

DECEMBER 12, 1921

AVIATION AND AIRCRAFT JOURNAL

VOL. XI. NO. 24

*Member of the Audit Bureau of Circulations***INDEX TO CONTENTS**

Editorials	677	New Speed Records	684
Distribution of Load over Wing Tips and Stress Analysis	678	Tests of the 450 hp. Bristol Jupiter Engine	685
The Question of Tandem Propellers	679	Control in Circling Flight	686
French Air Transport Leads	680	Minimum Induced Drag of Aerofoils	686
Flying Field at Honolulu Park	680	An Enthusiastic Aerial Passenger	686
Sport Farman at Baltimore	680	"Who's Who in American Aeronautics"	687
The Chamberlin-Standard H5 Five-Seater	681	The Safety of American Civil Aviation	689
Canadian Airharbors	681	Air Service Develops Radio Controlled Automobile	690
Photographic Forest Survey	681	Resumption of Air Service Recruiting	690
Parachutes and Life Packs	682	Course for Enlisted Men at Communications School	690
Chicago—New York Non-Stop with Five on Board	682	Second Prague Aero Show	690
Semirigid versus Nonrigid Airships	683	Foreign Aeronautical News	691
Lectures on Commercial Aviation	684		

THE GARDNER, MOFFAT COMPANY, Inc., Publishers

HIGHLAND, N. Y.

225 FOURTH AVENUE, NEW YORK

SUBSCRIPTION PRICE: FOUR DOLLARS PER YEAR. SINGLE COPIES FIFTEEN CENTS. CANADA FIVE DOLLARS. FOR SIGN, SIX DOLLARS A YEAR. COPYRIGHT 1921, BY THE GARDNER, MOFFAT COMPANY, INC.

ISSUED EVERY MONDAY. FORMS CLOSE TEN DAYS PREVIOUSLY ENTITLED AS SECOND-CLASS MATTER NOV. 22, 1920, AT THE POST OFFICE AT HIGHLAND, N. Y. UNDER ACT OF MARCH 3, 1893.

THOMAS-MORSE AIRCRAFT CORPORATION**THOMAS-MORSE AIRCRAFT CORPORATION**

24,948 Parts make a Martin Bomber

SPECIALIZED production methods are necessary to insure absolute accuracy and uniformity in each part which goes to the making of a Glenn L. Martin Bomber.

There are 18 separate bulkheads. Each bulkhead is assembled on a machined steel surface plate with location blocks with an accuracy impossible by any other method. The rigid inspection will not permit variations greater than 1/100 of an inch on these bulkheads.

The 24,948 parts which go to make a completed bomber are assembled with care and rapidity. Every part fits into its place just as its designer had planned.

It is the combination of advanced engineering with such methods of manufacture that enables the Glenn L. Martin Bomber to set unsurpassed records for safety, endurance, performance and dependability.

**THE GLENN L. MARTIN CO.
CLEVELAND**

Member of the Manufacturers Aircraft Association

AVIATION AND AIRCRAFT JOURNAL

L. D. GRIFFITH, President
W. D. MORSE, Vice President
W. J. SIMMONS, Treasurer
GEORGE NEWCOMB, Business Manager

Vol. XI

December 15, 1933

No. 24

LAWRENCE A. O'BRIEN, Editor
ALLENSON KELLY, Associate Editor
EDWARD P. WARDE, Assistant Editor
RALPH H. UPTON, Circulation Manager

The Annual Air Service Report

THE annual report of the Chief of Air Service as a separate document has been dispensed with by the War Department in the interests of economy. Excepting what appears in the report of the Secretary of War, no report of the Air Service report will be available except as the Chief of Air Services chose to show the segment in his office.

In a year when the Air Service has observed certain results which have received international attention, and when aviation problems have become almost as important in themselves as those of the Army and the Navy considered separately, the public is not to be given the opportunity of reading the official records of such progress.

Economy as government spending is, as usual, starting at the point where the least economy will be secured. This amount of unused printing caused to lie dead by other expert means of the government indicates that the printing house could be applied to less important projects than the report of the Chief of Air Services.

In view of the general interest the annual report of the Chief of Air Service has heretofore elicited from the aerospace world it is to be hoped that AVIATION AND AIRCRAFT JOURNAL may be authorized to give at least a portion of this report the widest possible publicity.

Toots with Tandem Propellers

THIS article dealing with the question of tandem propellers which appears at this time makes interesting reading, particularly in connection with the Paris Auto Show, at which several aeroplanes fitted with tandem propellers were exhibited. Our next issue will contain a comprehensive illustrated report on the show, and our readers will be able to see for themselves how French aircraft manufacturers have gone about answering the question of tandem propellers to the letter.

Without attempting to discuss the efficiency of tandem propellers, it does appear however that the problem is a tandem installation as yet by any means as efficient as was assumed before systematic tests were made. The principal advantage of a tandem propeller arrangement is of course that it permits of doing away with a lot of parasitic resistance in the shape of separate engine nacelles. In addition through the use of tandem propellers a large increase in power can be obtained in the shorter time (as flying boats, for instance) with the same engine while otherwise would require an outboard mounting. The last decided advantage lies in the viewpoint of pilotage. The two-engined machines are not, as a rule, very easy to fly in poor weather for any length of time.

As against these advantages of the tandem propeller arrangement, there is the drawback that when they are used to fly into the wake of outboard engines not only occur-

ries, but they are even liable to be magnified, as in the case of an entire tandem set being placed out of commission through engine trouble. How such an airplane would fly on one outboard tandem set remains to be seen, and tests regarding such an eventuality should be of considerable interest.

