(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES PATENTAMT

Aktenzeichen: P 39 33 573.9 Anmeldetag: 7.10.89 43 Offenlegungstag: 18. 4.91

(51) Int. Cl. 5:

C 07 D 233/38

C 07 D 409/12 C 07 D 409/14 C 07 D 307/68 C 07 D 413/04 C 07 D 417/12 C 07 D 417/14 C 07 D 407/12 C 07 D 405/12 C 07 D 405/14 A 01 N 43/08 A 01 N 43/10

(51) // C07D 207/40,263/08,277/32,309/02,491/048,495/04

(7) Anmelder:

BASF AG, 6700 Ludwigshafen, DE

(7) Erfinder:

Muenster, Peter, Dr., 6823 Neulußheim, DE; Steiner, Gerd, Dr., 6719 Kirchheim, DE; Freund, Wolfgang, Dr., 6730 Neustadt, DE; Wuerzer, Bruno, Dr., 6701 Otterstadt, DE; Westphalen, Karl-Otto, Dr., 6720 Speyer, DE

(54) Carbonsäureamide, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide

Carbonsäureamide der Formeln la bis lo

in denen die Substituenten folgende Bedeutung haben:

X Sauerstoff oder Schwefel;

R¹ Wasserstoff, gegebenenfalls substituiertes Cycloalkyl oder Alkyl;

R² Hydroxy, Alkoxy, Cyanalkyl, gegebenenfalls substituiertes Alkenyl, Alkinyl, Phenyl oder Naphthyl, gegebenenfalls substituierter 5- bis 6gliedriger Heterocyclus oder eine der bei R1 genannten Gruppen oder

R1 und R2 gemeinsam eine 4- bis 7gliedrige Kette, welche neben Methylengruppen eine der folgenden Gruppen als Ringglied enthalten kann: Sauerstoff, Schwefel, N-Methyl

oder Carbonyl;

R3, R4 Nitro, Cyano, Halogen, gegebenenfalls substituiertes Amino, Alkoxy, Alkylthio, gegebenenfalls substituierter 5bis 6gliedriger Heterocyclus, gegebenenfalls substituiertes Alkenyl, Alkinyl, Phenyl, Phenoxy oder Phenylthio oder eine der bei R1 genannten Gruppen;

R5 Formyl, 4,5-Dihydrooxazol-2-yl oder eine Gruppe COYR6

(Y = O.S);R8 Wasserstoff, Cycloalkyl, gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkenyl oder Phenyl, ein 5- bis 6gliedriger Heterocyclus, Phthalimido, Tetrahydrophthalimido, Succinimido, Maleinimido, Benzotriazolyl oder

eine Gruppe -N = CR7R8, wobei

R7, R8 Wasserstoff oder Alkyl bedeuten, R8 darüber hinaus Cycloalkyl, Phenyl, Furyl oder R7, R8 gemeinsam eine 4- bis 7gliedrige Alkylenkette bilden;

wobei sofern - R5 Carboxyl, Methoxycarbonyl oder Ethoxycarbonyl und R2 Wasserstoff bedeutet, R3 nicht ...

Beschreibung

Die vorliegende Erfindung betrifft Carbonsäureamide der allgemeinen Formeln Ia, Ib und Ic

15

25

in denen die Substituenten folgende Bedeutung haben:

X Sauerstoff oder Schwefel;

R1 Wasserstoff;

 C_3-C_8 -Cycloalkyl, welches ein bis drei der folgenden Reste tragen kann: Halogen, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy und/oder C_1-C_4 -Halogenalkoxy;

 C_1-C_6 -Alkyl, welches ein bis drei der folgenden Reste tragen kann: Hydroxy, Halogen, C_3-C_8 -Cycloalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylamino, Di- C_1-C_4 -alkylamino und/oder C_3-C_6 -Cycloalkylamino und/oder einen Rest

30 tragen kann, wobei

R Cyano; Nitro; Halogen; C_1-C_4 -Alkyl; C_1-C_4 -Halogenalkyl; C_1-C_4 -Alkoxy; C_1-C_4 -Halogenalkoxy; C_1-C_4 -Alkoxycarbonylalkoxy und/oder C_1-C_4 -Alkoxycarbonyl bedeutet und

m für 0, 1, 2 oder 3 steht, wobei die Reste R verschieden sein können, wenn m 2 oder 3 bedeutet;

R² Hydroxy; $C_1 - C_4$ -Alkoxy, $C_1 - C_6$ -Cyanalkyl;

 C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl, Phenyl oder Naphthyl, wobei diese Gruppen ein bis drei der bei R genannten Reste tragen können;

einen 5- bis 6gliedrigen Heterocyclus, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Stickstoff, Sauerstoff und Schwefel, wobei dieser Ring ein oder zwei der folgenden Reste tragen kann: Halogen, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Alkylthio;

eine der bei R¹ genannten Gruppen oder

R¹ und R² gemeinsam eine 4- bis 7gliedrige Kette, welche neben Methylengruppen eine der folgenden Gruppen als Ringglied enthalten kann: Sauerstoff, Schwefel, N-Methyl oder Carbonyl;

R3, R4 Nitro; Cyano; Halogen;

Amino, welches ein oder zwei C₁—C₄-Alkylgruppen und/oder eine C₁—C₄-Alkylcarbonylgruppe tragen kann; C₁—C₄-Alkoxy oder C₁—C₄-Alkylthio, wobei diese Gruppen ein bis neun Halogenatome tragen können; einen 5- bis 6gliedrigen Heterocyclus, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, wobei dieser Ring ein oder zwei der folgenden Reste tragen kann: Halogen, C₁—C₄-Alkyl, C₁—C₄-Halogenalkyl, C₁—C₄-Alkoxy, C₁—C₄-Halogenalkoxy und/oder C₁—C₄-Alkylthio;

C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, Phenyl, Phenoxy oder Phenylthio, wobei diese Gruppen ein bis drei der bei R genannten Reste tragen können, oder

eine der bei R¹ genannten Gruppen;

R⁶ Wasserstoff;

C₃-C₈-Cycloalkyl;

C₁—C₆-Alkyl, welches ein bis fünf Halogenatome oder Hydroxygruppen und/oder einen der folgenden Reste tragen kann: Cyano, Aminocarbonyl, Carboxyl, Trimethylsilyl, C₁—C₄-Alkoxy, C₁—C₄-Alkoxy-C₁—C₄-Alkylamino, Di-C₁—C₄-Alkylamino, C₁—C₄-Alkylsulfinyl, C₁—C₄-Alkylsulfonyl, C₁—C₄-Alkoxycarbonyl, C₂—C₄-Alkoxycarbonyl-C₁—C₃-alkoxy, C₂—C₄-Alkoxycarbonyl-C₁—C₃-alkoxycarbonyl, C₁—C₄-Alkylaminocarbonyl, Di-C₁—C₄-Alkylaminocarbonyl, Di-C₁—C₄-

minoxi, Phenyl, Thienyl, Benzyloxy, Benzylthio, Furyl, Tetrahydrofuryl, Phthalimido, Pyridyl und/oder Benzoyl, wobei die cyclischen Reste ihrerseits ein bis drei der bei R genannten Reste tragen können;

C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder C₅-C₇-Cycloalkenyl, wobei diese Gruppen einen der folgenden Reste tragen können: Hydroxy, Halogen, C₁-C₄-Alkoxy oder Phenyl, wobei der Phenylrest seinerseits ein bis drei der bei R genannten Reste tragen kann;

einem 5- bis 6gliedrigen Heterocyclus, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Stickstoff, Sauerstoff und Schwefel;

Phthalimido; Tetrahydrophthalimido; Succinimido; Maleinimido; Benzotriazolyl;

Phenyl, welches ein bis drei der bei R genannten Reste tragen kann;

eine Gruppe $-N = CR^7R^8$, wobei Wasserstoff oder $C_1 - C_6$ -Alkyl und R^7 $C_3 - C_6$ -Cycloalkyl, Phenyl, Furyl oder einen Rest R^7 bedeutet, R^8 oder R^7 , R^8 gemeinsam eine 4- bis 7gliedrige Alkylenkette bilden, wobei sofern

- R⁵ Carboxyl, Methoxycarbonyl oder Ethoxycarbonyl und R² Wasserstoff bedeutet, R³ nicht Wasserstoff bedeutet oder R⁴ nicht Wasserstoff oder Methyl bedeutet und sofern

— R^5 Carboxyl, Methoxycarbonyl oder Ethoxycarbonyl und R^4 Wasserstoff bedeutet, R^3 nicht Wasserstoff oder R^2 nicht eine der folgenden Gruppen bedeutet: Wasserstoff; $C_1 - C_4$ -Alkyl; Phenyl; 2-(3,4-Dimethoxyphenyl)ethyl oder 2,5-Dichlorthien-3-yl,

10

15

35

40

45

50

55

60

65

不一分多一次多分為其實質的多數是是是自然的不多其子所以

sowie deren landwirtschaftlich brauchbaren Salze.

Außerdem betrifft die Erfindung ein Verfahren zur Herstellung der Verbindungen Ia, Ib oder Ic und herbizide Mittel, enthaltend mindestens ein Carbonsäureamid Ia, Ib oder Ic und/oder ein Carbonsäureamid der allgemeinen Formel IA, IB oder IC

$$R^{5}$$
 $NR^{1}R^{2}$
 R^{4}
 X
 R^{3}
 R^{4}
 X
 R^{5}
 R^{4}
 X
 R^{5}
 R^{4}
 X
 R^{5}
 R^{5}
 R^{6}
 R^{1}
 R^{2}
 R^{5}
 R^{6}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{5}
 R^{5}

in denen die Substituenten die in Anspruch 1 gegebene Bedeutung haben und zusätzlich

- R⁵ Carboxyl, Methoxycarbonyl oder Ethoxycarbonyl und R² Wasserstoff bedeutet, wenn R³ Wasserstoff bedeutet oder R⁴ nicht Wasserstoff oder Methyl bedeutet und in denen
- R⁵ Carboxyl, Methoxycarbonyl oder Ethoxycarbonyl und R⁴ Wasserstoff bedeutet, wenn R³ Wasserstoff oder R² nicht eine der folgenden Gruppen bedeutet: Wasserstoff; C₁ C₄-Alkyl; Phenyl; 2-(3,4-Dimethoxyphenyl)ethyl oder 2,5-Dichlorthien-3-yl.

In der Literatur sind beispielsweise Carbonsäureamide der folgenden Formeln I', I" bzw. I'" bekannt.

Formel	x	R ^a	R ^b	R ^c	R ^d	R ^e	Literatur
ľ	O	Н	Н	Н	CH,	CO ₂ CH ₃	1.
ľ	0	H	Н	H	H	CO₂H	1.
ľ	0	Н	н	Н	Н	CO ₂ CH ₂ CH ₃	· 2 .
ľ	O	Н	$(CH_2)_2$ OCH ₃	н	н	CO ⁵ H	3.
			осн,				
ľ	0	Н	(CH ₂) ₂ —OCH ₃	н	Н	CO ₂ CH ₂ CH ₃	3.
			осн,				
ľ	0	Н	Н	Н	CH ₃	CO ₂ CH ₂ CH ₃	4.
ľ	S	н		н	н	CO₂H	5 .
			CI S CI			o L	
ľ	s	н	— C4H5	н	н	CO-N	5 .
						O	
ľ	S	H	C₄H₃	Н	Н	CO₂H	5 .
I"	0	H	Н	Н	Н	CO₂H	1.
I"	0	H	Н	Н	H	CO ₂ CH ₂ CH ₃	6 .
I"	S	H	Н	H	Н	СНО	7.
I"	S	CH,	— C ₆ H ₅	H	H	CO ₂ CH ₃	8.
I"	S	CH,	— C ₆ H ₅	Н	H	CO₁H	8.
I"	S	H	Н	H	H	CO₂H	9.
I‴	0	H	C₄H₅	H	H	CO₃H	10.
I'''	0	Н	Н .	CH,	H	CO³H	11.
I'''	0	Н	C(CH ₃) ₃	H	H	CO¹H	12.
I'''	S	Н	Н	н	H	СНО	7b.
I'''	S	CH,	-C ₆ H ₅	Н	H	CO ₂ CH ₃	8.
['"	S	СH,	—C ₆ H ₅	H	H	CO¹H	8. o
I'''	S	Н	Н	Н	H	CO.H	9. 12.
I'''	S	Н	CH,CH,	H H	H H	CHO CHO	12. 12.
['" ['"	S S	Н	C(CH)	н	H	CO ₂ H	12.
1	3	H	$C(CH_3)_3$	n	п	COAU	14.

Literatur:

- Bull. Soc. Chim. Fr., 1970, 1445
 Rocz. Chem., 38, 511 (1964)
 DE-A 31 43 876
 C.R. Acad. Sci., Ser. C, 268, 1884 (1969)
 DE-A 35 24 743

- 6. J. Am. Chem. Soc., 77, 4069 (1955)
- 7a. Bull. Soc. Chim. Fr, 1976, 628
- 7b. Acad. Sci., Ser. C, 276, 871 (1973)
- 8. J. Org. Chem., 189, 138 (1953)
- 9. J. Chem. Soc., 1937, 911
- 10. Acta Polytochim, 2, 19 (1924/26)
- 11. Helv. Chim. Acta, 14, 1270 (1931)
- 12. J. Org. Chem., 50, 4362 (1985)

Der vorliegenden Erfindung lagen neue herbizid wirksame Substanzen als Aufgabe zugrunde.

Demgemäß wurden die eingangs definierten Carbonsäureamide Ia, Ib und Ic und Verfahren zu ihrer Herstellung gefunden.

5

10

45

65

Des weiteren wurde gefunden, daß sich die Carbonsäureamide Ia, Ib und Ic sowohl als auch die Carbonsäureamide IA, IB und IC zur Bekämpfung unerwünschten Pflanzenwuchses eignen.

Die erfindungsgemäßen Carbonsäureamide Ia, Ib und Ic sind auf verschiedenen Wegen herstellbar. Man erhält sie beispielsweise nach den folgenden Verfahren.

1. Verfahren zur Herstellung der Verbindungen Ia, in denen R⁵ Carboxyl bedeutet:

Man erbält diese Carbonsäureamide dadurch, daß man ein entsprechendes Dicarbonsäureanhydrid der Formel II in an sich bekannter Weise in einem Amin der Formel III umsetzt.

O O O
$$(Ia)$$
 $(R^5 = CO_2H)$

R

(II) (III)

Die Umsetzung wird in der Regel bei Temperaturen von -10 bis 100° C, vorzugsweise 0 bis 30° C in einem inerten organischen Lösungsmittel durchgeführt.

Als Lösungsmittel eignen sich Ether wie Methyl-tert.-butylether, 1,2-Dimethoxyethan, Diethylenglykol-dimethylether, Tetrahydrofuran und Dioxan.

Die Konzentration der Edukte im Lösungsmittel beträgt im allgemeinen 0,1 bis 5 mol/l, bevorzugt 0,2 bis 2 mol/l.

Das molare Verhältnis von II zu III beträgt im allgemeinen 1:5 bis 1:1. vorzugsweise 1:2 bis 1:1.

Die benötigten Dicarbonsäureanhydride II sind bekannt oder lassen sich in an sich bekannter Weise durch die Umsetzung der entsprechenden Dicarbonsäuren mit dem Anhydrid einer niederen Carbonsäure wie insbesondere Essigsäureanhydrid herstellen.

2. Verfahren zur Herstellung der Verbindungen Ia, Ib und Ic, in denen R³ und R⁴ nicht Brom und Iod bedeuten und R⁵ Formyl oder Carboxyl bedeutet:

$$(R^3, R^4 \neq Br, J; R^5 = CHO, CO_2H)$$

Man erhält diese Verbindungen Ia, Ib und Ic dadurch, daß man eine entsprechende Carbonsäure der Formel IVa, IVb bzw. IVc in an sich bekannter Weise in das Halogenid oder eine andere aktivierte Form der Carbonsäure überführt, diese Derivate anschließend mit einem Amin der Formel III umsetzt und das so erhaltene Carbon-

säureamid Va, Vb bzw. Vc danach in Gegenwart einer Base mit einem Formylierungs- oder einem Carboxylierungsreagens umsetzt.

 $(R^3, R^4 \neq Br, J; R^5 = CHO, CO_2H)$

35

40

Die einzelnen Reaktionsschritte dieses Synthesesequenz können im allgemeinen wie folgt durchgeführt werden:

Reaktionsschritt A

Man erhält die Verbindungen Va, Vb bzw. Vc aus den Säuren IVa, IVb und IVc, indem man IVa, IVb bzw. IVc zunächst in an sich bekannter Weise in das Halogenid oder eine andere aktivierte Form der Carbonsäurefunktion überführt und diese Derivate anschließend mit einem Amin III amidiert.

Aktivierte Formen der Carbonsäure sind neben Halogeniden wie insbesondere den Chloriden und den Bromiden beispielsweise auch Imidazolide. Im allgemeinen werden die Halogenide bevorzugt.

Man erhält sie durch Umsetzung der Carbonsäuren IVa, IVb bzw. IVc mit einem Halogenierungsmittel wie Thionylchlorid, Thionylbromid, Phosphoroxychlorid bzw. -bromid, Phosphortri- und -pentachlorid bzw. -bromid, Phosgen sowie elementarem Chlor und Brom.

Das Halogenierungsmittel wird in 1 bis 5 mol-äq., vorzugsweise 1 bis 2 mol-äq. eingesetzt.

Die Umsetzung verläuft bei Temperaturen von 20°C bis zum Siedepunkt des Halogenierungsmittels bzw. sofern man in Gegenwart eines inerten organischen Lösungsmittels arbeitet, auch dessen Siedepunkt.

Als Lösungsmittel eignen sich beispielsweise Kohlenwasserstoffe und Halogenkohlenwasserstoffe wie Benzol, Toluol und Dichlormethan.

Üblicherweise werden die aktivierten Carbonsäurederivate isoliert, beispielsweise durch Abdestillieren des Halogenierungsmittels und, sofern vorhanden, des Lösungsmittels, und erst anschließend mit den Aminen III umgesetzt.

In diesem Fall wird die Amidierung bei Temperaturen von -20 bis 50° Cm, vorzugsweise 0 bis 30° C in einem inerten aprotisch polaren organischen Lösungsmittel durchgeführt.

Für diese Umsetzung eignen sich insbesondere Halogenkohlenwasserstoffe wie Dichlormethan und Ether wie Diethylether und tert.-Butylmethylether als Lösungsmittel.

Da bei der Amidierung von Säurehalogeniden Halogenwasserstoff gebildet wird, empfiehlt es sich, das Amin III in 2 bis 5 mol-äq. Überschuß, vorzugsweise 2 bis 3 mol-äq. zuzusetzen. Sofern das Amin in äquimolaren Mengen (1 bis 1,2 mol-äq.) eingesetzt wird, sollte zum Binden des Halogenwasserstoffs eine Base, insbesondere ein tertiäres Amin wie Triethylamin oder Pyridin zugegeben werden.

Reaktionsschritt B

Die Formylierung bzw. Carboxylierung der Carbonsäureamide Va bzw. Vb bzw. Vc erfolgt in der Regel bei Temperaturen von -100 bis -20°C, vorzugsweise -80 bis -40°C in einem aprotisch polaren inerten organischen Lösungsmittel unter Ausschluß von Feuchtigkeit in Gegenwart einer Base.

Als Formylierungsreagens dient insbesondere Dimethylformamid und N-Formylmorpholin, bevorzugtes Carboxylierungsmittel ist Kohlendioxid.

Geeignete Lösungsmittel sind insbesondere Diethylether, tert.-Butylmethylether, Tetrahydrofuran und Dioxan.

Als Basen finden bevorzugt Alkalimetallkohlenwasserstoffe wie Methyllithium, n-Butyllithium, tert.-Butyllithium und Phenyllithium Verwendung.

Die Umsetzung wird üblicherweise so durchgeführt, daß zunächst eine Lösung des Carbonsäureamids Va bzw. Vb mit 1,3 bis 2,5 mol-äq. der gelösten Base versetzt wird, wobei ein im Ring metallisiertes Carbonsäureamidderivat entsteht, welches bei der anschließenden Zugabe des elektrophilen Formylierungs- bzw. Carboxylierungsreagens' zum gewünschten Produkt Ia, Ib bzw. Ic abreagiert.

Da im Falle von R¹ oder R² = H das erste mol-Äquivalent Base lediglich den Amidstickstoff deprotoniert, werden in diesem Fall mindestens 2 mol-äq. an Base benötigt, um den Heterocyclus zu metallisieren, vorzugsweise arbeitet man in diesem Fall in Gegenwart von 2 bis 2,5 mol-äq. der Base.

Die für dieses Verfahren benötigten Carbonsäuren IVa, IVb und IVc sind literaturbekannt oder können nach allgemeinen literaturbekannten Methoden, z. B. durch Oxidation aus den entsprechenden Alkoholen oder Aldehyden oder durch Hydrolyse, aus den entsprechenden Nitrilen hergestellt werden (Beilstein, Hauptwerk und 1. bis 5. Ergänzungswerk, Band 18; The Chemistry of Heterocyclic Compounds, Interscience Publishers, New York, 1976, John Wiley & Sons, Inc., 1988, Vol. 44, Part I—III).

3. Verfahren zur Herstellung der Verbindungen Ib und Ic, in denen R³ oder R⁴ Halogen, R⁵ eine Gruppe CO₂R⁶ und R⁶ Alkyl bedeutet:

25

45

50

55

60

 $(R^3 \text{ oder } R^4 = \text{Halogen}; R^6 = \text{Alkyl})$

Man erhält diese Verbindungen Ib und Ic dadurch, daß man einen Dicarbonsäurediester der allgemeinen Formel VIa oder VIb in an sich bekannter Weise zunächst diazotiert und die diazotierte Verbindung mit einem anorganischen Halogenid in das entsprechende Derivat VIIa bzw. VIIb überführt, VIIa bzw. VIIb anschließend mit einem Amin der Formel III amidiert und das so erhaltene Gemisch der isomeren Verbindungen Ib und Ic in die Einzelkomponenten auftrennt.

5

$$R^{4}$$
 OR^{4}
 OR

(R3 = Halogen; R6 = Alkyl) oder (R4 = Halogen; R6 = Alkyl

Ö

(Ic)

45

60

Hal

Hal bedeutet in den Formeln VIIa, VIIb, Ib und Ic ein Halogenatom wie Fluor, Chlor, Brom und Iod. Die Reaktionsschritte dieser Synthesesequenz können im allgemeinen wie folgt durchgeführt werden:

(Ic)

O

Reaktionsschritt A

Die Diazotierung der Dicarbonsäureester der allgemeinen Formel VIa oder IVb erfolgt in der Regel bei Temperaturen von -20 bis +20°C, vorzugsweise -5 bis +10°C in einer Mineralsäure wie insbesondere Salzsäure in Gegenwart eines Alkalimetallnitrits wie Natriumnitrit.

Das so erhaltene Diazoniumsalz wird anschließend in situ mit 1 bis 5 mol, vorzugsweise 1,5 bis 2,5 mol eines anorganischen Halogenids, insbesondere eines Kupfer(I)halogenids umgesetzt.

Die Reaktionsbedingungen sind im Rahmen der für die Sandmeyer-Reaktion bekannten Verfahren variabel (s. a. Houben-Weyl, Bd. X/3, S. 1-212 [1965]; Chem. Zvesti 36, 401 [1982]).

Reaktionsschritt B

Die Umsetzung der so erhaltenen Dicarbonsäureester VIIa und VIIb mit dem Amin III erfolgt im allgemeinen und im besonderen analog zu den in Verfahren 1 geschilderten Bedingungen.

Insbesondere finden als Lösungsmittel hierbei jedoch Halogenkohlenwasserstoffe wie Methylenchlorid und Ether wie Diethylether, tert.-Butyl-methylether und Tetrahydrofuran Anwendung.

Das Amin III wird im allgemeinen in äquimolaren Mengen oder im Überschuß, vorzugsweise in Mengen von 1 bis 1,2 mol-äq, bezogen auf VIIa bzw. VIIb, eingesetzt.

Bei diesem Verfahren entstehen die isomeren Carbonsäureamide der Formeln Ib und Ic in unterschiedlichen Mengen. Die Auftrennung des Isomerengemischs gelingt entweder durch fraktionierte Kristallisation oder auf chromatographischem Wege.

Die für dieses Verfahren benötigten Dicarbonsäurediester VIa und VIb sind bekannt oder können aus den entsprechenden Oxoestern Xa, beispielsweise analog den in Synthesis, 1977, 200 beschriebenen Bedingungen, gemäß dem folgenden Reaktionsschema hergestellt werden:

20

60

65

4. Verfahren zur Herstellung der Verbindungen Ib und Ic, in denen R5 eine Carboxylgruppe bedeutet

Man erhält diese Carbonsäureamide Ib und Ic beispielsweise dadurch, daß man ein entsprechendes Carbonsäureamid der Formel Ib oder Ic in der R⁵ eine Gruppe CO₂R⁶ und R⁶ Alkyl bedeutet, in an sich bekannter Weise mit einer wäßrigen Base hydrolysiert.

$$R^{3} \longrightarrow NR^{1}R^{2} \qquad oder \qquad R^{3} \longrightarrow OR^{4} \qquad AR^{1}R^{2} \qquad OR^{4} \qquad AR^{1}R^{2} \qquad AR^{4} \longrightarrow OR^{4} \qquad AR^{4} \longrightarrow OR^{4} \qquad AR^{4} \longrightarrow OR^{4} \qquad AR^{4} \longrightarrow OR^{4} \longrightarrow$$

Die Reaktion wird so durchgeführt, daß man ein Carbonsäureamid Ib bzw. Ic (R⁶ = Alkyl) in einem inerten Lösungsmittel vorlegt und bei -30 bis 120°C, vorzugsweise bei -10 bis 40°C, mit einer wäßrigen Base umsetzt. Die Carbonsäureamide der Formel Ib bzw. Ic (R⁵ = CO₂H) werden dann bei -30 bis 100°C, vorzugsweise bei -10 bis 10°C, durch Zugabe von Mineralsäuren freigesetzt.

(Ic)

Ö

(lb)

Als Lösungsmittel für diese Esterspaltung kommen Alkohole wie Methanol, Ethanol, Propanol oder Ethylenglykol in Betracht; besonders bevorzugt arbeitet man in dem gleichen Alkohol, der der Esterkomponente R⁶OH entspricht. Die Konzentration des Edukts Ib bzw. Ic beträgt im allgemeinen 0,1 bis 5,0 mol/l, bevorzugt 0,2 bis 2,0 mol/l.

Als wäßrige Base setzt man wäßrige Lösungen von Alkali- oder Erdalkalihydroxiden, wie LiOH, NaOH, KOH, Ca(OH)₂ oder Ba(OH)₂, bevorzugt NaOH oder KOH ein. Die Hydroxide werden dabei in Form einer 5- bis 20%igen wäßrigen Lösung verwendet.

Die molaren Verhältnisse, in denen Ester Ib und Ic und Hydroxide eingesetzt werden, betragen 1:0,95 bis 1:1 für Alkalimetallhydroxide und 1:0,48 bis 1:0,55 für Erdalkalimetallhydroxide.

