Lecture 2. Diffusion models

Introduction to Bayesian statistical Learning II

Denoising Diffusion Probabilistic Models (DDPM) Another type of generative models. What do they have to do with Bayes?

1. Forward diffusion process: gradually adding noise to samples

Denoising Diffusion Probabilistic Models (DDPM)

Another type of generative models. What do they have to do with Bayes?

- 1. Forward diffusion process: gradually adding noise to samples
- 2. Reverse diffusion process: recreating the sample from noise

Denoising Diffusion Probabilistic Models (DDPM)

Another type of generative models. What do they have to do with Bayes?

- 1. Forward diffusion process: gradually adding noise to samples
- 2. Reverse diffusion process: recreating the sample from noise
- 3. Heavily relying on conditional probability and Bayes theorem in particular

Let $x_0 \sim q(x)$ be a real data distribution.

We produce a sequence of **noisy samples** x_1, \ldots, x_T

Let $x_0 \sim q(x)$ be a real data distribution.

We produce a sequence of **noisy samples** x_1, \ldots, x_T

Noise steps controlled by a variance schedule $\{\beta_t \in (0,1)\}_{t=1}^T$

Let $x_0 \sim q(x)$ be a real data distribution.

We produce a sequence of **noisy samples** x_1, \ldots, x_T

Noise steps controlled by a variance schedule $\{\beta_t \in (0,1)\}_{t=1}^T$

$$q(x_t|x_{t-1}) \sim \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \mathbf{I}), \qquad q(x_{1:T}|x_0) = \prod_{t=1}^{T} q(x_t|x_{t-1})$$

Let $x_0 \sim q(x)$ be a real data distribution.

We produce a sequence of noisy samples x_1, \ldots, x_T

Noise steps controlled by a variance schedule $\{\beta_t \in (0,1)\}_{t=1}^T$

$$q(x_t|x_{t-1}) \sim \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \mathbf{I}), \qquad q(x_{1:T}|x_0) = \prod_{t=1}^{T} q(x_t|x_{t-1})$$

As $T \to \infty$, x_T is equivalent to a Gaussian distribution

Can we sample x_t at any arbitrary time step t? Yes!!!

Can we sample x_t at any arbitrary time step t? Yes!!!

Let
$$\alpha_t = 1 - \beta_t$$
 and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$

Can we sample x_t at any arbitrary time step t? Yes!!!

Let
$$\alpha_t = 1 - \beta_t$$
 and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$

$$x_{t} = \sqrt{\alpha_{t}} x_{t-1} + \sqrt{1 - \alpha_{t}} \varepsilon_{t-1} = \sqrt{\alpha_{t} \alpha_{t-1}} x_{t-2} + \sqrt{1 - \alpha_{t} \alpha_{t-1}} \bar{\varepsilon}_{t-2}$$

Can we sample x_t at any arbitrary time step t? Yes!!!

Let
$$\alpha_t = 1 - \beta_t$$
 and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$
$$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \varepsilon_{t-1} = \sqrt{\alpha_t \alpha_{t-1}} x_{t-2} + \sqrt{1 - \alpha_t \alpha_{t-1}} \bar{\varepsilon}_{t-2}$$

NB:
$$\sqrt{\alpha_t}\sqrt{1-\alpha_t}\varepsilon_{t-1} + \sqrt{1-\alpha_{t-1}}\varepsilon_{t-2}$$
, $\varepsilon_i \sim \mathcal{N}(0,\mathbf{I})$, hence

Can we sample x_t at any arbitrary time step t? Yes!!!

Let
$$\alpha_t = 1 - \beta_t$$
 and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$
$$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \varepsilon_{t-1} = \sqrt{\alpha_t} \alpha_{t-1} x_{t-2} + \sqrt{1 - \alpha_t} \alpha_{t-1} \bar{\varepsilon}_{t-2}$$
 NB: $\sqrt{\alpha_t} \sqrt{1 - \alpha_t} \varepsilon_{t-1} + \sqrt{1 - \alpha_{t-1}} \varepsilon_{t-2}$, $\varepsilon_i \sim \mathcal{N}(0, \mathbf{I})$, hence
$$\sqrt{\alpha_{t-1}} \sqrt{1 - \alpha_t} \varepsilon_{t-1} + \sqrt{1 - \alpha_{t-1}} \varepsilon_{t-2} \sim \mathcal{N}(0, \alpha_{t-1} - \alpha_t \alpha_{t-1} + 1 - \alpha_{t-1})$$

Can we sample x_t at any arbitrary time step t? Yes!!!

Let
$$\alpha_t = 1 - \beta_t$$
 and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$
$$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \varepsilon_{t-1} = \sqrt{\alpha_t} \alpha_{t-1} x_{t-2} + \sqrt{1 - \alpha_t} \alpha_{t-1} \bar{\varepsilon}_{t-2}$$
 NB: $\sqrt{\alpha_t} \sqrt{1 - \alpha_t} \varepsilon_{t-1} + \sqrt{1 - \alpha_{t-1}} \varepsilon_{t-2}$, $\varepsilon_i \sim \mathcal{N}(0, \mathbf{I})$, hence
$$\sqrt{\alpha_{t-1}} \sqrt{1 - \alpha_t} \varepsilon_{t-1} + \sqrt{1 - \alpha_{t-1}} \varepsilon_{t-2} \sim \mathcal{N}(0, \alpha_{t-1} - \alpha_t \alpha_{t-1} + 1 - \alpha_{t-1})$$

Can we sample x_t at any arbitrary time step t? Yes!!!

Let
$$\alpha_t = 1 - \beta_t$$
 and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$
$$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \varepsilon_{t-1} = \sqrt{\alpha_t} \alpha_{t-1} x_{t-2} + \sqrt{1 - \alpha_t} \alpha_{t-1} \bar{\varepsilon}_{t-2}$$
 NB: $\sqrt{\alpha_t} \sqrt{1 - \alpha_t} \varepsilon_{t-1} + \sqrt{1 - \alpha_{t-1}} \varepsilon_{t-2}$, $\varepsilon_i \sim \mathcal{N}(0, \mathbf{I})$, hence
$$\sqrt{\alpha_{t-1}} \sqrt{1 - \alpha_t} \varepsilon_{t-1} + \sqrt{1 - \alpha_{t-1}} \varepsilon_{t-2} \sim \mathcal{N}(0, \alpha_{t-1} - \alpha_t \alpha_{t-1} + 1 - \alpha_{t-1})$$

$$\sqrt{\alpha_{t-1}} \sqrt{1 - \alpha_t} \varepsilon_{t-1} + \sqrt{1 - \alpha_{t-1}} \varepsilon_{t-2} \sim \sqrt{1 - \alpha_t} \alpha_{t-1} \mathcal{N}(0, \mathbf{I})$$

Following the same argument

$$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \varepsilon_{t-1} = \dots = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \mathbf{I}), \quad \bar{\alpha}_t = \prod_{t=1}^t \alpha_t$$

Following the same argument

$$x_t \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \varepsilon_{t-1} = \dots = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \mathbf{I}), \quad \bar{\alpha}_t = \prod_{t=1}^t \alpha_t$$

Hence
$$q(x_t|x_0) \sim \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t}x_0, (1 - \bar{\alpha}_t\mathbf{I}))$$

