

CS4277 / CS5477 3D Computer Vision

Lecture 2: Circular Points and 3D Projective Geometry

Asst. Prof. Lee Gim Hee
AY 2019/20
Semester 2

Course Schedule

Week	Date	Торіс	Assignments
1	15 Jan	2D and 1D projective geometry	
2	22 Jan	Circular points and 3D projective geometry	
3	29 Jan	Absolute conic and robust homography estimation	Assignment 1: Panoramic stitching (15%)
4	05 Feb	Camera models and calibration	
5	12 Feb	Single view metrology	Due: Assignment 1 Assignment 2 : Camera calibration (15%)
6	19 Feb	The fundamental and essential matrices	
-	26 Feb	Semester Break	No lecture Due: Assignment 2
7	04 Mar	Multiple-view geometry from points and/or lines	Assignment 3: Relative and absolute pose estimation (20%)
8	11 Mar	Absolute pose estimation from points and/or lines	
9	18 Mar	Structure-from-Motion (SfM) and Visual Simultaneous Localization and Mapping (vSLAM)	Due: Assignment 3
10	25 Mar	Two-view and multi-view stereo	Assignment 4: Dense 3D model from multi-view stereo (20%)
11	01 Apr	Generalized cameras	
12	08 Apr	Factorization and non-rigid structure-from-motion	Due: Assignment 4
13	15 Apr	Auto-Calibration	

Learning Outcomes

- Students should be able to:
 - Use line at infinity and/or circular points to remove affine and/or projective distortions.
 - 2. Explain the projective mapping of a line and point with conics, i.e. pole-polar relationship.
 - Represent points and plane in \mathbb{p}^3 , and describe the point-plane duality.
 - 4. Describe a line in \mathbb{p}^3 using null space and span matrix, Plücker matrix and Plücker coordinates.
 - 5. Extend the p^2 conics properties to quadric in p^3 .

Acknowledgements

- A lot of slides and content of this lecture are adopted from:
- 1. R. Hartley, and Andrew Zisserman: "Multiple view geometry in computer vision", Chapter 2 and 3.
- 2. Y. Ma, S. Soatto, J. Kosecka, S. S. Sastry, "An invitation to 3-D vision", Chapter 2.

Line at Infinity and Circular Points

- In the following, it will be shown that:
- 1. The projective distortion may be removed once the image of \mathbf{l}_{∞} is specified;
- And the affine distortion removed once the image of the circular points is specified.

Then the only remaining distortion is a similarity.

The Line at Infinity

• The line at infinity, \mathbf{l}_{∞} , is a fixed line under the projective transformation H if and only if H is an affinity, i.e.,

$$\mathbf{l}_{\infty}' = \mathbf{H}_{\mathbf{A}}^{-\mathsf{T}} \mathbf{l}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & \mathbf{0} \\ -\mathbf{t}^{\mathsf{T}} \mathbf{A}^{-\mathsf{T}} & 1 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \mathbf{l}_{\infty}.$$

- An affinity is the most general linear transformation with $H_{31} = H_{32} = 0$ for the relationship to be true.
- We will see that identifying \mathbf{l}_{∞} allows the recovery of affine properties (parallelism, ratio of lengths).

The Line at Infinity

 Contrast this with projective transformation, where an ideal point and line at infinity might not remain at infinity.

$$H_{p}\mathbf{x} = \mathbf{x'} \quad \Rightarrow \quad \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & v \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \\ v_{1}x_{1} + v_{2}x_{2} \end{bmatrix}$$

Might not be 0 since v_1 and v_2 are not 0.

$$H_p^{-T} \mathbf{l} = \mathbf{l'} \quad \Rightarrow \quad \begin{bmatrix} A & \mathbf{t} \\ \mathbf{v}^T & v \end{bmatrix}^{-T} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{21}v_2 - a_{22}v_1 \\ -a_{11}v_2 + a_{12}v_1 \\ a_{11}a_{22} - a_{12}a_{21} \end{pmatrix}$$

Might not be 0 since v_1 and v_2 are not 0.

The Line at Infinity

- Interestingly, \mathbf{l}_{∞} is not fixed pointwise under an affine transformation.
- In general, under an affinity, a point on \mathbf{l}_{∞} (an ideal point) is mapped to another point on \mathbf{l}_{∞} :

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^\mathsf{T} & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ 0 \end{pmatrix}.$$

Nonetheless, it would be the same point when:

$$A(x_1, x_2)^{\mathsf{T}} = k(x_1, x_2)^{\mathsf{T}}.$$

Affine Rectification: imaged line at infinity can be used to remove projective distortion.

 H_p maps ideal points and l_{∞} to finite

Problem:

Given $\mathbf{l} = (l_1, l_2, l_3)^T$ where $l_3 \neq 0$, find H'_p that can be used to remove the projective distortion.

Solution:

Since
$$\mathbf{l} = H_p^{-T} \mathbf{l}_{\infty}$$
, $\mathbf{l}'_{\infty} = {H'_p}^{-T} \mathbf{l}$ and $\mathbf{l}'_{\infty} = H_A^{-T} \mathbf{l}_{\infty}$, we get
$$\mathbf{l}'_{\infty} = {H'_p}^{-T} \mathbf{l} = H_p^{-T} H_p^{-T} \mathbf{l}_{\infty} \Rightarrow H_A = H'_p H_p$$
, hence $H'_p = H_A H_p^{-1}$.
$$= H_A^{-T}$$

Substituting back to $\mathbf{l}'_{\infty} = {H'_p}^{-T}\mathbf{l}$, we get $\mathbf{l}'_{\infty} = (H_A H_P^{-1})^{-T}\mathbf{l}$.

Furthermore, $\mathbf{l}'_{\infty} = \mathbf{l}_{\infty} = (0,0,1)^T$ and $\mathbf{l} = (l_1, l_2, l_3)^T$,

$$\Rightarrow (0,0,1)^T = (H_A H_P^{-1})^{-T} \mathbf{1} = H_A^{-T} H_P^T (l_1, l_2, l_3)^T.$$

$$= (0,0,1)^T$$

We solve for $H_P^T(l_1, l_2, l_3)^T = (0,0,1)^T$ since $\mathbf{l}_{\infty} = H_A^{-T} \mathbf{l}_{\infty}$,

$$\Rightarrow H_p^T = \begin{pmatrix} 1 & 0 & -l_1/l_3 \\ 0 & 1 & -l_2/l_3 \\ 0 & 0 & 1/l_3 \end{pmatrix}, \text{ hence we get } H_p' = H_A \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l_1 & l_2 & l_3 \end{pmatrix},$$

where H_A can be any affinity transformation.

$$H_p^{-1} = (H_P^T)^{-T}$$

- 1. The imaged vanishing line of the plane I is computed from the intersection of two sets of imaged parallel lines.
- 2. Compute $H_p' = H_A H_P^{-1}$ by choosing an arbitrary affinity H_A .

