空气比热容比的测定

(教材:大学物理实验,第一册第五章 5.2.2;大学物理基础与综合性实验,第五章 5.3)

一、实验目的

- 1. 用绝热膨胀法测定空气的比热容比。
- 2. 观测热力学过程中状态变化及基本物理规律。

二、实验仪器

空气比热容测定仪(含 AD590 温度传感器和扩散硅压力传感器),温度计(测室温),气压计(测环境气压)

三、实验原理

理想气体的压强P、体积V和温度T在准静态绝热过程中,遵守绝热过程方程: PV^{γ} 等于恒量,其中 γ 是气体的定压比热容CP 和定容比热容CV 之比,通常称 $\gamma = CP / CV$ 为该气体的比热容比(亦称绝热指数)。如图 1 所示,我们以贮气瓶内空气(近似为理想气体)作为研究的热学系统,试进行如下实验过程。

- (1)首先打开放气阀 C_1 , 贮气瓶与大气相通,再关闭 C_1 , 瓶内充满与周围空气同温(设为 T_0)同压(设 为 P_0)的气体。
- (2)打开充气阀 C2 用充气球向瓶内打气,充入一定量的气体,然后关闭充气阀 C2。此时瓶内空气被压缩,压强增大,温度升高。等待内部气体温度稳定,即达到与周围温度平衡,此时的研究的气体处于状态 I (P1,V1,T0)。虽然瓶为气体的体积为贮气瓶容积 V0,而仅有 V1 部分(V1<V0)是实验研究的对象,如图 2。

图 1 实验装置图

(3)迅速打开放气阀 C_1 ,使瓶内气体与大气相通,当瓶内压强降至 P_0 时,立刻关闭放气阀 C_1 将有体积为 ΔV 的气体喷泻出贮气瓶。由于放气过程较快,瓶内保留的气体来不及与外界进行热交换,可以认为是一个绝热膨胀的过程。在此过程后瓶中的气体由状态 $I(P_1,V_1,T_0)$ 转变为状态 $II(P_0,V_0,T_1)$ 。 V_0 为贮气瓶容积, V_1 为保留在瓶

中这部分气体在状态 I (P1, T0)时的体积。

(4)由于瓶内气体温度 T_1 低于室温 T_0 ,所以瓶内气体慢慢从外界吸热,直至 达到室温 T_0 为止,此时瓶内气体压强也随之增大为 P_2 。则稳定后的气体状态为 III (P_2,V_0,T_0) ;从状态 II 到状态 III 的过程可以看作是一个等容吸热的过程。

图 2 气体状态变化及 PV 图 由状态 $I \to II \to III$ 的过程如图 2 所示。 $I \to II$ 是绝热过程,由绝热过程方程得:

$$P_1 V_1^{\gamma} = P_0 V_0^{\gamma} \tag{1}$$

状态 I 和状态III的温度均为 To, 由气体状态方程得

$$P_1 V_1 = P_2 V_0 (2)$$

合并式(1)(2),消去 V₀, V₁ 得

$$\gamma = \frac{\ln P_1 - \ln P_0}{\ln P_1 - \ln P_2} = \frac{\ln (P_1 / P_0)}{\ln (P_1 / P_2)}$$
(3)

由式(3)可以看出,只要测得 P_0 , P_1 , P_2 就可求得空气的绝热指数 $^{\gamma}$ 。 本实验气瓶内的气压通过扩散硅传感器来测量,压强值通过电压值来显示,其灵敏度为 20mV/kPa。 当待测压强为大气压 P_0 时将电压示数调零,当压强显示读数为 P_{mV} 时,实际压强为:

$$P(Pa) = P_0 + 50 \times P(mV) \tag{4}$$

气瓶内温度通过 AD590 温度传感器测量,也是以电压值来显示,其灵敏度为 $5mV/\mathbb{C}$,最小可检测 $0.02\mathbb{C}$ 的温度变化。

四、实验内容

- 1. 用气压计测定大气压强 $P_0(Pa)$,用温度计测环境室温 $T_0(\mathbb{C})$ 。打开放气阀 C_1 ,开启电源,让电子仪器部件预热一段时间,然后将压强指示值调到"0",并记录此时温度指示值 $T_0(U \text{ mV})$ 为单位)。
- 2. 关闭放气阀 C_1 ,打开充气阀 C_2 ,用充气球向瓶内打气,使压强升高到 $100 \, \text{mV}$ $\sim 120 \, \text{mV}$ 。然后关闭充气阀 C_2 ,当瓶内气体压强和温度的指示值不变时,气体处于 状态 I,记下压强 P_1 和温度 T_1 (以 mV 为单位).
- 3. 迅速打开放气阀 C_1 ,当放气声消失时立刻关闭放气阀 C_1 ,此时瓶内空气压 强降至大气压强 P_0 ,气体温度降低,气体处于状态 II 。
- 4. 待瓶内气体的温度上升稳定,且压强也稳定后,此时瓶内气体近处于状态 III ,记录压强 P_2 和温度 T_2 。
- 5. 打开放气阀 C1 使贮气瓶与大气相通,以便于下一次测量。
- 6. 重复步骤 2—4, 重复 10 次测量, 比较多次测量中气体的状态变化有何异同, 并计算 $\bar{\gamma}$, 分析误差, 利用统计规律公式 $\sqrt{\frac{\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}}$, 计算实验结果的随机涨落偏差。
- 7. 放气时间过长,重复步骤 2-4,重复 5 次测量,计算 γ_1 。
- 8. 放气时间不充分,重复步骤 2-4,重复 5 次测量,计算 $\overline{\gamma_2}$ 。

