身份管理与认证

Identity management (IDM)

Authentication, Authorization, Accounting

身份管理

Single sign on (SSO)

认证协议和系统: kerberos, Radius, Diameter, Oauth 访问控制

LOGO

www.themegallery.com

1.概念: AAA

Authentication, authorization, accounting

o业务系统中最基本的安全服务

• 身份管理和认证是基础:证实客户的真实身份与其所声称的身份是否相符的过程。

the process of verifying a claimed identity

或IAM (identity and access management)

或AIM (Access and Identity Management)

A general model of <u>identity</u> Entity—identity--attributes

https://en.wikipedia.org/wiki/ldentity_management_system

问题

●网络环境中的身份管理和认证

- 举几个你熟悉的业务系统身份管理和认证实例
- 当前的使用现状你还满意吗? 觉得有什么需改进的地方
- 总结
 - 需完成的功能
 - 可能面对哪些安全威胁

●服务商的想法 vs 用户的想法

- 登录用户参与感更强、粘性更强、更可信
- 登录以后我可以记住用户数据,为其提供个性化体验,用户数据还有许多其它用处。。。
- 登录用户信息的真实性,实名制
- 注册要填表格,很多隐私信息
- 还得去收验证
- 一大堆的账号密码,记不住,不安全

从单系统的帐号管理,认证,到IDM 更广义的ID:人,物

*

*

IDM标准发展脉络

早期IT商业目的

1999年 微软推出passport项目,与ebay合作支持电子钱包与支付

Sun -ORACLE ONT BT - france telecom

2001年 Sun公司联合著名企业成立 自由联盟LA,目标是对抗微软单点 登录系统

2002年5月 LA公布SAML1. 0标准 Liberty Alliance

2005年3月 LA公布SAML2. 0标准,并通过互操作测试验证

OASIS Security Assertion Markup Language (SAML)

2005年5月 微软推出info card windows组件,简化繁琐的数字身份登录过程。同时支持个人支付确认功能

2005年 开源项目OpenId诞生

CT、政府逐步介入

2009年9月 ETSI成立INS工作组

2009年5月 Kantara Initiative成立

Merger of the Liberty Alliance and others

2009年9月 3GPP发布GAA 与OpenID互 通 R9规范

2007年9月 3GPP发布GAA 与LA ID-WSF互通 R7规范

2007年6月 3GPP发布GAA R6规范

2007年2月 微软推出CardSpace项目, 同年宣布支持OpenID

2007年 欧盟启动FP7, eIdM2010一揽 子研究项目

2006年12月 ITU-T成立IdM焦点组

- 2010年4月,ITU-T 17设立"基于全球IP网络的分布式名字解析系统体系架构"联络工作组(基于俄罗斯提案)。
- 2010年3月,Open Identity Exchange OIX成立。受0IDF和ICF共同赞助成立,0IX成为美政府可信赖架构的供应商,可以提供认证符合美国联邦标准的线上IdP
- ▶IDM与未来互联网: 2009年9月, ETSI 成立"基于网络与业务的身份和访问控制"行业规范工作组,简称INS;
- ▶IDM与云计算: 2010年1月, OASIS 成立Identity in the Clouds 技术委员会。 (参考 OASIS Identity in the Clouds usecase)
- ▶IDM与物联网: 2010年4月, ITU-T SG 17设立X.discovery研究项目 (基于美国提案);

国内外现状: 欧盟IDM的研究与部署

A LIVE TO LOCAL DE LA COLONIA		欧盟FP5/FP6/FP7	EU成员eID系统调研结果
	eGov	elDM2010(法律支撑) STORK	• eID认证系统调研结果 - 75%的国家将PKI作为密钥认证的战略部署
	隐私保护	TAS3, POCOS, PRIME, PRIMELIFE,	- 27个国家使用登录+密码系统 - 17个国家使用简单用户名+密码登录 - 8个国家使用挑战/响应系统(challenge/response) - 2个国家使用密码计算器
	隐私监测	PRISM	• 技术与基础设施调研结果
	生物识别与测定	TURBINE, ACTIBIO, MOBIO	- 28个国家使用或计划使用基于证书的身份。- 22个国家在eGov服务中已经实现了一定级别保证的基于证书的认
	未来互联网	FIDIS www.fidis.net/home/	证。 - 23个国家在行业标准方面没有统
	电信运营商	SWIFT	一的考虑

国内外现状

o美国:类似DNS,建立全球身份命名标准

- www.handle.net
- 例如: 目前每篇国际期刊论文都有永久标识
- 论文标识: doi:10.1155/2010/101523 (该 出版社已经用上handle system)。因此用户只需要敲入 http://dx.doi.org/10.1155/2010/101523 就可以可以找到那篇文章。

●美国在身份管理技术领域居领先地位

- 在国家层面建立身份管理的监管体系(标准+解决方案)
- 建立身份命名机制(标准+解决方案+运营)

