

Notes		

Notes			

Notes		

7 Course objectives
Primary goals:
 Understand how big data sets are analysed in practice
 Be able to use Hadoop
 Learn how to work in the Hadoop ecosystem
 Be able to performed advanced data analysis on large data sets
 Get good foundations on big data analysis
 Be able to design, implement, and use advanced algorithm in Spark
Be able to analyse any given dataset, regardless of there size

(1)	Course workflow
Learning strategy: Course side: Understand the new issues appearing as datasets Be able to setup a Hadoop cluster and use it Understand why traditional algorithms fail on big	data
 Be able to implement advanced algorithms for big Personal side: Derive algorithms for big data Use and work "inside" Hadoop, Drill, and Spark Relate known strategies to new problems 	, data
O Perform extra research	

Notes		

Notes

Notes		

Notes			

Notes	

Notes			

Notes			

Notes	

3

Notes

Notes	

Notes	

	Comme		
17	Canvas	Notes	
Information and documents availab	le on the Canvas platform:		
Course materials:			
Syllabus	• Labs		
 Lecture slides 	Projects		
Homework			
Course information:			
Announcements	• Grades		
Notifications	Polls		
	References	N.	
18	Keierences	Notes	
Useful places where to find informa	tion.		
Hadoop the definitive guide	tion:		
 Spark the definitive guide 			
 Machine learning, an algorithm 	nic perspective		
 Introduction to Data Mining, b 	oy Tan et al		
• Mining of Massive Datasets, by	y Leskovec et al by White		
 Search information online, i.e. 	$\{websites \setminus \{non ext{-}English websites}\}$		
	Kov points - Kov points	N	
(19)	Key points – Key points	Notes	
(19)	Key points – Key points	Notes	
Work regularly, do not wait the		Notes	
 Work regularly, do not wait the 		Notes	
 Work regularly, do not wait the Respect the Honor Code 		Notes	
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught 		Notes	
 Work regularly, do not wait the Respect the Honor Code 		Notes	
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught 		Notes	
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 		Notes	
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand 		Notes	
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 		Notes	
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 		Notes	
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 			
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 		Notes	
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 			
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 			
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us Advice and suggestions are alw 	e last minute/day		
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us 	e last minute/day		
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us Advice and suggestions are alw 	e last minute/day		
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us Advice and suggestions are alw 	e last minute/day		
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us Advice and suggestions are alw 	e last minute/day		
 Work regularly, do not wait the Respect the Honor Code Go beyond what is taught Do not learn, understand Keep in touch with us Advice and suggestions are alw 	e last minute/day		

17 - 20 5

22	Data analysis
Generated data is often:	
 Stored, e.g. in databases 	
 Preprocessed, e.g. cleaned 	
Analysed, e.g. machine learning	
Most common advanced analytics:	
 Supervised learning: predict a label based on some fe 	atures
 Recommendation: suggest product based on users' b 	ehaviour
 Unsupervised learning: discover structure in the data 	
 Graph analytics: searching for patterns 	

Notes		

23	Von Neumann bottleneck
Problem for a regular computer: Fast CPU Large memory Limited throughput	Mitigating the problem: Use caching Apply branch prediction Parallel read using RAID
Example. The speed of a disc reac • 1990: 1.5 GB HDD at 4.4 ME • Today: 1 TB HDD at 100 ME	3/s
,	ook 5 min, today it takes over 2.5 h!

Notes	

Data (zetabytes)	
160	
A few numbers:	
• 90% of the data was created in the past two years	5
• 40% of the data is generated by machines	
 Over 26 billion IoT devices are activated 	
100	
Everyday:	
 Google processes 3.5 billion search queries 	
• Facebook generates 4 petabytes of data	
■ 306 billion emails are sent	
40	
30	
20 15	
10	
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 20	023 2024 2025

How to store and process data as it grows very big?

	Storing data
Relational Database Management Systems:	
 Data size: gigabytes 	
 Access: interactive and batch 	
• Update: read write small proportions of the data	
 Structure: schema defined at writing time 	
• Efficiency: low-latency retrieval for small amount of o	data
Limitations of databases:	
 Hard drive seek time increases slower than data trans 	sfer rate
 Data is often unstructured 	
 Slow to process as designed for read write many time 	es

Notes	

	Processing data
High-performance computing (HPC): Distributes computation across a cluster of machine Uses message passing interface	s
 Fits compute-bound jobs Data-flow controlled by programmer Limitations of HPC: 	
Handling of node or process failure Require very high network bandwidth	
Expensive infrastructures, complex to extendLow level APIs	

Notes		

Random Access Machine (RAM) model:
 A processor with a memory attached to it
 Each operation has a constant cost
 Runtime is proportional to the number of operations
Parallel Random Access Machine (PRAM) model:
 Several processors with one or more memory modules attached
 Need to specify how to deal with concurrent writes
 Each operation has a constant cost
Runtime is defined when the slowest processor completes
When dealing with "real" big data we need a distributed system

Notes		

Notes			

(3) A short history
The birth of Hadoop: 2002: Nutch, an open source web search engine 2003: paper describing Google File System (GFS) 2004:
 NDFS: open source implementation of GFS for Nutch Paper describing data processing on large clusters (MapReduce)
 2005: open source implementation of MapReduce for Nutch 2006: NDFS and MapReduce moved out of Nutch Hadoop 0.1.0 released Hadoop is run in production at Yahoo!
 Hadoop is run in production at Yahoo!

Notes	

A short history
The adolescence of Hadoop: • 2007 – 2008:
 Number of companies using Hadoop jumps from 3 to over 20 Creation of Cloudera, first Hadoop distributor
 2009: MapR, new Hadoop distributor HDFS and MapReduce become separate projects
 2010 – 2011: Many new "components" added to the Hadoop ecosystem Receive two prizes at the Media Guardian Innovation Awards

Notes	

Hadoop's goals
Context where to adopt Hadoop: • Massive amount of data to analysed
 Data stored over hundreds or thousands of computers
 Computation must be completed even if some nodes fail
 Cluster composed of commodity or high-end hardware
Hadoop's records:
• 2006: sort 1.8 TB of data in less than 48 h
• 2008: sort 1 TB of data in 209 s
• 2009: sort 1 TB of data in 62 s
 2014: sort 100 TB of data in less than 23 min 30s
The end goal is to efficiently analyse massive amount of data

Notes

35 Hadoop frame	work
Hadoop is composed of core modules: Hadoop common: base libraries and utilities used by other mod Hadoop Distributed File System (HDFS): distributed file system Hadoop MapReduce: implementation of the MapReduce model Apache Yet Another Resource Negotiator (YARN): manages the control	1
resources and schedules the user's tasks Languages: Mainly Java Some C	
Shell scripts for command line utilities	

Notes		

(36)	HDFS overview
Characteristics of HDFS:	
 Large files: at least hundreds of megabyt 	es to terabytes
Streaming data access: write once, read	many times
 Commodity hardware: inexpensive comm 	on hardware
Limitations of HDFS:	
 High throughput at the expense of latence 	су
 The "Master node" keeps the filesystem r 	metadata in memory
 Write always in append mode, by a single 	e writer

Notes	

	_
MapReduce overview	37
Programming paradigm composed of three main steps: • Map:	
 A master node distributes the work and ensures exactly one copy of the redundant data is processed 	
 Each worker node considers its local data and transforms it into key- value pairs 	
• Shuffle: each worker node redistributes its pairs based on the keys	
• Reduce: each worker node combines a set of pairs into a smaller one	

