Minimal MapReduce Algorithms

MapReduce Simplified view

MapReduce Simplified view

Denote m=n/t - the number of objects per machine when s is evenly distributed

1. Minimum footprint: at all times – each machine uses only O(m) space

Denote **m=n/t** - the number of objects per machine when s is evenly distributed

- 1. Minimum footprint: at all times each machine uses only o(m) space
- **2. Bounded net-traffic:** in each round every machine sends and receives at most O(m) words

Denote **m=n/t** - the number of objects per machine when s is evenly distributed

- 1. Minimum footprint: at all times each machine uses only o(m) space
- **2. Bounded net-traffic:** in each round every machine send and receives at most O(m) words
- 3. constant round: the algorithm must terminate after constant number of rounds

Denote **m=n/t** - the number of objects per machine when s is evenly distributed

- 1. Minimum footprint: at all times each machine uses only o(m) space
- 2. Bounded net-traffic: in each round every machine send and receives at most O(m) words
- 3. constant round: the algorithm must terminate after constant number of rounds
- **4. Optimal computation:** every machine performs only O(T_{seq}/t) amount of computation total when

T_{seq} = time to solve the same problem on single sequential computer means the algorithm would get a speedup of t by using t machines in parallel

Minimal MapReduce advantages:

- 1. Each machine using O(m) in each phase = O(1/t) of S prevent partition skew
- 2. Bounded net traffic O(m) words ensures that each shuffle phase transfer at most o(n) words
- 3. Due to parallelization:
 - The duration of each phase is \approx the time for a machine to send and receive O(m) words.
 - Good for building stateless algorithm improve the system's robustness
- 4. Constant rounds = O(n) word traffic overall
- 5. Optimal computation the very original motivation of MapReduce do things faster

Not minimal MapReduce algorithms:

TeraSort → minimal TeraSort

TeraSort(p)

How to choose to right p?

Define S_i = the group that arrives to machine M_i at the second phase

Means
$$S_i = S \cap (b_{i-1}, b_i]$$
 for $1 \le i \le t$

For Terasort to be minimal we need 2 restrictions:

R1: $|S_{samp}| = s = O(m)$ Round 1

R2: $\forall 1 \le i \le t$. $|S_i| = O(m)$ Round 2

Minimal TeraSort Restrictions

How to choose to right p?

Theorem 1: when $m = \frac{n}{t} > t \ln(nt)$ both R1 & R2 holds with probability $\geq 1 - O\left(\frac{1}{n}\right)$, when setting $p = \frac{1}{m} \ln(nt)$

When t<9, then $m=\Omega(n)$ and therefore R1 and R2 holds Trivially

Proof (when $t \ge 9$):

»
$$E[s]=p \cdot n = \left[m = \frac{n}{t}\right] = mpt = t \cdot \ln(nt)$$

» Chernoff:
$$\Pr[s \ge a] \le \frac{E[e^{t \cdot s}]}{e^{t \cdot a}}$$

»
$$\Pr[R1 \ fails] \le \Pr[s > 1.6 \cdot t \cdot \ln(nt)] \le \frac{e^{t \cdot \ln(nt)}}{e^{1.6 \cdot t \cdot \ln(nt)}}$$

$$= e^{t \cdot \ln(nt) \cdot (-0.6)} = \frac{1}{nt} \cdot e^{0.6t} \qquad \stackrel{\text{def}}{\le} \qquad \frac{1}{n}$$

This means that when $p = \frac{1}{m} \ln(nt)$ R1 fails with probability $\leq \frac{1}{n}$

What about R2

If we try to divide S (our input) to $b=\lfloor t/8 \rfloor$ buckets as evenly as possible: if β is a bucket

best case: if t%8 = 0 and n%b = 0 then each bucket has $\frac{n}{\lfloor t/8 \rfloor} = \frac{8n}{t}$ objects

worst case: if t%8 = 7 and n%b≠0 then β can hold at most $\frac{n}{t/16} = \frac{16n}{t}$ objects

$$8m = \frac{8n}{t} \le |\beta| \le \frac{16n}{t} \le 16m$$

Theorem: if after choosing our boundary objects: $b_0 = -\infty, b_1, ..., b_{t-1}, b_t = \infty$ every bucket has at least one $b_i \rightarrow R2$ will hold

because then each S_i can contain maximum 2 buckets $\leq 2 \cdot 16m = 32m = O(m)$

