GL Applied Data Science Program

Unsupervised Learning - Clustering

August 27, 2021

Caroline Uhler (MIT) Clustering August 27, 2021 1/24

Overview

Overview of this week / module:

- Data collection and visualization for exploratory data analysis
- Network analysis
- Unsupervised learning clustering

Overview of this lecture:

- Clustering methods
- Community detection in networks

Caroline Uhler (MIT) Clustering August 27, 2021 2 / 24

Case study: clustering

• Find groups, so that elements within cluster are very similar and elements between clusters are very different

• Examples:

- Find customer groups to adjust advertisement
- Find subtypes of diseases to fine-tune treatment
- Our eye is very good at identifying cluster

Clustering

4 / 24

Clustering

Clustering

N samples, k clusters: k^N possible assignments

- E.g., N = 100, k = 3: $3^{100} = 5 * 10^{47}$!!
 - ⇒ impossible to search through all assignments

We will discuss:

- k-means clustering
- Gaussian mixture models
- Hierarchical clusteringDBSCAN

Examples of dissimilarity measures between samples

Caroline Uhler (MIT) Clustering August 27, 2021 5 / 24

Examples of dissimilarity measures between samples

• Euclidean distance (i.e., ℓ_2 - norm)

$$d(x^{(i)}, x^{(j)}) = \sqrt{(x_1^{(i)} - x_1^{(j)})^2 + (x_2^{(i)} - x_2^{(j)})^2 + \dots + (x_p^{(i)} - x_p^{(j)})^2}$$

• Manhattan distance (i.e., ℓ_1 - norm)

$$d(x^{(i)}, x^{(j)}) = |x_1^{(i)} - x_1^{(j)}| + |x_2^{(i)} - x_2^{(j)}| + \dots + |x_p^{(i)} - x_p^{(j)}|$$

• Maximum distance (i.e., ℓ_{∞} - norm)

$$d(x^{(i)}, x^{(j)}) = \max_{k=1,\dots,p} |x_k^{(i)} - x_k^{(j)}|$$

or more flexible dissimilarity satisfying

$$d(x^{(i)}, x^{(j)}) \ge 0, \ d(x^{(i)}, x^{(i)}) = 0, \ d(x^{(i)}, x^{(j)}) = d(x^{(j)}, x^{(i)})$$

5 / 24

Caroline Uhler (MIT) Clustering August 27, 2021

- \bullet K (fixed!) Clusters are obtained by minimizing some loss function
- Natural loss function given by within-groups sum of squares (WGSS):

Caroline Uhler (MIT) Clustering August 27, 2021 6 / 24

- ullet K (fixed!) Clusters are obtained by minimizing some loss function
- Natural loss function given by within-groups sum of squares (WGSS):

$$W(C) = \sum_{k=1}^{K} \sum_{C(x^{(i)})=k} \sum_{C(x^{(j)})=k} d(x^{(i)}, x^{(j)})^{2}$$

 \bullet W(C) characterizes the extent to which observations assigned to the same cluster tend to be close to one another or observations between different clusters are further apart from each other

$$d(x^{(i)}, x^{(j)})^{2} = \|x^{(i)} - x^{(j)}\|_{2}^{2}$$

$$= \|x^{(i)} - \mu_{c} - (x^{(j)} - \mu_{c})\|_{2}^{2}$$

- K (fixed!) Clusters are obtained by minimizing some loss function
- Natural loss function given by within-groups sum of squares (WGSS):

$$W(C) = \sum_{k=1}^{K} \sum_{C(x^{(i)})=k} \sum_{C(x^{(j)})=k} d(x^{(i)}, x^{(j)})^{2}$$

- W(C) characterizes the extent to which observations assigned to the same cluster tend to be close to one another or observations between different clusters are further apart from each other
- \bullet K-means clustering: $d(x^{(i)},x^{(j)})^2=\|x^{(i)}-x^{(j)}\|_2^2$
- Then WGSS becomes: $W(C) = \sum_{k=1}^{K} 2N_k \sum_{C(x^{(i)})=k} \|x^{(i)} \mu_k\|_2^2$, where N_k is the total number of points in cluster k

Caroline Uhler (MIT) Clustering August 27, 2021 6 / 24

- Exact solution of minimization problem is computationally infeasible
 - Use greedy algorithm
 - Use random restarts to avoid local optima
- Leads to spherical shaped clusters of similar radii

Image source: Wikipedia

Choosing the number of clusters

- Run K-means clustering for several number of groups K
- Plot WGSS versus the number of groups

• Choose number of groups after the last big drop of the curve

Example:

8 / 24

Partitioning around medoids (PAM)

K-Means: Cluster centers μ_k can be arbitrary points in space
 ⇒ very sensitive to outliers!

