# Existing and Attrite Customer Segmentation using Hybrid Model with Proposed Retention Strategies

## **Problem Statement:**

The problem of banks or credit card providers is to maintain profitability and good customer relationships. Thus, the key challenge faced by credit card providers is customer attrition. It refers to when a customer decides to close their accounts or reduce their card usage. These behaviors indicate loss to the business and further contribute to full account terminations. The factors that result in low engagement and a decline in customer activities or satisfaction need to be studied to mitigate potential loss. Credit card providers can discover the early signs or underlying factors contributing to customer attrition, such as high revolving balances, limited card benefits, and many more. Segmentation of customers into existing and attrite customers is required to tailor retention strategies to cater to these two segments. Furthermore, segmenting the customers based on their characteristics can help the business identify at-risk and high-value customers so that more resources can be allocated to the segments. Proactive measures are needed to retain them and to prevent future loss. Thus, personalized retention strategies could be made to improve the retention rate and increase card usage.

## Objectives:

- 1. To identify the characteristics of the attrite and existing customers by conducting customer profile segmentation.
- 2. To evaluate the effectiveness of customer segmentation using a hybrid model (clustering + decision tree) on segregating new customers into distinct segments.
- 3. To develop retention strategies for existing and about-to-churn customers by providing personalized intervention to improve retention.

## Scope:

The dataset of this assignment is from Kaggle with a total of 22 variables with 10127 rows. This study will not consider predicting the churning status of a customer, instead, the difference between attrited and existing customers will be analyzed by segmentation. The dataset includes a range of variables that include customer demographic, financial, and behavioral dimensions. Some of the demographic variables such as customer age, gender, and education level; financial and credit usage such as credit limit, and total\_revolving\_balance determine whether a higher utilization ratio or lower credit limit results in churn. The customer engagement and activity variables such as months inactive, total relationship count, and change in transactions help in detecting early signs of attrition. The study will explore the misclassification rate of the predictive models and seek to develop targeted retention strategies based on the segmentation results.

#### Link to the dataset:

 $\underline{https://www.kaggle.com/datasets/the devastator/predicting-credit-card-customer-attrition-with-m}\\$ 

## Methodology:

The process starts when the customers are segregated into two distinct groups which are existing customers and attrite customers. The data are loaded into SAS Enterprise Miner. After that, the number of clusters is determined with the clustering algorithm. The customers will be clustered into their representative clusters based on similar characteristics. The statistics of the existing and churned customers are explored using the StatsExplore. A data pipeline is built by connecting the clusters to a data partition (70% testing and 30% validation) and a decision tree. The decision tree is trained on the cluster labels and the features used for clustering. Verification of which clusters give the lowest misclassification rate on the training and validation data is performed. This is to examine the model effectiveness of clustering based on feature splits on the trained model in segmenting new data.

After the appropriate clusters are selected, data preparation and cleaning are performed. Some data preparation steps involved one-hot encoding by converting categorical variables to dummy variables and standardization of variables. Feature selection is also conducted to identify important features and reduce model complexity. Then, the misclassification rate after data cleaning is performed to check if the misclassification rate has improved.

Finally, the cluster profile segmentation examines the key difference between existing customer segments and churned customer segments. Actionable insights on customer retention strategies can be proposed based on the result of the analysis.

# SAS EM Process Flow Diagram

### For Existing Customer



#### For Churned Customer:



# Metadata

| Attrition_Flag II Customer_Age A Gender C Dependent_count h | Unique identifier for each customer. Indication of churning Age of customer. Gender of the customer. Number of dependents that the customer has. Education level of customer. Marital status of customer. Income category of customer. Type of card held by the customer has The duration (months) of the customer has | Integer (Numerical) Boolean Integer (Numerical) String (Categorical) Integer (Numerical) String (Categorical) String (Categorical) String (Categorical) String (Categorical) String (Categorical) |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Customer_Age A Gender C Dependent_count h                   | Age of customer. Gender of the customer. Number of dependents that the customer has. Education level of customer. Marital status of customer. Income category of customer. Type of card held by the customer.                                                                                                          | Integer (Numerical) String (Categorical) Integer (Numerical) String (Categorical) String (Categorical) String (Categorical)                                                                       |
| Gender C Dependent_count h                                  | Gender of the customer.  Number of dependents that the customer has.  Education level of customer.  Marital status of customer.  Income category of customer.  Type of card held by the customer.                                                                                                                      | String (Categorical) Integer (Numerical) String (Categorical) String (Categorical) String (Categorical)                                                                                           |
| Dependent_count N                                           | Number of dependents that the customer has.  Education level of customer.  Marital status of customer.  Income category of customer.  Type of card held by the customer.                                                                                                                                               | Integer (Numerical)  String (Categorical)  String (Categorical)  String (Categorical)                                                                                                             |
| h                                                           | has. Education level of customer. Marital status of customer. Income category of customer. Type of card held by the customer.                                                                                                                                                                                          | String (Categorical) String (Categorical) String (Categorical)                                                                                                                                    |
|                                                             | Education level of customer.  Marital status of customer.  Income category of customer.  Type of card held by the customer.                                                                                                                                                                                            | String (Categorical) String (Categorical)                                                                                                                                                         |
| Education Level E                                           | Marital status of customer. Income category of customer. Type of card held by the customer.                                                                                                                                                                                                                            | String (Categorical) String (Categorical)                                                                                                                                                         |
|                                                             | Income category of customer.  Type of card held by the customer.                                                                                                                                                                                                                                                       | String (Categorical)                                                                                                                                                                              |
|                                                             | Гуре of card held by the customer.                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                   |
|                                                             |                                                                                                                                                                                                                                                                                                                        | String (Categorical)                                                                                                                                                                              |
|                                                             | The duration (months) of the customer has I                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                   |
| b                                                           | been using a credit card since they first opened the account.                                                                                                                                                                                                                                                          | Integer (Numerical)                                                                                                                                                                               |
| Count                                                       | Total number of relationships the customer has with the credit card provider.                                                                                                                                                                                                                                          | Integer (Numerical)                                                                                                                                                                               |
| Months_Inactive_12   N                                      | Number of months the customer has been                                                                                                                                                                                                                                                                                 | Integer (Numerical)                                                                                                                                                                               |
| _mon in                                                     | inactive in the last twelve months.                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                   |
| Contacts_Count_12_ N                                        | Number of contacts the customer has had                                                                                                                                                                                                                                                                                | Integer (Numerical)                                                                                                                                                                               |
|                                                             | in the last twelve months.                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                   |
|                                                             | Credit limit of customer.                                                                                                                                                                                                                                                                                              | Integer (Numerical)                                                                                                                                                                               |
| 1 a                                                         | The total amount of credit card debt across all accounts carried from one billing period to the next.                                                                                                                                                                                                                  | Integer (Numerical)                                                                                                                                                                               |
| U— I — — I                                                  | Available credit a customer has on their revolving accounts                                                                                                                                                                                                                                                            | Integer (Numerical)                                                                                                                                                                               |
| _                                                           | The total amount changed from quarter 4 to quarter 1.                                                                                                                                                                                                                                                                  | Integer (Numerical)                                                                                                                                                                               |
| Total_Trans_Amt T                                           | Total transaction amount.                                                                                                                                                                                                                                                                                              | Integer (Numerical)                                                                                                                                                                               |
| Total_Trans_Ct 7                                            | Total transaction count.                                                                                                                                                                                                                                                                                               | Integer (Numerical)                                                                                                                                                                               |
| Total_Ct_Chng_Q4_ T                                         | The difference in the total number of                                                                                                                                                                                                                                                                                  | Integer (Numerical)                                                                                                                                                                               |
| _                                                           | transactions between Q4 and next year's Q1                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                   |
|                                                             | Average utilization ratio of customers.                                                                                                                                                                                                                                                                                | Integer (Numerical)                                                                                                                                                                               |
| _ , _                                                       | Naive Bayes classifier for attrition prediction                                                                                                                                                                                                                                                                        | Boolean                                                                                                                                                                                           |

| Name            | Use     | Report | Role     | Level    |
|-----------------|---------|--------|----------|----------|
| Attrition_Flag  | Default | No     | Rejected | Nominal  |
| Avg_Open_To_    | Default | No     | Input    | Interval |
| Avg_Utilization | Default | No     | Input    | Interval |
| CLIENTNUM       | Default | No     | ID       | Interval |
| Card_Category   | Default | No     | Input    | Nominal  |
| Contacts_Coun   | Default | No     | Input    | Interval |
| Credit_Limit    | Default | No     | Input    | Interval |
| Customer_Age    | Default | No     | Input    | Interval |
| Dependent_cou   | Default | No     | Input    | Interval |
| Education_Leve  | Default | No     | Input    | Nominal  |
| Gender          | Default | No     | Input    | Nominal  |
| Income_Catego   | Default | No     | Input    | Nominal  |
| Marital_Status  | Default | No     | Input    | Nominal  |
| Months_Inactiv  | Default | No     | Input    | Interval |
| Months_on_bo    |         | No     | Input    | Interval |
| Naive_Bayes_C   |         | No     | Rejected | Interval |
| Total_Amt_Chi   | Default | No     | Input    | Interval |
| Total_Ct_Chng   | Default | No     | Input    | Interval |
| Total_Relations | Default | No     | Input    | Interval |
| Total_Revolvin  | Default | No     | Input    | Interval |
| Total_Trans_A   | Default | No     | Input    | Interval |
| Total_Trans_C   | Default | No     | Input    | Interval |

There are a total of 5 categorical variables, 15 continuous variables, and 2 two variables with Boolean values (1/0). The figure above shows the attrition\_flag and Naïve\_Bayes\_Classifier variables have been omitted (Role: Rejected) since the focus of the study is segmentation. The scale levels such as intervals and nominal variables are depicted in the figure above.

