Topici speciale în logică și securitate I

Interacțiunea inter-domenii

Paul Irofti

Master anul II, Sem. I, 2019-2020

```
Ce se întâmplă cu domeniul Pts?
  int A[4][8] = {...};
  int i, j;
  int sum = 0;

for (i = 0; i < 4; i++)
      for (j = 0; j < 8; j++)
            sum += A[i][j];

printf("sum = %d\n", sum);</pre>
```

```
Ce se întâmplă cu domeniul Pts?
  int A[4][8] = {...};
  int i, j;
  int sum = 0;

for (i = 0; i < 4; i++)
    for (j = 0; j < 8; j++)
        sum += A + 8*sizeof(*A)*i + sizeof(*A)*j;

printf("sum = %d\n", sum);</pre>
```

Ce se întâmplă cu domeniul Pts?

```
for (i = 0; i < 4; i++)

for (j = 0; j < 8; j++)

sum += A + 8*sizeof(*A)*i + sizeof(*A)*j;
```

Pe o arhitectură unde int are 64-biți

Dacă A începe la byte-ul 0, rezultă șirul de acces la memorie:

$$\underbrace{0,8,16,32,\ldots,56}_{\text{A[0]}} \ \underbrace{64,72,\ldots,120}_{\text{A[1]}} \ \underbrace{128,136,\ldots,184}_{\text{A[2]}} \ \underbrace{192,200,\ldots,248}_{\text{A[3]}}$$

$$\underbrace{0,8,16,32,\ldots,56}_{\text{A[0]}} \ \underbrace{64,72,\ldots,120}_{\text{A[1]}} \ \underbrace{128,136,\ldots,184}_{\text{A[2]}} \ \underbrace{192,200,\ldots,248}_{\text{A[3]}}$$

Putem rescrie

în domeniul Lin unde ax sunt

$$a = [64 \ 8], x = [i \ j]$$

ceea ce duce la două semi-plane din domeniul Ineq

$$0 \le i \le 3, \quad 0 \le j \le 7 \quad , [[64i \le 192]], \quad [[8j \le 56]]$$

ce definesc o suprafață convexă în domeniul poliedrelor Poly.

Dar ce putem spune despre domeniul *Pts*, ce putem spune despre valoriile luate de *pointerii* ce accesează tabloul A?

Accesul aliniat vs. nealiniat

Modul în care declarăm tabloul

```
int A[4][8];
A[i][j] == *(A + 8*sizeof(*A)*i + sizeof(*A)*j)
```

oferă informații privind la cum este intenționat accesul la memorie: 32 de întregi așezați în 4 zone de memorie contiguă.

Dar ce se întâmplă când scriem

```
u = *(A + 2);

v = *(A + 111);

t = *(A + 254);
```

ce valori iau u, v și t?

Anumite arhitecturi constrâng hardware accesul aliniat la memorie.

Intel, AMD și ARM permit acces nealiniat. Trebuie luat în considerare întreg intervalul [0,255], nu doar setul $\{0,8,16,\ldots,248\}$.

Exemplu acces nealiniat

https://stackoverflow.com/questions/30192694/jump-to-the-middle-of-an-instruction

Domeniul Granger

Domeniul Granger este folosit pentru analiza și deducția variabilelor ce iau valori de forma $c+m\mathbb{Z}$

```
\{\ldots, -2m+c, -m+c, c, c+m, c+2m, \ldots\}
```

ce este suficient de generic pentru a analiza costrucții de tipul

```
int i = 5;
struct {
    int a;
    char v[100];
    short f;
} a[10];
a[i].f = 0;
*(a + 13) = 2;
```

Exercițiu: Arătați cum putem modela cele două apeluri.

Domeniul de Multiplicitate

Propoziție: Pentru analiza vectorilor și tablourilor simple, ce folosesc tipuri de bază (ex. int, char), este suficient să arătăm că o variabilă este multiplu de 2^n pentru a deduce că accesul la memorie este aliniat.

