第1章 随机事件及其概率

(1) 排列	$P_m^n = \frac{m!}{(m-n)!}$ 从 m 个人中挑出 n 个人进行排列的可能数。
组合公式	$C_m^n = \frac{m!}{n!(m-n)!}$ 从 m 个人中挑出 n 个人进行组合的可能数。
	加法原理 (两种方法均能完成此事): m+n
(0) 4-24	│ 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n
(2) 加法	种方法来完成,则这件事可由 m+n 种方法来完成。
和乘法原	乘法原理 (两个步骤分别不能完成这件事): m×n
理	某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n
	种方法来完成,则这件事可由 m×n 种方法来完成。
(3) 一些	重复排列和非重复排列(有序)
ペラク	对立事件(至少有一个)
111 7011117.11	顺序问题
(4) 随机	如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,
试验和随	但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试
机事件	亚。
	试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
	在一个低短下,不官事件有多少年,总可以从兵中找出这样一组事件,它兵有 如下性质:
	^{30 120}
(= \ +t -1-	②任何事件,都是由这一组中的部分事件组成的。
(5)基本事件、样本	这样一组事件中的每一个事件称为基本事件,用 @ 来表示。
空间和事	基本事件的全体,称为试验的样本空间,用 Ω表示。
生 内 神 事	一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母
	A , B , C , …表示事件,它们是 Ω 的子集。
	Ω 为必然事件,∅ 为不可能事件。
	不可能事件(\emptyset)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
	①关系:
	如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
(6)事件	$A \subset B$
	如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B :
的关系与	$A=B_{\circ}$
运算	A 、 B 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。
	属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A – B ,也可
	表示为 $A-AB$ 或者 AB ,它表示 A 发生而 B 不发生的事件。

	A 、 B 同时发生: $A \cap B$,或者 AB 。 $A \cap B=\emptyset$,则表示 $A \subseteq B$ 不可能同时发生,
	称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。
	Ω -A 称为事件 A 的逆事件,或称 A 的对立事件,记为 \overline{A} 。它表示 A 不发生
	的事件。互斥未必对立。 ②运算:
	- 信息
	分配率: $(AB) \cup C = (A \cup C) \cap (B \cup C)$ $(A \cup B) \cap C = (AC) \cup (BC)$
	德摩根率: $\bigcap_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \overline{A_i}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}$
	设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 $P(A)$,若满足下列三个条件:
	$1^{\circ} 0 \leqslant P(A) \leqslant 1,$
(7) 概率	$2^{\circ} P(\Omega) = 1$
的公理化	3° 对于两两互不相容的事件 A_1 , A_2 , …有
定义	$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right)$
	常称为可列(完全)可加性。
	则称 P(A) 为事件 A 的概率。
	$1^{\circ} \Omega = \{\omega_1, \omega_2 \cdots \omega_n\},$
	$2^{\circ} P(\omega_1) = P(\omega_2) = \cdots P(\omega_n) = \frac{1}{n} .$
(8) 古典	设任一事件 A ,它是由 $\omega_{\scriptscriptstyle 1}$, $\omega_{\scriptscriptstyle 2}$ … $\omega_{\scriptscriptstyle m}$ 组成的,则有
概型	$P(A) = \{(\omega_1) \cup (\omega_2) \cup \cdots \cup (\omega_m)\} = P(\omega_1) + P(\omega_2) + \cdots + P(\omega_m)$
	$=\frac{m}{m}=\frac{A \text{ Mole on } \pm 4 Mole $
	= — = ———— 基本事件总数
	若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空
(0) 5 5	间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何
(9) 几何 概型	概型。对任一事件 A,
1995年	$P(A) = \frac{L(A)}{L(\Omega)}$ 。其中 L 为几何度量(长度、面积、体积)。
(10) 加法	P(A+B) = P(A) + P(B) - P(AB)
公式	当 P(AB) = 0 时, P(A+B) = P(A) + P(B)
(11) 减法	P(A-B)=P(A)-P(AB) 当 B⊂ A 时,P(A-B)=P(A)-P(B)
公式	<u> </u>
	当 A= Ω 时, P(B)=1- P(B)

	定义 设 A、B 是两个事件,且 $P(A)>0$,则称 $\frac{P(AB)}{P(A)}$ 为事件 A 发生条件下,事
(12)条件 概率	件 B 发生的条件概率,记为 $P(B/A) = \frac{P(AB)}{P(A)}$ 。
	条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 $P(\Omega/B)=1 \Rightarrow P(\overline{B}/A)=1-P(B/A)$
	乘法公式: $P(AB) = P(A)P(B/A)$
(13) 乘法	更一般地,对事件 A ₁ , A ₂ , ····A _n , 若 P(A ₁ A ₂ ····A _{n-1})>0,则有
公式	$P(A_1A_2A_n) = P(A_1)P(A_2 A_1)P(A_3 A_1A_2)P(A_n A_1A_2$
	A_{n-1})
	①两个事件的独立性
	设事件 $A \setminus B$ 满足 $P(AB) = P(A)P(B)$, 则称事件 $A \setminus B$ 是相互独立的。
	若事件 A 、 B 相互独立,且 $P(A) > 0$,则有
	$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$
(14) 独立	<u> </u>
性	必然事件 Ω 和不可能事件 \emptyset 与任何事件都相互独立。
	0 与任何事件都互斥。
	②多个事件的独立性
	设 ABC 是三个事件, 如果满足两两独立的条件, P(AB)=P(A)P(B); P(BC)=P(B)P(C); P(CA)=P(C)P(A)
	并且同时满足 P(ABC)=P(A) P(B) P(C)
	那么A、B、C相互独立。
	对于 n 个事件类似。
	设事件 B_1, B_2, \cdots, B_n 满足
	1° B_1, B_2, \cdots, B_n 两两互不相容, $P(B_i) > 0 (i = 1, 2, \cdots, n)$,
(15) 全概	
公式	$A \subset \bigcup_{i=1}^n B_i$
	<u> </u>
	$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \cdots + P(B_n)P(A \mid B_n)$
	设事件 B ₁ , B ₂ , , B _n 及 A 满足
	1° B_1 , B_2 , …, B_n 两两互不相容, $P(Bi)_{>0}$, $i=1, 2, …, n$,
(16) 贝叶	$A \subset \binom{n}{J} B_i$
	$ \begin{array}{ccc} A \subset \bigcup_{i=1}^{B_i} B_i \\ 2^{\circ} & P(A) > 0 \end{array}, $
斯公式	则 P(B) P(A / B)
1914	$P(B_i/A) = \frac{P(B_i)P(A/B_i)}{\frac{n}{a}}, i=1, 2, \dots n_o$
	$\sum_{j} P(B_{j}) P(A/B_{j})$
)=1 此公式即为贝叶斯公式。
	$P(B_i)$, $(i=1, 2,, n)$, 通常叫先验概率。 $P(B_i/A)$, $(i=1, 2,, n)$
<u> </u>	