5. Verfahren zur Herstellung der Verbindungen Ia, Ib und Ic, in denen R⁵ eine Gruppe COYR⁶ bedeutet:

Man erhält diese Verbindungen beispielsweise, wenn man ein Carbonsäureamid Ia, Ib oder Ic, in dem R⁵ eine Gruppe CO₂H bedeutet, in an sich bekannter Weise in oder eine aktivierte Form der Carbonsäure überführt und diese Derivate anschließend mit einer Verbindung VIII verestert.

25
$$HO \longrightarrow NR^{1}R^{2} \text{ oder } R^{3} \longrightarrow O NR^{1}R^{2}$$

$$(Ia) \qquad (Ib) \qquad (Ic)$$

$$HYR^{6} \quad (VIII) \longrightarrow O MR^{1}R^{2}$$

$$(R^{5} = COYR^{6})$$

Diese Umsetzung wird üblicherweise bei Temperaturen von -20 bis 60°C, vorzugsweise 0 bis 40°C durchgeführt.

Als Lösungsmittel verwendet man zweckmäßigerweise Halogenkohlenwasserstoffe wie Chlorbenzol und 1,2-Dichlorbenzol, Ether, z. B. Methyl-tert.-butylether, 1,2-Dimethoxyethan, Diethylenglykol-dimethylether, Tetrahydrofuran und Dioxan; dipolare aprotische Lösungsmittel, z. B. Acetonitril, Dimethylformamid, Dimethylacetamid, Dimethylsulfoxid, N-Methylpyrrolidon, 1,3-Dimethyltetrahydro-2(1H)-pyrimidinon und 1,3-Dimethylimidazolin-2-on, oder Aromaten, z. B. Benzol, Toluol und Xylol. Die Konzentration der Edukte im Lösungsmittel beträgt im allgemeinen 0,1 bis 5,0 mol/l, bevorzugt 0,2 bis 2,0 mol/l.

In der Regel werden 1 bis 1,5 mol/äq., vorzugsweise 1 bis 1,15 mol/äq. der Verbindung V, bezogen auf die Carbonsäure Ia, Ib oder Ic ($R^5 = CO_2H$), eingesetzt.

Als wasserentziehendes Mittel eignen sich Diimide wie Dicyclohexylcarbodiimid (s. a. Angew. Chem. 90, 556 [1978]) oder Anhydride wie Propanphosphonsäureanhydrid. Auch in Anwesenheit von 1-Methyl-2-halogenpyridiniumiodiden als wasserentziehendes Mittel (vgl. Chem. Lett., 1045 [1975]; ibid., 13 [1976]; ibid., 49 [1976]) gelingt die Umsetzung.

Besonders bevorzugt arbeitet man in einem inerten Lösungsmittel wie Tetrahydrofuran, Dichlormethan oder Toluol in Gegenwart von Dicyclohexylcarbodiimid als wasserentziehendem Mittel beim Einsatz von Carbonsäure I, Verbindung IV und wasserentziehendem Mittel in stöchiometrischen Mengen bei 20 bis 40°C.

Die Umsetzung ist im allgemeinen nach 14 Stunden beendet; die Carbonsäureamide Ia, Ib und Ic werden in an sich bekannter Weise (z. B. durch Verdünnen des Reaktionsgemisches mit Wasser und Extraktion des Produktes mit einem organischen Lösungsmittel) isoliert und mit üblichen Standardmethoden wie Umkristallisation oder Chromatographie gereinigt.

6. Verfahren zur Herstellung der Verbindungen la, Ib und Ic, in denen R5 4,5-Dihydrooxazol-2-yl bedeutet:

65

Man erhält diese Verbindungen Ia, Ib und Ic beispielsweise, indem man ein entsprechendes Dicarbonsäureamid Ia, Ib oder Ic, in dem R⁵ eine Carboxylgruppe bedeutet, in an sich bekannter Weise mit 2-Aminoethanol IX cyclisiert. Der Übersichtlichkeit halber ist diese Umsetzung im folgenden repräsentativ für die Verbindungen Ia beschrieben.

15

30

35

45

55

HO
$$R^4$$
 R^3
 R^3
 R^4
 R^5
 R^5

Die Reaktion wird so durchgeführt, daß man die Verbindungen bei 0 bis 180°C, vorzugsweise bei Rückflußtemperatur des verwendeten Gemisches mit einem Aminoalkohol IX, gegebenenfalls in Gegenwart eines inerten Lösungsmittels umsetzt. Ester oder Carbonsäure Ia, Ib bzw. Ic und Aminoalkohol IX werden dabei im Verhältnis 1:1 bis 1:2,5, vorzugsweise 1:1 bis 1:1,5 eingesetzt.

Als Lösungsmittel verwendet man zweckmäßigerweise Halogenkohlenwasserstoffe wie Chlorbenzol und 1,2-Dichlorbenzol, Ether, z. B. Methyl-tert.-butylether, 1,2-Dimethoxyethan, Diethylenglykol-dimethylether, Tetrahydrofuran und Dioxan; Alkohole wie Methanol, Ethanol, Propanol oder Ethylenglykol, dipolare aprotische Lösungsmittel, z. B. Acetonitril, Dimethylformamid, Dimethylacetamid, Dimethylsulfoxid, N-Methylpyrrolidon, 1,3-Dimethyltetrahydro-2(1H)-pyrimidinon und 1,3-Dimethylimidazolin-2-on, oder Aromaten, z. B. Benzol, Toluol und Xylol. Die Konzentration der Edukte im Lösungsmittel beträgt im allgemeinen 0,1 bis 5,0 mol/l, bevorzugt 0,2 bis 2,0 mol/l.

Die Umsetzung ist im allgemeinen nach 14 Stunden beendet; die Carbonsäureamide Ia und Ib werden dann gegebenenfalls durch Zugabe von Wasser ausgefällt, abgesaugt oder mit einem organischen Lösungsmittel extrahiert und mit üblichen Standardmethoden wie Umkristallisation oder Chromatographie gereinigt.

Neben den vorstehend geschilderten Verfahren zur Herstellung der Verbindungen Ia, Ib und Ic gibt es weitere Synthesemöglichkeiten, die den folgenden Literaturstellen zu entnehmen sind:

Beilstein, Hauptwerk sowie 1.—5. Erg.-Werk, Band 27; R. W. Wiley, The Chemistry of Heterocyclic Compounds, Five- and Six-Membered Compounds with Nitrogen and Oxygen, Interscience Publishers, New York, London (1962), Heterocyclic Chemistry, Vol. 6, Five-membered Rings with Two or More Oxygen, Sulfur or Nitrogen Atoms, Programon Press, 1984, J. March, Advanced Organic Chemistry, Third Adition, John Wiley and Sons, 1985, Houben-Weyl, Methoden der organischen Chemie, 4. Auflage, Thieme Verlag, Bände IV, VI, VII, VIII, VI

Im Hinblick auf die bestimmungsgemäße Verwendung der Verbindungen IA, IB und IC kommen als Substituenten bevorzugt folgende Reste in Betracht: R! Wasserstoff:

C₃—C₈-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohexyl und Cyclooctyl, insbesondere Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl, welches ein bis drei der folgenden Reste tragen kann: Halogen wie Fluor, Chlor, Brom und Iod, insbesondere Fluor und Chlor; Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl, insbesondere Methyl und Ethyl; Halogenalkyl wie Fluormethyl, Difluormethyl, Trifluormethyl, Chlordifluormethyl, Dichlorfluormethyl, Trichlormethyl, 1-Fluorethyl, 2,2-Difluorethyl, 2,2-Trifluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2-Trichlorethyl und Pentafluorethyl, insbesondere Trifluormethyl; Alkoxy wie Methoxy, Ethoxy, n-Propoxy, 2-Methylethoxy, n-Butoxy, 1-Methylpropoxy, 2-Methylpropoxy und 1,1-Dimethylethoxy, insbesondere Methoxy und Ethoxy; Halogenalkoxy, wie Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, Dichlorfluormethoxy, 1-Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2,2,2-Trifluorethoxy, 2,2,2-Trifluorethoxy, insbesondere Trifluormethoxy;

Alkyl wie vorstehend genannt sowie Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Ethylpropyl, 1-Ethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylpropyl, 1-Ethylpropyl,

pyl und 1-Ethyl-2-methylpropyl, insbesondere Methyl, Ethyl, 1-Methylethyl und 1,1-Dimethylethyl, welches ein bis drei der folgenden Reste tragen kann: Hydroxy; Halogen wie vorstehend genannt, insbesondere Fluor und Chlor; Cycloalkyl wie vorstehend genannt, insbesondere Cyclopropyl; Alkoxy wie vorstehend genannt, insbesondere Methoxy und Ethoxy; Halogenalkoxy wie vorstehend genannt, insbesondere Trifluormethoxy, Alkylthio, wie Methylthio, Ethylthio, n-Propylthio, 1-Methylethylthio, n-Butylthio, 1-Methylpropylthio, 2-Methylpropylthio und 1,1-Dimethylethylthio, insbesondere Methylthio und Ethylthio; Halogenhalkylthio wie Difluormethylthio, Trifluormethylthio, Chlordifluormethylthio, 1-Fluorethylthio, 2-Fluorethylthio, 2,2-Difluorethylthio, 2,2-Difluorethylthio, 2,2-Trichlorethylthio und Pentafluorethylthio, insbesondere Trifluormethylthio und Pentafluorethylthio; Alkylamino wie Methylamino, Ethylamino, Propylamino, iso-Propylamino, insbesondere Methylamino; Dialkylamino wie Dimethylamino, Diethylamino, Dipropylamino, Diisopropylamino, Methylethylamino, insbesondere Dimethylamino; Cycloalkylamino wie Cyclopropylamino, Cyclopentylamino und Cyclohexylamino, insbesondere Cyclopropylamino; und/oder einen Rest

tragen kann, wobei

R Cyano; Nitro; Halogen wie insbesondere Fluor und Chlor; Alkyl wie insbesondere Methyl, Ethyl und 1-Methylethyl; Halogenalkyl wie insbesondere Trifluormethyl; Alkoxy wie insbesondere Methoxy, Ethoxy und 1-Methylethoxy; Halogenalkoxy wie insbesondere Difluormethoxy und Trifluormethoxy; Alkinyloxy wie Propargyloxy; Alkylthio wie insbesondere Methylthio und Ethylthio; Halogenalkylthio wie insbesondere Difluormethylthio und Trifluormethylthio, Alkoxycarbonylalkoxy wie insbesondere Methoxy- oder Ethoxycarbonylmethoxy und/oder Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl, Propyloxycarbonyl, 1-Methylpropyloxycarbonyl, Butyloxycarbonyl, 1-Methylpropyloxycarbonyl, 2-Methylpropyloxycarbonyl und 1,1-Dimethylethoxycarbonyl, insbesondere Methoxycarbonyl und Ethoxycarbonyl, bedeutet und

m für 0, 1, 2 oder 3 steht, wobei die Reste R verschieden sein können, wenn m 2 oder 3 bedeutet;

30 R² Hydroxy;

Alkoxy wie insbesondere Methoxy und Ethoxy;

Cyanalkyl wie Cyanmethyl, Cyanbutyl, 2-Cyan-3-methylbutyl-2-yl;

Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 3-Methyl-2-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-3-butenyl, 1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Methyl-3-butenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 3-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 4-Methyl-3-butenyl, 1,1-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 1,2-Dimethyl-3-butenyl, 2,3-Dimethyl-3-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-3-butenyl, 2-Dimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl; Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Methyl-3-butinyl, 1-Methyl-3-butinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-3-pentinyl, 1-Dimethyl-3-butinyl, 1-Dimethyl-3-butinyl, 1-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Dimethyl-3-butinyl, 1-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-2-butinyl, 1-Dimethyl-3-butinyl, 1-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-E

3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl; insbesondere 2-Propenyl und 2-Propinyl sowie Phenyl und Naphthyl, wobei diese Gruppen ein bis drei der bei R

· 通過一百分級的數學是有事務等於於於於於於於於一方以下

im allgemeinen und im besonderen genannten Reste tragen können;

einen 5- bis 6gliedrigen Heterocyclus, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Stickstoff, Sauerstoff und Schwefel, wie 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 2-Tetrahydropyranyl, 3-Tetrahydropyranyl, 4-Tetrahydropyranyl, 2-Furanyl, 3-Furanyl, 2-Thienyl, 3-Isoxazolyl, 4-Isoxazolyl, 3-Isoxazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 5-Imidazolyl, 2-Pyrrolyl, 4-Pyrrolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Pyridyl, 3-Pyridyl und 2-(4,6-Dimethyl-pyrimidinyl), wobei dieser Ring ein oder zwei der folgenden Reste tragen kann: Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy und/oder Alkylthio wie im allgemeinen und im besonderen bei R¹ genannt;

eine der im allgemeinen oder im besonderen bei R¹ genannten Gruppen oder R¹ und R² gemeinsam

eine 4- bis 7gliedrige Kette, welche neben Methylengruppen eine der folgenden Gruppen als Ringglied enthalten

65 R3, R4 Nitro; Cyano;

Halogen wie insbesondere Fluor, Chlor und Brom;

Amino, welches ein oder zwei C₁-C₄-Alkylgruppen wie bei R¹ genannt, insbesondere Methyl und Ethyl und/oder eine Alkylcarbonylgruppe wie Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl, 1-Methylcarbo-

nyl, Butylcarbonyl, 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl und 1,1-Dimethylethylcarbonyl, insbesondere Methylcarbonyl und Ethylcarbonyl tragen kann: Alkoxy oder Alkylthio wie insbesondere Methoxy, Ethoxy, Methylthio und Ethylthio, wobei diese Gruppen ein bis neun Halogenatome wie insbesondere Fluor und Chlor tragen können; einen 5- bis 6gliedrigen Heterocyclus, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff wie bei R2 genannt, wobei dieser Ring ein oder zwei der folgenden Reste tragen kann: Halogen wie insbesondere Fluor und Chlor, Alkyl wie insbesondere Methyl, Halogenalkyl wie insbesondere Trifluormethyl und Chlordifluormethyl, Alkoxy wie insbesondere Methoxy und Ethoxy, Halogenalkoxy wie insbesondere Trifluormethoxy, Trichlormethoxy und Pentafluorethoxy und/oder Alkylthio wie insbesondere Methylthio: 10 Alkenyl wie Ethenyl, 1-Propenyl, 1-Methylethenyl, 1-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 1,1-Dimethyl-1-propenyl, 1-Ethyl-1-propenyl, 1-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1,2-Dimethyl-1-butenyl, 1,3-Dimethyl-1-butenyl, 2,3-Dimethyl-1-butenyl, 3,3-Dimethyl-1-butenyl, 1-Ethyl-1-butenyl, 2-Ethyl-1-butenyl, 1-Ethyl-2-methyl-1-propenyl: 15 insbesondere 2-Propenyl; Alkinyl wie Ethinyl, 1-Propinyl, 1-Butinyl, 1-Pentinyl, 1-Methyl-3-butinyl, 1-Hexinyl, 3-Methyl-1-pentinyl, 4-Methyl-1-pentinyl, 3,3-Dimethyl-1-butinyl, insbesondere 2-Propinyl oder Phenyl, wobei diese Gruppen ein bis drei oder im allgemeinen und im besonderen bei R genannten Reste tragen können, oder eine der im allgemeinen und im besonderen bei R1 genannten Gruppen; R⁵ Formyl; 4,5-Dihydrooxazol-2-yl oder eine Gruppe COYR⁶; Y Sauerstoff oder Schwefel; R⁶ Wasserstoff; Cycloalkyl wie bei R1 genannt, insbesondere Cyclopentyl und Cyclohexyl; 25 Alkyl wie bei R1 genannt, insbesondere Methyl, Ethyl, Propyl, 1-Methylethyl und Hexyl, welches ein bis fünf Halogenatome wie insbesondere Fluor und Chlor oder Hydroxygruppen und/oder einen der folgenden Reste tragen kann: Cyano, Aminocarbonyl, Carboxyl, Trimethylsilyl, Alkoxy wie insbesondere Methoxy und Ethoxy, Alkoxyalkoxy wie Methoxyethoxy, Ethoxyethoxy und Propyloxyethoxy, insbesondere Methoxyethoxy, Alkylthio wie insbesondere Methylthio und Ethylthio; Alkylamino wie insbesondere Methylamino und Ethylamino, Dialkylamino wie insbesondere Dimethylamino und Methylethylamino, Alkylsulfinyl wie Methylsulfinyl, Ethylsulfinyl, Propylsulfinyl, iso-Propylsulfinyl, insbesondere Methylsulfinyl und Ethylsulfinyl; Alkylsulfonyl wie Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl und iso-Propylsulfonyl, insbesondere Methylsulfonyl und Ethylsulfonyl; Alkoxycarbonyl wie insbesondere Methoxycarbonyl, Alkoxycarbonylalkoxy wie Methoxycarbonylmethoxy, Methoxycarbonylethoxy, Ethoxycarbonylethoxy; Alkoxycarbonylalkoxycarbonyl wie Methoxycarbonylmethoxycarbonyl, Methoxycarbonylethoxycarbonyl, Ethoxycarbonylethoxycarbonyl; Alkylaminocarbonyl wie Methylaminocarbonyl, Ethylaminocarbonyl, Propylaminocarbonyl und iso-Propylaminocarbonyl, insbesondere Methylaminocarbonyl und Ethylaminocarbonyl, Dialkylaminocarbonyl wie Dimethylaminocarbonyl, Diethylaminocarbonyl, Dipropylaminocarbonyl, Diisopropylaminocarbonyl, Dicyclopropylaminocarbonyl und Methylethylaminocarbonyl, insbesondere Dimethylaminocarbonyl und Diethylaminocarbonyl; Dialkoxyphosphonyl wie Dime-40 thoxyphosphonyl, Diethoxyphosphonyl, Dipropoxyphosphonyl und Diisopropoxyphosphonyl, insbesondere Dimethoxyphosphonyl und Diethoxyphosphonyl; Alkaminoxy wie insbesondere 2-Propaniminoxy; Phenyl, Thienyl, Benzyloxy, Benzylthio, Furyl, Tetrahydrofuryl, Phthalimido und/oder Benzoyl, wobei die cyclischen Reste ihrerseits ein bis drei der im allgemeinen und im besonderen bei R genannten Reste tragen können; Alkenyl wie insbesondere 2-Propenyl und 2-Butenyl, Alkinyl wie insbesondere 2-Propinyl oder Cycloalkenyl wie insbesondere 2-Cyclopentenyl und 2-Cyclohexenyl, wobei diese Gruppen einen der folgenden Reste tragen können: Hydroxy, Halogen wie insbesondere Fluor und Chlor, Alkoxy wie insbesondere Methoxy und Ethoxy oder Phenyl, wobei der Phenylrest seinerseits ein bis drei der im allgemeinen und im besonderen bei R genannten Reste tragen kann; einen 5- bis 6gliedrigen Heterocyclus, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Stickstoff, Sauerstoff und Schwefel wie bei R2 genannt, insbesondere Tetrahydrofuranyl und Tetrahydropyranyl; Phthalimido; Tetrahydrophthalimido; Succinimido; Maleinimido; Benzotriazolyl; Phenyl, welches ein bis drei der im allgemeinen und im besonderen bei R genannten Reste tragen kann; eine Gruppe N = CR7R8, wobei R7 Wasserstoff oder Alkyl wie bei R1 genannt, insbesondere Methyl, Ethyl und 1 Methylethyl und 55 R8 Cycloalkyl wie insbesondere Cyclopropyl, Phenyl, Furyl oder eine der bei R7 genannten Gruppen bedeutet R7, R8 gemeinsam eine Alkylenkette wie Butylen, Pentylen, Hexylen und Heptylen, insbesondere Butylen und Pentylen bilden.

65

60

Tabelle

R3

F H 3-OCF ₃ -Phenyl F - H 3-OCF ₂ OHF ₂ -Phenyl F H 4-OCF ₂ CHF ₂ -Phenyl F H 2-SCH ₂ -Phenyl F H 2,4-(SCH ₂ ,SCH ₃)-Phenyl F H 2-SCF ₃ -Phenyl F H 4-NO ₂ -Phenyl F H 2,4-(NO ₂ ,NO ₂)-Phenyl F H 3-COCH ₃ -Phenyl F H 3-COCF ₃ -Phenyl	O H O H O H O H O H
F — H 3-OCF ₂ OHF ₂ -Phenyl F H 4-OCF ₂ CHF ₂ -Phenyl F H 2-SCH ₂ -Phenyl F H 2,4-(SCH ₂ ,SCH ₃)-Phenyl F H 2-SCF ₃ -Phenyl F H 4-NO ₂ -Phenyl F H 2,4-(NO ₂ ,NO ₂)-Phenyl F H 3-COCH ₃ -Phenyl	O H O H O H O H O H O H O H O H O H O H
F H 4-OCF ₂ CHF ₂ -Phenyl F H 2-SCH ₂ -Phenyl F H 2,4-(SCH ₂ ,SCH ₃)-Phenyl F H 2-SCF ₃ -Phenyl F H 4-NO ₂ -Phenyl F H 2,4-(NO ₂ ,NO ₂)-Phenyl F H 3-COCH ₃ -Phenyl	O H O H O H O H O H O H O H O H O H O H
F H 2,4-(SCH ₂ ,SCH ₃)-Phenyl F H 2-SCF ₃ -Phenyl F H 4-NO ₂ -Phenyl F H 2,4-(NO ₂ ,NO ₂)-Phenyl F H 3-COCH ₃ -Phenyl	O H O H O H O H O H O H O H O H O H
F H 2-SCF ₃ -Phenyl F H 4-NO ₂ -Phenyl F H 2,4-(NO ₂ ,NO ₂)-Phenyl F H 3-COCH ₃ -Phenyl	O H O H O H O H O H O H O H O H
F H 2-SCF ₃ -Phenyl F H 4-NO ₂ -Phenyl F H 2,4-(NO ₂ ,NO ₂)-Phenyl F H 3-COCH ₃ -Phenyl	O H O H O H O H O H
F H 4-NO ₂ -Phenyl F H 2,4-(NO ₂ ,NO ₂)-Phenyl F H 3-COCH ₃ -Phenyl	О Н О Н О Н О Н О Н
F H 2,4-(NO ₂ ,NO 2)-Phenyl F H 3-COCH ₃ -Phenyl	О Н О Н О Н О Н
F H 3-COCH ₃ -Phenyl	О Н О Н О Н
F H 3.COCE Phone	О Н О Н
. 11 3-COCF3-FRENYI	ОН
F H 1-Naphthyl	
F H 2-Naphthyl	ОН
F H Piperidino	ОН
F H 3-Tetrahydrofuranyl	ОН
F H 4-Tetrahydropyranyl	ОН
F H 2-Thiazolyl	ОН
F H 5-CH ₃ -2-Thiazolyl	ОН
F H 4-CH ₃ -5-COOH-2-Thiaz	
Cl H Methyl	ОН
Cl H Ethyl	O H
Cl H n-Propyl	O H
Cl H iso-Propyl	Ŏ Ĥ
Cl H Cyclopropyl	O H
Cl H n-Butyl	Ŏ Ĥ
Cl H iso-Butyl	ОH
Cl H sekButyl	O H
Cl H tertButyl	ОH
Cl H n-Pentyl	O H
Cl H 2-Pentyl	O H
Cl H 3-Pentyl	O H
Cl H n-Hexyl	O H
Cl H 2-Hexyl	ОН
Cl H 3-Hexyl	ОН
Cl H 2-Methyl-2-pentyl	ОН
Cl H cyclo-Propylmethyl	ОН
Cl H cyclo-Butyl	ОН
Cl H cyclo-Pentyl	O H
Cl H cyclo-Hexyl	ÓН
Cl H 1-Methylcyclohexyl	ОН
Cl H 3-Triflormethylcyclohex	
Cl H Allyl	O H
Cl H 1-Buten-3-yl	ОН
Cl H Crotyl	ОН
Cl H Propargyl	O H
Cl H 1-Butin-3-yl	ОH
Cl H 3-Methyl-1-butin-3-yl	ОH
Cl H 2-Pentin-4-yl	о н
Cl H Benzyl	O H
Cl H 2-Phenylethyl	ОH
Cl H 2-Methylthioethyl	о н
Cl H 2-Chlorethyl	о н
Cl H 2-Methoxyethyl	O H
Cl H 2-(N,N-Dimethylamino)	
Cl H Phenyl	O H
Cl H 2-CH ₃ -Phenyl	ОН
	ОН
Cl H 4-CH ₃ -Phenyl	
Cl H 2,4-(CH ₃ ,CH ₃)-Phenyl	
Cl H 2,3,5-(CH ₃ ,CH ₃)-Pho	enyl O H
Cl H 3-CF ₃ -Phenyl	ОН
Cl H 3-F-Phenyl	ОН
Cl H 2-Cl-Phenyl	о н

DE 39 33 573 A1

R ³	R ⁴	R¹	R ²	Y	R ⁶	X = O oder S
Н	Cl	Н	4-Cl-Phenyl	0	Н	
Н	Cl _	Н	2,4-(F,F)-Phenyl	Ŏ	H	
Н	Cl	Н	2,3,5-(Cl,Cl,Cl)-Phenyl	Ó	Н	
Н	Cl	Н	2-CN-Phenyl	0	Н	
Н	Cl	Н	2-OCH ₃ -Phenyl	0	Н	
H	Cl	Н	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	Н	
Н	Cl	Н	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	Н	
Н	Cl	Н	3-OCF ₃ -Phenyl	0	Н	
Н	Cl	Н	3-OCF ₂ OHF ₂ -Phenyl	0	Н	
Н	Cl	Н	4-OCF ₂ CHF ₂ -Phenyl	0	Н	
Н	Cl	H	2-SCH ₃ -Phenyl	0	н	
H	Cl	H	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	Н	
Н	Cl	H	2-SCF ₃ -Phenyl	0	Н	
Н	Cl	H	4-NO ₂ -Phenyl	0	Н	
H	Cl	Н	2,4-(NO ₂ ,NO ₂)-Phenyl	0	Н	
Н	Cl	Н	3-COCH ₃ -Phenyl	0	Н	
Н	Cl	Н	3-COCF ₃ -Phenyl	О	H	
Н	Cl	Н	1-Naphthyl	0	Н	
Н	Cl	Н	2-Naphthyl	0	Н	
H	CI	H	Piperidino	0	H	
Н	Cl	Н	3-Tetrahydrofuranyl	0	Н	
Н	Cl	H	4-Tetrahydropyranyl	0	Н	
Н	Cl	н	2-Thiazolyl	0	Н	
Н	Cl	Н	5-CH ₃ -2-Thiazolyl	0	Н	
Н	Cl	Н	4-CH ₃ -5-COOH-2-Thiazolyl	0	Н	
H	Br	Н	Methyl	0	Н	
H	Br	н	Ethyl	0	Н	
H	Br	H	n-Propyl	0	Н	
H	Br	H	iso-Propyl	Ο	Н	
H	Br	H	Cyclopropyl	0	Н	
H	Вг	H	n-Butyl	0	Н	
H	Br	Ĥ	iso-Butyl	0	Н	
H	Br	H	sekButyl	0	Н	
H	Br	H	tertButyl	Ο	Н	
H	Br	H	n-Pentyl	0	Н	
H	Br	H	2-Pentyl	0	Н	
H	Br	H	3-Pentyl	0	H	
H	Br	H	n-Hexyl	0	H	
H	Br	H	2-Hexyl	0	H	
H	Br	H	3-Hexyl	0	Н	
H	Br	H	2-Methyl-2-pentyl	0	Н	
H	Br	H	cyclo-Propylmethyl	0	Н	
H	Br	H	cyclo-Butyl	0	Н	
H	Br	Ĥ	cyclo-Pentyl	0	Н	
H	Br	Ĥ	cyclo-Hexyl	0	Н	
H	Br	Ĥ	1-Methylcyclohexyl	0	Н	
Н	Br	н	3-Triflormetylcyclohexyl	Ō	Н	
H	Br	H	Allyl	ŏ	H	
H	Вг	H	1-Buten-3-yl	Ŏ	H	
Н	Br	H	Crotyl	Ō	Н	
Н	Br	H	Propargyl	ŏ	H	
п Н	Br	H	1-Butin-3-yl	ŏ	H	
п Н	Br	H	3-Methyl-1-butin-3-yl	ŏ	H	
H H	Br Br	H	2-Pentin-4-yl	ŏ	H	
	Br Br	H	Benzyl	ŏ	H	
H		н Н	2-Phenylethyl	ŏ	H	
H	Br	H	2-Methylthioethyl	ŏ	H	
H	Br			ŏ	H	
H	Br Dr	Н	2-Chlorethyl	ŏ	H	
H	Br Do	Н	2-Methoxyethyl 2-(N,N-Dimethylamino)ethyl	ŏ	H	
H	Br	H	2-(N,N-Dimethylamino)ethyl Phenyl	ŏ	H	
Н	Br	Н	rnenvi	•	11	

