Реферат по теме: «Модель заражения SIS»

по дисциплине: Математическое моделирование

Ким Михаил Алексеевич

Содержание

1	Цель и задачи работы	4	
2	Теоретическое введение	5	
3	Построение модели 3.1 Pluto.jl 3.2 Modelica	8 8 25	
4	Выводы	28	
Сп	Список литературы		

Список иллюстраций

3.1	Импорт необходимых библиотек	8
3.2	Формирование датасета и запись его в файл	9
3.3	Импорт датасета из файла. Задание вектора времени	10
3.4	Преобразование датасета	11
3.5	График источника	12
3.6	Необработанный график созданного датасета	13
3.7	Обработанный график созданного датасета	15
3.8	Блок параметров	16
3.9	Функция, задающая систему ОДУ	17
3.10	Формирование проблемы	17
	Решение проблемы	18
	Формирование трех массивов: $S, I, time$	19
3.13	Отрисовка графика модели SIS	20
3.14	Отрисовка графика модели SIS без учета $S(t) \ \dots \dots \dots$	22
	Сравнение модели и реальных данных	24
	Экспорт всех графиков в изображения	25
	Код на языке моделирования Modelica	26
3.18	Зависимость S и I от времени	26
3.19	Зависимость I от времени	27

1 Цель и задачи работы

Изучить математическую модель заражения SIS. Используя функционал языка программирования Julia вместе с дополнительными библиотеками (DifferentialEquations, Plots), языка моделирования Modelica, а также интерактивного блокнота Pluto и программного обеспечением OpenModelica, описать модель заражения SIS. Сравнить описанную математическую модель с реальными данными о заражении.

2 Теоретическое введение

Эпидемии издавна являлись большой угрозой для человечества. В XXI веке мир уже успел столкнуться с эпидемией птичьего гриппа в Юго-Восточной Азии (в 2013 году), вспышкой заболеваний лихорадкой Эбола в Африке (2015), пандемией COVID-19, начавшейся в 2019 году и продолжающейся до сих пор. Но в истории человечества бывали и куда более масштабные эпидемии.

В конце XI нашей эры в Римской империи разразилась первая задокументированная пандемия чумы, в результате которой погибло около 100 миллионов человек. Спустя еще XII веков в Евразию и Северную Африку пришла Черная смерть — пандемия чумы, сразившая от трети до половины тогдашнего населения этих регионов.

В результате Первой мировой войны, вызвавшей перемещение большого количества людей, в 1918 году распространился испанский грипп, охвативший более 500 миллионов человек и погубивший каждого десятого заболевшего. Это далеко не все случаи возникновения эпидемий, погубивших в конечном счете бесчисленное количество невинных жизней.

Только в XX веке были разработаны эффектинвые средства борьбы с инфекциями. К числу этих средств принадлежат и системы дифференциальных уравнений — математика помогает моделировать распространение эпидемий и помогает понять, как следует с ними бороться. Изучение механизмов развития и распространения эпидемий является важным способом борьбы с заболеваниями наряду с поиском новых лекарств, вакцинацией и профилактическими мерами [1].

Наряду с моделью SIS при описании распространения инфекций использует-

ся целый ряд других моделей, к примеру, SIR, SEIR, MSEIR [2] и др. Более того, эпидимологическую модель SIS можно считать последующим развитием модели SIR. Но в рамках данного реферата мы остановимся конкретно на упомянутой ранее модели «Susceptible — Infected — Susceptible» — SIS.

Как следует из расшифровки аббревиатуры, модель SIS включает в себя две группы объектов: Susceptible (восприимчивые — еще не инфицированные организмы, которые, однако, могут быть подвержены заражению), Infected (инфицированные — заразившиеся организмы) [3].

Также, все еще благодаря расшифровке аббревиатуры, мы можем отследить последовательность перехода объектов из одной группы в другую: восприимчивые становятся инфицированными, и после выздоровления снова становятся восприимчивыми. Такая последовательность перехода и определяет множество инфекций, в которых применима модель: к примеру, грипп и ОРВИ (заболевания, к которым не вырабатывается иммунитет) [4].

