data preparation and customer analytics

August 11, 2020

```
[1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns; sns.set(palette='Spectral')
  from scipy import stats
  import xlrd
  import datetime
  %matplotlib inline
```

1 Load Data

```
[2]: purchase = pd.read_csv('data/QVI_purchase_behaviour.csv')
purchase.head()
```

PREMIUM_CUSTOMER	LIFESTAGE		LYLTY_CARD_NBR	[2]:
Premium	SINGLES/COUPLES	YOUNG	1000	0
Mainstream	SINGLES/COUPLES	YOUNG	1002	1
Budget	YOUNG FAMILIES		1003	2
Mainstream	SINGLES/COUPLES	OLDER	1004	3
Mainstream	SINGLES/COUPLES	MIDAGE	1005	4

```
[3]: transaction = pd.read_excel('data/QVI_transaction_data.xlsx') transaction.head()
```

\

[3]:		DATE	STORE_NBR	LYLTY_CARD_NBR	$\mathtt{TXN}_\mathtt{ID}$	PROD_NBR	,
(0	43390	1	1000	1	5	
:	1	43599	1	1307	348	66	
2	2	43605	1	1343	383	61	
;	3	43329	2	2373	974	69	
4	4	43330	2	2426	1038	108	

		PROD_	NAME	PROD_QTY	TOT_SALES
0	Natural Chip	Compny SeaSalt	:175g	2	6.0
1	CCs 1	lacho Cheese	175g	3	6.3
2	Smiths Crinkle Cut	Chips Chicken	170g	2	2.9
3	Smiths Chip Thinly	S/Cream&Onion	175g	5	15.0
4	Kettle Tortilla ChpsH	Hny&Jlpno Chili	150g	3	13.8

Converting 'DATE' to date type

```
[4]: book = xlrd.open_workbook("data/QVI_transaction_data.xlsx")
     datemode = book.datemode
     transaction["DATE"].map(lambda x:xlrd.xldate_as_tuple(x, datemode))
     transaction['DATE'] = transaction["DATE"].map(lambda x:datetime.datetime(*xlrd.
      →xldate_as_tuple(x,datemode)))
[5]: transaction.head()
[5]:
             DATE
                   STORE_NBR
                               LYLTY_CARD_NBR
                                                TXN ID
                                                        PROD_NBR
     0 2018-10-17
                            1
                                                     1
                                                                5
                                          1000
     1 2019-05-14
                            1
                                                   348
                                                               66
                                          1307
     2 2019-05-20
                            1
                                                   383
                                          1343
                                                               61
                            2
     3 2018-08-17
                                                   974
                                                               69
                                          2373
     4 2018-08-18
                            2
                                          2426
                                                  1038
                                                              108
                                         PROD_NAME
                                                    PROD_QTY
                                                               TOT_SALES
     0
          Natural Chip
                               Compny SeaSalt175g
                                                            2
                                                                     6.0
     1
                         CCs Nacho Cheese
                                                            3
                                                                     6.3
                                              175g
     2
          Smiths Crinkle Cut
                               Chips Chicken 170g
                                                            2
                                                                     2.9
     3
          Smiths Chip Thinly
                               S/Cream&Onion 175g
                                                            5
                                                                    15.0
       Kettle Tortilla ChpsHny&Jlpno Chili 150g
                                                            3
                                                                    13.8
[6]:
    transaction.describe()
[6]:
               STORE_NBR
                           LYLTY_CARD_NBR
                                                  TXN_ID
                                                                PROD_NBR
            264836.00000
                             2.648360e+05
                                            2.648360e+05
                                                           264836.000000
     count
               135.08011
                             1.355495e+05
                                            1.351583e+05
                                                               56.583157
     mean
                76.78418
                             8.057998e+04
