(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-258546

(43)公開日 平成9年(1997)10月3日

(51) Int.Cl. 6	-	識別記号	庁内整理番号	FΙ		•	技術表示箇所
G03G	15/08	115		G 0 3 G	15/08	115	
	15/00	303			15/00	303	
	15/02	102			15/02	102	

審査請求 未請求 請求項の数7 OL (全 15 頁)

		B.A.M.	Newson Harry Name and American
(21)出願番号	特顧平8-64301	(71) 出題人	000005049
— • • — — · · · ·			シャープ株式会社
(22)出願日	平成8年(1996)3月21日		大阪府大阪市阿倍野区長池町22番22号
		(72)発明者	西光 英二
			大阪府大阪市阿倍野区長池町22番22号 シ
			ャープ株式会社内
		(72)発明者	糸山 元幸
			大阪府大阪市阿倍野区長池町22番22号 シ
			ャープ株式会社内
		(72)発明者	増田 実男
	•		大阪府大阪市阿倍野区長池町22番22号 シ
			ャープ株式会社内
		(74)代理人	弁理士 小森 久夫
	•		最終頁に続く

(54) 【発明の名称】 画像形成装置の画像安定化方法

(57)【要約】

【課題】画像形成状態に影響を与えるパラメータの状態 に応じて現像装置内のトナー濃度を制御して初期の画質 を良好に維持する。

【解決手段】 CPU 29は、感光体ドラム10の表面にトナーパッチを形成し(s1)、このトナーパッチの機度を検出したフォトセンサ20の検出データを読み取る(s2)。 CPU 29は、読み出した検出データに基づいて帯電器出力の補正値 Δ V gを算出し(s3)、補正後の帯電器出力 V gを V g s $+\alpha$ 及び V g s $-\alpha$ と比較する(s4, s5)。同一方向の補正が連続する場合はトナー機度基準値にk β (但し、0 < k < 1 < とする。)を加減算する(s4 \rightarrow s41 \rightarrow s42, s5 \rightarrow s46)。前回のトナー機度基準値の補正方向が今回の補正方向と反対である場合は、前回の補正値の絶対値を今回の補正値の絶対値とする(s43 \rightarrow s44, s47 \rightarrow s48)。

2

【特許請求の範囲】

【請求項1】感光体の表面にトナーパッチを形成し、トナーパッチの濃度を読み取り、読み取ったトナーパッチの濃度に応じて帯電器出力を補正するとともに、帯電器出力の補正量が所定値を越えた場合に現像装置内のトナー濃度を補正するプロセスコントロールを実行する画像形成装置の画像安定化方法において、

今回のプロセスコントロール時にトナー濃度を補正した場合に、次のプロセスコントロールを開始するまでの間に画像濃度を安定させるための濃度安定化処理を実行することを特徴とする画像形成装置の画像安定化方法。

【請求項2】前記濃度安定化処理が、次のプロセスコントロールの開始までに一定の時間を待機する処理である 請求項1に記載の画像形成装置の画像安定化方法。

【請求項3】前記濃度安定化処理が、今回のプロセスコントロール終了後の複写プロセスにおいて実行される処理である請求項1に記載の画像形成装置の画像安定化方法。

【請求項4】前記濃度安定化処理が、帯電器出力及びトナー濃度以外の画像形成状態に影響を与えるパラメータを補正する処理である請求項1に記載の画像形成装置の画像安定化方法。

【請求項5】感光体の表面にトナーパッチを形成し、トナーパッチの濃度を読み取り、読み取ったトナーパッチの濃度に応じて帯電器出力を補正するとともに、帯電器出力の補正量が所定値を越えた場合に現像装置内のトナー濃度を補正するプロセスコントロールを実行する画像形成装置の画像安定化方法において、

画像形成状態に影響を与えるトナー濃度以外のパラメータの状態に応じてトナー濃度の補正量を変更する補正量 30変更処理を実行することを特徴とする画像形成装置の画像安定化方法。

