In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\ma
Out[2]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL
0	2012-09-01 01:00:00	NaN	0.2	NaN	NaN	7.0	18.0	NaN	NaN	NaN	2.0	NaN	NaN
1	2012-09-01 01:00:00	0.3	0.3	0.7	NaN	3.0	18.0	55.0	10.0	9.0	1.0	NaN	2.4
2	2012-09-01 01:00:00	0.4	NaN	0.7	NaN	2.0	10.0	NaN	NaN	NaN	NaN	NaN	1.5
3	2012-09-01 01:00:00	NaN	0.2	NaN	NaN	1.0	6.0	50.0	NaN	NaN	NaN	NaN	NaN
4	2012-09-01 01:00:00	NaN	NaN	NaN	NaN	1.0	13.0	54.0	NaN	NaN	3.0	NaN	NaN
210715	2012-03-01 00:00:00	NaN	0.6	NaN	NaN	37.0	84.0	14.0	NaN	NaN	NaN	NaN	NaN
210716	2012-03-01 00:00:00	NaN	0.4	NaN	NaN	5.0	76.0	NaN	17.0	NaN	7.0	NaN	NaN
210717	2012-03-01 00:00:00	NaN	NaN	NaN	0.34	3.0	41.0	24.0	NaN	NaN	NaN	1.34	NaN
210718	2012-03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	44.0	36.0	NaN	NaN	NaN	NaN	NaN
210719	2012-03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	56.0	40.0	18.0	NaN	NaN	NaN	NaN

210720 rows × 14 columns

In [3]:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 210720 entries, 0 to 210719 Data columns (total 14 columns):

	#	Column	Non-Null Count	Dtype		
-						
	0	date	210720 non-null	object		
	1	BEN	51511 non-null	float64		
	2	CO	87097 non-null	float64		
	3	EBE	51482 non-null	float64		
	4	NMHC	30736 non-null	float64		
	5	NO	209871 non-null	float64		
	6	NO_2	209872 non-null	float64		
	7	0_3	122339 non-null	float64		
	8	PM10	104838 non-null	float64		
	9	PM25	52164 non-null	float64		
	10	S0_2	87333 non-null	float64		
	11	TCH	30736 non-null	float64		
	12	TOL	51373 non-null	float64		
	13	station	210720 non-null	int64		
d	type	es: float@	54(12), int64(1),	object(1)		

memory usage: 22.5+ MB

In [4]: b=a.fillna(value=188)

Out[4]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	TCH
0	2012-09-01 01:00:00	188.0	0.2	188.0	188.00	7.0	18.0	188.0	188.0	188.0	2.0	188.00
1	2012-09-01 01:00:00	0.3	0.3	0.7	188.00	3.0	18.0	55.0	10.0	9.0	1.0	188.00
2	2012-09-01 01:00:00	0.4	188.0	0.7	188.00	2.0	10.0	188.0	188.0	188.0	188.0	188.00
3	2012-09-01 01:00:00	188.0	0.2	188.0	188.00	1.0	6.0	50.0	188.0	188.0	188.0	188.00
4	2012-09-01 01:00:00	188.0	188.0	188.0	188.00	1.0	13.0	54.0	188.0	188.0	3.0	188.00
210715	2012-03-01 00:00:00	188.0	0.6	188.0	188.00	37.0	84.0	14.0	188.0	188.0	188.0	188.00
210716	2012-03-01 00:00:00	188.0	0.4	188.0	188.00	5.0	76.0	188.0	17.0	188.0	7.0	188.00
210717	2012-03-01 00:00:00	188.0	188.0	188.0	0.34	3.0	41.0	24.0	188.0	188.0	188.0	1.34
210718	2012-03-01 00:00:00	188.0	188.0	188.0	188.00	2.0	44.0	36.0	188.0	188.0	188.0	188.00
210719	2012-03-01 00:00:00	188.0	188.0	188.0	188.00	2.0	56.0	40.0	18.0	188.0	188.0	188.00

210720 rows × 14 columns

```
Out[5]: Index(['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25', 'SO_2', 'TCH', 'TOL', 'station'], dtype='object')
```

In [6]: c=b.head(11)