That some of the French aeronautical engineers are rather dubious about twin tandem propellers offering the best solution of the multi-engine problem seems to be borne out by the comparatively large number of three-engined machines seen at the show. It is obvious that three-engined airplanes are less difficult to pilot with one engine stopped than two-engined machines, first, because with a single engine eliminate only one-third of the available power in against wind; and second, because the turning moment is far the same owing much smaller. The main drawback of a three-engined configuration is that it does not afford the pilot and navigator much an unobstructed field of vision as the two-engined machines.

The Location of Air Terminals

THE cover illustration of this issue, which shows one of the Paris terminal terminals as seen from the air, may not strike the reader as having any particular connection with aviation save that it is a fine aerial photograph. However, on further reflection, the picture may answer an entirely different aspect.

Holden terminals are, as a rule located in the heart of cities so that they occupy easy roads close with the least possible loss of time. If we compare this fortunate situation of these with air terminals, we see clearly by the great distance which separates metropolitan and other airfields from the city which they are supposed to serve. As a consequence the great traveler who may have half of his time in traveling on airways between two cities is likely to lose again a good deal of time if the time saved owing to the great distance which separates the airfield from the city, and the hours of the lack of rapid communications at such terminals.

With this question is not yet an urgent one in New York, for instance, owing to the nonexistence of regular air traffic, as will sooner or later assume considerable importance. Airports are, we believe, unlikely to afford a completely satisfactory solution of the question, because of the necessarily less efficient nature of such airports. Hence, while the碧ue may be an ideal airfield for flying boats and seaplanes engaged in coastal and river traffic, it cannot be denied that the low overhead air fares which some day will come into existence will require a land airfield, possibly with a water float, to permit of the alighting of land and water machines at the same terminal. That such a terminal should have the best possible central location is obvious, and the question therefore deserves of exhaustive study.

Distribution of Load over Wing Tips and Stress Analysis

By E. V. Kervin-Krouskovsky, M.Sc.
Aeronautics Plans and Motor Co.

It is a well known fact, that load per inch run of a wing decreases at a proximity of wing tip. The necessity of taking this effect into account in aircraft computations was more, than long ago, and several approximate methods were used. A study of pressure distributions along model wings was made by the National Physical Laboratory, and led to the conclusion, that distribution of the load over a wing tip is practically independent of the plan form of the tip. Accordingly a cosine curve was deduced, which was standardized by Technical Department in England, as the basis for strength computations. This load curve is reproduced on Fig. 2.

Fig. 2.

Computation of the effect of such a load distribution in each individual case would require, however, considerable difficulties, and would require large amount of time, which fact is probably responsible for little popularity being gained by this method.

However, if curves of shear force and bending moment were drawn, and were expressed in terms of chord length and loading, the resulting computations would become very simple and short, as it will be shown in the following example.

Let Fig. 3 represent the distribution of load along upper wing of biplane, chord of which is 50 in. long, and let it be previously found, that total load carried by the wing is 900 lb. It is required to find the load per inch run, which we shall denote as σ .

The load on each wing tip is variable over a length of 12 in., since the chord is over the length of 50 in. From the curve of shear force on Fig. 2 we find, that at 12 chord from the wing tip shear force is equal to $20 \times 12 \times 50 = 1200$ in-lb. Hence load carried by each wing tip is:

$$1200 \times 0.5 \times 12 = 48,000 \text{ lb}$$

Load carried by the middle part of the wing is evidently:

$$1800 \times 2 = 3600 \text{ lb}$$

The Question of Tandem Propellers

By A. Lippisch
Director of the Eiffel Laboratory

R. 6.

DEUTSCHE GESCHÄFTS FÜR 300 HP. MESSERSCHMITT WITH FOUR EIFFEL TYPE PROPELLERS

The question of tandem propellers has not yet been approached from the theoretical viewpoint, and considerable uncertainty would still exist with regard to their functioning, until an appropriate series of experiments were made.

With the National Physical Laboratory of Teddington, England, conducted an investigation of tandem propellers for the Handley-Page company, the experiments were too few in number to be considered systematic. These experiments however demonstrated the fact, later verified by M. Eiffel, that in tandem propeller arrangement the two propellers react in opposite directions at the rear propeller to have a stabilizing effect.

On applying two tandem propellers one, as a rule, driven by two shafts in opposite directions. It is therefore necessary that both propellers absorb the same amount of power, from which it follows that the angle of attack on a tandem propeller arrangement may be stated in the following terms:

Given a tandem propeller, there is required a power pitch which, while influenced by the factor, will absorb the same amount of power on the latter.

The usual simple reason for equating the power of motor and pitch in a tandem combination is to use a power unit

Translated by S. Miller from L'Aviation

developing constant pitch, which will make it absorb the same amount of power on the former.

In the case of tandem propellers driven by identical engines, and having the same engine reactions, M. Eiffel has determined the following two points:

There is no advantage from the viewpoint of efficiency to give the propeller a pitch which would require the use of front and rear propellers of different diameters.

There is no advantage from the viewpoint of efficiency to give the propeller a pitch which would require the use of front and rear propellers of the same diameter at different speeds.

The experiments have led M. Eiffel to determine the case of tandem propellers having the same diameters and turning at the same speed in opposite directions. The tests made with such a combination show that the pitch required by the greater is, in general, about the same as that of the smaller when the latter value is increased, corresponding to maximum efficiency. The pitch, on the other hand, is far less influenced by the rotation of the smaller.