Following the same argument

$$x_t \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \varepsilon_{t-1} = \dots = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \mathbf{I}), \quad \bar{\alpha}_t = \prod_{t=1}^t \alpha_t$$

Hence
$$q(x_t|x_0) \sim \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t}x_0, (1 - \bar{\alpha}_t \mathbf{I}))$$

Larger update step when the sample gets noisier: $\beta_1 < \beta_2 < \ldots < \beta_T$,

and therefore $\bar{\alpha}_1 > \ldots > \bar{\alpha}_T$

If we reverse the above process and sample from $q(x_{t-1} | x_t)$,

we can recreate a sample from $x_T \sim \mathcal{N}(0, \mathbf{I})$

We need to estimate $q(x_{t-1} | x_t)$. We do it with another probability density function p_{θ}

If we reverse the above process and sample from $q(x_{t-1} | x_t)$,

we can recreate a sample from $x_T \sim \mathcal{N}(0, \mathbf{I})$

We need to estimate $q(x_{t-1} | x_t)$. We do it with another probability density function p_{θ}

$$p_{\theta}(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1} | x_t),$$

If we reverse the above process and sample from $q(x_{t-1} | x_t)$,

we can recreate a sample from $x_T \sim \mathcal{N}(0, \mathbf{I})$

We need to estimate $q(x_{t-1} | x_t)$. We do it with another probability density function p_{θ}

$$p_{\theta}(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1} | x_t), \quad p_{\theta}(x_{t-1} | x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

Which is learned via a neural network (θ are the parameters of NN)!

If we reverse the above process and sample from $q(x_{t-1} | x_t)$,

we can recreate a sample from $x_T \sim \mathcal{N}(0, \mathbf{I})$

We need to estimate $q(x_{t-1} | x_t)$. We do it with another probability density function p_{θ}

$$p_{\theta}(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1} | x_t), \quad p_{\theta}(x_{t-1} | x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

Which is learned via a neural network (θ are the parameters of NN)!

Important: $q(x_{t-1} | x_t, x_0) \sim \mathcal{N}(x_{t-1}; \tilde{\mu}(x_t, x_0), \tilde{\beta}\mathbf{I})$ tractable!

$$P(A \mid B, C) = \frac{P(AB \mid C)}{P(B \mid C)} = \frac{P(B \mid A, C)P(A \mid C)}{P(B \mid C)}$$

$$P(A \mid B, C) = \frac{P(AB \mid C)}{P(B \mid C)} = \frac{P(B \mid A, C)P(A \mid C)}{P(B \mid C)}$$

$$q(x_{t-1} | x_t, x_0) = q(x_t | x_{t-1}, x_0) \frac{q(x_{t-1} | x_0)}{q(x_t | x_0)} \propto \exp(-\frac{1}{2} \left(\frac{(x_t - \sqrt{\alpha_t} x_{t-1})^2}{1 - \alpha_t} + \frac{(x_{t-1} - \sqrt{\bar{\alpha}_{t-1}} x_0)^2}{1 - \bar{\alpha}_{t-1}} - \frac{(x_t - \sqrt{\bar{\alpha}_t} x_0)^2}{1 - \bar{\alpha}_t} \right))$$

$$P(A | B, C) = \frac{P(AB | C)}{P(B | C)} = \frac{P(B | A, C)P(A | C)}{P(B | C)}$$

$$q(x_{t-1}|x_t, x_0) = q(x_t|x_{t-1}, x_0) \frac{q(x_{t-1}|x_0)}{q(x_t|x_0)} \propto \exp(-\frac{1}{2}(\frac{(x_t - \sqrt{\alpha_t}x_{t-1})^2}{1 - \alpha_t} + \frac{(x_{t-1} - \sqrt{\bar{\alpha}_{t-1}}x_0)^2}{1 - \bar{\alpha}_{t-1}} - \frac{(x_t - \sqrt{\bar{\alpha}_t}x_0)^2}{1 - \bar{\alpha}_t}))$$

$$= \exp(-\frac{1}{2}((\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}})x_{t-1}^2 - 2(\frac{\sqrt{\bar{\alpha}_t}}{\beta_t}x_t + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}}x_0)x_{t-1} + C(x_0, x_1)))$$

$$P(A | B, C) = \frac{P(AB | C)}{P(B | C)} = \frac{P(B | A, C)P(A | C)}{P(B | C)}$$

$$q(x_{t-1}|x_t, x_0) = q(x_t|x_{t-1}, x_0) \frac{q(x_{t-1}|x_0)}{q(x_t|x_0)} \propto \exp(-\frac{1}{2}(\frac{(x_t - \sqrt{\alpha_t}x_{t-1})^2}{1 - \alpha_t} + \frac{(x_{t-1} - \sqrt{\bar{\alpha}_{t-1}}x_0)^2}{1 - \bar{\alpha}_{t-1}} - \frac{(x_t - \sqrt{\bar{\alpha}_t}x_0)^2}{1 - \bar{\alpha}_t}))$$

$$= \exp(-\frac{1}{2}((\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}})x_{t-1}^2 - 2(\frac{\sqrt{\alpha_t}}{\beta_t}x_t + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}}x_0)x_{t-1} + C(x_0, x_1)))$$

Hence
$$\tilde{\beta}_t = 1/(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}) = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$$
,

$$P(A \mid B, C) = \frac{P(AB \mid C)}{P(B \mid C)} = \frac{P(B \mid A, C)P(A \mid C)}{P(B \mid C)}$$

$$q(x_{t-1}|x_t,x_0) = q(x_t|x_{t-1},x_0) \frac{q(x_{t-1}|x_0)}{q(x_t|x_0)} \propto \exp(-\frac{1}{2}(\frac{(x_t - \sqrt{\alpha_t}x_{t-1})^2}{1 - \alpha_t} + \frac{(x_{t-1} - \sqrt{\bar{\alpha}_{t-1}}x_0)^2}{1 - \bar{\alpha}_{t-1}} - \frac{(x_t - \sqrt{\bar{\alpha}_t}x_0)^2}{1 - \bar{\alpha}_t}))$$

$$= \exp(-\frac{1}{2}((\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}})x_{t-1}^2 - 2(\frac{\sqrt{\alpha_t}}{\beta_t}x_t + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}}x_0)x_{t-1} + C(x_0, x_1)))$$

Hence
$$\tilde{\beta}_t = 1/(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}) = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$$
,

$$\tilde{\mu}_{t} = (\frac{\sqrt{\alpha}_{t}}{\beta_{t}} x_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}} x_{0}) / \tilde{\beta}_{t} = (\frac{\sqrt{\alpha}_{t}}{\beta_{t}} x_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}} x_{0}) \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_{t}} \beta_{t}$$

$$P(A \mid B, C) = = \frac{P(AB \mid C)}{P(B \mid C)} = \frac{P(B \mid A, C)P(A \mid C)}{P(B \mid C)}$$

$$q(x_{t-1}|x_t,x_0) = q(x_t|x_{t-1},x_0)\frac{q(x_{t-1}|x_0)}{q(x_t|x_0)} \propto \exp(-\frac{1}{2}(\frac{(x_t - \sqrt{\alpha_t}x_{t-1})^2}{1 - \alpha_t} + \frac{(x_{t-1} - \sqrt{\bar{\alpha}_{t-1}}x_0)^2}{1 - \bar{\alpha}_{t-1}} - \frac{(x_t - \sqrt{\bar{\alpha}_t}x_0)^2}{1 - \bar{\alpha}_t}))$$

$$= \exp(-\frac{1}{2}((\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}})x_{t-1}^2 - 2(\frac{\sqrt{\alpha_t}}{\beta_t}x_t + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}}x_0)x_{t-1} + C(x_0, x_1)))$$
 Hence $\tilde{\beta}_t = 1/(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}) = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}\beta_t$,

$$\tilde{\mu}_{t} = (\frac{\sqrt{\alpha_{t}}}{\beta_{t}} x_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}} x_{0}) / \tilde{\beta}_{t} = (\frac{\sqrt{\alpha_{t}}}{\beta_{t}} x_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}} x_{0}) \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_{t}} \beta_{t}$$

