAIN OF CUSTODY FORMS



SAMPLE SHIPPING RECORD SCIENCE APPLICATIONS INTERNATIONAL CORPORATION



CONSIGNEE	111						SAN	SAMPLE	NA	SISVIAIA									
					<u> </u>			1					-		-	F	ŀ		۲
	Ţ		ı	2410						_	_	_					_	_	
	1		1	7117											_	_		ð	
77.78	V	1 7 1	1			इंट	soinst	SOIUBE										e Dat	
City, State, Zip		. 5		· i		soineg	SO JUBBI	SIESTEN	- 30							s <b>ee</b> 19	siQ Əzi	O) Jui	
Sample No.	Sate Set	<b>B</b> 8	No. Containers		Sample Description	NO INS	O JOA	Trace A	Herbici	HMMH	Radion Drugs	Cyanida PA	301 301	SS1	30a 30a	bna liO sbiqiJ	2 neg	Sedine	Remarks
->			71	(2,0)	Genetical:	X	_	╫╼	11	#			+				11		
< 1 			7/		1010	×	7	+					7						
O			7/	,	•	¥	_	<del>ار</del>					*						
hi?	1,224		7/			×	Å	*											
ું • 8−1	7 87		7/	<i>"""()</i>	istorialis	×	1.	<del>ر</del> ر					<u> </u>						
	, , , , , , , , , , , , , , , , , , ,		11	7000	1,1	¥	-	<del>&gt;</del>					*						
																	-		
																×			
	Total No. Containers	No.																	
SHIPPING CHAIN OF CUSTODY	IN OF CUS	тору		•															
SAI JEWI TANGOL	1.A.S.	nece	<u>%</u> 1	1345 Time	Received By (sign)		Date	Time	Receiv	Received By Courier (sign)	Courier	(sign)			Date	_	Time	<u> </u>	
Shipping Method	Shippe	By (sign)			Courier From Airport (sign)	_	Date	Time	Received	<b>à</b> 2	Contract Lab (sign)	s) qer	(ub		Pare /		Tume	3	2



SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY 476 PROSPECT STREET, LA JOLLA, CA 92038 • (619) 456-2791

P. A. S. R. C. C. A. C. C. P. C. C. C. C. C. C. C. C. C. C. C. C. C.	CONSIGNEE							SAN	AMPLE	ANA	ANALYSIS								
Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp   Chr. Sum Zp	Name (	A 50	30.25	ਪ੍ਰ															
Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein, Zip   Chr. Stein	No., Straet	)VY	1	اد رجه	± 1			nics	soin					<u> </u>				Date	
Sample No. Sample No. Corr.  Co. 1	City, State, 2	9	-		e		ganics	PGIO IX	Netals		) 					eseas /		avoz zua	
1   1   2   1   1   2   2   2   2   2		Sample Date	$\vdash$	No. Containers		Sample Description	Suc O 123	0 /91	A BOBIT Serino	Herbic	HWW		DQT	SSI	<b>200</b>	ON AND	2 Trea		Remarks
C   S   9   2   1   1   1   1   1   1   2   1   1		9.6		(3)		A count works in	`		<u>`</u>										
C   4/2   10   10   10   10   10   10   10   1	80	77. Jb		Q1		<b>3</b>	>		>										
C   4/2   1C	69	2/6		<u>ن</u>			\ <u>\</u>	>	>										
1   1   2   1   1   1   1   1   1   1	1	72.35		2			-		,										
Total No. Containers  **Total Containers**  **Total Containers**  **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No. **Total No.	l	72 )b		2		ł	>	Ş	>	<u> </u>									
Total No. Containers  **OF CUSTODY  **A		-																	
Total No.  Containers  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUSTODY  OF CUST																			i i
Total No. Containers  1 Op Custody  1 St. 12, 12, 13, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15																			
Total No.  Containers  4 OF CUSTODY  1 St. A. 15.  1 St. A. 15.  2 St. A. 15.  2 St. A. 15.  2 St. A. 15.  2 St. A. 15.  3 St. A. 15.  4 Date Time Received By (sign)  Date Time Received By Courier (sign)  Date Time Received By Courier (sign)  Date Time Received By Courier (sign)  Date Time Received By Courier (sign)  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St. A. 15.  A St.																			
Total No. Containers  4 OF CUSTODY  1																			
Total No. Containers   Date   Time   Received By (sign)   Date   Time   Received By Courier (sign)   Date   Time   Received By Courier (sign)   Date   Time   Received By Courier (sign)   Date   Time   Time   Received By Courier (sign)   Date   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   T																			
Total No.   Containers   Oate   Time   Received By (sign)   Date   Time   Received By Courier (sign)   Date   Time   Received By Courier (sign)   Date   Time   Date   Time   Date   Time   Date   Time   Date   Time   Date   Time   Date   Time   Date   Date   Time   Date   Time   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   D																			
Total No. Containers  4 OF CUSTODY   Date Time Received By (sign)  Date Time Received By Courier (sign)  Part / L.3.  Part / L.3.  Date Time Received By Courier (sign)  Date Time Received By Courier (sign)  Date Time Received By Courier (sign)  Date Time Received By Courier (sign)  Date Time Received By Courier (sign)																			
Total No. Containers  4 OF CUSTODY  1 Opte Time Received By (sign)  2 1 1 Received By Courier (sign)  3 2 1 1 1 Received By Courier (sign)  4 2 1 1 Received By Courier (sign)  5 2 1 1 1 Received By Courier (sign)  7 2 1 1 Received By Courier (sign)  7 2 1 1 1 Received By Courier (sign)  7 2 1 1 1 Received By Courier (sign)																			
Joint Time     Pate Naceived By (sign)     Date Time     Received By Courier (sign)     Date Date       Joint Naceived By (sign)     Time     Received By Courier (sign)     Date Date		Total	1 No.					]	1										
Date Time Received By (sign)  Date Time Received By Courier (sign)  Date Time Received By Courier (sign)  Pack By Courier (sign)  Date Date	SHIPPING C	HAIN OF CU	STODY																
Comped By reign) To Complete the Property of the Property of Complete Date Date	SAI (by) (sign	// / /	467	9	-	Received By (sign)	_	Date	Time		ived By (	Sourier (s	(uĝis		PG	-	Time		
	Shipping mate		F				3		Ĺ	Rec	À	Ş	db (		o C	ife	me		

SCIENCE APPLICATIONS
INTERNATIONAL CORPORATION

SAMPLE SHIPPING RECORD

DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY 476 PROSPECT STREET 14 1011 A CA 92038 • 16191 456-2791

* 1.12 Shipment No.

		176 PRO	SPECT SI	476 PROSPECT STREET, LA JOLLA, CA 92038 • (619)	456-2791				
CONSIGNEE				Service Company	SAMPLE ANA	ITYSIS			
Name					1 N M 10+78 -	11 1 1 1 1 1 163		77	
SAIC				Sear be. 086 = 2				/ / / /	
-				-					
476 PM	Spec	Prospect St.		<b>a</b> .	SC SOLUCE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE ST		₹/ 		
City, State, Zip				Sw 35%   E416.1	Soin Bro Bro Bro Bro Bro			Sia.	
14 Jolla,	5	BEOCH	85		Sepi Sepi OUJ NOI Sepi	S SHC SHC	<b>S</b>	-13.	1
Sample No.	Sample Date		Packed No. Con- Time tainers	Sample Description	other Pestic	AZZ LZZ BOD BOD LOC LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LOC BOD LO	200 200 200	Pan. Sedin	Kemaik
FS-A-1	11/0,5	1/20 10:40	2	<b>≥</b> 016	/ /				
~	b·h.	٠,	7	つっつう	\ \ \		/		!
	ખૃત	7	2	<b>50.</b> 1	<i>\</i>		7		,
\$	b1/11	ı	2	5617	, ,		>		ĺ
~	۰۰/،	Ŧ	17	Soil	/ /		>		:
~1	11/11	11	7	Sor	`^ `^		\		:
FS-6-3	b' <u>}</u> ,	lı.	2	So.L	`		>		
	h1/,,	Į,	7	Sork	>		`		
(	b)/,,	11	7	Soil	>		>		
B-I-1	<i>þ'/</i> ,,	7	63	Se.L.	>		>		
12-6-	<i>b¹/</i> ,,	:	2	Soir	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		>		
	61/1	11	4	501L	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		>		
F8-F.2	61/11	11	2	501L			2		
	Total No. Container	Total No. Containers	97		HANGOCK FIELD			: 	
SHIPPING CHAIN OF CUSTODY	N OF CU	STODY							
The Sall A. Saum	7. 7	Saur	Off   00   20	B Time Received By (sign)	Date Time Reco	Received By Courier (sign)	Date	Time	_
Shipping Method	Shipped	By (sign)	1		Date Time Rec	Received By Contract Lab (sign)	Date	Time	
-	-			-	-			7	



SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

Shipment No.

Samura of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control
JOOd JOOD JOOD JOOD JOOD JOOD JOOD JOOD
JOOd JOOD JOOD JOOD JOOD JOOD JOOD JOOD
JODA JODA JODA JODA JODA SSSA SSSL GOB JOL HA APIURA APIURA SBINIG SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAPIICA SAP
JODA JODA JODA JODA JODA JODA JODA JODA
JODA JOG SSA SSA SSL GOB JOL Ha aprileAJ SBAJO JONUOIPEN JOHAMWH JOHAMWT SAPPIOINSAJ SOUL JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAWINO JAW
JOOd JOOD JOOD JOOD JOOD JOOD JOOD JOOD
>
HANCCK FIED
Date Time Received By Courier (sign)
Courier From Airport Jaign Date Time Received By Contract Lab (sign)



SCIENCE APPLICATIONS

DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY INTERNATIONAL CORPORATION

476 PROSPECT STREET, LA JOLLA, CA 92038 • (619) 456-2791

SAMPLE SHIPPING RECORD

Shipment No. 10

Remarks PURCHALE ECON **}** 7 > Time Time Date Date 200 008 Received By Contract Lab (sign) **301** Received By Courier (sign) > > SAMPLE ANALYSIS Ę Time / Date Date 101 1 _ Organics EXI I) METEODS, EKK. Sw 3510 (8140) IANK WHIER SAMPLES Courier From Airport (sign) WATER 5w 8150 : z SEDIMENIS Received By (sign) Sample Description HANGER FIELD Soil : = : = Sugne 7 : Time Sec. 128 S 'n N Packed No. Con Time tainers 92038 58 3 N 7 N non 228 = Total No. Containers SHIPPING CHAIN OF CUSTODY = : = = ٤, : ; = 8 4 476 Prospect L 20119, G 12/5 Sample Date = = : : = : = : 4 5 : CONSIGNEE Shipping Method City, State, Zip Sample No. 3 No. Street Sw - 32 50 - 32 **(**) すり Sw - 3t 05.055 15-2 Sw - 31 50 - 31 T.S - 3 1 Name 1-3世 TS - 1 'n 75





Remarks SHOLE HARD CARESCUE Size Dis Time 1.8143 Date 200 808 281 201 Received By Courier (sign) SAMPLE ANALYSIS Time Date ~ <u>~</u> > > Organics EXI 476 PROSPECT STREET, LA JOLLA, CA 92038 • (619) 456-2791 HANCOCK FIELD Sample Description Received By (sign) SURPRIE WATER SECTEMBE ; * 7 8 = . Time 2760 No. Con-tainers 92038 36 4 4 N N 6 E -Packed স 148 Total No. Containers SHIPPING CHAIN OF CUSTODY 4 2 z 4 3 476 Prospect 12 Sollo, CA Sample Date 146 = z 4 • = . CONSIGNEE City, State, Zip 5m-2 Sm - 3 Set that Island SAIC Sample No. SD -4 No., Street Sw - 4 50 - 3 2-05 1-QS-6 1- ms

hippie



DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY 476 PROSPECT STREET 14 JOI 14 CA 92038 • (619) 456-2791

30x 7 Shipment No.

	1	70 PRO	SPECI	SIREEI, LA J	4/0 PRUSPECI STREET, LA JULLA, LA SZUSO (019) 45	16/7-004	−l∢		•	•	9				İ				<b>&gt;</b>
CONSIGNE					1		A	칽	L AN	T١	1213						ł		ر ح
SAIC							2003		<u></u>										74.4.5
No., Street	Prospect		<u>5</u>		<u> </u>	~~		Dics	ر از از							~ P		Date	الماريخ الماريخ
City, State, Zip	la, CA	Ø	9500	83		Sanics Senics		P6,0	Diuphi		nclides 1C	_				eseese			³⁰ 2 ।
Sar	Sample Date		No. Containers		Sample Description	EXT. O		-	Pesticic	TWWI Hetpic	IWWH noibeA	Cyanid	707 30₽	808 287 888	200 200		5 20.	4	Remarks
S- mS	7/21	12/2	7	Sur	SURFACE WATER	>		>								>		>	
3.w.S	1,	1)	4	,	), v	/ /		_								/		<b>`</b>	
5m-7	1)	4	4		h 11	1,		•			-					/		/	
	נו	11	7			1										/		<u>`</u>	
50-05 A	11	н	2		SEDIMENTS		1/	^								/			
SD - 06	*	¥	2		10		10	<b>'</b>								<u> </u>			
4 <b>0</b> -d≤	"	3	2		3,		11	>								/			
SD - 8	W	4	7		p		11	/								/			
								<u> </u>											
Total No. Containers SHIPPING CHAIN OF CUSTODY	Total No. Container IN OF CUSTOE	Total No. Containers : CUSTODY	36	1 + (A)	HANKOCK FIELD														
To the same	1/		上,	Time 2	Received By (sign)		Date	Time	<del>                                     </del>	Received	By Cou	Courier (sign)	Ξ		a —	Date	Time		
Shipping Method	_	Shipped By (sign)			Courier From Airport (sign)		Date	Time	<del>-</del>	ceived	Received By Contract Lab (sign)	tract La	b (sign)		Date	-	Time		
				-					-								•		



4 4 or 7 Shipment No.

CONSIGNEE	EE						SA	AMPL	EΑ	NALY	TASIS								10
Name SAIC									\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								1		R E R
No. Street	Prospect	ず				חלים	A 2	oics Soir	77								EAIB	_	ele O
						S;		so so	S GP			Sa	_		_	_	18	SI	Do-
La Jolla,	1a, CA	4	95016	8		oin691		NOI 0	Sgronl Sec	Sapic	- Эн. Эн.						-	J luar	<b>₩9</b> ;
Sample No.	Sample Date	$\vdash$	Packed No. Con- Time tainers	Sample Description	escription	0 73		S ₉₃ e ⁷ I	οίης OΣΥΡΟΙ	MW7	WMH	C _V anio D _r ngs	901	008 287	20a 88∧	20 ⁴	spidi7	Sedin	Remarks
5m - 9	15/8	345	4	SURFICE	WARER	>		>								/		>	
St. 10	"	1	6	٠,		>		/								•		<u>,</u>	
11 - ms	*	٠,	6	**	1.	1		/								/		/	
Sw -12		,	6	ď	17	,	_	>								`		<u> </u>	
		•	2	580	SAQIMENTS		7	//								>			
01 - 05	ķ	•	2		7		7	//								/			
SD - 11	2	•	7		*		1/	11								/			
50 - 12	1	3	2		h		1/	//								/			
Total No. Containers SHIPPING CHAIN OF CUSTODY	Tota Coni	Total No. Containers : CUSTODY	36	HANCOCK	. Held									!					
R. Contraction of the second	ZA A	1		Date Time Received	Received By (sign)		Date	-	Time	Received	â	Courier (sign)	(ub)			Date	Time	22	
pou		( B.40°	7		יום	1	-			Rece	3 2		e) (h			Jate		g	
									İ		1								

Science Applications
" International Corporation

### SAMPLE SHIPPING RECORD

DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY

Shipment No.

Remarks Sediment Core Date > > Size Dis Time Time 1817 3 spigiz Date > Date SSI Received By Contract Lab (sign) Received By Courier (sign) Hd SAMPLE ANALYSIS Time Time Date Date 476 PROSPECT STREET, LA JOLLA, CA 92038 • (619) 456-2791 EXL Courier From Airport (sign) 上点し SURPRICE WATER SEDIMENTS Sample Description 3 : Received By (sign) វ 2 ; 1 ; 1 92038 Packed No. Con-Time tainers N 2 N N 5 36 C ら Shipping Method Shipped By (sign) 000 ï Total No. Containers z 2 SHIPPING CHAIN OF CUSTODY : ø £ 476 Prospect La Jolla, CA Sample Date = : £ 8 • 2 = CONSIGNEE City, State, Zip 5m - 16 **SAIC** Sm - 15 50-15 20-16 14 - س۶ 51-05 SD- 14 Sample No. SM-13 No., Street



DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY 476 PROSPECT STREET, LA JOLLA, CA 92038 • (619) 456-2791

						となり	7	ANA	ALYSIS							<b>/</b> Q
. 1																?3 S
							II W		_				<u> </u>		3	Mag <del>3</del> 7c
445 76	Prospect		St.					Sol		<u> </u>		<u> </u>			18G e	<b>7</b>
City, State, Zip			9776		•ojini		SIEL			Səpii					yoo ;	المدي
10 Jolla,	5		000		2610		(V) .	Cid	$\mathcal{I}_{H}$		_	_		~, ~	4	4
Sample No. Date		Packed No. Con- Time tainers	Vo. Con- tainers	Sample Description	EX S		Other	Herbi	MWH MWH MWH	CNani	20 A 100 B	887 855	200 200 200	ued Digit	uipəs	Remarks
5w-18 12/6		8/21	٦	SURPRICE WATER	>	<u>.</u>	<b>&gt;</b>						>		>	
5m -19 "		-	ح	7.	>		>						>		<i>'</i>	
Sw - 20		=	7	7	7								/		,	
		-	7	h 4	//								1			
" 818 - 0≥ = "		'n	2	SEDIMENTS		//	/						<b>&gt;</b>			
	16	11	2	11		//	\   					-	>			
22-05	1		2	11		<b>^</b>	/						/			
50-21			7	11		//							>			
	-															
	Total No. Containers		36	HANGOCK HELD		: :										
SHIPPING CHAIN OF CUSTODY	custo	١ اڠ	Date	$\vdash$		Date	Time	Received	8	Courier (sign)	Ē		Date	Tune	<b></b> -	
hipp	T S		1308	10/5 ier Franch port			1	Recei	A C	Jaraca Lab	b (seen)		Date	Time	_	



DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY

Shipment No.

Remarks אוננחנימנים בל Sediment Core Date Size Dis Time Time 18/13 > > 7 Date Date **3900** Received By Contract Lab (sign) · 824 • Received By Courier (sign) > > SAMPLE ANALYSIS ۵ > > Time Time > > > Date Date 019a Organics ` 476 PROSPECT STREET, LA JOLLA, CA 92038 • (619) 456-2791 SWEITO > Courier From Airport (sign) (1) METHODS: 52 gr50 SW BOBO, SURFIXE WATER HAYCCIK FIELD SEDIMENTS BLANK 3 Received By (sign) Sample Description  $\subseteq$ 2016 : : : 4 - RIP į 1030 Time 92038 No. Con-tainers 3 N 2 F E Ċ, Packed Time 0501 Smipped By (sign) 8/21 : ! = = : £ ξ, 2 = Containers SHIPPING CHAIN OF CUSTODY 476 Prospect City, State, Zip Total No. La Joila, CA Sample Date 5/2. 12/6 5/2, : : = : ī = : = CONSIGNEE Shipping Method 50-22 -50-23 Sm - 23 Sw - 24 SAIC 5m - 22 Sample No. 3 15.7 E5-2 15-6 FB-1 No., Street 7 , V 见 M



SCIENCE APPLICATIONS
INTERNATIONAL CORPORATION

DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY 476 PROSPECT STREET, LA JOLLA, CA 92038 • (619) 456-2791

Shipment Nogral CE

CONSIGNEE	EE				SAMPLE	ANALYSIS					
SAIC											
No. Street	10030	15.1			ics	\	<i>'</i>		<u> </u>	916	
	1				s lue6				9.	ο ο _ι	
LaJolla,	5	926	92038		Netals Vol Ori Vganici	JI- JI- Sepi			Searo /	oj lue	
Sample No.	Sample Date	Packed Time	Packed No. Con- Time tainers	Sample Description	Trace I	LMWI LWWH LAWMH	Cyanid	000 000 000 000 000 000	DOG SOC	S ned	Remarks
GW-1	12/.3	5.4.5	7	GROWNO WHATER	1/1/						
9w -2	1413		2		/ A						
B. W.	12/15	8	2	1. 41	1						
Bw - 9	14.5	:	7	1, (1	1						
1. mg	1415	4	7	:	1/1						
2	•								-		
											1
	Total No. Container	Total No. Containers		* CO, Cr, Pb . Mr our	T OCTHOR	DRING PLUSAINE	משר ל				
SHIPPING CHAIN OF CUSTODY	IN OF CUS	TODY			FPA	JETHOD	300				
Man Tagail De	345	1	21/21	ste Time Received By (sign)	Date Time	Received By Courier (sign)	urier (sign)	<u> </u>	Date Tir	Time	
Shi	\$	(ubi		Courier from Airport (sign.)	Date Time	Received By Col	Contract Lab (sign)	٥	Date	Time	1
	_										}

··· International Corporation Science Applications

#### SAMPLE SHIPPING RECORD

DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY 476 PROSPECT STREET, LA JOLLA, CA 92038 • (619) 456-2791

Cooler 2,12 Shipment No. M

Remarks 6 PROMOTE > Time Date > シンスロ 20a SSA 008 281 ORTHOPHOLYSKIA A429 RETHOD A42 FPA METHOD 201 Received By Courier (sign) SAMPLE ANALYSIS Time > ¥ ~ 4 > Date としる cu.cr, Pb. An SURFICE WATER Granno WARFA SADIMENTS -= Sample Description : Received By (sign) = 2-Pbourr 1- Membes _ Signe 15.35 20 So So So Le Jollo, CA 92038 N 4 4 ~ 4 Packed Time S 22 : Total No. Containers : : SHIPPING CHAIN OF CUSTODY : 476 Prospect 12/13 Sample Date 5,2, = -: -, CONSIGNEE F1-07 City, State, Zip 50-17 3410 5-3 - mg = Sample No. Gw-6 No. Street SW .3 SW -4

Time

Date

Received By Contract Lab (sign)

Time

Date

Courier From Airport (sign)

Shipping Method



Shipment No. Gooder

do:	23 ×	\$15 215	**************************************	الا الا الا الا	Remarks			,												
ļ	-		Sic	JUG	uipes	-		<u> </u>	>	•	^								_	
	7:5		_		ned														Time	ā
	"	गिम्ब	200		spidi7														<b>L</b>	
		_	_		209	-	[/	"	/	>	<u> </u>	-				 			Date	a fe
			_	_	Э0 <b>а</b>									-				₹.		
			_	_	SSA													DA 45		
			_	_	GO8 SST															
İ			_	_	201 208	-						-	 	<u> </u>				W	1	S.
			_	_	Ha													7	ig.	2
					C _V anic D _{rugs}														Courier (sign)	
S		_	Sak	7300	Oiben								 						Cou	500
Si	<u> </u>		_	JH.	MWH	-							-	-				9	â	
ANALYSIS			_		NW7 Pigual													URNAROUND	Received	Recei
Z				Səp	Pestici Herbi													Ø	æ	ě
1	1		Jiuel	Juli	Other								 -	-				8	Time	
P	730	Ujes Vijes	P610	Meta	Surv. Surv.						_		 -					え	Ē	Ë
SAMPLE		(P)	SOIL	negic	NINS													36	8	
S		- soin	حس	122		,	1	/	/		>	9	 					13	Date	2
			cz	lue6)	EXT O							-	 	-	-	 	_	'		
		<b>r</b>	1		Sample Description	Glam ware	11	••	11	, 1	,,	TELD BLANK						E: RAPID	Received By (sign)	r Fro
				*		Gan						1610						] NOTE	Date Time R	
		-		92038	Packed No. Con- Time tainers	W	3	3	3	3	3	-							<u> </u>	
		ct s				37/2:	÷	:	:	*	:	:						Total No. Containers	S V	
111		386		a, C	Sample Date	91/21	:	•	"	11	١,	•						Tota		
CONSIGNEE	Name SAIC	No. Singer 476 Prosovet St.	City, State, Zip	ta Jolla, CA		GW - 11	Gw -12	GW-13	Gw-14	21-m8±	Bru - 16	FB-1							SHIPPING CHAIN OF COSIOUR	pol



DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY 476 PROSPECT STREET, LA JOLLA, CA 92038 • (619) 456-2791

Shipment No. 5 Coast 1/2

CONSIGNEE							SAMP	Ш	ANA	ALYSIS								
								ŀ	![		-	-	-			-	F	
Name V V V								\  S	<u> </u>			_	<u> </u>				۶ _ _	
CHIC							7			<u> </u>	_	<u> </u>		<u> </u>	\ \ \		\\ \ \ \	
No. Street	Present	か				`	روس	NG ICS			<u> </u>				Visa —		938	1.5
	<u>ز</u> ز						v s.	77 Ve6			<u> </u>			<u> </u>	3	_	707	
La 10/16,	5	3	92038			Seuice	O IX	SIPIO	Japi	10		<u> </u>	<u> </u>		-		WH	
Semple No.	Sample Date	Packed Time	Packed No. Con- Time tainers		Sample Description	EXI O	O IOA	Other	Pesticic	MMM	Cyanid	201 308	287 755	200 209	Spidi7	S ned		Remarks
Gw. 17	1.49	414	9	\[ \frac{1}{2}	Journ WATER		Ę	11									->	
	*:);	1306	8		11		5	_							-		-	
Gw-19	1	300	9		3	-	S.	\ \			‡=				•		•	
Gw-20	71/2	1906	9		,		>	<b>\</b>							>			
s-15																		
											_							
	Total No. Container	Total No. Containers	24															
SHIPPING CHAIN OF CUSTODY	N OF CU	)   J	上`	Date Time	Received By (sign)		Date	Time	Receive	Received By Courier (sign)	ourier (sig	Ē		Date	-	Time		
Shipping Method Shipped by (sign)	Shipped	By (sign)	7		Courier From Airport (sign)		Date	Time	Receiv	Received By Contract Lab (sign)	intract La	to (sign)		Date	-	Time		

# Science Applications " Infernational Corporation

SAMPLE SHIPPING RECORD

Cover 2/2 Shipment No.

CONSIGNEE	EE		; ; ;				SA	AMPLE	A	ALYSIS	18					,			
Name					<u> </u>								1					<u>*</u>	
San San					1		_		 ร~		_							27	
	Prusper!	इ					Soline	\{\bar{\chi}{\chi}\rangle}	\s\ \q_c							1/3	_	oleG e	
City, State, Zip			964			-vin	60	B _{IO}	insgic	Si	Səpij					o e e e e		22/	
La Jolla, CA	3	- 6	47038			Pa C		NOV	oui Di:	JH/ Icide	77740	∂pi	7			,   	-16.	בג	
Sample No.	Sample Date	Packed Time	Packed No. Con- Time tainers		Sample Description	EXT.	101	No Son Son Otto	Pestic	HWW LWW Herbi	Radio Drug	Cyan	800 40°C	281 285	२०व २०व	PIDI7 PPD		Remarks	
Gur-2.(	14. 14.//	114 1365	9	Gen	Genna Winger		>	>										\ \	
Ι.	1/14	Ţ	0	-	יב		•	>								^		1	
Gw -23	h=/,	•	v	٤	,		5	>								<b>\</b>		^	
Gw-24	ر/بر	;	9	3	و			/								/		/ /	
G-																			
6																			
													_						
Total No. Containers	Com	Total No. Containers	24			:													·
The way to	7/2	V	1, 1919	Time	Received By (sign)		Date	Time	<b>—</b>	Received By Courier (sign)	3y Couri	er (sign			Date	<u></u>	ije.		_
Shipping Method	Shipped	oy (sign)	1		Courier From Airport (sign)		Date	Time	<del> </del>	Received By Contract Lab (sign)	3y Contr	act Lab	(sign)		Date	$\vdash$	Time		
1					And the second del-	ink-C	45	٩	တို	4-1-b	Berrins	2							

Science Applications

Themational Corporation

### SAMPLE SHIPPING RECORD

Shipment No. 6

CONSIGNEE	u					S	SAMPLE	ANALI	ALYSIS						
Name SAIC								L ~			1/48				لتخ
No Street											 		31/		
476 Prospect	spec	£ 55.				SOIUE	BNics				\ \ !!!		(3)  -	2180	OS Bus
City, State, Zip	3		92028			ر. ص ^ب	Siese	-30	Səpijo		<u> </u>		98880	e Dis.	
3	Sample	Packed	Packed No. Con-			x3 <b>1</b>	Her In	VWHO Proicid	roip DHMN	abina	S	-	Spic	Jewip.	
Sample No.	Date	Time	tainers		Sample Description	ος <b>(%)</b>	हुत इस	94	ر چ د چ	40	08 80	29	7/7 #0		Remarks
Gw -25	11.5	31/s	11	<b>G</b>	GROWD ANTERS	//	<i>y</i> :			1			`	7	
	51/1	:	=		Ī		\ \			10			_		
	1/15	:	6	2 vons Proze	320	>				`			-		
	91/1	:	=		4 ,,	///				//			/		
7						-									
	Total No. Container	Total No. Containers	42										İ		
SHIPPING CHAIN OF CUSTODY		500	_	te Time	Received By (sixe)	Date	ta Lime	Received	à	Courier (sign)		Date	-	9	
the Sam	Put.	/our	-7	-1	naceived by (sign)	_	-	Vaccina	oy couns	ishie)		- -	- }		
Shipping Method	Shipped	By (sign)			Courier From Airport (sign)	Date	Time	Receive	Received By Contract Lab (sign)	ct Lab (sig	2	Date	- 1	Time	



Carac 2/2 Shipment No.

CONSIGNEE				, C	יייי איני איני איני איני איני איני איני			SAMPI	FAN	MALY	ALYSIS									Ì	
Name					T						F	F					F			ار چ	
5416							Ø₫ <u></u>	<b>U</b>					_	77	<u> </u>			7.8	_	<b>3</b> 7	
No. Simer 476 PR	Prospect	4					nics	Phics	<b>≥</b> 2				<u></u>				<u></u>			100	
1 ' A	\$	l	92028			SOIVES	O DE	BIO JOA	Juegion!	səpi:	JHC JH	-		्वा वि			acons y		م <i>بلا ل</i> ت_		
Semple No.	Sample Date	Packed Time	Packed No. Con- Time tainers		Sample Description	0 1x3	101	NING.	Other Pestici	Herbic LMW	WWN	Drugs Drugs		008	287 288	20a 20a	spiai7		WIDO		Remarks
Gw 36		7ES!	11	Grand	UND WHYSE		٨٠	٨					/ /						>		
GW-31#1/16	1/10	1,7	13	11	۲		/ /	•					11				/		1		
Gw - 32	7"),	,,	=	4	11		//						1/1				/		>		
								_													
G-1																					
													_					_			
													_								
													-								
																		_			
													-								
	Total No. Containers	No. Hiners		* Extea	Pertere	· A.	CARC	8	<b>\</b> A											-	
SHIPPING CHAIN OF CUSTODY	N OF CUS	TODY		T.	20	D [E		ł	ŀ			ł					ŀ	١			
A THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	7.4 x	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	<b>6</b> ′	17,6 / S30	Received By (sign)		Date	-	Time	Received By Courier (sign)	1 By C	ourier (	sign)			Date	-	Time			
poul	N	Î			free From Port (single	3			1	Received	2	Contract	s) qe	Sign		Date		Ë.			
				-					1												)



DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY 476 PROSPECT STREET, LA JOLLA, CA 92038 • (619) 456-2791

CONSIGNEE	EE					S	AMPLE	ANALYSIS	SIS			ļ			
Name SAIC - LINE	ن ا	3					684 	PIN S							
No. Street	the Plassing	Sag	þ		<u> </u>	nics	S soint							PleG	
City State, Zip	\c\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ځ	ند			ganics Ext. Orga	1610 10A	- JH	nclides			Crosse	- 11	ent Core	
Sample No.	Sample Date	Packad Time	Packed No. Con- Time tainers		Sample Description		1/4	MWI	~~	BOD TOC Cyania	्र । । । ।	00 000 0ii •6	ned		Remarks
8-1-2 B-1-2	4/5	9/i4 1506	-	10%	J		,								
18-1-2	8	١.		9			`								
F5+1-2	:	,	1	,											
8-0-1-2	;	:	-	8			•								
18-9-2-2	*	:	-	:											
K.e.1.2		£	•	•											-
FS-E-2-2	•	•	-	7			•								
K-F-1-2		4	•	*											
FS-F-2-2	N.		~	•											
B-6-1-2	ı	2	•	7											
GW-9-2	1.1/4	:	7	Gao	GROUMMER		>								
6m-6-2	=	=	2		11		>								
9w.7.2	ü	7	2		2		>								
5-8-me	3	1.	7		*		>								
	Total No. Container	Total No. Containers	*	- TIN 4	MILL 9 - POD BLANK FOR LEND	٠.	**								
SALMITEDIAL A	N OF CO.	SION.	Pate	ete, Time	Received By (sign)	Date	e Time	Received By	By Courier (sign)	sign)		Date	Time		
Shipping Metflod Shapped By (sign)	SHADBE	By (sign)	1		Courier From Airport (sign)	Date	e Time	Received	By Contract Lab (sign)	Lab (sign)		Date	Time	<b>.</b>	
														•	



•	CONSIGNEE	1	70 PR(	Jarec.	4/0 PHUSPECI SINEEL, LA JULLA,	JULLA, CA 52036 • (619) 450-2731	16/7-0	SAMPLE	IPLI	AN	ALYSIS	SIS										
•	None					T	•	1	<u> </u>				F	-		-	-	1	-		[	
,	SA	SAIC LAB	af de			<b></b>				787					_						_	
•	No. Street	476 Prospect	pec				_	_	nics			_								Date	_	
•	City, State, Zip	4	5				Soine	cau	Sieses	organic Se		2						- Sean		e Dis.		
•	71	1 2	Packed Time	No. Containers	Ė	Sample Description	AOI OU SOUN EX EXT OU	Lung	V 3000	Other In	Herbicic	HWMH JnoibeA zeuiQ	Orugs Drugs	JQI Hd	908	SS1	20a	Dis iiO		is - ned emibes	Remarks	y,
••	Gw-28-2	3.1/6	\$ 3	7	ઉ	GRUNDWATER		#			#	#		-			-			-		
	Gw - 29 - 2	•	"	7		4			>													
•	2-0E-079	•	"	7		11			//													
•								_														
•									_											_		
•									<u> </u>													
•									_					<u> </u>								
•															·							
•																						
•																						
•	=																					
. ,																						
. ,																						
. '		Tota	Total No. Containers	9	26	RS																
•	SHIPPING CHAIN OF CUSTODY	AIN OF CU	STODY			IN THIS COOLER												ŀ		1		
	Start Start	A	Soon		Date Time	Received By (sign)	_	Date	Time		Received By Courier (sign)	By Cc	ourier (	sign)			Date	ete	Time			
_	Shipping Mathod		Officed By (sign)	1	1	Courier From Airport (sign)		Date	Lime		Received By Contract Lab	် မှ	ntract		(Jaidu)		Date	ate .	ا ا			
	1.7.									┥┃										ן _ו		$\neg$



DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY 476 PROSPECT STREET, LA JOLLA, CA 92038 • (619) 456-2791

		176 PRO	SPECT	STREET, LA.	476 PROSPECT STREET, LA JOLLA, CA 92038 • (619) 4	456-2791							]			
CONSIGNEE	EE						S	SAMPLE /	ANALY	LYSIS						
Name SAIC	J	LAN			-			000 000 000	<u> </u>							
No., Street		3330	Phoenect St	L		~	inics 60	Poince								Date
City, State, Zip	. ₹	Š	<u>ا</u>			23in69	yenics Senics	BIO ION	Sepi	1011	O ₁			Crease		eni Core
He No.	Sample Date	4	No. Containers		Sample Description	SUN EXT OF	0 101	Piece /	Herbic	MMH Radion Brugs	Cyania	전 8 8 9	9 9 9 9 9	Spidi7	S Ved	Remarks
5w-4.2	4/13	9/3	-	Ž	SURBRE WHIRE			`								
5-5-m	*	"	-		•			>								
Sw.6-2	£	7	1		;			``								
5. r.w2		10	-		• • • • • • • • • • • • • • • • • • • •											
5- H- mS	;	11	-		W W			>								
Sw.18.2	2	:	W		"		•	1								
2-02-05	10	••	3		11	<u> ^ </u>	•	•								
5w-21-2	*	£	3		٠, ١,	/14	•	~								
Sw-23.2	4	7	3					<u>}</u>								
5w-31-2	z	:	#			>	_									
5.0.32-Z	3	=	#			2										
\$D.4.5	4	5	-	Ś	SEDMENTS			>								
50.8.2	1	-	-		1,			۷								
50-6.2	u.				44			7								
	Total	Total No. Containers	28												·	
SHIPPING CHAIN OF CUSTODY	IN OF CU!	STODY					Ì	ŀ						ŀ		
Want war ive	£5	, www	Page	Time A 30	Received By (sign)		Date	Time	Received	Received By Courier (sign)	er (sign)		Date	_	Time	
Shipping Method Shipped By (sign)	Shipped	Shipped By (sign)			Courier From Airport (sign)		Date	Time	Received	By Contra	Received By Contract Lab (sign)	(v6	Date	_	Time	
															]	



DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY 476 PROSPECT STREET, LA JOLLA, CA 92038 • (619) 456-2791

Second Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record Record	CONSIGNEE	IEE						SA	SAMPLE,	ANA	ANALYSIS	S								
Close   Early   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care   Care	Name SA	آ د	\$ 8						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_						//				
1   1   1   1   1   1   1   1   1   1	No. Street	Pas	530			-		nics	SJIU	2.50	3001		<u> </u>	_	<u> </u>		_	9160		
1   2   2   2   2   2   2   2   2   2	City, State, Zip	4	0			1000	Bnics	BBJO 1	Siele Boom	745 E		clides						1 Core		
9 13   90-4	Sample No.	Sample	Targe Target			Sample Description	G _{JO} Jx3	NO! ON	Trace M	Herbicic	HMWH	Nadionu Drugs	PH Cyanide	008	SSA	209		Sedimer Sedimer		emarks
1	50-7-2	4/13	414	_		SEDMENT		-	-	1		#	#	#_		1		lacksquare		
1	SD-H-2	3	:						`											
2 1	2-81-05	3	:	-		. 11			>											
1	50-20-2	,	:	-		. 4,			•											
2 1 1	50-21-2	:	*	-		4.														
9/14   10   10   10   10   10   10   10	50-23-2		,			z			>											
Total No.   Containers   1.2	Ew-1-2		ę.	9	14				<u>`</u>											
Total No.  Containers 1.2  Ann OF CUSTODY  And Containers 1.2  Ann OF CUSTODY  Ann OF CUSTODY  Ann OF Custon (sign)  Containers 1.2  Ann OF Custon (sign)  Containers 1.2  Ann OF Custon (sign)  Containers 1.2  Ann OF Custon (sign)  Containers 1.2  Ann OF Custon (sign)  Containers 1.2  Ann OF Custon (sign)  Containers 1.2  Ann OF Custon (sign)  Containers 1.2  Ann OF Custon (sign)  Containers 1.2  Ann OF Custon (sign)  Containers 1.2  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann OF Custon (sign)  Ann																				
Total No.   Courier From Airport (sign)   Date   Time   Received By Courier (sign)   Date   Time   Received By Courier (sign)   Date   Time   Received By Courier (sign)   Date   Time   Received By Courier (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Time   Received By Contract Lab (sign)   Date   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Tim																				
Total No. Containers   2													-							
Total No.   Containers   1.2																				
Total No.  Total No.  Containers  Containers  Loss   Time   Received By (sign)   Date   Time   Received By Courier (sign)   Date   Time   Received By Courier (sign)   Date   Time   Received By Courier (sign)   Date   Date   Time   Received By Contract Lab (sign)   Date   Date   Time   Received By Contract Lab (sign)   Date   Date   Time   Received By Contract Lab (sign)   Date   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Received By Contract Lab (sign)   Date   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Ti																				
Total No.  Containers  Containers  Containers  Containers  Containers  Courier From Airport (sign)  Date  Time  Received By Courier (sign)  Date  Time  Received By Courier (sign)  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Date  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time Time																				<u> </u>
Containers Courier From Airport (sign)  Total No. Courier From Airport (sign)  Date Time Received By Courier (sign)  Date Time Received By Courier (sign)  Date Time Received By Courier (sign)  Date Time Received By Contract Lab (sign)  Date Time Received By Contract Lab (sign)	. —																			
AIN OF CUSTOOY    Date   Time   Received By (sign)   Date   Time   Received By Courier (sign)   Date		Total	S Z S	12						1										
Date Time Received By (sign)  1 / (600)  Courier From Airport (sign)  Date Time Received By Contract Lab (sign)  Date Time Received By Contract Lab (sign)	SHIPPING CHAI	IN OF CUS	TOOY																	
d-Shipped By (sign) Courier From Airport (sign) Date Time Received By Contract Lab (sign) Date		Y		<b>16%</b>	_	Received By (sign)		Date	Time	Recei	wed By	Courier	(vois)			Date	Time	· · · · ·		
	hoping Method-	<u> </u>	By (segn)			Courier From Airport (sign)		Date	Time	Recei	ved By	Contrac	t Lab (se	gul		Date	Time		•	



# SAMPLE SHIPPING RECORD

Science Applications
Science Applications

Memational Corporation
DIVISION OF ENVIRONMENTAL CHEMISTRY AND GEOCHEMISTRY

Shipment No.

Name AAV	d					SA	SAMPLE	ANA (%)	ALYSIS							
No. Street	T Z					nics	nics	AL CEST	Party of						elea	
City, State, Zip	bun, CA.				rganics	SOUPSICE SOURCE	610 10A	300		Sepune		<u> </u>		esearo t	Size Dis.	
Sample No.	Sample Pac Date Ti	Pa Se	No. Con- tainers	Sample Description	EXT	7/0/	6261	Pestici Herbic	WWH	Cyanio	고 20년 80명	257 857	200 209	sbiqiJ neA	Mibe S	Remarks
6W-10-2 91	5/4 S/6	1	7	GEOWNDUMPER			`	•								
			2	4,			`									
	*		2	1,				^								
_	14		2	11				<u> </u>								
-			2	1,			`	•								
	3		2	3			2	>								
Gw-31.2	;		7	:			2									
de.32.2	•		7	**			7	/								
2-52-00	2		4	£			7	1								
	:		2	• 1			2	•								
	_															
															_	
	Total No. Containers		8	ANGIE	48.46	1 97	Hawa Times	1 .	**	OCTOPHERPH	F	THE PERSON NAMED IN		}	<del>                                     </del>	
CHAIN	SHIPPING CHAIN OF CUSTODY	П											L		<b>—</b>	
The Marks	- Carrier	į	S//6	Time Received By (sign)		Date	Time	Received	By	Courier (sign)	Ē		Date	Time		
Shipping Mathod Shi		zign)		Courier From Airport (sign)	sign)	Date	Time	Recei	Received By Contract Lab (sign)	ontract La	b (sign)		Date	Time		

				Science	Sec.	2			ָׁט		5	iust.	g	Chain of Custody Record	B					Shipment No.
			j	An Employee	Ound Co.	(Lach		Date.	1	16.			5	7	o	1	ı			
			V	SOMOGE								2	petsenb	Parame	fers				20	
	Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp		7	+1 C					814	*6	18								<b>.</b>	1 -
		Phone Number	Ò	,73 5	EIOI				<u> </u>	ZhV	14 3 17		971 975 <b>2679</b>	_	7 92				) N. (	
		Project Manager Project Name	1	V.C.C.E. T.	9 11				מי	50	771		72. 72.	2/2	,				OZ	Phone
	Case 34   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case 35   William   Case	Job/P.O. No.							2): E0/	V	- N	7 <i>6</i>	<u>?L?</u> 2	<del>- 1</del>	• \$				- < -	Contact Name
1	Water   Sample to   Day	Sampler (Signat	(PI)				Sur Sur	Meme)	anwit V			(ני) מנני מירי ע	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		तत				- Z w &	3
		11	Metri			H		Ste/Zone	0	ı,		77	W		_			-	S	
1. (24) 35 (4/11 17:15)   1. (24) 31 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11 17:15)   1. (24) 32 (4/11	1. (20.35 1/41 12:15 1.		1 22		1	1	<del></del>	20	<b>,</b>	+	_	> 3	+	7	$\downarrow$	1		+	$oxed{\Box}$	
1. (240.3) 1/4/1 14/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. (242.3) 19/14 1855 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>-   -</u>			$\top$	4	: :	<del></del>	┿	+	1		┽ ·	$\perp$	1		+		
Time Date   Court 21   refut, 1741.5     Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   Court   C	Time Time Time Time Time Time Time Time		:	(W. K		1	2 2		+	+	+-	,	┪	+	$\perp$	$\perp$		_		
Date Total Number of Containen: Shapment Method:    1	Date Number of Container:    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1/4/3    1	\	:	GW 3	「~	Ι.	1	:	,	ļ,	<del>                                     </del>	>	Ι.	T	_			_		
Does Total Number of Containen: Shapman Method:    1/4   1/2	Dee Total Number of Container:    Fill out form Completely sucget for Time   Fill out form Completely sucget for Time   Fill out form Completely sucget for Time   Fill out form Completely sucget for Time   Fill out form Completely sucget for Time   Fill out form Completely sucget for method in the project Qu'le for Institute of Sucgets as shown.    Time   Fill out form Completely sucget for method in the project Qu'le for Institute and Sucgets as shown.   Fill out form of a smooth containers and Completely sucget for a smooth containers and Completely sucget form of a smooth containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and containers and container						H			$\vdash$					Ц					
Doe Time Continue of Container: Shapmen Mathod: Shapmen Mathod: Time Continue of Container: Shapmen Mathod: Time Continue of Container: Shapmen Mathod: Time Continue of the Mathod of Container: Shapmen Mathod: Time Continue of the Mathod of Container: Shapmen Mathod: Time Continue of the Mathod of Container: Time Continue of the Mathod of Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container: Time Container	Day    Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company										$\vdash \downarrow$							$\dashv$		
Date Time Time Time Time Time Time Time Tim	Date Total Number of Container:    1/4   6/4	, ,			$\dashv$	$\dashv$	$\dashv$	Ī		$\dashv$	4		$\dashv$	$\dashv$	$\downarrow$			+		
Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Da	Descriptions  Time  Descriptions  Time  Descriptions  Time  Descriptions  Time  Descriptions  Time  Descriptions  Time  Descriptions  Time  Descriptions  Descriptions  Time  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptions  Descriptio				$\frac{1}{1}$	+	$\dashv$		_	$\dashv$	-	1	$\dashv$	+	$\dashv$	$\bot$	_†	-	$\Box$	
Des Total Number of Container: Shipment Ma (1/1/2)  Time The Season Container: Shipment Ma (1/1/2)  Time The Season Container: Shipment Ma (1/1/2)  Time The Season Container: Shipment Marketine Season Container: Shipment Marketine Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Container: Season Containe	Date  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time					+	+		1	+	$\dashv$		+	+	$\downarrow$	$\prod$		-		- 1
Des Total Number of Container: Singment Ma  I Fill out form completify except for season was filled use only!  Time 2. Cemplese in ballocing pan. Drew one good completify except for season was contained.  Time 2. Cemplese in ballocing pan. Drew one good completify except for season was contained.  Time 2. Cemplese in ballocing pan. Drew one good completify. Commit the good completify. Commit the good complete of a short on the container of the container of the container of the container of the container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and container and contain	Des Total Number of Containers:    1/4   5/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1/4   1				-	+	$\dagger$		1	+	+	$\bot$	$\top$	+	$\perp$	$\perp$		+		
Matter of Container:   Shipment Matter of Container:   Shipment Matter of Container:   Shipment Matter of Container:   Shipment Matter of Container:   Shipment Matter of Container:   Shipment Matter of Container:   Shipment Matter of Container:   Shipment Matter of Container:   Shipment Matter of Container:   Shipment Matter of Container:   Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment Matter of Shipment M	Date  Time  Time  Time  Time  Date  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time  Time					-	-			+	-		+-	$\vdash$	$\perp$			$\perp$		
Time  1. Fit out form completity except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for except for	Time  1. Fit out form completely except for sheaded areas (lab use only).  2. Complete in ballocing pen. Draw one line in the interior in the interior interior.  3. Complete in the late on the interior interior.  4. Presence at find OC samples to the project QAP for freezing in the project QAP for freezing interiors.  5. Note all applicable preservatives  6. Note all applicable preservatives  6. Note all applicable preservatives  6. Group all sample contamen and applicable preservatives  8. Note all applicable preservatives  9. Note all applicable preservatives  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1. Time  1	Reinquished by	١		8	•		1 XX			<u>ئ</u>	Des	$\vdash$	Total Ne	Tage.	CO	Temps.			Shoment Method:
Time Time Time Time Time Time Time Time	Time Time Time Complete are little are only.  Complete are before the property accopt for many fine are little are only.  Lime Date Date Date Time Date Time Time Time Time Time Time Time Tim	( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	47.72		<u>~</u>	<u></u>	4							Instruc	tlore					SAIC Location (circle)
2. Complete in bullocing pan. Draw one good control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control	2. Complete in ballooing pan. Draw one ing should agree and initial.  3. Personal strain.  3. Personal strain.  4. Personal strain.  5. Personal strain.  6. Note all applicable preservatives.  6. Group all sample contament and source and supplicable preservatives.  6. Group all sample contament and source and supplicable preservatives.	1			2 5	3							T			0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Me App	of for		Mannapton, D.L. 8000 Wespen, Dr. McLeen, NA 22102 (703) 734-2500
Design Complete as shown.  Time Time S. Note all applicable preservatives  Group all sample containers and  Group all sample containers and  Group all sample containers and  Group all sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and  Sample containers and	Design Complete as shown the project QAP for freshood makes the project QAP for freshood for the project QAP for freshood for the project QAP for freshood for the complete also or zone for the first form of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the project of the proje	Printed Name											<u>-</u>			*	£ 5		•	Osetratos 800 Ostringo Inpa Oseriago, 1N 37830 6986 682 6631
Time Time 6 Group at sample containers and Sample 10 the 1200 31 20 200 for the 1200 31 20 200 for the 1200 31 31 300 for the 1200 31 31 31 31 31 31 31 31 31 31 31 31 31	Time  Time  6. Revenue as final OC samples to the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the stateme	Company			į							Į				<b>A</b> :		A metho	70	Pagemus One Sean Drive, Peremus NJ 07662 Libri employo
Time 6. Note all applicable preservatives 6. Group all ample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group	Time 6. Note all applicable preservatives 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contemers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Group all sample contempers and 6. Grou	Supreme	2				*** ***	بو				4/2	; ;	3 2		9	. E	9	2	Denver NSS Cole Bouleverd Suite 270 Golden CO 804 1300 23 9094
Sentimental Sentiments and Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentiments Sentim	Grideria pro moi market e parametri	Printed Name			Ē			<b>5</b>		1		T.	<u> </u>	1 No.		4	preserv	Service		Searthe 134008 Nr. Phys. Wey 538 Bellevia, WA 98006 (205-74) 7999
											•	•	9			1	rom o		30	1

Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipman Shipma	Schemon Applications   Chair of Custody Record   Page   of 3	A Science Application of the American Co. A final control Co. And a final control Co. T. J. J. J. J. J. J. J. J. J. J. J. J. J.	ators.	\	i	. (				
Date 9-2-88   Page	Date 9-2-88   Page 1 of 3	T. T. War - S.		\	Chain	of Custod	y Record			Shipment No.
Secret   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Paramet	Page		тропевиол Зопрелу	- 11	9-2-8		1 01	3		2
Part   Particular   N. J. Ottoo   Part   Particular   N. J. Ottoo   Part   Particular   N. J. Ottoo   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Par	Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Parameter   Para		1/C			: Reques	ted Parameters		20	
Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems   Parack Field Systems	## (201) 579-0100   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Pr	, ,	20 NJ 0700						0	ד ז
Fig. 2   Fig. 2   Fig. 2   Fig. 2   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   Fig. 3   F	Parcel   Each   Systems   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Manna   Ma	THE Number (201) 599-010C	,		5. 24 ×	•			-	N
Parcel   Field   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Prince   Pr	Parcel   1   1   1   1   1   1   1   1   1		,		11 <i>00</i>					(711)
FSA-1   S-20   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   FSO   FT   Comment Name   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section					و مور				2 ⊢ ∢ -	Connect Name Saya Hath as Andy
1		The Spare	ا ق ا	i	1499	:,			- Z W E	OBSERVAJIONS, COMMENTS, SPECIAL INSTRUCTIONS
1   FSA-2	1	Markin Samole No	Leme	1 1	n			_	S	
11   FSA-3	11   FSA-2   1255   1   1   1   1   1   1   1   1   1	Sp.1 FSA-1	1550		2	*				
1   54-3   1   555   1   1   1   1   1   1   1	11 FSA-3 1 1555 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n F5A-2	7	*	_	1	-		-	
1   FSA - 4   11   FSA - 1   1   1   1   1   1   1   1   1   1	11	11 754-3			1				-	
11   FSG-2   11   IL65   11   12   12   12   13   14   14   14   14   14   14   14	11	" F51-4		11					1	
11   FSG-2   11   1621   11   1   1   1   1   1   1   1   1	1	1.984		2					1	
11	11	" F58-2		11	/				1	
11   FSC-2   11   16.37   11   1   1   1   1   1   1   1   1	11 FSC-2 1, 1637 11 7 1 1550-2 1, 1637 11 7 1 1550-3 11 1637 11 7 1 1641 11 11 7 1 1641 11 11 7 1 1641 11 11 7 1 1641 11 11 7 1 1641 11 11 7 1 1641 11 11 7 1 1641 11 11 7 1 1641 11 11 7 1 1641 11 11 11 11 11 11 11 11 11 11 11 11 1	" F56-3				7			1	
1   FSC-2   11   14.37   11   17   1   1   1   1   1   1   1	1	" FSC-1		11	/				/	
1   FSO-2   11   [L41  11   V	11 F50-1 11 16-11 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11 V 11	" F5C-2		"	/				7 [	
1	11   FSO-2	" F5C-3			7					
1   FSO-2   1   1/479   11   1   1   1   1   1   1   1   1	1   F50-2   1   1/49   1   V	" F50-1			, , , , , , , , , , , , , , , , , , ,				_	
1   F50-3	1   F50-3	1 F50-2			\ <u>\</u>				/	
Time    1	Thus    1   1   1   1   1   1   1   1   1	II F50-3		11		]			1	
1. Fit out form company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the company except for the compan	1 Fill out form complete accept for the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fill of the fi	7	Nate Received	4	5	Date	Total Number of	Containers:		٦
Time Time Time Complete in believe and little use only).  Complete in believe that the complete in believe that the complete in believe that the complete in believe that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the complete that the	Time  Time  Time  1. Fill out form completely except for should seem list use conty.  2. Complete in bulbours pan. Daw one list use anti-list.  3. Request ambreas was first.  3. Request ambreas was first.  4. Request ambreas only. Commute the list.  All of locations are about.  All of locations are about.  All of locations are about.  All of locations are about.  All of locations are about.  All of locations are about.  All of locations are about.  All of locations are about.  All of locations are about.  All of locations are about one ampling and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constraint and appreciate the constra	hun	1/2/4	200		•	Americations			SAIC Location (circle)
1330   Time   Time   Longitude in before in the best of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the cons	1330   Time   1   1   1   1   1   1   1   1   1				4	-	1. Fill out form o	property except	ğ	McLasn, VA
1330  Date : 1 Request analyses using EPA method Analyses the Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Comm	1330  Date 1: Request analyses using Eth method by Consult the pass of the consult the pass of the consult the pass of the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the consult the con	- Trag			ð: ~	<b>.</b>	Tomothe is it	Months and De		CACLA 7AA ZARBO
Time    Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control	Date (1) Proposed analyses using EPA method functions only Cornell the Personal Control to Company only Cornell the Company only Cornell the Company only Cornell the Company only Cornell the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on the Company on			,		***	line through ex	rors and initial.		1
Time    County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County of the first instructions   County o	Time Time Time Time Time Time Time Time		-			i de	3. Request analysis analysis	TO COME	act of	
Time  7(b/6/8)  6. Note all applicable preservatives  7(b)  6. Count all surples commission and  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)  7(c)	Time Time & Group all services and find OC services to the applicable site or zone.  (1) Meteorice all find OC services to the applicable site or zone.  (2) Coup all services construent and inquested analyses from one servicing.		(f) eee			4	Paropert OAPP	for instructions.		000-00-00
Time 1 & Note of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable personatives. Control of applicable pe	Time 6. Note of septicate personatives.  Coup all service commission and septicate personatives.		16/8r				4. Paterance off	and OC samples	8 8 8	1256 Cate Boutment, Sums 279, Gallen, CO 884 (260) 231-8884
6. Group all semple containers and San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group San Group S	A Group all sample consistent and sample consistent and sampling in security and sampling in security and sampling in security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and security and secu	FED. EXP.	eme			2.50	S. Nos all applic	of the preservative	<b>±</b>	Specific Stormup Way, S2B, Bedavia, WA 988
Aquestad anti-one samping 1.425 Carea Part, Busing 3.50 Days.  Incaden together Do not list individually 1.50 St. 748	Durchurs and was serviced personiber		,			1.78; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74; 1.74;	6. Group at sem	de containen ar	2	•
		Auge		٦			requested and	yes hem one were the s	ndividually.	Comman Pour, Bastry 3, See Deeps, CA 8827

	`			•					_	í							
		Science App	Cations			5	Chain of Custody Record		50	Zeco	Ē						
		Marie An Employee-Owned Company	d Company	5	Date	4	88-7-6	1	Ş	Page 2	, o	3	_			2	
Toho	1 4	ing -5AIC	     .,					, Œ,	lequeste	Requested Parameters					20	FIF I chanter	7,0
	Sears	'n	717	07003		,			_	_			-		0	Address 1285 Seacsee St	<u> </u>
aber .	401	153	00			<u> </u>										ASS. W. 41225	
-	141	1 Spener	790			260 ₍		•							ပဝ	Phone (16) 631-030	-
	pace.	Harcock Field, Sujacuse, N.Y.	Jacuse.	7		9/0									Z r	Contact Name Sery Haha or	Andy
\$	20	1-06-6	21-17			17:70 805			-						<-	Cliffen	,
Sample (Supperus)	ń		•	ِ ا	(Printed Name)	19		-							<b>z</b> w	OBSERVATIONS, COMMENTS,	-
	1	Semple No.	200	Jan	John Thing	1 5		·. ———							Œ W	SPECIAL INSTRUCTIONS	
	٦		( <del></del>	1703	FI	7		· ·				-	_	L	_		
	=			1707	*	>						-	_	_	-		
59	2	F5E-3	" "	0/1		7		*						_	_		
09187	1,	F5F-1	, h	7121	*	<u> </u>		•	_						_		
19 [	4	FSF -2	" "	17.19	¥	/									1		
29	=	F5F-3	, u	1722	11	7									-		
63	=	F56-1	3	1733	н	>						$\dashv$	-	Ц	•		
64	-	FS6 -2	/ "	1737	N	1									1		
- 65	=	F56 -3	"	1740	4	Z											
70	=	E5H-1	=	1746	3	7						1	$\dashv$	_	3		
14	=	F5H-2	7	1747		>				_		-	-	_	3	•	
. 89	•	F5H -3	, ,	1750	*	2				_		1	-	$\dashv$	_		
69182	=	F5H -4	-	08/	*	2				$\dashv$			$\dashv$	_	-		
Responsible Dr	1		<b>8</b>	Received by	P P			å.		Total Number of Containers	mber o	Conta	ë			Shipment Method: Fed Ex	
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	2		84/2/8	1	4		イヤ	· 1·		Instructions	a d			•		SAIC Leastion (circle)	
10 11/2	T	_	I in	A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA	L.	3				<ol> <li>Fill out form completly except for shaded areas (lab use only).</li> </ol>	E O	Fill out form completly excel shaded asses (lab use only).	y excel	<u>ŏ</u>		DATO Warmen Dr., McLean, VA 22102 (703) 734-288	
Present Name			1330	9.46		Hr:			,	2. Complete in belippint pen. Draw one line through errors and initial.	tete in	Complete in belippint pen. D. line through errors and initial.	d Safe	C very	•	Ostridge 800 Ostridge Teph., Ostridge, TN 37830	
Company										3. Reque	2	Request analyses using EPA method	EPA	metho	73		
Retinquished by		,	e .		F.			å		Comp	10 P	project QAPP for instructions. Complete as shown.	ruction	<u> </u>		Con See Birn, Farmer, NJ 0742	gryst Gryst
Spraw C.C.A.	CEN CYD	9	18/1/6					e e	_	4. Refer	and and and and and and and and and and	Reference all field QC samples to the applicable site or zone.	Semon	5 5 E		authorat, Suns 278, Golden	. S <b>8069</b>
Printed Name	2	7	Time		2	511	7	Time.		6. Note		Note all applicable preservatives	Jeves.	1		CHOCK Number Way, S.M. Bellevia, WA 18005 (206 X) 788	8
Company				-6	3.72			;; <b>5</b>		6. Group all sample containers and requested analyses from one sen location receiber Do not list and		Group all sample containers and requested analyses from one sampling position positive. Do not list individual	CO CO		2	San Diago 4234 Campus Pont, Building 3, San Daga, CA 87(2) 888 SS 200	5.5
Science Apolications International Consention	sections (	Hernetional Co		W 000	800 Memort Dries Melann Ventrie 2202	100	Nedrois	201.02			<u>}</u>			and the same of		per Tables Pages GAO Continued Frant Sample	
			. 1					1								A CALLES AND A SECOND AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON	

 !								1	3.4.7.4	-		: ; ;			•	•			***************************************
			Science App	<b>Ecations</b>			Ü	iain	of, O	Chain of Custody Record	dy Re	cord						Shipment No	No.
.1-			Mentational Corporation An Employee Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Co	Corporation of Company	ration Pery	Date	9	-28		<b>470</b>	Page 3	30	2	i				-	0
	J.	L TK	100 - SAIC							3	Réquested Parameters	meters				z	FAE Laborator	FAE	homitar
	Address	1 Seus 1	the Brown III	1	07003	•	•	٠,						_		<i>i</i> 0	Adm. 1285 Seasse	5 Seacs	ce st.
	Phone Number	1201	Phone Number (201) 549-0100	0			7700	إبالوة							. <u></u>	<u>u</u> (	Buffob, NY.	NK F	M225
	Project Menag	<b>b</b>	rh. Joseph	Jec.		2	70	90/ 080		-						002	Phone 124	(111) 131-0310	0360
	Joh/P.O. No.	1 1	1-485-06-624-40	3000	4		7/5	N 714 18/06		Merce				_		<	Contact Name Gory Hoba at Andy	Gary Hab	a or hidy
	Als, Takes	N			F 4	(Printed Name)	199X 199X	osm		· ·						- 2 w c	OBSERVA	LLEDAD.  OBSERVATIONS, COMMENTS,	MAMENTS,
	/ Comment	179	Semple No.	Dese	S .	Time See/Zond	'5	5		<b>16</b>						z vo	SPECIA	SPECIAL INSTRUCTIONS	CHONS
	01/82/			29	1800	FT.1	7	-				-				_			
	11	100		89-1-6	1/9/	0-5		2		3		Н				7	Second Column		an Simute.
	72	•	GW-2	30	0936	×		7		45.						۲	11		"
	13		6w-3	9-1-88	1601	"		7		'문				-		7	•	*	**
	14	"	GW-:	9-2-88	0936	, u		7								Ø			11
	75	1,	6W-5	83-2-6	1043	"		/		τ.						7	"	*	¥
	28176	3	6W-6	4.24	0900	4		7								7	"	*	1,
_																			
								$\dashv$											
								$\dashv$	$\neg$		4	+		1					
										-		-	$\Box$	<b>-</b>		$\exists$			
								$\dashv$	$\overline{+}$		1	+	$\prod$	+	1	_			
					-		1	$\dashv$			_	$\dashv$	$\Box$	$\dashv$	$\Box$				
	Refinduished by	11.		0		Received by		ر. د. د.ا <b>ی</b>	: ;;	<b>8</b>	Tota	Total Number of Containers:	Co	: Legal		ह्म	Shipment Method:	7	Falex
		trust		42/56	-	,					Inst	Instructions					SAIC Location (circle	(circle)	
	1 50 + Mas	9		1	_	160.	-	が			æ <b>€</b>	Fill out form completly excel shaded areas (lab use only).	n comp	<ol> <li>Fill out form completly except for ehaded areas (list use only).</li> </ol>	ğ	_	Magnification, LLC. B400 Winnest Dr., Miclason, VA 22102 (2003 724-2000	Melan, W.2	2042
	Franked Name	1		1820	·	d Name		1	7		<u>ہ</u> 2	ateldmo	odfed r	Complete in belipoint pen. Draw o	200 A424		Ostrope		. !
	54K	y				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		¥.	77			line throug	a a a	ine through errors and initial.	. 1	e ·	SEC CALVADA Treat. Online	<b>.</b>	A TH SPECIO
	Landau				3						_	method nu		numbers only. Cone	it the	• •	One Some Own. P.	A 2000	2
	Memoriane by	_	i	• ·			de l'in	17.5			4.0 	project QAPP for instruction Complete as shown.	a show	Meruction 1.	ا ا	7			2
	Separate			9(488)	,,	3		if ,		-;	# #	Reference all field OC sample enolicable site or zone.	A Party	OC sample	# . 2		55		
		112	JX1	E .		KICH			1	Ę.	- <del>2</del>	Note all applicable pr	plicable	preservativ	į		Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of the Comments of th	A. S.M. Balance	1008 144 1
		į				ALC:				اهر د افر ده د د	• E	Group all sample con requested analyses fix	andyses	all semple containers and tag and semi-	, p		•		2 mg
	Сотрепу				3	15.47			;		- 1	cation to	a de	location together. Do not list indi	100	•	800 CS 7CS	,	
ر خار د د د	Science Ap	Mcedione	Science Applications International Corporat	Nporation	9000	ion E 8000 Westpark Drive, McLean, Wajnie 22102.	ive, McL	₹.	12	8		4	-		1		One Page 1000		Same Same
											1								

Science Applications	Science App	Cations	•		5	Chain of Custody Record	ustody	Recon	75		Shipment No.	
	No An Employee-Ours	d Company		Cate	1-5-89	-84	Pa	Page /	of		<b>LP</b>	
Name SAIC	- John I	Kin					Request	Requested Parameter		2		
Attens 9400	West mit Ir	Helban	1	22102							A CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O	A. A. Ly
Phone Number (703) \$27 - \$10 (	03/827-8	101			OF	in ye					A. 4. 11 183	25
Proper Manager / Phil Spood el	Phil Span	26 70			OE P VOE							200
Job/P.O. No. 1-8	-827 - 06 - 624 - XX	7X - 7X			PS   PS					Z - <		fton
1 3			4P rintec	Printed Name	W7	e vi				- Z	4	1
A free			John TK		। विद्या	1174					OBSERVATIONS, COMMENTS,	VENTS,
9	I	38	H		41	7		+	+	S		CMS
3	7-M9 2	1-45/1600	╛	0-56.4	7					4	Breach of Fred Lan Son	The Fillery
7	5-M9	1-451 1130		D-5 DW/K	7					7	11. th HAID. +	
"	GW-3	1-5-01	_		7	_				7	1	
11	Г	15-69 1915	7	٠.	7	_			 	7		
				-	+							
					+	_		-	-	-		
			+		$\dashv$			+				
		+-	-		╁	-		+				
		+ +			+							
		 			$\dashv$							
N		1.5.0	The Control	<b>Q</b>				Total Numb	Yotal Number of Containers:	90	Shannont Method: [24	£
	-		3	3	4			Instruction	•		SAIC Location (circle)	
VIEWIKY	7	2					1	1. Fill out t	<ol> <li>Fill out form completly except for ehaded aleas (lab use only).</li> </ol>	xcapt for	BASO Virginia Dr. Meccast VA 22102	2
Parist Name	7		Printed Name	3				2. Complete	Complete in ballpoint pen. Diaw one	n Draw one	Outration	
717								ane Bro	ine Brough errors and initial	more and initial	600 General Link : Dahrage TN 12606	00
1 12		) .	3	Ē			Dete		mathad sumbars andy Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultantial Consultant	Consult the	Date Sales Great Frances As 02652	_
ted Exerit	with	14/89		soid t	r r	246	4/1/	Complete Reference	ete as shown. nce all field OC sa	s shown. If field OC samples to the	Ubener 1678 Co. Bushwert Sun 276 Guass, CO 8089 1908 231904	00 00 in
		Time					Tome	5. Note all	Approcable and or Anne. Note all applicable presovatives	valives	Seattle 17608 (Austral Vias S36 Bellena	5
		30		R			6	9	Tower .			

** TOTAL PAGE.006 **

APPENDIX H: ANALYTICAL DATA

TABLE H-1 SAMPLE IDENTIFICATION CROSS REFERENCE ZONE 1

Lab Number	Field Number	Description	Page
Site FT-1 & D-5			
09/160440	01+	Ground water, MW-8	н-34
09/160441	02+	Ground water, MW-9	H-37
09/160442	03+	Ground water, MW-7	H-40
09/160443	04+	Ground water, MW-7 (Duplicate)	H-42
09/160444	05+	Field Blank	H-46
09/160445	06+	Ground water, GW-10	H-50
*10/160812	01	Ground water, MW-8	H-70
*10/160813	02	Ground water, MW-9	H-71
*10/160814	03	Ground water, MW-7	H-72
*10/160815	04	Ground water, MW-7 (Duplicate)	H-73
*10/160816	05	Field Blank	H-74
*10/160817	06	Ground water, GW-10	H-75
86353004	GW-1**	Ground water, MW-7	H-206
86353005	GW-2**	Ground water, MW-7 (Duplicate)	H-206
86353009	GW-3**	Ground water, MW-8	H-206
86353010	GW-4**	Ground water, MW-9	H-207
86353011	GW-5**	Ground water, MW-10	H-207
86353016	GW-11	Ground water, MW-11	H-217, (H-224)*
86353017	G <b>W-</b> 12	Ground water, MW-11D	H-217, (H-224)*
86353018	GW-13	Ground water, MW-12	H-217, (H-224)*
86353019	GW-14	Ground water, MW-12D	H-217, (H-224)*
86353020	G <b>W-</b> 15	Ground water, MW-13	H-217, (H-224)*
86353021	GW-16	Ground water, MW-13D	H-217, (H-224)*
86353022	FB-1	Trip Blank (Petroleum hydrocarbons only).	H-219

^{*}Second Column Confirmation

^{**}Holding times exceeded for only orthophosphate; resampled in Sept. 1987 and analyzed for lead and orthophosphate; See Page H-305 for new results.

⁺Stage 1 wells resampled 12/86; See page H-207 for new results.

## TABLE H-1 SAMPLE IDENTIFICATION CROSS REFERENCE ZONE 1 (Continued)

Lab Number	Field Number	Description	Page
87016016	G <b>W-</b> 17	Ground water, MW-12	H-229, (H-236)*
87016017	GW-18	Ground water, MW-12D	H-229, (H-236)*
87016018	GW-19	Field Blank	H-229, (H-236)*
87016019	GW-20	Bailer wash	H-229, (H-236)*
87016020	GW-21	Ground water, MW-11	H-229, (H-236)*
87016021	GW-22	Ground water, MW-11D	H-229, (H-236)*
87016022	GW-23	Ground water, MW-13	H-232, (H-238)*
87016023	GW-24	Ground water, MW-13D	H-232, (H-238)*
Site FT-1**			
86329006	FS-A-1	Soil, A-1	H-81
86329007	FS-A-2	Soil, A-2	H-81
86329008	FS-A-3	Soil, A-3	н-81
86329009	FS-A-4	Soil, A-3 (Duplicate)	H-81
86329010	FS-B-1***	Soil, B-1	н-81
86329011	FS-B-2	Soil, B-2	H-81
86329012	FS-B-3	Soil, B-3	н-87
86329013	FS-C-1***	Soil, C-1	н-87
86329014	FS-C-2***	Soil, C-2	н-87
86329015	FS-C-3	Soil, C-3	H-87
86329016	FS-D-1***	Soil, D-1	н-87
86329017	FS-D-2***	Soil, D-2	H-87
86329018	FS-D-3	Soil, D-3	H-92
86329019	FS-E-1***	Soil, E-1	н-92

^{*}Second Column Confirmation

^{**}Holding time exceeded for volatile organics; resampled in August 1988; see pages H-350 to H-375 for sample identification cross reference, holding times, and analytical results.

^{***}Holding time exceeded only for semivolatile organics; resampled in Sept. 1987; see Page H-298 - H-301 for the new results.

## TABLE H-1 SAMPLE IDENTIFICATION CROSS REFERENCE ZONE 1 (Continued)

Lab Number	Field Number	Description	Page
86329020	FS-E-2**	Soil, E-2	н-92
86329021	FS-E-3	Soil, E-3	H-92
86329022	FS-F-1**	Soil, F-1	H-92
86329023	FS-F-2**	Soil, F-2	H-92
86329024	FS-F-3	Soil, F-3	н-96
86329025	FS-G-1**	Soil, G-1	н-96
86329028	FS-G-2	Soi1, G-2	н-96
86329029	FS-G-3	Soil, G-3	H-96
86329030	FS-H-1	Soil, H-1	H-96
86329031	FS-H-2	Soi1, H-2	H-101
86329032	FS-H-3	Soil, H-3	H-101
86329033	FS-H-4	Soil, H-3 (Duplicate)	H-101
86329034	FS-I-1	Soil, I-l (Background)	н-101
Site FT-1 & D-5			
86350016	SW-4+	Surface water, Station SW/SD-4	H-117, (H-188)*
86350020	SD-4+	Sediment, Station SW/SD-4	H-122
86350021	SW-5+	Surface water, Station SW/SD-5	H-124, (H-190)*
86350022	sw-6+	Surface water, Station SW/SD-6	H-124, (H-190)*
86350023	SW-7+	Surface water, Station SW/SD-7	H-124, (H-190)*
86350024	sw-8	Surface water, Station SW/SD-8	H-124, (H-190)*
86350025	SD-5+	Sediment, Station SW/SD-5	H-131
86350026	SD-6+	Sediment, Station SW/SD-6	H-131

^{*}Second Column Confirmation

^{**}Holding time exceeded for only semivolatile organics; resampled in Sept. 1987; see pages H-300 - H-303 for new results.

⁺Holding time exceeded for only mercury; resampled in Sept. 1987; see page H-305 for new results.

TABLE H-1
SAMPLE IDENTIFICATION CROSS REFERENCE
ZONE 1 (Continued)

Lab Number	Field Number	Description	Page
86350027	SD-7**	Sediment, Station SW/SD-7	H-131
86350028	SD-8	Sediment, Station SW/SD-8	H-131
86350029	SW-9	Surface water, Station SW/SD-9	H-131, (H-192)*
86350030	SW-10	Surface water, Station SW/SD-10	H-131, (H-192)*
86350031	SW-11	Surface water, Station SW/SD-11	H-138, (H-194)*
86350032	SW-12	Surface water, Station SW/SD-12	H-138, (H-194)*
86350033	SD-9	Sediment, Station SW/SD-9	H-138
86350034	SD-10	Sediment, Station SW/SD-10	H-138
86350035	SD-11	Sediment, Station SW/SD-11	H-138
86350036	SD-12	Sediment, Station SW/SD-12	H-138
86350037	SW-13	Surface water, Station SW/SD-13	H-145, (H-196)*
86350038	SW-14**	Surface water, Station SW/SD-14	H-145, (H-196)*
86350039	SW-15	Surface water, Station SW/SD-15	H-145, (H-196)*
86350040	SW-16	Surface water, Station SW/SD-16	H-145, (H-196)*
86350041	SD-13	Sediment, Station SW/SD-13	H-145
86350042	SD-14**	Sediment, Station SW/SD-14	H-145
86350043	SD-15	Sediment, Station SW/SD-15	H-152
86350044	SD-16	Sediment, Station SW/SD-16	H-152
86350054	SW-23+	Surface water, Station SW/SD-1 (Duplicate)	H-159, (H-200)*
86350055	SW-24	Field Blank	H-166, (H-202)*
86350057	SD-23	Sediment, Station SW/SD-l (Duplicate)	н-166
86353014	SW-17	Surface water, Station SW/SD-17	H-207, (H-214)*
86353015	SD-17	Sediment, Station SW/SD-17	H-207

^{*}Second Column Confirmation

^{**}Holding time exceeded for only mercury; resampled in Sept. 1987; see page H-305 for new results.

⁺Holding time exceeded for purgeable halocarbons; resampled in Sept. 1987; see page H-297 for new results.

TABLE H-2 SAMPLE IDENTIFICATION CROSS REFERENCE ZONE 2

Lab Number	Field Number	Description	Page
Site D-1 and D-3			
09/160587	07+	Ground water, MW-5	H-54
09/160588	08+	Ground water, MW-3	H-57
09/160589	09+	Ground water, MW-2	н-60
09/160590	10+	Ground water, MW-1	н-63
09/160591	11+	Ground water, MW-6	н-66
*10/160809	07+	Ground water, MW-5	H-77
*10/160810	08+	Ground water, MW-3	H-78
*10/160811	11+	Ground water, MW-6	H-79
86353006	GW-8**	Ground water, MW-2	H-206
86353007	GW-9**	Ground water, MW-5	H-206
86353008	GW-10**	Ground water, MW-6	H-206
86353012	GW-6**	Ground water, MW-3	H-207
86353013	GW-7**	Ground water, MW-1	H-207
87020007	GW-25++	Ground water, MW-15	H-241, (H-247)*
87020008	GW-26++	Ground water, MW-15D	H-241, (H-247)*
87020009	GW-28++	Ground water, MW-3D	H-241, (H-247)*
87020010	GW-29++	Ground water, MW-14	H-241, (H-247)*
87020011	GW-30++	Ground water, MW-14D	H-241, (H-247)*
87020012	GW-31++	Ground water, MW-6D	H-241, (H-247)*
87020013	GW-32++	Ground water, MW-6D (Duplicate)	H-249, (H-259)*

^{*}Second Column Confirmation

^{**}Holding times exceeded for only orthophosphate; resampled in Sept. 1987 and analyzed for lead and orthophosphate; see pages H-306 and H-307 for new results.

⁺Stage 1 wells resampled 12/86; See page H-207 for new results.

⁺⁺Holding times exceeded for mercury and orthophosphate; resampled in Sept. 1987; see page H-305 for new results.

# TABLE H-2 SAMPLE IDENTIFICATION CROSS REFERENCE ZONE 2 (Continued)

Lab Number	Field Number	Description	Page
Site D-1 & D-3			
86350013	SW-1	Surface water, Station SW/SD-1	H-117, (H-188)*
86350014	SW-2	Surface water, Station SW/SD-2	H-117, (H-188)*
86350015	SW-3	Surface water, Station SW/SD-3	H-117, (H-188)*
86350017	SD-1	Sediment, Station SW/SD-1	H-117
86350018	SD-2	Sediment, Station SW/SD-2	H-117
86350019	SD-3	Sediment, Station SW/SD-3	H-124
86350045	SW-18**	Surface water, Station SW/SD-18	H-152, (H-198)*
86350046	SW-19	Surface water, Station SW/SD-19	H-152, (H-198)*
86350047	SW-20**	Surface water, Station SW/SD-20	H-152, (H-198)*
86350048	SW-21**	Surface water, Station SW/SD-21	H-152, (H-198)*
86350049	SD-18+	Sediment, Station SW/SD-18	H-159
86350050	SD-19	Sediment, Station SW/SD-19	H-159
86350051	SD-20+	Sediment, Station SW/SD-20	H-159
86350052	SD-21+	Sediment, Station SW/SD-21	H-159
86350053	SW-22	Surface water, Station SW/SD-4 (Duplicate)	H-159, (H-200)*
86350056	SD-22	Surface sediment, Station SW/SD-4 (Duplicate)	H-164

^{*}Second Column Confirmation

^{**}Holding times exceeded for purgeable halocarbons, aromatic volatile organics and murcury; resampled for the parameter in Sept. 1987; see page H-296 for new results.

⁺Holding times exceeded for mercury; resampled in Sept. 1987; see page H-305 for new results.

# TABLE H-2 SAMPLE IDENTIFICATION CROSS REFERENCE ZONE 2 (Continued)

Lab Number	Field Number	Description	Page		
Site SP-1 (Old Spill Area)					
86350002	SW-30	Surface water, SW-30 At outfall from Sage Plant	H-105, (H-184)*		
86350003	SW-31**	Surface water, SW-31 50 feet downstream of outfall from Sage Plant	H-105, (H-184)*		
86350004	SW-32**	Surface water, SW-32 100 feet downstream of outfall from Sage Plant	H-105, (H-184)*		
86350005	SD-30	Sediment, SD-30 At outfall from Sage Plant	H-105		
86350006	SD-31	Sediment, SD-31 50 feet downstream of outfall from Sage Plant	H-105		
86350007	SD-32	Sediment, SD-32 100 feet downstream of outfall from Sage Plant	H-113		
Site S-1 (Transform	er Storage A	rea)			
86350008	TS-1	Soil, 1, Northwest half of northeast wall by transformer storage racks	H-113, (H-187)*		
86350009	TS-2	Soil, 2, Southeast half of northeast wall by transformer storage racks	H-113, (H-187)*		
86350010	TS-3	Soil, 3, midpoint of south- east wall	н-113, (н-187)*		

^{*}Second column confirmation

^{**}Holding times exceeded for purgeable halocarbons, aromatic volatile organics and mercury; resampled for the parameters in Sept. 1987; see page H-297 for new results.

## TABLE H-2 SAMPLE IDENTIFICATION CROSS REFERENCE ZONE 2 (Continued)

Lab Number	Field Number	Description	Page
Site S-1 (Transf	ormer Storage A	rea)	
86350011	TS-4	Soil, 4, Center floor of building	H-113, (H-187)*
86350012	TS-5	Soil, 5, Midpoint of south- west wall	H-113, (H-187)*
86350059	TS-6	Soil, 6, Midpoint of northwest wall, near door	H-166
86350060	TS-7	Soil, 6, Duplicate	н-166
Site S-3 (Entomo	logy Undergroun	d Storage Tank)	
86350001	EW-1**	Water, Contents of tank sampled from access pipe	H-105, (H-184)*
86350061	ES-1	Soil, 1, Sample at .66' depth approximately 20 feet downslope from tank	
86350062	ES-2	Soil, 2, Sample at 1.5' depth approximately 20 feet downslope from tank	
86350063	ES-3	Soil, 3, Sample at 3.0' depth approximately 20 feet downslope from tank	

^{*}Second Column Confirmation

^{**}Holding times exceeded for organochlorine pesticides/PCBs, organophosphorus pesticides and chlorinated herbicides; resampled in Sept. 1987; see page H-304 for new results.

TABLE H-3-A

### INITIAL SAMPLING OF EXISTING WELLS SEPTEMBER, 1986

Laboratory	Field	
ID Number(s)	ID Number(s)	Sampling Point ID
09/160440	01	MW-8
*10/160812	01	
09/160441	02	MW-9
*10/160813		
09/160442	03	MW-7
*10/160814		
09/160443	04	MW-7 Duplicate
*10/160815		
09/160444	05	Field Blank
*10/160816		
09/160445	06	MW-10
*10/160817		
09/160587	07	MW-5
*10/160809		
09/160588	08	MW-3
*10/160810		
09/160589	09	MW-2
09/160590	10	MW-1
09/160591	u	<b>MW-</b> 6
*10/160811		

^{*} Second Column Confirmation

#### TABLE H-3-B

### RESAMPLING OF EXISTING WELLS DECEMBER, 1986

Laboratory	Field	
ID Number	ID Number	Sampling Point ID
86353004	GW-1	MW-7
86353005	GW-2	MW-7
		Duplicate
86353009	GW-3	MW-8
86353010	GW-4	<b>MW-</b> 9
86353011	GW-5	MW-10
86353012	GW-6	MW-3
86353013	GW-7	MW-1
86353006	GW-8	MW-2
86353007	GW-9	MW-5
86353008	GW-10	MW-6

TABLE H-3-C

ZONE 1 SAMPLING
SITE FT-1-SOILS

Laboratory ID Number	Field ID Number	Date Sampled	Sampling Point ID
86329006	FS-A-1	11/18/86	A-1
86329007	FS-A-2	11/18/86	A-2
86329008	FS-A-3	11/19/86	A-3
86329009	FS-A-4	11/19/86	A-3 Duplicate
86329010	FS-B-1	11/18/86	B-1
86329011	FS-B-2	11/18/86	B-2
86329012	FS-B-3	11/18/86	B-3
86329013	FS-C-1	11/18/86	C-1
86329014	FS-C-2	11/18/86	C-2
86329015	FS-C-3	11/18/86	C-3
86329016	FS-D-1	11/18/86	D-1
36329017	FS-D-2	11/18/86	D-2
86329018	FS-D-3	11/18/86	D-3
86329019	FS-E-1	11/18/86	E-1
86329020	FS-E-2	11/18/86	E-2
86329021	FS-E-3	11/19/86	E-3
86329022	FS-F-1	11/19/86	F-1
86329023	FS-F-2	11/19/86	F-2
86329024	FS-F-3	11/19/86	F-3
86329025	FS-G-1	11/19/96	G-1
86329028	FS-G-2	11/19/86	G-2
86329029	FS-G-3	11/19/86	G-3
86329030	FS-H-1	11/19/86	H-1
86329031	FS-H-2	11/19/86	H-2
86329032	FS-H-3	11/19/86	н-3
86329033	FS-H-4	11/19/86	H-3 Duplicate
86329034	FS-I-1	11/19/86	I-1 Background

TABLE H-3-D
SURFACE WATER/SEDIMENT SAMPLES

Laboratory ID Number	Field ID Number	Date Sampled	Sampling Point ID
86350013	SW-1	12/6/86	SW/SD-1
86350017	SD-1	12/6/86	
86350014	SW-2	12/6/86	SW/SD-2
86350018	SD-2	12/6/86	
86350015	SW-3	12/6/86	SW/SD-3
86350019	SD-3	12/6/86	
86350016	SW-4	12/6/86	SW/SD-4
86350020	SD-4	12/6/86	
86350021	SW-5	12/6/86	SW/SD-5
86350025	SD-5	12/6/86	
86350022	SW-6	12/6/86	SW/SD-6
86350026	SD-6	12/6/86	
86350023	SW-7	12/6/86	SW/SD-7
86350027	SD-7	12/6/86	
86350024	SW-8	12/6/86	SW/SD-8
86350028	SD-8	12/6/86	
86350029	SW-9	12/6/86	SW/SD-9
86350033	SD-9	12/6/86	
86350030	SW-10	12/6/86	SW/SD-10
86350034	SD-10	12/6/86	
86350031	SW-11	12/6/86	SW/SD-11
86350035	SD-11	12/6/86	
86350032	SW-12	12/6/86	SW/SD-12
86350036	SD-12	12/6/86	
86350037	SW-13	12/6/86	SW/SD-13
86350041	SD-13	12/6/86	

TABLE H-3-D (Continued)

Laboratory ID Number	Field ID Number	Date Sampled	Sampling Point ID
86350038	SW-14	12/6/86	SW/SD-14
86350042	SD-14	12/6/86	
86350039	SW-15	12/6/86	SW/SD-15
86350043	SD-15	12/6/86	
86350039	SW-16	12/6/86	SW/SD-16
86350044	SD-16	12/6/86	
86353014	SW-17	12/6/86	SW/SD-17
86353015	SD-17	12/6/86	
86350045	SW-18	12/6/86	SW/SD-18
86350049	SD-18	12/6/86	
86350046	SW-19	12/6/86	SW/SD-19
86350050	SD-19	12/6/86	
86350047	SW-20	12/6/86	SW/SD-20
86350051	SD-20	12/6/86	
86350048	SW-21	12/6/86	SW/SD-21
86350052	SD-21	12/6/86	
86350053	SW-22	12/6/86	SW/SD-4
86350056	SD-22	12/6/86	Duplicate
86350054	sw-23	12/6/86	SW/SD-1
86350057	SD-23	12/6/86	Duplicate
86350055	SW-24	12/6/86	Field Blank
86350002	s <b>w-</b> 30	Sage Plant (12/5/86)	SW/SD-1
86350005	SD-30	12/5/86	
86350003	SW-31	Sage Plant (12/5/86)	SW/SD-2
86350006	SD-31	12/5/86	
86350004	SW-32	Sage Plant (12/5/86)	SW/SD-3
86350007	SD-32	12/5/86	

TABLE H-3-E

SOIL SAMPLES - TRANSFORMER

STORAGE AREA

Laboratory ID Number	Field ID Number	Date Sampled	Sampling Point ID
86350008	TS-1	12/5/86	1
86350009	TS-2	12/5/86	2
86350010	TS-3	12/5/86	3
86350011	TS-4	12/5/86	4
86350012	TS-5	12/5/86	5
86350059	TS-6	12/5/86	6
86350060	TS-7	12/5/86	6 Duplicate

TABLE H-3-F
ENTOMOLOGY STORAGE TANK AND SOIL SAMPLES

Laboratory ID Number	Field ID Number	Date Sampled	Sampling Point ID
86350001	EW-1	12/5/86	Tank
86350061	ES-1	12/5/86	166'BLS
86350062	ES-2	12/5/86	2-1.5'BLS
86350063	ES-3	12/5/86	3-3.0'BLS

TABLE H-3-G

ZONE 1 GROUNDWATER SAMPLES

Laboratory ID Number	Field ID Number	Date Sampled	Sampling Point ID
86353016	GW-11	12/16/86	MW-11*
86353017	GW-12	12/16/86	MW-11D*
86353018	GW-13	12/16/86	MW-12*
86353019	GW-14	12/16/86	MW-12D*
86353020	GW-15	12/16/86	MW-13*
86353021	GW-16	12/16/86	MW-13D*
87016016	GW-17	1/14/87	MW-12
87016017	GW-18	1/14/87	MW-12D
87016018	GW-19	1/14/87	Field Blank
87016019	GW-20	1/14/87	Bailer Wash
87016020	GW-21	1/14/87	MW-11
87016021	GW-22	1/14/87	MW-11D
87016022	GW-23	1/14/87	MW-13
87016023	GW-24	1/14/87	MW-13D

^{*} Rapid Turnaround

TABLE H-3-H
ZONE 2 GROUND WATER SAMPLES

Laboratory ID Number	Field ID Number	Date Sampled	Sampling Point ID
87020007	GW-25	1/15/87	MW-15
87020008	GW-26	1/15/87	MW-15D
8702000 <del>9</del>	GW-28	1/15/87	MW-3D
87020010	GW-29	1/16/87	MW-14
87020011	GW-30	1/16/87	MW-14D
87020012	GW-31	1/16/87	MW-6D
87020013	GW-32	1/16/87	MW-6D Duplicate

Table H-3-I
Sample Identification Cross Reference
Site D-5*

Laboratory	aboratory Field Sampling Point		Page Num	ber
ID No.	ID No.	Description	Basic Analysis	Second Column Confirmation
87293001	GW-33	Monitoring Well 10	н-331	н-339
87293002	GW-34	Monitoring Well 16	H-331	н-339
87293003	GW-35	Monitoring Well 16 Duplicate	н-331	н-339
87293004	GW-36	Monitoring Well 17	H-335	н-340
87293005	GW-37	Monitoring Well 18	H-335	н-340
		Quality Control Report	н-342	

Note: See page H-347 for holding times summary.

^{*}Resampled for purgeables in September 1988. See pages H-350, H-353, H-360 and H-361.

TABLE H-3-J. SAMPLE IDENTIFICATION CROSS REFERENCE SITE D-5
THALLIUM RESAMPLING, JANUARY 1989

Laboratory	Field	Sampling Point	Page
ID No.	ID No.	Description	Number
33405	GW-1	Field Blank	н-347
33406	GW - 2	Monitoring Well 16	н-347
33407	GW-3	Monitoring Well 17	H-347
33408	GW-4	Monitoring Well 18	н-347

Note: Samples were collected on 1/4/89 and analyzed on 1/9/89; well within the 6-month holding time.

#### CORRECTING WET WEIGHT TO DRY WEIGHT

To correct the wet weight sample result to dry weight, the result must be divided by the percent solids (expressed in decimal form).

FOR EXAMPLE:

A sample is 65% solids.

 $\frac{15 \text{ mg/kg as received}}{0.65 \text{ (Solids)}} = 23 \text{ mg/kg dry weight}$ 

# SAMPLE TRACKING OF ANALYSES REQUIRING HOLDING TIMES

	Anal														
	Dead														
0.70	Anal												12/22		
Volatile Organics SW-8240	14 days Dead												1/14		
c e 8 E602	Anal											1/20*			
Aromatic Volatile Organics	14 days Dead											1/14			
le bons	Anal											12/23			
Purgeable Halocarbons E601	14 days Dead											1/14	-		
ite Irs	Anal	2/4*	2/4*	2/4*	2/4*	2/4*	2/4*	2/4*	2/4*	2/4*	2/4*				
Ortho Phosphate 48 hours	Dead	12/15/86	12/15/86	12/17/86	12/17/86	12/17/86	12/15/86	12/15/86	12/15/86	12/15/86	12/15/86				
Pb, Mn s.)	Anal	2/4	2/4	2/4	2/4	2/4	2/4	2/4	2/4	2/4	2/4	2/4	2/4 €		
Cd, Cr, Pb, (6 mos.)	Dead	6/13/87	6/13/87	6/15/87	6/15/87	6/15/87	6/13/87	6/13/87	6/13/87	6/13/87	6/13/87	6/15/87	6/15/87		
	Sample Date	12/12/86 6/13/87	12/13/86 6/13/87	12/15/86 6/15/87	12/15/86 6/15/87	12/15/86 6/15/87	12/13/86 6/13/87	12/13/86 6/13/87	12/13/86 6/13/87	12/13/86 6/13/87	12/13/86 6/13/87	12/15/86 6/15/87	12/15/86 6/15/87		
	Field Number	GW-1	GW-2	6W-8	6 <b>-</b> M5	GW-10	GW-3	6W-4	GW-5	9-M5	CW-7	SW-17	SD-17		
	Lab	86353004	86353005	86353006	86353007	86353008	86353009	86353010	86353011	86353012	86353013	86353014	86353015		

DEAD: Date sample holding time expires. ANAL: Date sample was analyzed.

( ): Holding time.
2nd CC: Second Column Confirmation

*Holding Time Exceeded; resampled in Sept. 1987; see Pages H-306 and H-307 for further details

SAMPLE TRACKING OF ANALYSES REQUIRING HOLDING TIMES

			Purgeable Halocarbons Meth E601 (14 days)	ble rbons - 501	Purgeable Halocarbons Meth E601 (14 days)	bons –	Aromatic Vola tile Organics Meth 602 (14 days)	Aromatic Volatile Organics Meth 602 (14 days)	Aromatic tile Orga Meth 602 (14 days)	Aromatic Vola- tile Organics Meth 602 (14 days)	Lead - Meth E239.2 (6 mos.)	239.2		
Lab Number	Field Number	Sample Date	Dead	Anal	2nd CC Dead	Anal	Dead	Anal	2nd CC Dead	Anal	Dead	Anal	Dead	Anal
86353016	GW-11	12/16/86	12/30	12/22	12/30	12/23	12/30	12/22	12/30	12/23	8 9	-		
86353017	GW-12	12/16/86	12/30	12/22	12/30	12/23	12/30	12/22	12/30	12/23	-	1		
86353018	CW-13	12/16/86	12/30	12/22	12/30	12/23	12/30	12/22	12/30	12/23	*	ŀ		
86353019	GW-14	12/16/86	12/30	12/22	12/30	12/23	12/30	12/22	12/30	12/23	-	*		
86353020	GW-15	12/16/86	12/30	12/22	12/30	12/23	12/30	12/22	12/30	12/23				
86353021	CW-16	12/16/86	12/30	12/22	12/30	12/23	12/30	12/22	12/30	12/23	1	i		
87016016	GW-17	1/14/87	1/28	1/20	1/28	1/24	1/28	1/20	1/28	1/24	7/14	3/11		
87016017	GW-18	1/14/87	1/28	1/20	1/28	1/24	1/28	1/20	1/28	1/24	7/14	3/11		
87016018	GW-19	1/14/87	1/28	1/20	1/28	1/24	1/28	1/20	1/28	1/24	7/14	3/11		
87016019	GW-20	1/14/87	1/28	1/20	1/28	1/24	1/28	1/20	1/28	1/24	7/14	3/11		
87016020	GW-21	1/14/87	1/28	1/20	1/28	1/24	1/28	1/20	1/28	1/24	7/14	3/11		İ
87016021	GW-22	1/14/87	1/28	1/21	1/28	1/26	1/28	1/21	1/28	1/26	7/14	3/11		
87016022	GW-23	1/14/87	1/28	1/21	1/28	1/26	1/28	1/21	1/28	1/26	7/14	3/11		
87016023	GW-24	1/14/87	1/28	1/21	1/28	1/26	1/28	1/21	1/28	1/26	7/14	3/11		

DEAD: Date sample holding time expires.

ANAL: Date sample was analyzed.

( ): Holding time.

2nd CC: Second Column Confirmation

SAMPLE TRACKING OF ANALYSES REQUIRING HOLDING TIMES

=	¥.	*	*	*		<u>.</u>	*				;			; !	
Yu7			_		_									_	
Dead	1/1/	1/17	1/11	1/18	1/18	1/18	1/18				_				
Anal	3/26#	3/26*	3/26*	3/26*	3/26#	3/26*	3/27#								
Dead				2/13			- 1				1				
					-+		$\dashv$			+	+				
				┪		$\neg$	_	-	-	-		-	-		
		-	- 1		$\neg \neg$		<del>-                                    </del>			_	_				
	3/25	3/25	3/25	3/25	3/25	3/25	3/25							_	
Dead	2/12	2/12	2/12	2/13	2/13	2/13	2/13								
Anal	3/26	3/26	3/26	3/26	3/26	3/26	3/26								
							-							-	
				-			-+							<u>_</u> .	
Ana			1/2		1/2	1/2	1/2								
2nd CC Dead	1/29	1/29	1/29	1/30	1/30	1/30	1/30								
Anal	1/21	1/21	1/21	1/21	1/22	1/22	1/22								
Dead	1/29	1/29		1/30		1/30	/30					-			
191						_									
d CC				-		$\neg$							_	-	
														-	
Anal	-	1/2	1/2	1/2	1/22	1/22	1/22						_	_	
Dead	1/29	1/29	1/29	1/30	1/30	1/30	1/30	#	*	:	*	:			
Sample Date	1/15/87	1/15/87	1/15/87	1/16/87	1/16/87	1/16/87	1/16/87	10/19/87	10/19/87	10/19/87	10/19/87	10/19/87			
Pield Number	GH-25		GIF-28	CN-29		GH31	GH-32	GW-33	GH-34	GW-35			Г		
				_									Г		
	Sample 2nd CC 2nd CC 2nd CC 2nd CC Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead Anal Dead A	Field         Sample         2nd CC         2nd CC         2nd CC         2nd CC         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Anal         Anal         Anal	Pield         Sample         2nd CC         2nd CC         2nd CC         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal	Pield         Sample         2nd CC         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal	Pield         Sample         2nd CC         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal	Pield         Sample         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead	Pield         Sample         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead	Pield         Sample         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead	Pield         Sample         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead	PFeld         Sample         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead         Anal         Dead	Pield   Sample   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad Anal   Dad	Pield   Sample   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal   Daed   Anal	Field   Sample   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal	Fire of Sample   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal   Daed Anal	Sample   Sample   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Anal   Dead   Ana

DEAD: Date sample holding time expires.

ANAL: Date wample was analyzed.

(*): Holding time.

Ind CC: Second Column Confirmation

*Holding Time Exceeded; resampled in Sept. 1987; see page H-107 for new results.

H-22

SAMPLE TRACKING OF ANALYSES REQUIRING HOLDING TIMES

			Purgeable Halocarbons	bone -	Purgeable Halocarbons	bons -	Aromatic Vola tile Organics	Aromatic Vola- tile Organics -	Aromatic tile Orga	c Vola- ganics-	Aromatic Vola- Priority Pollu- tile Organics- tant Metals - Math-EGG Meth E200.7	r Pollu-	Petroleum Hydrocarbons Merh-Réiß.i	irbons	ICAP Scan	can
4	7.074		(14 days)	·	2nd CC		(14 days)	•	2nd CC		(6 mos.)		(28 days)	(8)	(28 days)	198)
Number	Number	Date	Dead	Anel	Dead	Anal	Dead	Anal	Dead	Anal	Dead	Anal	Dead	Anal	Dead	Anal
86350013	SW-1	12/6/86	12/20	12/11	12/20	1	12/20	12/17	12/20	12/20	9/9	1/29	1/3	12/31	1/3	1/29*
86350014	SW-2	12/6/86	12/20	12/17	12/20	12/20	12/20	12/17	12/20	12/20	9/9	1/29	1/3	12/31	1/13	1/29*
86350015	SH-3	12/6/86	12/20	12/17	12/20	12/20	12/20	12/17	12/20	12/20	9/9	1/29	1/3	12/31	1/3	1/29*
86350016	SH-4	12/6/86	12/20	12/17	12/20	12/20	12/20	12/17	12/20	12/20	9/9	1/29	1/3	12/31	1/3	1/29**
86350021	SH-5	12/6/86	12/20	12/17	12/20	12/20	12/20	12/17	12/20	12/20	9/9	1/29	1/3	12/31	1/3	1/29**
86350022	9-MS	12/6/86	12/20	12/17	12/20	12/20	12/20	12/17	12/20	12/20	9/9	1/29	1/3	12/31	1/3	1/29**
86350023	SH-7	12/6/86	12/20	12/17	12/20	12/20	12/20	12/17	12/20	12/20	9/9	1/29	1/3	12/31	1/3	1/29##
86350024	SH-8	12/6/86	12/20	12/17	12/20	12/20	12/20	12/17	12/20	12/20	9/9	1/29	1/3	12/31	1/3	1/29*
86350029	84-9	12/6/86	12/20	12/18	12/20	12/20	12/20	12/18	12/20	12/20	9/9	1/29	1/3	12/31	1/3	1/29*
86350030	SW-10	12/6/86	12/20	12/18	12/20	12/20	12/20	12/18	12/20	12/20	9/9	1/29	1/3	12/31	1/3	1/29*
86350031	11-NS	12/6/86	12/20	12/18	12/20	12/20	12/20	12/18	12/20	12/20	9/9	1/29	1/3	12/31	1/3	1/29*
86350032	SW-12	12/6/86	12/20	12/18	12/20	12/20	12/20	12/18	12/20	12/20	9/9	1/29	1/3	12/31	1/3	1/29*
86350037	SW-13	12/6/86	12/20	12/18	12/20	12/20	12/20	12/18	12/20	12/20	9/9	1/29	1/3	12/31	1/3	1/29*
86350038	SW-14	12/6/86	12/20	12/18	12/20	12/20	12/20	12/18	12/20	12/20	9/9	1/29	1/3	12/31	1/3	1/29##
86350039	SW-15	12/6/86	12/20	12/18	12/20	12/22*	12/20	12/18	12/20	12/22	9/9	1/29	1/3	12/31	1/3	1/29*

Date sample holding time expires. Date sample was analyzed. Holding time. DEAD: DAAMAL: DA ( ): Ho 2nd CC:

Second Column Confirmation

*Holding Time Exceeded but could not be resampled during Sept.
1987 because of dry conditions
**Holding Time Exceeded and resampled in Sept. 1987 for mercury;
see page H-305 for new results.

# SAMPLE TRACKING OF ANALYSES REQUIRING HOLDING TIMES

			Purgeable Ralocarbon	e lo	Pergeable Ralocarbon	900	Arometic Vola	Arometic Vola- tile Organics	Arometic Vole tile Organice	Arometic Vola- tile Organics	Priority Pollutant Metals	a a	Petroleum Hydrocarbons Meth E418.1	rbons	lead Meth E239.2 (6 mos.)	39.2	ICAP Scan for Mercury (28 days)	an cury a)
4			(14 days)	ž 😨	25 Per CC		(14 days)	•	2nd CC		Heth E200.7 (6 mos.)	.00.7	(28 days)	•	-			
Per Per	Number	Dete	Deed	Anal	Deed	Long	Dead	Į P	Deed	Anel	Dead	Anel	Dead	Anel	Dead	Anal	Dead	Anal
86350040	SW-16	12/6/86	12/20	12/18	12/20 12/22	12/224	12/20	12/18	12/20	12/22*	9/9	1/29	1/3	12/31	1	-1	1/3	1/29+
86350045	SW-18	12/6/86	12/20	12/19	12/20 12/22	12/22*	12/20	12/19	12/20	12/22	9/9	1/29	1/3	12/31	1		1/3	1/29*
86350046	61-NS	12/6/86	12/20	12/19	12/20 12/21	12/22*	12/20	12/19	12/20	12/22*	9/9	1/29	1/3	12/31	1		1/3	1/29#
86350047	SW-20	12/6/86	12/20	12/19	12/20	12/22	12/20	12/19	12/20	12/22*	9/9	1/29	1/3	12/31	1		1/3	1/29*
86350048	SW-21	12/6/86	12/20	12/19	12/20	12/22	12/20	12/19	12/20	12/22*	9/9	1/29	1/3	12/31	i	i	1/3	1/29*
86350053	SW-22	12/6/86	12/20	12/19	12/20	12/20 12/22*	12/20	12/19	12/20	12/22*	9/9	1/29	1/3	12/31	-	ı	1/3	1/29+
86350054	SW-23	12/6/86	12/20	12/19		12/20 12/22*	12/20	12/19	12/20	12/22*	9/9	1/29	1/3	12/31	-	i	1/3	1/294
86350055	\$19-24	12/6/86	12/20	12/19	12/20 12/22	12/22	12/20	12/19	12/20	12/224	9/9	1/29	1/3	12/31	!	i	1/3	1/29+
86350002	84-30	12/3/86	12/19	12/11	12/19	1	12/19	12/17	12/19	ı	1	1	1/2	12/31	6/5	3/12		
86350003	SW-31	12/5/86 12/19	12/19	12/17	12/19 12/20	12/200	12/19	12/17	12/19	12/20	1	!	1/2	12/31	6/5	3/12		*
86350004	SW-32	12/5/86	12/19	12/17	12/19	12/19 12/20	12/29	12/17	12/19	12/20		1	1/2	12/31	6/5	3/12		#
														]		1		

DEAD: Date sample holding time expires.
ARAL: Date sample was analyzed.
( ): Holding time.
2nd CC: Second Column Confirmation

At During resampling; analyzed for mercury also.

Molding Time Exceeded and resampled in Sept. 1987; see page R-296 for new results
Rolding Time Exceeded but could not be resampled during Sept. 1987 because of dry conditions +

# ANALYSES REQUIRING HOLDING TIMES SAMPLE TRACKING OF

	Anal															
	Dead															
, i. i.	Anal	1/30*	1/30*	1/30*	1/30**	1/30**	1/30**	1/30**	1/30*	1/30*	1/30*	1/30*	1/30*	1/30*	1/30**	1/30*
Mercury Meth. SW 7471	Dead	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Organ-	Anal	12/18	12/18	12/18	12/18	12/18	12/18	12/18	12/18	12/19	12/19	12/19	12/19	12/19	12/19	12/19
Volatile Organ- ics Meth 8240	Dead	12/20	12/20	12/20	12/20	12/20	12/20	12/20	12/20	12/20	12/20	12/20	12/20	12/20	12/20	12/20
m Hydro- - Meth. (E418.1	Anal	1/22	1/22	1/22	1/22	1/22	1/22	1/22	1/22	1/22	1/22	1/22	1/22	1/22	1/22	1/22
Priority Poll-Petroleum Hydro- utant Metals - carbons - Meth. Meth. E200.7 SW 3550/E418.1	Dead	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ty Poll- Metals - E200.7	Anal	1/30	1/30	1/30	1/30	1/30	1/30	1/30	1/30	1/30	1/30	1/30	1/30	1/30	1/30	1/30
Priority utant Me Meth. E2	Dead	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9
tile 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Anal	61/1	1/19	1/19	1/19	1/19	1/19	1/19	1/19	1/20	1/20	1/20	1/20	1/20	1/20	1/20
Semivolatile Organics - SW3550/SW8270	Dead	1/29	1/29	1/29	1/29	1/29	1/29	1/29	1/29	1/29	1/29	1/29	1/29	1/29	1/29	1/29
	Sample Date	12/6/86	12/6/86	12/6/86	12/6/86	12/6/86	12/6/86	12/6/86	12/6/86	12/6/86	12/6/86	12/6/86	12/6/86	12/6/86	12/6/86	12/6/86
	Field Number	SD-1	SD-2	SD-3	SD-4	SD-5	SD-6	SD-7	SD-8	SD-9	SD-10	SD-11	SD-12	SD-13	SD-14	SD-15
	Lab Number	86350017	86350018	86350019	86350020	86350025	86350026	86350027	86350028	86350033	86350034	86350035	86350036	86350041	86350042	86350043

Date sample holding time expires. Date sample was analyzed. ANAL: DEAD:

Holding time. Second Column Confirmation 2nd CC:

Holding Time Exceeded but could not be resampled during Sept. 1987 because of dry conditions

Holding Time Exceeded and resampled in Sept. 1987; see page H-305 for new results *

ANALYSES REQUIRING HOLDING TIMES SAMPLE TRACKING OF

			Semivolatile	tile	Priority Pollutant		Petroleum	UM rhone	Volatile	on a	Lead - Meth-R239.2	139.2	Mercury	1 7471
			SW3550/SW8270 (14/R-40)	W8270	Metals -	2200.7	Meth-SW3550/ E418.1	13550/	Meth-SW5030/ SW8240	SW5030/ SW8240	(6 Elos.		(28 days)	ays)
Lab	Field	Sample		`	(6 mos.)		! ! !			(8)				
Number	Number	Date	Dead	Anal	Dead	Anal	Dead	Anal	Dead	Anal	Dead	Anal	Dead	Anal
86350044	SD-16	12/6/86	1/29	12/20	9/9	1/30	NA	1/22	12/20	12/19		-	1/3	1/30*
86350049	SD-18	12/6/86	1/29	12/20	9/9	1/30	NA	1/22	12/20	12/19			1/3	1/30**
86350050	SD-19	12/6/86	1/29	12/20	9/9	1/30	NA	1/22	12/20	12/19		•	1/3	1/30*
86350051	SD-20	12/6/86	1/29	12/20	9/9	1/30	NA	1/22	12/20	12/19	***	-	1/3	1/30**
86350052	SD-21	12/6/86	1/29	12/20	9/9	1/30	NA	1/22	12/20	12/19	-	-	1/3	1/30**
86350056	SD-22	12/6/86	1/29		9/9	1/30	NA	1/22	12/20	12/19		-	1/3	1/30*
86350057	SD-23	12/6/86	1/29		9/9	1/30	NA	1/22	12/20	12/19	-	-	1/3	1/30*
86350005	SD-30	12/5/86	1/28		-		NA	1/22	12/20	12/19	6/5	2/11		
86350006	SD-31	12/5/86	1/28		I		NA	1/22	12/20	12/19	6/5	2/11		
86350007	3D-32	12/5/86	1/28	-		-	NA	1/22	12/20	12/19	6/5	2/11		

Date sample holding time expires. Holding time.
Second Column Confirmation Date sample was analyzed. ANAL: DEAD:

2nd CC:

Holding Time Exceeded but could not be resampled during Sept. 1987 because of dry conditions. *

** Holding Time Exceeded and resampled during Sept. 1987; see Page H-305 for new results.

ANALYSES REQUIRING HOLDING TIMES SAMPLE TRACKING OF

	al															
	Anal															
	Dead															
	Anal															
	Dead															
stile s - SW3550/ 0)	Anal		1	1	1	1/16*	1	1	1/16*	1/16*	1	1/16*	1/16*		1/16*	1/16*
Semivolatile Organics Meth SW35 SW8270 (14/E&40)	Dead		İ	-	-	1/11		. !	1/11	1/11	9	1/11	1/11	-	1/11	1/11
E239.2	Anal	12/29	12/29	12/29	12/29	12/29	12/29	12/29	12/29	12/29	12/29	12/29	12/29	12/29	12/29	12/29
Lead Meth (6 mos.	Dead	5/18	5/18	5/18	5/18	5/18	5/18	5/18	5/18	5/18	5/18	5/18	5/18	5/18	5/18	5/18
um rbons - 3418.1	Anal	1/20	1/20	1/20	1/20	1/20	1/20	1/20	1/20	1/21	1/21	1/21	1/21	1/21	1/21	1/21
Petroleum Hydrocarbons Meth SW3550/E418.1	Dead	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
tile Organ- - Meth 30/SW8240 days)	Anal	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27	11/27
Volatile Organ- ics - Meth SW5030/SW8240 (14 days)	Dead	12/2	12/2	12/2	12/2	12/2	12/2	12/2	12/2	12/2	12/2	12/2	12/2	12/2	12/2	12/2
Sample	Date	11/18/86	11/18/86	11/19/86	11/19/86	11/18/86	11/18/86	11/18/86	11/18/86	11/18/86	11/18/86	11/18/86	11/18/86	11/18/86	11/18/86	11/18/86
Field	Number	FS-A-1	FS-A-2	FS-A-3	FS-A-4	FS-B-1	FS-B-2	FS-B-3	FS-C-1	FS-C-2	FS-C-3	FS-D-1	FS-D-2	FS-D-3	FS-E-1	FS-E-2
Lab	Number	86329006	86329007	86329008	86329009	86329010	86329011	86329012	86329013	86329014	86329015	86329016	86329017	86329018	86329019	86329020

Date sample holding time expires. Date sample was analyzed. ANAL: Da ( ): Ho 2nd CC: DEAD:

*Holding Time Exceeded; resampled in Sept. 1987; see Pages H-298 - H-301 for further details.

Second Column Confirmation Holding time.

# SAMPLE TRACKING OF ANALYSES REQUIRING HOLDING TIMES

<del></del>	<del></del>	$\longrightarrow$	<del></del>	+					<del></del>				<del></del>	<del></del>		<del> </del>
	Anal															
	Dead															
	Anal															
	Dead															
atile s-Meth SW8270	Anal	l	1/16*	1/16*		1/17*		!					ļ		•	
Semivolatile Organics-Meth SW3550/SW8270 (14/E-40)	Dead	i	1/11	1/11		1/12	1	-	+	-	-	!				
39.2	Anal	12/29	12/29	12/29	12/29	12/29	12/29	12/29	12/29	12/29	12/29	12/29	12/29			
Lead Meth-E239.2 6 mos.	Dead	5/16	5/16	5/16	5/16	5/17	5/17	5/17	5/17	5/17	5/17	5/17	5/17			
oleum ocarbons -SW3550/	Anal	1/21	1/21	1/21	1/21	1/21	1/21	1/21	1/21	1/21	1/21	1/21	1/21			
Petroleum Hydrocarb Meth-SW35	Dead	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			
e s-Meth SW8240 s)	Anal	11/28	11/28	11/28	11/28	11/28	11/28	11/28	11/28	11/28	11/28	11/28	11/28			
Volatile Organics-Meth SW5030/SW8240 (14 davs)	Dead	12/2	12/2	12/2	12/2	12/3	12/3	12/3	12/3	12/3	12/3	12/3	12/3			
	Sample Date	11/19/86	11/19/86	11/19/86	11/19/86	11/19/86	11/19/86	11/19/86	11/19/86	11/19/86	11/19/86	11/19/86	11/19/86			
	Field Number	FS-E-3	FS-F-1	FS-F-2	FS-F-3	FS-G-1	FS-G-2	FS-G-3	FS-H-1	FS-H-2	FS-H-3	FS-H-4	FS-I-1			
	Lab Number	86329021	86329022	86329023	86329024	86329026	86329028	86329029	86329030	86329031	86329032	86329033	86329034			

DEAD: Date sample holding time expires. ANAL: Date sample was analyzed.

( ): Holding time. 2nd CC: Second Column Confirmation

*Holding Time Exceeded; resampled in Sept. 1987; see Pages H-300 - H-303 for further details.

ANALYSES REQUIRING HOLDING TIMES SAMPLE TRACKING OF

			OCPest/OP		OCPest/0P									
			Pest/Herb		Pest/Herb	_								
			(>/E&40)-	OCPest	(>/E&40)-	OCPest								
			(>/S&14)-	OPPest	(>/S&14)-	OPPest								
			(>/E&30)-Herb	Herb	(>/E&30)-Herb	Herb								
Lab	Field	Sample			2nd CC									
Number	Number	Date	Dead	Anal	Dead	Anal	Dead	Anal	Dead	Anal	Dead	Anal	Dead	Ana1
			1/4 oc		1/4 oc									
			12/19 OP		12/19 OP									
86350061	ES-1	12/5/86	1/4 H	1/23	1/4 H	1/23								
			1/4 00		1/4 oc									
			12/19 OP		12/19 OP									
86350062	ES-2	12/5/86	1/4 H	1/23	1/4 Н	1/23								
			1/4 oc		1/4 oc									
			12/19 OP		12/19 OP		-							
86350063	ES-3	12/5/86	1/4 н	1/23	1/4 H	1/23								
			1/4 oc		1/4 oc									
			_		12/19 OP									-
86350001	EW-1	12/5/86	1/4 Н	1/23*	1/4 H	1/23*								
						-								
			A		T			h						

Date sample holding time expires.
Date sample was analyzed.
Holding time.
Second Column Confirmation ANAL: DEAD:

*

Holding Time Exceeded; resampled in Sept. 1987; see Page H-304 for further details.

( ): Ho 2nd CC:

# ANALYSES REQUIRING HOLDING TIMES SAMPLE TRACKING OF

			al						-					
			Anal								 			
			Dead											
			Anal											
			Dead											
		<del></del>	Anal											
			Dead											
		<del></del>	Anal											
			Dead											
	3550/ 8080	}	Anal	1/22	1/22	1/22	1/22	1/22	1/22	1/22				
PCBs	Meth-SW3550/ SW8080	30 days	Dead	1/4	1/4	1/4	1/4	1/4	1/4	1/4				
ł			Anal	1/22	1/22	1/22	1/22	1/22	1/22	1/22				
Petroleum	Hydrocarbons Meth-SW3550/	E418.1	Dead	NA	NA	NA	NA	NA	NA	NA				
			Sample Date	12/5/86	12/5/86	12/5/86	12/5/86	12/5/86	12/5/86	12/5/86				
			Field Number	TS-1	TS-2	TS-3	TS-4	TS-5	TS-6	TS-7				
			Lab Number	86350008	86350009	86350010	86350011	86350012	86350059	86350060				

Date sample holding time expires. Date sample was analyzed. DEAD:

ANAL: De ( ): Hc 2nd CC:

Holding time.
Second Column Confirmation

#### HANCOCK AFB - SAMPLE EXTRACTION AND ANALYSIS DATES

Page 1 of 3

SHIPMENT #1
PRIORITY POLLUTANTS BY 8270

CLIENT	LAB	ID	DATE COLLECTED	DATE EXTRACT. STARTED	DATE EXTRACT. COMPLETED	DATE ANALYSIS STARTED
*FS-B-1	86329	010	11/18/86	12/2/86	12/7/86	1/16/87
*FS-C-1	86329	013	11/18/86	12/2/86	12/7/86	1/16/87
*FS-C-2	86329	014	11/18/86	12/2/86	12/7/86	1/16/87
*FS-D-1	86329	016	11/18/86	12/2/86	12/7/86	1/16/87
*FS-D-2	86329	017	11/18/86	12/2/86	12/7/86	1/16/87
*FS-E-1	86329	019	11/18/86	12/2/86	12/7/86	1/16/87
*FS-E-2	86329	020	11/18/86	12/2/86	12/7/86	1/16/87
*FS-F-1	86329	022	11/19/86	12/2/86	12/7/86	1/16/87
*FS-F-2	86329	023	11/19/86	12/2/86	12/7/86	1/16/87
*FS-G-1	86329	025	11/19/86	12/2/86	12/7/86	1/19/87

SHIPMENT #2
PRIORITY POLLUTANTS BY 8270

CLIENT	LAB	ID	DATE COLLECTED	DATE EXTRACT. STARTED	DATE EXTRACT. COMPLETED	DATE ANALYSIS STARTED
SD-1	86350	017	12/6/86	12/13/86	12/19/86	1/19/87
SD-2	86350	018	12/6/86	12/13/86	12/19/86	1/19/87
SD-3	86350	019	12/6/86	12/13/86	12/19/86	1/19/87
SD-4	86350	020	12/6/86	12/13/86	12/19/86	1/19/87
SD-5	86350	025	12/6/86	12/13/86	12/19/86	1/19/87
SD-6	86350	026	12/6/86	12/13/86	12/19/86	1/19/87
SD-7	86350	027	12/6/86	12/13/86	12/19/86	1/19/87
SD-8	86350	028	12/6/86	12/13/86	12/19/86	1/19/87
SD-9	86350	033	12/6/86	12/13/86	12/19/86	1/20/87
SD-10	86350	034	12/6/86	12/13/86	12/19/86	1/20/87
SD-11	86350	035	12/6/86	12/13/86	12/19/86	1/20/87
SD-12	86350	036	12/6/86	12/13/86	12/19/86	1/20/87
SD-13	86350	041	12/6/86	12/15/86	12/22/86	1/20/87
SD-14	86350	042	12/6/86	12/15/86	12/22/86	1/20/87
SD-15	86350	043	12/6/86	12/15/86	12/22/86	1/20/87
SD-16	86350	044	12/6/86	12/15/86	12/22/86	1/20/87
SD-18	86350	049	12/6/86	12/15/86	12/22/86	1/20/87
SD-19	86350	050	12/6/86	12/15/86	12/22/86	1/20/87
SD-20	86350	051	12/6/86	12/15/86	12/22/86	1/20/87
SD-21	86350	052	12/6/86	12/15/86	12/22/86	1/20/87

^{*}Holding times exceeded, locations resampled 9/87. See page H-294 for extraction and analysis dates.

Page 2 of 3

SHIPMENT #2 PRIORITY POLLUTANTS BY 625

PRIURITI	POLLUI	WNID	B1 02)	DATE	DATE	DATE
CLIENT			DATE	EXTRACT.	EXTRACT.	ANALYSIS
ID	LAB	ID	COLLECTED	STARTED	COMPLETED	STARTED
SW-1	86350	013	12/6/86	12/10/86	12/13/86	1/12/87
SW-2	86350		12/6/86	12/10/86	12/13/86	1/12/87
SW-3		015	12/6/86	12/10/86	12/13/86	1/12/87
SW-4		016	12/6/86	12/10/86	12/13/86	1/12/87
SW-5		021	12/6/86	12/10/86	12/13/86	1/12/87
SW-6		022	12/6/86	12/10/86	12/13/86	1/12/87
SW-7		023	12/6/86	12/10/86	12/13/86	1/12/87
SW-8		024	12/6/86	12/10/86	12/13/86	1/12/87
SW-9		029	12/6/86	12/10/86	12/13/86	1/12/87
SW-10	86350	030	12/6/86	12/10/86	12/13/86	1/12/87
SW-11	86350	031	12/6/86	12/10/86	12/13/86	1/12/87
SW-12	86350	032	12/6/86	12/10/86	12/13/86	1/12/87
SW-13	86350	037	12/6/86	12/12/86	12/15/86	1/12/87
SW-14	86350	038	12/6/86	12/12/86	12/15/86	1/13/87
SW-15	86350	039	12/6/86	12/12/86	12/15/86	1/13/87
SW-16	86350	040	12/6/86	12/12/86	12/15/86	1/13/87
SW-18	86350	045	12/6/86	12/12/86	12/15/86	1/13/87
SW-19	86350	046	12/6/86	12/12/86	12/15/86	1/13/87
SW-20	86350	047	12/6/86	12/12/86	12/15/86	1/13/87
SW-21	86350	048	12/6/86	12/12/86	12/15/86	1/13/87
SW-22	86350	053	12/6/86	12/12/86	12/15/86	1/13/87
SW-23	86350	054	12/6/86	12/12/86	12/15/86	1/13/87
SW-24	86350	055	12/6/86	12/12/86	12/15/86	1/13/87

SHIPMENT #6
PRIORITY POLLUTANTS BY 625

CLIENT ID	LAB	ID	DATE COLLECTED	DATE EXTRACT. STARTED	DATE EXTRACT. COMPLETED	DATE ANALYSIS STARTED
GW-25	87020	007	1/15/87	1/19/87	1/22/87	1/28/87
GW-26	87020		1/15/87	1/19/87	1/22/87	1/28/87
GW-28	87020	009	1/15/87	1/19/87	1/22/87	1/28/87
GW-29	87020	010	1/16/87	1/19/87	1/22/87	1/28/87
GW-30	87020	011	1/16/87	1/19/87	1/22/87	1/28/87
GW-31	87020	012	1/16/87	1/19/87	1/22/87	1/28/87
GW-32	87020	013	1/16/87	1/19/87	1/22/87	1/28/87

All non-aqueous VOA extractions were performed on the sample day as the analysis.

