1. Symmetry of QM

- 2. Theory of Angular moventum.
- 3. Scattering theory

Symmetry of transformation of space \mathbb{R}^3 wave function $\psi(\mathbb{P})$ $\overline{\mathbb{P}} \in \mathbb{R}^3$. consider linear transf. $\mathbb{Q}: \mathbb{R}^3 \to \mathbb{R}^3$ $\mathbb{Q} = \overline{\mathbb{P}}'$ $\mathbb{P}: 3d$ column vector $\mathbb{Q}: 3 \times 3$ matrix

Q is a symmetry of the space if it preserves the inner product

$$\vec{r}_{i}$$
· \vec{r}_{i} = (Q \vec{r}_{i}).(Q \vec{r}_{i})

in particular, a presences the distance in R3

old wave
function Q induces transforaction of 4(2) s.t. +(r) =+(r) 4'(QP) = 4(P) \mathcal{T}^{\prime} \mathcal{A}^{-1} new were 4'(r) = +(0) function. = D(a)+(2) $Q: \mathbb{R}^3 \to \mathbb{R}^3$ $p(s): \mathcal{H} \to \mathcal{H}$ $\mathcal{H} = L^2(\mathbb{R}^3, d^3x)$ 14> -> 14/> 4(2) = p(0) 4(2) = 4 (Q 7) properties of D(Q) linear sperator on H. · unitarity: <4,14> = \(d^3\varphi\) \(\frac{4}{1.60}\) \(\frac{2}{2}\varphi^2\) change of $= \int d^{3}(Q_{7}^{2}) \frac{1}{4(Q^{2})} + Q^{2}(Q^{2})$ variable

7 > Q1 ?

Lemma detQ =
$$\pm 1$$

P\$ $\vec{r} \cdot \vec{r} = S_{x} r^{2} r^{3}$
 $Q\vec{r} \cdot Q\vec{r}' = S_{y} Q^{2}_{x} v^{x} Q^{3}_{y} r^{y} u^{y}$
 $\vec{Q}^{T} Q = 1_{3x3}$
 $\vec{Q}^{T} = \vec{Q}^{T}$
 $\vec{Q}^{T} = \vec$

=> D(Q) is unitary operator.

· Consider 2 transformations Q1, Q2 2 [R3 -> R3

$$Q = Q_{1} \circ Q_{2}$$

$$Q = Q_{1} \circ Q_{2} \circ Q_{2$$

it we view to be a map from symmetry transfor R3 to linear operators on H.

D respects the product of transf.

•
$$D(Q)D(Q^{-1}) = D(QQ^{-1}) = D(1_{3\times3})$$

 $D(1) + (P) = 4(1P) = 4(P)$
 $D(1) = 1_{10}$

$$D(Q)D(Q^{-1}) = 1_{H}$$

$$D(Q)^{-1} = D(Q^{-1})$$
Drespects
the inverse,

Det Agroup is a set G together with a binary speration

a.b C G & a, b C G

called group multiplication

5, t (1) (a.b).c = a.(b.C) & a.b.c C G

(associativity)

(2) $\exists ! e \in G$, s.t. $e \cdot a = a + a \in G$ (identity)

(3) $\forall a \in G$, $\exists a \vdash \in G$ s.t. $a * a \vdash = a \vdash . a$ = e

(inverse)

Example (1) 12/503 with multiplication

(2) set of symmetry transf. Q's on R3
multiplication; composition of Q, Q2
Q; 3x3 metrix - associativity
* identity 13x3
inverse $Q^TQ = 1$ $Q^{-1} = Q^T$
the set of all 3×3 natrices with $Q^{-1}=Q^{-7}$
is called O(3) group
(orthogonal group on R3)
(3) We have found a set of D(Q) unition operation
multiplication, composition of operators D(Qi)D(Q product) D(Q) operators — associativity identity now show D(Qi)
· D(0) operators -> associativity
· identity operators D(1,x3) = 1He

$$D: O(3) \rightarrow D(O(3))$$
 is a homoworphism

in terms of Dwar bra-ket 14> EH 4(7) = (7/4> R (F) = F (F) 4'(7) = <7/4'> 14'>=D(a)14> 4 (P) = <P | D(Q) 14> = <D(0) +> 4(0-17) = <0-1714> < D(a-1) 2/4> <41014> = <0+14> $D(Q)^{+} = D(Q)^{-1} = D(Q^{-1})$ D(Q")(P) = 1Q"P> D(Q) 17)=1Q7)

