

Neural Network (continued)

VietAl teaching team

On tập: Kiến trúc

- Khái niệm:
 - Lóp (layer)
 - No-ron (neuron)
 - Trọng số (weight)
 - Đơn vị điều chỉnh (bias)

parameters

- Tính chất:
 - Kết nối đủ (fully connected)
 - Số lượng hidden layer
 - Số lượng neuron mỗi hidden layer

hyper-parameters

Ön tập: Lan truyền thuận

Ví du: Xét mạng neuron có cấu trúc và parameters sau

Giá trị đầu vào:

$$x_1 = 5$$
 $x_2 = 3$
 $x_3 = 2$

Quá trình tính output:

$$\hat{y}_4 = x_1 \times w_{14} + x_2 \times w_{24} + x_3 \times w_{34} + b_4$$

 $= 5 \times 0.1 + 3 \times 0.6 + 2 \times 0.5 + 0.8$

$$w_{14} = 0.1$$

 $w_{24} = 0.6$ $b_4 = 0.8$

$$w_{34} = 0.5$$

$$= 0.5 + 1.8 + 1 + 0.8$$

$$1 + 0.8$$

$$= 4.1$$

Ôn tập: Hàm kích hoạt

Xét neural net sau

Vẫn là mô hình phân lớp tuyến tính dù thêm nhiều hidden layer

Activation function

$$\hat{y} = \left(\sum x.w\right) + bias$$

- $\rightarrow \hat{y} \in (-\infty; +\infty)$
- → Không thể biết neuron nào cần "activate"

On tập: Hàm kích hoạt

Hàm sigmoid:

On tập: Lan truyền thuận

• Ví dụ: Xét mạng neuron có cấu trúc và parameters sau

 $w_{24} = 0.6$ $b_4 = 0.8$

 $w_{14} = 0.1$

 $w_{34} = 0.5$

Giá trị đầu vào:

$$x_1 = 5$$
 $x_2 = 3$
 $x_3 = 2$

• Quá trình tính output:

$$= 0.5 + 1.8 + 1 + 0.8$$

$$= 4.1$$

$$\hat{y}_4 = \text{sigmoid}(\mathbf{tam}) = \frac{1}{1 + e^{-4.1}} = 0.983$$

VietAI ML Foundation Class 5 - Lecture 8

On tập: Quá trình học

VietAl

- Bước 0: Tạo cấu trúc mạng, chuẩn bị tập dữ liệu huấn luyện, gồm đầu vào x và nhãn y, tốc độ học α
- Bước 1: Khởi tạo ngẫu nhiên tất cả các giá trị weights
- ullet Bước 2: Thực hiện Lan truyền thuận đến output layer, được các giá trị h trong hidden neuron và \hat{y} trong output neuron
- Bước 3: Lan truyền ngược:

Đối với output layer

- o **3.1:** Tính độ lỗi: $e_k = y_k \hat{y}_k$
- o **3.2:** Tính sai số gradient: $\delta_k = \hat{y}_k \times (1 \hat{y}_k) \times e_k$
- ο **3.3:** Tính giá trị cần thay đổi: $\Delta w_{ik} = h_i \times \delta_k$
- o **3.4:** Cập nhật trọng số: $w_{jk} = w_{jk} + \alpha \times \Delta w_{jk}$
- \circ **3.5:** Cập nhật bias: $b_k = b_k + \alpha \times \delta_k$ Đối với hidden layer, bỏ **3.1** và thay đổi **3.2**:
- o **3.2:** Tính sai số gradient: $\delta_k = h_k \times (1 h_k) \times \sum_{i=1}^n \delta_i \times w_{ki}$

 Với giá trị trọng số và độ điều chỉnh tối ưu, kết quả dự đoán (predict) cho phép toán XOR như sau