                                           7.813303e+04
                                                               32.826638
     std
                             1.000000e+03
    min
                 1.00000
                                            1.000000e+00
                                                                1.000000
     25%
                70.00000
                             7.002100e+04
                                           6.760150e+04
                                                               28.000000
     50%
               130.00000
                             1.303575e+05
                                           1.351375e+05
                                                               56.000000
     75%
               203.00000
                             2.030942e+05
                                           2.027012e+05
                                                               85.000000
               272.00000
                             2.373711e+06
                                            2.415841e+06
                                                              114.000000
     max
                 PROD_QTY
                                TOT_SALES
            264836.000000
                            264836.000000
     count
     mean
                 1.907309
                                 7.304200
                 0.643654
                                 3.083226
     std
    min
                 1.000000
                                 1.500000
     25%
                 2.000000
                                 5.400000
     50%
                 2.000000
                                 7.400000
     75%
                 2.000000
                                 9.200000
               200.000000
                               650.000000
     max
```

```
[7]: df = pd.merge(transaction, purchase)
     df.head()
[7]:
                                                TXN_ID
                                                        PROD_NBR
                   STORE_NBR LYLTY_CARD_NBR
             DATE
     0 2018-10-17
                            1
                                          1000
                                                     1
                                                                5
     1 2019-05-14
                            1
                                          1307
                                                   348
                                                              66
     2 2018-11-10
                            1
                                          1307
                                                   346
                                                              96
     3 2019-03-09
                            1
                                          1307
                                                   347
                                                              54
     4 2019-05-20
                            1
                                          1343
                                                   383
                                                              61
                                                  PROD QTY
                                                            TOT SALES
                                      PROD NAME
        Natural Chip
                             Compny SeaSalt175g
                                                         2
                                                                   6.0
                                                         3
                                                                   6.3
                       CCs Nacho Cheese
     1
                                                         2
     2
                WW Original Stacked Chips 160g
                                                                   3.8
     3
                              CCs Original 175g
                                                         1
                                                                   2.1
        Smiths Crinkle Cut Chips Chicken 170g
                                                         2
                                                                   2.9
                     LIFESTAGE PREMIUM_CUSTOMER
         YOUNG SINGLES/COUPLES
     0
                                          Premium
     1 MIDAGE SINGLES/COUPLES
                                           Budget
     2 MIDAGE SINGLES/COUPLES
                                           Budget
     3 MIDAGE SINGLES/COUPLES
                                          Budget
     4 MIDAGE SINGLES/COUPLES
                                           Budget
```