We can reparametrise it further! —>

$$= \frac{\sqrt{\alpha_{t}}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}} x_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_{t}}{1 - \bar{\alpha}_{t}} x_{0}$$

Remember!
$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon$$
, $x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \varepsilon_t)$

Remember!
$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon$$
, $x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \varepsilon_t)$

Remember!
$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon$$
, $x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \varepsilon_t)$

Recap! We need to learn the distributions $p_{\theta}(x_{t-1} | x_t) \sim \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

So we will train μ_{θ} to predict $\tilde{\mu}_t$

Remember!
$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon$$
, $x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \varepsilon_t)$

Recap! We need to learn the distributions $p_{\theta}(x_{t-1} | x_t) \sim \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

So we will train μ_{θ} to predict $\tilde{\mu_t}$

How are we going to do that?

Remember!
$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon$$
, $x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \varepsilon_t)$

Recap! We need to learn the distributions $p_{\theta}(x_{t-1} | x_t) \sim \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

So we will train μ_{θ} to predict $\tilde{\mu}_t$

How are we going to do that? Minimise negative log-likelihood $-\log p_{\theta}(x_0)$

Remember!
$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon$$
, $x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \varepsilon_t)$

Recap! We need to learn the distributions $p_{\theta}(x_{t-1} | x_t) \sim \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

So we will train μ_{θ} to predict $\tilde{\mu}_{t}$

How are we going to do that? Minimise negative log-likelihood $-\log p_{\theta}(x_0)$

$$-\log p_{\theta}(x_0) \le -\log p_{\theta}(x_0) + D_{KL}(q(x_{1:T}|x_0)||p_{\theta}(x_{1:T}|x_0))$$

Remember!
$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon$$
, $x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \varepsilon_t)$

Recap! We need to learn the distributions $p_{\theta}(x_{t-1} | x_t) \sim \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

So we will train μ_{θ} to predict $\tilde{\mu}_t$

How are we going to do that? Minimise negative log-likelihood $-\log p_{\theta}(x_0)$

$$\text{Kullback-Leibler divergence} \geq 0 \\ -\log p_{\theta}(x_0) \leq -\log p_{\theta}(x_0) + D_{\textit{KL}}(q(x_{1:T}|x_0) \,|\, |\, p_{\theta}(x_{1:T}|x_0))$$

Remember!
$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon$$
, $x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \varepsilon_t)$

Substitute this into expression of $\tilde{\mu}_t$ and get $\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_t)$

Recap! We need to learn the distributions $p_{\theta}(x_{t-1} | x_t) \sim \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

So we will train μ_{θ} to predict $\tilde{\mu}_t$

How are we going to do that? Minimise negative log-likelihood $-\log p_{\theta}(x_0)$

$$\text{Kullback-Leibler divergence} \geq 0 \\ -\log p_{\theta}(x_0) \leq -\log p_{\theta}(x_0) + D_{\textit{KL}}(q(x_{1:T}|x_0) \,|\, |\, p_{\theta}(x_{1:T}|x_0)) = 0$$

$$-\log p_{\theta}(x_0) + E_{x_{1:T} \sim q(x_{1:T}|x_0)}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})/p_{\theta}(x_0)}] = -\log p_{\theta}(x_0) + E_q[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] + \log p_{\theta}(x_0)$$

Remember!
$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon$$
, $x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \varepsilon_t)$

Substitute this into expression of
$$\tilde{\mu}_t$$
 and get $\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}}(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}}\varepsilon_t)$

Recap! We need to learn the distributions $p_{\theta}(x_{t-1} | x_t) \sim \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

So we will train μ_{θ} to predict $\tilde{\mu}_t$

How are we going to do that? Minimise negative log-likelihood $-\log p_{\theta}(x_0)$

Kullback-Leibler divergence
$$\geq 0$$

$$-\log p_{\theta}(x_0) \le -\log p_{\theta}(x_0) + D_{KL}(q(x_{1:T}|x_0)||p_{\theta}(x_{1:T}|x_0)) =$$

$$-\log p_{\theta}(x_0) + E_{x_{1:T} \sim q(x_{1:T}|x_0)}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})/p_{\theta}(x_0)}] = -\log p_{\theta}(x_0) + E_q[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] + \log p_{\theta}(x_0) = E_q[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}]$$

$$\operatorname{Let} L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] \geq -E_{q(x_0)} \log p_{\theta}(x_0)$$

$$\operatorname{Let} L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] \geq -E_{q(x_0)} \log p_{\theta}(x_0)$$

$$\operatorname{Let} L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] \ge -E_{q(x_0)}p_{\theta}(x_0)$$

$$L_{VLB} = E_{q(x_{0:T})} [\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}]$$

$$\operatorname{Let} L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] \geq -E_{q(x_0)}p_{\theta}(x_0)$$

$$L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] = E_q[\log \frac{\prod_{t=1}^{T} q(x_t|x_{t-1})}{p_{\theta}(x_T)\prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t)}]$$

Let
$$L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] \ge -E_{q(x_0)}p_{\theta}(x_0)$$

$$L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] = E_q[\log \frac{\prod_{t=1}^T q(x_t|x_{t-1})}{p_{\theta}(x_T)\prod_{t=1}^T p_{\theta}(x_{t-1}|x_t)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=1}^T \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)}]$$

Let
$$L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] \ge -E_{q(x_0)}p_{\theta}(x_0)$$

$$L_{VLB} = E_{q(x_{0:T})} \left[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}\right] = E_q \left[\log \frac{\prod_{t=1}^T q(x_t|x_{t-1})}{p_{\theta}(x_T) \prod_{t=1}^T p_{\theta}(x_{t-1}|x_t)}\right] = E_q \left[-\log p_{\theta}(x_T) + \sum_{t=1}^T \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)}\right]$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)} + \log \frac{q(x_1|x_0)}{p_{\theta}(x_0|x_1)}]$$

$$L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] = E_q[\log \frac{\prod_{t=1}^T q(x_t|x_{t-1})}{p_{\theta}(x_T)\prod_{t=1}^T p_{\theta}(x_{t-1}|x_t)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=1}^T \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)}]$$

$$L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] = E_q[\log \frac{\prod_{t=1}^{T} q(x_t|x_{t-1})}{p_{\theta}(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=1}^{T} \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)}]$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)} + \log \frac{q(x_1|x_0)}{p_{\theta}(x_0|x_1)}]$$

