Calculation For Torque Required

Monday, August 29, 2022 2:56 PM

Purpose of Documentation:

Calculation for the required amount of torque to start the robot moving.

	OLD	NEW
Weight	Body + Gimbal + 12 AX-12A motors = 2.2kg	Body + Gimbal = 1.5448kg
	Body + Gimbal + $12x(0.0546) = 2.2kg$	Body + Gimbal + 8AX-12A motors + 4MX-64T:=
	Body + Gimbal = 1.5448kg	Body + Gimbal + $8x(0.0546) + 4x(0.126) = 2.4856$
		2.4856 + DVS cam= 2.7456kg
Calculated Torque From Motors	0.15kgf x 12= 1.8kgf max for stall Torque	0.15kgf x 8 = 1.2kgf
		0.6116kgf x 4 = 2.4464kgf
		2.4464kgf + 1.2kgf =3.6464kgf
Required torque	2.2kg minimum. Existing torque only outputs 1.8kgf, 0.4kgf lesser	2.8kg minimum. Existing torque outputs 3.6464kgf. By theory it should be able to move the robot.

^{*}Calculations do not include how much torque to overcome stiction? (needed: Info on mechanics, as kind of wheels, surface, style of movement)

Areas of concern: New parts/resized parts to accommodate the new motors should not weigh over 800grams

References:

Stiction Explanation:

https://en.wikipedia.org/wiki/Stiction

Friction Explanation:

https://en.wikipedia.org/wiki/Friction

Analytical Dynamics Explanation:

https://en.wikipedia.org/wiki/Analytical dynamics