# **Computational Complexity**

Lecture 2: Reductions, NP and NP-completeness

Ronald de Haan me@ronalddehaan.eu

University of Amsterdam

# Recap What we saw last time..

- (Deterministic) Turing machines
- Decision problems
- Polynomial time and the class P

# What will we do today?

- The universal Turing machine
- Nondeterministic Turing machines
- More complexity classes: EXP, NP, coNP
- Polynomial-time reductions
- NP-hardness and NP-completeness

# Representing Turing machines as (binary) strings

- We can encode Turing machines into binary strings, such that:
  - lacktriangledown each string  $s \in \{0,1\}^*$  represents some Turing machine  $\mathbb M$
  - **2** each Turing machine  $\mathbb M$  is represented by infinitely many strings  $s\in\{0,1\}^*$
  - ${\bf 3}$  given a TM  ${\bf M}$ , we can efficiently compute a string s that represents  ${\bf M}$

- Idea:
  - Write out the tuple  $(\Gamma, Q, \delta)$ , together with starting and halting states, in an appropriate alphabet, and then encode into binary
  - Allow padding (cf. comments in programming languages)

# Efficient universal Turing machine

#### Proposition

There exists a TM  $\mathbb{U}$  such that for every  $x, s \in \{0,1\}^*$  it holds that  $\mathbb{U}(x,s) = \mathbb{M}_s(x)$ , where  $\mathbb{M}_s$  is the TM represented by the string s.

Moreover, if  $\mathbb{M}_s$  halts on x in time T, then  $\mathbb{U}(x,s)$  halts in time  $C \cdot T \log T$ , where C depends only on s (and not on x).

 $\blacksquare$   $\mathbb U$  is an efficient universal Turing machine: it can simulate other TMs in an efficient way.

# (In)tractability

- Tractability: there exists a polynomial-time algorithm that solves the problem
- Intractability: there exists no polynomial-time algorithm that solves the problem

(or sometimes: all algorithms that solve the problem take exponential time, in the worst case)

■ How do we find out which of these two is the case for—for example—the problem of 3-coloring?

# Showing intractability: without any theory



"I can't find an efficient algorithm, I guess I'm just too dumb."

# Showing intractability: the ideal case



"I can't find an efficient algorithm, because no such algorithm is possible!"

# Showing intractability: using NP-completeness



"I can't find an efficient algorithm, but neither can all these famous people."

# Polynomial vs. exponential time

#### Definition (DTIME)

Let  $T : \mathbb{N} \to \mathbb{N}$  be a function. A language  $L \subseteq \Sigma^*$  is in DTIME(T(n)) if there exists a Turing machine that decides L and that runs in time O(T(n)).

### Definition (the complexity classes P and EXP)

$$P = \bigcup_{c>1} \mathsf{DTIME}(n^c) \qquad \qquad \mathsf{EXP} = \bigcup_{c>1} \mathsf{DTIME}(2^{n^c})$$

### The complexity class NP

## Definition (the complexity class NP)

A problem  $L\subseteq \Sigma^*$  is in the complexity class NP if there is a polynomial  $p:\mathbb{N}\to\mathbb{N}$  and a polynomial-time Turing machine  $\mathbb{M}$  (the *verifier*) such that for every  $x\in\Sigma^*$ :

$$x \in L$$
 if and only if there exists some  $u \in \{0,1\}^{p(|x|)}$  such that  $\mathbb{M}(x,u) = 1$ .

The string  $u \in \{0,1\}^{p(|x|)}$  is called a *certificate* for x if  $\mathbb{M}(x,u) = 1$ .

## Example: 3-coloring

- Let's see why the (decision) problem of 3-coloring is in NP.
- Let G = (V, E) be a graph with m nodes.
- Consider as witness a binary string *u* of length 2*m*, where the coloring of each node *i* is given by the *i*'th pair of bits—say, 01 for red, 10 for green, and 11 for blue.
- Given G and u, we can check in polynomial time if the coloring given by u is proper.



 $s = 01 \ 10 \ 11 \ 01$ 

## Nondeterministic Turing machines

#### Definition

A nondeterministic Turing machines (NTM)  $\mathbb{M}$  is a variant of a (deterministic) Turing machine, where some things are modified.

