Heaps

Algoritmos y Estructuras de Datos II

1^{er} cuatrimestre de 2018

Motivación

Implementar una cola de prioridad. Operaciones que nos interesan:

Máximo Determinar el elemento más prioritario.

Agregar Agregar un elemento.

Sacar máximo Sacar el elemento más prioritario.

Conj→**cola** Convertir un conjunto en una cola de prioridad.

La prioridad puede ser cualquier **relación de orden total**. (¿Qué era una relación de orden total?).

Hablamos siempre del máximo.

Posibles implementaciones (sin usar heap)

	Máximo	Agregar	Sacar máximo	Conj→cola
Lista	?	?	?	?
Lista + máximo	?	?	?	?
Lista ordenada	?	?	?	?
AVL + máximo	?	?	?	?

Posibles implementaciones (sin usar heap)

	Máximo	Agregar	Sacar máximo	Conj→cola
Lista	O(n)	O(1)	O(n)	O(n)
Lista + máximo	O(1)	O(1)	O(n)	O(n)
Lista ordenada	O(1)	O(n)	O(1)	(sorting)
AVL + máximo	O(1)	$O(\log n)$	$O(\log n)$	$O(n \log n)$

Spoiler

¿Para qué queremos un heap si podemos usar un AVL?

Spoiler

¿Para qué queremos un heap si podemos usar un AVL?

- Más sencillo de implementar.
- Mejores constantes.
- Se puede hacer sin punteros.
- La operación Conj→cola es estrictamente mejor.

Heap: invariante

Un heap es un árbol binario con un invariante:

Forma

- ► Completo, salvo por el último nivel.
- Izquierdista.

Orden

- La raíz es el máximo.
- El invariante se cumple recursivamente para los hijos.
- (yapa) Todos los caminos de la raíz a una hoja son secuencias ordenadas.

Heap: algoritmos

Máximo O(1)

Está en la raíz del árbol.

Agregar $O(\log n)$

- ▶ Ubicar el elemento respetando la forma del heap.
- Mientras sea mayor que su padre, intercambiarlo con el padre. (Sift up).

Sacar máximo $O(\log n)$

- ► Reemplazar la raíz del árbol por el "último" elemento, respetando la forma del heap.
- Mientras sea menor que uno de sus hijos, intercambiarlo con el mayor de sus hijos. (Sift down).

Heap: algoritmos

Ejemplo: insertar en secuencia 6,4,2,9,3,8,5 y sacar el máximo.

Heap: algoritmos

Conj→cola (*heapify*)

O(n)

- Armar un árbol con los elementos respetando la forma.
- ► Hacer *Sift down* para cada uno de los elementos, yendo "hacia atrás", desde el último hasta la raíz.

Ejemplo: heapificar la secuencia 6, 4, 2, 9, 3, 8, 5.

Heap: técnicas de implementación

Técnica de implementación con punteros

Si el heap tiene n elementos, la posición del último se puede encontrar a partir de la representación en binario de n, ignorando el dígito 1 más significativo.

$$n = 14 = (1110)_2$$
 \longrightarrow [derecha, derecha, izquierda]

Heap: técnicas de implementación

Técnica de implementación con arreglos

Los elementos se pueden guardar en un arreglo de tamaño N.

Las siguientes funciones sirven para navegar el árbol:

$$\begin{array}{rcl} \operatorname{HIJO_IZQ}(i) & = & 2*i+1 \\ \operatorname{HIJO_DER}(i) & = & 2*i+2 \\ \operatorname{PADRE}(i) & = & \left\lfloor \frac{i-1}{2} \right\rfloor \end{array}$$

Usando índices $0 \le i < N$.