L'ESPACE PROJECTIF

Définition

L'ensemble des droites vectorielles dans \mathbb{R}^{n+1} s'appelle l'espace projectif réel. On désigne cette espace par \mathbb{RP}^n .

Nous démontrons plus tard que \mathbb{RP}^n est un espace topologique. A ce moment-là, nous avons défini \mathbb{RP}^n seulement comme un ensemble.

On peut comprendre \mathbb{RP}^n comme un ensemble paramétrisant l'ensemble des droites vectorielles dans \mathbb{R}^{n+1} , càd que chaque point de \mathbb{RP}^n correspond à une droite vectorielle dans \mathbb{R}^{n+1} .

Exemple

Il y a une correspondance bijective (en fait, un homéomorphisme) entre \mathbb{RP}^1 et le cercle S^1

1/25

Rappelons qu'une droite vectorielle est un ensemble $\ell_V := \{x \in \mathbb{R}^{n+1} \mid x = \lambda v\}$ où $v \in \mathbb{R}^{n+1} \setminus \{0\}$. Ainsi, on peut définir \mathbb{RP}^n comme un ensemble quotient :

$$\mathbb{RP}^n := (\mathbb{R}^{n+1} \setminus \{0\}) / \sim$$
, où $v \sim w \iff \exists \lambda \in \mathbb{R} \setminus \{0\} \text{ tq } w = \lambda v$.

De façon équivalente, puisque chaque droite intersecte la sphère en exactement deux points, qui sont antipodaux, nous avons également

$$\mathbb{RP}^n := S^n / \sim$$
, où $v \sim w \iff w = \pm v$.

Ainsi, on a la projection canonique $\pi: S^n \to \mathbb{RP}^n$. On <u>définit</u> une topologie sur \mathbb{RP}^n comme la topologie induite de S^n , càd que

$$\mathbb{RP}^n \supset V$$
 est ouvert \iff $S^n \supset \pi^{-1}(V)$ est ouvert.

Le plan projectif \mathbb{RP}^2

Exercice

1. Montrer que l'hémisphère

$$S_{+}^{2} := \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1, z \geq 0\}$$

contient au moins un représentant de toute classe d'équivalence.

- 2. Montrer que l'hémisphère et le disque $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ sont homéomorphes;
- 3. Montrer que le disque D et le rectangle R sont homéomorphes. Alors, S_+^2 et R sont homéomorphes aussi.

3/25

LE PLAN PROJECTIF (SUITE)

Comme dans le cas de la bouteille de Klein, on peut démontrer que le plan projectif ne peut pas se plonger dans \mathbb{R}^3 .

Le plan projectif est un ruban de Moebius auquel on a collé un disque

Construction de la surface de Boy : https://www.youtube.com/watch?v=uiq-EcQz_uU.

Explorez le plan projectif vous-même : https://sketchfab.com/3d-models/boys-surface-bryant-kusner-d49b2e593962495b9deffb4206175dee.

Espaces de Hausdorf / espaces séparés

Rappelons que dans un espace métrique la limite d'une suite est unique si elle existe.

Démonstration. Supposons que m_n est une suite dans un espace métrique (M,d) qui converge vers m et m'.

$$m = \lim m_n \implies \forall \varepsilon > 0 \quad \exists N \quad \text{tq} \quad m_n \in B_{\varepsilon}(m) \quad \text{si } n \geq N;$$

 $m' = \lim m_n \implies \forall \varepsilon > 0 \quad \exists N' \quad \text{tq} \quad m_n \in B_{\varepsilon}(m') \quad \text{si } n \geq N'.$

Notons que si $m \neq m'$ et r := d(m, m')/2 > 0 on a $B_r(m) \cap B_r(m') = \emptyset$ parce que

$$\hat{m} \in B_{\varepsilon}(m) \cap B_{\varepsilon}(m) \Longrightarrow d(m,m') \le d(m,\hat{m}) + d(\hat{m},m') < r + r = d(m,m').$$

Alors, si $m \neq m'$, pour $\varepsilon = r = d(m, m')/2$ et tout $n \ge \max\{N, N'\}$ on a $m_n \in B_{\varepsilon}(m) \cap B_{\varepsilon}(m')$. Il s'agit donc d'une contradiction qui montre que m = m'.

