

DIE WELT DER DATENBANKEN

WIEDERHOLUNG

DATENMODELLIERUNG

Studenten		höre	en
MatrNr	Name	MatrNr	VorlNr
26120 25403	Fichte Jonas	25403	5022
		26120 	5001

Vorlesungen				
VorlNr Titel				
5001 Grundzüge				
5022 Glaube und Wissen				

FROM Studenten, hören, Vorlesungen
WHERE Studenten MatrNr = hören MatrNr AND
hören VorlNr = Vorlesungen VorlNr AND
Vorlesungen Titel = 'Grundzüge';

UPDATE Vorlesungen

SET Titel = 'Grundzüge der Logik'

WHERE VorlNr = 5001;

RELATIONENMODELL

- Konzeptuell ist die Datenbank eine Menge von Tabellen
- Eine Tabelle = "Relation"
- Eine Zeile = "Tupel"

Professoren

<u>PersNr</u>	Name	Rang	Raum
2125	Sokrates	C4	226
2126	Russel	C4	232
2127	Kopernikus	C3	310
2133	Popper	C3	52
2134	Augustinus	C3	309
2136	Curie	C4	36
2137	Kant	C4	7

Vorlesungen

<u>VorlNr</u>	Titel	SWS	<u>GelesenVon</u>
5001	Grundzüge	4	2137
5041	Ethik	4	2125
5043	Erkenntnistheorie	3	2126
5049	Mäeutik	2	2125
4052	Logik	4	2125
5052	Wissenschaftstheorie	3	2126
5216	Bioethik	2	2126
5259	Der Wiener Kreis	2	2133
5022	Glaube und Wissen	2	2134
4630	Die 3 Kritiken	4	2137

RELATIONENMODELL SCHLÜSSEL

 Attribute, deren Werte ein Tupel eindeutig identifizieren sind Schlüssel.

- Schlüssel soll minimal sein, also aus so wenig Attributen wie möglich bestehen.
- Schlüsselwert darf niemals NULL sein!

Professoren

<u>PersNr</u>	Name	Rang	Raum
2125	Sokrates	C4	226
2126	Russel	C4	232
2127	Kopernikus	C3	310
2133	Popper	C3	52
2134	Augustinus	C3	309
2136	Curie	C4	36
2137	Kant	C4	7

RELATIONENMODELL FREMDSCHLÜSSEL

• Schlüssel einer Tabelle können in einer anderen (oder derselben) Tabelle als eindeutige Verweise genutzt werden.

Vorlesungen Fremdschlüssel			Professore	n Prim	ärschlüs	sel		
<u>VorlNr</u>	Titel	SWS	<u>GelesenVon</u>		PersNr 4	Name	Rang	Raum
5001	Grundzüge	4	2137		2125	Sokrates	C4	226
5041	Ethik	4	2125		2126	Russel	C4	232
5043	Erkenntnistheorie	3	2126		2127	Kopernikus	C3	310
5049	Mäeutik	2	2125		2133	Popper	C3	52
4052	Logik	4	2125		2134	Augustinus	C3	309
5052	Wissenschaftstheorie	3	2126		2136	Curie	C4	36
5216	Bioethik	2	2126		2137	Kant	C4	7
5259	Der Wiener Kreis	2	2133	Referenzierte Relation				
5022	Glaube und Wissen	2	2134	Primar- und Fremdschlussel				
4630	Die 3 Kritiken	4	2137					
	Referenzierende Relation haben!							

RELATIONALE DARSTELLUNG (UNI)

Logischer Entwurf:

Studenten: { [MatrNr:integer, Name:string, Semester:integer] }

Vorlesungen: {[VorlNr:integer, Titel:string, SWS:integer]}

Professoren: { [PersNr:integer, Name:string, Rang:string, Raum:integer] }

Assistenten: { [PersNr:integer, Name:string, Fachgebiet:string] }

KREUZTABELLEN FÜR N:M BEZIEHUNG

Studenten

<u>MatrNr</u>	Name
24002	Xenokrates
25403	Jonas
26120	Fichte
26830	Aristoxenos
28106	Carnap
29555	Feuerbach

hören

<u>MatrNr</u>	<u>VorlNr</u>
26120	5001
24002	5001
24002	4052

Vorlesungen

<u>VorlNr</u>	Titel	SWS
5001	Grundzüge	4
5041	Ethik	4
5043	Erkenntnistheorie	3
5049	Mäeutik	2
4052	Logik	4
5052	Wissenschaftstheorie	3
5216	Bioethik	2
5259	Der Wiener Kreis	2
5022	Glaube und Wissen	2
4630	Die 3 Kritiken	4

Logischer Entwurf:

hören: {[MatrNr:integer, VorlNr:integer]} (N:M)

SURROGATE KEYS -KÜNSTLICHER SCHLÜSSEL

- Zusätzliches Schlüsselattribut, ohne Anwendung in der realen Welt
- In der Regel Datentyp: NUMBER
- Dient zur eindeutigen Identifizierung der Entität
- Ersetzen aus mehreren Attributen zusammengesetzten Primärschlüssel
- einfacherer Index-Aufbau
- schnellere Suche...

