Домашняя работа по дискретной математике №1

Вариант 173

Работу выполнил: Чень Хаолинь, Р3116,407960

Исходная таблица соединений R:

V/V	e1	e2	e3	e4	e5	e6	e7	e8	е9	e10	e11	e12
e1	0	5		1	3	5					3	
e2	5	0	1			4	4		5		2	
e3		1	0	3			1			1		2
e4	1		3	0			4	4			2	
e5	3				0	1			5		3	3
e6	5	4			1	0	1		1	4	2	5
e7		4	1	4		1	0	1	3			
e8				4			1	0				
e9		5			5	1	3		0	3	4	4
e10			1			4			3	0	4	
e11	3	2		2	3	2			4	4	0	
e12			2		3	5			4			0

Найти кратчайшие пути от начальной вершины е1 ко всем остальным вершинам

1.
$$l(e_1) = 0^+$$
; $l(e_i) = \infty$, для всех $i \neq 1$, $p = e_1$

Результаты итерации запишем в таблицу

	1
e ₁	0+
e ₂	8
e ₃	8
e ₄	8
e ₅	8
e ₆	8
e ₇	8
e ₈	8
e ₉	8
e ₁₀	8
e ₁₁	8
e ₁₂	8

2. $\Gamma e_1 = \{e_2, e_4, e_5, e_6, e_{11}\}$ - все пометки временные, уточним их:

$$l(e_2) = min[\infty, 0^+ + 5] = 5;$$

$$l(e_4) = min[\infty, 0^+ + 1] = 1;$$

```
l(e_5) = \min[\infty, 0^+ + 3] = 3;
```

$$l(e_6) = min[\infty, 0^+ + 5] = 5;$$

$$l(e_{11}) = min[\infty, 0^++3] = 3;$$

- 3. $l(e_4) = \min[\infty, 0^+ + 1] = 1$.
- 4. Вершина e_4 получает постоянную пометку $l(e_4) = 1^+, p = e_4$

	1	2
e ₁	0+	
e ₂	8	5
e ₃	8	8
e ₄	8	1
e ₅	8	3
e ₆	8	5
e ₇	8	8
e ₈	8	8
e ₉	8	8
e ₁₀	8	8
e ₁₁	8	3
e ₁₂	8	8

5. Не все вершины имеют постоянные пометки,

$$\Gamma e_4 = \{e_1, e_3, e_7, e_8, e_{11}\}$$

Временные пометки имеют вершины e_3 , e_7 , e_8 , e_{11} – уточняем их:

$$1(e_3) = \min[\infty, 1^+ + 3] = 4;$$

$$1(e_7) = \min[\infty, 1^+ + 4] = 5;$$

$$l(e_8) = min[\infty, 1^+ + 4] = 5;$$

$$l(e_{11}) = min[3,1^++3] = 3;$$

6.
$$l(e_i^+) = min[l(e_i)] = l(e_5) = 3;$$

7. Вершина e_{11} получает постоянную пометку $l(e_5) = 3^+, p = e_5$

	1	2	3
e_1	0+		
e ₂	8	5	5
e ₃	8	8	4
e ₄	8	1	
e ₅	8	3	3 ⁺
e ₆	8	5	5
e ₇	8	8	5
e ₈	8	8	5
e ₉	8	8	8
e ₁₀	8	8	8
e ₁₁	8	3	3
e ₁₂	8	8	8

8. Не все вершины имеют постоянные пометки,

$$\Gamma e_5 = \{e_1, e_6, e_9, e_{11}, e_{12}\}$$

Временные пометки имеют вершины е2, е5, е6, е9, е10 - уточняем их:

$$l(e_6) = min[5,3^++1] = 4;$$

$$l(e_9) = min[\infty, 3^+ + 5] = 8;$$

$$l(e_{10}) = min[3, 3^{+}+3] = 3;$$

$$l(e_{10}) = min[\infty, 3^++3] = 6;$$

9.
$$I(e_i^+) = min[I(e_i)] = I(e_{11}) = 3$$

10. Вершина ез получает постоянную пометку $l(e_{11}) = 3^+$, $p = e_{11}$

	1	2	3	4
e_1	0+			
e ₂	8	5	5	5
e ₃	8	8	4	4
e ₄	8	1		
e ₅	8	3	3 ⁺	
e_6	8	5	5	4
e ₇	8	8	5	5
e ₈	8	8	5	5
e ₉	8	8	8	8
e ₁₀	8	8	8	8
e ₁₁	8	3	3	3 ⁺
e ₁₂	8	8	8	6

