

CAS ONLINE PRINTOUT

=> D HIS

(FILE 'HOME' ENTERED AT 09:54:51 ON 13 SEP 2002)

FILE 'CAPLUS' ENTERED AT 09:55:02 ON 13 SEP 2002

L1 5225 S ARYLATION  
L2 120683 S TRANSITION METAL  
L3 147745 S TRANSITION METAL#  
L4 226062 S LIGAND  
L5 27 S L3 AND L4 AND L1  
L6 544026 S BASE  
L7 8 S L6 AND L5

=> D BIB ABS KWIC 1-8

L7 ANSWER 1 OF 8 CAPLUS COPYRIGHT 2002 ACS  
AN 2001:366737 CAPLUS

DN 134:366672

TI Transition metal-catalyzed process for preparing  
n-aryl amine compounds

IN Hartwig, John F.; Hamann, Blake C.

PA Yale University, USA

SO U.S., 10 pp.  
CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

|    | PATENT NO.                             | KIND | DATE     | APPLICATION NO. | DATE     |
|----|----------------------------------------|------|----------|-----------------|----------|
| PI | US 6235938                             | B1   | 20010522 | US 1999-329474  | 19990610 |
| OS | CASREACT 134:366672; MARPAT 134:366672 |      |          |                 |          |

GI



AB The title process involves reacting a compd. having an amino group with an arylating compd., esp. an aryl chloride and or tosylate, in the presence of a base and a transition metal catalyst, consisting of a Group 8 metal and at least one chelating bisphosphine ligand contg. at least one sterically hindered alkyl substituent, under reaction conditions effective to form an N-arylamine (I) [wherein X = halo or S-contg. leaving group; R1-R5 = independently H, CN, alkyl, alkoxy, vinyl, alkenyl, formyl, CF<sub>3</sub>, CC<sub>13</sub>, halo, Ph, amide, acyl, ester, amino, thioalkoxy, phosphino, etc.]. The method uses readily available starting materials, is efficient, and avoids harsh reaction conditions. For example, PhNH<sub>2</sub> was added to a vial contg. 4-chlorotoluene, Pd(dba)<sub>2</sub>, (R)-(-)-1-[(S)-2-(dicyclohexylphosphino)ferrocenyl]ethyldicyclohexylphosphine, and NaOBu-t in PhMe in a dry box and the sealed vial heated in a 110.degree.C oil bath for 16 h to give N-phenyl-4-toluidine (99%).

RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD

CAS ONLINE PRINTOUT

ALL CITATIONS AVAILABLE IN THE RE FORMAT

TI **Transition metal-catalyzed process for preparing n-aryl amine compounds**

AB The title process involves reacting a compd. having an amino group with an arylating compd., esp. an aryl chloride and or tosylate, in the presence of a **base** and a **transition metal catalyst**, consisting of a Group 8 metal and at least one chelating bisphosphine **ligand** contg. at least one sterically hindered alkyl substituent, under reaction conditions effective to form an N-arylamine (I) [wherein X = halo or S-contg. leaving group; R1-R5 = independently H, CN, alkyl, alkoxy, vinyl, alkenyl, formyl, CF3, CC13, halo, Ph, amide, acyl, ester, amino, thioalkoxy, phosphino, etc.]. The method uses readily available starting materials, is efficient, and avoids harsh reaction conditions. For example, PhNH2 was added to a vial contg. 4-chlorotoluene, Pd(dba)2, (R)-(-)-1-[(S)-2-(dicyclohexylphosphino)ferrocenyl]ethyldicyclohexylphosphine, and NaOBu-t in PhMe in a dry box and the sealed vial heated in a 110.degree.C oil bath for 16 h to give N-phenyl-4-toluidine (99%).

ST arylamine prepn **transition metal phosphine ligand catalyst; arylation amine**

IT Amines, preparation  
RL: IMF (Industrial manufacture); PUR (Purification or recovery); SPN (Synthetic preparation); PREP (Preparation)  
(aryl, secondary; prepn. of N-arylamines by **arylation** of amines with aryl halides or tosylates using catalysts comprising Group 8 metals and chelating bisphosphine ligands)

IT **Arylation**  
**Arylation catalysts**  
(prep. of N-arylamines by **arylation** of amines with aryl halides or tosylates using catalysts comprising Group 8 metals and chelating bisphosphine ligands)

IT **Aryl halides**  
RL: RCT (Reactant); RACT (Reactant or reagent)  
(prep. of N-arylamines by **arylation** of amines with aryl halides or tosylates using catalysts comprising Group 8 metals and chelating bisphosphine ligands)

IT Amines, reactions  
RL: RCT (Reactant); RACT (Reactant or reagent)  
(primary; prepn. of N-arylamines by **arylation** of amines with aryl halides or tosylates using catalysts comprising Group 8 metals and chelating bisphosphine ligands)

IT 3375-31-3, Palladium diacetate 32005-36-0, Bis(dibenzylideneacetonato)palladium 84680-95-5 158923-07-0, (R)-(-)-1-[(S)-2-(Dicyclohexylphosphino)ferrocenyl]ethyldicyclohexylphosphine 158923-11-6, (R)-(-)-1-[(S)-2-(Dicyclohexylphosphino)ferrocenyl]ethyldi-*t*-butylphosphine  
RL: CAT (Catalyst use); USES (Uses)  
(catalyst component; prepn. of N-arylamines by **arylation** of amines with aryl halides or tosylates using catalysts comprising Group 8 metals and chelating bisphosphine ligands)

