1 Simple model

Definitions

We find the best model for y over function class \mathcal{G} . Presume $q^* \in \mathcal{G}$ is the true model and

$$y = g^*(X) + \epsilon$$

where ϵ are sub-Gaussian errors for constants K and σ_0^2

$$\max_{i=1:n} K^2 \left(E \left[\exp(|\epsilon_i|^2 K^2) - 1 \right] \right) \le \sigma_0^2$$

Given a training set T, We define the fitted models

$$\hat{g}_{\lambda} = \|y - g\|_T^2 + \lambda^2 I^v(g)$$

Given a validation set V , let the CV-fitted model be

$$\hat{g}_{\hat{\lambda}} = \arg\min_{\lambda} \|y - \hat{g}_{\lambda}\|_{V}^{2}$$

We will suppose $I(g^*) > 0$.

Assumptions

Suppose the entropy of the class \mathcal{G}' is

$$H\left(\delta, \mathcal{G}' = \left\{\frac{g - g^*}{I(g) + I(g^*)} : g \in \mathcal{G}, I(g) + I(g^*) > 0\right\}, P_T\right) \leq \tilde{A}\delta^{-\alpha}$$
(1)

Suppose $v > 2\alpha/(2+\alpha)$.

Suppose for all $\lambda \in \Lambda$, $I^v(\hat{g}_{\lambda})$ is upper bounded by $\|\hat{g}_{\lambda}\|_n^2 = \frac{1}{n} \sum_{i=1}^n \hat{g}_{\lambda}(x_i)$. See Lemma 1 below for the specific assumption. This assumption includes Ridge, Lasso, Generalized Lasso, and the Group Lasso

Result 1: Single λ , Single Penalty, cross-validation over general X_T, X_V

Suppose that the training and validation set are independently sampled, so the values X_i are not necessarily the same. Suppose the training and validation sets are both of size n. Suppose X is bounded s.t. $|X| \leq R_X$ and the domain of $g \in \mathcal{G}$ is over $(-R_X, R_X)$.

Suppose the same entropy bound (2) for both the training set P_T and validation set P_V .

Suppose for all $\lambda \in \Lambda$, $I^{v}(\hat{g}_{\lambda})$ is upper bounded by its L_{2} -norm with some constant M and M_{0} such that

$$I^{v}(\hat{g}_{\lambda}) \le M \|\hat{g}_{\lambda}\|_{n}^{2} + M_{0}$$

Suppose the entropy bound for both training set P_T and validation set P_V . Suppose that

$$\sup_{g \in \mathcal{G}} \frac{\|g - g^*\|_{\infty}}{I(g) + I(g^*)} \le K < \infty$$

Let λ be the optimal λ by Vandegeer. Then

$$\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V} = O_{p}\left(n^{-1/(2+\alpha)}\right)\left(I^{\alpha/(2+\alpha)}(g^{*}) + I(g^{*})\right)$$

and $\|\hat{g}_{\hat{\lambda}} - g^*\|_V$ is of the same order (differs by some constant).

Proof:

By the triangle inequality,

$$\|\hat{g}_{\hat{\lambda}} - g^*\|_V \le \|\hat{g}_{\hat{\lambda}} - \hat{g}_{\tilde{\lambda}}\|_V + \|\hat{g}_{\tilde{\lambda}} - g^*\|_V$$

We bound each component on the RHS separately.

First bound $\|\hat{g}_{\tilde{\lambda}} - g^*\|_V$. By Vandegeer Thrm 10.2 and Lemma 2,

$$\begin{aligned} \|\hat{g}_{\tilde{\lambda}} - g^*\|_{V} & \leq \|\hat{g}_{\tilde{\lambda}} - g^*\|_{T} + \left| \|\hat{g}_{\tilde{\lambda}} - g^*\|_{V} - \|\hat{g}_{\tilde{\lambda}} - g^*\|_{T} \right| \\ & \leq O_{p} \left(n^{-1/(2+\alpha)} \right) I^{\alpha/(2+\alpha)}(g^*) + O_{p} \left(n^{-1/(2+\alpha)} \right) \left(I(g^*) + I(\hat{g}_{\tilde{\lambda}}) \right) \\ & \leq O_{p} \left(n^{-1/(2+\alpha)} \right) \left(I^{\alpha/(2+\alpha)}(g^*) + I(g^*) \right) \end{aligned}$$

