Problema de Alocação de Salas de Aula

RELATÓRIO TÉCNICO

MAIO, 2010

Flávia Shizue Kohiyama Gizeli Ribas de Morais

Unioeste

Sumário

1	Introdução			
	1.1	Objeti	vo	
	1.2		cativa	
2	Análise do Problema			
	2.1	Descri	ção do Problema	
	2.2	Descri	ção da Solução	
3	Desenvolvimento da Solução			
	3.1	Algori	$tmos\ldots\ldots\ldots\ldots$	
		3.1.1	Estratégia CSP	
		3.1.2		
		3.1.3		
			com a Utilização da Estratégia CSP	
		3.1.4		
	3.2	Metod	ologia Utilizada	
		3.2.1	Informações Técnicas	
		3.2.2	Comparações	
4	Conclusão			
\mathbf{R}	efere	ncias		

Introdução

Diante da necessidade de resolver o problema de alocação de salas de aulas no Centro de Engenharias e Ciências Exatas (CECE) da Universidade Estadual do Oeste do Paraná (Unioeste) que encontra-se localizado no Parque Tecnológico Itaipu (PTI), visando facilitar e melhorar a realização deste trabalho, que atualmente é realizado de forma manual, diminuindo a ocorrência de conflitos de horários.

1.1 Objetivo

Desenvolver um sistema de alocação de salas de aula para auxiliar no escalonamento de horários das aulas do Centro de Engenharias e Ciências Exatas da Unioeste.

1.2 Justificativa

Atualmente a tecnologia se faz presente em todas as áreas de trabalho, através da evolução dos mecanismos e processos utilizados para a realização das atividades afins de cada área. Diante disso, a partir de uma análise dos processos realizados pela área administrativa da Unioeste relacionados ao escalonamento de horários e turmas para o período letivo, verificou-se a necessidade de automação deste processo. Visando minimizar a possibilidade de ocorrência de conflitos de horários e também melhorar o processo de alocação de salas de aula, substituindo o processo manual. Desta forma gerou-se uma solução baseada em estudos de Algoritmos de Busca. Neste caso, serão utilizados os algoritmos de Busca em Profundidade junto com a Estratégia CSP e também o Algoritmo de Busca Gulosa (Greedy Search). Ao final será feita uma verificação dos resultados obtidos a partir da execução dos algoritmos citados

anteriormente, comparando seus resultados. Inicialmente é esperado como resultado que o Algoritmo de Busca Gulosa obtenha melhor performance em comparação com os resultados obtidos pela execução do outro algoritmo.

Análise do Problema

2.1 Descrição do Problema

O problema de alocação de salas (PAS) é muito comum. Diversas universidades e outras instituições utilizam técnicas de alocação de salas e recursos para a obtenção de melhores resultados ao final do processo. Sendo assim o problema apresentado pelo Centro de Engenharias e Ciências Exatas (CECE) da Unioeste campus de Foz do Iguaçu, fará parte destas estatísticas. A solução apresentada neste relatório está relacionada a probabilidade de ocorrência de erros e ao excesso de esforço manual para realizar a alocação de salas de aulas do CECE, localizado nas dependências do PTI. O desenvolvimento da solução está baseado no uso das seguintes informações fornecidas:

- Série e Quantidade de alunos matriculados em cada série;
- Nome da disciplina e quantidade média de matriculados na disciplina;
- Identificação da sala e sua capacidade;
- Nome do professor da disciplina e a sua disponibilidade de horários;

2.2 Descrição da Solução

Após pesquisas realizadas uma solução encontrada para solucionar o problema, é a utilização do algoritmo Busca Gulosa. Foi escolhido o algoritmo de Busca em Profundidade com a estratégia CSP para fazer uma comparação entre o algoritmo escolhido para a solução e uma outra opção que não seria uma boa opção. Para realizar uma comparação com os resultados destes algoritmos serão analisados os resultados de saída de cada um dos algoritmos.

Desenvolvimento da Solução

3.1 Algoritmos

3.1.1 Estratégia CSP

Segundo o livro Programação Lógica por Restrições na Resolução de Problemas, "a Programação Lógica por Restrições (PLR) compõe um paradigma computacional que combina a natureza declarativa da programação em lógica com a eficiência dos métodos de resolução de problemas que recorrem a restrições. Esta tecnologia tem-se mostrado eficaz na resolução de problemas que são intratáveis quando se recorrem a outras técnicas. Entre esses problemas encontram-se diversas classes de problemas de natureza combinatória, tais como os problemas de escalonamento, de planejamento e de atribuição de recursos. É de notar que uma das vantagens mais significativas deste modelo passa por oferecer um menor tempo de desenvolvimento de programas e uma eficiência comparável à das linguagens imperativas". Esta é uma estratégia onde são impostas algumas condições às quais o software criado deve atender. Neste caso são restrições que controlam o acesso aos dados dos cursos, dos horários das disciplinas, do turno de oferecimento da disciplina, entre outras. As restrições utilizadas para o desenvolvimento dos códigos deste trabalho estão descritas na seção referente à descrição do problema a ser resolvido.

