DP editorial

Longest common subsequence

```
int Solution::solve(string A, string B) {
    int n=A.size();
    int m=B.size();
    vector<vector<int>> dp(n+1,vector<int>(m+1,0));
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            if(A[i-1]==B[j-1]){
                  dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
            }
            dp[i][j]=max({dp[i][j],dp[i-1][j],dp[i][j-1]});
        }
    }
    return dp[n][m];
}</pre>
```

Longest Palindromic Subsequence

Reverse one string and find longest common subsequence between it and original string

method 2

```
int Solution::solve(string a) {
    int n=a.size();
    string b=a;
    reverse(b.begin(),b.end());
    //cout<<b<<endl;</pre>
    vector<vector<int>> dp(n+1,vector<int>(n+1,0));
    for(int i=0; i< n; i++){
        dp[i][i]=1;
    int ans=1;
    for(int l=1;l<n;l++){
        for(int i=0; i+1< n; i++){
            int r=i+l;
            if(l==1){
                 if(a[i]==a[r]){
                     dp[i][r]=2;
                 }
                 else{
                     dp[i][r]=1;
                 ans=max(ans,dp[i][r]);
                 continue;
            }
            if(a[i]==a[r]){
                 dp[i][r]=dp[i+1][r-1]+2;
            }
            dp[i][r]=max({dp[i][r],dp[i+1][r],dp[i][r-1]});
            ans=max(ans,dp[i][r]);
        }
    return ans;
}
```

Knapsack Type 1

```
1l dp[101][100001];//max sum with till prefix i with j weight
int main()
{
ios_base::sync_with_stdio(0);
cin.tie(0);
    ll n,w;
    cin>>n>>w;
```

```
ll w1[n+1];
    ll a[n+1];
    for(int i=1;i<=n;i++){</pre>
         cin>>w1[i]>>a[i];
    }
    for(int i=1;i<=n;i++){</pre>
         for(int j=1; j <= w; j++){}
            dp[i][j]=dp[i-1][j];
                  if(j-w1[i]>=0){
                      dp[i][j]=max(dp[i-1][j-w1[i]]+a[i],dp[i][j]);
                       //cout<<dp[i][j]<<endl;</pre>
         }
    }
    }
11 ans=0;
    for(int i=0; i<=w; i++){
         ans=max(dp[n][i],ans);
    cout<<ans<<endl;</pre>
    return 0;
}
```

Knapsack type2

```
int main()
{
  ios_base::sync_with_stdio(0);
  cin.tie(0);
    11 n,w;
    cin>n>>w;
    11 w1[n+1];
    11 a[n+1];
    //cout<<dp[0][0]<<endl;</pre>
```

```
for(int i=1;i<=n;i++){</pre>
        cin>>w1[i]>>a[i];
    }
     //min weight to reach this value form 1...i items
    for(int i=0; i<=n; i++){
        for(int j=0;j<=100000;j++){
            dp[i][j]=mod;
            if(j==0){
                 dp[i][j]=0;
            }
        }
    //cout<<dp[0][0]<<endl;
    for(int i=1;i<=n;i++){</pre>
        for(ll j=1; j <= 100000; j++){
            dp[i][j]=dp[i-1][j];
            if(j-a[i]>=0){
                 dp[i][j]=min(dp[i][j],w1[i]+dp[i-1][j-a[i]]);
            }
        }
    }
    int ans=0;
    for(int i=1;i<=n;i++){
        for(int j=0;j<=100000;j++){
                 if(dp[i][j] <= w){
                     ans=max(ans,j);
                 }
        }
    }
    cout<<ans<<endl;</pre>
    return 0;
}
```

Minimum edit distance

```
int Solution::minDistance(string A, string B) {
  int n=A.size();
  int m=B.size();
  long long dp[n+1][m+1];
```

```
for(int i=0; i<=n; i++){
    for(int j=0; j <= m; j++){
         dp[i][j]=1e9;
dp[0][0]=0;
dp[1][0]=1;
dp[0][1]=1;
for(int i=1;i<=n;i++){</pre>
    dp[i][0]=i;
for(int i=1;i<=m;i++){</pre>
    dp[0][i]=i;
for(int i=1;i<=n;i++){</pre>
    for(int j=1;j<=m;j++){</pre>
         if(A[i-1]==B[j-1]){
             dp[i][j]=dp[i-1][j-1];
         }
        else{
              dp[i][j]=dp[i-1][j-1]+1;
        dp[i][j]=min({dp[i][j],dp[i-1][j]+1,dp[i][j-1]+1});
    }
}
return dp[n][m];
```