n),通常称为后验概率。贝叶斯公式反映了"因果"的概率规律,并作出了 "由果朔因"的推断。

我们作了n次试验,且满足

- ◆ 每次试验只有两种可能结果, A 发生或 A 不发生:
- lack 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与 否是互不影响的。

(17) 伯努 利概型

这种试验称为伯努利概型,或称为n 重伯努利试验。

用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1-p=q ,用 $P_n(k)$ 表

示 n 重伯努利试验中 A 出现 $^{k(0 \le k \le n)}$ 次的概率,

$$P_n(k) = C_n^k p^k q^{n-k}, \quad k = 0,1,2,\dots,n$$

第二章 随机变量及其分布

(1) 离散 型随机变 量的分布

律

设离散型随机变量 X 的可能取值为 $X_k(k=1,2,\cdots)$ 且取各个值的概率,即事 件(X=X_k)的概率为

 $P(X=x_k)=p_k, k=1, 2, \dots,$

则称上式为离散型随机变量X的概率分布或分布律。有时也用分布列的形 式给出:

$$\frac{X}{P(X = x_k)} \left| \frac{x_1, x_2, \dots, x_k, \dots}{p_1, p_2, \dots, p_k, \dots} \right|$$

显然分布律应满足下列条件:

(1)
$$p_k \ge 0$$
, $k = 1, 2, \cdots$, (2) $\sum_{k=1}^{\infty} p_k = 1$

型随机变 量的分布 密度

(2) 连续 \mid 设 F(x) 是随机变量 X 的分布函数,若存在非负函数 f(x) ,对任意实数 x ,有 $F(x) = \int_{-\infty}^{x} f(x) dx$

> 则称 X 为连续型随机变量。 f(x) 称为 X 的概率密度函数或密度函数,简称概 率密度。

密度函数具有下面 4 个性质:

$$1^{\circ}$$
 $f(x) \ge 0$

$$2^{\circ} \int_{-\infty}^{+\infty} f(x) dx = 1$$

(3) 离散 与连续型 随机变量 的关系

$$P(X = x) \approx P(x < X \le x + dx) \approx f(x)dx$$

积分元 f(x)dx 在连续型随机变量理论中所起的作用与 $P(X = x_k) = p_k$ 在离 散型随机变量理论中所起的作用相类似。

设X 为随机变量, x 是任意实数, 则函数 (4) 分布 函数 $F(x) = P(X \le x)$ 称为随机变量 X 的分布函数,本质上是一个累积函数。 $P(a < X \le b) = F(b) - F(a)$ 可以得到 X 落入区间(a,b]的概率。分布 函数 F(x) 表示随机变量落入区间 $(-\infty, x]$ 内的概率。 分布函数具有如下性质: 1° $0 \le F(x) \le 1$, $-\infty < x < +\infty$; 2° F(x) 是单调不减的函数,即 $x_1 < x_2$ 时,有 $F(x_1) \le F(x_2)$; 3° $F(-\infty) = \lim_{x \to \infty} F(x) = 0$, $F(+\infty) = \lim_{x \to \infty} F(x) = 1$; 4° F(x+0) = F(x), 即 F(x) 是右连续的; 5° $P(X = x) = F(x) - F(x - 0) \circ$ 对于离散型随机变量, $F(x) = \sum_{x_k \le x} p_k$; 对于连续型随机变量, $F(x) = \int f(x)dx$ 。 (5) 八大 0-1 分布 P(X=1)=p, P(X=0)=q分布 二项分布 在n 重贝努里试验中,设事件A 发生的概率为p。事件A 发生 的次数是随机变量,设为X,则X可能取值为 $0,1,2,\cdots,n$ 。 $P(X = k) = P_n(k) = C_n^k p^k q^{n-k}$, 中 其 q = 1 - p, 0 ,则称随机变量 X 服从参数为n, p 的二项分布。记为 $X \sim B(n, p)$. 当n=1时, $P(X=k)=p^kq^{1-k}$,k=0.1,这就是 (0-1) 分 布,所以(0-1)分布是二项分布的特例。

泊松分	布 设随机变量 X 的分布律为
	$P(X=k)=rac{\lambda^k}{k!}e^{-\lambda}$, $\lambda>0$, $k=0,1,2\cdots$,
	则称随机变量 X 服从参数为 λ 的泊松分布,记为 $X \sim \pi(\lambda)$ 或
	者 $P(\lambda)$ 。 泊松分布为二项分布的极限分布 $(np=\lambda, n\to\infty)$ 。
超几何分	$P(X=k) = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n}, k = 0,1,2\cdots, l$ $l = \min(M, n)$
	随机变量 X 服从参数为 n, N, M 的超几何分布,记为 H(n, N, M)。
几何分	fi $P(X = k) = q^{k-1} p, k = 1,2,3,\dots$,其中 p \geqslant 0,q=1-p。
	随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
均匀分	设随机变量 X 的值只落在 $[a,b]$ 内,其密度函数 $f(x)$ 在 $[a,b]$
	上为常数 $\frac{1}{b-a}$,即
	$f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \sharp \ell \ell, \end{cases}$
	则称随机变量 X 在 $[a, b]$ 上服从均匀分布,记为 $X\sim U(a, b)$ 。 分布函数为
	$ \begin{pmatrix} 0, & x < a, \\ x - a \end{pmatrix} $
	$F(x) = \int_{-\infty}^{x} f(x)dx = \begin{cases} \frac{x}{b-a}, & a \leq x \leq b \\ 1, & x > b. \end{cases}$
	$\int_{-\infty}^{J_{-\infty}}$ $(1, x>b)$
	当 $a \le x_1 \le x_2 \le b$ 时, X 落在区间(x_1, x_2) 内的概率为
	$P(x_1 < X < x_2) = \frac{x_2 - x_1}{b - a} \circ$

