

대대기를 위한 최신 컴퓨터 개론 컴퓨터 사이 언스

CHAPTER 02. 정보의 표현

정보 체계_컴퓨터 내부의 정보 표현과 정보 처리

목차

- 01 수의 체계
- 02 진법 변환
- 03 정보의 표현
- 04 문자 표현
- 05 정수 표현
- 06 실수 표현

학습목표

- 컴퓨터에서 사용하는 수 체계와 종류를 알아본다.
- 진수 변환 방법을 알아본다.
- 컴퓨터의 정보 표현 방법을 알아본다.
- 컴퓨터에서 문자, 정수, 실수의 표현 방법을 알아본다.

1.1 진수의 종류

❖ 고대 수 사용

바빌로니아 숫자

로마 숫자

마야족 숫자

1.1 진수의 종류

- ♦ 진법 : 임의의 수를 숫자로 표현하는 방법
- ❖ 디지털 컴퓨터는 두 개의 전기 신호(0 또는 1)를 이용해 정보를 표현

2진수 표현

1.1 진수의 종류

표 2-1 각 진수의 수 표현

진수	10진수	2진수	8진수	16진수
	0	0	0	0
	1	1	1	1
	2	10	2	2
	3	11	3	3
	4	100	4	4
	5	101	5	5
	6	110	6	6
사용숫자	7	111	7	7
	8	1000	10	8
	9	1001	11	9
	10	1010	12	Α
	11	1011	13	В
	12	1100	14	С
	13	1101	15	D
	14	1110	16	Е
	15	1111	17	F
표현 예	5234(10)	1011(2)	146(8)	5C31 ₍₁₆₎

1.2 자릿값

❖ 자릿값 : 진법에 따라 각 숫자는 별도의 자릿값을 가지며, 해당 진수에 제곱수를 적용하여 자릿값을 계산

102	101	100	10-1	10-2	10-3
1	2	3	4	5	6

22	21	20	2-1	2-2	2-3
1	0	1	1	0	1

(a) 10진수의 자릿값

(b) 2진수의 자릿값

그림 2-1 진수별 자릿값

1.2 자릿값

- ♦ 10진수 5234의 자릿값
 - $5234_{(10)} = 5 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0$
- ♦ 2진수 101.1의 자릿값
 - 1의 자릿값 = 2², 0의 자릿값 = 2¹, 1의 자릿값 = 2⁰, 1의 자릿값 = 2⁻¹
- ♦ 8진수 146의 자릿값
 - 1의 자릿값 = 8², 4의 자릿값 = 8¹, 6의 자릿값 = 8⁰
- ♦ 16진수 5C3의 자릿값
 - 5의 자릿값 = 16², C의 자릿값 = 16¹, 3의 자릿값 = 16⁰

2. 진법 변환

♦ 진법 변환: 주어진 수를 다른 진법으로 변환하는 것

2.1 2진수, 8진수, 16진수 → 10진수

각 자리의 숫자에 자릿값을 곱한 후 모두 더한다.

$$1011_{(2)} = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 11_{(10)}$$

- $0.1_{(2)} = 1 \times 2^{-1} = 1 \times 1/2 = 0.5_{(10)}$
- $135_{(8)}^{(2)} = 1 \times 8^2 + 3 \times 8^1 + 5 \times 8^0 = 64 + 24 + 5 = 93_{(10)}$ $20C_{(16)}^{(16)} = 2 \times 16^2 + 0 \times 16^1 + 12(C) \times 16^0 = 512 + 0 + 12 = 524_{(10)}$

2.2 10진수 → 2진수, 8진수, 16진수

정수 부분의 변환

- ① 10진수의 정수 부분을 2진수의 밑수 2로 나누어 몫과 나머지를 구한다.
- ② 몫이 더 이상 나누어지지 않을 때까지 밑수 2로 계속해서 나눈다.
- ③ 각 단계의 나머지를 역순으로 나열한다.

$$19_{(10)} = 10011_{(2)}$$

$$19_{(10)} = 10011_{(2)}$$

그림 2-2 10진수 19를 2진수로 변환

16) 52
$$3 \cdots 4$$
 $52_{(10)} = 34_{(16)}$

그림 2-3 10진수 52를 16진수로 변환

2.2 10진수 → 2진수, 8진수, 16진수

❖ 소수 부분의 변환

- ① 10진수의 소수 부분에 2진수의 밑수 2를 곱한다.
- ② 곱셈 결과로 소수 부분이 0이 될 때까지 밑수 2를 계속 곱한다.
- ③ 각 단계에서 발생하는 정수 부분(자리올림)을 순서대로 나열한다.

