EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER PUBLICATION DATE

: 07192315 28-07-95

APPLICATION DATE

27-12-93

APPLICATION NUMBER

: 05331507

APPLICANT: KURARAY CO LTD;

INVENTOR: HORINO KOICHIRO;

INT.CL.

: G11B 7/24 G11B 7/26 G11B 11/10 G11B 11/10

TITLE

: OPTICAL RECORDING MEDIUM AND ITS PRODUCTION

ABSTRACT: PURPOSE: To prevent partial oxidation deterioration of a metallic thin film such as a

reflecting film and to produce an optical recording medium having high reliability.

CONSTITUTION: After laminating a UV curing resin layer having ≤800ppm acrylic-ion concn. on the metallic thin film such as an Al reflecting film formed on a substrate, this UV curing resin is cured. In the medium produced by this method, a flocculated matter

containing acrylic acid and water is not present in this UV curing resin layer.

COPYRIGHT: (C)1995,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平7-192315

(43)公開日 平成7年(1995)7月28日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
G11B 7/24	537 B	7215-5D		
7/26	5 3 1	7215-5D		
11/10	521 F	9075-5D		
	541 F	90 7 5-5D		

審査請求 未請求 請求項の数2 OL (全 4 頁)

(21)出願番号

(22)出顧日

特顯平5-331507

平成5年(1993)12月27日

(71)出願人 000001085

株式会社クラレ

岡山県倉敷市酒津1621番地

(72)発明者 小林 秀樹

岡山県倉敷市酒津1621番地 株式会社クラ

レ内

(72)発明者 堀野 紘一郎

岡山県倉敷市酒津1621番地 株式会社クラ

レ内

(54) 【発明の名称】 光記録媒体およびその製造方法

(57)【要約】

【目的】 反射膜等の金属薄膜の部分的な酸化劣化を防 止し、高い信頼性を有する光記録媒体を得ること。

【構成】 基板に形成されたA1反射膜などの金属薄膜 上に、アクリル酸イオン濃度が800ppm以下である 紫外線硬化樹脂層を積層した後に、該紫外線樹脂を硬化 させる。この方法により製造される光記録媒体は紫外線 硬化樹脂層中にアクリル酸と水とを含んだ凝集物が存在 していない。

【特許請求の範囲】

【請求項1】 基板に形成された金属薄膜上に、アクリ ル酸イオン濃度が800ppm以下である紫外線硬化樹 脂層を積層した後に、該紫外線硬化樹脂を硬化させるこ とを特徴とする光記録媒体の製造方法。

【請求項2】 基板に金属薄膜と紫外線硬化樹脂層とが 積層されており、該紫外線硬化樹脂層中にアクリル酸と 水とを含んだ凝集物が存在していないことを特徴とする 光記録媒体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は情報の記録、再生等が可 能な光記録媒体およびその製造方法に関する。

[0002]

【従来の技術】現在、高密度な記録が行え、ピット当た り単価が非常に低い光記録媒体が広く利用されている。 光記録媒体には、コンパクト・ディスク(CD)に代表 されるROMタイプ、記録が1度だけ行えるライト・ワ ンス・タイプ、光磁気記録または相変化記録により情報 の書換えが可能なタイプ等があるが、光を有効に用いて 20 記録情報の読み書きを行うため、何れのタイプでも反射 率の高いAlまたはAl合金の反射膜を有することが一 般的である。かかる光記録媒体を長期間使用すると、A 1またはA1合金の反射膜が空気中の酸素、水分等によ り酸化し、反射率が低下して再生不良等の原因となるこ とから、反射膜に紫外線硬化樹脂の保護膜を積層するこ とにより、酸化を防止する。上記紫外線硬化樹脂の保護 膜は、一般的には反射膜上にアクリル系の紫外線硬化樹 脂をスピンコート法により均一の厚さに塗布し、その 後、紫外線を照射し硬化させることにより作製され、通 30 常その厚さは5~30μm程度である。

[0003]

【発明が解決しようとする課題】上記の紫外線硬化樹脂 で保護された反射膜を有する光記録媒体を長期間使用し た場合、高温高湿の条件下に晒した場合に、部分的(1 00から500μm程度の円形状) に反射膜が酸化し反 射率が低下するという問題が発生していた。また、光磁 気記録媒体では、反射膜の酸化劣化に留まらず、希土類 遷移金属の光磁気記録膜までもが酸化劣化してしまうと いう問題が発生していた。さらに、A 1 合金等の反射膜 40 が酸化劣化した場合、劣化部分から反射膜または他の積 層している膜(例えば、誘電体保護膜)が剥離し、記 録、再生等が不可能になる領域が更に広がることもあ る。

