Université Paul Sabatier I.U.T. Informatique - S1

Examen de Maple 8 Janvier 2010

Durée 1h Documents et calculatrices <u>non autorisés</u>.

	Définition d'une matrice (par lignes)	>A:=matrix([[1,2],[5,4]]);
matrix		>B:=matrix(2,2,[1,2,5,4]);
matrix	Matrice définie à partir d'une fonction f	>A:=matrix(n,m,f);
diag	Matrice diagonale	$>\Delta$:=diag(a ₁ ,,a _n);
urag	Watrice diagonale	>I n:=diag (1\$ n);
band	Matrice tridiagonale	>band([a,b,c],15);
vandermonde	Matrice de Vandermonde	>vandermonde([a ₁ ,,a _n]);
transpose	Transpose une matrice	<pre>> transpose(A);</pre>
		<pre>>evalm(transpose(A));</pre>
inverse	Inverse une matrice	<pre>> inverse(A);</pre>
		<pre>>evalm(inverse(A));</pre>
rank	Rang d'une matrice	<pre>>rank(A);</pre>
det, trace	Déterminant et trace d'une matrice carrée	>det(A); , >trace(A);
equal	Egalité de matrices	<pre>> equal(M,N);</pre>
ma+add	Somme matricielle	<pre>>matadd(A,B);</pre>
matadd		<pre>>evalm(A+B);</pre>
multiply	Produit matriciel	<pre>>multiply(A,B);</pre>
murcipiy	Produit matriciei	<pre>>evalm(A&*B);</pre>
multiply	Désigne aussi le produit d'une matrice	<pre>>multiply(A,v);</pre>
	et d'un vecteur	
scalarmul	Produit d'une matrice par un scalaire	>scalarmul(A, $lpha$)
charmat	Matrice caractéristique : $A - \lambda I_n$	>charmat(A, λ)
charpoly	Polynôme caractéristique : $det(A - \lambda I_n)$	>charpoly(A, λ)
eigenvals	Valeurs propres	>eigenvals(A)
eigenvects	Vecteurs propres	>eigenvects(A)
concat	Retourne la matrice bloc (A, B)	<pre>>concat (A,B);</pre>
stackmatrix	Retourne la matrice bloc $\begin{pmatrix} A \\ B \end{pmatrix}$	>stackmatrix(A,B);
submatrix	Permet d'extraire une sous-matrice	>submatrix(A , i_1 i_2 , j_1 j_2);
delrows	Retourne A privée des lignes i_1 à i_2	<pre>>delrows(A,i₁i₂);</pre>
delcols	Retourne A privée des colonnes i_1 à i_2	<pre>>delcols(A,i₁i₂);</pre>
col	Retourne la i^{eme} colonne de A	>col(A,i);
	sous forme de vecteur (Maple)	
row	Retourne la i^{eme} ligne de A	>row(A,i);
	sous forme de vecteur (Maple)	
rowdim	Retourne le nombre de lignes de A	<pre>>rowdim(A);</pre>
coldim	Retourne le nombre de colonnes de A	<pre>>coldim(A);</pre>
A[i,j]	Retourne le coeficient $a_{i,j}$ de A	>A[i,j];

solve	Résolution des systèmes linéaires	>solve($\{a_{11}x+a_{12}y=b_1, a_{21}x+a_{22}y=b_2\},\{x,y\}$)
genmatrix	Donne la matrice du système	$>genmatrix({a_{11}x+a_{12}y=b_1, a_{21}x+a_{22}y=b_2},[x,y])$
genmatrix	Génère aussi la matrice augmentée	>genmatrix(Le système,[x,y],Le vecteur
		second_membre)
geneqns	Retourne le système d'équations	>geneqns(A,x)
linsolve	Résout le système A.x=b	>linsolve(A,b);
gausselim	La matrice réduite de Gauss	>gausselim(A);
swapcol	Permute les colonnes	>swapcol(A,i,j);
swaprow	Permute les lignes	>swaprow(A,i,j);
mulcol	$\mathtt{C}_j \longleftarrow \mathtt{xC}_j$	<pre>>mulcol(A,j,x);</pre>
mulrow	$L_i \longleftarrow xL_i$	>mulrow(A,i,x);
addcol	$\mathtt{C}_j \longleftarrow \mathtt{C}_j + \mathtt{x}\mathtt{C}_i$	<pre>>addcol(A,i,j,x);</pre>
addrow	$L_j \longleftarrow L_j + xL_i$	<pre>>addrow(A,i,j,x);</pre>

