	Bivecteurs dans \mathbb{R}^3 et \mathbb{R}^4
	$ R^3 $ Nous avons dim $ R^3 = R^3 = R^3 $ avec une base donnée par
	En particulier, nous avous l'isomonphisme *: 183 ~> R3, i.e. tout bivecteur dans
0	ce qui entraîne que tont bivecteur dans IR3, dans IR3 est simple, i-e. pour WE IR3
	il existe $u, v \in \mathbb{R}^3$ $t \cdot q$. $w = u \wedge v$.
0	En fait, on a * (a1b) = axb. Le produit scalaire usuel de R3 s'étend à 7 1R3 par
	En particulier on a
	où 1/ est l'augle entre x et y. De
0	où 1/ est l'augle entre x et y. De plus, la langeur d'un bivecteur générique B C 1/R3 est donnée par Jenérique 1/811 = V(B,13) = 182 + 823 + B23.

R" | En dimension 4, nous avous dien (12 12) = (4) = 6. Douc, on a un isomorphisme 1 R = 1R6. En particulier, les bivecteurs de Ry ne sont plus tous simples, e.g. e, 1 ez + e, 1 ey. En général, ou sent éctire tout bivecteurs W E IR comme une somme de cleux bivecteurs rimples qui reprétentent deux plans complètement orthogonaux, i-e W = W1 + W2 = U1 1 V1 + U2 + V2 avec U; U; = 0 sour i + ji. Par le Elieorème de Pythogore, on a 1/w1/2 = 1/w2/12 + 1/w2/12 = |us|2 |v1|2 sin2 4 + |u12 |v2|2 sin2 4.