【0004】上記のいずれの場合においても、A1合金 等の反射膜が酸化劣化した部分から不良領域が拡大進行 しているので、反射膜の部分的な酸化劣化を防止するこ とが重要な問題である。光記録媒体には、情報が高密度 に記録されているため、微小な部分ではあっても情報の 再生ができない領域が発生することは致命的なことであ「50」を全くなさない状態となっており、金属薄膜は容易に欠

り、反射膜が酸化劣化することは早急に解決すべき問題 である。

【0005】本発明は上記問題点に鑑みてなされたもの で、反射膜等の金属薄膜の部分的な酸化劣化を防止し、 高い信頼性を有する光記録媒体およびそれを製造する方 法を提供することを目的とする。

[0006]

【課題を解決するための手段】上記の目的を達成する本 願の請求項1の光記録媒体の製造方法の発明は、基板に 10 形成された金属薄膜上に、アクリル酸イオン濃度が80 0 p p m以下である紫外線硬化樹脂層を積層した後に、 該紫外線硬化樹脂を硬化させることを特徴とする。上記 のアクリル酸イオン濃度としては、500ppm以下で あることが好ましい。

【0007】上記発明で用いられる紫外線硬化樹脂とし ては、アクリル系などの一般の光記録媒体保護膜用のも のを用いることができる。また、紫外線硬化樹脂により 保護膜を形成する方法としては、スピンコート法、デイ ップ法、ロールコート法などが挙げられる。

【0008】本願の請求項2の光記録媒体の発明は、基 板に金属薄膜と紫外線硬化樹脂層とが積層されており、 該紫外線硬化樹脂層中にアクリル酸と水とを含んだ凝集 物が存在していないことを特徴とし、上記の製造方法の 発明により製造される。

【0009】上記の金属薄膜としては、A1またはA1 合金からなる反射膜が挙げられるが、その他希土類遷移 金属からなる光磁気記録膜等の酸化劣化し易い膜であっ ても同様の効果が得られる。また、上記の基板として は、ポリカーボネート樹脂、ポリメチルメタクリレート 樹脂、ガラス等からなるものが用いられる。

[0010]

【作用】金属薄膜の部分的な酸化劣化は、金属薄膜を保 護するために使用している紫外線硬化樹脂層に存在する ある特異的な欠陥より発生し、この欠陥には、他に存在 する欠陥とは異なり、アクリル酸イオンが多量に含まれ ていることが分析の結果判明した。したがって硬化前の 紫外線硬化樹脂に含まれるアクリル酸イオン濃度が、金 属薄膜の酸化劣化に対し非常に重要である。

【0011】硬化前の紫外線硬化樹脂に多量のアクリル 酸イオンと水分とが含まれている場合には、水分とアク リル酸とが凝集し紫外線硬化樹脂と分離し、微細な状態 で浮遊していると思われる。この様な状態の紫外線硬化 樹脂を金属薄膜上にスピンコートした場合、水分とアク リル酸との凝集物が紫外線硬化樹脂を硬化した後も、保 護膜中に欠陥として残る。

【0012】多量のアクリル酸および水を含んだ欠陥部 を電子顕微鏡観察すると、欠陥部では内部の水分が、金 属薄膜にほぼ接した状態になっている。つまり、この欠 陥部分においては、紫外線硬化樹脂の保護膜は保護作用

陥部に含まれるアクリル酸により酸化されてしまう。本 発明により、金属薄膜上に形成する紫外線硬化樹脂中の アクリル酸イオン濃度が800ppm以下であれば、金 属薄膜の酸化劣化を防止することができる。

【0013】ここで、A1、A1合金等の金属薄膜の部分劣化は、金属薄膜が酸化し透明になることにより確認される(透過光で確認した場合、劣化部分のみ光が透過する)。

[0014]