2 Data Manipulation

Removing Salsa products from dataframe

```
[8]: df.drop(df[df['PROD_NAME'].apply(lambda x: True if 'salsa' in x.lower().split()

→else False)].index,inplace=True)
```

Creating Size and Brand columns

```
[9]: df['SIZE'] = df['PROD_NAME'].apply(lambda x: x[-4:-1])
    df['BRAND'] = df['PROD_NAME'].apply(lambda x: x.split(' ')[0])
    df.head()
```

```
[9]:
             DATE
                    STORE_NBR
                              LYLTY_CARD_NBR
                                                TXN_ID
                                                         PROD_NBR
     0 2018-10-17
                                          1000
                                                      1
                                                                 5
                            1
     1 2019-05-14
                            1
                                          1307
                                                               66
                                                    348
     2 2018-11-10
                            1
                                          1307
                                                    346
                                                               96
     3 2019-03-09
                            1
                                          1307
                                                    347
                                                               54
     4 2019-05-20
                                          1343
                                                    383
                                                               61
                                       PROD NAME PROD QTY
                                                             TOT_SALES \
                             Compny SeaSalt175g
                                                          2
                                                                    6.0
       Natural Chip
     1
                       CCs Nacho Cheese
                                                          3
                                                                    6.3
                                            175g
```

```
3
                               CCs Original 175g
                                                                   2.1
                                                          1
         Smiths Crinkle Cut Chips Chicken 170g
                                                                   2.9
                      LIFESTAGE PREMIUM_CUSTOMER SIZE
                                                           BRAND
          YOUNG SINGLES/COUPLES
                                          Premium
                                                   175
      \cap
                                                         Natural
      1 MIDAGE SINGLES/COUPLES
                                           Budget
                                                    175
                                                             CCs
      2 MIDAGE SINGLES/COUPLES
                                           Budget
                                                    160
                                                              WW
      3 MIDAGE SINGLES/COUPLES
                                           Budget
                                                    175
                                                             CCs
      4 MIDAGE SINGLES/COUPLES
                                           Budget
                                                    170
                                                          Smiths
     Checking to see if there's any error in the created columns.
[10]: df['SIZE'].unique()
[10]: array(['175', '160', '170', '150', '165', '380', '330', '110', '210',
             '180', '200', '134', '270', '220', '125', ' 70', 'Sal', '250',
             ' 90', '190'], dtype=object)
     See what products have been assigned as 'Sal'.
[11]: df [df ['SIZE'] == 'Sal'].head(3)
                                 LYLTY_CARD_NBR
[11]:
                DATE
                      STORE_NBR
                                                  TXN_ID
                                                          PROD_NBR \
      101 2019-04-30
                                           39167
                                                    35644
                              39
                                                                 63
      132 2018-11-23
                              45
                                           45127
                                                    41120
                                                                 63
      152 2019-04-01
                              55
                                           55072
                                                    48881
                                                                 63
                               PROD_NAME PROD_QTY TOT_SALES
      101 Kettle 135g Swt Pot Sea Salt
                                                 2
                                                           8.4
      132 Kettle 135g Swt Pot Sea Salt
                                                  2
                                                           8.4
      152 Kettle 135g Swt Pot Sea Salt
                                                           8.4
                        LIFESTAGE PREMIUM_CUSTOMER SIZE
                                                            BRAND
      101 MIDAGE SINGLES/COUPLES
                                             Budget
                                                      Sal Kettle
                                             Budget
      132 MIDAGE SINGLES/COUPLES
                                                      Sal
                                                           Kettle
      152 MIDAGE SINGLES/COUPLES
                                             Budget
                                                      Sal
                                                           Kettle
     Apparently all the items assigned 'Sal' as their size need to be assigned 135.
[12]: df.loc[df['SIZE']=='Sal','SIZE'] = '135'
[13]: df['SIZE'].unique()
[13]: array(['175', '160', '170', '150', '165', '380', '330', '110', '210',
             '180', '200', '134', '270', '220', '125', ' 70', '135', '250',
             ' 90', '190'], dtype=object)
```

3.8

WW Original Stacked Chips 160g

2

Checking if BRAND's column has any uncorrectly assings

```
[14]: df['BRAND'].unique()
[14]: array(['Natural', 'CCs', 'WW', 'Smiths', 'Kettle', 'Tyrrells', 'Dorito',
             'Doritos', 'Infuzions', 'Grain', 'Thins', 'Red', 'GrnWves',
             'Tostitos', 'Pringles', 'Cobs', 'Twisties', 'RRD', 'Infzns',
             'Burger', 'NCC', 'Cheezels', 'Smith', 'French', 'Sunbites',
             'Cheetos', 'Woolworths', 'Snbts'], dtype=object)
     Apparently Dorito, Infzns, Red, and Snbts have been misassigned.
[15]: df.loc[df['BRAND']=='Dorito', 'BRAND'] = 'Doritos'
      df.loc[df['BRAND']=='Snbts','BRAND'] = 'Sunbites'
      df.loc[df['BRAND']=='Infzns','BRAND'] = 'Infuzions'
      df.loc[df['BRAND'] == 'Red', 'BRAND'] = 'RRD'
[16]: df['BRAND'].unique()
[16]: array(['Natural', 'CCs', 'WW', 'Smiths', 'Kettle', 'Tyrrells', 'Doritos',
             'Infuzions', 'Grain', 'Thins', 'RRD', 'GrnWves', 'Tostitos',
             'Pringles', 'Cobs', 'Twisties', 'Burger', 'NCC', 'Cheezels',
             'Smith', 'French', 'Sunbites', 'Cheetos', 'Woolworths'],
            dtype=object)
     Setting 'SIZE' column as integer.
[17]: df['SIZE'] = df['SIZE'].astype(int)
```