In following up this investigation M. Eiffel has made a series of tests with tandem propellers between which a fairing with an center section slightly (taper) was mounted. These showed that the air flow evenly hit slightly the pitch which is required for the pitch, as may be seen from Table I.

DEUTSCHE GESCHÄFTS FÜR 300 HP. HANDELY-PAGE IN WHICH THE TAIL DRIVEN BY ONE ENGINE EACH, WHILE THE PLANE WAS DRIVEN BY TWO ENGINES EACH. ALL PROPELLERS WERE SAME DIA.

solve the question. In fact, the assembling of our longitudinal beam complete with all its accessories, comprising the stiffening of the bow, the proper plates, girders, etc., can be done without interference in the open air if it is protected from the weather by a temporary covering of canvas dimensions. When the rigid part is assembled we can, given favorable conditions and fine weather, proceed rapidly to the infilling of the envelope and tie in the connections with the rigid part. After this, the envelope may be ready in a few days, if not to fly, at least to be tensioned so that the final adjustments may be made without danger.

6th Great facilities of reparation and replacing of single metallic parts. This considerable advantage arises necessarily from the fact that the rigid part occupies only a small space, and also that the various parts are articulated together, so that a damaged part can easily be changed.

7th Lower cost of construction and assembling. We need not dwell on this point. Greater rapidity of construction and

THE U. S. ARMY AIRSHIPS HOME TO FLIGHT

assembling together with the use of current methods must contribute to a lower cost of production.

This advantage, however, must be set off against the cost of assembling. At a meeting of men in the Italian type, when from my view, the gas bag becomes inefficient, it must be entirely removed. It is certain that to change one of the gas compartments of the Zeppelin is a much less costly operation, but, on the other hand, when we consider that the maintenance cost of the rigid portion is made less in the Italian type, we come to the conclusion that, on the whole, the cost of a Zeppelin is lower than that of the envelope of an Italian dirigible.

In assessing all the advantages of an Italian airship over a Zeppelin, we must, however, admit that in one point the latter is superior, namely, in the coefficient of head resistance. But we are convinced that this inferiority will soon be eliminated by successive improvements in the Italian type of dirigible.

One Hour Test Curves on 3 Cylinders

The engine was set to run at 50 per cent of normal full power rpm., 345 rpm., at 1875. The gasoline from one carburetor was cut off, allowing the engine to run on six cylinders and the other two engines were run 1 hr. non-stop under these conditions. Naturally there was a certain amount of vibration, but not extreme.

At the end of the hour, gasoline was turned on, and the engine picked up to full load at once. There was no picking up of plenum. The results obtained on six cylinders were as follows:

Time	Rpm.	Oil Temp.	Water Temp.	Gasoline
0 hr.	345	105	105	100% (full)
1 hr.	345	105	105	50% (non-stop)
2 hr.	345	105	105	100% (full)

This test was also carried out under the supervision of the Aircraft Inspection Department.

Plenum

The efficient weight of the engine complete is 729½ lb., excluding exhaust pipes and propeller.

Among other points which are of much importance may be mentioned that owing to the design of the reduction system the engine starts particularly easily, and owing to the cooling system it is especially suitable for starting up in very cold climates. The Jupiter engine can also be more easily and rapidly dismantled and reassembled than any other engine of comparable size and performance, and is claimed to have 20 per cent less parts than any other engine of equal power.

Costed in Circular Flight
NACA Report No. 122

This investigation was undertaken by the National Advisory Committee on Aviation, and was conducted at the Massachusetts Institute of Technology for the purpose of developing a standard method that would record the forces and positions of all three engines, and to obtain data on the behavior of the airplane in turns. All the work was done on a standard rigged JN-4H (airplane No. 2 of NACA), Report No. 21. It was found that the engine was comparatively sensitive and nose heavy; that it would respond quickly to the stick; that it was stable, and that it was directionally unstable, due to a coefficient of 0.005. This last being very unusual, for in view of a loss of rudder control the airplane immediately whipps into a spin from which there is no way of getting it out. On the other hand, it was found possible to fly quite satisfactorily with the main landing gear safety though not so well, with the main landing gear down. The author believes that in free flight, and when the effect of the propeller was taken into account, the movement with the model test was excellent, but with the propeller remaining at 1800 rpm. the value of \bar{v}_x was nearly doubled. The value of \bar{v}_y and \bar{v}_z were little affected by the difference, but their values do not agree with the model test.

Oil and Gasoline Consumption

The average of oil and gasoline consumption throughout the test was:

Time	Oil	Gasoline
0 hr.	1.00	1.00
1 hr.	1.00	1.00
2 hr.	1.00	1.00

These figures are mostly of slow attention. With engines of the air-cooled type the gasoline consumption figures have previously been very high, but the figures recorded during the present test afford test with the French Jupiter engine bear favorable comparison with the consumptions recorded by modern water-cooled engines.

Summary

At the conclusion of the tests the engine was dismantled for examination. Very fine signs of wear were visible, and the general condition of the engine was found to be excellent.

