TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P01A, 03 abr 2023
Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [25] Quando um explosivo é detonado debaixo d'água, ele se converte quase que instantaneamente em gás. A pressão inicial do gás é p_0 . A explosão produz uma onda de choque esférica que se propaga (expandindo-se) pela água. Durante a propagação, o raio da R da esfera aumenta, e a pressão p do gás em seu interior diminui. A pressão p do gás durante a explosão depende das variáveis p_0 , R, p (massa específica da água, cujas dimensões são p0 kg. (compressibilidade isotérmica da água) e da massa p0 de explosivo. Note que p0 felinido por

$$\kappa_T \equiv \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right).$$

Há 3 dimensões fundamentais M, L e T, e 6 variáveis. Obtenha os 3 parâmetros adimensionais do problema, escolhendo **obrigatoriamente** p_0 , R e ρ como variáveis em comum (no máximo) para os mesmos.

SOLUÇÃO DA QUESTÃO:

A lista de variáveis e dimensões é

$$[\![p]\!] = M L^{-1} T^{-2},$$

 $[\![\kappa_T]\!] = M^{-1} L T^2$
 $[\![m]\!] = M,$
 $[\![p_0]\!] = M L^{-1} T^{-2},$
 $[\![R]\!] = L,$
 $[\![\rho]\!] = M L^{-3}.$

Os 3 grupos adimensionais são:

$$\Pi_{1} = p p_{0}^{a} R^{b} \rho^{c},$$

$$\llbracket \Pi_{1} \rrbracket = [M L^{-1} T^{-2}] [M L^{-1} T^{-2}]^{a} [L^{b}] [M L^{-3}]^{c}$$

$$1 = M^{0} L^{0} T^{0} = M^{1+a+c} L^{-1-a+b-3c} T^{-2-2a}.$$

O sistema de equações é

$$a+c = -1,$$

$$-a+b-3c = 1,$$

$$-2a = 2$$

donde a = -1, b = 0, c = 0 e

$$\Pi_1 = \frac{p}{p_0}$$
.

$$\begin{split} \Pi_2 &= \kappa_T p_0^a R^b \rho^c, \\ \llbracket \Pi_1 \rrbracket &= [\mathsf{M}^{-1} \, \mathsf{L} \, \mathsf{T}^2] [\mathsf{M} \, \mathsf{L}^{-1} \, \mathsf{T}^{-2}]^a [\mathsf{L}^b] [\mathsf{M} \, \mathsf{L}^{-3}]^c \\ 1 &= \mathsf{M}^0 \mathsf{L}^0 \mathsf{T}^0 = \mathsf{M}^{-1 + a + c} \mathsf{L}^{1 - a + b - 3c} \mathsf{T}^{2 - 2a} \end{split}$$

O sistema de equações é

$$a+c=1,$$

$$-a+b-3c=-1,$$

$$-2a=-2$$

donde a = 1, b = 0, c = 0 e

$$\Pi_2=\kappa_T p_0.$$

$$\Pi_{3} = mp_{0}^{a}R^{b}\rho^{c},$$

$$\llbracket \Pi_{1} \rrbracket = [M][ML^{-1}T^{-2}]^{a}[L^{b}][ML^{-3}]^{c}$$

$$1 = M^{0}L^{0}T^{0} = M^{1+a+c}L^{-a+b-3c}T^{-2a}$$

O sistema de equações é

$$a+c = -1$$
$$-a+b-3c = 0$$
$$-2a = 0$$

donde a = 0, b = -3, c = -1 e

$$\Pi_3 = mR^{-3}\rho^{-1} \blacksquare$$

 $\mathbf{2}$ [25] Escreva uma linha de Python que converte 7777 da base 10 para a base 2.

SOLUÇÃO DA QUESTÃO:

bin(7777) **•**

a) [05] Calcule a integral analítica

$$I = \int_{-\pi/2}^{+\pi/2} \cos(x) \, \mathrm{d}x.$$

- b) [10] Aproxime o $\cos(x)$ por uma parábola $f(x) = ax^2 + bx + c$ passando por $(-\pi/2, 0)$, (0, 1) e $(+\pi/2, 0)$ (ou seja: **encontre** $a, b \in c$).
- c) [10] Com a, b e c encontrados acima, obtenha o valor de

$$I_a = \int_{-\pi/2}^{+\pi/2} f(x) \, \mathrm{d}x.$$

Atenção: simplifique ao máximo o resultado para I_a e depois obtenha I_a **numericamente**, fazendo as contas à mão, com apenas 3 algarismos significativos: qual é a diferença relativa $|(I_a - I)/I|$?

SOLUÇÃO DA QUESTÃO:

a)

$$I = \int_{-\pi/2}^{+\pi/2} \cos(x) \, \mathrm{d}x = 2.$$

b)

$$a\left(-\frac{\pi}{2}\right)^2 + b\left(-\frac{\pi}{2}\right) + c = 0,$$

$$c = 1,$$

$$a\left(\frac{\pi}{2}\right)^2 + b\left(\frac{\pi}{2}\right) + c = 0,$$

donde

$$a\frac{\pi^2}{4} + 1 = 0,$$

$$a = -\frac{4}{\pi^2},$$

$$b = 0.$$

c)

$$f(x) = -\frac{4}{\pi^2}x^2 + 1;$$

$$\int_{-\pi/2}^{+\pi/2} f(x) \, dx = \frac{2\pi}{3} \approx 2,09;$$

$$\left| \frac{I_a - I}{I} \right| = \frac{2,09 - 2}{2} = \frac{0,09}{2} = 0,045 \blacksquare$$

4 [25] (**Anulada: resposta foi impressa na prova**) Traduza a função em Python abaixo em **apenas duas fórmulas** (no máximo) para o cálculo da integral numérica correspondente.

```
def simple(n,a,b,f):
    dx = (b-a)/n;
    I = 0.0;
    for i in range(1,n+1):
        xi = a + (i-0.5)*dx
        I += f(xi)*dx
    return I
```

$$\Delta x = (b - a)/n,$$

$$I = \sum_{i=1}^{n} f(a + (i - 1/2)\Delta x)\Delta x$$

Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [25] Quando um escoamento uniforme com velocidade U encontra uma placa de comprimento L, forma-se uma camada-limite (mostrada ao lado em cinza), que é uma região em que a velocidade vai de zero na placa até U no limite superior da camada-limite. As variáveis de interesse do problema são a força **por unidade de largura** F da placa sobre o escoamento, a massa específica ρ do fluido, a viscosidade cinemática ν do fluido ($\llbracket \nu \rrbracket = \mathsf{L}^2 \mathsf{T}^{-1}$), o comprimento L da placa, a espessura δ da camada-limite em x = L, e a velocidade não-perturbada U.

SOLUÇÃO DA QUESTÃO:

A lista de variáveis e dimensões é

$$[\![F]\!] = M T^{-2},$$
 $[\![v]\!] = L^2 T^{-1},$
 $[\![\delta]\!] = L,$
 $[\![\rho]\!] = M L^{-3},$
 $[\![U]\!] = L T^{-1}$
 $[\![L]\!] = L.$

Os 3 grupos adimensionais são:

$$\Pi_{1} = F \rho^{a} U^{b} L^{c},$$

$$\llbracket \Pi_{1} \rrbracket = [M \mathsf{T}^{-2}] [M \mathsf{L}^{-3}]^{a} [, \mathsf{L} \mathsf{T}^{-1}]^{b} [\mathsf{L}]^{c}$$

$$1 = M^{0} I^{0} \mathsf{T}^{0} = M^{1+a} I^{-3a+b+c} \mathsf{T}^{-2-b}.$$

O sistema de equações é

$$a + 1 = 0,$$

 $-3a + b + c = 0,$
 $-b - 2 = 0,$

donde a = -1, b = -2, c = -1 e

$$\Pi_1 = \frac{F}{\rho U^2 L}.$$

$$\begin{split} \Pi_2 &= \nu \rho^a U^b L^c, \\ \llbracket \Pi_2 \rrbracket &= [\mathsf{L}^2 \, \mathsf{T}^{-1}] [\mathsf{M} \, \mathsf{L}^{-3}]^a [\mathsf{L} \, \mathsf{T}^{-1}]^b [\mathsf{L}]^c \\ 1 &= \mathsf{M}^0 \mathsf{L}^0 \mathsf{T}^0 = \mathsf{M}^a \mathsf{L}^{2-3a+b+c} \mathsf{T}^{-1-b} \end{split}$$