DE 39 33 573 A1

R ³	R ⁴	R ¹	R ²	Y	R ⁶	X = O oder S
н	Br	н	3-CH ₃ -Phenyl	0	н	
H	Br —	- н	4-CH ₃ -Phenyl	Ŏ	H	
-1	Вг	Н	2,4-(CH ₃ ,CH ₃)-Phenyl	Ō	H	
H	Br	Н	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	0	H	
H	Br	Н	3-CF ₃ -Phenyl	0	Н	
H	Br	Н	3-F-Phenyl	0	Н	
H	Br	H	2-Cl-Phenyl	0	Н	
H	Br	H	4-Cl-Phenyl	Ο.	Н	
H	Br	Н	2,4-(F,F)-Phenyl	0	Н	
H	Br	Н	2,3,5-(Cl,Cl,Cl)-Phenyl	0	Н	
H	Br	Н	2-CN-Phenyl	0	Н	
H	Br	Н	2-OCH ₃ -Phenyl	0	Н	
H	Br	H	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	Н	
Н	Br	H	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	Н	
Н	Br	Н	3-OCF ₃ -Phenyl	0	Н	
H	Br	Н	3-OCF ₂ OHF ₂ -Phenyl	0	Н	
H	Br	Н	4-OCF ₂ CHF ₂ -Phenyl	0	Н	
Н	Br	Н	2-SCH ₃ -Phenyl	0	Н	
H	Br	Н	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	Н	
Н	Вг	Н	2-SCF ₃ -Phenyl	0	Н	
H	Br	H	4-NO ₂ -Phenyl	0	Н	
Н	Br	H	2,4-(NO ₂ ,NO ₂)-Phenyl	0	Н	
Н	Br	Н	3-COCH ₃ -Phenyl	0	Н	
H	Br	H	3-COCF ₃ -Phenyl	0	Н	
H	Br	H	1-Naphthyl	0	Н	
Н	Вг	H	2-Naphthyl	0	Н	
Н	Br	Н	Piperidino	0	Н	
Н	Br	Н	3-Tetrahydrofuranyl	0	H	
Н	Br	H	4-Tetrahydropyranyl	0	Н	
H	Br	H	2-Thiazolyl	0	Н	
H	Br	Н	5-CH ₃ -2-Thiazolyl	0	Н	
H	Br	H	4-CH ₃ -5-COOH-2-Thiazolyl	0	Н	
H	Ĩ	Н	Methyl	0	Н	
Н	j	Н	Ethyl	0	H	
H	j	Н	n-Propyl	0	Н	
H	j	Н	iso-Propyl	0	H	
H	ĺ	н	Cyclopropyl	0	H	
H	ĺ	Н	n-Butyl	0	Н	
H	ĺ	Н	iso-Butyl	0	Н	
Н	j	Н	sekButyl	0	H	
H	Ĵ	Н	tertButyl	0	Н	
H • •	Ĵ	H	n-Pentyl	0	H	
H	ĵ	Н	2-Pentyl	0	H H	
Н	į	Н	3-Pentyl	ŏ	п Н	
H	ĵ	Н	n-Hexyl	0	H H	
H	į	Н	2-Hexyl	ŏ	Н	
H	j	н	3-Hexyl	Ö	п Н	
H	j	Н	2-Methyl-2-pentyl		H	
H	j	Н	cyclo-Propylmethyl	0	п Н	
H	j	Н	cyclo-Butyl	ŏ	H	
H	ļ	Н	cyclo-Pentyl	ŏ	H	
H	ļ	Н	cyclo-Hexyl	0	H H	
H	ì	Н	1-Methylcyclohexyl	Ö	н Н	
H	j	Н	3-Triflormethylcyclohexyl		H H	
H	į	Н	Allyl	0		
Н	į	Н	1-Buten-3-yl	0	Н	
H	i	Н	Crotyl	0	H H	
H	i	Н	Propargyl	0		
H	j	H	1-Butin-3-yl	0	Н	
H	j	H	3-Methyl-1-butin-3-yl	0	H H	
H	I	H ·	2-Pentin-4-yl	0	н	

R ³	R ⁴	R¹ 	R ²	Y	R ⁶	X = O oder S
Н	J	Н	2-Phenylethyl	0	. н	
H	J _	. н	2-Methylthioethyl	ŏ	H	
Н	Ī	Н	2-Chlorethyl	Ŏ	H	
H	Ī	Н	2-Methoxyethyl	0	Н	
H	j	H	2-(N,N-Dimethylamino)ethyl	0	н	
H	j	Н	Phenyl	0	Н	
H H	ļ	H	2-CH ₃ -Phenyl	0	H	
H	ļ	H	3-CH ₃ -Phenyl	0	Н	
H	J	H H	4-CH ₃ -Phenyl	0	H	
H	j	H	2,4-(CH ₃ ,CH ₃)-Phenyl	0	Н	
H	i	H	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl 3-CF ₃ -Phenyl	0	Н	
H	j	Ĥ	3-F-Phenyl	0	H	
H	Ĭ	Ĥ	2-CI-Phenyl	ŏ	H H	
H	í	H	4-Cl-Phenyl	ŏ	H	
Н	Ì	Ĥ	2,4-(F,F)-Phenyl	ŏ	H	
Н	Í	H	2,3,5-(Cl,Cl,Cl)-Phenyl	ŏ	H	
Н	j	H	2-CN-Phenyl	ŏ	H	
H	j	Н	2-OCH ₃ -Phenyl	ŏ	H	
H	Ĵ	H	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	Н	
Н	J	H	3,4,5-(OCH ₃ ,OCH ₃)-Phenyl	0	Н	
H	J	H	3-OCF ₃ -Phenyl	0	Н	
H	Ì	Н	3-OCF ₂ OHF ₂ -Phenyl	0	Н	
H	Ţ	Н	4-OCF ₂ CHF ₂ -Phenyl	0	Н	
H	Ĩ	H	2-SCH ₃ -Phenyl	0	Н	
H	į	Н	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	Н	
H	j	н	2-SCF ₃ -Phenyl	0	Н	
H H	J	H	4-NO ₂ -Phenyl	0	H	
п Н	J T	H H	2,4-(NO ₂ ,NO ₂)-Phenyl	0	H	
n H	J T	п Н	3-COCH ₃ -Phenyl 3-COCF ₃ -Phenyl	0	H H	
H	ł	H	1-Naphthyl	ŏ	H	
H	í	H	2-Naphthyl	ŏ	H	
H	i	Ĥ	Piperidino	ŏ	H	
H	í	Ĥ	3-Tetrahydrofuranyl	ŏ	н	
Н	j	Н	4-Tetrahydropyranyl	0	Н	
Н	j	Н	2-Thiazolyl	0	Н	
Н	j	Н	5-CH ₃ -2-Thiazolyl	Ο	Н	
H	J	Н	4-CH ₃ -5-COOH-2-Thiazolyl	0	Н	
F	Н	H	Methyl	0	Н	
F	Н	Н	Ethyl	O	Н	
<u>F</u>	Н	H	n-Propyl	O	Н	
F	Н	Н	iso-Propyl	0	Н	
F	H	H	Cyclopropyl	0	H	
F	H	Н	n-Butyl	0	Н	
F F	H H	H	iso-Butyl	0	H H	
- -	л Н	H H	sekButyl tertButyl	0	H	
F	H	H	n-Pentyl	ŏ	Н	
?	H	H	2-Pentyl	ŏ	H	
•	H	H	3-Pentyl	ŏ	H	
7	Ĥ	н	n-Hexyl	ŏ	H	
3	H	H	2-Hexyl	ŏ	H	
F	Ĥ	Ĥ	3-Hexyl	ŏ	H	
7	H	H	2-Methyl-2-pentyl	ŏ	H	
7	H	Ĥ	cyclo-Propylmethyl	ŏ	H	
7	H	H	cyclo-Butyl	ŏ	H	
7	Н	Н	cyclo-Pentyl	Ŏ	Н	
	н	Н	cyclo-Hexyl	0	Н	
•	н	н	1-Methylcyclohexyl	0	Н	
7	н	Н	3-Triflormethylcyclohexyl	0	Н	
F	Н	Н	Aliyi	Ο	Н	

R³	R4	R'	R²	Y	R ⁶	X = O oder S
F	Н	Н	1-Buten-3-yl	0	Н	· · · · · · · · · · · · · · · · · · ·
F	Н	— н	Crotyl	ŏ	H	
F	H	H	Propargyl	ŏ	H	
F	н	Н	1-Butin-3-yl	ŏ	H	
F F.	H	Н	3-Methyl-1-butin-3-yl	Ŏ	H	
r. F	H	н	2-Pentin-4-yl	0	Н	
F	H	Н	Benzyl	0	Н	
F	H H	Н	2-Phenylethyl	0	Н	
F	H	H H	2-Methylthioethyl	0	Н	
F	H	H	2-Chlorethyl	0	Н	
F	н	H	2-Methoxyethyl	0	Н	
F	н	H	2-(N,N-Dimethylamino)ethyl Phenyl	0	H	
F	H	н	2-CH ₃ -Phenyl	0	H	
F	H	H	3-CH ₃ -Phenyl	0	H H	
F	Н	H	4-CH ₃ -Phenyl	ŏ	H	
F	H	Ĥ	2,4-(CH ₃ ,CH ₃)-Phenyl	ŏ	Н	
F	Н	H	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	ŏ	H	
F	H	Н	3-CF ₃ -Phenyl	ŏ	H	
F	Н	H	3-F-Phenyl	ŏ	н	
F	Н	H	2-Cl-Phenyl	ŏ	H	
F	Н	H	4-Cl-Phenyl	ŏ	Ĥ	
F	Н	Н	2,4-(F,F)-Phenyl	0	Н	
<u>F</u>	Н	Н	2,3,5-(Cl,Cl,Cl)-Phenyl	0	Н	
F	H	Н	2-CN-Phenyl	0	Н	
F	H	Н	2-OCH ₃ -Phenyl	0	Н	
F	H	H	2,3-(OCH ₃ ,OCH ₃)-Phenyl	О	Н	
F	H	H	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	Н	
F F	H	H	3-OCF ₃ -Phenyl	0	Н	
r F	H H	H	3-OCF ₂ OHF ₂ -Phenyl	0	Н	
r F	п Н	H H	4-OCF ₂ CHF ₂ -Phenyl	0	H	
F	H	H	2-SCH ₃ -Phenyl 2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	H	
F	н	H	2-SCF ₃ -Phenyi	0	H H	
F	н	H	4-NO ₂ -Phenyl	ŏ	H	
F	н	H	2,4-(NO ₂ ,NO ₂)-Phenyl	ŏ	H	
F	H	H	3-COCH ₃ -Phenyl	ŏ	H	
F	H	H	3-COCF ₃ -Phenyl	ŏ	н	
7	Н	Н	1-Naphthyl	ŏ	H	
7	Н	Н	2-Naphthyl	ŏ	H	
7	. Н	H	Piperidino	Ō	Н	
?	Н	H	3-Tetrahydrofuranyl	0	Н	
?	Н	Н	4-Tetrahydropyranyl	О	Н	
-	Н	Н	2-Thiazolyl	0	Н	
7	Н	Н	5-CH ₃ -2-Thiazolyl	0	Н	
•	H	Н	4-CH ₃ -5-COOH-2-Thiazolyl	0	Н	
	H	н	Methyl	0	Н	
	H	Н	Ethyl	0	H	
) 	H	H	n-Propyl	0	Н	
.1]	H H	Н	iso-Propyl	0	H	
. . :1	п Н	Н	Cyclopropyl	0	H	
., :1	н Н	Н Н	n-Butyl iso-Butyl	0	H	
1	H	H	sekButyl	0	Н	
I	H	H	tertButyl	Ö	H H	
 1	H	H	n-Pentyl	0	H H	
i I	H	H	2-Pentyl	Ö	H H	
i	Ĥ	H	3-Pentyl	ŏ	H H	
:1	H	H	n-Hexyl	ŏ	н Н	
1	Ĥ	н	2-Hexyl	ŏ	H	
7	H	H	3-Hexyl	ŏ	H	
1	H	H	2-Methyl-2-pentyl	ŏ	H	

DE- 39 33 573 A1

R ³	R ⁴	R¹	R ²	Y	R ⁶	X = O oder S
Cl	Н	Н	cyclo-Propylmethyl	0	н	
Cl	H -	Н	cyclo-Butyl	0	Н	
CI CI	H	Н	cyclo-Pentyl	0	Н	
Ci	H H	H H	cyclo-Hexyl	0	Н	
CI	Ĥ	п Н	1-Methylcyclohexyl	0	H	
CI	н	H	3-Triformethylcyclohexyl Allyl	0	H H	
Ċi	H	Ĥ	1-Buten-3-yl	ŏ	П Н	
Cl	Н	H	Crotyl	ŏ	H	
Cl	Н	Н	Propargyl	ŏ	H	
CI	H	H	1-Butin-3-yl	0	Н	
Cl	H	Н	3-Methyl-1-butin-3-yl	0	Н	
Cl	H	Н	2-Pentin-4-yl	0	Н	
Cl	H	Н	Benzyl	0	Н	
Cl	H	H	2-Phenylethyl	Ó	Н	
CI CI	H H	H H	2-Methylthioethyl	0	Н	
CI	Ĥ	H	2-Chlorethyl	0	H H	
Cl	H	H	2-Methoxyethyl 2-(N,N-Dimethylamino)ethyl	ŏ	H	
Cl	· Н	Ĥ	Phenyl	ŏ	H	
Ci	H	Ĥ	2-CH ₃ -Phenyl	ŏ	H	
CI	H	Ĥ	3-CH ₃ -Phenyl	ŏ	H	
Cl	Н	H	4-CH ₃ -Phenyl	Ŏ	H	
Cl	H	H	2,4-(CH ₃ ,CH ₃)-Phenyl	0	Н	
Cl	Н	H	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	0	Н	
Cl	H	Н	3-CF ₃ -Phenyl	0	Н	
Cl	H	Н	3-F-Phenyl	0	Н	
Cl	H	H	2-Cl-Phenyl	0	H	
Cl	H	H	4-Cl-Phenyl	0	H H	
CI CI	H H	H H	2,4-(F,F)-Phenyl 2,3,5-(Cl,Cl,Cl)-Phenyl	ŏ	H	
Cl	H	H	2-CN-Phenyl	ŏ	H	
Ci Ci	H	H	2-OCH ₃ -Phenyl	ŏ	H	
Cl	Ĥ	H	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	Н	
Cl	Н	Н	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	О	Н	
Cl	Н	H	3-OCF ₃ -Phenyl	О	Н	
Cl	Н	Н	3-OCF ₂ OHF ₂ -Phenyl	O	H	
Cl	Н	H	4-OCF ₂ CHF ₂ -Phenyl	0	Н	
Cl	H	H	2-SCH ₃ -Phenyl	0	H	
Cl	H	H	2,4-SCH ₃ ,SCH ₃)-Phenyl	0	H H	
Cl	Н	H	2-SCF ₃ -Phenyl	ŏ	Н	
Cl Cl	H H	H H	4-NO ₂ -Phenyl 2,4-(NO ₂ ,NO ₂)-Phenyl	ŏ	H	
Cl	H	H	3-COCH ₃ -Phenyl	ŏ	H	
Cl	н	H	3-COCF ₃ -Phenyl	ŏ	Ĥ	
Cl	H	Ĥ	1-Naphthyl	Ō	Н	
Ci	H	Н	2-Naphthyl	0	Н	
Cl	Н	Н	Piperidino	0	Н	
Cl	Н	Н	3-Tetrahydrofuranyl	O	Н	
Cl	Н	Н	4-Tetrahydropyranyl	O	Н	
Cl	Н	Н	2-Thiazolyl	0	Н	
Cl	Н	Н	5-CH ₃ -2-Thiazolyl	0	Н	÷
Cl	Н	H	4-CH ₃ -5-COOH-2-Thiazolyl	0	H	
Br	Н	Н	Methyl Ethyl	0	H H	
Br B-	H H	H H	Ethyl n-Propyl	ö	Н	
Br Br	H H	H	iso-Propyl	ŏ	H	
Вг Вг	H H	H	Cyclopropyi	ŏ	H	
Br	H	H	n-Butyl	ŏ	H	
Br	H	H	iso-Butyl	ŏ	H	
Br	Ĥ	H	sekButyl	Ŏ	Н	
Br	H	H	tertButyl	0	Н	

R ³	R ⁴	R¹	R²	Y	R ⁶	X = O oder S
Br	Н	н	n-Pentyl	0	н	
Br	H _	H	2-Pentyl	ŏ	H	
Br	Н	H	3-Pentyl	0	Н	
Br	H	H	n-Hexyl	0	H	
Br	H	Н	2-Hexyl	0	Н	
Br	H	Н	3-Hexyl	0	Н	
Br	Н	Н	2-Methyl-2-pentyl	0	Н	
Br	H	Н	cyclo-Propylmethyl	0	Н	
Br Br	H	Н	cyclo-Butyl	O	Н	
Br	Н	Н	cyclo-Pentyl	0	Н	
Br	H H	H	cyclo-Hexyl	0	Н	
Br		Н	1-Methylcyclohexyl	0	H	
Br	H	H	3-Triflormethylcyclohexyl	0	Н	
Br B-	H H	Н	Allyl	0	Н	
Br Br		Н	1-Buten-3-yl	0	Н	
Br	Н	H	Crotyl	0	Н	
Br	H	H	Propargyl	Ŏ	н	
	H	Н	1-Butin-3-yl	Õ	Н	
Br Br	Н	Н	3-Methyl-1-butin-3-yl	0	Н	
	H	H	2-Pentin-4-yl	0	Н	
Br B-	Н	H	Benzyl	0	Н	
Br	H	H	2-Phenylethyl	0	н	
Br D-	· H	Н	2-Methylthioethyl	0	Н	
Br B-	Н	H	2-Chlorethyl	0	Н	
Br.	Н	H	2-Methoxyethyl	0	Н	
Br D-	Н	H	2-(N,N-Dimethylamino)ethyl	0	Н	
Br Br	H H	H	Phenyl	0	Н	
		H	2-CH ₃ -Phenyl	0	H	
Br Br	H H	H	3-CH ₃ -Phenyl	0	H	
	п Н	H	4-CH ₃ -Phenyl	0	H	
Br Br	Я	Н	2,4-(CH ₃ ,CH ₃)-Phenyl	0	H	
Br	H H	H H	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	Ö	H H	
Br	H	H	3-CF ₃ -Phenyl 3-F-Phenyl	ŏ	H	
Br	H	H	2-Cl-Phenyl	ŏ	H	
Br	H	H	4-Cl-Phenyl	ŏ	H	
Br	H	H	2,4-(F,F)-Phenyl	ŏ	H	
Br	H	H	2,3,5-(Cl,Cl,Cl)-Phenyl	ŏ	Н	
Br	н	H	2-CN-Phenyl	ŏ	H	
Вг	н	H	2-OCH ₃ -Phenyl	ŏ	н	
Br	H	H	2,3-(OCH ₃ ,OCH ₃)-Phenyl	ŏ	H	
Вг	н	H	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	ŏ	H	
Br	н	H	3-OCF ₃ -Phenyl	ŏ	H	
Br	H	H	3-OCF ₂ OHF ₂ -Phenyl	ŏ	H	
Br	H	H	4-OCF ₂ CHF ₂ -Phenyl	ŏ	H	
Br	H	H	2-SCH ₃ -Phenyl	ŏ	H	
Br	H	H	2,4-SCH ₃ ,SCH ₃)-Phenyl	ŏ	H	
Br	H	H	2-SCF ₃ -Phenyl	ŏ	H	
Br	H	H	4-NO ₂ -Phenyl	ŏ	н.	
Br	н	H	2,4-(NO ₂ ,NO ₂)-Phenyl	ŏ	H	
Br	H	H	3-COCH ₃ -Phenyl	ŏ	H	
Br	H	H	3-COCF ₃ -Phenyl	ŏ	H	
Br	H	H	1-Naphthyl	ŏ	H	
Br	H.	H	2-Naphthyi	ŏ	H	
Br	H	H	Piperidino	ŏ	H	
Br	H	H	3-Tetrahydrofuranyl	ŏ	H	
Br	H	H	4-Tetrahydropyranyl	ŏ	H	
Br	H	H	2-Thiazolyl	ŏ	H	
Br	H	H	5-CH ₃ -2-Thiazolyl	ŏ	H	
Br	H	H	4-CH ₃ -5-COOH-2-Thiazolyl	ŏ	H	
Ci	Cl	H	Methyl	ŏ	H	
~ •	Ci Ci	H	Ethyl	ŏ	H	

R³	R ⁴	R¹	R²	Y	R ⁶	X = O oder S
Cl Cl	Cl Cl —	Н	n-Propyl	o	Н	
CI	CI —	H H	iso-Propyl	0	Н	
CI	Ci	H	Cyclopropyl n-Butyl	0	H H	
Cl	CI	H	iso-Butyl	ŏ	Н	
Cl	CI	H	sekButyl	ŏ	H	
CI	CI	Н	tert-Butyl	0	Н	
Cl	Cl	Н	n-Pentyl	0	H	
CI CI	CI CI	H H	2-Pentyl	0	Н	
CI	CI	H	3-Pentyl n-Hexyl	0	H H	
Ci	Či	Ĥ	2-Hexyl	ŏ	H	
Cl	Cl	H	3-Hexyl	ŏ	H	
Cl	ÇI	Н	2-Methyl-2-pentyl	Ó	Н	
CI	CI	H	cyclo-Propylmethyl	0	Н	
CI CI	Cl	Н	cyclo-Butyl	0	Н	
CI	CI CI	H H	cyclo-Pentyl	0	H	
Cl	Cl	H	cyclo-Hexyl 1-Methylcyclohexyl	0	H H	
Ci	Ci Ci	H	3-Triflormethylcyclohexyl	ŏ	H	
Ci	ČI	Ĥ	Allyl	ŏ	H	
CI	Cl	Н	1-Buten-3-yl	ŏ	H	
Cl	Cl	Н	Crotyl	0	Н	
CI	Cl	H	Propargyl	O	Н	
CI	Cl	H	1-Butin-3-yl	0	H	
Cl Cl	CI CI	Н	3-Methyl-1-butin-3-yl	0	Н	
Cl	Cl	H H	2-Pentin-4-yl Benzyl	0	H H	
Ci Ci	CI	H	2-Phenylethyl	ŏ	H	
Cl	Ci	Ĥ	2-Methylthioethyl	ŏ	H	
Cl	Cl	Н	2-Chlorethyl	O	Н	
Cl	Cl	Н	2-Methoxyethyl	0	Н	ı
Cl	CI	Н	2-(N,N-Dimethylamino)ethyl	0	H	
CI	CI	Н	Phenyl	0	Н	
CI CI	CI CI	H H	2-CH ₃ -Phenyl 3-CH ₃ -Phenyl	0	H H	
Cl	Cl	H	4-CH ₃ -Phenyl	ŏ	H	
CI	Či	Ĥ	2,4-(CH ₃ ,CH ₃)-Phenyl	ŏ	H	
Cl	CI	Н	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	0	Н	
Cl	Cl	Н	3-CF ₃ -Phenyl	0	Н	
Cl	CI	Н	3-F-Phenyl	O	H	•
Cl	Cl	Н	2-Cl-Phenyl	0	H	
CI CI	CI Cl	H H	4-Cl-Phenyl	0	H H	
CI CI	Cl	H	2,4-(F,F)-Phenyl 2,3,5-(Cl,Cl,Cl)-Phenyl	ŏ	H	
Cl	CI	H	2-CN-Phenyl	ŏ	H	
Ci	Či	Ĥ	2-OCH ₃ -Phenyl	ŏ	H	
Cl	CI	H	2,3-(OCH ₃ ,OCH ₃)-Phenyl	Ó	Н	
Cl	Cl	н	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	Н	
CI	Cl	Н	3-OCF ₃ -Phenyl	0	Н	
CI	CI	Н	3-OCF ₂ OHF ₂ -Phenyl	0	Н	
CI	Cl	H	4-OCF ₂ CHF ₂ -Phenyl	0	Н	
CI CI	CI CI	H H	2-SCH ₃ -Phenyl 2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	H H	
CI CI	Cl	п Н	2-SCF ₃ -Phenyl	ö	H	
CI CI	Cl	H	4-NO ₂ -Phenyl	ŏ	H	
Ci	Či	H	2,4-(NO ₂ ,NO ₂)-Phenyl	ŏ	H	
Cl	Cl	н	3-COCH ₃ -Phenyl	0	Н	
Cl	Cl	Н	3-COCF ₃ -Phenyl	0	H	
CI	Cl	H	1-Naphthyl	0	Н	
CI	Cl	H	2-Naphthyl	ò	Н	
Cl	Cl	Н	Piperidino	0	Н	

