Tiesinių lygčių sistemų sprendimas (3)

http://oras.if.ktu.lt/moduliai/T170B115/Skaitiniai inzinerijos metodai su MATLAB (KP RG RB)2009

F7.pdf - 4.1-4.5 poskyriai

http://oras.if.ktu.lt/moduliai/T170B115 /Skaitiniai inzinerijos metodai(RB) 2006

I.1.2.pdf

Prisiminkime: skaitiniai tiesinių algebrinių lygčių sistemų sprendimo metodai

- Tiesioginiai sprendinys gaunamas algebriškai pertvarkant lygčių sistemą (t.y.koeficientų matrica skaičiuojant pertvarkoma)
- Iteraciniai koeficientų matrica išlieka nepakitusi.
 Sprendinį apskaičiuojame nuosekliaisiais priartėjimais

Paprastųjų iteracijų algoritmo taikymas tiesinių lygčių sistemai (1)

$$[\mathbf{A}] \quad \{\mathbf{x}\} = \{\mathbf{b}\}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{23} \\ a_{12} & a_{22} & a_{23} \\ a_{22} & a_{23} & a_{33} \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{Bmatrix} b_1 \\ b_2 \\ b_3 \end{Bmatrix};$$

Jeigu įstrižainėje yra "0" reikšmė, $\begin{bmatrix} a_{11} & a_{12} & a_{23} \\ a_{12} & a_{22} & a_{23} \\ a_{22} & a_{23} & a_{33} \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{cases} b_1 \\ b_2 \\ b_3 \end{Bmatrix};$ reikia sukeisti vietomis kintamuosius. Pavyzdžiui, sukeitus vietomis kintamuosius x2 ir x3, susikeičia vietomis 2-as ir 2 iso matricas. A time ir 2 iso matricas. A time ir 2 iso matricas. reikia sukeisti vietomis ir 3-ias matricos A stulpeliai

$$\begin{bmatrix} 1 & \frac{a_{12}}{a_{11}} & \frac{a_{23}}{a_{11}} \\ \frac{a_{21}}{a_{22}} & 1 & \frac{a_{23}}{a_{22}} \\ \frac{a_{31}}{a_{33}} & \frac{a_{32}}{a_{33}} & 1 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{Bmatrix} \frac{b_1}{a_{11}} \\ \frac{b_1}{a_{22}} \\ \frac{b_1}{a_{33}} \end{Bmatrix};$$

Metodas konverguopja greičiau, kai įstrižainėje yra absoliutiniu dydžiu didesni koeficientai

Paprastųjų iteracijų algoritmo taikymas tiesinių lygčių sistemai (2) Laisvai parinktas skaičius, nuo kurio

Laisvai parinktas skaičius, nuo kurio galėtų priklausyti konvergavimo greitis. Dažniausiai priimama α=1

$$\alpha \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} + \begin{bmatrix} 1 - \alpha & \frac{a_{12}}{a_{11}} & \frac{a_{23}}{a_{11}} \\ \frac{a_{21}}{a_{22}} & 1 - \alpha & \frac{a_{23}}{a_{22}} \\ \frac{a_{31}}{a_{33}} & \frac{a_{32}}{a_{33}} & 1 - \alpha \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{bmatrix} \frac{b_1}{a_{11}} \\ \frac{b_1}{a_{22}} \\ \frac{b_1}{a_{33}} \end{bmatrix};$$

$$\alpha \{x\} + \left[\tilde{A}\right] \{x\} = \{\tilde{b}\}$$

$$\left\{\mathbf{x}\right\}^{(k+1)} = \frac{1}{\alpha} \left(\left\{\tilde{\mathbf{b}}\right\} - \left[\tilde{\mathbf{A}}\right] \left\{\mathbf{x}\right\}^{(k)}\right)$$

Paprastųjų iteracijų algoritmas

$$\left\{ \mathbf{x}
ight\}^{(0)}$$
 - pradinis artinys

Iteracijų pabaigos sąlyga:

$$\frac{\left\|\left\{\mathbf{x}\right\}^{(k+1)} - \left\{\mathbf{x}\right\}^{(k)}\right\|}{\left\|\left\{\mathbf{x}\right\}^{(k+1)}\right\| + \left\|\left\{\mathbf{x}\right\}^{(k)}\right\|} < \varepsilon$$

