Sistemes de coordenades i espais vectorials: introducció als vectors

Jordi Villà i Freixa

Universitat de Vic - Universitat Central de Catalunya Grau en Multimèdia. Aplicacions i Videojocs

jordi.villa@uvic.cat

curs 2022-2023

Índex

curs 2022-2023

Introducció al curs

El material d'aquestes presentacions està basat en anteriors presentacions i apunts d'altres professors [?, ?, ?] de la UVic-UCC, pàgines web diverses (normalment enllaçades des del text), així com monografies [?, ?, ?].

Perquè necessitem els nombres reals

- Per a descriure el món, cal mesurar magnituds
- Per a comprendre'l, cal conèixer com es relacionen les magnituds
- Per a saber com es relacionen les magnituds, cal generar models

$$\mathbb{C} \ \textit{Complexos} \left\{ \begin{array}{l} \mathbb{R} & \textit{Reals} \\ \mathbb{R} & \textit{Reals} \end{array} \right\} \left\{ \begin{array}{l} \mathbb{Q} & \textit{Racionals} \\ \mathbb{Z} & \textit{Enters} \end{array} \right\} \left\{ \begin{array}{l} \mathbb{N} & \textit{Naturals} \\ \textit{Zero} \\ \textit{Enters negatius} \\ \mathbb{Q} - \mathbb{Z} & \textit{Fraccionaris} \end{array} \right.$$

(1)

exercises

- Escriu equacions polinòmiques amb coeficients enters que tinguin com a solucions nombres naturals, enters, racionals, irracionals (algebraics)
- Escriu una equació polinòmica amb coeficients enters que tingui com a solució el número π (transcendent)
- Troba una equació polinòmica amb coeficients constants sense cap nombre real com a solució

Nombres discrets vs nombres continus

- \mathbb{Z} és un conjunt de nombres discrets: donat un enter, sempre hi ha un enter consecutiu. Exemple: el codi binari, 0, 1.
- Un conjunt de números es diu que és continu si poden prendre qualsevol valor en un interval finit o infinit. Exemples: [3,5], (- inf,0). El món no és discret, sinó mesurable! Per tant, no podem parlar de dos nombres reals consecutius.

La recta real

Els nombres reals es representen damunt una recta, la recta real.

Propietat de la recta real

- Necessitem una referència per anomenar els punts de la recta: fixarem un orígen (el 0) i una escala (1)
- La recta està ordenada
- És infinita
- els intèrvals i semirectes són parts de la recta:

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

$$[a,\infty] = \{x \in \mathbb{R} : a \le x\}$$

$$(-\infty,b) = \{x \in \mathbb{R} : x < b\}$$
(2)

• La distància entre nombres reals és d(a, b) = |b - a|.

El pla 2D

- Fem el salt a dues dimensions. Ncessitarem referenciar els punts en un pla.
- René Descartes (1590-1650) va posar les bases matemàtiques per a poder fer-ho: el producte cartesià $\mathbb{R} \times \mathbb{R}$, consistent en el conjunt de parells (ordenats) de nombres reals:

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{ (x, y) : x \in \mathbb{R}, y \in \mathbb{R} \}$$
 (3)

El pla 2D

- Com fèiem amb la recta, usem una referència per identificar els punts del pla: fixem un origen (0,0) i dos punts que ens donguin l'escala horitzontal i vertical: $\{(1,0),(0,1)\}$.
- Els eixos d'abcisses i ordenades venen determinats per les rectes $\{(x,y)\in\mathbb{R}^2:y=0\}$ i $\{(x,y)\in\mathbb{R}^2:x=0\}$, respectivament.

El pla 2D

• Podem definir els quatre quadrants del pla com:

$$Q1 = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}$$

$$Q2 = \{(x, y) \in \mathbb{R}^2 : x \le 0, y \ge 0\}$$

$$Q3 = \{(x, y) \in \mathbb{R}^2 : x \le 0, y \le 0\}$$

$$Q4 = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \le 0\}$$

• La distància euclídea:

$$d((x_1,y_1),(x_2,y_2)) = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$$
 (4)

L'Espai 3D

- El nostre interès és l'espai tridimensional, que ens apropa a la realitat (escultura, holografia, impressió-3D, animació 3D...).
- L'espai 3D és el conjunt de tríos de nombres reals:

$$\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{ (x, y, z) : x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R} \}$$
 (5)

- Triem un origen (0,0,0) i tres punts més que ens donen les tres escales, (1,0,0), (0,1,0) i (0,0,1)
- podem definir eixos (per exemple l'eix Z es defineix com $\{(x,y,z)\in\mathbb{R}^3:x=0,y=0\}$) o plans (l'Eix XY vidra definit per $\{(x, y, z) \in \mathbb{R}^3 : z = 0\}$).
- La distància euclídea:

$$d((x_1,y_1,z_1),(x_2,y_2,z_2)) = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$$

Desplaçament i vectors

El nostre interès és descriure moviments, ja siguin en la recta, en el pla o en l'espai 3D.