IT 31144-33-9P, N,N-Dibutyl-4-methylaniline  
RL: SPN (Synthetic preparation); PREP (Preparation)  
(prep. of N-arylamines by **arylation** of amines with aryl halides or tosylates using catalysts comprising Group 8 metals and chelating bisphosphine ligands)

IT 620-84-8P 7277-86-3P, N-Butyl-2-methylaniline 10387-24-3P,  
N-Butyl-4-methylaniline 31053-03-9P, 1-(4-Methylphenyl)piperidine 32040-09-8P 36602-01-4P, 4-Cyanodiphenylamine 41115-19-9P,  
N-Butyl-2,4-dimethylaniline 56506-60-6P, N-Hexyl-4-methylaniline 78888-05-8P, 4-Butyldiphenylamine 167864-23-5P, N-Butyl-4-butylaniline  
RL: IMF (Industrial manufacture); PUR (Purification or recovery); SPN (Synthetic preparation); PREP (Preparation)  
(product; prepn. of N-arylamines by **arylation** of amines with

## CAS ONLINE PRINTOUT

aryl halides or tosylates using catalysts comprising Group 8 metals and chelating bisphosphine ligands)

IT 62-53-3, Aniline, reactions 95-49-8, 2-Chlorotoluene 106-38-7, 4-Bromotoluene 106-43-4, 4-Chlorotoluene 109-73-9, Butylamine, reactions 110-89-4, Piperidine, reactions 110-91-8, Morpholine, reactions 111-26-2, Hexylamine 2845-89-8, 3-Chloroanisole 4214-28-2, 4-Iodo-m-xylene 20651-67-6, 4-Iodobutylbenzene 36800-95-0, 4-Cyanophenyltosylate

RL: RCT (Reactant); RACT (Reactant or reagent)  
(reactant; prepn. of N-arylamines by arylation of amines with aryl halides or tosylates using catalysts comprising Group 8 metals and chelating bisphosphine ligands)

L7 ANSWER 2 OF 8 CAPLUS COPYRIGHT 2002 ACS

AN 2001:12419 CAPLUS

DN 134:86044

TI Preparation of chiral 2-amino-2'-diphenylphosphino-1,1'-binaphthyl derivatives as metal catalyst ligands

IN Zhang, Xumu

PA The Penn State Research Foundation, USA

SO PCT Int. Appl., 93 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

|    | PATENT NO.                                                                                                                                                                                                                                                                                                                                                    | KIND | DATE     | APPLICATION NO. | DATE     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| PI | WO 2001000581                                                                                                                                                                                                                                                                                                                                                 | A1   | 20010104 | WO 2000-US17903 | 20000629 |
|    | W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM |      |          |                 |          |
|    | RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG                                                                                                                                                                        |      |          |                 |          |
|    | US 6380392                                                                                                                                                                                                                                                                                                                                                    | B1   | 20020430 | US 2000-607005  | 20000629 |

PRAI US 1999-141795P P 19990630

OS CASREACT 134:86044; MARPAT 134:86044

AB Title ligands are bidentate, tridentate, tetridentate, or pentadentate and include P-P, P-N, N-N, mixed P-N, Schiff base or carbene sites.

Transition metal complexes with these ligands are effective catalysts for asym. reactions. Thus, Et<sub>2</sub>Zn addn. to 2-cyclohexenone in the presence of (S)-2-(2-pyridinylcarbonylamino)-2'-diphenylphosphino-1,1'-binaphthyl complex with Cu gave (S)-3-ethylcyclohexanone of 92% ee with 98% conversion.

RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD

ALL CITATIONS AVAILABLE IN THE RE FORMAT

AB Title ligands are bidentate, tridentate, tetridentate, or pentadentate and include P-P, P-N, N-N, mixed P-N, Schiff base or carbene sites.

Transition metal complexes with these ligands are effective catalysts for asym. reactions. Thus, Et<sub>2</sub>Zn addn. to 2-cyclohexenone in the presence of (S)-2-(2-pyridinylcarbonylamino)-2'-diphenylphosphino-1,1'-binaphthyl complex with Cu gave (S)-3-ethylcyclohexanone of 92% ee with 98% conversion.

ST aminodiphenylphosphinobinaphthyl deriv chiral prepn catalyst ligand; asym reaction catalyst aminodiphenylphosphinobinaphthyl deriv chiral prepn

IT Arylation catalysts  
(Heck, asym.; prepn. of chiral 2-amino-2'-diphenylphosphino-1,1'-binaphthyl derivs. as metal catalyst ligands)

## CAS ONLINE PRINTOUT

L7 ANSWER 3 OF 8 CAPLUS COPYRIGHT 2002 ACS  
AN 2000:547497 CAPLUS  
DN 133:150343  
TI Transition metal-catalyzed process for preparing arylamines  
IN Hartwig, John F.; Kawatsura, Motoi; Hauck, Sheila I.; Shaughnessy, Kevin H.; Alcazar-Roman, Luis M.  
PA Yale University, USA  
SO U.S., 14 pp., Cont.-in-part of U.S. 5,977,361.  
CODEN: USXXAM

DT Patent

LA English

FAN.CNT 2

|      | PATENT NO.     | KIND | DATE     | APPLICATION NO. | DATE     |
|------|----------------|------|----------|-----------------|----------|
| PI   | US 6100398     | A    | 20000808 | US 1999-343383  | 19990630 |
|      | US 5977361     | A    | 19991102 | US 1998-172497  | 19981014 |
| PRAI | US 1997-62211P | P    | 19971016 |                 |          |
|      | US 1998-172497 | A2   | 19981014 |                 |          |

OS CASREACT 133:150343; MARPAT 133:150343

AB The title process for comprises reaction of an amine with an arylating agent in the presence of a **base** and a catalyst comprising a Group 8 metal and P(CMe<sub>3</sub>)<sub>3</sub> as a **ligand**. Thus, Ph<sub>2</sub>NH and PhBr were maintained 1h at room temp. in a dry box in PhMe contg. Pd(dba)<sub>2</sub> and P(CMe<sub>3</sub>)<sub>3</sub> to give 91% Ph<sub>3</sub>N.

