Istanbul_airbnb_factor_analysis

```
knitr::opts_chunk$set(echo = TRUE)
library(data.table)
## Warning: package 'data.table' was built under R version 3.6.2
library(fpp)
## Loading required package: forecast
## Warning: package 'forecast' was built under R version 3.6.2
## Registered S3 method overwritten by 'quantmod':
    method
                       from
##
##
     as.zoo.data.frame zoo
## Loading required package: fma
## Warning: package 'fma' was built under R version 3.6.2
## Loading required package: expsmooth
## Loading required package: lmtest
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.6.2
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: tseries
library(fpp2)
## Loading required package: ggplot2
##
## Attaching package: 'fpp2'
## The following objects are masked from 'package:fpp':
##
##
       ausair, ausbeer, austa, austourists, debitcards, departures,
##
       elecequip, euretail, guinearice, oil, sunspotarea, usmelec
library(cowplot)
```

```
## Warning: package 'cowplot' was built under R version 3.6.2
##
## *****************
## Note: As of version 1.0.0, cowplot does not change the
##
     default ggplot2 theme anymore. To recover the previous
##
     behavior, execute:
##
     theme_set(theme_cowplot())
## *****************
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.6.2
## -- Attaching packages ------
----- tidyverse 1.3.0 --
## v tibble 2.1.3
                       v dplyr
                                  0.8.4
## v tidyr
             1.0.2
                       v stringr 1.4.0
## v readr
                       v forcats 0.4.0
             1.3.1
## v purrr
             0.3.3
## Warning: package 'tidyr' was built under R version 3.6.2
## Warning: package 'purrr' was built under R version 3.6.2
## Warning: package 'dplyr' was built under R version 3.6.2
## Warning: package 'forcats' was built under R version 3.6.2
## -- Conflicts -----
- tidyverse_conflicts() --
## x dplyr::between() masks data.table::between()
## x dplyr::filter() masks stats::filter()
## x dplyr::first() masks data.table::first()
## x dplyr::lag() masks stats::lag()
## x dplyr::last() masks data.table::last()
## x purrr::transpose() masks data.table::transpose()
library(psych)
## Warning: package 'psych' was built under R version 3.6.2
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
##
       %+%, alpha
```

```
library(e1071)
## Warning: package 'e1071' was built under R version 3.6.2
library(dplyr)
library(corrplot)
## Warning: package 'corrplot' was built under R version 3.6.2
## corrplot 0.84 loaded
library(GGally)
## Warning: package 'GGally' was built under R version 3.6.2
## Registered S3 method overwritten by 'GGally':
     method from
##
##
            ggplot2
     +.gg
##
## Attaching package: 'GGally'
## The following object is masked from 'package:dplyr':
##
##
       nasa
## The following object is masked from 'package:fma':
##
##
       pigs
library(reshape2)
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
##
       smiths
## The following objects are masked from 'package:data.table':
##
##
       dcast, melt
AirbnbIstanbul <- read.csv("C:/Pritesh/Rutgers/Courses/Projects/MVA/Dataset/A
irbnbIstanbul.csv", stringsAsFactors=FALSE)
Istanbul <- copy(AirbnbIstanbul)</pre>
class(Istanbul)
## [1] "data.frame"
setDT(Istanbul)
str(Istanbul)
```

```
## Classes 'data.table' and 'data.frame': 16251 obs. of 16 variables:
## $ id
                                   : int 4826 20815 25436 27271 28277 28308
28318 29241 30697 33368 ...
## $ name
                                   : chr "The Place" "The Bosphorus from Th
e Comfy Hill" "House for vacation rental furnutare" "LOVELY APT. IN PERFECT L
OCATION" ...
## $ host id
                                   : int 6603 78838 105823 117026 121607 12
1695 121721 125742 132137 135136 ...
                                   : chr "Kaan" "Gülder" "Yesim" "Mutlu" .
## $ host name
. .
## $ neighbourhood_group : logi NA NA NA NA NA NA ...
                                  : chr "Uskudar" "Besiktas" "Besiktas" "B
## $ neighbourhood
eyoglu" ...
## $ latitude
                                  : num 41.1 41.1 41.1 41 ...
## $ longitude
                                   : num 29.1 29 29 29 ...
                                 : chr "Entire home/apt" "Entire home/apt
