Оглавление

Занятие 2. Характеристики случайного процесса	1
Контрольные вопросы и задания	3
Аудиторные задачи	3
Домашнее задание	16
Занятие 5. Винеровский процесс	25
Контрольные вопросы и задания	27
Аудиторные задачи	28
Ломашнее задание	29

Занятие 2. Характеристики случайного процесса

Контрольные вопросы и задания

Приведите определение случайного процесса.

Случайный процесс $\xi\left(t\right),\,t\in T$ — это параметризированная совокупность случайных величин.

Что называют конечномерными распределениями случайного процесса?

 $\{\mu_{t_1,\dots,t_n};\,t_1,\dots,t_n\in T,\,n\geq 1\}$ — набор конечномерных распределений процесса ξ , где μ_{t_1,\dots,t_n} — распределение вектора $(\xi\left(t_1\right),\dots,\xi\left(t_n\right))$ в \mathbb{R}^n , то есть для борелевского $\Delta\in\mathcal{B}\left(\mathbb{R}^n\right),\,\mu_{t_1,\dots,t_n}\left(\Delta\right)=P\left\{(\xi\left(t_1\right),\dots,\xi\left(t_n\right))\in\Delta\right\}.$

Приведите определение функции математического ожидания, дисперсии и ковариационной функции случайного процесса.

```
m\left(t\right)=M\xi\left(t\right),\,t\in T— функция среднего. D\xi\left(t\right),\,t\in T— функция дисперсии. K\left(t,s\right)=M\left[\xi\left(t\right)-m\left(t\right)\right]\!\cdot\!\left[\xi\left(s\right)-m\left(s\right)\right],\,t,s\in T— функция ковариации.
```

Аудиторные задачи

2.2

Задание. Пусть

$$\xi(t) = X \cdot e^{-t}, t > 0,$$

где X — случайная величина, которая имеет нормальное распределение с параметрами $a,\,\sigma^2$. Найдите математическое ожидание, дисперсию, ковариационную функцию и одномерную плотность распределения случайного процесса $\xi=\{\xi\left(t\right),\,t>0\}.$

Peшeнue. Сейчас $T=(0,\infty)$.

Случайная величина X имеет распределение $N\left(a,\sigma^{2}\right)$. Нужно найти $M\xi\left(t\right)=m\left(t\right),\,D\xi\left(t\right),\,$ ковариационную функцию $K\left(t,s\right)$ и одномерную плотность распределения $p_{\xi}\left(t\right)$.

Найчнём с математического ожидания

$$m\left(t\right) = M\left(X \cdot e^{-t}\right) = e^{-t}MX = e^{-t} \cdot a.$$

Далее — функция дисперсии $D\xi\left(t\right)=D\left(X\cdot e^{-t}\right)=e^{-2t}\cdot DX$. Дисперсия X — известная: $e^{-2t}\cdot DX=e^{-2t}\cdot \sigma^2$.

Далее — ковариационная функция

$$K(t,s) = M\left[\xi(t) - m(t)\right] \cdot \left[\xi(s) - m(s)\right] = cov\left[\xi(t), \xi(s)\right].$$

Вместо $\xi(t)$, $\xi(s)$ подставляем их значения

$$cov [\xi (t), \xi (s)] = cov (Xe^{-t}, Xe^{-s}).$$

Множители выносятся

$$cov(Xe^{-t}, Xe^{-s}) = e^{-t-s}cov(X, X) = e^{-t-s}DX = e^{-t-s}\sigma^2.$$

Последнее — это плотность $\xi(t) \sim N(e^{-t}a, e^{-2t}\sigma^2)$.

Нужно написать нормальную плотность с заданными математическим ожиданием и дисперсией

$$p_{\xi(t)}(x) = \frac{1}{\sqrt{2\pi e^{-2t}\sigma^2}} \cdot e^{-\frac{\left(x - e^{-t}a\right)^2}{2e^{-2t}\sigma^2}}.$$

Траектория процесса изображена на рисунке 1 и имеет разный вид в зависимости от значения случайной величины X.

Рис. 1: Траектория процесса

2.3

Задание. Пусть

$$\xi\left(t\right) =e^{-Xt},\,t>0,$$

где X — случайная величина, которая имеет показательное распределение с параметром λ . Запишите конечномерные распределения случайного процесса $\{\xi\left(t\right),\,t>0\}$. Найдите его математическое ожидание, дисперсию и ковариационную функцию.

Решение. $\xi(t) = e^{-Xt}$, где $X \sim Exp(\lambda)$, t > 0.

Нужно найти m(t), K(t,s), конечномерные распределения.

Найдём математическое ожидание в момент t. По определению

$$m(t) = Me^{-Xt} = \int_{0}^{+\infty} \lambda e^{-\lambda x} e^{-Xt} dX = \frac{\lambda}{\lambda + t}.$$

Траектории такого процесса изображены на рисунке 2: чем больше X, тем быстрее эта функция убывает.

Рис. 2: Траектория процесса

Ковариационная функция считается по определению

$$K(t,s) = M\xi(t)\xi(s) - M\xi(t)M\xi(s) = Me^{-Xt - Xs} - \frac{\lambda}{\lambda + t} \cdot \frac{\lambda}{\lambda + s}.$$

Подставим найденное значение фунцкии математического ожидания

$$Me^{-Xt-Xs} - \frac{\lambda}{\lambda+t} \cdot \frac{\lambda}{\lambda+s} = \frac{\lambda}{\lambda+t+s} - \frac{\lambda^2}{(\lambda+t)(\lambda+s)}.$$

Считаем функцию распределения случайного вектора $(\xi(t_1), \dots, \xi(t_n))$ — рис. 3.

 $F_{(\xi(t_1),\dots,\xi(t_n))}(\vec{x}) = P\left\{\xi\left(t_1\right) \leq x_1,\dots,\xi\left(t_n\right) \leq x_n\right\}$. Вместо ξ напишем формулу $P\left\{\xi\left(t_1\right) \leq x_1,\dots,\xi\left(t_n\right) \leq x_n\right\} = P\left(e^{-Xt_1} \leq x_1,\dots,e^{-Xt_n} \leq x_n\right)$. Величины зависимы, потому что все они выражаются через X. Все неравенства решаем относительно X

$$P(e^{-Xt_1} \le x_1, \dots, e^{-Xt_n} \le x_n) = P\{X \ge -\frac{\ln x_1}{t_1}, \dots, X \ge -\frac{\ln x_n}{t_n}\}.$$

Перепишем через максимум

$$P\left\{X \ge -\frac{\ln x_1}{t_1}, \dots, X \ge -\frac{\ln x_n}{t_n}\right\} = P\left\{X \ge \max\left(-\frac{\ln x_1}{t_1}, \dots, -\frac{\ln x_n}{t_n}\right)\right\}.$$

Рис. 3: Выбираем точки, в которых ищем распределение случайного процесса

Обозначим максимум буквой т

$$P\left\{x \ge \max\left(-\frac{\ln x_1}{t_1}, \dots, -\frac{\ln x_n}{t_n}\right)\right\} = \int_{m}^{+\infty} \lambda e^{-\lambda X} dX = -e^{-\lambda X}\Big|_{m}^{+\infty}.$$

На бесконечности получаем ноль

$$-e^{-\lambda X}\Big|_{m}^{+\infty} = e^{-\lambda m} = e^{-\lambda \max\left(\ln x_{1}^{-\frac{1}{t_{1}}}, \dots, \ln x_{n}^{-\frac{1}{t_{n}}}\right)}$$

Выносим логарифм

$$e^{-\lambda \max\left(\ln x_1^{-\frac{1}{t_1}}, \dots, \ln x_n^{-\frac{1}{t_n}}\right)} = e^{-\lambda \ln \max\left(x_1^{-\frac{1}{t_1}}, \dots, x_n^{-\frac{1}{t_n}}\right)}$$

Экспонента и логарифм уничтожают друг друга

$$e^{-\lambda ln\max\left(x_1^{-\frac{1}{t_1}},\dots,x_n^{-\frac{1}{t_n}}\right)} = \max\left(x_1^{-\frac{1}{t_1}},\dots,x_n^{-\frac{1}{t_n}}\right)^{-\lambda} = \min\left(x_1^{\frac{\lambda}{t_1}},\dots,x_n^{\frac{\lambda}{t_n}}\right).$$

Все выкладки были законные, только когда $0 < x_1, \dots, x_n < 1$.