Full Throttle Test

At the conclusion of the test, and without any further adjustments or replacements being made to the engine, one engine (Pump No. 370/3200) was reinstalled in the engine. This was done to give a slightly altered timing to accommodate higher engine revs. and to give a longer time for the engine to reach 1750 rpm. and at 1800 rpm. was then completed in order to ascertain the necessary power the engine would develop and to demonstrate that the engine has a good factor of safety at its rated power with the following results:

Time	Rpm.	Load	Oil	Gasoline
0 hr.	345	0.00	105	100% (full)
1 hr.	345	0.00	105	50% (non-stop)
2 hr.	345	0.00	105	100% (full)
3 hr.	345	0.00	105	100% (full)

One Hour Full Throttle at 1775 rpm.

Average Rpm. 345 Average Wgt. 115.5 lb per cu. in. Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

One Hour Full Throttle at 1800 rpm.

Average Rpm. 345 Average Wgt. 115.0 lb per cu. in. Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Distance covered in 549 m. (1800 ft.)

Oil consumption 1.00 Gasoline 1.00 Total 1.00

Air Service Develops Radio Controlled Automobiles

Recent visits at McCook Field, the home of the Engineering Division of the Air Service at Dayton, Ohio, have been made by a group of a dirigible and aircraft experts who have been studying the problem of radio control of vehicles. The vehicle which has been chosen to serve as the basis for the buildings and among the airplanes on the field under variable means of control. It is often seen to approach a group of persons blowing its horn wildly, and then when apparently about to strike them, to stop short with screaming honks, back up with hardly sluggish steps, make a sharp turn to the right or left, and so forth, in the direction of the experts. Other experiments have been shown in methods of operating from this car, and the acrobatics it performed last night when they learned that the movements of the car can be controlled entirely by radio impulses, which are sent out from the radio station at the opposite end of the flying field. The fact that there is no

THE RADIO-CONTROLLED AUTOMOBILE DEVELOPED BY THE ENGINEERING DIVISION, AIR SERVICE, AT MCCOOK FIELD.

radio or telephone system which would easily add to the妙技 of the car is of cigar-shaped construction about 9 ft. long, and uses three powerfully geared wheels. It travels at speed ranging from 10 mph. to 15 mph., and the controls can be easily adjusted so that it may be easily steered along a narrow road-way.

An examination of the interior of the car shows an amazing and surprising collection of batteries, switches, wires, vacuum tubes, potentiometers, resistors, magnetics, etc., all of which are of great necessity to the radio control of the vehicle. The most interesting part of the apparatus is the "relay" which is in reality the heart of the entire control system. Various combinations of dots and dashes are sent out by means of a specially constructed transmitter, each combination calling for the accomplishment of a certain operation of the control apparatus. It is the function of this selector to select the various combinations of dots and dashes which are sent out, so as to close the circuits in the desired order. Obviously, if this selector is constructed, and so rapidly will it operate, that it is possible to put into operation any one of twelve different circuits in a period of less than one second. That is to say, less than one thousand slugs from the time any push button on the transmitter transmitter of the operator starts the car, until the car begins to move. This is in operation. Such speed of control has never before been accomplished. This car has been controlled perfectly well from an airplane and from a ground controlling station.

The possibilities of radio control and its applications in war time problems are almost without number. Radio control can be used to operate aerial bombs, aerial mines, which can be set on the ground, the motion of which can be directed, or beneath the water. Huge land tanks may be constructed and fitted with T.V.T. and driven to any desired point along the enemy's lines while the explosive can be fired by means of radio, or it can be applied in a similar manner to a boat, submarine, torpedo, or even as an airship.

Resumption of Recruiting for Air Service

The Air Service is in immediate need of over 3,000 enlisted men and officers, and accordingly will commence it a letter from the Adjutant General of the Army which outlined the procedure to be followed in securing recruits.

Recruiting will again be conducted under the direction of Corps Area Commanders. Under this plan the Air Officer is the representative of the Chief of Air Service for all matters pertaining to recruiting for the Air Service within the corps area, and shall be responsible for the maintenance of the recruiting program in entirety in the hands of the Air Officer. Each Corps Area Air Officer and the Commandant Officer of Bolling Field, Anacostia, D. C., has been directed to submit on Dec. 30, 1932, a detailed report concerning recruiting activities for the Air Service within the corps area or districts. Certain quotas have been assigned to various corps areas, but as these will not take into consideration current losses through attrition, it will be necessary from time to time to increase those quotas to accommodate for such losses.

The distribution of the authorized strength of the Air Service by organization is as follows:

Organization	Strength of Organization	Number of Total Organizations	Total Strength
Wing Headquarters	20	1	20
Group Headquarters (H.A.)	20	6	120
Group Headquarters (L.A.)	20	1	20
Squadrons	100	25	3,000
Squadrons (R.S.)	90	20	900
Balloon Companies	100	3	300
Defence Companies (Cloud Defense)	100	8	800
Aircraft Companies	100	6	700
Airship Companies	172	39	7,000
British Intelligence Officers	5	1	5
Air Office Control Detachments	4	1	4
Photo Sections	20	13	300
Field Officers School	90	1	90
Photo School	85	1	85
Aircraft School	120	2	240
Globe School	600	1	600
Radio Detachments	35	1	35
Meteorology School	100	1	100
Observation School	600	1	600
Balloon School	100	1	100
Flying Cadets	200	1	200
Communications School	50	1	50

73,300

The following vacancies for enlisted men now exist at Air Service stations:

	War-time Air	Lighter-than-Air
McKee Field, N. Y.	479	23
Aberdeen, Md.	3	84
Lowry Field, Colo.	200	295
Montgomery, Ala. Air Intendance		
Air Depot	35	
Carlisle Field, Anacostia, D. C.	300	
Camp Chase, Ky.	55	
Scott Field, McEntire Field, S.C.	276	67
Fort Riley, Kansas	210	
Jacobs Field, San Antonio, Texas		150
Milwaukee Field, Houston, Texas	200	
Kelly Field, San Antonio, Texas 443		
Post Field, Fort Belvoir, Ga.	4	81
Rockwell Field, San Diego, Calif.		
Marine Corps Air Station, Calif. 123	25	
Bolling Field, Anacostia, D. C.	25	
		For duty in Hawaii

Course for Enlisted Men at Communication School

A new class for enlisted men, with 25 attending was opened at the communications school Fort Riley, Okla., on Oct. 22. This course will last for three months. It is a combined radio operators' and radio mechanics' course. Graduates will be qualified for both ratings.

