Algorísmica Avançada Algorismes sobre grafs II

Sergio Escalera

- Els grafs dirigits acíclics són molt comuns:
- Nosaltres modelem ó "intentem" modelar les nostres tasques quotidianes en un ordre determinat, una rere l'altre.
 - Els grafs acíclics modelen relacions com jerarquies o dependències temporals

- Connectivitat en grafs dirigits
- Hi ha d'haver connectivitat $u \rightarrow v$ i $v \rightarrow u$
- Components forts connexes

També els podem trobar amb complexitat lineal fent ús de l'algorisme DFS

- Fins ara hem parlat de connectivitat, però no hem analitzat el cost del camí que hem trobat entre els punts connectats.
- DFS assegura el camí més curt entre 2 punts connectats en un graf no dirigit???

Podem definir el camí entre 2 punts com el número d'arestes fins arribar, o el número de vèrtexs que travessem, o la suma dels pesos de les arestes, dels vèrtexs, etc.

Cerca en amplada (Breadth-first search)

```
procedure bfs (G, s)
Input: Graph G = (V, E), directed or undirected; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
dist(s) = 0
Q = [s] (queue containing just s)
while Q is not empty:
   u = eject(Q)
   for all edges (u,v) \in E:
      if dist(v) = \infty:
          inject(Q, v)
          dist(v) = dist(u) + 1
```

- BFS té un codi similar a DFS, però fa ús d'una cua en lloc d'una pila.
- Els arbres generats per BFS es diuen arbres de camí mínim.
- Si fem ús correcte del "cost del camí" a l'algorisme BFS trobem el camí mínim d'un vèrtex a la resta de vèrtex dins d'un graf!

Graf

DFS

BFS

Order	Queue contents
of visitation	after processing node
	[S]
S	$[A \ C \ D \ E]$
A	$[C\ D\ E\ B]$
C	[D E B]
D	[E B]
E	[B]
B	[]

- BFS versus DFS
- Una altra diferència és que BFS només té en compte els nodes que estan connectats a un node s, els altres són ignorats
 - □ → només es genera un arbre de camins mínims

- Pesos a les arestes
- Exemple amb distàncies

 $e \in E$ Aresta

Longitud

e = (u, v) Notació d'aresta I

l(u, v) Notació d'aresta II

 l_{uv} Notació d'aresta III

- De moment suposem que tots els pesos són positius >= 0
- BFS troba camins mínims on les arestes tenen un cost unitari.
- Cóm ho fem general per a qualsevol graf G=(V,E) amb l_e enters positius?
 - Algorisme de Dijkstra

- Algorisme de Dijkstra
 - Una versió per fer ús de BFS
 - Dividir les longituds en valors unaris incloent vèrtexs extra

Un problema evident

 Pensem millor en posar una "alarma" a cada node i l'actualitzem a mida que arribem fent ús de DFS. Els valors de les alarmes podrien ser els costos de les arestes!!!

- Set an alarm clock for node s at time 0.
- Repeat until there are no more alarms:
 Say the next alarm goes off at time T, for node u. Then:
 - The distance from s to u is T.
 - For each neighbor v of u in G:
 - * If there is no alarm yet for v, set one for time T + l(u, v).
 - * If v's alarm is set for later than T + l(u, v), then reset it to this earlier time.

Ara ens queda implementar el sistema d'alarmes

- Algorisme de Dijkstra
 - Cua amb prioritats → generalment heap

Manté un conjunt d'elements (nodes) amb les valors numèrics associats com a claus (temps de l'alarma) i suporta les següents operacions:

Inserció: inclou un nou element al conjunt.

Decrementar-clau: Decrementa el valor de la clau d'un element particular. La cua amb prioritats normalment no canvia el valor de les claus, el que fa és notificar a la cua que el valor d'una certa clau ha estat decrementat.

Eliminar-min: Retorna l'element amb la menor clau i l'elimina del conjunt.

Fer-cua: Construeix una cua amb prioritats amb els elements donats i els seus valors de clau associats.

- Inserció: inclou un nou element al conjunt.
- **Decrementar-clau:** Decrementa el valor de la clau d'un element particular. La cua amb prioritats normalment no canvia el valor de les claus, el que fa és notificar a la cua que el valor d'una certa clau ha estat decrementat.
- Eliminar-min: Retorna l'element amb la menor clau i l'elimina del conjunt.
- **Fer-cua:** Construeix una cua amb prioritats amb els elements donats i els seus valors de clau associats.
- Inserir i decrementar clau ens permet fixar les alarmes, mentre que eliminar-min ens diu quina és la pròxima alarma a tenir en compte.

```
procedure dijkstra(G, l, s)
           Graph G = (V, E), directed or undirected;
Input:
           positive edge lengths \{l_e : e \in E\}; vertex s \in V
        For all vertices u reachable from s, dist(u) is set
Output:
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
H = makequeue(V) (using dist-values as keys)
while H is not empty:
   u = deletemin(H)
   for all edges (u,v) \in E:
      if dist(v) > dist(u) + l(u, v):
          dist(v) = dist(u) + l(u, v)
          prev(v) = u
          decreasekey(H, v)
```

- dist(u) es refereix als valors actuals d'alarma del node u. Un valor infinit significa que encara no hem posat valor a l'alarma.
- L'array **prev**: guarda informació del node immediat abans del node actual u dins la ruta més curta entre s i u.
- Si retornem fent ús dels valor d'aquests punters podem reconstruir els camins més curts de forma senzilla.
- Podem veure que la diferència principal entre l'algorisme Dijkstra I BFS és que el primer usa una cua amb prioritats en lloc d'una cua regular, de forma que prioritza nodes en funció dels costos de les arestes.