Плотности у такого векора $(\xi(t_1),\ldots,\xi(t_n))$ быть не может, потому что $\xi(t_1)^{\frac{1}{t_1}}=e^{-X}=\xi(t_2)^{\frac{1}{t_2}}.$ Сейчас у нас только одна случайная величина. Это можно переписать как $\xi(t_2)=\xi(t_1)^{\frac{t_2}{t_1}},\,y=x^{\frac{t_2}{t_1}}.$

С вероятностью $1(\xi(t_1), \xi(t_2)) \in L$ — рис. 4.

Значения вектора всегда попадают на такую линию. Площадь кривой — ноль.

Плотность — производная от функции распределения, а минимум нельзя дифференцировать.

2.4

Задание. Рассмотрим случайный процесс

$$X(t) = A\cos(\varphi + \lambda t)$$
,

где A и φ являются независимыми случайными величинами такими, что $MA^2<\infty,$ а φ имеет равномерное распределение на отрезке $[0,2\pi].$ Найдите математическое ожидание и ковариационную функцию процесса

$$\{X(t), t \geq 0\}.$$

Решение. $\varphi \sim U([0, 2\pi])$.

Траектория такого процесса изображена на рисунке 5.

Рис. 5: Траектория процесса

Тут случайная амплитуда и случайный сдвиг по фазе.

 $MX\left(t\right)=M\left[A\cos\left(\varphi+\lambda t\right)\right]$. Случайные величины A и φ — независимые. $M\left[A\cos\left(\varphi+\lambda t\right)\right]=MAM\cos\left(\varphi+\lambda t\right)$. Математическое ожидание косинуса можем найти, потому что у φ известна плотность

$$MAM\cos\left(\varphi + \lambda t\right) = MA \cdot \int_{0}^{2\pi} \cos\left(\varphi + \lambda t\right) \cdot \frac{1}{2\pi} \cdot d\varphi.$$

Интеграл косинуса по периоду — ноль.

Ковариационная функция $K\left(t,s\right)=MX\left(t\right)X\left(s\right)-MX\left(t\right)MX\left(s\right)=$ Произведение математических ожиданий мы знаем

$$=MX\left(t\right) X\left(s\right) =M\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda t\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi +\lambda s\right) \cos \left(\varphi +\lambda s\right) \right] =% \frac{1}{2}\left[A^{2}\cos \left(\varphi$$

Используем независимость

$$=MA^{2}\cdot M\left[\cos\left(\varphi+\lambda t\right)\left(\varphi+\lambda s\right)\right]=$$

Применяем формулу для произведения косинусов

$$=MA^{2}\cdot M\left\{ \frac{1}{2}\cdot\cos\left[2\varphi+\lambda\left(t+s\right) \right] +\frac{1}{2}\cdot\cos\left[\lambda\left(t-s\right) \right] \right\} =$$

Математическое ожидание первого слагаемого — ноль

$$= \frac{1}{2} \cdot MA^{2} \cdot \cos \left[\lambda \left(t - s\right)\right].$$

Двумерная характеристика процесса зависит только от расстояния между двумя точками. Это стационарный процесс. Его характеристики не меняются при сдвиге.

2.5

 $\it 3adanue.$ Пусть τ — случайная величина, которая имеет равномерное распределение на отрезке [0,1], и пусть $\{X(t), t\in [0,1]\}$ — процесс ожидания, связанный с этой случайной величиной, то есть

$$X(t) = 1\{t \ge \tau\}, t \in [0, 1].$$

Запишите конечномерные распределения процесса $\{X(t), t \in [0,1]\}$, найдите его математическое ожидание и ковариационную функцию.

Решение. τ — случайная величина с распределением U([0,1]).

Сначала нарисуем траекторию такого процесса (рис. 6). Случайное au выпало.

Рис. 6: Траектория процесса

$$m(t) = MX(t) = M1\{t \ge \tau\} = P(t \ge \tau) = F_{\tau}(t) = \frac{t-a}{b-a} = t.$$

Ковариационная функция K(t,s) = M[X(t)X(s)] - MX(t)MX(s). Произведение индикаторов — это индикатор пересечения

$$M[X(t) | X(s)] - MX(t) MX(s) = P\{\tau \le \min(t, s)\} - ts = \min(t, s) - t \cdot s.$$

Конечномерные распределения — распределение вектора $(X(t_1), \ldots, X(t_n))$. Каждый X — это 0 или 1.

$$P\{(X(t_1),\ldots,X(t_n))=(0,\ldots,0)\}=P\{\tau\in(t_n,1]\}=1-t_n.$$

Точки t_n изображены на рисунке 7.

Рис. 7: Временная ось

У вектора получается (n+1)-но значение

$$(X(t_1), \dots, X(t_n)) = \begin{cases} (0, \dots, 0), & 1 - t_n, \\ (0, \dots, 0, 1), & t_n - t_{n-1}, \\ \dots, \\ (0, \dots, 0, 1, \dots, 1), & t_{k+1} - t_k, \\ \dots, \\ (1, \dots, 1), & t_1. \end{cases}$$

2.6

Задание. Пусть $\xi_1, \xi_2, \dots, \xi_n$ — независимые одинаково распределённые случайные величины с функцией распределения F, и пусть

$$X(t) \equiv F_n^*(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \{\xi_i \le t\}, t \in \mathbb{R}.$$

Запишите конечномерные распределения процесса $\{X(t), t \in \mathbb{R}\}$, найдите его математическое ожидание и ковариационную функцию.

Решение.

$$X(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ \xi_i \le t \}$$

— это эмпирическая функция распределения (рис. 8).

Эмпирическая функция распределения — это несмещённая оценка функции распределения.

$$cov\left(X\left(t\right),X\left(s\right)\right) = cov\left(\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{\xi_{i} \leq t\right\}, \frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{\xi_{i} \leq s\right\}\right) =$$

Нужно вынести константы

$$= \frac{1}{n^2} \sum_{i,j=1}^{n} cov \left(\mathbb{1} \left\{ \xi_i \le t, \ \mathbb{1} \left\{ \xi_j \le s \right\} \right\} \right) =$$

Рис. 8: Эмпирическая функция распределения

Случайные величины ξ_1,\dots,ξ_n — независимые. Ковариация независимых величин — ноль

$$= \frac{1}{n^2} \sum_{i=1}^{n} (\mathbb{1} \{ \xi_i \le t \}, \, \mathbb{1} \{ \xi_i \le s \}).$$

Посчитаем ковариацию двух индикаторов

$$cov(1\{\xi_i \le t\}, 1\{\xi_i \le s\}) = M1\{\xi_i \le t \land s\} - F(t)F(s) =$$

Математическое ожидание индикатора событие — вероятность этого события, которая в данном случае по определению равна функции распределения

$$= F(t \wedge s) - F(t) F(s),$$

где ∧ означает минимум.

