1 Neural ODE

1.1 Adjoint Method

Let M a manifold, and $x(t) \in C^1(\mathbb{R}, M)$ a trajectory, obeying

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = f(t, x(t); \theta),$$

and

$$x(t_0) = x_0$$

where $f \in C(\mathbb{R} \times M, T_M)$ parameterized by θ . For $\forall t_1 > t_0$, let

$$x_1 := x_0 + \int_{t_0}^{t_1} f(t, x(t); \theta) dt.$$

Then

Theorem 1. Let $C \in C^1(M, \mathbb{R})$, and $\forall x(t) \in C^1(\mathbb{R}, M)$ obeying dynamics $f(t, x; \theta) \in C^1(\mathbb{R} \times M, T_M)$ with initial value $x(t_0) = x_0$. Denote

$$L := \mathcal{C}\left(x_0 + \int_{t_0}^{t_1} f(\tau, x(\tau); \theta) d\tau\right).$$

Then we have, for $\forall t \in [t_0, t_1]$ given,

$$\frac{\partial L}{\partial x^{\alpha}(t)} = \frac{\partial L}{\partial x_{1}^{\alpha}} - \int_{t}^{t_{1}} \frac{\partial L}{\partial x^{\beta}(\tau)} \frac{\partial f^{\beta}}{\partial x^{\alpha}}(\tau, x(\tau); \theta) d\tau,$$

and

$$\frac{\partial L}{\partial \theta} = - \int_{t_0}^{t_1} \frac{\partial L}{\partial x^\beta(\tau)} \frac{\partial f^\beta}{\partial \theta}(\tau, x(\tau); \theta) \mathrm{d}\tau.$$

Proof. Suppose the x(t) is layerized, the L depends on the variables (inputs and model parameters) on the ith layer can be regarded as the loss of a new model by truncating the original at the ith layer, which we call $L_i(z_i)$.

$$\begin{split} \frac{\partial L_{i}}{\partial x_{i}^{\alpha}}(x_{i}) = & \frac{\partial L_{i+1}}{\partial x_{i+1}^{\beta}}(x_{i+1}) \frac{\partial x_{i+1}^{\beta}}{\partial x_{i}^{\alpha}}(x_{i}) \\ = & \frac{\partial L_{i+1}}{\partial x_{1}^{\beta}}(x_{i+1}) \frac{\partial}{\partial x_{i}^{\alpha}}(x_{i}^{\beta} + f^{\beta}(t_{i}, x_{i}; \theta) \Delta t) \\ = & \frac{\partial L_{i+1}}{\partial x_{i+1}^{\alpha}}(x_{i+1}) + \frac{\partial L_{i+1}}{\partial x_{i+1}^{\beta}}(x_{i+1}) \partial_{\alpha} f^{\beta}(t_{i}, x_{i}; \theta) \Delta t. \end{split}$$

This hints that

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial x^\alpha(t)} = -\frac{\partial L}{\partial x^\beta(t)}\frac{\partial f^\beta}{\partial x^\alpha(t)}(t,x(t);\theta).$$

The initial value is $\partial L/\partial x_1$. Thus

$$\frac{\partial L}{\partial x(t)} = \frac{\partial L}{\partial x_1} - \int_t^{t_1} \frac{\partial L}{\partial x^{\beta}(\tau)} \frac{\partial f^{\beta}}{\partial x^{\alpha}(\tau)} (\tau, x(\tau); \theta) d\tau.$$

Varing θ will vary the $L_i(x_i)$ from two aspects, the effect from $\partial L_{i+1}/\partial \theta$ and the Δx_{i+1} caused by $\Delta \theta$.

$$\begin{split} \frac{\partial L_{i}}{\partial \theta}(x_{i}) = & \frac{\partial L_{i+1}}{\partial \theta}(x_{i+1}) + \frac{\partial L_{i+1}}{\partial x_{i+1}} \frac{\partial x_{i+1}}{\partial \theta} \\ = & \frac{\partial L_{i+1}}{\partial \theta}(x_{i+1}) + \frac{\partial L_{i+1}}{\partial x_{i+1}} \frac{\partial}{\partial \theta}(x_{i}^{\beta} + f^{\beta}(t_{i}, x_{i}; \theta) \Delta t) \\ = & \frac{\partial L_{i+1}}{\partial \theta}(x_{i+1}) + \frac{\partial L_{i+1}}{\partial x_{i+1}} \frac{\partial f^{\beta}}{\partial \theta}(t_{i}, x_{i}; \theta) \Delta t. \end{split}$$