- 3. Use H'_p to projectively warp the image to produce the affinely rectified image.
- 4. Affine properties can be recovered from the affinely rectified image, e.g. parallel lines and ratio of lengths.
- Note: angles cannot be recovered since image is still affinely distorted.

Computing a Vanishing Point from a Length Ratio

- Conversely, known affine properties may be used to determine points and the line at infinity.
- A typical case is where three points \mathbf{a}' , \mathbf{b}' and \mathbf{c}' are identified on a line in an image.
- Suppose a, b and c are the corresponding collinear points on the world line.
- The length ratio $d(\mathbf{a}, \mathbf{b}) : d(\mathbf{b}, \mathbf{c}) = a : b$ is known; $d(\mathbf{x}, \mathbf{y})$ is the Euclidean distance between points \mathbf{x} and \mathbf{y} .

Computing a Vanishing Point from a Length Ratio $(a+b,1)^T$

Solution:

i. Measure the distance ratio in the image, $d(\mathbf{a}', \mathbf{b}') : d(\mathbf{b}', \mathbf{c}') = a' : b'$.

ii. Points \mathbf{a} , \mathbf{b} and \mathbf{c} may be represented as coordinates 0, a and a + b in a coordinate frame on the line $\langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle$.

These points are represented by homogeneous 2-vectors in \mathbb{P}^1 , i.e. $(0,1)^T$, $(a,1)^T$ and $(a+b,1)^T$.

Similarly, $\langle \mathbf{a}', \mathbf{b}', \mathbf{c}' \rangle$ have coordinates $(0,1)^T$, $(a',1)^T$ and $(a'+b',1)^T$.

Computing a Vanishing Point from a Length Ratio

Solution:

- iii. Relative to these coordinate frames, compute the 1D projective transformation $H_{2\times 2}$ mapping $\mathbf{a} \mapsto \mathbf{a}'$, $\mathbf{b} \mapsto \mathbf{b}'$ and $\mathbf{c} \mapsto \mathbf{c}'$.
- iv. The image of the point at infinity (with coordinates $(1, 0)^T$) under $H_{2\times 2}$ is the vanishing point on the line $\langle \mathbf{a}', \mathbf{b}', \mathbf{c}' \rangle$.

CS4277-CS5477 :: G.H. Lee

- Under any similarity transformation there are two points on l_{∞} which are fixed.
- These are the circular points (also called the absolute points) I, J, with canonical coordinates:

$$\mathbf{I} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}.$$

• The circular points are a pair of complex conjugate ideal points.

 The circular points, I, J, are fixed points under the projective transformation H if and only if H is a similarity, i.e.

$$egin{array}{lll} \mathbf{I}' &=& \mathbf{H}_{\mathrm{S}}\mathbf{I} \\ &=& \left[egin{array}{lll} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{array}
ight] \left(egin{array}{l} 1 \\ i \\ 0 \end{array}
ight) \\ &=& se^{-i heta} \left(egin{array}{l} 1 \\ i \\ 0 \end{array}
ight) = \mathbf{I} ext{, where } e^{i heta} = \cos\theta - i\sin\theta. \end{array}$$

- with an analogous proof for J.
- The converse is also true, i.e. if the circular points are fixed then the linear transformation is a similarity.

- The name "circular points" arises because every circle intersects l_{∞} at the circular points.
- To see this, we start from the conic equation of a circle, i.e. a=c (we scale to 1) and b=0:

$$x_1^2 + x_2^2 + dx_1x_3 + ex_2x_3 + fx_3^2 = 0$$

• This conic intersects \mathbf{l}_{∞} at the ideal points where $x_3=0$:

$$x_1^2 + x_2^2 = 0$$

$$\Rightarrow (x_1 + ix_2)(x_1 - ix_2) = 0$$

• with solution $I = (1, i, 0)^T$, $J = (1, -i, 0)^T$

• The dual to the circular points is the conic:

$$\mathbf{C}_{\infty}^* = \mathbf{I}\mathbf{J}^\mathsf{T} + \mathbf{J}\mathbf{I}^\mathsf{T}$$

- The conic C_{∞}^* is a degenerate (rank 2) line conic which consists of the two circular points.
- In a Euclidean coordinate system it is given by:

$$\mathbf{C}_{\infty}^{*} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \begin{pmatrix} 1 & -i & 0 \end{pmatrix} + \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix} \begin{pmatrix} 1 & i & 0 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

• The conic C_{∞}^* is fixed under similarity transformations, i.e.

$$C_{\infty}^{* \prime} = H_{S}C_{\infty}^{*}H_{S}^{\mathsf{T}}$$

$$= \begin{pmatrix} s\cos\theta & -s\sin\theta & t_{x} \\ s\sin\theta & s\cos\theta & t_{y} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} s\cos\theta & s\sin\theta & 0 \\ -s\sin\theta & s\cos\theta & 0 \\ t_{x} & t_{y} & 1 \end{pmatrix}$$

$$= \begin{pmatrix} s \cos\theta & -s \sin\theta & 0 \\ s \sin\theta & s \cos\theta & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} s \cos\theta & s \sin\theta & 0 \\ -s \sin\theta & s \cos\theta & 0 \\ t_x & t_y & 1 \end{pmatrix}$$

$$= s \begin{pmatrix} \cos^2 \theta + \sin^2 \theta & 0 & 0 \\ 0 & \cos^2 \theta + \sin^2 \theta & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- Some properties of C_{∞}^* in any projective frame:
- *i.* C_{∞}^* has 4 degrees of freedom:

A 3 × 3 homogeneous symmetric matrix has 5 degrees of freedom, but the constraint $det(C_{\infty}^*) = 0$ reduces the degrees of freedom by 1.

ii. \mathbf{l}_{∞} is the null vector of C_{∞}^* :

This is clear from the definition: the circular points lie on \mathbf{l}_{∞} , so that $\mathbf{I}^T \mathbf{l}_{\infty} = \mathbf{J}^T \mathbf{l}_{\infty} = 0$; then

$$\mathbf{C}_{\infty}^* \mathbf{l}_{\infty} = (\mathbf{I} \mathbf{J}^\mathsf{T} + \mathbf{J} \mathbf{I}^\mathsf{T}) \mathbf{l}_{\infty} = \mathbf{I} (\mathbf{J}^\mathsf{T} \mathbf{l}_{\infty}) + \mathbf{J} (\mathbf{I}^\mathsf{T} \mathbf{l}_{\infty}) = \mathbf{0}.$$

Angles on the Projective Plane

• In Euclidean geometry, the angle between two lines is given by the inner product of the normals of $\mathbf{l} = (l_1, l_2, l_3)^T$ and $\mathbf{m} = (m_1, m_2, m_3)^T$:

$$\cos \theta = \frac{l_1 m_1 + l_2 m_2}{\sqrt{(l_1^2 + l_2^2)(m_1^2 + m_2^2)}}.$$

- **Problem with this expression**: it is **not defined** under projective transformation.
- Hence, the expression cannot be applied after an affine or projective transformation of the plane.