RE.CNT 15 THERE ARE 15 CITED REFERENCES AVAILABLE FOR THIS RECORD  
ALL CITATIONS AVAILABLE IN THE RE FORMAT

TI Transition metal-catalyzed process for preparing arylamines

AB The title process for comprises reaction of an amine with an arylating agent in the presence of a **base** and a catalyst comprising a Group 8 metal and P(CMe<sub>3</sub>)<sub>3</sub> as a **ligand**. Thus, Ph<sub>2</sub>NH and PhBr were maintained 1h at room temp. in a dry box in PhMe contg. Pd(dba)<sub>2</sub> and P(CMe<sub>3</sub>)<sub>3</sub> to give 91% Ph<sub>3</sub>N.

ST arylamine prepn catalyst; N arylation catalyst

IT Amines, preparation

RL: IMF (Industrial manufacture); PUR (Purification or recovery); SPN (Synthetic preparation); PREP (Preparation)  
(arom., secondary; transition metal-catalyzed process for prep. arylamines)

IT Amines, preparation

RL: IMF (Industrial manufacture); PUR (Purification or recovery); SPN (Synthetic preparation); PREP (Preparation)  
(arom., tertiary; transition metal-catalyzed process for prep. arylamines)

IT Amines, preparation

RL: IMF (Industrial manufacture); PUR (Purification or recovery); SPN (Synthetic preparation); PREP (Preparation)  
(arom.; transition metal-catalyzed process for prep. arylamines)

IT Arylation

Arylation catalysts  
(transition metal-catalyzed process for prep. arylamines)

IT 122-39-4P, Diphenylamine, preparation 603-34-9P 827-60-1P,  
1-(4-Methylphenyl)-1H-pyrrole 4316-51-2P, N,N-Diphenyl-4-methoxyaniline  
4316-55-6P, N,N-Diphenyl-2-methylbenzenamine 7178-40-7P,  
4-(2-Methylphenyl)morpholine 10387-24-3P, N-Butyl-4-methylbenzenamine  
13050-56-1P, Tris(4-methoxyphenyl)amine 14118-16-2P,  
N,N,N',N'-Tetraphenyl-p-phenylenediamine 17425-20-6P, Butyl  
4-methylphenylcarbamate 20441-00-3P, 4-Diphenylaminobenzonitrile

## CAS ONLINE PRINTOUT

31144-33-9P, N,N-Dibutyl-4-methylbenzenamine 74965-31-4P, Butyl  
 2-methylphenylcarbamate 82749-64-2P, N,N-Dibutyl-2-methylbenzenamine  
 91644-88-1P, Butyl 4-methoxyphenylcarbamate 93597-01-4P,  
 1-(4-Methoxyphenyl)-1H-indole 119896-38-7P, 4-  
 Methylphenylaminobenzonitrile 138900-23-9P, 5-Methoxy-1-(4-fluorophenyl)-  
 1H-indole 167283-32-1P, 1-(4-Methylphenyl)1H-indole 240408-60-0P,  
 3-Methyl-1-(2-methylphenyl)-1H-indole 287476-96-4P  
 RL: IMF (Industrial manufacture); PUR (Purification or recovery); SPN  
 (Synthetic preparation); PREP (Preparation)  
 (transition metal-catalyzed process for prep.  
 arylamines)

IT 62-53-3, Benzenamine, reactions 83-34-1, 3-Methyl-1H-indole 95-46-5,  
 2-Bromotoluene 100-61-8, N-Methylaniline, reactions 101-70-2,  
 Bis(4-methoxyphenyl)amine 104-92-7, 4-Bromoanisole 106-37-6,  
 p-Dibromobenzene 106-43-4, p-Chlorotoluene 108-86-1, Bromobenzene,  
 reactions 108-90-7, Chlorobenzene, reactions 109-97-7, 1H-Pyrrole  
 110-91-8, Morpholine, reactions 111-92-2, Dibutylamine 120-72-9,  
 1H-Indole, reactions 460-00-4, 4-Bromo-1-fluorobenzene 623-00-7,  
 4-Bromobenzonitrile 623-03-0, 4-Chlorobenzonitrile 623-12-1,  
 4-Chloroanisole 1006-94-6, 5-Methoxy-1H-indole  
 RL: RCT (Reactant); RACT (Reactant or reagent)  
 (transition metal-catalyzed process for prep.  
 arylamines)

L7 ANSWER 4 OF 8 CAPLUS COPYRIGHT 2002 ACS  
 AN 2000:381474 CAPLUS

DN 133:30376

TI Carbonyl arylations and vinylations using **transition**  
**metal catalysts**

IN Kawatsura, Motoi; Hartwig, John F.