O sistema de equações é

$$a = 0$$
,
 $-3a + b + c + 2 = 0$,
 $-b - 1 = 0$,

donde a = 0, b = -1, c = -1 e

$$\Pi_2 = \frac{v}{UL}.$$

$$\begin{split} \Pi_3 &= \delta \rho^a U^b L^c, \\ \llbracket \Pi_3 \rrbracket &= [\mathsf{L}] [\mathsf{M} \, \mathsf{L}^{-3}]^a [\mathsf{L} \, \mathsf{T}^{-1}]^b [\mathsf{L}]^c \\ 1 &= \mathsf{M}^0 \mathsf{L}^0 \mathsf{T}^0 = \mathsf{M}^a \mathsf{L}^{1-3a+b+c} \mathsf{T}^{-b} \end{split}$$

O sistema de equações é

$$a = 0,$$

 $-3a + b + c + 1 = 0,$
 $-b = 0,$

donde a = 0, b = -0, c = -1 e

$$\Pi_3 = \frac{\delta}{L} \blacksquare$$

2 [25] Dado o programa em Python a seguir,

```
#!/usr/bin/python3
from numpy.random import rand
fob = open('a.bin','wb')
for k in range(3):
    a = rand(10)
    a.tofile(fob)
fob.close()
```

e sabendo que um float ocupa 8 bytes em Python, qual é o tamanho do arquivo 'a.bin' em bytes que o programa gera?

SOLUÇÃO DA QUESTÃO:

240

3 [25] A **Regra de Simpson** para integração numérica utiliza um número par de intervalos e aproxima a integral de f(x) com 2n + 1 pontos segundo

$$\int_a^b f(x) dx \approx \frac{\Delta x}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + \ldots + 2f(x_{2n-2}) + 4f(x_{2n-1}) + f(x_{2n}) \right],$$

onde $x_0 = a$, $x_{2n} = b$, e $\Delta x = (b - a)/(2n)$. Escreva uma função simpson (em Python) que calcula a fórmula acima. Os argumentos de entrada devem ser (m,a,b,f), onde m = 2n e f é a função a ser integrada.

```
def simpson(m,a,b,f):
   assert(m % 2 == 0)
  dx = (b-a)/m
  Se = f(a) + b(b)
  S4 = 0.0
  for k in range(1,m,2):
     xk = a + k*dx
     S4 += f(xk)
  S4 *= 4
  S2 = 0.0
  for k in range(2,m,2):
     xk = a + k*dx
     S2 += f(xk)
  S2 *= 2
  I = (dx/3.0)*(Se + S4 + S2)
  return I
```

$$f(x) = \frac{e^{-x}}{\sqrt{x}}$$

não pode ser integrada em termos de funções transcedentais elementares. No entanto, expandindo-se $\exp(-x)$ em série de Taylor em torno de x = 0, é possível obter facilmente uma "série" para f(x), cujos primeiros termos são

$$f(x) = \frac{1}{\sqrt{x}} - \sqrt{x} + \frac{x^{3/2}}{2} - \frac{x^{5/2}}{6} + \frac{x^{7/2}}{24} - \frac{x^{9/2}}{120} + \dots$$

a) [12.5] Obtenha o termo geral da série acima, ou seja: obtenha as expressões para C_n e p_n para $n=0,1,2,\ldots$ que concordam com os termos acima e tais que

$$f(x) = \sum_{n=0}^{\infty} C_n x^{p_n}.$$

b) [12.5] Integrando termo a termo, encontre a série (isto é, D_n e q_n) da primitiva de f(x):

$$F(x) = \sum_{n=0}^{\infty} D_n x^{q_n}$$

de tal forma que F'(x) = f(x).

SOLUÇÃO DA QUESTÃO:

a

$$\frac{\exp(-x)}{x^{1/2}} = x^{-1/2} \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{n-1/2}}{n!};$$

portanto, $C_n = \frac{(-1)^n}{n!}$ e $p_n = n - 1/2$. b) Integrando termo a termo,

$$F(x) = \int f(x) dx = \int \sum_{n=0}^{\infty} (-1)^n \frac{x^{n-1/2}}{n!} dx$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int x^{n-1/2} dx$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{x^{n+1/2}}{n+1/2}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1/2)n!} x^{n+1/2};$$

logo, $D_n = \frac{(-1)^n}{(n+1/2)n!}$ e $q_n = n + 1/2$

TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P02A, 28 abr 2023
Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Como vimos em aula, o método de Runge-Kutta permite resolver (em princípio) qualquer sistema de equações diferenciais ordinárias do tipo

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = f(x, \boldsymbol{y})$$

simplesmente programando f(x, y) e passando a função como argumento para rk4(x,y,h,f). Se o sistema de EDOs é

$$\frac{\mathrm{d}}{\mathrm{d}x} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} y_2 + y_3 \\ y_3 - y_1 \\ y_1 + y_2 \end{bmatrix},$$

programe a f(x,y) correspondente em Python.

SOLUÇÃO DA QUESTÃO:

from numpy import array
def f(x,y):
 return array([v[1]+v[2] v[2]-v[0] v[0]+v[

return array([y[1]+y[2],y[2]-y[0],y[0]+y[1]])

$$v = ae_1 + be_2,$$
 $(3,4) = a(1,1) + b(-1,1)$
 $(3,4) = (a-b,a+b),$
 $a-b=3,$
 $a+b=4,$
 $2a=7,$
 $a=7/2,$
 $7/2-b=3,$
 $b=7/2-3=7/2-6/2=1/2$

$$|\mathbf{p}| = \sqrt{1/4 + 1/4 + 1/4} = \sqrt{3/4} = \frac{\sqrt{3}}{2};$$

$$\mathbf{m} = \frac{1}{|\mathbf{p}|} \mathbf{p} = \frac{2}{\sqrt{3}} (1/2, 1/2, 1/2);$$

$$\mathbf{v} \cdot \mathbf{m} = (3, 3, 1) \cdot \frac{2}{\sqrt{3}} (1/2, 1/2, 1/2)$$

$$= \frac{2}{\sqrt{3}} [3/2 + 3/2 + 1/2]$$

$$= \frac{2}{\sqrt{3}} \frac{7}{2} = \frac{7}{\sqrt{3}} \blacksquare$$

$$([u \times v] \times w) \cdot p$$

em função dos produtos escalares $(u \cdot w)$, $(v \cdot p)$, $(u \cdot p)$ e $(v \cdot w)$. Sugestão: você vai precisar da identidade polar.

$$[\mathbf{u} \times \mathbf{v}]_k = \epsilon_{ijk} u_i v_j,$$

$$[\mathbf{u} \times \mathbf{v}] \times \mathbf{w} = \epsilon_{klm} [\mathbf{u} \times \mathbf{v}]_k w_l \mathbf{e}_m,$$

$$= \epsilon_{klm} \epsilon_{ijk} u_i v_j w_l \mathbf{e}_m;$$

$$([\mathbf{u} \times \mathbf{v}] \times \mathbf{w}) \cdot \mathbf{p} = \epsilon_{klm} \epsilon_{ijk} u_i v_j w_l \mathbf{e}_m \cdot \mathbf{p}_n \mathbf{e}_n$$

$$= \epsilon_{ijk} \epsilon_{klm} u_i v_j w_l \mathbf{p}_n \delta_{mn}$$

$$= \epsilon_{ijk} \epsilon_{klm} u_i v_j w_l \mathbf{p}_m$$

$$= \epsilon_{ijk} \epsilon_{lmk} u_i v_j w_l \mathbf{p}_m$$

$$= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) u_i v_j w_l \mathbf{p}_m$$

$$= u_i v_j w_i \mathbf{p}_j - u_i v_j w_j \mathbf{p}_i$$

$$= (u_i w_i) (v_j \mathbf{p}_j) - (u_i \mathbf{p}_i) (v_j w_j)$$

$$= (\mathbf{u} \cdot \mathbf{w}) (\mathbf{v} \cdot \mathbf{p}) - (\mathbf{u} \cdot \mathbf{p}) (\mathbf{v} \cdot \mathbf{w}) \blacksquare$$

TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P02A, 28 abr 2023

0

Prof. Nelson Luís Dias Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

 ${f 1}$ [25] Dado o programa a seguir escrito em Python,

```
#!/usr/bin/python3
                    \underline{\text{from}} numpy \underline{\text{import}} array
   3
                                       0.1
                                                                                                                                                                                                    # passo em x
                  x = [0.0]
                                                                                                                                                                                                    # x inicial
                  y = [array([1.0,0.0])]
                                                                                                                                                                                                    # v inicial
                   n = \frac{\text{int}}{\text{def}} (10/\text{h})
\frac{\text{def}}{\text{ff}} (x,y):
                                                                                                                                                                                                    # número de passos
                                         <u>return</u> array([y[0]+y[1],y[0]-y[1]])
                   \underline{\text{def}} \overline{\text{rk4}(x,y,h,ff)}:
10
                                      k1 = h*ff(x,y)
                               k2 = h*ff(x+h/2,y+k1/2)
11
                                    k3 = h*ff(x+h/2,y+k2/2)

k4 = h*ff(x+h,y+k3)
12
13
                                  yn = y + k1/6.0 + k2/3.0 + k3/3.0 + k4/6.0
14
                                     return yn
               \frac{\underline{\text{for i in } \underline{\text{range}}}}{xn = (i+1)*h};
16
                                                                                                                                                                                              # loop da solução numérica
17
                                    yn = rk4(x[i],y[i],h,ff)
18
19
                                   x.append(xn)
                                     y.append(yn)
21
               fou = open('ruk.out','wt')
                                                                                                    (0,n+1):  # imprime o arquivo de saída '%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%12.6f_{\perp}%
22
                 \underline{\underline{\text{for i } \underline{\text{in } \text{range}}}}(0,n+1):
                                     fou.write(
23
                   fou.close()
```

qual é o problema que ele resolve? Escreva todas as equações que especificam completamente o problema.

$$\frac{\mathrm{d}}{\mathrm{d}x} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} +1 & +1 \\ +1 & -1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \qquad y_1(0) = 1, \qquad y_2(0) = 0 \blacksquare$$

$$v = xe_1 + ye_2 + ze_3,$$

 $(1, 1, 1) = x(1, 1, 0) + y(1, -1, 0) + z(0, 2, 1),$
 $(1, 1, 1) = (x + y, x - y + 2z, z),$
 $z = 1,$
 $x + y = 1,$
 $x - y = 1 - 2 = -1,$
 $x = 0,$
 $y = 1$

 $\mathbf{3}$ [25] Seja $E = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ a base canônica do \mathbb{R}^3 , e $F = (f_1, f_2, f_3)$ uma outra base, onde

$$f_1 = \frac{1}{\sqrt{3}}(1, 1, 1),$$

$$f_2 = \frac{1}{\sqrt{6}}(-1, 2, -1),$$

$$f_3 = \frac{1}{\sqrt{2}}(-1, 0, 1).$$

- a) [10] Mostre que F é uma base ortonormal.
- b) [15] Calcule a matriz de rotação de *E* para *F*.

SOLUÇÃO DA QUESTÃO:

a)

$$f_{1} \cdot f_{1} = 1,$$

$$f_{1} \cdot f_{2} = f_{2} \cdot f_{1} = 0,$$

$$f_{1} \cdot f_{3} = f_{3} \cdot f_{1} = 0,$$

$$f_{2} \cdot f_{2} = 1,$$

$$f_{2} \cdot f_{3} = 0,$$

$$f_{3} \cdot f_{3} = 1.$$

b)

$$C_{ij} = f_{j} \cdot e_{i} :$$

$$C_{11} = f_{1} \cdot e_{1} = \frac{1}{\sqrt{3}};$$

$$C_{12} = f_{2} \cdot e_{1} = -\frac{1}{\sqrt{6}};$$

$$C_{13} = f_{3} \cdot e_{1} = -\frac{1}{\sqrt{2}};$$

$$C_{21} = f_{1} \cdot e_{2} = \frac{1}{\sqrt{3}};$$

$$C_{22} = f_{2} \cdot e_{2} = \frac{2}{\sqrt{6}};$$

$$C_{23} = f_{3} \cdot e_{2} = 0;$$

$$C_{31} = f_{1} \cdot e_{3} = \frac{1}{\sqrt{3}};$$

$$C_{32} = f_{2} \cdot e_{3} = -\frac{1}{\sqrt{6}};$$

$$C_{33} = f_{3} \cdot e_{3} = \frac{1}{\sqrt{2}}.$$

$$[C] = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix} \blacksquare$$

$$A = A_{lm} e_l e_m, \qquad x \times y = \epsilon_{ijk} x_i y_j e_k,$$

onde $(\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3)$ é a base canônica, obtenha uma expressão em notação indicial para

$$A \cdot [x \times y].$$

$$\begin{aligned} \boldsymbol{A} \cdot [\boldsymbol{x} \times \boldsymbol{y}] &= A_{lm} \boldsymbol{e}_{l} \boldsymbol{e}_{m} \cdot \epsilon_{ijk} x_{i} y_{j} \boldsymbol{e}_{k} \\ &= A_{lm} x_{i} y_{j} \epsilon_{ijk} \boldsymbol{e}_{l} (\boldsymbol{e}_{m} \cdot \boldsymbol{e}_{k}) \\ &= A_{lm} x_{i} y_{j} \epsilon_{ijk} \boldsymbol{e}_{l} \delta_{mk} \\ &= A_{lk} x_{i} y_{j} \epsilon_{ijk} \boldsymbol{e}_{l} \blacksquare \end{aligned}$$

TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P03A, 26 mai 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Usando obrigatoriamente a regra de Leibniz, calcule

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{x}^{2x} \frac{\mathrm{sen}(t/x)}{t} \, \mathrm{d}t.$$

SOLUÇÃO DA QUESTÃO:

A regra de Leibnitz é

Prof. Nelson Luís Dias

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a(x)}^{b(x)} f(x,t) \, \mathrm{d}t = f(x,b) \frac{\mathrm{d}b}{\mathrm{d}x} - f(x,a) \frac{\mathrm{d}a}{\mathrm{d}x} + \int_{a(x)}^{b(x)} \frac{\partial f(x,t)}{\partial x} \, \mathrm{d}t.$$

Agora,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{x}^{2x} \frac{\sin(\frac{t}{x})}{t} \, \mathrm{d}t = \frac{\sin(2x/x))}{2x} \frac{\mathrm{d}(2x)}{\mathrm{d}x} - \frac{\sin(x/x)}{x} \frac{\mathrm{d}(x)}{\mathrm{d}x} + \int_{x}^{2x} \frac{\partial}{\partial x} \frac{\sin(t/x)}{t} \, \mathrm{d}t$$

$$= \frac{\sin(2)}{x} - \frac{\sin(1)}{x} + \int_{x}^{2x} \frac{1}{t} \cos\left(\frac{t}{x}\right) \times -\frac{t}{x^{2}} \, \mathrm{d}t$$

$$= \frac{\sin(2)}{x} - \frac{\sin(1)}{x} - \frac{1}{x} \int_{x}^{2x} \cos\left(\frac{t}{x}\right) \frac{\mathrm{d}t}{x}$$

$$= \frac{\sin(2)}{x} - \frac{\sin(1)}{x} - \frac{1}{x} \int_{1}^{2} \cos(u) \, \mathrm{d}u$$

$$= \frac{\sin(2)}{x} - \frac{\sin(1)}{x} - \left[\frac{\sin(2)}{x} - \frac{\sin(1)}{x}\right] = 0 \blacksquare$$

2 [25] Se

$$f(x,y) = \frac{x}{x^2 + y^2},$$

Calcule a integral

$$I = \iint_{R_{xy}} f(x, y) \, \mathrm{d}y \mathrm{d}x$$

onde R_{xy} é o semi-círculo definido por $x^2 + y^2 \le 1$ e $x \ge 0$.