#### HANCOCK AFB - SAMPLE EXTRACTION AND ANALYSIS DATES

Page 3 of 3

SHIPMENT #2
ORGANOCHLORINE PESTICIDES AND PCBs - METHOD 608
ORGANOPHOSPHORUS PESTICIDES - METHOD 8140

CLIENT ID	LAB I	D	DATE COLLECTED	DATE EXTRACT. STARTED	DATE EXTRACT. COMPLETED	DATE ANALYSIS STARTED
EW-1 *	86350 0	01	12/5/86	12/12/86	12/20/86	1/23/87
ES-1	86350 0	61	12/5/86	12/12/86	12/20/86	1/23/87
ES-2	86350 0	62	12/5/86	12/12/86	12/20/86	1/23/87
ES-3	86350 0	63	12/5/86	12/12/86	12/20/86	1/23/87

SHIPMENT #2 HERBICIDES - METHOD 8150

CLIENT ID	LAB	ID	DATE COLLECTED	DATE EXTRACT. STARTED	DATE EXTRACT. COMPLETED	DATE ANALYSIS STARTED
EW-1 ES-1	86350 86350	061	12/5/86 12/5/86	12/12/86 12/12/86	12/20/86	1/23/87 1/23/87
ES-2 ES-3	86350 86350		12/5/86 12/5/86	12/12/86 12/12/86	12/20/86 12/20/86	1/23/87 1/23/87

SHIPMENT #2 PCBs - METHOD 8080

LAB	ID	DATE COLLECTED	DATE EXTRACT. STARTED	DATE EXTRACT. COMPLETED	DATE ANALYSIS STARTED
86350	008	12/5/86	12/11/86	12/19/86	1/22/87
86350	009	12/5/86	12/11/86	12/19/86	1/22/87
86350	010	12/5/86	12/11/86	12/19/86	1/22/87
86350	011	12/5/86	12/11/86	12/19/86	1/22/87
86350	Cl2	12/5/86	12/11/86	12/19/86	1/22/87
86350	059	12/5/86	12/11/86	12/19/86	1/22/87
86350	060	12/5/86	12/11/86	12/19/86	1/22/87
	86350 86350 86350 86350 86350 86350	LAB ID  86350 008 86350 009 86350 010 86350 011 86350 C12 86350 059 86350 060	LAB ID COLLECTED  86350 008 12/5/86 86350 009 12/5/86 86350 010 12/5/86 86350 011 12/5/86 86350 Cl2 12/5/86 86350 059 12/5/86	DATE EXTRACT.  LAB ID COLLECTED STARTED  86350 008 12/5/86 12/11/86 86350 009 12/5/86 12/11/86 86350 010 12/5/86 12/11/86 86350 011 12/5/86 12/11/86 86350 C12 12/5/86 12/11/86 86350 059 12/5/86 12/11/86	DATE EXTRACT. EXTRACT.  LAB ID COLLECTED STARTED COMPLETED  86350 008 12/5/86 12/11/86 12/19/86 86350 009 12/5/86 12/11/86 12/19/86 86350 010 12/5/86 12/11/86 12/19/86 86350 011 12/5/86 12/11/86 12/19/86 86350 C12 12/5/86 12/11/86 12/19/86 86350 059 12/5/86 12/11/86 12/19/86

^{*}Holding time exceeded; underground tank resampled 9/87. See page H-295 for extraction and analysis dates.

#### MA ERG

#### Thermo Analytical Inc. Analytical Report

117 N. FIRST ANN ARBOR, MICHIGAN 48104 (313) 662-3104

Project: A4837 Report Date: 10-10-86

RECEIVED OCT 1 3

Client P. S. Report:

21901

Samples Recvd: 07-26-86 Refer Questions To: ROBYN WOOLEY

Client: SCIENCE APPLICATIONS INTERNATIONAL CORPORATION 8400 WESTPARK DRIVE Approved: \(\(\)\)
MC LEAN, VA 22102
Attention: PHIL SPOONER

Residual Samples Will Be Held TWD WEEKS ***

**GW-8** 

Client I.D.: ERG Sample No.:

Matrix: Date Sampled: 01 09/160440 GROUND WATER 09-25-86

Result Units Parameter ACID FRACTION (PRIOR. POLLS. METH 625) CHLOROPHENOL, 2-NITROPHENOL, 2-ND (10) ug/L ND (10)PHENOL DIMETHYLPHENOL, 2,4-DICHLOROPHENOL, 2,4-TRICHLOROPHENOL, 2,4,6ug/L ug/L ug/L ND ND CHLORO-3-METHYLPHENOL, 4-DINITROPHENOL, 2,4-METHYL-4,6-DINITROPHENOL, 2-ND ug/L ND (50) ug/L (50) ND uğ/L PENTACHLOROPHENOL NITROPHENOL, 4-BICARBONATE ALKALINITY ug/L ND (50) 290 ug/L ND mğ/L CARBONATE ALKALINITY ALKALINITY, TOTAL mg/L mg/L 290 AVERAGE OF DUPLICATE RUNS 12 ALUMINUM, TOTAL mg/L ANTIMONY ARSENIC, TOTAL ND (0.01) 0.010 mg/L mg/L AVERAGE OF DUPLICATE RUNS B/N FRACTION (PRIOR. POLLS METH. 625) ACENAPTHENE ND (10) ug/L ug/L **ACENAPTHYLENE** ND (10) ND ND (10) (50) ug/L ug/L ANTHRACENE BENZIDINE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE (10)ND ND ND (10) uğ/L uğ/Ĺ BENZO(K)FLUGRANTHENE BENZO(G,H,I)PERYLENE BIS(2-CHLOROETHYL)ETHER ug/L uğ/L ND (10)uğ/Ĺ ND (10)ND (10) BIS(2-CHLORETHOXY)METHANE BIS(2-CHLOROISOPROPYL)ETHER ug/L uğ/L

Page 1

Project: A4837 Report Date: 10-10-86

GW-8

Client I.D.: 01 ERG Sample No.: 09/160440 Matrix: GROUND WATER Date Sampled: 09-25-86

Parameter	Result	Units
BIS(2-ETHYLHEXYL)PHTHALATE	ND (10)	ug/L
BROMOPHENYL PHENYL ETHER, 4-	ND (10)	ug/L
BUTYL BENZYL PHTHALATE	ND (10)	ug/L
CHLORONAPHTHALENE, 2-	ND (10)	ug/L
CHLOROPHENYL PHENYL ETHER, 4-	ND (10)	ug/L
CHRYSENE	ND (10)	ug/L
DI-N-BUTYLPHTHALATE	ND (10)	ug/L
DIBENZO(A,H)ANTHRACENE	ND (10)	ug/L
DICHLOROBENZENE, 1,2-	ND (10)	ug/L
DICHLOROBENZENE, 1,3-	ND (10)	ug/L
DICHLOROBENZENE, 1,4-	ND (10)	ug/L
DICHLOROBENZIDINE, 3,3'-	ND (20)	ug/L
DIETHYLPHTHALATE	ND (10)	ug/L
DIMETHYLPHTHALATE DINITROTOLUENE 2,4- DINITROTOLUENE 2,6-	ND (10) ND (10) ND (10)	ug/L ug/L ug/L
DIOCTYLPHTHALATE	ND (10)	ug/L
DIPHENYLHYDRAZINE 1,2-	ND (20)	ug/L
FLUORANTHENE	ND (10)	ug/L
FLUORENE	ND (10)	ug/L
HEXACHLOROBENZENE	ND (10)	ug/L
HEXACHLOROBUTADIENE	ND (10)	ug/L
HEXACHLOROCYCLOPENTADIENE	ND (10)	ug/L
HEXACHLOROETHANE	ND (10)	ug/L
INDENO(1,2,3-CD)PYRENE	ND (10)	ug/L
ISOPHORONE	ND (10)	ug/L
N-NITROSODI-N-PROPYLAMINE	ND (10)	ug/L
N-NITROSODIMETHYLAMINE	ND (10)	ug/L
N-NITROSODIPHENYLAMINE	ND (10)	ug/L
NAPHTHALENE	ND (10)	ug/L
NITROBENZENE	ND (10)	ug/L
PHENANTHRENE	ND (10)	ug/L
PYRENE	ND (10)	ug/L
TRICHLOROBENZENE, 1, 2, 4-	ND (10)	ug/L
BARIUM, TOTAL	0.35	mg/L
BERYLLIUM, TOTAL	ND (0.01)	mg/L
BORON	ND (0.5)	mg/L
CADMIUM, TOTAL	ND (0.1)	mg/L
CALCIUM, TOTAL	120	mg/L
CHLORIDE	400	mg/L
CHROMIUM, TOTAL	ND (0.1)	mg/L
COBALT, TOTAL	ND (0.1)	mg/L
COPPER, TOTAL	ND (0.05)	mg/L
FLOURIDE, TOTAL	0. 30	mg/L
IRON, TOTAL	11	mg/L

Page 2

Project: A483/ Report Date: 10-10-86

GW-8

	Client I.D.: ERG Sample No.	:	1
Date Complete	Matrix:		

Date Sampled:

01 09/160440 GROUND WATER 09-25-86

Parameter		Result	Units
LEAD, TOTAL	ND	(0.5)	.ng/L
MAGNESIUM, TOTAL	ND	60	mg/L
MANGANESE, TOTAL		0. 1	mg/L
MERCURY		(0. 0002)	mg/L
MOLYBDENUM, TOTAL NICKEL, TOTAL AMMONÍA NITROGEN	ND ND	(1) (0, 05) 0, 50	mg/L mg/L mg/L
NITRATE NITROGEN		0. 02	mg/L
NITRITE NITROGEN		0. 02	mg/L
OIL AND GREASE BY IR		<1	mg/L
POTASSIUM, TOTAL		2	mg/L
PÜRGEABLE AROMATICS BENZENE DICHLOROBENZENE, 1,2-	ND	(0. 2) (0. 4)	ug/L ug/L
DICHLOROBENZENE, 1,3-	ND	(0. 4)	ug/L
DICHLOROBENZENE, 1,4-		(0. 3)	ug/L
ETHYLBENZENE		(0. 2)	ug/L
TOLUENE	ND	(0. 2)	ug/L
CHLOROBENZENE	ND	(0. 25)	ug/L
PURGEABLES, 601 CHLOROMETHANE	ND	(0.08)	ug/L
BROMOMETHANE	ND	(1. 18)	ug/L
DICHLORODIFLUOROMETHANE		(1. 81)	ug/L
VINYL CHLORIDE		(0. 18)	ug/L
CHLOROETHANE		(0. 52)	ug/L
METHYLENE CHLORIDE		(0. 25)	ug/L
TRICHLOROFLUOROMETHANE		(0. 50)	ug/L
DICHLOROETHYLENE, 1,1-	ND	(0. 13)	ug/L
DICHLOROETHANE, 1,1-	ND	(0. 07)	ug/L
TRANS-1,2-DICHLOROETHYLENE	ND	(0. 10)	ug/L
CHLOROFORM		(0. 05)	ug/L
DICHLORETHANE, 1,2-		(0. 03)	ug/L
TRICHLOROETHANE, 1,1,1-		(0. 03)	ug/L
CARBON TETRACHLORIDE BROMODICHLOROMETHANE DICHLOROPROPANE, 1,2-			ug/L ug/L ug/L
TRANS-1,3-DICHLOROPROPENE TRICHLOROETHYLENE DIBROMOCHLOROMETHANE		(0.34) 0.42 (0.09)	ug/L ug/L ug/L
TRICHLOROETHANE, 1,1,2-	ND	(0. 02)	ug/L
CIS-1,3-DICHLORPROPENE		(0. 20)	ug/L
CHLOROETHYLVINYL ETHER, 2-		(0. 13)	ug/L
BROMOFORM TETRACHLOROETHANE, 1,1,2,2- TETRACHLOROETHYLENE	ND	(0. 20) (0. 03) (0. 03)	ug/L ug/L ug/L

Page 3

Project: A4837 Report Date: 10-10-86

GW-8

Client I.D.: 01 ERG Sample No.: 09/160440 Matrix: GROUND WATER Date Sampled: 09-25-86

Parameter	Result	Units
CHLOROBENZENE DICHLOROBENZENE, 1,3- DICHLOROBENZENE, 1,2-	ND (0.25) ND (0.4) ND (0.4)	ug/L ug/L ug/L
DICHLOROBENZENE, 1,4- SELENIUM, TOTAL	ND (0.3) (0.002 (	ug/L mg/L
HIGHER DETECTION LIMIT DUE TO MATRIX AVERAGE OF DUPLICATE RUNS	INTERFERENCE.	
SILVER, TOTAL	ND (0.05)	mg/L
SODIUM SOLIDS, TOTAL, DISSOLVED SUSPENDED SOLIDS	1100	mg/L mg/L mg/L
SULFATE, TURBIDIMETRIC METH. THALLIUM TITANIUM	ND (0.5) f	mg/L mg/L mg/L
VANADIUM Zinc	ND (0.05) n 0.5	mg/L mg/L

Client I.D.: 02 ERG Sample No.: 09/160441 Matrix: GROUND WATER Date Sampled: 09-25-86

GW-9

Parameter	<u>Result Un</u>	its
ACID FRACTION (PRIOR. POLLS. METH 625) CHLOROPHENOL, 2- NITROPHENOL, 2- PHENOL	ND (10) uğ	<b></b>
DIMETHYLPHENOL, 2,4- DICHLOROPHENOL, 2,4- TRICHLOROPHENOL, 2,4,6-	ND (10) uğ	ルル
CHLORO-3-METHYLPHENOL, 4- DINITROPHENOL, 2,4- METHYL-4,6-DINITROPHENOL, 2-	ND (50) uğ	/L
PENTACHLOROPH <b>ENOL</b> NITROPHENOL, 4- BICARBONATE ALKALINITY	ND (50) uğ	/L /L
CARBONATE ALKALINITY ALKALINITY, TOTAL ALUMINUM, TOTAL	330 mg	/L
ANTIMONY ARSENIC, TOTAL	ND (0.01) mg 0.009 mg	儿
B/N FRACTION (PRIOR. POLLS METH. 625) ACENAPTHENE	ND (10) ug	/L
ACENAPTHYLENE ANTHRACENE BENZIDINE	ND (10) uğ	允

____

Page 4

Project: A4837 Report Date: 10-10-86

Client I.D.: ERG Sample No.: Matrix: Date Sampled: 02 09/160441 GROUND WATER 09-25-86 GW-9

Parameter	Result	<u>Units</u>
BENZO(A)ANTHRACENE	ND (10)	ug/L
BENZO(A)PYRENE	ND (10)	ug/L
BENZO(B)FLUORANTHENE	ND (10)	ug/L
BENZO(K)FLUORANTHENE	ND (10)	ug/L
BENZO(G,H,I)PERYLENE	ND (10)	ug/L
BIS(2-CHLOROETHYL)ETHER	ND (10)	ug/L
BIS(2-CHLORETHOXY)METHANE	ND (10)	ug/L
BIS(2-CHLORDISOPROPYL)ETHER	ND (10)	ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	ND (10)	ug/L
BROMOPHENYL PHENYL ETHER, 4-	ND (10)	ug/L
BUTYL BENZYL PHTHALATE	ND (10)	ug/L
CHLORONAPHTHALENE, 2-	ND (10)	ug/L
CHLOROPHENYL PHENYL ETHER, 4-	ND (10)	ug/L
CHRYSENE	ND (10)	ug/L
DI-N-BUTYLPHTHALATE	ND (10)	ug/L
DIBENZO(A, H) ANTHRAÇENE	ND (10)	ug/L
DICHLOROBENZENE, 1,2-	ND (10)	ug/L
DICHLOROBENZENE, 1,3-	ND (10)	ug/L
DICHLOROBENZENE, 1,4-	ND (10)	ug/L
DICHLOROBENZIDINE, 3,3'-	ND (20)	ug/L
DIETHYLPHTHALATE	ND (10)	ug/L
DIMETHYLPHTHALATE DINITROTOLUENE 2,4- DINITROTOLUENE 2,6-	ND (10) ND (10) ND (10)	ug/L ug/L ug/L
DIOCTYLPHTHALATE	ND (10)	ug/L
DIPHENYLHYDRAZINE 1,2-	ND (20)	ug/L
FLUORANTHENE	ND (10)	ug/L
FLUORENE	ND (10)	ug/L
HEXACHLOROBENZENE	ND (10)	ug/L
HEXACHLOROBUTADIENE	ND (10)	ug/L
HEXACHLOROCYCLOPENTADIENE	ND (10)	ug/L
HEXACHLOROETH <b>ANE</b>	ND (10)	ug/L
INDENO(1,2,3-CD)PYRENE	ND (10)	ug/L
ISOPHORONE	ND (10)	ug/L
N-NITROSODI-N-PROPYLAMINE	ND (10)	ug/L
N-NITROSODIMETHYLAMINE	ND (10)	ug/L
N-NITROSODIPHENYLAMINE	ND (10)	ug/L
NAPHTHALENE	ND (10)	ug/L
NITROBENZENE	ND (10)	ug/L
PHENANTHRENE	ND (10)	ug/L
PYRENE	ND (10)	ug/L
TRICHLOROBENZENE, 1, 2, 4-	ND (10)	ug/L
BARIUM, TOTAL	0. 24	mg/L
BERYLLIUM, TOTAL	ND (0. 01)	mg/L
BORON	ND (0. 5)	mg/L

Page 5

#### TMA ERG

# Thermo Analytical Inc. Analytical Report Date: 10-10-86

Client I.D.: 02 ERG Sample No.: 09/160441 Matrix: GROUND WATER Date Sampled: 09-25-86

GW-9

Parameter	Result	Units
CADMIUM, TOTAL	ND (0.1)	mg/L
CALCIUM, TOTAL	120	mg/L
CHLORIDE	9	mg/L
CHROMIUM, TOTAL	ND (0.1)	mg/L
COBALT, TOTAL	ND (0.1)	mg/L
COPPER, TOTAL	ND (0.05)	mg/L
FLOURIDE, TOTAL	0.72	mg/L
IRON, TOTAL	24	mg/L
LEAD, TOTAL	ND (0.5)	mg/L
MAGNESIUM, TOTAL	74	mg/L
MANGANESE, TOTAL	0.65	mg/L
MERCURY	ND (0.0002)	mg/L
MOLYBDENUM, TOTAL	ND (1)	mg/L
NICKEL, TOTAL	ND (0.05)	mg/L
AMMONIA NITROGEN	ND (0.01)	mg/L
NITRATE NITROGEN	ND (0.01)	mg/L
NITRITE NITROGEN	0.03	mg/L
OIL AND GREASE BY IR	<1	mg/L
POTASSIUM, TOTAL PURCEABLE AROMATICS	2	mg/L
BENZENE	ND (0.2)	ug/L
Dichlorobenzene, 1,2-	ND (0.4)	ug/L
DICHLOROBENZENE, 1,3-	ND (0.4)	ug/L
DICHLOROBENZENE, 1,4-	ND (0.3)	ug/L
ETHYLBENZENE	ND (0.2)	ug/L
TOLUENE	ND (0.2)	ug/L
CHLOROBENZENE	ND (0.25)	ug/L
PURGEABLES, 601 Chloromethane	ND (0.08)	ug/L
BROMOMETHANE	ND (1.18)	ug/L
DICHLORODIFLU <b>OROMETHANE</b>	ND (1.81)	ug/L
VINYL CHLORIDE	ND (0.18)	ug/L
CHLORDETHANE	ND (0.52)	ug/L
METHYLENE CHLORIDE	ND (0.25)	ug/L
TRICHLOROFLUOROMETHANE	ND (0.50)	ug/L
DICHLOROETHYLENE, 1,1-	ND (0.13)	ug/L
DICHLOROETHANE, 1,1-	ND (0.07)	ug/L
TRANS-1,2-DICHLOROETHYLENE	ND (0.10)	ug/L
CHLOROFORM	ND (0.05)	ug/L
DICHLORETHANE, 1,2-	ND (0.03)	ug/L
TRICHLOROETHANE, 1,1,1-	ND (0.03)	ug/L
CARBON TETRACHLORIDE	ND (0.12)	ug/L
BROMODICHLOROMETHANE	ND (0.10)	ug/L
DICHLOROPROPANE, 1,2-	ND (0.04)	ug/L
TRANS-1, 3-DICHLOROPROPENE	ND (0.34)	ug/L
TRICHLOROETHYLENE	0.60	ug/L

Page 6

Project: A4837 Report Date: 10-10-86

	Client I.D.: ERG Sample No.: Matrix: Date Sampled:	02 09/160441 GROUND WATER 09-25-86	GW-9	•
Parameter	<del></del>		Result	Units
DIBROMOCHLOROMETHANE			ND (0.09)	ug/L
TRICHLOROETHANE, 1,1,2 CIS-1,3-DICHLORPROPENE CHLOROETHYLVINYL ETHER	•		ND (0.02) ND (0.20) ND (0.13)	ug/L ug/L ug/L
BROMOFORM TETRACHLOROETHANE, 1,1 TETRACHLOROETHYLENE	, 2, 2-		ND (0.20) ND (0.03) ND (0.03)	ug/L ug/L ug/L
CHLOROBENZENE DICHLOROBENZENE, 1,3- DICHLOROBENZENE, 1,2-			ND (0.25) ND (0.4) ND (0.4)	ug/L ug/L ug/L
DICHLOROBENZENE, 1,4- SELENIUM, TOTAL			ND (0.3) <0.002	ug/L mg/L
HIGHER DET	ECTION LIMIT DUE	TO MATRIX INTER	RFERENCE. ND (0.05)	mg/L
SODIUM SOLIDS, TOTAL, DISSOLVED SUSPENDED SOLIDS			4. 5 360 990	mg/L mg/L mg/L
SULFATE, TURBIDIMETRIC M THALLIUM TITANIUM	ETH.		ND (0.5) 0.7	mg/L mg/L mg/L
ANADIUM CINC			ND (0.05) 0.6	mg/L mg/L
	Client I.D.: ERG Sample No.: Matrix: Date Sampled:	03 09/160442 GROUND WATER 09-25-86	GW-7	7
Parameter	<del></del>		Result	Units
CID FRACTION (PRIOR. PO CHLOROPHENOL, 2- NITROPHENOL, 2- PHENOL	LLS. METH 625)		ID (10) ID (10) ID (10)	ug/L ug/L ug/L
DIMETHYLPHENOL, 2,4- DICHLOROPHENOL, 2,4- TRICHLOROPHENOL, 2,4,6	-	•	ID (10) ID (10) ID (10)	ug/L ug/L ug/L
CHLORO-3-METHYLPHENOL, DINITROPHENOL, 2,4- METHYL-4,6-DINITROPHEN		,	ID (10) ID (50) ID (50)	ug/L ug/L ug/L
PENTACHLOROPHENOL NITROPHENOL, 4- ICARBONATE ALKALINITY			ID (50) ID (50) 262	ug/L ug/L mg/L
			<1	mg/L

# Thermo Analytical Inc. Analytical Report Date: 10-10-86

GW-7

Client I.D.: 03 ERG Sample No.: 09/160442 Matrix: GROUND WATER Date Sampled: 09-25-86

Parameter	Result	Units
ANTIMONY ARSENIC, TOTAL B/N FRACTION (PRIOR. POLLS METH. 625)	ND (0.01) 0.003	mg/L mg/L
ACENAPTHENE	ND (10)	ug/L
ACENAPTHYLENE	ND (10)	ug/L
ANTHRACENE	ND (10)	ug/L
BENZIDINE	ND (50)	ug/L
BENZO(A)ANTHRACENE	ND (10)	ug/L
BENZO(A)PYRENE	ND (10)	ug/L
BENZO(B)FLUORANTHENE	ND (10)	ug/L
BENZO(K)FLUORANTHENE	ND (10)	ug/L
BENZO(G, H, I)PERYLENE	ND (10)	ug/L
BIS(2-CHLOROETHYL)ETHER	ND (10)	ug/L
BIS(2-CHLORETHOXY)METHANE	ND (10)	ug/L
BIS(2-CHLOROISOPROPYL)ETHER	ND (10)	ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	ND (10)	ug/L
BROMOPHENYL PHENYL ETHER, 4-	ND (10)	ug/L
Butyl Benzyl Phthalate	ND (10)	ug/L
Chloronaphthalene, 2-	ND (10)	ug/L
CHLOROPHENYL PHENYL ETHER, 4-	ND (10)	ug/L
CHRYSENE	ND (10)	ug/L
DI-N-BUTYLPHTHALATE	ND (10)	ug/L
DIBENZO(A, H) ANTHRACENE	ND (10)	ug/L
DICHLOROBENZENE, 1,2-	ND (10)	ug/L
DICHLOROBENZENE, 1,3-	ND (10)	ug/L
DICHLOROBENZENE, 1,4-	ND (10)	ug/L
DICHLOROBENZIDINE, 3,3'-	ND (20)	ug/L
DIETHYLPHTHALATE	ND (10)	ug/L
DIMETHYLPHTHALATE	ND (10)	ug/L
DINITROTOLUENE 2,4-	ND (10)	ug/L
DINITROTOLUENE 2,6-	ND (10)	ug/L
DIOCTYLPHTHALATE	ND (10)	ug/L
DIPHENYLHYDRAZINE 1,2-	ND (20)	ug/L
FLUORANTHENE	ND (10)	ug/L
FLUORENE	ND (10)	ug/L
HEXACHLOROBENZENE	ND (10)	ug/L
HEXACHLOROBUTADIENE	ND (10)	ug/L
HEXACHLOROCYCLOPENTADIENE	ND (10)	ug/L
HEXACHLOROETHANE	ND (10)	ug/L
INDENO(1,2,3-CD)PYRENE	ND (10)	ug/L
ISOPHORONE	ND (10)	ug/L
N-NITROSODI-N-PROPYLAMINE	ND (10)	ug/L
N-NITROSODIMETHYLAMINE	ND (10)	ug/L
N-NITROSODIPHENYLAMINE	ND (10)	ug/L
NAPHTHALENE	ND (10)	ug/L
NITROBENZENE	ND (10)	ug/L

Page 8

Page 9

#### Thermo Analytical Inc. Analytical Report

Project: A4837 Report Date: 10-10-86

Client I.D.: ERG Sample No.: Matrix: Date Sampled: 03 09/160442 GROUND WATER 09-25-86 GW-7

<u>Parameter</u>	Result	Units
PHENANTHRENE PYRENE TRICHLOROBENZENE, 1, 2, 4-	ND (10) ND (10) ND (10)	ug/L ug/L ug/L
BARIUM, TOTAL	O. 10	mg/L
BERYLLIUM, TOTAL	ND (0.01)	mg/L
BORON	ND (0.5)	mg/L
CADMIUM, TOTAL	ND (0.1)	mg/L
CALCIUM, TOTAL	110	mg/L
CHLORIDE	13	mg/L
CHROMIUM, TOTAL	ND (0.1)	mg/L
COBALT, TOTAL	ND (0.1)	mg/L
COPPER, TOTAL	ND (0.05)	mg/L
FLOURIDE, TOTAL	0.39	mg/L
IRON, TOTAL	10	mg/L
LEAD, TOTAL	ND (0.5)	mg/L
MAGNESIUM, TOTAL	46	mg/L
MANGANESE, TOTAL	0.21	mg/L
MERCURY	ND (0.0002)	mg/L
MOLYBDENUM, TOTAL	ND (1)	mg/L
NICKEL, TOTAL	ND (0.05)	mg/L
AMMONIA NITROGEN	0.70	mg/L
NITRATE NITROGEN	ND (0.01)	mg/L
NITRITE NITROGEN	ND (0.01)	mg/L
OIL AND GREASE BY IR	<1	mg/L
POTASSIUM, TOTAL PURGEABLE AROMATICS BENZENE DICHLOROBENZENE, 1,2-	1 ND (0.2) ND (0.4)	mg/L ug/L ug/L
DICHLOROBENZENE, 1,3- DICHLOROBENZENE, 1,4- ETHYLBENZENE	ND (0.4) ND (0.3) ND (0.2)	ug/L ug/L ug/L
TOLUENE	ND (0.2)	ug/L
CHLOROBENZENE	ND (0.25)	ug/L
PURCEABLES, 601	ND (0.08)	ug/L
CHLOROMETHANE BROMOMETHANE DICHLORODIFLUOROMETHANE VINYL CHLORIDE	ND (1.18) ND (1.81) ND (0.18)	∪g/L ∪g/L ∪g/L
CHLOROETHANE METHYLENE CHLORIDE TRICHLOROFLUOROMETHANE	ND (0.52) ND (0.25) ND (0.50)	ug/L ug/L ug/L
DICHLOROETHYLENE, 1,1- DICHLOROETHANE, 1,1- TRANS-1,2-DICHLOROETHYLENE	ND (0.13) ND (0.07) ND (0.10)	ug/L ug/L ug/L
CHLOROFORM	ND (0.05)	ug/L
DICHLORETHANE, 1,2-	ND (0.03)	ug/L

Project: A4837 Report Date: 1G-10-86

. •	Client I.D.: ERG Sample No.: Matrix: Date Sampled:	03 09/160442 Ground Water 09-25-86	<b>G₩-7</b>	
<u>Parameter</u>			Result	<u>Units</u>
TRICHLORDETHANE, 1,1,1	l <del>-</del>		ND (0.03)	ug/L
CARBON TETRACHLORIDE BROMODICHLOROMETHANE DICHLOROPROPANE, 1,2-			ND (0.12) ND (0.10) ND (0.04)	ug/L ug/L
TRANS-1,3-DICHLOROPROF TRICHLOROETHYLENE DIBROMOCHLOROMETHANE	PENE		ND (0.34) 0.55 ND (0.09)	ug/L ug/L ug/L
TRICHLOROETHANE, 1,1,2 CIS-1,3-DICHLORPROPENE CHLOROETHYLVINYL ETHER			ND (0.02) ND (0.20) ND (0.13)	ug/L ug/L ug/L
BROMOFORM TETRACHLOROETHANE, 1,1 TETRACHLOROETHYLENE	. 2, 2-		ND (0.20) ND (0.03) ND (0.03)	ug/L ug/L ug/L
CHLOROBENZENE DICHLOROBENZENE, 1,3- DICHLOROBENZENE, 1,2-			ND (0.25) ND (0.4) ND (0.4)	ug/L ug/L ug/L
DICHLOROBENZENE, 1,4- SELENIUM, TOTAL			ND (0.3) <0.002	ug/L mg/L
HIGHER DET	TECTION LIMIT DUE	TO MATRIX INTE	RFERENCE. ND (0.05)	mg/L
SODIUM SOLIDS, TOTAL, DISSOLVEI SUSPENDED SOLIDS	)		6. 1 270 420	mg/L mg/L mg/L
SULFATE, TURBIDIMETRIC N THALLIUM TITANIUM	1ETH.		38 ND (0.5) 0.2	mg/L mg/L mg/L
VANADIUM ZINC			ND (0.05) 0.5	mg/L mg/L
	Client I.D.: ERG Sample No.: Matrix: Date Sampled:	04 09/160443 GROUND WATER 09-25-86	GW-7 Dupl	icate
Parameter			Result	Units
ACID FRACTION (PRIOR. PO CHLOROPHENOL, 2- NITROPHENOL, 2- PHENOL	OLLS. METH 625)		ND (10) ND (10) ND (10)	ug/L ug/L ug/L
DIMETHYLPHENOL, 2,4- DICHLOROPHENOL, 2,4- TRICHLOROPHENOL, 2,4,6	<b>5-</b> -		ND (10) ND (10) ND (10)	ug/L ug/L ug/L
CHLORO-3-METHYLPHENOL, DINITROPHENOL, 2,4- METHYL-4,6-DINITROPHEN			ND (10) ND (50) ND (50)	ug/L ug/L ug/L
Page 10 S	See last page for	explanation of	symbols.	

Project: A4837 Report Date: 10-10-86

Client I.D.: ERG Sample No.: Matrix: Date Sampled:

04 09/160443 GROUND WATER 09-25-86 GW-7 Duplicate

Parameter	Result	Units
PENTACHLOROPHENOL	ND (50)	ug/L
NITROPHENOL, 4-	ND (50)	ug/L
BICARBONATE ALKALINITY	290	mg/L
CARBONATE ALKALINITY ALKALINITY, TOTAL ALUMINUM, TOTAL	290 13	mg/L mg/L mg/L
ANTIMONY	ND (0.01)	mg/L
ARSENIC, TOTAL	0.006	mg/L
B/N FRACTION (PRIOR. POLLS METH. 625) ACENAPTHENE	ND (10)	ug/L
ACENAPTHYLENE	ND (10)	ug/L
ANTHRACENE	ND (10)	ug/L
BENZIDINE	ND (50)	ug/L
BENZO(A)ANTHRACENE	ND (10)	ug/L
BENZO(A)PYRENE	ND (10)	ug/L
BENZO(B)FLUORANTHENE	ND (10)	ug/L
BENZO(K)FLUGRANTHENE	ND (10)	ug/L
BENZO(Q,H,I)PERYLENE	ND (10)	ug/L
BIS(2-CHLOROETHYL)ETHER	ND (10)	ug/L
BIS(2-CHLORETHOXY)METHANE	ND (10)	ug/L
BIS(2-CHLORGISOPROPYL)ETHER	ND (10)	ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	ND (10)	ug/L
BROMOPHENYL PHENYL ETHER, 4-	ND (10)	ug/L
BUTYL BENZYL PHTHALATE	ND (10)	ug/L
CHLORONAPHTHALENE, 2-	ND (10)	ug/L
CHLOROPHENYL PHENYL ETHER, 4-	ND (10)	ug/L
CHRYSENE	ND (10)	ug/L
DI-N-BUTYLPHTHALATE	ND (10)	ug/L
DIBENZO(A,H)ANTHRACENE	ND (10)	ug/L
DICHLOROBENZENE, 1,2-	ND (10)	ug/L
DICHLOROBENZENE, 1,3-	ND (10)	ug/L
DICHLOROBENZENE, 1,4-	ND (10)	ug/L
DICHLOROBENZI <b>DINE</b> , 3,3'-	ND (20)	ug/L
DIETHYLPHTHALATE	ND (10)	ug/L
DIMETHYLPHTHALATE	ND (10)	ug/L
DINITROTOLUENE 2,4-	ND (10)	ug/L
DINITROTOLUENE 2,6-	ND (10)	ug/L
DIOCTYLPHTHALATE	ND (10)	ug/L
DIPHENYLHYDRAZINE 1,2-	ND (20)	ug/L
FLUORANTHENE	ND (10)	ug/L
FLUORENE	ND (10)	ug/L
HEXACHLOROBENZENE	ND (10)	ug/L
HEXACHLOROBUTADIENE	ND (10)	ug/L
HEXACHLOROCYCLOPENTADIENE	ND (10)	ug/L
HEXACHLOROETHANE	ND (10)	ug/L
INDENO(1,2,3-CD)PYRENE	ND (10)	ug/L

Project: A4837 Report Date: 10-10-86

Client I.D.: 04
ERG Sample No.: 09/160443
Matrix: GROUND WATER
09-25-86

GW-7 Duplicate

	Date Sampled:	09-25-86		
Parameter	<del></del>		Result	Units
ISOPHORONE N-NITROSODI-N-PROPYLAM N-NITROSODIMETHYLAMINE			ND (10) ND (10) ND (10)	ug/L ug/L ug/L
N-NITROSODIPHENYLAMINE NAPHTHALENE NITROBENZENE	:		ND (10) ND (10) ND (10)	ug/L ug/L ug/L
PHENANTHRENE PYRENE TRICHLOROBENZENE, 1, 2, 4	. <del>-</del>		ND (10) ND (10) ND (10)	ug/L ug/L ug/L
BARIUM, TOTAL BERYLLIUM, TOTAL BORON			O. 15 ND (O. 01) ND (O. 5)	mg/L mg/L mg/L
CADMIUM, TOTAL CALCIUM, TOTAL CHLORIDE			ND (0.1) 110 12	mg/L mg/L mg/L
AVERAGE OF	DUPLICATE RUNS			
CHROMIUM, TOTAL COBALT, TOTAL COPPER, TOTAL			ND (0.1) ND (0.1) ND (0.05)	mg/L mg/L mg/L
FLOURIDE, TOTAL IRON, TOTAL LEAD, TOTAL			0.48 19 ND (0.5)	mg/L mg/L mg/L
MAGNESIUM, TOTAL MANGANESE, TOTAL MERCURY			63 0.39 ND (0.0002)	mg/L mg/L mg/L
MOLYBDENUM, TOTAL NICKEL, TOTAL AMMONIA NITROGEN			ND (1) ND (0.05) ND (0.01)	mg/L mg/L mg/L
NITRATE NITROGEN NITRITE NITROGEN OIL AND GREASS BY IR			ND (0.01) 0.04 <1	mg/L mg/L mg/L
PUTASSIUM, TOTAL PURCEABLE AROMATICS			2	mg/L
BENZENE DICHLOROBENZENE, 1,2-			ND (0.4)	ug/L ug/L
DICHLOROBENZENE, 1,3- DICHLOROBENZENE, 1,4- ETHYLBENZENE			ND (0.4) ND (0.3) ND (0.2)	ug/L ug/L ug/L
TOLUENE CHLOROBENZENE PURGEABLES, 601 CHLOROMETHANE			ND (0.2) ND (0.25) ND (0.08)	ug/L ug/L
BROMOMETHANE			ND (1.18)	ug/L ug/L
DICHLORODIFLUOROMETHAN VINYL CHLORIDE	E		ND (1.81) ND (0.18)	ug/L ug/L

Page 12

Project: A4837 Report Date: 10-10-86

GW-7 Duplicate

Client I.D.: ERG Sample No.: Matrix: Date Sampled:

04 09/160443 GROUND WATER 09-25-86

Parameter	Result	Units
CHLOROETHANE METHYLENE CHLORIDE TRICHLOROFLUOROMETHANE	ND (0.52) ND (0.25) ND (0.50)	ug/L ug/L ug/L
DICHLOROETHYLENE, 1,1-	ND (0.13)	ug/L
DICHLOROETHANE, 1,1-	ND (0.07)	ug/L
TRANS-1,2-DICHLOROETHYLENE	ND (0.10)	ug/L
CHLOROFORM	ND (0.05)	ug/L
DICHLORETHANE, 1,2-	ND (0.03)	ug/L
TRICHLOROETHANE, 1,1,1-	0.14	ug/L
CARBON TETRACHLORIDE	ND (0.12)	ug/L
BROMODICHLOROMETHANE	ND (0.10)	ug/L
DICHLOROPROPANE, 1,2-	ND (0.04)	ug/L
TRANS-1,3-DICHLOROPROPENE	ND (0.34)	ug/L
TRICHLOROETHYLENE	0.39	ug/L
DIBROMOCHLOROMETHANE	ND (0.09)	ug/L
TRICHLOROETHANE, 1,1,2-	ND (0.02)	ug/L
CIS-1,3-DICHLORPROPENE	ND (0.20)	ug/L
CHLOROETHYLVINYL ETHER, 2-	ND (0.13)	ug/L
BROMOFORM	ND (0.20)	ug/L
TETRACHLOROETHANE, 1,1,2,2-	ND (0.03)	ug/L
TETRACHLOROETHYLENE	ND (0.03)	ug/L
CHLOROBENZENE	ND (0.25)	ug/L
Dichlorobenzene, 1,3-	ND (0.4)	ug/L
Dichlorobenzene, 1,2-	ND (0.4)	ug/L
DICHLOROBENZENE, 1,4-	ND (0.3)	ug/L
SELENIUM, TOTAL	<0.002	mg/L
SILVER, TOTAL HIGHER DETECTION LIMIT DUE TO MATRIX	INTERFERENCE. ND (0.05)	mg/L
SODIUM	5. 6	mg/L
SOLIDS, TOTAL, DISSOLVED	280	mg/L
SUSPENDED SOLIDS	340	mg/L
SULFATE, TURBIDIMETRIC METH.	35	mg/L
THALLIUM	ND (0, 5)	mg/L
TITANIUM	0, 9	mg/L
VANADIUM	ND (0.05)	mg/L
ZINC	0.8	mg/L

Client I.D.: ERG Sample No.: Matrix: Date Sampled: 05 09/160444 GROUND WATER 09-25-86

Field Blank

<u>Parameter</u>

Result Units

Page 13

Project: A4837 Report Date: 10-10-86

Field Blank

Client I.D.: ERG Sample No.: Matrix: Date Sampled:

05 09/160444 GROUND WATER 09-25-86

Parameter	Result	Units
ACID FRACTION (PRIOR. POLLS. METH 625) CHLOROPHENOL, 2- NITROPHENOL, 2- PHENOL	ND (10) ND (10) ND (10)	ug/L ug/L ug/L
DIMETHYLPHENOL, 2,4-	ND (10)	ug/L
DICHLOROPHENOL, 2,4-	ND (10)	ug/L
TRICHLOROPHENOL, 2,4,6-	ND (10)	ug/L
CHLORO-3-METHYLPHENOL, 4-	ND (10)	ug/L
DINITROPHENOL, 2,4-	ND (50)	ug/L
METHYL-4,6-DINITROPHENOL, 2-	ND (50)	ug/L
PENTACHLORO: HENOL	ND (50)	ug/L
NITROPHENOL, 4-	ND (50)	ug/L
BICARBONATE ALKALINITY	4.6	mg/L
CARBONATE ALKALINITY	<1	mg/L
ALKALINITY, TOTAL	4.6	mg/L
ALUMINUM, TOTAL	ND (0.1)	mg/L
ANTIMONY ARSENIC, TOTAL B/N FRACTION (PRIOR. POLLS MSTH. 625) ACENAPTHENE	ND (0.01) ND (0.001) ND (10)	mg/L mg/L ug/L
ACENAPTHYLENE	ND (10)	ug/L
ANTHRACENE	ND (10)	ug/L
BENZIDINE	ND (50)	ug/L
BENZO(A)ANTHRACENE	ND (10)	ug/L
BENZO(A)PYRENE	ND (10)	ug/L
BENZO(B)FLUORANTHENE	ND (10)	ug/L
BENZO(K)FLUCRANTHENE	ND (10)	ug/L
BENZO(G, H, I)PERYLENE	ND (10)	ug/L
BIS(2-CHLOROETHYL)ETHER	ND (10)	ug/L
BIS(2-CHLORETHOXY)METHANE	ND (10)	ug/L
BIS(2-CHLOROISOPROPYL)ETHER	ND (10)	ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	ND (10)	ug/L
BROMOPHENYL P <b>HENYL</b> ETHER, 4-	ND (10)	ug/L
BUTYL BENZYL PHTHALATE	ND (10)	ug/L
CHLORONAPHTHALENE, 2-	ND (10)	ug/L
CHLOROPHENYL PHENYL ETHER, 4-	ND (10)	ug/L
CHRYSENE	ND (10)	ug/L
DI-N-BUTYLPHTHALATE	ND (10)	ug/L
DIBENZO(A, H) ANTHRACENE	ND (10)	ug/L
DICHLOROBENZENE, 1,2-	ND (10)	ug/L
DICHLOROBENZENE, 1,3-	ND (10)	ug/L
DICHLOROBENZENE, 1.4-	ND (10)	ug/L
DICHLOROBENZIDINE, 3.3'-	ND (20)	ug/L
DIETHYLPHTHALATE	ND (10)	ug/L
DIMETHYLPHTHALATE	ND (10)	ug/L
DINITROTOLUENE 2,4-	ND (10)	ug/L

Page 14

Client I.D.: ERG Sample No.: Matrix: Date Sampled:

05 09/160444 GROUND WATER 09-25-86

Field Blank

Date Sampled. 07-23-66		
Parameter	Result	Units
DICHLOROBENZENE, 1,4-	ND (0.3)	ug/L
ETHYLBENZENE	ND (0.2)	ug/L
TOLUENE CHLOROBENZENE PURGEABLES, 601	ND (0.2) ND (0.25)	ug/L ug/L
CHLOROMETHANE	ND (0.08)	ug/L
BROMOMETHANE	ND (1.18)	ug/L
DICHLORODIFLUOROMETHANE	ND (1.81)	ug/L
VINYL CHLORIDE	ND (0.18)	ug/L
CHLOROETHANE	ND (0.52)	ug/L
METHYLENE CHLORIDE	ND (0.25)	ug/L
TRICHLOROFLUOROMETHANE	ND (0.50)	ug/L
DICHLOROETHYLENE, 1,1-	0. 21	ug/L
DICHLOROETHANE, 1,1-	0. 15	ug/L
TRANS-1,2-DICHLOROETHYLENE	ND (0. 10)	ug/L
CHLOROFORM DICHLORETHANE, 1,2- TRICHLOROETHANE, 1,1,1-	ND (0.03) 0.14	ug/L ug/L ug/L
CARBON TETRACHLORIDE	ND (0.12)	ug/L
BROMODICHLOROMETHANE	0.31	ug/L
DICHLOROPROPANE, 1,2-	ND (0.04)	ug/L
TRANS-1, 3-DICHLOROPROPENE	ND (0.34)	ug/L
TRICHLOROETHYLENE	0.25	ug/L
DIBROMOCHLOROMETHANE	ND (0.09)	ug/L
TRICHLOROETHANE, 1,1,2-	ND (0.02)	ug/L
CIS-1,3-DICHLORPROPENE	ND (0.20)	ug/L
CHLOROETHYLVINYL ETHER, 2-	ND (0.13)	ug/L
BROMOFORM TETRACHLOROETHANE, 1,1,2,2- TETRACHLOROETHYLENE	ND (0.20) ND (0.03) 0.038	ug/L ug/L ug/L
CHLOROBENZENE	ND (0.25)	ug/L
Dichlorobenzene, 1.3-	ND (0.4)	ug/L
Dichlorobenzene, 1.2-	ND (0.4)	ug/L
DICHLOROBENZENE, 1,4-	ND (0.3)	ug/L
SELENIUM, TOTAL	0.001	mg/L
SILVER, TOTAL	ND (0.05)	mg/L
SODIUM	ND (0.5)	mg/L
SOLIDS, TOTAL, DISSOLVED	12	mg/L
SUSPENDED SOLIDS	3.1	mg/L
AVERAGE OF DUPLICATE RUNS		
SULFATE, TURBIDIMETRIC METH. THALLIUM TITANIUM	ND (0.5) 0.1	mg/L mg/L mg/L
VANADIUM	ND (0.05)	mg/L
ZINC	ND (0.1)	mg/L
Page 16 See last page for explanation of	symbols.	

Project: A4837 Report Date: 10-10-86

Client I.D.: O ERG Sample No.: O Matrix: G Date Sampled: O

06 09/160445 GROUND WATER 09-25-86 GW-10

Date Sampled. 07-25-	-00	
Parameter	Result	Units
DINITROTOLUENE 2,6-	ND (10)	ug/L
DIOCTYLPHTHALATE	ND (10)	ug/L
DIPHENYLHYDRAZINE 1,2-	ND (20)	ug/L
FLUORANTHENE	ND (10)	ug/L
FLUORENE	ND (10)	ug/L
HEXACHLOROBENZENE	ND (10)	ug/L
HEXACHLOROBUTADIENE	ND (10)	ug/L
HEXACHLOROCYCLOPENTADIENE	ND (10)	ug/L
HEXACHLOROETHANE	ND (10)	ug/L
INDENO(1,2,3-CD)PYRENE	ND (10)	ug/L
ISOPHORONE	ND (10)	ug/L
N-NITROSODI-N-PROPYLAMINE	ND (10)	ug/L
N-NITROSODIMETHYLAMINE	ND (10)	ug/L
N-NITROSODIPHENYLAMINE	ND (10)	ug/L
NAPHTHALENE	ND (10)	ug/L
NITROBENZENE	ND (10)	ug/L
PHENANTHRENE	ND (10)	ug/L
PYRENE	ND (10)	ug/L
TRICHLOROBENZENE, 1, 2, 4-	ND (10)	ug/L
BARIUM, TOTAL	O. 51	mg/L
Beryllium, Total	ND (0. 01)	mg/L
Boron	ND (0. 5)	mg/L
CADMIUM, TOTAL	ND (0.1)	mg/L
CALCIUM, TOTAL	120	mg/L
CHLORIDE	8	mg/L
CHROMIUM, TOTAL	ND (0.1)	mg/L
COBALT, TOTAL	ND (0.1)	mg/L
COPPER, TOTAL	ND (0.05)	mg/L
FLOURIDE, TOTAL	0. 37	mg/L
AVERAGE OF DUPLICATE RUNS	34	<b>95</b> ()
IRON, TOTAL LEAD, TOTAL	ND (0.5)	mg/L mg/L
MAGNESIUM, TOTAL	48	mg/L
MANGANESE, TOTAL	1.1	mg/L
MERCURY	ND (0.0002)	mg/L
MOLYBDENUM, TOTAL	ND (1)	mg/L
NICKEL, TOTAL	ND (0.05)	mg/L
AMMONIA NITROGEN	0.03	mg/L
NITRATE NITROGEN	ND (0.01)	mg/L
NITRITE NITROGEN	0.03	mg/L
DIL AND GREASE BY IR	<1	mg/L
POTASSIUM, TOTAL	2	mg/L

Page 18

Page 19

#### Thermo Analytical Inc. Analytical Report

Project: A4837 Report Date: 10-10-86

GW-10

06 09/160445 Client I.D.: ERG Sample No.: Matrix: GROUND WATER

09-25-86 Date Sampled: Result Units <u>Parameter</u> PURGEABLE AROMATICS ug/L ug/L BENZENE ND (0.2) ND (0.4) DICHLOROBENZENE, 1,2-ND (0.4) ug/L DICHLOROBENZENE, 1,3-DICHLOROBENZENE, 1,4-ETHYLBENZENE (0.3) uğ/L uğ/L ND ND ND (0.2) ND (0.25) TOLUENE ug/L CHLOROBENZENE PURGEABLES, 601 uğ/L CHLOROMETHANE ND (0.08) ug/L ND (1.18) ND (1.81) ND (0.18) BROMOMETHANE DICHLORODIFLUOROMETHANE VINYL CHLORIDE ug/L 吸作 ND (0.52) ND (0.25) ND (0.50) CHLOROETHANE
METHYLENE CHLORIDE
TRICHLOROFLUOROMETHANE ug/L ug/L ug/L DICHLOROETHYLENE, 1,1-DICHLOROETHANE, 1,1-TRANS-1,2-DICHLOROETHYLENE ND ug/L υğ/Ĺ ND (0.07)(0.10)uğ/L ND CHLOROFORM DICHLORETHANE, 1,2-TRICHLOROETHANE, 1,1,1-(0.05) (0.03) ND ug/L uğ/Ĺ ND uğ/L (0.12)ug/L CARBON TETRACHLORIDE BROMODICHLOROMETHANE ND ug/L ug/L (0. 10) (0. 04) ND DICHLOROPROPANE, 1,2-TRANS-1, 3-DICHLOROPROPENE TRICHLOROETHYLENE DIBROMOCHLOROMETHANE ND (0.34) ug/L 0. 63 υğ/Ļ υğ/Ĺ ND (0.09)ND (0.02) ND (0.20) ND (0.13) TRICHLOROETHANE, 1,1,2-CIS-1,3-DICHLORPROPENE CHLOROETHYLVINYL ETHER, 2ug/L uğ/L ND (0.20) ND (0.03) ND (0.03) ug/L BROMOFORM TETRACHLOROETHANE, 1,1,2,2-TETRACHLOROETHYLENE uğ/L uğ/L ND (0.25) ug/L CHLOROBENZENE DICHLOROBENZENE, 1,3-DICHLOROBENZENE, 1,2-ND (0.4)uğ/L ND (0.4) uğ/L (0.3) (0.005 DICHLOROBENZENE, 1,4-SELENIUM, TOTAL ND ug/L mã/L HIGHER DETECTION LIMIT DUE TO MATRIX INTERFERENCE ND (0.05) mg/L SILVER, TOTAL SODIUM SOLIDS, 5. 4 mg/L **200** mğ/Ĺ TOTAL, DISSOLVED SUSPENDED SOLIDS 15 mğ/L 90 SULFATE, TURBIDIMETRIC METH. mg/L See last page for explanation of symbols.

H-52

TMA ERG

#### Thermo Analytical Inc. Analytical Report

Project: A4837 Report Date: 10-10-86

Client I.D.: ERG Sample No.: Matrix: Date Sampled:

06 09/160445 GROUND WATER 09-25-86

GW-10

Parameter Result Units THALLIUM TITANIUM ND (0.5) 1.3 mg/L mg/L VANADIUM ZINC ND (0.05) mg/L mg/L

SD-Sample damaged FR-See field report for result SR-See attached report NA-Result not applicable to test

ND-Nondetected, Detection limit in () <-Positive result at an unquantifiable concentration below indicated level

Thank you for your business.

Page 20

Last Page

#### TMA ERG

#### Analytical Report Thermo Analytical Inc. 117 N.

ANN ARBOR, MICHIGAN 48104 (313) 662-3104

Project: A4849 Report Date: 10-10-86

Client P. U. 21900 Report:

Samples Recvd: 09-29-86 Refer Questions To: ROBYN WOOLEY

Client:
SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
8400 WESTPARK DRIVE
MC LEAN, VA 22102
Attention: PHIL SPOONER

*** Residual Samples Will Be Held TWO WEEKS

GW-5

Client I.D.: 07 ERG Sample No.: 09/160587 Matrix:

GROUND WATER

Parameter	Result	Units
ACID FRACTION (PRIOR. POLLS. METH 625) CHLOROPHENOL, 2- NITROPHENOL, 2- PHENOL	ND (10) ND (10) ND (10)	ug/L ug/L ug/L
DIMETHYLPHENOL, 2,4-	ND (10)	ug/L
DICHLOROPHENOL, 2,4-	ND (10)	ug/L
TRICHLOROPHENOL, 2,4,6-	ND (10)	ug/L
CHLORO-3-METHYLPHENOL, 4-	ND (10)	ug/L
DINITROPHENOL, 2,4-	ND (50)	ug/L
METHYL-4,6-DINITROPHENOL, 2-	ND (50)	ug/L
PENTACHLOROPHENOL	ND (50)	ug/L
NITROPHENOL, 4-	ND (50)	ug/L
BICARBONATE ALKALINITY	200	mg/L
CARBONATE ALKALINITY ALKALINITY, TOTAL ALUMINUM, TOTAL	200 0. 6	mg/L mg/L mg/L
ANTIMONY	ND (0.01)	mg/L
ARSENIC, TOTAL	0.002	mg/L
AVERAGE OF DUPLICATE RUNS B/N FRACTION (PRIOR. POLLS METH. 625) ACENAPTHENE	ND (10)	ug/L
ACENAPTHYLENE	ND (10)	ug/L
ANTHRACENE	ND (10)	ug/L
BENZIDINE	ND (50)	ug/L
BENZO(A)ANTHRACENE	ND (10)	ug/L
BENZO(A)PYRENE	ND (10)	ug/L
BENZO(B)FLUORANTHENE	ND (10)	ug/L
BENZO(K)FLUORANTHENE	ND (10)	ug/L
BENZO(G, H, I)PERYLENE	ND (10)	ug/L
BIS(2-CHLOROETHYL)ETHER	ND (10)	ug/L
BIS(2-CHLORETHOXY)METHANE	ND (10)	ug/L
BIS(2-CHLOROISOPROPYL)ETHER	ND (10)	ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	ND (10)	ug/L
BROMCPHENYL PHENYL ETHER, 4-	ND (10)	ug/L

Page 1

# TMA ERG Thermo Analytical Inc. Analytical Report Project: A4849 Report Date: 10-10-86

_	lient I.D.	07	GW-5	
E	RG Sample No.: atrix:	09/160587 GROUND WATER	Result	Units
Parameter	-		ND (10) ND (10)	ug/L ug/L
BUTYL BENZYL PHTHALATE CHLORONAPHTHALENE, 2-	:R. 4-		ND (10) ND (10)	ug/L ug/L ug/L
CHLOROPHENYL PHENYL ETHE CHRYSENE DI-N-BUTYLPHTHALATE			ND (10) ND (10) ND (10)	ug/L ug/L
DIBENZO(A, H) ANTHRACENE DICHLOROBENZENE, 1,2- DICHLOROBENZENE, 1,3-			ND (10)	ug/L ug/L ug/L
DICHLOROBENZENE, 1,4-	•		ND (20) ND (10) ND (10)	υğ/L υg/L
DIETHYLPHITALETTE			ND (10) ND (10)	ug/L ug/L
DINITROTOLUENE 2, 6-			ND (10) ND (20) ND (10)	ug/L ug/L ug/L
FLUORANTHENE			ND (10) ND (10) ND (10)	ug/L ug/L ug/L
FLUORENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROBUTADIENE	ENF		ND (10) ND (10)	ug/L ug/L ug/L
HEXACHLOROCYCLOPENTADI HEXACHLOROETHANE INDENO(1,2,3-CD)PYRENE			ND (10) ND (10) ND (10)	ug/L ug/L
ISOPHORONE N-NITROSODI-N-PROPYLAM N-NITROSODIMETHYLAMIN	INE E		ND (10) ND (10) ND (10)	ug/L ug/L ug/L
N-NITROSODIPHENYLAMIN NAPHTHALENE NITROBENZENE	E		ND (10)	ug/L ug/L ug/L
PHENANTHRENE	_		ND (10) ND (10)	ug/L mg/L
PYRENE TRICHLOROBENZENE, 1, 2, BARIUM, TOTAL	4-		0. 04 ND (0. 01 ND (0. 5)	mg/L mg/L
BORON			ND (0.1) 64 52	mg/L mg/L mg/L
CADMIUM, TOTAL CALCIUM, TOTAL CHLORIDE			ND (0.1) ND (0.1) ND (0.0	mg/L mg/L
CHROMIUM, TOTAL COBALT, TOTAL COPPER, TOTAL			0. 12 0. 6	mg/L mg/L
FLOURIDE, TOTAL IRON, TOTAL LEAD, TOTAL			ND (0.5) 37 ND (0.1	mg/L
MAGNESIUM, TOTAL MANGANESE, TOTAL				
Page 2	See last page	e for explanat:	Tou or admonstra	

# Thermo Analytical Inc. Analytical Report Project: A4849 Report Date: 10-10-86

	Client I.D.: ERG Sample No.: Matrix:	07 09/160587 GROUND WATER		<b>GW-</b> 5	
Parameter			-	Result	Units
MERCURY			ND	(0.0002)	mg/L
MOLYBDENUM, TOTAL NICKEL, TOTAL AMMONIA NITROGEN			ND	(1) (0.05) 0.16	mg/L mg/L mg/L
AVERAGE OF	F DUPLICATE RUNS				
NITRATE NITROGEN			ND	(Q. Q1)	mg/L
NITRITE NITROGEN	F DUPLICATE RUNS		מא	(0.01)	mg/L
AVERAGE OF OIL AND GREASE BY IR	F DUPLICATE RUNS			<1	mg/L
POTASSIUM, TOTAL PURGEABLE AROMATICS				Ci	mg/L
BENZENE BENZENE BENZENE BENZENE BENZENE BENZENE BENZENE			ND ND	(0. 2) (0. 4)	ug/L ug/L
DICHLOROBENZENE, 1,3- DICHLOROBENZENE, 1,4- ETHYLBENZENE			ND	(0.4) (0.3) (0.2)	ug/L ug/L ug/L
TOLUENE CHLOROBENZENE PURGEABLES, 601			ND	(0. 2) (0. 25)	ug/L ug/L
CHLOROMETHANE				(0.08)	ug/L
BROMOMETHANE DICHLORODIFLUOROMETHAN VINYL CHLORIDE	NÉ		ND	(1.18) (1.81) (0.18)	09/L 09/L 09/L
CHLOROETHANE METHYLENE CHLORIDE TRICHLOROFLUOROMETHANE	Ē		222	(0. 52) (0. 25) (0. 50)	ug/L ug/L ug/L
DICHLORGETHYLENE, 1,1- DICHLORDETHANE, 1,1- TRANS-1,2-DICHLORDETHY			222	(0. 13) (0. 07) (0. 10)	ug/L ug/L ug/L
CHLOROFORM DICHLORETHANE, 1,2- TRICHLOROETHANE, 1,1,1	<b>!-</b>		ND	(0.05) (0.03) (0.03)	ug/L ug/L ug/L
CARBON TETRACHLORIDE BROMODICHLOROMETHANE DICHLOROPROPANE, 1,2-			ND	(0. 12) (0. 10) (0. 04)	ug/L ug/L ug/L
TRANS-1,3-DICHLOROPROF TRICHLOROETHYLENE DIBROMOCHLOROMETHANE	PENE			(0. 34) 0. 16 (0. 09)	ug/L ug/L ug/L
TRICHLORGETHANE, 1,1,2 CIS-1,3-DICHLORPROPENE CHLORGETHYLVINYL ETHER			ND	(0, 02) (0, 20) (0, 13)	ug/L ug/L ug/L
BROMOFORM TETRACHLORDETHANE, 1,1 TETRACHLORDETHYLENE	1.2.2-		ND	(0. 20) (0. 03) (0. 03)	ug/L ug/L ug/L

Project: A4849 Report Date: 10-10-86

Client I.D.: 07 ERG Sample No.: 09/160587 Matrix: GROUND WATER	GW-5	<b>j</b>
Parameter	Result	Units
CHLOROBENZENE, 1,3- DICHLOROBENZENE, 1,3- DICHLOROBENZENE, 1,2-	ND (0.25) ND (0.4) ND (0.4)	ug/L ug/L ug/L
DICHLOROBENZENE, 1,4- SELENIUM, TOTAL	ND (0.3) <0.001	ug/L mg/L
SILVER, TOTAL AVERAGE OF DUPLICATE RUNS	ND (0.05)	mg/L
SODIUM SOLIDS, TOTAL, DISSOLVED SUSPENDED SOLIDS	13 340 2. 5	mg/L mg/L mg/L
SULFATE, TURBIDIMETRIC METH. THALLIUM TITANIUM	110 ND (0.5) ND (0.1)	mg/L mg/L mg/L
VANADIUM ZINC	ND (0.05) 0.2	mg/L mg/L
Client I.D.: OB ERG Sample No.: O9/160588 Matrix: GROUND WATER	GW-3	3
Parameter	Result	Units
ACID FRACTION (PRIOR. POLLS. METH 625) CHLOROPHENOL, 2- NITROPHENOL, 2- PHENOL	ND (10) ND (10) ND (10)	ug/L ug/L ug/L
DIMETHYLPHENOL, 2,4- DICHLOROPHENOL, 2,4- TRICHLOROPHENOL, 2,4,6-	ND (10) ND (10) ND (10)	ug/L ug/L ug/L
CHLORO-3-METHYLPHENOL, 4- DINITROPHENOL, 2,4- METHYL-4,6-DINITROPHENOL, 2-	ND (10) ND (50) ND (50)	ug/L ug/L ug/L
PENTACHLOROPHENOL NITROPHENOL, 4- BICARBONATE ALKALINITY	ND (50) ND (50) 360	ug/L ug/L mg/L
CARBONATE ALKALINITY ALKALINITY, TOTAL ALUMINUM, TOTAL	360 1. 7	mg/L mg/L mg/L
ANTIMONY ARSENIC, TOTAL B/N FRACTION (PRIOR. POLLS METH. 625)	ND (0.01) 0.002	mg/L mg/L
ACENAPTHENE	ND (10)	ug/L
ACENAPTHYLENE ANTHRACENE BENZIDINE	ND (10) ND (10) ND (50)	ug/L ug/L ug/L
BENZO(A)ANTHRACENE BENZO(A)PYRENE	ND (10) ND (10)	ug/L ug/L
Page 4 See last page for explanation o	f symbols.	

Project: A4849 Report Date: 10-10-86

Client I.D.: 08 ERG Sample No.: 09/160588 Matrix: GROUND WATES	GW-3	
Parameter	Result	Units
BENZO(B)FLUCRANTHENE	ND (10)	ug/L
BENZO(K)FLUORANTHENE	ND (10)	ug/L
BENZO(G, H, I)PERYLENE	ND (10)	ug/L
BIS(2-CHLOROETHYL)ETHER	ND (10)	ug/L
BIS(2-CHLORETHOXY)METHANE	ND (10)	ug/L
BIS(2-CHLORGISOPROPYL)ETHER	ND (10)	ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	ND (10)	ug/L
BROMOPHENYL PHENYL ETHER, 4-	ND (10)	ug/L
BUTYL BENZYL PHTHALATE	ND (10)	ug/L
CHLORONAPHTHALENE, 2-	ND (10)	ug/L
CHLOROPHENYL PHENYL ETHER, 4-	ND (10)	ug/L
CHRYSENE	ND (10)	ug/L
DI-N-BUTYLPHTHALATE	ND (10)	ug/L
DIBENZO(A, H)ANTHRACENE	ND (10)	ug/L
DICHLOROBENZENE, 1,2-	ND (10)	ug/L
DICHLOROBENZENE, 1,3-	ND (10)	ug/L
DICHLOROBENZENE, 1,4-	ND (10)	ug/L
DICHLOROBENZIDINE, 3,3'-	ND (20)	ug/L
DIETHYLPHTHALATE	ND (10)	ug/L
DIMETHYLPHTHALATE DINITROTOLUENE 2,4- DINITROTOLUENE 2,6-	ND (10) ND (10) ND (10)	ug/L ug/L ug/L
DIOCTYLPHTHALATE	ND (10)	ug/L
DIPHENYLHYDRAZINE 1,2-	ND (20)	ug/L
FLUORANTHENE	ND (10)	ug/L
FLUORENE	ND (10)	ug/L
HEXACHLOROBENZENE	ND (10)	ug/L
HEXACHLOROBUTADIENE	ND (10)	ug/L
HEXACHLOROCYCLOPENTADIENE	ND (10)	ug/L
HEXACHLOROETHANE	ND (10)	ug/L
INDENO(1,2,3-CD)PYRENE	ND (10)	ug/L
ISOPHORONE	ND (10)	ug/L
N-NITROSODI-N-PROPYLAMINE	ND (10)	ug/L
N-NITROSODIMET <b>HYLAMIN</b> E	ND (10)	ug/L
N-NITROSODIPH <b>ENYLAMINE</b>	ND (10)	ug/L
NAPHTHALENE	ND (10)	ug/L
NITROBENZENE	ND (10)	ug/L
PHENANTHRENE PYRENE TRICHLOROBENZENE, 1, 2, 4-	ND (10) ND (10) ND (10)	ug/L ug/L ug/L
ARIUM, TOTAL ERYLLIUM, TOTAL ORON	ND (0.01) ND (0.5)	mg/L mg/L mg/L
ADMIUM, TOTAL	ND (0.1)	mg/L
ALCIUM, TOTAL	110	mg/L
HLORIDE	54	mg/L
Page 5 See last page for explanation	of symbols.	

Client I.D.:

Project: A4849 Report Date: 10-10-86

GW-3

09/160588 ERG Sample No. : Matrix: GROUND WATER <u>Parameter</u> Result Units CHROMIUM, TOTAL COBALT, TOTAL COPPER, TOTAL (0. 1) (0. 1) ND mg/L mg/L ND mg/Ĺ (0.05)FLOURIDE, TOTAL IRON, TOTAL LEAD, TOTAL 0. 25 0. 9 (0. 5) mg/L mğ/Ĺ mg∕L MAGNESIUM, TOTAL MANGANESE, TOTAL ζÒ. 1 mg/L ND (0.0002) MERCURY mg/L MOLYBDENUM, TOTAL NICKEL, TOTAL AMMONIA NITROGEN ND (0.05) 0.35 ND mg/L mğ/Ĺ NITRATE NITROGEN NITRITE NITROGEN OIL AND GREASE BY IR 0.36 ND (0.01) mg/L mg/L POTASSIUM, TOTAL PURCEABLE AROMATICS BENZENE DICHLOROBENZENE, 1,2ma/L ND (0.2) ND (0.4) ug/L ug/L DICHLOROBENZENE, 1,3-DICHLOROBENZENE, 1,4-ND (0.4) ND (0.3) ND (0.2) ug/L υğ/L ETHYLBENZENE ND (0.2) ND (0.25) TOLUENE CHLOROBENZENE PURGEABLES, 601 CHLOROMETHANE υğ/L ND (0.08) ug/L BROMOMETHANE ug/L ug/L ND (1.18) DICHLORODIFLUOROMETHANE ND (1.81) ND (0.18) VINYL CHLORIDE CHLOROETHANE
METHYLENE CHLORIDE
TRICHLOROFLUOROMETHANE ND (0.52) ND (0.25) ND (0.50) ug/L uğ/L uğ/L DICHLOROETHYLENE, 1,1-DICHLOROETHANE, 1,1-ND (0.13) ND (0.07) ND (0.10) ug/L ug/L TRANS-1, 2-DICHLOROETHYLENE CHLOROFORM DICHLORETHANE, 1,2-TRICHLOROETHANE, 1,1,1-ND (0.05) ND (0.03) ND (0.03) ug/L uğ/L CARBON TETRACHLORIDE BROMODICHLOROMETHANE DICHLOROPROPANE, 1,2-ND (0.12) ND (0.10) ug/L uğ/Ĺ uğ/L TRANS-1, 3-DICHLOROPROPENE TRICHLOROETHYLENE DIBROMOCHLOROMETHANE ND (0.34) 0.45 ND (0.09) ug/L uğ/L υğ/L TRICHLOROETHANE, 1,1,2-CIS-1,3-DICHLORPROPENE CHLOROETHYLVINYL ETHER, 2-ND (0.02) ND (0.20) ug/L υğ/L (0.13)uğ/L

See last page for explanation of symbols.

Page 6

Project: A4849 Report Date: 10-10-86

Client I.D.: 08 ERG Sample No.: 09/160588 Matrix: GROUND WATER	GW-1	3
<u>Parameter</u>	Result	<u>Units</u>
BROMOFORM TETRACHLOROETHANE, 1,1,2,2- TETRACHLOROETHYLENE	ND (0.20) ND (0.03) ND (0.03)	ug/L ug/L ug/L
CHLOROBENZENE, 1,3- DICHLOROBENZENE, 1,3- DICHLOROBENZENE, 1,2-	ND (0.25) ND (0.4) ND (0.4)	ug/L ug/L
DICHLOROBENZENE, 1,4- SELENIUM, TOTAL SILVER, TOTAL	ND (0.3) <0.001 ND (0.05)	ug/L mg/L mg/L
SODIUM SOLIDS, TOTAL, DISSOLVED SUSPENDED SOLIDS	30 470 34	mg/L mg/L mg/L
SULFATE, TURBIDIMETRIC METH. THALLIUM TITANIUM	130 ND (0.5) ND (0.1)	mg/L mg/L mg/L
VANADIUM ZINC	ND (0.05) 0.4	mg/L mg/L
Client I.D.: 09 ERG Sample No.: 09/160589 Matrix: GROUND WATER	GW-2	2
Parameter	Result	Units
ACID FRACTION (PRIOR. POLLS. METH 625) CHLOROPHENOL, 2- NITROPHENOL, 2- PHENOL	ND (10) ND (10) ND (10)	ug/L ug/L ug/L
DIMETHYLPHENOL, 2,4- DICHLOROPHENOL, 2,4- TRICHLOROPHENOL, 2,4,6-	ND (10) ND (10) ND (10)	ug/L ug/L ug/L
CHLORO-3-METHYLPHENOL, 4- DINITROPHENOL, 2,4- METHYL-4,6-DINITROPHENOL, 2-	ND (10) ND (50) ND (50)	ug/L ug/L ug/L
PENTACHLOROPHENOL NITROPHENOL, 4- BICARBONATE ALKALINITY	ND (50) ND (50) 510	ug/L ug/l mg/L
CARBONATE ALKALINITY ALKALINITY, TOTAL ALUMINUM, TOTAL	510 3. 7	mg/L mg/L mg/L
ANTIMONY ARSENIC, TOTAL B/N FRACTION (PRIOR. POLLS METH. 625) ACENAPTHENE	ND (0.01) 0.073 ND (10)	mg/L mg/L ug/L
ACEMAPTHELENE ANTHRACENE BENZIDINE	ND (10) ND (10) ND (50)	ug/L ug/L ug/L
Page 7 See last page for explanation of	of symbols.	1

Page 8

#### Thermo Analytical Inc. Analytical Report

A4849 Project: Report Date: 10-10-86

Client I.D.: ERG Sample No.: GW-2 09/160589 GROUND WATER Parameter Result Units BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE ND (10) ug/L ug/L ND (10) ND (10) uğ/Ĺ BENZO(K)FLUORANTHENE BENZO(G,H,I)PERYLENE BIS(2-CHLOROETHYL)ETHER ND (10) ND (10) ND (10) ug/L uğ/L uā/L BIS(2-CHLORETHOXY)METHANE BIS(2-CHLOROISOPROPYL)ETHER ND (10) ND (10) ug/L uğ/L BIS(2-ETHYLHEXYL)PHTHALATE ND (10) ug/L BROMOPHENYL PHENYL ETHER, 4-BUTYL BENZYL PHTHALATE CHLORONAPHTHALENE, 2-(10) ug/L (10) (10) ug/L ND uğ/L ND (10) CHLOROPHENYL PHENYL ETHER, 4ug/L (10) ug/L ug/L CHRYSENE ND DI-N-BUTYLPHTHALATE DIBENZO(A,H)ANTHRACENE DICHLOROBENZENE, 1,2-DICHLOROBENZENE, 1,3-ND (10) ND (10) ug/L υ**ğ**/Ĺ ND (10) uğ/L DICHLOROBENZENE, 1,4-DICHLOROBENZIDINE, 3,3'-DIETHYLPHTHALATE ug/L ND υğ/Ĺ ND (20) ND (10) ug/L DIMETHYLPHTHALATE DINITROTOLUENE 2,4-DINITROTOLUENE 2,6-ND (10) ug/L uğ/L uğ/L DIOCTYLPHTHALATE DIPHENYLHYDRAZINE 1,2-FLUORANTHENE ug/L ND (20) ug/L (10)uğ/L ND FLUORENE ug/L HEXACHLOROBENZENE HEXACHLOROBUTADIENE ug/L ND (10)(10) ND HEXACHLOROCYCLOPENTADIENE HEXACHLOROETHANE INDENO(1,2,3-CD)PYRENE ND (10) ND (10) ug/L uğ/Ĺ uğ/L ug/L ISOPHORONE N-NITROSODI-N-PROPYLAMINE N-NITROSODIMETHYLAMINE ND (10) uğ/L N-NITROSODIPHENYLAMINE NAPHTHALENE NITROBENZENE ND (10) ug/L ug/L uğ/L ND (10) PHENANTHRENE ND (10) ug/L (10) PYRENE ND ug/L TRICHLOROBENZENE, 1, 2, 4-0.40 (0.01) (0.5) BARIUM, TOTAL BERYLLIUM, TOTAL mg/L mg/L BORON mg/L CADMIUM, TOTAL **<0.1** mg/L

Project: A4849 Report Date: 10-10-86

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

(0.13)(0 07) (0.10)

(0.05) (0.03) (0.03)

(0.12)

(0.10)

 $(\tilde{0}, \tilde{0}\tilde{4})$ 

(0.34)

(0. 12) (0. 09)

uğ/L ug/L

υğ/L

υğ/L

ug/L

uğ/L υğ/Ĺ

ug/L

uğ/L

υğ/Ĺ

ug/L

uğ/L uğ/L

GW-2

Client I.D.: ERG Sample No.: 09/160589 GROUND WATER Result Parameter Units CALCIUM, TOTAL CHLORIDE 120 180 mg/L mg/L CHROMIUM, TOTAL COBALT, TOTAL COPPER, TOTAL ND (0.1) mg/L (0.1) mg/L mg/L FLOURIDE, TOTAL IRON, TOTAL LEAD, TOTAL 0.65 mg/L mg/L (0.5) ND mg/L MAGNESIUM, TOTAL MANGANESE, TOTAL 59 mg/L Ğ. 4 <0. 0002 mg/L mg/Ľ MERCURY MOLYBDENUM, TOTAL NICKEL, TOTAL ND mg/L mg/L (0.05) NICKEL, TOTAL AMMONIA NITROGEN ND mg/L NITRATE NITROGEN NITRITE NITROGEN OIL AND GREASE BY IR ND (0.01) mg/L 0.04 mg/L mg/L 5 POTASSIUM, TOTAL mg/L PURGEABLE AROMATICS BENZENE ug/L ND (0.2) ND (0.4) DICHLOROBENZENE, 1,2υğ/L (0.4) (0.3) (0.2) DICHLOROBENZENE, 1:3-DICHLOROBENZENE, 1:4-ND ua/L ND uğ/L ETHYLBENZENE ND uğ/L (0.2) (0.25) ug/L CHLOROBENZENE PURGEABLES, 601 ND uğ/L CHLOROMETHANE (0.08)ND ug/L BROMOMETHANE DICHLORODIFLUOROMETHANE ND (1.18)ug/L ug/L ug/L (1.81)ND (0.18)VINYL CHLORIDE ND (0. 52) (0. 25) (0. 50) CHLOROETHANE ND ug/L METHYLENE CHLORIDE TRICHLOROFLUGROMETHANE uğ/Ĺ ND

DICHLOROETHYLENE, 1,1-DICHLOROETHANE, 1,1-

DICHLORETHANE, 1,2-TRICHLOROETHANE, 1,1,1-

TRANS-1, 3-DICHLOROPROPENE TRICHLOROETHYLENE DIBROMOCHLOROMETHANE

CARBON TETRACHLORIDE BROMODICHLOROMETHANE DICHLOROPROPANE, 1,2-

Page 9

CHLOROFORM

TRANS-1, 2-DICHLOROETHYLENE

	Client I.D.: ERG Sample No.: Matrix:	09 09/160589 GROUND WATER	GW-2	
Parameter	<del></del>		Result	Units
TRICHLOROETHANE, 1,1,2 CIS-1,3-DICHLORPROPENE CHLOROETHYLVINYL ETHER			0 (0.02) 0 (0.20) 0 (0.13)	ug/L ug/L ug/L
BROMOFORM TETRACHLOROETHANE, 1,1, TETRACHLOROETHYLENE	. 2. 2-	NI NI NI	0.03)	ug/L ug/L ug/L
CHLOROBENZENE Dichlorobenzene, 1,3- Dichlorobenzene, 1,2-		N	0 (0.25) 0 (0.4) 0 (0.4)	ug/L ug/L ug/L
DICHLOROBENZENE, 1,4- SELENIUM, TOTAL		NI NI	0 (0.3) 0 (0.002)	ug/L mg/L
SILVER, TOTAL HIGHER DET	ECTION LIMIT DUE	TO MATRIX INTERFI	ERENCE. D (0.05)	mg/L
SODIUM SOLIDS, TOTAL, DISSOLVED			45 740	mg/L mg/L
AVERAGE OF SUSPENDED SOLIDS	DUPLICATE RUNS		440	mg/L
SULFATE, TURBIDIMETRIC MI THALLIUM TITANIUM	ETH.	N	13 0 (0.5) <0.1	mg/L mg/L mg/L
VANADIUM ZINC		NI	0.05) 0.8	mg/L mg/L
	Client I.D.: ERG Sample No.: Matrix:	10 09/160590 GROUND WATER	GW-1	
<u>Parameter</u>			Result	<u>Units</u>
ACID FRACTION (PRIOR. POI CHLOROPHENOL, 2- NITROPHENOL, 2- PHENOL	LLS. METH 625)	ND	(10) (10) (10)	ug/L ug/L ug/L
DIMETHYLPHENOL, 2,4- DICHLOROPHENOL, 2,4- TRICHLOROPHENOL, 2,4,6	-	ND	(10) (10) (10)	ug/L ug/L ug/L
CHLORO-3-METHYLPHENOL, DINITROPHENOL, 2,4- METHYL-4,6-DINITROPHENO		ND	(10) (50) (50)	ug/L ug/L ug/L
PENTACHLOROPHENOL NITROPHENOL, 4- BICARBONATE ALKALINITY			(50) (50) 180	ug/L ug/L mg/L
CARBONATE ALKALINITY ALKALINITY, TOTAL ALUMINUM, TOTAL			C1 180 2. 6	mg/L mg/L mg/L
ANTIMONY		NI	0 (0.01)	mg/L
Page 10 S	ee last page for	explanation of s	ymbols.	

A4849 Project: Report Date: 10-10-86

GW-1

10 Client I.D.: ERG Sample No. : 09/160590

GROUND WATER Matrix: Result Units <u>Parameter</u> ARSENIC, TOTAL B/N FRACTION (PRIOR. POLLS METH. 625) ACENAPTHENE 0.004 mg/L ND (10) ug/L **ACENAPTHYLENE** ND (10) ug/L ANTHRACENE ND (10) uğ/L BENZIDINE ND (50) uğ/L BENZO(A)ANTHRACENE BENZO(A)PYRENE (10) (10) ug/L ug/L ug/L ND ND (10) BENZO (B) FLUORANTHENE BENZO(K)FLUORANTHENE BENZO(G.H.I)PERYLENE BIS(2-CHLOROETHYL)ETHER ND (10) ug/L uğ/Ĺ ND (10) υğ/L BIS(2-CHLORETHOXY)METHANE BIS(2-CHLOROISOPROPYL)ETHER ug/L ND (10) ND (10) υğ/L BIS(2-ETHYLHEXYL)PHTHALATE ND (10) uğ/L BROMOPHENYL PHENYL ETHER, 4-BUTYL BENZYL PHTHALATE CHLORONAPHTHALENE, 2-ND (10) ug/L ug/L (10) (10) ND ND ND (10) CHLOROPHENYL PHENYL ETHER, 4ug/L uğ/Ĺ CHRYSENE ND (10) DI-N-BUTYLPHTHALATE uğ/L DIBENZO(A, H) ANTHRACENE DICHLOROBENZENE, 1,2-DICHLOROBENZENE, 1,3ug/L ND (10) ND (10) υğ/L (10) uğ/L ND DICHLOROBENZENE, 1,4-DICHLOROBENZIDINE, 3,3'-(10) (20) ug/L ug/L ND ND ND (10) υğ/L DIETHYLPHTHALATE DIMETHYLPHTHALATE DINITROTOLUENE 2,4-DINITROTOLUENE 2,6-ND (10) ug/L uğ/L ND (10) (10) uğ/L DIOCTYLPHTHALATE DIPHENYLHYDRAZINE 1,2-FLUORANTHENE ND ug/L (20) ug/L ug/L ND (10) ND FLUORENE ug/L HEXACHLOROBENZENE ND (10) υğ/Ĺ ND (10) uğ/L HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE HEXACHLOROETHANE ND (10) ug/L ug/L ug/L (10) ND INDENO(1, 2, 3-CD)PYRENE ND ug/L ug/L ND **ISOPHORONE** ND (10) N-NITROSODI-N-PROPYLAMINE N-NITROSOD I METHYLAMINE ND (10) υğ/L (10) ND ug/L I-NITROSODIPHENYLAMINE NAPHTHALENE ND (10) υğ/L ND (10) uğ/L NITROBENZENE PHENANTHRENE ND (10) ug/L

Project: A4849 Report Date: 10-10-86

GW-1

Client I.D.: ERG Sample No.: Matrix:

10 09/160590 GROUND WATER

<u>Parameter</u> Result <u>Units</u> PYRENE ND (10) ug/L TRICHLOROBENZENE, 1, 2, 4-ND (10) uğ/L BARIUM, TOTAL BERYLLIUM, TOTAL BORON 0.04 mg/L ND (0.01) ND (0.5) ma/L mğ/Ĺ CADMIUM, TOTAL CALCIUM, TOTAL CHLORIDE ND (0.1) mg/L mã/L 26 mg/L CHROMIUM, TOTAL COBALT, TOTAL COPPER, TOTAL ND (0.1) mg/L 0. 1 mg/L 0. 12 mğ/L FLOURIDE, TOTAL 0. 58 mg/L AVERAGE OF DUPLICATE RUNS IRON, TOTAL LEAD, TOTAL mg/L 72 ND (0.5) mg/L MAGNESIUM, TOTAL MANGANESE, TOTAL 24 3. 4 mg/L mg/L (0.0002) MERCURY MOLYBDENUM. TOTAL ND (1) mg/L NICKEL, TOTAL AMMONIA NITROGEN 0. 06 0. 92 mg/Ĺ mğ/L NITRATE NITROGEN NITRITE NITROGEN OIL AND GREASE BY IR ma/L mg/L mg/L 0. 03 <Ĩ POTASSIUM, 3 mg/L PURCEABLE AROMATICS BENZENE ND (0.2) ND (0.4) ug/L DICHLOROBENZENE, 1,2uğ/L ND (0.4) ND (0.3) ND (0.2) DICHLOROBENZENE, 1,3-DICHLOROBENZENE, 1,4ug/L ug/L υğ/Ĺ **ETHYLBENZENE** TOLUENE CHLOROBENZENE PURGEABLES, 601 CHLOROMETHANE ND (0.2) ND (0.25) ug/L υ፬/Ĺ ND (0.08) ug/L BROMOMETHANE DICHLORODIFLUOROMETHANE ND (1.18) ND (1.81) ug/L uğ/L VINYL CHLORIDE ND (0.18) υğ/L ND (0.52) ND (0.25) ND (0.50) CHLOROETHANE ug/L METHYLENE CHLORIDE TRICHLOROFLUOROMETHANE uğ/L υã/L ND (0.13) ND (0.07) ND (0.10) DICHLOROETHYLENE, 1,1-DICHLOROETHANE, 1,1ug/L υã/L TRANS-1, 2-DICHLOROETHYLENE υğ/Ĺ CHLOROFORM ND (0.05) ND (0.03) DICHLORETHANE, 1,2-ـًا/وَّں

Page 12

Project: A4849 Report Date: 10-10-86

EF	lient I.D.: RÇ Şample No.:	10 09/160590		GW-1	
Ma Parameter	atrix:	GROUND WATER		Result	Units
TRICHLOROETHANE, 1,1,1-			ND	(0.03)	ug/L
CARBON TETRACHLORIDE BROMODICHLOROMETHANE DICHLOROPROPANE, 1,2-			ND N ND N	(0.10)	ug/L ug/L ug/L
TRANS-1,3-DICHLOROPROPENE TRICHLOROETHYLENE DIBROMOCHLOROMETHANE	Ē		ND ND ND	(0.12)	ug/L ug/L ug/L
TRICHLOROETHANE, 1,1,2- CIS-1,3-DICHLORPROPENE CHLOROETHYLVINYL ETHER, 2	2-		ND ND ND	(0.20)	ug/L ug/L ug/L
BROMOFORM TETRACHLOROETHANE, 1,1,2, TETRACHLOROETHYLENE	. 2-		ND ND ND	(0.03)	ug/L ug/L ug/L
CHLOROBENZENE DICHLOROBENZENE, 1,3- DICHLOROBENZENE, 1,2-				(0, 25) (0, 4) (0, 4)	ug/L ug/L ug/L
DICHLOROBENZENE, 1,4- SELENIUM, TOTAL SILVER, TOTAL			ND ND ND	(0.001)	ug/L mg/L mg/L
SODIUM SOLIDS, TOTAL, DISSOLVED				21 515	mg/L mg/L
AVERAGE OF DU SUSPENDED SOLIDS	JPLICATE RUNS			43	mg/L
SULFATE, TURBIDIMETRIC METH THALLIUM TITANIUM	<b>1</b> .			57 (0. 5) (0. 1)	mg/L mg/L mg/L
VANADIUM ZINC			ND	(0. 05) 0. 6	mg/L mg/L
ER	lient I.D.: RG Sample No.: atrix:	11 09/160591 GROUND WATER		GW-6	
Parameter			_	Result	Units
ACID FRACTION (PRIOR. POLLS CHLOROPHENOL, 2- NITROPHENOL, 2- PHENOL	3. METH 625)		ND	(10) (10) (10)	ug/L ug/L ug/L
DIMETHYLPHENOL, 2,4- DICHLOROPHENOL, 2,4- TRICHLOROPHENOL, 2,4,6-			ND	(10) (10) (10)	ug/L ug/L ug/L
CHLORO-3-METHYLPHENOL, 4- DINITROPHENOL, 2,4- METHYL-4,6-DINITROPHENOL,			ND	(10) (50) (50)	ug/L ug/L ug/L
PENTACHLOROPHENOL			ND	(50)	ug/L
Page 13 See	last page for	explanation of	s y	mbols.	

Project: A4849 Report Date: 10-10-86

GW-6

Client I.D.: 11 ERG Sample No.: 09/160591 Matrix: GROUND WATER

1	latrix:	GROUND WATER			
Parameter	-		-	Result	Units
NITROPHENOL, 4- BICARBONATE ALKALINITY			ND	(50) 200	ug/L mg/L
CARBONATE ALKALINITY ALKALINITY, TOTAL				200	mg/L mg/L
AVERAGE OF I	OUPLICATE RUNS			1. 0	mg/L
ANTIMONY ARSENIC, TOTAL	* MCTU / 456\		NI	0.006	mg/L mg/L
B/N FRACTION (PRIOR. POLLS ACENAPTHENE	3 METH. 625)		ND	(10)	ug/L
ACENAPTHYLENE ANTHRACENE BENZIDINE			ND	(10) (10) (50)	ug/L ug/L ug/L
BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE			ND	(10) (10) (10)	ug/L ug/L ug/L
BENZO(K)FLUORANTHENE BENZO(G,H,I)PERYLENE BIS(2-CHLOROETHYL)ETHER			ND	(10) (10) (10)	ug/L ug/L ug/L
BIS(2-CHLORETHOXY)METHAN BIS(2-CHLOROISOPROPYL)ET BIS(2-ETHYLHEXYL)PHTHALA	[HER		ND	(10) (10) (10)	ug/L ug/L ug/L
BROMOPHENYL PHENYL ETHER BUTYL BENZYL PHTHALATE CHLORONAPHTHALENE, 2-	₹, 4–		ND	(10) (10) (10)	ug/L ug/L ug/L
CHLOROPHENYL PHENYL ETHE CHRYSENE DI-N-BUTYLPHTHALATE	ER, 4-		ND	(10) (10) (10)	ug/L ug/L ug/L
DIBENZO(A,H)ANTHRACENE DICHLOROBENZENE, 1,2- DICHLOROBENZENE, 1,3-			ND	(10) (10) (10)	ug/L ug/L ug/L
DICHLOROBENZENE, 1,4- DICHLOROBENZIDINE, 3,3'- DIETHYLPHTHALATE	-		ND	(10) (20) (10)	ug/L ug/L ug/L
DIMETHYLPHTHALATE DINITROTOLUENE 2,4- DINITROTOLUENE 2,6-			ND	(10) (10) (10)	ug/L ug/L ug/L
DIOCTYLPHTHALATE DIPHENYLHYDRAZINE 1,2- FLUORANTHENE			ND	(10) (20) (10)	ug/L ug/L ug/L
FLUORENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE			ND	(10) (10) (10)	ug/L ug/L ug/L
HEXACHLOROCYCLOPENTADIEN HEXACHLOROETHANE INDENO(1,2,3-CD)PYRENE	NE		ND	(10) (10) (10)	ug/L ug/L ug/L
					•

Page 14

### Thermo Analytical Inc. Analytical Report

Project: A4849 Report Date: 10-10-86

	Client I.D.: 11 ERG Sample No.: 09/160591 Matrix: GROUND WATER	GW-6	
Parameter		Result	Units
ISOPHORONE	NE	ND (10)	ug/L
N-NITROSODI-N-PROPYLAMI		ND (10)	ug/L
N-NITROSODIMETHYLAMINE		ND (10)	ug/L
N-NITROSODIPHENYLAMINE		ND (10)	ug/L
NAPHTHALENE		ND (10)	ug/L
NITROBENZENE		ND (10)	ug/L
PHENANTHRENE	• .	ND (10)	ug/L
PYRENE		ND (10)	ug/L
TRICHLOROBENZENE, 1, 2, 4-		ND (10)	ug/L
BARIUM, TOTAL		0.08	mg/L
BERYLLIUM, TOTAL		ND (0.01)	mg/L
BORON		ND (0.5)	mg/L
CADMIUM, TOTAL		ND (0.1)	mg/L
CALCIUM, TOTAL		57	mg/L
CHLORIDE		54	mg/L
CHROMIUM, TOTAL		ND (0.1)	mg/L
COBALT, TOTAL		ND (0.1)	mg/L
COPPER, TOTAL		ND (0.05)	mg/L
FLOURIDE, TOTAL		0.16	mg/L
IRON, TOTAL		1.3	mg/L
LEAD, TOTAL		ND (0.5)	mg/L
MAGNESIUM, TOTAL		35	mg/L
MANGANESE, TOTAL		ND (0.1)	mg/L
MERCURY		ND (0.0002)	mg/L
MOLYBDENUM, TOTAL NICKEL, TOTAL AMMONIA NITROGEN		ND (0.05) 1.6	mg/L mg/L mg/L
NITRATE NITROGEN		ND (0.01)	mg/L
NITRITE NITROGEN		ND (0.01)	mg/L
OIL AND GREASE BY IR		1.6	mg/L
POTASSIUM, TOTAL PURGEABLE AROMATICS		1	mg/L
BENZENE		O. 58	ug/L
Dichlorobenzene, 1,2-		ND (O. 4)	ug/L
DICHLOROBENZENE, 1,3-		ND (0.4)	ug/L
DICHLOROBENZENE, 1,4-		ND (0.3)	ug/L
ETHYLBENZENE		ND (0.2)	ug/L
TOLUENE		ND (0.2)	ug/L
CHLOROBENZENE		ND (0.25)	ug/L
PURGEABLES, 601 CHLOROMETHANE		ND (0.08)	ug/L
BROMOMETHANE		ND (1.18)	ug/L
DICHLORODIFLUOROMETHANE		ND (1.81)	ug/L
VINYL CHLORIDE		ND (0.18)	ug/L
CHLOROETHANE		ND (0.52)	ug/L
METHYLENE CHLORIDE		ND (0.25)	ug/L
TRICHLOROFLUOROMETHANE		ND (0.50)	ug/L
Page 15 Se	e last page for explanation o	f symbols.	

#### Thermo Analytical Inc. Analytical Report

Project: A4849 Report Date: 10-10-86

Client I.D.: 11 ERG Sample No.: 09/160591 Matrix: GROUND WATER

GW-6

Parameter	Result	Units
DICHLOROETHYLENE, 1,1-	ND (0.13)	ug/L
DICHLOROETHANE, 1,1-	ND (0.07)	ug/L
TRANS-1,2-DICHLOROETHYLENE	ND (0.10)	ug/L
CHLOROFORM	ND (0.05)	ug/L
DICHLORETHANE, 1,2-	ND (0.03)	ug/L
TRICHLOROETHANE, 1,1,1-	ND (0.03)	ug/L
CARBON TETRACHLORIDE	ND (0.12)	ug/L
BROMODICHLOROMETHANE	ND (0.10)	ug/L
DICHLOROPROPANE, 1,2-	ND (0.04)	ug/L
TRANS-1,3-DICHLOROPROPENE	ND (0.34)	ug/L
TRICHLOROETHYLENE	ND (0.12)	ug/L
DIBROMOCHLOROMETHANE	ND (0.09)	ug/L
TRICHLOROETHANE, 1,1,2-	ND (0.02)	ug/L
CIS-1,3-DICHLORPROPENE	ND (0.20)	ug/L
CHLOROETHYLVINYL ETHER, 2-	ND (0.13)	ug/L
BROMOFORM TETRACHLORDETHANE, 1,1,2,2- TETRACHLORDETHYLENE	ND (0.20) ND (0.03) ND (0.03)	ug/L ug/L ug/L
CHLOROBENZENE	ND (0.25)	ug/L
DICHLOROBENZENE, 1,3-	ND (0.4)	ug/L
DICHLOROBENZENE, 1,2-	ND (0.4)	ug/L
DICHLOROBENZENE, 1,4-	ND (0.3)	ug/L
AVERAGE OF DUPLICATE RUNS SELENIUM, 10TAL SILVER, TOTAL	<0.001 ND (0.05)	mg/L mg/L
SODIUM	13	mg/L
SOLIDS, TOTAL, DISSOLVED	320	mg/L
SUSPENDED SOLIDS	8. 2	mg/L
SULFATE, TURBIDIMETRIC METH.	100	mg/L
AVERAGE OF DUPLICATE RUNS THALLIUM TITANIUM	ND (0.5) 0.1	mg/L mg/L
VANADIUM	ND (0.05)	mg/L
ZINC	0.3	mg/L

ND-Nondetected, Detection limit in () <-Positive result at an unquantifiable concentration below indicated level SD-Sample damaged FR-See field report for result SR-See attached report NA-Result not applicable to test

Thank you for your business.

Page 16

Last Page

TMA ERG

#### Thermo Analytical Inc. Analytical Report

117 N. FIRST ANN ARBOR, MICHIGAN 48104 (313) 662-3104 Project: A48070 Report Date: 10-15-86

RECEIVED OCT 3 198

RECEIVED OCT 1 6 1986

Clien~ F.O. Report CONTRACT 22008 Samples Recvd: 10-03-85 Refer Questions To: JDE HNATUW

Client SCIENCE APPLICATIONS INTERNATIONAL CORPORATION 8400 WESTPARK DRIVE MC LEAN, VA 22102

Residual Samples Will Be Held 1WO WEEKS ***

Client I.D.: 01 ERG Sample No.: 10/160812 Matrix: GROUND WATER

	matrix:	CKUOND WATER		
Parameter	<del></del>		Result	<u>Units</u>
PURGEABLE AROMATICS BENZENE DICHLOROBENZENE, 1,2- DICHLOROBENZENE, 1,3-			NA NA NA	
DICHLOROBENZENE, 1,4- ETHYLBENZENE TOLUENE			NA NA NA	
CHLOROBENZENE PURGEABLES, 601 CHLOROMETHANE BROMOMETHANE			NA NA NA	
DICHLORODIFLUOROMETHANE VINYL CHLORIDE CHLOROETHANE	Ē		NA NA NA	1
METHYLENE CHLORIDE TRICHLOROFLUOROMETHANE DICHLOROETHYLENE: 1,1-			NA NA NA	1
DICHLORGETHANE, 1,1- TRANS-1,2-DICHLORGETHY CHLORGFORM	LENE		NA NA NA	•
DICHLORETHANE, 1,2- TRICHLORDETHANE, 1,1,1- CARBON TETRACHLORIDE	-		NA NA NA	
BROMODICHLOROMETHANE DICHLOROPROPANE, 1,2- TRANS-1,3-DICHLOROPROPE	ENE		NA NA NA	
TRICHLOROETHYLENE DIBROMOCHLOROMETHANE TRICHLOROETHANE, 1,1,2	_		0. 91 NA NA	ug/L
CIS-1,3-DICHLORPROPENE CHLOROETHYLVINYL ETHER, BROMOFORM	, 2-		NA NA NA	. 1
TETRACHLOROETHANE, 1,1, TETRACHLOROETHYLENE CHLOROBENZENE	, 2, 2-		NA NA NA	1

#### Thermo Analytical Inc. Analytical Report Report Bate 10-15-86

Client I.D. 01 FRG Sample No.: 10/160812 GROUND WATER

Result Units <u>Parameter</u> DICHLOROBENIENE, 1,3-DICHLOROBENIENE, 1,2-DICHLOROBENIENE, 1,4-NA NA NA

Comments: 1,1,1-TRICHLORDETHANE AND TRICHLORDETHY-LENE COELUTE. RESULTS COULD BE EITHER ONE OR BOTH ANALYTES.

Client I.D.: 02 ERG Sample No.: 10/160813 Matrix: GROUND WATER

Parameter	Result Units
PURGEABLE AROMATICS	•••
BENZENE	NA NA
DICHLOROBENZENE, 1,2-	NA NA
DICHLOROBENZENE, 1,3-	NA NA
DICHLOROBENZENE, 1,4-	NA
ETHYLBENZENE	NA NA
TOLUENE	NA
CHLOROBENZENE	NA
PURGEABLES, 601	NA
CHLOROMETHANE	NA NA
BROMOMETHANE	INT
DICHLORODIFLUOROMETHANE	NA
VINYL CHLORIDE	NA NA
CHLOROETHANE	NA NA
METHYLENE CHLORIDE	NA
TRICHLOROFLUOROMETHANE	ÑĀ
DICHLOROETHYLENE, 1,1-	NA
DICHLOROETHANE, 1,1-	NA
TRANS-1, 2-DICHLOROETHYLENE	NA
CHLOROFORM	NA
DICHLORETHANE, 1,2-	NA
TRICHLOROETHANE, 1,1,1-	ŇÁ
CARBON TETRACHLORIDE	NA
BROMODICHLOROMETHANE	NA
DICHLOROPROPANE, 1,2-	NA
TRANS-1, 3-DICHLOROPROPENE	NA
TOTALI GOGETUVI ENE	1. 1 ug/L
TRICHLOROETHYLENE	NA Og/
DIBROMOCHLOROMETHANE TRICHLOROETHANE, 1,1,2-	NA NA
INTUNCORUE (MANE) I) I) 2-	
CIS-1, 3-DICHLORPROPENE	NA NA
CHLOROETHYLVINYL ETHER, 2-	ŅĄ
BROMOFORM	NA
TETRACHLOROETHANE, 1,1,2,2-	NA
TETRACHLOROETHYLENE	NA
CHI OPOBENZENIE	NA
H-71	

See last page 1009 explanation of symbols.

#### TMA ERG

Page 3

#### Thermo Analytical Inc. Analytical Report Report Date: 10-15-84

Client I.D.: 02
FRG Sample No.: 10/160813
Matrix: GROUND WATER

Parameter

DICHLOROBENZENE, 1,3DICHLOROBENZENE, 1,2DICHLOROBENZENE, 1,4
Comments: 1,1,1-TRICHLOROETHANE AND TRICHLOROETHYLENE COELUTE. RESULTS COULD BE EITHER ONE OR BOTH
ANALYTES.

Client I.D.: 03 ERG Sample No.: 10/160814 Matrix: GROUND WATER

Parameter		Result	Units	
PURGEABLE AROMATICS BENZENE		NA		
DICHLOROBENZENE, 1,2-		NA NA		
DICHLOROBENZENE, 1,3-				
DICHLOROBENZENE, 1,4- ETHYLBENZENE		NA NA		
TOLUENE		NA		
CHLOROBENZENE		NA		
PURGEABLES, 601 CHLOROMETHANE		NA		
BROMOMETHANE		NA		
DICHLORODIFLUOROMETHANE VINYL CHLORIDE		NA / NA		
CHLOROETHANE		NA		
METHYLENE CHLORIDE		NA		
TRICHLOROFLUGROMETHANE DICHLOROETHYLENE: 1,1-		NA NA		
DICHLOROETHANE. 1,1-		NA		
TRANS-1,2-DICHLOROETHYLENE CHLOROFORM		NA NA		
		NA NA		
DICHLORETHANE, 1,2- TRICHLOROETHANE, 1,1,1-		NA		
CARBON TETRACHLORIDE		NA		
BROMODICHLOROMETHANE Dichloropropane, 1,2-		NA NA		
TRANS-1, 3-DICHLOROPROPENE		NA		
TRICHLOROETHYLENE		ND (0.12) NA	ug/L	
DIBROMOCHLOROMETHANE TRICHLOROETHANE, 1,1,2-		NA		
CIS-1, 3-DICHLORPROPENE		NA		
CHLOROETHYLVINYL ETHER, 2- BROMOFORM		NA NA		
		NA NA		
TETRACHLORDETHANE, 1,1,2,2- TETRACHLORDETHYLENE		NA NA		
CHLOROBENZENE	H-72	NA		

See last page WollO explanation of symbols.

#### hermo Analytical Inc. Analytical Report

Project A48370 Report Date: 10-15-86

Client I.D.: ERG Sample No.: Matrix:

03

10/160814 GROUND WATER

Parameter DICHLOROBENZENE, 1,3-DICHLOROBENZENE, 1,2-DICHLOROBENZENE, 1,4-

Page 4

Result Units NA

NA NA

Comments: 1,1,1-TRICHLORDETHANE AND TRICHLORDETHY-LENE COELUTE. RESULTS COULD BE EITHER ONE OR BOTH ANALYTES.

Client I.D.: 04 ERG Sample No.: 10/160815 Matrix: GROUND WATER

Parameter	<u>Result</u> <u>Units</u>
PURGEABLE AROMATICS BENZENE DICHLOROBENZENE, 1,2- DICHLOROBENZENE, 1,3-	NA NA NA
DICHLOROBENZENE, 1,4-	NA
ETHYLBENZENE	NA
TOLUENE	NA
CHLOROBENZENE PURGEABLES, 601 CHLOROMETHANE BROMOMETHANE	NA NA NA
DICHLORODIFLUOROMETHANE	NA
VINYL CHLORIDE	NA
CHLOROETHANE	NA
METHYLENE CHLORIDE	NA
TRICHLOROFLUOROMETHANE	NA
DICHLOROETHYLENE, 1,1-	NA
DICHLOROETHANE, 1,1-	NA
TRANS-1,2-DICHLOROETHYLENE	NA
CHLOROFORM	NA
DICHLORETHANE, 1,2-	NA
TRICHLOROETHANE, 1,1,1-	NA
CARBON TETRACHLORIDE	NA
BROMODICHLOROMETHANE	NA
Dichloropropane, 1,2-	NA
Trans-1,3-dichloropropene	NA
TRICHLOROETHYLENE	0. 34 ug/L
DIBROMOCHLOROMETHANE	<b>NA</b>
TRICHLOROETHANE, 1,1,2-	<b>NA</b>
CIS-1,3-DICHLORPROPENE	NA
CHLOROETHYLVINYL ETHER, 2-	NA
BROMOFORM	NA
TETRACHLOROETHANE, 1,1,2,2-	NA
TETRACHLOROETHYLENE	NA
CHLOROBENZENE	NA

See last page for explanation of symbols.

H-73

### Thermo Analytical Inc. Analytical Report Project: Addition Report Date: 10-15-86

Client I.D.: 04 10/160815 ERG Sample No. : GROUND WATER Matrix:

<u>Parameter</u> Result Units DICHLOROBEMZENE, 1,3-DICHLOROBEMZENE, 1,2-DICHLOROBEMZENE, 1,4-NA NA NA

> Comments: 1,1,1-TRICHLORDETHANE AND TRICHLORDETHY-LENE COELUTE, RESULTS COULD BE EITHER ONE OR BOTH ANALYTES.

> > Client I.D.: 05 ERG Sample No.: 10/160816 GROUND WATER

Parameter	<u>Result</u> Units
PURGEABLE AROMATICS	NA
BENZENE Dichlorobenzene, 1,2-	NA NA
DICHLOROBENZENE, 1,3-	NA
DICHLOROBENZENE, 1,4-	NA NA
ETHYLBENZENE	NA NA
TOLUENE	) tory
CHLOROBENZENE	NA
PURGEABLES, 601	1
CHLOROMETHANE	NA NA
BROMOMETHANE	NA
DICHLORODIFLUOROMETHANE	NA
VINYL CHLORIDE	NA
CHLOROETHANE	NA
METHYLENE CHLORIDE	NA NA
TRICHLOROFLUOROMETHANE	NA (O 12)
DICHLORGETHYLENE, 1,1-	ND (0.13) ug/L
DICHLORGETHANE, 1,1-	8.8 ug/L '
TRANS-1, 2-DICHLOROETHYLENE	NA
CHLOROFORM	NA NA
	NA ·
DICHLORETHANE, 1, 2-	NA NA
TRICHLOROETHANE, 1,1,1- CARBON TETRACHLORIDE	NA A
CARBON IETRACHEDRINE	
BROMODICHLOROMETHANE	NA
DICHLOROPROPANE, 1,2-	ŅĄ
TRANS-1, 3-DICHLOROPROPENE	NA ,
TOTAL H GROPTING PAIR	0.13 ug/L
TRICHLOROETHYLENE DIBROMOCHLOROMETHANE	NA Ug/L
TRICHLOROETHANE, 1,1,2-	NA
INTOLICONAL (LIMIC) TO TO S.	
CIS-1,3-DICHLORPROPENE	ŅĄ
CHLOROETHYLVINYL ETHER, 2-	NA I
BROMOFORM	NA
TETRACHLOROETHANE, 1,1,2,2-	NA (
TETRACHLOROETHYLENE	0. 12 ug/!
CHLOROBENZENE	NA
	•

Page 5

#### Nermo Analytical Inc. Analytical Report

Project: A48370 Report Date: 10-15-85

Client I.D.: ERG Sample No.:

05

Matrix:

10/160816 GROUND WATER

Result __ Units Parameter DICHLOROBENZENE, 1,3-DICHLOROBENZENE, 1,2-DICHLOROBENZENE, 1,4-NA NA

Comments: 1,1-DICHLORDETHANE AND CHLOROFORM COELUTE. RESULTS COULD BE EITHER ONE OR BOTH ANALYTES. BROMODICHLOROETHANE AND TETRACHLOROETHYL-ENE COELUTE. RESULTS COULD BE ONE OR BOTH ANALYTES. 1 1 1-TRICHLOROETHANE AND TRICHLOROETHYLENE COELUTE. RESULTS COULD BE EITHER ONE OR BOTH ANALYTES.

Client I.D.: ERG Sample No. :

10/160817 GROUND WATER

Matrix:	GROUND WAIER		
		Result	Units
		NA NA NA	
		NA NA NA	
		NA NA NA	
NE '		NA NA NA	
<b>E</b>		NA NA NA	
YLENE		NA NA NA	
1-		NA NA NA	
PENE		NA NA NA	
<b>2</b> -		ND (0.12) NA NA	ug/L
E R, 2-		NA NA NA	
	NE E T YLENE 1- PENE 2-	NE E YLENE 1- PENE R-	Result  NA NA NA NA NA NA NA NA NA NA NA NA NA

Page 6

See last page for explanation of symbols.

### Thermo Analytical Inc. Analytical Report Project: A4837C Report Date: 10:15-86

Client I.D.: 06 ERG Sample No.: 10/160817 Matrix: GROUND WATER

Parameter	Result Units
TETRACHLORGETHANE, 1,1,2,2-	NA
TETRACHLORGETHYLENE	NA
CHLOROBENZENE	NA
DICHLOROBENZENE, 1,3-	NA
DICHLOROBENZENE, 1,2-	NA
DICHLOROBENZENE, 1,4-	NA

Comments: 1,1,1-TRICHLORDETHANE AND TRICHLORDETHY-LENE COELUTE. RESULTS COULD BE EITHER ONE OR BOTH ANALYTES.

SD-Sample damaged FR-See field report for result SR-See attached report NA-Result not applicable to test ND-Nondetected, Detection limit in () <-Positive result at an unquantifiable concentration below indicated level

Thank you for your business.

Page 7

Last Page

TMA ERG

Thermo Analytical Inc. Analytical Report Report Date: 10-15-86

117 N. FIRST ANN ARBOR, MICHIGAN 48104 (313) 662-3104

Client P.O. Report: CONTRACT 22006

Samples Recvd: 10-03-86 Refer Questions To: JOE HNATOW

Client

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION APPROVED: MC LEAN, VA 22102

Residual Samples Will Be Held TWO WEEKS ***

Client I.D.: 07 ERG Sample No.: 10/160809 Matrix: GROUND WATER

<u>Parameter</u>	<u>Result Units</u>
PURGEABLE AROMATICS  BENZENE  DICHLOROBENZENE, 1,2-  DICHLOROBENZENE, 1,3-	NA NA NA
DICHLOROBENZENE, 1,4-	NA
ETHYLBENZENE	NA
TOLUENE	NA
CHLOROBENZENE PURGEABLES, 601 CHLOROMETHANE BROMOMETHANE	NA NA NA
DICHLORODIFLUOROMETHANE	NA
VINYL CHLORIDE	NA
CHLOROETHANE	NA
METHYLENE CHLORIDE	NA
TRICHLOROFLUOROMETHANE	NA
DICHLOROETHYLENE, 1,1-	NA
DICHLORDETHANE, 1,1-	NA
TRANS-1,2-DICHLORDETHYLENE	NA
CHLOROFORM	NA
DICHLORETHANE, 1,2-	NA
TRICHLOROETHANE, 1,1,1-	NA
CARBON TETRACHLORIDE	NA
BROMODICHLOROMETHANE	NA
DICHLOROPROPANE, 1,2-	NA
TRANS-1,3-DICHLOROPROPENE	NA
TRICHLOROETHYLENE	0.27 ug/L
DIBROMOCHLOROMETHANE	NA
TRICHLOROETHANE, 1,1,2-	NA
CIS-1,3~DICHLORPROPENE	NA
CHLORDETHYLVINYL ETHER, 2-	NA
BROMOFORM	NA
TETRACHLOROETHANE, 1,1,2,2-	NA
TETRACHLOROETHYLENE	NA
CHLOROBENZENE	NA

#### Thermo Analytical Inc. Analytical Report

Project: A48490 Report Date: 10-15-86

Client I.D.: 07 ERG Sample No.: 10/160809

Matrix:

GROUND WATER

Result Units Parameter DICHLOROBENZENE, 1,3-DICHLOROBENZENE, 1,2-DICHLOROBENZENE, 1,4-NA NA NA

Comments: 1,1,1-TRICHLOROETHANE AND TRICHLOROOETH-YLENE COELUTE. RESULTS COULD BE EITHER ONE OR BOTH ANALYTES.

Client I.D.: 08 ERG Sample No.: 10/160810 Matris: GROUND WATER

Parameter	Result Units
PURGEABLE AROMATICS BENZENE	NA NA
DICHLOROBENZENE, 1,2- DICHLOROBENZENE, 1,3-	NA NA
DICHLOROBENZENE, 1,4- ETHYLBENZENE	NA NA
TOLUENE CHLOROBENZENE	NA NA
PURGEABLES, 601 CHLGROMETHANE BROMOMETHANE	NA NA
DICHLORODIFLUOROMETHANE	NA .
VINYL CHLORIDE Chloroethane	NA NA
METHYLENE CHLORIDE TRICHLOROFLUOROMETHANE	NA NA
DICHLOROETHYLENE, 1,1-	NA NA
DICHLOROETHANE, 1,1- TRANS-1,2-DICHLOROETHYLEME CHLOROFORM	NA NA
DICHLORETHANE, 1,2- TRICHLOROETHANE, 1,1,1-	NA NA
CARBON TETRACHLORIDE	NA NA
BROMODICHLOROMETHANE DICHLOROPROPANE, 1,2- TRANS-1,3-DICHLOROPROPENE	NA NA
TRICHLOROETHYLENE DIBROMOCHLOROMETHANE	0.60 ug/L <b>NA</b>
TRICHLOROETHANE, 1,1,2-	NA NA
CIS-1,3-DICHLORPROPENE CHLOROETHYLVINYL ETHER, 2- BROMOFORM	NA NA
TETRACHLOROETHANE, 1,1,2,2- TETRACHLOROETHYLENE	NA NA
CHLOROBENZENE	NA (

See last page for explanation of symbols. Page 2

#### Thermo Analytical Inc. Analytical Report Report Date: 10-15-86

A48490 Project:

Client I.D.: 08 ERG Sample No.: 10/160810 GROUND WATER

DICHLOROBENZENE, 1,3-DICHLOROBENZENE, 1,2-DICHLOROBENZENE, 1,4-

Parameter

Result Units NA

NA NA

Comments: 1,1,1-TRICHLOROETHANE AND TRICHLOROETHY-LENE COELUTE. RESULTS COULD BE EITHER ONE OR BOTH ANALYTES.

Client I.D.:

ERG Sample No.: 10/160811 Matrix: GROUND WA

GROUND WATER

Parameter	Result Units
PURGEABLE AROMATICS BENZENE DICHLOROBENZENE, 1,2- DICHLOROBENZENE, 1,3-	ND (0.20) ug/L NA NA
DICHLOROBENZENE, 1,4-	NA
ETHYLBENZENE	NA
TOLUENE	NA
CHLOROBENZENE PURGEABLES, 601 CHLOROMETHANE BROMOMETHANE	NA NA NA
DICHLORODIFLUOROMETHANE	NA
VINYL CHLORIDE	NA
CHLOROETHANE	NA
METHYLENE CHLORIDE	NA
TRICHLOROFLUOROMETHANE	NA
DICHLOROETHYLENE, 1,1-	NA
DICHLORDETHAME, 1,1-	NA
TRANS-1,2-DICHLORDETHYLEME	NA
CHLORDFORM	NA
DICHLORETHANE, 1,2-	NA
TRICHLOROETHANE, 1,1,1-	NA
CARBON TETRACHLORIDE	NA
BROMODICHLOROMETHANE	NA
DICHLOROPROPANE, 1,2-	NA
TRANS-1,3-DICHLOROPROPENE	NA
TRICHLOROETHYLEME	NA
DIBROMOCHLOROMETHANE	NA
TRICHLOROETHANE, 1,1,2-	NA
CIS-1,3-DICHLORPROPENE	NA
CHLOROETHYLVINYL ETHER, 2-	NA
BROMOFORM	NA
TETRACHLOROETHANE, 1,1,2,2-	NA
TETRACHLOROETHYLENE	NA
CHLOROBENZENE	NA

Page 3

See last page for explanation of symbols.

#### Thermo Analytical Inc. Analytical Report

A48490 Project: Report Date: 10-15-86

Client I.D.: ERG Sample No.: 10/160811 GROUND WATER Matrix:

Result Units <u>Parameter</u> NA NA NA DICHLOROBENZENE, 1,3-DICHLOROBENZENE, 1,2-DICHLOROBENZENE, 1,4-

SD-Sample damaged FR-See field report for result SR-See attached report NA-Result not applicable to test

1.

Thank you for your business.

Last Page Page 4

Environmental Chemistry Division

SAIC - DIV 835/0EHL 8400 NESTPARK Cl ient:

MCCLEAN, VA 22102

FIMAL REPORT

Samples will be held for two weeks

after the report is issued.

Date of Report: 01-may-1987

Attn: PHIL SPOOMER

Project No. : 2-685-06-0624-00

Project Name: MANCOCK AFB Shipment No.:

Release Approval JMSWand 86329010 FS-8-1 * 86329009 FS-A-4 SOIL 86329008 FS-A-3 108 86329007 FS-A-2 108 86329006 FS-A-1 108 Laboratory Identification Client Identification Matrix Type

86329011 FS-B-2 SOIL

UG/KG

1,2,4*TRICHALGROGENZENE NR NR NR NR NR NR NR NR NR NR NR NR NR	BASE/NEUTRAL AND ACID EXTRACTABLES, PRIORITY PC	RIORITY POLLUTANTS						
		¥	<b>*</b>	<b>%</b>	<b>3</b>	150	Þ	Z.
		¥	<b>±</b>	*	<b>Ξ</b>	300	5	*
		¥	<b>*</b>	*	<b>±</b>	150	5	¥
		<b>#</b>	<b>\$</b>	¥	<b>X</b>	150	<b>5</b>	¥
		¥	#	¥	24	150	5	¥
		¥	#	#	~	150	>	¥
		¥	¥	¥	£	150	2	**
1012 1012 1013 1014 1015 1016 1017 1018 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019		<b>X</b>	¥	<b>%</b>	3	150	b	æ
		<b>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</b>	<b>\(\vec{\pi}\)</b>	#	3	1012	<b>5</b>	M.
## 300 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ## 500 ##		¥	¥	*	#	300	<b>5</b>	*
## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ##		¥	¥	*	<b>#</b>	300	5	¥
150		£	¥	#	<b>X</b>	150	>	Z.
## 450 ## 450 ## 450 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150 ## 150		Ħ	<b>¥</b>	*	<b>X</b>	150	<b>5</b>	¥
## 300 ## 1500 ## ## 1500 ## ## 1500 ## ## 1500 ## ## 1500 ## ## 1500 ## ## 1500 ## ## 1500 ## ## 1500 ## ## 1500 ## ## 1500		¥	¥	¥	3	450	2	¥
## 1500 ## ## 1500 ## ## 1500 ## ## 1500 ## ## 1500 ## ## 1500 ## ## 1500 ## ## 1500 ## ## 1500 ## ## 1500		¥	¥	<b>*</b>	<b>3</b>	300	J	<b>X</b>
HA HA HA HA HA HA HA HA HA HA HA HA HA H	ಕ	¥	<b>±</b>	*	<b>X</b>	1500	<b>-</b>	<b>¥</b>
1.50		¥	<b>Ξ</b>	*	*	150	>	¥
150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   15		¥	¥	*	<b>*</b>	730	<b>5</b>	<b>¥</b>
A A A A A A A A A A A A A A A A A A A	HER	¥	¥	<b>±</b>	<b>X</b>	150	>	¥
		¥	<b>¥</b>	¥	<b>5</b>	ĸ	Þ	×
## ## ## ## ## ##		¥	Œ	<b>s</b>	22	ĸ	2	<b>X</b>
		æ	<b>X</b>	<b>\$</b>	22	ĸ	<b>5</b>	*
		<b>X</b>	<b>2</b>	#	22	ĸ	<b>ɔ</b>	<b>X</b>

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 1

Date of Report: 01-may-1987

		FIMAL	FINAL REPORT				
Laboratory Identification	86329006	86329007	86329008	86329009	86329010	010	86329011
Client Identification	FS-A-1	FS-A-2	FS-A-3	FS-A-4	FS-8-1 *	*-	FS-8-2
Matrix Type	1103	7105	1108	1108	SOIL		1108
DENZ101WE	£	¥	<b>88</b>	<b>4</b>	1125		<b>%</b>
BENZO(A)ANTHRACENE	#	#	Œ	Œ	150	<b>-</b>	3
BENZO(A)PYRENE	<b>±</b>	#	Œ	#	ĸ	<b>-</b>	æ
BENZO(B)FLUORANTHENE	<b>±</b>	<b>±</b>	Œ	æ	ĸ	<b>¬</b>	S.S.
BENZO(G, H, I )PERYLENE	#	<b>£</b>	#	#	150	<b>¬</b>	<b>X</b>
BENZO(K)FLUORANTHENE	¥	<b>3</b>	¥	¥	ĸ	<b>5</b>	<b>X</b>
BENZYL BUTYL PHTNALATE	#	*	¥	¥	150	<b>5</b>	<b>3</b>
BIS(2-CHLOROETHOXY)METHAME	#	£	<b>X</b>	<b>±</b>	150	)	6 <u>.</u>
BIS(2-CM.OROETHYL)ETMER	*	#	¥	¥	150	>	<b>E</b>
BIS(2-CM.OROISOPROPYL)ETMER	*	¥	<b>£</b>	#	150	>	¥
BIS(2-ETHYLNEXYL)PHTMALATE	*	#	¥	¥	150	>	<b>£</b>
CHRYSENE	<b>X</b>	#	¥	¥	ĸ	5	¥
DI-N-BUTYL PHTNALATE	*	*	¥	<b>3</b>	8	<b>5</b>	<b>4</b>
DI-M-OCTYL PHTHALATE	*	¥	<b>£</b>	*	110		¥
DIBENZO(A, H)ANTHRACENE	¥	Ħ	<b>£</b>	#	ĸ	<b>5</b>	¥
DIETHYL PHTHALATE	<b>±</b>	<b>%</b>	#	¥	ĸ	<b>-</b>	Œ
DIMETHYL PHTHALATE	*	¥	*	¥	ĸ	<b>-</b>	æ
FLUOREME	*	¥	#	#	ĸ	>	æ
FLUCROANTHENE	*	¥	#	¥	ĸ	>	<b>X</b>
HEXACM.OROBENZENE	<b>*</b>	<b>S</b>	#	¥	150	<b>၁</b>	<b>%</b>
MEXACINLOROBUTAD 1 ENE	*	¥	<b>#</b>	2	150	<b>-</b>	#
MEXACIAL OROCYCL OPENT AD 1 EME	*	<b>£</b>	¥	*	750	<b>-</b>	<b>X</b>
HEXACHLOROETHAME	*	*	<b>*</b>	¥	300	<b>&gt;</b>	¥
INDENO(1,2,3-C,D)PYRENE	¥	<b>*</b>	#	¥	ĸ	<b>-</b>	#
I SOPHORONE	*	#	#	#	150	<b>-</b>	æ
N-HITROSODIPHENYLANINE	*	•	¥	*	150	<b>&gt;</b>	<b>X</b>
N-NITROSCO I PROPYLANI WE	*	*	¥	=	750	>	¥
MAPHTMALENE	¥	*	¥	¥	ĸ	<b>-</b>	<b>Ξ</b>
MITROBENZEWE	¥	¥	#	¥	300	<b>¬</b>	æ
PENTACHLOROPHENOL	<b>*</b>	¥	<b>E</b>	æ	230	<b>ɔ</b>	<b>~</b>

82

Oter Commence of the Party that Comment.

