7210 HW 11

Duncan Wilkie

22 November 2022

Problem 1 (D&F 12.1.4). Let R be an integral domain, let M be an R-module, and let N be a submodule of M. Suppose M has rank n, N has rank r, and the quotient M/N has rank s. Prove that n = r + s.

Proof. Let x_1, x_2, \ldots, x_s be representatives of the maximal set of linearly independent cosets in M/N, and let $x_{s+1}, x_{s+2}, \ldots, x_{s+r}$ be a maximal set of linearly independent elements in N. We show that $x_1, x_2, \ldots, x_s, x_{s+1}, x_{s+2}, \ldots, x_{s+r}$ is a maximal set of linearly independent elements in M. Linear independence in M/N means no nonzero linear combination of representatives of the cosets can ever be in N; since, by the submodule axioms, all linear combinations of $x_{s+1}, x_{s+2}, \ldots, x_{s+r}$ must be in N, this means that $a_1x_1 + a_2x_2 + \cdots + a_sx_s + a_{s+1}x_{s+1} + \cdots + a_{s+r}x_{s+r}$ is of the form m+n for some nonzero $m \in M$, $n \in N$. If $m+n=0 \Leftrightarrow m=-n$, then $a_1x_1+a_2x_2+\cdots+a_sx_s \in N$ by closure of N under negation, contradicting linear independence of x_1, x_2, \ldots, x_s . This large list is therefore certainly linearly independent

For any nonzero $x_0 \in M$, consider the linear combination

$$a_0x_0 + a_1x_1 + \dots + a_sx_s + a_{s+1}x_{s+1} + \dots + a_{s+r}x_{s+r}$$
.

By maximal linear independence of the cosets represented by x_1, x_2, \ldots, x_s , there must exist some a_0 (likely dependent on a_1, a_2, \ldots, a_s) such that $a_0x_0 + a_1x_1 + \cdots + a_sx_s \in N$. This linear combination is therefore of the form

$$n + a_{s+1}x_{s+1} + a_{s+2}x_{s+2} + \dots + a_{s+r}x_{s+r}$$

for $n \in N$; by maximal linear independence of $x_{s+1}, x_{s+2}, \ldots, x_{s+r}$ in N and the fact that linear independence is preserved under scalar multiplication in any module over an integral domain, there must exist $a', a'_{s+1}, a'_{s+2}, \ldots, a'_{s+r}$ such that

$$a'n + a'_{s+1}a_{s+1}x_{s+1} + a'_{s+2}a_{s+2} + \dots + a'_{s+r}a_{s+r}x_{s+r} = 0$$

Expanding the definition of n and distributing, one obtains an R-linear combination of $x_0, x_1, \ldots, x_s, x_{s+1}, \ldots, x_{s+r}$ that evaluates to zero, so the linearly independent set above is maximal. This proves n = r + s.

Problem 2 (D&F 12.1.6). *Show that if* R *is an integral domain and* M *is any non-principal ideal of* R *then* M *is torsion-free of rank* 1 *but is not a free* R*-module.*

Proof. M is torsion-free since R is an integral domain: rm = 0 for nonzero r, m can't hold by definition. Accordingly, M has rank at least 1, since any nonzero element is linearly independent.

For any two elements $n, m \in M$, one can take the R-linear combination nm + (-m)n = 0 to show that the rank is precisely 1.

If M were free, then any element would be able to be uniquely written as a linear combination of basis elements, i.e. for all $m \in M$, $m = rm_0$ uniquely for unique $r \in R$ varying alongside m and fixed $m_0 \in M$. However, this would mean that M is a principal ideal, as every element would be a multiple of m_0 , so M can't be free.

Problem 3 (D&F 12.1.11). Let R be a P.I.D., let a be a nonzero element of R and let M = R/(a). For any prime p of R prove that

$$p^{k-1}M/p^kM \cong \begin{cases} R/(p) & \text{if } k \le n\\ 0 & \text{if } k > n, \end{cases}$$

where n is the power of p dividing a in R.

Proof. This is proven via induction on k with the isomorphism theorems. $p^kM=p^k(R/(a))$ has elements of the form $p^kr+(a)$; the left term is precisely the form of elements of (p^k) , so the submodule is of the form $[(p^k)+(a)]/(a)$. The numerator ideal is generated by the greatest common divisor of p^k and a, which, if $p^k \mid a$ (i.e. $k \leq n$), is p^k , and otherwise is p^n . Therefore, $p^kM=(p^k)/(a)$ if $k \leq n$ and $p^kM=(p^n)/(a)$ otherwise. Analogously, $p^{k-1}M=(p^{k-1})/(a)$ if $k-1 < k \leq n$ and $p^{k-1}M=(p^n)/a$ otherwise. The factor module is then $[(p^{k-1})/(a)]/[(p^k)/(a)] \cong (p^{k-1})/(p^k) \cong (1)/(p) \cong R/(p)$ if $k \leq n$ by the third isomorphism theorem. If k-1=n, so k>n, the factor module is $[(p^{k-1})/(a)]/[(p^n)/(a)] \cong (p^{k-1})/(p^n) \cong (1)/(1) \cong 0$ If k>n, then the factor module is $[(p^n)/(a)]/[(p^n)/(a)] \cong (1)/(1) \cong 0$.

Problem 4 (D&F 12.3.19). Prove that all $n \times n$ matrices with characteristic polynomial f(x) are similar iff f(x) has no repeated factors in its unique factorization over F[x].

Proof. Two matrices are similar iff they have the same rational canonical form. If f(x) has repeated irreducible factors, say $f(x) = p_1^{\epsilon_1} p_2^{\epsilon_2} \cdots p_m^{\epsilon_m}$ where some $\epsilon_i > 1$, then the matrices whose rational canonical forms are constructed from the invariant factors

$$p_i \mid p_1^{\epsilon_1} p_2^{\epsilon_2} \cdots p_i^{\epsilon_i - 1} \cdots p_m^{\epsilon_m}$$

and

$$p_1^{\epsilon_1} p_2^{\epsilon_2} \cdots p_i^{\epsilon_i} \cdots p_m^{\epsilon_m}$$

are not similar, despite having the same characteristic polynomials.

If f(x) has no repeated factors, then it must be only one irreducible factor: since each invariant factor must divide the next, and they are multiplied to yield f(x), one has $a_i = ka_{i-1}$ so the product includes $a_{i-1}(ka_{i-1})$ which is a repeated factor of at least whatever irreducibles are inside a_{i-1} . Accordingly, if f(x) has no repeated factors, the only possible rational canonical form is that with the single, irreducible invariant factor. Such matrices are then necessarily similar.

Problem 5 (D&F 12.3.21). Show that if $A^2 = A$ then A is similar to a diagonal matrix which has only 0's and 1's along the diagonal.

Proof. If A=0, we're done; the matrix is diagonalized. Similarly if A=I. Therefore, since $A^2=A$ implies $m_T(A)\mid x^2-x=x(x-1)$, the minimal polynomial of A is x^2-x . This has no repeat factors, so the Jordan canonical form of A is diagonal. Since this diagonal form also satisfies the same minimal polynomial, $\lambda(\lambda-1)=0$ for all diagonal entries, i.e. all diagonal entries are either 0 or 1.