3 Data Exploration

```
[18]: df.hist('SIZE')
   plt.title("Number of Transactions by Pack Size")
   plt.xlabel('Pack Size');
```



```
[19]: sns.countplot(data=df,x='PREMIUM_CUSTOMER')
plt.title("Count by Type of Customer")
plt.xlabel("Type of Customer");
```



```
[20]: sns.countplot(data=df,x='LIFESTAGE')
plt.xticks(rotation=90);
```



```
[21]: sns.boxplot(x="PREMIUM_CUSTOMER", y="TOT_SALES", data=df,palette='rainbow')
```

[21]: <matplotlib.axes._subplots.AxesSubplot at 0x1285eff2e08>

Checking who's the outlier.

```
[22]: df['TOT_SALES'].sort_values(ascending=False)
[22]: 71457
                650.0
      71456
                650.0
      171914
                 29.5
      5745
                 29.5
                 29.5
      119732
      181600
                  1.7
      18434
                  1.7
      235438
                  1.7
      80905
                  1.7
      149351
                  1.7
      Name: TOT_SALES, Length: 246742, dtype: float64
[23]: df.iloc[71456:71458]
[23]:
                        STORE_NBR LYLTY_CARD_NBR TXN_ID PROD_NBR \
                  DATE
      76786 2019-03-30
                              149
                                            149089
                                                    148716
                                                                   93
      76787 2018-10-01
                              149
                                            149120
                                                    148769
                                                                   30
                                            PROD_NAME PROD_QTY
                                                                 TOT_SALES \
      76786 Doritos Corn Chip Southern Chicken 150g
                                                              2
                                                                        7.8
```

76787 Doritos Corn Chips Cheese Supreme 170g 2

LIFESTAGE PREMIUM_CUSTOMER SIZE BRAND 76786 OLDER FAMILIES Premium 150 Doritos 76787 OLDER FAMILIES Premium 170 Doritos

Removing the outliers.

```
[24]: df.drop(index=[71456,71457],inplace=True)
```

8.8

```
[25]: sns.boxplot(x="PREMIUM_CUSTOMER", y="TOT_SALES", data=df)
```

[25]: <matplotlib.axes._subplots.AxesSubplot at 0x1285d57b088>


```
[26]: sns.scatterplot(data=df.sort_values(by='SIZE'),x='SIZE',y='TOT_SALES')
    plt.title("Total Sales in function of Size")
    plt.xlabel("Size")
    plt.ylabel("Total Sale");
```


4 Data Analysis

Average total spent by type of customer

```
[27]:
                         count
                                     mean
                                                 sum
      PREMIUM_CUSTOMER
      Budget
                         86762
                                7.277458
                                           631406.85
      Mainstream
                         95043
                                7.374193
                                           700865.40
      Premium
                         64935
                                7.282751
                                           472905.45
```

As expected Mainstream customers represent the majority of customers buying chips, followed by Budget customers. We can also see that, on average, beeing a Budget, Mainstream or Premium customer doesns't affect the value spent. Although Mainstream and Budget customers represent 74% of sales.

Top 5 selling brands and their mean sale value

```
[28]:
               count
                          mean
                                      sum
     BRAND
     Kettle
               41288 9.451652
                                390239.8
      Smiths
               27390 7.408127
                                202908.6
     Doritos
                25224 8.972800
                                226329.9
     Pringles
               25102 7.077344
                                177655.5
     RRD
                16321 5.367778
                                 87607.5
```

Kettle chips not only sells almost double the amount compared to the second highest selling brand, it also has a higher mean value spent.

Total sales by LIFESTAGE and PREMIUM_CUSTOMER

```
[29]: df.
    →pivot_table('TOT_SALES',['LIFESTAGE','PREMIUM_CUSTOMER'],aggfunc={'TOT_SALES':
```

[29]: sum PREMIUM_CUSTOMER LIFESTAGE

> OLDER FAMILIES 156863.75 Budget YOUNG SINGLES/COUPLES Mainstream 147582.20 RETIREES Mainstream 145168.95

Sales are coming mainly from Budget - older families, Mainstream - young singles/couples, and Mainstream - retirees.