## Science Applications International Corporation Environmental Chemistry Division

Project No.: 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.: 1

Date of Report: 29-May-1967

		FINAL	FINAL REPORT				:
Laboratory Identification	90062599	86329007	86329008	86329009	86329010	86329011	
Client Identification	FS-A-1	FS-A-2	FS-A-3	FS-A-4	FS-B-1*	FS-8-2	
Matrix Type	<b>30</b> 11	2011	1105	1108	1105	1105	
PWENANTWEWE	<b>*</b>	<b>3</b>			<b>K</b>	9	:
PHENOL	*	<b>3</b>	<b>£</b>	<b>#</b>	150 U	<b>*</b>	
PYREWE	<b>±</b>	¥	<b>*</b>	<b>Z</b>	K	<b>£</b>	
	OG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	
VOLATILES, PRICRITY POLLUTANTS							
1,1,1-TRICHLOROETHAME	1.9 C	1.9 L	1.9 U	1.9 U	1.9 U	1.9	
1,1,2,2-TETRACHLOROETHANE	3.4 U	3.4 U	3.4 0	3.4	3.4 U	3.4 U	
1,1,2-TRICHLOROETHAME	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	
1,1-DICHLOROETHANE	2.4 U	2.4 U	2.4 U	2.4 U	2.4 U	2.4 U	
1, 1-DICHLOROETMENE	1.4 U	1.4 U	1.4 U	1.4 C	1.4 U	1.4 0	
1,2-DICHLORGETHAME	1.4 0	1.4 U	1.4 0	1.4 0	1.4 U	1.4 U	
1,2-DICHLOROPROPANE	3.0 u	3.0 0	3.0 0	3.0 0	3.0 0	3.0 0	
2-CHLOROETHYL VINYL ETHER	5.0 c	5.0 U	5.0 U	5.0 C	5.0 U	5.0 U	
BENZENE	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	
BRONDD I CHLORONET NAME	1.1 5	1.1 u	1.1	1.1 0	1.1	1.1	
BROYDFORM	2.4 U	2.4 U	2.4 U	2.4 U	2.4 U	2.4 U	
BRONCHETINAME	6.0 U	6.0 U	0.9	0.9	0.9	6.0 U	
CARBON TETRACALORIDE	1.4 U	1.4 U	1.4 U	1.4 C	1.4 U	1.4 U	
CHLOROBENZENE	3.0 U	3.0 ∪	3.0 U	3.0 0	3.0 0	3.0 U	
CHLOROD I BROYCHE THANE	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	
CHLOROETHANE	2.6 U	2.6 ∪	2.6 U	2.6 U	2.6 U	2.6 U	
CHLOROFORM	0.80 U	0.80 u	0.00 U	0.80 U	0.80 U	0.80 U	
CHLORONETHAME	O.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	
CIS-1,3-)ICHLOROPROPENE	1.0 c	1.0 U	1.0 U	1.0 U	1.0 U	1.0 L	
ETHYL BENZENE	3.6 U	3.6 U	3.6 U	3.6 U	3.6 υ	3.6 U	
METHYLENE CULORIDE	1.4 U	1.4	1.4 U	1.4 U	1.4 U	1.4 U	
TETRACULOROETHEME	2.0 U	2.0 U	2.0 U	2.0 ∪	2.0 U	2.0 U	
TOLUENE	3.0 U	3.0 ∪	3.0 U	3.0 U	3.0 U	3.0 U	
TRANS-1,2-DICHLORGETHENE	0.80 0	0.80 U	o.80 u	0.80 U	0.80 U	0.80 U	
TRANS-1, 3-DICHLOROPROPENE	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	

Science Applications International Corporation Environmental Chemistry Division

Project No.: 2-885-06-0624-00
Project Name: MANCOCX AFB
Shipment No.: 1

				FINAL REPORT	REPORT						
Laboratory Identification	86329006	*	86329007	202	86329008	8	86329009	8	86329010	5	86329011
Client Identification	FS-A-1		FS-A-2	•	FS-A-3		FS-A-4		FS-8-1*		FS-8-2
Matrix Type	1108		201		108		108		1108		<b>301</b> L
TRICHLORGETHENE	1.0	<b>-</b>	1.0	<b>-</b>	1.0	<b>5</b>	1.0	>	1.0	<b>-</b>	1.0 U
TR I CHLOROF LUCRONE THANE	2.5	<b>-</b>	2.5	<b>-</b>	2.5	<b>-</b>	2.5	<b>-</b>	2.5	<b>5</b>	2.5 U
VINYL CHLORIDE	0.9	<b>-</b>	0.8	<b>-</b>	0.90 □	<b>-</b>	0.0	>	0.0	<b>-</b>	0.00 c

Date of Report: 29-May-1987

84

Project No.: 2-885-06-0624-00 Project Name: NANCOCK AFB Shipment No.: 1

Shipment No.: 1					Date of Re	Date of Report: 01-may-1987
		FINAL	REPORT			
Laboratory Identification	86329006	86329007	90062599	66329009	86329010	86329011
Client Identification	F8-A-1	FS-A-2	FS-A-3	FS-A-4	FS-8-1#	FS-B-2
Matrix Type	103	1105	1105	18	1105	<u> </u>
	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
LEAD (TOTAL)	8.8	9.1	11	12	9.6	8.6

Science Applications International Corporation Environmental Chemistry Division

Project No.: 2-885-06-0624-00 Project Name: WANCOCK AFB Shipment No.: 1

		FINAL	FINAL REPORT			
Laboratory Identification	86329006	86329007	86329008	86329009	86329010	86329011
Client Identification	FS-A-1	FS-A-2	FS-A-3	FS-A-4	FS-B-1 *	FS-B-2
Matrix Type	<b>201</b> L	2011	1105	10%	1108	SOIL
	•					
	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
PETROLEUM NYDROCARBON - 1R	&	⊃ &	э &	ء ۾	31 0	20 20
	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
MOISTURE, PERCENT	22	72	17	18	22	21

Project No.: 2-865-06-0624-00 Project Name: MANCOCK AFR

AFB	
NAMCOCK	_
E E	# #0.:
roject	hioment

Shipment No.: 1							٩	Date of Report:		01-may-1987	<b>78</b> 7
				FINAL REPORT						ı	
Laboratory Identification	86329012	8632	86329013	5632	<b>2014</b>	86329015	86329016	910	8632	2017	
Client Identification	FS-0-3	FS-C	FS-C-1 *	FS-C	-5*	FS-C-3	FS-D-	*	FS-D	-5*	
Matrix Type	1108	108		198		1105	1103		108	7108	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	* * * * * * * * * * * * * * * * * * *							:	:
		UG/KG	وع	UG/KG	(9		UG/KG		DG/KG	ي	
BASE/MEUTRAL AND ACID EXTRACTABLES, PRIORITY POLLUTANTS	, PRIORITY POLLUTANTS										
1,2,4-TRICHLOROBENZENE	#	150	>	55	>	<b>#</b>	150	<b>-</b>	150	>	
1,2-DICHLOROBENZENE	#	8	<b>၁</b>	300	>	<b>3</b>	300	>	300	<b>-</b>	
1,2-DIPWENYLHYDRAZIWE	¥	5	>	52	>	¥	150	<b>-</b>	150	<b>ɔ</b>	
1,3-DICHLOROBENZEME	<b>3</b>	<b>5</b>	>	55	<b>-</b>	=	150	<b>-</b>	150	∍	
1,4-DICHLOROBENZENE	*	55	>	150	>	¥	150	Þ	150	>	
2,4,6-TRICHLOROPHENOL	<b>*</b>	150	>	150	<b>-</b>	Œ	150	<b>-</b>	150	>	
2,4-DICHLOROPHENOL	£	5	>	150	>	Œ	150	<b>5</b>	150	>	
2,4-DIMETHYLPHENOL	#	<u>5</u>	>	<b>5</b>	>	Œ	150	<b>5</b>	150	>	
2,4-DINITROPHENOL	<b>S</b>	1012	>	1012	>	#	1012	>	1012	>	
2,4-DINITROTOLUENE	<b>£</b>	8	>	30	>	<b>3</b>	300	<b>5</b>	300	<b>¬</b>	
2,6-DINITROTOLUENE	¥	300	>	8	>	#	300	>	300	7	
2-CHLORONAPHTHALENE	<b>X</b>	55	>	₹ \$	>	<b>£</b>	150	Þ	150	>	
2-CHLOROPHENOL	¥	55	>	₹ 2	>	¥	150	<b>-</b>	150	>	
2-NITROPHENOL	<b>%</b>	<b>4</b> 20	>	959	>	#	450	>	450	>	
3,3'-DICHLOROBENZIDEWE	<b>¥</b>	8	>	8	>	<b>¥</b>	90 20 20	>	300	>	
4,6-DINITRO-2-HETHYLPHENOL	<b>%</b>	1500	>	1500	>	¥	1500	2	1500	>	
4-BRONDPHENYL PHENYL ETHER	<b>E</b>	150	>	<b>3</b>	<b>&gt;</b>	<b>£</b>	150	<b>&gt;</b>	150	>	
4-CHLORO-3-METHYLPHENOL	#	ĸ	>	20	>	<b>¥</b>	22	>	230	-	
4-CHLOROPHENYL PHENYL ETHER	<b>£</b>	55	>	150	<b>-</b>	¥	150	>	150	>	
4-NITROPHENOL	#	Ķ	>	£	>	¥	20	>	20	>	
ACEMAPHTHENE	<b>X</b>	ĸ	<b>5</b>	ĸ	>	#	ĸ	<b>-</b>	ĸ	>	
ACENAPHTHYLENE	<b>3</b>	ĸ	>	310		¥	ĸ	<b>¬</b>	ĸ	-	
ANTHRACENE	83	ĸ	>	0 \$2		¥	ĸ	<b>-</b>	ĸ	>	
BENZIDINE	22	1125	>	1125	>	æ	1125	<b>-</b>	1125	=	
BENZO(A)ANTHRACENE	<b>3</b>	150	>	8		<b>3</b>	150	>	150	-	
BENZO(A)PYRENE	22	8		240		#	ĸ	<b>-</b>	110		
BENZO(B)FLUORANTHEME	<b>M</b>	ĸ	>	330		<b>X</b>	ĸ	<b>¬</b>	110		

Project No. : 2-885-06-0624-00 Project Name: MANCOCK AFB

MANCHA	-
בים שבים	Shipment No.:

			FINAL REPORT				
Laboratory Identification	86329012	86329013		86329015	86329016	86329017	210
Client Identification	FS-B-3	FS-C-1 *		FS-C-3	FS-0-1 *	FS-0-5#	2*
Matrix Type	1108	103	7105	1105	7108	7108	
BENZO(G, H, I)PERYLENE	#	150 U	230	¥	150 U	150	<b>-</b>
BENZO(K) FLUORANTNENE	#	210	390	<b>E</b>	ĸ	ĸ	<b>ɔ</b>
BENZYL BUTYL PHTHALATE	<b>±</b>	150 U	150 U	<b>=</b>	150 U	150	<b>-</b>
BIS(2-CHLORGETHOXY)METHANE	<b>±</b>	150 U	150 U	<b>#</b>	150 U	150	>
BIS(2-CHLORGETHYL)ETHER	¥	150 U	150 U	<b>X</b>	150 U	150	<b>-</b>
BIS(2-CHLOROISOPROPYL)ETHER	¥	150 u	150 U	#	150 U	150	<b>5</b>
BIS(2-ETHYLMEXYL)PHINALATE	#	150 U	\$	#	150 U	150	<b>ɔ</b>
CHRYSEME	<b>%</b>	110	250	æ	ĸ	ĸ	>
DI-N-BUTYL PHTHALATE	<b>E</b>	\$	110	£	9	140	
DI-N-OCTYL PHINALATE	¥	ĸ	ĸ		1500	ĸ	Þ
DIBENZO(A, N)ANTHRACENE	#	ĸ	ĸ	#	ĸ	ĸ	<b>5</b>
DIETHYL PHTHALATE	Œ	ζ.	s	#	ĸ	ĸ	)
DINETHYL PHTMALATE	<b>¥</b>	ĸ	S	*	ĸ	ĸ	<b>¬</b>
FLUOREME	¥	ĸ	ĸ	<b>X</b>	ĸ	ĸ	Þ
FLUDROANTHEWE	<b>E</b>	<b>3</b> 5	1700	¥	ع بر	270	
MEXACML OROBENZENE	<b>3</b>	150 U	150 U	æ	150 U	150	<b>5</b>
MEXACAL OROBUTAD I EME	<b>E</b>	150 U	150 U	<b>X</b>	150 U	150	<b>¬</b>
MEXACULOROCYCLOPENTAD I EME	¥	300	750	W.	750 C	750	<b>5</b>
MEXACHLOROETHAME	¥	300	300	#	300 u	300	<b>-</b>
INDENO(1,2,3-C,D)PYRENE	<b>%</b>	ĸ	210	<b>X</b>	ĸ	ĸ	<b>-</b>
ISOPHORONE	¥	150 U	150 U	<b>X</b>	150 u	150	<b>-</b>
N-MITROSODIPHENYLAMINE	<b>%</b>	150 U	150 u	#	150 u	150	<b>၁</b>
M-NITROSOD I PROPYLAMI NE	¥	2 82 82	730 c	2	J 052	250	<b>5</b>
HAPHTHALENE	<b>E</b>	ĸ	S	¥	ĸ	ĸ	<b>&gt;</b>
MITROBENZENE	<b>%</b>	300 1	300	¥	300 U	300	<b>-</b>
PENTACHLOROPHENOL	<b>E</b>	2002	750 C	<b>X</b>	J 052	750	2
PHENANTHRENE	**	ĸ	620	æ	ĸ	ĸ	5
PHENOL	Œ	150 U	150 U	W.	150 U	150	<b>-</b>
PYRENE	æ	120	1100	<b>X</b>	ĸ	<b>18</b> 0	

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 1

Date of Report: 01-may-1967

			FINAL REPORT			
Laboratory Identification	86329012	86329013	71062599	86329015	86329016	2002598
Client Identification	fS-B-3	FS-C-1*	FS-C-2 *	FS-C-3	FS-0-1 *	FS-0-24
Matrix Type	1108	1105	1105	7108	1108	1105
	• • • • • • • • • • • • • • • • • • •		•			
	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
VOLATILES, PRIORITY POLLUTANTS						
1,1,1-TRICHLOROETHANE	1.9 U	1.9 C	1.9 U	1.9 U	1.9 U	1.9 U
1,1,2,2-TETRACHLOROETHAME	3.4 C	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U
1,1,2-TRICHLOROETHANE	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
1,1-DICKLOROETMANE	2.4 U	2.4 U	2.4 U	2.4 U	2.4 U	2.4 U
1,1-DICHLOROETMENE	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
1,2-DICHLOROETHANE	1.4 0	1.4 U	1.4 0	1.4 U	1.4 U	1.4 U
1,2-DICHLOROPROPANE	3.0 0.	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U
2-CHLOROETHYL VINYL ETHER	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
BENZENE	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U
BRONCO I CHLOROME THANE	1.1 u	1.1 C	J.1 C	1.1	1.1 c	J
BRONDFORM	2.4 U	2.4 U	2.4 U	2.4 U	2.4 U	2.4 U
BRONONETMANE	9.0 u	9.0°	0.9	6.0 U	6.0 U	0.9
CARBON TETRACHLORIDE	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	J. 4. U
CHLOROBENZENE	3.0 ∪	3.0 U	3.0 U	3.0 ∪	3.0 U	3.0 0
CHLOROD I BRONONET NAME	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
CHLOROETMANE	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U
СИГОВОРОВИ	0.80 c	0.80 u	0.80 U	0.80 U	0.80 U	0.80 0
CMLOROMET NAME	0.40 u	0.40	0.40 U	0.40 U	0.40 U	0.40 U
CIS-1,3-DICHLOROPROPENE	J.0 U	1.0 C	1.0 U	1.0 U	1.0 U	1.0 U
ETHYL DENZEME	3.6 ∪	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U
METHYLEME CHLORIDE	1.4 U	1.4 C	1.4 0	1.4 U	1.4 U	1.4 U
TETRACALOROETHENE	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
TOLUENE	3.0 U	3.0 U	3.0 ∪	3.0 U	3.0 ∪	3.0 U
TRANS-1,2-DICHLOROETHENE	0.80 u	0.80 U	0.80 U	0.80 ∪	0.80 u	0.80 U
TRANS-1,3-DICHLOROPROPENE	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
TRICHLOROETHENE	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
TRICHLOROFLUOROMETHANE	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U

•

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00 Project Name: NANCOCK AFB

Shipment No.:

		FINAL	FINAL REPORT			
Laboratory Identification	86329012	86329013	86329014	86329015	86329016	86329017
Client Identification	FS-B-3	FS-C-1*	FS-C-2 *	FS-C-3	FS-0-1*	FS-0-5*
Matrix Type	<b>301</b> F	1105	2011	2011	7108	1103
VINYL CHLORIDE	0.90 u	0.90 u	0.90 U	0.90 U	0.90 U	0.90 u
	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
LEAD (TOTAL)	1.1	=======================================	7	6.9	11	15

Project No.: 2-885-06-0624-00 Project Name: NANCOCK AFB Shipment No.: 1

and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t		FINAL	L REPORT		Date of Report: 01-may-1987	: 01-may-1987
Client Identification 6329012 Client Identification FS-8-3 Matrix Type SOIL	86329012 FS-8-3 SOIL	86329013 FS·C·1 * SOIL	86329014 FS-C-2* S01L	86329015 FS-C-3 SOIL	66329016 FS-D-1# SOIL	86329017 FS-0-2* S01L
PETROLEUM NYDROCARBON - IR MOISTURE, PERCENT	MG/KG 33 U PERCENT 25	MG/KG 27 U Percent 21	MG/KG 250 PERCENT 18	MG/KG 30 U PERCENT 20	MG/KG 26 U PERCENT 5.5	MG/KG 130 PERCENT 35

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 1

Shipment No.:

			FINAL REPORT	EPORT						
Laboratory Identification	86329018	86329019	19	86329	020	86329021	86329	220	8632	9023
Client Identification	FS-0-3	FS-E-1	*	FS-E-2 #	2 *	fS-E-3	FS-F-14	¥	FS-F	FS-F-2 *
Matrix Type	1108	2011		108		1105	108		1105	
		חפיאנפ		ng/kg			ne/ka		ng/kg	g
BASE/WEUTRAL AND ACID EXTRACTABLES. PRIORITY POLLUTANT	PRIORITY POLLUTANTS									!
1,2,4-TRICHLOROBENZENE		150	<b>-</b>	150	>	£	150	>	150	<b>-</b>
1,2-DICHLOROBENZENE	¥	30	<b>-</b>	300	>	¥	200	<b>-</b>	300	<b>&gt;</b>
1,2-DIPHENYLHYDRAZINE	¥	150	<b>-</b>	<b>5</b>	3	¥	150	<b>ɔ</b>	150	>
1,3-DICHLOROBENZENE	<b>%</b>	150	<b>-</b>	<u>\$</u>	>	<b>3</b>	55	<b>၁</b>	150	)
1,4-DICHLOROBENZENE	¥	150	<b>-</b>	55	>	#	5	<b>-</b>	150	_
2,4,6-TRICHLOROPHENOL	¥	150	<b>-</b>	150	>	2	150	>	150	2
2,4-DICHLOROPHENOL	¥	150	2	150	>	## ##	150	>	150	>
2,4-DIMETNYLPHENOL	¥	150	<b>-</b>	5	-	<b>4</b>	150	>	150	>
2,4-DINITROPHENOL	<b>%</b>	1012	<b>-</b>	1012	>	ä	1012	>	1012	>
2,4-DINITROTOLUENE	<b>%</b>	38	<b>-</b>	300	>	¥	8	>	300	>
2,6-DINITROTOLUENE	¥	8	<b>-</b>	<b>9</b>	>	<b>*</b>	8	>	200	>
2-CHLORONAPHTHALENE	¥	150	<b>-</b>	<del>5</del>	>	#	150	>	150	>
2-CHLOROPHENOL	<b>£</b>	150	<b>-</b>	<del>2</del>	>	¥	<u>\$</u>	>	150	2
2-NITROPHENOL	¥	420	>	95,	>	<b>Ξ</b>	959	>	450	2
3,3'-DICHLOROBENZIDENE	¥	300	>	8	-	<b>¥</b>	옭	>	300	<b>&gt;</b>
4,6-DINITRO-2-METHYLPHENOL	¥	1500	>	1500	>	¥	500	>	1500	2
4-BRONDPHENYL PHENYL ETHER	¥	150	>	55	>	¥	<b>₹</b>	<b>5</b>	150	7
4-CHLORO-3-METHYLPHENOL	<b>¥</b>	730	<b>-</b>	ĸ	>	#	20	>	ĸ	<b>-</b>
4-CHLOROPHENYL PHENYL ETHER	¥	150	<b>-</b>	150	<b>-</b>	£	150	>	150	<b>-</b>
4-NITROPHENOL	Œ	20	<b>-</b>	Š.	>	Œ	ĸ	>	200	_
ACENAPHTHENE	Œ	ĸ	<b>5</b>	ĸ	>	<b>£</b>	28		029	
ACENAPHTHYLENE	<b>¥</b>	ĸ	<b>-</b>	450		<b>\$</b>	ĸ	>	3	
ANTWRACENE	¥	ĸ	<b>-</b>	140		¥	29		3200	
DENZ101WE	<b>£</b>	1125	<b>-</b>	1125	>	Œ	1125	<b>၁</b>	1125	<b>-</b>
BENZO(A)ANTHRACENE	<b>£</b>	150	<b>5</b>	<b>\$</b>		¥	900		200	
BENZO(A)PYRENE	<b>£</b>	ĸ	<b>5</b>	450		<b>*</b>	1300		200	
BENZO(8) FLUORANTHENE	<b>3</b>	ĸ	<b>-</b>	087		<b>¥</b>	<b>6</b>		9	

## Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.: 1

Date of Report: 01-may-1987

FS-F-2* 86329023 10S 등 등 등 \$ 2,00 ₹ \$ ĸ 300 ₹ 3 3 fS-f-1 * 86329022 8 8 3 ß 3 55 5 8 8 8 충 \$ 8 86329021 FS-E-3 FS-E-2 # 86329020 3 K K K K K K 🖁 🕏 3 2 3 22 충 충 FINAL REPORT 86329019 FS-E- 14 100 ₹ ₹ ₹ **8** ĸ 캸 충 ž K **3 K K K K K K K** 86329018 FS-0-3 텷 DIS(2-CHLOROISOPROPYL)ETHER BIS(2-ETHYLMEXYL)PHIHALATE 31S(2-CHLOROETHOXY)METHANE Laboratory Identification HEXACIAL DROCYCL OPENTAD I ENE BIS(2-CALOROETHYL)ETHER NDENO(1,2,3-C,D)PVRENE JENZYL BUTYL PHTHALATE H-WITROSODIPHENYLANINE DIBENZO(A, H)ANTINRACENE Client Identification H-HITROSODIPROPYLAMINE KENZO(K)FLUDRANTHENE DI-M-OCTYL PHTMALATE DI-N-BUTYL PHTHALATE BENZO(G, N, I )PERYLENE NEXACIN, OROBUTAD I EINE DIMETHYL PHIMALATE DIETHYL PHTHALATE HEXACIAL OROBERIZENE PENTACINE OROPHENOL NEXACIAL DROETINAME FLUOROANTHENE **11 TROBENZENE** PIEMANTMENE NAPHTHALENE Matrix Type SOPINORONE FLUORENE CHRYSENE

2-885-06-0624-00	NANCOCK AFB
#o. ::	Neme:
Project	<b>Project</b>

NANCOCK AFB	-
Project Name:	Shipment No.:
_	

		FINAL	FINAL REPORT			•
Laboratory Identification Client Identification	86329018 FS-0-3	86329019 FS-E-1 #	86329020 FS-E-2 #	86329021 FS-E-3	86329022 FS-F-1*	86329023 FS-F-#
Matrix Type	1105	1108	1108	1105	1105	1105
	* * * * * * * * * * * * * * * * * * *					
	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
LEAD (TOTAL)	120	12	61	51	==	12

Project No.: 2-885-06-0624-00
Project Name: WANCOCK AFB
Shipment No.: 1

		FINAL	FINAL REPORT			
Laboratory Identification	86329018	86329019	86329020	86329021	86329022	86329023
Client Identification	FS-0-3	FS-E-1 *	FS-E-2 *	FS-E-3	FS-F-1*	FS-F-2 *
Matrix Type	<b>30</b> [1	1105	1105	2011	108	1105
	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
PETROLEUM NYDROCARBON - IR	2300	31 C	510	97	120	551
	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
MOISTURE, PERCENT	27	R	2	21	13	15

Project No.: 2-885-06-0624-00
Project Name: NANCOCK AFB
Shipment No.: 1

Shipment No.: 1							Date of Rep	Date of Report: 01-may-1967
			FINAL REPORT	REPORT				
Laboratory Identification	86329024	86329025	9025	86329026	026	86329028	86329029	86329030
Client Identification	fs-f-3	FS-G-1 *	* -	FS-G-	FS-G-1 DUP	FS-G-2	FS-G-3	FS-#-1
Matrix Type	1108	SOIL		110s		7108	1106	1108
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
		UG/KG	-	UG/KG				
BASE/NEUTRAL AND ACID EXTRACTABLES, PRIGRITY POLLUTANTS	PRICEITY POLLUTANTS							
1, 2,4-TRICHLOROBENZEME	£	150	2	150	<b>-</b>	¥	Œ	<b>£</b>
1,2-DICHLOROBENZEME	#	30	<b>-</b>	30	>	¥	¥	#
1,2-DIPWENYLNYDRAZINE	¥	150	>	5	2	¥	¥	¥
1,3-DICHLOROBENZEME	#	150	<b>-</b>	150	<b>5</b>	æ	#	¥
1,4-DICHLOROBENZENE	<b>E</b>	150	>	150	>	<b>M</b>	¥	¥
2,4,6-TRICHLOROPHENOL	¥	150	>	150	Þ	<b>X</b>	¥	¥
2,4-DICHLOROPHENOL	#	150	>	150	>	<b>3</b>	£	<b>3</b>
2,4-DIMETHYLPHENOL	<b>±</b>	150	>	150	>	22	¥	¥
2,4-DINITROPHENOL	<b>±</b>	1012	_	1012	<b>5</b>	¥	¥	¥
2,4-DINITROTOLUENE	¥	300	>	300	<b>-</b>	¥	¥	<b>3</b>
2,6-DINITROTOLUENE	¥	300	>	300	<b>-</b>	¥	<b>X</b>	¥
2-CHLOROMAPHTMALENE	¥	150	>	150	<b>-</b>	æ	<b>%</b>	<b>%</b>
2-CHLOROPHENOL	¥	150	>	<u>5</u>	>	¥	¥	<b>¥</b>
2-HITROPHENOL	¥	450	>	450	<b>-</b>	æ	¥	¥
3,3DICHLOROBENZIDENE	¥	8	-	90	<b>5</b>	æ	¥	¥
4,6-DINITRO-2-WETHYLPHENOL	<b>¥</b>	1500	<b>-</b>	1500	<b>-</b>	<b>%</b>	¥	<b>*</b>
4-BRONDPHENYL PHENYL ETHER	¥	150	>	55	<b>-</b>	æ	¥	¥
4-CHLORO-3-NETHYLPHENOL	*	230	>	ķ	<b>5</b>	æ	¥	#
4-CHLOROPHENYL PHENYL ETHER	*	150	>	55	<b>-</b>	æ	<b>±</b>	<b>£</b>
4-HITROPHENOL	#	20	>	ĸ	<b>-</b>	M	<b>%</b>	¥
ACENAPHTHEME	<b>X</b>	ĸ	<b>-</b>	ĸ	>	<b>X</b>	<b>£</b>	<b>*</b>
ACEMAPHTWYLENE	#	ĸ	>	ĸ	>	æ	¥	¥
ANTHRACEINE	¥	ĸ	>	ĸ	>	<b>X</b>	¥	#
DENZIOINE	<b>±</b>	1125	>	1125	<b>ɔ</b>	¥	<b>3</b>	¥
BENZO(A)ANTMRACENE	<b>3</b>	410		200		æ	*	<b>¥</b>
BEN2O(A)PYRENE	#	077		450		æ	<b>%</b>	篕
DENZO(B) FLUORANT MEME	<b>±</b>	ĸ	>	340		<b>E</b>	<b>4</b> 2	<b>~</b>

Comment of the party this port.

# Science Applications International Corporation Environmental Chemistry Division

Project No.: 2-885-06-0624-00 Project Name: WANCOCK AFB

Shipment No.: 1

			FINAL REPORT	<b>Q</b>				
Laboratory Identification	86329024	86329025	<b>1</b> 21	863290	920	86329028	86329029	86329030
Client Identification	FS-F-3	FS-G-1*	*	FS-G-1	3	FS-G-2	FS-G-3	FS-N-1
Matrix Type	1105	1105		2011		1105	1105	2011
BENZO(G, N, 1)PERYLENE	**************************************	952	: : : : : :	<u>\$</u>	• • • • • • •	£	¥	¥
BENZO(K) FLUORANT NEWE	#	200		380		#	¥	¥
BENZYL BUTYL PHINALATE	#	150	<b>-</b>	150	<b>-</b>	#	¥	<b>±</b>
BIS(2-CHLOROETHOXY)METHAME	#	150	5	150	<b>-</b>	¥	¥	s
BIS(2-CHLOROETHYL)ETHER	#	150	2	150	9	£	9	¥
BIS(2-CM.CROISOPROPYL)ETHER	#	150	<b>-</b>	150	>	¥	¥	¥
BIS(2-ETHYLNEXYL)PHTHALATE	#	150	<b>-</b>	310		¥	Ĩ	¥
CHRYSENE	•	1000		929		¥	<b>±</b>	¥
DI-N-BUTYL PHTMALATE	*	3	>	8	>	<b>£</b>	<b>\$</b>	#
DI-N-OCTYL PHINALATE	*	ĸ	<b>5</b>	ĸ	>	¥	¥	<b>=</b>
DIBENZO(A, N)ANT NRACENE	#	ĸ	<b>-</b>	ĸ	>	¥	<b>3</b>	#
DIETHYL PHTMALATE	£	ĸ	<b>5</b>	ĸ	<b>&gt;</b>	¥	#	#
DIMETHYL PHTMALATE	¥	ĸ	<b>5</b>	ĸ	<b>&gt;</b>	¥	¥	#
FLUORENE	Œ	ĸ	<b>-</b>	ĸ	<b>-</b>	¥	¥	#
FLUOROANTHENE	•	3		820		¥	¥	¥
WEXACIAL OROBENZEME	*	150	<b>-</b>	150	>	Œ	<b>±</b>	¥
MEXACHLOROBUTAD I EME	•	150	<b>-</b>	150	>	¥	<b>*</b>	¥
HEXACIAL OROCYCL OPENTAD I ENE	•	% %	<b>5</b>	20	>	£	¥	¥
HEXACIAL ORDE TIMANE	£	<b>20</b>	<b>5</b>	<b>30</b>	<b>5</b>	£	¥	¥
INDEMO(1,2,3-C,0)PYRENE	¥	270		<del>2</del>		¥	#	¥
I SOPHORONE	¥	150	<b>-</b>	55	<b>5</b>	¥	¥	<b>¥</b>
N-NITROSCO I PNENYLAMI NE	¥	150	<b>5</b>	150	>	¥	¥	¥
M-NITROSODIPROPYLANINE	¥	330	<b>-</b>	% %	<b>-</b>	Œ	¥	¥
MAPHTHALENE	¥	ĸ	<b>5</b>	ĸ	<b>5</b>	£	<b>¥</b>	¥
MITROBENZEME	¥	8	<b>-</b>	8	>	¥	¥	<b></b>
PENTACHLOROPHENOL	¥	33 24	<b>-</b>	ĸ	<b>-</b>	¥	¥	¥
PHEHANTHRENE	¥	510		3		¥	¥	¥
PHEHOL	¥	150	<b>5</b>	<del>2</del>	<b>-</b>	£	<b>\$</b>	•
PYREME	¥	1200		1300		¥	¥	¥

Project Name: MANCOCK AFB

Project No. : 2-865-06-0624-00

Shipment No.: 1

Date of Report: 29-Nay-1987

FINAL REPORT

86329030 FS-H-1 8.0 UG/KG 3.0 9: 5.6 86329029 FS-G-3 8.0 UG/KG 1.6 5.6 6.0 1.4 86329028 FS-6-2 UG/KG 8.8 9.1 5.6 6.0 7. 3.0 FS-6-1 DUP 86329026 8.8 = 1.4 86329025 FS-G-1* UG/KG 8. 3.0 9. 1. 1.4 5.6 36329024 FS-F-3 8.8 UG/KG 3.0 9. 5.6 2.4 6.0 3.0 5.0 2.2 1:1 1.4 PRICELLY PRICELLY POLLUTANTS Laboratory Identification •••••••••• 2-CHLOROETHYL VINYL ETHER 1,1,2,2-TETRACHLOROETHANE 1, 1, 1-TRICHLORGETHAME Client Identification 1,1,2-TRICHLORGETHAME CARBON TETRACHLORIDE CHLOROD I BROYOFE THANE RONCO I CHLOROMET HAME , 2-DICHLOROPROPAME 1, 1-DICHLOROETHENE 1,2-DICHLOROETMANE 1,1-DICHLOROETHAME CHLOROBENZENE CHLOROETHAME PROPOSETHAME Matrix Type CHLOROFORM RCHOFORM ENZENE

6-H

8.0

8.

8

8

3.

9.0

2.5

TRANS-1, 3-DICHLOROPROPENE

TRICHLOROFLUCROMETHANE

TRICHLOROETHENE

FRANS-1, 2-DICHLORDETNEME

3.0

2.0

1.4

2.0

9.6

3.0

9.6

0.40

0.40

0.

CIS-1,3-DICHLOROPROPENE

CHLORONETHAME

METHYLENE CHLORIDE

ETHYL BENZENE

**TETRACIAL ORCIETIEME** 

POLUENE

3.6

1.0

1.0 3.6

3.6

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00

Project Name: NANCOCK AFB Shipment No.: 1

Shipment No.: 1					Date of Report: 29-Nay-1967	: 29-Hay-1987
		FINAL	REPORT			
Laboratory Identification	86329024	66329025	86329026	86329028	84320020	AKTOOUTU
Client Identification	FS-F-3	FS-G-1 *	FS-G-1 DUP	FS-G-2	FS-G-3	FR-H-1
Matrix Type	1105	1108	1108	1108		
	:					
VINYL CHLORIDE	0.90 u	0.90 u	0.90 u	0.90 C	0.90 U	n 06.0
LEAD (TOTAL)	MG/KG 7.1	MG/KG 11	MG/KG 11	NG/KG 37	MG/KG 11	MG/KG 6.7

Project No.: 2-885-06-0624-00 Project Name: MANCOCK AFB

Shipment No.: 1

		FINAL	FINAL REPORT			•
Laboratory Identification	86329024	86329025	86329026	86329028	86329029	86329030
Client Identification	fS-F-3	FS-G-1*	FS-6-1 DUP	FS-G-2	FS-G-3	FS-H-1
Matrix Type	1103	7105	108	2011	2011	1103
	MG/KG	MG/KG	MG/KG		MG/KG	MG/KG
PETROLEUM HYDROCARBON - 1R	¬ &	27	057	<b>£</b>	110	78 78
	PERCENT	PERCENT	PERCENT		PERCENT	PERCENT
MOISTURE, PERCENT	<b>5</b>	\$	<b>6</b>	Œ	11	21

## Science Applications International Corporation Environmental Chemistry Division

Project No.: 2-885-06-0624-00 Project Name: HANCOCK AFB

Shipment No.:

Date of Report: 01-may-1987

		FINAL	FINAL REPORT	
Laboratory Identification	86329031	86329032	86329033	86329034
Client Identification	FS-N-2	FS-N-3	FS-N-4	FS-1-1
Matrix Type	1100	1105	1105	2011
	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	U6/KG	UG/KG	UG/KG	UG/KG
VOLATILES, PRIORITY POLLUTANTS				
1,1,1-TRICHLOROETHANE	1.9 U	1.9 U	1.9 U	1.9 u
1,1,2,2-TETRACHLOROETHANE	3.4 U	3.4 U	3.4 U	3.4 u
1,1,2-TRICHLOROETHAME	2.5 U	2.5 U	2.5 U	2.5 U
1,1-DICHLOROETHANE	5.4 U	2.4 U	2.4 U	2.4 u
1,1-DICHLOROETHENE	1.4 U	1.4 U	1.4 U	1.4 U
1,2-DICHLOROETHANE	1.4 1	1.4 U	1.4 U	1.4 U
1,2-DICHLOROPROPANE	3.0 U	3.0 U	3.0 U	3.0 U
2-CHLOROETHYL VINYL ETHER	5.0 u	5.0 U	5.0 U	5.0 U
BENZENE	2.2 U	2.2 U	2.2 U	2.2 U
BRONOD I CHLOROME THANE	1.1 u	1.1 c	1.1	1.1 u
BRONOFORM	2.4 U	2.4 U	2.4 U	2.4 U
BROMOMETHANE	0.9	0.9	0.9	n 0.9
CARBON TETRACHLORIDE	1.4 U	1.4 0	1.4 U	1.4 U
CHLOROBENZENE	3.0 U	3.0 U	3.0 U	3.0 U
CHLOROD I BROMOME THANE	1.6 U	1.6 U	1.6 U	1.6 U
CHLOROETHANE	7.6 U	2.6 U	2.6 U	2.6 U
CHLOROFORM	0.80 u	0.80 U	0.80 U	0.80 U
CHLOROMETHANE	0.40 U	0.40 U	0.40 U	n 07.0
CIS-1,3-DICHLOROPROPENE	1.0 U	1.0 c	1.0 U	1.0 U
ETHYL BENZENE	3.6 U	3.6 U	3.6 ∪	3.6 U
METHYLENE CHLORIDE	1.4 0	1.4 0	1.4 U	1.4 U
TETRACHLOROETHENE	2.0 U	2.0 U	2.0 U	2.0 U
TOLUEME	3.0 U	3.0 U	3.0 0	3.0 U
TRANS-1, 2-DICHLOROETNEME	0.80 U	0.80 U	D.80 U	0.80 U
•				

**, , ,** 

2.5

5.5 1.0

2.5 1.0 2.5

2.5 1.0 2.5

TRANS-1,3-DICHLOROPROPENE

TRICHLOROFLUOROMETHANE TRICHLOKOETHENE

Science Applications International Corporation Environmental Chemistry Division

6-0624-00
2-885-0
••
9.
roject

Project Name: MANCOCK AFB Shipment No.: 1

Shipment No.: 1				Date of Repo	Date of Report: 29-May-1967
		FINAL	FINAL REPORT		•
Laboratory Identification	86329031	86329032	86329033	86329034	
Client Identification	FS-H-2	FS-H-3	FS-#-4	FS-1-1	
Matrix Type	1108	7108	1108	7108	
VINYL CHLORIDE	0.90 U	n 06:0	0.90 U	n 06.0	
PRIORITY POLLUTANT METALS (13)				We/KG	
ANTIMONY (TOTAL)	~	æ	¥	u 71.0	
ARSENIC (TOTAL)	22	<b>X</b>	2	9.7	
BERYLLIUM (TOTAL)	Œ	Œ	2	0.40	
CADMIUM (TOTAL)	~	¥	<b>X</b>	0.47	
CHROMIUM (TOTAL)	¥	æ	æ	4.8	
COPPER (TOTAL)	¥	æ	<b>X</b>	81	
LEAD (TOTAL)	2	¥	22	<u> </u>	
MERCURY (TOTAL)	Œ	£	<b>3</b>	0.051	
MICKEL (TOTAL)	2	æ	2		
SELENIUM (TOTAL)	<b>X</b>	Œ	*	1.0	
SILVER (TOTAL)	<b>X</b>	N.	~	0.17 u	
THALLIUM (TOTAL)	<b>3</b>	¥	*	12 u	
ZINC (TOTAL)	<b>2</b>	<b>X</b>	<b>X</b>	30	
	MG/KG	MG/KG	MG/KG		
LEAD (TOTAL)	2	7.6	6.5		

Н−102 ===

## Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.:

86329034 FS-1-1 SOIL 86329033 FS-H-4 1108 FINAL REPORT 86329032 FS-H-3 86329031 FS-H-2 **201** Laboratory Identification Client Identification Matrix Type 

	MG/KG	MG/KG	MG/KG	MG/KG
PETROLEUM HYDROCARBON - IR	8	28 U	28 U	30 n
	PERCENT	PERCENT	PERCENT	PERCENT
MOISTURE, PERCENT	*	15	17	18

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00

Project Name: HANCOCK AFB

Shipment No.:

01-may-1987

Notes and Comments:

Analysis Not Required ¥ 5 5 *

GRAPHITE FURNACE

UNDETECTED AT DETECTION LIMIT SHOWN

Holding Times Exceeded for semivolatile organics only; see Page H-298 - H-303 for the new analytical results for the said parameters.

VALUES REPORTED ON A DRY WEIGHT BASIS (EXCLUDING VOLATILE AND BASE/NEUTRAL/ACID AMALYSIS) REPORTED DETECTION LIMITS ARE INSTRUMENT DETECTION LIMITS CORRECTED TO SAMPLE CONDITIONS REPORTED VALUES ARE NOT CORRECTED FOR ANALYTICAL BLANK

LAST PAGE

Environmental Chemistry Division

SAIC - DIV 835/OEHL 8400 WESTPARK Attn: PHIL SPOONER MCCLEAN, VA 22102 Cl ient:

FINAL REPORT

Samples will be held for two weeks

after the report is issued.

Date of Report: 01-may-1987

Project No. : 2-885-06-0624-00

Project Name: HANCOCK AFB

Shipment No.: 2					Person An	Belease Approval
Laboratory Identification	86350001	86350002	86350003	86350004	86350005	86350006
Client Identification	EW-1 (1) +	SH-30	SU-31*	SN-32*	SO-30	50-31
Matrix Type	WATER	WATER	WATER	WATER	SEDIMENTS	SEDIMENTS
· · · · · · · · · · · · · · · · · · ·						
					UG/KG	UG/KG
VOLATILES, PRIORITY POLLUTANTS						
1,1,1-TRICHLOROETHANE	¥	2	<b>33</b>	æ	1.9 U	1.9 U
1,1,2,2-TETRACHLOROETHANE	*	<b>X</b>	M.	æ	3.4 U	3.4 U
1,1,2-TRICHLOROETHANE	¥	84	28	æ	2.5 U	2.5 U
1,1-DICHLOROETHAME	æ	<b>3</b>	N.	SE SE	2.4 U	2.4 U
1,1-DICHLOROETHENE	æ	<b>X</b>	N N	æ	1.4 U	1.4 U
1,2-DICHLOROETHANE	æ	<b>4</b>	<b>*</b>	W.	1.4 0	1.4 U
1,2-DICHLOROPROPANE	<b>X</b>	#	<b>33</b>	88	3.0 U	3.0 ∪
2-CHLOROETHYL VINYL ETHER	SW	33	88	æ	5.0 U	5.0 u
BENZENE	¥	¥	<b>44</b>	æ	2.2 U	2.2 U
BRONOD I CHLOROMETHANE	M	¥	<b>X</b>	æ	1.1 U	1.1 u
BROMOFORM	ä	æ	<b>X</b>	æ	7.4 U	2.4 U
BROMOMETHANE	<b>X</b>	Œ	<b>X</b>	æ	0.9	0.0 U
CARBON TETRACHLORIDE	83	<b>3</b>	<b>3</b>	M.	1.4 U	1.4 U
CMLOROBENZENE	<b>X</b>	<b>£</b>	¥	æ	3.0 U	3.0 U
CHLOROD I BRONOME THANE	ž	¥	<b>#</b>	æ	1.6 U	1.6 U
CHLOROETHANE	22	¥	æ	æ	2.6 U	2.6 U
CHLOROFORM	æ	<b>E</b>	<b>X</b>	<b>X</b>	0.80 U	0.80 U
CHLOROMETHANE	¥	<b>X</b>	<b>88</b>	¥	0.40 U	0.40 U
CIS-1,3-DICHLOROPROPENE	a.	<b>X</b>	¥	¥	1.0 U	1.0 U
ETHYL BENZENE	æ	<b>E</b>	<b>3</b>	¥	3.6 U	3.6 U
METHYLENE CHLORIDE	22	æ	<b>X</b>	æ	1.4 U	1.4 U
TETRACHLOROETHENE	<b>3</b>	<b>E</b>	€.	æ	2.0 U	2.0 U
TOLUENE	æ	M.	. Z	<b>X</b>	3.0 U	3.0 U

Project No.: 2-885-06-0624-00 Project Name: HANCOCK AFB Shipment No.: 2

01-may-1987	86350006 SO · 31 SED IMENTS	0.80 u 2.5 u 1.0 u
Date of Report: 01-may-1987	86350005 SD - 30 SED INENTS	0.80 u 2.5 u 1.0 u 0.90 u
	86350004 SIV-32** LIATER	<b>3 8 8 8</b>
FINAL REPORT	1 86350002 86350003 86350004 )+ SW-30 SW-31* SW-32** WATER WATER WATER	* * * *
	86350002 SW-30 WATER	# # # # #
40000	EW-1 (1) + WATER	# # # # # # # #
Laboratory Identification	Client Identification EU-1 (1) Matrix Type UATER	TRANS-1, S-DICHLOROPROPENE TRICKLOROETHENE VINYL CHLORIDE

Project No.: 2-885-06-0624-00
Project Name: NANCOCK AFB
Shipment No.: 2

Laboratory Identification	86350001	86350002	86350003	86350004	86350005	86350006
Client Identification	EW-1 (1) +	Su-30	SW-31 *	S4-32 *	SO-30	50-31
Matrix Type	WATER	WATER	WATER	LATER	SEDIMENTS	SEDIMENTS
			, p , d , d , d , d , d , d , d , d , d			•
		1/9n	1/9n	1/90		
PURGEABLE HALOCARBONS (NETH 601 CHPOS)	POS)					
1, 1, 1 - TRICHLOROETHANE	<b>£</b>	0.14	1.3	99.0	¥	<b>E</b>
1, 1, 2, 2 - TETRACHLOROETHANE	<b>=</b>	0.03 U	0.03 U	0.05	¥	¥
1, 1, 2-TRICHLOROETHANE	#	0.02 U	0.02 U	0.02 U	¥	æ
1,1-DICHLOROETHAME	<b>3</b>	0.07 u	0.07 U	0.07 U	æ	<b>X</b>
1,1-DICHLOROETHENE	<b>#</b>	0.13 U	0.13 U	0.13 U	S. S.	<b>X</b>
1,2-DICHLOROBENZENE	<b>E</b>	0.32 U	0.32 U	0.32 U	æ	×
1,2-DICHLOROETHANE	<b>X</b>	0.03 U	0.03 U	0.03 U	æ	Z.
1,2-DICHLOROPROPANE	<b>X</b>	0.04 C	0.0% C	0.04 U	3.5	7
1,3-DICHLOROBENZENE	<b>X</b>	0.15 U	0.15 U	0.15 U	æ	¥
1,4-DICHLOROBENZENE	¥	0.24 U	0.24 U	0.24 U	<b>E</b>	#
2-CHLOROETHYL VINYL ETHER	<b>X</b>	0.13 U	0.13 U	0.13 U	æ	Ä
BROWOD I CHLOROMETHANE	¥	0.10 U	0.10 U	0.10 U	¥	<b>H</b>
ВКОМОГОКИ	¥	0.20 u	0.20 U	0.20 U	<b>X</b>	æ
BROMONETHANE	#	1.2 U	1.2 U	1.2 U	Œ	¥
CARBON TETRACHLORIDE	<b>%</b>	0.12 U	0.12 U	0.12 U	2	æ
CHLOROBENZENE	2	0.25 U	0.25 U	0.25 U	æ	æ
CHLOROD I BROMOME THANE	<b>X</b>	0.09 U	0.09 U	0.09 U	<b>X</b>	¥
CHLOROETHANE	<b>3</b>	0.52 U	0.52 U	0.52 U	<b>X</b>	¥
CHLOROFORM	#	0.05 U	0.05 u	0.05 U	22	¥
CHLOROMETHANE	<b>X</b>	0.08 c	0.08 c	0.08 U	¥	æ
CIS-1,3-DICHLOROPROPENE	<b>3</b>	0.20 u	0.20 c	0.20 U	Œ	¥
DI CHLORODI FLUOROMET HANE	8	1.8 D	1.8 U	1.8 U	¥	æ
METHYLENE CHLORIDE	<b>%</b>	0.25 U	0.36	92	¥	<b>E</b>
TETRACHLOROETHENE	¥	0.03 U	0.03 U	0.03 U	Œ	¥
TRANS-1, 2-DICHLOROETHENE	Œ	0.10 U	0.10 U	0.10 U	æ	æ
TRANS - 1, 3 - DICHLOROPROPEME	<b>E</b>	0.3% U	0.34 C	0.34 U	W.	**
TRICHLOROETHENE	a z	0.12 U	0.12 U	0.12 U	æ	Ť

5-885-06-0624-00	HANCOCK AFB	~
		₩ ::
Project No.	Project Name:	Shipment No.

Laboratory Identification		FIMAL	FIMAL REPORT		Date of Report: 01-may-1987	01 -may - 1967
	66350001 EU-1 (1)+ UATER	86350002 SH-30 LATER	86350003 SW-31 * WATER	B6350004 SN-32 * WAYER	86350005 SD - 30	86350006 50 - 31
TRICHLOROFLUCRONETHANE VINYL CHLORIDE	## ## ## ## ## ## ## ## ## ## ## ## ##	0.50 U 0.18 U	0.50 U	15 NC	SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVIC	SEDIMENTS
PURGEABLE AROMATICS (METH 602 CHPDS)		1/90	1/90	0. 10 U	X.	¥
1,3-DICHLOROBENZEME 1,4-DICHLOROBENZEME	<b>3 3</b>	0.40 U 0.30 U	0.40 U	0.40	α	ä
BENZENE	¥	0.40 u	0.40 U	0.50 0.40 0.40	<b>*</b> * * * * * * * * * * * * * * * * * *	<b>I</b> 3
CMLOROBENZENE ETMYL BENZENE	<b>3</b> 9	0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	<b>X</b> 9	<b>i 1</b>
TOLUEME MYLEMES TOTAL	¥ ¥	0.20 u 0.20 u	0.20 U	0.20 U	ž Ž	¥ ¥
	Œ	0.60 U	0.60	0.60 U	Z Z	# E

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00

Project Name: NANCOCK AFB

~ Shipment No.:

					refer of reports	
			FINAL REPORT			
Laboratory Identification	86350001	86350002	86350003	86350004	86350005	86350006
Client Identification	EU-1 (1) +	S38	\$15-75	SU-32 *	<b>8</b> -8	80-31
Matrix Type	WATER	MATER	MATER	WATER	SEDINENTS	SEDIMENTS
	1/90					
PEST/PCB'S (METH 608 CMPDS)	1					
000-,7'7	0.42 U	Ŧ	<b>3</b>	*	<b>H</b>	£
300-17"	0.16 U	¥	*	<b>3</b>	<b>%</b>	<b>3</b>
4,4'-001	0.22 U	¥	~	<b>3</b>	#	¥
A · BHC	0.07 U	Œ	~	<b>35</b>	<b>E</b>	2
ALDRIM	0.07 U	Ħ	<b>%</b>	æ	#	N.
B-BNC	4.8	#	<b>%</b>	<b>E</b>	¥	<b>3</b>
CHLORDANE	1.1 c	¥	8	æ	#	¥
D-BHC	0.15 U	¥	<b>3</b>	<b>X</b>	¥	<b>3</b>
DIELDRIN	0.10 U	æ	<b>3</b>	<b>X</b>	#	¥
ENDOSULFAN 1	0.09 U	¥	N.	æ	¥	æ
ENDOSULFAM 11	0.14 U	æ	<b>X</b>	<b>%</b>	£	<b>3</b>
ENDOSULFAN SULFATE	0.15 U	æ	M.	# # W	<b>£</b>	¥
ENDRIN	0.32 U	W.	A.	<b>¥</b>	<b>E</b>	¥
ENDRIN ALDEHYDE	0.20 U	Œ	<b>2</b>	¥	æ	æ
G-BMC(LIMDANE)	0.07	<b>X</b>	~	<b>X</b>	¥	<b>%</b>
NEPTACHLOR	0.07	8	<b>X</b>	¥	¥	<b>X</b>
MEPTACHLOR EPOXIDE	0.08 U	<b>8</b> 4	<b>X</b>	<b>X</b>	¥	<b>£</b>
PCB-1016	7.6.0	¥	<b>*</b>	æ	<b>X</b>	<b>X</b>
PCB - 1221	3.6 U	<b>X</b>	<b>H</b>	æ	<b>X</b>	¥
PCB - 1232	7.8 U	<b>3</b>	<b>E</b>	<b>%</b>	#	¥
PCB - 1242	n 8.7	<b>X</b>	<b>X</b>	<b>X</b>	<b>X</b>	<b>X</b>
PCB - 1248	0 2.4	¥	æ	<b>E</b>	¥	¥
PCB-1254	2.1 0	*	æ	<b>X</b>	¥	¥
PCB - 1260	1.9 u	¥	~	æ	¥	£
TOXAPHENE	9.4 C	2	<b>X</b>	æ	¥	¥

2-885-06-0624-00	HANCOCK AFB	7
₹ 	Name:	No.:
Project No.	Project	Shipment

Laboratory Identification	:		FINAL REPORT		Date of Repo	Date of Report: 01-mmy-1987
Client Identification Matrix Type	66350001 EU-1 (1) ⁺ UATER	84350002 SW-30 Water	86350003 SU-31 * MATER	26350004 SN-32 * MATER	86350005 SD-30 SED IMENTS	66350006 20-31 SED INENTS
UG ORGANOPHOSPHORUS PESTICIDES (METH 614 CMPDS) AZIMPHOS METHYL 15 DEMETON - S DISZINON BIAZIMON 3 DISULFOTON 8 FARATHION PARATHION PARATHION HERBICIDES, CHLORINATED (METH 615 CMPDS)	UG/L 15 U 4.3 U 3.2 U 3.2 U 3.2 U 3.2 U 700 17 NC	* # # # # # #	* * * * * * * * *	# # # # # # # # # # # # # # # # # #	* * * * * * * * *	# # # # # # # # # #
2,4,5·TP(SILVEX) 2,4,5·TP(SILVEX) 2,4·D	4.8 3.9 U 0 U	¥	<b>4 4 4</b>	<b>E &amp; %</b>	<b>E E &amp;</b>	¥

¥

Science Applications International Corporation Environmental Chemistry Division

Project No.: 2-865-06-0624-00 Project Name: WANCOCK AFB Shipment No.: 2

Laboratory Identification			FINAL REPORT		Date of Repor	Date of Report: 01-mmy-1987
Client Identification EW-1 (1) Matrix Type MATER	66350001 EW-1 (1)+ WATER	86350002 SH-30 WATER	# 54-30 86350005 86350006 + 54-30 54-31* 54-32 50-30 SD-31 4ATER WATER WATER SEDIMENTS SEDIMENTS	86350004 SH-32 [#] HATER	86350005 SD - 30 SED INENTS	86350006 SD-31 SED INENTS
I FAN (TOTAL)		1/90	1/90	1/90	MG/KG	MG/KG
	¥	0.92 U	0.92 u	0.92 u	21	22

Project No.: 2-885-06-0624-00 Project Name: MANCOCK AFB Shipment No.: 2

		FINAL	FINAL REPORT		Date of Report	Date of Report: 01-may-1987
Laboratory Identification 86350001 Client Identification EW-1 (1) Matrix Type	86350001 EW-1 (1) + MATER	86350002 Su-30 Mater	86350003 SU-31* LATER	86350004 SH-32 * HATER	86350005 SD-30 SEDIMENTS	86350006 SD-31 SED INENTS
PETROLEUM HYDROCARBON - 1R	¥	0.50 U	0.50 U	MG/L 0.50 U	MG/KG 2100	MG/KG 30
MOISTURE, PERCENT	<b>3</b>	~	<b>x</b>	3	PERCENT 28	PERCENT 25

Project No.: 2-885-06-0624-00
Project Name: HANCOCK AFB
Shipment No.: 2

		1 N I	FINAL BEBOOT		Date of reports	sport: or may 1907
Laboratory Identification	86350007	86350008	86350009	86350010	86350011	86350012
Client Identification	56-32	15.1	15-2	15-3	15-4	15-5
Matrix Type	SEDIMENTS	2011	1105	7108	1105	1105
	, , , , , , , , , , , , , , , , , , ,	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *			
	UG/KG					
VOLATILES, PRIORITY POLLUTANTS						
1,1,1-TRICHLOROETHANE	1.9 U	æ	æ	<b>*</b>	A.	22
1,1,2,2-TETRACHLOROETHANE	3.4 U	<b>X</b>	æ	æ	<b>35</b>	<b>X</b>
1,1,2-TRICHLOROETHANE	2.5 U	W.	æ	æ	<b>3</b>	¥
1,1-DICHLOROETHANE	2.4 U	æ	#	~	E.	¥
1,1-DICHLOROETHENE	1.4 U	<b>X</b>	¥	M.	<b>3</b>	*
1,2-DICHLORGETHANE	1.4 U	¥	#	<b>X</b>	33	¥
1,2-DICHLOROPROPANE	3.0 U	<b>E</b>	<b>3</b>	M.	2	<b>E</b>
2-CHLOROETHYL VINYL ETHER	5.0 U	W.	<b>8</b>	æ	<b>34</b>	¥
BENZEWE	2.2 U	<b>X</b>	#	W.	*	<b>E</b>
BRONOD I CHLOROMETHANE	1.1 U	¥	¥	<b>3</b>	*	W.
BROMOFORM	2.4 U	æ	¥	¥	<b>33</b>	W.
BROWCHETHANE	D 0.9	£	æ	2	<b>8</b>	æ
CARBON TETRACHLORIDE	1.4 U	#	8	<b>X</b>	<b>X</b>	<b>£</b>
CMLOROBENZENE	3.0 U	æ	<b>x</b>	<b>3</b>	22	W.
CHLOROD I BRONOMET HANE	1.6 U	æ	#	#	a a	¥
CHLOROE THANE	2.6 U	¥	¥	2	<b>X</b>	æ
CHLOROFORM	0.80 U	æ	æ	æ	<b>X</b>	<b>X</b>
CHLORONETHANE	0.40 U	<b>X</b>	#	24	<b>E</b>	*
C1S-1, 3-DICHLOROPROPENE	1.0 u	S.	~	<b>X</b>	æ	W.
ETHYL BENZENE	3.6 U	¥	#	<b>X</b>	N.	æ
METHYLENE CHLORIDE	1.4 U	M	¥	<b>~</b>	MR	æ
TETRACULOROETHEME	2.0 U	<b>X</b>	2	<b>E</b>	a a	æ
TOLUENE	3.0 U	W.	#	<b>X</b>	M.	<b>X</b>
TRANS-1, 2-DICHLOROETHENE	0.80 U	¥	¥	<b>4</b>	88	<b>X</b>
TRANS-1,3-DICHLOROPROPENE	2.5 U	A.	<b>X</b>	W.	<b>X</b>	Œ
TRICHLOROETHENE	1.0 U	¥	¥	¥	W.	<b>X</b>
VINYL CHLORIDE	0.90 u	æ	#	<b>X</b>	<b>*</b>	꾶

Project No.: 2-885-06-0624-00 Project Name: MANCOCK AFB

Shipment No.: 2

			FINAL	INAL REPORT				٥	Date of Report: 01-may-1987	01-m	y-1987
Laboratory Identification Client Identification Matrix Type	86350007 \$0-32 \$EDIMENTS	86350008 TS-1 SOIL	8000	86350009 TS-2 SOIL	600	86350010 TS-3 SOIL	010	86350011 TS-4 SOIL	110	86350012 TS·5 SOIL	21
		UG/KG		UG/KG		UG/KG	1 1 1 1 1 1 1	ng/kg		ng/kg	
PLB'S (/ AKUCHLURS) (METHOD 608 CMPDS)								•			
PCB-1016 pcm-1221	<b>X</b> :	1400	<b>5</b>	110	<b>5</b>	130	<b>5</b>	160	<b>5</b>	130	<b>5</b>
PCB (EE)	<b>*</b> :	2700	<b>&gt;</b>	210	<b>ɔ</b>	240	<b>&gt;</b>	300	<b>5</b>	250	<b>-</b>
DCB - 12.2	<b>*</b> !	2400	<b>-</b>	8	<b>¬</b>	220	<b>3</b>	280	a	220	<b>5</b>
DCD-1268	¥ :	1500	>	120	<b>-</b>	130	<b>-</b>	170		140	<b>-</b>
PCB - 1254	<b>*</b> !	1500	>	120	<b>5</b>	130	<b>-</b>	170		140	<b>-</b>
DCB - 1240		099	<b>&gt;</b>	25	<b>-</b>	9	⊃	ĸ	<b>¬</b>	19	<b>¬</b>
	Ĭ	280	Þ	8		53	2	29	<b>-</b>	24	ם

Project No.: 2-885-06-0624-00 Project Name: NANCOCK AFB

Shipment No.: 2		FINAL	FINAL REPORT		Date of Report	Date of Report: 01-may-1987
Laboratory Identification	86350007	86350008	86350009	86350010	86350011	86350012
Client Identification	<b>8</b> -33	1.51	15.2	15-3	7-51	15-5
Matrix Type	SEDIMENTS	2011	7108	1105	7105	2016

MG/KG 1 LEAD (TOTAL)

¥

쭞

¥

쭞

¥

Project No.: 2-885-06-0624-00
Project Name: NANCOCK AFB
Shipment No.: 2

Shipment No.: 2					Date of Report: 01-may-1987	: 01-may-1987
		FINAL	FINAL REPORT			
Laboratory Identification	86350007	86350008	86350009	86350010	86350011	86350012
Client Identification	SO-32	1.51	18-2	15-3	18-4	15-5
Matrix Type	SEDIMENTS	2011	SOIL	7108	1105	1105
	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
PETROLEUM HYDROCARBON - IR	n 92	39 n	2200	35 U	250	31 0
	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
MOISTURE, PERCENT	%	07	22	33	35	23

Project No.: 2-885-06-0624-00
Project Name: HANCOCK AFB
Shipment No.: 2

Shipment No.: 2				TODGE INTE	Teograph				Δ	Date of Report:		01-may-1987
Laboratory Identification	86350013	13	86350		86350	015	8635	9016	AKRED	017	PATA	*
Client Identification	SE		SW-2		S-AS	<b>!</b>	7-35	*	5	=	3 3	2
Matrix Type	WATER		WATER		WATER		WATER	<b>C</b> ec	SEDIMENTS	ENTS	SEDIMENTS	ENTS
			•									
	1/9n		7/9n		T/9n		1/9n		UG/KG		UG/KG	
BASE/NEUTRAL AND ACID EXTRACTABLES, PRIORITY POLLUTANTS	IIY POLL	UTANTS										
1,2,4-TRICHLOROBENZENE	4.0	2	4.0	<b>5</b>	4.0	<b>5</b>	7.0	<b>3</b>	150	<b>5</b>	150	<b>-</b>
1,2-DICHLOROBENZENE	8.0	<b>5</b>	8.0	<b>5</b>	8.0	=	8.0	>	300	9	300	<b>5</b>
1,2.DIPHENYLHYDRAZINE	4.0	<b>5</b>	4.0	>	4.0	=	4.0	>	150	2	150	<b>-</b>
1, 3 · DICHLOROBENZENE	4.0	<b>-</b>	4.0	>	4.0	2	4.0	>	150	<b>5</b>	150	<b>5</b>
1,4-DICHLOROBENZENE	4.0	<b>-</b>	4.0	<b>&gt;</b>	4.0	<b>5</b>	0.4	>	150	<b>-</b>	150	<b>5</b>
2,4,6-TRICHLOROPHENOL	4.0	<b>-</b>	4.0	>	4.0	>	0.4	>	150	<b>5</b>	150	Þ
2,4.DICHLOROPHENOL	0.4	<b>5</b>	4.0	_D	0.4	9	0.4	>	150	Þ	150	2
2,4.DIMETHYLPHENOL	4.0	<b>5</b>	4.0	<b>ɔ</b>	4.0	<b>5</b>	0.4	<b>5</b>	150	>	150	<b>5</b>
2,4-DINITROPHENOL	22	<b>5</b>	22	<b>-</b>	27	<b>5</b>	22	>	1000	Þ	1000	<b>5</b>
2,4-DINITROTOLUENE	8.0	<b>D</b>	8.0	<b>-</b>	8.0	<b>-</b>	8.0	<b>-</b>	300	J	300	<b>&gt;</b>
2,6-DINITROTOLUENE	8.0	<b>5</b>	8.0	<b>-</b>	8.0	<b>-</b>	8.0	>	300	<b>ɔ</b>	300	<b>5</b>
2-CHLORONAPHTHALENE	0.4	<b>5</b>	7.0	<b>5</b>	0.4	>	4.0	<b>&gt;</b>	150	<b>၁</b>	150	<b>-</b>
2 - CHLOROPHENOL	7.0	<b>5</b>	4.0	<b>⊋</b>	0.4	<b>-</b>	0.4	>	150	<b>5</b>	150	<b>-</b>
2-N1TROPHENOL	15	<b>5</b>	12	<b>-</b>	12	<b>-</b>	12	>	750	<b>5</b>	450	<b>5</b>
3,3"-DICHLOROBENZIDENE	8.0	<b>-</b>	8.0	<b>5</b>	8.0	<b>-</b>	8.0	>	300	<b>5</b>	300	ם
4,6-DINITRO-2-METHYLPHENOL	0,4	<b>5</b>	07	<b>-</b>	07	<b>¬</b>	07	>	1500	<b>5</b>	1500	<b>-</b>
4-BRONOPHENYL PHENYL ETHER	4.0	<b>-</b>	7.0	<b>5</b>	0.4	>	4.0	>	150	>	150	<b>-</b>
4-CALORO-3-METHYLPHENOL	<b>5</b> 0	<b>5</b>	20	<b>-</b>	ଛ	>	2	<b>-</b>	<u>ک</u>	<b>-</b>	730	<b>&gt;</b>
4-CHLOROPHENYL PHENYL ETHER	0.4	<b>5</b>	4.0	>	4.0	<b>5</b>	4.0	>	150	<b>5</b>	150	<b>-</b>
4-NITROPHENOL	70	<b>5</b>	50	<b>-</b>	2	<b>¬</b>	2	>	720	<b>-</b>	720	<b>-</b>
ACENAPHTHENE	2,0	<b>-</b>	2.0	<b>-</b>	2.0	_	2.0	5	ĸ	<b>¬</b>	ĸ	<b>-</b>
ACENAPHTHYLENE	2.0	=	2.0	>	2.0	>	2.0	<b>-</b>	ĸ	<b>5</b>	ĸ	<b>5</b>
ANTHRACENE	2.0	<b>-</b>	2.0	<b>-</b>	2.0	<b>-</b>	2.0	<b>-</b>	ĸ	<b>5</b>	ĸ	<b>-</b>
BENZ101NE	30	2	3	<b>၁</b>	ಜ	>	20	Þ	1100	)	1100	ם
BENZO(A)ANTHRACENE	0.4	n	4.0	<b>-</b>	4.0	<b>-</b>	4.0	>	150	D D	150	ם
BENZO(A)PYRENE	2.0	<b>-</b>	2.0	<b>5</b>	2.0	>	2.0	>	ĸ	<b>5</b>	ĸ	<b>-</b>
BENZO(8)FLUORANTHENE	2.0	<b>-</b>	2.0	<b>-</b>	2.0	<b>5</b>	2.0	<b>ɔ</b>	ĸ	>	ĸ	כ

Project No. : 2.885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 2

Date of Report: 01.may-1987

		FINAL	FINAL REPORT				į
Laboratory Identification	86350013	86350014	86350015	86350016	86350017	86350018	
Client Identification	S4-1	S-NS	SE-33	** 7·AS	26.1	SO-2	
Matrix Type	WATER	WATER	WATER	WATER	SEDIMENTS	SEDIMENTS	S
BENZO(G, H, I)PERYLENE	7.0 U	n 0.4	U 0.4	n 0.4	150 U	150 U	_
BENZO(K) FLUORANTHENE	2.0 U	2.0 U	2.0 U	2.0 U	⊃ K	び	_
BENZYL BUTYL PHTHALATE	a 0.4	J 0.4	7 0.4	n 0.4	150 U	150 U	
BIS(2-CHLOROETHOXY)METHANE	0.4	<b>-</b>	7.0 0	n 0.4	150 U	150 U	_
BIS(2-CHLOROETHYL)ETHER	0.4	7.0.4	7 0.4	n 0.4	150 U	150 U	_
BIS(2-CHLOROISOPROPYL)ETHER	n 0.4	n 0.4	n 0.4	n 0.4	150 U	150 U	_
BIS(2-ETHYLHEXYL)PHTHALATE	n 0.4	n 0.4	n 0.4	n 0.4	140	970	
CHRYSENE	2.0 U	2.0 U	2.0 U	2.0 U	Z)	ĸ	_
DI-N-BUTYL PHTHALATE	1.6 U	1.6 U	1.6 U	1.6 U	n 99	3	_
DI-W-OCTYL PHTHALATE	2.0 U	2.0 U	2.0 U	2.0 U	200	ĸ	_
DIBENZO(A, H)ANTHRACENE	2.0 U	2.0 U	2.0 U	2.0 U	ع د	ĸ	_
DIETHYL PHTHALATE	2.0 U	2.0 U	2.0 U	2.0 U	33 C	ĸ	_
DIMETHYL PHTHALATE	2.0 U	2.0 U	2.0 U	2.0 U	ĸ	ĸ	_
FLUORENE	2.0 U	2.0 U	2.0 U	2.0 U	ĸ	Z Z	_
FLUDROANTHENE	2.0 U	2.0 U	2.0 U	2.0 U	ĸ	ĸ	_
HEXACHLOROBENZENE	n 0.7	n 0.4	n 0.4	n 0.4	150 U	150 u	_
HEXACHLOROBUTADIENE	n 0.4	n 0.4	n 0.4	7.0 U	150 u	150 U	_
NEXACHLOROCYCLOPENTAD I ENE	n 02	70 20	70 n	70 °C	D 052	750	_
MEXACHL ORDETHANE	8.0 u	8.0 U	8.0 u	3.0 C	300 n	300 n	_
INDENO(1,2,3.C,D)PYRENE	2.0 U	2.0 U	2.0 U	2.0 U	ĸ	な	7
ISOPHORONE	n 0.7	n 0.4	n 0.4	n 0.4	150 U	150 u	_
N-NITROSODIPHENYLAMINE	n 0.4	7 0.7	7.0.4	n 0.4	150 U	150 L	_
N-NITROSODIPROPYLAMINE	n 20	70 70	> &	20 n	J 052	750 L	_
NAPHTHALENE	2.0 U	2.0 U	2.0 U	2.0 U	ĸ	ĸ	_
NITROBENZENE	8.0 u	8.0 U	9.0 n	3.0 c	300 n	300	_
PENTACHLOROPHENOL	20 n	n 02	n 82	7 02	750 C	750	<b>-</b>
PHENANTHRENE	2.0 U	2.0 U	2.0 U	2.0 U	ĸ	ĸ	7
PHENOL	n 0.4	7 0.4	7.0 U	U 0.4	150 U	150 L	_
PYRENE	2.0 U	2.0 U	2.0 U	2.0 U	Z S	ĸ	_

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2.885.06.0624.00 Project Name: HANCOCK AFB

Shipment No.:

Date of Report: 01-may-1987

		FIMAL	FINAL REPORT		vate of report:	JOLE: 01-1887-1707
Laboratory Identification	86350013	86350014	86350015	86350016	86350017	86350018
Client Identification	S.V. 1	2-75	S4-3	****-NS	£:8	2·95
Matrix Type	WATER	MATER	WATER	WATER	SEDIMENTS	SEDIMENTS
					ופיגט	947 9A
VOLATILES, PRIORITY POLLUTANTS						
1,1,1-TRICHLORDETHANE	¥	~	32	æ	1.9 U	1.9 U
1,1,2,2.TETRACHLOROETHANE	S.	<b>E</b>	2	æ	3.4 U	3.4 U
1, 1, 2 - TRICHLOROETHANE	æ	<b>X</b>	*	¥	2.5 U	2.5 U
1,1-DICHLOROETHANE	<b>X</b>	<b>X</b>	2	æ	2.4 U	2.4 U
1,1-DICHLOROETHENE	<b>¥</b>	<b>x</b>	¥	SI SI	1.4 U	1.4 U
1,2-DICHLOROETHANE	<b>¥</b>	<b>%</b>	ä	¥	1.4 U	1.4 U
1,2-DICHLOROPROPANE	<b>XX</b>	œ æ	~	<b>3</b>	3.0 U	3.0 U
2-CHLOROETHYL VINYL ETHER	N.	<b>¥</b>	<b>X</b>	¥	5.0 U	5.0 U
BENZENE	<b>X</b>	¥	<b>3</b>	¥	2.2 U	2.2 U
BRONCO I CHLOROME THANE	<b>3</b>	¥	¥	<b>X</b>	1.1	1.1
ВКОМОГОВМ	<b>3</b>	<b>X</b>	æ	¥	2.4 U	5.4 U
BRONCHETHANE	<b>X</b>	¥	<b>X</b>	<b>X</b>	6.0 U	0.9
CARBON TETRACHLORIDE	<b>¥</b>	<b>*</b>	æ	¥	1.4 U	1.4 U
CHLOROBENZENE	<b>X</b>	<b>X</b>	<b>X</b>	쫗	3.0 U	3.0 0
CHLOROD I BRONOME THANE	<b>X</b>	æ	<b>\(\frac{\pi}{2}\)</b>	#	1.6 U	1.6 U
CHLORDETHANE	<b>¥</b>	æ	Œ	<b>X</b>	2.6 U	2.6 U
CHLOROFORM	<b>%</b>	<b>*</b>	Œ	8	0.80 U	0.80 u
CHLOROMETHANE	<b>X</b>	æ	æ	<b>X</b>	0.40 U	0.40 U
CIS-1, 3-DICHLOROPROPENE	<b>3</b>	<b>#</b>	<b>X</b>	2	1.0 U	1.0 U
ETHYL BENZEME	<b>¥</b>	æ	Ĩ	¥	3.6 ∪	3.6 U
METHYLENE CHLORIDE	<b>%</b>	æ	æ	æ	1.4 U	1.4 U
TETRACHLOROETHENE	<b>¥</b>	æ	<b>E</b>	¥	2.0 U	2.0 U
TOLUENE	¥	Œ	¥	W.	3.0 U	3.0 U
TRANS-1, 2-DICHLOROETHENE	<b>3</b>	**	Œ	æ	0.80 U	0.80 U
TRANS-1, 3-DICALOROPROPENE	<b>X</b>	<b>3</b>	ğ	¥	2.5 U	2.5 U
TRICHLOROETHENE	<b>¥</b>	æ	Ĩ	Œ	J.0 U	1.0 U
VINYL CHLORIDE	<b>X</b>	<b>X</b>	E	<b>X</b>	0.90 u	0.90 u

Project No. : 2-885-06-0624-00

Project Name: HANCOCK AFB

Shipment No.:

Date of Report: 01-may-1987

FINAL REPORT

Laboratory Identification	86350013	86350014	86350015	86350016	86350017	86350018
Client Identification	S4-1	2 <del>.</del> ≥	S.A.3	** 7-MS	SD-1	2-03
Matrix Type	WATER	WATER	WATER	WATER	SEDIMENTS	SEDIMENTS
						6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	N6/L	1/9n	7/90	1/90		
PURCEABLE HALOCARBONS (METH 601 CMPDS)						
1,1,1-TRICHLOROETHANE	0.25 HC	0.43	0.03 U	0.91 NC	æ	¥
1,1,2,2.TETRACHLOROETHANE	0.03 U	0.03 U	0.03 U	0.03 U	<b>X</b>	<b>¥</b>
1,1,2-TRICHLOROETHANE	0.02 U	0.02 U	0.02 U	0.02 U	<b>X</b>	æ
1,1-DICHLOROETHANE	0.07 U	0.07 U	0.07 U	0.07 U	<b>X</b>	æ
1,1-DICHLOROETHENE	0.13 U	0.13 U	0.13 U	0.13 U	<b>X</b>	MR
1, 2-DICHLOROBENZENE	0.32 U	0.32 U	0.32 U	0.32 U	<b>X</b>	æ
1,2-DICHLOROETHANE	0.03 U	0.03 U	0.03 U	0.03 U	¥	W.
1,2-DICHLOROPROPANE	0.0% U	o.0,	0.04 U	0.0¢ u	æ	22
1,3-DICHLOROBENZENE	0.15 U	0.15 U	0.15 U	0.15 U	æ	<b>X</b>
1,4-DICHLOROBENZENE	0.24 U	0.24 U	0.24 U	0.24 U	æ	<b>X</b>
2-CHLOROETHYL VINYL ETHER	0.13 U	0.13 U	0.13 U	0.13 U	æ	W.
BROMOD I CHLOROME THANE	0.10 U	0.10 U	0.10 U	0.10 U	æ	æ
BROHOFORM	0.20 U	0.20 U	0.20 U	0.20 U	æ	<b>2</b>
BROMOMETHANE	1.2 U	1.2 U	1.2 U	1.2 U	MR	<b>M</b>
CARBON TETRACHLORIDE	0.12 U	0.12 U	0.12 U	0.12 U	æ	<b>X</b>
CHLOROBENZEME	0.25 U	0.25 U	0.25 U	0.25 U	Œ	<b>X</b>
CHLOROD I BROMONE THANE	0.09 U	0.09 U	0.09 U	0.09 U	æ	æ
CHLOROETHANE	0.52 U	0.52 U	0.52 U		**	<b>X</b>
CHLOROFORM	0.05 U	0.05 U	0.05 U	0.00 NC	XX	<b>X</b>
CHLOROMETHANE	0.08 U	0.08 U	0.08 U		æ	¥
CIS-1, 3-DICHLOROPROPENE	0.20 U	0.20 U	0.20 U		W.	<b>4</b>
DI CHLORODI FLUOROMETHANE	1.8 U	1.8 U	1.8 c	1.8 U	Œ	æ
METHYLENE CHLORIDE	0.30	3.1	0.44	0.63	æ	<b>X</b>
	;	:	: : : : : : : : : : : : : : : : : : : :	:	9	2

**EEEEE** 

* * * * * * *

>

0.03

>

0.03

> >

0.03

CIS-1,3-DICHLOROPROPENE DICHLORODIFLUOROMETHANE METHYLENE CHLORIDE TETRACHLOROETHENE

0.10

**> > >** 

0.10

**>** >

0.10

TRANS-1, 3-DICHLOROPROPENE TRANS-1, 2-DICHLOROETHENE

TRICHLOROE THENE

**)** 

0.20 1.8 0.03 0.10 0.34 0.12

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 2

Laboratory Identification Client Identification Matrix Type	86350013 SU-1 UATER	86350014 SN-2 WATER	86350015 SU-3 WATER	86350016 SW-4 ** WATER	86350017 SD-1 SEDIMENTS	86350018 SD-2 SEDIMENTS
TRICHLOROFLUCROMETHAME 0.50 U VINYL CHLORIDE 0.18 U UG/L	0.50 U 0.18 U UG/L	0.50 U 0.18 U UG/L	0.50 U 0.50 U U 0.18 U U UG/L UG	0.50 U 0.18 U UG/L	<b>%</b> %	# #
PURGEABLE AROMATICS (METH 602 CMPDS)		:	. :	:	ş	9
1,2-DICHLOROBENZENE	n 07.0	0.40 U	0.40	0.40	¥ :	<b>i</b> 1
1,3.DICHLOROBENZENE	0.30 u	0°.30	0.30 U	0.30 U	¥	¥
1,4.DICHLOROBENZENE	0.40	0.40 U	U.40 U	0.40 U	#K	<b>X</b>
SENZENE	0.20 u	0.20 U	0.20 U	0.20 U	<b>**</b>	¥
CHLOROBENZENE	0.20 U	0.20 U	0.20 U	0.20 U	<b>*</b>	<b>X</b>
ETHYL BENZENE	0.20 u	0.20 U	0.20	0.20 U	<b>*</b>	<b>X</b>
TOLUENE	0.20 U	0.20 U	0.20 U	0.20 U	æ	Z Z
XVI ENEC TOTAL	97 0	11 09.0	n 09'0	o.60 u	¥	<b>X</b>

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 2

Laboratory Identification Client Identification SM-1 Matrix Type Matrix Type UG/L PRIORITY POLLUTANT METALS (13) (TOTAL)		86350014 86350015 SW-2 SW-3	863500	15	8635001	9	86350017	86350018
LLUTANT HETALS (13) (TOTAL)	78 SI							
LLUTANT HETALS (13) (TOTAL)	5		S-13		** 7-MS		<b>8</b>	<b>2</b> -8
:			WATER		WATER		SEDIMENTS	SEDIMENTS
r		•			• • • • • •	•		; ; ; ; ; ; ; ; ; ;
	3	'n	1/9n		1/9n		MG/KG	MG/KG
	n 200	<b>5</b>	200	<b>-</b>	200	<b>-</b>	5.0 U	5.0 U
ARSENIC (TOTAL)	<b>-</b>	n 0.1	1.0	<b>-</b>	1.0	<b>-</b>	16	97
BERYLLIUM (TOTAL) 5.0 U	5	5.0 U	2.0	<b>-</b>	9.0	<b>-</b>	07.0	0.42
CADMIUM (TOTAL) 5.0 U	5	5.0 U	2.0	<b>-</b>	5.0	<b>-</b>	1.2	1.8
CHRONIUM (TOTAL) 50 U	n 50	<b>5</b>	8	<b>-</b>	20	<b>-</b>	9.3	9.3
COPPER (TOTAL) 20 U	U 20	20 U	2	<b>-</b>	02	<b>-</b>	37 U	36
LEAD (TOTAL) 100 U	u 100	<b>5</b>	\$	<b>3</b>	<b>300</b>	<b>a</b>	81	&
MERCURY-CVAA (TOTAL) 0.20 U	, ,	0.20 U	0.20	<b>-</b>	0.20	<b>-</b>	0.033	0.013
NICKEL (TOTAL) 40 U	07	<b>5</b>	9	<b>-</b>	07	<b>-</b>	12	13
SELENIUM (TOTAL) 2.0 U	0	2.0 U	2.0	<b>-</b>	2.0	<b>-</b>	5.6	4.6
SILVER (TOTAL) 10 U	U 10	<b>5</b>	2	>	2	<b>-</b>	0.25 U	0.25 U
THALLIUM (TOTAL)	0 100	<b>-</b>	9	<b>-</b>	<b>3</b> 0	5	0.92 U	0.92 U
ZINC (TOTAL) 5.0 U	· ·	5.0 U	5.0	<b>-</b>	2.0	<b>3</b>	100	170

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 2

01-may-1987	86350018 50-2 SED IMENTS	140 MG/KG	PERCENT 64
Date of Report: 01-may-1967	5 86350014 86350015 86350016 86350017 86350018 SW-2 SW-3 SW-4** SD-1 SO-2 WATER WATER SEDIMENTS SEDIMENTS	MG/KG 51 U	
	86350016 SU-4** UATER	MG/L 0.50 U	¥
FINAL REPORT	86350015 SU-3 WATER	MG/L 0.50 U	Œ
FINAL	86350014 SW-2 LANTER	NG/L 0.50 U	Œ
	86350013 su-1 LATER	NG/L 0.50 U	ä
	Laboratory Identification 86350013 Client Identification SW-1 Matrix Type	PETROLEUM NYDROCARBON - 1R	MOISTURE, PERCENT

Project No. : 2.885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 2

Shipment No.:

				FINAL REPORT	EPORT				5	משוב מו שבלים		26.
Laboratory Identification	86350019	9100	86350	020	86350	121	86350	022	963500	8	86350	720
Client Identification	8		7.93	**	SU-5 *	*	3.78	*	*2-75		- 75 - 75	
Matrix Type	SEDIMENT	<b>K</b> HTS	SEDIMENTS	ENTS	LATER		WATER		WATER		WATER	
	: : :	•	•	: : : : : : : : : : : : :	: : : : : :							
	UG/KG	49	UG/KG		UG/L		NC/L		1/9n		NG/L	
BASE/NEUTRAL AND ACID EXTRACTABLES, PRIORITY POLLUTANTS	DRITY POL	LUTANTS										
1,2,4-TRICHLOROBENZENE	150	<b>-</b>	150	>	4.0	>	4.0	<b>&gt;</b>	4.0	<b>-</b>	4.0	<b>5</b>
1, 2 - DICHLOROBENZEME	300	<b>ɔ</b>	300	>	8.0	>	8.0	<b>-</b>	8.0	<b>-</b>	8.0	<b>5</b>
1,2-DIPHENYLHYDRAZINE	150	>	150	7	4.0	9	4.0	<b>-</b>	4.0	>	4.0	<b>-</b>
1,3-DICHLOROBENZENE	150	>	150	<b>-</b>	4.0	>	4.0	<b>-</b>	4.0	<b>-</b>	4.0	<b>5</b>
1,4.DICHLOROBENZENE	150	<b>5</b>	150	-	4.0	>	4.0	>	4.0	_	4.0	<b>-</b>
2,4,6.TRICHLORUPHENOL	150	2	150	<b>-</b>	0.4	<b>3</b>	4.0	>	4.0	<b>-</b>	4.0	_
2,4-DICHLOROPHENOL	150	>	150	>	4.0	<b>-</b>	4.0	>	7.0	<b>5</b>	0.4	Þ
2,4-DIMETHYLPHENOL	150	<b>5</b>	150	>	4.0	>	4.0	<b>5</b>	4.0	<b>-</b>	7.0	<b>-</b>
2,4-DINITROPHENOL	1000	<b>-</b>	1000	>	22	>	23	<b>ɔ</b>	22	<b>-</b>	27	<b>-</b>
2,4-DINITROTOLUENE	300	>	300	>	8.0	<b>-</b>	8.0	>	8.0	<b>5</b>	8.0	<b>¬</b>
2,6-DINITROTOLUENE	300	<b>¬</b>	300	<b>-</b>	8.0	<b>-</b>	8.0	>	8.0	<b>5</b>	8.0	<b>-</b>
2-CHLORONAPHTHALENE	150	<b>¬</b>	150	<b>-</b>	4.0	<b>5</b>	4.0	<b>-</b>	4.0	<b>-</b>	0.4	<b>5</b>
2 - CHLOROPHENOL	150	<b>-</b>	150	>	4.0	<b>5</b>	4.0	<b>-</b>	4.0	<b>¬</b>	4.0	2
2-NITROPHENOL	450	<b>-</b>	450	<b>-</b>	15	>	15	<b>-</b>	15	<b>5</b>	15	<b>-</b>
3,3'-DICHLOROBENZIDENE	300	>	300	>	8.0	<b>5</b>	8.0	>	8.0	<b>-</b>	8.0	<b>-</b>
4,6-DINITRO-2-METHYLPHENOL	1500	>	1500	<b>-</b>	0,4	<b>5</b>	<b>9</b>	3	07	<b>-</b>	0,4	<b>-</b>
4-BROMOPHENYL PHENYL ETHER	150	>	150	>	4.0	3	4.0	<b>ə</b>	0.4	<b>¬</b>	0.4	2
4-CHLORO-3-METHYLPHENOL	720	<b>ɔ</b>	720	>	20	>	2	>	2	<b>5</b>	2	_
4-CHLOROPHENYL PHENYL ETHER	150	>	150	>	4.0	<b>-</b>	0.4	>	4.0	<b>-</b>	4.0	2
4-NITROPHENOL	720	<b>-</b>	730	<b>5</b>	2	<b>-</b>	2	<b>-</b>	20	<b>¬</b>	<b>0</b> 2	>
ACENAPHTHENE	ĸ	<b>&gt;</b>	ĸ	<b>¬</b>	2.0	2	2.0	<b>-</b>	2.0	<b>-</b>	2.0	<b>-</b>
ACENAPHTHYLENE	ĸ	<b>-</b>	ĸ	<b>-</b>	2.0	<b>-</b>	2.0	>	2.0	<b>5</b>	2.0	<b>5</b>
ANTHRACENE	ĸ	<b>-</b>	2400		2.0	<b>5</b>	2.0	5	2.0	<b>-</b>	2.0	>
BENZIDINE	1100	<b>-</b>	1100	>	8	>	유	<b>5</b>	30	<b>-</b>	2	<b>5</b>
BENZO(A)ANTHRACENE	150	5	14000		4.0	<b>5</b>	4.0	<b>ɔ</b>	0.4	<b>5</b>	4.0	<b>ɔ</b>
BENZO(A)PYRENE	ĸ	<b>-</b>	9700		2.0	>	2.0	<b>&gt;</b>	2.0	<b>5</b>	2.0	<b>5</b>
BENZO(B)FLUORANTHENE	ĸ	o o	11000		2.0	<b>5</b>	2.0	<b>-</b>	2.0	<b>5</b>	2.0	<b>-</b>

Date of Report: 01-may-1987

Project No.: 2-885-06-0624-00
Project Name: NANCOCK AFB
Shipment No.: 2

				FINAL REPORT	<b>=</b>				3	vate of Report	5	<u> </u>	5
Laboratory Identification	86350019	910	86350	920	86350	121	86350	220	863500		863500	54	
Client Identification	8		** 7.93	*	5-18	*	*9-RS		** 2-NS		SW-B		
Matrix Type	SEDIMENTS	ENTS	SED IN	ENTS	WATER		MATER		WATER		MATER		,
BENZO(G, N, 1 ) PERY LENE	150	<b>-</b>	6100		<b>0.</b> 4	<b>-</b>	0.7	Þ	0.7	<b>-</b>	4.0	>	
BENZO(K) FLUORANTHENE	ĸ	>	4700		5.0	<b>3</b>	2.0	>	2.0	2	2.0	5	
BENZYL BUTYL PHTHALATE	150	>	150	<b>5</b>	4.0	<b>-</b>	4.0	>	4.0	<b>-</b>	4.0	>	
BIS(2-CHLORGETHOXY)METHANE	150	>	150	9	4.0	<b>¬</b>	4.0	<b>-</b>	4.0	<b>5</b>	4.0	>	
BIS(2-CHLOROETHYL)ETHER	150	>	150	<b>5</b>	6.0	<b>-</b>	4.0	<b>5</b>	0.4	<b>-</b>	4.0	>	
B1S(2-CHLORO1SOPROPYL)ETHER	150	>	<b>150</b>	<b>5</b>	4.0	<b>-</b>	4.0	<b>ɔ</b>	0.4	<b>5</b>	4.0	>	
BIS(2-ETHYLHEXYL)PHTHALATE	150	>	3000		4.0	<b>-</b>	4.0	5	4.0	<b>5</b>	0.4	>	
CHRYSENE	ĸ	>	13000		2.0	>	2.0	<b>5</b>	2.0	<b>5</b>	2.0	>	
DI-N-BUTYL PHINALATE	8	7	5		1.6	<b>-</b>	1.6	<b>&gt;</b>	1.6	<b>5</b>	4.4		
DI-W-OCTYL PHTMALATE	ĸ	>	ĸ	<b>5</b>	2.0	<b>-</b>	2.0	<b>5</b>	2.0	<b>5</b>	2.0	״ב	
DIBENZO(A, H)ANTHRACENE	ĸ	<b>-</b>	ĸ	<b>5</b>	2.0	<b>5</b>	2.0	5	2.0	<b>5</b>	2.0	ے.	
DIETHYL PHTHALATE	ĸ	<b>-</b>	ĸ	<b>-</b>	2.0	<b>&gt;</b>	2.0	ם	5.0	<b>5</b>	2.0	∍	
DIMETHYL PHINALATE	ĸ	>	ĸ	<b>-</b>	2.0	<b>-</b>	2.0	<b>5</b>	2.0	5	2.0	<b>-</b>	
FLUOREME	ĸ	>	1600		2.0	<b>-</b>	2.0	<b>5</b>	2.0	<b>5</b>	2.0	>	
FLUOROANTHENE	ĸ	>	18000		2.0	<b>-</b>	2.0	5	2.0	<b>5</b>	2.0	<b>)</b>	
NEXACHLOROBENZENE	150	>	150	<b>-</b>	0.4	<b>-</b>	4.0	2	0.4	<b>¬</b>	4.0	>	
MEXACHLOROBUTAD I ENE	150	>	150	<b>-</b>	0.4	<b>-</b>	4.0	2	4.0	<b>5</b>	<b>6.</b> 0	>	
WEXACHLOROCYCL OPENTAD I ENE	730	>	30	<b>5</b>	2	<b>-</b>	2	2	<b>0</b> 2	<b>5</b>	50	<b>-</b>	
HEXACHLOROET MANE	300	>	30	2	8.0	<b>-</b>	8.0	<b>-</b>	8.0	<b>5</b>	8.0	>	
INDENO(1,2,3.C,D)PYRENE	ĸ	<b>5</b>	2800		2.0	<b>-</b>	2.0	<b>-</b>	2.0	<b>5</b>	2.0	>	
ISOPHORONE	150	<b>5</b>	150	<b>-</b>	0.4	>	4.0	<b>5</b>	4.0	<b>5</b>	4.0	<b>-</b>	
N-NITROSODIPHENYLAMINE	150	>	150	<b>-</b>	4.0	<b>3</b>	4.0	2	4.0	<b>5</b>	4.0	<b>&gt;</b>	
N-NITROSOD I PROPYLANINE	230	>	£	<b>-</b>	2	<b>-</b>	2	<b>5</b>	8	<b>-</b>	50	>	
HAPHTHALENE	ĸ	<b>-</b>	ĸ	2	2.0	<b>3</b>	2.0	<b>5</b>	2.0	<b>5</b>	5.0	<b>-</b>	
NITROBENZENE	300	<b>-</b>	300	>	8.0	<b>-</b>	8.0	<b>5</b>	8.0	<b>5</b>	8.0	<b>-</b>	
PENTACHLOROPHENOL	230	<b>¬</b>	22	<b>5</b>	2	<b>-</b>	20	<b>5</b>	<b>8</b>	<b>5</b>	<b>0</b> 2	<b>-</b>	
PHENANTHREWE	ĸ	>	16000		5.0	<b>-</b>	2.0	2	5.0	כ	2.0	<b>၁</b>	
PHEWOL	150	<b>¬</b>	150	<b>5</b>	4.0	<b>-</b>	4.0	<b>-</b>	4.0	<b>5</b>	7.0	>	
PYRENE	92		17000		2.0	<b>5</b>	2.0	<b>5</b>	5.0	<b>5</b>	2.0	>	

Project No. : 2.885.06-0624-00

Project Name: NANCOCK AFB

Shipment No.: 2

		FINAL	FINAL REPORT			
Laboratory Identification	86350019	_	86350021	86350022	86350023	86350024
Client Identification	£.	** <b>7</b> -8	\$F-5	** 9-MS	** 75	SU-B
Matrix Type	SEDIMENTS	SEDIMENTS	WATER	WATER	WATER	LATER
		• • • • • • • • • • • • • • • • • • •	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *		1 1 1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	OG/KG	UG/KG				
VOLATILES, PRIORITY POLLUTANTS						
1,1,1-TRICHLOROETHANE	1.9 U	1.9 U	<b>E</b>	<b>X</b>	N.	2
1,1,2,2.TETRACHLOROETHANE	3.4 U	3.4 U	<b>=</b>	<b>SE</b>	æ	<b>M</b>
1,1,2-TRICHLOROETHANE	2.5 U	2.5 U	<b>=</b>	<b>X</b>	æ	<b>3</b>
1,1-DICHLOROETHANE	2.4 U	2.4 U	#	SE SE	<b>X</b>	~
1,1-DICHLOROETHENE	1.4 U	1.4 U	<b>=</b>	Z.	<b>3</b>	<b>X</b>
1,2-DICHLOROETHANE	1.4 U	1.4 4	<b>=</b>	S.	32	<b>E</b>
1,2-DICHLOROPROPANE	3.0 U	3.0 0.	<b>4</b>	<b>G</b>	N.	æ
2-CHLOROETHYL VINYL ETHER	5.0 U	5.0 U	~	¥	¥	æ
BENZENE	2.2 U	2.2 U	<b>=</b>	æ	¥	æ
BRONOD I CHLOROMETHANE	1.1 0	1.1 5	<b>=</b>	Z.	æ	æ
васмоговм	2.4 U	2.4 U	~	¥	Z.	W.
BRONOMETHANE	o.9	0.0 0.9	<b>E</b>	æ	æ	æ
CARBON TETRACHLORIDE	1.4 U	1.4 U	<b>E</b>	¥	Œ	W.
CHLOROBENZENE	3.0 U	3.0 u	¥	æ	N.	<b>X</b>
CHLOROD I BRONOMET HANE	1.6 U	1.6 U	<b>E</b>	æ	æ	æ
CHLOROETHANE	2.6 U	2.6 U	<b>=</b>	¥.	<b>X</b>	æ
CHLOROFORM	0.80 U	0.80 u	<b>E</b>	W.	<b>X</b>	S. S.
CHLOROMETHANE	O.40 U	0.40 U	<b>E</b>	E E	M.	æ
CIS-1,3-DICHLOROPROPENE	1.0 C	1.0 U	¥	M.	<b>3</b>	<b>X</b>
ETHYL BENZENE	3.6 U	3.6 U	<b>E</b>	an An	<b>X</b>	<b>X</b>
METHYLENE CHLORIDE	1.4 U	1.4 U	#	E.R.	¥	<b>X</b>
TETRACHLOROETHENE	2.0 U	2.0 U	3	#	æ	<b>X</b>
TOLUENE	3.0 U	3.0 U	<b>4</b>	<b>88</b>	<b>X</b>	<b>X</b>
TRANS-1,2-DICHLOROETHENE	0.80 u	0.80 U	<b>X</b>	æ	<b>X</b>	<b>X</b>
TRANS-1,3-DICHLOROPROPENE	2.5 U	2.5 U	<b>X</b>	M.	<b>X</b>	<b>X</b>
TRICHLOROETHENE	1.0 U	1.0 U	<b>X</b>	æ	N.	æ
VINYL CHLORIDE	0.90 U	0.90 U	<b>X</b>	æ	æ z	X X

Project No.: 2.885.06.0624.00
Project Name: MANCOCK AFB
Shipment No.: 2

		FINAL	FINAL REPORT			
Laboratory Identification	86350019	86350020	86350021	86350022	86350023	86350024
Client Identification	£ 93	** 7.8	*&-75	** 9-AS	** L-NS	e-35
Matrix Type	SEDIMENTS	SEDIMENTS	WATER	WATER	WATER	LATER
	- 9	1				1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			1/90	NG/L	N6/L	1/90
PURGEABLE HALOCARBONS (METH 601 CMPDS)	POS)					
1, 1, 1-TRICHLOROETHANE	#	<b>3</b>	0.03 U	0.31	0.70	0.03 U
1, 1, 2, 2-TETRACHLOROETHANE	<b>3</b>	<b>%</b>	0.03 U	0.03 U	0.03 U	0.03 U
1, 1, 2 - TRICHLOROETHANE	<b>3</b>	<b>\(\frac{1}{2}\)</b>	0.05 U	0.02 U	0.05 U	0.02 U
1,1-DICHLORGETHANE	#	<b>±</b>	0.07 U	0.07 U	0.07 U	0.07 U
1,1-DICHLOROETHEME	#	¥	0.13 U	0.13 U	0.13 U	0.13 U
1,2.DICHLOROBENZENE	<b>X</b>	<b>%</b>	0.32 U	0.32 U	0.32 U	0.32 U
1,2-DICHLOROETHANE	#	¥	0.03 U	0.03 U	0.03 U	0.03 U
1, 2-DICHLOROPROPANE	8	¥	0.0¢ c	o.04 c	0.04 U	0.0¢ c
1,3-DICHLOROBENZENE	æ	¥	0.15 U	0.15 U	0.15 U	0.15 U
1,4-DICHLOROBENZENE	22	¥	0.24 U	0.24 U	0.24 U	0.24 U
2-CHLOROETHYL VINYL ETHER	<b>X</b>	<b>X</b>	0.13 U	0.13 U	0.13 U	0.13 U
BROMOD I CHLOROMETHANE	<b>X</b>	<b>X</b>	0.10 U	0.10 U	0.10 U	0.10 U
BRONOFORM	#	<b>E</b>	0.20 U	0.20 U	0.20 U	0.20 U
BRONCHETHAME	¥	Œ	1.2 U	1.2 U	1.2 U	1.2 U
CARBON TETRACHLORIDE	<b>3</b>	ğ	0.12 U	0.12 U	0.12 U	0.12 U
CHLOROBENZENE	<b>3</b>	<b>±</b>	0.25 U	0.25 U	0.25 U	0.25 U
CHLOROD I BRONONE THANE	2	¥	0.09 u	0.09 U	0.09 U	0.09 U
CHLOROETHAME	~	¥	0.52 U	0.52 U	0.52 U	0.52 U
CHLOROFORM	9	¥	0.05 u	0.05 U	0.05 U	0.0
CHLOROMETHAME	<b>3</b>	¥	0.0g C	0.08 U	0.08 u	0.08 u
CIS-1,3-DICMLOROPROPENE	<b>S</b>	<b>3</b>	0.20 U	0.20 U	0.20 U	0.20 U
DI CHLORODI FLUOROMETMANE	~	æ	1.8 U	1.8 U	1.8 U	J. 8. U
METHYLENE CHLORIDE	~	£	9.9	22	16	4.7
TETRACHLOROETHENE	<b>=</b>	Œ	0.03 U	0.03 U	0.03 U	0.03 U
TRAMS-1, 2-DICHLOROETHENE	~	¥	0.10 U	0.10 U	0.10 U	0.10 U
TRANS-1, 3-DICHLOROPROPENE	~	Œ	0.3% U	0.34 U	0.34 U	0.3¢ U
TRICHLOROETHEME	22	æ	0. iz u	0.12 U	0.12 U	0.12 U

Project No. : 2-885-06-0624-00

Project Name: HANCOCK AFB Shipment No.: 2

Shipment No.:

		FINAL	FINAL REPORT		Date of Report	Date of Report: 01-may-1987
Laboratory identification Client Identification Matrix Type	86350019 SD - 3 SED INENTS	86350020 SD-4 ** SEDIMENTS	86350021 Su-5 ** Water	86350022 Su-6 ** MATER	86350023 Su. 7** Water	86350024 SM-8 WATER
TRICHLOROFLUOROMETHANE VINYL CHLORIDE	¥ ¥	<b>X</b> X	0.50 U 0.18 U	0.50 U 0.18 U	0.50 U 0.18 U	0.50 tt 0.18 tt
PURGEABLE AROMATICS (METH 602 CHPDS)			7/9N	7/5n	7/5N	7/90
1,2.DICHLOROBENZENE 1 3.DICHLOROBENZENE	æ	<b>8</b>	0.40	0.40 U	0.40 U	0.40
1.4.01CM OBORENZEME	Œ	<b>E</b>	0.30 U	0.30 U	0.30 U	0.30 U
	<b>2</b>	Œ	0.40 U	0.40 U	0.40	0.40 u
CHIOROBENSENE	Z :	¥	0.20 U	0.20 U	0.20 U	0.20 U
ETAY BENTAL	<b>X</b>	<b>¥</b>	0.20 U	0.20 U	0.20 U	0.20 U
	<b>3</b>	<b>4</b>	0.20 u	0.20 U	0.20 U	0.20 U
XVIEWES TOTAL		<b>4</b>	0.20 U	0.20 U	0.20 U	0.20 U
	¥	<b>3</b>	0.60 u	ი 09.0	0.60 u	0.60 U

Environmental Chemistry Division

Shipment No.: 2		FINAL	REPORT			_	Date of
Laboratory Identification Client Identification	86350019 SO-3	86350020 SD-4**	0 86350021 SW·5**	<b>5</b> .	86350022 SW-6 **	86350023 SU-7*	, \$05
Matrix Type	SEDIMENTS	SEDIMENTS	WATER			LATE	~
PRIORITY POLLUTANT METALS (13) (TOTAL)	MG/KG	MG/KG	1/90		1/90	1/9n	
•	5.0 U	5.0 U	200	<b>-</b>	200 U	200	
ARSENIC (TOTAL)	12	7.7	1.0	<b>5</b>	1.0 U	1.0	
BERYLLIUM (TOTAL)	0.18	0.20	5.0	<b>-</b>	5.0 U	5.0	
CADMIUM (TOTAL)	0.45	1.7	5.0	<b>-</b>	5.0 U	5.0	
CHROMIUM (TOTAL)	4.3	12	20	<b>-</b>	20 n	20	
COPPER (TOTAL)	10	86	20	Þ	20 n	02	
LEAD (TOTAL)	14	100	100	<b>-</b>	100 u	100	
MERCURY-CVAA (TOTAL)	0.067	0.033	0.20	<b>¬</b>	0.20 U	0.2	0
NICKEL (TOTAL)	5.3	12	07	_	n 07	07	
SELENIUM (TOTAL)	0.62	1.1	2.0	ם	2.0 U	2.0	
SILVER (TOTAL)	0.25 U	0.25 U	0	ח	J 01	10	
THALLIUM (TOTAL)	0.92 U	0.92 U	100	<b>-</b>	100 U	100	
ZINC (TOTAL)	38	89	5.0	<b>-</b>	5.0 U	5.0	

100 37

**-**

200 1.0 5.0 5.0 50 20 100 0.20 40

Date of Report: 01-may-1967

86350024 Su-8 Water

**1/9**0

2-885-06-0624-00	MANCOCK AFB	~
Project No. :	Project Name:	Shipment No.:

Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Apprehensive Appre		FINAL	REPORT		Date of R	Date of Report: 01-may-1987
Client Identification SD-3 Matrix Type SEDIMENTS	86350019 SO · 3 SED IMENTS	86350020 SD-4 ** SED IMENTS	86350021 SW-5** WATER	86350020 86350021 86350022 86350023 86350024 SD-4** SW-5** SW-6** SW-7** SW-8 SED IMENTS WATER WATER WATER	86350023 Su-7 ** Water	86350024 SW-8 Water
PETROLEUM NYDROCARBON - IR MOISTIME DEBENT	MG/KG 43 U PERCENT	MG/KG 1500 PERCENT	MG/L 0.50 U	0.02.0 1/9M	MG/L 0.50 U	MG/L 0.50 U
	7,	æ	M.	Œ	ä	#R

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 2

		1	FINAL REPORT		Date of Report:	ort: 01-may-198/
Laboratory Identification	86350025	86350026	86350027	86350028	86350029	86350030
Client Identification	\$8·5	** 9·9S	** 1-93	8-8	6-AS	SW-10
Matrix Type	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	WATER	WATER
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	UG/KG	UG/KG	UG/KG	UG/KG	1/91	1/90
BASE/NEUTRAL AND ACID EXTRACTABLES, PRIORITY POLLUTANTS	PRIORITY POLLUTANTS					
1,2,4-TRICHLOROBENZENE	150 U	150 U	150 U	150 U	U 0.4	U 0.4
1,2-DICHLOROBENZENE	300 n	300 n	300 C	300	8.0 U	8.0 U
1,2-DIPHENYLHYDRAZINE	150 U	150 U	150 U	150 U	n 0.4	U 0.4
1,3-DICHLOROBENZENE	150 U	150 U	150 U	150 U	0. 4.0 U	U 0.4
1,4-DICHLOROBENZENE	150 U	150 u	150 U	150 U	U 0.4	U 0.4
2,4,6.TRICHLOROPHENOL	150 U	150 U	150 U	150 U	0.4	n 0.4
2,4-DICHLOROPHENOL	150 U	150 U	150 u	150 U	7.0 U	n 0.7
2,4.DIMETHYLPHENOL	150 U	150 U	150 u	U 051	J 0.4	7.0 U
2,4-DINITROPHENOL	1000 U	1000 u	1000 U	1000 U	O 22	U 75
2,4.DINITROTOLUENE	300 u	300 u	300 ∪	300	8.0 U	8.0 U
2,6-DINITROTOLUENE	300 U	300 u	300	300 n	8.0 U	8.0 U
Z-CHLORONAPHTHALENE	150 U	150 U	150 U	150 U	4.0 U	n 0.4
2-CHLOROPHENOL	150 U	150 U	150 U	150 U	J 0.4	n 0.7
2-NITROPHENOL	n 057	n 057	n 057	n 057	12 U	12 U
3,3DICHLOROBENZIDENE	300 U	300 u	300 n	300	B.0 U	8.0 U
4,6-DINITRO-2-METHYLPHEWOL	1500 U	1500 u	1500 u	1500 U	n 07	n 07
4-BROMOPHENYL PHENYL ETHER	150 U	150 U	150 U	150 U	n 0.4	n 0.4
4 - CHLORO - 3 - NETHYLPHENOL	750 U	J 052	J 052	750 U	n 02	n 02
4-CHLOROPHENYL PHENYL ETHER	150 U	150 U	150 U	150 U	0.4 0.0	n 0.4
4-NITROPHENOL	750 U	230 €	750 u	750 c	20 N	20 n
ACENAPHTHENE	Z C	ĸ	24	> K	2.0 U	2.0 U
ACENAPHTHYLENE	Z.	ĸ	ĸ	> K	2.0 U	2.0 U
ANTHRACENE	z,	ĸ	ĸ	2200	2.0 U	2.0 U
BENZIDINE	1100 U	1100 U	1100 u	1100 U	30 n	30 n
BENZO(A)ANTHRACENE	190	410	017	8500	0.7	6.1
BENZO(A)PYRENE		077	260	0089	2.0 U	4.7
BENZO(B)FLUORANTHENE	75 U	ĸ	, 025	0069	2.0 U	8.1

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB Shipment No.:

Date of Report: 01-may-1987

			FINAL REPORT	<b>-</b>				š	וב סו צבויסו	5	<u> </u>	ē
Laboratory Identification	86350025	86350026		863500	23	86350		863500	. 62	86350	030	
Client Identification	×* S-93	** 9.05		× 2-98		8-03		6-AS		SW- 10		
Matrix Type	SEDIMENTS	SED INEN		SEDIMENTS	IIS	SEDIMENTS		WATER		WATER		
BENZO(G,H,I)PERYLENE	150 u	250	2	270		4200	• • • • • • • •	0.4	<b>-</b>	7.0		:
BENZO(K)FLUORANTHENE	<b>8</b> 2	200	•	20		4700		2.0	_D	2.0	<b>၁</b>	
BENZYL BUTYL PHTHALATE	150 U	150	_	52	<b>5</b>	150	<b>ɔ</b>	4.0	2	4.0	<b>ɔ</b>	
BIS(2-CHLOROETHOXY)METHANE	150 U	150	-	8	<b>-</b>	150	>	0.4	כ	4.0	>	
BIS(2-CHLOROETHYL)ETHER	150 U	150		20	<b>-</b>	150	<b>-</b>	4.0	<b>5</b>	4.0	>	
BIS(2-CHLOROISOPROPYL)ETHER	150 U	150	_	22	<b>-</b>	150	<b>-</b>	6.0	<b>5</b>	4.0	>	
BIS(2-ETHYLHEXYL)PHTHALATE	150 U	150	21 12	8		007		17		7.8		
CHRYSENE	320	100	2	2		0006		2.0	)	8.3		
DI-W-BUTYL PHTHALATE	<b>9</b>	3		3	<b>-</b>	2		1.6	<b>5</b>	1.6	<b>¬</b>	
DI-W-OCTYL PHTHALATE	120	ĸ	•	ĸ	ə	100		2.0	<b>¬</b>	2.0	>	
DIBENZO(A, H)ANTHRACENE	3 K	ĸ		ĸ	<b>-</b>	1000		2.0	<b>5</b>	2.0	>	
DIETHYL PHINALATE	ĸ	ĸ		ĸ	<b>5</b>	ĸ	<b>5</b>	2.0	<b>-</b>	5.0	>	
DIMETHYL PHTHALATE	ĸ	ĸ	_	ĸ	<b>-</b>	ĸ	>	2.0	<b>-</b>	5.0	>	
FLUORENE	ĸ	ĸ	_	ĸ	<b>-</b>	280		2.0	ם	2.0	<b>-</b>	
FLUORDANTHENE	320	98	•	8		8500		2.0	ם	0		
HEXACHLOROBENZENE	150 U	150	-	20	<b>-</b>	150	<b>-</b>	4.0	<b>5</b>	4.0	>	
NEXACNLOROBUTAD I ENE	150 U	150	-	8	_	150	2	4.0	ə	0.4	>	
MEXACHLOROCYCLOPENTAD I ENE	730 n	730		20	<b>-</b>	730	>	2	<b>-</b>	50	>	
MEXACHLOROETHANE	300 u	300	M	8	<b>-</b>	300	<b>-</b>	8.0	<b>5</b>	8.0	>	
INDENO(1,2,3-C,D)PYRENE	ĸ	270	8	2		0094		2.0	<b>5</b>	2.0	>	
I SOPHORONE	150 U	150	-	55	<b>-</b>	150	<b>-</b>	0.4	<b>5</b>	4.0	>	
N-NI TROSOD I PHENYLAMINE	150 U	150	-	8	<b>-</b>	150	<b>-</b>	4.0	<b>-</b>	4.0	>	
N-NITROSOD I PROPYLAMINE	750 □	730		8	<b>-</b>	20	<b>၁</b>	2	o o	50	>	
NAPHTHALENE	3 K	ĸ		ĸ	<b>-</b>	8		2.0	<b>5</b>	2.0	>	
MITROBENZENE	300 u	300	M	8	<b>-</b>	300	<b>&gt;</b>	8.0	<b>-</b>	8.0	<b>&gt;</b>	
PENTACHLOROPHENOL	200 €	230	-	20	<b>5</b>	720	>	20	<b>-</b>	02	>	
PHENANTHRENE	120	510	<b>'0</b>	2		0006		2.0	<b>-</b>	6.2		
PHENOL	150 U	150	_	20	_	150	<b>-</b>	4.0	ם	7.0	>	
PYRENE	0%9	1200		الا	<b>-</b>	10000		2.0	<b>5</b>	81		

Science Applications International Corporation Environmental Chemistry Division

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 2

		FINAL	FINAL REPORT			
Laboratory Identification	86350025	86350026	86350027	86350028	86350029	86350030
Client Identification	** S-88	**9-05	×*.7.93	80.08	6-MS	SW-10
Matrix Type	SEDIMENTS	SED INENTS	SEDIMENTS	SEDIMENTS	WATER	WATER
	,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1			
	UG/KG	UG/KG	UG/KG	UG/KG		
VOLATILES, PRIORITY POLLUTANTS						
1,1,1.TRICHLOROETHANE	1.9 U	1.9 U	1.9 U	1.9 U	¥	¥
1,1,2,2-TETRACHLOROETHANE	3.4 U	3.4 U	3.4 U	3.4 U	<b>=</b>	¥
1,1,2-TRICHLOROETHANE	2.5 U	2.5 U	2.5 U	2.5 U	<b>X</b>	æ
1, 1-DICHLOROETHANE	2.4 U	2.4 U	2.4 U	2.4 U	<b>X</b>	#
1, 1.DICHLOROETHENE	J.4 C	1.4 U	1.4 U	1.4 U	×	88
1,2-DICHLOROETHANE	1.4 U	1.4 U	1.4 U	1.4 U	æ	2
1,2.DICHLOROPROPANE	3.0 U	3.0 U	3.0 U	3.0 U	<b>X</b>	æ
2-CHLOROETHYL VINYL ETHER	5.0 U	5.0 U	5.0 U	5.0 U	#	¥
BENZENE	2.2 U	2.2 U	2.2 U	2.2 U	æ	æ
BROMOD I CHLOROMETHANE	1.1 u	1.1 0	1.1 0	1.1	¥	¥
вкомогоки	2.4 U	2.4 U	2.4 U	2.4 U	<b>3</b>	æ
BROMOMETHANE	0.9	6.0 U	6.0 U	6.0 U	<b>X</b>	NR.
CARBON TETRACHLORIDE	1.4 U	1.4 U	1.4 U	1.4 U	æ	æ
CHLOROBENZENE	3.0 U	3.0 U	3.0 U	3.0 U	¥	æ
CHLOROD I BROHOME THANE	1.6 U	1.6 U	1.6 U	1.6 U	æ	<b>3</b>
CHLOROETHANE	2.6 U	2.6 U	2.6 U	2.6 U	æ	æ
CHLOROFORM	0.80 u	0.80 U	0.80 u	0.80 U	¥	æ
CHLOROMETHANE	0.40 U	0.40 U	0.40 U	0.40 U	¥	æ
CIS-1,3-DICHLOROPROPENE	1.0 U	1.0 U	1.0 c	1.0 U	¥	æ
ETHYL BENZEME	3.6 U	3.6 U	3.6 ∪	3.6 U	Ä	æ
METHYLENE CHLORIDE	1.4 U	1.4 U	1.4 U	1.4 U	¥	S.
TETRACHLOROETHENE	2.0 U	2.0 U	2.0 U	2.0 U	¥	¥
TOLUENE	3.0 U	3.0 U	3.0 U	3.0 U	¥	<b>X</b>
TRANS-1,2-DICHLOROETHENE	0.80 U	0.80 U	0.80 c	0.80 U	æ	æ
TRANS-1, 3-DICHLOROPROPENE	2.5 U	2.5 U	2.5 U	2.5 U	<b>X</b>	<b>X</b>
TRICHLOROETHENE	1.0 U	1.0 U	1.0 c	1.0 U	¥	<b>33</b>
VINYL CHLORIDE	0.90 U	0.90 u	0.90 u	0.90 U	æ	<b>X</b>

Project No.: 2-885-06-0624-00

Project Name: HANCOCK AFB Shipment No.: 2

Date of Report: 01-may-1987

Laboratory Identification Client Identification		JVHT	בושאר אנירטאו			
Client Identification	86350025	86350026	86350027	86350028	86350029	86350030
	×× 5-98	** 9-0S	\$8·7**	8- OS	6-MS	SV-10
	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	UATER	WATER
					) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • •
PURGEABLE HALOCARBONS (METH 601 CMPDS)					1/9n	1/90
1,1,1-TRICHLOROETHANE	82	<b>3</b>	¥	<b>3</b>	0.03 U	0.03 U
1,1,2,2.TETRACHLOROETHANE	Œ	S.	æ	**	0.03 U	0.03 U
1, 1, 2-TRICHLOROETHANE	¥	¥	æ	N.	0.02 U	0.02 U
1, 1-DICHLOROETHANE	#	¥	æ	2	0.07 u	0.07 U
1,1.DICHLOROETHENE	æ	<b>*</b>	æ	*	0.13 U	0.13 U
1, 2-DICHLOROBENZENE	Œ	<b>3</b>	æ	*	0.32 U	0.32 u
1,2-DICHLOROETHANE	<b>X</b>	*	æ	<b>38</b>	0.03 U	0.03 U
1,2-DICHLOROPROPANE	<b>X</b>	<b>X</b>	æ	N.	0.0% U	0.0% u
1,3.DICHLOROBENZENE	<b>3</b>	*	æ	<b>Z</b>	0.15 U	0.15 U
1,4-DICHLOROBENZENE	R	¥	<b>X</b>	<b>*</b>	0.24 U	0.24 U
2-CHLOROETHYL VINYL ETHER	X.	<b>X</b>	<b>XX</b>	S.	0.13 U	0.13 U
BRONCO I CHLORONE THANE	M.	Z.	<b>3</b>	N.	0.10 U	0.10 U
BROMOFORM	R	<b>*</b>	<b>X</b>	E.	0.20 U	0.20 U
BROMOMETHANE	N.	<b>X</b>	2	# H	1.2 U	1.2 U
CARBON TETRACHLORIDE	*	<b>*</b>	æ	<b>X</b>	0.12 U	0.12 U
CHLOROBENZEWE	*	*	¥	<b>3</b>	0.25 U	0.25 U
CHLOROD I BRONOME THANE	3	*	#	<b>X</b>	0.09 U	0.09 u
CHLOROETHANE	<b>*</b>	<b>X</b>	22	<b>X</b>	0.52 U	0.52 U
CHLOROFORM	<b>3</b>	<b>=</b>	<b>X</b>	<b>X</b>	0.05 U	0.05 U
CHLOROMETHAME	<b>3</b>	¥	æ	æ	0.08 U	0.08 u
CIS-1,3-DICHLOROPROPENE	<b>X</b>	<b>3</b>	Z.	<b>X</b>	0.20 U	0.20 U
DICHLORODIFLUOROMETHANE	**	~	<b>X</b>	8	1.8 U	1.8 U
METHYLEME CHLORIDE	¥	22	<b>X</b>	<b>X</b>	97.0	9.4
TETRACHLOROETHENE	<b>%</b>	<b>\(\frac{1}{2}\)</b>	æ	<b>X</b>	0.03 U	0.03 U
TRANS-1, 2-DICHLOROETHENE	<b>X</b>	¥	<b>3</b>	<b>X</b>	0.10 U	0.10 U
TRANS-1, 3-DICHLOROPROPENE	MR	22	3E	<b>X</b>	0.34 U	0.34 U
TR I CHL OROE THENE	æ	<b>X</b>	M.	<b>3</b>	0.12 U	0.12 U

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 2

		FINAL	HAL REPORT			
Laboratory Identification	86350025	86350026	86350027	86350028	86350029	96350030
Client Identification	\$8-5 **	** 9- <b>9</b> 5	86.7**	<b>9</b> -8	6-75	St10
Matrix Type	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	LATER	WATER
TRICHLOROFLUCROMETHANE	**************************************			ER.	0.50 U	0.50 U
VINYL CHLORIDE	#	<b>≅</b>	<b>X</b>	<b>X</b>	0.18 U	0.18 U
					1/90	7/9n
PURGEABLE AROMATICS (NETH 602 CHPOS)						
1,2.DICHLOROBENZENE	¥	¥	<b>3</b>	<b>=</b>	0.40	0.40
1,3-DICHLOROBENZENE	¥	£	æ	<b>Ξ</b>	0.30 U	0.30 U
1,4-DICHLOROBENZEME	¥	¥	æ	¥	0.40 U	0.40 U
BENZENE	¥	¥	æ	¥	0.20 U	0.20 U
CHLOROBENZENE	æ	Œ	æ	#	0.20 U	0.20 U
ETHYL BENZENE	ä	¥	¥	<b>=</b>	0.20 U	0.20 u
TOLUENE	æ	¥	æ	¥	0.20 U	0.20 u
XYLENES, TOTAL	3	<b>E</b>	æ	#	0.60 U	0.60

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 2

Date of Report: 01-may-1987

		FINAL	INAL REPORT				
Laboratory Identification	86350025	86350026	86350027	86350028	86350029	963500	30
Client Identification	<b>5-95</b>	** 9.98	×* 1.93	8-93	6-NS	SW-10	
Matrix Type	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	WATER	WATER	
			5 4 7 1 2 4 4 4 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			
	MG/KG	MG/KG	MG/KG	MG/KG	7/90	1/90	
PRIORITY POLLUTANT METALS (13) (TOTAL)							
ANTIMONY (TOTAL)	5.0 U	n 6.4	5.0 U	5.0 U	200 U	200	>
ARSENIC (TOTAL)	=======================================	3.3	2.7	6.5	1.0 u	1.0	<b>-</b>
BERYLLIUM (TOTAL)	0.55	0.22	0.23	0.43	5.0 U	5.0	>
CADMIUM (TOTAL)	78.0	0.59	0.33	0.4	5.0 U	5.0	>
CHROMIUM (TOTAL)	13	7.5	7.1	4	20 n	20	<b>-</b>
COPPER (TOTAL)	12	17	2.7	22	5	19	
LEAD (TOTAL)	7.3	6.3	3.6	К	100 U	001	>
MERCURY-CVAA (TOTAL)	0.020 U	0.020 U	0.063	99.0	0.20 U	0.20	>
MICKEL (TOTAL)	13	10	5.4	15	n 07	07	>
SELENIUM (TOTAL)	3.1	0.82	2.8	3.7	2.0 U	2.0	>
SILVER (TOTAL)	0.25 U	0.25 U	0.25 U	0.25 U	J 01	10	∍
THALLIUM (TOTAL)	0.92 U	0.92 U	0.92 U	0.92 U	100 U	100	>

150

110

26

99

82

19

ZINC (TOTAL)

Project Name: NANCOCK AFB Shipment No.: 2

Project No. : 2-885-06-0624-00

Shipment No.: 2					Date of Re	Date of Report: 01-may-1987
		FINAL	FINAL REPORT			
Laboratory Identification	86350025	9200589	86350027	86350028	86350029	86350030
Client Identification	8 · S **	** 9-95	£ 1.55	89. 93.	6-75	SW-10
Matrix Type	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	WATER	WATER
	•					
	MG/KG	MG/KG	MG/KG	MG/KG	HG/L	MG/L
PETROLEUM HYDROCARBOW - 1R	22	37 U	31 U	300	0.50 U	0.50 U
	PERCENT	PERCENT	PERCENT	PERCENT		
MOISTURE, PERCENT	*	35	%	39	¥	æ

Project No.: 2-885-06-0624-00 Project Name: MANCOCK AFB

Shipment No.: 2

		FINA	FINAL REPORT				
Laboratory Identification	86350031	86350032	86350033	86350034	86350035	86350036	
Client Identification	SE-13	SW-12	8.9	SS - 55	S0·11	\$0.12	
Hatrix Type	WATER	MATER	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	ģ
	1/9n	1/90	UG/KG	UG/KG	UG/KG	UG/KG	
BASE/NEUTRAL AND ACID EXTRACTABLES, PRIORITY POLLUT/	HORITY POLLUTANTS						
1,2,4-TRICHLOROBENZENE	n 0.4	7·0·7	150 U	150 U	150 U	150 U	_
1,2-DICHLOROBENZENE	J 0.8	<b>9</b> .0	300 u	300 C	300 u	300	_
1,2.DIPHENTLNYDRAZINE	n 0.4	7.0.4	150 U	150 U	150 U	150	_
1,3.DICHLOROBENZENE	n 0.4	4.0 c	150 U	150 U	150 U	150 L	_
1,4-DICHLOROBENZENE	7.0 C	J 0.4	150 U	150 u	150 U	150	_
2,4,6-TRICHLOROPHENOL	7.0.4	7 O.4	150 U	150 U	150 U	150	_
2,4-DICHLOROPHENOL	n 0.4	D.4	150 U	150 U	150 u	150	_
2,4.DIMETHYLPHENOL	n 0.4	7.0 0.4	150 U	150 U	150 U	150	_
2,4-DINITROPHENOL	27 U	27 U	1000 U	1000 U	1000 u	1000	7
2,4-DINITROTOLUENE	3.0 U	3.0 C	300 €	300 C	300 C	300	_
2,6-DINITROTOLUENE	8.0 U	9.0 C	300 n	300 0	300	300	_
2-CHLOROWAPHTHALENE	n 0.4	n 0.4	150 U	150 U	150 ບ	150	7
2 - CHLOROPHENOL	n 0.4	4.0 U	150 U	150 U	150 u	150	_
2-NITROPHENOL	12 U	12 u	720 n	720 n	720 n	1 055	-
3,3'-DICHLOROBENZIDENE	3.0 C	<b>9.</b> 0 c	300 C	300 c	300 n	300	_
4,6-DINITRO-2-WETHYLPHENOL	n 07	n 07	1500 u	1500 u	1500 u	1500	_
4-BRONDPHENYL PHENYL ETHER	n 0.4	n 0.4	150 U	150 U	150 u	150 1	_
4-CHLORO-3-METHYLPHENOL	n 02	n 02	2002	750 u	D 052	750	_
4-CHLOROPHENYL PHENYL ETHER	7 0.4	7.0°4	150 U	150 U	150 u	150	_
4-NITROPHENOL	70 n	n 02	730	750 C	750 C	750	_
ACENAPHTHENE	2.0 U	2.0 U	ĸ	ع د	ĸ	ĸ	_
ACEMAPHTHYLENE	2.0 U	2.0 u	K	ĸ	ĸ	ĸ	_
ANTHRACENE	2.0 U	2.0 u	ء د	310	9200	18	
BENZIDINE	30	30	J 0011	1100 U	1100 U		5
BENZO(A)ANTHRACENE	0.4	7 0.4	150 u	1500	21000	087	
BENZO(A)PYRENE	2.0 U	2.0 U	S K	1100	20000	390	
BENZO(B)FLUORANTHENE	2.0 U	2.0 u	ĸ	1700	22000	860	