Paprastųjų iteracijų algoritmas

```
A=[1 -1 0 0;
   -1 2 -1 0;
   0 -1 2 -1;
    0 0 -1 21
b=[2;0;0;0]
n=size(A,1)
alpha=1; % metodo parametras
Atld=diag(1./diag(A))*A-alpha*diag(ones(n,1));
btld=diag(1./diag(A))*b;
nitmax=1000; eps=1e-12;
x=zeros(n,1); %pradinis artinys
for it=1:nitmax
  x1=btld-Atld*x;
  tikslumas=norm(x1-x)/(norm(x)+norm(x1));
  if tikslumas < eps, break, end
  x=x1;
end
```

A = 1 1 1 1 1 -5 -1 1 2 1 -10 2 3 1 2 -10

b = 2 0 9 -7

Paprastųjų iteracijų metodo konvergavimo greičiai esant skirtingoms $\,\alpha\,$ reikšmėms

Gauso-Zeidelio iteracijų algoritmo taikymas tiesinių lygčių sistemai

$$\{\mathbf{x}\}^{(k+1)} = \frac{1}{\alpha} (\{\tilde{\mathbf{b}}\} - [\tilde{\mathbf{A}}] \{\mathbf{x}\}^{(k)})$$

Paprastųjų iteracijų algoritmas

$$x_i^{(k+1)} = \frac{1}{\alpha} \left(\tilde{b}_i - \sum_{j=1}^{i-1} \tilde{a}_{ij} x_j^{(k+1)} - \sum_{j=i}^n \tilde{a}_{ij} x_j^{(k)} \right), \quad i = 1:n$$

Gauso-Zeidelio iteracijų algoritmas

Gauso-Zeidelio iteracijų algoritmas

```
A = [ 1 -1 0 0;
   -1 2 -1 0;
   0 -1 2 -1;
    0 0 -1 21
b=[2;0;0;0]
n=size(A,1)
alpha=1; % metodo parametras
Atld=diag(1./diag(A))*A- alpha*diag(ones(n,1));
btld=diag(1./diag(A))*b;
nitmax=1000; eps=1e-12;
x=zeros(n,1); %pradinis artinys
for it=1:nitmax
  for i=1:n
   x1(i)=(btld(i)-Atld(i,1:i-1)*x1(1:i-1)-Atld(i,i:n)*x(i:n))/alpha;
  end
  tikslumas=norm(x1-x)/(norm(x)+norm(x1));
  if tikslumas < eps, break, end
 x=x1;
end
```

A = 1 1 1 1 1 -5 -1 1 2 1 -10 2 3 1 2 -10

b = 2 0 9 -7

Paprastųjų iteracijų ir Gauso-Zeidelio metodai:

konvergavimo greičiai

Kiti iteraciniai tiesinių lygčių sistemų sprendimo metodai

•Yra ir kitokių iteracinių metodų TLS spręsti – jungtinių gradientų(funkcija cjg),

mažiausių kvadratų (funkcija Isqr) ir kt.

Šie metodai gali būti taikomi bendruoju pavidalu saugomoms retosioms matricoms;

•Metodų matematinis veikimo principas paremtas funkcijos minimizavimo algoritmais. Dėl ribotos kurso apimties čia jų nenagrinėsime.

Laisvųjų narių vektoriaus paklaidos įtaka sprendinio paklaidai

$$[\mathbf{A}](\{\mathbf{x}\} + \Delta\{\mathbf{x}\}) = \{\mathbf{b}\} + \Delta\{\mathbf{b}\}$$

$$[\mathbf{A}] \cdot \Delta \{\mathbf{x}\} = \Delta \{\mathbf{b}\}$$

- Reikia nustatyti kiekybinį skaliarinį įvertį, kaip laisvųjų narių vektoriaus paklaidos įtakoja sprendinio paklaidas;
- Panaudosime matricos ir vektoriaus normų sąvokas;

Vektorių ir matricų normos

Pagal apibrėžimą, *norma yra matricą ar vektorių apibūdinantis* skaičius, tenkinantis tokias sąlygas:

$$\|[\mathbf{A}]\| \ge 0;$$

$$\|\alpha[\mathbf{A}]\| = \alpha \|[\mathbf{A}]\|;$$

$$\|[\mathbf{A}] + [\mathbf{B}]\| \le \|[\mathbf{A}]\| + \|[\mathbf{B}]\|;$$

$$\|[\mathbf{A}] \cdot [\mathbf{B}]\| \le \|[\mathbf{A}]\| \cdot \|[\mathbf{B}]\|;$$

Naudosime tokias normas:

$$\|[\mathbf{A}]\| = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2}; \qquad \|\{\mathbf{x}\}\| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

