Applicants: Naldini et al., Atty. Dkt. No.

USSN : 10/554,181

Art Unit : 1636 Date of office action : 11/16/2007 Filed : 12/27/2005 Examiner : David Guzo Date of response : 03/17/2008

Page: 6

anamain da tari a sa araa sa araa

REMARKS

: 1130-PCT-US

Claim Status

Claims 1-18 are pending. Applicants have canceled claim 2 without prejudice to pursue the subject matter in a future application. Claims 1, 3, 12, 14, 15 and 16 have been amended.

Support for the amendments to the claims

Support for amended claim 1 may be found inter alia on page 17 of the Specification, lines 15-27; claim 1 and claim 2 as filed.

Support for amended claim 3 may be found inter alia on page 17 of the Specification, lines 21-24.

Support for amended claim 12 may be found inter alia on page 5 of the Specification, line 10.

Support for amended claims 13-16 may be found inter alia in claims 13-16 as filed.

Applicants respectfully request the entry of this Amendment. Upon entry, Claims 1, 3-18 are pending and under examination.

Rejections Under 35 U.S.C. §112

12-13 are rejected under 35 U.S.C. §112, paragraph, as being indefinite. The rejection is respectfully traversed.

Claim 12 has been amended to recite that the tissue animal cells are brain neurons. Claim 13 has been amended to clarify that the aim is to express the sequences in an animal cell. Applicants submit that claim 12 and 13 have been amended to obviate the rejection. Accordingly, Applicants respectfully Applicants: Naldini et al., Atty. Dkt. No. : 1130-PCT-US USSN : 10/554,181 Art Unit : 1636 Filed : 12/27/2005 Date of office action : 11/16/2007 Examiner : David Guzo Date of response : 03/17/2008

Page : 7

request that the rejection of claims 12-13 under 35 U.S.C. §112, second paragraph, be withdrawn.

Rejections Under 35 U.S.C. §102

Claims 1-4 and 6-15 are rejected under 35 U.S.C. §102(e) as being anticipated by Chtarto et al. The rejection is respectfully traversed.

Chtarto et al. is directed exclusively to a vector comprising a bi-directional antibiotic controlled activator-responsive promoter. In particular, the promoter comprises a tetracycline (Tet) responsive element.

The <u>Tet responsive promoter</u> is a synthetic sequence composed of 7 repetitions of an 8 nucleotide-long <u>prokaryotic sequence</u>. Such promoter is not able to exploit the endogenous mammalian transcriptional machinery in order to work properly. Therefore, to render this promoter functional, it is necessary to express an <u>additional</u> transgene encoding for a chimeric transcriptional activator composed of two halves, the first one being of <u>prokaryotic</u> origin and the second one being of <u>viral or human</u> origin.

tetracycline-responsive Α fundamental feature οf the expression system is that the promoters used must be insulated nearby competing enhancers in order ţο prevent inappropriate transactivation and preserve integrity modulation by doxycycline. Therefore, only minimal promoters have been so far used in this system. Moreover, the Tetregulated system depends on the expression (or exogenous administration) of transactivators, whose expression (or administration) may encounter problems in vivo.

 Applicants:
 Naldini et al.,
 Atty. Dkt. No.
 : 1130-PCT-US

 USSN :
 10/554,181
 Art Unit :
 : 1636

 Filed :
 12/27/2005
 Date of office action :
 : 11/16/2007

 Examiner :
 David Guzo :
 Date of response :
 : 03/17/2008

 Page :
 8

In contrast, the present invention is directed to synthetic eukaryotic bidirectional promoters, based on the juxtaposition of a core promoter element placed upstream and in opposite orientation to an efficient promoter, that exploits the endogenous transcriptional machinery available to most animal cells types to drive robust expression of two divergent transcripts. The fact that the bidirectional promoter of the present invention comprises a minimal viral promoter and a full length animal promoter represents a fundamental difference over the prior art in general, and over Chtarto et al. in particular.

It is well known in this art that the eukaryotic and prokaryotes promoters act differently. For example,

The promoter contains specific DNA sequences, response elements, that are recognized by proteins known as transcription factors. These factors bind to the promoter sequences, recruiting RNA polymerase, the enzyme that synthesizes the RNA from the coding region of the gene.

- In prokaryotes, the promoter is recognized by RNA polymerase and an associated sigma factor, which in turn are brought to the promoter DNA by an activator protein binding to its own DNA sequence nearby.
- In eukaryotes, the process is more complicated, and at least seven different factors are necessary for the transcription of an RNA polymerase II promoter."

See Exhibit A, 5 pages.

In addition, it is well known from general biology text books that a promoter of a prokaryote organism cannot work in the environment of an eukaryote organism and vice versa.

The bidirectional promoter of the present invention can be based on any eukaryotic promoter: ubiquitous, constitutive, tissue specific or endogenously regulated.

Applicants: Naldini et al., Atty. Dkt. No. : 1130-PCT-US USSN : 10/554,181 Art Unit : 1636 Filed : 12/27/2005 Date of office action : 11/16/2007 Examiner : David Guzo Date of response : 03/17/2008

Page: 9

In nature, few instances of bidirectional promoters have been documented and only very recently recent surveys of the human genome have indicated an abundance of divergently transcribed gene pairs representing more than 10% of the human genome, whose transcriptional start sites are separated by less than 1 kb. In addition, it has been suggested that more than half of the human promoters does not exhibit strong directionality in transcript initiation and can function in a bidirectional fashion. Thus, the synthetic bidirectional promoters of the present invention may mimic a well-represented evolutionary conserved feature of eukaryotic transcription, providing a structural basis for their robust performance.

More specifically, Chtarto et al. require the use of a transactivator factor encoded by a reverse antibiotic controlled transactivator nucleotide sequence for activating the bi-directional promoter. See, for instance, Chtarto et al. column 5, lines 12-16:

In said construct or system the bi-directional antibiotic controller activator responsive promoter/operator sequence 4 is advantageously activated by the transactivator factor 7, encoded by the reverse antibiotic controlled transactivator 7, encoded by the reverse antibiotic controlled transactivator nucleotide sequence 6 in the presence of said antibiotic 5.

That Chtarto et al. is only directed to an antibiotic inducible/repressible genetic construct is clear throughout the document. See further Fig. 6, column 4, lines 42-43, column 5, lines 22-32.

The present invention offers the construction of a bidirectional promoter comprising a minimal viral promoter and a full length eukaryotic promoter. See, for instance, description page 7, lines 3-8:

Applicants: Naldini et al., Atty. Dkt. No. : 1130-PCT-US

USSN : 10/554,181 Art Unit : 1636 Filed : 12/27/2005 Date of office action : 11/16/2007 Examiner : David Guzo Date of response : 03/17/2008

Page: 10

A bidirectional promoter made by minimal core promoter elements from the human cytomegalovirus (mCMV) joined upstream, and in opposite orientation, to an efficient promoter, derived from the human phosphoglycerate kinase (PGK) or poly-ubiquitin UBI-C gene, was driving divergent transcription of two RNAs.

In conclusion, Chtarto et al. do not anticipate the present invention because Charto et al. do not teach each and every aspect of the present invention. Accordingly, Applicants respectfully request that the rejection of claims 1-4 and 6-15 under 35 U.S.C. §102(e) be withdrawn.

Claims 1-4 and 6-11 and 13-18 are rejected under 35 U.S.C. §102(e) as being anticipated by Itoh et al. The rejection is respectfully traversed.

Itoh et al. is directed exclusively to a vector comprising a low molecular weight compound-responsive bidirectional promoter and a DNA encoding a low molecular weight compound-controlled transactivator. In particular, the low molecular weight compound is tetracycline or doxycycline and the low molecular weight compound-controlled transactivator is a reverse tetracycline transactivator.

Therefore, arguments presented above concerning Chtarto et al. are also valid in respect to Itoh et al.

In conclusion, Itoh et al. do not anticipate the present invention because Itoh et al. do not teach each and every aspect of the present invention. Accordingly, Applicants respectfully request that the rejection of claims 1-4 and 6-11 and 13-18 under 35 U.S.C. §102(e) be withdrawn.

Applicants : Naldini et al., Atty. Dkt. No. : 1130-PCT-US USSN : 10/554,181 Art Unit : 1636 Filed : 12/27/2005 Date of office action : 11/16/2007 Examiner : David Guzo Date of response : 03/17/2008 Page : 11

Claims 1-4, 7-8, 10 and 14 are rejected under 35 U.S.C. §102(b) as being anticipated by Fux et al. The rejection is respectfully traversed.

Fux et al. discloses the construction of two vectors, PDuoRex7 and pDuoRex8 (see page 114, left column, last paragraph) which contain two antibiotic-responsive expression units in divergent orientation. Such pDuoRex-based dual regulated expression requires concomitant production of tTA and PIT (see page 114, right column, first paragraph).

Thus, arguments presented above concerning Chtarto et al. are also valid in respect to Fux et al.

In conclusion, Fux et al. do not anticipate the present invention because Fux et al. do not teach each and every aspect of the present invention. Accordingly, Applicants respectfully request that the rejection of claims 1-4, 7-8, 10 and 14 under 35 U.S.C. §102(b) be withdrawn.

It should be noted that none of the cited prior art documents discloses a bidirectional promoter comprising a minimal viral promoter and a full length animal promoter. Therefore none of the cited documents anticipate the present invention.

Moreover, starting from the teaching of Chtarto et al., or Itoh et al. or Fux et al. and due to the evolutionary distance between prokaryotes and mammalians and to their differences in the transcriptional machinery, the person skilled in the art would not predict and foresee that mammalian promoters could be also exploited for building a bidirectional promoter. Therefore, the invention is not obvious in respect to such cited prior art documents.

: 1130-PCT-US Applicants: Naldini et al., Atty. Dkt. No.

Art Unit

USSN : 10/554,181 Filed : 12/27/2005 Examiner : David Guzo : 1636 Date of office action : 11/16/2007 Date of response : 03/17/2008

: 12 Page

Rejections Under 35 U.S.C. §103

is rejected under 35 U.S.C. \$103(a) as being unpatentable over Chtarto et al. or Itoh et al., in view of Hope et al. (US 6,136,597).

Chtarto et al. and Itoh et al. have been discussed above. Hope et al. disclose an RNA export element which mediates efficient transport of RNA from the nucleus to the cytoplasm. This RNA export element is referred to as WPRE. WPRE is a post transcriptional regulatory element. Hence, Hope et al. teach using WPRE to increase transgene expression.

Therefore, even though assuming it is appropriate to combine Chtarto et al., and Hope et al., or Itoh et al., and Hope et al., (which the Applicants do not concede), such combination would not teach or suggest all of the features of dependent claim 5. In particular, the combined teaching of Chtarto, Itoh and Норе does not teach orsuggest constructing bidirectional promoter comprising a minimal viral promoter and a full length animal promoter.

Accordingly, Applicants respectfully request that rejection of claim 5 under 35 U.S.C. \$103(a) be withdrawn.

For the Examiner's information, the corresponding European Application of this subject application has been granted and is attached hereto as Exhibit B, 71 pages.

Applicants : Naldini et al.,

: 10/554,181 USSN

Filed : 12/27/2005 Examiner : David Guzo

: 13 Page

Atty. Dkt. No. Art Unit

: 1130-PCT-US : 1636

Date of office action : 11/16/2007
Date of response : 03/17/2008

Conclusion

In summary, Applicants believe that all grounds of rejections have been addressed and earnestly request the Examiner to place this application in condition for allowance.

If a telephone interview would be of assistance in advancing subject application, Applicants' prosecution ο£ the undersigned attorney invites the Examiner to telephone him at the number provided below. If any other fee is required, authorization is hereby given to charge the amount of any such fee to Deposit Account No. 50-1891.

Respectfully submitted,

Celebrar Was Kit Cen Albert Wai-Kit Chan

Registration No. 36,479 Attorney for Applicants

Law Offices of Albert Wai-Kit

Chan, PLLC

World Plaza, Suite 604

141-07 20th Avenue

Whitestone, NY 11357

Tel: (718) 799-1000

Fax: (718) 357-8615

e-mail: chank@kitchanlaw.com

EXHIBIT A

Promoter

From Wikipedia, the free encyclopedia

In biology, a **promoter** is a regulatory region of DNA located upstream (towards the 3' region of the anti-sense strand) of a gene, providing a control point for regulated gene transcription.

Contents

- 1 Overview
- 2 Identification of relative location
- 3 Promoter elements
 - 3.1 Prokaryotic promoters
 - 3.1.1 Probability of occurrence of each nucleotide
 - 3.2 Eukaryotic promoters
- 4 Detection of promoters
- 5 Evolutionary change
- 6 Binding
- 7 Diseases associated with aberrant promoter function
- 8 Canonical sequences and wild-type
- 9 Diseases associated with promoter elements
- 10 References
- 11 External links

Overview

The promoter contains specific DNA sequences, response elements, that are recognized by proteins known as transcription factors. These factors bind to the promoter sequences, recruiting RNA polymerase, the enzyme that synthesizes the RNA from the coding region of the gene.

- In prokaryotes, the promoter is recognized by RNA polymerase and an associated sigma factor, which in turn are brought to the promoter DNA by an activator protein binding to its own DNA sequence nearby.
- In eukaryotes, the process is more complicated, and at least seven different factors are necessary for the transcription of an RNA polymerase II promoter.

Promoters represent critical elements that can work in concert with other regulatory regions (enhancers, silencers, boundary elements/insulators) to direct the level of transcription of a given gene.

It is worth noting that promoters are not DNA specific, and can in fact locate upstream towards the 3' end of an RNA genome, e.g. Respiratory Syncytial Virus (RSV).

Identification of relative location

As promoters are typically immediately adjacent to the gene in question, positions in the promoter are designated relative to the transcriptional start site, where transcription of RNA begins for a particular

gene (i.e., positions upstream are negative numbers counting back from -1, for example -100 is a position 100 base pairs upstream).

Promoter elements

- Core promoter the minimal portion of the promoter required to properly initiate transcription
 - Transcription Start Site (TSS)
 - Approximately -34
 - A binding site for RNA polymerase
 - RNA polymerase I: transcribes genes encoding ribosomal RNA
 - RNA polymerase II: transcribes genes encoding messenger RNA and certain small nuclear RNAs
 - RNA polymerase III: transcribes genes encoding tRNAs and other small RNAs
 - General transcription factor binding sites
- Proximal promoter the proximal sequence upstream of the gene that tends to contain primary regulatory elements
 - Approximately -250
 - Specific transcription factor binding sites
- Distal promoter the distal sequence upstream of the gene that may contain additional regulatory elements, often with a weaker influence than the proximal promoter
 - Anything further upstream (but not an enhancer or other regulatory region whose influence is positional/orientation independent)
 - Specific transcription factor binding sites

Prokaryotic promoters

In prokaryotes, the promoter consists of two short sequences at -10 and -35 positions *upstream* from the transcription start site. Sigma factors not only help in enhancing RNAP binding to the promoter but helps RNAP target which genes to transcribe.

- The sequence at -10 is called the Pribnow box, or the -10 element, and usually consists of the six nucleotides TATAAT. The Pribnow box is absolutely essential to start transcription in prokaryotes.
- The other sequence at -35 (the -35 element) usually consists of the six nucleotides TTGACA. Its presence allows a very high transcription rate.
- Both of the above consensus sequences, while conserved on average, are not found intact in most promoters. On average only 3 of the 6 base pairs in each consensus sequence is found in any given promoter. No promoter has been identified to date that has intact consensus sequences at both the -10 and -35; it is thought that this would lead to such tight binding by the sigma factor that the polymerase would be unable to initiate productive transcription.
- Some promoters contain a UP element (consensus sequence 5'-TGNTATAAT-3')upstream of the -35 element; the presence of the -35 element appears to be unimportant for transcription from the UP element-containing promoters.

It should be noted that the above promoter sequences are only recognized by the sigma-70 protein that interacts with the prokaryotic RNA polymerase. Complexes of prokaryotic RNA polymerase with other sigma factors recognize totally different core promoter sequences.

Probability of occurrence of each nucleotide

```
for -10 sequence
T A T A A T
77% 76% 60% 61% 56% 82%
```

```
for -35 sequence
T T G A C A
69% 79% 61% 56% 54% 54%
```

Eukaryotic promoters

Eukaryotic promoters are extremely diverse and are difficult to characterize. They typically lie upstream of the gene and can have regulatory elements several kilobases away from the transcriptional start site. In eukaryotes, the transcriptional complex can cause the DNA to bend back on itself, which allows for placement of regulatory sequences far from the actual site of transcription. Many eukaryotic promoters, but by no means all, contain a TATA box (sequence TATAAA), which in turn binds a TATA binding protein which assists in the formation of the RNA polymerase transcriptional complex. [1] The TATA box typically lies very close to the transcriptional start site (often within 50 bases).

Eukaryotic promoter regulatory sequences typically bind proteins called transcription factors which are involved in the formation of the transcriptional complex. An example is the E-box (sequence CACGTG), which binds transcription factors in the basic-helix-loop-helix (bHLH) family (e.g. BMAL1-Clock, cMyc).^[2]

Detection of promoters

A wide variety of algorithms have been developed to facilitate detection of promoters in genomic sequence, and promoter prediction is a common element of many gene prediction methods.

Evolutionary change

A major question in evolutionary biology is how important tinkering with promoter sequences is to evolutionary change, for example, the changes that have occurred in the human lineage after separating from chimps.

Some evolutionary biologists, for example Allan Wilson, have proposed that evolution in promoter or regulatory regions may be more important than changes in coding sequences over such time frames.

Binding

The binding of a promoter sequence (P) to a sigma factor-RNAP complex (R) is a two-step process:

- 1. $R+P \leftrightarrow RP(closed)$. $K = 10^7$
- 2. RP(closed) \rightarrow RP(open). $K = 10^{-2}$

Diseases associated with aberrant promoter function

Though OMIM is a major resource for gathering information on the relationship between mutations and natural variation in gene sequence and susceptibility to hundreds of diseases, it requires a sophisticated search strategy to extract those diseases that are associated with defects in transcriptional control where the promoter is believed to have direct involvement.

This is a list of diseases that evidence suggests have some involvement of promoter malfunction, either through direct mutation of a promoter sequence or mutation in a transcription factor or transcriptional co-activator.

Keep in mind that most diseases are heterogeneous in etiology, meaning that one "disease" is often many different diseases at the molecular level, though the symptoms exhibited and the response to treatment might be identical. How diseases respond differently to treatment as a result of differences in the underlying molecular origins is partially addressed by the discipline of pharmacogenomics.

Not listed here are the many kinds of cancers that involve aberrant changes in transcriptional regulation owing to the creation of chimeric genes through pathological chromosomal translocation.

Canonical sequences and wild-type

The usage of canonical sequence for a promoter is often problematic, and can lead to misunderstandings about promoter sequences. Canonical implies perfect, in some sense.

In the case of a transcription factor binding site, then there may be a single sequence which binds the protein most strongly under specified cellular conditions. This might be called canonical.

However, natural selection may favor less energetic binding as a way of regulating transcriptional output. In this case, we may call the most common sequence in a population, the wild-type sequence. It may not even be the most advantageous sequence to have under prevailing conditions.

Recent evidence also indicates that several genes (including the proto-oncogene c-myc) have G-quadruplex motifs as potential regulatory signals.

Diseases associated with promoter elements

- Asthma^{[3][4]}
- Beta thalassemia^[5]
- Rubinstein-Taybi syndrome^[6]

References

- ^ Smale ST, Kadonaga JT (2003). The RNA polymerase II core promoter. Annu Rev Biochem. 72, 449-479.
 PMID 12651739 PDF
- 2. ^ Levine M, Tjian R (2003). Transcription regulation and animal diversity. Nature. 424(6945), 147-151. PMID 12853946 PDF
- 3. ^ population genetics study: Hobbs, K.; Negri, J.; Klinnert, M.; Rosenwasser, L.J.; and Borish, L. (1998). Interleukin-10 and transforming growth factor-beta promoter polymorphisms in allergies and asthma. *Am J Respir Crit Care Med.* **158** (6), 1958-1962. PMID 9847292
- ^ population genetics study: Burchard, E.G.; Silverman, E.K.; Rosenwasser, L.J.; Borish, L.; Yandava, C.; Pillari, A.; Weiss, S.T.; Hasday, J.; Lilly, C.M.; Ford, J.G.; and Drazen, J.M. (1999). Association between a sequence variant in the IL-4 gene promoter and FEV(1) in asthma. Am J Respir Crit Care Med. 160 (3), 919-922. PMID 10471619
- 5. ^ Kulozik, A.E.; Bellan-Koch, A.; Bail, S.; Kohne, E.; and Kleihauer, E. (1991). Thalassemia intermedia: moderate reduction of beta globin gene transcriptional activity by a novel mutation of the proximal CACCC promoter element. *Blood.* 77 (9), 2054-2058. PMID 2018842
- 6. ^ Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ, et al. (1995). Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. *Nature*. **376** (6538), 348-351. PMID 7630403

External links

- Directory of computational tools for detecting promoters in sequence data: BioDirectory (Directory). BioDirectory. Oxford Informatics. Retrieved on 2006-12-11.
- ORegAnno Open Regulatory Annotation Database
- MeSH Promoter Regions (Genetics)
- SwitchDB An online database used to analyze promoters and transcription start sites (TSSs) throughout the human genome.
- Pleiades Promoter Project a research project with an aim to generate 160 fully characterized, human DNA promoters of less than 4 kb (MiniPromoters) to drive gene expression in defined brain regions of therapeutic interests.

Retrieved from "http://en.wikipedia.org/wiki/Promoter"

Categories: Gene expression

Hidden categories: Articles with unsourced statements since January 2007 | All articles with unsourced statements

- This page was last modified on 4 March 2008, at 14:27.
- All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.)
 - Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501(c) (3) tax-deductible nonprofit charity.

EXHIBIT B

(11) EP 1 616 012 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 19.12.2007 Bulletin 2007/51
- (21) Application number: 04728627.3
- (22) Date of filing: 21.04.2004

- (51) Int CI.: C12N 15/79 (2006.01)
- (86) International application number: PCT/IT2004/000227
- (87) International publication number: WO 2004/094642 (04.11.2004 Gazette 2004/45)
- (54) SYNTHETIC BI-DIRECTIONAL PROMOTERS AND USES THEREOF
 SYNTHETISCHE BIDIREKTIONALE PROMOTOREN UND DEREN VERWENDUNGEN
 PROMOTEURS BIDIRECTIONNELS DE SYNTHESE, ET LEURS UTILISATIONS
- (84) Designated Contracting States:

 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
 HU IE IT LI LU MC NL PL PT RO SE SI SK TR
- (30) Priority: 24.04.2003 US 465080 P
- (43) Date of publication of application: 18.01.2006 Bulletin 2006/03
- (73) Proprietor: FONDAZIONE CENTRO SAN RAFFAELE DEL MONTE TABOR 20132 Milano (IT)
- (72) Inventors:
 - NALDINI, Luigi 20132 Milano (IT)
 - AMENDOLA, Mario 20132 Milano (IT)
 - VIGNA, Elisa 20132 Milano (IT)
- (74) Representative: Capasso, Olga et al de Simone & Partners SpA Via V.Bellini 20 00198 Roma (IT)
- (56) References cited: WO-A-03/087294

US-B1- 6 630 324

 YU XIAOBING ET AL: "Lentiviral vectors with two independent internal promoters transfer highlevel expression of multiple transgenes to human hematopoietic stem-progenitor cells."
 MOLECULAR THERAPY: THE JOURNAL OF THE AMERICAN SOCIETY OF GENE THERAPY. JUN 2003, vol. 7, no. 6, June 2003 (2003-06), pages 827-838, XP002303044 ISSN: 1525-0016

- FUX CORNELIA ET AL: "Bidirectional expression units enable streptogramin-adjustable gene expression in mammalian cells." BIOTECHNOLOGY AND BIOENGINEERING. 5 SEP 2003, vol. 83, no. 5, 5 September 2003 (2003-09-05), pages 618-625, XP002303042 ISSN: 0006-3592
- FUX CORNELIA ET AL: "Toward higher order control modalities in mammalian cells: Independent adjustment of two different gene activities." BIOTECHNOLOGY PROGRESS, vol. 19, no. 1, 18 January 2003 (2003-01-18), pages 109-120, XP002305563 ISSN: 8756-7938
- UNSINGER J ET AL: "Retroviral vectors for the transduction of autoregulated, bidirectional expression cassettes." MOLECULAR THERAPY: THE JOURNAL OF THE AMERICAN SOCIETY OF GENE THERAPY. NOV 2001, vol. 4, no. 5, November 2001 (2001-11), pages 484-489, XP002258698 ISSN: 1525-0016
- UNSINGER J ET AL: "Stable and strictly controlled expression of LTR-flanked autoregulated expression cassettes upon adenoviral transfer" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, ACADEMIC PRESS INC. ORLANDO, FL, US, vol. 319, no. 3, 2 July 2004 (2004-07-02), pages 879-887, XP004512521 ISSN: 0006-291X
- XIE M.; HE Y.; GAN S.: 'Bidirectionalization of polar promoters in plants.' NATURE BIOTECHNOL. vol. 19, July 2001, pages 677 - 679, XP002390685

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

20

[0001] The present invention relates to bidirectional promoters allowing efficient and coordinate expression of two or more genes, to gene transfer vectors containing these promoters, to particles transducing said vectors into a cell, to the use of said vectors for the delivery and expression of multiple genes in target cells, also for gene therapy, and for the manufacturing of medicaments.

TECHNICAL BACKGROUND

[0002] Expression of multiple transgenes within the same target cells is required for several gene transfer and therapy applications¹. Gene-function studies are best performed by expressing cDNAs together with a marker gene; by this approach, genetically-modified cells can be identified and monitored in vitro and in vivo. Similarly, gene therapy applications can be improved by purification of gene-corrected cells before in vivo administration, taking advantage of coordinate expression of selectable markers. Genetically-modified cells can be amplified ex vivo or in vivo by introducing growth-promoting or drug-resistance genes together with the therapeutic gene, as recently shown by MGMT-mediated selection of transduced Hematopoietic Stem Cells (HSC) ²; using this approach, the efficacy of gene therapy can be increased, and its application potentially extended to a wide spectrum of diseases ^{3,4}.

[0003] Conversely, genetically-modified cells expressing conditionally cytotoxic genes, together with the therapeutic gene, can be eliminated in vivo, if adverse events occur; this approach is used to control graft-versus-host disease following donor T-lymphocytes infusion to treat leukemia relapse⁵; it may also provide an important safety provision in HSC gene transfer, given the recent occurrence of leukemia related to vector integration in a successful clinical trial of X-linked Severe Combined ImmunoDeficiency⁶. Coordinate expression of more than one transgene is essential when the activity to be reconstituted by gene transfer depends on multiple subunits encoded by different genes, or requires the synergism of separate molecules. For instance, reconstitution of the dopamine biosynthetic pathway in striatal neurons of Parkinson's disease patients requires co-expression of tyrosine hydroxylase with GTP-cyclohydrolase I and/or DOPA decarboxylase⁷; cancer gene therapy may require co-expression of multiple antigens and/or cytokines in antigen-presenting cells for immunotherapy, and of two T-cell receptor chains in T-cells engineered for adoptive transfer⁸.

[0004] In spite of such well-recognized needs, reaching coordinate, high-level expression of multiple transgenes in the majority of target cells has been a significant challenge for gene transfer technology. Two different transgenes have been expressed by two separate vectors; yet, only a fraction of target cells was transduced by both vectors and a heterogeneous population of cells was obtained that expressed either one or two genes in different ratios, preventing reliable studies and/or efficacious applications. Alternatively, two or more transgenes have been expressed by different promoters within the same vector⁹; yet, different tissue specificity and mutual interference between promoters often prevented efficient co-expression in the same target cells¹⁰. Differential splicing generates multiple transcripts from the same promoter, but it has proven difficult to adapt to viral delivery of multiple transgenes¹¹. Chimeric polyproteins that self-process co-translationally into separate components have been generated using the self-cleaving peptide of the Foot and Mouth Disease Virus 2A^{12, 13}; however, application of this technology to multiple gene transfer has been limited until now because it requires sophisticated engineering, restricts both proteins to the same cellular compartment, and introduces sequence changes that may affect protein activity, stability, and immunogenicity.

[0005] The most satisfactory approach to multiple gene transfer until now has relied on using internal ribosome entry sites (IRES's)¹⁴. These sequences, identified in viral and cellular transcripts, control translation in a ^{mRNA}Cap-independent manner and, when inserted between two genes in a bicistronic messenger RNA, allow translation of the downstream gene. The authors tested the performance of different IRES's in the context of self-inactivating (SIN) lentiviral vectors (LVs), and found significant limitations of this approach.

[0006] WO 02/064804 describes bi-directional dual promoter complexes that are effective for enhancing transcriptional activity of transgenes in plants.

[0007] The bi-directional promoters of the invention include a modified enhancer region with at least two core promoters on either side of the modified enhancer in a divergent orientation. The application refers to gene expression in plants. In addition, the approach requires the duplication of tandem oriented enhancer sequences in a modified internal region of the construct, to be joined by two identical or homologous minimal promoters on either sides. The instant invention does not require duplication of enhancer or any other sequences in the efficient promoter of the bi-directional construct, nor are need that the core promoters on either sides of it to share at least 30% identity. Finally, tandem duplication may be incompatible with retro/lentiviral delivery.

[0008] US 6,388,170 discloses plant vectors, having bi-directional promoters, comprising a minimal promoter and a common promoter, wherein said minimal promoters is operably linked to said common promoter, in opposite orientation to said common promoter, and 5' to said common promoter. Promoter sequences derived from plants and plant-infecting viruses are disclosed dnd tested in plant cells or plant parts.

[0009] Given the substantial evolutionary distance between plants and animals, US 6,388,170 does not teach how to

engineer animal promoters for bidirectional activity and whether bi-directional promoters may effectively work in animal cells. In addition, US 6,388,170 does not teach how to engineer bi-directional promoters for gene expression in animals and in animal cells using the available gene transfer methods.

[0010] WO01/34825 discloses cell lines, plasmids and vectors useful for the production of recombinant viruses such as adenoviruses, which are useful in gene therapy. The cell lines, plasmids and vectors comprise inducible promoters, such as bi-directional promoters for the coordinate expression of bidirectionally cloned gene. However only bi-directional Tet-regulated constructs are disclosed.

[0011] Thus, the authors explored novel strategies to take full advantage of gene transfer systems, such as LV, that allow efficient ex vivo transduction and direct in vivo administration.