商业应用

Microsoft account(previously known as Microsoft Passport, .NET Passport, Microsoft Passport Network, and Windows Live ID)

Microsoft account support the OpenID framework, with Windows Live ID becoming an OpenID provider

IdM参考模型

发送身份证明

业务提供商响

应身份证明

用户/终端实体

依赖方

SP

身份提供者

IDP

人

法人(机构、组织、代理机构等)

对象:

- 物理对象: 终 端设备、网络 设备、SIM卡 或者智能卡。
- 虚拟对象: 网络、位置、地理空间等。

业务或资源 提供商

e.g.,中国 电信、银行、 电子商务网 站等。 向身份提供者请求身份资源

身份提供者相 应资源请求 政府或可信第 三方

信任凭证服务 信任服务 模式/信务 发现服务 身份桥接 略执/策略执行 联盟

三方身份管理模型对应的实体

IDM model

o SP Service provider, Identity provider IDP

- Isolated model: SP as SP + IDP
- Centralized model: all SPs use a unique IDP
- Federation model:

Federation: the set of agreements, standards and technologies that enable a group of SPs to recognize user identities from other SPs in a federated trust domain.

Federation IDM: A system that relies on Federated identity to authenticate a user without knowing his or her password. (federate user access and allow users to login based on authenticating against one of the system participating in the federation)

2. SSO

• Single sign-on is a user/session authentication process that permits a user to enter one name and password in order to access multiple applications.

0

Types of SSO

- Legacy SSO (Employee/Enterprise SSO) (eSSO, aka – Enterprise or Employee SSO)
- Web Access Management (Web SSO)
- O Cross Domain (realm) SSO
- o Federated SSO

Password Synchronization

- OA process that coordinates passwords across multiple computers and devices and/or applications
- Each computer, device, application still authenticates but behind the scene

- After primary authentication, it intercepts further login prompts and fills them for you
- o Kerberos
- Yale CAS (Central Authentication Service) https://www.apereo.org/cas, also support SAML based delegated authentication, allows an application to access selected additional resources on an end user's behalf without exposing a password

Basic Web SSO (WAM)

- OBrowser based application, Cookie
- O Single sign-on to applications deployed on a single web server (domain)
- OpenID

OpenID (OID)

- an <u>open standard</u> and <u>decentralized</u> protocol by the <u>non-profit</u>

 <u>OpenID Foundation</u> that allows users to be <u>authenticated</u> by
 certain co-operating sites (known as <u>Relying Parties or RP</u>)
 using a third party service. This eliminates the need for
 <u>webmasters</u> to provide their own ad hoc systems and allowing
 users to consolidate their <u>digital identities</u>.[1]
- O AOL, Blogger, Flickr, France Telecom, Google, Hyves, LiveJournal, Microsoft (provider name Microsoft account), Mixi, Myspace, Novell, Orange, Sears, Sun, Telecom Italia, Universal Music Group, VeriSign, WordPress, and Yahoo!. Other providers are BBC, [3] IBM, [4] PayPal, [5] Steam, [6] along with GitHub, Identi.ca, Last.fm, Linkedin, and Twitter. [7]
- Related : Facebook Connect

Cross Domain SSO

- Multiple realms that manage user credentials.
- OA user authenticated in one realm gets signed-on to an application using another realm typically with in the same enterprise

Federated SSO

- Extend SSO across enterprises
- O Liberty Alliance, OASIS, Shibboleth, IBM/Microsoft

-Case study

- -Federal Aviation Administration Requirements:
 - -Provide SSO to ~500,000 users
 - -Across 5000 airports world-wide
 - >100 web and client server applications
 - -Multiple Directories, Departments
 - -Web services authentication

Security Assertion Markup

Language

- an XML-based framework for communicating user authentication, entitlement, and attribute information.
- O Internet2 Shibboleth(<u>http://shibboleth.</u> <u>net/</u>) project, open source federated identity solutions

Shibboleth3(identity platform) support REST- and JSON based assertion in addition to XML-based SAML.

例: Liberty Alliance project,

信任方

身份提供者

SSO Summary

Reduces cost

• Enhances security

- Supports compliance
 - Financial Service (FFIEC directive)
 - Healthcare (HIPPA)

O But....there are risks.

