

Topologie des espaces vectoriels normés

Cours			2
1	Point	ts intérieurs, ouvert, voisinage	2
	1.1	Voisinage d'un point	2
	1.2	Ouvert	2
	1.3	Point intérieur, intérieur	2
2	Point	ts adhérents, fermé, densité	3
	2.1	Fermé	3
	2.2	Point adhérent, adhérence, frontière	3
	2.3	Densité	3
	2.4	Caractérisations séquentielles	3
3	Topo	ologie et normes équivalentes	4
4	Topologie induite		
	4.1	Voisinage relatif, ouvert relatif	4
	4.2	Fermé relatif	4
	4.3	Densité	4
Exercic			5
Exe	Exercices et résultats classiques à connaître		
	Dens	ité des matrices inversibles	5
	Les s	sous-groupes de $\mathbb R$	5
		-espace vectoriel d'intérieur non vide	5
Exercices du CCINP		6	
Exe	ercices		7
Pot	ite prol	hlàmas d'antrainamant	8

1 Points intérieurs, ouvert, voisinage

1.1 Voisinage d'un point

<u>Définition.</u> Soit $(E, \|\cdot\|)$ un \mathbb{K} -espace vectoriel normé, $a \in E$. On dit qu'une partie V de E est un voisinage de a lorsqu'il existe $\delta > 0$ tel que :

$$B(a,\delta) \subset V$$

où
$$B(a, \delta) = \{x \in E, ||x - a|| < \delta\}.$$

Remarque.

- L'usage est d'utiliser une boule ouverte, une inégalité stricte.
- On trouve parfois la notation $\mathcal{V}(a)$ pour désigner l'ensembles des voisinages de a.

Proposition.

- Si V est un voisinage de a et $V \subset W$ alors W est un voisinage de a.
- Une intersection finie de voisinages de a est un voisinage de a.
- Une réunion de voisinages de a est un voisinage de a.

Remarque. Pour la réunion, il suffit en fait qu'un seul ensemble soit un voisinage.

<u>Proposition.</u> Si N et N' sont deux normes équivalentes, les voisinages de a dans (E, N) et (E, N') sont les mêmes.

1.2 Ouvert

Définition. Soit $(E, \|\cdot\|)$ un \mathbb{K} -espace vectoriel normé. On dit qu'une partie U de E est un **ouvert** lorsque U est voisinage de chacun de ses points, i.e. :

$$\forall x \in U, \ \exists \delta > 0, \ B(x, \delta) \subset U$$

Remarque. E et \varnothing sont ouverts.

Proposition. Une boule ouverte est un ouvert.

Proposition.

• Une réunion d'ouverts est un ouvert :

$$\bigcup_{i \in I} U_i$$
 est ouvert

 $\bullet\,$ Une intersection finie d'ouverts est un ouvert :

$$U_1 \cap \cdots \cap U_p$$
 est ouvert

Remarque. L'intérêt de travailler dans un ouvert, c'est que ses éléments ne sont jamais « au bord ».

Proposition. Un produit fini d'ouvert est un ouvert.

1.3 Point intérieur, intérieur

Définition. Soit $(E, \|\cdot\|)$ un \mathbb{K} -espace vectoriel normé et A une partie de E. Un point a de E est dit **intérieur** $\mathbf{\hat{a}}$ A lorsque A est un voisinage de a, i.e. :

$$\exists \delta > 0, \ B(a, \delta) \subset A$$

On appelle intérieur de A l'ensemble \mathring{A} de tous les points intérieurs à A.

Proposition. A est ouvert si et seulement si $\mathring{A} = A$.

Proposition. L'intérieur de A est le plus grand ouvert contenu dans A.

2 Points adhérents, fermé, densité

2.1 Fermé

Définition. On dit qu'une partie A de E est un fermé lorsque $E \setminus A = A^c$ est un ouvert.

Exemple. E et \varnothing sont fermés.

Proposition. Une boule fermée est fermée, une sphère est fermée, un singleton $\{a\}$ est fermé.

Proposition.

- Une réunion finie de fermés est un fermé.
- Une intersection quelconque de fermés est un fermé.

Proposition. Un produit fini de fermés est un fermé.

2.2 Point adhérent, adhérence, frontière

Définition. Soit A une partie de E. On dit que $x \in E$ est adhérent à A lorsque :

$$\forall \delta > 0, \ B(x, \delta) \cap A \neq \emptyset$$

On appelle adhérence de A l'ensemble \overline{A} de tous les points adhérents à A.

Proposition. A est fermé si et seulement si $\overline{A} = A$.

Proposition. L'adhérence de A est le plus petit fermé contenant A.