DESCRIPTION OF THE INVENTION

10

15

25

35

50

[0012] The authors developed a novel vector design in which synthetic bi-directional promoters mediated coordinate transcription of two divergent RNAs. The authors show that LVs carrying bi-directional promoters coordinately expressed two transgenes in the vast majority of transduced cells clearly outperforming the bicistronic vectors. The efficient performance of the new bi-directional LVs in primary hematopoietic cells, assayed ex vivo and after transplantation, and in several tissues in vivo, after direct vector delivery or transgenesis was established. The invention overcomes a long-standing hurdle in the quest for improved gene-expression tools and are expected to advance the reach and safety of gene therapy.

[0013] It is therefore an object of the instant invention a bidirectional promoter for expression of at least two coding sequences in opposite direction in animal cells comprising 5' end to 3' end:

- a) a first minimal promoter sequence derived from cytomegalovirus (CMV) or mouse mammary tumor virus (MMTV) genomes;
- b) a full efficient promoter sequence derived from an animal gene;

the two promoter sequences driving a coordinate transcription of said coding sequences in the opposite orientation.

[0014] In the ambit of the instant invention a full efficient promoter sequence means a sequence driving an efficient transcription of primary transcript. Preferably it comprises an enhancer region and a minimal promoter sequence, either distinct or overlapping. More preferably the full efficient promoter sequence derives from the phosphoglycerate kinase or from the ubiquitin promoter.

[0015] It is an object of the invention a bidirectional expression cassette essentially comprising the bidirectional promoter as above disclosed, convenient insertion sites positioned downstream to each promoter, and polyadenylation sites positioned downstream to each insertion site.

[0016] Preferably the bidirectional expression cassette further comprises at least one post-transcriptional regulatory element positioned upstream to one or each polyadenylation site. More preferably the bidirectional expression cassette further comprises at least one internal ribosome entry site (IRES) sequence to express three or more genes.

[0017] It is an object of the invention an expression construct containing the bidirectional promoter, as above disclosed.

[0018] It is an object of the invention an expression construct containing the bidirectional expression cassette, as above disclosed.

[0019] It is an object of the invention a gene transfer expression vector containing the expression construct as above disclosed further comprising lentiviral or retroviral sequences.

[0020] It is an object of the invention the use of the gene transfer expression vector for the preparation of a delivery and expression system in animal cells, preferably in vivo tissue animal cells, more preferably, brain neurons.

[0021] It is an object of the invention an in vitro method for the coordinate expression of two exogeneous coding sequences into an animal cell comprising the following steps:

- a) cloning said coding sequences into the gene transfer expression vector according to claim 8, each coding sequence under the control of one of the two promoters of the bidirectional promoter;
- b) transforming animal cells by means of said vectors;
- c) allowing the expression of the vector.

[0022] Preferably the animal cell is an human cell, more preferably the human cell is a retransplantable human cell, even more preferably the retransplantable human cell is an hematopoietic cell.

[0023] Alternatively, the transformation of tissue cells in vivo may be performed by direct delivery of the vector, such as into brain neurons.

[0024] It is an object of the invention a method for generating a transgenic non human organism comprising the step of transforming appropriate cells by means of the gene transfer expression vector as disclosed above.

[0025] The vectors of the invention can be advantageously utilized for gene function and target validation studies in vitro and in vivo; gene therapy; expression of multiple genes in animal cells; generation of transgenic animals and eventually knock down of multiple genes; and for manufacturing of medicaments, as well.

FIGURE LEGENDS

10

15

20

25

30

35

40

45

50

55

[0026] The invention will be now described with reference to following Figures:

Fig. 1. Gene transfer performance of bicistronic tentiviral vectors. (a) Scheme of the proviral vector form. A bicistronic expression cassette containing an internal ribosome entry site (IRES) derived either from the encephalomyocarditis virus (EMCV), with wild-type (wt) or mutated (mut) translation start site, or from the 5' untranslated NF-kB repressing factor mRNA (NRF) was driven by the human immediate early cytomegalovirus (CMV) or phosphoglycerate kinase (PGK) promoter. ΔU3, R and U5, LTR regions with deletion in U3; SD and SA, splice donor and acceptor site; ψ, encapsidation signal including the 5' portion of the gag gene (GA); RRE, Rev-response element; cPPT, central polypurine tract; WPRE, woodchuck hepatitis virus post-transcription regulatory element. (b) Southern blot analysis of HeLa cells transduced by the indicated monocistronic (CMV) or bicistronic vectors expressing luciferase (gene 1) and GFP (gene 2) from the CMV promoter, probed for the WPRE sequence. All vector integrated with the expected length of DNA. Vector copy number was determined relative to a plasmid standard curve and used to normalize vector stocks and ensure similar levels of integration for each vector in a given target cell type in the experiments shown in c-f. (c-f) Luciferase and GFP expression in human HeLa cells (c), umbilical vein endothelial cells (HUVEC, d), peripheral blood lymphocytes (PBL, e), and cord blood-derived CD34+ progenitors (f) transduced 5-7 days before with a monocistronic (□, CMV) or the indicated bicistronic CMV-luciferase-GFP vector. Left column, histograms representing net luciferase activity in cells extracts, mean \pm SD. Right panel, dot plots representing GFP expression by FACS analysis, the frequency and the mean fluorescence intensity (MFI, X) of GFP+ cells is indicated. The control monocistronic vector expressed luciferase in the histogram (
), and GFP in the leftmost dot plot (CMV) for each cell type. (g, h) FACS analysis of ΔNGFR and GFP expression in 293T cells (g) and CD34+ progenitors (h) transduced by a EMCV wt IRES vector expressing ANGFR and GFP from the PGK promoter. Histograms in panel (h) show the distribution of ∆NGFR expression in all viable cells analysed (left), and of GFP expression in the gated (M1) ANGFR+ cells (right). Experiments shown are representative of at least three performed with similar results. Fig. 2. Gene transfer performance of bidirectional lentiviral vectors. (a) Scheme of the proviral vector form. A bidirectional promoter made by minimal core promoter elements from the human cytomegalovirus (mCMV) joined upstream, and in opposite orientation, to an efficient promoter, derived from the human phosphoglycerate kinase (PGK) or poly-ubiquitin UBI-C gene, was driving divergent transcription of two RNAs. CTE, constitutive transport element from the Mason-Pfizer monkey virus; pA, polyadenylation site A from the Simian Virus 40. Other vector features as in the legend to figure 1. (b) Net luciferase activity and (c-e) GFP expression in HeLa cells transduced 5-7 days before with LVs carrying the indicated bi-directional or control expression cassettes. The frequency and MFI (X) of GFP+ cells at FACS analysis is indicated in the dot plots to the right. Luciferase activity was determined for the two marked vectors (□, ■). (f-i) ∆NGFR and GFP expression in HeLa cells transduced 5-7 days before with serial 10-fold dilutions of LVs carrying the indicated expression cassette. The frequency of ANGFR+ (upper left region) and ΔNGFR/GFP double positive (upper right region) cells, with the respective MFI of ΔNGFR (Y) and GFP (X), are indicated in the FACS dot plots. Experiments shown are representative of at least three performed with similar results.

Fig. 3. Comparison of bi-directional and bicistronic lentiviral vectors performance. Δ NGFR and GFP expression in 293T cells transduced 3 weeks before with serial 10-fold dilutions of LVs carrying the indicated expression cassette. The total percentage of Δ LNGFR-expressing cells and of Δ LNGFR/GFP double positive cells (in brackets) are indicated above the FACS dot plots. The average number of vector Copies per Cell (CpC) is indicated in each plot, with the expected frequency of transduced cells according to the Poisson's distribution of random independent events. Although virtually all integrated vectors expressed Δ NGFR, its level of expression and the fraction of transduced cells co-expressing GFP were much higher for the two bi-directional vectors tested (MA1 and MA4) as compared to the EMCV wt IRES bicistronic vector.

Fig. 4. Dual-gene transfer in hematopoietic cells by bi-directional vectors. (a-c) Human cord blood CD34+ progenitors were transduced by the GFP-ΔNGFR MA1 vector in the presence of early acting cytokines as described²³, and analysed either after 7 days of culture in the same medium (a), and after additional 10 days in medium promoting myeloid differentiation (b), or after seeding in methylcellulose-based clonogenic medium. For (a) and (b), a dot plot showing ΔNGFR and GFP expression by FACS analysis is shown, together with histograms showing the distribution of ΔNGFR expression in all viable cells analysed (top), and of GFP expression in the gated (M1) ΔNGFR+ cells (bottom). The percentage of immature progenitors expressing CD34, and of differentiating cells expressing the CD 13 myeloid marker at the time of analysis is indicated. For (c), representative light (left) and fluorescent (right)

micrograph of the indicated type of CFC are shown. (d, e) Human peripheral blood lymphocytes were transduced either after 2-day activation with anti-CD3 and anti-CD28 antibodies (d), or after 4-day treatment with interleukin-7, as described 24 , (e), and analyzed for Δ NGFR and GFP expression as described above. (f, g) Purified (lin-) murine bone marrow progenitors were transduced without cytokine stimulation as described 48 , and analyzed for Δ NGFR and GFP expression after 7 days in liquid culture (f), or immediately transplanted into lethally-irradiated syngenic recipients. FACS analysis of the peripheral blood of a representative mouse 2 months after transplant is shown in g. Experiments shown are representative of three performed with similar results. In d-f, cells transduced to low vector copy numbers are shown for more stringent performance analysis.

- **Fig. 5** In vivo dual-gene transfer by bi-directional vectors. High-titer of GFP-ΔNGFR MA1 LV were stereotactically injected into the striatum of adult mice. Cryostatic brain sections were obtained two months after injection and analyzed by immunofluorescence and confocal microscopy. Representative pictures of the injected area are shown, after immunostaining for Δ NGFR (red), GFP (green), and TO-PR03 staining for nuclear DNA (blue). Fluorescent signals were sequentially acquired from single optical sections and are shown individually and after merging (merge). Original magnification 200X (Scale bar =120 μm)
- Fig. 6 Dual-transgenesis by bi-directional vector. Transgenic mouse lines were generated by direct injection of GFP-ΔNGFR MA1 LV into the perivitelline space of single-cell embryos, as described¹⁹, and the indicated tissues were analyzed for ΔNGFR (red) and GFP (green) expression by immunofluorescence and confocal microscopy on cryostatic sections. Nuclei were stained by TO-PRO3 (blue). Fluorescent signals were sequentially acquired from single optical sections and are shown individually and after merging (merge). The pictures shown were obtained from an F1 mouse carrying two vector genomes integrated into the germ-line. Similar pictures were obtained from other transgenic mice analyzed that carried similar or higher number of vector copies. Original magnification 200X (spleen, lung), 400X (hearth, kidney, brain, liver), 630X (gut) (Scale bar = 120 μm)
- Fig. 7a Map of the plasmid containing the lentiviral vector construct RRL-MA1-lucif/GFP.
- Fig. 7b Sequence of the plasmid containing the lentiviral vector construct RRL-MA1-lucif/GFP.
- Fig. 8a Map of the plasmid containing the lentiviral vector construct CCL-MA1-GFP/deltaLNGFR.
 - Fig. 8b Sequence of the plasmid containing the lentiviral vector construct CCL-MA1-GFP/deltaLNGFR.
 - Fig. 9a Map of the plasmid containing the lentiviral vector construct RRL-MA2-lucif/GFP.
 - Fig. 9b Sequence of the plasmid containing the lentiviral vector construct RRL-MA2-lucif/GFP.
 - Fig. 10a Map of the plasmid containing the lentiviral vector construct CCL-MA3-GFP/deltaLNGFR.
 - Fig. 10b Sequence of the plasmid containing the lentiviral vector construct CCL-MA3-GFP/deltaLNGFR.
 - Fig. 11a Map of the plasmid containing the lentiviral vector construct CCL-MA4-GFP/deltaLNGFR.
 - Fig. 11b Sequence of the plasmid containing the lentiviral vector construct CCL-MA4-GFP/deltaLNGFR.

EXAMPLE 1

5

10

15

20

25

30

35

MATERIALS AND METHODS

Plasmid construction

[0027] All transfer vectors were built from plasmid pCCL.sin.cPPT.PGK.GFP.WPRE ¹⁵ using the following previously described sequence elements: EMCV IRES's with the downstream gene coding sequence starting at the 11th ATG of the IRES (wt) or with the 11th ATG of IRES mutated to create a HindIII cloning site and allow translation initiation at the downstream transgene ATG ¹⁶(EMCVmut), the NRF IRES ¹⁸, the MPMV CTE²¹, a minimal CMV core promoted²⁰, a 1226 bp fragment from the Ubiquitin-C promoter ¹⁹.

Construction of lentiviral vector with bi-directional promoters

[0028] To generate the lentiviral construct RRL-MA1, an Xhol-Xhol fragment containing the SV40polyA.CTE.Luci-ferase.minhCMV elements (derived from the lentiviral construct

[0029] pRRL.sin.cPPT.SV40polyA.CTE.Luciferase.minhCMV.TetO7.minMMTV.eGFP) was cloned into the lentiviral vector construct pRRL.sin.cPPT.hPGK.eGFP.Wpre (Follenzi et al., 2000) cut with the same enzyme to obtain RRL-MA1-lucif/GFP (pRRL.sin.cPPT.SV40polyA.CTE.Luciferase.minhCMV.hPGK.eGFP.Wpre).

[0030] To generate the lentiviral construct CCL-MA1, two fragments were cloned into the lentiviral construct pRRL.sin.cPPT.hPGK.\(\Delta \text{LNGFRW}\) pre first cut with KpnI, blunted and then cut with XhoI, the first fragment containing the minhCMV.eGFP elements was derived from the lentiviral construct pRRL.sin.cPPT.SV40polyA.CTE.Luciferase.min-MMTV.TetO7.minhCMV.eGFP cut with KpnI, blunted and then with XhoI and the second derived from the construct pRRL.sin.cPPT.SV40polyA.CTE.tTA2.Wpre cut with BamHI, blunted and then cut with NotI. The resulting lentiviral construct pRRL.sin.cPPT.SV40polyA.CTE.Luciferase.minMMTV.TetO7.minhCMV.eGFP was cut with NotI and AvrII

and the fragment containing the cPPT.SV40polyA.CTE.eGFP.minhCMV.hPGK. ΔLNGFRWpre was cloned into the lentiviral construct pCCL.sin.cPPT.hPGK.eGFP.Wpre cut with the same enzymes to obtain CCL-MA1-GFP/ΔLNGFR (pC-CL.sin.cPPT.SV40polyA.CTE.eGFP.minhCMV.hPGK. ΔLNGFRWpre),

[0031] To generate the lentiviral construct RRL-MA2, a HindIII-BamHI fragment containing the hFGK.Luciferase elements (derived from the lentiviral vector construct pRRL.sin.cPPT.hPGK.Luciferase.lRES.Wpre) was cloned into the retroviral construct SF2-cLCM2G (obtained from Rainer Loew, University of Heidelberg, FRG) cut with the same enzymes to obtain the construct cPPT.SV40polyA.CTE.Luciferase.hPGK.minMIVITV.eGFP. This construct was first cut with Sall, blunted and then cut with BamHI and the fragment containing the Luciferase.hPGK.minMMTV.eGFP elements was cloned into the lentiviral vector construct pRRL.sin.cPPT.SV40polyA.CTE.tTA2.Wpre cut in the same way, to obtain RRL-MA2-lucif/GFP (pRRL.sin.cPPT.SV40polyA.CTE.Luciferase.hPGK.minMMTV.eGFP.Wpre).

[0032] To generate the lentiviral construct CCL-MA3, two fragments were cloned into the pBLKS+ cut with HindIII and XhoI, the first fragment containing the CTE.SV40polyA elements was derived from the lentiviral vector construct pRRL.sin.cPPT.SV40polyA.CTE.tTA2 cut with HindIII and XbaI and the second fragment containing the minMMTV.GFP elements derived from the construct cPPT.SV40polyA.CTE.Luciferase.hPGK.minMMTV.eGFP cut with XhoI and XbaI to obtain the construct pBLKS+ minMMTV.GFP.CTE.SV40polyA. The resulting construct was cut with EcoRV and XhoI and the fragment containing the minMMTV.GFP.CTE.SV40polyA was cloned into the lentiviral vector construct pC-CL.sin.cPPT.hPGK. ΔNGFR. Wpre cut with the same enzymes,to obtain the final lentiviral vector construct CCL-MA3-GFP/ΔNGFR (pCCL.sin.cPPT.SV40polyA.CTE.GFP,minMMTV.hPGK. ΔNGFR.Wpre)

[0033] To generate the lentiviral construct CCL-MA4 the fragment derived from pHR'.UBI-C.eGFP cut with PacI, blunted and cut with PstI, containing the UBI-C promoter sequence, was inserted into the place of the PGK promoter into construct pCCL.sin.cPPT.SV40polyA.CTE.GFP.minCMV.PGKΔNGFR.Wpre cut with EcoRV and PstI to obtain the final lentiviral vector construct CCL-MA4-GFP/ΔNGFR (pCCL.sin.cPPT.SV40polyA.CTE.GFP.minCMV.UBI-C. ΔNG-FR.Wpre)

[0034] The maps and the nucleotide sequences of the RRL-MA1-lucif/GFP, CCL-MA1-GFP/ΔLNGFR, RRL-MA2-lucif/GFF; CCL-MA3-GFP/ΔLNGFR; CCL-MA4-GFP/ΔLNGFR constructs are shown respectively in figures 7a-11a and figures 7b-11b.

Vector production and titration

[0035] VSV-pseudotyped third-generation LV were produced by transient 4-plasmid co-transfection into 293T cells and purified by ultracentrifugation as described ¹⁵, with the modification that 1 mM NaButyrate was added to the cultures for vector collection⁴⁷. Expression titer of GFP or ΔLNGFR vectors were estimated on HeLa cells by limiting dilution. Vector particle was measured by HIV-1 gag p24 antigen immunocapture (NEN Life Science Products). Vector infectivity was calculated as the ratio between titer and particle for the vector expressing GFP or ΔNGFR. Vector expression titer in the 293T supernatant ranged from 0.7 to 1x10⁷ Transducing Units^{HeLa}(TU)/ml for monocistronic CMV or PGK vector, from 3 to 8x10⁶ TU/ml for bicistronic vectors and bi-directional vectors. Vector infectivity ranged from 0.5 to 1x10⁵ TU/ng of p24 for monocistronic CMV or PGK vector, and from 2 to 6x10⁴ TU/ng of p24 for bicistronic and bi-directional vectors.

Cell cultures

20

40

[0036] Continuous cultures of HeLa and 293T cells were maintained in Iscove's modified Dulbecco's medium (IMDM; Sigma, Milan, Italy) supplemented with 10% fetal bovine serum (FBS; Gibco, Invitrogen Corporation, UK) and a combination of penicillin-streptomycin and glutamine. Primary cultures of human umbilical vein endothelial cells (HCTVECs), peripheral blood lymphocytes, and cord blood CD34+ progenitors were obtained and maintained as described 15. CD34+ progenitors were transduced with 5x107 TU/ml of LV and cultured for at least 7 days in the presence of recombinant human interleukin 6 (rhIL6, 20 ng/ml), recombinant human stem cell factor (rhSCF, 100 ng/ml), recombinant human FLT-3 ligand (rhFLT-3 ligand, 100ng/ml), all from PeproTech (Rocky Hill, NJ), and recombinant human thrombopoietin (rhTPO, 20 ng/ml; Amgen, Thousand Oaks, CA) as described 23. For differentiating conditions, transduced progenitors were cultured for 10 days in the presence of rhSCF, 50 ng/ml, recombinant human granulocyte monocyte-colony stimulating factor (rhGM-CSF, 20 ng/ml), recombinant human monocyte-colony stimulating factor (rhG-CSF, 20 ng/ml), recombinant human

[0037] Human peripheral blood lymphocytes were purified by Ficoll gradient and transduced with 0.5-5x10⁷ TU/ml of vector either after 2-day activation with 30ng/ml anti-CD3 antibodies (Orthoclone, Milan, Italy) plus 1μg/ml anti-CD28 antibodies (PharMingen, San Diego, CA), or after 4-day treatment with 5ng/ml interleukin-7 (Boehringer Mannheim-Roche GmbH, Mannheim, Germany), as described²⁴.

[0038] Purification of lineage marker-negative cells from C57BL/6 mouse bone marrow with a magnetic cell depletion

technique (StemCell Technologies, Vancouver, CA), *ex vivo* transduction in serum-free StemSpan medium (StemCell Technologies, Vancouver, CA) with 0.5-2x10⁷ TU/ml of vector, and transplantation into lethally irradiated syngenic recipients were performed as described ⁴⁸.

Mice

5

10

15

20

25

30

35

40

[0039] CD1, C57BL/6 and FVB mice were purchased from Charles Rivers Laboratories (Calco, Italy) and maintained in SPF conditions. All animal procedures were performed according to protocols approved by the Hospital San Raffaele Institutional

[0040] Animal Care and Use Committee.

DNA analysis: Southern and real time PCR

[0041] Vector copies per genome were quantified by Real-Time PCR from 300 ng template DNA extracted from cells by a commercial kit (Qlagen), using one set of primers and probe to detect the LV backbone:

LV forward primer, 5'-TGAAAGCGAAAGGGAAACCA-3';

LV reverse primer, 5'-CCGTGCGCGCTTCAG-3':

LV probe, 5'-(VIC)-CTCTCTCGACGCAGGACT-(TAMRA)-3'.

[0042] Reactions were carried out according to manufacturer instructions and analysed using the ABI Prism 7700 sequence detection system (PE-Applied Biosystem). For Southern blot, DNA was extracted from transduced cells, digested with AfI-II to release the expression cassette from integrated vector DNA and analysed with a WPRE probe to detect vector sequences. The average number of integrated vector copies was determined relative to a plasmid standard curve.

[0043] These numbers were used to calculate vector integration titer and normalize vector stocks for all subsequent transduction experiments to ensure similar levels of integration for each vector tested.

Experimental Design and Stereotactic Injection.

[0044] Nine weeks-old C57BL/6 mice were anesthetized with intraperitoneal injection of Tribromoethanol 1.25% (SIGMA), positioned in a stereotactic frame (David Kopf Instruments, Tujunga, CA) and the skull exposed by a small incision. Two μ I of vector concentrate (2 x10⁶ TU/ μ I) was injected by a Hamilton syringe with a 33G blunt tip needle (Hamilton; Reno, NV) into the left hemisphere striatum (stereotactic coordinates in mm from bregma: AP=+0.74, ML=-1.9 and DV=-3.5 from skull surface) at a rate of 0.2 μ I/min. The needle was left in place for additional 5 minutes before slow removal.

Transgenesis

[0045] Transgenic mice were generated using LV as described by Lois et al. ¹⁹. Briefly, female FVB mice were super-ovulated with a combination of pregnant mare serum and human chorionic gonadotropin. On average between 20 and 30 embryos were collected per female and microinjected into the perivitelline space with 10-100 pL of 5x10⁷ TU/ml LV stock on the same day. Manipulated embryos were immediately implanted into the oviduct of pseudopregnant CD1 mice. Pups were genotyped for the presence of the GFP sequence by PCR analysis as described⁴⁹. Positive mice were bred to test germ-line trasmission of the transgene. DNA was extracted from the tail and used to quantify vector copy number by real time PCR in founder and F1 progeny mice.

Flow cytometry and Luciferase assay

[0046] Transduced cells were grown for at least 4 days before FACS analysis to reach steady state GFP expression and to rule out pseudotransduction. Before FACS analysis, adherent cells were detached with 0.05% trypsin-EDTA, washed, and fixed in phosphate buffer saline (PBS) containing 1% paraformaldehyde (PAF) and 2% FBS. Cells grown in suspension were washed and resuspended in PBS containing 2 μg/ml propidium iodide (PI) (BD Bioscience PharMingen, San Diego, CA) and 2% FBS. For immunostaining, 10⁵ cells were blocked in PBS 5% mouse serum, 5% human serum, 2% FBS for 15 min at 4°C. After blocking, 10μl of R-phycoerythrin (RPE)-conjugated antibodies (anti-CD34 and anti-CD13, Dako, Glostrup, Denmark, and anti-ΔLNGFR, BD Bioscience PharMingen, San Diego, CA) were added and the cells were incubated for 30 min at 4°C, washed, stained with PI, and analyzed by three-color flow cytometry. Only viable, PI-negative cells were used for the analysis.

[0047] Luciferase was assayed in cell lysates prepared as described by the manufacturer (luciferase assay system,

Promega). RLU were measured with a Lumat LB9507 luminometer (Berthold) after mixing cell lysates (normalized for protein content measured by BCA Protein Assay Reagent kit Pierce) with Luciferase Substrate (Promega).

Tissue analysis

5

15

20

[0048] Anesthetized mice were perfused with 0.9% NaCl followed by 4% PAF in PBS. Tissue samples were collected, equilibrated in 20% sucrose in PBS for 48 h at 4°C, and embedded in optimal-cutting-temperature compound (OCT) for quick freezing. 10μm (for transgenic mice) and 20μm (for stereotactic injected mice) thick cryostatic sections were post-fixed in PAF and frozen at -80 °C. Sections were blocked with 5% goat serum (Vector Laboratories) in PBS containing 1% bovine serum albumine (BSA) and 0.1% Triton X-100 (PBS-T), and incubated with rabbit affinity-purified GFP antibody (Molecular Probes) and R-phycoerythrin (RPE)-conjugated ΔLNGFR monoclonal antibody (BD Bioscience PharMingen, San Diego, CA) for 1 h, washed and stained with AlexaFluor488-conjugated goat anti-rabbit antibody (Molecular Probes) in PBS-T and 1% BSA for 1 h. Cell nuclei were stained with TOPRO-3 after 1h of RNAse treatment (Molecular Probes). Sections were mounted and analyzed by three-laser confocal microscope (Radiance 2100; BioRad). Fluorescent signals from single optical sections were sequentially acquired and analyzed by PhotoShop 7.0 (Adobe).

RESULTS

Bicistronic LVs

[0049] In order to express more than one transgene from a single vector, the authors first evaluated the performance of different IRES's in the context of late-generation self-inactivating LVs¹⁵. They used the strong CMV and PGK promoters to drive expression of bicistronic transcripts encoding, from the 5' to the 3' end, the luciferase reporter, an IRES, and the cell-associated GFP marker (fig. 1a). Two IRES's were derived from the Encephalomyocarditis virus; a wild-type (EMCVwt) and a mutant (EMCVmut) form ^{16, 17}, that differed for the ATG from which downstream translation started.

Another IRES was derived from the 5' untranslated sequence of the NF-kB transcription Repressing Factor (NRF) mRNA¹⁸.

[0050] They generated high-titer VSV-pseudotyped stocks of all bicistronic and control monocistronic vectors, and normalized them for transducing activity measuring integration in HeLa cells by Southern blot (fig. 1b). They then compared gene expression in cells transduced to equal vector copy numbers (Fig. 1c-f). Although luciferase activity was similar in HeLa cells transduced by CMV-luciferase vector and in cells transduced by the best performing bicistronic vector, only a small fraction of the latter cells expressed the IRES-dependent GFP gene, with a ten-fold decrease in expression titer as compared to cells transduced by the control CMV-GFP vector (Fig. 1c). Moreover, the GFP mean fluorescence intensity (MFI) was significantly lower in cells expressing the protein from the IRES's than in cells expressing it from the mRNACap. They then tested bicistronic LVs in primary human cells, including umbilical vein endothelial cells, peripheral blood lymphocytes, and CD34+ cord blood hematopoietic progenitors (HPC) (Fig. 1d-f). All cell types were transduced efficiently, as indicated by the frequency of GFP-positive cells in cultures transduced by control CMV-GFP vector, but IRES-dependent GFP expression was only observed in a fraction of cells transduced by bicistronic vectors. IRES activity varied extensively with the target cell type; the NRF IRES was the only one reaching detectable downstream gene expression in lymphocytes, while the EMCVwt IRES was the most efficient in the other cell types. In addition, all IRES's decreased, in some cases more than one log, upstream gene expression, as compared to the control CMV-luciferase vector.

[0051] They also evaluated IRES-based vectors by expressing two cell-associated markers, GFP and a truncated version of the low-affinity NGF receptor (ΔLNGFR) (Fig. 1g,h). Among HeLa cells transduced by a low dose of the best-performing bicistronic vector, only the cells expressing high levels of ΔLNGFR also expressed GFP, with an average of one out of four ΔNGFR-positive cells expressing GFP to detectable levels (Fig. 1g). Similarly, only a small fraction of transduced CD34+ progenitors expressing ΔNGFR also expressed GFP to detectable levels (Fig. 1h). Overall, these results indicated that IRES-based bicistronic vectors failed to ensure coordinate expression of two transgenes in most target cell types tested, and that multi-copy transduction or selection of transduced cells for downstream gene expression were required to obtain a population expressing both transgenes in the majority of cells. *Bidirectional LVs*

[0052] To overcome the limitations of bicistronic vectors, the authors explored a new promoter design for coordinate transgene expression. They joined a minimal core promoter upstream, and in opposite orientation, to an efficient promoter. Rationale of this design was that upstream elements in the efficient promoter, when closely flanked by core promoters on both sides, may drive transcriptional activity in both directions. If such bi-directional activation occurred, expression of both transcripts would be coordinately regulated. They tested two ubiquitously expressed promoters, previously shown to drive robust and efficient transgene expression in LV; the above mentioned 516 bp fragment from the human phosphoglycerate kinase promoter (PGK) ¹⁵ and a 1226 bp fragment from the human ubiquitin C promoter (UBI C)¹⁹. They joined them to a minimal core promoter derived from the cytomegalovirus (minCMV) that was previously developed to

couple initiation of eukaryotic transcription to tetracycline (Tc)-dependent operators²⁰. They flanked the bi-directional promoter with two expression cassettes optimized for LV-mediated gene delivery (fig. 2a). The upstream cassette - in anti-sense orientation relative to the vector LTR - included the constitutive transport element (CTE) of the Mason-Pfizer virus²¹, and a polyadenylation site from the Simian Virus 40 (SV40). The downstream cassette included the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE)²² and the SIN HIV-1 LTR polyadenylation site.

