Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2 по дисциплине «Математическая статистика»

Выполнил студент:

Трощенко Константин группа: 3630102/80301

Проверил:

Баженов Александр Николаевич

Санкт-Петербург 2021

Содержание

1	Пос	тановка задачи	2
2		рия	
	2.1	Вариационный ряд	
	2.2	Выборочные числовые характеристики	
		2.2.1 Характеристики положения	
		2.2.2 Характеристика рассеяния	3
3	Pea	лизация	3
4	Рез	ультаты	1
5	Обс	уждение 8	3
6	При	ложение 8	3
C		ок таблиц	
	1	Hормальное распределение, $size=10$	
	2	Hормальное распределение, $size = 100 \dots \dots \dots$	
	3	Hopмaльное распределение, $size = 1000$	
	4	Распределение Коши, $size=10\ldots\ldots$	
	5	Распределение Коши, $size=100$	
	6	Распределение Коши, $size=1000$	
	7	Распределение Лапласа, $size=10$	
	8	Распределение Лапласа, $size = 100 \dots \dots$	
	9	Распределение Лапласа, $size=1000$	
	10	Распределение Пуассона, $size=10\ldots\ldots$	2
	11	Распределение Пуассона, $size=100$	
	12	Распределение Пуассона, $size=1000$	
	13	Равномерное распределение, $size=10$	
	14	Равномерное распределение, $size = 100$	
	15	Равномерное распределение. $size = 1000$	7

1 Постановка задачи

Для 5 распределений:

- Нормальное распределение N(x, 0, 1)
- Распределение Коши C(x,0,1)
- Распределение Лапласса $L\left(x,0,\frac{1}{\sqrt{2}}\right)$
- Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Сгенерировать выборки размером 10,100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных: $\overline{x}, med\ x, z_R, z_Q, z_{tr}$. Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \overline{z} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \overline{z}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

2 Теория

2.1 Вариационный ряд

Вариационный ряд – последовательность, полученная в результате расположения в порядке неубывания исходной последовательности независимых одинаково распределённых случайных величин.

2.2 Выборочные числовые характеристики

2.2.1 Характеристики положения

• Выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{3}$$

• Выборочная медиана

$$med \ x = \begin{cases} \frac{x_{(l+1)} \text{ при } n=2l+1}{x_{(l)}+x_{(l+1)} \text{ при } n=2l} \end{cases}$$
 (4)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{5}$$

$$z_p = \begin{cases} x_{([np]+1)} & \text{при } np \text{ дробном,} \\ x_{(np)} & \text{при } np \text{ целом.} \end{cases}$$
 (6)

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{7}$$

• Усечённое среднее

$$\frac{1}{n-2r} \sum_{i=r+1}^{n-r} x_{(i)}, r \approx \frac{n}{4}$$
 (8)

2.2.2 Характеристика рассеяния

Выборочная дисперсия

$$\frac{1}{n}\sum_{i=1}^{n}\left(x_{i}-\overline{x}\right)^{2}\tag{9}$$

3 Реализация

Лабораторная работа выполнена с помощью средств языка программирования Python 3 в среде разработки PyCharm. Исходный код лабораторной работы приведен в приложении.

4 Результаты

	\overline{x}	medx	z_R	z_Q	$ z_{tr} $
E(z)	-0.017246	-0.023832	-0.016006	-0.020806	-0.0207
D(z)	0.100821	0.138773	0.175896	0.119607	0.115066
$E(z) + \sqrt{D(z)}$	0.300276	0.348691	0.403393	0.325037	0.318514
$E(z) - \sqrt{D(z)}$	-0.334769	-0.396354	-0.435406	-0.366649	-0.359914
$\mid \hat{E} \mid$	0.	0.	0.	0.	0.

Таблица 1: Нормальное распределение, size=10

	\overline{x}	medx	$ z_R $	z_Q	$ z_{tr} $
E(z)	-0.000835	0.00296	0.004361	-0.01517	0.002149
D(z)	0.009707	0.014886	0.098243	0.011864	0.011738
$E(z) + \sqrt{D(z)}$	0.097688	0.124968	0.317798	0.09375	0.11049
$E(z) - \sqrt{D(z)}$	-0.099358	-0.119048	-0.309076	-0.124091	-0.106193
$\mid \hat{E} \mid$	0.0	0.	0.	0.	0.

