AI & ML Course MidSem 3(Apr 15, 2024)

Time: 70 minutes

Instructions

- Answer all questions
- All answers must be written in the provided spaces. Answers written outside the boxes will not be not graded.
- Last five pages are for rough work. Will not be graded.

Name:		SRNO:		
		220-101		
	Room no:	Serial Number:		

Question:	1	2	3	4	Total
Points:	10	15	10	5	40
Score:					

1. Consider learning a mixture of Bernoulli distribution of the following form.

$$P(X = x | \theta, \alpha) = \sum_{i=1}^{k} \alpha_i \theta_i^x (1 - \theta_i)^{(1-x)}$$

$$\alpha_i > 0, \sum_{i=1}^k \alpha_i = 1, 0 < \theta_i < 1$$

From Dataset $\mathcal{D} = \{x_1, \dots, x_N\}$ we wish to learn the parameters $\{\theta, \alpha\}$ through the EM algorithm. Let $\bar{\alpha}, \bar{\theta}$ be the current estimate of the parameters and the probabilities $q_i^{(j)} = \frac{\bar{\alpha}_i \bar{\theta}^{x_j)^{(1-\bar{\theta}_i)}(1-x_j)}}{P(X_j = x_j | \bar{\theta}, \bar{\alpha})}$

(a) (3 points) The EM algorithm computes the new estimate of the parameters by solving the following problem

$$max_{\alpha,\theta}Q(\alpha,\theta)$$

State $Q(\alpha, \theta)$ in terms of $q_i^{(j)}$, Data and the parameters.

Solution:

$$Q(\alpha, \theta) = \sum_{i=1}^{k} \sum_{j=1}^{N} q_i^j \log \alpha_i + \sum_{j=1}^{N} \left(q_i^{(j)} x_j log \theta_i + (1 - x_j) q_i^{(j)} log (1 - \theta_i) \right)$$

(b) (3 points) Show that from the above problem the new estimate of $\alpha_i^* = \frac{N_i}{N}$. Your answer should express N_i in terms of $q_i^{(j)}$, Data and the current estimate

Solution: It is to be noted that the optimization problem is separable in α and θ_i . Thus

$$\alpha^* = \operatorname{argmax}_{0 \le \alpha_i \le 1, \sum_{i=1}^k \alpha_i = 1} \sum_{i=1}^k \sum_{j=1}^N q_i^j \log \alpha_i = \operatorname{argmax}_{0 \le \alpha_i \le 1, \sum_{i=1}^k \alpha_i = 1} \sum_{i=1}^k N_i \log \alpha_i$$

where $N_i = \sum_{j=1}^N q_i^j$. Check that the objective can be written as

$$-NKL(\alpha^*, \alpha) + N \sum_{i=1}^{k} \alpha_i^* \log \alpha_i^*$$

This is maximized at $\alpha = \alpha^*$.

(c) (4 points) Find θ_i^*

Solution: Again noting that the problem is separable in the θ_i we have

$$\theta_i^* = \operatorname{argmax}_{\theta_i} \sum_{i=1}^N \left(q_i^{(j)} x_j log \theta_i + (1 - x_j) q_i^{(j)} log (1 - \theta_i) \right)$$

Using the procedure as in the above question, optimality is obtained at

$$\theta_i^* = \frac{\sum_{j=1}^n q_i^{(j)} x_j}{n_i}$$

- 2. Consider a HMM with three hidden states and two observables.
 - (a) (2 points) Find A where $P(Z_{t+1} = s_i | Z_t = s_j) = a_{ij}$. It is given that $a_{ij} = \alpha_i (1 \delta(s_i, s_j))$. Your answer must be numerical.

Solution: From modelling considerations, for every $i \in \{1, 2, 3\}$,

$$\sum_{j=1}^{3} a_{ij} = 1 \implies 2\alpha_i = 1$$

This is true because $a_{ii} = 0$. Thus $a_{ii} = 0, a_{i \neq j} = \frac{1}{2}$

(b) (2 points) Find B where $P(X_t = v_l | Z_t = s_i) = b_{il}$. It is given that $b_{i1} - b_{i2} = (i-1)\beta$ for all i, l. Find β_0 , the maximum value of β for which B will be a valid parameter matrix.

Solution: Since $b_{i1} + b_{i2} = 1$, $\Longrightarrow b_{i1} = \frac{1}{2}(1 + (i-1)\beta)$. Since $b_{i1} \leq 1$, it implies that $\frac{1}{2}(1 + (i-1)\beta) \leq 1$ and $\beta \leq \frac{1}{i-1}$. Since $i \leq 3$, the maximum value of β is $\beta_0 = \frac{1}{2}$.