PA Yale University, USA

SO U.S., 12 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

|      | PATENT NO.     | KIND | DATE     | APPLICATION NO. | DATE     |
|------|----------------|------|----------|-----------------|----------|
| PI   | US 6072073     | A    | 20000606 | US 1999-376898  | 19990818 |
| PRAI | US 1998-97472P | P    | 19980821 |                 |          |

OS CASREACT 133:30376; MARPAT 133:30376

AB The invention is directed to a process for prep. an .alpha.-arylated or  
 vinylated carbonyl-contg. compds., comprising reacting a compd. having a  
 carbonyl group with an arylating or vinylating compd. in the presence of a  
 base and a **transition metal catalyst**. The  
**transition metal catalyst** has the formula  $X_nM(E R_1-4)^m$  [X  
 is an optional ligand, M is a Group 8 transition  
 metal, E is an element bearing a nonbonding electron pair when E  
 is not bonded to the metal, and R is a substituent bonded to E through a  
 carbon, nitrogen, oxygen, or sulfur atom, with the proviso that R3 cannot  
 contain 3 aryl groups, n is an integer from 0 to 4, and m is an integer  
 from 1-4]. E.g., BrPh and acetophenone were added to a mixt. of  $Pd(OAc)_2$ ,  
 $(Me_3C)_3P$ , and  $NaOCCMe_3$  in THF to give 96% 1,2-diphenyl-1-ethanone.

RE.CNT 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD  
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

TI Carbonyl arylations and vinylations using **transition**  
**metal catalysts**

AB The invention is directed to a process for prep. an .alpha.-arylated or  
 vinylated carbonyl-contg. compds., comprising reacting a compd. having a  
 carbonyl group with an arylating or vinylating compd. in the presence of a  
 base and a **transition metal catalyst**. The  
**transition metal catalyst** has the formula  $X_nM(E R_1-4)^m$  [X

CAS ONLINE PRINTOUT

is an optional ligand, M is a Group 8 transition metal, E is an element bearing a nonbonding electron pair when E is not bonded to the metal, and R is a substituent bonded to E through a carbon, nitrogen, oxygen, or sulfur atom, with the proviso that R3 cannot contain 3 aryl groups, n is an integer from 0 to 4, and m is an integer from 1-4]. E.g., BrPh and acetophenone were added to a mixt. of Pd(OAc)<sub>2</sub>, (Me<sub>3</sub>C)<sub>3</sub>P, and NaOCMe<sub>3</sub> in THF to give 96% 1,2-diphenyl-1-ethanone.

ST carbonyl arylation vinylation transition metal catalyst

IT **Arylation**

**Arylation catalysts**

**Vinylation**

**Vinylation catalysts**

        (arylations and vinylations of carbonyl compds. catalyzed by transition metal compds.)

IT **Transition metal compounds**

RL: CAT (Catalyst use); USES (Uses)

    (arylations and vinylations of carbonyl compds. catalyzed by transition metal compds.)

IT **Carbonyl compounds (organic), reactions**

RL: RCT (Reactant); RACT (Reactant or reagent)

    (arylations and vinylations of carbonyl compds. catalyzed by transition metal compds.)

IT 1608-26-0, Tris(dimethylamino)phosphine 1636-14-2 2283-11-6, Tris(diethylamino)phosphine 2622-14-2, Tricyclohexylphosphine 3375-31-3, Palladium diacetate 13716-12-6, Tri-tert-butylphosphine 32005-36-0, Bis(dibenzylideneacetone)palladium 40358-68-7 42964-60-3 65768-04-9 83356-93-8 93713-88-3 107531-50-0 120666-13-9 134484-36-9 139190-38-8 145964-33-6 252288-04-3

RL: CAT (Catalyst use); USES (Uses)

    (arylations and vinylations of carbonyl compds. catalyzed by transition metal compds.)

IT 83-13-6P, Diethyl phenylmalonate 451-40-1P 951-85-9P 1444-65-1P 2042-85-5P 13740-70-0P 56705-50-1P 58751-83-0P 84839-92-9P 113279-72-4P, Di-tert-butyl phenylmalonate 221662-40-4P 273381-75-2P 273381-76-3P

RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP (Preparation)

    (arylations and vinylations of carbonyl compds. catalyzed by transition metal compds.)

IT 90-90-4, 4-Bromobenzophenone 93-55-0, Ethyl phenyl ketone 98-86-2, Methyl phenyl ketone, reactions 105-53-3, Diethyl malonate 108-86-1, Bromobenzene, reactions 108-90-7, Chlorobenzene, reactions 108-94-1, Cyclohexanone, reactions 134-85-0, 4-Chlorobenzophenone 541-16-2, Di-tert-butyl malonate 563-80-4, Isopropyl methyl ketone 565-69-5, Ethyl isopropyl ketone 611-70-1, Isopropyl phenyl ketone 623-12-1, 4-Chloroanisole 1590-08-5, 2-Methyl-1-tetralone 2398-37-0, 3-Bromoanisole 2845-89-8, 3-Chloroanisole 3899-96-5

RL: RCT (Reactant); RACT (Reactant or reagent)

    (arylations and vinylations of carbonyl compds. catalyzed by transition metal compds.)

L7 ANSWER 5 OF 8 CAPLUS COPYRIGHT 2002 ACS

AN 2000:289079 CAPLUS

DN 132:293568

TI **Transition metal-catalyzed preparation of .alpha.-arylated carbonyl compounds.**

IN Hartwig, John F.; Hamann, Blake C.

PA Yale University, USA

SO U.S., 9 pp.

