Winter Quarter 2020

1. Basic definitions

- a. Computer architecture
 - i. "Hardware-software interface"
 - ii. Attributes of a system visible to the programmer (instruction set, I/O mechanisms...)
 - iii. Attributes which impact the logical execution of a program
- b. Computer organization/microarchitecture
 - i. Operational units of a machine transparent to programmer (control signals, memory technology)
 - ii. Interconnections between them that realize the architectural specifications
- c. Tasks of a computer (according to Stallings)
 - i. Data processing
 - 1. Keyboard to monitor, microphone to speaker, so on
 - ii. Data storage
 - 1. Network to memory when downloading a webpage
 - 2. Longer-term storage on hard drive or SSD
 - iii. Data processing
 - 1. Internal or external source and destination
 - iv. Control
 - 1. Manage resources and control its functional parts
- d. Parts of a computer
 - i. I/O
- 1. Mouse, keyboard main examples we think of
- 2. Other peripherals count too (like speakers)
- ii. Main memory
 - 1. RAM, caches
- iii. CPU
 - 1. Registers, store values
 - 2. ALU, perform operations
 - 3. Internal bus, transfer data
 - 4. Control unit, the brain
 - a. Sequencing logic, where to go next
 - b. Control unit registers, decoders
 - c. Control memory
- iv. System interconnection/bus
 - 1. Move data around other parts

Winter Quarter 2020

2. Analog vs. digital

- a. Analog represent values by a continuously variable physical quantity
 - i. For our uses, voltage
 - ii. Key word is continuous
 - 1. Suited to amplification of real world phenomena (sound)
 - 2. Suited to calculating continuous function values (integrals)
 - 3. Subject to noise, difficult to debug
- b. Digital use discrete (discontinuous) values to represent data
 - i. Suited to discrete mathematics (like accounting)
 - ii. Needs to sample continuous data
 - 1. Will miss data that fluctuates faster than sampling rate
 - iii. Fixed 0 and 1, low and high, false and true
 - 1. Far more resistant to noise, easier to debug

3. Boolean algebra

- a. Algebra of truth values 0 and 1, along with conjunction (AND), disjunction (OR), and negation
 - i. George Boole, 1854
 - ii. Claude Shannon, 1938, uses it to solve circuit design problems
- b. * = AND, + = OR, \sim = negation, \oplus = XOR, variables A, B...
- c. Duality principle swap all signs (+, *, 0, 1) and the underlying logic is still the same
- d. Operator precedence: NOT, AND, OR
- e. Logic types
 - i. Combinational output based solely on current input
 - ii. Sequential logic output based on input and previous stored values (memory)

Truth Tables for Digital Design Gates									
Operation:		Negation		AND	NAND	OR	NOR	XOR	
Gates:		a NOT C		a b AND c	a NANDO	a or c	a NOR OC	<u>a</u> <u>b</u> xon <u>c</u>	
Α	В	~A	~B	A * B	~(A * B)	A + B	~(A + B)	$A \oplus B$	
0	0	1	1	0	1	0	1	0	
0	1	1	0	0	1	1	0	1	
1	0	0	1	0	1	1	0	1	
1	1	0	0	1	0	1	0	0	

4. Logical equivalence

a. May have seen these before if you took ECS 20 or another discrete mathematics class

Laws of Logical Equivalence						
Name	OR version	AND version				
Commutative	A + B = B + A	A * B = B * A				
Associative	(A + B) + C = A + (B + C)	(A * B) * C = A * (B * C)				
Distributive	A + (B * C) = (A + B) * (A + C)	A * (B + C) = (A * B) + (A * C)				
Idempotent	A + A = A	A * A = A				
Idontitu	A + 0 = A	A * 1 = A				
Identity	A + 1 = 1	A * 0 = 0				
Complement	A +~A = 1	A * ~A = 0				
Complement	~1 = 0	~0 = 1				
Double Negative	~(~A) = A					
De Morgan's	~(A + B) = ~A * ~B	~(A * B) = ~A + ~B				
Absorption	A + (A * B) = A	A * (A + B) = A				

5. Examples

a.
$$A + {}^{\sim}A * B = A + B$$
. Why?

Assertion	Reason		
A + ~A * B	Initial function		
$= (A + ^{\sim}A) * (A + B)$	Distributive Law for OR		
= 1 * (A + B)	Complement Law for OR		
= (A + B) * 1	Commutative Law for AND (won't bother with this from now on)		
= A + B	Identity Law for AND		

b. Write down the function for the following digital logic circuit.

i.
$$f = ((A * ^B) + (A * B)) * B$$