N-Channel 12 V (D-S) and P-Channel 20 V (D-S) MOSFET

PowerPAK® SC-70-6L Dual S_2 S_2 S_3 S_4 S_4 S_5 S_4 S_5 S_5 S_6 S_6 S_7 S_8 S_8

Marking code: EK

Package

PRODUCT SUMMARY N-CHANNEL P-CHANNEL V_{DS} (V) 12 -20 $R_{DS(on)}(\Omega)$ at $V_{GS} = \pm 4.5 \text{ V}$ 0.028 0.054 $R_{DS(on)}(\Omega)$ at $V_{GS} = \pm 2.5 \text{ V}$ 0.033 0.070 $R_{DS(on)}(\Omega)$ at $V_{GS} = \pm 1.8 \text{ V}$ 0.042 0.104 $R_{DS(on)}$ (Ω) at $V_{GS} = -1.5 \text{ V}$ 0.165 Q_q typ. (nC) 6.2 9.5 I_D (A) a 4.5 -4.5 Configuration N- and p-pair

ORDERING INFORMATION

Lead (Pb)-free and halogen-free

FEATURES

- TrenchFET® power MOSFETs
- Typical ESD protection:
 N-channel 2400 V, P-channel 2000 V

• 100 % R_a tested

 Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

Pb-free

RoHS COMPLIANT

HALOGEN FREE

APPLICATIONS

- Portable devices such as smart phones, tablet PCs and mobile computing
 - Load switches

SiA537EDJ-T1-GE3

- Power management
- DC/DC converters

PowerPAK SC-70		

PARAMETER		SYMBOL	N-CHANNEL	P-CHANNEL	UNIT	
Drain-source voltage		V _{DS}	12	-20	V	
Gate-source voltage		V _{GS}	± 8	± 8	V	
	T _C = 25 °C		4.5 ^a	-4.5 ^a		
Continuous drain augrent /T 150 °C\	T _C = 70 °C		4.5 ^a	-4.5 ^a	А	
Continuous drain current (T _J = 150 °C)	T _A = 25 °C	l _D	4.5 ^{a, b, c}	-4.5 ^{a, b, c}		
	T _A = 70 °C		4.5 ^{a, b, c}	-4.5 ^{a, b, c}		
Pulsed drain current (t = 100 μs)		I _{DM}	20	-15		
Source drain current diode current	T _C = 25 °C		4.5 ^a	-4.5 ^a		
Source drain current diode current	T _A = 25 °C	l _S	1.6 ^{b, c} -1.6 ^{b, c}			
	T _C = 25 °C		7.8	7.8	W	
Maximum navay disaination	T _C = 70 °C	1	5	5		
Maximum power dissipation	T _A = 25 °C	P _D	1.9 ^{b, c}	1.9 ^{b, c}	VV	
	T _A = 70 °C	1	1.2 b, c	1.2 ^{b, c}		
Operating junction and storage temperature ra	T _J , T _{stg}	-55 to +150				
Soldering recommendations (peak temperature	e) ^{d, e}		20	°C		

THERMAL RESISTANCE RATINGS									
PARAMETER	SYMBOL	N-CHANNEL		P-CHANNEL		UNIT			
PANAMETER		STWIBOL	TYP.	MAX.	TYP.	MAX.	ONII		
Maximum junction-to-ambient b, f	t ≤ 5 s	R _{thJA}	52	65	52	65	°C/W		
Maximum junction-to-case (drain)	Steady state	R _{thJC}	12.5	16	12.5	16	-0/00		

Notes

- a. Package limited
- b. Surface mounted on 1" x 1" FR4 board
- c. t = 5 s
- d. See solder profile (<u>www.vishay.com/ppg?73257</u>). The PowerPAK SC-70 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
- e. Rework conditions: Manual soldering with a soldering iron is not recommended for leadless components
- f. Maximum under steady state conditions is 110 °C/W