【請求項6】前記補正量変更処理が、帯電器出力の補正 状態に応じてトナー激度の補正量を変更する処理である 請求項5に記載の画像形成装置の画像安定化方法。

【請求項7】前記補正量変更処理が、外部環境の状態に 応じてトナー濃度の補正量を変更する処理である請求項 5に記載の画像形成装置の画像安定化方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、電子写真法により画像形成を行う複写機やレーザプリンタ等の画像形成装置において画像安定化を目的としてトナー濃度の制御を行う画像安定化方法に関する。

[0002]

【従来の技術】複写機等の電子写真法を用いた画像形成装置では、帯電工程及び露光工程を経て静電潜像が形成された感光体の表面に、現像ユニットから現像剤を供給して静電潜像を現像剤画像に顕像化し、この現像剤画像を用紙に転写する画像形成プロセスが行われる。この画 50

像形成プロセスにおいて形成される画像は、感光体、帯電装置、露光装置、転写装置及び現像ユニットの現像剤等のパラメータの状態に影響を受け、これらのパラメータの状態は、温度や湿度等の環境変化、及び、経時変化によって変動する。したがって、用紙上における画像の形成状態を良好に維持するためには、画像形成状態に影響を与えるパラメータの状態を、温度や湿度等の環境変化、及び、経時変化に応じて適正に制御する必要がある

【0003】そこで、特開平6-51551号公報に開示された発明では、感光体の所定の領域に現像剤によりトナーパッチを形成し、このトナーパッチの濃度と非画像部の濃度との比に基づいて上記のパラメータを補正するようにしている。また、特開平6-19259号公報に開示された発明では、所定コピー枚数毎にコピーランプの駆動電圧を変更するとともに、コピーランプの駆動電圧を変更するとともに、コピーランプの駆動電圧を変更する毎に、その変更量に応じて原稿濃度検出センサの出力信号と現像バイアス電圧との関係を補正するようにしている。さらに、特開平6-11929号公報に開示された発明では、トナーパッチ方式のプロセスコントスールを行う際に、実際に通紙を行ってトナーパッチ部の転写残トナー付着量を検出し、この値に応じてクリーニング前の除電出力を制御するようにしている。

[0004]

【発明が解決しようとする課題】しかしながら、従来の画像安定化方法では、環境変化や経時変化に対する画像形成状態の変化を十分に考慮しておらず、初期の画質をライフエンドまで一定に維持することが困難であった。例えば、高画質を維持するためには現像剤中のトナー。 渡を適切な状態に保持することも必要であり、高温電で及び長時間放置後等では、現像剤中のトナーの帯電量が低く、画像濃度上昇による階調性低下、トナー消費量の増加、かぶりの発生、トナーの飛散等の問題が発生することから、現像装置内のトナー濃度を下げる必要がある。一方、低温低湿下及び連続コピー後等では、現像剤中のトナーの帯電量が高くなり、画像濃度の低下、転写性の劣化等の問題が生じるため、現像装置内のトナー濃度を上げる必要がある。

【0005】この発明の目的は、画像形成状態に影響を与えるパラメータの状態に応じて現像装置内のトナー濃度を適切に制御し、現像剤中のトナーの帯電量が変動することにより画像濃度が上昇し、階調性及び画像濃度が低下する等の問題を解消し、初期の画質を良好に維持することができる画像形成装置の画像安定化方法を提供することにある。

[0006]

【課題を解決するための手段】請求項1に記載した発明は、感光体の表面にトナーパッチを形成し、トナーパッチの濃度を読み取り、読み取ったトナーパッチの濃度に応じて帯電器出力を補正するとともに、帯電器出力の補

正量が所定値を越えた場合に現像装置内のトナー濃度を 補正するプロセスコントロール時にトナー濃度を補正し た場合に、次のプロセスコントロールを開始するまでの 間に画像濃度を安定させる濃度安定化処理を実行するこ とを特徴とする。

