Automated Deduction Compendium SS2023

Ida Hönigmann

May 16, 2023

1 Introduction, SAT Solving

1.0.1 Proposition, Formulas

Def (Proposition). Proposition is a statement that can be either true or false.

Def (Propositional formula, Atom, Connective). Atoms are boolean variables (e.g. p,q).

- Atoms are formulas.
- \top , \perp are formulas.
- If A is a formula, then $\neg A$ is a formula.
- If $A_1, ..., A_n$ are formulas, then $(A_1 \wedge ... \wedge A_n)$ and $(A_1 \vee ... \vee A_n)$ are formulas.
- If A and B are formulas, then $A \to B$ and $A \leftrightarrow B$ are formulas.

The symbols $\top, \bot, \land, \lor, \neg, \rightarrow, \leftrightarrow$ are called logical connectives.

1.0.2 Precedence

Connective	Name	Precedence
Т	verum	
1	falsum	
\neg	negation	5
\wedge	conjunction	4
V	disjunction	3
\rightarrow	implication	2
\leftrightarrow	equivalence	1

1.0.3 Boolean Values, Interpretation

Def (Boolean values, Interpretation). There are two boolean values: true (1) and false (0). An interpretation for a set P of boolean variables is a mapping $I: P \to \{0, 1\}$.

1.0.4 Interpreting formulas

- $I(\top) = 1$ and $I(\bot) = 0$
- $I(A_1 \wedge ... \wedge A_n) = 1$ iff $I(A_i) = 1$ for all i
- $I(A_1 \vee ... \vee A_n) = 1$ iff $I(A_i) = 1$ for some i
- $I(\neg A) = 1 \text{ iff } I(A) = 0$
- $I(A_1 \to A_2) = 1$ iff $I(A_1) = 0$ or $I(A_2) = 1$
- $I(A_1 \leftrightarrow A_2) = 1$ iff $I(A_1) = I(A_2)$

1.0.5 Safisfiable, Valid, Model

Def (Satisfiable, Model, Valid). If I(A) = 1 then I satisfies A and I is a model of A, denoted by $I \models A$. A is satisfiable if some interpretation is a model of A. A is valid if every interpretation is a model of A. A and B are equivalent, denoted by $A \equiv B$, if they have the same models.

1.0.6 Connection valid, satisfiable

- A is valid iff $\neg A$ is unsatisfiable.
- A is satisfiable iff $\neg A$ is not valid.

1.0.7 Equivalent replacement

Def (Equivalent replacement). A[B] is a formula A with a fixed occurrence of subformula B. A[B'] is the formula A where every occurrence of B is replaced by B'.

```
Lemma 1 (Equivalent Replacement). Let I be an interpretation and I \models A_1 \leftrightarrow A_2. Then I \models B[A_1] \leftrightarrow B[A_2].
Let A_1 \equiv A_2. Then B[A_1] \equiv B[A_2].
```

1.0.8 Evaluating a formula

```
Algorithm 1. procedure evaluate(G,I)
input: formula G, interpretation I
output: the boolean value I(G)
begin
  forall atoms p occurring in G
   if I models p
      then replace all occurrences of p in G by 1;
      else replace all occurrences of p in G by 0;
  rewrite G into a normal form using the rewrite rules
  if G = 1 then return 1 else return 0
end
```

2 Splitting, Polarities

2.0.1 Soundness of Splitting

 A_p^{\perp} and A_p^{\perp} are obtained by replacing in A all occurrences of p by \perp and \top respectively.

Lemma 2. Let p be an atom, A be a formula, and I be an interpretation.

- If $I \not\models p$, then A is equivalent to A_p^{\perp} in I.
- If $I \models p$, then A is equivalent to A_p^{\top} in I.

Lemma 3. Let A be a formula and p an atom.

Then A is satisfiable iff at least one of the formulas A_p^{\top} and A_p^{\perp} is satisfiable.