Angles on the Projective Plane

• Once the conic C_{∞}^* is identified on the projective plane then Euclidean angles may be measured by

$$\cos \theta = \frac{\mathbf{l}^\mathsf{T} \mathsf{C}_\infty^* \mathbf{m}}{\sqrt{(\mathbf{l}^\mathsf{T} \mathsf{C}_\infty^* \mathbf{l})(\mathbf{m}^\mathsf{T} \mathsf{C}_\infty^* \mathbf{m})}},$$

• which is invariant to projective transformation.

Proof: We have $(\mathbf{l}' = \mathbf{H}^{-\mathsf{T}}\mathbf{l})$ and $(\mathbf{C}^{*'} = \mathbf{H}\mathbf{C}^*\mathbf{H}^{\mathsf{T}})$ under the point transformation $\mathbf{x}' = \mathbf{H}\mathbf{x}$, hence the numerator transforms as

$$\mathbf{l}^\mathsf{T} \mathsf{C}^*_\infty \mathbf{m} \mapsto \mathbf{l}^\mathsf{T} \mathsf{H}^{-1} \mathsf{H} \mathsf{C}^*_\infty \mathsf{H}^\mathsf{T} \mathsf{H}^{-\mathsf{T}} \mathbf{m} = \mathbf{l}^\mathsf{T} \mathsf{C}^*_\infty \mathbf{m}.$$

It can be verified that the denominator terms also stay the same, and the scales of ${f l}$ and ${f m}$ cancel out.

Angles on the Projective Plane

• Lines **l** and **m** are orthogonal if $\mathbf{l}^T \mathbf{C}_{\infty}^* \mathbf{m} = 0$.

Proof:

$$\cos \theta = \frac{\mathbf{l}^\mathsf{T} \mathbf{C}^*_{\infty} \mathbf{m}}{\sqrt{(\mathbf{l}^\mathsf{T} \mathbf{C}^*_{\infty} \mathbf{l})(\mathbf{m}^\mathsf{T} \mathbf{C}^*_{\infty} \mathbf{m})}}$$

This is because $\cos\left(\frac{\pi}{2}\right) = 0$.

Metric rectification using C_{∞}^*

• Once the conic C_{∞}^* is identified on the projective plane then projective distortion may be rectified up to a similarity.

Proof:

If the point transformation is $\mathbf{x}' = H\mathbf{x}$, we have

$$\begin{array}{lll} {C_{\infty}^*}' & = & \left(H_{\mathrm{P}} \, H_{\mathrm{A}} \, H_{\mathrm{S}} \right) \, {C_{\infty}^*} \, \left(H_{\mathrm{P}} \, H_{\mathrm{A}} \, H_{\mathrm{S}} \right)^\mathsf{T} = \left(H_{\mathrm{P}} \, H_{\mathrm{A}} \right) \left(H_{\mathrm{S}} \, {C_{\infty}^*} \, H_{\mathrm{S}}^\mathsf{T} \right) \left(H_{\mathrm{A}}^\mathsf{T} \, H_{\mathrm{P}}^\mathsf{T} \right) \\ & = & \left(H_{\mathrm{P}} \, H_{\mathrm{A}} \right) \, {C_{\infty}^*} \, \left(H_{\mathrm{A}}^\mathsf{T} \, H_{\mathrm{P}}^\mathsf{T} \right) \\ & = & \left[\begin{array}{c} KK^\mathsf{T} & KK^\mathsf{T} \mathbf{v} \\ \mathbf{v}^\mathsf{T} KK^\mathsf{T} & \mathbf{v}^\mathsf{T} KK^\mathsf{T} \mathbf{v} \end{array} \right]. \end{array}$$

It is clear that image of C_{∞}^* gives the projective (\mathbf{v}) and affine (K) components, but not the similarity component.

Metric rectification using C_{∞}^*

• Given the identified C_{∞}^* in an image, i.e. $C_{\infty}'^*$, a suitable rectifying homography H can be found from the SVD of $C_{\infty}'^*$:

$$\mathbf{C}_{\infty}^{*'} = \mathbf{U} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{U}^{\mathsf{T}}$$
$$= \mathbf{C}_{\infty}^{*}$$

• where the rectifying projectivity is H = U up to a similarity.

Example 1: Metric rectification of an affinely rectified image

1. Affine rectification, i.e. removal of projective distortion H_p (seen earlier)

2. Metric rectification, i.e. removal of affine distortion H_A

Example 1: Metric rectification of an affinely rectified image

We have seen that

$$C_{\infty}^{*}' = (H_{P} H_{A} H_{S}) C_{\infty}^{*} (H_{P} H_{A} H_{S})^{\mathsf{T}} = (H_{P} H_{A}) C_{\infty}^{*} (H_{A}^{\mathsf{T}} H_{P}^{\mathsf{T}}),$$

which can be written as

$$H_p^{-1}C'_{\infty}^*H_p^{-T} = H_AC_{\infty}^*H_A^T,$$

$$= C''_{\infty}^*$$

• where C''^*_{∞} is the image of the conic C^*_{∞} after removal of projective distortion.

