МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ им. Р.Е.АЛЕКСЕЕВА

Институт радиоэлектроники и информационных технологий Кафедра вычислительные системы и технологии

Интерполирование функции многочленом Ньютона и многочленом Лагранжа

Отчет

по лабораторной работе №3

по дисциплине

Вычислительная математика

РУКОВОДИТЕЛЬ:	
	Суркова А. С.
СТУДЕНТ:	
	Соляник Д. Р.
	19-ИВТ-2
Работа защищена «»	
С оценкой	

Нижний Новгород 2021

1. Тема лабораторной работы:

Интерполирование функции многочленом Ньютона и многочленом Лагранжа *Цель лабораторной работы*

Закрепление знаний и умений по интерполированию функций с помощью многочленов Ньютона и Лагранжа

2. Вариант задания на лабораторную работу

Вариант № 18

Вычислить значение функции при данных значениях аргумента, оценить погрешность: а) используя первую или вторую интерполяционную формулу Ньютона, в зависимости от значения аргумента;

б) с помощью интерполяционного многочлена Лагранжа, используя формулу для равноотстоящих узлов.

		No populariza	Значение аргумента				
x y	№ варианта	x_1	x_2	x_3	x_4	x_5	
1,34	4,25562	8	1,3617	1,3917	1,4	1,41	1,33
1,345	4,35325						
1,35	4,45522						
1,355	4,56184	18	1,32	1,345	1,353	1,388	1,41
1,36	4,67344						
1,365	4,79038						
1,37	4,91306						
1,375	5,04192						
1,38	5,17744						
1,385	5,32016						
1,39	5,47069						
1,395	5,62968						
1,4	5,76999						

Найти приближенное значение функции при данных значениях аргумента с помощью интерполяционного многочлена Лагранжа, если функция задана в неравноостоящих узлах таблицы, оценить погрешность

х	у	№ варианта	x_1	x_2
0.11	9.05421	6	0.314	0.222
0.15	6.61659	12	0.235	0.377
0.21	4.69170	18	0.332	0.123
0.29	3.35106	10000		
0.35 0.40	2.73951 2.36522			

3. Теоретические сведения и описание лабораторной работы

• Интерполяционный многочлен Лагранжа в не равностоящих узлах

$$P_n(x) = \sum_{i=0}^n y_i \cdot L_n(x)$$

где Ln(x) – множитель Лагранжа

$$L_n(x) = \frac{(x - x_0)..(x - x_{i-1})(x - x_{i+1})..(x - x_n)}{(x_i - x_0)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)} = \prod_{k=0}^{n} \frac{(x - x_k)}{(x_i - x_k)}$$

$$P_n(x) = \sum_{i=0}^n y_i \left(\prod_{\substack{k=0 \ k \neq i}}^n \frac{x - x_k}{x_i - x_k} \right).$$

Числитель и знаменатель не должны включать в себя значения x=xi, так как результат будет равен нулю.

В развернутом виде формулу Лагранжа можно записать:

$$P_n(x) = y_0 \frac{(x - x_1)(x - x_2)...(x - x_n)}{(x_0 - x_1)(x_0 - x_2)...(x_0 - x_n)} +$$

$$+y_1\frac{(x-x_0)(x-x_2)...(x-x_n)}{(x_1-x_0)(x_1-x_2)...(x_1-x_n)}+...$$

$$+ y_n \frac{(x-x_0)(x-x_1)(x-x_2)...(x-x_{n-1})}{(x_n-x_0)(x_n-x_1)(x_n-x_2)...(x_n-x_{n-1})}.$$

Интерполяционный полином Лагранжа обычно применяется в теоретических исследованиях (при доказательстве теорем, аналитическом решении задач и т. п.).

• Интерполяционный многочлен Лагранжа в равностоящих узлах

$$N(x) = N(x_0 + th) =$$

$$= y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_0$$

$$N(x) = N(x_n + th) =$$

$$= y_n + t\Delta y_{n-1} + \frac{t(t+1)}{2!}\Delta^2 y_{n-2} + \dots + \frac{t(t+1)\dots(t+n-1)}{n!}\Delta^n y_0$$

В случае равномерного распределения узлов интерполяции хј выражаются через расстояние между узлами интерполяции h и начальную точку х0:

$$x_i \equiv x_0 + ih$$

и, следовательно,

$$x_j - x_i \equiv (j - i)h.$$

Подставив эти выражения в формулу базисного полинома и вынеся h за знаки перемножения в числителе и знаменателе, получим

$$l_j(x) = \prod_{i=0,\,i
eq j}^n rac{(x-x_i)}{(x_j-x_i)} = rac{\prod\limits_{i=0,\,i
eq j}^n (x-x_0-ih)}{h^n \prod\limits_{i=0,\,i
eq j}^n (j-i)}$$

Теперь можно ввести замену переменной

$$y = \frac{x - x_0}{h}$$

и получить полином от у, который строится с использованием только целочисленной арифметики.

