kWIP: The k-mer Weighted Inner Product

Kevin Murray

Borevitz Lab, CPEB, ANU

21 August 2015

Disclaimer

DRAFT

Disclaimer

DRAFT
Or as Norman says, kWIP is Kevin's Work In Progress

Collaboration

- This work is a collaborative effort
 - ► Norman Warthmann
 - Cheng Soon Ong
 - ► Chris Webers

Overview

- Motivation
- Technological overview
- Early results and plans
- Demonstration

Large-scale population genomics

▶ Moving from 100s to 1000s and 10000s of samples per PhD!

Large-scale population genomics

- ▶ Moving from 100s to 1000s and 10000s of samples per PhD!
- ▶ Efficient algorithms to analyse large-scale genomic data
 - ▶ Reference & alignment free: *less bias, de novo*
 - ▶ Platform/protocol agnostic: *future proof*
 - ▶ Computationally efficient: *not the bottleneck*
 - Cross scale: one tool to rule them all

Fraction of genome

after Peterson et al. [1]

Rapid and Basic Clustering

- Rough approximation of sample relatedness required
 - Cheap and fast
- Enables a "zooming" approach to genetic analysis

after Brachi et al. [2]

Rapid and Basic Clustering

- Rough approximation of sample relatedness required
 - Cheap and fast
- ► Enables a "zooming" approach to genetic analysis

after Brachi et al. [2]

Rapid and Basic Clustering

- Rough approximation of sample relatedness requiredCheap and fast
- Enables a "zooming" approach to genetic analysis

De novo technical control

- Sample DNA not very physically distictive
 - Mix-ups and contamination occur
- Catching mix-ups early important
 - Not just for your own data: SRA not so perfect

Ath 80 FIGURE HERE

Technological Overview

- k-mer analysis
- Hashing and Probablistic Data Structures
- Population and RunFrequency Hashes
- (Weighted) Inner Products

k-mer analysis

► Analyse *k*-length words of sequences

```
k = 3
ACGTGT
ACG
CGT
GTG
TGT
```


k-mer analysis

- ► Analyse *k*-length words of sequences
- Computationally and biologically appropriate
 - Fast
 - Constant-memory (using khmer)
 - Scalable and parallelisable
 - Cross-scale

k = 3ACGTGT
ACG
CGT
GTG
TGT

Hashes and Hash Functions

Hash function e.g.

```
hash('ACG') => 5234315134
```


Hashes and Hash Functions

Hash function e.g.

hash('ACG') => 5234315134

- "Hash": a probablistic data structure
 - Constant memory
 - Easy set operations and inner product
 - ▶ Implicit de Bruijn graph
 - Implemented in C Titus Brown's khmer
 - AKA Countgraph, Counting Bloom Filter

- ▶ Vector of large prime length (e.g. 1e9 + 7)
- ▶ Indexed modulo length $(bin = h(w_i) \mod prime)$

- ▶ Vector of large prime length (e.g. 1e9 + 7)
- ▶ Indexed modulo length $(bin = h(w_i) \mod prime)$

- ► Vector of large prime length (e.g. 1e9 + 7)
- ▶ Indexed modulo length ($bin = h(w_i) \mod prime$)

- ▶ Vector of large prime length (e.g. 1e9 + 7)
- ▶ Indexed modulo length $(bin = h(w_i) \mod prime)$

- ► Vector of large prime length (e.g. 1e9 + 7)
- ▶ Indexed modulo length $(bin = h(w_i) \mod prime)$

Hash Operations

▶ Population sum, or hash frequency

Population Sum

Hash Operations

▶ Population sum, or hash frequency

k-mer based clustering

- Alignment-free sequence clustering is a whole field
- ▶ D2 and friends
- Most require sequence gene/genome
- Many use inner product as similarity measure

Characterizing the D2 Statistic: Word Matches in Biological Sequences

Sylvain Forêt, Susan R. Wilson, and Conrad J. Burden

Shannon Entropy

- ► Measure of Information
- $ightharpoonup \sum_{i} p_{i} log(p_{i})$

kWIP

- ► The *k*-mer Weighted Inner Product
 - ► Extends alignment-free seq comparison to raw NGS data

kWIP

- ▶ The *k*-mer Weighted Inner Product
 - Extends alignment-free seq comparison to raw NGS data
- ► Algorithm:
 - ► For each sample: count all *k*-mers into a Hash

- ▶ The *k*-mer Weighted Inner Product
 - Extends alignment-free seq comparison to raw NGS data
- Algorithm:
 - ▶ For each sample: count all *k*-mers into a Hash
 - ► For each analysis set, i.e "population":
 - ► Calculate the informational entropy of hash frequency (*H*)
 - ► For each pair of samples A and B, calculate $\sum_{i=0}^{n} A_i \cdot B_i \cdot H_i$

kWIF

- ▶ The software:
 - ▶ C++, >2000 lines of code
 - ▶ Uses khmer for k-mer counting & hashing
 - ▶ Parallelised, \approx 10 hrs for 96 rice samples.
 - ▶ GNU GPL licensed, source code released on GitHub

kWIP Experiments

- ▶ 3000 rice genomes:
 - ▶ 3000 rice lines from known families
 - ▶ Analysing in sets of \approx 100, from all major groups
 - ► Recover known grouping w/kWIP, not w/unweighted IP
 - Sensitive to read depth
- Simulation
 - ► Fake population genome sequencing studies
 - Experiments in progress, early results positive
 - ► Test limitations of kwip

WIP

 IP

Asymmetric Tree simulation

► Now for an Jupyter notebook

Thanks

- My collaborators: Cheng Soon Ong, Christfried Webers, Norman Warthmann
- Advisors: Justin, Norman, Sylvain, Gavin and Barry
- C. Titus Brown, Michael Crusoe, Camille Scott (DIB-lab) @ UC Davis
- Kenneth McNally/IRRI
- Yourselves

References

- Peterson, B. K. *et al.* Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. *PLoS ONE* **7**, e37135 (2012).
- Brachi, B., Morris, G. P. & Borevitz, J. O. Genome-wide association studies in plants: the missing heritability is in the field. *Genome biology* **12**, 232 (2011).

Missing heritability in the field?

- Find more diversity in the field!
- Sample natural populations
 - Ecological hypotheses of trait selection, adaptation
 - ► Sample widely as possible across non-uniform genetic diversity

Missing heritability in the field?

- Find more diversity in the field!
- Sample natural populations
 - Ecological hypotheses of trait selection, adaptation
 - Sample widely as possible across non-uniform genetic diversity
- Now complexity limited: complex kinship & population structure
- Mandates development of economic, accurate large scale population genomics