# **Data Preparation**

# The Customer Profile Overview – Without Differentiation of Churned and Existing Customers

| Data  |                 |        | Number<br>of |         |                   | Mode       |                   | Mode2      |
|-------|-----------------|--------|--------------|---------|-------------------|------------|-------------------|------------|
| Role  | Variable Name   | Role   | Levels       | Missing | Mode              | Percentage | Mode2             | Percentage |
| TRAIN | Card_Category   | INPUT  | 4            | 0       | Blue              | 93.18      | Silver            | 5.48       |
| TRAIN | Education_Level | INPUT  | 7            | 0       | Graduate          | 30.89      | High School       | 19.88      |
| TRAIN | Gender          | INPUT  | 2            | 0       | F                 | 52.91      | M                 | 47.09      |
| TRAIN | Income_Category | INPUT  | 6            | 0       | Less than \$40K   | 35.16      | \$40K - \$60K     | 17.68      |
| TRAIN | Marital_Status  | INPUT  | 4            | 0       | Married           | 46.28      | Single            | 38.94      |
| TRAIN | Attrition_Flag  | TARGET | 2            | 0       | Existing Customer | 83.93      | Attrited Customer | 16.07      |

Based on the output, the categorical variables have no missing values. Thus, imputation is not required.

| 71 |                          |       |          |           |         |         |         |        |         |          |          |
|----|--------------------------|-------|----------|-----------|---------|---------|---------|--------|---------|----------|----------|
| 72 |                          |       |          | Standard  | Non     |         |         |        |         |          |          |
| 73 | Variable                 | Role  | Mean     | Deviation | Missing | Missing | Minimum | Median | Maximum | Skewness | Kurtosis |
| 74 |                          |       |          |           |         |         |         |        |         |          |          |
| 75 | Avg_Open_To_Buy          | INPUT | 7469.14  | 9090.685  | 10127   | 0       | 3       | 3474   | 34516   | 1.661697 | 1.798617 |
| 76 | Avg_Utilization_Ratio    | INPUT | 0.274894 | 0.275691  | 10127   | 0       | 0       | 0.176  | 0.999   | 0.718008 | -0.79497 |
| 77 | Contacts_Count_12_mon    | INPUT | 2.455317 | 1.106225  | 10127   | 0       | 0       | 2      | 6       | 0.011006 | 0.000863 |
| 78 | Credit_Limit             | INPUT | 8631.954 | 9088.777  | 10127   | 0       | 1438.3  | 4549   | 34516   | 1.666726 | 1.808989 |
| 79 | Customer_Age             | INPUT | 46.32596 | 8.016814  | 10127   | 0       | 26      | 46     | 73      | -0.03361 | -0.28862 |
| 80 | Dependent_count          | INPUT | 2.346203 | 1.298908  | 10127   | 0       | 0       | 2      | 5       | -0.02083 | -0.68302 |
| 81 | Months_Inactive_12_mon   | INPUT | 2.341167 | 1.010622  | 10127   | 0       | 0       | 2      | 6       | 0.633061 | 1.098523 |
| 82 | Months_on_book           | INPUT | 35.92841 | 7.986416  | 10127   | 0       | 13      | 36     | 56      | -0.10657 | 0.4001   |
| 83 | Total_Amt_Chng_Q4_Q1     | INPUT | 0.759941 | 0.219207  | 10127   | 0       | 0       | 0.736  | 3.397   | 1.732063 | 9.993501 |
| 84 | Total_Ct_Chng_Q4_Q1      | INPUT | 0.712222 | 0.238086  | 10127   | 0       | 0       | 0.702  | 3.714   | 2.064031 | 15.68929 |
| 85 | Total_Relationship_Count | INPUT | 3.81258  | 1.554408  | 10127   | 0       | 1       | 4      | 6       | -0.16245 | -1.00613 |
| 86 | Total_Revolving_Bal      | INPUT | 1162.814 | 814.9873  | 10127   | 0       | 0       | 1276   | 2517    | -0.14884 | -1.14599 |
| 87 | Total_Trans_Amt          | INPUT | 4404.086 | 3397.129  | 10127   | 0       | 510     | 3899   | 18484   | 2.041003 | 3.894023 |
| 88 | Total_Trans_Ct           | INPUT | 64.85869 | 23.47257  | 10127   | 0       | 10      | 67     | 139     | 0.153673 | -0.36716 |

There are no missing values reported in the numerical variables, thus imputation is not needed for the variables. The figure above shows that the total count change from Q4 to Q1 has a

skewness value of 2.06, and the Total Transaction Amount variable has a skewness value of 2.04. Both variables are highly skewed, but transformation using a log algorithm is needed as it might distort the clustering. However, some variables are naturally skewed for instance income, credit limit, or transaction amount. Skewness often reflects the underlying structure of the data though keeping the original scale can preserve its interpretability. However, the transformation of the variables might yield more distinguishable clusters by its distance measure in K-Means Clustering.

Furthermore, all the categorical need to be converted to dummy variables for clustering. This is because K-Means clustering works well with numerical data but struggles with categorical data, especially nominal variables. Thus, converting to dummy variables can allow the distance to be computed properly and treat the categories equally.

# EDA and Data Preparation:

#### **Existing Customer Profiles**

| Variable                 | Role  | Mean     | Standard<br>Deviation | Non<br>Missing | Missing | Minimum | Median | Maximum | Skewness | Kurtosis |
|--------------------------|-------|----------|-----------------------|----------------|---------|---------|--------|---------|----------|----------|
| Avg Open To Buy          | INPUT | 7470.273 | 9087.672              | 8500           | 0       | 15      | 3469   | 34516   | 1.635478 | 1.707629 |
| Avg Utilization Ratio    | INPUT | 0.296412 | 0.272568              | 8500           | 0       | 0       | 0.211  | 0.994   | 0.599613 | -0.94528 |
| Contacts Count 12 mon    | INPUT | 2.356353 | 1.081436              | 8500           | 0       | 0       | 2      | 5       | -0.09898 | -0.34297 |
| Credit_Limit             | INPUT | 8726.878 | 9084.97               | 8500           | 0       | 1438.3  | 4642   | 34516   | 1.642397 | 1.727134 |
| Customer_Age             | INPUT | 46.26212 | 8.081157              | 8500           | 0       | 26      | 46     | 73      | -0.03023 | -0.28881 |
| Dependent_count          | INPUT | 2.335412 | 1.303229              | 8500           | 0       | 0       | 2      | 5       | -0.00449 | -0.69199 |
| Months_Inactive_12_mon   | INPUT | 2.273765 | 1.016741              | 8500           | 0       | 0       | 2      | 6       | 0.726324 | 1.17041  |
| Months_on_book           | INPUT | 35.88059 | 8.02181               | 8500           | 0       | 13      | 36     | 56      | -0.10348 | 0.39133  |
| Total_Amt_Chng_Q4_Q1     | INPUT | 0.77251  | 0.217783              | 8500           | 0       | 0.256   | 0.743  | 3.397   | 2.144442 | 11.69811 |
| Total_Ct_Chng_Q4_Q1      | INPUT | 0.742434 | 0.228054              | 8500           | 0       | 0.028   | 0.721  | 3.714   | 2.65745  | 20.34624 |
| Total_Relationship_Count | INPUT | 3.914588 | 1.528949              | 8500           | 0       | 1       | 4      | 6       | -0.23839 | -0.92975 |
| Total_Revolving_Bal      | INPUT | 1256.604 | 757.7454              | 8500           | 0       | 0       | 1364   | 2517    | -0.34518 | -0.82814 |
| Total_Trans_Amt          | INPUT | 4654.656 | 3512.773              | 8500           | 0       | 816     | 4100   | 18484   | 1.995948 | 3.482775 |
| Total_Trans_Ct           | INPUT | 68.67259 | 22.91901              | 8500           | 0       | 11      | 71     | 139     | -0.00364 | -0.20165 |
|                          |       |          |                       |                |         |         |        |         |          |          |

Based on the output above, the Total Transaction Amount Change (Q4 vs Q1) and Total Count Change from (Q4 vs Q1) variables have skewness values of 2.14 and 2.66 respectively. Thus, standardizing the variables is required. A comparison of the misclassification rate between log-transformed variables and non-normalized variables is conducted.