Example 1: Metric rectification of an affinely rectified image

- We can compute C''^*_{∞} and hence H_A from two pairs of orthogonal lines.
- Suppose the lines l', m' in the affinely rectified image correspond to an orthogonal line pair l, m on the world plane, we get:

$$\underbrace{\begin{pmatrix} \mathbf{l}^T \mathbf{H}_{\mathbf{A}}^{-1} \end{pmatrix}}_{\mathbf{l}'} \underbrace{\mathbf{H}_{\mathbf{A}}^* \mathbf{C}_{\infty}^* \mathbf{H}_{\mathbf{A}}^T \left(\mathbf{H}_{\mathbf{A}}^{-T} \mathbf{m}^T \right)}_{\mathbf{m}'} = 0, \quad H_{\mathbf{A}} = \begin{bmatrix} \mathbf{K} & \mathbf{0} \\ \mathbf{0}^T & \mathbf{1} \end{bmatrix}$$

$$\Rightarrow \left(\begin{array}{ccc} l_1' & l_2' & l_3' \end{array}\right) \left[\begin{array}{ccc} \mathbf{K}\mathbf{K}^\mathsf{T} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & 0 \end{array}\right] \left(\begin{array}{ccc} m_1' \\ m_2' \\ m_3' \end{array}\right) = 0 \; , \quad \text{where we write } S_{2\times 2} = \mathbf{K}\mathbf{K}^T \\ \text{with 3 independent elements.}$$

Example 1: Metric rectification of an affinely rectified image

• Thus the orthogonality constraint can be written as:

$$(l'_1m'_1, l'_1m'_2 + l'_2m'_1, l'_2m'_2)$$
 s = 0,

where $\mathbf{s} = (s_{11}, s_{12}, s_{22})^T$ is S written as a 3-vector.

- Two constraints from two orthogonal line pairs which may be stacked to give a 2 × 3 matrix with s determined as the null vector.
- Thus S, and hence K (therefore H_A), is obtained up to scale by Cholesky decomposition.

Example 2: Metric rectification of perspective image of the plane (not affinely rectified).

Removal of projective and affine distortion H_pH_A

This can be achieved by identifying C_{∞}^{*} on the perspective image, i.e.

$$C_{\infty}^{* \ \prime} \ = \ \left(H_{\scriptscriptstyle P} \, H_{\scriptscriptstyle A}\right) C_{\infty}^{*} \left(H_{\scriptscriptstyle A}^{\mathsf{T}} \, H_{\scriptscriptstyle P}^{\mathsf{T}}\right) = \ \left[\begin{array}{cc} KK^{\mathsf{T}} & KK^{\mathsf{T}} \mathbf{v} \\ \mathbf{v}^{\mathsf{T}} KK^{\mathsf{T}} & \mathbf{v}^{\mathsf{T}} KK^{\mathsf{T}} \mathbf{v} \end{array}\right].$$

Example 2: Metric rectification of perspective image of the plane (not affinely rectified).

• Each orthogonal pair of lines \mathbf{l}' , \mathbf{m}' on the perspective image gives the constraint:

$$(l'_1m'_1, (l'_1m'_2 + l'_2m'_1)/2, l'_2m'_2, (l'_1m'_3 + l'_3m'_1)/2, (l'_2m'_3 + l'_3m'_2)/2, l'_3m'_3) \mathbf{c} = 0$$

- where $\mathbf{c} = (a, b, c, d, e, f)^T$ is C'^*_{∞} written as a 6-vector.
- Five such constraints can be stacked to form a 5×6 matrix, and \mathbf{c} , and hence C'_{∞}^* (therefore H_pH_A), is obtained as the null vector.

Stratification

 Note the two-step (remove projective then affine) and one-step (remove both) difference between example 1 and 2.

• The two-step approach is termed stratified.

The Pole-Polar Relationship

The polar line $\mathbf{l} = C\mathbf{x}$ of the point \mathbf{x} with respect to a conic C intersects the conic in two points. The two lines tangent to C at these points intersect at \mathbf{x} .

Note: Point \mathbf{x} does not lie on \mathbf{C} implies $\mathbf{x}^T \mathbf{C} \mathbf{x} \neq \mathbf{0}$.

Remark: If the point **x** is on C then the polar is the tangent line

to the conic at **x**.

The Pole-Polar Relationship

Proof:

Consider two points \mathbf{z}_1 and \mathbf{z}_2 on the conics, the tangent lines are given as $\mathbf{l}_1 = C\mathbf{z}_1$ and $\mathbf{l}_2 = C\mathbf{z}_2$, respectively.

The point $\mathbf{x} = \mathbf{l_1} \times \mathbf{l_2}$ is the intersection of lines $\mathbf{l_1}$ and $\mathbf{l_2}$. Putting $\mathbf{l_1} = C\mathbf{z_1}$ and $\mathbf{l_2} = C\mathbf{z_2}$ into $\mathbf{x} = \mathbf{l_1} \times \mathbf{l_2}$, we get:

$$\mathbf{x} = \mathbf{l_1} \times \mathbf{l_2} = (C\mathbf{z_1}) \times (C\mathbf{z_2}) = \det(C)(C^{-1})^{\mathrm{T}}(\mathbf{z_1} \times \mathbf{z_2}),$$

where $(C^{-1})^T = C^{-1}$ since C is symmetric and $\mathbf{l} = \mathbf{z}_1 \times \mathbf{z}_2$, i.e.

$$\mathbf{x} = \det(\mathbf{C})\mathbf{C}^{-1}\mathbf{l} = k\mathbf{C}^{-1}\mathbf{l} \Rightarrow \mathbf{l} = \mathbf{C}\mathbf{x}.$$

Taking det(C) constant scale k, we get the relation $\mathbf{l} = C\mathbf{x}$.

Image source: "Multiple View Geometry in Computer Vision", Richard Hartley and Andrew Zisserman

П

Conjugate Points

- If the point y is on the line $\mathbf{l}_{x} = Cx$, then $\mathbf{y}^{T}\mathbf{l}_{x} = \mathbf{y}^{T}Cx = 0$.
- Any two points \mathbf{x} and \mathbf{y} satisfying $\mathbf{y}^T \mathbf{C} \mathbf{x} = 0$ are conjugate with respect to the conic \mathbf{C} .
- The conjugacy relation is symmetric: If x is on the polar of y
 then y is on the polar of x.

 (x, l_x) and (y, l_y) are two pairs of polepolar, where x and y are conjugate.

Conjugate Points

Proof:

The point \mathbf{x} is on the polar of \mathbf{y} if $\mathbf{x}^T C \mathbf{y} = 0$, and the point \mathbf{y} is on the polar of \mathbf{x} if $\mathbf{y}^T C \mathbf{x} = 0$. Since $\mathbf{x}^T C \mathbf{y} = \mathbf{y}^T C \mathbf{x}$, if one form is zero, then so is the other.

Remark: There is a dual conjugacy relationship for lines: two lines \mathbf{l} and \mathbf{m} are conjugate if $\mathbf{l}^T \mathbf{C}^* \mathbf{m} = 0$.