Desplaçament a la recta real

Com descriuries el desplaçament d'un punt des de la posició x=2 a la posició x=4? i el desplaçament invers?

Desplaçament al Pla 2D

Com descriuries el desplaçament rectilini d'un punt des de la posició (2,1) a la (-3,2). I el desplaçament contrari? D óna dos punts inicial i final entre els quels hi hauria el mateix desplaçament.

Desplaçament a l'espai 3D

Pots posar un exemple similar en l'espai 3D?

En general:

Desplaçament a la recta real

El vector desplaçament entre la posició inicial A i la final B es defineix com $\overrightarrow{AB} = B - A$

Desplaçament al Pla 2D

El vector desplaçament entre la posició inicial $A=(x_1,y_1)$ i la final $B(x_2,y_2)$ es defineix com $\overrightarrow{AB}=(x_2-x_1,y_2-y_1)$

Desplaçament a l'espai 3D

El vector desplaçament entre la posició inicial $A=(x_1,y_1,z_1)$ i la final $B=(x_2,y_2,z_2)$ es defineix com $\vec{AB}=(x_2-x_1,y_2-y_1,z_2-z_1)$

Cada escalar del vector s'anomena component

ex:pla2 Donats els punts A(1,1), B=(0,-1) i el vector $\vec{u}=(2,4)$

- Calcula els vectors que van des de l'origen de coordenades cap a cadascun dels punts A i B (pregunta trampa...).
- 2 Calcula i dibuixa \overrightarrow{AB} .
- **3** Calcula i dibuixa \overrightarrow{BA} .
- Si $\vec{u} = \overrightarrow{AC}$, quina posició és *C*?
- **5** Si $\vec{u} = \overrightarrow{CB}$, quina posició és *C*?
- Dóna una altres dos punts A i B que tinguin el mateix vector desplaçament AB.

Els desplaçaments, doncs, es representen amb vectors, quines principals característiques són:

- Tenen una direcció.
- Tenen un sentit.
- Tenen una intensitat, anomenada norma o mòdul del vector, que és la distància entre la posició inicial i la final:

$$||\overrightarrow{AB}|| = d(A, B) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
 (7)

si $A = (x_1, y_1)$ i $B = (x_2, y_2)$ són dos punts en el pla.

Calcula la norma del vector d' \mathbb{R}^5 (1, -2, -3, 0, 2).

ex:pla3 Donats el punt A(1,1) i els vectors $\vec{u}=(2,4)$, $\vec{v}=(0,-3)$:

- Aplica al punt A el desplaçament \vec{u} , i al nou punt trobat el desplaçament \vec{v} . Quin és el vector desplaçament des d'A a la posició final?
- Repeteix l'exercise canviant l'ordre dels desplaçaments.
- **3** Aplica al punt A el desplaçament \vec{u} , i al nou punt trobat el desplaçament \vec{u} novament. Quin és el vector desplaçament des d'A a la posició final?

UVIC | UVIC-UCC

La suma de vectors és commutativa.

A partir d'ara considerarem els vectors com a entitats pròpies, més enllà del concepte de desplaçament.

Espais vectorials

Considerem el conjunt de tots els possibles vectors al pla amb origen a (0,0). En realitat, es tracta de tots els parells ordenats de nombres reals: el conjunt \mathbb{R}^2 .

El conjunt de tots els vectors de \mathbb{R}^2 , amb les operacions definides per a qualsevol parell de vectors $\vec{u}=(u_1,u_2)$ i $\vec{v}=(v_1,v_2)$, i qualsevol nombre real λ de la següent manera

- **1** Suma (interna) $\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2)$, i
- **2** Producte per escalar (externa) $\lambda \cdot \vec{u} = (\lambda u_1, \lambda u_2)$

satisfà les propietats següents $\forall \lambda, \gamma \in \mathbb{R}, \forall \vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^2$:

- **1** Propietat commutativa de l'operació interna: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- ② Propietat associativa de l'operació interna: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- **3** Existeix un element neutre \vec{e} tal que $\vec{u} + \vec{e} = \vec{u}$
- **9** Existeix un element oposat $-\vec{u}$ per a cada vector \vec{u} tal que $-\vec{u} + \vec{u} = \vec{e}$
- $(\lambda + \gamma) \cdot \vec{u} = \lambda \cdot \vec{u} + \gamma \cdot \vec{u}$
- **1** Existeix un element neutre $e \in \mathbb{R}$ tal que $e \cdot \vec{u} = \vec{u}$

Qui són \vec{e} (a \mathbb{R}^2) i e? Passa el mateix a \mathbb{R} o \mathbb{R}^3 ? I a \mathbb{R}^n ?

