我已知悉《昆明理工大学本科生考试违规处理办法(试行)》,并承诺遵守相关规定,诚信考试。

昆 明 理 工 大 学 试 卷 (A)

勤奋求学 诚信考试

考试科目: 大学物理||

考试日期: 2019年1月 日

命题教师: 命题组

题号	选择题	填空题	计算题			列举题	总分
			1	2	3	外华级	心刀
评分							
阅卷人							

物理基本常量:

真空的磁导率: $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H/m}$; 真空的电容率 $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F/m}$; 电子静止质量: $m_{\rm e} = 9.11 \times 10^{-31} \,\mathrm{kg}$; $1 \,\mathrm{nm} = 10^{-9} \,\mathrm{m}$; $1 \,\mathrm{eV} = 1.602 \times 10^{-19} \,\mathrm{J}$; 基本电荷: $e = 1.602 \times 10^{-19} \,\mathrm{C}$; 普朗克常数: $h = 6.63 \times 10^{-34} \,\mathrm{J \cdot s}$ 摩尔气体常数 $R = 8.31 \,\mathrm{J/mol \cdot K}$; $1 \,\mathrm{atm} = 1.013 \times 10^{5} \,\mathrm{Pa}$; 玻尔兹曼常数: $k = 1.38 \times 10^{-23} \,\mathrm{J/K}$

总分:

鼦

袔

 \leftarrow

图

狱

計

倒

考试座位号

一、选择题 (每小题 3 分,共 33 分) 答案请填在题号前面的 [

1中

[11、已知氢气与氧气的温度相同,请判断下列说法哪个正确?

- -(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.
- (B) 氧分子的质量比氢分子大, 所以氧气的密度一定大于氢气的密度.
- (C) 氧分子的质量比氢分子大, 所以氢分子的速率一定比氧分子的速率大.
- (D) 氧分子的质量比氢分子大, 所以氢分子的方均根速率一定比氧分子的方均根速率大.

[]2、麦克斯韦速率分布曲线如图所示,图中 A、B 两部分面积相等,则该图表示

- (A) v_0 为最概然速率.
- (B) v_0 为平均速率.
- (C) v_0 为方均根速率.
- (D) 速率大于和小于 v_0 的分子数各占一半.

[3]、一定量的理想气体向真空作绝热自由膨胀,体积由 V_1 增至 V_2 ,在此过程中气体的

- (A) 内能不变, 熵增加.
- (B) 内能不变, 熵减少.
- (C) 内能不变, 熵不变.
- (D) 内能增加, 熵增加.

[]4、如图所示,在一竖直悬挂的弹簧下系一质量为m的物体,再用此弹簧改系一质量为4m的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质量为m的物体,则这三个系统的周期值之比为

第1页共6页

]5、 一个质点作简谐振动,振幅为A,在起始时刻质点的位移为 $\frac{1}{2}A$,且向x轴的正方向 ſ 运动,代表此简谐振动的旋转矢量图为

[6]、如图, $[S_1]$ 、 $[S_2]$ 是两个相干光源,它们到[P]点的距离分别为 $[r_1]$ 和 $[r_2]$ 。路径 $[S_1]$ P垂直穿过 一块厚度为 t_1 , 折射率为 n_1 的介质板, 路径 S_2P 垂直穿过厚度为 t_2 , 折射率为 n_2 的另一介质板, 其 余部分可看作真空,这两条路径的光程差等于

(A)
$$(r_2 + n_2 t_2) - (r_1 + n_1 t_1)$$

(B)
$$[r_2 + (n_2 - 1)t_2] - [r_1 + (n_1 - 1)t_1]$$

(C)
$$(r_2 - n_2 t_2) - (r_1 - n_1 t_1)$$

(D)
$$n_2 t_2 - n_1 t_1$$

17、如图,用单色光垂直照射在观察牛顿环的装置上. 当平凸透镜垂 直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹

- (A) 向右平移.
- (B) 向中心收缩,
- (C) 向外扩张.
- (D) 静止不动.
- (E) 向左平移.

[18、三个偏振片 P_1 , P_2 与 P_3 堆叠在一起, P_1 与 P_3 的偏振化方向相互垂直, P_2 与 P_1 的偏 振化方向间的夹角为 30° . 强度为 I_0 的自然光垂直入射于偏振片 P_1 , 并依次透过偏振片 P_1 、 P_2 与 P_3 ,则通过三个偏振片后的光强为

- (A) $I_0/4$.
- (B) $3 I_0 / 8$.
- (C) $3I_0 / 32$.
- (D) $I_0 / 16$.

