

What does coding do?

Figure 1: Communication system

- Why coding?
- 1. Source coding
 - Convert source messages to channel symbols (for example 0,1)
 - Minimize number of symbols needed
 - (Adapt probabilities of symbols to maximize mutual information)
- 2. Error control
 - Protection against channel errors / Adds new (redundant) symbols

Source-channel separation theorem

Source-channel separation theorem (informal):

- ▶ It is possible to obtain the best reliable communication by performing the two tasks separately:
 - 1. Source coding: to minimize number of symbols needed
 - 2. Error control coding (channel coding): to provide protection against noise

Source coding

- Assume we code for transmission over ideal channels with no noise
- ▶ Transmitted symbols are perfectly recovered at the receiver
- Main concerns:
 - minimize the number of symbols needed to represent the messages
 - make sure we can decode the messages
- Advantages:
 - Efficiency
 - Short communication times
 - Can decode easily

Definitions

- Let $S = \{s_1, s_2, ... s_N\}$ = an input discrete memoryless source
- Let X = {x₁, x₂, ...x_M} = the alphabet of the code
 Example: binary: {0,1}
- ▶ A **code** is a mapping from *S* to the set of all codewords:

$$C = \{c_1, c_2, ... c_N\}$$

Message	Codeword		
s_1	$c_1 = x_1 x_2 x_1 \dots$		
<i>s</i> ₂	$c_2 = x_1 x_2 x_2 \dots$		
SN	$c_N = x_2 x_2 x_2 \dots$		

ightharpoonup Codeword length I_i = the number of symbols in c_i

Encoding and decoding

- ► **Encoding**: given a sequence of messages, replace each message with its codeword
- ▶ Decoding: given a sequence of symbols, deduce the original sequence of messages
- Example: at blackboard

Example: ASCII code

Letter	ASCII Code	Binary	Letter	ASCII Code	Binary
a	097	01100001	Α	065	01000001
b	098	01100010	В	066	01000010
С	099	01100011	C	067	01000011
d	100	01100100	D	068	01000100
e	101	01100101	E	069	01000101
f	102	01100110	F	070	01000110
g	103	01100111	G	071	01000111
h	104	01101000	Н	072	01001000
i	105	01101001	I	073	01001001
j	106	01101010	J	074	01001010
k	107	01101011	K	075	01001011
1	108	01101100	L	076	01001100
m	109	01101101	M	077	01001101
n	110	01101110	N	078	01001110
0	111	01101111	0	079	01001111
р	112	01110000	P	080	01010000
q	113	01110001	Q	081	01010001
r	114	01110010	R	082	01010010
S	115	01110011	S	083	01010011
t	116	01110100	T	084	01010100
u	117	01110101	U	085	01010101
V	118	01110110	V	086	01010110
w	119	01110111	W	087	01010111
x	120	01111000	X	088	01011000
У	121	01111001	Υ	089	01011001
Z	122	01111010	Z	090	01011010

Figure 2: ASCII code (partial)

Average code length

- ▶ How to measure representation efficiency of a code?
- ► Average code length = average of the codeword lengths:

$$\bar{I} = \sum_{i} p(s_i) I_i$$

- ► The probability of a codeword = the probability of the corresponding message
- Smaller average length: code more efficient (better)
- ► How small can the average length be?

Definitions

A code can be:

- non-singular: all codewords are different
- uniquely decodable: for any received sequence of symbols, there is only one corresponding sequence of messages
 - i.e. no sequence of messages produces the same sequence of symbols
 - ▶ i.e. there is never a confusion at decoding
- ▶ instantaneous (also known as prefix-free): no codeword is prefix to another code
 - ightharpoonup A prefix = a codeword which is the beginning of another codeword

Examples: at the blackboard

The graph of a code

Example at blackboard

Instantaneous codes are uniquely decodable

- Theorem:
 - An instantaneous code is uniquely decodable
- ► Proof:
 - ► There is exactly one codeword matching the beginning of the sequence
 - Suppose the true initial codeword is c
 - ▶ There can't be a shorter codeword c', since it would be prefix to c
 - ▶ There can't be a longer codeword c", since c would be prefix to it
 - Remove first codeword from sequence
 - ▶ By the same argument, there is exactly one codeword matching the new beginning, and so on . . .
- Note: the converse is not necessary true; there exist uniquely decodable codes which are not instantaneous