5/25

Le point clé de l'argument ci-dessus est le suivant : dans un espace métrique, si $m \neq m'$ il existe un voisinage U_X de X et un voisinage U_Y de Y tq $U_X \cap U_Y = \emptyset$.

Attention

Dans un espace topolgique quelconque il n'est pas nécessaire que les voisinages U_X et U_Y tq $U_X \cap U_Y = \emptyset$ existent. Par exemple, dans $\mathbb R$ muni de la topologie cofinie, l'intersection de deux ensembles ouverts quelconques est non vide.

Définition

Un espace topologique X est dit de Hausdorff si pour tout couple X, $y \in X$ de points $\underline{distincts}$ il existe des ouverts U_X , V_Y tq

$$x \in U_X$$
, $y \in U_Y$ et $U_X \cap U_Y = \emptyset$.

On abrège "un espace topologique de Hausdorff" à un espace Hausdorff.

7/25

Remarque

La terminologie française pour "espace de Hausdorff" est celle *d'espace* séparé.

Lemme

Une suite convergente dans un espace Hausdorff a une seule limite

Démonstration.

Supposons que x_n est une suite dans un espace Hausdorff X qui converge vers x et x'. Puisque X est Hausdorff, $\exists U \ni x$ et $\exists U' \ni x$ ouverts tq $U \cap U' = \emptyset$.

$$x = \lim x_n \implies \exists N > 0 \text{ tq } x_n \in U \text{ si } n \ge N;$$

 $x' = \lim x_n \implies \exists N' > 0 \text{ tq } x_n \in U' \text{ si } n \ge N'.$

Alors, pour tout $n \ge \max\{N, N'\}$ on a $x_n \in U \cap U'$, une contradiction.

Propriétés des espaces de Hausdorff

Proposition

Soit (X, T) un espace de Hausdorff et $x \in X$. Le singleton $\{x\}$ est une partie fermée de X.

Démonstration.

Choisissons $y \in X \setminus \{x\}$. Puisque X est Hausdorff, il existe deux voisinages U_X et U_Y disjoints tels que $X \in U_X$ et $Y \in V_Y$. En particulier, $U_Y \subset X \setminus \{x\}$. Alors

$$X\backslash\{x\}=\bigcup_{y\in X\smallsetminus\{x\}}U_y$$

est ouvert en tant que la réunion des ouverts. Ainsi, $\{x\}$ est fermé.

Remarque

Dans l'espace topologique $X = \{a, b\}$ muni de la topologie

$$\mathfrak{T} := \big\{ \varnothing, X, \{a\} \big\}$$

le singleton $\{a\}$ n'est pas fermé. Par contre, $\{b\}$ est fermé.

9/25

Proposition

- 1. Soient X un esp. Hausdorff et $A \subset X$ un sous-espace. Alors A est Hausdorff.
- 2. Soient X, Y deux espaces Hausdorff. Alors X × Y est Hausdorff pour la topologie produit.
- 3. Si X est Hausdorff et si X et Y sont homéomorphes alors Y est Hausdorff. En d'autres termes, être un espace Hausdorff est une propriété topologique.

A titre d'exemple, nous prouvons 1. : Soient $a, b \in A$, $a \neq b$. En considérant a et b comme des points de X, qui est Hausdorff, on trouve $U_a, U_b \in \mathcal{T}_X$ tq

$$a \in U_a$$
, $b \in U_b$ et $U_a \cap U_b = \emptyset$.