【0007】請求項2に記載した発明は、次のプロセスコントロールの開始までに一定の時間を待機することを特徴とする。

【0008】請求項3に記載した発明は、今回のプロセスコントロール終了後の複写プロセスにおいて濃度安定 10 化処理を実行することを特徴とする。

【0009】請求項4に記載した発明は、画像形成状態に影響を与える帯電器出力及びトナー濃度以外のパラメータを補正することを特徴とする。

【0010】請求項5に記載した発明は、感光体の表面にトナーパッチを形成し、トナーパッチの濃度を読み取り、読み取ったトナーパッチの濃度に応じて帯電器出力を補正するとともに、帯電器出力の補正量が所定値を越えた場合に現像装置内のトナー濃度を補正するプロセスコントロールにおいてトナー濃度の補正量を、画像形成状態に影響を与えるトナー濃度以外のパラメータの状態に応じて変更することを特徴とする。

【0011】請求項6に記載した発明は、帯電器出力の 補正状態に応じてトナー濃度の補正量を変更することを 特徴とする。

【0012】請求項7に記載した発明は、外部環境の状態に応じてトナー濃度の補正量を変更することを特徴とする。

[0013]

【発明の実施の形態】図1は、この発明の実施形態の一例である画像形成装置に係る複写機の構成を示す正面断面の略図である。原稿が載置される原稿台1の下面には、コピーランプ2、ミラー3~5及び7~9、レンズ6から構成される光学系装置が設けられている。この光学系装置の下方に、感光体ドラム10、帯電装置11、現像装置12、転写装置13、クリーニングブレード15を備えたクリーニング装置14、搬送ベルト16、定着装置17、除電ランプ18、ブランクランプ19及びフォトセンサ20が設けられている。現像装置12は、トナーホッパ21、トナー補給モータ22、非磁性体スリーブ23、磁石24、攪拌ローラ25及びトナー濃度センサ26を備えている。

【0014】図2は、上記複写機の制御部の要部の構成を示すプロック図である。複写機の制御部を構成するCPU29には、トナー濃度センサ26、A/D変換器28及び帯電器出力駆動回路30が図外の入出力機器とともに接続されている。トナー濃度センサ26は、現像装置12内における現像剤中のトナー濃度を検出し、その検出信号をCPU29に入力する。A/D変換器28には増幅器27を介してフォトセンサ20が接続されてい50

る。フォトセンサ20は、後述するプロセスコントロールにおいて作成されるトナーパッチの濃度を検出する。この検出信号が増幅器27により増幅された後、A/D変換器28によりディジタルデータに変換されてCPU29に入力される。CPU29は、複写プロセス中においてトナー濃度センサ26の検出信号に基づいてトナー補給モータ22を駆動制御する。また、後述するプロセスコントロールにおいて、A/D変換器28から入力されるディジタルデータに基づいて帯電器出力駆動回路30を駆動制御する。

【0015】以上のように構成された複写機の複写プロセスにおける動作を説明する。先ず、原稿台1上に原稿が載置された後に図外のコピースイッチが操作されると、コピーランプ2及びミラー3~5が原稿台1の下面を水平方向に移動し、コピーランプ2により原稿の画像が走査される。コピーランプ2の光は、原稿の画像のにおいて反射し、この反射光がミラー3~5、レンズ6及びミラー7~9を介して感光体ドラム10の表面に配光される。感光体ドラム10の表面は、原稿の反射光の照射に先立って、帯電装置11のコロナ放電により単一を性の電荷が帯電されており、反射光の照射により感光体ドラム10の表面に静電潜像が形成される。なお、感光体ドラム10の表面の不要部分に帯電した電荷は、ブランクランプ19からの選択光の照射により除去される。

【0016】静電潜像を形成した感光体ドラム10の表面に対して現像装置12から現像剤が供給され、静電潜像が現像剤画像に顕像化される。この現像剤画像は、転写装置13により用紙に転写される。現像剤画像が転写された用紙は、搬送ベルト16により定着装置17に搬送され、加熱及び加圧を受けて現像剤画像が溶融定着される。現像剤画像の転写を終えた感光体ドラム10の表面は、クリーニング装置14による残留トナーの除去、及び、除電ランプ18による残留電荷の除去を受けた後、帯電装置11により再度電荷の帯電を受ける。

