Last time: $f(x) : \mathbb{R}^n \to \mathbb{R}^m$

The condition number $K(x) := \frac{\|Df(x)\|}{\|f(x)\|}$

Today: Apply it to Ax = b

• Motivation: $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, A invertible

Solving Ax = b exactly: $f(b) = A^{-1}b$

A backward stable algorithm satisfies $f(b) = f(b) = A'(b + \Delta b)$ with 11 2611/116(1 = O(Emach)

To analyze forward error, need to ampute KA $K_A(b) = \frac{\|Df\| \|b\|}{\|A^{-1}b\|} = \frac{\|A^{-1}\| \|b\|}{\|A^{-1}b\|}$

We may want a condition number that is independent of input b, $K(A) := \sup_{b \in \mathbb{R}^{n}} \frac{\|A^{-1}\| \|b\|}{\|A^{-1}b\|} = \|A^{-1}\| \|A\|$ $= \|A^{-1}\| \|A\| \|A^{-1}b\|$ $= \|A^{-1}\| \|A\| \|A^{-1}b\|$

"=" Cattainable
for some be R"

K(A) is called the condition number of A

- · Properties of condition #5 (Assume 11.11 is subordinate norm in the following) 1) K(A) >1, K(A-1) = K(A)
 - 2) If A is normal with eigenvalues 12,13 1213... 3 12190 then $K_2(A) := ||A||_2 ||A^{-1}||_2 = \frac{||A||}{||A||}$

For general A, we have $K(A) > \frac{|X_1|}{|X_1|}$

Pf: When A is wormal,
$$A = U^*\Lambda U$$
.

 $IIA II_2 = \sqrt{\lambda_{\text{max}}} (A^*A) = \sqrt{\lambda_{\text{max}}} (U^*\Lambda^2 U) = 1\lambda.1$

Similarly $IIA^{-1}II_2 = |\Lambda_1|^{-1}$

For general A, we need the following relation between horm and maximum eigenvalue

I emma: The spectral radius of A, denote by

 $Q(A) = \max\{I\lambda I : \lambda \text{ is an eigenvalue of } A\}$

Satisfies $Q(A) \leq IIAII$

Proof of lemma: exercise $IIAII$

Using this lemma, we have $IIAII \geq I\lambda.1$, $IIA^{-1}II \geq IJ.1I^{-1}$

wind the lower bound of A follows $IIIAII^{-1}$

omd the lower bound of A follows

3) condition #s of different norms are equivalent.

In particular, $\frac{1}{n}K_2(A) \leq K_1(A) \leq n K_2(A)$

4) 2- condition # measures the inverse of the relative distance to the newest singular matrix.

Prop. Let $A \in \mathbb{R}^{n \times n}$, A not singular, then

 $\frac{1}{K_2(A)} = \min_{K_2(A)} \int_{II} \frac{II K_2II_2}{IIAII_2}$

Singular

Pf: exercise. III

We have the following thum that tells you how the solution is perturbed given an inaccurate right hand side.

Thm 1 Let Ax = b and $r = b - A\hat{x}$ 1_residual then we have $\frac{1}{K(A)} \frac{||r||}{||b||} \leq \frac{||\hat{x}-x||}{||x||} \leq K(A) \frac{||r||}{||b||}$ Pf: Let bx = x-x $||\Delta x|| = ||A^{-1}r|| \leq ||A^{-1}l|| ||r||$ use ||b||=||Ax|| \le ||A|| ||x|| we obtain inequ on the right. The left inegn can be proved similarly - exercise K(A) seems to only quantify the error in octput for a perturbation in b, but it turns out that it also quantify the porturbation in A form of equ we get in bakward Thin Let Ax = b, $(A + \triangle A) \hat{x} = b + \triangle b$ error analysis of many algo for where ILDAII & ELIAH, NDBII & ELIBII solving Ax=b and EK(A) < 1. then $\frac{\|\mathbf{x} - \hat{\mathbf{x}}\|}{\|\mathbf{x}\|} \leq \frac{\mathcal{K}(\mathbf{A})}{1 - \mathcal{K}(\mathbf{A}) \cdot \|\Delta\mathbf{A}\|/\|\mathbf{A}\|} \left(\frac{\|\Delta\mathbf{A}\|}{\|\mathbf{A}\|} + \frac{\|\Delta\mathbf{b}\|}{\|\mathbf{b}\|}\right)$ $= O\left(K(A) \, \mathcal{E}\right) \qquad \text{for} \quad \mathcal{E} << \frac{1}{K(A)}$ $Pf: \hat{\chi} = (A + \Delta A)^{-1}(b + \Delta b)$ $x = (A + \Delta A)^{-1}(A + \Delta A) \times = (A + \Delta A)^{-1}(b + (\Delta A)x)$ $\hat{x} - x = (A + \Delta A)^{-1} (\Delta b - (\Delta A)x)$