MATLAB-e: norm(A) norm(x)

Laisvųjų narių ir sprendinio santykinių paklaidų tarpusavio priklausomybė

$$[\mathbf{A}](\{\mathbf{x}\} + \Delta\{\mathbf{x}\}) = \{\mathbf{b}\} + \Delta\{\mathbf{b}\}$$

$$[\mathbf{A}] \cdot \Delta\{\mathbf{x}\} = \Delta\{\mathbf{b}\}$$

$$\|\Delta\{\mathbf{x}\}\| = \|[\mathbf{A}]^{-1} \Delta\{\mathbf{b}\}\| \le \|[\mathbf{A}]^{-1}\| \cdot \|\Delta\{\mathbf{b}\}\|$$

$$\|\{\mathbf{b}\}\| = \|[\mathbf{A}]\{\mathbf{x}\}\| \le \|[\mathbf{A}]\| \cdot \|[\mathbf{x}]\|.$$

$$\|\Delta\{\mathbf{x}\}\| \cdot \|\{\mathbf{b}\}\| \le \|[\mathbf{A}]\| \cdot \|[\mathbf{A}]^{-1}\| \cdot \|\Delta\{\mathbf{b}\}\|.$$

$$\frac{\|\Delta\{\mathbf{x}\}\|}{\|\{\mathbf{x}\}\|} \le \|[\mathbf{A}]\| \cdot \|[\mathbf{A}]^{-1}\| \frac{\|\Delta\{\mathbf{b}\}\|}{\|\{\mathbf{b}\}\|}.$$

Matricos sąlygotumo skaičius. Gerai, jeigu artimas 1; blogai, jeigu labai didelis

Matricos sąlygotumo skaičiaus apskaičiavimas

Matricos tikrinės reikšmės

$$\|[\mathbf{A}]\| \cdot \|[\mathbf{A}]^{-1}\|$$

$$\det([\mathbf{A}] - \sigma[\mathbf{E}]) = 0 \quad \Rightarrow \quad \sigma_1, \sigma_2, ..., \sigma_n$$

$$\|[\mathbf{A}]\| \cdot \|[\mathbf{A}]^{-1}\| = \frac{\max_{1 \le i \le n} \sigma_i}{\min_{1 \le i \le n} \sigma_i}$$

MATLAB-e:

norm(A)* norm(inv(A))

cond(A)

Matricų sąlygotumo skaičių pavyzdžiai

norm1=norm(A)*norm(inv(A))
norm2=cond(A)

$$\frac{\left\|\Delta\left\{\mathbf{x}\right\}\right\|}{\left\|\left\{\mathbf{x}\right\}\right\|} \leq \left\|\left[\mathbf{A}\right]\right\| \cdot \left\|\left[\mathbf{A}\right]^{-1}\right\| \frac{\left\|\Delta\left\{\mathbf{b}\right\}\right\|}{\left\|\left\{\mathbf{b}\right\}\right\|}$$

$$norm1 = 1$$

 $norm2 = 1$

$$norm1 = 6.9511$$

 $norm2 = 6.9511$

$$norm1 = 9$$

 $norm2 = 9$

$$norm1 = 70.7940$$

 $norm2 = 70.7940$

Sprendinio tikslumo pagerinimas

Jeigu gauto sprendinio tikslumas nepatenkinamas, jį galima pagerinti taip:

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} \big\{ \mathbf{x} \big\} = \big\{ \mathbf{b} \big\} \rightarrow \big\{ \mathbf{x} \big\}^{(0)}$$
 Gautas nepakankamai tikslus sprendinys
$$\begin{bmatrix} \mathbf{A} \end{bmatrix} \big\{ \mathbf{x} \big\}^{(0)} = \big\{ \mathbf{b} \big\}^{(0)} \big\} = \big\{ \mathbf{b} \big\} - \big\{ \mathbf{b} \big\}^{(0)}$$
 Reikalinga pataisa
$$\big\{ \boldsymbol{\beta} \big\} = \big\{ \mathbf{x} \big\} - \big\{ \mathbf{x} \big\}^{(0)} ; \ \boldsymbol{\epsilon} = \big\{ \mathbf{b} \big\} - \big\{ \mathbf{b} \big\}^{(0)}$$
 Gauta pataisa
$$\big\{ \mathbf{x} \big\}^{(1)} = \big\{ \mathbf{x} \big\}^{(0)} + \big\{ \boldsymbol{\beta} \big\}^{(1)}$$

Tikslesnis sprendinys