Projective Geometry and Transformations of 3D

• Many properties and entities of \mathbb{P}^3 are straightforward generalizations of those of \mathbb{P}^2 .

Example:

In \mathbb{P}^3 Euclidean 3-space is augmented with a set of ideal points which are on a plane at infinity, π_{∞} ; this is analogous of \mathbf{l}_{∞} in \mathbb{P}^2 .

 However, additional properties appear by virtue of the extra dimension.

Example:

Two lines always intersect on the projective plane, but they need not intersect in 3-space.

Points in \mathbb{P}^3

 A point X in 3-space is represented in homogeneous coordinates as a 4-vector, i.e.

$$\mathbf{X} = (X_1, X_2, X_3, X_4)^T \text{ with } X_4 \neq 0$$

• represents the point $(X, Y, Z)^T$ of \mathbb{R}^3 with inhomogeneous coordinates

$$X = X_1/X_4$$
, $Y = X_2/X_4$, $Z = X_3/X_4$.

• Homogeneous points with $X_4=0$ represent points at infinity.

Projective Transformation of Points in \mathbb{P}^3

• A projective transformation acting on \mathbb{P}^3 is a linear transformation on \mathbf{X} by a non-singular 4×4 matrix:

$$X' = HX$$
.

- The matrix H is homogeneous and has 15 degrees of freedom: 16 elements less one for scaling.
- As in \mathbb{P}^2 , the map is a collineation (lines are mapped to lines),
- which preserves incidence relations such as the intersection point of a line with a plane, and order of contact.

Planes in \mathbb{P}^3

A plane in 3-space may be written as:

$$\pi_1 X + \pi_2 Y + \pi_3 Z + \pi_4 = 0.$$

• Homogenizing by $X \mapsto X_1/X_4, Y \mapsto X_2/X_4, Z \mapsto X_3/X_4$ gives

$$\pi_1 X_1 + \pi_2 X_2 + \pi_3 X_3 + \pi_4 X_4 = 0$$
 or $\boldsymbol{\pi}^\mathsf{T} \mathbf{X} = 0$,

which expresses that the point **X** is on the plane $\pi = (\pi_1, \pi_2, \pi_3, \pi_4)^T$.

• Only three independent ratios $\{\pi_1 : \pi_2 : \pi_3 : \pi_4\}$ of the plane coefficients are significant, i.e. 3 degrees of freedom.

Planes in \mathbb{P}^3

- The first 3 components of π correspond to the plane normal of Euclidean geometry, i.e. $\mathbf{n}=(\pi_1,\pi_2,\pi_3)^T$.
- Using inhomogenous notation to rewrite $\pi^T X = 0$ as:

$$\mathbf{n}.\widetilde{\mathbf{X}}+d=0,$$
 where $\mathbf{X}=(\mathsf{X},\mathsf{Y},\mathsf{Z})^T$, $\mathsf{X}_4=1$ and $d=\pi_4.$

- In this form $d/\|\mathbf{n}\|$ is the distance of the plane from the origin.
- Under the point transformation $\mathbf{X}' = H\mathbf{X}$, a plane transforms as: $\boldsymbol{\pi}' = \mathbf{H}^{-\mathsf{T}}\boldsymbol{\pi}$.

Planes in \mathbb{P}^3 : Join and Incidence Relations

In \mathbb{P}^3 there are numerous geometric relations between planes and points and lines:

- A plane is defined uniquely by the join of three points (not collinear), or the join of a line and point (not incident), in general position.
- 2. Two distinct planes intersect in a unique line.
- 3. Three distinct planes intersect in a unique point.

Three Points Define a Plane

• Suppose three points \mathbf{X}_i are incident with the plane $\boldsymbol{\pi}$, where each point satisfies $\boldsymbol{\pi}^T \mathbf{X}_i = 0$ for i = 1,2,3, i.e.

$$\left[egin{array}{c} \mathbf{X}_1^\mathsf{T} \ \mathbf{X}_2^\mathsf{T} \ \mathbf{X}_3^\mathsf{T} \end{array}
ight] oldsymbol{\pi} = \mathbf{0}.$$

- The 3×4 matrix $[\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3]^T$ has rank 3 when the points are in general positions, i.e. linearly independent.
- The plane π defined by the points is obtained uniquely (up to scale) as the 1-dimensional (right) null-space.

Three Points Define a Plane

- If the matrix $[\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_2]^T$ has only a rank of 2, and consequently the null-space is 2-dimensional.
- Then the points are collinear, and define a pencil of planes with the line of collinear points as axis.

Three Planes Define a Point

• The intersection point \mathbf{X} of three planes $\boldsymbol{\pi}_i$ can be computed as the (right) null-space of the 3 × 4 matrix composed of the planes as rows:

 The development here is dual to the case of three points defining a plane and it shows the point-plane duality.

Parametrized Points on a Plane

• The points **X** on the plane π may be written as

$$\mathbf{X} = M\mathbf{x}$$
.

- The columns of the 4×3 matrix M generate the rank 3 null-space of π^T , i.e. $\pi^T M = 0$, and the 3-vector \mathbf{x} parametrizes points on the plane π .
- M is not unique, suppose the plane is $\pi = (a, b, c, d)^T$ and a is non-zero, then \mathbf{M}^T can be written as

$$\mathbf{M}^T = [\mathbf{p} \mid I_{3\times 3}],$$

where
$$\mathbf{p} = \left(-\frac{b}{a}, -\frac{c}{a}, -\frac{d}{a}\right)^T$$
.

Lines in \mathbb{P}^3

• A line is defined by the join of two points or the intersection of two planes.

 Lines have 4 degrees of freedom in 3space.

Sketch of Proof: A line may be specified by its points of intersection with two orthogonal planes. Each intersection point has 2 degrees of freedom, hence 4 degrees of freedom.

• Awkward to represent 3-space line with a homogeneous 5-vector, we will look at three alternatives representations.

- Suppose A, B are two (non-coincident) space points.
- The line joining these points (6 dofs, i.e. overparameterized) is represented by the span of the row space of the 2 \times 4 matrix W composed of \mathbf{A}^T and \mathbf{B}^T as rows:

$$\mathbf{W} = \left[\begin{array}{c} \mathbf{A}^\mathsf{T} \\ \mathbf{B}^\mathsf{T} \end{array} \right].$$

- Then:
 - 1. The span of W^T is the pencil of points $\lambda A + \mu B$ on the line.
 - 2. The span of the 2-dimensional right null-space of W is the pencil of planes with the line as axis.