그림 2-4 10진수 0.125를 2진수로 변환

그림 2-5 10진수 52,375를 8진수로 변환

3. 정보의 표현

◆ 디지털 컴퓨터는 문자나 숫자 등의 정보를 0과 1의 2진 체계로 부호화한 디지털 데이터로 처리

표 2-2 문자 A와 숫자 10의 부호화

정보	2진 체계 부호화				
Α	01000001				
10	00001010				

3. 정보의 표현

◈ 비트

- Binary digit는 컴퓨터에서 정보를 나타내는 최소 단위
- 2진수 0 또는 1을 의미
- N비트로 표현할 수 있는 정보는 2 N개

◈ 바이트

- 문자를 나타내는 최소 단위로 영문자나 숫자
- 특수문자는 1바이트로 표현
- 한글이나 한자는 2바이트로 표현

그림 2-6 test.txt 파일의 내용(왼쪽)과 크기(오른쪽)

3. 정보의 표현

◈ 워드

- 명령어나 연산을 처리하는 기본 단위
- 기억장치에 한 번 접근하여 얻을 수 있는 데이터의 양

♦ 기억 용량의 단위

기억 용량 단위	활용 예		
KB(Kilo Byte)	20KB의 엑셀 파일		
MB(Mega Byte)	4MB의 MP3 파일		
GB(Giga Byte)	32GB의 USB 메모리		
TB(Tera Byte)	2TB의 외장 하드디스크		

4.1 아스키 코드

- ◆ 미국표준협회(ANSI)가 데이터를 처리하거나 통신 시스템 간에 정보를 교환할 때 쓸 표준 코드로 제안한 것
- ◆ 표현할 수 있는 문자는 128(2 ⁷)개

4.1 아스키 코드

❖ 아스키 코드표

■ 0~31번과 127번 : 제어 문자

■ 32~64번 : 특수문자와 숫자

■ 65~96번 : 알파벳 대문자와 특수문자

■ 97~126번 : 알파벳 소문자와

특수문자

10진수	2진수	ASCII									
0	0000000	NULL	32	0100000	SP	64	1000000	@	96	1100000	160
1	0000001	SOH	33	0100001	ļ,	65	1000001	Α	97	1100001	а
2	0000010	STX	34	0100010		66	1000010	В	98	1100010	b
3	0000011	ETX	35	0100011	#	67	1000011	С	99	1100011	С
4	0000100	EOT	36	0100100	\$	68	1000100	D	100	1100100	d
5	0000101	ENQ	37	0100101	%	69	1000101	Е	101	1100101	е
6	0000110	ACK	38	0100110	&	70	1000110	F	102	1100110	f
7	0000111	BEL	39	0100111		71	1000111	G	103	1100111	g
8	0001000	BS	40	0101000	(72	1001000	Н	104	1101000	h
9	0001001	нт	41	0101001)	73	1001001	I	105	1101001	i
10	0001010	LF	42	0101010	*	74	1001010	J	106	1101010	j
11	0001011	VT	43	0101011	+	75	1001011	K	107	1101011	k
12	0001100	FF	44	0101100	- 1	76	1001100	L	108	1101100	Ĭ
13	0001101	CR	45	0101101		77	1001101	М	109	1101101	m
14	0001110	SO	46	0101110		78	1001110	N	110	1101110	n
15	0001111	SI	47	0101111	1	79	1001111	0	111	1101111	0
16	0010000	DLE	48	0110000	0	80	1010000	Р	112	1110000	р
17	0010001	DC1	49	0110001	1	81	1010001	Q	113	1110001	q
18	0010010	SC2	50	0110010	2	82	1010010	R	114	1110010	r
19	0010011	SC3	51	0110011	3	83	1010011	s	115	1110011	s
20	0010100	SC4	52	0110100	4	84	1010100	Т	116	1110100	t
21	0010101	NAK	53	0110101	5	85	1010101	U	117	1110101	u
22	0010110	SYN	54	0110110	6	86	1010110	٧	118	1110110	V
23	0010111	ETB	55	0110111	7	87	1010111	W	119	1110111	W
24	0011000	CAN	56	0111000	8	88	1011000	Х	120	1111000	х
25	0011001	EM	57	0111001	9	89	1011001	Υ	121	1111001	У
26	0011010	SUB	58	0111010	1	90	1011010	Z	122	1111010	Z
27	0011011	ESC	59	0111011	:	91	1011011	[123	1111011	{
28	0011100	FS	60	0111100	<	92	1011100	₩	124	1111100	ij
29	0011101	GS	61	0111101	12	93	1011101]	125	1111101	}
30	0011110	RS	62	0111110	>	94	1011110	۸	126	1111110	~
31	0011111	US	63	0111111	?	95	1011111		127	1111111	DEL

4.4 유니코드

- ◆ 전 세계의 언어를 일관된 방법으로 표현하고 다를 수 있는 국제적인 문자 코드 규약
- ◆ 문자 하나를 16비트로 표현, 65,536(2 ¹⁶)개의 문자와 기호를 나타냄
- ◆ 인코딩 방식은 UTF-8, UTF-16, UTF-32(UTF 뒤의 숫자는 문자 인코딩에 사용되는 비트 수)
- ♦ 언어별 유니코드 차트 자료: http://www.unicode.org/charts