- Malicious user gets hold of unattended desktop
- Malicious processes/services sign on as you to services that they are not supposed to.
- http://tetraph.com/covert_redirect/

MAIN FEATURES IN EXISTING IDENTITY MANAGEMENT INITIATIVES

Initiatives	Privacy	Security	Mobility	Interoperability	Anonymity	Federation	User-centric
PRIME	•	•	•		•		•
PRIMELife	•	•			•		•
DAIDALOS		•	•		•		•
SWIFT	•	5	•	•	•	,	•
Liberty Alliance	•	•		8	•	•	
Kantara	•	•	•	•	•	•	
FIDIS	•	•	•	0.	2.5	3	•
SAML				•	•	•	
Higgins	•	•	8	•	•		•
OpenID							•
Shibboleth	•					•	
STORK	•	•		•			•
PICOS	•	•	•	•			•

Jenny Torres, Michele Nogueira, and Guy Pujolle, A Survey on Identity Management for the Future Network, IEEE COMMUNICATIONS SURVEYS & TUTORIALS

Security: Signing Me onto Your Accounts through Facebook and Google: a Traffic-Guided Security Study of Commercially Deployed Single-Sign-On Web Services http://research.microsoft.com/apps/pubs/default.aspx?id=160659

3. 身份认证基本原理

凭证:

(1) 知道什么(secret knowledge),口令,PIN码,秘密或私钥等

(2) 拥有什么(Token): 磁卡、令牌、密码智能卡, ID卡、门钥匙, 数字证书, 手机, 生物识别特征: 指纹、声音、虹膜、 DNA 及签名等

双因子(two-factor)认证机制: 你有什么 + 你知道什么 如:用户必须同时提供卡片与卡片相应的PIN码

It consists of several steps:

- Obtaining the authentication information from an entity
- Analyzing the data
- Determining if the authentication information is associated with that entity

Authentication System model

o(A, C, F, L, S)

- A information that proves identity
- C information used to validate authentication information (stored on authentication server)
- F complementation function $f: A \rightarrow C$
- L functions that prove identity
- S functions enabling entity to create, alter information in A or C

Purdue University

网络环境中的用户认证

要求 机密性,完整性,不可否认, 抗重发

用户认证信息如何安全传送 如何与网络结构和协议结合 如何满足业务要求: 如移动 安全威胁: 窃听,重发,中间人

假冒,凭证: 丢失、偷窃、复制 Guess, Brute force, Social engineering Phishing Manipulated input devices: keyloggers

☑ □ 令 Password system

• A= password: information associated with an entity that confirms its identity.

- Plaintext (sniffing, steal)
- Encrypted (steal, replay)
- One-way hash (dictionary attack, replay)

• F: Algorithms

Examples: challenge-response, one-time password

oL: equal

字典式攻击和salt

Salt是使这种攻击更困难的一种。Salt是一随机字符串,它与口令连接在一起,再用单向函数对其运算,然后将salt值和单向函数运算的结果存入主机数据库中。如果可能的salt值的数目足够大的话,它实际上就消除了对常用口令采用的字典式攻击。

一次性口令 (One Time Password)

每次登录过程中传送的口令都不相同,以提高登录过程 安全性,并可对付重放攻击。

- 一次性口令的特点:
 - ◈ 概念简单,易于使用
 - ◈ 基于一个被记忆的密码,不需要任何附加的硬件
 - ◈ 算法安全
 - ◈ 不需要存储诸如密钥、口令等敏感信息

需要: 种子(Seed)、迭代(Iteration)及同步

S/Key One-time password

- User chooses initial seed k
- The key generator calculates:

$$h(k) = k_1, h(k_1) = k_2, ..., h(k_{n-1}) = k_n$$

o Passwords are in reverse order:

$$p_1 = k_n, p_2 = k_{n-1}, \dots, p_{n-1} = k_2, p_n = k_1$$

$$h(P_A), h^2(P_A), h^3(P_A) \cdots, h^n(P_A)$$

$$h^{n-i+1}(P_A), i$$

Server B

次性口令产生和验证过程

① 用户输入登录名和相关身份信息ID。

- ② 如果系统接受用户的访问,则给用户传送一次性口令建立所使用 的单向函数f及一次性密码k,这种传送通常采用加密方式。
- ③ 用户选择"种子"密钥x,并计算第一次访问系统的口令z=fn (x)。向第一次正式访问系统所传送的数据为(k, z)。
- ④ 系统核对k, 若正确,则将(ID,fn(x))保存。
- ⑤ 当用户第二次访问系统时,将(ID, fⁿ⁻¹(x))送系统。系统计 算
- f(fⁿ⁻¹(x)),将其与存储的数据对照,如果一致,则接受用户的 访问,并将(ID, fⁿ⁻¹(x))保存。
- ⑥ 当用户第三次访问系统时,将(ID, fⁿ⁻²(x))送系统。系统计 算f(fn-2(x)),将其与存储的数据对照,如果一致,则接受用户 的访问,并保存新计算的数据。
- ⑦ 当用户每一次想要登录时,函数相乘的次数只需 1。

基于共享密钥的认证

- Θ (A,C,F,L,S) A = key
- 基于共享密钥的常见认证协议有:
 - ► 无可信第三方的质询—回应协议(使用HASH,如CHAP)
 - > 有可信第三方,使用密钥分发中心的认证协议
 - ➤ Needham-Schroeder认证协议(多路质询—回应协议) (P41) (如 kerberos)
 - ➤ Otway-Rees认证协议

沙质询—回应(challenge-response)协议

还记得无中心,有共享秘钥的 密钥交互流程吗?

