Derivatives, Gradients, Jacobians

From basic calculus we are (hopefully) familiar with the derivative

$$\frac{\partial y}{\partial x}$$

where y = f(x) for some univariate functions f.

But what about

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$

where $y = f(\mathbf{x})$ is a multivariate function (on vector \mathbf{x}) with range that is *also* a vector.

In general, y and x may be vectors and we need to define the Jacobian $\frac{\partial y}{\partial x}$

Scalar y, vector x

$$\frac{\partial y}{\partial \mathbf{x}}$$

 \bullet is the vector of length |x| of defined as

$$\left(\frac{\partial y}{\partial \mathbf{x}}\right)_j = \frac{\partial y}{\partial \mathbf{x}_j}$$

Example

$$|\mathbf{x}| = 2$$
 and $y = \mathbf{x}_1 * \mathbf{x}_2$

$$\frac{\partial y}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial y}{\partial \mathbf{x}_1} & \frac{\partial y}{\partial \mathbf{x}_2} \end{pmatrix}$$
$$= \begin{pmatrix} \mathbf{x}_2 & \mathbf{x}_1 \end{pmatrix}$$

Vector y, scalar x

$$\frac{\partial \mathbf{y}}{\partial x}$$

- ullet is the vector of length 1
- whose element is a vector of length \$|\y\$
- defined as

$$\left(\frac{\partial \mathbf{y}}{\partial x}\right)^{(\mathbf{i})} = \frac{\partial \mathbf{y}^{(\mathbf{i})}}{\partial x}$$

Example $y = (x^0, x^1, x^2)$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial y^{(1)}}{\partial \mathbf{x}} \\ \frac{\partial y^{(2)}}{\partial \mathbf{x}} \\ \frac{\partial y^{(3)}}{\partial \mathbf{x}} \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$

Vector y, vector x

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$

- ullet is the vector of length $|\mathbf{x}|$
- whose element is a vector of length [y]
- defined as

$$\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)_{j}^{(\mathbf{i})} = \frac{\partial \mathbf{y}^{(\mathbf{i})}}{\partial \mathbf{x}_{j}}$$

Example $|\mathbf{x}| = 2$, $y = (\mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_1 * \mathbf{x}_2)$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial \mathbf{y}^{(1)}}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{y}^{(1)}}{\partial \mathbf{x}_2} \\ \frac{\partial \mathbf{y}^{(2)}}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{y}^{(2)}}{\partial \mathbf{x}_2} \end{pmatrix} \\
= \begin{pmatrix} 1 & 1 \\ \mathbf{x}_2 & \mathbf{x}_1 \end{pmatrix}$$

Tensors and Generalized Jacobians

A tensor is mulit-dimensional collection of values.

We are familiar with special cases

- a vector is a tensor with 1 dimension
- a matrix ia a tensor with 2 dimensions

A D-dimensional tensor is a collection of numbers with $\it shape$

$$(n_1 \times n_2 \times ... \times n_D)$$

We can define the Generalized Jacobian

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$

analagous to how we defined the Jacobian.

The main difference is that now the indices i and j change from scalars to tensors

Let

• the shape of \mathbf{x} be $(n_{x_1} \times n_{x_2} \times$

$$\dots n_{x_{D_x}}$$

• the shape of **y** be $(n_{y_1} \times n_{y_2} \times$

$$\dots n_{y_{D_y}}$$

$$\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)_{i}^{(\mathbf{i})}$$

• is the tensor with shape $(n_{y_1} \times n_{y_2} \times \dots n_{y_{D_y}})$

$$\times (n_{x_1} \times n_{x_2} \times \dots n_{x_{D_x}})$$

• defined recursively as

$$\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)_{j}^{(\mathbf{i})} = \frac{\partial \mathbf{y}^{(\mathbf{i})}}{\partial \mathbf{x}_{j}}$$

Note that

- the number of dimensions of $\mathbf{y^{(i)}}$ is $|\mathbf{y}|-1$
- the number of dimensions of \mathbf{x}_j is $|\mathbf{x}| 1$

so the recursive call (RHS of equation) operates on an object of lesser dimension and hence will reduce to a base case (derivatives involving only vectors and scalars)

Where do these higher dimensional tensors come from ?

They are omnipresent!

- The minibatch index
- multi-dimensional input data

Minibatch index

When Tensorflow shows you the shape of an object, it typically has one more dimension than "natural" and the leading dimension is **None**.

That is because Tensorflow computes on every element of the minibatch simultaneously.

So the leading index points to an input example.

Hence the extra dimension.

Multidimensional data

Lots of data is multdimensional.

For examples images have a height, width and depth (number of color channels).

Before we introduced Tensors, we "flattened" higher dimensional images into vectors.

We then had to "unflatten" the scalar derivatives in order to rearrange them so as to correspond to the same index in the input from which they originated.

For the most part, this flatten/unflatten paradigm is not necessary if we operate over Tensors.

```
In [4]: print("Done")
```

Done