EDA - Univariate Analysis

| Variable Name              | Exploration Results (Graphical or statistical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Interpretations                                                                                                                                                                                           |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Customer_Age               | 300 About 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | From the distribution diagram, the existing customers are mostly from 35 to 40 years old. The mean value is 46.32, the median value is 46 and the skewness value is -0.0336 which is normally distributed |
| Dependent_count            | Apparent of the state of the st | The dependent count ranges from 0 to 5. Most of the existing customers have 2 dependents. Most existing customer has 2 dependents, and it is normally distributed.                                        |
| Months_Inactive _12_months | 200 do 12 do Mario Mario 12 mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The month_inactive_12_months variable values range from 0 to 6 and it is normally distributed.                                                                                                            |
| Total_Relations hip_Count  | 200 July 20 12 Tail Relationship Control 44 48 52 56 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The total relationship counts variable shows the range from 2 to 6 relationships, which majority of them have 4 to 6 relationships with providers.                                                        |
| Card_Category              | Total Relationship, Court  Total Relationship, C | Most of the existing customers have blue cards, and very few of them have gold or platinum cards.                                                                                                         |







#### **Churned Customer Profiles**

#### Churned Customer Statistic

| 40<br>41                                     | Data                                                                                  |                                                                                                                                |                                                                         | Number<br>of                                                                                                       |                                                                                                                     |                                                              | Mode                                 |                                             | Мо                                                     | de2                                                   |                                                                                                                      |                                                                                                                      |
|----------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|---------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 42<br>43                                     | Role                                                                                  | Variable Name                                                                                                                  | Role                                                                    | Levels                                                                                                             | Missing                                                                                                             | Mode                                                         | Percentage                           | Mode2                                       | Perc                                                   | entage                                                |                                                                                                                      |                                                                                                                      |
| 44                                           | TRAIN                                                                                 | Card Category                                                                                                                  | INPUT                                                                   | 4                                                                                                                  | 0                                                                                                                   | Blue                                                         | 93.36                                | Silver                                      | 5                                                      | .04                                                   |                                                                                                                      |                                                                                                                      |
| 45                                           | TRAIN                                                                                 | Education Level                                                                                                                | INPUT                                                                   | 7                                                                                                                  | 0                                                                                                                   | Graduate                                                     | 29.93                                | High School                                 | 18                                                     | .81                                                   |                                                                                                                      |                                                                                                                      |
| 46                                           | TRAIN                                                                                 | Gender                                                                                                                         | INPUT                                                                   | 2                                                                                                                  | 0                                                                                                                   | F                                                            | 57.16                                | М                                           | 42                                                     | .84                                                   |                                                                                                                      |                                                                                                                      |
| 47                                           | TRAIN                                                                                 | Income Category                                                                                                                | INPUT                                                                   | 6                                                                                                                  | 0                                                                                                                   | Less than \$40K                                              | 37.62                                | \$40K - \$60K                               | 16                                                     | .66                                                   |                                                                                                                      |                                                                                                                      |
| 48                                           | TRAIN                                                                                 | Marital Status                                                                                                                 | INPUT                                                                   | 4                                                                                                                  | 0                                                                                                                   | Married                                                      | 43.58                                | Single                                      | 41                                                     | .06                                                   |                                                                                                                      |                                                                                                                      |
| 49                                           |                                                                                       | _                                                                                                                              |                                                                         |                                                                                                                    |                                                                                                                     |                                                              |                                      |                                             |                                                        |                                                       |                                                                                                                      |                                                                                                                      |
| 50                                           |                                                                                       |                                                                                                                                |                                                                         |                                                                                                                    |                                                                                                                     |                                                              |                                      |                                             |                                                        |                                                       |                                                                                                                      |                                                                                                                      |
| 51                                           |                                                                                       |                                                                                                                                |                                                                         |                                                                                                                    |                                                                                                                     |                                                              |                                      |                                             |                                                        |                                                       |                                                                                                                      |                                                                                                                      |
| 52                                           | Interva                                                                               | l Variable Summary                                                                                                             | Statistic                                                               | s                                                                                                                  |                                                                                                                     |                                                              |                                      |                                             |                                                        |                                                       |                                                                                                                      |                                                                                                                      |
| 53                                           | (maximu                                                                               | m 500 observations                                                                                                             | printed)                                                                |                                                                                                                    |                                                                                                                     |                                                              |                                      |                                             |                                                        |                                                       |                                                                                                                      |                                                                                                                      |
| 54                                           |                                                                                       |                                                                                                                                |                                                                         |                                                                                                                    |                                                                                                                     |                                                              |                                      |                                             |                                                        |                                                       |                                                                                                                      |                                                                                                                      |
| 55                                           | Data Ro                                                                               | le=TRAIN                                                                                                                       |                                                                         |                                                                                                                    |                                                                                                                     |                                                              |                                      |                                             |                                                        |                                                       |                                                                                                                      |                                                                                                                      |
| 56                                           |                                                                                       |                                                                                                                                |                                                                         |                                                                                                                    |                                                                                                                     |                                                              |                                      |                                             |                                                        |                                                       |                                                                                                                      |                                                                                                                      |
