Name: _			
Assignme	nt 1:	: Signal Sampling and	Aliasing
Due: Tuesday, April 21			
	1.		
	2.		
	3.		

1. A simple coherent signal f(t) is in the form

$$f(t) = \exp(j\omega_x t)$$

The Fourier spectrum of this signal consists of one single peak at $\omega = \omega_x$. This coherent waveform is first sampled, with sample spacing Δt . Subsequently, it is reconstructed through a lowpass filter with cutoff frequencies at $\pm \omega_0/2$, where

$$\omega_{o} = 2\pi/\Delta t$$

The reconstructed signal is in the form of

$$g(t) = exp(j\omega_v t)$$

And its Fourier spectrum shows a single peak at $\omega = \omega_y$. If the sampling and reconstruction are conducted adequately, the frequency remains unchanged, $\omega_y = \omega_x$. If aliasing occurs, the resultant frequency will be different than the frequency of the input waveforms.

The conversion the frequency from ω_x to ω_y is a mapping process. Formulate the mapping correspondence between ω_x and ω_y when Δt is a constant. And plot the correspondence curve.

2. Extend the function to a lowpass periodic function,

$$g(t) = \sum_{n=-N}^{N} G_n \exp(jn\omega_x t)$$

The frequency spectrum spans from $-N\omega_x$ to $+N\omega_x$ for a total bandwidth of

$$B = 2N\omega_{r} < \omega_{o}$$

Suppose we modulate each of the 2N+1 components with an extra single-frequency term $\exp(jk_n\omega_0t)$ to form another function

$$g'(t) = \sum_{n=-N}^{N} G_n \exp(jn\omega_x t) \exp(jk_n\omega_0 t)$$

where k_n is an arbitrary integer.

Determine the result, if you sample g'(t) with sample spacing Δt and then lowpass the sampled function with a filter with cutoff frequencies at $\pm \omega_0/2$.

3. Summarize your work and itemize your observations.