DE 39 33 573 A1

R³	R ⁴	R¹	R²	Y	R ⁶	X - O oder S
Cl	Cl	н	3-Tetrahydrofuranyl	0	н	
CI	Cl _	Н	4-Tetrahydropyranyl	0	Н	
Cl	CI	H	2-Thiazolyl	0	H	
Cl	Cl Cl	H	5-CH ₃ -2-Thiazolyl	0	H H	
Cl Cl	Cl Br	H H	4-CH ₃ -5-COOH-2-Thiazolyl Methyl	ŏ	п Н	
CI	Br	H	Ethyl	ŏ	H	
Cl	Br	H	n-Propyl	ŏ	H	
Ci	Br	н	iso-Propyl	Ö	H	
CÍ	Br	Н	Cyclopropyl	0	H	
Cl	Br	Н	n-Butyl	0	H	
CI	Br	Н	iso-Butyl	0	H	
Cl	Br	Н	sekButyl	0	H H	
CI CI	Br · Br	H H	tertButyl n-Pentyl	ŏ	H	
Cl	Br	H	2-Pentyl	ŏ	H	
Cl	Вг	H	3-Pentyl	ŏ	H	
Cl	Br	Ĥ	n-Hexyl	Ο	Н	
CI	Br	Н	2-Hexyl	0	Н	
Cl	Br	H	3-Hexyl	0	Н	
Cl	Br	Н	2-Methyl-2-pentyl	0	H	
Cl	Br	Н	cyclo-Propylmethyl	0	H H	
Cl	Br	H	cyclo-Butyl	ŏ	н Н	
CI CI	Br Br	H H	cyclo-Pentyl cyclo-Hexyl	ŏ	H	
Cl	Br	H	1-Methylcyclohexyl	ŏ	H	
CI	Br	H	3-Triflormethylcyclohexyl	0	Н	
Cl	Br	н	Allyl	0	H	
Cl	Br	. H	1-Buten-3-yl	0	Н	
Cl	Br	H	Crotyl	0	H	
Cl	Br	н	Propargyl	0	H H	
Cl	Br De	H H	1-Butin-3-yl 3-Methyl-1-butin-3-yl	ŏ	H	
CI CI	Br Br	H	2-Pentin-4-yl	ŏ	H	
Cl	Br	H	Benzyl	Ŏ	H	
Cl	Br	H	2-Phenylethyl	0	Н	
Ci	Br	H	2-Methylthioethyl	0	Н	•
Cl	Br	Н	2-Chlorethyl	0	Н	
Ci	Br	H	2-Methoxyethyl	0	H H	
Cl	Br	н	2-(N,N-Dimethylamino)ethyl	0	.п Н	
Cl	Br B-	H H	Phenyl 2-CH ₃ -Phenyl	ŏ	H	
CI Cl	Br Br	H.	3-CH ₃ -Phenyl	ŏ	H	
Cl	Br	H	4-CH ₃ -Phenyl	ŏ	Н	
Ci	Br	Ĥ	2,4-(CH ₃ ,CH ₃)-Phenyl	0	Н	
Ci	Br	н	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	0	Н	
Cl	Br	H	3-CF ₃ -Phenyl	0	Н	
Cl	Br	H	3-F-Phenyl	0	H	
Cl	Br	H	2-Cl-Phenyl	0	H H	
CI	Br	H	4-Cl-Phenyl	0	H	
Cl Cl	Br Br	H H	2,4-(F,F)-Phenyl 2,3,5-(Cl,Cl,Cl)-Phenyl	ŏ	. H	
Cl	Br	H	2-CN-Phenyl	ŏ	H	
Cl	Br	н	2-OCH ₃ -Phenyl	0	H	
Ci	Br	Ĥ	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	Н	
Cl	Br	Н	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	Н	
Cl	Br	H	3-OCF ₃ -Phenyl	0	H	
Cl	Br	н	3-OCF ₂ OHF ₂ -Phenyl	0	H H	
Cl	Br Br	H	4-OCF ₂ CHF ₂ -Phenyl	0	H H	
CI	Br Br	Н Н -	2-SCH ₃ -Phenyl 2,4-(SCH ₃ ,SCH ₃)-Phenyl	ŏ	H	
CI Cl	Br Br	H H	2-SCF ₃ -Phenyl	ŏ	H	
CI	pr	п	2-3CF3-FREHYI	_		

DE 39 33 573 A1

R³	R ⁴	R¹	R²	Y	R ⁶	X = O oder S
Cl	Br	Н	4-NO ₂ -Phenyl	0	Н	
Cl	<u>B</u> r _	Н	2,4-(NO ₂ ,NO ₂)-Phenyl	Ō	Н	
Cl	Br	Н	3-COCH ₃ -Phenyl	О	Н	
CI	Br	Н	3-COCF ₃ -Phenyl	0	Н	
Cl	Br	H	1-Naphthyl	0	Н	
Cl	Br D-	H	2-Naphthyl	0	H	
CI CI	Br	H	Piperidino	0	Н	
· Cl	Br B-	H	3-Tetrahydrofuranyl	Q	Н	
Cl	Br Br	H	4-Tetrahydropyranyl	0	Н	
Cl	Br	H	2-Thiazolyl	0	H	
CI	Br	H	5-CH ₃ -2-Thiazolyl	0	Н	
Br	Cl	H	4-CH ₃ -5-COOH-2-Thiazolyl	0	Н	
Br	Cl	H H	Methyl	0	H	
Br	CI		Ethyl	0	Н	
Br	CI	H	n-Propyl	0	H	
Br	Cl	H	iso-Propyl	0	H	
Br		H	Cyclopropyl	0	H	
Br Br	Cl	H	n-Butyl	0	Н	
	CI	H	iso-Butyl	0	Н	
Br D-	CI	H	sekButyl	. 0	Н	
Br	Cl	H	tertButyl	0	Н	
Br	Cl	H	n-Pentyl	0	Н	
Br	Cl	H	2-Pentyl	0	Н	
Br	Cl	Н	3-Pentyl	0	Н	
Br	C1	H	n-Hexyl	0	H	
Br	Cl	H	2-Hexyl	O	Н	
Вг	CI	Н	3-Hexyl	0	Н	
Br	CI	н	2-Methyl-2-pentyl	O.	Н	
Br	Cl	Н	cyclo-Propylmethyl	0	Н	
Br	Cl	H	cyclo-Butyl	0	Н	
Br	Cl	H	cyclo-Pentyl	0	Н	
Br	Cl	Н	cyclo-Hexyl	0	Н	
Br	Cl	Н	1-Methylcyclohexyl	0	Н	
Br	CI	H	3-Triflormethylcyclohexyl	0	Н .	
Br	CI	Н	Allyl	0	H	
Br	Cl	Н	1-Buten-3-yl	0	H	
Br	Cl	Н	Crotyl	0	H	
Br	C1	Н	Propargyl	0	Н	
Br	Cl	н	1-Butin-3-yl	0	Н	
Br	Cl	Н	3-Methyl-1-butin-3-yl	0	Н	
Вг	C1	н	2-Pentin-4-yl	0	Н	
Br	CI	н	Benzyl	0	Н	
Br	Cl	Н	2-Phenylethyl	0	Н	
Br	Cl	н	2-Methylthioethyl	0	н	
Br	Cl	Н	2-Chlorethyl	0	Н	
Br	Cl	H	2-Methoxyethyl	0	Н	
Br	Cl	Н	2-(N,N-Dimethylamino)etyl	0	Н	
Br	Cl	Н	Phenyl	0	Н	
Br	Cl	H	2-CH ₃ -Phenyl	O	Н	
Br	CI	Н	3-CH₃-Phenyl	0	Н	
Br	CI	Н	4-CH ₃ -Phenyl	O	Н	
Br	Cl	Н	2,4-(CH ₃ ,CH ₃)-Phenyl	0	Н	
Br	Cl	Н	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	O	Н	
Br	CI	H	3-CF ₃ -Phenyl	0	Н	
Br	Cl	H	3-F-Phenyl	O	Н	
Br	Cl	Н	2-Cl-Phenyl	0	H	
Br	Cl	Н	4-Cl-Phenyl	0	Н	
Br	- Cl	Н	2,4-(F,F)-Phenyl	0	Н	
Br	Cl	н	2,3,5-(Cl,Cl,Cl)-Phenyl	0	Н	
Br	Cl	H	2-CN-Phenyl	0	Н	
Br	CI	н	2-OCH ₃ -Phenyl	0	Н	
Br	Cl	Н	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	Н	

R ³	R ⁴	R ¹	R ²	Y	R ⁶	X - O oder S
Br	CI	Н	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	н	
Br	Cl –	Н	3-OCF ₃ -Phenyl	0	Н	
Br	Cl	Н	3-OCF ₂ OHF ₂ -Phenyl	0	Н	
Br	Cl	Н	4-OCF ₂ CHF ₂ -Phenyl	0	Н	
Br	Cl	Н	2-SCH ₃ -Phenyl	0	Н	
Br	Cl	H	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	Н	
Br D	CI	Н	2-SCF ₃ -Phenyl	O	Н	
Br	Cl	H	4-NO ₂ -Phenyl	O	Н	
Br Br	ĆI CI	Н	2,4-(NO ₂ ,NO ₂)-Phenyl	0	Н	
Br	Cl	H	3-COCH ₃ -Phenyl	0	Н	
Br	Cl	H H	3-COCF ₃ -Phenyl	0	H	
Br	Cl	H	1-Naphthyl	0	Н	
Br	Cl	H	2-Naphthyl	0	H	
Br	Cl	H	Piperidino	0	Н	
Br	Cl	H	3-Tetrahydrofuranyl	0	H	
Br	Cl	H	4-Tetrahydropyranyl 2-Thiazolyl	0	Н	
Br	Cl	H		0	H	
Br	Cl	H	5-CH ₃ -2-Thiazolyl	0	Н	
Н	OCH ₃	H	4-CH ₃ -5-COOH-2-Thiazolyl	0	H	
Н	OCH ₃	H	Methyl	0	H H	
Н		H	Ethyl	_		
Н	OCH₃ OCH₃	H	n-Propyl iso-Propyl	0	H H	
H	OCH ₃	H	• •	0	H H	
Н	OCH ₃	H	Cyclopropyl	ŏ	H	
H	OCH ₃	H	n-Butyl	ö	H	
H	OCH ₃	H	iso-Butyl sekButyl	ö	H	
Н	OCH ₃	H	tertButyl	ŏ	H	
H	OCH ₃	H	n-Pentyl	ŏ	H	
H	OCH ₃	H	2-Pentyl	ŏ	H	
H	OCH ₃	H	3-Pentyl	ŏ	H	
H	OCH ₃	Ĥ	n-Hexyl	ŏ	H	
H	OCH ₃	H	2-Hexyl	ŏ	H	
H	OCH ₃	H	3-Hexyl	ŏ	H	
H	OCH ₃	H	2-Methyl-2-pentyl	ŏ	H	
H	OCH ₃	H	cyclo-Propylmethyl	ŏ	Н	
H	OCH ₃	H	cyclo-Butyl	ŏ	H	
H	OCH ₃	H	cyclo-Pentyl	ŏ	H	
H	OCH ₃	H	cyclo-Hexyl	Ó	Н	
H	OCH ₃	H	1-Methylcyclohexyl	Ó	Н	
H	OCH ₃	H	3-Triflormethylcyclohexyl	0	Н	
Н	OCH ₃	Н	Allyl	0	Н	
H	OCH ₃	Н	1-Buten-3-yl	0	H	
Н	OCH ₃	Н	Crotyl	0	Н	
Н	OCH ₃	Н	Propargyl	0	H	
Н	OCH ₃	Н	1-Butin-3-yl	0	Н	
Η .	OCH ₃	Н	3-Methyl-1-butin-3-yl	0	Н	
H	OCH ₃	H	2-Pentin-4-yl	0	Н	
H	OCH ₃	Ĥ	Benzyl	0	Н	
H	OCH ₃	H	2-Phenylethyl	Ŏ	Н	
H	OCH ₃	Ĥ	2-Methylthioethyl	O	H	
Н	OCH ₃	H	2-Chlorethyl	0	H	
H	OCH ₃	Н	2-Methoxyethyl	0	Н	
Н	OCH ₃	Н	2-(N,N-Dimethylamino)ethyl	0	H	
Н	OCH ₃	Н	Phenyl	0	Н	
Н	OCH ₃	Н	2-CH ₃ -Phenyl	0	Н	
H	OCH ₃	Н	3-CH ₃ -Phenyl	0	Н	
Н	OCH ₃	Н	4-CH ₃ -Phenyl	0	Н	
Н	OCH ₃	Н	2,4-(CH ₃ ,CH ₃)-Phenyl	0	H	
H	OCH ₃	H	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	0	Н	
Н	OCH ₃	Н	3-CF ₃ -Phenyl	0	Н	
Н	OCH ₃	Н	3-F-Phenyl	0	H	

DE 39 33 573 A1

R ³	R4	R¹	R²	Y	R ⁶	X = O oder S
н	OCH ₃	Н	2-Cl-Phenyl	0	Н	
H	OCH₃-	Н	4-Cl-Phenyl	0	н	
H	OCH ₃	H	2,4-(F,F)-Phenyl	0	н	
H	OCH ₃	Н	2,3,5-(Cl,Cl,Cl)-Phenyl	0	H	
H	OCH ₃	H	2-CN-Phenyl	0	H	
H	OCH ₃	Н	2-OCH ₃ -Phenyl	О	Н	
H	OCH ₃	Н	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	H	
H	OCH₃	H	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	О	H	
H	OCH ₃	Н	3-OCF ₃ -Phenyl	0	Н	
H	OCH ₃	H	3-OCF ₂ OHF ₂ -Phenyl	O	Н	
H	OCH₃	H	4-OCF ₂ CHF ₂ -Phenyl	0	Н	
H	OCH ₃	H	2-SCH ₃ -Phenyl	O	Н	
H	OCH ₃	H	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	Н	
H	OCH₃	H	2-SCF ₃ -Phenyl	0	Н	
H	OCH ₃	H	4-NO ₂ -Phenyl	0	Н	
H	OCH ₃	H	2,4-(NO ₂ ,NO ₂)-Phenyl	0	H	
H	OCH ₃	H	3-COCH ₃ -Phenyl	0	Н	
H	OCH₃	H	3-COCF ₃ -Phenyl	0	Н	
H	OCH₃	Н	1-Naphthyl	0	Н	
H	OCH ₃	H	2-Naphthyl	0	H	
H	OCH₃	H	Piperidino	0	Н	
H	OCH ₃	H	3-Tetrahydrofuranyl	0	Н	
Н	OCH₃	H	4-Tetrahydropyranyl	0	Н	
H	OCH₃	H	2-Thiazolyl	0	H	
H	OCH₃	H	5-CH ₃ -2-Tiazolyl	0	Н	
H	OCH₃	Н	4-CH ₃ -5-COOH-2-Thiazolyl	0	H	
OCH ₃	H	Н	Methyl	0	H	
OCH ₃	H	Н	Ethyl	0	H	
OCH ₃	H	H	n-Propyl	0	H	
OCH ₃	H	H	iso-Propyl	0	H	
OCH₃	H	Н	Cyclopropyl	0	H	
OCH₃	H	H	n-Butyl	0	Н	
OCH ₃	H	Н	iso-Butyl	0	H H	
OCH ₃	H	H	sekButyl	0	П Н	
OCH ₃	H	Н	tertButyl	0	л Н	
OCH ₃	H	H	n-Pentyl	0	H	
OCH ₃	H	H	2-Pentyl	ŏ	п Н	
OCH ₃	H	H	3-Pentyl	ŏ	H	
OCH ₃	H	H	n-Hexyl	ŏ	H	
OCH ₃	H	H	2-Hexyl			
OCH ₃	H	Н	3-Hexyl	0	H	
OCH₃	H	H	2-Methyl-2-pentyl	0	Н	
OCH ₃	H	Н	cyclo-Propylmethyl	0	Н	
OCH₃	H	Н	cyclo-Butyl		H	
OCH₃	H	Н	cyclo-Pentyl	0	Н	
OCH₃	Н	H	cyclo-Hexyl	o	Н	
OCH ₃	H	H	1-Methylcyclohexyl	0	Н	•
OCH ₃	Н	Н	3-Triflormethylcyclohexyl	o	H	
OCH ₃	Н	Н	Allyl	0	Н	
OCH ₃	Н	Н	1-Buten-3-yl	0	Н	
OCH₃	Н	Н	Crotyl	O	Н	
OCH₃	Н	Н	Propargyl	0	. Н	
OCH₃	Н	Н	1-Butin-3-yl	0	Н	
OCH₃	Н	H	3-Methyl-1-butin-3-yl	0	Н	
OCH ₃	Н	H	2-Pentin-4-yl	0	H	
OCH₃	H	Н	Benzyl	0	Н	
OCH ₃	Н	Н	2-Phenylethyl	0	Н	
OCH ₃	Н	Н	2-Methylthioethyl	0	Н	
OCH ₃	Н	Н	2-Chlorethyl	0	Н	
OCH ₃	H	Н	2-Methoxyethyl	0	Н	
OCH ₃	Н .	Н	2-(N,N-Dimethylamino)ethyl	0	Н	
OCH ₃	Н	Н	Phenyi	0	H	

DE 39 33 573 A1

R ³	R ⁴ .	R ¹	R²	Y	R ⁶	X = O oder S
OCH ₃	Н	н	2-CH ₃ -Phenyl	0	Н	
OCH ₃	н _	Н	3-CH ₃ -Phenyl	ŏ	H	
OCH₃	Н	Н	4-CH ₃ -Phenyl	ŏ	H	
OCH ₃	Н	Н	2,4-(CH ₃ ,CH ₃)-Phenyl	Ō	H	
OCH ₃	Н	Н	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	Ó	Н	
OCH ₃	Н	Н	3-CF ₃ -Phenyl	0	Н	
OCH ₃	Н	Н	3-F-Phenyl	0	Н	
OCH ₃	H	Н	2-CI-Phenyl	0	Н	
OCH ₃	H	H	4-Cl-Phenyl	0	H	
OCH ₃	H	H	2,4-(F,F)-Phenyl	0	Н	
OCH ₃	н	H	2,3,5-(Cl,Cl,Cl)-Phenyl	0	Н	
OCH ₃	H	H	2-CN-Phenyl	O	Н	
OCH ₃	H	Н	2-OCH ₃ -Phenyl	O	Н	
OCH ₃	H	H	2,3-(OCH ₃ ,OCH ₃)-Phenyl	O	H	
OCH ₃	Н	Н	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	H	
OCH ₃	H	H	3-OCF ₃ -Phenyl	0	H	
OCH ₃	H	H	3-OCF ₂ OHF ₂ -Phenyl	0	Н	
OCH ₃	H	Н	4-OCF ₂ CHF ₂ -Phenyl	0	H	
OCH ₃	H	Н	2-SCH ₃ -Phenyl	0	Н	
OCH ₃	H	H	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	H	
OCH ₃	H	Н	2-SCF ₃ -Phenyl	0	Н	
OCH ₃	H	H	4-NO ₂ -Phenyl	0	Н	
OCH ₃	H	H	2,4-(NO ₂ ,NO ₂)-Phenyl	0	Н	
OCH ₃	H	H	3-COCH ₃ -Phenyl	0	Н	
OCH ₃	H	H	3-COCF ₃ -Phenyl	0	Н	
OCH₃	H	Н	1-Naphthyl	0	H	
OCH₃	H	H	2-Naphthyl	0	Н	
OCH₃	H	Н	Piperidino	0	H	
OCH ₃	Н	H	3-Tetrahydrofuranyl	0	Н	
OCH ₃	H	H	4-Tetrahydropyranyl	0	H H	
OCH ₃	H	H	2-Thiazolyl	0	Н	
OCH ₃	H H	H H	5-CH ₃ -2-Thiazolyl 4-CH ₃ -5-COOH-2-Thiazolyl	Ö	H	
OCH₃ H	⊓ CH₃	H	Methyl	ŏ	H	
п Н	CH ₃	Н	Ethyl	ŏ	H	
n H	CH ₃	H	n-Propyl	ŏ	H	
H	CH ₃	H	iso-Propyl	ŏ	H	
H	CH ₃	H	Cyclopropyl	ŏ	H	
H	CH ₃	Ĥ	n-Butyl	ŏ	H	
H	CH ₃	H	iso-Butyl	ŏ	H	
 H	CH ₃	H	sekButyl	ŏ	H	
H	CH ₃	H	tertButyl	ŏ	H	
H	CH ₃	H	n-Pentyl	ŏ	H	
H	CH ₃	H	2-Pentyl	ŏ	H	
H	CH ₃	H	3-Pentyl	ŏ	H	
H	CH₃	H	n-Hexyl	Ö	H	
H	CH ₃	H	2-Hexyl	Ö	H	
H	CH ₃	H	3-Hexyl	0	Н	
H	CH ₃	H	2-Methyl-2-pentyl	Ó	Н	
H	CH ₃	H	cyclo-Propylmethyl	Ō	Н	
H	CH ₃	H	cyclo-Butyl	0	Н	
H	CH ₃	H	cyclo-Pentyl	ŏ	H	
H	CH ₃	H	cyclo-Hexyl	Ŏ	H	
H	CH ₃	H	1-Methylcyclohexyl	Õ	Н	
H	CH ₃	H	3-Triflormethylcyclohexyl	0	Н	
H	CH ₃	Ĥ	Allyl	Ŏ	н	
H	CH₃	H	1-Buten-3-yl	0	Н	
H	CH ₃	H	Crotyl	0	Н	
H	CH₃	H	Propargyl	Ó	Н	
H	CH ₃	H	1-Butin-3-yl	0	H	
H	CH₃	H	3-Methyl-1-butin-3-yl	0	H	
H	CH ₃	Н	2-Pentin-4-yl	0	Н	