Definició

Un conjunt d'elements (anomenats vectors) amb dues operacions externa i interna que satisfan les 8 propietats anteriors s'anomena **espai vectorial** (sobre el cos escalar dels nombres reals)

 \mathbb{R} , \mathbb{R}^2 i \mathbb{R}^3 són espais vectorials sobre $\mathbb{R}.$

Comprova que el conjunt dels polinomis de grau 2 és un espai vectorial sobre \mathbb{R} .

Definició

Un vector \vec{u} és una **combinació lineal** dels vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}$ si existeixen nombres reals $\lambda_1, \lambda_2, \dots, \lambda_n$ que satisfan:

$$\vec{u} = \lambda_1 \overrightarrow{v_1} + \lambda_2 \overrightarrow{v_2} + \cdots + \lambda_n \overrightarrow{v_n}$$

- a) Troba els valors dels coeficients si $\vec{u}=(2,1)$ i $\{\overrightarrow{v_1},\overrightarrow{v_2}\}=\{\overrightarrow{e_1},\overrightarrow{e_2}\}=\{(1,0),(0,1)\}$. b) i si $\{\overrightarrow{v_1},\overrightarrow{v_2}\}=\{(2,1),(-2,1)\}$? Agafant els vectors de l'exercise anterior:
- Pots escriure $\overrightarrow{e_2}$ en funció de $\{\overrightarrow{v_1}, \overrightarrow{v_2}\}$?
 - ② Pots escriure $\overrightarrow{e_1}$ en funció de $\{\overrightarrow{v_1}, \overrightarrow{v_2}\}$?
 - **3** Pots escriure $\overrightarrow{v_2}$ en funció de $\{\overrightarrow{e_1}\}$?
 - Com són els vectors que es poden escriure com a combinació lineal de $\overrightarrow{e_1}$?

Dependència lineal

Els vectors $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}$ són **linealment dependents** si qualsevol d'ells es pot escriure com a combinació lineal de la resta. En cas contrari els anomenem **linealment independents**

Amb els mateixos vectors anteriors:

- Són $\overrightarrow{e_2}$, $\overrightarrow{v_1}$ i $\overrightarrow{v_2}$ linealment independents?
- ② Són $\overrightarrow{e_1}$, $\overrightarrow{v_1}$ i $\overrightarrow{v_2}$ linealment independents?
- **3** Com són els vectors linealment dependents amb $\overrightarrow{e_1}$?
- **9** Són $\overrightarrow{e_1}$ i $\overrightarrow{v_2}$ linealment independents?
- **5** Són $\overrightarrow{e_1}$ i $\overrightarrow{e_2}$ linealment independents?
- **6** Són $\overrightarrow{v_1}$ i $\overrightarrow{v_2}$ linealment independents?

Vectors generadors

Els vectors $\overrightarrow{v_1}, \overrightarrow{v_2}, \ldots, \overrightarrow{v_n}$ són generadors de l'espai vectorial al qual pertanyen quan qualsevol vector de l'espai es pot posar com a combinació lineal de $\overrightarrow{v_1}, \overrightarrow{v_2}, \ldots, \overrightarrow{v_n}$.

Per indicar que $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}$ generen l'espai vectoria E, escrivim:

$$E = \langle \overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n} \rangle.$$

Amb els mateixos vectors anteriors:

- **1** Comprova que $\overrightarrow{e_1}$ i $\overrightarrow{e_2}$ són generadors de \mathbb{R}^2 .
- ② Comprova que $\overrightarrow{e_1}$, $\overrightarrow{v_1}$ i $\overrightarrow{v_2}$ són generadors de \mathbb{R}^2 .
- $\bullet \quad \text{Ho son } \overrightarrow{v_1} \text{ i } \overrightarrow{v_2}?$
- **1** Dóna exemples de conjunts de vectors d' \mathbb{R}^2 que generin altres vectors del mateix espai vectorial amb la forma $\{(\alpha,0): \alpha \in \mathbb{R}\}.$
- **5** Comprova que el conjunt de vectors $\{(1,0,0),(0,1,0),(0,0,1)\}$ genera \mathbb{R}^3 .