vector	Définiton d'un vecteur	$>$ v:=vector([a $_1$,,a $_n$]);
vector	Vecteur défini à partir d'une fonction f	<pre>>v:=vector(n,f);</pre>
Vector	Pour un vecteur en colonne	<pre>>v:=Vector(n,f);</pre>
dotprod	Produit scalaire de 2 vecteurs	>dotprod(u,v);
crossprod	Produit vectoriel	>crossprod(u,v);
norm	Norme euclidienne d'un vecteur	>norm(u,2);
matadd	Combinaison linéaire	>matadd(u,v, α, β);
vectdim	Nombre de composantes	>vectdim(u);
scalarmul	Produit par un scalaire	>scalarmul(u, α);
multiply	Produit d'une matrice par un vecteur	>multiply(A,u);
basis	Une base de l'e.v. engendré par L	>basis(L);
colspace	Une famille génératrice des vect. colonnes	<pre>>colspace (A,r);</pre>
rowspace	Une famille génératrice des vect. lignes	>rowspace (A,r);
intbasis	Une base de l'intersection	$>$ intbasis(E $_1,\cdots$,E $_n$);
sumbasis	Une base de la somme	>sumbasis($\mathtt{E}_1,\cdots,\mathtt{E}_n$);
kernel	Base du noyau d'une matrice	<pre>>kernel(A);</pre>
seq	Permet de créer une séquence	>seq(f, i = mn);

Exercice 1 (5 points)

- 1. Expliquer ce que produit la suite de commandes :
 >S:=matrix(5,5,(i,j)->if i=j then 1 else 0 fi);
 >seq(row(S,i),i=1..5);
 >T:=concat(%);
- $2.\,$ Donner une suite de commandes permettant de résoudre le système :

$$\begin{cases} x + 2y + 3z = 5 \\ 2x + 5y + 7z = -1 \\ -2x - 4y - 5z = 2 \end{cases}$$

La question 1 vaut 3 points = 3×1 et la question 2 est sur 2 points

Exercice 2 (3 points)

```
Que produit la procédure
>toto:=proc(M::matrix,N::matrix)
>local p,q;
>if rowdim(M)=rowdim(N) and coldim(M)=coldim(N) then;
>for p rom 1 to rowdim(M) do;
>for q from 1 to coldim(M) do;
>if M[p,q]<>N[p,q] then RETURN(false) fi;
> od;
>od;
>RETURN(true);
>else;
>RETURN(false);
>fi;
>end proc;
```

Exercice 3 (7 points)

```
On donne la suite de commande suivante :
```

```
>restart:with(linalg):
>A:=matrix(3,3,[1,1,1,1,2,4,1,3,9]); # ligne n°1
>B:=matrix(3,3,[a,b,c,d,e,f,g,h,i]); # ligne n°2
>C:=3*A&*B-2*B&*A+A: # ligne n°3
>F:=evalm(C); # ligne n°4
>L:={seq(seq((F[n,p]=0),p=1..3),n=1..3)}; # ligne n°5
>solve(L,{a,b,c,d,e,f,g,h,i}); # ligne n°6
```

- 1. Expliquez ce que produit chacune des lignes numérotées (" ligne n°1" à " ligne n°6").
- 2. Le dernier résultat affiché par cette suite de commande est :

$${g = 0, b = 0, c = 0, h = 0, d = 0, f = 0, i = -1, e = -1, a = -1}$$

Que signifie-t-il?

La question 1 vaut 6 points = 6×1 et la question 2 vaut 1 point

Exercice 4 (5 points)

Donner une suite de commandes Maple qui permettant de montrer que $u_1 = (1, 1, 0)$, $u_2 = (1, 0, 1)$ et $u_3 = (3, 2, -5)$ sont linéairement indépendants.

1 point pour la déclaration des vecteurs, 2 points pour la construction da la matrice, 1 point pour le déterminant et 1 point pour la conclusion