Environmental Chemistry Division

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 2

			FINAL REPORT				
Laboratory Identification	86350031	86350032	86350033	86350034	86350035	8635003	9
Client Identification	SE-11	Su-12	6-83	8. 5.	8 ±	SD - 12	
Matrix Type	WATER	MATER	SEDIMENTS	SEDIMENTS	SED IMENTS	SEDIMENTS	13
BENZO(G, H, I )PERYLENE	n 0.4	J 0.4	150 U	390	13000	230	:
BENZO(K)FLUORANTHENE	2.0 U	2.0 U	ĸ	820	11000	ĸ	3
BENZYL BUTYL PHTHALATE	7.0.4	n 0.4	150 U	150 U	150 U	150	_
BIS(2-CHLOROETHOXY)METHANE	7.0.4	n 0.4	150 U	150 U	150 U	150	_
BIS(2-CHLOROETHYL)ETHER	7.0.7	n 0.4	150 U	150 U	150 U	150	<b>-</b>
BIS(2-CHLOROISOPROPYL)ETHER	7 0.4	n 0.4	150 U	150 U	150 U	150	9
BIS(2-ETHYLHEXYL)PHTHALATE	7 0.4	n 0.4	150 U	150 U	150 U	097	
CHRYSENC	2.0 U	3.2	ĸ	1300	2	770	
DI - C. SUTYL PHTHALATE	1.6 U	1.6 U	110	9	n 09	110	
DI-N-OCTYL PHINALATE	2.0 U	2.0 U	ĸ	110	2400	1200	
DIBENZO(A, H)ANTHRACENE	2.0 U	2.0 U	2	ĸ	ĸ	ĸ	<b>-</b>
DIETHYL PHTHALATE	2.0 U	2.0 U	ĸ	ĸ	ĸ	ĸ	<b>-</b>
DIMETHYL PHINALATE	2.0 U	2.0 U	ĸ	ĸ	ر ح	ĸ	<b>-</b>
FLUORENE	2.0 U	2.0 U	ĸ	110	2400	ĸ	<b>-</b>
FLUOROANTHENE	2.0 U	7.1	026	3600	37000	1600	
HEXACHLOROBENZENE	7.0 0	0.4	150 U	150 U	150 U	150	<b>&gt;</b>
HEXACHLOROBUTAD I ENE	7.0 0	n 0.4	150 U	150 U	150 U	150	<b>5</b>
HEXACHLOROCYCLOPENTAD I ENE	70 P	n 02	750 U	750 C	D 052	250	_
HEXACHLOROETHANE	8.0 u	8.0 U	300 n	300 n	300 ∩	300	<b>5</b>
INDEMO(1,2,3-C,0)PYRENE	2.0 U	2.0 U	Z D	730	12000	ĸ	<b>-</b>
ISOPHORONE	n 0.4	n 0.4	150 U	150 U	150 U	150	<b>5</b>
N-NITROSOD I PHENYLAMINE	n 0.4	0.4	150 U	150 U	150 U	150	<b>-</b>
M-NITROSODIPROPYLANINE	<b>7</b> 02	70 n	750 U	200 €	750	250	<b>5</b>
NAPHTHALENE	2.0 U	2.0 U	ĸ	ĸ	390	ĸ	<b>5</b>
NITROBENZENE	9.0 n	3.0 U	300	300	300 u	300	<b>-</b>
PENTACHLOROPHENOL	70 C	20 70	750 U	750 U	750 u	750	<b>5</b>
PHENANTHREME	2.0 U	3.3	077	1800	3000	260	
PHENOL	7 0.4	7 0.7	150 U	150 U	150 U	150	<b>5</b>
PYRENE	2.0 U	9.6	710	2400	32000	1400	

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 2

Date of Report: 01-may-1987

		FINAL	FINAL REPORT			
Laboratory Identification	86350031	86350032	86350033	86350034	86350035	86350036
Client Identification	SW-11	SW-12	6-8	SD - 10	11-08	<b>3</b> 6-12
Matrix Type	WATER	WATER	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS
			1	· · · · · · · · · · · · · · · · · · ·		
VOLATILES, PRIORITY POLLUTANTS			UG/KG	UG/KG	UG/KG	UG/KG
1,1,1-TRICHLOROETHANE	<b>3</b>	æ	1.9 U	1.9 U	1.9 U	1.9 U
1,1,2,2-TETRACHLOROETNAME	æ	¥	3.4 U	3.4 U	3.4 U	3.4 10
1,1,2-TRICHLOROETHANE	<b>X</b>	¥	2.5 U	2.5 U	2.5 U	2.5 U
1,1-DICHLOROETHANE	<b>3</b>	Œ	2.4 U	2.4 U	2.4 U	2.4 U
1, 1-DICHLOROETHENE	#	<b>X</b>	1.4 U	1.4 U	1.4 U	1.4 U
1,2-DICHLOROETHANE	#	X.	1.4 U	1.4 U	1.4 U	1.4 U
1,2-DICHLOROPROPANE	<b>8</b>	#	3.0 0	3.0 0	3.0 U	3.0 U
2-CHLOROETHYL VINYL ETHER	22	æ	5.0 U	5.0 U	5.0 U	5.0 U
BENZENE	**	æ	2.2 U	2.2 U	2.2 U	2.2 U
BROMOD I CHLOROME THANE	<b>X</b>	æ	1.1 u	1.1 5	1.1 0	1.1 0
BROMOFORM	¥	X.	2.4 U	2.4 U	2.4 U	2.4 U
BROWOMETHANE	æ	<b>X</b>	0.0 U	0.9	0.0 U	0.9
CARBON TETRACHLORIDE	<b>X</b>	æ	1.4 U	1.4 U	1.4 U	1.4 U
CHLOROBENZENE	<b>X</b>	22	3.0 U	3.0 0	3.0 ບ	3.0 U
CHLOROD I BROMONE THANE	33	82	1.6 U	1.6 U	1.6 U	1.6 U
CHLOROETHANE	32	æ	2.6 U	2.6 U	2.6 U	2.6 U
CHLOROFORM	*	2	0.80 U	0.80 U	0.80 U	0.80 U
CHLORONETHANE	*	<b>3</b>	0.40 U	0.40 U	n 05.0	0.40
CIS-1,3-DICHLOROPROPENE	<b>3</b>	<b>X</b>	1.0 U	1.0 U	1.0 U	J.0 U
ETHYL BENZEME	¥	æ	3.6 ∪	3.6 ∪	3.6 U	3.6 ∪
METHYLENE CHLORIDE	28	#	1.4 U	1.4 U	1.4 U	1.4 U
TETRACHLOROETHENE	2	Œ	2.0 U	2.0 U	2.0 U	2.0 U
TOLUENE	32	¥	3.0 U	3.0 U	3.0 U	3.0 U
TRANS-1, 2-DICHLOROETHENE	*	æ	0.00 U	0.80 ∪	0.80 U	0.80 u
TRANS-1, 3-DICHLOROPROPENE	22	35	2.5 U	2.5 U	2.5 U	2.5 U
TRICHLOROETHENE	<b>X</b>	<b>3</b>	J. 0. t	1.0 U	1.0 C	J.0 U
VINYL CHLORIDE	<b>X</b>	Z.	0.90 U	0.90 U	0.90 u	0.90 u

Project No.: 2-885-06-0624-00
Project Name: HANCOCK AFB
Shipment No.: 2

		FINAL	FINAL REPORT			•
Laboratory Identification	86350031	86350032	86350033	86350034	86350035	86350036
Client Identification	<b>2</b> €-11	SN-12	6-95	SO · 10	11.03	SD-12
Matrix Type	WATER	UATER	SEDIMENTS	SED IMENTS	SEDIMENTS	SEDIMENTS
	, , , , , , , , , , , , , , , , , , ,	• • • • • • • • • • • • • • • • • • •	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			
	NG/L	N6/L				
PURGEABLE HALOCARBONS (METH 601 CMPDS)						
1,1,1-TRICHLOROETHANE	3.1	0.03 U	¥	æ	*	<b>*</b>
1,1,2,2.TETRACHLOROETHANE	0.03 U	0.03 U	æ	æ	3.5	<b>X</b>
1,1,2-TRICHLOROETHANE	0.02 U	0.02 U	æ	æ	2	æ
1, 1-DICHLOROETHANE	0.07 U	0.07 U	¥	¥	3	<b>X</b>
1, 1-DICHLOROETHENE	0.13 U	0.13 U	Œ	<b>3</b>	22	æ
1,2.01CHLOROBENZENE	0.32 U	0.32 U	Œ	æ	<b>38</b>	¥
1,2-DICHLOROETHANE	0.03 U	0.03 U	¥	æ	20	<b>%</b>
1,2-DICHLOROPROPANE	0.0¢ c	0.0% U	¥	æ	22	<b>88</b>
1,3-DICHLOROBENZENE	0.15 U	0.15 U	¥	æ	35	32
1,4-DICHLOROBENZENE	0.24 U	0.24 U	<b>≅</b>	æ	<b>8</b>	**
2-CHLOROETHYL VINYL ETHER	0.13 U	0.13 U	<b>=</b>	<b>X</b>	<b>E</b>	#
BRONOD I CHLORONE THANE	0.10 u	0.10 U	<b>=</b>	æ	æ	<b>X</b>
BRONDFORM	0.20 U	0.20 U	22	<b>X</b>	X.	22
BROKOVE THAME	1.2 U	1.2 U	<b>X</b>	<b>X</b>	<b>8</b>	<b>3</b>
CARBON TETRACHLORIDE	0.12 U	0.12 U	<b>3</b>	#	<b>X</b>	¥
CHLOROBENZENE	0.25 U	0.25 U	<b>X</b>	¥	<b>3</b>	¥
CHLOROD I BROKONE THANE	0.09 U	0.09 U	~	<b>2</b>	<b>X</b>	æ
CHLOROETHAME	0.52 U	0.52 U	Œ.	¥	<b>3</b>	¥
CHLOROFORM	0.05 U	0.05 U	<b>E</b>	<b>X</b>	<b>3</b>	¥
CHLOROMETHAME	0.08 U	0.08 U	<b>E</b>	æ	<b>*</b>	¥
CIS-1,3-DICMLOROPROPENE	0.20 U	0.20 U	<b>H</b>	Œ	<b>X</b>	æ
DICHLORODIFLUOROMETHANE	1.8 U	1.8 U	~	¥	<b>X</b>	¥
METHYLENE CHLORIDE	0.41	15	<b>X</b>	¥	<b>X</b>	æ
TETRACHLOROETHENE	0.03 U	0.03 U	<b>±</b>	#	<b>X</b>	æ
TRANS-1, 2-DICHLORGETHENE	0.10 U	0.10 U	<b>~</b>	¥	<b>X</b>	¥
TRANS-1,3-DICHLOROPROPENE	0.3¢ C	0.3¢ U	Œ	Œ	S.	<b>X</b>
TRICHLOROETHENE	0.12 U	0.12 U	· \$	#	S.	æ

Project No. : 2.885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 2

Date of Report: 01-may-1987

FINAL REPORT	86350032 86350033 86350034 86350035	SU-12 SO-9 SO-10 SO-11	LATER SEDIMENTS SEDIMENTS SEDIMENTS	.50 U 0.53 NC NR NR NR	U 0.18 U NR NR			U 0.40 U NR NR NR	U 0.30 U NR NR NR	U 0.40 U NR MR NR	U 0.20 U MR MR NR	<b>¬</b>	U 0.20 U NR NR	U 0.20 U NR HK MR	
	86350032	SW-12	WATER	0.53 MC	0.18 U	1/9N		0.40	0.30 U	0.40 U	0.20	0.20 U	0.20 U	0.20	1 07 0
	86350031	SE-12	WATER	0.50 U	0.18 U	1/9n		0.40 U	0.30 U	0.40 U	0.20 U	0.20 U		0.20 U	- 67 6
	Laboratory Identification	Client Identification	Matrix Type	TRICHLOROFLUOROWETHANE	VINYL CHLORIDE		PURGEABLE ARCMATICS (METH 602 CHPDS)		1,3-DICHLOROBENZENE	1,4-DICHLOROBENZENE	BENZENE	CHLOROBENZENE	ETHYL BENZEME	TOLUENE	

4-142

Project No.: 2-885-06-0624-00
Project Name: NANCOCK AFB
Shipment No.: 2

Shipment No.: 2							Date of Rep	Date of Report: 01-may-1987
				FINAL REPORT	EPORT			
Laboratory Identification	86350031	131	863500	132	86350033	86350034	86350035	86350036
Client Identification	SW-11		Su-12		6-03	80·10	SD-11	51-05
Matrix Type	MATER		WATER		SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS
				•				
	UG/L		1/9n		MG/KG	MG/KG	MG/KG	MG/KG
PRIORITY POLLUTANT METALS (13) (TOTAL)								
ANTIMONY (TOTAL)	200	<b>5</b>	200	<b>-</b>	5.0 U	5.0 U	5.0 U	5.0 U
ARSENIC (TOTAL)	1.0	<b>-</b>	1.0	>	3.9	5.7	8.0	5.3
BERYLLIUM (TOTAL)	5.0	<b>5</b>	5.0	<b>5</b>	0.28	0.32	9.45	0.40
CADMIUM (TOTAL)	2.0	<b>-</b>	5.0	<b>-</b>	0.50	0.62	9.9	1.9
CHROMIUM (TOTAL)	8	<b>-</b>	8	<b>-</b>	6.6	11	22	11
COPPER (TOTAL)	02	<b>5</b>	9		10	13	*	15
LEAD (TOTAL)	001	<b>5</b>	901	<b>&gt;</b>	27	33	150	32
MERCLRY-CVAA (TOTAL)	0.20	2	07.0	<b>9</b>	0.053	0.082	0.044	0.020 U
MICKEL (TOTAL)	9	<b>-</b>	9	<b>¬</b>	6.7	0	12	8.6
SELENIUM (TOTAL)	2.0	<b>¬</b>	2.0	<b>-</b>	3.8	3.7	4.3	6.9
SILVER (TOTAL)	2	<b>-</b>	5	>	0.25 U	0.25 U	0.25 U	0.25 U
THALLIUM (TOTAL)	100	<b>5</b>	<b>5</b>	>	0.92 U	0.92 U	0.92 U	1.2 U
ZINC (TOTAL)	97		700		፠	97	330	190

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 2

Shipment No.: 2					Date of Report	Date of Report: 01-may-1987
		FINAL	FINAL REPORT			
Laboratory Identification	86350031	86350032	86350033	86350034	86350035	86350036
Client Identification	SW-11	SN-12	6·8	8. 5.	S-11	50.12
Matrix Type	WATER	WATER	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS
	MG/L	HG/L	MG/KG	MG/KG	MG/KG	MG/KG
PETROLEUM HYDROCARBON - IR	0.50 U	0.50 U	28	39 U	720	N 67
			PERCENT	PERCENT	PERCENT	PERCENT
MOISTURE, PERCENT	æ	<b>E</b>	37	39	29	54

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 2

		X	FINAL REPORT		Vale of Re		
Laboratory Identification	86350037		86350039	86350040	86350041	86350042	45
Client Identification	51-42	** % - NS	Su-15	SW-16	SD · 13	SO-14	ľ
Matrix Type	WATER	WITER	LATER	WATER	SEDIMENTS	SEDIMENTS	NTS
				, , , , , , , , , , , , , , , , , , ,		•	
	1/9n	1/90	1/90	7/9n	UG/KG	UG/KG	
BASE/NEUTRAL AND ACID EXTRACTABLES, PRIORITY POLLUTA	RITY POLLUTANI	ETS					
1,2,4-TRICHLOROBENZENE	7.0 U	n 0.4	7·0 · 1	n 0.4	150 U	150	<b>-</b>
1,2-DICHLOROBENZENE	8.0 u	9.0 C	3.0 u	8.0 U	300 u	300	ם
1,2-DIPHENYLHYDRAZINE	n 0.4	U 0.4	7 0.4	0.4	150 U	150	<b>-</b>
1,3-DICHLOROBENZENE	0.4	0.4.0 U	O 0.4	n 0.4	150 U	150	<b>5</b>
1,4-DICHLOROBENZENE	7 O.4	J 0.4	O.4	n 0.4	150 U	150	<b>-</b>
2,4,6.TRICHLOROPHENOL	7.0 U	n 0.4	0.7	U 0.4	150 U	150	<b>-</b>
2,4-DICHLOROPHENOL	7.0 U	7.0 U	n 0.4	n 0.4	150 U	150	ם
2,4-DIMETHYLPHENOL	0.4	0.4	U 0.4	n 0.4	150 U	150	<b>5</b>
2,4-DINITROPHENOL	27 U	27 U	27 U	27 U	J 0001	1000	<b>5</b>
2,4-DINITROTOLUENE	8.0 U	3.0 U	8.0 U	8.0 U	300 u	300	<b>-</b>
2,6-DINITROTOLUENE	8.0 U	3.0 U	8.0 U	8.0 u	300 U	300	<b>5</b>
2-CHLOROMAPHTHALENE	7·0·7	n 0.4	7.0 u	n 0.4	150 U	150	<b>-</b>
2 - CHLOROPHENOL	O.4	n 0.4	7 0.4	n 0.4	150 U	150	<b>ɔ</b>
2-NITROPHENOL	12 U	12 U	12 U	12 U	n 057	450	<b>-</b>
3,3'-DICHLOROBENZIDENE	8.0 U	8.0 U	8.0 U	8.0 U	300 u	300	<b>&gt;</b>
4,6.DINITRO-2-NETHYLPHENOL	n 07	n 07	n 07	n 07	1500 U	1500	<b>¬</b>
4-BRONOPHENYL PHENYL ETHER	0.4	n 0.4	7.0 U	n 0.4	150 u	150	<b>-</b>
4 - CHLORO - 3 - METHYL PHENOL	70 70	70 n	20 C	70 n	D 052	720	<b>-</b>
4-CHLOROPHENYL PHENYL ETHER	ກ 0.4	n 0.4	7 0.4	0.4	150 U	150	<b>¬</b>
4-NITROPHENOL	70 70	70 C	n 02	70 OZ	J 052	750	<b>-</b>
ACENAPHTHEME	2.0 U	2.0 U	2.0 U	2.0 U	۲. ح	ĸ	<b>-</b>
ACENAPHTHYLENE	2.0 U	2.0 U	2.0 U	2.0 U	٠, د	ĸ	<b>-</b>
ANTHRACENE	2.0 U	2.0 U	2.0 U	2.0 U	⊃ Ƙ	ĸ	<b>-</b>
BENZIDINE	30 U	30	30 C	30 02	1100 U	1100	>
BENZO(A)ANTHRACENE	7.0 U	n 0.4	7.0 n	n 0.4	092	150	<b>-</b>
BENZO(A)PYRENE	2.0 U	2.0 U	2.0 U	2.0 U	780	22	<b>&gt;</b>
BENZO(B)FLUORANTHENE	2.0 U	2.0 U	2.0 ' U	2.0 U	210	120	

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.:

Date of Report: 01-may-1987

SEDIMENTS \$\$ .11. OS 86350042 50 ž 50 8 350 81 150 210 50 8 20 8 **326668** ĸ K SEDIMENTS 86350041 SD · 13 ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ 150 20 88 220 150 К 86350040 SW-16 WATER 5.0 5.0 2.0 6.0 4.0 2.0 2.0 ຂ 86350039 SW-15 WATER 7.0 4.0 2 FINAL REPORT SN-14 ** 86350038 LATER **6**.0 4.0 8.0 2 86350037 SV-13 WATER 2.0 2.0 2.0 2.0 2.0 4.0 4.0 8.0 ೭ BIS(2-CHLOROISOPROPYL)ETHER BIS(2-ETHYLHEXYL)PHTHALATE BIS(2-CHLOROETHOXY)METHANE HEXACHLOROCYCLOPENTAD I ENE Laboratory Identification BIS(2-CHLOROETHYL)ETHER INDEMO(1,2,3-C,D)PYRENE BENZYL BUTYL PHTHALATE DIBENZO(A, H)ANTHRACENE N-NITROSODIPHENYLAMINE N-NITROSODIPROPYLANINE Client Identification DI-N-OCTYL PHTHALATE BENZO(K) FLUORANTHENE DI-N-BUTYL PHTHALATE BENZO(G, H, I)PERYLENE HEXACHLOROBUTAD I ENE DIMETHYL PHTHALATE DIETHYL PHTHALATE **HEXACHLOROBENZENE** PENTACHLOROPHENOL HEXACHLOROETHANE FLUOROANTHENE NITROBENZENE PHENANTHRENE NAPHTHALENE Matrix Type SOPHORONE FLUORENE CHRYSENE

146

pents on the final Page of this Report

PYRENE

Project No. : 2.885-06-0624-00 Project Name: NANCOCK AFB

Laboratory Identification						
Laboratory Identification			FINAL REPORT			
	86350037	86350038	86350039	86350040	86350041	86350042
Client Identification	SL-13	2N-14**	SH-15	SW-16	SD-13	** 71-05
Matrix Type	WATER	WATER	WATER	WATER	SEDIMENTS	SEDIMENTS
					1	
					UG/KG	UG/KG
VOLATILES, PRIORITY POLLUTANTS						
1,1,1-TRICHLOROETHANE	æ	<b>X</b>	<b>X</b>	æ	1.9 U	1.9 U
1,1,2,2-TETRACHLOROETHANE	21	<b>X</b>	**	æ	3.4 U	3.4 U
1,1,2-TRICHLOROETHANE	22	<b>X</b>	<b>X</b>	æ	2.5 U	2.5 U
1,1.DICHLOROETHANE	<b>3</b>	Œ	<b>3</b>	<b>3</b>	2.4 U	2.4 U
1,1-DICHLOROETHENE	<b>*</b>	~	æ	æ	1.4 U	1.4 U
1,2.DICHLOROETHANE	<b>X</b>	¥	æ	æ	1.4 U	1.4 U
1,2-DICHLOROPROPANE	<b>3</b>	¥	æ	SE SE	3.0 U	3.0 U
2-CHLOROETHYL VINYL ETHER	<b>=</b>	<b>X</b>	22	M	5.0 U	5.0 U
BENZENE	¥	<b>E</b>	22	<b>X</b>	2.2 U	2.2 U
BROMOD I CHLOROMETHANE	~	<b>E</b>	æ	æ	1.1 5	1.1 c
BROMOFORM	Œ	æ	22	æ	2.4 U	5.4 U
BRONOMETHANE	<b>X</b>	¥	W.	<b>X</b>	0.9	6.0 U
CARBON TETRACHLORIDE	<b>X</b>	¥	S.	N.	1.4 U	1.4 U
CHLOROBENZENE	Œ	¥	¥	æ	3.0 U	3.0 U
CHLOROD I BRONOMETHANE	<b>E</b>	æ	ä	æ	1.6 U	1.6 U
CHLOROETHAME	<b>4</b>	<b>£</b>	<b>X</b>	æ	7.6 U	2.6 U
CHLOROFORM	<b>E</b>	<b>X</b>	¥	æ	0.80 u	ი 80 ი
CHLOROMETHANE	¥	æ	<b>X</b>	an an	0.40 U	0.40 U
CIS-1,3-DICHLOROPROPENE	¥	#	**	<b>X</b>	1.0 U	1.0 c
ETHYL BENZENE	¥	æ	*	<b>33</b>	3.6 U	3.6 U
METHYLENE CHLORIDE	<b>X</b>	æ	<b>3</b>	22	1.4 U	1.4 U
TETRACHLOROETHENE	æ	¥	<b>8</b>	æ	2.0 U	2.0 U
TOLUENE	¥	<b>X</b>	<b>E</b>	<b>X</b>	3.0 U	3.0 U
TRANS-1, 2-DICHLOROETHENE	¥	Œ	<b>3</b>	<b>38</b>	0.80 U	0.80 U
TRANS-1, 3-DICHLOROPROPENE	N.	£	<b>3</b>	æ	2.5 U	2.5 U
TRICHLOROETHENE	æ	æ	**	æ	1.0 U	1.0 c
VINYL CHLORIDE	a a	æ	' <b>*</b>	æ	0.90 u	0.90 U

Project No. : 2-885-06-0624-00

Project Name: HANCOCK AFB Shipment No.: 2

		FINAL	FINAL REPORT		eate of reports	(0) (1 - 0) - may - 190)
Laboratory Identification	86350037		86350039	86350040	86350041	86350042
Client Identification	SU-13	** 71 -MS	SW-15	SH-16	50 · 13	SO-14 **
Matrix Type	WATER	WATER	WATER	WATER	SEDIMENTS	SEDIMENTS
			* * * * * * * * * * * * * * * * * * *			
	N6/L	1/9n	NG/L	NC/L		
PURGEABLE HALOCARBONS (METH 601 CMPDS)						
1,1,1-TRICHLOROETHANE	2.7	2.1	0.03 U	0.03 U	<b>X</b>	<b>X</b>
1, 1, 2, 2 · TETRACHLOROETHANE	0.03 U	0.03 U	0.03 u	0.03 U	¥	8
1, 1, 2-TRICHLOROETHANE	0.02 U	0.02 U	0.02	0.02 U	<b>Ξ</b>	<b>X</b>
1,1-DICHLOROETHANE	0.07 U	0.07 U	0.07 U	0.07 U	Œ	~
1,1-DICHLOROETHENE	0.13 U	0.13 U	0.13 U	0.13 U	¥	¥
1,2-DICHLOROBENZENE	0.32 U	0.32 U	0.32 U	0.32 U	¥	æ
1,2-DICHLORGETHANE	0.03 U	0.03 U	0.03 U	0.03 U	<b>X</b>	N.
1,2.DICHLOROPROPANE	0.0% U	0.0% U	0.04 U	0.04 U	æ	¥
1,3.DICHLOROBENZENE	0.15 U	0.15 U	0.15 U	0.15 U	¥	<b>3</b>
1,4.DICHLOROBENZENE	0.24 U	0.24 U	0.24 U	0.24 U	¥	<b>3</b>
2-CHLOROETHYL VINYL ETHER	0.13 U	0.13 U	0.13 U	0.13 U	#	22
BROMOD I CHLOROME THANE	0.10 U	0.10 U	0.10 U	0.10 U	æ	<b>33</b>
BRONDFORM	0.20 U	0.20 U	0.20 U	0.20 U	æ	¥
BRONCHETHANE	1.2 U	1.2 U	1.2 U	1.2 U	æ	<b>*</b>
CARBON TETRACHLORIDE	0.12 U	0.12 U	0.12 U	0.12 U	Œ	<b>¥</b>
CHLOROBENZENE	0.25 U	0.25 U	0.25 U	0.25 U	æ	<b>X</b>
CHLOROD I BRONOMETHANE	0.00 C	0.09 U	0.09 u	0.09 u	æ	<b>X</b>
CHLORGETHANE	0.52 U	0.52 U	0.52 U	0.52 U	<b>X</b>	<b>X</b>
CHLOROFORM	0.05 U	0.05 U	0.05 U	0.05 U	æ	<b>X</b>
CHLOROWETHANE	o.08	0.08 U	0.08 U	0.08 U	æ	<b>X</b>
CIS-1,3-DICHLOROPROPENE	0.20 U	0.20 U	0.20 U	0.20 U	<b>X</b>	<b>X</b>
DICHLORODIFLUORONE THANE	1.8 U	1.8 U	1.8 U	1.8 U	<b>X</b>	<b>X</b>
METHYLENE CHLORIDE	5.0	5.9	29	29	<b>X</b>	ž
TETRACHLORCETHENE	0.03 U	0.03 U	0.03 U	0.03 U	æ	<b>X</b>
TRANS-1, 2-DICHLOROETHENE	0.10 U	0.10 U	0.10 u	0.10 U	<b>X</b>	22
TRANS-1, 3-DICHLOROPROPENE	0.34 U	0.34 U	0.34 C	0.34 U	æ	22
TRICHLOROETHENE	0.12 U	0.12 U	0.12 u	0.12 U	Z.	A.

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 2

Shipment No.: 2					Date of Report: 01-may-1987	01-may-1987
		FINAL	FINAL REPORT			
Laboratory Identification	86350037	86350038	86350039	86350040	86350041	86350042
Client Identification	SW-13	SV-14 **	Su-15	SW-16	8-13	S-1, **
Matrix Type	WATER	LATER	WATER	WATER	SEDIMENTS	SEDIMENTS
TRICHLOROFLUOROMETHANE	0.50 U	0.50 U	0.50 U	0.50 U		: : : : : :
VINYL CHLORIDE	0.18 U	0.18 U	0.18 U	0.18 U	**	<b>3</b>
	N6/L	NG/L	nc/r	1/90		
PURGEABLE ARCMATICS (METH 602 CMP0S)						
1, 2-DICHLOROBENZENE	0.40	0.40 U	0.40	0.40 U	~	2
1,3.DICHLOROBENZENE	0.30 U	0.30 U	0.30 U	0.30 c	22	M.
1,4-DICHLOROBENZENE	0.40 U	0.40 U	0.40 U	0.40 U	<b>£</b>	2
BENZENE	0.20 U	0.20 U	0.20 U	0.20 U	35	X
CHLOROBENZENE	0.20 U	0.20 U	0.20 U	0.20 U	**	¥
ETHYL BENZENE	0.20 U	0.20 U	0.20 u	0.20 U	3	¥
TOLUENE	0.20 U	0.20 U	0.20 U	0.20 ∪	*	¥
XYLEMES, TOTAL	0.60 U	0.60 U	0.60 u	0.60 U	<b>X</b>	¥

Science Applications International Corporation Environmental Chemistry Division

		Date of Report: 01-may-1987		86350042	** 71-0S	SEDINENTS
		Date of Repo		86350041	50-13	NTER LATER SEDIMENTS SEDIMENTS
				86350040	Su- 16	WATER
			FINAL REPORT	86350039	SE-15	WATER
			FINAL	86350038	SU-14 **	WATER
				86350037	SN-13	WATER
Project No. : 2-885-06-0624-00	Project Name: MANCOCK AFB	Shipment No.: 2		Laboratory Identification	Client Identification	Matrix Type

	<b>1/9</b> 0		<b>1/9</b> 0		<b>1/90</b>		1/9N		MG/KG	MG/KG	
PRICRITY POLLUTANT METALS (13) (TOTAL)					;		3	:	:		
ANTIMONY (TOTAL)	<b>200</b>	<b>-</b>	<b>200</b>	<b>-</b>	00 2		200	<b>-</b>	o o.c	o 0.c	
ARSENIC (TOTAL)	1.0	_	1.0	>	1.0		1.0	<b>-</b>	3.4	3.4	
BERYLLIUM (TOTAL)	5.0	<b>-</b>	5.0	>	5.0	>	5.0	<b>-</b>	0.14 U	0.15	
CADMILIN (TOTAL)	5.0	<b>-</b>	5.0	<b>-</b>	5.0		5.0	<b>-</b>	0.30	0.23	
CHROMILM (TOTAL)	8	<b>-</b>	8	>	2		2	>	3.1	5.1	
COPPER CTOTAL)	2	<b>-</b>	2	>	2		2	<b>&gt;</b>	3.7	8.2	
LEAD (TOTAL)	5	5	9	>	5	2	90	<b>&gt;</b>	5.8	3.4	
MERCHEY-CVAA (TOTAL)	0.20	<b>-</b>	0.20	>	0.20	<b>-</b>	0.20	>	0.020 U	0.020 U	
MICKEL (TOTAL)	0,4	<b>-</b>	9	>	\$	>	9	>	2.3	0.9	
SELENIM (TOTAL)	2.0	<b>5</b>	2.0	>	2.0	<b>-</b>	2.0	<b>-</b>	0.20 U	0.20 U	
SILVER (TOTAL)	2	<b>-</b>	2	<b>5</b>	2	<b>-</b>	2	<b>-</b>	0.25 U	0.25 U	
THALL TURE (TOTAL)	100	<b>-</b>	5	<b>-</b>	5	<b>&gt;</b>	<b>5</b>	>	1.2 U	1.2 U	
1NC (101AL)	15		5.0	>	5.0	<b>&gt;</b>	5.0	>	28	18	

150

See that and fements maybe final Page of this Roots.

Science Applications International Corporation Environmental Chemistry Division

Project No.: 2-885-06-0624-00
Project Name: NANCOCK AFB
Shipment No.: 2

Shipment No.:

		FINAL	REPORT				
Laboratory Identification	86350037	86350038	86350039	86350040	86350041	86350042	
Client Identification	SU-13	** 71 -NS	SU-15	Su-16	80·t3	\$\$ .1· \$\$	
Matrix Type	LATER	WATER	WATER	LATER	SED IMENTS	SEDIMENTS	
	1/94	1/9 <b>H</b>	MG/L	MG/L	MG/KG	MG/KG	
PETROLEUM HYDROCARBON - IR	0.50 U	0.50 U	0.50 U	0.50 U	32 U	31 U	
					PERCENT	PERCENT	
MOISTURE, PERCENT	¥	¥	<b>£</b>	#	31	21	

Project No. : 2-885-06-0624-00 Project Name: NANCOCK AFB

7 Shipment No.:

Date of Report: 01-may-1987

				FINAL	FINAL REPORT				i			: 	j
Laboratory Identification	86350043	043	8635	7700	86350	045	8635	9700	86350	<b>64.7</b>	86350	870	
Client Identification	8:5		8	•	₹ 3	*_	SE-1-	•	SH-20	*	SU-21	*	
Matrix Type	SEDIMENT	ENTS	SEDI	SEDIMENTS	WATER		WATE	ATER	WATER		WATER		
		· · · · · · · · · · · · · · · · · · ·	: : :	*  *  *  *  *  *  *  *  *  *  *  *  *						1 1 1 1 1			:
	UG/KG		UG/KG	و	7/9n		NG/L		1/90		1/9n		
BASE/NEUTRAL AND ACID EXTRACTABLES, PRIORITY POLLUT	PRICEITY POL	LUTANTS											
1, 2, 4-TRICHLOROBENZENE	150	>	150	>	4.0	>	4.0	<b>-</b>	4.0	<b>-</b>	4.0	>	
1, 2 - DICHLOROBENZENE	300	>	30	<b>5</b>	8.0	>	8.0	3	8.0	<b>-</b>	8.0	>	
1,2-DIPHENYLNYDRAZINE	150	>	150	>	4.0	>	4.0	<b>3</b>	4.0	<b>5</b>	0.4	Þ	
1,3-DICHLOROBENZENE	150	<b>-</b>	150	<b>-</b>	4.0	<b>-</b>	4.0	>	7.0	<b>-</b>	0.4	>	
1,4-DICHLOROBENZENE	150	>	150	<b>5</b>	4.0	2	4.0	>	0.4	>	4.0	2	
2,4,6-TRICHLOROPHENOL	150	9	150	>	4.0	>	4.0	<b>-</b>	7.0	<b>5</b>	7.0	>	
2,4-DICHLOROPHENOL	150	2	150	9	4.0	<b>&gt;</b>	4.0	>	7.0		7.0	>	
2,4-DIMETHYLPHENOL	150	>	150	>	4.0	<b>5</b>	4.0	>	4.0	<b>-</b>	0.4	>	
2,4-DINITROPHENOL	1000	>	1000	>	23	<b>-</b>	27	>	27	-	22	>	
2,4-DINITROTOLUENE	300	>	900	>	8.0	>	8.0	>	8.0	<b>-</b>	8.0	∍	
2,6-DINITROTOLUENE	300	>	8	<b>&gt;</b>	8.0	>	8.0	>	8.0	<b>-</b>	8.0	∍	
2-CHLOROMAPHTHALENE	150	>	150	<b>-</b>	7.0	>	4.0	<b>-</b>	4.0	>	4.0	>	
2 - CHLOROPHENOL	150	>	150	<b>5</b>	4.0	<b>-</b>	4.0	<b>5</b>	4.0	>	6.0	>	
2-NITROPHEMOL	450	>	450	<b>5</b>	12	Þ	15	2	12	2	12	>	
3,3'-DICHLOROBENZIDENE	300	_	300	<b>&gt;</b>	8.0	>	8.0	>	8.0	<b>-</b>	8.0	>	
4,6-DINITRO-2-METHYLPHENOL	1500	,	1500	>	9	ə	07	2	0,7	_	0,	>	
4-BRONOPHENYL PHENYL ETHER	150	<b>&gt;</b>	150	<b>-</b>	4.0	5	4.0	<b>5</b>	0.4	>	4.0	<b>¬</b>	
4-CHLORO-3-NETHYLPHENOL	220	<b>-</b>	720	>	2	<b>&gt;</b>	50	>	2	>	<b>50</b>	<b>-</b>	
4-CHLOROPHENYL PHENYL ETHER	150	>	150	>	4.0	<b>5</b>	4.0	>	4.0	<b>&gt;</b>	6.0	>	
4-NITROPHENOL	730	<b>-</b>	720	>	<b>50</b>	5	20	<b>5</b>	20	<b>¬</b>	2	<b>-</b>	
ACENAPHTHENE	ĸ	<b>-</b>	ĸ	>	2.0	>	2.0	>	2.0	>	2.0	7	
ACENAPHTHYLENE	ĸ	>	ĸ	>	2.0	<b>-</b>	2.0	<b>&gt;</b>	2.0	<b>ɔ</b>	2.0	>	
ANTHRACENE	ĸ	>	ĸ	9	2.0	<b>ɔ</b>	2.0	<b>၁</b>	2.0	Þ	2.0	<b>¬</b>	
BENZIDINE	1100	<b>5</b>	1100	>	8	>	30	<b>5</b>	30	<b>-</b>	2	-	
BENZO(A) ANTHRACENE	150	2	150	9	4.0	<b>၁</b>	0.4	>	4.0	>	0.4	>	
BENZO(A)PYRENE	ĸ	<b>5</b>	ĸ	>	2.0	<b>5</b>	2.0	5	2.0	<b>-</b>	2.0	<b>¬</b>	
BENZO(B)FLUORANTHENE	ĸ	>	ĸ	>	2.0	<b>5</b>	2.0	<b>&gt;</b>	2.0	<b>-</b>	2.0	>	

Project No.: 2-885-06-0624-00
Project Name: NANCOCK AFB
Shipment No.: 2

				FINAL	FINAL REPORT							: •	į
Laboratory Identification	8635	86350043	8635	9700	96350	045	86350	970	963500	47	86350	8%	
Client Identification	80·15	2	8	<b>SD-16</b>	SE-12	*_	SE-12		SH-20:	_	SU-21	*	
Natrix Type	ZED .	SEDIMENTS	SEDI	SEDIMENTS	WATER		WATER	_	WATER		LATER		
BENZO(G, H, I)PERYLENE	150	Þ	150		n 0.4	_	7 0.7	_	n 0.4	<b>-</b>	٨.٥ د	=	:
BENZO(K) FLUORANTHENE	ĸ	>	ĸ	>	2.0	<b>5</b>	2.0	<b>5</b>	2.0	<b>-</b>	2.0	>	
BENZYL BUTYL PHTHALATE	<b>3</b>	>	150	, =	4.0	>	4.0	<b>5</b>	7.0	<b>-</b>	4.0	>	
BIS(2-CHLOROETHOXY)METHANE	<u>3</u>	>	150	>	4.0	>	4.0	Þ	0.4	<b>-</b>	4.0	>	
BIS(2-CHLOROETHYL)ETHER	55	>	150	>	4.0	<b>-</b>	4.0	<b>ɔ</b>	7.0	<b>-</b>	4.0	>	
BIS(2-CHLOROISOPROPYL)ETHER	150	7	150	>	4.0	<b>-</b>	4.0	<b>5</b>	4.0	5	4.0	>	
BIS(2-ETHYLNEXYL)PHTHALATE	230		150	<b>5</b>	4.0	<b>5</b>	4.0	<b>5</b>	7.0	<b>-</b>	10		
CHRYSENE	ĸ	>	ĸ	>	2.0	<b>5</b>	2.0	<b>5</b>	2.0	_	2.0	>	
DI-N-BUTYL PHTHALATE	5		8		1.6	>	1.6	<b>¬</b>	1.6	<b>-</b>	1.6	>	
DI-N-OCIYL PHINALATE	1300		2600		2.0	>	2.0	<b>-</b>	5.0	>	2.0	>	
DIBENZO(A, H)ANTHRACENE	ĸ	>	ĸ	<b>5</b>	2.0	>	2.0	<b>&gt;</b>	2.0	<b>&gt;</b>	2.0	>	
DIETHYL PHIMALATE	ĸ	>	ĸ	>	2.0	<b>-</b>	2.0	>	2.0	>	2.0	>	
DIMETHYL PHTMALATE	ĸ	>	ĸ	<b>-</b>	2.0	>	2.0	<b>5</b>	2.0	<b>-</b>	2.0	>	
FLUORENE	ĸ	>	ĸ	<b>-</b>	2.0	>	2.0	>	2.0	<b>5</b>	2.0	>	
FLUOROAMTHENE	ĸ	>	ĸ	<b>5</b>	2.0	>	2.0	<b>5</b>	2.0	<b>-</b>	2.0	>	
NEXACINLOROBENZENÉ	150	>	150	>	4.0	<b>&gt;</b>	0.4	<b>¬</b>	7.0	<b>-</b>	6.0	>	
MEXACINLOROBUTAD 1 EWE	150	>	150	>	4.0	<b>-</b>	7.0	<b>-</b>	7.0	<b>-</b>	4.0	>	
NEXACMLOROCYCLOPENTAD I ENE	750	>	ξ.	>	2	>	2	>	2	<b>-</b>	2	9	
MEXACHLOROE THANE	300	>	30	<b>&gt;</b>	8.0	>	8.0	>	8.0	<b>5</b>	8.0	<b>5</b>	
INDENO(1,2,3.C,D)PYRENE	ĸ	>	ĸ	<b>-</b>	2.0	<b>-</b>	2.0	<b>-</b>	2.0	<b>-</b>	2.0	>	
I SOPHORONE	150	>	150	<b>-</b>	4.0	>	4.0	>	7.0	<b>5</b>	4.0	>	
M-NITROSODIPWENYLAMINE	150	>	150	<b>&gt;</b>	4.0	>	4.0	>	4.0	>	4.0	>	
N-NITROSCOIPROPYLANINE	750	>	220	<b>5</b>	2	>	2	<b>-</b>	2	<b>-</b>	2	>	
MAPHTMALENE	ĸ	>	ĸ	5	2.0	>	2.0	<b>-</b>	2.0	<b>-</b>	2.0	>	
MITROBENZEME	300	>	20	<b>-</b>	8.0	>	8.0	>	8.0	>	8.0	>	
PENTACHLOROPHENOL	750	>	χ 8	2	20	>	2	>	2	ם	2	>	
PHENANTHRENE	ĸ	>	ĸ	>	2.0	>	2.0	>	2.0	<b>-</b>	2.0	>	
PHENOL	150	>	150	>	4.0	>	4.0	<b>-</b>	4.0	<b>-</b>	7.0	>	
PYREME	ĸ	<b>5</b>	ĸ	>	2.0	<b>5</b>	2.0	>	2.0	<b>5</b>	2.0	>	
					•								

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 2

		FINAL	FINAL REPORT			
Laboratory Identification	86350043	86350044	86350045	86350046	86350047	86350048
Client Identification	SD-15	SO . 16	Su-18 *	SH-19	* 0Z-7KS	Su-21*
Matrix Type	SEDIMENTS	SED IMENTS	WATER	WATER	LATER	WATER
						4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Laboratory Identification	86350043	86350044	86350045	86350046	86350047	86350048
Client Identification	SD-15	80.16	Su-18 *	S4-19	* 82.78	Su-21*
Matrix Type	SEDIMENTS	SED IMENTS	WATER	MATER	LATER	WATER
	0 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 1 1 1 2 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1			0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	UG/KG	UG/KG				
VOLATILES, PLIORITY POLLUTANTS						
1, 1, 1 - TRICHLOROETHANE	1.9 U	1.9 U	N.	2	*	¥
1,1,2,2-TETRACHLOROETHANE	3.4 U		Z.	3	2	¥
1,1,2-TRICHLOROETHANE	2.5 U		N.	2	22	<b>E</b>
1,1.DICHLOROETHANE	2.4 U		## ##	<b>H</b>	Œ	<b>X</b>
1,1-DICHLOROETHENE	1.4 U		24	<b>3</b>	<b>3</b>	<b>X</b>
1,2-DICHLOROETHANE	1.4 U		33	3	¥	¥
1,2-DICHLOROPROPANE	3.0 U		<b>X</b>	3	¥	23
2-CHLOROETHYL VINYL ETHER	5.0 U	5.0 U	<b>3</b>	<b>3</b>	<b>E</b>	88
BENZENE	2.2 U		25	<b>X</b>	æ	32
BROWOD I CHLORONE THANE	1.1 0		NR.	¥	<b>¥</b>	a a
BRONOFORM	2.4 U		Z.	¥	¥	<b>4</b>
BRONOMETHANE	0.9		Z.	¥	<b>Ξ</b>	<b>3</b>
CARBON TETRACHLORIDE	1.4 U	1.4 U	æ	<b>¥</b>	<b>¥</b>	#
CHLOROBENZENE	3.0 U	3.0 · U	<b>X</b>	<b>E</b>	¥	<b>3</b>
CHLOROD I BRONONE THANE	1.6 U		88	<b>Ξ</b>	¥	<b>X</b>
CHLOROETHAME	2.6 U	2.6 U	t)R	<b>3</b>	¥	¥
CHLOROFORM	0.80 U	0.80 U	<b>M</b>	<b>\(\frac{1}{2}\)</b>	¥	¥
CHLORONETHANE	0.40 U	0.40 U	2	<b>£</b>	¥	<b>3</b>
CIS-1, 3-DICHLOROPROPENE	1.0 U	1.0 U	<b>X</b>	#	¥	#
ETHYL BENZEME	3.6 υ	3.6 U	<b>*</b>	¥	¥	<b>*</b>
METHYLENE CHLORIDE	1.4 U	1.4 U	<b>3</b>	Œ	<b>X</b>	<b>X</b>
TETRACHLOROETHENE	2.0 U	2.0 U	<b>8</b>	¥	#	<b>X</b>
TOLUENE	3.0 U	3.0 U	<b>8</b>	<b>3</b>	<b>X</b>	#
TRANS-1, 2-DICHLOROETHENE	0.80 u	0.80 U	<b>X</b>	¥	<b>X</b>	<b>X</b>
TRANS-1, 3-DICHLOROPROPENE	2.5 U	2.5 U	<b>X</b>	<b>±</b>	<b>X</b>	<b>2</b>
TRICHLOROETHENE	1.0 U	1.0 U	N.	¥	Z.	MR
VINYL CHLORIDE	0.90 u	0.90 u	· Œ	<b>=</b>	<b>X</b>	<b>XX</b>

Project No. : 2-885-06-0624-00

AFB	
NANCOCK	~
Project Name:	Shipment No.:

Date of Report: 01-may-1987

			FINAL REPORT			1041 - 10 - 1040
Laboratory Identification	86350043	86350044	86350045	86350046	86350047	86350048
Client Identification	<b>35 - 58</b>	SD-16	SW-18 *	SE-19	* 02-78	S4-21*
Matrix Type	SEDIMENTS	SEDIMENTS	LATER	WATER	WATER	WATER
	. 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
DIBERTO E UNI PERBONA LITTU A SALE			7/9n	7/50	7/50	7/9n
1.1.1-TRICHIOCARBONS (MEIN OUT CAPOS)	9	9	7 6		ř	•
1 1 2 2-TETRACHI COCETUANE	<b>£</b> §	£ 9	0.0		: 23 6	3 3
1 2-TBICKI DBCETWARE	<b>£</b> 9	£ 2	6.6		0.0	0.03 U
1 1-DICH DEOFTHANE	<b>£</b> 9	¥ 9	0.05	0.02	0.00	0.93 F. B
		¥ :	0.00	0.0	8.5	5.8
I, I-DICALORUE INENE	<b>X</b>	<b>X</b>	0.13 U	0.13 U	0.13 u	1.5
1,2-DICHLOROBENZENE	<b>*</b>	æ	0.35 U	0.32 U	0.32 U	0.32 U
1,2-DICHLOROETHANE	<b>3</b>	## ##	0.03 U	0.03 U	0.03 U	0.11
1,2-DICHLOROPROPANE	<b>3</b>	22	0.0¢ v	0.04 U	0.04 U	0.0% U
1,3-DICHLOROBENZENE	21	2	0.15 U	0.15 U	0.15 U	0.15 U
1,4-DICHLOROBENZENE	¥	ER.	0.24 U	0.24 U	0.24 U	0.24 U
2-CHLOROETHYL VINYL ETHER	<b>A</b>	<b>35</b>	0.13 U	0.13 U	0.13 U	0.13 U
BROWODICHLOROMETHANE	æ	¥.	0.10 U	0.10 U	0.10 U	0.10 U
BRONDFORM	<b>X</b>	25	0.20 u	0.20 U	0.20 u	0.20 U
BRONONETMANE	<b>%</b>	<b>*</b>	1.2 U	1.2 U	1.2 U	1.2 U
CARBON TETRACHLORIDE	<b>3</b>	#	0.12 U	0.12 U	0.12 U	0.12 U
CINLOROBENZENE	<b>~</b>	2	0.25 U	0.25 U	0.25 U	0.25 U
CHLOROD I BRONOME THANE	<b>X</b>	28	0.09 u	0.09 U	0.09 u	0.09 U
CHLOROETHANE	<b>X</b>	<b>%</b>	0.52 U	0.52 U	0.52 U	0.52 U
CHLOROFORM	æ	22	0.05 U	0.05 U	0.05 c	0.05 U
CMLOROMETHANE	<b>E</b>	24	n 90°0	0.08 U	0.08 U	0.08 U
CIS-1,3-DICHLOROPROPENE	<b>X</b>	<b>3</b>	0.20 U	0.20 U	0.20 U	0.20 U
DICHLORODIFLUORONETHANE	<b>X</b>	Œ	J.8 C	1.8 U	1.8 C	1.8 U
METHYLENE CHLORIDE	<b>E</b>	<b>4</b>	0.32	0.39	9.76	0.58

0.60 0.10 U 0.34 U 0.57

0.06 0.10 U 0.34 U 0.12 U

0.03 U 0.10 U 0.34 U 0.12 U

0.03 U 0.10 U 0.34 U 0.12 U

# # # #

**# # # #** 

TETRACHLOROETHENE
TRANS-1, 2-DICHLOROETHENE
TRANS-1, 3-DICHLOROPROPENE

TRICHLOROETHENE

Project No. : 2.885-06-0624-00

Project Name: NANCOCK AFB Shipment No.: 2

		FINAL	REPORT			
Laboratory Identification	86350043	86350044	86350045	86350046	86350047	86350048
Client Identification	SD-15	SD · 16	SW-18*	Su- 19	*0Z- <b>7</b> S	SU-21*
Matrix Type	SEDIMENTS	SEDIMENTS	WATER	WATER	LATER	WATER
TRICHLOROFLUOROMETHANE		~	0.50 U 0	0.50 U	ი 05.0	0.50 U
VINYL CHLORIDE	3	218	0.18 U	0.18 U	0.18 U	0.18 U
			1/90	1/90	1/90	7/9n
PURGEABLE ARCHATICS (METH 602 CMPDS)						
1,2.DICHLOROBENZENE	¥	31	0.40 U	0.40 U	0.40 U	0.40 U
1,3-DICHLOROBENZENE	<b>X</b>		0.30 U	0.30 U	0.30 U	0.30 U
1,4-DICHLOROBENZENE	¥	<b>Ξ</b>	0.40 U	0.40 U	0.40 U	0.40 U
BENZENE	¥		0.20 U	0.20 U	0.20 U	0.20 U
CMLOROBENZENE	8		0.20 U	0.20 U	0.20 u	0.20 U
ETAYL BENZENE	¥	<b>3</b>	0.20 U	0.20 U	0.20 U	0.20 U
TOLUENE	¥		0.20 U	0.20 U	0.20 U	0.20 U
XYLENES, TOTAL	ä	ä	0.60 U	0.60 U	0.60 U	0.60 u

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 2

Shipment No.: 2					Date of Report: (	t: 01-may-1987
		FINAL	REPORT			
Laboratory Identification	86350043	86350044	86350045	86350046	86350047	86350048
Client Identification	<b>8</b> 0-15	<b>50 - 75</b>	SU-18*	SN-19	× 02-MS	SW-21*
Matrix Type	SEDIMENTS	SEDIMENTS	LATER	WATER	WATER	WATER

	MG/KG	MG/KG	NG/L		1/9n		1/90		1/9n	
PRIORITY POLLUTANT METALS (13) (TOTAL)										
ANTIMONY (TOTAL)	5.0 U	5.0 U	200	<b>-</b>	<b>500</b>	<b>5</b>	200	<b>-</b>	200	
ARSENIC (TOTAL)	5.2	5.5	1.0	<b>-</b>	1.0	Þ	1.0	<b>-</b>	1.0	>
BERYLLIUM (TOTAL)	0.45	6.8	5.0	<b>-</b>	5.0		5.0		5.0	
CADMILIM (TOTAL)	0.45	0.27	5.0	<b>-</b>	5.0	<b>-</b>	5.0	<b>-</b>	5.0	
CHROMIUM (TOTAL)	16	9.8	20	<b>-</b>	8		20		20	
COPPER (TOTAL)	19	13	20	<b>-</b>	2		20		2	
LEAD (TOTAL)	10	5.2	00 00 100	>	9	<b>5</b>	100		9	
MERCURY-CVAA (TOTAL)	0.020 U	0.020 U	0.20	<b>&gt;</b>	0.20	<b>5</b>	0.20		0.2	_
MICKEL (TOTAL)	17	Ħ	07	<b>-</b>	9	<b>5</b>	07		0,4	
SELENIUM (TOTAL)	5.4	2.8	2.0	<b>-</b>	2.0	<b>5</b>	2.0	<b>-</b>	2.0	
SILVER (TOTAL)	0.25 U	0.25 U	10	<b>-</b>	2	<b>&gt;</b>	2		10	
THALLIUM (TOTAL)	1.2 U	1.2 U	901	>	9	<b>5</b>	100		100	
ZIHC (TOTAL)	07	%	5.0	<b>-</b>	5.0	<b>&gt;</b>	20		33	

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 2

		FINAL	FINAL REPORT			
Laboratory Identification	86350043	86350044	86350045	86350046	86350047	86350048
Client Identification	SD-15	SD-16	SU-18*	SW-19	\$N-20*	SU-21*
Matrix Type	SEDIMENTS	SED INENTS	WATER	WATER	WATER	WATER
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	MG/KG	MG/KG	MG/L	1/9M	MG/L	1/9M
PETROLEUM NYDROCARBON - IR	ء *	30 02	0.50 U	0.50 U	0.50 U	0.50 U
	PERCENT	PERCENT				
MOISTURE, PERCENT	22	ĸ	<b>3</b>	H.	<b>X</b>	<b>X</b>

Environmenta: Chemistry Division

Project No. : 2.885-06-0624-00

Project Name: MANCOCK AFB

~ Shipment No.:

				FINAL REPORT	EPORT					•		
Laboratory Identification	86350049	6700	86350050		86350	150	86350	052	863500	. 23	86350054	×
Client Identification	SO-18 **	** 5	8-19		SD-20	*	SD-21	**	SW-22		SW-23	
Matrix Type	SEDI	SEDIMENTS	SEDIMENTS	ENTS	SEDIMENTS	ENTS	SEDIMENTS	ENTS	WATER		WATER	
	· · · · ·	· • • • • • • • • •					•	•		•	:	
	UG/KG	<b>,</b> 13	UG/KG		UG/KG		UG/KG		1/9n		7/9n	
BASE/NEUTRAL AND ACID EXTRACTABLES, PRIORITY POLLUTAN	IORITY POL	LUTANTS										
1,2,4-TRICHLOROBENZENE	150	>	150	<b>&gt;</b>	150	<b>5</b>	150	<b>5</b>	7.0	<b>-</b>	4.0	<b>-</b>
1,2-DICHLOROBENZENE	300	_	300	<b>¬</b>	300	<b>5</b>	300	<b>-</b>	8.0	<b>-</b>	8.0	<b>5</b>
1,2-DIPHENYLHYDRAZINE	150	>	150	_	150	<b>-</b>	150	<b>-</b>	7.0	<b>-</b>	4.0	<b>-</b>
1,3-DICHLOROBENZENE	150	<b>ɔ</b>	150	>	150	<b>-</b>	150	<b>5</b>	7.0	ם	7.0	<b>-</b>
1,4-DICHLOROBENZENE	150	<b>5</b>	150	<b>-</b>	150	<b>-</b>	150	<b>5</b>	7.0	<b>5</b>	0.4	<b>-</b>
2,4,6-TRICHLOROPHENOL	150	>	150	<b>-</b>	150	<b>-</b>	150	<b>5</b>	7.0	<b>-</b>	4.0	<b>-</b>
2,4-DICHLOROPHENOL	150	<b>5</b>	150	<b>-</b>	150	<b>-</b>	150	<b>-</b>	7.0	ם	0.4	<b>5</b>
2,4-DIMETHYLPHENOL	150	<b>-</b>	150	<b>-</b>	150	_	150	<b>5</b>	7.0	<b>5</b>	4.0	<b>5</b>
2,4-DINITROPHENOL	1000	<b>-</b>	1000	<b>-</b>	1000	<b>5</b>	1000	<b>5</b>	22	n n	23	<b>-</b>
2,4-DINITROTOLUENE	300	<b>-</b>	300	<b>-</b>	300	<b>-</b>	300	<b>5</b>	8.0	ם	8.0	<b>5</b>
2,6-DINITROTOLUENE	300	<b>-</b>	300	<b>-</b>	300	<b>-</b>	300	<b>5</b>	8.0	ם	8.0	<b>-</b>
CHLORONAPHTHALENE	150	<b>¬</b>	150	<b>-</b>	150	<b>-</b>	150	<b>-</b>	4.0	ם	4.0	<b>-</b>
2-CHLOROPHENOL	150	>	150	<b>-</b>	150	<b>-</b>	150	<b>5</b>	4.0	ם	4.0	<b>5</b>
2-NITROPHENOL	450	5	450	<b>5</b>	450	<b>-</b>	450	<b>5</b>	12	<b>5</b>	12	<b>5</b>
3,3. DICHLOROBENZIDENE	300	<b>ɔ</b>	300	<b>¬</b>	300	<b>-</b>	300	ם	8.0	<b>-</b>	8.0	<b>-</b>
4,6.DINITRO-2-METHYLPHEWOL	1500	9	1500	<b>-</b>	1500	<b>-</b>	1500	<b>5</b>	07	<b>5</b>	07	<b>5</b>
4-BROMOPHENYL PHENYL ETHER	150	>	150	<b>-</b>	150	<b>-</b>	150	<b>5</b>	4.0	<b>-</b>	7.0	<b>5</b>
4-CHLORO-3-METNYLPHENOL	730	>	720	<b>5</b>	% %	>	220	<b>-</b>	02	<b>5</b>	02	<b>-</b>
4-CHLOROPHENYL PHENYL ETHER	150	<b>&gt;</b>	150	<b>5</b>	150	<b>5</b>	150	<b>5</b>	4.0	<b>5</b>	4.0	<b>5</b>
4-NITROPHENOL	22	>	20	<b>5</b>	720	<b>&gt;</b>	720	<b>-</b>	2	<b>5</b>	2	<b>-</b>
ACENAPHTHENE	ĸ	>	ĸ	<b>-</b>	ĸ	<b>-</b>	ĸ	<b>5</b>	2.0	<b>5</b>	2.0	<b>5</b>
ACEMAPHTHYLEME	ĸ	9	ĸ	n	ĸ	2	ĸ	2	2.0	<b>-</b>	2.0	<b>-</b>
ANTHRACENE	ĸ	>	ĸ	<b>5</b>	ĸ	<b>5</b>	ĸ	<b>5</b>	5.0	<b>5</b>	2.0	<b>-</b>
BENZIDINE	1100	>	1100	>	1100	<b>5</b>	1100	<b>ɔ</b>	20	⊃	30	<b>-</b>
BENZO(A)ANTHRACENE	150	>	150	<b>5</b>	150	<b>5</b>	150	<b>-</b>	4.0	<b>-</b>	0.4	<b>-</b>
BENZO(A)PYREME	ĸ	>	ĸ	<b>-</b>	8		ĸ	2	5.0	ם	2.0	<b>5</b>
BENZO(B) FLUORANTHENE	140		ĸ	<b>-</b>	280		ĸ	<b>¬</b>	2.0	<b>-</b>	5.0	<b>-</b>

Project No. : 2.885.06-0624-00

Project Name: MANCOCK AFB Shipment No.: 2

Shipment No.:

Date of Report: 01-may-1987

				FINAL REPORT	PORT								
Laboratory Identification	86350049	6%)	86350050	050	86350051	051	86350	052	863500	53	86350	25	
Client Identification	<b>85.18</b>	**	\$0.19		\$0 · 50 **	*	\$0.21	*	SW-22		SN-23 *	#	
Matrix Type	SED IMENTS	ENTS	SED IMENTS	ENTS	SEDIMENTS	ENTS	SEDIMENTS	ENTS	WATER		WATER		
BEWZO(G, H, I)PERYLENE	150	,	150	, ,	150	ם	150	Þ	0.4	<b>-</b>	0.4	э	
BENZO(K)FLUORANTHENE	ĸ	<b>5</b>	ĸ	ם	ĸ	<b>5</b>	ĸ	<b>5</b>	5.0	<b>5</b>	2.0	Þ	
BENZYL BUTYL PHTHALATE	150	<b>5</b>	150	<b>5</b>	150	>	150	<b>-</b>	4.0	<b>5</b>	4.0	<b>ɔ</b>	
BIS(2-CHLOROETHOXY)METHANE	55	<b>-</b>	150	<b>5</b>	150	<b>5</b>	150	<b>5</b>	4.0	<b>-</b>	4.0	>	
BIS(2-CHLOROETHYL)ETHER	150	5	150	Þ	150		150	<b>&gt;</b>	4.0	<b>၁</b>	0.4	>	
BIS(2-CHLORMISOPROPYL)ETHER	150	>	150	<b>5</b>	150	<b>5</b>	150	כ	4.0	<b>5</b>	4.0	<b>-</b>	
BIS(2-ETHYLHEXYL)PHTHALATE	350		150		5400		1100		0.4	>	4.6		
CHRYSENE	ĸ	<b>5</b>	ĸ	<b>5</b>	ĸ	>	ĸ	<b>&gt;</b>	2.0	<b>5</b>	2.0	<b>-</b>	
DI-N-BUTYL PHTHALATE	140		72		120		190		1.6	<b>-</b>	1.6	>	
DI-N-OCTYL PHTHALATE	220		ĸ	<b>-</b>	220		ĸ	>	2.0	_D	2.0	9	
DIBENZO(A, H)ANTHRACENE	ĸ	<b>5</b>	ĸ	<b>5</b>	ĸ	<b>-</b>	ĸ	>	2.0	<b>-</b>	2.0	>	
DIETHYL PHTHALATE	ĸ	<b>5</b>	ĸ	J	ĸ	9	ĸ	ב	5.0	2	2.0	>	
DIMETHYL PHTHALATE	ĸ	5	ĸ	<b>-</b>	ĸ	>	ĸ	<b>-</b>	2.0	_	2.0	<b>-</b>	
FLUORENE	ĸ	Þ	ĸ	כ	ĸ	2	ĸ	<b>ɔ</b>	2.0	<b>-</b>	2.0	>	
FLUOROANTHEWE	220		ĸ	5	550		ĸ	<b>5</b>	2.0	>	2.0	>	
MEXACHLOROBENZENE	150	2	150	n	150	<b>-</b>	150	<b>5</b>	4.0	_	4.0	>	
MEXACHLOROBUTADIENE	150	<b>5</b>	150	<b>5</b>	150	<b>&gt;</b>	150	<b>5</b>	4.0	<b>-</b>	4.0	<b>&gt;</b>	
HEXACHLOROCYCLOPENTAD I ENE	750	<b>5</b>	730	<b>5</b>	730	<b>&gt;</b>	720	<b>5</b>	2	<b>-</b>	2	>	
HEXACHLOROETHANE	300	Þ	300	)	300	>	300	ם	8.0	<b>-</b>	8.0	<b>-</b>	
INDENO(1,2,3-C,D)PYRENE	ĸ	2	ĸ	2	ĸ	<b>&gt;</b>	ĸ	<b>-</b>	2.0	<b>-</b>	2.0	>	
ISOPHORONE	150	5	150	<b>5</b>	150	>	150	<b>-</b>	6.0	<b>5</b>	4.0	<b>-</b>	
N-NITROSOD I PHENYLAMINE	150	<b>ɔ</b>	150	5	150	<b>-</b>	150	2	0.4	<b>-</b>	0.4	>	
N-WITROSCOIPROPYLAMINE	750	5	750	<b>5</b>	720	<b>-</b>	330	ם	2	<b>-</b>	2	>	
MAPHTHALENE	ĸ	5	ĸ	<b>5</b>	ĸ	<b>-</b>	ĸ	<b>5</b>	5.0	<b>-</b>	2.0	>	
NITROBENZENE	300	<b>5</b>	300	<b>5</b>	300	<b>ɔ</b>	300	J	8.0	<b>&gt;</b>	0.0	>	
PENTACHLOROPHENOL	720	Þ	730	<b>5</b>	750	>	χ. 20	<b>ɔ</b>	2	>	2	>	
PHENANTHRENE	8		ĸ	ם	<b>580</b>		ĸ	<b>၁</b>	2.0	2	2.0	>	
PHEMOL	150	<b>5</b>	150	<b>5</b>	150	<b>-</b>	150	כ	4.0	<b>¬</b>	4.0	>	
PYRENE	180		83		870		ĸ	2	2.0	<b>ɔ</b>	2.0	>	

09

Project No.: 2-885-06-0624-00 Project Name: HANCOCK AFB Shipment No.: 2

Laboratory Identification	86350049	86350050	86350051	86350052	86350053	86350054
Client Identification	SD - 18 **	SD-19	SD - 20 **	<b>39-21 **</b>	SN-22	SN-23 *
Matrix Type	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	WATER	WATER

		LINK	INAL KETOK!			
Laboratory Identification	86350049	86350050	86350051	86350052	86350053	86350054
Client Identification	SD · 18 **	&-32 €1-32	SD-20**	SD-21 **	SN-22	SN-23 *
Matrix Type	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	WATER	MATER
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	UG/KG	UG/KG	UG/KG	UG/KG		
VOLATILES, PRIORITY POLLUTANTS						
1,1,1.TRICHLOROETHANE	1.9 U	1.9 U	1.9 U	1.9 U	<b>X</b>	<b>X</b>
1, 1, 2, 2-TETRACHLOROETHANE	3.4 U	3.4 U	3.4 U	3.4 U	¥	<b>%</b>
1,1,2-TRICHLOROETHANE	2.5 U	2.5 U	2.5 U	2.5 U	<b>3</b>	æ
1,1-DICHLOROETHANE	2.4 U	2.4 U	2.4 U	2.4 D	¥	¥
1,1-DICHLOROETHENE	1.4 U	1.4 U	1.4 U	1.4 U	¥	æ
1,2-DICHLOROETHANE	1.4 U	1.4 U	1.4 U	1.4 U	<b>Ξ</b>	æ
1,2-DICHLOROPROPANE	3.0 U	3.0 0	3.0 0	3.0 0	<b>%</b>	<b>3</b>
2-CHLOROETHYL VINYL ETHER	5.0 U	5.0 U	5.0 U	5.0 U	¥	<b>E</b>
BENZENE	2.2 U	2.2 U	2.2 U	2.2 U	<b>3</b>	<b>3</b>
BROMOD I CHLOROMETHANE	1.1	1.1	1.1	1.1	<b>H</b>	<b>3</b>
BRCHOFORM	2.4 U	2.4 U	2.4 U	2.4 U	<b>X</b>	<b>X</b>
BROHOWETHANE	0.9	0.9	0.9	0.0 U	<b>X</b>	33
CARBON TETRACHLORIDE	1.4 U	1.4 U	1.4 U	1.4 U	æ	<b>X</b>
CHLOROBENZENE	3.0 U	3.0 U	3.0 U	3.0 0	<b>X</b>	æ
CHLOROD I BROWCHE THANE	1.6 U	1.6 U	1.6 U	1.6 U	<b>X</b>	22
CHLOROETHANE	2.6 U	2.6 U	2.6 U	2.6 U	Z.	æ
CHLOROFORM	0.80 U	0.80 U	0.80 U	0.80 u	<b>88</b>	2
CHLOROMETHAME	0.40 U	0.40 U	0.40 U	0.40 U	~	2
CIS-1,3-DICHLOROPROPENE	1.0 U	1.0 u	1.0 U	1.0 U	æ	<b>E</b>
ETHYL BENZEWE	3.6 U	3.6 ∪	3.6 U	3.6 U	<b>X</b>	Œ
METHYLENE CHLORIDE	1.4 U	1.4 U	1.4 U	1.4 0	W.	~
TETRACHLOROETHENE	2.0 U	2.0 U	2.0 U	2.0 U	<b>M</b>	2
TOLUEME	3.0 U	3.0 U	3.0 U	3.0 C	<b>X</b>	#
TRANS-1, 2-DICHLOROETHENE	0.80 U	0.80 U	0.80 U	0.80 u	<b>X</b>	<b>£</b>
TRANS-1, 3-DICHLOROPROPENE	2.5 U	2.5 U	2.5 U	2.5 U	<b>X</b>	<b>X</b>
TRICHLOROETHENE	1.0 U	1.0 U	1.0 U	1.0 c	¥	æ
VINYL CHLORIDE	0.00	0.00 u	0.90 u	0.90 c	S.	Œ

Project No. : 2.885.06-0624-00

Project Name: MANCOCK AFB

Shipment No.: 2

Date of Report: 01-may-1987

Still marity mar.					Date of Report:	01-may-195/
			FINAL REPORT			
Laboratory Identification	86350049	86350050	86350051	86350052	86350053	86350054
Client Identification	SB - 18 **	SB · 19	\$0.50 **	<b>30.21</b> **	SN-22	SW-23*
Matrix Type	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	WATER	WATER
DIDEFARE HALOCADDANC (METH AND CANDOC)					1/90	7/9n
1,1,1-TRICHLOROETHANE	Z.	¥	æ	Œ	0.03 U	0.03 U
1,1,2,2-TETRACHLOROETHANE	¥	æ	æ	¥	0.03 U	0.03 U
1,1,2-TRICHLOROETHANE	æ	#	¥	<b>3</b>	0.02 U	0.02 U
1,1-DICHLOROETHANE	æ	<b>%</b>	<b>Z</b>	2	0.07 U	0.07 U
1,1.DICHLOROETHENE	æ	<b>X</b>	2	2	0.13 U	0.13 U
1,2-DICHLOROBENZENE	æ	<b>E</b>	<b>X</b>	¥	0.32 U	0.32 U
1,2-DICHLOROETHANE	M.	*	<b>X</b>	<b>£</b>	0.03 U	0.03 U
1,2.DICHLOROPROPANE	æ	#	<b>8</b>	¥	0.04 u	0.0% C
1,3-DICHLOROBENZENE	X.	æ	<b>H</b>	<b>3</b>	0.15 U	0.15 U
1,4-DICHLOROBENZENE	×	æ	<b>M</b>	<b>E</b>	0.24 U	0.24 U
2-CHLOROETHYL VINYL ETHER	æ	<b>X</b>	<b>X</b>	#	0.13 U	0.13 U
BROMOD I CHLOROMETHANE	æ	<b>4</b>	<b>A</b>	<b>E</b>	0.10 U	0.10 U
BRONOFORM	Z.	æ	~	¥	0.20 U	0.20 U
BRONONETHANE	22	<b>X</b>	~	¥	1.2 U	1.2 U
CARBON TETRACHLORIDE	Z.	#	æ	<b>£</b>	0.12 U	0.12 U
CHLOROBENZENE	N.	æ	~	¥	0.25 U	0.25 U
CHLOROD I BROMOME THANE	N.	<b>3</b>	æ	¥	0.09 u	0.09 U
CHLOROETHANE	<b>3</b>	<b>X</b>	<b>X</b>	¥	0.52 U	0.52 U
CHLOROFORM	<b>33</b>	æ	<b>E</b>	¥	0.05 U	0.05 U
CHLOROMETHANE	<b>3</b>	<b>X</b>	<b>X</b>	<b>X</b>	0.08 U	0.08 U
C1S-1,3-DICHLOROPROPENE	2	#	<b>X</b>	¥	0.20 U	0.20 U
DICHLORODIFLUORONE THANE	<b>X</b>	<b>X</b>	¥	¥	1.8 c	1.8 U
METHYLENE CHLORIDE	æ	æ	¥	¥	22	6.3
TETRACHLOROETHENE	~	<b>X</b>	Œ	Œ	0.03 U	0.03 U
TRANS-1, 2-DICHLOROETHENE	<b>X</b>	æ	¥	#	0.10 U	0.10 u
TRANS-1, 3-DICHLOROPROPENE	22	æ	¥	<b>Ξ</b>	0.34 U	0.34 U
TRICHLOROETHENE	22	S.	<b>E</b>	Ť	0.12 U	0.12 U

See Motes and Co

Project No.: 2-885-06-0624-00
Project Name: HANCOCK AFB
Shipment No.: 2

		FINAL	FINAL REPORT			
Laboratory Identification	86350049	86350050	86350051	86350052	86350053	86350054
Client Identification	SO-18 **	\$1.03	\$6·20 **	SD-21**	SH-22	*£2-MS
Matrix Type	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	WATER	WATER
TRICHLOROFLUOROMETHANE	<b>E</b>	ZZ	<b>E</b>	~~~	0.64 NC	0.50 U
VINYL CHLORIDE	4	<b>X</b>	<b>X</b>	*	0.18 U	0.18 U
					UG/L	1/90
PURGEABLE ARCMATICS (METH 602 CMPDS)						
1,2-DICHLOROBENZENE	<b>4</b>	<b>E</b>	<b>X</b>	<b>X</b>	0.40 U	0.40
1,3.DICHLOROBENZENE	<b>#</b>	<b>%</b>	æ	<b>X</b>	0.30 U	0.30 U
1,4-DICHLOROBENZENE	£	~	¥	*	0.40 U	0.40 U
BENZENE	¥	<b>X</b>	32	¥	0.20 U	0.20 U
CHLOROBENZENE	<b>#</b>	<b>8</b>	*	<b>X</b>	0.20 U	0.20 U
ETMYL BENZENE	£	<b>E</b>	32	¥	0.20 U	0.20 U
TOLUENE	æ	<b>M</b>	2	Œ	0.20 U	0.20 U
XYLEMES, TOTAL	¥	Œ	<b>3</b>	<b>%</b>	0.60 U	0.60 U

0624-00
<u>.</u>
5.8
2-885
••
\$
ect
Proj

Project Name: MANCOCK AFB Shipment No.: 2

7		FINAL	FINAL REPORT		Date of Report:	port: 01-may-1987
Laboratory Identification Client Identification Matrix Type	86350049 SD 18 ** SED INENTS	86350050 \$0-19 SEDIMENTS	86350051 \$D-20** \$EDIMENTS	86350052 \$0-21** \$EDIMENTS	86350053 Su-22 MATER	86350054 SU-23 * WATER
PRIORITY POLITIANT METALS (13) (TOTAL)	MG/KG	MG/KG	MG/KG	MG/KG	Ng/L	UG/L
ANTINONY (TOTAL)	5.0 U	5.0 U	5.0 U	5.0 U	200 U	200
ARSENIC (TOTAL)	6.9	10	5.6	6.5	1.0 U	1.0 U
BERYLLIUM (TOTAL)	0.20	0.55	0.30	0.20	5.0 U	5.0 U
CADMILM (TOTAL)	0.55	1.7	0.90	1.9	5.0 U	5.0 U
CHROMILM (TOTAL)	9.4	4	9.0	77	n 05	20 C
COPPER (101AL)	<b>7</b>	æ	27	100	70 C	20 n
LEAD (TOTAL)	<b>58</b>	140	86	100	100 U	100 U
MERCURY-CVAA (TOTAL)	0.077	0.020 U	0.014	0.15	0.20	0.20 U
MICKEL (TOTAL)	6.5	18	=	=	n 07	n 07
SELENIUM (TOTAL)	1.5	2.8	2.8	8.1	2.0 U	2.0 U
SILVER (TOTAL)	0.25 U	0.25 u	0.25 U	0.25 U	10 U	10 2
THALLIUM (TOTAL)	23	1.2 U	1.2 U	1.2 U	J 001	100 U
ZINC (TOTAL)	67	500	130	100	5.0 U	5.0 U

Project No. : 2-885-06-0624-00 Project Name: NANCOCK AFB Shipment No.: 2

Shipment No.: 2					Date of Re	Date of Report: 01-may-1967
		FINA	FINAL REPORT			
Laboratory Identification	86350049	86350050	86350051	86350052	86350053	86350054
Client Identification	80·18 **	80.53	\$0-50 **	80-21**	SH-22	\$8-23¢
Matrix Type	SEDIMENTS	SED IMENTS	SEDIMENTS	SEDIMENTS	WATER	WATER
	MG/KG	MG/KG	MG/KG	MG/KG	HG/L	1/5W
PETROLEUM HYDROCARBON - IR	53 C	35 U	2900	1500	0.50 U	0.50 U
	PERCENT	PERCENT	PERCENT	PERCENT		
MOISTURE, PERCENT	<b>8</b>	33	28	*	<b>3</b>	~

Project No. : 2.885-06-0624-00

Project Name: HANCOCK AFB

Shipment No.: 2

		FINAL	FINAL REPORT			
Laboratory Identification	86350055	86350056	86350057	86350058	86350059	86350060
Client Identification	72-7 <b>8</b>	80.22	<b>30</b> ·23	FB1 TRIP BLANK	15-6	15-7
Matrix Type	WATER	SEDIMENTS	SEDIMENTS	LATER	1105	1108
	7/9 <b>0</b>					
BASE/WEUTRAL AND ACID EXTRACTABLES, PRIORITY POLLUTANTS	RICKLITY POLLUTANTS					
1,2,4-TRICHLOROBENZENE	0.4	<b>X</b>	N.	<b>X</b>	¥	<b>4</b>
1, 2-DICHLOROBENZENE	3.0 C	¥	<b>X</b>	28	æ	<b>%</b>
1,2-DIPHENYLHYDRAZINE	n 0.4	*	<b>=</b>	N.	¥	<b>3</b>
1,3-DICHLOROBENZEME	n 0.4	¥	¥	N.	æ	¥
1,4-DICHLOROBENZENE	J 0.4	¥	<b>*</b>	MR	Æ	<b>3</b>
2,4,6.TRICHLOROPHENOL	U 0.4	¥	¥	<b>X</b>	<b>3</b>	æ
2,4.DICHLOROPHENOL	n 0.4	¥	¥	W.	æ	¥
2,4-DIMETHYLPHENOL	n 0.4	¥	<b>X</b>	W.	æ	¥
2,4-DIMITROPHENOL	O 22	¥	<b>3</b>	A.	Z.	¥
2,4-DINITROTOLUENE	9.0 n	¥	æ	N.	<b>3</b>	æ
2,6-DINITROTOLUENE	3.0 D	¥	<b>X</b>	22	<b>*</b>	<b>X</b>
2-CHLORONAPHTHALENE	n 0.4	¥	3	A.	<b>8</b>	<b>X</b>
2 - CHLOROPHENOL	n 0.4	¥	~	22	N.	XX
2-NITROPHENOL	12 U	æ	22	¥.	æ	æ
3,3'-DICHLOROBENZIDENE	3.0 U	<b>X</b>	2	<b>X</b>	8	<b>X</b>
4,6-DINITRO-2-METHYLPHEWOL	n 0 <b>7</b>	<b>*</b>	<b>X</b>	~ ~	<b>3</b>	Œ
4-BRONDPHENYL PHENYL ETHER	n 0.4	<b>M</b>	<b>*</b>	<b>4</b>	<b>%</b>	<b>X</b>
4-CHLORO-3-NETHYLPHENOL	70 C	¥	<b>X</b>	<b>88</b>	¥	<b>X</b>
4-CHLOROPHENYL PHENYL ETHER	U 0.4	#	=	<b>3</b>	¥	<b>X</b>
4-NITROPHENOL	2	¥	<b>X</b>	an an	<b>¥</b>	¥
ACENAPHTHENE	2.0 U	Œ	<b>X</b>	<b>X</b>	#	<b>X</b>
ACENAPHTHYLENE	2.0 U	¥	8	<b>X</b>	¥	¥
ANTHRACENE	2.0 U	¥	<b>X</b>	æ	<b>X</b>	<b>X</b>
BENZ101ME	200	¥	<b>£</b>	<b>E</b>	<b>3</b>	A.
BENZO(A)ANTHRACENE	J 0.4	æ	¥	# # # # # # # # # # # # # # # # # # #	¥	<b>X</b>
BENZO(A)PYRENE	2.0 U	~	¥	ZZ.	<b>*</b>	<b>X</b>
BENZO(B)FLIJORANTHENE	2.0 U	æ	· 22	<b>%</b>	<b>X</b>	<b>X</b>

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 2

Shipment No.: 2					Date of Re	Date of Report: 01-may-1967
		FINAL	FINAL REPORT			
Laboratory Identification	86350055	86350056	86350057	86350058	86350059	0903290
Client Identification	\$\$. 5¢	SD-22	SO-23	FB1 TRIP BLANK	9-51	15.7
Hatrix Type	WATER	SED IMENTS	SEDIMENTS	LATER	TIOS	1105
BENZO(G, M, I)PERYLENE	n 0.4			**************************************	<b>*</b>	
BENZO(K) FLUORANTHENE	2.0 U	~	<b>X</b>	<b>E</b>	<b>%</b>	<b>±</b>
BENZYL BUTYL PHINALATE	n 0.4	¥	Ŧ	<b>E</b>	¥	<b>3</b>
BIS(2-CHLOROETHOXY)METHANE	7 0.4	*	Œ	82	Œ	<b>3</b>
BIS(2-CHLOROETHYL)ETHER	D 0.4	<b>¥</b>	<b>X</b>	<b>3</b>	<b>S</b>	#
BIS(2-CNLOROISOPROPYL)ETHER	J 0.4	~	~	æ	<b>E</b>	#
BIS(2-ETHYLHEXYL)PHINALATE	7 0.4	<b>=</b>	8	<b>S</b>	¥	¥
CM.: SENE	2.0 U	<b>#</b>	¥	S.	¥	<b>3</b>
DI-M-BUTYL PHTHALATE	1.6 U	<b>X</b>	<b>E</b>	<b>X</b>	¥	<b>3</b>
DI-N-OCTYL PHTMALATE	2.0 U	<b>*</b>	<b>A</b>	Œ		<b>3</b>
DIBENZO(A, H) ANTHRACENE	2.0 0	<b>%</b>	*	~	¥	<b>E</b>
DIETHYL PHTHALATE	2.0 U	<b>±</b>	<b>X</b>	<b>88</b>	¥	## ##
DIMETHYL PHINALATE	2.0 U	<b>=</b>	æ	E.	æ	æ
FLUORENE	2.0 U	¥	æ	<b>3</b>	Œ	Œ
FLUOROANTHENE	2.0 U	<b>3</b>	~	#	æ	<b>3</b>
NEXACHLOROBENZENE	7.0.4	¥	æ	MA	¥	<b>Ξ</b>
MEXACHL OROBUTAD I ENE	0.4	<b>X</b>	<b>X</b>	#	¥	<b>X</b>
MEXACHLOROCYCLOPENTAD I ENE	n 02	<b>H</b>	æ	æ	<b>M</b>	<b>*</b>
MEXACHLORGE THANE	3.0 c	<b>X</b>	9	#	<b>X</b>	<b>*</b>
INDENO(1,2,3-C,D)PYRENE	2.0 U	<b>X</b>	#	N.	¥	<b>¥</b>
ISOPHORONE	n 0.4	·	#	¥	æ	<b>3</b>
M-NITROSODIPHENYLAMINE	7.0 0	¥	¥	<b>3</b>	æ	<b>\$</b>
N-NITROSODIPROPYLAMINE	<b>2</b>	<b>X</b>	¥	<b>3</b>	æ	*
NAPHTNALENE	2.0 U	<b>*</b>	æ	E.	æ	*
MITROBENZEME	D 0.8	*	#	<b>88</b>	<b>%</b>	¥
PENTACHLOROPHENOL	70 20	<b>3</b>	#	æ	#	<b>\$</b>
PHENANTHRENE	2.0 U	¥	Æ	83	æ	*
PHENOL.	n 0.4	<b>%</b>	£	<b>%</b>	<b>X</b>	¥
PYREME	2.0 U	3	¥	<b>X</b>	æ	<b>*</b>
			•			

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.: 2

Date of Report: 01-may-1987

		FINAL	FINAL REPORT			
Laboratory Identification	86350055	86350056	86350057	86350058	86350059	86350060
Client Identification	72-AS	<b>SD-22</b>	SS-23	FB1 TRIP BLANK	18-6	15-7
Matrix Type	WATER	SEDIMENTS	SEDIMENTS	WATER	1105	1108
		i i	3	Ş		
VOLATILES, PRICETY POLIUTANTS		9 Y/90	P4/20	na/r		
1, 1, 1-TRICHLOROETHANE	#	1.9	1.9 U	1.9 U	<b>%</b>	<b>±</b>
1,1,2,2-TETRACHLOROETHAME	~	3.4 U	3.4 U	3.4 U	*	X X
1,1,2-TRICHLOROETHANE	¥	2.5 U	2.5 U	2.5 U	æ	N N
1,1-DICHLOROETHANE	Œ	2.4 U	2.4 U	2.4 U	¥	2
1,1-DICHLOROETHENE	Œ	1.4 U	1.4 0	1.4 U	<b>8</b>	<b>Z</b>
1,2-DICHLOROETHANE	æ	1.4 U	1.4 U	1.4 U	<b>E</b>	<b>3</b>
1,2-DICHLOROPROPANE	æ	3.0 U	3.0 U	3.0 6	<b>8</b>	æ
2-CHLOROETHYL VINYL ETHER	¥	5.0 U	5.0 U	5.0 U	æ	#
BENZEWE	æ	2.2 U	2.2 U	2.2 U	¥	S.
BRONOD I CHLORONE THANE	¥	1.1 c	1.1 u	1.1	æ	æ
BRONDFORM	<b>£</b>	2.4 U	2.4 U	2.4 U	뜻	æ
BRONOHETHANE	2	0.0 O	0.9	0.0 U	¥	W.
CARBON TETRACHLORIDE	<b>X</b>	1.4 U	1.4 C	1.4 U	æ	æ
CHLOROBENZEWE	22	3.0 ∪	3.0 U	3.0 U	æ	X.
CHLOROD I BRONCHE THANE	<b>3</b>	1.6 U	1.6 U	1.6 U	æ	æ
CHLOROETHANE	æ	2.6 U	2.6 U	2.6 U	<b>E</b>	W.
CHLOROFORM	<b>X</b>	0.80 U	0.80 u	0.80 U	<b>X</b>	<b>X</b>
CHLOROMETHANE	*	0.40 U	0.40 U	0.40 U	쭕	**
CIS-1, 3-DICHLOROPROPENE	22	1.0 U	1.0 C	1.0 U	æ	#
ETHYL BENZEWE	~	3.6 U	3.6 ∪	3.6 U	æ	2
METHYLENE CHLORIDE	3	1.4 U	1.4 U	1.4 U	M.	<b>X</b>
TETRACHLOROETHENE	Œ	2.0 U	2.0 U	2.0 U	쭕	<b>X</b>
TOLUENE	<b>Ξ</b>	3.0 U	3.0 U	3.0 ∪	æ	X.
TRANS-1,2-DICHLOROETHENE	22	0.80 u	0.60 u	0.80 u	¥	<b>X</b>
TRANS-1, 3-DICHLOROPROPENE	**	2.5 U	2.5 U	2.5 U	M.	2
TRICHLOROETHENE	<b>3</b>	1.0 U	1.0 U	1.0 U	Z.	R
30100100 12012	æ	0.90 U	0.90 c	D 06:0	æ	<b>X</b>

Project No.: 2-885-06-0624-00 Project Name: NANCOCK AFB Shipment No.: 2

		FINAL	FINAL REPORT			
Laboratory Identification	86350055	86350056	86350057	86350058	86350059	96350060
Client Identification	72·AS	SO-22	<b>80</b> -23	FB1 TRIP BLANK	18-6	15.7
Matrix Type	WATER	SEDIMENTS	SEDIMENTS	WATER	1108	TIOS
	1/9N					
PURGEABLE HALOCARBONS (METH 601 CMPDS)						
1,1,1-TRICHLOROETHANE	0.03 U	¥	Z.	9	æ	<b>3</b>
1,1,2,2-TETRACHLOROETHANE	0.03 U	æ	<b>3</b>	<b>3</b>	æ	<b>¥</b>
1,1,2-TRICHLOROETHANE	0.02 U	¥	3	#	æ	<b>3</b>
1,1-DICHLORGETHANE	0.07 U	¥	¥	<b>*</b>	æ	¥
1,1-DICHLOROETHENE	0.13 U	¥	<b>X</b>	<b>3</b>	<b>3</b>	<b>X</b>
1,2-DICHLOROBENZENE	0.32 U	¥	¥	#	<b>X</b>	<b>3</b>
1,2-DICHLOROETHANE	0.03 U	¥	*	~	22	<b>x</b>
1,2-DICHLOROPROPANE	0.0% u	<b>X</b>	*	*	SE SE	3
1,3-DICHLOROBENZENE	0.15 U	æ	¥	~	<b>X</b>	¥
1,4-DICHLOROBENZENE	0.24 U	¥	Œ	<b>£</b>	<b>X</b>	<b>E</b>
2-CHLOROETHYL VINYL ETHER	0.13 U	<b>3</b>	#	£	W.	¥
BRONOD I CHLORONETHANE	0.10 U	¥	#	#	æ	<b>£</b>
BRONOFORM	0.20 U	¥	<b>X</b>	<b>X</b>	<b>E</b>	~
BRONOMETHANE	1.2 U	æ	<b>3</b>	<b>±</b>	¥	¥
CARBON TETRACHLORIDE	0.12 U	¥	æ	#	¥	¥
CHLOROBENZENE	0.25 U	¥	¥	¥	¥	#
CHLOROD I BRONONE THANE	0.09 U	<b>X</b>	¥	¥	E.	<b>Ξ</b>
CHLOROETHANE	0.52 U	¥	<b>3</b>	¥	æ	Œ
CHLOROFORM	0.05 U	¥	<b>±</b>	¥	æ	¥
CHLORONETHANE	0.08 u	¥	¥	¥	뚶	¥
CIS-1, 3-DICHLOROPROPENE	0.20 U	<b>X</b>	¥	¥	æ	æ
DICHLORODIFLUOROMETHANE	1.8 U	æ	#	¥	æ	Œ
METHYLENE CHLORIDE	8	¥	¥	¥	¥	¥
TETRACHLOROETHENE	0.03 U	¥	<b>X</b>	<b>£</b>	æ	<b>X</b>
TRANS-1, 2-DICHLOROETHENE	0.10 U	<b>E</b>	¥	¥	M.	<b>E</b>
TRANS-1, 3-DICHLOROPROPENE	0.34 U	æ	æ	¥	¥	~
TRICHLOROETHENE	0.12 U	<b>X</b>	Ŧ	<b>=</b>	æ	æ

Project No.: 2-885-06-0624-00 Project Name: MANCOCK AFB Shipment No.: 2

		FINAL	FINAL REPORT		Date of Report: 01-may-1987	01-may-1987
Client Identification Matrix Type	86350055 Su-24 Water	86350056 SD - 22 SED INENTS	86350057 SD-23 SEDIMENTS	86350058 :81 TRIP BLANK MATER	86350059 1S-6 SOIL	86350060 TS-7 SOIL
TRICHLOROFLUOROMETHANE VINYL CHLORIDE PURGEABLE ARCHATICS (METH AND CHORE)	0.86 NC 0.18 U UG/L	Z Z	<b>%</b> %	<b>£ £</b>	3 S	Z Z Z
	0.40 U	<b>&amp; a</b>	<b>3</b>	œ	æ	N.
1,4-DICHLOROBENZENE BENZENE CHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES, TOTAL	0.20 U 0.20 U 0.20 U 0.20 U 0.20 U	* * * * * * *	<b>.</b>	* * * * * * *	¥ ¥ ¥ ¥ ¥ ¥ §	* * * * * * * *

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 2

		FINAL	FINAL REPORT		á	Date of Report: 01-may-1987	01-	y-1987
Laboratory Identification Client Identification Matrix Type	86350055 SU- 26 WATER	86350056 SD-22 SED INENTS	86350057 \$0-23 \$EDIMENTS	86350058 FBT TRIP BLANK WATER	86350059 18·6 Soll	59	86350060 15-7 501	<b>9</b>
PCB'S (7 AROCHLORS) (METHOD 606 CHPDS)					UG/KG		UG/KG	
PCB · 1016	9	9	•					
PCB-1221	1 1	¥	X X	<b>~</b>	8	<b>.</b>	300	_
PCB: 1232	<b>*</b> :	<b>¥</b>	<b>£</b>	E.R.	1800	بة ح	2500	<b>-</b>
PCB: 1242	<b>*</b> :	<b>¥</b>	<b>H</b>	<b>3</b>	1700	C 2	300	<b>5</b>
PCB-1748	<b>*</b> !	3	<b>£</b>	XX	1000	2	00	9
PCB: 1254	<b>*</b> :	<b>X</b>	æ	W.	1000	÷	007	<b>-</b>
DCB:1240	<b>*</b>	Œ	<b>X</b>	W.	450	2	610	2
	¥	¥	<b>E</b>	W.	410	·.	200	<b>5</b>

Project No. : 2-885-06-0624-00

Project Name: HANCOCK AFB Shipment No.: 2

		FINAL REPORT	REPORT			
Laboratory Identification	86350055	86350056	86350057	86350058	86350059	
Client Identification	%-7S	SD - 22	SD-23	FB1 TRIP BLANK	18-6	
Matrix Type	LATER	SEDIMENTS	SED IMENTS	WATER	1108	

Date of Report: 01-may-1987

86350060 TS-7 SOIL

	Z.	3	æ	<b>X</b>	<b>M</b>	M M	<b>XX</b>	<b>3</b>	<b>X</b>	<b>X</b>	XX	<b>4</b>	¥
	æ	N.	M.	an an	a a	M.	W.	<b>3</b>	#K	Ä	<b>3</b>	22	¥
	<b>3</b>	æ	SE SE	M.	æ	Z Z	N.	N.	M.	a.	XX	<b>X</b>	<b>X</b>
MG/KG	5.0 U	7.0	0.1¢ U	0.32	5.9	=======================================	5.0	0.043	45	0.20 U	0.25 U	1.2 U	78
MG/KG	5.0 U	7.1	0.20	2.3	17	120	26	0.020 U	12	0.20 U	U.25 U	1.2 U	110
1/90	200 n	1.0 u	5.0 U	5.0 U	20 n	70 n	100 U	0.20 U	n 07	2.0 U	J U	100 U	5.0 U
PRIORITY POLLUTANT METALS (13) (TOTAL)	ANTIMONY (TOTAL)	ARSENIC (TOTAL)	BERYLLIUM (TOTAL)	CADMIUM (TOTAL)	CHROMIUM (TOTAL)	COPPER (TOTAL)	LEAD (TOTAL)	MERCURY-CVAA (TOTAL)	NICKEL (TOTAL)	SELENIUM (TOTAL)	SILVER (TOTAL)	THALLIUM (TOTAL)	ZINC (TOTAL)

**11** 72 **11** 

Project No.: 2-885-06-0624-00 Project Name: MANCOCK AFB

Shipment No.:

Shipment No.: 2					Date of Report	Date of Report: 01-may-1987
		FINAL	L REPORT			
Laboratory Identification	86350055	86350056	86350057	86350058	86350059	86350060
Client Identification	77 · 78	SO-22	\$0.23	FB1 TRIP BLANK	18-6	18-7
Matrix Type	WATER	SEDIMENTS	SEDIMENTS	WATER	SOIL	1105
		2 1 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
	MG/L	MG/KG	MG/KG		MG/KG	MG/KG
PETROLEUM HYDROCARBON - IR	0.50 U	2000 U	120	<b>X</b>	007	330
		PERCENT	PERCENT		PERCENT	PERCENT
MOISTURE, PERCENT	22	3	67	¥	33	20

Project No.: 2-885-06-0624-00
Project Name: WANCOCK AFB
Shipment No.: 2

Shipment No.: 2					Date of Repor	Date of Report: 01-may-1987
		FINAL	FINAL REPORT			
Laboratory Identification	86350061	86350062	86350063	86350065	86350067	86350069
Client Identification	ES1 (2)	ES-2	ES-3	SD-21 DUP	SW-16 DUP	ES-2 DUP
Matrix Type	301	1108	SOIL	SEDIMENTS	LATER	1105

				UG/KG	49	UG/KG	
BASE/NEUTRAL AND ACID EXTRACTABLES, PRICRITY POLLUI	RICRITY POLLUTANTS						
1,2,4-TRICHLOROBENZENE	<b>*</b>	¥	<b>X</b>	150	>	£	<b>Z</b>
1,2-DICHLOROBENZENE	¥	¥	an an	300	>	¥	<b>X</b>
1,2.DIPHENYLNYDRAZINE	**	Œ	<b>X</b>	150	>	Ŧ	<b>3</b>
1,3-DICHLOROBENZENE	<b>*</b>	£	<b>X</b>	150	>	¥	<b>3</b>
1,4.DICHLOROBENZENE	Œ	¥	æ	150	>	<b>3</b>	<b>X</b>
2,4,6.TRICHLOROPHENOL	Œ	¥	æ	150	>	¥	<b>*</b>
2,4.DICHLOROPHENOL	æ	¥	æ	150	>	<b>±</b>	<b>E</b>
2,4.DIMETHYLPHENOL	×.	¥	<b>E</b>	150	2	<b>3</b>	<b>X</b>
2,4-DIMITROPHENOL	æ	æ	<b>*</b>	1000	>	£	¥
2,4-DINITROTOLUENE	2	¥	<b>X</b>	300	>	*	<b>X</b>
2,6-DIMITROTOLUENE	Œ	æ	*	300	<b>-</b>	¥	<b>M</b>
2-CHLOROMAPHTHALENE	æ	æ	¥	150	>	¥	æ
2-CHLOROPHENOL	Z.	£	¥	150	>	<b>S</b>	¥
2-NITROPHENOL	¥	Œ	æ	450	>	<b>\$</b>	¥
3,3'-DICHLOROBENZIDENE	S.	æ	<b>*</b>	300	>	¥	æ
4,6-DIMITRO-2-NETHYLPHENOL	¥	æ	æ	1500	2	£	<b>X</b>
4-BRONOPHENYL PHENYL ETHER	¥	æ	Œ	150	<b>ɔ</b>	¥	<b>£</b>
4-CALORO-3-METHYLPHENOL	*	æ	æ	750	<b>-</b>	¥	<b>8</b>
4-CHLOROPHENYL PHENYL ETHER	æ	æ	£	150	<b>¬</b>	¥	S.
4-NITROPHENOL	æ	æ	Œ	730	>	<b>=</b>	æ
ACENAPHTHENE	æ	æ	æ	ĸ	>	<b>*</b>	æ
ACEMAPHTHYLENE	¥	æ	æ	ĸ	<b>&gt;</b>	<b>*</b>	¥
ANTIMACENE	<b>X</b>	æ	£	ĸ	>	¥	<b>X</b>
DENZIDINE	<b>X</b>	XX	£	1300	>	¥	æ
<b>BENZO(A)ANTHRACENE</b>	æ	æ	#	150	2	<b>\frac{\pi}{2}</b>	S.
BENZO(A)PYRENE	æ	M.	æ	ĸ	<b>5</b>	<b>±</b>	æ
BEN2O(B) FLUORANTHENE	<b>3</b>	M.	<b>£</b>	ĸ	<b>ɔ</b>	<b>*</b>	S. S.

See Notes and Comments on the Final Page of this Report.

Project No.: 2-885-06-0624-00 Project Name: NANCOCK AFB Shipment No.: 2

Date of Report: 01-may-1987 FIMAL REPORT

		FIRM	FINAL REPORT				
Laboratory Identification	86350061	86350062	86350063	86350065	965	86350067	69320069
Client Identification	ES1 (2)	ES-2	ES-3	SD-21 DUP	2	SW-16 DUP	ES-2 DUP
Matrix Type	1105	1108	1105	SEDIMENTS	ENTS	WATER	1105
DENZO(G, H, I)PERYLENE	<b>E</b>	Œ	£	150		<b>£</b>	
BENZO(K) FLUORANT NEWE	<b>\(\frac{1}{2}\)</b>	<b>E</b>	¥	ĸ	>	•	**
BENZYL BUTYL PHTHALATE	#	¥	¥	150	>	#	22
BIS(2-CHLOROETHOXY)METHANE	•	<b>=</b>	Œ	150	>	£	<b>**</b>
BIS(2-CM.CROETHYL)ETHER	<b>£</b>	£	<b>±</b>	150	>	¥	2
BIS(2-CHLOROISOPROPYL)ETHER	=	<b>E</b>	¥	<b>3</b>	>	¥	#
BIS(2-ETHYLMEXYL)PHTHALATE	=	#	<b>±</b>	<u>*</u>		¥	<b>X</b>
CHRYSENE	#	#	<b>#</b>	ĸ	>	£	<b>Ξ</b>
DI-H-BUTYL PPTHALATE	<b>E</b>	<b>E</b>	¥	3	>	#	3
DI-W-OCTYL PHINALATE	#	<b>E</b>	<b>X</b>	ĸ	>	뚶	<b>X</b>
DIBENZO(A, N)ANTHRACENE	<b>E</b>	<b>E</b>	¥	ĸ	>	£	2
DIETHYL PHINALATE	~	ž	<b>Ξ</b>	ĸ	<b>5</b>	#	2
DIMETHYL PHINALATE	<b>X</b>	<b>E</b>	¥	ĸ	<b>5</b>	8	<b>X</b>
FLUORENE	<b>E</b>	<b>E</b>	ŧ	ĸ	<b>-</b>	#	W.
FLUCROANTHENE	#	#	¥	ĸ	>	<b>£</b>	<b>X</b>
HE XACHLOROBENZENE	æ	¥	¥	150	>	£	æ
NEXACHLOROBUTAD 1 ENE	W.	<b>X</b>	¥	5	>	~	<b>X</b>
NEXACHLOROCYCLOPENTAD I ENE	<b>X</b>	æ	¥	32	2	£	æ
MEXACULOROE THAME	W.	<b>8</b>	¥	90	2	£	<b>H</b>
INDENO(1,2,3-C,D)PYRENE	<b>X</b>	æ	¥	ĸ	=	Œ	<b>4</b>
I SOPHOROME	<b>a</b>	<b>E</b>	¥	150	<b>-</b>	<b>E</b>	<b>X</b>
N-MITROSCOIPHENYLAMINE	8	<b>E</b>	#	150	>	<b>2</b>	~
M-NITROSCO I PROPYLAMINE	82	¥	¥	32	<b>-</b>	¥	8
MAPHTHALENE	#	<b>E</b>	¥	ĸ	>	¥	<b>X</b>
MITROBENZENE	~	<b>X</b>	I	300	<b>-</b>	¥	~
PENTACHLOROPHENOL	<b>X</b>	æ	¥	ĸ	<b>5</b>	A.	æ
PWENANTHRENE	<b>E</b>	æ	£	ĸ	>	8	æ
PWENOL	Œ	Œ	<b>E</b>	150		W.	<b>X</b>
PYRENE	<b>X</b>	æ	¥	ĸ	<b>5</b>	<b>4</b>	W.

Project No.: 2-885-06-0624-00 Project Name: HANCOCK AFB Shipment No.: 2

Date of Report: 29-Nay-1967

•			FINAL REPORT	EPORT				sports 67 may 13	<u> </u>	õ
Laboratory Identification	86350061		86350062	863500	63	86350065	86350067	86350	690	
Client Identification	EST (2)	ES-	•	ES-3		SD-21 DUP	SW-16 DUP	ES-2	2	
Matrix Type	1108	NO11		1108		SEDIMENTS	WATER	2011		
1				•	•	, , , , , , , , , , , , , , , , , , ,				:
	UG/KG	1/9n	9	UG/KG				UG/KG		
PEST/PCB'S (METH 608 CHPOS)										
4,4'-000	8.5 U			4.7	<b>၁</b>	æ	æ	5.7	>	
4,4'-DDE	170	75		5.0		¥	Œ	<b>9</b> 7		
4,4'-001	220	50		9.9		3	¥	22		
A-BHC	1.5 U		<b>5</b>	0.83	<b>-</b>	¥	¥	1.0	>	
ALDRIM		NC 2.	S XC	0.86	2	*	Œ	1.4	꽃	
B-BHC			<b>5</b>	5.4	<b>a</b>	¥	¥	5.9	>	
CHLORDANE	23 U		>	13	<b>-</b>	¥	¥	5		
D-BMC	3.1 U		<b>3</b>	1.7	<b>-</b>	¥	¥	2.1		
DIELDRIN	9	-	<b>5</b>	1.1	<b>-</b>	¥	¥	1.4	<b>¬</b>	
ENDOSUL FAN 1	2.0 U	2.0	<b>5</b>	1:1	<b>5</b>	<b>£</b>	¥	1.3		
ENDOSULFAN 11	2.9 U		<b>5</b>	1.6	<b>5</b>	¥	æ	4.9		
ENDOSULFAN SULFATE	3.0 0		<b>5</b>	1.7	<b>&gt;</b>	*	<b>E</b>	2.0	>	
ENDRIN	9.9 0		<b>a</b>	3.7	<b>-</b>	~	<b>X</b>	4.4	>	
ENDRIN ALDENYDE	4.1		<b>3</b>	2.2	<b>-</b>	<b>3</b>	¥	2.7	<b>-</b>	
G-BHC(LIMDANE)	1.5 U		<b>5</b>	0.84	<b>-</b>	¥	æ	1.0	>	
WEPTACHLOR	1.6 u	-	<b>5</b>	0.8	<b>-</b>	¥	<b>E</b>	-:	>	
NEPTACHLOR EPOXIDE	2.2	1.1	2	8.0	n	æ	æ	1.1	>	
PCB-1016	n %	8	>	25	<b>5</b>	¥	Œ	<b>29</b>	>	
PCB - 1221	180 u	180	>	26	<b>5</b>	¥	Œ	120	∍	
PCB-1232	160	170	>	28	<b>-</b>	8	æ	110	Þ	
PCB - 1242	n 26		>	54	<b>-</b>	<b>3</b>	Œ	9	>	
PCB-1248	8		Þ	53	<b>၁</b>	<b>X</b>	¥	\$9	>	
PCB-1254	n £7		3	%	<b>5</b>	<b>*</b>	æ	&	Þ	
PCB - 1260	39		>	2	<b>5</b>	¥	<b>E</b>	92	>	
TOXAPHENE	170 U	180	2	8	<b>5</b>	¥	¥	120	<b>-</b>	

See Notes and Comments on the Final Page of this Report.

Project No.: 2-885-06-0624-00 Project Name: NANCOCK AFB Shipment No.: 2

on spanner to								Date of Report: 29-May-1967	t: 29-1	lay-1987
Laboratory Identification Client Identification Matrix Type	86350061 ESH (2) SOIL	2)	86350062 E\$-2 \$011	28	FINAL REPORT 86350063 ES-3 S011	0063	86350065 SD-21 DUP SEDIMENTS	86350067 SW-16 DUP WATER	86350069 ES-2 DUP SOIL	6900 Miles
U ORGANOPHOSPHORUS PESTICIDES (METH 614 CHPDS)	UG/KG 514 CHPDS)		UG/KG		UG/KG	(9			UG/KG	•
AZINPHOS METHYL	2600	<b>ɔ</b>	2600		2009	۵	¥	32	250	=
DEMETON-S	1600	<b>3</b>	1600	Ð	1600	>	~	<b>£</b>	1600	, =
DIAZIWON	1200	<b>5</b>	1200	<b>-</b>	1200	<b>-</b>	¥	<b>2</b>	1200	, =
of Sulforce	1200	<b>&gt;</b>	1200	>	1200	<b>¬</b>	~	<b>X</b>	1200	) <b>)</b>
EINIUM MAI ATHIOM	1200	<b>-</b>	1200	>	1200	<b>-</b>	**	<b>3</b>	1200	-
PARATERIOR	1600	<b>-</b>	1600	>	1600	<b>-</b>	¥	æ	1600	<b>-</b>
PARAI HION, EINTL	1200	>	1200	>	1200	>	<b>3</b>	¥	1200	>
PARATHION, METHYL	1600	<b>-</b>	1600	<b>-</b>	1600	<b>&gt;</b>	*	E	1600	
	UG/KG		UG/KG		UG/KG				}	,
MERBICIDES, CHLORINATED (METH 615 CMPDS)	(SOJH)									
2,4,5-1	0.29	<b>၁</b>	0.28	>	0.2	<b>3</b>	2	9	3	
2,4,5-TP(SILVEX)	0.23	<b>5</b>	0.23	>	0.24	<b>3</b>	<b>E</b>	: g		
2,4.0	0.62	<b>-</b>	0.60	<b>-</b>	0.62	<b>5</b>	¥	<b>.</b>	£ 3	

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 2

Shipment No.:

Shipment No.: 2					Date of Repor	Date of Report: 01-may-1987
		FINAL	FINAL REPORT			
Laboratory Identification	1903299	86350062	86350063	86350065	19005298	86350069
Client Identification	ES1 (2)	ES-2	ES-3	SD-21 DUP	SW-16 DUP	ES-2 DUP
Matrix Type	1108	SOIL	7108	SEDIMENTS	WATER	7)05
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
				MG/KG	MG/KG	
PRIORITY POLLUTANT METALS (13) (TOTAL)	3					¥
ANTIMONY (TOTAL)	¥	33	Z.	5.0 U	200 u	3
ARSENIC (TOTAL)	Œ	2	22	4.3	1.0 U	**
BERYLLIUM (TOTAL)	ğ	<b>x</b>	*	0.17	5.0 U	<b>3</b>
CADMIUM (TOTAL)	¥	<b>\(\frac{\pi}{2}\)</b>	¥	1.5	5.0 u	¥
CHROHIUM (TOTAL)	#	<b>%</b>	¥	12	20 u	¥
COPPER (TOTAL)	#	~	<b>X</b>	8	20 n	¥
LEAD (TOTAL)	<b>X</b>	~	<b>X</b>	110	100 u	¥
MERCURY-CVAA (TOTAL)	#	22	*	0.035	0.20 U	æ
MICKEL (TOTAL)	<b>%</b>	¥	¥	5	n 07	æ
SELENIUM (TOTAL)	<b>E</b>	#	<b>3</b>	1.1	2.0 U	¥
SILVER (TOTAL)	¥	*	*	0.25 U	10 U	¥
THALLIUM (TOTAL)	22	<b>3</b>	~	0.92 U	100 U	<b>E</b>
ZINC (TOTAL)	¥	##	#E	81	5.0 U	æ

Project No.: 2-885-06-0624-00 Project Name: MANCOCK AFB Shipment No.: 2

Shipment No.: 2					Date of Report	Date of Report: 01-may-1987
		FINAL	FINAL REPORT			
Laboratory Identification	86350061	86350062	86350063	86350065	86350067	86350069
Client Identification	ES1 (2)	ES-2	ES-3	SD-21 DUP	SW-16 DUP	ES-2 DUP
Hatrix Type	NOS	1105	2011	SEDIMENTS	WATER	108
	PERCENT	PERCENT	PERCENT			
MOISTURE, PERCENT	21	10	23	22	Œ	¥

Project No. : 2-885-06-0624-00

Project Name: NANCOCK AFB Shipment No.: 2

Shipment No.:

Date of Report: 01-may-1987

Laboratory Identification   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   Additional   A	•		_	FINAL REPORT			
15-4 DUP   144 Bit.AMX   148 Bit.AMX   148 Bit.AMX   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011   15011	Laboratory Identification	86350071		863500	ĸ	863500	72
SOIL   SOIL   SOIL	Client Identification	TS-4 DUP	LAB BLANK		AK	LAB BL	AK
EVTRACTABLES, PRIORITY POLLUTANTS UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG	Matrix Type	SOIL	1108			3011	
E KYTAACTABLES, PRIORITY POLLUTANTS UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150 UG/KG 150							
FE 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150	BASE/NEUTRAL AND ACID EXTRACTABLES,	PRICEITY POLLUTANTS	UG/KG	UG/KG		UG/KG	
No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.	1,2,4-TRICHLOROBENZENE	<b>8</b>	150 U	150	2	150	<b>5</b>
HR 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150	1,2-DICHLOROBENZENE	<b>S</b>	300	300	<b>-</b>	300	>
## 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150	1,2-DIPHENYLWDRAZINE	*	150 u	150	9	150	Þ
## 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150	1, 3-DICHLOROBENZEME	¥	150 U	150	<b>3</b>	150	<b>5</b>
HR 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150	1,4-DICHLOROBENZENE	<b>E</b>	150 U	150	<b>-</b>	150	<b>5</b>
NR   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U   150   U	2,4,6-TRICHLOROPHENOL	~	150 U	150	<b>3</b>	150	<b>5</b>
NR   150   U   150   U	2,4-DICHLOROPHENOL	¥	150 U	150	<b>-</b>	150	<b>-</b>
MR 1000 U 1000 U 1000 U 1000 U 1000 U 1000 U 1000 U 1000 U 1000 U 1000 U 1000 U 1000 U 1000 U 1000 U 1000 U 1000 U 1000 U 1000 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U	2,4-DINETHYLPHENOL	~	150 U	150	<b>-</b>	150	2
HR 300 U 300 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,4.DINITROPHENOL	\$	1000 U	1000	<b>-</b>	1000	<b>5</b>
LEKIE         NR         300         U         300         U           AALEWE         NR         150         U         150         U           ENZIDEME         NR         450         U         450         U           ENZIDEME         NR         1500         U         450         U           PRENZIDEME         NR         1500         U         150         U           PRENZIDEME         NR         1500         U         150         U           PRENZIDEME         NR         1500         U         150         U           PRENZIDEME         NR         1500         U         150         U           PRENZIDEME         NR         1500         U         150         U           NRTHERMOLL         NR         150         U         150         U           NRTHERME         NR         150         U         150         U           NR         150         U         150         U         150         U           NR         150         U         150         U         150         U         U         U         N         U         N         N         N<	2,4-DINITROTOLUENE	<b>E</b>	300 u	300	>	300	<b>5</b>
ALEME  ALEME  AR  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150  U  150	2,6-DINITROTOLUENE	¥	300 C	300	>	300	2
ENZ LOEWE         NR         150         U         150         U           PMENTL ETMER         NR         1500         U         450         U           PMENTL ETMER         NR         150         U         150         U           HYLPMENOL         NR         750         U         750         U           HYLPMENOL         NR         750         U         750         U           HYLPMENOL         NR         750         U         750         U           HYLPMENOL         NR         750         U         750         U           HYLPMENOL         NR         750         U         750         U           HYLPMENOL         NR         750         U         750         U           HYLPMENOL         NR         750         U         750         U           HYLPMENOL         NR         750         U         750         U           HYLPMENOL         NR         750         U         750         U           HYLPMENOL         NR         750         U         NR         NR         NR         NR         NR         NR         NR         NR         NR         <	2-CHLORONAPHTHALENE	æ	150 U	150	2	150	2
MR         450         U         450         U	2-CHLOROPHENOL	<b>¥</b>	150 U	150	<b>-</b>	150	<b>3</b>
MACL  MACL  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR  MACR	2-NITROPHENOL	<b>X</b>	n 054	450	<b>&gt;</b>	720	Ð
MAC MRR 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1500 U 1	3,3'-DICHLOROBENZIDENE	æ	300 C	300	<b>5</b>	8	2
THER NR 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150	4,6-DINITRO-2-METHYLPHENOL	Œ	1500 U	1500	>	1500	<b>-</b>
MYL ETHER MR 750 U 750 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U	4-BRONOPHENYL PNENYL ETMER	æ	150 U	150	>	150	2
MY, ETMER  MR  MR  MR  MR  MR  MR  MR  MR  MR	4-CNLORO-3-NETHYLPHENOL	¥	750	£	3	χ 0	<b>J</b>
MR 750 U 750 U MR MR W W W W W W W W W W W W W W W W W	4-CHLOROPHENYL PHENYL ETHER	<b>E</b>	150 U	150	>	150	<b>-</b>
MR 75 U 75 U 75 U 75 U 75 U 75 U 75 U 75	4-NITROPHENOL	<b>S</b>	750 C	220	3	<u>5</u>	<b>-</b>
MR 75 U 75 U 75 U 75 U 75 U 75 U 75 U 75	ACENAPHTHENE	¥	ĸ	ĸ	3	ĸ	2
MR 1100 U 1100 U 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1100 U 1 1 1100 U 1 1 1100 U 1 1 1 1	ACENAPHTHYLENE	<b>%</b>	ĸ	ĸ	<b>&gt;</b>	ĸ	5
MR 1100 U 1100 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 150 U 1	ANTHRACENE	#	ĸ	ĸ	<b>၁</b>	ĸ	2
NR 150 U 150 U NR NR T5 U 75 U NR NR NR NR NR NR NR NR NR NR NR NR NR	BEN21DINE	<b>X</b>	1100 U	1100	<b>&gt;</b>	1100	<b>5</b>
	BENZO(A)ANTHRACENE	<b>X</b>	150 U	150	<b>ɔ</b>	150	<b>5</b>
J. 27 U 73' U	BENZO(A)PYRENE	8	ž	ĸ	>	ĸ	<b>5</b>
	BENZO(8) FLUORANTHENE	<b>E</b>	ž	ĸ	>	ĸ	<b>¬</b>

Project No. : 2-885-06-0624-00

AFB	
NAMCOCK	^
	9
roject	hioment No.

Shipment No.: 2								Date of Report: 01-may-1987
			FINAL REPORT	<b>28</b> 1				
Laboratory Identification	86350071	86350072		86350073	₩	86350074	2	
Client Identification	TS-4 DUP	LAB BLANK	¥	LAB BLANK	¥	LAB BLANK	AK	
Matrix Type	1108	1105		10s		301		
BENZO(G, N, I)PERYLENE	<b>S</b>	150	<b>3</b>	150	<b>.</b>	150	<b>D</b>	
BENZO(K) FLUORANT NEWE	Œ	ĸ	<b>-</b>	ĸ	<b>-</b>	ĸ	· <b>-</b>	
BENZYL BUTYL PHTHALATE	#	150	<b>-</b>	150	<b>-</b>	150	<b>5</b>	
BIS(2-CHLOROETHOXY)METHANE	**	150	<b>5</b>	150	>	150	>	
BIS(2-CHLOROETNYL)ETNER	2	150	_	150	>	150	<b>-</b>	
BIS(2-CHLOROISOPROPYL)ETHER	<b>E</b>	150	<b>-</b>	150	>	150	<b>-</b>	
BIS(2-ETHYLHEXYL)PHTHALATE	<b>E</b>	150	_	150	>	150	2	
CHRYSEME	*	ĸ	_	ĸ	<b>5</b>	ĸ	2	
DI-N-BUTYL PHTKALATE	<b>X</b>	3	<b>&gt;</b>	3	<b>5</b>	3	>	
DI-N-OCIYL PHIMALATE	#	ĸ	_	ĸ	>	ĸ	<b>-</b>	
DIBENZO(A, N)ANTHRACENE	<b>E</b>	ĸ	2	ĸ	>	ĸ	<b>5</b>	
DIETHYL PHTHALATE	<b>X</b>	ĸ	<b>-</b>	ĸ	<b>5</b>	ĸ	<b>5</b>	
DINETHYL PHTMALATE	<b>%</b>	ĸ	<b>-</b>	ĸ	<b>5</b>	ĸ	<b>5</b>	
FLUORENE	¥	ĸ	<b>-</b>	ĸ	>	ĸ	<b>-</b>	
FLUOROANTHENE	æ	ĸ	<b>D</b>	ĸ	2	ĸ	>	
MEXACHLOROBENZENE	æ	150	<b>-</b>	150	>	150	<b>5</b>	
MEXACHLOROBUTAD I ENE	<b>3</b>	150	<b>-</b>	150	>	150	<b>5</b>	
HEXACHLOROCYCLOPENTAD I ENE	<b>¥</b>	35 24	_	% %	<b>-</b>	Ķ	<b>5</b>	
MEXACHLOROET NAME	#	300	<b>-</b>	306	<b>၁</b>	300	2	
INDENO(1,2,3-C,D)PYRENE	æ	ĸ	<b>-</b>	ĸ	>	ĸ	5	
ISOPHORONE	Œ	150	<b>-</b>	150	<b>-</b>	150	2	
M-MITROSOD IPHENYLAMINE	¥	150	9	150	>	150	2	
N-WITROSOD I PROPYLAMINE	9	720	<b>-</b>	£	<b>5</b>	χ.	<b>5</b>	
MAPHTMALENE	æ	ĸ	<b>5</b>	ĸ	<b>-</b>	ĸ	ב	
MITROBENZENE	Œ	300	<b>-</b>	<b>8</b>	<b>-</b>	300	<b>-</b>	
PENTACULOROPWENOL	¥	ř	2	720	2	20	<b>-</b>	
PHENANTHRENE	¥	ĸ	<b>-</b>	ĸ	<b>-</b>	ĸ	<b>-</b>	
PHENOL	¥	150	<b>&gt;</b>	150	<b>5</b>	150	<b>5</b>	
PYREWE	<b>E</b>	ĸ	<b>5</b>	ĸ	<b>5</b>	ĸ	<b>5</b>	

_	
8	
ٺ	
Ñ	
3	
7	
8	
Ţ	
8	
3	
κ'n	
••	
_	
ş	
*	
•	
2	
· <u>~</u>	•
2	
چ	ı

Project Name: NANCOCK AFB

Shipment No.: 2					Date of Report: 29-May-1987
		FINAL	FINAL REPORT		
Laboratory Identification	86350071	86350072	86350073	86350074	
Client Identification	15-4 DUP	LAB BLANK	LAB BLANK	LAB BLANK	
Metrix Type	1105	1108	1108	7108	
		. 0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	7/9n				791
PCB'S (7 AROCHLORS) (METHOD 608 COMPOUNDS)					1
PCB-1016	5t 5	<b>Ξ</b>	<b>¥</b>	¥	
PCB-1221	320 u	<b>±</b>	<b>3</b>	**	
PCB-1232	300	¥	¥	<b>Ξ</b>	
PCB - 1242	180 U	<b>±</b>	£	9	
PCB-1248	180 U	<b>±</b>	¥	<b>=</b>	
PCB-1254	> 8	<b>*</b>	æ	<b>=</b>	
PCB-1260	n 22	<b>±</b>	<b>£</b>	2	
PRIORITY POLLUTANT NETALS (13) (TOTAL)					
ANTINONY (TOTAL)	200 n	æ	<b></b>	<b>%</b>	
ARSENIC (TOTAL)	1.0 U	¥	¥	<b>.</b>	
BERYLLIUM (TOTAL)	5.0 U	<b>3</b>	æ	¥	
CADMILLM (TOTAL)	5.0 U	2	Œ	¥	
CHROMIUM (TOTAL)	20	34	*	æ	
COPPER (TOTAL)	70 n	<b>3</b>	<b>E</b>	æ	
LEAD (TOTAL)	100 U	38	¥	æ	
MERCURY-CVAA (TOTAL)	0.20 U	æ	¥	£	
MICKEL (TOTAL)	n 07	<b>XX</b>	*	¥	
SELENIUM (TOTAL)	2.0 U	<b>X</b>	<b>X</b>	×	
SILVER (TOTAL)	J 01	¥	<b>M</b>	¥	
THALLIUM (TOTAL)	100 U	<b>X</b>	¥	2	
ZINC (TOTAL)	5.0 U	<b>X</b>	<b>X</b>	<b>XX</b>	

Science Applications International Corporation Environmental Chemistry Division

Project No.: 2-885-06-0624-00

Project Name: NANCOCK AFB

Shipment No.: 2

01-may-1987

## Notes and Comments:

R Analysis Not Required

VALUE FOR SUBSTANCE IS A FRACTION OF TOTAL FOR A DEFINED COMBINATION OF UNRESOLVED SUBSTANCES

DETECTED, VALUE IS BELOW DETECTION LIMIT SHOWN

GRAPHITE FURNACE

9

INTERFERENCE FROM COELUTING PEAKS; REPORTED VALUE IS AN APPROXIMATED VALUE

C NOT CONFIRMED ON SECOND COLUMN

UNDETECTED AT DETECTION LIMIT SHOWN

Molding Time Exceeded for organochlorine pesticides/PCBs, organophosphorus pesticides and chlorinated herbicides only; see Page H-304 for the new analytical results for the said parameters.

mercury; was resampled for the parameters in Sept. 1987; see Page H-296, H-297 for new Holding Time was exceeded for purgeable halocarbons, aromatic volatile organics and

Holding Time was exceeded for mercury only; was resampled for the parameter in Sept. 1987; see Page H-305 - H-307 for new results.

ŧ

VALUES REPORTED ON A DRY WEIGHT BASIS (EXCLUDING VOLATILE AND BASE/NEUTRAL/ACID ANALYSIS)

LAST PAGE

REPORTED DETECTION LIMITS ARE INSTRUMENT DETECTION LIMITS CORRECTED TO SAMPLE CONDITIONS

REPORTED VALUES ARE NOT CORRECTED FOR ANALYTICAL BLANK

Client: SAIC - DIV B35/GEHL B400 MESTPARK

MCCLEAN, VA 22102

Attn: PHIL SPOONER

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.:

FINAL REPORT GC 2nd Column Confirmations

Date of Report: 29-apr-1987

Samples will be held for two weeks after the report is issued.

Release Approval Mondage.

SEDIMENTS 86350006 50-31 SEDIMENTS 86350005 SD-30 86350004 SW-32* WATER **363**50003 **SU**-31 * MATER 86350002 SN-30 VATER 86350001 EU-1 (1) + WATER Laboratory Identification Client Identification Matrix Type .........

