## Рубежный контроль №2

Столярова Ольга РТ5-61Б

Вариант 16

#### ▼ Задание

Задание. Для заданного набора данных (по Вашему варианту) постройте модели классификации или регрессии (в зависимости от конкретной задачи, рассматриваемой в наборе данных). Для построения моделей используйте методы 1 и 2 (по варианту для Вашей группы). Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему? Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д.

Метод 1 - Дерево решений

Метод 2 - Градиентный бустинг

### ✓ Импорт библиотек

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import RepeatedKFold
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_absolute_error, mean_squared_error, median_absolute_error
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
pd.options.display.float_format = '{:.0f}'.format
```

### Загрузка данных

```
from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive
```

```
filename = '/content/drive/MyDrive/RK2.csv'

df = pd.read_csv(filename, sep=',')

df.head()
```

|                     | business_id | business_name            | business_address            | business_city | business_state | busi |
|---------------------|-------------|--------------------------|-----------------------------|---------------|----------------|------|
| 0                   | 101192      | Cochinita #2             | 2 Marina Blvd Fort<br>Mason | San Francisco | CA             |      |
| 1                   | 97975       | BREADBELLY               | 1408 Clement St             | San Francisco | CA             |      |
| 2                   | 92982       | Great Gold<br>Restaurant | 3161 24th St.               | San Francisco | CA             |      |
| 3                   | 101389      | HOMAGE                   | 214 CALIFORNIA<br>ST        | San Francisco | CA             |      |
| 4                   | 85986       | Pronto Pizza             | 798 Eddy St                 | San Francisco | CA             |      |
| 5 rows × 23 columns |             |                          |                             |               |                |      |



# Обработка пропусков

df.isnull().sum()

| business_id                     | 0     |
|---------------------------------|-------|
| business_name                   | 0     |
| business_address                | 0     |
| business_city                   | 0     |
| business_state                  | 0     |
| <pre>business_postal_code</pre> | 1018  |
| business_latitude               | 19556 |
| business_longitude              | 19556 |
| business_location               | 19556 |
| business_phone_number           | 36938 |
| <pre>inspection_id</pre>        | 0     |
| <pre>inspection_date</pre>      | 0     |
| inspection_score                | 13610 |
| <pre>inspection_type</pre>      | 0     |

| violation_id              | 12870 |
|---------------------------|-------|
| violation_description     | 12870 |
| risk_category             | 12870 |
| Neighborhoods (old)       | 19594 |
| Police Districts          | 19594 |
| Supervisor Districts      | 19594 |
| Fire Prevention Districts | 19646 |
| Zip Codes                 | 19576 |
| Analysis Neighborhoods    | 19594 |
| dtyne: int64              |       |

dtype: int64

df.shape

(53973, 23)

total\_count = df.shape[0]

print('Bcero ctpok: {}'.format(total\_count))

Всего строк: 53973

df.head()

|     | business_id | business_name                     | business_address           | business_city | business_state | bu |
|-----|-------------|-----------------------------------|----------------------------|---------------|----------------|----|
| 11  | 4794        | VICTOR'S                          | 210 TOWNSEND<br>St         | San Francisco | CA             |    |
| 172 | 63652       | SFDH -<br>Banquet Main<br>Kitchen | 450 Powell St 2nd<br>Floor | San Francisco | CA             |    |
| 327 | 328         | Miyako                            | 1470 Fillmore St           | San Francisco | CA             |    |
| 372 | 2684        | ERIC'S<br>RESTAURANT              | 1500 Church St             | San Francisco | CA             |    |
| 397 | 328         | Miyako                            | 1470 Fillmore St           | San Francisco | CA             |    |

5 rows × 23 columns



## ▼ Кодируем категориальные признаки

Удалим колонки, которые не влияют на целевой признак:

|     | business_id | business_postal_code | business_latitude | business_longitude | insp  |
|-----|-------------|----------------------|-------------------|--------------------|-------|
| 11  | 4794        | 94107                | 38                | -122               | 4794  |
| 172 | 63652       | 94102                | 38                | -122               | 63652 |
| 327 | 328         | 94115                | 38                | -122               | 328   |
| 372 | 2684        | 94131                | 38                | -122               | 2684  |
| 397 | 328         | 94115                | 38                | -122               | 328   |
| 7   |             |                      |                   |                    |       |
| 4   |             |                      |                   |                    | •     |

## ▼ Кодируем категориальные признаки

df.dtypes

| business_id          | int64   |
|----------------------|---------|
| business_postal_code | object  |
| business_latitude    | float64 |
| business_longitude   | float64 |
| inspection id        | object  |