This hints that

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \theta} = -\frac{\partial L}{\partial x^{\alpha}(t)}\frac{\partial f^{\beta}}{\partial \theta}(t, x(t), \theta).$$

The initial value is 0 since $\mathcal{C}(.)$ is explicitly independent on θ . Thus

$$\frac{\partial L}{\partial \theta} = -\int_{t_0}^{t} \frac{\partial L}{\partial x^{\beta}(\tau)} \frac{\partial f^{\beta}}{\partial \theta} (\tau, x(\tau); \theta) d\tau.$$

2 Hopfield Network

2.1 Discrete-time Hopfield Network

Definition 2. [Discrete-time Hopfield Network]

Let $t \in \mathbb{N}$ and $x \in \{-1, +1\}^d$, $W \in \mathbb{R}^d \times \mathbb{R}^d$ with $W_{\alpha\beta} = W_{\beta\alpha}$ and $W_{\alpha\alpha} = 0$, and $b \in \mathbb{R}^d$. Define discrete-time dynamics

$$x^{\alpha}(t+1) = \operatorname{sign}(W^{\alpha}{}_{\beta}x^{\beta}(t) + b^{\alpha}).$$

Lemma 3. Let (x, W, b) a discrete-time Hopfield network. Define $\mathcal{E}(x) := -(1/2)W_{\alpha\beta}x^{\alpha}x^{\beta} - b_{\alpha}x^{\alpha}$. Then $\mathcal{E}(x(t+1)) - \mathcal{E}(x(t)) \leq 0$.

Proof. Consider async-updation of Hopfield network, that is, change the component at dimension $\hat{\alpha}$, i.e. $x'_{\hat{\alpha}} = \text{sign}[W_{\hat{\alpha}\beta} x^{\beta} + b_{\hat{\alpha}}]$, then

$$\begin{split} \mathcal{E}(x') - \mathcal{E}(x) &= -\frac{1}{2} W_{\alpha\beta} \, {x'}^{\alpha} {x'}^{\beta} - b_{\alpha} {x'}^{\alpha} + \frac{1}{2} W_{\alpha\beta} \, x^{\alpha} x^{\beta} + b_{\alpha} x^{\alpha} \\ &= -2 \, ({x'}^{\hat{\alpha}} - x^{\hat{\alpha}}) \, (W_{\hat{\alpha}\beta} \, x^{\beta} + b_{\hat{\alpha}}), \end{split}$$

which employs conditions $W_{\alpha\beta} = W_{\beta\alpha}$ and $W_{\alpha\alpha} = 0$. Next, we prove that, combining with $x'_{\hat{\alpha}} = \text{sign}[W_{\hat{\alpha}\beta} x^{\beta} + b_{\hat{\alpha}}]$, this implies $\mathcal{E}(x') - \mathcal{E}(x) \leq 0$.

If $(x'^{\hat{\alpha}} - x^{\hat{\alpha}}) > 0$, then $x'^{\hat{\alpha}} = 1$ and $x^{\hat{\alpha}} = -1$. Since $x'_{\hat{\alpha}} = \text{sign}[W_{\hat{\alpha}\beta} \, x^{\beta} + b_{\hat{\alpha}}]$, $W_{\hat{\alpha}\beta} \, x^{\beta} + b_{\hat{\alpha}} > 0$. Then $\mathcal{E}(x') - \mathcal{E}(x) < 0$. Contrarily, if $(x'^{\hat{\alpha}} - x^{\hat{\alpha}}) < 0$, then $x'^{\hat{\alpha}} = -1$ and $x^{\hat{\alpha}} = 1$, implying $W_{\hat{\alpha}\beta} \, x^{\beta} + b_{\hat{\alpha}} < 0$. Also $\mathcal{E}(x') - \mathcal{E}(x) < 0$. Otherwise, $\mathcal{E}(x') - \mathcal{E}(x) = 0$. So, we conclude $\mathcal{E}(x') - \mathcal{E}(x) \le 0$.

Theorem 4. Let (x, W, b) a discrete-time Hopfield network. Then $\exists t_{\star} < +\infty$, s.t. x(t+1) = x(t).

Proof. Since the states of the network are finite, the \mathcal{E} is lower bounded. Thus $\exists t_{\star} < +\infty$, s.t. x(t+1) = x(t).

