多元统计分析课程作业 4

陈王子

202103150503

2024年5月13日

题目 1. 6.6.

利用练习 6.8 中处理 2 和处理 3 的数据: 处理 2: $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$,

处理 3: $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$

- (a) 计算 S_p.
- (b) 用双样本方法以 $\alpha = 0.01$ 检验 $H_0: \mu_2 \mu_3 = 0$
- (c) 构造 $\mu_{2i} = \mu_{3i}$, i = 1, 2 的 99% 联合置信区间

解答.

(a) 处理 2: 样本均值向量 $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$; 样本协方差矩阵 $\begin{bmatrix} 1 & -\frac{3}{2} \\ -\frac{3}{2} & 3 \end{bmatrix}$ 处理 3: 样本均值向量 $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$; 样本协方差矩阵 $\begin{bmatrix} 2 & -\frac{4}{3} \\ -\frac{4}{3} & \frac{4}{3} \end{bmatrix}$

$$\therefore S_{\text{pooled}} = \begin{bmatrix} 1.6 & -1.4 \\ -1.4 & 2 \end{bmatrix}$$

(b)

(c) 99% 联合置信区间为

$$\mu_{21} - \mu_{31} : (2 - 3) \pm \sqrt{45} \sqrt{\left(\frac{1}{3} + \frac{1}{4}\right) 1.6} = -1 \pm 6.5, \, \text{RP}[-7.5, 5.5]$$

$$\mu_{22} - \mu_{32} : (4 - 2) \pm \sqrt{45} \sqrt{\left(\frac{1}{3} + \frac{1}{4}\right) 2} = 2 \pm 7.2, \, \text{RP}[-5.2, 9.2]$$

题目 2. 6.7.

利用例 6.4 中的电力需求数据的汇总统计数字计算 T^2 ,并检验假设 H_0 : $\mu_1 - \mu_2 = 0$. (假定 $\mathbf{1} = \mathbf{2}, \alpha = \mathbf{0.05}$). 另外, 确定对拒绝 H_0 起关键作用的均值分量的线性组合。

解答.

$$T^{2} = \begin{bmatrix} 74.4 & 201.6 \end{bmatrix} \begin{bmatrix} \left(\frac{1}{45} + \frac{1}{55}\right) \begin{bmatrix} 10963.7 & 21505.5 \\ 21505.5 & 63661.3 \end{bmatrix} \end{bmatrix}^{-1} \begin{bmatrix} 74.4 \\ 201.6 \end{bmatrix} = 16.1$$

$$\frac{(n_{1} + n_{2} - 2)p}{n_{1} + n_{2} - p - 1} F_{p,n_{1} + n_{2} - p - 1}(0.05) = 6.26 \therefore T^{2} = 16.1 > 6.26 \therefore$$
拒绝 H_{0}
线性组合: $\hat{\mathbf{a}} \propto \left(\frac{1}{n_{1}}\mathbf{S}_{1} + \frac{1}{n_{2}}\mathbf{S}_{2}\right)^{-1} (\bar{x}_{1} - \bar{x}_{2}) = S_{pooled}^{-1}(\bar{x}_{1} - \bar{x}_{2}) = \begin{bmatrix} 0.0017 \\ 0.0026 \end{bmatrix}$

题目 3. 6.8.

对三种处理收集了两种响应的观测值, 观测值向量 $\begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$

处理 1:
$$\begin{bmatrix} 6 \\ 7 \end{bmatrix}$$
, $\begin{bmatrix} 5 \\ 9 \end{bmatrix}$, $\begin{bmatrix} 8 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 9 \end{bmatrix}$, $\begin{bmatrix} 7 \\ 9 \end{bmatrix}$
处理 2: $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$
处理 3: $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$

- (a) 像式 (6-39) 一样, 把观测值分解为总平均、处理效应和残差三个部分. 对每个变量构造相应的矩阵 (见例 6.9)
- (b) 利用 (a) 中的信息, 构造单因子 MANOVA 表
- (c) 计算威尔克斯 Λ 统计量 Λ^* ,并利用表 6.3 检验处理效应 (取 $\alpha=0$ 再利用带巴特利特修正的 χ^2 近似重新检验上述假设 [见式 (6-43)],并比较这两个结论

解答.

