# DEVIANT DIACHRONY: EXPLORING NEW METHODS FOR ANALYZING LANGUAGE CHANGE

New Developments in the Quantitative Study of Languages, Helsinki

August 29, 2015

Jason Grafmiller jason.grafmiller@kuleuven.be





# **GOALS**

adapt/extend recent innovations in multivariate statistical methods—Gries & Deshors'[2] MuPDAR method—to diachronic variationist research

- take an outcome-centered rather than constraint-centered focus on modeling changes in syntactic variation
  - examine how speakers' linguistic choices in specific contexts vary over time
- integrate quantitative hypothesis testing with qualitative exploration and hypothesis generation



# **OUTLINE**

- 1. Methodological background
- 2. Case studies
- 3. Conclusion





#### VARIATIONIST APPROACH

Traditional variationist studies of diachronic syntactic variation focus on changes in influence of individual factors ('constraints') over time.

e.g. Wolk et al.<sup>[8]</sup> explore variability in the effect of animacy on genitive choice in LME





#### THE WHY OF HOW

changes in influence of individual constraints tell us about *how* variation has developed, but not so much about *why* 

- e.g. why did animacy effects in genitives change like this?
- 'fixed effects' categories often very abstract/coarse-grained
- coefficient estimates say little about variability within factor levels



#### THE WHY OF HOW

changes in influence of individual constraints tell us about *how* variation has developed, but not so much about *why* 

- e.g. why did animacy effects in genitives change like this?
- 'fixed effects' categories often very abstract/coarse-grained
- coefficient estimates say little about variability within factor levels

can we use regression (or other classification) techniques to find unsuspected patterns in our data?



#### **MUPDAR METHOD**

Gries & Deshors<sup>[2]</sup> devise multi-step method for comparing choices from different groups A and B

- 1. fit a model  $R_a$  to a reference dataset A (e.g. native speaker corpus)
- 2. use model  $R_a$  to predict choices in target dataset B (e.g. learner corpus)
- 3. consider whether speaker from *B* made different choice than speaker from *A* would have
- 4. fit new model(s) predicting binary and/or finer-grained differences (degree of deviation) in speakers' choices



#### ITEM-BASED DEVIATION ANALYSIS

an adaptation of MuPDAR for directly comparing predicted probabilities from models fit to separate datasets

- explore how outcome probabilities for specific observations at later times deviate from those of earlier time(s)
- explore deviations for all contexts, not just those where groups made different choices
  - usage-based approaches assume gradient change in probabilistic effects
  - large differences in probability of outcome w.r.t. factor F may exist even when the actual outcome is the same
  - o do speakers make the same choices for the same reasons?



R

# PROCEDURE (SEE ALSO GRIES & DESHORS 2014:127)





#### **DEVIATION MODEL**

deviation score *D* represents the difference in outcome probability between *A* and *B* 

- $\bigcirc$  D > 0: outcome more likely in B than A
- $\bigcirc$  D < 0: outcome more likely in A than B
- $\bigcirc$  D = 0: prob. of outcome exactly the same in A and B

fit linear (mixed) model treating D as the outcome and  $X = F_1, \ldots, F_n$  as predictors

 $\bigcirc$  lmer(D  $\sim$  F<sub>1</sub> + F<sub>2</sub> + ... + F<sub>n</sub>, data = B)



#### **DEVIATION MODEL**

deviation score *D* represents the difference in outcome probability between *A* and *B* 

- $\bigcirc$  D > 0: outcome more likely in B than A
- $\bigcirc$  D < 0: outcome more likely in A than B
- $\bigcirc$  D = 0: prob. of outcome exactly the same in A and B

fit linear (mixed) model treating D as the outcome and  $X = F_1, \ldots, F_n$  as predictors

$$\bigcirc$$
 lmer(D  $\sim$  F<sub>1</sub> + F<sub>2</sub> + ... + F<sub>n</sub>, data = B)

examine factors yielding the largest changes in deviation scores





#### THREE ALTERNATIONS

- 1. subject relativizer choice (the cot that caught the tot vs. the cot which caught the tot)
- 2. genitive choice (Sally's pet tarantula vs. the pet tarantula of Sally)
- 3. dative choice (give the dog a bone vs. give a bone to the dog)