38)	MapReduce overview
MapReduce requirements:	
 Mapping operations must be independent of 	each others
 Parallelism is limited by the number of source 	ces and nearby CPUs
 Either all the output sharing the same key single reducer or the reduction must be asso 	•
MapReduce benefits:	
 Highly scalable on commodity hardware 	
 Possible to recover for partial failure 	
 Great efficiency due to parallelism 	

YARN overview
rces where

40	MapReduce vs. YARN
In Hadoop 1, MapReduce:	
 Directly interacts with the filesystem 	
Manages resources	
In Hadoop 2, YARN: • Manages the resources	
Interacts with the filesystem	
 Hides low level details from the user 	
 Offers an intermediate layer supporting r gramming paradigms 	many other distributed pro-

Notes		

Notes

Notes			

Notes			

(2) Mesos
Goal: global scalable resource manager, not restricted to Hadoop
Mesos scheduling:
 Determine the available resources
 Offer "various options" to an application scheduler
 Allow any number of scheduling algorithm to be developed, plugged, and used simultaneously
 Each framework decides what scheduling algorithm to use
 Mesos allocates resources across the schedulers, resolves conflicts, and ensures a fair share of the resources

Notes

(3)	Myriad
Goal: use Mesos to manage YARN resource requests Simplified strategy: A job requests resources to YARN YARN uses the Myriad scheduler to allocate resources Myriad scheduler matches requests to Mesos' resources offer	rs
YARN allocates the resources	
Benefits: • Get the best from both worlds • Give more flexibility to YARN	

Notes	

44)	Spark
Goals:	
 Be a full replacement for MapReduce 	
 Efficiently support multi-pass applications 	
 Write and read from the disk as little as possible 	
 As much as possible take advantage of the memory 	
Main ideas:	
 Resilient Distributed Dataset (RDD): contains the data to be formed or analysed 	e trans-
 Transformation: modifies an RDD into a new one 	
Action: analyses an RDD	

Notes		

(a) Tez
Basics on Tez:
 Targets batch and interactive data processing applications
Intends to improve MapReduce paradigm
Exposes more simple framework and API to write YARN applications
Expresses computation as a dataflow graph

Notes

Notes	
	_

Notes			

Notes		

50	Hive, Spark SQL, and Presto
Basics on Hive: Access SQL data in HDFS using ar Convert queries to MapReduce, Te: Warning: does not fully comply to	z, or Spark jobs
Basics on Spark SQL (formerly Shark): Was initially a port of Hive to Spar Follows Spark in-memory computin Is "mostly" compatible with HQL	
Basics on Presto: Supports ANSI-SQL standard Uses a custom engine, not based on Can access various data sources the	'

51)	Serialization and storage
Avro: • Input: a schema describing the data	
 Output: generates the code to read/ Parquet: Columnar storage format Complex to handle 	write data
Java Script Object Notation (JSON): Not part of Hadoop Often preferred to XML by Hadoop of Represent data using key-value pairs	community

ring
and

Notes	

Notes

Notes	

Ana	lytics helpers	Notes	
Лаjor analytics helpers:			
 Pig: high-level language to speak to MapReduce 			
 Hadoop streaming: write mappers/reducers in any lang 	guage		
Mahout: set of scalable machine-learning algorithms for	or Hadoop		
MLlib: similar to Mahout, based on Spark (maintenance)	ce mode)		
• Spark ML: similar to MLlib based on a higher level AP	1		
 Hadoop Image Processing Interface: package allowing images and determine their differences and similarities 	g to examine		
images and determine their differences and similarities			
	Data transfer	Notes	
Moving data to and from Hadoop:			
Sqoop: transfer data between HDFS and relational dat	abases		
 Flume: distributed system for collecting, aggregating large amount of data from various sources into HDFS 	, and moving		
Distributed Copy (DistCP):			

55	From batch to realtime processing
Lambda data arcl	
•	ver: store all incoming data and batch process it
	yer: analyse incoming data in real time
	ayer: serve curated data that can be analysed by other tools
Drawback: n	naintain two code sets for batch and speed layers
Kappa data archi	tecture:
 Not a replace 	ement but an alternative to lambda architecture
Layers: batcl	n layer is removed compared to lambda architecture
 Suitable for s 	systems with strict end-to-end latency requirements
 Drawback: re 	eplay the whole stream in case of error

Part of basic Hadoop tools

• Used to move data between the clusters

• Is the basis for more advanced Hadoop recovery tools

Notes	
Notes	
Notes	

Apache Storm:

Distributed system for real-time processing of streaming data
Able to process over a million records per second per cluster node
Relies on Zookeeper for coordinating the nodes

Apache Kafka:
Distributed platform used to create real-time streaming data pipelines
Heavily relies on zerocopy (OS kernel level) to move data around
Commonly used together with Spark, Flink, or Storm

Remote Dictionary Server (Redis):
In-memory key-value data-store
Extremely fast, simple, and versatile
Benchmarked as the fastest DB in the world

Notes	

Notes	

Notes		

Notes

Notes			

(2)	Distributed filesystems
Regular filesystems on a computer: • Partition	
Hard drive LVM	
Distributed filesystems: Spans several computers Has to deal with potential network issues	
Idea behind HDFS summarised o	n slide 1.36

Notes			

(6)	File blocks
Blocks in HDFS:	
Default size of 128 MB	
 Files smaller than a block size do not occupy the whole b 	lock
 A file can be larger than a whole disk 	
Data and metadata handled separately	
Easy to implement fault tolerance and availability	

Notes		

(a)	Nodes
Two types of node in a cluster:	
Namenode:	
 Maintains FS tree and metadata for all files and directories 	
 Locally stores information in namespace image and edit log 	
 Knows on which datanodes the blocks of a file are located 	
Datanode:	
 Stores and retrieve blocks 	
 Regularly reports the list of stored blocks to namenode 	
 Can store certain blocks in cache 	

Notes	

(6)	Finding a file
A namenode has no persistent copy of where blocks are:	
• Each datanode announces the blocks it has	
All the information is kept in memory by the namenous	de
When a write occurs an entry is added to the edit log	g
What to do if the namenode fails?	
Morr	vory limitations
Wen	ory limitations

(66)	Memory limitations
A namenode stores all the blocks of all the files in	n its memory:
 Assume 1 GB of memory for 1 million blocks 	S
$ullet$ 200 nodes cluster, 24 TB each: \sim 12 GB of	memory
• Cluster at Yahoo!: 25 PB $ ightarrow \sim$ 64 GB of me	mory
$ullet$ Cluster at Facebook: 60 PB $ ightarrow \sim$ 156 GB of	memory
How about having more namer	nodes?

