4.B Cartesian products

from Random Walks on infinite Graphs and Groups by W. Woess

VO Random Processes 2018/2019

Lukas Richter

27.02.2019

From Chapter 4.A I

Definition

 \mathcal{N} (or (X,P)) satisfies an \mathcal{F} -isoperimetric inequality $\mathit{IS}_{\mathcal{F}}$, if there is a constant $\kappa>0$ such that

$$\mathcal{F}(m(A)) \leq \kappa a(\partial A)$$

for every finite $A \subset X$.

If this holds for the SRW then we say that the graph X itself satisfies $\mathit{IS}_{\mathcal{F}}.$

If $\mathcal{F}(t)=t^{1-\frac{1}{d}}(1\leq d\leq \infty)$ then we call it d-dimensional isoperimetric inequality, IS_d .

From Chapter 4.A II

For a function $f: X \to \mathbb{R}$, the Sobolev norm is $S_P(f) = \frac{1}{2} \sum_{x,y \in X} |f(x) - f(y)| a(x,y)$ and its norm in $\ell^p(X,m)$ is $||f||_p = (\sum_{x \in X} |f(x)|^p m(x))^{1/p}$

Proposition

$$(X,P)$$
 satisfies $IS_d(1 \le d \le \infty)$ if and only if

$$||f||_{\frac{d}{d-1}} \le \kappa S_P(f)$$
 for every $f \in \ell_0(X)$.

Direct and Cartesian product of graphs

- $X_1, X_2 \dots$ graphs
- **Direct product** $X_1 \otimes X_2$: the graph with vertex set $\{x_1x_2, x_i \in X_i\}$
- Neighbourhood given by: $x_1x_2 \sim y_1y_2 \iff x_1 \sim y_1 \text{ and } x_2 \sim y_2$
- Cartesian product $X_1 \times X_2$: same vertex set as above
- Neighbourhood given by:

$$x_1x_2 \sim y_1y_2 \iff x_1 \sim y_1 \text{ and } x_2 = y_2 \text{ or } x_1 = y_1 \text{ and } x_2 \sim y_2$$

- If both factors are bipartite graphs (they have no closed paths with odd length), then the direct product is disconnected.
- Γ_1, Γ_2 finitely generated groups with Cayley graphs $X(\Gamma_i, S_i)$, then the direct product is not necessarily a Cayley graph of $\Gamma_1 \times \Gamma_2$ it **is** true for the Cartesian product.
- The SRW on the Cartesian product of two regular graphs is a Cartesian product of the SRWs on the factors.

Direct and Cartesian product of networks

- $\mathcal{N}_1, \mathcal{N}_2$... networks with conductance functions a_1, a_2
- **Direct product** $\mathcal{N}_1 \otimes \mathcal{N}_2$: with conductance function $a(x_1x_2, y_1y_2) = a_1(x_1, y_1)a_2(x_2, y_2)$
- Not necessarily connected.
- Cartesian product $\mathcal{N}_1 \times \mathcal{N}_2$: with conductance function $a(x_1x_2, y_1y_2) = a_1(x_1, y_1)\delta_{x_2}(y_2) + a_2(x_2, y_2)\delta_{x_1}(y_1)$
- The reversible MC associated with the Cartesian product of two networks is not a Cartesian product of the reversible MC on the factors.

Direct and Cartesian product of transition matrices

- P_1, P_2 ... transition matrices over X_1, X_2
- Direct (or tensor) product $P_1 \otimes P_2$: $p(x_1x_2, y_1y_2) = p_1(x_1, y_1)p_2(x_2, y_2)$
- In general it does not preserve irreducibility.
- Cartesian product $P_1 \times P_2$: $P = cP_1 \otimes I_2 + (1 - c)I_1 \otimes P_2$ with 0 < c < 1.

Theorem

Theorem

Let \mathcal{N}_i , i=1,2 be networks with associated invariant measures m_i : $\sup_{\mathcal{X}_i} m_i(x) < \infty$. If \mathcal{N}_1 satisfies IS_{d_1} and \mathcal{N}_2 satisfies IS_{d_2} then $\mathcal{N} = \mathcal{N}_1 \times \mathcal{N}_2$ satisfies $\mathsf{IS}_{d_1+d_2}$.

Proof.

See Woess [1].

Remark and Corollary

Remark

Let $\mathcal{N}_1, \mathcal{N}_2$ be networks which satisfy IS_{d_1} and IS_{d_2} and $P_i \geq c_i I_i$ holds elementwise $(c_i > 0, I_i \text{ identity over } X_i)$, then $\mathcal{N}_1 \otimes \mathcal{N}_2$ satisfies $IS_{d_1+d_2}$.

Corollary

Let X_1, X_2 be infinite graphs with bounded geometry. If X_1 satisfies IS_{d_1} and X_2 satisfies IS_{d_2} then $X_1 \times X_2$ satisfies $IS_{d_1+d_2}$. In every case $X_1 \times X_2$ satisfies IS_2 .

The SRW on $X_1 \times X_2$ may be replaced with a Cartesian product of the SRWs on the factors.

References

[1] Wolfgang Woess. Random Walks on Infinite Graphs and Groups. Cambridge University Press, Feb. 2000. DOI: 10.1017/CB09780511470967.