Все слагаемые в сумме раны этому выражению

$$K(t,s) = \frac{1}{n} \left[F(t \wedge s) - F(t) F(s) \right].$$

Теперь нужно написать конечномерные распределения этого процесса. Фиксируем t_1, t_2, \ldots, t_m (рис. 9).

$$X(t) \in \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\right\}.$$

По t, X увеличивается. Эта функция монотонна.

Рис. 9: Фиксируем моменты времени

$$0 \le k_1 \le k_2 \le \ldots \le k_m \le n.$$

Конечномерные распределения имеют вид

$$P\left\{X\left(t_{1}\right)=\frac{k_{1}}{n},\,X\left(t_{2}\right)=\frac{k_{2}}{n},\ldots,X\left(t_{m}\right)=\frac{k_{m}}{n}\right\}=$$

P(для k_1 наблюдений $\xi \leq t_1$, для k_2-k_1 наблюдений $t_1 < \xi \leq t_2,\ldots$, для $n-k_m$ наблюдений $\xi > t_m$) Имеем мультиномиальное распределение

$$= \frac{n!}{k_1! (k_2 - k_1)! \dots (n - k_m)!} \cdot F(t_1)^{k_1} \cdot [F(t_2) - F(t_1)]^{k_2 - k_1} \cdot \dots,$$

где первое слагаемое — количество способов разбить n величин на группы.

2.7

 $3 a \partial a n u e$. Найдите характеристическую функцию случайной величины $X\left(\eta\right)$, где $\{X\left(t\right),\,t\in\left[0,1\right]\}$ — процесс из задачи 2.5, а η — независимая от X случайная величина, которая принимает значения 0 и 1 с вероятностями $\frac{1}{3}$ и $\frac{2}{3}$ соответственно.

Peшение. $X(t) = 1 \{t \geq \tau\}.$

Задана случайная величина

$$\eta = \begin{cases} 0, & \frac{1}{3}, \\ 1, & \frac{2}{3}. \end{cases}$$

Интересуемся $\varphi_{X(\eta)}$. Траектория случайного процесса изображён на рисунке 10.

Рис. 10: Траектория случайного процесса

Случайная величина принимает значения 0 и 1: $X\left(0\right)=0,\,X\left(1\right)=1,$ значит, $X\left(\eta\right)=\eta.$

$$\varphi_{X(\eta)}\left(\lambda\right)=\varphi_{\eta}\left(\lambda\right)=Me^{i\lambda\eta}=\frac{1}{3}\cdot1+\frac{2}{3}\cdot e^{i\lambda}.$$

То, что они независимы, тут не важно.

 $3 a \partial a n u e$. Значение случайного телеграфного сигнала $\xi = \{\xi \, (t) \, , \, t \in \mathbb{R} \}$ в произвольный момент времени с одинаковыми вероятностями равно 0 или 1. Прыжки происходят случайным и независимым образом. Вероятность $P \, (k,T)$ того, что в интервале времени длины T произойдёт k прыжков, задаётся распределением Пуассона, то есть:

$$P(k,T) = \frac{(\lambda T)^k}{k!} \cdot e^{-\lambda T},$$

где λ — среднее количество прыжков за единицу времени. Найдите математическое ожидание и ковариационнуб функцию случайного процесса ξ . *Pewerue*.

$$P\{\xi(t) = 1\} = P\{\xi(t) = 0\} = \frac{1}{2}.$$

Одномерные распределения даны. Это распределение Бернулли.

 $P\left(k,T\right)$ — это вероятность того, что на отрезке времени длины T было k прыжков (распределение Пуассона), то есть траектория процесса выглядит как на рисунке 11.

Рис. 11: Траектория случайного процесса

В каждой точке будет 0 или 1.

Математическое ожидание тут ищется просто

$$M\xi(t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}.$$

Теперь нужно ещё найти ковариационную функцию такого процесса

$$K(s,t) = M[(\xi(t) - M\xi(t)) \cdot (\xi(s) - M\xi(s))] = M\xi(s)\xi(t) - \frac{1}{4}.$$

Нужно математическое ожидание совместного процесса. $\xi\left(s\right)$ и $\xi\left(t\right)$ зависимы

Попробуем найти математическое ожидание произведения. $\xi\left(t\right)\xi\left(s\right)$ принимают значения 0 и 1. Произведение принимает значения 0 и 1. Получаем

$$M\xi(t)\xi(s) = 0 \cdot P\{\xi(t)\xi(s) = 0\} + 1 \cdot P\{\xi(t)\xi(s) = 1\} =$$

Слагаемое с нулём пропадает

$$= P \{ \xi(s) = 1, \xi(t) = 1 \}.$$

Значения в точках совпадаю, если между ними произошло чётное количество скачков $M\xi(t)\xi(s)=P\left\{\xi(s)=1\right\}P$ (на отрезке [s,t] будет чётное количество прыжков) = $\frac{1}{2}\cdot P$ (на отрезке [s,t] будет чётное число прыжков). Мы знаем, с какой вероятностью происходит число прыжков.

Подходят любые чётные прыжки, то есть это вероятность объединения. Число скачков обозначим буковокой N. Тогда P(на [s,t] чётное число скачков) = $P(N_{[s,t]}$ чётное)=

$$\sum_{k=0}^{\infty} P\left(2k = N_{[s,t]}\right) = \sum_{k=0}^{\infty} P\left(2k, t - s\right) = \sum_{k=0}^{\infty} \frac{\left[\lambda \left(t - s\right)\right]^{2k}}{(2k)!} \cdot e^{-\lambda(t - s)} = \sum_{k=0}^{\infty} P\left(2k - s\right) = \sum_{k=0}^{\infty} P\left(2k - s\right$$

Экспонента выносится за сумму. Остаётся сумма

$$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}.$$

Для того, чтобы это было экспонента, нужны ещё и нечётные степени

$$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = e^x.$$

Если мы вычтем вторую сумму, то получится

$$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} - \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} \frac{(-x)^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{(-x)^{2k+1}}{(2k+1)!} = e^{-x}.$$

Теперь нужно сложить эти два выражения и поделить на 2, то есть

$$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = \frac{e^x + e^{-x}}{2}, \ x = \lambda (t - s).$$

Получили гиперболический косинус.

$$= \frac{e^{\lambda(t-s)} + e^{-\lambda(t-s)}}{2} \cdot e^{-\lambda(t-s)} =$$

Умножим один сомножитель на другой, $e^{\lambda(t-s)} \cdot e^{-\lambda(t-s)}$ дают единицу. Получаем

$$=\frac{1+e^{-2\lambda(t-s)}}{2}.$$

Это вероятность чётного числа скачков.

Выпишем, чему равна ковариационная функция. Математическое ожидание произведения нужно умножить на $\frac{1}{2}$ и отнять $\frac{1}{4}$. Получится

$$K(t,s) = \frac{1 + e^{-2\lambda(t-s)}}{4} - \frac{1}{4} = \frac{e^{-2\lambda(t-s)}}{4}, \ s < t.$$

Окончательный ответ:

$$K(t,s) = \frac{1}{4} \cdot e^{-2\lambda|t-s|}.$$

3aдание. Пусть η_1 и η_2 — независимые случайные величины, которые имеют равномерное распределение на отрезке [-1,1]. Найдите значения a, при которых почти все реализации случайной функции $t\left(\eta_1+a\left(\eta_2+2a\right)\right)$ монотонно возрастают по t.

Решение. $\xi(t) = t(\eta_1 + a(\eta_2 + 2a))$ — процесс, который задан при t > 0. Известно, что траектория этого процесса монотонно возрастает по t с вероятностью 1. Нужно найти a = const.