Out[6]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL
0	2012-09-01 01:00:00	188.0	0.2	188.0	188.00	7.0	18.0	188.0	188.0	188.0	2.0	188.00	188.0
1	2012-09-01 01:00:00	0.3	0.3	0.7	188.00	3.0	18.0	55.0	10.0	9.0	1.0	188.00	2.4
2	2012-09-01 01:00:00	0.4	188.0	0.7	188.00	2.0	10.0	188.0	188.0	188.0	188.0	188.00	1.5
3	2012-09-01 01:00:00	188.0	0.2	188.0	188.00	1.0	6.0	50.0	188.0	188.0	188.0	188.00	188.0
4	2012-09-01 01:00:00	188.0	188.0	188.0	188.00	1.0	13.0	54.0	188.0	188.0	3.0	188.00	188.0
5	2012-09-01 01:00:00	0.2	0.2	1.0	188.00	1.0	9.0	57.0	14.0	188.0	1.0	188.00	0.2
6	2012-09-01 01:00:00	0.4	0.2	0.8	0.24	1.0	7.0	57.0	11.0	7.0	2.0	1.33	0.6
7	2012-09-01 01:00:00	188.0	188.0	188.0	0.11	1.0	2.0	65.0	188.0	188.0	188.0	1.18	188.0
8	2012-09-01 01:00:00	188.0	0.2	188.0	188.00	6.0	14.0	57.0	188.0	188.0	2.0	188.00	188.0
9	2012-09-01 01:00:00	188.0	0.2	188.0	188.00	1.0	7.0	188.0	13.0	188.0	1.0	188.00	188.0
10	2012-09-01 01:00:00	0.2	188.0	0.7	188.00	3.0	13.0	188.0	12.0	6.0	1.0	188.00	3.0

In [7]: d=c[['BEN','CO','EBE','NMHC','NO_2','O_3']]

Out[7]:

	BEN	СО	EBE	NMHC	NO_2	O_3
0	188.0	0.2	188.0	188.00	18.0	188.0
1	0.3	0.3	0.7	188.00	18.0	55.0
2	0.4	188.0	0.7	188.00	10.0	188.0
3	188.0	0.2	188.0	188.00	6.0	50.0
4	188.0	188.0	188.0	188.00	13.0	54.0
5	0.2	0.2	1.0	188.00	9.0	57.0
6	0.4	0.2	8.0	0.24	7.0	57.0
7	188.0	188.0	188.0	0.11	2.0	65.0
8	188.0	0.2	188.0	188.00	14.0	57.0
9	188.0	0.2	188.0	188.00	7.0	188.0
10	0.2	188.0	0.7	188.00	13.0	188.0

In [8]:

Out[8]: <AxesSubplot:>


```
In [14]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[14]:
                   Co-efficient
            BEN 5.588715e-11
             CO 1.000000e+00
            EBE -5.600700e-11
           NMHC 4.406879e-16
           NO_2 -2.105775e-15
In [15]: prediction=lr.predict(x_test)
Out[15]: <matplotlib.collections.PathCollection at 0x1b8e27d0310>
           175
           150
           125
           100
            75
            50
            25
                     25
                                75
                                     100
                                                      175
                                          125
                                                150
In [16]:
          1.0
In [17]:
In [18]: rr=Ridge(alpha=10)
Out[18]: Ridge(alpha=10)
In [19]:
Out[19]: 0.9999995643541453
In [20]: la=Lasso(alpha=10)
Out[20]: Lasso(alpha=10)
In [21]: -
Out[21]: 0.9999977145129909
```

In [22]:	a1=b.head(5000)													
Out[22]:		date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	T.
	0	2012-09-01 01:00:00	188.0	0.2	188.0	188.00	7.0	18.0	188.0	188.0	188.0	2.0	188.00	18
	1	2012-09-01 01:00:00	0.3	0.3	0.7	188.00	3.0	18.0	55.0	10.0	9.0	1.0	188.00	:
	2	2012-09-01 01:00:00	0.4	188.0	0.7	188.00	2.0	10.0	188.0	188.0	188.0	188.0	188.00	
	3	2012-09-01 01:00:00	188.0	0.2	188.0	188.00	1.0	6.0	50.0	188.0	188.0	188.0	188.00	18
	4	2012-09-01 01:00:00	188.0	188.0	188.0	188.00	1.0	13.0	54.0	188.0	188.0	3.0	188.00	18
	4995	2012-09-09 17:00:00	188.0	0.2	188.0	188.00	2.0	8.0	96.0	188.0	188.0	188.0	188.00	18
	4996	2012-09-09 17:00:00	188.0	188.0	188.0	188.00	2.0	5.0	99.0	188.0	188.0	3.0	188.00	18
	4997	2012-09-09 17:00:00	0.2	0.2	1.0	188.00	1.0	5.0	93.0	27.0	188.0	1.0	188.00	ı
	4998	2012-09-09 17:00:00	0.5	0.2	1.1	0.22	1.0	3.0	97.0	27.0	12.0	3.0	1.32	ı
	4999	2012-09-09 17:00:00	188.0	188.0	188.0	0.11	1.0	4.0	110.0	188.0	188.0	188.0	1.18	18
	5000 r	ows × 14 co	olumns											
In [23]:	e=a1[['BEN', '(0', '	EBE',	'NMHC'	, 'NO_	2','	0_3',						
In [24]:	f=e.i	loc[:,0:14	1]											
In [25]:		1 16 3	· · · · ·	•		(6)								
In [26]:	logr=	LogisticRe	gress	ion(ma	ax_ite	r=1000	0)							
		ticRegress												
In [27]:	from	sklearn.mo	del_s	electi	ion im	port t	rain	_test_	split					
In [28]:		0 00 00 40			22.22	44	7							
In [29]:	predi	ction=logr	.pred	ict(i))									
	[2807	9050]												