(a) HDFS federation
Allowing more namenodes:
Split the filesystem over several independent namenodes
Each namenode has a namespace
 Each namespace has its own pool of blocks
A namespace with a block pool is called namespace volume
A datanode is not attached to a specific namespace volume

(8) High availab	oility
To an analysis of the second	
Two namenodes in an active-passive mode:	
 Passive node takes over in case of failure of the active one 	
 The two namenodes share the same edit log 	
 Only the active namenode can write to the edit log 	
 Passive namenode reads entries when written in edit log 	
 Datanodes send block reports to both namenodes 	
 Passive namenode also works as secondary namenode 	
 Clients must be configured to handle namenode failures 	

Notes

Notes	

Notes		

Notes	

Notes	

Notes	

Notes		

Notes		

Notes	

Notes	

Notes			

Notes	

78	YARN schedulers
Three schedulers available in YARN: • FIFO: request served one by one in • Capacity:	a queue
Define queues based on the "size"All the jobs start earlyResources are wasted when unuse	
 Fair: Resources are dynamically balance All the resources are fully used Delay due the resource reallocation 	•

Notes			

79)	Capacity scheduler
Capacity scheduler setup:	
 Each queue is handled as a FIFO 	
Queue elasticity	
 A single job cannot exceed the capacity of 	f the queue
 The capacity can be exceeded when severa available 	l jobs wait and resources are
 Containers are not preempted 	
Can control:	
 The number of resources per user/applicate 	tion
 The number of applications that can be run 	un at a time
 Access Control Lists (ACL) on the queues 	
The challenge is to find a reasonable trade	e-off for the capacity

Notes			

® Fair sched	uler
Fair scheduler queues:	
One or more queues allowed:	
 Single queue: resources are fairly shared among all applications 	
Several queues, each having:	
 Its own scheduling policy A max/min resources and number of applications 	
A max/min resources and number of applications	
Queues can be precisely configured using an allocation file	
 By default a queue is dynamically created for each user 	

Notes	

© Delay scheduling
Locality problem when scheduling:
 An application requests a specific node
The node is busy
• Should the application wait for the node or loosen its request?
YARN schedulers' approach:
 Every second each node manager sends a heartbeat reporting the running containers and available resources
 Capacity scheduler: wait for a predefined number of heartbeats before loosening the requirement
 Fair scheduler: wait for a predefined portion of nodes in the cluster to offer opportunities before loosening the requirement

Notes			

Notes

(85)	MapReduce job	Notes	
Parties involved in a MapReduce job:			
 A client which initiates the job 			
YARN resource manager			
YARN node manager			
 MapReduce application master 			
HDFS			
	the state of the state of		
(86)	Job initialisation	Notes	
Starting a MapReduce job: • Request a new application ID to the resource man.	2001		
 Check the job parameters 	agei		
Split the job into subtasks			
Copy the splits and other necessary information to	o run the job onto		
the shared FS			
6 Effectively submit the job on the resource manager	r		
(87)	Job startup	Notes	
(87)	Job startup	Notes	
Running a MapReduce job:	Job startup	Notes	
Running a MapReduce job: ① YARN scheduler allocates a container		Notes	
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana		Notes	
Running a MapReduce job: ① YARN scheduler allocates a container		Notes	
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ② Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the no	iger	Notes	
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ② Retrieve the splits from the shared FS	iger	Notes	
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ① Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the number the Reduce part ⑥ Resources for ② Small tasks: run on the same node	iger umber of tasks for	Notes	
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ② Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the nather the Reduce part ⑤ Resources for ⑤ Small tasks: run on the same node ⑥ Large tasks: contact the resource manager for mo ⑥ Request resources for the maps (high priority)	nger umber of tasks for re containers	Notes	
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ② Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the number the Reduce part ⑤ Resources for ⑤ Small tasks: run on the same node ⑤ Large tasks: contact the resource manager for mo ⑥ Request resources for the maps (high priority) ⑥ Request resources for the reducers when enough number is a container.	umber of tasks for re containers maps have completed	Notes	
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ② Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the nather the Reduce part ⑤ Resources for ⑤ Small tasks: run on the same node ⑥ Large tasks: contact the resource manager for mo ⑥ Request resources for the maps (high priority)	umber of tasks for re containers maps have completed	Notes	
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ② Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the number the Reduce part ⑤ Resources for ⑤ Small tasks: run on the same node ⑤ Large tasks: contact the resource manager for mo ⑥ Request resources for the maps (high priority) ⑥ Request resources for the reducers when enough number is a container.	umber of tasks for re containers maps have completed	Notes	
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ② Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the number the Reduce part ⑤ Resources for ⑤ Small tasks: run on the same node ⑤ Large tasks: contact the resource manager for mo ⑥ Request resources for the maps (high priority) ⑥ Request resources for the reducers when enough number is a container.	umber of tasks for re containers maps have completed	Notes	
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ② Setup the tasks ② Retrieve the splits from the shared FS ③ Create a Map task for each split and specify the number that the Reduce part ③ Resources for ③ Small tasks: run on the same node ⑤ Large tasks: contact the resource manager for mo ⑥ Request resources for the maps (high priority) ⑥ Request resources for the reducers when enough number that the data on the distributed FS and start the	umber of tasks for are containers maps have completed te task		
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ① Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the number the Reduce part ② Resources for ② Small tasks: run on the same node ③ Large tasks: contact the resource manager for mo ④ Request resources for the maps (high priority) ④ Request resources for the reducers when enough r ② Locate the data on the distributed FS and start the	umber of tasks for are containers maps have completed te task		
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ② Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the number of the Reduce part ③ Resources for ⑤ Small tasks: run on the same node ⑥ Large tasks: contact the resource manager for mo ⑥ Request resources for the maps (high priority) ⑥ Request resources for the reducers when enough rown of the data on the distributed FS and start the second of the priority of the data on the distributed FS and start the second of the data on the distributed FS and start the second of the priority of the data on the distributed FS and start the second of the data on the distributed FS and start the second of the priority o	umber of tasks for are containers maps have completed te task		
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ① Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the number that the Reduce part ② Resources for ② Small tasks: run on the same node ③ Large tasks: contact the resource manager for mo ④ Request resources for the maps (high priority) ④ Request resources for the reducers when enough rown to be a contained by the resource of the reducers when enough rown to be a contained by the resource of the reducers when enough rown to be a contained by the resource of the reducers when enough rown to be a contained by the resource of the reducers when enough rown to be a contained by the resource of the reducers when enough rown to be a contained by the resource of the reducers when enough rown to be a contained by the resource of the reducers when enough rown to be a contained by the resource of the reducers when enough rown to be a contained by the resource of the reducers when enough rown to be a contained by the resource of the reducers when enough rown to be a contained by the resource of the reducers when enough rown to be a contained by the resource of the reducers when enough rown to be a contained by the resource of the reducers when enough rown to be a contained by the resource of the resource of the resource of the reducers when enough rown to be a contained by the resource of th	umber of tasks for re containers maps have completed te task Job failure		
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ② Setup the tasks ② Retrieve the splits from the shared FS ③ Create a Map task for each split and specify the number of the Reduce part ③ Resources for ③ Small tasks: run on the same node ⑤ Large tasks: contact the resource manager for mo ⑥ Request resources for the maps (high priority) ⑥ Request resources for the reducers when enough number of the data on the distributed FS and start the standard points of failure: ② Task failure ③ Application master failure	umber of tasks for tre containers maps have completed tre task Job failure		
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ② Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the number of the Reduce part ③ Resources for ③ Small tasks: run on the same node ⑤ Large tasks: contact the resource manager for mo ⑤ Request resources for the maps (high priority) ⑥ Request resources for the reducers when enough rown of the distributed FS and start the start of the data on the distributed FS and start of the data on the distributed FS and start of the data on the distributed FS and start of the data on the distributed FS and start of the data on the distributed FS and start of the data on the distributed FS and start of the data on the distributed FS and start of the data on the data on the data of the data on	umber of tasks for tre containers maps have completed tre task Job failure		
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ② Retrieve the splits from the shared FS ③ Create a Map task for each split and specify the number of the Reduce part ③ Resources for ② Small tasks: run on the same node ③ Large tasks: contact the resource manager for mo ③ Request resources for the maps (high priority) ④ Request resources for the reducers when enough rown of the distributed FS and start the start of the data on the distributed FS and start the start of the reducers when enough rown of the distributed FS and start the start of the reducers when enough rown of the distributed FS and start the start of the reducers when enough rown of the distributed FS and start the start of the reducers when enough rown of the rown o	umber of tasks for re containers maps have completed re task Job failure received) ability mode)		
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ② Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the number of the Reduce part ③ Resources for ③ Small tasks: run on the same node ⑤ Large tasks: contact the resource manager for mo ⑥ Request resources for the maps (high priority) ⑥ Request resources for the reducers when enough run of the distributed FS and start the start of the data on the distributed FS and start the start of the data on the distributed FS and start the start of the st	umber of tasks for re containers maps have completed re task Job failure received) shility mode) amenode		
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ② Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the number of the Reduce part ⑤ Resources for ⑤ Small tasks: run on the same node ⑥ Large tasks: contact the resource manager for mo ⑥ Request resources for the maps (high priority) ⑥ Request resources for the reducers when enough reference to the data on the distributed FS and start the start of the data on the distributed FS and start the start of the reducers when enough reference to the data on the distributed FS and start the start of the start of the reducers when enough reference to the data on the distributed FS and start the start of the reducers when enough reference to the data on the distributed FS and start the start of the reducers when enough reference to the r	umber of tasks for re containers maps have completed re task Job failure received) ability mode) amenode		
Running a MapReduce job: ① YARN scheduler allocates a container ② Application master launched by the resource mana ③ Setup the tasks ② Retrieve the splits from the shared FS ⑤ Create a Map task for each split and specify the number of the Reduce part ③ Resources for ③ Small tasks: run on the same node ⑤ Large tasks: contact the resource manager for mo ⑥ Request resources for the maps (high priority) ⑥ Request resources for the reducers when enough run of the distributed FS and start the start of the data on the distributed FS and start the start of the data on the distributed FS and start the start of the st	umber of tasks for re containers maps have completed re task Job failure received) ability mode) amenode		