What about R2

If we are in the case that R₁ holds – $s \le 1.6 \cdot t \cdot \ln(nt)$ as before:

- » If $|\beta| \ge \frac{s}{t} = 1.6 \ln(nt)$ samples (objects from S_{samp}) than
- » What is the probability that $|\beta| < 1.6 \ln(nt)$?

$$\forall 1 \le i \le |\beta|. \, x_i = \begin{cases} 1 & x_i \in S_{samp} \\ 0 & x_i \notin S_{samp} \end{cases} \Rightarrow X = \sum_{j=1}^{|\beta|} x_j = |\beta \cap S_{samp}|$$

$$|\beta| \ge 8m \Rightarrow E[X] \ge 8mp = 8\ln(nt)$$

 $\Pr[\beta \ doesn't \ contain \ any \ b_i] \leq$

$$\Pr[X \leq 1.6 \ln(nt)] = \Pr[X \leq (1 - 4/5)8 \ln(nt)]$$

$$\leq \Pr[X \leq (1 - 4/5) \mathbf{E}[X]]$$
The probability that one bucket fails
$$\leq \exp\left(-\frac{16}{25} \frac{\mathbf{E}[X]}{3}\right)$$

$$\leq \exp\left(-\frac{16}{25} \cdot \frac{8 \ln(nt)}{3}\right)$$

$$\leq \exp(-\ln(nt))$$

$$\leq 1/(nt).$$

We have t/8 buckets the probability that 1+ fails is $\leq \frac{1}{8n}$

So in total...

Theorem 1: when $m = \frac{n}{t} > t \ln(nt)$ both R1 & R2 holds with probability $\geq 1 - O\left(\frac{1}{n}\right)$, when setting $p = \frac{1}{m} \ln(nt)$

Proof so far:

When $m = \frac{n}{t} > t \ln(nt)$ we saw that:

- » R1 fails with probability $\leq \frac{1}{n}$
- » When R1 doesn't fail ($s \le 1.6 \cdot t \cdot \ln(nt)$)
 R2 fails with probability $\le \frac{1}{8n}$ $P[R2 \text{ fails} \mid R1 \text{ holds}] \le \frac{1}{8n} \cdot \frac{n-1}{n} \le \frac{9}{8n}$
- » P[R1 V R2 fails] = P[R2 fails | R1 holds] + P[R2 fails | R1 fails] \leq P[R2 fails | R1 holds] + P[R1 fails] $\leq \frac{9}{8n} + \frac{1}{n} = \frac{17}{8n}$

P[R₁
$$\land$$
 R₂ hold] $\geq 1 - \frac{17}{8n}$

$$\Rightarrow \quad P[R_1 \land R_2 \text{ hold}] = 1 - O\left(\frac{1}{n}\right)$$

When R1 & R2 hold - Minimality?

1. Minimum footprint: at all times – each machine uses only o(m) space ✓

- 2. Bounded net-traffic: in each round every machine send and receives at most O(m) words R1 ensures M1 receives and sends only O(m) in round 1 R2 ensures all M's receive and send only O(m) in round 2
- 3. constant round: 2 rounds

4. Optimal computation: every machine performs only $O(T_{seq}/t)$ amout of computation total when T_{seq} = time to solve the same problem on single sequential computer means the algorithm would get a speedup of t by using t machines in parallel

Sorting
$$S_i$$
 in round 2: $O(mlog m) = O(\frac{n}{t} log n) = \frac{1}{t} O(nlog n)$

In practice:

typically m >> t

the memory size of a machine is significantly greater the number of machines

 $m = O(10^6)$ bytes = O(MB) $t = 10^4$ machines or lower

therefore $m \ge t \ln(nt)$ is a very reasonable assumption = excellent efficiency in practice

TeraSort – broadcast assumption

Pure TeraSort

Pure Terasort - Sending words in round 1

Each sample word is being sent to t machines

Lemma: p[every machine sends O(tln(nt)) words] $\geq 1 - \frac{1}{n}$

Proof: X – random variable = the number of object sampled from machine M $E[X] = mp = \ln(nt)$

