

VESTIBULAR MEIO DE ANO 2016

PROVA DE CONHECIMENTOS ESPECÍFICOS E REDAÇÃO

11.06.2016

003. Ciências da Natureza e Matemática

(Questões 13 - 24)

- Confira seus dados impressos neste caderno.
- Assine com caneta de tinta azul ou preta apenas no local indicado. Qualquer identificação fora do local indicado acarretará a atribuição de nota zero a esta prova.
- Esta prova contém 12 questões discursivas e terá duração total de 4h30.
- A resolução e a resposta de cada questão devem ser apresentadas no espaço correspondente, utilizando caneta de tinta azul ou preta. Não serão consideradas questões resolvidas fora do local indicado.
- Encontra-se neste caderno a Classificação Periódica, a qual, a critério do candidato, poderá ser útil para a resolução de questões.
- O candidato somente poderá sair do prédio depois de transcorridas 3h30, contadas a partir do início da prova.
- Ao final da prova, antes de sair da sala, entregue ao fiscal o Caderno de Questões.

Nome do candidato		
RG — Inscrição —	Prédio Sala	Carteira —
		USO EXCLUSIVO DO FISCAL
Assinatura do candidato		AUSENTE

As Olimpíadas de 2016 no Brasil contarão com 42 esportes diferentes. Dentre as modalidades de atletismo, teremos a corrida dos 100 metros rasos e a maratona, com percurso de pouco mais de 42 km. A musculatura esquelética dos atletas que competirão nessas duas modalidades apresenta uma composição distinta de fibras. As fibras musculares do tipo I são de contração lenta, possuem muita irrigação sanguínea e muitas mitocôndrias. Ao contrário, as fibras do tipo II são de contração rápida, pouco irrigadas e com poucas mitocôndrias. As fibras do tipo I têm muita mioglobina, uma proteína transportadora de moléculas de gás oxigênio que confere a estas fibras coloração vermelha escura, ao passo que as do tipo II têm pouca mioglobina, sendo mais claras. A imagem ilustra a disposição das fibras musculares de cortes histológicos transversais, vistas ao microscópio, da musculatura dos atletas Carlos e João. Cada atleta compete em uma dessas duas modalidades.

Por que é possível afirmar que Carlos é o atleta que compete na maratona? Que metabolismo energético predomina em suas fibras musculares?

Determine o metabolismo energético que predomina nas fibras musculares de João e explique por que ele é mais suscetível à fadiga muscular quando submetido ao exercício físico intenso e prolongado.

RESOLUÇÃO E RESPOSTA —	
HEOGEOGRA E HEOF OOTA	

Em moscas de frutas Drosophila melanogaster, o sexo é determinado segundo o sistema XY. A cor dos olhos nessa espécie é determinada por alelos localizados no cromossomo X. O alelo dominante B confere cor vermelha aos olhos da mosca e o alelo recessivo b, cor branca.

O cruzamento de uma fêmea de olhos vermelhos com um macho de olhos vermelhos resultou em uma geração constituída por 75% de indivíduos de olhos vermelhos e 25% de olhos brancos. Determine o genótipo da fêmea deste cruzamento e o sexo dos descendentes de olhos brancos.

Em outro cruzamento, uma fêmea de olhos brancos foi fecundada por um macho de olhos vermelhos. Dos descendentes obtidos, foi realizado o cruzamento de uma fêmea com um macho, que deu origem a uma população de 100 indivíduos. Qual a porcentagem de machos de olhos brancos e a porcentagem de fêmeas de olhos brancos esperadas nessa população?

	•		

Pesquisadores da Universidade de Harvard investigaram o efeito invasivo da planta *Alliaria petiolata* sobre o crescimento de mudas de árvores nativas que apresentam raízes em associação com fungos micorrizas. Eles sabiam que a *Alliaria petiolata* não se associa às micorrizas. Em um experimento, eles cultivaram mudas de três espécies de árvores: *Acer saccharum*, *Acer rubrum* e *Faxinus americana* em quatro tipos de solos diferentes, garantindo que as demais condições ambientais fossem as mesmas. Duas das amostras de solo foram coletadas de um local invadido por *Alliaria petiolata*, sendo que uma dessas amostras foi esterilizada. As outras duas amostras de solo foram recolhidas de um local não invadido por *Alliaria petiolata*, sendo uma delas esterilizada. Depois de quatro meses de crescimento, os pesquisadores colheram brotos e raízes de todas as plantas e determinaram o aumento de biomassa seca. As raízes também foram analisadas em relação à porcentagem de colonização por micorrizas.

(Jane B. Reece et al. Campbell biology, 2011. Adaptado.)