92	Speeding up a MapReduce job
Optimized configuration setup:	
, , ,	
 Provide shuffle with as much men 	mory as possible
 Keep enough memory for map ar 	nd reduce functions
 Optimize the code with respect t 	o memory consumption
 Minimize the number of spills for 	the map part
 As much as possible keep intermed 	ediate reduce data in memory
Speculative execution:	
 A task is detected as much slowe 	er than average
 Re-run it on a different node 	
 Kill all the other duplicates as so 	on as one completes

Notes	

Notes

Notes		

Notes

(6)	Drill job
Parties always involved in a Drill job: A client which initiates the job Zookeeper	
Parties optionally involved in a Drill job: • YARN • HDFS	
Hive	
HBase	

Notes			

	_
® Drill on YARN workflow	
Running Drill as a YARN application:	
Request the start of Drill software on each assigned node	
Start a "Drill process" called a drillbit	
Each drillbit starts and registers with Zookeeper	
The application master checks the health of each drillbit through Zookeeper	
Use Zookeeper to retrieve information on the drillbits, run queries, etc.	

Notes			

Notes		

Notes		

104	Drill's strength
Optimistic query execution:	
 Assume no failure will occur during query execution 	
 Rerun the query in case of failure 	
Only write on disk when memory overflows	
Vectorization: allow the CPU to operate on vectors	
Runtime compilation: generate efficient code for each qu	ery

Notes	

Notes		

Notes

Notes	

106	Spark job
Spark organisation:	
 Application: user program built on Spark and composed 	of:
 A driver program: process running the main function 	
 Executors: processes launched for an application on work 	ker nodes
 The driver program connects to a cluster manager 	
 Standalone: cluster manager provided with Spark 	
• YARN	
Mesos	
Kubernetes	

Notes	

107	Spark on YARN workflow
Two modes available:	
Client mode:	
 Driver runs in the client 	
 Required in the case of interactive 	e programs
 Useful when building a Spark prog 	gram
Cluster mode:	
 The entire application runs in the 	cluster
 Appropriate from production jobs 	
 YARN application master failure s 	strategy (slide 2.90) is applied

Notes

(100) YARN client mode
Spark job workflow:
Start the driver program on a client node
The driver requests a container to the resource manager
A container starts and runs an Executor Launcher application master
The Executor Launcher requests more resources to start Executor backends processes in new containers
⑤ Each Executor Backend registers with the driver

Notes	

105 – 108 27

(110)	Resilient Distributed Dataset
Resilient Distributed Dataset (RDD):	
 Core abstraction in Spark 	
 Collection of objects distributed acro 	oss a cluster:
 Read-only: do not alter a dataset, 	transform it into a new one
 Resilient: no disk write, reconstruction 	t the RDD in case of partition loss
Loaded as input:	
 Created from an external dataset 	
 From an existing RDD 	
 Parallelising an existing collection 	

<u></u>	RDD operations
Two types of operations on an RDD:	
Transformation:	
 Create a new dataset from an existing one 	
 Only compute the result when an action is run 	
 Do not return any result to the driver program 	
Action:	
 Run a computation on a dataset 	
 Return the value to the driver program 	
Benefits of this approach:	
 Transformed RDD is in memory when performing 	an action
 No large dataset to send back to the driver progra 	ım

(112)	RDD persistence
Data	asets are cached in memory across operations:
•	An RDD is stored on the node where it was computed
•	An old RDD is dropped following the LRU algorithm
•	A lost RDD is automatically recomputed if needed
Cacl	ning levels:
•	Memory only: no compression, lost partitions are recomputed
۰	Memory and disk: partitions that do not fit in the memory are spilled on disk
•	Memory only serialized: compression enabled
•	Replication: all the above but also replicate on another node

Notes	

Notes	

Notes			

Notes	

109 - 112

(113) Fi	unctions and variables
Serialization of data and functions:	
 Used to share information among the executor 	ors
 Transparent to the user 	
Task closure:	
 Cannot share variables among executors 	
 Determine what variables and methods an ex 	ecutor needs
 Serialize this closure and send it to the execu 	tor
 Each executor receives a copy of the original 	variable
 Variables are not updated on the driver 	
114	Shared variables

Broadcast variables:
 Read-only variables broadcasted to each executor
 Data sent in an efficient way to minimize traffic
 Useful for data needed over several stages of the computation
Accumulators: • Variables that can be added to, using associative and commutative operations
The driver can retrieve their value
 They are only updated on action tasks
 Update only occurs once, even if an action is rerun

(115)	Running of a Spark job
Job	submission and execution:
•	A job is submitted when an action is performed on an RDD
•	The transformations on the RDD are organised into a logical execution plan $$
•	Spark DAG scheduler transforms the logical plan into a execution physical plan $$
•	The physical plan defines stages, split into tasks
•	Spark task scheduler constructs a mapping of tasks to executors
•	The executor runs the task
•	Executors send status updates to the driver when a task is completed or has failed $% \left(1\right) =\left(1\right) \left(1\right$

(116)	Higher level abstractions
Newer and higher level abstractions relying Datasets: Foundational type of the structured of the stru	APIs flexibility
 DataFrames: Similar to a spreadsheet split into pa Internally defined as DataSets of typ Most common structured API, support 	e Row
 SQL Tables: Data structure similar to DataFrame: Unmanaged table: defined from a file Managed table: imported in and man 	e on the disk