| 57                                           |                                                                                       |                                                                                                                                |                                                                         |                                                                                                                    | Standard                                                                                                            | Non                                                          |                                      |                                             |                                                        |                                                       |                                                                                                                      |                                                                                                                      |
| 58                                           | Variabl                                                                               | e                                                                                                                              | Role                                                                    | Mean                                                                                                               | Deviation                                                                                                           | n Missing                                                    | Missing                              | Minimum M                                   | edian                                                  | Maximum                                               | Skewness                                                                                                             | Kurtosis                                                                                                             |
| 59                                           |                                                                                       |                                                                                                                                |                                                                         |                                                                                                                    |                                                                                                                     |                                                              |                                      |                                             |                                                        |                                                       |                                                                                                                      |                                                                                                                      |
| 60                                           |                                                                                       | n_To_Buy                                                                                                                       | INPUT                                                                   | 7463.216                                                                                                           | 9109.208                                                                                                            | 1627                                                         | 0                                    | 3                                           | 3488                                                   | 34516                                                 | 1.79944                                                                                                              | 2.280736                                                                                                             |
| 61                                           | Avg_Uti                                                                               | lization Ratio                                                                                                                 |                                                                         |                                                                                                                    |                                                                                                                     |                                                              |                                      |                                             |                                                        |                                                       |                                                                                                                      |                                                                                                                      |
| 62                                           |                                                                                       | _                                                                                                                              | INPUT                                                                   | 0.162475                                                                                                           | 0.264458                                                                                                            | 1627                                                         | 0                                    | 0                                           | 0                                                      | 0.999                                                 | 1.63015                                                                                                              | 1.423134                                                                                                             |
|                                              |                                                                                       | s_Count_12_mon                                                                                                                 | INPUT                                                                   | 2.972342                                                                                                           | 1.090537                                                                                                            | 1627                                                         | 0                                    | 0                                           | 3                                                      | 6                                                     | 0.450797                                                                                                             | 0.672372                                                                                                             |
| 63                                           | Credit_                                                                               | s_Count_12_mon<br>Limit                                                                                                        | INPUT<br>INPUT                                                          | 2.972342<br>8136.039                                                                                               | 1.090537<br>9095.334                                                                                                | 1627<br>1627                                                 | 0<br>0                               | 0<br>1438.3                                 | 3<br>4178                                              | 6<br>34516                                            | 0.450797<br>1.804428                                                                                                 | 0.672372<br>2.294341                                                                                                 |
| 63<br>64                                     | Credit_<br>Custome                                                                    | s_Count_12_mon<br>Limit<br>r_Age                                                                                               | INPUT<br>INPUT<br>INPUT                                                 | 2.972342<br>8136.039<br>46.6595                                                                                    | 1.090537<br>9095.334<br>7.665652                                                                                    | 1627<br>1627<br>1627                                         | 0<br>0<br>0                          | 0<br>1438.3<br>26                           | 3<br>4178<br>47                                        | 6<br>34516<br>68                                      | 0.450797<br>1.804428<br>-0.03975                                                                                     | 0.672372<br>2.294341<br>-0.31268                                                                                     |
| 63<br>64<br>65                               | Credit_<br>Custome<br>Depende                                                         | s_Count_12_mon<br>Limit<br>r_Age<br>nt_count                                                                                   | INPUT<br>INPUT<br>INPUT<br>INPUT                                        | 2.972342<br>8136.039<br>46.6595<br>2.402581                                                                        | 1.090537<br>9095.334<br>7.665652<br>1.27501                                                                         | 1627<br>1627<br>1627<br>1627                                 | 0<br>0<br>0                          | 0<br>1438.3<br>26<br>0                      | 3<br>4178<br>47<br>2                                   | 6<br>34516<br>68<br>5                                 | 0.450797<br>1.804428<br>-0.03975<br>-0.10624                                                                         | 0.672372<br>2.294341<br>-0.31268<br>-0.61894                                                                         |
| 63<br>64<br>65<br>66                         | Credit_<br>Custome<br>Depender<br>Months_                                             | s_Count_12_mon<br>Limit<br>r_Age<br>nt_count<br>Inactive_12_mon                                                                | INPUT<br>INPUT<br>INPUT<br>INPUT<br>INPUT                               | 2.972342<br>8136.039<br>46.6595<br>2.402581<br>2.693301                                                            | 1.090537<br>9095.334<br>7.665652<br>1.27501<br>0.899623                                                             | 1627<br>1627<br>1627<br>1627<br>1627                         | 0<br>0<br>0<br>0                     | 0<br>1438.3<br>26<br>0                      | 3<br>4178<br>47<br>2<br>3                              | 6<br>34516<br>68<br>5<br>6                            | 0.450797<br>1.804428<br>-0.03975<br>-0.10624<br>0.377828                                                             | 0.672372<br>2.294341<br>-0.31268<br>-0.61894<br>1.981655                                                             |
| 63<br>64<br>65<br>66                         | Credit_<br>Custome<br>Depender<br>Months_<br>Months_                                  | s_Count_12_mon<br>Limit<br>r_Age<br>nt_count<br>Inactive_12_mon<br>on_book                                                     | INPUT INPUT INPUT INPUT INPUT INPUT                                     | 2.972342<br>8136.039<br>46.6595<br>2.402581<br>2.693301<br>36.17824                                                | 1.090537<br>9095.334<br>7.665652<br>1.27501<br>0.899623<br>7.796548                                                 | 1627<br>1627<br>1627<br>1627<br>1627<br>1627                 | 0<br>0<br>0<br>0<br>0                | 0<br>1438.3<br>26<br>0<br>0                 | 3<br>4178<br>47<br>2<br>3                              | 6<br>34516<br>68<br>5<br>6<br>56                      | 0.450797<br>1.804428<br>-0.03975<br>-0.10624<br>0.377828<br>-0.11867                                                 | 0.672372<br>2.294341<br>-0.31268<br>-0.61894<br>1.981655<br>0.448711                                                 |
| 63<br>64<br>65<br>66<br>67<br>68             | Credit_<br>Custome<br>Depender<br>Months_<br>Months_<br>Total_A                       | s_Count_12_mon Limit r_Age nt_count Inactive_12_mon on_book mt_Chng_Q4_Q1                                                      | INPUT INPUT INPUT INPUT INPUT INPUT INPUT                               | 2.972342<br>8136.039<br>46.6595<br>2.402581<br>2.693301<br>36.17824<br>0.694277                                    | 1.090537<br>9095.334<br>7.665652<br>1.27501<br>0.899623<br>7.796548<br>0.214924                                     | 1627<br>1627<br>1627<br>1627<br>1627<br>1627<br>1627         | 0<br>0<br>0<br>0<br>0                | 0<br>1438.3<br>26<br>0<br>0<br>13           | 3<br>4178<br>47<br>2<br>3<br>36<br>0.701               | 6<br>34516<br>68<br>5<br>6<br>56                      | 0.450797<br>1.804428<br>-0.03975<br>-0.10624<br>0.377828<br>-0.11867<br>-0.21522                                     | 0.672372<br>2.294341<br>-0.31268<br>-0.61894<br>1.981655<br>0.448711<br>-0.09221                                     |
| 63<br>64<br>65<br>66<br>67<br>68             | Credit_<br>Custome<br>Depender<br>Months_<br>Total_Ar                                 | s_Count_12_mon Limit r_Age nt_count Inactive_12_mon on_book mt_Chng_04_01 t_Chng_04_01                                         | INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT                   | 2.972342<br>8136.039<br>46.6595<br>2.402581<br>2.693301<br>36.17824<br>0.694277<br>0.554386                        | 1.090537<br>9095.334<br>7.665652<br>1.27501<br>0.899623<br>7.796548<br>0.214924<br>0.226854                         | 1627<br>1627<br>1627<br>1627<br>1627<br>1627<br>1627<br>1627 | 0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>1438.3<br>26<br>0<br>0<br>13<br>0      | 3<br>4178<br>47<br>2<br>3<br>36<br>0.701<br>0.531      | 6<br>34516<br>68<br>5<br>6<br>56<br>1.492<br>2.5      | 0.450797<br>1.804428<br>-0.03975<br>-0.10624<br>0.377828<br>-0.11867<br>-0.21522<br>1.050356                         | 0.672372<br>2.294341<br>-0.31268<br>-0.61894<br>1.981655<br>0.448711<br>-0.09221<br>5.306908                         |
| 63<br>64<br>65<br>66<br>67<br>68<br>69       | Credit_<br>Custome<br>Depender<br>Months_<br>Total_A<br>Total_C<br>Total_R            | s_Count_12_mon Limit r_Age nt_count Inactive_12_mon on_book mt_Chmg_04_01 t_Chmg_04_01 elationship_Count                       | INPUT             | 2.972342<br>8136.039<br>46.6595<br>2.402581<br>2.693301<br>36.17824<br>0.694277<br>0.554386<br>3.279656            | 1.090537<br>9095.334<br>7.665652<br>1.27501<br>0.899623<br>7.796548<br>0.214924<br>0.226854<br>1.577782             | 1627<br>1627<br>1627<br>1627<br>1627<br>1627<br>1627<br>1627 | 0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>1438.3<br>26<br>0<br>0<br>13<br>0      | 3<br>4178<br>47<br>2<br>3<br>36<br>0.701<br>0.531<br>3 | 6<br>34516<br>68<br>5<br>6<br>56<br>1.492<br>2.5<br>6 | 0.450797<br>1.804428<br>-0.03975<br>-0.10624<br>0.377828<br>-0.11867<br>-0.21522<br>1.050356<br>0.265179             | 0.672372<br>2.294341<br>-0.31268<br>-0.61894<br>1.981655<br>0.448711<br>-0.09221<br>5.306908<br>-1.01283             |
| 63<br>64<br>65<br>66<br>67<br>68<br>69<br>70 | Credit_<br>Custome<br>Depender<br>Months_<br>Total_A<br>Total_C<br>Total_R<br>Total_R | s_Count_12_mon Limit r_Age nt_count Inactive_12_mon on_book mt_Chmg_04_01 t_Chmg_04_01 elationship_Count evolving_Bal          | INPUT | 2.972342<br>8136.039<br>46.6595<br>2.402581<br>2.693301<br>36.17824<br>0.694277<br>0.554386<br>3.279656<br>672.823 | 1.090537<br>9095.334<br>7.665652<br>1.27501<br>0.899623<br>7.796548<br>0.214924<br>0.226854<br>1.577782<br>921.3856 | 1627<br>1627<br>1627<br>1627<br>1627<br>1627<br>1627<br>1627 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1438.3<br>26<br>0<br>0<br>13<br>0<br>0 | 3 4178 47 2 3 36 0.701 0.531 3 0                       | 6 34516 68 5 6 1.492 2.5 6 2517                       | 0.450797<br>1.804428<br>-0.03975<br>-0.10624<br>0.377828<br>-0.11867<br>-0.21522<br>1.050356<br>0.265179<br>1.024055 | 0.672372<br>2.294341<br>-0.31268<br>-0.61894<br>1.981655<br>0.448711<br>-0.09221<br>5.306908<br>-1.01283<br>-0.53447 |
| 63<br>64<br>65<br>66<br>67<br>68<br>69       | Credit_<br>Custome<br>Depender<br>Months_<br>Total_A<br>Total_C<br>Total_R<br>Total_R | s_Count_12_mon Limit r_Age nt_count Inactive_12_mon on_book mt_Chng_04_01 t_Chng_04_01 elationship_Count evolving_Bal rans_Amt | INPUT             | 2.972342<br>8136.039<br>46.6595<br>2.402581<br>2.693301<br>36.17824<br>0.694277<br>0.554386<br>3.279656            | 1.090537<br>9095.334<br>7.665652<br>1.27501<br>0.899623<br>7.796548<br>0.214924<br>0.226854<br>1.577782             | 1627<br>1627<br>1627<br>1627<br>1627<br>1627<br>1627<br>1627 | 0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>1438.3<br>26<br>0<br>0<br>13<br>0      | 3<br>4178<br>47<br>2<br>3<br>36<br>0.701<br>0.531<br>3 | 6<br>34516<br>68<br>5<br>6<br>56<br>1.492<br>2.5<br>6 | 0.450797<br>1.804428<br>-0.03975<br>-0.10624<br>0.377828<br>-0.11867<br>-0.21522<br>1.050356<br>0.265179             | 0.672372<br>2.294341<br>-0.31268<br>-0.61894<br>1.981655<br>0.448711<br>-0.09221<br>5.306908<br>-1.01283             |

Based on the figure above, the skewness values of the variables such as average open to buy, average utilization ratio, credit limit, and total revolving balance are between 1.60 to 1.80. These variables are moderately skewed. There are total of 1627 churned customers with no missing values.