H CH3 — H 2-Phenylethyl H CH3 H 2-Methylthioethyl CH3 H 2-Chlorethyl H CH3 H 2-Chlorethyl H CH3 H 2-Methoxyethyl H CH3 H 2-(N,N-Dimethylamino)ethyl CH3 H Phenyl H CH3 H 2-CH3-Phenyl H CH3 H 3-CH3-Phenyl CH3 H 4-CH3-Phenyl CH3 H 4-CH3-Phenyl CH3 H 2,3,5-(CH3,CH3,CH3)-Phenyl CH3 H 3-F-Phenyl CH3 H 3-F-Phenyl CH3 H 3-F-Phenyl CH3 H 2-Cl-Phenyl CH3 H 2-CN-Phenyl CH3 H CH3 H 3-OCF3-Phenyl CH3 H 3-OCF3-Phenyl CH3 H 3-OCF3-Phenyl CH3 H CH3 H 3-OCF3-Phenyl	0 0	Н	
H CH3 — H 2-Phenylethyl H CH3 H 2-Methylthioethyl H CH3 H 2-Chlorethyl H CH3 H 2-Chlorethyl H CH3 H 2-Methoxyethyl H CH3 H 2-(N,N-Dimethylamino)ethyl H CH3 H Phenyl H CH3 H 3-CH3-Phenyl H CH3 H 4-CH3-Phenyl H CH3 H 4-CH3-Phenyl H CH3 H 2,4-(CH3,CH3)-Phenyl H CH3 H 3-CF3-Phenyl H CH3 H 3-F-Phenyl H CH3 H 3-F-Phenyl H CH3 H 4-Cl-Phenyl H CH3 H 4-Cl-Phenyl H CH3 H 2,4-(F,F)-Phenyl CH3 H 2,4-(F,F)-Phenyl CH3 H 2,4-(F,F)-Phenyl CH3 H 2,4-(F,F)-Phenyl CH3 H 2-CN-Phenyl CH3 H 3-F-Phenyl CH4 CH5 H 3-F-Phenyl CH5 H CH5 H 3-F-Phenyl CH6 H CH6 H 3-F-Phenyl CH7 H CH6 H 3-F-Phenyl CH8 H 3-F-Phenyl CH9 H CH9 H 4-F-Phenyl			
H CH ₃ H 2-Chlorethyl (CH ₃ H CH ₃ H 2-Methoxyethyl (CH ₃ H CH ₃ H 2-Methoxyethyl (CH ₃ H CH ₃ H Phenyl (CH ₃ H Phenyl (CH ₃ H Phenyl (CH ₃ H CH ₃ H Phenyl (CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ CH ₃ -Phenyl (CH ₃ H CH ₃ H		Н	
H CH ₃ H 2-Methoxyethyl (CH ₃ H CH ₃ H 2-(N,N-Dimethylamino)ethyl (CH ₃ H Phenyl (CH ₃ H	0	H	
H CH ₃ H 2-(N,N-Dimethylamino)ethyl CH ₃ H Phenyl (Phenyl Phenyl Phenyl (Phenyl Phenyl Phenyl (Phenyl Phenyl Phenyl Phenyl (Phenyl Phenyl Phenyl Phenyl Phenyl Phenyl (Phenyl Phenyl Phenyl Phenyl Phenyl Phenyl Phenyl (Phenyl Phenyl P	0	Н	
H CH ₃ H Phenyl H CH ₃ H 2-CH ₃ -Phenyl CH ₃ H 3-CH ₃ -Phenyl H CH ₃ H 4-CH ₃ -Phenyl H CH ₃ H 2,4-(CH ₃ ,CH ₃)-Phenyl H CH ₃ H 2,3,5-(CH ₃ ,CH ₃)-Phenyl H CH ₃ H 3-F-Phenyl H CH ₃ H 3-F-Phenyl H CH ₃ H 4-Cl-Phenyl H CH ₃ H 4-Cl-Phenyl H CH ₃ H 2,4-(F,F)-Phenyl CH ₃ H 2,4-(F,F)-Phenyl H CH ₃ H 2,4-(F,F)-Phenyl CH ₃ H 2,3,5-(Cl,Cl,Cl)-Phenyl H CH ₃ H 2-CN-Phenyl CH ₃ H 2-CN-Phenyl H CH ₃ H 2-OCH ₃ -Phenyl CH ₃ H 3,4,5-(OCH ₃ ,OCH ₃)-Phenyl H CH ₃ H 3,4,5-(OCH ₃ ,OCH ₃)-Phenyl H CH ₃ H 3-OCF ₃ -Phenyl H CH ₃ H 3-OCF ₃ -Phenyl H CH ₃ H 3-OCF ₃ -Phenyl CH ₃ H 3-OCF ₃ -Phenyl H CH ₃ H 3-OCF ₃ -Phenyl	0	Н	
H CH ₃ H 2-CH ₃ -Phenyl (CH ₃ H CH ₃ H 3-CH ₃ -Phenyl (CH ₃ H CH ₃ H 4-CH ₃ -Phenyl (CH ₃ H CH ₃ H 4-CH ₃ -Phenyl (CH ₃ H CH ₃ H 2,4-(CH ₃ ,CH ₃)-Phenyl (CH ₃ H CH ₃ H 3-CF ₃ -Phenyl (CH ₃ H CH ₃ H 3-F-Phenyl (CH ₃ H CH ₃ H 2-Cl-Phenyl (CH ₃ H CH ₃ H 4-Cl-Phenyl (CH ₃ H CH ₃ H 2,4-(F,F)-Phenyl (CH ₃ H CH ₃ H 2,4-(F,F)-Phenyl (CH ₃ H CH ₃ H 2,3-5-(Cl,Cl,Cl)-Phenyl (CH ₃ H CH ₃ H 2-CN-Phenyl (CH ₃ H CH ₃ H 2-CN-Phenyl (CH ₃ H CH ₃ H 2,3-(OCH ₃ -Phenyl (CH ₃ H CH ₃ H 3,4-5-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₂ OHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 3-OCF ₂ OHF ₂ -Phenyl (CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ Phenyl (CH ₃ Phenyl (CH ₃ H CH ₃ Phenyl (CH ₃ Phenyl (CH ₃ H CH ₃ Phenyl (CH ₃ Phenyl (CH ₃ H CH ₃ Phenyl (CH ₃ Phenyl (0	Н	
H CH ₃ H 3-CH ₃ -Phenyl (CH ₃ H CH ₃ -Phenyl) (CH ₃ H CH ₃ H 2,4-(CH ₃ ,CH ₃)-Phenyl (CH ₃ H CH ₃ H 2,3,5-(CH ₃ ,CH ₃)-Phenyl (CH ₃ H CH ₃ H 3-CF ₃ -Phenyl (CH ₃ H CH ₃ H 3-F-Phenyl (CH ₃ H CH ₃ H 4-Cl-Phenyl (CH ₃ H CH ₃ H 4-Cl-Phenyl (CH ₃ H CH ₃ H 2,4-(F,F)-Phenyl (CH ₃ H CH ₃ H 2,4-(F,F)-Phenyl (CH ₃ H CH ₃ H 2,3,5-(Cl,Cl,Cl)-Phenyl (CH ₃ H CH ₃ H 2-CN-Phenyl (CH ₃ H CH ₃ H 2-CN-Phenyl (CH ₃ H CH ₃ H 2,3-(OCH ₃ -Phenyl (CH ₃ H CH ₃ H 3,4,5-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H 3,4,5-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H CH ₃ H 3-OCF ₂ OHF ₂ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₂ OHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ Phenyl (CH ₃ H CH ₃ Phenyl (CH ₃	0	Н	
H CH ₃ H 4-CH ₃ -Phenyl (CH ₃ -CH ₃ -CH ₃ -Phenyl) (CH ₃ H 2,4-(CH ₃ -CH ₃ -CH ₃ -Phenyl) (CH ₃ H 2,3,5-(CH ₃ -CH ₃ -CH ₃ -Phenyl) (CH ₃ H 3-CF ₃ -Phenyl) (CH ₃ H 3-F-Phenyl) (CH ₃ H 2-Cl-Phenyl) (CH ₃ H 4-Cl-Phenyl) (CH ₃ H 4-Cl-Phenyl) (CH ₃ H 4-Cl-Phenyl) (CH ₃ H 2,4-(F,F)-Phenyl) (CH ₃ H 2,3,5-(Cl,Cl,Cl)-Phenyl) (CH ₃ H 2-CN-Phenyl) (CH ₃ H 2-CN-Phenyl) (CH ₃ H 2-CH ₃ -Phenyl) (CH ₃ H 2,3-(OCH ₃ -Phenyl) (CH ₃ H 3,4,5-(OCH ₃ -OCH ₃ -Phenyl) (CH ₃ H 3-OCF ₃ -Phe	0	H	
H CH ₃ H 2,4-(CH ₃ ,CH ₃)-Phenyl (CH ₃ CH ₃) H CH ₃ H 2,3,5-(CH ₃ ,CH ₃)-Phenyl (CH ₃ CH ₃ CH ₃ CH ₃ CH ₃)-Phenyl (CH ₃ CH	0	Н	
H CH ₃ H 2,3,5-(CH ₃ ,CH ₃)-Phenyl (CH ₃ H 3-CF ₃ -Phenyl (CH ₃ H 3-F-Phenyl (CH ₃ H 3-F-Phenyl (CH ₃ H 2-Cl-Phenyl (CH ₃ H 4-Cl-Phenyl (CH ₃ H 4-Cl	0	Н	
H CH ₃ H 3-CF ₃ -Phenyl (CH ₃ H CH ₃ H 3-F-Phenyl (CH ₃ H CH ₃ H 2-Cl-Phenyl (CH ₃ H CH ₃ H 4-Cl-Phenyl (CH ₃ H CH ₃ H 2,4-(F,F)-Phenyl (CH ₃ H CH ₃ H 2,3,5-(Cl,Cl,Cl)-Phenyl (CH ₃ H CH ₃ H 2-CN-Phenyl (CH ₃ H CH ₃ H 2-OCH ₃ -Phenyl (CH ₃ H CH ₃ H 2,3-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H CH ₃ H 3,4,5-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₂ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ Phenyl (CH ₃ Phenyl (CH ₃ Phenyl) (CH ₃ Phenyl (CH ₃ Phenyl) (CH ₃ Phenyl (CH ₃ Phen	Ö	Н	
H CH ₃ H 3-F-Phenyl (CH ₃ H CH ₃ H 2-Cl-Phenyl (CH ₃ H CH ₃ H 4-Cl-Phenyl (CH ₃ H CH ₃ H 2,4-(F,F)-Phenyl (CH ₃ H CH ₃ H 2,3,5-(Cl,Cl,Cl)-Phenyl (CH ₃ H CH ₃ H 2-CN-Phenyl (CH ₃ H CH ₃ H 2-OCH ₃ -Phenyl (CH ₃ H CH ₃ H 2,3-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H CH ₃ H 3,4,5-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₂ OHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃	0	Н	
H CH ₃ H 2-Cl-Phenyl (CH ₃ H CH ₃ H 4-Cl-Phenyl (CH ₃ H CH ₃ H 2,4-(F,F)-Phenyl (CH ₃ H CH ₃ H 2,3,5-(Cl,Cl,Cl)-Phenyl (CH ₃ H CH ₃ H 2-CN-Phenyl (CH ₃ H CH ₃ H 2-OCH ₃ -Phenyl (CH ₃ H CH ₃ H 2,3-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H CH ₃ H 3,4,5-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₂ OHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H CH ₃ H 2-SCH ₃ -Phenyl (CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ Phenyl (CH ₃ H CH ₃ Phenyl (CH ₃ Phenyl (CH ₃ Phenyl (CH ₃ Phenyl) (CH ₃ Phenyl (CH ₃ Phen	0	н	
H CH ₃ H 4-Cl-Phenyl (CH ₃ H CH ₃ H 2,4-(F,F)-Phenyl (CH ₃ H 2,3,5-(Cl,Cl,Cl)-Phenyl (CH ₃ H 2-CN-Phenyl (CH ₃ H 2-CN-Phenyl (CH ₃ H 2-OCH ₃ -Phenyl (CH ₃ H 2,3-(OCH ₃ -Phenyl (CH ₃ H 2,3-(OCH ₃ -OCH ₃ -Phenyl (CH ₃ H 3,4,5-(OCH ₃ -OCH ₃ -Phenyl (CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H 3-OCF ₂ OHF ₂ -Phenyl (CH ₃ H 3-OCF ₂ CHF ₂ -Phenyl (CH ₃ H 2-SCH ₃ -Phenyl (CH ₃ H 2-SCH ₃ -Phenyl (CH ₃ H 3-OCF ₃ -Phenyl (CH		Н	
H CH ₃ H 2,4-(F,F)-Phenyl (CH ₃ H 2,3,5-(Cl,Cl,Cl)-Phenyl (CH ₃ H 2-CN-Phenyl (CH ₃ H 2-CN-Phenyl (CH ₃ H 2-OCH ₃ -Phenyl (CH ₃ H 2-OCH ₃ -Phenyl (CH ₃ H 2,3-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H 3,4,5-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H 3-OCF ₂ OHF ₂ -Phenyl (CH ₃ H 2-SCH ₃ -Phenyl (CH ₃ H 2-SCH		H	
H CH ₃ H 2,3,5-(Cl,Cl,Cl)-Phenyl (Cl,Cl,Cl)-Phenyl (Cl,Cl,Cl)-Phenyl (Cl,Cl,Cl)-Phenyl (Cl,Cl,Cl)-Phenyl (Cl,Cl,Cl)-Phenyl (Cl,Cl)-Phenyl (C		H	
H CH ₃ H 2-CN-Phenyl (CH ₃ H CH ₃ H 2-OCH ₃ -Phenyl (CH ₃ H CH ₃ H 2,3-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H CH ₃ H 3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₂ OHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 2-SCH ₃ -Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ -Phenyl (CH ₃ -Phenyl (CH ₃ CH ₃ -Phenyl (CH ₃ -Phenyl (CH ₃ -Phenyl (CH ₃ CH ₃ -Phenyl (CH ₃ -Phenyl		H	
H CH ₃ H 2-OCH ₃ -Phenyl (CH ₃ H CH ₃ H 2,3-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H CH ₃ H 3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl (CH ₃ H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₂ OHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 2-SCH ₃ -Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ Phenyl (CH ₃ CH ₃ -Phenyl (CH ₃ -Phenyl (CH ₃ CH ₃ -Phenyl (CH ₃		H	
H CH ₃ H 2,3-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃) H CH ₃ H 3,4,5-(OCH ₃ ,OCH ₃)-Phenyl (CH ₃) H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃) H CH ₃ H 3-OCF ₂ OHF ₂ -Phenyl (CH ₃) H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃) H CH ₃ H 2-SCH ₃ -Phenyl (CH ₃) H CH ₃ H 2-SCH ₃ -Phenyl (CH ₃)		H H	
H CH ₃ H 3,4,5-(OCH ₃ ,OCH ₃)-Phenyl (H CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ -CHF ₂ -Phenyl (CH ₃ H CH ₃ H 2-SCH ₃ -Phenyl (CH ₃ H CH ₃ H CH ₃ H CH ₃ -Phenyl (CH ₃ -Phenyl (CH ₃ CH ₃ -Phenyl (CH ₃ -Phenyl (CH ₃ -Phenyl (CH ₃ CH ₃ -Phenyl (CH ₃ -P		Н	
H · CH ₃ H 3-OCF ₃ -Phenyl (CH ₃ H CH ₃ H 3-OCF ₂ OHF ₂ -Phenyl (CH ₃ H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl (CH ₃ H CH ₃ H 2-SCH ₃ -Phenyl (CH ₃ H CH ₃ H CH ₃ -Phenyl (CH ₃ CH ₃ -Phen	_	Н	
H CH ₃ H 3-OCF ₂ OHF ₂ -Phenyl CH CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl CH CH ₃ H 2-SCH ₃ -Phenyl CH	_	Н	
H CH ₃ H 4-OCF ₂ CHF ₂ -Phenyl CH ₃ H 2-SCH ₃ -Phenyl C		Н	
H CH ₃ H 2-SCH ₃ -Phenyl		H	
		H	
	ŏ	H	
	ŏ	H	
	ŏ	H	
	Š	H	
	Ō	Н	
	C	Н	
H CH ₃ H 1-Naphthyl (О	Н	
H CH ₃ H 2-Naphthyl (О	Н	
	O	Н	
	O	Н	
	О	Н	
	9	Н	
	O	Н	
	2	Н	
	2	Н	
	2	Н	
	\mathbf{c}	H	
	2	H	
	\mathbf{c}	H	
	\tilde{S}	H	
	\tilde{S}	H	
	2	H	
CH ₃ H H tertButyl C		H	
CH_3 H H n-Pentyl C CH_3 H H 2-Pentyl C		H H	
		H	
		n H	
		H H	
CH ₃ H H 3-Hexyl C		H H	
CH ₃ H H 2-Methyl-2-pentyl C CH ₃ H H cyclo-Propylmethyl C	,		
	`		
)	H	
)	Н	
CH_3 H H 1-Methylcyclohexyl CH_3)	H H	
CH_3 H H 3-Triflormethylcyclohexyl C))	Н	

DE 39 33 573 A1

R³	R ⁴	R ¹	R²	Y	R ⁶	X = O oder S
CH ₃	Н	Н	Aliyl	0	Н	
CH ₃	Н _	Н	1-Buten-3-yl	0	Н	
CH ₃	Н	Н	Crotyl	0	H	
CH ₃	Н	H	Propargyl	0	Н	
CH ₃	Н	H	1-Butin-3-yl	0	Н	
CH ₃	H	H	3-Methyl-1-butin-3-yl	0	Н	
CH₃	Н	H	2-Pentin-4-yl	0	H	
CH ₃	H	Н	Benzyl	0	Н	
CH₃	H	H	2-Phenylethyl	0	H H	
CH₃	H	H H	2-Methylthioethyl	0	Н	
CH₃	H H	H	2-Chlorethyl 2-Methoxyethyl	ŏ	H	
CH ₃	л Н	H	2-Methoxyethyl 2-(N,N-Dimethylamino)ethyl	ŏ	Н	
CH ₃	л Н	H	Phenyl	ŏ	H	
CH ₃ CH ₃	H	H	2-CH ₃ -Phenyl	ŏ	H	
-	H	H	3-CH ₃ -Phenyl	ŏ	H	
CH₃ CH₃	H	H	4-CH ₃ -Phenyl	ŏ	H	
CH ₃	H	H	2,4-(CH ₃ ,CH ₃)-Phenyl	ŏ	H	
CH ₃	H	H	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	ŏ	H	
CH ₃	H	H	3-CF ₃ -Phenyl	ŏ	H	
CH ₃	H	 Н	3-F-Phenyl	ŏ	H	
CH ₃	H	H	2-Cl-Phenyl	ŏ	H	
CH ₃	H	H	4-Cl-Phenyl	ŏ	H	
CH ₃	H	H	2,4-(F,F)-Phenyl	ŏ	H	
CH ₃	н	H	2,3,5-(Cl,Cl,Cl)-Phenyl	ŏ	H	
CH ₃	H	H	2-CN-Phenyl	Ō	Н	
CH ₃	H	H	2-OCH ₃ -Phenyl	0	Н	
CH ₃	H	H	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	Н	
CH₃	H	Н	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	Н	
CH ₃	H	Ĥ	3-OCF ₃ -Phenyl	0	Н	
CH ₃	H	H	3-OCF ₂ OHF ₂ -Phenyl	0	Н	
CH ₃	Н	H	4-OCF ₂ CHF ₂ -Phenyl	0	Н	
CH ₃	H	Н	2-SCH ₃ -Phenyl	0	Н	
CH ₃	H	Н	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	Н	
CH ₃	Н	н	2-SCF ₃ -Phenyl	O	H	
CH ₃	Н	H	4-NO ₂ -Phenyl	O	Н	
CH ₃	H	Н	2,4-(NO ₂ ,NO ₂)-Phenyl	0	H	
CH ₃	H	Н	3-COCH ₃ -Phenyl	0	Н	
CH ₃	H	Н	3-COCF ₃ -Phenyl	Ó	H	
CH ₃	Н	Н	1-Naphthyl	0	Н	
CH ₃	H	H	2-Naphthyl	0	Н	
CH ₃	H	н	Piperidino	0	Н	
CH ₃	H	н	3-Tetrahydrofuranyl	ŏ	H H	
CH ₃	H	Н	4-Tetrahydropyranyl	ŏ	п Н	
CH ₃	H	Н	2-Thiazolyl	ŏ	Н	
CH ₃	H	Н	5-CH ₃ -2-Thiazolyl	ŏ	H	
CH ₃	Н	Н	4-CH ₃ -5-COOH-2-Thiazolyl	ŏ	H	
CH ₃	CH₃	Н	Methyl	ő	Н	
CH ₃	CH ₃	Н	Ethyl	ŏ	H	
CH ₃	CH₃	Н	n-Propyl	ŏ	H	
CH ₃	CH₃	H	iso-Propyl	ŏ	H	
CH ₃	CH₃	H H	Cyclopropyl n-Butyl	ŏ	H	
CH₃	CH₃	n H	iso-Butyl	ŏ	H	
CH ₃	CH ₃	H	sekButyl	ŏ	H	
CH ₃	CH₃	n H	tertButyl	ŏ	H	
CH ₃ CH ₃	CH₃ CH₃	H H	n-Pentyl	Ŏ.	н	
CH ₃	CH ₃	Н	2-Pentyl	ŏ	H	
CH ₃	CH ₃	H	3-Pentyl	ŏ	H	
CH ₃	CH ₃	H	n-Hexyl	ŏ	H	
CH ₃	CH ₃	H	2-Hexyl	ŏ	Ĥ	
₩13	CH ₃	H	3-Hexyl	ŏ	H	

R ³	R4	R ¹	R²	Y	R ⁶	X = O oder S
CH ₃	CH ₃	Н	2-Methyl-2-pentyl	0	Н	
CH ₃	CH ₃ —	Н	cyclo-Propylmethyl	ŏ	Ĥ	
CH ₃	CH ₃	H	cyclo-Butyl	Ŏ	Н	
CH ₃	CH ₃	H	cyclo-Pentyl	0	Н	
CH ₃	CH ₃	Н	cyclo-Hexyl	Ο	Н	
CH ₃	CH ₃	H	1-Methylcyclohexyl	0	Н	
CH ₃	CH₃	Н	3-Triflormethylcyclohexyl	0	Н	
CH ₃	CH₃	H	Allyl	0	Н	
CH₃	CH₃	H	1-Buten-3-yl	0	H	
CH ₃	CH₃	H	Crotyl	0	H	
CH ₃	CH ₃	H	Propargyl	0	Н	
CH₃	CH₃	H H	1-Butin-3-yl	0	H	
CH₃	CH₃ CH₃	H	3-Methyl-1-butin-3-yl	0	Н	
CH ₃	CH ₃	H	2-Pentin-4-yl	0	H	
CH ₃	CH ₃	H	Benzyl 2-Phenylethyl	0	H H	
CH ₃	CH ₃	H		Ö	n H	
CH ₃	CH ₃	H	2-Methylthioethyl	ö	Н	
CH ₃	CH ₃	H	2-Chlorethyl 2-Methoxyethyl	ŏ	п Н	
CH ₃	CH ₃	H	2-Methoxyethyl 2-(N,N-Dimethylamino)ethyl	ŏ	п Н	
CH ₃	CH ₃	H	Phenyl	ŏ	H	
CH ₃	CH ₃	H	2-CH ₃ -Phenyl	ŏ	H	
CH ₃	CH ₃	H	3-CH ₃ -Phenyl	ŏ	H	
CH ₃	CH ₃	H	4-CH ₃ -Phenyl	ŏ	H	
CH ₃	CH ₃	H	2,4-(CH ₃ ,CH ₃)-Phenyl	ŏ	H	
CH ₃	CH ₃	H	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	ŏ	H	
CH ₃	CH ₃	H	3-CF ₃ -Phenyl	ŏ	H	
CH ₃	CH ₃	H	3-F-Phenyl	ŏ	H	
CH ₃	CH ₃	H	2-Cl-Phenyl	Ŏ	H	
CH ₃	CH ₃	H	4-Cl-Phenyl	O	Н	
CH ₃	CH₃	H	2,4-(F,F)-Phenyl	O	Н	
CH ₃	CH₃	Н	2,3,5-(Cl,Cl,Cl)-Phenyl	0	Н	
CH ₃	CH ₃	Н	2-CN-Phenyl	0	Н	
CH ₃	CH ₃	H	2-OCH ₃ -Phenyl	0	Н	
CH ₃	CH ₃	Н	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	Н	
CH ₃	CH ₃	Н	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	Н	
CH ₃	CH ₃	H	3-OCF ₃ -Phenyl	0	Н	
CH ₃	CH₃	Н	3-OCF ₂ OHF ₂ -Phenyl	0	Н	
CH ₃	CH₃	H	4-OCF ₂ CHF ₂ -Phenyl	O	Н	
CH ₃	CH₃	Н	2-SCH ₃ -Phenyl	O	H	
CH ₃	CH ₃	Н	2,4-(SCH3,SCH3)-Phenyl	0	H	
CH ₃	CH₃	Н	2-SCF ₃ -Phenyl	0	H	
CH ₃	CH₃	H .	4-NO ₂ -Phenyl	0	H	
CH ₃	CH ₃	H	2,4-(NO ₂ ,NO ₂)-Phenyl	0	H	
CH ₃	CH ₃	H	3-COCH ₃ -Phenyl	0	Н	
CH ₃	CH ₃	Н	3-COCF ₃ -Phenyl	0	Н	
CH ₃	CH ₃	Н	1-Naphthyl	0	H	
CH ₃	CH ₃	Н	2-Naphthyl	0	H	
CH₃	CH₃	Н	Piperidino	0	Н	
CH ₃	CH₃	н	3-Tetrahydrofuranyl	0	H H	
CH₃	CH₃	H	4-Tetrahydropyranyl	0		
CH₃	CH₃	H	2-Thiazolyl	0	Н	
CH ₃	CH ₃	H	5-CH ₃ -2-Thiazolyl	0	H H	
CH ₃	CH(CH)	H	4-CH ₃ -5-COOH-2-Thiazolyl	Ö	п Н	
H	CH(CH ₃) ₂	H	Methyl Erbyl	ŏ	п Н	
H H	CH(CH ₃) ₂	H H	Ethyl n-Propyl	ö	H	
H H	CH(CH ₃) ₂ CH(CH ₃) ₂	H	iso-Propyl	ŏ	H	
н Н	CH(CH ₃) ₂ CH(CH ₃) ₂	H	Cyclopropyl	ŏ	H	
H	CH(CH ₃) ₂ CH(CH ₃) ₂	H	n-Butyl	ŏ	H	
Н	CH(CH ₃) ₂	H	iso-Butyl	ŏ	H	
Н	CH(CH ₃) ₂	H	sekButyl	ŏ	H	

DE- 39 33 573 A1

R³	R ⁴	R¹	R²	Y	R ⁶	X = O oder S
Н	CH(CH ₃) ₂	н	tertButyl	0	н	
H	CH(CH₃)₂	Н	n-Pentyl	0	Н	
H	CH(CH ₃) ₂	H	2-Pentyl	0	Н	
H	CH(CH₃)₂	H	3-Pentyl	0	Н	
H	CH(CH₃)₂	H	n-Hexyl	0	Н	
H	CH(CH ₃) ₂	H	2-Hexyl	0	Н	
H	CH(CH ₃) ₂	H	3-Hexyl	0	Н	
H H	CH(CH ₃) ₂	Н	2-Methyl-2-pentyl	0	H H	
H	CH(CH ₃) ₂	H H	cyclo-Propylmethyl cyclo-Butyl	ŏ	п Н	
Н	CH(CH₃)₂ CH(CH₃)₂	H	cyclo-Butyl cyclo-Pentyl	ŏ	H	
H	CH(CH ₃) ₂	H	cyclo-Hexyl	ŏ	H	
H	CH(CH ₃) ₂	H	1-Methylcyclohexyl	ŏ	H	
H	CH(CH ₃) ₂	H	3-Triflormethylcyclohexyl	ŏ	H	
H	CH(CH ₃) ₂	H	Allyl	Ŏ	H	
H	CH(CH ₃) ₂	Н	1-Buten-3-yl	0	Н	
Н	CH(CH ₃) ₂	Н	Crotyl	0	Н	
H	$CH(CH_3)_2$	Н	Propargyl	0	Н	
H	CH(CH ₃) ₂	Н	1-Butin-3-yl	0	Н	
Н	CH(CH ₃) ₂	Н	3-Methyl-1-butin-3-yl	0	H	
Н	CH(CH₃)₂	Н	2-Pentin-4-yl	0	Н	
H	$CH(CH_3)_2$	Н	Benzyl	0	H	
H	CH(CH₃)₂	H	2-Phenylethyl	0	Н	
H	CH(CH ₃)₂	Н	2-Methylthioethyl	0	Н	
H	CH(CH₃)₂	H	2-Chlorethyl	0	H	
H	CH(CH ₃) ₂	Н	2-Methoxyethyl	0	H H	
H H	CH(CH ₃) ₂	H H	2-(N,N-Dimethylamino)ethyl	0	H	
Н	CH(CH ₃) ₂ CH(CH ₃) ₂	H	Phenyl 2-CH ₃ -Phenyl	ŏ	Н	
Н	CH(CH ₃) ₂	H	3-CH ₃ -Phenyl	ŏ	H	
H	CH(CH ₃) ₂	Ĥ	4-CH ₃ -Phenyl	ŏ	H	
H	CH(CH ₃) ₂	H	2,4-(CH ₃ ,CH ₃)-Phenyl	ŏ	H	
H	CH(CH ₃) ₂	H	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	ŏ	H	
H	CH(CH ₃) ₂	H	3-CF ₃ -Phenyl	O	Н	
Н	CH(CH ₃) ₂	Н	3-F-Phenyl	0	Н	
H	CH(CH ₃) ₂	H	2-Cl-Phenyl	0	Н	
Н	CH(CH ₃) ₂	H	4-Cl-Phenyl	0	Н	
H	CH(CH₃)₂	Н	2,4-(F,F)-Phenyl	0	Н	
Н	$CH(CH_3)_2$	H	2,3,5-(Cl,Cl,Cl)-Phenyl	0	H	
H	CH(CH ₃) ₂	Н	2-CN-Phenyl	0	H	
H	CH(CH ₃) ₂	H	2-OCH ₃ -Phenyl	0	H	
H	CH(CH₃)₂	H	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	H	
H	CH(CH ₃) ₂	H	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl 3-OCF ₃ -Phenyl	ŏ	H H	
H H	CH(CH ₃) ₂ CH(CH ₃) ₂	H H	3-OCF ₂ OHF ₂ -Phenyl	ŏ	Н	
H	CH(CH ₃) ₂	H	4-OCF ₂ CHF ₂ -Phenyl	ŏ	H	
H	CH(CH ₃) ₂	H	2-SCH ₃ -Phenyl	ŏ	H	
H	CH(CH ₃) ₂	H	2,4-(SCH ₃ ,SCH ₃)-Phenyl	ŏ	H	
H	CH(CH ₃) ₂	H	2-SCF ₃ -Phenyl	ŏ	H	
H	CH(CH ₃) ₂	H	4-NO ₂ -Phenyl	ŏ	H	
H	CH(CH ₃) ₂	Ĥ	2,4-(NO ₂ ,NO ₂)-Phenyl	Ŏ	H	
Н	CH(CH ₃) ₂	Н	3-COCH ₃ -Phenyl	0	Н	
H	CH(CH ₃) ₂	H	3-COCF ₃ -Phenyl	0	Н	
Н	$CH(CH_3)_2$	H	1-Naphthyl	0	Н	
Н	CH(CH₃)₂	Н	2-Naphthyl	0	H	
H	$CH(CH_3)_2$	H	Piperidino	0	H	
H	CH(CH ₃) ₂	H	3-Tetrahydrofuranyl	0	H	
H	CH(CH ₃) ₂	H	4-Tetrahydropyranyl	0	H	
H	CH(CH ₃) ₂	Н	2-Thiazolyl	0	H	
H	CH(CH ₃) ₂	Н	5-CH ₃ -2-Thiazolyl	0	H H	
H	CH(CH₃)₂	H H	4-CH ₃ -5-COOH-Thiazolyl	Ö	н Н	
$OCH(CH_3)_2$	Н	п	Methyl	J	п	

