Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Рубежный контроль №1 «Методы обработки данных»

по дисциплине «Методы машинного обучения»

	ИСПОЛНИТЕЛЬ:	
]	Крюков Г.М. Группа ИУ5-21М
"_	"	2022 г.
		ПРОВЕРИЛ: Гапанюк Ю.Е.
"_	"	2022 г.

Вариант работы:

Крюков Геннадий ИУ5-21М

Номер по списку группы – 6

Вариант задачи №1 - 6

Для набора данных проведите устранение пропусков для одного (произвольного) числового признака с использованием метода заполнения средним значением.

Вариант задачи №2 - 26

Для набора данных для одного (произвольного) числового признака проведите обнаружение и замену (найденными верхними и нижними границами) выбросов на основе правила трех сигм.

Дополнительное задание

Для пары произвольных колонок данных построить график "Диаграмма рассеяния".

Набор данных:

This dataset is used to predict whether a patient is likely to get stroke based on the input parameters like gender, age, various diseases, and smoking status. Each row in the data provides relevant information about the patient.

Поля:

id: unique identifier

gender: "Male", "Female" or "Other"

age: age of the patient

hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has

hypertension

heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient

has a heart

disease

ever_married: "No" or "Yes"

work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"

Residence_type: "Rural" or "Urban"

avg glucose level: average glucose level in blood

bmi: body mass index

smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"*

stroke: 1 if the patient had a stroke or 0 if not

"Unknown" in smoking_status means that the information is unavailable for this patient

Текст программы:

```
[ ] import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import scipy.stats as stats
[ ] data = pd.read_csv('/Users/user/Downloads/stroke.csv')
[ ] data.head()
           id gender age hypertension heart disease ever married
                                                                      work_type Residence_type avg_glucose_level bmi smoking_status stroke
     0 9046
                Male NaN
                                                               Yes
                                                                                          Urban
                                                                                                           228.69 36.6
                                                                                                                        formerly smoked
     1 51676 Female 61.0
                                                                    Self-employed
                                                                                                           202.21 NaN
                                                                                                                          never smoked
     2 31112
                                      0
                                                                                          Rural
                                                                                                           105.92 32.5
              Male 80.0
                                                               Yes
                                                                          Private
                                                                                                                          never smoked
                                                                                                           171.23 34.4
     3 60182 Female 49.0
                                      0
                                                    0
                                                                          Private
                                                                                          Urban
                                                                                                                               smokes
     4 1665 Female NaN
                                                               Yes Self-employed
                                                                                                           174.12 24.0
[ ] data = data.drop('id', 1)
     data.head()
         gender age hypertension heart_disease ever_married
                                                                   work_type Residence_type avg_glucose_level bmi smoking_status stroke
          Male NaN
                                 0
                                                                      Private
                                                                                       Urban
                                                                                                         228.69 36.6
                                                                                                                       formerly smoked
                                                            Yes
      1 Female 61.0
                                                                                        Rural
                                                                                                          202.21 NaN
                                                            Yes
                                                                 Self-employed
                                                                                                                         never smoked
          Male 80.0
                                                            Yes
                                                                      Private
                                                                                        Rural
                                                                                                          105.92 32.5
                                                                                                                         never smoked
      3 Female 49.0
                                 0
                                                0
                                                                                       Urban
                                                                                                          171.23 34.4
      4 Female NaN
                                                            Yes Self-employed
                                                                                        Rural
                                                                                                          174.12 24.0
                                                                                                                         never smoked
```

Задача 1 (6)