指数分布

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

其中 $\lambda > 0$,则称随机变量 X 服从参数为 λ 的指数分布。 X的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

记住积分公式:

$$\int\limits_{0}^{+\infty}x^{n}e^{-x}dx=n!$$

正态分布

设随机变量X 的密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < +\infty,$$

其中 μ 、 $\sigma > 0$ 为常数,则称随机变量 X 服从参数为 μ 、 σ

的正态分布或高斯(Gauss)分布,记为 $X \sim N(\mu, \sigma^2)$ 。

f(x) 具有如下性质:

 1° f(x) 的图形是关于 $x = \mu$ 对称的;

参数 $\mu = 0$ 、 $\sigma = 1$ 时的正态分布称为标准正态分布,记为

$$X \sim N(0,1)$$
 其密度函数记为
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x}{2}}$$
 , $-\infty < x < +\infty$,

分布函数为

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt \quad \circ$$

 $\Phi(x)$ 是不可求积函数,其函数值,已编制成表可供查用。

$$\Phi(-x) = 1 - \Phi(x) \perp \Phi(0) = \frac{1}{2}$$

如果 $X \sim N(\mu, \sigma^2)$,则 $\frac{X - \mu}{\mu} \sim N(0,1)$ 。

$$P(x_1 < X \le x_2) = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right)$$

(6)分位 数	下分位表: P	$(X \leq \mu_{\alpha}) = \alpha ;$
	上分位表: P	$(X > \mu_{\alpha}) = \alpha$.
(7)函数 分布	离散型	已知 X 的分布列为 $ \frac{X}{P(X=x_i)} \begin{vmatrix} x_1, & x_2, & \cdots, & x_n, & \cdots \\ p_1, & p_2, & \cdots, & p_n, & \cdots \end{vmatrix}, $ $Y=g(X)$ 的分布列 $(y_i=g(x_i)$ 互不相等) 如下: $ \frac{Y}{P(Y=y_i)} \begin{vmatrix} g(x_1), & g(x_2), & \cdots, & g(x_n), & \cdots \\ p_1, & p_2, & \cdots, & p_n, & \cdots \\ \vdots \\ \text{若有某些 } g(x_i)$ 相等,则应将对应的 p_i 相加作为 $g(x_i)$ 的概率。
	连续型	先利用 X 的概率密度 $f_X(x)$ 写出 Y 的分布函数 $F_Y(y) = P(g(X) \leq y)$,再利用变上下限积分的求导公式求出 $f_Y(y)$ 。

第三章 二维随机变量及其分布

(1) 联合 分布

离散型

如果二维随机向量 ξ (X,Y)的所有可能取值为至多可列

个有序对 (x,y), 则称 ξ 为离散型随机量。

设 $\xi = (X, Y)$ 的所有可能取值为 $(x_i, y_i)(i, j = 1, 2, \cdots)$,

且事件 $\{\xi = (x_i, y_i)\}$ 的概率为 $p_{i,i}$,称

$$P\{(X,Y) = (x_i, y_j)\} = p_{ij}(i, j = 1,2,\cdots)$$

为 ξ = (X, Y) 的分布律或称为 X 和 Y 的联合分布律。联合分布有时也用下面的概率分布表来表示:

10月11日7月11日7月11日7月11日7月11日7月11日7月11日7月11						
Y	<i>y</i> 1	y_2	•••	y_j	•••	
X_I	p_{II}	p_{12}	•••	p_{lj}	•••	
X_2	p_{21}	<i>p</i> 22	•••	p_{2j}	•••	
:	:	:		:	:	
X_i	p_{il}		•••	p_{ij}	•••	
:	:	:		:	:	

这里 pij具有下面两个性质:

- (1) $p_{ij} \ge 0$ (i, j=1, 2, ···);
- (2) $\sum_{i} \sum_{j} p_{ij} = 1$.

连续型 对于二维随机向量 $\xi = (X,Y)$, 如果存在非负函数 $f(x,y)(-\infty < x < +\infty, -\infty < y < +\infty)$,使对任意一个其邻边 分别平行于坐标轴的矩形区域 D, 即 D= $\{(X,Y) | a < x < b, c < y < d\}$ $P\{(X,Y)\in D\}=\iint f(x,y)dxdy\ ,$ 则称 ξ 为连续型随机向量;并称 f(x,y)为 ξ =(X,Y)的分布 密度或称为X和Y的联合分布密度。 分布密度 f(x,y)具有下面两个性质: (1) $f(x, y) \ge 0$; (2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1.$ (2) 二维 $\xi(X = x, Y = y) = \xi(X = x \cap Y = y)$ 随机变量 的本质 (3) 联合 设(X, Y)为二维随机变量,对于任意实数 x, y, 二元函数 分布函数 $F(x, y) = P\{X \le x, Y \le y\}$ 称为二维随机向量(X,Y)的分布函数,或称为随机变量 X 和 Y 的联合分布函 数。 分布函数是一个以全平面为其定义域,以事件 $\{(\omega_1,\omega_2)|-\infty < X(\omega_1) \le x,-\infty < Y(\omega_2) \le y\}$ 的概率为函数值的一个实值函 数。分布函数 F(x, y) 具有以下的基本性质: (1) $0 \le F(x, y) \le 1$; (2) F(x,y) 分别对 x 和 y 是非减的,即 当 $x_2 > x_1$ 时,有 $F(x_2, y) \ge F(x_1, y)$; 当 $y_2 > y_1$ 时,有 $F(x, y_2) \ge F(x, y_1)$; (3) F(x, y) 分别对 x 和 y 是右连续的, 即 F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);(4) $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$ (5) 对于 $x_1 < x_2$, $y_1 < y_2$, $F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0.$ (4) 离散 $P(X = x, Y = y) \approx P(x < X \le x + dx, y < Y \le y + dy) \approx f(x, y) dxdy$ 型与连续 型的关系