Scramble String

```
int dp[101][101][101];
int A[26];
string s1,s2;
int solve2(int i,int j,int s){
    if(dp[i][j][s]!=-1){
        return dp[i][j][s];
    if(s==1){
        if(s1[i]==s2[j]){
            return dp[i][j][s]=1;
        }
        else{
            return dp[i][j][s]=0;
    string a=s1.substr(i,s);
    string b=s2.substr(j,s);
    sort(a.begin(),a.end());
    sort(b.begin(),b.end());
    if(a!=b){
```

```
dp[i][j][s]=0;
        return dp[i][j][s];
    }
    for(int k=1;k<s;k++){
        if(solve2(i,j,k)\&\&solve2(i+k,j+k,s-k))return dp[i][j][s]=1;
        if(solve2(i,j+s-k,k)\&&solve2(i+k,j,s-k))return dp[i][j][s]=1;
    return dp[i][j][s]=0;
//string a,b;
int solve(string a, string b){
    if(a.size()!=b.size())return 0;
    string a1=a;
    string b1=b;
    int n=a.size();
    if(n==0)return 1;
    if(a==b)return 1;
    sort(a1.begin(),a1.end());
    sort(b1.begin(),b1.end());
    if(a1!=b1)return ∅;
    for(int i=1;i<n;i++){
        // string s1=a.substr(0,i);
        // string s2=b.substr(0,i);
        // string s3=a.substr(i,n-i);
        // string s4=b.substr(i,n-i);
        if(solve(a.substr(0,i),b.substr(0,i))&&solve(a.substr(i,n-i),b.substr(i,n-
i))){
            return 1;
        }
        if(solve(a.substr(0,i),b.substr(n-i,i))&& solve(a.substr(i,n-
i),b.substr(0,n-i))){
            return 1;
        }
    }
    return 0;
int Solution::isScramble(const string A, const string B) {
    s1=A;
```

```
s2=B;
for(int i=0;i<51;i++){
    for(int j=0;j<51;j++){
        for(int k=0;k<51;k++){
            dp[i][j][k]=-1;
        }
    }
}
if(A.size()!=B.size())return 0;
return solve2(0,0,A.size());
///return solve(A,B);
}</pre>
```

Regular Expression Match

Implement wildcard pattern matching with support for '?' and '*' for strings A and B.

'?': Matches any single character. '*': Matches any sequence of characters (including the empty sequence). The matching should cover the entire input string (not partial).

```
int Solution::isMatch(const string A, const string B) {
   int n=A.size();
   int m=B.size();
   int c=0;
   for(int j=0;j< m;j++){
      if(B[j]!='*')c++;
   }
   if(c>n)return ∅;
   if(c==0 && m>0)return 1;
   int dp[n+1][m+1];
   for(int i=0; i< n; i++){
      for(int j=0;j< m;j++)dp[i][j]=0;
   }
   dp[0][0]=1;
   for(int j=1;j<=m;j++){
      if(B[j-1]=='*'){
         dp[0][j]=dp[0][j-1];
      }
   }
   for(int i=1;i<=n;i++){</pre>
      for(int j=1;j<=m;j++){
         if(B[j-1]=='*'){
            dp[i][j]=dp[i][j-1]|dp[i-1][j];
```

```
}
else if(B[j-1]=='?'|| A[i-1]==B[j-1]){
          dp[i][j]=dp[i-1][j-1];
}
else{
          dp[i][j]=0;
}
//cout<<dp[i][j]<<endl;
}
return dp[n][m];
}
</pre>
```

Regular Expression II

Implement regular expression matching with support for '.' and '*'.

- '.' Matches any single character.
- '*' Matches zero or more of the preceding element.

