MATH 217 - W24 - LINEAR ALGEBRA HOMEWORK 10, SOLUTIONS

Part A (10 points)

Solve the following problems from the book:

6.1: 20, 54

6.2: 42, 50

6.3: 14

7.1: 12, 18, 42

Solution.

6.1.20 We put A into reduced row-echelon form:

$$\begin{bmatrix} 1 & k & 1 \\ 1 & k+1 & k+2 \\ 1 & k+2 & 2k+4 \end{bmatrix}$$

Det = $(k+1)(2k+4) + k(k+2) + (k+2) - (k+1) - k(2k+4) - (k+2)^2 = 1$ Thus the matrix is always invertible.

6.1.54 The pattern

$$\begin{bmatrix} * & 1000 & * & * & * \\ * & * & * & 1000 & * \\ 1000 & * & * & * & * \\ * & * & * & * & 1000 \\ * & * & 1000 & * & * \end{bmatrix},$$

has positive sign, and thus contributes the term $1000^5 = 10^{15}$ to $\det(A)$. Every other pattern P will contribute a term of the form sgn(P)prod(P) where at most three of the five factors in prod(P) are = 1000. Indeed, if four of the five factors are = 1000, then the fifth factor must also = 1000. All other factors in prod(P) have absolute value < 10. Thus $|sgn(P)prod(P)| < 1000^3 \cdot 10 = 10^{10}$. Because there are 5! = 120 terms in set(A), this means that the sum of all these other terms has absolute value strictly less than $119 \cdot 10^{10} < 10^{13}$. Thus $\det(A) = 10^{15} + r$, where $|r| < 10^{13}$, hence $\det(A) > 0$.

6.2.42 We have $A^TA = R^TQ^TQR$. Because the columns u_1, \dots, u_m of Q form an orthonormal basis, we have $Q^TQ = I_m$. So, $A^TA = R^TR$. Because R is $m \times m$ and upper-triangular with diagonal entries r_{ii} , we have $\det(R) = r_{11}r_{22}\cdots r_{mm}$. Because $\det(R^T) = \det(R)$, this implies that $\det(A^TA) = r_{11}^2r_{22}^2\cdots r_{mm}^2$.

6.2.50 Let R_i be the *i*th row of the matrix. By replacing R_n with $R_n - R_{n-1}$, then R_{n-1} with $R_{n-1} - R_{n-2}$, \cdots , R_2 with $R_2 - R_1$ we get an upper triangular matrix with 1 in all the diagonal entries

$$\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

These operations do not change the determinant. So, $det(M_n) = 1$.

6.3.14 We have
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 4 & 10 \\ 1 & 10 & 30 \end{bmatrix}$$
.

 $\det(A^T A) = 6$. Thus, the 3-volume of the 3-parallelepiped is equal to $\sqrt{\det(A^T A)} = \sqrt{6}$.

7.1.12 Recall that for λ an eigenvalue and v an eigenvector of the $n \times n$ matrix A, we have $Av = \lambda v$. Here, let $v = [v_1, v_2]^T$. Solving Av = 2v we obtain $v_1 = t$ and $v_2 = -\frac{3}{2}t$ with $t \neq 0$, and solving Av = 4v we obtain $v_1 = 0$ and $v_2 = t$ with $t \neq 0$. We know that the diagonalization of A is the diagonal matrix with the eigenvalues on the diagonal. In general, we obtain the diagonal matrix B from $S^{-1}AS = B$ where S is the matrix with the corresponding eigenvectors in the columns. Thus, $S^{-1}AS$ is

$$\begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

- **7.1.18** Any nonzero vector in the plane V is unchanged, hence is an eigenvector with the eigenvalue 1. Since any nonzero vector in V^{\perp} is flipped about the origin, it is an eigenvector with eigenvalue -1. Pick any two noncollinear vectors from V and a nonzero vector from V^{\perp} to form an eigenbasis. This transformation is diagonalizable.
- **7.1.42** A has to be of the form $\begin{bmatrix} a & b & 0 \\ 0 & e & 0 \\ 0 & h & i \end{bmatrix}$, so a basis is

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(dimension 5, linearly independent, all satisfy the condition)

Part B (25 points)

Problem 1. If V and W are vector spaces, a function $F: V \times W \to \mathbb{R}$ is said to be *bilinear* if all of the following hold:

- for all $\vec{x}, \vec{y} \in V$ and $\vec{z} \in W$, $F(\vec{x} + \vec{y}, \vec{z}) = F(\vec{x}, \vec{z}) + F(\vec{y}, \vec{z})$;
- for all $\vec{x} \in V$ and $\vec{y}, \vec{z} \in W$, $F(\vec{x}, \vec{y} + \vec{z}) = F(\vec{x}, \vec{y}) + F(\vec{x}, \vec{z})$;
- for all $\vec{x} \in V$ and $\vec{y} \in W$ and for all $a \in \mathbb{R}$, $F(a\vec{x}, \vec{y}) = aF(\vec{x}, \vec{y})$ and $F(\vec{x}, a\vec{y}) = aF(\vec{x}, \vec{y})$.

