Finding a Chebychev center of a polyhedron 1.

max
$$r$$

s.t. $ya_i + |a_i|r \le b_i \quad \forall i \in [m],$
 $y_i \ge r \quad \forall i \in [n]$ (1)

Example given the polytope defined by this lp:

$$-x_1 + x_2 \le 0$$

$$x_1 + x_2 \le 8$$

$$x_i \ge 0 \quad \forall i \in \{1, 2\}$$

Figure 1: Sample polytope

The lp to solve for the chebychev center is

maximize
$$r$$
 (2a)

subject to
$$-1(y_1 + \frac{-1}{\sqrt{2}}r) + (y_2 + \frac{1}{\sqrt{2}}r) \le 0,$$
 (2b)

$$(y_1 + \frac{-1}{\sqrt{2}}r) + (y_2 + \frac{1}{\sqrt{2}}r) \le 8,$$
 (2c)

$$y_i \ge r \quad \forall i \in \{1, 2\},$$
 (2d)
 $r \ge 0$ (2e)

$$r \ge 0 \tag{2e}$$

The optimal objective value is 1.6585 with $y = \begin{pmatrix} 4 \\ 1.65685 \end{pmatrix}$

Figure 2: Sample polytope with chebychev center

1.a Assume that P has a Chebychev center. Write a linear program for the problem of finding such a Chebyshev center and the radius of the corresponding ball, and prove that your formulation is correct.

See Equation 1

1.b Can the linear program that you found in 1.a help deciding whether a Chebychev center exists at all?

Yes, if there is no Chebychev center at all, the lp becomes unbounded.

2. Existence of vertices in full-rank polyhedra

Let $A \in \mathbb{R}^{m \times n}$ have full column rank, let $b \in \mathbb{R}^m$, and consider the polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$

2.a For $v, w \in \mathbb{R}^n$ with $w \neq 0$, the set $L(v, w) := \{v + \lambda w : \lambda \in \mathbb{R}\}$ is called a line. Prove that P does not contain a line, i.e., there are no $v, w \in \mathbb{R}^n$ with $w \neq 0$ such that $L(v, w) \subseteq P$.

Informal: The Polyhedron is constrained in all variables (because it is a full column rank constrained polyhedron). So there is no possible line since λ can be chosen to violate a constraint.

- 2.b Prove that precisely one of the following two statements is true.
 - (i) P is empty
 - (ii) P has a vertex

Informal: If the polyhedron is not empty, it is at least 2-dimensional. Therefore the two constraints have to intersect somewhere and form a vertex at the intersection. The same is true for the higher dimensional ones, at least two constraints intersect with each other and form a vertex.