(5)边缘	离散型	X的边缘分布为
分布		$P_{i\bullet} = P(X = x_i) = \sum_{i} p_{ij} (i, j = 1, 2, \dots);$
		Y的边缘分布为
		$P_{\bullet j} = P(Y = y_j) = \sum_{i} p_{ij} (i, j = 1, 2, \dots)$
	连续型	X的边缘分布密度为
		$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy;$
		Y的边缘分布密度为
		$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$
(6)条件	离散型	在已知 $X=x_i$ 的条件下,Y 取值的条件分布为
分布		$P(Y = y_{j} X = x_{i}) = \frac{p_{ij}}{p_{i \bullet}};$
		在已知 Y=y;的条件下, X 取值的条件分布为
		$P(X = x_i Y = y_j) = \frac{p_{ij}}{p_{\bullet j}},$
	连续型	在已知 Y=y 的条件下, X 的条件分布密度为
		$f(x \mid y) = \frac{f(x, y)}{f_{Y}(y)};$
		在已知 X=x 的条件下, Y 的条件分布密度为
		$f(y \mid x) = \frac{f(x, y)}{f_X(x)}$
(7) 独立	一般型	$F(X, Y) = F_X(x) F_Y(y)$
性	离散型	$p_{ij} = p_{i\bullet} p_{\bullet j}$
		有零不独立
	连续型	$f(x, y) = f_X(x) f_Y(y)$ 古控业帐 太西久州
		直接判断,充要条件: ② 分离变量
	二维正态分 布	②止機率密度区间为矩形 $f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2} - \frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]},$
		$\rho = 0$

随机变量的 若 X₁, X₂, ····X_m, X_{m+1}, ····X_n相互独立, h, g 为连续函数,则: 函数 h (X₁, X₂, ····X_m) 和 g (X_{m+1}, ····X_n) 相互独立。 特例: 若 X 与 Y 独立,则: h (X) 和 g (Y) 独立。 例如: 若 X 与 Y 独立,则: 3X+1 和 5Y-2 独立。

(8) 二维 均匀分布 设随机向量(X, Y)的分布密度函数为

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0, & 其他 \end{cases}$$

其中 S_D 为区域 D 的面积,则称 (X,Y) 服从 D 上的均匀分布,记为 (X,Y) \sim U (D)。

例如图 3.1、图 3.2 和图 3.3。

图 3.1

图 3.2

(9)二维 正态分布

设随机向量(X,Y)的分布密度函数为

$$f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2} - \frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]},$$

其中 μ_1 , μ_2 , $\sigma_1 > 0$, $\sigma_2 > 0$, $\rho < 1$ 是 5 个参数,则称(X,Y)服从二维正态分布,

记为 (X, Y) \sim N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$).

由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,

 $\mathbb{W} \times \mathbb{N} \ (\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$

但是若 X~N (μ_1 , σ_1^2), $Y \sim N(\mu_2,\sigma_2^2)$, (X, Y)未必是二维正态分布。

(10)函数 分布

Z=X+Y

根据定义计算: $F_{z}(z) = P(Z \le z) = P(X + Y \le z)$

对于连续型, $f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$

两个独立的正态分布的和仍为正态分布($\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2$)。 n 个相互独立的正态分布的线性组合,仍服从正态分布。

$$\mu = \sum_{i} C_{i} \mu_{i}$$
, $\sigma^{2} = \sum_{i} C_{i}^{2} \sigma_{i}^{2}$

$Z=max,min(X_1,X_2,\cdots X_n)$

若 $X_1, X_2 \cdots X_n$ 相 互 独 立 , 其 分 布 函 数 分 别 为

 $F_{x_1}(x)$, $F_{x_2}(x)$ … $F_{x_n}(x)$,则 Z=max,min(X₁,X₂,…X_n)的分布函数为:

$$F_{\text{max}}(x) = F_{x_1}(x) \bullet F_{x_2}(x) \cdots F_{x_n}(x)$$

$$F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_2}(x)] \cdots [1 - F_{x_n}(x)]$$

 χ^2 分布

设 n 个随机变量 X_1, X_2, \cdots, X_n 相互独立,且服从标准正态分布,可以证明它们的平方和

$$W = \sum_{i=1}^{n} X_i^2$$

的分布密度为

$$f(u) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} u^{\frac{n}{2} - 1} e^{-\frac{u}{2}} & u \ge 0, \\ 0, & u < 0. \end{cases}$$

我们称随机变量 W 服从自由度为 n 的 χ^2 分布, 记为 W $\sim \chi^2(n)$, 其中

$$\Gamma\left(\frac{n}{2}\right) = \int_0^{+\infty} x^{\frac{n}{2}-1} e^{-x} dx.$$

所谓自由度是指独立正态随机变量的个数,它是随机变量 分布中的一个重要参数。

 χ^2 分布满足可加性: 设

$$Y_i - \chi^2(n_i),$$

则

$$Z = \sum_{i=1}^{k} Y_{i} \sim \chi^{2} (n_{1} + n_{2} + \cdots + n_{k}).$$

	T	<u>, </u>		
	t 分布	设X,Y是两个相互独立的随机变量,且		
		$X \sim N(0,1), Y \sim \chi^{2}(n),$		
可以证明函数		可以证明函数		
		$T = \frac{X}{\sqrt{Y/n}}$		
		的概率密度为		
		$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < t < +\infty).$		
		我们称随机变量 T 服从自由度为 n 的 t 分布,记为 T~t(n)。		
		$t_{1-\alpha}(n) = -t_{\alpha}(n)$		
	F分布	设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$,且 X 与 Y 独立,可以证明		
		$F = \frac{X / n_1}{Y / n_2}$ 的概率密度函数为		
		$f(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2}-1} \left(1 + \frac{n_1}{n_2}y\right)^{-\frac{n_1 + n_2}{2}}, y \ge 0\\ 0, y < 0 \end{cases}$		
		我们称随机变量 F 服从第一个自由度为 n_1 ,第二个自由度为 n_2 的 F 分布,记为 $F \sim f(n_1, n_2)$.		
		$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$		