$$L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] = E_q[\log \frac{\prod_{t=1}^{T} q(x_t|x_{t-1})}{p_{\theta}(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=1}^{T} \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)}]$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)} + \log \frac{q(x_1|x_0)}{p_{\theta}(x_0|x_1)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \frac{q(x_t|x_0)}{q(x_{t-1}|x_0)} + \dots$$

$$L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] = E_q[\log \frac{\prod_{t=1}^T q(x_t|x_{t-1})}{p_{\theta}(x_T)\prod_{t=1}^T p_{\theta}(x_{t-1}|x_t)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=1}^T \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)}]$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_t | x_{t-1})}{p_{\theta}(x_{t-1} | x_t)} + \log \frac{q(x_1 | x_0)}{p_{\theta}(x_0 | x_1)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1} | x_t, x_0)}{p_{\theta}(x_{t-1} | x_t)} + \frac{q(x_t | x_0)}{q(x_{t-1} | x_0)} + \dots$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \sum_{t=2}^{T} \frac{q(x_t|x_0)}{q(x_{t-1}|x_0)} + \log \frac{q(x_1|x_0)}{p_{\theta}(x_0|x_1)}$$

$$L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] = E_q[\log \frac{\prod_{t=1}^T q(x_t|x_{t-1})}{p_{\theta}(x_T)\prod_{t=1}^T p_{\theta}(x_{t-1}|x_t)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=1}^T \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)}]$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)} + \log \frac{q(x_1|x_0)}{p_{\theta}(x_0|x_1)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \frac{q(x_t|x_0)}{q(x_{t-1}|x_0)} + \dots$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \sum_{t=2}^{T} \log \frac{q(x_t|x_0)}{q(x_{t-1}|x_0)} + \log \frac{q(x_1|x_0)}{p_{\theta}(x_0|x_1)}$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \log \frac{q(x_T|x_0)}{q(x_1|x_0)} + \log \frac{q(x_1|x_0)}{p_{\theta}(x_0|x_1)}]$$

$$L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] = E_q[\log \frac{\prod_{t=1}^T q(x_t|x_{t-1})}{p_{\theta}(x_T)\prod_{t=1}^T p_{\theta}(x_{t-1}|x_t)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=1}^T \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)}]$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_t | x_{t-1})}{p_{\theta}(x_{t-1} | x_t)} + \log \frac{q(x_1 | x_0)}{p_{\theta}(x_0 | x_1)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1} | x_t, x_0)}{p_{\theta}(x_{t-1} | x_t)} + \frac{q(x_t | x_0)}{q(x_{t-1} | x_0)} + \dots$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \sum_{t=2}^{T} \log \frac{q(x_t|x_0)}{q(x_{t-1}|x_0)} + \log \frac{q(x_1|x_0)}{p_{\theta}(x_0|x_1)}$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \log \frac{q(x_T|x_0)}{q(x_1|x_0)} + \log \frac{q(x_T|x_0)}{p_{\theta}(x_0|x_1)}]$$

$$L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] = E_q[\log \frac{\prod_{t=1}^T q(x_t|x_{t-1})}{p_{\theta}(x_T)\prod_{t=1}^T p_{\theta}(x_{t-1}|x_t)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=1}^T \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)}]$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_t | x_{t-1})}{p_{\theta}(x_{t-1} | x_t)} + \log \frac{q(x_1 | x_0)}{p_{\theta}(x_0 | x_1)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1} | x_t, x_0)}{p_{\theta}(x_{t-1} | x_t)} + \frac{q(x_t | x_0)}{q(x_{t-1} | x_0)} + \dots$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \sum_{t=2}^{T} \log \frac{q(x_t|x_0)}{q(x_{t-1}|x_0)} + \log \frac{q(x_1|x_0)}{p_{\theta}(x_0|x_1)}$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \log \frac{q(x_T|x_0)}{q(x_T|x_0)} + \log \frac{q(x_T|x_0)}{p_{\theta}(x_0|x_1)}]$$

$$= E_q[\log \frac{q(x_T|x_0)}{p_{\theta}(x_T)} + \sum_{t=2}^{T} \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} - \log p_{\theta}(x_0|x_1)]$$

$$L_{VLB} = E_{q(x_{0:T})}[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{0:T})}] = E_q[\log \frac{\prod_{t=1}^T q(x_t|x_{t-1})}{p_{\theta}(x_T)\prod_{t=1}^T p_{\theta}(x_{t-1}|x_t)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=1}^T \log \frac{q(x_t|x_{t-1})}{p_{\theta}(x_{t-1}|x_t)}]$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_t | x_{t-1})}{p_{\theta}(x_{t-1} | x_t)} + \log \frac{q(x_1 | x_0)}{p_{\theta}(x_0 | x_1)}] = E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1} | x_t, x_0)}{p_{\theta}(x_{t-1} | x_t)} + \frac{q(x_t | x_0)}{q(x_{t-1} | x_0)} + \dots$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \sum_{t=2}^{T} \frac{q(x_t|x_0)}{q(x_{t-1}|x_0)} + \log \frac{q(x_1|x_0)}{p_{\theta}(x_0|x_1)}$$

$$= E_q[-\log p_{\theta}(x_T) + \sum_{t=2}^{T} \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \log \frac{q(x_T|x_0)}{q(x_T|x_0)} + \log \frac{q(x_T|x_0)}{p_{\theta}(x_0|x_1)}]$$

$$= E_q[\log \frac{q(x_T|x_0)}{p_{\theta}(x_T)} + \sum_{t=2}^{T} \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} - \log p_{\theta}(x_0|x_1)]$$

$$= E_{q}[D_{KL}(q(x_{T}|x_{0})||p_{\theta}(x_{T})) + \sum_{t=2}^{T} D_{KL}(q(x_{t-1}|x_{t},x_{0})||p_{\theta}(x_{t-1}|x_{t}))] - \log p_{\theta}(x_{0}|x_{1})$$

$$L_{T}$$

$$L_{VLB} = L_T + L_{T-1} + \dots + L_0$$

$$L_{VLB} = L_T + L_{T-1} + \dots + L_0$$

$$L_T = D_{KL}(q(x_T|x_0) \mid |p_{\theta}(x_T))$$
 Constant, since no trainable parameters and x_T is Gaussian noise

$$L_{VLB} = L_T + L_{T-1} + \dots + L_0$$

$$L_T = D_{KL}(q(x_T|x_0) \mid |p_{\theta}(x_T))$$
 Constant, since no trainable parameters and x_T is Gaussian noise

$$L_t = D_{KL}(q(x_{t-1} | x_t, x_0) | p_{\theta}(x_{t-1} | x_t))$$
 The main thing!

$$L_{VLB} = L_T + L_{T-1} + \dots + L_0$$

 $L_T = D_{KL}(q(x_T|x_0) \mid |p_{\theta}(x_T))$ Constant, since no trainable parameters and x_T is Gaussian noise

$$L_t = D_{KL}(q(x_{t-1} | x_t, x_0) | p_{\theta}(x_{t-1} | x_t))$$
 The main thing!