[0053] As described above for bicistronic LVs, they verified correct transfer and normalized transduction of each vector by Southern blot analysis and real-time PCR of transduced cells. LV carrying bi-directional expression cassettes were produced to high titer and infectivity, similar to those obtained with standard vectors (see Methods). The bi-directional design significantly enhanced transcription from the upstream minimal promoter without affecting downstream expression from the efficient promoter (fig. 2b-h). Luciferase expression from the minCMV promoter, for instance, was increased at least one log when fused upstream to the PGK promoter (fig. 2b). Remarkably, the bi-directional PGK promoter allowed detecting GFP (or ALNGFR, not shown) to the same frequency and to similar expression levels in cells transduced by the bi-directional vector and expressing the protein from either side of the promoter (fig. 2c,d), as in cells transduced by the control PGK vector (fig. 2e). Using two cell-associated markers, ALNGFR and GFP, they showed stable, efficient and coordinate expression of bi-directional LVs, both at high and low vector copy number (fig. 2f). At high vector input, they reached high-level expression of both transgenes in virtually every target cell. At low vector input, when most transduced cells carried one proviral copy, they showed transgene co-expression in virtually every labeled cell, indicating the occurrence of divergent transcription from the bi-directional promoter. In both conditions, transgene expression was maintained to similar levels in cells analyzed at early and late times post-transduction (not shown, and Fig. 3 below). Transgene-expressing cells tended to distribute along a diagonal line in the two-color FACS plot, indicating that expression of the two transgenes was coordinately regulated.

[0054] Intriguingly, they observed coordinate bi-directional expression, although to significantly lower efficiency on the upstream side than the downstream side, when they tested the sole PGK promoter in the context of the bi-directional expression cassette that they developed (fig. 2g). They reproduced this finding after swapping the position of the two transgenes on each sides of the PGK promoter (not shown). These results indicated that transcription-activating elements in the PGK promoter are intrinsically capable of triggering divergent transcription and thus provide the main driving force for dual-gene expression in the new LV, ensuring coordinate regulation of transcription on both sides of the bi-directional promoter. Apposition of the minCMV core promoter, which had a very low activity per se (fig. 2h, and 2b above), enhanced upstream transcription from the PGK promoter possibly because of more efficient initiation (compare fig. 2g and 2f). When they changed the driving promoter in bi-directional vectors from PGK to UBI-C, they reproduced the findings observed with the PGK promoter (fig. 2i). They revealed an intrinsic bi-directional activity of the UBI-C promoter (fig. 2j) that was significantly enhanced by the upstream addition of the minCMV promoter.

[0055] They then compared directly the performance of bi-directional and bicistronic vectors in relation to the number of integrated copies, as measured by real-time PCR (Fig. 3). By analyzing 293T cells transduced with increasing vector doses, they proved that the vast majority of integrated bi-directional vectors based on the PGK (MA1) or UBI-C (MA4) promoter efficiently expressed both transgenes, clearly outperforming the best IRES-based bicistronic vector.

Ex Vivo and In Vivo Dual-Gene Transfer

15

20

30

55

[0056] They then assessed the performance of the bi-directional MA1 LV in more relevant targets for gene therapy applications and by different delivery strategies. They transduced human cord-blood HPC and PBL with ΔLNGFR-GFP MA1 LV *ex vivo*, according to previously optimized protocols^{23, 24} (Fig.4). Both gene products were coordinately expressed to high-levels in a large fraction of HPC scored both as immature cells grown in the presence of early-acting cytokines (Fig. 4a), and after differentiation in liquid culture (Fig. 4b) or clonogenic assay (Fig. 4c, GFP only). Similarly, they obtained coordinate ΔLNGFR and GFP expression in PBL transduced in standard conditions of proliferation, triggered by CD3/CD28 co-stimulation (Fig. 4d), and as non-proliferating cells, treated only with IL-7 to maintain naïve cell properties (Fig. 4e). They also performed transplantation studies with transduced murine HPC, enriched from the bone marrow by negative selection, to prove stable dual-transgene expression in the progeny of long-term repopulating HSC (Fig 4f). ΔLNGFR and GFP were coordinately expressed to similar levels in the *ex vivo* transduced cells, before transplantation, and in the white blood cells of long-term engrafted mice. Overall, these results validated the new LV for proficient dual gene transfer in primitive, committed, and differentiated hematopoietic cells.

[0057] They injected concentrated ΔLNGFR-GFP MA1 LV in the striatum of adult mice and scored transgene expression 4 weeks after injection by confocal microscopy of brain sections immuno-stained for GFP and ΔLNGFR (fig. 5). They observed robust co-expression of both transgenes in the brain tissue surrounding the injection site. As previously reported after striatal injection of VSV-pseudotyped LV²⁵⁻²⁷, the vast majority of cells expressing the markers had the typical morphology of striatal neurons. Thus, the new bi-directional LV enabled efficient *in vivo* dual-gene transfer.

Dual-Transgenesis

[0058] They evaluated whether the new bi-directional LV allowed generation of dual-transgenic mouse lines. As previously described by Lois et al 19 , they microinjected the Δ NGFR-GFP LV into the perivitelline space of single-cell embryos, and implanted them into pseudopregnant females. We obtained transgenic mice to high frequency, as assessed by the presence of vector DNA (more than 50% of newborns), and proved vector integration in the germ line by crossing some founder mice and analyzing their progeny for vector DNA content and transgene expression (Fig. 6). In the two F1 mice analyzed, carrying 2 and 5 vector copies in the genome, they found remarkably consistent expression of both transgenes in virtually every cell in the tissues studied, which included brain, liver, spleen, gut, heart, skeletal muscle, and kidney. Vector expression was also well detectable in the bone marrow and peripheral blood of the same mice, although in less than 100% of the cells, and more clearly for Δ NGFR than GFP (not shown). These data indicated that bi-directional LV transgenesis is a rapid and efficient method to obtain robust, stable and coordinate expression of two transgenes in genetically-engineered mice. In addition, they show that the minCMV-PGK bi-directional promoter that they developed governs dual transgene expression in the majority of differentiated tissues of the mouse, and maintains expression after inheritance through the germ-line.

DISCUSSION

15

20

30

[0059] In the pursuit of strategies enabling efficient dual-gene transfer, they initially faced significant limitations of IRES-based approaches. When tested in the context of bicistronic LV, IRES-dependent gene expression was significantly lower than that dependent on the mRNACap, and required multi-copy transduction to co-express the downstream gene in a sizable fraction of transduced cells. In addition, IRES's decreased expression of the upstream gene in the transcript, and displayed significant cell type-dependent variation in activity. Similar limitations have been reported when incorporating IRES's into other types of gene transfer vectors^{14,28-32}. Thus, selection for downstream gene expression is likely to be required when using IRES to ensure co-expression in all target cells. Although selection protocols are compatible with some ex vivo gene transfer and therapy applications, they may adversely affect the biological properties of genecorrected cells, in particular when selectable marker expression is inefficient. In fact, prolonged ex vivo culture and a limited size or clonal composition of the transduced cell population may reduce engraftment, long-term survival and tissue repopulation after transplantation 33. Even more important, the inefficiency of IRES-dependent expression prevents most application of bicistronic vectors to direct in vivo gene transfer. Thus, authors explored novel strategies to take full advantage of gene transfer systems, such as LV, that allow efficient ex vivo transduction and direct in vivo administration 34. [0060] They have developed a new promoter design based on the juxtaposition of core promoter elements upstream, and in opposite orientation, to an efficient promoter. The bi-directional assembly drove divergent transcription, indicating that upstream enhancer/promoter elements within the efficient promoter were capable of promoting transcription in an orientation-independent manner and from both sides simultaneously. Upon incorporation of these promoters into LV, they reached efficient dual-gene transfer and coordinate expression in continuous cell lines and primary cells ex vivo. Because both transgenes were expressed in the vast majority of transduced cells, they did not need to select cells to ensure transgene co-expression. Upon direct injection of bi-directional LV into the CNS, the authors showed coordinate expression of two transgenes in neural cells in vivo. In addition, bi-directional LV allowed robust dual transgenesis, leading to pan-cellular expression of both transgenes in all tissues examined. All these results could not be reached until now using currently available technologies.

[0061] By monitoring transduced cells carrying a single vector copy, authors proved that divergent transcription occurred from a single bi-directional promoter, that expression of both transgenes was functionally linked and coordinately regulated, and that bi-directional promoters were consistently active in all types of target cells tested, without being silenced or randomly fixed in one direction of transcription, even after cellular differentiation. Although they did not map how close the two opposite core promoters must be for operational linkage, they may expect that close juxtaposition of the fused minimal core promoter to some of the upstream elements in the efficient promoter, as observed in natural promoters between core and upstream elements, may be required. Both the PGK and UBI-C promoters tested in this work drove divergent transcription when fused to a minimal core promoter in the opposite orientation. Intriguingly, both of these promoters were shown to be intrinsically capable of promoting divergent transcription, although to lower efficiency on the upstream than the downstream side, when incorporated into the bi-directional expression cassette that they developed. This surprising observation may indicate a specific feature of a class of ubiquitously-expressed housekeeping promoters, possibly related to their content of CpG islands (see below and 35-37). However, they should not forget that both the promoter placement between two efficient expression cassettes endowed with post-transcriptional regulatory elements enhancing translation, and LV-mediated integration, which has been shown to preferentially target transcribed genes in the chromatin, may contribute to unravel latent transcriptional activity. Although the intrinsic bi-directional activity of the housekeeping promoters tested may not be efficient enough for exploitation per se, without the upstream assembly of core promoter elements described in this work, it provides the basis for the coordinate regulation of dual-gene ex-

pression reached by our new vectors. On the other hand, the propensity of these promoters to drive divergent transcription should be kept in mind when engineering vectors and analyzing transduced cells or tissues³⁸, and may provide a possible mechanism for the frequently observed interference between nearby promoters in the same vector construct ^{10,39}. It is possible that the bi-directional design described here may be successfully applied to tissue-specific promoters to obtain coordinated expression of two transgenes in specific tissues. In addition, by combining bi-directional promoters with bicistronic transcripts one could express more than two transgenes within the same cell, although with the limitations described above for IRES-dependent vectors.

[0062] Inducible bi-directional promoters were originally developed in Tet-regulated expression systems, by duplicating a minimal promoter on both sides of a series of Tet operator repeats, to obtain exogenously regulated expression of two transgenes³⁶, ^{40,41}. This design was recently applied to other systems that also combine prokaryotic enhancer elements with chimeric trans-activators to regulate gene expression⁴². Although these inducible expression systems represent powerful tools for gene-function studies, they are dependent on co-expression and functional activity of protein transactivators, and pose several challenges when applied to vector-based delivery and in vivo applications. A constitutive bi-directional promoter was recently tested for exogenous gene expression in plant biotechnology⁴³. Our results provide the first description of synthetic bi-directional promoters that exploit the endogenous transcriptional machinery available to most animal cell types to drive robust and constitutive expression of two divergent transcripts. In nature, few instances of bi-directional promoters had been documented until recently. Intriguingly, a recent survey of the human genome indicated an abundance of divergently transcribed gene pairs, whose transcription start sites are separated by less than 1 kb 44,45. It is likely that many of the promoter elements found between these gene pairs can initiate transcription in both directions, and contain shared elements that regulate both genes⁴⁶. Thus, the synthetic bi-directional promoters that they have developed may mimic a well-represented and evolutionary conserved feature of eukaryotic transcription, providing a structural basis for their robust performance. The new lentiviral vectors built around these bi-directional promoters will likely advance the reach and the safety of gene therapy, the power of gene-function and target validation studies, and the applications of animal transgenesis. If adapted for the expression of short interfering RNA, they may also enable coordinate knock-down of multiple genes.

REFERENCES

[0063]

Lone

15

20

25

30

35

40

45

50

- 1. Kay, M.A., Glorioso, J.C. & Naldini, L. Nat Med 7, 33-40 (2001).
- 2. Neff, T. et al. J Clin Invest 112, 1581-1588 (2003).
- 3. Bordignon, C. & Roncarolo, M.G., Nat. Immumol, 3, 318-321 (2002).
- Sadelain, M., J Gene Med 4, 113-121 (2002).
- 5. Bonini, C. et al. Science 276, 1719-1724 (1997),
- 6. Hacein-Bey-Abina, S. et al.. Science 302, 415-419 (2003).
- 7. Burton, E.A., Glorioso, J.C. & Fink, D.J Gene Ther 10, 1721-1727 (2003).
- 8. Sadelain, M., Riviere, I. & Brentjens, R.. Nat Rev Cancer 3, 35-45 (2003).
- 9. Miller, A.D. in Retroviruses. (eds. J. Coffin, S.H. Hughes & H.E. Varmus) 437-474 (Cold Spring Harbor Laboratory Press, Plainview; 2000).
- 10. Emerman, M. & Temin, H.M. Mol Cell Biol 6, 792-800 (1986).
- 11. Zhu, Y., et al., Mol.Ther. 4,375-382 (2001).
- 12. Klump, H. et al. Gene Ther. 8, 811-817 (2001).
- 13. Furler, S., et al., Gene Ther 8, 864-873 (2001).
- Martinez-Salas, E., Curr. Opin. Biotechnol. 10, 458-464 (1999).
 - 15. Follenzi, A., et al.. Nat Genet 25, 217-222 (2000).
 - 16. Ghattas, I.R., Sanes, J.R. & Majors, J.E.. Mol.Cell Biol. 11, 5848-5859 (1991).
 - 17. Qiao, J., et al.. Hum Gene Ther 13, 881-887 (2002).
 - 18. Oumard, A., et al., 20,2755-2759 (2000).
 - 19. Lois, C., et al.. Science 295, 868-872 (2002).
 - 20. Baron, U. & Bujard, H., Methods Enzymol, 327, 401-421 (2000).
 - 21. Bray, M. et al. Proc Natl Acad Sci USA 91, 1256-1260 (1994).
 - 22. Zufferey, R., et al., J. Virol, 73, 2886-2892 (1999).
 - 23. Ailles, L. et al., Mol Ther 6, 615-626 (2002).
 - 24. Cavalieri, S. et al., Blood 102, 497-505 (2003).
 - 25. Naldini, L., et al. Proc Natl Acad Sci U SA 93, 11382-11388 (1996).
 - 26. Baekelandt, V. et al. Hum Gene Ther 13, 841-853 (2002).
 - 27. Deglon, N. et al.. Hum. Gene Ther. 11, 179-190 (2000).

```
28. Sokolic, R.A. et al. Blood 87, 42-50 (1996).
          29. Wong, E.T., Ngoi, S.M. & Lee, C.G. Gene Ther 9,337-344 (2002).
          30. Kozak, M., Gene 318, 1-23 (2003).
          31. Mizuguchi, H., et al., Mol Ther1, 376-382 (2000).
5
          32. Hennecke, M. et al.. Nucleic Acids Res 29, 3327-3334 (2001).
          33. Mazurier, F., et al. Blood 103, 545-552 (2004).
          34. Vigna, E. & Naldini, L., J Gene Med 2, 308-316 (2000).
          35. Gardiner-Garden, M. & Frommer, M.. J. Mol Biol 196, 261-282 (1987).
          36. Lavia, P., Macleod, D. & Bird, A., EMBO J6, 2773-2779 (1987).
10
          37. Johnson, P. & Friedmann, T., Gene 88, 207-213 (1990).
          38. Scacheri, P.C. et al. Genesis 30, 259-263 (2001).
          39. Vigna, E. et al., Mol Ther 5, 252-261 (2002).
          40. Baron, U., et al., Nucleic, Acids, Res. 23, 3605-3606 (1995).
          41. Unsinger, J., et al., Mol Ther 4,484-489 (2001).
15
          42. Fux, C. et al.. J Gene Med 5, 1067-1079 (2003).
          43. Xie, M., He, Y. & Gan, SNat Biotechnol 19, 677-679 (2001).
          44. Trinklein, N.D. et al., Genonze Res 14, 62-66 (2004).
          45. Takai, D. & Jones, P.A. Mol Biol Evol 21, 463-467 (2004).
          46. Adachi, N. & Lieber, M.R. Cell 109, 807-809 (2002).
20
          47. Farson, D. et al. Hum Gene Ther 12, 981-997 (2001).
          48. De Palma, M., et al., Nat Med 9, 789-795 (2003).
          49. Follenzi, A., et al. Hum Gene Ther 13, 243-260 (2002).
      SEQUENCE LISTING
25
      [0064]
          <110> FONDAZIONE CENTRO SAN RAFFAELE DEL MONTE TABOR
30
          <120> LENTIVIRAL VECTORS CARRYING SYNTHETIC BI-DIRECTIONAL PROMOTERS AND USES THEREOF
          <130> 81240PCT
          <140> PCT/IT2004/000227
35
          <141> 2004-04-21
          <160>8
          <170> Patentln version 3.1
          <210>1
          <211> 20
          <212> DNA
          <213> Artificial sequence
45
          <220>
          <223> primer
          <220>
          <221> misc feature
50
          <222> (1)..(20)
          <223> LV forward primer
          <400> 1
                                        20
          tgaaagcgaa agggaaacca
          <210> 2
          <211> 15
          <212> DNA
```

	<213> Artificial Sequence
	<220>
	<223> primer
5	<220>
	<221> misc_feature
	<222> (1)(15)
	<223> LV reverse primer
10	<400> 2
	ccgtgcgcgc ttcag 15
	<210> 3
	<211> 18
15	<212> DNA
	<213> Artificial Sequence
•	<220>
	<223> probe
20	<220>
	<221> misc_feature
	<222> (1)(18)
	<223>
25	<220>
	<221> misc_feature
	<222> (1)(18)
	<223> LV probe
30	<400> 3
	ctctctcgac gcaggact 18
	<210> 4
	<211> 9613
35	<212> DNA
	<213> Artificial sequence
	<220>
	<223> plasmid
40	<220>
	<221> misc_feature
	<222> (1)(9613)
	<223> plasmid containing the lentiviral vector construct RRL-MA1-lucif/ GF

50

<400>4

	caggtggcac	ttttcgggga	aatgtgcgcg	gaacccctat	ttgtttattt	ttctaaatac	60
	attcaaatat	gtatccgctc	atgagacaat	aaccctgata	aatgcttcaa	taatattgaa	120
5	aaaggaagag	tatgagtatt	caacatttcc	gtgtcgccct	tattcccttt	tttgcggcat	180
	tttgccttcc	tgtttttgct	cacccagaaa	cgctggtgaa	agtaaaagat	gctgaagatc	240
	agttgggtgc	acgagtgggt	tacatcgaac	tggatctcaa	cagcggtaag	atccttgaga	300
10	gttttcgccc	cgaagaacgt	tttccaatga	tgagcacttt	taaagttctg	ctatgtggcg	360
10	cggtattatc	ccgtattgac	gccgggcaag	agcaactcgg	tcgccgcata	cactattctc	420
	agaatgactt	ggttgagtac	tcaccagtca	cagaaaagca	tcttacggat	ggcatgacag	480
	taagagaatt	atgcagtgct	gccataacca	tgagtgataa	cactgcggcc	aacttacttc	540
15	tgacaacgat	cggaggaccg	aaggagctaa	ccgcttttt	gcacaacatg	ggggatcatg	600
	taactcgcct	tgatcgttgg	gaaccggagc	tgaatgaagc	cataccaaac	gacgagcgtg	660
	acaccacgat	gcctgtagca	atggcaacaa	cgttgcgcaa	actattaact	ggcgaactac	720
20	ttactctagc	ttcccggcaa	caattaatag	actggatgga	ggcggataaa	gttgcaggac	780
	cacttctgcg	ctcggccctt	ccggctggct	ggtttattgc	tgataaatct	ggagccggtg	840
	agcgtgggtc	tcgcggtatc	attgcagcac	tggggccaga	tggtaagccc	tcccgtatcg	900
25	tagttatcta	cacgacgggg	agtcaggcaa	ctatggatga	acgaaataga	cagatcgctg	960
	agataggtgc	ctcactgatt	aagcattggt	aactgtcaga	ccaagtttac	tcatatatac	1020
	tttagattga	tttaaaactt	catttttaat	ttaaaaggat	ctaggtgaag	atcctttttg	1080
30	ataatctcat	gaccaaaatc	ccttaacgtg	agttttcgtt	ccactgagcg	tcagaccccg	1140
	tagaaaagat	caaaggatct	tcttgagatc	ctttttttct	gcgcgtaatc	tgctgcttgc	1200
	aaacaaaaaa	accaccgcta	ccagcggtgg	tttgtttgcc	ggatcaagag	ctaccaactc	1260
25	tttttccgaa	ggtaactggc	ttcagcagag	cgcagatacc	aaatactgtc	cttctagtgt	1320
35	agccgtagtt	aggccaccac	ttcaagaact	ctgtagcacc	gcctacatac	ctcgctctgc	1380
	taatcctgtt	accagtggct	gctgccagtg	gcgataagtc	gtgtcttacc	gggttggact	1440
	caagacgata	gttaccggat	aaggcgcagc	ggtcgggctg	aacggggggt	tcgtgcacac	1500
40	agcccagctt	ggagcgaacg	acctacaccg	aactgagata	cctacagcgt	gagctatgag	1560
	aaagcgccac	gcttcccgaa	gggagaaagg	cggacaggta	tccggtaagc	ggcagggtcg	1620

	gaacaggaga	gcgcacgagg	gagcttccag	ggggaaacgc	ctggtatctt	tatagtcctg	1680
	tcgggtttcg	ccacctctga	cttgagcgtc	gatttttgtg	atgctcgtca	ggggggcgga	1740
5	gcctatggaa	aaacgccagc	aacgcggcct	ttttacggtt	cctggccttt	tgctggcctt	1800
	ttgctcacat	gttctttcct	gcgttatccc	ctgattctgt	ggataaccgt	attaccgcct	1860
	ttgagtgagc	tgataccgct	cgccgcagcc	gaacgaccga	gcgcagcgag	tcagtgagcg	1920
10	aggaagcgga	agagcgccca	atacgcaaac	cgcctctccc	cgcgcgttgg	ccgattcatt	1980
70	aatgcagctg	gcacgacagg	tttcccgact	ggaaagcggg	cagtgagcgc	aacgcaatta	2040
	atgtgagtta	gctcactcat	taggcacccc	aggctttaca	ctttatgctt	ccggctcgta	2100
	tgttgtgtgg	aattgtgagc	ggataacaat	ttcacacagg	aaacagctat	gaccatgatt	2160
15	acgccaagcg	cgcaattaac	cctcactaaa	gggaacaaaa	gctggagctg	caagcttaat	2220
	gtagtcttat	gcaatactct	tgtagtcttg	caacatggta	acgatgagtt	agcaacatgc	2280
	cttacaagga	gagaaaaagc	accgtgcatg	ccgattggtg	gaagtaaggt	ggtacgatcg	2340
20	tgccttatta	ggaaggcaac	agacgggtct	gacatggatt	ggacgaacca	ctgaattgcc	2400
	gcattgcaga	gatattgtat	ttaagtgcct	agctcgatac	aataaacggg	tctctctggt	2460
	tagaccagat	ctgagcctgg	gagctctctg	gctaactagg	gaacccactg	cttaagcctc	2520
25	aataaagctt	gccttgagtg	cttcaagtag	tgtgtgcccg	tctgttgtgt	gactctggta	2580
	actagagatc	cctcagaccc	ttttagtcag	tgtggaaaat	ctctagcagt	ggcgcccgaa	2640
	cagggacctg	aaagcgaaag	ggaaaccaga	gctctctcga	cgcaggactc	ggcttgctga	2700
30	agcgcgcacg	gcaagaggcg	aggggcggcg	actggtgagt	acgccaaaaa	ttttgactag	2760
	cggaggctag	aaggagagag	átgggtgcga	gagcgtcagt	attaagcggg	ggagaattag	2820
	atcgcgatgg	gaaaaaattc	ggttaaggcc	agggggaaag	aaaaaatata	aattaaaaca	2880
35	tatagtatgg	gcaagcaggg	agctagaacg	attcgcagtt	aatcctggcc	tgttagaaac	2940
	atcagaaggc	tgtagacaaa	tactgggaca	gctacaacca	tcccttcaga	caggatcaga	3000
	agaacttaga	tcattatata	atacagtagc	aaccctctat	tgtgtgcatc	aaaggataga	3060
	gataaaagac	accaaggaag	ctttagacaa	gatagaggaa	gagcaaaaca	aaagtaagac	3120
40	caccgcacag	caagcggccg	ctgatcttca	gacctggagg	aggagatatg	agggacaatt	3180
	ggagaagtga	attatataaa	tataaagtag	taaaaattga	accattagga	gtagcaccca	3240
	ccaaggcaaa	gagaagagtg	gtgcagagag	aaaaaagagc	agtgggaata	ggagctttgt	3300
45	tccttgggtt	cttgggagca	gcaggaagca	ctatgggcgc	agcctcaatg	acgctgacgg	3360
	tacaggccag	acaattattg	tctggtatag	tgcagcagca	gaacaatttg	ctgagggcta	3420
	ttgaggcgca	acagcatctg	ttgcaactca	cagtctgggg	catcaagcag	ctccaggcaa	3480
50	gaatcctggc	tgtggaaaga	tacctaaagg	atcaacagct	cctggggatt	tggggttgct	3540
	ctggaaaact	catttgcacc	actgctgtgc	cttggaatgc	tagttggagt	aataaatctc	3600
	tggaacagat	ttggaatcac	acgacctgga	tggagtggga	cagagaaatt	aacaattaca	3660

	caagcttaat acactcctta attgaagaat cgcaaaacca gcaagaaaag aatgaacaag	3720
	aattattgga attagataaa tgggcaagtt tgtggaattg gtttaacata acaaattggc	3780
5	tgtggtatat aaaattattc ataatgatag taggaggctt ggtaggttta agaatagttt	3840
	ttgctgtact ttctatagtg aatagagtta ggcagggata ttcaccatta tcgtttcaga	3900
	cccacctccc aaccccgagg ggacccgaca ggcccgaagg aatagaagaa gaaggtggag	3960
10	agagagacag agacagatcc attcgattag tgaacggatc tcgacggtat cggttaactt	4020
	ttaaaagaaa aggggggatt ggggggtaca gtgcagggga aagaatagta gacataatag	4080
	caacagacat acaaactaaa gaattacaaa aacaaattac aaaaattcaa aattttatcg	4140
15	atcacgagac tagcctcgag agatctgatc ataatcagcc ataccacatt tgtagaggtt	4200
	ttacttgctt taaaaaacct cccacacctc cccctgaacc tgaaacataa aatgaatgca	4260
	attgttgttg ttaacttgtt tattgcagct tataatggtt acaaataagg caatagcatc	4320
00	acaaatttca caaataaggc attittttca ctgcattcta gttttggttt gtccaaactc	4380
20	atcaatgtat cttatcatgt ctggatctca aatccctcgg aagctgcgcc tgtcttaggt	4440
	tggagtgata catttttatc acttttaccc gtctttggat taggcagtag ctctgacggc	4500
	cctcctgtct taggttagtg aaaaatgtca ctctcttacc cgtcattggc tgtccagctt	4560
25	agctcgcagg ggaggtggtc tggatcctct agaattacac ggcgatcttt ccgcccttct	4620
	tggcctttat gaggatetet etgattttte ttgegtegag tttteeggta agacettteg	4680
	gtacttcgtc cacaaacaca actcctccgc gcaacttttt cgcggttgtt acttgactgg	4740
30	ccacgtaatc cacgatetet tttteegtea tegtetttee gtgetecaaa acaacaacgg	4800
	cggcgggaag ttcaccggcg tcatcgtcgg gaagacctgc gacacctgcg tcgaagatgt	4860
	tggggtgttg gagcaagatg gattccaatt cagcgggagc cacctgatag cctttgtact	4920
35	taatcagaga cttcaggcgg tcaacgatga agaagtgttc gtcttcgtcc cagtaagcta	4980
	tgtctccaga atgtagccat ccatccttgt caatcaaggc gttggtcgct tccggattgt	5040
	ttacataacc ggacataatc ataggacctc tcacacacag ttcgcctctt tgattaacgc	5100
40	ccagcgtttt cccggtatcc agatccacaa ccttcgcttc aaaaaatgga acaactttac	5160
	cgaccgcgcc cggtttatca tccccctcgg gtgtaatcag aatagctgat gtagtctcag	5220
	tgagcccata teettgeetg atacetggea gatggaacet ettggeaace getteecega	5280
45	cttccttaga gaggggagcg ccaccagaag caatttcgtg taaattagat aaatcgtatt	5340
45	tgtcaatcag agtgcttttg gcgaagaagg agaatagggt tggcaccagc agcgcacttt	5400
	gaatettgta ateetgaagg eteeteagaa acagetette tteaaateta tacattaaga	5460
	Cgactcgaaa tccacatatc aaatatccga gtgtagtaaa cattccaaaa ccgtgatgga	5520
50	atggaacaac acttaaaatc gcagtatccg gaatgatttg attgccaaaa ataggatctc	5580
	tggcatgcga gaatctcacg caggcagttc tatgaggcag agcgacacct ttaggcagac	5640
	cagtagatcc agaggagttc atgatcagtg caattgtctt gtccctatcg aaggactctg	5700 .