Notes	
	-

Notes	
	_

Notes			

Notes	

(19)	Scaling up software
Simple observations:	
 Over 20 billions devices are connected to the i 	nternet
 The complexity of software keeps increasing 	
 New security challenges need to be addressed 	
 Package manager dependencies are complex to 	o handle
Alternative package management systems:	
Flatpak, Snap, AppImage:	
 Distribution agnostic packages 	
 Applications are sandboxed, i.e. isolated from 	each others and the host
 Nix: all packages are isolated from each others 	S

Linux containers
LinuX Containers (LXC):
Operating-system-level virtualization method
• Relies on the kernel's <i>cgroup</i> and <i>namespace</i> isolation functionalities
Concurrently run multiple isolated Linux OS on a machine
Each container must be individually maintained
 Containers can be either privileged or unprivileged
 Containers access the bare machine and rely on the host kernel
LXC requires the setup of a whole OS for each container

Notes

Notes	

Notes			

Notes		

122)	Kubernetes
Kubernetes is a container orchestration tool:	
 Mostly used with, but not limited to Docker 	
 Initially developed as an internal Google project 	
 Kubernetes is a cluster application that handles a cluste 	r:
• Master: controls all other machines in the cluster	
 Nodes: the machines onto which applications are runnin 	g
 Pods: single instance of an application or running process 	SS

(123)	Kubernetes
Main tasks of Kubernetes: Monitor the health of the running applications Balances the load Manages hardware resources allocation Eases the deployment of preconfigured applications Allows access to storage in the same way as any other res	sources
During the lifespan of an application: Containers can live, die, be resurrected Kubernetes handles everything without any human intera Kubernetes can be coupled to Hadoop or work independent	

(124)	Key points
When to use Drill?	
 Explain the organisation of a drillbit 	
• When to use Spark?	
• How does Spark interact with YARN?	
What are containerized solutions?	

Notes	

Notes			

Notes	

Notes

121 – 124 31

Notes			

Notes	

(128) Statistical reminders
Given a dataset $X=[X_1,\cdots,X_n]$, we define the
 Median: which corresponds to the "middle" value
• Mean: $\bar{X} = \sum_{i=1}^n \frac{X_i}{n}$
$ullet$ Standard deviation as the average distance between X_i and $ar{X}$:
 It represents the spread of the dataset
• It is given by $\sigma = \sqrt{rac{\left(\sum_{i=1}^n X_i - ar{X} ight)^2}{n-1}}$
$ullet$ Variance which also measures the spread and is given by σ^2
Those measures are one-dimensional

Notes

129

Statistical reminders

Given a dataset $[X_1, X_2] = [[X_{1,1}, \dots, X_{1,n}], [X_{2,1}, \dots, X_{2,n}]]$, covariance:

Is given by

$$\sigma_{X,Y} = \frac{\sum_{i=1}^{n} (X_{1,i} - \bar{X}_1)(X_{2,i} - \bar{X}_2)}{n - 1}$$

- Verifies $\sigma_{X_1,X_2} = \sigma_{X_2,X_1}$ and $\sigma_{X,X} = \sigma^2$
- Evaluates how much two dimensions vary from the mean with respect to each other
- Provides information on whether both dimensions "increase together"

Given n variables X_1, \dots, X_n , their covariance matrix is given by

$$\begin{pmatrix} \sigma_{X_1,X_1} & \cdots & \sigma_{X_1,X_n} \\ \vdots & \ddots & \vdots \\ \sigma_{X_n,X_1} & \cdots & \sigma_{X_n,X_n} \end{pmatrix}$$

Algebraic reminder

Let \mathcal{B} be a basis of a vector space V. For $M \in \mathcal{M}_n(\mathbb{K})$, $\lambda \in \mathbb{K}$ is an eigenvalue of M if and only there exists an eigenvector $X \in \mathcal{M}_{n,1}(\mathbb{K})$ such that $MX = \lambda X$

Important properties related to eigenvectors and eigenvalues:

- ullet If M has rank n then it has n non-zero eigenvalues
- If M has n eigenvalues, distinct two by two, then it is diagonalizable
- ${}^{\bullet}$ M is diagonalizable if and only if its eigenvectors form an orthogonal basis \mathcal{B}'
- $M = PDP^{-1}$, where D is a diagonal matrix featuring the eigenvalues of M on its diagonal, and P is the transition matrix from \mathcal{B}' into \mathcal{B}
- For any $k \in \mathbb{N}$, $M^k = PD^kP^{-1}$

Algebraic reminders

The characteristic polynomial of M is defined as

$$\chi_M : \mathbb{K} \longrightarrow \mathbb{K}$$

$$\lambda \longmapsto \det(M - \lambda \mathsf{I}_n).$$

Properties of χ_M :

- If λ is an eigenvalue of M, then it is a root χ_M
- M if diagonalizable if and only if χ_M splits on $\mathbb K$ and the dimension of the eigenspace associated to each eigenvalue λ is equal to the multiplicity of λ

General remarks:

- Not all matrices are diagonalizable
- Not all square matrices are diagonalizable
- In general the determinant is "complicated" to compute
- A matrix that is not invertible is called singular

Notes	

Notes		

Notes		

Notes	

33

I admire the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while the like of us have to make our way laboriously on foot.

Albert Einstein

(13	4)

Principal component analysis

Basic idea behind Principal Component Analysis (PCA):

- Provides the best "perspective" that emphasises similarities and differences in the data
- This new perspective combines the original "characteristics" in order to best summarize the data

Example. Data that can be collected about teaching classrooms:

- The area
- The number of students who can seat in
- The number of blackboards
- The number of desktop computers

Which are useful, useless, or redundant?

136

Principal component analysis

Process:

- ${\color{red} \blacksquare}$ Standardize the range of the variables:
 - Prevents large differences in the range of the variables
 - Ensures all variables "contribute equally"
 - Compute

$$Z_{i,j} = \frac{X_{i,j} - \bar{X}_i}{\sigma_{X_i}}$$

- $\ensuremath{\textcircled{2}}$ Determine the "relationship" between the variables:
 - Find correlations between the variables
 - Construct the covariance matrix over all the variables
- Identify the principal components:
 - Compute the eigenvalues and eigenvectors of the covariance matrix
 - Reorder the eigenvalues in non-increasing order

Notes	

Notes	

Notes		

Notes			

137

Numerical stability

The stability of a method defines how it "reacts" to small perturbations

Since $M=PDP^{-1}$ we have $D=P^{-1}MP$, and for a small perturbation δM we get

 $D + \delta D = P^{-1}(M + \delta M)P.$

This yields $\delta D = P^{-1}\delta MP$, which in term of norms translates as

$$\|\delta D\| \le \|P^{-1}\| \|P\| \|\delta M\|,$$
 (4.1)

where the *p*-norm of an $m \times n$ matrix $A = (a_{i,j})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$ is defined as

$$||A||_p = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{i,j}|^p\right)^{\frac{1}{p}}.$$

Equation (4.1) means that a perturbation $\|\delta M\|$ might be magnified by a factor as large as $\|P^{-1}\|\|P\|$.