19、关于光电效应有下列说法:

- (1) 任何波长的可见光照射到任何金属表面都能产生光电效应;
- (2) 若入射光的频率均大于一给定金属的红限,则该金属分别受到不同频率的光照射时,释出 的光电子的最大初动能也不同;
- (3) 若入射光的频率均大于一给定金属的红限,则该金属分别受到相同频率、强度不等的光照 射时,单位时间释出的光电子数一定相等;
- (4) 若入射光的频率均大于一给定金属的红限,则当入射光频率不变而强度增大一倍时,该金 属的饱和光电流也增大一倍.

其中正确的是

- (A) (1), (2), (3).
- (B) (2), (3), (4).

	[$]10$ 、若 α 粒子(电荷为 $2e$)在磁感应强度为 B 均匀磁场中沿半径为 R 的圆形轨道运动,则 α
	粒子的德布罗意波长是 (A) $h/(2eRB)$. (B) $h/(eRB)$.
	(C) $1/(2eRBh)$. (D) $1/(eRBh)$.
	[]11、粒子在一维无限深势阱中运动,其波函数为: $\psi(x) = \frac{1}{\sqrt{a}}\cos\frac{3\pi x}{2a}$ $(-a \le x \le a)$,
	那么粒子在 $x = \frac{5a}{6}$ 处出现的几率密度为:
	(A) $\frac{1}{\sqrt{2a}}$ (B) $\frac{1}{a}$ (C) $\frac{1}{2a}$ (D) $\frac{1}{\sqrt{a}}$
	^{总分:} 二、填空题(共 10 题,共 31 分,答案写在横线上。 注:第 4 题 A 班做 A
	<u>部分, B 班做 B 部分!</u>)
	1 、 $($ 本题 3 $分$ $)$ 一定量的理想气体,经等压过程从体积 V_0 膨胀到 $2V_0$,则描述分子运动的平均自由程与原来之比是 $\dfrac{\overline{\lambda}}{\overline{\lambda_0}} =$
	2、(本题 3 分) 一卡诺热机(可逆的),低温热源的温度为 27℃,热机效率为 40%,其高温热源温度为 K. 今欲将该热机效率提高到 50%,若低温热源保持不变,则高温热源的温度应增加 K.
	3、(本题 3 分)一作简谐振动的振动系统,振子质量为 2 kg,系统振动频率为 1000 Hz,振幅为 0.5 cm,则其振动能量为
A	4、(本题 3 分) 在真空中沿着 z 轴的正方向传播的平面电磁波, o 点处电场强度为 $E_x = 900\cos(2\pi u + \pi/6)$ (SI),则 o 点处磁场强度为
В	4、(本题 3 分)一平面简谐机械波在媒质中传播时,若一媒质质元在 t 时刻的总机械能是 10 J,则在 $(t+T)$ (T 为波的周期)时刻该媒质质元的振动动能是
	5、(本题 3 分) 在弦线上有一驻波, 其表达式为 $y = 2A\cos(2\pi x/\lambda)\cos(2\pi u)$, 两个
	相邻波节之间的距离是
	6、(本题 3 分) 在双缝干涉实验中,若两缝的间距为所用光波波长的 N 倍,观察屏到双缝的距离为 D ,则屏上相邻明纹的间距为
	7、(本题 3 分)在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划
	第 3 页 共 6 页

(D) (2), (4).

(C) (2), (3).

分为
8、(本题 3 分) 附图表示一束自然光入射到两种媒质 交界平面上产生反射光和折射光. 按图中所示的各光的偏振状态,反射光是
9 、(本题 3 分) 在 X 射线散射实验中,散射角为 ϕ_1 = 45 ° 和 ϕ_2 = 60 ° 的散射光波长改变量之比 $\Delta\lambda_1$: $\Delta\lambda_2$ =
三、计算题(共3题,共30分)
1 、(本题 10 分) 比热容比 $\gamma = 1.40$ 的理想气体,进行如图所示的 <i>ABCA</i> 循环,
状态 A 的温度为 300 K.
(1) 求状态 <i>B、C</i> 的温度; (2) 计算条过程中与体质吸收的执导。与体质体的功和与体内的的增导
(2) 计算各过程中气体所吸收的热量、气体所作的功和气体内能的增量.

②、(本题 10 分) 沿 x 轴负方向传播的平面简谐波在 t = 2 s 时刻的波形曲线如图所示,设波速 u = 0.5 m/s. 求: (1) 原点 O 的振动方程; (2) 以 O 为原点的波函数。

3、(本题 10 分) 波长为 $\lambda = 600 \, nm$ 的单色光垂直入射到光栅上,测得第 2 级主极大的 衍射角为 30°,且第三级缺级,问:(1)光栅常数(a+b)是多少?透光缝可能的最小宽度 a 是多少?(2)在选定了上述(a+b)与 a 值后,屏幕上可能出现的全部主极大的级数。

四、列举题 (本题 6 分) 请列举出对量子物理做出贡献的其中三位科学家的名字,并分别说出他们所做的贡献。						
	科学家	贡献				
1)						
2						
3						