# Fast Point Cloud Sampling Network

Tianxin Huanga, Yong Liu \*a, Jie Lianga, b

## ABSTRACT

The increasing number of points in 3D point clouds has brought great challenges for subsequent algorithm efficiencies. Down-sampling algorithms are adopted to simplify the data and accelerate the computation.

## 1. Introduction

Existing works [1–3] often use random sampling and the farthest point sampling (FPS) to down-sample the point clouds.

The differences between our work and former learningbased works are presented in Fig. 1.

The discrepancy between progress-net and our method is presented in Fig. 1-(b) and (c).



**Fig. 1.** (a) shows the differences between learning-based sampling strategies, while (b) and (c) present the discrepancy between progress-net and our method in multi-resolution sampling.

Our contributions can be summarized as:

 We propose a novel learning-based point cloud sampling framework named fast sampling network (FPN) by driving existing randomly sampled points to better positions;  We introduce a hybrid training strategy to help FPN adapt to different sampling resolutions by randomly introducing selecting the resolution of initial points during training.

# 2. Methodology

#### 2.1. Basic Pipeline

The basic pipeline of FPN is presented in Fig. 2. We aggregate global features from the input points with a set of multilevel perceptions (MLPs) and Max Pooling following PointNet [4].

## 2.2. Hybrid Training Strategy

The achievement of HTS is presented as Algorithm 1.

#### 2.3. Loss Function

The range constraint can be presented as

$$\mathcal{L}_{rc} = \frac{1}{N} \sum \|S_0 - S_i\|_2,\tag{1}$$

For reconstruction-related tasks, it may be Chamfer Distance or Earth Mover Distance [5] defined as

$$\mathcal{L}_{task} = \mathcal{L}_{CD}(S_1, S_2)$$

$$= \frac{1}{2} \left( \frac{1}{|S_1|} \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2 + \frac{1}{|S_2|} \sum_{x \in S_2} \min_{y \in S_1} \|x - y\|_2 \right),$$
(2)

or

$$\mathcal{L}_{task} = \mathcal{L}_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \frac{1}{|S_1|} \sum_{x \in S_1} ||x - \phi(x)||_2.$$
(3)

where  $S_1$  and  $S_2$  are input and output.  $\phi$  is a bijection from  $S_1$  to  $S_2$ .

<sup>&</sup>lt;sup>a</sup>Laboratory of Advanced Perception on Robotics and Intelligent Learning, College of Control Science and Engineering, Zhejiang University, Hangzhou, China

<sup>&</sup>lt;sup>b</sup>Beijing Institute of Mechanical and Electrical Engineering, Beijing, China

<sup>\*</sup>Corresponding author.

# 3. Experiments

#### 3.1. Dataset and implementation details

## Table 1

The number of neurons in networks.  $f_1$ ,  $f_2$ ,  $f_3$  are modules in Fig. 2.

|      | $f_1$           | $f_2$           | $f_3$         |
|------|-----------------|-----------------|---------------|
| MLPs | (128, 256, 256) | (128, 256, 256) | (128, 128, 3) |

#### Table 2

The comparison on optimal clustering.

|        |            |      | -    |      |
|--------|------------|------|------|------|
| Center | Iterations | 1    | 10   | 100  |
| 16     | FPS        | 2.43 | 2.00 | 1.98 |
|        | Ours       | 2.16 | 1.98 | 1.96 |
| 32     | FPS        | 1.20 | 1.02 | 1.00 |
|        | Ours       | 1.11 | 1.00 | 1.00 |

The hyper-parameter  $\lambda$  is tuned on the validation split of ShapeNet. Detailed network structures are shown in Table 1.

### 3.2. Discussion about clustering

Except down-stream tasks such as reconstruction or recognition, down-sampled points can also be adopted as the initial clustering centers.

The results are presented in Table 2.

### 3.3. Ablation Study

The influence of range constraint. Note that this is only conducted to observe the influence of range constraint weight  $\lambda$  on sampling performances instead of the tuning of  $\lambda$ , which is chosen according to the val set introduced in subsection 3.1.

# Algorithm 1 Training with Hybrid Training Strategy

Input: data X, the number of iterations iter, the number of resolutions m;  $prob_1, prob_2, \ldots, prob_m = \frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m};$  for i=1 to iter do Select the resolution r according to  $prob_1, \ldots, prob_m;$  Train FPN by descending gradient:  $\Delta_{\theta_{FPN}} \mathcal{L}_{loss}(Y_{X,r})$  end

# Data availability

Data will be made available on request.

# Acknowledgement

We thank all reviewers and the editor for excellent contributions. This work is supported by the Key Research and Development Project of Zhejiang Province under Grant 2021C01035.

## References

- [1] Charles Ruizhongtai Qi et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space". In: Advances in neural information processing systems 30 (2017).
- [2] Qingyong Hu et al. "Randla-net: Efficient semantic segmentation of large-scale point clouds". In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, pp. 11108–11117.
- [3] Charles R Qi et al. "Deep hough voting for 3d object detection in point clouds". In: proceedings of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 9277–9286.
- [4] Charles R Qi et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, pp. 652–660.
- [5] Haoqiang Fan, Hao Su, and Leonidas J Guibas. "A point set generation network for 3d object reconstruction from a single image". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, pp. 605–613.



Fig. 2. The whole pipeline of FPN. The + denotes element-wised addition.  $f_1$  and  $f_2$  aggregate features by MultiLayer Perceptrons(MLPs) and pooling, while  $f_3$  is a group of MLPs to predict offsets from coordinates and features. The task network is corresponding to the specific task, such as point cloud recognition and reconstruction.  $L_{task}$  is the loss constrained the task network.