Sistemas de Comunicación Digital

INF2010

Clase 1:

Introducción a los Sistemas de Comunicación

Fuentes y Sistemas Digitales y Analógicos

- Una fuente digital de información produce un conjunto finito de mensajes posibles.
- Una fuente analógica de información produce mensajes que están definidos en un espacio contínuo → infinitos mensajes distintos
- Una Forma de onda digital es una función en el tiempo que sólo puede adoptar un conjunto discreto de valores de amplitud. No sólo 1 o 0.
- Una Forma de onda analógica es una función del tiempo que posee un rango continuo de valores.

Fuentes y Sistemas Digitales y Analógicos

- Un sistema de comunicación posee ambos tipos de señales, tanto digitales como analógicas
- Por ejemplo, la modulación FSK:
- Qué sistema de comunicación usaría FSK?

Ventajas y Desventajas

- Circuitos económicos
- Permite encriptación de datos
- Mayor rango dinámico
- Permite reunir voz, video y datos en un mismo flujo
- El ruido no se acumula en cada repetidor
- Mayor inmunidad al ruido del canal

Ventajas y Desventajas

- Los errores pueden corregirse con codificación
- Pero: Usa mayor ancho de banda que sistemas analógicos
- Pero: Se requiere sincronización

Formas de Onda

 Determinística: corresponde a una función en el tiempo totalmente especificada, por ejemplo:

$$w(t) = A \cdot \cos(w_0 \cdot t + \varphi_0)$$

 Una forma de onda aleatoria (o estocástica) no se puede especificar completamente como una función del tiempo y debe modelarse probabilísticamente.

Sistema de Comunicación

- Objetivos de un sistema de comunicación:
 - Enviar la información con el mínimo deterioro posible

Satisfacer las condiciones de diseño de ancho de

banda, potencia y costo

Medida de la degradación digital:

BER (Bit Error Rate)

DRD - Sistemas de Com

Medio Inalámbrico

Asignación de frecuencias

- Unión Internacional de las Telecomunicaciones (UIT) / ITU
- Da la distribución internacional de frecuencias que determina:
 - Tipo de servicio
 - Modulación
 - Banda de frecuencias
 - Potencia máxima admisible

Asignación de frecuencias

- Unión Internacional de las Telecomunicaciones (UIT) / ITU
- Da la distribución internacional de frecuencias que determina:
 - Tipo de servicio
 - Modulación
 - Banda de frecuencias
 - Potencia máxima admisible

- Propagación Terrestre únicamente: 3KHz a 300KHz
- Propagación Terrestre e Ionosférica:
 300KHz a 30MHz
- Propagación Línea de Vista (LOS): 30MHz a 300GHz
- Atenuaciones por precipitaciones y vapor de agua: 10GHz, 22.2GHz, 183GHz

Dónde están los servicios típicos: AM, FM, TV?

¿Dónde están los servicios típicos: AM, FM, TV?

DRD - Sistemas de Comunicación Digital

Terrestre

Ionosférica

LOS

 La propagación en línea de vista (LOS) también está limitada por la curvatura de la tierra.

Antenas

 Para una radiación eficiente, la antena debe ser más larga que 1/10 de la longitud de onda (λ). Para 10KHz, λ sería:

$$\lambda = \frac{c}{f_c} \qquad \lambda = \frac{3 \times 10^8 \, m/s}{10^4 \, Hz} = 3 \times 10^4 \, m$$

 Al menos 3000m de longitud de antena para transmitir de manera eficiente 10KHz.

Propagación lonosférica

 Las ondan se refractan de manera gradual en la ionósfera y responde a la expresión:

$$n = \sqrt{1 - \frac{81 \cdot N}{f^2}}$$

- Con n índice de refracción, N cantidad de electrones libres por metro cúbico (alrededor de 10¹²) y f es la frecuencia en Hz.
- Esta propagación es solamente LOS para frecuencias mayores a 30MHz. f²>> 81· N

 La propagación LOS requiere que las antenas se vean por encima del horizonte.

$$d^2 + r^2 = (r + h)^2$$

$$d^2 = 2rh + h^2$$

- El radio de la tierra es de 6373km pero por efecto de la atmósfera es de 8497km (4/3)
- Esto da para nuestro cálculo:

$$d = \sqrt{2 \cdot r \cdot h}$$

- Para una antena de TV de 300m de altura, cuánto vale d?
- Si un espectador en el borde de cobertura tiene una antena a 10m de altura, cuál es la distancia máxima a la que puede ubicarse?

