Mathematical Tripos: Part IB Solutions

Lucy Li

July 13, 2022

1 Question 2

In a genetics experiment, a sample of n individuals was found to include a,b,c of the three possible genotypes GG, Gg, gg respectively. The population frequency of a gene of type G is $\theta/(\theta+1)$, where is unknown, and it is assumed that the individuals are unrelated and that two genes in a single individual are independent. Show what θ is proportional to and calculate the MLE.

Solution

The likelihood function is given as: $\frac{\theta}{\theta+1}^{2a} \cdot \frac{2\theta}{(\theta+1)^2}^{b} \cdot \frac{1}{\theta+1}^{2c}$ The log likelihood function is given as: $(2a+b)\log\theta - (2a+2b+2c)\log(\theta+1) = 0$ Solving this, we get: $\theta = \frac{2a+b}{b+2c}$

2 Question 3

For some $n \geq 2$, suppose that X_1, \ldots, X_n are iid random variables uniformly distributed on $[\theta, 2\theta]$ for some $\theta > 0$. Show that $\tilde{\theta} = \frac{2}{3}X_1$ is an unbiased estimator of θ . Show that $T(\mathbf{X}) = (\min_i X_i, \max_i X_i)$ is a minimal sufficient statistic for θ . Use the Rao-Blackwell theorem to find an unbiased estimator $\hat{\theta}$ of θ which is a function of T and whose variance is strictly smaller than the variance of $\tilde{\theta}$ for all $\theta > 0$.

Solution

The likelihood function is given by:

$$L(\theta \mid \mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\theta} 1[\min(X_i) > \theta, \max(X_i) < 2\theta]$$

Hence, a sufficient statistic is $T(\mathbf{X}) = (\min_i X_i, \max_i X_i)$ $\tilde{\theta} = \frac{2}{3}X_1$ is unbiased because $E[X_1] = \frac{3\theta}{2}$ An unbiased estimator for θ is:

$$\widehat{\theta}^* = E\left(\frac{2}{3}X_1 \mid \min_i X_i = a, \max_i X_i = b\right)$$
$$= \frac{2a}{3n} + \frac{2b}{3n} + \frac{n-2}{n} \frac{2}{3} \frac{a+b}{2} = \frac{a+b}{3}$$

3 Question 7

- (a) Let $X_1, ..., X_n$ be iid with $X_i \sim U[0, \theta]$. Find the maximum likelihood estimator $\hat{\theta}$ of θ . Show that the distribution of $R(\mathbf{X}, \theta) = \hat{\theta}/\theta$ does not depend on θ , and use $R(\mathbf{X}, \theta)$ to find a $100(1 \alpha)\%$ confidence interval for θ for $0 < \alpha < 1$.
 - (a) **Solution** Please refer to the section 7. As we know, $\hat{\theta} = max(X_i)$. Substituting the MLE into the CDF, we get:

$$P(x_n \le x) = P(x_1 \le x, x_2 \le x, \dots, x_n \le x)$$
$$= (F(x))^n$$

Differentiating the above, we get the pdf, which is expressed as

$$f_{\hat{\theta}} = n(F(x))^{n-1} f(x)$$

We know that the CDF of a uniform distribution is given as $F(x) = \frac{1}{\theta}x$, the pdf is given as $f(x) = \frac{1}{\theta}$, substituting those in, we get:

$$f_{\hat{\theta}/\theta} = f_{\hat{\theta}}(\theta x) \cdot \theta = nx^{n-1}, \quad (0 < x < 1)$$

, this does not depend on θ .

In order to find the confidence interval, we can set (for the upper bound):

$$\int_0^u nx^{n-1} = (1 - \alpha/2)$$

In order to find the confidence interval, we can set (for the lower bound):

$$\int_0^l nx^{n-1} = (\alpha/2)$$

- (b) The lengths (in minutes) of calls to a call centre may be modelled as iid exponentially distributed random variables, and n such call lengths are observed. The original sample is lost, but the data manager has noted down n and t where t is the total length of the n calls in minutes. Derive a 95 percent confidence interval for the probability that a call is longer than 2 minutes if n=50 and t=105.3.
 - (b) **Solution** First of all, we can try to write out the cdf of the exponential distribution.

$$f_X(x) = \int_2^\infty \lambda e^{-\lambda x} dx$$

$$= [1 - e^{-\lambda x}]_2^{\infty} = e^{-2\lambda}$$

We don't actually know what is the distribution of the λ in the expression.