 $L_0 = -\log p_{\theta}(x_0 | x_1)$ Can be omitted or modelled via a separate decoder, derived from

$$\mathcal{N}(x_0; \mu_{\theta}(x_1, 1), \Sigma_{\theta}(x_1, 1))$$

$$L_{VLB} = L_T + L_{T-1} + \dots + L_0$$

 $L_T = D_{KL}(q(x_T|x_0) \mid |p_{\theta}(x_T))$ Constant, since no trainable parameters and x_T is Gaussian noise

$$L_t = D_{KL}(q(x_{t-1} | x_t, x_0) | p_{\theta}(x_{t-1} | x_t))$$
 The main thing!

 $L_0 = -\log p_{\theta}(x_0 \mid x_1)$ Can be omitted or modelled via a separate decoder, derived from

$$\mathcal{N}(x_0; \mu_{\theta}(x_1, 1), \Sigma_{\theta}(x_1, 1))$$

Remember again! We need to learn the distributions $p_{\theta}(x_{t-1} | x_t) \sim \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

That is for L_t !

$$p_{\theta}(x_{t-1} | x_t) \sim \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

We would like to train
$$\mu_{\theta}$$
 to predict $\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}}(x_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}}\varepsilon_t)$

$$p_{\theta}(x_{t-1} | x_t) \sim \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

We would like to train
$$\mu_{\theta}$$
 to predict $\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_t)$

But x_t is available during training time!

$$p_{\theta}(x_{t-1} | x_t) \sim \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

We would like to train
$$\mu_{\theta}$$
 to predict $\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}}(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}}\varepsilon_t)$

But x_t is available during training time!

Hence, let us predict the noise term instead!

$$p_{\theta}(x_{t-1} \mid x_t) \sim \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

We would like to train
$$\mu_{\theta}$$
 to predict $\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_t)$

But x_t is available during training time!

Hence, let us predict the noise term instead!

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_{\theta}(x_t, t))$$

$$p_{\theta}(x_{t-1} | x_t) \sim \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

We would like to train
$$\mu_{\theta}$$
 to predict $\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_t)$

But x_t is available during training time!

Hence, let us predict the noise term instead!

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_{\theta}(x_t, t)) \qquad x_{t-1} \sim \mathcal{N}(x_{t-1}; \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_{\theta}(x_t, t)), \Sigma_{\theta}(x_t, t))$$

$$L_{t} = E_{x_{0},\varepsilon} \left[\frac{1}{2 || \Sigma_{\theta}(x_{t}, t) ||_{2}^{2}} || \tilde{\mu}_{t}(x_{t}, x_{0}) - \mu_{\theta}(x_{t}, t) ||^{2} \right]$$

$$\begin{split} L_{t} &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \left| \left| \Sigma_{\theta}(x_{t},t) \right| \right|_{2}^{2}} \right| \left| \tilde{\mu}_{t}(x_{t},x_{0}) - \mu_{\theta}(x_{t},t) \right| \right|^{2} \right] \\ &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \frac{1}{\sqrt{\alpha_{t}}} (x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \varepsilon_{t}) - \frac{1}{\sqrt{\alpha_{t}}} (x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \varepsilon_{\theta}(x_{t},t)) \right| \right|^{2} \right] \end{split}$$

$$\begin{split} L_{t} &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \left| \left| \Sigma_{\theta}(x_{t}, t) \right| \right|_{2}^{2}} \left| \left| \tilde{\mu}_{t}(x_{t}, x_{0}) - \mu_{\theta}(x_{t}, t) \right| \right|^{2} \right] \\ &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \frac{1}{\sqrt{\alpha_{t}}} (x_{t}' - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \varepsilon_{t}) - \frac{1}{\sqrt{\alpha_{t}}} (x_{t}' - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \varepsilon_{\theta}(x_{t}, t)) \right| \right|^{2} \right] \\ &= E_{x_{0},\varepsilon} \left[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha}_{t}) \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \varepsilon_{t} - \varepsilon_{\theta}(x_{t}, t) \right| \right|^{2} \right] \end{split}$$

$$\begin{split} L_{t} &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \mid \mid \Sigma_{\theta}(x_{t},t) \mid \mid_{2}^{2}} \mid \mid \tilde{\mu}_{t}(x_{t},x_{0}) - \mu_{\theta}(x_{t},t) \mid \mid_{2}^{2} \right] \\ &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \mid \mid \Sigma_{\theta} \mid \mid_{2}^{2}} \mid \mid \frac{1}{\sqrt{\alpha_{t}}} (x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \varepsilon_{t}) - \frac{1}{\sqrt{\alpha_{t}}} (x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \varepsilon_{\theta}(x_{t},t)) \mid \mid_{2}^{2} \right] \\ &= E_{x_{0},\varepsilon} \left[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha}_{t}) \mid \mid \Sigma_{\theta} \mid \mid_{2}^{2}} \mid \mid \varepsilon_{t} - \varepsilon_{\theta}(x_{t},t) \mid \mid_{2}^{2} \right] = E_{x_{0},\varepsilon} \left[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha}_{t}) \mid \mid \Sigma_{\theta} \mid \mid_{2}^{2}} \mid \mid \varepsilon_{t} - \varepsilon_{\theta}(\sqrt{\bar{\alpha}_{t}}x_{0} + \sqrt{1 - \bar{\alpha}_{t}}\varepsilon_{t},t) \mid \mid_{2}^{2} \right] \end{split}$$

$$\begin{split} L_{t} &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \left| \left| \Sigma_{\theta}(x_{t},t) \right| \right|_{2}^{2}} \right| \left| \tilde{\mu}_{t}(x_{t},x_{0}) - \mu_{\theta}(x_{t},t) \right| \right|^{2} \right] \\ &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \frac{1}{\sqrt{\alpha_{t}}} (x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \varepsilon_{t}) - \frac{1}{\sqrt{\alpha_{t}}} (x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \varepsilon_{\theta}(x_{t},t)) \right| \right|^{2} \right] \\ &= E_{x_{0},\varepsilon} \left[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha}_{t}) \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \varepsilon_{t} - \varepsilon_{\theta}(x_{t},t) \right| \right|^{2} \right] = E_{x_{0},\varepsilon} \left[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha}_{t}) \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \varepsilon_{t} - \varepsilon_{\theta}(\sqrt{\bar{\alpha}_{t}}x_{0} + \sqrt{1 - \bar{\alpha}_{t}}\varepsilon_{t},t) \right| \right|^{2} \right] \end{split}$$

In practice can simplify even further!

$$\begin{split} L_{t} &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \left| \left| \Sigma_{\theta}(x_{t},t) \right| \right|_{2}^{2}} \right| \left| \tilde{\mu}_{t}(x_{t},x_{0}) - \mu_{\theta}(x_{t},t) \right| \right|^{2} \right] \\ &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \frac{1}{\sqrt{\alpha_{t}}} (x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha_{t}}}} \varepsilon_{t}) - \frac{1}{\sqrt{\alpha_{t}}} (x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha_{t}}}} \varepsilon_{\theta}(x_{t},t)) \right| \right|^{2} \right] \\ &= E_{x_{0},\varepsilon} \left[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha_{t}}) \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \varepsilon_{t} - \varepsilon_{\theta}(x_{t},t) \right| \right|^{2} \right] = E_{x_{0},\varepsilon} \left[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha_{t}}) \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \varepsilon_{t} - \varepsilon_{\theta}(\sqrt{\bar{\alpha_{t}}}x_{0} + \sqrt{1 - \bar{\alpha_{t}}}\varepsilon_{t},t) \right| \right|^{2} \right] \end{split}$$

