Week 6: The determinant

1.

A 4×4 invertible matrix A has determinant $\det(A)=\frac{1}{2}$. Find $\det(2A),\det(-A),\det(A^2)$, and $det(A^{-1})$.

(a)
$$\det(2A) = 8, \det(-A) = \frac{1}{2}, \det(A^2) = \frac{1}{4}, \det(A^{-1}) = 2 (100\%)$$

(b)
$$\det(2A) = 1, \det(-A) = -\frac{1}{2}, \det(A^2) = \frac{1}{4}, \det(A^{-1}) = 2$$

(c)
$$\det(2A) = 2$$
, $\det(-A) = \frac{1}{2}$, $\det(A^2) = \frac{1}{2}$, $\det(A^{-1}) = \frac{1}{2}$
(d) $\det(2A) = 1$, $\det(-A) = \frac{1}{2}$, $\det(A^2) = \frac{1}{2}$, $\det(A^{-1}) = \frac{1}{16}$

(d)
$$\det(2A) = 1, \det(-A) = \frac{1}{2}, \det(A^2) = \frac{1}{2}, \det(A^{-1}) = \frac{1}{16}$$

Note that for any two matrices M, N we have $\det(MN) = \det(M) \det(N)$. Hence

$$\det(2A) = \det(2I \cdot A) = \det(2I) \det(A) = 2^4 \det(A) = 8,$$

$$\det(-A) = \det(-I \cdot A) = \det(-I) \det(A) = (-1)^4 \det(A) = \frac{1}{2},$$

$$\det(A^2) = \det(A \cdot A) = \det(A) \det(A) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4},$$

$$A \cdot A^{-1} = I \implies \det(A) \cdot \det(A^{-1}) = 1 \implies \det(A^{-1}) = \frac{1}{\det(A)} = 2.$$

2.

A rotation about the y-axis by an angle θ in \mathbb{R}^3 is described by the matrix

$$R_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}.$$

What is $\det(R_{\nu}(\theta))$?

- (a) 1 (100%)
- (b) 0
- (c) -1
- (d) $\cos^2(\theta) \sin^2(\theta)$

$$\det(R_y(\theta)) = \det\begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$= \cos(\theta) \cdot \det\begin{bmatrix} 1 & 0 \\ 0 & \cos(\theta) \end{bmatrix} - 0 \cdot \det\begin{bmatrix} 0 & 0 \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} + \sin(\theta) \cdot \det\begin{bmatrix} \cos(\theta) & 0 \\ -\sin(\theta) & 0 \end{bmatrix}$$

$$= \cos^2(\theta) + \sin^2(\theta)$$

$$= 1.$$

3.

MULTI 1.0 point 0 penalty Single Shuffle

What is the volume of the parallelopiped spanned by the vectors $v_1 = (3, 2, 1)$, $v_2 = (0, 3, 2)$, $v_3 = (0, 0, 3)$?

- (a) 27 (100%)
- (b) 0
- (c) 12
- (d) 9

We just need to compute the determinant of the matrix

$$P = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}.$$

Since the matrix is upper triangular, the volume of the parallelopiped is $det(P) = 3^3 = 27$.

4.

What is the determinant of the $n \times n$ matrix

$$U = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 2 & 2 & \cdots & 2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & (n-1) & (n-1) \\ 0 & \cdots & 0 & 0 & n \end{bmatrix}.$$

- (a) n! (100%)
- (b) 0
- (c) n

(d)
$$\frac{n(n+1)(2n+1)}{6}$$

Since the matrix is upper-triangular, the determinant is just the product of the entries in the diagonal. Therefore $det(U) = 1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n = n!$.

5.

Consider the $n \times n$ matrix C_n with entries which simply count from 1 to n^2 . For

example $C_3 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$. What is the determinant of C_n ?

- (a) $\det(C_1) = 1$, $\det(C_2) = -2$, $\det(C_n) = 0$ for n > 2. (100%)
- (b) $\det(C_n) = (-1)^{n+1} n$
- (c) $\det(C_1) = 1, \det(C_2) = 2, \det(C_n) = n \text{ for } n > 2.$
- (d) $\det(C_1) = 1$, $\det(C_2) = -2$, $\det(C_3) = 0$, $\det(C_n) = -n^2$ for n > 3.

For n = 1 and n = 2 we can compute

$$\det(C_1) = 1,$$

$$\det(C_2) = \det \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = -2.$$

We now fix n, we can see that the entries of C_n are $c_{i,j} = (i-1)n + j$. Whenever i > 2,

$$c_{i,j} = (i-1)n + j$$

$$= (i-1)n + ((i-1) - (i-2))j$$

$$= (i-1)(n+j) - (i-2)j$$

$$= (i-1)c_{2,i} - (i-2)c_{1,i}.$$

Hence the i-th row can be written as a linear combination of rows 1 and 2 and we have $det(C_n) = 0$ for n > 2.

6.

MULTI 1.0 point 0 penalty Single Shuffle

Let u = (2, 3, 5), v = (-1, 4, -10), w = (1, -2, -8) be vectors in \mathbb{R}^3 . Use facts about the determinant to check whether u, v, w are linearly independent.

- (a) The vectors are not linearly independent.
- (b) The vectors are linearly independent. (100%)
- (c) Cannot be determined from the information given.

