Prova del 07/07/2017 – Traccia A

Università degli Studi di Verona – Laurea in Informatica e Bioinformatica – A.A. 2016/2017

N.B.: si consiglia di arrotondare i calcoli alla quarta cifra decimale

ESERCIZIO 1

X	f(X)
1	15
3	20
11	33
12	32

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- (a) la media aritmetica, la media armonica e la media geometrica;
- (b) la mediana e la moda;
- (c) la varianza;
- (d) la simmetria, commentandola brevemente.

ESERCIZIO 2

X	Υ
3	25
5	42
6	55
12	78

Sui dati presentati in tabella calcolare i parametri della retta interpolante Y'=a+bX

ESERCIZIO 3

Un macchinario per la produzione di schermi LCD produce in media 1,4 pezzi difettosi ogni ora (m=1,4). Descrivere con una opportuna variabile casuale il n° di pezzi difettosi per ora (calcolare fino a X=3 e infine X=4 e oltre). Indicare anche media e varianza della distribuzione.

PARTE DI LABORATORIO – SCRIVERE IL CODICE IN LINGUAGGIO R - SOLO #COMMENTI E COMANDI

ESERCIZIO 4 - LAB

Utilizzando una base dati, chiamata "rates.month", calcolare:

- Media, mediana, primo e terzo quartile, valore minimo e massimo;
- Numero di elementi del database.

Infine disegnare il grafico boxplot della serie storica.

ESERCIZIO 5 - LAB

Utilizzando i dati e la medesima variabile casuale proposti nell'esercizio 3, descrivere con linguaggio R il n° di pezzi difettosi per ora (si richiede di calcolare fino a X=4).

Prova del 07/07/2017 - Traccia B

Università degli Studi di Verona – Laurea in Informatica e Bioinformatica – A.A. 2016/2017

N.B.: si consiglia di arrotondare i calcoli alla quarta cifra decimale

ESERCIZIO 1

X	f(X)
2	15
5	25
9	56
11	24

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- (a) la media aritmetica, la media armonica e la media geometrica;
- (b) la mediana e la moda;
- (c) la varianza:
- (d) la simmetria, commentandola brevemente.

ESERCIZIO 2

X	Υ
29	84
25	75
21	63
12	38

Sui dati presentati in tabella calcolare i parametri della retta interpolante Y'=a+bX

ESERCIZIO 3

Un macchinario per la produzione di schermi OLED produce in media 1,6 pezzi difettosi ogni ora (m=1,6). Descrivere con una opportuna variabile casuale il n° di pezzi difettosi per ora (calcolare fino a X=3 e infine X=4 e oltre). Indicare anche media e varianza della distribuzione.

PARTE DI LABORATORIO – SCRIVERE IL CODICE IN LINGUAGGIO R - SOLO #COMMENTI E COMANDI

ESERCIZIO 4 - LAB

Utilizzando una base dati, chiamata "sales", calcolare:

- Media, mediana, primo e terzo quartile, valore minimo e massimo;
- Numero di elementi del database.

Infine disegnare il grafico boxplot della serie storica.

ESERCIZIO 5 - LAB

Utilizzando i dati e la medesima variabile casuale proposti nell'esercizio 3, descrivere con linguaggio R il n° di pezzi difettosi per ora (si richiede di calcolare fino a X=4).

Prova del 07/07/2017 - Traccia C

Università degli Studi di Verona – Laurea in Informatica e Bioinformatica – A.A. 2016/2017

N.B.: si consiglia di arrotondare i calcoli alla quarta cifra decimale

ESERCIZIO 1

X	f(X)
3	25
6	51
8	43
13	31

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- (a) la media aritmetica, la media armonica e la media geometrica;
- (b) la mediana e la moda;
- (c) la varianza:
- (d) la simmetria, commentandola brevemente.

ESERCIZIO 2

X	Υ
23	46
20	38
16	26
11	10

Sui dati presentati in tabella calcolare i parametri della retta interpolante Y'=a+bX

ESERCIZIO 3

Un macchinario per la produzione di schermi al PLASMA produce in media 1,8 pezzi difettosi ogni ora (m=1,8). Descrivere con una opportuna variabile casuale il n° di pezzi difettosi per ora (calcolare fino a X=3 e infine X=4 e oltre). Indicare anche media e varianza della distribuzione.

PARTE DI LABORATORIO – SCRIVERE IL CODICE IN LINGUAGGIO R - SOLO #COMMENTI E COMANDI

ESERCIZIO 4 - LAB

Utilizzando una base dati, chiamata "customers", calcolare:

- Media, mediana, primo e terzo quartile, valore minimo e massimo;
- Numero di elementi del database.

Infine disegnare il grafico boxplot della serie storica.

ESERCIZIO 5 - LAB

Utilizzando i dati e la medesima variabile casuale proposti nell'esercizio 3, descrivere con linguaggio R il n° di pezzi difettosi per ora (si richiede di calcolare fino a X=4).

Prova del 07/07/2017 – Traccia D

Università degli Studi di Verona – Laurea in Informatica e Bioinformatica – A.A. 2016/2017

N.B.: si consiglia di arrotondare i calcoli alla quarta cifra decimale

ESERCIZIO 1

X	f(X)
1	63
6	21
10	44
15	72

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- (a) la media aritmetica, la media armonica e la media geometrica;
- (b) la mediana e la moda;
- (c) la varianza;
- (d) la simmetria, commentandola brevemente.

ESERCIZIO 2

X	Υ
15	36
18	44
25	60
31	80

Sui dati presentati in tabella calcolare i parametri della retta interpolante Y'=a+bX

ESERCIZIO 3

Un macchinario per la produzione di schermi 4K produce in media 1,1 pezzi difettosi ogni ora (m=1,1). Descrivere con una opportuna variabile casuale il n° di pezzi difettosi per ora (calcolare fino a X=3 e infine X=4 e oltre"). Indicare anche media e varianza della distribuzione.

PARTE DI LABORATORIO – SCRIVERE IL CODICE IN LINGUAGGIO R - SOLO #COMMENTI E COMANDI

ESERCIZIO 4 - LAB

Utilizzando una base dati, chiamata "revenues", calcolare:

- Media, mediana, primo e terzo quartile, valore minimo e massimo;
- Numero di elementi del database.

Infine disegnare il grafico boxplot della serie storica.

ESERCIZIO 5 - LAB

Utilizzando i dati e la medesima variabile casuale proposti nell'esercizio 3, descrivere con linguaggio R il n° di pezzi difettosi per ora (si richiede di calcolare fino a X=4).