Модель описывается слудеющей системой уравнений:

$$\frac{dS}{dt} = -\frac{\beta SI}{N} + \gamma I$$

$$\frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I,$$

где S(t) — численность восприимчивых (susceptible) индивидов в момент времени t, I(t) — численность инфицированных (infected) индивидов в момент времени t, β — коэффициент интенсивности контактов индивидов с последующим инфицированием, γ — коэффициент интенсивности выздоровления инфицированных индивидов, N — число объектов в популяции.

Первое уравнение описывает изменение числа восприимчивых в единицу времени, которое уменьшается на число зараженных (первое слагаемое) и увеличивается на число выздоровеших (второе слагаемое).

Рассмотрим первое слагаемое подробно. $\frac{\beta SI}{N}$ можно представить в виде:

$$\frac{1}{N} \cdot \beta SI = \frac{\beta}{N} \cdot SI = \frac{\beta S}{N} \cdot I = \frac{\beta SI}{N}$$

где $\frac{1}{N}$ — вероятность контакта между двумя индивидами (подразумевается, что в каждый момент времени каждый индивид контактирует с одним случайным индивидом в популяции), $\frac{\beta}{N}$ — вероятность контакта и заражения между двумя индивидами, $\frac{\beta S}{N}$ — суммарное число зараженных индивидов инфицированным, $\frac{\beta SI}{N}$ — суммарное число зараженных индивидом всеми инфицированными.

Рассмотрим второе слагаемое подробно: каждый инфицированный в определенный момент времени может выздороветь с вероятностью γ . Общее число выздоровевших инфицированных в определенный момент времени есть $\gamma \cdot I$.

Второе уравнение характеризует изменение числа заболевших в единицу времени, которое пропорционально числу заражений (числу контактов здоровых и инфицированных индивидуумов) за вычетом числа выздоровлений. Все слагаемые данного уравнения подробно описаны выше.

Величина $R_0=rac{eta}{\gamma}$ является «базовым коэффициентом воспроизведения» и имеет большую значимость при оценке возможности распространения болезни (чем он больше, тем более болезнь заразна). К примеру, у COVID-19 $R_0=2.4-3.4$, у кори $R_0=12-18$, у гриппа $R_0=0.9-2.1$ [5] [6] [7].

Важно также отметить, что справедливы следующие уравнения:

$$\frac{dS}{dt} + \frac{dI}{dt} = 0 \implies S(t) + I(t) = N$$

Из правого уравнения следует, что суммарное число восприимчивых и инфицированных всегда остается одинаковым и равным N. Соответственно, стандартная модель SIS предполагает, что в популяции отсутствует рождаемость и смертность от болезни [8].

3 Построение модели

3.1 Pluto.jl

Пишем программу, воспроизводящую модель на языке программирования Julia с использованием интерактивного блокнота Pluto.

1. Импорт необходимых библиотек (рис. 3.1).

```
import Pkg
Pkg.activate()
using Differential Equations
using LaTeXStrings
import Plots
end

begin
import Pkg
Pkg.activate()
using Differential Equations
using LaTeXStrings
using Delimited Files
import Plots
end

project at `~/.julia/environments/v1.8`
```

Рис. 3.1: Импорт необходимых библиотек

2. Формирование датасета и запись его в файл формата .csv (рис. 3.2).

```
begin
    const influenza = [3, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 2, 2, 1, 1, 1,
    writedlm( "influenza_college_1978_dataset.csv", influenza, ',')
end

begin
    const influenza = [3, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 2, 2, 1, 1, 1, 1, 0, 0,
    1, 0, 0, 2, 3, 1, 3, 0, 0, 1, 4, 2, 4, 3, 11, 13, 3, 4, 4, 14, 7, 16, 9, 12, 14,
    3, 4, 10, 1, 1, 3, 0, 1, 0, 1, 0, 1, 3, 1, 0, 0, 5]
    writedlm( "influenza_college_1978_dataset.csv", influenza, ',')
end
```