Next bound $\|\hat{g}_{\hat{\lambda}} - \hat{g}_{\tilde{\lambda}}\|_{V}$. The basic inequality gives us

$$\left\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\right\|_{V}^{2} \leq 2\left|\left(\epsilon, \hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\right)_{V}\right| + 2\left|\left(g^{*} - \hat{g}_{\tilde{\lambda}}, \hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\right)_{V}\right|$$

Case a: $\left|\left(\epsilon,\hat{g}_{\tilde{\lambda}}-\hat{g}_{\hat{\lambda}}\right)_{T}\right|$ is the bigger term on the RHS By Vandegeer (10.6),

$$\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V}^{2} \leq O_{P}(n^{-1/2}) \|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|^{1-\alpha/2} \left(I(\hat{g}_{\tilde{\lambda}}) + I(\hat{g}_{\hat{\lambda}})\right)^{\alpha/2}$$

If $I(\hat{g}_{\tilde{\lambda}}) > I(\hat{g}_{\hat{\lambda}})$, then

$$\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V} \le O_{P}(n^{-1/(2+\alpha)})I(g^{*})^{\alpha/(2+\alpha)}$$

Otherwise, suppose $I(\hat{g}_{\tilde{\lambda}}) < I(\hat{g}_{\hat{\lambda}})$. Since I is a pseudo-norm,

$$\begin{aligned} \left\| \hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}} \right\|_{V} & \leq O_{P}(n^{-1/(2+\alpha)}) I(\hat{g}_{\hat{\lambda}})^{\alpha/(2+\alpha)} \\ & \leq O_{P}(n^{-1/(2+\alpha)}) \left(I(\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}) + I(\hat{g}_{\tilde{\lambda}}) \right)^{\alpha/(2+\alpha)} \end{aligned}$$

If $I(\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}) \leq I(\hat{g}_{\tilde{\lambda}})$, then we're done. Otherwise if $I(\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}) \geq I(\hat{g}_{\tilde{\lambda}})$, by the assumption that $I^{V}(\cdot)$ is bounded by the L2 norm,

$$\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V} \le O_{P}(n^{-1/(2+\alpha)}) \left(M\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V}^{2} + M_{0}\right)^{\alpha/\nu(2+\alpha)}$$

If M_0 is bigger, we're done. Otherwise,

$$\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V} \le O_{P}(n^{-v/(2v-2\alpha+\alpha v)}) < O_{P}(n^{-1/(2+\alpha)})$$

Case b: $|(g^* - \hat{g}_{\tilde{\lambda}}, \hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}})_V|$ is the bigger term on the RHS By Cauchy Schwarz,

$$\left\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\right\|_{V} \le O_{P}(1) \left\|g^* - \hat{g}_{\tilde{\lambda}}\right\|_{V}$$

2 General Additive Model

Definitions

We find the best model for y over function classes $\mathcal{G} = \left\{ \sum_{j=1}^{J} g_j : g_j \in \mathcal{G}_j \right\}$. Suppose we observe:

$$y = \sum_{j=1}^{J} g_j^* + \epsilon$$

where $\sum_{j=1}^{J} g_j^* \in \mathcal{G}$. Suppose ϵ are sub-Gaussian errors for constants K and σ_0^2 :

$$\max_{i=1:n} K^2 \left(E \left[\exp(|\epsilon_i|^2 K^2) - 1 \right] \right) \le \sigma_0^2$$

Given a training set T, we fit models by least squares with multiple penalties

$$\{\hat{g}_{\lambda,j}\}_{j=1}^{J} = \arg\min_{\sum g_j \in \mathcal{G}} \|y - \sum_{j=1}^{J} g_j\|_T^2 + \lambda^2 \sum_{j=1}^{J} I_j^{v_j}(g_j)$$

Given a validation set V, let the CV-fitted model be

$$\{\hat{g}_{\hat{\lambda},j}\}_{j=1}^{J} = \arg\min_{\hat{\lambda}} \|y - \sum_{j=1}^{J} \hat{g}_{\lambda,j}\|_{V}^{2}$$

Reasonable assumption:

• The entropy bound (2) in result 2 comes from the assumptions in Lemma 3. The α below is $\alpha = \max_{j=1:J} \{\alpha_j\}$, so convergence is only as fast as fitting the highest-entropy function class. The constant A must be appropriately inflated such that the entropy bound holds for all $\delta \in (0, R]$.