11.Не все вершины имеют постоянные пометки,

$$\Gamma e_{11} = \{e_1, e_2, e_4, e_5, e_6, e_9, e_{10}\}$$

Временные пометки имеют вершины е2, е6,е9, е10 уточняем их:

$$l(e_2)=min[5,3^++2]=5$$

$$l(e_6) = min[4,3^++2] = 4;$$

$$l(e_9) = min[8, 3^+ + 4] = 7;$$

$$l(e_{10}) = min[\infty, 3^+ + 4] = 7$$

12.
$$I(e_i^+) = min[I(e_i)] = I(e_3) = 4$$

13. Вершина e_5 получает постоянную пометку $l(e_3) = 4^+$, $p = e_3$

	1	2	3	4	5
e ₁	0+				
e ₂	8	5	5	5	5
e ₃	8	8	4	4	4+
e ₄	8	1			
e ₅	8	3	3 ⁺		
e ₆	8	5	5	4	4
e ₇	8	8	5	5	5
e ₈	8	8	5	5	5
e ₉	8	8	8	8	7
e ₁₀	8	8	8	8	7
e ₁₁	8	3	3	3 ⁺	
e ₁₂	8	8	8	6	6

14.Не все вершины имеют постоянные пометки,

$$\Gamma e_3 = \{e_2, e_4, e_7, e_{10}, e_{12}\}$$

Временные пометки имеют вершины е2, е7, е10, е12 - уточняем их:

$$l(e_2) = min[5,4^++1] = 5;$$

$$l(e_7) = min[5, 4^++1] = 5;$$

$$l(e_{10}) = min[7,4^++1] = 5;$$

$$l(e_{12}) = min[6, 4^{+}+2] = 6;$$

15.
$$I(e_i^+) = min[I(e_i)] = I(e_6) = 4$$
, $p = e_6$

	1	2	3	4	5	6
e ₁	0+					
e ₂	8	5	5	5	5	5
e ₃	8	8	4	4	4+	
e ₄	8	1				
e ₅	8	3	3 ⁺			
e ₆	8	5	5	4	4	4+
e ₇	8	8	5	5	5	5
e ₈	8	8	5	5	5	5
e ₉	8	8	8	8	7	7
e ₁₀	8	8	8	8	7	5
e ₁₁	8	3	3	3 ⁺		
e ₁₂	8	8	8	6	6	6

16.Не все вершины имеют постоянные пометки,

 $\Gamma e_6 = \{e_1, e_2, e_5, e_7, e_9, e_{10}, e_{11}, e_{12}\}$

Временные пометки имеют вершины е2, е7, е9, е10, е12 - уточняем их:

$$l(e_2) = min[5,4^++4] = 5;$$

$$l(e_7) = min[5, 4^++1] = 5;$$

$$l(e_9) = min[7, 4^++1] = 5;$$

$$l(e_{10}) = min[5, 4^++4] = 5;$$

$$l(e_{12}) = min[6, 4^++5] = 6;$$

$$17.I(e_i^+) = min[I(e_i)] = I(e_2) = 5, p = e_2$$

	1	2	3	4	5	6	7
e ₁	0 ⁺						
e ₂	8	5	5	5	5	5	5+
e ₃	8	8	4	4	4+		
e ₄	8	1					
e ₅	8	3	3 ⁺				
e ₆	8	5	5	4	4	4+	
e ₇	8	8	5	5	5	5	5
e ₈	8	8	5	5	5	5	5
e ₉	8	8	8	8	7	7	5
e ₁₀	8	8	8	8	7	5	5
e ₁₁	8	3	3	3 ⁺			
e ₁₂	8	8	8	6	6	6	6

18.Не все вершины имеют постоянные пометки,

$$\Gamma e_2 = \{e_1, e_3, e_6, e_7, e_9, e_{11}\}$$

Временные пометки имеют вершины ет, е9 - уточняем их:

$$l(e_7) = min[5,5^++4] = 5;$$

$$1(e_9) = \min[5,5^++5] = 5;$$

19.
$$I(e_i^+) = min[I(e_i)] = I(e_7) = 5, p = e_7$$

	1	2	3	4	5	6	7	8
e_1	0+							
e ₂	8	5	5	5	5	5	5+	
e ₃	8	8	4	4	4+			
e ₄	8	1						
e ₅	8	3	3 ⁺					
e ₆	8	5	5	4	4	4+		
e ₇	8	8	5	5	5	5	5	5 ⁺
e ₈	8	8	5	5	5	5	5	5
e ₉	8	8	8	8	7	7	5	5
e ₁₀	8	8	8	8	7	5	5	5
e ₁₁	8	3	3	3 ⁺				
e ₁₂	8	8	8	6	6	6	6	6

