Introduction to Neural Networks

Motivation

Il est difficile d'inventer une telle machine sans s'inspirer de l'un des ordinateurs les plus performants existant...

Circuit et Cerveau

Le cerveau a toujours été une inspiration pour l'ordinateur.

Alan Turing

- Imagine et défini l'ordinateur universel
- The Turing Game
- Qu'est ce que représente la pensée et les limites de la computation

John von Neumann

- Réalise le premier ordinateur programmable (5 Ko)
- "The Computer & the Brain" et "Turing's Cathedral"

Frank Rosenblatt

- Psychologue spécialiste de l'apprentissage et du cerveau
- Invente le modèle du Perceptron

Introduction au Perceptron

Distinguishing between numbers that *mean* things and numbers that *do* things. Distinguer les nombres qui *veulent dire* et les nombres qui *font*.

Perceptron et B-Neurone

Biological Neuron versus Artificial Neural Network

Inventé par Dr. Rosenblatt en 1957

Perceptron et Mathématiques

- Réunir l'influence de plusieurs variables à une dimension unique.
- Très similaire à la régression linéaire, avec une fonction d'activation en plus.
- La fonction d'activation est une fonction qui contraint la somme entre [0, 1].

$$f(\sum_{i=1}^{n} x_i w_i)$$

Perceptron et Régression Linéaire

- On retrouve une structure similaire à la regression linéaire à qui on applique une fonction d'activation :
 - Les variables/features
 - Un poids par feature
 - Un poids neutre optionnel w_0

$$f(w_0 + \sum_{i=1}^n x_i w_i)$$

Perceptron

$$h_{\theta}(X) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$
$$= \theta_0 + \sum_{i=1}^n \theta_i x_i$$

Régression Linéaire

Créer une porte logique grâce au perceptron

x_1	x_2	??
0	0	0
0	1	0
1	0	1
1	1	0

En prenant
$$f(z) = \frac{1}{1 + e^{-z}}$$
 qui est la fonction sigmoïde tel que

For
$$z \ge 10$$
, $f(z) \to 1$
For $z \le -10$, $f(z) \to 0$

En prenant des inputs de valeurs **0** ou **1**, On peut construire 3 types d'opérateurs logique

x_1	x_2	OR	AND	NAND
0	0	0	0	1
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

Mais... impossible de construire la porte XOR avec un perceptron...

XOR ne peux pas être obtenu avec une opération linéaire

x_1	x_2	XOR
0	0	0
0	1	1
1	0	1
1	1	0

XOR ne peux pas être obtenu avec une opération linéaire

x_1	x_2	Gate
0	0	
0	1	
1	0	
1	1	

Intuition

x_1	x_2	OR	AND	XOR
0	0	0	0	0
0	1	1	1	1
1	0	1	0	1
1	1	1	1	0

Intuition

x_1	x_2	OR	AND	XOR
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

Intuition

x_1	x_2	OR	AND	XOR
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

Intuition: Impossible de séparer avec une seule ligne!

XOR

x_1	x_2	OR	AND	XOR
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

OR
NAND
AND

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
O
O
O

O
<t

Mais possible avec plusieurs perceptrons!

Rajoutons alors une deuxième ligne...

x_1	x_2	OR NAND	AND
0	0	0 1	0
0	1	1	1
1	0	1	1
1	1	0	0

Mais possible avec plusieurs perceptrons!

Rajoutons alors une deuxième ligne...

x_1	x_2	OR NAND	AND
0	0	0 1	0
0	1	1	1
1	0	1	1
1	1	0	0

x_1	x_2	OR NAND	AND
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

• En manipulant les opérateurs logique dans l'ordre qu'on veut, on peut reproduire n'importes quel opérateurs.

Neural Networks

Créer assez de complexité pour pouvoir tout modéliser

The Neural Network Zoo

- Depuis la monté en popularité du machine learning, la famille des Réseaux Neuronaux à fortement grandi (même si beaucoup ont pas mal d'années d'existences).
- Beaucoup de ces familles de réseaux sont présents et/ou inspirées par les réseaux neuronaux du cerveau.
- Une description de chaque famille est présent dans le lien.

https://www.asimovinstitute.org/neural-network-zoo/

Anatomies d'un réseau neuronale

Types de NN (Neural Networks)

- Feed forward NN (FFNN)
 - L'information va de l'avant à l'arrière, sans boucles.

- Deep Feed Forward (DFF)
 - Aussi connu sous le nom "Deep Neural Network" ou le terme "Deep Learning".
 - Un FFNN avec de nombreuses couches et de noeuds.
- Recurrent NN (RNN)
 - Même famille que les DFF mais où certains noeuds ont un 'état'.
 - On inclut certaines features précédentes à chaque passe rendant l'ordre des features important.

Fonction d'activation

• Chaque noeuds possède une fonction d'activation, "activant" ou non la sommation des poids. Il en existe beaucoup mais voici deux fonctions très populaire.

Fonction logistique

Fonction ReLu

Cost Function

• Très similaire à la régression, on calcule le "coût" ou l'erreur en prenant la distance Euclidienne entre la prédiction et l'objectif. L'équation dépend de la fonction d'activation et du type d'objectif.

Régression Linéaire

$$J = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

i=1

J: le coût

 \hat{y} : la prédiction

y : l'objectif

m: le nombre de valeurs total

Régression Logistique

$$J = -\frac{1}{m} \sum_{i=1}^{m} -y^{i} \log(h_{\theta}(x^{i})) - (1 - y^{i}) \log(1 - h_{\theta}(x^{i}))$$

J: le cout

y : l'objectif

m : le nombre de valeurs

Gradient Descent

- Le Gradient Descent permet de trouver à travers une dérivée du coût, une direction pour réduire le coût.
- Mais dans le cas du machine learning, le nombre et la complexité de relation des poids rend une dérivée brute trop coûteuse (d'un point de vue de complexité algorithmique : relation factorielle)

Back Propagation

La propagation de l'erreur

- On calcule la dérivée à chaque noeuds et poids en commençant par la fin et on remonte jusqu'à l'input.
- Quand on dérive par rapport à un poids, on ne prend en compte que le poids précédent.
- En une seule passe on trouve toutes les dérivées que l'on veut. (Complexité algorithmique linéaire)

Chain Rule

$$\frac{\partial e}{\partial c} * \frac{\partial c}{\partial a} = \frac{\partial e}{\partial a}$$

$$\frac{\partial e}{\partial c} * \frac{\partial c}{\partial b} + \frac{\partial e}{\partial d} * \frac{\partial d}{\partial b} = \frac{\partial e}{\partial b}$$

Back Propagation + Gradient Descent

- On arrive à relier le résultat finale par rapport à chaque input.
- On calcule le Gradient Descent à chaque poids pour réduire le coût et une fois qu'on a trouvé toutes les valeurs, on modifie tout les poids d'un coup.

Chain Rule

$$\frac{\partial e}{\partial c} * \frac{\partial c}{\partial a} = \frac{\partial e}{\partial a}$$

$$\frac{\partial e}{\partial c} * \frac{\partial c}{\partial b} + \frac{\partial e}{\partial d} * \frac{\partial d}{\partial b} = \frac{\partial e}{\partial b}$$