Decoding instantaneous codes using the graph

- ► How to decode an instantaneous code using the graph
 - Start at the root, each bit means go left or go right
 - ► Illustrate at whiteboard
- Advantage on instantaneous code over uniquely decodable: simple decoding
- ▶ Why the name *instantaneous*?
 - ▶ The codeword can be decoded as soon as it is fully received
 - Counter-example: Uniquely decodable, non-instantaneous, delay 6: {0, 01, 011, 1110}

Uniquely decodable codes are non-singular

- ► Theorem:
 - An uniquely decodable code is non-singular
- Proof: by contradiction
 - Assume the uniquely-decodable code is singular
 - ► This means some codewords are not unique (two different messages have same codeword)
 - When decoding that codeword, you obviously can't decide which is the corresponding message
 - ► Contradition: the code is not uniquely decodable
 - So if the code is uniquely-decodable, it must be non-singular
- Note: the converse is not necessary true; there exist some non-singular codes which are not uniquely-decodable
- Relation between code types:
 - ► Instantaneous ⊂ uniquely decodable ⊂ non-singular

Existence of instantaneous codes

- ▶ When can an instantaneous code exist?
- Kraft inequality theorem:
 - ▶ There exists an instantaneous code with D symbols and codeword lengths $l_1, l_2, \ldots l_n$ if and only if the lengths satisfy the following inequality:

$$\sum_i D^{-l_i} \leq 1$$

- Proof: At blackboard
- Comments:
 - ▶ If lengths do not satisfy this, no instantaneous code exists
 - If the lengths of a code satisfy this, that code can be instantaneous or not (there exists an instantaneous code, but not necessarily that one)
 - Kraft inequality means that the codewords lengths cannot be all very small

Instantaneous codes with equality in Kraft

► From the proof => we have equality in the relation

$$\sum_{i} D^{-l_i} = 1$$

only if the lowest level is fully covered <=> no unused branches

- ► For an instantaneous code which satisfies Kraft with equality, all the graph branches terminate with codewords (there are no unused branches)
 - This is most economical: codewords are as short as they can be

Kraft inequality for uniquely decodable codes

- Instantaneous codes must obey Kraft inequality
- ► How about uniquely decodable codes?
- McMillan theorem (no proof given):
 - ▶ Any uniquely decodable code **also** satisfies the Kraft inequality:

$$\sum_{i} D^{-l_i} \leq 1.$$

- Consequence:
 - For every uniquely decodable code, there exists in instantaneous code with the same lengths!
 - Even though the class of uniquely decodable codes is larger than that of instantaneous codes, it brings no benefit in codeword length
 - We can always use just instantaneous codes.

Finding an instantaneous code for given lengths

- ▶ How to find an instantaneous code with code lengths $\{l_i\}$
 - 1. Check that lengths satisfy Kraft relation
 - 2. Draw graph
 - 3. Assign nodes in a certain order (e.g. descending probability)
- Easy, standard procedure
- Example: at blackboard

Optimal codes

We want to minimize the average length of a code:

$$\bar{l} = \sum_{i} p(s_i) l_i$$

- But the lengths must obey the Kraft inequality (for uniquely decodable)
- So we reach the following constrained optimization problem:

minimize
$$\sum_{i} p(s_{i}) I_{i}$$

subject to $\sum_{i} D^{-l_{i}} \leq 1$

The method of Lagrange multipliers

- Method of Lagrange multipliers: standard mathematical tool
- ► To solve the following constrained optimization problem

minimize
$$f(x)$$

subject to $g(x) = 0$

one must build a new function $L(x, \lambda)$ (the **Lagrangean function**):

$$L(x,\lambda) = f(x) - \lambda g(x)$$

and the solution x is among the solutions of the system:

$$\frac{\partial L(x,\lambda)}{\partial x} = 0$$
$$\frac{\partial L(x,\lambda)}{\partial \lambda} = 0$$

If there are multiple variables x_i , derivation is done for each one

Solving for minimum average length of code

- In our case:
 - ightharpoonup The unknown x are l_i
 - ▶ The function is $f(x) = \bar{I} = \sum_i p(s_i)I_i$
 - The constraint is $g(x) = \sum_{i}^{n} D^{-i} 1$
- ► (Solve at blackboard)
- ► The optimal values are:

$$I_i = -\log(p(s_i))$$

▶ Intuition: using $l_i = -\log(p(s_i))$ satisfies Kraft with equality, so the lengths cannot be any shorter, in general

