

#LifeKoKaroLift

SGC Coaching:

Articulate your Journey | Activate Students' Vigour | Accelerate Mutual Growth

JumpStart to an engaging session with your group!

using these slides for reference

Agenda: Session 7

Classification model –(5 mins)

Focused Teaching –(55 mins)

Decision trees, Random Forest and Bagging

Confusion matrix

Doubt resolution –(30 mins)

Discuss - Notebooks

Supervised learning

0.4 0.2 0.2 0.4 0.6

Goal is to separate the classes

Target variable

- These are Classes
- Convert continuous into target variable
- Goal separate the classes
- We can use any form of separator
- Many methods predict Y value at a threshold of 0.5 the classes are separated

Decision trees

CART

CHAID TREES

- Trees split the target variable
- Basis the predictor value splits
- CART gives only binary trees/ regression solution

Focussed Teaching: Decision tree logic

Introductory Applied Machine Learning

Decision Trees

Victor Lavrenko and Nigel Goddard School of Informatics A general algorithm for a decision tree can be described as follows:

- 1. Pick the best attribute/feature. The best attribute is one which best splits or separates the data.
- 2.Ask the relevant question.
- 3. Follow the answer path.
- 4.Go to step 1 until you arrive to the answer.

The best split is one which separates two different labels into two sets.

Decision trees divide the feature space into axis-parallel rectangles or hyperplanes

Information gain is a statistical property that measures how well a given attribute separates the training examples according to their target classification

Information Gain = Entropy(parent node) - [Average Entropy(children)]

Check for more features at https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Focussed Teaching: Decision tree - code along upGrad

```
#Importing required libraries import pandas as pd import numpy as np from sklearn.datasets import load iris from
sklearn, tree import DecisionTreeClassifier from sklearn, model selection import train test split
#Loading the iris data
data = load iris()
print('Classes to predict: ', data.target names)
#Extracting data attributes
X = data.data
### Extracting target/ class labels
v = data.target
print('Number of examples in the data:', X.shape[0])
#Using the train test split to create train and test sets. X train, X test, y train, y test = train test split(X, y,
random state = 47. test size = 0.25)
#Importing the Decision tree classifier from the sklearn library.
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(criterion = 'entropy')
#Training the decision tree classifier.
clf.fit(X train, y train)
#Predicting labels on the test set.
v pred = clf.predict(X test)
#Importing the accuracy metric from sklearn.metrics library
from sklearn.metrics import accuracy score
print('Accuracy Score on train data: ', accuracy score(y true=y train, y pred=clf.predict(X train)))
print('Accuracy Score on test data: ', accuracy score(y true=y test, y pred=y pred))
clf = DecisionTreeClassifier(criterion='entropy', min samples split=50)
clf.fit(X train, y train)
print('Accuracy Score on train data: ', accuracy score(y true=y train, y pred=clf.predict(X train)))
print('Accuracy Score on the test data: ', accuracy score(y true=y test, y pred=clf.predict(X test)))
```

#Output: Out: Accuracy Score on train data: 0.9553571428571429 Accuracy Score on test data: 0.9736842105263158

The management of a company that I shall call Stygian Chemical Industries, Ltd., must decide whether to build a small plant or a large one to manufacture a new product with an expected market life of ten years.

Focussed teaching: Decision trees - Pros and Cons

Pros	Cons
Easy to use	Prone to overfitting
Can handle both categorical and numerical data	Need a measurement as to how well they are doing
Resistant to outliers	Need to be careful with parameter tuning
New features can be easily added	Can create biased learned trees

We can limit the tree growth by specifying the number of branches, min samples for split and min samples for a leaf node – called pruning of decision trees

This will to a level provide us a better solution

Focussed Teaching: Ensemble model Random Forest

Rather than depending one decision tree lets create a lot of trees and take the best result This will be a good solution that is not an overfit solution
This is called an ensemble methodology – this ML is Random Forest

Random Forest logic Instance Tree-1 Tree-2 Tree-n Class-A Class-B Majority-Voting

Final-Class

Focussed Teaching: Ensemble model Bagging

Rather than depending one decision tree lets create a lot of trees we will aggregate the solution This is called an ensemble methodology

We can create a variety of data using Bootstrapping

Focussed Teaching: Ensemble model Blending

Rather than depending on decision trees and taking a vote, we can use two sets of algorithm 1/ first level – for ML

2/ second level – in place of voting

Focussed Teaching: Ensemble model Boosting

We can use decision trees to improve performance

The initial model – weak learners can be combined to give a high performing prediction

This works by reducing errors (y predicted vis-à-vis y actual)

These are called Boosting algorithm

We have 3 boosting methods – ADA Boost, Gradient Boost & XG Boost

Personalized Feedback and Doubt resolution

Address individual concerns and provide specific feedback on their notebooks

- What are they missing?
- What can they do better?

Doubt Resolution

Questions??