对于变量 1:

$$\begin{bmatrix} 6 & 5 & 8 & 4 & 7 \\ 3 & 1 & 2 \\ 2 & 5 & 3 & 2 \end{bmatrix}_{\text{MM}} = \begin{bmatrix} 4 & 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix}_{\text{Planck}} + \begin{bmatrix} 2 & 2 & 2 & 2 & 2 \\ -2 & -2 & -2 \\ -1 & -1 & -1 & -1 \end{bmatrix}_{\text{Planck}} + \begin{bmatrix} 0 & -1 & 2 & -2 & 1 \\ 1 & -1 & 0 \\ -1 & 2 & 0 & -1 \end{bmatrix}_{\text{RM}} = 246, SS_{\text{Planck}} = 192, SS_{\text{Planck}} = 36, SS_{\text{RM}} = 18$$

$$SS_{\text{\&Efilat}} = SS_{\text{Min}} - SS_{\text{pdf}} = 246 - 192 = 54$$

对于变量 2:

$$SS_{\text{修正后总和}} = SS_{\text{观测}} - SS_{\text{均值}} = 402 - 300 = 102$$

为完整地给出 MANOVA 表, 还必须考虑它们的交叉乘积, 将两变量中的数据按行相乘, 可得交叉乘积的贡献

$$SCP_{\dot{\mathbb{B}}} = 6 \times 7 + 5 \times 9 + 8 \times 6 + 4 \times 9 + 7 \times 9 + 3 \times 3 + 1 \times 6 + 2 \times 3$$
 $+2 \times 3 + 5 \times 1 + 3 \times 1 + 2 \times 3 = 275$ $SCP_{\dot{\mathbb{B}}\dot{\mathbb{B}}} = 4 \times 5 + 4 \times 5 + \ldots + 4 \times 5 = 12 \times 4 \times 5 = 240$ $SCP_{\dot{\mathbb{D}}\bar{\mathbb{B}}} = 5(2 \times 3) + 3(-2 \times -1) + 4(-1 \times -3) = 48$ $SCP_{\dot{\mathbb{B}}\dot{\mathbb{B}}} = 0 \times -1 + -1 \times 1 + 2 \times -2 + \ldots - 1 \times 1 = -13$ $SCP_{\dot{\mathbb{B}}\bar{\mathbb{B}}} = \dot{\mathbb{B}}\dot{\mathbb{C}}\mathbb{Z}$ 乘积 — 均值交叉乘积 = 35

已知公式:

总体均值向量数目/组数
$$g = 3$$
,矩阵元素个数 $\sum_{l=1}^{g} n_l = 5 + 3 + 4 = 12$

MANOVA 表如下:

变化来源	平方和与交叉乘积和矩阵 SSP	自由度 d.f.
处理	$B = \begin{bmatrix} 36 & 48 \\ 48 & 84 \end{bmatrix}$	g - 1 = 2
残差	$W = \begin{bmatrix} 18 & -13 \\ -13 & 18 \end{bmatrix}$	$\sum_{l=1}^{g} n_l - g = 9$
修正后总和	$B + W = \begin{bmatrix} 54 & 35\\ 35 & 102 \end{bmatrix}$	$\sum_{l=1}^{g} n_l - 1 = 2 + 9 = 11$

$$\Lambda^* = \frac{|W|}{|B+W|} = \frac{18 \times 18 - (-13) \times (-13)}{54 \times 102 - 35 \times 35} = \frac{155}{4283} = 0.0362 \, \text{Lp} = 2, g = 3 \geqslant 2$$

$$\therefore$$
 查表 6.3 知威尔克斯分布 $\left(\frac{\sum n_l - g - 1}{g - 1}\right) \left(\frac{1 - \sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) \sim F_{2(g-1), 2(\sum n_l - g - 1)}$

$$\because F_{4,16}(0.01) = 4.77 < 17.02 = \left(\frac{8}{2}\right) \left(\frac{1 - \sqrt{0.0362}}{\sqrt{0.0362}}\right)$$

:. 拒绝 H_0 ,处理间的差异在 $\alpha = 0.01$ 的显著性水平下存在。

此外,公式 (6-43) 利用带巴特利特修正的
$$\chi^2$$
近似检验
$$-\left(n-1-\frac{p+g}{2}\right)\ln\Lambda^*=-\left(12-1-\frac{2+3}{2}\right)\ln(0.0362)=28.209$$
公式 (6-44) 中 $\chi^2_{p(g-1)}(\alpha)=\chi^2_4(0.01)=13.28<28.209$

 \therefore 拒绝 H_0 ,处理间的差异在 $\alpha = 0.01$ 的显著性水平下存在。

题目 4. 6.13.