CODEN: USXXAM

DT Patent

## CAS ONLINE PRINTOUT

LA English

FAN.CNT 1

|      | PATENT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KIND | DATE     | APPLICATION NO. | DATE     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------------|----------|
| PI   | US 6057456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A    | 20000502 | US 1998-173527  | 19981015 |
| PRAI | US 1997-62212P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P    | 19971016 |                 |          |
| OS   | CASREACT 132:293568; MARPAT 132:293568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |          |                 |          |
| AB   | <p>.alpha.-Arylated carbonyl compds. were prep'd. by reacting a compd. having<br/>         .gtreq.1 CO group with an arylating compd. in the presence of a<br/> <b>base</b> and a catalyst comprising a group 8 <b>transition</b><br/> <b>metal</b> and a chelating <b>ligand</b> selected from unsatd. Group<br/>         15 element contg. heterocycles, metallocenes, alkanes, and arylenes.<br/>         Thus, PhBr, AcPh, Pd(dibenzylideneacetone)2, 1,1'-bis(di-O-<br/>         tolylphosphino)ferrocene, and KN(SiMe)2 were stirred at 70.degree. for 2 h<br/>         in THF to give 84% PhCH2COPh.</p> |      |          |                 |          |

RE.CNT 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD  
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

TI **Transition metal-catalyzed preparation of**  
 .alpha.-arylated carbonyl compounds.

AB .alpha.-Arylated carbonyl compds. were prep'd. by reacting a compd. having  
 .gtreq.1 CO group with an arylating compd. in the presence of a  
**base** and a catalyst comprising a group 8 **transition**  
**metal** and a chelating **ligand** selected from unsatd. Group  
 15 element contg. heterocycles, metallocenes, alkanes, and arylenes.  
 Thus, PhBr, AcPh, Pd(dibenzylideneacetone)2, 1,1'-bis(di-O-  
 tolylphosphino)ferrocene, and KN(SiMe)2 were stirred at 70.degree. for 2 h  
 in THF to give 84% PhCH2COPh.

ST arom ketone prep'n; aryl halide ketone coupling **transition**  
**metal catalyst**

IT **Arylation catalysts**  
 (Group 8 metals with Group 15-contg. ligands; **transition**  
**metal-catalyzed prep'n.** of .alpha.-arylated carbonyl compds.)

IT Ketones, preparation  
 RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP  
 (Preparation)  
 (arom.; **transition metal-catalyzed prep'n.** of  
 .alpha.-arylated carbonyl compds.)

IT **Arylation**  
 (**transition metal-catalyzed prep'n.** of  
 .alpha.-arylated carbonyl compds.)

IT Group VIII elements  
 RL: CAT (Catalyst use); USES (Uses)  
 (**transition metal-catalyzed prep'n.** of  
 .alpha.-arylated carbonyl compds.)

IT 538-58-9 3375-31-3, Palladium diacetate 12150-46-8 32005-36-0  
 54792-65-3 72287-26-4 73881-42-2 98327-87-8, BINAP 153305-67-0  
 247921-86-4 264284-69-7 264919-16-6 264919-17-7 264919-18-8  
 264919-19-9 264919-20-2  
 RL: CAT (Catalyst use); USES (Uses)  
 (**transition metal-catalyzed prep'n.** of  
 .alpha.-arylated carbonyl compds.)

IT 451-40-1P 2042-85-5P 5033-67-0P 6721-67-1P 10474-32-5P  
 13196-28-6P 13740-70-0P 24845-40-7P 27798-41-0P 62043-83-8P  
 86607-65-0P 93304-03-1P 144601-61-6P 264284-68-6P  
 RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP  
 (Preparation)  
 (**transition metal-catalyzed prep'n.** of  
 .alpha.-arylated carbonyl compds.)

IT 75-97-8 88-15-3 93-55-0, Propiophenone 95-46-5, 2-Bromotoluene  
 98-86-2, Acetophenone, reactions 104-92-7, 4-Methoxybromobenzene  
 108-86-1, Bromobenzene, reactions 591-50-4, Iodobenzene 611-70-1  
 932-16-1 1118-71-4 1192-62-7 3972-65-4, 4-Bromo-tert-butylbenzene

## CAS ONLINE PRINTOUT

6952-59-6 17496-14-9, 2-Methylindan-1-one 41492-05-1,  
 4-Butylbromobenzene  
 RL: RCT (Reactant); RACT (Reactant or reagent)  
 (transition metal-catalyzed prep. of  
 .alpha.-arylated carbonyl compds.)

L7 ANSWER 6 OF 8 CAPLUS COPYRIGHT 2002 ACS  
 AN 1998:650086 CAPLUS  
 DN 129:275692  
 TI Metal-catalyzed amination of organic sulfonates to organic amines  
 IN Hartwig, John F.; Driver, Michael S.; Louie, Janis; Hamann, Blake  
 PA Yale University, USA  
 SO U.S., 11 pp.  
 CODEN: USXXAM  
 DT Patent  
 LA English  
 FAN.CNT 1

| PATENT NO.           | KIND | DATE     | APPLICATION NO. | DATE     |
|----------------------|------|----------|-----------------|----------|
| PI US 5817877        | A    | 19981006 | US 1997-933658  | 19970919 |
| OS MARPAT 129:275692 |      |          |                 |          |

AB A process of prep. an org. amine having at least one unsatd. group, such as an arylamine, involving contacting an unsatd. org. sulfonate, such as an aryl sulfonate, with a reactant amine, such as an alkyl or aryl amine, in the presence of a **base** and a **transition metal catalyst** under reaction conditions. The **transition metal catalyst** contains a Group 8 metal and a chelating ligand, for example a Group 15-substituted arylene or Group 15-substituted metallocene, such as 1,1'-bis(diphenylphosphino)-2,2'-binaphthyl or 1,1'-bis(diphenylphosphino)ferrocene, resp. The aryl sulfonate can be prepd. from a phenol and sulfonating agent. E.g., treatment of 4-biphenyl triflate with aniline and NaOBu-tert in the presence of bis(dibenzylideneacetone)palladium and 1,1'-bis(diphenylphosphino)ferrocene in toluene gave 99% 4-PhC<sub>6</sub>H<sub>4</sub>NHPh. Among the approx. 20 compds. similarly prep'd. were 94% 4-MeOC<sub>6</sub>H<sub>4</sub>NHPh, 95% 2-MeC<sub>6</sub>H<sub>4</sub>NHPh, 98% N-phenyl-2-naphthylamine, 95% 4-NCC<sub>6</sub>H<sub>4</sub>NHBu, and 91% 2-morpholinonaphthalene.