第四章 随机变量的数字特征

(1)	离散型	连续型
\ - /	1. 3.13/-	2.0至

一随变的字征	期望 期望就是平均值 函数的期望	设 X 是离散型随机变量,其分布律 为 P($X = x_k$) = p_k , k=1, 2, ···, n, $E(X) = \sum_{k=1}^{n} x_k p_k$ (要求绝对收敛)	设 X 是连续型随机变量, 其概率密度为 f(x), $E(X) = \int_{-\infty}^{+\infty} xf(x)dx$ (要求绝对收敛)
	四	$E(Y) = \sum_{k=1}^{n} g(x_k) p_k$	$E(Y) = \int_{-\infty}^{+\infty} g(x) f(x) dx$
	方差 $D(X) = E[X - E(X)]^2$, 标准差 $\sigma(X) = \sqrt{D(X)}$,	$D(X) = \sum_{k} [x_{k} - E(X)]^{2} p_{k}$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$
	矩	①对于正整数 k,称随机变量 X 的 k 次幂的数学期望为 X 的 k 阶原点矩,记为 v_k ,即 $v_k = E(X^k) = \sum_i x_i^k p_i$, $k = 1, 2, \cdots$. ②对于正整数 k,称随机变量 X 与 E(X) 差的 k 次幂的数学期 望为 X 的 k 阶中心矩,记为 μ_k ,即 $\mu_k = E(X - E(X))^k$ · = $\sum_i (x_i - E(X))^k p_i$, k=1, 2, ···.	①对于正整数 k,称随机变量 X 的 k 次幂的数学期望为 X 的 k 阶原点矩,记为 v_k ,即 $v_k = E(X^k) = \int_{-\infty}^{+\infty} x^k f(x) dx$, $k = 1, 2, \cdots$. ②对于正整数 k,称随机变量 X 与 E (X) 差的 k 次幂的数学期望为 X 的 k 阶中心矩,记为 μ_k ,即 $\mu_k = E(X - E(X))^k$. $= \int_{-\infty}^{+\infty} (x - E(X))^k f(x) dx$, $k = 1, 2, \cdots$.

	切比雪夫不等式	设随机变量 X 具有数学期望 $E(X) = \mu$,方差 $D(X) = \sigma^2$,则对于任意正数 ϵ ,有下列切比雪夫不等式			
		$P(\left X-\mu\right \geq\varepsilon)\leq\frac{\sigma^{2}}{\varepsilon^{2}}$			
		切比雪夫不等式给出了在未知 X 的分布的情况下,对概率			
		P(X	$-\mu \geq \varepsilon$)		
		 的一种估计,它在理论上有重要	意义。		
(2)	(1) E(C)=C				
期望	(2) E(CX) = CE(X)				
的性质	(3) $E(X+Y)=E(X)+E(Y)$	(3) $E(X+Y)=E(X)+E(Y)$, $E(\sum_{i=1}^{n} C_{i}X_{i}) = \sum_{i=1}^{n} C_{i}E(X_{i})$			
	(4) E(XY) = E(X) E(Y),	充分条件: X和Y独立; 充要条件: X和Y不相关。			
(3)	(1) $D(C)=0$; $E(C)=C$				
方 差	(2) $D(aX) = a^2D(X);$				
的性		E(aX+b)=aE(X)+b			
质	(4) $D(X) = E(X^2) - E^2(X)$				
	(5) D(X±Y)=D(X)+D(Y), 充分条件: X 和 Y 独立;				
	充要条件: X 和 Y 不相关。 D(X±Y)=D(X)+D(Y) ±2E[(X-E(X))(Y-E(Y))], 无条件成立。				
	而 E(X+Y)=E(X)+E(Y), 无条件成立。				
(4)		期望	方差		
常见分布	0-1 分布 B(1, p)	р	p(1-p)		
的期望和	二项分布 B(n, p)	np	np (1 – p)		
方差	泊松分布 P (λ)	λ	λ		
	几何分布 G(p)	$\frac{1}{p}$	$\frac{1-p}{p^2}$		
	超几何分布 <i>H</i> (<i>n</i> , <i>M</i> , <i>N</i>)	$\frac{nM}{N}$	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N-n}{N-1} \right)$		
	均匀分布 $U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$		
	指数分布 e(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$		

	正态分布 $N(\mu, \sigma^2)$	μ	σ^2	
	χ ² 分布	n	2n	
	t 分布	0	$\frac{n}{n-2} \text{ (n>2)}$	
(5) 二维 随机	期望	$E(X) = \sum_{i=1}^{n} x_i p_{i\bullet}$	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$	
变 量 的 字 特		$E(Y) = \sum_{j=1}^{n} y_{j} p_{\bullet j}$	$E(Y) = \int_{-\infty}^{+\infty} y f_{Y}(y) dy$	
征	函数的期望	E[G(X,Y)] =	E[G(X,Y)] =	
		$\sum_{i} \sum_{j} G(x_{i}, y_{j}) p_{ij}$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x, y) f(x, y) dxdy$	
	方差	$D(X) = \sum_{i} [x_{i} - E(X)]^{2} p_{i\bullet}$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$	
		$D(Y) = \sum_{j} [x_{j} - E(Y)]^{2} p_{\bullet j}$	$D(Y) = \int_{-\infty}^{+\infty} [y - E(Y)]^2 f_Y(y) dy$	
	协方差	对于随机变量 X 与 Y, 称它们的二	上阶混合中心矩 μ ₁₁ 为 X 与 Y 的协方	
		差或相关矩,记为 $\sigma_{\scriptscriptstyle XY}$ 或 $\operatorname{cov}(X,Y)$,即		
		$\sigma_{XY} = \mu_{11} = E[(X - E(X))(Y - E(X))]$	-E(Y)].	
		与记号 σ_{xy} 相对应, X 与 Y 的方 \hat{z}	É D(X) 与 D(Y) 也可分别记为 σ _{xx}	
		与 $\sigma_{_{YY}}$ 。		

