Teopuя вычислительных процессов Process calculus Сети Петри

ИВТ и ПМ ЗабГУ

2021

Дискретные системы

Сети Петри Примеры Формальное описание Диаграммы состояний

Дискретные системы

- Дискретная динамическая система одно из наиболее общих понятий в теоретическом программировании.
- Примеры: компьютеры, их элементы и устройства, компьютерные сети;
 компьютерные программы и операционные системы;
 системы сбора и автоматической обработки цифровой информации;
 - системы автоматического управления объектами и процессами; производственные системы дискретного характера (сборочные линии);
 - социально-экономические и другие.

- ▶ Приведенные примеры сложные системы, имеющие сложную внутреннюю структуру.
- Эти системы дискретные:
 - в их внутренней структуре можно выделить счетное число состояний (в которых они могут пребывать в некоторые моменты времени)
 - а также переходить из состояния в состояние в некоторые моменты времени.
- множество может быть очень и очень большим, но чаще всего, оно конечно и счетно.

- ▶ Приведенные примеры сложные системы, имеющие сложную внутреннюю структуру.
- Эти системы дискретные:
 - в их внутренней структуре можно выделить счетное число состояний (в которых они могут пребывать в некоторые моменты времени)
 - а также переходить из состояния в состояние в некоторые моменты времени.
- множество может быть очень и очень большим, но чаще всего, оно конечно и счетно.
- Многие непрерывные (или аналоговые) системы можно представить дискретными, вводя некоторые границы дискретизации. Например: звук.

- Автомат математической абстракцией последовательной дискретной системы.
- Постоянно появляется необходимость моделировать новые динамические дискретные системы.
- Например параллельные системы с недетерминированным поведением, в которых отдельные компоненты функционируют, в основном, независимо, взаимодействуя друг с другом время от времени. римеры: многопроцессорные вычислительные системы; параллельные программы; многозадачные операционные системы; асинхронные электронные схемы и т.д.

- Системы с параллельно функционирующими и асинхронно (т.е. в произвольные моменты времени)
 взаимодействующими компонентами не описываются адекватно в терминах классической теории автоматов.
- Среди многих существующих методов описания и анализа дискретных параллельных систем выделился подход, который основан на сетевых моделях специального вида – сети Петри.

Дискретные системь

Сети Петри

Примеры Формальное описание Диаграммы состояний

Сети Петри

Сети Петри – это инструмент для математического моделирования и исследования сложных систем.

Сети Петри

- Сеть Петри описывает структуру и поведение динамической системы.
- Идея Сети Петри впервые использована немецким математиком и информатиком Карлом Адамом Петри для описания химических процессов в первой половине XX века
- Формальное описание сети опубликовано в 1962 году
- Сети Петри позволили в том числе развить идеи из области параллельных и распределённых вычислений
- Business Process Model and Notation, диаграмма деятельности, событийная цепочка процессов – графические аналоги сети Петри

Определим сеть Петри как четвёрку:

$$N = (P, T, I, O)$$

- ▶ P = {p1, p2, ..., pn } конечное множество позиций;
- ► T = {t1, t2, ..., tm } конечное множество переходов;
- ▶ $I: T \to P$ входная функция, сопоставляющая переходу Т мультимножество его входных позиций P;
- $O: T \to P$ выходная функция, сопоставляющая переходу мультимножество его выходных позиций P.

 $^{^1}$ множество, которое может содержать несколько экземпляров одного и того же объекта

Сеть Петри _{Пример}

```
P = \{p_1, p_2, p_3\}
T = \{t_1, t_2\}
I(t_1) = \{p_1, p_1, p_2\}; O(t_1) = \{p_3\}
I(t_2) = \{p_1, p_2, p_2\}; O(t_2) = \{p_3\}
```

Наглядное представление сети Петри – двудольный, ориентированный мультиграф.

Наглядное представление сети Петри – двудольный, ориентированный мультиграф.

Двудольный граф (биграф) – граф, множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет какую-то вершину из одной части с какой-то вершиной другой части. Т.е. то есть не существует рёбер между вершинами одной и той же части.

Мультиграф – граф, в котором разрешается присутствие кратных рёбер.