Proposition. On dispose de l'équivalence suivante :

$$x \in \overline{A} \iff d(x, A) = 0$$

Définition. On appelle frontière de A l'ensemble :

$$Fr(A) = \overline{A} \setminus \mathring{A}$$

2.3 Densité

Définition. Une partie A de l'espace vectoriel normé $(E, \|\cdot\|)$ est dite **dense dans** E lorsque $\overline{A} = E$, c'est-à-dire :

- tout élément de E est limite d'une suite d'éléments de A

ou alors

• $\forall x \in E, \ \forall r > 0, \ B(x,r) \cap A \neq \emptyset.$

Exemple. \mathbb{Q} est dense dans \mathbb{R} .

Exemple. Le sous-espace des fonctions polynomiales est dense dans $(\mathcal{C}^0([a,b],\mathbb{K}),\|\cdot\|_{\infty})$ par le théorème de Weierstrass.

Exemple. Le sous-espace des fonctions en escalier est dense dans l'ensemble $(\mathcal{C}^0_{pm}([a,b],\mathbb{K}),\|\cdot\|_{\infty})$ des fonctions continues par morceaux.

2.4 Caractérisations séquentielles

<u>Proposition.</u> Une partie A de E est un fermé si et seulement si, pour toute suite convergente d'éléments de A, sa limite est dans A.

Remarque. L'intérêt de travailler dans un fermé, c'est que « quand on y est, on y reste », même en passant à la limite.

Proposition. x est adhérent à A si et seulement s'il existe une suite d'éléments de A qui converge vers x.

3 Topologie et normes équivalentes

Théorème.

Les notions topologiques étudiées ci-avant sont invariante par passage à une norme équivalente :

- Si A est un ouvert de (E, N_1) et N_2 équivalente à N_1 , alors A est un ouvert de (E, N_2) .
- L'intérieur de A dans (E, N_1) , lorsque N_2 équivalente à N_1 , est le même que l'intérieur de A dans (E, N_2) .
- etc.

4 Topologie induite

4.1 Voisinage relatif, ouvert relatif

Définition. Soit $(E, \| \cdot \|)$ un \mathbb{K} -espace vectoriel normé et A une partie quelconque de E. Soit $a \in A$ et $X \subset A$. On dit que X est un **voisinage relatif de** a **dans** A s'il existe r > 0 tel que $B(a, r) \cap A \subset X$

Remarque. Ainsi, les voisinages relatifs de a dans A sont les intersections avec A des voisinages de a (dans E).

<u>Définition</u>. On conserve les notations précédentes. On dit que X est un **ouvert relatif de** A si et seulement s'il est voisinage relatif de chacun de ses points, c'est-à-dire :

$$\forall a \in X, \exists r > 0 \text{ t.q. } B(a,r) \cap A \subset X$$

Proposition. X est un ouvert relatif de A si et seulement s'il existe U ouvert (de E) tel que $X = U \cap A$.

Remarque. On dit parfois que $U \cap A$ est la **trace** laissée par U sur A.

Exemple. Les parties suivantes sont-elles des ouverts relatifs de [0,1]?

1. [0,1]

- [0, 1/2]
- 5. $[0,1] \setminus [1/2,3/4]$
- 7.]0, 1/2[

2. {0}

- 4. [0, 3/4[
- 6.]0,1[

4.2 Fermé relatif

Définition. Soit $(E, \|\cdot\|)$ un \mathbb{K} -espace vectoriel normé et A une partie quelconque de E. On dit que $X \subset A$ est un fermé relatif de A lorsque $A \setminus X$ est un ouvert relatif de A.

Proposition. X est un fermé relatif de A si et seulement s'il existe F fermé (de E) tel que $X = F \cap A$.

Remarque. On dit parfois que $F \cap A$ est la **trace** laissée par F sur A.

<u>Caractérisation séquentielle.</u> X est un fermé relatif de A si et seulement si, pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de X qui converge vers un élément ℓ de A, alors $\ell\in X$.

Exemple. Est-ce que $]-\infty,0[$ est un ouvert relatif de \mathbb{R}^* ? un fermé relatif de \mathbb{R}^* ?

Exemple. Dans $E = \mathbb{R}^2$, on note O = (0,0) et a = (1,1) et on considère $A = B(O,1/4) \cup B(a,1/4)$. Proposer quatre parties de A qui sont à la fois des ouverts relatifs et des fermés relatifs de A.

4.3 Densité

Exercices et résultats classiques à connaître

Densité des matrices inversibles

43.1

Pour $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$, montrer que $\mathrm{GL}_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$.

Les sous-groupes de $\mathbb R$

43.2

Soit H un sous-groupe non nul de $(\mathbb{R}, +)$.