	相关系数	对于随机变量 X 与 Y, 如果 D (X) >0, D(Y)>0, 则称
		$\frac{\sigma_{_{XY}}}{\sqrt{D(X)}\sqrt{D(Y)}}$
		为 X 与 Y 的相关系数,记作 ρ_{xy} (有时可简记为 ρ)。
		$\mid \rho \mid \leq 1$,当 $\mid \rho \mid = 1$ 时,称 X 与 Y 完全相关: $P(X=aY+b)=1$
		完全相关 $\left\{egin{array}{ll} \mathbb{E} & \pi \neq 0, \\ \mathbb{E} & \mathbb{E} $
		而当 $\rho = 0$ 时,称 X 与 Y 不相关。
		以下五个命题是等价的:
		② $cov(X, Y) = 0;$ ③ $E(XY) = E(X) E(Y);$ ③ $D(X+Y) = D(X) + D(Y);$ ⑤ $D(X-Y) = D(X) + D(Y).$
	协方差矩阵	$ \begin{pmatrix} \sigma_{XX} & \sigma_{XY} \\ \sigma_{YX} & \sigma_{YY} \end{pmatrix} $
	混合矩	对于随机变量 X 与 Y , 如果有 $E(X^kY^l)$ 存在,则称之为 X 与 Y 的
		$k+1$ 阶混合原点矩,记为 ν_{kl} ; $k+1$ 阶混合中心矩记为:
		$u_{kl} = E[(X - E(X))^{k} (Y - E(Y))^{l}].$
(6) 协方 差的 性质	(i) cov (X, Y)=cov (Y, (ii) cov (aX, bY)=ab cov (iii) cov (X ₁ +X ₂ , Y)=cov (iv) cov (X, Y)=E(XY)-E(XY)	(X, Y); $(X_1, Y) + cov(X_2, Y)$;
(7) 独立		Y 相互独立,则 $\rho_{xy}=0$; 反之不真。
和不相关	(ii) 若(X, Y)~N	$(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho),$
	则X与Y相互独	立的充要条件是 X 和 Y 不相关。

第五章 大数定律和中心极限定理

(1) 大数定律 $\overline{X} \to \mu$

切比雪 夫大数 定律

设随机变量 X1, X2, …相互独立,均具有有限方差,且被同一 常数 C 所界: D (X_i) $\langle C(i=1,2,\cdots), 则对于任意的正数 <math>\epsilon$,有

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right| < \varepsilon\right) = 1.$$

特殊情形: 若 X_1 , X_2 , …具有相同的数学期望 $E(X_1) = \mu$, 则上式成为

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| < \varepsilon\right) = 1.$$

伯努利 大数定

设 μ 是 n 次独立试验中事件 A 发生的次数, p 是事件 A 在 每次试验中发生的概率,则对于任意的正数 ε,有

$$\lim_{n\to\infty} P\left(\left|\frac{\mu}{n}-p\right|<\varepsilon\right)=1.$$

伯努利大数定律说明, 当试验次数 n 很大时, 事件 A 发生 的频率与概率有较大判别的可能性很小,即

$$\lim_{n\to\infty} P\left(\left|\frac{\mu}{n}-p\right|\geq\varepsilon\right)=0.$$

这就以严格的数学形式描述了频率的稳定性。

数定律

辛钦大 \ 设 X₁, X₂, ..., X_n, ...是相互独立同分布的随机变量序列,且 E $(X_n) = \mu$,则对于任意的正数 ϵ 有

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| < \varepsilon\right) = 1.$$

(2) 中心极限定	五十九十	设随机变量 X1, X2, …相互独立, 服从同一分布, 且具有				
理	列维 林德伯	相 同 的 数 学 期 望 和 方 差 :				
上生 						
$\overline{X} \to N(\mu, \frac{\sigma^2}{n})$	格定理	$E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \dots)$,则随机变量				
n		$Y_{n} = \frac{\sum_{k=1}^{n} X_{k} - n\mu}{\sqrt{n\sigma}}$				
		的分布函数 $F_n(x)$ 对任意的实数 x ,有				
		$\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$				
		此定理也称为 独立同分布 的中心极限定理。				
	棣莫弗 一拉普	设随机变量 X_n 为具有参数 n, p(0 \langle p \langle 1)的二项分布,则对于				
	拉斯定	任意实数 x, 有				
	理	$= \lim_{n \to \infty} P \left\{ \frac{X_n - np}{\sqrt{np(1-p)}} \le x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$				
(3) 二项定理	若当 $N \to \infty$ 时, $\frac{M}{N} \to p(n, k$ 不变), 则					
	$\frac{C_M^k C_{N-M}^{n-k}}{C_N^n} \to C_n^k p^k (1-p)^{n-k} \qquad (N \to \infty).$					
	超几何分布的极限分布为二项分布。					
(4) 泊松定理	若当 $n \to \infty$ 时, $np \to \lambda > 0$,则					
	$C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda} \qquad (n \to \infty).$					
	其中 k=0, 1, 2, …, n, …。 二项分布的极限分布为泊松分布。					
	一次万年	A HT IN MALEN ALL IN AL				

第六章 样本及抽样分布

(1) 数理	总体	在数理统计中,常把被考察对象的某一个(或多个)指标的全		
统计的基		体称为总体(或母体)。我们总是把总体看成一个具有分布的随		
本概念		机变量(或随机向量)。		
	个体	总体中的每一个单元称为样品(或个体)。		

2011-1-1						
Г						
样本	我们把从总体中抽取的部分样品 x_1, x_2, \dots, x_n 称为样本。样本					
	中所含的样品数称为样本容量,一般用 n 表示。在一般情况下,总是把样本看成是 n 个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结					
	果时, x_1, x_2, \cdots, x_n 表示 n 个随机变量 (样本);在具体的一次					
	抽取之后, x_1, x_2, \dots, x_n 表示 n 个具体的数值(样本值)。我们					
	称之为样本的两重性。					
样本函数和 统计量						
	$\varphi = \varphi \qquad (x_1, x_2, \dots, x_n)$					
	为样本函数,其中 φ 为一个连续函数。如果 φ 中不包含任何未					
	知参数,则称 φ (x_1, x_2, \dots, x_n) 为一个统计量。					
常见统计量 及其性质	样本均值					
	样本方差					
	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - x)^{2}.$					

$$M_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \cdots.$$

样本 k 阶中心矩

$$M_{k}' = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{k}, k = 2, 3, \dots$$

$$E(\overline{X}) = \mu, \quad D(\overline{X}) = \frac{\sigma^2}{n},$$

$$E(S^{2}) = \sigma^{2}, \quad E(S^{2}) = \frac{n-1}{n}\sigma^{2},$$

其中
$$S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
,为二阶中心矩。

样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - x_i)^2}.$

(2) 正态	正态分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
总体下的四大分布		本函数
四八万师		_
		$u \stackrel{\text{def}}{=} \frac{x - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$
	t 分布	
	2 74 11.	
		本函数
		$t = \frac{\frac{def}{x - \mu}}{s / \sqrt{n}} \sim t(n - 1),$
		其中 t (n-1)表示自由度为 n-1 的 t 分布。
	χ ² 分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
		本函数
		$w \stackrel{\text{def}}{=} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$
		其中 $\chi^2(n-1)$ 表示自由度为 $n-1$ 的 χ^2 分布。
	F分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而
		y_1, y_2, \dots, y_n 为来自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本
		函数
		$F = \frac{\frac{def}{S_{1}^{2} / \sigma_{1}^{2}}}{S_{2}^{2} / \sigma_{2}^{2}} \sim F(n_{1} - 1, n_{2} - 1),$
		其中
		$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \overline{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \overline{y})^2;$
		$F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 ,第二自由度为
		n ₂ - 1的F分布。
(3) 正态 总体下分 布的性质		•