On dénote $V_a := U_a \cap A$ et $V_b := U_b \cap A$. Alors,

$$a \in V_a$$
, $b \in V_b$ et $V_a \cap V_b \subset U_a \cap U_b = \emptyset$.

Proposition

Soient (X, T_X) et (Y, T_Y) des espaces topologiques et $f, g: X \to Y$ des fonctions continues. Si (Y, T_Y) est Hausdorff, l'ensemble

$$E := \left\{ x \in X \mid f(x) = g(x) \right\}$$

est un fermé de X.

Démonstration.

Soit $x \in X \setminus E$, alors $f(x) \neq g(x)$. Comme Y est Hausdorff, $\exists U, V \in \mathcal{T}_Y$ tq

$$f(x) \in U$$
, $g(x) \in V$ et $U \cap V = \emptyset$.

Puisque f et g sont continues, $f^{-1}(U)$ et $g^{-1}(V)$ sont des voisinages de x. Alors, $f^{-1}(U) \cap g^{-1}(V) =: W$ est un voisinage de x aussi. Puisque

$$f(W) \subset f(f^{-1}(U)) \subset U$$
 et $g(W) \subset g(g^{-1}(V)) \subset V$,

on a que $f(W) \cap g(W) = \emptyset$. Alors, $X \setminus E$ est ouvert.

11/25

Corollaire

Soit X un espace topologique, A un sous-ensemble dans X tq $\bar{A} = X$ et Y un espace Hausdorff. Pour une application $f: A \to Y$, il existe au plus une fonction $F: X \to Y$ continue tq $F|_A = f$.

Démonstration.

Supposons qu'il existe deux prolongements $F, G: X \rightarrow Y$. Alors,

$$A \subset E = \left\{ x \in X \mid F(x) = G(x) \right\} \subset X \Longrightarrow$$

$$X = \bar{A} \subset \bar{E} = E \Longrightarrow E = X \Longrightarrow F = G.$$

Remarque (suit)

- Si le prolongement de f existe et est continu, f:A → Y est continue (par rapport à la topologie induite).
- Le prolongement peut exister ou non. Par exemple,

$$sign x = \begin{cases} +1, & si x > 0, \\ -1, & si x < 0 \end{cases}$$

est continue sur $A := \mathbb{R} \setminus \{0\}$ mais ne permet pas un prolongement continu défini sur \mathbb{R} .

Exercice (*)

Trouver un exemple de l'application continue $f: A \to Y$ qui permet deux prolongements continus $\bar{A} \to Y$ (ainsi, Y ne peut pas être Hausdorff).

13/25

LES SOUS-ENSEMBLES DENSE

Définition

Soit (X, \mathcal{T}) un espace topologique. Un sous-ensemble $A \subset X$ est dite *dense*, si $\overline{A} = X$. Autrement dite, A est dense, si chaque ouvert de X contient au moins un point de A.

Exemple

- 1. (0,1) est dense dans [0,1].
- 2. \mathbb{Q} est dense dans \mathbb{R} .
- 3. $\mathbb{R} \setminus \mathbb{Q}$ est aussi dense dans \mathbb{R} .
- 4. Pour $(X, \mathfrak{I}^{discr})$, seulement X est dense.
- 5. \mathbb{Z} est dense dans $(\mathbb{R}, \mathcal{T}^{cofin})$. En fait, tout sous-ensemble infini est dense dans $(\mathbb{R}, \mathcal{T}^{cofin})$.

On peut reformuler le corollaire précédent comme suit.

Corollaire

Soit X un espace topologique, A un sous-ensemble dense dans X et Y un espace Hausdorff. Pour une application $f: A \to Y$, il existe au plus une fonction $F: \overline{A} \to Y$ continue $tq F|_A = f$.

