Rank-65605 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1431659869

General information

Number of lines	5
Number of points	21
Number of singular points	5
Number of Eckardt points	0
Number of double points	4
Number of single points	17
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{5}
Type of lines on points	$2^4, 1^{17}$

Singular Points

The surface has 5 singular points:

$$\begin{array}{ll} 0: \ P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0) \\ 1: \ P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1) \\ 2: \ P_{38} = \mathbf{P}(0,0,1,1) = \mathbf{P}(0,0,1,1) \end{array} \qquad \begin{array}{ll} 3: \ P_{53} = \mathbf{P}(0,0,\omega,1) = \mathbf{P}(0,0,2,1) \\ 4: \ P_{69} = \mathbf{P}(0,0,\omega^2,1) = \mathbf{P}(0,0,3,1) \end{array}$$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_{1} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_{1}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{122} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{122} = \mathbf{Pl}(0, 1, 1, 1, 1, 1)_{202}$$

$$\ell_{3} = \begin{bmatrix} 1 & \omega^{2} & 0 & 1 \\ 0 & 0 & 1 & \omega^{2} \end{bmatrix}_{166} = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix}_{166} = \mathbf{Pl}(0, 2, 2, 3, 1, 1)_{210}$$

$$\ell_{4} = \begin{bmatrix} 1 & \omega & 0 & 1 \\ 0 & 0 & 1 & \omega \end{bmatrix}_{144} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{144} = \mathbf{Pl}(0, 3, 3, 2, 1, 1)_{218}$$

Rank of lines: (16, 356, 122, 166, 144)

Rank of points on Klein quadric: (2, 1, 202, 210, 218)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 4 Double points: The double points on the surface are:

$$P_2 = (0,0,1,0) = \ell_0 \cap \ell_1$$

$$P_{38} = (0,0,1,1) = \ell_1 \cap \ell_2$$

$$P_{53} = (0,0,2,1) = \ell_1 \cap \ell_3$$

$$P_{69} = (0,0,3,1) = \ell_1 \cap \ell_4$$

Single Points

The surface has 17 single points: The single points on the surface are:

0: $P_0 = (1,0,0,0)$ lies on line ℓ_0 1: $P_3 = (0,0,0,1)$ lies on line ℓ_1 2: $P_8 = (1,0,1,0)$ lies on line ℓ_0 3: $P_9 = (2,0,1,0)$ lies on line ℓ_0 4: $P_{10} = (3,0,1,0)$ lies on line ℓ_0 5: $P_{12} = (1,1,1,0)$ lies on line ℓ_2 6: $P_{18} = (3,2,1,0)$ lies on line ℓ_3 7: $P_{21} = (2,3,1,0)$ lies on line ℓ_4 8: $P_{27} = (1,1,0,1)$ lies on line ℓ_2

9: $P_{31} = (1, 2, 0, 1)$ lies on line ℓ_4 10: $P_{35} = (1, 3, 0, 1)$ lies on line ℓ_3 11: $P_{43} = (2, 1, 1, 1)$ lies on line ℓ_3 12: $P_{44} = (3, 1, 1, 1)$ lies on line ℓ_4 13: $P_{67} = (2, 3, 2, 1)$ lies on line ℓ_4 14: $P_{68} = (3, 3, 2, 1)$ lies on line ℓ_2 15: $P_{79} = (2, 2, 3, 1)$ lies on line ℓ_2 16: $P_{80} = (3, 2, 3, 1)$ lies on line ℓ_3

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	0	1	2	3	4
0	0	1	0	0	0
1	1	0	1	1	1
2	0	1	0	0	0
3	0	1	0	0	0
$ \begin{array}{c} \hline 0\\ 1\\ 2\\ 3\\ 4 \end{array} $	0	1	0	0	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_2

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_2	P_{38}	P_{53}	P_{69}

Line 2 intersects

Line	ℓ_1
in point	P_{38}

Line 3 intersects

Line	ℓ_1
in point	P_{53}

Line 4 intersects

Line	ℓ_1
in point	P_{69}

The surface has 21 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$8: P_{21} = (2, 3, 1, 0)$	16: $P_{67} = (2, 3, 2, 1)$
$1: P_2 = (0,0,1,0)$	9: $P_{27} = (1, 1, 0, 1)$	17: $P_{68} = (3, 3, 2, 1)$
$2: P_3 = (0,0,0,1)$	$10: P_{31} = (1, 2, 0, 1)$	$18: P_{69} = (0, 0, 3, 1)$
$3: P_8 = (1,0,1,0)$	$11: P_{35} = (1, 3, 0, 1)$	$19: P_{79} = (2, 2, 3, 1)$
$4: P_9 = (2,0,1,0)$	$12: P_{38} = (0,0,1,1)$	$20: P_{80} = (3, 2, 3, 1)$
$5: P_{10} = (3,0,1,0)$	13: $P_{43} = (2, 1, 1, 1)$	
$6: P_{12} = (1, 1, 1, 0)$	$14: P_{44} = (3, 1, 1, 1)$	
$7: P_{18} = (3, 2, 1, 0)$	$15: P_{53} = (0,0,2,1)$	