Partitioning around medoids (PAM)

- K-Means: Cluster centers μ_k can be arbitrary points in space
 - ⇒ very sensitive to outliers!
- Robust alternative: Partitioning around medoids (PAM)
 - Cluster center must be an observation ("medoid")
 - More robust against outliers
 - Also gives a representative object for each cluster (e.g., for easy interpretation)

Gaussian mixture model

• Soft version of k-means clustering based on a statistical model

Image source: Wikipedia

Gaussian mixture model

Assume underlying statistical model:

$$P(x) = \sum_{k=1}^{K} P(\text{cluster } k) P(x \mid \text{cluster } k),$$

where $X \mid \text{cluster } k \sim \mathcal{N}(\mu_k, \Sigma_k)$

- Sample x is assigned to cluster k that maximizes $P(\text{cluster } k \mid x)$
- Estimating P(cluster k), μ_k and Σ_k by maximum likelihood estimation is difficult (leads to a non-convex optimization problem)
- Parameter estimates are usually found using the Expectation-Maximization (EM) algorithm

Gaussian mixture model

• Assume underlying statistical model:

$$P(x) = \sum_{k=1}^{K} P(\text{cluster } k) P(x \mid \text{cluster } k),$$

where $X \mid \text{cluster } k \sim \mathcal{N}(\mu_k, \Sigma_k)$

- Sample x is assigned to cluster k that maximizes $P(\text{cluster } k \mid x)$
- Estimating P(cluster k), μ_k and Σ_k by maximum likelihood estimation is difficult (leads to a non-convex optimization problem)
- Parameter estimates are usually found using the Expectation-Maximization (EM) algorithm
- Number of clusters is found for example by maximizing the Bayesian information criterion

BIC =
$$\log$$
-likelihood $\frac{\log(n)}{2} \cdot (\# \text{ of parameters})$

11/24

Caroline Uhler (MIT) Clustering August 27, 2021

Hierarchical clustering

- Agglomerative clustering: Build up clusters from individual observations
- Divisive clustering: Start with whole group of observations and split off clusters

Advantage of hierarchical clustering:

- Solve clustering for all possible numbers of cluster $1, 2, \ldots, n$ at once
- Choose desired number of clusters later

Examples of dissimilarity measures between clusters

Examples of dissimilarity measures between clusters

• single linkage (i.e., minimum distance)

$$d(C_r, C_s) = \min_{x^{(i)} \in C_r, x^{(i)} \in C_s} d(x^{(i)}, x^{(j)})$$

• complete linkage (i.e., maximum distance)

$$d(C_r, C_s) = \max_{x^{(i)} \in C_r, x^{(j)} \in C_s} d(x^{(i)}, x^{(j)})$$

• average linkage (i.e., average distance)

$$d(C_r, C_s) = \frac{1}{n_r} \frac{1}{n_s} \sum_{x^{(i)} \in C_r} \sum_{x^{(i)} \in C_s} d(x^{(i)}, x^{(j)})$$

Examples of dissimilarity measures between clusters

• single linkage (i.e., minimum distance)

$$d(C_r, C_s) = \min_{x^{(i)} \in C_r, x^{(j)} \in C_s} d(x^{(i)}, x^{(j)})$$

• complete linkage (i.e., maximum distance)

$$d(C_r, C_s) = \max_{x^{(i)} \in C_r, x^{(i)} \in C_s} d(x^{(i)}, x^{(j)})$$

• average linkage (i.e., average distance)

$$d(C_r, C_s) = \frac{1}{n_r} \frac{1}{n_s} \sum_{x^{(i)} \in C_r} \sum_{x^{(j)} \in C_s} d(x^{(i)}, x^{(j)})$$

How do the resulting clusters look like? Which one is which?