However, what we know is that that the distribution of the calls is modelled by $Gamma(50, \lambda)$, hence, the distribution of λt may be expressed as Gamma(50, 1). Then, we can just read off from the Gamma(50, 1) table for what the confidence interval is.

4 Question 8

Suppose that $X_1 \sim N(\theta_1, 1)$ and $X_2 \sim N(\theta_2, 1)$ independently, where θ_1 and θ_2 are unknown. Show that $(\theta_1 - X_1)^2 + (\theta_2 - X_2)^2$ has a χ^2_2 distribution and that this is the same as Exponential $(\frac{1}{2})$, i.e., the exponential distribution with mean 2. Show that both the square S and circle C in R^2 , given by

$$S = \{(\theta_1, \theta_2) : |\theta_1 - X_1| \le 2.236; |\theta_2 - X_2| \le 2.236\}$$

$$C = \{(\theta_1, \theta_2) : (\theta_1 - X_1)^2 + (\theta_2 - X_2)^2 \le 5.991\}$$

are 95% confidence regions for (θ_1, θ_2) . Hint: $\Phi(2.236) = (1 + \sqrt{.95})/2$, where Φ is the distribution function of N(0, 1). What might be a sensible criterion for choosing between S and C?

We know that, if Z_1, \ldots, Z_k are independent, standard normal random variables, then the sum of their squares,

$$Q = \sum_{i=1}^{k} Z_i^2$$

is distributed according to the chi-squared distribution with k degrees of freedom. This is usually denoted as $Q \sim \chi^2(k)$ or $Q \sim \chi^2_k$

5 Question 9

Suppose that the number of defects on a roll of magnetic recording tape is modelled with a Poisson distribution for which the mean λ is known to be either 1 or 1.5. Suppose the prior mass function for λ is

$$\pi_{\lambda}(1) = 0.4, \quad \pi_{\lambda}(1.5) = 0.6.$$

A random sample of five rolls of tape has $\mathbf{x} = (3, 1, 4, 6, 2)$ defects respectively. Show that the posterior distribution for λ given \mathbf{x} is

$$\pi_{\lambda \mid \mathbf{X}}(1 \mid \mathbf{x}) = 0.012, \quad \pi_{\lambda \mid \mathbf{X}}(1.5 \mid \mathbf{x}) = 0.988$$

6 Question 10

Suppose X_1, \ldots, X_n are iid with (conditional) probability density function $f(x \mid \theta) = \theta x^{\theta-1}$ for 0 < x < 1 (and is zero otherwise), for some $\theta > 0$. Suppose that the prior for θ is $\operatorname{Gamma}(\alpha, \beta), \alpha > 0, \beta > 0$. Find the posterior distribution of θ given $\mathbf{X} = (X_1, \ldots, X_n)$ and the Bayesian estimator of θ under quadratic loss. +11 For some $n \geq 3$, let $\epsilon_1, \ldots, \epsilon_n$ be iid with $\epsilon_i \sim N(0, 1)$. Set $X_1 = \epsilon_1$ and $X_i = \theta X_{i-1} + (1-\theta^2)^{1/2} \epsilon_i$ for $i = 2, \ldots, n$ and some $\theta \in (-1, 1)$. Find a sufficient statistic for θ that takes values in a subset of R^3 .

7 MLE for different distributions

mee for different distributions

Exponential distribution

$$f(x) = \lambda e^{-\lambda a}$$

likelinood function is given as:

 $L(x) = \lambda^n e^{-\lambda \frac{1}{4a^n}x^n}$
 $log-likelinood function is given as:

 $n(n(\lambda) - \lambda \frac{n}{2} = \lambda = \frac{1}{2a} = \frac{1}{2a}$

Normal distribution

 $f(x) = \frac{1}{2a} = \frac{1}{2a} = \frac{1}{2a}$

Normal distribution

 $f(x) = \frac{1}{2a} = \frac{$$