4.4 유니코드

	AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	AC8	AC9	ACA	ACB	ACC	ACD	ACE	ACF
0	가	감	갠	갰	갿	걐		거	검	겐	겠	결	곀	곐	立	금
1	AC00 라	AC10 감	AC20 갡	AC30	AC40 라 AC41	AC50 같 AC51	超 A061	AC70 Z-1 AC71	AC80 검 AC81	AC90 겑 AC91	ACAO	ACB0 걸	ACC0 곁 ACC1	ACDO 곑 ACDI	ACE0	ACF0
2	갂	값 AC12	갢 AC22	갲 AC32	站	걒 AG52	걢 AC62	검 AC72	7-1	겒	겢 ACA2	겲 ACB2	곂 ACC2	곒 ACD2	ACE2	卫 比 ACF2

그림 2-11 한글 유니코드

표 2-6 훈민정음의 유니코드 표현

1101 0110 1100 1000	1011 1011 1111 1100	1100 1000 0001 0101	1100 0111 0100 1100
훈	민	정	음

5.1 보수

- ◆ 두 수의 합이 진법의 밑수(N)가 되게 하는 수
- ♦ 음의 정수를 표현하기 위해 고안한 개념
- ♦ 컴퓨터 내부에서는 사칙연산을 할 때 덧셈을 담당하는 가산기를 이용하기 때문에 뺄셈은 덧셈 형식으로 변환하여 계산해야 함
 - A-B는 B의 보수(-B)를 구한 후 A+(-B)로 계산

5.1 보수

1의 보수

2진수 1010의 1의 보수는 0101(2)

1111 - 1010 - 0101

1111

그림 2-12 1의 보수

◆ 2의 보수

2진수 1010의 2의 보수는 0110₍₂₎ - 1010 0101 + 1 0110

그림 2-13 2의 보수

❖ 두 수의 합이 2가 되면 자리올림이 발생

그림 2-14 지리올림이 발생한 덧셈

5.3 뺄셈

♦ 1의 보수 뺄셈

그림 2-15 자리올림이 생긴 1의 보수 뺄셈: 7 - 6

그림 2-16 자리올림이 생기지 않는 1의 보수 뺄셈: 4 - 6

❖ 2의 보수 뺄셈

그림 2-17 자리올림이 생긴 2의 보수 뺄셈: 7 - 6

그림 2-18 자리올림이 생기지 않은 2의 보수 뺄셈: 4 - 6

5.4 곱셈

- ❖ 피승수에 승수의 각 수를 곱하여 부분 곱을 구함
- ❖ 각 부분 곱은 직전 단계의 부분 곱보다 왼쪽으로 한 비트만큼 시프트한 후 더함

그림 2-19 2진수 110011과 110의 곱셈

◆ 피제수에서 제수를 뺄 수 없을 때까지 뺄셈을 계속해서 횟수는 몫이 되고 남은 것은 나머지가 됨

그림 2-20 2진수 100110과 110의 나눗셈

5.6 고정 소수점 표현

- ❖ 소수점이 고정된 위치에 있다는 뜻
- ♦ 정수 표현에 사용

그림 2-21 고정 소수점 표현

7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0			즐	댓값				1			절	성댓값			
								7	6	5	4	3	2	1	0
								1			19	의 보수			
								7	6	5	4	3	2	1	0
								1			25	의 보수	.,		

(a) 양의 정수 표현

(b) 음의 정수 표현

그림 2-22 양수와 음수의 고정 소수점 표현

5.6 고정 소수점 표현

표 2-7 정수 +13과 -13에 대한 8비트 표현

표현 방식	+13	-13
부호화 절댓값	0 0001101	1 0001101
1의 보수	0 0001101	1 1110010
2의 보수	0 0001101	1 1110011

표 2-8 3비트로 표현할 수 있는 수의 범위

10진수	부호화 절댓값	1의 보수	2 의 보수
-4	_	n=-	100
-4 -3 -2 -1 -0 +0	111	100	101
-2	110	101	110
-1	101	110	111
-0	100	111	_
+0	000	000	000
+1 +2	001	001	001
+2	010	010	010
+3	011	011	011

6. 실수 표현

- ◆ 고정 소수점 방식
 - 소수점이 항상 고정된 위치에 있다는 의미로, 정수 표현에 주로 사용
- ❖ 부동 소수점 방식
 - 소수점의 위치가 변하기 때문에 실수 표현에 주로 사용
 - 고정 소수점 방식보다 넓은 범위의 수를 표현

m x re(m:가수r:밑수,e:지수)

31	30	23 22	0
부호	지수 부분	가수 !	쿠분

(a) 단일 정밀도 형식

(b) 이중 정밀도 형식

그림 2-23 부동 소수점 표현 형식