Problema 15

Elías López Rivera 1

¹ Universidad Nacional Autónoma de México Facultad de ciencias.

7 de julio de 2025

1. Enunciado

Sea $A \subseteq \mathbb{R}$ un conjunto. Sí $x \in \mathbb{R}$ es un punto de acumulación de A. **demuestre** que toda vecindad de x intersecta a A en una cantidad infinita de puntos.

2. Solución

Como x es punto de acumulación se sigue que $\forall \epsilon > 0 \ \exists y \in A : 0 < |x - y| < \epsilon$ por tanto:

$$\forall \frac{1}{n} \ n \in \mathbb{N} \ \exists y_n \in A : 0 < |x - y_n| < \frac{1}{n}$$

De lo anterior se deduce que $\exists K \in \mathbb{N} : n > K \implies |x - y_n| < \epsilon$

Para ϵ arbitrario.

Tomando $V \in V(x)$, sabemos que existe $\epsilon > 0$: $(x - \epsilon, x + \epsilon) \subseteq V$, retomando lo demostrado tenemos que

$$\exists K \in \mathbb{N} : n > K \implies y_n \in V \text{, como } y_n \in A \, \forall \, n \in \mathbb{N} \text{ se sigue que } \{y_n : n > K\} \subseteq A \cap V$$