2.0.2 Splitting

```
Algorithm 2. procedure split(G)
parameters: function select
input: formula G
output: ''satisfiable'' or ''unsatisfiable''
begin
   G := simplify(G) # rewrite rules
   if G = 1 then return ''satisfiable''
   if G = 0 then return ''unsatisfiable''
```

```
(p,b) := select(G)
case b of
1 =>
   if split(replace(G,p,1)) = ''satisfiable''
      then return ''satisfiable''
      else return split(replace(G,p,0))
0 =>
   if split(replace(G,p,0)) = ''satisfiable''
      then return ''satisfiable''
      else return split(replace(G,p,1))
end
```

2.0.3 Polarities

- $A|_{\epsilon} = A$ and $pol(A, \epsilon) = 1$
- If $A|\pi = B_1 \wedge ... \wedge B_n$ or $A|\pi = B_1 \vee ... \vee B_n$ then $A|_{\pi,i} = B_i$ and $pol(A, \pi, i) = pol(A, \pi)$.
- If $A|_p i = \neg B$ then $A|_{\pi,1} = B$ and $pol(A, \pi, 1) = -pol(A, \pi)$.
- If $A|_{\pi} = B_1 \to B_2$ then $A|_{\pi,1} = B_1$, $A|_{\pi,2} = B_2$ and $pol(A, \pi, 1) = -pol(A, \pi)$, $pol(A, \pi, 2) = pol(A, \pi)$.
- If $A|_{\pi} = B_1 \leftrightarrow B_2$ then $A|_{\pi,1} = B_1$, $A|_{\pi,2} = B_2$ and $pol(A, \pi, 1) = 0 = pol(A, \pi, 2)$.

2.0.4 Monotonic replacement

Denote with $A[B]_{\pi}$ formula A with the subformula at the position π replaced by B.

Lemma 4 (Monotonic Replacement). Let A, B, B' be formulas, I be an interpretation, and $I \models B \rightarrow B'$. If $pol(A, \pi) = 1$, then $I \models A[B]_{\pi} \rightarrow A[B']_{\pi}$. Likewise, if $pol(A, \pi) = -1$ then $I \models A[B']_{\pi} \rightarrow A[B]_{\pi}$.

2.0.5 Pure Atom

Def. Atom p is pure in a formula A, if either all occurrences of p in A are positive or all occurrences of p in A are negative.

Lemma 5 (Pure Atom). Let p have only positive occurrences in A and $I \models A$. Define $I' = I + (p \mapsto 1)$. Then $I' \models A$. Likewise, let p have only negative occurrences in A and $I \models A$. Define $I' = I + (p \mapsto 0)$. Then $I' \models A$.

Lemma 6 (Pure Atom). Let an atom p have only positive (respectively, only negative) occurrences in A. Then A is satisfiable iff A_p^{\top} (respectively, A_p^{\perp}) is satisfiable.

2.0.6 Splitting with pure atom optimization

```
Algorithm 3. procedure split(G)
parameters: function select
input: formula G
output: ''satisfiable'' or ''unsatisfiable''
begin
   G := simplify_with_pure_atoms(G)
   if G = 1 then return ''satisfiable''
   if G = 0 then return ''unsatisfiable''
    (p,b) := select(G)
   case b of
   1 =>
    if split(replace(G,p,1)) = ''satisfiable''
        then return ''satisfiable''
        else return split(replace(G,p,0))
   0 =>
```

```
if split(replace(G,p,0)) = ''satisfiable''
    then return ''satisfiable''
    else return split(replace(G,p,1))
end
```

3 CNF, DPLL, MiniSat

3.0.1 Clause

Def (Literal, Clause, Empty clause, Unit clause, Horn clause). A literal is either an atom p or its negation $\neg p$.

A clause is a disjunction of literals $L_1 \vee ... \vee L_n$.

The empty clause \square is false in every interpretation.

If n = 1 then the clause is called unit clause.

A horn clause is a clause with at most one positive literal.

3.0.2 CNF

Def (CNF). A formula A is in conjenctive normal form if it is \top , \bot or a conjunction of disjunctions of literals $\bigwedge_i \bigvee_j L_{i,j}$.

