

Jarrod Williams, Bill Smith, Marc Conwell

INTRODUCTION

Question 1: Is there a liner relationship between short-term interest rates and long-term interest rates?

Question 2: Is there a liner relationship between short-term interest rates and change in S&P500?

Question 3: Is there a liner relationship between sunspot activity and short-term interest rates?

Short term interest VS. SP500

Inflation vs. SP500

Short term interest VS. long term interest

Sunspot vs. short term interest rate

CONCLUSION TO QUESTION 1

Question 1: Is there a liner relationship between short-term interest rates and long-term interest rates?

Random Variable X = TB3MS = 3-month treasury bill interest rate
Random Variable Y = 30YEAR = home mortgage interest rates on a 30-year fixed mortgage
ASSUME: There is no linear relationship between random variables X and Y

- Null Hypothesis, H_0 : $\rho = 0$
- Alternate Hypothesis, $H_1 : \rho \neq 0$

Correlation Coefficient (X , Y) = ρ = 0.929872

T-test statistic = $\rho [(n-2)/(1-\rho^2)] ^1/2 = 0.93 [628/(1-0.93^2)] ^1/2 = 23.3$

2-tail test with $\alpha = 0.05$; n = 630; 2 degrees freedom \rightarrow critical value t-dist = 1.964

Conclusion:

- Conclusion: We reject null hypothesis.
- Data is consistent with linear relation between long term and short-term interest rates.
- This is exactly what we would expect because interest rates tend to move together.

CONCLUSION TO QUESTION 2

Question 2: Is there a liner relationship between short-term interest rates and change in S&P500?

Random Variable X = TB3MS = 3-month treasury bill interest rate
Random Variable Y = SP500 = Percent change in SP Index over the month
ASSUME: There is no linear relationship between random variables X and Y

- Null Hypothesis, H_0 : $\rho = 0$
- Alternate Hypothesis, $H_1: \rho \neq 0$

Correlation Coefficient (X , Y) = ρ = -0.02

T-test statistic = ρ [(n-2)/(1 - ρ ^ 2)] ^ ½ = -0.02 [628 / (1 - (-0.02 ^2))] ^ ½ = -0.52 2-tail test with α = 0.05 ; n = 630 ; 2 degrees freedom \rightarrow critical value t-dist = 1.964 [T-test statistic = | -0.52|] < [Critical value = 1.964] \rightarrow WE ACCEPT NULL HYPOTHESIS

Conclusion

- Conclusion: We can not reject null hypothesis.
- Data is consistent with NO linear relation btwn short-term interest rates and Δ SP500.
- This was kind of surprising because people say interest rates strongly impact stock market.
- Dig deeper and it's CHANGE in EXPECTIONS for future interest rates that drive stock

market

• Presumably we'd have strong linear relationship with expected future change in interest

rates.

CONCLUSION TO QUESTION 3

Question 3: Is there a liner relationship between sunspot activity and short-term interest rates?

Random Variable X = SUNSPOTS = Percent change in sunspots compared to historical average Random Variable Y = TB3MS = 3-month treasury bill interest rate

ASSUME: There is no linear relationship between random variables X and Y

- Null Hypothesis, H_0 : $\rho = 0$
- Alternate Hypothesis, $H_1: \rho \neq 0$

Correlation Coefficient (X , Y) = ρ = 0.44

T-test statistic = $\rho [(n-2)/(1-\rho^2)]^{\frac{1}{2}} = -0.02 [628/(1-0.44^2)]^{\frac{1}{2}} = 12.4$

2-tail test with $\alpha = 0.05$; n = 630; 2 degrees freedom \rightarrow critical value t-dist = 1.964

[T-test statistic = 12.4] > [Critical value = 1.964] → WE REJECT NULL HYPOTHESIS

Conclusion

- Conclusion: We reject null hypothesis.
- SUNSPOTS CORRELATE To INTEREST RATES !!!
- Awesome example of limitations of looking to correlation matrix for significance.

THANK YOU