

EndoMamba: An Efficient Foundation Model for Endoscopic Videos via Hierarchical Pre-training

Qingyao Tian^{1,2}, Huai Liao³, Xinyan Huang³, Bingyu Yang^{1,2}, Dongdong Lei⁴, Sebastien Ourselin⁵, and Hongbin Liu^{1,4,5}

¹ Institute of Automation, Chinese Academy of Sciences ² School of Artificial Intelligence, University of Chinese Academy of Sciences 3 The First Affiliated Hospital, Sun Yat-sen University 4 Centre for Artificial Intelligence and Robotics, Chinese Academy of Sciences 5 School of Engineering and Imaging Sciences, King's College London

BACKGROUND

- Endoscopic video analysis is emerging as a key research area.
- Endoscopic imaging domain: Task-specific methods lack generalization to new data.
- General domain: Foundation models achieve strong performance in video understanding.
- Question: How to build a foundation model for endoscopic videos?

CHANLLENGES

- Computational inefficiencies when estimating video streams.
- Data limitations:
 - · Data scarcity limits large-scale learning.
 - · Lack of paired vision-language data restricts contrastive learning.

OVERVIEW

- · We Propose EndoMamba, a computational efficient and data efficient endoscopic video foundation model.
- Backbone employs spatial bidirectional scanning and temporal causal scanning for:
 - Strong spatiotemporal modeling
 - · Efficient inference
- Introduces a hierarchical pre-training strategy to boost representation

MOTIVATION

- Why Mamba?
 - 1) Effectively captures spatiotemporal representation
 - 2) Enables efficient inference on live video stream
- Key Ideas
 - Hidden state evolution:

$$h'(t) = Ah(t) + Bx(t)$$

- Output:

$$y(t) = Ch(t)$$

Discrete Form

$$ht = \overline{A}h_{t-1} + \overline{B}x_t, \ y_t = Ch_t$$

- > efficient recurrent inference
- · Unroll over time:

$$y_1 = C\overline{B}x_1$$

$$y_2 = C\overline{A}\overline{B}x_1 + C\overline{B}x_2$$

$$y_3 = C\overline{A}^2\overline{B}x_1 + C\overline{A}\overline{B}x_2 + C\overline{B}x_3$$

- Recognizing Convolution
 - Each output y_t is a weighted sum of past inputs with coefficients:

$$R_k = C\overline{A}^k \overline{B}, k = 0,1,2,...$$

$$y = x \cdot R$$

$$= \text{global recent}$$

- > global receptive field
- > efficient sequential training

CONTACT

· tianqingyao2021@ia.ac.cn

WeChat:

· liuhongbin@ia.ac.cn

Email:

Join us for the oral presentation at:

Oral Session 5: Navigation and Surgical Workflows Wednesday, September 24, 2025, 17:00 to 18:30 Main Hall

BACKBONE

Key features: 1) Bidirectional scanning within frames 2) Causal scanning across time

Highlights: 1) Strong spatiotemporal representation learning 2) Efficient deployment on live video stream

PRETRAINING

Key features:

1) Low-level video reconstruction

$$L_{\text{rec}} = \frac{1}{|\Omega|} \sum_{p \in \Omega} ||X(p) - \widehat{X}(p)||^2,$$

2) High-level feature alignment

$$L_{align} = 1 - \frac{1}{\overline{\Omega}} \sum_{q \in \Omega} \cos \left(X_f(q), X_t(q) \right),$$
Pretraining loss

Pretraining loss

1) Encourages EndoMamba to capture contextual dependencies by leveraging spatiotemporal correlations.

2) Enables EndoMamba to inherit knowledge from a broader domain.

$$L = L_{rec} + \alpha L_{align}$$
.

2) Enables EndoMamba to inherit knowledge from a broader domain. RESULTS

Classification and segmentation

Highlights:

Methods	PolypDiag F1 (%)	CVC-12K
FAME	85.4±0.8	Dice (%)
ProViCo	86.9±0.5	67.2±1.3
VCL	87.6±0.6	69.0±1.5
ST-Adapter	84.8±0.7	69.1±1.2
EndoFM	90.7±0.4	64.3±1.9
VideoMAEv2	87.5±1.6	73.9±1.2
VideoMamba	75.6±1.9	72.1±0.9
Ours	95.0±1.3	78.5±1.0
	1	85.4±0.2

Method	Paradigm	Video-level	
TeCNO Trans-SVNet	Two-stage	Accuracyt	Jaccard
AVT	Iwo-stage	77.3 78.3	50.7
LoViT	Two-stage Two-stage	77.8	50.7
VideoMAEva	Two-stage	81.4 ± 7.6	50.7 56
VideoMamba	One-stage One-stage	82.9 ± 6.8 77.0 ± 5.7	59.9
EndoFM	One-stage	80.3 ± 8.2	53.1
Ours	One-stage	62.0 ± 11.9	54.0 37.4

Airway anatomy detection and branch-level localization

Most	ranch-level localization		ne-stage	83.0 ± 9.3	3	37.
Methods	Paradigm	Video Level Metric			- 1	56
AirwayNet BronchoTrack EndoOmni VideoMAEv2 VideoMamba EndoFM Ours	One-stage One-stage One-stage One-stage One-stage One-stage One-stage One-stage	38.7 ± 15.7 57.0 ± 24.6 78.6 ± 16.2 78.9 ± 9.7 74.1 ± 8.3 62.2 ± 19.1	Precision† 54.0 70.8 66.4 70.7 64.7	cetion Metrie Recall† 52.2 54.0 72.2 67.7 70.3	F1† 53.1 61.3 69.2 69.2	
vsis, measured by imag	le tot	83.0 ± 5.5	59.5 71.0	54.1	56.7	

 Speed analysis, measured by image tokens (P), network memory len 76.2

Backbone	Param Num.	C	18 (1), hide	len state d	limenet	
video ViT	121.26M		s (T), hidden state dimension			n (m).
VideoMamba Ours	22.26M 25.42M 24.46M	$O(P^{2}T^{2}m)$ $O(P^{2}T^{2}m)$ $O(PTm^{2})$	T=16 16.8 70.3 42.3	7=32 9.2 27.8	T=64 4.8 9.7	T=12
		O(Pm2)	47.3	21.7	11.8	6.1