Optimal lengths

► The optimal codeword lengths are:

$$I_i = -\log(p(s_i))$$

- ► Higher probability => smaller codeword
 - more efficient
 - ▶ language examples: "da", "nu", "the", "le" . . .
- ► Smaller probability => longer codeword
 - ▶ it appears rarely => no problem
- Overall, we obtain the minimum average length

Entropy = minimal codeword average length

▶ If the optimal values are:

$$I_i = -\log(p(s_i))$$

▶ Then the minimal average length is:

$$\min \bar{I} = \sum_{i} p(s_i)I_i = -\sum_{i} p(s_i)\log(p(s_i)) = H(S)$$

- ► The **entropy** of a source = the **minimum average length** necessary to encode the messages
 - e.g. the minimum number of bits required to represent the data in binary form

Meaning of entropy

- ► This tells us something about entropy
 - ► This is what entropy means in practice
 - ► Small entropy => can be written (encoded) with few bits
 - ► Large entropy => requires more bits for encoding
- ▶ This tells us something about the average length of codes
 - ► The average length of an uniquely decodable code must be at least as large as the source entropy

$$H(S) \leq \overline{I}$$

► One can never represent messages, on average, with a code having average length less than the entropy

Analogy of entropy and codes

- ► Analogy: 1 liter of water
 - $lackbox{1 liter of water} = \mbox{the quantity of water that can fit in any bottle of size} \ \geq 1 \mbox{ liter, but not in any bottle} < 1 \mbox{ liter}$

$$Bottle \ge water$$

- ▶ Information of the source = the water
- ▶ The code used for representing the messages = the bottle that carries the water

$$\bar{I} \geq H(S)$$

Efficiency and redundancy of a code

Efficiency of a code (M = size of code alphabet):

$$\eta = \frac{H(S)}{\overline{I} \log M}$$

- usually M=2 so $\eta=\frac{H(S)}{\overline{I}}$
- but if M > 2 a factor of $\log M$ is needed because H(S) in bits (binary) but \bar{I} not in bits (M symbols)
- Redundancy of a code:

$$\rho = 1 - \eta$$

- ► These measures indicate how close is the average length to the optimal value
- ▶ When $\eta = 1$: **optimal code**

Optimal codes

- ▶ Problem: $I_i = -\log(p(s_i))$ might not be an integer number
 - but the codeword lengths must be natural numbers
- An **optimal code** = a code that attains the minimum average length $\bar{l} = H(S)$
- An optimal code can always be found for a source where all $p(s_i)$ are powers of 2
 - ightharpoonup e.g. 1/2, 1/4, $1/2^n$, known as dyadic distribution
 - ▶ the lengths $I_i = -\log(p(s_i))$ are all natural numbers => can be attained
 - ightharpoonup the code with lengths l_i can be found with the graph-based procedure

Non-optimal codes

- What if $-\log(p(s_i))$ is not a natural number? i.e. $p(s_i)$ is not a power of 2
- Shannon's solution: round to next largest natural number

$$I_i = \lceil -\log(p(s_i)) \rceil$$

i.e.
$$-\log(p(s_i)) = 2.15 = > l_i = 3$$

Shannon coding

- Shannon coding:
 - 1. Arrange probabilities in descending order
 - 2. Use codeword lengths $I_i = \lceil -\log(p(s_i)) \rceil$
 - 3. Find any instantaneous code for these lengths *
 - 4. For every message s_i :
 - 4.1 compute the sum of all the probabilities up to this message
 - 4.2 multiply this value with 2^{l_i}
 - 4.3 floor the result and convert to binary
- ▶ The code obtained = a "Shannon code"
- ▶ Simple scheme, better algorithms are available
 - **Example:** compute lengths for S:(0.9,0.1)
- But still enough to prove fundamental results

Average length of Shannon code

Theorem:

▶ The average length of a Shannon code satisfies

$$H(S) \leq \overline{I} < H(S) + 1$$

Average length of Shannon code

Proof:

- 1. The first inequality is because H(S) is minimum length
- 2. The second inequality:
 - a. Use Shannon code:

$$I_i = \lceil -\log(p(s_i)) \rceil = -\log(p(s_i)) + \epsilon_i$$

where $0 \le \epsilon_i < 1$

b. Compute average length:

$$\bar{I} = \sum_{i} p(s_i)I_i = H(S) + \underbrace{\sum_{i} p(s_i)\epsilon_i}_{\leq 1}$$

c. Since
$$\epsilon_i < 1 = \sum_i p(s_i) \epsilon_i < \sum_i p(s_i) = 1$$

Average length of Shannon code

- ► Average length of Shannon code is **at most 1 bit longer** than the minimum possible value
 - ► That's quite efficient
 - ► There exist even better codes, in general
- Q: Can we get even closer to the minimum length?
- ► A: Yes, as close as we want!
 - ► In theory, at least . . . :)
 - See next slide.