AB A process of prep. an org. amine having at least one unsatd. group, such as an arylamine, involving contacting an unsatd. org. sulfonate, such as an aryl sulfonate, with a reactant amine, such as an alkyl or aryl amine, in the presence of a **base** and a **transition metal catalyst** under reaction conditions. The **transition metal catalyst** contains a Group 8 metal and a chelating ligand, for example a Group 15-substituted arylene or Group 15-substituted metallocene, such as 1,1'-bis(diphenylphosphino)-2,2'-binaphthyl or 1,1'-bis(diphenylphosphino)ferrocene, resp. The aryl sulfonate can be prep'd. from a phenol and sulfonating agent. E.g., treatment of 4-biphenyl triflate with aniline and NaOBu-tert in the presence of bis(dibenzylideneacetone)palladium and 1,1'-bis(diphenylphosphino)ferrocene in toluene gave 99% 4-PhC<sub>6</sub>H<sub>4</sub>NHPh. Among the approx. 20 compds. similarly prep'd. were 94% 4-MeOC<sub>6</sub>H<sub>4</sub>NHPh, 95% 2-MeC<sub>6</sub>H<sub>4</sub>NHPh, 98% N-phenyl-2-naphthylamine, 95% 4-NCC<sub>6</sub>H<sub>4</sub>NHBu, and 91% 2-morpholinonaphthalene.

ST amination triflate; amine org prep; **arylation** aniline; palladium catalyst amination org sulfonate; **transition metal catalyst** amination org sulfonate

IT Amines, preparation  
 RL: SPN (Synthetic preparation); PREP (Preparation)  
 (arom.; **transition metal-catalyzed** amination of org. sulfonates to org. amines)

IT Amination  
 Amination catalysts

## CAS ONLINE PRINTOUT

(transition metal-catalyzed amination of org.  
sulfonates to org. amines)

IT Sulfonates  
RL: RCT (Reactant); RACT (Reactant or reagent)  
(triflates; transition metal-catalyzed amination of  
org. sulfonates to org. amines)

IT 12150-46-8, 1,1'-Bis(diphenylphosphino)ferrocene 32005-36-0,  
Bis(dibenzylideneacetone)palladium 98327-87-8, BINAP  
RL: CAT (Catalyst use); USES (Uses)  
(transition metal-catalyzed amination of org.  
sulfonates to org. amines)

IT 78-81-9, Isobutylamine 100-61-8, reactions 109-73-9, Butylamine,  
reactions 110-89-4, Piperidine, reactions 110-91-8, Morpholine,  
reactions 3857-83-8, 2-Naphthyl triflate 17763-78-9, 4-Biphenyl triflate  
29540-83-8, p-Tolyl triflate 66107-29-7, p-Anisyl triflate  
66107-32-2, 4-Cyanophenyl triflate 66107-34-4, o-Tolyl triflate  
124643-34-1, 4-Benzoylphenyl triflate  
RL: RCT (Reactant); RACT (Reactant or reagent)  
(transition metal-catalyzed amination of org.  
sulfonates to org. amines)

IT 135-88-6P, 2-Phenylaminonaphthalene 1205-39-6P, 2-Methyldiphenylamine  
1208-86-2P, 4-Methoxydiphenylamine 4714-65-2P, 4-Butylaminobenzonitrile  
5465-85-0P, 2-Piperidinonaphthalene 7277-86-3P, N-Butyl-2-methylaniline  
7508-21-6P, 2-Morpholinonaphthalene 10282-31-2P, 4-(4-  
Cyanophenyl)morpholine 20349-66-0P, 4-(Methylphenylamino)benzophenone  
31053-03-9P, 1-p-Tolylpiperidine 32228-99-2P, 4-Phenyldiphenylamine  
54837-93-3P, N-Isobutyl-4-methylaniline 96372-83-7P,  
4-Piperidinobiphenyl 101906-09-6P, 4-Butylaminobiphenyl 180690-25-9P,  
4-Butylaminobenzophenone 186831-37-8P, 2-Isobutylaminonaphthalene  
213765-79-8P, 4-sec-Butylaminobenzonitrile  
RL: SPN (Synthetic preparation); PREP (Preparation)  
(transition metal-catalyzed amination of org.  
sulfonates to org. amines)

L7 ANSWER 7 OF 8 CAPLUS COPYRIGHT 2002 ACS  
AN 1998:6455 CAPLUS  
DN 128:22684  
TI Palladium-Catalyzed Direct .alpha.-Arylation of Ketones. Rate  
Acceleration by Sterically Hindered Chelating Ligands and Reductive  
Elimination From a Transition Metal Enolate Complex  
AU Hamann, Blake C.; Hartwig, John F.  
CS Department of Chemistry, Yale University, New Haven, CT, 06520-8107, USA  
SO Journal of the American Chemical Society (1997), 119(50), 12382-12383  
CODEN: JACSAT; ISSN: 0002-7863  
PB American Chemical Society  
DT Journal  
LA English  
OS CASREACT 128:22684  
AB The direct arylation of ketones by reaction of ketone, aryl  
halide, base, and a Pd catalyst contg. DPPF [1,1-  
bis(diphenylphosphino)ferrocene] or DTPF [1,1-bis(di-o-  
tolylphosphino)ferrocene] is reported, along with the direct observation  
of an unusual reductive elimination involving a transition  
metal enolate complex. Rates are significantly faster for  
reactions involving DTPF, and yields are measurably higher. The reaction  
is general for alkyl aryl ketones, including heteroaryl ketones, and can  
form secondary, tertiary, or quaternary carbons. Although not  
investigated in detail, dialkyl ketones also undergo the arylation  
chem. The enolate aryl complex that is a presumed intermediate in the  
catalytic process was prep'd. by reaction of (DPPF)Pd(p-C6H4-t-Bu)(Br) with  
the enolate salt KOCPh(=CH2). The complex is highly reactive, but was  
characterized by 1H, 1H(31P), and 31P(1H) NMR techniques which indicate a

