Boa tarde!

Iniciaremos às 13:50 hrs.

Ex 1) * produto escalar
$$u \cdot v$$
, $u, v \in \mathbb{R}^{n}$

produto vetorial $u \times v$, $u, v \in \mathbb{R}^{3}$

produto inisto $u \cdot (v \times w)$, $u, v, w \in \mathbb{R}^{3}$

Exa) $u \cdot v = (1, 2, 1) \cdot (3, 0, 2)$

= $1 \cdot 3 + 2 \cdot 0 + 1 \cdot 2$

= $3 + 0 + 2 = 5$

i. $u \cdot v = 5$

Obs. $||v|| = ||(v_{1}, ..., v_{n})|| = |v_{1}^{2} + v_{2}^{2} + ... + v_{n}^{2}|$
 $v \cdot v = ||v||^{2}$

Ex 3) $v \times w = |v_{1}|^{2}$
 $v \cdot v = |v_{1}|^{2}$

=-42+75+657

Exs)
$$\theta = ?$$
 $\cos \theta = \frac{1}{||w||||w|||}$

Note que: $u \cdot w = x^2 \cdot 5$
 $||u|| = ||(1, 2, 1)|| = \sqrt{1+4+1} = \sqrt{6}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||(2, 0, 2)|| = \sqrt{9+0+4} = \sqrt{13}$
 $||w|| = ||w|| = \sqrt{14}$
 $|w|| = ||w|| =$

$$\theta = \cos^{-1}\left(\frac{S}{\sqrt{78}}\right) \simeq 55,3^{\circ}$$

Outra forma!

$$cos \theta = \underline{S} = 0 = 55,3^{\circ}$$
 $\sqrt{79}$

$$(\frac{1}{2}) + \frac{3}{5} = \frac{11}{10}$$
 $= \frac{11}{10}$