"Special" assumptions:

- We assume exponents $v_j = 1$, whereas Vandegeer Thrm 10.2 only assumes $v > 2\alpha/(2 + \alpha)$. Without this assumption, I wasn't able to form inequalities between $\sum_{j=1}^{J} I_j(g_j) \leq something + \sum_{j=1}^{J} I_j^{v_j}(g_j)$. Indeed, Remark 1 in "HIGH-DIMENSIONAL ADDITIVE MODELING" (Vandegeer 2009) notes the importance of using the semi-norm instead of the square of the semi-norm.
- We assume function class \mathcal{G} satisfies for some constant \tilde{M} , $\sum_{j=1}^{J} \|g_j\|^2 \leq \tilde{M} \|\sum_{j=1}^{J} g_j\|^2$ for all j. That is, no single function can dominate the behavior of the sum. Actually, "HIGH-DIMENSIONAL ADDITIVE MODELING" (Vandegeer 2009) has a similar compatibility condition.

Result 2: Additive Model with multiple penalties, Single oracle λ over X_T

Suppose there is some $0 < \alpha < 2$ s.t. for all $\delta \in (0, R]$,

$$H\left(\delta, \left\{\frac{\sum_{j=1}^{J} g_j - g_j^*}{\sum_{j=1}^{J} I_j(g_j) + I_j(g_j^*)} : g_j \in \mathcal{G}_j, \sum_{j=1}^{J} I_j(g_j) + I_j(g_j^*) > 0\right\}, \|\cdot\|_T\right) \le A\delta^{-\alpha}$$
 (2)

If λ is chosen s.t.

$$\tilde{\lambda}_T^{-1} = O_p\left(n^{1/(2+\alpha)}\right) \left(\sum_{j=1}^J I_j(g_j^*)\right)^{(2-\alpha)/2(2+\alpha)}$$

then

$$\|\sum_{j=1}^{J} \hat{g}_j - g_j^*\|_T = O_p\left(\tilde{\lambda}_T\right) \left(\sum_{j=1}^{J} I_j(g_j^*)\right)^{1/2}$$

and

$$\sum_{j=1}^{J} I_j(\hat{g}_j) = O_p(1) \sum_{j=1}^{J} I_j(g_j^*)$$

Proof:

The basic inequality gives us:

$$\left\| \sum_{j=1}^{J} \hat{g}_{j} - g_{j}^{*} \right\|_{T}^{2} + \lambda^{2} \sum_{j=1}^{J} I_{j}(\hat{g}_{j}) \leq 2 \left| \left(\epsilon_{T}, \sum_{j=1}^{J} \hat{g}_{j} - g_{j}^{*} \right) \right| + \lambda^{2} \sum_{j=1}^{J} I_{j}(g_{j}^{*})$$

Case 1: $\left| \left(\epsilon_T, \sum_{j=1}^J \hat{g}_j - g_j^* \right) \right| \le \lambda^2 \sum_{j=1}^J I_j(g_j^*)$

$$\|\sum_{j=1}^{J} \hat{g}_j - g_j^*\|_T \le O_p(\lambda) \left(\sum_{j=1}^{J} I_j(g_j^*)\right)^{1/2}$$