SOLUÇÃO DA QUESTÃO:

É infinitamente mais fácil usar coordenadas polares. Primeiramente,

$$x = r\cos(\theta),$$

$$y = r\sin(\theta),$$

$$x^{2} + y^{2} = r^{2},$$

$$f(x,y) = \frac{x}{\sqrt{x^{2} + y^{2}}} \times \frac{1}{\sqrt{x^{2} + y^{2}}}$$

$$\frac{x}{r} \times \frac{1}{r}$$

$$= \frac{\cos(\theta)}{r} = g(r, \theta).$$

Agora,

$$\iint_{R_{xy}} f(x,y) \,\mathrm{d}y \,\mathrm{d}x = \iint_{R_{r\theta}} g(r,\theta) \left| \frac{\partial(x,y)}{\partial(r,\theta)} \right| \,\mathrm{d}\theta \mathrm{d}r;$$

Mas

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix}$$
$$= \begin{vmatrix} \cos(\theta) & -r \sin(\theta) \\ \sin(\theta) & r \cos(\theta) \end{vmatrix}$$
$$= r;$$

Logo,

$$\begin{split} I &= \iint_{R_{r\theta}} g(r,\theta) \left| \frac{\partial(x,y)}{\partial(r,\theta)} \right| \, \mathrm{d}\theta \mathrm{d}r \\ &= \int_{r=0}^{1} \int_{\theta=-\pi/2}^{+\pi/2} \frac{\cos(\theta)}{r} \, r \, \mathrm{d}r \, \mathrm{d}\theta \\ &= \int_{\theta=-\pi/2}^{+\pi/2} \cos(\theta) \, \mathrm{d}\theta \\ &= [\sin(\theta)]_{-\pi/2}^{+\pi/2} = 2 \, \blacksquare \end{split}$$

3 [25] Se

$$F = (yz^2 + y^2z)\mathbf{i} + (x^2z + xz^2)\mathbf{j} + (xy^2 + x^2y)\mathbf{k},$$

calcule o $\nabla \times F$.

$$\nabla \times F = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (yz^2 + y^2z) & (x^2z + xz^2) & (xy^2 + x^2y)\mathbf{k}, \end{vmatrix}$$

$$= [(2xy + x^2) - (x^2 + 2xz)]\mathbf{i} + [(2yz + y^2) - (y^2 + 2xy)]\mathbf{j} + [(2xz + z^2) - (z^2 + 2yz)]\mathbf{k}$$

$$= 2(xy - xz)\mathbf{i} + 2(yz - xy)\mathbf{j} + 2(xz - yz)\mathbf{k} \blacksquare$$

4 [25] Se $F(x, y) = -y\mathbf{i} + x\mathbf{j}$, calcule o valor da integral de linha

$$I = \oint \mathbf{F} \cdot \mathrm{d}\mathbf{r}$$

ao longo do caminho fechado formado pelos lados do triângulo equilátero da figura (o tamanho dos lados é 1).

SOLUÇÃO DA QUESTÃO:

Use o Teorema de Green: se F = Pi + Qj,

$$\oint_{\mathcal{L}} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_{\mathcal{L}} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] \, \mathrm{d}A$$

Mas P = -y e Q = x;

$$\frac{\partial Q}{\partial x} = 1,$$

$$\frac{\partial P}{\partial y} = -1,$$

$$I = \iint_{\mathcal{S}} 2 \, dA = 2A,$$

onde A é a área do triângulo retângulo:

$$A = \frac{1}{2} \times 1 \times 1 \operatorname{sen}\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{4};$$
$$I = \frac{\sqrt{3}}{2} \blacksquare$$

TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P03B, 03 jun 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [25] Resolva o sistema de EDOs

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}.$$

SOLUÇÃO DA QUESTÃO:

Prof. Nelson Luís Dias

A matriz é simétrica. Existem dois autovalores reais e dois autovetores mutuamente ortogonais. Os autovalores e autovetores associados são

$$\lambda = 0 \Rightarrow \mathbf{v}_1 = (1, 1),$$

 $\lambda = 2 \Rightarrow \mathbf{v}_2 = (1, -1).$

Na base $A = (v_1, v_2)$ dos autovetores o sistema fica

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}_A = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}_A.$$

ou

$$\frac{\mathrm{d}u_{1A}}{\mathrm{d}t} = 0u_{1A} \Rightarrow u_{1A}(t) = C_1,$$

$$\frac{\mathrm{d}u_{2A}}{\mathrm{d}t} = 2u_{2A} \Rightarrow u_{2A}(t) = C_2 \mathrm{e}^{2t}.$$

Portanto,

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = u_{1A}v_1 + u_{2A}v_2 = C_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \blacksquare$$

2 [25] Sabendo que

$$\int \frac{a}{x^2 + a^2} \, \mathrm{d}x = \arctan\left(\frac{x}{a}\right) + C,$$

Calcule a integral

$$I = \iint_{R_{xy}} \frac{x}{x^2 + y^2} \, \mathrm{d}y \mathrm{d}x$$

onde R_{xy} é a região $0 \le x \le 1, 0 \le y \le x$.

$$I = \int_{x=0}^{1} \left[\int_{y=0}^{x} \frac{x}{x^2 + y^2} \, dy \right] dx$$

$$= \int_{x=0}^{1} \operatorname{arctg}\left(\frac{y}{x}\right) \Big|_{y=0}^{x} dx$$

$$= \int_{x=0}^{1} \left[\operatorname{arctg}(1) - \operatorname{arctg}(0) \right] dx$$

$$= \int_{x=0}^{1} \frac{\pi}{4} \, dx = \frac{\pi}{4} \blacksquare$$

3 [25] Se $F(x,y) = -y\mathbf{i} + x\mathbf{j}$, sem utilizar os teoremas de Stokes ou de Green, calcule o valor da integral de linha

$$I = \oint \mathbf{F} \cdot d\mathbf{r}$$

ao longo do caminho fechado formado pelos lados do triângulo equilátero da figura (o tamanho dos lados é 1). **Sugestão:** parametrize cada um dos 3 segmentos de reta que formam os lados do triângulo e some as integrais de linha sobre cada trecho.

SOLUÇÃO DA QUESTÃO:

As coordenadas dos pontos são

$$A = \left(0, \operatorname{sen}\left(\frac{\pi}{3}\right)\right) = \left(0, \frac{\sqrt{3}}{2}\right),$$

$$B = \left(-\cos\left(\frac{\pi}{3}\right), 0\right) = \left(-\frac{1}{2}, 0\right),$$

$$C = \left(\cos\left(\frac{\pi}{3}\right), 0\right) = \left(\frac{1}{2}, 0\right).$$

Os segmentos de reta podem ser parametrizados como se segue:

CA:

$$x = at + b,$$

$$y = ct + d;$$

$$x(0) = 1/2 \Rightarrow b = 1/2,$$

$$x(1) = 0 \Rightarrow a = -1/2,$$

$$y(0) = 0 \Rightarrow d = 0,$$

$$y(1) = \frac{\sqrt{3}}{2} \Rightarrow c = \frac{\sqrt{3}}{2};$$

$$x(t) = (-1/2)t + 1/2,$$

$$y(t) = \frac{\sqrt{3}}{2}t.$$

AB:

$$x = at + b,$$

$$y = ct + d;$$

$$x(0) = 0 \Rightarrow b = 0,$$

$$x(1) = -1/2 \Rightarrow a = -1/2,$$

$$y(0) = \frac{\sqrt{3}}{2} \Rightarrow d = \frac{\sqrt{3}}{2},$$

$$y(1) = \frac{\sqrt{3}}{2} \Rightarrow c = -\frac{\sqrt{3}}{2};$$

$$x(t) = (-1/2)t,$$

$$y(t) = \frac{\sqrt{3}}{2} [1 - t].$$

BC:

$$x = at + b,$$

$$y = ct + d;$$

$$x(0) = -1/2 \Rightarrow b = -1/2,$$

$$x(1) = +1/2 \Rightarrow a = +1,$$

$$y(0) = 0 \Rightarrow d = 0,$$

$$y(1) = 0 \Rightarrow c = 0;$$

$$x(t) = t - 1/2,$$

$$y(t) = 0.$$

Sobre CA:

$$d\mathbf{r} = (d\mathbf{x}, d\mathbf{y}) = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) dt,$$

$$\mathbf{F} = (-\mathbf{y}, \mathbf{x}) = \left(-\frac{\sqrt{3}}{2}t, (-1/2)t + 1/2\right),$$

$$\mathbf{F} \cdot d\mathbf{r} = \left[\frac{\sqrt{3}}{4}t + \frac{\sqrt{3}}{4}(1-t)\right] dt = \frac{\sqrt{3}}{4}dt,$$

$$\int_{CA} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \frac{\sqrt{3}}{4} dt = \frac{\sqrt{3}}{4}.$$