We can compute the determinant of the matrix that has u, v, w as rows.

$$\det \begin{bmatrix} 2 & 3 & 5 \\ -1 & 4 & -10 \\ 1 & -2 & -8 \end{bmatrix} = 2C_{1,1} + C_{2,1} + C_{3,1} = 2 \cdot (-52) - 14 - 50 = -168.$$

Hence the vectors are linearly independent.

7.

MULTI 1.0 point 0 penalty Single Shuffle

First recall that in general $\det(A+B) \neq \det(A) + \det(B)$. Now let $p, q, r, s \in \mathbb{R}$ and consider the matrices

$$A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$$
 and $B = \begin{bmatrix} -r & -s \\ p & q \end{bmatrix}$.

Compute det(A) + det(B) and det(A + B). If these values are equal what is the common value? If not, what is the difference det(A + B) - (det(A) + det(B))?

- (a) $\det(A) + \det(B) = \det(A + B) = 2(ps qr)$. (100%)
- (b) $\det(A+B) \det(A) \det(B) = -rq$
- (c) $\det(A+B) \det(A) \det(B) = rq$
- (d) $\det(A+B) \det(A) \det(B) = -2ps$

We use the formula for the determinant of a 2×2 matrix and compute the values directly.

$$\det(A) = ps - qr$$

$$\det(B) = -qr - (-ps) = ps - qr$$

$$\det(A + B) = (p - r)(q + s) - (q - s)(r + p) = 2(ps - qr) = \det(A) + \det(B).$$

In this special example we see that the determinant is indeed additive! Keep in mind, however, that this is not true in general.

8.

MULTI 1.0 point 0 penalty Single Shuffle

Consider the matrix

$$H = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}.$$

What are the cofactors $C_{1,1}$ and $C_{1,2}$? What is $\det(H)$?

(a)
$$C_{1,1} = 5, C_{1,2} = -2, \det(H) = 8 (100\%)$$

(b)
$$C_{1,1} = 5, C_{1,2} = 2, \det(H) = 8$$

(c)
$$C_{1,1} = 2, C_{1,2} = 2, \det(H) = 8$$

(d)
$$C_{1,1} = 5, C_{1,2} = -2, \det(H) = 0$$

$$C_{1,1} = (-1)^{1+1} \det \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} = 5,$$

$$C_{1,2} = (-1)^{1+2} \det \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} = -2,$$

$$\det(H) = 2C_{1,1} + C_{1,2} = 2 \cdot 5 - 2 = 8.$$

9.

MULTI (1.0 point) (0 penalty) (Single) (Shuffle)

Consider the matrix

$$H = \begin{bmatrix} 2 & 5 & -3 & -2 \\ -2 & -3 & 2 & -5 \\ 1 & 3 & -2 & 0 \\ -1 & 6 & 4 & 0 \end{bmatrix}$$

What are the cofactors $C_{3,4}$ and $C_{4,4}$?

(a)
$$C_{3,4} = -27, C_{4,4} = -1 (100\%)$$

(b)
$$C_{3,4} = 27, C_{4,4} = -1$$

(c)
$$C_{3,4} = 27, C_{4,4} = 1$$

(d)
$$C_{3,4} = -27, C_{4,4} = 1$$

$$C_{3,4} = (-1)^{3+4} \det \begin{bmatrix} 2 & 5 & -3 \\ -2 & -3 & 2 \\ -1 & 6 & 4 \end{bmatrix} = -(-48 + 76 - 1) = -27,$$

$$C_{4,4} = (-1)^{4+4} \det \begin{bmatrix} 2 & 5 & -3 \\ -2 & -3 & 2 \\ 1 & 3 & -2 \end{bmatrix} = 2 \cdot 0 + 2 \cdot (-1) + 1 \cdot 1 = -1.$$

10.

Single Shuffle 0 penalty

Consider the matrix

$$H = \begin{bmatrix} -\lambda & 2 & 7 & 12 \\ 3 & 1 - \lambda & 2 & -4 \\ 0 & 1 & -\lambda & 7 \\ 0 & 0 & 0 & 2 - \lambda \end{bmatrix}$$

where λ is an unknown. Find the $C_{4,4}$ cofactor and compute the determinant of the matrix.

(a)
$$\det(H) = (2 - \lambda)C_{4,4} = \lambda^4 - 3\lambda^2 - 6\lambda^2 - 5\lambda + 42$$
 (100%)
(b) $\det(H) = \lambda^4 + \lambda^3 + 6\lambda^2 + 4$

(b)
$$\det(H) = \lambda^4 + \lambda^3 + 6\lambda^2 + 4$$

(c)
$$\det(H) = \lambda^4 + \lambda^3 + \lambda^2 - 5\lambda + 42$$

(d)
$$\det(H) = \lambda^4 + 8\lambda^3 + 3\lambda + 5$$

$$C_{4,4} = \det \begin{bmatrix} -\lambda & 2 & 7 \\ 3 & 1 - \lambda & 2 \\ 0 & 1 & -\lambda \end{bmatrix} \stackrel{*}{=} \det \begin{bmatrix} -\lambda & 2 & 7 + 2\lambda \\ 3 & 1 - \lambda & 2 + \lambda(1 - \lambda) \\ 0 & 1 & 0 \end{bmatrix} = -\lambda^3 + \lambda^2 + 8\lambda + 21,$$

$$\det(H) = (2 - \lambda)C_{4,4} = \lambda^4 - 3\lambda^2 - 6\lambda^2 - 5\lambda + 42.$$

Above at (*) we replace the last column by its sum with λ times the second column.

Total of marks: 10