Case 2: $\left|\left(\epsilon_T, \sum_{j=1}^J \hat{g}_j - g_j^*\right)\right| \ge \lambda^2 \sum_{j=1}^J I_j(g_j^*)$ By Vandegeer (10.6), the basic inequality becomes

$$\|\sum_{j=1}^{J} \hat{g}_j - g_j^*\|_T^2 + \lambda^2 \sum_{j=1}^{J} I_j(\hat{g}_j) \le O_p\left(n^{-1/2}\right) \|\sum_{j=1}^{J} \hat{g}_j - g_j^*\|_T^{1-\alpha/2} \left(\sum_{j=1}^{J} I_j(\hat{g}_j) + I_j(g_j^*)\right)^{\alpha/2}$$

Case 2a: $\sum_{j=1}^{J} I_j(\hat{g}_j) \leq \sum_{j=1}^{J} I_j(g_j^*)$ Then

$$\|\sum_{j=1}^{J} \hat{g}_j - g_j^*\|_{T} \le O_p\left(n^{-1/(2+\alpha)}\right) \left(\sum_{j=1}^{J} I_j(g_j^*)\right)^{\alpha/(2+\alpha)}$$

Case 2b: $\sum_{j=1}^{J} I_j(\hat{g}_j) \ge \sum_{j=1}^{J} I_j(g_j^*)$

$$\sum_{j=1}^{J} I_j(\hat{g}_j) \leq O_p\left(n^{-1/(2-\alpha)}\right) \lambda^{-4/(2-\alpha)} \|\sum_{j=1}^{J} \hat{g}_j - g_j^*\|_T$$

Hence

$$\|\sum_{i=1}^{J} \hat{g}_j - g_j^*\|_{T} \le O_p\left(n^{-1/(2-\alpha)}\right) \lambda^{-2\alpha/(2-\alpha)}$$

Result 3: Additive Model with multiple penalties, Single cross-validation λ over general X_T, X_V

Suppose that the training and validation set are independently sampled, so the values X_i are not necessarily the same. Suppose the training and validation sets are both of size n. Suppose X is bounded s.t. $|X| \leq R_X$ and the domain of $g \in \mathcal{G}$ is over $(-R_X, R_X)$.

Suppose the same entropy bound (2) for both the training set P_T and validation set P_V . In addition to the assumptions in Result 4, suppose the infinity norm is also bounded

$$\sup_{g_j \in \mathcal{G}_j} \frac{\|\sum_{j=1}^J g_j - g_j^*\|_{\infty}}{\sum_{j=1}^J I_j(g_j) + I_j(g_j^*)} \le K < \infty$$

Special Assumption: Assume the function class is

$$\mathcal{G} = \left\{ \sum_{j=1}^{J} g_j : \ g_j \in \mathcal{G}_j, \sum_{j=1}^{J} \|g_j\|^2 \le \tilde{M} \|\sum_{j=1}^{J} g_j\|^2 \right\}$$

for some constant \tilde{M} . (Assume $\sum_{j=1}^{J} g_j^* \in \mathcal{G}$) Suppose there exist constants M, M_0 s.t. for all j and all $\lambda \in \Lambda$

$$I_j(\hat{g}_{\lambda,j}) \le M \|\hat{g}_{\lambda,j}\|_V^2 + M_0$$

Let $\tilde{\lambda}$ be the optimal λ as specified in Result 2. Then

$$\|\sum_{j=1}^{J} \hat{g}_{\hat{\lambda},j} - \hat{g}_{\bar{\lambda},j}\|_{V} = O_{p}\left(n^{-1/(2+\alpha)}\right) \left(\left(\sum_{j=1}^{J} I_{j}(g_{j}^{*})\right)^{\alpha/(2+\alpha)} + \sum_{j=1}^{J} I_{j}(g_{j}^{*}) + \left\|\sum_{j=1}^{J} g_{j}^{*}\right\|_{V}^{\alpha/2(2+\alpha)}\right) \right) d^{-1/2} + C_{p}\left(n^{-1/(2+\alpha)}\right) \left(\left(\sum_{j=1}^{J} I_{j}(g_{j}^{*})\right)^{\alpha/(2+\alpha)} + \sum_{j=1}^{J} I_{j}(g_{j}^{*}) + \left\|\sum_{j=1}^{J} g_{j}^{*}\right\|_{V}^{\alpha/2(2+\alpha)}\right) d^{-1/2} + C_{p}\left(n^{-1/(2+\alpha)}\right) d^{-1/2} +$$

and $\left\|\sum_{j=1}^{J} g_j^* - \hat{g}_{\hat{\lambda},j}\right\|_V$ is on the same order (differs by a constant).