DE 39 33 573 A1

R ³	R4	R¹	R²	Y	R ⁶	X = O oder S
OCH(CH ₃) ₂	н	н	Ethyl	0	H	
OCH(CH ₃) ₂	Н	— н	n-Propyl	ŏ	H	
OCH(CH ₃) ₂	Н	Н	iso-Propyl	ŏ	H	
OCH(CH ₃) ₂	Н	Н	Cyclopropyl	Ŏ	H	
OCH(CH ₃) ₂	Н	Н	n-Butyl	Ō	H	
OCH(CH ₃) ₂	Н	H	iso-Butyl	Ŏ	Ĥ	
OCH(CH ₃) ₂	Н	Н	sekButyl	Ŏ	H	
OCH(CH ₃) ₂	Н	Н	tertButyl	O	Н	
OCH(CH ₃) ₂	Н	H	n-Pentyl	O	H	
OCH(CH ₃) ₂	H	H	2-Pentyl	O	Н	
OCH(CH ₃) ₂	H	Н	3-Pentyl	0	Н	
OCH(CH ₃) ₂	Н	Н	n-Hexyl	Ο	Н	
OCH(CH ₃) ₂	Н	Н	2-Hexyl	Ο	Н	
OCH(CH ₃) ₂	Н	H	3-Hexyl	0	Н	
OCH(CH ₃) ₂	H	H	2-Methyl-2-pentyl	0	Н	
OCH(CH ₃) ₂	H	Н	cyclo-Propylmethyl	0	Н	
OCH(CH ₃) ₂	Н	H	cyclo-Butyl	0	Н	
OCH(CH ₃) ₂	H	H	cyclo-Pentyl	0	Н	
OCH(CH ₃) ₂	Н	H	cyclo-Hexyl	0	H	
OCH(CH ₃) ₂	Н	Н	1-Methylcyclohexyl	0	Н	
OCH(CH₃)₂	H	H	3-Triflormethylcyclohexyl	0	Н	
OCH(CH ₃) ₂	Н	Н	Allyl	O	H	
OCH(CH ₃) ₂	Н	H	1-Buten-3-yl	0	H	
OCH(CH₃)₂	Н	H	Crotyl	0	Н	
OCH(CH ₃) ₂	Н	Н	Propargyl	0	H	
OCH(CH₃)₂	Н	Н	1-Butin-3-yl	0	H	
OCH(CH ₃) ₂	H	H	3-Methyl-1-butin-3-yl	Ο	Н	
OCH(CH₃)₂	Н	Н	2-Pentin-4-yl	0	Н	
OCH(CH₃)₂	Н	, H	Benzyl	0	Н	
OCH(CH ₃) ₂	Н	H	2-Phenylethyl	0	Н	
OCH(CH₃)₂	Н	Н	2-Methylthioethyl	0	Н	
OCH(CH ₃) ₂	Н	Н	2-Chlorethyl	0	Н	
OCH(CH ₃) ₂	Н	Н	2-Methoxyethyl	0	Н	
OCH(CH₃) ₂	Н	Н	2-(N,N-Dimethylamino)ethyl	О	Н	
OCH(CH ₃) ₂	Н	Н	Phenyl	0	Н	
OCH(CH ₃) ₂	Н	Н	2-CH ₃ -Phenyl	O	Н	
OCH(CH ₃) ₂	Н	Н	3-CH₃-Phenyl	O	Н	
OCH(CH ₃) ₂	Н	H	4-CH ₃ -Phenyl	0	Н	
OCH(CH ₃) ₂	Н	H	2,4-(CH ₃ ,CH ₃)-Phenyl	0	Н	
OCH(CH₃)₂	H	H	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	0	Н	
OCH(CH ₃) ₂	H	Н	3-CF ₃ -Phenyl	0	Н	
OCH(CH ₃) ₂	Н	Н	3-F-Phenyl	0	Н	
OCH(CH ₃) ₂	H	н	2-CI-Phenyl	0	Н	
OCH(CH ₃) ₂	H	H	4-CI-Phenyl	o	Н	
OCH(CH ₃) ₂	H	Н	2,4-(F,F)-Phenyl	Ó	H	
OCH(CH ₃) ₂	H	Н	2,3,5-(Cl,Cl,Cl)-Phenyl	0	H	
OCH(CH ₃) ₂	H	Н	2-CN-Phenyl	o	H	
OCH(CH ₃) ₂	H	Н	2-OCH ₃ -Phenyl	0	Н	
OCH(CH ₃) ₂	Н	н	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	Н	
OCH(CH ₃) ₂	H	Н	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	H	
OCH(CH ₃) ₂	H	Н	3-OCF ₃ -Phenyl	0	H	
OCH(CH ₃) ₂	H	Н	3-OCF ₂ OHF ₂ -Phenyl	0	H	
OCH(CH ₃) ₂	H	H	4-OCF ₂ CHF ₂ -Phenyl	0	H	
OCH(CH ₃) ₂	H	Н	2-SCH ₃ -Phenyl	0	H	
OCH(CH ₃) ₂	H	H	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	Н	
OCH(CH ₃) ₂	H	Н	2-SCF ₃ -Phenyl	0	H	
OCH(CH ₃) ₂	H	H	4-NO ₂ -Phenyl	0	H	
OCH(CH ₃) ₂	H	H	2,4-(NO ₂ ,NO ₂)-Phenyl	0	H	
OCH(CH ₃) ₂	H	Н	3-COCH ₃ -Phenyl	0	H	
OCH(CH ₃) ₂	H	H	3-COCF ₃ -Phenyl	0	Н	
OCH(CH ₃) ₂	Н	Н	1-Naphthyl	0	Н	

DE 39 33 573 A1

R ³	R ⁴	R ¹	R ²	Y	R ⁶	X = O oder S
OCH(CH ₁) ₂	Н	Н	2-Naphthyl	0	н	
OCH(CH ₃) ₂	н —	Н	Piperidino	' ŏ	H	
OCH(CH ₃) ₂	Н	Н	3-tetrahydrofuranyl	ŏ	Ĥ	
OCH(CH ₃) ₂	H	Н	4-Tetrahydrofuranyl	ŏ	H	
OCH(CH ₃) ₂	Н	Н	2-Thiazolyl	ŏ	H	
$OCH(CH_1)_2$	Н	Н	5-CH ₃ -2-Thiazolyl	ŏ	н	
OCH(CH ₃) ₂	Н	H	4-CH ₃ -5-COOH-2-Thiazolyl	ŏ	H O	
Н	Cl	н	Methyl	Ο.	N	
••	.		Money.	J.		
н	Cl	н	Ethyl	0	O desgl.	
H	Cl	Н	n-Propyl	0	desgl.	
Н	CI	H	iso-Propyl	0	desgl.	
Н	CI	Н	Cyclopropyl	0	desgl.	
H	Cl	H	n-Butyl	0	desgl.	•
Н	Cl	H	iso-Butyl	0	desgl.	
H	Cl	H	sekButyl	0	desgl.	
H	Cl	Н	tertButyl	0	desgl.	
Н	Cl	H	n-Pentyl	0	desgl.	
H	Cl	H	2-Pentyl	0	desgl.	
H	Cl	н	3-Pentyl	0	desgl.	
H	Cl	H	n-Hexyl	0	desgl.	
Н	CI	H	2-Hexyl	0	desgl,	
Н	Cl	H	3-Hexyl	0	desgl.	
Н	Cl	Н	2-Methyl-2-pentyl	0	desgl.	
H	Ci	H	cyclo-Propylmethyl	0	desgl.	
Н	Cl	Н	cyclo-Butyl	0	desgl.	
Н	Ci	н	cyclo-Pentyl	0	desgl.	
Н	Cl	Н	cyclo-Hexyl	0	desgl.	
H	CI	Н	1-Methylcyclohexyl	0	desgi.	
Н	Cl	Н	3-Triflormethylcyclohexyl	0	desgl.	
Н	Cl	Н	Allyi	0	desgl.	
H	Cl	Н	1-Buten-3-yl	0	desgl.	
H	Cl	Н	Crotyl	0	desgi.	
Н	Cl	н	Propargyl	0	desgl.	
H	Cl	Н	1-Butin-3-yl	О	desgl.	
Н	Cl	Н	3-Methyl-1-butin-3-yl	0	desgl.	
H	Cl	Н	2-Pentin-4-yl	0	desgl.	
H	CI	Н	Benzyl	0	desgl.	
H	CI	Н	2-Phenylethyl	0	desgl.	
Н	Cl	Н	2-Methylthioethyl	0	desgl.	
H	Cl	Н	2-Chlorethyl	0	desgi.	
H	Cl	H	2-Methoxyethyl	0	desgl.	
H	Cl	Н	2-(N,N-Dimethylamino)ethyl	0	desgl.	
H	Ci	H	Phenyl	0	desgl.	
H	Ci	H	2-CH ₃ -Phenyl	0	desgl.	
H	Ci	H	3-CH ₃ -Phenyl	0	desgl.	
H	Ci	H	4-CH ₁ -Phenyl	0	desgi.	
H	Ci	Ĥ	2,4-(CH ₃ ,CH ₃)-Phenyl	Ö	desgl.	
H	CI	H	2,3,5-(CH ₁ ,CH ₁ ,CH ₂)-Phenyl	Ŏ	desgl.	
H	Cl	H	3-CF ₃ -Phenyl	ō	desgl.	
				ŏ	desgl.	
u	Cl		(-F-Pheny)		CC2KI	
H H	CI Cl	H H	3-F-Phenyl 2-Cl-Phenyl	ŏ	desgi.	

R ³	R ⁴	R ¹	R ²	Y	R ⁶	X = O oder S
	_				0	
н	Cl	н	2,4-(F,F)-Pheny!	0	N	
					Y	
Н	Cl	н	2,3,5-(Cl,Cl,Cl)-Phenyl	O	O desgl.	
H H	CI CI	H H	2-CN-Phenyl	0	desgl.	
H	Ci	H	2-OCH ₃ -Phenyl 2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	desgl. desgl.	
H	Či	H	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	ŏ	desgl.	
H	Cl	· H	3-OCF ₃ -Phenyl	O	desgl.	
H	Cl	H	3-OCF ₂ OHF ₂ -Phenyl	0	desgl.	
H	CI	Н	4-OCF ₂ CHF ₂ -Phenyl	0	desgl.	
H	CI	H	2-SCH ₃ -Phenyl	0	desgl.	
H H	CI CI	H H	2,4-(SCH ₃ ,SCH ₃)-Phenyl 2-SCF ₂ -Phenyl	0	desgl. desgl.	
H.	CI	H	4-NO ₂ -Phenyl	ŏ	desgi. desgl.	
H	Ci Ci	H	2,4-(NO ₂ ,NO ₂)-Phenyl	ŏ	desgi.	
H	Ċi	H	3-COCH ₃ -Phenyl	0	desgl.	
H	Cl	H	3-COCF ₃ -Phenyl	0	desgl.	
H	CI	H	1-Naphthyl	0	desgl.	
H	CI	H	2-Naphthyl	0	desgl.	
H H	CI CI	H H	Piperidino 3-Tetrahydrofuranyl	Ö	desgl. desgl.	
H	CI	H	4-Tetrahydrofuranyl	ŏ	desgl.	
H	Ci	Ĥ	2-Thiazolyl	Ŏ	desgl.	
H	Ci	H	5-CH ₃ -2-Thiazolyl	0	desgl.	
H	Cl	, н	4-CH ₃ -5-COOH-2-Thiazolyl	0	desgl.	
H	CI	H	Methyl	0	$N = C(CH_3)$	
H	CI	H	Ethyl	.0	$N = C(CH_3)$ $N = C(CH_3)$	
H	CI CI	H H	n-Propyl iso-Propyl	ŏ	$N = C(CH_3)$	
H H	CI CI	H	Cyclopropyl	ŏ	$N = C(CH_1)$	
H	Ci Ci	អ៊	n-Butyl	0	$N = C(CH_3)$	-)2
H	CI	H	iso-Butyl	0	$N = C(CH_3)$	
H	CI	н	sekButyl	0	$N = C(CH_3)$	
H	CI	H	tertButyl	0	$N = C(CH_3)$	
H	CI	H	n-Pentyl	0	$N = C(CH_3)$ $N = C(CH_3)$	
H	CI CI	H H	2-Pentyl 3-Pentyl	ŏ	$N = C(CH_3)$)2)2
H H	CI CI	H	n-Hexyl	ŏ	$N = C(CH_3)$)2
H	Ci Ci	H	2-Hexyl	0	$N = C(CH_3)$)2
H	Či	H	3-Hexyl	0	$N = C(CH_3)$	
H	Cl	Н	2-Methyl-2-pentyl	0	$N = C(CH_1)$	
Н	CI	Н	cyclo-Propylmethyl	0	$N = C(CH_3)$	
H	Cl	H	cyclo-Butyl	0	$N = C(CH_3)$ $N = C(CH_3)$	
Н	Cl	H	cyclo-Pentyl cyclo-Hexyl	ö	$N = C(CH_3)$	
H H	CI CI	H H	1-Methylcyclobexyl	ŏ	$N = C(CH_1)$)2
H	Ci	H	3-Trifluormethylcyclohexyl	ŏ	$N = C(CH_3)$)2
H	Či Ci	Ĥ	Allyl	0	$N = C(CH_1)$)2
H	Cl	Н	1-Buten-3-yl	0	N=C(CH ₃	
Н	Cl	н	Crotyl	0	N=C(CH ₃)2
Н	CI	н	Propargyl	0	N=C(CH ₃	
H	Cl	H	1-Butin-3-yl	0	$N = C(CH_3)$ $N = C(CH_3)$	
H H	CI CI	H H	3-Methyl-1-butin-3-yl 2-Pentin-4-yl	ö	$N = C(CH_3)$	
	CI	H	4-FCIILIII-4-YI	•	., — -(-11)	11

R ³	R ⁴	R ^t	R ²	Y	R ⁶	X = O oder S
н	Cl	н	2-Phenylethyl	0	$N = C(CH_1)_2$	
H	Cl -	H	2-Methylthioethyl	0	$N = C(CH_3)_2$	
H	Cl	Н	2-Chlorethyl	0	$N = C(CH_3)_2$	
H	Cl	H	2-Methoxyethyl	0	$N = C(CH_1)_2$	
H	Cl	H	2-(N,N-Dimethylamino)ethyl	0	$N = C(CH_3)_2$	
Н	CI	Н	Phenyl	0	$N = C(CH_3)_2$	
H	Cl	H	2-CH ₃ -Phenyl	0	$N = C(CH_3)_2$	
H	CI	H	3-CH ₃ -Phenyl	0	$N = C(CH_3)_2$	
H	CI	H	4-CH ₃ -Phenyl	0	$N = C(CH_1)_2$	
H	CI	H	2,4-(CH ₃ ,CH ₃)-Phenyl	0	$N = C(CH_3)_2$	
H	CI	H	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	0	$N = C(CH_3)_2$	
H	CI	H	3-CF ₃ -Phenyl	0	$N = C(CH_3)_2$	
H	CI CI	H	3-F-Phenyl	0	$N = C(CH_3)_2$	
Н	Cl	H	2-Cl-Phenyl	0	$N = C(CH_1)_2$	
H	CI	H	4-Cl-Phenyl	0	$N = C(CH_1)_2$	
H	CI	H	2,4-(F,F)-Phenyl	0	$N = C(CH_1)_2$	
H	CI	H	2,3,5-(Cl,Cl,Cl)-Phenyl	Ŏ	$N = C(CH_3)_2$	
H	CI	H	2-CN-Phenyl	0	$N = C(CH_3)_2$	
H	C1	H	2-OCH ₃ -Phenyl	0	$N = C(CH_1)_2$	
H	C1	Н	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	$N = C(CH_1)_2$	
H	Cl	H	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	$N = C(CH_3)_2$	
H	C1	H	3-OCF ₃ -Phenyl	0	$N = C(CH_3)_2$	
H	Cl	Н	3-OCF ₂ OHF ₂ -Phenyl	0	$N = C(CH_3)_2$	
H	Cl	H	4-OCF ₂ CHF ₂ -Phenyl	0	$N = C(CH_1)_2$	
H	Cl	Н	2-SCH ₃ -Phenyl	0	$N = C(CH_3)_2$	
ł	Cl	H	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	$N = C(CH_1)_2$	
4	CI	Н	2-SCF ₃ -Phenyl	0	$N = C(CH_3)_2$	
H	C1	Н	4-NO ₂ -Phenyl	0	$N = C(CH_3)_2$	
H	Cl	H	2,4-(NO ₂ ,NO ₂)-Phenyl	0	$N = C(CH_1)_2$	
Н	Cl	H	3-COCH ₃ -Phenyl	0	$N = C(CH_1)_2$	
H	Cl	H ·	3-COCF ₃ -Phenyl	0	$N = C(CH_1)_2$	
H	CI	H	1-Naphthyl	0	$N = C(CH_1)_2$	
H	Cl	H	2-Naphthyl	0	$N = C(CH_3)_2$	
H ·	C1	H	Piperidino	0	$N = C(CH_3)_2$ $N = C(CH_3)_2$	
H	Cl	H	3-Tetrahydrofuranyl	0	$N = C(CH_3)_2$	
H	Cl	H	4-Tetrahydrofuranyl	ŏ	$N = C(CH_3)_2$	
H	CI	H	2-Thiazolyl	ŏ	$N = C(CH_3)_2$	
H	Cl	H	5-CH ₃ -2-Thiazolyl	ŏ	$N = C(CH_3)_2$	
Н	Cl	Н	4-CH ₃ -5-COOH-2-Thiazolyl	Ü	o L	
Н	OCH ₃	Н	Methyl	0	N	
H	OCH ₃	н	Ethyl	0	Ö desgl.	
H	OCH ₁	H	n-Propyl	0	desgl.	
H	OCH ₁	Н	iso-Propyl	0	desgl.	
H	OCH ₃	Н	Cyclopropyl	0	desgl.	
H	OCH ₃	H	n-Butyl	0	desgl.	
Н	OCH ₃	H	iso-Butyl	0	desgl.	
H	OCH ₃	H	sekButyl	0	desgl.	
H	OCH,	. Н	tertButyl	0	desgl.	
H	OCH ₃	Н	n-Pentyl	0	desgl.	
H	OCH ₃	Н	2-Pentyl	0	desgl.	
H	OCH ₃	Н	3-Pentyl	0	desgl.	
Н	OCH ₃	H	n-Hexyl	0	desgl.	
H	OCH ₃	Н	2-Hexyl	0	desgl.	
H	OCH ₃	Н	3-Hexyl	0	desgl.	

DE 39 33 573 A1

R ³	R ⁴	R1	R ²	Y	R ⁶	X = O oder :
					o O	-
	_				\downarrow	
H	OCH ₃	H	2-Methyl-2-pentyl	0	N)	
	-		• •		\sim	
					1	
t.r	OCH	**	and Bearing about	_	0	
H H	OCH₃ OCH₁	H H	cyclo-Propylmethyl cyclo-Butyl	0	desgl.	
H H	OCH ₃	H	cyclo-Pentyl	ŏ	desgl. desgl.	
Н	OCH ₃	H	cyclo-Hexyl	Ō	desgl.	
H	OCH ₃	Н	1-Methylcyclohexyl	0	desgl.	
H	OCH ₃	H	3-Trifluormethylcyclohexyl	0	desgi.	
H H	OCH ₃ OCH ₃	H H	Aliyi 1-Buten-3-yi	0	desgl. desgl.	
H	OCH ₃	H	Crotyl	ŏ	desgi.	
H	OCH ₃	Ĥ	Propargyl	Ŏ	desgi.	
H	OCH ₃	H	1-Butin-3-yl	0	desgl.	
H	OCH ₃	H	3-Methyl-1-butin-3-yl	0	desgl.	
H	OCH,	H	2-Pentin-4-yl	0	desgl.	
H H	OCH ₃ OCH ₃	H H	Benzyl 2-Phenylethyl	0	desgl. desgl.	
H	OCH ₃	H	2-Methylthioethyl	ŏ	desgl.	
H	OCH ₃	H	2-Chlorethyl	0	desgl.	
H	OCH ₃	Н	2-Methoxyethyl	0	desgl.	
H	OCH ₃	H	2-(N,N-Dimethylamino)ethyl	0	desgl.	
H	OCH ₃	Н	Phenyl	0	desgl. desgl.	
H H	OCH ₃ OCH ₃	H H	2-CH ₃ -Phenyl 3-CH ₃ -Phenyl	ŏ	desgl.	
л Н	OCH ₃	H	4-CH ₃ -Phenyl	ŏ	desgl.	
H	OCH ₃	H	2,4-(CH ₃ ,CH ₃)-Phenyl	0	desgl.	
Н	OCH ₃	H	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	0	desgl.	
H	OCH ₃	H	3-CF ₃ -Phenyl	0	desgl.	
H	OCH,	H	3-F-Phenyl	0	desgl. desgl.	
H H	OCH ₃ OCH ₃	H H	2-CI-Phenyl 4-CI-Phenyl	ŏ	desgl.	
п Н	OCH ₃	H	2,4-(F,F)-Phenyl	ŏ	desgl.	
H	OCH ₃	H	2,3,5-(Cl,Cl,Cl)-Phenyl	0	desgl.	
Н	OCH ₃	H	2-CN-Phenyl	0	desgl.	
H	OCH ₃	H	2-OCH ₃ -Phenyl	0	desgl.	•
H	OCH ₃	H	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	desgl. desgl.	
H	OCH ₃ OCH ₃	H H	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl 3-OCF ₃ -Phenyl	ŏ	desgl.	
H H	OCH ₃	H	3-OCF ₂ OHF ₂ -Phenyl	ŏ	desgl.	
H	OCH ₁	H	4-OCF ₂ CHF ₂ -Phenyl	0	desgl.	
H	OCH ₃	H	2-SCH ₃ -Phenyl	0	desgl.	
Н	OCH ₃	Н	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	desgl.	
Н	OCH ₃	H	2-SCF ₃ -Phenyl	0	desgi. desgi.	
H	OCH ₃ OCH ₃	H H	4-NO₂-Phenyl 2,4-(NO₂,NO₂)-Phenyl	ŏ	desgl.	
H H	OCH ₃	H	3-COCH ₃ -Phenyl	ŏ	desgl.	
H	OCH ₃	Ĥ	3-COCF ₃ -Phenyl	0	desgl.	
Н	OCH ₃	н	t-Naphthyl	0	desgl.	
Н	OCH,	H	2-Naphthyl	0	desgl.	
H	OCH ₃	H	Piperidino	0	desgl. desgl.	
H	OCH,	H H	3-Tetrahydrofuranyl 4-Tetrahydrofuranyl	ŏ	desgi. desgi.	
H H	OCH ₃ OCH ₃	H H	2-Thiazolyl	ŏ	desgl.	
H	OCH ₃	н	5-CH ₃ -2-Thiazolyl	ŏ	desgl.	
H	OCH ₃	H	4-CH ₃ -5-COOH-2-Thiazolyl	0	desgl.	

R ³	R ⁴	R¹	R²	Y	R ⁶	X = O oder S
Н	OCH ₃	н	Methyl	0	$N = C(CH_3)_2$	
H	OCH ₃ -	Н	Ethyl	0	$N = C(CH_3)_2$	
Н	OCH ₃	Н	n-Propyl	0	$N = C(CH_3)_2$	
H	OCH ₃	H	iso-Propyl	0	$N = C(CH_3)_2$	
H	OCH ₃	Н	Cyclopropyl	0	$N = C(CH_3)_2$	
H H	OCH ₃	H	n-Butyl	0	$N = C(CH_3)_2$	
H	OCH ₃ .	H	iso-Butyl	O	$N = C(CH_3)_2$	
H	OCH3	H	sekButyl	0	$N = C(CH_3)_2$	
Н	OCH ₃ OCH ₃	H H	tertButyl	Ó	$N = C(CH_3)_2$	
H	OCH ₃	H	n-Pentyl 2-Pentyl	0	$N = C(CH_3)_2$	
H	OCH ₃	H	3-Pentyl	0	$N = C(CH_3)_2$	
H	OCH ₃	H	n-Hexyl	0	$N = C(CH_3)_2$	
H	OCH ₃	H	2-Hexyl	ŏ	$N = C(CH_3)_2$ $N = C(CH_3)_2$	
H	OCH ₃	H	3-Hexyl	ŏ	$N = C(CH_3)_2$ $N = C(CH_3)_2$	
H	OCH ₃	H	2-Methyl-2-pentyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	cyclo-Propylmethyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	cyclo-Butyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	cyclo-Pentyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	cyclo-Hexyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	1-Methylcyclohexyl	ŏ	$N = C(CH_3)_2$	
Н	OCH ₃	H	3-Triflormethylcyclohexyl	ŏ	$N = C(CH_3)_2$	
Н	OCH ₃	Н	Allyl	Ŏ	$N = C(CH_3)_2$	
Н	OCH ₃	Н	1-Buten-3-yl	ŏ	$N = C(CH_3)_2$	
Н	OCH ₃	Н	Crotyl	O	$N = C(CH_3)_2$	
Н	OCH ₃	H	Propargyl	0	$N = C(CH_3)_2$	
H	OCH ₃	H	1-Butin-3-yl	0	$N = C(CH_3)_2$	
Н	OCH ₃	H	3-Methyl-1-butin-3-yl	0	$N = C(CH_3)_2$	
Н	OCH ₃	Н	2-Pentin-4-yl	0	$N = C(CH_3)_2$	
Н	OCH ₃	Н	Benzyl	0 1	$N = C(CH_3)_2$	
H	OCH₃	Н	2-Phenylethyl	0	$N = C(CH_3)_2$	
Н	OCH ₃	H	2-Methylthioethyl	O	$N = C(CH_3)_2$	
Н	OCH₃	H	2-Chlorethyl	O	$N = C(CH_3)_2$	
Н	OCH ₃	H	2-Methoxyethyl	0	$N = C(CH_3)_2$	
Н	OCH ₃	Н	2-(N,N-Dimethylamino)ethyl	0	$N = C(CH_3)_2$	
H	OCH ₃	Н	Phenyl	0	$N = C(CH_3)_2$	
H	OCH ₃	H	2-CH ₃ -Phenyl	0	$N = C(CH_3)_2$	
H	OCH ₃	Н	3-CH ₃ -Phenyl	0	$N = C(CH_3)_2$	
Н	OCH₃	H	4-CH ₃ -Phenyl	0	$N = C(CH_3)_2$	
H	OCH ₃	H	2,4-(CH ₃ ,CH ₃)-Phenyl	0	$N = C(CH_3)_2$	
H	OCH ₃	H	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	ŏ	$N = C(CH_3)_2$ $N = C(CH_3)_2$	
H	OCH ₃	H	3-CF ₃ -Phenyl	ŏ	$N = C(CH_3)_2$ $N = C(CH_3)_2$	
H H	OCH:	H H	3-F-Phenyl 2-Cl-Phenyl	ŏ	$N = C(CH_3)_2$	
Н	OCH ₃ OCH ₃	Н	4-Cl-Phenyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	2,4-(F,F)-Phenyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	2,3,5-(Cl,Cl,Cl)-Phenyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	2-CN-Phenyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	2-OCH ₃ -Phenyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	2,3-(OCH ₃ ,OCH ₃)-Phenyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	3-OCF ₃ -Phenyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	3-OCF ₂ OHF ₂ -Phenyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	4-OCF ₂ CHF ₂ -Phenyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	2-SCH ₃ -Phenyl	Ŏ	$N = C(CH_3)_2$	
H	OCH₃	Ĥ	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	$N = C(CH_3)_2$	
H	OCH ₃	H	2-SCF ₃ -Phenyl	0	$N = C(CH_3)_2$	
H	OCH ₃	H	4-NO ₂ -Phenyl	0	$N = C(CH_3)_2$	
H	OCH ₃	Н	2,4-(NO ₂ ,NO ₂)-Phenyl	0	$N = C(CH_3)_2$	
Н	OCH ₃	Н	3-COCH ₃ -Phenyl	0	$N = C(CH_3)_2$	
Н	OCH ₃	Н	3-COCF ₃ -Phenyl	0	$N = C(CH_3)_2$	
Н	OCH ₃	Н	1-Naphthyl	0	$N = C(CH_3)_2$	

