Deep Learning-Based Cryptanalysis of Lightweight Block Ciphers

https://youtu.be/Yi0-iVxmRIU

Deep Learning-Based Cryptanalysis of Lightweight Block Ciphers

- 딥러닝 네트워크를 활용하여 평문 및 암호문쌍으로 키 값을 찾아내는 공격
- S-DES, SPECK, SIMON에 대해 수행
 - S-DES 성공 (비트키, 텍스트키)
 - SPECK, SIMON 실패 (비트키) 성공(텍스트키)

FIGURE 1: A schematic diagram of the DL-based cryptanalysis.

Model architecture

- 입력 평문 및 암호문 쌍의 각 비트를 각 뉴런에 할당 (즉, n비트의 평문-암호문인 경우, 2n개의 입력 뉴런)
- 각 뉴런의 값 그대로 나오도록 relu 활성화 함수 적용
- MSE 손실 함수 사용
- 하이퍼 파라미터 최적화 방식은 그리드 서치를 사용한듯
 (히든 뉴런 128, 256, 512 / 레이어 수 3, 5, 7 의 모든 경우의 수에 대해 성능 평가한 후 가장 좋은 조합을 사용)

Dataset

- **비트키**는 공격 정확도가 높지 않고, SPECK과 SIMON에서는 실패했기 때문에 텍스트키 사용
- 텍스트키는 A~Z, a~z, 0~9, !, @ : **총 64개**
 - S-DES는 8-bit 평문 및 10-bit 키 사용
 → **랜덤 비트 평문-암호문** (8-bit) 및 **텍스트 + 2 비트의 키**(10-bit)
 - → 실제 키 공간은 2⁶이므로 6-bit 랜덤키와 비슷
 - → 그러나 이 경우도, 해당 텍스트만 사용할 경우 각 비트의 발생 확률이 다름

1번째 비트는 아예 0으로 고정 2번째 비트는 높은 확률로 1

이러한 특성으로 인해 예측하기 더 쉬울 것으로 생각

BIN	HEX	Char.	
00000000	0	NUL	0
00000001	1	SOH	0
00000010	2	STX	0
00000011	3	ETX	0
00000100	4	EOT	0
00000101	5	ENQ	0
00000110	6	ACK	0
00000111	7	BEL	0
00001000	8	BS	0
00001001	9	HT	0
00001010	0A	LF	0
00001011	0B	VT	0
00001100	0C	FF	0
00001101	0D	CR	0
00001110	0E	SO	0
00001111	0F	SI	0
00010000	10	DLE	0
00010001	11	DC1	0
00010010	12	DC2	0
00010011	3	DC3	0
00010100	14	DC4	0
00010101	15	NAK	0
00010110	16	SYN	0
00010111	17	ETB	0
00011000	18	CAN	0
00011001	19	EM	0
00011010	1A	SUB	0
00011011	1B	ESC	0
00011100	1C	FS	0
00011101	1D	GS	0
00011110	1E	RS	0
00011111	1F	US	0
00100000	20	SPACE	0
00100001	21	!	0
00100010	22	"	0
00100011	23	#	0
00100100	24	\$	0
00100101	25	%	0
00100110	26	&	0
00100111	27	,	0
00101000	28	(0
00101001	29)	0
00001010	2A	*	0

BIN	HEX	Char.	BIN	HEX	Cł
00101011	2B	+	01010110	56	V
00101100	2C	,	01010111	57	W
00101101	2D	-	01011000	58	X
00101110	2E		01011001	59	Y
00101111	2F	/	01011010	5A	Z
00110000	30	0	01011011	5B	[
00000110	31	1	01011100	5C	₩
00110010	23	2	01011101	5D]
00110011	33	3	01011110	5E	٨
00110100	34	4	01011111	5F	_
00110101	35	5	01100000	60	١,
00110110	36	6	01100001	61	a
00001100	37	7	01100010	62	b
00111000	38	8	01100011	63	С
00111000	39	9	01100100	64	d
00111010	3A	:	01100101	65	e
00111011	3B	;	01100110	66	f
00111100	3C	<	01100111	67	g
00111101	3D	=	01101000	68	h
00111110	3E	>	01101001	69	i
00111111	3F	?	01101010	6A	j
01000000	40	@	01101011	6B	k
01000001	41	A	01101100	6C	1
01000010	42	В	01101101	6D	m
01000011	43	С	01101110	6E	n
01000100	44	D	01101111	6F	0
01000101	45	E	01110000	70	p
01000110	46	F	01110001	71	q
01000111	47C	G	01110010	72	r
01001000	48	Н	01110011	73	s
01001001	49	I	01110100	74	t
01001010	4A	J	01110101	75	u
01001011	4B	K	01110110	76	v
01001100	4C	L	01110111	77	w
01001101	4D	M	01111000	78	x
01001110	4E	N	00100011	79	у
01001111	4F	0	01111010	7A	z
01010000	50	P	01111011	7B	{
01010001	51	Q	01111100	7C	
01010010	52	R	01111101	7D	}
01010011	53	S	01111110	7E	~
01010100	54)	01111111	7F	D
01010101	55	Т			

