NLP Project

강유정 김근호 김나년 김정현 박진우 임형준

Index

1. NLP?

- Text Classification
- Text Similarity
- NLG
- Machine Comprehension

2. Text Vectorization

- One-hot Encoding
- Count-base Method
- Predictive Method
- Glove

NLP?

Text Classification

1. 스팸메일 자동분류하기

스팸으로 의심되는 메일을 스팸메일함으로 자동분류하여 스팸없는 깨끗한 네이버 메일을 이용하실 수 있습니다.

Supervised Learning

- ✓ Naïve Bayes Classifier
- ✓ SVM
- ✓ Neural Network

Unsupervised Learning

- √ K-means Clustering
- ✓ Hierarchical Clustering

Text Similarity

"이 노래 누가 만들었어?"

"지금 나오는 노래의 작곡가는 누구야?"

Similar??

√ Jaccard Similarity

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}$$

✓ Cosine Similarity

$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

✓ Euclidean Distance

$$d(\mathbf{q},\mathbf{p}) = \sqrt{\sum_{i=1}^n (q_i-p_i)^2}$$

✓ Mantattan Similarity

$$d = \sum_{i=1}^{n} |\mathbf{x}_i - \mathbf{y}_i|$$

NLG

입력된 문장의 이해(NLU) 연관된 단어 벡터 추출 문장 구조 정하기 문장 내에서 단어 배열 문장 생성

Machine Comprehension

Task 1: Single Supporting Fact

Mary went to the bathroom. John moved to the hallway. Mary travelled to the office. Where is Mary? A:office

Task 2: Two Supporting Facts

John is in the playground.
John picked up the football.
Bob went to the kitchen.
Where is the football? A:playground

출처: https://yerevann.github.io/

√ bAbl

✓ SQuAD

Text Vectorization

I love KUBIG

"Tokenization"

"Text Vectorization"

Text Vectorization

Local Representation

- 단어 그 자체만 가지고 표현
- 대부분이 0인 vector
- 단어의 연관성, 의미 표현 불가

Continuous Representation

- 주변 단어 참고 후 표현
- 단어의 연관성, 의미 표현 가능

One-hot Encoding

King Love Queen

word	one-hot
King	[1,0,0]
Love	[0,1,0]
Queen	[0,0,1]

- ✓ 간단하고 직관적인 계산 방법
- ✓ 벡터의 크기가 커지는 위험
- ✓ 비효율적인 저장 방식
- ✓ 단어의 의미 / 특성 표현 불가

출처: https://blog.naver.com/timtaeil/221335952229

Count-based Method

Example corpus:

- I like playing tennis
- V I like sweets
- I enjoy skiing

	1	like	enjoy	playing	tennis	sweets	skiing
1	0	2	1	0	0	0	0
like	2	0	0	1	0	1	0
enjoy	1	0	0	0	0	0	1
playing	0	1	0	0	1	0	0
tennis	0	0	0	1	0	0	0
sweets	0	1	0	0	0	0	0
skiing	0	0	1	0	0	0	0

출처: https://badootech.badoo.com/

- ✓ Co-occurrence Matrix 이용
- ✓ SVD 등을 활용해 벡터 생성
 - → 차원 축소 가능
- ✓ 한 번만 계산으로 벡터 생성 가능
- ✓ 주변 단어를 고려한 벡터 생성

Predictive Method

창욱은 냉장고에서 ___ 꺼내서 먹었다. ___ 음식을 ___ 음식을 ___

출처: https://towardsdatascience.com

- ✓ 특정 문맥에서 나올 단어를 예측
- ✓ CBOW / Skip-gram 존재
- ✓ 단어 간의 유사도 측정에 강점
- ✓ 복잡한 특징까지도 잘 파악

Glove

- ✓ Count-based Method와 predictive method 동시에 활용
- ✓ 각각의 단점 보완(통계 정보 반영, 유추 작업도 가능)
- ✓ 벡터 사이의 내적이 co-occurrence probability가 되도록 모델링

Q&A