

University of Kentucky College of Agriculture, Food and Environment Cooperative Extension Service

Advanced Ag Econ Data Analysis

MARK LAB

U.S. agricultural output, inputs, and total factor productivity, 1948-2017

GRAPHICAL ILLUSTRATION

Broadband Availability

Tyler Mark, Terry Griffin, and Brian Whitacre

BROADBAND COMMENTS

- "Broadband access is essential for farmers and ranchers to follow commodity markets, communicate with customers, and access new markets around the world"
 - American Farm Bureau
- Broadband is no longer a luxury but a necessity for modern agriculture and the quality of life for rural Americans, Missouri Farm Bureau President Blake Hurst
- "widespread broadband service could boost the agricultural economy by an estimated \$64.5 billion"

WIRELESS UPLOAD AVAILABILITY FOR CORN AND WHEAT PRODUCTION, 2015

VERIZON COVERAGE

Food and Environment

ARE BROADBAND SPEEDS ENOUGH?

AV imagery example

Mike FCC Periodition of it Broadband Speed

30₄₀ acre field with 17 pictures ~ 111 MB (almost 3 MB/acre)

25₉₂ acres with 152 pictures ~450MB (almost

■ Yield, As-Applied, and Prescription Data

Scott Shearer, The Ohio State University

Spraying 0.3 MB/acre

Planting cre

Yield data 4.2 MB/agre

■ Soil /Fertility Data 0.6 MB/acre up

Prescription files 0.01 MB/acre

EXTREME DATA COLLECTION

- OSU Terra Project
 - 18.4 gigabytes of data for 1 plant
 - 28 megabytes per kernel
 - 60 petabytes of data for the 100 ac field
 - 360 Filing Cabinets!!!

Crop Rotations

Gwanseon Kim, Tyler Mark, and Nick Pates

CROP ROTATION RESPONSE

Figure 8: Average MLRA-Group Short-Run Cross-Price Marginal Effect over CONUS

STATE LEVEL EXAMPLE

Precipitation

SIMULATION RESULTS

Simulate and forecast future distribution of the main crops in Kentucky

Able to find what percentage of acreage for each crop will be placed on average in future

0.040.00-

Soybean

Tobacco

Precision Dairy

Tyler Mark

PRECISION DAIRY

- Milk yield by cow
- Daily body condition score
- Weight
- Respiration Rate
- Chewing Activity
- Rumination
- Rumen pH
- Lameness
- Animal Location
- Sleep

- Water Consumption
- Body Temperature
- Feed Intake
- Heart Rate
- Mastitis
- Lying/Standing Behavior
- Heat
- Pregnancy
- Calving Event
- Comments
- Etc.

Windfalls or wind falls? Effects of Turbine development of Us ag land values

Nicholas Pates, Gwanseon Kim, Tyler Mark, Matthias Ritter

WIND TURBINE LOCATIONS IN THE CONTIGUOUS UNITED STATES

2016 TURBINE COUNT BY STATE

SUMMARY STATISTICS

Variable	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
Per-Acre Price (\$/Acre)	341	1,692	3,650	10,080	9,318	181,747
Lot Size (Acres)	2.26	15	35.8	56.6	70.8	1,278
Slope	0	1	4	7.55	9	87
Soil Silt (%)	0	25.3	38.7	39.3	53.6	90
Soil Clay (%)	0	18.4	24.8	25.7	32.8	80.8
NCCPI	0	0.288	0.527	0.491	0.689	0.991
Nearest Market Pop.	25,137	46,187	117,394	345,907	359,968	2,657,146
Distance to Nearest Market (Miles)	0.00818	16.5	26.8	32.7	41.5	201
Distance to Rail (Miles)	0.00119	1.51	3.47	4.97	6.64	66.4
Distance to Primary Road (Miles)	0.0466	9.89	17.4	22.5	29.4	181
Distance to Elevator (Miles)	0.00781	11.6	19.2	24.8	32.4	162
Distance to Turbine (Miles)	0.0166	32.2	85.2	120	166.	876

