

Plotkin bound & Hadamard design

Introduction

Example 10 In a botanical classifier, a plant is identified by n features. Each feature can either be present or absent. A classifier is considered to be good if any two plants have **less than half** of their features in common. Prove that a good classifier cannot describe **more than** n+1 plants for odd n, or $\frac{n}{2}+1$ plants for even n.

Here we may rephrased the question in the language of coding theory,

What is the largest binary code with length n and distance $\lfloor n/2 \rfloor + 1$?

▼ Proof

We denote S as the set of binary code. For any possible S, m:=|S|.

Let X be a random variable such that $X_i=1$ whenever the chosen pair differs in the ith entry, $X_i=0$ otherwise. It is clear that $X\sim B(0,1)$. The expectation of pairs in Sdistinct in the i-th entry is

$$\mathbb{E}X_i=rac{m_i(m-m_i)}{{m\choose 2}}\leq rac{m^2}{4\cdot m(m-1)/2}=rac{m}{2(m-1)}.$$

Here m_i is the number of $v \in S$ taking value 1 in the i-th entry. Since $\sum_{i=1}^n X_i$ is the total number of entries where pairs taking different values, we shall exclude those msuch that

$$\mathbb{E}\sum_{i=1}^n X_i \leq rac{mn}{2(m-1)} < rac{n+1}{2} \quad ext{when n is odd,}$$

$$\mathbb{E}\sum_{i=1}^n X_i \leq rac{mn}{2(m-1)} < rac{n}{2} + 1 \quad ext{when n is even.}$$

Therefore, $\sup |S| \leq n+1$ for odd n, $\sup |S| \leq n/2$ for even n.

Question: When the equality holds? IT IS ALREADY ANSWERED in Plotkin bound & Hadamard design.

Basic definitions

See this page to know baisc definitions to coding theory.

The main theorem

Theorem The theorem says that

The maximum number of a length n binary code with minimum distance $\lceil n/2 \rceil$ is

1.
$$4k + 4$$
, if $n = 4k + 3$;

2.
$$2k + 2$$
 if $n = 4k + 2$

3.
$$2k+2$$
. if $n=4k+1$:

2.
$$2k+2$$
, if $n=4k+2$;
3. $2k+2$, if $n=4k+1$;
4. $4k+4$, if $n=12k+8$;
5. $4k+2$, if $n=12k+4$;

5.
$$4k + 2$$
, if $n = 12k + 4$

6.
$$4k$$
, if $n = 12k$.

We denote them by Case I to VI.

Theorem* (in equivalent statement) Let $\Sigma^n=\{\pm 1\}^n$. Then for each set $S\subset \Sigma^n$ such that

$$\forall x,y \in S, \langle x,y \rangle < 0,$$

we have

- 1. $|S| \le 4k + 4$, if n = 4k + 3,
- 2.

Construction

Definition We call $H_m \in \{\pm 1\}^{m imes m}$ an Hadamard matrix whenever $H_m \cdot H_m^T = m \cdot I$.

Theorem The Hadamard matrix H_m does not exist if $m \notin (4\mathbb{N} \cup \{1,2\})$.

▼ Proof of the theorem

Consider the first 3 rows, i.e.,

$$\begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ a_1 & a_2 & \cdots & a_{n-1} & a_n \\ b_1 & b_2 & \cdots & b_{n-1} & b_n \end{pmatrix}.$$

Let $N_{\delta,arepsilon}$ denotes the the number of pairs $(a_j,b_j)=(\delta,arepsilon)$. Here $\delta,arepsilon\in\{\pm 1\}$. Then

- $N_{1,arepsilon}=N_{-1,arepsilon}$ since $r_1\perp r_2$,
- $N_{\delta,1} = N_{\delta,-1}$ since $r_1 \perp r_3$,
- $N_{1,1}+N_{-1,-1}=N_{1,-1}+N_{-1,1}$ since $r_2\perp r_3$.

As a result, $N_{arepsilon,\delta}=rac{n}{4}.$ Thus n is a mutiple of 4.

Conjecture There is a Hadamard matrix of order n=4k for every integer $k\geq 1$.

Fact 1 The undecided cases for n < 2000 are 668, 716, 892, 1004, 1132, 1244, 1388, 1436, 1676, 1772, 1916, 1948, 1964.

Fact 2 The Kronecker product of Hadamard matrices is also an Hadamard matrix. Especially, if the Hadamard matrix of q exists, then $H_{2^{\ell} \cdot q}$ exists for each $\ell \in \mathbb{N}$. One feasible construction is by iterating $\otimes \binom{1-1}{1-1}$.

Notation Let $H_m=(h_{ij})_{m imes m}$ be an Hadamard matrix.

Without the loss of generality, take $h_{i,j}=1$ if $\min(i,j)=1$.

- Let H_m' be an m imes (m-1) matrix given by deleting the first column of H_m .
- Let H_m'' be an $\frac{m}{2} \times (m-2)$ matrix given by deleting all rows from H_m' whose first entry is -1. Then deleting the first column of the remainder.