3.0.3 Naming

If A is a non-trivial subformula A. Introduce a new name n for it. Add formula $n \leftrightarrow A$ and replace subformula by its name in the original formula.

Lemma 7 (Naming). Let S be a set of formulas and A a formula. Let n be a boolean variable not occurring in S, nor in A.

Then S is satisfiable iff the set of formulas $S \cup \{n \leftrightarrow A\}$ is satisfiable.

3.0.4 Optimized CNF Transformation

Introduce a new name n every subformula B and replace it with the name. If the subformula occurs only positively then add $n \to B$. If it occurs only negatively then add $B \to n$ and if it does not occur only positively or negatively than add $n \leftrightarrow B$.

Lemma 8. A set of formulas is satisfiable iff the optimized CNF transformation of these formulas is satisfiable.

3.0.5 Unit propagation

Let S be a set of clauses. If S contains a unit clause L then remove from S every clause of the form $L \vee C$ and replace in S every clause of the form $\bar{L} \vee C$ by the clause C.

3.0.6 DPLL = splitting + unit propagation

```
Algorithm 4. procedure DPLL(S)
input: set of clauses S
output: satisfiable or unsatisfiable
parameters: function select_literal
begin
S := propagate(S) # unit propagation
if S is empty then return satisfiable
if S contains 0 then return unsatisfiable
L := select_literals(S) # splitting
if DPLL(S union {L}) = satisfiable
then return satisfiable
else return DPLL(S union {not L})
end
```

Tautologies (e.g. $p \vee \neg p \vee C$) can be removed.

3.0.7 Pure literals

Def (Pure literal). A literal L in S is called pure if S contains no clauses of the form $\bar{L} \vee C$.

If L is a pure literal in S then all clauses containing this literal can be removed.

4 Random SAT, Horn clauses

4.0.1 Random Clause Generation

Fix a number n of boolean variables. Fix the length k of the clause. Choose k times a random literal $p_1, ..., p_n, \neg p_1, ..., \neg p_n$ with equal probability.

4.0.2 k-SAT

We can reduce SAT to 3-SAT by naming: Let $L_1 \vee L_2 \vee L_3 \vee L4 \vee ...$ be a clause with more then 3 literals. Then we can replace it with $L_1 \vee L_2 \vee n$ and $\neg n \vee L_3 \vee L4 \vee ...$ where n is a new variable. SAT is NP-complete. 2-SAT is decidable in linear time. 3-SAT is NP-complete.

4.0.3 Chaos Algorithm, GSAT, WSAT

```
Algorithm 5. procedure chaos(S)
input: set of clauses S
output: interpretation I such that I models S or don't know
parameters: positive interger max_tries
begin
  repeat max_tries times
    I := random interpretation
    if I models S then return I
  return don't know
end
Algorithm 6. procedure GSAT(S)
input: set of clauses S
output: interpretation I such that I models S or don't know
parameters: positive intergers max_tries, max_flips
begin
  repeat max_tries times
    I := random interpretation
    if I models S then return I
    repeat max_flips times
      p := a variable such that flip(I, p) satisfies the maximal number of clauses in S
      I = flip(I,p)
      if I models S then return I
  return don't know
Algorithm 7. procedure WSAT(S)
input: set of clauses S
output: interpretation I such that I models S or don't know
parameters: positive intergers max_tries, max_flips
  repeat max_tries times
    I := random interpretation
    if I models S then return I
    repeat max_flips times
      randomly select a clause C in S such that I does not model C
      randomly select a variable p in C
      I = flip(I,p)
      if I models S then return I
```

return don't know end

4.0.4 SAT of Horn clauses

Satisfiability of horn clauses can be decided using unit propagation.

5 First-Order Logic, Theories

5.0.1 Syntax

Def (Signature). A signature consists of

- a set of sorts (e.g. integers, arrays of rationals) denoted by α, β .
- constants, denoted by a, b, c. Each constant c has a sort α , written $c : \alpha$.
- function symbols, denoted by f, g. Each function symbol f has a type $\alpha_1 \times ... \times \alpha_n \to \alpha$.
- Predicate symbols, denoted by p,q. Each predicate symbol p has a type $\alpha_1 \times ... \times \alpha_n$.