Таблица 2: Нормальное распределение, size=100

	\overline{x}	medx	$ z_R$	z_Q	$ z_{tr} $
$\mid E(z)$	0.001649	0.002021	-0.007267	0.000419	0.001926
D(z)	0.00102	0.001522	0.062879	0.001276	0.001209
$E(z) + \sqrt{D(z)}$	0.033581	0.041032	0.24349	0.03614	0.036702
$E(z) - \sqrt{D(z)}$	-0.030283	-0.03699	-0.258024	-0.035303	-0.03285
$\mid \hat{E} \mid$	0.0	0.0	0.	0.0	0.0

Таблица 3: Нормальное распределение, size=1000

	\overline{x}	medx	$ z_R $	$ z_Q$	z_{tr}
E(z)	-0.573797	0.005762	-2.648586	-0.007665	0.005378
D(z)	282.206509	0.312728	6685.410874	1.578021	0.550328
$E(z) + \sqrt{D(z)}$	16.225206	0.564983	79.115776	1.248528	0.747219
$E(z) - \sqrt{D(z)}$	-17.3728	-0.553459	-84.412948	-1.263859	-0.736463
\hat{E}	_	0.	_	_	0.

Таблица 4: Распределение Коши, size=10

	\overline{x}	medx	z_R	z_Q	$ z_{tr} $
E(z)	2.728049	0.00115	137.091862	-0.034399	0.00014
D(z)	26719.984353	0.024453	66729455.895569	0.052108	0.026391
$E(z) + \sqrt{D(z)}$	166.190535	0.157526	8305.901806	0.193872	0.162595
$E(z) - \sqrt{D(z)}$	-160.734437	-0.155226	-8031.718082	-0.262671	-0.162314
$\mid \hat{E} \mid$	-	0.	-	0.	0.

Таблица 5: Распределение Коши, size=100

	\overline{x}	medx	$ z_R $	$ z_Q $	$ z_{tr} $
$\mid E(z)$	-1.394009	-0.000254	-711.09725	-0.0052	-0.000378
D(z)	853.76461	0.002416	211893794.672381	0.004967	0.002543
$E(z) + \sqrt{D(z)}$	27.825242	0.048894	13845.474966	0.065279	0.05005
$E(z) - \sqrt{D(z)}$	-30.61326	-0.049402	-15267.669466	-0.075678	-0.050805
$\mid \hat{E} \mid$	_	0.0	_	0.0	0.0

Таблица 6: Распределение Коши, size=1000

	\overline{x}	medx	$ z_R $	z_Q	$ z_{tr} $
E(z)	-0.00579	-0.005524	-0.003129	-0.002991	-0.004947
D(z)	0.106185	0.074859	0.435873	0.104242	0.075273
$E(z) + \sqrt{D(z)}$	0.32007	0.268079	0.657078	0.319874	0.269412
$E(z) - \sqrt{D(z)}$	-0.33165	-0.279128	-0.663336	-0.325856	-0.279307
$\mid \hat{E} \mid$	0.	0.	0.	0.	0.

Таблица 7: Распределение Лапласа, size=10

	\overline{x}	medx	$ z_R$	z_Q	$ z_{tr} $
$\mid E(z)$	-0.003899	-0.000783	-0.016339	-0.013997	-0.001064
D(z)	0.009991	0.005868	0.407619	0.009819	0.006163
$E(z) + \sqrt{D(z)}$	0.096055	0.075821	0.622111	0.085096	0.077439
$E(z) - \sqrt{D(z)}$	-0.103853	-0.077386	-0.65479	-0.11309	-0.079568
\hat{E}	0.0	0.0	0.	0.	0.0

Таблица 8: Распределение Лапласа, size=100

	\overline{x}	medx	$ z_R$	z_Q	$ z_{tr} $
E(z)	0.000259	-0.000822	0.025129	-0.002091	-0.000747
D(z)	0.000997	0.000516	0.409826	0.001022	0.000596
$E(z) + \sqrt{D(z)}$	0.03183	0.021888	0.665306	0.029881	0.023667
$E(z) - \sqrt{D(z)}$	-0.031312	-0.023531	-0.615047	-0.034063	-0.02516
$\mid \hat{E} \mid$	0.0	0.0	0.	0.0	0.0