Proof:

By the triangle inequality,

$$\left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\hat{\lambda}, j} \right\|_{V} \leq \left\| \sum_{j=1}^{J} \hat{g}_{\hat{\lambda}, j} - \hat{g}_{\tilde{\lambda}, j} \right\|_{V} + \left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda}, j} \right\|_{V}$$

By Lemma 2 and Result 2, we can easily bound $\left\|\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j}\right\|_{V}$.

$$\left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda}, j} \right\|_{V} \leq \left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda}, j} \right\|_{T} + \left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda}, j} \right\|_{T} - \left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda}, j} \right\|_{V}$$

$$\leq O_{p} \left(n^{-1/(2+\alpha)} \right) \left(\left(\sum_{j=1}^{J} I_{j}(g_{j}^{*}) \right)^{\alpha/(2+\alpha)} + \sum_{j=1}^{J} I_{j}(g_{j}^{*}) \right)$$

Next bound $\left\|\sum_{j=1}^{J} \hat{g}_{\hat{\lambda},j} - \hat{g}_{\hat{\lambda},j}\right\|_{V}$. By definition of $\hat{\lambda}$, we have the basic inequality

$$\left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V}^{2} \leq 2 \left| \left(\epsilon, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j}, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j}, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j}, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j}, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j}, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j}, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j}, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j}, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j} - \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j} - \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j} - \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{\tilde{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \right)_{V$$

Case 1: $\left| \left(\epsilon, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right)_{V} \right|$ is bigger By Vandegeer (10.6),

$$\left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V}^{1+\alpha/2} \leq O_p(n^{-1/2}) \left(\sum_{j=1}^{J} I_j(\hat{g}_{\tilde{\lambda},j}) + I_j(\hat{g}_{\hat{\lambda},j}) \right)^{\alpha/2}$$

If $\sum_{j=1}^J I_j(\hat{g}_{\tilde{\lambda},j}) \ge \sum_{j=1}^J I_j(\hat{g}_{\hat{\lambda},j})$, we're done. Otherwise, suppose $\sum_{j=1}^J I_j(\hat{g}_{\tilde{\lambda},j}) < \sum_{j=1}^J I_j(\hat{g}_{\hat{\lambda},j})$. By the assumptions,

$$\sum_{j=1}^{J} I_{j}(\hat{g}_{\hat{\lambda},j}) \leq M \sum_{j=1}^{J} \|\hat{g}_{\hat{\lambda},j}\|_{V}^{2} + M_{0}$$

$$\leq M \tilde{M} \|\sum_{j=1}^{J} \hat{g}_{\hat{\lambda},j}\|_{V}^{2} + M_{0}$$

Then

$$\left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V}^{1+\alpha/2} \leq O_{p}(n^{-1/2}) \left(M\tilde{M} \| \sum_{j=1}^{J} \hat{g}_{\hat{\lambda},j} \|_{V}^{2} + M_{0} \right)^{\alpha/2}$$

If M_0 is the biggest, we're done. Otherwise,

$$\begin{split} \left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V}^{1+\alpha/2} & \leq & O_{p}(n^{-1/2}) \| \sum_{j=1}^{J} \hat{g}_{\hat{\lambda},j} \|_{V}^{\alpha} \\ & \leq & O_{p}(n^{-1/2}) \left(\left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V} + \left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - g_{j}^{*} \right\|_{V} + \left\| \sum_{j=1}^{J} g_{j}^{*} \right\|_{V} \right)^{\alpha} \end{split}$$

If $\left\|\sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j}\right\|_{V}$ or $\left\|\sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - g_{j}^{*}\right\|_{V}$ is the biggest on the RHS, then the rate is faster than $O_{p}(n^{-1/(2+\alpha)})$. If $\left\|\sum_{j=1}^{J} g_{j}^{*}\right\|_{V}$ is the biggest, then

$$\left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V} \leq O_{p}(n^{-1/(2+\alpha)}) \left\| \sum_{j=1}^{J} g_{j}^{*} \right\|_{V}^{\alpha/2(2+\alpha)}$$

