Задание 9-2. Водяное отопление.

Часто для обогрева помещений использую горячую воду. В данной задаче анализируются различные способы такого обогрева, если имеется ограниченная порция горячей воды.

Итак, необходимо обогреть комнату (например, парилку в бане), начальная температура которой $t_0=10^{\circ}C$.

Теплоемкость комнаты равна C_0 (это полная теплоемкость, т.е. сумма произведение удельных теплоемкостей на массы различных предметов в комнате, включая и воздух $C_0=cm$). Для нагревания используется горячая вода, температура которой равна $t_1=70^{\circ}C$. Теплоемкость всей имеющейся воды равна $C_1=2C_0$ (это тоже произведение удельной теплоемкости воды на ее массу).

Во всех пунктах данной задачи потерями теплоты в окружающую среду будем пренебрегать.

Сначала рассмотрим примитивный способ обогрева: горячую воду целиком приносим в комнату и ждем установления теплового равновесия.

1. Рассчитайте конечную температуру комнаты t при таком способе обогрева.

Оказывается, что имеется более эффективный способ нагрева. Разделим воду на N одинаковых частей. Затем занесем в комнату первую порцию воды, дождемся установления теплового равновесия (обозначим установившуюся температуру в комнате после первой порции воды x_1), затем вынесем первую порцию воды и внесем вторую порцию воды (после нее температура в комнате x_2) и т.д. до последней порции воды температура в комнате x_N и будет конечной температурой $x_N = t$.

- 2. Получите формулу, позволяющую рассчитать температуру после k той порции x_k через предыдущее значение x_{k-1} и другие известные по условию величины.
- 3. Рассчитайте значения конечной температуры в комнате при делении воды на 2 и 3 равные порции.
- 4. Получите общую формулу для конечной температуры в комнате при делении воды на N равных частей. В эту формулу должны входить только заданные в условии величины.

Подсказка: Рассмотрите величины $\Delta x_k = x_k - t_1$ - разность между температурой в комнате и температурой горячей воды.

5. Численно оцените, до какой максимальной температуры можно нагреть комнату таким способом.

Задание 9-2. Водяное отопление. Лист ответов.

1. Конечная температура при примитивном способе
2. Формула, связывающая x_k с x_{k-1}
3. Конечные температуры при разбиении
На 2 порции
На 3 порции
4. Общая формула для конечной температуры при разбиении на N порций
5. Максимальная конечная температура