Đầu vào		Kết quả mong muốn	Kết quả từ neural network	Sai số
x_1	x_2	у	$\hat{\mathcal{Y}}$	e
1	1	0	0.0486	-0.0486
0	1	1	0.9543	0.0457
1	0	1	0.9544	0.0456
0	0	0	0.0508	-0.0508

Byper parameters

- Số lượng neuron trong hidden layer:
 - Ít: hội tụ nhanh, phù hợp các bài toán phân lớp đơn giản
 - Nhiều: hội tụ chậm, dễ gây overfitting khi có ít dữ liệu để train. Bù lại model sẽ học được những phân phối phức tạp (nếu đủ dữ liệu)
- Hệ số học/ tốc độ học (learning rate):

Tính toán trên ma trận

- VietAl
- Sử dụng phép nhân ma trận (dot product) để thực hiện các phép tính trong neural network
 Input Hidden
- \succ Tính toán trên scalar Input: x_1, x_2

$$h_3 = \text{activate}(x_1 \times w_{13} + x_2 \times w_{23} + b_3)$$

$$h_4 = activate(x_1 \times w_{14} + x_2 \times w_{24} + b_4)$$

$$y_5 = \text{activate}(h_3 \times w_{35} + h_4 \times w_{45} + b_5)$$

ightharpoonup Tính toán trên ma trận: Gộp scalar ightharpoonup ma trận - Input: $\mathbf{X} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}$

$$H = activate(X.W + b)$$

= activate(
$$[x_1 \ x_2]$$
. $\begin{bmatrix} w_{13} & w_{14} \\ w_{23} & w_{24} \end{bmatrix}$ + $[b_3 \ b_4]$)

= activate(
$$[x_1 \times w_{13} + x_2 \times w_{23} \quad x_1 \times w_{14} + x_2 \times w_{24}] + [b_3 \quad b_4]$$
)

= $activate([h_3 \quad h_4])$

Bài tập về nhà

VietAl

Bài 1: Cho mạng neuron có cấu trúc sau:

Với tôc độ học $\alpha=0.1$, hàm kích hoạt là sigmoid và input $\mathbf{X}=[3,1,-2]$. Hãy tính kết quả lớp output \mathbf{Y} sau khi thực hiện Lan truyền thuận lần 3 Sử dụng phương pháp nhân ma trận thay vì scalar

Forward prop \rightarrow back prop \rightarrow forward prop \rightarrow back prop \rightarrow forward prop

Bài tập về nhà

VietAl

Bài 2 (optional): Hãy chứng minh:

Với parameters tùy ý, nếu không có activation function, thì hai models sau hoàn toàn tương tự nhau

Basic FNN formulas in a nutshell ©

- Bước 0: Tạo cấu trúc mạng, chuẩn bị tập dữ liệu huấn luyện, gồm đầu vào x và nhãn y, tốc độ học α
- Bước 1: Khởi tạo ngẫu nhiên tất cả các giá trị weights
- Bước 2: Thực hiện Lan truyền thuận đến output layer, được các giá trị h trong hidden neuron và \hat{y} trong output neuron
- **Bước 3:** Lan truyền ngược:

Đối với output layer

- o **3.1:** Tính độ lỗi: $e_k = y_k \hat{y}_k$
- o **3.2:** Tính sai số gradient: $\delta_k = \hat{y}_k \times (1 \hat{y}_k) \times e_k$
- ο **3.3:** Tính giá trị cần thay đổi: $\Delta w_{jk} = h_j \times \delta_k$
- o **3.4:** Cập nhật trọng số: $w_{jk} = w_{jk} + \alpha \times \Delta w_{jk}$
- o **3.5:** Cập nhật bias: $b_k = b_k + \alpha \times \delta_k$ Đối với hidden layer, bỏ **3.1** và thay đổi **3.2**:
- o **3.2:** Tính sai số gradient: $\delta_k = h_k \times (1 h_k) \times \sum_{i=1}^n \delta_i \times w_{ki}$