Remarks on (1):

- It is evident that two other points, \mathbf{A}'^T and \mathbf{B}'^T , on the line will generate a matrix \mathbf{W}' with the same span as \mathbf{W} .
- Hence, the representation is independent of the particular points used to define it.

Same line!
$$W = \begin{bmatrix} A^T \\ B^T \end{bmatrix}$$

$$W' = \begin{bmatrix} A'^T \\ B'^T \end{bmatrix}$$

Remarks on (2):

- Suppose that \mathbf{P} and \mathbf{Q} are a basis for the null-space, then $W\mathbf{P} = \mathbf{0}$ and consequently $\mathbf{A}^T\mathbf{P} = \mathbf{B}^T\mathbf{P} = 0$, so that \mathbf{P} is a plane containing the points \mathbf{A} and \mathbf{B} .
- Similarly, **Q** is a distinct plane also containing the points **A** and **B**.
- A and B lie on both the (linearly independent) planes P and Q, so the line defined by W is the plane intersection.

• Any plane of the pencil, with the line as axis, is given by the span $\lambda \mathbf{P} + \mu \mathbf{Q}$.

- The dual representation of a line as the intersection of two planes, **P**, **Q**, follows in a similar manner.
- The line is represented as the span (of the row space) of the 2×4 matrix W* composed of \mathbf{P}^T and \mathbf{Q}^T as rows:

$$\mathbf{W}^* = \begin{bmatrix} \mathbf{P}^\mathsf{T} \\ \mathbf{Q}^\mathsf{T} \end{bmatrix}$$

- With the properties:
- 1. The span of W^{*T} is the pencil of planes $\lambda \mathbf{P} + \mu \mathbf{Q}$ with the line as axis.
- 2. The span of the 2-dimensional null-space of W^* is the pencil of points on the line.
- The two representations are related by $W^*W^T = WW^{*T} = 0_{2\times 2}$, where $0_{2\times 2}$ is a 2×2 null matrix.

- Join and incidence relations are also computed from null-spaces:
- 1. The plane π defined by the join of the point X and line W is obtained from the null-space of

$$\mathbf{M} = \left[\begin{array}{c} \mathbf{W} \\ \mathbf{X}^\mathsf{T} \end{array} \right].$$

If the null-space of M is 2-dimensional then **X** is on W, otherwise $M\pi = \mathbf{0}$.

- Join and incidence relations are also computed from null-spaces:
- 2. The point X defined by the intersection of the line W with the plane π is obtained from the null-space of

$$\mathtt{M} = \left[egin{array}{c} \mathtt{W}^* \ oldsymbol{\pi}^\mathsf{T} \end{array}
ight].$$

If the null-space of M is 2-dimensional then the line W is on π , otherwise MX = 0.

Lines in \mathbb{P}^3 : Plücker Matrices

• The line joining the two points $\mathbf{A} = (A_1, A_2, A_3, A_4)^T$, $\mathbf{B} = (B_1, B_2, B_3, B_4)^T$ is represented by the 4×4 skew-symmetric homogeneous matrix:

 $L = AB^{\mathsf{T}} - BA^{\mathsf{T}}$, with elements $l_{ij} = A_iB_j - B_iA_j$, i.e.

$$\mathbf{L} = \begin{pmatrix} 0 & -l_{12} & -l_{13} & -l_{14} \\ l_{12} & 0 & -l_{23} & -l_{24} \\ l_{13} & l_{23} & 0 & -l_{34} \\ l_{14} & l_{24} & l_{34} & 0 \end{pmatrix}$$

We will see later that this rearranges to the Plücker line:

$$\mathcal{L} = \{l_{12}, l_{13}, l_{14}, l_{23}, l_{42}, l_{34}\}.$$

Note: The indices of l_{ij} is for $\mathbf{A} = (A_1, A_2, A_3, A_4)^T = (w, x, y, z)^T$.

Lines in \mathbb{P}^3 : Plücker Matrices

- Several properties of L:
- 1. Rank(L) = 2, its 2-dimensional null-space is spanned by the pencil of planes with the line as axis.
 - **Remarks:** In fact $LW^{*T} = 0$, with 0 a 4 × 2 null-matrix.
- 2. The representation has the required 4 degrees of freedom for a line.
 - **Remarks:** 6 non-zero elements less det(L) = 0 and 5 ratios are significant.
- 3. Under the point transformation $\mathbf{X}' = H\mathbf{X}$, the matrix transforms as $\mathbf{L}' = H\mathbf{L}H^T$.

Lines in \mathbb{P}^3 : Plücker Matrices

- 4. The relation $L = AB^T BA^T$ is the generalization to 4-space of the vector product formula $\mathbf{l} = \mathbf{x} \times \mathbf{y}$ of \mathbb{P}^2 for a line \mathbf{l} defined by two points \mathbf{x} , \mathbf{y} represented by 3-vectors.
- 5. The matrix L is independent of the points A, B used to define it.

Proof:

Since if a different point ${\bf C}$ on the line is used, with ${\bf C}={\bf A}+\mu{\bf B}$, then the resulting matrix is:

$$\hat{\mathbf{L}} = \mathbf{A}\mathbf{C}^{\mathsf{T}} - \mathbf{C}\mathbf{A}^{\mathsf{T}} = \mathbf{A}(\mathbf{A}^{\mathsf{T}} + \mu \mathbf{B}^{\mathsf{T}}) - (\mathbf{A} + \mu \mathbf{B})\mathbf{A}^{\mathsf{T}}$$
$$= \mathbf{A}\mathbf{B}^{\mathsf{T}} - \mathbf{B}\mathbf{A}^{\mathsf{T}} = \mathbf{L}.$$

П

Lines in \mathbb{P}^3 : Dual Plücker Matrices

 A dual Plücker representation L* (similar properties to L) is obtained for a line formed by the intersection of two planes P, Q,

$$L^* = PQ^T - QP^T$$
.

- Under the point transformation X' = HX, the matrix L^* transforms as $L^* = H^{-T}LH^{-1}$.
- The matrix L* can be obtained directly from L by a simple rewrite rule:

$$l_{12}: l_{13}: l_{14}: l_{23}: l_{42}: l_{34} = l_{34}^*: l_{42}^*: l_{23}^*: l_{14}^*: l_{13}^*: l_{12}^*.$$

Lines in \mathbb{P}^3 : (Dual) Plücker Matrices

- Join and incidence properties are very nicely represented in the Plücker Matrix and its dual.
- 1. The plane defined by the join of the point X and line L is: $\pi = L^*X$ and $L^*X = 0$, if and only if X is on L.