20.Не все вершины имеют постоянные пометки,

$$\Gamma e_7 = \{e_2, e_3, e_4, e_6, e_8, e_9\}$$

Временные пометки имеют вершины ев, е9- уточняем их:

$$l(e_8) = min[5,5^++1] = 5;$$

$$1(e_9) = \min[5,5^++3] = 5;$$

$$21.I(e_i^+) = min[I(e_i)] = I(e_8) = 5,p=e_8$$

	1	2	3	4	5	6	7	8	9
e ₁	0+								
e ₂	8	5	5	5	5	5	5+		
e ₃	8	8	4	4	4+				
e ₄	8	1							
e ₅	8	3	3 ⁺						
e ₆	8	5	5	4	4	4+			
e ₇	8	8	5	5	5	5	5	5 ⁺	
e ₈	8	8	5	5	5	5	5	5	5+
e ₉	8	8	8	8	7	7	5	5	5
e ₁₀	8	8	8	8	7	5	5	5	5
e ₁₁	8	3	3	3 ⁺					
e ₁₂	8	8	8	6	6	6	6	6	6

$$22.\Gamma e_8 = \{ e_4, e_7 \}$$

Временные пометки из них:

$$I(e_i^+) = min[I(e_i)] = I(e_9) = 5, p = e_9$$

	1	2	3	4	5	6	7	8	9	10
e ₁	0+									
e ₂	8	5	5	5	5	5	5+			
e ₃	8	8	4	4	4+					
e ₄	8	1								
e ₅	8	3	3 ⁺							
e ₆	8	5	5	4	4	4+				
e ₇	8	8	5	5	5	5	5	5 ⁺		
e ₈	8	8	5	5	5	5	5	5	5+	
e ₉	8	8	8	8	7	7	5	5	5	5+
e ₁₀	8	8	8	8	7	5	5	5	5	5
e ₁₁	8	3	3	3 ⁺						
e ₁₂	8	8	8	6	6	6	6	6	6	6

23.Не все вершины имеют постоянные пометки,

$$\Gamma e_9 = \{ e_2, e_5, e_6, e_7, e_{10}, e_{11}, e_{12} \}$$

Временные пометки имеют вершины e_{10} , e_{12} - уточняем их:

$$l(e_{10}) = min[5,5^{+}+3] = 5;$$

$$1(e_{12}) = \min[6,5^++4] = 6;$$

$$24.I(e_i^+) = min[I(e_i)] = I(e_{10}) = 5,p=e_{10}$$

	1	2	3	4	5	6	7	8	9	10	11
e ₁	0+										
e ₂	8	5	5	5	5	5	5 ⁺				
e ₃	8	8	4	4	4+						
e ₄	8	1									
e ₅	8	3	3 ⁺								
e ₆	8	5	5	4	4	4+					
e ₇	8	8	5	5	5	5	5	5 ⁺			
e ₈	8	8	5	5	5	5	5	5	5 ⁺		
e ₉	8	8	8	8	7	7	5	5	5	5+	
e ₁₀	8	8	8	8	7	5	5	5	5	5	5+
e ₁₁	8	3	3	3 ⁺							
e ₁₂	8	8	8	6	6	6	6	6	6	6	6

25.Не все вершины имеют постоянные пометки,

 $\Gamma e_{10} = \{ e_3, e_6, e_9, e_{11} \}$

Временные пометки из них: $I(e_i^+) = min[I(e_i)] = I(e_6) = 5, p = e_6$

	1	2	3	4	5	6	7	8	9	10	11	12
e ₁	0+											
e ₂	8	5	5	5	5	5	5 ⁺					
e ₃	8	8	4	4	4+							
e ₄	8	1										
e ₅	8	3	3 ⁺									
e ₆	8	5	5	4	4	4+						
e ₇	8	8	5	5	5	5	5	5 ⁺				
e ₈	8	8	5	5	5	5	5	5	5 ⁺			
e ₉	8	8	8	8	7	7	5	5	5	5+		
e ₁₀	8	8	8	8	7	5	5	5	5	5	5 ⁺	
e ₁₁	8	3	3	3+								
e ₁₂	8	8	8	6	6	6	6	6	6	6	6	6+

Ответ:

e_1	0+				
e ₂	5+				
e ₃	4+				
e ₄	1				
e ₅	3 ⁺				
e_6	4+				
e ₇	5 ⁺				
e ₈	5+				
e ₉	5+				
e ₁₀	5+				
e ₁₁	3 ⁺				
e ₁₂	6 ⁺				