D(Q) +(F) = 4(Q-1F)

Q > D(Q) -> transformations

transf of operators on

on IR3 on H

A D(D) 147 145

D(Q): H -> Ha,

A A'

odd new

 $\forall 147 \in \mathcal{H}_{(a)}$, $D(a)^{-1}147 \in \mathcal{H}_{(a)}$ $\hat{A} D(a)^{-1}147 \in \mathcal{H}_{(a)}$ $(D(a) \hat{A} D(a)^{-1}147 \in \mathcal{H}_{(a)}$

$$\hat{A}' := D(a) \hat{A} D(a)^{-1}$$

$$\hat{A} \mapsto \hat{A}' \quad \text{transf. of operators induced}$$
by \hat{Q}

$$\hat{Q} \Rightarrow D(\hat{Q}) \Rightarrow \quad \text{transf. of operators}$$

$$\hat{Q} = \hat{V}' \quad D(\hat{Q}) = \hat{A}' \quad D(\hat{Q}) \hat{A} \quad D(\hat{Q}) = \hat{A}'$$

$$= 14'$$

$$\hat{R} = \hat{R}, \hat{e}_{x} + \hat{R}, \hat{e}_{y} + \hat{R}, \hat{e}_{z}$$

$$\hat{R} = \hat{R}, \hat{e}_{x} + \hat{R}, \hat{e}_{y} + \hat{R}, \hat{e}_{z}$$

$$\hat{R} = \hat{R}, \hat{e}_{x} + \hat{R}, \hat{e}_{y} + \hat{R}, \hat{e}_{z}$$

$$\hat{R} = \hat{R}, \hat{e}_{x} + \hat{R}, \hat{e}_{y} + \hat{R}, \hat{e}_{z}$$

$$\hat{R} = \hat{R}, \hat{e}_{x} + \hat{R}, \hat{e}_{y} + \hat{R}, \hat{e}_{z}$$

$$\hat{R} = \hat{R}, \hat{e}_{x} + \hat{R}, \hat{e}_{y} + \hat{R}, \hat{e}_{z}$$

$$\hat{R} = \hat{R}, \hat{e}_{x} + \hat{R}, \hat{e}_{y} + \hat{R}, \hat{e}_{z}$$

$$\hat{R} = \hat{R}, \hat{e}_{x} + \hat{R}, \hat{e}_{y} + \hat{R}, \hat{e}_{z}$$

$$\hat{R} = \hat{R}, \hat{e}_{x} + \hat{R}, \hat{e}_{y} + \hat{R}, \hat{e}_{z}$$

$$\hat{R} \rightarrow D(Q) \hat{R} D(Q)^{-1} = \hat{R}^{1}$$

$$\hat{R} |\hat{F}\rangle = \hat{F}|\hat{F}\rangle$$

$$D(Q)^{-1} D(Q)$$

$$D(Q) \hat{R} D(Q)^{-1} D(Q) |\hat{F}\rangle = D(Q) \hat{F}|\hat{F}\rangle$$

$$\hat{R}^{1} D(Q) |\hat{F}\rangle = \hat{F} D(Q) |\hat{F}\rangle$$
New objectote
$$\hat{R}^{1} |\hat{Q}\hat{F}\rangle = \hat{F} |\hat{Q}\hat{F}\rangle$$

$$\hat{R}^{2} |\hat{R}\hat{F}\rangle = \hat{F} |\hat{R}\hat{F}\rangle$$

$$\hat{R}^{3} |\hat{R}\hat{F}\rangle = \hat{R} |\hat{R}\hat{F}\rangle$$

$$\hat{R}^{4} |\hat{R}\rangle$$

$$\frac{\hat{R}' = Q^{-1} \hat{R}}{P(Q) \hat{R} D(Q)^{-1} = Q^{-1} \hat{R}}$$