8 of 12

```
In [301: L
Out[30]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
               28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
               28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
               28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
              dtype=int64)
In [31]:
Out[31]: 0.0
In [32]:
Out[32]: 0.0
In [33]:
Out[33]: 0.95733333333333334
In [34]: | from sklearn.linear_model import ElasticNet
        en=ElasticNet()
        C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinate_d
        escent.py:530: ConvergenceWarning: Objective did not converge. You might want
        to increase the number of iterations. Duality gap: 5.37854093374016, toleranc
         e: 5.037333428315741
          model = cd_fast.enet_coordinate_descent(
Out[34]: ElasticNet()
In [35]:
         [ 2.18053242e-01 9.99868788e-01 -2.18377624e-01 -1.22495536e-05
          0.0000000e+00]
In [36]: ....
        0.07726383756725852
In [37]: prediction=en.predict(x_test)
        0.9999996066476035
In [38]: from sklearn.ensemble import RandomForestClassifier
        rfc=RandomForestClassifier()
Out[38]: RandomForestClassifier()
        parameters={'max_depth':[1,2,3,4,5],
         'min_samples_leaf':[5,10,15,20,25],
          'n_estimators':[10,20,30,40,50]
```

```
In [43]: from sklearn.tree import plot_tree
plt.figure(figsize=(80,50))
```

Out[43]: [Text(1674.0, 2378.25, 'X[10] <= -1.8\ngini = 0.958\nsamples = 2210\nvalue =</pre> [165, 145, 127, 146, 145, 136, 125, 132, 150, 153\n146, 147, 123, 160, 166, 1 66, 159, 165, 128, 154\n130, 141, 148, 143]'), Text(1116.0, 1698.75, 'gini = 0.0\nsamples = 96\nvalue = [165, 0, 0, 0, 0, $0, 0, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 0, 0, 0, 0, 0, 0, 0]'),$ Text(2232.0, 1698.75, X[6] <= 0.774 = 0.956 = 2114 = 211 $[0, 145, 127, 146, 145, 136, 125, 132, 150, 153 \n146, 147, 123, 160, 166, 16$ 6, 159, 165, 128, 154\n130, 141, 148, 143]'), Text(1116.0, 1019.25, X[5] < 0.691 = 0.916 = 1076 $[0, 145, 0, 0, 0, 134, 125, 0, 0, 153, 146, 0 \ n123, 159, 165, 0, 155, 0, 126, 0, 145, 0, 1$ 0, 128, 0, 0, 141]'), Text(558.0, 339.75, 'gini = 0.749\nsamples = 343\nvalue = [0, 145, 0, 0, 0, 134, 125, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 141]'), Text(1674.0, 339.75, 'gini = 0.874\nsamples = 733\nvalue = [0, 0, 0, 0, 0, 0]0, 0, 0, 0, 153, 146, 0, 123\n159, 165, 0, 155, 0, 126, 0, 128, 0, 0, 0]'), Text(3348.0, 1019.25, $X[3] <= -1.132 \le 0.91 \le 0.9$ $[0, 0, 127, 146, 145, 2, 0, 132, 150, 0, 0, 147 \n0, 1, 1, 166, 4, 165, 2, 15]$ 4, 2, 141, 148, 2]'), Text(2790.0, 339.75, 'gini = 0.029\nsamples = 88\nvalue = [0, 0, 0, 0, 0, 0, 0]0, 132, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 2, 0, 0, 0, 0]'), Text(3906.0, 339.75, 'gini = 0.901\nsamples = 950\nvalue = [0, 0, 127, 146, 145, 2, 0, 0, 150, 0, 0, 147\n0, 1, 1, 166, 4, 165, 0, 154, 2, 141, 148, 2]')]

From this observation I had observe that the ELASTICNET is a highest accuracy of 0.9999996066476035

Untitled30 - Jupyter Notebook

In []:

12 of 12