Clase 5 (B) - Agrupamiento de textos

Marcelo Errecalde^{1,2}

¹Universidad Nacional de San Luis, Argentina ²Universidad Nacional de la Patagonia Austral, Argentina ³

Curso: Minería de Textos Facultad de Informática - Universidad Nacional de La Plata 23 al 27 de Septiembre de 2019

Resumen

- Agrupamiento de documentos
 - ¿Qué es el Análisis de Clusters?
 - Tipos de Clustering
 - Medidas de Similitud
 - Validación de los agrupamientos

Definición

Análisis de Clusters

Proceso que divide los datos en grupos (clusters) que tienen un significado, que son útiles, o ambos.

- Grupos significativos ⇒ Los grupos deberían capturar la estructura natural de los datos.
- Grupos útiles ⇒ Los grupos sirven de base para otras técnicas de análisis y procesamiento de datos.

Análisis de Clusters

Grupos significativos

- Estos grupos mejoran nuestro entendimiento de los datos y las clases subyacentes.
- Rol fundamental en Biología, Recuperación de Información, Meteorología, Psicología y Medicina y Negocios.

Grupos útiles

- Hincapié en encontrar prototipos de clusters (objetos de datos representativos de los otros objetos del cluster).
- Rol fundamental en resumir grandes conjuntos de datos, compresión de imágen y sonido y búsqueda NN eficiente.

Agrupamiento de documentos

¿Qué es el Análisis de Clusters?

Definición (más operativa)

Análisis de Clusters

Encontrar grupos de objetos tal que los de un mismo grupo sean similares (o estén relacionados) y sean diferentes (o estén poco relacionados) con los objetos de los otros grupos.

- También conocida como clasificación no supervisada.
- Areas conectadas (pero no iguales) al Análisis de Cluster

Definición (más operativa)

Análisis de Clusters

Encontrar grupos de objetos tal que los de un mismo grupo sean similares (o estén relacionados) y sean diferentes (o estén poco relacionados) con los objetos de los otros grupos.

Definición (más operativa)

Análisis de Clusters

Encontrar grupos de objetos tal que los de un mismo grupo sean similares (o estén relacionados) y sean diferentes (o estén poco relacionados) con los objetos de los otros grupos.

Definición (más operativa)

Análisis de Clusters

Encontrar grupos de objetos tal que los de un mismo grupo sean similares (o estén relacionados) y sean diferentes (o estén poco relacionados) con los objetos de los otros grupos.

Definición (más operativa)

Análisis de Clusters

Encontrar grupos de objetos tal que los de un mismo grupo sean similares (o estén relacionados) y sean diferentes (o estén poco relacionados) con los objetos de los otros grupos.

Agrupamiento de documentos

¿Qué es el Análisis de Clusters?

La noción de cluster es ambigua....

¿Cuántos Clusters?

La noción de cluster es ambigua....

La noción de cluster es ambigua....

La noción de cluster es ambigua....

Tipos de clusterings (agrupamientos)

Un clustering (agrupamiento) es un conjunto de clusters.

Principal distinción entre tipos de agrupamientos.

Clustering Particional

Los objetos de datos se dividen en subconjuntos (clusters) no solapados, tal que cada objeto pertenece a exactamente un subconjunto.

Clustering Jerárquico

Conjunto de clusters anidados organizados como un árbol jerárquico.

Clustering Particional

Puntos Originales

Clustering Particional

Clustering Jerárqico

Otras distinciones de los agrupamientos

Exclusivo vs no exclusivo (NE)

En agrupamientos NE los objetos de datos pueden pertenecer a múltiples clusters.

Difuso vs no difuso

Agrupamiento difuso:

- Un objeto pertenece a cada cluster con un peso $w_i \in [0, 1]$
- Pesos deben sumar 1.
- Clustering probabilístico tiene características similares.

Parcial vs completo

En agrupamientos parciales algunos puntos pueden quedar sin clasificar.

Medidas de Similitud de Documentos

- Componente fundamental de cualquier algoritmo de clustering.
- Si $d_1, d_2 \in \mathcal{D}$ son (representaciones de) documentos
- Una función de similitud φ , es un mapping

$$\varphi: \mathcal{D} \times \mathcal{D} \mapsto [0,1]$$

tal que:

- valores de $\varphi(d_1, d_2)$ cercanos a 1, indican que los documentos d_1 y d_2 son similares.
- 2 valores de $\varphi(d_1, d_2)$ cercanos a 0, indican poca similitud entre d_1 y d_2 .

Medidas de Similitud basadas en Conjuntos

Idea

Dos documentos $d_i, d_j \in \mathcal{D}$ son representados por los conjuntos D_i, D_j de sus términos. Las similitudes se basan en distintas ponderaciones de la intersección de conjuntos.