## $ room type
" "Entire home/apt" "Entire home/apt" ...
                                   : int 554 100 211 237 591 237 633 264 59
## $ price
6 295 ...
                            : int 1 30 21 5 3 1 3 3 1 2 ...
: int 1 41 0 2 0 0 0 0 1 1 ...
: chr "2009-06-01" "2018-11-07" "" "2018
## $ minimum nights
## $ number_of_reviews
## $ last_review
-05-04" ...
## $ reviews_per_month : num 0.01 0.38 NA 0.04 NA NA NA NA 0.01
0.02 ...
## $ calculated_host_listings_count: int 1 2 1 1 13 1 1 1 1 2 ...
## $ availability_365
                                  : int 365 49 83 228 356 365 365 365 365
232 ...
## - attr(*, ".internal.selfref")=<externalptr>
Factoring categorical variables
Istanbul[,room type:=factor(room type)]
Istanbul[,neighbourhood:=factor(neighbourhood)]
Istanbul[,last_review:=as.Date(last_review,'%Y-%m-%d')] ## converting last_re
view to date datatype
# datatypes looks better now. hence will see again for NA values
grep ('NA',Istanbul) # 2, 5, 13 and 14 column have NA values
## [1] 2 5 13 14
Istanbul[is.na(neighbourhood group), NROW(neighbourhood group)] # entire obs.
is blank, will drop this var
## [1] 16251
Istanbul[is.na(last_review), NROW(last_review)] ## there are 8484 NA values
## [1] 8484
```

```
Istanbul[is.na(reviews per month), NROW(reviews per month)] ## there are 8484
NA values
## [1] 8484
Istanbul$neighbourhood group <- NULL ## removing neighbourhood group column</pre>
Istanbul[is.na(reviews per month), reviews per month:=0] ## nearly 50% of the
dataset is filled with NA.
# hence we can't simply remove these many rows. Hence imputing with 0 values.
nrow(Istanbul[price > 1000]) ## price > 1000
## [1] 613
#Only 613 rows out of 16251 have Price>1000 which are outliers as seen in EDA
, we can remove those records
Istanbul <- Istanbul[price < 1000] # removing outliers [1] 15638</pre>
                                                                   15
dim(Istanbul)
## [1] 15638
                15
Creating new data table with all the quantitative column named Istanbul factor
Istanbul_factor <- Istanbul[,c("latitude","longitude","price","minimum_nights</pre>
","number_of_reviews","reviews_per_month","calculated_host_listings_count","a
vailability 365")
corrm.Istanbul <- cor(Istanbul factor)</pre>
corrm.Istanbul
                                      latitude
                                                  longitude
                                                                  price
## latitude
                                  1.000000000 -0.197168094 0.054487580
## longitude
                                  -0.197168094 1.000000000 -0.035045643
                                  0.054487580 -0.035045643 1.000000000
## price
## minimum nights
                                  0.001806824 -0.008447202 0.003237415
## number of reviews
                                  -0.020171577 -0.002091917 0.020700048
## reviews per month
                                  ## calculated_host_listings_count -0.009835884 -0.034267106 0.079463904
## availability_365
                                  -0.005504686 -0.038766412 0.160241947
##
                                 minimum nights number of reviews
## latitude
                                    0.001806824
                                                     -0.020171577
## longitude
                                   -0.008447202
                                                     -0.002091917
## price
                                    0.003237415
                                                      0.020700048
## minimum nights
                                    1.000000000
                                                     -0.013837757
## number_of_reviews
                                   -0.013837757
                                                      1.000000000
## reviews per month
                                   -0.034105874
                                                      0.576543022
## calculated host listings count -0.017881502
                                                      0.181090297
## availability_365
                                    0.012869263
                                                      0.048541558
##
                                  reviews_per_month calculated_host_listings_
count
```