【0017】また、現像装置12内において、非磁性体 スリーブ23は感光体ドラム10に対向して回転駆動さ れ、攪拌ローラ25は現像装置12内の現像剤を構成す るトナー及びキャリアを攪拌し、トナーに電荷を帯電さ せる。現像剤は非磁性体スリープ23内に固定された磁 石24の作用により搬送され、現像剤中のトナーのみが 感光体ドラム10の表面に移動する。したがって、複写 プロセスの実行により現像装置12内のトナーのみが消 費される。このため、トナー濃度センサ26により、現 像装置12内の現像剤におけるトナー濃度を検出し、予 め記憶されているトナー濃度基準値との比較に基づいて トナー補給モータ22が回転され、トナーホッパ21内 に収納されているトナーが現像装置12内に補給され る。即ち、CPU29は、トナー濃度センサ26が検出 した現像装置12内のトナー濃度がトナー濃度基準値に 一致するように制御する。

【0018】一方、CPU29は、電源投入時及び定期的に所定の条件下において、複写プロセスを中断し、プロセスコントロールを実行する。このプロセスコントロールにおいて感光体ドラム10の表面にトナーパッチが形成され、トナーパッチの濃度がフォトセンサ20により検出される。前述のようにフォトセンサ20の出力信号は増幅器27により増幅された後、A/D変換器28によりディジタルデータに変換されてCPU29に入力される。CPU29は、フォトセンサ20の出力データに基づいて帯電器出力駆動回路30等を駆動制御して画像形成状態に影響を与えるパラメータの状態を補正する。

【0019】即ち、帯電装置11の出力を変えることによって感光体ドラム10の表面に複数の異なった表面電位の静電潜像を形成し、これを現像装置12により顕像化することにより、複数の異なった濃度のトナーパッチを形成し、これらの濃度をプォトセンサ20により検出して基準値に一致したトナーパッチに係る帯電器出力を以後の複写プロセスにおける帯電器出力として採用する。

【0020】なお、作成される複数の濃度の異なるトナーパッチの数は有限であり、必ずしも基準値に一致する濃度のトナーパッチが形成されるとは限らない。そこで、基準値に一致する濃度のトナーパッチが存在しない場合には、基準値Pに近いフォトセンサ20の検出値P1、P2(但し、P1<P2とする。)を選択し、Vg1=aP1+b

Vg 2 = a P 2 + b

により得られるa, bを用いて、

Vg = aP + b

により帯電器出力Vgを求める。

【0021】以上のようにして帯電器出力Vgは定期的に補正され、図3に示すように推移する。

【0022】即ち、プロセスコントロールが実行された時に、補正後の帯電器出力VgがVgs- α (但し、Vgsは初期値である。)以下である場合には、現像性が高すぎると判断し、トナー濃度基準値から補正値 β を減算する。これにより現像装置 12内のトナー濃度が低下する。このトナー濃度基準値の補正は、後のプロセスコントロールにおける補正後の帯電器出力VgがVgs+ α に転じるまで継続される。反対に、補正後の帯電器出力VgがVgs+ α 以上である場合には、現像性が低すぎると判断し、トナー濃度基準値に補正値 β を加算する。これにより現像装置 12内のトナー濃度が上昇する。このトナー濃度基準値の補正は、後のプロセスコントロールにおける補正後の帯電器出力VgがVgs- α に転じるまで継続される。

【0023】このプロセスコントロールの処理により、 長期間にわたって安定した画質状態を維持することがで きる。なお、図3の横軸にとった現像槽攪拌時間は、非 50 磁性体スリープ23の回転時間であり、電源投入後の現 像装置12の稼働時間の累積である。

【0024】図4は、請求項2に記載した発明の実施形態に係る複写機の制御部におけるプロセスコントロールの処理手順を示すフローチャートである。先ず、CPU29は、感光体ドラム10の表面にトナーパッチを形成し(s1)、このトナーパッチの濃度を検出したフォトセンサ20の検出データを読み取る(s2)。CPU29は、読み出した検出データに基づいて帯電器出力の補正値 ΔV gを算出し(s3)、補正後の帯電器出力VgをVg $s+\alpha$ DVg $s-\alpha$ と比較する(s4, s5)

