Dr. W. Spann F. Hänle, M. Oelker

4. Tutorium zur Linearen Algebra für Informatiker und Statistiker

T13) Sei (G, \circ) eine Gruppe, $\emptyset \neq U \subset G$. Zeigen Sie:

U ist Untergruppe von G genau dann, wenn die Verknüpfung $U \times U \to U$, $(a,b) \mapsto a \circ b$ wohldefiniert ist und U mit dieser Verknüpfung eine Gruppe ist.

- T14) Sei (G, \circ) eine Gruppe, (H, *) eine Menge mit einer Verknüpfung. Zeigen Sie:
 - (a) $\phi: G \to H$ bijektiv $\land \forall a, b \in G: \phi(a \circ b) = \phi(a) * \phi(b) \implies (H, *)$ Gruppe
 - (b) $a^{m+n} = a^m \circ a^n \quad (a \in G, m, n \in \mathbb{Z})$
 - (c) G zyklisch und unendlich $\implies \mathbb{Z}$ isomorph zu G
- T15) Sei (G, \circ) eine Gruppe. Zeigen Sie:
 - (a) Für alle $a, b \in G$ gilt $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$.
 - (b) Für alle $a,b\in G$ besitzen die Gleichung $a\circ x=b$ und $y\circ a=b$ jeweils eindeutig bestimmte Lösungen $x,y\in G$.
 - (c) Sei $a \in G$. Dann sind die Abbildungen $l_a : G \to G$, $l_a(x) = a \circ x$ und $r_a : G \to G$, $r_a(x) = x \circ a$ jeweils bijektiv.
- T16) Sei (G, \circ) eine Gruppe und e ihr neutrales Element.
 - (a) Zeigen Sie: Für alle $a \in G$ gilt $(a^{-1})^{-1} = a$.
 - (b) Zeigen Sie: Die Abbildung $\phi: G \to G$, $x \mapsto x^{-1}$ ist bijektiv.
 - (c) Zeigen Sie: Ist G endlich und abelsch, so gilt:

$$\prod_{g \in G} g \circ g = e$$

(d) Folgern Sie aus Aufgabe 16c den Satz von Wilson: Sei peine Primzahl. Dann gilt $(p-1)! \equiv -1 \mod p$.