Number of customers by LIFESTAGE and PREMIUM CUSTOMER

PREMIUM_CUSTOMER

```
[30]: df.
    →pivot_table('TOT_SALES',['LIFESTAGE','PREMIUM_CUSTOMER'],aggfunc={'TOT_SALES':
```

```
[30]:
                                                    count
```

OLDER FAMILIES Budget 21514 RETIREES Mainstream 19970 YOUNG SINGLES/COUPLES Mainstream 19544

LIFESTAGE

```
[31]: sns.countplot(data=df,x='LIFESTAGE',hue='PREMIUM CUSTOMER')
      plt.xticks(rotation=90)
      plt.legend(loc='center left', bbox_to_anchor=(1, 0.5));
```


There are more Mainstream - young singles/couples and Mainstream - retirees who buy chips. This contributes to there being more sales to these customer segments but this is not a major driver for the Budget - Older families segment.

Average number of units bought per customer

[32]:				mean
	LIFEST	ΓAGE	PREMIUM_CUSTOMER	
	OLDER	FAMILIES	Mainstream	1.948795
			Premium	1.945496
			Budget	1.945384
	YOUNG	FAMILIES	Mainstream	1.941408
			Budget	1.941226
			Premium	1.938149

Older and young families in general buy more chips per customer.

Average price per unit chips bought for each customer

```
[33]: df.

⇔pivot_table('TOT_SALES',['LIFESTAGE','PREMIUM_CUSTOMER'],aggfunc={'TOT_SALES':

⇔['mean','count']}).sort_values('mean',ascending=False)
```

[33]:			count	mean
	LIFESTAGE	PREMIUM_CUSTOMER		
	MIDAGE SINGLES/COUPLES	Mainstream	11095	7.637156
	YOUNG SINGLES/COUPLES	Mainstream	19544	7.551279
	RETIREES	Premium	12236	7.461315
	OLDER SINGLES/COUPLES	Premium	16560	7.459997
	RETIREES	Budget	14225	7.445786
	OLDER SINGLES/COUPLES	Budget	17172	7.444305
	NEW FAMILIES	Mainstream	2185	7.313364
	OLDER SINGLES/COUPLES	Mainstream	17061	7.306049
	YOUNG FAMILIES	Budget	17763	7.302705
	NEW FAMILIES	Budget	2824	7.297256
	OLDER FAMILIES	Budget	21514	7.291241
	YOUNG FAMILIES	Premium	10784	7.285951
	OLDER FAMILIES	Mainstream	13241	7.281440
	RETIREES	Mainstream	19970	7.269352
	OLDER FAMILIES	Premium	10403	7.232779
	NEW FAMILIES	Premium	1488	7.231720
	YOUNG FAMILIES	Mainstream	11947	7.226772
	MIDAGE SINGLES/COUPLES	Premium	7612	7.152371
		Budget	4691	7.108442
	YOUNG SINGLES/COUPLES	Premium	5852	6.673325
		Budget	8573	6.663023

Mainstream - midage and young singles and couples are more willing to pay more per packet of chips compared to their budget and premium counterparts. This may be due to premium shoppers being more likely to buy healthy snacks. As the difference in average price per unit isn't large, we can check if this difference is statistically different.

T-test statistics

[34]: Ttest_indResult(statistic=33.200521751400665, pvalue=1.9916804791067727e-239)

As we can see from all the p-values the unit price for mainstream, young and mid-age singles and couples are significantly higher than that of budget or premium, young and midage singles and couples.

4.1 Deeper dive into highest spender on average, the Mainstream - midage singles/couples.

Target audience's preferred brand

```
[36]: midage_main.groupby('BRAND')['PROD_QTY'].count().sort_values(ascending=False).

→head(3)
```

[36]: BRAND

 Kettle
 2136

 Doritos
 1210

 Smiths
 1176

Name: PROD_QTY, dtype: int64

Our target's top 3 brands of chip are the same as our total customers the only difference being that our target prefers Doritos over Smiths.