Реализация такого процесса выглядит как прямая линия (рис. 12), при этом $\eta_1 + a \, (\eta_2 + 2a) > 0$. Это случайная величина, так что коффициент наклона должен быть положительным

$$P\{\xi(t) \nearrow\} = P\{\eta_1 + a(\eta_2 + 2a) > 0\} = 1 =$$

Число a должно быть таким, чтобы вероятность была единицей.

Рисуем траекторию процесса, считая, что все случайные величины неслучайны. Нужно, чтобы все реализации (прямые) возрастали.

Про η_1 и η_2 мы всё знаем. Это независимые случайные величины. Получаем двукратный интеграл

$$= \int_{-1}^{1} \int_{-1}^{1} \frac{1}{2} \cdot \frac{1}{2} \cdot \mathbb{1} \left\{ x + a \left(y + 2a \right) > 0 \right\} dx dy,$$

где первые два множителя — плотности.

Рис. 12: Траектория случайного процесса

1. При $a=0\,\eta_1>0$ — правая часть квадратика. Тогда событие выполняется с вероятностью

$$\frac{1}{2} \neq 1$$
,

то есть $a \neq 0$.

2. Следующий случай: пусть a>0. Получается, что условие переписывается в виде

$$\eta_2 + 2a \ge -\frac{\eta_1}{a},$$

откуда

$$\eta_2 \ge -\frac{\eta_1}{a} - 2a,$$

то есть на картинке это будет прямая. Мы возьмём всё, что над этой прямой

$$y = -\frac{x}{a} - 2a.$$

Наша вероятность — это площадь квадрата над прямой. Вероятность не будет равна 1. a должно быть таким, чтобы прямая прошла через точку (-1,-1), то есть $-1+a(2a-1)\geq 0$. Теперь можно найти a из неравенства $2a^2-a-1\geq 0$. Сейчас скажем, при каких a это выполнено. Нужно найти корни уравнения. $D=1+8=9=3^2$, значит

$$a_1 = -\frac{1}{2}, a_2 = 1,$$

то есть то, что нужно выбрать изображено на рисунке 13.

Рис. 13: Решение неравенства

Задавали a>0, то есть при $a\geq 1$ вероятность такого события — единица.

3. Теперь нужно задать a < 0. Отличие будет в том, как пройдёт прямая. Когда поделим на a, знак поменяется.

$$-\frac{\eta_1}{a} - 2a \ge \eta_2,$$

то есть нужно нарисовать прямую

$$y = -\frac{x}{a} - 2a.$$

Прямая пройдёт через такие же точки: $(-2a, -2a^2)$, только если a — отрицательное, то -2a — положительное. Нужно будет выбрать всё, что ниже этой прямой.

Нужно, чтобы прямая прошла над точкой (-1,1). Имеем неравенство $-1+a\,(1+2a)\geq 0$, откуда

$$a^1 + \frac{1}{2} \cdot a - 1 \ge 0.$$

Решая соответствующее уравнение находим, что

$$a_1 = \frac{1}{2}, a_2 = 1.$$

Получаем всё, что за корнями (рис. 14).

При a < 0 получаем ответ: $a \le -1$.

Рис. 14: Решение неравенства

Ответ к задаче: $a \in (-\infty, -1) \cup (1, +\infty)$, то есть |a| > 1. Тогда все реализации процесса будут возрастать.

2.10

 $\it 3adanue.$ Пусть случайная величина $\tau \in (0,1)$ имеет непрерывное распределение и пусть

$$\xi(t) \equiv 0; \ \eta(t) = \begin{cases} 0, & t \neq \tau, \\ 1, & t = \tau, \end{cases} \quad t \in [0, 1].$$

Изобразите трактории этих процессов. Докажите, что эти процессы являются стохастически эквивалентными, то есть $\forall t \in [0,1]: P\{\xi(t) \neq \eta(t)\} = 0.$

 $Peшение.\ au$ — это случайная величина с непрерывным распределением— та, у которой функция распределения $F_{ au}$ — непрерывна.

Скачок фукнции распределения в точке x — это $\Delta F_{\tau}\left(x\right)=P\left(\tau=x\right)=0,$ где

$$F_{\tau}(x) = P(\tau \leq x)$$
,

а $F_{\tau}(-x) = P(\tau < x)$. В нашем случае нет скачков, то есть в фиксированный x случайная величина τ не попадёт. Рассматривается 2 процесса: один процесс — это $\xi(t) \equiv 0$, второй процесс — это

$$\eta(t) = \begin{cases} 0, & t \neq \tau, \\ 1, & t = \tau. \end{cases}$$

Посмотрим, какие траектории у этих процессов (рис. 15). Процессы заданы на

$$t \in [0, 1]$$
.

Стохастически эквивалентные означает, что если зафиксировать момент времени t, то в этот момент $P\left\{\xi\left(t\right)=\eta\left(t\right)\right\}=P\left\{\eta\left(t\right)=0\right\}=P\left(\tau\neq t\right)=1.$ С точки зрения анализа это разные функции. У η всегда есть скачок, у ξ никогда скачков нет. Помним, что $\xi\left(t\right)\equiv0.$ Тем не менее, вероятность $P\left\{\xi\left(t\right)\neq\eta\left(t\right)\right\}=P\left\{\eta\left(t\right)\neq0\right\}=P\left(\tau=t\right)=0,$ а это значит, что в фиксированной точке процессы с вероятностью 1 совпадают. Если зафиксируем несколько точек t_1,t_2,\ldots,t_n , то вероятность

$$P\{(\xi(t_1),\ldots,\xi(t_n))=(\eta(t_1),\ldots,\eta(t_n))\}=1.$$

У этих процессов одинаковые конечномерные распределения

$$\mu_{t_1,\ldots,t_n}^{\xi} = \mu_{t_1,\ldots,t_n}^{\eta}.$$

Конечномерные распределения не определяют траектории процесса.

Рис. 15: Траектория случайных процессов

Домашнее задание

2.12

Задание. Пусть

$$\xi(t) = Xt + a, t \in \mathbb{R},$$

где X — равномерно распределённая на отрезке (a,b) случайная величина. Запишите конечномерные распределения случайного процесса $\{\xi\left(t\right),\,t\in\mathbb{R}\}$. Найдите его математическое ожидание, дисперсию и ковариационную функцию.

Решение. $\xi\left(t\right)=Xt+a,\,t\in\mathbb{R},$ где $X\sim U\left(a,b\right).$

Нужно найти $m\left(t\right),\,D\xi\left(t\right),\,K\left(t,s\right)$, конечномерные распределения.

Найдём математическое ожидание в момент t

$$m\left(t\right)=M\xi\left(t\right)=M\left(Xt+a\right)=M\left(Xt\right)+Ma=tMX+a=t\cdot\frac{a+b}{2}+a.$$

Траектории такого процесса изоражены на рисунке 16: чем больше X, тем больше угол наклона прямой к оси 0t.