Рис. 3.2: Формирование датасета и запись его в файл

3. Импорт датасета из файла. Задание вектора времени (рис. 3.3).

```
begin

df = readdlm("influenza_college_1978_dataset.csv", ',', Int64)

const days = [i for i in 1:length(df)]

@show df
end
```

```
63×1 Matrix{Float64}:
3.0
0.0
0.0
0.0
1.0
1.0
1.0
1.0
3.0
1.0
0.0
0.0
5.0
     df = readdlm("influenza_college_1978_dataset.csv", ',', Float64)
     const days = [i for i in 1:length(df)]
     @show df
```

Рис. 3.3: Импорт датасета из файла. Задание вектора времени

4. Преобразование датасета (рис. 3.4).

```
begin

    df_sis = zeros(Int64, size(df)[1])

    df_sis[1] = df[1]

    for i = 2:length(df)

         df_sis[i] += df_sis[i-1] + df[i]
    end
    @show df_sis
end
```

Рис. 3.4: Преобразование датасета

5. Сравнение графика источника (рис. 3.5) с построенным графиком (рис. 3.6). Построение графика по обработанному датасету (рис. 3.7).

begin

```
fig1 = Plots.plot(
    dpi=150,
    grid=:xy,
    gridcolor=:black,
    gridwidth=1,
    size=(800, 400),
    legend=:topleft,
    plot_title="Случаи заболевания гриппом в кампусе колледжа в 1978"
)

Plots.plot!(
    fig1[1],
    days,
    df,
    color=[:red],
    xlabel="Число дней",
```

```
ylabel="Число заболеваний в день",
label="Число зафиксированных заболеваний за день"
)
end
```

Progress of influenza on a college campus in 1978

Рис. 3.5: График источника

Рис. 3.6: Необработанный график созданного датасета

begin

```
fig2 = Plots.plot(
    dpi=150,
    grid=:xy,
    gridcolor=:black,
    gridwidth=1,
    size=(800, 400),
    legend=:topleft,
```

```
plot_title="Случаи заболевания гриппом в кампусе колледжа в 1978"
)

Plots.plot!(
    fig2[1],
    days,
    df_sis,
    color=[:red],
    xlabel="Число дней",
    ylabel="Число заболеваний",
    label="Суммарное число заболевших"
)
end
```


Рис. 3.7: Обработанный график созданного датасета

6. Описание модели SIS. Блок параметров. $R_0=1.875$ (рис. 3.8).

```
begin

const \mathbf{X} = 0.3

const \mathbf{X} = 0.16

@show \mathbf{R}\mathbf{X} = \mathbf{X} / \mathbf{X}

const \mathbf{N} = 418

const \mathbf{I}\mathbf{X} = 1
```

```
const S⊠ = N - I⊠
@show S⊠

"Начальные условия: u⊠[1] - S⊠, u⊠[1] - I⊠"

u⊠ = [S⊠, I⊠]

"Период времени"

T = (1.0, length(df))
end
```

```
Т

Период времени

begin

const β = 0.30

const γ = 0.16

βshow Ro = β / γ

const Io = 1

const So = N - Io

βshow So

"Начальные условия: uo[1] - So, uo[1] - Io"

uo = [So, Io]

"Период времени"

T = (1.0, length(df))

end

Ro = β / γ = 1.875

So = 417
```

Рис. 3.8: Блок параметров

7. Описание модели SIS. Функция, задающая систему ОДУ (рис. 3.9).

```
"Правая часть нашей системы, p, t не используются. u[1] - S, u[2] - I" function F!(du, u, p, t) du[1] = - ■ * u[1] * u[2] / N + ■ * u[2] du[2] = ■ * u[1] * u[2] / N - ■ * u[2]
```

end

```
F!

Правая часть нашей системы, p, t не используются. u[1] - S, u[2] - I

"Правая часть нашей системы, p, t не используются. u[1] - S, u[2] - I"

function F!(du, u, p, t)

du[1] = - β * u[1] * u[2] / N + γ * u[2]

du[2] = β * u[1] * u[2] / N - γ * u[2]

end
```