```
inspection_date
                              object
inspection_score
                             float64
inspection type
                              object
violation id
                              object
risk_category
                              object
Neighborhoods (old)
                             float64
Police Districts
                             float64
Supervisor Districts
                             float64
Fire Prevention Districts
                             float64
Zip Codes
                             float64
Analysis Neighborhoods
                             float64
dtype: object
```

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
le = LabelEncoder()
df_int = le.fit_transform(df['business_postal_code'])
df['business_postal_code'] = df_int
df_int = le.fit_transform(df['inspection_id'])
df['inspection_id'] = df_int
df_int = le.fit_transform(df['inspection_date'])
df['inspection_date'] = df_int
df_int = le.fit_transform(df['inspection_type'])
df['inspection_type'] = df_int
df_int = le.fit_transform(df['violation_id'])
df['violation_id'] = df_int
df_int = le.fit_transform(df['risk_category'])
df['risk_category'] = df_int
df.head()
```

|          | business_id | business_postal_code | business_latitude | business_longitude | inspe       |
|----------|-------------|----------------------|-------------------|--------------------|-------------|
| 11       | 4794        | 5                    | 38                | -122               |             |
| 172      | 63652       | 1                    | 38                | -122               |             |
| 327      | 328         | 13                   | 38                | -122               |             |
| 372      | 2684        | 22                   | 38                | -122               |             |
| 397      | 328         | 13                   | 38                | -122               |             |
| <b>%</b> |             |                      |                   |                    |             |
| 4        |             |                      |                   |                    | <b>&gt;</b> |

# Масштабируем числовые данные

```
from sklearn.preprocessing import MinMaxScaler

sc1 = MinMaxScaler()
df['business id'] = sc1.fit transform(df[['business id']])
```

```
df['business_latitude'] = sc1.fit_transform(df[['business_latitude']])
df['business_longitude'] = sc1.fit_transform(df[['business_longitude']])
df['inspection_score'] = sc1.fit_transform(df[['inspection_score']])
df['Neighborhoods (old)'] = sc1.fit_transform(df[['Neighborhoods (old)']])
df['Police Districts'] = sc1.fit_transform(df[['Police Districts']])
df['Supervisor Districts'] = sc1.fit_transform(df[['Supervisor Districts']])
df['Fire Prevention Districts'] = sc1.fit_transform(df[['Fire Prevention Districts']])
df['Zip Codes'] = sc1.fit_transform(df[['Zip Codes']])
df['Analysis Neighborhoods'] = sc1.fit_transform(df[['Analysis Neighborhoods']])
df.head()
```

#### business\_id business\_postal\_code business\_latitude business\_longitude inspe

| 11       | 0 | 5  | 1 | 1 |
|----------|---|----|---|---|
| 172      | 1 | 1  | 1 | 1 |
| 327      | 0 | 13 | 1 | 1 |
| 372      | 0 | 22 | 0 | 1 |
| 397      | 0 | 13 | 1 | 1 |
| <b>%</b> |   |    |   |   |

## Делим выборку на обучающую и тестовую

```
target = df['risk_category']
data_X_train, data_X_test, data_y_train, data_y_test = train_test_split(
    df, target, test_size=0.2, random_state=1)

data_X_train.shape, data_y_train.shape
        ((5252, 16), (5252,))

data_X_test.shape, data_y_test.shape
        ((1314, 16), (1314,))

np.unique(target)

\[ \therefore\text{ array([0, 1, 2])} \]
```