		S.	<b>X</b>	<b>X</b>	8	8	<b>%</b>	82	W.	<b>X</b>	~	W.	N.	æ	A.	XX	N.R.	N.	~	S.	S. N.	S. N.	N.	NR
		M.	Z.	MR	<b>X</b>	<b>*</b>	æ	N.	22	88 88	22	<b>XX</b>	82	22	<b>E</b>	<b>X</b>	<b>X</b>	XX	<b>X</b>	*	AR.	<b>X</b>	æ	<b>X</b>
1/90		0.12	0.22	A.	<b>E</b>	<b>X</b>	<b>X</b>	<b>H</b>	A.	¥.	<b>X</b>	<b>X</b>	<b>X</b>	## ##	<b>4</b>	¥	<b>X</b>	S.S.	22	<b>E</b>	Z.	A.	S.	61
7/90		0.20	XX	<b>%</b>	¥	#	æ	#	₩.	<b>X</b>	<b>X</b>	<b>X</b>	**	*	<b>X</b>	<b>X</b>	<b>£</b>	<b>X</b>	N.	<b>X</b>	¥	æ	#	9.9
1/90		9.0	8	8	æ	Ä	2	<b>X</b>	<b>X</b>	#	S. N.	8	æ	¥	M.	¥	æ	æ	87	æ	<b>E</b>	82	87	8
	O1 CHPOS)	**	<b>X</b>	**	SE SE	W.	22	22	<b>X</b>	28	2	A.	N.	N.	**	AN.	A.	NR.	N.R.	*	A.	23	A.	22
	PURGEABLE HALOCARBONS (METH 601 CMPDS)	1,1,1-TRICHLOROETHANE	1,1,2,2-TETRACHLOROETHANE	1, 1, 2 - TRICHLOROETHANE	1,1-DICHLOROETHANE	1,1.DICHLOROETHENE	1,2-DICHLOROBENZENE	1,2-DICHLOROETHANE	1,2-DICHLOROPROPANE	1,3-DICHLOROBENZENE	1,4.DICHLOROBENZENE	2-CHLOROETHYL VINYL ETHER	BROMOD I CHLOROMETHANE	ВКОНОГОВН	BROMOMETHANE	CARBON TETRACHLORIDE	CHLOROBENZENE	CHLOROD I BROMOMETHANE	CHLOROETHANE	CHLOROFORM	CHLORONE THANE	CIS-1, 3-DICHLOROPROPENE	DICHLORODIFLUOROMETHANE	METHYLENE CHLORIDE

Environmental Chemistry Division

Project No.: 2.885.06.0624.00
Project Name: NANCOCK AFB
Shipment No.: 2

Confirmations	
FINAL REPORT- GC 2nd Column C	
FINAL	

Laboratory Identification	86350001	86350002	86350003	86350004	86350005	86350006
Citent Identification	EW-1 (1) +	SE -33	SU-31*	* 27:78	SO -30	12.99
магли Туре	WATER	MATER	WATER	WATER	SEDIMENTS	SEDIMENTS
TETRACHLOROETHENE	<b>E</b>	**************************************		07		
TRANS-1, 2-DICHLOROETHENE	9	93	í <b>í</b>	<b>f</b> :	¥	¥
TRANS-1 3-DICHI DEDDODENE	<b>: :</b>	<b>£</b> !	Ĭ	¥	¥	W.
Tolcal Apoctucing		¥	<b>X</b>	æ	<b>¥</b>	<b>X</b>
ואירשרסבישכשב	¥	**	<b>X</b>	æ	*	3
TRICHLOROFLUOROMETHANE	<b>%</b>	<b>X</b>	¥	¥	9	<u> </u>
VINYL CHLORIDE	N.	æ	*	<b>3</b>	9	£ 3
PURGEABLE AROMATICS CHETH AND CHARGE		1/90	1/90	1/9n	Í	£
1,2-DICHLOROBENZENE	<b>3</b>	~	¥	3	9	g
1,3-DICHLOROBENZENE	<b>#</b>	ä	3	9	£ 5	¥ (
1,4-DICHLOROBENZENE	<b>=</b>	9	9	<b>E</b> 9	¥ ;	ž
BENZENE	9	: 5	<b>i</b> :	¥	¥	<b>X</b>
	<b>£</b> :	ž :	¥	<b>=</b>	~	<b>X</b>
	¥	<b>X</b>	¥	<b>X</b>	<b>3</b>	¥
EINTL BENZENE	<b>XX</b>	<b>X</b>	<b>X</b>	~	¥	ä
TOLUENE	22	æ	¥	9	9	£ 9
XYLENES, TOTAL	¥	æ	~	9	£ 9	<b>£</b> 9
	1/90		•	£	¥	¥
PEST/PCB'S (METH 608 CMPDS)						
900-,7'7	<b>3</b>	<b>X</b>	9	Q	9	
4,4'·D0E	æ	<b>%</b>	<b>:</b> 3		¥ 3	¥ 9
100-17'5	¥	£	<b>9</b>	í	£ 9	Ĕ 3
A-BHC	<b>X</b>	~	9	£ 9	ŧ 9	¥ ;
ALDRIM	**	3	£ 9	£ 9		¥ :
B-8#C	<b>Y</b> 5	9	<b>E</b> 9	<b>E</b> !	¥ '	¥
Cul Monaue	2 4	<b>É</b> :	¥	¥	¥	æ æ
	¥	¥	<b>¥</b>	<b>X</b>	£	C Z
	<b>X</b>	<b>%</b>	<b>#</b>	¥	<b>E</b>	N.
DIELDRIM	œ	<b>X</b>	<b>4</b>	2	¥	œ
EMDOSUL FAN 1	¥	3	<b>X</b>	æ	<b>3</b>	- A
EMDOSULFAN II	<b>*</b>	¥	~	· •	: g	<b>1</b>
ENDOSULFAN SULFATE	9	gn	- 1	<b>i</b>	£ :	£ :
	¥.	¥	Ĭ	¥	<b>~</b>	æ

Project No. : 2-885-06-0624-00 Project Name: NANCOCK AFB

Shipment No.:

FIMAL REPORT- GC 2nd Column Confirmations

Laboratory Identification	86350001	86350002	86350003	86350004	86350005	86350006
Client Identification	EW-1 (1) +	OX -7S	\$N-31 *	SH-32*	SD · 30	80.31
Matrix Type	LATER	WATER	WATER	WATER	SEDIMENTS	SEDIMENTS
ENDRIM	<b>E</b>		**************************************		2 Z	2
ENDRIN ALDENYDE	¥	<b>3</b>	<b>3</b>	<b>3</b>	<b>9</b>	<b>2</b>
G-BHC(LINDANE)	<b>%</b>	¥	¥	<b>X</b>	<b>£</b>	<b>X</b>
HEPTACHLOR	<b>X</b>	<b>%</b>	<b>3</b>	æ	×	<b>88</b>
HEPTACHLOR EPOXIDE	Œ	<b>%</b>	æ	A.	æ	<b>33</b>
PCB-1016	<b>X</b>	Œ	¥	¥	¥	S.S.
PCB-1221	<b>X</b>	<b>%</b>	¥	æ	*	X X
PCB-1232	<b>X</b>	æ	æ	æ	æ	¥
PCB-1242	<b>£</b>	æ	ž	Œ.	¥	<b>4</b>
PCB-1248	<b>3</b>	<b>¥</b>	¥	æ	æ	¥
PCB-1254	<b>X</b>	ğ	ž	22	æ	æ
PCB-1260	<b>3</b>	æ	æ	<b>X</b>	¥	¥
TOXAPHENE	æ	<b>%</b>	2	22	N.	<b>X</b>
	<b>1/9</b> 0					
ORGANOPHOSPHORUS PESTICIDES (METH 614 CMPDS)	4 CMPDS)					
AZINPHOS METHYL	<b>X</b>	<b>X</b>	SE SE	æ	N.	<b>X</b>
DEMETON - S	88	N.	S.	æ	N.	X.
DIAZINON	<b>#</b>	<b>3</b>	æ	æ	N.	<b>8</b>
DISULFOTON	¥	æ	¥	*	S.	<b>X</b>
ETHION	<b>X</b>	E E	*	N.	N.	XX
MALATHION	350	## ##	æ	<b>X</b>	æ	¥
PARATHION, ETHYL	SI.	24	<b>X</b>	22	N.	XX
PARATHION, METHYL	MC	<b>X</b>	<b>8</b>	W.	M.	N.

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00 Project Name: MANCOCK AFB Shipment No.: 2

FINAL REPORT- GC 2nd Column Confirmations

Laboratory Identification	86350007	20000				
Client Identification	2.8	8000000	86350009	86350010	BK350011	
Matrix Ivne	36-08	TS-1	18-2	F 6 F	Hoore	20005500
	SEDIMENTS	SOIL	1 100	c : e :	15-4	15.5
TIDE			106	2011	1105	201

* * * * * *
# # # # # # #
# # # # # # # # # # # # # # # #
UG/KG NR NR NR NR NR
* * * * * * *
X
(METHOD 608 CMPOS)
PCB'S (7 AROCHLORS) (WETNOD 608 CMPOS) PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254

Project No. : 2-885-06-0624-00 Project Name: MANCOCK AFB

Shipment No.: 2

FINAL REPORT- GC 2nd Column Confirmations

Date of Report: 29-apr-1987

Laboratory Identification	86350013	86350014	86350015	86350016	86350017	86350018
Client Identification	- <del>-</del>	2-MS	SW-3	7-75	1.83 1.	8.5
Matrix Type	WATER	LATER	WATER	WATER	SEDIMENTS	SED INENTS
	1					
	1/90	1/50	1/90	7/90		
PURGEABLE HALOCARBONS (METH 601 CHPDS)						
1,1,1-TRICHLOROETHANE	<b>S</b>	\$0.0	¥	S.	<b>X</b>	<b>3</b>
1,1,2,2-TETRACHLOROETHANE	#	**	Œ	22	Œ	籆
1,1,2.TRICHLOROETHANE	¥	*	¥	# #	#	#
1,1-DICHLORGETHANE	<b>E</b>	Z.	æ	## ##	¥	<b>#</b>
1,1.DICHLOROETHENE	<b>3</b>	32	<b>3</b>	A.R.	¥	#
1,2-DICHLOROBENZENE	#	<b>X</b>	87	#R	\$	<b>£</b>
1,2.DICHLOROETHANE	#	<b>28</b>	æ	<b>*</b>	#	¥
1,2-DICHLOROPROPANE	<b>3</b>	<b>X</b>	~	NR.	¥	¥
1,3-DICHLOROBENZENE	8	¥	~	¥	¥	<b>#</b>
1,4-DICHLOROBENZENE	<b>4</b>	22	<b>4</b>	an an	¥	8
2-CHLOROETHYL VINYL ETHER	<b>X</b>	W.	82	N.	<b>8</b>	#
BROHOD I CHLOROMET HANE	#	×	¥	<b>X</b>	¥	¥
васиогови	<b>3</b>	¥	<b>A</b>	<b>X</b>	I	Œ
BRONDNETHANE	<b>3</b>	211	<b>4</b>	<u>~</u>	¥	Æ
CARBON TETRACHLORIDE	#	<b>4</b>	*	## #	¥	Œ
CHLOROBENZENE	A.	<b>a x</b>	82	N.	Œ	<b>X</b>
CHLOROD I BROHOME THANE	<b>4</b>	33	<b>XX</b>	S.S.	¥	<b>£</b>
CHLOROETHANE	2	27	<b>X</b>	R.	æ	¥
CHLOROFORM	æ	~	<b>X</b>	×	Œ.	<b>£</b>
CMLOROMETHANE	æ	22	Z.	æ.	<b>E</b>	<b>¥</b>
C1S-1,3-DICHLOROPROPENE	<b>X</b>	2	<b>88</b>	<b>EX</b>	<b>E</b>	¥
DICHLORODIFLUORONE THANE	2	2	æ 72	S. S.	æ	¥
METHYLENE CHLORIDE	0.73	0.85	1.4	01	<b>%</b>	<b>~</b>
TETRACHLOROETHEME	Œ	<b>X</b>	<b>3</b>	æ	Œ	¥
TRANS-1, 2-DICHLOROETHENE	<b>X</b>	M.	2	æ	<b>8</b>	<b>*</b>
TRANS-1, 3-DICHLOROPROPENE	<b>4</b>	M.	W.	MR	<b>X</b>	<b>%</b>
TRICHLOROETHENE	82	æ	, an	æ	<b>£</b>	æ

88

Project No. : 2-885-06-0624-00

Project Name: NANCOCK AFB

Shipment No.:

FINAL REPORT- GC 2nd Column Confirmations

Date of Report: 29-apr-1987

Laboratory Identification Client Identification Matrix Type	86350013 SW-1 WATER	86350014 SW-2 WATER	86350015 SW-3 WATER	86350016 SU-4** MATER	86350017 SD-1 SEDIMENTS	. 86350018 SD-2 SEDIMENTS
TRICHLOROFLUOROMETHANE		£	<b>X</b>	<b>£</b>	<b>%</b> :	<b>%</b>
VINYL CALORIDE	<b>1/</b> 90	NR UG/L	MR UG/L	## 1/9n	<b>4</b>	ž
PURGEABLE AROMATICS (WETH 602 CMPDS)						!
1.2-DICHLOROBENZENE	<b>£</b>	<b>3</b>	<b>*</b>	¥	<b>E</b>	¥
1 3-DICH COORDENSEME	ã	<b>*</b>	<b>=</b>	¥	¥	<b>X</b>
1,5 Clear Cacastrates	£ 2	<b>*</b>	~	¥	¥	<b>X</b>
BENZETE BENZETEN	<b>£</b>	2	<b>E</b>	<b>¥</b>	¥	<b>X</b>
CALOROGENZENE	<b>E</b>	æ	æ	<b>Ξ</b>	œ.	¥
ETHYL BENZEWE	<b>3</b>	22	8	¥	<b>%</b>	<b>%</b> !
TOLUENE	<b>X</b>	ar a	<b>X</b>	<b>X</b>	<b>£</b>	<b>X</b>
XYLENES, TOTAL	<b>3</b>	<b>X</b>	<b>E</b>	¥	<b>X</b>	<b>x</b>

XYLENES, TOTAL

Project Name: NANCOCK AFB

Project No. : 2-885-06-0624-00

Shipment No.:

FINAL REPORT- 6C 2nd Column Confirmations

Date of Report: 29-apr-1987

Laboratory Identification	86350019	86350020	86350021	86350022	86350023	86350024
Client Identification	<b>SB-3</b>	**7-95	\$#5-MS	** 9-75	SW-7 **	9-75
Matrix Type	SEDIMENTS	SEDIMENTS	LATER	WATER	WATER	MATER
	2 5 5 6 6 6 7 7 8 7		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
			N6/L	7/90	7/90	NG/L
PURGEABLE HALOCARBONS (METH 601 CMPDS)					ļ	
1, 1, 1-TRICHLOROETHANE	æ	M.	2	0.09	0.18	<b>X</b>
1,1,2,2-TETRACHLOROETHANE	*	æ	#	<b>X</b>	3.	<b>3</b>
1,1,2-TRICHLOROETHANE	Œ	<b>88</b>	2	¥	33	<b>X</b>
1,1-DICHLOROETHANE	#	<b>88</b>	2	¥	22	æ
1, 1-DICHLOROETHENE	87	×	22	¥	2	#
1,2.DICHLOROBENZENE	*	æ	<b>X</b>	¥	<b>4</b>	¥
1,2-DICHLOROETHANE	<b>X</b>	æ	M	<b>3</b>	<b>X</b>	¥
1,2-DICHLOROPROPANE	W.	W.	<b>88</b>	¥	æ æ	Œ
1,3-DICHLOROBENZENE	MR	<b>X</b>	<b>X</b>	<b>≅</b>	N N	¥
1,4-DICHLOROBENZENE	Z.	¥	W.	¥	R.	¥
2-CHLOROETHYL VINYL ETHER	W W	æ	æ	¥	A.	¥
BROMOD I CHLOROME THANE	æ	æ	쫖	¥	<b>%</b>	¥
BRCHOFORM	¥	æ	¥	¥	<b>X</b>	æ
BROHONETHANE	Z.	¥	<b>E</b>	¥	8	¥
CARBON TETRACHLORIDE	N.	¥	¥	¥	<b>H</b>	æ
CHLOROGENZENE	X X	~	Ħ	¥	¥	Œ
CHLORCD I BRONCHE THANE	æ	<b>E</b>	¥	¥	<b>¥</b>	æ
CHLOROETHAME	N.	¥	¥	¥	<b>¥</b>	æ
CHLOROFORM	88	¥	<b>£</b>	<b>3</b>	¥	0.08
CHLORONE THAME	æ	## #	¥	¥	~	¥
CIS-1,3-DICHLOROPROPENE	ž	<b>4</b>	¥	Œ	¥	¥
DICHLORODIFLUORCHETHANE	22	¥	¥	¥	<b>#</b>	<b>X</b>
METHYLEME CHLORIDE	X X	æ	5.5	6.3	330	0.59
TETRACHLOROETHENE	22	<b>3</b>	¥	£	¥	2
TRANS-1, 2-DICHLOROETHENE	N.	<b>X</b>	¥	3	¥	ER.

**X** 

쭕

粪

Ē

¥

쯫

TRANS-1, 3-DICHLOROPROPENE

Science Applications International Corporation Environmental Chemistry Division

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 2

FINAL REPORT- GC 2nd Column Confirmations

Laboratory Identification Client Identification Matrix Type	86350019 \$0-3 \$EDIMENTS	86350020 \$D - 4 ** \$ED INENTS	86350021 Su-5 **	86350022 Su-6 **	86350023 Su-7** WATER	86350024 SW-8 WATER
¥	<b>3.3.3</b>	###	<b>E E E</b>	<b>% % %</b>	# # #	<b>% %</b>
PURGEABLE AROMATICS (METH 602 CMPDS) 1,2-DICHLOROBENZEME 1,3-DICHLOROBENZEME	<b>%</b> 9	<b>£</b> :	¥	¥	¥	3
1,4-DICHLOROBENZENE BENZENE	ž ž ;	<b>#</b> # !	<b>3</b> 3	¥ ¥	<b>% %</b>	<b>4 4</b>
CHLOROBENZENE ETNYL BENZENE TOLUENE	<b>*                                    </b>	<b>3                                    </b>	# # # #	<b>11</b>	# # #	111
XYLEMES, TOTAL	<b>*</b>	í	ž ž	<b>% %</b>	¥ ¥	1 1

Project No. : 2-885-06-0624-00

Project Name: HANCOCK AFB

Shipment No.: 2

FINAL REPORT- GC 2nd Column Confirmations

Laboratory Identification	86350025	86350026	86350027	86350028	86350029	86350030
Client Identification	8-5	\$* 9·9S	x* ∠·8	8. 8.	6-7K	<b>S</b> ¥· to
Natrix Type	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	LATER	WATER
			************			

					3	
PURGEABLE NALOCARBONS (NETH 601 CMPDS)	(\$0				7/80	1/8
1,1,1-TRICHLOROETHAME	¥	#	<b>X</b>	<b>X</b>	~	<b>3</b>
1,1,2,2-TETRACHLOROETHAME	*	¥	*	**	£	æ
1,1,2-TRICHLOROETHANE	<b>3</b>	¥	æ	¥	¥	<b>#</b>
1,1-DICHLOROETHAME	¥	<b>3</b>	#	¥	Œ	<b>X</b>
1,1-DICHLOROETHENE	#	<b>¥</b>	¥	¥	¥	<b>E</b>
1,2-DICHLOROBENZENE	=	#	¥	¥	¥	#
1,2-DICHLOROETHANE	<b>S</b>	#	#	¥	Œ	Œ
1,2-DICHLOROPROPANE	#	¥	æ	3	æ	æ
1,3-DICHLOROBENZENE	¥	¥	#	¥	<b>%</b>	3
1,4-DICHLOROBENZENE	#	#	<b>3</b>	*	¥	<b>E</b>
2-CHLOROETHYL VINYL ETHER	¥	#	<b>£</b>	*	<b>%</b>	<b>4</b>
BRONOD I CHLOROMETHANE	<b>8</b>	¥	<b>*</b>	#	*	<b>E</b>
BRONOFORM	#	¥	¥	*	¥	<b>8</b>
BRONOMETHAME	*	Ŧ	¥	<b>\$</b>	æ	<b>~</b>
CARBON TETRACHLORIDE	=	¥	Ħ	<b>*</b>	Œ	<b>4</b>
CMLOROBENZENE	#	<b>±</b>	¥	Œ	¥	<b>4</b>
CHLOROD I BROHOME THAME	<b>E</b>	Ĩ	¥	I	<b>E</b>	<b>£</b>
CHLOROETHAME	<b>E</b>	#	*	Ŧ	¥	87
CHLOROFORM	<b>E</b>	<b>*</b>	¥	£	¥	¥
CHLOROMETHANE	#	<b>£</b>	<b>S</b>	<b>±</b>	<b>\$</b>	<b>8</b>
CIS-1,3-DICHLOROPROPENE	<b>E</b>	¥	#	¥	£	¥
DICHLORODIFLUORONETHANE	<b>3</b>	<b>¥</b>	¥	I	¥	¥
METHYLENE CHLORIDE	E R	£	¥	¥	0.62	0.58
TETRACHLOROETHENE	<b>S</b>	¥	*	¥	¥	æ
TRANS-1,2-DICHLOROETHENE	<b>%</b>	Ĩ	¥	£	æ	3
TRANS-1,3-DICHLOROPROPENE	3	2	Ē	¥	æ	¥

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2.885-06-0624-00 Project Name: NANCOCK AFB Shipment No.:

Date of Report: 29.apr-1987

FINAL REPORT- GC 2nd Column Confirmations

Laboratory Identification Client Identification Matrix Type	86350025 \$0 -5 ** \$ED IMENTS	86350026 SD-6 ** SEDIMENTS	86350027 SO-7 ** SEDIMENTS	86350028 SO-8	6-78S	86350030 SH-10
TRICHLOROETHENE MR TRICHLOROFLUOROMETHANE MR VINYL CHLORIDE MR	# # #	2 Z Z Z	Z Z Z	Z Z Z	A	EATER EE
PURGEABLE AROMATICS (METH 602 CMPDS) 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE	<b>g</b>	ž	ğ	<b>£</b> 9	7/50	<b>94</b> 1/3n
1,4-DICHLOROBENZEME BENZENE	¥	<b>3 3</b> 3	<b>3 %</b>	íïï	X	¥ ¥ ¥
CHLOROBENZEME ETNYL BENZEME TOLUENE XYLEMES, TOTAL		¥ % % % %	<b>% % % %</b> %	% % % % g	2	

Project No. : 2-885-06-0624-00 Project Name: MANCOCK AFB

Shipment No.: 2

FINAL REPORT- GC 2nd Column Confirmations

Laboratory Identification Client Identification	86350031 SW-11	86350032 Su-12	86350033 \$0·9	86350034 SO-10	86350035 S0 - 11	86350036 \$0-12
Matrix Type	WATER	WATER	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS
					:	
	NG/L	N6/L				
PURGEABLE HALOCARBONS (METH 601 CMPDS)						
1,1,1-TRICHLOROETHANE	90.0	æ	<b>3</b>	**	Œ	#
1,1,2,2-TETRACHLOROETHANE	¥	¥	3.5	<b>X</b>	¥	¥
1,1,2-TRICHLOROETHANE	¥	× ×	<b>X</b>	~	~	<b>£</b>
1 1. h L'un construent	9	62	4	ĝ	9	•

	Section 600 House, subconstant and additional	7/9n	1/90				
	ETH 601 CHP0		9	g	a	9	9
	4	9 4	£ 3	¥ 3	£ 3	£ 9£	<b>3</b>
## ## ## ## ## ## ## ## ## ## ## ## ##	!	<b>%</b>	<b>£</b>	<b>3</b>	<b>£</b>	<b>*</b>	<b>Ξ</b>
		Œ	¥	Z.	#	<b>3</b>	<b>3</b>
		A.	æ	8	<b>X</b>	æ	<b>X</b>
## ## ## ## ## ## ## ## ## ## ## ## ##		<b>X</b>	<b>%</b>	æ	æ	<b>X</b>	*
HR HR HR HR HR HR HR HR HR HR HR HR HR H		N.	M.	2	#	¥	8
		<b>X</b>	æ	32	æ	<b>X</b>	<b>x</b>
44       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45       45 <td< td=""><td></td><td>æ</td><td><b>X</b></td><td>æ</td><td>¥</td><td><b>*</b></td><td>2</td></td<>		æ	<b>X</b>	æ	¥	<b>*</b>	2
<ul> <li>(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)</li></ul>		æ	<b>X</b>	28	æ	<b>X</b>	æ
Mark	MER	æ	¥	9	<b>X</b>	~	#
MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC     MAC <td></td> <td>¥</td> <td>#</td> <td>æ</td> <td>¥</td> <td>*</td> <td>#</td>		¥	#	æ	¥	*	#
HE HE HE HE HE HE HE HE HE HE HE HE HE H		N.	84	#	æ	<b>*</b>	#
MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR     MR     MR       MR     MR     MR		*	æ	22	SE SE	¥	¥
N.   N.   N.   N.   N.   N.   N.   N.		<b>X</b>	N.	22	æ	*	¥
No.		22		2	¥	M.	<b>¥</b>
MR NR NR NR NR NR NR NR NR NR NR NR NR NR		<b>XX</b>	<b>E</b>	æ	¥	쯫	<b>X</b>
HR. HR. HR. HR. HR. HR. HR. HR. HR. HR.		æ	æ	£	æ	<b>4</b>	<b>¥</b>
MR MR MR MR MR MR MR MR MR MR MR MR MR M		<b>3</b>	¥	¥	Œ	¥	<b>XX</b>
HR HR HR HR HR HR HR HR HR HR HR HR HR H		*	N.	3	¥	<b>X</b>	<b>X</b>
NR	<b>.</b>	¥	æ	~	¥	<b>¥</b>	2
D. 67 30 MR MR MR  NR MR MR  NR MR  NE MR MR  NR MR	DI CHLORODI FLUOROME THAME	<b>*</b>	æ	£	¥	<b>*</b>	#
MR MR MR MR MR MR MR MR MR MR MR MR MR M		19.0	25	*	*	<b>¥</b>	X X
MR MR MR MR MR MR		23	N.	#	<b>8</b>	¥	8
	TRANS-1,2-DICHLOROETHENE	<b>XX</b>	æ	<b>E</b>	W.	<b>X</b>	2
	ENE	<b>X</b>	XX.	· £	æ	N.	<b>X</b>

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00 Project Name: HANCOCK AFB Shipment No.: 2

FINAL REPORT- GC 2nd Column Confirmations

Date of Report: 29-apr-1987

86350036 SD-12	SEDIMENTS ESE	¥	<b>4</b>	<b>#</b> # !		# # #
86350035 SD - 11 SED 18EBT 6	# # #	œ	22 G	<b>E E</b>	. 25 G	<b>.</b>
86350034 SD-10 SED1MENTS	¥	¥	<b>3</b> 3	ŦŦ	<b>3</b> 3	<b>E</b> E
86350033 SD • 9 SED IMENTS	# # #	<b>i</b>	<b>X</b> X	Z Z	# #	Z Z
86350032 SV-12 Water	<b>3</b> 2 2 2	1/90	<b>% %</b> !	¥ ¥ ;	<b>X</b> X	<b>3</b> 3
86350031 Su-11 MATER	# <b>#</b> #	1/90	Z Z 9	£ £ 3	<b>.</b>	i i
Laboratory Identification Client Identification Matrix Type	TRICHLOROETHENE TRICHLOROFLUORONETHANE VINYL CHLORIDE	PURGEABLE ARCHATICS (METH 602 CMPDS)	1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	BENZENE CHLOROBENZENE	ETHYL BENZENE TOLUENE	XYLEMES, TOTAL

¥

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.: 2

FINAL REPORT- GC 2nd Column Confirmations

Date of Report: 29-apr-1987

Laboratory Identification	86350037	86350038	86350039	86350040	86350041	86350042
Client Identification	54-13	Su-16 **	SW-15	SV-16	SD-13	20 · 14 **
Matrix Type	WATER	WATER	WATER	WATER	SEDIMENTS	SED INENTS
	1/90	1/9N	ng/t	1/90		
PURGEABLE HALOCARBONS (METH 601 CHPDS)						
1,1,1.TRICHLOROETHANE	0.56	90.0	Œ	æ	22	<b>3</b>
1, 1, 2, 2 - TETRACHLOROETHANE	£	<b>3</b>	<b>3</b>	22	ž	8
1, 1, 2 - TRICHLOROETHANE	æ	22	¥	<b>8</b>	<b>T</b>	<b>4</b>
1, 1-DICHLOROETHANE	N.	<b>33</b>	¥	3	<b>3</b>	<b>4</b>
1, 1-DICHLOROETHENE	<b>X</b>	22	<b>E</b>	¥	<b>4</b>	ä
1,2-DICHLOROBENZENE	<b>3</b>	M.	¥	¥	#	<b>X</b>
1,2-DICHLOROETHANE	X.	<b>XX</b>	£	<b>#</b>	Œ	¥
1,2-DICHLOROPROPANE	æ	MR	æ	<b>X</b>	£	M.
1,3-DICHLOROBENZENE	¥	æ	Œ	<b>3</b>	¥	æ
1,4-DICHLOROBENZENE	¥	N.	<b>X</b>	<b>*</b>	¥	æ
2-CHLOROETHYL VINYL ETHER	Æ	æ	æ	<b>3</b>	¥	æ
BRONCO I CHLORONE THANE	M.	æ	¥	¥	<b>¥</b>	<b>X</b>
BRONOFORM	Z.	<b>X</b>	¥	¥	<b>\$</b>	æ
BRONCHETHAME	Z.	<b>8</b> 2	<b>3</b>	¥	#	<b>e</b>
CARBON TETRACHLORIDE	28	<b>X</b>	¥	<b>\</b>	¥	æ
CMI OROBENZENE	~	<b>4</b>	¥	<b>%</b>	¥	æ
CMLOROD I BRONONE THANE	22	<b>X</b>	¥	<b>*</b>	¥	æ
CHLOROETHANE	24	¥	¥	¥	*	<b>X</b>
CMLOROFORM	M	<b>X</b>	¥	<b>¥</b>	Œ	<b>X</b>
CHLORONETHANE	22	¥	¥	¥	æ	æ
CIS-1, 3-DICHLOROPROPENE	34	<b>4</b>	¥	¥	Œ	<b>X</b>
DICHLORODIFLUOROMETHANE	22	<b>X</b>	æ	¥	Œ	Œ
METHYLENE CHLORIDE	5.2	8.3	**	<b>\$</b> 2	¥	X.
TE TRACHLORCE THENE	<b>2</b>	~	æ	22	Œ	2
TRAMS-1, 2-D'CHLOROETHENE	ZZ.	<b>X</b>	£	<b>X</b>	æ	<b>X</b>
TRAMS-1,3-DICHLOROPROPENE	æ	æ	<b>.</b>	<b>*</b>	æ	œ ż

See Notes and Comments on the Final Page of this Report.

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00 Project Mame: MANCOCK AFB Shipment No.: 2

FINAL REPORT- GC 2nd Column Confirmations

Date of Report: 29-apr-1987

86350042 SD-14 **	SEDIMENTS
86350041 SO - 13	2
86350040 SM-16 LMYER	<b>基金银石 新金银银银</b>
86350039 SW-15 WATER	C6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
86350038 SW-14 ** WATER	# # # # # # # # # # # # # # # # # # #
86350037 SU-13 WATER	
Laboratory Identification Client Identification Matrix Type	TRICHLOROETHENE TRICHLOROFLUCROMETHANE VINYL CHLORIDE PURCEABLE ARGMATICS (METH 602 CMPDS) 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE CHLOROBENZENE ETHYL BENZENE CHLOROBENZENE TOLUENE XYLENES, TOTAL

Project No.: 2-885-06-0624-00 Project Name: MANCOCK AFB

Shipment No.:

FINAL REPORT- GC 2nd Column Confirmations

Date of Report: 29-apr-1987

Shipment No.: 2		FINAL RE	REPORT- GC 2nd Column Confirmations	. Confirmations		
Laboratory Identification	86350043	86350044	86350045	86350046	86350047	86350048
Client Identification	\$5.08	SD · 16	SW-18 *	SW-19	5N-20¢	SW-21 *
Matrix Type	SEDIMENTS	SEDIMENTS	WATER	WATER	WATER	LATER
			1/90	7/90	UG/L	UG/L
PURGEABLE HALOCARBONS (METH 601 CMPDS)						
1,1,1.TRICHLOROETHANE	M.	<b>3</b>	1.5	¥	15	110 C
1,1,2,2-TETRACHLOROETHANE	¥	<b>*</b>	æ	æ	MR	S.
1,1,2-TRICHLOROETHANE	<b>3</b>	~	æ	æ	æ	0.09
1, 1-DICHLOROETHANE	*	<b>Ξ</b>	£	G.	9.0	4.3
1, 1-DICHLOROETHENE	¥	#	æ	W.	æ	1.6
1,2-DICHLOROBENZENE	22	<b>X</b>	æ	SH.	ZZ.	¥
1,2-DICHLOROETHANE	<b>3</b>	<b>#</b>	<b>£</b>	<b>X</b>	æ	0.11
1,2-DICHLOROPROPANE	KR	æ	¥	¥	¥	<b>X</b>
1, 3. DICHLOROBENZENE	<b>3</b>	<b>E</b>	<b>E</b>	æ	<b>XX</b>	X.
1,4-DICHLOROBENZENE	æ	<b>3</b>	<b>£</b>	<b>X</b>	æ	æ
2-CHLOROETHYL VINYL ETHER	N.	<b>Z</b>	æ	æ	A.	æ
BROMOD I CHLORONE THANE	æ	<b>X</b>	<b>=</b>	83	22	<b>8</b>
BROMOFORM	MR	<b>X</b>	¥	æ	¥	<b>X</b>
BROMOMETHAME	<b>8</b>	<b>X</b>	æ	<b>X</b>	æ	<b>X</b>
CARBON TETRACHLORIDE	M	ž	8	<b>XX</b>	<u>«</u>	<b>X</b>
CHLOROBENZENE	N.	8	æ	<b>£</b>	<b>X</b>	<b>X</b>
CHLORODIBRONOMETHANE	æ	<b>X</b>	¥	22	æ	<b>%</b>
CHLOROETHANE	<b>X</b>	<b>4</b>	8	<b>X</b>	<b>X</b>	*
CHLOROFORM	<b>X</b>	<b>X</b>	*	<b>X</b>	3.E	<b>X</b>
CHLOROMETHANE	<b>#</b>	<b>E</b>	#	#	**	¥

TRANS-1, 3-DICHLOROPROPENE TRANS-1, 2-DICHLOROETHENE

8

MR MR 1.7 0.29

1.0 0.05

* * - * * * *

* # - # # #

**# # # # #** # #

* * * * * *

CIS-1, 3-DICHLOROPROPENE DICKLORODIFLUOROMETHANE METHYLENE CHLORIDE TETRACHLOROETHENE

¥ ¥

¥ ¥

Science Applications International Corporation Environmental Chemistry Division

Project No.: 2-885-06-0624-00 Project Name: MANCOCK AFB Shipment No.: 2

Date of Report: 29-apr-1987

86350048 SW-21*	10 CC MR MR MR MR MR MR MR MR MR MR MR MR MR
86350047 SM-20*	法课题 1/20 张张张张张张张
86350046 SW-19 MATER	B 张 张 元
86350045 SW-18 * MATER	CG/2 R R R R R R R R R R R R R R R R R R R
86350044 SD-16 SEDIMENTS	
86350043 \$0 · 15 \$ED I MENTS	* * * * * * * * * * * * * * * * * * * *
Laboratory Identification Client Identification Matrix Type	TRICALOROFE HENE TRICALOROFE LUCROMETHANE VINYL CHLORIDE PURGEABLE ARCMATICS (METH 602 CMPDS) 1, 2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE BENZENE CHLOROBENZENE ETHYL BENZENE TOLUENE TOLUENE

Project No. : 2-885-06-0624-00 Project Name: MANCOCK AFB

Shipment No.: 2

FINAL REPORT- GC 2nd Column Confirmations

Laboratory Identification Client Identification	86350049	86350050 SD-19	86350051 SD-20 **	86350052 80-21	86350053 SW-22	86350054 SM: 23*	
Matrix Type	SEDIMENTS	SEDIMENTS	SEDIMENTS	SEDIMENTS	WATER	LATER	

DIDCEADIE HAI OCADDOMS /METU 404 PAROSS					1/9n	NG/L
TORGENOLE MALCONNOCAS (META BOLL CATUS)	;			!	!	;
1, 1, 1 - TRICHLOROETHANE	<b>X</b>	Œ	¥.	<b>X</b>	<b>X</b>	<b>X</b>
1,1,2,2-TETRACHLOROETHANE	¥	¥	<b>3</b>	¥	~	<b>X</b>
1,1,2-TRICHLOROETHANE	æ	¥	84	<b>%</b>	<b>X</b>	<b>%</b>
1, 1-DICHLOROETHANE	æ	<b>X</b>	<b>X</b>	<b>X</b>	Œ	¥
1,1-DICHLOROETHENE	# # # # # # # # # # # # # # # # # # #	<b>X</b>	<b>X</b>	N.	æ	Œ
1,2-DICHLOROBENZENE	<b>A</b>	87	~	<b>M</b>	¥	<b>X</b>
1,2-DICHLOROETHANE	<b>#</b>	82	M.	<b>33</b>	£	¥
1, 2-DICHLOROPROPANE	ã	£	<b>E</b>	<b>3</b>	<b>%</b>	æ
1,3-DICHLOROBENZENE	88	<b>%</b>	~	X.	¥	æ
1,4.DICHLOROBENZENE	<b>4</b>	<b>3</b>	2	N.R.	æ	¥
2-CHLOROETHYL VINYL ETHER	#	<b>X</b>	2	N.	æ	æ
BRONOD I CHLOROMETHANE	¥	3	2	ER.	¥	¥
BRONOFORM	Œ	æ	2	<b>X</b>	æ	#
BRONOMETHANE	¥	æ	2	22	Œ	<b>~</b>
CARBON TETRACHLORIDE	æ	æ	<b>3</b>	<b>X</b>	Œ	<b>X</b>
CHLOROBENZENE	æ	<b>%</b>	87	<b>X</b>	<b>X</b>	æ
CHLOROD I BROMOME THANE	¥	ä	æ	¥	æ	<b>X</b>
CHLOROETHAME	<b>E</b>	<b>X</b>	Œ	#	æ	æ
CHLOROFORM	Œ	Š.	<b>4</b>	æ	<b>E</b>	¥
CHLOROMETHAME	¥	X.	<b>4</b>	æ	M.	<b>a</b>
CIS-1,3-DICHLOROPROPENE	Æ	22	Œ	¥	¥	<b>&amp;</b>
DICHLORODIFLUORONETHANE	<b>4</b>	¥	æ	æ	<b>X</b>	¥
METHYLENE CHLORIDE	¥	¥	<b>E</b>	<b>X</b>	51	0.71
TETRACHLOROETHENE	~	æ	æ	¥	22	æ
TRANS-1,2-DICHLOROETHENE	¥	æ	<b>4</b>	HR.	<b>X</b>	æ
TRANS-1,3-DICHLOROPROPENE	<b>Z</b>	N.	. Z	N.	æ	<b>4</b>

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00 Project Name: NANCOCK AFB Shipment No.:

FINAL REPORT- GC 2nd Column Confirmations

Date of Report: 29-apr-1987

86350054 SM-23 *	B
86350053 SH-22 MATER	B
86350052 50-21 ** Sediments	* * * * * * * * * * * * * * * * * * * *
86350051 \$D-20 ** SEDIMENTS	*** * * * * * * * * * * * * * * * * * *
86350050 SD - 19 SED IMENTS	* * * * * * * * * * * * * * * * * * * *
86350049 SD-18 ** SEDIMENTS	* * * * * * * * * * * * *
tification	TRICHLOROETHEME TRICHLOROETHEME VINYL CHLORIDE PURGEABLE AROMATICS (METH 602 CMPDS) 1,2-DICHLOROBENZEME 1,4-DICHLOROBENZEME BENZEME CHLOROBENZEME ETHYL BENZEME TOLUEME XYLEMES, 707AL

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.: 2

FINAL REPORT- GC 2nd Column Confirmations

Date of Report: 29-apr-1987

Laboratory Identification	86350055	86350056	86350057	86350058	86350059	86350060
Matrix Type	SW-24	SED INENTS	SEDIMENTS	LATER	18:6 SOIL	18.7
	1/90					
PURGEABLE HALOCARBONS (METH 601 CMPDS)						
1,1,1-TRICHLOROETHANE	M M	22	2	<b>±</b>	N.	#
1, 1, 2, 2. TETRACHLOROETHANE	<b>X</b>	æ	¥	¥	<b>3</b>	<b>X</b>
1,1,2-TRICHLOROETHAME	<b>*</b>	Z.	¥	<b>3</b>	<b>3</b>	22
1,1-DICHLOROETHANE	<b>#</b>	M.	¥	<b>3</b>	<b>X</b>	<b>X</b>
1,1-DICHLOROETHENE	æ	22	¥	<b>3</b>	<b>X</b>	<b>38</b>
1,2.DICHLOROBENZENE	<b>X</b>	2	<b>4</b>	<b>4</b>	W	200
1,2-DICHLOROETHANE	X.	M.	<b>3</b>	<b>X</b>	<b>8</b> 1	88
1,2-DICHLOROPROPANE	~	N. N.	¥	<b>X</b>	æ	<b>X</b>
1,3-DICHLOROBENZENE	<b>X</b>	38	W.	<b>¥</b>	<b>S</b>	88
1,4-DICHLOROBENZENE	X.	34	¥	¥	<b>M</b>	MR
2-CHLOROETHYL VINYL ETHER	×	27	æ	<b>£</b>	~	22
BROWCD I CHI, ORCINE THANE	*	25	¥	<b>3</b>	<b>3</b>	<b>3</b>
ВВОМОГОВМ	æ	N N	¥	<b>\$</b>	<b>8</b>	<b>8</b>
BRONCHETHANE	æ	NR.	¥	¥	¥	<b>X</b>
CARBON TETRACHLORIDE	Z.	32	<b>X</b>	¥	<b>£</b>	<b>X</b>
CHLOROBENZEWE	<b>X</b>	3	<b>4</b>	£	<b>£</b>	<b>X</b>
CHLOROD I BROHOWE THANE	S.	38	<b>X</b>	<b>%</b>	¥	<b>X</b>
CNLOROETHANE	æ	<b>X</b>	<b>3</b>	¥	¥	<b>X</b>
CHLOROFORM	M	## ##	<b>X</b>	¥	<b>£</b>	<b>2</b>

02

* * * * * * * *

# # # # # # # # #

* * * * * * * * *

110

# # #

CIS-1,3-DICHLOROPROPENE DICHLORODIFLUORONETHANE METHYLENE CHLORIDE TETRACHLOROETHENE

CHLOROMET HAME

# # #

TRANS-1, 2-DICHLOROETHENE TRANS-1, 3-DICHLOROPROPENE

Environmental Chemistry Division

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 2

FIMAL REPORT- GC 2nd Column Confirmations

Laboratory Identification Client Identification Matrix Type	86350055 SU-24 UATER	86350056 SD · 22 SED INENTS	86350057 SD-23 SEDIMENTS	86350058 FB1 TRIP BLANK WATER	86350059 75-6 SOIL	86350060 18·7 Soil
TRICHLOROE THENE	#	¥		¥	G I	93
TRI CHLOROF LUOROME THANE	<b>3</b>	¥	<b>4</b>	9	<b>£</b> 9	£ 9
VINYL CHLORIDE	£	*	<b>*</b>	<b>:</b>	£ 3	¥ 9
	1/90				į	£
PURGEABLE AROMATICS (METH 602 CMPDS)						
1,2-DICHLOROBENZENE	ä	¥	~	8	â	9
1,3-dichlorobenzene	22	2	*		£ 9	¥ 9
1,4-DICHLOROBENZENE	S. S.	2	<b>3</b>	<b>:</b> 9	<b>£</b> 9	<b>É</b> \$
BENZENE	æ	*	<b>\$</b>	<b>1</b> 9	£ g	£ 3
CHLOROBENZENE	¥	8	3	<b>9</b>	<b>.</b>	£ 3
ETHYL BENZENE	<b>4</b>	Ŧ	¥	<b>E</b>	2	<b>9</b>
TOLUENE	æ	¥	<b>*</b>	~	W.	X
XYLENES, TOTAL	¥	<b>3</b>	<b>4</b>	ĝ	93	3

Project No.: 2-885-06-0624-00 Project Name: NANCOCK AFB Shipment No.: 2

FINAL REPORT- GC 2nd Column Confirmations

Date of Report: 29-May-1967

Laboratory Identification	86350061	86350062	86350063	86350065	86350067	86350069
Client Identification	ES1 (2)	ES-2	ES-3	SD-21 DUP	SW-16 DUP	ES-2 DUP
Matrix Type	1108	3011	7108	SED IMENTS	WATER	1108
• • • • • • • • • • • • • • • • • • •	6 1 1 1 4 4 1 1 1 1 1 2 0 1 1 2 1 1 1 1 1 1 1 1 1 1		1 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 2 2 3 4 4 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	DZ/KG	ng/kg	UG/KG			
PEST/PCB'S (METH 608 CMPDS)		! !				
000-17'9	¥	<b>3</b>	æ	¥	<b>#</b>	¥
4,4·-00E	160	53	12	Œ	#	
100-17'5	51	37	5.6	<b>X</b>	¥	23
A-BHC	æ	æ	W.	<b>4</b>	¥	<b>3</b>
ALDRIM	NC NC	皇	<b>X</b>	~	<b>#</b>	#
B-BHC	*	<b>X</b>	<b>X</b>	<b>X</b>	#	¥
CHLORDANE	<b>*</b>	¥	*	¥	æ	¥
D-8#C	<b>%</b>	æ	*	4	¥	<b>X</b>
DIELDRIN	ສ	a a	<b>3</b>	M.	#	¥
ENDOSULFAN 1	<b>3</b>	2	¥	¥	¥	<b>¥</b>
ENDOSULFAN 11	*	<b>X</b>	¥	¥	#	<b>£</b>
ENDOSULFAN SULFATE	~	<b>X</b>	æ	æ	Œ	<b>%</b>
ENDRIN	¥	æ	<b>X</b>	¥	¥	¥
ENDRIM ALDENYDE	*	æ	#	æ	¥	<b>*</b>
G-BHC(LINDAME)	¥	¥	<b>X</b>	¥	¥	<b>3</b>
WEPTACHLOR	¥	¥	¥	<b>E</b>	#	<b>\$</b>
WEPTACHLOR EPOXIDE	4.5	¥	æ	æ	Œ	<b>¥</b>
PCB-1016	¥	*	<b>X</b>	Œ	¥	*
PCB - 1221	~	Œ	Z.	æ	¥	¥
PCB-1232	Œ	¥	*	¥	¥	¥
PCB - 1242	¥	<b>X</b>	**	æ	¥	<b>X</b>
PCB-1248	¥	*	#	æ	æ	<b>E</b>
PCB-1254	¥	A.R.	*	W.	XX	<b>第</b>
PCB-1260	<b>8</b>	¥	¥	æ	¥	¥
TOXAPHENE	<b>£</b>	<b>%</b>	æ	<b>S</b>	<b>X</b>	<b>3</b>

See Notes and Comments on the Final Page of this Report.

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2.885-06-0624-00 Project Name: NANCOCK AFE

Shipment No.:

Notes and Comments:

30-apr-1987

Analysis Not Required

VALUE FOR SUBSTANCE IS A FRACTION OF TOTAL FOR A DEFINED COMBINATION OF UNRESOLVED SUBSTANCES INTERFERENCE FROM COELUTING PEAKS; REPORTED VALUE IS AN APPROXIMATED VALUE

NOT CONFIRMED ON SECOND COLUMN

UNDETECTED AT DETECTION LIMIT SHOWN

Holding Time was exceeded for organochlorine pesticides/PCBs, organophosphorus pesticides only;

Holding Time was exceeded for purgeable halocarbons, aromatic volatile organics and mercury; See Page H-304 for the new analytical results for the said parameters.

see pages H-296 - H-297 for new results.

#

Holding Time was exceeded for mercury only; was resampled for the parameter in Sept. 1987; see Pages H-305 - H307 for new results.

VALUES REPORTED ON A DRY WEIGHT BASIS (EXCLUDING VOLATILE AND BASE/NEUTRAL/ACID ANALYSIS) REPORTED DETECTION LIMITS ARE INSTRUMENT DETECTION LIMITS CORRECTED TO SAMPLE CONDITIONS REPORTED VALUES ARE NOT CORRECTED FOR ANALYTICAL BLANK

LAST PAGE

Science Applications International Corporation Environmental Chemistry Division

SAIC - DIV 835/0EHL Cl ient:

MCCLEAN, VA 22102 8400 WESTPARK

FINAL REPORT

Attn: PHIL SPOONER

Samples will be held for two weeks

after the report is issued.

Date of Report: 01-may-1987

Project No. : 2-885-06-0624-00

Project Name: NANCOCK AFB Shipment No.:

Laboratory Identification Client Identification Matrix Type	86353004 Gu-1 * UATER	<b>70</b>	86353005 G4-2 * WATER	<b>500</b>	86353006 GW-8 *	90 <u>.</u>	86353007 GM-9 ** LMTER		86353( 64-10 WATER	Retease Approval 4 M S S S S S S S S S S S S S S S S S S	COVAL STERMAGES CO. 3 **	177 3 8	
	<b>#</b> 6/L		MG/L		77 S <b>M</b>		S S		•	•			
PHOSPHATE	8	3	2	<b>5</b>	, % %	5	, % %	=	1/9 <u>1</u>	=	1/5# #6/1	=	
	UG/L		<b>1/9</b> 0		<b>NG/L</b>	ı	ne/r	,	3 5	•	9 5	<b>-</b>	
CADMIUM (TOTAL)	5.0	>	5.0	כ	5.0	<b>5</b>	5.0	<b>-</b>	5.0	=	7 6	3	
	<b>1/9</b> 0		1/9n		1/90		VG/L		790	•	16.1	•	
CHRONIUM (TOTAL)	8	<b>5</b>	20	>	S	<b>-</b>	2	<b>-</b>	2	<b>-</b>	3 05	-	
	N6/L		UG/L		1/9n		7/50		1/90		1/90	ı	
LEAD (TOTAL)	<b>5</b>	<b>-</b>	<b>5</b>	<b>-</b>	5	<b>5</b>	5	-	8	<b>-</b>	100	2	
	UG/L		1/9n		NC/L		1/90		1/90		1/90	)	
MANGANESE (TOTAL)	<b>%</b>		51		27		*		92		33		

90

Project No. : 2-885-06-0624-00 Project Name: MANCOCK AFB Shipment No.: 3

Date of Report: 01-may-1987

		18713	TOOGS		Date of Report:	port: 01.may-1907
Laboratory Identification	86353010	86353011	. ner mi 86353012	86353013	86353014	86353015
Client Identification	* 7-75	64-5 #	* 9-M3	\$ · ^ 3	SE-17	51-08
Matrix Type	WATER	WATER	WATER	WATER	WATER	SEDIMENTS
VOLATILES, PRIORITY POLLUTANTS						UG/KG
1,1,1-TRICHLOROETHANE	=	<b>3</b>	2	#	æ	1.9 u
1,1,2,2-TETRACHLOROETHANE	M	¥	<b>3</b>	<b>*</b>	Œ	3.4 U
1,1,2-TRICHLOROETHANE	#	#	3	<b>%</b>	¥	2.5 U
1,1-DICHLOROETHAME	¥	¥	£	#	æ	2.4 U
1,1-DICHLOROETHENE	¥	¥	<b>Ξ</b>	<b>4</b>	<b>X</b>	1.4 U
1,2-DICHLORGETHANE	¥	¥	£	<b>X</b>	æ	1.4 U
1,2-DICHLOROPROPANE	2	Œ	¥	<b>X</b>	<b>E</b>	3.0 U
2-CHLOROETHYL VINYL ETHER	<b>*</b>	<b>X</b>	<b>E</b>	¥	<b>X</b>	5.0 U
DENZEME	#	¥	¥	<b>3</b>	æ	2.2 U
BROWOD I CHLORONE THANE	¥	æ	¥	<b>%</b>	~	 
BRONOFORM	<b>±</b>	¥	¥	<b>3</b>	<b>X</b>	0 4.5
BRONCHETHANE	<b>X</b>	¥	¥	<b>±</b>	<b>X</b>	0.0 O
CARBON TETRACHLORIDE	¥	æ	¥	<b>X</b>	#	1.4 0
CHLOROBENZEME	¥	æ	Œ	#	<b>E</b>	3.0 U
CHLOROD I BRONOME THANE	#	W.	#	<b>3</b>	<b>4</b>	1.6 U
CNLOROETHANE	¥	æ	#	<b>#</b>	<b>X</b>	2.6 U
CHLOROFORM	32	Œ	£	~	<b>E</b>	0.80 U
CHLORONETHANE	#	æ	¥	<b>X</b>	<b>E</b>	0.40 U
CIS-1,3-DICMLOROPROPENE	¥	¥	<b>£</b>	¥	¥	1.0 U
ETHYL DENZEME	¥	¥	¥	<b>X</b>	#	67.0
METHYLENE CHLORIDE	£	æ	Ħ	<b>X</b>	#	1.4 U
TETRACHLOROETHENE	¥	æ	¥	<b>3</b>	<b>X</b>	2.0 U
TOLUEME	<b>X</b>	æ	¥	<b>X</b>	¥	3.0 U
TRANS-1, 2-DICHLOROETHEME	<b>E</b>	¥	¥	¥	¥	0.80 U
TRANS-1,3-DICHLOROPROPENE	<b>Z</b>	æ	<b>£</b>	¥	æ	2.5 U
TRICHLOROETHENE	<b>X</b>	æ	#	<b>*</b>	æ	1.0 U
TRICHLOROFLUOROMETHANE	<b>X</b>	<b>E</b>	<b>.</b>	<b>X</b>	<b>%</b>	0.90 u

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00 Project Name: NANCOCK AFB

Shipment No.: 3

Date of Report: 01-may-1987

		FIMAL	FINAL REPORT		מול ווי אל	report to a many 1703
Laboratory Identification	86353010	86353011	86353012	86353013	86353014	86353015
Client Identification	* 7-70	#S-755	* 9·75	* 1-3	Su-17	S-17
Matrix Type	WATER	LATER	WATER	WATER	WATER	SEDIMENTS
VINYL CHLORIDE	<b>£</b>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				3.0 C
PURGEABLE HALOCARBOMS (METH 60) CHPOS)					7/9n	
1,1,1-TRICHLOROETHANE	£	ä	*	£	0.03 U	2
1, 1, 2, 2-TETRACHLOROETHANE	<b>X</b>	¥	× ×	æ	0.03 U	N.
1, 1, 2-TRICHLOROETHANE	<b>3</b>	ä	<b>X</b>	Æ	0.02 U	*
1, 1-DICHLOROETHANE	¥	<b>3</b>	22	æ	0.07 U	æ
1, 1-DICHLOROETHENE	¥	<b>E</b>	N N	#	0.13 U	<b>E</b>
1,2-DICHLOROBENZENE	¥	<b>E</b>	22	83	0.15 U	4
1,2-DICHLOROETHANE	Œ	#	<b>4</b>	82	0.03 U	æ
1, 2-DICHLOROPROPANE	Æ	<b>E</b>	200	<b>3</b>	0.04 U	E S
1,3-DICHLOROBENZENE	<b>E</b>	<b>4</b>	33	S.	0.32 U	¥
1,4-DICHLOROBENZENE	£	¥	*	æ	0.24 U	*
2-CHLOROETHYL VINYL ETHER	Œ	æ	2	<b>4</b>	0.13 U	<b>X</b>
BROMOD I CHLOROMET HANE	Œ	¥	¥	œ	0.10 U	N.
Вкомоговм	¥	¥	8	<b>4</b>	0.20 U	æ
BROMOMETHANE	¥	<b>4</b>	<b>X</b>	<b>E</b>	1.2 U	æ
CARBON TETRACHLORIDE	æ	¥	*	<b>A</b>	0.12 U	W.
CHLOROBENZENE	Œ	#	32	<b>X</b>	0.25 U	#
CHLORODIBROMOMETHANE	æ	¥	M	¥	0.09 U	ta N
CHLOROETHANE	<b>X</b>	Ŧ	<b>X</b>	#	0.52 U	æ
CHLOROFORM	£	#	**	<b>X</b>	0.05 U	¥
CHLOROMETHAME	¥	<b>E</b>	<b>¥</b>	<b>%</b>	0.08 U	#
CIS-1,3-DICHLOROPROPENE	<b>£</b>	æ	#	æ	0.20 U	¥
DICHLORODIFLUCROMETHANE	뜊	Œ	*	¥	1.8 U	<b>X</b>
METHYLENE CHLORIDE	æ	¥	22	ä	67.0	<b>X</b>
TETRACHLOROETHENE	<b>4</b>	£	*	#	0.03 U	~
TRANS-1, 2-DICHLORGETHENE	¥	¥	42	Ä	0.10 U	<b>X</b>
TRANS-1, 3-DICHLOROPROPENE	æ	<del>9</del>		M	0.34 U	<b>~</b>
TRICHLOROETNENE	ä	¥	22	æ	0.12 U	<b>X</b>

208

Project No. : 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 3

Laboratory Identification	,	FINA	FINAL REPORT		Date of Reg	Date of Report: 01-may-1987
Client Identification Natrix Type	86353010 Gu-4 * WATER	86353011 Gu-5 *	86353012 Gu-6 ** Mater	86353013 GN-7** WATER	86353014 SW-17 MATER	86353015 SD-17 SFD IMENTS
TRICHLOROFLUDROMETHANE VINYL CHLORIDE	<b>3</b> 3	<b>E</b>	* * * *	<b>£</b> £	0.50 U	<b>£</b> 9
PURGEABLE ARGMATICS (METH 602 CHPDS)					1/90	Ĭ
1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE	<b>3</b> 9	<b>E</b> :	Z.	ä	0.15 U	<b>3</b>
1,4-DICHLOROBENZENE	1 2		<b>~</b>	an M	0.32 U	<b>S</b>
BENZENE	<b>3</b>		Z :	a a	0.40 U	*
CHLOROBENZENE	<b>*</b>	ž 9	<b>3</b>	æ	0.20	¥
ETHYL BENZENE	æ		<b>X</b>	Ĩ	0.20 U	æ
TOLUENE	<b>3</b>	¥ 9	¥ !	Z.	0.32 NC	æ
XYLENES, TOTAL	**	¥ 9	¥ ;	<b>X</b>	0.20 U	<b>3</b>
		<b>f</b>	¥	<b>X</b>	0.60 u	Œ

_
9
c
- 7
_
Š
•
•
8
-
ځ
-
_
•
8
æ
7
•
•
$\sim$
•
_
C
ž
_
•
ž
4
. =
į

Project No. : 2-885-06-0624-00 Project Name: MANCOCK AFB Shipment No.:

Shipment No.: 5					Date of Repo	Date of Report: 01-may-1987
		FINAL	L REPORT			
Laboratory Identification	86353010	86353011	86353012	86353013	86353014	86353015
Client Identification	* 7-75	GW-5*	* 9-NS	GU-7 *	Su-17	21.98
Matrix Type	LATER	WATER	WATER	WATER	WATER	SEDIMENTS
	MG/L	MG/L	MG/L	1/9 <b>M</b>		
PHOSPHATE	78 n	79 T	26 U	79 n	<b>X</b>	<b>33</b>

Science Applications International Corporation Environmental Chemistry Division

Project No.: 2-885-06-0624-00 Project Name: MANCOCK AFB Shipment No.: 3

Laboratory Identification			FINAL REPORT		Date of R	Date of Report: 01-may-1987
Client Identification GM-4* Matrix Type MATER	CAU-4*	86353011 GN-5 * WATER	86353012 Gu-6 ** Water	86353013 GA-7* LATER	86353014 SW-17 WATER	86353015 SD-17 SEDIMENTS
				•		
CADMIUM (TOTAL)	1/9n %	UG/L 5.0 U	1/90	1/90		
CMROMIUM (TOTAL)	n 05 50 u	n 05/L	7/9n	0 0.c	¥	<b>X</b>
LEAD (TOTAL)	ue/L 100	UG/L 100 U	100	n :	NR UG/L	NR MG/KG
MANGANESE (TOTAL)	1/9n	J2/T	3.5	1500 1500	9.0 MR	26 GF NR

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 3

Date of Report: 01-may-1987	86353015 \$0-17 \$EDIMENTS	MG/KG	31 U PERCENT 32
Date of Rey	86353011 86353012 86353013 86353014 86353015 GU-5* GU-6* GU-7* SU-17 SO-17 MATER WATER WATER SEDIMENTS	MG/L	NR OC.
	66353013 GJ-7* LMTER	ğ	<b>3</b>
FINAL REPORT	86353012 GN-6 * WATER	æ	Œ
	86353011 G4-5 ** WATER	æ	<b>3</b>
V*V***********************************	GA-53010 GU-4* WATER	##	X.
Laboratory Identification	Client Identification GU-4* Matrix Type	PETROLEUM HYDROCARBOW - IR	MOISTURE, PERCENT

Project No. : 2-885-06-0624-00 Project Name: MANCOCK AFB Shipment No.:

Notes and Comments:

01-may-1987

Analysis Not Required # J G G ... J

VALUE FOR SUBSTANCE IS A FRACTION OF TOTAL FOR A DEFINED COMBINATION OF UNRESOLVED SUBSTANCES DETECTED, VALUE IS BELOW DETECTION LINIT SHOWN

GRAPHITE FURNACE

INTERFERENCE FROM COELUTING PEAKS; REPORTED VALUE IS AM APPROXIMATED VALUE

NOT CONFIRMED ON SECOND COLUMN

UNDETECTED AT DETECTION LINIT SHOWN

Holding times were exceeded for orthophosphate and incorrect method was used for lead detection; was resampled in Sept. 1987; see pages H-306 - H-307 for new results.

VALUES REPORTED ON A DRY WEIGHT BASIS (EXCLUDING VOLATILE AND BASE/NEUTRAL/ACID ANALYSIS) REPORTED DETECTION LIMITS ARE INSTRUMENT DETECTION LIMITS CORRECTED TO SAMPLE CONDITIONS REPORTED VALUES ARE NOT CORRECTED FOR ANALYTICAL BLANK

LAST PAGE

Client: SAIC - DIV 835/OEML

8400 WESTPARK McCLEAN, VA 22102 Attn: Phil Spoower

Project No.: 2.885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.:

FINAL REPORT GC 2nd Column Confirmations

Date of Report: 30-apr-1987

Samples will be held for two weeks after the report is issued.

Release Approval Monach Cult

SEDIMENTS 86353015 8.17 86353014 SW-17 WATER 86353013 WATER CW-7 86353012 9-75 WATER 86353011 WATER 5-15 86353010 WIER 4 Laboratory Identification Client Identification ........ Matrix Type

						1/90	
HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME         HAME <th< th=""><th>PURUEABLE MALUCARBONS (METH 601 CHPDS) 1,1,1-1-TRICHLOROETHANE</th><th>a a</th><th>ă</th><th>3</th><th>æ</th><th><b>2</b></th><th>ď</th></th<>	PURUEABLE MALUCARBONS (METH 601 CHPDS) 1,1,1-1-TRICHLOROETHANE	a a	ă	3	æ	<b>2</b>	ď
	,2,2-TETRACHLOROETHANE	<b>Ξ</b>	<b>3</b>	<b>.</b>	<b>2</b>	<b>E</b>	<b>*</b>
	,1,2-TRICHLOROETHANE	MR	æ	<b>4</b>	<b>XX</b>	XX	<b>X</b>
67.0 W. W. W. W. W. W. W. W. W. W. W. W. W.	1,1-DICHLOROETHANE	æ	N.	<b>3</b>	N.	88	<b>X</b>
	1,1-DICHLOROETHENE	<b>X</b>	æ	<b>4</b>	M.	¥	*
87.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0     37.0	1,2-DICHLOROBENZENE	<b>X</b>	æ	*	æ	¥	æ
	1,2-DICHLOROETHANE	<b>X</b>	<b>%</b>	2	N.	N.	¥
	DICHLOROPROPANE	<b>X</b>	¥	Z	æ	æ	¥
	DICHLOROBENZENE	<b>3</b>	æ	<b>X</b>	S.	Z.	<b>X</b>
N.	DICHLOROBENZENE	<b>3</b>	M.	<b>3</b>	MR	<b>E</b>	<b>X</b>
ENE         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR         NR	LOROETHYL VINYL ETHER	<b>X</b>	¥	<b>X</b>	S.	<b>¥</b>	<b>3</b>
ENE     MR     MR     MR     MR     MR       NR     NR     NR     NR     NR       NR     NR     NR     NR     NR       NR     NR     NR     NR       NR     NR     NR     NR       AME     NR     NR     NR       AME     NR     NR     NR       AME     NR     NR     NR       AME     NR     NR     NR       AME     NR     NR     NR       AME     NR     NR     NR	ICD I CHLOROME THANE	æ	<b>XX</b>	<b>3</b>	æ	A.	W.
ENE     MR     MR     MR     MR       MR     MR     MR     MR       MR     MR     MR     MR       MR     MR     MR     MR       MR     MR     MR     MR       AME     MR     MR     MR       AME     MR     MR     MR       AME     MR     MR     MR       AME     MR     MR     MR       AME     MR     MR     MR	DFORM	<b>X</b>	æ	R	X.	¥	æ
ENE NR NR NR NR NR NR NR NR NR NR NR NR NR	OMETHANE	X.	<b>X</b>	¥	8 <b>2</b>	æ	æ
METHAME         MR         MR         MR         MR           METHAME         MR         MR         MR         MR           METHAME         MR         MR         MR         MR           METHAME         MR         MR         MR         MR           METHAME         MR         MR         MR         MR           MR         MR         MR         MR         MR           MR         MR         MR         MR         MR           MR         MR         MR         MR         MR           MR         MR         MR         MR         MR	ON TETRACHLORIDE	<b>X</b>	æ	*	<b>X</b>	M.	M.
HR HR HR HR HR HR HR HR HR HR HR HR HR H	ROBENZENE	<b>2</b>	æ	#	<b>X</b>	M.	#
MR MR MR MR MR MR MR MR MR MR MR MR MR M	ROD I BRONOMETHANE	2	æ	22	S.	## #	W.
MR MR MR MR MR MR MR MR MR MR MR MR MR M	ROETHANE	æ	æ	æ	M.	æ	A.
MR NR NR NR NR NR NR NR NR NR NR NR NR NR	ROFORM	35	æ	<b>3</b>	<b>X</b>	W.	<b>X</b>
MR MR NR NR NR NR NR NR NR NR NR NR NR NR 0.49	RONETHANE	<b>X</b>	æ	Z.	æ	æ	æ
NR NR NR 0.49	1, 3-DICHLOROPROPENE	<b>X</b>	<b>3</b>	¥	<b>X</b>	N.	æ
67.0 MR MR 0.49	LOROD 1 F LUOROME THANE	<b>3</b>	æ	22	æ	N.	æ
	YLENE CHLORIDE	Æ	æ		<b>X</b>	67.0	æ

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 3

d Column Confirmations	
FINAL REPORT - GC 2n	

shoratory identification	86353010	86353011	86353012	86353013	86353014	86353015
Client Identification	4-13	S-15	9-119	CU-7	SW-17	S-17
Matrix Type	WATER	MATER	WATER	WATER	WATER	SEDIMENTS
TETRACKLOROETHENE					<b>Z</b>	<b>X</b>
TRANS-1,2-DICHLOROETHENE	2	¥	<b>*</b>	<b>X</b>	¥	<b>X</b>
TRANS-1,3-DICHLOROPROPENE	2	æ	æ	¥	<b>X</b>	<b>%</b>
TRICHLOROETHENE	~	æ	M.	æ	æ	¥
TRICHLOROFLUOROMETHANE	<b>=</b>	¥	. XX	<b>X</b>	<b>*</b>	¥
VINYL CHLORIDE	¥	¥	¥	¥	<b>X</b>	¥
					N6/L	
PURGEABLE ARCHATICS (METH 602 CMPDS)						
	<b>#</b>	<b>#</b>	¥	Œ	Z.	<b>X</b>
1.3-DICHLOROBENZENE	æ	<b>X</b>	<b>33</b>	¥	¥	<b>X</b>
1,4-DICHLOROBENZENE	Ĩ	38	MR	#	<b>¥</b>	¥
BENZENE	~	¥	X	<b>M</b>	<b>¥</b>	<b>X</b>
CHLOROBENZENE	<b>*</b>	~	A.	<b>X</b>	<b>*</b>	<b>X</b>
ETHYL BENZENE	£	~	X.	<b>E</b>	<b>2</b>	<b>X</b>
TOLUENE	~	æ	<b>33</b>	8	<b>*</b>	<b>Z</b>
XYLENES, TOTAL	¥	¥	*	æ	<b>X</b>	<b>X</b>

Project No.: 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.:

01-may-1987

Notes and Comments:

Analysis Not Required ¥ 0 - ¥ 5

VALUE FOR SUBSTANCE IS A FRACTION OF TOTAL FOR A DEFINED COMBINATION OF UNRESOLVED SUBSTANCES

INTERFERENCE FROM COELUTING PEAKS; REPORTED VALUE IS AN APPROXIMATED VALUE

NOT CONFIRMED ON SECOND COLUMN

UNDETECTED AT DETECTION LIMIT SHOWN

VALUES REPORTED ON A DRY WEIGHT BASIS (EXCLUDING VOLATILE AND BASE/NEUTRAL/ACID ANALYSIS) REPORTED DETECTION LIMITS ARE INSTRUMENT DETECTION LIMITS CORRECTED TO SAMPLE CONDITIONS REPORTED VALUES ARE NOT CORRECTED FOR ANALYTICAL BLANK

LAST PAGE

SAIC - DIV 835/0EHL Client:

8400 WESTPARK

FINAL REPORT

MCCLEAN, VA 22102

Samples will be held for two weeks

after the report is issued.

Date of Report: 01-may-1987

Attn: PHIL SPOOWER

Project No. : 2-885-06-0624-00 Project Name: HANCOCK AFB Shipment No.:

Shipment No.: 4					Release Approval	proval Warner A. Culle In
Laboratory Identification	86353016	86353017	86353018	86353019	86353020	86353021
Client Identification	£:±	GN-12	GW-13	GW-14	GW-15	64-16
Matrix Type	MATER	LATER	WATER	WATER	WATER	WATER

	<b>1/9</b> n	7/90	NG/L	N6/L	7/9n	ng/L
PURGEABLE HALOCARBONS (METH 601 CHPDS)						
1,1,1-TRICHLOROETHANE	0.26 WC	0.22 NC	0.03 U	0.03 U	0.03 U	0.03 U
1,1,2,2.TETRACHLOROETHANE	0.03	0.03 U	0.03 U	0.03 U	0.03 U	0.03 u
1,1,2.TRICHLOROETHANE	0.02 U	0.02 U	0.02 U	0.02 U	0.02 u	0.02 u
1,1-DICHLORGETHAME	0.07 U	0.07 U	0.07 U	0.07 U	0.07 u	0.07 U
1,1-DICHLOROETHENE	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 u
1,2-DICHLOROBENZENE	0.40 U	0.40	0.40 U	0.40	0.40 U	0.40 U
1,2-DICHLORGETHANE	0.03 u	0.03 U		0.03 U	0.03 U	0.03 U
1,2-DICHLOROPROPANE	o.00	0.0¢ c		0.0%	0.04 U	0.04 c
1,3-DICHLOROBENZENE	0.30 U	0.30 u		0.30 U	0.30 u	0.30 u
1,4.DICHLOROBENZENE	0.40 U	0.40 u		0.40 U	0.40 U	0.40 U
2-CHLOROETHYL VINYL ETHER	0.13 U	0.13 U		0.13 U	0.13 U	0.13 U
BROWOD I CHLOROME THANE	0.10 U	0.10 u		0.10 U	0.10 U	0.10 U
BRONDFORM	0.20 U	0.20 u		0.20 U	0.20 U	0.20
BRONONETHANE	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
CARBON TETRACHLORIDE	0.12 U	0.12 U		0.12 U	0.12 U	0.12 U
CHLOROBENZEME	0.20 U	0.25 U		0.25 U	0.25 ს	0.25 U
CHLOROD I BROWONE THANE	0.09 U	0.09 u		0.09 U	0.09 U	0.09 U
CHLOROETHANE	0.52 U	0.52 U		0.52 U	0.52 U	0.52 U
CHLOROFORM	0.05 u	90.0		0.05 U	0.05 U	0.05 u
CHLORCHETHANE	0.08 U	0.08 U		0.08 U	0.08 U	0.08 u
CIS-1, 3-DICHLOROPROPENE	0.20 U	0.20 ∪		0.20 U	0.20 U	0.20 U
DICHLORODIFLUOROMETHANE	1.8 U	1.8 U		1.8 U	1.8 U	າ.8 ບ
METHYLENE CHLORIDE	2.2	1.1		0.52	1.4	92

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00 Project Name: MANCOCK AFB Shipment No.: 4

Laboratory [dentification	1		FINAL REPORT		Date of Report: 01-mmy-1987	01-may-1987
Client Identification Matrix Type	86353016 Gu-11 Mater		86353018 GH-13 MATER	86353019 G4-14 MATER	86353020 GW-15	86353021 GH-16
TETRACHLORGETHENE TRANS-1, 2-DICHLORGENE TRANS-1, 3-DICHLORGENE TRANS-1, 3-DICHLORGENE TRICHLORGETHENE TRICHLORGETHENE VINYL CHLORIDE VINYL CHLORIDE 1, 2-DICHLORGENZENE 1, 3-DICHLORGENZENE 1, 4-DICHLORGENZENE BENZENE CHLORGENZENE ETHYL BENZENE TOLUENE XYLENES, TOTAL	0.03 U 0.34 U 0.34 U 0.12 U 0.50 U 0.50 U 0.40 U 1.5 NC 0.20 U 0.20 U 0.50 U	0.03 U 0.10 U 0.34 U 0.12 U 0.12 U 0.18 U 0.18 U 0.40 U 0.20 U 0.20 U 0.20 U 0.20 U	0.03 U 0.10 U 0.34 U 0.12 U 0.12 U 0.50 U 0.40 U 0.80 W 0.20 U 0.20 U	0.10 U 0.14 U 0.15 U 0.12 U 0.50 U 0.50 U 0.40 U 0.20 U 0.20 U 0.80 WC	0.03 U 0.10 U 0.12 U 0.12 U 0.12 U 0.18 U 0.40 U 0.40 U 0.20 U 0.20 U	0.03 U 0.10 U 0.34 U 0.12 U 0.50 U 0.18 U 0.40 U 0.20 U 0.20 U
			3	D.00.0	0.60 u	0.60 U

Environmental Chemistry Division

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB Shipment No.:

SI-15 86353019 MATER G. 14 86353018 GU-13 WATER FINAL REPORT 86353017 GU-12 WATER 86353016 WATER Laboratory Identification Client Identification Matrix Type

Date of Report: 01-may-1987

86353021 GW-16 WATER

86353020

WATER

MG/L 3.3 MG/L 6.8 MG/L 1.9 MG/L 2.0 MG/L 0.80 MG/L 0.50 U PETROLEUM HYDROCARBON - IR 

Project No. : 2.885-06-0624-00

Project Name: NANCOCK AFB

Shipment No.: 4

FINAL REPORT		LAB BLANK GW-16 DUP	MATER MATER
		FB-1 TRIP BLANK	_
	Laboratory Identification	Client Identification	Matrix Type

		N6/L	
PURGEABLE NALOCARBONS (NETN 601 CHPDS)	•		
,1,1-TRICHLOROETHANE	*	0.03 U	Z.
,1,2,2-TETRACHLOROETHANE	*	0.03 U	Z
, 1, 2 - TRICHLOROETHANE	*	0.02 U	ä
,1-DICHLOROETHANE	~	0.07 U	M.
, 1 · DI CHLOROETHENE	#	0.13 U	2
, 2-DICHLOROBENZENE	<b>*</b>	0.40	3
, 2-DICHLOROETHAME	<b>¥</b>	0.03 U	35
, 2-DICHLOROPROPANE	<b>#</b>	0.04 U	æ
,3-DICHLOROBENZENE	~	0.30 U	2
1,4-DICHLOROBENZENE	Œ	0.40	2
2-CHLORGETHYL VINYL ETHER	Œ	0.13 U	N.
BROMOD I CHLOROME THANE	æ	0.10 U	<b>X</b>
BRONOFORM	<b>=</b>	0.20 U	8
BRONONETHANE	Œ	1.2 U	#
CARBON TETRACHLORIDE	<b>*</b>	0.12 U	Z.
CHLOROBENZENE	<b>E</b>	0.25 U	#
CAL OROD I BROWCHE THANE	Œ	0.09 U	a a
CHLOROETHANE	æ	0.52 U	æ
CMLOROFORM	#	0.05 U	Z
CHLOROMETHANE	<b>X</b>	0.08 U	¥
CIS-1,3-DICHLOROPROPENE	<b>E</b>	0.20 U	Ĭ
D I CHLOROD I FLUOROMETHANE	<b>X</b>	1.8 U	¥
METHYLENE CHLORIDE	æ	0.59	Ä
TETRACHLOROETNENE	¥	0.03 U	#
TRANS-1, 2-DICHLOROETHENE	æ	0.10 U	<b>T</b>
TRANS-1,3-DICHLOROPROPENE	<b>8</b>	0.34 U	4
70. 6m 0000 Tuche	•	:	

Environmental Chemistry Division

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 4

•		FINAL	FINAL REPORT
Laboratory Identification	86353022	86353023	86353030
Client Identification	FB-1 TRIP BLANK	LAB BLANK	GW-16 DUP
Matrix Type	WATER	WATER	WATER
TRICHLOROFLUOROMETHANE		0.50 U	<b>±</b>
VINYL CHLORIDE	<b>#</b>	0.18 U	a a
		7/9n	
PURGEABLE ARGNATICS (METH 602 CMPDS)			
1,2-DICHLOROBENZENE	*	0.40 U	~
1, 3-DICHLOROBENZENE	<b>*</b>	0.30 U	22
1,4-DICHLOROBENZENE	<b>*</b>	0.40	22
BENZENE	<b>3</b>	0.20 U	<b>X</b>
CHLOROBENZENE	~	0.25 U	2
ETHYL BENZENE	<b>X</b>	0.20 U	<b>X</b>
TOLUENE	<b>E</b>	0.50	SH.
XYLENES, TOTAL	æ	0.60 U	æ

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB Shipment No.: 4

Shipment No.:

		FINAL REPORT	EPORT
Laboratory Identification	86353022	86353023	86353030
Client Identification	FB-1 TRIP BLANK	LAB BLANK	0.1.14 N.10
Matrix Type	MATER		2
	W. I.	MA I E K	LATER

8
8
~
_
•
>
à
3
-
•
~
5
_
•••
-
-
٥
a
Repor
œ
*
ŏ
•
v
~
Date
۵
_

9	
•	
HYDROCARBOM	
PETROLEUM	

=
0.50
5.6

똧

Project No. : 2.885.06.0624-00

Project Name: MANCOCK AFB

Shipment No.:

01-may-1987

Notes and Comments:

NO FIELD BLANK WAS SUPPLIED FOR YON SAMPLES

Analysis Not Required

VALUE FOR SUBSTANCE IS A FRACTION OF TOTAL FOR A DEFINED COMBINATION OF UNRESOLVED SUBSTANCES

INTERFERENCE FROM COELUTING PEXKS; REPORTED VALUE IS AN APPROXIMATED VALUE

NOT CONFIRMED ON SECOND COLUMN

UNDETECTED AT DETECTION LINIT SHOWN ~ ¥ >

VALUES REPORTED ON A DRY WEIGHT BASIS (EXCLUDING VOLATILE AND BASE/NEUTRAL/ACID ANALYSIS) REPORTED DETECTION LIMITS ARE INSTRUMENT DETECTION LIMITS CORRECTED TO SAMPLE CONDITIONS REPORTED VALUES ARE NOT CORRECTED FOR ANALYTICAL BLANK

LAST PAGE

Client: SAIC - DIV 835/0EHL

8400 LESTPARK MCCLEAN, VA 22102

Attn: PHIL SPOOMER

Project No. : 2-885-06-0624-00

Project Name: NANCOCK AFB

Shipment No.: 4

FINAL REPORT GC 2nd Column Confirmations

Date of Report: 30-apr-1987

Samples will be held for two weeks after the report is issued.

Release Approval Money Cull.

Laboratory Identification 86353016 Client Identification GM-11 Matrix Type WATER	86353017	86353018	86353019	86353020	86353021
	GU-12	GH-13	GW-14	GN-15	GW-16
	WATER	WATER	WATER	WATER	WATER

	1/90	<b>1/90</b>	NG/L	1/90	1/90	1/90
PURGEABLE HALOCARBONS (METH 601 CMPDS)						
1,1,1-TRICHLOROETHANE	SE SE	SE SE	#	¥	æ	XX.
1,1,2,2-TETRACHLOROETHANE	<b>X</b>	*	¥	#	æ	S.
1,1,2-TRICHLOROETHANE	82	<b>X</b>	¥	#	MR	W.
1,1-DICHLOROETHANE	<b>*</b>	<b>H</b>	¥	#	<b>3</b>	æ
1, 1-DICHLOROETHENE	<b>¥</b>	<b>H</b>	<b>X</b>	<b>X</b>	<b>X</b>	æ
1,2-DICHLOROBENZENE	æ	æ	¥	¥	<b>£</b>	<b>X</b>
1,2-DICHLOROETHANE	¥	<b>X</b>	2	#	<b>X</b>	NA.
1,2-DICHLOROPROPANE	¥	<b>X</b>	<b>H</b>	æ	¥	N.
1,3-DICHLOROBENZENE	<b>E</b>	<b>=</b>	¥	æ	æ	<b>X</b>
1,4.DICHLOROBENZENE	¥	<b>3</b>	£	<b>X</b>	æ	KR
2-CHLOROETHYL VINYL ETHER	æ	Z.	¥	<b>E</b>	¥	W.
BROWOD J CHLOROME THANE	8	<b>X</b>	¥	æ	¥	W.
BRONOFORM	æ	<b>X</b>	<b>#</b>	¥	<b>X</b>	M.
BRONOMETHANE	æ	<b>4</b>	<b>#</b>	¥	an an	S.M.
CARBON TETRACHLORIDE	æ	<b>E</b>	¥	¥	S.	æ
CHLOROBENZENE	æ	<b>%</b>	¥	æ	<b>X</b>	N.
CHLOROD I BRONOME THANE	æ	¥	æ	æ	N.R.	W.
CHLOROETHANE	Z.	æ	<b>¥</b>	¥	<b>X</b>	~
CHLOROFORM	<b>X</b>	90.0	<b>±</b>	¥	*	<b>X</b>
CHLOROMETHANE	M	#	*	æ	¥	æ
CIS-1,3-DICHLOROPROPENE	æ	82	<b>8</b>	Œ	8	M.
DICHLORODIFLUORONETHANE	æ	æ	<b>4</b>	M.	¥	<b>XX</b>
METHYLENE CHLORIDE	1.9	1.8	0.74	1.2	1.7	16

Project No. : 2-885-06-0624-00 Project Name: MANCOCK AFB Shipment No.: 4

FINAL REPORT- GC 2nd Column Confirmations

Date of Report: 30-apr-1987

66353016 GW-11 UATER	.016 86353017 GM-12 UATER	86353018 GW-13 WATER	86353019 GW-14 MATER	86353020 GH-15 WATER	86353021 GN-16 WATER
		<b>E                                    </b>	Z Z Z Z Z	* # # # #	
UG/L NR		1/5n	MR UG/L NR	MR UG/L MR	
<b>E</b> 7 %	# # # <b>#</b>	¥ # # 9	# # # <u></u>	¥ ¥ ¥	
* * *	3.5 1 2.3 1 4.7	1 3 3 3	MC 0.20 MR	# # # # #	Z Z Z Z

Project No.: 2-885-06-0624-00 Project Name: NANCOCK AFB Shipment No.: 4

FINAL REPORT- GC 2nd Column Confirmations

Date of Report: 30-apr-1987

Laboratory Identification	86353022	86353023	86353030
Client Identification	FB-1 TRIP BLAMK	LAB BLAWK	GW-16 DUP
Matrix Type	LATER	MATER	WATER
		799	
PURGEABLE HALOCARBONS (METH 601 CMPDS)			
1, 1, 1 - TRICHLORGETHAME	<b>*</b>	#	ar.
1,1,2,2-TETRACHLOROETHANE	¥	#	<b>3</b>
1,1,2-TRICHLOROETHANE	#	#	3
1, 1-DICHLOROETHAME	¥	#	3
1, 1.DICHLOROETHENE	#	#	3
1,2-DICHLOROBENZENE	<b>3</b>	#	3
1,2-DICHLOROETHANE	¥	<b>Ξ</b>	<b>1</b>
1,2-DICHLOROPROPANE	Ŧ	#	3
1,3-DICHLOROBENZENE	*	#	3
1,4-DICHLOROBENZEME	<b>E</b>	#	£
2-CHLORGETHYL VINYL ETHER	<b>3</b>	3	3
BRONCO I CHLORONE THANE	#	<b>\$</b>	¥
BRONOFORM	<b>X</b>	¥	<b>3</b>
BRONONETHANE	<b>X</b>	<b>±</b>	<b>3</b>
CARBON TETRACHLORIDE	<b>%</b>	<b>=</b>	<b>X</b>
CHLOROBENZEME	<b>%</b>	<b>%</b>	<b>3</b>
CHLOROD I BROHONE THANE	<b>4</b>	<b>3</b>	#
CHLOROETHANE	<b>¥</b>	<b>\$</b>	¥
CHLOROFORM	<b>3</b>	¥	<b>E</b>
CHLOROMETHAME	ER.	<b>E</b>	<b>3</b>
CIS-1,3-DICHLOROPROPENE	¥	<b>\$</b>	3
D, CHLOROD I FLUOROME THAME	<b>*</b>	<b>1</b>	¥
METHYLENE CHLORIDE	N.	<b>3</b>	<b>4</b>
TETRACHLOROETHENE	82	<b>±</b>	22
TRANS - 1, 2 - DICHLOROETHENE	<b>E</b>	<b>=</b>	. 9
TRANS - 1, 3 - DICHLOROPROPENE	<b>X</b>	~	2

See the and bents the first age in is R

Project No.: 2-885-06-0624-00 Project Name: MANCOCK AFB

Shipment No.: 4

FINAL REPORT- GC 2nd Column Confirmations

86353023 LAB BLANK WATER		<b>1</b>	<b>3</b>	1/90	PS)	3	<b>3</b>			
	TRICHLOROETHENE	TRICHLOROFLUCROMETHAME	VINYL CHLORIDE		PURGEABLE ARCHATICS (METH 602 CHPDS)	BENZENE	CHLOROBENZENE	ETHYL BENZENE	TOLUENE	XYI FWES TOTAL

Project No. : 2-885-06-0624-00

Project Name: NANCOCK AFB

Shipment No.:

Notes and Comments:

NO FIELD BLANK WAS SUPPLIED FOR VOA SAMPLES

01-may-1967

Analysis Not Required

VALUE FOR SUBSTANCE IS A FRACTION OF TOTAL FOR A DEFINED COMBINATION OF UNRESOLVED SUBSTANCES INTERFERENCE FROM COELUTING PEAKS; REPORTED VALUE IS AN APPROXIMATED VALUE ~ ¥ 5

NOT CONFIRMED ON SECOND COLUMN

UNDETECTED AT DETECTION LIMIT SHOWN

VALUES REPORTED ON A DRY WEIGHT BASIS (EXCLUDING VOLATILE AND BASE/NEUTRAL/ACID ANALYSIS) REPORTED DETECTION LIMITS ARE INSTRUMENT DETECTION LIMITS CORRECTED TO SAMPLE CONDITIONS REPORTED VALUES ARE NOT CORRECTED FOR ANALYTICAL BLANK

LAST PAGE

13.8

SAIC - DIV 835/0EHL Cl ient:

MCCLEAN, VA 22102 8400 WESTPARK

FINAL REPORT

Samples will be held for two weeks

after the report is issued.

Release Approval Manuage

Date of Report: 01-may-1987

Attn: PHIL SPOONER

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.:

0.13 0.13 0.15 0.0 0.32 0.54 0.10 0.50 GW-22 WATER ∍ **-**87016020 0.20 0.15 0.03 0.32 0.13 GV-21 0.07 0.13 0.0 0.24 0.10 WATER 1.2 72 87016019 GU-20 0.13 0.13 0.03 0.32 0.24 0.10 WATER 0.07 0.15 \$ 72 87016018 GE-19 WATER 0.05 0.07 0.13 0.15 0.03 . 6 0.32 0.13 0.10 0.20 0.24 790 87016017 GV-18 0.03 0.13 0.13 0.15 0.0 0.32 0.10 0.20 WATER 0.07 790 87016016 GW-17 0.13 0.03 0.10 0.20 0.15 0.32 0.13 WATER 0.05 0.07 0.04 0.24 7/50 PURGEABLE HALOCARBONS (METH 601 CMPDS) Laboratory Identification 1, 1, 2, 2 - TETRACHLOROETHANE 2-CHLOROETHYL VINYL ETHER Client Identification 1,1,1-TRICHLOROETHANE 1, 1, 2-TRICHLOROETHANE BROMOD I CHLOROMETHANE 1,2-DICHLOROPROPANE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1, 1-DICHLOROETHANE 1, 1-DICHLOROETHENE 1,2-DICHLOROETHANE BROMOME THANE ...... Matrix Type BROMOFORM

0.25 0.0 0.52 0.0

0.08

0.02

8.0

9.0

0.12

0.12

0.12

0.12

0.12 0.23 9.0

0.12 0.25

CARBON TETRACHLORIDE

CHLOROD I BROMONE THANE

CHLOROE THANE

CHLOROFORM

CHLOROBENZENE

1.2

0.25

0.25

0.0 0.52

. 8

9.8 0.52

0.52

0.0

0.52 0.05

9.0

0.0g

0.05

CIS-1,3-DICHLOROPROPENE DICHLORODIFLUOROMETHANE

CHLOROME THANE

METHYLENE CHLORIDE

0.52

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.: 5

		FINAL	FINAL REPORT			
Laboratory Identification	87016016	87016017	87016018	87016019	87016020	87016021
Client Identification	£-1,	54·18	GE-19	CH-20	GW-21	77-R5
Matrix Type	WIER	WATER	WATER	WATER	VATER	WATER
TETRACHLOROETHENE	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
TRANS-1, 2-DICHLOROETHENE	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
TRANS-1,3-DICHLOROPROPENE	0.% c	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
TRICHLOROETHENE	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U
TRICHLOROFLUOROMETHANE	0.50 U	0.50 u	0.50 U	0.50 U	0.50 U	0.50 U
VINYL CHLORIDE	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U
	1/90	1/90	N6/L	1/90	1/9n	1/9n
PURGEABLE AROMATICS (METH 602 CMPDS)						
	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
. 3. DICHLOROBENZENE	0.32 U	0.32 U	0.32 U	0.32 n	0.32 U	0.32 U
1 4-DICHI OROBENZENE	0.24 U	0.2% U	0.24 U	0.24 U	0.24 U	0.24 U
	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
ETUX: DENZENE	0.20 U	0.20 u	0.20 u	0.20 U	0.20 U	0.20 U
	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	1.0 NC
WVIEWS TOTAL	0.60 U	0.60	0.60 U	0.60 U	0.60 U	1.0

2-885-06-0624-00	AFB	
2-885-0	NANCOCK AFB	•
 	E e e	
Project No. :	Project Name:	

Shipment No.: 5			TANA PERSON		Date of Report: 29-May-1967	: 29-Hay-1987
Laboratory Identification Client Identification Matrix Type Laboratory		87016017 GW-18 WATER	116 87016017 87016018 GW-18 GW-19 WATER WATER	87016019 GM-20 MATER	87016019 87016020 GB-20 GB-21 MATER MATER	87016021 GM-22 UATER
LEAD (TOTAL)	UG/L 10	UG/L 1.9	UG/L 3.9	30 30	UG/L 10	UG/L 2.2
PETROLEUM WYDROCARBON - IR	MG/L 5.3	MG/L 4.8	MG/L 4.8	MG/L	MG/L 10	MG/L 5.2

Project No. : 2-885-06-0624-00

Project Name: MAMCOCK AFB Shipment No.: 5

		FINAL	FINAL REPORT		
Laboratory Identification	87016022	87016023	87016024	87016026	
Client Identification	22-73	55-75	LAB BLANK	GW-24 DUP	
Matrix Type	WATER	LATER	WATER	LATER	
	nc/r	<b>1/90</b>	1/50	1/90	
PURGEABLE NALOCARBONS (NETH 601 CHPDS)					
1, 1, 1-TRICHLORGETHAME	0.22	0.03 U	0.03 U	0.03 U	
1,1,2,2-TETRACHLOROETHAME	0.03 U	0.03 U	0.03 U	0.03 U	
1, 1, 2 - TRICHLORGETHAME	0.02 U	0.05 U	0.02 U	0.02 U	
1, 1-DICHLORDETHANE	0.07 U	0.07 U	0.07 U	0.07 U	
1, 1-DICHLOROETHENE	0.13 U	0.13 U	0.13 U	0.13 U	
1,2-DICHLOROBENZENE	0.15 U	0.15 U	0.15 U	0.15 U	
1,2-DICHLOROETHAME	17	0.03 U	0.03 U	0.03 U	
1, 2-DICHLOROPROPANE	0.0% C	0.0¢	0.0¢ c	D.04 c	
1,3-DICHLOROBENZENE	0.32 U	0.32 U	0.32 U	0.32 U	
1,4-DICHLOROBENZEME	0.24 U	0.24 U	0.24 U	0.24 U	
2-CHLORGETHYL VINYL ETHER	0.13 U	0.13 U	0.13 U	0.13 U	
BRONOD I CHLORONET NAME	0.10 U	0.10 U	0.10 U	0.10 U	
BRONOFORM	0.20 U	0.20 u	0.20 U	0.20 U	
BROKOMET WAME	1.2 U	1.2 U	1.2 U	1.2 U	
CARBON TETRACHLORIDE	0.12 U	0.12 U	0.12 U	0.12 U	
CHLOROBENZEWE	0.25 U	0.25 U	0.25 U	0.25 U	
CHLOROD I BROYONE THANE	0.09 U	0.09 U	0.09 U	0.00 u	
CHLOROETMANE	0.52 U	0.52 U	0.52 U	0.52 U	
CHLOROFORM	0.05 U	0.05 U	0.05 U	0.05 U	
CHLORONE THAME	0.08 U	0.08 U	0.08 U	0.00 u	
CIS-1,3-DICHLOROPROPENE	0.02 U	0.02 U	0.02 U	0.02 U	
D I CHLOROD I FLUORONE THAME	1.8 C	1.8 U	1.8 U	1.8 U	
METHYLENE CHLORIDE	0.90	0.53	0.25 U	1.	
TETRACHLOROETHENE	0.03 U	0.03 U	0.03 U	0.03 U	
TRANS - 1, 2 - DICM, ORDET WENE	0.10 U	0.10 U	0.10 U	0.10 U	
TRANS-1, 3-DICHLOROPROPENE	0.3% U	0.34 U	0.34 U	0.34 U	
TR I CHI, ORCE THENE	0.12 U	0.12 U	0.12 U	0.12 U	

Project No.: 2-865-06-0624-00 Project Name: NANCOCK AFB Shipment No.: 5

Laboratory Identification         67016024         87016026         R7016026           Client Identification         Gal-23         Gal-24         LAB BLANK         Gal-24 Dup           Client Identification         MATER         LAB BLANK         Gal-24 Dup           Matrix Type         LAB LAB BLANK         Gal-24 Dup         LAB BLANK         Gal-24 Dup           TRICH CROCKLURGOWETHAME         0.50 U         0.50 U         0.50 U         0.18 U         0.16 U           VINYL CHICARDE         0.18 U         0.18 U         0.18 U         0.16 U         0.16 U           VINYL CHICARDE         0.18 U         0.18 U         0.16 U         0.16 U         0.16 U           VINYL CHICARDE         0.18 U         0.18 U         0.16 U         0.16 U         0.16 U           VINYL CHICARDENENE         0.15 U         0.15 U         0.15 U         0.15 U         0.15 U           CHICARDENIZEME         0.20 U         0.20 U         0.20 U         0.20 U         0.20 U           CHICARDENIZEME         0.20 U         0.20 U         0.20 U         0.20 U         0.20 U           CHICARDENIZEME         0.20 U         0.20 U         0.20 U         0.20 U         0.20 U           CHICARDENIZEME         0.20 U			FINAL	FINAL REPORT	
DIRETMANNE 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.18 U 0.14 U 0.14 U 0.15 U 0.15 U 0.57 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.24 U 0.24 U 0.24 U 0.24 U 0.20 U 0.20 U 0.25 U 0.25 U 0.25 U 0.25 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20	Laboratory Identification Client Identification Natrix Type	87016022 G4-23 Water	87016023 GJ-24 UATER	87016024 Lab blank Water	87016026 Ga-24 dup Water
(METM 602 CHPDS)  0.15 U  0.32 U  0.32 U  0.24 U  0.24 U  0.25 U  0.20 U  0.20 U  0.20 U  0.20 U  0.20 U  0.20 U  0.20 U  0.20 U  0.20 U  0.20 U  0.20 U  0.20 U  0.20 U  0.20 U  0.20 U	DIE THANE	0.50 U 0.18 U UG/L	0.50 U 0.18 U UG/L	0.50 U 0.18 U UG/L	0.50 U 0.18 U UG/L
0.15 U 0.15 U 0.15 U 0.15 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.32 U 0.24 U 0.20 U 0.20 U 0.25 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U					:
0.32 U 0.32 U 0.32 U 0.32 U 0.34 U 0.24 U 0.24 U 0.24 U 0.26 U 0.20 U 0.25 U 0.25 U 0.25 U 0.25 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U	1 2 DICH CROBENZEWE	0.15 U	0.15 U	0.15 U	0.55
H.ORODENZEME 0.24 U 0.24 U 0.24 U 0.25 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U	1 T. DICH COORENSEME	0.32 U	0.32 U	0.32 U	0.32 U
HIZEME 0.20 U 0.20 U 0.20 U 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U	* A DICH DESERVENCE	0.24 U	0.24 U	0.24 U	0.24 U
NAZEME 0.25 U 0.25 U 0.25 U 0.25 U 0.25 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U		2 0	0.20	0.20 U	0.20 U
0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.60 U		- X	0.25 U	0.25 U	0.25 U
0.20 U 0.20 U 0.60 U 0.60 U		2 2 2	0.20	0.20 U	0.20 U
0.60 U 06.0 U 06.0 U	ETATE BENEENE	2000	0.20 U	0.20 U	0.20 U
	NYLEMES, TOTAL	0.60 U	0.60 U	0.60 U	0.60 U

Project No. : 2-865-06-0624-00 Project Name: NANCOCK AF8

Shipment No.: 5

Date of Report: 29-May-1967

		FINAL	FINAL REPORT		
Laboratory Identification Client Identification Matrix Type	87016022 GM-23 Water	87016023 64-24 WATER	87016024 LAB BLAWK WATER	87016026 GJ-24 DUP UATER	
LEAD (TOTAL)	UG/L 3.3	UG/L 2.5	¥	UG/L UG/L UG/L 3.3 2.5 NR 2.1	

풀

¥

4.9

ž =

PETROLEUM NYDROCARBON - 1R

Project No. : 2-865-06-0624-00

Project Name: MANCOCK AFB

Shipment No.:

01-may-1987

## Notes and Comments:

VALUE FOR SUBSTANCE IS A FRACTION OF TOTAL FOR A DEFINED COMBINATION OF UMRESOLVED SUBSTANCES Analysis Not Required まったーだっ

INTERFERENCE FROM COELUTING PEAKS; REPORTED VALUE IS AN APPROXIMATED VALUE GRAPHITE FURNACE

NOT CONFIRMED ON SECOND COLUMN

UNDETECTED AT DETECTION LINIT SNOWN

VALUES REPORTED ON A DRY WEIGHT BASIS (EXCLUDING VOLATILE AND BASE/NEUTRAL/ACID ANALYSIS) REPORTED DETECTION LIMITS ARE INSTRUMENT DETECTION LIMITS CORRECTED TO SAMPLE CONDITIONS REPORTED VALUES ARE NOT CORRECTED FOR AMALYTICAL BLANK

LAST PAGE

SAIC - DIV 835/0EHL MCCLEAM, VA 22102 Attn: PHIL SPOOMER 8400 WESTPARK Client:

Project No. : 2.885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.:

Laboratory Identification	87016016	87016017	87016018	87016019	87016020	87016021
Client Identification	2.13	513 513	GU-19	64-20	12·13	CN-22
Natrix Type	WIER	LATER	WATER	LATER	LATER	LATER

Release Approval Woman & Culle A.

Samples will be held for two weeks

GC 2nd Column Confirmations

FINAL REPORT

after the report is issued.

Date of Report: 29-apr-1987

PURGEABLE MALOCARBONS (METM 601 CMPDS)							
1.1.1.TRICHLORGETHAME	9	9	2 87 0	3	3 57 0	0,11 6	
1, 1, 2, 2 - TETRACHLOROETHAME	<b>.</b>	<b>.</b>	<b>3</b>	<b>£</b>	¥	<b>±</b>	
1,1,2-TRICHLOROETHAME	¥	*	*	#	**	#	
1,1.01CHLOROETWAME	¥	#	¥	¥	¥	<b>\$</b>	
1,1.DICHLOROETHEME	¥	<b>3</b>	<b>%</b>	**	#	<b>#</b>	
1,2-DICHLOROBENZENE	¥	\$	<b>£</b>	2	<b>=</b>	<b>3</b>	
1,2-DICHLORGETHANE	¥	Œ	<b>Ξ</b>	#	<b>¥</b>	¥	
1,2-DICHLOROPROPANE	¥	<b>3</b>	<b>%</b>	<b>*</b>	¥	¥	
1,3-DICHLOROBENZENE	¥	<b>x</b>	<b>3</b>	¥	*	ğ	
1,4-DICHLOROBENZENE	2	***	<b>%</b>	#	22	2	
2-CHLOROETNYL VINYL ETWER	<b>3</b>	<b>#</b>	<b>%</b>	£	<b>X</b>	Œ	
BRONDD I CHLOROME THAME	¥	~	¥	*	2	<b>3</b>	
BRONDFORM	¥	*	¥	#	27	<b>3</b>	
BRONOME THAME	Œ	*	Œ	#	<b>X</b>	Œ	
CARBON TETRACHLORIDE	<b>3</b>	<b>3</b>	#	=	<b>*</b>	2	
CHLOROBENZEME	#	<b>3</b>	¥	¥	æ	¥	
CHLOROD I BROYOFE THANE	<b>4</b>	¥	¥	*	<b>%</b>	¥	
CHLOROE THAME	<b>3</b>	\$	£	<b>*</b>	89	<b>£</b>	
CHLOROFORM	2	#	2	90.0	0.0	22	
CHLOROWE THAME	<b>2</b>	¥	<b>E</b>	#	<b>3</b>	<b>2</b>	
215-1,3-DICHLOROPROPENE	<b>3</b>	<b>Ξ</b>	<b>*</b>	<b>±</b>	<b>X</b>	£	
DI CHLORODI FLUORONE THANE	32	<b>Ξ</b>	¥	~	<b>≅</b>	<b>E</b>	
METHYLENE CHLORIDE	5.9	~	5	2	5.4	0.97	

See Notes and Comments on the Final Page of this Report.

Н-236

FINAL REPORT- GC 2nd Column Confirmations

Project No.: 2-885-06-0624-00 Project Name: MANCOCK AFB Shipment No.: 5		FINAL REPORT	FINAL REPORT- GC 2nd Column Confirmations	onfirmtions	Date of Report: 29-apr-1987	: 29-apr-1987
Laboratory Identification Client Identification Matrix Type	87016016 Ga-17 Water	87016017 GW-18 WATER	87016018 Gu- 19 WATER	87016019 GJ-20 UNTER	87016020 GM-21 UATER	87016021 GJ-22 UATER
TETRACHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLOROETHENE VINYL CHLOROE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE CHLOROBENZENE ETNYL BENZENE ETNYL BENZENE	3 ####################################		S	******	表面表面	B
XYLENES, TOTAL	£	3	æ	<b>¥</b>	Ĭ	<del>-</del>

Project No. : 2-885-06-0624-00 Project Name: MANCOCK AFB Shipment No.: 5

FINAL REPORT- GC 2nd Column Confirmations

Date of Report: 29-apr-1987

		¥	¥	~	3	<b>3</b>	<b>=</b>	<b>X</b>	22	<b>X</b>	<b>±</b>	*	<b>=</b>	~	<b>3</b>	<b>*</b>	<b>£</b>	<b>S</b>	<b>≅</b>	3	<b>33</b>	<b>£</b>	¥		¥	22	¥
1/90		3	*	<b>x</b>	<b>\$</b>	<b>3</b>	<b>*</b>	\$	#	¥	¥	=	#	#	¥	*	¥	3	*	¥	¥	¥	~	¥	=	#	#
1/9N		¥	<b>£</b>	¥	<b>£</b>	<b>*</b>	#	<b>¥</b>	<b>Ξ</b>	#	<b>±</b>	*	£	¥	Œ	¥	¥	æ	Œ	#	æ	<b>X</b>	<b>%</b>	<b>:</b>	*	æ	Œ
ne/r	MPOS)	90.0	3	¥	<b>£</b>	¥	#	11	<b>X</b>	¥	#	<b>X</b>	*	¥	<b>3</b>	3/2	#	<b>848</b>	<b>X</b>	8	<b>8</b>	<b>3</b>	#	0.99	S.	22 23	82
	PURGEABLE HALOCARBONS (METH 601 CMPDS)	1,1,1-TRICHLOROETHAME	1, 1, 2, 2 - TETRACHLOROETHANE	1, 1, 2-TRICHLOROETHAME	1,1-DICHLOROETHAME	1,1-DICHLOROETHENE	1,2-DICHLOROBENZEWE	1, 2-DICHLOROETHANE	1,2-DICHLOROPROPANE	1,3.DICHLOROBENZEME	1,4.DICHLOROBENZENE	2-CHLOROETHYL VINYL ETHER	BRONOD I CHŁ ORONE THANE	BRONOFORM	BROWCHE THANE	CARBON TETRACHLORIDE	CMLOROBENZEME	CMLOROD I BROHOME THANE	CML ORDE THANE	CHLOROFORM	CML ORCHE T MANE	CIS-1,3-DICHLOROPROPENE	DICHLORODIFLUORONETHANE	METHYLENE CHLORIDE	TE TRACHLORDE THEME	TRANS-1, 2-DICHLOROETHENE	TRANS-1, 3-DICHLOROPROPENE

See Notes and Comments on the final Page of this Report.

н-238

Project No.: 2-885-06-0624-00 Project Name: NANCOCK AFB Shipment No.: 5

Laboratory Identification         87016022         87016023         87016024         87016026           Client Identification         SA-23         GM-24         LAB BLAMK         GA-24 DUP           Matrix Type         MATER         MATER         MATER         MATER           IRICHLORCETHENE         MR         MR         MR           IRICHLORCETHENE         MR         MR         MR           VINYL CHLORCHETHANE         MR         MR         MR           VINYL CHLORCHETHANE         MR         MR         MR           VINYL CHLORCHETHANE         MR         MR         MR           VINYL CHLORCHETHANE         MR         MR         MR           VINYL CHLORCHETHANE         MR         MR         MR           VINYL CHLORCHETHANE         MR         MR         MR           1,2-01CHLORCHETHANE         MR         MR         MR           1,4-01CHLORCHENZEME         MR         MR         MR           1,4-01CHLORCHENZEME         MR         MR         MR           1,4-01CHLORCHENZEME         MR         MR         MR           1,4-01CHLORCHENZEME         MR         MR         MR           1,4-01CHLORCHENZEME         MR         MR	Shipment No.: 5		FINAL REP	FIMAL REPORT- GC 2nd Column Confirmations	confirmations
114 602 CMPDS)  115 602 CMPDS)  116 602 CMPDS)  117 602 CMPDS)  118 602 CMPDS)  119 603 CMPDS)  119 603 CMPDS)  110 604 24	Laboratory Identification	87016022	87016023	87016024	87016026
WATER WATER  WE WE WE WE WE WE WE WE WE WE WE WE WE W	Client Identification	52-15	%·15	LAB BLANK	GN-24 DUP
ETHAME  BER BER BER BER  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L  UG/L	Matrix Type	MATER	WATER	WATER	LATER
ENE (METAL 602 CMPDS)  LG/L  LCS (METAL 602 CMPDS)  ENE ENE ENE  ENE ENE ENE  ENE ENE  ENE ENE  ENE ENE  ENE ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  ENE  EN	TRICHLOROETHENE	<b>\$</b>	<b>S</b>	· · · · · · · · · · · · · · · · · · ·	#
UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	TRICHLOROFLUOROMETHANE	¥	¥	34	¥
UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	VINYL CHLORIDE	¥	¥	#	\$
(METH 602 CMPOS)  HE HE HE HE HE HE HE HE HE HE HE HE HE H		Ne/L	1/91	1/90	
		¥	¥	<b>X</b>	<b>¥</b>
	1,3.DICHLOROBENZENE	¥	*	<b>=</b>	¥
	1.4.DICHLOROBENZENE	¥	*	Ŧ	<b>£</b>
	BENZEWE	<b>Ξ</b>	¥	£	<b>3</b>
* * *	CHLOROBENZEWE	Ĩ	*	<b>=</b>	<b>X</b>
# #	ETHYL BENZEWE	Ĩ	<b>*</b>	¥	*
***	TOLUEME	ŧ	*	#	<b>£</b>
	XYLEMES. TOTAL	#	¥	¥	<b>*</b>

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.:

30-apr-1987

## Notes and Comments:

Analysis Not Required

VALUE FOR SUBSTANCE IS A FRACTION OF TOTAL FOR A DEFINED COMBINATION OF UNRESOLVED SUBSTANCES

INTERFERENCE FROM COELUTING PEAKS; REPORTED VALUE IS AN APPROXIMATED VALUE

NOT CONFIRMED ON SECOND COLUMN

UNDETECTED AT DETECTION LINET SHOWN **美ぃーとっ** 

VALUES REPORTED ON A DRY WEIGHT BASIS (EXCLUDING VOLATILE AND BASE/NEUTRAL/ACID ANALYSIS) REPORTED DETECTION LIMITS ARE INSTRUMENT DETECTION LIMITS CORRECTED TO SAMPLE CONDITIONS REPORTED VALUES ARE NOT CORRECTED FOR ANALYTICAL BLANK

LAST PAGE

SA1C - D1V 835/0EHL Client:

MCCLEAN, VA 22102 8400 WESTPARK

FINAL REPORT

Attn: PHIL SPOOWER

Samples will be held for two weeks

after the report is issued.

Date of Report: 30-apr-1967

Project No. : 2-885-06-0624-00

Project Name: HANCOCK AFB ø Shipment No.:

Release Approval Minney. Cull de Ode Clie

Laboratory Identification	RYDOODDY	8707000	0000000				
Client Identification	GV-25 *	G4-26 *	64-28*	87020010 54.20*	8/020011	6/02/0012	,
Matrix Type	WATER	WATER	WATER	WATER	WATER	WATER	
	4			, , , , , , , , , , , , , , , , , , ,			:
	1/9n	1/90	1/90	7/90	1/50	N6/L	
BASE/NEUTRAL AND ACID EXTRACTABLES, PRIORITY POLLUTANTS	ORITY POLLUTANTS			!		1	
1,2,4-TRICHLOROBENZENE	7 O.7	4.0 U	J 0.4	n 0.7	0.4	n 0.4	
1,2-DICHLOROBENZEME	8.0 c	8.0 C	8.0 U	8.0 U	9.0 c	8.0 U	
1,2-DIPHENYLHYDRAZINE	7.0.7	7 0.7	7 0.4	7.0 U	4.0 U	7 0.4	
1,3.DICHLOROBENZENE	D 0.4	0.4	7.0.4	7.0.4	n 0.4	n 0.4	
1,4.DICHLOROBENZENE	4.0 U	7 0.4	7 0.4	7.0 n	0.9	7.0.7	
2,4,6.TRICHLOROPHENOL	7.0 U	4.0 U	a 0.4	7.0 0	7.0 U	J 0.4	
2, 4 · D I CHL OROPHENOL	D 0.4	O.4	D 0.4	7.0.4	7 0.4	n 0.4	
2,4-DIMETHYLPHENOL	n 0.4	n 0.4	7.0.4	7.0.7	7.0 °	n 0.4	
2,4.DINITROPHENOL	27 U	27 U	27 U	0 <i>22</i>	U 75	J. 12	
2,4-DINITROTOLUENE	9.0 0	9.0 0	9.0 u	8.0 u	3.0 U	9.0 n	
2,6.0 INITROTOLUENE	8.0 U	9.0 0.8	8.0 U	8.0 U	8.0 U	8.0 U	
2-CHLORUMAPHTHALENE	n 0.4	0.4	n 0.4	4.0 U	0.9	n 0.4	
2 - CHL OROPHENOL	n 0.4	n 0.4	n 0.4	7 0.4	0.4	n 0.4	
2-ultrophenol	12 N	12 U	12 U	12 U	12 U	12 U	
3,3'-DICHLOROBENZIDENE	9.0 u	8.0 U	9.0 n	9.0 C	D 0.2	B.0 U	
4,6-DINITRO-2-NETHYLPHENOL	n 0 <del>y</del>	n 0†	n 07	n 07	n 07	n 07	
4-BRONOPHENYL PNENYL ETHER	7 0.7	0.4	0.4	U 0.4	0. v	n 0.4	
4 - CHLORO - 3 - METHYLPHENOL	70 n	20 N	70 OZ	20 U	n 02	n 02	
4-CHLORNPWENYL PNEWYL ETHER	7.0 U	0.4	7 0.7	u 0.4	n 0.4	n 0.4	
4 - NITROPHENOL	70 N	20 r	n 02	20 n	20 U	70 C	
ACENAPHTMENE	2.0 U	2.0 U	2.0 0	2.0 U	2.0 U	2.0 U	
ACENAPHTHYLENE	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	
ANTHRACENE	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 6

		FINA	L REPORT			
Laboratory Identification	87020007	87020008	87020009	87020010	87020011	87020012
Client Identification	<b>8</b> -32	. 92 · Ro	- 58 - 75	<b>.</b> € . 35	GV - 30	E -33
Matrix Type	WATER	WATER	WATER	WATER	MATER	LATER
BENZIDINE	٦ 8	n 0£	n 0£	30	30 U	n 0£
BENZO(A)ANTHRACENE	7.0.4	7 O.4	J 0.4	n 0.4	J 0.4	J 0.4
BENZO(A)PYREWE	2.0 0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
BENZO(B)FLUORANTHENE	2.0 U	2.0 u	2.0 U	2.0 U	2.0 U	2.0 U
BENZO(G, H, I)PERYLENE	7 0.4	7 0.4	7 0.4	0.4	7.0 0	7 0.4
BEHZO(K) FLUORANTHENE	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
BENZYL BUTYL PHTHALATE	7 O.4	7.0	7 0.4	0.4	0 0.4	n 0.4
BIS(2-CHLOROETHOXY)NETHANE	7.0 °C	7.0.4	7.0 U	U 0.4	J 0.4	n 0.4
BIS(2-CHLORGETHYL)ETHER	7.0 U	7 0.4	7.0 n	7 0.4	7.0.7	n 0.4
BIS(2-CHLOROISOPROPYL)ETHER	7 0.4	4.0 U	7.0 n	7.0 0	7.0 U	n 0.4
BIS(2-ETHYLHEXYL)PHTHALATE	D 0.4	4.0 u	7.0 n	6.9	8.4	7 0.4
CHRYSEME	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
DI-N-BUTYL PHTHALATE	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
DI-IN-OCIYL PHTHALATE	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
DIBENZO(A, H)ANTHRACENE	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
DIETHYL PHTHALATE	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
DINETHYL PHTHALATE	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
FLUORENE	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
FLUORDANTHENE	2.0 U	2.0 u	2.0 U	2.0 U	2.0 U	2.0 U
HEXACUL OROBENZENE	o e.y	7.0.7	7.0 C	n 0.7	7.0 °C	0.4
HEXACHLOROBUTAD I ENE	n 0.4	7.0 n	7.0.4	n 0.4	n 0.4	n 0.4
NEXACHLOROCYCLOPENTAD I ENE	<b>⊃</b>	20 20	> &	<b>50</b>	n 02	⊃ &
HEXACHLORGE THANE	9.0 c	8.0 c	9.0 C	9.0 c	D 0.8	D 0.8
INDENO(1,2,3.C,0)PYRENE	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
ISOPHORONE	n 0.4	4.0 U	D 0.4	n 0.4	U 0.4	7 0.4
M-NITROSOD I PMENYLAMI ME	D 0.4	n 0.4	O.4	n 0.4	0.4	n 0.4
M-NITROSOD I PROPYLANINE	70 n	20 20	n 02	n 02	70 n	⊃ 02
MAPHTHALENE	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
MITROBENZEWE	8.0 U	8.0 u	9.0 C	9.0 c	8.0 U	B.0 U
PENTACHLOROPHENOL	<b>7</b> 02	70 70	20 C	20 n	20 U	20 U

Project No.: 2-885-06-0624-00

Project Name: NANCOCK AFB Shipment No.: 6

		FINAL	FINAL REPORT			
Laboratory Identification	87020007	8702000	87020009	87020010	87020011	87020012
Client Identification	<b>€</b> -23	GN-26 *	CN-28 *	CH-29 *	GN-30	GU-31 *
Matrix Type	LATER	LATER	WATER	WATER	LATER	WATER
PHENANTHREWE	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
PHE WOL	7.0 C	n 0.4	J 0.4	7.0 n	n 0.4	0.4
PYREWE	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 6

		FINAL	FINAL REPORT		•	•
Laboratory Identification	87020007	87020008	87020009	87020010	87020011	87020012
Client Identification	G-23*		CU-28*	# 62-75	GW-30*	GV-31 *
Matrix Type	WATER	WATER	WATER	UNTER	WATER	LATER
	1/90	1/90	1/90	1/9n	7/9n	<b>1/9</b> 0
PURGEABLE MALOCARBONS (NETH 601 CHPOS)						•
1,1,1-TRICHLORGETHAME	97.0	0.03 U	0.11 MC	0.03 U	0.03 U	0.03 U
1,1,2,2-TETRACHLOROETHANE	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
1,1,2-TRICHLOROETHAME	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	2.7 110
1,1-DICHLOROETHAME	0.07 U	0.07 U	0.07 U	0.07 U	0.07 U	0.07 u
1, 1-DICHLOROETHENE	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
1,2-DICHLOROBENZEME	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
1, 2-DICHLORGETHAME	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
1,2-DICHLOROPROPAME	9.0¢	0.0%	0.0¢	0.0¢ c	0.0¢	0.9 C
1,3-DICHLOROBENZEME	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
1,4.DICHLOROBENZENE	0.24 U	0.24 U	0.24 U	0.54 0	0.24 U	0.24 U
2-CHLOROETHYL VINYL ETHER	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
BRONOD I CHLORONE THAME	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	6.0
BRONOFORM	D.20 U	0.20 c	0.20 U	0.20 U	0.20 U	1.5
BROYOVE THANE	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
CARBON TETRACHLORIDE	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U
CINLOROBENZENE	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
CMLOROD I BRONONE THAME	0.09 U	0.09 U	0.09 U	0.09 u	0.00 u	2.7 NC
CML ORDE THAME	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	
CMLOROFORM	0.27	0.15	0.06 HC	0.05 U	0.12	<b>5</b>
CHLORONE THAME	0.08 U	0.08 U	0.08 c	0.06 U	0.08 u	0.08 U
CIS-1,3-DICHLOROPROPENE	0.20 U	0.20 U	0.20 U	0.20 U	0.20 u	2.7 NC
DI CHLOROD I FLUOROMETHAME	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 c
METHYLENE CHLORIDE	0.68	0.61	0.38	0.30	07.0	0.43
TE TRACHLOROE THEME	0.03 U	0.03 U	0.03	0.03 U	0.03 u	0.03 U
TRANS-1, 2-DICHLOROETHENE	0.10 u	0.10 U	0.10 U	0.11 MC	0.10 u	0.10 U
TRANS-1, 3-DICHLOROPROPENE	0.34 U	0.34 U	0.34 U		0.¼ U	0.34 U
TRICHLOROETHENE	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U

Project No.: 2-885-06-0624-00 Project Name: NANCOCK AFB

ø Shipment No.:

Date of Report: 30-apr-1987

3 0.50 U > > 3 87020012 GU-31 * 0.18 0.20 0.30 0.40 0.20 97.0 0.45 9.0 0.40 WATER 7 꽃 0.50 U > > 87020011 62 · 30 * 0.18 8.0 0.20 0.20 9.0 WATER 0.40 9.5 0.45 0.40 **79** ¥ > > > 0.50 c > 87020010 CU-294 0.18 0.40 0.20 0.30 17.0 8.0 0.2 97.0 WATER 7 0.50 U > = > > > > ) 87020009 GU-28 * 91.0 0.20 0.20 0.20 WATER 0.40 o.3 0.40 1/91 FINAL REPORT > **>** > **33** 3 ∍ 0.50 U 8702008 ₩ 92-M9 0.18 0.40 9.30 0.40 **2**. ۰.20 وج 0.20 9.50 WATER 7 0.50 U **>** > **->** > ∍ 3 87020007 64-25# 0.18 WATER 0.40 0.30 0.40 0.20 0.20 0.20 0.20 7/95 (METH 602 CMPDS) Laboratory Identification TRICHLOROFLUORONETHANE Client Identification PURGEABLE AROMATICS 1,2-DICHLOROBENZEME 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE VINYL CHLORIDE XYLENES, TOTAL CHLOROBENZENE ETHYL BENZENE Matrix Type TOLUENE BENZENE

Project No.: 2-885-06-0624-00
Project Name: WANCOCK AFB
Shipment No.: 6

Shipment No.:

		_	FINAL REPORT				
Laboratory Identification	87020007		87020009	87020010	87020011	67020012	
Client Identification	<b>€</b> -25*	492-M3	CH-28 *	EE:33 *	GU-30#	64-314	
Matrix Type	WATER	LATER	LATER	WATER	WATER	WATER	
			3	• • • • • • • • • • • • • • • • • • •			
	MG/1CeC03	MG/LCaCO3	MG/LCaCO3	MG/LCaCO3	MG/LCaCO3	MG/LCaCO3	
ALKAL INITY, BICARBONATE	27	330	551	950	370	32	
•	MG/LCaCO3	MG/1CaC03	MG/LCaco3	MG/LCeCO3	MG/LCaCO3	MG/LCaCO3	
ALKAL IN 17 Y, CARBONATE	2	<b>9</b>	<b>-</b>	<b>-</b>		110	
	MG/LCeCO3	MG/LCaCO3		MG/1CeC03	MG/LCaC03	MG/LCeCO3	
ALKAL IN 1 TY, TOTAL	53	330	130	929	370	140	
•	1/54	HG/L	1/9M	MG/L	MG/L	1/5M	
ANIONS							
BACHIDE	0.9 U	0.9	9.9 C	n 6.9	9.9 u	9.9 C	
CINCORIDE	3200	22	2	92	x	23	
FLUORIDE	2.3 U	2.3 U	2.3 U	2.3 U	2.3 U	2.3 U	
EITRATE	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	
	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U	
PHOSPHATE	26 U	n %	n %	n 92	n 92	79 n	
SULFATE	1900	3	200	150	99:	ĸ	

Project No.: 2-865-06-0624-00 Project Name: NANCOCK AFB Shipment No.: 6

Date of Report: 29-Nay-1967

				FINAL	FINAL REPORT				•			•
Laboratory Identification	87020007	200	87020		87020	80	87020	010	87020	11	87020	212
Client Identification	* C:3	•	25.75		82-75	•	8.3		SF-75		E-38	
Matrix Type	MATER		MATER		WATER		WATER		LATER		LATER	
		• • • • • •						•				
	NG/L		1/90		N6/L		NG/L		1/90		1/9n	
ARSENIC (TOTAL)	3		2.0	>	=		2.0	<b>5</b>	2.0	5	2.0	5
	7/3n		1/9n		1/90		UG/L		1/90		1/90	
MERCURY-CVAA (TOTAL)	0.20	>	0.20	<b>-</b>	0.20	<b>-</b>	0.20	>	0.20	>	0.20	<b>-</b>
	T/SN		1/90		1/9n		7/90		7/90		1/90	
SELENIUM (TOTAL)	×		3.8	2	7		3.8	2	3.8	9	3.8	2
	NG/L		1/90		1/90		UG/L		1/90		1/90	
ICAP HETAL SCAN					•		•				•	
ALUMINUM (TOTAL)	<b>3</b>	2	8	<b>-</b>	\$	<b>-</b>	0%	>	\$	>	9,0	_
ANTIMONY (TOTAL)	3	>	<b>£3</b>	>	53	>	23	>	£3	>	£3	<b>-</b>
BARIUM (TOTAL)	8	9	2	2	8	9	8	9	2	>	8	- 2
DERYLLIUM (TOTAL)	25	<b>&gt;</b>	25	>	25	>	24	<b>-</b>	14	<b>-</b>	13	<b>-</b>
BORON (TOTAL)	4200		310		3	<b>-</b>	1600		900		3	<b>-</b>
CADMIUM (TOTAL)	8	>	2	>	2	<b>5</b>	8	2	2	2	2	2
CALCIUM (TOTAL)	1300000		120000		610000		330000		240000		8400	
CHRONIUM (TOTAL)	3	2	\$	>	3	>	3	>	3	2	92	
COBALT (TOTAL)	53	>	23	>	23	<b>-</b>	53	>	53	<b>-</b>	53	<b>-</b>
COPPER (TOTAL)	53	>	23	>	53	>	53	>	23	>	53	>
IRON (TOTAL)	8	5	ន	>	8	>	30	>	2	>	30	>
LEAD (TOTAL)	8	>	220	<b>-</b>	952	<b>-</b>	250	>	0\$2	>	0 <u>\$</u> 2	<b>¬</b>
MAGMESTUM (TOTAL)	240000		47000		26000		120000		100000		2000	
NAMGANESE (TOTAL)	20	>	8	<b>-</b>	ጽ		2100		2000		2	2
MOLYBDEMUM (TOTAL)	8	>	3	>	8	<b>-</b>	28	<b>-</b>	8	>	8	>
MICKEL (TOTAL)	ន	>	2	<b>-</b>	2	>	윩	<b>၁</b>	2	<b>5</b>	8	<b>¬</b>
POTASSIUM (TOTAL)	470000		099		110000		25000		21000		210000	
SILICA, COLORIMETRIC	0007		9009		2000		11000		2000		3800	
SILVER (TOTAL)	9	<b>5</b>	2	2	2	<b>-</b>	2	>	9	<b>-</b>	10	>
SODIUM (TOTAL)	1600000		12000		30000		38000		00097		38000	
THALLIUM (TOTAL)	530	>	530	<b>-</b>	530	<b>a</b>	530	<b>5</b>	530	<b>5</b>	230	<b>-</b>

Project No. : 2-885-06-0624-00 Project Name: NANCOCK AFB

Shipment No.: 6

				FINAL REPORT	<u> </u>								
Laboratory Identification	87020007	07	87020	98	870200	8	870200	2	870200	=	87020	210	
Client Identification	# C # 52		# 92-M		* 92·75	•	CN-29 *		* 92-35	*	G4-31 *		
Matrix Type	MIER		LATER		MATER		WATER		LATER		WATER		
											•		
VAMADIUM (TOTAL)	2	2	2	<b>-</b>	82	<b>-</b>	<b>8</b> 2	<b>-</b>	<b>58</b>	>	<b>9</b> 2	>	
ZINC (TOTAL)	3	<b>5</b>	7	<b>5</b>	2	<b>5</b>	25	<b>5</b>	<b>2</b> 5	>	75	>	
	7/9		H6/L		HG/L		<b>₩</b> 6/L		1/9#		#G/L		
PETROLEUM MYDROCARBOM - IR	0.50	-	0.50	>	0.50	<b>-</b>	0.50	<b>-</b>	0.50	<b>-</b>	0.50	<b>-</b>	
	MG/L		1/9M		MG/L		MG/L		MG/L		M6/L		
SOLIDS, TOTAL DISSOLVED	11000		8		2500		1600		1400		740		

See Notes and Comments on the Final Page of this Report.
Science Applications International Corporation
Environmental Chemistry Division

Project No. : 2-885-06-0624-00

Project Name: NANCOCK AFB

Shipment No.: 6

FINAL REPORT		GW-310 (DUP)*	
FINAL	87020014	I'VB BLANK	LATER
	87020013	8.X	WATER
	Laboratory Identification	Client Identification	Matrix Type

		£	£	<b>E</b>	#	I	<b>E</b>	<b>E</b>	<b>E</b>	<b>E</b>	=	<b>E</b>	<b>E</b>	<b>\$</b>	¥	¥	<b>E</b>	#	<b>E</b>	¥ 3	22	Z Z	43	<b>4</b>	#	22	#	<b>X</b>
		9	>	>	_	>	>	>	>	>	>	>	<b>-</b>	>	>	>	>	>	>	>	>	2	>	>	>	>	>	>
<b>1/9</b> 0		4.0	8.0	4.0	4.0	4.0	4.0	4.0	4.0	27	8.0	8.0	<b>6.0</b>	4.0	12	8.0	9	4.0	2	4.0	2	2.0	2.0	2.0	2	4.0	2.0	2.0
	LUTANTS	<b>-</b>	2	-	<b>-</b>	-	-	<b>-</b>	>	<b>-</b>	<b>-</b>	<b>-</b>	-	<b>¬</b>	>	>	>	>	2	<b>-</b>	>	<b>-</b>	>	>	>	>	>	>
1/9n	PRICEITY POL	4.0	8.0	4.0	4.0	4.0	4.0	4.0	0.4	27	8.0	8.0	4.0	0.4	12	8.0	9	0.4	<b>0</b> 2	4.0	20	2.0	2.0	2.0	30	0.4	2.0	2.0
	BASE/WEUTRAL AND ACID EXTRACTABLES, PRIORITY POLLUTANTS	1,2,4-TRICHLOROBENZENE	1,2-DICHLOROBENZENE	1,2-DIPHENYLNYDRAZINE	1,3-DICHLOROBENZENE	1,4-DICHLOROBENZEWE	2,4,6-TRICHLOROPHENOL	2,4-DICHLOROPHENOL	2,4-DIMETHYLPHENOL	2,4-DINITROPHENOL	2,4-DINITROTOLUENE	2,6-DINITROTOLUENE	2 - CHLOROMAPHTHALENE	2 · CALOROPHENDL	2-NITROPHEMOL	3,3'-DICHLOROBENZIDENE	4,6-DINITRO-2-METNYLPNEMOL	4-BRCHOPHENYL PHENYL ETHER	4 - CMLORO - 3 - METHYLPHENOL	4-CHLOROPHENYL PHENYL ETHER	4 - N I TROPHENOL	ACEMAPHTHEME	ACEMAPHTHYLEME	ANTIRACENE	BENZIDINE	BENZO(A)ANTHRACENE	BENZO(A)PYRENE	BENZO(B)FLUORANTHENE

See Notes and Comments on the Final Page of this Report. Science Applications International Corporation **Environmental Chemistry Division** 

Project No. : 2-885-06-0624-00

Project Name: NANCOCK AFB

Shipment No.:

FINAL REPORT 87020014 87020013 Laboratory Identification

Client Identification	#62.45				4
	X B		LAS BLANK		Canal Girc. Pa
Netrik Type	WATER		LATER		WATER
BENZO(G, N, I) PERYLENE	0.4	<b>3</b>	0.4	<b>-</b>	**************************************
BEN2O(K) FLUORANTHENE	2.0	5	2.0	· >	*
BENZYL BUTYL PHIMALATE	4.0	<b>5</b>	4.0	>	*
BIS(2-CHLOROETHONY)METHAME	4.0	>	4.0	<b>-</b>	<b>*</b>
BIS(2-CHLOROETHYL)ETHER	4.0	<b>-</b>	4.0	<b>-</b>	•
BIS(2-CHLOROISOPROPYL)ETHER	4.0	>	4.0	<b>5</b>	=
BIS(2-ETHYLNEXYL)PHTHALATE	01		4.0	<b>5</b>	<b>1</b>
CHRYSENE	2.0	>	2.0	5	#
DI-N-BUTYL PHTMALATE	1.6	>	1.6	5	•
DI-N-OCTYL PHTMALATE	2.0	>	2.0	<b>5</b>	3
DIBENZO(A, H)ANTURACENE	2.0	>	2.0	>	<b>T</b>
DIETHYL PHINALATE	2.0	>	2.0	>	<b>5</b>
DIMETHYL PHIMALATE	2.0	<b>5</b>	2.0	<b>5</b>	<b>3</b>
FLUCREME	2.0	2	2.0	>	=
FLUOROANTHENE	2.0	2	2.0	<b>-</b>	3
MEXACHLOROBENZENE	4.0	5	4.0	<b>-</b>	3
HEXACHLOROBUTAD I ENE	4.0	<b>5</b>	4.0	>	3
MEXACHLOROCYCLOPENTAD I EME	2	>	02	5	*
HEXACHLOROE THAME	8.0	د	8.0	<b>5</b>	•
INDENO(1,2,3.C,D)PYRENE	2.0	>	2.0	<b>-</b>	<b>3</b>
1 SOPHORONE	4.0	<b>5</b>	4.0	>	<b>3</b>
H-HITROSCO IPWENYLANINE	4.0	>	4.0	>	=
H-HITROSODIPROPYLAMINE	2	<b>5</b>	2	5	3
HAPHTHALENE	2.0	>	2.0	<b>5</b>	¥
N1TROĐENZEME	8.0	>	8.0	>	<b>£</b>
PENTACHLOROPHENOL	2	>	2	>	<b>T</b>
PHEMAN THREWE	2.0	>	2.0	<b>-</b>	<b>=</b>
PHENOL	4.0	>	4.0	2	~
PYREME	2.0	<b>5</b>	5.0	<b>5</b>	~ ~

Project No. : 2-885-06-0624-00 Project Name: MANCOCK AFB

Shipment No.:

FINAL REPORT	67020015	GU-310 (OUP) *	LATER	
FINAL	87020014	LAB BLANK	WATER	
	87020013	69-32*	WATER	
	Laboratory Identification	Client Identification	Matrix Type	

	<b>1/9</b> 0		1/9n		7/9n	
PURGEABLE HALOCARBONS (NETH 601 CHPDS)						
1, 1, 1 - TRICHLOROETHAME	0.03	5	0.03	<b>3</b>	0.03	<b>5</b>
1,1,2,2-TETRACHLORGETHAME	0.03	5	0.03	<b>5</b>	0.03	<b>-</b>
1, 1, 2 - TRICHLORGETHAME		3	0.05	<b>5</b>	2.3	<b>X</b>
1,1-DICHLOROETHANE	0.07	<b>-</b>	0.07	<b>5</b>	0.07	<b>5</b>
1, 1-DICHLOROETHEME	0.13	_	0.13	<b>5</b>	0.13	<b>3</b>
1, 2-DICHLOROBENZENE	0.32	2	0.32	2	0.32	<b>-</b>
1,2-DICHLOROETHAME	0.03	<b>-</b>	0.03	<b>-</b>	0.03	<b>5</b>
1, 2-DICHLOROPROPAME	9.0	_	0.0	5	9.0	<b>a</b>
1,3.DICHLOROBENZENE	0.15	_	0.15	<b>-</b>	0.15	<b>3</b>
1,4-DICHLOROBENZENE	0.54	<b>5</b>	0.24	<b>-</b>	0.24	<b>3</b>
2-CALCROETHYL VINYL ETHER	0.13	2	0.13	<b>-</b>	0.13	<b>-</b>
BRONOD I CHLORONE THANE		2	0.10	2	2.8	
BROHOFORM	0.76		0.20	<b>5</b>	1.4	
BROYCHE THAME	1.2	<b>5</b>	1.2	<b>-</b>	1.2	<b>-</b>
CARBON TETRACHLORIDE		<b>-</b>	0.12	3	0.12	<b>-</b>
CHLONOBENZENE	0.25	<b>-</b>	0.25	<b>5</b>	0.23	<b>-</b>
CHLOROD I BRONONE THANE	3.0	)A	0.0	<b>5</b>	2.3	2
CHLOROETHAME	0.52	<b>-</b>	0.52	2	0.52	<b>-</b>
CHLOROFORM	<b>5</b>		0.05	2	11	
CMLORONETMANE	9.0	<b>-</b>	0.08	<b>5</b>	9.0	<b>-</b>
CIS-1,3-DICHLOROPROPENE	3.0	NC NC	0.20	<b>5</b>	2.3	<b>2</b>
D I CMLOROD I FLUORONE THAME	1.8	<b>-</b>	1.8	<b>-</b>	<b>1.8</b>	<b>5</b>
METHYLEME CHLORIDE	0.23	2	0.2	<b>-</b>	0.59	
TETRACHLOROETHENE	0.03	<b>-</b>	0.03	<b>-</b>	0.03	<b>-</b>
TRANS-1, 2-DICHLOROETHENE	0.10	<b>5</b>	0.10	<b>-</b>	0.10	<b>-</b>
TRANS-1,3-DICHLOROPROPENE	0.34	5	0.34	<b>-</b>	0.34	<b>5</b>
TRICHLORDETHENE	0.12	<b>-</b>	0.12	<b>5</b>	0.12	<b>-</b>

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.:

FINAL REPORT

Laboratory Identification	87020013	2	87020014	14	87020015	25	
Client Identification	64-32			AMK	64-310	(DUP)	
Matrix Type	WATER		WATER		WATER	LATER	
TRICHLOROFLUCROMETAANE	0.50		0.50 U	<b>3</b>	0.50 c	<b>.</b>	:
VINYL CHLORIDE	0.18 U	<b>5</b>	0.18 U	<b>&gt;</b>	0.16 D	· >	
	7/90		<b>1/9</b> 0		UG/L		_,
PURGEABLE ARCHATICS (HETH 602 CHPDS)			•		;	•	
1, 2-DICHLOROBENZEME	0.40	<b>-</b>	0.40	3	07.0	3	
1,3-DICHLOROBENZEME	9.30	<b>-</b>	0.30	· >	9		
1,4-DICHLOROBENZEME	07.0	<b>-</b>	0.40	· >	0,40	· >	
DENZENE	0.20	<b>3</b>	0.50	<b>5</b>	0.20		
CHLOROBENZEME	0.20	5	0.20	5	0.20	· >	
ETHYL BENZEME	0.51 MC	2	0.20 U	<b>-</b>	0.62	<b>.</b>	
TOLUEME	0.53	¥	0.20	<b>-</b>	99.0		
XYLEMES, TOTAL	09.0	<b>3</b>	9.0	<b>-</b>	9.0	<b>-</b>	

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.:

Date of Report: 30-apr-1987

FINAL REPORT 1 E :

Laboratory Identification	87020013	87020014	87020015
Client Identification	GU-32 *	LAB BLAMK	GW-310 (DUP)*
Matrix Type	WATER	LATER	LATER
	MG/1CaC03	MG/LCaCO3	MG/1CaC03
ALKALIHITY BICARBONATE	×	0.50 u	8
	MG/1CaC03	MG/1CaC03	MG/1CeC03
ALKALIBITY CARBONATE	120	0.50 U	120
	MG/LCeCO3	MG/1.CaC03	MG/LC+C03
ALKALINITY, TOTAL	051	0.50 U	150
•	HG/L	1/9H	MG/L
ANIONS			
BRONIDE	n 6.9	a 6.9	O 6.9
CALCRIDE	33	9.5 u	×
FLUORIDE	2.3 U	2.3 U	2.3 U
MITGATE	0 S.7	7.5 U	7.5 U
HITRITE	3.6 U	3.6 U	3.6 U
PHOSPHATE	7 92	79 n	n 92
SULFATE	20	2 2	28

See Notes and Comments on the Final Page of this Report.
Science Applications International Corporation
Environmental Chemistry Division

Project No.: 2:885-06-0624-00 Project Name: NANCOCK AFB

Shipment No.: 6

				FIMAL	FINAL REPORT	
Laboratory Identification	87020013	<b></b>	87020014		87020015	215
Client Identification	\$ 7X -#3		87	LAB BLAW	GV-31	GW-310 (DUP) *
Matrix Type	WATER		LATER	_	WATER	
	, , , , , , , , ,	•		•		
	1/30		1/9n		1/90	
ARSENIC (TOTAL)	2.0	<b>5</b>	0.031 U	<b>n</b> E	2.0	<b>5</b>
	1/9n		NG/L		1/9N	
MERCURY-CVAA (TOTAL)	0.20	2	0.15	>	0.20	<b>5</b>
	1/9n		739		1/9n	
SELEMIUM (TOTAL)	3.6	<b>-</b>	0.031 U	) 	3.6	<b>3</b>
	1/90		1/90		7/9n	
ICAP HETAL SCAN					•	
ALUMINUM (TOTAL)	640	<b>-</b>	2,0	>	8	<b>5</b>
ANTINONY (TOTAL)	£3	<b>5</b>	53	>	<b>43</b>	<b>-</b>
BARIUM (TOTAL)	8	<b>-</b>	8	<b>-</b>	2	<b>a</b>
BERYLLIUM (TOTAL)	25	<b>-</b>	15	>	23	9
BORON (TOTAL)	3	<b>-</b>	8	>	3	<b>-</b>
CADMIUM (TOTAL)	2	<b>5</b>	8	>	2	<b>-</b>
CALCIUM (TOTAL)	7600		320	>	8100	
CMROHIUM (TOTAL)	3	2	\$	<b>&gt;</b>	R	
COBALT (TOTAL)	53	2	53	9	53	<b>-</b>
COPPER (TOTAL)	53	<b>-</b>	53	>	83	<b>5</b>
IRON (TOTAL)	2	2	2	>	2	<b>&gt;</b>
LEAD (TOTAL)	220	<b>-</b>	220	>	220	<b>3</b>
MAGNESTUM (TOTAL)	1300		450	>	1500	
MANGANESE (TOTAL)	8	2	8	<b>-</b>	8	9
MOLYBDENUM (TOTAL)	<b>63</b>	<b>5</b>	2	9	3	2
MICKEL (TOTAL)	2	<b>-</b>	8	>	윩	<b>5</b>
POTASSIUM (TOTAL)	220000		0.40	<b>5</b>	210000	
SILICA, COLORINETRIC	2200		180	>	3500	
SILVER (TOTAL)	5	<b>-</b>	07.0	<b>&gt;</b>	01	2
SODIUM (TOTAL)	00007		240	<b>-</b>	38000	
THALL IUM (TOTAL)	530	<b>5</b>	530	9	530	9

See Notes and Comments on the Final Page of this Report. Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 6

			FINAL REPORT	PORT		Date of Report: 30-apr-1967	30-apr-1987
Leboratory identification 8702001 Client Identification GU-32 ** Matrix Type	87020013 Gu-32 **	87020014 LAB BLANK WATER	114 AMK	87020015 GW-310 ((	87020015 Gu-310 (OUP) **		
VANADIUM (TOTAL)	a <b>9</b> 2	28	=======================================		U 28 11 28 11		
ZINC (TOTAL)	n 23	2		2 7	ם כ		
	MG/L						
PETROLEUM HYDROCARBON - 1R	0.50 u	*		3			
SOLIDS, TOTAL DISSOLVED	NG/L 820	¥		#			

See Notes and Comments on the Final Page of this Report. Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

Shipment No.: 6

30-apr - 1987

Notes and Comments:

M Analysis Not Required

VALUE FOR SUBSTANCE IS A FRACTION OF TOTAL FOR A DEFINED COMBINATION OF UNRESOLVED SUBSTANCES

DETECTED, VALUE IS BELOW DETECTION LIMIT SHOWN

GF GRAPHITE FURNACE

INTERFERENCE FROM COELUTING PEAKS; REPORTED VALUE IS AN APPROXIMATED VALUE

NOT CONFIRMED ON SECOND COLUMN

꾶

UNDETECTED AT DETECTION LIMIT SHOWN

Holding times exceeded for mercury and orthophosphate only; was resampled in Sept. 1987 for the two parameters; see page H-307 for mew results.