Exercițiu: Demonstrați propoziția pentru exemplul anterior cu A[4][8].

Definiție

Fie $Mult = X \rightarrow \{0, ..., 64\}$ spațiul funcțional ce înregistrează numărul de biți cel mai puțin semnificativi (*least significant bits (LSB)*) ce sunt tot timpul zero, nuli.

Transformarea liniară $M \in Mult$ atribuie o valoare n = M(x) tuturor variabilelor $x \in X$. Presupunem că variabilele sunt reprezentate pe cel mult 64-biți.

Tip	Var.	Mult. max.	
int	х	M(x) = 63	
$int32_t$	у	M(x) = 63 M(y) = 31 M(f) = 15	
short	f	M(f) = 15	
char	С	M(c) = 7	

Atunci, indiferent de tip, x=0 poate fi reprezentat ca M(x) = 64.

Laticea (Mult, \subseteq_M , \vee_M , \wedge_M)

Fie $M, M', M_1, M_2 \in Mult$.

Actualizare: $M \to M' = M[x \to n'] \implies M'(x) = n' \land M'(y) = M(y), \forall y \neq x.$

Join: $M' = M_1 \vee_M M_2$ a.î. $M'(x) = \min(M_1(x), M_2(x)), \forall x \in X$.

Incluziune: $M_1 \subseteq_M M_2 \iff M_1(x) \geq M_2(x), \forall x \in \mathcal{X}$.

Exercițiu: Găsiți elementul ⊤: cel mai mare element al laticei. Motivați.

Fie $Equ = Lin \times \mathbb{Z}$ setul ecuațiilor liniare de tipul e = c, unde $e \in Lin, c \in \mathbb{Z}$.

Meet: Operatorul de intersecție adăuga informația oferită de o nouă ecuație: $M' = M \wedge_M (e = c)$.

Definiție

 \wedge_M : $Mult \times Equ \rightarrow (Mult \cup \{\bot_M\})$, unde \bot_M denotă o stare nesatifăcătoare, imposibilă.

Operația ∧_M

Definiție

Fie $\delta: \mathbb{Z} \to \{0, \dots, 64\}$ a.î. $\delta(c)$ reprezintă numărul de *LSB* nefolosiți (zero) din *c*.

Fie $e \equiv a_1x_1 + \cdots + a_nx_n$ a.î. $a_i \neq 0, \forall i = 1, \dots, n$. Recalculăm multiplicitatea variabilei x_j rescriind e = c

$$-a_j x_j = a_1 x_1 + \dots + a_{j-1} x_{j-1} + a_{j+1} x_{j+1} + \dots + a_n x_n - c$$

Observație: Multiplicitatea lui $a_i x_i$ este $\delta(a_i) + M(x_i)$, iar multiplicitatea lui c este pur și simplu $\delta(c)$.

Intuiție: *Mult* este similar operațiilor cu exponenți: $2^m 2^n = 2^{m+n}$.

Propoziție: Operația \land_M adaugă informație, deci numărul de LSB nuli din x_j nu poate descrește. Dimpotrivă, acest număr poate crește datorită apariției lui c.

#LSB nuli din x_j nu poate descrește

$$-a_j x_j = a_1 x_1 + \dots + a_{j-1} x_{j-1} + a_{j+1} x_{j+1} + \dots + a_n x_n - c$$

Multiplicitatea părții din dreapta a ecuației trebuie să fie mai mare sau egală cu cea a fiecărui termen individual:

$$\min(\delta(c), \min_{i,i\neq j}\delta(a_i)+M(x_i))$$

Exemplu (A[i][j]=*(A + 8*8*i + 8*j))
64*i + 8*j
$$\implies \min(\delta(64) + M(i), \delta(8) + M(j)) = \min(5 + M(i), 2 + M(j)).$$

Fie $i = 2, j = 4$, atunci $\min(5 + 1, 3 + 2) = 5$, iar $64i + 8j = 160_2 = 1010$ 0000.