【0025】CPU29は、補正後の帯電器出力Vgが(Vgs+ α)以上である場合はトナー機度基準値に β を加算し(s6)、補正後の帯電器出力Vgが(Vgs- α)以下である場合はトナー機度基準値から β を減算する(s7)。CPU29は、トナー機度基準値を補正した場合、一定時間Tが経過するまでは、次のプロセスコントロールを実行することなく通常の複写プロセスを実行し、一定時間Tが経過した後に次のプロセスコントロールを実行する(s8)。補正後の帯電器出力VgがVgs $\pm \alpha$ の範囲内にある場合にはトナー機度基準値を補正することなく通常の複写プロセスを実行する(s9)。

【0026】例えば、 $\alpha=+100V$ 、 $\beta=10$ カウン ト (トナー濃度が0.5%増加する補正量)とした場 合、一定時間T=200sが経過した後に次のプロセス コントロールを開始する。この処理により、トナー濃度 基準値の補正の効果が現れるのを待って次のプロセスコ ントロールを開始することができ、現像装置12におけ るトナー濃度が安定していない状態で過剰な制御が行わ れることを防止できる。図5は、請求項3に記載した発 明の実施形態に係る複写機の制御部におけるプロセスコ ントロールの処理手順を示すフローチャートである。C PU29は、補正後の帯電器出力Vgが(Vgs+α) 以上であり、トナー濃度基準値にβを加算した場合は、 現像装置12内へのトナー補給が急激に行われることに 起因して現像装置12内のトナーの帯電量が低下するこ とに鑑み、複写プロセスの前後における攪拌ローラ25 の回転時間を通常よりも長くする (s 6→s 1 1)。 反 対に、補正後の帯電器出力Vgが(Vgsーα)以下で あり、トナー濃度基準値からβを減算した場合は、現像 装置12内におけるトナー濃度の安定に長時間を要する ことに鑑み、複写プロセスの前後において黒ベタの画像 を形成する(s7→s12)。この処理により、現像装 置12内のトナー濃度を、低下したトナー濃度基準値に 強制的に安定化させることができる。

【0027】図6は、請求項4に記載した発明の実施形態に係る複写機の制御部におけるプロセスコントロールの処理手順を示すフローチャートである。CPU29

ントの補正する。

は、補正後の帯電器出力Vgが(Vgs+ α)以上であり、トナー機度基準値に β を加算した場合は、現像装置12内のトナーの帯電量の低下により画像にカブリを発生することに鑑み、帯電器出力Vgと現像バイアスVdとから補正値 γ を減算する(s6 \rightarrow s21)。反対に、補正後の帯電器出力Vgが(Vgs- α)以下であり、トナー機度基準値から β を減算した場合は、帯電器出力Vgと現像バイアスVdとに補正値 γ を加算する(s7 \rightarrow s22)。これによって、帯電器出力Vgと現像バイアスVdとに補正の差を変えることなく現像バイアスVdを補正し、帯電器出力の補正の効果を維持しつつ、画像のカブリを防止できる。例えば、 β =10とした場合、 γ =30Vが適当である。

【0028】図7は、請求項4に記載した発明の別の実施形態に係る複写機の制御部におけるプロセスコントロールの処理手順を示すフローチャートである。CPU29は、トナー濃度基準値に β を加算した場合の現像装置12内のトナーの帯電量の低下による画像のカブリを、コピーランプ電圧Vclに補正値 δ を加算することにより防止する($s6\rightarrow s31$)。反対に、トナー濃度基準値から β を減算した場合は、コピーランプ電圧Vclから補正値 δ を減算する($s7\rightarrow s32$)。例えば、 $\beta=10$ とした場合、 $\gamma=0.63V$ が適当である。