## latitude	-0.030645872	-0.0098
35884	0.00000070	0.0242
## longitude	0.009699078	-0.0342
67106	0 025400022	0.0704
## price 63904	-0.025490933	0.0794
## minimum_nights	-0.034105874	-0.0178
81502	-0.034103674	-0.0178
## number_of_reviews	0.576543022	0.1810
90297	013,0313022	0.1010
## reviews_per_month	1.000000000	0.1081
87924		
<pre>## calculated_host_listings_count</pre>	0.108187924	1.0000
00000		
## availability_365	-0.007430996	0.1677
18740		
##	availability_365	
## latitude	-0.005504686	
## longitude	-0.038766412	
## price	0.160241947	
## minimum_nights	0.012869263	
## number_of_reviews	0.048541558	
## reviews_per_month	-0.007430996	
<pre>## calculated_host_listings_count</pre>	0.167718740	
## availability_365	1.000000000	
<pre>plot(corrm.Istanbul)</pre>		


```
Istanbul pca <- prcomp(Istanbul factor, scale=TRUE)</pre>
summary(Istanbul_pca)
## Importance of components:
##
                             PC1
                                     PC2
                                            PC3
                                                   PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
## Standard deviation
                          1.2880 1.1367 1.0725 0.9995 0.9482 0.8963 0.88367
## Proportion of Variance 0.2074 0.1615 0.1438 0.1249 0.1124 0.1004 0.09761
## Cumulative Proportion 0.2074 0.3689 0.5127 0.6375 0.7499 0.8503 0.94795
##
                               PC8
## Standard deviation
                          0.64529
## Proportion of Variance 0.05205
## Cumulative Proportion 1.00000
plot(Istanbul_pca)
```