In practice can simplify even further!

$$L_t^{simple} = E_{t,x_0,\varepsilon} [||\varepsilon_t - \varepsilon_\theta(\sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\varepsilon_t, t)||^2]$$

$$\begin{split} L_{t} &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \left| \left| \Sigma_{\theta}(x_{t},t) \right| \right|_{2}^{2}} \right| \left| \tilde{\mu}_{t}(x_{t},x_{0}) - \mu_{\theta}(x_{t},t) \right| \right|^{2} \right] \\ &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \frac{1}{\sqrt{\alpha_{t}}} (x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \varepsilon_{t}) - \frac{1}{\sqrt{\alpha_{t}}} (x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \varepsilon_{\theta}(x_{t},t)) \right| \right|^{2} \right] \\ &= E_{x_{0},\varepsilon} \left[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha}_{t}) \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \varepsilon_{t} - \varepsilon_{\theta}(x_{t},t) \right| \right|^{2} \right] = E_{x_{0},\varepsilon} \left[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha}_{t}) \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \varepsilon_{t} - \varepsilon_{\theta}(\sqrt{\bar{\alpha}_{t}}x_{0} + \sqrt{1 - \bar{\alpha}_{t}}\varepsilon_{t},t) \right| \right|^{2} \right] \end{split}$$

In practice can simplify even further!

$$L_t^{simple} = E_{t,x_0,\varepsilon} [||\varepsilon_t - \varepsilon_\theta(\sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\varepsilon_t, t)||^2]$$

Bottom line: what we are doing is predicting the noise!

$$\begin{split} L_{t} &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \left| \left| \Sigma_{\theta}(x_{t},t) \right| \right|_{2}^{2}} \right| \left| \tilde{\mu}_{t}(x_{t},x_{0}) - \mu_{\theta}(x_{t},t) \right| \right|^{2} \right] \\ &= E_{x_{0},\varepsilon} \left[\frac{1}{2 \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \frac{1}{\sqrt{\alpha_{t}}} (x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha_{t}}}} \varepsilon_{t}) - \frac{1}{\sqrt{\alpha_{t}}} (x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha_{t}}}} \varepsilon_{\theta}(x_{t},t)) \right| \right|^{2} \right] \\ &= E_{x_{0},\varepsilon} \left[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha_{t}}) \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \varepsilon_{t} - \varepsilon_{\theta}(x_{t},t) \right| \right|^{2} \right] = E_{x_{0},\varepsilon} \left[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha_{t}}) \left| \left| \Sigma_{\theta} \right| \right|_{2}^{2}} \left| \left| \varepsilon_{t} - \varepsilon_{\theta}(\sqrt{\bar{\alpha_{t}}}x_{0} + \sqrt{1 - \bar{\alpha_{t}}}\varepsilon_{t},t) \right| \right|^{2} \right] \end{split}$$

In practice can simplify even further!

$$L_t^{simple} = E_{t,x_0,\varepsilon} [||\varepsilon_t - \varepsilon_\theta(\sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\varepsilon_t, t)||^2$$

Bottom line: what we are doing is predicting the noise!

Unet architecture is used for that

Parametrization of β_t

Typically a sequence of linearly increasing constants: e.g. from $\beta_1=10^{-4}$ to $\beta_T=0.02$

Parametrization of β_t

Typically a sequence of linearly increasing constants: e.g. from $\beta_1=10^{-4}$ to $\beta_T=0.02$

Can be fixed (not learnable)

Typically a sequence of linearly increasing constants: e.g. from $\beta_1=10^{-4}$ to $\beta_T=0.02$

Can be fixed (not learnable)

Parametrization of reverse process variance Σ_{θ}

Typically a sequence of linearly increasing constants: e.g. from $\beta_1=10^{-4}$ to $\beta_T=0.02$

Can be fixed (not learnable)

Parametrization of reverse process variance Σ_{θ}

Can also be fixed $\Sigma_{\theta}(x_t,t)=\sigma_t^2\mathbf{I}$, where σ_t is set to be a function of β_t

Typically a sequence of linearly increasing constants: e.g. from $\beta_1=10^{-4}$ to $\beta_T=0.02$ Can be fixed (not learnable)

Parametrization of reverse process variance Σ_{θ}

Can also be fixed $\Sigma_{\theta}(x_t,t) = \sigma_t^2 \mathbf{I}$, where σ_t is set to be a function of β_t

Alternative
$$\Sigma_{\theta}(x_t, t) = \exp(v \log \beta_t + (1 - v) \log \tilde{\beta}_t)$$
, $\tilde{\beta}_t = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}$, v is learnable

Typically a sequence of linearly increasing constants: e.g. from $\beta_1=10^{-4}$ to $\beta_T=0.02$

Can be fixed (not learnable)

Parametrization of reverse process variance Σ_{θ}

Can also be fixed $\Sigma_{\theta}(x_t, t) = \sigma_t^2 \mathbf{I}$, where σ_t is set to be a function of β_t

Alternative
$$\Sigma_{\theta}(x_t, t) = \exp(v \log \beta_t + (1 - v) \log \tilde{\beta}_t), \qquad \tilde{\beta}_t = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}, v \text{ is learnable}$$

Hence, the loss $L=L_{simple}+\lambda L_{VLB}$, λ is small ~ 0.001 and L_{VLB} only guides the training of Σ_{θ}

(In L_{VLB} stop gradient with respect to $\mu_{ heta}$)

The score of each sample's x probability density function is defined as $\nabla_x \log q(x)$

The score of each sample's x probability density function is defined as $\nabla_x \log q(x)$

Langevin dynamics can sample data points from a probability density distribution using only the score $\nabla_x \log q(x)$ in an iterative process.

The score of each sample's x probability density function is defined as $\nabla_x \log q(x)$

Langevin dynamics can sample data points from a probability density distribution using only the score $\nabla_x \log q(x)$ in an iterative process.

Score network $s_{\theta}(x_t, t) \approx \nabla_x \log q(x)$

The score of each sample's x probability density function is defined as $\nabla_x \log q(x)$

Langevin dynamics can sample data points from a probability density distribution using only the score $\nabla_x \log q(x)$ in an iterative process.

Score network $s_{\theta}(x_t, t) \approx \nabla_x \log q(x)$

If
$$x \sim \mathcal{N}(\mu, \sigma^2 \mathbf{I})$$
, $\nabla_x \log p(x) = \nabla_x (-\frac{1}{2\sigma^2} (x - \mu)^2) = -\frac{x - \mu}{\sigma^2} = -\frac{\varepsilon}{\sigma}$, $\varepsilon \sim \mathcal{N}(0, \mathbf{I})$

The score of each sample's x probability density function is defined as $\nabla_x \log q(x)$

Langevin dynamics can sample data points from a probability density distribution using only the score $\nabla_x \log q(x)$ in an iterative process.