【0029】図8は、請求項6に記載した発明の実施形 態に係る複写機の制御部におけるプロセスコントロール の処理手順を示すフローチャートである。補正後の帯電 器出力Vgが($Vgs-\alpha$)以下であり、トナー濃度基 準値からβを減算する補正を連続して行うと、トナー機 度を過剰に補正することになり、帯電器出力Vgが(V $gs+\alpha$) 以上に補正される。そこで、CPU29は、 2回目以降の補正が適正な範囲の補正となるように、同 一方向の補正が連続する場合はトナー濃度基準値にk β (但し、0 < k < 1 とする。) を加減算する (s 4 → s 41→s42, s5→s45→s46)。即ち、トナー 濃度基準値を同一方向に n 回連続して補正する場合、図 3 (C) に示すように、n回目のトナー濃度基準値の補 正値 β_n は、 $\beta_n = k \beta_{n-1}$ とされる。また、前回のト ナー濃度基準値の補正方向が今回の補正方向と反対であ る場合は、前回の補正値の絶対値を今回の補正値の絶対 値とする (s 4 3 → s 4 4, s 4 7 → s 4 8)。例え ば、 $\beta = 10$ の補正によってVg = Vgs + 100Vに 補正された場合、k=0. 6として $k\beta=6$ の補正を行

【0030】図9は、請求項6に記載した発明の別の実施形態に係る複写機の制御部におけるプロセスコントロールの処理手順を示すフローチャートである。現像装置12内のトナー濃度が著しく不適当であった場合、図3(A)に示すように、帯電器出力の補正量が大きくなる。そこで、CPU29は、現像装置12内のトナー濃度を素早く適正な値にすべく、トナー濃度基準値の補正50

【0031】図10は、請求項6に記載した発明のさら に別の実施形態に係る複写機の制御部におけるプロセス コントロールの処理手順を示すフローチャートである。 図3 (B) に示すように、トナー濃度基準値を補正後に 短期間で帯電器出力が($Vgs-\alpha$)から(Vgs+a) まで変化したとすると、トナー濃度基準値の補正量 が過剰であったと考えられる。そこで、帯電器出力が $(Vgs-\alpha)$ から $(Vgs+\alpha)$ まで変化する間に要 する時間Taが所定値Y以下である場合、トナー濃度基 準値を i β (但し、0 < i < 1 とする。) で補正する (s 6 1 → s 6 2, s 6 3 → s 6 4)。例えば、トナー 濃度基準値を-β=-15で補正後に帯電器出力が(Vgs-100V) から (Vgs+100V) まで変化し た時間Taが1100s以下である場合に、i=0.6としてトナー濃度基準値を $+\beta=+9$ で補正する。これ によって、帯電器出力が急激に変化することを防止でき

【0032】図11(A)に示すように、トナー濃度が 高すぎるとトナーの帯電量が低下してカブリの原因とな り、トナー濃度が低すぎるとキャリア落ち等の原因とな る。そこで、トナー濃度基準値に下限値Smin及び上 限値Smaxを設定することが考えられる。また、図1 1 (B) に示すように、トナー濃度基準値が一定であっ ても、低温低湿状態ではトナーの帯電量が高くなり、高 温高湿になるにしたがってトナーの帯電量が低下する。 そこで、温湿度センサ31により外部環境を測定し、低 温低湿状態ではトナー濃度基準値Sの範囲をSminh≦S≦Smax-h (但し、0<hとする。) にし、 高温高湿状態ではトナー濃度基準値Sの範囲をSmin +h≦S≦Smax+hとする。例えば、温度20℃/ 湿度50%におけるトナー濃度基準値5の範囲を50≦ S≦120、温度35℃/湿度80%におけるトナー濃 度基準値Sの範囲を40≦S≦100、温度5℃/湿度 20%におけるトナー濃度基準値Sの範囲を60≦S≦ 130とする。

【0033】図12は、請求項4に記載した発明のさらに別の実施形態に係る複写機の制御部におけるプロセスコントロールの処理手順を示すフローチャートである。補正後におけるトナー濃度基準値Sが下限値Sminに達した後に、次のプロセスコントロールにおいて帯電器出力が(Vgs-α)以下になった場合には、キャリア落ち等を防止する観点からトナー濃度基準値Sを下げる