$$= [A(I + A^{-1}\Delta A)]^{-1} (\Delta b - (\Delta A) \times)$$

$$= (I + A^{-1}\Delta A)^{-1} A^{-1} (\Delta b - (\Delta A) \times)$$

$$\|\hat{x} - x\| \leq \|(I + A^{-1}\Delta A)^{-1}\| \|A^{-1}\| (\|\Delta b\| + \|\Delta A\| \|\|x\|))$$
we use $\|b\| = \|Ax\| \leq \|A\| \|\|x\|$

$$\frac{\|\hat{x} - x\|}{\|x\|\|} \leq \|(I + A^{-1}\Delta A)^{-1}\| K(A) (\frac{\|\Delta b\|}{\|b\|} + \frac{\|\Delta A\|}{\|A\|}) (\#)$$

$$|amma : If \|B\| < 1, \quad then \quad I + B \quad is \quad invertible$$
and $\|(I + B)^{-1}\| \leq \frac{1}{1 - \|B\|}$

$$Pf, \quad exercise \quad |B|$$
Using this lemma, we have
$$\|(I + A^{-1}\Delta A)^{-1}\| \leq \frac{1}{1 - \|A^{-1}\Delta A\|} \leq \frac{1}{1 - K(A)} \frac{(\# K)}{\|A\|}$$
The proof is finished after combining $(\#) (\# K)$

$$ex. \quad Matrix \quad \omega: h \quad large \quad condition \quad number \quad (ill - posed problem)$$

$$Hibert \quad matrix \quad H_n = (\frac{1}{i + j - 1})_{1 \leq ij \leq N}$$

$$kL_2(H_n) = \|H_n\|_1, \quad \|H_n^{-1}\|_2$$

$$\approx \frac{(1 + \sqrt{2})^{4m}}{\sqrt{n}} \approx \frac{3 \sqrt{n}}{\sqrt{n}}$$

$$|hhen \quad n = 20, \quad K_2(H_n) \approx 10^{29} >> 10^{16} = \frac{\sqrt{2}}{2} mach$$

Heview: unitary matrix Q*Q=I, Q&C"x" Q is unitary \iff $q_i^*q_j = \delta_{ij}$, $i,j = 1, \dots, n$ i.e. 1 q...., qn3 forms an orthonormal basis Some properties: Let XERM, AECMAN 11 Q X 112 = 11x112 11 QAII2 = 11AQ ||2 = 11AII2 | norm 11Q All= 11AQII= 11A11F $Pf: \|Qx\|_2^2 = x^*Q^*Qx = x^*x = \|x\|_2^2$ $||QA||_{2}^{2} = \sqrt{\lambda_{max}(A^{*}Q^{*}QA)} = \sqrt{\lambda_{max}(A^{*}A)} = ||A||_{2}^{2}$ $||QA||_F^2 = \sqrt{tr(A^*Q^*QA)} = \sqrt{tr(A^*A)} = ||A||_F^2$ Other equation can be proved similarly - exercise & In Linear algebra course, we know when $A \in \mathbb{C}^{n \times n}$ is normal, then A is diagonalizable, i.e., can be factored as $A = U \Lambda U^*$ where $U \in \mathbb{C}^{n \times n}$ is unitary, $\Lambda = \text{cliag}(\lambda_1, \dots, \lambda_n)$ · Q: A is not normal? A ∈ Cm×n? · Singular value Decomposition A E C Mxn SVD: A = U I V*

where
$$U = \begin{bmatrix} u_1 & \dots & u_m \end{bmatrix} \in \mathbb{C}^{m \times m}$$
, is loft singular year of the start o