Istanbul pca


```
# A table containing eigenvalues and %'s accounted, follows. Eigenvalues are the sdev^2
(eigen_Istanbul <- round(Istanbul_pca$sdev^2,2))

## [1] 1.66 1.29 1.15 1.00 0.90 0.80 0.78 0.42

names(eigen_Istanbul) <- paste("PC",1:8,sep="")
eigen_Istanbul

## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

## 1.66 1.29 1.15 1.00 0.90 0.80 0.78 0.42
```

```
plot(eigen_Istanbul, xlab = "Component number", ylab = "Component variance",
type = "l", main = "Scree diagram")
```

Scree diagram

As per scree plot, there should be 7 factors, will see what parallel analysis sugge sts

```
sumlambdas <- sum(eigen_Istanbul) ## eigen values
sumlambdas
## [1] 8
fa.parallel(Istanbul_factor)</pre>
```


Parallel analysis suggests that the number of factors = 4 and the number of components = 3

vss(Istanbul_factor) # See Factor recommendations for a simple structure

Very Simple Structure


```
##
## Very Simple Structure
## Call: vss(x = Istanbul_factor)
## VSS complexity 1 achieves a maximimum of 0.56 with 4
## VSS complexity 2 achieves a maximimum of 0.58 with 4
##
## The Velicer MAP achieves a minimum of NA with 1
                                                     factors
## BIC achieves a minimum of NA with 3 factors
## Sample Size adjusted BIC achieves a minimum of NA with 3 factors
##
## Statistics by number of factors
##
    vss1 vss2
                map dof
                          chisq
                                     prob sqresid fit RMSEA BIC SABIC comp
lex
## 1 0.27 0.00 0.032 20 1.7e+03 0.0e+00
                                              6.5 0.27 0.0726 1477
                                                                    1540
## 2 0.36 0.38 0.056 13 6.8e+02 6.1e-137
                                              5.5 0.38 0.0573
                                                               555
                                                                     596
1.2
                      7 2.9e+01 1.3e-04
## 3 0.49 0.51 0.095
                                              4.4 0.51 0.0142
                                                               -38
                                                                     -16
1.1
## 4 0.56 0.58 0.153
                      2 2.6e+00
                                 2.8e-01
                                              3.7 0.59 0.0043
                                                               -17
                                                                     -10
1.3
## 5 0.51 0.56 0.259
                     -2 1.2e-06
                                       NA
                                              3.9 0.56
                                                           NA
                                                                NA
                                                                      NA
1.2
## 6 0.46 0.50 0.532 -5 1.2e-07
                                       NA
                                              4.3 0.52
                                                                NA
                                                                      NA
                                                           NA
1.3
## 7 0.46 0.50 1.000
                     -7 3.6e-09
                                       NA
                                              4.3 0.52
                                                           NA
                                                                NA
                                                                      NA
1.3
```

```
## 8 0.46 0.50
                     -8 3.6e-09
                                              4.3 0.52
                                       NA
                                                                NA
                                                                      NA
1.3
##
      eChisq
                SRMR
                      eCRMS eBIC
## 1 3.3e+03 6.2e-02 0.0728 3120
## 2 1.3e+03 3.8e-02 0.0555 1125
## 3 3.1e+01 5.9e-03 0.0118
                             -37
## 4 3.3e+00 1.9e-03 0.0072
                             -16
## 5 1.1e-06 1.1e-06
                              NA
## 6 1.4e-07 4.0e-07
                              NA
                         NA
## 7 3.2e-09 6.0e-08
                         NA
                              NA
## 8 3.2e-09 6.0e-08
                         NA
                              NA
# VSS complexity 1 achieves a maximimum of 0.56 with
# VSS complexity 2 achieves a maximimum of 0.58 with
                                                         factors
# The Velicer MAP achieves a minimum of NA with 1 factors
# BIC achieves a minimum of NA with 3 factors
# Sample Size adjusted BIC achieves a minimum of NA with 3 factors
nfactors(Istanbul_factor)
```



```
##
## Number of factors
## Call: vss(x = x, n = n, rotate = rotate, diagonal = diagonal, fm = fm,
## n.obs = n.obs, plot = FALSE, title = title, use = use, cor = cor)
## VSS complexity 1 achieves a maximimum of 0.56 with 4 factors
## VSS complexity 2 achieves a maximimum of 0.58 with 4 factors
```

```
## The Velicer MAP achieves a minimum of 0.03 with 1 factors
## Empirical BIC achieves a minimum of -36.95 with 3 factors
## Sample Size adjusted BIC achieves a minimum of -16.19 with 3 factors
##
## Statistics by number of factors
##
    vss1 vss2
                map dof
                           chisq
                                     prob sqresid fit RMSEA BIC SABIC comp
lex
## 1 0.27 0.00 0.032 20 1.7e+03 0.0e+00
                                              6.5 0.27 0.0726 1477 1540
## 2 0.36 0.38 0.056 13 6.8e+02 6.1e-137
                                              5.5 0.38 0.0573 555
                                                                     596
1.2