Second Prague Aero Show

REVIEW OF THE 1932 (70 HP. Mercedes) SCHNEIDER MOTORPLANE MACHINES IN THE PRAGUE AERO SHOW

REVIEW OF THE 1932 (185 HP. BMW) FISCHER MOTORPLANE MACHINES IN THE PRAGUE AERO SHOW

The second show was organized by the Czechoslovak Aero Club under the patronage of the president of Czechoslovak Republic, Dr. Tomáš G. Masaryk, took place from Oct. 22 to 26, 1932, at the Palace of Industry, Prague, which has a surface area of 180,000 sq. ft.

Due to the active assistance of the government, the participation of numerous local and foreign aircraft manufacturing firms and the intense display by the public, the show proved a great success. The exhibition was opened by the minister of public works Tomin, who emphasized on his opening address that the Czechoslovak government would spare no effort in the development of the aircraft industry and the aircraft industry.

As a result of this policy, the exhibition was visited by President Masaryk together with several ministers, generals, and other officials of the government. It is the intention of the Czechoslovak government to make of their country the leading air power among the new countries of Central Europe. The following are two samples of Czechoslovak aeroplanes illustrated hereinafter which plane seems to be well on the way toward its ultimate goal.

Following is a list of the aircraft firms which exhibited machines at the second Prague Aero Show:

The Company Fratres-Eustis de Navigation Aerienne which is running the air transport service on the Paris-Strasbourg-Pezens-Avignon route exhibited a biplane-passenger monoplane fitted with the 300 hp Hispano engine, radial 9 cylinder engine and a 400 hp eight V type cylinder engine.

The Avia aircraft works of Prague exhibited the Avia 2000 passenger plane, designed by Vojtěch Horařík, 1929 hp Hispano-Suiza, the Avia 5000 passenger plane designed by Engenier Blažek (Hispano-Suiza), and the Avia 6400 passenger plane designed by Engenier W. W. W.

The Avia Works of Brno-Vysočina exhibited a sporting monoplane two-seater Avia B.I.B.I fitted with a 60 hp Gnome engine, a sporting monoplane Avia B.I.B.II fitted with a 28 hp engine and a passenger monoplane Avia B.I.B.III, fitted with a 180 hp B.M.W. engine.

The Malacky Aircraft Works of Prague-Gibuty exhibited the touring plane known as the Avia 2 (designed by Švec) fitted with a 260 hp Maybach engine.

The Avia factory exhibited the wheel monoplane R.P.3 fitted with 75 hp Mercedes engine.

THE CONTEST COMMITTEE of the AERO CLUB OF AMERICA

Request of seven (individuals or companies) of
which is the usual basis to register in order
that the Committee may

