Some solutions for problem III

- 1. Pseudo-transitivity
- a. The proof can be done using the definition of an FD or using the Armstrong axioms.

Armstrong:

Assume that X -> Y (1), Z -> V (2), and Z (belongs) Y (3)

Since Z (belongs) Y (3) then Y -> Z (4), by reflexivity

Since $X \rightarrow Y$ (1) and $Y \rightarrow Z$ (4) then $X \rightarrow Z$ (5), by transitivity

Since X -> Z (5) and Z -> V (2) then X -> V (QED), by transitivity

b. Transitivity can be deduced from pseudo transitivity alone, therefore the Armstrong axioms in which transitivity is replaced by pseudo-transitivity are still complete.

2. The rule is not correct. It can be shown by showing an example instance of a table that verifies $X \rightarrow Y$ but such that $Y \rightarrow X$ is false. The simplest is to use $X=\{A\}$ and $Y=\{B\}$ fro R(A,B). In the example below $A^{-} \in B$ but, of course B is not a subset of A.

ΑВ

1 2

2 2

3 3

- 3. $F=\{\{A\}->\{B\},\{C\}->\{D\},\{B,D\}->\{E\},\{D\}->\{A,D\},\{A,C\}->\{E,B\}\}$
- g. $C+(0) = \{C\}$

 $C+(1) = \{C, D\}$ by using $\{C\}->\{D\}$

 $C+ (2) = \{C, D, A\}$ by using $\{D\}->\{A,D\}$

 $C+ (3) = \{C, D, A, B\}$ by using $\{A\}->\{B\}$

 $C+ (4) = \{C, D, A, B, E\}$ by using $\{B,D\}->\{E\}$

 $C+ = \{C, D, A, B, E\}$, we can stop, we have every attribute.

{C} is a superkey

There is no proper subset which is a superkey (only one proper subset -> and it is not a superkey), therefore {C} is a candidate key. It is the only one.

{C} is a primary key.

- h. Minimal cover
- 1. Simplify the right-hand side

F'={ {A}->{B},{C}->{D}, {B,D}->{E}, {D}->{A}, {D}->{D}, {A,C}->{E}, {A,C}->{B} }