## 3 0.49 0.51 0.095
                       7 2.9e+01 1.3e-04
                                              4.4 0.51 0.0142
                                                               -38
                                                                     -16
1.1
## 4 0.56 0.58 0.153
                     2 2.6e+00
                                 2.8e-01
                                              3.7 0.59 0.0043
                                                               -17
                                                                     -10
1.3
## 5 0.51 0.56 0.259 -2 1.2e-06
                                       NA
                                              3.9 0.56
                                                           NA
                                                                NA
                                                                      NA
## 6 0.46 0.50 0.532 -5 1.2e-07
                                              4.3 0.52
                                                                      NA
                                       NA
                                                           NA
                                                                NA
1.3
## 7 0.46 0.50 1.000 -7 3.6e-09
                                       NA
                                              4.3 0.52
                                                           NA
                                                                NA
                                                                      NA
1.3
## 8 0.46 0.50
                  NA -8 3.6e-09
                                              4.3 0.52
                                                                      NΑ
                                       NA
                                                           NA
                                                                NA
1.3
##
      eChisq
               SRMR eCRMS eBIC
## 1 3.3e+03 6.2e-02 0.0728 3120
## 2 1.3e+03 3.8e-02 0.0555 1125
## 3 3.1e+01 5.9e-03 0.0118
                            -37
## 4 3.3e+00 1.9e-03 0.0072
                             -16
## 5 1.1e-06 1.1e-06
                              NA
## 6 1.4e-07 4.0e-07
                         NA
                              NA
## 7 3.2e-09 6.0e-08
                         NA
                              NA
## 8 3.2e-09 6.0e-08
                         NA
                              NA
nfactors suggests we can either go with 3 factors or 4 factors
# Part 1, with four factors
library(psych)
fit.pc4 <- principal(Istanbul_factor, nfactors=4, rotate="varimax")</pre>
fit.pc4 #4 factors RC1, RC2, RC3, RC4 are created
## Principal Components Analysis
## Call: principal(r = Istanbul_factor, nfactors = 4, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##
                                          RC2
                                    RC1
                                                RC3
                                                      RC4
                                                            h2
                                                                   u2 com
## latitude
                                  -0.03 -0.02 0.78 -0.02 0.61 0.3877 1.0
## longitude
                                  -0.02 -0.07 -0.76 -0.02 0.58 0.4181 1.0
## price
                                  -0.09 0.62 0.11 0.00 0.41 0.5926 1.1
## minimum nights
                                  -0.01 0.00 0.00 1.00 0.99 0.0055 1.0
## number of reviews
                                  0.88 0.09
                                               0.00 0.01 0.77 0.2263 1.0
                                 0.87 -0.04 -0.01 -0.02 0.77 0.2320 1.0
## reviews per month
```

```
## calculated_host_listings_count 0.28 0.57 -0.02 -0.06 0.40 0.5989 1.5
## availability 365
                                  -0.03 0.75 -0.04 0.05 0.56 0.4387 1.0
##
##
                          RC1 RC2 RC3 RC4
## SS loadings
                         1.62 1.28 1.20 1.00
## Proportion Var
                         0.20 0.16 0.15 0.13
## Cumulative Var
                         0.20 0.36 0.51 0.64
## Proportion Explained 0.32 0.25 0.24 0.20
## Cumulative Proportion 0.32 0.57 0.80 1.00
##
## Mean item complexity = 1.1
## Test of the hypothesis that 4 components are sufficient.
##
## The root mean square of the residuals (RMSR) is 0.13
## with the empirical chi square 14145.13 with prob < 0
## Fit based upon off diagonal values = 0.08
round(fit.pc4$values, 3)
## [1] 1.659 1.292 1.150 0.999 0.899 0.803 0.781 0.416
#Above are factor values for all 8 variables
fit.pc4$loadings
##
## Loadings:
                                  RC1
                                         RC2
##
                                                RC3
                                                       RC4
## latitude
                                                 0.781
## longitude
                                                -0.759
## price
                                          0.623 0.105
                                                         0.997
## minimum nights
## number of reviews
                                   0.875
## reviews per month
                                   0.875
## calculated_host_listings_count 0.278
                                          0.565
## availability_365
                                          0.746
##
##
                    RC1
                          RC2
                                RC3
## SS loadings
                  1.620 1.278 1.200 1.002
## Proportion Var 0.202 0.160 0.150 0.125
## Cumulative Var 0.202 0.362 0.512 0.638
# Above are the Loadings for all 8 variables
for (i in c(1,2,3,4)) { print(fit.pc4$loadings[[1,i]])}
## [1] -0.03077102
## [1] -0.02069587
## [1] 0.7814196
## [1] -0.01709352
```