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Static				l.			•
Drain-source breakdown voltage	V	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	N-Ch	12	-	-	V
Drain-source breakdown voltage	V _{DS}	V _{GS} = 0 V, I _D = -250 μA	P-Ch	-20	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{.1}$	I _D = 250 μA	N-Ch	-	8	-	
VDS temperature coemicient	ΔVDS/1J	I _D = -250 μA	P-Ch	-	-15	-	mV/°C
V _{GS(th)} temperature coefficient	Δ.V/Τ.	$I_D = 250 \mu A$	N-Ch	-	-2.5	-	111107 C
VGS(th) temperature coemicient	$\Delta V_{GS(th)}/T_J$	I _D = -250 μA	P-Ch	-	2.5	-	
Gate threshold voltage	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$	N-Ch	0.4	-	1	V
Gate threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	P-Ch	-0.4	-	-1	
		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 4.5 \text{ V}$	N-Ch	-	-	± 0.5	- μΑ
Gate-source leakage		$v_{DS} = 0$ v , $v_{GS} = \pm 4.3$ v	P-Ch	-	-	± 3	
Gate-source leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$	N-Ch	-	-	± 5	
		$\mathbf{v}_{DS} = \mathbf{v} \mathbf{v}, \mathbf{v}_{GS} = \pm \mathbf{o} \mathbf{v}$	P-Ch	=.	-	± 30	
		V _{DS} = 12 V, V _{GS} = 0 V	N-Ch	=.	-	1	
Zero gate voltage drain current	I	V _{DS} = -20 V, V _{GS} = 0 V	P-Ch	-	-	-1	
Zero gate voltage drain current	I _{DSS}	V_{DS} = 12 V, V_{GS} = 0 V, T_J = 55 °C	N-Ch	-	-	10	
		V_{DS} = -20 V, V_{GS} = 0 V, T_J = 55 °C	P-Ch	-	-	-10	
On-state drain current ^b	1	$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	N-Ch	10	-	-	Α
On-state drain current	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	P-Ch	-10	-	-	_ A
		$V_{GS} = 4.5 \text{ V}, I_D = 5.2 \text{ A}$	N-Ch	=.	0.023	0.028	
		$V_{GS} = -4.5 \text{ V}, I_D = -3.8 \text{ A}$	P-Ch	=.	0.044	0.054	
		$V_{GS} = 2.5 \text{ V}, I_D = 4.8 \text{ A}$	N-Ch	=.	0.027	0.033	
Drain-source on-state resistance b	R _{DS(on)}	$V_{GS} = -2.5 \text{ V}, I_D = -3.3 \text{ A}$	-	0.057	0.070	Ω	
		$V_{GS} = 1.8 \text{ V}, I_D = 2.5 \text{ A}$	0.035	0.042			
		V _{GS} = -1.8 V, I _D = -1 A	P-Ch	-	0.075	0.104	
		$V_{GS} = -1.5 \text{ V}, I_D = -0.5 \text{ A}$	P-Ch	-	0.097	0.165	
Forward transconductance b	G.	$V_{DS} = 6 \text{ V}, I_D = 5.2 \text{ A}$	N-Ch	-	23	-	s
rorward transconductance ~	9fs	$V_{DS} = -6 \text{ V}, I_D = -3.6 \text{ A}$	P-Ch	-	11	-)

www.vishay.com

Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Dynamic ^a				I	1	l	
Innut conscitones	_		N-Ch	-	455	_	
Input capacitance	C _{iss}	N-Channel	P-Ch	-	770	-	
Output capacitance	C _{oss}	$V_{DS} = 6 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	N-Ch	-	190	-	pF
Output capacitaries	Ooss	P-Channel	P-Ch	-	90	-	Pi
Reverse transfer capacitance	C _{rss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	N-Ch	-	150	-	
	-155		P-Ch	-	81	-	
		$V_{DS} = 6 \text{ V}, V_{GS} = 8 \text{ V}, I_{D} = 6.8 \text{ A}$	N-Ch	-	10.5	16	
Total gate charge	Q_g	$V_{DS} = -10 \text{ V}, V_{GS} = -8 \text{ V}, I_D = -4.9 \text{ A}$	P-Ch	-	16.3	25	
		N-Channel	N-Ch P-Ch	-	6.2 9.5	9.5 14.5	
		$V_{DS} = 6 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 6.8 \text{ A}$	N-Ch	-	0.8	14.5	nC
Gate-source charge	Q_{gs}		P-Ch	-	1.4	_	
		P-Channel $V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -4.9 \text{ A}$	N-Ch	-	1.6	_	_
Gate-drain charge	Q_{gd}	VDS - 10 V, VGS4.5 V, ID4.8 A	P-Ch	-	2.3		
_	_		N-Ch	0.8	4	8	
Gate resistance	R_g	f = 1 MHz	P-Ch	1	5.1	10	Ω
The second to the second			N-Ch	-	10	15	-
Turn-on delay time	t _{d(on)}	N-Channel	P-Ch	-	15	25	
Rise time	t _r	$V_{DD} = 6 \text{ V}, R_{L} = 1.1 \Omega$	N-Ch	-	12	20	
nise time	۱۲	$I_D \cong 5.4 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	P-Ch	-	15	25	
Turn-off delay time	t _{d(off)}	P-Channel	N-Ch	-	25	40	
Tam on dolay time	ra(on)	$V_{DD} = -10 \text{ V}, R_L = 2.6 \Omega$	P-Ch	-	30	45	
Fall time	t _f	$I_D \cong -3.9 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$	N-Ch	-	12	20	
	-1		P-Ch	-	10	15	ns
Turn-on delay time	t _{d(on)}		N-Ch	-	5	10	
	-()	N-Channel $V_{DD} = 6 \text{ V, R}_{L} = 1.3 \Omega$	P-Ch	-	7	16	
Rise time	t _r	$I_D \cong 5.4 \text{ A}, V_{GEN} = 8 \text{ V}, R_q = 1 \Omega$	N-Ch P-Ch	-	10	15 20	
	t _{d(off)}		N-Ch	_	20	30	
Turn-off delay time		P-Channel V_{DD} = -10 V, R_L = 2.6 Ω	P-Ch	_	25	40	
		$I_D \cong -3.9 \text{ A, } V_{GEN} = -8 \text{ V, } R_g = 1 \Omega$	N-Ch	_	10	15	
Fall time	t _f	Ü	P-Ch	-	10	15	
Drain-Source Body Diode Characteristi	cs			I	1	l	l
Continuous source-drain diode current	I.	T _C = 25 °C	N-Ch	-	-	4.5	
Continuous Source-drain diode cuffent	I _S	1C = 23 C	P-Ch	-	-	-4.5	Δ
Pulse diode forward current ^a	I _{SM}		N-Ch	-	-	20	A
. also alogo forward dufforit	INIG		P-Ch	-	-	-15	
Body diode voltage	V _{SD}	$I_{S} = 4.8 \text{ A}, V_{GS} = 0 \text{ V}$	N-Ch		0.8	1.2	V
	<u> </u>	$I_S = -3.9 \text{ A}, V_{GS} = 0 \text{ V}$	P-Ch	-	-0.9	-1.2	
Body diode reverse recovery time	t _{rr}		N-Ch	-	25	50	ns
Body diode reverse recovery charge	Q _{rr}	N-Channel I _F = 5.4 A, di/dt = 100 A/μs,	P-Ch N-Ch	-	13 10	25 20	
		$T_{J} = 25 ^{\circ}\text{C}$	P-Ch	-	5.5	12	nC
			N-Ch	-	13	-	
Reverse recovery fall time	ta	P-Channel $I_F = -3.9 \text{ A, di/dt} = -100 \text{ A/}\mu\text{s,}$	P-Ch	-	7.5	_	ns
		$T_J = 25 ^{\circ}\text{C}$	N-Ch	-	12	-	
Reverse recovery rise time	t _b	-	P-Ch	_	5.5	_	