Sobre AB:

$$d\mathbf{r} = (dx, dy) = \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) dt,$$

$$\mathbf{F} = (-y, x) = \left(-\frac{\sqrt{3}}{2}(1 - t), (-1/2)t\right),$$

$$\mathbf{F} \cdot d\mathbf{r} = \left[\frac{\sqrt{3}}{4}(1 - t) + \frac{\sqrt{3}}{4}t\right] dt = \frac{\sqrt{3}}{4} dt$$

$$\int_{AB} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \frac{\sqrt{3}}{4} dt = \frac{\sqrt{3}}{4}.$$

Sobre BC:

$$\mathbf{d}\boldsymbol{r} = (\mathbf{d}x, \mathbf{d}y) = (1,0)\,\mathbf{d}t,$$

$$F = (-y, x) = (0, t - 1/2)\,,$$

$$F \cdot \mathbf{d}\boldsymbol{r} = 0,$$

$$\int_{BC} F \cdot \mathbf{d}\boldsymbol{r} = 0.$$

Portanto,

$$\oint F \cdot d\mathbf{r} = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \blacksquare$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x+1} = \cos(x).$$

$$y = uv,$$

$$u\frac{dv}{dx} + v\frac{du}{dx} + \frac{uv}{x+1} = \cos(x),$$

$$u\left[\frac{dv}{dx} + \frac{v}{x+1}\right] + v\frac{du}{dx} = \cos(x),$$

$$\frac{dv}{dx} + \frac{v}{x+1} = 0,$$

$$\frac{dv}{v} + \frac{dx}{x+1} = 0,$$

$$\ln|v| + \ln|x+1| = k_1,$$

$$\ln|v(x+1)| = e^{k_1} = k_2,$$

$$v(x+1)| = e^{k_1} = k_2,$$

$$v(x+1)| = \pm k_2 = k_3,$$

$$v = \frac{k_3}{x+1};$$

$$\frac{k_3}{x+1}\frac{du}{dx} = \cos(x),$$

$$\frac{du}{dx} = \frac{1}{k_3}(x+1)\cos(x),$$

$$u = \frac{1}{k_3}\left[(x+1)\sin(x) + \cos(x) + k_4\right],$$

$$y = uv = \frac{1}{k_3}\left[(x+1)\sin(x) + \cos(x) + k_4\right]$$

$$= \sin(x) + \frac{\cos(x)}{x+1} + \frac{k_4}{x+1} = \sin(x) + \cos(x) + \frac{k_4}{x+1} = \cos($$

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [25] Encontre a solução geral da EDO não-linear

$$\frac{\mathrm{d}y}{\mathrm{d}x} + ay = -by^3, \qquad y(0) = y_0$$

a > 0, b > 0. Sugestão: Tente y = uv e resolva uma EDO linear e homogênea em v.

SOLUÇÃO DA QUESTÃO:

Prof. Nelson Luís Dias

Faça y = uv:

$$u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x} + auv = -bu^3v^3,$$
$$\left[\frac{\mathrm{d}v}{\mathrm{d}x} + av\right]u + v\frac{\mathrm{d}u}{\mathrm{d}x} = -bu^3v^3.$$

Obrigue o termo dentro dos colchetes a ser nulo, e resolva:

$$v = v_0 e^{-ax}.$$

Substitua no que restou:

$$\frac{du}{dx} = -bu^3v^2,$$

$$\frac{du}{u^3} = -b[v_0e^{-ax}]^2 dx,$$

$$\frac{du}{u^3} = -bv_0^2e^{-2ax} dx,$$

$$\frac{1}{2u_0^2} - \frac{1}{2u^2} = -\frac{bv_0^2}{2a} \left(1 - e^{-2ax}\right),$$

$$\frac{1}{u_0^2} - \frac{1}{u^2} = -\frac{bv_0^2}{a} \left(1 - e^{-2ax}\right),$$

$$\frac{1}{u^2} = \frac{1}{u^2} + \frac{bv_0^2}{a} \left(1 - e^{-2ax}\right),$$

$$\frac{1}{u^2} = \frac{1}{u_0^2} + \frac{bu_0^2v_0^2}{au_0^2} \left(1 - e^{-2ax}\right),$$

$$\frac{1}{u^2} = \frac{1}{u_0^2} \left[1 + \frac{bu_0^2v_0^2}{a} \left(1 - e^{-2ax}\right)\right],$$

$$u = \frac{u_0}{\left[1 + \frac{by_0^2}{a} \left(1 - e^{-2ax}\right)\right]^{1/2}},$$

donde

$$y = uv = \frac{y_0 e^{-ax}}{\left[1 + \frac{by_0^2}{a} \left(1 - e^{-2ax}\right)\right]^{1/2}} \blacksquare$$

$$y^{\prime\prime} - 5y^{\prime} + 6y = x.$$

SOLUÇÃO DA QUESTÃO:

A solução da equação homogênea associada é

$$y_h(x) = Ae^{2x} + Be^{3x}.$$

Agora aplicamos o método de variação de constantes, fazendo

$$y(x) = A(x)e^{2x} + B(x)e^{3x}.$$

Derivamos:

$$y(x) = Ae^{2x} + Be^{3x},$$

$$y'(x) = 2Ae^{2x} + 3Be^{3x} + \underbrace{A'e^{2x} + B'e^{3x}}_{=0},$$

$$y''(x) = 4Ae^{2x} + 9Be^{3x} + 2A'e^{2x} + 3B'e^{3x}$$

Substituímos na EDO:

$$4Ae^{2x} + 9Be^{3x} + 2A'e^{2x} + 3B'e^{3x} - 5\left[2Ae^{2x} + 3Be^{3x}\right] + 6\left[Ae^{2x} + Be^{3x}\right] = x,$$

$$Ae^{2x}\underbrace{\left[4 - 10 + 6\right]}_{=0} + Be^{3x}\underbrace{\left[9 - 15 + 6\right]}_{=0} + 2A'e^{2x} + 3B'e^{3x} = x.$$

Obtemos o sistema de EDOs,

$$A'e^{2x} + B'e^{3x} = 0,$$

$$2A'e^{2x} + 3B'e^{3x} = x,$$

$$3A'e^{2x} + 3B'e^{3x} = 0,$$

$$A'e^{2x} = -x,$$

$$\frac{dA}{dx} = -xe^{-2x},$$

$$A(x) = \frac{2x+1}{4}e^{-2x} + C,$$

$$2A'e^{2x} + 3B'e^{3x} = x,$$

$$2A'e^{2x} + 2B'e^{3x} = 0,$$

$$B'e^{3x} = x,$$

$$\frac{dB}{dx} = xe^{-3x},$$

$$B(x) = -\frac{3x+1}{9}e^{-3x} + D.$$

Agora, juntando tudo,

$$y(x) = A(x)e^{2x} + B(x)e^{3x}$$

$$= \left[\frac{2x+1}{4}e^{-2x} + C\right]e^{2x} + \left[-\frac{3x+1}{9}e^{-3x} + D\right]e^{3x}$$

$$= \frac{6x+5}{36} + Ce^{2x} + De^{3x} \blacksquare$$

Deixe as 3 raízes explícitas e desenhe-as no plano complexo.

SOLUÇÃO DA QUESTÃO:

$$z^{3} = 1 = e^{i2k\pi},$$

$$z = re^{i\theta},$$

$$z^{3} = r^{3}e^{3i\theta},$$

$$r^{3}e^{i3\theta} = e^{i2k\pi},$$

$$r = 1,$$

$$\theta = \frac{2k\pi}{3}.$$

 $z_1 = 1$,

As 3 raízes são

$$f(z) = \frac{z-3}{z-7}$$

em série de Laurent em torno de z = 3 na região |z - 3| < 4.

SOLUÇÃO DA QUESTÃO:

Note que a região é do tipo |z - 3|/4 < 1:

$$\frac{z-3}{z-7} = \frac{z-3}{(z-3)-4}$$

$$= \frac{\frac{z-3}{4}}{\frac{z-3}{4}-1}$$

$$= -\frac{z-3}{4} \times \frac{1}{1-\frac{z-3}{4}}$$

$$= -\frac{z-3}{4} \left[1 + \left(\frac{z-3}{4}\right) + \left(\frac{z-3}{4}\right)^2 + \left(\frac{z-3}{4}\right)^3 + \dots \right] \blacksquare$$

P04B, 29 jun 2023 Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO

Assinatura:

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [25] Resolva a EDO não-homogênea

$$x^2y'' + 7xy' + 6y = x.$$

a) [10] Encontre a solução da equação homogênea associada,

$$y_h = c_1 y_1(x) + c_2 y_2(x),$$

ou seja: encontre $y_1(x)$ e $y_2(x)$.

b) [15] Faça

$$y(x) = A(x)y_1(x) + B(x)y_2(x);$$

derive; force o termo envolvendo A' e B' a ser nulo; derive novamente e substitua. Produza um sistema de duas EDOs de ordem 1 em A e B. Resolva para A(x) e B(x).