Variables are not part of the signature, but do have sorts.

Def (Interpretation). An interpretation I maps

- each sort to a non-empty set, called the domain of this sort.
- each constant $c: \alpha$ to an element $c' \in I(\alpha)$.
- each variable $x : \alpha$ to an element $x' \in I(\alpha)$.
- each function symbol $f: \alpha_1 \times ... \times \alpha_n \to \alpha$ to a function $f': I(\alpha_1) \times ... \times I(\alpha_n) \to I(\alpha)$.
- each predicate symbol $p: \alpha_1 \times ... \times \alpha_n$ to a relation p' on $I(\alpha_1) \times ... \times I(\alpha_n)$.

Def (Term, Atomic Formula). Terms of the sort α are constants $c: \alpha$ or variables $x: \alpha$. If $t_1, ..., t_n$ are terms of the sorts $\alpha_1, ..., \alpha_n$ and $f: \alpha_1 \times ... \times \alpha_n \to \alpha$, then $f(t_1, ..., t_n)$ is a term of the sort α . An atomic formula is an expression $p(t_1, ..., t_n)$ where $p: \alpha_1 \times ... \times \alpha_n$ and $t_1, ..., t_n$ are terms of sorts $\alpha_1, ..., \alpha_n$.

Note that = and > are interpreted, but other symbols are uninterpreted.

Def (Formula, Quantifier, Bound, Free, Ground). Let A be a formula and x a variable, then $\forall x A$ and $\exists x A$ are formulas.

The symbols \forall , \exists are called quantifiers.

A variable occurring in a formula A is called bound, if it is in the scope of a quantifier, otherwise it is called free.

A formula is called ground or quantifier-free if it contains no occurrences of quantifiers.

Def (x-variants). Let \bar{x} be a sequence of variables. We say that two interpretations of the same signature Σ are \bar{x} -variants if they coincide on all symbols and all variables not occurring in \bar{x} .

Def (Extension of interpretation). Let I be an interpretation and t a term of sort α . Define an element $t^I \in I(\alpha)$ as follows.

- for constants $c: \alpha$ and variables $x: \alpha$ we have $c^I \iff I(c)$ and $x^I \iff I(x)$.
- $f(t_1,...,t_n)^I \iff f'(t_1^I,...,t_n^I).$
- $p(t_1,...,t_n)^I = 1 \iff (t_1^I,...,t_n^I) \in p^I$.
- for connectives as before, e.g. $(A \to B)^I \iff (A^I = 0 \lor B^I = 1)$
- $(\forall xA)^I = 1$ iff for all \bar{x} -variants I' of I we have $(A)^{I'} = 1$.
- $(\exists xA)^I = 1$ iff for some \bar{x} -variants I' of I we have $(A)^{I'} = 1$.

Def (Satisfiable, Valid). A formula A with free variables \bar{x} is said to be satisfiable in an interpretation I if for some \bar{x} -variant I' of A we have $I' \models A$.

 $A \ is \ satisfiable \ iff \ it \ is \ satisfiable \ in \ some \ interpretation.$

A formula A with free variables \bar{x} is said to be valid in an interpretation I if for every \bar{x} -variant I' of A we have $I' \models A$.

A is valid iff it is valid in every interpretation.

A is valid iff $\neg A$ is unsatisfiable.

5.0.2 Theory of Equality

The theory of equality is axiomatized by

• reflexivity, symmetry and transitivity:

```
x = x, x = y \rightarrow y = x, x = y \land y = z \rightarrow x = z
```

• congruence axioms for each function symbol f in Σ :

$$x_1 = y_1 \wedge ... \wedge x_n = y_n \rightarrow f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

• congruence axioms for each predicate symbol p of Σ :

$$x_1 = y_1 \wedge ... \wedge x_n = y_n \wedge p(x_1, ..., x_n) \to p(y_1, ..., y_n)$$

6 SMT, Theory of Equality, DPLL(T)

6.0.1 Sat modulo theory

Def (T-interpretation, satisfiable modulo theory). Let \mathcal{T} be a theory axiomatized by $A_{\mathcal{T}}$. An interpretation I with $I \models A_{\mathcal{T}}$ then I is called a \mathcal{T} -interpretation.