抗重发 验证了双方都知道秘密

- (1) A向B发送一个消息 T_{A} ,表示想和B通话。
- (2) B无法判断这个消息是来自A还是其他 人,因此B回应一个质询 R_B 。 R_B 是一个随 机数。
- (3) A用与B共享的密钥 K_{AB} 加密 R_{B} ,得到密 $K_{AB}(R_B)$,用自己同样拥有的 K_{AB} 加密RB, 对比结果,如果相同就确认了A的身份。 此时B已完成了对A的单向认证。
- (4) A同样需要确定B的身份,于是发送一 个质询 R_{Λ} 给B。 R_{Λ} 也是一个随机数。
- (5) B用与A共享的密钥 K_{AB} 加密 R_A ,得到密 文KAB(RA), 再发送给A; A收到密文KAB (R_A) ,用自己同样拥有的 K_{AB} 加密 R_A ,对 比结果,如果相同就确认了B的身份,完 成了双向认证。
- (6) A确认B的身份之后,选取一个会话密 钥K_S,并且用K_{AB}加密之后发送给B。

Needham-Schroeder认证协议

- (1) 产生一个大的随机数 R_A 作为临时值,向KDC发送消息 $M(R_A, A, B)$;
- (2) KDC产生一个会话密钥KS,再用B的密钥 K_B 加密(A, K_S),作为下轮A发给B的 Ticket K_B (A, K_S),然后再用A的密钥 K_A 加密(R_A , B, K_S , K_B (A, K_S)),发送给A;

- (3) A用自己的密钥 K_A 解密密文,获取 K_S 和 K_B (A, K_S); 然后产生一个新的随机数 R_{A2} ,用KDC发过来的 K_S 加密 R_{A2} ,将票据 K_B (A, K_S)和 K_S (R_{A2})发给B;
- (4) B接收到消息用自己的密钥 K_B 解密密文 K_B (A, KS)得到 K_S ,再用 K_S 解密密文 K_S (R_{A2})得到 R_{A2} ; 然后用 K_S 加密(R_{A2} -1)并产生随机数 R_B ,再发回给A。
- (5) A收到消息后确认了B的身份,再向B发送 K_S (R_B -1)。B收到消息后也可以确认A的 身份,也确认了双方都有 K_S 。

共享秘密: K_A 和 K_B

(1) $A \rightarrow KDC : A \parallel B \parallel$

Ra

(2) KDC → A : EKa [Ra || B || Ks || EKb [Ks ||A]]

(3) $A \rightarrow B$: EKb [Ks ||

A]

(4) $B \rightarrow A$: EKs [Rb]

(5) $A \rightarrow B$: EKs [Rb-1]

Needham-Schroeder认证协议

○问题:

- 记住K_S, 重发K_B(A, K_S)和K_S(R_{A2}),可假冒A
- •解决: 加时间戳 (kerberos) (课外练习)
- A如何对B进行认证 (课外练习)
- KA泄密后?

数字时间戳 (Digital Time-Stamp)

●数字时间戳服务(DTS)是网上安全服务项目,由专门的机构提供。

- ●时间戳是一个经过加密后形成的凭证文档,包括:需加时间戳的文件的摘要、DTS收到文件的日期和时间、DTS的数字签名
- 时间戳产生过程:
- ●用户将需加时间戳的文件用HASH编码加密形成 摘要,并将其发送到DTS; DTS在加入了收到日 期和时间信息后再对该文件加密和数字签名, 然后返回用户

Otway-Rees认证协议

- (1) A产生一消息,包括用和KDC共享的密钥Ka加密的一个索引 号R、A的名字、B的名字和一随机数Ra。
 - (2)B用A消息中的加密部分构造一条新消息。包括用和KDC共享的密钥Kb加密的一个索引号R、A的名字、B的名字和一新随机数Rb。
 - (3)、KDC检查明文R和两个加密部分中的索引号R是否相同,如果相同,就认为从B来的消息是有效的(认证了A,B)。KDC产生一个会话密钥Ks用Kb和Ka分别加密后传送给B,每条消息都包含KDC接收到的随机数。
 - (4) B把用A的密钥加密的消息连同索引号R一起传给A。

KDC对A, B认证

- (1) $A \rightarrow B$: $A \parallel B \parallel R \parallel EKa [A \parallel B \parallel R \parallel Ra]$
- (2) $B \to KDC$: R || A || B || EK a [A || B || R || Ra] || EK b [A || B || R || Rb]
- (3) $KDC \rightarrow B$: R || EKb [Rb || Ks] || EKa [Ra || Ks]
- (4) $B \rightarrow A$: $R \parallel EKa [Ra \parallel Ks]$

基于公钥的认证(无可信第三方的)

- (1) A首先生成质询信息 R_A , R_A 是一个随机数;接着A用B的公钥 K_B 加密会话信息 $\{A,R_A\}$,然后发给B。
- (2) B用自己的私钥解出 $\{A, R_A\}$,再生成质询信息 R_B 和会话密钥 K_S ,接着B用A的公钥 K_A 加密会话信息 $\{R_A, R_B, K_S\}$,然后发给A。
- (3) A用自己的私钥解出 $\{R_A, R_B, K_S\}$,核对 R_A 无误后,用 K_S 加密 R_B ,然后发给B。 B收到 后用 K_S 解出 R_B ,核对无误后完成双向认证。

公钥私钥对的可信问题

数字证书X.509

还记得证书的格式吗? 如何用证书进行身份认证呢?