无重复的双因子 MANOVA:

考虑以下双因子表给出的 (注意: 对因子水平的每一种组合中仅有一个观测值向量) 响应 x_1, x_2 的观测值:

			因子 2			
		水平1	水平 2	水平3	水平 4	
因子 1	水平 1	6	4	8	2	
		$\lfloor 8 \rfloor$	$\left[6 \right]$		$\left[6\right]$	
	水平 2	3	-3	4	-4	
		8		$\begin{bmatrix} 3 \end{bmatrix}$	$\left[\begin{array}{c}3\end{array}\right]$	
	水平3	$\begin{bmatrix} -3 \end{bmatrix}$	-4	3	-4	
	次上 3		$\begin{bmatrix} -5 \end{bmatrix}$	$\begin{bmatrix} -3 \end{bmatrix}$	$\begin{bmatrix} -6 \end{bmatrix}$	

无重复的双因子 MANOVA 模型为

$$oldsymbol{X}_{lk} = oldsymbol{\mu} + oldsymbol{ au}_l + oldsymbol{eta}_k + e_{lk}; \quad \sum_{l=1}^g oldsymbol{ au}_l = \sum_{k=1}^b oldsymbol{eta}_k = 0$$

其中 e_{ik} 为独立的 $N_p(\mathbf{0}, \Sigma)$ 随机向量

(a) 与例 6.9 类似, 将两变量中的每一个变量的观测值分解为

$$x_{lk} = \bar{x} + (\bar{x}_{l\cdot} - \bar{x}) + (\bar{x}_{k\cdot} - \bar{x}) + (x_{lk} - \bar{x}_{l\cdot} + \bar{x}_{\cdot k} + \bar{x})$$

对每一个响应, 这个分解会产生几个 3×4 矩阵, 这里 \bar{x} 为总平均, \bar{x}_l 为因子 1 第 l 个水平下的平均, 而 \bar{x}_{lk} 为因子 2 第 k 个水平下的平均.

- (b) 矩阵的每一行看成一个串成的长向量,并计算平方和与交叉乘积和矩 阵
- (c) 构造 MANOVA 表
- (d) 检验因子 1 和因子 2 的主效应

解答.

对于第一个变量:

$$SS_{\stackrel{.}{\boxtimes}} = 220, SS_{$$
均值 $} = 12, SS_{$ 因子 $_{1}} = 104, SS_{$ 因子 $_{2}} = 90, SS_{$ 残差 $} = 14$

对于第二个变量:

$$SS_{\stackrel{.}{\boxtimes}}=440, SS_{\stackrel{.}{\boxtimes}}=108, SS_{\stackrel{.}{\boxtimes}}=1248, SS_{\stackrel{.}{\boxtimes}}=248, SS_{\stackrel{.}{\boxtimes}}=30$$

交叉相乘之和:

已知公式:

总体均值向量数目/组数g=3,列数b=4,

$$B_1 = \begin{bmatrix} SS_{\odot \pm 1} & SCP_{\Box \pm 1} & SCP_{\Box$$

MANOVA 表如下:

变化来源	平方和与交叉乘积和矩阵 SSP	自由度 d.f.
因子 1 处理	$B_1 = \begin{bmatrix} 104 & 148 \\ 148 & 248 \end{bmatrix}$	g - 1 = 2
因子 2 处理	$B_2 = \begin{bmatrix} 90 & 51 \\ 51 & 54 \end{bmatrix}$	b - 1 = 3
残差	$W = \begin{bmatrix} 14 & -8 \\ -8 & 30 \end{bmatrix}$	(g-1)(b-1) = 6
修正后总和	$B_1 + B_2 + W = \begin{bmatrix} 208 & 191 \\ 191 & 332 \end{bmatrix}$	gb - 1 = 11

验证因子 1 和因子 2 的主效应:

$$-\left[(g-1)(b-1) - \left(\frac{p+1-(b-1)}{2}\right)\right] \ln \Lambda^* = -\left[6 - \left(\frac{2+1-2}{2}\right)\right] \ln \frac{|W|}{|B_2+W|}$$
$$= -6 \ln \frac{356}{6887} = 17.77 > \chi_4^2(0.05) = 9.49$$

:: 结论: $\alpha = 0.05$ 的显著性水平下拒绝原假设 $H_0: \tau_1 = \tau_2 = \tau_3 = 0$

$$\begin{split} &-\left[(g-1)(b-1)-\left(\frac{p+1-(g-1)}{2}\right)\right]\ln\Lambda^* = -\left[6-\left(\frac{2+1-(4-1)}{2}\right)\right]\ln\frac{|W|}{|B_1+W|} \\ &= -5.5\ln\frac{356}{13204} = 19.87 > \chi_6^2(0.05) = 12.59 \end{split}$$

:: 结论: $\alpha = 0.05$ 的显著性水平下拒绝原假设 H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$