NAME: MD ATIKUJJAMAN

STUDENT ID: ATI215087

(DATA SCIENCE)

Applied Logistic Regression (Supervised learning model) on Titanic: Machine Learning from Disaster Data-set from Kaggle

INDEX

- 1. Introduction
- 2. Data processing
- 3. Hypothesis

- 4. Proposed solution and implementation
- 5. Reflection
- 6. References

1.INTRODUCTION

In this report , i am going to discuss about the dataset i have downloaded from this website https://www.kaggle.com/competitions/titanic/data .i am going to do analysis for different genders on the basis of different factors which are discussed below. The training set should be used to build my machine learning models. For the training set, i provide the outcome (also known as the "ground truth") for each passenger. my model will be based on "features" like passengers' gender and class.

2. PRE-PROCESSING

Step1: First i delete name, Parch and ticket because i am not using this data.in the picture below

Step2: I fillup all blank data for age . i use median for fill up blank space. perfect dataset in shown below.

	3 (Calibri	~	11 ~	В 🖽 🔻	✓ <u></u> ✓	<u>A</u> ~ ·	≣ ~	ab c
	• ×	√ fx							
Α	В	C	D	E	F	G	Н	1	J
Passenger	Survived	Pclass	Sex	Age	SibSp	Fare	Cabin	Embarked	
1	0	3	male	34.5	0	7.8292		Q	
2	1	1	female	47	1	7	C85	S	
3	1	3	male	62	0	9.6875		Q	
4	1	1	male	27	0	8.6625	C123	S	
5	0	3	female	22	1	12.2875		S	
6	0	3	male	14	0	9.225		S	
7	0	1	female	30	0	7.6292	E46	Q	
8	0	3	male	26	1	29		S	
9	1	3	female	18	0	7.2292		С	
10	1	2	male	21	2	24.15		S	
11	1	3	male	27	0	7.8958	G6	S	
12	1	1	male	46	0	26	C103	S	
13	0	3	female	23	1	82.2667		S	
14			male	63	1	26		S	
15	0	3	female	47	1	61.175		S	
16	1		female	24	1	27.7208		C	
17	- 8		male	35	0	12.35		Q	
18			male	21	0	7.225		С	
19	107		female	27	1	7.925		S	
20	1		female	45	0	7.225		C	
21		-	male	55	1	59.4		С	
22	1	_	male	9	1.70	3.1708		S	
23	1	3	female	27	0	31.6833		S	

USING PYTHON COMMANDS:

STEP 1: if there is Null values in the data

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Sex	418 non-null	object
4	Age	418 non-null	float64
5	SibSp	418 non-null	float64
6	Fare	418 non-null	float64
7	Cabin	204 non-null	object
8	Embarked	418 non-null	object
d+vn	es: float64(3) int64(3) obi	oct(3)

dtypes: float64(3), int64(3), object(3)

memory usage: 62.8+ KB

STEP 2: Describe train dataseta

	PassengerId	Survived	Pclass	Age	SibSp	Fare
count	891.000000	891.000000	891.000000	418.000000	418.000000	418.000000
mean	446.000000	0.383838	2.308642	29.599282	0.447368	35.541956
std	257.353842	0.486592	0.836071	12.703770	0.896760	55.867684
min	1.000000	0.000000	1.000000	0.170000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	23.000000	0.000000	7.895800
50%	446.000000	0.000000	3.000000	27.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	35.750000	1.000000	31.471875
max	891.000000	1.000000	3.000000	76.000000	8.000000	512.329200

STEP 3: Checking null values

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Fare	Cabin	Embarked
0	False	False	False	False	False	False	False	True	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	True	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	True	False

3.HYPOTHESIS:

Predictcting train survived passengers:

- 1. Survived data for Pclass and age
- 2. The Passengers in class check with age .
- 3. Making Submission.csv file dataset with passenger id for survived .

4.PROPOSED SOLUTIONS:

Hypothesis 1:Survived data for Pclass and age:

STEP 1: Plotting the null values on a heatmap for better visualization

STEP 2: 1. The Age and Cabin columns lack information.

2. Compared to Cabin, the Age column contains considerably less missing values.

STEP 3: Survived data for Pclass

STEP 4: By looking at this plot, most people on board neither had Sibsp

STEP 5: Most of the distribution is between 0 and 100.

Hypothesis 2: The Passengers in class check with age and i can see there is no more null values for age.

STEP 1: The figure shows that the Passengers in class 1 have older people And younger people in lower Pclass

STEP 2: No more missing values in Age

Hypothesis 3(Making Submission.csv file dataset with passenger id for survived): For this hypothesis i check all data

correlation between columns and i check again all null values for all data. Then i need to encoded sex and enbarked columns because the machine learning alogorithm won't be able process the data. finally i will get perfect data for machine learning algorithm and my data will be ready for csv file. I use Logistic-Regression for this one.

STEP 1: Checking for correlation between columns

STEP 2: Final check for null values

STEP 3: 1. I Need to convert the sex column, otherwise the machine learning alogorithm won't be able process the data

2. I can not feed both these columns as male and female are opposite

	female	male	1		
0	0	1			male
1	1	0		0	1
2	0	1		1	0
3	0	1		2	1
4	1	0		3	1
•				4	0

STEP 4: same process with Embarked column like sex column

STEP 5: Now, i don't need sex, embarked, plcass column because we have encoded them.

_→		PassengerId	Survived	Pclass	Sex	Age	SibSp	Fare	Embarked	male	Q	s	2	3	1
	0	1	0	3	male	34.5	0.0	7.8292	Q	1	1	0	0	1	
	1	2	1	1	female	47.0	1.0	7.0000	S	0	0	1	0	0	
	2	3	1	3	male	62.0	0.0	9.6875	Q	1	1	0	0	1	
	3	4	1	1	male	27.0	0.0	8.6625	S	1	0	1	0	0	
	4	5	0	3	female	22.0	1.0	12.2875	S	0	0	1	0	1	

STEP 6: I made perfect data for my machine learning algorithm, all data is numeric

PassengerId	Survived	Age	SibSp	Fare	male	Q	s	2	3
1	0	34.5	0.0	7.8292	1	1	0	0	1
2	1	47.0	1.0	7.0000	0	0	1	0	0
2 3	1	62.0	0.0	9.6875	1	1	0	0	1
3 4	1	27.0	0.0	8.6625	1	0	1	0	0
4 5	0	22.0	1.0	12.2875	0	0	1	0	1

STEP 7: Train columns

STEP 8: 1. I made one submissin csv file with passengerid for survived.

2. I made another predictions csv file with passenger id for survived.

1.submissin.csv file

2. predictions .csv file

5.REFLECTION:

For my coursework two i made some changes for all hypothesis . because i need to encode sex and embarked columns for mechine learning.

however, apart from this things i fullfilled all of requirement for coursework 2 and i use same data and same median value for null place for this one. i did proper

implemetation as well.

6.REFERENCES:

- https://towardsdatascience.com/introduction-to-logistic-regression-66248243c14
- 2. https://medium.com/analytics-vidhya/your-guide-for-logistic-regression-with-tita nic-dataset-784943523994
- 3. https://www.analyticsvidhya.com/blog/2021/07/titanic-survival-prediction-using-machine-learning/