Pour voir une application, dénotons par $M_n(\mathbb{R})$ l'espace de toutes les matrices de taille $n \times n$ à coefficients réels. $M_n(\mathbb{R})$ est un espace vectoriel de dimension n^2 . Un isomorphisme $M_n(\mathbb{R}) \to \mathbb{R}^{n^2}$ est donné par

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \longmapsto (a_{11}, a_{12}, \dots, a_{1n}, \dots, a_{n1}, a_{n2}, \dots, a_{nn}).$$

En particulier, $M_n(\mathbb{R})$ est un espace métrique (alors, topologique).

Explicitement,

$$d_2(A,B) := \Big(\sum_{i,i=1}^n (a_{ij} - b_{ij})^2\Big)^{1/2}.$$

15/25

Lemme

Le sous-ensemble

$$GL_n(\mathbb{R}) := \{ A \in M_n(\mathbb{R}) \mid \det A \neq 0 \} \subset M_n(\mathbb{R})$$

est dense.

Démonstration.

Soit $A \in M_n(\mathbb{R}) \setminus GL_n(\mathbb{R}) \iff \det A = 0$. Pour trouver une $B \in GL_n(\mathbb{R})$ proche de A considérons le polynôme caractéristique de A

$$\chi_A(\lambda) := \det(\lambda id - A) = \lambda^n + a_1\lambda^{n-1} + \cdots + a_n,$$

où $a_j = a_j(A) \in \mathbb{R}$. Puisque $\chi_A \not\equiv 0$, il a au plus n racines (et $\lambda = 0$ est une racine). Alors, $\exists \lambda_0 > 0$ tq la seule racine de χ_A dans $(-\lambda_0, \lambda_0)$ est 0. Si $\lambda_k \to 0$ et $\lambda_k \not\equiv 0$ on a que $(A - \lambda_k id) \in GL_n(\mathbb{R})$ converge vers A et

$$\det(A - \lambda_k id) = (-1)^n \chi_A(\lambda_k) \neq 0.$$

Donc, $A \in \overline{GL_n(\mathbb{R})}$ et ainsi, $\overline{GL_n(\mathbb{R})} = M_n(\mathbb{R})$.

16/25

Revenons au polynôme caractéristique

$$\chi_A(\lambda) := \det(\lambda id - A) = \lambda^n + a_1\lambda^{n-1} + \cdots + a_n.$$

Évidemment, $a_n = \chi_A(0) = (-1)^n \det A$ et $a_1(A) = -\text{Tr} A$. C'est un peu plus compliqué pour les autres coefficients.

Même si l'on ne peut pas exprimer facilement a_j par les coefficients de A, on peut en établir certaines propriétés comme suit. Si $P \in GL_n(\mathbb{R})$,

$$\det \left(P^{-1}AP\right) = \det A \quad \Longrightarrow \quad \chi_{P^{-1}AP} = \chi_A \quad \Longrightarrow \quad \chi_{QP} = \chi_{PQ}, \quad (*)$$
où $Q = P^{-1}A \iff A = PQ$.

Théorème

(*) s'applique à toutes $P, Q \in M_n(\mathbb{R})$. En d'autres termes, $a_i(PQ) = a_i(QP)$.

Remarque

Bien sûr, pour j = n et j = n - 1 on a les identités bien connues :

$$det(PQ) = det(QP)$$
 et $Tr(PQ) = Tr(QP)$.

17/25

Démonstration.

Notons que nous avons montré que $\chi_{QP} = \chi_{PQ}$ pour toutes $Q \in M_n(\mathbb{R})$ et toutes $P \in GL_n(\mathbb{R})$. Ainsi, pour Q fixée, considérons

$$f: M_n(\mathbb{R}) \to \mathcal{P}_n, \qquad f(P) = \chi_{PQ} - \chi_{QP},$$

où \mathcal{P}_n est l'ensemble de tous les polynômes de degré au plus n. Comme pour M_n , on peut identifier \mathcal{P}_n avec \mathbb{R}^{n+1} :

$$b_0\lambda^n + b_1\lambda^{n-1} + \cdots + b_n \longmapsto (b_0, b_1, \ldots, b_n).$$

En particulier, \mathcal{P}_n peut être muni de la topologie Hausdorff.