第七章 参数估计

(1)点 估计 矩估计

设总体 X 的分布中包含有未知数 $\theta_1, \theta_2, \cdots, \theta_m$,则其分布函数可以表成

 $F(x;\theta_1,\theta_2,\cdots,\theta_m)$. 它的 k 阶原点矩 $v_k=E(X^k)(k=1,2,\cdots,m)$ 中也

包含了未知参数 $\theta_1,\theta_2,\cdots,\theta_m$,即 $v_k=v_k(\theta_1,\theta_2,\cdots,\theta_m)$ 。又设

 x_1, x_2, \dots, x_n 为总体 X 的 n 个样本值, 其样本的 k 阶原点矩为

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{k} \quad (k=1,2,\cdots,m).$$

这样,我们按照"当参数等于其估计量时,总体矩等于相应的样本矩"的原则建立方程,即有

$$\begin{bmatrix} v_1(\hat{\theta}_1, \hat{\theta}_2, \cdots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i, \\ \vdots \end{bmatrix}$$

$$\begin{cases} v_{2}(\hat{\theta}_{1}, \hat{\theta}_{2}, \cdots, \hat{\theta}_{m}) = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}, \end{cases}$$

.....

$$v_m(\hat{\theta}_1, \hat{\theta}_2, \cdots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^m.$$

由上面的 m 个方程中,解出的 m 个未知参数 $(\hat{\theta_1},\hat{\theta_2},\cdots,\hat{\theta_m})$ 即为参数 $(\theta_1,\theta_2,\cdots,\theta_m)$ 的矩估计量。

 \dot{a} 为 θ 的矩估计,g(x) 为连续函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的矩估计。

	极大似	当 总 体 X 为 连 续 型 随 机 变 量 时 , 设 其 分 布 密 度 为					
	然估计	$f(x; \theta_1, \theta_2, \cdots, \theta_m)$, 其中 $\theta_1, \theta_2, \cdots, \theta_m$ 为未知参数。又设					
	x_1, x_2, \dots, x_n 为总体的一个样本,称						
		n					
		$L(\theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1} f(x_i; \theta_1, \theta_2, \dots, \theta_m)$					
		为样本的似然函数,简记为 <i>L</i> _a .					
		当 总 体 X 为 离 型 随 机 变 量 时 , 设 其 分 布 律 为					
		$P\{X = x\} = p(x; \theta_1, \theta_2, \dots, \theta_m), $					
		n					
		$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1} p(x_i; \theta_1, \theta_2, \dots, \theta_m)$					
		为样本的似然函数。					
		若似然函数 $L(x_1, x_2, \cdots, x_n; \theta_1, \theta_2, \cdots, \theta_m)$ 在 $\hat{\theta}_1, \hat{\theta}_2, \cdots, \hat{\theta}_m$ 处取					
		到最大值,则称 $\hat{\theta}_1$, $\hat{\theta}_2$,, $\hat{\theta}_m$ 分别为 θ_1 , θ_2 ,, θ_m 的最大似然估计值,					
		相应的统计量称为最大似然估计量。					
		$\left. \frac{\partial \ln L_n}{\partial \theta_i} \right _{\theta_i = \hat{\theta}_i} = 0, i = 1, 2, \cdots, m$					
		\hat{B} 为 θ 的极大似然估计, $g(x)$ 为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的极大					
		似然估计。					
(2)估 计量的	无偏性	设 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为未知参数 θ 的估计量。若 E $(\hat{\theta}) = \theta$,则称					
评选标 准		$\stackrel{\wedge}{ heta}$ 为 $ heta$ 的无偏估计量。					
		$E(\overline{X}) = E(X), E(S^2) = D(X)$					
	有效性	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_2, \dots, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_2, \dots, x_n)$ 是未知参数 θ					
		的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。					
		#41/4 1 /GM41日日 至。 41 2 (61) / 2 (62) / 次7(601 61 61 61 61 6 7 6 7)					

_	•	
	一致性	$\stackrel{\wedge}{\partial_n}$ 是 θ 的一串估计量,如果对于任意的正数 ε ,都有
		$\lim_{n\to\infty}P(\stackrel{\wedge}{\theta}_n-\theta >\varepsilon)=0,$
		则称 $\stackrel{\wedge}{ heta}$ "为 $ heta$ 的一致估计量(或相合估计量)。
		\hat{E} 为 θ 的无偏估计,且 $D(\hat{\theta}) \to 0$ ($n \to \infty$), 则 $\hat{\theta}$ 为 θ 的一致估计。 只要总体的 $E(X)$ 和 $D(X)$ 存在,一切样本矩和样本矩的连续函数都是相 应总体的一致估计量。
(3)区间估计	置信区间和置	设总体 X 含有一个待估的未知参数 θ 。如果我们从样本 $x_1, x,_2, \cdots, x_n$ 出
	信度	发 , 找 出 两 个 统 计 量 $\theta_1 = \theta_1(x_1, x, 2, \dots, x_n)$ 与
		$\theta_2 = \theta_2(x_1, x_{,_2}, \cdots, x_{_n}) (\theta_1 < \theta_2) , 使 \ \mathcal{E} \mathbb{E} E$
		$1-\alpha(0<\alpha<1)$ 的概率包含这个待估参数 θ ,即
		$P\{\theta_1 \leq \theta \leq \theta_2\} = 1 - \alpha,$
		那么称区间 $[\theta_1, \theta_2]$ 为 θ 的置信区间, $1-\alpha$ 为该区间的置信度(或置
		信水平)。
	单正态总体的	设 $x_1, x_{,2}, \cdots, x_n$ 为总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,在置信度为 $1-\alpha$
	期望和 方差的	下,我们来确定 μ 和 σ^2 的置信区间 $[\theta_1, \theta_2]$ 。具体步骤如下:
	区间估计	(i)选择样本函数; (ii)由置信度1-α,查表找分位数;
		(iii)导出置信区间[$ heta_1, heta_2$]。