1. Seal, prints, the Aero Club's Contest
Rules for 1932, and notice of proposed
changes made.

2. Seal (or) Globes in containing contests
best adapted to the types of aerobatics in
their locality.

3. Have a record of aerobatic and pilot
activities throughout the country in these
of aerobatics.

CONTEST COMMITTEE, AERO CLUB OF AMERICA:
11 East 36th Street, New York City

Dues

1. Seal (or) Globes
2. Name
3. Name
4. Name
5. Name
6. Name
7. Name
8. Name
9. Name
10. Name
11. Name
12. Name
13. Name
14. Name
15. Name
16. Name
17. Name
18. Name
19. Name
20. Name
21. Name
22. Name
23. Name
24. Name
25. Name
26. Name
27. Name
28. Name
29. Name
30. Name
31. Name
32. Name
33. Name
34. Name
35. Name
36. Name
37. Name
38. Name
39. Name
40. Name
41. Name
42. Name
43. Name
44. Name
45. Name
46. Name
47. Name
48. Name
49. Name
50. Name
51. Name
52. Name
53. Name
54. Name
55. Name
56. Name
57. Name
58. Name
59. Name
60. Name
61. Name
62. Name
63. Name
64. Name
65. Name
66. Name
67. Name
68. Name
69. Name
70. Name
71. Name
72. Name
73. Name
74. Name
75. Name
76. Name
77. Name
78. Name
79. Name
80. Name
81. Name
82. Name
83. Name
84. Name
85. Name
86. Name
87. Name
88. Name
89. Name
90. Name
91. Name
92. Name
93. Name
94. Name
95. Name
96. Name
97. Name
98. Name
99. Name
100. Name
101. Name
102. Name
103. Name
104. Name
105. Name
106. Name
107. Name
108. Name
109. Name
110. Name
111. Name
112. Name
113. Name
114. Name
115. Name
116. Name
117. Name
118. Name
119. Name
120. Name
121. Name
122. Name
123. Name
124. Name
125. Name
126. Name
127. Name
128. Name
129. Name
130. Name
131. Name
132. Name
133. Name
134. Name
135. Name
136. Name
137. Name
138. Name
139. Name
140. Name
141. Name
142. Name
143. Name
144. Name
145. Name
146. Name
147. Name
148. Name
149. Name
150. Name
151. Name
152. Name
153. Name
154. Name
155. Name
156. Name
157. Name
158. Name
159. Name
160. Name
161. Name
162. Name
163. Name
164. Name
165. Name
166. Name
167. Name
168. Name
169. Name
170. Name
171. Name
172. Name
173. Name
174. Name
175. Name
176. Name
177. Name
178. Name
179. Name
180. Name
181. Name
182. Name
183. Name
184. Name
185. Name
186. Name
187. Name
188. Name
189. Name
190. Name
191. Name
192. Name
193. Name
194. Name
195. Name
196. Name
197. Name
198. Name
199. Name
200. Name
201. Name
202. Name
203. Name
204. Name
205. Name
206. Name
207. Name
208. Name
209. Name
210. Name
211. Name
212. Name
213. Name
214. Name
215. Name
216. Name
217. Name
218. Name
219. Name
220. Name
221. Name
222. Name
223. Name
224. Name
225. Name
226. Name
227. Name
228. Name
229. Name
230. Name
231. Name
232. Name
233. Name
234. Name
235. Name
236. Name
237. Name
238. Name
239. Name
240. Name
241. Name
242. Name
243. Name
244. Name
245. Name
246. Name
247. Name
248. Name
249. Name
250. Name
251. Name
252. Name
253. Name
254. Name
255. Name
256. Name
257. Name
258. Name
259. Name
260. Name
261. Name
262. Name
263. Name
264. Name
265. Name
266. Name
267. Name
268. Name
269. Name
270. Name
271. Name
272. Name
273. Name
274. Name
275. Name
276. Name
277. Name
278. Name
279. Name
280. Name
281. Name
282. Name
283. Name
284. Name
285. Name
286. Name
287. Name
288. Name
289. Name
290. Name
291. Name
292. Name
293. Name
294. Name
295. Name
296. Name
297. Name
298. Name
299. Name
300. Name
301. Name
302. Name
303. Name
304. Name
305. Name
306. Name
307. Name
308. Name
309. Name
310. Name
311. Name
312. Name
313. Name
314. Name
315. Name
316. Name
317. Name
318. Name
319. Name
320. Name
321. Name
322. Name
323. Name
324. Name
325. Name
326. Name
327. Name
328. Name
329. Name
330. Name
331. Name
332. Name
333. Name
334. Name
335. Name
336. Name
337. Name
338. Name
339. Name
340. Name
341. Name
342. Name
343. Name
344. Name
345. Name
346. Name
347. Name
348. Name
349. Name
350. Name
351. Name
352. Name
353. Name
354. Name
355. Name
356. Name
357. Name
358. Name
359. Name
360. Name
361. Name
362. Name
363. Name
364. Name
365. Name
366. Name
367. Name
368. Name
369. Name
370. Name
371. Name
372. Name
373. Name
374. Name
375. Name
376. Name
377. Name
378. Name
379. Name
380. Name
381. Name
382. Name
383. Name
384. Name
385. Name
386. Name
387. Name
388. Name
389. Name
390. Name
391. Name
392. Name
393. Name
394. Name
395. Name
396. Name
397. Name
398. Name
399. Name
400. Name
401. Name
402. Name
403. Name
404. Name
405. Name
406. Name
407. Name
408. Name
409. Name
410. Name
411. Name
412. Name
413. Name
414. Name
415. Name
416. Name
417. Name
418. Name
419. Name
420. Name
421. Name
422. Name
423. Name
424. Name
425. Name
426. Name
427. Name
428. Name
429. Name
430. Name
431. Name
432. Name
433. Name
434. Name
435. Name
436. Name
437. Name
438. Name
439. Name
440. Name
441. Name
442. Name
443. Name
444. Name
445. Name
446. Name
447. Name
448. Name
449. Name
450. Name
451. Name
452. Name
453. Name
454. Name
455. Name
456. Name
457. Name
458. Name
459. Name
460. Name
461. Name
462. Name
463. Name
464. Name
465. Name
466. Name
467. Name
468. Name
469. Name
470. Name
471. Name
472. Name
473. Name
474. Name
475. Name
476. Name
477. Name
478. Name
479. Name
480. Name
481. Name
482. Name
483. Name
484. Name
485. Name
486. Name
487. Name
488. Name
489. Name
490. Name
491. Name
492. Name
493. Name
494. Name
495. Name
496. Name
497. Name
498. Name
499. Name
500. Name
501. Name
502. Name
503. Name
504. Name
505. Name
506. Name
507. Name
508. Name
509. Name
510. Name
511. Name
512. Name
513. Name
514. Name
515. Name
516. Name
517. Name
518. Name
519. Name
520. Name
521. Name
522. Name
523. Name
524. Name
525. Name
526. Name
527. Name
528. Name
529. Name
530. Name
531. Name
532. Name
533. Name
534. Name
535. Name
536. Name
537. Name
538. Name
539. Name
540. Name
541. Name
542. Name
543. Name
544. Name
545. Name
546. Name
547. Name
548. Name
549. Name
550. Name
551. Name
552. Name
553. Name
554. Name
555. Name
556. Name
557. Name
558. Name
559. Name
560. Name
561. Name
562. Name
563. Name
564. Name
565. Name
566. Name
567. Name
568. Name
569. Name
570. Name
571. Name
572. Name
573. Name
574. Name
575. Name
576. Name
577. Name
578. Name
579. Name
580. Name
581. Name
582. Name
583. Name
584. Name
585. Name
586. Name
587. Name
588. Name
589. Name
590. Name
591. Name
592. Name
593. Name
594. Name
595. Name
596. Name
597. Name
598. Name
599. Name
600. Name
601. Name
602. Name
603. Name
604. Name
605. Name
606. Name
607. Name
608. Name
609. Name
610. Name
611. Name
612. Name
613. Name
614. Name
615. Name
616. Name
617. Name
618. Name
619. Name
620. Name
621. Name
622. Name
623. Name
624. Name
625. Name
626. Name
627. Name
628. Name
629. Name
630. Name
631. Name
632. Name
633. Name
634. Name
635. Name
636. Name
637. Name
638. Name
639. Name
640. Name
641. Name
642. Name
643. Name
644. Name
645. Name
646. Name
647. Name
648. Name
649. Name
650. Name
651. Name
652. Name
653. Name
654. Name
655. Name
656. Name
657. Name
658. Name
659. Name
660. Name
661. Name
662. Name
663. Name
664. Name
665. Name
666. Name
667. Name
668. Name
669. Name
670. Name
671. Name
672. Name
673. Name
674. Name
675. Name
676. Name
677. Name
678. Name
679. Name
680. Name
681. Name
682. Name
683. Name
684. Name
685. Name
686. Name
687. Name
688. Name
689. Name
690. Name
691. Name
692. Name
693. Name
694. Name
695. Name
696. Name
697. Name
698. Name
699. Name
700. Name
701. Name
702. Name
703. Name
704. Name
705. Name
706. Name
707. Name
708. Name
709. Name
710. Name
711. Name
712. Name
713. Name
714. Name
715. Name
716. Name
717. Name
718. Name
719. Name
720. Name
721. Name
722. Name
723. Name
724. Name
725. Name
726. Name
727. Name
728. Name
729. Name
730. Name
731. Name
732. Name
733. Name
734. Name
735. Name
736. Name
737. Name
738. Name
739. Name
740. Name
741. Name
742. Name
743. Name
744. Name
745. Name
746. Name
747. Name
748. Name
749. Name
750. Name
751. Name
752. Name
753. Name
754. Name
755. Name
756. Name
757. Name
758. Name
759. Name
760. Name
761. Name
762. Name
763. Name
764. Name
765. Name
766. Name
767. Name
768. Name
769. Name
770. Name
771. Name
772. Name
773. Name
774. Name
775. Name
776. Name
777. Name
778. Name
779. Name
780. Name
781. Name
782. Name
783. Name
784. Name
785. Name
786. Name
787. Name
788. Name
789. Name
790. Name
791. Name
792. Name
793. Name
794. Name
795. Name
796. Name
797. Name
798. Name
799. Name
800. Name
801. Name
802. Name
803. Name
804. Name
805. Name
806. Name
807. Name
808. Name
809. Name
810. Name
811. Name
812. Name
813. Name
814. Name
815. Name
816. Name
817. Name
818. Name
819. Name
820. Name
821. Name
822. Name
823. Name
824. Name
825. Name
826. Name
827. Name
828. Name
829. Name
830. Name
831. Name
832. Name
833. Name
834. Name
835