Рис. 3.9: Функция, задающая систему ОДУ

8. Описание модели SIS. Формирование проблемы (рис. 3.10).

```
prob = ODEProblem(F!, uĭ, T)

prob = ODEProblem with uType Vector{Int64} and tType Float64. In-place: true timespan: (1.0, 63.0)
    u0: 2-element Vector{Int64}:
    417
        1

    prob = ODEProblem(F!, uo, T)
```

Рис. 3.10: Формирование проблемы

9. Описание модели SIS. Решение проблемы (рис. 3.11).

```
sol = solve(prob, saveat=1)
```


Рис. 3.11: Решение проблемы

10. Формирование трех массивов: S, I, time (рис. 3.12).

begin c

```
const ss = []
const ii = []
for u in sol.u
    s, i = u
    push!(ss, s)
    push!(ii, i)
end
time = sol.t
time
end
```

Рис. 3.12: Формирование трех массивов: S, I, time

11. Отрисовка графика модели SIS (рис. 3.13).

```
begin

fig3 = Plots.plot(
    dpi=150,
    grid=:xy,
    gridcolor=:black,
    gridwidth=1,
    size=(800, 400),
    legend=:left,
    plot_title="Модель SIS"
)

Plots.plot!(
    fig3[1],
    time,
    [ss, ii],
    color=[:blue :red],
```

xlabel="t",

 $label=\Gamma"S(t)$ - количество здоровых, но восприимчивых к болезни" "I(t

ylabel="Число человек в популяции",

,

Рис. 3.13: Отрисовка графика модели SIS

12. Отрисовка графика модели SIS без учета S(t) (рис. 3.14).

```
gridcolor=:black,
        gridwidth=1,
        size=(800, 400),
        legend=:topleft,
        plot_title="Модель SIS"
    )
    Plots.plot!(
        fig4[1],
        time,
        ii,
        color=:red,
        xlabel="t",
        ylabel="Число инфицированных",
        label="I(t) — количество инфицированных"
    )
end
```


Рис. 3.14: Отрисовка графика модели SIS без учета S(t)

13. Отрисовка графика модели и графика реальных данных на одном графике. Как мы видим, результат моделирования крайне схож с найденными историческими данными из исследования распространения гриппа в одном из колледжей [9] (рис. 3.15).

```
begin

fig5 = Plots.plot(
    dpi=150,
    grid=:xy,
```

```
gridcolor=:black,
        gridwidth=1,
        size=(800, 400),
        legend=:topleft,
        plot_title="Сравнение модели и реальных данных"
    )
    Plots.plot!(
        fig5[1],
        days,
        [ii, df_sis],
        color=[:red :blue],
        xlabel="t",
        ylabel="Число заболевших",
        label=["Количество заболевших согласно модели" "Количество заболевши
    )
end
```


Рис. 3.15: Сравнение модели и реальных данных

14. Экспорт всех графиков в изображения (рис. 3.16).

```
begin
    Plots.savefig(fig1, "../fig1")
    Plots.savefig(fig2, "../fig2")
    Plots.savefig(fig3, "../fig3")
    Plots.savefig(fig4, "../fig4")
    Plots.savefig(fig5, "../fig5")
```

end

```
"/media/sf__/Доклад/presentation/fig5.png"

begin

Plots.savefig(fig1, "../fig1")

Plots.savefig(fig2, "../fig2")

Plots.savefig(fig3, "../fig3")

Plots.savefig(fig4, "../fig4")

Plots.savefig(fig5, "../fig5")

end
```

Рис. 3.16: Экспорт всех графиков в изображения

3.2 Modelica

По аналогии с Pluto пишем программу, воспроизводящую измененную модель SIR на языке моделирования Modelica с использованием ПО OpenModelica.