All are known to be changing over time, w.r.t. certain features<sup>[4,5,6,7]</sup>



# **BROWN FAMILY**





# CASE: SUBJECT RELATIVIZERS

- engineering skills that could be used to construct embankments for a tidal power scheme [FLOB:J73]
- routines which continuously check the monitor for various error conditions [FROWN:J78]



#### RELATIVIZERS: DISTRIBUTION



○ large reduction in AmE use of which from 1960s to 1990s



#### RELATIVIZERS: BY GENRE



 AmE dropping which across the board, but that increasing in BrE only in fiction texts



# RELATIVIZERS: MODEL PREDICTORS

annotate for various internal and stylistic factors associated with formality  $\sp[6]$ 

| internal  | length of RC preceding relativizer antecedent definiteness | length of antecedent antecedent POS |
|-----------|------------------------------------------------------------|-------------------------------------|
| stylistic | lexical density passivization rate                         | genre P-stranding rate              |
| external  | variety                                                    |                                     |



#### RELATIVIZERS: DEVIATION MODEL

explanatory contribution of predictors influencing deviation score





# **RELATIVIZERS AND GENRE**

#### probability scale





# RELATIVIZERS AND GENRE

#### log odds scale





# CASE: GENITIVES

- s-genitive: foreign steelmakers' poss'r mouthsposs'm
   [BROWN:A43]
- of-genitive: the foreign policies<sub>poss'm</sub> of her chosen successor<sub>poss'r</sub> [FLOB:B15]



#### **GENITIVES: DISTRIBUTION**



possr animacy by far the single strongest predictor



# **GENITIVES: MODEL PREDICTORS**

annotate for internal and context factors associated with formality and 'economy'  $^{[5]}$ 

| internal  | animacy of poss'r<br>length of poss'r<br>frequency of poss'r | final sibilant<br>length of Poss'm<br>givenness of poss'r |
|-----------|--------------------------------------------------------------|-----------------------------------------------------------|
| stylistic | lexical density nouniness                                    | genre                                                     |
| external  | variety                                                      |                                                           |



#### **GENITIVES: DEVIATION MODEL**

- $\odot$  predictors influencing deviation score parallels previous research  $^{||}$
- opossr animacy esp. shows significant interactions with variety and time





# POSSR ANIMACY ACROSS TIME AND THE POND





#### **GENITIVES: A CLOSER LOOK**

inspection of collective poss'rs with large deviation scores shows increased use of locative-as-collective nouns in BrE, e.g. *North Korea's contention* 

 $\odot$  sig. different from AmE ( $p_{\text{fisher}} < 0.001$ )

|     | locative | non-locative |
|-----|----------|--------------|
| AmE | 7        | 87           |
| BrE | 25       | 37           |

- suggestive locus for further exploration of stylistic changes across varieties
- o collective poss'rs have been changing for some time<sup>[7,8]</sup>





#### SUMMING UP

# advantages

- results compatible with traditional variationist methods
- offers fine-grained perspective on data driving larger trends

# disadvantages

- (arguably) more complicated than standard methods
- how to deal with more than 2 (ordered) groups, e.g. multiple centuries?



# **FUTURE DIRECTIONS**

- o adapt method to data covering multiple time periods<sup>[3,6]</sup>
- synchronic applications
  - ESL/EFL contexts<sup>[1,2]</sup>
  - regional variation
  - other sociolinguistic dimensions
  - o ...
- apply to non-syntactic variables
- O ...
- suggestions?



# Thank you!

jason.grafmiller@kuleuven.be

Additional thanks to Lars Hinrichs, Benedikt Szmrecsanyi, Axel Bohmann, Scott Grimm, and Joan Bresnan for sharing their datasets.







# RECIPIENT DEFINITENESS IN DATIVES





# THEME PRONOMINALITY IN DATIVES





# ANIMACY AND LENGTH IN GENITIVES