A formula F is valid in T if F is valid in every T-interpretation.

A formula F is satisfiable in T if there exists a T-interpretation which satisfies F.

6.0.2 Congruence Closure

We can rewrite predicates into formulas (e.g. $p(x) \land \neg q(x,y)$ gets rewritten to $f_p(x) = t \land f_q(x,y) \neq t$).

Def (congruence class). The congruence class of $t \in S$ under the congruence relation R is $[t]_R = \{t' \in S | tRt' \}$.

```
Algorithm 8. procedure CongruenceClosure(F)
```

```
input: F is s1=t1 & ... & sn = tn & ~s(n+1)=t(n+1) & ... & ~sm=tm
output: satisfiable or unsatisfiable
parameters: function subterm_set
begin
   SF := subterm_set(F)
   R := {sRs | s in SF} union {{s} | s in SF}
   for every si = ti in F
      union si and ti in R
      propagate by function congruence
   if sjRtj for any j=n+1,...,m then return unsatisfiable
   else return satisfiable
end
```

6.0.3 DPLL

For non-unit clauses in any theory:

- 1. Abstract the problem by renaming every literal in the formulas.
- 2. Use a SAT solver to find a model.
- 3. If no model was found return unsat.

- 4. If a model was found use it to get a unit clause version of the original problem and solve it.
- 5. If it has a solution return sat.
- 6. If it does not have a solution rule out the sat model and jump to step 2.

7 Theory of Arrays, Theory Combination, Nelson-Oppen, Z3

7.0.1 Theory of arrays

```
The theory of arrays \mathcal{T}_A is defined by the signature \{read, write\} and the axioms x = y \to read(write(A, x, v), y) = v and x \neq y \to read(write(A, x, v), y) = read(A, y). Reduce \mathcal{T}_A to \mathcal{T}_E by
```

- If F contains no write terms, replace read(A, x) with $f_A(x)$ in F.
- If F contains write terms (read(write(A, x, v), y))
 - 1. replace F by $x = y \wedge F[v]$ where F[v] is the formula obtained by replacing read(write(A, x, v), y) by v in F. If this is satisfiable return sat. Else try:
 - 2. replace F by $x \neq y \land F[read(A, y)]$ where F[read(A, y)] is the formula obtained by replacing read(write(A, x, v), y) by read(A, y) in F. If this is satisfiable return sat. Else return unsat.

7.0.2 Combining theories

```
Algorithm 9. procedure SeparatingReasoning(F)
input: formula F in T1 union ... union Tn
output: equisatisfiable formulas F1 in T1, ..., Tn in Tn
assumptions: theory signatures S1, ..., Sn are disjoint
parameters: function head(t) returning the root symbol of a term t
begin
repeat as long as possible
if f in Si and head(t) in Sj with ~i=j:
    rewrite F[f(t_1,...,t,...,tm)] into F[f(t1, ..., c, ..., tm)] & c=t where c is a new variable
if p in Si and head(t) in Sj with ~i=j:
    rewrite F[p(t_1,...,t,...,tm)] into F[p(t1, ..., c, ..., tm)] & c=t where c is a new variable
if head(s) in Si and head(t) in Sj with ~i=j:
    rewrite F[s=t] into F[s=c] & c=t where c is a new variable
end repeat
return modified F as F1 & ... & Fn with each Fi in Ti
```

This only works if the theories have disjoint signatures and if each theory is stably infinite.