#### **EDA** -For Churned Customers











#### Findings based on EDA

The churned customer has a higher age, and higher months of inactive, the total revolving balance is half the revolving balance of existing customers. Furthermore, the churned customers have more females than existing customers. The total transaction amount is also significantly lower than that of the existing customers. The churned customers also have lower credit limits and average utilization ratios. The total transaction changes and total amount difference (Q4 to Q1) are also lower than that of existing customers.

For the subsequent steps, the number of clusters will be determined by comparison of different cluster numbers that yield the lowest misclassification rate of validation data. Next, the appropriate cluster number is chosen for data preparation – conversion of categorical to dummy variable and standardization for the skewed variables.

### Data Preparation & Model Construction, Optimization, and Validation.

#### Step 1: Determination of Number of Clusters

#### Data partition

The data is split into 70% of the training data and 30% of the validation data shown in the figure below to verify the misclassification rate using the Decision Tree.

| Data Set Allocations |      |
|----------------------|------|
| -Training            | 70.0 |
| -Validation          | 30.0 |
| Test                 | 0.0  |

Table 1: Misclassification Rates of Training and Validation Datasets for 3, 4 and 5 Clusters

| Cluster Number | Misclassification Rate |
|----------------|------------------------|
| 3 clusters     | Training: 0.0735       |
|                | Validation: 0.087      |
| 4 clusters     | Training: 0.082        |
|                | Validation: 0.082      |
| 5 clusters     | Training: 0.076        |
|                | Validation: 0.070      |

The testing of the performance of the clusters in segmenting customers into their respective groups based on cluster features. The focus is to find the model with the lowest misclassification rate to prove that the clustering model can separate customers into meaningful segments. Based on the results above, 5 clusters show the lowest misclassification rate of the training and validation dataset. This indicates that the cluster can assign the customers into distinct groups well for training and validation data. Cluster 3 shows the misclassification rate of validation is higher than that of training. This shows that the decision tree can cluster the segments well for the data it was trained on, but it is struggling to separate the clusters effectively on new data. For cluster 5, we can observe that the training misclassification rate is slightly higher than that of validation. This shows that the decision tree is underfitting. This might be due to the decision tree being too simple, or the training data being noisy.

#### Number of Clusters: 5



From the output above, the cluster segment 2 and segment 3 are slightly closer to each other. While other cluster segments such as clusters 1, 4, and 5 have clearly defined distances.

| 27 | Frequencies: | _SEGMENT_ |           |            |
|----|--------------|-----------|-----------|------------|
| 28 |              |           |           |            |
| 29 |              |           |           | Percent of |
| 30 | Segment      | Segment   | Frequency | Total      |
| 31 | Variable     | Value     | Count     | Frequency  |
| 32 |              |           |           |            |
| 33 | _segment_    | 3         | 5204      | 61.2235    |
| 34 | _segment_    | 1         | 1441      | 16.9529    |
| 35 | _segment_    | 5         | 1092      | 12.8471    |
| 36 | _segment_    | 2         | 748       | 8.8000     |
| 37 | _SEGMENT_    | 4         | 15        | 0.1765     |

From the figure above, the 5 clusters have an unequal distribution of customers. This is because cluster number 4 only has 15 customers.



The figure above shows clearly that segment 1 has a higher average open-to-buy amount than the overall population. This means that this segment has a higher available credit on their revolving accounts. Furthermore, segment 1 has a lower average utilization ratio than the population, which means they use a lesser amount than their credit limit.

Segment 3 has a lower credit limit, total transaction amount, and average open-to-buy than the overall population. Segment 5 has a higher total transaction amount, and transaction count but a lower total relationship count than the overall population.

For segment 2, the cluster has a higher difference in total transaction count and amount between Q4 to Q1 but lower total transaction amount and count.

| 34 | Variable Importance      |       |           |           |            |
|----|--------------------------|-------|-----------|-----------|------------|
| 35 |                          |       |           |           |            |
| 36 |                          |       | Number of | Number of |            |
| 37 |                          |       | Splitting | Surrogate |            |
| 38 | Variable Name            | Label | Rules     | Rules     | Importance |
| 39 |                          |       |           |           |            |
| 40 | Credit_Limit             |       | 3         | 6         | 1.00000    |
| 41 | Avg_Open_To_Buy          |       | 3         | 4         | 0.99939    |
| 42 | Total_Trans_Ct           |       | 0         | 7         | 0.97241    |
| 43 | Total_Trans_Amt          |       | 5         | 4         | 0.79088    |
| 44 | Card_Category            |       | 1         | 3         | 0.73362    |
| 45 | Avg_Utilization_Ratio    |       | 0         | 4         | 0.73176    |
| 46 | Income_Category          |       | 1         | 2         | 0.71913    |
| 47 | Total_Ct_Chng_Q4_Q1      |       | 3         | 6         | 0.51622    |
| 48 | Total_Amt_Chng_Q4_Q1     |       | 2         | 3         | 0.46522    |
| 49 | Customer_Age             |       | 0         | 5         | 0.44682    |
| 50 | Total_Relationship_Count |       | 0         | 3         | 0.23295    |
| 51 | Total_Revolving_Bal      |       | 0         | 2         | 0.16248    |
| 52 | Months_Inactive_12_mon   |       | 0         | 3         | 0.13600    |
| 53 | Gender                   |       | 0         | 1         | 0.09976    |
| 54 | Marital_Status           |       | 0         | 1         | 0.08319    |
| 55 | Months_on_book           |       | 0         | 2         | 0.06824    |
|    |                          |       |           |           |            |

In the feature importance, the top 5 variables that contribute to this cluster are credit limit, average open to buy, total transaction count, total transaction amount, and card category which has a feature importance value of between 0.73 to 1.00.

#### Number of Clusters: 4



From the diagram above, the clusters have a clear distance from each other with no overlapping.

| _SEGMENT_ | _1       | _2       | _3       | <u> </u> |
|-----------|----------|----------|----------|----------|
| 1         | 0        | 22960.49 | 26400.94 | 13244.67 |
| 2         | 22960.49 |          | 4378.554 |          |
| 3         | 26400.94 |          | 0        | 39386.97 |
| 4         | 13244.67 | 36124.86 | 39386.97 | 0        |

The distance amongst the clusters is very consistent and is clearly defined.

| 40 |              |           |           |            |
|----|--------------|-----------|-----------|------------|
| 27 | Frequencies: | _SEGMENT_ |           |            |
| 28 |              |           |           |            |
| 29 |              |           |           | Percent of |
| 30 | Segment      | Segment   | Frequency | Total      |
| 31 | Variable     | Value     | Count     | Frequency  |
| 32 |              |           |           |            |
| 33 | _segment_    | 3         | 5593      | 65.8000    |
| 34 | _SEGMENT_    | 1         | 1822      | 21.4353    |
| 35 | _SEGMENT_    | 2         | 1070      | 12.5882    |
| 36 | _SEGMENT_    | 4         | 15        | 0.1765     |
|    |              |           |           |            |

The figure above shows that segment number 3 is 65% of the total population, followed by segment number 1 with 12% of the population, segment 2 (12%), and segment 4 only has 15 customers. This is because this segment might be outliers that require further cleaning.