原理:

 $A \rightarrow B: M, E_{SK_A}(H(M)), CertA$

说明: *B*使用证书,通过验证*A*对*M*的签名,从而验证*A*的身份。

数字证书X.509

只有(1)为单向认证 只有(1)(2)为双向认证 三向认证 由PKI系统验证证书的有效性

常同时传送证书CERT

(3) 利用随机数而不是时间戳实现抗重发

实际系统

- o宽带接入中 PAP, CHAP,EAP,端口
- o 电信网中的RADIUS, DIAMETER
- O Kerberos
- OWeb 2.0 中的Oauth
- O Skype
- o更多: IPSEC, TLS等协议中的认证及密 钥交互

实例: 拨号接入用户的认证: PPP

拔号接入的结构、过程

PPP

oPPP状态转移图

建立在PPP上的口令验证协议(PAP、SPAP、CHAP、MPPE和EAP)

- 1. 口令验证协议(PAP Password Authentication Protocol)
 - 2. 挑战-握手验证协议(CHAP)
 - 3. 微软挑战-握手验证协议(MS-CHAP)

W PAP身份认证的方式

● PAP不是一个强壮的认证协议,它利用双向握手确 认呼叫方的合法性, 但是口令以明文的形式在链 路转送,并且它不能防止重放或重复尝试攻击。 PAP允许在远端节点控制身份认证的频率和时间。

● PAP协议的身份认证是两次握手验证过程。

CHAP

Challenge Handshake Authentication Protocol

● 对PAP进行了改进,不再直接通过链路发送明 文口令

- CHAP采用是三次握手验证,服务器端存有客户的明文口令,所以服务器可以重复客户端进行的运算,将结果与用户返回的口令进行对照。
- CHAP为每一次验证任意生成一个挑战字符串来防止受到重发攻击(replay attack)。在整个连接过程中,CHAP将不定时地向客户端重复发送挑战口令,从而避免第3方冒充远程客户进行攻击。

ID仍明文传,所以Brute force

CAPTCHA

以太网接入: 基于端口的认证

IEEE 802.1x (Port based network access control protocol)

EAP客户端

非授权端口(只允许EAPOL包经过) 授权端口,

RADIUS: RFC 2865~2869

RADIUS

O Remote Access Dial In User Services)RFC2138 (更新RFC2865), RFC2866 RADIUS Accounting

- 管理远程用户验证和授权的常用方法,是一种基于 UDP协议的轻量级(lightweight)协议。
- 允许用户信息集中管理
- 适用于以PPP为基础的接入,如···
- 功能弱: 授权功能几乎没有, 计费功能很差, 计费开始_结束(只计时间, 不能计流量)

RADIUS

● RADIUS服务器可以被放置在Internet网络的任何地方为客户NAS提供验证。

- RADIUS服务器可以提供代理服务将验证请求转发到远端的RADIUS服务器。
 - 例如,ISP之间相互合作,通过使用RADIUS代理服务实现漫游用户在世界各地使用本地ISP提供的拨号服务连接Internet和VPN。如果ISP发现用户名不是本地注册用户,就会使用RADIUS代理将接入请求转发给用户的注册网络。这样企业在掌握授权权利的前提下,有效的使用ISP的网络基础设施,使企业的网络费用开支实现最小化。

o Diameter (1998年,sun提出, IETF AAAWG)

Diameter Base Protocol RFC3588 sept, 2003

● Diameter的一些特性

failover mechanism

Transmission-level security: IPSEC, TLS

• 可靠传送: TCP SCTP

server-initiated messages

• 客户机/服务器的能力协商

Peer discovery and configuration

Handle accounting and billing

• 更好地适用于各种应用

•

Kerberos

O RFC 4120 The Kerberos Network Authentication Service (V5)"

- O RFC 4121 The Kerberos Version 5 Generic Security Service Application Program Interface (GSS-API) Mechanism: Version 2."
- <u>IETF</u> Kerberos working group
- Authentication, Authorization, Accounting
- Stable release 22 Dec 2010 krb5-1.9
- Website http://web.mit.edu/kerberos/
- Kerberos uses port 88 by default.