- Instead of a single transition function  $\delta$ , there are two transition functions  $\delta_1, \delta_2$ .
- At each step, one of  $\delta_1, \delta_2$  is chosen nondeterministically to determine the next configuration.
- (As halting states, it has an accept state  $q_{acc}$  and a reject state  $q_{rej}$ .)
- We write  $\mathbb{M}(x) = 1$  if there is some sequence of nondeterministic choices such that  $\mathbb{M}$  reaches the state  $q_{\mathsf{acc}}$  on input x.
- The machine  $\mathbb{M}$  runs in time T(n) if for every input x and every sequence of nondeterministic choices,  $\mathbb{M}$  halts within T(|x|) steps.

# Nondeterministic polynomial time (NP)

#### Definition (NTIME)

Let  $T : \mathbb{N} \to \mathbb{N}$  be a function. A problem  $L \subseteq \Sigma^*$  is in NTIME(T(n)) if there exists a nondeterministic Turing machine that decides L and that runs in time O(T(n)).

# Proposition (characterization of NP)

$$\mathsf{NP} = \bigcup_{c>1} \mathsf{NTIME}(n^c)$$

## The complexity class coNP

#### Definition (the complexity class coNP)

A problem  $L \subseteq \Sigma^*$  is in coNP if  $\overline{L} \in NP$ , where  $\overline{L} = \{ x \in \Sigma^* \mid x \notin L \}$ .

#### Proposition (verifier characterization of coNP)

A problem  $L \subseteq \Sigma^*$  is in coNP if there is a polynomial  $p : \mathbb{N} \to \mathbb{N}$  and a polynomial-time Turing machine  $\mathbb{M}$  (the *verifier*) such that for every  $x \in \Sigma^*$ :

$$x \in L$$
 if and only if for all  $u \in \{0,1\}^{p(|x|)}$  it holds that  $\mathbb{M}(x,u) = 1$ .

#### Proposition

 $NP \subseteq EXP$ .

### Proof (idea).

- Iterate over all possible witnesses  $u \in \{0,1\}^{p(|x|)}$ , and check if  $\mathbb{M}(x,u) = 1$ .
- If for any u this is the case, return 1—otherwise, return 0.
- There are  $2^{p(|x|)}$  such strings u, and so this takes time  $2^{p(|x|)} \cdot q(|x|)$ , for some polynomial q.

L

# An overview of complexity classes (That we've seen so far..)



## Polynomial-time reductions

## Definition (polynomial-time reductions)

A problem  $L_1 \subseteq \Sigma^*$  is polynomial-time reducible to a problem  $L_2 \subseteq \Sigma^*$  if there is a polynomial-time computable function  $f: \Sigma^* \to \Sigma^*$  (the reduction) such that for every  $x \in \Sigma^*$  it holds that:

$$x \in L_1$$
 if and only if  $f(x) \in L_2$ .



■ We write  $L_1 \leq_p L_2$  to indicate that  $L_1$  is polynomial-time reducible to  $L_2$ .

# NP-hardness and NP-completeness

## Definition (NP-hardness)

A problem  $L \subseteq \Sigma^*$  is NP-hard if every problem in NP is polynomial-time reducible to L.

## Definition (NP-completeness)

A problem  $L \subseteq \Sigma^*$  is NP-complete if  $L \in NP$  and L is NP-hard.

#### Some properties

#### Proposition

Polynomial-time reductions are transitive.

That is, if  $L_1 \leq_p L_2$  and  $L_2 \leq_p L_3$ , then  $L_1 \leq_p L_3$ .

#### **Proposition**

Take two problems  $L_1, L_2 \subseteq \Sigma^*$ . If  $L_1$  is polynomial-time reducible to  $L_2$  and  $L_2 \in P$ , then  $L_1 \in P$ .

# Some properties (ct'd)

#### Proposition

Take an NP-complete problem  $L \subseteq \Sigma^*$ . If  $L \in P$ , then P = NP. In other words, assuming that  $P \neq NP$ ,  $L \notin P$ .

#### Proof.

Since deterministic TMs can be seen also as nondeterministic TMs, we get  $P \subseteq NP$ .

We show that if  $L \in P$ , then  $NP \subseteq P$ .

- (1) Take an arbitrary problem  $M \in NP$ .
- (2) Since L is NP-complete,  $M \leq_{p} L$ .
- (3) Since  $L \in P$ , then also  $M \in P$ .

Since M was arbitrary, we know that  $NP \subseteq P$ .

# Showing intractability: using NP-completeness



"I can't find an efficient algorithm, but neither can all these famous people."

### Recap

- The universal Turing machine
- Nondeterministic Turing machines
- More complexity classes: EXP, NP, coNP
- Polynomial-time reductions
- NP-hardness and NP-completeness

### Next time

 $\blacksquare$  Proving that NP-complete problems exist :-)