Рис. 16: Траектории случайного процесса

$$D\xi(t) = D(Xt + a) = D(Xt) + Da = t^2DX = t^2 \cdot \frac{(b-a)^2}{12}.$$

Ковариационная функция считается по определению

$$K\left(t,s\right) =M\left[\xi \left(t\right) \xi \left(s\right) \right] -M\xi \left(t\right) M\xi \left(s\right) =% \left[t^{2}+t$$

Подставляем выражение для случайного процесса, раскрываем скобки и вычисляем математическое ожидание

$$= M \left[(Xt + a) (Xs + a) \right] - M (Xt + a) M (Xs + a) =$$

$$= M \left[X^2 ts + Xa (t + s) + a^2 \right] - \left(t \cdot \frac{a + b}{2} + a \right) \left(s \cdot \frac{a + b}{2} + a \right) =$$

$$= ts \cdot \frac{a^2 + ab + b^2}{3} + a (t + s) \cdot \frac{a + b}{2} + a^2 - ts \cdot \frac{(a + b)^2}{4} - ta \cdot \frac{a + b}{2} - a^2 -$$

$$-as \cdot \frac{a + b}{2} =$$

$$= ts \left(\frac{a^2 + ab + b^2}{3} - \frac{a^2 + 2ab + b^2}{4} \right) + (t + s) a \cdot \frac{a + b}{2} - \frac{a + b}{2} \cdot a (t + s) =$$

$$= ts \cdot \frac{4a^2 + 4ab + 4b^2 - 3a^2 - 6ab - 3b^2}{12} = ts \cdot \frac{a^2 - 2ab + b^2}{12} = ts \cdot \frac{(a - b)^2}{12}.$$

Считаем функцию распределения случайного вектора $(\xi(t_1), \dots, \xi(t_n))$ — рис. 17.

Рис. 17: Выбираем точки, в которых ищем распределение случайного процесса

 $F_{(\xi(t_1),\dots,\xi(t_n))}\left(\vec{x}
ight)=P\left\{\xi\left(t_1
ight)\leq x_1,\dots,\xi\left(t_n
ight)\leq x_n
ight\}$. Вместо ξ напишем формулу $P\left\{\xi\left(t_1
ight)\leq x_1,\dots,\xi\left(t_n
ight)\leq x_n
ight\}=P\left(Xt_1+a\leq x_1,\dots,Xt_n+a\leq x_n
ight)$. Величины зависимы, потому что все они выражаются через X. Все неравенства решаем относительно X

$$P(Xt_1 + a \le x_1, ..., Xt_n + a \le x_n) = P(Xt_1 \le x_1 - a, ..., Xt_n \le x_n - a) =$$

Делим на константы левые части неравенств

$$= P\left(X \le \frac{x_1 - a}{t_1}, \dots, X \le \frac{x_n - a}{t_n}\right) =$$

Перепишем через минимум

$$=P\left\{X \leq \min\left(\frac{x_1-a}{t_1},\dots,\frac{x_n-a}{t_n}\right)\right\} =$$

Обозначим минимум буквой m для удобства

$$=P\left(X\leq m\right)=\int\limits_{a}^{m}\frac{1}{b-a}\cdot\mathbbm{1}\left\{ X\in\left(a,b\right)\right\} dX=\frac{1}{b-a}\int\limits_{a}^{m}dX=\frac{1}{b-a}\cdot\left.X\right|_{a}^{m}=$$

Подставляем пределы интегрирования

$$= \frac{1}{b-a} \cdot (m-a) = \frac{1}{b-a} \cdot \left[\min \left(\frac{x_1 - a}{t_1}, \dots, \frac{x_n - a}{t_n} \right) - a \right]$$

при $m \in (a, b)$, иначе — ноль.

2.13

Задание. Пусть

$$\xi(t) = U\cos\theta t + V\sin\theta t, t \in T,$$

где U,V — независимые случайные величины с заданными характеристиками: $MU=MV=0,\,DU=DV=\sigma^2,\,\theta$ — неслучайная величина. Найдите математическое ожидание, дисперсию и ковариационную функцию случайного процесса $\{\xi\,(t)\,,\,t\in T\}.$

Peшение. Нужно найти $m\left(t\right)$, $D\xi\left(t\right)$, $K\left(t,s\right)$.

Найдём математическое ожидание в момент t. По свойствам

$$m(t) = M\xi(t) = M(U\cos\theta t + V\sin\theta t) = \cos\theta t \cdot MU + \sin\theta t \cdot MV = 0.$$

Можно сделать преобразование $U\cos\theta t + V\sin\theta t = C\sin(\theta t + \omega)$, где $C = \sqrt{U^2 + V^2}$. Траектории такого процесса изображены на рисунке 18: график синуса сжимается к оси ординат, когда модули случайных величин U и V растут.

Рис. 18: Траектория процесса

Найдём дисперсию в момент t. По свойствам

$$D\xi(t) = D(U\cos\theta t + V\sin\theta t) = \cos^2\theta t \cdot DU + \sin^2\theta t \cdot DV =$$

Подставим известные значения дисперсии

$$=\cos^2\theta t \cdot \sigma^2 + \sin^2\theta t \cdot \sigma^2 = \sigma^2 \left(\cos^2\theta t + \sin^2\theta t\right) = \sigma^2.$$

Ковариационная функция считается по определению

$$K(t,s) = M\xi(t)\xi(s) - M\xi(t)M\xi(s) =$$

Подставим выражения для случайного процесса в первое слагаемое, а второе равно нулю

$$= M \left[(U \cos \theta t + V \sin \theta t) \cdot (U \cos \theta s + V \sin \theta s) \right] =$$

Раскроем скобки

$$= M(U^{2}\cos\theta t \cdot \cos\theta s + UV\cos\theta t \cdot \sin\theta s + VU\sin\theta t \cdot \cos\theta s + VU\sin\theta t \cdot \cos\theta s + VU\sin\theta t \cdot \sin\theta s) = DU \cdot \cos\theta t \cdot \cos\theta s + MU \cdot MV \cdot \cos\theta t \cdot \sin\theta s + MV \cdot MU \cdot \sin\theta t \cdot \cos\theta s + DV \cdot \sin\theta t \cdot \sin\theta s = \sigma^{2}\cos\theta t \cdot \cos\theta s + \sigma^{2}\sin\theta t \cdot \sin\theta s = \sigma^{2}\cdot(\cos\theta t \cdot \cos\theta s + \sin\theta t \cdot \sin\theta s) = \sigma^{2}\cos(\theta t - \theta s) = \sigma^{2}\cos[\theta(t - s)].$$

2.14

Задание. Определите математическое ожидание, дисперсию и ковариационную функцию процесса

$$\xi(t) = 2u \sin \nu t + 3vt^2 + 5, t \in T,$$

где ν — известный неслучайный параметр, а u,v — случайные величины с известными характеристиками:

$$Mu = 1$$
, $Mv = 2$, $Du = 0.1$, $Dv = 0.9$, $cov(u, v) = -0.3$.

Peшeнue. Нужно найти m(t), $D\xi(t)$, K(t,s).

Найдём математическое ожидание в момент t. По свойствам

$$m(t) = M(2u\sin\nu t + 3vt^2 + 5) = 2\sin\nu t \cdot Mu + 3t^2Mv + 5 = 2\sin\nu t + 6t^2 + 5.$$

Траектория такого процесса изображена на рисунке 19 при $\nu=1,\,u=1,\,v=2.$

Ковариационная функция считается по определению

$$K(t,s) = M\xi(t)\xi(s) - M\xi(t) \cdot M\xi(s) =$$

Рис. 19: Траектория процесса

Подставим выражения для случайного процесса и его математические ожидания

$$= M \left[\left(2u\sin\nu t + 3vt^2 + 5 \right) \left(2u\sin\nu s + 3vs^2 + 5 \right) \right] - \left(2\sin\nu t + 6t^2 + 5 \right) \left(2\sin\nu s + 6s^2 + 5 \right) =$$

$$= M \left(4u^2\sin\nu t \cdot \sin\nu s + 6uv\sin\nu t \cdot s^2 + 10u\sin\nu t + 6vt^2u\sin\nu s + 9v^2t^2s^2 + 15vt^2 + 10u\sin\nu s + 15vs^2 + 25 \right) - 4\sin\nu t \cdot \sin\nu s - 12\sin\nu t \cdot s^2 - 10\sin\nu t -$$

$$-12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 25 =$$

$$= 4\sin\nu t \cdot Mu^2 + 6t^2\sin\nu s \cdot M \left(uv \right) + 10\sin\nu t \cdot Mu + 6t^2\sin\nu s \cdot M \left(uv \right) +$$

$$+9t^2s^2Mv^2 + 15t^2Mv + 10\sin\nu s \cdot Mu + 15s^2 \cdot Mv + 25 - 4\sin\nu t \cdot \sin\nu s -$$

$$-12\sin\nu t \cdot s^2 - 10\sin\nu t - 12t^2\sin\nu s - 36t^2s^2 - 30t^2 - 10\sin\nu s - 30s^2 - 25 =$$

