TD 1 TELECOMMUNICATION

Prénom et Nom : Mamadou Yaya Mane

Licence : Agro-TIC

1.1 Traçons le signal échantillonné :

1.2 Expliquons comment la fréquence d'échantillonnage peut être calculée

La fréquence est déterminée en fonction de la période par la formule : Fe = 1 / T avec T la période et Fe la fréquence Non on ne peut pas le calculer à partir de la figure car la période d'un échantillon n'est pas donnée dans la figure

1.3 Calcule des valeurs quantifiées des échantillons

Niveau	▼ 0 ▼	1 🔻	2 _	3 🔻	4 🔻	5 🔻	6 🔻	7 🔻	8	9 🔻	10 🔻	11 🔻	12 🔻	13 🔻	14 🔻	15 🔻	16 🔻	17 🔻	18 🔻	19 🔻	20 🔻
echantillonage	-2	-0,5	0,5	5	4,5	0,5	4	13,5	13	5,5	-3	-3	-10	-14	-14,5	-14	-10,5	-10,5	-5,5	1	. 0
	-2,96296296	-0,37037037	0,37037037	3,7037037	3,33333333	0,37037037	2,96296296	10	9,62962963	4,07407407	-2,22222222	-2,22222222	-7,40740741	-10,3703704	-10,7407407	-10,3703704	-7,7777778	-7,77777778	-4,07407407	0,74074074	0
quantification	-:	0	0	4	3	0	3	10	10	4	-2	-2	-7	-10	-11	-10	-8	-8	-4	1	. 0
codage binaire a 5 bits	10011	00000	00000	00100	00011	00000	00011	01010	01010	00100	10010	10010	10111	11010	11011	11010	11000	11000	10100	00001	00000

1.4 Tracons le signal quantifiee

1.5 et 1.5 et 1.6 et 1.7 resume sur le tableau ci-dessous

Colonne1	Colonne2 💌					
l'ecart q	1,35					
le niveau (L)	32					
le nombre de bit (n)	5					
nombre de cannaux	1					
frequence (fe)	1					
le temps en s econde (t)	20					
le debit (D)	5					
le poids ou volume (v)	100					

La période T = 1 / fe = 1 / 1 = 1

L= Umax – Umin / q <=> L=
$$15 - (-15)$$
 / q \Leftrightarrow L= 30 / q \Leftrightarrow L = $30/1.35 = 22.222$
L = 2^n => 2^n = 22.22 => n^n (2) = 10 (22.22) => 10 (22.22) / 10 (2) = 10 (2.22) / 10 (2) = 10 (2.22) / 10 (2) = 10 (2) = 10 (2) = 10 (2) = 10 (2) = 10 (2) = 10 (2) = 10 (2) = 10 (2) = 10 (3) = 10 (2) = 10 (2) = 10 (3) = 10 (4) = 10 (2) = 10 (3) = 10 (4) = 10 (4) = 10 (5) = 10 (5) = 10 (6) = 10 (6) = 10 (7) = 10 (8) = 10 (8) = 10 (9) = 10 (9) = 10 (1) = 10 (1) = 10 (2) = 10 (2) = 10 (2) = 10 (2) = 10 (3) = 10 (4) = 10 (4) = 10 (5) = 10 (6) = 10 (6) = 10 (7) = 10 (7) = 10 (8) = 10 (8) = 10 (8) = 10 (9) = 10 (1) = 10 (1) = 10 (2) = 10 (2) = 10 (2) = 10 (3) = 10 (4) = 10 (4) = 10 (5) = 10 (6) = 10 (6) = 10 (6) = 10 (6) = 10 (6) = 10 (6) = 10 (6) = 10 (6) = 10 (6) = 10 (7) = 10 (8) = 10 (8) = 10 (8) = 10 (8) = 10 (8) = 10 (8) = 10 (8) = 10 (8) = 10 (9) = 10 (9) = 10 (1