Case 2: $\left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\hat{\lambda},j}, \sum_{j=1}^{J} \hat{g}_{\bar{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right)_{V} \right|$ is bigger By Cauchy Schwarz,

$$\left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V} \leq O_{p}(1) \left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j} \right\|_{V}$$

Lemmas

Lemma 1:

Suppose for all $\lambda \in \Lambda$, the penalty function $I^v(g_\lambda)$ is upper-bounded by $||g_\lambda||_n^2 = \frac{1}{n} \sum_{i=1}^n g_\lambda^2(x_i)$ with constants M_0 and M:

$$I^{v}(g_{\lambda}) \le M \|g_{\lambda}\|_{n}^{2} + M_{0}$$

Suppose there is some function $g \in \mathcal{G}$ such that

$$||g - g_{\lambda}||_{n}^{1+\alpha/2} \le O_{p}(n^{-1/2})I^{\alpha/2}(g_{\lambda})$$

Then

$$||g - g_{\lambda}||_n \le O_p(n^{-1/(2+\alpha)}) M^{\alpha v/(2+\alpha)} ||g||_n^{2\alpha/v(2+\alpha)}$$

Proof:

From the assumptions, we have

$$\|g - g_{\lambda}\|_{n}^{1+\alpha/2} \le O_{p}(n^{-1/2}) \left(M\|g_{\lambda}\|_{n}^{2} + M_{0}\right)^{\alpha/2v}$$

If $M_0 > ||g_{\lambda}||_n^2$, we're done. Otherwise,

$$||g - g_{\lambda}||_{n}^{1+\alpha/2} \leq O_{p}(n^{-1/2})M^{\alpha/2v}||g_{\lambda}||_{n}^{\alpha/v}$$

$$\leq O_{p}(n^{-1/2})M^{\alpha/2v}(||g_{\lambda} - g||_{n} + ||g||_{n})^{\alpha/v}$$

Case 1: $||g_{\lambda} - g||_n \ge ||g||_n$ Then

$$\|g - g_{\lambda}\|_{n} \le O_{n}(n^{-v/(2v + \alpha v - 2\alpha)})M^{\alpha v^{2}/(2v + \alpha v - 2\alpha)}$$

Note that $\sup_v -\frac{v}{2v+\alpha v-2\alpha} = -\frac{1}{2+\alpha}$, so this rate is faster than $O_p(n^{-\frac{1}{2+\alpha}})$. Case 2: $\|g_{\lambda} - g\|_n \le \|g\|_n$

Then

$$||g - g_{\lambda}||_n \le O_p(n^{-1/(2+\alpha)}) M^{\alpha v/(2+\alpha)} ||g||_n^{2\alpha/v(2+\alpha)}$$

I believe we can often provide a good estimate of M for the entire class \mathcal{G} , which means that we can always estimate the sample size needed to ensure this case never occurs. That is, I believe we can often estimate M s.t.

$$I^{v}(g) \le M \|g\|_{n}^{2} + M_{0} \forall g \in \mathcal{G}$$

Lemma 2:

Let $P_{n'}$ and $P_{n''}$ be empirical distributions over $\{X_i'\}_{i=1}^n$, $\{X_i''\}_{i=1}^n$. Let $P_{2n} = \frac{1}{2}(P_{n'} + P_{n''})$. Suppose X is bounded s.t. $|X| < R_X$.

