H 4658	Elements in Matbench Dielectric															He 0.0		
Li 3907	Be 347											B 911	C 637	N 5250	O 23195	F 4499	Ne 0.0	20k
Na 1890	Mg 631											AI 847	Si 2033	P 2579	S 3229	CI 1907	Ar 0.0	ZUK
K 1458	Ca 1039	Sc 161	Ti 329	V 526	Cr 371	Mn 751	Fe 556	Co 257	Ni 169	Cu 625	Zn 612	Ga 582	Ge 885	As 855	Se 1684	Br 1033	Kr 0.0	15k
Rb 759	Sr 867	Y 343	Zr 183	Nb 484	Mo 193	Tc 4.0	Ru 113	Rh 69.0	Pd	Ag 457	Cd 295	In 275	Sn 505	Sb 611	Te 1012	I 729	Xe 0.0	
Cs 491	Ba 956		Hf 128	Ta 368	W 411	Re 194	Os 115	Ir 76.0	Pt 178	Au 127	Hg 215	TI 272	Pb 243	Bi 262	Po 0.0	At 0.0	Rn 0.0	10k
Fr 0.0	Ra		Rf 0.0	Db 0.0	Sg 0.0	Bh 0.0	Hs 0.0	Mt 0.0	Ds 0.0	Rg 0.0	Cn 0.0	Nh 0.0	FI 0.0	Mc 0.0	Lv 0.0	Ts 0.0	Og 0.0	
																		5k
			La 229	Ce 22.0	Pr 97.0	Nd 107	Pm 0.0	Sm 117	Eu 14.0	Gd	Tb 60.0	Dy 49.0	Ho 61.0	Er 81.0	Tm 75.0	Yb 21.0	Lu 59.0	
			Ac 3.0	Th 14.0	Pa	U 5.0	Np 0.0	Pu 0.0	Am 0.0	Cm 0.0	Bk 0.0	Cf 0.0	Es 0.0	Fm 0.0	Md 0.0	No 0.0	Lr 0.0	0