#### Estimación de consumo

Ecuación del consumo

$$P_{tot} = \alpha f_{ck} C_L V_{DD}^2 / 2 + \alpha f_{ck} V_{DD} I_{sc} + V_{DD} I_{leakage}$$

• ¿Dónde está la incertidumbre?



#### Estimación de consumo

Ecuación del consumo

$$P_{tot} = \alpha f_{ck} C_L V_{DD}^2 / 2 + \alpha f_{ck} V_{DD} I_{sc} + V_{DD} I_{leakage}$$

• ¿Dónde está la incertidumbre?

 $\alpha$  = activity factor

### Capacitancias

- Input gate: 0.042 pF (ES2 1u), 0.003 (Atmel 0.25u)
- Local wire: 0.3 pF
- Global wire: 2.5 pF
- Output pin: 3 pF
- PCB wire: several pF
- Wire: hundred of pF

Cálculo de potencia (orden de magnitud)

 $P = 0.1pF \times 1V \times 100 MHz \times 10 milliones de gates = 100 watts!!!$ 

## Activity rate

- Toggle Rates
  - How often a signal changes relative to a given clock
  - Percentage between 0–100%.
    - 12.5% (default) logic-intensive designs
    - 20% worst case (toggle rates greater than 20% are not very common)
    - 50% absolute worst case (arithmetic-intensive modules)

## Switching Activity Computation

- Delay Model
  - Zero-delay model
  - Real delay model
    - Post synthesis,
    - Post technology mapping
    - Post Place&Route

- Functional activity
  - steady-state transitions
- Spurious activity
  - Glitches considered

The switching activity is the most difficult factor to obtain in the power consumption equation.

## Power Estimation Techniques

- Complete circuit simulation (~Spice)
- Statistical Approaches
- Probabilistic Approaches

Sequential Circuits (FSM)

E. Todorovich, "Estimación estadística de consumo en FPGAs," Ph.D dissertation, Dep. Ing. Infor., Univ. Autónoma de Madrid, 2006. Accessed on: Sept 7, 2021. [Online].

Available: https://repositorio.uam.es/bitstream/handle/10486/3656/25461\_todorovich\_elias.pdf

## Complete circuit simulation (~Spice)

#### Problems

- Size of the stimulus vector set necessary to calculate accurately the activity
- Efficiency: memory and execution time

## Complete circuit simulation (~Spice)

#### Timing Simulators

- Transistor level power simulator, applies an event-driven timing simulation algorithm to increase the speed by two to three orders of magnitude over SPICE

#### Switch Simulators

- Transistor model simplified to a simple resistive switch using a discrete data representation (0, 1, X, for example).

#### Gate Level Simulators

- Use the macromodels built for the gates in the ASIC library

#### Hierarchical Simulation

- Use a hierarchy of power simulators (for example, at architectural, gate-level and circuit-level) to achieve a reasonable accuracy and efficiency tradeoff

## Statistical Approaches

- Monte Carlo
  - Random input patterns
- Total Power (McPower)
  - Iteration, combines statistical estimation and measures (slow convergence problem)
- Power of Individual Gates
  - direct extension of McPower
  - provides both the total and individual-gate power estimates
- Improvements in Statistical Methods
  - Better execution time

## Probabilistic Approaches

- Statistics-based strategies
  - the circuit under test is simulated with a number of patterns and after that,
    the resulting waveforms are processed
- If an appropriate probability characterization for circuit inputs is provided
  - The circuit can be simulated just once
  - Some processing must be done somehow before the simulation run to compute the required probability values at the inputs
  - A single run of a probability analysis tool replaces a number of conventional circuit simulation runs.
  - The user must specify the typical behavior at the circuit inputs

## Probabilistic Approaches



Fig. 3.1: Probabilistic (bottom) vs. Statistic approach (top)

## Sequential Circuits

- Accurate average switching activity estimation for FSMs is considerably more difficult for two reasons:
  - 1. The probability of the circuit being in each of its possible states has to be calculated (maybe indirectly)
  - 2. The present state line inputs of the FSM are strongly correlated
    - Temporally correlated due to the machine behavior, as represented in its state transition graph
    - Spatially correlated because of the given state encoding.