Let $\mathcal{G}' = \left\{ \frac{g - g^*}{I(g) + I(g^*)} : g \in \mathcal{G}, I(g) + I(g^*) > 0 \right\}$. Suppose g is defined over the domain over X (and zero otherwise). Suppose

$$\sup_{f \in \mathcal{G}'} \|f\|_{P_{2n}} \le R < \infty, \quad \sup_{f \in \mathcal{G}'} \|f\|_{\infty} \le K < \infty$$

and

$$H\left(\delta, \mathcal{G}', P_{n'}\right) \leq \tilde{A}\delta^{-\alpha}, \ H\left(\delta, \mathcal{G}', P_{n''}\right) \leq \tilde{A}\delta^{-\alpha}$$

Then

$$Pr\left(\sup_{g \in \mathcal{G}} \frac{\left| \|g^* - g\|_{P_{n'}} - \|g^* - g\|_{P_{n''}} \right|}{I(g^*) + I(g)} \ge 6\delta\right) \le 2\exp\left(2\tilde{A}\delta^{-\alpha} - \frac{4\delta^2 n}{K^2}\right)$$

Proof: The proof is very similar to that in Pollard 1984 (page 32), so some details below are omitted. First note that for any function f and h, we have

$$||f||_{P_{n'}} - ||h||_{P_{n'}} \le ||f - h||_{P_{n'}} \le \sqrt{2}||f - h||_{P_{2n}}$$

Similarly for $P_{n''}$.

Let $\{h_j\}_{j=1}^N$ be the $\sqrt{2}\delta$ -cover for \mathcal{G}' (where $N=N(\sqrt{2}\delta,\mathcal{G}',P_{2n})$). Let h_j be the closest function (in terms of $\|\cdot\|_{P_{2n}}$) to some $f\in\mathcal{G}'$. Then

$$\begin{split} \|f\|_{P_{n'}} - \|f\|_{P_{n''}} & \leq \|f - h_j\|_{P_{n'}} + \left| \|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}} \right| + \|f - h_j\|_{P_{n''}} \\ & \leq 4\delta + \left| \|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}} \right| \end{split}$$

Therefore for $f = \frac{g^* - g}{I(g^*) + I(g)}$, we have

$$Pr\left(\sup_{g \in \mathcal{G}} \frac{\left| \|g^* - g\|_{P_n} - \|g^* - g\|_{P_{n''}} \right|}{I(g^*) + I(g)} \ge 6\delta\right) \le Pr\left(\sup_{j \in 1:N} \left| \|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}} \right| \ge 2\delta\right)$$

$$\le N \max_{j \in 1:N} Pr\left(\left| \|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}} \right| \ge 2\delta\right)$$

Now note that

$$\begin{aligned} \left| \|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}} \right| &= \frac{\left| \|h_j\|_{P_{n'}}^2 - \|h_j\|_{P_{n''}}^2 \right|}{\|h_j\|_{P_{n'}} + \|h_j\|_{P_{n''}}} \\ &\leq \frac{\left| \|h_j\|_{P_{n'}}^2 - \|h_j\|_{P_{n''}}^2 \right|}{\sqrt{2} \|h_j\|_{P_{2n}}} \end{aligned}$$

By Hoeffding's inequality,

$$Pr\left(\left|\|h_{j}\|_{P_{n'}} - \|h_{j}\|_{P_{n''}}\right| \ge 2\delta\right) \le Pr\left(\left|\|h_{j}\|_{P_{n'}}^{2} - \|h_{j}\|_{P_{n''}}^{2}\right| \ge 2\sqrt{2}\delta\|h_{j}\|_{P_{2n}}\right)$$

$$= Pr\left(\left|\sum_{i=1}^{n} W_{i}\left(h_{j}^{2}(x_{i}') - h_{j}^{2}(x_{i}'')\right)\right| \ge 2\sqrt{2}n\delta\|h_{j}\|_{P_{2n}}\right)$$

$$\le 2\exp\left(-\frac{16\delta^{2}n^{2}\|h_{j}\|_{P_{2n}}^{2}}{4\sum_{i=1}^{n}\left(h_{j}^{2}(x_{i}') - h_{j}^{2}(x_{i}'')\right)^{2}}\right)$$

Since $||h_j||_{\infty} < K$, then

$$\sum_{i=1}^{n} (h_j^2(x_i') - h_j^2(x_i''))^2 \leq \sum_{i=1}^{n} h_j^4(x_i') + h_j^4(x_i'')$$
$$\leq nK^2 ||h_j||_{P_{2n}}^2$$