Вычислим вторые моменты

$$Mu^2 = Du + (Mu)^2 = 0.1 + 1 = 1.1, Mv^2 = Dv + (Mv)^2 = 0.9 + 4 = 4.9.$$

По определению ковариации $cov(u, v) = M(uv) - Mu \cdot Mv$, откуда

$$M(uv) = cov(u, v) + Mu \cdot Mv = -0.3 + 1 \cdot 2 = 2 - 0.3 = 1.7.$$

Подставим полученные значения в функцию ковариации

$$= 4 \sin \nu t \cdot \sin \nu s \cdot 1.1 + 6 \sin \nu t \cdot s^2 \cdot 1.7 + 10 \sin \nu t + 6t^2 \sin \nu s \cdot 1.7 + \\ +9t^2 s^2 \cdot 4.9 + 15t^2 \cdot 2 + 10 \sin \nu s + 15s^2 \cdot 2 - 4 \sin \nu t \cdot \sin \nu s - 12 \sin \nu t \cdot s^2 - \\ -10 \sin \nu t - 12t^2 \cdot \sin \nu s - 36t^2 s^2 - 30t^2 - 10 \sin \nu s - 30s^2 = \\ = 0.4 \sin \nu t \cdot \sin \nu s - 1.8 \sin \nu t \cdot s^2 - 1.8t^2 \sin \nu s + 8.1t^2 s^2.$$

Найдём дисперсию в момент t. Из формулы для ковариации

$$D\xi(t) = K(t,t) = 0.4\sin^2\nu t - 3.6\sin\nu t \cdot t^2 + 8.1t^4.$$

2.15

Задание. Найдите ковариационную функцию процесса

$$Y(t) = \psi_1(t) X_1 + \ldots + \psi_n(t) X_n,$$

где ψ_1, \ldots, ψ_n — произвольные числовые функции от t, а X_1, \ldots, X_n — некоррелируемые случайные величины с дисперсиями D_1, \ldots, D_n .

Решение. Нужно найти

$$K(t,s) = cov(\psi_1(t) X_1 + ... + \psi_n(t) X_n, \psi_1(s) X_1 + ... + \psi_n(s) X_n) =$$

Распишем по определению

$$= M [(\psi_{1}(t) X_{1} + \dots + \psi_{n}(t) X_{n}) (\psi_{1}(s) X_{1} + \dots + \psi_{n}(s) X_{n})] -$$

$$-M (\psi_{1}(t) X_{1} + \dots + \psi_{n}(t) X_{n}) \cdot M (\psi_{1}(s) X_{1} + \dots + \psi_{n}(s) X_{n}) =$$

$$= \sum_{i,j=1}^{n} \psi_{i}(t) \psi_{j}(s) M (X_{i}X_{j}) - \sum_{i,j=1}^{n} \psi_{i}(t) \psi_{j}(s) MX_{i} \cdot MX_{j} =$$

$$= \psi_{1}(t) \psi_{1}(s) DX_{1} + \dots + \psi_{n}(t) \psi_{n}(s) DX_{n} =$$

$$= \psi_{1}(t) \psi_{1}(s) D_{1} + \dots + \psi_{n}(t) \psi_{n}(s) D_{n}.$$

2.16

3адание. Пусть η и ζ — независимые нормально распределённые случайные величины с нулевым математическим ожиданием и дисперсиями 1/2. Найдите конечномерные распределения случайного процесса

$$\xi(t) = \frac{\eta + \zeta}{t}, \ t > 0.$$

Решение. Для произвольных натуральных $n \ge 1$, произвольных моментов времени $t_1, \ldots, t_n \in T$ и произвольных действительных чисел x_1, \ldots, x_n находим

$$F_{t_1,t_2,...,t_n}(x_1,x_2,...,x_n) = P\{\xi(t_1) \le x_1,\xi(t_2) \le x_2,...,\xi(t_n) \le x_n\} =$$

Подставляем выражения для случайного процесса

$$= P\left(\frac{\eta + \zeta}{t_1} \le x_1, \frac{\eta + \zeta}{t_2} \le x_2, \dots, \frac{\eta + \zeta}{t_n} \le x_n\right) =$$

Переносим моменты времени вправо

$$= P(\eta + \zeta \le x_1 t_1, \eta + \zeta \le x_2 t_2, \dots, \eta + \zeta \le x_n t_n) =$$

Независимые случайные величины η и ζ имеют нормальное распределение с параметрами a=0 и

$$\sigma^2 = \frac{1}{2}.$$

Их сумма имеет стандартное нормальное распределение. Пусть

$$\eta + \zeta = X \sim N(0,1)$$
.

Тогда

$$= P\left(X \le x_1 t_1, X \le x_2 t_2, \dots, X \le x_n t_n\right) = P\left(X \le \min_{i=\overline{1,n}} x_i t_i\right) =$$

Запишем через плотность

$$= \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{y^2}{2}} dy,$$

где обозначено

$$z = \min_{i = 1, n} x_i t_i$$

2.17

 $3 a \partial a n u e$. Найдите характеристическую функцию случайной величины $\xi\left(\tau\right)$, где $\{\xi\left(t\right),\ ,t\geq0\}$ — процесс из предыдущей задачи, а τ — независимая от ξ случайная величина, которая принимает значения +1 и -1 с вероятностями 1/2.

Решение.

$$\xi\left(t\right) = \frac{\eta + \zeta}{t}.$$

Задана случайная величина

$$\tau = \begin{cases} 1, & \frac{1}{2}, \\ -1, & \frac{1}{2}. \end{cases}$$

Интересует

$$\varphi_{\xi(\tau)}(\lambda) = Me^{i\xi(\tau)\lambda} = Me^{i\cdot\frac{\eta+\zeta}{\tau}\cdot\lambda} =$$

Как и в предыдущей задаче $\eta + \zeta = X \sim N(0,1)$. Получаем

$$= M e^{i \cdot \frac{X}{\tau} \cdot \lambda} = M e^{-\frac{\lambda^2}{2\tau^2}} = e^{-\frac{\lambda^2}{2}}.$$

2.18

Задание. Пусть ξ и η — случайные величины, причём η имеет симметричное относительно нуля распределение и $P\left(\eta=0\right)=0$. Найдите вероятность того, что реализации случайного процесса $\zeta\left(t\right)=\xi+t\left(\eta+t\right),\,t\geq0$ возрастают.

Peшение. Известно, что траектории процесса возрастают по t при $t \geq 0.$

Рис. 20: Траектория процесса

Реализация такого процесса выглядит как парабола (рис. 20) с вершиной в точке с координатами

$$t_0 = -\frac{\eta}{2\xi}, \ \zeta_0 = t_0^2 + \eta t_0 + \xi = \frac{\eta^2}{4\xi^2} - \frac{\eta^2}{2\xi} + \xi.$$

Это случайная величина, так что

$$P\{\zeta(t) \ge 0, t \ge 0\} = P\{\xi + t(\eta + t) \ge 0, t \ge 0\} =$$

= P(вершина параболы $\zeta = t^2 + \eta t + \xi$ лежит слева от нуля) =

$$=P\left(-\frac{\eta}{2\xi}\leq 0\right)=P\left(\eta\geq 0\right)=$$

Случайная величина η имеет симметричное распределение

$$=\frac{1}{2}$$
.