Perforing an affinity analysis on the brand

```
[37]:
                 PROD_QTY_target PROD_QTY_other AFFINITY
     BRAND
     Kettle
                         0.192571
                                         0.166893 1.153857
     Twisties
                         0.043935
                                         0.038260 1.148326
      Cobs
                         0.044831
                                         0.039227 1.142875
      Tostitos
                         0.043558
                                         0.038314 1.136882
      Grain
                         0.027719
                                         0.025321 1.094683
      Infuzions
                         0.061755
                                         0.057457 1.074792
      Cheezels
                         0.019846
                                         0.018536 1.070705
     Doritos
                         0.108895
                                         0.102454 1.062870
      Tyrrells
                         0.026917
                                         0.026107 1.031035
     Pringles
                         0.104181
                                         0.101982 1.021564
      Thins
                         0.057182
                                         0.057250 0.998807
```

```
Smiths
                   0.106114
                                   0.110694 0.958630
NCC
                   0.005280
                                   0.005721
                                             0.922803
Cheetos
                   0.010135
                                   0.011833 0.856563
RRD
                   0.054259
                                   0.066209 0.819518
Natural
                   0.019375
                                   0.024518 0.790242
CCs
                   0.014425
                                   0.018485 0.780388
Smith
                   0.009051
                                   0.012060 0.750527
GrnWves
                   0.004243
                                   0.005953 0.712697
Woolworths
                   0.004337
                                   0.006189 0.700757
Burger
                                   0.006407
                                             0.676895
                   0.004337
French
                   0.003818
                                   0.005704 0.669468
WW
                   0.027012
                                   0.042049 0.642381
Sunbites
                   0.006223
                                   0.012378
                                              0.502717
```

In a more in-deepth look into our target preferency's we notice that they're 15% more likely to purchase Kettle chips and 50% less likely to purchase Sunbites compared to the rest of the population.

Target audience's preferred size of chips

```
[38]: midage main.groupby('SIZE')['PROD QTY'].count().sort_values(ascending=False).
       \rightarrowhead(3)
[38]: SIZE
      175
              2975
      150
              1777
      134
             1159
      Name: PROD_QTY, dtype: int64
[39]: other.groupby('SIZE')['PROD_QTY'].count().sort_values(ascending=False).head(3)
[39]: SIZE
      175
             63415
      150
              38426
      134
              23943
      Name: PROD_QTY, dtype: int64
```

Our targeted segment preferred size of chips doesn't seem to differ from the rest of the customers.

Perforing an affinity analysis on the size of chips

```
[40]: qty_seg_1_by_size = midage_main.groupby('SIZE').sum()['PROD_QTY'] / qty_segment1 qty_seg_2_by_size = other.groupby('SIZE').sum()['PROD_QTY'] / qty_segment2 brand_affinity = pd.

→merge(qty_seg_1_by_size,qty_seg_2_by_size,suffixes=('_target','_other'),on='SIZE') brand_affinity['AFFINITY'] = brand_affinity['PROD_QTY_target'] /

→brand_affinity['PROD_QTY_other'] brand_affinity.sort_values(by='AFFINITY',ascending=False)
```

[40]:		PROD_QTY_target	PROD_QTY_other	AFFINITY
	SIZE			
	270	0.030736	0.025373	1.211382
	330	0.059728	0.050607	1.180220
	110	0.102060	0.090542	1.127218
	135	0.014519	0.013144	1.104660
	210	0.027719	0.025321	1.094683
	380	0.028426	0.025980	1.094134
	250	0.013199	0.012888	1.024185
	134	0.104181	0.101982	1.021564
	175	0.268562	0.268864	0.998875
	150	0.160420	0.163093	0.983615
	170	0.079385	0.081044	0.979529
	165	0.057088	0.061979	0.921084
	190	0.010324	0.012142	0.850263
	160	0.009051	0.012048	0.751221
	70	0.004526	0.006142	0.736790
	180	0.004243	0.005953	0.712697
	220	0.004337	0.006407	0.676895
	200	0.012068	0.018186	0.663583
	125	0.003206	0.005926	0.540910
	90	0.006223	0.012378	0.502717

As it seems Mainstream midage singles/couples are 21% more likely to purchase a 270g pack of chips compared to the rest of the population and 50% less likely to purchase a 90g pack compared to the rest of the population.