**influence,
authority,
and goodwill!**

ADVERTISING is successful in direct proportion to the influence, authority and goodwill of the publication in which it is placed.

If you wish your advertising to be influential, carry authority and create goodwill, place it in a publication which is recommended for those potential sales markets.

AVIATION AND AIRCRAFT JOURNAL
225 Fourth Avenue, New York.

December 22, 1993

INDEX TO ADVERTISERS

Aeronautic Engineering & Sales Co.	685
Aircraft Service Directory	686
B	
B. G. Corporation, The	687
C	
Cessna, C. R., Aircraft Co.	687
Geo-Knight Aircraft Corp.	694
Curtiss Aeroplane & Motor Corp.	720
D	
Dervon Wright Co.	674
Duggo, Ralph G., Co., The	687
E	
Friedland, L. W. & Co.	690
H	
Hammon Aero Mfg. Co.	695
Heitkemper, Stewart Co.	697
L	
Lengau Aircraft Corp.	688
M	
Martin, The Glenn L., Co.	675
P	
Pioneer Instrument Co.	686
T	
Thrust-Max Aircraft Corp.	675
Thurston, W. Harris, & Co., Inc.	695
Tupper, Max & Sonnenfeld	695
W	
Warren, Edward Farnsworth, Jr.	689
Withington, Stans & Co.	689
Where to Fly	692
Wittemann Aircraft Corp.	691
Wright Aeronautical Corp.	690

©HAMILTON ACADEMY

CARRY TWICE THE PAY LOAD
A BRITISH-CALEDONIAN LINESHIP
A shipowner's dream come true! One of the newest tonnage with a
load of 14,000 tons. We can assure you Captain J. H. G.
is a man of "Solid Elephant" mien, a paying a place ship that
has a future. Good higher speed and closer handling.

2-14 CHALMERS AVENUE LTD.