(139)

Singular value decomposition

Let $\{v_1,v_2\}$ be an orthonormal basis, and M be the matrix of a linear transformation. Then for two unit vectors u_1 and u_2 we obtain

$$\mathit{Mv}_1 = \mathit{u}_1\sigma_1$$
 and $\mathit{Mv}_2 = \mathit{u}_2\sigma_2$,

with σ_1 and σ_2 in \mathbb{R} . For a vector $x=(x\cdot v_1)v_1+(x\cdot v_2)v_2$, we have

$$Mx = (x \cdot v_1)Mv_1 + (x \cdot v_2)Mv_2 = (x \cdot v_1)u_1\sigma_1 + (x \cdot v_2)u_2\sigma_2.$$

Recalling that $x \cdot v_1 = x_1^\top v_1 = v_1^\top x$, we get $Mx = u_1 \sigma_1 v_1^\top x + u_2 \sigma_2 v_2^\top x$, which yields $M = u_1 \sigma_1 v_1^\top + u_2 \sigma_2 v_2^\top$. In term of matrices this translates into

 $M = \begin{pmatrix} u_1 & u_2 \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix} \begin{pmatrix} v_1^\top \\ v_2^\top \end{pmatrix}$

Notes			

140

Singular value decomposition

More generally, if M is an $m \times n$ real matrix we can write $M = U \Sigma V^{\top}$, where both $U = \begin{pmatrix} u_1 & \cdots & u_m \end{pmatrix}$ and $V = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$ are rotation matrices, and Σ is diagonal.

Size of the matrices:

• Σ : $m \times n$ • V: $n \times n$

The elements on the diagonal of Σ are called *singular values*, the columns of *U left singular vectors*, and the rows of V^{\top} *right singular vectors*.

If $U\Sigma V^{\top}$ is an SVD for an $m \times n$ matrix X of rank r:

- Σ has exactly r strictly positive elements which are the square roots
 of the r eigenvalues of X^TX, with corresponding multiplicities
- The columns of V are eigenvectors of $X^{\top}X$
- ullet The columns of U are eigenvectors or $XX^{ op}$

35

(141)

Singular value decomposition

General remarks on the SVD:

- SVD is not unique and exists for any matrix, whether invertible or not
- Singular values can be re-ordered as long as their corresponding singular vectors are re-arranged accordingly
- If $U\Sigma V^{\top}$ is an SVD for X^{\top} , then $V\Sigma^{\top}U^{\top}$ is an SVD for X

As U and V are rotation matrices, they are orthogonal, i.e. $U^\top U = \mathbf{I}_m$ and $V^\top V = \mathbf{I}_n$. In particular, referring to slide 4.137, we see that in term of stability a small perturbation gets increased by a factor:

- $\bullet \ \|P^{-1}\| \|P\|,$ for eigen decomposition
- $\|U^{-1}\|\|(V^{\top})^{-1}\| = \|U^{\top}\|\|V\| = 1$, for SVD

142

QR decomposition

Any $X\in\mathcal{M}_{m,n}(\mathbb{K})$, with linearly independent columns, can be written X=QR where:

- $Q \in \mathcal{M}_{m,n}(\mathbb{K})$ is orthogonal
- $R \in \mathcal{M}_{n,n}(\mathbb{K})$ is upper triangular

Remark. If X is invertible, then so is R.

Various approaches can be applied to compute the QR decomposition of X. The most famous one, Gram-Schmidt is unfortunately unstable. The two other most common options are based on Givens rotations and on Householder reflections. The former is slower but simpler to parallelize.

Given a vector u, a Householder reflection is a linear transformation $H_u=I-\frac{2uu^\top}{u^\top u}$. For instance in an orthonormal basis $\{u,v\}$ we can write $w=c_1u+c_2v$, with $c_1=\frac{\langle w,u\rangle}{\|u\|_2^2}$ and $c_2=\frac{\langle w,v\rangle}{\|v\|_2^2}$.

143

QR decomposition

Applying H_u to w we get

$$H_{u}w = \left(I - \frac{2uu^{\top}}{u^{\top}u}\right)(c_{1}u + c_{2}v) = c_{1}u + c_{2}v - 2\frac{uu^{\top}}{u^{\top}u}(c_{1}u + c_{2}v)$$

$$= c_{1}u + c_{2}v - 2c_{1} = -c_{1}u + c_{2}v - 2c_{2}\frac{u}{u^{\top}u}\langle u, v \rangle$$

$$= -c_{1}u + c_{2}v.$$

This example can be visually represented as a reflection about the plane orthogonal to \boldsymbol{u} and \boldsymbol{v} .

144

QR decomposition

Householder reflections can be used to obtain the QR decomposition of a matrix X. More specifically, *Householder reflection theorem* states that for two vectors x and y with similar norm, there exists an orthogonal matrix Q such that y=Qx. This provides a method for iteratively constructing R and Q.

Idea on how to apply the above discussion:

• Determine an orthogonal matrix Q_1 such that $Q_1c_1=(\gamma_1,0,\cdots,0)^{\top}$, where γ_1 has similar norm as c_1 . At this stage we have

$$R_1 = \begin{pmatrix} \frac{\gamma_1}{0} & * \cdots & * \\ \vdots & & \\ \vdots & & \chi_1 \\ \vdots & & \end{pmatrix}$$

Notes		

(145)

SVD and QR decomposition

• Determine an orthogonal matrix \tilde{Q}_2 such that $\tilde{Q}_2\tilde{c}_1=(\gamma_2,0,\cdots 0)^{\top}$. Then define $Q_2=diag(\mathrm{Id}_1,\tilde{Q}_2)$ and compute

$$R_2 = Q_1 R_1 = egin{pmatrix} \gamma_1 & * \cdots \cdots & * \ 0 & \gamma_2 & * \cdots \cdots & * \ 0 & 0 & & & \ \vdots & \vdots & & X_2 \ 0 & 0 & & & \end{pmatrix}$$

• Repeat the above process $t=\min(m-1,n)$ times and obtain $R=Q_tQ_{t-1}\cdots Q_2Q_1X$. By orthogonality $Q^{-1}=Q^{\top}$, yielding

$$X = Q_1^\top \cdots Q_t^\top R = QR.$$

Application to the SVD of X:

- Obtain the SVD for

$$X = QU_1\Sigma V^\top = U\Sigma V^\top$$

PCA and SVD

Let X be an $m \times n$ matrix representing a dataset.

PCA requires to determine the eigenvalues of the covariance matrix $C=X^{\top}X$ (slide 4.136). Now observe that using the SVD decomposition $X=U\Sigma V^{\top}$,

$$X^{\top}X = \left(U\Sigma V^{\top}\right)^{\top} \left(U\Sigma V^{\top}\right)$$
$$= V\Sigma^{\top}U^{\top}U\Sigma V^{\top}$$
$$= V\Sigma^{2}V^{\top}.$$

It suffices to compute the singular values of $X^{\top}X$ and then $U = XV\Sigma^{-1}$.

