Chapter 6: Sequential Circuits

时序逻辑电路

Dr Guohun Zhu

Email: g.zhu@uq.edu.au or guohun.zhu.phd@ieee.org

Presentation Outline

- Introduction to Sequential Circuits
- ❖ Synchronous versus Asynchronous (同步 vs 异步)
- Review Latches

- Review Flip-Flops
- Characteristic Tables and Equations

Reference

Digital Electronics Principles and Applications by

Roger L. Tokheim

- Sequential logic
 - https://github.com/computation-structures/course/blob/main/lectures/L05 Sequential Logic.md
- Digital design source code
 - https://github.com/hneemann/Digital

0

The Classes of Digital Circuits

- ❖ Two classes of digital circuits. (两类数字电路)
 - ♦ Combinational Circuits
 - ♦ Sequential Circuits
- ❖ Combinational Circuits (组合电路)
 - \Diamond O = F(x)
 - ♦ Function of Inputs only
 - ◇ NO internal memory (没有内部存储)
- ❖ Sequential Circuits (时序电路)
 - \Diamond O = F(x, ?)
 - ◇ Have memory ability (有记忆能力)

A Sequential Logical Example

- TV Remote Control with Channel Up and Channel Down Buttons
 - ♦ What is the next channel if press "Channel Up" Button?
 - ♦ If current channel number : 8, then next channel ?
 - ♦ If current channel number : 6, then next channel ?
 - \diamondsuit The remote control's output is dependent on its previous state(O_0)
 - \diamond and **Buttons:** \mathbf{x} ?
 - \Diamond
 - $\Diamond O_1 = F(x, O_0)$

Introduction to Sequential Circuits

A Sequential circuit consists of: (Text books page 247)

- 1. Memory elements:
 - **♦ Latches Or Flip-Flops**
 - Store the Present State: S
- Combinational Logic
 - Computes the Outputs :O
 - Computes the Next Activity State : E

Present State S Previous S tate S previous S previous S tate S previous S

0 0 0 0 0 0

Both O, E depends on the Inputs and the Present State Q

However, S could be affected by E and the memory (old S)

时序电路的描述方式:逻辑方程

Text book page 247

输出方程: O=f₁(X, S)

激励方程 $E=f_2(X, S)$

状态方程 $S_{n+1}=f_3(E, S_n)$

A Counter Example

Counter increase one when a pulse signal was obtained. If there has no pulse, the state has no changed.

The pulse is called a clock

Assume that the output and all states change simultaneously: Synchronous (同步)

Output and States are changed at any time. Asynchronous (异步)

Two Types of Sequential Circuits

1. Synchronous Sequential Circuit 同步时序电路

- Uses clock signals as additional inputs
 - single-clock synchronous

- 单时钟同步
- Multiple clock signals is possible, but analyzing (the timing) is quite tricky
- Changes in the memory elements are controlled by the clock
- Changes happen at discrete instances of time

变化发生在离散的时间点

Model: Discrete Time

Active Clock Edges punctuate time ---

- · Discrete Clock periods
- · Sequences of states
- Simple rules eg truth tables relating outputs to inputs and the current state)
- ABSTRACTION: Finite State Machines (next lecture!)

抽象化:有限状态机

2. Asynchronous Sequential Circuit

- ♦ No clock signal
- Changes in the memory elements can happen at any instance of time
- ◇ Example: SR Latch (SR锁存器)

S-R Latch 功能表

S_L	R_L	Q	QN
1	1	维持	现态
1	0	0	1
0	1	1	0
0	0	1*	1*

- Advantage and Drawbacks
 - ♦ Faster as there has no clock
 - ♦ Difficult to design and analyze than synchronous sequential circuits

Synchronous Sequential Circuits

- Synchronous sequential circuits use a clock signal
- The clock signal is an input to the memory elements
- The clock determines when the memory should be updated
- The present state = output value of memory (stored)
- The next state = input value to memory (not stored yet)

The Clock

- ❖ Clock is a periodic signal 时钟是周期信号
- ◆ Positive Pulse: when the level of the clock is 1 正脉冲
- ◆ Negative Pulse: when the level of the clock is 0 负脉冲
- ♦ Rising Edge: when the clock goes from 0 to 1 上升沿
- ◆ Falling Edge: when the clock goes from 1 down to 0 下降沿

Memory Elements

- Memory can store and maintain binary state in electronically
 - ♦ 1-bit data: 0 or 1
- ◆ Alternative memory styles (其他存储形式)
 - ◇ Magnetic(磁性), optical (光学), or acoustic (声学)
 - ◇ Quantum memory (量子存储): qubits (量子位)
- Two main types:
 - ◇ Latches : level-sensitive (锁存器是电平敏感)
 - ◇ Flip-Flops: edge-sensitive (触发器是边沿敏感)
- Flip-Flips are used in synchronous sequential circuits
- Flip-Flops are built with latches

Next ...