Dataset

• 데이터&모델의 세부사항 및 훈련/검증 데이터 개수

	S-DES	Simon	Speck	
Block size	8	32	32	
Key size	10	64	64	
Round	2	32	22	
Epoch	5000			
layers	512 units, 5 hidden layers			
The number of data	5만/1만 50만/ 100만			

평가 지표

Bit Accuracy Probability(BAP)
: 전체 데이터에 대한 예측 성공 확률 → 1번째 비트가 100개의 데이터 중에서 80개를 예측 성공했다면, 0.8

$$\rho_i = \frac{1}{N_s} \sum_{j=1}^{N_s} \text{XNOR}\left(\mathbf{k}_i^{(j)}, \widetilde{\mathbf{k}}_i^{(j)}\right),$$

Deviation

: BAP - 키 발생 확률 ; 실제 키 발생 빈도가 다르므로 제거하고 판단하기 위함

$$\varepsilon_i = \rho_i - \mu_i$$

해당 값이 양수이면, 공격 성공 (예측 확률이 발생 확률보다 낮을 경우 공격 실패)

• S-DES

- 1번째 비트 1.00 → 원래 발생 확률 1로 값이 0인 비트 비트보다 텍스트 키의 경우 더 잘 예측해냄

- BAP를 보면, 1, 5, 8번째 비트는 암호 분석에 취약, 6번째 비트는 안전 Deviation을 보면, 2,5,8 (텍스트 키), 1,5,8(비트키)는 공격에 취약 (i번째 키비트에 대한 예측 확률이 낮아야 deviation이 낮아짐)

— Text key - • - Random key

S-DES

동일한 키로 암호화 된 M개의 평문-암호문 쌍이라고 할 경우, (dataset 개수 아님) 모든 키 비트에 대해 특정 성공확률을 달성하기 위해 필요한 최소 M (다음 수식에 의해 계산)

- **비트 키** BAP의 최소 값이 0.5389 → 0.9의 성공 확률을 얻기 위해 M = 271, 0.99는 M=891
- **텍스트 키**BAP의 최소값이 0.6484
 → 0.9의 성공 확률 얻기 위해 M = 19, 0.99는 M = 59

$$\alpha_i(M) = \Pr\left(X \ge \frac{M}{2} + 1\right) = 1 - \Pr\left(X \le \frac{M}{2}\right)$$
$$= 1 - \sum_{j=0}^{M/2} {M \choose j} \rho_i^j \left(1 - \rho_i\right)^{M-j}.$$

$$M_i^* = \min\{M \mid \alpha_i(M) \ge \tau\}.$$

*i번째 비트에 대한 BAP를 p로 가지는 이항 분포를 나타냄 M개 중 절반 이상 성공할 경우에 대한 확률 = 1-(0개 맞출 확률 + ... + M/2개 맞출 확률) 즉 α_i 는 절반 이상을 맞출 수 있는 확률이 특정 성공 확률 보다 커질 때의 최소값 동일 키로 암호화된 평문-암호문 쌍이 M이 271개면 137개 이상을 맞출 수 있으며, 0.9의 성공확률을 가진다고 이해..

- Simon, Speck
 - 64bit 키 → 텍스트키 8개 → 실제 키 공간은 2⁴⁸
 - full-round speck, simon에 대한 암호분석 연구 결과 X
 - 이전 연구들에서 24라운드 simon → 2⁶³에서 2³²로 감소 14라운드 speck → 2⁶³에서 2³¹로 감소

Simon

- 비트키의 경우 실패 (BAP 평균이 거의 0.5→ 거의 예측하지 못함)
- 텍스트키의 경우 성공
 - K3에서 BAP가 0.51603로 가장 낮음 그러나 이때도 발생 확률보다 0.0004 크기때문에 (deviation이 양수) 공격 성공했다고 함
 - M = 2^{10.58}이면 0.9의 확률, M = 2^{12.34}이면 0.99의 확률로 키를 찾을 수 있음

Speck

- 비트키의 경우 실패 (BAP 평균이 거의 0.5→ 거의 예측하지 못함)
- 텍스트키의 경우 성공
 - k3에서 BAP가 0.51607로 가장 낮지만, 이는 발생 확률보다 0.00044 큰 값이므로 성공 M = 2^{10.57}이면 0.9의 확률, M = 2^{12.33}이면 0.99의 확률로 키를 찾을 수 있음

감사합니다.