Linear Regression Models P8111

Lecture 10

Jeff Goldsmith February 23, 2016

Today's Lecture

- Review of tests
- ✓ Two new tests
- ✓ Confidence intervals
- > Foreshadowing

Some review notes

- Do we have a test for the null H_0 : $\beta_3 = -14$
- Do we have a test for the null $H_0: \beta_2 + \beta_3 = \pi$ Do we have a test for the null $H_0: \beta_2\beta_3 = \pi$

Individual coefficients

For individual coefficients

■ We can use the test statistic

$$T = \frac{\hat{\beta}_j - \beta_j}{\widehat{se}(\hat{\beta}_j)} = \frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{\sigma}^2 (\boldsymbol{X}^T \boldsymbol{X})_{jj}^{-1}}} \sim t_{n-p-1}$$

• For a two-sided test of size α , we reject if

$$|T| > t_{1-\alpha/2,n-p-1}$$

■ The p-value gives $P(|t_{n-p-1}| > |T_{obs}||H_0)$

Note that t is a symmetric distribution that converges to a Normal as n - p - 1 increases.

Inference for linear combinations

some c.

- Define $H_0: c^T \beta = c^T \beta_0$ or $H_0: c^T \beta = 0$
- We can use the test statistic

- This test statistic is asymptotically Normally distributed
- For a two-sided test of size α , we reject if

$$|T|>z_{1-lpha/2}$$
 $Var(\beta)$ C

Global F tests

$$H_{\delta}: \beta_2 = \beta_3 = 0$$
 useful for cetagorical

■ Compute the test statistic

$$F_{obs} = \frac{(RSS_S - RSS_L)/(df_S - df_L)}{RSS_L/df_L}$$

- If H_0 (the null model) is true, then $F_{obs} \sim F_{df_S df_L, df_L}$
- Note $df_s = n p_S 1$ and $df_L = n p_L 1$
- We reject the null hypothesis if the p-value is above α , where

$$p
-value = P(F_{df_S - df_L, df_L} > F_{obs})$$

Alternative global tests: the Wald test

$$\begin{cases} \hat{\beta}_{j} - \hat{\beta}_{0} \\ \hat{\beta}_{e}(\hat{\beta}_{j}) \end{cases} = \xi^{2}$$
we can test $H_{0}: \beta = \beta_{0}:$

For a vector of coefficients, we can test $\underline{H_0: \beta = \beta_0}$:

■ Use the test statistic

$$W = (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)^T [\widehat{Var}(\hat{\boldsymbol{\beta}})]^{-1} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$$

- Under the null, this test statistic has an asymptotic χ_p^2 distribution
- In practice, we replace $Var(\hat{\beta})$ with $\widehat{Var}(\hat{\beta})$ and use an F distribution

Alternative global tests: the Wald test

9 00 10 RO = () The previous test is special case of H_0 : $R\beta = R\beta_0$ for a $d \times p$ matrix R, using $R = I_{v \times v}$:

■ Use the test statistic

test statistic
$$W = (R\hat{\boldsymbol{\beta}} - R\boldsymbol{\beta}_0)^T [Var(R\hat{\boldsymbol{\beta}})]^{-1} (R\hat{\boldsymbol{\beta}} - R\boldsymbol{\beta}_0)$$

• Under the null, this test statistic has an asymptotic χ_d^2 distribution, where

$$d = \operatorname{rank}(Var(R\hat{\boldsymbol{\beta}}))$$

This formulation is useful for testing subsets (e.g. $H_0: \beta_1 = \beta_2 = 0$

Alternative global tests: the likelihood ratio test

If we are using maximum likelihood estimation (we'll cover this soon – turns out to be least squares in MLR), we can use a LRT:

■ Use the test statistics

tistics [Likhard for well
$$\Delta = -2\log\frac{L_0}{L_1} = -2(l_0 - l_1)$$

- This test statistic has an asymptotic χ_d^2 distribution where d is the difference in the number of parameters between the two models.
- Must compare nest models

Example: LRT

```
Ho: B = B4 = 0
linmod + lm(runs ~ at_bats + hits + homeruns + stolen_bases, data = mlb11)
   linmod.null1 = lm(runs ~ hits + homeruns, data = mlb11)
 > anova(linmod.null1, linmod)
 Model 1: runs ~ hits + homeruns
Model 2: runs ~ at bats + hits + homeruns + stolen bases
  Res.Df RSS Df Sum of Sq F Pr(>F)
      27 27128
      25 18020 2 9107.8 6.3178 0.006015 **
> ## LRT
> Delta = -2*(logLik(linmod.nulil) - logLik(linmod))
 > 1-pchisq(Delta, 2)
 'log Lik.' 0.002163305 (df=4)
```

