3 Polynomial Regression
p-power; d-dimension. The function fw(x) has (p) terms
For example, if P=>, d=2.
$f_{W}(X) = W_{0} + W_{1}X_{1} + W_{2}X_{2} + W_{3}X_{1}X_{2} + W_{4}X_{1}^{2} + W_{5}X_{2}^{2}$
matrix P is mx (P); y & G IRM
$W^* = P^T(PP^T)^T \hat{y} \text{ where } P = \begin{bmatrix} 1 & X_{12} & X_{12} & X_{11} & X_{12} \\ X_{11} & X_{12} & X_{11} & X_{12} \end{bmatrix} \hat{x}$
DRidge Regression -a kind of Linear Regression.
but d>> m which means numerous variables nith only a few"
=> X ^T X may be not invertible.
=> X^TX may be not invertible. Let $J(\overline{w}) = \sum_{i=1}^{\infty} (Y_i - \overline{w}^T \overline{X}_i)^2 + \lambda \sum_{i=2}^{\infty} W_i^2$
$= (\chi \overline{\mathbf{w}} - \overline{\mathbf{y}})^{T} (\chi \overline{\mathbf{w}} - \overline{\mathbf{y}}) + \chi \overline{\mathbf{w}}^{T} \overline{\mathbf{w}}$
$= \overline{w}^{T} (X^{T} X + \lambda I) \overline{w} - 2 \overline{w}^{T} (X^{T} y) + y^{T} y$
Differentiate it and let $\nabla \bar{v} J(\bar{v}) = 0$.
$\Rightarrow \overline{W}^* = (X^T X + \lambda \overline{I}_{W})^T X^T \overline{Y}$
= XT (XXT+) Im) - 1 if why equation is true.
why invertible
A few useful propositions:
O If a matrix $\in R^{n\times n} $ is positive-definite/negative-definite, then it's invertible. X is a vector $X \times X $
then it's invertible.
2 Woodbury formula: (I+UV) = I-U(I+VU)-1V