	gcacaaaatc	gtattcatta	aaaccgggag	gtagatgaga	tgtgacgaac	gtgtacatcg	5760
	actgaaatcc	ctggtaatcc	gttttagaat	ccatgataat	aattttttgg	atgattggga	5820
5	gctttttttg	cacgttcaaa	attttttgca	accccttttt	ggaaacgaac	accacggtag	5880
	gctgcgaaat	gcccatactg	ttgagcaatt	cacgttcatt	ataaatgtcg	ttcgcgggcg	5940
	caactgcaac	tccgataaat	aacgcgccca	acaccggcat	aaagaattga	agagagtttt	6000
10	cactgcatac	gacgattctg	tgatttgtat	tcagcccata	tcgtttcata	gcttctgcca	6060
	accgaacgga	catttcgaag	tactcagcgt	aagtgatgtc	cacctcgata	tgtgcatctg	6120
•	taaaagcaat	tgttccagga	accagggcgt	atctcttcat	agccttatgc	agttgctctc	6180
1E	cagcggttcc	atcttccagc	ggatagaatg	gcgccgggcc	tttctttatg	tttttggcgt	6240
15	cttccatggt	gaattccgcg	gaggctggat	cggtcccggt	gtcttctatg	gaggtcaaaa	6300
	cagcgtggat	ggcgtctcca	ggcgatctga	cggttcacta	aacgagctct	gcttatatag	6360
	gcctcccacc	gtacacgcct	accctcgaga	agcttgatat	cgaattccca	cggggttggg	6420
20	gttgcgcctt	ttccaaggca	gccctgggtt	tgcgcaggga	cgcggctgct	ctgggcgtgg	6480
	ttccgggaaa	cgcagcggcg	ccgaccctgg	gtctcgcaca	ttcttcacgt	ccgttcgcag	6540
	cgtcacccgg	atcttcgccg	ctacccttgt	gggccccccg	gcgacgcttc	ctgctccgcc ·	6600
25	cctaagtcgg	gaaggttcct	tgcggttcgc	ggcgtgccgg	acgtgacaaa	cggaagccgc	6660
	acgtctcact	agtaccctcg	cagacggaca	gcgccaggga	gcaatggcag	cgcgccgacc	6720
	gcgatgggct	gtggccaata	gcggctgctc	agcggggcgc	gccgagagca	gcggccggga	6780
30	aggggcggtg	cgggaggcgg	ggtgtggggc	ggtagtgtgg	gccctgttcc	tgcccgcgcg	6840
	gtgttccgca	ttctgcaagc	ctccggagcg	cacgtcggca	gtcggctccc	tcgttgaccg	6900
	aatcaccgac	ctctctcccc	agggggatcc	accggtcgcc	accatggtga	gcaagggcga	6960
35	ggagctgttc	accggggtgg	tgcccatcct	ggtcgagctg	gacggcgacg	taaacggcca	7020
	caagttcagc	gtgtccggcg	agggcgaggg	cgatgccacc	tacggcaagc	tgaccctgaa	7080
	gttcatctgc	accaccggca	agctgcccgt	gccctggccc	accctcgtga	ccaccctgac	7140
	ctacggcgtg	cagtgcttca	gccgctaccc	cgaccacatg	aagcagcacg	acttcttcaa	7200
40	gtccgccatg	cccgaaggct	acgtccagga	gcgcaccatc	ttcttcaagg	acgacggcaa	7260
	ctacaagacc	cgcgccgagg	tgaagttcga	gggcgacacc	ctggtgaacc	gcatcgagct	7320
	gaagggcatc	gacttcaagg	aggacggcaa	catcctgggg	cacaagctgg	agtacaacta	7380
45	caacagccac	aacgtctata	tcatggccga	caagcagaag	aacggcatca	aggtgaactt	7440
	caagatccgc	cacaacatcg	aggacggcag	cgtgcagctc	gccgaccact	accagcagaa	7500
	cacccccatc	ggcgacggcc	ccgtgctgct	gcccgacaac	cactacctga	gcacccagtc	7560
50	cgccctgagc	aaagacccca	acgagaagcg	cgatcacatg	gtcctgctgg	agttcgtgac	7620
	cgccgccggg	atcactctcg	gcatggacga	gctgtacaag	taaagcggcc	gcgtcgacaa	7680
	tcaacctctg	gattacaaaa	tttgtgaaag	attgactggt	attcttaact	atgttgctcc	7740

	ttttacgcta	tgtggatacg	ctgctttaat	gcctttgtat	catgctattg	cttcccgtat	7800
	ggctttcatt	ttctcctcct	tgtataaatc	ctggttgctg	tctctttatg	aggagttgtg	7860
5	gcccgttgtc	aggcaacgtg	gcgtggtgtg	cactgtgttt	gctgacgcaa	ccccactgg	7920
	ttggggcatt	gccaccacct	gtcagctcct	ttccgggact	ttcgctttcc	ccctccctat	7980
	tgccacggcg	gaactcatcg	ccgcctgcct	tgcccgctgc	tggacagggg	ctcggctgtt	8040
10	gggcactgac	aattccgtgg	tgttgtcggg	gaagctgacg	tcctttccat	ggctgctcgc	8100
	ctgtgttgcc	acctggattc	tgcgcgggac	gtccttctgc	tacgtccctt	cggccctcaa	8160
	tccagcggac	cttccttccc	gcggcctgct	gccggctctg	cggcctcttc	cgcgtcttcg	8220
15	ccttcgccct	cagacgagtc	ggatctccct	ttgggccgcc	tccccgcctg	gaattcgagc	8280
	tcggtacctt	taagaccaat	gacttacaag	gcagctgtag	atcttagcca	ctttttaaaa	8340
	gaaaaggggg	gactggaagg	gctaattcac	tcccaacgaa	gacaagatct	gctttttgct	8400
20	tgtactgggt	ctctctggtt	agaccagatc	tgagcctggg	agctctctgg	ctaactaggg	8460
20	aacccactgc	ttaagcctca	ataaagcttg	ccttgagtgc	ttcaagtagt	gtgtgcccgt	8520
	ctgttgtgtg	actctggtaa	ctagagatcc	ctcagaccct	tttagtcagt	gtggaaaatc	8580
	tctagcagta	gtagttcatg	tcatcttatt	attcagtatt	tataacttgc	aaagaaatga	8640
25	atatcagaga	gtgagaggaa	cttgtttatt	gcagcttata	atggttacaa	ataaagcaat	8700
	agcatcacaa	atttcacaaa	taaagcattt	ttttcactgc	attctagttg	tggtttgtcc	8760
	aaactcatca	atgtatctta	tcatgtctgg	ctctagctat	cccgccccta	actccgccca	8820
30	gttccgccca	ttctccgccc	catggctgac	taatttttt	tatttatgca	gaggccgagg	8880
	ccgcctcggc	ctctgagcta	ttccagaagt	agtgaggagg	cttttttgga	ggcctaggct	8940
	tttgcgtcga	gacgtaccca	attcgcccta	tagtgagtcg	tattacgcgc	gctcactggc	9000
35	cgtcgtttta	caacgtcgtg	actgggaaaa	ccctggcgtt	acccaactta	atcgccttgc	9060
	agcacatccc	cctttcgcca	gctggcgtaa	tagcgaagag	gcccgcaccg	atcgcccttc	9120
	ccaacagttg	cgcagcctga	atggcgaatg	gcgcgacgcg	ccctgtagcg	gcgcattaag	9180
40	cgcggcgggt	gtggtggtta	cgcgcagcgt	gaccgctaca	cttgccagcg	ccctagcgcc	9240
	cgctcctttc	gctttcttcc	cttcctttct	cgccacgttc	gccggctttc	cccgtcaagc	9300
	tctaaatcgg	gggctccctt	tagggttccg	atttagtgct	ttacggcacc	tcgaccccaa	9360
45	aaaacttgat	tagggtgatg	gttcacgtag	tgggccatcg	ccctgataga	cggtttttcg	9420
	ccctttgacg	ttggagtcca	cgttctttaa	tagtggactc	ttgttccaaa	ctggaacaac	9480
	actcaaccct	atctcggtct	attcttttga	tttataaggg	attttgccga	tttcggccta	9540
	ttggttaaaa	aatgagctga	tttaacaaaa	atttaacgcg	aattttaaça	aaatattaac	9600
50	gtttacaatt	tcc					9613

<210> 5 <211> 9380 <212> DNA

<213> Artificial Sequence

<220>

	<223> plasmid	
	<220>	
	<221> misc_feature	
_	<222> (1)(9380)	
5	<223>	
	<220>	
	<221> misc_feature	
	<222> (1)(9380)	
10	<223> plasmid containing the lentiviral vector construct CCL-MA1-GFP/de ItaLNGFR	
	<400> 5	
15	caggtggcac ttttcgggga aatgtgcgcg gaacccctat ttgtttattt ttctaaatac	60
	attcaaatat gtatccgctc atgagacaat aaccctgata aatgcttcaa taatattgaa	120
	aaaggaagag tatgagtatt caacatttcc gtgtcgccct tattcccttt tttgcggcat	180
	tttgccttcc tgtttttgct cacccagaaa cgctggtgaa agtaaaagat gctgaagatc	240
20	agttgggtgc acgagtgggt tacatcgaac tggatctcaa cagcggtaag atccttgaga	300
	gttttcgccc cgaagaacgt tttccaatga tgagcacttt taaagttctg ctatgtggcg	360
	cggtattatc ccgtattgac gccgggcaag agcaactcgg tcgccgcata cactattctc	420
25	agaatgactt ggttgagtac tcaccagtca cagaaaagca tcttacggat ggcatgacag	480
	taagagaatt atgcagtgct gccataacca tgagtgataa cactgcggcc aacttacttc	540
	tgacaacgat cggaggaccg aaggagctaa ccgctttttt gcacaacatg ggggatcatg	600
30	taactcgcct tgatcgttgg gaaccggagc tgaatgaagc cataccaaac gacgagcgtg	660
	acaccacgat gcctgtagca atggcaacaa cgttgcgcaa actattaact ggcgaactac	720
	ttactctagc ttcccggcaa caattaatag actggatgga ggcggataaa gttgcaggac	780
35	cacttctgcg ctcggccctt ccggctggct ggtttattgc tgataaatct ggagccggtg	840
	agcgtgggtc tcgcggtatc attgcagcac tggggccaga tggtaagccc tcccgtatcg	900
	tagttatcta cacgacgggg agtcaggcaa ctatggatga acgaaataga cagatcgctg	960
40	agataggtgc ctcactgatt aagcattggt aactgtcaga ccaagtttac tcatatatac	1020

		tttagattga	tttaaaactt	catttttaat	ttaaaaggat	ctaggtgaag	atcctttttg	1080
		ataatctcat	gaccaaaatc	ccttaacgtg	agttttcgtt	ccactgagcg	tcagaccccg	1140
5		tagaaaagat	caaaggatct	tcttgagatc	ctttttttct	gcgcgtaatc	tgctgcttgc	1200
_		aaacaaaaaa	accaccgcta	ccagcggtgg	tttgtttgcc	ggatcaagag	ctaccaactc	1260
		tttttccgaa	ggtaactggc	ttcagcagag	cgcagatacc	aaatactgtc	cttctagtgt	1320
40		agccgtagtt	aggccaccac	ttcaagaact	ctgtagcacc	gcctacatac	ctcgctctgc	1380
10		taatcctgtt	accagtggct	gctgccagtg	gcgataagtc	gtgtcttacc	gggttggact	1440
		caagacgata	gttaccggat	aaggcgcagc	ggtcgggctg	aacggggggt	tcgtgcacac	1500
	agcccagctt	ggagcgaacg	acctacaccg	aactgagata	cctacagcgt	gagctatgag	1560	
15		aaagcgccac	gcttcccgaa	gggagaaagg	cggacaggta	tccggtaagc	ggcagggtcg	1620
		gaacaggaga	gcgcacgagg	gagcttccag	ggggaaacgc	ctggtatctt	tatagtcctg	1680
		tcgggtttcg	ccacctctga	cttgagcgtc	gatttttgtg	atgctcgtca	ggggggcgga	1740
20		gcctatggaa	aaacgccagc	aacgcggcct	ttttacggtt	cctggccttt	tgctggcctt	1800
		ttgctcacat	gttctttcct	gcgttatccc	ctgattctgt	ggataaccgt	attaccgcct	1860
		ttgagtgagc	tgataccgct	cgccgcagcc	gaacgaccga	gcgcagcgag	tcagtgagcg	1920
25		aggaagcgga	agagcgccca	atacgcaaac	cgcctctccc	cgcgcgttgg	ccgattcatt	1980
		aatgcagctg	gcacgacagg	tttcccgact	ggaaagcggg	cagtgagcgc	aacgcaatta	2040
		atgtgagtta	gctcactcat	taggcacccc	aggctttaca	ctttatgctt	ccggctcgta	2100
30		tgttgtgtgg	aattgtgagc	ggataacaat	ttcacacagg	aaacagctat	gaccatgatt	2160
		acgccaagcg	cgcaattaac	cctcactaaa	gggaacaaaa	gctggagctg	caagcttggc	2220
		cattgcatac	gttgtatcca	tatcataata	tgtacattta	tattggctca	tgtccaacat	2280
ac		taccgccatg	ttgacattga	ttattgacta	gttattaata	gtaatcaatt	acggggtcat	2340
35		tagttcatag	cccatatatg	gagttccgcg	ttacataact	tacggtaaat	ggcccgcctg	2400
		gctgaccgcc	caacgacccc	cgcccattga	cgtcaataat	gacgtatgtt	cccatagtaa	2460
		cgccaatagg	gactttccat	tgacgtcaat	gggtggagta	tttacggtaa	actgcccact	2520
40		tggcagtaca	tcaagtgtat	catatgccaa	gtacgccccc	tattgacgtc	aatgacggta	2580
		aatggcccgc	ctggcattat	gcccagtaca	tgaccttatg	ggactttcct	acttggcagt	2640
		acatctacgt	attagtcatc	gctattacca	tggtgatgcg	gttttggcag	tacatcaatg	2700
45		ggcgtggata	gcggtttgac	tcacggggat	ttccaagtct	ccaccccatt	gacgtcaatg	2760
		ggagtttgtt	ttggcaccaa	aatcaacggg	actttccaaa	atgtcgtaac	aactccgccc	2820
		cattgacgca	aatgggcggt	aggcgtgta c	ggtgggaggt	ctatataagc	agagctcgtt	2880
50		tagtgaaccg	gggtctctct	ggttagacca	gatetgagee	tgggagctct	ctggctaact	2940
		agggaaccca	ctgcttaagc	ctcaataaag	cttgccttga	gtgcttcaag	tagtgtgtgc	3000
		ccgtctgttg	tgtgactctg	gtaactagag	atccctcaga	cccttttagt	cagtgtggaa	30 60

		aatctctagc	agtggcgccc	gaacagggac	ctgaaagcga	aagggaaacc	agagctctct	3120
		cgacgcagga	ctcggcttgc	tgaagcgcgc	acggcaagag	gcgaggggcg	gcgactggtg	3180
	5	agtacgccaa	aaattttgac	tagcggaggc	tagaaggaga	gagatgggtg	cgagagcgtc	3240
		agtattaagc	gggggagaat	tagatcgcga	tgggaaaaaa	ttcggttaag	gccaggggga	3300
		aagaaaaaat	ataaattaaa	acatatagta	tgggcaagca	gggagctaga	acgattcgca	3360
	10	gttaatcctg	gcctgttaga	aacatcagaa	ggctgtagac	aaatactggg	acagctacaa	3420
	10	ccatcccttc	agacaggatc	agaagaactt	agatcattat	ataatacagt	agcaaccctc	3480
		tattgtgtgc	atcaaaggat	agagataaaa	gacaccaagg	aagctttaga	caagatagag	3540
		gaagagcaaa	acaaaagtaa	gaccaccgca	cagcaagcgg	ccgctgatct	tcagacctgg	3600
	15	aggaggagat	atgagggaca	attggagaag	tgaattatat	aaatataaag	tagtaaaaat	3660
		tgaaccatta	ggagtagcac	ccaccaaggc	aaagagaaga	gtggtgcaga	gagaaaaaag	3720
		agcagtggga	ataggagctt	tgttccttgg	gttcttggga	gcagcaggaa	gcactatggg	3780
	20	cgcagcctca	atgacgctga	cggtacaggc	cagacaatta	ttgtctggta	tagtgcagca	3840
		gcagaacaat	ttgctgaggg	ctattgaggc	gcaacagcat	ctgttgcaac	tcacagtctg	3900
		gggcatcaag	cagctccagg	caagaatcct	ggctgtggaa	agatacctaa	aggatcaaca	3960
25	25	gctcctgggg	atttggggtt	gctctggaaa	actcatttgc	accactgctg	tgccttggaa	4020
		tgctagttgg	agtaataaat	ctctggaaca	gattggaatc	acacgacctg	gatggagtgg	4080
30		gacagagaaa	ttaacaatta	cacaagctta	atacactcct	taattgaaga	atcgcaaaac	4140
	30	cagcaagaaa	agaatgaaca	agaattattg	gaattagata	aatgggcaag	tttgtggaat	4200
		tggtttaaca	taacaaattg	gctgtggtat	ataaaattat	tcataatgat	agtaggaggc	4260
		ttggtaggtt	taagaatagt	ttttgctgta	ctttctatag	tgaatagagt	taggcaggga	4320
	05	tattcaccat	tatcgtttca	gacccacctc	.ccaaccccga	ggggacccga	caggcccgaa	4380
	35	ggaatagaag	aagaaggtgg	agagagagac	agagacagat	ccattcgatt	agtgaacgga	4440
		tctcgacggt	atcggttaac	ttttaaaaga	aaagggggga	ttggggggta	cagtgcaggg	4500
		gaaagaatag	tagacataat	agcaacagac	atacaaacta	aagaattaca	aaaacaaatt	4560
	40	acaaaaattc	aaaattttat	cgatcacgag	actagcctcg	agagatctga	tcataatcag	4620
		ccataccaca	tttgtagagg	ttttacttgc	tttaaaaaac	ctcccacacc	tcccctgaa	4680
		cctgaaacat	aaaatgaatg	caattgttgt	tgttaacttg	tttattgcag	cttataatgg	4740
	45	ttacaaataa	ggcaatagca	tcacaaattt	cacaaataag	gcatttttt	cactgcattc	4800
		tagttttggt	ttgtccaaac	tcatcaatgt	atcttatcat	gtctggatct	caaatccctc	4860
		ggaagctgcg	cctgtcttag	gttggagtga	tacattttta	tcacttttac	ccgtctttgg	4920
	50	attaggcagt	agctctgacg	gccctcctgt	cttaggttag	tgaaaaat g t	cactctctta	4980
		cccgtcattg	gctgtccagc	ttagctcgca	ggggaggtgg	tctggatccg	agctcgaatt	5040
		ggccgcttta	cttgtacagc	tcgtccatgc	cgagagtgat	cccggcggcg	gtcacgaact	5100

	ccagcaggac	catgtgatcg	cgcttctcgt	tggggtcttt	gctcagggcg	gactgggtgc	5160
	tcaggtagtg	gttgtcgggc	agcagcacgg	ggccgtcgcc	gatgggggtg	ttctgctggt	5220
5	agtggtcggc	gagctgcacg	ctgccgtcct	cgatgttgtg	gcggatcttg	aagttcacct	5280
	tgatgccgtt	cttctgcttg	tcggccatga	tatagacgtt	gtggctgttg	tagttgtact	5340
	ccagcttgtg	ccccaggatg	ttgccgtcct	ccttgaagtc	gatgcccttc	agctcgatgc	5400
40	ggttcaccag	ggtgtcgccc	tcgaacttca	cctcggcgcg	ggtcttgtag	ttgccgtcgt	5460
10	ccttgaagaa	gatggtgcgc	tcctggacgt	agccttcggg	catggcggac	ttgaagaagt	5520
	cgtgctgctt	catgtggtcg	gggtagcggc	tgaagcactg	cacgccgtag	gtcagggtgg	5580
	tcacgagggt	gggccagggc	acgggcagct	tgccggtggt	gcagatgaac	ttcagggtca	5640
15	gcttgccgta	ggtggcatcg	ccctcgccct	cgccggacac	gctgaacttg	tggccgttta	5700
	cgtcgccgtc	cagctcgacc	aggatgggca	ccaccccggt	gaacagctcc	tcgcccttgc	5760
	tcaccatggt	gaattccgcg	gaggctggat	cggtcccggt	gtcttctatg	gaggtcaaaa	5820
20	cagcgtggat	ggcgtctɛca	ggcgatctga	cggttcacta	aacgagctct	gcttatatag	5880
	gcctcccacc	gtacacgcct	accctcgaga	agcttgatat	cgaattccca	cggggttggg	5940
	gttgcgcctt	ttccaaggca	gccctgggtt	tgcgcaggga	cgcggctgct	ctgggcgtgg	6000
25	ttccgggaaa	cgcagcggcg	ccgaccctgg	gtctcgcaca	ttcttcacgt	ccgttcgcag	6060
	cgtcacccgg	atcttcgccg	ctacccttgt	gggccccccg	gcgacgcttc	ctgctccgcc	6120
	cctaagtcgg	gaaggttcct	tgcggttcgc	ggcgtgccgg	acgtgacaaa	cggaagccgc	6180
30	acgtctcact	agtaccctcg	cagacggaca	gcgccaggga	gcaatggcag	cgcgccgacc	6240
	gcgatgggct	gtggccaata	gcggctgctc	agcggggcgc	gccgagagca	gcggccggga	6300
	aggggcggtg	cgggaggcgg	ggtgtggggc	ggtagtgtgg	gccctgttcc	tgcccgcgcg	6360
	gtgttccgca	ttctgcaagc	ctccggagcg	cacgtcggca	gtcggctccc	tcgttgaccg	6420
35	aatcaccgac	ctctctcccc	agggggatcc	cccgggctgc	aggaattcgg	gccgcggcca	6480
	gctccggcgg	gcagggggg	cgctggagcg	cagcgcagcg	cagccccatc	agtccgcaaa	6540
	gcggaccgag	ctggaagtcg	agcgctgccg	cgggaggcgg	gcgatggggg	caggtgccac	6600
40	cggccgcgcc	atggacgggc	cgcgcctgct	gctgttgctg	cttctggggg	tgtcccttgg	6660
	aggtgccaag	gaggcatgcc	ccacaggcct	gtacacacac	agcggtgagt	gctgcaaagc	6720
	ctgcaacctg	ggcgagggtg	tggcccagcc	ttgtggagcc	aaccagaccg	tgtgtgagcc	6780
45	ctgcctggac	agcgtgacgt	tctccgacgt	ggtgagcgcg	accgagccgt	gcaagccgtg	6840
	caccgagtgc	gtggggctcc	agagcatgtc	ggcgccgtgc	gtggaggccg	acgacgccgt	6900
	gtgccgctgc	gcctacggct	actaccagga	tgagacgact	gggcgctgcg	aggcgtgccg	6960
50	cgtgtgcgag	gcgggctcgg	gcctcgtgtt	ctcctgccag	gacaagcaga	acaccgtgtg	7020
++	cgaggagtgc	сссдасддса	cgtattccga	cgaggccaac	cacgtggacc	cgtgcctgcc	7080
	ctgcaccgtg	tgcgaggaca	ccgagcgcca	gctccgcgag	tgcacacgct	gggccgacgc	7140

	cgagtgcgag	gagatccctg	gccgttggat	tacacggtcc	acacccccag	agggctcgga	7200
	cagcacagcc	cccagcaccc	aggagcctga	ggcacctcca	gaaçaagacc	tcatagccag	7260
5	cacggtggca	ggtgtggtga	ccacagtgat	gggcagctcc	cagcccgtgg	tgacccgagg	7320
	caccaccgac	aacctcatcc	ctgtctattg	ctccatcctg	gctgctgtgg	ttgtgggcct	7380
	tgtggcctac	atagccttca	agaggtggaa	cagggggatc	ctctagagtc	gagtctagag	7440
10	tcgacaatca	acctctggat	tacaaaattt	gtgaaagatt	gactggtatt	cttaactatg	7500
	ttgctccttt	tacgctatgt	ggatacgctg	ctttaatgcc	tttgtatcat	gctattgctt	7560
	cccgtatggc	tttcattttc	tcctccttgt	ataaatcctg	gttgctgtct	ctttatgagg	7620
	agttgtggcc	cgttgtcagg	caacgtggcg	tggtgtgcac	tgtgtttgct	gacgcaaccc	7680
15	ccactggttg	gggcattgcc	accacctgtc	agctcctttc	cgggactttc	gctttccccc	7740
	tccctattgc	cacggcggaa	ctcatcgccg	cctgccttgc	ccgctgctgg	acaggggctc	7800
	ggctgttggg	cactgacaat	tccgtggtgt	tgtcggggaa	gctgacgtcc	tttccatggc	7860
20	tgctcgcctg	tgttgccacc	tggattctgc	gcgggacgtc	cttctgctac	gtcccttcgg	7920
	ccctcaatcc	agcggacctt	ccttcccgcg	gcctgctgcc	ggctctgcgg	cctcttccgc	7980
	gtcttcgcct	tcgccctcag	acgagtcgga	tctccctttg	ggccgcctcc	ccgcctggaa	8040
25	ttcgagctcg	gtacctttaa	gaccaatgac	ttacaaggca	gctgtagatc	ttagccactt	8100
	tttaaaagaa	aaggggggac	tggaagggct	aattcactcc	caacgaagac	aagatctgct	8160
	ttttgcttgt	actgggtctc	tctggttaga	ccagatctga	gcctgggagc	tctctggcta	8220
30	actagggaac	ccactgctta	agcctcaata	aagcttgcct	tgagtgcttc	aagtagtgtg	8280
	tgcccgtctg	ttgtgtgact	ctggtaacta	gagatccctc	agaccctttt	agtcagtgtg	8340
	gaaaatctct	agcagtagta	gttcatgtca	tcttattatt	cagtatttat	aacttgcaaa	8400
	gaaatgaata	tcagagagtg	agaggaactt	gtttattgca	gcttataatg	gttacaaata	8460
35	aagcaatagc	atcacaaatt	tcacaaataa	agcattttt	tcactgcatt	ctagttgtgg	8520
	tttgtccaaa	ctcatcaatg	tatcttatca	tgtctggctc	tagctatccc	gcccctaact	8580
	ccgcccagtt	ccg cccattc	tccgccccat	ggctgactaa	tttttttat	ttatgcagag	8640
40	gccgaggccg	cctcggcctc	tgagctattc	cagaagtagt	gaggaggctt	ttttggaggc	8700
	ctaggctttt	g c gtcgagac	gtacccaatt	cgccctatag	tgagtcgtat	tacgcgcgct	8760
	cactggccgt	cgttttacaa	cgtcgtgact	gggaaaaccc	tggcgttacc	caacttaatc	8820
45	gccttgcagc	acatccccct	ttcgccagct	ggcgtaatag	cgaagaggcc	cgcaccgatc	8880
	gcccttccca	acagttgcgc	agcctgaatg	gcgaatggcg	cgacgcgccc	tgtagcggcg	8940
	cattaagcgc	ggcgggtgtg	gtggttacgc	gcagcgtgac	cgctacactt	gccagcgccc	9000
50	tagcgcccgc	tcctttcgct	ttcttccctt	cctttctcgc	cacgttcgcc	ggctttcccc	9060
	gtcaagctct	aaatcggggg	ctccctttag	ggttccgatt	tagtgcttta	cggcacctcg	9120
	accccaaaaa	acttgattag	ggtgatggtt	cacgtagtgg	gccatcgccc	tgatagacgg	9180

	tttttcgccc tttgacgttg gagtccacg	t tctttaatag tggactcttg ttccaaactg	9240
	gaacaacact caaccctatc tcggtctat	t cttttgattt ataagggatt ttgccgattt	9300
5	cggcctattg gttaaaaaat gagctgatt	t aacaaaaatt taacgcgaat tttaacaaaa	9360
	tattaacgtt tacaatttcc		9380
	<210> 6		
10	<211> 9718		
	<212> DNA		
	<213> Artificial Sequence		
40	<220>		
15	<223> plasmid <220>		
	<221> misc_feature		
	<222> (1)(9718)		
	<223>		
20	<220>		
	221> misc_feature		
	<222> (1)(9718)		
	<223> plasmid containing the lentiviral vector con	struct RRL-MA2-lucif/GFP	
25	<400>		
	caggtggcac ttttcgggga aatgtgcgcg	gaacccctat ttgtttattt ttctaaatac	60
30	attcaaatat gtatccgctc atgagacaat	aaccctgata aatgcttcaa taatattgaa	120
	aaaggaagag tatgagtatt caacatttco	gtgtcgccct tattcccttt tttgcggcat	180
	tttgccttcc tgtttttgct cacccagaaa	a cgctggtgaa agtaaaagat gctgaagatc	240
35	agttgggtgc acgagtgggt tacatcgaac	tggatctcaa cagcggtaag atccttgaga	300
	gttttcgccc cgaagaacgt tttccaatga	tgagcacttt taaagttctg ctatgtggcg	360
	cggtattatc ccgtattgac gccgggcaag	agcaactcgg tegeegcata cactattete	420
40	agaatgactt ggttgagtac tcaccagtca	a cagaaaagca tettaeggat ggeatgaeag	480
	taagagaatt atgcagtgct gccataacca	tgagtgataa cactgcggcc aacttacttc	540
	tgacaacgat cggaggaccg aaggagctaa	ccgctttttt gcacaacatg ggggatcatg	600
4-	taactcocct toatcottoo gaaccogago	: tgaatgaagc cataccaaac gacgagcgtg	660
45			
-, 0		cgttgcgcaa actattaact ggcgaactac	720

	ttactctago	ttcccggcaa	caattaatag	actggatgga	ggcggataaa	gttgcaggac	780
	cacttctgcg	ctcggccctt	ccggctggct	ggtttattgc	tgataaatct	ggagccggtg	840
5	agcgtgggto	t cg cggtatc	attgcagcac	tggggccaga	tggtaagccc	tcccgtatcg	900
	tagttatcta	cacgacgggg	agtcaggcaa	ctatggatga	acgaaataga	cagatcgctg	960
	agataggtgo	ctcactgatt	aagcattggt	aactgtcaga	ccaagtttac	tcatatatac	1020
10	tttagattga	tttaaaactt	catttttaat	ttaaaaggat	ctaggtgaag	atcctttttg	1080
	ataatctcat	gaccaaaatc	ccttaacgtg	agttttcgtt	ccactgagcg	tcagaccccg	1140
	tagaaaagat	caaaggatct	tcttgagatc	ctttttttct	gcgcgtaatc	tgctgcttgc	1200
15	aaacaaaaaa	accaccgcta	ccagcggtgg	tttgtttgcc	ggatcaagag	ctaccaactc	1260
,,,	tttttccgaa	ggtaactggc	ttcagcagag	cgcagatacc	aaatactgtc	cttctagtgt	1320
	agccgtagtt	aggccaccac	ttcaagaact	ctgtagcacc	gcctacatac	ctcgctctgc	1380
	taatcctgtt	accagtggct	gctgccagtg	gcgataagtc	gtgtcttacc	gggttggact	1440
20	caagacgata	gttaccggat	aaggcgcagc	ggtcgggctg	aacggggggt	tcgtgcacac	1500
	agcccagctt	ggagcgaacg	acctacaccg	aactgagata	cctacagcgt	gagctatgag	1560
	aaagcgccac	gcttcccgaa	gggagaaagg	cggacaggta	tccggtaagc	ggcagggtcg	1620
25	gaacaggaga	gcgcacgagg	gagcttccag	ggggaaacgc	ctggtatctt	tatagtcctg	1680
	tcgggtttcg	ccacctctga	cttgagcgtc	gatttttgtg	atgctcgtca	ggggggcgga	1740
	gcctatggaa	aaacgccagc	aacgcggcct	ttttacggtt	cctggccttt	tgctggcctt	1800
30	ttgctcacat	gttctttcct	gcgttatccc	ctgattctgt	ggataaccgt	attaccgcct	1860
	ttgagtgagd	tgataccgct	cgccgcagcc	gaacgaccga	gcgcagcgag	tcagtgagcg	1920
	aggaagcgga	agagcgccca	atacgcaaac	cgcctctccc	cgcgcgttgg	ccgattcatt	1980
35	aatgcagctg	gcacgacagg	tttcccgact	ggaaagcggg	cagtgagcgc	aacgcaatta	2040
	atgtgagtta	gctcactcat	taggcacccc	aggctttaca	ctttatgctt	ccggctcgta	21.00
	tgttgtgtgg	aattgtgagc	ggataacaat	ttcacacagg	aaacagctat	gaccatgatt	2160
4.5	acgccaagcg	cgcaattaac	cctcactaaa	gggaacaaaa	gctggagctg	caagcttaat	2220
40	gtagtcttat	gcaatactct	tgtagtcttg	caacatggta	acgatgagtt	agcaacatgc	2280
	cttacaagga	gagaaaaagc	accgtgcatg	ccgattggtg	gaagtaaggt	ggtacgatcg	2340
	tgccttatta	ggaaggcaac	agacgggtct	gacatggatt	ggacgaacca	ctgaattgcc	2400
45	gcattgcaga	gatattgtat	ttaagtgcct	agctcgatac	aataaacggg	tctctctggt	2460
	tagaccagat	ctgagcctgg	gagctctctg	gctaactagg	gaacccactg	cttaagcctc	2520
	aataaagctt	gccttgagtg	cttcaagtag	tgtgtgcccg	tctgttgtgt	gactctggta	2580
50	actagagato	cctcagaccc	ttttagtcag	tgtggaaaat	ctctagcagt	ggcgcccgaa	2640
	cagggacctg	aaagcgaaag	ggaaaccaga	gctctctcga	cgcaggactc	ggcttgctga'.	2700
	agcgcgcacg	gcaagaggcg	aggggcggcg	actggtgagt	асдссааааа	ttttgactag	2760