The matching should cover the entire input string (not partial).

```
int Solution::isMatch(const string A, const string B) {
  string s=A;
 string p=B;
 int n=p.size();
  int m=s.size();
  s="0"+s;
  p = "0" + p;
  int dp[n+1][m+1];
  memset(dp,0,sizeof(dp));
  dp[0][0]=1;
  for(int i=1;i<=n;i++){</pre>
      for(int j=0;j<=m;j++){
          if(p[i]==s[j]||p[i]=='.'){
              if(j>0)
                        dp[i][j]|=dp[i-1][j-1];
          }else if(p[i]=='*'){
              dp[i][j]|=dp[i-2][j]; //use 0 times
                                     //use 1 times
              dp[i][j]|=dp[i-1][j];
              if(s[j]==p[i-1]||p[i-1]=='.') if(j>0) dp[i][j]|=dp[i][j-1];
//use multiple times
          }
      }
  }
  return dp[n][m];
```

```
}
```

Length of Longest Subsequence

Given an 1D integer array A of length N, find the length of longest subsequence which is first increasing then decreasing.

```
int calc(vector<int> A,int n,vector<int> &dp){
    dp.resize(n);
    dp[0]=1;
    int m[n];
    m[1]=A[0];
    int len=1;
    for(int i=1;i<n;i++){</pre>
        if(A[i]>m[len]){
            len++;
            dp[i]=len;
            m[len]=A[i];
        else{
            int p=upper_bound(m+1,m+len+1,A[i])-m;
            if(m[p-1]==A[i]){
                p--;
            }
            dp[i]=p;
            m[p]=A[i];
        }
    }
    return 1;
}
int calc2(vector<int> A,int n,vector<int> &dp){
    dp.resize(n);
    dp[n-1]=1;
    for(int i=n-2;i>=0;i--){
        dp[i]=1;
        for(int j=i+1; j<n; j++){
            //dp[i]=1;
            if(A[i]>A[j]){
                 dp[i]=max(dp[i],dp[j]+1);
            }
        }
    return 1;
}
int Solution::longestSubsequenceLength(const vector<int> &A) {
```

```
int n=A.size();
    if(n==0)return 0;
    //if(n==0)return 0;
    vector<int> d1;
    vector<int> d2;
    calc(A,n,d1);
    //reverse(A.begin(),A.end());
    calc2(A,n,d2);
    int ans=0;
    for(int i=0;i<n;i++){
        ans=max(ans,d1[i]+d2[i]-1);
    }
    //if(ans==1)return 0;
    return ans;
}</pre>
```

Smallest sequence with given Primes

```
#define pb push_back
int a,b,c,d;
vector<int> Solution::solve(int A, int B, int C, int D) {
    a=A;
    b=B;
    c=C;
    d=D;
    vector<int> v;
    set<int> s;
    s.insert(A);
    s.insert(B);
    s.insert(C);
    while(v.size()!=D){
        auto x=s.begin();
        int p=*x;
        s.erase(x);
        s.insert(p*A);
        s.insert(p*B);
        s.insert(p*C);
        v.pb(p);
    return v;
}
```

Tiling With Dominoes

Given an integer A you have to find the number of ways to fill a 3 x A board with 2 x 1 dominoes.

Return the answer modulo 109 + 7.

```
int Solution::solve(int A) {
   int n=A;
   int mod=1000000007;
  int a[n+1], b[n+1];
   a[0]=1;
   a[1]=0;
   b[0]=0;
   b[1]=1;
   for(int i=2;i<=n;i++){
       a[i]=a[i-2]%mod+2*b[i-1]%mod;
       b[i]=a[i-1]%mod+b[i-2]%mod;
       a[i]%=mod;
       b[i]%=mod;
   }
   return a[n]%mod;
}
```

Ways to Decode

A message containing letters from A-Z is being encoded to numbers using the following mapping:

'A' -> 1 'B' -> 2 ... 'Z' -> 26 Given an encoded message A containing digits, determine the total number of ways to decode it modulo 109 + 7.

```
int Solution::numDecodings(string A) {
    int n=A.size();
    if(n==1){
        if(A[0]=='0')return 0;
        return 1;
    }
    int mod=10000000007;
    long long dp[n+1];
    memset(dp,0,sizeof(dp));
    if(A[0]=='0'&& A[1]=='0'){
        dp[0]=0;
    }
    else{
    dp[0]=1;
    }
    if(A[0]!='0')
```

```
dp[1]=1;
    else
    dp[1]=0;
    for(int i=2;i<=n;i++){</pre>
        //cout<<p<<endl;</pre>
        if(A[i-2]=='1'|| (A[i-2]=='2'&& A[i-1]<'7')){
             dp[i]+=(dp[i-2])%mod;
             dp[i]%=mod;
        }
        if(A[i-1]!='0'){
        dp[i]+=dp[i-1]%mod;
        //cout<<dp[i]<<endl;</pre>
        dp[i]%=mod;
        }
    return dp[n];
}
```