L'application $M_n(\mathbb{R}) \to \mathcal{P}_n$, $A \mapsto \chi_A$ est continue puisque tout a_j est un polynôme de coefficients de A.

L'application $M_n(\mathbb{R}) \to M_n(\mathbb{R})$, $P \mapsto PQ$ est continue puisqu'elle est linéaire. Alors, $M_n(\mathbb{R}) \to \mathcal{P}_n$, $P \mapsto \chi_{PQ}$ est continue comme composition. Ainsi, f est continue et $f \equiv 0$ sur $GL_n(\mathbb{R})$. Alors, f = 0 partout puisque $GL_n(\mathbb{R})$ est dense.

QUAND LES ESPACES QUOTIENTS SONT-ILS HAUSDORFF?

Un quotient d'un espace Hausdorff n'a pas besoin d'être Hausdorff.

Exemple

1. Considérons la relation d'équivalence sur $\mathbb R$:

$$x \sim y \qquad \iff \qquad (x \text{ et } y \in \mathbb{Q}) \text{ OU } (x \text{ et } y \in \mathbb{R} \setminus \mathbb{Q}).$$

Donc, rationnel ~ rationnel, irrationnel ~ irrationnel, mais rationnel \not rationnel. Alors, $\mathbb{R}/\sim=\{a,b\}$ muni de la topologie grossière (plus petite). Ainsi, \mathbb{R}/\sim n'est pas Hausdorff.

2. Considérons la relation d'équivalence sur ℝ:

$$x \sim y \iff x \text{ et } y \in \mathbb{R} \setminus \{0\} \text{ et } 0 \sim 0.$$

Ainsi, $\mathbb{R}/\sim=\{a,b\}$ en tant qu'ensemble, mais la topologie est différente

$$\mathfrak{T} = \{\emptyset, \{a,b\}, \{a\}\}.$$

C'est l'exemple non trivial le plus simple d'un espace non Hausdorff.

19/25

Théorème

Soit X un espace topologique muni d'une opération continue d'un groupe G. Supposons que

1. $\forall x \in X \quad \exists un voisinage U de x tq \forall g \in G \setminus \{e\}$

$$gU \cap U = L_g(U) \cap U = \emptyset.$$

2. $O_X \neq O_{X'} \implies \exists un \ voisinage \ U \ de \ x \ et \ un \ voisinage \ U' \ de \ x' \ tq \ \forall g \in G$ on $a \ U \cap gU' = \emptyset$.

Alors, X/G est Hausdorff.

Notons que la propriété 1. implique que X est Hausdorff.

Démonstration.

Désignons $\pi: X \to X/G$ et posons $V = V_X := \pi(U) \subset X/G$, où U est un voisinage comme dans la propriété 1. Considérons

$$\pi^{-1}(V) = \{ y \in X \mid \exists z \in U \text{ tq } y = g \cdot z \} = \bigsqcup_{g \in G} gU.$$

Tout sous-ensemble $gU = L_q(U)$ est ouvert puisque L_q est un homéomorphisme et donc une application ouverte. Alors, $\pi^{-1}(V)$ est ouvert ← V est ouvert par définition de la topologie quotient. Évidemment, si $U' \subset X$ est ouvert et $U' \subset U$, alors $V' := \pi(U')$ est ouvert dans X/G et $\pi^{-1}(V') = \bigsqcup_{g \in G} gU'.$

Notons que $\pi: U \to V$ est bijective parce que

$$\pi(x) = \pi(x') \implies x' = g \cdot x \in U \cap gU \implies g = e \implies x = x'.$$

Donc, $\pi|_U: U \to V$ est bijective, continue et ouverte $\implies \pi|_U$ est un homéo.

