Bayesian statistics with RBayesian analyses in R with the Jags software

Olivier Gimenez

April 2022

Bayes in practice

Software implementation (R friendly)

Oldies but goodies:

- WinBUGS, OpenBUGS: Where it all began.
- Jags: What we will use in this course.

Software implementation (R friendly)

Oldies but goodies:

- WinBUGS, OpenBUGS: Where it all began.
- Jags: What we will use in this course.

The new kids on the block:

- Nimble: What I'm going for these days.
- Stan: Entirely different algorithmic approach.
- Greta: Dunno anything about it.

Software implementation (R friendly)

Oldies but goodies:

- WinBUGS, OpenBUGS: Where it all began.
- Jags: What we will use in this course.

The new kids on the block:

- Nimble: What I'm going for these days.
- Stan: Entirely different algorithmic approach.
- Greta: Dunno anything about it.

If you're not into coding:

- brms: Bayesian regression models with Stan.
- MCMCglmm: Generalised Linear Mixed Models.
- Check out the CRAN Task View: Bayesian Inference for more.

Introduction to JAGS (Just Another Gibbs Sampler)

Martyn Plummer

Real example

Impact of climatic conditions on white stork breeding success

Assess effects of temperature and rainfall on productivity.

- Assess effects of temperature and rainfall on productivity.
- We have collected data.

- Assess effects of temperature and rainfall on productivity.
- We have collected data.
- We need to build a model write down the likelihood.

- Assess effects of temperature and rainfall on productivity.
- We have collected data.
- We need to build a model write down the likelihood.
- We need to specify priors for parameters.

Read in the data

```
nbchicks \leftarrow c(151,105,73,107,113,87,77,108,118,122,112,120,122,89,69,71,
              53,41,53,31,35,14,18)
nbpairs <- c(173,164,103,113,122,112,98,121,132,136,133,137,145,117,90,80,
```

```
temp \leftarrow c(15.1,13.3,15.3,13.3,14.6,15.6,13.1,13.1,15.0,11.7,15.3,14.4,14.4
         12.7,11.7,11.9,15.9,13.4,14.0,13.9,12.9,15.1,13.0)
```

67,54,58,39,42,23,23)

nhchicka - nhchicka

rain \leftarrow c(67.52.88.61.32.36.72.43.92.32.86.28.57.55.66.26.28.96.48.90.86. 78,87)

 $datax \leftarrow list(N = 23.$

Write down the model

[likelihood]	$nbchicks_i \sim Binomial(nbpairs_i, p_i)$
[linear model]	$logit(p_i) = a + b_{temp} \; temp_i + b_{rain} \; rain_i$
[prior for a]	$a \sim Normal(0, 1000)$
[prior for b_{temp}]	$b_{temp} \sim Normal(0, 1000)$
[prior for b_{rain}]	$b_{rain} \sim Normal(0, 1000)$

Build the model

```
{
# Likelihood
    for( i in 1 : N){
        nbchicks[i] ~ dbin(p[i],nbpairs[i])
        logit(p[i]) <- a + b.temp * temp[i] + b.rain * rain[i]
      }
# ...</pre>
```

Specify priors

```
# Priors
a ~ dnorm(0,0.001)
b.temp ~ dnorm(0,0.001)
b.rain ~ dnorm(0,0.001)
}
```

Warning: Jags uses precision for Normal distributions (1 / variance)

You need to write everything in a file

```
model <-
paste("
model
    for( i in 1 : N)
         nbchicks[i] ~ dbin(p[i],nbpairs[i])
         logit(p[i]) <- a + b.temp * temp[i] + b.rain * rain[i]</pre>
a \sim dnorm(0, 0.001)
b.temp \sim dnorm(0,0.001)
b.rain \sim dnorm(0.0.001)
```

Alternatively, you may write a R function

```
logistic <- function() {</pre>
    for( i in 1 : N)
        nbchicks[i] ~ dbin(p[i],nbpairs[i])
        logit(p[i]) <- a + b.temp * temp[i] + b.rain * rain[i]</pre>
# priors for regression parameters
a \sim dnorm(0, 0.001)
b.temp \sim dnorm(0,0.001)
b.rain ~ dnorm(0,0.001)
```

Let us specify a few additional things

```
# list of lists of initial values (one for each MCMC chain)
init1 \leftarrow list(a = -0.5, b.temp = -0.5, b.rain = -0.5)
init2 \leftarrow list(a = 0.5, b.temp = 0.5, b.rain = 0.5)
inits <- list(init1.init2)
# specify parameters that need to be estimated
parameters <- c("a","b.temp","b.rain")</pre>
# specify nb iterations for burn-in and final inference
nb.burnin <- 1000
nb. iterations <- 2000 # beware: nb. iterations includes nb. burnin!
```