1. Код на языке моделирования Modelica: задаем название модели; определяем коэффициенты β и γ ; численность популяции N; функции, зависящие от времени, S(t) и I(t); начальные условия; систему уравнений; начальное/конечное время и шаг симуляции (рис. 3.17).

```
model SIS
  constant Real beta = 0.3;
  constant Real gamma = 0.16;
  constant Integer N = 418;
  Real t = time;
  Real S(t);
  Real I(t);
  initial equation
   S = N - I;
  I = 1;
  equation
  der(S) = - beta * S * I / N + gamma * I;
```

```
der(I) = beta * S * I / N - gamma * I;
annotation(experiment(StartTime=1, StopTime=63, Interval = 1));
end SIS;
```

```
🖶 🚜 🧧 🕕 Доступный на запись 🛮 Model 🖁 Вид Текст 🔝 SIS /media/sf__/Доклад/presentation/source/SIS_model.mo
      model SIS
        constant Real beta = 0.3;
         constant Real gamma = 0.16;
         constant Integer N = 418;
  4
         Real t = time;
        Real S(t);
  6
        Real I(t);
  8
      initial equation
  9
        S = N - I;
        I = 1;
 10
 11 equation
        der(S) = - beta * S * I / N + gamma * I;
der(I) = beta * S * I / N - gamma * I;
 13
        annotation(experiment(StartTime=1, StopTime=63, Interval = 1));
 15 end SIS;
```

Рис. 3.17: Код на языке моделирования Modelica

2. Лицезреем результат в виде двух графиков: зависимости S и I от времени и зависимости I от времени (рис. 3.18, 3.19).

Рис. 3.18: Зависимость S и I от времени

Рис. 3.19: Зависимость ${\it I}$ от времени

4 Выводы

Изучил математическую модель заражения SIS. Используя функционал языка программирования Julia вместе с дополнительными библиотеками (DifferentialEquations, Plots), языка моделирования Modelica, а также интерактивного блокнота Pluto и программного обеспечением OpenModelica, описал модель заражения SIS. Сравнил описанную математическую модель с реальными данными о заражении.

Список литературы

- 1. Зараза, гостья наша [Электронный ресурс]. N + 1 Интернет-издание, 2019. URL: https://nplus1.ru/material/2019/12/26/epidemic-math.
- 2. Compartmental models in epidemiology [Электронный ресурс]. Wikimedia Foundation, Inc., 2023. URL: https://en.wikipedia.org/wiki/Compartmental_m odels_in_epidemiology.
- 3. An SIS model [Электронный ресурс]. Jeffrey M. Moehlis 2002-10-14. URL: https://sites.me.ucsb.edu/~moehlis/APC514/tutorials/tutorial seasonal/node2.html.
- 4. ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ДЛЯ ПРОГНОЗИРОВАНИЯ ЭПИДЕМИОЛОГИЧЕСКОЙ СИТУАЦИИ ПО COVID-19 В РОСТОВСКОЙ ОБЛА-СТИ [Электронный ресурс]. ФБУН «Ростовский научно-исследовательский институт микробиологии и паразитологии» Роспотребнадзора. URL: https://covid19.neicon.ru/files/3881.
- 5. Basic reproduction number [Электронный ресурс]. Wikimedia Foundation, Inc., 2023. URL: https://en.wikipedia.org/wiki/Basic_reproduction_number.
- 6. R0: How Scientists Quantify the Intensity of an Outbreak Like Coronavirus and Its Pandemic Potential [Электронный ресурс]. University of Michigan, 2020. URL: https://sph.umich.edu/pursuit/2020posts/how-scientists-quantify-outbreaks.html.
- 7. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature [Электронный ресурс]. BioMed Central Ltd, 2014. URL: https://bmcinfectdis.biomedcentral.com/articles/10.1 186/1471-2334-14-480.

- 8. Конструирование эпидемиологических моделей [Электронный ресурс]. Habr, 2021. URL: https://habr.com/ru/post/551682/.
- 9. Infectious disease in a total institution: a study of the influenza epidemic of 1978 on a college campus [Электронный ресурс]. Public Health Reports, 1982. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1424282/.