## Sequential Circuits

- Statistical Approaches
  - Power Consumption of the Sequential Circuit Combinational Part
  - Sequential Circuits with Multimodal Distributions in Power Consumption
  - A Technique to Generate a Random Sample in Sequential Circuits
  - Block Sampling in large Sequential Circuits

#### Herramientas en FPGAs

- Etapa temprana del diseño
  - Sirve para tener una estimación muy gruesa del consumo del diseño terminado
  - Planillas Excel (Altera, Xilinx)
- Final
  - Simuladores que usan información interna del chip
  - Altera: PowerPlay
  - Xilinx: XPower

## Power Analysis Tools in FPGAs

 Xilinx Announces XPower Power Analysis Software for FPGA Design, San Jose, CA, Nov. 21, 2000, Xilinx Inc.

http://investor.xilinx.com/phoenix.zhtml?c=75919&p=irol-wsArticle&ID=134100&highlight=

- Xilinx was founded in 1984. AMD announced its acquisition of Xilinx in October 2020 and the deal was completed on February 14, 2022
- Altera's Quartus II Version 4.2 Delivers FPGA and CPLD Performance Leadership, San Jose, CA, December 6, 2004, Altera Corporation

http://www.altera.com/corporate/news\_room/releases/releases\_archive/2004/products/nr-quartusii\_biz.html

Altera was founded in 1983 and acquired by Intel in 2015.

#### Xilinx Power Tools

- XPower Estimator (XPE)
  - Excel spreadsheet
  - Early phases of the project (predesign, pre-implementation)
- RTL Power Estimation
  - PlanAhead
  - RTL level
  - Early estimation
- XPower Analyzer (XPA)
  - ISE or PlanAhead
  - Post implementation
  - Most accurate tool

- Real measurements
  - Power measurements
  - Thermal measurements



Source: Xilinx UG786 Power Methodology Guide

# Estimación: Altera PowerPlay

|                          |               | 32x32          |           |               | 64x64          |           |
|--------------------------|---------------|----------------|-----------|---------------|----------------|-----------|
| Type of circuit          | Measured (mA) | Estimated (mA) | Error (%) | Measured (mA) | Estimated (mA) | Error (%) |
| LUT                      | 52,91         | 55,35          | 4,61      | 164,33        | 185,73         | 13,02     |
| LUT 1 pipeline           | 39,22         | 38,65          | -1,44     | 149,60        | 148,53         | -0,72     |
| LUT 2 pipeline           | 37,43         | 41,90          | 11,93     | 116,03        | 120,34         | 3,71      |
| LUT 3 pipeline           | 40,12         | 43,90          | 9,43      | 102,26        | 103,19         | 0,91      |
| LUT 4 pipeline           | 40,47         | 39,37          | -2,71     | 110,78        | 108,34         | -2,20     |
| LUT 5 pipeline           | 41,93         | 39,61          | -5,54     | 110,73        | 108,89         | -1,66     |
| LUT 6 pipeline           | 54,17         | 51,05          | -5,75     | 111,50        | 107,08         | -3,96     |
| Embedded mult            | 16,78         | 17,53          | 4,47      | 39,45         | 34,85          | -11,66    |
| Embedded mult 1 pipeline | 17,42         | 16,45          | -5,57     | 33,57         | 33,19          | -1,12     |
| Embedded mult 2 pipeline | 18,81         | 17,98          | -4,41     | 37,57         | 36,25          | -3,50     |
| Embedded mult 3 pipeline | 21,76         | 21,33          | -1,98     | 39,20         | 37,10          | -5,36     |

## Xilinx Xpower



 Xpower: Error mayor con mayor profundidad de lógica



#### Estimación "best-case"

- Simular circuito con entradas "reales" un tiempo "suficientemente" largo
- Generar y grabar el "activity file"
  - Resume la actividad de cada linea y FF
  - Hay dos formatos:
    - Guarda todo
    - Guarda % de actividad
- Usar simulador de consumo
  - Post place & route
  - Usar información del "activity file"

Oliver, J.P., Favaro, F. and Boemo, E., 2019. A framework to compare estimated and measured power consumption on FPGAs. Journal of Low Power Electronics, 15(4), pp.329-337. Accessed on: Sept 7, 2021. [Online]. Available: DOI: https://doi.org/10.1166/jolpe.2019.1622



## A Standarized Framework to Evaluate Power Estimation Tools

- 1) A set of IP cores is selected as benchmark circuits. (include diverse real-life applications, fully synthesizable.
- 2) For each circuit, a post place and route simulation is done using predefined patterns of input data.
- 3) The switching activity information of all circuit nodes is extracted from the simulation.
  - SAIF (Simulation Activity File) in Xilinx
  - VCD (Value Change Dump) in Intel.
- 4) The switching activity file is loaded into the power estimation tool (adjust temperature)
- 5) Each benchmark circuit is loaded into a FPGA and the power consumption during normal operation is measured.
- 6) Finally, the estimated power consumption is compared with the measured one and the relative error is computed.