Таблица 9: Распределение Лапласа, size=1000

	\overline{x}	medx	$ z_R $	z_Q	$ z_{tr} $
$\mid E(z)$	9.9962	9.8605	10.2685	9.929	9.888167
D(z)	1.082446	1.56729	1.945658	1.276959	1.240132
$E(z) + \sqrt{D(z)}$	11.036606	11.112414	11.663368	11.059026	11.001779
$E(z) - \sqrt{D(z)}$	8.955794	8.608586	8.873632	8.798974	8.774554
$\mid \hat{E} \mid$	9^{+2}_{-1}	9^{+2}_{-1}	10^{+1}_{-2}	9^{+2}_{-1}	9^{+2}_{-1}

Таблица 10: Распределение Пуассона, size=10

	\overline{x}	medx	$ z_R $	z_Q	$ z_{tr} $
$\mid E(z)$	10.00179	9.8355	10.961	9.86	9.85776
D(z)	0.102151	0.20869	1.007979	0.1679	0.123386
$E(z) + \sqrt{D(z)}$	10.321401	10.292326	11.964982	10.269756	10.209024
$E(z) - \sqrt{D(z)}$	9.682179	9.378674	9.957018	9.450244	9.506496
$\mid \hat{E} \mid$	10^{0}_{-1}	9_0^{+1}	10^{+1}_{-1}	9_0^{+1}	9_0^{+1}

Таблица 11: Распределение Пуассона, size=100

	\overline{x}	medx	$ z_R$	z_Q	$ z_{tr} $
E(z)	10.007622	9.9975	11.701	9.994	9.866772
D(z)	0.010103	0.002244	0.745099	0.003464	0.010912
$E(z) + \sqrt{D(z)}$	10.108137	10.044868	12.564191	10.052856	9.971232
$E(z) - \sqrt{D(z)}$	9.907107	9.950132	10.837809	9.935144	9.762312
$\mid \hat{E} \mid$	10^{0}_{-1}	9_0^{+1}	11^{+1}_{-1}	9_0^{+1}	9_0^0

Таблица 12: Распределение Пуассона, size=1000

	\overline{x}	medx	$ z_R$	z_Q	$ z_{tr} $
E(z)	-0.004578	-0.013335	0.004056	-0.003191	-0.010439
D(z)	0.103112	0.238313	0.044398	0.142731	0.171049
$E(z) + \sqrt{D(z)}$	0.316533	0.474838	0.214764	0.374607	0.403142
$E(z) - \sqrt{D(z)}$	-0.325689	-0.501509	-0.206653	-0.380988	-0.42402
\hat{E}	0.	0.	0.	0.	0.

Таблица 13: Равномерное распределение, size=10

	\overline{x}	medx	z_R	z_Q	$ z_{tr} $
$\mid E(z)$	-0.003657	-0.006445	-0.000115	-0.020072	-0.006207
D(z)	0.010075	0.029663	0.00064	0.014065	0.019908
$E(z) + \sqrt{D(z)}$	0.096715	0.165785	0.025174	0.098525	0.13489
$E(z) - \sqrt{D(z)}$	-0.104029	-0.178674	-0.025404	-0.138668	-0.147304
$\mid \hat{E} \mid$	0.0	0.	0.0	0.	0.

Таблица 14: Равномерное распределение, size=100

	\overline{x}	medx	z_R	z_Q	$ z_{tr} $
$\mid E(z)$	-0.002	-0.001847	-0.00006	-0.004015	-0.002246
D(z)	0.000988	0.002957	0.000006	0.001508	0.002022
$E(z) + \sqrt{D(z)}$	0.029429	0.052531	0.002341	0.034816	0.042719
$E(z) - \sqrt{D(z)}$	-0.033428	-0.056226	-0.002461	-0.042846	-0.04721
$\mid \hat{E} \mid$	0.0	0.0	0.00	0.0	0.0

Таблица 15: Равномерное распределение, size = 1000

5 Обсуждение

Исходя из данных, приведенных в таблицах, можно сделать выводы о том, что дисперсия характеристик рассеяния для распределения Коши в значительной степени превышает анологичные дисперсии других величин, достигая больших значений даже при увеличении выборки. Очевидно, что данная "аномалия" обусловлена выбросами, наблюдаемыми нами в предыдущей лабораторной работе

6 Приложение

Код программы: https://github.com/FaceHunterr/MatStat/tree/main/lab2.