

Seminar Final Presentation

Algorithm Selection and Auto-Tuning in AutoPas

Manuel Lerchner manuel.lerchner@tum.de

Advisors: Manish Kumar Mishra, M.Sc. (hons)

Table of Contents

1 Introduction

Aut®Pas

What is AutoPas?

- Library for arbitrary N-body simulations
- Optimal performance by switching implementations
 - Container: Finding neighboring particles
 - Traversal: Parallel force calculations
 - Data Layout: Memory access optimization
 - Newton 3: Force calculation optimization

Simpler Memory Access
Lower Memory Overhead

Fewer redundant calculations

Structure of AutoPas

- Three main areas:
 - User Application
 - Algorithm Library
 - Tuning Strategies
- Algorithm Library:
 - Huge Search Space¹
- Tuning Strategies:
 - Full Search
 - Random Search
 - Predictive Tuning
 - Bayesian Search
 - Rule Based Tuning

Figure: [Newcome et al., 2023]

 $^{^1}$ Container imes Traversal imes Data Layout imes Newton 3 imes Load Estimator imes Cell Size Factor

Thank you for your attention!

Questions?

References I

Newcome, S. J., Gratl, F. A., Muehlhaeusser, M., Neumann, P., and Bungartz, H.-J. (2024).

Autopas: Dynamic algorithm selection in molecular dynamics for optimal time and energy.

In SIAM Conference on Parallel Processing (PP24). SIAM.

Newcome, S. J., Gratl, F. A., Neumann, P., and Bungartz, H.-J. (2023).

Towards the smarter tuning of molecular dynamics simulations.

Amsterdam, The Netherlands.

Backup:

- A
- B