SC223 - Linear Algebra

Aditya Tatu

Lecture 35

November 3, 2023

• Page Rank/Importance:

• Page Rank/Importance:Let P_i , $i=1,\ldots,4$ denote the 4 pages that are relevant to a search, with x_i , $i=1,\ldots,4$ denoting the importance of these pages, or probability that a surfer will visit page P_i . (to be computed).

• Page Rank/Importance:Let P_i , $i=1,\ldots,4$ denote the 4 pages that are relevant to a search, with x_i , $i=1,\ldots,4$ denoting the importance of these pages, or probability that a surfer will visit page P_i . (to be computed).

• Page Rank/Importance:Let P_i , $i=1,\ldots,4$ denote the 4 pages that are relevant to a search, with x_i , $i=1,\ldots,4$ denoting the importance of these pages, or probability that a surfer will visit page P_i . (to be computed).

Figure: Source: pi.math.cornell.edu

$$\begin{pmatrix}
\chi_1^1 = 0 & 0 & 1 & 2 \\
\chi_2^1 \\
\chi_3^1 \\
\chi_4
\end{pmatrix}
\begin{pmatrix}
\chi_1^1 \\
\chi_4^2
\end{pmatrix}$$

ullet Page Rank/Importance:Let $P_i, i=1,\ldots,4$ denote the 4 pages that are relevant to a search, with $x_i, i=1,\ldots,4$ denoting the importance of these pages, or probability that a surfer will visit page P_i . (to be computed).

Figure: Source: pi.math.cornell.edu

▶ Let $x^0 \in \mathbb{R}^4$ denote initial estimate of importance, or probability that a person might visit these webpages.

ullet Page Rank/Importance:Let $P_i, i=1,\ldots,4$ denote the 4 pages that are relevant to a search, with $x_i, i=1,\ldots,4$ denoting the importance of these pages, or probability that a surfer will visit page P_i . (to be computed).

Figure: Source: pi.math.cornell.edu

- ▶ Let $x^0 \in \mathbb{R}^4$ denote initial estimate of importance, or probability that a person might visit these webpages.
- ▶ With the above model, after once click:

$$x^{1} = \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 1/3 & 0 & 0 & 0 \\ 1/3 & 1/2 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} x^{0}$$

• Page Rank/Importance:Let P_i , i = 1, ..., 4 denote the 4 pages that are relevant to a search, with x_i , $i = 1, \dots, 4$ denoting the importance of these pages, or probability that a surfer will visit page P_i . (to be computed).

Figure: Source: pi.math.cornell.edu

- ▶ Let $x^0 \in \mathbb{R}^4$ denote initial estimate of importance, or probability that a person might visit these webpages.
- ▶ With the above model, after once click:

 $ightharpoonup \lim_{n\to\infty} A^n x_0 = y$,

ullet Page Rank/Importance:Let $P_i, i=1,\ldots,4$ denote the 4 pages that are relevant to a search, with $x_i, i=1,\ldots,4$ denoting the importance of these pages, or probability that a surfer will visit page P_i . (to be computed).

Figure: Source: pi.math.cornell.edu

- ▶ Let $x^0 \in \mathbb{R}^4$ denote initial estimate of importance, or probability that a person might visit these webpages.
- ▶ With the above model, after once click:

$$x^{1} = \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 1/3 & 0 & 0 & 0 \\ 1/3 & 1/2 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} x^{0}$$

 $ightharpoonup \lim_{n\to\infty} A^n x_0 = y, Ay = y,$

ullet Page Rank/Importance:Let $P_i, i=1,\ldots,4$ denote the 4 pages that are relevant to a search, with $x_i, i=1,\ldots,4$ denoting the importance of these pages, or probability that a surfer will visit page P_i . (to be computed).

Figure: Source: pi.math.cornell.edu

- ▶ Let $x^0 \in \mathbb{R}^4$ denote initial estimate of importance, or probability that a person might visit these webpages.
- ▶ With the above model, after once click:

$$x^{1} = \begin{bmatrix} 0 & 0 & 1 & 1/2 \\ 1/3 & 0 & 0 & 0 \\ 1/3 & 1/2 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} x^{0}$$

ullet Let V be a FDVS, and let U,W be subspaces of V such that $V=U\oplus W.$

- ullet Let V be a FDVS, and let U,W be subspaces of V such that $V=U\oplus W.$
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V, v = u + w, u \in U, w \in W$,

- ullet Let V be a FDVS, and let U,W be subspaces of V such that $V=U\oplus W$.
- $\bullet \ \, \mathsf{Define} \,\, P_U \in \mathcal{L}(V) \,\, \mathsf{as} \,\, \forall v \in V, v = u + w, u \in U, w \in W, P_U(v) = u.$

Define
$$P_0 \in \mathcal{L}(V)$$
 as $\forall V \in V, V = U + W, U \in U, W \in W, P_0(V) = U$.

$$V = \{ \mathsf{K}(1), \forall \mathsf{K} \in \mathsf{R} \}$$

$$V = \{ \mathsf{K}(1), \forall \mathsf{K} \in \mathsf{R} \}$$

$$V = \{ \mathsf{K}(1), \forall \mathsf{K} \in \mathsf{R} \}$$

$$V = \{ \mathsf{K}(1), \forall \mathsf{K} \in \mathsf{R} \}$$

$$V = \{ \mathsf{K}(1), \forall \mathsf{K} \in \mathsf{R} \}$$

$$V = \{ \mathsf{K}(1), \forall \mathsf{K} \in \mathsf{R} \}$$

$$\frac{1}{52} + \frac{1}{10}(2,3) = \frac{1}{52}$$

- ullet Let V be a FDVS, and let U,W be subspaces of V such that $V=U\oplus W$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V, v = u + w, u \in U, w \in W, P_U(v) = u$.
- ullet Such a linear operator is called *Projection* on U along W.