	cggaggctag a	aaggagagag	atgggtgcga	gagcgtcagt	attaagcggg	ggagaattag	2820
	atcgcgatgg (gaaaaaattc	ggttaaggcc	agggggaaag	aaaaaatata	aattaaaaca	2880
5	tatagtatgg g	gcaagcaggg	agctagaacg	attcgcagtt	aatcctggcc	tgttagaaac	2940
	atcagaaggc 1	tgtagacaaa	tactgggaca	gctacaacca	tcccttcaga	caggatcaga	3000
	agaacttaga 1	tcattatata	atacagtagc	aaccetctat	tgtgtgcatc	aaaggataga	3060
10	gataaaagac a	accaaggaag	ctttagacaa	gatagaggaa	gagcaaaaca	aaagtaagac	3120
	caccgcacag o	caagcggccg	ctgatcttca	gacctggagg	aggagatatg	agggacaatt	3180
	ggagaagtga a	attatataaa	tataaagtag	taaaaattga	accattagga	gtagcaccca	3240
15	ccaaggcaaa q	gagaagagtg	gtgcagagag	aaaaaagagc	agtgggaata	ggagctttgt	3300
	tccttgggtt d	cttgggagca	gcaggaagca	ctatgggcgc	agcctcaatg	acgctgacgg	3360
	tacaggccag a	acaattattg	tctggtatag	tgcagcagca	gaacaatttg	ctgagggcta	3420
	ttgaggcgca a	acagcatctg	ttgcaactca	cagtctgggg	catcaagcag	ctccaggcaa	3480
20	gaatcctggc t	tgtggaaaga	tacctaaagg	atcaacagct	cctggggatt	tggggttgct	3540
	ctggaaaact d	catttgcacc	actgctgtgc	cttggaatgc	tagttggagt	aataaatctc	3600
	tggaacagat t	tggaatcaca	cgacctggat	ggagtgggac	agagaaatta	acaattacac	3660
25	aagcttaata d	cactccttaa	ttgaagaatc	gcaaaaccag	caagaaaaga	atgaacaaga	3720
	attattggaa t	ttagataaat	gggcaagttt	gtggaattgg	tttaacataa	caaattggct	3780
	gtggtatata a	aaattattca	taatgatagt	aggaggcttg	gtaggtttaa	gaatagtttt	3840
30	tgctgtactt t	tctatagtga	atagagttag	gcagggatat	tcaccattat	cgtttcagac	3900
	ccacctccca a	accccgaggg	gacccgacag	gcccgaagga	atagaagaag	aaggtggaga	3960
	gagagacaga g	gacagatcca	ttcgattagt	gaacggatct	cgacggtatc	ggttaacttt	4020
<i>35</i>	taaaagaaaa g	ggggggattg	gggggtacag	tgcaggggaa	agaatagtag	acataatagc	4080
	aacagacata c	caaactaaag	aattacaaaa	acaaattaca	aaaattcaaa	attttatcga	4140
	tcacgagact a	agcctcga ga	gatctgatca	taatcagcca	taccacattt	gtagaggttt	4200
	tacttgcttt a	aaaaacctc	ccacacctcc	ccctgaacct	gaaacataaa	atgaatgcaa	4260
40	ttgttgttgt t	taacttgttt	attgcagctt	ataatggtta	caaataaggc	aatagcatca	4320
	caaatttcac a	aataaggca	tttttttcac	tgcattctag	ttttggtttg	tccaaactca	4380
	tcaatgtatc t	ttatcatgtc	tggatctcaa	atccctcgga	agctgcgcct	gtcttaggtt	4440
45	ggagtgatac a	stttttatca	cttttacccg	tctttggatt	aggcagtagc	tctgacggcc	4500
	ctcctgtctt a	iggttagtga	aaaatgtcac	tctcttaccc	gtcattggct	gtccagctta	4560
	gctcgcaggg g	gaggtggtct	ggatecetgg	atatcaagaa	ttcgtcctcg	agctcagatc	4620
50	Ctctagaatt a	cacggcgat	ctttccgccc	ttcttggcct	ttatgaggat	ctctctgatt	4680
	tttcttgcgt c	gagttttcc	ggtaagacct	ttcggtactt	cgtccacaaa	cacaactcct	4740
	ccgcgcaact t	tttcgcggt	tgttacttga	ctggccacgt	aatccacgat	ctctttttcc	4800

	gtcatcgtct	ttccgtgctc	caaaacaaca	acggcggcgg	gaagttcacc	ggcgtcatcg	4860
		ctgcgacacc					4920
5		gagccacctg					4980
		gttcgtcttc					5040
	ttgtcaatca	aggcgttggt	cgcttccgga	ttgtttacat	aaccggacat	aatcatagga	5100
10	cctctcacac	: acagttcgcc	tctttgatta	acgcccagcg	ttttcccggt	atccagatcc	5160
,,,	acaaccttcg	cttcaaaaaa	tggaacaact	ttaccgaccg	cgcccggttt	atcatccccc	5220
	tcgggtgtaa	tcagaatagc	tgatgtagtc	tcagtgagcc	catatccttg	cctgatacct	5280
	ggcagatgga	acctcttggc	aaccgcttcc	ccgacttcct	tagagagggg	agcgccacca	5340
15	gaagcaatti	cgtgtaaatt	agataaatcg	tatttgtcaa	tcagagtgct	tttggcgaag	5400
	aaggagaata	gggttggcac	cagcagcgca	ctttgaatct	tgtaatcctg	aaggctcctc	5460
	agaaacagct	cttcttcaaa	tctatacatt	aagacgactc	gaaatccaca	tatcaaatat	5520
20	ccgagtgtaç	taaacattcc	aaaaccgtga	tggaatggaa	caacacttaa	aatcgcagta	5580
	tccggaatga	tttgattgcc	aaaaatagga	tctctggcat	gcgagaatct	cacgcaggca	5640
	gttctatgaç	gcagagcgac	acctttaggc	agaccagtag	atccagagga	gttcatgatc	5700
25	agtgcaattg	tcttgtccct	atcgaaggac	tctggcacaa	aatcgtattc	attaaaaccg	5760
	ggaggtagat	gagatgtgac	gaacgtgtac	atcgactgaa	atccctggta	atccgtttta	5820
	gaatccatga	taataatttt	ttggatgatt	gggagctttt	tttgcacgtt	caaaattttt	5880
30	tgcaacccct	. ttttggaaac	gaacaccacg	gtaggctgcg	aaatgcccat	actgttgagc	5940
	aattcacgtt	cattataaat	gtcgttcgcg	ggcgcaactg	caactccgat	aaataacgcg	6000
	cccaacaccg	gcataaagaa	ttgaagagag	ttttcactgc	atacgacgat	tctgtgattt	6060
35	gtattcagco	catatcgttt	catagettet	gccaaccgaa	cggacatttc	gaagtactca	6120
	gcgtaagtga	tgtccacctc	gatatgtgca	tctgtaaaag	caattgttcc	aggaaccagg	6180
	gcgtatctct	tcatagcctt	atgcagttgc	tctccagcgg	ttccatcttc	cagcggatag	6240
	aatggcgccg	ggcctttctt	tatgtttttg	gcgtcttcca	tggtgaattc	cgatccccct	6300
40	gggagagaga	gtcggtgatt	cggtcaacga	gggagccgac	tgccgacgtg	cgctccggag	6360
	gcttgcagaa	tgcggaacac	cgcgcgggca	ggaacagggc	ccacactacc	gccccacacc	6420
	ccgcctcccg	caccgcccct	tcccggccgc	tgctctcggc	gcgccccgct	gagcagccgc	6480
45	tattggccac	agcccatcgc	ggtcggcgcg	ctgccattgc	tccctggcgc	tgtccgtctg	6540
	cgagggtact	agtgagacgt	gcggcttccg	tttgtcacgt	ccggcacgcc	gcgaaccgca	6600
	aggaacctto	ccgacttagg	ggcggagcag	gaagcgtcgc	cggggggccc	acaagggtag	6660
50	cggcgaagat	ccgggtgacg	ctgcgaacgg	acgtgaagaa	tgtgcgagac	ccagggtcgg	6720
		tttcccggaa				***	6780
	tgccttggaa	aaggcgcaac	cccaaccccg	tgggaattcg	atatcaagct	tgcctatgtt	6840

	cttttggaat	ctatccaagt	cttatgtaaa	tgcttatgta	aaccataata	taaaagagtg	6900
	ctgattttt	gagtaaactt	gcaacagtcc	taacattctt	ctctcgtgtg	tttgtgtctg	6960
5	ttcgccatcc	cgtctccgct	cgtcacttat	ccttcacttt	tcagagggtc	ccccgcaga	7020
	tcccggtcac	cctcaggtcg	ggtcgacaac	catggtgagc	aagggcgagg	agctgttcac	7080
	cggggtggtg	cccatcctgg	tcgagctgga	cggcgacgta	aacggccaca	agttcagcgt	7140
10	gtccggcgag	ggcgagggcg	atgccaccta	cggcaagctg	accctgaagt	tcatctgcac	7200
	caccggcaag	ctgcccgtgc	cctggcccac	cctcgtgacc	accctgacct	acggcgtgca	7260
	gtgcttcagc	cgctaccccg	accacatgaa	gcagcacgac	ttcttcaagt	ccgccatgcc	7320
45	cgaaggctac	gtccaggagc	gcaccatctt	cttcaaggac	gacggcaact	acaagacccg	7380
15	cgccgaggtg	aagttcgagg	gcgacaccct	ggtgaaccgc	atcgagctga	agggcatcga	7440
	cttcaaggag	gacggcaaca	tcctggggca	caagctggag	tacaactaca	acagccacaa	7500
	cgtctatatc	atggccgaca	agcagaagaa	cggcatcaag	gtgaacttca	agatccgcca	7560
20	caacatcgag	gacggcagcg	tgcagctcgc	cgaccactac	cagcagaaca	cccccatcgg	7620
	cgacggcccc	gtgctgctgc	ccgacaacca	ctacctgagc	acccagtccg	ccctgagcaa	7680
	agaccccaac	gagaagcgcg	atcacatggt	cctgctggag	ttcgtgaccg	ccgccgggat	7740
25	cactctcggc	atggacgagc	tgtacaagta	aagcggcctc	gacaatcaac	ctctggatta	7800
	caaaatttgt	gaaagattga	ctggtattct	taactatgtt	gctcctttta	cgctatgtgg	7860
	atacgctgct	ttaatgcctt	tgtatcatgc	tattgcttcc	cgtatggctt	tcattttctc	7920
30	ctccttgtat	aaatcctggt	tgctgtctct	ttatgaggag	ttgtggcccg	ttgtcaggca	7980
	acgtggcgtg	gtgtgcactg	tgtttgctga	cgcaaccccc	actggttggg	gcattgccac	8040
	cacctgtcag	ctcctttccg	ggactttcgc	tttccccctc	cctattgcca	cggcggaact	8100
35	categeegee	tgccttgccc	gctgctggac	aggggctcgg	ctgttgggca	ctgacaattc	8160
00	cgtggtgttg	tcggggaagc	tgacgtcctt	tccatggctg	ctcgcctgtg	ttgccacctg	8220
	gattctgcgc	gggacgtcct	tctgctacgt	cccttcggcc	ctcaatccag	cggaccttcc	8280
	ttcccgcggc	ctgctgccgg	ctctgcggcc	tcttccgcgt	cttcgccttc	gccctcagac	8340
40	gagtcggatc	tccctttggg	ccgcctcccc	gcctggaatt	cgagctcggt	acctttaaga	8400
·	ccaatgactt	acaaggcagc	tgtagatctt	agccactttt	taaaagaaaa	ggggggactg	8460
	gaagggctaa	ttcactccca	acgaagacaa	gatctgcttt	ttgcttgtac	tgggtctctc	8520
45	tggttagacc	agatctgagc	ctgggagctc	tctggctaac	tagggaaccc	actgcttaag	8580
	cctcaataaa	gcttgccttg	agtgcttcaa	gtagtgtgtg	cccgtctgtt	gtgtgactct	8640
	ggtaactaga	gatccctcag	acccttttag	tcagtgtgga	aaatctctag	cagtagtagt	8700
50	tcatgtcatc	ttattattca	gtatttataa	cttgcaaaga	aatgaatatc	agagagtgag	8760
	aggaacttgt	ttattgcagc	ttataatggt	tacaaataaa	gcaatagcat	cacaaatttc	8820
	acaaataaag	cattttttc	actgcattct	agttgtggtt	tgtccaaact	catcaatgta	8880

	tcttatcatg	tctggctcta	gctatcccgc	ccctaactcc	gcccagttcc	gcccattctc	8940
	cgccccatgg	ctgactaatt	ttttttattt	atgcagaggc	cgaggccgcc	tcggcctctg	9000
5	agctattcca	gaagtagtga	ggaggctttt	ttggaggcct	aggcttttgc	gtcgagacgt	9060
	acccaattcg	ccctatagtg	agtcgtatta	cgcgcgctca	ctggccgtcg	ttttacaacg	9120
	tcgtgactgg	gaaaaccctg	gcgttaccca	acttaatcgc	cttgcagcac	atcccccttt	9180
10	cgccagctgg	cgtaatagcg	aagaggcccg	caccgatcgc	ccttcccaac	agttgcgcag	9240
	cctgaatggc	gaatggcgcg	acgcgccctg	tagcggcgca	ttaagcgcgg	cgggtgtggt	9300
	ggttacgcgc	agcgtgaccg	ctacacttgc	cagcgcccta	gcgcccgctc	ctttcgcttt	9360
	cttcccttcc	tttctcgcca	cgttcgccgg	ctttccccgt	caagctctaa	atcgggggct	9420
15	ccctttaggg	ttccgattta	gtgctttacg	gcacctcgac	сссаааааас	ttgattaggg	9480
	tgatggttca	cgtagtgggc	catcgccctg	atagacggtt	tttcgccctt	tgacgttgga	9540
	gtccacgttc	tttaatagtg	gactcttgtt	ccaaactgga	acaacactca	accctatctc	9600
20	ggtctattct	tttgatttat	aagggatttt	gccgatttcg	gcctattggt	taaaaaatga	9660
	gctgatttaa	caaaaattta	acgcgaattt	taacaaaata	ttaacgttta	caatttcc	9718
	<210> 7						
25	<211> 9490						
	<212> DNA						
	<213> Artificial Seque	nce					
	<220>						
30	<223> plasmid						
	<220>						
	<221> misc_feature						
	<222> (1)(9490) <223>						
35	\223 >						
	<220>						
	<221> misc_feature						
	<222> (1)(9490)						
	<223> plasmid contain	ning the lentivin	al vector constr	uct CCL-MA3-0	GFP/de ItaLNG	SER	
40	<400> 7						
	caggtggcac ttttcgggga	aatotococo oa	acceptat thetitat	Itt ttctaaatac	60		
		andianana an	account ngmai	ii iioiaaaao	00		

	attcaaatat	gtatccgctc	atgagacaat	aaccctgata	aatgcttcaa	taatattgaa	120
	aaaggaagag	tatgagtatt	caacatttcc	gtgtcgccct	tattcccttt	tttgcggcat	180
5	tttgccttcc	tgtttttgct	cacccagaaa	cgctggtgaa	agtaaaagat	gctgaagatc	240
	agttgggtgc	acgagtgggt	tacatcgaac	tggatctcaa	cagcggtaag	atccttgaga	300
	gttttcgccc	cgaagaacgt	tttccaatga	tgagcacttt	taaagttctg	ctatgtggcg	360
10	cggtattatc	ccgtattgac	gccgggcaag	agcaactcgg	tcgccgcata	cactattctc	420
	agaatgactt	ggttgagtac	tcaccagtca	cagaaaagca	tcttacggat	ggcatgacag	480
	taagagaatt	atgcagtgct	gccataacca	tgagtgataa	cactgcggcc	aacttacttc	540
15	tgacaacgat	cggaggaccg	aaggagctaa	ccgctttttt	gcacaacatg	ggggatcatg	600
	taactcgcct	tgatcgttgg	gaaccggagc	tgaatgaagc	cataccaaac	gacgagcgtg	660
	acaccacgat	gcctgtagca	atggcaacaa	cgttgcgcaa	actattaact	ggcgaactac	720
	ttactctagc	ttcccggcaa	caattaatag	actggatgga	ggcggataaa	gttgcaggac	780
20	cacttctgcg	ctcggccctt	ccggctggct	ggtttattgc	tgataaatct	ggagccggtg	840
	agcgtgggtc	tcgcggtatc	attgcagcac	tggggccaga	tggtaagccc	tcccgtatcg	900
	tagttatcta	cacgacgggg	agtcaggcaa	ctatggatga	acgaaataga	cagatcgctg	960
25	agataggtgc	ctcactgatt	aagcattggt	aactgtcaga	ccaagtttac	tcatatatac	1020
	tttagattga	tttaaaactt	catttttaat	ttaaaaggat	ctaggtgaag	atcctttttg	1080
	ataatctcat	gaccaaaatc	ccttaacgtg	agttttcgtt	ccactgagcg	tcagaccccg	1140
30	tagaaaagat	caaaggatct	tcttgagatc	ctttttttct	gcgcgtaatc	tgctgcttgc	1200
	aaacaaaaa	accaccgcta	ccagcggtgg	tttgtttgcc	ggatcaagag	ctaccaactc	1260
	tttttccgaa	ggtaactggc	ttcagcagag	cgcagatacc	aaatactgtc	cttctagtgt	1320
35	agccgtagtt	aggccaccac	ttcaagaact	ctgtagcacc	gcctacatac	ctcgctctgc	1380
	taatcctgtt	accagtggct	gctgccagtg	gcgataagtc	gtgtcttacc	gggttggact	1440
	caagacgata	gttaccggat	aaggcgcagc	ggtcgggctg	aacggggggt	tcgtgcacac	1500
40	agcccagctt	ggagcgaacg	acctacaccg	aactgagata	cctacagcgt	gagctatgag	1560
,,,	aaagcgccac	gcttcccgaa	gggagaaagg	cggacaggta	tccggtaagc	ggcagggtcg	1620
	gaacaggaga	gcgcacgagg	gagcttccag	ggggaaacgc	ctggtatctt	tatagtcctg	1680
	tcgggtttcg	ccacctctga	cttgagcgtc	gatttttgtg	atgctcgtca	ggggggcgga	1740
45	gcctatggaa	aaacgccagc	aacgcggcct	ttttacggtt	cctggccttt	tgctggcctt	1800
	ttgctcacat	gttctttcct	gcgttatccc	ctgattctgt	ggataaccgt	attaccgcct	1860
	ttgagtgagc	tgataccgct	cgccgcagcc	gaacgaccga	gcgcagcgag	tcagtgagcg	1920
50	aggaagcgga	agagcgccca	atacgcaaac	cgcctctccc	cgcgcgttgg	ccgattcatt	1980
	aatgcagctg	gcacgacagg	tttcccgact	ggaaagcggg	cagtgagcgc	aacgcaatta	2040
	atgtgagtta	gctcactcat	taggcacccc	aggctttaca	ctttatgctt	ccggctcgta	2100

	tgttgtgtgg	aattgtgagc	ggataacaat	ttcacacagg	aaacagctat	gaccatgatt	2160
•	acgccaagcg	cgcaattaac	cctcactaaa	gggaacaaaa	gctggagctg	caagettgge	2220
5	cattgcatac	gttgtatcca	tatcataata	tgtacattta	tattggctca	tgtccaacat	2280
	taccgccatg	ttgacattga	ttattgacta	gttattaata	gtaatcaatt	acggggtcat	2340
	tagttcatag	cccatatatg	gagttccgcg	ttacataact	tacggtaaat	ggcccgcctg	2400
10	gctgaccgcc	caacgacccc	cgcccattga	cgtcaataat	gacgtatgtt	cccatagtaa	2460
	cgccaatagg	gactttccat	tgacgtcaat	gggtggagta	tttacggtaa	actgcccact	2520
	tggcagtaca	tcaagtgtat	catatgccaa	gtacgccccc	tattgacgtc	aatgacggta	2580
15	aatggcccgc	ctggcattat	gcccagtaca	tgaccttatg	ggactttcct	acttggcagt	2640
15	acatctacgt	attagtcatc	gctattacca	tggtgatgcg	gttttggcag	tacatcaatg	2700
	ggcgtggata	gcggtttgac	tcacggggat	ttccaagtct	ccaccccatt	gacgtcaatg	2760
	ggagtttgtt	ttggcaccaa	aatcaacggg	actttccaaa	atgtcgtaac	aactccgccc	2820
20	cattgacgca	aatgggcggt	aggcgtgtac	ggtgggaggt	ctatataagc	agagctcgtt	2880
	tagtgaaccg	gggtctctct	ggttagacca	gatctgagcc	tgggagctct	ctggctaact	2940
	agggaaccca	ctgcttaagc	ctcaataaag	cttgccttga	gtgcttcaag	tagtgtgtgc	3000
25	ccgtctgttg	tgtgactctg	gtaactagag	atccctcaga	cccttttagt	cagtgtggaa	3060
	aatctctagc	agtggcgccc	gaacagggac	ctgaaagcga	aagggaaacc	agagctctct	3120
	cgacgcagga	ctcggcttgc	tgaagcgcgc	acggcaagag	gcgaggggcg	gcgactggtg	3180
30	agtacgccaa	aaattttgac	tagcggaggc	tagaaggaga	gagatgggtg	cgagagcgtc	3240
	agtattaagc	gggggagaat	tagatcgcga	tgggaaaaaa	ttcggttaag	gccaggggga	3300
	aagaaaaaat	ataaattaaa	acatatagta	tgggcaagca	gggagctaga	acgattcgca	3360
35	gttaatcctg	gcctgttaga	aacatcagaa	ggctgtagac	aaatactggg	acagctacaa	3420
	ccatcccttc	agacaggatc	agaagaactt	agatcattat	ataatacagt	agcaaccctc	3480
	tattgtgtgc	atcaaaggat	agagataaaa	gacaccaagg	aagctttaga	caagatagag	3540
	gaagagcaaa	acaaaagtaa	gaccaccgca	cagcaagcgg	ccgctgatct	tcagacctgg	3600
40	aggaggagat	atgagggaca	attggagaag	tgaattatat	aaatataaag	tagtaaaaat	3660
	tgaaccatta	ggagtagcac	ccaccaaggc	aaagagaaga	gtggtgcaga	gagaaaaaag	3720
	agcagtggga	ataggagctt	tgttccttgg	gttcttggga	gcagcaggaa	gcactatggg	3780
45	cgcagcctca	atgacgctga	cggtacaggc	cagacaatta	ttgtctggta	tagtgcagca	3840
	gcagaacaat	ttgctgaggg	ctattgaggc	gcaacagcat	ctgttgcaac	tcacagtctg	3900
	gggcatcaag	cagctccagg	caagaatcct	ggctgtggaa	agatacctaa	aggatcaaca	3960
50	gctcctgggg	atttggggtt	gctctggaaa	actcatttgc	accactgctg	tgccttggaa	4020
	tgctagttgg	agtaataaat	ctctggaaca	gatttggaat	cacacgacct	ggatggagtg	4080
	ggacagagaa	attaacaatt	acacaagctt	aatacactcc	ttaattgaag	aatcgcaaaa	4140

	ccagcaagaa	aagaatgaac	aagaattatt	ggaattagat	aaatgggcaa	gtttgtggaa	4200
	ttggtttaac	ataacaaatt	ggctgtggta	tataaaatta	ttcataatga	tagtaggagg	4260
5	cttggtaggt	ttaagaatag	tttttgctgt	actttctata	gtgaatagag	ttaggcaggg	4320
	atattcacca	ttatcgtttc	agacccacct	cccaaccccg	aggggacccg	acaggcccga	4380
	aggaatagaa	gaagaaggtg	gagagagaga	cagagacaga	tccattcgat	tagtgaacgg	4440
10	atctcgacgg	tatcggttaa	cttttaaaag	aaaagggggg	attggggggt	acagtgcagg	4500
	ggaaagaata	gtagacataa	tagcaacaga	catacaaact	aaagaattac	aaaaacaaat	4560
	tacaaaaatt	caaaatttta	tcgatcacga	gactagcctc	gaggagatct	gatcataatc	4620
15	agccatacca	catttgtaga	ggttttactt	gctttaaaaa	acctcccaca	cctcccctg	4680
	aacctgaaac	ataaaatgaa	tgcaattgtt	gttgttaact	tgtttattgc	agcttataat	4740
	ggttacaaat	aaggcaatag	catcacaaat	ttcacaaata	aggcattttt	ttcactgcat	4800
	tctagttttg	gtttgtccaa	actcatcaat	gtatcttatc	atgtctggat	ctcaaatccc	4860
20	tcggaagctg	cgcctgtctt	aggttggagt	gatacatttt	tatcactttt	acccgtcttt	4920
	ggattaggca	gtagctctga	cggccctcct	gtcttaggtt	agtgaaaaat	gtcactctct	4980
	tacccgtcat	tggctgtcca	gcttagctcg	caggggaggt	ggtctggatc	caccatgtct	5040
25	agagaatagg	aacttcggaa	taggaacttc	gcggccgctt	tacttgtaca	gctcgtccat	5100
	gccgagagtg	atcccggcgg	cggtcacgaa	ctccagcagg	accatgtgat	cgcgcttctc	5160
	gttggggtct	ttgctcaggg	cggactgggt	gctcaggtag	tggttgtcgg	gcagcagcac	5220
30	ggggccgtcg	ccgatggggg	tgttctgctg	gtagtggtcg	gcgagctgca	cgctgccgtc	5280
	ctcgatgttg	tggcggatct	tgaagttcac	cttgatgccg	ttcttctgct	tgtcggccat	5340
	gatatagacg	ttgtggctgt	tgtagttgta	ctccagcttg	tgccccagga	tgttgccgtc	5400
35	ctccttgaag	tcgatgccct	tcagctcgat	gcggttcacc	agggtgtcgc	cctcgaactt	5460
	cacctcggcg	cgggtcttgt	agttgccgtc	gtccttgaag	aagatggtgc	gctcctggac	5520
	gtagccttcg	ggcatggcgg	acttgaagaa	gtcgtgctgc	ttcatgtggt	cggggtagcg	5580
40	gctgaagcac	tgcacgccgt	aggtcagggt	ggtcacgagg	gtgggccagg	gcacgggcag	5640
	cttgccggtg	gtgcagatga	acttcagggt	cagcttgccg	taggtggcat	cgccctcgcc	5700
	ctcgccggac	acgctgaact	tgtggccgtt	tacgtcgccg	tccagctcga	ccaggatggg	5760
	caccaccccg	gtgaacagct	cctcgccctt	gctcaccatg	gttgtcgacc	cgacctgagg	5820
45	gtgaccggga	tctgcggggg	gaccctctga	aaagtgaagg	ataagtgacg	agcgġagacg	5880
	ggatggcgaa	cagacacaaa	cacacgagag	aagaatgtta	ggactgttgc	aagtttactc	5940
	aaaaaatcag	cactctttta	tattatggtt	tacataagca	tttacataag	acttggatag	6000
50	attccaaaag						6060
	ttccaaggca						6120
	cgcagcggcg	ccgaccctgg	gtctcgcaca	ttcttcacgt	ccgttcgcag	cgtcacccgg	6180