Nội dung

- 1. Chứng minh công thức lan truyền ngược
- 2. Chức năng của activation function
- 3. Một số activation function
- 4. Một số hàm cost thông dụng
- 5. Biến thể của gradient descent
- 6. Momentum
- 7. Regularization trong mang neuron

Nội dung

- 1. Chứng minh công thức lan truyền ngược
- 2. Chức năng của activation function
- 3. Một số activation function
- 4. Một số hàm cost thông dụng
- Biến thể của gradient descent
- Momentum
- 7. Regularization trong mang neuron

Bài tập đạo hàm

Bài tập 1: Đạo hàm hàm số sau (x là biến, y là tham số):

$$c(x) = \frac{1}{2}(y - x)^2$$

Bài tập đạo hàm

Bài tập 2: Đạo hàm hàm số sau

$$s(x) = \frac{1}{1 + e^{-x}}$$

Ôn tập đạo hàm

Ví dụ: Đạo hàm hàm số f(g(x)):

Biết rằng:
$$f(x) = 2x^2 - 3 \text{ và } g(x) = \frac{1}{x} + 1$$

→ Giải:

Ta có công thức: $[f(g(x))]' = f'(g(x)) \times g'(x)$

•
$$f'(x) = 4x$$

•
$$f'(g(x)) = 4\left(\frac{1}{x} + 1\right)$$

•
$$g'(x) = \frac{-1}{x^2}$$

Suy ra
$$\left[f(g(x))\right]' = f'(g(x)) \times g'(x) = 4\left(\frac{1}{x} + 1\right) \times \frac{-1}{x^2}$$

1 Ôn tập đạo hàm

• Bài tập 3: Đạo hàm hàm số sau:

$$c(s(x)) = \frac{1}{2} \left(y - \left(\frac{1}{1 + e^{-x}} \right) \right)^2$$

1 Ôn tập đạo hàm

Đạo hàm 3 hàm hợp?

$$\left[f\left(g(h(x))\right) \right]' = ?$$

$$\left[f\left(g(h(x))\right) \right]' = f'\left(g(h(x))\right) \times g'(h(x)) \times h'(x)$$

On tập đạo hàm

• **Ví dụ**: Đạo hàm hàm số f(g(h(x))):

Biết rằng:
$$f(x) = 2x^2 - 3 \text{ và } g(x) = \frac{1}{x} + 1 \text{ và } h(x) = 4e^x - x$$

💶 Ôn tập đạo hàm

• **Ví dụ**: Đạo hàm hàm số f(g(x)): f(g(h(x))):

Biết rằng:
$$f(x) = 2x^2 - 3 \text{ và } g(x) = \frac{1}{x} + 1 \text{ và } h(x) = 4e^x - x$$

→ Giải:

$$\left[f\left(g\big(h(x)\big)\right)\right]' = f'\left(g\big(h(x)\big)\right) \times g'\big(h(x)\big) \times h'(x)$$

$$[f(g(x))]' = f'(g(x)) \times g'(x) = 4\left(\frac{1}{x} + 1\right) \times \frac{-1}{x^2}$$

$$h(x) \qquad h(x) \qquad \times h'(x)$$

$$= 4\left(\frac{1}{4e^{x}-x}+1\right) \times \frac{-1}{(4e^{x}-x)^{2}} \times (4e^{x}-1)$$

On tập đạo hàm

VietAl

Bài tập 4: Đạo hàm hàm số sau:

$$c\left(s(o(w_1))\right) = \frac{1}{2} \left(y - \left(\frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}\right)\right)^2$$