- (a) Justifier l'existence de $\alpha = \text{Inf}\{x \in H, x > 0\}.$
- (b) On suppose $\alpha > 0$. Montrer que $\alpha \in H$, puis $H = \alpha \mathbb{Z}$.
- (c) On suppose $\alpha = 0$. Montrer que H est dense dans \mathbb{R} .
- (d) Montrer que $\mathbb{Z} + 2\pi\mathbb{Z}$ est un sous-groupe de $(\mathbb{R}, +)$. En déduire que $\{\cos(n), n \in \mathbb{N}\}$ est dense dans [-1, 1].

Sous-espace vectoriel d'intérieur non vide

43.3

Soit E un espace vectoriel normé, et F un sous-espace vectoriel de E. On suppose que $\mathring{F} \neq \emptyset$. Montrer que F = E.

43.4

GNP 1.3

On note E l'espace vectoriel des applications continues sur [0,1] à valeurs dans \mathbb{R} .

On pose : $\forall f \in E$, $||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$ et $||f||_{1} = \int_{0}^{1} |f(t)| dt$.

3. Dans cette question, on munit E de la norme $\|\cdot\|_1$.

Soit
$$c: \left\{ \begin{array}{ll} [0,1] & \to & \mathbb{R} \\ x & \mapsto & 1 \end{array} \right.$$

On pose :
$$\forall n \in \mathbb{N}^*$$
, $f_n(x) = \begin{cases} nx & \text{si } 0 \leq x \leq \frac{1}{n} \\ 1 & \text{si } \frac{1}{n} < x \leq 1 \end{cases}$

- (a) Soit $n \in \mathbb{N}^*$. Calculer $||f_n c||_1$.
- (b) On pose $F = \{ f \in E, f(0) = 0 \}.$

On note \overline{F} l'adhérence de F.

Prouver que $c \in \overline{F}$.

F est-elle une partie fermée de E pour la norme $\|\cdot\|_1$?

43.5

Soit A une partie non vide d'un \mathbb{R} -espace vectoriel normé E.

- 1. Rappeler la définition d'un point adhérent à A, en termes de voisinages ou de boules.
- 2. Démontrer que : $x \in \bar{A} \iff \exists (x_n)_{n \in \mathbb{N}}$ telle que, $\forall n \in \mathbb{N}, x_n \in A$ et $\lim_{n \to +\infty} x_n = x.$
- 3. Démontrer que, si A est un sous-espace vectoriel de E, alors \bar{A} est un sous-espace vectoriel de E.
- 4. Soit B une autre partie non vide de E. Montrer que $\overline{A \times B} = \overline{A} \times \overline{B}$.

43.6

On note E l'espace vectoriel des applications continues de [0;1] dans \mathbb{R} .

On pose : $\forall f \in E, N_{\infty}(f) = \sup_{x \in [0;1]} |f(x)| \text{ et } N_1(f) = \int_0^1 |f(t)| dt.$

- 1. (b) Démontrer qu'il existe k > 0 tel que, pour tout f de E, $N_1(f) \le$
 - (c) Démontrer que tout ouvert pour la norme N_1 est un ouvert pour la norme N_{∞} .

43.7

GNP 38

43. Topologie des espaces vectoriels normés

1. On se place sur $E = \mathcal{C}([0,1],\mathbb{R})$, muni de la norme $||\cdot||_1$ définie par : $\forall f \in E, ||f||_1 = \int_0^1 |f(t)| dt.$

Soit
$$u: f \longrightarrow E$$
 avec $\forall x \in [0,1], g(x) = \int_0^x f(t)dt$.

On admet que u est un endomorphisme de E.

Prouver que u est continue et calculer ||u|||.

Indication: considérer, pour tout entier n non nul, la fonction f_n définie par $f_n(t) = ne^{-nt}$.

2. Soit
$$n \in \mathbb{N}^*$$
. Soit $(a_1, a_2, ..., a_n) \in \mathbb{R}^n$ un n -uplet **non nul**, **fixé**. Soit $u : (x_1, x_2, ..., x_n) \longmapsto \sum_{i=1}^n a_i x_i$.

- (a) Justifier que u est continue quel que soit le choix de la norme sur
- (b) On munit \mathbb{R}^n de $|| ||_2$ où $\forall x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, $||x||_2 =$ Calculer |||u|||

- (c) On munit \mathbb{R}^n de $||\ ||_{\infty}$ où $\forall x=(x_1,x_2,...,x_n)\in\mathbb{R}^n,\ ||x||_{\infty}=\max_{1\leqslant k\leqslant n}|x_k|.$ Calculer |||u|||.
- 3. Déterminer un espace vectoriel E, une norme sur E et un endomorphisme de E non continu pour la norme choisie. Justifier.