己知方差,估计均值	(i)选择样本函数
	$u = \frac{\overline{x} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1).$
	(ii) 查表找分位数
	$P\left(-\lambda \leq \frac{\bar{x} - \mu}{\sigma_0 / \sqrt{n}} \leq \lambda\right) = 1 - \alpha.$
	(iii) 导出置信区间
	$\left[\frac{-}{x} - \lambda \frac{\sigma_0}{\sqrt{n}}, \frac{-}{x} + \lambda \frac{\sigma_0}{\sqrt{n}}\right]$
未知方差,估计均值	(i)选择样本函数
	$t = \frac{\overline{x} - \mu}{S / \sqrt{n}} \sim t(n-1).$
	(ii)查表找分位数
	$P\left(-\lambda \leq \frac{x-\mu}{S/\sqrt{n}} \leq \lambda\right) = 1-\alpha.$
	(iii) 导出置信区间
	$\left[\frac{-}{x} - \lambda \frac{S}{\sqrt{n}}, \frac{-}{x} + \lambda \frac{S}{\sqrt{n}}\right]$
方差的区间估计	(i)选择样本函数
	$w = \frac{(n-1)S^2}{\sigma^2} \sim \kappa^2 (n-1).$
	(ii) 查表找分位数
	$P\left(\lambda_1 \leq \frac{(n-1)S^2}{\sigma^2} \leq \lambda_2\right) = 1 - \alpha.$
	(iii)导出σ 的置信区间
	$\left[\sqrt{\frac{n-1}{\lambda_2}}S,\sqrt{\frac{n-1}{\lambda_1}}S\right]$

第八章 假设检验

基本思想	假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是不会发生的,即小概率原理。 为了检验一个假设 HL是否成立。我们先假定 HL是成立的。如果根据这个假定导致了一个不合理的事件发生,那就表明原来的假定 HL是不正确的,我们拒				
		此没有导出不合理的现象,则不能拒绝接受 14,我们称 14是的假设称为备择假设,用 14表示。			
		概率事件就是事件 $\{K \in R_{\alpha}\}$, 其概率就是检验水平 α , 通			
	常我们取 α =0.05,	有时也取 0.01 或 0.10。			
基本步骤	假设检验的基本步	骤如下:			
	(i) 提出零				
	(ii) 选择组				
	(iii) 对于相	金验水平 α 查表找分位数 λ;			
	(iv) 由样z	体值 x_1, x_2, \cdots, x_n 计算统计量之值 K ;			
	\hat{K} 与 λ 进行比较,作出判断: 当 \hat{K} > λ (或 \hat{K} > λ) 时否定 \mathcal{H} ,否则认为 \mathcal{H}				
	相容。				
两类错误	第一类错误	当 从为真时,而样本值却落入了否定域,按照我们规定的			
		检验法则,应当否定 46。这时,我们把客观上 46成立判为			
		Ha 为不成立(即否定了真实的假设), 称这种错误为"以真			
		当假"的错误或第一类错误,记α为犯此类错误的概率,即			
		P{否定 <i>H</i> ₀ <i>H</i> ₀ \ <i>H</i> ₀ <i>H</i> ₀			
	此处的 α 恰好为检验水平。				
	第二类错误 当 出 为真时,而样本值却落入了相容域,按照我们规定的				
	检验法则,应当接受 K。这时,我们把客观上 K。不成立判 为 K 成立(即接受了不直实的假设)。称这种错误为"以假				
	为 K 成立(即接受了不真实的假设), 称这种错误为"以假				
		当真"的错误或第二类错误,记 β 为犯此类错误的概率,			
		即			
		P{接受 H ₀ H ₁ 为真}=β。			

两类错误的关系	人们当然希望犯两类错误的概率同时都很小。但是,当
	容量 n 一定时, α 变小,则 β 变大;相反地, β 变小,则 α
	变大。取定 α 要想使 β 变小,则必须增加样本容量。
	在实际使用时,通常人们只能控制犯第一类错误的概率,即给定显著性水平α。α大小的选取应根据实际情况而定。当我们宁可"以假为真"、而不愿"以真当假"时,则应把α取得很小,如 0.01,甚至 0.001。反之,则应把α取得大些。

单正态总体均值和方差的假设检验

条件	零假设	统计量	对应样本 函数分布	否定域
	$H_0: \mu = \mu_0$	$U = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$	N(0, 1)	u > u
已知 σ^2	$H_0: \mu \leq \mu_0$			$u > u_{1-\alpha}$
	$H_{0}: \mu \geq \mu_{0}$			$u < -u_{1-\alpha}$
	$H_0: \mu = \mu_0$	$T = \frac{\overline{x} - \mu_0}{S / \sqrt{n}}$	t(n-1)	$ t > t_{1-\frac{\alpha}{2}}(n-1)$
未知 σ^2	$H_0: \mu \leq \mu_0$			$t > t_{1-\alpha} (n-1)$
	$H_0: \mu \geq \mu_0$			$t < -t_{1-\alpha} (n-1)$
	$H_0: \sigma^2 = \sigma^2$	$w = \frac{(n-1)S^2}{\sigma_0^2}$	$\kappa^2(n-1)$	$w < \kappa \frac{2}{\frac{\alpha}{2}}(n-1)$ 或
-t- to 2	$H_0 \cdot O = O$			$w > \kappa^{\frac{2}{1-\frac{\alpha}{2}}}(n-1)$
未知 σ ²	$H_0: \sigma^2 \leq \sigma_0^2$			$w > \kappa_{1-\alpha}^2 (n-1)$
	$H_0: \sigma^2 \geq \sigma_0^2$			$w < \kappa_{\alpha}^{2}(n-1)$