Base d'un espai vectorial

Els vectors $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}$ són una base de l'espai vectorial al qual pertanyen quan:

- 1 són generados de l'espai, i
- són linealment independents.
- **①** Comprova que $\overrightarrow{e_1}$ i $\overrightarrow{e_2}$ és una base de \mathbb{R}^2 .
- ② Perquè $\overrightarrow{e_1}$, $\overrightarrow{v_1}$ i $\overrightarrow{v_2}$ no són una base de \mathbb{R}^2 ?
- **3** Formen una base de \mathbb{R}^2 els vectors $\overrightarrow{v_1}$ i $\overrightarrow{v_2}$?
- **4** Quants vectors com a molt formen una base de \mathbb{R}^2 ?
- \bullet I d' \mathbb{R}^3 ?

Dimensió d'un espai vectorial

En un espai vectorial hi ha infinites bases, però totes tenen el mateix nombre de vectors. la **dimensió** d'un espai vectorial és el nombre de vectors que es troben en una base.

- \mathbb{R} té dimensió 1.
- \mathbb{R}^2 té dimensió 2.
- \mathbb{R}^n té dimensió n.

Per exemple, la base canònica de \mathbb{R}^2 és $\{\overrightarrow{e_1},\overrightarrow{e_2}\}=\{(1,0),(0,1)\}.$

Representació d'un vector en una base

Tot vector d'un espai vectorial es pot expressar com a combinació lineal dels vectors de qualsevol base. Les components d'un vector respecte a una base són els nombres reals que multipliquen cada vector de la base. Per exemple (veure exercise $\ref{eq:condition}$), si $\ref{u}=(2,1)$ la seva representació en dues bases diferents $C=\{\overrightarrow{e_1},\overrightarrow{e_2}\}=\{(1,0),(0,1)\}$, i $B=\{\overrightarrow{v_1},\overrightarrow{v_2}\}=\{(-1,1)_C,(3,3)_C\}$ seria:

$$\vec{u} = 2 \cdot \overrightarrow{e_1} + 1 \cdot \overrightarrow{e_2} = (2,1)_C = 2\mathbf{i} + \mathbf{j}$$

 $\vec{u} = \frac{-1}{2} \cdot \overrightarrow{v_1} + \frac{1}{2} \cdot \overrightarrow{v_2} = (\frac{-1}{2}, \frac{1}{2})_B$

Observació: sovint anomenem $\mathbf{i}, \mathbf{j}, \mathbf{k}$ els vectors $\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_2}$ a \mathbb{R}^3 . En general, és pràctic escriure \vec{u} com a \mathbf{u} per simplicitat.

Supespai vectorial

Definició

Un subconjunt de vectors d'un espai vectorial $F \subset E$ forma un subespai vectorial si i només si:

- $\mathbf{0}$ $\vec{u} + \vec{v} \in F$, sempre que $\vec{u}, \vec{v} \in F$, i
- ② $\lambda \cdot \vec{u} \in F$, sempre que $\vec{u} \in F$ i $\lambda \in \mathbb{R}$.

Els subespais vectorials son també espais vectorials i, com a tals, tenen bases i dimensió.

A \mathbb{R}^2 hi ha infinits subespais vectorials de dimensió 1 (infinites rectes que passen per l'origen en el pla).

A \mathbb{R}^3 :

- Quin és el pla generat per la base $\{\overrightarrow{e_1}, \overrightarrow{e_3}\}$?
- ② Com és el subespai generat per la base $\{\overrightarrow{e_2}\}$?

L'equació 2x - 5y + 7z = 0 defineix un subespai vectorial a \mathbb{R}^3 . Quina és la seva base? Què representa l'equació?

Quins d'aquests vectors formen una base d' \mathbb{R}^2 : (1,1),(1,2),(-1,2)?

Sistemes de coordenades

Definició

Un **sistema de coordenades** $[O; \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}]$ del producte cartesià \mathbb{R}^n està format per:

- ullet un punt $O\in\mathbb{R}^n$, anomenat origen i
- una base $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}$ de l'espai vectorial \mathbb{R}^n .