| Variable Importance              |       |                                 |                                 |            |
|----------------------------------|-------|---------------------------------|---------------------------------|------------|
| Variable Name                    | Label | Number of<br>Splitting<br>Rules | Number of<br>Surrogate<br>Rules | Importance |
| Avg_Open_To_Buy                  |       | 3                               | 7                               | 1.00000    |
| Credit_Limit                     |       | 2                               | 7                               | 0.89940    |
| Total_Trans_Ct                   |       | 1                               | 9                               | 0.83779    |
| Card_Category                    |       | 1                               | 3                               | 0.79915    |
| Avg_Utilization_Ratio            |       | 0                               | 5                               | 0.79799    |
| Income_Category                  |       | 1                               | 3                               | 0.79719    |
| Total_Trans_Amt                  |       | 6                               | 6                               | 0.55359    |
| Total_Ct_Chng_Q4_Q1              |       | 2                               | 4                               | 0.53546    |
| Customer_Age                     |       | 0                               | 8                               | 0.50525    |
| Total_Amt_Chng_Q4_Q1             |       | 2                               | 2                               | 0.49693    |
| Total_Relationship_Count         |       | 0                               | 4                               | 0.20440    |
| Months_Inactive_12_mon           |       | 0                               | 2                               | 0.18961    |
| Gender                           |       | 1                               | 2                               | 0.18827    |
| Naive_Bayes_Classifier_Attrition |       | 0                               | 3                               | 0.14801    |
| Months_on_book                   |       | 0                               | 2                               | 0.13608    |
| Total_Revolving_Bal              |       | 0                               | 1                               | 0.11283    |
| Dependent_count                  |       | 0                               | 1                               | 0.06739    |

The figure above shows the variable importance. The top 5 variables that contribute to this cluster are average open to buy, credit limit, total transaction count, card category, and average utilization ratio. The feature importance values of these variables are between 0.80 to 1.00. The feature importance range of cluster 4 is slightly better than cluster 5.



From the figure above, it is evident that Segment 3 has a lower credit limit and average open-to-buy amount as compared to the general customers. Segment 1 has a higher cluster average open-to-buy and credit limit amount, but a lower average utilization ratio as compared to the overall population. Segment 2 has a higher difference in total transaction amount between Q4 and Q1, and a higher total transaction count (Q4 vs Q1). However, they have lower total transaction amounts and counts compared to the overall population. In addition, Segment 4 has too few data to analyze the differences. We can also discover that categorical variables distribution between the segments are hard to analyze, thus one-hot encoding is needed.

#### Insights Derived from Cluster 4 and Cluster 5

Based on all the information, we can conclude that Cluster 4 and Cluster 5 are not very dissimilar to each other. For cluster 5, segments number 2 and 3 are close to each other and can be grouped. It might also be prone to overlap. Furthermore, credit limit and average open-to-buy are the top two features that contribute significantly to these clusters. The subsequent steps are to perform feature selection and data cleaning of clusters 4 and 5 to observe any improvements in the misclassification rate. Alternatively, we can observe that cluster 4 provides consistent misclassification rates on training and validation data. It also provides a clear cluster plot with no overlapping and a distance table that allows interpretability of analysis. Cluster number 4 is more preferred.

#### Data Preparation & Cleaning For the Clusters

#### Feature selection of Cluster 4

Misclassification Rate for cluster 4 (with feature selection) by removing variables dependent\_count, gender, months\_on\_booking, and total\_revolving as their feature importance values are less than 0.2. The misclassification rate of the training and validation datasets are **0.051** respectively. This shows that the misclassification rate has decreased by 37.80% compared to the previous without feature selections.

#### Converting categorical to dummy variables

| Source | Method   | Variable Name       | Formula | Label                           |
|--------|----------|---------------------|---------|---------------------------------|
| nput   | Original | Card Category       |         |                                 |
| nput   | Original | Education Level     |         |                                 |
| nput   | Original | Gender              |         |                                 |
| nput   | Original | Income Category     |         |                                 |
| nput   | Original | Marital Status      |         |                                 |
| Output | Computed | TI Card Category1   | Dummy   | Card Category:Blue              |
| Output | Computed | TI Card Category2   | Dummy   | Card Category:Gold              |
| Output | Computed | TI Card Category3   | Dummy   | Card Category:Platinum          |
| Output | Computed | TI Card Category4   | Dummy   | Card Category:Silver            |
| Output | Computed | TI Education Level1 | Dummy   | Education Level:College         |
| Output | Computed | TI Education Level2 | Dummy   | Education Level:Doctorate       |
| Output | Computed | TI Education Level3 | Dummy   | Education Level:Graduate        |
| Output | Computed | TI Education Level4 | Dummy   | Education Level:High School     |
| Output | Computed | TI Education Level5 | Dummy   | Education Level:Post-Graduate   |
| Output | Computed | TI Education Level6 | Dummy   | Education Level:Uneducated      |
| Output | Computed | TI Education Level7 | Dummy   | Education Level:Unknown         |
| Output | Computed | TI Gender1          | Dummy   | Gender:F                        |
| Output | Computed | TI Gender2          | Dummy   | Gender:M                        |
| Output | Computed | TI Income Category1 | Dummy   | Income Category:\$120K +        |
| Output | Computed | TI Income Category2 | Dummy   | Income Category:\$40K - \$60K   |
| Output | Computed | TI Income Category3 | Dummy   | Income Category:\$60K - \$80K   |
| Output | Computed | TI Income Category4 | Dummy   | Income Category:\$80K - \$120K  |
| Output | Computed | TI Income Category5 | Dummy   | Income Category:Less than \$40K |
| Output | Computed | TI Income Category6 | Dummy   | Income Category:Unknown         |
| Output | Computed | TI Marital Status1  | Dummy   | Marital Status:Divorced         |
| Output | Computed | TI Marital Status2  | Dummy   | Marital Status:Married          |
| Output | Computed | TI Marital Status3  | Dummy   | Marital Status:Single           |
| Dutput | Computed | TI Marital Status4  | Dummy   | Marital Status:Unknown          |

All of the categorical variables are converted to dummy variables as shown in the diagram above.

# Checking The Cluster Distance and Distribution After Converting to Categorical Variables



After categorical variables conversion, the cluster now has a clearer distance within the segments.

Table 2: Misclassification Rates of Training & Validation Datasets of Cluster Number 4

| Misclassification Rate of Training Dataset   | 0.0049 |
|----------------------------------------------|--------|
| Misclassification Rate of Validation Dataset | 0.0047 |

The misclassification rate of training and validation datasets has also reduced significantly compared to cluster 4 without dummy variable conversion.

| 34 | Variable Importance      |                                 |           |           |            |
|----|--------------------------|---------------------------------|-----------|-----------|------------|
| 35 |                          |                                 |           |           |            |
| 36 |                          |                                 | Number of | Number of |            |
| 37 |                          |                                 | Splitting | Surrogate |            |
| 38 | Variable Name            | Label                           | Rules     | Rules     | Importance |
| 39 |                          |                                 |           |           |            |
| 40 | TI_Gender2               | Gender:M                        | 0         | 1         | 1.00000    |
| 41 | TI_Gender1               | Gender: F                       | 1         | 0         | 1.00000    |
| 42 | TI_Income_Category5      | Income_Category:Less than \$40K | 1         | 1         | 0.90040    |
| 43 | Credit_Limit             |                                 | 1         | 3         | 0.85938    |
| 44 | Avg_Open_To_Buy          |                                 | 1         | 3         | 0.85826    |
| 45 | TI_Income_Category4      | Income_Category:\$80K - \$120K  | 0         | 1         | 0.82193    |
| 46 | Customer_Age             |                                 | 0         | 1         | 0.20317    |
| 47 | TI_Card_Category2        | Card_Category:Gold              | 1         | 0         | 0.19435    |
| 48 | Avg_Utilization_Ratio    |                                 | 1         | 1         | 0.17155    |
| 49 | TI_Card_Categoryl        | Card_Category:Blue              | 1         | 1         | 0.15098    |
| 50 | TI_Card_Category4        | Card_Category:Silver            | 0         | 2         | 0.15098    |
| 51 | Total_Revolving_Bal      |                                 | 0         | 1         | 0.13752    |
| 52 | TI_Income_Category2      | Income_Category:\$40K - \$60K   | 0         | 1         | 0.08917    |
| 53 | TI_Income_Category6      | Income_Category:Unknown         | 0         | 1         | 0.08917    |
| 54 | Total_Relationship_Count |                                 | 0         | 1         | 0.07953    |
| 55 | TI_Card_Category3        | Card_Category:Platinum          | 1         | 0         | 0.07764    |

The top five features now that affect the cluster assignments are Gender (M and F), Income Category (Less than \$40K), Credit Limit, and Average open-to-buy. These features can be further investigated in the analysis later.

