

ME524
Proval - 2009
Prof. Ronaldo Dias

Sabe-se da teoria de probabilidades que se X e Y são variáveis aleatórias independentes, tais que $X \sim Gama(a, \beta)$ e $Y \sim Gama(b, \beta)$, então $\frac{X}{X+Y}$ tem distribuição Beta(a,b).

Qual é o valor de P(Y=0,X=0) e porque esta pergunta é de relevância a este problema

(b) Assuma que voce possa obter somente variáveis aleatórias uniformes em (0,1), construa um algoritmo para gerar 100 pontos de uma Beta(a,b).

Use o Método de Monte Carlo para Integrais e obtenha um algoritmo para calcular $\int_0^\infty 2xe^{-2x}dx$.

Desenvolva um algoritmo que simule variáveis aleatórias com densidade $f(x) = (\theta/2)e^{-\theta|x|}$, com $-\infty < x < \infty$.

Sejam U_1, \ldots, U_n i.i.d. $\mathcal{U}(0,1)$. Defina $Y_n = \max(U_1, \ldots, U_n)$ e $Y_1 = \min(U_1, \ldots, U_n)$. Gere m pontos de Y_n e Y_1 pelo algoritmo de inversão.

Use o algoritmo de rejeição para simular pontos de uma v.a. que tem densidade $f(x) = \frac{2}{\pi}\sqrt{1-x^2}$ se $-1 \le x \le 1$