Arbori

-codificare Prufer--teoremele Moon si Cayley-

Arbori - definitii

Arbori - definitii

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri. Următoarele afirmații sunt echivalente.

- 1.T este arbore (conex și aciclic)
- 2.T este conex muchie-minimal
- 3.T este aciclic muchie-maximal
- 4.T este conex și are n-1 muchii
- 5.T este aciclic și are n-1 muchii
- 6.Între oricare două vârfuri din T există un unic lanț elementar.

Arbore - reprezentări

Ca pe un graf oarecare:

- liste de muchii
- liste de adiacență
- matrice de adiacență

Reprezentări specifice:

- vectori de tați
- codificare Prufer

Arbori cu radacină - vector de tați

Vectorul de tați asociat:

7	7	1	6	4	7	0	3	4	1

Arbori cu radacină - vector de tați

Observatie 1:

2 vectori de tati distincti pot reprezenta acelasi arbore avand fixate alte radacini

Observatie 2:

Exista vectori de *n* elemente care sa nu fie vectori de tati valizi

Consecinta:

Folosirea unui model pentru a reprezenta un arbore in mod unic. De asemenea trebuie sa nu existe codificări nevalide.

Se codifica un <u>Arbore cu *n* noduri</u> in un <u>vector cu *n-2* elemente, fiecare element având v<u>alori de la 1</u> <u>la *n*</u></u>

Pseudocod:

T←arbore cu n noduri

cat timp T are mai mult de 2 noduri:

- x—terminalul cu eticheta cea mai mica din T
- $y \leftarrow$ (unicul) vecin al lui x in T
- $P=P \cup \{y\}$
- $T=T\setminus\{x\}$

return P

7 4 3 1 4 6 7 1

7 4 3 1 4 6 7 1

Observatie:

- Terminalele nu apar in codificare
- Daca un nod are gradul d[i], atunci va aparea in codificare de d[i]-1 ori

7	4	3	1	4	6	7	1

Pseudocod:

```
Fie P codificarea Prufer a unui arbore T
n=length(P)+2 //numarul de noduri al arborelui
E=∅ //lista de muchii pentru abrorele T
Pentru i=1,...,n
      \mathbf{D}[i]=1+\text{numarul de aparitii al lui } i \text{ in } \mathbf{P}
Pentru i=1,...,n-2
      \mathbf{x} \leftarrow eticheta ce mai mica ce are \mathbf{D}[\mathbf{x}]=1
      E=E \cup \{(x,P[i])\}
      D[x]=0, D[P[i]]--;
p,q cele doua etichete ramase cu gradul 1
E=E \cup \{(p,q)\}
```

P:	7	4		3	1	4	6		7	1
	1	2	3	4	5	6	7	8	9	10
D:	3	1	2	3	1	2	3	1	1	1

E: (7,2);

E: (7,2);

E: (7,2);

E: (7,2); (4,5);

E: (7,2); (4,5);

E: (7,2); (4,5); (3,8)

E: (7,2); (4,5); (3,8)

E: (7,2); (4,5); (3,8); (1,3);

P: D:

E: (7,2); (4,5); (3,8); (1,3);

P: D:

E: (7,2); (4,5); (3,8); (1,3); (4,9);

E: (7,2); (4,5); (3,8); (1,3); (4,9);

E: (7,2); (4,5); (3,8); (1,3); (4,9); (6,4);

P: D:

E: (7,2); (4,5); (3,8); (1,3); (4,9); (6,4);

P: D: <u>1</u>

E: (7,2); (4,5); (3,8); (1,3); (4,9); (6,4); (7,6);

P: D:

E: (7,2); (4,5); (3,8); (1,3); (4,9); (6,4); (7,6);


```
E: (7,2); (4,5); (3,8); (1,3); (4,9); (6,4); (7,6); (1,7);
```

P: D:

E: (7,2); (4,5); (3,8); (1,3); (4,9); (6,4); (7,6); (1,7); (1,10).

E: (7,2); (4,5); (3,8); (1,3); (4,9); (6,4); (7,6); (1,7); (1,10).

Next-up

- Teorema lui Cayley
- Teorema lui Moon
- [BONUS] Codificare Neville

RECAP:

- BFS & DFS
- Puncte de articulatie, muchii Critice
- Componente tare conexe, algoritmul lui Tarjan