Hence

$$Pr\left(\left|\|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}}\right| \ge 2\delta\right) \le 2\exp\left(-\frac{4\delta^2 n}{K^2}\right)$$

Since (Pollard and Vandegeer say that)

$$N(\sqrt{2}\delta, \mathcal{G}', P_{2n}) \leq N(\delta, \mathcal{G}', P_{n''}) + N(\delta, \mathcal{G}', P_{n''})$$

then

$$Pr\left(\sup_{g \in \mathcal{G}} \frac{\left| \|g^* - g\|_{P_n} - \|g^* - g\|_{P_{n''}} \right|}{I(g^*) + I(g)} \ge 6\delta\right) \le 2\exp\left(2\tilde{A}\delta^{-\alpha} - \frac{4\delta^2 n}{K^2}\right)$$

Using shorthand, we can write

$$\sup_{g \in \mathcal{G}} \frac{\left| \|g^* - g\|_{P_n} - \|g^* - g\|_{P_{n''}} \right|}{I(g^*) + I(g)} = O_p(n^{-1/(2+\alpha)})$$

Lemma 3:

Suppose the function classes \mathcal{F}_j is a cone and $I_j: \mathcal{F}_j \mapsto [0, \infty)$ is a psuedonorm. Furthermore, suppose

$$H\left(\delta, \{f_j \in \mathcal{F}_j : I_j(f_j) \le 1\}, \|\cdot\|_n\right) \le A_j \delta^{-\alpha_j}$$

Then if $f_j^* \in \mathcal{F}_j$, then

$$H\left(\delta, \left\{\frac{\sum_{j=1}^{J} f_{j} - f_{j}^{*}}{\sum_{j=1}^{J} I_{j}(f_{j}) + I_{j}(f_{j}^{*})} : f_{j} \in \mathcal{F}_{j}, I_{j}(f_{j}) + I_{j}(f_{j}^{*}) > 0\right\}, \|\cdot\|_{n}\right) \leq 2\sum_{j=1}^{J} A_{j} \left(\frac{\delta}{2J}\right)^{-\alpha_{j}}$$

Proof: Let $\tilde{f}_j = \frac{f_j}{\sum_{j=1}^J I_j(f_j) + I_j(f_j^*)}$. Then $\tilde{f}_j \in \mathcal{F}_j$ and $I_j(\tilde{f}_j) \leq 1$. Let $h_{(j)}$ be the closest function to \tilde{f}_j in the δ cover of \mathcal{F}_j . Similarly, let $h_{(j)}^*$ be the closest function to \tilde{f}_j^* in the δ cover of \mathcal{F}_j . Then

$$\left\| \frac{\sum_{j=1}^{J} f_{j} - f_{j}^{*}}{\sum_{j=1}^{J} I_{j}(f_{j}) + I_{j}(f_{j}^{*})} - \left(\sum_{j=1}^{J} h_{(j)} - h_{(j)}^{*}\right) \right\| \leq \sum_{j=1}^{J} \left\| \frac{f_{j} - f_{j}^{*}}{\sum_{j=1}^{J} I_{j}(f_{j}) + I_{j}(f_{j}^{*})} - \left(h_{(j)} - h_{(j)}^{*}\right) \right\|$$

$$\leq \sum_{j=1}^{J} \left\| \frac{f_{j}}{\sum_{j=1}^{J} I_{j}(f_{j}) + I_{j}(f_{j}^{*})} - h_{(j)} \right\| + \left\| \frac{f_{j}^{*}}{\sum_{j=1}^{J} I_{j}(f_{j}) + I_{j}(f_{j}^{*})} - h_{(j)}^{*} \right\|$$

$$\leq 2J\delta$$

Hence

$$H\left(2J\delta, \left\{\frac{\sum_{j=1}^{J} f_j - f_j^*}{\sum_{j=1}^{J} I_j(f_j) + I_j(f_j^*)} : f_j \in \mathcal{F}_j, I_j(f_j) + I_j(f_j^*) > 0\right\}, \|\cdot\|_n\right) \le 2\sum_{j=1}^{J} A_j \delta^{-\alpha_j}$$