Math 107-Lecture 24

Dr. Adam Larios

University of Nebraska-Lincoln

Convergence/divergence tests

- DCT: $0 \le a_n \le b_n$; $\sum_{n=1}^{\infty} b_n$ (C) $\Rightarrow \sum_{n=1}^{\infty} a_n$ (C); $\sum_{n=1}^{\infty} a_n$ (D) $\Rightarrow \sum_{n=1}^{\infty} b_n$ (D)
- LCT: $\lim_{n\to\infty}\frac{a_n}{b_n}=L\in(0,\infty)$ then $\sum_{n=1}^\infty a_n(\mathbb{C}/\mathbb{D})\iff\sum_{n=1}^\infty b_n(\mathbb{C}/\mathbb{D}).$
- AST: If $c_1 \geq c_2 \geq c_3 \geq \ldots \geq 0$, $\lim_{n \to \infty} c_n = 0$ then $\sum_{n=0}^{\infty} (-1)^n c_n$ (C)
- Ratio/Root Let $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$ (Ratio) $\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ (Root). $\rho < 1$ (AC); $\rho > 1$ (D); $\rho = 1$ inconclusive.

A. Larios (UNL)

Lecture 24

Clicker question #1

For the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n (2x+3)^{2n}}{n^2}$$

determine the interval of convergence:

- $(-\frac{3}{2},\frac{3}{2})$
- $[-\frac{3}{2}, \frac{3}{2}]$
- (-2,-1]
- [-2, -1]

Linearizations

Write down the linearizations of cos(x) and sin(x) near a = 0.

$$f(x) \approx L(x) := f(a) + f'(a)(x - a)$$
, for x near a

Linearization for $\cos x$

X	L(x)=1	$1-\frac{x^2}{2}$	cos x
0.1	1	0.995	0.99500416
0.4	1	0.92	0.92106099
1	1	0.5	0.54030230

Linearization for sin x

X	L(x) = x	$x - \frac{x^3}{6}$	sin x
0.1	0.1	0.09983333	0.099833416
0.4	0.4	0.38941834	0.38933333
1	1	0.83333333	0.84147098

Remark: Polynomials $x-x^3/6$ and $1-x^2/2$ can be used as reasonably good approximations of $\sin(x)$ and $\cos(x)$ near the origin. These approximations are better than the corresponding linear approximations.

How do we find these higher order polynomial approximations?

We look for

$$f(x) \approx P_n(x) := a_0 + a_1 x + a_2 x^2 + ... a_n x^n$$
, near $x = 0$.

Then we would like the function and its n derivatives to coincide at x = 0.

$$f(0) = P_n(0) = a_0$$

For the derivatives we have

$$f'(0) = P'_n(0) = a_1;$$
 $f''(0) = P''_n(0) = 2a_2;$ $f'''(0) = P'''_n(0) = 2 \cdot 3a_3...$

Hence:

$$a_0 = f(0);$$
 $a_1 = f'(0);$ $a_2 = \frac{f''(0)}{2}; \dots a_n := \frac{f^{(n)}(0)}{n!}.$

Taylor Polynomials

The Taylor polynomial of degree n for the function f(x) near x = a is the n-th degree polynomial

$$p_n(x) = f(a) + f'(a) \frac{(x-a)}{1!} + f''(a) \frac{(x-a)^2}{2!} + f'''(a) \frac{(x-a)^3}{3!} + \dots + f^{(n)}(a) \frac{(x-a)^n}{n!}$$

In fact, we have

$$f(x) = f(a) + f'(a)\frac{(x-a)}{1!} + f''(a)\frac{(x-a)^2}{2!} + f'''(a)\frac{(x-a)^3}{3!} + \cdots + f^{(n)}(a)\frac{(x-a)^n}{n!} \pm \int_a^x \frac{(s-x)^n}{n!} f^{(n+1)}(s)ds$$

Example 1. Find the 3rd-degree Taylor polynomial of sin(x) near a = 0.

Taylor polynomials

"Taylor polynomial tango":

https://www.youtube.com/watch?v=msFbHyw043g)

Taylor polynomial of degree n for f near a:

$$p_n(x) = f(a) + f'(a) \frac{(x-a)}{1!} + f''(a) \frac{(x-a)^2}{2!} + \cdots + f^{(n)}(a) \frac{(x-a)^n}{n!}$$

Clicker question #2

What is the coefficient of x^3 in the 3rd-degree Taylor polynomial of e^{2x} near x = 1?

- $\begin{array}{ccc}
 & \frac{1}{3!} \\
 & \frac{2^3}{3!} \\
 & \frac{e^2}{3!} \\
 & \frac{2e}{3}
 \end{array}$