2.2 Continuous-time Hopfield Network

Definition 5. [Continuous-time Hopfield Network]

Let $t \in \mathbb{N}$ and $x \in [-1, +1]^d$, $W \in \mathbb{R}^d \times \mathbb{R}^d$ with $W_{\alpha\beta} = W_{\beta\alpha}$ and $W_{\alpha\alpha} = 0$, and $b \in \mathbb{R}^d$. Define dynamics

$$\tau \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t}(t) = -x^{\alpha}(t) + f(W^{\alpha}{}_{\beta}x^{\beta}(t) + b^{\alpha}),$$

where τ a constant and $f: \mathbb{R} \to [-1, 1]$ being increasing. The $(x, W, b; \tau, f)$ is called a continuous-time Hopfield network.

Remark 6. With

$$\tau \frac{x^{\alpha}(t+\Delta t) - x^{\alpha}(t)}{\Delta t} = -x^{\alpha}(t) + f(W^{\alpha}_{\beta} x^{\beta}(t) + b^{\alpha})).$$

Setting $\Delta t = \tau$ gives and f(.) = sign(.) gives

$$x^{\alpha}(t+\tau) = \operatorname{sign}(W^{\alpha}_{\beta} x^{\beta}(t) + b^{\alpha}),$$

which is the same as the discrete-time Hopfield network.

Lemma 7. Let $(x, W, b; \tau, f)$ a continous-time Hopfield network. Define $a^{\alpha} := W^{\alpha}_{\beta} x^{\beta} + b^{\alpha}$ and $y^{\alpha} := f(a^{\alpha})$, then

$$\mathcal{E}(y) := -\frac{1}{2} W_{\alpha\beta} y^{\alpha} y^{\beta} - b_{\alpha} y^{\alpha} + \sum_{\alpha} \int_{-\infty}^{y^{\alpha}} f^{-1}(y^{\alpha}) dy^{\alpha}.$$

Then $\mathcal{E}(y(x(t+dt))) - \mathcal{E}(y(x(t))) \leq 0$.

Proof. The dynamics of a^{α} is

$$\begin{split} \tau \frac{\mathrm{d} a^{\alpha}}{\mathrm{d} t} = & \tau W^{\alpha}{}_{\beta} \frac{\mathrm{d} x^{\beta}}{\mathrm{d} t} \\ = & W^{\alpha}{}_{\beta} [-x^{\beta}(t) + f(a^{\beta})] \\ = & -(W^{\alpha}{}_{\beta} x^{\beta}(t) + b^{\alpha}) + b^{\alpha} + W^{\alpha}{}_{\beta} y^{\beta} \\ = & W^{\alpha}{}_{\beta} y^{\beta} + b^{\alpha} - a^{\alpha}. \end{split}$$

Since W is symmetric, we have $\partial \mathcal{E}/\partial y^{\alpha} = -W_{\alpha\beta}y^{\beta} - b_{\alpha} + f^{-1}(y_{\alpha})$. Then

$$\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} = \frac{\mathrm{d}y^{\alpha}}{\mathrm{d}t} (-W_{\alpha\beta}y^{\beta} - b_{\alpha} + f^{-1}(y_{\alpha}))$$

$$= \frac{\mathrm{d}y^{\alpha}}{\mathrm{d}t} (-W_{\alpha\beta}y^{\beta} - b_{\alpha} + a_{\alpha})$$

$$= -\frac{\mathrm{d}y^{\alpha}}{\mathrm{d}t} (W_{\alpha\beta}y^{\beta} + b_{\alpha} - a_{\alpha})$$

Notice that, the second term of rhs is exactly the dynamics of a_{α} , then

$$\begin{split} \frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} &= -\tau \frac{\mathrm{d}y^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}a_{\alpha}}{\mathrm{d}t} \\ &= -\tau \frac{\mathrm{d}y^{\alpha}}{\mathrm{d}a^{\alpha}} \left(\frac{\mathrm{d}a^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}a_{\alpha}}{\mathrm{d}t} \right) \\ &= -\tau f'(a^{\alpha}) \left(\frac{\mathrm{d}a^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}a_{\alpha}}{\mathrm{d}t} \right). \end{split}$$

Since f is increasing and $\tau > 0$, $d\mathcal{E}/dt \leq 0$.

Remark 8. The condition $W_{\alpha\alpha} = 0$ for $\forall \alpha$ is not essential for this lemma. Indeed, this condition is absent in the proof.

Theorem 9. Let $(x, W, b; \tau, f)$ a continous-time Hopfield network. Then for $\forall \epsilon > 0$, $\exists t_{\star} < +\infty$, s.t. $\|\mathrm{d}x/\mathrm{d}t\| < \epsilon$.

Proof. The function $E := \mathcal{E} \circ y$ is lower bounded since y, i.e. function $f: \mathbb{R} \to [-1, 1]$, is bounded. This E is a Lyapunov function for the continous-time Hopfield network.