International Geothermal Development

Case Study: Ngatamariki Geothermal Field, New Zealand

Presentation by Catherine Coutts

Fourth London Geothermal Symposium, 13 October 2014

Presentation Outline

- 1. History of geothermal development in New Zealand
- Key differences between geothermal development in New Zealand and UK
 - Tectonics
 - Electricity market
- 3. Ngatamariki project timeline
- 4. Importance of understanding the resource

Geothermal Development In New Zealand

- Wairakei Power Plant commissioned 1958;
- Followed by intensive period of govt. led R&D;
- Large gas discovery in 1980's put further geothermal development on hold;
- Geothermal 'renaissance' period from mid-1990's;
- Today, ~900 MW installed geothermal capacity, equivalent to 14% of NZ electricity generation.
- Current low electricity demand no further geothermal development for estimated 3-5 years.

Te Mihi Geothermal Power Station

Introduction

Key Differences with UK Market

1. Tectonic setting

- New Zealand located on 'Pacific Ring of Fire'
- Subduction of pacific plate
- >14 high temperature geothermal fields associated with volcanic activity in the Taupo Volcanic Zone
- Both steam and liquid resources up to >300°C at 2000-3000m depth

Chambefort et al., 2014

Key Differences with UK Market

1. Tectonic setting

- UK is tectonically stable
- Hosts geothermal resource in radiothermal granites (EGS) in Cornwall, Weardale and Scotland
- EGS technology trialled at Rosmanowes in 1970's – 1980's
- Hot sedimentary aquifers (HSA) in several basins throughout the UK
- District heating scheme at Southampton using HSA in Wessex Basin
- Shallow geothermal resources utilised for GSHC

Key Differences with UK Market

2. Finance

New Zealand

- 75% electricity from renewables
- Prior govt. investment in exploration catalyst for future development
- Balance sheet funded
- ROI based on economy of scale
- Competitive against other fuel sources on spot market
- Vertically integrated generator/retailers negates need for PPA's

United Kingdom

- Abundance of carbon based resources (coal, gas, oil)
- Drive towards a lower carbon economy, EU goal of 20% renewable energy by 2020
- Renewable portfolio dominated by wind and solar
- Incentive schemes to support uptake of renewables

Case Study

Ngatamariki Project Overview

Ngatamariki Project Overview

Importance of Understanding the Resource

UPFRONT CAPITAL INVESTMENT REQUIRED TO SECURE PROJECT FINANCE

Understanding the resource:

- Geophysics
- Geochemistry
- Exploration wells
- Conceptual model
 - Analogous fields and international experience
- Numerical modelling
- Resource monitoring (incl. reservoir, surface features, groundwater)

Important to:

- Optimise development for resource characteristics
 - Resource size, enthalpy, chemistry conditions
- Inform investment decisions
 - Plant sizing, technology options
- Understand and manage inherent risks

Example: Risk of cold water downflow from overlying aquifer

Boseley et al., 2010b

Lessons Learned

- Geothermal development requires considerable upfront investment for successful realisation;
 - Early government investment in exploration was a catalyst for future development
 - Up front investment required to prove the resource and secure project approval
- Understanding the resource & demonstrating sustainability is important;
 - Each resource is different
 - Understand resource risk
 - Inform investment decisions
- Geothermal can provide reliable base-load energy, important in the mix of renewable technologies;

Thank You

Catherine Coutts (Boseley)

Parsons Brinckerhoff, 2013 - present

<u>catherine.coutts@pbworld.com</u> <u>www.pbworld.com</u>

Mighty River Power, 2008 - 2013

http://uk.linkedin.com/pub/catherine-coutts-boseley/60/b13/352/

References

- **Boseley, C.A.**, Cumming, W., Urzúa-Monsalve, L., Powell, T., Grant, M.A., 2010a. A Resource Conceptual Model for the Ngatamariki Geothermal Field Based on Recent Exploration Well Drilling and 3D MT Resistivity Imaging. Proceedings World Geothermal Congress, 2010. Bali, Indonesia.
- **Boseley, C.**, Grant, M., Burnell, J., and Rickets, B. Ngatamariki Project Update. Proceedings GRC Annual Meeting 2010b. Sacramento, California. (2010).
- I. Chambefort, B. Lewis, C. J. N. Wilson, A.J. Rae, C. Coutts, G. Bignall, T.R. Ireland, 2014. Stratigraphy and structure of the Ngatamariki geothermal system from new zircon U–Pb geochronology: Implications for Taupo Volcanic Zone evolution. Journal of Volcanology and Geothermal Research 274 (2014) 51–70