Giải

VietAl

Xét mạng neuron sau

→ Đặt ra hàm cost (hàm độ lỗi):

$$cost = \frac{1}{2}(y - \hat{y})^2$$

Cost càng thấp, mạng neuron sẽ có params càng tốt

VietAl

Xét mạng neuron sau

$$cost = \frac{1}{2}(y - \hat{y})^2$$

Cách tính output \hat{y}_5 :

$$\hat{y}_5 = sigmoid(w_{35}h_3 + w_{45}h_4 + b_5) = \frac{1}{1 + e^{-(w_{35}h_3 + w_{45}h_4 + b_5)}}$$

$$cost = \frac{1}{2} \left(y - \frac{1}{1 + e^{-(w_{35}h_3 + w_{45}h_4 + b_5)}} \right)^2$$
 Đạo hàm cực tiểu

$$cost = \frac{1}{2} \left(y - \left(\frac{1}{1 + e^{-(w_1 x_1 + w_2 x_2 + b)}} \right) \right)^2$$

$$c\left(s(o(w_1))\right) = \frac{1}{2} \left(y - \left(\frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}\right)\right)^2$$

$$cost = \frac{1}{2} \left(y - \frac{1}{1 + e^{-(w_{35}h_3 + w_{45}h_4 + b_5)}} \right)^2$$

Ta có kết quả đạo hàm cần tìm:

$$= -(y - \hat{y}) \times \hat{y} \times (1 - \hat{y}) \times x_1$$

- **3.1:** Tính độ lỗi: $e_k = y_k \hat{y}_k$
- **3.2:** Tính sai số gradient: $\delta_k = \hat{y}_k \times (1 \hat{y}_k) \times e_k$
- \circ **3.3:** Tính giá trị cần thay đổi: $\Delta w_{jk} = h_j \times \delta_k$
- \circ **3.4:** Cập nhật trọng số: $w_{jk} = w_{jk} + \alpha \times \Delta w_{jk}$
- \circ **3.5:** Cập nhật bias: $b_k = b_k + \alpha \times \delta_k$

Dummy's questions

- Nếu đổi hàm cost thì công thức có thay đổi không?
- 2. Nếu đổi activation function thì công thức có thay đổi không?
- 3. Lý do sử dụng hàm sigmoid làm activation function?
- 4. Backpropagation là gì, nó khác gì với gradient descent?
- 5. Tại sao trừ cho đạo hàm nhiều lần thì mô hình "thông minh hơn"?
- 6. Câu hỏi phỏng vấn: Giải thích gradient descent

Formal formulas

- 1. **Input** x: Set the corresponding activation a^1 for the input layer.
- 2. **Feedforward:** For each l = 2, 3, ..., L compute $z^{l} = w^{l}a^{l-1} + b^{l}$ and $a^{l} = \sigma(z^{l})$.
- 3. **Output error** δ^L : Compute the vector $\delta^L = \nabla_a C \odot \sigma'(z^L)$.
- 4. **Backpropagate the error:** For each $l = L 1, L 2, \dots, 2$ compute $\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$.
- 5. **Output:** The gradient of the cost function is given by $\frac{\partial C}{\partial w^l_{i,i}} = a^{l-1}_k \delta^l_j \text{ and } \frac{\partial C}{\partial b^l_i} = \delta^l_j.$

VietAl

- Sử dụng phép nhân ma trận để lan truyền, thay vì scalar
- Trọng số được ký hiệu $w^{(l)}$ để chỉ ma trận trọng số sau layer l
- Bias được ký hiệu $b^{(l)}$
- Δw^(l) là giá trị gradient (dùng để cập nhật ma trận trọng số)
- Dùng phép "trừ"

Nội dung

- Chứng minh công thức lan truyền ngược
- 2. Chức năng của activation function
- 3. Một số activation function
- 4. Một số hàm cost thông dụng
- Biến thể của gradient descent
- Momentum
- 7. Regularization trong mang neuron

Remind: Bài tập về nhà

Bài 2 (optional): Hãy chứng minh:

Với parameters tùy ý, nếu không có activation function, thì hai models sau hoàn toàn tương tự nhau