	atcttcgccg	ctacccttgt	gggccccccg	gcgacgcttc	ctgctccgcc	cctaagtcgg	6240
	gaaggttcct	tgcggttcgc	ggcgtgccgg	acgtgacaaa	cggaagccgc	acgtctcact	6300
5	agtaccctcg	cagacggaca	gcgccaggga	gcaatggcag	cgcgccgacc	gcgatgggct	6360
	gtggccaata	gcggctgctc	agcggggcgc	gccgagagca	gcggccggga	aggggcggtg	6420
	cgggaggcgg	ggtgtggggc	ggtagtgtgg	gccctgttcc	tgcccgcgcg	gtgttccgca	6480
10	ttctgcaagc	ctccggagcg	cacgtcggca	gtcggctccc	tcgttgaccg	aatcaccgac	6540
	ctctctcccc	agggggatcc	cccgggctgc	aggaattcgg	gccgcggcca	gctccggcgg	6600
	gcagggggg	cgctggagcg	cagcgcagcg	cagccccatc	agtccgcaaa	gcggac cg ag	6660
15	ctggaagtcg	agcgctgccg	cgggaggcgg	gcgatggggg	caggtgccac	cggccgcgcc	6720
	atggacgggc	cgcgcctgct	gctgttgctg	cttctggggg	tgtcccttgg	aggtgccaag	6780
	gaggcatgcc	ccacaggcct	gtacacacac	agcggtgagt	gctgcaaagc	ctgcaacctg	6840
	ggcgagggtg	tggcccagcc	ttgtggagcc	aaccagaccg	tgtgtgagcc	ctgcctggac	6900
20	agcgtgacgt	tctccgacgt	ggtgagcgcg	accgagccgt	gcaagccgtg	caccgagtgc	6960
	gtggggctcc	agagcatgtc	ggcgccgtgc	gtggaggccg	acgacgccgt	gtgccgctgc	7020
	gcctacggct	actaccagga	tgagacgact	gggcgctgcg	aggcgtgccg	cgtgtgcgag	7080
25	gcgggctcgg	gcctcgtgtt	ctcctgccag	gacaagcaga	acaccgtgtg	cgaggagtgc	7140
	cccgacggca	cgtattccga	cgaggccaac	cacgtggacc	cgtgcctgcc	ctgcaccgtg	7200
	tgcgaggaca	ccgagcgcca	gctccgcgag	tgcacacgct	gggccgacgc	cgagtgcgag	7260
30	gagatccctg	gccgttggat	tacacggtcc	acacccccag	agggctcgga	cagcacagcc	7320
	cccagcaccc	aggagcctga	ggcacctcca	gaacaagacc	tcatagccag	cacggtggca	7380
	ggtgtggtga	ccacagtgat	gggcagctcc	cagcccgtgg	tgacccgagg	caccaccgac	7440
35	aacctcatcc	ctgtctattg	ctccatcctg	gctgctgtgg	ttgtgggcct	tgtggcctac	7500
	atagccttca	agaggtggaa	cagggggatc	ctctagagtc	gagtctagag	tcgacaatca	7560
	acctctggat	tacaaaattt	gtgaaagatt	gactggtatt	cttaactatg	ttgctccttt	7620
40	tacgctatgt	ggatacgctg	ctttaatgcc	tttgtatcat	gctattgctt	cccgtatggc	7680
10	tttcattttc	tcctccttgt	ataaatcctg	gttgctgtct	ctttatgagg	agttgtggcc	7740
	cgttgtcagg	caacgtggcg	tggtgtgcac	tgtgtttgct	gacgcaaccc	ccactggttg	7800
	gggcattgcc	accacctgtc	agctcctttc	cgggactttc	gctttccccc	tccctattgc	7860
45	cacggcggaa	ctcatcgccg	cctgccttgc	ccgctgctgg	acaggggctc	ggctgttggg	7920
	cactgacaat	tccgtggtgt	tgtcggggaa	gctgacgtcc	tttccatggc	tgctcgcctg	7980
	tgttgccacc	tggattctgc	gcgggacgtc	cttctgctac	gtcccttcgg	ccctcaatcc	8040
50	agcggacctt	ccttcccgcg	gcctgctgcc	ggctctgcgg	cctcttccgc	gtcttcgcct	8100
	tcgccctcag	acgagtcgga	tctccctttg	ggccgcctcc	ccgcctggaa	ttcgagctcg	8160
	gtacctttaa	gaccaatgac	ttacaaggca	gctgtagatc	ttagccactt	tttaaaagaa	8220

```
aaggggggac tggaagggct aattcactcc caacgaagac aagatctgct ttttgCttgt
                                                                                    8280
                                                                                    8340
             actgggtctc tctggttaga ccagatctga gcctgggagc tctctqqcta actagggaac
                                                                                    8400
             ccactgctta agcctcaata aagcttgcct tgagtgcttc aagtagtgtg tgcccgtctg
5
             ttgtgtgact ctggtaacta gagatccctc agaccctttt agtcagtgtg gaaaatctct
                                                                                    8460
             agcagtagta gttcatgtca tcttattatt cagtatttat aacttgcaaa gaaatgaata
                                                                                    8520
             tcagagagtg agaggaactt gtttattgca gcttataatg gttacaaata aagcaatagc
                                                                                    8580
10
                                                                                    8640
             atcacaaatt tcacaaataa agcatttttt tcactgcatt ctagttgtgg tttgtccaaa
                                                                                    8700
             ctcatcaatg tatcttatca tgtctggctc tagctatccc gcccctaact ccgcccagtt
             ccgcccattc tccgccccat ggctgactaa tttttttat ttatgcagag gccgaggccg
                                                                                    8760
15
             cctcggcctc tgagctattc cagaagtagt gaggaggctt ttttggaggc ctaggctttt
                                                                                    8820
             gcgtcgagac gtacccaatt cgccctatag tgagtcgtat tacgcgcgct cactggccgt
                                                                                    8880
             cgttttacaa cgtcgtgact gggaaaaccc tggcgttacc caacttaatc gccttgcagc
                                                                                    8940
20
                                                                                    9000
             acatececet tregecaget ggegtaatag egaagaggee egeacegate gecettecea
             acagttgcgc agcctgaatg gcgaatggcg cgacgcgccc tgtagcggcg cattaagcgc
                                                                                    9060
             ggcgggtgtg gtggttacgc gcagcgtgac cgctacactt gccagcgccc tagcgcccgc
                                                                                    9120
25
                                                                                    9180
             tecttteget tecttecett cetttetege caegttegee ggettteece gteaagetet
             aaatcggggg ctccctttag ggttccgatt tagtgcttta cggcacctcg accccaaaaa
                                                                                    9240
             acttgattag ggtgatggtt cacgtagtgg gccatcgccc tgatagacgg tttttcgccc
                                                                                    9300
             tttgacgttg gagtccacgt tctttaatag tggactcttg ttccaaactg gaacaacact
                                                                                    9360
30
             caaccctatc toggtctatt cttttgattt ataagggatt ttgccgattt cggcctattg
                                                                                    9420
             gttaaaaaat gagctgattt aacaaaaatt taacgcgaat tttaacaaaa tattaacgtt
                                                                                    9480
             tacaatttcc
                                                                                    9490
35
        <210>8
        <211> 10086
        <212> DNA
40
        <213> Artificial Sequence
        <220>
        <223> plasmid
        <220>
45
        <221> misc feature
        <222> (1)..(10086)
        <223>
        <220>
        <221> misc_feature
50
        <222> (1)..(10086)
        <223> plasmid containing the lentiviral vector construct CCL-MA4-GFP/de ItaLNGFR
        <400> 8
```

5	caggtggcac ttttcgggga aatgtgcgcg gaacccctat ttgtttattt ttctaaatac attcaaatat gtatccgctc atgagacaat aaccctgata aatgcttcaa taatattgaa aaaggaagag tatgagtatt caacatttcc gtgtcgccct tattcccttt tttgcggcat tttgccttcc tgtttttgct cacccagaaa cgctggtgaa agtaaaagat gctgaagatc	60 120 180
5	aaaggaagag tatgagtatt caacatttcc gtgtcgccct tattcccttt tttgcggcat	
5		180
	tttgccttcc tgtttttgct cacccagaaa cgctggtgaa agtaaaagat gctgaagatc	
		240
	agttgggtgc acgagtgggt tacatcgaac tggatctcaa cagcggtaag atccttgaga	300
10	gttttcgccc cgaagaacgt tttccaatga tgagcacttt taaagttctg ctatgtggcg	360
	cggtattatc ccgtattgac gccgggcaag agcaactcgg tcgccgcata cactattctc	420
	agaatgactt ggttgagtac tcaccagtca cagaaaagca tcttacggat ggcatgacag	480
	taagagaatt atgcagtgct gccataacca tgagtgataa cactgcggcc aacttacttc	540
15	tgacaacgat cggaggaccg aaggagctaa ccgctttttt gcacaacatg ggggatcatg	600
	taactcgcct tgatcgttgg gaaccggagc tgaatgaagc cataccaaac gacgagcgtg	660
	acaccacgat gcctgtagca atggcaacaa cgttgcgcaa actattaact ggcgaactac	720
20	ttactctagc ttcccggcaa caattaatag actggatgga ggcggataaa gttgcaggac	780
	cacttctgcg ctcggccctt ccggctggct ggtttattgc tgataaatct ggagccggtg	840
	agcgtgggtc tcgcggtatc attgcagcac tggggccaga tggtaagccc tcccgtatcg	900
25	tagttatcta cacgacgggg agtcaggcaa ctatggatga acgaaataga cagatcgctg	960
	agataggtgc ctcactgatt aagcattggt aactgtcaga ccaagtttac tcatatatac	1020
	tttagattga tttaaaactt catttttaat ttaaaaggat ctaggtgaag atcctttttg	1080
30	ataatctcat gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg tcagaccccg	1140
	tagaaaagat caaaggatct tettgagate ettttttet gegegtaate tgetgettge	1200
	aaacaaaaaa accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc	1260
35	tttttccgaa ggtaactggc ttcagcagag cgcagatacc aaatactgtc cttctagtgt	1320
	agccgtagtt aggccaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc	1380
	taatcctgtt accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact	1440
	caagacgata gttaccggat aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac	1500
40	agcccagctt ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag	1560
	aaagcgccac gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg	1620
	gaacaggaga gcgcacgagg gagcttccag ggggaaacgc ctggtatctt tatagtcctg	1680

	tcgggtttcg	ccacctctga	cttgagcgtc	gatttttgtg	atgctcgtca	ggggggcgga	1740
	gcctatggaa	aaacgccagc	aacgcggcct	ttttacggtt	cctggccttt	tgctggcctt	1800
5	ttgctcacat	gttctttcct	gcgttatccc	ctgattctgt	ggataaccgt	attaccgcct	1860
	ttgagtgagc	tgataccgct	cgccgcagcc	gaacgaccga	gcgcagcgag	tcagtgagcg	1920
	aggaagcgga	agagcgccca	atacgcaaac	cgcctctccc	cgcgcgttgg	ccgattcatt	1980
10	aatgcagctg	gcacgacagg	tttcccgact	ggaaagcggg	cagtgagcgc	aacgcaatta	2040
	atgtgagtta	gctcactcat	taggcacccc	aggctttaca	ctttatgctt	ccggctcgta	2100
	tgttgtgtgg	aattgtgagc	ggataacaat	ttcacacagg	aaacagctat	gaccatgatt	2160
15	acgccaagcg	cgcaattaac	cctcactaaa	gggaacaaaa	gctggagctg	caagcttggc	2220
	cattgcatac	gttgtatcca	tatcataata	tgtacattta	tattggctca	tgtccaacat	2280
	taccgccatg	ttgacattga	ttattgacta	gttattaata	gtaatcaatt	acggggtcat	2340
20	tagttcatag	cccatatatg	gagttccgcg	ttacataact	tacggtaaat	ggcccgcctg	2400
	gctgaccgcc	caacgacccc	cgcccattga	cgtcaataat	gacgtatgtt	cccatagtaa	2460
	cgccaatagg	gactttccat	tgacgtcaat	gggtggagta	tttacggtaa	actgcccact	2520
	tggcagtaca	tcaagtgtat	catatgccaa	gtacgccccc	tattgacgtc	aatgacggta	2580
25	aatggcccgc	ctggcattat	gcccagtaca	tgaccttatg	ggactttcct	acttggcagt	2640
	acatctacgt	attagtcatc	gctattacca	tggtgatgcg	gttttggcag	tacatcaatg	2700
	ggcgtggata	gcggtttgac	tcacggggat	ttccaagtct	ccaccccatt	gacgtcaatg	2760
30	ggagtttgtt	ttggcaccaa	aatcaacggg	actttccaaa	atgtcgtaac	aactccgccc	2820
	cattgacgca	aatgggcggt	aggcgtgtac	ggtgggaggt	ctatataagc	agagctcgtt	2880
	tagtgaaccg	gggtctctct	ggttagacca	gatctgagcc	tgggagctct	ctggctaact	2940
35	agggaaccca	ctgcttaagc	ctcaataaag	cttgccttga	gtgcttcaag	tagtgtgtgc	3000
	ccgtctgttg	tgtgactctg	gtaactagag	atccctcaga	cccttttagt	cagtgtggaa	3060
	aatctctagc	agtggcgccc	gaacagggac	ctgaaagcga	aagggaaacc	agagctctct	3120
40	cgacgcagga	ctcggcttgc	tgaagcgcgc	acggcaagag	gcgaggggcg	gcgactggtg	3180
	agtacgccaa	aaattttgac	tagcggaggc	tagaaggaga	gagatgggtg	cgagagcgtc	3240
	agtattaagc	gggggagaat	tagatcgcga	tgggaaaaaa	ttcggttaag	gccaggggga	3300
45	aagaaaaaat	ataaattaaa	acatatagta	tgggcaagca	gggagctaga	acgattcgca	3360
	gttaatcctg	gcctgttaga	aacatcagaa	ggctgtagac	aaatactggg	acagctacaa	3420
	ccatcccttc	agacaggatç	agaagaactt	agatcattat	ataatacagt	agcaaccctc	3480
	tattgtgtgc	atcaaaggat	agagataaaa	gacaccaagg	aagctttaga	caagatagag	3540
50	gaagagcaaa	acaaaagtaa	gaccaccgca	cagcaagcgg	ccgctgatct	tcagacctgg	3600
	aggaggagat	atgagggaca	attggagaag	tgaattatat	aaatataaag	tagtaaaaat	3660
	tgaaccatta	ggagtagcac	ccaccaaggc	aaagagaaga	gtggtgcaga	gagaaaaaag	3720

	agcagtggga	ataggagctt	tgttccttgg	gttcttggga	gcagcaggaa	gcactatggg	3780
	cgcagcctca	atgacgctga	cggtacaggc	cagacaatta	ttgtctggta	tagtgcagca	3840
5	gcagaacaat	ttgctgaggg	ctattgaggc	gcaacagcat	ctgttgcaac	tcacagtctg	3900
	gggcatcaag	cagctccagg	caagaatcct	ggctgtggaa	agatacctaa	aggatcaaca	3960
	gctcctgggg	atttggggtt	gctctggaaa	actcatttgc	accactgctg	tgccttggaa	4020
10	tgctagttgg	agtaataaat	ctctggaaca	gattggaatc	acacgacctg	gatggagtgg	4080
	gacagagaaa	ttaacaatta	cacaagctta	atacactcct	taattgaaga	atcgcaaaac	4140
	cagcaagaaa	agaatgaaca	agaattattg	gaattagata	aatgggcaag	tttgtggaat	4200
15	tggtttaaca	taacaaattg	gctgtggtat	ataaaattat	tcataatgat	agtaggaggc	4260
	ttggtaggtt	taagaatagt	ttttgctgta	ctttctatag	tgaatagagt	taggcaggga	4320
	tattcaccat	tatcgtttca	gacccacctc	ccaaccccga	ggggacccga	caggcccgaa	4380
20	ggaatagaag	aagaaggtgg	agagagagac	agagacagat	ccattcgatt	agtgaacgga	4440
	tctcgacggt	atcggttaac	ttttaaaaga	aaagggggga	ttggggggta	cagtgcaggg	4500
	gaaagaatag	tagacataat	agcaacagac	atacaaacta	aagaattaca	aaaacaaatt	4560
	acaaaaattc	aaaattttat	cgatcacgag	actagcctcg	agagatct g a	tcataatcag	4620
25	ccataccaca	tttgtagagg	ttttacttgc	tttaaaaaac	ctcccacacc	tccccctgaa	4680
	cctgaaacat	aaaatgaatg	caattgttgt	tgttaacttg	tttattgcag	cttataatgg	4740
	ttacaaataa	ggcaatagca	tcacaaattt	cacaaataag	gcatttttt	cactgcattc	4800
30	tagttttggt	ttgtccaaac	tcatcaatgt	atcttatcat	gtctggatct	caaatccctc	4860
	ggaagctgcg	cctgtcttag	gttggagtga	tacattttta	tcacttttac	ccgtctttgg	4920
	attaggcagt	agctctgacg	gccctcctgt	cttaggttag	tgaaaaatgt	cactctctta	4980
35	cccgtcattg	gctgtccagc	ttagctcgca	ggggaggtgg	tctggatccg	agctcgaatt	5040
	ggccgcttta	cttgtacagc	tcgtccatgc	cgagagtgat	cccggcggcg	gtcacgaact	5100
	ccagcaggac	catgtgatcg	cgcttctcgt	tggggtcttt	gctcagggcg	gactgggtgc	5160
40	tcaggtagtg	gttgtcgggc	agcagcacgg	ggccgtcgcc	gatgggggtg	ttctgctggt	5220
	agtggtcggc	gagctgcacg	ctgccgtcct	cgatgttgtg	gcggatcttg	aagttcacct	5280
		cttctgcttg					5340
45	ccagcttgtg	ccccaggatg	ttgccgtcct	ccttgaagtc	gatgcccttc	agctcgatgc	5400
40	ggttcaccag	ggtgtcgccc	tcgaacttca	cctcggcgcg	ggtcttgtag	ttgccgtcgt	5460
	ccttgaagaa	gatggtgcgc	tcctggacgt	agccttcggg	catggcggac	ttgaagaagt	5520
		catgtggtcg			_		5580
50		gggccagggc					5640
		ggtggcatcg					5700
	cgtcgccgtc	cagctcgacc	aggatgggca	ccaccccggt	gaacagctcc	tcgcccttgc	5760

	tcaccatggt	gaattccgcg	gaggctggat	cggtcccggt	gtcttctatg	gaggtcaaaa	5820
	cagcgtggat	ggcgtctcca	ggcgatctga	cggttcacta	aacgagctct	gcttatatag	5880
5	gcctcccacc	gtacacgcct	accctcgaga	agcttgatta	acccgtgtcg	gctccagatc	5940
	tggcctccgc	gccgggtttt	ggcgcctccc	gcgggcgccc	ccctcctcac	ggcgagcgct	6000
	gccacgtcag	acgaagggcg	cagcgagcgt	cctgatcctt	ccgcccggac	gctcaggaca	6060
10	gcggcccgct	gctcataaga	ctcggcctta	gaaccccagt	atcagcagaa	ggacatttta	6120
	ggacgggact	tgggtgactc	tagggcactg	gttttctttc	cagagagcgg	aacaggcgag	6180
	gaaaagtagt	cccttctcgg	cgattctgcg	gagggatctc	cgtggggcgg	tgaacgccga	6240
15	tgattatata	aggacgcgcc	gggtgtggca	cagctagttc	cgtcgcagcc	gggatttggg	6300
	tcgcggttct	tgtttgtgga	tcgctgtgat	cgtcacttgg	tgagttgcgg	gctgctgggc	6360
	tggccggggc	tttcgtggcc	gccgggccgc	tcggtgggac	ggaagcgtgt	ggagagaccg	6420
20	ccaagggctg	tagtctgggt	ccgcgagcaa	ggttgccctg	aactgggggt	tggggggagc	6480
	gcacaaaatg	gcggctgttc	ccgagtcttg	aatggaagac	gcttgtaagg	cgggctgtga	6540
	ggtcgttgaa	acaaggtggg	gggcatggtg	ggcggcaaga	acccaaggtc	ttgaggcctt	6600
	cgctaatgcg	ggaaagctct	tattcgggtg	agatgggctg	gggcaccatc	tggggaccct	6660
25	gacgtgaagt	ttgtcactga	ctggagaact	cgggtttgtc	gtctggttgc	gggggcggca	6720
	gttatgcggt	gccgttgggc	agtgcacccg	tacctttggg	agcgcgcgcc	tcgtcgtgtc	6780
	gtgacgtcac	ccgttctgtt	ggcttataat	gcagggtggg	gccacctgcc	ggtaggtgtg	6840
30	cggtaggctt	ttctccgtcg	caggacgcag	ggttcgggcc	tagggtaggc	tctcctgaat	6900
	cgacaggcgc	cggacctctg	gtgaggggag	ggataagtga	ggcgtcagtt	tctttggtcg	6960
	gttttatgta	cctatcttct	taagtagctg	aagctccggt	tttgaactat	gcgctcgggg	7020
35	ttggcgagtg	tgttttgtga	agttttttag	gcaccttttg	aaatgtaatc	atttgggtca	7080
	atatgtaatt	ttcagtgtta	gactagtaaa	ttgtccgcta	aattctggcc	gtttttggct	7140
	tttttgttag	acgaagcttg	ggctgcagga	attcgggccg	cggccagctc	cggcgggcag	7200
40	ggggggcgct	ggagcgcagc	gcagcgcagc	cccatcagtc	cgcaaagcgg	accgagctgg	7260
	aagtcgagcg	ctgccgcggg	aggcgggcga	tgggggcagg	tgccaccggc	cgcgccatgg	7320
	acgggccgcg	cctgctgctg	ttgctgcttc	tgggggtgtc	ccttggaggt	gccaaggagg	7380
45	catgccccac	aggcctgtac	acacacagcg	gtgagtgctg	caaagcctgc	aacctgggcg	7440
40	agggtgtggc	ccagccttgt	ggagccaacc	agaccgtgtg	tgagccctgc	ctggacagcg	7500
	tgacgttctc	cgacgtggtg	agcgcgaccg	agccgtgcaa	gccgtgcacc	gagtgcgtgg	7560
	ggctccagag	catgtcggcg	ccgtgcgtgg	aggccgacga	cgccgtgtgc	cgctgcgcct	7620
50	acggctacta	ccaggatgag	acgactgggc	gctgcgaggc	gtgccgcgtg	tgcgaggcgg	7680
	gctcgggcct	cgtgttctcc	tgccaggaca	agcagaacac	cgtgtgcgag	gagtgccccg	7740
	acggcacgta	ttccgacgag	gccaaccacg	tggacccgtg	cctgccctgc	accgtgtgcg	7800

	aggacaccga	gcgccagctc	cgcgagtgca	cacgctgggc	cgacgccgag	tgcgaggaga	7860
	tccctggccg	ttggattaca	cggtccacac	ccccagaggg	ctcggacagc	acagececca	7920
5	gcacccagga	gcctgaggca	cctccagaac	aagacctcat	agccagcacg	gtggcaggtg	7980
	tggtgaccac	agtgatgggc	agctcccagc	ccgtggtgac	ccgaggcacc	accgacaacc	8040
	tcatccctgt	ctattgctcc	atcctggctg	ctgtggttgt	gggccttgtg	gcctacatag	8100
10	ccttcaagag	gtggaacagg	gggatcctct	agagtcgagt	ctagagtcga	caatcaacct	8160
	ctggattaca	aaatttgtga	aagattgact	ggtattctta	actatgttgc	tccttttacg	8220
	ctatgtggat	acgctgcttt	aatgcctttg	tatcatgcta	ttgcttcccg	tatggctttc	8280
15	attttctcct	ccttgtataa	atcctggttg	ctgtctcttt	atgaggagtt	gtggcccgtt	8340
	gtcaggcaac	gtggcgtggt	gtgcactgtg	tttgctgacg	caacccccac	tggttggggc	8400
	attgccacca	cctgtcagct	cctttccggg	actttcgctt	tcccctccc	tattgccacg	8460
20	gcggaactca	tcgccgcctg	ccttgcccgc	tgctggacag	gggctcggct	gttgggcact	8520
20	gacaattccg	tggtgttgtc	ggggaagctg	acgtcctttc	catggctgct	cgcctgtgtt	8580
	gcc acctgga	ttctgcgcgg	gacgtccttc	tgctacgtcc	cttcggccct	caatccagcg	8640
	gaccttcctt	cccgcggcct	gctgccggct	ctgcggcctc	ttccgcgtct	tcgccttcgc	8700
25	cctcagacga	gtcggatctc	ectttgggce	gcctccccgc	ctggaattcg	agctcggtac	8760
	ctttaagacc	aatgacttac	aaggcagctg	tagatcttag	ccacttttta	aaagaaaagg	8820
	ggggactgga	agggctaatt	cactcccaac	gaagacaaga	tctgcttttt	gcttgtactg	8880
30	ggtctctctg	gttagaccag	atctgagcct	gggagctctc	tggctaacta	gggaacccac	8940
	tgcttaagcc	tcaataaagc	ttgccttgag	tgcttcaagt	agtgtgtgcc	cgtctgttgt	9000
	gtgactctgg	taactagaga	tccctcagac	ccttttagtc	agtgtggaaa	atctctagca	9060
35	gtagtagttc	atgtcatctt	attattcagt	atttataact	tgcaaagaaa	tgaatatcag	9120
	agagtgagag	gaacttgttt	attgcagctt	ataatggtta	caaataaagc	aatagcatca	9180
	caaatttcac	aaataaagca	tttttttcac	tgcattctag	ttgtggtttg	tccaaactca	9240
40	tcaatgtatc	ttatcatgtc	tggctctagc	tatcccgccc	ctaactccgc	ccagttccgc	9300
	ccattctccg	ccccatggct	gactaatttt	ttttatttat	gcagaggccg	aggccgcctc	9360
•	ggcctctgag	ctattccaga	agtagtgagg	aggctttttt	ggaggcctag	gcttttgcgt	9420
45	cgagacgtac	ccaattcgcc	ctatagtgag	tcgtattacg	cgcgctcact	ggccgtcgtt	9480
	ttacaacgtc	gtgactggga	aaaccctggc	gttacccaac	ttaatcgcct	tgcagcacat	9540
	ccccctttcg	ccagctggcg	taatagcgaa	gaggcccgca	ccgatcgccc	ttcccaacag	9600
	ttgcgcagcc	tgaatggcga	atggcgcgac	gcgccctgta	gcggcgcatt	aagcgcggcg	9660
50	ggtgtggtgg	ttacgcgcag	cgtgaccgct	acacttgcca	gcgccctagc	gcccgctcct	9720
	ttcgctttct	tcccttcctt	tctcgccacg	ttcgccggct	ttccccgtca	agctctaaat	9780
	cgggggctcc	ctttagggtt	ccgatttagt	gctttacggc	acctcgaccc	caaaaaactt	9840

gattagggtg	atggttcacg	tagtgggcca	tcgccctgat	agacggtttt	tcgccctttg	9900
acgttggagt	ccacgttctt	taatagtgga	ctcttgttcc	aaactggaac	aacactcaac	9960
cctatctcgg	tctattcttt	tgatttataa	gggattttgc	cgatttcggc	ctattggtta	10020
aaaaatgagc	tgatttaaca	aaaatttaac	gcgaatttta	acaaaatatt	aacgtttaca	10080
atttcc						10086

10

20

30

5

Claims

- 1. A bidirectional promoter for expression of at least two coding sequences in opposite direction in animal cells comprising 5' end to 3' end:
 - a) a first minimal promoter sequence derived from cytomegalovirus (CMV) or mouse mammary tumor virus (MMTV) genomes;
 - b) a promoter sequence derived from an animal gene comprising an enhancer region and a second minimal promoter sequence;

the two promoter sequences driving a coordinate transcription of said coding sequences in the opposite orientation.

- 25 2. The bidirectional promoter according to claim 1 wherein the full efficient promoter sequence derives from ubiquitously expressed genes comprising the phosphoglycerate kinase or the ubiquitin gene.
 - A bidirectional expression cassette essentially comprising the bidirectional promoter according to previous claims, convenient insertion sites positioned downstream to each promoter, and polyadenylation sites positioned downstream to each insertion site.
 - 4. The bidirectional expression cassette according to claim 4 further comprising at least one post-transcriptional regulatory element positioned upstream to one or each polyadenylation site.
- 5. The bidirectional expression cassette according to claim 4 or 5 further comprising at least one internal ribosome entry site (IRES) sequence to express three or more genes.
 - 6. An expression construct containing the bidirectional promoter according to claim 1 or 2.
- 40 7. An expression construct containing the bidirectional expression cassette according to claims 4-6.
 - 8. A gene transfer expression vector containing the expression construct according to claims 7 or 8 further comprising lentiviral or retroviral sequences.
- 45 9. Use of the gene transfer expression vector according to claim 8 for the preparation of a delivery and expression system in animal cells.
 - 10. Use of the gene transfer expression vector according to claim 9 wherein animal cells are tissue animal cells in vivo.
- 50 11. Use of the gene transfer expression vector according to claim 10 wherein tissue animal celles are comprising brain neurons.
 - 12. An in vitro method for the coordinate expression of two exogeneous coding sequences into an animal cell comprising the following steps:

- a) cloning said coding sequences into the gene transfer expression vector according to claim 8, each coding sequence under the control of one of the two promoters of the bidirectional promoter;
- b) transforming animal cells by means of said vectors;

- c) allowing the expression of the vector.
- 13. The in vitro method for the coordinate expression of two exogeneous coding sequences according to claim 12 wherein the animal cell is an human cell.
- 14. The in vitro method for the coordinate expression of two exogeneous coding sequences according to claim 13 wherein the human cell is a retransplantable human cell.
- **15.** The in vitro method for the coordinate expression of two exogeneous coding sequences according to claim 14 wherein the retransplantable human cell is an hematopoietic cell.
 - **16.** Method for generating a transgenic non human organism comprising the step of transforming appropriate cells with an expression construct containing the bidirectional cassette according to claims 6 or 7.
- 15 17. Method for generating a transgenic non human organism comprising the step of transforming appropriate cells by means of the gene transfer expression vector according to claim 8.

Patentansprüche

20

25

30

- Bidirektionaler Promotor für die Expression von mindestens zwei Kodierungssequenzen in entgegen gesetzter Richtung in Tierzellen, umfassend vom 5'-Ende zum 3'-Ende:
 - a) eine erste minimale Promotorsequenz, die aus dem Genom des Zytomegalievirus (ZMV) oder des Mausmammatumorvirus (MMTV) stammt;
 - b) eine Promotorsequenz, die aus einem Tiergen stammt und die eine Verstärker (Enhancer)-Region und eine zweite minimale Promotorsequenz aufweist;
- wobei die beiden Promotorsequenzen eine koordinierte Transkription der Kodierungssequenzen in entgegen gesetzter Richtung steuern.
- 2. Bidirektionaler Promotor nach Anspruch 1, wobei die voll effiziente Promotorsequenz aus ubiquitär exprimierten Genen stammt, welche das Phosphoglyceratkinasegen oder das Ubiquitingen umfassen.
- Bidirektionale Expressionskassette, die im Wesentlichen den bidirektionalen Promotor nach den vorherigen Ansprüchen, stromabwärts (downstream) von jedem Promotor positionierte, geeignete Insertionsstellen und (downstream) von jeder Insertionsstelle positionierte Polyadenylierungsstellen aufweist.
- 4. Bidirektionale Expressionskassette nach Anspruch 4, die des Weiteren mindestens ein stromaufwärts (upstream) von einer oder jeder Polyadenylierungsstelle positioniertes posttranskriptionales regulatorisches Element aufweist.
 - 5. Bidirektionale Expressionskassette nach Anspruch 4 oder 5, die des Weiteren mindestens eine interne Ribosomeneintrittsstellen(IRES)-Sequenz aufweist, um mindestens drei Gene zu exprimieren.
- 45 6. Expressionskonstrukt, welches den bidirektionalen Promotor nach Anspruch 1 oder 2 enthält.
 - 7. Expressionskonstrukt, welches die bidirektionale Expressionskassette nach Anspruch 4-6 enthält.
- Gentransferexpressionsvektor, welcher das Expressionskonstrukt nach Anspruch 7 oder 8 enthält und des Weiteren
 lentivirale oder retrovirale Sequenzen aufweist.
 - Verwendung des Gentransferexpressionsvektors nach Anspruch 8 für die Herstellung eines Einführungs- und Expressionssystems in Tierzellen.
- 55 10. Verwendung des Gentransferexpressionsvektors nach Anspruch 9, wobei Tierzellen Tiergewebezellen in vivo sind.
 - Verwendung des Gentransferexpressionsvektors nach Anspruch 10, wobei Tiergewebezellen Gehirnneuronen umfassen.