Que efeito a *Alliaria petiolata* causa sobre a colonização das raízes por micorrizas e qual a vantagem deste efeito para a *Alliaria petiolata*?

Como a associação entre as micorrizas e as raízes das mudas influencia o aumento da biomassa seca? Qual vantagem as micorrizas obtêm com essa associação?

RESOLUÇÃO E RESPOSTA	
•	
5	VNSP1609 003-CE-CiênciasNatMat

A malaquita é um mineral cuja composição é dada pela fórmula $\text{Cu}_2(\text{OH})_2\text{CO}_3$. Por aquecimento a seco, a malaquita produz óxido de cobre(II), um sólido preto, além de água e dióxido de carbono, ambos no estado gasoso.

O óxido de cobre(II), por sua vez, reage com solução aquosa de ácido sulfúrico, originando uma solução aquosa azul de sulfato de cobre(II). Por evaporação da água, formam-se cristais azuis de $CuSO_4 \cdot 5H_2O$.

malaquita

(www.mineraliaspecimens.com)

sulfato de cobre(II) penta-hidratado

(www.octoplus.cl)

Escreva a equação química do aquecimento a seco da malaquita produzindo óxido de cobre(II), água e dióxido de carbono e, em seguida, a equação química da reação do óxido de cobre(II) com a solução aquosa de ácido sulfúrico. Admitindo rendimento de 100%, calcule a massa de sulfato de cobre penta-hidratado obtida a partir de 22,1 g de malaquita.

RESULUÇAU E RESPUSTA

O metanol, CH₃OH, é uma substância de grande importância para a indústria química, como matéria-prima e como solvente. Esse álcool é obtido industrialmente pela reação entre os gases CO e H₂, conforme a equação:

$$CO(g) + 2H_2(g) \Longrightarrow CH_3OH(g)$$

$$\Delta H = -103 \text{ kJ/mol de metanol}$$

Para realizar essa reação, os gases reagentes, misturados na proporção estequiométrica e em presença de catalisador (geralmente prata ou cobre), são comprimidos a 306 atm e aquecidos a 300 °C. Nessas condições, o equilíbrio apresenta um rendimento de 60% no sentido da formação de metanol.

Escreva a expressão da constante K_p desse equilíbrio e explique o papel do catalisador na reação entre os gases CO e H_2 . Com base no princípio de Le Chatelier, justifique a importância da compressão desses gases para a produção de metanol e explique o que aconteceria com o rendimento do equilíbrio no sentido da formação de metanol, caso a reação ocorresse em temperaturas superiores a 300 °C.

7	WICD1000 L002 OF City-N-M-M-M-
<i>'</i>	VNSP1609 003-CE-CiênciasNatMat

Analise as fórmulas que representam as estruturas do retinol (vitamina A), lipossolúvel, e do ácido pantotênico (vitamina B5), hidrossolúvel.

Com base na análise das fórmulas, identifique as funções orgânicas presentes em cada vitamina e justifique por que a vitamina B5 é hidrossolúvel e a vitamina A é lipossolúvel. Qual dessas vitaminas apresenta isomeria óptica? Justifique sua resposta.

Duas esferas, A e B, de mesma massa e de dimensões desprezíveis, estão inicialmente em repouso nas posições indicadas na figura. Após ser abandonada de uma altura h, a esfera A, presa por um fio ideal a um ponto fixo O, desce em movimento circular acelerado e colide frontalmente com a esfera B, que está apoiada sobre um suporte fixo no ponto mais baixo da trajetória da esfera A. Após a colisão, as esferas permanecem unidas e, juntas, se aproximam de um sensor S, situado à altura 0,2 m que, se for tocado, fará disparar um alarme sonoro e luminoso ligado a ele.

Compare as situações imediatamente antes e imediatamente depois da colisão entre as duas esferas, indicando se a energia mecânica e a quantidade de movimento do sistema formado pelas duas esferas se conservam ou não nessa colisão. Justifique sua resposta. Desprezando os atritos e a resistência do ar, calcule o menor valor da altura h, em metros, capaz de fazer o conjunto formado por ambas as esferas tocar o sensor S.

RESOLUÇÃO E RESPOSTA —	
HEODEOGRO E HEOFOOTA	
9	VNSP1609 003-CE-CiênciasNatMat
y	VINOP IDUS I UUS-UE-UIENCIASINATINIAT

Durante a análise de uma lente delgada para a fabricação de uma lupa, foi construído um gráfico que relaciona a coordenada de um objeto colocado diante da lente (p) com a coordenada da imagem conjugada desse objeto por essa lente (p'). A figura 1 representa a lente, o objeto e a imagem. A figura 2 apresenta parte do gráfico construído.

