D-score for measuring neurocognitive development 0-4 years

Stef van Buuren 2018-04-04

Contents

Preface					
1	Introduction				
	1.1	First 1000 days	7		
		Relevance of child development	7		
	1.3	Limitations of stunting	7		
	1.4	Measuring neurocognitive development	7		
2	Short	t history	9		
	2.1	Growth and development	9		
	2.2	Gesell maturation theory, Piaget stages, Kohlberg stages	9		
		One number for development	9		
		Current situation: Bayley, Griffiths, IQ, domains	9		
3	Com	parisons	11		
	3.1	Types of comparisons needed	11		
	3.2	Problems of age-based measurement	11		
	3.3	What is a latent variable	11		
	3.4	Item response functions	11		
	$3.5 ext{ } 1$	Person response functions	11		
	3.6	Family of IRT models	11		
4	Rasc	h model	13		
	4.1	Rasch model	13		
	$4.2 ext{ } 1$	Perfect symmetry	13		
	4.3	Parameter separation	13		
	4.4	The model as ideal	13		
5	Items	s	15		
	5.1	SMOCC data: design	15		
	$5.2 ext{ } 1$	Empirical and fitted item response curves	15		
	5.3]	Item fit	15		
	5.4]	Item information at a given ability	15		
	5.5	Item information at a given age	15		
6	Perso	ons	17		
	6.1	Empirical and fitted person response curves	17		
		Person fit	17		
	6.3	Ability estimation	17		
	6.4]	Measurement precision	17		
	$6.5 ext{ } 1$	Distribution of ability against age	17		

4 CONTENTS

7	Vali	dity	19
	7.1	Role of validity	19
	7.2	Discriminatory validity	19
	7.3	Concurrent validity	19
	7.4	Predictive validity	19
8	Outcome		
	8.1	Application I: D-score as neurocognitive outcome at 1000 days	21
	8.2	D-score of reference children at 2 years	21
	8.3	D-score of pre-terms at 2 years	21
	8.4	D-score of children in LMIC at 2 years	21
	8.5	Comparison	21
9	Dela		23
J	9.1	Application II: D-score to identify delayed development	23
	9.2	Longitudinal D-score patterns in different populations	23
	9.3	Issues in defining developmental delay	23
	9.4	Specificity in reference, pre-term and LMIC populations	23
	9.5	Practical implications	23
1.0			٥-
10		asequences	25
		Application III: Long-term health consequences of delay in pre-terms	25
		Relevance of long-term health outcomes	25
		Predictive power of D-score	25
		Practical implications	25
	10.5	Opportunities and impact of early intervention	25
11	Disc	cussion	27
	11.1	Usefulness of D-score for monitoring child health	27
	11.2	Opportunities for early intervention	27
	11.3	D-score for international settings	27
		D-score from existing instruments	27
	11.5	Creating new instruments for D-score	27

Preface

This is an introductory booklet on the measurement of child development by means of the D-score. The D-score is a one-number summary that quantifies generic neurocognitive development for children with ages 0-4 years.

This is the first in a series of three booklets. The series consists of the following titles:

- 1. D-score for measuring neurocognitive development 0-4 years (this booklet)
- 2. D-score for international comparisons
- 3. D-score for creating better instruments

The development of this series was kindly supported by the Bill & Melinda Gates Foundation.

6 CONTENTS

Introduction

- 1.1 First 1000 days
- 1.2 Relevance of child development
- 1.3 Limitations of stunting
- 1.4 Measuring neurocognitive development

Short history

- 2.1 Growth and development
- 2.2 Gesell maturation theory, Piaget stages, Kohlberg stages
- 2.3 One number for development
- 2.4 Current situation: Bayley, Griffiths, IQ, domains

Comparisons

- 3.1 Types of comparisons needed
- 3.2 Problems of age-based measurement
- 3.3 What is a latent variable
- 3.4 Item response functions
- 3.5 Person response functions
- 3.6 Family of IRT models

Rasch model

- 4.1 Rasch model
- 4.2 Perfect symmetry
- 4.3 Parameter separation
- 4.4 The model as ideal

Items

- 5.1 SMOCC data: design
- 5.2 Empirical and fitted item response curves
- 5.3 Item fit
- 5.4 Item information at a given ability
- 5.5 Item information at a given age

16 CHAPTER 5. ITEMS

Persons

- 6.1 Empirical and fitted person response curves
- 6.2 Person fit
- 6.3 Ability estimation
- 6.4 Measurement precision
- 6.5 Distribution of ability against age

Validity

- 7.1 Role of validity
- 7.2 Discriminatory validity
- 7.3 Concurrent validity
- 7.4 Predictive validity

Outcome

- 8.1 Application I: D-score as neurocognitive outcome at 1000 days
- 8.2 D-score of reference children at 2 years
- 8.3 D-score of pre-terms at 2 years
- 8.4 D-score of children in LMIC at 2 years
- 8.5 Comparison

Delay

- 9.1 Application II: D-score to identify delayed development
- 9.2 Longitudinal D-score patterns in different populations
- 9.3 Issues in defining developmental delay
- 9.4 Specificity in reference, pre-term and LMIC populations
- 9.5 Practical implications

24 CHAPTER 9. DELAY

Consequences

- 10.1 Application III: Long-term health consequences of delay in pre-terms
- 10.2 Relevance of long-term health outcomes
- 10.3 Predictive power of D-score
- 10.4 Practical implications
- 10.5 Opportunities and impact of early intervention

Discussion

- 11.1 Usefulness of D-score for monitoring child health
- 11.2 Opportunities for early intervention
- 11.3 D-score for international settings
- 11.4 D-score from existing instruments
- 11.5 Creating new instruments for D-score