Chernoff: $\Pr[X \ge 6 \ln(nt)] \le 2^{-6 \ln(nt)} \le \frac{1}{nt}$

P[M samples and sends more than O(tln(nt)) in round 1] $\leq \frac{1}{nt}$

For t machines \rightarrow 1 machine or more sends more than O(tln(nt)) in round 1 with probability $< \frac{1}{1} + \cdots + \frac{1}{1} = \frac{1}{1}$

with probability
$$\leq \underbrace{\frac{1}{nt} + \dots + \frac{1}{nt}}_{t} = \frac{1}{n}$$

p[every machine sends O(tln(nt)) words] = $1 - O\left(\frac{1}{n}\right)$

Combining it with the previous calculations – pure TeraSort is minimal with probability $\geq 1 - O\left(\frac{1}{n}\right)$ when $m \geq t \ln(nt)$

Minimal MapReduce advantages:

- 1. Each machine using O(m) in each phase = O(1/t) of S prevent partition skew
- 2. Bounded net traffic O(m) words ensures that each shuffle phase transfer at most o(n) words
- 3. Due to parallelization:
 - The duration of each phase is \approx the time for a machine to send and receive O(m) words.
 - Good for building stateless algorithm improve the system's robustness
- 4. Constant rounds = O(n) word traffic overall
- Optimal computation the very original motivation of MapReduce do things faster

Using minimal TeraSort to make DB algorithms minimal

Terasort based algorithms in databases

Database algorithms:

- » Ranking
- » Group-by
- » Semi-join
- » 2D-skyline
- » Etc...

All are O(nlogn) on sequential machine

All include TeraSort + extra round (MapShuffle + Reduce) where:

» Each machine sends O(t) words of network traffic

From now on we assume $m \geq t \ln(nt)$ for TeraSort to be minimal

Prefix sum

S – objects with weight function w

Prefix(o, S) =
$$\sum_{o' < o} w(o')$$

O(nlogn) time in sequential machine

S d Obj O5 O3 O4 O6 O2 O1

W 8 2 3 1 4 7

S sorted Obj O1 O2 O3 O4 O5 O6

W 7 4 2 3 8 1

PS 0 7 11 13 16 24

 S_i the numbers on machine M_i after sorting

MapShuffle:

- » M_i computes $W_i = \sum_{o \in S_i} w(o)$
- » M_i sends W_i to M_{i+1} , ..., M_t

Reduce:

- » M_i computes $V_i = \sum_{j < i} W_j$
- » M_i computes locally $prefix(o, S_i)$
- » M_i computes for each o∈ S_i : $prefix(o,S) = V_i + prefix(o,S_i)$

In MapShuffle M_i sends t-i words, and receives in reduce i-1 words = t-1 = O(t) and because $t \le m$ o(m)

Prefix Min

S – objects with weight function w

2

2

2

PM

Prefix(o, S) = $\sum_{o' < o} w(o')$	S
$\min\{w(o') o'< o,$	$o' \in S\}$

O(nlogn) time in sequential machine

 S_i the numbers on machine M_i after sorting

MapShuffle:

- » $M_i \text{ computes } W_i = \frac{\sum_{o \in S_i} w(o)}{\min\{w(o) | o \in S_i\}}$
- » M_i sends W_i to M_{i+1} , ..., M_t

Reduce:

- » M_i computes $V_i = \frac{\sum_{j < i} W_j}{\min\{W_j | j < i\}}$
- » M_i computes locally $prefix(o, S_i)$
- » M_i computes for each $o \in S_i$: $prefix(o, S) = V_i + prefix(o, S_i)$ $min(V_i, prefix(o, S_i))$

In MapShuffle M_i sends t-i words, and receives in reduce i-1 words = t-1 = O(t) and because $t \le m$ o(m)

Ranking = Prefix sum with w=1

Skyline

$$S = \{(x,y)\}$$

Skylines(S)

_

$$\{p=(x_p,y_p) \mid \forall p' \neq p \in S.(x_p > x_{p'}) \lor (y_p > y_{p'})\}$$

Prefix Min in Disguise:

» S = $\{-x_p\}$, w=- y_p , skylines: all the points such that w(p) < prefixMin(p)

GroupBy

S where for each $o \in S - k(o)$ - key, w(o) - weight, AGG - distributive aggregate function

We want to get $\{AGG(G_k)|G_k = \{o|k(o) = k\}\}$

First: TeraSort while sorting objects by keys, breaking ties by id

The main problem:

if there is a key k s.t. $|G_k| >> m$ and can't fit in one machine

Lets look on one machine M:

- » denote $k_{min}(M)$, $k_{max}(M)$ smallest and largest keys on M
- » Every k s.t. $k_{min}(M) < k < k_{max}(M)$ can be stored and locally computed on M
- » So at most 2 "problematic" keys per machine → at most 2t overall

Solution: send the problem to M1

- » MapShuffle: compute $(k_{min}(M_i), AGG(\{o \in M_i | k(o) = k_{min}(M_i)\}))$ and $(k_{max}(M_i), AGG(\{o \in M_i | k(o) = k_{max}(M_i)\}))$. send both to M1 (one if $k_{min}(M_i) = k_{max}(M_i)$
- » Reduce on M1: compute $AGG(\{w_j | k_j = k\})$

$$t \le m = \frac{n}{t} \Rightarrow O(tlog(t)) = O(\frac{n}{t}log(n))$$

Can help solve "word count" problem we saw earlier

Semi-Join

R, T two sets from the same domain. Each object has a key. SemiJoin(R,T)= $\{o \in R | \exists o' \in T. k(o) = k(o')\}$

Almost like GroupBy

Sort $S = R \cup T$ with terasort while saving the source group

MapShuffle - each M_i sends $k_{min}(T, M_i)$, $k_{max}(T, M_i)$ to all machines

Denote:

 $K(T, M_i)$ -the set of keys of T objects stored in M_i K_{border} the set from the previous MapShuffle Reduce: for every R-object o in M_i output if $k(o) \in K(T, M_i) \cup K_{border}$

MapShuffle – 2t pairs are sent to all the machine R objects in M are already sorted - Reduce – O(t+mlogm)= $O\left(\frac{n}{t}log(n)\right)$

Sliding aggregation

Sliding aggregation remainder

Before getting started: Sorting with perfect balance

Input: set S where |S|=n.

We assume n%t = 0 so m is an integer – if not pad S with dummy zeros.

What we want in the end:

In every machine M_i $(1 \le i \le t-1)$ there will be exactly m objects their rank range is: [(i-1)m+1,im]

Sounds very familiar to the ranking problem.

Solved by adding another round after the ranking algorithm: previous reduce : Each machine M_i computed rank(o) for each $o \in S_i$ MapShuffle: fore each $o \in S_i$ compute $j = \left\lceil \frac{rank(o)}{m} \right\rceil$ and send it to M_j Reduce: do nothing.

Minimal

Back to Sliding Aggregation

Solved with just one more round after sorting with perfect balance

We got: In every machine M_i $(1 \le i \le t-1)$ there will be exactly m objects their rank range is: [(i-1)m+1,im] Window(o) = [rank(o)-l+1,rank(o)]

if rank(o) = 6, l=3, window(o)= $\{4,5,6\}$

Therefore objects in the window of o are in machines M_{α} , $M_{\alpha+1}$, ..., M_{β} where $\alpha = \left\lceil \frac{rank(o)-l+1}{m} \right\rceil$, $\beta = \left\lceil \frac{rank(o)}{m} \right\rceil$

- » M_{β} is where o is currently is the calculation will be committed there
- » if $\alpha = \beta$ AGG(window(o)) can be computed locally on M_{β} not a problem.

So from now on we focus on $\alpha < \beta$

If $\alpha < \beta - 1$ then Window(o) includes all objects in machine $\alpha + 1, \dots, \beta - 1$ So if $W_i = AGG(\{o' \in M_i\})$ we will ensure that every machine knows W_1, \dots, W_t

Now to calculate $AGG(window(o))M_{\beta}$ only needs is $AGG(\{o' \in M_{\alpha} | o' \in Window(o)\})$ We call those objects in M_{α} "remotely relevant to M_{β} " If M_{α} stores at least one remotely relevant object to M_{β} , M_{α} is "pertinent" to M_{β}

Back to Sliding Aggregation

Lemma: every object is remotely relevant to at most 2 machines

Objects in machine M_i can be remotely relevant only to :

```
- machine i+1, if \ell \leq m

- machines i+\lfloor (\ell-1)/m \rfloor and i+1+\lfloor (\ell-1)/m \rfloor, otherwise.

(if the machine id >m ignore it)
```

New MapShuffle (Machine M_i):

- » Compute and send W_i to all machines
- » Send all objects in M_i to the machines to 1 / 2 machines