Considerando válidas as condições de nitidez de Gauss para essa lente, calcule a que distância se formará a imagem conjugada por ela, quando o objeto for colocado a 60 cm de seu centro óptico. Suponha que a lente seja utilizada como lupa para observar um pequeno objeto de 8 mm de altura, colocado a 2 cm da lente. Com que altura será vista a imagem desse objeto?

RESOLUÇÃO E RESPOSTA 10 VNSP1609 | 003-CE-CiênciasNatMat

Três lâmpadas idênticas $(L_1, L_2 e L_3)$, de resistências elétricas constantes e valores nominais de tensão e potência iguais a 12 V e 6 W, compõem um circuito conectado a uma bateria de 12 V. Devido à forma como foram ligadas, as lâmpadas L_2 e L_3 não brilham com a potência para a qual foram projetadas.

Considerando desprezíveis as resistências elétricas das conexões e dos fios de ligação utilizados nessa montagem, calcule a resistência equivalente, em ohms, do circuito formado pelas três lâmpadas e a potência dissipada, em watts, pela lâmpada L₂.

RESULUÇAU E RESPUSTA	
11	VNSP1609 003-CE-CiênciasNatMat

Em um plano cartesiano ortogonal são dadas uma reta d, de equação x = -3, e um ponto F, de coordenadas (-1, 2). Nesse plano, o conjunto dos pontos que estão à mesma distância do ponto F e da reta d forma uma parábola. Na figura, estão nomeados dois pontos dessa parábola: o vértice V, de coordenadas (-2, 2), e o ponto P, de coordenadas $(0, y_p)$.

Determine as coordenadas de dois pontos quaisquer dessa parábola que sejam diferentes de V e de P. Em seguida, calcule y_p .

KESU KESU	OLUÇAO E RESPOSTA

Uma empresa oferece frete gratuito para entregas do seu produto em um raio de até 25 km do depósito. Para a distância que ultrapassar 25 km, medida em linha reta desde o depósito, a empresa cobra R\$ 20,00 por quilômetro que ultrapasse os 25 km iniciais gratuitos. Essa cobrança também é feita de forma proporcional em caso de frações de quilômetros.

Um consumidor do produto reside 20 km a leste do depósito e x km ao sul. Apresente uma figura representando a situação descrita e determine o valor máximo de x para que esse consumidor tenha direito ao frete gratuito na entrega do produto em sua residência. Em seguida, determine o custo do frete C (em reais), em função de x, para o caso em que $C(x) \neq 0$.

13	VNSP1609 003-CE-CiênciasNatMat

A demanda de um produto químico no mercado é de D toneladas quando o preço por tonelada é igual a p (em milhares de reais). Neste preço, o fabricante desse produto oferece F toneladas ao mercado. Estudos econômicos do setor químico indicam que D e F variam em função de p, de acordo com as seguintes funções:

$$D(p) = \frac{3p^2 - 21p}{4 - 2p} e F(p) = \frac{5p - 10}{3}$$

Admitindo-se p > 1 e sabendo que $\sqrt{7569}$ = 87, determine o valor de p para o qual a oferta é igual à demanda desse produto. Em seguida, e ainda admitindo-se p > 1, determine o intervalo real de variação de p para o qual a demanda D(p) do produto é positiva.

CLASSIFICAÇÃO PERIÓDICA

1																	18
1 H 1.01	2											13	14	15	16	17	2 He 4.00
3 Li 6,94	4 Be 9,01											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20,2
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	15 P 31,0	16 S 32,1	17 Cl 35,5	18 Ar 39,9
19 K 39,1	20 Ca 40,1	21 Sc 45,0	22 Ti 47,9	23 V 50,9	24 Cr 52,0	25 Mn 54,9	26 Fe 55,8	27 Co 58,9	28 N i 58,7	29 Cu 63,5	30 Zn 65,4	31 Ga 69,7	32 Ge 72,6	33 As 74,9	34 Se 79,0	35 Br 79,9	36 Kr 83,8
37 Rb 85,5	38 Sr 87,6	39 Y 88,9	40 Zr 91,2	41 Nb 92,9	42 Mo 95,9	43 Tc (98)	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 I n 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57-71 Série dos Lantanídios	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 I r 192	78 Pt 195	79 Au 197	80 Hg 201	81 TI 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 Série dos Actinídios	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (271)	111 Rg (272)							
			Série dos	Lantaníd	lios												
Sí	ero Atômic mbolo		57 La 139	58 Ce 140	59 Pr 141	60 Nd 144	61 Pm (145)	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 163	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
Mass	sa Atômica	a	Série dos	Actinídio	s												
1 ' '	de massa mais está		89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 N p (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)
															(I	UPAC, 22	.06.2007.)