# ▼ Градиентный бустинг

RMSE: 0.0 MAE: 0.0

R^2: 1.0

### Дерево решений

print(f"RMSE: {mean\_squared\_error(y\_test, y\_pred)}")
print(f"MAE: {mean\_absolute\_error(y\_test, y\_pred)}")

print\_metrics(data\_y\_train, data\_y\_pred\_1\_0)

```
from sklearn.tree import DecisionTreeRegressor
def stat tree(estimator):
    n_nodes = estimator.tree_.node_count
    children_left = estimator.tree_.children_left
    children_right = estimator.tree_.children_right
    node_depth = np.zeros(shape=n_nodes, dtype=np.int64)
    is_leaves = np.zeros(shape=n_nodes, dtype=bool)
    stack = [(0, -1)] # seed is the root node id and its parent depth
    while len(stack) > 0:
        node_id, parent_depth = stack.pop()
        node_depth[node_id] = parent_depth + 1
        # If we have a test node
        if (children_left[node_id] != children_right[node_id]):
            stack.append((children_left[node_id], parent_depth + 1))
            stack.append((children_right[node_id], parent_depth + 1))
        else:
            is_leaves[node_id] = True
    print("Bcero узлов:", n_nodes)
    print("Листовых узлов:", sum(is_leaves))
    print("Глубина дерева:", max(node_depth))
    print("Минимальная глубина листьев дерева:", min(node_depth[is_leaves]))
    print("Средняя глубина листьев дерева:", node_depth[is_leaves].mean())
Построим модель дерева с глубиной = 3
regr5 = DecisionTreeRegressor(max_depth=3)
model5 = regr5.fit(data_X_train, data_y_train)
data y pred 2 = model5.predict(data X test)
Выведем основную статистику для дерева:
stat_tree(model5)
     Всего узлов: 5
     Листовых узлов: 3
     Глубина дерева: 2
     Минимальная глубина листьев дерева: 1
     Средняя глубина листьев дерева: 1.6666666666666667
```

#### ▼ График важности признаков:

```
from operator import itemgetter
```

```
def draw_feature_importances(tree_model, X_dataset, figsize=(18,5)):
   Вывод важности признаков в виде графика
   # Сортировка значений важности признаков по убыванию
   list_to_sort = list(zip(X_dataset.columns.values, tree_model.feature_importances_))
   sorted_list = sorted(list_to_sort, key=itemgetter(1), reverse = True)
   # Названия признаков
   labels = [x for x,_ in sorted_list]
   # Важности признаков
   data = [x for ,x in sorted list]
   # Вывод графика
   fig, ax = plt.subplots(figsize=figsize)
   ind = np.arange(len(labels))
   plt.bar(ind, data)
   plt.xticks(ind, labels, rotation='vertical')
   # Вывод значений
   for a,b in zip(ind, data):
        plt.text(a-0.05, b+0.01, str(round(b,3)))
   plt.show()
   return labels, data
list(zip(df.columns.values, model5.feature_importances_))
     [('business_id', 0.0),
      ('business_postal_code', 0.0),
      ('business_latitude', 0.0),
      ('business longitude', 0.0),
      ('inspection_id', 0.0),
      ('inspection_date', 0.0),
      ('inspection_score', 0.0),
      ('inspection_type', 0.0),
      ('violation_id', 0.0),
      ('risk_category', 1.0),
      ('Neighborhoods (old)', 0.0),
      ('Police Districts', 0.0),
      ('Supervisor Districts', 0.0),
      ('Fire Prevention Districts', 0.0),
      ('Zip Codes', 0.0),
      ('Analysis Neighborhoods', 0.0)]
car tree cl fl 1, car tree cl fd 1 = draw feature importances(model5, df)
```



accuracy\_score(data\_y\_test, data\_y\_pred\_1)

1.0

f1\_score(data\_y\_test, data\_y\_pred\_2, average='micro')

1.0

f1\_score(data\_y\_test, data\_y\_pred\_2, average='macro')

1.0

f1\_score(data\_y\_test, data\_y\_pred\_2, average='weighted')

1.0

print\_metrics(data\_y\_test, data\_y\_pred\_2)

R^2: 1.0 RMSE: 0.0 MAE: 0.0 ✓ 0 сек. выполнено в 17:41