Zweistellige Funktionen der zweiwertigen Logik

$$n = 2$$

Für zwei Variablen $y = f(x_1, x_2)$ gibt es
$$2^{2^{2}} = 2^{4} = 16$$

verschiedene Boolesche Funktionen. Diese Funktionen $y = f_0(x_1, x_2) \dots f_{15}(x_1, x_2)$ sind:

Zweistellige Boolesche Funktionen

x_1, x_2	0, 0	0, 1	1, 0	1, 1	Funktion			Name
\mathbf{f}_0	0	0	0	0	$x_1 \cdot \underline{x_1}$	0	$x_1 \land \neg x_1$	Kontradiktion, Nullfunktion
\mathbf{f}_1	0	0	0	1	$x_1 \cdot x_2$	$[x_1, x_2]$	$x_1 \wedge x_2$	Konjunktion, AND (x_1, x_2)
f_2	0	0	1	0	$x_1 \cdot \underline{x_2}$	$x_1 > x_2$	$x_1 \nleftrightarrow x_2$	Inhibition von x_1
f ₃	0	0	1	1	x_1	x_1	x_1	Identität von x ₁
f_4	0	1	0	0	$\underline{x_1} \cdot x_2$	$x_1 < x_2$	$x_1 \leftrightarrow x_2$	<u>Inhibition</u> von x ₂
f_5	0	1	0	1	x_2	x_2	x_2	Identität von x ₂
f_6	0	1	1	0	$(x_1 \cdot \underline{x_2}) + (\underline{x_1} \\ \cdot x_2)$	$x_1 \neq x_2$	$x_1 \leftrightarrow x_2$	Antivalenz, Alternative, XOR(x_1 , x_2)
f_7	0	1	1	1	$x_1 + x_2$	$[x_1, x_2]$	$x_1 \vee x_2$	Disjunktion, $OR(x_1, x_2)$
f ₈	1	0	0	0	$\underline{\underline{x_1} + \underline{x_2}} = \underline{\underline{x_1}} \cdot \underline{\underline{x_2}}$	$ \begin{array}{c} 1 - [x_1, \\ x_2] \end{array} $	$x_1 \downarrow x_2$	Nihilition, Peirce-Funktion, NOR (x_1, x_2)
f ₉	1	0	0	1	$(x_1 \cdot x_2) + (\underline{x_1} \\ \cdot \underline{x_2})$	$x_1 = x_2$	$x_1 \leftrightarrow x_2$	Äquivalenz, XNOR (x_1,x_2)
f ₁₀	1	0	1	0	<u>x2</u>	$1 - x_2$	$\neg x_2$	Negation von x_2 , NOT (x_2)
\mathbf{f}_{11}	1	0	1	1	$x_1 + \underline{x_2}$	$x_1 \ge x_2$	$x_1 \leftarrow x_2$	Replikation
f_{12}	1	1	0	0	<u>x</u> ₁	$1 - x_1$	$\neg x_1$	Negation von x_1 , NOT (x_1)
f ₁₃	1	1	0	1	$\underline{x_1} + x_2$	$x_1 \leq x_2$	$x_1 \rightarrow x_2$	Implikation
f ₁₄	1	1	1	0	$\underline{\underline{x_1} \cdot \underline{x_2}} = \underline{\underline{x_1}} + \underline{\underline{x_2}}$	$ \begin{vmatrix} 1 - [x_1, \\ x_2] \end{vmatrix} $	$x_1 \uparrow x_2$	Exklusion, Sheffer-Funktion, $NAND(x_1, x_2)$
f ₁₅	1	1	1	1	$x_1 + \underline{x_1}$	1	$x_1 \lor \neg x_1$	Tautologie, Einsfunktion