2.19

Задание. Случайный эксперимент состоит в двухразовом подбрасывании монеты. Обозначим через $\omega = (\omega_1, \omega_2)$ результат эксперимента и обозначим процессы $\{X(t), 0 \le t < 2\}$ и $\{Y(t), 0 \le t < 2\}$ следующим образом:

$$X\left(t\right)=\mathbb{1}_{\left[0,1\right)}\left(t\right)\cdot\mathbb{1}\left\{ \omega_{1}=P\right\} +\mathbb{1}_{\left[1,2\right)}\left(t\right)\cdot\mathbb{1}\left\{ \omega_{2}=P\right\} ,\,0\leq t<2,$$

$$Y\left(t\right)=1-X\left(t\right) ,\,0\leq t<2.$$

Докажите, что процессы $X\left(t\right)$ и $Y\left(t\right)$ имеют одинаковые конечномерные распределения, но не являются стохастически эквивалентными.

Peшение. Рассматривается 2 процесса. Процессы заданы на $t\in [0,2).$ Это разные функции. Вероятность

$$P\{X(t) \neq Y(t)\} = P\{X(t) \neq 1 - X(t)\} = 1,$$

а это значит, что процессы с вероятностью 1 не совпадают. Зафиксируем несколько точек t_1,t_2,\ldots,t_n . Обозначим через $t_{i1},t_{i2},\ldots,t_{ik}$ моменты t, которые лежат между 0 и 1, и $t_{j1},t_{j2},\ldots,t_{j(n-k)}$ — все остальные. Найдём

вероятность

$$P\{X(t_1) = x_1, \dots, X(t_n) = x_n\} =$$

$$= P\{X(t_{i1}) = x_{i1}, \dots, X(t_{ik}) = x_{ik}, X(t_{j1}) = x_{j1}, \dots,$$

$$X(t_{j(n-k)}) = x_{j(n-k)}\} =$$

$$= P(\mathbb{1}\{\omega_1 = P\} = x_{i1}, \dots, \mathbb{1}\{\omega_1 = P\} = x_{ik},$$

$$\mathbb{1}\{\omega_2 = P\} = x_{j1}, \dots, \mathbb{1}\{\omega_2 = P\} = x_{j(n-k)}\}.$$

Рассматриваем только случай, когда x_{i1},\dots,x_{ik} одинаковые, и

$$x_{j1},\ldots,x_{j(n-k)}$$

одинаковые.

$$P\{X(t_1) = x_1, \dots, X(t_n) = x_n\} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

Аналогично

$$P\{Y(t_1) = x_1, \dots, Y(t_n) = x_n\} = \frac{1}{4}.$$

У этих процессов одинаковые конечномерные распределения.

Занятие 5. Винеровский процесс

Контрольные вопросы и задания

Приведите определение винеровского процесса.

 $\{w\left(t\right),\,t\geq0\}$ — винеровский процесс, если обладает рядом свойств:

- 1. w(0) = 0;
- 2. однородные приращения. Рассмотрим приращение винеровского процесса на t. Тогда $w\left(s+t\right)-w\left(s\right)\stackrel{def}{=}w\left(t\right)\sim N\left(0,t\right)$, то есть распределение процесса зависит только от длины отрезка;
- 3. независимые приращения на непересекающихся отрезках. Выберем $0 < t_1 < t_2 < \ldots < t_n$. Тогда $w\left(t_1\right), \, w\left(t_2\right) w\left(t_1\right), \ldots, w\left(t_n\right) w\left(t_{n-1}\right)$ независимые в совокупности случайные величины.

Запишите плотность винеровского процесса.

Напишем плотность распределения вектора $(w(t_1), \dots, w(t_n)) = \vec{\xi}$. Будем использовать матрицу

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & \dots & 0 \\ \dots & & & & & \\ 1 & 1 & 1 & 1 & \dots & 1 \end{bmatrix}.$$

Таким образом $\vec{\xi}$ имеет плотность

$$q\left(A^{-1}\vec{u}\right) = \prod_{j=0}^{n-1} \frac{1}{\sqrt{2\pi \left(t_{j+1} - t_{j}\right)}} \cdot e^{-\frac{u_{j+1} - u_{j}}{2t_{j+1} - t_{j}}}.$$

В этой плотности считаем, что $t_0 = 0$, $u_0 = 0$.

Запишите ковариационную функцию винеровского процесса.

Произведение математических ожиданий — это 0, потому

$$K(t,s) = Mw(s)w(t) =$$

Используем независимость приращений

$$= M \{w(s) \cdot [w(s) + (w(t) - w(s))]\} =$$

Раскрываем скобки

$$= M \{w^{2}(s) + Mw(s) [w(t) - w(s)]\} =$$

Первое слагаемое равно s, а второе — нулю, так как это независимые центрированные случайные величины (математическое произведения — это произведение математических ожиданий, а они равны нулю)

$$= s, s < t.$$

$$K(t,s) = \min(s,t).$$

Аудиторные задачи

5.2

3адание. Пусть $\{W\left(t\right),\,t\geq0\}$ — винеровский процесс. Докажите, что $M\left(W\left(t\right)-W\left(s\right)\right)^{2n+1}=0,\,M\left(W\left(t\right)-W\left(s\right)\right)^{2n}=(2n-1)!!\,(t-s)^{n}.$ Решение. Приращение гауссовское. Обозначим

$$\xi = W(t) - W(s) \stackrel{def}{=} W(t - s).$$

Значит, $\xi \sim N\left(0,t-s\right)$, где $t-s=\sigma^2$. Нужны формулы для моментов центрированной гауссовской случайной величины, то есть Знаем, что $M\xi^{2n+1}=0,\,M\xi^{2n}=(2n+1)!!\sigma^{2n}.$

5.3

3a daнue. Пусть $\{W(t), t \geq 0\}$ — винеровский процесс. Вычислите:

- a) $M\left[(W(5) 2W(1) + 2)^3 \right];$
- b) характеристическую функцию случайной величины W(2) + 2W(1);
- c) $M [\sin(2W(1) + W(2))];$
- d) $M [\cos(2W(1) + W(2))].$

Решение. Есть винеровский процесс.