RELATIONENMODELL

Redundanzen vermeiden

RELATIONENMODELL - REDUNDANZEN

SCHLECHTES RELATIONENSCHEMA

Professoren

PersNr	Name	Rang	Raum	<u>VorlNr</u>	Titel	SWS
2125	Sokrates	C4	226	5041	Ethik	4
2125	Sokrates	C4	226	5049	Mäeutik	2
2125	Sokrates	C4	226	4052	Logik	4
2133	Popper	C3	52	5295	Der Wiener Kreis	2
2137	Kant	C4	7	4630	Die 3 Kritiken	4

ZIEL: ANOMALIEN VERMEIDEN

- Änderungsanomalie: Beim Ändern eines Wertes müssen viele andere Tupel ebenfalls geändert werden
- Einfügeanomalie: Beim Einfügen eines Tupels können bestimmte Werte nicht angegeben werden, da sie noch nicht bekannt sind. Wenn bspw. Schlüsselwerte fehlen, kann Tupel nicht einmal eingefügt werden

 Löschanomalie: Beim Löschen geht mehr Information verloren, als beabsichtigt.

ZIEL: ANOMALIEN VERMEIDEN

- Änderungsanomalie: Bsp. Sokrates zieht um
- Einfügeanomalie: Bsp. Curie ist neu und liest noch keine Vorlesung
- Löschanomalie: Bsp. "Die 3 Kritiken" fällt weg.

Professoren

PersNr	Name	Rang	Raum	<u>VorlNr</u>	Titel	SWS
2125	Sokrates	C4	226	5041	Ethik	4
2125	Sokrates	C4	226	5049	Mäeutik	2
2125	Sokrates	C4	226	4052	Logik	4
2133	Popper	C3	52	5295	Der Wiener Kreis	2
2137	Kant	C4	7	4630	Die 3 Kritiken	4

NORMALFORMEN

- Legen **Eigenschaften** von Relationsschemata fest
- Verbieten bestimmte Kombinationen in Relationen

Sollen Redundanzen und Anomalien vermeiden

NORMALFORMEN ERSTE NORMALFORM

• Erlaubt nur **atomare Attribute** in den Relationsschemata. D.h. Attributwerte sind Elemente von **Standard-Datentypen** wie *integer* oder *string*, aber keine Mengenwerte wie *array* oder *set*

Nicht in 1NF:

Eltern

Vater	Mutter	Kinder
Johann	Martha	{Else, Lucie}
Heinz	Martha	{Cleo}

in 1NF (= flache Relation)

Eltern

Vater	Mutter	Kinder	
Johann	Martha	Else	
Johann	Martha	Lucie	
Heinz	Martha	Cleo	

NORMALFORMEN ZWEITE NORMALFORM

- Partielle Abhängikeit liegt vor, wenn ein Attribut funktional nur von einem Teil des Schlüssel abhängt.
- Verstoß gegen 2NF deutet darauf hin, dass in der Relation Informationen über mehr als ein Konzept modelliert werden.

 Zweite Normalform eliminiert partielle Abhängigkeiten bei Nichtschlüsselattributen.

NORMALFORMEN ZWEITE NORMALFORM

(NEGATIVBEISPIEL)

StudentenBelegung

<u>MatrNr</u>	<u>VorlNr</u>	Name	Semester	
26120	5001	Fichte	10	
27550	5001	Schopenhauer	6	
27550	4052	Schopenhauer	6	
28106	5041	Carnap	3	
28106	5052	Carnap	3	
28106	5216	Carnap	3	
28106	5259	Carnap	B	

- {MatrNr} → {Name} und
- {MatrNr} → {Semster}

NORMALFORMEN ZWEITENORMALFORM

• Elminierung partieller Abhängigkeiten

NORMALFORMEN ZWEITE NORMALFORM

Eliminierung partieller Abhängigkeiten

Relation in 2NF:

StudentenBelegung: {MatrNr, VorlNr, Name, Semester}

hören: {MatrNr, VorlNr}

Studenten: {MatrNr, Name, Semester}

NORMALFORMEN DRITTE NORMALFORM

- Eliminiert (zusätzlich) transitive Abhängigkeiten
- Beispiel:
 - R = {PersNr, Name, Raum, Rang, PLZ, Ort, Straße}
 - $\circ \quad \{PersNr\} \rightarrow \{PLZ\} \text{ und } \{PLZ\} \rightarrow \{Ort\}$
- Man beachte: 3.NF betrachtet **nur** Nichtschlüsselattribute als Endpunkt transitiver Abhängigkeiten.

NORMALFORMEN DRITTE NORMALFORM

• Eliminierung transitiver Abhängigkeiten durch Verschiebung transitiv abhängiger Attribute in ein newes Relationenschema.

NORMALFORMEN DRITTE NORMALFORM

Elminierung transitiver Abhängigkeiten

Relation in 3NF:

Professoren: {ProfNr, Name, Raum, Rang, PLZ, Ort, Straße}

Professoren: {ProfNr, Name, Raum, Rang, PLZ, Straße}

Orte: {PLZ, Ort}

NORMALFORMEN

• 1NF: Ein Relationenschema ist in 1. Normalform, wenn dessen Wertebereiche atomar sind.

 2NF: Ein Relationenschema ist in 2. Normalform, wenn es in 1. Normalform ist und jedes Nichtschlüsselattribut voll funktional vom Primärschlüssel abhängig ist.

3NF: Ein Relationenschema ist in 3. Normalform, wenn es sich in 2.
 Normalform befindet, und kein Nichtschlüsselattribut vom Primärschlüssel transitiv abhängig ist.

ENDE