REPORTED DETECTION LIMITS ARE INSTRUMENT DETECTION LIMITS CORRECTED TO SAMPLE CONDITIONS REPORTED VALUES ARE NOT CORRECTED FOR ANALYTICAL BLANK VALUES REPORTED ON A DRY MEIGHT BASIS (EXCLUDING VOLATILE AND BASE/WEUTRAL/ACID ANALYSIS)

LAST PAGE

Environmental Chemistry Division

SAIC - DIV 835/DEML 8400 WESTPARK Client:

MCCLEAM, VA 22102

Attn: PHIL SPOOMER

Project No. : 2-885-06-0624-00

Project Name: MANCOCK AFB

GC 2nd Column Confirmations FINAL REPORT

Date of Report: 29-apr-1987

Samples will be held for two weeks after the report is issued. Release Approval Money Cull ).

87020012 GU-31 VATER 87020011 GH-30 WATER 87020010 GJ-29 WATER 87020009 GW-28 WATER 87020008 GU-26 WATER 87020007 **8**-22 MATER Laboratory Identification Client Identification Shipment No.: Matrix Type 

1/90		¥	¥	NC	#	22	2	<b>X</b>	æ	¥	æ	S.	10 C	1.9	8	æ	<b>E</b>	) i	æ	54	#	J.	æ	0.69
7/50		¥	¥	¥	*	¥	¥	<b>X</b>	**	<b>3</b>	¥	¥	æ	*	M.	<b>X</b>	MR	28	N.	0.18	22	22	S.	0.34
1/9n		<b>X</b>	Ť	æ	¥	¥	Ĩ	Œ	¥	¥	<b>±</b>	æ	£	£	æ	æ	æ	<b>*</b>	¥	¥	~	Œ	22	0.56
7/90		<b>3</b>	33	<b>=</b>	**	<b>*</b>	25	<b>2</b>	<b>3</b>	<b>X</b>	3.5	<b>X</b>	<b>X</b>	*	<b>3</b>	*	25	22	ž	Ş	<b>3</b>	22	æ	0.56
1/90		<b>±</b>	<b>¥</b>	8	<b>2</b>	<b>E</b>	<b>3</b>	## ##	22	<b>3</b>	<b>*</b>	<b>X</b>	32	<b>X</b>	<b>8</b>	3	200	¥	<b>8 8 8</b>	0.15	¥	<b>3</b>	¥	9.65
7/90	•	90.0	<b>£</b>	¥	<b>\$</b>	¥	¥	¥	<b>*</b>	<b>¥</b>	¥	¥	¥	<b>\$</b>	<b>*</b>	¥	<b>X</b>	<b>¥</b>	<b>£</b>	0.28	<b>3</b>	¥	æ	0.56
	PURGEABLE MALOCARBONS (METH 601 CMPDS)	1,1,1-TRICHLOROETHANE	1, 1, 2, 2 - TETRACHLOROETHANE	1, 1, 2 - TRICHLOROETHANE	1,1-DICHLOROETHANE	1, 1-DICHLOROETHENE	1,2-bichlorobenzene	1, 2-DICHLORGETHANE	1, 2 · D I CHLOROPROPANE	1,3-DICHLOROBENZEWE	1,4-DICHLOROBENZENE	2-CHLOROETHYL VINYL ETHER	BRONCO I CHLORONE THANE	BROWOFORM	BROHOMETHAME	CARBON TETRACHLORIDE	CHLOROBENZEME	CHLOROD I BROMOMET HANE	CHLOROE THANE	CHLOROFORM	CHLOROWET HANE	CIS-1,3-DICHLOROPROPENE	DICHLORODIFLUOROMETHANE	METHYLEME CHLORIDE

vate of neport:		FINAL REPORTS - GC and Loculary Longian Continuentions	
985 - 06 - 0624 - 00		6 FINAL REPORT: GC 21	
Project No. : 2-885-06-0624-00	Project Name: MANCOCK AFB	Shipment No.:	

67020012 GJ-31 MATER	*****
B7020011 GH-30 MATER	5
87020010 GJ-29 WATER	A
87020009 GM-28 UATER	# # # # # # # # # # # # # # # # # # #
87020008 GM-26 Mater	******
87020007 GJ-25 WATER	<b>基本基本表示</b> 表面表面表面
Laboratory Identification Client Identification Matrix Type	TETRACHLONGETHENE TRANS-1, 2-DICHLONGETHENE TRANS-1, 3-DICHLONGETHENE TRANS-1, 3-DICHLONGETHENE TRICHLONGETHENE TRICHLONGETHENE TRICHLONGETHENE TRICHLONGETHENE TRICHLONGENZENE 1, 2-DICHLONGENZENE 1, 3-DICHLONGENZENE T, 4-DICHLONGENZENE BENZENE CHLONGENZENE TOLUENE TOLUENE TOLUENE

Science Applications International Corporation Environmental Chemistry Division

Project No.: 2-885-06-0624-00
Project Name: MANCOCK AFB
Shipment No.: 6

FINAL REPORT- GC 2nd Column Confirmations

Date of Report: 29-apr-1987

87020015 GN-310 (DUP) WATER 87020014 LAB BLANK WATER 87020013 GN-32 WATER Laboratory Identification Client Identification Matrix Type

1/90	3	#	<b>:</b>	#	#	¥	¥	Œ	#	¥	<b>*</b>		1.6	<b>#</b>	Œ	<b>£</b>	)¥	*	72	£	2	<b>Ξ</b>	0.56	<b>X</b>	¥	Œ
1/50	Ĩ	Œ	<b>#</b>	¥	~	¥	×	¥	æ	<b>E</b>	¥	¥	*	¥	¥	<b>X</b>	M	Ħ	¥	<b>E</b>	#	¥	\$	<b>X</b>	2	2
ne/r	<b>*</b>	¥	*	<b>£</b>	Œ	£	*	¥	¥	¥	¥	꾶	1.6	¥	¥	<b>#</b>	)H	<b>E</b>	×	<b>X</b>	2	3	<b>8</b>	æ	<b>3</b>	æ
SEAST SEAST STANDARD OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR	1,1,1-TRICKLOROETHAME	1, 1, 2, 2 - TETRACHLORGETHANE	1,1,2-TRICHLOROETHAME	1,1-DICHLOROETHAME	1, 1 DICHLOROETHENE	1, 2-DICMLOROBENZEWE	1,2-bichloroethame	1,2-DICHLOROPROPANE	1, 3 - DICHLOROBENZEME	1,4-DICMLOROBENZENE	2-CHLOROETHYL VINYL ETHER	BRONCD I CHLOROME THANE	BRONOFORM	BRONCHETHANE	CARBON TETRACHLORIDE	CHLOROBENZENE	CHLOROD J BROHOME THANE	CHLOROETHANE	CHLOROFORM	CHLORONE THANE	CIS-1,3-DICHLOROPROPENE	DICHLORODIFLUORONETHANE	METHYLENE CHLORIDE	TETRACHLOROETHENE	TRANS-1,2-DICHLOROETHENE	IRANS-1, 3-DICHLOROPROPENE

Project Name: MANCOCK AFB 9

Shipment No.:

FINAL REPORT- GC 2nd Column Confirmations

87020014 87020015 LAB BLAMK GU-31D (DUP) MATER		<b>~</b>	27	ר חפ/ר		~	*	<b>*</b>	<b>E</b>	<b>4</b>	<b>E</b>	m 0.29 C	<b>\( \)</b>
•		=	*	1/9n ne/r		<b>*</b>	3	<b>=</b>	<b>=</b>	<b>=</b>	2	<b>1</b>	¥
Laboratory Identification 6 Client Identification 6 Matrix Type W	TRICKLOROETHENE	TRICHLOROFLUCROMETHAME	VINYL CHLORIDE		PURCEABLE ARCHATICS (NETN 602 CMPDS)	1,2-DICHLOROBENZENE	1,3-DICHLOROBENZEWE	1,4.DICHLOROBENZEME	DE NZEWE	CHI, OROBENZEWE	ETHYL BENZENE	TOLUENE	XYLEMES, TOTAL

Science Applications International Corporation Environmental Chemistry Division

Project No. : 2-885-06-0624-00

Project Name: NANCOCK AFB

30-apr-1987

Shipment No.:

Notes and Comments:

Analysis Not Required

VALUE FOR SUBSTANCE IS A FRACTION OF TOTAL FOR A DEFINED CONBINATION OF UNRESOLVED SUBSTANCES

INTERFERENCE FROM COELUTING PEAKS; REPORTED VALUE IS AN APPROXIMATED VALUE

NOT CONFIRMED ON SECOND COLUMN - 2 -

UNDETECTED AT DETECTION LIMIT SHOWN

VALUES REPORTED ON A DRY WEIGHT BASIS (EXCLUDING VOLATILE AND BASE/NEUTRAL/ACID AMALYSIS) REPORTED DETECTION LIMITS ARE INSTRUMENT DETECTION LIMITS CORRECTED TO SAMPLE CONDITIONS REPORTED VALUES ARE NOT CORRECTED FOR ANALYTICAL BLANK

LAST PAGE

#### OEHL VOLATILES PRECISION DATA

# COMMENTS:

- 1. REPLICATE RESULTS FOR FS-G-1 FOR ORHL VOLATILE ANALYSIS ARE BELOW DETECTION AND ARE NOT APPLICABLE FOR RPD DETERMINATION.
- 2. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100
  MEAN OF SAMPLE RESULT AND DUPLICATE

#### **GEHL VOLATILES ACCURACY DATA**

SAIC I.D.	86-329025	86-329026
CLIENT I.D.	FS-6-1	FS-6-1SP
MATRIX TYPE	SOIL	SOIL

OEHL VOLATILES	SAMPLE RESULT (UG)	SPIKED SAMPLE (UG)	AMOUNT SPIKED (UG)	PERCENT RECOVERY
1,1-DICHLORGETHENE	ND	81	50	160
TRICHLORGETHENE	ND	69	50	138
CHLOROBENZENE	ND	41	50	82
TOLUENE	ND	42	50	84
BENZENE	ND	50	50	100

- 1. PERCENT RECOVERY = SPIKED SAMPLE SAMPLE RESULT X 100

  AMOUNT OF SPIKED ADDED
- 2. ND = NOT DETECTED

#### **GEHL VOLATILES PRECISION DATA**

#### COMMENTS:

- 1. REPLICATE RESULTS FOR SD-19 FOR ORHL VOLATILE ANALYSIS ARE BELOW DETECTION AND ARE NOT APPLICABLE FOR RPD DETERMINATION.
- 2. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100

  HEAN OF SAMPLE RESULT AND DUPLICATE

# DEHL VOLATILES ACCURACY DATA

SAIC I.D.	86-350050	86-350050
CLIENT I.D.	SD-19	SD-19SP
MATRIX TYPE	SOIL	SOIL

OEHL VOLATILES	SAMPLE RESULT (UG)	SPIKED SAMPLE (UG)	AMOUNT SPIKED (UG)	PERCENT RECOVERY
1,1-DICHLORDETHENE	ND	75	50	150
TRICHLORGETHENE	ND	78	50	160
CHLOROBENZENE	ND	54	50	108
TOLUENE	ND	46	50	92
BENZENE	ND	53	50	106

- 1. PERCENT RECOVERY = SPIKED SAMPLE SAMPLE RESULT X 100
  AMOUNT OF SPIKED ADDED
- 2. ND = NOT DETECTED

PROJECT NAME: HANCOCK AFB

# BASE/NEUTRAL AND ACIDS, PRIORITY POLLUTANTS PRECISION DATA

SAIC ID	86-329025	86-32902 <b>50UP</b>	
CLIENT ID	FS-6-1	FS-G-1DUP	
MATRIX TYPE	SOIL	SOIL	
BASE/NEUTRALS/ACIDS	SAMPLE RESULT	DUPLICATE	RPD
	(UG/KG)	(UG/KG)	( 1)
BENZO(A) ANTHRACENE	410	710	54
BENZO(A)PYRENE	440	450	2
BENZO(G, H, I) PERYLENE	250	190	27
BENZO (K)FLUORANTHENE	500	380	27
FLUORANTHENE	960	820	16
INDENO(1,2,3-C,D)PYRENE	270	190	35
PYRENE	1200	1300	8

- 1. REPLICATE RESULTS OF THE OTHER AMALYTES IN BASE/NEUTRALS AND ACIDS ANALYSIS ARE BELOW DETECTION LIMITS AND ARE NOT APPLICABLE FOR RPD DETERMINATION.
- 2. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100
  MEAN OF SAMPLE RESULT AND DUPLICATE

# BASE/NEUTRAL AND ACIDS, PRIORITY POLLUTANTS ACCURACY DATA

SAIC I.D. CLIENT I.D.	86-329025 FS-6-1	86-329025SP FS-6-1		
MATRIX TYPE	SOIL	SOIL		
BASE/NEUTRAL/ACIDS	SAMPLE RESULT	SPIKED SAMPLE	AMOUNT SPIKED	PERCENT RECOVERY
	(U6/K6)	(UG/KG)	(U6/K6)	(IR)
1,2,4-TRICHLOROBENZENE	ND	2200	4000	55
ACENAPHTHENE	ND	2600	4000	65
2,4-DINITROTOLUENE	ND	2900	4000	73
PYRENE	1200	5600	4000	110
N-NITROSODI-N-PROPYLAMINE	ND	2400	4000	60
1,4-DICHLOROBENZENE	ND	1400	4000	35
PENTACHLOROPHENOL	ND	1100	8000	14
PHENOL	NO	5100	8000	64
2-CHLDROPHENOL	ND	4400	8000	55
4-CHLORO-3-METHYLPHENOL	ND	6000	8000	75
4-NITROPHENOL	ND	3200	8000	40

- 1. PERCENT RECOVERY = SPIKED SAMPLE SAMPLE RESULT X 100
  AMOUNT OF SPIKE ADDED
- 2. NO NOT DETECTED

SAIC I.D.

CLIENT I.D.

# BASE/NEUTRAL AND ACIDS, PRIGRITY POLLUTANTS PRECISION DATA

#### COMMENTS:

- 1. REPLICATE RESULTS FOR SAMPLE SD-21 FOR BASE/NEUTRALS AND ACIDS AMALYSIS ARE BELOW DETECTION LIMITS AND ARE NOT APPLICABLE FOR RPD DETERMINATION.
- 2. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100

  MEAN OF SAMPLE RESULT AND DUPLICATE

86-350052

SD-21

#### BASE/NEUTRAL AND ACIDS, PRIORITY POLLUTANTS ACCURACY DATA

86-350052SP

SD-21SP

MATRIX TYPE	SOIL	SOIL		
BASE/NEUTRAL/ACIDS	SAMPLE RESULT (UG/KG)	SPIKED SAMPLE (UG/KG)	AMOUNT SPIKED (UG/KG)	PERCENT RECOVERY
1,2,4-TRICHLOROBENZENE	ND	5000	9400	53
<b>ACENAPHTHENE</b>	ND	6700	9400	71
2,4-DINITROTOLUENE	ND	6500	9400	69
PYRENE	MD	10000	9400	106
N-NITROSODI-N-PROPYLAMINE	ND	7100	9400	76
1,4-0[CHLOROBENZENE	ND.	4300	9400	46
PENTACHLOROPHENOL	NO	4800	18800	26
PHENOL	NĐ	13600	18800	72
2-CHLOROPHENOL	ND	14000	18800	74
4-CHLORO-3-NETHYLPHENOL	MD	16000	18800	85
4-NITROPHENOL	ND .	6000	18800	32

- 1. PERCENT RECOVERY = SPIKED SAMPLE SAMPLE RESULT X 100
  AMOUNT OF SPIKE ADDED
- 2. NO NOT DETECTED

# BASE/NEUTRAL AND ACIDS, PRIGRITY POLLUTANTS PRECISION DATA

# COMMENTS:

- 1. REPLICATE RESULTS OF SAMPLE GN-28 FOR BASE/NEUTRALS AND ACIDS ANALYSIS ARE BELON DETECTION LIMITS AND ARE NOT APPLICABLE FOR RPD DETERMINATION.
- 2. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100

  MEAN OF SAMPLE RESULT AND DUPLICATE

# BASE/NEUTRAL AND ACIDS, PRIORITY POLLUTANTS ACCURACY DATA

SAIC I.D. 87-020			
CLIENT I.D. GW-2	18 GW-28SP		
MATRIX TYPE WATE	R WATER		
BASE/NEUTRAL/ACIDS SAMPLE R	ESULT SPIKED SAMPLE	AMOUNT SPIKED	PERCENT RECOVERY
(UG/L	(U6/L)	(UG/L)	(ZR)
1,2,4-TRICHLOROBENZENE ND	26	100	26
ACENAPHTHENE ND	35	100	35
2,4-DINITROTOLUENE ND	51	100	51
PYREME NO	55	100	55
N-NITROSODI-N-PROPYLAHIME ND	46	100	46
1,4-DICHLOROBENZENE M9	28	100	28
PENTACHLOROPHENOL NO	30	200	15
PHENOL NO	31	200	16
2-CHLOROPHENOL ND	86	200	43
4-CHLORO-3-METHYLPHENOL NO	93	200	47
4-NITROPHENOL ND	9	200	5

- 1. PERCENT RECOVERY = SPIKED SAMPLE SAMPLE RESULT X 100
  AMOUNT OF SPIKE ADDED
- 2. NO NOT DETECTED

# BASE/NEUTRAL AND ACIDS, PRIORITY POLLUTANTS PRECISION DATA

SAIC ID	87-020010	87-020010DUP	
CLIENT ID	<b>GW-29</b>	GW-29DUP	
MATRIX TYPE	WATER	WATER	
BASE/NEUTRALS/ACIDS	SAMPLE RESULT	DUPLICATE	RPD
	(UG/L)	(UG/L)	( %)
RIS(2-ETHYLHEXYL) PHTHALATE	6.9	9.3	30

- 1. REPLICATE RESULTS OF THE OTHER ANALYTES IN BASE/NEUTRALS AND ACIDS ANALYSIS ARE BELOW DETECTION LIMITS AND ARE NOT APPLICABLE FOR RPD DETERMINATION.
- 2. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100
  HEAN OF SAMPLE RESULT AND DUPLICATE

PROJECT NAME: HANCOCK AFB

# BASE/NEUTRAL AND ACIDS, PRIORITY POLLUTANTS ACCURACY DATA

SAIC I.D. CLIENT I.D. MATRIX TYPE	87-020010 GN-29 WATER	87-020010SP GN-29SP NATER		
BASE/NEUTRAL/ACIDS	SAMPLE RESULT (UG/L)	SPIKED SAMPLE (UG/L)	AMOUNT SPIKED (UG/L)	PERCENT RECOVERY
1,2,4-TRICHLOROBENZENE	ND	62	100	62
ACENAPHTHENE	ND	72	100	72
2,4-DINITROTOLUENE	ND	86	100	86
PYRENE	ND	124	100	124
N-NITROSODI-N-PROPYLAMINE	ND	75	100	75
1.4-DICHLOROBENZENE	ND	53	100	53
PENTACHLOROPHENOL	ND	113	200	57
PHENOL	ND	65	200	33
2-CHLOROPHENOL	ND	152	200	76
4-CHLORO-3-METHYLPHENOL	ND	162	200	81
4-NITROPHENOL	ND	30	200	15

- 1. PERCENT RECOVERY = SPIKED SAMPLE SAMPLE RESULT X 100
  AMOUNT OF SPIKE ADDED
- 2. NO NOT DETECTED

# BASE/NEUTRAL AND ACIDS, PRIORITY POLLUTANTS PRECISION DATA

SAIC ID CLIENT ID MATRIX TYPE	87-0200:1 6M-30 Water	87-020011DUP GW-30DUP Water	
BASE/NEUTRALS/ACIDS	SAMPLE RESULT (UG/L)	DUPLICATE (UG/L)	RPD
BIS(2-ETHYLHEXYL) PHTHALATE	4.8	4.6	4

- 1. REPLICATE RESULTS OF THE OTHER ANALYTES IN BASE/NEUTRALS AND ACIDS ANALYSIS ARE BELON DETECTION LIMITS AND ARE NOT APPLICABLE FOR RPD DETERMINATION.
- 2. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100
  HEAN OF SAMPLE RESULT AND DUPLICATE

PROJECT NAME: HANCOCK AFB

# BASE/NEUTRAL AND ACIDS, PRIORITY POLLUTANTS ACCURACY DATA

PERCENT RECOVERY

SAIC I.D. CLIENT I.D. MATRIX TYPE	87-020011 GW-30 WATER	87-020011SP 6M-30SP WATER	
BASE/NEUTRAL/ACIDS	SAMPLE RESULT (UG/L)	SPIKED SAMPLE (UG/L)	AMOUNT SETKED (UG/L)
, 4-TRICHLOROBENZENE	ND	44	100
	N.	7.0	100

2				
	(UG/L)	(UG/L)	(U6/L)	(ZR)
1,2,4-TRICHLOROBENZENE	ND	44	100	44
ACENAPHTHENE	ND	62	100	62
2,4-DINITROTOLUENE	ND	73	100	73
PYRENE	ND	59	100	59
N-NITROSODI-N-PROPYLAHINE	ND	66	100	66
1,4-DICHLOROBENZENE	ND	37	100	37
PENTACHLOROPHENOL	ND	98	200	49
PHENOL	NÕ	71	200	35
2-CHLOROPHENOL	ND	130	200	75
4-CHLORO-3-METHYLPHENOL	ND	13 <b>8</b>	200	69
4-NITROPHENOL	ND	32	200	16

- 1. PERCENT RECOVERY = SPIKED SAMPLE SAMPLE RESULT X 100
  AMOUNT OF SPIKE ADDED
- 2. NO NOT DETECTED

# PURGEABLE HALOCARBONS AND AROMATICS VOLATILES PRECISION DATA

SAIC I.D. CLIENT I.D. MATRIX TYPE	85-353024 SM-17MS WATER		86-353025 SW-17MSD WATER		
PURGEABLE HALOCARBONS	SAMPLE RESULT		DUPLICATE (UG/L)		RPD (1)
	(00/2/		.407.67		`••
1,1,1-TRICHLOROETHANE	2.2		2.2		0
1,1,2,2-TETRACHLOROETHANE	3.7		3.7		0
1.1.2-TRICHLOROETHANE	5.8	111	5.8	111	0
1,1-DICHLOROETHANE	2.0		2.0		0
1.1-DICHLOROETHENE	1.8		1.9		5
1,2-DICHLOROBENZENE	2.1		2.1		0
1.2-DICHLOROETHANE	2.0		2.0		0
1,2-DICHLOROPROPANE	1.9		2.0		5
1.4-DICHLOROBENZENE	1.7		1.7		0
BRONOD I CHLOROMETHANE	1.9		2.0		5
BRONOFORM	2.6		2.7		4
CARBON TETRACHLORIDE	1.9		2.0		5
CHLOROBENZENE	1.9		1.9		0
CHLOROD I BROHOHETHANE	5.8	111		111	0
CHLOROETHANE	1.7		1.7		0
CHLOROFORM	2.0		2.0		0
CIS-1,3-DICHLOROPROPENE	= - =	111		111	0
METHYLENE CHLORIDE	2.6		2.5		4
TETRACHLORGETHENE	3.7	11	3.6	11	3
TRANS-1,2-DICHLORGETHENE	1.9		2.0		5
TRANS-1,3-DICHLOROPROPEME	1.9		2.0		5
TRICHLOROETHENE	1.9		2.0		5
TRICHLOROFLUOROMETHAME	1.9		1.9		0
VINYL CHLORIBE	1.8	Ī	3.1	1	53 (1)
PURGEABLE AROMATICS					
1.2-DICHLOROBENZENE	2.0		2.0		0
1.4-DICHLOROBENZENE	2.0		2.9		0
BENZENE	3.9	11	4.0	11	2
CHLOROBENZENE	1.9		1.9		0
ETHYL BENZENE	2.1		2.3		9
TOLUENE	2.1		2.2		5
TOTAL XYLENES	1.9		1.9		0
	2		- * -		

#### COMMENTS:

1. THE FOLLOWING VOLATILE COMPOUNDS ARE NOT NORMALLY INCLUDED IN THE SPIKING SOLUTION
UNLESS THESE ARE PRESENT AS POSITIVE HITS IN THE SAMPLE BEING ANALYZED. THE ABSENCE OF
THESE COMPOUNDS IN SAMPLES SW-17MS AND SW-17MSD ARE NOT APPLICABLE FOR RPD DETERMINATION.

2-CHLOROETHYL VINYL ETHER

DICHLORODIFLUOROMETHANE

BROMOMETHANE

1,3- DICHLOROBENZENE

CHLOROMETHANE

- 2. HIGH RPD VALUE IS DUE TO PRESENCE OF INTERFERING PEAK COELUTING WITH VINYL CHLORIDE IN SAMPLE SW-17MSD. REPORTED VALUE IS AN APPROXIMATION OF THE HIT ANALYTE.
- 3. ** = DOUBLET; THE PRESENCE OF TWO COELUTING HIT ANALYTES THAT CANNOT BE SEPARATED BY THE RECOMMENDED PRIMARY COLUMN OR SECONDARY COLUMN; REPORTED VALUE IS A FRACTION OF THE TOTAL VALUE OF THE UNRESOLVED SUBSTANCES.
- 4. *** = TRIPLET; THE PRESENCE OF THREE COELUTING HIT ANALYTES THAT CANNOT BE SEPARATED BY THE RECOMMENDED PRIMARY COLUMN OR SECONDARY COLUMN; REPORTED VALUE IS A FRACTION OF THE TOTAL VALUE OF THE UNRESOLVED SUBSTANCES.
- 5. I = PRESENCE OF AN INTERFERING PEAK WHICH IS NOT A HIT ANALYTE'S PEAK; VALUE REPORTED IS AN APPROXIMATED ANOUNT.
- 6. HS = MATRIX SPIKE; HSD = MATRIX SPIKE DUPLICATE
- 7. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100
  MEAN OF SAMPLE RESULT AND DUPLICATE

PROJECT WAME: MANECOK AFB

# PURGEABLE HALDCARBONS AND AROMATICS ACCURACY DATA

SAIC I.D.	86-353014	86-353025
CLIENT I.D.	SH-17	SW~17MS
MATRIX TYPE	WATER	WATER

PURGEABLE HALOCARBONS	SAMPLE RESULT (UG/L)	SPIKED SAMPLE (UG/L)	AMOUNT SPIKED (UG/L)	PERCENT RECOVERY (ZR)
1,1,1-TRICHLORGETHANE	NA		·	\ <b>\K</b>
1,1,2,2-TETRACHLOROETHANE	ND ND	2.2	2.0	110
1,1,2-TRICHLOROETHANE	· · ·	3.7 **	4.0	93
1,1-DICHLORDETHAME	ND No	5.8 ***	6.0	97
1,1-DICHLORDETHENE	ON ON	2.0	2.0	100
1,2-DICHLOROBENZENE	עא מא	1.8	2.0	95
1,2-DICHLOROETHANE		2.1	2.0	105
1, 2-DICHLOROPROPANE	ND	2.0	2.0	100
1,4-DICHLOROBENZENE	ND	1.9	2.0	95
BRONODICHLOROMETHANE	ND	1.7	2.0	85
BROMOFORM	ND	1,.9	2.0	95
CARBON TETRACHLORIDE	ND	2.5	2.0	130
CHLOROBENZENE	NO	1.9	2.0	95
CHLORODIBROMOMETHAME	ND	1.9	2.0	95
CHLOROETHANE	ND	5.8 ***	6.0	97
CHLOROFORM	ND	1.7	2.0	85
CIS-1, 3-DICHLOROPROPENE	ND	2.0	2.0	100
METHYLENE CHLORIDE	ND	5.8 ***	6.0	97
TETRACHLORDETHENE	0.49	2.6	2.0	<b>8</b> 1
TRANS-1,2-DICHLOROETHENE	XII)	3.7 **	4.0	93
TRANS-1, 3-DICHLOROPROPENE	<b>16</b>	1.9	2.0	95
TRICHLORDETHEME	100	1.9	2.0	95
TRICHLOROFLUORONETHANE	<b>10</b>	1.9	2.0	95
AINAT CHTOLIDE	160	1.9	2.0	95
THIL CHURTE	NO	1.8	2.0	90
PURGEABLE AROMATICS				-
1,2-DICHLOROBENZENE	ND	2.0		
1,4-DICHLOROBENZENE	ND		2.0	100
BENZENE	ND QN	2.0	2.0	100
CHLOROBENZENE	ND	<b>3.9</b> ##	4.0	98
ETHYL BENZENE	0.32	1.9	2.0	95
TOLUENE	ND	2.1	2.0	105
TOTAL XYLENES	ND	2.1	2.0	105
	RY	1.9	2.0	95

- 1. SEE COMMENTS 1, 3 AND 4 IN THE PRECISION DATA FOR THIS SAMPLE NUMBER.
- 2. ND = NOT DETECTED
- 3. MS = MATRIX SPIKE
- 4. PERCENT RECOVERY = SPIKED SAMPLE SAMPLE RESULT X 100
  AMOUNT OF SPIKE ADDED

# PURGEABLE HALOCARBONS AND AROMATICS VOLATILES PRECISION DATA

SAIC I.D.	87-016023	87-016026	
CLIENT I.D.	GW-24	GW-24DUP	
MATRIX TYPE	WATER	WATER	
PURGEABLE HALDCARBONS	SAMPLE RESULT	DUPLICATE	RPD
	(UG/L)	(UG/L)	(I)
METHYLENE CHLORIDE	1.1	1.1	0

- 1. REPLICATE RESULTS OF THE OTHER PURGEABLE HALOCARBONS AND ARONATICS ARE BELOW DETECTION LIMITS AND ARE NOT APPLICABLE FOR RPD DETERMINATION.
- 2. RPD(RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100

  MEAN OF SAMPLE RESULT AND DUPLICATE

# PURGEABLE HALOCARBONS AND AROMATICS ACCURACY DATA

SAIC I.D.	87-016023	87-016025
CLIENT I.D.	6W-24	6W-24SP
MATRIX TYPE	WATER	WATER

PURSEABLE HALOCARBONS	SAMPLE RESULT (UG/L)	SPIKED SAMPLE (UG/L)		AMOUNT SPIKED (UG/L)	PERCENT RECOVERY (IR)
1,1,1-TRICHLORGETHANE	D	2.0		2.0	100
1,1,2,2-TETRACHLOROETHANE	ND	3.4	**	4.0	85
1,1,2-TRICHLOROETHANE	ND	6.1	***	6.0	102
1,1-DICHLOROETHANE	ND	1.9		2.0	95
1,1-DICHLOROETHENE	MD	2.0		2.0	100
1,2-DICHLOROBENZENE	ND	1.5		2.0	75
1,2-DICHLOROETHANE	ND	2.1		2.0	105
1,2-DICHLOROPROPANE	ND	1.9		2.0	95
1,4-DICHLORGBENZENE	ND	1.7		2.0	85
BRONOD I CHLORONETHANE	ND	1.9		2.0	95
CARBON TETRACHLORIDE	ND	1.9		2.0	95
CHLOROBENZENE	ND	1.7		2.0	85
CHLOROD I BRONONETHAME	ND	6.1	***	6.0	102
CHLOROETHANE	MD	2.3		2.0	115
CHLOROFORM	ND	2.0		2.0	100
CIS-1,3-DICHLOROPROPENE	ND	6.1	***	6.0	102
METHYLENE CHLORIDE	1.1	2.9		2.0	95
TETRACHLOROETHENE	ND	3.4	**	4.0	85
TRANS-1, 2-DICHLOROETHEME	M	2.0		2.0	100
TRANS-1,3-DICHLOROPROPENE	N9	1.8		2.0	90
TRICHLOROETHEME	<b>10</b>	1.8		2.0	90
TRICHLOROFLUOROMETHAME	MD	2.0		2.0	100
VINYL CHLORIDE	Mō	1.2		2.0	60
PURGEABLE AROMATICS					
1,2-DICHLOROBENZENE	ND	1.5		2.0	75
1,4-DICHLOROBENZENE	ND	1.7		2.0	85
BENZENE	ND	3.9	**	4.0	98
CHL <b>OROBENZENE</b>	MD	1.8		2.0	90
ETHYL BENZENE	ND	1.7		2.0	85
TOLUENE	ND	1.9		2.0	95
TOTAL XYLENES	MD	1.7		2.0	85

- 1. ** = DOUBLET INDICATES THE PRESENCE OF TWO COELUTING HIT ANALYTES THAT CANNOT BE SEPARATED BY THE RECOMMENDED PRIMARY COLUMN OR SECONDARY COLUMN; REPORTED VALUE IS A FRACTION OF THE TOTAL VALUE OF THE UNRESOLVED SUBSTANCES.
- 2. +** = TRIPLET INDICATES THE PRESENCE OF THREE COELUTING HIT ANALYTES THAT CANNOT BE SEPARATED BY THE RECOMMENDED PRIMARY COLUMN OR SECONDARY COLUMN; REPORTED VALUE IS FRACTION OF THE TOTAL VALUE OF THE UNRESOLVED SUBSTANCES.
- 3. ND = NOT DETECTED
- 4. PERCENT RECOVERY = SPIKED SAMPLE -SAMPLE RESULT X 100

  AMOUNT OF SPIKE ADDED

#### PURGEABLE HALOCARBONS AND AROMATICS VOLATILES PRECISION DATA

SAIC I.D. CLIENT I.D. HATRIX TYPE	87-020012 GW-31 WATER		87-020015 GW-31DUP WATER		
PURGEABLE HALOCARBONS	SAMPLE RESULT		DUPLICATE (UG/L)		RPD (Z)
1,1,2-TRICHLOROETHAME	2.7	***	2.3	***	16
BROMODICHLOROMETHANE	4.0		2.8		35
BRONGFORM	1.5		1.4		7
CHLOROD I BRONOMETHANE	2.7	***	2.3	***	16
CHLOROFORM	18		17		6
CIS-1, 3-DICHLOROPROPENE	2.7	***	2.3	***	16
METHYLENE CHLORIDE	0.43		0.59		31
PURGEABLE AROMATICS					
ETHYL BENZENE	0.46		0.62		30
TOLUENE	0.42		0.68		47
TOTAL XYLENES	0.47		0.47		0
	**				-

- 1. ** = DOUBLET; THE PRESENCE OF TWO COELUTING HIT ANALYTES THAT CANNOT BE SEPARATED BY THE RECOMMENDED PRIMARY COLUMN OR SECONDARY COLUMN; REPORTED VALUE IS A FRACTION OF THE TOTAL VALUE OF THE UNRESOLVED SUBSTANCES.
- 2. *** * TRIPLET; THE PRESENCE OF THREE COELUTING HIT AMALYTES THAT CANNOT BE SEPARATED BY THE RECOMMENDED PRIMARY COLUMN OR SECONDARY COLUMN; REPORTED VALUE IS A FRACTION OF THE TOTAL VALUE OF THE UNRESOLVED SUBSTANCES.
- 3. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT -SAMPLE DUPLICATE X 100 MEAN OF SAMPLE RESULT AND DUPLICATE

PROJECT NAME: HANGOCK APP

SAIC ....

CLIENT 1.D.

CARBON TETRACHLORIDE

# PURGEABLE HALGCARBONS AND ARCHATICS ACCURACY DATA

87-020015

6W-315P

1.3

65

2.0

MATRIX TYPE	WATER	WATER		
PURGEABLE HALDCARBONS	SAMPLE RESULT (UG/L)	SPIKED SAMPLE (UG/L)	AMOUNT SPIKED (UG/L)	PERCENT RECOVERY (ZR)
1,1,1-TRICHLOROETHANE	ND	1.4	2.0	70
1,1,2,2-TETRACHLORGETHANE	ND	1.5 **	4.0	38
1,1,2-TRICHLORDETHAME	2.7 ***	7.2 ***	5.0	<b>75</b>
1,1-DICHLORGETHANE	ND	1.6.	2.0	90
1,1-DICHLOROETHENE	ND	1.4	2.0	70
1,2-DICHLOROBENZENE	ND	1.2.	2.0	60
1,2-DICHLOROETHAME	ND	1.0	2.0	50
1,2-DICHLOROPROPANE	ND	1.2	2.0	60
1,4-DICHLOROBENZEME	ND	1.3	2.0	65
BRONOFORM	1.5	4.5	2.0	150

97-020012

6W-31

		***		444	44
CHLOROBENZENE	ND	1.1		2.0	55
CHLGRODIBROMOMETHAME	2.7 ***	7.2	144	6.0	75
CHLOROETHANE	ND	1.2		2.0	60
CHLOROFORM	18	18.0		2.0	0 (3)
CIS-1,3-DICHLOROPROPENE	2.7 ***	7.2	***	6.0	75
METHYLENE CHLORIDE	0.43	2.2		2.0	87
TETRACHLOROETHEME	KD	1.5	**	4.0	30
TRANS-1,2-DICHLORGETHEME	MD	1.2		2.0	60
TRANS-1,3-DICHLOROPROPENE	ND	1.1		2.0	55
TRICHLORGETHENE	NO	1.9		2.0	95
TRICHLOROFLUORONETHANE	ND	.2		2.0	60
VINYL CHLORIDE	ND	1.0		2.0	50
PURGEABLE AROMATICS					
1,2-DICHLOROBENZEME	ND	1.2		2.0	60
1,4-DICHLOROBENZENE	ND	1.3		2.0	65
BEN ZENE	ND	2.3	44	4.0	58
CHLOROBENZENE	ND	1.2		2.0	60
ETHYL BENZENE	J. 46	1.7		2.0	54
TOLUENE	,.42	1.4		2.0	36
TOTAL TYLENES	9,47	1.6		2.0	57

- 1. SEE COMMENTS NO.1 AND NO.2 IN PRECISION DATA FOR THIS SAMPLE NUMBER
- 2. NO = NOT DETECTED
- 3. ZERO % RECOVERY DUE TO THE AMOUNT OF SPIKE ADDED IS MASKED BY THE BACKGROUND LEVEL OF THE TARGET AMALYTE IN THE SAMPLE.
- 4. PERCENT RECOVERY * SPIKED SAMPLE SAMPLE RESULT X100
  AMOUNT OF SPIKE ADDED

ORGANOPHOSPHOROUS

PESTICIDES ( METHOD 614 )

PRECISION

DATA

SUMMARY

#### COMMENTS:

1. REPLICATE RESULTS FOR SAMPLE ES-2 FOR ORGANOPHOSPHOROUS ANALYSIS ARE BELOW DETECTION LIMITS AND ARE NOT APPLICABLE FOR RPD DETERMINATION.

2. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT - SAMPLE DUPLICATE X 100

MEAN OF SAMPLE RESULT AND DUPLICATE

ORGANOPHOSPHOROUS PESTICIDES ( METHOD 614 ) **ACCURACY** DATA SUMMARY SAMPLE RESULT SPIKED SAMPLE AMOUNT SPIKED PERCENT RECOVE CLIENT ID ORGANOPHOSPOROUS PESTICIDES SAIC ID (U6/K6) (U6/K6) (UG/KG) (7) 24000 23300 103 86-350062 ES-2 1200 U DIAZINON 23300 103 HALATHION 86-350062 24000 ES-2 1600 U 23300 99 86-350062 ES-2 1200 U 23000 PARATHION, ETHYL

#### COMMENTS:

1. PERCENT RECOVERY = SPIKED SAMPLE - SAMPLE RESULT X 100
AMOUNT OF SPIKE ADDED

# PETROLEUM HYDROCARBON BY IR AMALYSIS PRECISION DATA

SAIC ID	CLIENT ID	HATRIX	SAMPLE RESULT (NG/KG)	DUPLICATE (MG/KG)	RPD (I)
86-329025	FS-6-1	SOIL	470	430	9
86-350056	SD-2	Soil	2000	1 <b>800</b>	11

- 1. REPLICATE RESULTS FOR SAMPLES SD-14, GN-25, GN-26, GN-31, AND GN-32 ARE BELOW DETECTION LIMITS AND ARE NOT APPLICABLE FOR RPD DETERMINATION
- 2. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100 MEAN OF SAMPLE RESULT AND DUPLICATE

### PRIORITY POLLUTANT METALS ANALYSIS PRECISION DATA

PRIORITY POLLUTANT HETALS	SAIC ID	CLIENT ID	SAMPLE RESULT (MG/KG)	DUPLICATE (MG/KG)	RPD (1)
ARSENIC	86-350020	SD-4	4.4	4.3	2
BERYLLIUM	86-350020	SD-4	0.20	0.17	16
CADMIUM	86-350020	SD-4	1.7	1.5	12
CHROMIUM	86-350020	SD-4	12	12	0
COPPER	86-350020	SD-4	98	96	2
LEAD	86-350020	SD-4	101	108	7
	86-353015	SD-17	26	25	4
MERCURY	86-350020	SD-4	0.033	0.035	6
NICKEL	86-350020	SD-4	12	10	18
SELENIUM	86-350020	SD-4	1.1	1.1	0
ZINC	86-350020	SD-4	89	81	9

- 1. REPLICATE RESULTS OF THE OTHER PRIORITY METALS FOR SAMPLES SD-4 ARE BELOW DETECTION AND ARE NOT APPLICABLE FOR RPD DETERMINATION.
- 2. SAMPLE SD-17 WAS AMALYZED FOR TOTAL LEAD OMLY.
- 4. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100
  HEAN OF SAMPLE RESULT AND DUPLICATE

### PRIGRITY POLLUTANT METALS ACCURACY DATA

PRIOPITY POLLUTANT METALS	SAIC ID	CLIENT ID	SAMPLE RESULT (UG)	SPIKED SAMPLE (UG)	AMOUNT SPIKED (UG)	PERCENT RECOVERY
ANTIHONY	86-350020	SD-4	NO	ND	200	0 (1)
ARSENIC	86-350020	50-4	17	26	10	90
BERYLLIUM	86-350020	SD-4	0.77	5.2	5	89
CADMIUM	86-350020	SD-4	6.5	11	5	90
CHRONIUM	86-350020	SD-4	50	95	50	90
COPPER	86-350020	SD-4	391	872	500	96
LEAD	86-329025	FS-6-1	33	111	100	78
65.10	86-350020	SD-4	417	868	500	90
	86-353015	CD-17	103	280	200	8 <del>9</del>
MERCURY	86-350020	SD-4	0.041	0.14	0.1	99
NICKEL	86-350020	SD-4	45	80	40	88
SELENIUM	86-350020	SD-4	4.3	15	10	107
SILVER	86-350020	SD-4	ND	3.0	10	30 (1)
THALLIUM	86-350020	SD-4	ND	96	100	%
ZINC	86-350020	SD-4	342	765	500	<b>8</b> 5

^{1.} PRESENCE OF SAMPLE MATRIX INTERFERENCE THAT IS POSSIBLY DUE TO CHLORIDE.

^{2.} PERCENT RECOVERY = SPIKED SAMPLE RESULT - SAMPLE RESULT X 100

AMOUNT OF SPIKE ADDED

^{3.} NO = NOT DETECTED

### PRIORITY POLLUTANT HETALS ANALYSIS PRECISION DATA

PRIORITY POLLUTANT METALS	SAIC ID	CLIENT ID	SAMPLE RESULT	DUPLICATE	RPD
			(U6/L)	(U6/L)	(1)
CHROMIUM	87-020012	6W-31	92	78	16
LEAD	87-016023	6 <b>U-</b> 24	2.5	2.1	17

- 1. REPLICATE RESULTS OF THE OTHER PRIORITY METALS FOR SAMPLES SN-16 AND GN-31 ARE BELOW DETECTION LIMITS AND ARE NOT APPLICABLE FOR RPD DETERMINATION.
- 2. REPLICATE RESULTS OF SAMPLE GN-7 FOR CADMIUM, CHROMIUM AND LEAD AMALYSIS ARE ARE BELOW DETECTION LIMITS AND ARE NOT APPLICABLE FOR RPD DETERMINATION.
- 3. SAMPLE 6N-24 WAS ANALYZED FOR TOTAL LEAD ONLY.
- 4. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100
  MEAN OF SAMPLE RESULT AND DUPLICATE

### PRIGRITY POLLUTANT METALS ACCURACY DATA

PRIORITY POLLUTANT METALS	SAIC ID	CLIENT ID	SAMPLE RESULT	SPIKED SAMPLE (UG)	AMOUNT SPIKED	PERCENT RECOVERY
ANTIMONY	86-350040	SW-16	ND	4.9	5	38
UM TIME	87-020012	6W-31	ND	29	25	116
ARSENIC	86-350040	SW-16	ND	4.6	5	92
	87-020012	6W-31	ND	4.1	5	82
BERYLLIUM	86-350040	SW-16	ND	2.3	2.5	92
	87-020012	6W-31	ND	28	28	112
CADMIUN	86-350040	SW-16	ND	2.4	2.5	96
	86-353013	6N-7	ND	2.8	2.5	112
	87-020012	6W-31	ND	27	25	108
CHRONIUM	86-350040	SW-16	ND	22	25	88
onkgiis oii	86-353013	GW-7	ND	20	25	80
	87-020012	GW-31	4.2	31	25	107
COPPER	96-350040	SW-16	ND	11	10	110
<b>V</b>	87-020012	6W-31	ND	28	25	112
LEAD	86-350040	SW-16	ND	47	50	94
P. P. L. L. L. L. L. L. L. L. L. L. L. L. L.	86-353013	GW-7	NO	42	50	84
	87-016023	6H-24	0.23	0.79	0.5	112
	87-020012	6W-31	ND	130	125	104
MERCURY	86-350040	SW-16	ND	0.1	0.1	100
	87-020012	GW-31	NO	0.01	0.01	100
NICKEL	86-350040	SW-16	ND	13	20	65
Novice	87-020012	GW-31	ND	27	25	108
SELENIUM	96-350040	SW-16	ND	87	100	87
2525(10 ALL	87-020012	GW-31	D	4.9	5	98
SILVER	86-350040	SW-16	ND	3.5	5	70
	87-020012	6W-31	ND	2.5	5	50
THALLIUM	86-350040	SW-16	ND	51	50	102
· · · · · · · · · · · · · · · · · · ·	87-020012	6W-31	ND	170	125	136 (1)
ZINC	86-350040	SW-16	ND	2.7	2.5	108
LING	87-020012	6W-31	ND	26	25	104

- 1. PRESENCE OF SAMPLE MATRIX INTERFERENCE THAT IS POSSIBLY DUE TO CHLORIDE.
- 2. PERCENT RECOVERY = SPIKED SAMPLE RESULT SAMPLE RESULT X 100
  AMOUNT OF SPIKE ADDED
- 3. NO = NOT DETECTED

### ICP METAL SCAN ANALYSIS PRECISION DATA

PRIORITY POLLUTANT HETALS	SAIC ID	CLIENT ID	SAMPLE RESULT	DUPLICATE	RPD
			(U6/L)	(U6/L)	(%)
CALCIUM	87-020012	6M-31	8430	8090	4
MAGNESIUM	87-020012	6W-31	2010	1510	28
MANGANESE	86-353013	6N-7	1500	1500	0
POTASSIUM	87-020012	<b>6W-3</b> 1	210000	210000	0
SODIUM	87-020012	6W-31	38400	37500	2
SILICA (COLDRINETRIC)	87-020012	6W-31	3790	3520	7

- 1. REPLICATE RESULTS FOR ALUMINUM, BARIUM, BORON, COBALT, IRON, MOLYBDENUM AND VANADIUM FOR SAMPLE GN-31 USING ICP METAL SCAN ANALYSIS ARE BELOW DETECTION LIMITS AND ARE NOT APPLICABLE FOR RPD DETERMINATION.
- 2. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100
  HEAN OF SAMPLE RESULT AND DUPLICATE

### ICP METAL SCAN ACCURACY DATA

ICP METALS	SAIC ID	CLIENT ID	SAMPLE RESULT (UG)	SPIKED SAMPLE (UG)	AMOUNT SPIKED (UG)	PERCENT RECOV
ALUHINUH	87-020012	6W-31	MÐ	140	125	112
BARIUM	87-020012	6W-31	ND	30	25	120
BORON	87-020012	6W-31	ND	48	50	96
CALCIUM	87-020012	6W-31	413	2800	2500	95
COBALT	87-020012	6W-31	ND	27	25	108
IRON	87-020012	6W-31	ND	28	25	112
MAGNESIUM	87-020012	6W-31	89	2600	2500	100
MANGANESE	87-020012	GW-31	ND	28	25	111
HOLYBDENUN	87-020012	6W-31	NĎ	26	25	104
POTASSIUM	87-020012	6W-31	11000	22000	10000	106
SODIUM	87-020012	6W-31	1900	4200	2500	90
SILICA (COLORIMETRIC)	87-020012	6W-31	180	2500	2500	92
NUIGANAV	87-020012	6W-31	ND	26	25	106

COMMENTS:

2. NO = NOT DETECTED

^{1.} PERCENT RECOVERY = SPIKED SAMPLE RESULT - SAMPLE RESULT X 100

AMOUNT OF SPIKE ADDED

### AMION ANALYSIS BY ION CHROMATOGRAPHY PRECISION DATA

ANIONS	SAIC ID	CLIENT ID	SAMPLE RESULT (MG/L)	DUPLICATE (MG/L)	RPD
CHLORIDE (CL-) SULFATE (SQ4=)	87-020012	6W-31	32	32	0
	87-020012	6W-31	73	82	12

- 1. REPLICATE RESULTS FOR SAMPLE GM-7 FOR PHOSPHATE AMION ARE BELOW DETECTION LIMITS AND ARE NOT APPLICABLE FOR RPD DETERMINATION.
- 2. REPLICATE RESULTS OF SAMPLE GN-31 FOR PHOSPHATE, FLUORIDE, BROMIDE, MITRATE AND MITRITE AMIONS ARE BELOW DETECTION LIMITS AND ARE NOT APPLICABLE FOR RPD DETERMINATION
- 3. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT SAMPLE DUPLICATE X 100 MEAN OF SAMPLE RESULT AND DUPLICATE

### ANION ANALYSIS BY ION CHRONATOGRAPHY ACCURACY DATA

ANIONS	SAIC ID	CLIENT ID	SAMPLE RESULT (MG/L)	SPIKED SAMPLE (MG/L)	AMOUNT SPIKED (MG/L)	PERCENT RECOVERY
PHOSPHATE (PO4=)	86-353013	GW-7	26 U	43	50	86
	87-020012	6W-31	26 U	(1)	50	(1)
CHLORIDE (CL-)	87-020012	GN-31	32	82	50	125
FLUORIDE (F-)	87-020012	6M-31	2.3 U	49	50	99
BROMIDE (BR-)	87-020012	6W-31	6.4 U	42	50	84
NITRATE (NO3-)	87-020012	6W-31	7.5 U	40	50	81
NITRITE (NO2-)	87-020012	6W-31	3.6 U	43	50	86
SULFATE (SO4=)	87-020012	6W-31	73	110	50	129

- 1. AMOUNT OF PHOSPHATE AMION SPIKED INTO THE SAMPLE WAS UNDETECTED DUE TO POSSIBLE MATRIX EFFECT.
- 2. PERCENT RECOVERY = SPIKED SAMPLE RESULT SAMPLE RESULT X 100

  AMOUNT OF SPIKE ADDED

### GENERAL CHEMISTRY ANALYSIS PRECISION DATA

PARAMETERS	SAIC ID	CLIENT ID	SAMPLE RESULT (MG/L)	DUPLICATE (MG/L)	RPD (Z)
TOTAL DISSOLVED SOILDS	87-020012	6W-31	740	780	5
ALKALINITY (HCO3-)	87-020012	6W-31	32	30	6
ALKALINITY (CO3=)	87-020012	6W~31	110	120	9
TOTAL ALKALINITY	87-020012	6W-31	142	150	5

### COMMENTS:

1. RPD (RELATIVE PERCENT DIFFERENCE) = SAMPLE RESULT - SAMPLE DUPLICATE X 100

MEAN OF SAMPLE RESULT AND DUPLICATE

### GENERAL CHEMISTRY ANALYSIS ACCURACY DATA

PARAMETERS	SAIC ID	CLIENT ID	SAMPLE RESULT (MG)	SPIKED SAMPLE (MG)	AMOUNT SPIKED (MG CACO3)	PERCENT RECOVERY
ALKALINITY (CO3=)	87-020012	GW-31	7.3	18	13	82

### COMMENTS:

1. PERCENT RECOVERY = SPIKED SAMPLE RESULT - SAMPLE RESULT X 100

AMOUNT OF SPIKE ADDED

PROJECT NO : 2-885-06-624 PROJECT NAME: HANCOCK PIELD

(\$222)	6181.0 10	PARAMETER	DATE COLLECTED	DATE RECEIVED SY LAB	EXTRACTION	HOLDING TIME	DATE OF ANALYSIS	ANALYSIS HOLDING TIME
SHIPMENT # 7	***************************************	P 9 7 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	***********				7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
100'8	1-181	PHKA	12-Sep-87	15-8ep-87	22-Sep-87	10	08-0ct-87	9.
<b>8</b> ,002	FSC-1	7	12-Sep-87	15-Sep-87	22-Sep-87	2	08-0ct-87	91
8,003	F8C-2	4	12-Sep-87	15-8ep-87	22-Sep-87	9	08-0ct-87	9
8,00¢	1-054	THE SEC	12-Sep-87	15-Sep-87	22-Sep-87	2	09-0ct-87	-13
8,005	PSD-2	MA	12-Sep-87	15-Sep-87	22-Sep-87	9	08-0ct-87	2
8,006	PSE-1	72	12-8ep-87	15-Sep-87	22-Sep-87	9	09-0ct-87	11
8,007	PSE-2	MA	12-Sep-87	15-8ep-87	22-Sep-87	2	09-0ct-87	17
8,008	PSF-1	YM	12-8ep-87	15-Sep-87	22-Sep-87	2	08-0ct-87	91
600'8	PSF-2	BKA	12-8ep-87	15-Sep-87	22-Sep-87	2	08-0ct-87	91
8,010	1-984	AMA	12-Sep-87	15-Sep-87	22-Sep-87	9	08-0ct-81	91
110.8	5	<b>200</b>	14-Sep-87	15-8ep-87	¥	¥	03-0ct-87	61
8,011	9-15	-10¢	14-Sep-87	15-8ep-87	<b>4</b>	≨ :	15-Sep-87	- ;
8,012	3	rest.	14-Sep-87	15-Sep-87	¥	≨ :	03-0ct-87	<u>5</u>
8,012	C-1-2	-PO4	14-Sep-87	15-Sep-87	¥	YY	15-Sep-87	(
8,013	5	Lead	14-Sep-87	15-Sep-87	¥	¥	03-0ct-87	<b>6</b> .
8,013	8- ₋ 8	-PO4	14-Sep-87	15-Sep-87	¥	≨	15-Sep-87	
8,014	3	[eed	14-Sep-87	15-Sep-87	¥	¥	03-0ct-87	61
8,014	6-A5	404-0	14-Sep-87	15-Sep-87	¥	YN.	15-Sep-87	-
8,015	CM-28	#	14-Sep-87	15-Sep-87	¥	HA	20-Sep-87	•
8,015	CH-28	-PO4	14-Sep-87	15-Sep-87	¥	YN.	15-Sep-87	-
910'8	CH-29	<b>3</b>	14-Sep-87	15-Sep-87	¥	Y.	20-Sep-87	•
910'8	CH-29	-P04	14-Sep-87	15-Sep-87	¥¥	YN.	15-Sep-87	-
8,017	GF-30	#	14-Sep-87	15-Sep-87	¥	¥	20-Sep-87	•
6,017	G4-30	9-PO4	14-Sep-87	15-8ep-87	≨	¥	15-Sep-87	
8,018	735	ž	13-Sep-87	15-Sep-87	¥	**	20-Sep-87	_
8,019	S-AS	#	13-Sep-87	15-Sep-87	¥	¥	20-Sep-87	_
8,020	9-AS	<b>*</b>	13-Sep-87	15-Sep-87	WA	4	20-Sep-87	,
8,721	SH-7	#	13-Sep-87	15-Sep-87	¥	¥	20-Sep-87	<u> </u>
8,022	<b>₹1-RS</b>	#	13-Sep-87	15-Sep-87	¥	YR	20-Sep-87	<b>~</b> '
8,023	SH-18	#	13-Sep-87	15-Sep-87	¥	¥	20-Sep-87	_
8,023	81-AS	H-VOA	13-Sep-87	15-Sep-87	¥	¥	20-Sep-87	
8,023	SN-18	A-VOA	13-Sep-87	15-Sep-87	¥	¥	20-Sep-87	1
8,024	SW-20	Ħ	13-Sep-87	15-Sep-87	¥	MA	20-Sep-87	1
8,024	SW-20	H-VOA	13-Sep-87	15-Sep-87	¥	¥	20-Sep-87	^
8,024	SW-20	A-V0A	13-Sep-87	15-Sep-87	¥	Y.	20-Sep-87	1
8,025	SW-21	Ŧ	13-Sep-87	15-Sep-87	¥	Y.	20-Sep-87	1
8,025	SW-21	H-VOA	13-Sep-87	15-Sep-87	¥	¥	19-Sep-87	•
8,025	SW-21	A-VOA	13~Sep-87	15-Sep-87	¥	KA	20-Sep-87	7
8,026	SH-23	¥	13-Sep-87	15-Sep-87	¥	≨	20-Sep-87	7
8,026	SW-23	H-VOA	13-Sep-87	15-Se p-87	¥	YN.	19-Sep-87	•
8,026	SW~23	VO.1-V	13-Sep-87	15-Sep-87	¥	Y.	20-Sep-87	,
8,027	SW-31	H-VOA	13-Sep-87	15-Sep-87	¥	Y.	19-Sep-87	9
8,027	SW-31	A-VOA	13-Sep-87	15-Sep-87	¥	¥	20-Sep-87	~
8.028	CL-12	ACU-U	13-Sep-87	15-Sep-87	4	7	19-Sep-87	•
111111							- 2 2 2 2 - 2 -	•

SCIENCE APPLICATIONS INTERNATIONA; CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

PROJECT NAME: MANCOCK FIELD

(8725)	2	PARAMETER	COLLECTED	BY LAB	EXTRACTION	HOLDING TIME	ANALYSIS	HOLDING TEME
SHIPMENT # 7	† 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!	,				,	•
8,029	<b>†</b>	<b>.</b>	13-Sep-87	15-Sep-87	YN 1	≨ :	20-Sep-87	'
8,030	SD-5	<b>*</b>	13-Sep-87	15-Sep-87	<b>₹</b>	≨ :	20-Sep-8/	•
8,031	80-6 9-0	#	13-Sep-87	15-Sep-87	≨ :	<b>Y</b>	70-seb-07	•
8,032	SD-7	#	13-Sep-87	15-Sep-87	≨ :	<b>S</b>	20-Sep-8/	~ •
8,033	\$D-14	#	13-Sep-87	15-Sep-87	ş	≨ :	20-Sep-87	•
8,034	SD-18	#	13-Sep-87	15-Sep-87	ş	₹ Z	20-Sep-87	~ '
8,035	SD-20	#	13-Sep-87	15-Sep-87	¥¥	¥	20-Sep-87	
8.036	SD-21	#	13-Sep-87	15-Sep-87	N.	¥	20-Sep-87	^
8.037	SD-23	#	13-Sep-87	15-Sep-87	¥	¥	20-Sep-87	^
8.038	- 12	8	14-Sep-87	15-Sep-87	21~Sep-87	~	02-0ct-87	=
8,038		<b>dd</b> 0	14-Sep-87	15-Sep-87	21-Sep-87	7	23-0ct-87	32
8.038	1-83	3	14-8ep-87	15-Sep-87	21-Sep-87	1	16-0ct-87	32
8,039	PIELD BLK	*	14-Sep-87	15-Sep-87	MA	W	20-Sep-87	•
8,039	FIELD BLK	Peal	14-Sep-87	15-Sep-87	HA	¥	03-0ct-87	•
SHIPMENT &8								
100.6	3	-PO4-0	15-Sep-87	16-Sep-87	*	YY.	16-Sep-87	-
9.001	-18	Lead	15-Sep-87	16-Sep-87	¥	Y.	03-0ct-87	92
9.002	2-75	-PO4-0	15-Sep-87	16-Sep-87	¥¥	¥	16-Sep-87	
9,002	CF-7	Leed	15-Sep-87	16-Sep-87	¥	KX	03-0ct-87	81
9,003	E-3	-PO4	15-Sep-87	16-Sep-87	Y.	¥	16-Sep-87	-
9,003	G4-3	Pe e y	15-Sep-67	16-Sep-87	ž	¥X	03-0ct-87	89
9,004	<b>7-8</b> 5	0-P04	15-Sep-87	16-Sep-87	<b>4</b>	YX	16-Sep-87	-
9,00	7	Lead	15-Sep-87	16-Sep-87	¥	YN	03-0ct-87	<b>8</b> 2
9,005	GH-S	-PO	15-Sep-87	16-Sep-87	¥	¥X	16-Sep-87	<del></del> •
9,005	5 <del>-</del> -5	Leed	15-Sep-87	16-Sep-87	¥	YX	03-0ct-87	
900'6	GH-10	100	15-Sep-87	16-Sep-87	K	¥	16-Sep-87	_
900.6	01-85	Ze sq	15-Sep-87	16-Sep-87	YN.	YN	03-0ct-87	<u>8</u>
9,007	GH-25	9-P04	15-Sep-87	16-Sep-87	W	¥	16-Sep-87	
9,007	GH-25	<b>3</b>	15-Sep-87	16-Sep-87	¥	¥	20-Sep-87	•
900'6	CH-26	404-0	15-Sep-87	16-Sep-87	¥	<b>¥</b>	16-Sep-87	
800.6	CH-26	#	15-Sep-87	16~Sep-87	¥	¥	20-Sep-87	•
600,6	G-3	-PO4-0	15-Sep-87	16-Sep-87	Y.	¥#	16-Sep-87	-
600'6	G4-31	#	15-Sep-87	16-Sep-87	¥¥	YN.	20-Sep-87	•
9,010	GH-32	-0 -0	15-Sep-87	16-Sep-87	¥	YN.	16-Sep-87	-
010'6	GW~32	H,	15-Sep-87	16-Sep-87	\$	¥.	20-Sep-87	<b>~</b>
_	AMALYSIS							
8,023	SW-18	H-VOA	13-Sep-87	15-Sep-87	Y.	¥¥	20-Sep-87	^
8,024	SW-20	H-VOA	13-Sep-87	15-Sep-87	¥	¥	20-Sep-87	^
8,025	54-21	H-VOA	13-Sep-87	15-Sep-87	¥	¥	20-Sep-87	^
8,026	84-23	H-VOA	13-Sep-87	15-Sep-87	¥	YX	20-Sep-87	1
8,027	S4-31	H-VOA	13-Sep-87	15-Sep-87	. ≨	<b>4</b>	20-Sep-87	^
E/0 E	17. T	400-1	7 8 - 0 - 0 - 1	15-00-01	3	***	20-Sen-87	~

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

PROJECT NO. : 2-885-06-624 PROJECT NAME: MANCOCK FIELD

SAIC SAMPLE IDENTIFICATION PIELD IDENTIFICATION MATRIX	Heth	Method Bla MA AQUEOUS	#			87258023 SW-18 AQUEOUS	ញ ស		•	87258024 SW-20 AQUEOUS	<b>4</b> 8		-	87258025 SW-21 AQUEOUS	25	1
PURCEABLE BALOCARBONS (8601)	TEST	93	UNITS	2	TEST	ELAG.	UNITS	10°	TEST	176	UNITS	JĢ.	TEST RESULTS	<b>3</b>	UNITS	ğ
Chloronethane	0.10	3	1/30	0.10	0.10	3	ug/1	0.10	0.10	,	7	0.10	0.10	,	u <b>g</b> /1	0.10
Br cnowe these	1.18	9	<b>1</b> / <b>3</b> n	1.18	1.18	3	/ <b>a</b> n	1.18	1.18	5	7	1.18	1.18	7	1/8n	1.18
Vinyl chloride	0.18	9	1/ <b>8</b> n	0.18	0.18	3	1/ <b>8</b> n	9.18	0.18	9	7	91.0	0.18	Þ	7	9.18
Dichlorodifluoromethane	1.81	9	7	1.61	1.81	3	1/ <b>8</b> n	1.81	1.81	,	7	1.81	1.81	3	7	1.81
Chloroethane	0.52	=	7	0.52	0.52	3	7	0.52	0.52	9	1/10	0.52	0.52	2	1/10	0.52
Methylene chloride	0.25		<b>1/3</b>	0.25	0.25	3	1/ <b>3</b> n	0.25	0.92	ပ	/ <b>3</b> n	0.25	0.97	U I	1/ <b>3</b> n	0.25
Trichlorofluoromethane	0.25	9	7	0.25	0.25	3	[ ]	0.25	0.25	9	7	0.25	0.35	ပ	7	0.25
I, i-Dickloroethene	0.13	3	<b>[</b> ]	0.13	0.13	9	7	0.13	0.13	<b>3</b> :	7	0.13	0.13	<b>,</b>	7	2.0
I,I-Dichloroethese	9.5	<b>3</b> :	7/2	9.6	9.0	<b>&gt;</b> =	1/00	9.0	2.0	<b>)</b> =		9.0	0.10	<b>E</b> =		9.0
Chloroform	90.0	,	# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.05	0.05	, 5	\ \   	0.05	0.05	9	ue/1	0.05	0.05	9	7/30	0.0
1.2-Dichloroethane	0.03	9	1/ <b>3</b> n	0.03	0.03	, ,	7	0.03	0.03	5	7	0.03	0.03	3	7	0.03
1,1,1-Trichloroethane	0.03	ı	7	0.03	0.03	=	ug/1	0.03	0.03	9	7	0.03	0.42	ij	1/1/2	0.03
Carbon Tetrachloride	0.32		<b>1/8</b>	0.12	0.12	>	n <b>g</b> /1	0.12	1:1	U	<b>ng/1</b>	0.12	2.2	ပ	1/ <b>3</b> n	0.12
Bronodich loronethane	0.10	9	7	0.10	01.0	9	1/ <b>8</b> n	0.10	0.10	3	7	0.10	0.10	9	7	0.10
1,2-Dichloropropene	8.0	2	<b>1</b> /3	90.0	0.0	,	[/ <b>3</b> n	0.0	0.0	2	<b>1</b> /3n	3	<b>5</b> .0	3	1, <b>3</b> n	3.0
trans-1,3-Dichloropropene	₹.°	9	~ ~ ~	9.34	0.34	>	[/ <b>3</b>	0.34	0.34	<b>3</b> (	\ <b>3</b>	0.34	* · ·	s ;	1 / <b>3</b>	<b>*</b> :
Trichloroethene	0.59		<u>.</u>	0.12	0.12	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	21.0	7.7	؛ ن		21.5	• •	;		71.0
DI Bromoch Coronet hane	60.0	3	7 ;	60.0	0.09	9	] }	90.0	90.0	3	1/2	9.0	60.0	<b>3</b> :		5 6
I, I, Z-Trchloroethane	0.02	<b>3</b> :	1/ <b>8</b> n	20.02	0.02	<b>)</b>	7	20.0	0.05	9 :		70.0	9.00	9 :		20.00
	0.20	<b>;</b>	; ;	27.0	0.20		<b>,</b>	2.0	2.0	3 :	, ,	3 -		, :		2 6
Branoform	0.20	, :	· / •	0.20	0.20	, ,	<b>\</b>	0.20	0.20	, ,		0.30	0.20		1/35	0.30
1.1.2.2-Tetrachloroethane	0.03	, 2	ue/1	0.03	0.03	. 3	1/30	0.03	0.03	9	7	0.03	0.03	9	7	0.03
Tetrachloroethene	P 60.0		7	0.03	0.03		7	0.03	0.03	3	/ <b>8</b> n	0.03	0.03	3	7	0.03
Chlorobengene	0.25	9	u <b>g</b> /1	0.25	0.25	9	<b>1/3</b> n	0.25	0.32	ပ	1/ <b>3</b> n	0.25	0.83	ပ	1/ <b>3</b> 5	0.25
1,3-Dichlorobenzene	0.32	9	1/ <b>8</b> n	0.32	0.32	<b>5</b>	1/ <b>8</b> n	0.32	0.32	9	7	0.32	0.32	2	7	0.32
1,2-Dichlorobengene	0.15	3	1/ <b>3</b> n	0.15	0.15	,	7	0.15	0.15	5	7	0.13	0.15	9	\ <b>1</b>	0.15
1,4-Dichlorobenzene	0.24	9	n <b>8</b> /1	0.24	0.24	=	<b>ng/</b> 1	0.24	0.24	3	u <b>g</b> /1	0.24	0.24	9	[/ <b>3</b>	0.24
ARUMAIC VOLATILE ORGANICS (SWOUZU)	1				1		 	!	2 1 1 1			1				
Dens ene	0.5	,	ug/1	0.3	0.7	5	ug/1	0.7	0.7	9	1/80	0.5	0.3	3	1/ <b>3</b> n	0.3
Toluene	0.7	2	1/8n	0.7	0.5	3	7	0.2	0.2	=	<b>1/8</b> n	0.5	0.7	3	1/ <b>8</b> n	0.5
Ethyl benzene	0.7	3	<b>ug</b> /1	0.5	0.5	3	u <b>g</b> /]	0.7	0.5	9	<b>1</b>	0.5	0.5	3	7	0.5
Chlorobengene	0.7	9	1/ <b>8</b> h	0.3	0.2	3	<b>1/8</b> n	0.2	0.5	3	1/ <b>3</b> n	0.7	0.8	ပ	1/ <b>3</b> n	0.7
Kylenes, Total	9.0	7	1/ <b>3</b> n	9.0	9.0	3	1/10	9.0	9.0	9	/ <b>8</b> n	9.0	9.0	3	1/ <b>3</b> n	9.0
1, 3-Dich lorobenzene	4.0	9	1/ <b>8</b> n	4.0	4.0	9	n <b>g</b> /1	7.0	9.4	9	1/ <b>8</b> n	9.0	7.0	5	1/ <b>3</b> n	4.0
1,2-Dichlorobenzene	4.0	9	n <b>g</b> /1	4.0	4.0	3	<b>1/3</b> n	7.0	<b>7.</b> 0	5	7 <b>8</b> 0	4.0	4.0	5	[/ <b>3</b> n	4.0
1,4~Dichlorobenzene TRACE METAL ARALYSIS (E245.1)	0.3	9	u <b>g</b> /1	0.3	0.3	3	n <b>g</b> /1	0.3	0.3	5	u <b>g</b> /1	0.3	0.3	<b>5</b>	1/8	0.3
			;			-					-				17	
Mercury (Cold Vapor)	0.2	7	[/ <b>8</b>	0.7	0.5	5	1/ <b>8</b> n	0.7	0.5	5	1/ <b>8</b> n	7.0	7.0	3		7.0

All volatile, halogenated compounds are quantitated using their response on the Hall detector.

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

PROJECT NO. : 2-885-06-624 PROJECT NAME: NANCOCK FIELD

SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATRIX		8725802( SW-23 AQUEOU	vo m		60	87258027 SW-31 AQUEOUS	. s			DUP-1 SW-31 AQUEOUS	<b>≅</b>		•	87258028 SW-32 AQUEOUS	<b>8</b> 8	
PURCEABLE NALOCARBONS (8601)	TEST	7146	UNITE	2	TEST	FLAG	UNITS	2	TEST	FLAG	UNITS	5	TEST	7,7	UNITS	Š
Chloromethese	0.10	-	1/80	0.10	0.10	3	ug/1	0.10	0.10	,	<b>Lg</b> /1	0.10	0.10	3	n <b>g</b> /1	0.10
Bronomet have	1.18	3	1/3n	1.18	1.18	5	<b>1/8</b> n	1.18	1.18	9	u <b>g</b> /1	1.18	1.18	5	7	1.18
Vinyl chloride	0.18	9	1/ <b>a</b> n	91.0	0.18	5	1/ <b>8</b> n	0.18	0.18	7	ug/1	0.18	0.18	3	1/ <b>3</b> n	0.18
Dichlorodifluoromethane	1.81	9	7	1.81	1.81	9	1/ <b>3</b> n	1.8	1.81	5	ug/1	1.8	1.81	5	1/8n	<b>.</b>
Chloroethane	0.52	9	7	0.52	0.52	3	1/30	0.52	0.52	2	1/8n	0.52	0.52	5	ر <b>ک</b> م	0.52
Methylene chloride	1.0	v	1/ <b>3</b> m	0.25	0.25	ž	[ ]	0.25	0.75		/¥n	0.25	0.25	2	1/ <b>8</b> n	0.25
Trichlorofluoromethane	0.25	5	[/	0.25	0.25	<b>5</b>	ug/l	0.25	0.25	<b>9</b> :	7 m	0.25	0.25	<b>3</b> :	1/8,	0.25
I, I-Dich loroethene	0.13	<b>5</b> :	7	2.13	0.0	<b>3</b> ;	1 / C	2 5	0.13	3 :		2 5	2.5	9 :	<b>,</b>	
(,1-Dichloroethane (rana-1,2-Dichloroethane	0.0	<b>,</b>		0.0	0.0	<b>,</b>		0.0	0.0	, ,		0.0	0.0	<b>,</b> 5		0.10
Chloroform	0.79	, _U	7	0.05	0.62	v	1/40	0.05	0.79	,	7	0.0	0.66	ပ	/ <b>a</b>	0.0
1,2-Dichloroethane	0.03	, 5	7	0.03	0.03	3	1/ <b>8</b> n	0.03	0.03	9	1/ <b>3</b> n	0.03	0.03	9	1/ <b>3</b> n	0.03
1,1,1-Trichloroethane	0.03	5	<b>4</b>	0.03	0.03	CI	u <b>g</b> /1	0.03	0.03	9	1/ <b>3</b> n	0.03	0.05	13	1/ <b>8</b> n	0.03
Carbon Tetrachloride	1.3	ပ	1/80	0.12	0.47	v	1/80	0.12	0.53		7 m	0.12	0.28	ပ	7 <b>3</b> 5	0.12
Bronodich loromethane	0.10	ပ	<b>1/8</b> 7	0.10	0.10	9	1/8n	0.10	0.10	9	1/ <b>3</b> n	0.10	0.0	Þ	7 .	9:0
1,2-Dichloropropene	\$	=	7 <b>5</b> 7	<b>5</b>	3.	9	1/8n	<b>5</b>	0.0	-	7	9.6	0.0	<b>5</b> :	1/ <b>8</b> n	9 6
trans-1,3-Dichloropropene	4 ·	s		\$ : 5 :	***	s t		ž :	4. ·	9		, .		s	<b>1</b>	
at ich lordethene	3 6	<b>3</b> :		7 6	* 5	3 :	<b>.</b>	7 6	* 6	:		7 0	6.0	; ;	<b>1</b>	900
1.1.2-Treblerethere		<b>;</b> ;	, ,	9.6	6.0				0.0	3 :		0.0	0.02	, =		0.02
cia-l 3-Dichloropasses	0.0	, :		2	0.00	, :	; ·	200	0.20	• =	7	0.20	0.20	. 5	7	0.20
2-Chloroethylvinyl ether	0.13	, ,		0.13	0.13	, ,	1/4	0.13	0.13	, ,	[ ]	0.13	0.13	, ,	ug/1	0.13
Bromoform	0.20	3	1/an	0.70	0.20	3	7	0.20	0.20	2	/ <b>a</b>	0.30	0.20	7	1/ <b>3</b> n	0.20
1,1,2,2-Tetrachloroethane	0.03	=	7	0.03	0.03	9	<b>1/8</b> 5	0.03	0.03	7	1/ <b>8</b> n	0.03	0.03	3	1/80	0.03
Tetrachloroethene	0.03	9	1/ <b>3</b> n	0.03	0.03	E	1/8	0.03	0.20	7	n <b>g</b> /1	0.03	91.0	10 P	<b>1/3</b> n	0.03
Chlorobensene	0.25	皇	7	0.25	0.25	9	7	0.25	0.25		[/ <b>]</b>	0.25	0.25	5	7/80	0.75
1,3-Dichlorobensene	0.32	=	u <b>g</b> /1	0.32	0.32	5	<b>1/3</b> n	0.32	0.32	5	<b>1/8</b> n	0.32	0.32	3	7	0.32
1, 2-Dichlorobensene	0.15	9	7	0.15	0.15	5	<b>1/8</b> n	0.15	0.15	3	/ <b>3</b> n	0.15	0.15	9	<b>1</b> ;	<u>-</u>
1,4-Dichlorobensene AROMATIC VOLATILE ORGANICS (SWB020)	9.54	9	1/ <b>8</b> n	0.54	0.24	9	1/ <b>3</b> n	0.24	0.74	3	1/80	0.24	0.7	9		• 7.5
	0.7	=	1/80	0.2	0.2	, ,	ug/1	0.2	0.2	,	ug/1	0.2	0.2	3	1/ <b>8</b> n	0.2
Toluene	0.5	3	ug/1	0.3	0.5	9	ug/1	0.5	0.5	,	1/37	0.7	0.7	9		0.5
Ethyl bennene	0.3	9	7	0.2	0.5	9	7	0.5	0.2	3	7	0.7	0.7	9	1/ <b>3</b> n	0.5
Chlorobensene	0.3	ž	[/ <b>J</b> n	0.7	0.5	5	1/ <b>8</b> n	0.5	0.2	5	<b>1/3</b> n	0.7	0.7	5	<b>1/3</b>	0.3
Kylenes, Total	9.0	9	<b>ug/</b> 1	9.0	9.0	9	7	9.0	9.0	9	1/10	9.0	9.0	5	1/ <b>3</b> m	9.0
1, 3-Dichlorobensene	4.0	3	<b>ng/</b> ]	4.0	4.0	5	1/ <b>8</b> n	4.0	<b>9.</b> 0	9	1/ <b>3</b> n	4.0	4.0	,	7	4.0
1,2-Dichlorobenzene	4.0	3	/ <b>I</b> n	₹.	9.0	9	7 <b>8</b> n	4.0	¢.5	5	1/ <b>8</b> n	4.0	4.0	5	7	₹.0
1,4-Dichlorobengene TRACE METAL AMALYSIS (8245.1)	0.3	5	<b>1</b>	0.3	0.3	5	1/ <b>3</b> n	0.3	6.3	3	1/80	0.3	0.3	9	1/ <b>8</b> n	6.3
Mercury (Cold Vapor)	0.2	5	1/87	0.2												

All volatile, halogenated compounds are quantitated using their response on the Hall detector.

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVINOMMENTAL CHEMISTRY DIVISION

PROJECT NO. : 2-885-06-624 PROJECT MAME: MANCOCK PIELD

SAIC SAMPLE IDENTIFICATION FIRLD IDENTIFICATION MATRIX	He C	Method Bla NA AQUEOUS	a s		<b>60</b> —	87258001 FSB-1 SOIL	<b></b>		<b></b>	87258002 FSC-1 SOLL	æ		•	87258003 FSC-2 SOIL	<b>5</b>	
BASE-WEUTTALS/ACID EXTRACTABLES (SW0270)	TEST	37.	UNITS	ž	TEST	FLAG	UNITS	ž	TEST	LIAG	UNITS	2	TEST	77.	UNITS	2
There!	330	,	ug/kg	330	330	!	ug/kg	330	330	5	ug/kg	330	330	3	ug/kg	330
bis(2-Chloroethyl)ether	330	9	ug/kg	330	330	9	4 / kg	330	330	9	14/In	330	330	9	Tx/In	330
2-Chlorophenol	330	9	ng/kg	330	330	3	ng/kg	330	330	9	ug/kg	330	330	3	M/kg	330
I, 3-Dichlorobensene	330	3	ag/kg	330	330	3	Ma/kg	330	330	9	ug/kg	330	330	3	#\K	330
1,4-Dichlorobensene	330	,	ug/kg	330	330	9	ng/kg	330	330	,	ng/kg	330	330	3	mg/kg	330
Bennyl alcohol	650	3	ug/kg	650	650	2	ng/kg	650	650	2	ng/kg	9	650	9	#/kg	650
1,2-Dichlorobensene	330	=	# / FE	330	330	9	<b>18/kg</b>	330	330	9	ng/kg	330	330	3	<b>1</b> 4/ <b>2</b> 5	330
2-Hethylphenol	330	,	<b>1</b> /10	330	330	3	<b>1</b> / <b>k</b>	330	330	9	4/kg	330	330	3	<b>8</b> 4/ <b>8</b> n	330
bis(2-Chloroisopropyl)ether	330	,	14/8n	330	330	,	<b>18/kg</b>	330	330	9	7 / FE	330	330	<b>3</b> :	<b>1</b> /10	330
4-Wethylphenol	330	9	#/#	330	330	<b>5</b>	<b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> /	330	330	9	# / KB	2 5	330	<b>3</b> :	) )	<u></u>
H-Mitroso-Di-H-propylesine	330	3	7	330	330	3	<b>1</b> / <b>1</b> / <b>1</b> / <b>1</b> / <b>1</b> / <b>1</b>	330	330	3		2 5	220	9 :		9 6
Bezechloroethane	330	9 :	# / K	930	330	3 :	2 / KB	330	330	<b>s</b> :	# / K	250	950	<b>9</b> :		ָ פַרָּלָ
	220	<b>=</b> :		200	230	3 :		ָ מַ מַ	330	<b>;</b> c	)		955		1	3 5
Leophorone	025	9	7	2 6	330	<b>3</b> :	# / # / # / # / # / # / # / # / # / # /	2 6	ה ה ה	<b>.</b>	# / W	2 5	956			
2-Hitrophenol	250	9 :		2 5	950	3 :	<b>1</b>	<u>.</u>	בר ה	<b>3</b> :	<b>*</b>		שלה ה	9 5	* / *	2 2
Mensoir eria	25	3 2	,		330		, k	200	330	, ,	/	330	330	, ,	#\ #	2
bia(2-Chloroethory)methane	1.650	, 2	, a	.650	1.650	. 3	/k	1,650	1,650	• •	W/kg	1,650	1,650	3	# / # / # / # / # / # / # / # / # / # /	,650
2,4-Dichlorophenol	330	9	ue/te	330	330	3	ug/kg	330	330	3	4/4	330	330	9	ug/kg	330
1,2,4-Trichlorobensene	330	3	ue/ke	330	330	3	4/4	330	330	3	4 /kg	330	330	3	14/E	330
Rephthelene	330	3	# /F	330	330	3	ug/kg	330	330	3	ug/kg	330	330	9	#/#	330
2-Chloroaniline	650	9	14/2n	650	650	3	<b>13/8</b> 0	650	650	9	14/2n	650	650	9	# / FE	650
Mezach lorobut ad i ene	330	9	Ty/En	330	330	5	ng/kg	330	330	9	ng/kg	330	330	,	<b>3</b> / <b>3</b>	330
4-Chloro-3-methylphenol	650	9	# /# /# /# /# /# /# /# /# /# /# /# /# /#	650	650	>	<b>4</b> / <b>4</b>	650	650	9	#\#	9	650	<b>3</b> :	74/2	000
2-Methy lasphthalene	330	,	#/k	330	330	>	7 / KE	330	330	9		2 :	250	9 :	7 / K	מיני
Merachlorocyclopestadiese	990	3 :	<b>3</b> / <b>3</b>	330	330	<b>3</b> :	<b>1</b> / <b>2</b> / <b>3</b>	250	330	<b>3</b> :	<b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> / <b>3</b> /	<u>ק</u>	330	<b>)</b>		<u></u>
2 4 S-Trichloropaenol	330	9:		<u></u>	966	<b>s</b> :		מני	פרר פרר	• :	* / * · ·	2 5	300	, ,	* / * * * * * * * * * * * * * * * * * *	200
2-Chlorosabthalese	330	, =	<b>1</b>	330	330	, 5	, re	330	330	9	/ k	330	330	3	4 / Kg	330
2-Witroaniline	1.650	, ,	ue/ke	.650	1.650	, ,	uk/kg	1,650	1,650	•	# / F.	1,650	1,650	3	14/2n	<b>.</b> 650
Dimethyl phthalate	330	2	me/kg	330	330	9	14/2n	330	330	9	14/4E	330	330	3	Ty/Th	330
Acenaphthylene	330	3	ug/kg	330	330	>	ag/kg	330	330	3	ng/kg	330	330	9	<b>3</b> 4/ <b>3</b> 5	20
3-#itrosailise	1,650	2	ug/kg	059,1	1,650	3	Ty/In	1,650	1,650	9	ug/kg	1,650	1,650	,	# / kg	8
Acesaphthese	330	9	ug/kg	330	330	3	ug/kg	330	330	3	ng/kg	330	330	9	7/2	330
2,4-Dinitrophenol	1,650	3	ug/kg	059,1	1,650	,	ug/kg	1,650	1,650	,	ag/kg	1,650	1,650	9	# / kg	<b>.</b> 650
6-Hitrophenol	1,650	3	ug/kg	650	1,650	9	ug/kg	1,650	1,650	3	14/18 18/18	1,650	1,650	J	# / FE	,650
Dibenzofuran	330	3	ng/kg	330	330	9	18/kg	330	330	9	ag/kg	330	330	9	ag/kg	330
2,4-Dinitrotoluene	330	9	Sy/Sn	330	330	3	14/8n	330	330	,	14/2n	330	330	9	34/3n	330
2,6-Dinitrotoluene	330	9	ug/kg	330	330	9	ug/kg	330	330	9	ug/kg	330	330	9	mg/kg	330
Diethylphthalate	330	9	14/8n	330	330	9	ug/kg	330	330	9	ug/kg	330	330	9	#\r	330
4-Chlorophenyl phenyl ether	330	9	ug/kg	330	330	,	ug/kg	130	330	9	ug/kg	330	330	3	ng/kg	330
Pluorene	330	,	<b>1</b> 1/2n	330	330	9	ng/kg	330	330	3	14/8n	330	330	3	# / KE	330

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

PROJECT NO. : 2-885-06-624 PROJECT NAME: NANCOCK FIELD

SAIC SAMPLE IDENTIFICATION	ž	Method Bla	<b>•</b> • • •		•	1725800 FSB-1	=		•	725800 FSC-1	7		•••	725800 FSC-2	5	
HATRIX		AQUEOUS	u			301L				SOIL			1	\$01F		
BASE-WEUTHALS/ACID ELTRACTABLES (SM6270)	TEST	24.7	UNITS	5	TEST	FLAG	UNITS	잘	TEST RESULTS	FLAG	UNITS	ŽĢ.	TEST	7.46	UNITS	ğ
	1.650	=	ue/ke	.650	1.650	,	ug/kg	1,650	1,650	,	ug/kg	1,650	1,650	3	14/2n	,650
A A.Bisites. Jesthelahenol	059	, =	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	05.9	1.650	9	we/ke	1.650	1.650	3	WE/kg	1,650	1,650	9	21/2n	,650
M. Mitrosodishers lenine	330	) 5	/ / m	330	330	- 3	ue/ke	330	330	3	ug/kg	330	330	9	<b>3</b> 4/ <b>5</b> 5	330
A-Branchess sheet ether	330	. =	7	330	330	9	ue/ke	330	330	3	ug/kg	330	330	3	<b>1</b> 4/15	330
Househlarokeeses	330	) \$		330	330	9	4 / Ke	330	330	3	44/kg	330	330	9	#     	330
	1.650	) 3	, k	1.650	1.650	9	We/ke	1,650	1.650	3	WE/kg	1,650	1,650	3	<b>1</b> /4	,650
The seath rese	330		<b>/</b> /	330	1.100		ug/kg	330	2,900		ug/kg	330	1,200		18/kg	330
Asthraces	330	3	We/Le	330	330	9	ug/kg	330	1,100		Sy/Sn	330	330	3	<b>1</b> 4/ <b>2</b> 1	330
Di-a-bat alababate	330	• =	7	330	330	3	ue/ke	330	330	3	ug/kg	330	330	3	ug/kg	330
Thorast head	330	3	, , ,	330	1.400		ug/kg	330	3,200		ug/kg	330	2,100		ug/kg	330
	330	9	7	330	1,700		ug/kg	330	2,900		ug/kg	330	2,400		ug/kg	330
Butyl benevi shthalate	330	9	We/ke	330	330	3	ug/kg	330	330	3	ug/kg	330	330	3	#     	330
3. 3'-Bichlorobenzidine	650	9	ue/ke	650	650	3	ug/kg	650	650	3	ut/kg	650	650	3	ME/kg	650
Beaso(a) anthracene	330	3	ue/ke	330	999		ug/kg	330	1,300		ug/kg	330	0 <b>98</b>		ug/kg	330
bis(2-Rthylberyl)obthalate	330	3	/k/	330	330	3	ug/kg	330	330	9	44/kg	330	2,300		ag/kg	330
Chrysene	330	9	LE / E	330	049		ug/kg	330	1,200		14/2n	330	2		<b>1</b> /1	930
Di-a-octvl obthalate	330	9	ue/ke	330	330	9	ug/kg	330	330	3	mg/kg	330	330	9	<b>1</b> /2	330
Bearo(h) fluoranthene	330	3	ue/ke	330	450		ug/kg	330	9		ug/kg	330	740		84/8m	330
Benea(b) fluoresthese	330	=	10/4	330	400		ug/kg	330	290		ng/kg	330	8		Ta/In	330
	330	. =	/	330	310	3	we/ke	330	800		ug/kg	330	089		ug/kg	330
	95	. :		32	330	=	/ke	330	450		ug/kg	330	330	ə	# / FE	330
	25.5	, ;		730	330		We / Ke	330	330	9	UE/KE	330	330	3	14/1n	330
	930				OLE	. =	ne/ke	330	350		ug/kg	330	330	3	ng/kg	330
	> ` `	,		1	•	,		,			,					

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHENISTRY DIVISION

PROJECT NAM: 2-885-06-624 PROJECT NAME: MANCOCK FIELD

SAIC SAMPLE IDENTIPICATION PIELD IDENTIFICATION MATRIX	<b>*•</b>	\$7258004 \$SD-1 \$OIL	•		<b>60</b> ** **	87258005 FSD-2 SOIL	<b>∞</b>		•	87258006 FSE-1 SOIL	9			8725007 FSE-2 SOIL		
	TEST	77.46	UNITS	<u>5</u>	TEST	#LAG	UNITS	<b>1</b> 01	TEST	TLAG	UNITS	ğ	TEST RESULTS	77.	UNITS	ğ
11211111111111111111111111111111111111	330	,	ug/kg	330	330	-	UE/kg	330	330	5	ug/kg	330	330	9	ug/kg	330
bis(2-Chloroethyl)ether	330	9	ur/kg	330	330	9	ug/kg	330	330	3	ug/kg	330	330	3	ug/kg	330
2-Chlorophenol	330	9	ug/kg	330	330	3	ug/kg	330	330	9	Mg/kg	330	330	,	ug/kg	330
1,3-Dichlorobengene	330	9	4/kg	330	330	3	81/8n	330	330	5	ug/kg	330	330	7	14/48 ne / kg	330
1,4-Dichlorobenzene	330	,	4 / kg	330	330	9	ug/kg	330	330	5	ug/kg	330	330	2	ng/kg	330
Bennyl alcohol	650	9	44/kg	650	650	3	ng/kg	650	650	9	ug/kg	650	650	3	14/gm	650
1,2-Dichlorobensene	330	3	ug/kg	330	330	>	ug/kg	330	330	3	ug/kg	330	330	3	# / kg	330
2-Methylphenol	330	9	ug/kg	330	330	9	ug/kg	330	330	9	18/kg	330	330	3	<b>1</b> 4/ <b>2</b>	330
bis(2-Chloroisopropy1)ether	330	,	74/kg	330	330	5	7/kg	330	330	9	1 / kg	330	330	9	2 / Kg	330
4-Nethylphenol	330	3	4 /kg	330	330	<b>,</b>	<b>18/kg</b>	330	330	3	7 / K	330	330	9 :		2 5
F-Kitroso-Di-M-propylamine	330	9	#\#  }	330	330	3	<b>3</b> / <b>2</b> / <b>3</b>	9 6	930	3	) )	2 6	250	<b>.</b>		
Hexach loroethane	330	3 :	84/8m	330	330	<b>5</b> :	8 / KB	330	330	<b>;</b> ;	) )	פליני	טננ פננ	<b>&gt;</b> :	) }	
Tit robestese	250	<b>&gt;</b> :		200	330	<b>.</b>	1 / E	ָ מַ מַ	פננ				95			
Leophorose	255	9 :		מני	920	<b>s</b> :		ה לה ה	מר ה מר ה	<b>;</b> ;		<u></u>	בר ה			2 5
2 Antimother shoot		9 :	, }	3 5	3.0		/	200	330	, ,		966	330	9	We/ke	330
Benoic acid	330	, ,	<b>[</b>	330	330	, ,	#/k	330	330	, ,	/	330	330	3	ug/kg	330
bie(2-Chloroethoxy)methane	1,650	3	#/#	650	1,650	9	ug/kg	1,650	1,650	5	W/kg	_	1,650	9	me/kg	.650
2,4-Dichlorophenol	330	9	# / F	330	330	3	4/kg	330	330	9	ag/kg		330	9	<b>1</b> 4/ <b>1</b> 6	330
1,2,4-Trichlorobensene	330	3	<b>11/17</b>	330	330	3	me/kg	330	330	9	<b>1</b> 4/ <b>2</b> n	330	330	9	¥ .	9
Maphthalene	330	3	<b>14/2</b>	330	330	,	ne/ke	330	330	3	4/kg	330	330	3	# / KE	330
2-Chlorosniline	<b>9</b>	3	<b>1</b> 4/ <b>2</b>	650	650	9	me/kg	650	650	9	<b>1</b> /10	650	650	3	7 × 6	0 0
Bezachlorobutadiene	330	3	# /k	000	330	3	<b>*</b>	330	330	>	¥ .	25	950	<b>s</b> :	) )	
4-Chloro-3-methylphenol	620	9	* / E	920	630	<b>.</b>	<b>3</b>	926	930	3 :	) }	ָ פַּרָ	930	<b>,</b>	* / *	
Z-Rethylnaphthalene	330	9 :	) }	9 6	930	<b>9</b> :		סננ	055	<b>.</b>	)	<u></u>		, :	,	300
nexacularocyclopentaniene		<b>,</b>		֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֡֓֓֡֓	000	. :	<b>1</b>	<u>ה</u>	פני	9 :	)	25	330	, ,	, a	330
2 4 S-Trickleropaemoi		<b>,</b>			טננ סננ	9 :	* * * * * * * * * * * * * * * * * * *	330	330	, =	/	3 2	330	, ,	, j	330
2-Chloropaphthalene	330	) 5	<b>1</b> / <b>1</b>	330	330		We/ke	330	330	3	ue/ke	330	330	3	44/kg	330
2-Bitroeniline	1.650	9	ug/kg	650	1,650	3	ue/ke	1,650	1,650	9	ME/kg	1,650	1,650	,	Ty/En	,650
Dimethyl phthalate	330	9	ue/ke	330	330	9	14/3n	330	330	7	ug/kg	330	330	9	ag/kg	330
Acenaphthylene	330	9	ug/kg	330	330	9	ug/kg	330	330	5	ug/kg	330	330	9	ag/kg	330
3-Hitrogniline	1,650	3	ug/kg	059,1	1,650	9	ME/FE	1,650	1,650	9	ug/kg	1,650	1,650	,	ug/kg	.650
Aceasphthene	330	9	ag/kg	330	330	9	ug/kg	330	330	7	ug/kg	330	330	3	<b>3</b> 4/ <b>5</b> n	330
2,4-Dinitrophenol	1,650	3	ay/an	1,650	1,650	,	mg/kg	1,650	1,650	3	ug/kg	1,650	1,650	9	<b>1</b> /4	,650
4-Hitrophenol	1,650	9	ng/kg	1,650	1,650	,	ug/kg	1,650	1,650	,	at/In	1,650	1,650	9		,650
Dibensofuran	330	,	ug/kg	330	330	,	ug/kg	330	330	9	<b>17/kg</b>	330	330	3	<b>3</b> / <b>3</b> / <b>3</b> /	330
2,4-Dinitrotoluene	330	9	ag/kg	330	330	9	ug/kg	330	330	9	ug/kg	330	330	9	ng/kg	330
2,6-Dimitrotoluene	330	9	14/2n	330	330	,	8x/8n	330	330	3	ng/kg	330	330	3	74/F	330
Diethylphthalate	330	9	ng/kg	330	330	=	<b>18/kg</b>	330	330	9	ug/kg	330	330	3	<b>14/8</b>	200
4-Chlorophenyl phenyl ether	330	3	ng/kg	330	330	9	ag/kg	330	330	J	1 kg	330	330	3	14/5m	330
Fluorene	330	3	ng/kg	330	330	5	ug/kg	330	330	7	ng/kg	330	330	3	<b>3</b> 4/ <b>5</b> n	330

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

PROJECT NO. : 2-885-06-624 PROJECT NAME: NANCOCK PIELD

SAIC SAMPLE INMUTIFICATION FIELD INMUTIFICATION MAYBER	~	8725800 P\$B-1	•		<b>60</b> T	87258005 FSD-2 SOTE	<b>~</b>		•	87258006 FSE-1	•		••	8725007 FSE-2		
AAS-ERPTAALS/ACID EXTRACTABLES (SME270)	TEST (07	Ţ.		. TOI	TEST	3	UNITS	2	TEST	94	UNITS	JO.	TEST	3	118	ğ
	' <b>i</b>				937		4				7					
	0001	9 ;	¥ .	000	069.1	3 :	¥ / ¥	200	0001	3	) }	26.	000.	3		000
W.W.trosodishearlanise	96.	9 9	<b>7</b> /	) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	330	s =		0.0	00,0	<b>s</b> :	) }	פני	000	<b>;</b> ;	) )	96.6
4-Branophenyl phenyl ether	330	, 3	\ \ \ \	330	330	, 5	uk/ke	330	330	, 2	/k	300	330	, 2	#\ #\	330
Bezachlorobenzene	330	3	ue/ke	330	330	3	ug/kg	330	330	• •	ue/ke	2	330	9	4/4	330
Pentach lorophenol	1,650	9	ug/kg	1,650	1,650	3	# / FE	1,650	1,650	3	ug/kg	1,650	1,650	9	an/ke	650
Phenanthrene	2,000		ug/kg	330	330	3	ug/kg	330	330	3	ug/kg	330	330	3	# / KE	330
Anthracene	330	3	4/4	330	330	3	ug/kg	330	330	>	ug/kg	330	330	9	ME/KE	330
Di-m-butylphthalate	330	3	ue/ke	330	330	3	at/kg	330	330	3	4 / Kg	330	330	9	ME/KE	330
Fluoranthene	2,100		14/2m	330	330	3	1/m	330	330	,	ME/KE	330	330	3	44/kg	330
Pyrene	4,500		46/kg	330	330	3	ag/kg	330	1,200		ug/kg	330	330	7	ng/kg	330
Butyl bennyl phthalate	330	9	<b>1</b> / <b>3</b>	330	330	3	ug/kg	330	330	9	ag/kg	330	330	2	ug/kg	330
3, 3'-Dichlorobengidine	650	9	# / Kg	650	650	9	ug/kg	650	650	,	14/2m	650	650	9	ug/kg	650
Denso(e) anthracene	1,800		ug/kg	330	330	>	ug/kg	330	330	3	ug/kg	330	330	3	ug/kg	330
bio(2-Ethylhezyl)phthalate	35		ug/kg	330	330	3	<b>3</b> 4/ <b>5</b> 6	330	3,000		<b>17/5</b>	330	630		13/8n	330
Chrysene	1,600		24/2m	330	330	9	ug/kg	330	330	9	<b>14/20</b>	330	330	3	ug/kg	330
Di-m-octyl phthalate	330	9	<b>1</b> /2	330	330	3	ug/kg	330	330	9	ag/kg	330	330	3	<b>11/2</b>	330
Senzo(b) fluoranthene	2,200		# / F.E	330	330	9	at/te	330	330	9	ug/kg	330	330	9	Ty/Sn	330
Bengo(k) fluoranthene	2,200		4 /kg	330	330	3	ug/kg	330	330	9	ug/kg	330	330	,	ug/kg	330
Denzo(a) pyrene	2,400		ug/kg	330	330	5	ug/kg	330	330	9	ug/kg	330	330	9	ug/kg	330
Indeao(1,2,3-c,d)pyrene	330	9	WE/RE	330	330	9	ug/kg	330	330	9	ug/kg	330	330	9	ug/kg	330
Dibeas(a,b)anthracene	330	=	#/k	330	330	2	ug/kg	330	330	9	ug/kg	330	330	9	ag/kg	330
Benzo(g, h, i) perylene	330	,	ug/kg	330	330	5	ug/kg	330	330	9	<b>ug/kg</b>	330	330	9	Tr/In	330

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

PROJECT NO. : 2-885-06-624 PROJECT NAME: MANCOCK PIELD

SAIC SAMPLE IDENTIPICATION PIRLD IDENTIPICATION MATRIX	•	87258008 FSF-1 801L	•		<b>60</b>	87258009 FSF-2 SOIL	<b>•</b>		•••	87258010 FSG-1 SOIL	0		
BASE-WEUTRALS/ACID EXTRACTABLES (\$46270)	TEST MESULTS	71.46	UNITS	5	TEST RESULTS	FLAG	UNITS	2	TEST	71.46	UNITS	5	_
Phenol	330	5	ug/kg	330	330	,	ug/kg	330	330	,	ue/ke	330	_
bis(2-Chloroethyl)ether	330	9	ug/kg	330	330	9	ng/kg	330	330	3	ug/kg	330	
2-Chlorophenol	330	9	44/14	330	330	3	ug/kg	330	330	9	ug/kg	330	
1,3-Dichlorobensene	330	9	#/#	330	330	3	ug/kg	330	330	9	UE/KE	330	
1,4-Dichlorobensene	330	,	14/2n	330	330	9	ug/kg	330	330	3	ug/kg	330	
Bennyl alcohol	650	9	# / Kg	<b>6</b> 50	650	5	ug/kg	650	650	9	ug/kg	<b>6</b> 50	
1,2-Dichlorobenzene	330	7	4 /kg	330	330	9	ug/kg	330	330	9	# / KE	330	
2-Methylphenol	330	9	14/16	330	330	9	ug/kg	330	330	9	ug/kg	330	
bis(2-Chloroisopropy1)ether	330	3	4 / kg	330	330	3	ug/kg	330	330	3	ng/kg	330	
4-Nethylphenol	330	9	ug/kg	32	330	9	ug/kg	330	330	3	ug/kg	330	
M-Mitroso-Di-M-propylesine	330	3	<b>1</b> /2	330	330	3	Ty/En	330	330	9	ne/ke	330	
Hezach loroethane	330	9	ng/kg	330	330	3	14/8m	330	330	9	<b>1</b> /10	330	
Hitrobentene	330	9	<b>1</b> / <b>1 1</b>	020	330	9	7 / K	330	330	,	<b>3</b> / <b>3</b>	230	
Leophorose	330	3	#    -	939	330	5	# / # E	930	330	9	<b>1</b> / <b>1</b> / <b>2</b>	330	
Z-Hitrophenol	330	9	# . }	96	330	5	# / K	000	330	3	<b>*</b>	98	
Z,4-Dimethylphenol	330	9	¥ .	96	330	3	# /# /# /# /# /# /# /# /# /# /# /# /# /#	900	330	9		200	
bis/2-(%) organizations	95	<b>)</b>		בר ה ה	055	9 ;			000	<b>3</b> :	) }	חלק ה	. •
2.4-Dich oroshens	06.6	• :		5.5		, :	<b>1</b>	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֓֡֓֡	000.		,		
1.2.4-Trichlorobenene	25	, :		300	פרני פרני		,	9 6	330	;	,	3 5	:
Maphthalene	330	, 5	,	330	330		/ ke	330	330	9	, a	330	
2-Chloroeniline	650	•	4 / F	650	650		<b>/</b>	650	650	5	us/kg	650	
Bezach lorobut ad i ene	330	9	# / Kg	330	330	9	de/kg	330	330	3	ug/kg	330	
4-Chloro-3-methylphenol	650	3	ag/kg	650	650	9	# / F.E	<b>6</b> 50	650	5	ug/kg	<b>6</b> 50	
2-Hethylnaphthelene	330	=	34/3n	330	330	3	4/4	330	330	9	4/4	330	
Hezach lorocy clopentadiene	330	3	ug/kg	330	330	9	ug/kg	330	330	3	ug/kg	330	
2,4,6-Trichlorophenol	330	3	14/15 15	330	330	3	ug/kg	330	330	9	ug/kg	330	
2,4,5-Trichlorophenol	330	9	<b>1</b> /4	330	330	9	ne/re	330	330	3	ng/kg	330	
Z-Chloronephthelene	330	3	ug/kg	330	330	9	ne/kg	330	330	9	ut/kg	330	
Z-Bitroeailine	1,650	3	<b>3</b> 4/ <b>3</b> n	1,650	1,650	3	<b>18/kg</b>	650	1,650	9	<b>1</b> /4	1,650	
ormerny: parmetere	330	7	<b>1</b> / <b>1</b>	330	330	9	<b>3</b> 1/ <b>3</b> n	330	330	9	# /# ·	330	
Acendrating lene	330	,	# / KE	330	330	3	8 / KB	330	330	3	# **	330	
3-11 trosa   1 me	1,650	9	<b>3</b> 1/ <b>3</b> n	1,650	1,650	3		059,1	1,650	9	<b>1</b> /15	1,650	
Acesephthese	330	3	# /# /# /# /# /# /# /# /# /# /# /# /# /#	330	330	9	Sy/Sn	330	330	3	<b>1</b> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330	
2,4-Dinitrophenol	1,650	9	ng/kg	1,650	1,650	9	24/2n	1,650	1,650	5	me/kg	059	
4-Hitrophesol	1,650	9	14/gn	1,650	1,650	3	# / KG	059,	1,650	3	# / k	650	
Dibentofuran	330	9	7/kg	330	330	9	ng/kg	330	330	9	ug/kg	330	
Z,4-Dinitrotoluene	330	9	ng/kg	330	330	9	ug/kg	330	330	3	84/8n	330	
2,6-Dinitrotoluene	330	7	mg/kg	330	330	,	ug/kg	330	330	9	14/En	330	
Diethylphthelate	330	9	14/8n	330	330	3	ng/kg	330	330	9	ug/kg	330	
4-Chlorophenyl phenyl ether	330	9	ug/kg	330	330	9	ug/kg	330	330	9	ng/kg	330	
7) worene	330	=	Ty/Sn	330	330	9	ug/kg	330	330	9	ug/kg	330	

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

PROJECT NO. : 2-885-06-624 PROJECT NAME: NANCOCK PIELD

UNITS ug/kg ug/kg ug/kg 87258010 FSG-1 801L RESULTS FLAG 1,650 1,650 460 400 330 330 1,650 87258009 FSF-2 RESULTS 4/4 **** 87258008 FSF-1 **301**L 8 8 3 8 8 8 9 8 2222222222 650 RESULTS 1,650 2222 MASE-MUTRALS/ACID EXTRACTABLES (SW\$270) H-Hitrocodiphenylamine 4-Bromophenyl phenyl ether Henschlorobensene Pentachlorophenol Phenanthrene bis(2-Ethylhexyl)phthalate 4,6-Dinitro-2-methylphenol Indeno(1,2,3-c,d)pyrene Dibens(a,h)anthracene Butyl bennyl phthalate 3,3'-Dichlorobennidine SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION Chrysene Di-n-octyl phthalate Benso(b)fluoranthene Pago(k)fluoranthene benzo(g,h,i)perylene Di-n-butylphthelate benzo(a)anthracene Benzo(a)pyrene 4-Hitrosailine Pluorant hene Anthracene 77.08 MATRIX