147

Dimensionality reduction

Given a dataset one wants to:

- Retain a maximum of information in a minimum amount of space
- Run PCA using:
 - The covariance matrix:
 - Might be a bit faster but is unstable
 - Eigenvalues correspond to the variances of the principal components
 - SVD:
 - Might be a bit slower but stable
 - $\ensuremath{^{\circ}}$ The square root of the singular values corresponds to the variances of the principal components
- Only keep the k largest principal components by truncating the matrices

Notes		

Notes	

148)	Chapter organisation
Dimensity red	sional-

Notes		

Notes			

(151) Tall and skinny
Recalling the relation between PCA and SVD.
$C = X^T X = V \Sigma^2 V^{\top}, \tag{4.2}$
we see that C can fit in memory since it has dimension $n \times n$ and by assumption a single machine has n^2 memory. Thus we can compute $X^\top X$, without any dependence on m . Then using equation 4.2 we can find the eigenvalues of C and retrieve V and Σ . The main challenge is to ensure the singular values of C are not significantly altered in the process.
Setup preparation:
Store matrices row-by-row on disk
ullet Ensure all elements are in $[-1,1]$, i.e. divided by the largest element

Notes		

Simple MapReduce approach to compute X^TX :

• Mapper:

• For all pairs (x_{ij}, x_{ik}) on row i, return the (key, value) pair $((c_j, c_k), x_{ij}x_{ik})$, where c_j and c_k correspond to columns j and k, respectively.

• Reducer: consider all the (key, value) pairs $((c_i, c_j), \langle v_1, \cdots, v_R \rangle)$, where each of the v_k corresponds to a product of elements in X and R is the number of non-zero products, and compute $\sum_{i=1}^R v_i$.

Considerations on the complexity:

• Communication: $shuffle\ size\ \mathcal{O}(mL^2)$, with L the maximum number of non-zero elements on a row

• Overload on a single machine: reduce- $key\ complexity\ \mathcal{O}(m)$

Measuring the distance between several documents:

- Count the number of occurrence for all the words
- Compare the scores
- If documents feature may common words, then they are similar

Limitation:

(156)

- Take three documents d_1 , d_2 , and d_3 , where d_1 , d_2 are long and d_3 is an exert of d_1
- What is likely to happen?

Notes

What the reducer returns is in fact not $X^\top X$, but a matrix X' which contains the cosine similarities between the columns of X. Defining \bar{v}_i to be v_i , if a (key, value) pair is returned and 0 otherwise, this can be seen by looking at the expectation of an output $E\left(\frac{1}{\gamma}\sum_{i=1}^R\bar{v}_i\right) = \frac{1}{\gamma}P(\bar{v}_i=v_i)\sum_{i=1}^Rv_i = \frac{1}{\|v_j\|\|v_k\|}\sum_{i=1}^Rv_i.$ To recover $X^\top X$ from the matrix X', it suffices to define a diagonal matrix D whose elements d_{ii} are exactly $\|c_i\|$, and then compute $X^\top X = DX'D$. Using Latala's theorem it is possible to prove that when using cosine similarities to sample columns, singular values are preserved with "high enough" probability.

Notes		

39

111	57 1
1.	"]

Tall and skinny with cosine similarity

Remarks

- Since $\|c_i\|$ is used in the mapper it means the norm of all the columns must be pre-computed. This requires an all-to-all communication.
- ullet The parameter γ can be adjusted depending on what is expected:
 - Preserve similar entries in $X^{\top}X$: $\gamma = \Omega\left(\frac{\log n}{s}\right)$
 - Preserve singular values of $X^{\top}X$: $\gamma = \Omega\left(\frac{n}{\varepsilon^2}\right)$

Complexity, with h the smallest non-zero value after normalization:

- Shuffle size: O(nLγ/h²)
- Reduce key complexity: $\mathcal{O}(\gamma/h^2)$

Distributed QR

As explained in slide 4.145 first decomposing X into X=QR can speed up the SVD of X. The basic idea related to Householder reflection theorem can in fact be extended into a "tiled QR decomposition" algorithm, which is applicable when the matrix X does not fit in memory.

In this algorithm, the tiles correspond to matrix blocks which can be stored and processed on different nodes.

Represent X in tall and skinny blocks, then start process:

- Obtain the QR decomposition of block $X_{k,k}$
- Adjust all the blocks $X_{k,j}$ on the right of $X_{k,k}$
- Adjust all the blocks $X_{i,k}$ below $X_{k,k}$ and the bocks $X_{i,j}$ on their right
- Repeat for all blocks on the diagonal

159

Looking at the big picture

Brief summary:

- Data has many variables
- Apply PCA to find a better perspective
- Ignore low contributions, only keep the most "prominent" dimensions
- Apply SVD in order to computer PCA
- Run further tasks based on the PCA "approximation"

Comments on PCA:

- It works well on small data as well as on tall and skinny big data
- It searches for a "best" solution

How much better is the best solution compared to a random solution?

(160)

Random projections

Construct a map preserving the pairwise distance between points

Setup and goals:

- Map m points $(u_i)_{1 \leq i \leq n}$ in \mathbb{R}^n into m points in \mathbb{R}^d , with $d \ll n$
- Ensure that for all i, j,

$$\|v_i\|_2 \approx \|u_i\|_2$$
 and $\|v_i - v_j\|_2 \approx \|u_i - u_j\|_2$ (4.3)

Johnson-Lindenstrauss lemma states that after a random projection, with high probability the distance between any two points is "distorted" by a factor at most $1\pm\epsilon$.

If $X'=\frac{1}{\sqrt{d}}XR$, where $R\in\mathbb{R}^{n\times d}$ is random with independent identically distributed entries and zero mean, then X' is much smaller and preserves all pairwise distances in expectation.

Mores			

161 - 164 41

Notes		

(107) Regression analysis
Basics on regression: • Find the relationship between: • A dependent variable, i.e. the outcome or response variable • Independent variables, i.e. predictors or explanatory variables
 Many types of regression exist, most common ones are linear, logistics, and polynomial
The goal is to minimize the error of the prediction
Error evaluation:
 Error is often measured using the the sum of squares, i.e. summing up the square of the error at each point
 The minimum of the sum of squares is called least squares
 The smaller the error the better the model

Notes

Reminders on optimization: ullet The goal is to maximize or minimize a function f depending in its The function f is called objective function or criterion During the minimization process f is often referred to as cost, loss, or error function Remark on minimization with respect to least square: • Whether positive or negative a large error is bad Squaring allows to penalize larger residuals more than smaller ones • Error is often composed of systematic and random noises • Minimizing the sum of squared errors is the same as minimizing the Common examples of optimization problems: • Chip design: ensure no tracks cross on a computer chip Timetable: given a list of students in each course, minimize the number of collisions • Traveling salesman: given a list of cities, minimize the distance necessary to visit all of them No free lunch theorem: • There is no best solution to all search problems • Algorithms performing better on certain problems, do worse on others · Work is often needed to find the most suitable algorithm Gradient descent Description is usually done in term of minimization Basic setup for a function f(X), where $X = (x_1, \dots, x_n)$: • Iteratively create a sequence of X_i • At each step, determine the gradient in each direction · Select a direction and keep going down • Repeat until the gradient is 0 in all directions Remark. The function f should be convex, i.e. for any $x, y \in \mathbb{R}^d$, and $\alpha \in [0, 1]$, $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y),$ to ensure it has a global minimum, and the algorithm does not return a local one.

Notes Notes Notes Notes			
Notes	Notes		
Notes		 	
Notes	NI .		
Notes	Notes		
Notes	Notes		
Notes			

 $\nabla f(x)=(x_1,0.4x_2,1.2x_3).$ Using a step of length 1, and starting with $X_0=(-2,2,-2)$, the steepest downhill direction is (-2,0.8,-2.4), yielding $X_1=(0,1.2,0.4)$.