#### **Estimation Flow**

- First, the complete system (after place and route stage) is simulated.
- During the simulation, the tool must be configured to register the activity of each node in a file.
- Finally, the power estimation tool uses this data to perform the calculation, taking into account the laboratory room temperature.







#### Results Altera Cyclone V

Table II. Benchmark IP cores characteristics for Xilinx.

| Type of circuit     | LUTs | Registers | RAM kbits | DSPs | MHz |
|---------------------|------|-----------|-----------|------|-----|
| AES                 | 1832 | 1115      | 0         | 0    | 100 |
| FFT                 | 3260 | 5034      | 90        | 0    | 100 |
| IEEE802154          | 777  | 376       | 0         | 0    | 8   |
| openMSP430          | 1754 | 822       | 54        | 1    | 50  |
| Mult $32 \times 32$ | 1103 | 0         | 0         | 0    | 25  |
| Mult $54 \times 54$ | 3065 | 0         | 0         | 0    | 25  |
| Mult $64 \times 64$ | 4290 | 0         | 0         | 0    | 25  |

**Table III.** Power consumption of benchmark IP cores in Artix-7.

| Type of circuit     | Estimation (mW) | Measurement (mW) | Relative error (%) |  |
|---------------------|-----------------|------------------|--------------------|--|
| AES                 | 71.3            | 69.1             | 3.1                |  |
| FFT                 | 117.8           | 121.2            | -2.8               |  |
| IEEE802154          | 10.5            | 20.6             | -49.4              |  |
| openMSP430          | 22.8            | 29.5             | -22.8              |  |
| Mult $32 \times 32$ | 18.1            | 39.0             | -53.7              |  |
| Mult $54 \times 54$ | 30.4            | 72.2             | -57.9              |  |
| Mult $64 \times 64$ | 38.0            | 98.8             | -61.5              |  |

**Table IV.** Benchmark IP cores characteristics for Intel.

| Type of circuit     | ALUTs | Registers | RAM kbits | DSPs | MHz |
|---------------------|-------|-----------|-----------|------|-----|
| AES                 | 1991  | 2030      | 2.05      | 0    | 100 |
| FFT                 | 3242  | 5282      | 42.66     | 4    | 100 |
| IEEE802154          | 1883  | 395       | 0.04      | 2    | 8   |
| openMSP430          | 1755  | 1000      | 40.96     | 1    | 50  |
| Mult $32 \times 32$ | 818   | 0         | 0         | 0    | 50  |
| Mult $54 \times 54$ | 2113  | 0         | 0         | 0    | 50  |
| Mult $64 \times 64$ | 3175  | 0         | 0         | 0    | 50  |

**Table V.** Power consumption of Benchmark IP cores in Cyclone V.

| Type of cicuit      | Glitch filtering (ON/OFF) | Estimation (mW) | Measurement (mW) | Relative error (%) |
|---------------------|---------------------------|-----------------|------------------|--------------------|
| AES                 | ON                        | 83.8            | 105.6            | -20.7              |
|                     | OFF                       | 89.3            | 105.6            | -15.4              |
| FFT                 | ON                        | 135.4           | 166.3            | -18.6              |
|                     | OFF                       | 142.2           | 166.3            | -14.5              |
| IEEE802154          | ON                        | 37.8            | 39.2             | -3.7               |
|                     | OFF                       | 39.1            | 39.2             | -0.5               |
| openMSP430          | ON                        | 45.2            | 44.3             | 2.1                |
| •                   | OFF                       | 48.3            | 44.3             | 9.2                |
| Mult $32 \times 32$ | ON                        | 45.4            | 55.7             | -18.5              |
|                     | OFF                       | 49.4            | 55.7             | -11.3              |
| Mult $54 \times 54$ | ON                        | 60.0            | 94.9             | -36.8              |
|                     | OFF                       | 71.6            | 94.9             | -24.6              |
| Mult $64 \times 64$ | ON                        | 75.1            | 140.2            | -46.4              |
|                     | OFF                       | 95.5            | 140.2            | -31.9              |

#### ¿Entonces?

- ¿Cómo trabajar con consumo?
  - Medidas
  - Estimaciones

#### Power Measurements

- Pros
  - Real data of power consumption!!

- Cons
  - Is not the "worst case"
    - Differences between samples
    - Thermal influence
  - Stimulus pattern generation
  - Lab equipment
  - Boards with measurement capabilities

#### Conclusiones

- Medir
  - Da resultados reales
  - Pero tiene varios problemas
- Estimar
  - Error de estimación
  - Hay que "calibrar" resultados

**Medir + Estimar + Analizar resultados**