【実施例】以下、実施例により本発明を具体的に説明す 10 る。

実施例1

直径86mm、厚さ1.2mmの透明樹脂基板をポリカ ーボーネート樹脂を射出成形することにより作製した。 次に、インライン式マグネトロンスパッタ装置を使用し て、膜厚100nmのSiN,誘電体保護膜、膜厚25 nmのTbFeCoCr希土類遷移金属膜、膜厚35n mのSiN,誘電体保護膜、および、膜厚50nmのA 1合金膜(A1-Ti)を順次積層し、4層膜構成の記 録膜を有する光磁気記録媒体を作製した。次に、アクリ 20 ル系の紫外線硬化樹脂の保護膜を膜厚10 μmになるよ うにスピンコート法によりAI合金膜上に積層した。使 用した紫外線硬化樹脂のアクリル酸イオン濃度は470 ppmであった。なお、各実施例において、紫外線硬化 樹脂中のアクリル酸イオン濃度はイオンクロマトアナラ イザ(横河電機製IC500S)を使用し、カラムはP AM3-035とSAM3-125で測定したものであ る。この光記録媒体を80℃、95%RHの条件下で2 00時間の加速テストをしたところ、表1に示すように A1合金反射膜の部分酸化劣化は認められなかった。

【0015】実施例2

実施例1と同様の記録膜を作製した後、スピンコート法で実施例1と同様に紫外線硬化樹脂を作製した。使用した紫外線硬化樹脂のアクリル酸イオン濃度は180ppmであった。実施例1と同様に、この光記録媒体を80℃、95%RHの条件下で200時間の加速テストをしたところ、表1に示すようにA1合金反射膜の部分酸化劣化は認められなかった。また、保護膜の付着強度も実施例1と同等であった。

【0016】実施例3

実施例 1 と同様に直径 $86\,\mathrm{mm}$ 、厚さ 1 . $2\,\mathrm{mm}$ の透明 樹脂基板をポリカーボーネート樹脂を射出成形することにより作製した。次に、基板上に膜厚 $60\,\mathrm{nm}$ の $A1\,\mathrm{反}$ 射膜のみをスパッタ法により形成した。この後、 $A1\,\mathrm{反}$ 射膜上に実施例 1 と同じ紫外線硬化樹脂の保護膜を積層した。実施例 1 と同様に、この光記録媒体を $80\,\mathrm{CC}$ 、 $95\,\mathrm{Cm}$ RHの条件下で $200\,\mathrm{fm}$ 時間の加速テストをしたところ、表 1 に示すように $A1\,\mathrm{Cm}$ 対膜の部分酸化劣化は認められなかった。

【0017】比較例1

実施例 1 と同様の記録膜を作製した後、アクリル系の紫外線硬化樹脂保護膜をスピンコート法により膜厚 10μ mになるように積層した。使用した紫外線硬化樹脂のアクリル酸イオン濃度は 1000ppmであった。実施例 1 と同様に、この光記録媒体を 80%、95% R H の条件下で 200 時間の加速テストをしたところ、表 1 に示すように A 1 合金反射膜の部分酸化劣化が 12 箇所認められた。

0 【0018】比較例2

実施例1と同様の記録膜を作製した後、スピンコート法で使用した後回収した紫外線硬化樹脂を使用して、紫外線硬化樹脂の保護膜を膜厚10μmで積層した。使用した紫外線硬化樹脂のアクリル酸イオン濃度は1580ppmであった。実施例1と同様に、この光記録媒体を80℃、95%RHの条件下で200時間の加速テストをしたところ、表1に示すようにA1合金反射膜の部分酸化劣化は22箇所認められた。

【0019】以上の結果を表1にまとめて示すが、AI 反射膜またはA1合金反射膜の部分劣化は、使用した紫外線硬化樹脂に含まれるアクリル酸イオン濃度に依存していることが明らかである。紫外線硬化樹脂に含まれるアクリル酸イオン濃度が800ppm以下の場合には、反射膜の部分的劣化の発生がなく信頼性の高い光記録媒体を提供することが可能となる。なお、本実施例および比較例において部分劣化個数は光記録媒体5枚を試験し、1枚当たりの平均個数として示したものである。 【表1】

	紫外線硬化樹脂 中のアクリル酸 イオン濃度(ppm)	反射膜の 材 質	加速試験後の 部分劣化 個数	備	考
実施例1	4 7 0 ppm	AlTi	0 個		
実施例2	1 8 0 ppm	AlTi	0 個		
実施例 3	4 7 0 ppm	A 1	υ 個		
比較例1	1 0 0 0 ppm	AlTi	12個		

AlTi

22個

1580 ppm

(4)

[0020]

【発明の効果】本発明によれば、高温高湿下で長期間使 用しても反射膜の部分的な酸化劣化がなく、情報の読み 20

比較例2

取り、記録に対して高い信頼性を有する光記録媒体およびそれを製造する方法を提供することが可能となる。

回収樹脂使用