V - przestrzeń nad $\mathbb C$ z iloczynem skalarnym - tak było. $A:V\to V$ takie, że $A^*A=AA^*$. Zachodzi tw. spektralne dla A. Istnieje baza ortonormalna V złożona z wektorów własnych A.

Drugie sformułowanie: $\{\lambda_1, \ldots, \lambda_k\} = Sp(A)$, $V_i = \ker(A - \lambda \mathbb{I})$, \mathcal{P}_i - rzuty ortogonalne na V_i . Wtedy $\mathbb{I} = \sum_{i=1}^{i_k} \mathcal{P}_i$ & $A = \sum_{i=1}^k \lambda_i \mathcal{P}_i$.

Twierdzenie 1 (spektralne dla operatorów samosprzężonych na przestrzeni Euklidesowej, tzn. V nad \mathbb{R} , $A:V\to V$, $A^*=A$)

Lemat: W - przestrzeń zespolona z iloczynem skalarnym $\langle .|. \rangle$. Niech $B:W \to W, B^* = B$. Wówczas $sp(B) \subset \mathbb{R}$

Dowód 1 $\lambda \in \mathbb{C}, w \in W - \{0\}, Bw = \lambda w \stackrel{?}{\Longrightarrow} \lambda \in \mathbb{R}.$

$$\langle w|Bw\rangle = \langle w|\lambda w\rangle = \lambda \, \langle w|w\rangle$$

$$\langle Bw|w\rangle = \langle \lambda w|w\rangle = \overline{\lambda} \, \langle w|w\rangle \implies \lambda = \overline{\lambda}.$$

Wniosek $w_B(z)$ - wielomian charakterystyczny B. Pierwiastki w_B są rzeczywiste.

 $V, A: V \rightarrow V$ - jak wyżej, V nad $\mathbb{R}^*, A^* = A$.

Istnieje baza ortonormalna V wektorów własnych operatora A.

Dowód 2 (indukcja ze względu na dim V)

1 krok indukcyjny - oczywiste.

 $n \implies n+1$. Przypuśćmy, że A posiada wektor własny e_0 o wartości własnej $\lambda_0 \in \mathbb{R}$. Niech $X = \mathbb{R} \cdot e_0$. Wówczas $AX \subset X$ - oczywiste. Mniej oczywiste jest to, że $AX^{\perp} \subset X^{\perp}$ - bo jeżeli $y \in X^{\perp}$, to $\langle Ay|e_0 \rangle = \langle y|Ae_0 \rangle = \lambda_0 \langle y|e_0 \rangle = 0 \implies y \in X^{\perp}$.

Rozważmy operator $D = A|_{X^{\perp}}$ - obcięcie do X. Wówczas $D^* = D$. Zatem, skoro $\dim X^{\perp} = n$, to na mocy założenia indukcyjnego X^{\perp} posiada ortonormalną bazę $\{e_1, \ldots, e_n\}$ wektorów własnych operatora B. Wówczas $\{e_0, \ldots, e_n\}$ jest ortonormalną bazą wektorów własnych operatora A. Istnienie $\lambda_0 \in \mathbb{R}$ i $e_0 \in V$ - takiego jak wyżej:

Niech $\mathcal{F} = \{f_0, \dots, f_n\}$ będzie dowolną bazą ortonormalną przestrzeni V. Rozważmy macierz $\mathcal{A} = [A]_{\mathcal{F}}^{\mathcal{F}} \in M_n(\mathbb{R}) \subset M_n(\mathbb{C})$. Macierz \mathcal{A} jest rzeczywista i symetryczna. Operator $T: \mathbb{C}^n \to \mathbb{C}^n$ taki, że $Tx = \mathcal{A}x \ \forall \ \mathcal{C}$. Operator T na \mathbb{C}^n , (gdzie iloczyn skalarny na \mathbb{C} jest kanoniczny) jest samo sprzężony!

Wielomian charakterystyczny T ma tylko rzeczywiste pierwiastki. Zauważmy, że $w_T(\lambda) = \det(\mathcal{A} - \lambda \mathbb{I}) = w_A(\lambda)$ a zatem w_A ma rzeczywiste pierwiastki. Stąd wynika, że istnieje λ_0, e_0 j.w. \square

0.1 Kwadryki

Klasyfikacja (czyli co nam daje tw. spektralne w kontekście form np. kwadratowych) form kwadratowych na przestrzeni euklidesowej (rzeczywista z il. skalarnym).

 $V, \dim V < \infty, Q : V \to \mathbb{R}$ - forma kwadratowa.

 $\langle .|. \rangle$ - iloczyn skalarny w przestrzeni V. Z Q związana jest symetryczna forma 2 liniowa $b: V \times V \to \mathbb{R}$, gdzie Q(v) = b(v, v) (albo inaczej $b(v_1, v_2) = b(v_2, v_1) = \frac{1}{2} \left(Q(v + w) - Q(v) - Q(w) \right)$).