- Let V be a FDVS, and let U, W be subspaces of V such that
 - Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V, v = u + w, u \in U, w \in W, P_U(v) = u.$ • Such a linear operator is called *Projection* on *U* along *W*.

Properties:

$$N(P_0) = W$$
, $R(P_0) = V$
 $V = R(P_0) \oplus N(P_0)$

2 let veV, v= v+w, uev, weW.

$$R(R(\omega)) = R(u) = u$$

$$\Rightarrow P_0^2 = P_0 \Rightarrow Idempotent op$$

• How do we measure length and angles between vectors in a Vector space?

- How do we measure length and angles between vectors in a Vector space?
- Typically, length of a vector in \mathbb{R}^2 is defined as $||(x,y)|| = \sqrt{x^2 + y^2}$.

- How do we measure length and angles between vectors in a Vector space?
- Typically, length of a vector in \mathbb{R}^2 is defined as $||(x,y)|| = \sqrt{x^2 + y^2}$.
- ullet This is called the *Euclidean length* or *Euclidean norm* of the vector (x, y).

- How do we measure length and angles between vectors in a Vector space?
- Typically, length of a vector in \mathbb{R}^2 is defined as $||(x,y)|| = \sqrt{x^2 + y^2}$.
- This is called the *Euclidean length* or *Euclidean norm* of the vector (x, y).
- Is this the only way to define length?

- How do we measure length and angles between vectors in a Vector space?
- Typically, length of a vector in \mathbb{R}^2 is defined as $||(x,y)|| = \sqrt{x^2 + y^2}$.
- This is called the *Euclidean length* or *Euclidean norm* of the vector (x, y).
- Is this the only way to define length?
- What are the necessary conditions for a function on vector space for it be called *length*?

● Definition: (Normed Vector Space) A normed vector space (NVS) is a vector space $(V,+,\cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||:V\to\mathbb R$ which satisfies the following properties:

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V,+,\cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||:V\to\mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V \text{ and } ||x|| = 0 \Leftrightarrow x = \theta$.

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V,+,\cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||:V\to\mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V \text{ and } ||x|| = 0 \Leftrightarrow x = \theta.$
 - 2. Absolute homogeneity: $\forall x \in V, \forall a \in \mathbb{F}, ||a \cdot x|| = |a| ||x||$.

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V, +, \cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||: V \to \mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V \text{ and } ||x|| = 0 \Leftrightarrow x = \theta.$
 - 2. Absolute homogeneity: $\forall x \in V, \forall a \in \mathbb{F}, ||a \cdot x|| = |a| \ ||x||.$
 - 3. Triangular inequality: $\forall x, y \in V, ||x + y|| \le ||x|| + ||y||$.

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V, +, \cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||: V \to \mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V \text{ and } ||x|| = 0 \Leftrightarrow x = \theta.$
 - 2. Absolute homogeneity: $\forall x \in V, \forall a \in \mathbb{F}, ||a \cdot x|| = |a| ||x||$.
 - 3. Triangular inequality: $\forall x, y \in V, ||x + y|| \le ||x|| + ||y||$.
- lacktriangle A vector space V with a valid norm $||\cdot||$ is called a **Normed vector space** and is denoted by $(V, ||\cdot||)$.

- **Definition:** (Normed Vector Space) A normed vector space (NVS) is a vector space $(V, +, \cdot)$ over either $\mathbb R$ or $\mathbb C$ with a **norm**, a function $||\cdot||: V \to \mathbb R$ which satisfies the following properties:
 - 1. Positive definiteness: $||x|| \ge 0, \forall x \in V \text{ and } ||x|| = 0 \Leftrightarrow x = \theta.$
 - 2. Absolute homogeneity: $\forall x \in V, \forall a \in \mathbb{F}, ||a \cdot x|| = |a| ||x||$.
 - 3. Triangular inequality: $\forall x, y \in V, ||x + y|| \le ||x|| + ||y||$.
- A vector space V with a valid norm $||\cdot||$ is called a **Normed vector** space and is denoted by $(V, ||\cdot||)$.
- Also note that given a NVS $(V, ||\cdot||)$, we can define distance between two vectors x and y as d(x, y) := ||x y||. Such a distance or metric is called the **induced metric**.

Examples of NVS

ullet 1-norm on \mathbb{R}^n : $||x|| = \sum_{i=1}^n |x_i|$. This is denoted by $||x||_1$.

Examples of NVS

- 1-norm on \mathbb{R}^n : $||x|| = \sum_{i=1}^n |x_i|$. This is denoted by $||x||_1$.
- lacktriangledown max or the sup norm on \mathbb{R}^n : $||x|| = \max_{i=1}^n \{|x_i|\}$. This is denoted by $||x||_{\sup}$ or $||x||_{\max}$.

Examples of NVS

- 1-norm on \mathbb{R}^n : $||x|| = \sum_{i=1}^n |x_i|$. This is denoted by $||x||_1$.
- max or the sup norm on \mathbb{R}^n : $||x|| = \max_{i=1}^n \{|x_i|\}$. This is denoted by $||x||_{\sup}$ or $||x||_{\max}$.
- L_2 norm on $\mathcal{P}_n([-1,1])$: $||x||_{L_2} = \sqrt{\int_{-1}^1 (x(t))^2 dt}$.