Proof:
$$\pi = L^*X = PQ^TX - QP^TX$$

The plane π contains L*since it is a linear combination of planes **P** and **Q**. It also contains **X** since:

$$\mathbf{X}^T \boldsymbol{\pi} = \mathbf{X}^T \mathbf{P} \mathbf{Q}^T \mathbf{X} - \mathbf{X}^T \mathbf{Q} \mathbf{P}^T \mathbf{X} = 0$$

Lines in \mathbb{P}^3 : (Dual) Plücker Matrices

2. The point defined by the intersection of the line L with the plane π is:

 $\mathbf{X} = \mathbf{L} \boldsymbol{\pi}$ and $\mathbf{L} \boldsymbol{\pi} = \mathbf{0}$ if, and only if, L is on $\boldsymbol{\pi}$.

Proof:
$$X = L\pi = AB^T\pi - BA^T\pi$$

The point X lies on L since it is a linear combination of the points A and B. It also lies on the plane π since:

$$\boldsymbol{\pi}^T \mathbf{X} = \underbrace{\boldsymbol{\pi}^T \mathbf{A} \mathbf{B}^T \boldsymbol{\pi}}_{\beta \quad \alpha} - \underbrace{\boldsymbol{\pi}^T \mathbf{B} \mathbf{A}^T \boldsymbol{\pi}}_{\alpha \quad \beta} = 0$$

Lines in \mathbb{P}^3 : Plücker Line Coordinates

• The Plücker line coordinates are the six non-zero elements of the 4 × 4 skew-symmetric Plücker matrix L, i.e.

$$\mathcal{L} = \{l_{12}, l_{13}, l_{14}, l_{23}, l_{42}, l_{34}\}.$$
d m

- The first three elements are the direction vector of A and B, i.e. d = B A.
- The last three elements are the moment vector of \mathbf{A} and \mathbf{B} , i.e. $\mathbf{m} = \mathbf{A} \times \mathbf{B}$.
- det(L) = 0 means that the coordinates satisfy:

$$l_{12}l_{34} - l_{13}l_{42} + l_{14}l_{23} = 0.$$

Lines in \mathbb{P}^3 : Plücker Line Coordinates

- Suppose two lines \mathcal{L} , $\hat{\mathcal{L}}$ are the joins of the points \mathbf{A} , \mathbf{B} and $\widehat{\mathbf{A}}$, $\widehat{\mathbf{B}}$ respectively.
- The lines intersect if and only if the four points are coplanar, a necessary and sufficient condition for this is that

$$\det[\mathbf{A}, \mathbf{B}, \hat{\mathbf{A}}, \hat{\mathbf{B}}] = l_{12}\hat{l}_{34} + \hat{l}_{12}l_{34} + l_{13}\hat{l}_{42} + \hat{l}_{13}l_{42} + l_{14}\hat{l}_{23} + \hat{l}_{14}l_{23}
= (\mathcal{L}|\hat{\mathcal{L}}) = 0.$$

Proof: When the four points A, B and \widehat{A} , \widehat{B} are coplanar, the direction vector of A, B is perpendicular to the moment vector of \widehat{A} , \widehat{B} and vice-versa, i.e.

$$\mathbf{d}^{T}\widehat{\mathbf{m}} + \mathbf{m}^{T}\widehat{\mathbf{d}} = l_{12}\hat{l}_{34} + \hat{l}_{12}l_{34} + l_{13}\hat{l}_{42} + \hat{l}_{13}l_{42} + l_{14}\hat{l}_{23} + \hat{l}_{14}l_{23}$$
$$= \det[\mathbf{A}, \mathbf{B}, \widehat{\mathbf{A}}, \widehat{\mathbf{B}}] = 0.$$

Lines in \mathbb{P}^3 : Plücker Line Coordinates

• Similarly, suppose two lines \mathcal{L} , $\hat{\mathcal{L}}$ are the intersections of the planes \mathbf{P} , \mathbf{Q} and $\hat{\mathbf{P}}$, $\hat{\mathbf{Q}}$, respectively, then

$$(\mathcal{L}|\hat{\mathcal{L}}) = \det[\mathbf{P}, \mathbf{Q}, \widehat{\mathbf{P}}, \widehat{\mathbf{Q}}] = 0$$
 ,

if and only if the lines intersects.

• If $\mathcal L$ is the intersection of two planes $\mathbf P$ and $\mathbf Q$ and $\hat{\mathcal L}$ is the join of two points $\mathbf A$ and $\mathbf B$, then

$$(\mathcal{L}|\hat{\mathcal{L}}) = (\mathbf{P}^\mathsf{T}\mathbf{A})(\mathbf{Q}^\mathsf{T}\mathbf{B}) - (\mathbf{Q}^\mathsf{T}\mathbf{A})(\mathbf{P}^\mathsf{T}\mathbf{B}) = 0$$
,

if and only if the lines intersects.

• A quadric is a surface in \mathbb{P}^3 defined by the equation

$$\mathbf{X}^\mathsf{T} \mathbf{Q} \mathbf{X} = 0$$

- where Q is a symmetric 4 × 4 matrix.
- Often the matrix Q and the quadric surface it defines are not distinguished, and we will simply refer to the quadric Q.

- Many of the properties of quadrics follow directly from those of conics:
- A quadric has 9 degrees of freedom. These correspond to the ten independent elements of a 4 × 4 symmetric matrix less one for scale.
- 2. Nine points in general position define a quadric.
- If the matrix Q is singular, then the quadric is degenerate, and may be defined by fewer points.

4. A quadric defines a polarity between a point and a plane, in a similar manner to the polarity defined by a conic between a point and a line. π

Remarks:

The plane $\pi = QX$ is the polar plane of X with respect to Q.

- In the case that Q is non-singular and X is outside the quadric, the polar plane is defined by the points of contact with Q of the cone of rays through X tangent to Q.
- ii. If X lies on Q, then QX is the tangent plane to Q at X.

5. The intersection of a plane π with a quadric Q is a conic C.

Remarks:

- Recall that a coordinate system for the plane can be defined by the complement space to π as $\mathbf{X} = \mathbf{M}\mathbf{x}$.
- Points on π are on Q if $\mathbf{X}^T \mathbf{Q} \mathbf{X} = \mathbf{x}^T \mathbf{M}^T \mathbf{Q} \mathbf{M} \mathbf{x} = 0$.
- These points lie on a conic C, since $\mathbf{x}^T \mathbf{C} \mathbf{x} = 0$, with $\mathbf{C} = \mathbf{M}^T \mathbf{Q} \mathbf{M}$.