Example For instance,

$$H_4' = \begin{pmatrix} \begin{matrix} \chi & 1 & 1 & 1 \\ \dot{\chi} & 1 & -1 & -1 \\ \dot{\chi} & -1 & 1 & -1 \\ \dot{\chi} & -1 & -1 & 1 \end{pmatrix},$$

$$H_4'' = \begin{pmatrix} \chi & \chi & 1 & 1 \\ \chi & \chi & -1 & -1 \\ \chi & > \zeta & \chi & > \zeta \\ \chi & > \zeta & > \zeta & \chi \end{pmatrix}.$$

Construction

▼ The **theorem** says that

The maximum number of a length n binary code with minimum distance $\lceil n/2 \rceil$ is

1.
$$4k + 4$$
, if $n = 4k + 3$;

2.
$$2k+2$$
, if $n=4k+2$;

3.
$$2k + 2$$
, if $n = 4k + 1$;

4.
$$4k + 4$$
 , if $n = 12k + 8$;

5.
$$4k + 2$$
, if $n = 12k + 4$;

6.
$$4k$$
, if $n = 12k$.

We denote them by Case I to VI.

▼ Construction of Case I

Consider the set of rows in H'_{n+1} .

lacktriangle Example of n=7

Here the **black**-coloured part is H_8' .

$$\begin{pmatrix} X & X & X & X & X & X & X & X \\ X & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ X & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ X & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ X & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ X & 1 & 1 & 1 & -1 & -1 & -1 & 1 \\ X & -1 & 1 & -1 & -1 & -1 & 1 & 1 \\ X & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ X & -1 & -1 & 1 & -1 & 1 & 1 & -1 \end{pmatrix} .$$

▼ Construction of Case II

Consider the set of rows in H_{n+2}'' .

lacktriangledown Example of n=6

Here the **black**-coloured part is H_8'' .

▼ Construction of Case III

- \blacksquare Take the set of rows in of H_{n+3}'' .
- 2 Delete any column in what is obtained in 1.
- lacktriangle Example of n=5
 - \blacksquare Here the **black**-coloured part is H_8'' .

The remainder is our desired result.

▼ Construction of Case IV

- 1 Let $m=rac{n+4}{3}$.
- \square Concatenate 3 copies of H'_m horizontally.
- 3 Delete any column in what is obtained in 2.
- lacktriangle Example of n=8
 - \blacksquare As n=8, m=4.
 - \square Concatenate 3 copies of H'_4 horizontally, i.e.,

Delete any column, e.g.,

▼ Construction of Case V

- \blacksquare Let $a=rac{n+8}{3}$, $b=rac{2(n+2)}{3}$.
- $oxed{2}$ Concatenate first $rac{b}{2}$ rows of H_a' horizontally with H_b''
- 3 Delete any column of the outcome in 2.
- lacktriangledown Example of n=4
 - \blacksquare As n=4, a=b=4.
 - \square Concatenate first 2 rows of H_4' horizontally with H_4'' . i.e.,

$$\begin{pmatrix} \chi & 1 & 1 & 1 & | & \chi & \chi & 1 & 1 \\ \chi & 1 & -1 & -1 & | & \chi & \chi & -1 & -1 \\ \chi & \swarrow & \chi & \swarrow & | & \chi & \swarrow & \chi & \searrow \\ \chi & \swarrow & \chi & | & \chi & \swarrow & \chi & \chi & \chi \end{pmatrix}.$$

3 Delete any column, e.g.,

$$\begin{pmatrix} \chi & \chi & 1 & 1 & | & \chi & \chi & 1 & 1 \\ \chi & \chi & -1 & -1 & | & \chi & \chi & -1 & -1 \\ \chi & \chi & \chi & \chi & | & \chi & \chi & \chi \\ \chi & \chi & \chi & \chi & | & \chi & \chi & \chi & \chi \end{pmatrix}.$$

▼ Construction of Case VI

- 1 Let $a = \frac{n}{3}$, $b = \frac{2n}{3} + 4$.
- \square Concatenate first a rows of H_b'' horizontally with H_a' .
- 3 Delete any column of the outcome in 2.
- lacktriangledown Example of n=12
 - $oxed{1}$ As n=12, a=4 and b=12.
 - ▼ Hadamard matrix H_{12}

The first 4 column of H_{12}'' is *marked*.

1	1	1	1	1	1	1
1	1	-1	-1	1	-1	1
1	1	-1	-1	-1	1	-1
1	1	1	-1	-1	-1	1
1	1	1	1	-1	-1	-1
1	1	-1	1	1	1	-1
1	-1	1	-1	1	1	1
1	-1	-1	1	-1	1	1
1	-1	1	-1	-1	1	-1
1	-1	-1	1	-1	-1	1
1	-1	-1	-1	1	-1	-1
1	-1	1	1	1	-1	-1

 ${\color{red} {\bf 2}}$ Concatenate first 4 rows of $H_{12}^{\prime\prime}$ horizontally with $H_4^\prime.$ i.e.,

Delete any column, e.g.,

▼ Hadamard 矩阵拷贝懒人包

See here for data basis of Hadamard matrices.

以下给出一种处理 Hadamard 矩阵的捷径. 以构造 $H_{12}^{\prime\prime}$ 的前四行与 H_4^\prime 之并列复合为例:

- \blacksquare 在数据库中搜寻 H_{12} , 例如<u>此处</u>.
- 2 将 1 中结果复制至 spreadsheet 文件中, 例如 Microsoft excel.
- 3 使用 数据->分列->分隔符号(D)->空格 指令进行分列.

- 4 采用 筛选, 排序 等指令调整矩阵. 若需调换 1<->(-1), 可考虑 (-1)->2, 1->(-1), 2->1 三步.
- 6 将所得者拷贝至 记事本, 依个人喜好替换空格与 tab 缩进.