The letter k denotes an algebraically closed field. We denote the polynomial ring $k[X_0, \dots, X_n]$ by S, and by S_d its homogeneous component of degree d.

Exercise 1. Let $I \subset S$ be a homogeneous ideal. Show that the radical \sqrt{I} is a homogeneous ideal.

Exercise 2. Let $I \subset S$ be a homogeneous ideal. Show that the following conditions are equivalent:

- (a) $Z_h(I) = \emptyset \subset \mathbb{P}^n$.
- (b) The ideal \sqrt{I} is either equal to S or to $S_+ = \bigoplus_{d>0} S_d$.
- (c) There is an integer d such that $S_d \subset I$.
- **Exercise 3.** (i) Show that an algebraic set Y of \mathbb{P}^n is irreducible if and only if its homogeneous ideal $I(Y) \subset S$ is prime.
 - (ii) Let $f \in S$ be an irreducible homogeneous polynomial. Show that $Z_h(f) \subset \mathbb{P}^n$ is irreducible.
- (iii) Show that \mathbb{P}^n is irreducible.

Exercise 4. Let f, g be two elements of $S_1 - \{0\}$. Assume that $Z_h(f) \neq Z_h(g)$. Show that $Z_h(f) \cap Z_h(g) \subset \mathbb{P}^n$ is a linear subspace \mathbb{P}^{n-2} (in other words: find an element of $GL_{n+1}(k)$ such that the induced bijection of \mathbb{P}^n sends $Z_h(f) \cap Z_h(g)$ to $Z_h(X_n, X_{n-1})$).

- **Exercise 5.** (i) Assume that n = 1 and $a \in S_d \{0\}$ with $d \ge 1$. Show that the cardinality of the set $Z_h(a) \subset \mathbb{P}^1$ is between 1 and d.
- (ii) Assume that n = 2. Let $f \in S_d \{0\}$ with $d \ge 1$ and $g \in S_1 \{0\}$. If $Z_h(g) \subset Z_h(f) \subset \mathbb{P}^2$, show that $g \mid f$.
- (iii) Assume that n = 2. Let $f \in S_d \{0\}$ with $d \ge 1$ and $g \in S_1 \{0\}$. If $Z_h(g) \not\subset Z_h(f) \subset \mathbb{P}^2$, show that the cardinality of the set $Z_h(f) \cap Z_h(g)$ is between 1 and d.