Funkcjonały liniowe na V są postaci: ustalamy $\tilde{v} \in V$ i definiujemy funkcjonał $\langle \tilde{v} | \in V^*$, gdzie $\langle \tilde{v} | (v) \stackrel{\text{def}}{=} \langle \tilde{v} | v \rangle$.

Ustalmy $w' \in V$ i rozważmy funkcjonał $b(w,\cdot)$. Istnieje $\tilde{w} \in W$ taki, że $b(w,v) = \langle \tilde{w} | v \rangle \bigvee_{v \in V}$

Powyższe definiuje operator $F: V \to V$, gdzie $Fw = \tilde{w}$.

Czyli
$$b(w,v) = \langle Fw|v\rangle \bigvee_{w} \forall_{v \in V}$$
.

Lemat: F - samosprzężony.

Dowód 3 $\langle Fw|v\rangle = b(w,v) = b(v,w) = \langle Fv|w\rangle$, zatem $F = F^*$

Niech $\{e_1, \ldots, e_n\}$ będzie bazą ortonormalną przestrzeni V. Zauważmy, że $[F]_{\mathcal{E}}^{\mathcal{E}} = \langle e_j | Fe_i \rangle_{i,j=1,\ldots,n} = b(e_i, e_j)_{i,j=1,\ldots,n}$.

Jeśli w szczególności \mathcal{E} - ortonormalna baza złożona z wektorów własnych F, to w tej bazie $[b]_{\mathcal{E}}$ jest diagonalne. Niech $\{\phi_1,\ldots,\phi_n\}$ - współrzędne ortogonalne związane z bazą \mathcal{E} . Wtedy $\sum_{i=1}^k \lambda_i \phi_i^2 = Q$, gdzie $\lambda_1,\ldots,\lambda_k$ są niezerowymi wartościami własnymi F. Niech sgnQ = (p,q). Wtedy istnieją $a_1 \geqslant a_2 \geqslant \ldots \geqslant a_p$ & $a_{p+1} \geqslant \ldots \geqslant a_{p+q}$ takie, że

$$Q = \sum_{i=1}^{p} \frac{\phi_i^2}{a_i^2} - \sum_{i=1}^{q} \frac{\phi_{p+1}^2}{a_{p+1}^2} (**).$$

Definicja 1 Mówimy, że (**) jest postacią kanoniczną formy kwadratowej Q.

Definicja 2 $Q_1, Q_2 : V \to \mathbb{R}$ mają tę samą postać kanoniczną, jeżeli istnieją współrzędne ortonormalne $\{\phi_1, \ldots, \phi_n\}, \{\psi_1, \ldots, \psi_n\}$ takie, że

$$Q_1 = \sum_{i=1}^p \frac{\phi_i^2}{a_i^2} - \sum_{i=1}^q \frac{\phi_{p+i}^2}{a_{p+i}^2} \quad \& \quad Q_2 = \sum_{i=1}^p \frac{\psi_i^2}{a_i^2} - \sum_{i=1}^q \frac{\psi_{p+i}^2}{a_{p+1}^2}.$$

Definicja 3 V nad $\mathbb{R}, T: V \to V$ - operator taki, że $T^* = T^{-1}$. Wówczas mówimy, że T jest operatorem ortogonalnym.

Uwaga: T jest ortogonalny jeżeli mamy:

 $\mathcal{E} = \{e_1, \dots, e_n\}$ - baza ortonormalna $\implies \{Te_1, \dots, Te_n\}$ - baza ortonormalna.

$$\langle Te_i|Te_j\rangle = \langle e_i|T^*Te_j\rangle = \langle e_i|e_j\rangle = \delta_{ij}.$$

Stwierdzenie 1 Formy kwadratowe Q_1, Q_2 mają tę samą postać kanoniczną \iff istnieje operator ortogonalny $T: V \to V$ taki, że $Q_2(v) = Q_1(Tv)$

Dowód 4 Jeśli Q_1, Q_2 mają tę samą postać kanoniczną, to definiujemy $T: V \to V$ następująco: niech $\{e_1, \ldots, e_n\}$ - baza ortonormalna związana z $\{\phi_1, \ldots, \phi_n\}$ i $\{f_1, \ldots, f_n\}$ z $\{\psi_1, \ldots, \psi_n\}$. Niech $Te_i = f_i$ - daje $Q_2(v) = Q_1(Tv)$.

Na odwrót: jeśli $Q_2(v) = Q_1(Tv)$ i w bazie $\{e_1, \ldots, e_n\}$, Q_1 ma postać kanoniczną to definiując $f_i : e_i := Tf_i$ dostajemy bazę $\{f_1, \ldots, f_n\}$ ortonormalną i postac kanoniczna Q_2 w bazie $\{f_1, \ldots, f_n\}$ jest taka Q_1 w $\{e_1, \ldots, e_n\}$ \square