

> DAY'S PLAN

10:00 WORKING

13:00 LUNCH BREAK

14:00 WORKING

15:30 PRESENTATIONS

16:00 FEEDBACKS

INTRODUCTION

Arnaud Bellizzi Shaman

Louis LIN Lead dev

EXPERIMENT

First POEI with Oodrive

- Oodrive's involvement
 - Today!
 - Participation to your end project presentation
- Test Learn and Win

OBJECTIVES OF THE DAY

What are we expecting today?

Real-life situations

Projects close to what we have at Oodrive

 Small teams working together for a common goal

First look as a developer

Meet the developer in you

Share Oodrive's culture

- Knowledge sharing
- Helping people

FULL DISCLOSURE

Today's evaluation

- First look at your developer's side
 - How do you work as a team?
 - How do you tackle problems?
- Not final evaluation to join Oodrive

MINDSET

Ask questions!

MINDSET

- Ask questions!
- Projects are HARD on purpose
 - They are not meant to be finished

- Ask questions!
- Projects are HARD on purpose
 - They are not meant to be finished
- No competition!
 - Work as a team
 - Share your knowledge
 - Communicate your ideas
 - Different project for each team

2

PROJECTS

POEI-DASHBOARD

POEI-FILE-STORAGE

Store files securely

POEI-FILE-STORAGE

Store files securely

Upload

- Upload files to the server
- Save file contents to server file sytem
- Save file metadata in database

Download

- Fetch file metada
- Download file

Encrypt

- Encrypt all file contents on upload
- Decrypt file contents on download

POEI-PASSWORD-MANAGER

Generate random passwords & score passwords

';--have i been pwned?

Heimdall

POEI-PASSWORD-MANAGER

Generate random passwords & score passwords

Generate Score Hash

- Generate random password
- Customized password generation

- Compute password score
- Save passwords in database

 Use password's hashes instead

POEI-SECURED-BOX

Store messages securely

POEI-SECURED-BOX

Store messages securely

Store Fetch Encrypt

- Store messages mapped to a key with a password
- Save messages in the database

Fetch message from a given key

- Encrypt all messages using the given password
- Decrypt messages when fetching from a key

WHAT ARE WE EXPECTING FROM YOU

Projects development

5-10 minutes presentation

CRYPTOGRAPHY ESSENTIALS

Bring security based on cryptography to applications

Hashing

Symmetric encryption

Fingerprinting your data (password, file, ...)

- Map data of arbitrary size onto data of fixed size
- Hashes are determinist, i.e. for a given value, it must always generate the same hash
- Hashes are quick to compute for any given message
- Hashes are non-invertible, i.e. it is not realistic to reconstruct the input data from its hash alone without spending great amounts of computing time
- Well known cryptographic hash algorithms:
 - MD5: produces hash of 124 bits (16 bytes)
 - SHA-1: produces hash of 160 bits (20 bytes)
 - SHA-256: produces hash of 256 bits (32 bytes)
 - SHA-512: produces hash of 512 bits (64 bytes)

SYMMETRIC ENCRYPTION

SYMMETRIC ENCRYPTION

Encrypt data with a single shared secret

- Uses a single key for both encryption and decryption
- Industry Standard symmetric-key algorithm: AES (Advanced Encryption Standard)
 - Support encryption key in 256 bits (32 bytes)
 - Hint: Works well with SHA-256 hashes

PROJECT'S PICKS

> LINK TO PROJECTS

https://gitlab.com/l.lin/poei

YOUR TURN!