5. Under the point transformation X' = HX, a (point) quadric transforms as:

$$\mathbf{Q}' = \mathbf{H}^{-\mathsf{T}} \mathbf{Q} \mathbf{H}^{-1}.$$

- The dual of a quadric is also a quadric.
- Dual quadrics are equations on planes: the tangent planes π to the point quadric Q satisfy $\pi^T Q^* \pi = 0$, where $Q^* = \text{adjoint}$ Q, or Q^{-1} if Q is invertible.
- Under the point transformation $\mathbf{X}' = H\mathbf{X}$, a dual quadric transforms as $\mathbf{Q}^{*\prime} = \mathbf{H}\mathbf{Q}^*\mathbf{H}^\mathsf{T}$.

Adjoint of a matrix A: $adj(\mathbf{A}) = \mathbf{C}^{\mathsf{T}}.$

C is the cofactor of A:

$$\mathbf{C} = \left((-1)^{i+j} \mathbf{M}_{ij}
ight)_{1 \leq i,j \leq n}.$$

Common Quadric Surfaces

Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Traces

In plane z = p: an ellipse

In plane y = q: an ellipse

In plane x = r: an ellipse

If a = b = c, then this surface is a sphere.

Rank(Q) = 4

Hyperboloid of One Sheet

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Traces

In plane z = p: an ellipse

In plane y = q: a hyperbola

In plane x = r: a hyperbola

In the equation for this surface, two of the variables have positive coefficients and one has a negative coefficient. The axis of the surface corresponds to the variable with the negative coefficient.

Rank(Q) = 4

https://math.libretexts.org/Courses/SUNY_Geneseo/MATH_223_Calculus_III/Chapter_11%3A_Vectors_and_the_Geometry_of_Space/11.6%3A_Quadric_Surfaces

Common Quadric Surfaces

Hyperboloid of Two Sheets

$$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Traces

In plane z = p: an ellipse or the empty set (no trace)

In plane y = q: a hyperbola In plane x = r: a hyperbola

In the equation for this surface, two of the variables have negative coefficients and one has a positive coefficient. The axis of the surface corresponds to the variable with a positive coefficient. The surface does not intersect the coordinate plane perpendicular to the axis.

$$Rank(Q) = 4$$

Elliptic Cone

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

Traces

In plane z = p: an ellipse

In plane y = q: a hyperbola

In plane x = r: a hyperbola

In the xz – plane: a pair of lines that intersect at the origin In the yz – plane: a pair of lines that intersect at the origin

The axis of the surface corresponds to the variable with a negative coefficient. The traces in the coordinate planes parallel to the axis are intersecting lines.

Slide credit:

Rank(Q) = 1

https://math.libretexts.org/Courses/SUNY_Geneseo/MATH_223_Calculus_III/Chapter_11%3A_Vectors_and the Geometry of Space/11.6%3A Quadric Surfaces

Common Quadric Surfaces

Elliptic Paraboloid

$$z=\frac{x^2}{a^2}+\frac{y^2}{b^2}$$

Traces

In plane z = p: an ellipse In plane y = q: a parabola In plane x = r: a parabola

The axis of the surface corresponds to the linear variable.

Rank(Q) = 4

Hyperbolic Paraboloid

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Traces

In plane z = p: a hyperbola In plane y = q: a parabola In plane x = r: a parabola

The axis of the surface corresponds to the linear variable.

Rank(Q) = 4

Slide credit:

https://math.libretexts.org/Courses/SUNY_Geneseo/MATH_223_Calculus_III/Chapter_11%3A_Vectors_and_the_Geometry_of_Space/11.6%3A_Quadric_Surfaces

3D Hierarchy of Transformations

$$R = \begin{bmatrix} c_1c_2 & c_1s_2s_3 - c_3s_1 & s_1s_3 + c_1c_3s_2 \\ c_2s_1 & c_1c_3 + s_1s_2s_3 & c_3s_1s_2 - c_1s_3 \\ -s_2 & c_2s_3 & c_2c_3 \end{bmatrix} \text{,} \quad \text{3x3 rotation matrix (see next slide)}$$

 $t = (t_x, t_y, t_z)^T$, 3x1 translation vector

Group	Matrix	Distortion	Invariant properties
Projective 15 dof	$\left[\begin{array}{cc} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^T & v \end{array}\right]$		Intersection and tangency of surfaces in contact.
Affine 12 dof	$\left[\begin{array}{cc} \mathbf{A} & \mathbf{t} \\ 0^T & 1 \end{array}\right]$		Parallelism of planes, volume ratios, centroids. The plane at infinity, π_{∞} , (Next lecture)
Similarity 7 dof	$\left[\begin{array}{cc} s\mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{array}\right]$		The absolute conic, Ω_{∞} , (Next lecture)
Euclidean 6 dof	$\left[\begin{array}{cc} \mathbf{R} & \mathbf{t} \\ 0^T & 1 \end{array}\right]$		Volume.

Euler Angles to Rotation Matrix

$$R_{z}(\gamma) = R_{1}^{0} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(\beta) = R_{2}^{1} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{x}(\alpha) = R_{3}^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$\Rightarrow X_{0} = R_{1}^{0} X_{1}$$

$$\Rightarrow X_{1} = R_{2}^{1} X_{2}$$

$$\Rightarrow X_{3} = R_{2}^{3} X_{2}$$

$$R_{y}(\beta) = R_{2}^{1} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$
$$\Rightarrow X_{1} = R_{2}^{1} X_{2}$$

$$R_{x}(\alpha) = R_{3}^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$
$$\Rightarrow X_{3} = R_{2}^{3} X_{2}$$

$$R_{3}^{0} = R_{1}^{0} R_{2}^{1} R_{3}^{2} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$\Rightarrow X_0 = R_3^0 X_3$$

Image Source: http://www.mdpi.com/1424-8220/15/3/7016/htm

Summary

We have looked at how to:

- Use line at infinity and/or circular points to remove affine and/or projective distortions.
- 2. Explain the projective mapping of a line and point with conics, i.e. pole-polar relationship.
- Represent points and plane in \mathbb{p}^3 , and describe the point-plane duality.
- 4. Describe a line in \mathbb{p}^3 using null space and span matrix, Plücker matrix and Plücker coordinates.
- 5. Extend the \mathbb{p}^2 conics properties to quadric in \mathbb{p}^3 .

