Período: 2021-I Profesor: Cécile Gauthier

Ejercicios Prácticos 1.

- Muestre que Re(iz) = -Im(z) para todo número complejo z.
- Sea k un número entero. Muestre que:

a)
$$i^{4k} = 1$$

b)
$$i^{4k+1} = i$$

c)
$$i^{4k+2} = -1$$

c)
$$i^{4k+2} = -1$$
 d) $i^{4k+3} = -i$

3. Encuentre el valor de las siguientes potencias de i

$$a) i^7$$

b)
$$i^{62}$$

c)
$$i^{-202}$$

$$d) i^{-4321}$$

4. Encuentre el valor de z que satisface cada una de las siguientes ecuaciones:

$$a) \ iz = 4 - zi$$

b)
$$\frac{z}{1-z} = 1 - 5i$$
 $c) z^2 + 16 = 0$

c)
$$z^2 + 16 = 0$$

5. Encuentre z_1 y z_2 tal que se satisfaga el siguiente sistema de ecuaciones:

$$(1-i)z_1 + 3z_2 = 2 - 3i$$
$$iz_1 + (1+2i)z_2 = 1.$$

Encuentre todas las soluciones para $z^4 - 16 = 0$

- 7. Muestre que los puntos 3+i, 6, y 4+4i son los vértices de un triangulo rectángulo.
- Se
az=3-2i. Grafique los puntos $z,\,-z,\,\bar{z},\,-\bar{z}$ en el plano complejo.
- 9. Muestre de forma analítica y gráfica que $|z-1|=|\bar{z}-1|$
- 10. Dado el vector z, interprete geométricamente el vector $(\cos\theta + i\sin\theta)z$
- 11. Muestre lo siguiente:

a)
$$\arg z_1 z_2 z_3 = \arg z_1 + \arg z_2 + \arg z_3$$
 b) $\arg z_1 \bar{z_2} = \arg z_1 - \arg z_2$

$$b) \arg z_1 \bar{z_2} = \arg z_1 - \arg z_2$$

Nota: arg se define como el angulo que forma el vector que representa al número complejo z con el eje x en el plano complejo

- Muestre que $|e^{x+iy}| = e^x$ y arg $e^{x+iy} = y + 2\pi k$, $(k = 0, \pm 1, \pm 2, ...)$
- 13. Muestre que, para $\theta \in \mathbb{R}$:

a)
$$\cos \theta = Re(z) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

c)
$$\tan \theta = \frac{e^{i\theta} - e^{-i\theta}}{i(e^{i\theta} + e^{-i\theta})}$$

b)
$$\sin \theta = Im(z) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

d)
$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta), n = 1, 2, 3, \dots$$

14. ¿Qué describen las siguientes funciones?:

Taller 1

Período: 2021-I

c)
$$z(t) = 2e^{i2\pi t}, 0 \le t \le 1/2$$

b)
$$z(t) = 2e^{it} + i$$
, $0 \le t \le 2\pi$

d)
$$z(t) = 3e^{-it} + 2 - i, \ 0 \le t \le 2\pi$$

15. Usando la identidad $r^n e^{in\theta} = r^n(\cos(n\theta) + i\sin(n\theta))$, muestre que:

a)
$$(\sqrt{3}-i)^7 = -64\sqrt{3}+i64$$

b)
$$(1+i)^{95} = 2^{47}(1-i)$$

16. Para cada uno de los siguientes números cálculo sus raíces quintas. Determine y gráfique el polígono que genera, y calcule la longitud de sus aristas. ¿En ambos casos son las aristas iguales?, Justifique la respuesta:

a)
$$z_0 = -1$$

b)
$$z_0 = 1 + i$$

- 17. Encuentre las 4 raíces de $z^4+1=0$. Use el resultado para deducir la factorización $z^4+1=(z^2-\sqrt{2}z+1)(z^2+\sqrt{2}z+1)$
- 18. Resuelva la ecuación $(z+1)^5 = z^5$:
- 19. Muestre que la parte real de cualquier solución para $(z+1)^{100} = (z-1)^{100}$ debe ser cero.
- 20. Para los siguientes puntos en el plano complejo determine su proyección estereográfica.

$$a) z = i$$

b)
$$z = 6 - 8i$$

c)
$$z = \frac{-3}{10} + \frac{2}{5}i$$

- 21. Muestre que la proyección estereográfica de los puntos z y $\frac{1}{z}$ son reflejos una de la otra alrededor del plano ecuatorial de la esfera de Riemann.
- 22. Muestre que la proyección estereográfica de los puntos z y $-\frac{1}{z}$ son diametralmente opuestas en la esfera de Riemann.
- 23. Describa como sería la proyección estereográfica de los siguientes conjuntos:

a)
$$\{z : Re(z) > 0\}$$
 b) $\{z : |z| < 1/2\}$

b)
$$\{z: |z| < 1/2\}$$

2. Ejercicios Computarizados

- 1. Escriba un programa computarizado que realice las operaciones de suma, resta, multiplicación y división de números complejos. La entrada del programa deben ser las partes reales e imaginarías de los números, así como la operación que se desea realizar.
- 2. Escriba un programa de computadora para convertir entre coordenadas rectangulares y polares.

- 3. Escriba un programa que solucione la ecuación cuadrática $az^2 + bz + c = 0$, con $a \neq 0$. Use como entradas la parte real e imaginaria de los números a, b, c. Entregue el resultado en forma polar.
- 4. Escriba un programa de computadora que dadas las coordenadas de un número en el plano complejo proporcione sus coordenadas en la esfera de Riemann y viceversa.

3. Ejercicios Teóricos

- 1. Probar que la resta de números complejos es el inverso de la suma de números complejos, i.e $z_3 = z_2 - z_1$ si y solo si $z_3 + z_1 = z_2$.
- 2. Probar que la división de complejos es la operación inversa de la multiplicación de complejos, i.e si $z-2\neq 0$, entonces $z_3=z_1/z_2$ si y solo si $z_3z_2=z_1$
- 3. Sea z un número complejo tal qué Re(z) > 0, pruebe que Re(1/z) > 0.
- 4. Sea z un número complejo tal qué Im(z) > 0, pruebe que Im(1/z) < 0.
- 5. Pruebe que Re(z) < |z| e Im(z) < |z|
- 6. Muestre que el vector z_1 es paralelo al vector z_2 si y solo si $Im(z_1\bar{z_2})=0$.
- 7. Muestre que el producto punto entre vectores que representan a los números complejos z_1 y z_2 esta dado por: $z_1.z_2 = Re(\bar{z_1}z_2)$