浙江大学实验报告

 专业 1:
 机械工程

 姓名 1:
 徐屹寒

 学号 1:

 专业 2:

 姓名 2:

 学号 2:

 日期:
 11.19

 地点:
 东 3-308

课程名称:	电工电子学实验	指导老师:	陆玲霞	实验类型:	验证型
实验名称:		成绩:	老山干	- i签名:	
头巡右你:	集成运算放大器应用(二)	风织:		」並右:	

一、实验目的

- 1. 掌握幅值比较器的电路组成及工作原理。
- 2. 掌握用集成运放构成的方波、三角波发生器的工作原理和性能。
- 3. 了解压控脉宽调制电路的组成和工作原理。

二、实验设备

模拟电子技术实验箱,双踪数字示波器,函数信号发生器,直流电源,数字式万用表

三、实验原理

1. 同相输入电压比较器

运放工作在开环状态,输出为正、负饱和电平。

$$\stackrel{\scriptscriptstyle \Delta}{=} u_{\scriptscriptstyle i} > U_{\scriptscriptstyle R} \, \forall i \, , \quad u_{\scriptscriptstyle o} = U_{\scriptscriptstyle OH} \, ; \quad \stackrel{\scriptscriptstyle \Delta}{=} u_{\scriptscriptstyle i} < U_{\scriptscriptstyle R} \, , \quad u_{\scriptscriptstyle o} = U_{\scriptscriptstyle OL} \, ; \quad$$

电压传输特性曲线如右图所示。

当输入为一定幅度的正弦波时,比较器将输入正弦波变换为输出矩形波。

- 2. 由集成运放构成的方波、三角波发生电路和压控脉宽调制电路
- (1)) 由集成运放构成的方波、三角波发生电路

其中 u_{o1} 输出方波, u_{o2} 输出三角波

周期
$$T = 4R_{\rm f}C_{\rm f}\frac{R_{\rm l}}{R_{\rm 2}}$$

频率
$$f = \frac{1}{T} = \frac{R_2}{R_1} \frac{1}{4R_{\rm f}C_{\rm f}}$$

(2) 压控脉宽调制电路

电路中 A3 构成压控脉宽调制电路。

四、预习要求

预习课本、学在浙大和钉钉群上传的课件、学银在线(学习通)上的视频学习,学习了电工电子学中 集成运算放大器等相关知识

五、实验内容

- 1. 同相输入电压比较器
 - 1、操作方法与实验步骤

 U_R 接直流电压 1V。输入 u_i 分别加直流电压 0.5V 和 1.5V,用万用表测量相对应的输出电压

 u_o , 并记录 u_i , u_o 值

2、实验记录

2. 同相输入电压比较器波形变换

1、操作方法与实验步骤

 U_R 不变(接直流电压 2V), 输入 u_i 加入正弦信号(U_{pp} = 10V,f = $100H_Z$),用示波器双踪同时显示 u_i , u_o 波形,记录波形和参数(幅值,周期,特别标注 u_o 高低电平转换时 u_i 的大小位置)。

2、实验记录

3. 观测传输特性曲线

1、操作方法与实验步骤

对(1)的输入条件不变,将示波器设置成 XY 方式,显示电压传输特性曲线,记录曲线和输入转折门限电压,输出高、低电平值。

2、实验记录

4.发生电路输出电压

1、操作方法与实验步骤

先连接 A_1,A_2 两级电路, A_3 级电路暂时不连。 调节电位器 R_{p1} 滑动头,使得 $R_{p1}=0$,用示波器同时观察 u_{o1} 和 u_{o2} 波形,记录两波形,测量记录 u_{o1} 和 u_{o2} 的频率和幅值。调节电位器 R_{p1} ,再次观察并记录 u_{o1} 和 u_{o2} 波形和参数

2、实验记录

$$R_{p1} = 0$$
 改变 R_{p1}

曲
$$f = \frac{R_2}{R_1} \frac{1}{4R_f C_f}$$
 可知 $R_f = \frac{R_2}{R_1} \frac{1}{4fC_f} = 109k\Omega, R_{p1} = R_f - R_5 = 9k\Omega$

5. 脉宽调制电路

1、操作方法与实验步骤

保持 $R_1=R_2=100k\Omega$, $R_{p1}=0$ 。连接好 A_3 级电路。把 u_{o2} 作为脉宽调制电路的输入电压,根据下表

改变参考电压 U_R 值完成各项内容的测试。

2、实验记录

参考电压 $U_{\scriptscriptstyle R}$ /V	$U_{Rmax} = 4.123$	1	0	-1	$U_{R \min} = -4.066$
u_{o3} 占空比 t_W/T	21.5	42.9	49.8	56.7	77.6
u_{o3} 平均值 U_{o3}/V	-5.93	-1.86	-0.548	0.756	4.74

$$U_R = 4.123V$$

$$U_R = 1V$$

$$U_R = -1V$$

 $U_{\scriptscriptstyle R} = -4.066 V$

六、实验总结

1, p172

- 2. **图 5.17-1 (a) 电路中若 UR 接地,分析输入为正弦波时输出为何种波形。**输出矩形波。且占空比为 50%。
- 3. 图 **5.17-2** 电路提供的元件参数,估算输出三角波和方波的频率。若要改变输出波形频率和幅值,应调整那些元件的参数?

频率为 250Hz,调整 R1, R2, Rf, Cf 大小以改变频率,调整 R1 和 R2 以改变幅值。

- 4. 思考以下问题
- (1) 图 5.17-2 电路中, D3 和 D4 起什么作用? 去掉 D3、D4 会影响电路正常工作吗? 起到限压作用,可以保护电路安全。不会影响。
- (2) 图 5.17-2 电路, 若 D1、D2 有一个击穿短路,输出 u₀₁, u₀₂变成怎样的波形?输出电压的幅值将会变大,波形上下限幅度将会变大。
- (3)图 5.17-2 电路中,若将 U_R 接地, \mathbf{u}_{03} 输出矩形波的占空比为多少? 50%
- 2、整理实验数据,分析实验结果,总结电路的特点。
 - 1. 同相输入电压比较器 运放工作在开环状态,输出为正、负饱和电平。

2. 由集成运放构成的方波、三角波发生电路

集成运放 A_1 构成电压比较器,输出电压 u_{o1} 由双向稳压管 D_z 限幅, A_2 构成积分电路。电压比较器的输出电压 u_{o1} 作为积分电路的输入电压,积分电路的输出电压 u_{o2} 又作为电压比较器的输入电压。输出电压的幅度只受 R_1,R_2 影响,不受 R_f 影响,而频率受 R_1,R_2,R_f 的共同影响。

3. 压控脉宽调制电路

随着 U_R 的增大占空比不断减少,输出电压不断减小

3、误差分析

同相输入电压比较器波形变换实验中, u_o 高低电平转换时 u_i 的大小理论值为2V,但是实测值为2.08V,可能是电压源的电压不是准确的2V或者示波器读数不准确等。

4、心得体会

本次实验中我对集成运算放大电路有了更深一步的理解,也能够更熟练地运用各种仪器。