

wherein Y^1 represents a di- to hexavalent residue obtained by removing the following 2 to 6 hydroxyl groups from a compound having 2 to 6 hydroxyl groups in a molecule; R^1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; R^3 , R^4 , R^5 and R^6 may be the same or different and each represent a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an aralkyl group having 7 to 24 carbon atoms or a phenyl group, or a group obtained by substituting a part of these groups with an oxygen atom, and the total of the carbon atoms in the groups represented by R^3 , R^4 , R^5 and R^6 falls in a range of 0 to 24; and R^4 and R^5 may form a cyclic structure together with carbon atoms to which they are bonded directly; and n represents an integer of 2 to 6, or

the following Formula (V):

wherein Y^2 represents a di- to hexavalent residue obtained by removing the following 2 to 6 hydroxyl groups from a compound having 2 to 6 hydroxyl groups in a molecule; R^1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; R^7 , R^8 , R^9 , R^{10} , R^{11} and R^{12} may be the same or different and each represent a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an aralkyl group having 7 to 24 carbon atoms or a phenyl group, or a group obtained by substituting a part of these groups with an oxygen atom, and the total of the carbon atoms in the groups represented by R^7 , R^8 , R^9 , R^{10} , R^{11} and R^{12} falls in a range of 0 to 24; and R^7 and R^9 or R^7 , R^9 and R^{11} may form a cyclic structure together with carbon atoms to which they are bonded directly; and n represents an integer of 2 to 6.

12. (Amended) The polyorthoester as described in claim 1, having a structure represented by the following Formula (VII):

wherein Y⁴ represents a residue obtained by removing the following four hydroxyl groups from a compound having four hydroxy groups in a molecule; R¹ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; and R⁷, R⁸, R⁹, R¹⁰, R¹¹ and R¹² may be the same or different and each represent a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an aralkyl group having 7 to 24 carbon atoms or a phenyl group, or a group obtained by substituting a part of these groups with an oxygen atom, and the total of the carbon atoms in the groups represented by R⁷, R⁸, R⁹, R¹⁰, R¹¹ and R¹² falls in a range of 0 to 24; and R⁷ and R⁹ or R⁷, R⁹ and R¹¹ may form a cyclic structure together with carbon atoms to which they are bonded directly.