The Wire

Christopher Hunt

January 27, 2023

The Wire

A wire takes the shape of a semicircle.

$$x^2 + y^2 = 1 \qquad y \ge 0$$

Find the center of mass of the wire if the linear density of the wire is given as:

$$\rho(x,y) = k(1-y)$$

To find the center of mass (\bar{x}, \bar{y}) we must first find the mass along the curve, then find the moment of mass around the x and y axes, M_x and M_y .

$$\bar{x} = \frac{M_x}{m}$$
 $\bar{y} = \frac{M_y}{m}$

To find the mass along the curve of wire we will parameterize the length of the curve and integrate the density function ρ along that curve.

Let

$$\vec{r}(t) = \hat{r}$$
 $\phi(t) = t$ $0 \le t \le \pi$
 $d\vec{r} = \hat{\phi}dt$ $|d\vec{r}| = 1$
 $\rho = k(1 - y) = k(1 - \sin(t))$

Solve for mass:

$$m = \int_0^\pi \rho |d\vec{r}| dt \rightarrow m = \int_0^\pi k(1-\sin(t)) dt \rightarrow m = k[t+\cos(t)]|_0^\pi \rightarrow m = k\pi - 2k$$

Now find moments of mass $M_x = \int_c x k(1-\sin(t)) dt$ and $M_y = \int_c y k(1-\sin(t)) dt$ where $x = r\cos(t)$ and $y = r\sin(t)$

$$M_x = k \int_c \cos(t)(1 - \sin(t))dt \to \int_0^\pi \cos(t) - \cos(t)\sin(t)dt$$
$$M_y = k \int_c \sin(t)(1 - \sin(t))dt \to \int_0^\pi \sin(t) - \sin^2(t)dt$$

Integrating these we get

$$M_x = 0 \qquad M_y = 0.4292$$

Now we can find center of mass

$$\bar{x} = 0$$
 $\bar{y} = 0.3760$