Score network $s_{\theta}(x_t, t) \approx \nabla_x \log q(x)$

 $q(x_t|x_0) \sim \mathcal{N}(\sqrt{\bar{\alpha}_t}x_0, (1-\bar{\alpha}_t)\mathbf{I})$

If
$$x \sim \mathcal{N}(\mu, \sigma^2 \mathbf{I})$$
, $\nabla_x \log p(x) = \nabla_x (-\frac{1}{2\sigma^2} (x - \mu)^2) = -\frac{x - \mu}{\sigma^2} = -\frac{\varepsilon}{\sigma}$, $\varepsilon \sim \mathcal{N}(0, \mathbf{I})$

The score of each sample's x probability density function is defined as $\nabla_x \log q(x)$

Langevin dynamics can sample data points from a probability density distribution using only the score $\nabla_x \log q(x)$ in an iterative process.

Score network $s_{\theta}(x_t, t) \approx \nabla_x \log q(x)$

If
$$x \sim \mathcal{N}(\mu, \sigma^2 \mathbf{I})$$
, $\nabla_x \log p(x) = \nabla_x (-\frac{1}{2\sigma^2} (x - \mu)^2) = -\frac{x - \mu}{\sigma^2} = -\frac{\varepsilon}{\sigma}$, $\varepsilon \sim \mathcal{N}(0, \mathbf{I})$
 $q(x_t | x_0) \sim \mathcal{N}(\sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t) \mathbf{I})$

And therefore
$$s_{\theta}(x_t, t) \approx \nabla_{x_t} \log q(x_t) = E_{q(x_0)} \nabla_{x_t} q(x_t | x_0) = E_{q(x_0)} [-\frac{\varepsilon_{\theta}(x_t, t)}{\sqrt{1 - \bar{\alpha}_t}}] = -\frac{\varepsilon_{\theta}(x_t, t)}{\sqrt{1 - \bar{\alpha}_t}}$$

Guided diffusion

- We have additional input y (a class label in classifier guided diffusion)
- We want to model a conditional distribution p(x | y) instead

Conditioned on dogs

We separately train a classifier $f_{\phi}(y \mid x_t, t)$ on a noisy image x_t , and use gradients $\nabla_x \log f_{\phi}(y \mid x_t)$

We separately train a classifier $f_{\phi}(y \mid x_t, t)$ on a noisy image x_t , and use gradients $\nabla_x \log f_{\phi}(y \mid x_t)$

$$\nabla_{x_t} \log q(x_t | y) = \nabla_{x_t} \log q(x_t) + \nabla_{x_t} \log q(y | x_t) - \nabla_{x_t} \log q(y)$$

We separately train a classifier $f_{\phi}(y \mid x_t, t)$ on a noisy image x_t , and use gradients $\nabla_x \log f_{\phi}(y \mid x_t)$

$$\nabla_{x_t} \log q(x_t | y) = \nabla_{x_t} \log q(x_t) + \nabla_{x_t} \log q(y | x_t) - \nabla_{x_t} \log q(y) \approx -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_{\theta}(x_t, t) + \nabla_{x_t} \log f_{\phi}(y | x_t)$$

We separately train a classifier $f_{\phi}(y \mid x_t, t)$ on a noisy image x_t , and use gradients $\nabla_x \log f_{\phi}(y \mid x_t)$

$$\begin{split} \nabla_{x_t} \log q(x_t | y) &= \nabla_{x_t} \log q(x_t) + \nabla_{x_t} \log q(y | x_t) - \nabla_{x_t} \log q(y) \approx -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_{\theta}(x_t, t) + \nabla_{x_t} \log f_{\phi}(y | x_t) \\ &= -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} (\varepsilon_{\theta}(x_t, t) - \sqrt{1 - \bar{\alpha}_t} \nabla_{x_t} \log f_{\phi}(y | x_t)) \end{split}$$

We separately train a classifier $f_{\phi}(y \mid x_t, t)$ on a noisy image x_t , and use gradients $\nabla_x \log f_{\phi}(y \mid x_t)$

to guide the diffusion. Let us have a joint distribution $q(x_t, y)$, y is e.g. the image label

$$\begin{split} \nabla_{x_{t}} \log q(x_{t} | y) &= \nabla_{x_{t}} \log q(x_{t}) + \nabla_{x_{t}} \log q(y | x_{t}) - \nabla_{x_{t}} \log q(y) \approx -\frac{1}{\sqrt{1 - \bar{\alpha}_{t}}} \varepsilon_{\theta}(x_{t}, t) + \nabla_{x_{t}} \log f_{\phi}(y | x_{t}) \\ &= -\frac{1}{\sqrt{1 - \bar{\alpha}_{t}}} (\varepsilon_{\theta}(x_{t}, t) - \sqrt{1 - \bar{\alpha}_{t}} \nabla_{x_{t}} \log f_{\phi}(y | x_{t})) \end{split}$$

Classifier guided predictor $\bar{\varepsilon}_{\theta}(x_t, t) = \varepsilon_{\theta}(x_t, t) - \sqrt{1 - \bar{\alpha}_t} w \nabla_{x_t} \log f_{\phi}(y \mid x_t)$

We separately train a classifier $f_{\phi}(y \mid x_t, t)$ on a noisy image x_t , and use gradients $\nabla_x \log f_{\phi}(y \mid x_t)$

to guide the diffusion. Let us have a joint distribution $q(x_t, y)$, y is e.g. the image label

$$\begin{split} \nabla_{x_t} \log q(x_t | y) &= \nabla_{x_t} \log q(x_t) + \nabla_{x_t} \log q(y | x_t) - \nabla_{x_t} \log q(y) \approx -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_{\theta}(x_t, t) + \nabla_{x_t} \log f_{\phi}(y | x_t) \\ &= -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} (\varepsilon_{\theta}(x_t, t) - \sqrt{1 - \bar{\alpha}_t} \nabla_{x_t} \log f_{\phi}(y | x_t)) \end{split}$$

Classifier guided predictor $\bar{\varepsilon}_{\theta}(x_t, t) = \varepsilon_{\theta}(x_t, t) - \sqrt{1 - \bar{\alpha}_t} w \nabla_{x_t} \log f_{\phi}(y \mid x_t)$

Where w is the strength of the guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $f_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow \text{sample from } \mathcal{N}(0, \mathbf{I}) for all t from T to 1 do \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t) x_{t-1} \leftarrow \text{sample from } \mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log f_{\phi}(y|x_t), \Sigma) end for return x_0
```

Downsides:

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $f_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow \text{sample from } \mathcal{N}(0, \mathbf{I}) for all t from T to 1 do \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t) x_{t-1} \leftarrow \text{sample from } \mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log f_{\phi}(y|x_t), \Sigma) end for return x_0
```

Downsides:

- The classifier has to cope with noise, might need to be trained separately

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $f_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow \text{sample from } \mathcal{N}(0, \mathbf{I}) for all t from T to 1 do \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t) x_{t-1} \leftarrow \text{sample from } \mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log f_{\phi}(y|x_t), \Sigma) end for return x_0
```

Downsides:

- The classifier has to cope with noise, might need to be trained separately
- If noise-robust might be inefficient: most of the information on x is irrelevant to y

- Train a diffusion model $p(x \mid y)$ with conditioning dropout: conditional information is removed some percentage of the time

- Train a diffusion model $p(x \mid y)$ with conditioning dropout: conditional information is removed some percentage of the time
- Resulting model can be conditional p(x | y) and unconditional p(x)

- Train a diffusion model $p(x \mid y)$ with conditioning dropout: conditional information is removed some percentage of the time
- Resulting model can be conditional p(x | y) and unconditional p(x)
- No need for a separate classifier!

Guide the diffusion without an independent classifier f_ϕ

- Unconditional denoising diffusion model $p_{\theta}(x)$, parametrised through a score estimator $\varepsilon_{\theta}(x_t,t)$

- Unconditional denoising diffusion model $p_{\theta}(x)$, parametrised through a score estimator $\varepsilon_{\theta}(x_t,t)$
- Conditional model $p_{\theta}(x \mid y)$ parametrised through $\varepsilon_{\theta}(x_t, t, y)$

- Unconditional denoising diffusion model $p_{\theta}(x)$, parametrised through a score estimator $\varepsilon_{\theta}(x_t,t)$
- Conditional model $p_{\theta}(x \mid y)$ parametrised through $\varepsilon_{\theta}(x_t, t, y)$
- Conditional model is trained on paired data (x, y)

- Unconditional denoising diffusion model $p_{\theta}(x)$, parametrised through a score estimator $\varepsilon_{\theta}(x_t,t)$
- Conditional model $p_{\theta}(x \mid y)$ parametrised through $\varepsilon_{\theta}(x_t, t, y)$
- Conditional model is trained on paired data (x, y)
- Conditional information y gets discarded periodically: $\varepsilon_{\theta}(x_t, t) = \varepsilon_{\theta}(x_t, t, y = \emptyset)$

- Unconditional denoising diffusion model $p_{\theta}(x)$, parametrised through a score estimator $\varepsilon_{\theta}(x_t,t)$
- Conditional model $p_{\theta}(x \mid y)$ parametrised through $\varepsilon_{\theta}(x_t, t, y)$
- Conditional model is trained on paired data (x, y)
- Conditional information y gets discarded periodically: $\varepsilon_{\theta}(x_t, t) = \varepsilon_{\theta}(x_t, t, y = \emptyset)$

$$\nabla_{x_t} \log p(y \mid x_t) = \nabla_{x_t} \log p(x_t \mid y) - \nabla_{x_t} \log p(x_t)$$

- Unconditional denoising diffusion model $p_{\theta}(x)$, parametrised through a score estimator $\varepsilon_{\theta}(x_t,t)$
- Conditional model $p_{\theta}(x \mid y)$ parametrised through $\varepsilon_{\theta}(x_t, t, y)$
- Conditional model is trained on paired data (x, y)
- Conditional information y gets discarded periodically: $\varepsilon_{\theta}(x_t, t) = \varepsilon_{\theta}(x_t, t, y = \emptyset)$

$$\nabla_{x_t} \log p(y \mid x_t) = \nabla_{x_t} \log p(x_t \mid y) - \nabla_{x_t} \log p(x_t) = -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} (\varepsilon_{\theta}(x_t, t, y) - \varepsilon_{\theta}(x_t, t))$$

- Unconditional denoising diffusion model $p_{\theta}(x)$, parametrised through a score estimator $\varepsilon_{\theta}(x_t,t)$
- Conditional model $p_{\theta}(x \mid y)$ parametrised through $\varepsilon_{\theta}(x_t, t, y)$
- Conditional model is trained on paired data (x, y)
- Conditional information y gets discarded periodically: $\varepsilon_{\theta}(x_t, t) = \varepsilon_{\theta}(x_t, t, y = \emptyset)$

$$\nabla_{x_t} \log p(y \mid x_t) = \nabla_{x_t} \log p(x_t \mid y) - \nabla_{x_t} \log p(x_t) = -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} (\varepsilon_{\theta}(x_t, t, y) - \varepsilon_{\theta}(x_t, t))$$

Now
$$\nabla_{x_t} \log p(x_t, y) = \nabla_{x_t} \log p(x_t) + \nabla_{x_t} \log p(y \mid x_t) = \nabla_{x_t} \log p(x_t \mid y) + \nabla_{x_t} \log y + \nabla_{x_t} p(y \mid x_t)$$

- Unconditional denoising diffusion model $p_{\theta}(x)$, parametrised through a score estimator $\varepsilon_{\theta}(x_t,t)$
- Conditional model $p_{\theta}(x_t | y)$ parametrised through $\varepsilon_{\theta}(x_t, t, y)$
- Conditional model is trained on paired data (x, y)
- Conditional information y gets discarded periodically: $\varepsilon_{\theta}(x_t, t) = \varepsilon_{\theta}(x_t, t, y = \emptyset)$

$$\nabla_{x_t} \log p(y \mid x_t) = \nabla_{x_t} \log p(x_t \mid y) - \nabla_{x_t} \log p(x_t) = -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} (\varepsilon_{\theta}(x_t, t, y) - \varepsilon_{\theta}(x_t, t))$$

Now
$$\nabla_{x_t} \log p(x_t, y) = \nabla_{x_t} \log p(x_t) + \nabla_{x_t} \log p(y \mid x_t) = \nabla_{x_t} \log p(x_t \mid y) + \nabla_{x_t} \log y + \nabla_{x_t} p(y \mid x_t)$$

$$\nabla_{x_t} \log p(x_t, y) = \nabla_{x_t} \log p(x_t | y) + \nabla_{x_t} \log p(y | x_t)$$

$$\nabla_{x_t} \log p(y \mid x_t) = -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} (\varepsilon_{\theta}(x_t, t, y) - \varepsilon_{\theta}(x_t, t))$$

Hence, analogously to the case of classifier guided diffusion

$$\nabla_{x_t} \log p(x_t, y) = \nabla_{x_t} \log p(x_t | y) + \nabla_{x_t} \log p(y | x_t)$$

$$\nabla_{x_t} \log p(y \mid x_t) = -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} (\varepsilon_{\theta}(x_t, t, y) - \varepsilon_{\theta}(x_t, t))$$

Hence, analogously to the case of classifier guided diffusion

$$\bar{\varepsilon}_{\theta}(x_t, t, y) = \varepsilon_{\theta}(x_t, t, y) - \sqrt{1 - \bar{\alpha}_t} w \nabla_{x_t} \log p(y \mid x_t)$$
, where $\varepsilon_{\theta}(x_t, t, y)$ parametrises $p(x_t \mid y)$

$$\nabla_{x_t} \log p(x_t, y) = \nabla_{x_t} \log p(x_t | y) + \nabla_{x_t} \log p(y | x_t)$$

$$\nabla_{x_t} \log p(y \mid x_t) = -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} (\varepsilon_{\theta}(x_t, t, y) - \varepsilon_{\theta}(x_t, t))$$

Hence, analogously to the case of classifier guided diffusion

$$\begin{split} \bar{\varepsilon}_{\theta}(x_t,t,y) &= \varepsilon_{\theta}(x_t,t,y) - \sqrt{1-\bar{\alpha}_t} w \, \nabla_{x_t} \! \log p(y \, | \, x_t) \, , \, \text{where} \, \varepsilon_{\theta}(x_t,t,y) \, \text{parametrises} \, p(x_t | \, y) \\ &= \varepsilon_{\theta}(x_t,t,y) + w(\varepsilon_{\theta}(x_t,t,y) - \varepsilon_{\theta}(x_t,t)) \end{split}$$