Choosing the number of clusters

- No strict rule
- Find the largest vertical "drop" in the tree

Example:

Cluster Dendrogram

DBSCAN

- Uses 2 parameters: minPts (minimum number of points) and ϵ (radius of neighborhood)
- ullet Core points have at least minPts within distance ϵ
- Clusters are defined by looking at all points reachable from a core point

Caroline Uhler (MIT) Clustering August 27, 2021 15 / 24

Quality of clustering: Silhouette plot

Compute for each sample $x^{(i)}$:

- $a(x^{(i)})$ = average dissimilarity between $x^{(i)}$ and all other points in its cluster
- $b(x^{(i)})$ = average dissimilarity between $x^{(i)}$ and the closest cluster it does not belong to
- $S(x^{(i)}) \in [-1,1]$ with

$$S(x^{(i)}) = \frac{(b(x^{(i)}) - a(x^{(i)}))}{\max(a(x^{(i)}), b(x^{(i)}))}$$

Quality of clustering: Silhouette plot

Compute for each sample $x^{(i)}$:

- $a(x^{(i)})$ = average dissimilarity between $x^{(i)}$ and all other points in its cluster
- $b(x^{(i)})$ = average dissimilarity between $x^{(i)}$ and the closest cluster it does not belong to
- $S(x^{(i)}) \in [-1,1]$ with

$$S(x^{(i)}) = \frac{(b(x^{(i)}) - a(x^{(i)}))}{\max(a(x^{(i)}), b(x^{(i)}))}$$

Note: $S(x^{(i)})$ large (0.5 is often used as cut-off): well clustered; $S(x^{(i)})$ small: badly clustered; $S(x^{(i)}) < 0$: assigned to wrong cluster

Case study: clustering

Which clustering methods are able to identify the two clusters?

Caroline Uhler (MIT) Clustering August 27, 2021 17 / 24

Case study: clustering

Community detection

Community detection:

 detect subsets of nodes that are more densely connected between each other in the network than outside the community

Clustering

- determine subsets of points that are 'close' to each other given a pairwise distance or similarity measure
- can be used also for community detection by defining a vertex similarity measure (e.g., geodesic distance, number of different neighbors, correlation between adjacency matrix columns, etc.)
- can use clustering methods discussed so far based on these similarity measures

Other methods: Divisive algorithm using betweenness

- Intuition: intercommunity edges have a large value of edge betweenness, because many shortest paths connecting vertices of different communities will pass through them
- Algorithm of Girvan and Newman (2002): iteratively remove edges with highest betweenness centrality
- can define betweenness e.g. using geodesic or random walk

Other methods: Modularity maximization

- quality function: function that assigns a number (quality measure) to each partition of a graph
- most popular quality function: modularity

$$Q = \frac{1}{2m} \sum_{i,j} (A_{ij} - P_{ij}) \delta(C_i, C_j),$$

where P_{ij} is expected number of edges between i and j in a null model, for example:

• $P_{ij} = \frac{2m}{n(n-1)}$ where m is the total number of edges and n is the total number of nodes in the network

Caroline Uhler (MIT) Clustering August 27, 2021 21/24

Louvain method (Blondel et al., 2008)

- modularity optimization is NP-complete (Brandes et al., 2006)
- Louvain method: very fast heuristic
 - put each node in its own community
 - ullet put node i into community j that yields biggest increase in modularity
 - replace communities by supernodes, where edge weight between supernodes is sum of edge weights between corresponding nodes
 - iterate process until Q cannot be improved
- provides decomposition of network into communities for different levels of organization
- ullet extremely fast: runs in $\mathcal{O}(m)$

Louvain method (Blondel et al., 2008)

Belgian mobile phone network with 2M customers (red: French-speaking, green: Dutch-speaking).

References

- For clustering
 - Chapter 14 in
 T. Hastie, R. Tibshirani, & J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2009.
- For community detection in networks:
 - V. D. Blondel, et al. *Fast unfolding of communities in large networks*. Journal of Statistical Mechanics: Theory and Experiment 10, 2008.
 - S. Fortunato. *Community detection in graphs*. Physics Reports 486, 2010.
 - Lecture notes on Laplacian and spectral clustering (prominent method not discussed in this module) by T. Roughgarden & G. Valiant: http://web.stanford.edu/class/cs168/1/111.pdf

Caroline Uhler (MIT)

Clustering

August 27, 2021

24 / 24