- La distancia a la que puede llegar una señal depende también del transmisor y el receptor
- El transmisor entrega una potencia al medio a través de la antena
- El receptor tiene una sensibilidad mínima, una señal con potencia menor no puede ser decodificada
- Además, la señal debe ser recibida con una cierta potencia por encima del ruido para ser decodificada.

En resumen:

- La distancia de propagación LOS está limitada por la curvatura de la tierra
- El tamaño de la antena está relacionado con la longitud de onda de la señal a transmitir.
- La potencia del transmisor y la sensibilidad del receptor definen también el alcance de una señal LOS

 La información enviada a partir de una fuente digital para el mensaje j-ésimo es:

$$I_{j} = \log_{2}\left(\frac{1}{P_{j}}\right) \text{ bits}$$

Donde P es la probabilidad de transmitir este mensaje.

- Entonces, la cantidad de información depende de que tan frecuente es la aparición de un mensaje determinado:
 - Un mensaje menos frecuente contiene más información
 - Un mensaje más frecuente, contiene menos información.
 - La cantidad de información sólo depende de la probabilidad del $I_j = \frac{-1}{\log_{10}(2)} \log_{10}(P_j)$ mensaje y no del contenido en si.

$$I_{j} = \frac{-1}{\log_{10}(2)} \log_{10}(P_{j}) \ bits$$

A nosotros no nos interesa la medición por cada mensaje sino la medición a partir del promedio de una fuente digital:

$$H = \sum_{j=1}^{m} P_j \cdot I_j = \sum_{j=1}^{m} P_j \cdot \log_2 \left(\frac{1}{P_j}\right) \text{ bits}$$

Donde m es el número de posibles mensajes y P_j es la probabilidad de mandar el j-ésimo

mensaje. La información promedio se llama entropía.

- ¿Cuál es el contenido de información de un mensaje que consiste en una palabra digital de 12 dígitos y cada dígito puede tener 1 de 4 niveles?
- Suponga que la probabilidad de enviar cualquiera de los niveles es la misma y cada dígito es independiente del anterior.

Todos los símbolos son equiprobables, por lo tanto:

$$P_j = \frac{1}{4^{12}} = \left(\frac{1}{4}\right)^{12}$$

Y la información es:

$$I_j = \log_2\left(\frac{1}{\left(\frac{1}{4}\right)^{12}}\right) = \log_2(4) = 24 \text{ bits}$$

También estamos interesados en la velocidad de una fuente:

$$R = \frac{H}{T} bits/s$$

 Donde H es nuestra información promedio, T es el tiempo de envío de un mensaje.

Un teclado telefónico tiene los dígitos 0-9 y #,*. Asuma que la probabilidad de enviar # o * es 0.005 y la probabilidad de enviar del 0 al 9 es de 0.099 cada una. Si se presionan las teclas a 2 teclas/s, calcule la velocidad de la fuente.

- Según el símbolo:
$$\sum_{j=1}^{m} P_j \cdot \log_2 \left(\frac{1}{P_j} \right)$$

$$= 2 \cdot 0.005 \cdot \log_2 \left(\frac{1}{0.005}\right) + 10 \cdot 0.099 \cdot \log_2 \left(\frac{1}{0.099}\right) = \boxed{3.3794 \text{ bits}}$$

Y la velocidad de la fuente es:

$$R = \frac{H}{T} = \frac{3.3794}{0.5} = 6.7588 \, bits / s$$

En resumen,

La medida de la información para un mensaje depende de:

La probabilidad de aparición del mensaje

La entropía es la sumatoria del producto de la información por mensaje por su probabilidad.