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

PROJECT NO. : 2-885-06-624 PROJECT NAME: MANCOCK FIRLD

TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST	SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION		87258038 EW-1	•		ž	Method Blank	l enk	
TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST   TEST	TA . K . A. A		ROGEOGR				QUEOU	•	
0.11 u ug/1 0.11 0.011 u ug/1 0.11 0.011 u ug/1 0.11 0.012 u ug/1 0.12 0.013 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1 0.15 0 u ug/1	ORCANDCALORINE PESTICIDES/PCBS (8608)	TEST	PLAG	UNITS	Š	TRST RESULTS	71.46	!	
0.31 u ug/1 0.31 0.0032 u ug/1 0.15 0.013 u ug/1 0.15 0.013 u ug/1 0.15 0.013 u ug/1 0.15 0.013 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.015 u ug/1 0.15 0.022 u ug/1 0.22 0.023 u ug/1 0.22 0.023 u ug/1 0.23 0.023 u ug/1 0.23 0.024 u ug/1 0.23 0.024 u ug/1 0.23 0.025 u ug/1 0.23 0.025 u ug/1 0.25 0.033 u ug/1 0.25 0.033 u ug/1 0.25 0.033 u ug/1 0.25 0.033 u ug/1 0.25 0.034 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.23 0.035 u ug/1 0.23 0.035 u ug/1 0.23 0.035 u ug/1 0.23 0.035 u ug/1 0.23 0.035 u ug/1 0.23 0.035 u ug/1 0.23 0.035 u ug/1 0.23 0.035 u ug/1 0.23 0.035 u ug/1 0.23 0.035 u ug/1 0.23 0.035 u ug/1 0.23 0.035 u ug/1 0.035 u ug/1 0.035 u ug/1 0.035 u ug/1 0.035 u ug/1 0.035 u ug/1 0.035 u ug/1 0.035 u ug/1 0.035 u ug/1 0.035 u ug/1 0.035 u ug/1 0.005 u ug/1 0.005 u ug/1 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.00000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000		0.11	,	1/20	9.11	0.011	3	1/95	0.011
0.12 u ug/1 0.12 0.013 u ug/1 0.15 u ug/1 0.15 u ug/1 0.15 0.016 u ug/1 0.15 0.016 u ug/1 0.19 0.016 u ug/1 0.19 0.015 u ug/1 0.19 0.020 u ug/1 0.20 0.022 u ug/1 0.22 0.023 u ug/1 0.22 0.023 u ug/1 0.23 0.034 u ug/1 0.23 u ug/1 0.23 0.035 u ug/1 0.23 u ug/1 0.23 0.035 u ug/1 0.25 u ug/1 0.23 0.037 u ug/1 0.25 u ug/1 0.25 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0 ug/1 0.037 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.33 u ug/1 0.34 u ug/1 0.34 u ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0.04 ug/1 0	y-Mic	0.31	9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.31	0.032	. 5	     	0.032
0.15 u ug/1 0.15 0.016 u ug/1 0.15 u ug/1 0.16 u ug/1 0.17 0.018 u ug/1 0.19 0.020 u ug/1 0.22 0.023 u ug/1 0.22 0.023 u ug/1 0.23 0.023 u ug/1 0.23 0.023 u ug/1 0.23 0.024 u ug/1 0.23 0.025 u ug/1 0.23 0.025 u ug/1 0.23 0.025 u ug/1 0.23 0.025 u ug/1 0.23 0.025 u ug/1 0.23 0.025 u ug/1 0.23 0.025 u ug/1 0.23 0.026 u ug/1 0.25 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 u ug/1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	7-86C	0.12	3	7	0.12	0.013	3	,   	0.013
0.16 u ug/1 0.16 0.017 u ug/1 0.19 0.018 u ug/1 0.19 0.002 u ug/1 0.22 0.023 u ug/1 0.22 0.023 u ug/1 0.22 0.023 u ug/1 0.22 0.023 u ug/1 0.23 0.033 u ug/1 0.23 0.033 u ug/1 0.23 0.033 u ug/1 0.23 0.033 u ug/1 0.23 0.033 u ug/1 0.23 0.034 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.25 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0 u ug/1 0.35 0 u ug/1 0.35 0 u ug/1 0.35 0 u ug/1 0.33 0 u ug/1 0.33 0 u ug/1 0.33 0 u ug/1 0.33 0 u ug/1 0.33 0 u ug/1 0.33 0 u ug/1 0.34 0 u ug/1 0.35 0 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.37 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u ug/1 0.00 u	Heptach lor	0.15	9	7	0.15	910.0	3	£/1	9.00
0.17 u ug/1 0.17 0.018 u ug/1 0.15 u ug/1 0.15 u ug/1 0.19 0.020 u ug/1 0.25 u ug/1 0.25 0.023 u ug/1 0.25 0.023 u ug/1 0.25 0.023 u ug/1 0.29 0.030 u ug/1 0.29 0.030 u ug/1 0.29 0.030 u ug/1 0.29 0.030 u ug/1 0.23 u ug/1 0.23 0.024 u ug/1 0.25 u ug/1 0.23 0.025 u ug/1 0.25 u ug/1 0.25 0.035 u ug/1 0.25 u ug/1 0.25 0.035 u ug/1 0.25 u ug/1 0.25 0.035 u ug/1 0.25 u ug/1 0.25 0.035 u ug/1 0.25 u ug/1 0.25 0.035 u ug/1 0.25 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.35 u ug/1 0.20 0.3	9-13C	0.16	3	<b>1/3</b> n	9.10	0.017	3	7	0.017
0.19 u ug/l 0.19 0.020 u ug/l 0.22 u ug/l 0.25 0.023 u ug/l 0.23 u ug/l 0.22 0.023 u ug/l 0.23 u ug/l 0.23 0.034 u ug/l 0.23 u ug/l 0.23 0.034 u ug/l 0.25 u ug/l 0.23 0.037 u ug/l 0.25 u ug/l 0.23 0.037 u ug/l 0.35 u ug/l 0.25 0.037 u ug/l 0.35 u ug/l 0.25 0.036 u ug/l 0.35 u ug/l 0.35 0.036 u ug/l 0.35 u ug/l 1.0 u ug/l 0.30 u ug/l 2.3 2.7 u ug/l 0.30 u ug/l 2.3 2.3 u ug/l 0.31 u ug/l 2.3 2.3 u ug/l 0.32 u ug/l 2.3 2.3 u ug/l 0.33 u ug/l 2.3 2.3 u ug/l 0.34 u ug/l 2.3 2.3 u ug/l 0.35 u ug/l 2.3 2.3 u ug/l 0.36 u ug/l 2.3 2.3 u ug/l 0.37 u ug/l 2.3 2.3 u ug/l 0.39 u ug/l 2.3 2.3 u ug/l 0.30 u ug/l 2.3 2.3 u ug/l 0.30 u ug/l 2.3 2.3 u ug/l 0.30 u ug/l 2.3 2.3 u ug/l 0.30 u ug/l 2.3 2.3 u ug/l 0.30 u ug/l 2.3 2.3 u ug/l 0.30 u ug/l 2.3 2.3 u ug/l 0.30 u ug/l 2.3 2.3 u ug/l 0.30 u ug/l 2.3 2.3 u ug/l 0.30 u ug/l 2.3 2.3 u ug/l 0.30 u ug/l 2.3 2.3 u ug/l 0.30 u ug/l 2.4 2.4 u ug/l 0.60 u ug/l 3.0 0.50 u ug/l 0.60 u ug/l 1.400 140 u ug/l 0.60 u ug/l 1.400 140 u ug/l	Aldrin	0.17	9	<b>1</b>	0.17	0.018	3	- T	0.018
0.26 u ug/1 0.26 0.027 u ug/1 0.22 0.022 u ug/1 0.22 0.023 u ug/1 0.22 0.023 u ug/1 0.22 0.023 u ug/1 0.22 0.023 u ug/1 0.23 0.024 u ug/1 0.23 0.024 u ug/1 0.23 0.024 u ug/1 0.25 u ug/1 0.25 0.026 u ug/1 0.25 0.026 u ug/1 0.25 u ug/1 0.25 0.026 u ug/1 0.25 u ug/1 0.25 0.026 u ug/1 0.25 u ug/1 1.7 u ug/1 1.7 u ug/1 1.6 u ug/1 1.7 u ug/1 1.7 u ug/1 1.7 u ug/1 1.7 u ug/1 1.7 u ug/1 1.7 u ug/1 1.7 u ug/1 2.2 u ug/1 2.2 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4	Heptachlor epoxide	0.19	5	<b>1/3</b> m	0.19	0.020	7	7	0.020
0.22 u ug/1 0.22 0.023 u ug/1 0.22 0.023 u ug/1 0.22 0.023 u ug/1 0.22 0.023 u ug/1 0.22 0.023 u ug/1 0.23 0.024 u ug/1 0.23 0.024 u ug/1 0.23 0.024 u ug/1 0.23 0.024 u ug/1 0.23 0.024 u ug/1 0.23 0.024 u ug/1 0.23 0.024 u ug/1 0.25 u ug/1 0.25 u ug/1 0.25 u ug/1 0.25 u ug/1 1.0 ug/1 1.0 ug/1 1.0 ug/1 1.0 ug/1 1.0 ug/1 1.0 ug/1 1.0 ug/1 1.0 ug/1 1.0 ug/1 1.0 ug/1 1.0 ug/1 1.0 ug/1 1.0 ug/1 1.0 ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.4 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u ug/1 2.5 u	Endosulfan I	0.26	3	7	0.26	0.027	3	1/ <b>3</b> n	0.027
0.22 u ug/l 0.22 0.023 u ug/l 0.23 u ug/l 0.29 0.030 u ug/l 0.23 u ug/l 0.29 0.034 u ug/l 0.25 u ug/l 0.23 0.024 u ug/l 0.25 u ug/l 0.25 0.026 u ug/l 0.25 u ug/l 0.25 0.026 u ug/l 0.25 u ug/l 0.25 0.026 u ug/l 0.25 u ug/l 0.25 0.037 u ug/l 19 u ug/l 10 1.0 u ug/l 10 u ug/l 10 1.0 u ug/l 10 u ug/l 2.0 2.0 u ug/l 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 2.3 u ug/l 2.5 u ug/l 2.3 2.3 u ug/l 2.5 u ug/l 2.5 2.2 u ug/l 2.6 u ug/l 2.5 2.2 u ug/l 3.0 u ug/l 2.5 2.2 u ug/l 3.0 u ug/l 2.5 2.2 u ug/l 3.0 u ug/l 2.5 2.2 u ug/l 3.0 u ug/l 2.5 2.2 u ug/l 3.0 u ug/l 2.5 2.2 u ug/l 3.0 u ug/l 2.5 0.65 u ug/l 2.6 u ug/l 2.6 0.56 u ug/l 2.6 u ug/l 1.5 0.0 0.5 u ug/l 2.7 u ug/l 1.5 0.0 0.5 u ug/l 2.8 u ug/l 1.5 0.0 0.5 u ug/l 2.9 u ug/l 1.5 0.0 0.5 u ug/l 3.0 u ug/l 1.5 0.0 0.5 u ug/l 3.0 u ug/l 1.5 0.0 0.5 u ug/l 3.0 u ug/l 1.5 0.0 0.5 u ug/l 3.0 u ug/l 1.5 0.0 0.5 u ug/l	300-, 7' 7	0.12	9	7	0.22	0.023	9	ug/1	0.023
0.29 u ug/1 0.29 0.030 u ug/1 0.29 0.033 u ug/1 0.23 0.023 u ug/1 0.23 0.024 u ug/1 0.23 0.025 u ug/1 0.23 0.025 u ug/1 0.23 0.025 u ug/1 0.25 0.025 u ug/1 0.25 0.025 u ug/1 0.25 0.025 u ug/1 0.25 0.025 u ug/1 0.25 0.035 u ug/1 0.25 0.035 u ug/1 1.7 u ug/1 10 1.0 u ug/1 10 1.0 u ug/1 10 1.0 u ug/1 10 1.0 u ug/1 2.2 u ug/1 3.0 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u	Dieldrin	0.22	9	7	0.22	0.023	9	<b>1/3</b> n	0.023
0.32 u ug/1 0.32 0.033 u ug/1 0.23 0.024 u ug/1 0.23 0.025 u ug/1 0.23 0.026 u ug/1 0.25 0.026 u ug/1 0.25 0.025 u ug/1 0.25 0.026 u ug/1 0.25 0.035 u ug/1 0.35 0.037 u ug/1 0.35 0.037 u ug/1 0.35 0.035 u ug/1 0.35 u ug/1 10 u ug/1 10 u ug/1 10 u ug/1 10 u ug/1 10 u ug/1 10 u ug/1 10 u ug/1 10 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 2.0 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.0 0.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00 u ug/1 2.00		0.29	3	7	0.29	0.030	3	7	0.030
0.23 u ug/1 0.23 0.024 u ug/1 0.23 0.025 u ug/1 0.23 0.025 u ug/1 0.25 0.025 u ug/1 0.25 0.025 u ug/1 0.25 u ug/1 0.25 0.025 u ug/1 0.25 0.025 u ug/1 0.25 0.025 u ug/1 0.25 0.025 u ug/1 0.25 0.025 u ug/1 0.25 0.025 u ug/1 10 u ug/1 10 u ug/1 10 u ug/1 1.0 u ug/1 1.0 u ug/1 1.0 u ug/1 1.0 u ug/1 1.0 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2		0.32	9	7	0.32	0.033	9	7	0.033
0.23 u ug/1 0.25 0.024 u ug/1 0.25 0.037 u ug/1 0.25 0.037 u ug/1 0.25 0.037 u ug/1 0.25 0.035 u ug/1 19 u ug/1 19 u ug/1 19 0.35 u ug/1 19 u ug/1 16 1.7 u ug/1 16 1.7 u ug/1 16 1.7 u ug/1 16 1.7 u ug/1 16 1.7 u ug/1 16 1.7 u ug/1 2.2 u ug/1 3.0 0.65 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u	Endoduiten II	0.23	3	\ \ \ \ \	0.23	0.024	9	7	0.024
0.25 u ug/1 0.25 0.037 u ug/1 0.25 0.037 u ug/1 0.25 0.026 u ug/1 19 2.0 u ug/1 19 2.0 u ug/1 19 2.0 u ug/1 19 2.0 u ug/1 19 2.0 u ug/1 19 2.0 u ug/1 19 2.0 u ug/1 10 1.0 u ug/1 10 1.0 u ug/1 10 1.0 u ug/1 10 1.0 u ug/1 2.2 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1 2.4 u ug/1		0.23	9	, ,	0.23	0.024	9	7	0.024
1.6 to ug/1 0.25 0.026 u ug/1 0.55 0.026 u ug/1 0.55 u ug/1 2.6 u ug/1 2.6 2.7 u ug/1 1.6 1.7 u ug/1 1.6 1.7 u ug/1 1.6 1.7 u ug/1 1.6 1.7 u ug/1 1.6 1.7 u ug/1 2.2 u ug/1 5.2 0.85 u ug/1 2.2 u ug/1 5.2 0.56 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u ug/1 2.3 u		0.35	=	[/ <b>3</b>	0.35	0.037	9	7	0.037
3.4 u ug/l 3.4 0.35 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 2.7 u ug/l 10 u ug/l 10 u ug/l 10 u ug/l 10 u ug/l 10 u ug/l 10 u ug/l 10 u ug/l 2.2 u ug/l 2.2 u ug/l 2.2 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/		0.23	9	\ \ \ \	0.25	0.026	3	<b>3</b> :	0.026
6.5 u ug/1 6.5 0.89 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u ug/1 6.5 u		4.6	3	7 <b>%</b>	4 5	0.35	2	<b>3</b>	0.35
6.5 u ug/1 6.5 0.39 u ug/1 6.5 4.4 u ug/1 6.1 0.85 u ug/1 6.1 0.85 u ug/1 6.2 0.54 u ug/1 6.1 0.85 u ug/1 5.2 0.54 u ug/1 5.2 0.54 u ug/1 5.2 0.54 u ug/1 5.2 0.54 u ug/1 2.3 0.46 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.3 0.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u ug/1 2.0 u u		2	<b>3</b> :	7/17	<u> </u>	2.0	5	<b>3</b> :	2.0
40 u ug/l 16 1.7 u ug/l 16 1.7 u ug/l 16 u ug/l 16 1.7 u ug/l 16 1.7 u ug/l 16 1.7 u ug/l 16 1.7 u ug/l 16 1.7 u ug/l 16 1.7 u ug/l 16 1.7 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l 17 u ug/l		<b>.</b>	<b>3</b> :		<u>.</u>	0.89	3	1/ <b>8</b> n	9.8
40 u ug/l 10 1.0 u ug/l 5.2 u ug/l 5.2 u ug/l 5.2 0.54 u ug/l 5.2 0.54 u ug/l 5.2 0.54 u ug/l 5.2 0.54 u ug/l 5.2 0.54 u ug/l 2.0 0.66 u ug/l 2.0 ug/l 2.0 u ug/l 2.0 2.0 u ug/l 2.0 2.0 u ug/l 2.0 2.0 u ug/l 2.0 2.0 u ug/l 2.0 2.0 u ug/l 2.0 2.0 u ug/l 2.0 2.0 u ug/l 2.0 2.0 u ug/l 2.0 2.0 u ug/l 2.0 0.05 u ug/l 2.0 u ug/l 2.0 2.0 u ug/l 2.0 u ug/l 2.0 2.0 u ug/l 2.0 u ug/l 2.0 0.05 u ug/l 2.0 u ug/l 2.0 0.05 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 u ug/l 2.0 ug/l 2.0 u ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0	PCP-121	9 :	9 :		2 :	2.7	3	7/ <b>3</b>	2.7
6.5 u ug/l 6.5 0.65 u ug/l 6.4 u ug/l 6.5 u ug/l 6.4 u ug/l 6.5 u ug/l 6.4 u ug/l 6.5 u ug/l 6.5 u ug/l 6.5 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u	FCT-125	2 9	<b>5</b> ;	7	9 9	<u>:</u> :	3	] }	``
4.4 u ug/1 5.2 0.56 u ug/1 4.6 u ug/1 5.2 0.56 u ug/1 3.0 u ug/1 2.3 2.3 u ug/1 2.3 u ug/1 2.3 2.3 u ug/1 2.3 u ug/1 2.3 2.3 u ug/1 2.3 u ug/1 2.3 2.3 u ug/1 2.3 u ug/1 2.3 2.3 u ug/1 2.3 u ug/1 2.3 2.3 u ug/1 2.3 u ug/1 2.3 2.3 u ug/1 2.5 u ug/1 2.5 2.3 u ug/1 3.7 u ug/1 2.5 2.2 u ug/1 3.8 u ug/1 3.7 0.37 u ug/1 3.9 u ug/1 3.7 0.37 u ug/1 3.0 u ug/1 3.7 0.37 u ug/1 3.0 u ug/1 3.7 0.37 u ug/1 3.0 u ug/1 3.7 0.37 u ug/1 3.0 u ug/1 3.7 0.37 u ug/1 3.0 u ug/1 3.6 0.66 u ug/1 3.0 u ug/1 1.9 0 u ug/1 3.0 u ug/1 1.400 u ug/1 3.0 u ug/1 3.90 1.0 ug/1	PCB-1248	2 -	<b>j</b> :	7	≘;	2.0	9 :	7	0.1
4.6 u ug/l 4.6 0.46 u ug/l 3.0 3.0 u ug/l 3.0 u ug/l 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 3.7 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 2.2 u ug/l 3.7 0.56 u ug/l 3.6 0.66 u ug/l 1.3 u ug/l 3.6 0.66 u ug/l 1.3 u ug/l 3.6 0.66 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l	PCP-1254		<b>9</b> 1			6.0	<b>)</b>	) )	6.0
40 u ug/l 40 40 u ug/l 3.0 u ug/l 2.0 u ug/l 3.0 u ug/l 2.0 u ug/l 2.0 2.0 u ug/l 2.0 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0 u ug/l 3.7 0.0	PCB-1260	3.5	<b>.</b>		7.6	0.04	<b>:</b> c	<b>3</b> 5	6.0
40 u ug/l 40 40 u ug/l  2.0 u ug/l 2.0 2.0 u ug/l  2.3 u ug/l 2.3 2.3 u ug/l  2.3 u ug/l 2.3 2.3 u ug/l  2.3 u ug/l 2.3 2.3 u ug/l  2.3 u ug/l 2.3 2.3 u ug/l  3.0 u ug/l 2.3 2.3 u ug/l  3.0 u ug/l 2.3 2.3 u ug/l  3.0 u ug/l 3.7 0.37 u ug/l  3.0 u ug/l 3.7 0.37 u ug/l  3.0 u ug/l 3.7 0.37 u ug/l  3.0 u ug/l 3.7 0.45 u ug/l  3.0 u ug/l 1.3 u ug/l  3.0 u ug/l 1.3 u ug/l  3.0 u ug/l 3.0 u ug/l  3.0 u ug/l 3.0 u ug/l  3.0 u ug/l 3.0 u ug/l  3.0 u ug/l 3.0 u ug/l  3.0 u ug/l 3.0 u ug/l  3.0 u ug/l 3.0 u ug/l  3.0 u ug/l 3.0 u ug/l  3.0 u ug/l 3.0 u ug/l	ORGANOPHOSPHORUS PESTICIORS (RAIA)	•	,		•		=	1 /20	
(R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)									
3.0 u ug/l 3.0 3.0 u ug/l 2.3 2.0 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 3.7 0.37 u ug/l 2.2 u ug/l 3.7 0.37 u ug/l 2.2 u ug/l 3.7 0.37 u ug/l 2.2 u ug/l 3.0 u ug/l 2.4 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 2.5 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/l 3.0 u ug/	Asimphos, methyl	9	7	<b>ng/1</b>	9	40	9	1/ <b>8</b> n	9
(E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)  (E615)	Desetos-8	3.0	9	1/87	3.0	3.0	3	1/10	3.0
(R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)		2.0	9	1/ <b>8</b> n	7.0	2.0	3	1/ <b>8</b> n	7.0
(R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R615)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)  (R616)	Dieutroton	2.3	5	<b>1/8</b>	2.3	2.3	9	<b>1/3</b> n	2.3
(R615)  2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 2.3 2.3 u ug/l 2.3 2.3 u ug/l 2.3 u ug/l 2.3 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 3.7 u ug/l 2.2 u ug/l 3.7 u ug/l 2.2 u ug/l 2.2 2.2 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u ug/l 2.4 u		2.3	9	7 m	2.3	2.3	2	7	2.3
(E615)  2.3 u ug/1 2.3 2.3 u ug/1 2.3 2.3 u ug/1 2.3 u ug/1 2.3 2.3 u ug/1 3.7 0.37 u ug/1 3.7 0.37 u ug/1 3.7 0.37 u ug/1 3.0 u ug/1 2.2 2.2 u ug/1 2.2 2.2 u ug/1 2.2 2.2 u ug/1 1.3 u ug/1 1.3 u ug/1 1.3 u ug/1 1.400 1.0 u ug/1 1.400 1.0 u ug/1 1.400 1.0 u ug/1 1.400 1.0 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u		<b>1</b>	ပ	<b>1</b> ;	m (	e. e.	3	1/8n	e
(R615)  6.5 u ug/1 2.3 2.3 u ug/1 3.7 3.7 u ug/1 3.7 u ug/1 3.7 u ug/1 3.7 u ug/1 3.7 u ug/1 3.7 0.37 u ug/1 2.2 u ug/1 3.7 0.37 u ug/1 1.3 u ug/1 1.3 u ug/1 1.3 u ug/1 1.3 u ug/1 1.40 u ug/1 1.40 u ug/1 1.40 u ug/1 1.400 1.40 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug/1 3.9 u ug		<b>7.</b> 7	9	7 :	2.3	2.3	9	\ \ \ \	2.3
6.5 u ug/l 6.5 0.65 u ug/l 3.7 u ug/l 3.7 0.37 u ug/l 30 u ug/l 3.7 0.37 u ug/l 22 u ug/l 22 2.2 u ug/l 13 u ug/l 13 1.3 u ug/l 24 u ug/l 24 2.4 u ug/l 5.6 u ug/l 5.6 0.56 u ug/l 10 u ug/l 1,400 140 u ug/l 390 u ug/l 390 u ug/l	CHLORIMATED MERBICIDES (R615)	7.3	5	1/ <b>3</b> n	2.3	2.3	<b>-</b>	1/ <b>8</b> 5	2.3
3.7 u ug/l 3.7 0.37 u ug/l 3.7 0.37 u ug/l 3.0 u ug/l 3.0 3.0 u ug/l 1.3 u ug/l 1.3 u ug/l 1.3 u ug/l 5.6 u ug/l 5.6 u ug/l 1.0 u ug/l 1.400 u ug/l 1.400 u ug/l 3.9 u ug/l 3.9 u ug/l 3.9 u ug/l 3.9 u ug/l 3.9 u ug/l 3.9 u ug/l 3.9 u ug/l 3.9 u ug/l 3.9 u ug/l 3.9 u ug/l 3.9 u ug/l 3.9 u ug/l 3.9 u ug/l	2.4.5-7	*	:	7	,	97 0	:	1, 4,	
30 u ug/l 30 3.0 u ug/l 30 3.0 u ug/l 30 3.0 u ug/l 12 2.2 2.2 u ug/l 13 1.3 u ug/l 24 2.4 u ug/l 24 2.4 u ug/l 5.6 u ug/l 5.6 u ug/l 1.0 u ug/l 1.0 u ug/l 1.400 140 u ug/l 390 u ug/l 390 u ug/l 390 u ug/l	2.4.5-TP (Rilwer)		,			9.00	,	, ,	6.6
22 u ug/l 22 2.2 u ug/l 13 u ug/l 13 u ug/l 13 u ug/l 13 u ug/l 24 2.4 u ug/l 24 2.6 u ug/l 0.56 u ug/l 0.56 u ug/l 1.0 u ug/l 1.400 u ug/l 1.400 u ug/l 1.400 u ug/l 390 u ug/l 390 u ug/l	2.4-8		9 ;	) )	7.5	); ·	3	<b>1</b>	e. 3
24 u ug/1 13 1.3 u ug/1 24 2.4 u ug/1 25 0.56 u ug/1 26 0.56 u ug/1 0 0.56 u ug/1 0 1.0 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 390 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,400 u ug/1 1,4	2 4=18	2 :	<b>.</b>	<b>.</b>	3 8	. ·	<b>=</b>	1 ;	٥ ·
1	Dalanon	7 :	<b>,</b>	\ \ \ \ \ \ \ \	7:	2.2	=	1/ <b>9</b> n	2.2
		2 2	<b>-</b>		2 ;	-	7	*	-
1,400 u ug/l 1,400 140 140/1 390 u ug/l 390 140 u ug/l 1,400 u ug/l 1,400 140 u ug/l	5.01010101010101010101010101010101010101	* ;	9 :		5	7.7	2	1 / 8n	2.4
1,400 u ug/1 1,400 140 u ug/1 390 u ug/1 390 39 u ug/1	Dinoeeb	9 9	, :	; ;	9 9	5 -	<b>5</b> :	7	
190 n 66 1/3 n 066 1/3 n 066 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1/3 n 07 1	HCPA	1.400	, =	7	1.400	071	, :	; ;	2 2
	MCPP	390	9	ug/1	390	36	, 5	, en	6

304

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

2-885-06-624	HANCOCK PIELD
 	Ë
PROJECT	PROJECT

	Î	,10001			•	.00364	ž		•	1775001				2326	•	
FIELD IDENTIFICATION MATRIX	3 3	CH-28 AQUEOUS	•			GW-29 AQUEOUS	2 ~			CW-30	. pa			SU-4 SU-4		
MISCELLAMEOUS INDRGANICS	TEST RESULTS FLAG		UNITS PQL	700	TEST TEST FLAG UNITS PQL	FLAG	TEST RESULTS FLAC UNITS PQL	<u> 7</u> 0	TEST RESULTS FLAG UNITS FQL	FLAG	UNITS	Ş	TEST RESULTS FLAC UNITS PQL	272	5	118
Mercury (Cold Vapor) Orthophosphate (M29)	0.2 u 53 u	2 2	ug/1 0.2	0.2	0.2 u ug/l 0.2 53 u mg/l 53	,,,	77	0.2 53	0.2 u ug/1 0.2 53 u mg/1 53	2 2	77	53	0.2 u ug/l 0.2	,	1/2	=

87258019 87258020 87258021 8N-5 SN-6 SN-7 AQUROUS AQUROUS	UNITS PQL RESULTS FLAC UNITS PQL	0.2 u ug/1 0.2 0.2 u ug/1 0.2 0.2 u ug/1 0.2
SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION ANTRIX		Mercury (Cold Vapor) 0.2

		20 ug/kg 20
87258030 SD-5 SOIL	TEST RESULTS FLAG UNITS PQL	100 <b>ug/kg</b> 20
87258029 8D-4 801L		110 ug/kg 20
SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATRIX	MISCELLANEOUS INORGANICS	Mercury (Cold Vapor)

87258036 SD-21 SOIL		20 90 ug/kg 20
87258035 SD-20 SOIL		42 ug/kg 20
87258034 SD-18 SOIL	TEST RESULTS PLAC UNITS PQL	30 ug/kg 20
87258033 SD-14 SOIL	TEST LESULTS FLAG UNITS PQL	22 ug/kg 20
SAIC SAMPLE IDENTIPICATION PIELD IDENTIPICATION MATRIX	MISCELLAMEOUS INDRCANICS	Mercury (Cold Vapor)

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVINOMENTAL CHEMISTRY DIVISION

PROJECT NO. : 2-885-06-624 PROJECT NAME: NANCOCK FIELD

SAIC SAMPLE IDENTIFICATION	872	87258037			æ <u>.</u>	87258039	,		_	87258011	_		••	87258012	7	
MATRIX	a s	SOIL			<b>V</b>	AQUEOUS			•	AQUEOUS				AQUEOUS		
MISCELLAMEOUS INDRCANICS		272	UNITS	ğ	TEST		PLAG UNITS	<u>2</u>	TEST	FLAG	FLAG UNITS	5	TEST	FLAG	UNITS	PQL
Mercury (Cold Vapor) Lead Orthophosphate (A429)	0.5	3	ug/kg	0.3	6.2	3 3	ug/1 ug/1	6.2	42 5.3	22	1/2m	5.3	42 53	<b>,</b> ,	1/ <b>3</b>	53
SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATRIE	872 6 AQU	67258013 CV-8 AQUEOUS			₩ <	87258014 GM-9 AQUEOUS	فد									
MISCELLAMEOUS INDRCANICS	22	FLAG	UNITS	70	TEST	FLAG	UNITS	ZĢ.								
Lead Orthophosphate (A629)	5.3	3 3	1/8 1/1 1/8	5.3	42 5.3	, , , ,	46/1 46/1	5.3								
SAIC SAMPLE IDENTIFICATION PIELD IDENTIFICATION MATRIX	87258 SD-4 SOI	05	•			87258030 SD-5 SOIL				87258031 SD-6 SOIL	~		•	87258032 SD-7 SOIL	7	
MISCELLAMEOUS INORGANICS	ST ULTS	PLAG U	UNITS	J.	TEST		PLAG UNITS	70 F	TEST	FLAG	UNITS	70.	TEST	FLAG	UNITS	<b>7</b> 0°
Mercury (Gold Vapor)	110	,	ug/kg	20	001	i i i i i	<b>18/kg</b>	20	20		ug/kg	70	07		ng/kg	20

34 87258035 87258036 5 SP-20 SP-21 5 SOIL	: UNITS PQL RESULTS PLAG UNITS PQL RESULTS PLAG UNITS PQL	ug/kg 20 42 ug/kg 20 90 ug/kg
87258034 SD-18 SOIL	TEST RESULTS PLAC UNITS PQL	30
87258033 SD-14 SOIL	TEST RESULTS FLAG UNITS PQL	22 ug/kg 20
SAIC SAMPLE IDENTIFICATION PIELD IDENTIFICATION MATRIX	MISCELLAMEOUS IMORGANICS	Mercury (Gold Vapor)

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

PROJECT NO. : 2-865-06-624 PROJECT NAME: MANGE FIELD															
SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATRIX	87259001 CH-1 AQUEOUS	800 1-1		-	87259002 CM-2 AQUEOUS	~			87259003 GH-3 AQUEOUS		 		87259004 CW-4 AQUEOUS	4	
MISCELLAMEOUS INDRGAMICS	TRST RESULTS FLAG	AC UNITS	s roll	TEST	FLAG	UNITS	7 <u>0</u>	TEST	FLAG	UNITS	<b>.</b>	TEST	FLAG	UNITS	20 10
Lead Orthophosphate (AA29)	42 u 5.3 u	1/3.	5.3	42 5.3	23	1	5.3	75	9 9	1/80	75	= 42	<b>5</b> 5	77	7 =
SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATRIX	87259005 GW-5 AQUEOUS	9005 5 ous		• •	87259006 G4-10 Aqueous	<b>.</b>			87259007 GW-25 AQUEOUS	<b>.</b>			87259008 GW-26 AQUEOUS	<b>8</b> 0 %	
HISCELLANTOUS INDRGANICS	TEST RESULTS FLAG	AG UNITS	S PQL	TEST	PLAG	UNITS	70 10	TEST	FLAG	CALTS	2	TEST	FLAG	UNITS	<u>7</u> 0
Lead Orthophosphate (AA29) Hercury (Cold Vapor)	27 11	1/1	42	42	3 3		11	0.2	9 9	1/8n	0.2	53	9 9	#\$/1 #\$/1	53
SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATEIX	8725900 GW-31 AQUEOUS	67259009 G4-31 Aqueous			87259010 GH-32 AQUEOUS	o "		ž	Method Blank NA AQUEOUS	enk 3					
MISCELLANEOUS INORGANICS	TEST RESULTS FL	9	rs rot	TEST	FLAG	UNITS	<b>3</b> 0L	TEST	FLAG	UNITS	<b>7</b> 0F				
Mercury (Cold Vapor) Orthophosphate (M29)	0.2 u	1/ <b>3</b> n	0.2	0.2	33	1/30	0.2	0.2	3 3	ug/1	0.7				

Mercury (Cold Vapor) Orthophosphate (AA29)

PROJECT NO. : 2-885-06-624 PROJECT NAME: MANCOCK PIELD

SAIC SAMPLE IDENTIFICATION	872 Sus	87258024 SH-20	872 SE	87258025 SW-21	7.69	87258026 SW-23	872 St	87258027 SW-31
FIELD IDENTIFICATION MATRIX		CONFIRMATION ANALYSIS	CONFIRMAT	CONFIRMATION ANALYSIS	CONP. I RMA	CONFIRMATION ANALYSIS	CONFIRMAT	CONFIRMATION ANALYSIS
PURCEASLE HALOCARBONS (E601)		CONFIDMATION AMALYSIS	PRIMARY ANALYSIS	CONFIRMATION ANALYSIS	PRIMARY ANALYSIS	CONFIRMATION ANALYSIS	PRIMARY	CONFIRMATION ANALYSIS
Ch lor case thane Br cascate thane			* * * * * * * * * * * * * * * * * * *					
Vinyl chloride Dichlorodifluoromethane								
Chloroethane Methylene chloride Trichlorofluoromethane	0.92	0.42 C	0.97	0.57 C 2.6 C	1.0	0.70 C	0.73	NC
l, l-Dichloroethene l, l-Dichloroethene			0.08	NC				
trans-1,2-Dichloroethene Chloroform	0.05	0.05 C			0.79	0.65 C	0.62	0.38 C
1,2-Dichloroethane 1,1,1-Trichloroethane	0.03	1.6 CI	0.42	1.7 CI	0.03	1.5 CI	0.03	3.5 CI
Carbon Tetrachloride Bromodichloromethane	-	0.30 c	2.2	0.29 C	0.10	0.33 C 0.45 C	0.4)	9 <b>6.</b>
1,2-Dichloropropane trans-1,3-Dichloropropene Trichlorocthene	2.7	1.6 CI	9.4	1.7 CI	3.1	1.8 ct	1.4	3.5 CI
1,1,2-Trchloroethane ci=-1,3-Dichloropene 2-Chloroethylvinyl ether								
Bromoform 1,1,2,2-Tetrachloroethane Tetrachloroethene	;	•		c c	a C	2	91.0	NC
Chlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene	0.32	7. <b>4</b> 7.	9	2 67.0				

PROJECT NO. : 2-885-06-624 PROJECT NAME: BANCOCK FIELD SAIC SAMPLE IDENTIFICATION 87258028
FIELD IDENTIFICATION CONFIRMATION AMALYSIS
MATRIX

PURCEABLE MALOCARBONS (E601)	PRIMARY ARALYSIS	CONFIRMATION
Chloromethase		; ; ; ; ; ; ; ;
Dromomet hane		
Vinyl chloride		
Dich lorod if I nor one than e		-
Chloroethane		-
Methylene chloride	0.98	<b>2</b>
Trichlorofluoromethane		
1,1-Dichloroethene		
1,1-Dichloroethane		
trans-1,2-Dichloroethene	0.10	<u></u>
Chloroform	99.0	0.40 C
1,2-Dichloroethane		
1.1.1-Trichloroethane	0.02	1.6 CI
Carbon Tetrachloride	0.28	0.21 C
Bromodichloromethane		
1,2-Dichloropropane		
trans-1,3-Dichloropropene		
Trichloroethene	0.67	1.6 CI
Dibromoch loromethane		
1,1,2-Trchloroethane		
cie-1,3-Dichloropropene		
2-Chloroethylvinyl ether		
Bramoform		
1,1,2,2-Tetrachloroethane		
Tetrachloroethene	91.0	0.21 C
Chlorobenzene		
1,3-Dichlorobenzene		
1,2-Dichlorobenzene		
1,4-Dichlorobenzene		
SAIC SAMPLE IDENTIFICATION	. 8	87258038
PIELD IDENTIFICATION		[-A3
HATRIX	COMPINA	COMPILMATION ANALYSIS
***************************************		

ORGANOPHORUS PESTICIDES (E614) AMALYSIS ANALYSIS

Asimphos, methyl
Demeton—8
Disainon
Disainon
Biblion
Ralathion
Malathion
Parathion, ethyl
Parathion, methyl

PROJECT NO.: 2-685-06-624 PROJECT NAME: HANCOCK PIELD

## NOTES AND COMMENTS:

- u Not detected at the limits given.
- d = 1,1,2,2-Tetrachloroethane and Tetrachloroethene coelute, the peak is quantitated as all Tetrachloroethene.
- C = Compound found on both the primary and secondary column above the indicated detection limit.
- CI Compound found on both the primary and secondary column, however there is potential interference from another compound on the secondary column prevents accurate quantitation of the peak of interest.
- MC Compound found on the primary column but not on the secondary column at or above the detection limit indicated.
- All volatile, halogenated compounds included in the 602 analysis and in the 601 analysis were quantitated based on their 601 response.

QUALITY CONTROL REPORT

PROJECT NO. : 2-885-06-624 PROJECT NAME: HANCOCK FIELD

AMPLE IDENTIFICATION IDENTIFICATION		DUPLICATE ANALYSIS SW-31 AQUEOUS		MATR	MATRIX SPIKE ANALYSIS SW-32 AQUEOUS	ANALYSI	s,	
PURCEABLE NALOCARBONS (E601)	ALIQUOT ALIQUOT	AL IQUOT #2	XRPD	ORIGINAL	SPIKED ANT RESULTSPIKED	ANT P I KED	# EEC	CONTROL
Chloromethane Bromomethane	; ; ; ; ;	; 	1 1 1 1 1 1			! ! ! !		! ! ! ! !
Vinyl chloride				1.50		99.0	1072	90-110
Dichlorodifluoromethane				1.50	2.20	99.0	1072	011-09
Chloroethane	;	;	•	0.52		9.0	-23%	20-115
Methylene chloride	5.0	0.73	-2.42	00	0.0	9.0	292 972	31-145
1. 1-Dichloroethene	;	:		00.0		99.0	887	61-145
1,1-Dichloroethane				0.00		99.0	216	85-115
trans-1,2-Dichloroethene				0.00		99.0	1152	85-115
Chloroform	0.62	0.79	-24.2%	0.62		99.0	191	85-115
1,2-Dichloroethane				0.00		99.0	1001	85-115
1,1,1-Trichloroethane				0.00		99.0	216	85-115
Carbon Tetrachloride	0.47	0.53	-12.5%	0.28		99.0	110%	85-115
Bromodichloromethane	0.05	0.04	25.3%	0.04		99.0	1487	85-115
1,2-Dichloropropane				0.00		99.0	867	71-120
trans-1,3-Dichloropropene				0.00		99.0	70%	71-120
Trichloroethene	1.4	1.4	-1.3%	0.67		99.0	103%	71-120
Dibromochloromethane	•			0.00		99.0	681	65-105
1,1,2-Trchloroethane				0.00		99.0	687	65-105
cie-1,3-Dichloropropene				0.00	0.45	99.0	789	65-105
2-Chloroethylvinyl ether								
Bromofors				•		;	•	
1,1,2,2-Tetrachloroethane				20.0		0.00	7711	671-09
Tetrachloroethene	91.0	0.20	-26.7%	0.08		99.0	112%	80-125
Chlorobenzene	0.22	0.25	-12.9%	60.0		99.0	219	75-125
l, 3-Dichlorobenzene				0.00		99.0	<b>68</b> %	73-135
1,2-Dichlorobenzene				0.00		99.0	76Z	171-69
1,4-Dichlorobenzene				0.00		99.0	867	76-142
(OCOURT) SOUNDED STATE OF STATES								
PROMITIC VOLALIES CONSTITUTED (STOCK)	1	,	! !		1	1	!	

90-110 85-115 85-115

981 971 927

0.66 0.66 0.66

0.65

0.00

73-135 63-141 76-142

741 851 891

0.66 0.66 0.66

0.56

999

Mensene
Toluene
Rihyl bensene
Chlorobensene
Xylenes, Total
1,3-Dichlorobensene
1,2-Dichlorobensene
1,4-Dichlorobensene

PROJECT NO. : 2-885-06-624 PROJECT NAME: NANCOCK FIELD

SAIC SAMPLE IDENTIFICATION	DUPLICATE ANALYSIS	HATRIX SPIKE ANALYSIS	YSIS	
FIELD IDENTIFICATION MATRIX	FSG-2 SOIL	FSC-2 8011.		
BASE-WUTEALS/ACID EXTRACTABLES (549270)	ALIQUOT ALIQUOT	ORIGINAL SPIKED ANT RESULTS RESULTSPIKED	D REC	CONTROL
Perol		0 9,600	13.7Z	12-89
bis(2-Chloroethyl)ether				
2-Chlorophenol		009,1 009,5 0	77.77	27-123
1,3-Dichlorobensene		0 2,000 3,800	0 52.6%	39-97
Bensyl alcohol				
1,2-Dichlorobensene				
bie(2-Chloroisopropyl)ether				
4-Nethylphenol				
M-Mitroso-Di-M-propylemine		0 2,600 3,800	79. 68.4X	911-14
Hexach loroe than				
Tirresene				
2-Hierosbesol				
2.4-Dimethylphenol				
Dengoic acid				
bis (2-Chloroethoxy)methane	-			
2,4-Dichlorophenol		4 440 4 4		90 00
1,2,4-Trichlorobenzene		0 2,300 3,800	00°52	29-98
Mephthelene				
Z-CAlorogal line Herecklorokus adiene				
4-Chloro-3-sethylphenol		0 6,400 7,600	00 84.2%	23-97
2-Nethylnaphthalene				
Hexachlorocyclopentadiene				
2,4,6-Trichlorophenol				
2,4,5-Trichlorophenol				
2-Chloronaphthalene				
Z-Mitrodniline				
Acesebthelese				
3-Wittospilise				
Acenaphthene		03,300 3,80	3,800 86.8%	46-118
2,4~Dinitrophenol				
4-Hitrophenol		0 8,300 7,60	7,600 109.22	10-80
Dibenzofuran				74.04
2,4-Dinitrotoluene		0 2,500 3,800	79.C9 PK	96-47
2,6-Dinitrotoluene				
Diethylphthalate				
Figure 1 prent ciner				
A-Mitroaniline				
A. 6-Dinitro-2-methylphenol				
M-Mittosodiobeov/amine				

SCIENCE APPLICATIONS INTERNATIONAL COMPORATION ENVIRONMENTAL CHEMISTRY DIVISION

QUALITY CONTROL REPORT

PROJECT NO. : 2-885-06-624 PROJECT MAME: MANCOCK FIELD

PROJECT MARKET BARROOK FIRED								
SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATRIX	DUPLICATE ANALYSIS PSC-2 SOIL			HATR	MATRIX SPIKE ANALYSIS FSC-2 Soll	ANALYS I	ω	
BASE-WUTTALS/ACID EXTRACTABLES (SW8270)	ALIQUOT ALIQUOT	GAN		OR IGINAL RESULTS	L SPIKED ANT S RESULTSPIKED	AMT	E C	CONTROL
4-Bromophenyl phenyl ether Mexachlorophenol Festanthrese	1,250 1,300 -3	-3.91			0 2,600	7,600	34.21	9-103
Antimoterno Di-n-butyphthalate Pluotanhene Pyrene Butyl benayl phthalate	2,070 1,530 30 2,450 2,940 -18	30.0% -18.2%		2,45	2,450 5,650	3,800	84.2%	26-127
3, 3'-Dichlorobenzidine Benzo(a)anthracene bia(2-Ethylhexyl)phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(a)prene Indeno(l,2,3-c,d)prene Dibenz(a,h)anthracene Benzo(a,h)iperylene	679 776 12 2,330 4,720 -67 845 833 1 741 774 -4 699 614 12 683 691 -1	12.43 1.43 12.93 12.93						
SAIC SANPLE IDENTIFICATION FIELD IDENTIFICATION MATRIX	H.	DUPLICAT C	DUPLICATE ANALYSIS GW-9 AQUEOUS	DUPL	DUPLICATE ANALYSIS SD-23 SOIL	YSIS		
MISCELLANEOUS INORGANICS	ALIQUOT ALIQUOT	ALIQUOT ALIQUOT	Iquot #2 XRPD	(	ALIQUOT ALIQUOT		ZRPD	
Lead Orthophosphate (A429) Mercury (Cold Vapor)	0.2 0.2 ug/kg N/A	42 5.3 1/A	42 ug/1 N 5.3 ug/1 N	N/A 2	20 24	ug/l -18.2%	18.21	
SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MAIRIX	MATRIX SPIRE AMALYSIS SW-23 AQUEOUS		MATRIX SPIKE AMALYSIS GM-9 AQUEOUS	MATR	MATRIX SPIKE ANALYSIS SD-23 SOIL	ANALYSI	so.	
HISCELLAMBOUS INORCANICS	ORIGINAL SPIKED ANT I	ORIGINAL	SPIKED ANT X RESULTSPIKED REC		RIGINAL SPIKED ANT RESULTS RESULTSPIKED	AMT PIKED	M M	CONTROL
Lead Orthophosphate (AA29) Mercury (Cold Vapor)	0.00 0.31 0.38	0,0 0,0	200 194 1 16 25	103% 64% 2	20 140	120	1001	75-125 NA 75-125

Project #A4837 and A4837C

*Average of duplicate runs All confirmation analysis run on 10/03/86

Project #A4849 and A4849C

	Date of Analysis	98/30/86	09/30/86	10/01/86
Detected Levels	Secondary	0.27	0.60	ND(0.20)
Detect	Primary	0.16	0.45	*85*0
	Compounds Detected	Trichloroethylene	Trichloroethylene	Benzene
	Client No.	07	80	11
	Sample Number	160587	160588	16091

*Average of duplicate runs

- 1. 1,1-dichloroethane and chloroform coelute. Results could be either one or both analytes.
- 2. 1,1,1-trichloroethane and trichloroethylene coelute. Results could be either one or both analytes.
- 3. Bromodichloromethane and tetrachloroethylene coelute. Results could be either one or both analytes.

Ann Arbor, NR 48104 1399 117 North Fast Street

QUALITY CONTROL REPORT DUPLICATE AND MATRIX SPIKE ANALYSIS

CL IENT: SAIC

DATE OF QC REPORT: 10-29-86 TMA/ERG PROJECT NO A4837

09/160440 - 09/160445 This QC report covers samples:

Signature of OC Coordinator:

H-317

REPORT	SPIKE ANALYSIS
LITY CONTRO	UPLICATE AND MATRIX SE
	DUPLI

CL IENT: SAIC

TMA/ERG PROJECT NO. A4837 DATE OF QC REPORT: 10-29-86

117 North Fust Street
Ann Aubo, Na 48104 1399

Thermo Analytical Inc.

Parameter  Alkalinity, Total Chloride Sulfate Nitrate Nitrite	Sample Number 160440 160184* 160341* 160420* 160420*	Sample A  mg/L  285  19.5  <1  ND(0.01)  ND(0.01)  0.15	Sample B mg/L 282 19.5 <1 ND(0.01) ND(0.01)	Relative Difference % 0.7 0 -	Spike Added mg/L 25 80 0.25 0.25	Spiked Sample mg/L mg/L - 45 87 0.26 0.44	Percent Recovery % - 102 109 92 114
Dissolved Solids, Total 160589* Suspended Solids, Total 160637* Fluoride, Total	tal 160589* tal 160637* 160445	700 4.08 0.37	770 6.12 0.39	9.5 40 5.3	05.0	0,93	110

COMPENTS:

* Sample not part of client set but included in QC subset.

This QC report covers samples: 09/160440 - 09/160445 simmature of Of Coordinator:

QUALITY CONTROL REPORT DUPLICATE AND MATRIX SPIKE ANALYSIS

TMA DUPLICATE AND Thormo Analytical Inc.

CL IFNT: SAIC

TMA/ERG PROJECT NO. A4837
DATE OF QC REPORT: 10-23-86

13131 662 3104

TILAVERE 117 North Fust Street Ann Arbov, NR 48104 1399

	MIPL ICATE			MATRIX	SPIKE	
Parameter	Sample A	Sample B	Relative Difference	Spiked Sample	Spike Added	Percent Recovery
Sample No: 160591*	ug/L	ng/L	26	ng/L	ng/L	ક્ર્
Chloromethane	ND(0.08)	ND(0.08)			•	•
Bromomethane	ND(1.18)	ND(1.18)	1	t	•	ı
Dichlorodifluoromethane	ND(1.81)	ND(1.81)	ı	1	ı	1
Vinyl Chloride	ND(0.18)	ND(0.18)	ı	•	•	1
Chloroethane	ND(0.52)	ND(0.52)	•	1	1	•
Methylene Chloride	ND(0.25)	ND(0.25)	•	1	1	1
Irichlorofluoromethane	ND(0.50)	ND(0.50)	1	•	,	ı
1,1 - Dichloroethylene	Nr. (*3)	ND(0.13)	ı	90.9	6.44	106
1,1 - Dichloroethane	ייוט (0.07)	ND(0.07)	•	5.88	6.17	105
Trans - 1,2 - dichloroethyle	ND(0.10)	ND(0.10)	•	ŧ	1	1
Chloroform	ND(0.05)	ND(0.05)	ı	•	1	ı
1,2 - Dichloroethane	ND(0.03)	ND(0.03)	ı			
1,1,1 - Trichloroethane	ND(0.03)	ND(0.03)	ı	69.9	8.53	127
Carbon Tetrachloride	ND(0.12)		•	ı	1	ı
Bromodichloromethane	ND(0.10)	ND(0.10)	1	ı	i	ı
1,2 - Oichloropropane	ND(0.04)	_	1	•	1	ı
Trans - 1,3 - dichloropropane	ND(0.34)	ND(0.34)	ı	ť	ı	1
Trichloroethylene	ND(0.12)	_		7.32	8.06	110
Dibromochloromethane	ND(0.09)	(60.0)QN	. 1	ı	ı	1
1,1,2 - Trichloroethane	ND(0.02)	ND(0.02)	ı	•	ı	•
61s - 1,3 dichloropropane	ND(0.20)	ND(0.20)	•	•	1	ı
2 - Chloroethylvinylether	ND(0.13)	ND(0.13)	1	:	1	t
Bromoform	ND(0.20)	ND(0.20)	ı	•	1	1
1,1,2,2, - Tetrachloroethane	ND(0.03)	೨	1	·	ı	i
Tetrachloroethylene	ND(0.03)	ND(0.03)	1	•		•
	ND(0.25)	ND(0.25)	1	•	1	1
ot part of client	set but included in (	QC subset.				

This qc report covers samples: 09/160440 - 09/160445

Signature of QC Coordinator: / William

QUALITY CONTROL REPORT DUPLICATE AND MATRIX SPIKE ANALYSIS

Thermo Analytical Inc.

117 North Fust Street THAVERG

DATE OF QC REPORT: 10-23-86 TMA/ERG PROJECT NO. A4837

CLIENT: SAIC

Ann Aubor, MR 48104 1399

MIL CYSICIE

POL ZBOLLE	Parameter	Sample No: 160591*	1,3 - Dichlorobenzene 1,2 - Dichlorobenzene 1,4 - Dichlorobenzene Benzene Toluene Ethyl Benzene	* Sample not part of client set but included in QC subset.
DUPLICATE	Sample A	ng/L	ND(0.4) ND(0.3) ND(0.2) ND(0.2) ND(0.2)	set but included in Q
	Sample B	ng/L	ND(0.4) ND(0.3) 0.75 ND(0.2) ND(0.2)	C subset.
	Relative Difference	26	1116) 11 150 .	
MAIRIX SPIKE	Spiked Sample	T/6n	. 4	
SPIKE	Sp Ike Added	ng/L	1 1 1 9	
	Percent Recovery	26	156	

-09/16044509/160440 This QC report covers samples:

Signature of the Community

H-320

## WATER SURROGATE PERCENT RECOVERY SUMMARY

SAIC #A4837

Contract Laboratory Thermo Analytical, Inc./ERG

PESTICIDE-	DIBUTIL - CHLONEMBATE							•										
	2.4.6 TRIBROMO-		102	113	87	109	88											
1	8 - FLUONO	6.3	99	76	71	76	99											
	PHENOL-DS	23	40	49	46	44	36											
SEMI-VOLATILE																		
8																		
1	TERPHENYL - B14	3.0	113	87	126	157	142			-								
1 1	BIPHENTL	20	99	55	9/	6/.	75							•				
1 1	- 04140 - 041646 - 05	21	75	72	98	91	98											
THE	1.2 BICH ORO- ETHANE-04																	
VOLATILE -	2																	
1	10. W. M 9.0	1																
	134	AB160440R	AB160441	AB160443	AB160442	AB160444	AB160445											

ţ	
Ì	
	! 
1	-
i	
1	
-	
!	
i	
İ	
!	
	1
[	1
Comments:	
Ĕ	
5	
J	1

# WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Contractor Thermo Analytical, Inc./ERG A4837 Case No.

Fraction   Compound   Conc. Spike   Sample   Conc.   Sample   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.   Conc.									
1,1-Dichloroethene         1           Trichloroethene         7           Chloroberzene         0         88         89         71           Toluene         0         88         89         71           Benzene         100         0         87         80           Acenaphthene         100         0         87         80           2,4-Trichlorobenzene         100         0         56         56         65           Di-Butylphthalate         100         0         67         67         79           Pyrene         1,4-Dichlorobenzene         100         0         67         67         79           Phrenot         200         0         211         105         171           Phenot         200         0         114         57         117           2-Chlorophenot         200         0         189         95         183           4-Nitrophenot         200         0         170         54         111           Lindane         Heptachlor         0         107         54         111           Addrin         Dieldrin         0         107         54         111 <th>FRACTION</th> <th>COMPOUND</th> <th>CONC. SPIKE ADDED (ug/L)</th> <th>SAMPLE RESULT</th> <th>CONC. MS</th> <th>REC</th> <th>CONC. MSD</th> <th>REC</th> <th>RPD</th>	FRACTION	COMPOUND	CONC. SPIKE ADDED (ug/L)	SAMPLE RESULT	CONC. MS	REC	CONC. MSD	REC	RPD
Trichloroethene         Chlorobenzene           Chlorobenzene         Chlorobenzene           Eenzene         100           1.2,4-Trichlorobenzene         100           2.4 Dinitrotoluene         100           2.4 Dinitrotoluene         100           2.5 Dinitrotoluene         100           Dinitrotoluene         100           Dinitrotoluene         100           Ohn-Burylphthalate         100           Pyrene         100           N-Nitroso-Din-Propylamine         100           1.4-Dichlorobenzene         100           1.4-Dichlorobenzene         100           2-Chlorophenol         200           2-Chlorophenol         200           2-Chlorophenol         200           4-Chloro-3-Methylphenol         200           4-Chloro-3-Methylphenol         200           4-Chloro-3-Methylphenol         200           4-Chloro-3-Methylphenol         200           4-Chloro-3-Methylphenol         200           4-Chloro-3-Methylphenol         200           54         111           Lindane         Heptachlor           Addiin         107           54         111           Addiin<	V V	1,1-Dichloroethene							
Chlorober zene         Chlorober zene           Toluene         88         88         71           Benzene         1.2.4 Trichlorobenzene         100         0         88         87         80           1.2.4 Trichlorobenzene         100         0         87         87         80           Acenaphthene         100         0         56         56         65           DiBurylphthalate         100         0         56         56         65           Pyrene         100         0         67         67         79           Nitroso-Din-Propylamine         100         0         87         87         79           Phenol         200         0         211         105         171           Phenol         200         0         114         57         117           2-Chloro-Dhenol         200         0         170         85         180           4-Chloro-Bendenol         200         0         107         54         111           Lindane         Heptachlor         107         54         111           Adrin         Endrin         6         107         54         111           Endr	OWS	Trichloroethene							
Toluene         Folluene           Benzene         100         0         88         87         71           1.2.4 Trichlorobenzene         100         0         87         80         73           Acenaphthene         100         0         87         87         80           2.4 Dinitrotoluene         100         0         56         56         65           Din-Butylphthelate         100         0         103         103         94           Pyrene         100         0         67         67         79           N-Nitroso-Din-Propylamine         100         0         87         87         79           Pentachlorophenol         200         0         211         105         171           Phenol         200         0         114         57         117           2-Chlorophenol         200         0         107         54         111           4-Nitrophenol         200         0         107         54         111           Heptachlor         10         107         54         111           Lindane         10         107         54         111           Adrin <td< th=""><th>SAMPI E NO</th><th>Chloroberzene</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	SAMPI E NO	Chloroberzene							
Benzene         Benzene         100         0         88         88         71           Acenaphthene         100         0         87         87         80           2.4 Dinitrotoluene         100         0         56         56         65           Di-n-Butylphthelete         100         0         56         56         65           Pyrene         100         0         103         103         94           N-Nitroso-Di-n-Propylamine         100         0         67         67         79           N-Nitroso-Di-n-Propylamine         100         0         87         87         79           Pentachlorophenol         200         0         211         105         171           Phenol         200         0         114         57         117           2-Chloro-3-Methylphenol         200         0         170         85         180           4-Nitrophenol         200         0         170         85         180           Lindane         Heptachlor         107         54         111           Aldrin         Dieldrin         107         54         111           Endrin         107         <		Toluene							
1.2.4 - Trichlorobenzene         100         0         88         71           Acenaphthene         100         0         87         89         71           2.4 Dinitrotoluene         100         0         56         56         65           Di-n-Burylphthelete         100         0         103         103         94           Pyrene         100         0         67         67         79           N-Nitroso-Di-n-Propylamine         100         0         87         87         79           N-Nitroso-Di-n-Propylamine         100         0         87         87         79           Pentachlorobenotene         200         0         211         105         171           Phenot         200         0         114         57         117           2-Chlorophenot         200         0         189         95         183           4-Chloro-3-Methylphenot         200         0         170         85         180           Heptachlor         4-Nitrophenot         200         0         107         54         111           Lindane         Heptachlor         6         10         107         54         111		Benzene							
Acenaphthene         100         0         87         80           2.4 Dinitrotoluene         100         0         56         56         65           Di.n.Burylphthalate         100         0         103         103         94           Pyrene         100         0         67         67         79           N-Nitroso-Di.n-Propylamine         100         0         87         87         79           1.4-Dichlorobenzene         100         0         87         87         79           Pentachlorophenol         200         0         114         57         117           Phenol         200         0         189         95         183           4-Chloro-3-Methylphenol         200         0         170         85         180           Lindane         Heptachlor         200         0         107         54         111           Aldrin         Dieldrin         Endrin         6         6         6         6         111           Endrin         6         6         6         6         6         111         6		1,2,4-Trichlorobenzene	100	0	88	88	71	71	21
2.4 Dinitrotoluene       100       0       56       65         Di-n-Butylphthalete       100       0       103       103       94         Pyrene       100       0       67       67       79         N-Nitroso-Di-n-Propylamine       100       0       87       87       79         1.4-Dichlorobenzene       100       0       87       87       79         Pentachlorophenol       200       0       114       57       117         Phenol       200       0       189       95       183         2-Chlorophenol       200       0       170       85       180         4-Nitrophenol       200       0       107       54       111         Lindane       Heptachlor       54       111         Aldrin       Dieldrin       6       107       54       111         Aldrin       6       107       54       111       111         4.*Dot       6       107       54       111       111	N/B	Acenaphthene	100	0	87	87	08	80	8
Di-n-Butylphthalate         Di-n-Butylphthalate         100         0         103         194           Pyrane         100         0         67         67         79           N-Nitroso-Di-n-Propylamine         100         0         87         87         79           1.4-Dichlorobenzene         100         0         211         105         171           Pentachlorophenol         200         0         114         57         117           Phenol         200         0         189         95         183           4-Chlorophenol         200         0         170         85         180           4-Chloro-3-Methylphenol         200         0         107         54         111           Heptachlor         Aldrin         Dieldrin         0         107         54         111           Endrin         Dieldrin         0         107         54         111	SMO	2.4 Dinitrotoluene	100	0	56	26	9	65	15
Pyrene         100         0         103         94           N-Nitroso-Din-Propylamine         100         0         67         67         79           1.4-Dichlorobenzene         100         0         87         87         79           Pentachlorophenol         200         0         211         105         171           Phenol         200         0         114         57         117           2-Chlorophenol         200         0         189         95         183           4-Chloro-Methylphenol         200         0         170         85         180           Lindane         Heptachlor         200         0         107         54         111           Aldrin         Dieldrin         6         107         54         111           Endrin         6         107         54         111	SAMPLE NO.	Di-n-Butylphthalate							
N-Nitroso-Di-n-Propylamine         100         0         67         79           1,4-Dichlorobenzene         100         0         87         87         79           Pentachlorophenol         200         0         211         105         171           Phenol         200         0         114         57         117           2-Chlorophenol         200         0         189         95         183           4-Chloro-Methylphenol         200         0         170         85         180           4-Nitrophenol         200         0         107         54         111           Heptachlor         Aldrin         Dieldrin         6         107         54         111           Endrin         6         107         54         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         11		Pyrene	Γ	0	103	103	94	94	6
1,4-Dichlorobenzene     100     0     87     87     79       Pentachlorophenol     200     0     211     105     171       Phenol     200     0     114     57     117       2-Chlorophenol     200     0     189     95     183       4-Chloro-3-Methylphenol     200     0     170     85     180       4-Nitrophenol     200     0     107     54     111       Heptachlor     Heptachlor     54     111       Aldrin     Dieldrin     6       Endrin     6     6		N-Nitroso-Di-n-Propylamine		0	67	29	_ 6/_	79	16
Pentachlorophenol         200         0         211         105         171           Phenol         200         0         114         57         117           2-Chlorophenol         200         0         189         95         183           4-Chloro-3-Methylphenol         200         0         170         85         180           4-Chloro-3-Methylphenol         200         0         107         54         111           Heptachlor         Aldrin         Aldrin         107         54         111           Aldrin         Dieldrin         6         107         54         111           Endrin         6         107         54         111	- 1	1,4-Dichlorobenzene		0	87	87	79	79	10
Phenol         200         0         114         57         117           2 Chlorophenol         200         0         189         95         183           4 Chloro-3 Methylphenol         200         0         170         85         180           4 Nitrophenol         200         0         107         54         111           Heptachlor         Aldrin         Aldrin         Endrin         Endrin           Endrin         Endrin         Endrin         Endrin		Pentachlorophenol		0	211	105	1/1	98	20
2. Chlorophenol       200       0       189       95       183         4. Chloro-3 Methylphenol       200       0       170       85       180         4. Nitrophenol       200       0       107       54       111         Lindane       Heptachlor       54       111         Aldrin       Dieldrin       Dieldrin         Endrin       Endrin	ACID	Phenot	200	0	114	57	117	29	3
4.Chloro-3-Methylphenol       200       0       170       85       180         4.Nitrophenol       200       0       107       54       111         Lindane       Heptachlor       Aldrin       Dieldrin       Dieldrin       Aldrin         Aldrin       Endrin       Aldrin       Aldrin       Aldrin       Aldrin	DWC DIA	2 Chlorophenol	200	0	189	92	· 183	92	3
4-Nitrophenol         200         0         107         54         111           Lindane         Heptachlor         Aldrin         Aldrin         Bieldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin         Aldrin	SAMPLE NO.	4-Chloro-3-Methylphenol	200	٥	170	85	180	95	11
	160196*	4-Nitrophenol	200	0	107	54	111	56	4
		Lindane							
	PEST	Heptachlor							
	OWS	Aldrin							
Endrin 4 4'OnT	SAMPLE NO.	Dieldrin							
4 4.001		Endrin							
		4.4'.00T							

*Sample not part of client set but included in QC subset. Comments:

TWA Thermo Analytical Inc. TWARE 137 North Fast Street Ann Arbor, Mr. 48104 1399	rtical Inc.	QUALITY CONTROL REPORT DUPLICATE AND MATRIX SPIKE ANALYSIS	ONTROL REPORT TRIX SPIKE ANAL	YSIS	CL IENT: TMA/ERG DATE OF	CL IENT: SAIC TMA/ERG PROJECT NO. A4849 DATE OF QC REPORT: 10-29-86	14849
13 662 J. 104		DUPLICATE				MAIRIX SPIKE	
Parameter	Sample Number	Sample A	Sample B	Relative Difference	Spike Added	Spiked Sample mg/L	Percent Recovery %
		mg/L	mg/ r	2			
Arsenic	160377*	0.0130	0.0140	7.4	0.020	0.0334	100 92
Selentum Mercury	159801*	ND(0.0002)	ND(0.0002)	ı	0.0010	0.0010	100
			•				
COMMENTS: *Sample n	*Sample not part of client set but		included in QC subset.				
This QC report covers samples:	1	09/160587 - 09/160591					

Signature of QC Coordinator:

## Thermo Analytical Inc.

THAMENS 117 North Fust Street Ann Arbo, AM 48104 1399

QUALITY CONTROL REPORT DUPLICATE AND MATRIX SPIKE ANALYSIS

CL IENT: SAIC

TMA/ERG PROJECT NO. A4849

DATE OF QC REPORT: 10-29-86

(3)3) 662 3104							
		DUPL ICATE				MATRIX SPIKE	E
	Sample	,	,	Relative	Spike	Spiked	Percent
Parameter	Number	Sample A	Sample B	Difference	Added	Sample	Recovery
		mg/L	mg/L	8	mg/L	mg/L	ક્ય
Alkalinity, Total	16091	201	198	1.5	ı	•	i
Chloride	160467*	11	12		25	36.5	86
Sulfate	160341*	<b>&lt;</b> 1	< 1	ı	80	87	109
Nitrate	160587	ND(0.01)	ND(0.01)	1	0.25	0.24	96
Nitrite	160587	ND(0.01)	ND(0.01)	ı	0.25	0.26	104
Ammonia Nitrogen	160587	0.15	0.16	6.4	0.25	0.44	114
Dissolved Solids, Total	160589	700	770	9.5	1	•	1
Suspended Solids, total	160637*	4.08	6.12	40	ı	1	ı
Fluoride, Total	160590	0.57	0.58	1.7	0.50	1.00	.85
COMMENTS:	1 +02 +04 F	To at populous +	eubeot.				
Sample not part of tilent set but included in to subset.	וופוור אפר חמ	מל ווור המתפת ווו לו	ourset.				

This Of report covers samples

QUALITY CONTROL REPORT DUPLICATE AND MATRIX SPIKE ANALYSIS

DATE OF QC REPORT: 10-23-86 TMA/ERG PROJECT NO. A4849

CLIENT: SAIC

Thermo Analytical Inc.

TOLAVERS

Ann Arbor, N# 48104 1399

13131 662 3104

	DUPLICATE			MAIRI	MAIRIX SPIKE	
Parameter	Sample A	Sample B	Relative Ulfference	Spiked Sample	Sp Ike Added	Percent Recovery
Sample No: 160591	ug/L	ng/L	26	ug/L	ng/L	9-6
Chloromethane	ND(0.08)	ND(0.08)			•	
Bronome thane	ND(1.18)	ND(1.18)	ı	ı	1	1
Dichlorodifluoromethane	ND(1.81)	ND(1.81)	ı	•	ı	1
Vinyl Chloride	ND(0.18)	<u>.</u>	1	ı	•	•
Chloroethane	ND(0.52)	į.	1	ı	1	ı
Methylene Chloride	ND(0.25)	-	1	•	ı	,
Irichlorofluoromethane	ND(0.50)	ND(0.50)	ſ	:	•	1
1.1 - Dichloroethylene	ND(0.13)	0	ŧ	90.9	6.44	106
1,1 - Dichloroethane	ND(0.07)	$\dot{z}$	ſ	5.88	6.17	105
Trans - 1,2 - dichloroethylene	ND(0.10)	(0.1)	ı	ı	ı	1
Chloroform	ND(0.05)	ND(0.05)	1	1	1	ı
1,2 - Dichloroethane	ND(0.03)	೨	ı			
1,1,1 - Trichloroethane	ND(0.03)	$\overline{}$	ſ	69.9	8.53	127
Carbon Tetrachloride	ND(0.12)	<u> </u>	f	•	1	•
<b>Bromodichioromethane</b>	ND(0.10)	<u>,</u>	1	•	1	1
1,2 - Dichloropropane	ND(0.04)	ND(0.04)	•	t	•	ı
Trans - 1,3 - dichloropropane	ND(0.34)	2	ŧ	1	1	ı
Trichloroethylene	ND(0.12)	೨		7.32	8.06	110
Ofbromochloromethane	(0.0)QN	೨	·f	1	1	ı
1,1,2 - Trichloroethane	ND(0.02)	೭	ı	•	•	ı
C1s - 1,3 dichloropropane	ND(0.20)	೨	·	•	t	1
2 - Chloroethylvinylether	ND(0.13)	೨	ı	ı	ı	ß
Bromoform	ND(0.20)	೨	ı	•		,
1,1,2,2, - Tetrachloroethane	ND(0.03)	ND(0.03)	ı	•	•	ı
Tetrachloroethylene	ND(0.03)	೨	ı	•	•	•
Chlorobenzene	ND(0.25)	ND(0.25)	1	•	1	1

09/160587 - 09/160591 This QC report covers samples:

Signature of QC Coordinator:

H-325

QUALITY CONTROL REPORT DUPLICATE AND MATRIX SPIKE ANALYSIS

DATE OF QC REPORT: 10-23-86 TMA/ERG PROJECT NO. A4849

SAIC

CL IENT:

Thermo Analytical Inc. TMA

THENERG

Ann Arbox, Mt 48104 1399 117 North Fast Street

73131662 3304	DUPL I CATE			MAIRIX	MATRIX SPIKE	
Parameter	Sample A	Sample B	Relative Difference	Sp iked Sample	Spike Added	Percent Recovery
Sample No: 160591	ng/L	ng/L	24	ng/L	ug/L	ક્લ
1,3 - Dichlorobenzene 1,2 - Dichlorobenzene 1,4 - Dichlorobenzene Benzene Toluene Ethyl Benzene	ND(0.4) ND(0.3) ND(0.2) ND(0.2) ND(0.2)	ND(0.4) ND(0.3) ND(0.2) ND(0.2) ND(0.2)	65 -	. 44.39	· · · · · · · · · · · · · · · · · · ·	126

09/160587 - 09/160591

This Oc report covers samples:

H-326

## WATER SURROGATE PERCENT RECOVERY SUMMARY

SAIC #A4849 Case No.

Contract Laboratory Thermo Analytical, Inc./ERG

		VOLATILE -	<u> </u>	1	1		8EM	SEMI-VOLATILE				-PESTICIDE
37.4	10. W.M 84	\$	I,E BICH, OND- ETHANE-D4	- 0 m 1 m 0 - 0 m 0 - 0 m 0 - 0 m 0 - 0 m 0 - 0 m 0 - 0 m 0 - 0 m 0 - 0 m 0 m	2 - FLUORO -	TERPHENT."	-		PHENOL-DS	- 61 UORG -	2,4,6 TRIBROMO-	DIBUTYL - CH ORENDATE
	1811-997	(121-60)	(011-11)	1021-141	(611-44)	(33-120)			(18-103)	(83-181)	(10-130)	(961-94)
AB160587				103	72	123			56	88	106	
AB160588				100	65	115			51	80	124	
AB160589				97	74	1234			44	72	123	
AB160590				80	99	103			33	50	80	
AB160591				87	65	121			53	83	115	
•												
						-						
						•						
					-							

Comments:

# WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

A4849 Case No.

Contractor Thermo Analytical, Inc./ERG

FRACTION	COMPOUND	CONC. SPIKE ADDED (ug/L)	SAMPLE RESULT	CONC.	REC	CONC. MSD	#EC	RPO
	1, 1-Dichloroethene							
CARO	richloroethene							
Ž	Chlorobenzene							
	Toluene							
	Benzene							
	1,2,4.Trichlorobenzene	50	0	30	09	30	9	.0
	Acenaphthene	50	0	41	82	39	78	6
OWS	2,4 Dinitrotoluent	50	0	10	20	10	20	0
Ž	Di-n-Butylphthelete							
	Yrene	50	0	48	96	39	78	17
	-Nitroso-OI-n-Propy famina	50	0	09	120	28	56	73
160506*	.4-Dichlorobenzene	50	0	27	54	28	56	ħ
Acits	Pentachlorophenol	100	0	Dľ		DĽ		
ACIO 44	Thenot	100	0	DL		OF		
CAMBIE AIG	2-Chlorophenol	100	0	<u>D</u>		DF		
1 COECE	1-Chlora-3-Methylphenol	100	0	DL		Dľ		
_oncnot	I-Nitrophenol	100	0	D		D		
	lindene							
PEST	Heptéchlor							
_	Aldrin							
SAMPLE NU.	Dieldrin							
	Endrin							
	1,4.00T							

H-328

DL = Diluted out of detection. A 1 - 20 (effective) dilution was done. *Sample not part of client set but included in OC subset.

QUALITY CONTROL REPORT DUPLICATE AND MATRIX SPIKE ANALYSIS

Thermo Analytical Inc.

TMA

CLIENT: SAIC

TMA/ERG PROJECT NO. A4837C & A4849C

DATE OF QC REPORT: 10-23-86

13131 662 3104

Ann Aubor, M# 48104 1399

11) North Fast Street

THAIR

	DUPL ICATE			MAIRI	MAIRIX SPIKE	
Parameter	Sample A	Sample B	helative Difference	Spiked Sample	Sp Ike Added	Percent Recovery
Sample No:	ng/L	ng/L	54	ug/L	ug/L	26
Chloromethane	ND(0,08)	ND(0.08)		8	•	
Bromone thane	ND(1.18)	ND(1.18)	ı	•	ı	ı
Dichlorodifluoromethane	ND(1.81)	ND(1.81)	ı	1	1	•
Vinyl Chloride	ND(0.18)	ND(0.18)	1	•	•	ı
Chloroethane	ND(0.52)	ND(0.52)	1	1	•	ı
Methylene Chloride	HD(0.25)	ND(0.25)	1	1	•	•
Trichlorofluoromethane	ND(0.50)	ND(0.50)	•	1	1	1
1,1 - Dichloroethylene	ND(0.13)	ND(0.13)	1	ı		1
	ND(0.07)	ND(0.07)	1		•	ı
E/A	ND(0.10)	ND(0.10)	1	ŧ	1	:
-	ND(0.05)	ND(0.05)	1	•	•	
1.2 - Dichloroethane	ND(0.03)	ND(0.03)				
1,1,1 - Trichloroethane	ND(0.03)	ND(0.03)	ı	69.9	8.53	127
Carbon Tetrachloride	· ND(0.12)	ND(0.12)	•	1		ı
Bromodichloromethane	ND(0.10)	ND(0.10)	1		t	ı
1,2 - Dichloropropane	ND(0.04)	ND(0.04)	1	1	1	1
Trans - 1,3 - dichloropropane	ND(0.34)	ND(0.34)	1	1	•	,
Trichloroethylene	ابار، 0*99		1.9	14.02	14.32	76
Ulbromoch loromethane	ND(0.09)	$\sim$	ı	ı		ζι
1,1,2 - Irichloroethane	ND(0.02)	ND(0.02)	1	1	1	
61s - 1,3 dichloropropane	ND(0.20)	ND(0.20)	•	•	1	1
2 - Chloroethylvinylether	ND(0.13)	ND(0.13)	•	ı	•	ı
Bromoform	ND(0.20)	ND(0.20)	ı	•		ŧ
1,1,2,2, - Tetrachloroethane	ND(0.03)	ND(0.03)	1	1	ı	ı
Tetrachioroethylene	ND(0.03)	ND(0.03)	1	i	1	1
Chlorobenzene	ND(0.25)	ND(0.25)	1	ı	•	•

10/160812 - 10/160817; 10/160809 - 10/160811 This QC report covers samples:

Signature of QC Coordinator:

QUALITY CONTROL REPURT DUPLICATE AND MATRIX SPIKE ANALYSIS

Thermo Analytical Inc. AMI

TREALERS

Ann Arbur, A4 48104 1399

13131 662 3104

		DUPL ICAIE			MAIRIX SPIKE	SPIKE	
	Parameter	Sample A	Sample B	Relative Difference	Sp 1ked Sample	Sp Ike Added	Percent Recovery
! 1	Sample No: 160591	ng/L	ng/L	54	ng/L	ng/L	<b>કર</b>
	1,3 - Dichlorobenzene 1,2 - Dichlorobenzene 1,4 - Dichlorobenzene Benzene Toluene Ethyl Benzene	ND(0.4) ND(0.4) ND(0.3) ND(0.2) ND(0.2) ND(0.2)	ND(0.4) ND(0.4) ND(0.3) ND(0.2) ND(0.2)	1 1 1 1 1	1 1 1 1 1		, , , , , ,
H-330							

- 10/160817; 10/160809 - 10/160811 10/160812 This (IC report covers samples:

duality of the Cod

CL IENT: SAIC

TMA/ERG PROJECT NO. A4837C & A4849C

DATE OF QC REPORT: 10-23-86

SCIENCE APPLICATIONS INTERNATIONAL CURPORATION ENVIRONMENTAL CHEMISTRY DIVISION

	87293002 CM-34 AQUEOUS
	87293001 CM-33 AQUEOUS
	Method Blank NA AQUEOUS
PROJECT NO. : 2-885-06-624 PROJECT MAME: MANCOCK FIELD	SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATRIX

SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION	He Lh	Method Blani NA	n k		30	87293001 CM-33	=		-	87293002 CW-34	2		60	87293003 CW-35		
MATRIX		AQUEOUS			,	AQUEOUS	2		1	AQUEOUS	2		1	AQUEOUS	8	1
=		FLAG	UNITS	Z Z	TEST Results	PLAG	UNITS	PQL	TEST	FLAG	UNITS	5	TEST	PLAG	UNITS	<b>3</b> 0
Chloromethane	0.10	3	1/8n	0.10	0.10	3	ug/1	0.10	0.10	9	1/8n	0.10	0.10	3	4/an	0.10
Bromomethane	1.18	9	ug/1	81.	1.18	3	7	8	1.18	9	7	9:	1.16	9	7	9
Vinyl chloride	0.18	9	u <b>g</b> /1	0.18	2.25	S	1/8n	0.18	0.18	7	7	9.18	0.18	9	7	0.18
Dichlorodifluoromethane	2.20 C	•	u <b>g</b> /1	<del>8</del> .	2.25	3	7	-8. -8.	2.72	ပ	- T	- <b>8</b> -		ပ	7	1.8
Chloroethane	0.52	3	7 <b>9</b> 7	0.52	0.52	3	7 <b>8</b> n	0.52	0.52	2	ng/J	0.52		2	u <b>g</b> /1	0.52
Methylene chloride	0.25	9	1/gn	0.25	0.51	ပ	7	0.25	0.54	ပ	/ <b>8</b> n	0.25		ပ	<b>1/3</b> n	0.25
Trichlorofluoromethane	0.25	5	1/ <b>3</b> n	0.25	0.25	9	1/8n	0.25	0.25	3	1/8n	0.25	0.25	3	/ <b>8</b> n	0.25
I, I-Dichloroethene	0.13	9	( <b>)</b>	0.13	0.13	3	1/ <b>8</b> n	0.13	0.13	3	1,8u	0.13	0.13	,	7	0.13
i.i-Dichloroethane	0.0	3	7/ <b>3</b> n	0.07	0.07	3	7 / J	0.0	0.0	3	7 (gr	0.0	0.07	3	7 (ga	0.07
trans-1,2-Dichloroethene	0.0	5	- / <del> </del>	o	0.10	<b>=</b>	7	0.0	0.10	3	7 (gr	2 ;	0.10	3	- / <b>3</b> n	0.0
Chloroform	0.05	9	7 ;	6.0	0.03	3	- - - - - - - - - - - - - - - - - - -	 	0.03	3	1 / <b>8</b> n	6.0	0.02	3	7 (g)	0.05
1,2-Dichloroethane	0.03	3	- -	0.03	0.03	3	1 / <b>8</b> 7		0.0	<b>5</b>	1/8	50.0	0.03	9		0.03
	0.03	æ	- - -	0.03	0.03	3	7	0.0	0.04	ပ	7 .	0,0	0.03	2		0.03
	0.12	3	- -	0.12	0.12	3		0.12	0.12	3	7 ;	21.0	0.12	3	- -	0.12
Bromodichloromethane	0.0	3	- ; - )	0.0	0.10	9	1/ <b>8</b> n	0.0	0.0	3	7 ( 7	o :	0.10	5	1/ <b>3</b>	0.0
	0.0	3	7 <del>1</del> 7	<b>5</b> .0	30.0	3	1 / <b>2</b>	3 6	0.0	3	7 ;	3 3	0.0 0.0	3	1/ <b>8</b> n	3 6
	9.34	3	1 / <b>8</b> /1	\$ : • :	0.34	<b>-</b>	1/97	\$ C	\$ :	3		\$ :	* :	,		ž :
Trichloroethene	0.12	9	7 ;	0.12	0.12	9		71.0	0.12	3	- -	7.0	71.0	3	- T	7.0
Dibroschlorosethane	60.0	3	1/ <b>8</b> n	90.0	60.0	3		0.0	60.0	2	7 ·		90.0	3	1/ <b>8</b> n	9.0
i, i, 2-Trchloroethane	0.02	3	1/ <b>3</b> n	0.02	0.02	9	1/ <b>8</b>	0.02	0.02	=	1/87	0.02	0.02	3	<b>3</b>	20.0
cis-1,3-Dichloropropene	0.20	3	1/ <b>8</b> n	0.20	0.20	3	1/2	07.0	0.20	=	7 ;	0.20	0.20	3		07.0
2-Chloroethylvinyl ether	0.13	<b>3</b> .	1/8n	2.0	0.13	3 :	7		0.15	<b>3</b> :	7		0.13	<b>3</b> :	1 / 6 2 3	2.0
	0.20	3 :	7	0.70	0.20	<b>9</b> :	1 (1)	0.60	0.20	3 :		2.0	0.20	<b>.</b>	<u> </u>	
Tilisizine trachioroccusion	6.0	<b>.</b>									,				, ~	
	2.0		· /	0.25	0.25	, :	\ \ \ \ \ \	0.25	0.25	) =	7	0.25	0.25	, =	7	0.25
1 1-Dichlorobensene	0.32		/an	0.32	0.32		/an	0.32	0.32	9	7	0.32	0.32		1/8n	0.32
1 2-Dichlorobensene	0.15	. 3	ug/l	0.15	0.15	3	ug/l	0.15	0.15	3	<b>L</b> /3	0.15	0.15	3	7 m	0.15
t,4-Dichlorobenzene	0.24	2	1/ <b>8</b> n	0.24	0.24	3	1/80	0.24	0.24	9	1/3	0.24	0.24	3	1/ <b>8</b> n	0.24
AROMATIC VOLATILE ORGANICS (SW8020)																
	0.2	2	u <b>g</b> /1	0.2	0.2	3	ug/1	0.2	0.2	3	1/ <b>8</b> n	0.2	0.3	9	u <b>g</b> /1	0.2
Toluene	0.5	,	1/ <b>3</b> n	0.3	0.7	9	1/ <b>3</b> n	0.3	0.7	3	<b>1/8</b> /	0.3	0.2	3	1 / gn	0.3
Ethyl benzene	0.3	2	1/ <b>3</b> n	0.3	0.3	9	ug/1	0.3	0.2	3	<b>1/3</b>	0.3	0.5	3	n <b>g</b> /1	0.3
Chlorobenzene	0.2	2	1/ <b>8</b> n	0.7	0.3	9	7	0.3	0.5	7	<b>1/3</b> n	0.5	0.3	5	<b>1/8</b> n	0.2
Xylenes, Total	9.0	9	<b>1/8</b> n	9.0	9.0	3	<b>1/8</b> m	9.0	9.0	9	1/ <b>8</b> n	9.0	9.0	2	1/8n	9.0
1, 3-Dichlorobenzene	4.0	3	u <b>g</b> /1	7.0	4.0	3	7 <b>8</b> n	4.0	4.0	3	7	4.0	4.0	3	, <b>a</b>	7.0
1,2-Dichlorobenzene	4.0	2	1/ <b>8</b> n	4.0	7.0	3	7 <b>9</b> n	4.0	4.0	,	7	7.0	4.0	9	/ <b>9</b> n	7.0
I,4-Dichlorobenzene	0.3	3	n <b>g</b> /1	0.3	0.3	9	1/ <b>8</b> n	0.3	0.3	3	u <b>g</b> /1	0.3	0.3	3	1/ <b>8</b> n	0. s

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

SAIC SAMPLE IDENTIFICATION PIELD IDENTIFICATION MATRIX	Herr	Method Blank NA AQUEOUS	an K		•	87293001 GW-33 AQUEOUS	Sn sn		<b>3</b>	87293002 GW-34 AQUEOUS	)2 IS	!	<b>30</b>	67293003 CW-35 AQUEOUS	) 3  S	
EUTHALS/ACID E	TEST	FLAG	UNITS	PQL	TEST	FLAG	UNITS	Z Z	TEST RESULTS	FLAG	UNITS	5	TEST Results	PLAG	UNITS	PQL
Phenol	~	3	ng/1	~	\$	,	ug/1	5	\$	9	1/8n	2	~	,	u <b>g</b> /1	~
bis(2-Chloroethyl)ether	01	3	ng/1	91	2	3	1/ <b>8</b> n	9	01	9	1/8n	0	10	3	7	9
2-Chlorophenol	<b>S</b>	3	1/ <b>8</b> n	<b>~</b>	<b>~</b>	3	1/ <b>8</b> n	<b>~</b>	so i	,	1/ <b>3</b> m	Ś	•	3	1/87	~
I, 3-Dichlorobenzene	<b>•</b>	,	7 <b>%</b>	<b>ر</b> ،	Š	3	7	'n	•	3	1/ <b>8</b> n	<b>~</b> ·	•	2	u <b>g</b> /]	<b>.</b>
,4-Dichlorobenzene	~ ·	<b>,</b>	/g/ / en	<b>~</b> ~	~ ~	<b>3</b> 5	1 / 6 m	<b>~</b> ~	~ ·~	<b>=</b> =	1/87	~ ·~	~ ~	<b>,</b>	1/8/1 	~ ·
bis(2-Chloroisopropyl)ether	. 5	, ,	, / an	` <u>0</u>	. 5	כנ	, an	. 5	, 5	, ,	. 7/8n	, <u>o</u>	. 5	, ,	7/37	2
N-Nitroso-Di-W-propylamine	×	د	7	~	\$	3	ug/1	'n	•	2	ug/1	~	s	- 3	1/8n	~
Hexach lor oe thane	~	3	1/ <b>8</b> n	<b>~</b>	<b>S</b>	,	1/8n	<b>~</b>	•	3	1/ <b>8</b> n	<b>~</b>	•	,	1/ <b>3</b> n	~
Nitrobenzene	<b>~</b>	3 :	7/3m	v v	· ·	э:	( <b>8</b> )	vo v	· ·	<b>)</b> :	1 / gr	v v	~ ·	<b>:</b>	1/8n	<b>~</b> •
1sophorone 2-Nirroshesol	· ·			٠ ٠	•			· •		, ;	7	· •			) a	· ·
2,4-Dimethylphenol	. ~	, ,	, 7 , 7	Š		; ;	7	Š	, ~	, ,	1/ <b>8</b>	Š	~ ~	, ,	- P	~
bis(2-Chloroethoxy)methane	0	3	7	2	2	3	1/8n	2	2	3	1/8n	2	01	3	7	2
2,4-Dichlorophenol	<b>•</b>	3	7 <b>%</b>	<b>~</b> ·	Š	3	~ ;	· ·	v ·	,	7	<b>~</b> •	<b>د</b> ،	,	/ <b>%</b> n	<b>~</b> ·
1,2,4-Trichlorobenzene	<b>~</b> •	<b>)</b>	7	^ v	~ ~	<b>9</b> :		^ v	^ ~	<b>)</b> :		^ <i>~</i>	^ ~	<b>ə</b> :	1/ <b>3</b> n	·
Mexach lorobut adjene	· •	; ;	- - - - - - - - - - - - - - - - - - -	Š	· •	, ,	, Z	, v	· ~	, ,	, <b>,</b>	Š	•	, ,	. T/3n	· ~
4-Chloro-3-methylphenol	·		7/4	~	•	3	7	~	~	3	1/ <b>3</b> n	~	•	3	1/ <b>3</b> n	~
Hezach lorocyclopentadiene	40	3	[/8n	40	9	3	1/8n	9	70	9	1/ <b>9</b> n	9	07	3	7 <b>8</b> 7	9
2, 4,6-Trichlorophenol	<b>~</b> '	2	1/ <b>8</b> /	<b>~</b> •	<b>~</b> ·	9		<b>.</b>	· ·	<b>5</b>	7	•	vo v	3	787	<b>.</b>
Z-Chloronaphtnalene Dimerbyl shrbalare	n v	<b>,</b>		~ ~	•	<b>.</b>		~ ~	•	3 3		<b>,</b>	•	9 3	7	~ ~
Acenapht by lene	. •	, ,	7	Ś		; 3	1/ <b>8</b> n	· •			1/ <b>8</b> n	· •	. •	3	1/ <b>3</b> n	~
Acenaphthene	\$	,	1/ <b>8</b> n	<b>~</b> ;	\$	9	1/8n	<b>5</b>	<b>~</b> ;	3	7/8n	<b>~</b> (	<b>^</b>	<b>-</b>	[/ <b>8</b> n	<b>ν</b> (
2,4-Dinitrophenol	0 2	<b>ɔ</b> :	1/8/1	Š ,	۶ ک	<b>3</b> :	7 7	Š •	<b>%</b>	<b>5</b> :	1/8n	<u>ک</u> ر	Š <b>~</b>	<b>3</b> :	1/8m	×
4-Mitrophesol 2.4-Disitrofoluene	· 0	, ,	- - - - - -	2	2	, ,		2	2		. 1/85	. 5	` 2	, ,	, - - - -	2
2,6-Dinitrotoluene	•	3	1/87	\$	•	3	7/35	~	~	5	u <b>g</b> /1	•	\$	9	1/8n	~
Diethylphthalate	<b>50</b>	3	1/ <b>8</b> n	70	50	9	1/ <b>3</b> n	50 20	20	,	1/ <b>8</b> n	50 '	20	3	/ <b>8</b> n	2°
4-Chlorophenyl phenyl ether	•	<b>5</b> :	7/ <b>8</b> n	^ •	^ '	<b>3</b> :	797	^ •	n v	<b>9</b> :	7 / de :	^ ~	^ v	<b>:</b> :		~ ~
riuorene A 6-Dinitro-2-methylphenol	25	, ,	7	25	25,		, ,	, <u>2</u>	25	, ,	, and	25	25	, ,	1/an	33
N-Witrosodiphenylamine	~	. 3	1/ <b>8</b> n	~	~	9	7	•	•	3	/ <b>8</b> n	~	\$	3	1/8n	~
4-Bromophenyl phenyl ether	•	9	u <b>g</b> /1	S	•	3	1/30	<b>.</b>	<b>S</b>	9	1/8n	'n	<b>~</b>	2	1/8n	<u>ب</u>
Hexachlorobenzene	<b>.</b>	3	1/ <b>8</b> 7	<b>~</b> ·	<b>'</b>	3		· ·	· ·	9	- ( <b>%</b>	^ '	•	,	1/ <b>9</b> n	^ •
Pentach lorophenol	•	<b>5</b>	7	<u>۰</u>	~ •	<b>3</b> :	7	<b>.</b>	~ 4	<b>5</b> :	7 / m	^ •	^ •	<b>ɔ</b> :		~ ~
re-re-re-re-re-re-re-re-re-re-re-re-re-r	n v	, ,	) (a)	· ·	•	3 3		· •	•	, ,		· •	•		7	· ~
	٠.	. :	7	•		, =	7			: :	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· ~	•	. 3	- N	~
Fluorenthene	· •	, ,	<b>L k</b> 1	· •	•	, ,	7	· •	•	, ,	1/ <b>8</b> /1	· •	•		7	~
Pyrene	~	3	1/80	\$	~	9	1/4	S	~	3	1/80	~	\$	>	7/35	<b>∽</b>
Butyl benzyl phthalate	•	3	1/ <b>8</b> n	~	~	3	1/87	S	•	3	1/8n	~	•	5	1/8n	<b>∽</b> ¦
3,3'-Dichlorobenzidine	20	3	n <b>g</b> /J	70	20	9	1/ <b>8</b> n	20	20	,	7/ <b>8</b> n	20	20	3	7/8	9

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

PROJECT NO. : 2-885-06-624 PROJECT NAME: HANCOCK FIELD				
SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATRIX	Method Blank NA AQUEOUS	87293001 GW-33 AQUEOUS	87293002 GW-34 AQUEOUS	87293003 GW-35 AQUEOUS
			1001	TECT

SAIC SAMPLE IDENTIFICATION PIELD IDENTIFICATION MATRIX	Meth	Method Blank NA AQUEOUS	l ank JS		<b>w</b>	87293001 GW-33 AQUEOUS	- S		•	87293002 GW-34 AQUEOUS	2 S		•	87293003 GW-35 AQUEOUS	)	
BASE-WEUTRALS/ACID EXTRACTABLES (E625)	TEST	FLAG	UNITS	PQL	TEST	PLAG	UNITS	PQL	TEST	PLAG	UNITS	<b>3</b> 0	TEST RESULTS	FLAG	UNITS	PQL
	9	=	1/011	101	-	=	ug/1	01	01	3	1/8n	01	2	2	ug/1	9
Dengara Jenesara Come		, :	, -	. ~	. •	=	ue/1	· •	•	9	ug/l	~	\$	2	ug/1	•
018(Z-Etu) inexy 1)putualate	· ·	;	9			) =	· [		· •	3	ug/1	5	•	9	ug/	~
Chrysene		9 :	1 / 2 ·	٠.	•	; :	,			=	/ gn			1	l / an	~
Di-n-octyl phthalate	<u> </u>	5	- 1 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	٠,	<b>^</b> '	3	1 / 1 20 10	٠.	٠ ٠	3 :		٠.	٠.	3 :	9 7	
Benzo(b) fluoranthene	•	9	1 <b>/8</b> n	•	•	3	1 / <b>8</b>	^	<b>^</b> '	9	7 20 20 20 20 20 20 20 20 20 20 20 20 20	۰,	٠,	=	1 /80	
Benzo(k)fluoranthene	2	9	1/8n	S.	<b>•</b>	2	1/8n	<b>ب</b>	•	3	7 /8n	^ "	~ ·	3	1/8/ 0	^ 4
Benzo(4) pyrene	2	9	1/8n	S	•	9	1/8n	•	•	3	1 /8n	^ '	•	3	1 /8n	
Indeno(1,2,3-c,d)pyrene	•	,	ug/I	~	\$	9	u <b>g</b> /]	S	ς .	3	1/8n	· ·	<u>د</u> ،	5	- / 8n	
Dibenz(a.h)anthracene	~	3	ug/1	~	2	7	ug/1	2	~	5	1/8n	<b>~</b>	~	7	1/8n	•
Benzo(g,h,i)perylene	\$	9	ug/1	<b>~</b>	\$	9	u <b>g</b> /1	•	\$	9	ug/l	~	~	9	1/8n	•
MISCELLANEOUS INORGANIC PARAMETERS					; ; ; ; ;				1					† †	1 1	1
Altalinite Total (A403)	1	,	1/800	7	011		mg/1	7	330		1/8=	7	300		1/8m	
Alteliaite Bicarboate (A403)	ļ	=	, a	7	110		1/8	7	330		-8/ 	7	300		<b>eg/</b> ]	
Alkalinity, Carbonate (A403)	;	9	. S	7	2	9	1/8=	7	2	9	- 1 	7	7	9	mg/	
Common Anions (A429)											:		•			•
Pluoride	0.2	9	1 / Sea	0.5	0.5	9	<b>1</b> /3	0.5	7.0	3	/gg 	4.0	4.0	3	- 1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	• • • •
Chloride	0.5	9	mg/1	0.5	5.1		1/8	0.2	4.9		1 ;	• •	4.0		- ; - ;	-
Ritate	2	2	mg/1	7	2	3	<b>*</b>	7	4	3		<b>4</b> (	<b>3</b> (	3	- ; 20 20 20 20 20 20 20 20 20 20 20 20 20	
OrthoPhosphate	4	3	<b>1</b> /8	4	4	2	7	4	<b>**</b>	9	7	<b>x</b> 0 ·	<b>.</b>	9	- - - - - - -	
Sulfate	~	9	-8 -8	~	51			m	•	9	- *	^ ;	ſ,	9		•
Total Dissolved Solids (E160.1)	91	3	<b>mg</b> /1	2	240		7	2	380		- 1 · ·	≘ ·	980		1 / S	≘ -
Arsenic (E206.2)	-	2	1/8n	-	-	3	n <b>g</b> /1	-	- :	3	1 / gn	- (	- 6	3	- ; 87	•
Mercury (8245.1)	0.7	9	u8/1	0.5	0.2	5	n <b>g</b> /1	0.5	0.2	3	1/8n	7.0	7.0	5	1 /8n	7.0
Selenium (E270.2)	7	2	1/8n	7	7	2	n <b>g</b> /1	7	~	<b>5</b>	1/ <b>8</b> n	7	~	5	1 /8n	
MISCELLANEOUS ORGANIC PARAMETERS								1				 	1 3 4 9			
Petroleum Hydrocarbons (E418.1)	0.5	9	1/80	0.5	0.5	5	1/8	0.5	0.5	9	1/80	0.5	0.5	2	mg/l	0.5

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATRIX	#	Method Blank NA AOUEOUS	a S X		90	87293001 CW-33 AOUEOUS	- S		•	87293002 CW-34 AQUEOUS	2 S		•	87293003 CW-35 AQUEQUS	ე <u>დ</u>	
ICAP SCAN (E200.7)	TEST	FLAG	UNITS	PQL	TEST	FLAG	UNITS	70E	TEST	FLAG	UNITS	70.	TEST	FLAG	UNITS	PQL
Aluminam	45	7	ug/1	45	980		1/an	45	580		ug/1	45	099		ug/1	\$
Ant imony	32	=	<b>LE</b> /	32	32	9	- / <del>J</del>	32	32	3	1/30	32	32	3	- T	32
Barius	7	7	1/8n	7	300		1/ <b>3</b> n	7	160		1/81	7	170		7 m	7
Beryllium	0.3	3	ug/1	0.3	0.3	3	1/87	0.3	0.3	2	1/ <b>8</b> n	0.3	0.3	3	<b>1/8</b> n	0.3
Boron	61		7/ <b>8</b> n	~	~	9	7/ <b>8</b> n	~	53		1/80	\$	*		u <b>g</b> /1	<u>۰</u>
Cadmium	4	5	1/ <b>8</b> n	4	4	2	1/ <b>8</b> n	4	4	3	1/ <b>8</b> n	4	4	,	ug/l	4
Calcium	36		1/8n	-	26, αα <u>α</u>		7 <b>8</b> n	2	100,000		u <b>g</b> /1	2	93,000		u <b>g</b> /1	01
Chromium	1	9	ug/1	1	7	3	ug/1	1	1	3	7 <b>8</b> n	-	7	2	ug/l	^
Cobelt	1	2	1/8n	1	7	3	1/ <b>8</b> n	7	7	3	1/8n	^	1	Þ	ug/1	1
Copper	9	9	ug/1	•	13		<b>1/8</b> n	9	•	7	- 18n	•	9	3	1/8n	•
Iron	7	3	1/8n	^	1,800		1/30	1	1,900		7 <b>3</b> n	1	2,000		n <b>g</b> /]	1
Lead	42	3	ug/l	42	42	3	1/ <b>8</b> n	42	42	3	n <b>g</b> /1	42	42	2	1/8n	42
Magnesius	2	3	ug/1	30	9,900		1/ <b>8</b> n	3	26,000		1/ <b>3</b> 7	2	24,000		1/8n	30
Manganese	2	2	1/80	7	120		1/ <b>8</b> n	7	620		ug/l	7	9		n <b>g</b> /1	7
3 Malybdenus	<b>œ</b>	3	ug/l	<b>∞</b>	<u>8</u>		ug/J	<b>æ</b>	•	3	1/ <b>8</b> n	<b>œ</b>	<b>œ</b>	2	1/ <b>8</b> n	30
Nickel	15	3	~/ <b>%</b> n	~	15	2	7 <b>8</b> m	-2	2	3	<b>1/8</b> n	-2	15	3	1/ <b>8</b> n	15
Potassium	200	3	ug/l	200	901.		ug/l	200	900,1			200	. 700		7/ <b>8</b> n	<b>2</b> 00
Silica	58	9	7/8n	88	7,000		1/ <b>8</b> n	<b>8</b> 9	9,200		1/ <b>8</b> n	88	9,300		ug/1	98
Silver	1	9	ug/l	1	7	3	1/ <b>3</b> n	7	1	3	7 <b>8</b> 7	1	1	9	1/ <b>8</b> n	-
Sodium	29	3	1/8n	53	2,400		787	58	3,100		1/8n	53	3,300		. ug/1	53
Thellium	07	3	<b>1/8</b> n	0,4	07	3	1/ <b>8</b> n	9	07	9	ug/l	40	83		1/ <b>3</b> n	04
Vanadium	<b>30</b>	3	ug/1	90	90	9	7/ <b>8</b> n	<b>90</b>	<b>40</b>	9	ug/1	<b>3</b>	•	3	   	æ
Zinc	4		1/80	7	8		1/ <b>8</b> n	7	∞		1/ <b>8</b> n	7	•		u <b>g</b> /1	7

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATRIX	<b>35</b> .	87293004 CM-36 AQUEOUS	<b>√</b> ∨		<b>30</b>	37293005 CW-37 AQUEOUS	~ sı	
PURCEABLE HALOCARBONS (E601)	TEST	FLAG	UNITS	102	TEST	FLAG	UNITS	75
children character contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted contracted con	0.10	=	ug/1	0.10	0.10	,	ug/1	0.10
Bronomethane	1.18	9	1/8n	81.	æ	9	ug/1	81.1
Vinyl chloride	0.18	3	ng/1	0.18	0.18	9	1/ <b>8</b> n	0.18
Dichlorodifluoromethane	2.41	ပ	ug/1	18.	2.16 C	ပ	<b>1/3</b>	1.81
Chloroethane	0.52	,	7 <b>8</b> n	0.52	0.52	5	1/ <b>8</b> n	0.52
Methylene chloride		ပ	1/ <b>3</b> n	0.25	0.25	9	ug/1	0.25
Trichlorofluoromethane	0.22	ပ	<b>1/8</b> n	0.20	0.22 C	၁	ug/1	0.20
l, I-Dichloroethene	0.13	2	u <b>g</b> /1	0.13	0.13	3	u <b>g</b> /1	0.13
l, l-Dichloroethane	0.07	9	1/ <b>8</b> n	0.0	0.07	3	1/ <b>8</b> n	0.07
trans-1,2-Dichloroethene	0.10	3	1/ <b>8</b> n	0.10	0.10	3	1/87	0.10
Chloroform	0.13	o	1/8n	0.05	0.93 C	ပ	7/ <b>8</b> n	0.02
1,2-Dichloroethane	0.03	9	<b>1/8</b> 7	0.03	0.03	9	<b>1/8</b> n	0.03
I, I, 1-Trichloroethane	0.03	9	7 <b>%</b> n	0.03	0.03	9	n <b>g</b> /1	0.03
Carbon Tetrachloride	0.12	,	<b>ng/</b> ]	0.12	0.12	9	u <b>g</b> /1	0.12
Bronodich loronethane	0.10	9	u <b>g</b> /1	0.10	0.10	3	1/80	0.10
1,2-Dichloropropane	0.0	,	n <b>g</b> /1	90.0	0.0	3	u <b>g</b> /1	0.04
trans-1,3-Dichloropropene	0.34	>	u <b>g</b> /1	0.34	0.34	3	1/8n	0.34
Trichloroethene	0.12	9	1/ <b>8</b> n	0.12	0.12	9	1/ <b>8</b> n	0.12
Dibromochloromethane	0.0	3	1/ <b>8</b> n	60.0	0.0	3	<b>1/8</b> n	0.0
1,1,2-Trchloroethane	0.05	9	n <b>g</b> /1	0.02	0.03	3	1/ <b>8</b> n	0.02
cie-1,3-Dichloropropene	0.30	9	ng/J	0.30	0.20	3	u <b>g</b> /1	0.30
2-Chloroethylvinyl ether	0.13	2	1/8n	0.13	0.13	7	1/ <b>8</b> n	0.13
Bromoform	0.20	,	1/ <b>8</b> n	0.30	0.20	9	7 <b>9</b> 7	0.30
1,1,2,2-Tetrachloroethane	0.03	9	ug/1	0.03	0.03	3	1/ <b>8</b> n	0.03
Tetrachloroethene	0.03	9	u <b>g</b> /1	0.03	0.03	3	<b>1/8</b> n	0.03
Chlorobenzene	0.25	9	1/ <b>8</b> n	0.25	0.25	3	<b>1/8</b> n	0.25
1,3-Dichlorobenzene	0.32	9	<b>1/8</b> n	0.32	0.32	9	u <b>g</b> /1	0.32
1,2-Dichlorobenzene	0.15	9	1/8n	0.15	0.15	7	7 <b>8</b> 0	0.15
1,4-Dichlorobenzene	0.24	3	n8/1	0.24	0.24	9	n <b>8</b> /1	0.24

							11111111	1
	0.2	3	ug/1		0.3	9	1/8n	0.3
Toluene	0.5	2	ng/I	0.2	0.2	9	1/ <b>8</b> n	0.7
Ethyl benzene	0.3	3	u <b>g</b> /1	0.2	0.3	3	- - -	0.7
Chlorobenzene	0.3	3	1/ <b>8</b> n	0.5	0.5	3	1/8n	0.3
Xylenes, Total	9.0	9	ug/l	9.0	9.0	3	/ <b>8</b> n	9.0
1, 3-Dichlorobenzene	7.0	3	ug/J	4.0	7.0	=	<b>7</b>	4.0
1.2-Dichlorobenzene	4.0	9	ug/l	4.0	7.0	3	1/30	9.0
1.4-Dichlorobenzene	0.3	9	ug/l	0.3	0.3	3	1/ <b>8</b> n	0.3

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
ENVIRONMENTAL CHEMISTRY DIVISION

SAIC SANFLE DENTIFICATION FIELD IDENTIFICATION MATRIX	•	CW-36 AQUEOUS	er so		•	CH-37 AQUEOUS	. a	
MASE-NEUTRALS/ACID EXTRACTABLES (E625)	TEST	FLAG	UNITS	PQL	TEST	PLAG	UNITS	PQL
Phenol	2	3	n		~	,	ug/1	?
bis(2-Chloroethyl)ether	01	9	ug/1	01	9	2	ug/1	01
2-Chlorophenol	~	3	ug/1	~	~	,	- 1/8n	~
1,3-Dichlorobenzene	•	3	ng/1	~	~	9	1/ <b>3</b> n	•
1,4-Dichlorobenzene	S	9	ug/1	<b>~</b>	~	9	n <b>g</b> /1	S
1,2-Dichlorobenzene	~	9	1/80	~	\$	3	1/ <b>8</b> n	S
bis(2-Chloroisopropyl)ether	9	3	1/ <b>8</b> n	0	9	9	u <b>g</b> /1	9
N-Nitroso-Di-M-propylemine	•	9	1/8n	~	\$	9	1/8n	\$
Hexachloroethane	•	3	1/8n	~	\$	ر	1/ <b>8</b> n	S
Nitrobenzene	<b>.</b>	,	<b>ng</b> /1	~	<b>~</b>	,	1/ <b>8</b> n	· ·
Isophorone	<b>•</b>	3	/ <b>8</b> n	<b>•</b>	<b>•</b>	3	- 1 - 1 - 1	· ·
2-Nitrophenol	<b>•</b>	,	1/ <b>8</b> n	vo :	•	3	7	'n
2,4-Dimethylphenol	•	3	7 <b>%</b> n	^ :	•	3	- 1 - 1 - 1 - 1	^ :
bis(2-Chloroethoxy)methane	<u>o</u> :	3	n <b>g</b> /1	۰ د	<u>.</u>	2	7 ;	9 '
2,4-Dichlorophenol	^ '	9	1 / <b>8</b> 7	<b>α</b> •	^ `	3		^ '
1,2,4-Trichlorobenzene	'n	9	1 / <b>3</b> n	^ '	•	3	7 / <b>8</b> n	^ `
Naphthalene	<b>'</b>	9	1 <b>8</b> 1	'n	<b>'</b>	3	- 1 - 2 - 3 - 1	^ '
dexachlorobutadiene	^ '	3	1/ <b>8</b> n	^ '	^ '	3	<b>*</b>	^ '
4-Chloro-3-methylphenol	'n	9	1/ <b>8</b> n	<b>^</b> :	'n	9	7 / <b>8</b> n	^ (
Hexachlorocyclopentadiene	0,	3	1/ <b>8</b> n	, 0	<b>0</b> ,	3	1 (g)	9
2,4,6-Trichlorophenol	^ '	3	1/ <b>8</b> n	^ •	^ '	2	1/ <b>3</b> n	^ '
2-Chloronaphthalene	^ •	3	1/ <b>8</b> n	<b>^</b> •	^ '	9		^ "
Dimethyl phthalate	^ '	3	1/ <b>8</b>	^ 4	^ '	3		^ 4
Aceasphinylene	<b>~</b> •	<b>,</b>	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	^ v	n 4	<b>3</b> :		^ 4
Acenaphthene	^ 3	<b>9</b> :	1 / 1	^ Ş	^ 5	<b>:</b>		,
/ with tropnenot	Ş •	<b>3</b> :	<b>1</b>	<b>?</b> •	3 4	9 :	•	2 "
Topological Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company o	2	9 :	) (	2 ٠	<u></u>	;	7	۱ :
Z,4-Uinitrototuene	2 •	<b>;</b>	<b>1</b> 7	2 ~	2 •	9 :		? v
2,0-Uinitrotoluene Diothilabetalore	· 6	; ;	, (	, 6	,	:	, <u> </u>	200
A.Chlorophenul phenul ether		, :	· ~		, ,	. =	, du	, «
Ringrapa			7	· •	•	. 5	7	•
4.6-Dinitro-2-methylphenol	25	3	1/87	25	25	3	- T	25
N-Nicrosodiphenylamine	~	9	LR/1	~	•	3	7	•
4-Bromophenyl phenyl ether	•	3	ug/1	~	~	2	1/8n	\$
Hexachlorobenzene	~	3	1/81	~	•	9	7 <b>%</b> n	~
Pentachlorophenol	\$	7	1 <b>8</b> 1	~	~	9	1/ <b>8</b> n	•
Phenanthrene	2	2	u <b>g</b> /]	~	•	3	<b>1/3</b> n	<b>~</b>
Anthracene	~	3	<b>1/8</b> 7	~	•	3	<b>1/3</b> n	~
Di-n-butylphthalate	~	3	1/ <b>8</b> n	~	~	,	7	~
Fluoranthene	~	3	- 1/ <b>8</b> n	~	~	9	1/ <b>8</b> n	~
Pyrene	•	9	<b>7</b>	~	•	9	( <b>)</b>	^
Butyl benzyl phthalate	•	3	7/ <b>8</b> n	~	~	2		~
	Č	:	1/011	20	20	;	17.	•

SCIENCE APPLICATIONS INTERNATIONAL CONPORATION ENVIRONMENTAL CHEMISTRY DIVISION

SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATRIX	<b>30</b>	87293004 GW-36 AQUEOUS	4 S		<b>30</b>	87293005 CW-37 AQUEOUS		
် မျှ	TEST RESULTS FLAG UNITS	FLAG	UNITS	PQL	TEST RESULTS FLAC UNITS	FLAC	UNITS	PQL
Benzo(A)anthracene	n 01	,	1/8n	01	01	2	u8/1	01
bis(2-Ethylbexyl)ohthalate	~	2	ug/l	~	5	9	ug/1	~
Chrysene	~	3	ug/1	~	5	9	u8/1	S
Di-n-octyl phthalate	2	3	1/8n	~	\$	9	1/8n	~
Renzo(h)fluoranthene	\$	3	1/80	~	\$	3	1/80	~
Renzo(k) fluoranthene	2	9	ug/1	~	2	3	u8/1	~
Renzo(a)ovrene	\$	9	1/8n	>	2	9	n8/1	~
Indepo(1 2.3-c.d)ovrepe	~	3	ug/1	~	\$	3	u8/1	~
Dibenz(a b)anthracene	\$	2	ug/1	~	2	9	u8/1	~
Benzo(g,h,i)perylene	~	3	u <b>g</b> /1	2	~	9	u8/1	2

Alkalinity, Total (A403)	260		mg/1	7	360		mg/1	7
Alkalinity, Bicarbonate (A403)	260		7/88	7	360		18/3	7
Alkalinity, Carbonate (A403)	7	3	mg/1	7	7	9	1/3	7
Common Anions (A429)								
Fluoride	0.1	3	mg/1	0.1	7.0	3	mg/1	7.0
Chloride	01		1/8	2.5	7.3		mg/1	1.0
	01	3	mg/1	01	4	9	mg/1	4
OrthoPhosphate	20	9	mg/1	20	œ	9	1/8	•
Sulfate	15	9	mg/1	15	31		18/	9
Total Dissolved Solids (E160.1)	650		mg/1	01	410		<b>m8</b> /1	2
Arsenic (£206.2)	\$	9	ug/1	2	~	9	ug/l	<b>4</b> 0
Mercury (8245.1)	0.5	9	u8/1	0.2	0.2	3	u8/1	0.5
Colonium (F220 2)	S	9	ue/I	٠	9	9	ug/l	S

Alkalinitv. Total (A403)	200		m8/1	7	360
Alkalinity, Bicarbonate (A403)	260		7/88	7	360
Alkalinity, Carbonate (A403)	7	3	mg/1	7	2
Common Anions (A429)					
Fluoride	0.7	3	mg/1	0.	7.0
Chloride	0		mg/l	2.5	7.3
	10	3	mg/1	01	7
OrthoPhosphate	20	9	mg/1	20	<b>80</b>
Sulfate	15	9	mg/l	15	31
Total Dissolved Solids (E160.1)	650		1/8	01	410
Arsenic (£206.2)	\$	9	ug/1	2	•
Mercury (8245.1)	0.5	9	u8/1	0.2	0.7
Selenium (E270.2)	~	9	1/8n	2	2

	********************************	0.5 0.5 u mg/l 0.5
	44441111111111111111111111111111111111	0.5 u mg/l 0.5
MISCELL !NEOUS ORGANIC PARAMETERS	\$25-1-15-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Petroleum Hydrocarbons (E418.1)

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

SAL	SAIC SAMPLE IDENTIFICATION	80	87293004			30	87293005	~	
9 T E	FIELD IDENTIFICATION	•	CW-36			•	GW-37		
TA.	MATRIX		Aqueous	တ		1	AQUEOUS	s	1
5	CAB SCAM (E200.7)	TEST	FLAG	UNITS	102	TEST	FLAG	UNITS	102
		019		1/011	57	740		/l	4.5
	20001104	32	5	1/81	32	32	9	/ N	32
	Berium	82	:	ug/1	7	300		7 da	7
	Servilius.	0.3	J	ug/1	0.3	0.3	9	1/ <b>8</b> n	0.3
	Boron	65		ug/1	<b>~</b>	42		7 <b>%</b>	S
	Cadesium	4	9	7/ <b>8</b> n	4	4	3	ng/1	4
	Calcius	160,000		7/ <b>8</b> n	2	000'66		n8/1	9
	Chromium	1	,	1/8n	1	7	3	1/8n	^
	Cobalt	1	9	1/8n	7	1	2	ng/1	1
	Copper	9	9	1/8n	9	•	,	1/ <b>8</b> n	ø
	Lon	067		1/ <b>8</b> n	1	1,300		1/8n	1
	Le & d	42	3	u <b>g</b> /1	42	42	2	u <b>g</b> /1	42
	Magnesium	39,000		n <b>8</b> /1	2	22,000		ng/J	20
10	Manganese	2,300		1/ <b>8</b> n	7	260		<b>1/8</b> n	~
ا ــــــــــــــــــــــــــــــــــــ	Molybdenum	4		1/ <b>8</b> n	•••	24		ng/l	<b>æ</b>
22	Nickel	2	9	ug/1		15	3	1/ <b>8</b> n	2
٥	Potassium	200	3	ng/J	200	200		7 <b>8</b> 7	200
	Silica	9,700		n <b>g</b> /1	88	7,300		r <b>8</b> /3	85
	Silver	^	3	u <b>g</b> /1	1	7	3	1/ <b>8</b> n	~
	Sodius	5,200		1/ <b>8</b> n	53	2,500		1/8n	53
	Thelline	150		1/ <b>8</b> n	70	140		7 <b>8</b> 7	07
	Vanedius	<b>80</b>	9	1/80	<b>œ</b>	<b>30</b>	9	1/ <b>8</b> n	<b>3</b>
	2 inc	2	3	ng/J	7	•		1/ <b>8</b> n	7

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATRIX	Hetho Couplemen	Method Blank NA COMFIGURATION ANALYSES	872 CW	87293001 GW-33	60	87293002 GW-34	87 G	87293003 GW-35
			TURNI INCO	104 ARALISTS	CONFIGURA	CONFIRMATION ANALISTS	CONFINAL	CONFIRMATION ANALYSIS
PURCEABLE HALOCARBONS (E60!)	PRIMARY AMALYSIS	CONFIRMATION ANALYSIS	PRIMARY Analysis	CONFIRMATION ANALYSIS	PRIMARY ANALYSIS	CONFIRMATION ANALYSIS		CONFIRMATION
Chloromethane	<b>E</b>				**************************************			07
Bromomethane	쫖	Z	ž	Z	2 2	2	: a	£ 3
Vinyl chloride	2.20	QX	2.25	d 0.28 C	2.74	ON GN	77.7	£ 3
Dichlorodifluoromethane	2.20	d 8.68 C	2.25		2.74	9.72	2.77	
Chloroethane	¥		N.	Z	2		2	<b>`</b> a
Methylene chloride	0.39	ND NC	0.51	2.28 C	0.54	0.74 C	0.53	5
Trichlorofluoromethane	#	æ	ž	<b>X</b>			2	2 2
1,1-Dichloroethene	쭢	¥	Œ.	œ z	Z	2	: œ	ž 3
1,1-Dichloroethane	쫖	æ	æ	ž	ď	: 65 22		( O
trans-1,2-Dichloroethene	#	<b>X</b>	æ	ž	<b>2</b>	2	<b>2</b>	1
Chloroform	¥	#	æ	×	<b>4</b>	( et		£ 2
1,2-Dichloroethane	<b>X</b>	<b>X</b>	<b>3</b>	æ	<b>2</b>	2 2	<b>=</b>	1 Z
1,1,1-Trichloroethane	<b>X</b>	æ	0.04	ND	0.0	0.03 C	0.06	£ £
Carbon Tetrachloride	æ	<b>Z</b>	æ	¥	æ		2	2
Bromodichloromethane	9	ž	<b>#</b>	¥	Œ.	<b>2</b>	ž	
1,2-Dichloropropane	<b>#</b>	#	쫖	æ	<b>4</b>	<b>4</b>	Z	Z
trans-1,3-Dichloropropene	Ħ	#	쫖	¥	<b>X</b>	22	æ	9 2
Trichloroethene	<b>X</b>	<b>#</b>	<b>Z</b>	₹	<b>X</b>	~ 2	æ	Z
Di brosoch lorosethane	<b>X</b>	<b>#</b>	뚴	Ħ	<b>#</b>	22	<b>X</b>	Œ.
i, i, 2-Trchloroethane	<b>Ξ</b>	<b>X</b>	쫄	Z	<b>Ξ</b>	<b>4 2</b>	<b>X</b>	<b>4</b>
cis-1,3-Dichloropropene	Ĩ	<b>X</b>	¥	Ħ	<b>Ξ</b>	ď	æ	<b>X</b>
2-Chloroethylvinyl ether	쭟	Ĩ	Ŧ	<b>Ξ</b>	Ĩ	at z	9	¥
Bromoform	풀	¥	æ	¥	<b>X</b>	72	<b>X</b>	ä
1,1,2,2-Tetrachloroethane	<b>Ξ</b>	Ĭ	쭠	<b>=</b>	Ĩ	<b>X</b>	<b>Ξ</b>	<b>Z</b>
Tetrachloroethene	¥	Ĩ	<b>Ξ</b>	Ħ	¥	Œ	<b>X</b>	¥
Chlorobenzene	¥	<b>X</b>	표	쭢	#	<b>4</b> 2	<b>#</b>	Z
1, 3-Dichlorobenzene	<b>Z</b>	쯮	Ŧ	뜊	Ĭ	at Z	<b>X</b>	Z
1,2-Dichlorobenzene	Ĩ	Z	뚳	<b>X</b>	¥	er z	¥	¥
i,4-Dichlorobenzene	¥	<b>8</b>	뿔	#	<b>=</b>	#	<b>X</b>	<b>X</b>
AROMATIC VOLATILE ORGANICS (SW8020)								
Bentene			# E					2
Toluene	¥	2	<b>X</b>	7	<b>X</b>	Z	=	7
Ethyl benzene	7	æ	Ĩ	2	<b>X</b>	2	2 2	2
Chlorobenzene	¥	Ŧ	Ŧ	=	=	<b>2</b>	2	ar 7
Xylenes, Total	¥	Ĩ	æ	<b>Z</b>	=	<b>2</b>	<b>=</b>	Z
1,3-Dichlorobenzene	2	7	Z	<b>=</b>	~	2	7	2
1.2-Dichlorobenzene	2	<b>3</b>	Ŧ	=	=	: 2	= =	7
				•	•			

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

SAIC SANFLE LUEBILFICATION	<b>B</b>	87293005 4 CM-36	<b>4</b>	80	87293005 GW-37	~
MATRIX	Ĭ	TIUN AN	IALYSIS	CONF I RM	ATION	CONFIRMATION ANALYSIS
PURCEABLE HALOCARBONS (E601)	PRIMARY	CON	CONFIRMATION	PRIMARY ANALYSIS	8	CONFIRMATION ANALYSIS
Chloromethane			Z.	# # # # # # # # # # # # # # # # # # #	] 	¥ .
Bronomet hane	#		<b>Z</b>	¥		<b>4</b>
Vinyl chloride	2.41	P	ND NC	2.16	7	ND
Dichlorodifluoromethane	2.41	Ð	9.32 C	2.16	7	10.00 C
Chloroethene	<b>#</b>		ă	Ŧ		<b>4</b>
Methylene chloride	14.0		1.42 C	0.43		1.28 C
Trichlorofluoromethane	0.22		0.23 C	0.23		0.23 C
l, l-Dichloroethene	#		8	Z		۵. 2
1.1-Dichloroethane	<b>Ξ</b>		<b>X</b>	*		<b>#</b>
trans-1.2-Dichloroethene	#		<b>Z</b>	¥		<b>Ξ</b>
Chloroform	0.13		0.22 C	0.93		0.81 C
1.2-Dichloroethane	0.03		0.07 C	<b>X</b>		<b>#</b>
1,1,1-Trichloroethane	<b>X</b>		결	0.03		ND
Carbon Tetrachloride	<b>Ξ</b>		纽	#		<b>X</b>
Browod i chlorome thane	<b>Ξ</b>		<b>X</b>	풒		<b>#</b>
1,2-Dichloropropane	¥		<b>4</b>	Ŧ		Ä
trans-1,3-Dichloropropene	<b>E</b>		<b>X</b>	<b>Ξ</b>		<b>#</b>
Trichloroethene	쭞		<b>4</b>	#		<b>#</b>
Dibromochloromethane			<b>E</b>	쭟		<b>4 2</b>
1,1,2-Trchloroethane	æ		쫖	<b>#</b>		<b>#</b>
cie-1,3-Dichloropropene	7		Ĩ	Ŧ		<b>4</b>
2-Chloroethylvinyl ether	<b>Ξ</b>		Z.	Ī		#
Bronoform	8		æ	<b>Z</b>		<b>=</b>
1.1.2.2-Tetrachloroethane	<b>Ξ</b>		#	<b>X</b>		<b>4</b>
Terrachloroethene	爱		<b>4</b>	Œ		좵
Chlorobenzene	쯫		<b>M</b>	<b>Ξ</b>		ĭ
1,3-Dichlorobenzene	7		<b>a</b>	#		쫖
1,2-Dichlorobenzene	ž		Ħ	<b>X</b>		Z.
	7		<b>=</b>	쫖		풀

		MR 0.3 MD MC						
	az	2	2	~	옆	2	2	<b>#</b>
AROMATIC VOLATILE ORGANICS (SW8020)		Toluene	Ethyl benzene	Chlorobenzene	Xvlenes. Total	1. 3-Dichlorobenzene	1.2-Dichlorobenzene	1,4-Dichlorobenzene

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

PROJECT NO. : 2-885-06-624 PROJECT NAME: HANCOCK FIELD

## NOTES AND COMMENTS:

- u = Not detected at the limits given.
- d = Vinyl chloride and dichlorodifluoromethane coelute, the value is the total of both peaks.
- C = Compound found on both the primary and secondary column above the indicated detection limit.
- CI = Compound found on both the primary and secondary column, however there is potential interference from another compound which on the secondary column prevents accurate quantitation of the peak of interest.
  - NC Compound found on the primary column but not on the secondary column at or above the detection limit indicated.
- NA Not applicable.
- NR Not required.
- ND = Not detected.
- All volatile, halogenated compounds included in the 8020 analysis and in the 601 analysis were quantitated using their response from the 601 analysis.