3.1.2 Busca em Profundidade

Este tipo de busca inicia a partir de um nó localizado na raiz da árvore de dados, onde então suas fronteiras são analisadas e é feito a escolha pelo nó mais a direita até chegar em um nó raiz. A partir deste ponto caso a solução ainda não tenha sido encontrada, retorna-se um nível na árvore e uma nova escolha é realizada, de forma a busca a solução mais apropriada

para a resolução do problema apresentado. A técnica de retornar um nível na árvore recebe o nome de backtracking, que será explicada mais adiante com mais detalhes. O uso desta estratégia de busca permite sempre encontrar uma solução para o problema, portanto é considerado completa, porém nem sempre esta solução encontrada é considerada uma solução ótima, ou seja, a melhor solução possível.

3.1.3 Busca em Profundidade com Backtraking em conjunto com a Utilização da Estratégia CSP

Esta técnica utiliza o retorno ao nó anterior e neste caso está sendo utilizada em conjunto com a estratégia de satisfação por restrições. Segundo , [?] backtracking é um método para iterar (percorrer) todas as possíveis configurações em um espaço qualquer. É um algoritmo geral que poderá ser personalizado para cada tipo de aplicação.

3.1.4 Busca Gulosa (Greedy)

Esta estratégia de busca, também conhecida por Greedy Search considera apenas o fator heurístico h(n). Armazena o caminho que está percorrendo até encontrar uma solução aceitável, porém não armazena o quanto ele caminhou na árvore de dados. Não é considerado completo e nem ótimo, pois pode parar em um nó indesejável . Apresenta risco de entrar em loop infinito caso não faça tratamento de nós repetidos.

3.2 Metodologia Utilizada

Para atingir o resultado do trabalho de forma organizada utilizou-se o padrão de desenvolvimento de código MVC (Model View Control), onde o objetivo é separar o código -fonte em camadas onde respectivamente, na camada Model estão localizados os dados ou a lógica de negócio, na camada View está a interface com o usuário e a camada onde é descrito o fluxo de toda a aplicação chama-se Control . O objetivo de fazer uso desta técnica visa permitir que a lógica de negócio possa ser visualizada e acessada por diversas interfaces, como, por exemplo, celular, PDA, outros computadores conectados na rede entre outras. É também utilizada em aplicações interativas que necessitam de interfaces flexíveis. Por isso dá-se o nome de modelo a camada de negócio, pois não se pode ter acesso à quantidade e nem quais são as interfaces que a estão acessando. Para a resolução do problema apresentado, a geração automática de horários em salas de aula, foram utilizados dois algoritmos

para realizar esta tarefa, o Busca em Profundidade com o uso da técnica de CSP e o algoritmo de Busca Gulosa, também conhecido como Greedy.

3.2.1 Informações Técnicas

Os testes seriam realizados no computador que oferece as seguintes configurações:

- Sistema Operacional de 32 bits, Windows Vista Home Premium com Service Pack 2;
- Memória RAM de 3 Gb;
- Processador Intel Core 2 Duo T5450, 1,67 GHz;

Quanto a estratégia que seria utilizada para os testes, utilizariamos a comparação entre os resultados gerados pelos algoritmos desenvolvidos de forma a verificar se obtiveram o resultado esperado de acordo com os dados de entrada. Seriam utilizados diversos arquivos com diferentes quantidades de dados.

3.2.2 Comparações

Devido a dificuldades encontradas durante o desenvolvimento do trabalho não foi possível realizar testes, pois tivemos problemas com a geração da interface gráfica, porém ambos os algoritmos apresentam resultados após a sua execução.

Conclusão

Após a realização deste trabalho com todas as dificuldades encontradas durante o percurso de desenvolvimento, chegou-se à seria de grande importância para a realização da terefa de distribuição de horários dentre as salas de aulas, a execução de um software como era a intenção inicial de desenvolvimento.

=

Referências Bibliográficas

- [1] Ana Estela Antunes da Silva. Tópico agentes de buscas buscas cegas. http://www.unimep.br/aeasilva/topicoBCEGA.pdf.
- [2] Rodrigo Rebouças de Almeida. Model-view-controller (mvc). http://www.dsc.ufcg.edu.br/jacques/cursos/map/html/arqu/mv.
- [3] Josiane M. Pinheiro Ferreira. Problemas de satisfação de restrições. http://www.din.uem.br/jmpinhei/SI/07csp.pdf, 2007.
- [4] Marcio Suenaga and Marco A.S.Netto. Programação por restrições. http://grenoble.ime.usp.br/ gold/cursos/2005/mac5758/seminario-marcio-marco.pdf, 2005.