Data Preparation: Standardization of Skewed Variables

| Name            | Method  | Number of Bins | Role  | Level    |
|-----------------|---------|----------------|-------|----------|
| Avg_Open_To_    | Default | 4              | Input | Interval |
| Avg_Utilization | Default | 4              | Input | Interval |
| Card_Category   | Default | 4              | Input | Nominal  |
| Contacts_Coun   | Default | 4              | Input | Interval |
| Credit_Limit    | Default | 4              | Input | Interval |
| Customer_Age    | Default | 4              | Input | Interval |
| Dependent_cou   | Default | 4              | Input | Interval |
| Education_Leve  | Default | 4              | Input | Nominal  |
| Gender          | Default | 4              | Input | Nominal  |
| Income_Catego   | Default | 4              | Input | Nominal  |
| Marital_Status  | Default | 4              | Input | Nominal  |
| Months_Inactiv  | Default | 4              | Input | Interval |
| Months_on_bo    | Default | 4              | Input | Interval |
| Total_Amt_Chr   | Log     | 4              | Input | Interval |
| Total_Ct_Chng   | Log     | 4              | Input | Interval |
| Total_Relations | Default | 4              | Input | Interval |
| Total_Revolvin  | Default | 4              | Input | Interval |
| Total_Trans_A   | Default | 4              | Input | Interval |
| Total_Trans_C   | Default | 4              | Input | Interval |

The figure above shows the total amount change (Q4 vs Q1) and the total amount change (Q4 vs Q1) has been standardized using log-transformed.

<u>Table 3: Cluster 4 (without feature selection) with Log Transform and Categorical to</u> Dummy Variables

| Misclassification Rate of Training Dataset   | 0.0024 |
|----------------------------------------------|--------|
| Misclassification Rate of Validation Dataset | 0.0020 |

After standardization, the misclassification rate was further reduced by half compared to the misclassification rate without standardization. The misclassification rate of the training dataset is slightly higher than that of the validation dataset. However, the values are approximate to each other, with only 0.2% of misclassification.

<u>Table 4: Cluster 4 (feature selection) with Log Transform and Categorical to Dummy</u> Variables

| Misclassification Rate of Training Dataset   | 0.0028 |
|----------------------------------------------|--------|
| Misclassification Rate of Validation Dataset | 0.0051 |

After feature selection, the validation misclassification rate is higher than that of the training dataset. Thus, overfitting might occur. It can be observed that the misclassification rates after feature selection become higher. Thus, this feature selection is not feasible.

<u>Table 5: Cluster 5 (without feature selection) with Log Transform and Categorical to</u> <u>Dummy Variables</u>

| Misclassification Rate of Training Dataset   | 0.0404 |
|----------------------------------------------|--------|
| Misclassification Rate of Validation Dataset | 0.0372 |

The misclassification rates of training and validation datasets of cluster 5 after data cleaning are significantly higher compared to cluster 4, which is not appropriate for the clustering assignment and is not chosen.

Therefore, we can conclude that cluster 4 (Table 3) without feature selection is selected due to its lower misclassification rate compared to cluster 4 with feature selection. The next step is to observe the visualization of customer segment profiles.

#### Customer Segment Profiles of Cluster 4 (without Feature Selection + data cleaned)



The figure above shows that each segment has a clear and distinctive distance.



There is a great distance between each segment.

| 27 | Frequencies: | _SEGMENT_ |           |            |
|----|--------------|-----------|-----------|------------|
| 28 |              |           |           |            |
| 29 |              |           |           | Percent of |
| 30 | Segment      | Segment   | Frequency | Total      |
| 31 | Variable     | Value     | Count     | Frequency  |
| 32 |              |           |           |            |
| 33 | _SEGMENT_    | 2         | 4447      | 52.3176    |
| 34 | _SEGMENT_    | 4         | 3943      | 46.3882    |
| 35 | _SEGMENT_    | _OTHER_   | 110       | 1.2941     |

The figure above shows that Segment 2 has the highest frequency with a total of 4447 customers, followed by Segment 4 with 3943 customers. Segments 1 and 3 are merged together as others, with a total of 110 customers.



The customer profiles show that segment 2 has an equal amount of male and female representation, the income category of this segment is mainly less than \$40K as it is overrepresented in this segment compared to other income categories. Segment 2 customers have lower credit limits and average open-to-buy compared to the overall population. The average utilization ratio of segment 2 is also slightly higher than the overall population.

For segment 4, the customers are mostly male with females slightly underrepresented in this segment. This segment focuses on the higher income category with income ranges between 60K to 80K, 80K to 120K, and more than 120K. Segment 4 has a higher credit limit with a higher average open-to-buy, which means that this segment has higher credit available and remains unused on average. This segment has a lower average utilization ratio.

The other segments are mainly focused on the customers who hold gold-card which is very unusual for the overall population.



The figure above shows the features importance of each segment. The top variables that contribute to Segment 2 are gender, income category, credit limit, average open-to-buy, average utilization ratio, and total transactions. Segment 4 features importance is same as the Segment 2. While Segment 3 is only looking at the customers who have gold cards.

# Attrite customer

<u>Table 6: Determine the Number of Clusters of churned customers by Checking Misclassification Rates</u>

| Cluster Number | Misclassification Rate |  |  |
|----------------|------------------------|--|--|
| Cluster 4      | Training: 0.097        |  |  |
|                | Validation: 0.130      |  |  |
| Cluster 3      | Training: 0.016        |  |  |
|                | Validation: 0.024      |  |  |
| Cluster 2      | Training: 0.013        |  |  |
|                | Validation: 0.025      |  |  |

Based on the table above, cluster number 3 is selected for churned customer segmentation as it produces the lowest misclassification rates of the validation dataset compared to cluster 4 and cluster 2. This indicates that Cluster 3 provides better generalizability in distinguishing between customer segments and the cluster is selected.

However, the result above has shown that all clusters misclassification rate of validation data is higher than training data. This indicates higher misclassification of the predicted cluster assigned compared to the actual cluster of the validation dataset. However, the values are close to 0, thus it is still a meaningful segmentation.

Customer Segmentation Profile of Cluster Number - 3

| Variable Importance      |       |                                 |                                 |            |
|--------------------------|-------|---------------------------------|---------------------------------|------------|
| Variable Name            | Label | Number of<br>Splitting<br>Rules | Number of<br>Surrogate<br>Rules | T          |
| Agriable Mame            | raner | Rules                           | Rules                           | Importance |
| Total_Amt_Chng_Q4_Q1     |       | 0                               | 9                               | 1.00000    |
| Card_Category            |       | 1                               | 3                               | 0.97794    |
| Total_Trans_Amt          |       | 4                               | 2                               | 0.88070    |
| Total_Trans_Ct           |       | 1                               | 5                               | 0.86095    |
| Total_Ct_Chng_Q4_Q1      |       | 2                               | 5                               | 0.81171    |
| Customer_Age             |       | 0                               | 3                               | 0.78423    |
| Avg_Open_To_Buy          |       | 3                               | 7                               | 0.67694    |
| Credit_Limit             |       | 2                               | 5                               | 0.66392    |
| Avg_Utilization_Ratio    |       | 0                               | 5                               | 0.24142    |
| Contacts_Count_12_mon    |       | 0                               | 2                               | 0.15560    |
| Gender                   |       | 1                               | 1                               | 0.15193    |
| Months_on_book           |       | 0                               | 1                               | 0.14895    |
| Total_Relationship_Count |       | 0                               | 1                               | 0.13895    |
| Income_Category          |       | 0                               | 1                               | 0.11554    |
| Months_Inactive_12_mon   |       | 0                               | 1                               | 0.08741    |
| Dependent_count          |       | 0                               | 1                               | 0.08381    |
|                          |       |                                 |                                 |            |

The figure above shows the feature importance of Cluster 3 with the top 5 variables being the total amount of change (Q4 vs Q1), Card Category, Total Transaction Amount, Total Transaction Count and Change (Q4 vs Q1).

| 30 |              |           |           |            |
|----|--------------|-----------|-----------|------------|
| 27 | Frequencies: | _SEGMENT_ |           |            |
| 28 |              |           |           |            |
| 29 |              |           |           | Percent of |
| 30 | Segment      | Segment   | Frequency | Total      |
| 31 | Variable     | Value     | Count     | Frequency  |
| 32 |              |           |           |            |
| 33 | _SEGMENT_    | 1         | 1223      | 75.1690    |
| 34 | _SEGMENT_    | 3         | 399       | 24.5237    |
| 35 | SEGMENT      | 2         | 5         | 0.3073     |

Based on the Figure above, segment 1 has the highest percentage of customers followed by segment 3 and segment 2 only has 5 customers.



