

 $Head \ to \ \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

AQA GCSE Maths: Higher

Transformations of Graphs

Contents

- * Translations of Graphs
- * Reflections of Graphs

Translations of Graphs

Your notes

Translations of Graphs

What are translations of graphs?

- The **equation** of a graph can be changed in certain ways
 - This has an effect on the **graph**
 - How a graph changes is called a **graph transformation**
- A translation is a type of graph transformation that shifts (moves) a graph (up or down, left or right) in the xy plane
 - The shape, size, and orientation of the graph remain unchanged

• A particular translation is specified by a **translation vector**

Head to www.savemyexams.com for more awesome resources

How do I translate graphs?

• Let y = f(x) be the **equation** of the **original graph**

Vertical translations: y=f(x) + a

- y = f(x) + a is a **vertical translation** by the vector $\begin{pmatrix} 0 \\ a \end{pmatrix}$
 - The graph moves **up for positive** values of *a*
 - The graph moves **down for negative** values of *a*
 - The x-coordinates stay the same

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Page 4 of 21

Head to www.savemyexams.com for more awesome resources

Horizontal translations: y=f(x + a)

• y = f(x + a) is a **horizontal translation** by the vector $\begin{pmatrix} -a \\ 0 \end{pmatrix}$

- This is often the opposite direction to which people expect
- The graph moves **right for negative** values of **a**
- The **y-coordinates** stay the **same**

Page 6 of 21

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

What happens to asymptotes when a graph is translated?

- Any **asymptotes** of **f**(**x**) are also translated Your **not**
 - An asymptote **parallel** to the **direction of translation** will **not** be affected

Page 8 of 21

Head to www.savemyexams.com for more awesome resources

How does a translation affect the equation of the graph?

- For a horizontal translation y = f(x a) of the graph y = f(x)
 - **a** is subtracted from **X** throughout the equation
 - Every instance of X in the equation is replaced with (x-a)
- E.g. the graph $y = x^2 3x + 7$ undergoes a **translation** of **6 units** to the **right**
 - y = f(x) becomes y = f(x 6)
 - X is replaced throughout the equation by (x-6)
 - $y = (x-6)^2 3(x-6) + 7$ is the **new** equation
 - The equation can be left in this form or expanded and simplified

$$y = x^2 - 12x + 36 - 3x + 18 + 7$$

$$y = x^2 - 15x + 61$$

- For a vertical translation y = f(x) + a of the graph y = f(x)
 - **a** is added to the equation as a whole
- E.g. the graph $y = 4x^2 + 2x + 1$ undergoes a **translation** of **5 units down**
 - y = f(x) becomes y = f(x) 5
 - 5 is subtracted from the equation as a whole

$$y = 4x^2 + 2x + 1 - 5$$

• The equation can be left in this form or simplified

$$y = 4x^2 + 2x - 4$$

How do I apply a combined translation?

- For a horizontal translation of p units and vertical translation of q units combined
 - y = f(x) becomes y = f(x p) + q
- E.g. the graph $y = 3x^2$ undergoes a **translation** of **2 units up** and **1 unit** to the **left**
 - y = f(x) will become y = f(x+1) + 2
 - X is replaced throughout the equation by (x+1)
 - 2 is added to the equation as a whole

$$y = 3(x+1)^2 + 2$$

Page 10 of 21

- Note that when the equation is in the form $y = a(x p)^2 + q$
 - the vertex is (p, q)
 - the value of *a* does not affect the vertex coordinates

Worked Example

The diagram below shows the graph of y = f(x).

Sketch the graph of y = f(x + 3).

The transformation of the graph is a horizontal translation with vector $\begin{pmatrix} -3 \\ 0 \end{pmatrix}$ (3 units to the left)

 $Head to \underline{www.savemyexams.com} for more awe some resources$

The x-coordinates of the points change (subtract 3 from each) The y-coordinates of the points stay the same

Reflections of Graphs

Your notes

Reflections of Graphs

What are reflections of graphs?

• Reflections of graphs are a type of transformation where the curve is reflected about one of the axes

A curve reflected in the x-axis (left) and y-axis (right)

How do I reflect graphs?

Let y = f(x) be the equation of the original graph

Vertical reflections: y=-f(x)

- y = -f(x) is a reflection in the x-axis
 - The *y* coordinates change sign
 - The X coordinates are unaffected

Page 14 of 21

 $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$

Horizontal reflections: y=f(-x)

- y = f(-x) is a reflection in the y-axis
 - The X coordinates change sign
 - lacktriangledown The $oldsymbol{y}$ coordinates are unaffected

Page 16 of 21

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

What happens to asymptotes when a graph is reflected?

• Any **asymptotes** of f(x) are also reflected

Page 18 of 21

Examiner Tips and Tricks

When reflecting graphs in the exam, reflect any key points on the graph first, then join them up with a smooth curve.

save my exams

How does a reflection affect the equation of the graph?

- When a graph is reflected, you can change its equation algebraically
 - There is no need to sketch the graph
- Reflecting in the X-axis puts a in front of the whole equation
 - For example, $y = x^2 + 2x$ becomes $y = -(x^2 + 2x)$
 - This simplifies to $y = -x^2 2x$
- Reflecting in the y-axis **replaces any** x **with** (-x) in the equation
 - For example, $y = x^2 + 2x$ becomes $y = (-x)^2 + 2(-x)$
 - This simplifies to $y = x^2 2x$

How do I apply a combined reflection?

- The graph of y = -f(-x) is a **combined reflection** in both the x and y axes
 - It does not matter which order you apply these in

• For example, reflect about the Y-axis then about the X-axis

Worked Example

The diagram below shows the graph of y = f(x).

Sketch the graph of y = f(-x).

The transformation y = f(-x) is a reflection in the y-axis

Reflect the points (-2, 6) and (1, -3) in the y-axis to get (2, 6) and (-1, -3)

Sketch these points and join with a smooth curve through the origin

(-1, -3)

