Math 591 Lecture 5

Thomas Cohn

9/11/20

Defn: Let M be a topological manifold. A $\underline{C^{\infty}}$ atlas on M, $\mathscr{A} = \{(U_i, \phi_i)\}_{i \in I}$, is a collection of charts on M such that $M = \bigcup_{i \in I} U_i$ and $\forall i, j \in I$, (U_i, ϕ_i) and (U_j, ϕ_j) are C^{∞} compatible.

Last time, we considered $M=S^1\subseteq\mathbb{R}^2$ with the subspace topology. We constructed two atlases, \mathscr{A} and \mathscr{B} , and claimed every chart in \mathscr{B} is compatible with every chart in \mathscr{A} , i.e., $\mathscr{A}\cup\mathscr{B}$ is a C^∞ atlas.

We want a definition of smooth structure on M that includes \mathscr{A} and \mathscr{B} .

Defn: A <u>smooth structure</u> on a topological manifold M is a <u>maximal smooth atlas</u>, \mathcal{M} , i.e., a smooth atlas such that: If (U, ϕ) is any continuous chart on M s.t. $\forall (V, \psi) \in \mathcal{M}$, (U, ϕ) and (V, ψ) are compatible, then $(U, \phi) \in \mathcal{M}$.

Prop: If \mathscr{A} is a smooth atlas on M, $\exists ! \mathscr{M}$, a maximal smooth atlas, s.t. $\mathscr{A} \subseteq \mathscr{M}$.

Proof: Let $\mathcal{M} = \{(U, \phi) \text{ continuous chart s.t. } \forall (V, \psi) \in \mathcal{A}, (U, \phi) \text{ and } (V, \psi) \text{ are compatible} \}$. We need to show \mathcal{M} is a smooth atlas, and that it is maximal.

First, check that it's a smooth atlas. Clearly $\mathscr{A} \subseteq \mathscr{M}$. So charts in \mathscr{M} cover M. We just need to show compatibility. Let (U_1, ϕ_1) and (U_2, ϕ_2) be charts in \mathscr{M} . We need to show they're compatible with each other. Let $p \in U_1 \cap U_2$, and show $\phi_2 \circ \phi_1^{-1}$ is C^{∞} at $\phi_1(p)$. Well, $\exists (V, \psi) \in \mathscr{A}$ s.t. $p \in V$. And every (U_i, ϕ_i) is compatible with charts in \mathscr{A} , so $\phi_2 \circ \phi_1^{-1} = (\phi_2 \circ \psi^{-1}) \circ (\psi \circ \phi_1^{-1})$ on some neighborhood of $\phi_1(p)$. This is a smooth map, so we conclude \mathscr{M} is a smooth atlas.

Proving it's maximal just uses topology, and is left as an exercise. \Box

Defn: A differentiable manifold is a pair (M, \mathcal{M}) , where M is a topological manifold, and \mathcal{M} is a maximal C^{∞} atlas.

Ex: $M = \mathbb{R}$, \mathscr{M} is the maximal atlas containing $(\mathbb{R}, x \mapsto \sqrt[3]{x})$.

This is a different smooth structure on \mathbb{R} . However, the standard \mathbb{R} and this \mathbb{R} are isomorphic in the category of smooth manifolds: they're diffeomorphic! The isomorphism is $x \mapsto \sqrt[3]{x}$.

Question (very hard): Given a topological manifold M, are there non-isomorphic smooth structures on M? Yes, it can happen!

Consider $U \subseteq \mathbb{R}^N$ open (recall: \mathbb{R}^N is called the ambient space), and $F: U \to \mathbb{R}^k$ smooth. $F = (f^1, \dots, f^k)$, with $f^i: U \to \mathbb{R}$ smooth.

Recall: If $x_0 \in U$, the Jacobian of F at x_0 is the matrix

$$J(F)(x_0) = F'(x_0) = \begin{pmatrix} - & \nabla f^1(x_0) & - \\ & \vdots & \\ - & \nabla f^k(x_0) & - \end{pmatrix}$$

Defn: $0 \in \mathbb{R}^k$ is a regular value of F iff $\forall x \in F^{-1}(0), F'(x)$ has rank k. (I.e. it defines a surjective linear map onto \mathbb{R}^k .)

$$F' = \begin{pmatrix} \frac{\partial f^1}{\partial x_1} & \cdots & \frac{\partial f^1}{\partial x_N} \\ \vdots & & \vdots \\ \frac{\partial f^k}{\partial x_1} & \cdots & \frac{\partial f^k}{\partial x_N} \end{pmatrix} k$$

1

Thm: Assume $0 \in \mathbb{R}^k$ is a regular value of F. Then $\forall x_0 \in F^{-1}(0)$, there's some neighborhood W of x_0 in the ambient space s.t. $F^{-1}(0) \cap W$ is the graph of a function of N-k variables into \mathbb{R}^k , up to a permutation of the coordinates x_1, \ldots, x_N . *This is just the implicit function theorem!*

Ex: An example of "permutation of coordinates".

Let k=2 and N=5 (so N-k=3). Let $A\subseteq\mathbb{R}^3$ open, $G=(g^1,g^2):A\to\mathbb{R}^2$. Then

$$F^{-1}(0) \cap W = \{(x_1, x_2, x_3, x_4, x_5) \mid x_2 = g^1(x_1, x_3, x_4), x_5 = g^2(x_1, x_3, x_4)\}$$