Remind: Bài tập về nhà

$$h = w^{(1)}x + b^{(1)}$$

$$y = w^{(2)}h + b^{(2)}$$

$$\Leftrightarrow y = w^{(2)}(w^{(1)}x + b^{(1)}) + b^{(2)}$$

$$\Leftrightarrow y = w^{(2)}w^{(1)}x + w^{(2)}b^{(1)} + b^{(2)}$$

$$W$$
b

$$y = \mathbf{w}x + \mathbf{b}$$

Chọn
$$\mathbf{w} = \mathbf{w}^{(2)} \mathbf{w}^{(1)}$$

$$\mathbf{b} = \mathbf{w}^{(2)} b^{(1)} + b^{(2)}$$

3 Activation function

- Giúp mạng trở nên phi tuyến → Giải quyết được nhiều bài toán
- Có nhiều activation functions:
 - Sigmoid

$$\frac{1}{1+e^{-x}}$$

Tanh

ReLU (Rectified Linear Unit)

Softmax

softmax
$$(x_1) = \frac{e^{x_1}}{e^{x_1} + e^{x_2} + \dots + e^{x_n}}$$

SOFTMAX

$$\begin{cases}
2.0 - \frac{2.0}{1.0} - \frac{2.0}{5} - \frac{2.0$$

• Bài tập 5: Tính đạo hàm hàm Tanh, ReLU và softmax

Dummy's questions

- Tại sao sigmoid làm cho mô hình khó hội tụ hơn các activation functions khác?
- 2. Activation function nào xin xò nhất?
- 3. Tại sao không sử dụng hàm max thay vì hàm softmax?

Nội dung

- Chứng minh công thức lan truyền ngược
- 2. Chức năng của activation function
- Một số activation function
- Một số hàm cost thông dụng
- 5. Biến thế của gradient descent
- Momentum
- 7. Regularization trong mang neuron

4 Hàm cost

Mean squared error

$$cost = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \times \left(y_i - \hat{y}_i \right)^2$$

Cross entropy

$$cost = -\frac{1}{m} \sum_{i=1}^{m} \left(\ln(\hat{y}_i) \times y_i + \ln(1 - \hat{y}_i) \times (1 - y_i) \right)$$

4 Ý nghĩa

Nội dung

- 1. Chứng minh công thức lan truyền ngược
- 2. Chức năng của activation function
- 3. Một số activation function
- 4. Một số hàm cost thông dụng
- 5. Biến thể của gradient descent
- 6. Momentum
- Regularization trong mang neuron

Biến thể của gradient descent

- Batch Gradient Descent: khi cập nhật, chúng ta sử dụng tất cả các điểm dữ liêu
 - Đôi khi không hiệu quả khi có quá nhiều dữ liệu huấn luyện
 - Không hiệu quả với online learning
- Stochastic Gradient Descent: Sử dụng duy nhất một điểm dữ liệu mỗi lần huấn luyện
 - Cần shuffle tập dữ liêu mối khi huấn luyên
 - Hôi tu nhanh
- Minibatch Gradient Descent: sử dụng một số lượng nhỏ k mẫu dữ liệu (nhỏ hơn tổng số dữ liệu) mỗi lần huấn luyện
 - \circ Chọn k sao cho 10 < k < 1000. Ví dụ k = 32, 64, 128, ...
 - Cần shuffle tập dữ liệu mối khi huấn luyện

Biến thể của gradient descent

Batch gradient descent

Mini-batch gradient descent

- Nếu dữ liệu nhỏ (< 200 mẫu): dùng batch gradient descent
- Nếu dữ liệu lớn, dùng mini-batch gradient descent
- Đảm bảo dữ liệu phù hợp với machine stats

Nội dung

- Chứng minh công thức lan truyền ngược
- 2. Chức năng của activation function
- 3. Một số activation function
- 4. Một số hàm cost thông dụng
- 5. Biến thể của gradient descent
- 6. Momentum
- 7. Regularization trong mang neuron

Momentum

Sử dụng momentum để tránh local minima

Momentum

Biểu diễn momentum dưới dạng toán

$$\Delta w_{jk} = -\hat{y}_k \times (1 - \hat{y}_k) \times (y_k - \hat{y}_k) \times \mathbf{h}_j$$

