						Pri	nted	Pag	ge: 1	of 2	
				;	Subj	ject	Cod	e: K	AS1	03T	
Roll No:											

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-I

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A Attempt All of the following Questions in brief Marks(10X2=20)	CO
Q1(a)	If the matrix $A = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{bmatrix}$, then find the eigen value of $A^3 + 5A + 8I$.	1
Q1(b)	Reduce the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ into normal form and find its rank.	1
Q1(c)	Find the envelope of the family of straight line $y = mx + \frac{a}{m}$, where m is a parameter.	2
Q1(d)	Can mean value theorem be applied to $f(x) = \tan x$ in $[0, \pi]$.	2
Q1(e)	State Euler's Theorem on homogeneous function.	3
	Find the critical points of the function $f(x, y) = x^3 + y^3 - 3axy$.	3
Q1(g)	Find the area bounded by curve $y^2 = x$ and $x^2 = y$.	4
	Find the value of $\int_0^1 \int_0^x \int_0^{x+y} dx dy dz$.	34.
Q1(i)	Find a unit normal vector to the surface $z^2 = x^2 + y^2$ at the point $(1, 0, -1)$.	5
Q1(j)	State Stoke's Theorem.	5

THREE of the following Questions equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$, or	Marks $(3X10=30)$ compute A^{-1} and	CO
e equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$, or	compute A^{-1} and	1
[1 1 2]	. ' '	
$+7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + 4A^4 - 4A$	$-I = \begin{bmatrix} 8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8 \end{bmatrix}.$	
	tion	2
poots of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3$	$= 0$, cubic in λ , find	3
ded by the cylinder $x^2 + y^2 = 4$ and the	e plane $y + z = 4$ and	4
enclosed by the x-axis and the upper half		5
1	+ $7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A^4$ and verify Rolle's theorem for the functor. The costs of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3$ and the cost of the cylinder $x^2 + y^2 = 4$ and the cost of the cylinder $x^2 + y^2 = 4$ and the cylinder $(2x^2 - y^2)dx + (x^2 - y^2)dx + (x^2 - y^2)dx$	+ $7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I = \begin{bmatrix} 6 & 3 & 3 \\ 0 & 3 & 0 \\ 5 & 5 & 8 \end{bmatrix}$. and verify Rolle's theorem for the function [a.]. oots of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$, cubic in λ , find [and the determinant of the evaluate $\int_C [(2x^2 - y^2)dx + (x^2 + y^2)dy]$, where C is the enclosed by the x-axis and the upper half of the circle

SECT	ION-C	Attempt ANY ONE following Question Marks (1X10=10)	CO
		value of k for which the system of equations $(3k - 8)x + 3y + 3z = 0$,	1
	3x + (3k)	(-8)y + 3z = 0, $3x + 3y + (3k - 8)z = 0$ has a non-trivial solution.	
Q3(b)		[2 1 1]	1
	Find the e	eigen values and eigen vectors of matrix $A = \begin{bmatrix} 2 & 3 & 2 \end{bmatrix}$.	
		[3 3 4]	

Printed Page: 2 of 2
Subject Code: KAS103T
Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-I

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a)	If $f(x) = \frac{x}{1}$; $x \neq 0$ and $f(0) = 0$, then show that the function is	continuous	2
	$1+e^{\overline{x}}$		
	but not differentiable at $x = 0$.		
Q4(b)	If $y = (x + \sqrt{1 + x^2})^m$, find $y_n(0)$.		2

ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
Expand <i>x</i> evaluate (y in powers of $(x-1)$ and $(y-1)$ up to the third- $(1.1)^{1.02}$.	legree terms and hence	3
	ular box which is open at the top having capacity 32 of the box such that the least material is required for		3

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q6(a)	Change th	e order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$ and he	nce evaluate the	4
	same.			
		osition of the C.G. of a semicircular lamina of radiu	s, a if its density	4
	varies as t	he square of the distance from the diameter.	\cap	· ·
		Q V		

SECT	ION-C Attempt ANY ONE following Question Marks (1X10=10)	CO
Q7(a)	Find the directional derivative of $\nabla(\nabla f)$ at the point $(1, -2, 1)$ in the direction of	5
	the normal to the surface $xy^2z = 3x + z^2$ where $f = 2x^3y^2z^4$.	
Q7(b)	Find the constants a, b, c so that	5
	$\vec{F} = (x + 2y + az)\hat{\imath} + (bx - 3y - z)\hat{\jmath} + (4x + cy + 2z)\hat{k}$ is irrotational and hence	
	find function \emptyset such that $\vec{F} = \nabla \emptyset$.	
	.2	
	On	