Shannon's first theorem (coding theorem for noiseless channels):

▶ It is possible to encode an infinitely long sequences of messages from a source S with an average length as close as desired to H(S), but never below H(S)

Key points:

- ightharpoonup we can always obtain $\overline{I} o H(S)$
- for an infinitely long sequence

Proof:

- \blacktriangleright Average length can never go below H(S) because this is minimum
- ► How can it get very close to H(S) (from above)?
 - 1. Use n-th order extension S^n of S
 - 2. Use Shannon coding for S^n , so it satisfies

$$H(S^n) \leq \overline{I_{S^n}} < H(S^n) + 1$$

3. But $H(S^n) = nH(S)$, and average length **per message of** S is

$$\overline{I_S} = \frac{\overline{I_{S^n}}}{n}$$

because messages of S^n are just n messages of S glued together

4. So, dividing by *n*:

$$H(S) \leq \overline{I_S} < H(S) + \frac{1}{n}$$

5. If extension order $n \to \infty$, then

$$\overline{I_S} \to H(S)$$

- Analogy: how to buy things online without paying for delivery:)
 - FanCourier taxes 15 lei per delivery
 - ▶ not efficient to buy something worth a few lei
 - ▶ How to improve efficiency? Buy *n* things bundled together!
 - ► The delivery cost **per unit** is now $\frac{15}{n}$
 - As $n \to \infty$, the delivery cost per unit $\to 0$
 - ▶ What's 15 lei when you pay ∞ lei...

Comments:

- ► Shannon's first theorem shows that we can approach H(S) to any desired accuracy using extensions of large order of the source
 - ▶ This is not practical: the size of S^n gets too large for large n
 - ▶ Other (better) algorithms than Shannon coding are used in practice to approach H(S)

Coding with the wrong code

- ▶ Consider a source with probabilities $p(s_i)$
- We use a code designed for a different source: $l_i = -\log(q(s_i))$
- ▶ The message probabilities are $p(s_i)$ but the code is designed for $q(s_i)$
- Examples:
 - design a code based on a sample data file (like in lab)
 - but we use it to encode various other files => probabilities might differ slightly
 - ▶ e.g. design a code based a Romanian text, but encode a text in English
- What happens?

Coding with the wrong code

- ▶ We lose some efficiency:
 - ▶ Codeword lengths $\overline{l_i}$ are not optimal for our source => increased \overline{l}
- ▶ If code were optimal, best average length = entropy H(S):

$$\overline{I_{optimal}} = -\sum p(s_i)\log p(s_i)$$

▶ But the actual average length we obtain is:

$$\overline{I_{actual}} = \sum p(s_i)I_i = -\sum p(s_i)\log q(s_i)$$

The Kullback-Leibler distance

Difference between average lengths is:

$$\overline{I_{actual}} - \overline{I_{optimal}} = \sum_{i} p(s_i) \log(\frac{p(s_i)}{q(s_i)}) = D_{KL}(p||q)$$

- ➤ The difference = the Kullback-Leibler distance between the two distributions
 - ▶ is always $\geq 0 =$ improper code means increased \bar{l} (bad)
 - distributions more different => larger average length (worse)
- ▶ The KL distance between the distributions = the number of extra bits used because of a code optimized for a different distribution $q(s_i)$ than the true distribution of our data $p(s_i)$

The Kullback-Leibler distance

Reminder: where is the Kullback-Leibler distance used

- ▶ Here: Using a code optimized for a different distribution:
 - Average length is increased with $D_{KL}(p||q)$
- ▶ In chapter IV (Channels): Definition of mutual information:
 - ▶ Distance between $p(x_i \cap y_j)$ and the distribution of two independent variables $p(x_i) \cdot p(y_j)$

$$I(X,Y) = \sum_{i,j} p(x_i \cap y_j) \log(\frac{p(x_i \cap y_j)}{p(x_i)p(y_j)})$$

Shannon-Fano coding (binary)

Shannon-Fano (binary) coding procedure:

- 1. Sort the message probabilities in descending order
- 2. Split into two subgroups as nearly equal as possible
- 3. Assign first bit 0 to first group, first bit 1 to second group
- 4. Repeat on each subgroup
- 5. When reaching one single message => that is the codeword

Example: blackboard

Comments:

- Shannon-Fano coding does not always produce the shortest code lengths
- Connection: yes-no answers (example from first chapter)

Huffman coding (binary)

Huffman coding procedure (binary):

- 1. Sort the message probabilities in descending order
- 2. Join the last two probabilities, insert result into existing list, preserve descending order
- 3. Repeat until only two messages are remaining
- 4. Assign first bit 0 and 1 to the final two messages
- 5. Go back step by step: every time we had a sum, append 0 and 1 to the end of existing codeword

Example: blackboard

Properties of Huffman coding

Properties of Huffman coding:

- Produces a code with the smallest average length (better than Shannon-Fano)
- Assigning 0 and 1 can be done in any order => different codes, same lengths
- ▶ When inserting a sum into an existing list, may be equal to another value => options
 - we can insert above, below or in-between equal values
 - leads to codes with different *individual* lengths, but same *average* length
- Some better algorithms exist which do not assign a codeword to every single message (they code a while sequence at once, not every message)

Huffman coding (M symbols)

General Huffman coding procedure for codes with M symbols:

- ► Have M symbols $\{x_1, x_2, ... x_M\}$
- ► Add together the last *M* symbols
- ▶ When assigning symbols, assign all *M* symbols
- ▶ **Important**: at the final step must have *M* remaining values
 - ▶ May be necessary to add *virtual* messages with probability 0 at the end of the initial list, to end up with exactly *M* messages in the last step
- Example : blackboard

Example: compare Huffman and Shannon-Fano

Example: compare binary Huffman and Shannon-Fano for:

$$p(s_i) = \{0.35, 0.17, 0.17, 0.16, 0.15\}$$

Probability of symbols

For every symbol x_i we can compute the average number of symbols x_i in a code

$$\overline{I_{x_i}} = \sum_i p(s_i) I_{x_i}(s_i)$$

- $I_{x_i}(s_i) = \text{number of symbols } x_i \text{ in the codeword of } s_i$
- e.g.: average number of 0's and 1's in a code
- ightharpoonup Divide by average length => probability (frequency) of symbol x_i

$$p(x_i) = \frac{\overline{I_{x_i}}}{\overline{I}}$$

- ► These are the probabilities of the input symbols for the transmission channel
 - they play an important role in Chapter IV (transmission channels)

Source coding as data compression

- Consider that the messages are already written in a binary code
 - Example: characters in ASCII code
- $\blacktriangleright \ \ \mbox{Source coding} = \mbox{remapping the original codewords to other codewords}$
 - The new codewords are shorter, on average
- This means data compression
 - Just like the example in lab session
- ▶ What does data compression remove?
 - Removes **redundancy**: unused bits, patterns, regularities etc.
 - If you can guess somehow the next bit in a sequence, it means the bit is not really necessary, so compression will remove it
 - ► The compressed sequence looks like random data: impossible to guess, no discernable patterns

Discussion: data compression with coding

- Consider data compression with Shannon or Huffman coding, like we did in lab
 - What property do we exploit in order to obtain compression?
 - ► How does *compressible data* look like?
 - ► How does *incompressible data* look like?
 - ▶ What are the limitation of our data compression method?
 - How could it be improved?

Other codes: arithmetic coding

- ► Other types of coding do exist (info only)
 - Arithmetic coding
 - Adaptive schemes
 - etc.

Chapter summary

- Average length: $\bar{l} = \sum_i p(s_i) l_i$
- lackbox Code types: instantaneous \subset uniquely decodable \subset non-singular
- ► All instantaneous or uniqualy decodable code must obey Kraft:

$$\sum_{i} D^{-l_i} \leq 1$$

- ▶ Optimal codes: $I_i = -\log(p(s_i))$, $\overline{I_{min}} = H(S)$
- Shannon's first theorem: use *n*-th order extension of S, S^n :

$$H(S) \leq \overline{I_S} < H(S) + \frac{1}{n}$$

- \triangleright average length always larger, but as close as desired to H(S)
- Coding techniques:
 - Shannon: ceil the optimal codeword lengths (round to upper)
 - Shannon-Fano: split in two groups approx. equal
 - ▶ Huffman: group last two. Is best of all.