Communalities

```
fit.pc4$communality
```

```
##
                          latitude
                                                         longitude
##
                         0.6122840
                                                         0.5818972
                                                    minimum_nights
##
                             price
##
                         0.4074236
                                                         0.9945396
                                                 reviews_per_month
##
                number_of_reviews
##
                         0.7737051
                                                         0.7679744
## calculated_host_listings_count
                                                  availability_365
##
                         0.4010889
                                                         0.5612598
```

#Above are the communalities for all 8 variabbles

Rotated factor scores

head(fit.pc4\$scores)

```
## RC1 RC2 RC3 RC4
## [1,] -0.7188928 1.2150301 0.14835545 -0.11114975
## [2,] 0.9190461 -1.3792418 0.41991784 0.85933486
## [3,] -0.4308853 -0.9829675 0.56648630 0.49807054
## [4,] -0.4308808 -0.2203644 0.13281517 0.02074727
## [5,] -0.5315036 1.9813454 0.30817477 -0.12110005
## [6,] -0.5697539 0.3782424 0.04495653 -0.07605584
```

fa.diagram(fit.pc4) # To Visualize the relationship and mapping between varia
bles and factors with weights

Components Analysis

Above, output gives weigths going in RCs red line indicates negative relation

As per above diagram, all the factors have significant contribution and so its better not to loose any of 4 factors

So we will take all four RC1, RC2, RC3 and RC4 as inputs for our models

Above factor analysis, we can conclude to reduce number of variables from 8 to 4 in our input dataset.

```
#Now lets rename these factors as per their contributing variables
colnames(fit.pc4$loadings) <- c("NumReviews_reviewspm","Prie_Availability_Hos</pre>
tListCount", "minNights", "GeoLocations")
fit.pc4$loadings
##
## Loadings:
##
                                   NumReviews reviewspm
## latitude
## longitude
## price
## minimum_nights
## number_of_reviews
                                    0.875
## reviews per month
                                    0.875
## calculated_host_listings_count 0.278
```

```
## availability_365
##
                                  Prie_Availability_HostListCount minNights
## latitude
                                                                    0.781
                                                                    -0.759
## longitude
## price
                                    0.623
                                                                    0.105
## minimum_nights
## number of reviews
## reviews_per_month
## calculated_host_listings_count 0.565
                                    0.746
## availability_365
##
                                  GeoLocations
## latitude
## longitude
## price
## minimum_nights
                                   0.997
## number of reviews
## reviews_per_month
## calculated host listings count
## availability 365
##
##
                  NumReviews_reviewspm Prie_Availability_HostListCount minNig
hts
## SS loadings
                                 1.620
                                                                  1.278
                                                                             1.
## Proportion Var
                                 0.202
                                                                  0.160
                                                                             0.
150
## Cumulative Var
                                 0.202
                                                                  0.362
                                                                             0.
512
##
                  GeoLocations
## SS loadings
                        1.002
## Proportion Var
                         0.125
## Cumulative Var
                         0.638
#Plotting the correlation beyween these factors
plot(fit.pc4)
```