а) $W\left(5\right)-2W\left(1\right)+2=\xi\sim N\left(2,5\right)$, потому что это линейная комбинация элементов гауссовского вектора. Найдём дисперсию. Константа на неё не влияет

$$D\xi = D[W(5) - 2W(1)] = cov(\xi, \xi) =$$

Подставим выражения для случайной величины

$$= cov [W (5) - 2W (1) + 2, W (5) - 2W (1) + 2] =$$

Воспользуемся линейностью

$$= K(5,5) - 2K(5,1) - 2K(5,1) + 4K(1,1) = 5 - 2 - 2 + 4 = 5.$$

Нужно найти третий момент. ξ не центрирована. Нужно её центрировать $M\xi^3=M\left[(\xi-2)+2\right]^3$. Раскрываем скобки

$$M\xi^3 = M(\xi - 2)^3 + 6M(\xi - 2)^3 + 12M(\xi - 2) + 8.$$

По предыдущей задаче первое слагаемое — 0, так как величина центрирована, второй момент — 5, так как это дисперсия, первый момент — 0. Тогда $M\xi^3=0+6\cdot 5+12\cdot 0+8=38.$

Величины W(5) и W(1) — зависимы, а приращения в винеровском процессе — независимы, потому имеем сумму дисперсий

$$D\left[W\left(5\right)-2W\left(1\right)\right]=D\left\{ \left[W\left(5\right)-W\left(1\right)\right]+\left[-W\left(1\right)\right]\right\} .$$

Дисперсия первого слагаемого равна 4, а второго — 1. Слагаемые независимы $D\left[W\left(5\right)-2W\left(1\right)\right]=5;$

- b) нужно найти характеристическую функцию $W\left(2\right)+2W\left(1\right)$. Математическое ожидание такой величины равно нулю, а дисперсия $D\left[W\left(2\right)+2W\left(1\right)\right]=D\left\{\left[W\left(2\right)-W\left(1\right)\right]+3W\left(1\right)\right\}.$ Это независимые величины, поэтому $D\left\{\left[W\left(2\right)-W\left(1\right)\right]+3W\left(1\right)\right\}=1+9=10.$ Значит, получается $\varphi_{W\left(2\right)+2W\left(1\right)}\left(\lambda\right)=\varphi_{N\left(0,10\right)}\left(\lambda\right)=e^{-\frac{10\lambda^{2}}{2}};$
- c) $M [\sin(2W(1) + W(2))] = 0.$

Характеристическая функция случайной величины — это

$$\varphi_{\xi}(\lambda) = Me^{i\lambda\xi} = M\cos\lambda\xi + iM\sin\lambda\xi, \ \lambda = 1;$$

d) $M \left[\cos (2W(1) + W(2))\right] = e^{-5}$.

Домашнее задание

5.12

 $3 a daнue. Пусть {W(t), t \ge 0}$ — винеровский процесс. Вычислите:

- a) $M\left[(W(4) 2W(1) + 2W(2))^2 \right];$
- b) $M\left[(W(1) + 2W(2) + 1)^3 \right];$
- c) $M[e^{W(3)-2W(2)}];$
- d) характеристическую функцию случайной величины $W\left(1\right)+2W\left(2\right)+1.$ Pewenue.
- а) $W(4) 2W(1) + W(2) = \xi \sim N(0,6)$, потому что это линейная комбинация элементов гауссовского вектора. Найдём дисперссию

$$D\xi = D[W(4) - 2W(1) + W(2)] = cov(\xi, \xi) =$$

Подставим выражения для случайной величины

$$=cov[W(4)-2W(1)+W(2),W(4)-2W(1)+W(2)]=$$

Воспользуемся линейностью

$$=K\left(4,4\right)-2K\left(4,1\right)+K\left(4,2\right)-2K\left(1,4\right)+4K\left(1,1\right)-2K\left(1,2\right)+\\+K\left(2,4\right)-2K\left(2,1\right)+K\left(2,2\right)=\\=4-2\cdot1+2-2\cdot1+4\cdot1-2\cdot1+2-2\cdot1+2=4+4-2=6.$$

Нужно найти второй момент. ξ центрирована $M\xi^2 = D\xi = 6$;

b) $W\left(1\right)+2W\left(2\right)+1=\xi\sim N\left(1,5\right)$, потому ято это линейная комбинация элементов гауссовского вектора. Найдём дисперсию. Константа на неё не влияет $D\xi=D\left[W\left(1\right)-2W\left(2\right)\right]=cov\left(\xi,\xi\right)$. Подставим выражения для случайной величины

$$cov(\xi, \xi) = cov[W(1) + 2W(2) + 1, W(1) + 2W(2) + 1] =$$

Воспользуемся линейностью

$$= (1,1) + 2K(1,2) + 2K(2,1) + 4K(2,2) = 1 + 2 + 2 + 8 = 13.$$

Нужно найти третий момент. ξ не центрирована. Нужно её центрировать $M\xi^3=M\left[(\xi-1)+1\right]^3$. Раскрываем скобки

$$M[(\xi - 1) + 1]^3 = M(\xi - 1)^3 + 3M(\xi - 1) + 3M(\xi - 1) + 1 =$$

По задаче 5.2 первое слагаемое — 0, так как величина центрирована, второй момент — 5, так как это дисперсия, первый момент — ноль. Тогда

$$= 0 + 3 \cdot 13 + 3 \cdot 0 + 1 = 38 + 1 = 40$$
:

с) $W(3) - 2W(2) = \xi \sim N(0,3)$, потому что это линейная комбинация элементов гауссовского вектора. Найдём дисперсию

$$D\xi = D[W(3) - 2W(2)] = cov(\xi, \xi) =$$

Подставим выражение для случайной величины

$$= cov [W (3) - 2W (2), W (3) - 2W (2)] =$$

Воспользуемся линейностью

$$= K(3,3) - 2K(3,2) - 2K(2,3) + 4K(2,2) = 3 - 2 \cdot 2 - 2 \cdot 2 + 3 \cdot 2 = 3.$$

Нужно найти

$$Me^{\xi} = \int_{\mathbb{R}} \frac{1}{\sqrt{6\pi}} \cdot e^{x} \cdot p_{\xi}(x) dx = \int_{\mathbb{R}} \frac{1}{6\pi} \cdot e^{x} \cdot \frac{1}{6\pi} \cdot e^{-\frac{x^{2}}{2 \cdot 9}} dx = \int_{\mathbb{R}} \frac{1}{\sqrt{6\pi}} \cdot e^{x - \frac{x^{2}}{18}} dx.$$

Выделим полный квадрат в степени экспоненты

$$\frac{x^2}{18} - x = \frac{x^2}{(3\sqrt{2})^2} - 2 \cdot \frac{1}{2} \cdot x \cdot \frac{1}{3\sqrt{2}} \cdot 2\sqrt{2} + \left(\frac{1}{2}\right)^2 \cdot \left(2\sqrt{2}\right)^2 =$$

Три первых слагаемых образуют полный квадрат

$$= \left(\frac{x}{3\sqrt{2}} - \frac{3\sqrt{2}}{2}\right)^2 + \frac{9\cdot 2}{4} = \left(\frac{x}{3\sqrt{2}} - \frac{3}{\sqrt{2}}\right)^2 + \frac{9}{2} = \frac{(x-9)^2}{2\cdot 3} + \frac{9}{2}.$$

Подставим полученное выражение в экспоненту

$$\int\limits_{\mathbb{D}} \frac{1}{\sqrt{6\pi}} \cdot e^{x - \frac{x^2}{18}} dx = e^{-\frac{9}{2}} \int\limits_{\mathbb{D}} \frac{1}{\sqrt{6\pi}} \cdot e^{-\frac{(x-9)^2}{2 \cdot 9}} dx =$$

Умножим и поделим на $\sqrt{3}$ чтобы получить гауссовскую плотность

$$= \sqrt{3}e^{-\frac{9}{2}} \int_{\mathbb{D}} \frac{1}{\sqrt{2\pi \cdot 9}} \cdot e^{-\frac{(x-9)^2}{2 \cdot 9}} dx =$$

Подинтергальная функция — плотность нормального распределения, потому такой интеграл равен единице

$$=\sqrt{3}e^{-\frac{9}{2}}$$
:

d) нужно найти характеристическую функцию $W\left(1\right)+2W\left(2\right)+1.$ Математическое ожидание такой величины равно 1, а дисперсия — 13 Значит, получается $\varphi_{W\left(1\right)=2W\left(2\right)+1}\left(\lambda\right)=\varphi_{N\left(1,13\right)}\left(\lambda\right)=e^{it-\frac{13t^{2}}{2}}.$