• Интерполяционный многочлен Ньютона

Если узлы интерполяции, равноотстоящие по величине, так что

$$x_{i+1}$$
- x = h =const,

где h — шаг интерполяции, т.е. xi=x0+nh, то интерполяционный многочлен можно записать в форме, предложенной Ньютоном. Интерполяционные полиномы Ньютона удобно использовать, если точка интерполирования находится в начале таблицы — первая интерполяционная формула Ньютона или конце таблицы — вторая формула.

Первая интерполяционная формула Ньютона Интерполирующий полином ищется в виде

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \dots (x - x_{n-1}).$$

Построение многочлена сводится к определению коэффициентов аі. . При записи коэффициентов пользуются конечными разностями.

Конечные разности первого порядка запишутся в виде:.

$$\Delta y_0 = y_1 - y_0;$$
 $\Delta y_1 = y_2 - y_1;$
...
 $\Delta y_{n-1} = y_n - y_{n-1},$

где уі – значения функции при соответствующих значениях хі.

Конечные разности высших порядков найдутся аналогично:

$$\Delta^{k} y_{0} = \Delta^{k-1} y_{1} - \Delta^{k-1} y_{0};$$

$$\Delta^{k} y_{1} = \Delta^{k-1} y_{2} - \Delta^{k-1} y_{1};$$
...
$$\Delta^{k} y_{n-2} = \Delta^{k-1} y_{n-1} - \Delta^{k-1} y_{n-2}.$$

Коэффициенты a0, a1,, an находятся из условия Pn(xi) = yi. Находим a0, полагая x=x0

$$a_0 = P(x_0) = y_0$$
.

Далее подставляя значения х=х1, получим:

$$P_n(x_1) = y_1 = y_0 + a_1(x_1 - x_0),$$

$$a_1 = \frac{y_1 - y_0}{x_1 - x_0} = \frac{\Delta y_0}{h}.$$

Для определения а2, полагая х=х2, получим

$$P_n(x_2) = y_2 = y_0 + \frac{\Delta y_0}{h} (x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) = y_0 + 2\Delta y_0 + a_2 2h^2;$$

$$a_2 = \frac{y_2 - y_0 - 2\Delta y_0}{2h^2} = \frac{y_2 - y_0 - 2y_1 + 2y_0}{2h^2} = \frac{y_2 - 2y_1 + y_0}{2h^2} = \frac{y_2 - 2y_1 + y_0}{2h^2} = \frac{(y_2 - y_1) - (y_1 - y_0)}{2h^2} = \frac{\Delta y_1 - \Delta y_0}{2h^2} = \frac{\Delta^2 y_0}{2!h^2}.$$

Общая формула для нахождения всех коэффициентов имеет вид

$$a_i = \frac{\Delta^i y_0}{i! h^i},$$

В результате

$$P_n(x) = y_0 + \frac{\Delta y_0}{1! \cdot h} (x - x_0) + \frac{\Delta^2 y_0}{2! \cdot h^2} (x - x_0) (x - x_1) + \dots$$
$$+ \frac{\Delta^n y_0}{n! \cdot h^n} (x - x_0) \dots (x - x_{n-1}).$$