Notes

- a. Guaranteed by design, not subject to production testing
- b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Gate Current vs. Gate-Source Voltage

Output Characteristics

On-Resistance vs. Drain Current and Gate Voltage

Gate Current vs. Gate-Source Voltage

Transfer Characteristics

Source-Drain Diode Forward Voltage

Threshold Voltage

On-Resistance vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power (Junction-to-Ambient)

N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Safe Operating Area, Junction-to-Ambient

Note

a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Gate Current vs. Gate-to-Source Voltage

Output Characteristics

On-Resistance vs. Drain Current and Gate Voltage

Gate Current vs. Gate-to-Source Voltage

Transfer Characteristics

Capacitance

Gate Charge

Source-Drain Diode Forward Voltage

Threshold Voltage

On-Resistance vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient

Safe Operating Area, Junction-to-Ambient

Note

a. The power dissipation P_D is based on T_J max.= 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62934.

PowerPAK® SC70-6L

BACKSIDE VIEW OF SINGLE

BACKSIDE VIEW OF DUAL

- All dimensions are in millimeters
 Package outline exclusive of mold flash and metal burr
 Package outline inclusive of plating

			SINGL	E PAD								
DIM	M	ILLIMETER	RS		INCHES		M	ILLIMETER	RS		INCHES	
	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max
Α	0.675	0.75	0.80	0.027	0.030	0.032	0.675	0.75	0.80	0.027	0.030	0.032
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002
b	0.23	0.30	0.38	0.009	0.012	0.015	0.23	0.30	0.38	0.009	0.012	0.015
С	0.15	0.20	0.25	0.006	0.008	0.010	0.15	0.20	0.25	0.006	0.008	0.010
D	1.98	2.05	2.15	0.078	0.081	0.085	1.98	2.05	2.15	0.078	0.081	0.085
D1	0.85	0.95	1.05	0.033	0.037	0.041	0.513	0.613	0.713	0.020	0.024	0.028
D2	0.135	0.235	0.335	0.005	0.009	0.013						
Е	1.98	2.05	2.15	0.078	0.081	0.085	1.98	2.05	2.15	0.078	0.081	0.085
E1	1.40	1.50	1.60	0.055	0.059	0.063	0.85	0.95	1.05	0.033	0.037	0.041
E2	0.345	0.395	0.445	0.014	0.016	0.018						
E3	0.425	0.475	0.525	0.017	0.019	0.021						
е		0.65 BSC			0.026 BSC			0.65 BSC			0.026 BSC	
K		0.275 TYP	1		0.011 TYP			0.275 TYP			0.011 TYP	
K1		0.400 TYP	1		0.016 TYP		0.320 TYP			0.013 TYP		
K2		0.240 TYP	1	0.009 TYP			0.252 TYP			0.010 TYP		
К3		0.225 TYP	1	0.009 TYP								
K4		0.355 TYP	1		0.014 TYP							
L	0.175	0.275	0.375	0.007	0.011	0.015	0.175	0.275	0.375	0.007	0.011	0.015
Т							0.05	0.10	0.15	0.002	0.004	0.006
ECNI- C C	7404 D	. 0 00 1	. 07									

ECN: C-07431 - Rev. C, 06-Aug-07

DWG: 5934

Document Number: 73001 06-Aug-07

RECOMMENDED PAD LAYOUT FOR PowerPAK® SC70-6L Dual

Dimensions in mm (inches)

Return to Index

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.