Ejemplos:

- Coeficiente de Jaccard: $\varphi_{jacc}(D_i, D_j) = \frac{|D_i \cap D_j|}{|D_i \cup D_j|}$.
- Coeficiente de "dice": $\varphi_{dice}(D_i, D_j) = \frac{|D_i \cap D_j|}{|D_i| + |D_j|}$.
- Coeficiente de solapamiento: $\varphi_{over}(D_i, D_j) = \frac{|D_i \cap D_j|}{\max(|D_i|, |D_j|)}$.

Medidas de Similitud Geométricas

Idea

Dos documentos $d_i, d_j \in \mathcal{D}$ son comparados usando sus representaciones vector $\overrightarrow{d_i}, \overrightarrow{d_j}$, y su similitud se estima en base a la amplitud del ángulo formado por ambos vectores.

Ejemplo:

La función de similitud coseno $\varphi_{cos}: \Re^m \times \Re^m \mapsto [0,1]$

$$arphi_{cos}(\overrightarrow{d_i},\overrightarrow{d_j}) = rac{\langle \overrightarrow{d_i},\overrightarrow{d_j}
angle}{||\overrightarrow{d_i}||\cdot||\overrightarrow{d_j}||}$$

Agrupamiento de documentos

Validación de los agrupamientos

Validación de los grupos (o agrupamientos)

Evaluación (o validación) de grupos

Parte fundamental aunque poco explorada del análisis de grupos (cluster analysis).

Incluye

- Determinar la tendencia de clustering.
- Determinar el número correcto de clusters.
- Evaluar cuan bien los resultados del análisis de clusters (AC) se ajustan a los datos sin referencia a información externa.
- Comparar los resultados del AC con resultados conocidos externamente.
- Comparar dos conjuntos de clusters para determinar cual es mejor.

Agrupamiento de documentos

Validación de los agrupamientos

Medidas de Validación de agrupamientos (MVA)

Las MVA's se dividen en 3 grandes grupos

Internas (o no supervisadas)

Miden las "bondades" de la estructura de un agrupamiento sin recurrir a ningún tipo de información externa. Estas medidas (o índices) suelen ser referenciados como internas dado que sólo usan información presente en el conjunto de datos.

Externas (o supervisadas)

Miden el grado de concordancia entre la estructura de los grupos descubiertos y alguna estructura externa al conjunto de datos (de ahí su nombre).

Relativas

Compara agrupamientos o grupos particulares usando alguna de las dos medidas previas.

Medidas de Validez Internas (MVI)

Las diferentes MVIs intentan identificar propiedades estructurales específicas de los agrupamientos como cohesión, separación, densidad o alguna combinación de estas propiedades.

- La familia de índices de Dunn
- el índice de Davies-Bouldin
- el coeficiente de Silueta (Silhouette Coefficient)
- la Medida-Λ
- ullet la Medida de Densidad Esperada ar
 ho

MVIs, cohesión y separación

Las MVIs, suelen expresar la validez de un cluster global de K clusters como:

$$validez_{total} = \sum_{i=1}^{K} w_i validez(C_i)$$

y la función de *validez* suele ser alguna forma de cohesion, separación o una combinación de éstas.

Cohesión

Mide cuan estrechamente relacionados están los objetos en un cluster.

Separación

Mide cuán distintos (bien-separados) está un cluster de otro.

Cohesión y separación basada en grafos

$$cohesion(C_i) = \sum_{x \in C_i, y \in C_i} proximidad(x, y)$$
 $separacion(C_i, C_j) = \sum_{x \in C_i, y \in C_i} proximidad(x, y)$

la función de *proximidad* puede ser similitud, dis-similitud (o distancia) o una función simple de estas cantidades.

Cohesión y separación basada en prototipos

$$cohesion(C_i) = \sum_{x \in C_i} proximidad(x, c_i)$$
 $separacion(C_i, C_j) = proximidad(c_i, c_j)$ $separacion(C_i) = proximidad(c_i, c)$

Una MVI informativa: el Coeficiente de Silueta

Componente fundamental de esta medida: fórmula para determinar el coeficiente de silueta de un objeto arbitrario *i*:

$$s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$$

with -1 ≤ s(i) ≤ 1.

- a(i) es la distancia promedio de i a los restantes objetos de su cluster.
- b(i) es la distancia promedio de i a todos los objetos del cluster más cercano.
- Se busca que s(i) sea tan cercano a 1 como sea posible

Una MVI informativa: el Coeficiente de Silueta

Combina ideas de cohesión y separación, pero para puntos individuales, grupos y agrupamientos

Puedo calcular la silueta de:

- un grupo: es el promedio de los coeficientes de silueta de sus objetos.
- un agrupamiento: es el promedio de los coeficientes de silueta de sus grupos.

Medidas de Validez Externas (MVE)

Las MVEs evaluan un agrupamiento usando las medidas clásicas para evaluar un modelo de clasificación (categorización supervisada)

- Entropía
- Pureza
- Precisión y Recall
- Medida F (F-measure)