Для набора данных проведите устранение пропусков для одного (произвольного) числового признака с использованием метода заполнения средним значением.

```
[ ] data_features = list(zip(
       # признаки
       [i for i in data.columns],
       zip(
           # типы колонок
            [str(i) for i in data.dtypes],
            # проверим есть ли пропущенные значения
            [i for i in data.isnull().sum()]
      )))
       # Признаки с типом данных и количеством пропусков
      data_features
      [('gender', ('object', 0)),
('age', ('float64', 16)),
        ('hypertension', ('int64', 0)), ('heart_disease', ('int64', 0)),
        ('ever_married', ('object', 0)), ('work_type', ('object', 0)),
        ('Residence_type', ('object', 0)),
('avg_glucose_level', ('float64', 0)),
        ('bmi', ('float64', 201)),
('smoking_status', ('object', 0)),
('stroke', ('int64', 0))]
```

```
[ ] # Доля (процент) пропусков
    [(c, data[c].isnull().mean()) for c in data.columns]
    [('gender', 0.0),
     ('age', 0.0031311154598825833),
     ('hypertension', 0.0),
('heart_disease', 0.0),
     ('ever_married', 0.0),
     ('work_type', 0.0),
     ('Residence_type', 0.0),
     ('avg_glucose_level', 0.0),
     ('bmi', 0.03933463796477495),
     ('smoking_status', 0.0),
     ('stroke', 0.0)]
Видно, что пропуски имеются в полях age и bmi
                                                                                                           + Код
[] # Заполним пропуски bmi средними значениями
    def impute_na(df, variable, value):
        df[variable].fillna(value, inplace=True)
    impute_na(data, 'bmi', data['bmi'].mean())
[ ] # Удалим данные, где возраст незаполнен, так как таких данных мало, и удаление не повлияет на качество модели
    data.dropna(subset=['age'], inplace=True)
[ ] # Убедимся что нет пустых значений
     data.isnull().sum()
     gender
     age
                         0
0
0
     hypertension
     heart_disease
     ever_married
     work_type
     Residence_type
     avg_glucose_level 0
     bmi
     smoking_status
     stroke
     dtype: int64
```

Итого: Провели устранение пропусков в полях Age - возраст и bmi - индекс массы тела

▼ Задача 2 (26)

Для набора данных для одного (произвольного) числового признака проведите обнаружение и замену (найденными верхними и нижними границами) выбросов на основе правила трех сигм.

```
[ ] def diagnostic_plots(df, variable, title):
        fig, ax = plt.subplots(figsize=(10,7))
        # гистограмма
        plt.subplot(2, 2, 1)
        df[variable].hist(bins=30)
        ## Q-Q plot
        plt.subplot(2, 2, 2)
        stats.probplot(df[variable], dist="norm", plot=plt)
        # ящик с усами
        plt.subplot(2, 2, 3)
        sns.violinplot(x=df[variable])
        # ящик с усами
        plt.subplot(2, 2, 4)
        sns.boxplot(x=df[variable])
        fig.suptitle(title)
        plt.show()
```

```
[ ] diagnostic_plots(data, 'bmi', 'bmi')
```

/anaconda3/lib/python3.6/site-packages/scipy/stats/stats.py:1706: FutureWarning: Using a n return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval bmi

На графике "Ящик с усами" видно, что много выбросов с левой стороны, утсраним их заменой

```
[ ] lower_boundary = data['bmi'].mean() - (3 * data['bmi'].std())
    upper_boundary = data['bmi'].mean() + (3 * data['bmi'].std())
    print('Нижняя граница',lower_boundary)
    print('Верхняя граница', upper_boundary)
```

Нижняя граница 5.793361987638505 Верхняя граница 51.97972296813664

/anaconda3/lib/python3.6/site-packages/scipy/stats/stats.py:1706: FutureWarning: Using a non-tuple return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Поле-bmi

Видно, что количество выбросов уменьшилось, но некоторое количество всё же осталось.

Дополнительное задание

Для пары произвольных колонок данных построить график "Диаграмма рассеяния".

```
[ ] sns.regplot(x=data['bmi'], y=data['avg_glucose_level'])
```

/anaconda3/lib/python3.6/site-packages/scipy/stats/stats.py:1706: FutureWarning: Using
 return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
<matplotlib.axes._subplots.AxesSubplot at 0x1a1e9fcef0>

Построили график рассеяния, показывающий зависимость между двумя признаками: bmi - индекс массы тела и avg_glucose_level - уровнем глюкозы в крови

Вывод:

При выполнении рубежного контроля были воспроизведены следующие задачи:

- 1. Для набора данных проведено устранение пропусков для числового признака с использованием метода заполнения средним значением.
- 2. Для набора данных для числового признака проведено обнаружение и замена (найденными верхними и нижними границами) выбросов на основе правила трех сигм.
- 3. Для пары произвольных колонок данных построен график "Диаграмма рассеяния".