ことはできない。そこで、画像濃度を維持するために現像バイアスV dにえを加算する(s 71→s 72)。例えば、トナー濃度基準値の下限値 S m i n = 50の時に帯電器出力が(Vgs-100V)以下になった場合、現像バイアスV dを30V増加する。この処理により、キャリア落ち等のトナー濃度が高くなることによる不具合を防止しつつ、適正な画像濃度を維持することができる。

【0034】なお、この発明は、複写機以外の画像形成装置においても上記と同様に失しすることができる。 【0035】

【発明の効果】請求項1に記載した発明によれば、次のプロセスコントロールを開始するまでの間にトナー濃度を安定させる処理を実行することにより、トナー濃度が安定していない状態で過剰な制御がなされることを防止し、適正な画像形成状態を維持することができる。

【0036】請求項2に記載した発明によれば、次のプ

ロセスコントロールを開始までに一定の時間を待機することにより、現像装置内におけるトナー濃度が安定した状態で次のプロセスコントロールを行うことができる。【0037】請求項3に記載した発明によれば、今回のプロセスコントロール終了後の複写プロセスにおいて前記濃度安定化処理を実行することにより、現像装置内におけるトナー濃度が安定した状態で次のプロセスコントロールを行うことができる。請求項4に記載した発明によれば、画像形成状態に影響を与える帯電器出力及びトナー濃度以外のパラメータを補正することにより、トナー濃度が変化することによるカブリ等の発生を防止して適正な画像形成状態を維持することができる。

【0038】請求項5に記載した発明によれば、画像形 30 成状態に影響を与えるトナー濃度以外のパラメータの状態に応じてトナー濃度の補正量を変更することにより、トナー濃度以外のパラメータの状態を反映してトナー濃度をきめ細かく補正することができる。

【0039】請求項6に記載した発明によれば、帯電器 出力の補正状態に応じてトナー濃度の補正量を変更する ことにより、帯電器出力の補正状態に応じてトナー濃度 をきめ細かく補正することができ、画像形成状態を適正 に維持することができる。

【0040】請求項7に記載した発明によれば、外部環 40 境の状態に応じてトナー濃度の補正量を変更することにより、外部環境の状態に応じてトナー濃度をきめ細かく補正することができ、画像形成状態を適正に維持することができる。

【図面の簡単な説明】

【図1】この発明の実施形態である複写機の要部の構成 を示す図である。

10

【図2】同複写機の制御部の要部の構成を示すブロック 図である。

【図3】 同複写機における帯電器出力及びトナー濃度と 現像剤の攪拌時間との関係を示す図である。

【図4】請求項2に記載した発明の実施形態である複写機の制御部の処理手順を示すフローチャートである。

【図5】請求項3に記載した発明の実施形態である複写機の制御部の処理手順を示すフローチャートである。

【図6】請求項4に記載した発明の実施形態である複写機同制御部の処理手順を示すフローチャートである。

【図7】請求項4に記載した発明の別の実施形態である 複写機同制御部の処理手順を示すフローチャートであ る。

【図8】請求項6に記載した発明の実施形態である複写機同制御部の処理手順を示すフローチャートである。

【図9】請求項6に記載した発明の別の実施形態である 複写機同制御部の処理手順を示すフローチャートである。

【図10】請求項6に記載した発明のさらに別の実施形態である複写機同制御部の処理手順を示すフローチャートである。

【図11】同複写機におけるトナー濃度及び外部環境と トナー帯電量との関係を示す図である。

【図12】請求項4に記載した発明のさらに別の実施形態である複写機同制御部の処理手順を示すフローチャートである。

【符号の説明】

- 1 原稿台
- 2-コピーランプ
- 10-感光体ドラム
- 11一帯電装置
- 12-現像装置
- 20-フォトセンサ
- 21ートナーホッパ
- 22-トナー補給モータ
- 23-非磁性体スリーブ
- 24-磁石
- 25 攪拌ローラ
- 26-トナー濃度センサ
- 30一帯電器出力駆動回路
- 3 1 温湿度センサ

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図12】

フロントページの続き

(72)発明者 石田 稔尚

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 永山 勝浩

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 直井 宏夫

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 成松 正恭

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(72)発明者 西野 知子

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内