ENVIRONMENTAL CHEMISTRY DIVISION PROJECT NO. : 2-885-06-624 PROJECT MAME: MANCOCK FIELD

SAIC SAMPLE IDENTIFICATION FIELD IDENTIFICATION MATRIX		DUPLICATE ANALYSIS GW-37 AQUEOUS	YSIS		XI RTAN	MATRIX SPIKE ANALYSIS GU-37 AQUEOUS	MALYSIS		
PURGEABLE HALOCARBONS (E601)		ILIQUOT	ZRPD	CONTROL	ORIGINAL SPIKED RESULTS RESULTS	SPIKED	AMT	# BEC	CONTROL
Chloromethane		2	¥	0-20%	0.00	0.00	0.0	V.	0-1932
Brosomethane	2	욮	¥	0-20%	0.00	0.0	0.0	¥	0-1442
Vinyl chloride	2.16	1.82	17%	0-20%	2.16	2.20	<u>ه.</u>	¥	101 I-09
Dichlorodifluoromethane	2.16	1.82	17%	0-20%	2.16	2.20	0.0	¥	2011-09
Chloroethane	9	읖	¥	0-20%	0.00	0.00	0.0	¥	70-115%
Methylene chloride	0.42	0.45	7,4	0-20%	0.43	1.21	0:	797	70-115%
Trichlorofluoromethane	0.22	0.30	10%	0-20%	0.22	1.13	1.0	818	70-1152
1,1-Dichloroethene	2	윤	¥	0-201	0.00	0.92	<u>-</u>	376	61-145%
1,1-Dichloroethane	Q.	2	¥	0-20%	0.00	0.00	<u>-</u>	206	85-115%
trans-1,2-Dichloroethene	2	읃	¥	0-20%	0.00	0.17	0.	112	70-115%
Chloroform	0.93	0.84	<b>10</b> 2	0-20%	0.93	1.63	<u>:</u>	70%	70-115%
1,2-Dichloroethane	유	읃	ş	0-201	00.00	0.94	<u>.</u>	<b>1</b> 76	70-115%
1,1,1-Trichloroethane	0.03	0.06	¥19	0-20% *	0.03	0.85	<u>•</u>	822	75-1202
Carbon Tetrachloride	2	욡	1	0-20%	0.00	0.8	<u>.</u>	81%	75-120X
Bronodichloromethane	2	<b>≘</b>	ş	0-20%	0.00	0.89	<u>•</u>	892	75-1202
1,2-Dichloropropane	9	2	ş	0-20%	00.00	0.86	0.	861	70-115%
trans-1, 3-Dichloropropene	9	윤	*	0-20%	0.00	0.86	<u>.</u>	867	70-1152
Trichloroethene	웆	욡	4	0-201	0.00	0.8	0.	81%	20-115X
Dibromoch lorome thane	Q	<b>£</b>	4	0-20%	0.00	2.92	<u>ن</u> ص	972	65-105%
I, I, 2-Trchloroethane	2	읖	\$	0-20%	0.00	2.92	3.0	972	65-105 <b>X</b>
cia-1,3-Dichloropropene	2	2	¥	0-20%	00.0	2.92	3.0	972	65-1051
2-Chloroethylvinyl ether	뎙	2	¥	0-20%	0.00	0.00	<u>-</u>	70	0-1867
Bromoform	즟	2	≨	0-20%	0.00	70.	<u> </u>	104%	13-1592
1,1,2,2-Tetrachloroethane	2	윤	1	0-20%	0.00	1.78	2.0	892	80-125%
Tetrachloroethene	2	ş	ş	0-20%	0.00	1.78	2.0	891	80-1252
Chlorobenzene	QN	ş	≨	0-20%	0.00	0.76	<u> </u>	161	75-1252
1,3-Dichlorobenzene	Ş	욡	ş	0-20%	0.00	2.01	3.0	¥19	73-1352 **
1,2-Dichlorobenzene	윷	ş	4		0.00	2.01	3.0	672	63-141%
I,4-Dichlorobenzene	9	2	¥	0-20%	0.00	2.01	3.0	<b>Z</b> 19	76-1422 **
AROMATIC VOLATILE ORGANICS (SW8020)									
				2000	,		-	1001	
<b>L</b> ensese	<b>a</b> (	₹ 6	10 Y	* A07-0				400	35-1359 ##
Toluene		<b>7</b>	***	* *07-0		) c	: -	9 6	36-1264
			1	- /:: <del>-</del>	: :			46,	AC / 186/

#RPD values for 1,1,1-trichloroethane and toluene are relative high due to their proximaty to the detection limits for these compounds. The values calculated are considered to be acceptable by the laboratory based on historical data.

anduraide laboratory established control limits for percent recovery. Corrective action required only when more than five compounds fall outside the estantes entreis. 10.1 shed

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note that   Note	SAIC SAMPLE IDENTIFICATION FIRLD IDENTIFICATION	DUPLICATE ANALYSIS GW-36	TE ANAL	SIS		MATRI	MATRIX SPIKE ANALYSIS CW-37	MALYSIS		
	***************************************	3	00000	1	1 1 1	1	AQUEOUS	1		
Proceedings	BASE-NEUTRALS/ACID EXTRACTABLES (SW8270)	ALIQUOT A	L [QUOT #2	ZRPD	CONTROL	ORIGINAL RESULTS	-	AMT SPIKED	X REC	CONTROL
1	Phenol	2	2	¥	1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	0	001	200	50%	12-891
there is no interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and interest and intere	bis(2-Chloroethyl)ether	ã	2	\$		;			≨	
there was the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat	2-Chlorophenol	QX	2	¥		0	153	200	11%	27-1232
there was the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat	1,3-Dichlorobenzene	유	<b>2</b>	ş		•	!	:	≨	
there is no in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co	1,4-Dichlorobenzene	2	ş	<b>≨</b>		0	63	8	63%	39-972
ine	Benzyl alcohol	2	율	4			•	!	ş	
Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Incompany   Inco	i, 2-Dichlorobenzene	2	윤	¥		***		!	≨	
ice	2-Nethylphenol	2	2	4			1	1	¥	
ine	bis(2-Chlorotsopropyl)ether	2	<b>9</b> 9	≨ :		!	!	!	<b>4</b>	
10   10   10   10   10   10   10   10	4-Metny ipnenot	2 5	2 5	≨ ;		1 9	=	! -	¥	
## Company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the com	Mexach lordethane	2	2	<b>§</b> 4			: :	001	*	7911-14
10   10   10   10   10   10   10   10	Ni trobenzene	9	2	1 1					1 1	
ane 100 100 144	Leophorone	2	2	2		;	;		1 4	
10   10   10   10   10   10   10   10	2-Nitrophenol	QM	ş	4		;	!	;	<b>4</b>	
10   10   10   10   10   10   10   10	2,4-Dimethylphenol	2	2	4		;	!		<b>\$</b>	
10   10   10   10   10   10   10   10	Benzoic acid	2	<b>£</b>	4			;	-	2	
10   10   10   10   10   10   10   10	bis (2-Chloroethoxy)methane	2	윺	1				!	¥	
10   10   10   10   10   10   10   10	2,4-Dichlorophenol	2	욡	¥		;	:	;	≨	
10   10   10   14   15   15   15   15   15   15   15	1,2,4-Trichlorobenzene	2	<b>9</b>	4		0	67	001	<b>2</b> /9	39-98%
Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo	Maphinalene	2 1	<b>2</b> :	<b>4</b> :		•	•	1	<b>\$</b>	
10	Letter of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat	2 9	2 9	<b>1</b> ;		1		-	≨ :	
Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo	A-Chlorolles bilbonol	2 1	2 9	<b>1</b>		;	1 9	6	<b>≱</b>	
tione  10 10 10 10 10 10 10 10 10 10 10 10 10 1	2-Methylpsohthalene	2	2 £	1 1			<b>6</b>	907	70 ;	276-52
NE	Hexach lorocyclopent adiene	2	2	1		;	i		≨ ≦	
## ## ## ## ## ## ## ## ## ## ## ## ##	2,4,6-Trichlorophenol	2	2	¥		;		1		
No	2,4,5-Trichlorophenol	2	2	1		;	1	}	≨	
No	2-Chloronaphthalene	2	<b>a</b>	<b>1</b>		;	!	!	¥	
No	2-Witroeniline	2 :	<b>2</b> :	<b>4</b>		•	!		<b>\$</b>	
No	Unechyl phinalace	2 5	2 9	<b>1</b> ;		!	-	1	≨ :	
No		2 £	2	1 1					<b>§</b> 3	
ND   ND   NA	Acessattese	2	9	€ ≨			=	9	1	46-1187
ND   ND   NA   NA   NA   NA   NA   NA	2.4-Dinitrophenol	윷	2	1		;	; ;	1	<b>1</b>	
ND   ND   NA	4-Nitrophenol	9	윤	¥		0	88	200	44.2	10-801
ND   ND   NA   NA   NA   NA   NA   NA	Dibenzofursa	2	2	2		1 1 1	1	!	≨	
ND ND NA  ND ND NA  NJ ether ND NA  ND NA  ND NA  NJ phenol ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA  ND NA	2,4-Dinitrotoluene	2	皇	2		0	78	00	787	24-961
ND         ND         NA           NP         NA            ND         NA            ND         NA            ND         NA            y   phenol         NA            mine         ND         NA	2,6-Dinitrotoluene	2	윷	¥		****		1	≨	
	Diethylphthalate	9	2	*			:	•	\$	
ND NA	4-Chlorophenyl phenyl ether	<b>2</b>	오 :	≨ :			-	ļ	≨	
methylphenol ND NA	Fluorene	2 9	<b>2</b> 9	≨ :		!	1	;	≨	
· ···· ···· VN GN GN	4-Nitroaniine		2	<b>S</b> :		-	1	!	≨	
THE TAX TO A CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE C	4,6-Dinitro-2-methylphenol	2 :	<b>2</b> 9	<b>S</b>		!	-	!	<b>¥</b>	
	N-N: Lrosod i pheny i Anine	2	2	<b>S</b>		!	1	!	¥	

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ENVIRONMENTAL CHEMISTRY DIVISION

	SAIC SAMPLE IDENTIFICATION	DUPLIC	DUPLICATE ANALYSIS	YSIS		KIRIN	MATRIX SPIKE ANALYSIS	MALYSIS		
	FIELD IDENTIFICATION MATRIX	~	CM-36 AQUEOUS				CW-37 AQUEOUS			
	-MEUTRALS/ACID EXTRACTABLES (SW6270)	ALIQUOT ALIQUOT	AL IQUOT	XRPD	CONTROL	ORICINAL	SPIKED	AMT	# BEC	CONTROL
	4-Bromophenyl phenyl ether	2	2	<u> </u>	; ; ; ;	# # # # # # # # # # # # # # # # # # #		;	¥	
	Heuschlorobenzene	9	2	¥		f t 1 r	;	-	¥	
	Pentachlorophenol	2	2	¥		•	<u>.</u>	200	797	9-1032
	Pheaduthreae	2	9	ş		!	!	-	¥	
	Anthracene	2	2	ş			;	;	¥	
	Di-n-but y l phtha late	ş	2	Į			;	-	¥	
	Fluoranthene	ş	유	ž			-	-	¥	
	Pyrene	2	2	ş		0	86	90	<b>88</b> 7	26-1272
	Butyl benzyl phthalate	2	2	Ą		-	-	-	≨	
	3, 3'-Dichlorobenzidine	2	2	ş			!!!	-	≨	
	Benzo(a) anthracene	2	9	₹		-	1	;	≨	
	bis(2-Ethylhexyl)phthalate	2	2	1		-	-	;	≨	
	Chrysene	2	유	Į		-	!	;	≨	
H	Di-n-octyl phthalate	2	2	ş		f = = ;	!	!	≨	
<b>i-</b> :	Benzo(b) fluoranthene	2	2	₹			;	;	¥	
34	Benzo(k) fluoranthene	Q Q	2	ş		****	!	;	į	
4	Benzo(a) pyrene	2	9	ş		•	1 1	;	≨	
	Indeno(1,2,3-c,d)pyrene	2	2	\$			1	;	≨	
	Dibenz(a,h)anthracene	2	윺	≨		4	!	;	≨	
	Benzo(g,h,i)perylene	9	2	ş			!	}	1	
	SAIC SAMPLE IDENTIFICATION	DUPLIC	DUPLICATE ANALYSIS	YSIS		MATRIX	MATRIX SPIKE ANALYSIS	MALYSIS		
	FIELD IDENTIFICATION		CH-33				GW-33			
	MATRIX	2	AQUEOUS		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		AQUEOUS		1	1
			ALIQUOT		CONTROL	ORIGINAL	SPIKED	AMT	×	CONTROL
	MISCELLANGOUS INORGANIC PARAMETERS	=	42	ZRPD	LINITS	RESULTS	RESULTS	SPIKED	REC	LIMITS
	Alkalinity, Total (A403)	011	07-	<b>X</b> 0	0-25%			1		;
	Alkalinity, Bicarbonate (A403)	110	2	70	0-25%	f	-	;	ł	;
	Alkalinity, Carbonate (A403)	98	2	\$	0-25%		!	!	:	1
	Common Anions (A429)				,	•	,	1	í	•
	Pluoride	2	2	Ş	0-25%	0.00	0.22	0.25	887	80-120%
	Chloride	5.3	~	7.4	0-25%	2.6	- · ·	2.5	700	80-1207
	Mitrate	2	2	4	0-252	0.0	4.7	2.0	776	80-120%
	Orthophosphate	2	€ ;	<b>\$</b>	0-252	0.0	12.1	12.5	276	80-1202
	Sulfate	23	~	7 Y	0-252	70	7	2	922	2071-08
	Total Dissolved Solids (E160.1)	240	230	17	0-25%	( )	:	:		1 4
	Arsenic (E206.2)	2	€ 9	≨ :	0-25%	•	= 5	2 :	101	75-125%
	Mercury (E245.1)	2 9	2 9	≨ ;	0-254	9 6	7.0		2 2	75-1252
	Selenium (E270.2)	3	Ž	ş	0-252	>	9	₹	*	4C71-C/

PROJECT NO. : 2-885-06-624 PROJECT NAME: HANCOCK FIELD

SAIC SAMPLE IDENTIFICATION PIELD IDENTIFICATION MATRIX	DUPLIC	DUPLICATE ANALYSIS CW-36 AQUEDUS	SIS			MATRIX	MATRIX SPIKE ANALYSIS GW-37 AQUEOUS	INALYSIS		
HISCELLANEOUS ORGANIC PARAMETERS	ALIQUOT ALIQUOT	ALIQUOT #2	# 7	ZRPD	CONTROL	ORIGINAL	SPIKED RESULTS	AMT SPIKED	M M	CONTROL
Petroleum hydrocarbons (E418.1)	(3)	(3)	<b>(</b>	: ! <b>~</b>	1 ! ! ! !	(3)	<b>(</b>	3	3	(3)
SAIC SAMPLE IDENTIFICATION PIELD IDENTIFICATION MATRIX	DUPLIC	DUPLICATE ANALYSIS CW-36 AQUEOUS	SIS	ı		MATRIX	MATRIX SPIKE ANALYSIS CH-33 AQUEOUS	MALYSIS		
ICAP METALS SCAN (E200.7)	ALIQUOT ALIQUOT	ALIQUOT #2	ZRPD	83	CONTROL	ORIGINAL	SPIKED	AMT	REC	CONTROL
Aluminum	890	1,000	12%	13	0-25%	088	3,000	2,000	1901	75-125%
Antimony	2 ED	<b>9</b> 9	NA 22%	0-252	0-25 <b>z</b> 0-25 <b>z</b>	300	390	200	787 902	75-125 <b>2</b> 75-125 <b>2</b>
Beryllius	2	2	¥	0-25%	25	0	420	2005	841	75-125%
Boron	2	2	<b>₹</b>	0-25%	151	0	920	000,1	92X	75-125%
Cadmium	2	2 6	¥ .	0-25	22	0 0	420	200	<b>4</b> 7	
Calcum	90°9	90°,	ž <u>ş</u>	0-25%	5 <b>.</b>	000,40	910	000,-	205 - 912	75-1252 ***
Cobalt	2	2	2	0-252	22	9	810	000	812	
Copper	13	•••	787	0-25%		2	820	000	812	75-125%
Iron	008.	2,000 E	<u> </u>	0-25%	0-25 <b>%</b> 0-25 <b>%</b>	008,1	2,900	- 600	110X 852	75-1252
Mannesium	9,900	10,000	~	0-25%	25	006'6	25,000	20,000	762	75-125%
Nanganese	120	120	70	0-25%	151	120	980	000	867	75-1252
Holybdenum	8	- 13	19	0-25%	:5%	<b>9</b>	820	000	83%	75-125%
Mickel	2	ą	¥	0-25%	5.2	•	420	200	84%	75-125%
Potassium	1,100	1,100	70	0-25%	52	1,100	2,900	2,137	225%	70-300% ***
Silice	7,000	4,100	22	0-25%	5%	000'4	23,000	20,000	35Z	75-125%
Silver	2	Q	¥	0-25%	52	0	82.0	85.5	<b>296</b>	75-125%
Sodium	2,400	2,300	7.7	0-25%	5.2	2,400	20,000	20,000	887	75-125%
Thellium	9	Q	¥	0-25%	5.	•	800	2,000	2	75-125%
Venedium	2	2	¥	0-25%	75	<b>o</b> :	430	200	867	75-1252
2 inc	<b>2</b>	12	187	0-25	<b>.</b> 2 <b>.</b>	2	9	900	Z Z	75-1252

⁽¹⁾ Insufficient sample volumes to perform quality control check. *Outside control limits established for RPD for this parameter. **Outside control limits established for percent recovery for this parameter. Analysis of a check sample indicated possible matrix interference for this sample

^{***}Polassium poses significant ionization problems when analyzed by ICAP, resulting in wide variance for percent recovery. Control limits for percent recovery have been established using a limited number of data points.

SCIENCE APPLICATIONS IONAL COMPUNATION ENVIRONMENTAL CHEMISTRY DIVISION

PROJECT NAME: 12-885-06-624
PROJECT NAME: HANCOCK FIELD

(8/293)	PARAMETER	COLLECTED	BY LAB	EXTRACTION	TIME	ANALYSIS	TIME
100		60 400 01				10.00.00	† <b>a</b>
100 in		/9-130-61	19-120-07	¥ ;	<b>\</b>	19-130-17	•
		78-130-61	70-0c1-87	<b>S</b> :	¥ ;	27-0ct-87	<b>x</b>
		18-0ct-81	70-001-07	≦ ;	<b>E</b> 3	73 0-1 63	<b>6</b> 9
		/8-220-61	/9-130-07	4	<b>S</b>	/9-130-/7	
	•	19-00-61	20-0ct -87	<b>¥</b>	¥	27-0ct-87	<b>*</b>
		19-0ct-87	20-0ct-87	¥	¥	30-0ct-87	=
	VOC CONF.	19-0ct-87	20-0ct -87	¥	¥	30-0ct-87	=
	VOC COMP.	19-0ct-87	20-0ct-87	¥	YN	30-0ct-87	=
	VOC COMP.	19-0ct-87	20-0ct-87	¥	¥	30-0ct-87	=
	ZON A	19-0ct-87	20-0ct-87	¥	. ≨	30-0ct-87	=
		19-0ct-87	20-0ct -87	26-0ct-87	,	04-Nov-87	•
		19-0ct-87	20-0ct-87	26-0ct-87	_	04-Nov-87	•
		19-0ct-87	20-0ct-87	26-0ct-87	^	04-Mov-87	•
		19-0ct-87	20-0ct-87	26-0ct-87	~	04-Nov-87	•
		19-0ct-87	20-0ct-87	26-0ct-87	,	04-Nov-87	•
	<	19-0ct-87	20-0ct-87	N.	¥X	26-0ct-87	,
		19-0ct-87	20-0ct-87	4	\$	26-0ct-87	1
		19-0ct-87	20-0ct-87	₹.	2	26-0ct-87	7
		19-0ct -87	20-0ct-87	\$	<b>4</b>	26-0ct-87	,
		19-00-61	20-0ct-87	¥	7	26-0ct-87	1
	SNOINA	19-0ct-87	20-0ct-87	¥	¥	20-0ct-87	-
	SNI	19-0ct-87	20-0ct-87	¥	N.	20-0c1-87	-
	ACCOMS	19-0ct-87	20-0ct -87	¥	¥	20-0ct-87	-
	ANIONS	19-0ct-87	20-0ct-87	¥	K	20-0ct-87	~=
	ANIONS	19-0ct -87	20-0ct-87	¥	¥	20-0ct-87	_
	As, Hg, Se	19-0ct-87	20-0ct-87	≨	4	12-Nov-87	54
	•	19-0ct-87	20-0ct-87	¥	<b>4</b>	12-Nov-87	77
		19-0ct-87	20-0ct-87	¥	¥	12-Nov-87	74
	•	19-0ct-87	20-0ct-87	<b>4</b>	¥	12-Nov-87	74
		19-0ct-87	20-0ct-87	<b>4</b>	¥	12-Nov-87	24
	TDS	19-0ct-87	20-0ct -87	¥	¥	24-0ct-87	٠
	TDS	19-0ct-87	20-0ct-87	¥	¥	24-0ct-87	~
	TOS	19-0ct-87	20-0ct-87	¥	¥	24-0ct-87	~
	TDS	19-0ct-87	20-0ct -87	≨	¥	24-0ct-87	5
	TOS	19-0ct-87	20-0ct-87	¥	\$	24-0ct-87	<u>~</u>
	P. hydro.	19-0ct-87	20-0ct-87	¥	<b>*</b>	22-0ct-87	<b>.</b>
	P. hy tro.	19-0ct-87	20-0ct-87	4	¥	22-0ct-87	~
		19-0-61	20-0ct-87	¥	¥	22-0ct-87	
	خ	19-0ct-87	20-0ct-87	¥	¥	22-0ct-87	~
	_	19-0ct-87	20-0ct-87	¥	<b>¥</b>	22-0ct-87	•
	3	19-0ct-87	20-0ct-87	¥	≨	14-Nov-67	36
	ICAP	19-0ct-87	20-0ct-87	≨	\$	14-Nov-87	76
	ICAP	19-0ct-87	20-0ct -87	¥	<b>\$</b>	14-Nov-87	36
	ICAP	19-0-1-87	20-04-87	V.	<b>*</b>	14-Nov-87	36
		10-00-61	10-00-02	1	1		3 3



## FOR SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

<u> JOB #:</u>	U-9793,	(541.002)
----------------	---------	-----------

RE:

SAMPLE DATE: 1/4, 5/89

P.O. NO.:

DATE RECEIVED: 1/6/89

SAMPLED BY: Client

SAMPLE TYPE: Water

<u>DELIVERED</u> <u>BY:</u> Federal Express

<0.001

<0.001

E & E Lab # 88:	33405	33406	33407	33408	Method Blank
Client Sample ID:	GW-1	GW-2	GW-3	GW-4	
	Results i	n: mg/L un	less noted		
Total Thallium	<0.001	<0.001	<0.001	0.0014*	<0.001

<0.001

<0.001

Analytical References:

Dissolved Thallium

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, U.S. EPA, 1986.

<0.001

Supervising Analyst:

^{*} Note sample had a pH = 4 instead of a pH of <2.



## QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF WATER SAMPLES

U-9793

		(mg/L)		
Parameter	E & E Laboratory No. 88- 33408	Original Analysis	Replicate Analysis	Relative Percent Difference (RPD)
Total Thalli	um	0.0014	0.0014	0
Dissolved Th	allium	<0.001	<0.001	



## QUALITY CONTROL FOR ACCURACY: PERCENT RECOVERY FOR SPIKED WATER SAMPLES

U-<u>9793</u>

E & E Laborator No. 88- 33408	y Original Value	Amount Added	Amount Determined	Percent Recovery
	(mg/L)			
Parameter				
Total Thallium	0.0014	0.05	0.046	89
Dissolved Thallium	<0.001	0.05	0.049	98

## WATER AND SOIL SAMPLE TRACKING OF ANALYSES

## REQUIRING HOLDING TIMES

			GC/MS VOA	(14)	GC VOA	(14)
JO8	NUMBER	SAMPLE DATE	DEAD	ANAL	DEAD	ANAL
541.001	28144	08/31/88	09/14	09/09	NR	NR
	28145	08/31/88	09/14	09/09	NR	NR
	28146	08/31/88	09/14	09/14	NR	NR
	28147	08/31/88	09/14	09/09	NR	NR
	28148	08/31/88	09/14	09/08	NR	NR
	28149	08/31/88	09/14	09/09	NR	NR
	28150	08/31/88	09/14	09/14	NR	NR
	28151	08/31/88	09/14	09/14	NR	NR
	28152	08/31/88	09/14	09/14	NR	NR
	28153	08/31/88	09/14	09/14	NR	NR
	28154	08/31/88	09/14	09/14	NR	NR
	28155	08/31/88	09/14	09/14	NR	NR
	28156	08/31/88	09/14	09/12	NR	NR
	28157	08/31/88	09/14	09/12	NR	NA
	28158	08/31/88	09/14	09/14	NR	NR
	28159	08/31/88	09/14	09/13	NR	NR
	28160	08/31/88	09/14	09/13	NR	NI
	28161	08/31/88	09/14	09/13	NR	NE
	28162	08/31/88	09/14	09/13	NR	N
	28163	08/31/88	09/14	09/13	NR	NI
	28164	08/31/88	09/14	09/14	NR	N
	28165	08/31/88	09/14	09/14	NR	NI
	28166	08/31/88	09/14	09/14	NR	NI
	28167	08/31/88	09/14	09/14	NR	N
	28168	08/31/88	09/14	09/13	NR	N
	28169	08/31/88	09/14	09/13	NR	N
	28170	08/31/88	09/14	09/13	NR	N
	28171	09/01/88	NR	NR	09/15	09/0
		09/02/88		NR	09/16	09/0
		09/01/88		NR	09/15	09/0
		09/02/88		NR	09/16	09/0
		09/02/88		NR	09/16	09/0
	20113	77,00,00			, .•	

DEAD: Date sample holding time expires.

EXTR: Date sample was extracted.

ANAL: Date sample was analyzed.

NR: Analysis not requested.

## SAMPLE IDENTIFICATION CROSS-REFERENCE

U-8892

Laboratory Number 88-	Field Number	Field Location
28144	FSA~1	FT1-FSA-1
28145	FSA-2	FT1-FSA-2
28146	FSA-3	FT1-FSA-3
28147	FSA-4	FT1-FSA-4
28148	FSB-1	FT1-FSB-1
28149	F\$8-2	FT1-FSB-2
28150	FS8-3	FT1-FSB-3
28151	FSC-1	FT1-FSC-1
28152	FSC-2	FT1-FSC-2
28153	FSC-3	FT1-FSC-3
28154	FSD-1	FT1-FSD-1
28155	FSD-2	FT1-FSD-2
28156	FSD-3	FT1-FS0-3

## SAMPLE IDENTIFICATION CROSS~REFERENCE

U-8892.1

Laboratory Number 88-	Field Number	Field Location
28157	FSE-1	FT1-FSE-1
28158	FSE-2	FT1-FSE-2
28159	FSE-3	FT1-FSE-3
28160	FSF-1	FT1-FSF-1
28161	FSF-2	FT1-FSF-2
28162	FSF-3	FT1-FSF-3
28163	FSG-1	FT1-FSG-1
28164	FSG-2	FT1-FSG-2
28165	FSG-3	FT1-FSG-3
28166	FSH-1	FT1-FSH-1
28167	FSH-2	FT1-FSH-2
28168	FSH-3	FT1-FSH-3
28169	FSH-4	FT1-FSH-4
		<del></del>

## SAMPLE IDENTIFICATION CROSS-REFERENCE

U-8892.2

Laboratory Number 88-	Field Number	Field Location
28170	FSI-1	FT1-FSI-1
28171	GW-1	D-5-GW-1
28172	GW-2	D-5-GW-2
28173	GW-3	D-5-GW-3
28174	GW~4	D-5-Gw-4
28175	GW-5	D-5-GW-5
28176	G₩~6	D-5-GW-6
	_	

FOR

SAIC - HANCOCK FIELD

U-8892.3

Job No.: U-8892	2. 541.001		RE:			
Sample Date: 8/31/8	P.O. No.:					
Date Received: 9/6/88	· · · · · · · · · · · · · · · · · · ·		Sampled B	y: SAIC		
Sample Type: Soil			Delivered	By: Feder	al Express	
E & E Lab. No. 88-	28144	28145	28146	28147	28148	28149
Customer No.						
Sample Identity	FSA-1	FSA-2	FSA-3	FSA-4	FS8-1	FSB-2
	Results i	n: ≸unles	s noted			
Solids, ≸	92	84	77	77	81	78
						i
		i				

## Analytical References:

"Test Methods Edition, U.S.		Solid Waste	, Physical/Chemical	Methods,"	SW-846,	Third /	
20111011, 0.5.	LI N, 1900.		, Physical/Chemical Supervising	Analyst:	Sary	Harm/MA	M
			Date:	9-29	-88		



FOR

SAIC - HANCOCK FIELD

U-8892.4

Job No.: U-8892, 541.001			RE:			
Sample Date: 8/31/8	38		P.O. No.:		<del> </del>	
Date Received: 9/6/88	3		Sampled 6	y: SAIC	· · · · · · · · · · · · · · · · · · ·	
Sample Type: Soil			Delivered	By: Feder	al Express	
E & E Lab. No. 88-	28150	28151	28152	28153	28154	28155
Customer No.		· ·	-			
Sample Identity	FS8-3	FSC-1	FSC-2	FSC-3	FSD-1	FS0-2
	Results i	n: \$ unles	s noted			
Solids, \$	75	85	75	74	79	82

## **Analytical References:**

"Test Methods for Evaluating Solid Waste, Ph	
Edition, U.S. EPA, 1986.	Supervising Analyst: , Gay Hahr/Mun
	Date: 9/29/85



## LABORATORY REPORT

FOR SAIC - HANCOCK FIELD

U-8892.5

Job No.: U-8892		RE:				
Sample Date: 8/31/8	P.0. No.:	P.O. No.:				
Date Received: 9/6/88	Sampled B	By: SAIC				
Sample Type: Soil			Delivered	By: Feder	al Express	
E & E Lab. No. 88- 28156 28157 28158 28159 28160 2						28161
Customer No.						
Sample Identity	FSD-3	FSE-1	FSE-2	FSE-3	FSF-1	FSF-2
	Results i	in: ≸unfes	s noted			
Solids, ≸	80	83	87	78	85	85
		Į.				

#### Analytical References:

			Solid	Waste,	Physical/Chemical				,
Edition, U.S.	EPA,	1986.			Supervising			Halin	an
					Date:	9/2	9/83		



## LABORATORY REPORT

FOR

SAIC - HANCOCK FIELD

U-8892.6

Job No.: U-8892	RE:						
Sample Date: 8/31/8	8		P.O. No.:				
Date Received: 9/6/88	Sampled B	y: SAIC					
Sample Type: Soil			Delivered	By: Feder	al Express		
E & E Lab. No. 88-	28162	28163	28164	28165	28166	28167	
Customer No.							
Sample Identity	FSF-3	FSG-1	FSG-2	FSG-3	FSH-1	FSH-2	
	Results	n: ≸ unles	s noted				
Solids, \$	75	83	86	75	74	74	
		,					
:							
				1			

# Analytical References:

"Test Methods	for	Evaluating	Solld	Waste,	Physical/Chemical	Methods,"	SW-846, Third	. /
Edition, U.S.	EPA.	, 1986.			Physical/Chemical Supervising	Analyst:	Cary Ha	ha/ALM
					Date:	9/	24/88	

# LABORATORY REPORT

FOR

SAIC - HANCOCK FIELD

U-8892.7

	<del></del>					
Job No.: U-8892	2, 541.001		RE:			
Sample Date: 8/31/8	Sample Date: 8/31/88					
Date Received: 9/6/88	Sampled E	By: SAIC				
Sample Type: Soil			Delivered	i By: Feder	rai Express	
E & E Lab. No. 88-	28168	28169	28170			_
Customer No.						
Sample Identity	FSH-3	FSH-4	FSI-1			
	Results	n: \$ unles	s noted	<b></b>		
Solids, ≸	74	73	61			

# Analytical References:

"Test Methods for Evaluating:	id Waste, Physical/Chemica	I Methods, "SW-846, Third
Edition, U.S. EPA, 1986.	Supervisin	g Analyst: Gay Haly / Mun
	Date:	9/29/88

#### QUALITY CONTROL FOR PRECISION RESULTS OF ANALYSIS OF REPLICATE ANALYSES OF SOIL SAMPLES

		(	<b>\$</b> )	Relative
Parameter	E&E Labo:etory No. 38-	Original Analysis	Replicate Analysis	Percent Difference (RPD)
Solids	28153 28163 28170	74 83 61	75 83 62	1.3 0 1.6

# RESULTS OF WATER ANALYSIS FOR PRIORITY POLLUTANT PURGEABLE AROMATIC COMPOUNDS BY GC

(all results in ug/L)

U-8892.9

	E & E Lab. No. 88-		28172	28173	28174	
Compound	Sample identity	GW-1	GW-2	GW-3	GW-4	
Benzene		2.1(0.29)1	0.70 U	0.70 U**	0.70 U##	
Chlorobenzene		1.0 U	1.0 U	1.0 U	1.0 U	
1,2-Dichiorobenzene		2.0 U	2.0 U	2.0 U	2.0 U	
1,3-Dichlorobenzene		2.0 U	2.0 U	2.0 U	2.0 U	
1,4-Dichlorobenzene		0.50 U	0.50 U	0.50 U	0.50 U	
Ethy I benzene		1.0 U	1.0 U	1.0 U	1.0 U	
Toluene		1.0 U	1.0 ປ	1.0 U	1.0 U	
Xylene (total)		2.0 U	2.0 U	2.0 U	2.0 U	

Explanation of data flags:

- U Analyte tested for and not found at this level
- J Estimated value; less than detection limit
- B Analyte also found in associated blank

- E Estimated value; above calibration range

  * Compound present below CRDL but reported at the CRDL

  † Value in parentheses is confirmation value.

  ** The following results for benzene were obtained on the primary column:

  sample \$28173 0.93 ug/L

  sample \$28174 1.6 ug/L

We could not positively confirm these values on a second column due to suspected headspace problems or low instrument response. Therefore, the results are reported as non-detected.

# RESULTS OF WATER ANALYSIS FOR PRIORITY POLLUTANT PURGEABLE AROMATIC COMPOUNDS BY GC

(all results in ug/L)

U-8892.10

	E & E Lab. No. 88-	28175	28176	Method Blank	
Compound	Sample Identity	G₩-5	GW-6		
Benzene		0.70 U*	0.70 U	0.70 U	
Chlorobenzene		1.0 U	1.0 U	1.0 U	<b>!</b>
1,2-Dichlorobenzene		2.0 U	2.0 U	2.0 U	
1,3-Dichlorobenzene		2.0 U	2.0 U	2.0 U	
1,4-Dichiorobenzene		0.50 U	0.50 U	0.50 บ	
Ethy I benzene		1.0 U	1.0 U	1.0 U	
Toluene		1.0 U	1.0 U	1.0 U	
Xylene (total)		2.0 U	2.0 U	2.0 U	

- U Analyte tested for and not found at this level J Estimated value; less than detection limit
- B Analyte also found in associated blank
- E Estimated value; above calibration range

  * Benzene value of 1.8 ug/L was obtained on the primary column. We could not positively confirm this value on a second column due to suspected headspace problems or low instrument response. Therefore, the result is reported as non-detected.

# QUALITY CONTROL FOR ACCURACY AND PRECISION: PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD) OF WATER MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MSD) (Sample #28175)

U-8892.11

				Amount Determined		Percent Recovery	
Compound	Original Result	Amount Added	MS	MSD	MS	MSD	RPD
chi orobenzene	<1.0	20	16	15	80	75	6.5
1,2-Dichlorobenzene	<b>4.</b> 0	20	17	17	85	85	0
1,3-Dichiorobenzene	<b>2.</b> 0	20	17	17	85	85	0
1,4-Dichlorobenzene	<0.50	20	18	17	90	85	5.7
Benzene	<0.70	20	16	14	80	70	13
toluene	<1.0	20	17	15	85	75	13
ethyl benzene	<1.0	20	18	17	90	85	5•7

The QC results are within the laboratory acceptance limits.

# RESULTS OF SOIL ANALYSIS FOR VOLATILE ORGANIC COMPOUNDS BY GC/MS

(all results in mg/kg dry weight)

U-8892.12

	E & E Lab. No. 88-	28144	28145	28146	28147	28148
Compound	Sample Identity	FSA-1	FSA-2	FSA-3	FSA-4	FSB-1
Acetone Benzene Bromodichioromethane Bromoform Bromomethane 2-Butanone Carbon Disulfide Carbon Tetrachioride Chiorobenzene Chioroethane 2-Chioroethyi Vinyi Ether Chioroform Chioromethane Dibromochioromethane 1,1-Dichioroethane 1,2-Dichioroethane 1,1-Dichioroethene trans-1,2-Dichioropropene trans-1,3-Dichioropropene Ethylbenzene Methylene Chioride 4-Methyl-2-Pentanone 1,1,2,2-Tetrachioroethane Toluene 1,1,1-Trichioroethane Trichioroethene Trichioroethene Trichioroethene Trichioroethene Trichioroethene Trichioroethene Trichiorofiuoromethane Vinyi Chioride Xylene (total) 2-Hexanone		0.013 B 0.005 U 0.005 U 0.005 U 0.010 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U	0.016 B 0.006 U 0.006 U 0.006 U 0.011 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U	0.012 U 0.006 U 0.006 U 0.012 U 0.012 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U	0.012 U 0.006 U 0.006 U 0.012 U 0.012 U 0.006 U 0.006 U 0.006 U 0.012 U 0.006 U 0.012 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U	0.012 U 0.006 U 0.006 U 0.012 U 0.012 U 0.006 U 0.006 U 0.012 U 0.012 U 0.012 U 0.012 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U

U - Analyte tested for and not found at this level

J - Estimated value; less than detection limit

B - Analtye also found in associated blank E - Estimated value; above calibration range

^{*} Compound present below CRDL, but reported at CRDL

#### RESULTS OF SOIL ANALYSIS FOR VOLATILE ORGANIC COMPOUNDS BY GC/MS

(all results in mg/kg dry weight)

		<del></del>				
	E & E Lab. No. 88-	28149	28150	28151	28152	28153
Compound	Sample Identity	FSB-2	FSB-3	FSC-1	FED <b>-2</b>	FSC-3
Acetone Benzene Bromodichloromethane Bromodichloromethane Bromomethane 2-Butanone Carbon Disuifide Carbon Tetrachloride Chiorobenzene Chioroethane 2-Chioroethyl Vinyl Ether Chioroform Chioromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropene cis-1,3-Dichloropropene Ethylbenzene Methylene Chioride 4-Methyl-2-Pentanone 1,1,2,2-Tetrachloroethane Totuene 1,1,1-Trichloroethane 1,1,2-Trichloroethane		0.012 U*5 0.006 U 0.006 U 0.012 U 0.012 U 0.006 U 0.006 U 0.006 U 0.012 U 0.006 U 0.012 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U	0.013 U*6 0.006 U 0.006 U 0.013 U 0.013 U 0.006 U 0.006 U 0.006 U 0.013 U 0.006 U 0.013 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U	0.011 U#8 0.006 U 0.006 U 0.006 U 0.011 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U	0.015 B 0.007 U 0.007 U 0.007 U 0.014 U 0.014 U 0.007 U 0.007 U 0.014 U 0.014 U 0.007 U 0.014 U 0.007 U 0.014 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U	0.012U*B 0.006 U 0.006 U 0.012 U 0.012 U 0.006 U 0.006 U 0.006 U 0.012 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U
Trichloroethene Trichlorofiuoromethane Vinyl Chloride Xylene (total) 2-Hexanone	!	0.006 U 0.006 U 0.012 U 0.006 U 0.012 U	0.006 U 0.006 U 0.013 U 0.006 U 0.013 U	0.006 U 0.006 U 0.011 U 0.006 U 0.011 U	0.007 U 0.007 U 0.014 U 0.007 U 0.014 U	0.006 U 0.006 U 0.012 U 0.006 U 0.012 U

Explanation of data flags:
U - Analyte tested for and not found at this level

J - Estimated value; less than detection limit B - Analtye also found in associated blank

E - Estimated value; above calibration range * Compound present below CRDL, but reported at CRDL

#### RESULTS OF SOIL ANALYSIS FOR VOLATILE ORGANIC COMPOUNDS BY GC/MS

(all results in mg/kg dry weight)

	E & E Lab. No. 88-	28154	28155	28156	28157	28 158
Compound	Sample Identity	FSD-1	FS0-2	FSD-3	FSE-1	FSE-2
Acetone Benzene		0.012 U*E 0.006 U	0.012 U*E	0.022 B 0.006 U	0.011 U 0.006 U	0.011U*E
Bromodich Loromethane		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
Bromoform		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
Bromomethane		0.012 U	0.012 U	0.013 U	0.011 U	0.011 U
2-Butanone		0.012 U	0.012 U	0.013 U	0.011 U	0.011 U
Carbon Disulfide		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
Carbon Tetrachloride		0.006 U	0.006 U	0.006 บ	0.006 U	0.005 U
Chlorobenzene		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
Chloroethane		0.012 U	0.012 U	0.013 U	0.011 U	0.011 U
2-Chloroethyl Vinyl Ether		0.012 U	0.012 U	0.013 U	0.011 U	0.011 U
Chloroform		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
Chloromethane		0.012 U	0.012 U	0.013 U	0.013 U	0.011 U
Dibromochloromethane		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
1,1-Dichloroethane		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
1,2-Dichloroethane		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
1,1-Dichloroethene	1	0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
trans-1,2-Dichioroethene 1,2-Dichioropropane		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
cis-1,3-Dichtoropropene		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
trans-1,3-Dichloropropene	!	0.006 U	0.006 U	0.006 U	0.006 U	0.005 U 0.005 บ
Ethy I benzene		0.006 U	0.006 U	0.006 U	0.006 ป 0.006 ป	0.005 U
Methylene Chloride		0.006 U*E	0.038 B	0.006 U*E		
4-Methy1-2-Pentanone		0.012 U	0.012 U	0.013 U	0.000 U	0.013 U
1,1,2,2-Tetrachloroethane		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
Tetrachloroethene		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
Toluene		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
1,1,1-Trichloroethane		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
1,1,2-Trichloroethane		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
Trichioroethene		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
Trichnorofiuoromethane		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
Vinyl Chloride		0.012 U	0.012 U	0.013 U	0.011 U	0.011 U
Xylene (total)		0.006 U	0.006 U	0.006 U	0.006 U	0.005 U
2-Hexanone		0.012 U	0.012 U	0.013 U	0.011 U	0.011 U
Xylene (total) 2-Hexanone			· ·	- 1		

Explanation of data flags:
U - Analyte tested for and not found at this level
J - Estimated value; less than detection limit

B - Analtye also found in associated blank

E - Estimated value; above calibration range * Compound present below CRDL, but reported at CRDL

#### RESULTS OF SOIL ANALYSIS FOR VOLATILE ORGANIC COMPOUNDS BY GC/MS

(all results in mg/kg dry weight)

Compound  Sa id  Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone Carbon Disulfide Carbon Tetrachloride	& E Lab. . 88- imple lentity	28159 FSE-3 0.012 U*E 0.006 U	28160 FSF-1 0.011 U#8	28161 FSF-2	28162 FSF-3	28163 FSG-1
Acetone Benzene Bromodichloromethane Bromomethane Bromomethane 2-Butanone Carbon Disulfide Carbon Tetrachloride		0.012 U#E		FSF-2	FSF-3	FSG-1
Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone Carbon Disulfide Carbon Tetrachloride			0.011 U*F			
Chioroethane 2-Chioroethyl Viny: Ether Chioroform Chioromethane Dibromochioromethane 1,1-Dichioroethane 1,2-Dichioroethane 1,1-Dichioroethane 1,1-Dichioroethane 1,2-Dichioropropane cis-1,3-Dichioropropane cis-1,3-Dichioropropane trans-1,3-Dichioropropane Ethylbenzene Methylene Chioride 4-Methyl-2-Pentanone 1,1,2,2-Tetrachioroethane Toluene 1,1,1-Trichioroethane Trichioroethane Trichioroethane Trichioroethane Trichiorofluoromethane Vinyl Chioride Xylene (total) 2-Hexanone		0.006 U 0.012 U 0.012 U 0.006 U 0.006 U 0.006 U 0.012 U 0.012 U 0.012 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U	0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U	0.011 U*E 0.005 U 0.005 U 0.011 U 0.005 U 0.005 U 0.005 U 0.011 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U	0.007 U 0.007 U 0.007 U 0.013 U* 0.007 U 0.007 U 0.007 U 0.013 U 0.013 U 0.013 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U 0.007 U	0.021 B 0.006 U 0.006 U 0.006 U 0.012 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U

Explanation of data flags:

U - Analyte tested for and not found at this level

J - Estimated value; less than detection limit

B - Analyte also found in associated blank

E - Estimated value; above calibration range

* Compound present below CRDL, but reported at CRDL

#### RESULTS OF SOIL ANALYSIS FOR VOLATILE ORGANIC COMPOUNDS BY GC/MS

(all results in mg/kg dry weight)

U-8892,16

	<del></del>	1				<del></del>
	E & E Lab. No. 88-	28164	28165	28166	28167	28168
Compound	Sample Identity	FSG-2	FSG-3	FSH-1	FSH-2	FSH-3
cetone enzene		0.011 U*E	0.012 U*E	0.013 U*E	_	0.013
omodichioromethane		0.006 U	0.006 U	0.006 U	0.006 U 0.006 U	0.007 U
omoform		0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
omomethane	-	0.011 U	0.012 U	0.013 U	0.013 U	0.013 U
Butanone		0.011 U	0.612 U	0.013 U	0.013 U	0.013 U
rbon Disulfide		0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
irbon Tetrachloride		0.006 U	0.006 U	0.006 ป	0.006 U	0.007 U
lorobenzene		0.006 บ	0.006 U	0.006 U	0.006 บ	0.007 U
loroethane	:	0.011 U	0.012 U	0.013 U	0.013 U	0.013 U
Chloroethyl Vinyl Ether		0.011 U	0.012 U	0.013 U	0.013 U	0.013 U
loroform		0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
loromethane		0.011 U	0.012 U	0.013 U	0.013 U	0.013 U
bromochloromethane 1-Dichloromethane		0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
2-Dichloroethane		0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
1-Dichlorosthene		0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
ans-1,2-Dichloroethene		0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
2-Dichloropropane		0.006 U	0.006 U	0.006 U	0.006 U 0.006 U	0.007 U 0.007 U
s-1,3-Dichloropropene	i	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
ans-1,3-Dichloropropene		0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
hy I benzene	ì	0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
thylene Chloride		0.036 B	0.054 B	0.012 B	0.049 B	0.0070*
Methyl-2-Pentanone		0.011 U	0.012 U	0.013 U	0.013 U	0.013 U
1,2,2-Tetrachloroethane		0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
trachloroethene		0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
luene		0.006 U	0.006 U	0.006 บ	0.006 U	0.007 บ
1,1-Trichtoroethane		0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
1,2-Trichloroethane		0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
ichloroethene		0.006 U	0.006 U	0.006 U	0.006 U	0.007 U
			1			0.007 U
	ļ		• 1	•	-	0.013 U
	ł	- 1				0.007 U
ichlorofluoromethane nyi Chloride iene (total) Hexanone		0.006 U 0.006 U 0.011 U 0.006 U 0.011 U	0.006 U 0.006 U 0.012 U 0.006 U 0.012 U	0.006 U 0.006 U 0.013 U 0.006 U 0.013 U	0.006 U 0.006 U 0.013 U 0.006 U 0.013 U	0.00 0.01

U - Analyte tested for and not found at this level J - Estimated value; less than detection limit

B - Analtye also found in associated blank

E - Estimated value; above calibration range ** Compound present below CRDL, but reported at CRDL

#### RESULTS OF SOIL ANALYSIS FOR VOLATILE ORGANIC COMPOUNDS BY GC/MS

(all results in mg/kg dry weight)

U-8892.17

	E & E Lab. No. 88-	28169	28170			
Compound	Sample Identity	FSH-4	FSI-1			
Acetone		0.013 U*E	0.031 B			
Benzene		0.007 U	0.008 U			j
Bromodichioromethane		0.007 U	0.008 U		ļ	j
Bromoform		0.007 U	0.008 U		•	Ì
Bromomethane		0.013 U	0.015 U			
2-Butanone		0.013 U	0.015 U	İ	į	ľ
Carbon Disulfide		0.007 U	0.008 U		1	ľ
Carbon Tetrachloride		0.007 U	0.008 U		ŀ	Į
Chlorobenzene		0.007 U	0.008 U		1	i
Chloroethane		0.013 U	0.015 U		}	ļ
2-Chloroethyl Vinyl Ether		0.013 U	0.015 U		1	Į
Chloroform		0.007 U	0.008 U		1	Į.
Chloromethane		0.013 U	0.015 U		}	
Dibromochloromethane		0.007 U	0.008 U	İ	<b>!</b>	Į.
1,1-Dichlorosthans		0.007 U	0.008 U			Į.
1,2-Dichioroethane		0.007 U	0.008 U		ŧ	j
i,1-Dichioroethene trans-1,2-Dichioroethene		0.007 U 0.007 U	0.008 U		•	
1,2-Dichtoropropane		0.007 U	0.008 U			l
cis-1,3-Dichloropropene		0.007 U	0.008 U		}	
trans-1,3-Dichloropropene		0.007 U	0.008 U		}	j
Ethy I benzene		0.007 U	0.008 U		ł	1
Methylene Chloride		0.007 U#B			ł	ì
4-Methy I -2-Pentanone		0.013 U	0.015 U			ł
1,1,2,2-Tetrachloroethane		0.007 U	0.008 U		}	1
Tetrachloroethene		0.007 U	0.008 U			1
Toluene		0.007 U	0.008 U		ł	l
1,1,1-Trichloroethane		0.007 U	0.008 U			1
1,1,2-Trichioroethane		0.007 บ	0.008 U			1
Trichioroethene		0.007 U	0.008 U		ł	
Trichlorofluoromethane		0.007 U	0.008 U		1	1
Vinyl Chloride		0.013 U	0.015 U			l
Xylene (total)		0.007 U	0.008 U			1
2-Hexanone		0.013 U	0.015 U			
					<b>{</b>	ĺ
					1	
		}			i	1
					1	1
		i			ł	ł
					1	1
		]				1
	1	}	,		1	}
					ļ	1
	'				ŀ	
		L			L	1

xplanation of data flags:

U - Analyte tested for and not found at this level

J - Estimated value; less than detection limit

B - Analyte also found in associated blank

E - Estimated value; above calibration range

**Compound present below CRDL, but reported at CRDL

#### RESULTS OF SOIL ANALYSIS FOR VOLATILE ORGANIC COMPOUNDS BY GC/MS

(all results in mg/kg dry weight)

U-8892.18

	E & E Lab.	Method	Method	Method	Method	Method
	No. 88-	Blank	Blank	Blank	Blank	Blank
Compound	Sample Identity	9/9/88	9/12/88	9/13/88	9/14/88	9/14/88
Acetone		0.016	0.010 U#	0.012	0.010 ช	0.010 U*
Benzene		0.005 U	0.005 ป	0.005 U	0.005 U	0.005 บ
Bromodichloromethane		0.005 ป	0.005 U	0.005 U	0.005 U	0.005 U
Bromoform		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Bromomethane		0.010 บ	0.010 U	0.010 U	0.010 U	0.010 U
2-Butanone		0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Carbon Disulfide		0.005 U	0.005 U	0.005 U	0.005 U	0.005 ป
Carbon Tetrachioride		0.005 บ	0.005 U	0.005 บ	0.005 บ	0.005 บ
Chlorobenzene		0.005 U	0.005 U	0.005 บ	0.005 บ	0.005 บ
Chloroethane		0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
2-Chloroethyl Vinyl Ether		0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Chloroform		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Chloromethane		0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Dibromochioromethane		0.005 U	0.005 U	0.005 U	0.005 U	0.005 บ
1,1-Dichloroethane		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,2-Dichloroethane		0.005 U	0.005 บ	0.005 U	0.005 U	0.005 U
1,1-Dichloroethene		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
trans-1,2-Dichloroethene		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,2-Dichloropropane		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
cis-1,3-Dichloropropene		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
trans-1,3-Dichloropropene	ı	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Ethy I benzene		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
2- Hexanone		0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Methylene Chloride		0.005 U*	0.005 U*	0.007	0.005 U*	0.039
4-Methy I-2-Pentanone		0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
1,1,2,2-Tetrachloroethane Tetrachloroethene		0.005 U 0.005 U	0.005 U 0.005 U	0.005 U 0.005 U	0.005 U	0.005 U 0.005 U
Toluene		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,1,1-Trichloroethame 1,1,2-Trichloroethame		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Trichlorosthens		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Trichlorofluoromethane		0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Vinyl Chloride		0.000 U	0.000 U	0.010 U	0.000 U	0.010 U
Xylene (total)	ı	0.005 U	0.015 U	0.005 U	0.005 U	0.005 U
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						

U - Analyte tested for and not found at this level J - Estimated value; less than detection limit

B - Analtye also found in associated blank

E - Estimated value; above calibration range
* Compound present below CRDL, but reported at CRDL

U-8892.19

	E & E	Amount Added	Amount Determined	
Compound	Laboratory No. 88-		(ng)	Percent Recovery
1,2-dichloroethane-D4	28144	250	299	120
}	28145	250	286	114
}	28146	250	260	104
1	28147	250	278	111
:	28148	250	254	102
1	28149	250	290	116
	28150	250	236	95
toluene-08	28 14 4	250	286	114
	28145	250	269	108
	28146	250	253	101
	28147	250	268	107
<del>-</del>	28148	250	244	98
	28149	250	289	115
	28150	250	256	102
4-bromofiuorobenzene	28144	250	276	110
	28145	250	271	108
	28146	250	218	87
	28147	250	259	104
	28148	250	226	90
	28149	250	272	109
	28150	250	232	93
				-

These recoveries are acceptable to EPA Contract Lab Program (CLP)  $\,$  guidelines.

U-8892,20

	E & E	Amount Added	Amount Determined	
Compound	Laboratory No. 88-		(ng)	Percent Recovery
1,2-dichloroethane-D4	28151	250	222	89
	28152	250	246	98
	28153	250	250	100
	28154	250	256	102
	28155	250	232	93
	28156	250	252	101
	28157 28158	250 250	352 243	141 H 97
to I uene-D8	28151	250	265	106
	28152	250	222	89
	28153	250	257	103
	28154	250	251	101
	28155	250	232	93
	28156	250	235	94
	28157 28158	250 250	258 238	103 95
4-bromofluorobenzene	28151	250	249	99
	28152	250	210	84
	28153	250	208	83
	28154	250	227	91
	28155	250	215	86
1	28156	250	225	90
	28157 28158	250 250	272 228	109 91

With the exception of the value flagged with an "H", these recoveries are acceptable to EPA Contract Lab Program (CLP) guidelines. Sample 28157 was analyzed twice, surrogates were outside EPACLP guidelines for both analyses, indicating a matrix effect.

U-8892.21

	E&E	Amount Added	Amount Determined	
Compound	Laboratory No. 88-		(ng)	Percent Recovery
1,2-dichloroethane-D4	28159	250	221	88
)	28160	250	242	97
	28161	250	207	83
	28162	250	222	89
	28163	250	241	96
	28164	250	237	95
	28165 28166	250 250	243 242	97 97
toluene-08	28159	250	224	90
TOTUENE-UO	28160	250	209	83
	28161	250	209	89
	28162	250	258	103
Į	28163	250	281	112
	28164	250	264	106
	28165	250	243	97
	28166	250	271	108
4-bromofluorobenzene	28159	250	214	86
	28160	250	280	112
	28161	250	203	81
	28162	250	217	87
	28163	250	230	92
	28164	250	243	97
	28165 28166	250 250	234 233	93 93

These recoveries are acceptable to  $\ensuremath{\mathsf{EPA}}$  Contract Lab Program (CLP) guidelines.

U-8892.22

	E & E	Amount Added	Amount Determined	
Compound	Laboratory No. 88-		(ng)	Percent Recovery
1,2-dichloroethane-D4	28167 28168 28169 28170	250 250 250 250 250	263 267 247 242	105 107 99 97
†olu <b>e</b> ne-D8	28167 28168 28169 28170	250 250 250 250 250	283 272 261 268	113 109 105 107
4-bromofluorobenzene	28167 28168 28169 28170	250 250 250 250 250	243 244 241 218	97 98 96 87

These recoveries are acceptable to  $\operatorname{EPA}$  Contract Lab Program (CLP) guidelines.

# QUALITY CONTROL FOR ACCURACY AND PRECISION: PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD) OF SOIL MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MSD) (Sample #28147)

U-8892₂3

		(ng)						
Compound	Original Result	Amount Added		nount remained MSD		cent covery MSD	RPD	
1,1-Dichloroethene	<25	250	202	208	81	83	2.4	
Trichloroethene	<25	250	137	227	55L	91	49H	
Chlorobenzene	<25	250	248	250	99	100	1.0	
Toluene	<25	250	260	254	104	102	1.9	
Benzene	<25	250	181	264	72L	106	38H	

With the exception of those flagged values, these recoveries and RPDs are within EPA QC advisory limit for the EPA Contract Laboratory Program. Low recoveries on matrix spike are due to high response of the second internal standard, peak areas were acceptable.

# QUALITY CONTROL FOR ACCURACY AND PRECISION: PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD) OF SOIL MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MSD) (Sample #28159)

U-8892.24

		(ng)					
Compound	Original Result	Amount Added		ioun† ermined MSD		cent covery MSD	RPD
1,1-Dichloroethene	<b>Q</b> 5	250	178	209	71	84	17
Trichloroethene	<25	250	262	300	105	120	13
Chlorobenzene	<b>Q</b> 5	250	219	238	88	95	8
Toluene	<25	250	223	251	89	100	12
Benzene	<25	250	312	320	125	128	2.3

These recoveries and RPDs are within EPA QC advisory limits for the EPA Contract Laboratory Program.

APPENDIX I: CORRESPONDENCE

# New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233-0001



Henry G. Williams Commissioner

March 12, 1986

Mr. Edward Repa SAIC 8400 Westpark Drive McLean, VA 22102

Dear Mr. Repa:

Please find enclosed Generic Work Plan for Phase II investigations and a list of "technically acceptable" laboratories, which you requested in regard to your studies at Hancock Field, New York.

If you have any questions, please do not hesitate to call me at (518) 457-9538.

Sincerely,

Care Hoffman, P.E.

Senior Sanitary Engineer

Bureau of Hazardous Site Control

Division of Solid and Hazardous Waste

Enclosure



# New York State Department of Environmental Conservation

#### MEMORANDUM

TO:

Jack Ryan

FROM:

Larry Bailey

SUBJECT:

Technically Acceptable Laboratories

DATE:

August 13, 1985

The following is a list of the laboratories that have performed satisfactorily on P.E. samples and addressed any deviations found during on—site audits and have been determined to be "technically acceptable."

ETC-Edison, NJ, in conjunction with Wilson Laboratories, Salina, KS

ERCO-Cambridge, MA

General Testing-Rochester, NY, in conjunction with CompuChem Laboratories, Research Triangle Park, NC

H2M Corp. -Melville, NY

Galson Technical Services-E. Syracuse, NY, in conjunction with O'Brien & Gere Laboratories, Syracuse, NY

Aquatec, Inc. -5. burington, v.

NUS Corp.-Pittsburg, PA

Ecology & Environment-Buffalo, NY

IT Corp.-Pittsburg, PA

Recra Research-Buffalo, NY

GCA Corp.-Bedford, MA

IT Corp.-Knowville, TN

O'Brien & Gere-Syracuse, NY

Versar, Inc.-Springfield, VA

CompuChem Laboratories-Research Triangle Park, NC

NYTest Environmental-Westbury, NY

EA Engineering, Science, & Technology-Sparks, MD

Roy F. Weston, Inc.-West Chester, PA

Environment One Corp.-Schenectady, NY

Hittman Ebasco Associates-Columbia, MD

Friend's Laboratories-Waverly, NY, in conjunction with NYTest Environmental, Westbury, NY

the last Coloner Edison 219

Princeton Aqua Science-Edison, NJ

Chemtech-NY, NY, in conjunction with Envirodyne Engineers, St. Louis, MO

C&S Environmental-Liverpool, NY, in conjunction with Camo Labs,

Poughkeepsie, NY

Nanco Labs-Hopewell Junction, NY

#### LB: lms

cc: Dr. Banks

N. Nosenchuck

J. Rankin

M. Chen

C. Goddard

M. Ferguson

J. Iannotti

D. King

J. Wilson

7. Cunicilian

F. Ricotta

W. Demick

RECEIVED

BUREAU W. MINISTER DOUS SITE CONTROL

MAZE TODUS WASTE

Revised: 7/85

# EXHIBIT 1

# Generic work Plan

#### STATE SUPERFUND PROGRAM

# Phase II Investigations

The Division of Solid and Hazardous Waste, requires that certain aspects be addressed in any investigative work (Phase II) undertaken to determine the hazardous nature of a site. This document describes generally the minimum amount of work and reporting that must be accomplished by the consultant in performing a Phase II investigation; the requirements by the Division of the consultant in performing a satisfactory Phase II investigation is not limited to the items described herewith, but may include other needs to satisfy unanswered questions on a site-specific basis.

This generic work plan will be divided into five main areas:

- 1. Geophysical Survey
- 2. Well Drilling/Development
- 3. Recommended Well Sampling and Analyses
- 4. OA/OC Protocols
- 5. Phase II Report Format

# 1. Geophysical Survey

The broad considerations are:

- a. Location of buried materials
- b. Determination of the presence of contaminated plumes
- c. Characterization of subsurface conditions

Because of complexities involved in detecting hazardous waste at a given site, with added complications of geologic anomalities, the Department requires that specific geophysical studies be conducted during each investigation. Generally, the goals of a geophysical survey are:

- to minimize the number of drilling sites
- to locate drilling and monitoring wells at representative sites

- to reduce risks associated with drilling into unknown terrain and waste
- to reduce overall project time and costs
- to provide improved accuracy and confidence levels to the project

Some of the specifics that are required to be determined by the geophysical survey are:

- layer thickness and depth of soil and rock formations
- mapping lateral anomaly locations
- determining vertical anomaly depths
- depth to water table
- existence of contamination and/or buried wastes
- mapping contamination and buried waste boundaries and contaminated plumes
- determining vertical extent of buried wastes and contamination
- quantify magnitude of buried wastes or contamination
- determine direction of groundwater flow
- detection of organics floating on the water table
- detection and mapping of contamination or wastes within the unsaturated zone

Table 1 specifies techniques, which have been proven at hazardous waste sites, and their application for various categories of a Phase II investigation. The preferred method must be employed to characterize to the maximum extent possible the subsurface stratigraphy of an inactive hazardous waste site.

The findings of the geophysical survey must be used to enhance the location of wells for obtaining samples, from leachate plumes or affected groundwater regimes. This means that geophysical data must be reduced and the findings used to determine the best locations for wells.

# 2. Well Drilling

These shall include, but are not limited to:

- a. number of wells (nested or single) and located on a map of the site.
- b. estimated depth of wells to the nearest foot based on available data.
- c. materials needed to properly construct wells, seal annular space and secure wells with a steel protective casing and padlock.

- d. split spoon sampling from grade elevation must be done at every 5 feet. A grain size analysis or Atterberg limits for non-cohesive materials or cohesive materials respectively must be done at every change in subsurface lithology, as well as one such analysis in the screened interval. If conditions are such that a mixture of cohesive and non-cohesive materials are encountered, perform only grain size analysis. Hydrometer analysis must also be done if 20 percent of the sample is less than a No. 200 sieve size.
- e. Permeability testing of each well. Evacuation of the well for this determination will be accepted.
- f. groundwater elevation readings in each well before and after development. These readings must be accomplished for normally recovering wells before the drill rig leaves the site, since if data is unable to show direction of groundwater flow, additional wells should be placed.

If low yielding wells, requiring greater than 8 hours for recovery, are encountered, then the consultant and sub-contractor must depart the site, after the last well development and return at a later date for its groundwater elevation measurement. It is required that a well-must be developed as soon as its recovery is completed and as soon as practically possible before or during the drilling operations of the next well. This process of staggered well development will result in only the last well remaining underdeveloped at the end of the drilling operations. The consultant at this stage will have gathered enough information to aid in determining the next course of action.

- q. development of each well.
- h. classification of the split spoon samples by a geologist in the field using the N.Y.S.D.O.T. Soil Description Procedure. See Attachment 1.
- i. shallow soil samples, it required, may be obtained with a hand auger.
- j. The standard operating procedures anticipated to be used in drilling and installation of borings and wells.

It must be noted that in moving from one well to another on-site location for constructing a new well, all drilling equipment must be cleaned of all foreign matter, washed with a detergent, rinsed properly with water, given an acetone wash, then followed with a final hexane wash, in that order, or cleaned of foreign matter and sanitized with a steam cleaner. Any alteration to the method of cleaning is to be determined for each site by New York State Department of Environmental Conservation. Similarly, in conducting split spoon sampling, the split spoon must be cleaned as above after each sample and before introduction in a new bore hole.

It is also required that a HNu detector or OVA analyzer be used to monitor the gases emitted from each split spoon sample as soon as the sampler is opened.

When an OVA analyzer is used, special precautions must be taken in using a filter by which methane concentrations are recorded. Both filtered and unfiltered samples must be taken to show the difference for methane.

Prior to leaving a site, all equipment that was used in constructing the well, i.e., augers, split spoons, tools, accessories and other items such as vehicles and drill rigs must be cleaned as described above.

# 3. Recommended Well Sampling and Analyses

The Division expects that a minimum of 1 groundwater sample will be taken from each well. The consultant is therefore required to note in the work plan:

- a. number of groundwater samples recommended.
- b. recommended analysis for each sample, keeping in mind that:
  - i. if a determination on the type(s) of chemical(s) can be made from a foregoing Phase I study or other sources, then analysis shall be concentrated on those items.
  - ii. if there is a suspected multiplicity of chemicals, but no determination on their classification can be made, serious consideration will be given in analysing for:
    - A) total metals
    - B) identification and quantitation of compounds should be done in accordance with New York State Department of Environmental Conservation's Analytical, Quality Control and Reporting Requirements as adopted from the USEPA Caucus Protocol for the Contract Laboratory Program, with the requirement that all GC/MS peaks greater than 10 percent of the nearest calibrating standard be included in the identification and quantitation.

An analysis for total halogenated compounds (TOX) must also be performed. This is to ensure that no highly soluble halogenated compound was undetected by the GC/MS analysis. The results of the TOX analysis must be quantitively compared to the halide content (mg/l as chlorine) of individual chemicals identified by the comprehensive analysis. If less than 95 percent of the TOX is accounted for, consideration must be given for the presence of highly soluble halogenated chemicals.

In developing and extracting samples from wells, the Division will require that dedicated tubes, hoses, (rubber or tygon unacceptable), bailers including line and other sampling equipment must be provided for each well. Groundwater elevation equipment may be used between wells, provided that after use in each well, the detector is cleaned with a detergent wash, water rinse, acetone rinse and hexane rinse in that order.

# 4. Quality Assurance/Quality Control

QA/QC protocols for sample integrity from the field to the laboratory, as well as those employed in the laboratory must be submitted by the consultant. Generally, the sampling QA/QC protocols should describe sampling techniques and methods used in ensuring sample integrity, as cleaning of equipment, dedicated samplers, chain-of-custody procedures, sample preservation, experience and capabilities of personnel and other factors associated with obtaining and delivering hazardous waste samples to the laboratory.

A quality assurance document providing for the committment to the implementation of quality assurance and quality control practices applicable to field and laboratory activities of the hazardous waste program must be provided. This document must be in accordance with the NYSDEC, Division of Solid and Hazardous Waste Quality Assurance Program Plan which contain "Guidance for Preparation of Combined Work/Quality Assurance Project Plans for Water Monitoring (OWRS QA-1), U.S. EPA, Washington, D.C., May 1983.

# 5. Phase II Report Format

#### Cover:

The report cover shall be in accordance with the sample attached hereto as Attachment 3 and shall be printed on 651b. Atlantic Pastel uncoated cover, Misty Blue color. The back cover shall be of the same material as that of the front cover.

# Title Page:

Indicate: name of project (i.e., "Engineering Investigations at Inactive Hazardous Waste Sites in the State of New York, Phase II Investigations"); the site name, location (i.e., municipality and county) and NYSDEC site number; prepared for (i.e. Division of Solid and Hazardous Waste, New York State Department of Environmental Conservation, 50 Wolf Road, Albany, New York, 12233-0001); prepared by (i.e., contractor's name and address); and date submitted.

# Table of Contents:

List all sections and subsections of the Phase II Report.

# Section I:

# Executive Summary -

Briefly describe the site, Phase II effort, site assessment and HRS score. (Include a portion of the USGS 7.5 minute Quadrangle Sheet 8 1/2" x 11") with site located, name of the quadrangle and the coordinates of the site, identified on it, as well as a sketch map of the site).

# Section II:

# Purpose -

Describe the goal of the Phase II effort at the specific site.

# Section III:

# Scope of Work -

Describe the scope of the Phase II effort including, but not necessarily limited to: geophysical studies, boring and monitoring well placement and installation, sampling and sampling station selection (soil, surface water, groundwater and air samples.)

Give reasons for the locations chosen for monitoring wells and sampling stations. Also include details of monitoring well installation and environmental sampling techniques used.

# Section IV:

# Site History-

A description of waste disposal, operation of the site, change in ownership and significant events such as, boil water notices issued by a health agency, reports of leachate outbreak, fish kills and remedial actions taken should be included.

#### Section V:

### Site Assessment -

- i) Description of sit topography indicating such items as general slope of the site and proximity to surface waters, private and public wells, commercial buildings, dwellings and sensitive environments.
- ii) Description of hydrology of the site, include data from geophysical studies (plots), boring logs, monitoring well data and soil test data. (Depth to groundwater, aquifers of concern, depth of bedrock, soil and bedrock permeabilities, and any unique geological characteristics such as, but not limited to, multiple aquifer systems and karst topography should be noted.)
- iii) Describe the observations of the site inspection, e.g., was leachate flow noted, were drums observed and were they full or empty. Assess site contamination. Summarize the results of both past and Phase II sampling programs. Indicate the waste types and quantities on site if known, and the extent of contamination of soil, surface water, groundwater and air. Note when samples were taken and the location of samples on a map or sketch of the site. Include a description of how the QA/QC plan was applied to the site.

# Section VI:

Final Application of the Hazard Ranking System - The final application of the HRS must incorporate all information collected in the Phase I and Phase II investigations of the site. This section of the report is to include:

- i) Narrative Summary Limit each narrative summary to one page (DOUBLE SPACED). Use active voice as much as possible and identify actors--that is, say "EPA erected a fence," not "a fence was erected," or "the State filed suit," not "a suit was filed." Be sure to tie the information to the response category/status codes you are assigning the site.
  - a. Site name (including origin of name).
  - b. Site location city, county, and state
  - c. Size
  - d. Nature of operations (landfill, recycling, manufacturing, etc.)
  - e. History of ownership/operations private, public, bankrupt, permitted (by whom? to do what?) currently operating (how long), closed (how long).
  - f. Wastes present (types, amounts, in what form, buried, on surface, etc.)
  - g. Media affected and with what (including source of analytical data)
  - h. Important demographic information.
  - i. Important geographic information (nearby surface water, aquifers, wetlands, etc.)
  - k. Enforcement actions

A typical summary is outlined below. While no single example can cover the variety of conditions at hazardous waste sites, this one illustrates the types of information and form we want.

Name Location

The ABC/DEF (name) site covers (size) acres in (location, including county). ABC (describe operations) on the site (date), when it purchased the property from DEF (relationship of DEF to the site operation), until (date), when it (describe operations/ownership history).

The companies disposed of about (quantities of waste) of (types of waste) on the site by (describe disposal methods). According to tests conducted by (source of data), (media) are contaminated with (chemicals). The site is (important geographic information). About (population affected) are (affected how).

In (date), (who) filed (<u>describe any legal action</u>). In (date), (who) (describe any cleanup actions).

- ii) Portion of USGS quadrangle with site located on it and the name of quadrangle identified as also required in Section I.
- iii) Updated HRS Worksheets

All applicable data collected in the Phase I and Phase II investigations will be used to complete these worksheets.

iv) Updated HRS Documentation Records

All applicable data collected in the Phase I and Phase II investigations will be used to complete the HRS Documentation Records. All sources of information supplied in the documentation records must be clearly referenced on the same page where this information is presented. In addition, copies of all documents indicated as a source of information must be supplied. This includes correspondence, sampling and analytical data (even if previously presented in the Phase I report), professional papers and reports. Information based on conversations with knowledgeable individuals must be confirmed in a memorangum or a letter, and a copy included with the HRS Documentation Records. Also, a copy of the site sketch or map indicating the location of samples (as required in Section IV) must also be included in this section.

Updated EPA Form 2070-13 "Potential Hazardous Waste Site, Site Inspection Form," or any revision of such forms shall be used.

NOTE: Information presented on the <u>HRS Documentation Records</u> is to be typed and not handwritten or printed.

#### Appendix:

All raw data (i.e. geophysical, analytical, etc.) shall be presented in the appendix. This shall be in addition to any reduction of data presented elsewhere in the report.

# 6. Special Conditions

The consultant is required to observe certain conditions during the conduct of a Phase II investigation. These are:

a. Site visit must be made prior to completion of the work plan for reconnaisance and especially for determining access problems. Those of concern should include: is physical access possible, is auxiliary equipment required, can wells be located on or off the site, is off-site access permitted, are easements necessary, etc.

If during the actual field activities of a Phase II investigation, the consultant should require a tractor to locate the drill rig, or determine that access through an adjacent property is needed and is not mentioned in the work plan, the Department will conclude that a reconnaissance was not done. This attitude will be maintained for any other condition occurring during the field activities, but which should have been addressed during the reconnaissance, nor will associated costs be considered.

- b. Name and address of all sub-contractor must be submitted with an itemized list of jobs and charges.
- c. The following requirements deal with the construction of overburden and rockwells. These are entitled:
  - i. Guidelines for Exploratory Boring, Monitor Well Installation and Documentation of these activities.
  - ii. Guidelines for rockwells
- d. The attached Oversight Checklist (DSHW personnel) are items that DEC staff ensure will be met during their oversight of the Phase II investigation. The checklist is made a part hereof, and the consultant must at a minimum meet these requirements during his Phase II investigation field activities.

#### Reference

Geophysical Techniques for Sensing; Bureau of Wastes and Waste Migration; U.S. Environmental Protection Agency, Las Vegas, Nevada. 236pp.

TABLE 1. APPLICATION OF GEOPHYSICAL METHODS TO HAZARDOUS WASTE SITES

Application	Radar	Electromagnetics Resistivity	Resistivity	Seismic	Metal Detector	Magetometer
Mapping of Geohydrologic Features		-	-	-	1	1
Mapping of Conductive Leachates and Contaminant Plumes (ex. Landřills, Acids, Bases)	8	<b></b>	ı	ı	ı	ı
Location and Boundary Definition and Buried Trenches with Metal	<b>-</b>		2	2	2	2
Location and Boundary Definition of Buried Trenches without Metal	7	-	2	2	1	1
Location and Definition (ex. Drums, Ordinance)	2	2	•			

1. Primary Method - Indicates the most effective method 2. Secondary Method - Indicates and alternative approach

Mr. Thomas D. Sims, Chief Environmental Planning Division Department of the Air Force Regional Civil Engineer, Eastern Reg. (HQAFESC) 526 Title Building 30 Pryor Street Atlanta, Georgia 30303

Attn of: ROV

Dear Mr. Sims:

Re: Installation Restoration Program, Hancock Field, New York

Thank you for the opportunity to review the Statement of Work (SOW) Phase II Stage 2 enclosed with your letter dated March 4, 1986 to Mr. Walter Demick, P.E., of my staff.

It has substantially addressed and incorporated the previous concerns outlined within our March 5, 1985 letter regarding the Phase II Stage 1 report.

The regional New York State Department of Environmental Conservation's office at Liverpool, has suggested that the considerable development within the area be put into perspective. Specifically, by documenting all investigative activities on a current map which includes recent residential development and proximity to the areas of concern.

Please apprise Mr. Walter Demick regarding field activity scheduling so he may coordinate field oversight.

If you have any questions, please feel free to contact Mr. Walter Demick at (518) 457-9538, or myself at (518) 457-0647.

Sincerely,

Charles N. Goddard, P.E.

Chief

Bureau of Hazardous Site Control Division of Solid and Hazardous Waste



July 1, 1986

Mr. Carl Hoffman, P.E.
Senior Sanitary Engineer
Bureau of Hazardous Site Control
Division of Solid and Hazardous Waste
New York State Department of
Environmental Conservation
50 Wolf Road
Albany, New York 12233-0001

Reference: IRP Phase II, Stage 2, Hancock Field, New York

Dear Mr. Hoffman:

This letter is to confirm a conversation of last week between Ms. Jane Federico of your office and Ms. Judith Burris of USAFOEHL concerning the use of ERG Laboratories of Ann Arbor, Michigan for environmental analyses at Hancock Field. USAFOEHL understands that ERG is acceptable to NYDEC for this project. If this is not correct or you have any questions concerning this matter, please call me at (703) 827-8101.

Sincerely,

Philip A. Spooner Project Manager

PAS/sk

cc: Judith Burris - USAFOEHL Werner Zieger - SAIC



September 9, 1986

Lt. Col. Robert H. Purple
Commander, Combat Support Squadron
New York Air National Guard
Headquarters 174th Tactical
Fighter Wing
Hancock Field
Syracuse, NY 13211-7099

Dear Colonel Purple:

This letter is to confirm that you are authorized to provide access for commercial contractors for the purpose of sampling surface water and sediment sampling.

As we discussed on the telephone, it is important that any contractor be escorted in a way that controls their movement when they are within security fencing.

The person whom you should contact to arrange for such access is Robert Radway, and he may be reached at 455-1477. We would ask that a day's notice be given for any needed coordination.

Very truly yours,

Ralph E. Wapolitano
Acting Commissioner
of Aviation

REN:kr

cc: Robert Radway, Maintenance
Department



September 12, 1986

Mr. Carl Hoffman, P.E.
Senior Sanitary Engineer
Bureau of Hazardous Site Control
Division of Solid and Hazardous Waste
New York State Department of
Environmental Conservation
50 Wolf Road
Albany, New York 12233-4015

Reference: IRP Phase II, Stage 2, Hancock Field, New York

Dear Mr. Hoffman:

Enclosed is the Health and Safety Plan for the Stage 2 work at Hancock Field. If you could please discuss any changes NYDEC feels are necessary with Nick DeSalvo of my office, I would appreciate it. Nick can be reached at (703) 821-4696.

Sincerely,

Philip A. Spooner Project Manager

PS/1b

Enclosure

cc: Judith Burris - USAFOEHL

Nick Desalvo - SAIC

APPENDIX J: REFERENCES

#### APPENDIX J

#### REFERENCES

- Anderson, H.R., W.G. Stelz, T.S. Miller, and others. 1982. Geohydrology of the Glaciolacustrine Aquifer in the Fulton area, Oswego County, New York. U.S. Geological Survey Open File Report 82-83, 7 sheets.
- Dale, N.C. 1953. Geology and Mineral Resources of the Oriskany Quadrangle. New York State Museum Bulletin No. 345. Albany, NY.
- de Vera, E.R., B.P. Simmons, R.D. Stephens, and D.L. Storm. 1980. Samplers and Sampling Procedures for Hazardous Waste Streams. EPA 600/2-80-018. USEPA, Cincinnati, Ohio.
- Driscoll, F.G. 1986. Groundwater and Wells, 2nd ed. Johnson Division, St. Paul, Minnesota.
- Dunn, B. 1979. Floodflow Characteristics of Butternut Creek and Jamesville Reservoir, Jamesville, Onondaga County, New York. U.S. Geological Survey Open File Report 79-1292, 14 p.
- Fisher, D.W. 1957. Lithology, Paleoecology and Paleontology of the Vernon Shale (Late Silurian) in the Type Area. New York State Museum and Science Service Bulletin No. 364. Albany, NY.
- Freeze, R.A. and J.A. Cherry. 1979. Groundwater. Prentice Hall, Inc. Englewood Cliffs, New Jersey.
- Heath, R.C. 1964. Groundwater in New York. New York Water Resources Commission, Bulletin GW-51.
- Hvorslev, M.J. 1951. Time Lag and Soil Permeability in Groundwater Observations. U.S. Army Corps of Engineers. Waterways Exp. Sta. Bull. 36, Vicksburg, Mississippi.
- Kantrowitz, I.H. 1970. Ground-water Resources in the Eastern Oswego River Basin, New York. Prepared for the Eastern Oswego Regional Water Resources Planning Board. Water Resources Commission, Albany, NY.
- Kimbrough, R.D., H. Falk, P. Stehr, and G. Fries. 1984. Health Implications of 2,3,7,8-TCDD Contamination of Residential Soil. J. Tox. Env. Health 14:47-93.
- Lumia, R. and B. Dunn. 1978. Floodflow Analysis of Ninemile Creek, Onondaga County, New York. U.S. Geological Survey Open File Report 78-85, 10 p.
- Miller, T.S. et al. 1981. Geohydrology of Valley-Fill Aquifers in the Cort.and-Homer-Prible Area, Cortland and Onondaga Counties, New York. U.S. Geological Survey Open File Report 81-1022, 7 sheets.
- Miller, T.S. 1982. Ground-water Resources and Geology of Oswego County, New York. U.S. Geological Survey Water Resources Investigations Report 81-60, 37 p.

- Prudic, D.E. 1982. Hydraulic Conductivity of a Fine-Grained Till, Cattaraugus County, New York. Ground Water Vol. 20, No. 2, pp. 194-204.
- Richard, L.V. and D.W. Fisher. 1953. Age of the Brogmon Shale. New York State Museum Circular No. 36. Albany, New York.
- Syracuse-Onondaga County Planning Agency. 1983. Onondaga County Population Projections: NYS Department of Commerce County Projection Series, pp. 18-19.
- USAF OEHL. 1983. Personal communications.
- USAF OEHL. 1984. Personal communications.
- USEPA. 1979. Methods for Chemical Analysis of Water and Wastes.
  Environmental Monitoring and Support Laboratory. ORD, USEPA, Cincinnati, Ohio.
- USEPA. 1977. Procedures Manual for Groundwater Monitoring at Solid Waste Disposal Facilities. USEPA SW-611, Washington, D.C.
- USEPA. 1985. Development of Statistical Distribution of Ranges of Standard Factors used in Exposure Assessments Prepared by GCA Corp. for the U.S. Environmental Protection Agency. Exposure Assessment Group, Washington, D.C.
- USEPA. 1986. Superfund Public Health Evaluation Manual Final U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.
- USGS. 1977. National Handbook of Recommended Methods for Water-Data Acquisition. Office of Data Coordination, Geological Survey, Reston, Virginia.
- Weist, W.G. and G.L. Giese. 1969. Water Resources of Central New York Region. State of New York, Conservation Department, Water Resources Commission, Bulletin 64.
- Woo, Y-T and J. Arco. 1981. Environmental Chemicals in Industry and the Environment, in Sontay, JM (ed) 1981) Carcinogen, Marcel Dekker, Inc., NY.
- Zamuda, C., J. Lounsbury and D. Couper. 1986. Superfund Risk Assessment: The Progress and its Application to Uncontrolled Hazardous Waste Sites, in Management of Uncontolled Hazardous Waste Sites. Proceedings from Superfund 186 Conference December 1 to 3, 1986, Washington, D.C.
- Zimmerman. 1987. Personal Communication with Paul Zimmerman, Facilities Manager, Hancock Field, April 28, 1987.

APPENDIX K: RESUMES OF KEY PERSONNEL

J. ERIC GIBSON

Page 1 of 2

# **EDUCATION**

University of Delaware, Bachelor of Science, Geology, (1984)

# EXPERIENCE

Mr. Gibson is a geologist with SAIC's Applied Technologies Division, Geotechnical Assessment Section. He has been involved in the implementation of Air Force IRP (Installation Restoration Program) studies at Air Force Bases throughout the country. These studies, which are currently in the confirmation/quantification phase, are intended to determine the degree and extent of environmental degradation resulting from past operations at the Air Force Base. Mr. Gibson's responsibilities include: supervision of the drilling and installation of soil gas and groundwater monitoring wells; sampling of groundwater, surface waters. soils, and stream sediments; analysis of data; assessment of hydrologic conditions; characterization of the local hydrogeology; and preparation of the final reports.

He has also participated in an in-situ bioreclamation research project at a contaminated site located on Kelly Air Force Base, Texas. This research project was intended to enhance the microbial degradation of organic contaminants through the controlled injection of microbe proliferating nutrients. His responsibilities in this remedial action research project consisted of: system operation (control and planning of the pumping and injection rates of both circulated groundwater and microbial nutrients); groundwater sampling; supervision of subcontractor personnel; sampling of contaminated soils obtained by drilling equipment while employing sterile sampling techniques; and field analysis of soil and groundwater chemical parameters.

In addition to these activities, Mr. Gibson has participated in EPA Resource Conservation and Recovery Act (RCRA) Part B Application Completeness Checks. These checks, which were performed on permit applications submitted by various private companies with hazardous waste management facilities, required the evaluation of each application to determine the adequacy of the data provided and, on a preliminary basis, the technical soundness of the document.

Prior to joining SAIC, Mr. Gibson was a geologist with ATEC Associates of Salisbury, Maryland. With this geotechnical engineering firm, Mr. Gibson's responsibilities included the evaluation of driven splitspoon samples to facilitate construction of well logs; the inspection of structural foundations, data interpretation, and report preparation. He assisted in a variety of projects consisting of structural foundation recommendations; determination of the areal extent and volume of proposed borrow pit materials; and potentiometric mapping.

Verified for accuracy by: 1 fix July Date: 8/25/66



J. ERIC GIBSON Page 2 of 2

Also, Mr. Gibson was previously employed by Delmarva Drilling Company of Bridgeville, Delaware. As a member of the drilling group, he assisted with all facets of water well installation and evaluation. His responsibilities included: logging and installation of groundwater producing and monitoring wells; conducting vater well pumping and slug tests used in the determination water well and aquifer parameters; recommendations concerning water well location and design and data interpretation.

Mr. Gibson was a research assistant for the Geology Department of the University of Delaware, during the summer of 1984. In this capacity, he assisted in the investigation of the geological and environmental characteristics of a coastal area experiencing rapid erosion in Central Delaware. He was responsible for flowmeter installation; collection of sediment samples; surveying of the coastal zone; determining the location of sediment sources; and preparation of reports.

# PROFESSIONAL AFFILIATIONS

National Water Well Association

# <u>PUBLICATIONS</u>

Installation Restoration Program Phase II-Confirmation/Quantification, Stage 1, Draft Report for Charleston Air Force Base (Co-authored with E. Repa, et. al.); for U.S. Air Force, OEHL, Brooks AFB, Texas. (1985).

Verified for accuracy by: f Suc Sulman Date: 8/25/86



Page 1 of 3

#### SARA WILLIS HARTWELL

#### **EDUCATION**

B.S., Chemistry, Guilford College (1974)

## **SHORTCOURSES**

- 1978. Column Selection in Gas Chromatography Supelco, Inc., Bethesda, MD
- 1979. High Pressure Liquid Chromatography Apparatus Workshop American Chemical Society Short Course, Philadelphia, PA
- 1980. Atomic Absorption Spectroscopy Course Perkin Elmer, Gaithersburg, MD
- 1982. Polymer Chemistry, Principles and Practice American Chemical Society Short Course, Blacksburg, VA
- 1982. Gel Permeation Chromatography Waters, Inc., Milford, MA

#### **EXPERIENCE**

Ms. Hartwell is a Senior Chemist with SAIC's Environmental Technology Group in the Regulatory Compliance Division. She has 12 years of professional experience as an analytical chemist, including sampling techniques and analyses in environmental, biological and industrial systems.

As a Development Chemist with an industrial concern, Ms. Hartwell was involved in problem-solving research on polymers, coatings, adhesives, inks and aluminum. She has extensive experience with gas chromatography, high pressure liquid chromatography, gel permeation chromatography and fourier transform infrared spectroscopy. She served as technical advisor to a manufacturing operation, evaluating materials and process related issues with a wide spectrum of techniques including thermal analysis, rheology and optical microscopy. Ms. Hartwell designed and implemented a database management system for laboratory data, and trained the technical staff in its use. She was responsible for analytical method development, dissemination and implementation, including the selection and installation of appropriate instrumentation.

Ms. Hartwell was Chairman of the Building Safety Committee for 2 years, served on the Complex Safety Committee, and consulted with the company's safety department on chemical issues pertinent to the manufacturing operation.

As a Senior Research Technician in the Department of Environmental Toxicology at the Johns Hopkins University School of Public Health and Hygiene, Ms. Hartwell was the primary analyst on projects concerned with the analysis of phthalate esters, carbonyl sulfide and heavy metals in biological samples. She was responsible for analytical method development, as well as data management,

Verified for Accuracy by: Ma Willi Hartuell Date: Nov 18, 1986



#### SARA WILLIS HARTWELL

Page 2 of 3

using gas chromatography and atomic absorption spectroscopy. She coordinated projects and instrument scheduling in a multi-user setting and taught a training course in the theory and practice of atomic absorption spectroscopy.

As a Laboratory Technician III with the Frederick Cancer Research Center, Ms. Hartwell performed both gas and liquid chromatographic analyses of anti-neoplastic agents in biological systems. She was responsible for the development of the analytical methods, sample handling and data management.

As a Chemist II at the Research Triangle Institute, Ms. Hartwell performed trace metal analyses on animal tissues, aqueous samples, tar residues and plant tissues. Using a wide range of chromatographic techniques, she worked on metabolic studies of testosterone propionate and trichlorocarbanalide in animal tissues and body fluids. Ms. Hartwell identified and quantified components of energy related wastes and effluents, including participation in pilot scale and in situ coal gasification studies. She was responsible for sample collection, preparation, preservation, storage, and analysis and the reduction and management of data. She had extensive experience with gas and high pressure liquid chromatography, mass spectra interpretation, column and thin layer chromatography and atomic absorption spectroscopy.

As a student, Ms. Hartwell was the Teaching Assistant for introductory chemistry labs.

## **ASSOCIATIONS**

Ms. Hartwell is a member of the American Chemical Society.

#### **PUBLICATIONS**

- Lateralization of Zinc in Rat Brain and Its Relationship to a Spartial Behavior, James J. Valdes, Sara W. Hartwell, Sheryl M. Sato, and John M. Frazier. Pharmacology, Biochemistry and Behavior, Volume 16, pp 915-917, 1982.
- The Analysis of 5-Azacytidine (5AC) and 5,6-Dihydro-5-Azacytidine (H5AC) in

  L1210 Cell Culture Samples by Gas Chromatography (GC) and Mass Spectrometry

  (MS), C.J. Nielson, S.W. Hartwell, J.V. Evans, and S.K. Daley, presented at the American Society for Pharmacology and Experimental Therapeutics, Portland, Oregon, (August 19-24, 1979).
- Characterization of the Components of Energy-Related Wastes and Effluents, E.D. Pellizzari, J.T. Bursey, D.J. Smith, N.P. Castillo, and S.L. Willis, presented at the 26th Annual Conference - Mass Spectrometry and Allied Topics, St. Louis, Missouri, (May 29 - June 2, 1978).
- Identification of Organic Constituents in Aqueous Effluents from Energy-Related Processes, E.D. Pellizzari, N.P. Castillo, S. Willis, D. Smith, and J.T. Bursey, presented at the 175th ACS National Meeting, Anaheim, California, (March 12-17, 1978).

Verified for Accuracy by: ha willi Hartures Date: Nor 18 1986



SARA WILLIS HARTWELL

Page 3 of 3

- Synthetic Fuels Production: Analysis of Process By-products from a Laboratory

  Scale Gasifier, C.M. Sparacino, R.A. Zweidinger, S. Willis, and D. Minnick,
  for presentation at EPA contractor's meeting, Atlanta, Georgia, (February
  13-15, 1978).
- Analytical Techniques and Analysis of Coal Tars, Waters and Gases, C.M. Sparacino, R.A. Zweidinger, and S. Willis, presented at EPA contractor's meeting, Hollywood, Florida, (September 12-16, 1977).
- Application of Capillary GC/MS-Computer Techniques to Identification of Organic Components in Environmental Samples, E. Pellizzari, R. Berkley, J. Bunch, J. Bersey, D. Smith, R. Williams, and S. Willis, presented at American Society for Mass Spectrometry Convention, (May 29 June 3, 1977).
- The Metabolism and Toxicity of Halogenated Carbanilides: Biotransformation

  Products of 3,4,4'-Trichlorocarbanilide, C.G. Birch, R.A. Hiles, T.H.

  Eichold, A.R. Jeffcoat, R.W. Handy, J.M. Hill, S.L. Willis, T.R. Hess, and M.E. Wall, Drug Metabolism and Disposition, June, 1977.
- The Metabolism and Toxicity of Halogenated Carbanilides, Biliary Metabolites of 3,4,4'-Trichlorocarbanilide and Trifluoromethyl-4,4'-Dichlorocarbanilide in the Rat, A. Robert Jeffcoat, Robert W. Handy, Mark T. Francis, Sara Willis, Monroe E. Wall, C. Grant Birch and Richard A. Hiles. Drug Metabolism and Disposition, Volume 5, Number 2.

Verified for Accuracy by: And Willin Hautwell Date: 10-18 1886



Page 1 of 2

#### JOHN J. KING

## **EDUCATION**

Rutgers University, Newark College of Arts and Science, Newark New Jersey, B.A. Geology, Cum Laude (1982) M.S. Geology, Pending Thesis Defense

## SUMMARY

Mr. King is a Geologist in SAIC's Environmental Technology Group. He is currently pursuing a Masters of Science Degree in Geology. Mr. King's thesis topic is concerned with the petrogenesis of simple pegmatites of the New Jersey Highlands.

#### EXPERIENCE

Mr. King is currently involved in a number of contractual work assignments with various government agencies. Under a contractual agreement to provide the USEPA's office of Water Enforcement and Permits support services on an as needed basis, Mr. King is taking an active role in the formulation of model minor permits for selected industrial categories. The model permits will become the basis for the development of individual permits for similar facilities or serve as a basis for general permits for specific industrial categories.

Under another contractual arrangement with USEPA, Mr. King is accessing State and Regional Files in an attempt to form a data base on industries which generate, treat, store and dispose of hazardous waste materials. The data base will serve as a basis for effluent guideline development for this industrial group.

Mr. King has played an active role in the performance of diagnostic inspections of Publicly Owned Treatment Works (POTWs) as a support service for USEPA's Enforcement Division. As part of an inspection, he is required to evaluate the operation of unit processes, access the adequacy of equipment, determine causes for chronic permit violations, and propose appropriate remedial measures.

Mr. King currently manages a number of environmental assessment and ECRA projects. Responsibilities include, ECRA applicability determination, completion of ECRA #1 and #2 Initial Notice Forms, Sampling and Cleanup Plan preparation, coordination of sampling and cleanup activities, and Cleanup Report preparation.

In response to a contractual assignment granted by NJDEP, Mr. King has prepared NPDES permits for Municipal Wastewater Treatment facilities throughout the state. Prerequisite activities conducted prior to permit development

VERIFIED FOR ACCURACY BY:

John J King

Date 8-13-86



Page 2 of 2

JOHN J. KING

included an initial data gathering phase consisting of an on-site meeting with appropriate POTW administrative personnel.

Mr. King has been instrumental in the development of NPDES permits and accompanying engineering reports for an assortment of major industrial dischargers in the State of New Jersey.

Mr. King has participated in a number of groundwater monitoring inspections at land treatment, storage, and disposal (TSD) facilities in the State of Florida. As part of this work assignment, reports were prepared for the Florida DER and EPA Region IV describing the current level of compliance and adequacy of the groundwater monitoring programs.

In the past year, Mr. King provided technical support during the preliminary phases of a remedial investigation and feasibility study on a contaminated aquifer in Rockaway, New Jersey. Duties included the sampling and analysis of water from existing wells, and of water and sediments from local water bodies.

Mr. King worked as a research and teaching assistant at the Newark College of Arts and Science during his graduate studies. As a research assistant, he was required to sample, map, and analyze soils in the Talc districts of South-western Montana in an attempt to test the feasibility of a new prospecting method applicable for the exploration of mineable Talc bodies. As a teaching assistant, Mr. King maintained a supervisory position and was responsible for training the other teaching assistants in proper administration of introductory geology laboratory classes.

#### **AWARDS**

Granted H.P. Woodward Award for Outstanding Academic Achievement in the Geologic Sciences (1982)

#### **AFFILIATIONS**

Geological Society of America

VERIFIED FOR ACCURACY BY:

Date 8-13

SAIE.

#### PHILIP A. SPOONER

# **EDUCATION**

Virginia Polytechnic Institute and State University: BS, Agronomy, Soils Option (1977)

# EXPERIENCE

Mr. Spooner is a Senior Soil Scientist with SAIC's Technical Services Division. He has over eight years experience in evaluating the environmental aspects of land and soil used for waste disposal, with particular emphasis on hazardous waste site investigation for remedial planning. Currently, Mr. Spooner is managing a Remedial Investigation/Feasibility Study for two adjacent hazardous waste disposal sites in northwestern Illinois. This project, for a private client, is one of the first in the nation to be performed under the 1984 amendments to RCRA rather than under CERCLA. He is also managing the IRP Phase II, Stage 2 investigation at Hancock Field, New York for the U.S. Air Force. Both of these projects involve detailed assessments of complicated contamination problems and recommendations for their remediation.

Earlier, Mr. Spooner managed the IRP Phase II investigation at Homestead Air Force Base, Florida and was in charge of a site characterization effort at Kelly, AFB, Texas, for a demonstration project involving biologic reclamation of contaminated groundwater.

Mr. Spooner has developed a technical handbook on Slurry Trench Construction for Pollutant Migration Control, recently published as the first of the EPA Superfund series documents (EPA-540/2-84-001). He has also completed a study on the compatibility of grouts with hazardous wastes, for EPA (EPA-600/2-84-015). In addition to project manager, Mr. Spooner was a principal investigator and author for these tasks.

Mr. Spooner has been involved in numerous waste site investigations, from preliminary assessments to detailed hydrogeologic studies. He participated in the planning and initial field work for the long-term monitoring at the Lipari Superfund site in Glochester Co., NJ. He participated in a field investigation of nine disposal sites at the Naval Air Development Center in Warminster, PA, which involved the installation of over twenty groundwater monitoring and observation wells. Mr. Spooner has also managed an EPA Region III groundwater enforcement case at a Superfund site in Nitro, West Virginia. This work involved the installation of nine new monitoring wells and sampling of contaminated groundwater. Mr. Spooner was responsible for planning all phases of this investigation from monitoring network design and sampling plan preparation, to the disposal of contaminated drilling wastes. He also oversaw preparation of the final report and provided expert witness testimony on behalf of EPA and

Verified for accuracy by: 1/4.

Date: 8/25/86



PHILIP A. SPOONER

Page 2 of 3

the U.S. Justice Department. This work resulted in a complex consent decree for site clean-up and remediation.

Mr. Spooner also participated in an extensive groundwater monitoring project at Love Canal in Niagara Falls, NY. During this project, he served as Chief Soil Scientist for SAIC and was one of Several geologic supervisors overseeing the installation of groundwater monitoring wells.

Earlier, Mr. Spooner worked on a technical handbook entitled, "Remedial Actions for Waste Disposal Sites." This manual, (EPA-625/6-82-006), deals with the various measures that can be taken to slow or halt pollution from wastes in a disposal site, and involves studying the techniques and costs of these measures. Mr. Spooner also worked on the update of this manual (EPA/625/6-85/006), and a training manual and seminars on the hazardous waste site investigation process. This work involved all site investigation procedures from site discovery through investigation, sampling and remedial planning.

Mr. Spooner also helped to develop, field test, and refine a methodology for rating the hazard potential of waste disposal sites. This methodology was tested on over thirty sites in EPA Region II, and was distributed to all EPA Regions for their initial site ranking needs.

# **PUBLICATIONS**

Spooner, P., Stabilization/Solidification Alternatives for Remedial Action. Paper presented at the 6th National Conference on Management of Uncontrolled Hazardous Waste Sites. Nov. 4, 1985. Washington, D.C.

Kosim, Z., Ellis, W., Spooner, P., Wagner, K., Levin, J., and Hahn, W., On-Site Treatment of Contaminated Soils and Groundwater. Seminar presented at the 6th National Conference on Management of Uncontrolled Hazardous Waste Sites. Nov. 4, 1985. Washington, D.C.

Spooner, P., et al, Slurry Trench Construction for Pollution Migration Control. (EPA-540/2-84-00). For U.S. EPA, Office of Research and Development. 1984.

Spoor P., Hunt, G., Hodge V. and Wagner, P., Compatibility of Grouts with Hazarc s Wastes (EPA-600/2-84-015). For U.S. EPA, Office of Research and Development. 1984.

Spooner, P., Wetzel, R. and Grube, W. Slurry Trench Construction of Pollution Migration Cut-Off Walls. Paper presented at the 9th Annual EPA Hazardous Waste Research Symposium. May 3, 1983, Cincinnati, Ohio.

Spooner, P. Wetzel, R. and Grube, W. Pollution Migration Cut-Off using Slurry Trench Construction. Paper presented at the 3rd National Conference on Management of Uncontrolled Hazardous Waste Sites. Nov. 30, 1982, Washington, D.C.

Verified for accuracy by: A. John Date: 8/2486



Paige, S., Harrison, E., Hunt, G., Wagner, K., Rogoshewski, P. and Spooner, P., Techniques for Evaluation Environmental Processes Associated with Land Disposal of Specific Hazardous Materials. For U.S. EPA, Office of Solid Waste. 1982.

Spooner, P., and Kufs, C. DOW #40. Case 4; Groundwater Contamination Study; Nitro, West Virginia. For U.S. EPA Office of Water Enforcement and Region III Enforcement Division. 1981.

Rogoshewski, P., Bryson, H., Lee, P., Wagner, K. and Spooner, P., Manual for Remedial Actions at Waste Disposal Sites (EPA-625/6-82-006). For U.S. EPA, Office of Research and Development. 1980. Published by EPA June, 1982. (Updated October 1985.)

Kufs, C., Spooner, P., Wetzel, R. and Caldwell, S. Methodology for Rating the Hazard Potential of Waste Disposal Sites. For U.S. EPA Region II, and Office of Research and Development. 1980.

Shocket, A., Wagner, K., Spooner, P. and Burgher, B. Level I Materials Balance: Achylamide. For U.S. EPA Office of Toxic Substances. 1979.

# PROFESSIONAL AFFILIATIONS AND CERTIFICATIONS

Virginia Association of Professional Soil Scientists Pedologist - 1982

Verified for accuracy by:

1 Alfi A. Somme

Date: <u>2/24/84</u>



Page 1 of 4

#### FREDERIC A. ZAFRAN

#### **EDUCATION**

Drexel University, M.S., Environmental Science (1979) Michigan State University, B.S., Zoology (1973) University of Pennsylvania, Limnology (1978) Temple University, Biochemistry and Physiology (1973)

# SUMMARY

Mr. Zafran is a Senior Environmental Scientist and Project Manager with expertise in the assessment of impacts of toxic substances and hazardous waste on environmental and biological systems. He is experienced in conducting exposure, hazard and risk assessments of contaminants released to all environmental media, evaluating impacts to both human and nonhuman receptors. Mr. Zafran's experience includes the assessment (fate and effects) of nonconventional, conventional and priority toxic pollutants (CWA Section 307a.1 compounds); drinking water additives; pesticides; industrial solvents; synfuels and synfuel products; dredge and fill materials; sewage sludge; coal ash; and complex hazardous wastes. Mr. Zafran's background encompasses work in environmental chemistry, ecology, and toxicology, as well as water quality planning and management.

#### **EXPERIENCE**

Mr. Zafran is currently managing a number of Work Assignments on the Mission Support Contract for EPA Region V. On Delivery Order (DO) No. 036 (Development and Implementation of Methods for Identifying Priority Groundwater Areas), Mr. Zafran and a staff of seven scientists are developing an approach for spatially delineating areas for ground-water resource management and protection. These methods will be field tested by SAIC in two pilot areas in EPA Region V. Mr. Zafran is also responsible for the preparation of Remedial Action Plans (DO Nos. 031 and 032) for Deer Lake and Torch Lake in Michigan. In these assessments, SAIC is evaluating environmental conditions in the river and lake systems, and developing a systematic and comprehensive approach to restoring beneficial uses.

Mr. Zafran has been extensively involved in public health and environmental assessment of hazardous waste sites. He is presently contributing to the Feasibility Study for the Stringfellow Hazardous Waste Disposal Site and is responsible for the public health risk assessment and environmental evaluation of remedial action alternatives. Mr. Zafran was SAIC/ETG Project Manager on a contract for the Department of Energy to evaluate the extent of waste site contamination at the Savannah River Plant in Aiken, South Carolina, and to identify and select remedial action alternatives. He was

Verified for accuracy by:

Date

SAIL

## FREDERIC A. ZAFRAN

Page 2 of 4

responsible for the following assessments: (1) selection of indicator contaminants for 26 waste sites; (2) development and application of methods for characterizing long-term risks to human health for nonradioactive contaminants; (3) methods development for public health risk assessment (acute toxicity) of transportation and wastesite closure accidents; and (4) review of transport models for ecosystem impact assessment. Mr. Zafran recently completed an assessment of potential long- and short-term risks to human health of release of chemicals from the proposed EPA Full Containment Hazardous Waste Research Facility in Cincinnati, Ohio.

For the EPA Office of Policy Analysis, Mr. Zafran contributed to a study on the comparative risks to human health of sources of ground-water contamination. He refined the approach to comparative risk analysis and characterized the release, transport, and transformation of indicator compounds from selected sources.

Mr. Zafran was involved in a Phase II Installation Restoration Program assessment of past waste management activities at McEntire Air National Guard Base. He evaluated the results of onsite ground-water monitoring, examining the potential for offsite migration of contaminants and assessing associated risks to human health.

Mr. Zafran has assisted the EPA Office of Solid Waste (OSW) in reviewing applications submitted by industry for RCRA Part B permits. In addition, he has reviewed numerous delisting petitions for exclusion of waste generated at specific facilities, from listing under RCRA as hazardous waste. Also for OSW, Mr. Zafran assisted in evaluating the Vertical Horizontal Spread (VHS) ground-water transport model proposed by EPA for use in predicting levels of contaminants at receptor wells. In addition to evaluating the appropriateness of the model for its intended use, Mr. Zafran developed a method for estimating concentration of organic compounds in leachate from land farmed waste, or waste disposed in landfills. The approach involved predicting the equilibrium partitioning of contaminants between aqueous and solid phases of soil-water systems.

For the Chemical Manufacturers Association, Mr. Zafran recently prepared an overview of methods for characterizing risks to public health of long-term, low-level release of chemicals from industrial facilities. For ARCO Chemical Company, he reviewed and sysnthesized information on mammalian toxicology and human healths effects of exposure to stoddards solvents.

Mr. Zafran was technical reviewer of the EPA report "Health Assessment Document for Nickel." Prepared by the Office of Research and Development. The report serves as a source document for agency-wide use.

Verified for accuracy by:

Fraguic S. Zapan

Dates

9/25/86

SAL

K-12

FREDERIC A. ZAFRAN

Page 3 of 4

Mr. Zafran has provided support to the EPA Office of Drinking Water in the development of National Primary Drinking Water Standards. He has: (1) conducted a study of chemical leaching tests to determine the extent of release of pollutants from surface in contact with potable water; (2) evaluated the potential for ground-water contamination by pesticides; and (3) assessed the environmental transport and transformation of synthetic organic chemicals and their occurrence in air, water, soil, and food.

Mr. Zafran was involved in the development of a water quality management plan for the Grand Calumet River/Indiana Harbor Canal. He conducted a critical evaluation of the State's water quality criteria and standard program, developed a method for evaluating the existing sediment contamination problem, and used this method to identify and rank sediment contaminants of concern to aquatic life and human health.

As Work Assignment Manager on the Vater Quality Based Program Contract for the EPA Office of Vater Regulations and Standards, Mr. Zafran was responsible for: (1) developing hazard assessments (aquatic ecological effects and mammalian/ human health effects) for 20 nonpriority pollutants found to be incompatible with the workings of POTWs; and (2) preparing a background and review document on methods for the derivation of sediment criteria and their application under CWA, MPRSA, RCRA, and CERCLA. Mr. Zafran was also technical contributor to an Environmental Impact Statement on the disposal of coal ash in the waters of the New York Bight. He evaluated the toxic impact to marine species associated with direct exposure to waste ash or contaminants released therefrom, and the potential for effects on human health and welfare.

Mr. Zafran conducted a study of the impact of coal liquefaction and shale oil products on aquatic systems. This work for the Office of Toxic Substances involved the assessment of the toxicity of compounds characteristic of synfuels that are responsible for major environmental effects: polycyclic aromatic hydrocarbons, polynuclear heterocyclic aromatic bases, water soluble aliphatic and aromatic hydrocarbons, and trace metals.

Mr. Zafran contributed to the development of a field guide for EPA and the Coast Guard, on responding to the spill of sinking chemicals in aquatic systems. On the effort, Mr. Zafran outlined an approach to the following evaluations: (1) characterization of discharged materials and the environmental setting; (2) determination of the extent of contaminant transport; (3) evaluation of environmental impacts; (4) assessment of the need for response; and (5) establishment of response objectives.

For the Office of Analysis and Evaluation, Mr. Zafran conducted a study of environmental quality problems of the Narrangansett Bay estuary. This included the physical/chemical characterization of the estuarine system, and examination of uses of the Bay and an evaluation of water quality problems, wetland loss, and shoreline

Verified for accuracy by:

Data

9/25/86

_____

#### FREDERIC A. ZAFRAN

Page 4 of 4

erosion. Also for this office, Mr. Zafran assisted in developing a five-year estuarine quality and protection program plan. He identified and evaluated research needs in the following six topical areas: estuarine characterization, site-specific criteria development, use attainability analyses, wasteload allocation techniques, monitoring, and benefit-cost assessment.

Mr. Zafran conducted a review of the available scientific literature on physical transport processes of the Alaskan Outer Continental Shelf to determine adequacy of data for ocean discharge criteria evaluation. This work assisted EPA in the NPDES permitting process for oil and gas exploration, development, and production activities.

Mr. Zafran was Work Assignment Manager on a project for the EPA Office of Federal Activities to assess the extent to which the 404 Program (Dredge or Fill Program) addresses and supports research essential to the protection of sensitive aquatic resources. Analysis of existing research and future needs facilitated the development of a broad-based program plan for 404-related research activities.

Mr. Zafran conducted a preliminary study of the impacts of incineration of sewage sludge on human health and the environment. Specifically, he provided the EPA Sludge Task Force with an assessment of contaminants likely to be emitted to the atmosphere, a quantification of emissions factors, and an identification of pollutants of major concern. For the Office of Technology Assessment, Mr. Zafran prepared a comparative overview of ocean disposal of sewage sludge and disposal in terrestrial environments.

Mr. Zafran was extensively involved in the development of regulatory support documents for Toxic Substances Conrol Act Section 4, priority chemicals (Office of Pesticides and Toxic Substances). He was responsible for the analysis of information on pollutant emission, environmental transport, and transformation as it relates to occupational and general population exposures. Also for OPTS, Mr. Zafran has prepared numerous Chemical Hazard Information Profiles, providing background health and exposure data in support of risk assessment and test rules development processes.

#### PREVIOUS EXPERIENCE

Prior to working for SAIC, Mr. Zafran was employed by the Krusen Center for Biomedical Research and Engineering, and was involved in the study of neuromuscular function in human locomotion. While in graduate school, Mr. Zafran worked as consultant (health systems planner) to the Pennsylvania Department of Health, representing the Drexel University Environmental Studies Institute.

#### PROFESSIONAL AFFILIATION

Society of Environmental Toxicology and Chemistry

Tradence A. Rohan

Date: ___ 9/25/86

SAL

Page 1 of 2

#### NANDKISHORE KAUSHIK

# **EDUCATION**

University of Maryland, M.S., Environmental Engineering (1984) Indian Institute of Technology, B.S., Chemical Engineering (1982)

# BACKGROUND SUMMARY

Mr. Kaushik is a Chemical/Environmental Engineer with over three years experience in toxic/hazardous wastes management including remedial investigations/feasibility studies (RI/FS); RCRA compliance; remedial action planning, design and implementation; solid waste disposal and management; and environmental assessments and impact statements. He is experienced in the design of water and wastewater facilities including sludge handling and management; industrial wastes characterization and treatment processes; process design and development; and water reclamation, recycle and reuse.

# **EXPERIENCE**

Mr. Kaushik is an environmental engineer with SAIC's Engineering Services Section. Currently he is involved in the implementation of Air Force IRP (Installation Restoration Program) studies to determine the degree of environmental degradation and remedial measures required at a number of Air Force Bases throughout the country. Mr. Kaushik's responsibilities include: evaluation of site investigation analyses including groundwater, surface water and soil/sediment sampling data; assessment of the nature and extent of the contamination problem; risk assessment and development of a preliminary baseline public health evaluation; preliminary screening, evaluation and final selection of appropriate remedial action measures; preparation of final reports; and design of the selected remedial actions (if required).

Prior to joining SAIC, Mr. Kaushik was an environmental engineer with an A/E firm in Northern Virginia. With this firm, Mr. Kaushik was the principal investigator for a variety of engineering studies and design projects from conceptual studies to plans and specifications. His responsibilities included project management with budget control and scheduling, coordination with other disciplines within and outside the firm, proposal preparation and client interaction.

Mr. Kaushik led a technical role in the preparation of Remedial Investigation Plans and Preliminary Engineering Design for construction of two hazardous material storage buildings; for hazardous air emissions control at a nitration facility; and to rectify two leaking hazardous waste storage lagoons. Work involved review and assessment of groundwater monitoring data, development and identification of remedial technologies, evaluation of Part B permit application, assessment of compliance with all RCRA, OSHA and NPDES regulations and local fire ordinances, preparation of conceptual and process design and development of cost estimates for remedial alternatives.

Verified for accuracy by:  $\sqrt{}$ 

Date: 9/25/87

NANDKISHORE KAUSHIK

Page 2 of 2

Mr. Kaushik was a project leader in the technical evaluation of RI/FS Work Plans for two Superfund sites. Among the documents reviewed were work plans. engineering studies and technical reports; clean-up technologies and treatment methods; engineering plans of corrective action measures. Recommendations were made subsequently to determine potential liability of responsible parties.

For the U.S. EPA in Denver, Mr. Kaushik implemented and conducted environmental audits at potable water facilities (over 300 in number) in the State of Wyoming. He inspected the various sites, sampled and tested the water and prepared improvement recommendations report.

Mr. Kaushik has conducted Potentially Responsible Party (PRP) searches in support of EPA's hazardous wastes management program. He was involved in the Solid Waste Management project for Montgomery County, Maryland in which feasible alternatives for disposal of the County's solid wastes were evaluated and ranked. Alternatives that were considered included mass burn, resource recovery facility and extension of existing landfilling operation.

Mr. Kaushik is experienced in the preparation of construction contract documents including detailed plans and specifications, cost estimates and process design computations: and providing construction period services such as shop drawing review and site visits during construction. He has been involved in the design of a variety of projects on wastewater treatment and sludge handling facilities e.g., the installation of dissolved air flotation (DAF) units, decant tanks and upgrading of waste activated sludge pumping station at Western Branch WTP, Maryland. The design work also included: Bench-scale treatment process evaluation; permmitting and regulatory assistance; start-up and training services: preparation of operation and maintenance manuals; and waste recycle and reuse evaluation.

Mr. Kaushik was a research assistant with the Civil Engineering Department at the University of Maryland from September 1982 through May 1984. In this capacity, he researched physical and chemical methods of zinc removal through precipitation and electrochemical techniques which later became part of his thesis work for the Master degree program. He also taught an undergraduate laboratory course where the work included counseling, assessment and supervision of student performance in course work.

# PROFESSIONAL AFFILIATIONS

Water Pollution Control Federation

Verified for accuracy by: Nandfishon Farshit Date: 9

APPENDIX L: SOIL GAS SURVEY

SOIL GAS SURVEY
HANCOCK FIELD
SYRACUSE, NEW YORK

PREPARED BY

TARGET ENVIRONMENTAL SERVICES, INC.
5513 TWIN KNOLLS ROAD
COLUMBIA, MARYLAND 21045

DECEMBER 1986

# Introduction

On November 13 and 14, 1986, TARGET Environmental Services, Inc. (TARGET) conducted a soil gas survey on a portion of the Air National Guard facility at Hancock Field, Syracuse, New York. The purpose of the survey was to detect and delineate subsurface hydrocarbons present at the site as a result of fire training activities utilizing JP-4 fuel.

# Field Procedures

TARGET collected a total of thirty-four (34) gas samples in the execution of the survey. Of these, thirty (30) were soil gas samples collected at locations shown on Figure 1. Two (2) ambient air samples and two (2) nitrogen blanks were also collected for quality control/quality assurance purposes.

To obtain the soil gas samples, a 1/2 inch hole was produced to a depth of two (2) feet using a slide hammer. Prior to sampling, the entire sampling system was purged with an inert gas (nitrogen). A specially designed stainless steel probe was then inserted to the full depth of the hole and packed off at the surface. A sample of in-situ soil gas was withdrawn through the probe and used to purge the sampling system. A second sample of soil gas was then withdrawn through the probe and encapsulated in a pre-evacuated glass vial at 2 atmospheres of pressure. The self-sealing vial was detached from the sampling system and stored for laboratory analysis.

After each use the probe was decontaminated by washing with soapy distilled water. Distilled water was then used for rinsing away the soap residue. The probe was then dried by rinsing with

reagent grade methyl alcohol and evaporating the remaining fluid by passing nitrogen through the equipment.

# <u>Laboratory</u> <u>Procedures</u>

Samples collected during the field phase of the survey were analyzed on site using a chromatograph equipped with a flame ionization detector for benzene, toluene, xylenes, and total volatile organics content. Calibration of the analytical equipment was performed on a daily basis using a curve and injection of standard gases of known concentrations. Retention times of the compounds in the standards were used to identify the unknown compounds in the samples. A standard was run after every three samples to ensure validity of the initial curve. One out of every ten samples was a blank analysis of laboratory air, and one out of every ten samples was a duplicate analysis.

# Results

The results of the laboratory analyses for benzene, toluene, xylenes, and total volatiles are shown in Table 1. The 2 ppb detection limit for summed xylenes was not exceeded in any of the samples. Benzene, toluene, and total volatiles, however, occurred in detectable concentrations in samples from eleven (11) stations. These values were mapped and contoured to produce Figures 2, 3, and 4 respectively.

The benzene map, Figure 2, shows a ring of high benzene concentrations around the octagonal concrete pad of the fire training area. The product occurrence indicated by the benzene appears to be entirely within the area enclosed by the earthen berm

to the north, west, and east of the concrete pad. The 1 ppb contour shows a lobate extension of the product occurrence to the northwest from the immediate vicinity of the pad.

Also indicated by the benzene map is a minor product occurrence on the west side of Thompson Road, at stations 19 and 20. The concentrations at these locations are very low (1-2 ppb), and indicate that only low levels of fuel product are present at the points tested. Since no samples were collected to the south, west, and east, it is impossible to establish if this is truly a minor occurrence or only the margin of one more significant.

Examination of the toluene map, Figure 3, and the total volatiles map, Figure 4, reveals the same product distribution as indicated in Figure 2. Once again, the product around the fire training area is restricted to the ground encircled by the earthern berm. The highest concentrations occur as a narrow band immediately east and west of the concrete pad. At the northern margin of the pad the concentrations are lower, but the zone of occurrence extends further from the pad. In both figures the lobate extension to the northwest is again observed, as is the minor occurrence at stations 19 and 20.

# Conclusions

- 1. Fuel product was detected at the site occurring as a halo of elevated concentrations surrounding the fire training pad. Product concentrations declined rapidly with distance from the pad, except the northwest where a lobate extension is seen.
- 2. Product occurrence around the fire training pad appears confined to the area encircled by the earthern berm.

3. Minor product concentrations were also observed at two stations located on the west side of Thompson Road. Because of the lack of stations surrounding these locations, it is unknown whether these two samples represent a minor occurrence, or only the margin of one more significant.

TABLE 1
LABORATORY RESULTS
SOIL GAS SAMPLES
HANCOCK FIELD
SYRACUSE, NEW YORK

Sample	Benzene	Toluene parts per billion	Xylenes	Total (*)
HF1	< 1	< 1	<b>&lt; 2</b>	< 1
HF2	< 1	<b>&lt; 1</b>	< 2	< 1
HF4.	160	72	< 2	1100
HF5	< 1	< 1	<b>&lt; 2</b>	< 1
HF6	< 1	< 1	< 2	<b>&lt; 1</b>
HF7	< 1	< 1	< 2	< 1
HF8	< 1	< 1	< 2	< 1
HF9	< 1	< 1	< 2	<b>&lt; 1</b>
HF10	< 1	< 1	<b>4</b> 2	< 1
HF11	< 1	< 1	< 2	<b>&lt; 1</b>
HF12	< 1	< 1	< 2	< 1
HF13	< 1	< 1	< 2	< 1
HF14	< 1	<b>&lt; 1</b>	< 2	< 1
HF15	< 1	< 1	< 2	< 1
HF16	4400	1100	< 2	17000
HF17	2500	630	< 2	10000
HF18	2100	270	< 2	9400
HF19	2	2	< 2	11
HF20	1	2	< 2	5
HF21	< 1	< 1	< 2	<b>&lt; 1</b>
HF22	< 1	<b>&lt; 1</b>	<b>&lt; 2</b>	< 1
HF23	< 1	< 1	< 2	< 1
HF24	< 1	<b>&lt; 1</b>	< 2	<b>&lt; 1</b>
HF25	2300	800	< 2	12000
HF26	2600	1300	< 2	15000
HF27	4	4	< 2	33
HF28	3	9	< 2	46
HF29	< 1	2	< 2	. 4
HF30	< 1	< 1	<b>&lt; 2</b>	< 1
HF31	< 1	< 1	< 2	· • • • • • • • • • • • • • • • • • • •
HF32	< 1	< 1	<b>&lt; 2</b>	< 1
HF33	< 1	< 1	<b>&lt; 2</b>	<b>&lt; 1</b>
HF34	< 1	< 1	<b>&lt; 2</b>	<b>&lt; 1</b>
HF35	<b>&lt; 1</b>	<b>&lt; 1</b>	<b>&lt; 2</b>	< 1

^{*} Total represents an estimate based on the sum of all peaks and calculated using the response factor of benzene.





FIGURE 2. BENZENE IN PPB





FIGURE 4. TOTAL VOLATILES IN PPB

APPENDIX M: GEOPHYSICAL SURVEY

# MAGNETOMETER SURVEY

HANCOCK FIELD SITE ONONDAGA COUNTY, NEW YORK

FOR

SCIENCE APPLICATIONS INTERNATIONAL CORP.

McLEAN, VIRGINIA

**JANUARY 1987** 





Mr. Phil Spooner GEOPHYSICAL SERVICES Science Applications International Corporation A GEONICS COMPANY 1710 Goodridge Drive McLean, Virginia 22102

REPORT: Magnetometer Survey Hancock Field Site Onondaga County, New York

SAIC Subcontract No.: 15-870048-76

#### Gentlemen:

We have completed the magnetometer surveys for Disposal Sites D-1 and D-3 at Hancock Field in Onandoaga County, New York.

Initial activities included control gridding of both sites using a Brunton compass and 300-foot measuring tape. The grids were laid out using Magnetic North, not True North. Any reference to compass direction in the report implies Magnetic North unless stated otherwise. A East-West baseline was established at each site, with North-South transect lines spaced 50 feet apart. Along each transect line, wooden stakes were driven into the ground at 100-foot intervals, producing a 50-foot by 100-foot reference grid. Over this reference grid, magnetometer data were collected along each survey line at 10-foot intervals, with 25 feet between each survey line. Survey lines were oriented in a Magnetic North-South direction. The magnetometer data for both sites are given in the Appendix.

For Disposal Site D-1, a key reference stake (00 + 00) was established, and is MN 131 E and 280 feet from GW-2. From this location the East-West baseline was established.

For Disposal Site D-3, a key reference stake (00 + 00) was established and is MN 90 W and 100 feet from GW-6. From this location the East-West baseline was established.

#### PROGRAM

The magnetometer survey was made using a EG&G Proton Magnetometer G-856. The proton magnetometer measures the total intensity of the earth's magnetic field relative to known and unknown external interferences (buried ferrous material, etc.).

The proton magnetometer utilizes the precession of

spinning protons or nuclei of the hydrogen atom to measure the intensity of the earth's magnetic field. The spinning protons act as small magnetic dipoles. When an electrical current is generated by the coil the protons temporarily align themselves to the electric current. When the current is removed, the protons spin in the direction of the earth's magnetic field or are aligned to influences caused by external interferences (ferrous material, etc.). As the protons spin they generate a small electrical signal. This signal is recorded in Gammas by the G-856.

Analysis of magnetometer data involves recognizing and characterizing local disturbances in the earth's magnetic field arising from local changes in magnetization. Ferrous material is generally the major cause of such disturbances. The disturbance (anomaly) is usually recorded as high and low magnetic values (dipole signature). Natural disturbances in the earth's magnetic field were recorded by repeated measurements at a base station at regular intervals (1/2 to 1 hour) during the surveys. Natural disturbances were relatively small, averaging approximately 15 gammas over a 8 hour period.

Manual and computer interpretation techniques allowed us to differentiate "noise" (fences, buildings, powerlines, etc.) from unknown buried ferrous material. The dipole signatures not affected by the influence of known external interferences are shown on the base map as anomalous zones. The magnitude of an anomaly is proportional to both the mass and depth of the buried ferrous material.

#### DESCRIPTION OF MAPS

Two maps (A and B) were made for each site. Both maps show the reference grid stake locations and distances, magnetometer survey lines, and observed surface debris. Surface debris includes concrete, re-bar, trash, bricks, and various metal objects. Due to the varying amount of snow cover during the survey, some surface metal may not have been observed. Boundaries of observed surface debris lying outside of the survey area are inferred.

Interpretative contour lines are presented on Map A of each site. These are intended as a generalized view of the magnetometer data collected at the sites. The contour interval is 1000 gammas, with contour lines labelled as (gammas x 10) + 50,000, (ie: the label 700 represents 57,000 gammas). Background values of the magnetometer data are in the range 56,400 - 56,600 gammas.

#### CONCLUSIONS AND RECOMMENDATIONS

Anomalous zones and suggested test pit locations are shown on Map B of each site. The data indicates that on both sites, two major categories of subsurface conditions exist: an area with fairly

DELTA

continuous amounts of buried ferrous material which represents the major dumping area, and an area with more scattered amounts of ferrous material.

At each site, the data indicates that the majority of the major dumping area contains buried ferrous material, with the shaded anomalous zones indicating the largest concentrations of buried ferrous material. Areas outside of the major dumping area, and not indicated as anomalous zones, may contain small amounts of scattered buried ferrous material. Boundaries of anomalous zones lying outside of the survey area are inferred.

On Disposal Site D-1, the northern boundary of the major dumping area is parrallel to and 60 feet south of the dirt access road, and the western boundary is located approximately along grid transect line -250 (magnetometer survey line 28). The eastern and southern boundaries extend at least to the top edge of the slope, which is the boundary of the magnetometer survey. South of the top edge of the slope along grid transect line -50 there is a ridge where surface trash was observed.

On Disposal Site D-3, the northern boundary of the major dumping area is along the dirt access road, until grid location 00 - 200, at which point the northern boundary jogs to the east along baseline -200. The western, southern, and eastern boundaries extend at least to the top edge of the slope, which is the boundary of the magnetometer survey.

In areas where large amounts of surface metal are present (especially along the edge of the slopes of the disposal areas), anomalous zones are not shown due to the large amount of interference. Anomalous zones which are near or include small areas of observed surface debris indicate that there is additional buried ferrous material at these locations.

Suggested test pit locations are shown on the map. The information gathered from these test pits will best catergorize the type of buried ferrous material present and their boundaries.

Based on initial analysis of the data, test pit locations were staked out in the field to facilitate excavation of test pits in areas with obvious buried ferrous material. These locations are marked in the field by orange wooden stakes labelled with the grid location, a red flag tied to the stake, and blue flagging tied to a nearby tall object. Upon further interpretation of the data, additional suggested test pit locations were determined, and are shown on the map. (Test pit locations marked in the field are also shown on the map, and are denoted with an arrow.)



If there are any questions concerning this report, please do not hesitate to contact us:. It was a pleasure to have worked with you on this project.

Very truly yours, Delta Geophysical Services

Philip H. Duoos

Geophysical Engineer

PHD:hp