SALE PRICE STEP-FUNCTION PREDICTIONS BY DISTANCE TO WIND TURBINE

Consumer Panels

CONSUMER PANELS

Products	Regions	2008	2009	2010	2011	2012	2013	2014	201
<u>Granola</u>	Northeast	27,469	17,054	14,508	19,855	23,070	19,023	13,012	14,171
	Midwest	36,299	32,427	37,898	42,753	45,648	41,713	37,471	36,763
	South	32,387	32,201	34,556	41,673	45,095	42,724	38,065	46,816
	West	34,787	37,400	60,834	73,067	75,967	65,929	68,496	77,001
	Total	130,942	119,082	147,796	177,348	189,780	169,389	157,044	174,751
<u>Nuts</u>	Northeast	467	577	970	1,873	6,001	18,687	23,220	25,808
	Midwest	166	349	751	1,189	2,902	7,607	15,915	19,944
	South	222	253	426	613	998	3,559	10,271	20,181
	West	-	79	214	322	618	1,708	26,944	42,806
	Total	855	1,258	2,361	3,997	10,519	31,561	76,350	108,739
<u>Nutrition</u>	Northeast	-	9	26	198	863	10,470	21,753	20,405
	Midwest	45	253	94	150	1,523	6,305	13,531	15,703
	South	104	504	32	-	63	553	12,958	14,516
	West	4,073	3,312	2,959	6,416	9,303	12,216	19,194	16,999
	Total	4,222	4,078	3,111	6,764	11,752	29,544	67,436	67,623
<u>Protein</u>	Northeast	-	54	47	32	65	185	314	8,149
	Midwest	253	1,540	1,018	1,367	2,230	3,256	3,403	5,027
	South	1,029	3,023	187	153	170	270	276	596
	West	660	6,106	4,806	3,235	3,813	4,845	967	494
	Total	1,942	10,723	6,058	4,787	6,278	8,556	4,960	14,266

Other Thoughts

FILLING THE GAPS

2016 JOURNAL OF THE ASFMRA

ABSTRACT

The promise of "big data" has been praised by the popular media. Concepts and impediments surrounding big data are discussed relative to both the current status and anticipated direction of the industry. Rural property professionals, such as farm managers and rural appraisers, have an opportunity to position themselves and their clients to make effective use of big data. Topics relevant to big data in agriculture include farmland values, lease arrangements, data ownership, data as an asset and its valuation, and the ramifications of wireless connectivity. The challenges that rural property professionals may encounter when integrating big data into their portfolio of services are described.

Big Data Considerations for Rural Property Professionals

By Terry W. Griffin, Tyler B. Mark, Shannon Ferrell, Todd Janzen, Gregory Ibendahl, Jeff D. Bennett, Jacob L. Maurer, and Aleksan Shanoyan

Terry W. Griffin is Assistant Professor, Kansas State University, Manhattan, Kansas. Tyler B. Mark is Assistant Professor, University of Kentucky, Lexington, Kentucky. Shannon Ferrell is Associate Professor, Oklahoma State University, Stillwater, Oklahoma. Todd Janzen is Attorney, Janzen Agricultural Law LLC, Indianapolis,

POTENTIAL & BARRIERS

Potential

- Fully integrated system (farm level)
 - Transparency within the supply chain
- Analytical tool development
- Secondary Usage
- Supplementing USDA
- Efficiency improvements

Barriers

- Analytical Tools
- Training
- Security
- Privacy
- Broadband
- Low Adoption
- Small farms

SUMMARY

- Potential to overcome economies of scale for small farms
- Developing additional tools
- Farm level data is still a big barrier
- Data platforms are racing to acquire acres
 - Who will win
- Data will have more value in secondary uses
 - Sold
 - Becomes an asset
 - Built into land values
- Privacy, security, & data movement
- Anti-trust or Arbitrage

CONTACT INFORMATION

Tyler Mark
Production Economist
Phone: 859.257.7283

Email: tyler.mark@uky.edu

@kytweeter55