Facts about SVD:

1) r:= rank(A) = # non-zero sv's 6:

2) range $(A) = span \{u, \dots, u_r\}$ $null (A) = span \{v_{rn}, \dots, v_n\}$

3) I(All2 = 61,

When A & C "x" invertible, then

 $K_2(A) = 61/6n$

Pf: $||A||_2 = ||U\Sigma V^*||_2 = ||Z||_2 = \sqrt{\lambda_{max}} (\bar{Z}^*\bar{\Sigma}) = 6$ Similarly $||A^{-1}||_2 = 6\vec{n}$ and hence $K_2(A) = 6i/6n$

 $A = \sum_{i=1}^{r} 6_i u_i v_i^*,$

Best rank K approximation: $A_{K:=} = \sum_{i=1}^{K} s_i u_i v_i^{*}$ (K << m.n)

min $||A - B||_F = ||A - A_K||_F = \sqrt{\sum_{i>K} S_i^2}$ (1)

rank(B) $\leq r$

min $||A - B||_2 = ||A - A_E||_2 = 6_{K+1}$ (2) $rank(B) \in \Upsilon$

(Eckart-Young, 1936)

5) Point cloud alignment

Many tasks in computer vision involve the alignment of 3D shapes. Suppose we have a laser & canner that ablects two point clouds of the same rigid objects from different views. how can we align these two

point clouds into a single coordinate frame. Consider two sets of point clouds $X = [x_1, \dots, x_n], Y = [y_1, \dots, y_n] \in \mathbb{R}^{d \times n}$ We aim to some the following orthogonal Procrustes problem. min | | RX - Y || F A: RTR=I R& Rdxd To find R, we note that $\|RX-Y\|_F^2 = +r[(RX-Y)^T(RX-Y)]$ tr (xTX - YTRX - XTRTY + YTY) Thus, we want to moximize $+r(Y^TRX + X^TR^TY) = 2+r(Y^TRX) = 2+r(RXY^T)$ Let $XY^T = U \Sigma V^T$, then $+r(RXY^{T}) = +r(RU\Sigma V^{T})$ = tr(VTRU I) = Z ~ii 6: Since R is orthogonal, | Vii | \le 1, and hence +r(RXY¹) ≤ ∑ 6; "=" iff $\widetilde{\gamma}_{ii} = 1$, again since \widetilde{R} is orthogonal, $\widetilde{R} = I$ hence R= VUT

Consider solving the following problem
$$Ax = b \quad \text{with} \quad A \in \mathbb{R}^{n \times n}, \quad \lambda_i(A) > 0$$

$$K_2(A) = \frac{\lambda_{max}(A)}{\lambda_{min}(A)} > 71$$

Since the problem is ill-conditioned, any algorithm that solves the problem is difficult.

How do ne decrease the condition rumber?

(regularize the problem)

We may some instead

$$(A+aI)\hat{x}=b \qquad (a>0)$$

$$K(A) = \frac{\lambda_{\max}(A) + \alpha}{\lambda_{\min}(A) + \alpha} < K_2(A)$$

How do we choose a?

Since

$$x - \hat{x} = (A + \alpha I)^{-1} (A + \alpha I - A) A^{-1} b$$

$$= \alpha (A + \alpha I)^{-1} x$$

we have
$$||x-\hat{x}||_2 \le d ||(A+\alpha I)^{-1}||_2 ||x||_2 = \frac{d}{||x||_2} ||x||_2$$
we hope to balance $\frac{||x-\hat{x}||_2}{||x||_2} \sim K_2(A+\alpha I)$ Emach

that	ĊS	d Amin(A) td			$\lambda_{\text{max}}(A) + \alpha$		6 1
•		AminUA) td		Amin (A) -	+ d	Zmach
.1 .							
that	iS		X	~	Imax (A)	Zma	ch