SOLUÇÃO DA QUESTÃO:

a) A equação homogênea associada é uma equação de Euler:

$$x^{2}y_{h}'' + 7xy_{h}' + 6y_{h} = 0,$$

$$y_{h} = x^{m},$$

$$y_{h}' = mx^{m-1},$$

$$y_{h}'' = (m-1)mx^{m-2},$$

$$[(m-1)m + 7m + 6] x^{m} = 0,$$

$$m^{2} + 6m + 6 = 0,$$

$$m_{1} = +\sqrt{3} - 3,$$

$$m_{2} = -\sqrt{3} - 3,$$

$$y_{h}(x) = c_{1}x^{m_{1}} + c_{2}x^{m_{2}}$$

b) Agora,

$$\begin{split} y(x) &= A(x)x^{m_1} + B(x)x^{m_2}, \\ y'(x) &= m_1Ax^{m_1} + m_2Bx^{m_2} + \underbrace{A'x^{m_1} + B'x^{m_2}}_{=0}, \\ y''(x) &= (m_1-1)m_1Ax^{m_1-2} + (m_2-1)m_2Bx^{m_2-2} + m1A'x^{m_1-1} + m_2B'x^{m_2-1}. \end{split}$$

Substituindo na EDO,

$$\underbrace{[(m_1 - 1)m_1 + 7m_1 + 6]}_{=0} A + \underbrace{[(m_2 - 1)m_2 + 7m_2 + 6]}_{=0} B + m_1 A' x^{m_1 + 1} + m_2 B' x^{m_2 + 1} = x$$

Ficamos com o sistema de EDOs

$$A'x^{m_1} + B'x^{m_2} = 0,$$

$$m_1A'x^{m_1+1} + m_2B'x^{m_2+1} = 0,$$

cuja solução é

$$A(x) = \frac{1}{(m_1 - m_2)(1 - m_1)} x^{1 - m_1} + A_0,$$

$$B(x) = \frac{1}{(m_2 - m_1)(1 - m_1)} x^{1 - m_2} + B_0.$$

donde

$$y(x) = \left[\frac{1}{(m_1 - m_2)(1 - m_1)} + \frac{1}{(m_2 - m_1)(1 - m_1)}\right] x + A_0 x^{m_1} + B_0 x^{m_2}$$
$$= \frac{x}{13} + A_0 x^{-3 + \sqrt{3}} + B_0 x^{-3 - \sqrt{3}} \blacksquare$$

$$f(z) = \ln(z - 1),$$

- a) [10] Encontre o(s) ponto(s) de ramificação de f.
- b) [15] **Desenhe** no plano complexo um corte que torne a função unívoca.

Sugestão: faça $z - 1 = re^{i\theta}$ e analise o que acontece.

SOLUÇÃO DA QUESTÃO:

a) Se
$$z - 1 = re^{i\theta}$$
,

$$\ln(z-1) = \ln r e^{i\theta} = \ln r + i\theta.$$

Claramente, se z der uma volta completa em torno de 1, f(z) muda de valor; logo, z=1 é o único ponto de ramificação. b) Um corte possível é mostrado (linha cinza grossa) na figura abaixo, que limita θ a $-\pi < \theta \le \pi$

3 [25] Obtenha a série de Laurent de

$$f(x) = f(z) = \frac{1}{(2i-2)(z-2i)} - \frac{1}{(2i-2)(z-2)}$$

no disco $|z-2| < 2\sqrt{2}$.

SOLUÇÃO DA QUESTÃO:

Se

$$f(z) = \frac{1}{(2i-2)(z-2i)} - \frac{1}{(2i-2)(z-2)},$$

o $2^{\underline{o}}$ termo já está no formato de um termo da série de Laurent desejada, e nós o deixamos como está. O $1^{\underline{o}}$ termo precisa ser reescrito:

$$\frac{1}{(2i-2)(z-2i)} = \frac{1}{(2i-2)} \left[\frac{1}{(z-2) + (2-2i)} \right]$$
$$= -\frac{1}{(2i-2)^2} \left[\frac{1}{\frac{z-2}{2-2i} + 1} \right]$$
$$= -\frac{1}{(2i-2)^2} \left[\frac{1}{1 + \frac{z-2}{2-2i}} \right]$$

Mas

$$\left| \frac{z-2}{2-2i} \right| = \frac{|z-2|}{|2-2i|}$$
$$= \frac{|z-2|}{2\sqrt{2}} < 1,$$

donde

$$\frac{1}{1 + \frac{z-2}{2-2i}} = 1 - \frac{z-2}{2-2i} + \left(\frac{z-2}{2-2i}\right)^2 - \left(\frac{z-2}{2-2i}\right)^3 - \left(\frac{z-2}{2-2i}\right)^4 + \dots$$

Portanto,

$$f(z) = -\frac{1}{(2i-2)(z-2)} + \frac{1}{(2i-2)^2} \left[1 - \frac{z-2}{2i-2} + \left(\frac{z-2}{2i-2}\right)^2 - \left(\frac{z-2}{2i-2}\right)^3 - \left(\frac{z-2}{2i-2}\right)^4 + \dots \right] \blacksquare$$

4 [25] Dada a equação diferencial ordinária

$$xy'' + xy' + y = 0:$$

- a) [05] Mostre que x = 0 é um ponto singular regular.
- b) [20] Obtenha uma solução de Frobenius do tipo

$$y(x) = \sum_{n=0}^{\infty} a_n x^{n+r}.$$

SOLUÇÃO DA QUESTÃO:

Começo escrevendo a equação na forma

$$y'' + p(x)y' + q(x)y = y'' + y' + \frac{1}{x}y = 0.$$

As funções

$$[xp(x)] = x$$
, e $[x^2q(x)] = x$

são analíticas em x = 0, e x = 0 é um ponto singuar regular, em torno do qual é possível obter uma solução de Frobenius,

$$y = \sum_{n=0}^{\infty} a_n x^{n+r},$$

$$y' = \sum_{n=0}^{\infty} (n+r) a_n x^{n+r-1},$$

$$y'' = \sum_{n=0}^{\infty} (n+r-1)(n+r) a_n x^{n+r-2}.$$

Substituindo na equação diferencial, encontro

$$\sum_{n=0}^{\infty} (n+r-1)(n+r)a_n x^{n+r-1} + \sum_{n=0}^{\infty} (n+r)a_n x^{n+r} + \sum_{n=0}^{\infty} a_n x^{n+r} = 0.$$

Faço agora no primeiro somatório:

$$m+r = n+r-1,$$

$$m = n-1,$$

$$n = m+1,$$

e obtenho

$$\begin{split} &\sum_{m=-1}^{\infty} (m+r)(m+r+1)a_{m+1}x^{m+r} + \sum_{n=0}^{\infty} (n+r)a_nx^{n+r} + \sum_{n=0}^{\infty} a_nx^{n+r} = 0, \\ &(r-1)ra_0x^{r-1} + \sum_{n=0}^{\infty} \left[(n+r)(n+r+1)a_{n+1} + (n+r)a_n + a_n \right]x^{n+r} = 0, \\ &(r-1)ra_0x^{r-1} + \sum_{n=0}^{\infty} \left[(n+r)(n+r+1)a_{n+1} + (n+r+1)a_n \right]x^{n+r} = 0. \end{split}$$

É evidente que, com $a_0 \neq 0$, a equação indicial é

$$r(r-1) = 0 \implies r_2 = 0 \text{ ou } r_1 = 1.$$

As raízes diferem por um inteiro; ou a menor raiz leva a 2 soluções, ou não leva a nenhuma. Tentemos com a menor raiz $(r_2 = 0)$:

$$n(n+1)a_{n+1} + (n+1)a_n = 0,$$

$$a_{n+1} = -\frac{1}{n}a_n.$$

Note que é impossível obter a_1 a partir de a_0 : a recursão falha, e a menor raiz não leva a nenhuma solução. Uma única solução ainda é possível com a maior raiz $r_1 = 1$:

$$(n+1)(n+2)a_{n+1}+(n+2)a_n=0,$$

$$a_{n+1}=-\frac{1}{n+1}a_n.$$

Fazendo $a_0 = 1$ sem perda de generalidade, não é difícil encontrar o termo geral:

$$a_n = \frac{(-1)^n}{n!}$$

e uma solução

$$y(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^{n+1} \blacksquare$$

TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR FA, 03 jul jun 2023

Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [20] Considere a seguinte equação diferencial ordinária não linear:

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + \cos(y^2) = x^2; \qquad y(0) = 0.$$

Em princípio, ela não pode ser resolvida analiticamente, mas pode ser resolvida numericamente com facilidade com o método de Runge-Kutta de 4ª ordem. Para a rotina padrão de solução com Runge-Kutta,

basta escrever uma ff adequada. Escreva a ff que resolve a equação acima. **Indique a indentação cuidadosamente, com linhas verticais.**

```
1 <u>def</u> ff(x,y):
2 <u>return</u> (x**2 - cos(y**2))**(0.5)
```

 $\mathbf{2}$ [20] Sabendo o valor do determinante

$$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 & 1 \\ 5 & 4 & 3 & 1 & 2 \\ 2 & 1 & 2 & 2 & 5 \\ 3 & 3 & 1 & 2 & 3 \end{vmatrix} = -12,$$

obtenha

$$\begin{vmatrix} 3 & 3 & 3 & 3 & 3 \\ 2 & 3 & 4 & 5 & 1 \\ 5 & 4 & 3 & 1 & 2 \\ 2 & 1 & 2 & 2 & 5 \\ 3 & 3 & 1 & 2 & 3 \end{vmatrix} = ?$$

Justifique sua resposta.

SOLUÇÃO DA QUESTÃO:

-36, pois o determinante é linear em cada linha ou coluna ■

3 [20] Sabendo que

$$\operatorname{erf}(x) \equiv \frac{2}{\sqrt{\pi}} \int_{\xi=0}^{x} e^{-\xi^{2}} d\xi,$$

resolva a EDO

$$\frac{\mathrm{d}y}{\mathrm{d}x} - 2xy = 1, \qquad y(0) = 1.$$

SOLUÇÃO DA QUESTÃO:

Faça y = uv e substitua:

$$u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x} - 2xuv = 1$$

$$u\left[\frac{\mathrm{d}v}{\mathrm{d}x} - 2xv\right] + v\frac{\mathrm{d}u}{\mathrm{d}x} = 1$$

$$\frac{\mathrm{d}v}{\mathrm{d}x} - 2xv = 0$$

$$\frac{\mathrm{d}v}{v} = 2x\mathrm{d}x$$

$$\int_{v_0}^{v} \frac{\mathrm{d}\eta}{\eta} = 2\int_{0}^{x} \xi \mathrm{d}\xi = x^2$$

$$\ln \frac{v}{v_0} = x^2$$

$$v = v_0 e^{x^2} \Rightarrow$$

$$v_0 e^{x^2} \frac{\mathrm{d}u}{\mathrm{d}x} = 1$$

$$u = \frac{1}{v_0} \int_{0}^{x} e^{-\xi^2} \, \mathrm{d}\xi + u_0 = \frac{\sqrt{\pi}}{2v_0} \operatorname{erf}(x) + u_0 \Rightarrow$$

$$y = uv = \left[\frac{\sqrt{\pi}}{2v_0} \operatorname{erf}(x) + u_0\right] v_0 e^{x^2}$$

$$y = \frac{\sqrt{\pi}}{2} e^{x^2} \operatorname{erf}(x) + K e^{x^2}; \qquad y(0) = 1 \Rightarrow K = 1 \blacksquare$$

4 [20] Utilizando obrigatoriamente integração de contorno com variáveis complexas, calcule

$$I = \int_{x=-\infty}^{x=+\infty} \frac{1}{x^2 + i} \, \mathrm{d}x.$$

onde x é o eixo dos reais e i = $\sqrt{-1}$. Utilize o contorno mostrado na figura ao lado.

SOLUÇÃO DA QUESTÃO:

Considere a função $f(z) = 1/(z^2 + i)$. Esta função possui singularidades em

$$z^{2} + i = 0,$$

 $z^{2} = -i = e^{(-i\pi/2 + 2k\pi)};$
 $z = e^{(-i\pi/4 + k\pi)}.$

Consequentemente, apenas a singularidade em z_1 mostrada abaixo precisa ser considerada no teorema dos resíduos.

Para verificar a integral sobre o semi-círculo \mathscr{L}_S quando $R \to \infty$:

$$\begin{split} \lim_{R \to \infty} \left| \int_{\mathcal{L}_S} \frac{1}{z^2 + \mathbf{i}} \, \mathrm{d}z \right| &\leq \lim_{R \to \infty} \int_{\mathcal{L}_S} \left| \frac{1}{z^2 + \mathbf{i}} \, \mathrm{d}z \right| \\ &= \lim_{R \to \infty} \int_{\theta = 0}^{\pi} \left| \frac{\mathbf{i} R \mathrm{e}^{\mathrm{i}\theta}}{R^2 \mathrm{e}^{2\mathrm{i}\theta} + \mathbf{i}} \right| \, \mathrm{d}\theta \\ &\leq \lim_{R \to \infty} \int_{\theta = 0}^{\pi} \left| \frac{\mathbf{i} R \mathrm{e}^{\mathrm{i}\theta}}{R^2 \mathrm{e}^{2\mathrm{i}\theta}} \right| \, \mathrm{d}\theta = \lim_{R \to \infty} \frac{\pi}{R} = 0. \end{split}$$

Portanto, pelo teorema dos resíduos, devemos ter

$$\int_{x=-\infty}^{x=+\infty} \frac{1}{x^2 + i} \, \mathrm{d}x = 2\pi \mathrm{i} c_{-1},$$

onde o resíduo c_{-1} em z_1 é calculado como se segue:

$$\frac{1}{z^2 + i} = \frac{1}{(z - z_0)(z - z_1)};$$

logo, nas proximidades de z_1 ,

$$f(z) \sim \frac{1}{(z_1 - z_0)(z - z_1)},$$

donde z_1 é claramente um polo de primeira ordem, e

$$c_{-1} = \frac{1}{(z_1 - z_0)}$$

$$= \frac{1}{\left[-\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right] - \left[\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right]}$$

$$= \frac{1}{-\sqrt{2} + i\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} \frac{1}{(-1+i)} = \frac{1}{\sqrt{2}} \frac{(-1-i)}{(-1+i)(-1-i)}$$

$$= \frac{1}{\sqrt{2}} \frac{(-1-i)}{1-i^2}$$

$$= -\frac{1}{2\sqrt{2}} (1+i)$$

Finalmente,

$$I = 2\pi i c_{-1} = (2\pi i) \times \left[-\frac{1}{2\sqrt{2}} (1+i) \right]$$
$$= 2\pi i c_{-1} = (\pi i) \times \left[-\frac{1}{\sqrt{2}} (1+i) \right]$$
$$= -\frac{\pi}{\sqrt{2}} \left(i^2 + i \right) = -\frac{\pi}{\sqrt{2}} \left(-1 + i \right)$$
$$= \frac{\pi}{\sqrt{2}} \left(1 - i \right) \blacksquare$$

$$y^{\prime\prime} - xy = 0$$

em série de potências $y = \sum_{n=0}^{\infty} a_n x^n$ (note que x = 0 é um ponto regular, e que portanto isto não é o método de Frobenius); em particular mostre que se deve ter necessariamente $a_2 = 0$, e obtenha os 3 primeiros termos das séries que multiplicam, respectivamente, a_0 e a_1 (isto é: as duas soluções LI).

SOLUÇÃO DA QUESTÃO:

Como sempre:

$$y = \sum_{n=0}^{\infty} a_n x^n$$
, $y' = \sum_{n=0}^{\infty} n a_n x^{n-1}$, $y'' = \sum_{n=0}^{\infty} (n-1) n a_n x^{n-2}$.