为网络通信提供可信第三方服务的面向开放系统的认证机制

问题:

•口令次数问题,每次访问服务器均需输入口令。

•众多的应用

可能的解决办法:

- •票据重用:
- •引入票据许可服务器TGS (ticket-granting server
- (2)完整的Kerberos验证协议

Ticket Granting Server

Kerberos 用户的名字,密钥,截止信息(记录的有效时间,通常为几年)等

Kerberos Database

完成principle的认证,并生成全话密钥存放一个Kerberos数据库的只读的副本

Authentication Server

KDBM Server

接受客户端的请求对数据库进行操作

Workstation

用户程序:登录Kerberos,改变 Kerberos密码,显示和破坏Kerberos标签(ticket)等工作。

principle

Kerberos Key Distribution Service

W Kerberos 两种证书

票据ticket和认证符authenticator。这两种证书都要加密, 但加密的密钥不同。

- Ticket用来安全地在AS和TGS之间传递用户的身份,同 时保证使用ticket的用户必须是ticket中指定的用户。 Ticket的组成: C/S的标识, client的地址, 时间戳, 生 存时间,会话密钥五部分组成。Ticket一旦生成,在life 指定的时间内可以被client多次使用来申请同一个server 的服务。
- Authenticator: 提供信息与ticket中的信息进行比较, 一起保证发出ticket的用户就是ticket中指定的用户。认 证符有下列部分组成: client的名字, client的地址,记 录当前时间的时间戳。authenticator只能在一次服务请 求中使用,每当client向server申请服务时,必须重新生 成Authenticator。

Werberos验证标准:详

常用术语的简写:

• IDc、IDv、IDtgs 分别为C、V、TGS的身份

• ADc: 用户的网络地址

• TSi: 第i个时戳

• Lifetime: 第I个有效期限

• Pc: C上的用户口令

• Kc: C和AS的共享密钥

• Kv: V和TGS的共享密钥

• Ktgs: TGS 和AS的共享密钥

• Kc,tgs: C与TGS的共享密钥

• Kc,v: C与V的共享密钥(会话密钥)

C: 客户机

V: 服务器

TGS: ticket-granting

server

AS: 认证服务器

工作过程

用户口令PC:由用户和AS共享,AS将PC保存在数据库中。

1. $C \rightarrow AS : ID_C ||ID_{tas}||TS_1$

2. AS →C :

E_{Kc}[K_c, tgs||ID_{tgs}||TS₂||Lifetime₂||Ticket_{tgs}]

 $Ticket_{tgs} = E_{Ktgs}[K_{c, tgs}||ID_c||AD_c||ID_{tgs}||TS_2||Lifetime_2|$ 说明:

- 1. 不输入C的口令,就不能解开来自 AS的信息
- 2. TS1时戳用来防止重放攻击:
- 3. Kc 由用户口令导出(用户机器收到AS回应后,要求用户 输入密码,将密码转化为DES密钥Kc);
- 4. K_{c, tas} 是 C 和 TGS间的会话密钥。

3. C→TGS: ID_v||Ticket_{tgs}||Authenticator_c

Authenticator_c=E_{Kc}, _{tgs}[ID_c||AD_c||TS₃]

说明:

TGS拥有 K_{tgs},可以解密 Ticket_{tgs},然后使用从 Ticket_{tgs} 得到的K_{c,tgs} 来解密 Authenticator_c

将认证符中的数据与票据中的数据比较,以验证票据发送者就是票据持有者。

4. TGS →C:

E_{Kc}, tgs[K_c, v||ID_v||TS₄||Ticket_v]
Ticket_v=

E_{Kv}[K_c, _v||ID_c||AD_c||ID_v||TS₄||Lifetime₄]

5. C→V∶ Ticket_v||Authenticator_c

6. $V \rightarrow C : E_{k_{C,V}}[TS_5+1]$

其中: Ticket_v=

 $E_{K_v}[K_{c,v}||ID_c||AD_c||ID_v||TS_4||Lifetime_4]$ Authenticator_c= $E_{k_{c,v}}[ID_c||AD_c||TS_5]$

Kerberos安全性

- - o时间同步:整个Kerberos的协议都依赖于时
 - ●口令安全性
 - 重放攻击(Ticket的生存时间)
 - ●密钥的管理(认证中心保存大量的共享私 钥)
 - ●对系统程序的破坏(如恶意篡改登录程 序)

https://www.apereo.org/projects/cas

- 1.用户浏览器访问web应用 http://helloservice, CAS Client会截获用户认证请求:
- 2.CAS Client将用户重定向到CAS Server,并再URL中注明用户访问的service名称,即

service=helloservice;