CAS ONLINE PRINTOUT

C-bound enolate. The complex underwent reductive elimination at 50.degree. to form 74-87% yield of .alpha.-aryl ketone in less than 1 h.

TI Palladium-Catalyzed Direct .alpha.-Arylation of Ketones. Rate Acceleration by Sterically Hindered Chelating Ligands and Reductive Elimination From a Transition Metal Enolate Complex

AB The direct **arylation** of ketones by reaction of ketone, aryl halide, **base**, and a Pd catalyst contg. DPPF [1,1-bis(diphenylphosphino)ferrocene] or DTPF [1,1-bis(di-o-tolylphosphino)ferrocene] is reported, along with the direct observation of an unusual reductive elimination involving a **transition metal** enolate complex. Rates are significantly faster for reactions involving DTPF, and yields are measurably higher. The reaction is general for alkyl aryl ketones, including heteroaryl ketones, and can form secondary, tertiary, or quaternary carbons. Although not investigated in detail, dialkyl ketones also undergo the **arylation** chem. The enolate aryl complex that is a presumed intermediate in the catalytic process was prep'd. by reaction of (DPPF)Pd(p-C6H4-t-Bu)(Br) with the enolate salt KOCPh(=CH2). The complex is highly reactive, but was characterized by 1H, 1H(31P), and 31P(1H) NMR techniques which indicate a C-bound enolate. The complex underwent reductive elimination at 50.degree. to form 74-87% yield of .alpha.-aryl ketone in less than 1 h.

ST **arylation** ketone aryl halide palladium catalyst; sterically hindered chelating ligand **arylation** catalyst; reductive elimination **transition metal** enolate complex

IT **Transition metal** complexes  
RL: CAT (Catalyst use); USES (Uses)  
(catalyst component; palladium-catalyzed **arylation** of ketones by aryl halides using sterically hindered chelating ligands)

IT **Arylation**  
**Arylation** catalysts  
(palladium-catalyzed **arylation** of ketones by aryl halides using sterically hindered chelating ligands)

IT **Aryl halides**  
Ketones, reactions  
RL: RCT (Reactant); RACT (Reactant or reagent)  
(reactant; palladium-catalyzed **arylation** of ketones by aryl halides using sterically hindered chelating ligands)

IT **Elimination reaction**  
(reductive; palladium-catalyzed **arylation** of ketones by aryl halides using sterically hindered chelating ligands)

IT 12150-46-8, DPPF 15827-60-8, DTPF 32005-36-0  
RL: CAT (Catalyst use); USES (Uses)  
(catalyst component; palladium-catalyzed **arylation** of ketones by aryl halides using sterically hindered chelating ligands)

IT 185259-33-0  
RL: RCT (Reactant); RACT (Reactant or reagent)  
(complex formation; palladium-catalyzed **arylation** of ketones by aryl halides using sterically hindered chelating ligands)

IT 199390-35-7P  
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)  
(intermediate complex; palladium-catalyzed **arylation** of ketones by aryl halides using sterically hindered chelating ligands)

IT 451-40-1P, 1,2-Diphenylethanone 2042-85-5P, 1,2-Diphenyl-1-propanone 5033-67-0P, 2-(2-Methylphenyl)-1-phenylethanone 6721-67-1P, 3,3-Dimethyl-1-phenyl-2-butanone 13196-28-6P, 2-Phenyl-1-(2-thienyl)ethanone 13740-70-0P, 2-Methyl-1,2-diphenyl-1-propanone 24845-40-7P, 2-(4-Methoxyphenyl)-1-phenylethanone 27798-41-0P, 2-[4-(1,1-Dimethylethyl)phenyl]-1-phenylethanone 62043-83-8P, 3-(2-Oxo-2-phenylethyl)benzonitrile 86607-65-0P, 1-(2-Furanyl)-2-phenylethanone 93304-03-1P  
RL: SPN (Synthetic preparation); PREP (Preparation)

## CAS ONLINE PRINTOUT

(product; palladium-catalyzed **arylation** of ketones by aryl halides using sterically hindered chelating ligands)

IT 75-97-8, 3,3-Dimethyl-2-butanone 88-15-3, 2-Acetylthiophene 93-55-0, Propiophenone 95-46-5, 1-Bromo-2-methylbenzene 98-86-2, Acetophenone, reactions 104-92-7, 1-Bromo-4-methoxybenzene 108-86-1, Bromobenzene, reactions 591-50-4, Iodobenzene 611-70-1, Isobutyrophenone 932-16-1, 2-Acetyl-1-methylpyrrole 1192-62-7, 2-Acetyl furan 3972-65-4, 1-Bromo-4-(1,1-dimethyl ethyl)benzene 6952-59-6, 3-Bromobenzonitrile

RL: RCT (Reactant); RACT (Reactant or reagent)