- 12. In-vitro-Verfahren für die koordinierte Expression zweier exogener Kodierungssequenzen in eine Tierzelle, umfassend die folgenden Schritte:
 - a) Klonieren der Kodierungssequenzen in den Gentransferexpressionsvektor nach Anspruch 8, wobei jede
 Kodierungssequenz unter der Kontrolle von einem der beiden Promotoren des bidirektionalen Promotors steht;
 - b) Transformieren von Tierzellen mittels der Vektoren;
 - c) Zulassen der Expression des Vektors.
- 13. In-vitro-Verfahren für die koordinierte Expression zweier exogener Kodierungssequenzen nach Anspruch 12, wobei die Tierzelle eine menschliche Zelle ist.
 - 14. In-vitro-Verfahren für die koordinierte Expression zweier exogener Kodierungssequenzen nach Anspruch 13, wobei menschliche Zelle einer retransplantierbare menschliche Zelle ist.
- 15. In-vitro-Verfahren für die koordinierte Expression zweier exogener Kodierungssequenzen nach Anspruch 14, wobei die retransplantierbare menschliche Zelle eine h\u00e4matopoietische Zelle ist.
 - 16. Verfahren zum Herstellen eines transgenen, nicht menschlichen Organismus, das den Schritt des Transformierens geeigneter Zellen mit einem Expressionskonstrukt, das die bidirektionale Kassette nach Anspruch 6 oder 7 enthält, umfasst.
 - 17. Verfahren zum Herstellen eines transgenen, nicht menschlichen Organismus, das den Schritt des Transformierens geeigneter Zellen mittels des Gentransferexpressionsvektors nach Anspruch 8 umfasst.

Revendications

5

20

25

30

35

40

45

55

- Promoteur bidirectionnel pour l'expression d'au moins deux séquences codantes dans une direction opposée dans des cellules animales comprenant, de l'extrémité 5' à l'extrémité 3' :
 - a) une première séquence promotrice minimale dérivée des génomes du cytomégalovirus (CMV) ou du virus de la tumeur mammaire murine (MMTV);
 - b) une séquence promotrice dérivée d'un gène animal comprenant une région amplificatrice et une seconde région promotrice minimale ;

les deux séquences promotrices régissant une transcription coordonnée desdites séquences codantes dans l'orientation opposée.

- Promoteur bidirectionnel selon la revendication 1, dans lequel la totalité de la séquence promotrice efficace dérive de gènes exprimés de manière ubiquitaire comprenant la phosphoglycérate kinase ou le gène de l'ubiquitine.
 - 3. Cassette d'expression bidirectionnelle comprenant essentiellement le promoteur bidirectionnel selon les revendications précédentes, des sites d'insertion adaptés positionnés en aval de chaque promoteur, et des sites de polyadénylation en aval de chaque site d'insertion.
 - 4. Cassette d'expression bidirectionnelle selon la revendication 4, comprenant en outre au moins un élément de régulation post-transcriptionnel positionné en amont de l'un des ou de chaque site(s) de polyadénylation.
- Cassette d'expression bidirectionnelle selon la revendication 4 ou 5, comprenant en outre au moins une séquence
 IRES (site d'entrée interne du ribosome) pour exprimer trois gènes ou plus.
 - 6. Construit d'expression contenant le promoteur bidirectionnel selon la revendication 1 ou 2.
 - 7. Construit d'expression contenant la cassette d'expression bidirectionnelle selon les revendications 4 à 6.
 - 8. Vecteur d'expression de transfert de gènes contenant le construit d'expression selon la revendication 7 ou 8, comprenant en outre des séquences lentivirales ou rétrovirales.

- Utilisation d'un vecteur d'expression de transfert de gènes selon la revendication 8, pour la préparation d'un système de délivrance et d'expression dans les cellules animales.
- Utilisation du vecteur d'expression de transfert de gènes selon la revendication 9, dans laquelle les cellules animales sont des cellules de tissu animal in vivo.
- 11. Utilisation d'un vecteur d'expression de transfert de gènes selon la revendication 10, dans laquelle les cellules de tissu animal comprennent des neurones cérébraux.
- 10 12. Procédé in vitro pour l'expression coordonnée de deux séquences codantes exogènes dans une cellule animale comprenant les étapes suivantes :
 - a) le clonage desdites séquences codantes dans le vecteur d'expression de transfert de gènes selon la revendication 8, chaque séquence codante sous le contrôle de l'un des deux promoteurs du promoteur bidirectionnel;
 - b) la transformation de cellules animales par les moyens desdits vecteurs ;
 - c) le fait de permettre l'expression du vecteur.

5

15

20

30

35

40

45

50

- 13. Procédé in vitro pour l'expression coordonnée de deux séquences codantes exogènes selon la revendication 12, dans lequel la cellule animale est une cellule humaine.
- 14. Procédé in vitro pour l'expression coordonnée de deux séquences codantes exogènes selon la revendication 13, dans lequel la cellule humaine est une cellule pouvant être retransplantée.
- 15. Procédé in vitro pour l'expression coordonnée de deux séquences codantes exogènes selon la revendication 14,25 dans lequel la cellule humaine pouvant être retransplantée est une cellule hématopoïétique.
 - **16.** Procédé de génération d'un organisme transgénique non humain comprenant l'étape consistant à transformer des cellules adaptées avec un construit d'expression contenant la cassette bidirectionnelle selon les revendications 6 ou 7.
 - 17. Procédé de génération d'un organisme transgénique non humain comprenant l'étape consistant à transformer des cellules adaptées par les moyens du vecteur d'expression de transfert de gènes selon la revendication 8.

Figure 3

Figure 5

Figure 6

Fig 7a

Fig. 7b (1 of 3)

caggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaga caataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacátttccgtgtcgcccttattccctttttt geggeattttgeetteetgtttttgeteacceagaaacgetggtgaaagtaaaagatgctgaagateagttgggtgeacgagt gggttacatcgaactggatctcaacageggtaagateettgagagttttegeeeegaagaacgttttecaatgatgageaettt taaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcaga atgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccat aaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaac atgggggatcatgtaactcgcettgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccac actggatggaggcggataaagttgcaggaccacttetgcgctcggcccttccggctggctggtttattgctgataaatctgg agcoggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacac gacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaact gtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaaaaggatctaggtgaagatcctttttgata atotoatgaccaaaatccottaacgtgagttttegtteeactgagegteagacceegtagaaaagatcaaaggatettettgag atcettttttetgegegtaatetgetgettgeaaacaaaaaaaccacegetaecageggtggtttgtttgeeggatcaagaget accaactcittttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggcc accacttcaagaactetgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataag togtgtottacogggttggactcaagacgatagttacoggataaggogcagoggtogggctgaacggggggttogtgcac acageccagettggagegaacgacetacacegaactgagatacetacagegtgagetatgagaaagegecaegettece gaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagdgcgcacgagggagcttccaggg ggaaacgcctggtatctttatagtcctgtcgggtitcgccacctctgacttgagcgtcgatttttgtgatgctcgtcagggggg cggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctgaaaaacgccagttctttcctgogttateccetgattetgtggataacegtattacegcetttgagtgagetgatacegetégeegcageegaacgacegageg cagogagtcagtgagogaggaagagogcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaa geaceccaggetttacaetttatgetteeggetegtatgttgtgtggaattgtgageggataacaattteacacaggaaacage tatgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctggagctgcaagcttaatgtagtctta cgattggtggaagtaaggtggtacgatcgtgccttattaggaaggcaacagacgggtctgacatggattggacgaaccactgaattgccgcattgcagagatattgtatttaagtgcctagctcgatacaataaacgggfctctctggttagaccagatctgagc ctgggagetetetggetaactagggaacccaetgettaagecteaataaagettgeettgagtgetteaagtagtgtgtgeee gtctgttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtggcgcccgaaca gggacctgaaagcgaaagggaaaccagagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggc acatatagtatgggcaagcagggagctagaacgattcgcagttaatcctggcetgttagaaacatcagaaggetgtagaca aatactgggacagetacaaccatcccttcagacaggatcagaagaacttagatcattatatacagtagcaaccctctatt gtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaagatagaggaagagcaaaacaaaagtaagac caccgcacagcaagcggccgctgatcttcagacctggaggaggagatatgagggacaattggagaagtgaattatataaa cagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcactatggggggcagcctcaatgacgctgacgg tacaggccagacaattattgtctggtatagtgcagcagcagaacaatttgctgagggctattgaggcgcaacagcatctgtt gcaactcacagtctggggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagctcc tggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatctctggaac agatttggaatcacacgacctggatggagtgggacagagaaattaacaattacacaagettaatacactccttaattgaaga atcgcaaaaccagcaagaaaagaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataa caaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatagtttttgctgtactttctatagt gaatagagttaggcagggatattcaccattatcgtttcagacccacctcccaaccccgaggggacccgacaggcccgaag

Fig. 7b (2of 3)

gaatagaagaagaagagagagagagagacagagacagatccattcgattagtgaacggatctcgacggtatcggttaacttttaaaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagcataatagcaacagacatacaaacta aagaaltacaaaaacaaattacaaaaattcaaaaltttategatcacgagactagcctcgagagatetgatcataatcagccat ttgttaacttgtttattgcagcttataatggttacaaataaggcaatagcatcacaaatttcacaaataaggcatttttttcactgca ttetagttttggtttgtccaaactcatcaatgtatcttatcatgtctggatctcaaatccctcggaagctgcgcctgtcttaggttgg agtgatacatttttatcacttttacccgtctttggattaggcagtagctctgacggccctcctgtcttaggttagtgaaaaatgtca ctctcttacccgtcattggctgtccagcttagctcgcaggggaggtggtctggatcctctagaattacacggcgatctttccgc ccttettggcetttatgaggatetetetgattittettgegtegagtttteeggtaagacettteggtaettegteeacaaacacaa etecteegegeaacttittegeggttgttaettgaetggeeaegtaateeaegatetettitteegteategtettteegtgeteea aaacaacaacggcggcgggaagttcaccggcgtcatcgtcgggaagacctgcgacacctgcgtcgaagatgttggggt gttggagcaagatggattccaattcagcgggagccacctgatagcctttgtacttaatcagagacttcaggcggtcaacgateggattgtttacataaceggacataateataggacetetcacacacagttegectetttgattaaegeccagegtttteceggta aatagetgatgtagteteagtgageeeatateettgeetgataeetggeagatggaacetettggeaaeegetteeeegaett ccttagagaggggagcgccaccagaagcaatttcgtgtaaattagataaatcgtatttgtcaatcagagtgcttttggcgaag aaggagaatagggttggcaccagcagcgcactttgaatcttgtaatcctgaaggctcctcagaaacagctcttcttcaaatct atacattaagacgactcgaaatccacatatcaaatatccgagtgtagtaaacattccaaaaccgtgatggaatggaacaaca aggcagagcgacacctttaggcagaccagtagatccagaggagttcatgatcagtgcaattgtcttgtccctatcgaagga teegttttagaateeatgataatattttttggatgattgggagetttitttgeaegtteaaaattttttgeaaeceetttttggaaaeg aacaccacggtaggctgcgaaatgcccatactgttgagcaattcacgttcattataaatgtcgttcgcgggcgcaactgcaa otcogataaataacgcgcccaacaccggcataaagaattgaagagagttttcactgcatacgacgattctgtgatttgtattca gcccatatcgtttcatagcttctgccaaccgaacggacatttcgaagtactcagcgtaagtgatgtccacctcgatatgtgcat ctgtaaaagcaattgttccaggaaccagggcgtatctcttcatagccttatgcagttgctctccagcggttccatcttccagcg gatagaatggcgccgggcctttctttatgtttttggcgtcttccatggtgaattccgcggaggctggatcggtcccggtgtcttc tatggaggtcaaaacagcgtggatggcgtctccaggcgatctgacggttcactaaacgagctctgcttatataggcctccca ccgtacacgcctaccctcgagaagcttgatatcgaattcccacggggttgggggttgcgccttttccaaggcagccctgggtt tgegeagggaegetgetetgggetggtteegggaaaegeageggeegaeetgggtetegeaeattetteaeg teegttegeagegteaceeggatettegeegetaceettgtgggeeeeeeggegaegetteetgeteegeeeetaagtegg gaaggtteettgeggttegeggegtgeeggaegtgaeaaaeggaageegeaegteteaetagtaeeetegeagaeggae agegecagggageaatggeagegegeegaeggatgggetgtggecaatageggetgeteageggggegeega tgttccgcattctgcaagcctccggagcgcacgtcggcagtcggctcctcgttgaccgaatcaccgacctctctccccag ggggatccaccggtcgccaccatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctg gacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccct gaagttcatctgcaccaccggcaagctgcccgtgccctggccaccctgtgaccaccctgacctacggcgtgcagtgctt cagoogetacccogaccacatgaagcagcacgacttettcaagtccgccatgcccgaaggctacgtccaggagcgcacc atcltcttcaaggacgacggcaactacaagaccegegecgaggtgaagttcgagggggacaccetggtgaaccgcatcg agetgaagggcategaettcaaggaggaeggeaacateetggggcacaagetggagtacaactacaacagecacaaeg tctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgt gcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgag cacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgg gatcactctcggcatggacgagctgtacaagtaaagcggccgcgtcgacaatcaacctctggattacaaaatttgtgaaag attgactggtattettaactatgttgeteettttaegetatgtggataegetgetttaatgeetttgtateatgetattgetteeegtat ggettteatttteteeteettgtataaateetggttgetgtetetttatgaggagttgtggeeegttgteaggeaaegtggegtggt

Fig. 7b (3 of 3)

gtgcactgtgtttgctgacgcaaccccactggttggggcattgccaccacctgtcagetcctttccgggactttcgctttccc cetecetattgccaeggeggaacteategeegeetgeetgeetgetggaeagggggeteggetgttgggeactgaea attccgtggtgttgtcgggggaagctgacgtcctttccatggctgctcgcctgtgttgccacctggattctgcgcgggacgtcc cgccttcgccctcagacgagtcggatctccctttgggccgcctccccgcctggaattcgagctcggtacctttaagaccaat gacttacaaggcagctgtagatcttagccactttttaaaagaaaagggggactggaagggctaattcactcccaacgaag acaagatetgetttttgettgtactgggtetetetggttagaceagatetgageetgggagetetetggetaaetagggaacee actgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatcc ctcagacccttttagtcagtgtggaaaatctctagcagtagtagttcatgtcatcttattattcagtatttataacttgcaaagaaat gaatatcagagagtgagaggaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaata aagcattittttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctggctctagctatcccgccctaa agetatteeagaagtagtgaggaggettttttggaggeetaggettttgegtegagaegtaeceaattegeeetafagtgagt cgtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgca gcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaa tggcgaatggcgcgacgcgcctgtagcggcgcattaagcgcgggggtgtggtggttacgcgcagcgtgaccgctac a a togggggctcccttt agggttccgattt agtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgcctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactg gaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctga tttaacaaaaatttaacgcgaattttaacaaaatattaacgtttacaatttcc

Fig. 8a

Fig. 8b (1 of 3)

caggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaga caataaccetgataaatgetteaataatattgaaaaaggaagagtatgagtatteaacattteegtgtegeeettatteeettttt geggeattttgeetteetgtttttgeteaceeagaaaegetggtgaaagtaaaagatgetgaagateagttgggtgeacgagt gggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttt taaagttetgetatgtggegeggtattatecegtattgaegeegggeaagageaacteggtegeegeataeactatteteaga atgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccat aaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaac atgggggatcatgtaactegeettgategttgggaaceggagetgaatgaageeataceaaacgaegagegtgaeaceae agccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacac gacgggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaact gtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgata ateteatgaecaaaateeettaaegtgagttttegtteeaetgagegteagaeeeegtagaaaagateaaaggatettettgag atcetttttttetgegegtaatetgetgettgeaaacaaaaaaaccacegetaccageggtggtttgtttgeeggateaagaget accaactettttteegaaggtaactggetteageagagegeagataceaaatactgteettetagtgtageegtagttaggee accacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgctagtggcgataag tegtgtettacegggttggaeteaagaegatagttaceggataaggegeageggtegggetgaaeggggggttegtgcae acageccageitggagegaaegacctacaeegaaetgagataectacagegtgageiatgagaaagegecaegeitece gaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggaggggcgcacgagggagcttccaggg ggaaacgcotggtatctttatagtcotgtogggtttcgccacctotgacttgagcgtcgatttttgtgatgctcgtcagggggg eggageetatggaaaaaegeeageaaegeggeettittaeggtteetggeettitgetggeettitgeteaeatgttettteetg cgttateccetgattetgtggataaccgtattaccgcetttgagtgagetgataccgctegecgcagecgaacgaccgageg cagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccggcgtttggccgattcattaa gcaccccaggetttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagc tatgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctggagctgcaagcttggccattgcat acgttgtatccatatcataatatgtacatttatattggctcatgtccaacattaccgccatgttgacattgattattgactagttatta atagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctgg otgacogcccaacgaccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattga cgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgcccctattga cgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgt attagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacgggggatttcc aagteteeaececattgaegteaatgggagtttgttttggeaecaaaateaaegggaettteeaaaatgtegtaaeaacteeg ccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctcgtttagtgaaccggggttctt ctggttagaccagatctgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttga gtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatct ctagcagtggcgcccgaacagggacctgaaagcgaaagggaaaccagagctctctcgacgcaggactcggcttgctga agcgcgcacggcaagaggcgaggggggggactggtgagtacgccaaaaattttgactagcggaggctagaaggaga gagatgggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggttaaggccaggggg aaagaaaaatataaattaaaacatatagtatgggcaagcagggagctagaacgattcgcagttaatcctggcctgttagaa acatcagaaggctgtagacaaatactgggacagctacaaccatcccttcagacaggatcagaagaacttagatcattatata atacagtagcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaagatagaggaag agcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcticagacctggaggaggagatatgagggacaat gtgcagagagaaaaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcactatgggcgc agoctcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcagcagcagaacaatttgctgagggctatt

Fig. 8b (2 of 3)

gaggcgcaacagcatctgttgcaactcacagtctggggcatcaagcagctccaggcaagaatcctggctgtggaaagata cctaaaggatcaacagctcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttg atacactccttaattgaagaatcgcaaaaccagcaagaaaagaatgaacaagaattattggaattagataaatgggcaagttt gtggaattggtttaacataacaaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatag tttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagacccacctcccaaccccgagggg tegaeggtateggttaaettttaaaagaaaaggggggattggggggtaeagtgeaggggaaagaatagtagaeataatag caacagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaaatttatcgatcacgagactagcctcgagag atotgatoataatoagocatacoacatttgtagaggttttacttgctttaaaaaaacctcccacacctcccctgaacctgaaaca taaaatgaatgcaattgttgttgttaacttgtttattgcagcttataatggttacaaataaggcaatagcatcacaaatttcacaaa ta agg cat tittit cact g cattet ag tittigg tittig to caa act cat ca at g ta totta totta totta totta totta cat g totta cattet ag tittigg tittig to caa act cat cattet at cat g totta cattet act g totta cattet ag tittig to caa act cat cattet at cattet act g totta cattet act g to take toctgcgcctgtcttaggttggagtgatacatttttatcacttttacccgtctttggattaggcagtagctctgacggccctcctgtctgaattggccgctttacttgtacagetcgtccatgccgagagtgatcccggcggcggtcacgaactccagcaggaccatgtg ategegettetegttggggtetttgeteagggeggaetgggtgeteaggtagttgtegggeageageaeggggeegte ttgatgccgttcttctgcttgtcggccatgatatagacgttgtgggctgttgtagttgtactccagettgtgccccaggatgttgcc gtcctccttgaagtcgatgcccttcagctcgatgcggttcaccagggtgtcgccctcgaacttcacctcggcgcgggtcttgt agttgccgtcgtccttgaagaagatggtgcgctcctggacgtagccttcgggcatggcggacttgaagaagtcgtgctgctt cat g t g g t c g g g t a g c g c t g a g c a c g g g t c a g g g t c a c g g g t cgettgeeggtggtgeagatgaactteagggteagettgeegtaggtggeategeeetegeeetegeeggaeaegetgaact tgtggccgtttacgtcgccgtccagctcgaccaggatgggcaccaccccggtgaacagctcctcgcccttgctcaccatgg tgaattccgcggaggctggatcggtcccggtgtcttctatggaggtcaaaacagcgtggatggcgtctccaggcgatctga cggttcactaaacgagctctgcttatataggcctcccaccgtacacgcctaccctcgagaagcttgatatcgaattcccacgg ggttggggttgcgccttttccaaggcagccctgggtttgcgcagggacgcggctgctctgggcgtggttccgggaaacgc agoggogcogaccctgggtctcgcacattettcacgtccgttcgcagcgtcacccggatettcgccgctacccttgtgggc ccccggcgacgcttcctgctccgccctaagtcgggaaggttccttgcggttcgcggcgtgccggacgtgacaaacgg aagccgcacgtctcactagtaccctcgcagacggacagcgccagggagcaatggcagcgccgaccgcgatgggct gtggccaatagcggctgctcagcggggcgcgcgagagcagcggcgggaaggggcggtgcgggaggcggggtgt ggggcggtagtgtgggccctgttcctgcccgcgggtgttccgcattctgcaagcctccggagcgcacgtcggcagtcgg getgettetgggggtgtecettggaggtgecaaggaggeatgececacaggeetgtacacacacageggtgagtgetgea gacgttctccgacgtggtgagcgcgaccgagccgtgcaagccgtgcaccgagtgcgtgggggctccagagcatgtcggc geogtgegtggaggeegaegaegeegtgtgeegetgegeetaeggetaetaeeaggatgagaegaetgggegetgega ggcgtgccgcgtgtgcgaggcgggctcgggcctcgtgttctcctgccaggacaagcagaacaccgtgtgcgaggagtg ccagotccgcgagtgcacacgctgggccgacgccgagtgcgaggagatccctggccgttggattacacggtccacacc cccagagggctoggacagcacagccccagcacccaggagcctgaggcacctccagaacaagacctcatagccagca cggtggcaggtgtggtgaccacagtgatgggcagctcccagcccgtggtgacccgaggcaccaccgacaacctcatcc ctgtctattgctccatcctggctgctgtgggttgtggggccttgtgggcctacatagccttcaagaggtggaacagggggatcctct agagtcgagtctagagtcgacaatcaacctctggattacaaaatttgtgaaagattgactggtattcttaactatgttgctcctttt gttgetgtetetttatgaggagttgtggecegttgteaggeaaegtggegtgtgtgeaetgtgtttgetgaegeaaeeeeea

Fig. 8b (3 of 3)

ccgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaagctgacgt cctttccatggctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccag eggaeetteetteeegeggeetgetgeeggetetgeggeetetteegegtettegeettegeeteagaegagteggatete cctttgggccgcctccccgcctggaattcgagctcggtacctttaagaccaatgacttacaaggcagctgtagatcttagcca ctttttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagatctgctttttgcttgtactgggtctct ctggttagaccagatctgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttga gtgette a agtagt gtgecegtet gtt gtgactet ggtaact agagateect cagaccett ttagte agtgtggaaaat et agagateect cagaccett ttagte agtgt ggaaaat et agagateect cagaccett ttagte agagateect ggaaaat et agagateect cagaccett ttagte ggaaaat et agagateect ggaaat ggaaat et agagateect ggaaat et agagateect ggaaat et agagateect ggaaat ggaaat et agagateect ggaaat ggaaat et agagateect ggaaat ggaaat ggaaat et agagateect ggaaat ggaaat ggaaat ggaaat ggaaat et agagateect ggaaat ggaaatctagcagtagtagttcatgtcatcttattattcagtatttataacttgcaaagaaatgaatatcagagagtgagaggaacttgttta ttg cag citata atggtta caa ataa ag caa tag cat cacaa a att cacaa ataa ag catt titt t cact g catt ct ag ttg t g g tt tag catt cacaa ataa ag catt titt cact g catt ct ag ttg t g g tt tag cacaa ataa ag catt titt cact g catt ct ag ttg t g g tt tag cacaa ataa ag catt titt t cact g catt ct ag ttg t g g tt tag cacaa ataa ag catt titt t cact g catt ct ag ttg t g g tt tag cacaa ataa ag catt titt t cact g catt ct ag ttg t g g tt tag cacaa ataa ag catt cacaa ataa ag catt titt t cact g catt ct ag ttg t g g tt tag cacaa ataa ag catt cacaa ataa ag catt titt t cac ag catt ct ag ttg t g g tt tag cacaa ataa ag catt cacaa ataa ag catt titt t cac ag catt ct ag ttg t g g tt t acaaa ataa ag catt t cacaa ag catt t cacaa ataa ag catt t cacaa ag cacgtccaaactcatcaatgtatcttatcatgtctggctctagctatcccgccctaactccgcccagttccgcccattctccgcccc atggctgactaattttttttatttatgcagaggccgaggccgcctctgagctattccagaagtagtgaggaggcttttt tgg aggcct aggcttttgcg tcg agacgt accea attcgccct at agtgagt cgt attacgcgcgct cactggccg tcgtttt agacgt aggcct aggccgt accea attcgccct at agg aggcct aggccgt accept aggccg aggcct aggccgt accept aggccg aggcgegaagaggecegcacegategecetteceaacagttgegcagectgaatggegaatggegcgaegegecetgtageg gegeat taagegegggggtgtgtgtgtgtaegegeagegtgaeegetaeaettgeeagegeeetagegeeegeteetttegetttetteeetteetttetegeeaegttegeeggettteeegteaagetetaaategggggeteeetttagggtteegatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgcctgatagacggtttttc gccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattct titgatttataagggattitgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaaatattaacgtttacaatttcc

Fig. 9a

Fig. 9b (1 of 3)

caggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaga caataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattccctttttt goggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagt gggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttt taaagttetgetatgtggegeggtattateeegtattgaegeegggeaagageaacteggtegeegeataeactatteteaga atgacttggttgagtactcaccagtcacagaaaagcatettacggatggcatgacagtaagagaattatgcagtgctgccat aaccatgagtgataacactgeggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaac agccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacac gacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaact gtoagaccaagtitactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctftttgata ateteatgaecaaaateeettaaegtgagttttegtteeaetgagegteagaeceegtagaaaagateaaaggatettettgag atcetttttttetgegegtaatetgetgettgeaaacaaaaaaaccaccgetaccageggtggtttgtttgecggatcaagaget accaact et titte ega aggita act ggette ageagage geagataceaa at act gteet tetagt gtage eg tagt taggee ageagataceaa at act get et to the property of the propeaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataag tegtgtettacegggttggacteaagacgatagttaceggataaggegcageggtegggetgaaegggggttegtgeae acageceagettggagegaaegaeetacaeegaaetgagataeetacagegtgagetatgagaaagegeeaegetteee gaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccaggg ggaaacgcctggtatctttatagtcctgtcgggtttegccacctctgacttgagcgtcgatttttgtgatgctcgtcagggggg cggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctg ogttateccetgattetgtggataaccgtattaecgeetttgagtgagetgataecgetegeegeageegaacgaecgageg cagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaa gcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagc tatgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctggagctgcaagcttaatgtagtctta cgattggtggaagtaaggtggtacgatcgtgccttattaggaaggcaacagacgggtctgacatggattggacgaaccact gaattgccgcattgcagagatattgtatttaagtgcctagctcgatacaataaacgggtctctctggttagaccagatctgagc ctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgccc gtetgttgtgtgactetggtaactagagateceteagaccettttagteagtgtggaaaatetetageagtggegeeegaaca gggacetgaaagegaaagggaaaccagagetetetegaegeaggacteggettgetgaagegegeaeggeaagagge acatatagtatgggcaagcagggagctagaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagaca gtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaagatagaggaagagcaaaacaaaagtaagac caccgcacagcaagcggccgctgatcttcagacctggaggaggagatatgagggacaattggagaagtgaattatataaa cagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcactatgggcgcagcctcaatgacgctgacgg tacaggccagacaattattgtctggtatagtgcagcagcagaacaatttgctgagggctattgaggcgcaacagcatctgtt gcaactcacagtctggggcatcaagcagctccaggcaagaatcctggctgtggaaagatacctaaaggatcaacagctcc tggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatctctggaac agattggaatcacacgacctggatggagtgggacagagaaattaacaattacacaagcttaatacactccttaattgaagaa tcgcaaaaccagcaagaaaagaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacataac aaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatagtttttgctgtactttctatagtg aatagagttaggcagggatattcaccattatcgtttcagacccacctcccaaccccgaggggacccgacaggcccgaagg Fig. 9b (2 of 3)

aatagaagaaggtggagagagagacagagacagatccattcgattagtgaacggatctcgacggtatcggttaacttt taaaagaaaaggggggattggggggtacagtgcaggggaaagaatagtagaacataatagcaacagacatacaaactaaa gaattacaanaacaaattacaaaaattcaaaattttatcgatcacgagactagcctcgagagatctgatcataatcagccatac ttaacttgtttattgcagcttataatggttacaaataaggcaatagcatcacaaatttcacaaataaggcattttttcactgcattc tagttttggtttgtccaaactcatcaatgtatcttatcatgtctggatctcaaatccctcggaagctgcgcctgtcttaggttggag caga tectet agaat tacaegge gat ett teegee ett ett geget tat gagga tetet et gat titte et geget gagt titte egget ett gagga tetet et gat titte ett geget ett gagga tetet gagga tetet ett gagg tetet gagg tetgatetettttteegteategtettteegtgeteeaaaacaacagegeggggaagtteaceggegteategtegggaaga acttaatcagagacttcaggcggtcaacgatgaagaagtgttcgtcttcgtcccagtaagctatgtctccagaatgtagccat ccatcettgtcaatcaaggegttggtegettceggattgtttacataaceggacataatcataggacctetcacacacagtteg cccggtttatcatcccctcgggtgtaatcagaatagctgatgtagtctcagtgagcccatatccttgcctgatacctggcagaractggaacctettggcaaccgettccccgacttccttagagaggggagcgccaccagaagcaatttcgtgtaaattagataaatcgtatttgtcaatcagagtgcitttggcgaagaaggagaatagggttggcaccagcagcgcactttgaatcttgtaatcctga aggeteeteagaaacagetettetteaaatetatacattaagaegaetegaaatecacatateaaatateegagtgtagtaaac attccaaaaccgtgatggaatggaacaacacttaaaatcgcagtatccggaatgatttgattgccaaaaataggatctctggc atgegagaateteacgeaggeagttetatgaggeagagegaeacetttaggeagaecagtagateeagaggagtteatgat cagtgcaattgtcttgtccctatcgaaggactctggcacaaaatcgtattcattaaaaccgggaggtagatgagatgtgacga acgtgtacatcgactgaaatccctggtaatccgttttagaatccatgataataattttttggatgattgggagctttttttgcacgtt caaaattttttgcaacccctttttggaaacgaacaccacggtaggctgcgaaatgcccatactgttgagcaattcacgttcatta taaatgtegttegegggegeaactgeaacteegataaataaegegeeeaacaeeggeataaagaattgaagagagttttea ctgcatacgacgattctgtgatttgtattcagcccatatcgtttcatagcttctgccaaccgaacggacatttcgaagtactcag cgtaagtgatgtccacctcgatatgtgcatctgtaaaagcaattgttccaggaaccagggcgtatctcttcatagccttatgca gatcccctggggagagaggtcggtgattcggtcaacgagggagccgactgccgacgtgcgctccggaggcttgcaga atgeggaacacegeggggaggaacagggcccacactacegccccacacccegcctcccgcacegcccttcccgg gegetgteegtetgegagggtactagtgagaegtgeggetteegtttgteaegteeggeaegeggaaeegeaaggaae cgaacggacgtgaagaatgtgcgagacccagggtcggcgccgctgcgtttcccggaaccacgcccagagcagccgcg teectgegeaaaceeagggetgeettggaaaaggegeaaeeeeaaceegtgggaattegatateaagettgeetatgtte ttttggaatetateeaagtettatgtaaatgettatgtaaaceataatataaaagagtgetgattttttgagtaaacttgeaacagte etaacattettetetegtgtgtttgtgtetgttegecateeegteteegteacttateetteactttteagagggteeeeege agatcccggtcaccctcaggtcgggtcgacaaccatggtgagcaagggcgaggagctgttcaccggggtggtgcccatc etggtegagetggaeggegaegtaaaeggeeaeaagtteagegtgteeggegagggegatgeeaectaegg caagetgaccetgaagtteatetgeaceaceggeaagetgeeegtgeeetggeeeacectegtgaceacectgacetaeg gegtgeagtgetteageegetacccegaccacatgaageageacgacttetteaagteegecatgeccgaaggetacgte caggagegeaceatettetteaaggaeggeaactacaagaeeggegegaggtgaagttegagggegacaeeetg gtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctgggggcacaagctggagtacaactaca acagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgag gacggcagctgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaac ccgccgccgggatcactctcggcatggacgagctgtacaagtaaagcggcctcgacaatcaacctctggattacaaaatttgtgaaagattgactggtattcttaactatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgct

Fig. 9b (3 of 3)

tecegtatggettteatttteteeteettgtataaateetggttgetgtetetttatgaggagttgtggeeegttgteaggeaaegtg gcgtggtgtgcactgtgtttgctgacgcaaccccactggttggggcattgccaccacctgtcagctcctttccgggactttc gettteecetecetattgeeaeggeggaacteategeegeetgeettgeeegetgetggaeaggggeteggetgttggge actgacaattccgtggtgttgtcggggaagctgacgtcctttccatggctgctcgcctgtgttgccacctggattctgcgcgg gacgtccttctgctacgtcccttcggccctcaatccageggaecttccttcccgcggcctgctgccggctctgcggcctcttc cgcgtcttcgccttcgcctcagacgagtcggatctccctttgggccgcctccccgcctggaattcgagctcggtacctttaa gaccaatgacttacaaggcagctgtagatcttagccactttttaaaaggaaaagggggactggaagggctaattcactccca acgaagacaagatetgetttttgettgtactgggtetetetggttagaceagatetgageetgggagetetetggetaactagg gaacceactgettaageetcaataaagettgeettgagtgetteaagtagtgtgtgeeegtetgttgtgtgaetetggtaaetag agateceteagaccettttagteagtgtggaaaatetetageagtagtagtteatgteatettattatteagtatttataaettgeaa agaaatgaatatcagagagtgagaggaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttca caaataaagcattttttcactgcattctagttgtgtgtttgtccaaactcatcatgtatcttatcatgtctggctctagctatcccgc cctctgagctattccagaagtagtgaggaggcttttttggaggcctaggcttttgcgtcgagacgtacccaattcgccctatag tgagtegtattaegegegeteactggeegtegttttaeaaegtegtgaetgggaaaaecetggegttaeeeaaettaategee ttgcagcacatcccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagc ctgaatggcgaatggcgcgcgcgcctgtagcggcgcattaagcgcggggggtgtggtggttacgcgcagcgtgacc ctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggtt cacgtagtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttcca aactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatga gctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgtttacaatttcc

Fig. 10a

Fig. 10b (1 of 3)

caggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaga geggcattttgcetteetgtttttgctcacccagaaacgetggtgaaagtaaaagatgctgaagatcagttgggtgcacgagt gggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttt taaagttetgetatgtggegeggtattateeegtattgaegeegggeaagageaacleggtegeegeataeaetatteteaga a accet gag t gata a cact gcg gcca act tact tot gaca acgat cgg agg acc gaa gg agct a accet titt t gcaca accet gag agg accet gag accet gag agg accet gag accet gag agg accet gag agg accet gag acagccggtgagcgtgggtctcgcggtatcattgcagcactgggggccagatggtaagccctcccgtatcgtagttatctacacgaegggagteaggeaactatggatgaaegaaatagaeagategetgagataggtgeeteactgattaageattggtaaet gtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgata ateteatgaccaaaatecettaaegtgagttttegtteeaetgagegteagaceeegtagaaaagateaaaggatettettgag atcctttttttetgegegtaatetgetgettgeaaacaaaaaaaccacegetaccageggtggtttgtttgeeggatcaagaget accaactetttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggcc accactteaagaaotetgtageacegeetacatacetegetetgetaateetgttaceagtggetgetgeeagtggegataag togtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacageceagettggagegaacgacetacacegaactgagatacetacagegtgagetatgagaaagegecacgetteee gaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccaggg ggaaacgcetggtatetttatagteetgtegggtttegeeacetetgaettgagegtegatttttgtgatgetegteagggggg eggageetatggaaaaacgecageaacgeggeettttaeggtteetggeettttgetggeettttgeteacatgttettteetg egttateecetgattetgtggataacegtattacegcetttgagtgagetgatacegetegeegeageegaacgacegageg cagogagteagtgageggaggaageggaagagegeeaataegeaaaeegeeteteeeegegegttggeegatteattaa gcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagc tatgaccat gattac gccaa agc gccaat taa accct cacta aag ggaacaa aa agct ggag ct gcaa gct t ggccat t gcat accept a gattaccat gat agct gat a gattaccat gat a gat aacgttgtatccatatcataatatgtacatttatattggctcatgtccaacattaccgccatgttgacattgattattgactagttatta atagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctgg ctgaccgcccaacgaccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattga cgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattga cgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgt attagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttcc aagtotocacccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccg ccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctcgtttagtgaaccggggtctct ctggttagaccagatctgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttga gtgetteaagtagtgtgecegtetgttgtgtgactetggtaactagagateceteagaceettttagteagtgtggaaaatet ctagcagtggcgcccgaacagggacctgaaagcgaaagggaaaccagagctctctcgacgcaggactcggcttgctga gagatgggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaattcggttaaggccaggggg aaagaaaaaatataaattaaaacatatagtatgggcaagcagggagctagaacgattcgcagttaatcctggcctgttagaa acatcagaaggetgtagacaaataetgggacagetacaaceatceetteagacaggatcagaagaacttagatcattatata atacagtagcaaccetetattgtgtgcatcaaaggatagagataaaagacaccaaggaagctttagacaagatagaggaag agcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcttcagacctggaggaggagatatgagggacaat gtgcagagagaaaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcactatgggcgc agcctcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcagcagcagaacaatttgctgagggctatt gaggogoaacagcatetgttgcaactcacagtetggggcatcaagcagctccaggcaagaatcetggetgtggaaagata

Fig. 10 b (2 of 3)

cctaaaggatcaacagctcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttg gagtaataaatototggaacagatttggaatcacacgacotggatggagtgggacagagaaattaacaattacacaagotta gtggaattggtttaacataacaaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatag caacagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgatcacgagactagcctcgagga gatetgateataateageeataeeacatttgtagaggttttaettgetttaaaaaaceteecacaceteecetgaacetgaace ataaaatgaatgcaattgttgttgttaacttgttattgcagcttataatggttacaaataaggcaatagcatcacaaatttcacaa ataaggeattttttteaetgeattetagttittggtitgteeaaaeteateaatgtatettateatgtetggateteaaateecteggaa getgegetgtettaggttggagtgatacatttttatcacttttaccegtctttggattaggcagtagetctgacggccctcctgt gtctagagaataggaacttcggaataggaacttcgcggccgctttacttgtacagctcgtccatgccgagagtgatcccggc ggcggtcacgaactccagcaggaccatgtgatcgcgcttctcgttggggtctttgctcagggcggactgggtgctcaggta gtggttgtcggcagcagcagcaggggccgtcgccgatggggggtgttctgctggtagtggtcggcgagctgcacgctgccg tecteg at gtt gt geggatet t gaag t teacet t gat geeg tettet get gegee at gat at a gaeg t te gegeeg tette gegeen te gegeen get gat gegeen te gegeen gegeengttgtactccagcttgtgccccaggatgttgccgtcctccttgaagtcgatgcccttcagctcgatgcggttcaccagggtgtc gccetcgaacttcacctcggcgcgggtcttgtagttgccgtcgtccttgaagaagatggtgcgctcctggacgtagccttcg ggcatggcggacttgaagaagtcgtgcttgcttcatgtggtcggggtagcggctgaagcactgcacgccgtaggtcagggt ggtcacgaggtgggccagggcacgggcagcttgccggtggtgcagatgaacttcagggtcagcttgccgtaggtggc ategecetegecetegeeggaeaegetgaacttgtggeegtttaegtegeegteeagetegaeeaggatgggeaeeaece gaaaagtgaaggataagtgacgagcggagacgggatggcgaacagacacaaacacacgagagaatgataggact gttgcaagtttactcaaaaaatcagcactcttttatattatggtttacataagcatttacataagacttggatagattccaaaagaa ggetgetetgggegtggtteegggaaaegeageggeegaeeetgggtetegeaeattetteaegteegttegeagegt cacceggatettegeegetaccettgtgggeeceeeggegaegetteetgeteegeecetaagtegggaaggtteettgeg gttegeggegtgeeggaegtgaeaaaeggaageegeaegteteaetagtaeeetegeagaeggaeagegeeagggage gaaggggggtgcggtgcgggggtgtggggcggtagtgtggggccctgttcctgcccgcggggtgttccgcattctgcaupper and the property of theagecteeggagegeaegteggeagteggeteectegttgacegaateaeegaceteteteeceagggggateeceeggg gccatggacgggcgcgcctgctgctgttgctgcttctgggggtgtcccttggaggtgccaaggaggcatgcccacagg cctgtacacacacacgcggtgagtgctgcaaagcctgcaacctgggcgagggtgtggcccagccttgtggagccaaccag accgtgtgtgagccctgcctggacagcgtgacgttctccgacgtggtgagcgcgaccgagccgtgcaagccgtgcaccg agtgcgtggggctccagagcatgtcggcgccgtgcgtgggaggccgacgacgccgtgtgccgctgcgcctacggctact accaggatgagacgactgggcgtgcgaggcgtgccgcgtgtgcgaggcggggctcgggcctcgtgttctcctgccagg acaagcagaacaccgtgtgcgaggagtgccccgacggcacgtattccgacgaggccaaccacgtggacccgtgcctgc cctgcaccgtgtgcgaggacaccgaggccagctccgcgagtgcacacgctgggccgacgccgagtgcgaggagatc cctggccgitggattacacggtccacacccccagagggctcggacagcacagccccagcacccaggagcctgaggca cctccagaacaagacctcatagccagcacggtggcaggtgtggtgaccacagtgatgggcagctcccagcccgtggtga ocogaggeaceacegacaaceteatecetgtetaltgetecatectggetgetgtggttgtgggeettgtgggeetacatagee ttcaagaggtggaacagggggatcetctagagtcgagtctagagtcgacaatcaacctctggattacaaaatttgtgaaaga ttgactggtattettaactatgttgeteettttaegetatgtggataegetgetttaatgeetttgtateatgetattgetleeegtatg gettteatttteteeteettgtataaateetggttgetgtetetttatgaggagttgtggeeegttgteaggeaaegtggegtggtg tgeactgtgtttgetgaegeaaeeeeactggttggggeattgeeaeeaeetgteageteettteegggaetttegettteeee

Fig. 10b (3 of 3)

ctccctattgccacggcggaactcatcgccgcctgccttgcccgctgctggacagggggctcggctgttgggcactgacaat teegtggtgttgteggggaagetgaegteettteeatggetgetegeetgtgttgeeacetggattetgegegggaegteett gccttcgccctcagacgagtcggatctccctttgggccgcctccccgcctggaattcgagctcggtacctttaagaccaatg acttacaaggcagctgtagatcttagccactttttaaaagaaaaggggggactggaagggctaattcactcccaacgaaga caagatetgetttttgettgtaetgggtetetetggttagaeeagatetgageetgggagetetetggetaaetagggaaeeea otgottaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccc tcagacccttttagtcagtgtggaaaatctctagcagtagtagttcatgtcatcttattattcagtatttataacttgcaaagaaatg aatatcagagagtgagaggaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataa ageattttttteaetgeattetagttgtggtitgteeaaaeteateatgtatettateatgtetggetetagetateeegeeeetaae gctattccagaagtagtgaggaggcttttttggaggcctaggcttttgcgtcgagacgtacccaattcgccctatagtgagtc gtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcag cacatccccetttcgccagctggcgtaatagcgaagaggcccgcaccgatcgccettcccaacagttgcgcagcctgaat ategggggetecetttagggtteegatttagtgetttaeggeacetegaececaaaaaacttgattagggtgatggtteaegta gtgggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactgg aacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgagctgatt taacaaaaatttaacgegaattttaacaaaatattaacgtttacaatttcc

Fig. 11a

Fig. 11b (1 of 3)

caggiggcactiticggggaaatgigcgcggaacccctattigittatttttcfaaatacattcaaatatgtatccgctcatgaga caataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattccctttttt geggeattttgeetteetgtttttgeteacceagaaaegetggtgaaagtaaaagatgetgaagateagttgggtgeaegagt gggttacategaaetggateteaaeageggtaagateettgagagttttegeeeegaagaaegtttteeaatgatgageaettt taaagtietgetatgtggegeggtattateeegtattgaegeegggeaagageaacteggtegeegeatacactatteteaga atgacttggitgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccat aaccatgagtgataacactgoggccaacttacttetgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaac atgggggafeatgtaactegeettgategttgggaaceggagetgaatgaageeataceaaaegaegagegtgacaecae actggatggaggcggataaagttgcaggaccacttetgcgctcggcccttccggctggctggtttattgctgataaatctgg ageeggtgagegtgggtetegeggtateattgeageaetggggeeagatggtaageeeteeegtategtagttatetaeae gacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaact gteagaceaagittaeteatatataetitagattgatttaaaaetteattittaatttaaaaggatetaggtgaagateetittigata atctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgag atcetttttttictgegegtaatetgetgettgeaaacaaaaaaaceacegetaceageggtggtttgtttgeeggateaagaget accaactettttteegaaggtaactggetteageagagegeagataeeaaataetgteettetagtgtageegtagttaggee accacticaagaactetgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataag tegtgtettacegggttggaeteaagaegatagttaceggataaggegeageggtegggetgaaeggggggttegtgeae acageceagettggagegaaegacetacaeegaaetgagataeetacagegtgagetatgagaaagegeeaegetteee gaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccaggg ggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcagggggg cggagectatggaaaaacgccagcaacgcggccttttacggttcctggccttttgctggccttttgctcacatgttctttcctg cagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaa geaccceaggetttaeactttatgetteeggetegtatgttgtgtggaattgtgageggataacaattteacacaggaaacage tatgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctggagctgcaagcttggccattgcat acgitgtatccatatcataatatgtacatttatattggctcatgtccaacattaccgccatgttgacattgattattgactagttatta atagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctgg ctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattga ogtcaatgggtggagtatttaoggtaaactgoccacttggcagtacatcaagtgtatcatatgccaagtacgcccctattga ogtcaatgaoggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgt attagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttcc aagtetecaeeeeattgaegteaatgggagtttgttttggeaeeaaaateaaegggaettteeaaaatgtegtaaeaaeteeg ccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctcgtttagtgaaccggggtctct ctggttagaccagatetgagcctgggagetetetggetaactagggaacceaetgettaagceteaataaagettgeettga gtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatct ctagcagtggcgcccgaacagggacctgaaagcgaaagggaaaccagagctctctcgacgcaggactcggcttgctga agegegeaeggeaagaggegagggeggeggetggtgagtaegecaaaaattttgaetageggaggetagaaggaga gagatgggtgcgagagcgtcagtattaagcgggggagaattagatcgcgatgggaaaaaaattcggttaaggccaggggg aaagaaaaaatataaattaaaacatatagtatgggcaagcaggggagctagaacgattcgcagttaatcctggcctgttagaa acatcagaaggetgtagacaaataetgggacagetacaaccatceettcagacaggatcagaagaacttagatcattatata atacagtagcaaccetetattgtgtgcatcaaaggatagagataaaagacaccaaggaagetttagacaagatagaggaag agcaaaacaaaagtaagaccaccgcacagcaagcggccgctgatcttcagacctggaggaggagatatgagggacaat gtgcagagagaaaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcactatgggcgc agcotcaatgacgctgacggtacaggccagacaattattgtotggtatagtgcagcagcagaacaatttgctgagggctatt gaggcgcaacagcatctgttgcaactcacagtctggggcatcaagcagctccaggcaagaatcctggctgtggaaagata

Fig. 11 b (2 of 3)

cctaaaggatcaacagctcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttg gtggaattggtttaacataacaaattggctgtggtatataaaaattattcataatgatagtaggaggcttggtaggtttaagaatagtogacggtatcggttaacttttaaaaggaaaagggggattggggggtacagtgcaggggaaagaatagtagacataatag caacagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttategatcacgagactagectegagag atetgatcataatcagccataccacatttgtagaggttttacttgctttaaaaaacctcccacacctccccctgaacctgaaaca taaaatgaatgcaattgttgttgttaacttgtttattgcagcttataatggttacaaataaggcaatagcatcacaaatttcacaaa taaggeattttttteactgeattetagttttggtttgteeaaacteateaatgtatettateatgtetggateteaaateecteggaag ctgcgcctgtcttaggttggagtgatacatttttatcacttttacccgtctttggattaggcagtagctctgacggccctcctgtct taggttagtgaaaaatgtcactctcttacccgtcattggctgtccagcttagctcgcaggggaggtggtctggatccgagctc gaattggccgctttacttgtacagctcgtccatgccgagagtgatcccggcggcggtcacgaactccagcaggaccatgtg ategegettetegttggggtetttgeteagggeggaetgggtgeteaggtagtggttgtegggeageageaeggggeegte gccgatgggggtgttctgctggtagtggtcggcgagctgcacgctgccgtcctcgatgttgtggcggatcttgaagttcacc ttgatgccgttcttctgcttgtcggccatgatatagacgttgtggctgttgtagttgtactccagcttgtgccccaggatgttgcc gtcetecttgaagtcgatgccettcagctcgatgcggttcaccagggtgtcgccctcgaacttcacctcggcggggtcttgt agttgccgtcgtccttgaagaagatggtgcgctcctggacgtagccttcgggcatggcggacttgaagaagtcgtgctgcttcatgtggtcggggtagcggctgaagcactgcacgccgtaggtcagggtggtcacgagggtgggccagggcacgggca gettgeeggtggtgeagatgaaetteagggteagettgeegtaggtggeategeeetegeeetegeeggaeaegetgaaet tgtggccgtttacgtcgccgtccagctcgaccaggatgggcaccaccccggtgaacagctcctcgcccttgctcaccatgg tgaattccgcggaggctggatcggtcccggtgtcttctatggaggtcaaaacagcgtggatggcgtctccaggcgatctga cggttcactaaacgagctctgcttatataggcctcccaccgtacacgcctaccctcgagaagcttgattaacccgtgtcggct gaagggegeageggagegteetgateetteegeeeggaegeteaggaeageggeeegetgeteataagaeteggeettag aggcgaggaaaagtagtcccttctcggcgattctgcggagggatctccgtggggcggtgaacgccgatgattatataagg ggctgttcccgagtcttgaatggaagacgcttgtaaggcgggctgtgaggtcgttgaaacaaggtggggggcatggtggg cggcaagaacccaaggtcttgaggccttcgctaatgcgggaaagctcttattcgggtgagatgggctggggcaccatctg gttgggcagtgcacccgtacctttgggagcgcgcgcctcgtcgtgtcgtgacgtcacccgttctgttggcttataatgcagg gtggggccacctgccggtaggtgtgcggtaggcttttctccgtcgcaggacgcagggttcgggcctagggtaggctctcct gaatcgacaggcgccggacctctggtgaggggagggataagtgaggcgtcagtttctttggtcggttttatgtacctatcttc ttaagtagetgaageteeggttttgaaetatgegeteggggttggegagtgtgttttgtgaagttttttaggeaecttttgaaatgt aatcattigggteaatatgtaattiteagtgttagactagtaaattgteegetaaattetggeegttittggettitttgttagaegaa gettgggetgeaggaattegggeegggeeageteeggegggeagggggggegetggagegeagegeagegeagee ggccgcgccatggacgggccgcgctgctgctgttgctgcttctgggggtgtcccttggaggtgccaaggaggcatgcc ccacaggcctgtacacacacagcggtgagtgctgcaaagcctgcaacctgggcgagggtgtggcccagccttgtggagc caaccagaccgtgtgtgagccctgcctggacagcgtgacgttctccgacgtggtgagcgcgaccgagccgtgcaagccg ggctactaccaggatgagacgactgggcgctgcgaggcgtgccgcgtgtgcgaggcgggctcgggcctcgtgttctcct gecaggacaagcagaacaccgtgtgcgaggagtgccccgacggcacgtattccgacgaggccaaccacgtggacccg tgcctgccctgcaccgtgtgcgaggacaccgagcgccagctccgcgagtgcacacgctgggccgacgccgagtgcga

Fig. 11b (3 of 3).

ggagatecetggeegttggattacaeggtecaeaececeagagggeteggacageaeageececageaeceaggagee tgaggcacctccagaacaagacctcatagccagcacggtgggcaggtgtggtgaccacagtgatgggcagctcccagccc gtggtgacccgaggcaccaccgacaacctcatccctgtctattgctccatcctggctgctgtggtgtgtgggccttgtggccta tgaa agatt gactg gtattettaa etat gtt geteettttae getat gtggatae get gett taat geett tgate at getat tgeteette getat getccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtgg cgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagctcctttccgggactttcg cttteeccetecetattgeeacggeggaacteategeegeetgeetgeetgetggaeaggggeteggetgttgggea ctgacaattccgtggtgttgtcggggaagctgacgtcctttccatggctgctcgcctgtgttgccacctggattctgcgcggg acgteet tetgetacgteet tetgee et caatee ageggae et te ctteet geggeet tetge gegeet et te comment to the comment of the commentgegtettegeettegeeeteagaegagteggateteeetttgggeegeeteeeegeetggaattegageteggtaeetttaag accaatgacttacaaggcagctgtagatcttagccactttttaaaagaaaaggggggactggaagggctaattcactcccaa cgaagacaagatctgctttttgcttgtactgggtctctctggttagaccagatctgagcctgggagctctctggctaactaggg aacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtgtactctggtaactaga gateceteagaecettttagteagtgtggaaaatetetageagtagtagtteatgteatettattatteagtatttataaettgeaaa gaaatgaatatcagagagtgagaggaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcac aaataaagcatttitttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctggctctagctatcccgcc ctctgagctattccagaagtagtgaggaggcttttttggaggcctaggcttttgcgtcgagacgtacccaattcgccctatagtgagtogtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgcct tgcagcacatccccetttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcc tgaatggcgaatggcgcgcgcgcctgtagcggcgcattaagcgcgggggggtgtggtggttacgcgcagcgtgaccg ctaca ctt gecage gecetage geceget cett teget tte teet teet te tege cae gtte geeg get tte ee gte aagetotaaatogggggctocottiagggttocgatttagtgctttacggcacotcgaccccaaaaaaacttgattagggtgatggtto acgtagtgggccatcgccctgatagacggtttttcgcccttlgacgttggagtccacgttctttaatagtggactcttgttccaa actggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgag ctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgtttacaatttcc

EP 1 616 012 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 02064804 A [0006]
- US 6388170 B [0008] [0009] [0009]
- WO 0134825 A [0010]
- IT 2004000227 W [0064]

Non-patent literature cited in the description

- KAY, M.A.; GLORIOSO, J.C.; NALDINI, L. Nat Med, 2001, vol. 7, 33-40 [0063]
- NEFF, T. et al. J Clin Invest, 2003, vol. 112, 1581-1588 [0063]
- BORDIGNON, C.; RONCAROLO, M.G. Nat. Immumol., 2002, vol. 3, 318-321 [0063]
- SADELAIN, M. J Gene Med, 2002, vol. 4, 113-121
 [0063]
- BONINI, C. et al. Science, 1997, vol. 276, 1719-1724 [0063]
- HACEIN-BEY-ABINA, S. et al. Science, 2003, vol. 302, 415-419 [0063]
- BURTON, E.A.; GLORIOSO, J.C.; FINK, D.J. Gene Ther, 2003, vol. 10, 1721-1727 [0063]
- SADELAIN, M.; RIVIERE, I.; BRENTJENS, R. Nat Rev Cancer, 2003, vol. 3, 35-45 [0063]
- MILLER, A.D. Retroviruses. Cold Spring Harbor Laboratory Press, 2000, 437-474 [0063]
- EMERMAN, M.; TEMIN, H.M. Mol Cell Biol, 1986, vol. 6, 792-800 [0063]
- ZHU, Y. et al. Mol. Ther., 2001, vol. 4, 375-382 [0063]
- KLUMP, H. et al. Gene Ther., 2001, vol. 8, 811-817 [0063]
- FURLER, S. et al. Gene Ther, 2001, vol. 8, 864-873
 [0063]
- MARTINEZ-SALAS, E. Curr.Opin.Biotechnol., 1999, vol. 10, 458-464 [0063]
- FOLLENZI, A. et al. Nat Genet, 2000, vol. 25, 217-222 [0063]
- GHATTAS, I.R.; SANES, J.R.; MAJORS, J.E.
 Mol.Cell Biol., 1991, vol. 11, 5848-5859 [0063]
- QIAO, J. et al. Hum Gene Ther, 2002, vol. 13, 881-887 [0063]
- LOIS, C. et al. Science, 2002, vol. 295, 868-872 [0063]
- BARON, U.; BUJARD, H. Methods Enzymol., 2000, vol. 327, 401-421 [0063]
- BRAY, M. et al. Proc Natl Acad Sci USA, 1994, vol. 91, 1256-1260 [0063]
- ZUFFEREY, R. et al. J. Virol., 1999, vol. 73, 2886-2892 [0063]
- AILLES, L. et al. Mol Ther, 2002, vol. 6, 615-626 [0063]

- CAVALIERI, S. et al. Blood, 2003, vol. 102, 497-505 [0063]
- NALDINI, L. et al. Proc Natl Acad Sci U SA, 1996, vol. 93, 11382-11388 [0063]
- BAEKELANDT, V. et al. Hum Gene Ther, 2002, vol. 13, 841-853 [0063]
- DEGLON, N. et al. Hum. Gene Ther., 2000, vol. 11, 179-190 [0063]
- SOKOLIC, R.A. et al. Blood, 1996, vol. 87, 42-50
 [9063]
- WONG, E.T.; NGOI, S.M.; LEE, C.G. Gene Ther, 2002, vol. 9, 337-344 [0063]
- KOZAK, M. Gene, 2003, vol. 318, 1-23 [0063]
- MIZUGUCHI, H. et al. Mol Ther, 2000, vol. 1, 376-382
 [0063]
- HENNECKE, M. et al. Nucleic Acids Res, 2001, vol. 29, 3327-3334 [0063]
- MAZURIER, F. et al. Blood, 2004, vol. 103, 545-552
 [0063]
- VIGNA, E.; NALDINI, L. J Gene Med, 2000, vol. 2, 308-316 [0063]
- GARDINER-GARDEN, M.; FROMMER, M. J. Mol Biol, 1987, vol. 196, 261-282 [0063]
- LAVIA, P.; MACLEOD, D.; BIRD, A. EMBO J, 1987, vol. 6, 2773-2779 [0063]
- JOHNSON, P.; FRIEDMANN, T. Gene, 1990, vol. 88, 207-213 [0063]
- SCACHERI, P.C. et al. Genesis, 2001, vol. 30, 259-263 [0063]
- VIGNA, E. et al. Mol Ther, 2002, vol. 5, 252-261 [0063]
- BARON, U. et al. Nucleic. Acids. Res., 1995, vol. 23, 3605-3606 [0063]
- UNSINGER, J. et al. Mol Ther, 2001, vol. 4, 484-489
 [0063]
- FUX, C. et al. J Gene Med, 2003, vol. 5, 1067-1079 [0063]
- XIE, M.; HE, Y.; GAN. SNat Biotechnol, 2001, vol. 19, 677-679 [0063]
- TRINKLEIN, N.D. et al. Genonze Res, 2004, vol. 14, 62-66 [0063]
- TAKAI, D.; JONES, P.A. Mol Biol Evol, 2004, vol. 21, 463-467 [0063]

EP 1 616 012 B1

- ADACHI, N.; LIEBER, M.R. Cell, 2002, vol. 109, 807-809 [0063]
- FARSON, D. et al. Hum Gene Ther, 2001, vol. 12, 981-997 [0063]
- **DE PALMA, M. et al.** *Nat Med*, 2003, vol. 9, 789-795 [0063]
 - FOLLENZI, A. et al. Hum Gene Ther, 2002, vol. 13, 243-260 [0063]