Si triem $O = (0, 0, \dots, O)$ i la base canònica $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \dots, \overrightarrow{e_n}\}$ s'anomenen **coordenades cartesianes**

Les coordenades d'un punt A respecte el sistema de coordenades $[O; \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}]$ són les components del vector \overrightarrow{OA} en la base $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}.$

UVIC | UVIC-UCC

El dibuix representa el vector

$$\vec{a} = a_{x}\vec{i} + a_{y}\vec{j} + a_{z}\vec{k}$$

A \mathbb{R}^3 és habitual representar la base canònica com a $\{\vec{i}, \vec{j}, \vec{k}\}$.

ex:base

Considera el punt de coordenades cartesianes P = (2,1) a \mathbb{R}^2 :

- Quines series les seves coordenades al sistema $[O; \{\overrightarrow{v_1} = (-1,1)_C, \overrightarrow{v_2} = (3,3)_C\}]$?
- Quines series les seves coordenades al sistema $[P: \{\overrightarrow{v_1} = (-1,1)_C, \overrightarrow{v_2} = (3,3)_C\}]?$

Resum de la solució a l'exercise:

$$(1,0) = \alpha(-1,1) + \beta(3,3)$$

amb resultat $\alpha = -\frac{1}{2}$ i $\beta = \frac{1}{5}$; i

$$(0,1) = \gamma(-1,1) + \delta(3,3)$$

amb resultat $\gamma = \frac{1}{2}$ i $\delta = \frac{1}{6}$. i d'aquí:

$$(2,1) = 2 \cdot (1,0) + 1 \cdot (0,1) = = -\frac{1}{2} \cdot (-1,1) + \frac{1}{2} \cdot (3,3)$$

Definició

Anomenem angle entre dues semirectes o segments amb un origen comú a la regió compresa entre ambdues semirectes o segments.

FACULTAT DE CIÈNCIES, TECNOLOGIA I ENGINYERIES

FACULTAT DE CIÈNCIES, TECNOLOGIA I ENGINYERIES

UVIC | UVIC-UCC

Mesurem els angles en graus (°) o en radiants. Un radiant és la rotació necessària per recórrer un arc de longitud igual al radi de la circumferència. Per tant, com que l'angle complet equvaldria a tota la circumferència és fàcil veure que $360^\circ \equiv 2\pi rad$.

Per jugar amb aquest concepte proveu d'anar a https://www.geogebra.org/m/kzc7rbNC.

Mesura l'angle formen els següents parells de vectors:

- (2,0) i (0,5)
- (2,0) i (0,-5)
- (2,0) i (5,-5)

A \mathbb{R}^3 , l'angle entre dos vectors es mesura damunt del pla que formen. Mesura l'angle formen els següents parells de vectors:

- (2,0,1) i (0,5,0)
- (2,0,0) i (0,-5,0)
- (2,0,0) i (5,-5,5)

Està clar que en general no és tan trivial i cal fer ús de l'operació producte escalar, que definim com:

Definició

S'anomena **producte escalar** de dos vectors d' \mathbb{R}^n , definits per $\vec{u} = (u_1, u_2, \dots, u_n)$ i $\vec{v} = (v_1, v_2, \dots, v_n)$, al nombre real:

$$\vec{u}\cdot\vec{(v)}=u_1\cdot v_1+u_1\cdot v_1+\cdots+u_1\cdot v_1.$$

Es pot demostrar que si els vectors formen un angle θ , aleshores

$$\vec{u} \cdot (\vec{v}) = ||\vec{u}|| \cdot ||(\vec{v})|| \cdot \cos \theta$$

i, per tant

$$\cos \theta = \frac{\vec{u} \cdot (\vec{v})}{||\vec{u}|| \cdot ||(\vec{v})||}$$

Quin angle formen els vectors d' \mathbb{R}^3 (1,1,1) i (-1,1,-1)? Quan ha de valer k perque els vectors (1,k,1) i (-1,1,-1) siguin paral·lels? i perpendiculars?

Troba l'àrea del triangle delimitat pels vèrtex (1,1), (4,5), (1,2).

Coordenades polars

Gràcies als angles podem descriure qualsevol posició al pla amb les anomenades **coordenades polars**: (r, φ) , on

- r és la distància del punt a l'origen de coordenades i
- l'angle φ és el format pel vector i l'eix de les abcissses

Pots tafanejar aquesta URL: https://www.geogebra.org/m/WTJq9yC9

La conversió a coordenades cartesianes és:

$$x = r \cdot \cos \varphi$$
$$y = r \cdot \sin \varphi$$

i d'aquí podem treure la conversió contrària:

$$r = \sqrt{x^2 + y^2}$$
$$y = \arctan \frac{y}{x}$$

on caldrà tenir en compte el quadrant alhora de calcular l'arctangent.

Si enlloc d' \mathbb{R}^2 treballem sobre \mathbb{R}^3 ja no parlarem de coordenades polars sinó esfèriques, (ρ, φ, θ) , on

$$x = \rho \cdot \sin \varphi \cdot \cos \theta$$
$$y = \rho \cdot \sin \varphi \cdot \sin \theta$$

$$z = \rho \cdot \cos \varphi$$