HARTSHORN STREAMLINE WIRES
combined with Hartshorn Universal Snap Ends make
the Ideal Aeroplane Tie-Down—dominated wind re-
duces listing greater speed.
This fast test was given in the speed test for the Pulitzer
Prize. Four of the first five ships were equipped with
Hartshorn Streamline Tie-Downs.
The last slender A-1 describing our Wire and Snap

STEWART HARTSHORN CO.
111 E. 14TH STREET, NEW YORK.

LEARN TO FLY!
IN ASSOCIATION WITH
THE RALPH C. DIGGINS CO.
Learn Flying the Day You Arrive. Complete In-
struction. Many Types of Planes. Complete Systems
through Grand Central. Including instruction in manu-
al flying, wireless, carburetor, compressed air, flying
machines, etc. All instruction given by men born in the field.
PILOTS Receive \$100 Per Year and Up
ENROLL NOW!
Write for Information and Enrollment Offer.
THE RALPH C. DIGGINS CO.

The Spark Plug That Cleans Itself
B. G.

THE B. G. CORPORATION
33 GOLD STREET
NEW YORK CITY U. S. A.

THE Aircraft Service Directory

WHERE TO PROCURE EQUIPMENT AND SERVICES

SPERRY
AIRPLANE INSTRUMENTS
USED ALL OVER THE WORLD

THE LAWRENCE SPERRY AIRCRAFT CO., INC.
Farmington, Long Island, New York
Phone: Farmington 133

CANUCK and OX5 SUPPLIES

COMPLETE ASSORTMENT AT LOWEST PRICES

Recover your Canuck during winter months
 1 Set (4) wing covers (cotton) with tape and dope \$6.00
 2 Upper wing covers (cotton or linen) with tape and dope \$4.50
 3 Lower wing covers (cotton or linen) with tape and dope \$3.00
 Single covers Upper \$15.00, Lower 14.00
 Acetate dope per gal. \$1.00

Other material & parts at correspondingly low prices
 Aircraft Materials & Equipment Corp., 1409 Sedgwick Ave., N. Y. C.

WRITE FOR OUR
SPECIAL PRICE LIST
**CANUCK, JN., AVRO
AND OX-5 PARTS**

ERICSON AIRCRAFT LIMITED
120 KING ST., EAST, TORONTO, CANADA

OTTO PRAEGER

Aviation Consultant

5052 Grand Central Terminal Building
New York City

AIRPLANE ENGINES

LOWEST PRICES

IMMEDIATE DELIVERY

We Specialize on Isotta-Fraschini & Hispano-Suiza
AERO DISTRIBUTING COMPANY
17 East 42nd St., Room 419 New York City

For RELIABLE RESULTS and a SQUARE DEAL.
USE

DOPES
CLEAR
OR
PIGMENTED

»**TITANINE**
Reg. Trade Mark

{ VARNISH
AND
ENAMELS

MADE BY
Union, Union County, N. J.

TITANINE Inc.

will help you to make 1922
a better and more prosperous
year.

IMPORTED COMMERCIAL AERIAL CAMERAS

Latest model brand new 7" x 9" GAUMONT CAMERA
90°/f=5. Krause Lens, 12 plate automatic magazine suitable
for mapping and oblique \$100.00
Extra 12 plate automatic magazines 40.00
52° f=7.5 ICA CAMERA 1/4" f=5. Vignetter
Heliar Lens including four all aluminum plate magazines 400.00

FAIRCHILD AERIAL CAMERA CORPORATION
136 WEST 55 STREET NEW YORK CITY

ACETATE AEROPLANE DOPE

Eastman, Clear Acetate Dope, Code No. 41, in 50 gal.; steel drums;
at less than ONE HALF MANUFACTURERS PRICE. This
dope is approved by the Flying Division of the Service. McCook
Field, for use on Gov't. Contracts, and all purchasers of this Dope
will be notified by the above Department of this approval.

BRAMER-KELLY-CANFIELD CO.,
134-16th St., BUFFALO, N. Y.

CURTISS SHIPS FOR SALE

\$500.00 AND UP

CURTISS EASTERN AIRPLANE CORP.
130 S. 15th St. Phila., Pa.

SUPPLIES — "CANUCK" "JN" "OX5"

IMMEDIATE SERVICE
Our large stock is positively the most complete in the States.
When you order it from us you get it. No time lost from partial
shipment. All materials guaranteed new and unused. Write
for special section price list.

AMERICAN AIRCRAFT, INC.
AERODROME BALTIMORE, MD. STORES
LOGAN FIELD, MD. STATION F, BOX 104 DUNDALK, MD.

AN AIRPLANE EXPERT KNOWS --

THEORY
MANUFACTURE
MAINTENANCE
DESIGN
AERODYNAMICS
MOTORS

That an expert knowledge and foundation of airplane engineering can be laid only
by study under competent guidance.
A preparatory course by mail. Practical work.

FOR FULL DETAILS WRITE
Leslie B. Coombs—Chief Engineer—Central Airplane Works
843 Windsor Av., Chicago, Ill.

PATENTS, for sale Patent No. 1,190,248, covering changeable
angle of incidence of main planes and automatic
lateral and longitudinal stability. Particularly adaptable
to thick section wings. Patents No. 1,177,382 and 1,210,
418 covering dual controls, \$2,000 or reasonable offer.

Write
D. F. CASHMAN
108 HARTFORD ST., DAYTON, OHIO

AN OPPORTUNITY TO COMPLETE YOUR FILES

We have a limited supply of bound and un-
bound volumes, also a few back issues of
AVIATION AND AIRCRAFT JOURNAL NEW YORK CITY
225 FOURTH AVE. Prices upon request