• Algorisme de Dijkstra: exemple graf dirigit

A : 0	$D:\infty$
B: 4	$E:\infty$
C: 2	

• Algorisme de Dijkstra: exemple graf dirigit

A : 0	D: 6
B: 3	E: 7
C: 2	

A : 0	D: 5
B: 3	E: 6
C: 2	

• Algorisme de Dijkstra: exemple graf dirigit

A : 0	D: 5
B: 3	E: 6
C: 2	

• Algorisme de Dijkstra: exemple graf no dirigit

Node inclòs

Conjunt de nodes inclosos

Node anterior

Cost actual del

node

Iteración	u	Vectores	S
Inicial		1 2 3 4 5 6 7 D: ∞ ∞ 0 ∞ ∞ ∞ ∞ P: - - - - - - -	[]
1	3	D:	[3]
2		D:	
3		D:	
4		D:	
5		D:	
		_ D:	
6		P:	
7		D: P:	

Iteración	и	Vectores	S
Inicial		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[]
1	3	D: 1 4 0 7 5 12 ∞ P: 3 3 - 3 3 3 -	[3]
2		D:	
3		D:	
4		D:	
5		D:	
6		D:	
7		D:	

• Veiem la complexitat d'implementar les cues amb prioritat per fer l'algorisme de **Dijkstra**.

Implementation	deletemin	insert/ decreasekey	V $ imes$ deletemin $+$ $(V + E)$ $ imes$ insert	
Array	O(V)	O(1)	$O(V ^2)$	
Binary heap	$O(\log V)$	$O(\log V)$	$O((V + E)\log V)$	

• Array: inserció directa, eliminació lineal.

• Binary heap:

Binary heap

Dijkstra amb pesos negatius

```
\frac{\texttt{procedure update}}{\texttt{dist}(v) = \min\{\texttt{dist}(v), \texttt{dist}(u) + l(u, v)\}}
```


 Amb Dijkstra sempre arribem de s a t amb camí mínim independentment de l'ordre dels pesos de les arestes si aquests són positius. No amb negatius!

$$s \stackrel{\bullet}{\longleftarrow} \stackrel{\bullet}{\longleftarrow} ---- \stackrel{\bullet}{\longleftarrow} t$$
 $u_1 \quad u_2 \quad u_3 \qquad u_k$

- Solució? Canviem l'algorisme perquè es calculin les distàncies simultàneament → actualitzar totes les arestes |V|-1 vegades (O(|V|·|E|))
 - Bellman-Ford

```
procedure shortest-paths (G, l, s)
           Directed graph G = (V, E);
Input:
           edge lengths \{l_e: e \in E\} with no negative cycles;
           vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
                                       procedure update ((u, v) \in E)
   prev(u) = nil
                                       dist(v) = \min\{dist(v), dist(u) + l(u, v)\}\
dist(s) = 0
repeat |V|-1 times:
   for all e \in E:
      update(e)
```

 Implementació: si en una iteració cap aresta e s'actualitza → finalitzar

	Iteration								
Node	0	1	2	3	4	5	6	7	
S	0	0	0						
A	∞	10	10						
B C	∞	∞	∞						
C	∞	∞	∞						
D	∞	∞	∞						
\mathbf{E}	∞	∞	12						
F G	∞	∞	9						
G	∞	8	8	-	-	_	_		

Cicles negatius

$$A \to E \to B \to A$$

Els podem trobar amb l'algorisme Bellman-Ford

El camí mínim té com a màxim longitud |V|-1

Podem detectar cicles si fem una iteració extra |V|

→ Hi ha cicle negatiu si a la iteració |V| alguna aresta és actualitzada

- Cicles negatius
- Hi ha dos tipus de grafs que no tenen cicles negatius: sense pesos negatius i sense cicles
- El primer és directe. Per resoldre el camí mínim en acíclic grafs dirigits negatius:
 - Linealitzar usant DFS
 - Temps lineal!
- Si posem els negatius dels pesos podem trobar els camins de longitud màxima

Linealitzar usant DFS

```
procedure dag-shortest-paths (G, l, s)
           Dag G = (V, E);
Input:
           edge lengths \{l_e: e \in E\}; vertex s \in V
          For all vertices u reachable from s, dist(u) is set
Output:
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
Linearize G
for each u \in V, in linearized order:
   for all edges (u,v) \in E:
      update (u, v)
```

- Exercicis
- Començant a A: dibuixa la taula de distàncies immediates a tots els nodes a cada iteració.
- Mostra l'arbre de camins mínims

• Exercici: el mateix amb Bellman-Ford