- 3.CAS Server查看用户的cookie中是否有Ticket Granting Ticket(TGT):
 - 1. 已有TGT,则说明用户已经登陆过,不需要再登录,因此直接为用户访问的Service颁发一个Service Ticket (ST);
 - 2. 没有TGT,则给出用户登录界面,让用户 输入用户名和密码,验证Credential后决 定是否颁发TGT,直到决定是否颁发ST;
 - 4.用户被重定向回web应用,并再url中携带 service和ST信息;
- 5.web应用中的CAS Client向CAS Server验证 Service和ST的有效性;
- 6.如果ST有效,CAS Server象Client返回用户的身份。

因此web应用本身不需要保存用户credential的信息,所有用户认证都是在CAS Server端完成的。

Service Ticket在使用一次以后就过期,因此 CAS Server和CAS Client之间可以不用采用SSL 连接。但是CAS Server给用户浏览器颁发的TGT 是有有效期的(默认2小时),所以CAS Server一般被配置成https从而保证TGT在发给用户浏览器的过程中的安全性。

http://www.5iops.com/html/2012/sso_0713/181.html

OAuth产生的背景

- 随着Web服 务的增多,用户希望这些服务能够协同工作来满足 新的需求。没有任何一个站点可以完美地满足用户的所有需求, 用户可以使用一个站点保存照片,一个存放视频,一个收发邮 件等等。为了实现这种整合,一个站点需要访问另一个站点的 用户资源,而这些资源经常是受保护的(家庭照片、工作文档、 银行记录)。他们需要一个能进入这些站点的授权。
- o 一个实例: Basic Auth要求Twitter应用T把用户名和口令直接 附加在HTTP或HTTPS协议头中发送给Twitter API。这样,T势 必要求用户在其应用中输入自己的Twitter用户名和口令,从而 可以把Twitter的用户名和口令附加在 HTTP(S)协议中发送给 Twitter.
- 这样T的开发者就能知道使用了T的用户的所有用户名和密码,这 样开发者就 能随意使用这些Twitter账号登陆Twitter做任何操作 了。比如,可以修改用户的Twitter密码,甚至直接去Twitter的 Settings中删除这个帐号。这将带来潜在的安全性题。
- o API访问的授权

Oauth应用实例

用户在两家服务提 供商的网站上各自 注册了两个用户, 假设这两个用户名 各不相同,密码也 各不相同。当用户 要使用服务B打印存 储在服务A上的图片 时,用户该如何处 理?

方法一:用户可能先将待打印的图片从服务A上下载下来并上传到服务B上打印

方法二:用户将在服务A上注册的用户名与密码提供给服务B,服务B使用用户的帐号再去服务A处下载待打印的图片,

● OAuth为用户提供了一种方法,可以使服务A在用户的许可下产生一令牌发送给服务B,服务B使用此令牌便可以访问用户在服务A上存储的的资源。此方法避免了用户直接将服务A的用户名和密码告诉服务B而造成用户信息泄露的问题。

OAuth是什么

Open Authentication

- OAuth协议为用户资源的授权提供了一个安全的、开放而又简易的标准。
- ●基于令牌模式的授权:允许用户提供一个令牌,而不是用户名和密码来访问他们存放在特定服务提供者的数据。每一个令牌授权一个特定的网站在特定的时段(例如,接下来的2小时内)内访问特定的资源(例如仅仅是某一相册中的视频)。

http://oauth.net

OAuth的版本

o 2007年12月4日发布了OAuth Core 1.0:

- 此版本的协议存在严重的安全漏洞: <u>OAuth Security Advisory:</u>
 2009.1, 更详细的介绍可以参考: <u>Explaining the OAuth</u>
 <u>Session Fixation Attack</u>。
- o 2009年6月24日发布了OAuth Core 1.0 Revision A:
- o <u>2010年</u>4月,OAuth 1.0协议发表为<u>RFC 5849</u>,一个非正式<u>RFC</u>。
- o 目前,OAuth2.0协议是OAuth的下一个全新版本,与OAuth1.0并不兼容。OAuth 2.0能够同时支持"Web应用、桌面应用、移动终端、家庭设备"等等。在OAuth 2.0中,server将发行一个短有效期的access token和长生命期的refresh token
- April 2010: OAuth 2.0 < draft-ietf-oauth-v2-00.txt > published co-authored by Eran, Dick, David.

http://oauth.net/2/

OAuth中的三种角色

- Service Providers (服务提供方):拥有需要授权才 能使用的API的一方
- Consumers (应用程序方):希望使用API的一方
- Users (最终用户): 资源的拥有者

应用例: Sina微博账号登录 _

用微博帐号登录

用户在你的网站上点击"用微博帐号登录"按钮,弹出Oauth授权页面

用户输入微博账号和密码,即可登录,登录后返回你指定的页面

登录成功后,你可以选择与你的网站 帐号绑定,也可以直接用微博帐号实 现同等功能。

先注册一个应用, 得到应用专属App Key和App Secret。 对应用发出的请求 添加签名,向新浪 微薄开放平台表明 应用的合法性。

因为OAuth2.0的客户端验证授权会获得用户明文密码,所以实行有限开放。

授权级别和OAuth2.0 access_token有效期对应表:

申请条件:

应用分类属于桌面客户端、手机客户端。 应用使用人数在**30000**以上。

授权级别	测试	普通	中级	高级	合作
授权有效期	1天	7 天	15天	30天	90天

应用本身已经通过开放平台文案、广场审核,并在广场上展示超过15天。应用本身功能与新浪微博关联紧密。

如果您的应用符合以上申请条件,可在应用控制台,接口管理标签下的授权机制选项中进行在线申请。

http://open.weibo.com/wiki/Oauth

Oauth1.0开发

●为了实现Oauth认证server API需要提供 三个接口:

- Temporary Credential Request https://photos.example.net/initiate
- Resource Owner Authorization URI: https://photos.example.net/authorize
- O Token Request URI: https://photos.example.net/token

前面的例子,printer- Oauth client, photo----Oauth server

o(1)Oauth client,向Oauth server注册, server返回client credentials

- O Client Identifier dpf43f3p2l4k3l03
- O Client Shared-Secret: kd94hf93k423kf44

(2) client向server请求临时证书 (temporary credentials), server返

回证书

POST /initiate HTTP/1.1

Host: photos.example.net

o HTTP/1.1 200 OK 得到临时token,表 Content-Type: application/x-www-form-urlencoded 示认证通过 oauth_token=hh5s93j4hdidpola&oauth_token_secret=hdhd0244k9j7ao03& oauth_callback_confirmed=true

(3) 客户端(client) 将用户代理(useragent) 重定向到server的授权界面 证书

https://photos.example.net/authorize?oauth_token=hh5s93j4hdidpola

- o用户填写用户名和密码,由server 验证,授权成功后server将用户代理重定向到(2)中的oauth_callback,返回给用户代理一个verifier code,此值在下一步用来验证用户代理的唯一性。
- o http://printer.example.com/ready? 临时证书

oauth_token=hh5s93j4hdidpola&oauth_verifier=hfdp7dh39dks9

(4) 客户端(client) 向server申 请令牌证书(token credentials)。

POST /token HTTP/1.1

Host: photos.example.net Authorization: OAuth realm="Photos", oauth consumer key="dpf43f3p2l4k3l03", oauth token="hh5s93j4hdidpola", oauth signature method="HMAC-SHA1", oauth timestamp="137131201", oauth_nonce="walatlh", oauth verifier="hfdp7dh39dks9884", oauth signature="gKgrFCywp7rO0OXSjdot%2FIHF7IU%3D"

Server返回令牌证书 访问令牌,用于多次访问资源

o HTTP/1.1 200 OK

Content-Type: application/x-www-form-urlencoded

oauth_token=nnch734d00sl2jdk&oauth_token_secret=pfkkdhi9sl3r4s00

OAuth库和资源

ActionScript/Flash

oauth-as3 http://code.google.com/p/oauth-as3/

A flex oauth client

C/C++

QTweetLib http://github.com/minimoog/QTweetLib (网址失效)

libOAuth http://liboauth.sourceforge.net/

Clojure

clj-oauth http://github.com/mattrepl/clj-oauth

.net

oauth-dot-net http://code.google.com/p/oauth-dot-net/

DotNetOpenAuth http://www.dotnetopenauth.net/

Erlang

erlang-oauth http://github.com/tim/erlang-oauth

Java

Scrible http://github.com/fernandezpablo85/scribe-java

oauth-signpost http://code.google.com/p/oauth-signpost/

Javascript

oauth in js http://oauth.googlecode.com/svn/code/javascript/

OAuth库和资源

Objective-C/Cocoa & iPhone programming

OAuthCore http://bitbucket.org/atebits/oauthcore (网址失效)

MPOAuthConnection http://code.google.com/p/mpoauthconnection/

Objective-C OAuth http://oauth.googlecode.com/svn/code/obj-c/

Net::OAuth http://oauth.googlecode.com/svn/code/perl/

PHP

tmhOAuth http://github.com/themattharris/tmhOAuth

oauth-php http://code.google.com/p/oauth-php/

Python

python-oauth2 http://github.com/brosner/python-oauth2 (网址失效)

Qt

qOauth http://github.com/ayoy/qoauth

Ruby

Oauth ruby gem http://oauth.rubyforge.org/ (网址失效)

Scala

DataBinder Dispatch http://dispatch.databinder.net/About (网址失效)

其它话题

● 实体认证的作用

- 认证分为实体认证和消息认证。
- 实体认证是对通信主体的认证,目的是识别通信方的真实身份,防止假冒,常用数字签名的方法;
- 消息认证是对通信数据的认证,目的是验证消息在 传送或存储过程中是否被篡改,一般用消息摘要的 方法。

其它话题

- o Passfaces: 一个身份验证系统, 让用户识别认识的人脸
- oCAPTCHA: 由计算机来区分人和 计算机