Run Jags

```
# load R2jags
library(R2jags)
# run Jags
storks <- jags(data = datax,
               inits = inits,
               parameters.to.save = parameters,
               #model.file = "code/logistic.txt",
               model.file = logistic, # if a function was written
               n.chains = 2.
               n.iter = nb.iterations,
               n.burnin = nb.burnin)
storks
```

Inspect parameter estimates

```
#> Compiling model graph
#>
     Resolving undeclared variables
     Allocating nodes
#>
  Graph information:
#>
     Observed stochastic nodes: 23
#>
     Unobserved stochastic nodes: 3
#>
     Total graph size: 181
#>
  Initializing model
#> Inference for Bugs model at "code/logistic.txt", fit using jags,
   2 chains, each with 2000 iterations (first 1000 discarded)
\# n sims = 2000 iterations saved
           mu.vect sd.vect 2.5%
                                     25%
                                             50%
                                                    75% 97.5% Rhat n.eff
#>
             1.545 0.081 1.441 1.514 1.549 1.585 1.648 1.194
#> a
                                                                       110
#> b.rain -0.162 0.063 -0.274 -0.203 -0.163 -0.123 -0.041 1.031
                                                                       560
             0.026 0.059 -0.096 -0.009
                                           0.027
                                                  0.063
                                                          0.144 1.003
#> b.temp
                                                                      1600
#> deviance 206.200 30.419 201.803 202.664 203.739 205.378 210.718 1.082
                                                                      2000
```

Your turn: Practical 5

Assess convergence

Reminder - MCMC Algorithm

 MCMC algorithms can be used to construct a Markov chain with a given stationary distribution (set to be the posterior distribution).

Reminder – MCMC Algorithm

- MCMC algorithms can be used to construct a Markov chain with a given stationary distribution (set to be the posterior distribution).
- For the MCMC algorithm, the posterior distribution is only needed to be known up to proportionality.

Reminder – MCMC Algorithm

- MCMC algorithms can be used to construct a Markov chain with a given stationary distribution (set to be the posterior distribution).
- For the MCMC algorithm, the posterior distribution is only needed to be known up to proportionality.
- Once the stationary distribution is reached we can regard the realisations of the chain as a (dependent) sample from the posterior distribution (and obtain Monte Carlo estimates).

Reminder – MCMC Algorithm

- MCMC algorithms can be used to construct a Markov chain with a given stationary distribution (set to be the posterior distribution).
- For the MCMC algorithm, the posterior distribution is only needed to be known up to proportionality.
- Once the stationary distribution is reached we can regard the realisations of the chain as a (dependent) sample from the posterior distribution (and obtain Monte Carlo estimates).
- We consider some important implementation issues.

MCMC – Proposal Distribution

■ To implement a MCMC algorithm, we often need to specify a proposal distribution from which we generate candidate value then accept/reject.

MCMC – Proposal Distribution

- To implement a MCMC algorithm, we often need to specify a proposal distribution from which we generate candidate value then accept/reject.
- This typically involves
 - specifying a given distribution family (e.g. normal, uniform), and then,
 - setting the parameters of the given distribution.

MCMC – Proposal Distribution

- To implement a MCMC algorithm, we often need to specify a proposal distribution from which we generate candidate value then accept/reject.
- This typically involves
 - specifying a given distribution family (e.g. normal, uniform), and then,
 - setting the parameters of the given distribution.
- Although the exact distribution specified is essentially arbitrary it will have a significant effect on the performance of the MCMC algorithm.

• If only small moves can be proposed, the acceptance probability is high, but it will take a long time to explore the posterior distribution.

- If only small moves can be proposed, the acceptance probability is high, but it will take a long time to explore the posterior distribution.
- Proposing large jumps has the potential to move further, but generally have smaller acceptance probabilities.

- If only small moves can be proposed, the acceptance probability is high, but it will take a long time to explore the posterior distribution.
- Proposing large jumps has the potential to move further, but generally have smaller acceptance probabilities.
- In order to balance the size of the proposed moves with the chance of accepting them the proposal variance is often tuned to obtain a mean acceptance probability of 20-40%.

- If only small moves can be proposed, the acceptance probability is high, but it will take a long time to explore the posterior distribution.
- Proposing large jumps has the potential to move further, but generally have smaller acceptance probabilities.
- In order to balance the size of the proposed moves with the chance of accepting them the proposal variance is often tuned to obtain a mean acceptance probability of 20-40%.
- Automatic in Jags ouf!

- If only small moves can be proposed, the acceptance probability is high, but it will take a long time to explore the posterior distribution.
- Proposing large jumps has the potential to move further, but generally have smaller acceptance probabilities.
- In order to balance the size of the proposed moves with the chance of accepting them the proposal variance is often tuned to obtain a mean acceptance probability of 20 40%.
- Automatic in Jags ouf!
- The movement around the parameter space is often referred to as mixing.