Def (stably infinite, convex). A theory \mathcal{T} with signature Σ is stably infinite if for every satisfiable formula $F \in \mathcal{T}$ there exists some \mathcal{T} interpretation such that $I \models F$ and I has a domain of infinite cardinality. A theory \mathcal{T} is convex if for every formula $F \in \mathcal{T}$ such that F is a conjunction of \mathcal{T} -literals: if $F \to \bigvee_{j=1}^k (u_j = v_j)$ then $F \to u_j = v_j$ for some $j \in \{1, ..., k\}$.

Both $\mathcal{T}_{\mathbb{Z}}$ and \mathcal{T}_A are not convex, but \mathcal{T}_E and \mathcal{T}_Q are.

7.0.3 Exchange of equality between theories

For a convex theory its decision procedure discovers a new equality u = v for shared u, v. Pass this new equality to the decision procedure of the other theories.

For a non-convex theory its decision procedure discovers a disjunction of new equalities $\bigvee_k u_k = v_k$ for shared u_k, v_k . Split the disjunction and exchange equalities along multiple branches.

8 First-Order Theorem Proving, TPTP, Inference Systems

8.0.1 TPTP Syntax

fof(name, axiom/hypothesis/conjecture,
 formula).

FOL	TPTP	
\top, \bot	\$false,\$true	
$\neg a$	~a	
$a_1 \wedge \wedge a_n$	a1&&an	
$a_1 \vee \vee a_n$	a1 an	
$a_1 \rightarrow a_2$	a1=>a2	
$(\forall x_1)(\forall x_n)a$![X1,,Xn]:a	
$(\exists x_1)(\exists x_n)a$?[X1,,Xn]:a	

8.0.2 Inference System

Def (Inference, Inference rule, Inference system, Derivation, Proof). An inference has the form

$$\frac{F_1...F_n}{G}$$

where $n \geq 0$ and $F_1, ..., F_n, G$ are formulas. G is called the conclusion of the inference. $F_1, ..., F_n$ are called the premises.

An inference rule R is a set of inferences. Every inference $I \in R$ is called an instance of R.

An Inference system \mathbb{I} is a set of inference rules.

Axiom is a inference rule with no premises.

A derivation in an inference system \mathbb{I} is a tree built from inferences in \mathbb{I} . If the root of this derivation is E, we say it is a derivation of E. A derivation of E from $E_1, ..., E_m$ is a finite derivation of E whose every leaf is either an axiom or one of the expressions $E_1, ..., E_m$.

A proof of E is a finite derivation whose leaves are axioms.

Def (Soundness, Completeness). An inference is sound if the conclusion is a logical consequence of its premises.

An inference system is sound if every inference rule in this system is sound.

An inference system is complete, if for every unsatisfiable S there exists a derivation of \square from S in the inference system.

8.0.3 Ground Binary Resolution Inference System

 \mathbb{BR} consists of two inference rules:

$$\frac{p \vee C_1 \quad \neg p \vee C_2}{C_1 \vee C_2}(BR) \qquad \frac{L \vee L \vee C}{L \vee C}(Fact)$$

 \mathbb{BR} is sound.

 \mathbb{BR} with selection:

$$\frac{\underline{p} \vee C_1 \quad \underline{\neg p} \vee C_2}{C_1 \vee C_2}(BR) \qquad \frac{\underline{p} \vee \underline{p} \vee C}{p \vee C}(Fact) \qquad \frac{\underline{\neg p} \vee \underline{\neg p} \vee C}{\neg p \vee C}(Fact)$$

8.0.4 Literal Orderings

Def (well-founded, well-behaved). > is called a well-founded ordering on atoms, if there exists no infinite decreasing chain of atoms.

For a fixed ordering > a well-behaved selection function selects either a negative literal or all maximal literals w.r.t. > must be selected.

We can extend an ordering on atoms to one on literals by $p > q \implies \neg p > p > \neg q > q$.

 \mathbb{BR} with selection is complete for every well-behaved selection function.

- 9 Selection functions, Saturation, Fairness and Redundancy
- 10 Redundancy, First-Order Reasoning with Equality
- 11 Ground Superposition, Term Orderings
- 12 Unification and Lifting
- 13 Non-Ground Superposition