Principal Component Analysis


```
# Part 2, with three factors
library(psych)
fit.pc3 <- principal(Istanbul_factor, nfactors=3, rotate="varimax")</pre>
fit.pc3 #3 factors RC1, RC2, RC3 are created
## Principal Components Analysis
## Call: principal(r = Istanbul_factor, nfactors = 3, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##
                                    RC1
                                          RC2
                                                RC3
                                                        h2
                                                             u2 com
## latitude
                                  -0.04 -0.03 0.78 0.6115 0.39 1.0
## longitude
                                   0.00 -0.07 -0.76 0.5818 0.42 1.0
## price
                                  -0.14 0.61 0.10 0.4063 0.59 1.2
## minimum nights
                                  -0.09 0.03 0.01 0.0087 0.99 1.4
## number_of_reviews
                                   0.86 0.15
                                               0.02 0.7690 0.23 1.1
## reviews_per_month
                                   0.87 0.02 0.01 0.7661 0.23 1.0
## calculated host listings count 0.24 0.58 -0.02 0.3969 0.60 1.3
## availability 365
                                  -0.09 0.74 -0.04 0.5610 0.44 1.0
##
##
                          RC1 RC2 RC3
## SS loadings
                         1.60 1.30 1.20
## Proportion Var
                         0.20 0.16 0.15
## Cumulative Var
                         0.20 0.36 0.51
## Proportion Explained 0.39 0.32 0.29
## Cumulative Proportion 0.39 0.71 1.00
##
## Mean item complexity = 1.1
## Test of the hypothesis that 3 components are sufficient.
```

```
##
## The root mean square of the residuals (RMSR) is 0.13
## with the empirical chi square 14219.67 with prob < 0
##
## Fit based upon off diagonal values = 0.07
round(fit.pc3$values, 3)
## [1] 1.659 1.292 1.150 0.999 0.899 0.803 0.781 0.416
#Above are factor values for all 8 variables
fit.pc3$loadings
##
## Loadings:
                                   RC1
                                          RC2
                                                 RC3
                                                  0.780
## latitude
                                                 -0.760
## longitude
                                           0.613 0.104
## price
                                   -0.140
## minimum_nights
## number_of_reviews
                                   0.863
                                           0.154
## reviews_per_month
                                    0.875
## calculated_host_listings_count 0.240
                                           0.582
## availability_365
                                           0.743
##
                          RC2
##
                    RC1
                                RC3
## SS loadings
                  1.605 1.297 1.199
## Proportion Var 0.201 0.162 0.150
## Cumulative Var 0.201 0.363 0.513
# Above are the Loadings for all 8 variables
for (i in c(1,2,3)) { print(fit.pc3$loadings[[1,i]])}
## [1] -0.04497776
## [1] -0.02607995
## [1] 0.7802823
# Communalities
fit.pc3$communality
##
                         latitude
                                                        longitude
##
                      0.611543631
                                                      0.581767090
##
                            price
                                                   minimum nights
##
                      0.406251294
                                                      0.008702142
##
                number of reviews
                                                reviews per month
##
                      0.769040100
                                                      0.766133759
## calculated_host_listings_count
                                                 availability_365
##
                      0.396866242
                                                      0.560965370
```

#Above are the communalities for all 8 variabbles

fa.diagram(fit.pc3) # To Visualize the relationship and mapping between varia
bles and factors with weights

Components Analysis

Above, output gives weigths going in RCs red line indicates negative relation

As per above diagram, all the factors have significant contribution and so its better not to loose any of 3 factors

So we will take all four RC1, RC2 and RC3 as inputs for our models

We can see that minimum_nights doesn't have any contribution, hence we can consider drop ping this variable

From Above factor analysis, we can conclude to reduce number of variables from 8 to 3 in our input dataset.

```
#Now Lets rename these factors as per their contributing variables
colnames(fit.pc3$loadings) <- c("NumReviews_reviewspm","Prie_Avail_HostListCo
unt","GeoLocations")
fit.pc3$loadings
##
Loadings:</pre>
```

```
##
                                   NumReviews reviewspm Prie Avail HostListCou
nt
## latitude
## longitude
## price
                                   -0.140
                                                          0.613
## minimum_nights
## number_of_reviews
                                    0.863
                                                          0.154
## reviews_per_month
                                    0.875
## calculated_host_listings_count
                                    0.240
                                                          0.582
                                                          0.743
## availability_365
##
                                   GeoLocations
## latitude
                                    0.780
## longitude
                                   -0.760
## price
                                    0.104
## minimum_nights
## number_of_reviews
## reviews_per_month
## calculated_host_listings_count
## availability_365
##
##
                  NumReviews_reviewspm Prie_Avail_HostListCount GeoLocations
## SS loadings
                                  1.605
                                                            1.297
                                                                          1.199
## Proportion Var
                                  0.201
                                                            0.162
                                                                          0.150
## Cumulative Var
                                  0.201
                                                            0.363
                                                                          0.513
#Plotting the correlation beyween these factors
plot(fit.pc3)
```

Principal Component Analysis

- > If we use only 3 variables then we are losing variance from the column : 'minimum_nights' which will cause loss of information.
- > Thus, we use factor analysis with 4 factors: RC1, RC2, RC3 and RC4 as inputs for our model.
- > As per this factor analysis, we can have reduced number of variables from 8 to 4 in our input dataset.