Confidence intervals: individual parameters

■ A confidence interval with coverage $(1 - \alpha)$ is given by

$$\underbrace{\hat{\beta}_{j} \pm t_{1-\alpha/2,n-p-1}\widehat{se}(\hat{\beta}_{j})}_{\hat{\beta}_{j} \pm t_{1-\alpha/2,n-p-1}\widehat{se}(\hat{\beta}_{j})} \left(\beta_{j} \pm 2 \underbrace{\$_{(\hat{\beta}_{j})}}_{\hat{\beta}_{j} \pm 1} \right)$$

Assuming all the standard assumptions hold,

$$(1-\alpha)$$
 "=" $P(LB < \beta_j < UB)$

Note there is a one-to-one correspondence between this confidence interval and the hypothesis test.

$$\frac{\int_{\hat{\beta}-\beta_0}^{\hat{\beta}-\beta_0}}{\hat{se}(\hat{\beta})} < t_{\alpha,\alpha y} \implies \beta_0 \in (\hat{\beta}_j \pm t_{\alpha,\alpha y} + \hat{se}(\hat{\beta}))$$

Example revisited

Confidence intervals: multiple parameters

simultaneously $CR(\beta_1, \beta_2)$

- Invert Wald test for multiple coefficients find region containing all values β_0 for which p-value from global Wald test is $> \alpha$ Then
 - $(1-\alpha)''="P[\beta \in \text{region}]$ \subseteq Chitical Value
- This region is an ellipsoid in higher dimensions; we can visualize in 2D most easily and 3D pretty well.

Confidence intervals: multiple parameters

```
library(ellipse)

CI.ellipse = as.data.frame(ellipse(linmod,c(2,3)))
est = as.data.frame(t(as.matrix(coef(linmod)[2:3])))

## plot the joint confidence region
ggplot(CI.ellipse, aes(x = at_bats, y = hits)) + geom_path() +
geom_hline(yintercept = confint(linmod)[3,], linetype = 2) +
geom_vline(xintercept = confint(linmod)[2,], linetype = 2) +
geom_point(data = est, size = 4)
```

Confidence intervals: multiple parameters

Expected value and it's variance

- What is $\hat{E}(y|x=\underline{x_0})$? $X_{\circ} \beta$
- How can we estimate the variance of $\hat{E}(y|x=x_0)$?

$$V_{\infty}(x_{0}, \beta) = \sigma^{2} x_{0}^{T} (x^{T} x)^{T} x$$
In particular, a confidence interval for $E(y|x=x_{0})$ is given by

$$(\hat{y}|x=x_0) \pm t_{1-\alpha/2,n-p-1} \widehat{se}_{fit}(\hat{y}|x_0)$$

This can be estimated for any x_0 .

$$\left(C^{2} \left(\left(+ \chi_{0}^{\dagger} \left(\chi^{T} \chi \right) \chi_{0} \right) \right) \right)$$

Van(y/x) + Van(1/tal)

Estimated mean

Estimated mean and variance

Estimated mean and variance

Pointwise and simultaneous CIs

- Pointwise confidence intervals construct CI's at each point independently of all other points
- Implicit multiple comparisons problem
- Simultaneous intervals can be constructed so that

$$(1 - \alpha) "=" P(f(x) \in SCI)$$

Which is wider?

Predictions and prediction intervals

prediction intervals
$$y_{i} = \beta_{0} + \beta_{1} \kappa_{i,1} + \beta_{2} \kappa_{i2}$$

$$v_{\alpha}(\hat{y}) = \chi_{0}^{7} \left(\sigma^{2}(\chi^{+}\chi)^{-1}\right) \kappa_{0} \qquad \epsilon_{i} \sim (0,0)$$

- What is the prediction value y for a given x_0
- What range would you give for the value of a new outcome?
- Two sources of variance to consider: variance in estimates and variance in outcome

A prediction interval is given by

$$(\hat{y}|x=x_0) \pm t_{1-\alpha/2,n-p-1} \hat{se}_{pred}(\hat{y}|x_0)$$

This can be estimated for any x_0 .

Predictions - mother/daughter height

Variance of fitted values

Prediction interval

Some things to think on

- understand Association]

a - Prediction

Why are we building models?

- How should we assess models?
- What kinds of predictors should we included, and how should we decide to include them?

Some things to think on

Three general goals are

- Prediction
- Estimation of association
- Testing of associations

These goals will often not lead to the same final model.

Today's big ideas

 Inference for MLRs: global tests; confidence intervals for coefficients, predictions, functions

■ Suggested reading: Faraway Ch 3.6 - 3.9