Introduction to Sequential Circuits

Synchronous versus Asynchronous

Review Latches

Review Flip-Flops

Characteristic Tables and Equations

Review SR Latch

- ❖ A latch is a memory element that can store 0 or 1
- ❖ An SR Latch can be built using two cross-coupled NOR gates(或非门)
- ❖ 请问能否用 NAND gates 建成 SR Latch?
- Two inputs: S (Set) and R (Reset)
- ❖ Two outputs: Q and Q

S R	$Q \overline{Q}$	
1 0 0 0	1 0 1 0	Set state
0 1 0 0	0 1 0 1	Reset state
1 1	0 0	Undefined

SR Latch Operation

SR Latch Invalid Operation

Timing Diagram of an SR Latch (时序图)

Gated SR Latch with Clock Enable

C	S	R	Next state of Q
0	X	Χ	No change
1	0	0	No change
1	0	1	Q = 0; Reset state
1	1	0	Q = 1; Set state
1	1	1	Undefined

- An additional Clock (enable) input signal C is used
- Clock controls when the state of the latch can be changed
- When C=0, the S and R inputs have no effect on the latch The latch will remain in the same state, regardless of S and R
- ❖ When C=1, then normal SR latch operation

Text Books page 210

Timing Diagram of an SR Latch with Enable

请补充完整时序(波形)图

Timing Diagram of an SR Latch with Enable

答案:

5 R Latch with NAND Gates

Known as the Latch

- ❖ If \overline{S} =? and \overline{R} =? then Set (Q=1)
- \bullet If $\overline{S}=?$ and $\overline{R}=?$ then **Reset** (Q=0)
- ❖ When S=R=?, and Q is unchanged (remain the same)
- ❖ The latch stores its outputs Q and as long as $\overline{S}=\overline{R}=?$
- ❖ When S=R=? and Q is undefined (should never be used)

5 R Latch Operation

5 R Latch Invalid Operation

 $\overline{S} = \overline{R} = 0$ should never be used

If \overline{S} and \overline{R} change from $0 \rightarrow 1$ simultaneously then race condition (oscillation) occurs

Final \overline{Q} and $\overline{\overline{Q}}$ are unknown

Gated SR Latch with Clock Enable

- An additional Clock (enable) input signal C is used
- Clock controls when the state of the latch can be changed
- ❖ When C=0, the latch remains in the same state
- When C=1, then normal latch operation
 The NAND gates invert the S and R inputs when C=1

D-Latch with Clock Enable

Timing of a D-Latch with Clock Enable

Graphic Symbols for Latches

- ❖ A bubble appears at the complemented output Q Indicates that Q is the complement of Q
- ❖ A bubble also appears at the inputs of an SR latch Indicates that logic-0 is used (not logic-1) to set (or reset) the latch (as in the NAND latch implementation)

D-Latch Funtion

D-Latch: 只有一个数据输入端D 称为D锁存器, 也称为透明锁存器

状态转移真值表

D	Q ⁿ⁺¹
0	0
1	1

特征方程: $Q^{n+1} = D(C=1)$

Problem with Latches

- A latch is level-sensitive (sensitive to the level of the clock)
- As long as the clock signal is high ...
 Any change in the value of input D appears in the output Q
- Output Q keeps changing its value during a clock cycle
- Final value of output Q is uncertain

Due to this uncertainty, latches are NOT used as memory elements in synchronous circuits

Home work

列出表达式: z3 = ?

$$z3(t+\Delta) = F(x1(t), ..., x4(t), z3(t), z4(t))$$

Observations:

- z3 and z4 appear as both inputs and outputs.
- The "state" of variable z3 (or z4) at time $t+\Delta$ depends on its value at time t, i.e. $z3(t+\Delta) = F(z3(t))$, hence, circuit has memory.
- z3(t) and z4(t) are called <u>state variables</u>.

Next ...

Introduction to Sequential Circuits

Synchronous versus Asynchronous

Review Latches

Review Flip-Flops

Characteristic Tables and Equations

Flip-Flops (触发器)

- A Flip-Flop is a better memory element for synchronous circuits
- Solves the problem of latches in synchronous sequential circuits
- A latch is sensitive to the level of the clock
- However, a flip-flop is sensitive to the edge of the clock
- A flip-flop is called an edge-triggered memory element
- It changes it output value at the edge of the clock

如何实现边沿触发?

Edge-Triggered D Flip-Flop

- Built using two latches in a master-slave configuration
- A master latch (D-type) receives external inputs
- A slave latch (SR-type) receives inputs from the master latch
- Only one latch is enabled at any given time

When Clk=0, the master is enabled and the D input is latched (slave disabled)

When Clk=1, the slave is enabled to generate the outputs (master is disabled)

Negative Edge-Triggered D Flip-Flop

- Similar to positive edge-triggered flip-flop
- The first inverter at the Master C input is removed
- Only one latch is enabled at any given time

When Clk=1, the master is enabled and the D input is latched (slave disabled)

When Clk=0, the slave is enabled to generate the outputs (master is disabled)

Edge-Triggered D Flip-Flop

- (1) Analyse the master-slave Flip-Flop
- (2) Please create the Truth Table