Dacă $a_j > 1 \lor a_j < -1$, atunci numărul din ecuația de mai sus trebuie redus cu $\delta(a_j)$ pentru a afla noul $M' = M(x_j \to n')$

$$M' = M\left[x_j \to \max\left(M(x_j), \min(\delta(c), \min_{i, i \neq j} \delta(a_i) + M(x_i)) - \delta(a_j)\right)\right]$$

Exemplu actualizare muliplicități

Fie M starea inițială a multiplicităților a trei variabile x, y, z, unde x este multiplu de 8, iar y și z sunt multiplii de 2.

Adăugăm ecuația $x+y+2z=0\in Equ$ rezultată dintr-o problemă de aritmetică de pointeri domeniului M

$$M' = M \wedge_M \{x + y + 2z = 0\}$$

pe care o rezolvăm actualizând iterativ multiplicitatea fiecărei variabile.

	M(x)	M(y)	$\delta(2) + M(z)$	$\delta(0)$
М	3	1	1 + 1	64
M'(x)	3	1	1+1	64
M'(y)	3	2	1+1	64
M'(z)	3	2	1+1	64

Exercițiu: Ce se întâmplă dacă adăugăm ecuația x + y + 2z = 1?

Proprietăți

Propoziție: Operația \wedge_M duce la starea invalidă \perp_M dacă

$$\min_{i=1,\dots,n} \delta(a_i) + M(x_i) > \delta(c)$$

Complexitate: Actualizarea unei variabile trebuie să ia în calcul toate variabile: cost pătratic. În practică avem de a face cu cel mult 2–3 variabile.

Observație: Operațiile speciale de la Poly se rezolvă similar:

- $M' = M \triangleright x := e \implies M(x) = M(t) = 0$ deci actualizarea termenilor din e nu aduce informație nouă
- $M \triangleright x := y \gg n \implies M(x)$ este cel puțin (M(y) n), M(y) nu se schimbă

Aliniere: Putem verifica dacă accesul este aliniat prin operația $M \wedge_M \{x = 2^n\}$. Dacă rezultatul este \perp_M atunci avem o eroare de acces.

Proiecție: Fie funcția $\exists_x : Mult \to Mult$ și $M' = \exists_x (M)$. Atunci M'(x) = 0 și $M'(y) = M(y), \forall y \neq x$.

Teoremă: $(Mult, \subseteq_M, \land_M, \lor_M)$ formează o latice completă.

Interacțiunea Poly și Mult

Fie $Num = (Poly \times Mult) \cup \{\bot_N\}$, unde \bot_N reprezintă o stare *unreachable*, imposibil de atins, în execuția programului. Definim:

- $(P, M) \subseteq_N (P', M') \iff (P \subseteq_P P') \land (M \subseteq_M M')$
- $(P', M') = (P_1, M_1) \vee_N (P_2, M_2) \iff (P' = P_1 \vee_P P_2) \wedge (M' = M_1 \vee_M M_2)$
- $\bullet \ (P',M')=(P,M) \triangleright x := e \iff (P'=P \triangleright x := e) \land (M'=M \triangleright x := e)$
- $(P', M') = (P, M) \triangleright x := e \gg n \iff (P' = P \triangleright x := e \gg n) \land (M' = M \triangleright x := e \gg n)$
- $(P', M') = \exists_x (P, M) \iff (P' = \exists_x (P)) \land (M' = \exists_x (M))$
- $(P, M) \land_N \{e = c\} = \begin{cases} \bot_N & \text{dacă } P' = \emptyset \lor M' = \bot_M \\ (P', M') & \text{altfel} \end{cases}$, unde

$$P' = P \wedge_P \llbracket \{e = c\} \rrbracket \text{ si } M' = M \wedge_M \{e = c\}.$$