Good/Bad Traces

Autocorrelation functions

• Traceplots of for small and big moves provide (relatively) high correlations (known as autocorrelations) between successive observations of the Markov chain.

Autocorrelation functions

- Traceplots of for small and big moves provide (relatively) high correlations (known as autocorrelations) between successive observations of the Markov chain.
- Strongly correlated observations require large sample sizes and therefore longer simulations.

Autocorrelation functions

- Traceplots of for small and big moves provide (relatively) high correlations (known as autocorrelations) between successive observations of the Markov chain.
- Strongly correlated observations require large sample sizes and therefore longer simulations.
- Autocorrelation function (ACF) plots are a convenient way of displaying the strength of autocorrelation in the given sample values.

Autocorrelation functions

- Traceplots of for small and big moves provide (relatively) high correlations (known as autocorrelations) between successive observations of the Markov chain.
- Strongly correlated observations require large sample sizes and therefore longer simulations.
- Autocorrelation function (ACF) plots are a convenient way of displaying the strength of autocorrelation in the given sample values.
- ACF plots provide the autocorrelation between successively sampled values separated by k iterations, referred to as lag, (i.e. $cor(\theta_t, \theta_{t+k})$) for increasing values of k.

ACFs

Traceplots for the storks

traceplot(storks,mfrow = c(1, 2), varname = c('b.rain','b.temp'), ask = FA

Autocorrelation for the storks

autocorr.plot(as.mcmc(storks),ask = FALSE) b.rain а Autocorrelation Autocorrelation -1.0 15 20 15 20 Lag Lag deviance b.temp Autocorrelation 0.5 Autocorrelation 0.5

How do good chains behave?

 Converge to same target distribution: We need to think of the time required for convergence (realisations of the Markov chain have to be discarded before this is achieved).

How do good chains behave?

- Converge to same target distribution: We need to think of the time required for convergence (realisations of the Markov chain have to be discarded before this is achieved).
- Once there, explore efficiently: The post-convergence sample size required for suitable numerical summaries.

 Here, we are looking to determine how long it takes for the Markov chain to converge to the stationary distribution.

- Here, we are looking to determine how long it takes for the Markov chain to converge to the stationary distribution.
- In practice, we must discard observations from the start of the chain and just use observations from the chain once it has converged.

- Here, we are looking to determine how long it takes for the Markov chain to converge to the stationary distribution.
- In practice, we must discard observations from the start of the chain and just use observations from the chain once it has converged.
- The initial observations that we discard are referred to as the burn-in.

- Here, we are looking to determine how long it takes for the Markov chain to converge to the stationary distribution.
- In practice, we must discard observations from the start of the chain and just use observations from the chain once it has converged.
- The initial observations that we discard are referred to as the **burn-in**.
- The simplest method to determine the length of the burn-in period is to look at trace plots.

Burn-in (if simulations cheap, be conservative)

How long of a chain is needed to produce stable estimates ?

- How long of a chain is needed to produce stable estimates ?
- Most MCMC chains are strongly autocorrelated.

- How long of a chain is needed to produce stable estimates ?
- Most MCMC chains are strongly autocorrelated.
- Successive steps are near each other, and are not independent.

- How long of a chain is needed to produce stable estimates?
- Most MCMC chains are strongly autocorrelated.
- Successive steps are near each other, and are not independent.
- The effective sample size (n.eff) measures chain length while taking into account the autocorrelation of the chain.
 - n.eff is less than the number of MCMC iterations.
 - Check the n.eff of every parameter of interest.
 - Check the n.eff of any interesting parameter combinations.

- How long of a chain is needed to produce stable estimates?
- Most MCMC chains are strongly autocorrelated.
- Successive steps are near each other, and are not independent.
- The effective sample size (n.eff) measures chain length while taking into account the autocorrelation of the chain.
 - n.eff is less than the number of MCMC iterations.
 - Check the n.eff of every parameter of interest.
 - Check the n.eff of any interesting parameter combinations.
- We need n.eff \geq 100 independent steps.

ullet Gelman-Rubin statistic \hat{R}

- Gelman-Rubin statistic \hat{R}
- Measures the ratio of the total variability combining multiple chains (between-chain plus within-chain) to the within-chain variability. Asks the question is there a chain effect? Very much alike the F test in an ANOVA.

- Gelman-Rubin statistic *Â*
- Measures the ratio of the total variability combining multiple chains (between-chain plus within-chain) to the within-chain variability. Asks the question is there a chain effect? Very much alike the F test in an ANOVA.
- ullet Values near 1 indicates likely convergence, a value of ≤ 1.1 is considered acceptable.