Furthermore, if $F: V \times V \to \mathbb{R}$ is a bilinear function, we say that F is alternating if $F(\vec{v}, \vec{v}) = 0$ for all $\vec{v} \in V$. Throughout this problem, let $F: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a bilinear function.

- (a) Prove that F is alternating if and only if $F(\vec{u}, \vec{v}) = -F(\vec{v}, \vec{u})$ for all $\vec{u}, \vec{v} \in \mathbb{R}^2$.
- (b) Prove that if F is alternating and $F(\vec{e}_1, \vec{e}_2) = 1$, then

$$F(\vec{u}, \vec{v}) = \det[\vec{u} \ \vec{v}]$$
 for all $\vec{u}, \vec{v} \in \mathbb{R}^2$.

Solution. a) We must show both implications.

- (\Leftarrow) Let $\vec{u} = \vec{v}$, $F(\vec{v}, \vec{v}) = -F(\vec{v}, \vec{v})$ implies that $F(\vec{v}, \vec{v}) = 0$.
- (\Rightarrow) If $F(\vec{v}, \vec{v}) = 0$ and F is bilinear, then by letting $\vec{v} = \vec{v} + \vec{u}$ we have:

$$\begin{split} 0 &= F(\vec{v} + \vec{u}, \vec{v} + \vec{u}) = & F(\vec{v} + \vec{u}, \vec{v}) + F(\vec{v} + \vec{u}, \vec{u}) \\ &= & F(\vec{v}, \vec{v}) + F(\vec{u}, \vec{v}) + F(\vec{v}, \vec{u}) + F(\vec{u}, \vec{u}) \\ &= & 0 + F(\vec{u}, \vec{v}) + F(\vec{v}, \vec{u}) + 0 \\ &= & F(\vec{u}, \vec{v}) + F(\vec{v}, \vec{u}) \end{split}$$

Therefore, $F(\vec{u}, \vec{v}) = -F(\vec{v}, \vec{u})$, for any $\vec{u}, \vec{v} \in \mathbb{R}^2$ as desired.

b) By part a) we know F is alternating if and only if $F(\vec{v}, \vec{v}) = 0$, for all $\vec{v} \in \mathbb{R}^2$. So setting $\vec{u} = a\vec{e}_1 + c\vec{e}_2$ and $\vec{v} = b\vec{e}_1 + d\vec{e}_2$ we observe:

$$F\left(\begin{bmatrix} a \\ c \end{bmatrix}, \begin{bmatrix} b \\ d \end{bmatrix}\right) = F\left(\begin{bmatrix} a \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ c \end{bmatrix}, \begin{bmatrix} b \\ d \end{bmatrix}\right)$$

$$= F\left(\begin{bmatrix} a \\ 0 \end{bmatrix}, \begin{bmatrix} b \\ d \end{bmatrix}\right) + F\left(\begin{bmatrix} 0 \\ c \end{bmatrix}, \begin{bmatrix} b \\ d \end{bmatrix}\right)$$

$$= a \cdot F\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} b \\ d \end{bmatrix}\right) + c \cdot F\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} b \\ d \end{bmatrix}\right)$$

$$= a \cdot \left[F\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} b \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ d \end{bmatrix}\right)\right] + c \cdot \left[F\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} b \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ d \end{bmatrix}\right)\right]$$

$$= \cdots$$

$$= ad \cdot F\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) + (-cd) \cdot F\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$$

= ad - cd, as desired.

Problem 2. Let $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2\times 2}$, and consider the map $T : \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ defined by T(A) = AM.

- (a) Prove that T is a linear transformation.
- (b) Find the \mathcal{E} -matrix $[T]_{\mathcal{E}}$ of T, where \mathcal{E} is the ordered basis

$$\mathcal{E} = (E_{11}, E_{12}, E_{21}, E_{22}) = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right)$$

of $\mathbb{R}^{2\times 2}$. Your answer should be in terms of the entries of M.