DE 39 33 573 A1

R ³ .	R ⁴	R¹	R²	Y	R ⁶	X = O oder S
Н	OCH ₃	OCH ₃ H 2-Naphthyl		0	$N = C(CH_3)_2$	
H	OCH ₃ _	H	Piperidino	ŏ	$N = C(CH_3)_2$	
Н	OCH ₃	Н	3-Tetrahydrofuranyl	ŏ	$N = C(CH_3)_2$	
H	OCH ₃	H	4-Tetrahydropyranyl	ŏ		
H	OCH ₃	H	2-Thiazolyl		$N = C(CH_3)_2$	
H	OCH ₃	H		0	$N = C(CH_3)_2$	
H	OCH ₃	H	5-CH ₃ -2-Thiazolyl	0	$N = C(CH_3)_2$	
			4-CH ₃ -5-COOH-2-Thiazolyl	0	$N = C(CH_3)_2$	
Br	H	CH ₃	Methyl	0	Н	
Br	H _.	CH₃	Ethyl	О	H	
Br	H	CH₃	n-Propyl	0	Н	
Br	Н	CH ₃	iso-Propyl	0	Н	
Br	Н	CH ₃	Cyclopropyl	0	Н	
Вг	Н	CH ₃	n-Butyl	Ó	Н	
Br	Н	CH ₃	iso-Butyl	ŏ	H	
Br	Ĥ	CH ₃	sekButyl	ŏ	H	
Br	H	CH ₃				
			tertButyl	0	H	
Br	H	CH ₃	n-Pentyl	0	H	
Br	Н	CH ₃	2-Pentyl	0	Н	
Br	Н	CH₃	3-Pentyl	0	Н	
Br	Н	CH ₃	n-Hexyl	0	Н	•
Вг	Н	CH ₃	2-Hexyl	0	Н	
Br	Н	CH ₃	3-Hexyl	Ŏ	H	
Br	H	CH ₃	2-Methyl-2-pentyl	ŏ	H	
Br	Ĥ	CH₃	cyclo-Propylmethyl	ŏ	H	•
Br	H		·			
		CH ₃	cyclo-Butyl	0	H	
Br	H	CH ₃	cyclo-Pentyl	0	H	
Br	H	CH ₃	cyclo-Hexyl	Q	Н	
Br	Н	CH₃	1-Methylcyclohexyl	0	Н	
Br	Н	CH ₃	3-Triflormethylcyclohexyl	Ο	Н	
Br ·	Н	CH ₃	Aliyi	0	Н	
Br	Н	CH ₃	1-Buten-3-yl	0	Н	
Br	Н	CH ₃	Crotyl	O	Н	
Br	Ĥ	CH ₃	Propargyl	ŏ	H	
Br	н	CH ₃	1-Butin-3-yl	ŏ	H	
				ŏ	H	
Br	H	CH₃	3-Methyl-1-butin-3-yl			
Br	Н	CH ₃	2-Pentin-4-yl	0	H	
Br	H	CH ₃	Benzyl	0	H	
Br	H	CH ₃	2-Phenylethyl	0	Н	
Br	Н	CH₃	2-Methylthioethyl	0	Н	
Br	Н	CH₃	2-Chlorethyl	0	Н	
Br	Н	CH ₃	2-Methoxyethyl	0	Н	
Br	H	CH₃	2-(N,N-Dimethylamino)ethyl	Ŏ	H	
Br	H	CH ₃	Phenyl	ŏ	H	
	H	CH ₃	2-CH ₃ -Phenyl	ŏ	Ĥ	
Br D-				ŏ	H ·	
Br	Н	CH₃	3-CH ₃ -Phenyl			
Вг	H	CH₃	4-CH ₃ -Phenyl	0	H	
Br	Н	CH₃	2,4-(CH ₃ ,CH ₃)-Phenyl	0	H	
Вг	H	CH ₃	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	0	Н	
Br	Н	CH ₃	3-CF ₃ -Phenyl	0	Н .	
Br	Н	CH ₃	3-F-Phenyl	0	Н	
Вг	H	CH₃	2-Cl-Phenyl	0	Н	
3r	H	CH₃	4-Cl-Phenyl	ŏ	H	
3r	H	CH₃	2,4-(F,F)-Phenyl	ŏ	H	
		CH ₃		ŏ	H	
Br D-	Н		2,3,5-(Cl,Cl,Cl)-Phenyl			
Br	H	CH ₃	2-CN-Phenyl	0	Н	
3r	Н	CH ₃	2-OCH ₃ -Phenyl	0	H	
Br	Н	CH₃	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	Н	
Зг	Н	CH ₃	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	Н	
Вг	Н	CH ₃	3-OCF ₃ -Phenyl	0	Н	
3r	H	CH ₃	3-OCF ₂ OHF ₂ -Phenyl	ŏ	H	
Br	H	CH ₃	4-OCF ₂ CHF ₂ -Phenyl	ŏ	H	
	11	~1111·		_		

R ³	R ⁴	R¹	R ²	Y	R ⁶	X = O oder S
Br	Н	CH ₃	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	Н	
Br	н _	CH ₃	2-SCF ₃ -Phenyl	0	Н	
Вг	Н	CH₃	4-NO ₂ -Phenyl	0	Н	
Br	Н	CH ₃	2,4-(NO ₂ ,NO ₂)-Phenyl	0	Н	
Вг	Н	CH ₃	3-COCH ₃ -Phenyl	Ō	Н	
Br	Н	CH ₃	3-COCF ₃ -Phenyl	Ō	Н	
Вг	H	CH ₃	1-Naphthyl	ŏ	Ĥ	
Br	Н	CH ₃	2-Naphthyl	Ō	Н	
Вг	Н	CH ₃	Piperidino	Ŏ	H	
Br	Н	CH ₃	3-Tetrahydrofuranyl	ŏ	H	
Br	Н	CH₃	4-Tetrahydropyranyl	Ŏ	Н	
Br	H	CH₃	2-Thiazolyl	ŏ	H	
Br	H	CH₃	5-CH ₃ -2-Thiazolyl	ŏ	H	
Br	H	CH₃	4-CH ₃ -5-COOH-2-Thiazolyl	ŏ	Ĥ	
CH₃	CH₃	Allyl	Methyl	ŏ	H	
CH₃	CH₃	Allyl	Ethyl	ŏ	H	
CH ₃	CH₃	Aliyi	n-Propyl	ŏ	H	
CH ₃	CH ₃	Allyl	iso-Propyl	ŏ	Н	
CH ₃	CH ₃	Allyl	Cyclopropyl	ŏ	H	
			n-Butyl	ŏ	H	
CH ₃	CH₃	Allyl		ŏ	H	
CH ₃	CH₃	Allyl	iso-Butyl	ŏ	H	
CH₃	CH₃	Allyl	sekButyl		n H	
CH₃	CH₃	Allyl	tertButyl	0		
CH ₃	CH ₃	Allyi	n-Pentyl	0	Н	
CH₃	CH ₃	Allyl	2-Pentyl	0	Н	
CH ₃	CH ₃	Allyl	3-Pentyl	0	H	
CH₃	CH ₃	Allyl	n-Hexyl	0	H	
CH ₃	CH ₃	Allyl	2-Hexyl	0	Н	
CH ₃	CH ₃	Allyl	3-Hexyl	0	H	
CH ₃	CH₃	Allyl	2-Methyl-2-pentyl	0	Н	
CH₃	CH₃	Aliyi	cyclo-Propylmethyl	0	Н	
CH₃	CH₃	Allyl	cyclo-Butyl	0	Н	
CH ₃	CH ₃	Allyl	cyclo-Pentyl	0	Н	
CH₃	CH₃	Allyl	cyclo-Hexyl	0	Н	
CH ₃	CH₃	Allyl	1-Methylcyclohexyl	0	Н	
CH ₃	CH₃	Allyl	3-Triflormethylcyclohexyl	0	Н	
CH ₃	CH ₃	Allyl	Ailyl	0	Н	
CH ₃	CH ₃	Aliyi	1-Buten-3-yl	0	Н	
CH ₃	CH ₃	Allyi	Crotyl	0	Н	
CH ₃	CH ₃	Allyl	Propargyl	0	H	
CH ₃	CH ₃	Allyl	1-Butin-3-yl	0	Н	
CH ₃	CH ₃	Allyl	3-Methyl-1-butin-3-yl	0	Н	
CH ₃	CH ₃	Allyl	2-Pentin-4-yl	0	Н	
CH ₃	CH ₃	Allyl	Benzyl	0	Н	
CH ₃	CH ₃	Allyl	2-Phenylethyl	O	Н	
CH ₃	CH₃	Allyl	2-Methylthioethyl	0	Н	
	CH ₃	Allyl	2-Chlorethyl	ŏ	H	
CH₃	CH ₃	Allyl	2-Methoxyethyl	ŏ	H	
CH₃		Allyl	2-(N,N-Dimethylamino)ethyl	ŏ	H	
CH₃	CH₃	Aliyi	Phenyl	ŏ	H	
CH ₃	CH₃		2-CH ₃ -Phenyl	ŏ	H	
CH ₃	CH ₃	Allyl		ŏ	H	
CH ₃	CH ₃	Allyl	3-CH ₃ -Phenyl	ŏ	H	
CH ₃	CH ₃	Allyl	4-CH ₃ -Phenyl	ő	H	
CH₃	CH₃	Allyl	2,4-(CH ₃ ,CH ₃)-Phenyl	Ö	Н	
CH ₃	CH ₃	Allyl	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	0		
CH ₃	CH ₃	Allyl	3-CF ₃ -Phenyl		. н	
CH ₃	CH ₃	Allyl	3-F-Phenyl	0	H	
CH ₃	CH ₃	Allyl	2-Cl-Phenyl	0	H	
CH ₃	CH₃	Allyl	4-Cl-Phenyl	0	H	
CH ₃	CH ₃	Allyl	2,4-(F,F)-Phenyl	0	Н	
	CH ₃	Allyl	2,3,5-(Cl,Cl,Cl)-Phenyl	0	Н	
CH₃ CH₃	CH ₃	Allyl	2-CN-Phenyl	Ō	Н	

R ³	R ⁴	R ⁴ R ¹ R ²			R ⁶	X = O oder S	
СН₃	СН₃	Allyl	2-OCH ₃ -Phenyl	0	Н		
CH₃	CH ₃ —	Aliyl	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	Н		
CH ₃	CH ₃	Allyl	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	Н		
CH₃	CH ₃	Allyl	3-OCF ₃ -Phenyl	0	Н		
CH ₃	CH ₃	Allyl	3-OCF ₂ OHF ₂ -Phenyl	0	H		
CH₃	CH ₃	Allyl	4-OCF ₂ CHF ₂ -Phenyl	Ó	Н		
CH ₃ CH ₃	CH ₃	Allyl	2-SCH ₃ -Phenyl	0	H		
CH₃ CH₃	CH₃ CH₃	Allyl	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	Н		
CH ₃	CH ₃	Aliyi Aliyi	2-SCF ₃ -Phenyl 4-NO ₂ -Phenyl	0	H H		
CH ₃	CH ₃	Allyl	2,4-(NO ₂ ,NO ₂)-Phenyl	ö	H		
CH ₃	CH ₃	Aliyi	3-COCH ₃ -Phenyl	ŏ	Н		
CH ₃	CH ₃	Allyl	3-COCF ₃ -Phenyl	ŏ	H		
CH ₃	CH ₃	Allyi	1-Naphthyl	ŏ	H		
CH ₃	CH₃	Allyl	2-Naphthyl	ŏ	Ĥ		
CH ₃	CH ₃	Allyl	Piperidino	ŏ	H		
CH ₃	CH ₃	Allyl	3-Tetrahydrofuranyl	ō	H		
CH ₃	CH₃	Allyl	4-Tetrahydropyranyl	Ŏ	Н		
CH ₃	CH ₃	Allyl	2-Thiazolyl	Ō	Н		
CH₃	CH ₃	Allyl	5-CH ₃ -2-Thiazolyl	Ó	Н		
CH ₃	CH ₃	Allyl	4-CH ₃ -5-COOH-2-Thiazolyl	0	Н		
Н	CI	Н	Methyl	S	CH ₃		
H	Cl	Н	Ethyl	S	CH ₃		
Н	Cl	Н	n-Propyl	S	CH ₃		
Н	Ci	Н	iso-Propyl	S	CH ₃		
Н	Cl	H	Cyclopropyl	S	CH ₃		
Н	CI	H	n-Butyl	S S	CH ₃		
Н	Cl	H	iso-Butyl	S	CH ₃		
H	Cl	H	sekButyl	S	CH ₃		
Н	Cl	Н	tertButyl	S S	CH ₃		
Н	Cl	H	n-Pentyl	S	CH ₃		
Н	Cl	Н	2-Pentyl	S	CH ₃		
H	Cl	Н	3-Pentyl	S	CH ₃		
H	Cl	н	n-Hexyl	S	CH₃		
Н	Cl	H	2-Hexyl	S S	CH ₃		
H	Cl	H	3-Hexyl	S	CH₃		
H	Cl	H	2-Methyl-2-pentyl	S	CH₃ CH₃		
H	.C1	Н	cyclo-Propylmethyl	S	CH ₃		
H	CI	H	cyclo-Butyl	S	CH ₃		
Н	Cl	H	cyclo-Pentyl	S	CH ₃		
H	Cl	H H	cyclo-Hexyl 1-Methylcyclohexyl	S	CH ₃		
H	CI CI	H	3-Triflormethylcyclohexyl	Š	CH ₃		
H H	CI	H	Allyl	Š	CH ₃		
п Н	Cl	H	1-Buten-3-yl	Š	CH ₃		
H	CI	H	Crotyl	Š	CH ₃		
п Н	CI	H	Propargyl	Š	CH ₃		
H	Ci Ci	H	1-Butin-3-yl	Š	CH ₃		
H	Ci	H	3-Methyl-1-butin-3-yl	S	CH ₃		
H	CI	н	2-Pentin-4-yl	S	CH ₃		
H	Ci Ci	Ĥ	Benzyl	S	CH₃		
H	Či	H	2-Phenylethyl	S	CH ₃		
H	Či	H	2-Methylthioethyl	S	CH ₃		
H	Ci	н	2-Chlorethyl	S	CH ₃		
H	či	H	2-Methoxyethyl	S	CH₃		
H	Ci	H	2-(N,N-Dimethylamino)ethyl	S	CH₃		
H	Či	H	Phenyl	S	CH ₃		
H	Ci	H	2-CH ₃ -Phenyl	S	CH₃		
H	Ċĺ	H	3-CH ₃ -Phenyl	S	CH ₃		
H	Či	H	4-CH ₃ -Phenyl	S	CH ₃		
H	CI	н	2,4-(CH ₃ ,CH ₃)-Phenyl	S	CH ₃		
Н	ĊĬ	Н	2,3,5-(CH ₃ ,CH ₃ ,CH ₃)-Phenyl	S	CH ₃		

DE 39 33 573 A1

R ³	R ⁴	R¹	R²	Y	R ⁶	X = O oder S	
Н	Cl	н	3-CF ₃ -Phenyl	s	СН3		
H	CI –	Н	3-F-Phenyl	S	CH ₃		
H	CI	Н	2-Cl-Phenyl	S S	CH ₃		
Н	CI	Н	4-Cl-Phenyl	S	CH ₃		
H	Cl	Н	2,4-(F,F)-Phenyl	S	CH ₃		
H	Cl	H	2,3,5-(Cl,Cl,Cl)-Phenyl	S	CH ₃		
H	Cl	Н	2-CN-Phenyl	S	CH ₃		
H	Cl	Н	2-OCH ₃ -Phenyl	S	CH ₃		
Н	Cl	Н	2,3-(OCH ₃ ,OCH ₃)-Phenyl	S	CH ₃		
Н	CI	H	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	S	CH ₃		
H	Cl	H	3-OCF ₃ -Phenyl	S	CH ₃		
H	Cl	H	3-OCF ₂ OHF ₂ -Phenyl	S S	CH ₃		
H	Cl	Н	4-OCF ₂ CHF ₂ -Phenyl	S	CH ₃		
H	Cl	Н	2-SCH ₃ -Phenyl	S	CH ₃		
H	Cl	H	2,4-(SCH3,SCH3)-Phenyl	S	CH ₃		
H	Cl	Н	2-SCF ₃ -Phenyl	S	CH₃		
H	Cl	H	4-NO₂-Phenyl	S	CH₃		
Н	Cl	Н	2,4-(NO ₂ ,NO ₂)-Phenyl	S	CH₃		
H	Cl	Н	3-COCH ₃ -Phenyl	S	CH₃		
H	Cl	Н	3-COCF ₃ -Phenyl	S	CH₃		
H	CI	Н	1-Naphthyl	S S S S	CH₃		
Н	Cl	Н	2-Naphthyl	S	CH ₃		
Н	Cl	Н	Piperidino	S	CH ₃		
Н	Cl	Н	3-Tetrahydrofuranyl	S	CH ₃		
H	Cl	Н	4-Tetrahydropyranyl	S	CH ₃		
Н	Cl	Н	2-Thiazolyl	S	CH ₃		
Н	Cl	H	5-CH ₃ -2-Thiazolyl	S	CH ₃		
Н	Cl	Н	4-CH ₃ -5-COOH-2-Thiazolyl	S	CH₃		
Н	C₂H ₅	Н	Methyl	0	$CH_2C = CH$		
Н	C ₂ H ₅	Н	Ethyl	О	CH ₂ C = CH		
Н	C ₂ H ₅	Н	n-Propyl	О	CH ₂ C ≡ CH		
Н	C ₂ H ₅	H	iso-Propyl	0	CH ₂ C ≡ CH		
Н	C ₂ H ₅	H	Cyclopropyi	0	$CH_2C = CH$		
Н	C ₂ H ₅	Н	n-Butyl	0	CH ₂ C ≡ CH		
Н	C ₂ H ₅	Н	iso-Butyl	О	$CH_2C = CH$		
Н	C ₂ H ₅	Н	sekButyl	0	CH₂C≡CH		
Н	C ₂ H ₅	H	tertButyl	0	CH ₂ C = CH		
Н	C ₂ H ₅	Н	n-Pentyl	0	CH₂C≡CH		
Н	C ₂ H ₅	Н	2-Pentyl	О	CH₂C≕CH		
Н	C ₂ H ₅	H	3-Pentyl	О	CH₂C≡CH		
Н	C ₂ H ₅	H	n-Hexyl	0	$CH_2C = CH$		
H	C ₂ H ₅	Н	2-Hexyl	0	CH ₂ C = CH		
Н	C ₂ H ₅	Н	3-Hexyl	0	CH₂C≡CH		
Н	C ₂ H ₅	Н	2-Methyl-2-pentyl	О	$CH_2C = CH$		
Н	C ₂ H ₅	Н	cyclo-Propylmethyl	0	CH ₂ C ≡ CH		
Н	C ₂ H ₅	Н	cyclo-Butyl	0	CH ₂ C≡CH		
Н	C ₂ H ₅	Н	cyclo-Pentyl	O	CH ₂ C ≡ CH		
H	C ₂ H ₅	н	cyclő-Hexyl	0	CH ₂ C = CH		
H	C₂H₅	н	1-Methylcyclohexyl	0	$CH_2C = CH$		
H	C₂H ₅	Н	3-Triflormethylcyclohexyl	О	$CH_2C = CH$		
H	C₂H ₅	Н	Allyl	О	CH₂C≡CH		
H	C ₂ H ₅	Н	1-Buten-3-yl	О	$CH_2C = CH$		
H	C ₂ H ₅	H	Crotyl	0	$CH_2C = CH$		
H	C ₂ H ₅	H	Propargyl	0	CH ₂ C = CH		
H	C ₂ H ₅	H	1-Butin-3-yl	0	CH ₂ C = CH		
H	C₂H ₅	Н	3-Methyl-1-butin-3-yl	0	$CH_2C = CH$		
H	C₂H ₅	H	2-Pentin-4-yl	0	CH₂C≡CH		
H	C ₂ H ₅	H	Benzyl	0	CH ₂ C ≡ CH		
H	C ₂ H ₅	H	2-Phenylethyl	0	CH ₂ C ≡ CH		
H	C ₂ H ₅	H	2-Methylthioethyl	0	CH ₂ C≡CH		

	R³	R ⁴	R ¹	R ²	Y	R ⁶	X - O oder S
5	Н	C₂H₅	н	2-Chlorethyl	0	CH ₂ C=CH	
	Н	C ₂ H ₅ -	Н	2-Methoxyethyl	0	$CH_2C = CH$	
	Н	C₂H₅	н	2-(N,N-Dimethylamino)ethyl	0	$CH_2C = CH$	
	Н	C ₂ H ₅	н	Phenyl	0	CH ₂ C = CH	
	Н	C₂H₅	н	2-CH ₃ -Phenyl	0	$CH_2C = CH$	
10	Н	C ₂ H ₅	Н	3-CH ₃ -Phenyl	0	CH ₂ C = CH	
	Н	C ₂ H ₅	Н	4-CH ₃ -Phenyl	O	CH ₂ C = CH	
	Н	C ₂ H ₅	H	2,4-(CH ₃ ,CH ₃)-Phenyl	0	CH ₂ C≡CH	
	H	C ₂ H ₅	H	2,3,5-(CH ₃ ,CH ₃)-Phenyl	0	CH ₂ C = CH	
	Н	C ₂ H ₅	Н	3-CF ₃ -Phenyl	0	CH ₂ C≡CH	
15	Н	C ₂ H ₅	H	3-F-Phenyl	0	$CH_2C = CH$	
	Н	C ₂ H ₅	н	2-Cl-Phenyl	0	CH ₂ C = CH	
	H	C ₂ H ₅	Н	4-Cl-Phenyl	0	$CH_2C = CH$	
	Н	C ₂ H ₅	Н	2,4-(F,F)-Phenyl	0	$CH_2C = CH$	
	Н	C ₂ H ₅	н	2,3,5-(CÍ,CI,CI)-Phenyl	0	CH ₂ C = CH	
20	Н	C ₂ H ₅	н	2-CN-Phenyl	0	CH ₂ C≡CH	
	H	C ₂ H ₅	н	2-OCH ₃ -Phenyl	0	$CH_2C = CH$	1
	Н	C ₂ H ₅	н	2,3-(OCH ₃ ,OCH ₃)-Phenyl	0	CH ₂ C ≅ CH	
	Н	C ₂ H ₅	Н	3,4,5-(OCH ₃ ,OCH ₃ ,OCH ₃)-Phenyl	0	$CH_2C = CH$	
	Н	C ₂ H ₅	н	3-OCF ₃ -Phenyl	0	CH ₂ C ≅ CH	
25	H	C ₂ H ₅	н	3-OCF ₂ OHF ₂ -Phenyl	0	CH ₂ C ⇒ CH	
	H	C ₂ H ₅	Н	4-OCF ₂ CHF ₂ -Phenyl	0	CH ₂ C = CH	
	H	C ₂ H ₅	H	2-SCH ₃ -Phenyl	0	CH ₂ C≡CH	
	H	C ₂ H ₅	H	2,4-(SCH ₃ ,SCH ₃)-Phenyl	0	CH ₂ C ≈ CH	
	H	C ₂ H ₅	H	2-SCF ₃ -Phenyl	O	CH ₂ C≡CH	
30	H	C ₂ H ₅	H	4-NO ₂ -Phenyl	0	CH ₂ C ⇒ CH	
30	H	C ₂ H ₅	Н	2,4-(NO ₂ ,NO ₂)-Phenyl	0	CH ₂ C = CH	
	H	C₂H ₅	H	3-COCH ₃ -Phenyl	0	$CH_2C = CH$	
	H	C ₂ H ₅	H	3-COCF ₃ -Phenyl	0	CH ₂ C≡CH	
	H	C ₂ H ₅	H	1-Naphthyl	0	$CH_2C = CH$	
35	H	C ₂ H ₅	H	2-Naphthyl	0	CH ₂ C≡CH	
33	H	C ₂ H ₅	H	Piperidino	0	CH ₂ C = CH	
	H	C ₂ H ₅	H	3-Tetrahydrofuranyl	O	$CH_2C \equiv CH$	
	H	C ₂ H ₅	H	4-Tetrahydropyranyl	O	CH ₂ C≡CH	
	H	C ₂ H ₅	H	2-Thiazolyl	ŏ	CH ₂ C≡CH	
	Н	C ₂ H ₅	H	5-CH ₃ -2-Thiazolyl	Ō	CH ₂ C≡CH	
40	H	C₂H ₅	H	4-CH ₃ -5-COOH-2-Thiazolyl	Õ	CH ₂ C≡CH	
	п	C21 15	11	, 0.1.3.0.00011 2 1	_		

Als Salze der Verbindungen der Formel IA, IB und IC kommen landwirtschaftlich brauchbare Salze, beispielsweise Alkalimetallsalze, wie das Kalium- oder Natriumsalz, Erdalkalimetallsalze, wie das Calcium-, Magnesium- oder Bariumsalz, Mangan-, Kupfer-, Zink- oder Eisensalze sowie Ammonium, Phosphonium-, Sulfonium- oder Sulfoxoniumsalze, beispielsweise Ammoniumsalze, Tetraalkylammoniumsalze, Benzyltrialkylammoniumsalze, Trialkylsulfoniumsalze oder Trialkylsulfoxoniumsalze in Betracht.

Die erfindungsgemäßen herbiziden Verbindungen IA, IB und IC bzw. die sie enthaltenden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Die Verbindungen IA, IB und IC eignen sich allgemein zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen. Als inerte Zusatzstoffe kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z. B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron oder stark polare Lösungsmittel wie N,N-Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Dispersionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren,

z. B. Lignin-, Phenol, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Oxtadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Sub-

10

20

25

55

stanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z. B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calciumund Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holzund Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Formulierungen enthalten zwischen 0,01 und 95 Gew.%, vorzugsweise zwischen 0,1 und 90 Gew.%, Wirkstoff, Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach

NMR-Spektrum) eingesetzt.

Die erfindungsgemäßen Verbindungen IA, IB und IC können beispielsweise wie folgt formuliert werden:

I. Man vermischt 90 Gewichtsteile der Verbindung Nr. 1.025 mit 10 Gewichtsteilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.

II. 20 Gewichtsteile der Verbindung Nr. 3.031 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen Xylol, 10 Gewichtsteilen des Anlagerungsprodukts von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht.

Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine

wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

III. 20 Gewichtsteile der Verbindung Nr. 1.001 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsprodukts von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

IV. 20 Gewichtsteile der Verbindung Nr. 1.025 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die

0,02 Gew.% des Wirkstoffs enthält.

V. 20 Gewichtsteile des Wirkstoffs Nr. 3.031 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.% des Wirkstoffs enthält.

VI. 3 Gewichtsteile des Wirkstoffs Nr. 2.005 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.% des Wirkstoffs enthält.

VII. 30 Gewichtsteile des Wirkstoffs Nr. 3.001 werden mit einer Mischung aus 92 Gewichtsteilen pulverförmigem Kieselsäuregel und 8 Gewichtsteilen Paraffinöl, das auf der Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.

VIII. 20 Gewichtsteile des Wirkstoffs Nr. 3.031 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensats und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt.

Man erhält eine stabile ölige Dispersion.

XI. Man vermischt 90 Gewichtsteile der Verbindung Nr. 1.022 mit 10 Gewichtsteilen N-Methyl-α-pyrroli-

don und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.

X. 20 Gewichtsteile der Verbindung Nr. 2.006 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen Xylol, 10 Gewichtsteilen des Anlagerungsprodukts von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

XI. 20 Gewichtsteile der Verbindung Nr. 3.036 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsprodukts von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

XII. 20 Gewichtsteile des Wirkstoffs Nr. 1.010 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen

43

Cyclohexanol, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsprodukts von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

XIII. 20 Gewichtsteile des Wirkstoffs Nr. 3.015 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.% des Wirkstoffs enthält.

10

15

20

45

50

55

XIV. 3 Gewichtsteile des Wirkstoffs Nr. 1.025 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.% des Wirkstoffs enthält.

XV. 30 Gewichtsteile des Wirkstoffs Nr. 3.031 werden mit einer Mischung aus 92 Gewichtsteilen pulverförmigem Kieselsäuregel und 8 Gewichtsteilen Paraffinöl, das auf der Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.

XVI. 20 Gewichtsteile des Wirkstoffs Nr. 2.001 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenolsulfonsäure-Formaldehyd-Kondensats und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

Die Applikation der herbiziden Mittel bzw. der Wirkstoffe kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

Die Aufwandmengen an Wirkstoff bei Anwendung als Herbizide betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 5, vorzugsweise 0,01 bis 3 kg/ha aktive Substanz (a. S.).