(reactant; palladium-catalyzed **arylation** of ketones by aryl halides using sterically hindered chelating ligands)

L7 ANSWER 8 OF 8 CAPLUS COPYRIGHT 2002 ACS

AN 1995:764070 CAPLUS

DN 123:159350

TI Multiple Bonds between **Transition Metals** and Main-Group Elements. 145. Coordination Chemistry of Dirhenium Heptaoxide: Covalent Adducts and "Ionic Perrhenyl-Perrhenates"

AU Herrmann, Wolfgang A.; Roesky, Peter W.; Kuehn, Fritz E.; Elison, Martina; Artus, Georg; Scherer, Wolfgang; Romao, Carlos C.; Lopes, Andre; Basset, Jean-Marie

CS Anorganisch-chemisches Institut, Technischen Universitaet Muenchen, Garching, D-85747, Germany

SO Inorganic Chemistry (1995), 34(19), 4701-7

CODEN: INOCAJ; ISSN: 0020-1669

PB American Chemical Society

DT Journal

LA English

AB Dirhenium heptaoxide dissolves in donor solvents such as 1,2-dimethoxyethane (dme), THF, and MeCN to form adducts O<sub>3</sub>ReOReO<sub>3</sub>.cntdot.2L (L = monodentate ligand site). A strong reactivity enhancement of Re<sub>2</sub>O<sub>7</sub> for alkylation, **arylation**, and similar reactions follows from this unsym. Lewis-base coordination. The terminal and bridging oxygens equilibrate in soln. (170 NMR). These adducts exhibit unsym. bent O bridges in their solid state structures, e.g. O<sub>3</sub>ReOReO<sub>3</sub>.cntdot.dme (x-ray diffraction study; crystal data: space group P21/c, a 12.162(2), b 10.830(1), c 8.195(1) .ANG., .beta. 90.80(1).degree., Z = 4). With stronger, chelating N-donors L<sub>2</sub> such as 2,2'-bipyridine, N,N'-dicyclohexyl-1,4-diazabuta-1,3-diene, and 2,2'-bis(pyrazolyl)propane the Re<sub>2</sub>O<sub>7</sub>.cntdot.2L complexes have rigid asym. bridges even in soln. (170 NMR). Thermal decomprn. liberates Re<sub>2</sub>O<sub>7</sub> (EI-MS) and the resp. ligand (EI-MS, TG-MS). With tridentate ligands L<sub>3</sub> like tris(pyrazolyl)methane, 1,4,7-triazacyclononane (tacn), N,N',N'''-trimethyl-1,4,7-triazacyclononane (tacn\*), 1,4,7-trithiacyclononane (ttcn), the Re-O-Re bridge breaks with formation of the ionic perrhenates [ReO<sub>3</sub>L<sub>3</sub>]<sup>+</sup>[ReO<sub>4</sub>]<sup>-</sup>. An example is the ionic [ReO<sub>3</sub>(tacn\*)]<sup>+</sup>[ReO<sub>4</sub>]<sup>-</sup>, the structure of which compd. was detd. by x-ray diffraction (crystal data: space group P.hivin.1, a 7.389(2), b 9.143(2), c 1.2294(3) .ANG., .alpha. 83.68(2), .beta. 77.99(2), .gamma. 89.29(2).degree., Z = 2). Intermol. H bridging plays a major role in the crystal packing of the ionic perrhenates.

TI Multiple Bonds between **Transition Metals** and Main-Group Elements. 145. Coordination Chemistry of Dirhenium Heptaoxide: Covalent Adducts and "Ionic Perrhenyl-Perrhenates"

AB Dirhenium heptaoxide dissolves in donor solvents such as 1,2-dimethoxyethane (dme), THF, and MeCN to form adducts O<sub>3</sub>ReOReO<sub>3</sub>.cntdot.2L (L = monodentate ligand site). A strong reactivity enhancement of Re<sub>2</sub>O<sub>7</sub> for alkylation, **arylation**, and similar reactions follows from this unsym. Lewis-base coordination. The terminal and bridging oxygens equilibrate in soln. (170 NMR). These adducts exhibit unsym. bent O bridges in their solid state structures, e.g. O<sub>3</sub>ReOReO<sub>3</sub>.cntdot.dme (x-ray diffraction study; crystal

CAS ONLINE PRINTOUT

data: space group P21/c, a 12.162(2), b 10.830(1), c 8.195(1) .ANG., .beta. 90.80(1).degree., z = 4). With stronger, chelating N-donors L2 such as 2,2'-bipyridine, N,N'-dicyclohexyl-1,4-diazabuta-1,3-diene, and 2,2'-bis(pyrazolyl)propane the Re2O7.cntdot.2L complexes have rigid asym. bridges even in soln. (170 NMR). Thermal decompn. liberates Re2O7 (EI-MS) and the resp. ligand (EI-MS, TG-MS). With tridentate ligands L3 like tris(pyrazolyl)methane, 1,4,7-triazacyclononane (tacn), N,N',N''-trimethyl-1,4,7-triazacyclononane (tacn\*), 1,4,7-trithiacyclononane (ttcn), the Re-O-Re bridge breaks with formation of the ionic perrhenates [ReO3L3]+[ReO4]-. An example is the ionic [ReO3(tacn\*)]+[ReO4]-, the structure of which compd. was detd. by x-ray diffraction (crystal data: space group P.hivin.1, a 7.389(2), b 9.143(2), c 1.2294(3) .ANG., .alpha. 83.68(2), .beta. 77.99(2), .gamma. 89.29(2).degree., z = 2). Intermol. H bridging plays a major role in the crystal packing of the ionic perrhenates.

=>