- (c) Compute $\det[T]_{\mathcal{E}}$.
- (d) Compute $\det[T]_{\mathcal{B}}$, where \mathcal{B} is the ordered basis of $\mathbb{R}^{2\times 2}$ given by

$$\mathcal{B} = \left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ \pi & 1 \end{bmatrix}, \begin{bmatrix} 0 & 7 \\ 8 & 9 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right).$$

(e) Either prove that T is always diagonalizable no matter what M is, or provide an explicit example of a matrix M for which T is not diagonalizable and briefly explain why your example works.

Solution.

- a) T(A+B) = (A+B)M = AM+BM = T(A)+T(B), and T(kA) = kAM = k(AM) = kT(A) so T respects both addition and scalar multiplication, so is linear.
- **b)** Now let $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. To find the matrix of T in the given basis (which will be 4×4), we compute it column by column, seeing where the basis elements go and computing their coordinates:

 $\begin{bmatrix} a & c & 0 & 0 \\ b & d & 0 & 0 \\ 0 & 0 & a & c \\ 0 & 0 & b & d \end{bmatrix}$

- c) & d) The determinant of this matrix is $(ad bc)^2$. This is therefore the determinant of T as well as the matrix of T in any basis, including the basis given in (d).
- e) Example let M be a rotation of any angle $\theta \neq n\pi$ for any $n \in \mathbb{N}$. Then M is not diagonalizable over \mathbb{R} , hence T is not diagonalizable over \mathbb{R} .

Problem 3. Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^4 . Define the linear transformation $T : \mathbb{R}^4 \to \mathbb{R}$ by the rule $T(\vec{x}) = \det([\vec{x} \ \vec{u} \ \vec{v} \ \vec{w}])$ for all $\vec{x} \in \mathbb{R}^4$. (You do not have to prove that T is linear.)

- (a) Prove that there exists a unique vector $\vec{z} \in \mathbb{R}^4$ such that $T(\vec{x}) = \vec{z} \cdot \vec{x}$ for all $\vec{x} \in \mathbb{R}^4$, and find the components of \vec{z} in terms of the vectors \vec{u}, \vec{v} , and \vec{w} . (Hint: $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3 + x_4 \vec{e}_4$.)
- (b) Find the vector \vec{z} (as in part (a)) when $\vec{u} = \vec{e_1}$, $\vec{v} = \vec{e_2}$, and $\vec{w} = \vec{e_3}$ are the first three standard basis vectors in \mathbb{R}^4 .
- (c) When is $\vec{z} = \vec{0}$? (Your answer should be in terms of \vec{u} , \vec{v} , and \vec{w} .)
- (d) Prove that \vec{z} is orthogonal to each of \vec{u} , \vec{v} and \vec{w} , and find $\det([\vec{z}\ \vec{u}\ \vec{v}\ \vec{w}])$ in terms of $||\vec{z}||$.

Solution.

$$T(\vec{x}) = \det\left(\begin{bmatrix} x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3 + x_4\vec{e}_4 & \vec{u} & \vec{v} & \vec{w} \end{bmatrix}\right).$$

$$= x_1 \det\left(\begin{bmatrix} \vec{e}_1 & \vec{u} & \vec{v} & \vec{w} \end{bmatrix}\right) + x_2 \det\left(\begin{bmatrix} \vec{e}_2 & \vec{u} & \vec{v} & \vec{w} \end{bmatrix}\right)$$

$$+ x_3 \det\left(\begin{bmatrix} \vec{e}_3 & \vec{u} & \vec{v} & \vec{w} \end{bmatrix}\right) + x_4 \det\left(\begin{bmatrix} \vec{e}_4 & \vec{u} & \vec{v} & \vec{w} \end{bmatrix}\right)$$

$$= \vec{x} \cdot \vec{z}$$

$$\det\left(\begin{bmatrix} \vec{e}_1 & \vec{u} & \vec{v} & \vec{w} \end{bmatrix}\right)$$

$$\det\left(\begin{bmatrix} \vec{e}_2 & \vec{u} & \vec{v} & \vec{w} \end{bmatrix}\right)$$

$$\det\left(\begin{bmatrix} \vec{e}_3 & \vec{u} & \vec{v} & \vec{w} \end{bmatrix}\right)$$

$$\det\left(\begin{bmatrix} \vec{e}_3 & \vec{u} & \vec{v} & \vec{w} \end{bmatrix}\right)$$

$$\det\left(\begin{bmatrix} \vec{e}_4 & \vec{u} & \vec{v} & \vec{w} \end{bmatrix}\right)$$

