Pokuromy, ie road
$$(Q_m) \ge m+1 \iff Q_m(1) = \int_{a}^{b} L_m(x) dx$$

• $Q_m(1) = \int_{a}^{b} L_m(x) dx \implies road(Q_m) \ge m+1$

Q $m(w) = \int_{a}^{b} L_m(x) dx = \int_{a}^{b} v(x) dx$

Wichy, ie $\bigvee_{w \in \Gamma_m} (Q_m(w) \cdot \int_{a}^{b} v(x) dx) \implies road(Q_m) \ge m+1$

• $road(Q_m) \ge m+1 \implies Q_m(1) = \int_{a}^{b} L_m(x) dx$

Q $m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} L_m(x) dx$

Q $m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} \frac{x-x_1}{x_2-x_1} \in \Gamma_m$
 $road(Q_m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(x) dx$

Q $m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(x) dx$

Q $m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(x) dx$

Q $m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(x) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(x) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_m(m) \ge m+1 \implies Q_m(m) = \int_{a}^{b} m_1(m) dx$
 $Q_$

 $= Q_n(x) = \int_{-\infty}^{\infty} L_n(x) dx$

Created with IDroo.com

-agrange