Cập nhật trọng số: $w_{jk} = w_{jk} - \alpha \times \Delta w_{jk}$

Thêm biến vận tốc:
$$\mathbf{v}^{(t)} = \gamma \times \mathbf{v}^{(t-1)} + \alpha \times \Delta w_{jk}$$

Khi đó: $w_{jk} = w_{jk} - \mathbf{v}^{(t)}$

- γ thường được chọn với giá trị 0.9
- Chọn vận tốc đầu $v^{(0)} = 0$

Momentum

Nội dung

- 1. Chứng minh công thức lan truyền ngược
- 2. Chức năng của activation function
- Một số activation function
- 4. Một số hàm cost thông dụng
- Biến thể của gradient descent
- Momentum
- 7. Regularization trong mang neuron

Overfitting

6 Early Stopping

Dừng huấn luyện trước khi xảy ra dấu hiệu overfitting

6 Regularization: L2 Norm

L2 Norm:

$$cost = cost + \frac{\lambda}{2m} \times \sum_{l=1}^{L-1} (\|w^{(l)}\|_F)^2$$

Regularization term

 λ : regularization parameter

m: tổng số mẫu dữ liệu

L: tổng số lớp

$$\Delta w^{(l)} = kq \text{ từ backprop} + \frac{\lambda}{m} w^{(l)}$$
$$w^{(l)} = w^{(l)} - \alpha \times \Delta w^{(l)}$$

Công thức L2 Norm: Frobenius norm

$$\|\mathbf{A}\|_{\mathrm{F}} = \sqrt{\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \mathbf{A}_{i}^{2}}$$

Regularization: L2 Norm

$$\Delta w^{(l)} = kq \text{ từ backprop} + \frac{\lambda}{m} w^{(l)}$$

$$w^{(l)} = \Delta w^{(l)} - \alpha \times \Delta w^{(l)}$$

Làm cho $w^{(l)}$ nhỏ hơn, nếu λ càng lớn $\rightarrow w^{(l)}$ tiến về 0

Regularization: L2 Norm

$$\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

nếu λ càng lớn $\rightarrow w^{(l)} \approx 0 \rightarrow z^{(l)} = w^{(l)}x^{(l-1)} + b^{(l)} \approx 0$

Giá trị tanh(z) thay đổi nằm trong khoảng màu đỏ → gần như đường thẳng

Mỗi layer ≈ tuyến tính (linear) hơn

0.5 0.5 0.5

- Định nghĩa xác suất giữ lại (keep probability) để giữ lại neurons
- Dropout được thực hiện trên mỗi batch → các neurons bị tắt sẽ khác nhau mỗi vòng lặp
- Khi predict: tắt chế độ dropout (keep_prob = 1 cho tất cả)

Regularization: Inverted Dropout

Quá trình cài đặt dropout:

```
import numpy as np
# Giả sử a là giá trị có sẵn trên các neuron lớp đang xét
keep_prob = 0.8
d = np.random.rand(a.shape[0],a.shape[1]) < keep_prob
a = a*d
# Inverted dropout: giữ nguyên giá trị trung bình của a
a = a/keep prob</pre>
```

Giả sử có 50 neurons → 10 neurons bị tắt (giá trị = 0)

$$tb(a) = tb(a) - \frac{20}{100} \times tb(a) = tb(a) - 0.2 \times tb(a) = 0.8 \times tb(a) = tbm(a)$$

• Bù lại khi thực hiện inverted dropout:

$$tbm(a) = tbm(a): \frac{80}{100} = tbm(a) \times \frac{100}{80} = tbm(a) \times \frac{80}{80} + tbm(a) \times \frac{20}{80} = tb(a)$$

6 Regularization: Inverted Dropout

Lý do dropout hoạt động:

Không thể tin tưởng hoàn toàn trên duy nhất một feature, cần phải lan rộng

giá trị weights