(b) By (a),
$$\vec{z} = \begin{bmatrix} \det \left(\begin{bmatrix} \vec{e}_1 & \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \end{bmatrix} \right) \\ \det \left(\begin{bmatrix} \vec{e}_2 & \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \end{bmatrix} \right) \\ \det \left(\begin{bmatrix} \vec{e}_3 & \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \end{bmatrix} \right) \\ \det \left(\begin{bmatrix} \vec{e}_4 & \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \end{bmatrix} \right) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \end{bmatrix} = -\vec{e}_4$$

(c) If $\vec{u}, \vec{v}, \vec{w}$ are linearly independent then there exists \vec{x} such that $\{\vec{x}, \vec{u}, \vec{v}, \vec{w}\}$ is a basis. Thus $\vec{z}.\vec{x} = \det \left(\begin{bmatrix} \vec{x} & \vec{u} & \vec{v} & \vec{w} \end{bmatrix} \right) \neq 0$ so $\vec{z} \neq \vec{0}$. If $\vec{u}, \vec{v}, \vec{w}$ are linearly dependent then for all \vec{x} we have $\vec{z} \cdot \vec{x} = \det \left(\begin{bmatrix} \vec{x} & \vec{u} & \vec{v} & \vec{w} \end{bmatrix} \right) = 0$, so $\vec{z} = \vec{0}$.

Thereby, $\vec{z} = \vec{0}$ precisely when $\vec{u}, \vec{v}, \vec{w}$ are linearly dependent.

(d)

$$\begin{aligned} \vec{z} \cdot \vec{u} &= \det \left(\begin{bmatrix} \vec{u} & \vec{u} & \vec{v} & \vec{w} \end{bmatrix} \right) = 0 \\ \vec{z} \cdot \vec{v} &= \det \left(\begin{bmatrix} \vec{v} & \vec{u} & \vec{v} & \vec{w} \end{bmatrix} \right) = 0 \\ \vec{z} \cdot \vec{w} &= \det \left(\begin{bmatrix} \vec{w} & \vec{u} & \vec{v} & \vec{w} \end{bmatrix} \right) = 0 \end{aligned}$$

So \vec{z} is orthogonal to each of \vec{u} , \vec{v} , and \vec{w} . And $\det \left(\begin{bmatrix} \vec{z} & \vec{u} & \vec{v} & \vec{w} \end{bmatrix} \right) = \vec{z} \cdot \vec{z} = \|\vec{z}\|^2$

Problem 4. For a polynomial p(x) and an $n \times n$ matrix A, let p(A) denote the matrix obtained by plugging in A for x. For example, if $p(x) = x^3 + 2x^2 + 3$, then $p(A) = A^3 + 2A^2 + 3I_n$. (Note that I_n behaves like the constant "1" in $\mathbb{R}^{n \times n}$.)

- (a) Prove that for every $n \times n$ matrix A and for every eigenvalue λ of A, the real number $p(\lambda)$ is an eigenvalue of the $n \times n$ matrix p(A).
- (b) Let p be a polynomial and let $n \in \mathbb{N}$. Prove that if S is an invertible $n \times n$ matrix, then for every $A \in \mathbb{R}^{n \times n}$ we have $p(S^{-1}AS) = S^{-1}p(A)S$.
- (c) Let p be a polynomial and let A be an $n \times n$ matrix. Prove that if A is diagonalizable, then every eigenvalue of p(A) is of the form $p(\lambda)$ for some eigenvalue λ of A.

Solution. (a) As λ is an eigenvalue of A, we have that $A\vec{v} = \lambda \vec{v}$ for some non-zero vector $\vec{v} \in \mathbb{R}^n$. By induction on n, we can prove that

$$A^{n}\vec{v} = A^{n-1}(A\vec{v}) = A^{n-1}(\lambda\vec{v}) = \lambda(A^{n-1}\vec{v}) = \lambda(\lambda^{n-1}\vec{v}) = \lambda^{n}\vec{v}.$$

We now find that, for a polynomial $p(x) = c_k x^k + c_{k-1} x^{k-1} + \cdots + c_1 x + c_0$,

$$p(A)\vec{v} = (c_k A^k + c_{k-1} A^{k-1} + \dots + c_1 A + c_0 I)\vec{v}$$

= $c_k (A^k \vec{v}) + c_{k-1} (A^{k-1} \vec{v}) + \dots + c_1 (A \vec{v}) + c_0 \vec{v}$
= $(c_k \lambda^k + c_{k-1} \lambda^{k-1} + \dots + c_1 \lambda + c_0) \vec{v}$
= $p(\lambda) \vec{v}$.

Since $\vec{v} \neq \vec{0}$, this means that $p(\lambda)$ is an eigenvalue of p(A). (This proof also show that \vec{v} is among the eigenvectors corresponding to this eigenvalue.)