Пример

$$P = \{p_1, p_2, p_3\}$$

$$T = \{t_1, t_2\}$$

$$I(t_1) = \{p_1, p_1, p_2\}; O(t_1) = \{p_3\}$$

$$I(t_2) = \{p_1, p_2, p_2\}; O(t_2) = \{p3\}$$

Симуляция и задание сетей Петри: petri.hp102.ru/pnet.html

Пример

Задание в виде продукционных правил:

```
t_1: \{p_3, p_1\} \to \{p_1, p_2, p_3\}

t_2: \{p_1\} \to \{p_1, p_2\}
```

аналогично

$$\begin{split} P &= \{p_1, p_2, p_3\} \\ T &= \{t_1, t_2\} \\ I(t_1) &= \{p_3, p_1\}; \quad O(t_1) = \{p_1, p_2, p_3\} \\ I(t_2) &= \{p_1\}; \quad O(t_2) = \{p_1, p_2\} \end{split}$$

Маркировка

- ▶ Маркировка это размещение по позициям сети Петри фишек, изображаемых на графе сети Петри точками.
- Фишки используются для определения выполнения сети
 Петри. Количество фишек в позиции при выполнении сети
 Петри может изменяться от 0 до бесконечности.

Маркировка сетей Петри

Выполнение сети Петри. Пример. http://petri.hp102.ru/pnet.html

Для выполнения сети Петри на бумаге можно использовать монеты

Правила выполнения Сети Петри

- Сеть Петри выполняется посредством запусков переходов.
- Запуск перехода управляется фишками в его входных позициях и сопровождается удалением фишек из этих позиций и добавлением новых фишек в его выходные позиции.
- Переход может запускаться только в том случае, когда он разрешен.
- Переход называется разрешенным, если каждая из его входных позиций содержит число фишек, не меньшее, чем число дуг, ведущих из этой позиции в переход (или кратности входной дуги).
- Разрешённые переходы можно запускать в произвольном порядке

Дискретные системь

Сети Петри Примеры

Формальное описание Диаграммы состояний

Примеры моделирования сетями Петри

- Простой процесс с двумя состояниями
- Запуск параллельных процессов
- Запуск одного из параллельных процессов
- || процесс с общим ресурсом
- deadlock

Примеры моделирования сетями Петри

Последовательная обработка запросов сервером Опишем обработку как набор состояний. Сами состояния будем обозначать позициями

- ► s1 сервер ждёт
- ▶ s2 запрос поступил и ждёт
- s3 запрос обрабатывается
- s3 запрос обработан

Смену состояний будем называть событиями. События обозначим переходами

- ► t1 поступил запрос
- t2 сервер начал обработку
- ▶ t3 сервер закончил обработку
- ▶ t3 результат отправлен клиенту

Дискретные системы

Сети Петри

Примеры

Формальное описание

Диаграммы состояний

Переходы

- + #^: $T \times P \rightarrow \mathbb{N}_0$
- \blacktriangleright # $\hat{}(t,p)$ кратность дуги из t в р
- \blacktriangleright $^{*}\#: P \times T \rightarrow \mathbb{N}_{0}$
- ▶ ^# (p, t) кратность дуги из р в t
- ▶ \mathbb{N}_0 множество натуральных чисел и 0
- $\mu(p)$ число фишек в позиции p

Переходы

- ▶ Переход t разрешён если $\forall p \in I(t)$ справедливо $\mu(p) \geq \hat{} \# (p,t)$
- Запуск перехода

$$\mu'(p) = \mu(p) - \hat{\mu}(p, t) + \hat{\mu}(t, p)$$

- Сеть можно запускать до тех пор, пока в ней есть разрешённые переходы
- Порядок запуска переходов не определён

Переходы

$$\mu = < 5, 1 >$$

$$\mu' = <3,2>$$

ightharpoonup Запуск $\mu
ightharpoonup \mu'$

- Фишки обычно означает: в буфере есть запись, переменная доступна
- место переменная буфер
- переход функция устройство

Одновременность и конфликт

- Сети Петри асинхронны
- Не измеряем время
- Переход примитивное событие, не занимающее времени
- Но различаем порядок событий
- В один и тот же момент времени может быть запущен только один переход

Конфликт

При данной маркировке разрешены обо перехода, но запуск любого из них деактивует другой переход

Дискретные системы

Сети Петри

Примеры Формальное описание Диаграммы состояний

Диаграммы состояний

Дискретные системь

Сети Петри Примеры Формальное описание Диаграммы состояний

- Моделирование параллельных процессов. Сети Петри.
 Мараховский В. Б., Розенблюм Л. Я., Яковлев А. В. СПб.:
 Профессиональная литература, 2014. 400 с
- Теория сетей Петри и моделирования систем, Питерсон Дж. 1984
- ▶ petri.hp102.ru/pnet.html создание и запуск сетей Петри
- https://apo.adrian-jagusch.de создание и анализ сетей Петри

Ссылки

Материалы дисциплины github.com/ivtipm/ProcessCalculus