Total No. of Questions—8]

Total No. of Printed Pages—4+1

Seat No.

[5667]-1005

F.E. (First Semester) EXAMINATION, 2019

ENGINEERING PHYSICS

(Phase II)

(2019 PATTERN)

Time: 21/2 Hours

Maximum Marks: 70

- N.B.:— (i) Solve any one question out of Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Figures to the right indicate full marks.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Use of electronic calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Derive Schrodinger's time independent wave equation.
 - (b) State the de Broglie hypothesis and explain any three properties of matter waves. [4]
 - (c) Explain tunneling effect. Explain in brief how this is used in scanning tunneling microscope. [4]
 - (d) Lowest energy of an electron trapped in potential well is 38 eV. Calculate the width of well in A.V. [Given: Mass of electron 9.1×10^{-31} kg, plank constant 6.63×10^{-34} J-s, charge on $e^ 1.6 \times 10^{-19}$ C].

P.T.O.

2.	(a)	What is Schrödinger's equation ? Derive Schrödinger's time
		dependent equation. [6]
	(b) ·	State and explain Heisenberg's uncertainty principle. [4]
	(c)	What is wave function w? Explain physical significance of
		$ X ^2 \mathcal{Q}^{-1} \mathcal{Q}^{-1} $
	(d)	If uncertainty in position of a particle is equal to its de Broglie
		wavelength, show that uncertainty in velocity is equal to the
		velocity of the particle. Consider the product of uncertainties
		as h . [4]
	ς,	
3.	(a)	Using Fermi Dirac probability distribution function, derive an
	10	expression for the position of Fermi energy level in the intrinsic
		semiconductor. [6]
	(b)	Derive the ideal diode equation for a P-N junction. [4]
	(c)	Calculate the mobility of charge carriers in doped silicon,
		whose conductivity is 100 per Ω.m and the Hall coefficient
		is 3.6×10^{-4} m ³ /c.
.,,	(<i>d</i>)	What is photovoltaic effect? Draw I V characteristics of solar
		cell and define fill factor. [3]
		J. 12. 12.
		or 00,00.
4.	(a)	Explain Hall effect with figure. Derive the equation of Hall
		voltage and Hall coefficient. [6]
	(b)	State any four measures to improve efficiency of solar
		cell. [4]
[566	57]-1005	2
		5°

(c)	Calculate the conductivity of pure silicon at room temper	ature
	when concentration of carriers is 1.6×10^{10} per CC. [6]	Given
	$\mu_e = 1500 \text{ cm}^2/\text{V-sec}$, $\mu_h = 500 \text{ cm}^2/\text{V.sec}$, charge on ele	ectron
	1.6 × 10 ⁻¹⁹ C].	[4]
(d)	Explain in brief concept of effective mass of electron.	[3]
5. (a)	Define superconductivity with resistance Vs temperature g	raph
	and example. Explain zero electrical resistance in s	uper
	conductivity.	[6]
(b)	Explain DC and AC Josephson effect with diagram.	[4]
(A)	Distinguish between diamagnetism, paramagnetism	and
1.	ferromagnetism (two points each).	[4]
(d)	Define with unit:	[4]
	(i) Magnetic field strength (H)	Ź.
	(ii) Magnetization (M).	~5°
		200
	Or S	No.
6. (a)	Explain how information is recorded and retrieved in magn	neto-
	optical recording devices.	[6]
(b)	Explain how information is recorded and retrieved in magnoptical recording devices. Explain in brief: (i) Absolute permeability (ii) Relative permeability. What are SQUID? Explain and two applications SQUID.	[4]
	(i) Absolute permeability	
	(ii) Relative permeability.	
(c)	What are SQUID? Explain any two applications	s of
	SQUID.	[4]
[5667]-100	5 3 P	.T.O.
	<i>♣</i> *	

(d)	The transition temperature of lead is 7.2 K. However, at
	5 K it loses the superconducting property if subjected to magnetic
	field of 3.3×10^4 Å/m. Find the maximum value of H
•]	which will allow the metal to retain its super conductivity
	at 0 K) [4]
4 7 (0)	
7. (a)	What is non-destructive testing? State types of mon-destructive
	techniques ? Explain ultrasonic testing technique for flaw
	detection. [6]
· (b)	An ultrasonic pulse is sent through a block of copper. The
2	echo pulse is received after 4 µs. If velocity of ultrasonic in
1	copper is 5000 m/s, calculate the thickness of copper block.
	If the reflection of pulse is recorded after 1.253 μs from the
	top, what is the location of flow? [4]
(c)	What is nanotechnology? Explain applications of nanotechnology.
	in electronic field.
(d)	What is quantum confinement? How does it affect the properties
	of nano particles ? [3]
	Or
8. (a)	Explain electrical and mechanical properties of nano-
	particles. [6]
<i>(b)</i>	Explain how panetacked
	delivery.
[5667]-100	5

- (c) An ultrasonic pulse of frequency 130 kHz is sent through a block of steel. The echo pulse is received after 1.695 μs. If velocity of ultrasonic in steel is 5900 m/s, calculate the thickness of the steel block and wavelength of the pulse. [4]
- (d) Explain in brief how acoustic emission technique is used in non-destructive testing. [3]

[5667]-1005

Ę