(b) If
$$p(x) = c_k x^k + c_{k-1} x^{k-1} + \dots + c_1 x + c_0$$
, we have
$$p(S^{-1}AS) = c_k (S^{-1}AS)^k + c_{k-1} (S^{-1}AS)^{k-1} + \dots + c_1 S^{-1}AS + c_0 I$$

$$= c_k S^{-1}A^k S + c_{k-1}S^{-1}A^{k-1}S + \dots + c_1 S^{-1}AS + c_0 I$$

$$= S^{-1}(c_k A^k + c_{k-1}A^{k-1} + \dots + c_1 A + c_0 I)S$$

$$= S^{-1}p(A)S.$$

(c) The condition that A is diagonalizable means that $A = SDS^{-1}$ for some invertible $n \times n$ matrix S and some diagonal $n \times n$ matrix D. Write

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}.$$

By the Diagonalization Theorem, $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A. On the other hand, we have that

$$D^{n} = \begin{bmatrix} \lambda_{1}^{n} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{n} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}^{n} \end{bmatrix},$$

and so

$$p(D) = c_k D^k + c_{k-1} D^{k-1} + \dots + c_1 D + c_0 I$$

$$= c_k \begin{bmatrix} \lambda_1^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^k \end{bmatrix} + c_{k-1} \begin{bmatrix} \lambda_1^{k-1} & 0 & \cdots & 0 \\ 0 & \lambda_2^{k-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^{k-1} \end{bmatrix} + \cdots$$

$$\cdots + c_1 \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} + c_0 \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_k \lambda_1^k + \cdots + c_1 \lambda_1 + c_0 & 0 & \cdots & 0 \\ 0 & c_k \lambda_2^k + \cdots + c_1 \lambda_2 + c_0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c_k \lambda_n^k + \cdots + c_1 \lambda_n + c_0 \end{bmatrix}$$

$$= \begin{bmatrix} p(\lambda_1) & 0 & \cdots & 0 \\ 0 & p(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p(\lambda_n) \end{bmatrix}.$$

This calculation shows that p(D) is a diagonal matrix with diagonal entries $p(\lambda_1), p(\lambda_2), \dots, p(\lambda_n)$, and so by the Diagonalization Theorem the eigenvalues of p(D) are precisely $p(\lambda_1), p(\lambda_2), \dots, p(\lambda_n)$.

Since A is similar to D, Part (b) shows that p(A) and p(D) are similar and therefore they have the same eigenvalues. So the eigenvalues of p(A) are also precisely $p(\lambda_1), p(\lambda_2), \ldots, p(\lambda_n)$. This shows that every eigenvalue of p(A) is of the form $p(\lambda)$ for some eigenvalue λ of A.

Problem 5.

- (a) Let $A \in \mathbb{R}^{2\times 2}$ be a 2×2 matrix such that $A^2 = I_2$. Prove that A is diagonalizable. (Hint: try factoring $A^2 I_2$, and consider the possible ranks of the factors.)
- (b) Does the same result hold for larger matrices? That is, if $A \in \mathbb{R}^{n \times n}$ is an $n \times n$ matrix for which $A^2 = I_n$, must A be diagonalizable? Either prove this or give a counterexample.

Solution.

- a) Since $A^2 = I_2$ we have $(A I_2)(A + I_2) = 0$. If rank of $A + I_2$ is 2, then it is invertible, we can multiply $(A I_2)(A + I_2) = 0$ by $(A + I_2)^{-1}$ on the right and get $A I_2 = 0$. In this case $A = I_2$, so A is diagonal. Similarly, if rank of $A I_2$ is 2, then it is invertible, and we get $A = -I_2$, so A is diagonal. Assume that both ranks are less than 2. Then both $A I_2$ and $A + I_2$ are not invertible. This implies that both 1 and -1 are eigenvalues of A. Since A is 2×2 and A has 2 distinct eigenvalues, A is diagonalizable.
- b) Let A be $n \times n$. As in part (a) we see that both 1 and -1 are eigenvalues of A. For any $v \in \mathbb{R}^n$, Av + v is an eigenvector with eigenvalue 1, Av v is an eigenvector with eigenvalue -1, and $v = \frac{1}{2}(Av + v) \frac{1}{2}(Av v)$. So, every vector $v \in \mathbb{R}^n$ can be written as a sum of vectors in eigenspaces E_1 and E_{-1} . By choosing a basis of \mathbb{R}^n consisting of eigenvectors from E_1 and E_2 we see that A is diagonalizable.