9. 比较三种情况的测量平均值,与理论值 1.40 比较,计算与理论值对比的相对误差 $E_r = \frac{\bar{N}-1.40}{1.40} \times 100\%$,并分析偏离原因。

注意事项

- 1.转动充气阀和放气阀的活塞时,一定要一手扶住活塞,另一只手转动活塞,避免损坏活塞。
- 2.实验前应检查系统是否漏气,方法是关闭放气阀,打开充气阀用充气球向瓶 内打气,使瓶内压强升高 1000Pa~2000Pa 左右(对应电压值为 20~40mV),关 闭充气阀 B 观察压强是否稳定,若始终下降则说明系统有漏气之处,须找出原因。
- 3.做好本实验的关键是放气要进行的十分迅速。即打开放气阀后又关上放气阀的动作要快捷,使瓶内气体与大气相通要充分且尽量快完成。

思考题

- 1. 为什么在实验中不需要测量状态Ⅱ的压强和温度值?请简述理由。
- 2. 在放气瞬间,瓶内气体温度有无变化?试通过热力学定律分析原因。

表 1 空气比热容比测试数据

实验开始

大弧月和					
大气压强 P0=	Pa	室温 <i>T</i> 0=	°C	气温 <i>T</i> 0=	mV
实验结束					
大气压强 P0=	Pa	室温 <i>T</i> 0=	°C	气温 <i>T</i> 0=	mV

开始和结束的大气压强值求平均值后,代入公式计算 P_1/Pa , P_2/Pa

	状态I		状态Ⅲ		状态I	状态Ⅲ	
	P₁/mV	T₁/mV	P₂/mV	T₂/mV	P₁/Pa	P₂/Pa	γ
1							
2							
3							
4							
5							

报告要求

实验名称

空气比热容比的测定

实验目的

- 1. 用绝热膨胀法测定空气的比热容比。
- 2. 观测热力学过程中状态变化及基本物理规律。

实验仪器

空气比热容测定仪(含 AD590 温度传感器和扩散硅压力传感器),温度计(测室温),气压计(测环境气压)

实验原理

阅读实验讲义,重点弄清以下问题。

- 1. 空气比热容比的定义
- 2. 简述实验中的绝热膨胀、等容吸热的状态变化过程。画出状态变化曲线。
- 3. 写出空气比热容比的计算推导过程
- 4. 写出双原子分子比热容比的理论值

实验内容

阅读实验讲义,简要概括。

数据记录

实验开始					
大气压强 P0=	Pa	室温 <i>T</i> 0=	℃	气温 70=	mV
实验结束					
大气压强 P0=	Pa	室温 <i>T</i> 0=	℃	气温 70=	mV
开始和结束的大气	医强值	重求平均值后,	代入公	式计算 <i>P</i> ₁ /Pa,	P ₂ /Pa
数据记录表格:					

	状态I		状态Ⅲ		状态I	状态Ⅲ	
	P₁/mV	T₁/mV	P₂/mV	T₂/mV	P₁/Pa	P₂/Pa	γ
1							
2							
3							
4							
5							

以下内容为课后完成部分

数据处理

- 1. 计算空气比热容比值(部分可在实验室进行)
- 2. 计算 10 次正常测量的空气比热容比的平均值 $\bar{\gamma}$,利用统计规律公式 $\sqrt{\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n-1}}$,计算实验结果的随机涨落偏差。
- 3. 放气时间过长, 重复 5 次测量, 计算 $\overline{\gamma}_1$ 。
- 4. 放气时间不充分,重复5次测量,计算 $\overline{\gamma_2}$ 。
- 5. 比较三种情况的测量平均值,与理论值 1.40 比较,计算与理论值对比的相对误差 $E_r = \frac{\overline{\gamma}_1 1.40}{1.40} \times 100\%$,并根据理论定性分析偏离原因。

误差分析

定性误差分析即可。

实验结论

简要陈述实验方法及结果,评估实验结果与理论值的差距,分析实验结果是否合理。

思考题

回答讲义中的思考题。