21/25

Démonstration (suite).

Soit $[x] \neq [x'] \implies x \neq x'$. Pour x' on trouve les voisinages U' de x' et V' de [x'] tq $\pi: U' \to V'$ est un homéo et $\pi^{-1}(V') = \bigsqcup gU'$. Par la propriété 2., on peut supposer que

$$U \cap gU' = \emptyset \qquad \forall g \in G.$$

Nous avons

$$V \cap V' \neq \emptyset \iff \pi^{-1}(V) \cap \pi^{-1}(V') \neq \emptyset \iff \exists g \in G \text{ tq } U \cap gU' \neq \emptyset.$$

Ainsi, $V \cap V' = \emptyset \text{ et } X/G \text{ est Hausdorff.}$

Exemple

1. Considérons l'opération de $(\mathbb{Z}, +)$ sur $X = \mathbb{R}$ définie par $(n, x) \mapsto x + n$. Pour un $x \in \mathbb{R}$ quelconque, posons U = (x - 1/4, x + 1/4). Évidemment, pour chaque $n \in \mathbb{Z} \setminus \{0\}$ on a que

$$U \cap nU = (x - 1/4, x + 1/4) \cap (x + n - 1/4, x + n + 1/4) = \emptyset.$$

Alors, la propriété 1. est satisfaite. De la même manière, on peut démontrer la propriété 2. Alors, \mathbb{R}/\mathbb{Z} est un espace Hausdorff.

Exercice : Montrer, que l'application $F: \mathbb{R} \to S^1$ definie par $F(t) = (\cos 2\pi t, \sin 2\pi t)$ induit un homéomorphisme $f: \mathbb{R}/\mathbb{Z} \to S^1$.

2. Considérons l'opération de \mathbb{Z}^2 sur $X = \mathbb{R}^2$ définie par $((n,m),(x,y)) \mapsto (x+n, y+m)$.

Exercice : Montrer, que l'espace quotient $\mathbb{R}^2/\mathbb{Z}^2$ est Hausdorff et que l'application $F: \mathbb{R}^2 \to S^1 \times S^1$ definie par

$$F(x, y) = (\cos 2\pi x, \sin 2\pi x, \cos 2\pi y, \sin 2\pi y)$$

induit un homéomorphisme $f: \mathbb{R}^2/\mathbb{Z}^2 \to S^1 \times S^1$.

23 / 25

Exemple (suite)

3. Considérons l'opération de $\mathbb{Z}_2 = \{\pm 1\}$ sur $X = S^n$ définie par $\varepsilon \cdot x = (\varepsilon x_0, \dots, \varepsilon x_n)$.

Pour tout $x \in S^n$ il existe évidemment un j tq $x_j \neq 0$. Si $x_j > 0$, on peut poser

poser $U_X := S^n \cap \{x_j > 0\}$, qui est ouvert. De plus, $U_X \cap -U_X = \emptyset$. Si $x_j < 0$, on peut choisir $U_X := S^n \cap \{x_j < 0\}$. Ça démontre la propriété 1. La propriété 2. est à vous de démontrer comme exercice. Ainsi, S^n/\mathbb{Z}_2 est Hausdorff.

 S^n/\mathbb{Z}_2 est clairement le plan projectif \mathbb{RP}^2 , càd que le plan projectif est un espace Hausdorff.

LE TORE (REVISITÉ)

Considérons l'opération de \mathbb{Z}^2 sur $X = \mathbb{R}^2$ comme dans l'exemple 2.

Exercice

Montrer que le carré $R := [0,1] \times [0,1]$ contient au moins un représentant de toute classe d'équivalence. En plus, chaque $(x,y) \in (0,1) \times (0,1)$ est l'unique représentant de sa classe d'équivalence.

Visuellement, il y a une bijection entre le tore et $S^1 \times S^1$. On a démontré déjà qu'en fait, c'est un homéomorphisme.