Example. For $f(x) = 0.5x_1^2 + 0.2x_2^2 + 0.6x_3^2$, we obtain

Gradient descent

Notes			

(176) Work-depth model
Computation finishes when the last processor completes its job:
$ullet$ The amount of time when using one CPU is referred to as T_1
$ullet$ The amount of time when using p CPUs is referred to as T_p
$ullet$ The amount of time when using infinitely many CPUs is referred to as \mathcal{T}_{∞}
Remarks.
 The depth of an algorithm is defined with respect to the last CPU to complete its tasks
 The work of an algorithm corresponds to the amount of time necessary to complete all tasks multiplied by the number of CPUs
Does T_{∞} tend to zero?

Notes			

Brent's theorem:

$$\frac{T_1}{p} \le T_p \le \frac{T_1}{p} + T_{\infty}$$

Meaning of the result:

- If work is evenly shared among all p CPUs then we get $\frac{T_1}{p}$
- ullet T_{∞} helps define how far we are from the ideal case

Remarks.

- \bullet Together T_1 and T_{∞} provide information on how well an algorithm performs on p CPUs
- Increasing the number of CPUs will never impact performance

The work-depth model helps designing better parallel algorithms

178

Back to gradient descent

From a general point of view gradient descent is an optimization problem

$$\min_{w} F(w) = \sum_{i=1}^{m} F_i(w, x_i, y_i),$$

where $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$ is a "label", and w is the parameter we expect to optimize over.

In essence gradient descent starts with a random initial w and has the goal of iteratively improving on it, by computing $w_{k+1} = w_k - \alpha \nabla F(w_k)$, for some small α . In our case the objective function F corresponds to a loss function

Remark. From a theoretical point of view, this works especially well when F is strongly convex, differentiable, and ∇F is L-Lipschitz continuous. In such a case taking $\alpha < \frac{1}{L}$ leads to an exponential convergence rate to a global minimum!

179

Gradient descend – Sum of squares

For the sum of squares loss function, we want to minimize

$$F(w) = \sum_{i=1}^{m} F_i(w, x_i, y_i) = \sum_{i=1}^{m} ||x_i^\top w - y_i||_2^2,$$

with x_i , y_i , and w as above.

Notes on our setup:

- F is strongly convex and Lipschitz continuous
- ullet m corresponds to the data parallelism
- ullet n corresponds to the model parallelism

How well does gradient descent scale up?

180

Parallel summation

How to sum up n elements in parallel?

Algorithm. (Basic summation)

Input: a an array with n elements

Out- s the sum over all the elements of a

put :

1 $s \leftarrow 0$;

2 for $i \leftarrow 1, \cdots, n$ do

 $s \leftarrow s + a[i]$;

4 end for

5 return s

Basic summation:

How to achieve:

Work: O(n)

Work: O(n)

• Depth: $\mathcal{O}(n)$

• Depth: $\mathcal{O}(\log n)$

votes			

Notes		

Notes			

Notes		

Complexity of computing

Complexity of computing

$$F(w) = \sum_{i=1}^{m} ||x_i^{\top} w - y_i||_2^2$$

 $F(w) = \sum_{i=1}^{m} \|x_i^{\top} w - y_i\|_2^2 \qquad \nabla F(w) = 2 \sum_{i=1}^{m} x_i^{\top} (x_i^{\top} w - y_i)$

Work: O(mn)

Work: O(mn)

• Depth: $\mathcal{O}(\log mn)$

• Depth: $\mathcal{O}(\log mn)$

Performing a complete gradient descend:

• Error $\frac{1}{\varepsilon}$ can be achieved after $\mathcal{O}\left(\log \frac{1}{\varepsilon}\right)$ iterations

• Total depth: $\mathcal{O}\left(\log \frac{1}{\varepsilon} \log mn\right)$

How suitable is gradient descent for parallelization and big data?

Notes

Stochastic gradient descend

Instead of computing a full gradient, apply it to a randomly selected point

Stochastic gradient descent (using notations from slide 5.178):

ullet Call s_k the index uniformly sampled at iteration k

Compute the sequence

$$w_{k+1} = w_k - \alpha F_{s_k}(w_k)$$

Notes on stochastic gradient descent:

• Error ε will be achieved after $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ iterations

• Work decreases linearly with the number of points considered

• The number of iterations does not increase linearly with the number of sample points

Stochastic vs. batch gradient descent

Gradient descent:

• Per iteration:

Work: *O*(*mn*)

• Depth: $\mathcal{O}(\log mn)$

Total:

• Work: $\mathcal{O}\left(mn\log\frac{1}{\varepsilon}\right)$

• Depth: $O\left(\log \frac{1}{\varepsilon} \log mn\right)$

Stochastic gradient descent: • Per iteration:

Work: O(n)

• Depth: $\mathcal{O}(\log n)$

Total:

• Work: $\mathcal{O}\left(\frac{n}{\varepsilon}\right)$

• Depth: $\mathcal{O}\left(\frac{\log n}{\varepsilon}\right)$

Which is best, gradient descent or stochastic gradient descent?

(184)

Parallelizing Stochastic gradient descent

Setup in PRAM:

• Save w in a shared piece of the memory

• All CPUs have access to w and the whole dataset

Things which could go wrong:

• A model is read, transformed, and written in the memory but in the meantime the model has been updated by another CPU

• An updated model is overwritten by an older one

How bad is this situation?

Notes		

(186)	Going Hogwild!
Hogwild! strategy for p processors: • Proceed in parallel over all available CPUs • Until the expected error condition is met: • Select a random index i from $\{1, \cdots, m\}$ • Compute $F_i(w)$ and $\nabla F_i(w)$ for w concurrently in • Update $w^{(i)}$ with $w^{(i)} - \alpha \left[\nabla F_i(w) \right]^{(i)}$	the shared memory
Remarks. No locks are used The speedup is nearly linear in term of CPUs In general the locking overhead should be avoided big data	when processing

Notes			

Notes		

Notes	

Implementing gradient descent Notes Questions to consider first: • What tool to use? • Is batch or stochastic gradient descent most appropriate? • How large is the data, i.e. can n and m fit in the memory? In our setup we expect to: Use Spark · Check how both gradient descents behave ullet Work with n small enough to fit in memory but no restriction on mHow to store the data on the cluster? Batch gradient descent in Spark Notes High-level idea for a Spark implementation: ① Organise the data by row and store it in an RDD ② Use a map transformation to generate a closure for each point Use the cache action to ensure Spark keeps the RDD in memory ① For each point p, apply a map to transform p into $\nabla F_p(w)$ **⑤** Apply a reduce to sum up all the $\nabla F_p(w)$ 6 Update w and repeat from step 4 until the expected error is reached Batch gradient descent in Spark Notes Optimizing our approach: • How many times is w sent? • Is w modified by the mappers? • With respect to bandwidth and memory usage, how large is w? • How should w be shared among all the machines? Basic analysis: • Where is the bottleneck in our approach? • How good or bad is the communication cost? Stochastic gradient descent in Spark Notes Reminders on stochastic gradient descent: • Depth is much larger than for batch gradient descent Apply Hogwild! to speed up the process Hogwild! on Spark: Broadcast needs to be completed to start the mappers • All mappers and reducers must be done before broadcasting again • Synchronisation barriers are essential to fault-tolerance Minimizing an objective function in Spark: • Try random updates and accept any one lowering the objective • Use mini-batches: · At each iteration select "many" samples, instead of one · Apply batch gradient descent to them

Notes			

	References I
1.30	https://upload.wikimedia.org/wikipedia/commons/0/0e/Hadoop_logo.svg

Notes

197 - 19