Данный многочлен называют первым полиномом Ньютона

4. Листинг разработанной программы

• Интерполяционный многочлен Ньютона

```
def factorial(n):
  "Функция нахождения факториала"
  f = 1
  for i in range(2, n + 1):
     f *= i
  return f
def t call(t, n):
  "Функция расчета t * (t - i)"
  temp = t
  for i in range(1, n):
     temp = temp * (t - i)
  return temp
def t cal2(t, n):
  "Функция расчета t * (t + i)"
  temp = t
  for i in range(1, n):
     temp = temp * (t + i)
  return temp
# Задаем массив значений х
x = [1.340, 1.345, 1.350, 1.355, 1.360, 1.365, 1.37, 1.375, 1.380, 1.385, 1.390, 1.395, 1.400]
# Задаем массив значений у
y = [[0 \text{ for } i \text{ in } range(len(x))] \text{ for } j \text{ in } range(len(x))]
y[0][0] = 4.25562; y[1][0] = 4.35325; y[2][0] = 4.45522; y[3][0] = 4.56184;
y[4][0] = 4.67344; y[5][0] = 4.79038; y[6][0] = 4.91306; y[7][0] = 5.04192;
y[8][0] = 5.17744; y[9][0] = 5.32016; y[10][0] = 5.47069; y[11][0] = 5.62968; y[12][0] =
5.76999;
```

```
# Задаем массив значений аргумента
value = [1.32, 1.345, 1.353, 1.388, 1.41]
print("Интерполяция многочленом Ньютона:")
#Рассчитываем значения прямых разниц
for i in range(1, len(x)):
  for j in range(len(x) - i):
     y[j][i] = y[j+1][i-1] - y[j][i-1]
# Выводи таблицы значений х, у и прямых разниц
for i in range(len(x)):
  print("\%.3f" \%x[i], end = "\t")
  for j in range(len(x) - i):
     print("\%.3f" \%y[i][j], end = "\t")
  print("")
g = 0
while g in range(len(value)):
  if g <= len(value) / 2:   # Принятие решения какую формулу Ньютона использовать
    sum = y[0][0]
    t = (value[g] - x[0]) / (x[1] - x[0]) # Считаем <math>t = (x - x0) / h
    # Цикл для нахождения расчета значения в точке
     for i in range(1, len(x)):
       sum += (t call(t, i) * y[0][i]) / factorial(i)
  else:
     sum = y[len(x) - 1][0]
    t = (value[g] - x[len(x) - 1]) / (x[1] - x[0])
    for i in range(1,len(x)):
       sum = sum + (t cal2(t, i) * y[len(x) - (i+1)][i]) / factorial(i)
```

```
print("Значение в узле", value[g], "равно", round(sum, 5))
  g += 1
   • Интерполяция многочленом Лагранжа (равноотстоящие узлы)
# Задаеп массив значений х
x = [1.340, 1.345, 1.350, 1.355, 1.360, 1.365, 1.37, 1.375, 1.380, 1.385, 1.390, 1.395, 1.400]
# Задаеп массив значений у
y=[4.25562, 4.35325, 4.45522, 4.56184, 4.67344, 4.79038, 4.91306, 5.04192, 5.17744, 5.32016,
5.47069, 5.62968, 5.76999]
# Задаеп массив значений аргумента
value = [1.32, 1.345, 1.353, 1.388, 1.41]
print("Интерполяция многочленом Лагранжа (равноотстоящие узлы):")
for g in value: # Подставляем значения аргумента
  sum = 0
  for j in range(len(x)):
    proiz = 1
    for i in range(len(x)):
       if i != j:
         proiz *= (g - x[0] - i * (x[1] - x[0])) / ((x[1] - x[0]) * (j - i)) # Считаем (X - <math>X0 - i * h)
/(h * (j - i))
    sum += proiz * y[i]
  print("Значение в узле", g, "равно", round(sum, 5))
   • Интерполяция многочленом Лагранж (не равноотстоящие узлы)
# Задаеп массив значений х
x=[0.11, 0.15, 0.21, 0.60, 0.29, 0.35]
# Задаеп массив значений у
y=[9.05421, 6.61659, 4.6917, 1.86208, 3.35106, 2.73951]
# Задаеп массив значений аргумента
value = [0.332, 0.123]
print("Интерполяция многочленом Лагранж (не равноотстоящие узлы):")
for g in value: # Подставляем значения аргумента
```

```
sum = 0

for i in range(len(x)):

    proiz = 1

    for j in range(len(x)):

    if i != j:

        proiz *= (g - x[j]) / (x[i] - x[j]) # Считаем (X - Xj) / (Xi - Xj)

        sum += proiz * y[i]

print("Значение в узле", g, "равно", round(sum, 5))
```

5. Результаты работы программы

• Интерполяционный многочлен Ньютона

```
Интерполяция многочленом Ньютона:
1.340 4.256 0.098 0.004 0.000
                                  0.000
                                         0.000
                                                                                           -0.028
                                                -0.000
                                                       -0.000 0.000
                                                                     -0.000 -0.000
                                                                                  0.000
      4.353 0.102 0.005 0.000
                                  0.000 0.000
1.345
                                                -0.000 0.000 0.000
                                                                     -0.000 0.000 -0.028
     4.455 0.107 0.005 0.000
                                  0.000 -0.000 0.000
1.350
                                                              -0.000 0.000
                                                       0.000
                                                                            -0.028
     4.562 0.112 0.005 0.000
                                  0.000 -0.000 0.000
1.355
                                                       -0.000 0.000
                                                                     -0.028
      4.673 0.117 0.006 0.000 0.000 0.000 -0.000 -0.000 -0.028
1.360
      4.790 0.123 0.006 0.000 0.000 0.000 -0.000 -0.028
1.365
      4.913 0.129 0.007 0.001
                                  0.000 -0.000 -0.028
1.370
                                  0.000 -0.028
       5.042 0.136 0.007 0.001
1.375
      5.177 0.143 0.008 0.001
1.380
                                  -0.028
       5.320 0.151 0.008 -0.027
1.385
      5.471
1.390
             0.159
                    -0.019
1.395
       5.630
             0.140
1.400
     5.770
Значение в узле 1.32 равно -8.92615
Значение в узле 1.345 равно 4.35325
Значение в узле 1.353 равно 4.51862
Значение в узле 1.388 равно 5.40947
Значение в узле 1.41 равно 3.63162
```

• Интерполяция многочленом Лагранжа (равноотстоящие узлы)

```
Интерполяция многочленом Лагранжа (равноотстоящие узлы): Значение в узле 1.32 равно -8.92615 Значение в узле 1.345 равно 4.35325 Значение в узле 1.353 равно 4.51862 Значение в узле 1.388 равно 5.40947 Значение в узле 1.41 равно 3.63162
```

• Интерполяция многочленом Лагранж (не равноотстоящие узлы)

```
Интерполяция многочленом Лагранж (неравноотстоящие узлы):
Значение в узле 0.332 равно 2.88608
Значение в узле 0.123 равно 8.11038
```

6. Вывод

В ходе данной лабораторной работы были закреплены знания и умения по интерполированию функций с помощью многочленов Ньютона и Лагранжа