Introdução aos Sistemas Dinâmicos Não Lineares Exercício #4

- 1. Seja o mapa logístico $x_k = F(x_{k-1}) = \mu(1 x_{k-1})x_{k-1}$. Gere o diagrama de bifurcação desse mapa para $2 < \mu < 4$.
- 2. Simule o mapa logístico $x_k = F(x_{k-1}) = \mu(1 x_{k-1})x_{k-1}$ para $\mu = 4,05$ por um número suficientemente grande de iteradas. O que acontece? Por quê? (Dica: use o mapa de teia na explicação).
- 3. Simule o mapa logístico $x_k = F(x_{k-1}) = \mu(1 x_{k-1})x_{k-1}$ para $\mu = 3,999$ 1000 iteradas. Calcule e faça o gráfico da função de autocorrelação (FAC) do sinal x_k . Compare essa FAC com a FAC de uma sequência de ruído branco com o mesmo comprimento. Represente ambas as sequências no plano (x_{k-1}, x_k) . O que observou?
- 4. Para as seguintes bifurcações de ponto fixo de mapas: sela-nó, transcrítica e forquilha, simule a correspondente forma normal para valores do parâmetro de bifurcação antes e depois da bifurcação. Faça gráficos no domínio do tempo. Interprete os resultados à luz dos diagramas de bifurcação.
- 5. Seja a equação de Duffing-Ueda $\ddot{x}+0.1\dot{x}+x^3=\mu\cos t$. Use condicoes iniciais aleatórias próximas à origem do espaço de estados e simule o sistema para $\mu=4.8,~\mu=5.0,~\mu=6.5,~\mu=7.5,~\mu=9.5,~\mu=9.7,~e$ $\mu=11.0$. Descreva o regime dinâmico em estado estacionário (conjunto limite ω) em cada caso. Que tipo de bifurcação ocorre entre $\mu=4.8$ e $\mu=5.0$; entre $\mu=6.5$ e $\mu=7.5$; e entre $\mu=9.5$ e $\mu=9.7$?