(c) (5 points) Choose A and B as above with $\beta = \frac{1}{2}\beta_0$. Find $\alpha_2(1) = P(X_1 = x_1, X_2 = v_1, Z_2 = s_1)$ for all i. Assume that $\alpha_1(i)$ are all equal.

Solution: We first note that $\beta = \frac{1}{4}$. $b_{11} = b_{12} = \frac{1}{2}$, $b_{21} = \frac{5}{8}$, $b_{22} = \frac{3}{8}$, $b_{31} = \frac{3}{4}$, $B_{32} = \frac{1}{4}$. Since $a_{11} = 0$ $\alpha_2(1) = \sum_{i=1}^{N} \alpha_1(i)a_{i2}b_{i1} = \frac{1}{3}\frac{1}{2}(\frac{5}{8} + \frac{3}{4}) = \frac{5}{16}$

(d) (6 points) We wish to compute $P(Z_2 = s_1|X_1 = x_1, X_2 = v_1, ..., X_T = x_T)$. Assuming the knowledge of $\alpha_2(1)$ give an algorithm which is polynomial in T to compute the desired quantity.

Solution: $P(Z_2 = s_1 | X_1 = x_1, X_2 = v_1, \dots, X_T = x_T) = \frac{P(Z_2 = s_1, X_1 = x_1, X_2 = v_1, \dots, X_T = x_T)}{P(X_1 = x_1, X_2 = v_1, \dots, X_T = x_T)}$

$$P(Z_2 = s_1, X_1 = x_1, X_2 = v_1, \dots, X_T = x_T) = \alpha_2(1)\beta_2(1)$$

 $P(X_1 = x_1, X_2 = v_1, \dots, X_T = x_T) = \sum_{i=1}^{3} \alpha_2(i)\beta_2(i)$

Computation of $\beta_2(i)$ can be accomplished through backward algorithm. The computation cost for each i requires 9(T-t)+3 computations. Thus the total cost of computation is 9(T-t+1).

- 3. Consider the Ising model. $P(S=s) = \frac{1}{Z}e^{-E(s)}$ with $E(s) = -\frac{1}{2}\sum_{ij}w_{ij}s_is_j.s \in \{-1,1\}^d$
 - (a) (5 points) Suppose we approximate P(S) by a factorized distribution such that mean of S_i is 0. Derive a lower bound of log_2Z ?

Solution: Since

$$m_i = q_i - (1 - q_i), q_i = P(S_i = 1), \implies q_i = \frac{1}{2}$$

$$KL(q,P) = \sum_{s} q(s) log_{e} \frac{P(s)}{q(s)} \leq 0$$

Implies $log_e Z \ge dlog_e 2$ and hence the desired answer is d.

(b) (5 points) In the above question let the mean of each S_i be m_i . In such a case find f(m) such that $log_e Z \ge -E(m) + f(m)$

Solution:

$$f(m) = -\sum_{i=1}^{d} \frac{1}{2} (1 + m_i) \log_e \frac{1}{2} (1 + m_i) + \frac{1}{2} (1 - m_i) \log_e \frac{1}{2} (1 - m_i)$$

- 4. Mark all correct choices
 - (a) (3 points) Match the following
 - 1 Graphical models a acyclic graphs
 - 2 Bayesian Networks b Inference is intractable
 - 3 HMM c Markov blanket
 - 4 Boltzmann Machine d Inference is tractable

1 _____ c _____, 2 ____ a _____, 3 ____ d _____, 4 ____ b ____

- (b) (1 point) Mean-field methods for Boltzmann Machines
 - A. It yields a non-deterministic system of equations

- B. When used in learning it yields a lower bound on the likelihood
- C. The mean-field equations are guaranteed to find the true mean of the hidden variables.
- D. It approximates the true distributions by assuming that the hidden variables are independent.
- (c) (1 point) It is found that for two covariance matrices, $C^{(1)}, C^{(2)}$, of dimension d,

$$r(C^{(1)}) = \frac{1}{d}, r(C^{(2)}) = 1 - \frac{1}{d}$$

where $r(C) = \frac{\lambda_1(C)}{\sum_{i=1}^d \lambda_i(C)}$ for any covariance matrix C. When should we apply PCA?

- A. To $C^{(1)}$ but not $C^{(2)}$
- **B.** To $C^{(2)}$ but not $C^{(1)}$
- C. To both $C^{(1)}$ and $C^{(2)}$
- D. None of them