Remarque: Les questions 1., 2. et 3. sont indépendantes.

43.8

Soit E un espace vectoriel normé. Soient A et B deux parties non vides de E

- 1. (a) Rappeler la caractérisation de l'adhérence d'un ensemble à l'aide des suites.
 - (b) Montrer que : $A \subset B \Longrightarrow \overline{A} \subset \overline{B}$.
- 2. Montrer que : $\overline{A \cup B} = \overline{A} \cup \overline{B}$

Remarque : une réponse sans utiliser les suites est aussi acceptée.

- 3. (a) Montrer que : $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
 - (b) Montrer, à l'aide d'un exemple, que l'autre inclusion n'est pas forcément vérifiée (on pourra prendre $E = \mathbb{R}$).

43.9

Les questions 1. et 2. sont indépendantes.

Soit E un \mathbb{R} -espace vectoriel normé. On note $\| \| \|$ la norme sur E. Soit A une partie non vide de E.

On note \overline{A} l'adhérence de A.

- 1. (a) Donner la caractérisation séquentielle de \overline{A} .
 - (b) Prouver que, si A est convexe, alors \overline{A} est convexe.
- 2. On pose : $\forall x \in E, \ d_A(x) = \inf_{a \in A} ||x a||.$
 - (a) Soit $x \in E$. Prouver que $d_A(x) = 0 \Longrightarrow x \in \overline{A}$.
 - (b) On suppose que A est fermée et que : $\forall (x,y) \in E^2$, $\forall t \in [0,1]$, $d_A(tx+(1-t)y) \leq td_A(x)+(1-t)d_A(y)$. Prouver que A est convexe.

Exercices

43.10

Montrer que $\mathbb Z$ est un fermé de $\mathbb R$:

- en utilisant la caractérisation séquentielle;
- en étudiant son complémentaire.

43.11

Soit E un espace vectoriel normé, et F un sous-espace vectoriel de E. Montrer que \overline{F} est un sous-espace vectoriel de E.

|43.12|

Soit A une partie de $\mathbb R$ non vide et majorée. Montrer que :

$$\operatorname{Sup}(A) \in \overline{A}$$

43.13

Montrer que l'adhérence d'une partie convexe est convexe.

43.14

Montrer que l'ensemble des matrices diagonalisables est dense dans $\mathcal{M}_n(\mathbb{C})$.

43.15

Soit $n \in \mathbb{N}^*$. Le groupe linéaire $GL_n(\mathbb{R})$ est-il un fermé de $\mathcal{M}_n(\mathbb{R})$? un ouvert de $\mathcal{M}_n(\mathbb{R})$?

43.16

Déterminer $Fr(\mathbb{Q})$.

43.17

Dans $(\mathbb{R}, |\cdot|)$, montrer que :

$$\overline{[0,1[} = [0,1] \text{ et } \widehat{[0,1[} =]0,1[$$

http://mpi.lan

43. Topologie des espaces vectoriels normés

Petits problèmes d'entrainement

43.18

On travaille dans $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\infty}$, et on définit :

$$A = \{ f \in E, \ f(0) = 0 \text{ et } \int_0^1 f(t) \, \mathrm{d}t \ge 1 \}$$

- (a) Montrer que A est un fermé.
- (b) Vérifier que, pour tout $f \in A$, $||f||_{\infty} > 1$.
- (c) Calculer $d(0_E, A)$.

43.19

- (a) Montrer que les parties $A = \{(x, y) \in \mathbb{R}^2, xy = 1\}$ et $B = \{0\} \times \mathbb{R}$ sont fermées dans \mathbb{R}^2 .
- (b) Observer que A + B n'est pas fermée.

43.20

Soit N_1 et N_2 deux normes sur un même espace vectoriel E. On suppose qu'il

existe $\alpha > 0$ tel que :

$$\forall x \in E, \ N_1(x) \leqslant \alpha N_2(x)$$

Montrer que tout ouvert de (E, N_1) est ouvert de (E, N_2) .

43.21

Dans E espace normé, montrer que l'adhérence d'une boule ouverte est la boule fermée de même centre, de même rayon.

43.22

On considère E le \mathbb{R} -espace vectoriel des fonctions continues sur \mathbb{R} , à valeurs réelles, ayant pour limite 0 en $\pm \infty$. On le munit de la norme $\|\cdot\|_{\infty}$, toute fonction de E étant bornée sur \mathbb{R} .

On considère F le sous-espace vectoriel constitué des fonctions à support compact, i.e. :

$$f \in F \iff \exists M > 0, \ \forall x \in \mathbb{R} \setminus [-M, M], \ f(x) = 0$$

Montrer que F est dense dans E.

|43.23|

Montrer que l'intérieur d'une partie convexe est convexe.