In Anbetracht der Vielseitigkeit der Applikationsmethoden können die erfindungsgemäßen Verbindungen bzw. sie enthaltende Mittel in einer großen Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden.

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die erfindungsgemäßen Wirkstoffe IA, IB und IC mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazine, 4H-3,1-Benzoxazinderivate, Benzothiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogencarbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuranderivate, Cyclohexan-1,3-dionderivate, Chinolincarbonsäurederivate, Aryloxy-, Heteraryloxyphenoxypropionsäuren sowie deren Salze, Ester und Amide und andere in Betracht.

Außerdem kann es von Nutzen sein, die Wirkstoffe IA, IB und IC allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Synthesebeispiele

Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen IA, IB und IC benutzt. Die so erhaltenen Verbindungen sind in den nachstehenden Tabellen mit physikalischen Angaben aufgeführt.

Herstellungsbeispiele

Beispiel 1

Thiophen-3,4-dicarbonsaureanhydrid

Thiophen-3,4-dicarbonsäure (12 g, 0,07 Mol) wird in Acetanhydrid (60 ml) gelöst und 2,5 Stunden zum Sieden erhitzt. Anschließend wird zur Trockene eingeengt. Man erhält 10,55 g (98%) Thiophen-3,4-dicarbonsäureanhydrid (Fp. 147 bis 149°C).

Beispiel 2

4-(4-Chlorphenyl)aminocarbonyl-thiophen-3-carbonsäure

Thiophen-3,4-dicarbonsäureanhydrid (2 g, 0,013 Mol) wird in 60 ml Toluol vorgelegt und mit 4-Chloranilin (1,65 g, 0,013 Mol versetzt. Man läßt 3 Stunden bei Raumtemperatur rühren, filtriert die ausgefallene Carbonsäure ab und wäscht mit wenig Toluol nach. Nach Trocknen erhält man 3,7 g (100%) des gewünschten Produkts, Fp. 204 bis 208° C. (Wirkstoff Nr. 1.035)

Beispiel 3

4-(4-Chlorphenyl)aminocarbonyl-thiophen-3-carbonsäure-hydroxysuccinimidester

4-(4-Chlorphenyl)aminocarbonyl-thiophen-3-carbonsäure (1,7 g, 0,006 Mol) wird in 60 ml THF gelöst, mit N-Hydroxysuccinimid (0,7-g, 0,006 Mol) und N,N-Dicyclohexylcarbodiimid (1,25 g, 0,006 Mol) versetzt und mehrere Stunden bei Raumtemperatur gerührt. Anschließend kühlt man die Lösung für einige Stunden auf 0°C, saugt den ausgefallenen Harnstoff ab und engt zur Trockene ein. Ausbeute: 1,8 g, 66%; Fp. 65 bis 67°C. (Wirkstoff Nr. 1.026)

10

Beispiel 4

4-Chlorthiophen-3-carbonsäureanilid

4-Chlorthiophen-3-carbonsäurechlorid (13,5 g, 0,075 Mol) werden in 30 ml Dioxan gelöst und bei Raumtemperatur zu einer Lösung aus Anilin (7,7 g, 0,083 Mol) in Pyridin (160 ml) getropft. Man läßt 12 Stunden bei Raumtemperatur rühren, engt dann zur Trockene ein und nimmt den Rückstand in Dichlormethan auf. Die organische Phase wird mit wäßriger Citronensäurelösung, Natriumhydrogencarbonatlösung und Wasser extrahiert, getrocknet und zur Trockene eingeengt. Ausbeute: 16,7 g, 94%; Fp. 119 bis 121°C.

20

Beispiel 5

4-Chlor-3-phenylaminocarbonyl-thiophen-2-carbonsäure

4-Chlorthiophen-3-carbonsäureanilid (14,6 g, 0,061 Mol) wird in 450 ml THF gelöst, auf -70°C gekühlt und mit n-Butyllithium (0,13 Mol, 1,6 N Lösung in n-Hexan) versetzt. Nach 30 Minuten gast man bis zur Sättigung der Lösung Kohlendioxid ein und läßt langsam auf Raumtemperatur aufwärmen. Zur Aufarbeitung engt man bis zur Trockene ein, nimmt den festen Rückstand in einem Gemisch aus Wasser, Natronlauge und Ethylacetat auf, trennt die Phase und säuert die wäßrige Phase mit Salzsäure an. Dabei fällt die Carbonsäure aus. Ausbeute: 13.5 g, 78%; Fp. 208 bis 210° C. (Wirkstoff Nr. 2.008)

30

Anwendungsbeispiele

Die herbizide Wirkung der Carbonsäureamide der Formel IA, IB und IC ließ sich durch Gewächshausversuche zeigen: Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0% Humus als Substrat. Die

35

Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

40

Zum Zwecke der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erste bei einer Wuchshöhe von 3 bis 15 cm mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0,5 und 1,0 kg/ha a. S.

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10-25°C bzw. 20-35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

50

Deutscher Name Lateinischer Name

Weißer Gänsefuß Chenopodium album Kronenwucherblume Chrysanthemum coronarium Wolfsmilchart Euphorb ia heterophylla Klettenlabkraut Gallium aparine Winterweizen Triticum aestivum

55

Mit 0,5 bzw. 1,0 kg/ha a. S. im Nachauflaufverfahren eingesetzt, lassen sich mit den Beispielen 1.025, 3.031

60

breitblättrige unerwünschte Pflanzen sehr gut bekämpfen. Beispiel 1.025 zeigt dabei gleichzeitig gute Verträglichkeit bei der Kultur Weizen.

65

Wirkstofftabelle 1

$$- \frac{R^3}{R^4} \frac{O}{NR^1R^2} \frac{(Ia/IA)}{(Ia/IA)}$$

Nr.	R ¹	R ²	R ³	R ⁴	X	R ⁵	Fp. (°C)
						0	
1.001	н	3-OCH ₃ —C ₆ H ₄	н	н	s	CO ₂ —N	147 – 149
						\downarrow	
1.002	н	3-CH ₃ —C ₄ H ₄	Н	н	S	O desgl.	184 – 186
1.003	н	2-C1—C6H4	Н	н	S	desgl.	128-129
1.004	н	Cyclopropyl	Н	н	S	desgl.	75 – 77
1.005	H	C ₆ H ₅	Н	Н	S	desgi.	158-160
1.006	Н	CH(CH ₃) ₂	H	Н	S	desgl.	179 – 181
1.007	H		H	H	S	desgi.	200 – 202
		CI S CI					
1.008	н	CH(CH ₃) ₂	Н	H	0	CO ₂ CH ₂ CH ₃	32-34
1.009	н	CH(CH ₂) ₂	Н	H	0	CO₂H	171 – 174
1.010	Н	C(CH ₃) ₃	Н	H	Ο	CO ₂ CH ₂ CH ₃	48 – 50
1.011	Н	C(CH ₃) ₃	Н	Н	Ο	CO₃H	190-19
1.012	н	C ₄ H ₅	H	Н	O	CO ₂ CH ₂ CH ₃	154 – 15
1.013	Н	C ₄ H ₅	H	Н	0	CO₂H	265 – 27
1.014	н	3-CF ₃ —C ₆ H ₅	Н	Н	O	CO ₂ CH ₂ CH ₃	85 – 87
1.015	н	3-CF ₃ C ₆ H ₄	Н	Н	O	CO₂H	245 – 24
1.016	н	4-C1 C4H4	Н	Н	O	CO ₂ CH ₂ CH ₃	111-11
1.017	Н	4-C1-C6H4	H	H	0	CO₂H	251-25
1.018	н	3-FC ₆ H ₄	H	Н	S	CO₂H	200-20
1.019	н	3-CF ₃	Н	H	S	CO₂H	215-21
1.020	Н	CH2-C6H4	Н	H	S	CO₂H	215-21
1.021	Н	4-FC4H4	Н	Н	S	CO₂H	218-22
1.022	н	Cyclopropyl	Н	н	S	CO₂H	170 - 17
1.023	н	— CH ₂ —Cyclopropyl	Н	Н	S	CO₂H	165 - 16
						o 	
1.024	н	4-F C ₄ H ₄	н	н	s	CO ₂ —N	135-1
1.024	11	4-1 Office				Ĭ.	,
1.025	н	3-F C ₆ H ₄	Н	н	s	O desgl.	140-1
1.026	н	4-C1-C4H4	Н	н	S	desgl.	65-6

DE 39 33 573 A1

Nr.	R ¹	R ²	R ³	R ⁴	х	R ^S	Fp. [°C]
						. 0	
1.027	н	- 3-CI — C ₆ H ₄	н	н	s	CO ₂ -N	146 – 149
1.028	н	3,4-Cl, Cl—C ₆ H ₃	н	н	s	Ö desgl.	205 – 207
1.029	Н	CH(CH ₃) ₂	н	н	S	СО₂Н	161 – 169
1.030	Н	$C(CH_3)_3$	н	н	S	CO₂H	127-139
1.031	н	3-CF ₃ —C ₆ H ₄	н	Н	s	CO_2-N	143 - 147
1.032	H	C ₆ H ₅	Н	Н	S	CO₂H	205 - 208
1.033	Н	3-C1C ₆ H ₄	Н	Н	S	CO₂H	235 – 237
1.034	Н	2-C1 C4H4	Н	н	S	CO₂H	186-187
1.035	Н	4-C1—C ₄ H ₄	Н	H	S	CO₂H	204 - 208
1.036	Н	3,4-Cl, ClC ₆ H ₃	Н	н	S	CO₂H	>230
1.037	Н	3-OCH ₃ — C ₆ H ₄	Н	Н	S	CO ₂ H	170-173
1.038	Н	4-OCH ₃	Н	н	S	CO ₂ H	250-253
1.039	Н	3-CH ₃ —C ₆ H ₄	Н	Н	S	CO₂H	220-223

Wirkstofftabelle 2

$$- \frac{R^{1}}{X} \frac{O}{NR^{1}R^{2}} \frac{(Ib/IB)}{(Ib/IB)}$$

Nr.	R ¹	R ²	R³	R ⁴	x	R ^S	Fp. (°C)
2.001	Н	CH(CH3)2	Н	Н	s	СО₁Н	160-162
2.002	H	3-CF ₃ —C ₄ H ₄	Н	н	S	CO₂H	158 - 160
2.003	H	C ₄ H ₅	Н	н	S	CO₂H	190 – 192
2.004	Н	$C(CH_3)_3$	Н	Н	S	СО₂Н	163 – 165
2.005	н	СН(СН _{з)} ,	н	н	S	CO_2-N	197 – 199
2.006	Н	$C(CH_3)_3$	Cl	H	S	CO₂H	176-179
2.007	Н	3-CF ₃	CI	Н	S	CO₂H	186 - 188
2.008	Н	C ₄ H ₅	Cl	Н	S	CO₂H	208 - 210
2.009	Н	CH(CH ₃) ₂	CI	Н	S	СО₂Н	219-221
2.010	н	2,5-Dichlor-3-thienyl	Н	Н	S	CO₂H	
2.011	Н	2,5-Dibrom-3-thienyl	Н	Н	S	CO ₂ H	

Wirkstofftabelle 3

$$- \qquad \qquad \begin{array}{c} R^3 \\ \\ R^4 \end{array} \qquad \begin{array}{c} R^5 \\ \\ NR^1R^2 \end{array} \qquad \text{(Ic/IC)}$$

Nr.	R ¹	R ²	R ³	R ⁴	X	R ⁵	Fp. (°C)
3.001	н	C(CH ₃) ₃	н	н	S	CO ₂ H	179 – 182
3.002	н	3-CF ₃ —C ₆ H ₄	Н	н	S	CO₂H	151-153
3.003	Н	4-CI-C6H4	H	Н	S	CO₂H	218-220
3.004	Н	C ₄ H ₅	Н	H	S	CO3H	258-260
3.005	CH ₃	CH ₃	Н	н	S	CO₃H	155 – 160
3.006	Н	C(CH ₃) ₂ CH ₂ CH ₃	Н	н	S	CO ₂ H	77 – 84
3.007	н	$C(CH_3)_2CH = CH_2$	H	Н	S	CO₂H	98-100
3.008	H	$C(C_2H_3)_2C \equiv CH$	Н	Н	S	CO₂H	Öl
3.009	Н	C(CH ₃) ₂ CN	Н	н	S	CO₂H	200 – 205
3.010	Н	C(CH ₃) ₂ CH ₂ SCH ₃	Н	н	S	CO₂H	108-112
3.011	н	OCH₁C≡CH CI	Н	н	S	СО³Н	242 – 247
3.012	н	CI OCH,	н	н	s	СО₁Н	222-226
3.013	н	C(CH ₃) ₃	н	CI	S	CO₂H	233 – 235
3.014	Н	Cyclopropyl	Н	Cl	S	CO₂H	204 – 206
3.015	н	CH(CH ₃) ₂	Н	CI	S	CO₂H	175 – 177
3.016	Н	C ₆ H ₅	Н	CI	S	CO ₂ H	220 – 222
3.017	Н	3-CF ₃ —C ₆ H ₄	н	CI	S	CO ₂ H	158 – 160
			**	CI.	s	CO_2-N	207 – 209
3.018	Н	CH(CH ₃) ₂	H	CI	S	CO ₂ —N	207 207
3.019	н	C(CH ₃) ₃	Н	CI	S	desgl.	181-183 CH ₃
3.020	н	C(CH ₃) ₃	н	CI	S	CO ₂ N−N=	188-190 CH ₃
3.021	н	OC(CH ₃) ₂	н	CI	S	CO₂H	206 - 208
3.022	н	C(CH ₃) ₂	н	CH,	S	CO₂H	162 – 166
3.023	н	CH(CH ₃) ₂	н	CH ₃	S	CO ₂ H	88-90

Nr.	R ¹	R ²	R ³	R ⁴	х	R ⁵	Fp. [°C]
						СН	1,
3.024	Н	$C(C\underline{H}_3)_3$	H	CH,	S	$CO_2N-N=$	148-152
			•			сн	13
3.025	Н	CH(CH ₃) ₂	Н	CH ₃	S	desgl.	78 - 80
3.026	Н	Cyclopropyl	н	CH ₃	S	CO₃H	147-149
3.027	Н	4-C1 C6H4	H	CH,	Α	CO ₂ H	230-235
3.028	H	C(CH ₃) ₃	н	Н	0	CO ₂ H	123 - 126
2.029	Н	CH(CH ₃) ₂	н	H	0	CO₂H	62-70
3.030	Н	3-CF ₃ C ₄ H ₄	н	H	0	CO₃H	170-173
3.031	Н	C(CH ₃) ₃	Н	CH ₃	0	CO₂H	124 – 127
3.032	H	$C(CH_3)_3$	H	CH ₃	0	$CO_2N = C(CH_1)_2$	132 – 136
3.033	Н	CH(CH ₃) ₂	н	CH ₃	0	CO₂H	138-141
3.034	H	CH(CH ₃) ₂	н	CH ₃	. 0	$CO_2N = C(CH_1)_2$	102 – 106
3.035	H	Cyclopropyl	н	CH,	Ο	CO₂H	154 – 160
3.036	H	4-C1 C ₄ H ₄	Н	CH ₃	0	CO₂H	230 - 232
3.037	Н	4-C1 C4H4	Н	CH ₃	0	$CO_2N = C(CH_3)_2$	160 - 168

Patentansprüche

1. Carbonsäureamide der allgemeinen Formeln Ia bis Ic

$$R^{3}$$
 $NR^{1}R^{2}$
 R^{4}
 X
 R^{3}
 R^{4}
 X
 R^{5}
 R^{5}
 R^{4}
 X
 R^{5}
 R^{5}
 R^{5}
 $R^{1}R^{2}$
 R^{5}
 R^{5}

- in denen die Substituenten folgende Bedeutung haben:
 - X Sauerstoff oder Schwefel;
 - R¹ Wasserstoff;

30

35

40

50

55

60

- C₃-C₈-Cycloalkyl, welches ein bis drei der folgenden Reste tragen kann: Halogen, C₁-C₄-Alkyl,
- $C_1 C_4$ -Halogenalkyl, $C_1 C_4$ -Alkoxy und/oder $C_1 C_4$ -Halogenalkoxy;
- C₁ C₆-Alkyl, welches ein bis drei der folgendne Reste tragen kann: Hydroxy, Halogen, C₃ C₈-Cycloalkyl,
- $C_1 C_4$ -Alkoxy, $C_1 C_4$ -Halogenalkoxy, $C_1 C_4$ -Alkylthio, $C_1 C_4$ -Halogenalkylthio, $C_1 C_4$ -Alkylamino,
- Di-C₁-C₄-alkylamino und/oder C₃-C₆-Cycloalkylamino und/oder einen Rest

tragen kann, wobei

R Cyano; Nitro; Halogen; C_1-C_4 -Alkyl; C_1-C_4 -Halogenalkyl; C_1-C_4 -Alkoxy; C_1-C_4 -Halogenalkoxy; C_2-C_4 -Alkinyloxy; C_1-C_4 -Alkylthio; C_1-C_4 -Halogenalkylthio; C_3-C_6 -Alkoxycarbonylalkoxy und/oder C_1-C_4 -Alkoxycarbonyl bedeutet und

m für 0, 1, 2 oder 3 steht, wobei die Reste R verschieden sein können, wenn m 2 oder 3 bedeutet;

 R^2 Hydroxy; $C_1 - C_4$ -Alkoxy; $C_2 - C_6$ -Cyanalkyl;

65 C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, Phenyl oder Naphthyl, wobei diese Gruppen ein bis drei der bei R genannten Reste tragen können;

einen 5- bis 6gliedrigen Heterocyclus, enthaltend ein oder zwei Heteroatome ausgewählt aus der Gruppe Stickstoff, Sauerstoff und Schwefel, wobei dieser Ring ein oder zwei der folgenden Reste tragen kann:

 $\label{eq:condition} Halogen, \quad C_1 - C_4 - Alkyl, \quad C_1 - C_4 - Halogenalkyl, \quad C_1 - C_4 - Alkoxy, \quad C_1 - C_4 - Halogenalkoxy \quad und/oder - C_4 - Alkyl, \quad C_1 - C_4 - Alkyl,$ C1-C1-Alkylthio; eine der bei RI genannten Gruppen oder R¹ und R² gemeinsam eine 4- bis 7gliedrige Kette, welche neben Methylengruppen eine der folgenden Gruppen als Ringglied enthalten kann: Sauerstoff, Schwefel, N-Methyl oder Carbonyl; R3, R4 Nitro; Cyano; Halogen; Amino, welches ein oder zwei C₁-C₄-Alkylgruppen und/oder eine C₁-C₄-Alkylcarbonylgruppe tragen kann: $C_1 - C_4$ -Alkoxy oder $C_1 - C_4$ -Alkylthio, wobei diese Gruppen ein bis neun Halogenatome tragen können; einen 5- bis 6gliedrigen Heterocyclus, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, wobei dieser Ring ein oder zwei der folgenden Reste tragen kann: Halogen, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Halogenalkoxy und/oder $C_1 - C_4$ -Alkylthio; C2-C6-Alkenyl, C2-C6-Alkinyl, Phenyl, Phenoxy oder Phenylthio, wobei diese Gruppen ein bis drei der bei R genannten Reste tragen können, oder 15 eine der bei R¹ genannten Gruppen; R⁵ Formyl, 4,5-Dihydrooxazol-2-yl oder eine Gruppe COYR⁶; Y Sauerstoff oder Schwefel: R6 Wasserstoff: C₃ - C₈-Cycloalkyl; 20 C₁-C₆-Alkyl, welches ein bis fünf Halogenatome oder Hydroxygruppen und/oder einen der folgenden Reste tragen kann: Cyano, Aminocarbonyl, Carboxyl, Trimethylsilyl, C₁-C₄-Alkoxy, C₁-C₄-Alkoxy- C_1-C_4 -alkylamino, $C_1-C_4-Alkylsulfonyl, C_1-C_4-Alkoxycarbonyl, C_2-C_4-Alkoxycarbonyl-C_1-C_3-alkoxy, C_2-C_4-Alkoxycarbonyl, C_1-C_4-Alkoxycarbonyl, C_2-C_4-Alkoxycarbonyl, C_2-C_4-Alkoxy$ $bonyl-C_1-C_3-alkoxycarbonyl,\ C_1-C_4-Alkylaminocarbonyl,\ Di-C_1-C_4-alkylaminocarbonyl,\ Di-C_1-C_4-alkylaminocarbonyl,\$ kylphosphonyl, C₁ - C₄-Alkyliminoxi, Phenyl, Thienyl, Benzyloxy, Benzylthio, Furyl, Tetrahydrofuryl, Phthalimido, Pyridyl und/oder Benzoyl, wobei die cyclischen Reste ihrerseits ein bis drei der bei R genannten Reste tragen können: C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder C₅-C₇-Cycloalkenyl, wobei diese Gruppen einen der folgenden Reste tragen können: Hydroxy, Halogen, C₁-C₄-Alkoxy oder Phenyl, wobei der Phenylrest seinerseits ein 30 bis drei der bei R genannten Reste tragen kann; einen 5- bis 6gliedrigen Heterocyclus, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Stickstoff, Sauerstoff und Schwefel; Phthalimido; Tetrahydrophthalimido; Succinimido; Maleinimido; Benzotriazolyl; Phenyl, welches ein bis drei der bei R genannten Reste tragen kann; 35 eine Gruppe $-N = CR^7R^8$, wobei Wasserstoff oder $C_1 - C_6$ -Alkyl und $R^7C_3 - C_6$ -Cycloalkyl, Phenyl, Furyl oder einen Rest R^7 R⁸ bedeutet oder R⁷, R⁸ gemeinsam eine 4- bis 7gliedrige Alkylenkette bilden, wobei sofern - R⁵ Carboxyl, Methoxycarbonyl oder Ethoxycarbonyl und R² Wasserstoff bedeutet, R³ nicht Wasserstoff bedeutet oder R4 nicht Wasserstoff oder Methyl bedeutet und sofern R⁵ Carboxyl, Methoxycarbonyl oder Ethoxycarbonyl und R⁴ Wasserstoff bedeutet, R³ nicht Wasserstoff oder R² nicht eine der folgenden Gruppen bedeutet: Wasserstoff; C₁-C₄-Alkyl; Phenyl; 2-(3,4-Dimethoxyphenyl)ethyl oder 2,5-Dichlorthien-3-yl, sowie deren landwirtschaftlich brauchbaren Salze. 45 2. Verfahren zur Herstellung der Verbindungen Ia gemäß Anspruch 1, in denen R⁵ eine Carboxylgruppe bedeutet, dadurch gekennzeichnet, daß man ein entsprechendes Dicarbonsäureanhydrid der Formel II 0 50 (11) 55 in an sich bekannter Weise mit einem Amin der Formel III HNR¹R² 60 umsetzt. 3. Verfahren zur Herstellung der Verbindungen Ia, Ib und Ic gemäß Anspruch 1, in denen R3 und R4 nicht Brom und Iod bedeuten und R5 eine Formyl- oder eine Carboxylgruppe bedeutet, dadurch gekennzeichnet,

· 是是一個學學學學科教育學學學學學學學學學學學學學科學學科

65

daß man eine entsprechende Carbonsäure der Formel IVa, IVb bzw. IVc

in an sich bekannter Weise in das Halogenid oder eine andere aktivierte Form der Carbonsäure überführt, diese Derivate anschließend mit einem Amin der Formel III umsetzt und das so erhaltene Carbonsäureamid Va, Vb bzw. Vc

danach in Gegenwart einer Base mit einem Carboxylierungs- oder einem Formylierungsreagens umsetzt.

4. Verfahren zur Herstellung der Verbindungen Ib und Ic gemäß Anspruch 1, in denen R³ oder R⁴ Halogen, R⁵ eine Gruppe CO₂R⁶ und R⁶ Alkyl bedeutet, dadurch gekennzeichnet, daß man einen Dicarbonsäureester der allgemeinen Formel VIa oder VIb

$$R^4$$
 OR^4
 OR^4
 OR^6
 OR^6
 OR^6
 OR^6
 OR^6
 OR^6
 OR^6

in an sich bekannter Weise zunächst diazotiert und die diazotierte Verbindung mit einem anorganischen Halogenid in das entsprechende Derivat VIIa bzw. VIIb

überführt, VIIa bzw. VIIb anschließend mit einem Amin der Formel III gemäß Anspruch 2 amidiert und das so erhaltene Gemisch aus den isomeren Verbindungen Ib und Ic in die Einzelkomponente auftrennt.

5. Verfahren zur Herstellung der Verbindungen Ib und Ic gemäß Anspruch 1, in denen R⁵ eine Carboxylgruppe bedeutet, dadurch gekennzeichnet, daß man ein entsprechendes Carbonsäureamid der Formel Ib bzw. Ic, in der R⁵ eine Gruppe CO₂R⁶ und R⁶ Alkyl bedeutet in an sich bekannter Weise mit einer wäßrigen Base hydrolysiert.

6. Verfahren zur Herstellung der Verbindungen Ia, Ib und Ic gemäß Anspruch 1, in denen R⁵ eine Gruppe COYR⁶ bedeutet, dadurch gekennzeichnet, daß man ein entsprechendes Dicarbonsäuremonoamid Ia, Ib bzw. Ic, in dem R⁵ eine Carboxylgruppe bedeutet in an sich bekannter Weise in eine aktivierte Form der Carbonsäure überführt und dieses Derivat anschließend mit einer Verbindung VIII

HYR6 (VIII)

verestert.

7. Verfahren zur Herstellung der Verbindungen Ia, Ib und Ic gemäß Anspruch 1, in denen R⁵ 4,5-Dihydrooxazol-2-yl bedeutet, dadurch gekennzeichnet, daß man ein entsprechendes Dicarbonsäureamid Ia, Ib bzw. Ic, in dem R⁵ eine Gruppe CO₂H bedeutet in an sich bekannter Weise mit 2-Aminoethanol IX

5

35

40

45

50

55

60

65

 $H_2N \wedge OH (\overline{IX})$

cyclisiert.

8. Herbizides Mittel enthaltend mindestens ein Carbonsäureamid der allgemeinen Formel Ia, Ib oder Ic gemäß Anspruch 1 und/oder ein Carbonsäureamid der allgemeinen Formel IA, IB oder IC

in denen X und R1 die in Anspruch 1 gegebene Bedeutung haben und

- R⁵ Carboxyl, Methoxy oder Ethoxycarbonyl und R² Wasserstoff bedeutet, wenn R³ Wasserstoff bedeutet oder R⁴ Wasserstoff oder Methyl bedeutet und in denen

- R⁵ Carboxyl, Methoxy oder Ethoxycarbonyl und R⁴ Wasserstoff bedeutet, wenn R³ Wasserstoff oder R² eine der folgenden Gruppen bedeutet: Wasserstoff; C₁-C₄-Alkyl; Phenyl; 2-(3,4-Dimethoxyphenyl)ethyl oder 2,5-Dichlorthien-3-yl.

9. Herbizides Mittel nach Anspruch 8, enthaltend weitere wirksame Bestandteile.

10. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchs, dadurch gekennzeichnet, daß man die unerwünschten Pflanzen und/oder ihren Lebensraum mit einer herbiziden wirksamen Menge eines Carbonsäureamids Ia, Ib oder Ic gemäß Anspruch 1 und/oder eines Carbonsäureamids IA, IB oder IC gemäß Anspruch 8 behandelt.