- Gelman-Rubin statistic \hat{R}
- Measures the ratio of the total variability combining multiple chains (between-chain plus within-chain) to the within-chain variability. Asks the question is there a chain effect? Very much alike the F test in an ANOVA.
- ullet Values near 1 indicates likely convergence, a value of ≤ 1.1 is considered acceptable.
- Necessary condition, not sufficient; In other words, these diagnostics cannot tell you that you have converged for sure, only that you have not.

n.eff and \hat{R} for the storks

storks

- #> Inference for Bugs model at "code/logistic.txt", fit using jags,
- #> 2 chains, each with 2000 iterations (first 1000 discarded)
- # n.sims = 2000 iterations saved
- mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat #>

- 1.545 0.081 1.441 1.514 1.549 1.585 1.648 1.194 #> a
- #> b.rain -0.162 0.063 -0.274 -0.203 -0.163 -0.123 -0.041 1.031
- #> b.temp 0.026 0.059 -0.096 -0.009 0.027 0.063 0.144 1.003
- #> deviance 206.200 30.419 201.803 202.664 203.739 205.378 210.718 1.082
- #>
- #> For each parameter, n.eff is a crude measure of effective sample size, #> and Rhat is the potential scale reduction factor (at convergence, Rhat=
- #> # DTC info (using the rule nD = var(deviance)/2)

• Run multiple chains from arbitrary starting places (initial values).

- Run multiple chains from arbitrary starting places (initial values).
- Assume convergence when all chains reach same regime.

- Run multiple chains from arbitrary starting places (initial values).
- Assume convergence when all chains reach same regime.
- Discard initial burn-in phase.

- Run multiple chains from arbitrary starting places (initial values).
- Assume convergence when all chains reach same regime.
- Discard initial burn-in phase.
- Check autocorrelation, effective sample size and \hat{R} .

• Increase burn-in, sample more.

- Increase burn-in, sample more.
- Use more informative priors.
- Pick better initial values (good guess).

- Increase burn-in, sample more.
- Use more informative priors.
- Pick better initial values (good guess).
- Reparameterize:
 - Standardize covariates.
 - Non-centering: $\alpha \sim N(0, \sigma)$ becomes $\alpha = z\sigma$ with $z \sim N(0, 1)$.

- Increase burn-in, sample more.
- Use more informative priors.
- Pick better initial values (good guess).
- Reparameterize:
 - Standardize covariates.
 - Non-centering: $\alpha \sim N(0, \sigma)$ becomes $\alpha = z\sigma$ with $z \sim N(0, 1)$.
- Something wrong with your model?
 - Start with a simpler model (remove complexities).
 - Use simulations.

- Increase burn-in, sample more.
- Use more informative priors.
- Pick better initial values (good guess).
- Reparameterize:
 - Standardize covariates.
 - Non-centering: $\alpha \sim N(0, \sigma)$ becomes $\alpha = z\sigma$ with $z \sim N(0, 1)$.
- Something wrong with your model?
 - Start with a simpler model (remove complexities).
 - Use simulations.
- Change your sampler. Upgrade to Nimble or Stan.

MCMC makes you queens and kings

of the stats world

Get all values sampled from posteriors

tail(res)

```
res <- as.mcmc(storks) # convert outputs in a list
res <- rbind(res[[1]],res[[2]]) # put two MCMC lists on top of each other
head(res)
#>
                       b.rain b.temp
                                           deviance
#> [1,] 0.07080353 -0.30662224 -0.31932056 1225.8420
#> [2,] 0.41577870 -0.23901959 -0.23508941
                                          773.3837
#> [3,] 0.68847213 -0.18098311 -0.14169900 509.4181
#> [4,] 0.80746015 -0.15732435 -0.06811845 418.3528
                                           351.4461
#> [5,] 0.92786687 -0.12241767 -0.05058431
#> [6,] 1.03149945 -0.09174747 -0.05743429
                                           307.0004
```

#> a b.rain b.temp deviance #> [1995,] 1.544116 -0.1747998 0.007950735 201.9061 #> [1996] 1.52271/ -0.1625601 0.022560051 201.7395

Compute a posteriori Pr(rain < 0)

```
# probability that the effect of rainfall is negative
mean(res[,'b.rain'] < 0)
#> [1] 0.9945
```

Compute a posteriori Pr(temp < 0)

```
# probability that the effect of temperature is negative
mean(res[,'b.temp'] < 0)
#> [1] 0.315
```

Get credible interval for the rain effect

```
quantile(res[,'b.rain'],c(0.025,0.975))

#> 2.5% 97.5%

#> -0.27437161 -0.04117215
```

Get credible interval for the temperature effect

```
quantile(res[,'b.temp'],c(0.025,0.975))
#> 2.5% 97.5%
#> -0.09607297 0.14354530
```

Graphical summaries

Your turn: Practical 6