Substituindo na equação diferencial:

$$\sum_{n=0}^{\infty} (n-1)na_n x^{n-2} - \sum_{n=0}^{\infty} a_n x^{n+1} = 0$$

Fazendo n - 2 = m + 1, isto é: fazendo m = n - 3,

$$0 = \sum_{m=-3}^{\infty} (m+2)(m+3)a_{m+3}x^{m+1} - \sum_{n=0}^{\infty} a_n x^{n+1},$$

$$0 = \sum_{m=-1}^{\infty} (m+2)(m+3)a_{m+3}x^{m+1} - \sum_{n=0}^{\infty} a_n x^{n+1},$$

$$0 = 2a_2 + \sum_{n=0}^{\infty} [(n+2)(n+3)a_{n+3} - a_n] x^{n+1}.$$

$$0 = 2a_2 + \sum_{n=0}^{\infty} \left[(n+2)(n+3)a_{n+3} - a_n \right] x^{n+1}.$$

A relação de recorrência é

$$a_{n+3} = \frac{a_n}{(n+2)(n+3)}.$$

Claramente, $a_2 = a_5 = a_8 = \dots = 0$; partindo de $a_0 = 1$: $a_3 = 1/6$, $a_6 = 1/180$, $a_9 = 1/12960$; partindo de $a_1 = 1$: $a_4 = 1/12$, $a_7 = 1/504$, $a_{10} = 1/45360$, e as duas soluções LI são:

$$y_1(x) = 1 + \frac{x^3}{6} + \frac{x^6}{180} + \frac{x^9}{12960} + \dots,$$

 $y_2(x) = x + \frac{x^4}{12} + \frac{x^7}{504} + \frac{x^{10}}{45360} + \dots$

TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
FB, 07 jul 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] A expressão

Prof. Nelson Luís Dias

$$\mathcal{T}_m = \oint_{\mathcal{S}} \epsilon_{lim} r_l n_k T_{ki} \, dA = \oint_{\mathcal{S}} (\boldsymbol{n} \cdot \boldsymbol{v}) \, dA,$$

onde \mathscr{S} é uma superfície fechada que limita uma região \mathscr{C} do \mathbb{R}^3 , e $n = n_k e_k$ é o vetor unitário normal a \mathscr{S} apontando para fora em cada ponto, é um escalar.

- a) [15] Identifique o vetor v. Escreva-o da forma mais simples que você conseguir.
- b) [10] Agora aplique o teorema da divergência à expressão acima. Não é necessário calcular a divergência que vai aparecer.

SOLUÇÃO DA QUESTÃO:

a)

$$\boldsymbol{v} = \epsilon_{lim} r_l T_{ki} \boldsymbol{e}_k.$$

b)

$$\mathcal{T}_{m} = \oint_{\mathscr{S}} \epsilon_{lim} r_{l} n_{k} T_{ki} \, dA$$

$$= \int_{\mathscr{S}} \frac{\partial}{\partial x_{k}} \left(\epsilon_{lim} r_{l} T_{ki} \right) \, dV \, \blacksquare$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = 3x.$$

$$y = uv;$$

$$\frac{d(uv)}{dx} + \frac{uv}{x} = 3x;$$

$$u\frac{dv}{dx} + v\frac{du}{dx} + \frac{uv}{x} = 3x;$$

$$u\left[\frac{dv}{dx} + \frac{v}{x}\right] + v\frac{du}{dx} = 3x.$$

$$\frac{dv}{dx} + \frac{v}{x} = 0;$$

$$\frac{dv}{dx} = -\frac{v}{x};$$

$$\frac{dv}{v} + \frac{dx}{x} = 0;$$

$$\ln|v| + \ln|x| = c_1;$$

$$\ln|vx| = e^{c_1};$$

$$vx = \pm e^{c_1} = v_0;$$

$$v = \frac{v_0}{x}.$$

$$\frac{du}{dx} = \frac{3}{v_0}x^2;$$

$$u(x) = \frac{x^3}{v_0} + u_0;$$

$$y(x) = \left[\frac{x^3}{v_0} + u_0\right] \frac{v_0}{x};$$

$$y(x) = x^2 + \frac{C}{x}$$

3 [25] Usando obrigatoriamente variáveis complexas, integração de contorno e o teorema dos resíduos, calcule

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{2 - \sin\theta}.$$

Sugestão: faça a transformação de variável $z = e^{i\theta}$ e transforme a integral acima em uma integral sobre o círculo unitário no plano complexo envolvendo um polo.

SOLUÇÃO DA QUESTÃO:

Fazendo a substituição sugerida, se $z = e^{i\theta}$, quando θ vai de 0 a 2π , z percorre o círculo unitário C no plano complexo; então:

$$z = e^{i\theta},$$
$$dz = ie^{i\theta},$$
$$\frac{dz}{iz} = d\theta$$

e

$$z - \frac{1}{z} = e^{i\theta} - e^{-i\theta}$$
$$= 2i \operatorname{sen} \theta \Longrightarrow$$
$$\operatorname{sen} \theta = \frac{z^2 - 1}{2iz}.$$

Retornando à integral,

$$\int_0^{2\pi} \frac{d\theta}{2 - \sin \theta} = \oint_C \frac{1}{2 - \frac{z^2 - 1}{2iz}} \frac{dz}{iz}$$
$$= \oint_C \frac{-2dz}{z^2 - 4iz - 1}$$

O integrando possui dois polos, $z_1 = (2 - \sqrt{3})i$ e $z_2 = (2 + \sqrt{3})i$, mas apenas z_1 está dentro do círculo unitário. Portanto,

$$\oint_C f(z) dz = 2\pi i c_{-1}$$

$$= 2\pi i \lim_{z \to z_1} \left[(z - z_1) \frac{-2}{(z - z_1)(z - z_2)} \right]$$

$$= 2\pi i \frac{-2}{z - z_2} = \frac{2\pi}{\sqrt{3}}. \blacksquare$$

$$y^{\prime\prime} - x^3 y = 0$$

em torno de x=0 na forma $y_{1,2}(x)=\sum_{n=0}^{\infty}a_nx^n$. Para cada uma das duas soluções encontre obrigatoriamente os 4 primeiros termos. Note que x=0 é um ponto regular, e que não se trata de aplicar o método de Frobenius.

SOLUÇÃO DA QUESTÃO:

Compare com

$$y'' + p(x)y' + q(x)y = 0$$
:

Em x = 0, xp(x) = 0, é uma função analítica, e $x^2q(x) = x^5$ também. O ponto x = 0 é um ponto *regular*. Não se trata, portanto, de aplicar o método de Frobenius, mas sim de procurar uma solução em série simples,

$$y = \sum_{n=0}^{\infty} a_n x^n,$$

$$y' = \sum_{n=0}^{\infty} n a_n x^{n-1},$$

$$y'' = \sum_{n=0}^{\infty} (n-1) n a_n x^{n-2}.$$

Substituindo,

$$\sum_{n=0}^{\infty} (n-1)na_n x^{n-2} - \sum_{n=0}^{\infty} a_n x^{n+3} = 0.$$

Tente

$$m-2 = n+3 \Rightarrow m = n+5; n = 0 \Rightarrow m = 5:$$

$$\sum_{m=0}^{\infty} (m-1)ma_m x^{m-2} - \sum_{m=5}^{\infty} a_{m-5} x^{m-2} = 0,$$

$$\sum_{m=2}^{\infty} (m-1)ma_m x^{m-2} - \sum_{m=5}^{\infty} a_{m-5} x^{m-2} = 0,$$

$$2a_2 = 0 \Rightarrow a_2 = 0,$$

$$6a_3 x = 0 \Rightarrow a_3 = 0,$$

$$12a_4 x^2 = 0 \Rightarrow a_4 = 0,$$

$$\sum_{m=5}^{\infty} [(m-1)ma_m - a_{m-5}] x^{m-2} = 0.$$

Claramente, as constantes arbitrárias da solução geral são a_0 e a_1 . A relação de recorrência é

$$a_{m} = \frac{a_{m-5}}{(m-1)m} :$$

$$a_{5} = \frac{a_{0}}{20},$$

$$a_{10} = \frac{a_{0}}{1800},$$

$$a_{11} = \frac{a_{1}}{3300}$$

$$a_{15} = \frac{a_{0}}{378000},$$

$$a_{20} = \frac{a_{0}}{14364000},$$

$$a_{21} = \frac{a_{1}}{332640000}$$

A solução geral é

$$y(x) = a_0 \left[1 + x^5/20 + x^{10}/1800 + x^{15}/378000 + x^{20}/14364000 + \dots \right]$$

+ $a_1 \left[x + x^6/30 + x^{11}/3300 + x^{16}/792000 + x^{21}/332640000 + \dots \right]$