The figure above shows for cluster 3, segment 1 customers have lower total transaction amounts, credit limit, average open-to-buy, and lower transaction count which might lead to churning. These early signs need to be detected. For segment 1, the customers mostly have higher transaction amounts, total transaction count, higher average open-to-buy, and credit limits. The reason of churning needs to be investigated further, which might be due to card category, income category or gender. The other segments have too few data to analyze the differences.

#### Data Cleaning (convert categorical to dummy) of Churned Customers

**Table 1: Misclassification Rates of Training and Validation Datasets for 3 Clusters** 

| Number of Clusters | Misclassification rate |
|--------------------|------------------------|
| 3                  | Training: 0.0035       |
|                    | Validation: 0.0041     |

Based on the output above, the misclassification rate has significantly decreased by 82.91% from 0.024 to 0.0041 after converting the categorical to a dummy variable.



The distance within the segments is clearly defined and consistent with each other's.

| 20 |              |           |           |            |
|----|--------------|-----------|-----------|------------|
| 27 | Frequencies: | _segment_ |           |            |
| 28 |              |           |           |            |
| 29 |              |           |           | Percent of |
| 30 | Segment      | Segment   | Frequency | Total      |
| 31 | Variable     | Value     | Count     | Frequency  |
| 32 |              |           |           |            |
| 33 | _SEGMENT_    | 2         | 1511      | 92.8703    |
| 34 | _SEGMENT_    | 1         | 111       | 6.8224     |
| 35 | _SEGMENT_    | 3         | 5         | 0.3073     |
|    |              |           |           |            |

Based on the Figure above, segment 2 has the highest percentage of customers (92.08%) followed by segment 3 and segment 2 only 5 customers.

| 34 | Variable Importance  |                        |           |           |            |
|----|----------------------|------------------------|-----------|-----------|------------|
| 35 |                      |                        |           |           |            |
| 36 |                      |                        | Number of | Number of |            |
| 37 |                      |                        | Splitting | Surrogate |            |
| 38 | Variable Name        | Label                  | Rules     | Rules     | Importance |
| 39 |                      |                        |           |           |            |
| 40 | TI_Card_Categoryl    | Card_Category:Blue     | 1         | 0         | 1.00000    |
| 41 | TI_Card_Category4    | Card_Category:Silver   | 0         | 1         | 0.99351    |
| 42 | Credit_Limit         |                        | 0         | 2         | 0.98272    |
| 43 | Avg_Open_To_Buy      |                        | 1         | 1         | 0.98211    |
| 44 | TI_Card_Category2    | Card_Category:Gold     | 0         | 1         | 0.97439    |
| 45 | Total_Amt_Chng_Q4_Q1 |                        | 0         | 1         | 0.96805    |
| 46 | Total_Trans_Ct       |                        | 1         | 1         | 0.26981    |
| 47 | Total_Ct_Chng_Q4_Q1  |                        | 0         | 1         | 0.23249    |
| 48 | Total_Trans_Amt      |                        | 0         | 1         | 0.23249    |
| 49 | TI_Card_Category3    | Card_Category:Platinum | 1         | 0         | 0.22112    |
| 50 | Dependent_count      |                        | 0         | 1         | 0.21991    |

The features that contribute to this segment are card category (blue, silver and gold), credit limit, average open-to-buy, and total transaction amount change (Q4 vs Q1).



Based on the figure above, segment 2 churned customers have more blue cards compared to the overall population. Not many of the customers in Segment 2 hold silver or gold cards. The credit limit, average open-to-buy, credit utilization ratio, and total transaction are like the overall population. For segment 1, most of the customers have more credit limits and higher average open-to-buy (available credit). Segment 1 has a lower average credit utilization ratio, but a higher total transaction amount compared to segment 2. Furthermore, Segment 1 customers mostly hold a silver card and gold card.

## Discussion of Model Outcomes.

#### Retention Strategies of Existing Customers

For the existing customers, the hybrid model can classify the existing clusters into meaningful clusters based on their feature split and distinct segment properties. The misclassification ratio is very low -0.2%. For existing customers, the credit card providers or the bank can target the lower income category (less than 40K), lower credit limit but a higher utilization ratio. This means they have used the card more with a limited credit limit. Thus, the bank should also adopt budget management tools to gauge their spending and provide some incentive to lower their credit utilization. The bank can also increase their credit usage by boosting their credit limit based on adequate usage to reduce their revolving balance (decrease the burden of debt). This group generally has higher financial risks with might fail to repay the loans. The bank should leverage the interest on balance to generate revenue. However, the banks might face some risk if this segment's financials are not stable.

Segment 4 encompasses high-income males with higher credit limits and an average amount that remains unused (open-to-buy) with a lower utilization ratio. The bank could increase retention of this customer with higher premium cards (gold or platinum) based on their spending habits. More financial benefits could be given for this segment such as cash-back rewards, travel packages or promotions, or high-end financial products. Credit card providers can introduce wealth management or investment options for this segment with low-risk high rewards to further engage them in the business. They are the high-value customers whom the bank can offer upselling and cross-selling to improve revenue. However, the customers do not fully utilize the available credits leads to lower interest payments which restricts revenue. The bank should have tiered reward bonuses or spending bonuses targeted to this segment for cash-back reward in higher transaction count and amount.

The bank can target customers who hold gold cards by offering gold card exclusive benefits or dividends. Upgrading the gold card to a platinum card and exclusive benefits can potentially drive more engagement within this segment. The bank should prevent the customers from these segments from leaving especially if the competitor offers better rewards or services. This is because these customers are more sensitive to benefits than to interest rates.

## Retention Strategies of Churned Customers

The characteristics of churned customers are significantly different from existing customers. This is because the attrite customers are higher-aged, remain inactive for a longer period, and have lower revolving balances and transaction amounts compared to non-churners. They are clustered into three groups with distinct features, the hybrid model has achieved a misclassification rate of 0.4%, which is approximately 0.

One of the target segments of churned customers is mainly holding blue cards, having similar financial behaviours as the overall population. Thus, the bank should craft an incentive to increase their credit spending. For instance, re-engagement activities such as cash-back rewards, credit cards with low interest rates, and many more encourage at-risk customers to stay. Another churned customer segment has a higher credit limit and more available credit but a lower utilization ratio than the overall population. The bank needs to encourage more credit

usage for this segment. Thus, banks should have rewards targeted to them if they spend more. They can utilize their available credit by participating in large purchase offers or low-interest financing. Furthermore, targeted promotions can also be given to silver or gold cardholders.

The banks might have revenue loss due to the customer's dissatisfaction with the services, lack of engagement, or better rewards from competitors. Furthermore, the lower credit utilization and transaction amount lead to the churning of customers. Therefore, the banks can think of having lower interest rates or repayment fees for this segment. Bonus rewards for new card usage can be introduced with a balance transfer offer targeted to the churned customers. The bank should detect the inactive period, low revolving balance, and reduced transactions of customers in real-time by constructing an early prevention or detection system. To increase credit utilization, the bank should have encouraged an increased credit limit program for churners who have good credit behaviour so that they can return as customers. A temporary reduction in interest rates on the revolving balance should be emphasized so that they can considered the benefits before churning.

In addition, the churned customers are mostly women. Thus, the bank should have an engagement program targeted to mothers such as a family reward program. Besides that, the bank should also promote credit card usage based on seasonal trends for the churned customers as their total amount differences (Q4 vs Q1) are lower. In addition, banks can have personalized financial offers, explaining the key benefits of their products to their customers with new updates or special deals in the future (SuperOffice, 2024). The card providers need to have social listening to empathize with their customer's needs and desires so that the customer experience can be enhanced. Defining the high-risk customers is important by providing customer support services, allowing the customer to halt their credit card subscription, and promoting discounted pricing to about-to-churned customers (SuperOffice, 2024). Online marketing or email marketing is crucial to attract customers to stay by offering bundles of special offers to them. Thus, the competitive advantage of the credit card providers or banks needs to be emphasized, and can also consider having longer subscription models instead of month-to-month contracts of credit card subscriptions (SuperOffice, 2024).

# Conclusion

The study has achieved the objectives of performing cluster profile segmentation of existing and churned customers. The existing customers are segmented into 4 clusters while churners have 3 clusters with different characteristics. The cluster segmentation is very effective as the predictive model — Decision Tree manages to classify the training and validation data into distinct clusters. Banks can improve customer retention by re-engaging churned customers through retention campaigns, incentivizing credit utilization, and offering cash-back rewards. For existing customers, identifying income levels and spending behaviors will help maintain loyalty and drive engagement. These targeted strategies can reduce churn rates and boost the overall profitability of credit card providers or banks.

# References

SuperOffice. (2024). Customer Churn: 12 Strategies to Stop Churn Right Now! Superoffice.com. https://www.superoffice.com/blog/reduce-customer-churn/