

Introduction to MSA | Multiple Sequence Alignment |

Dr. Urmila Kulkarni-Kale

S. P. Pune University | University of Southeastern Norway | Citadel Precision Medicine urmila.Kulkarni.kale@gmail.com

Sequence analysis: core of virus bioinformatics

Homology

Detection of homologs Pattern, Motif, Domain analysis Gene & protein families

Phyloinformatics

Evolutionary studies Gene based vs Genome based Viral Typing & diagnostic

Functional characterisation

Sequence-Structure-Function Conservation of folds Drug designing & docking

Immunoinformatics

B- & T- cell epitope predictions Antigenic variations Vaccine design

Genomics

Sequence analysis

Assembly & Annotation Variation analysis Population scale analysis

^{*} Bioinformatics, Statistics, Computer Science & Engineering

Sequence alignments: Concepts

Pairwise Sequence Alignments: Concepts

Multiple Sequence Alignment (MSA) Progressive Alignment Model implemented in ClustalW

(A) Pairwise Alignment

No of pairwise alignments: N*(N-1)/2

(B) Multiple alignment following the tree from A

align most similar pair

align next most similar pair

align alignments - preserve gaps

MAFFT Algorithm

Multiple Alignment using Fast Fourier Transform

© 2002 Oxford University Press

Nucleic Acids Research, 2002, Vol. 30 No. 14 3059-3066

MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform

Kazutaka Katoh, Kazuharu Misawa¹, Kei-ichi Kuma and Takashi Miyata*

Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan and

¹Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802, USA

MSA Salient Features

- Fast Fourier transform (FFT): rapid detection of homologous segments
- Homologous regions are rapidly identified by FFT, in which
 - nucleotide sequence is converted to four-dimensional vectors whose components are the frequencies of A, T, G and C at each column
 - amino acid sequence is converted to a sequence composed of volume and polarity values of each amino acid residue
- Homologous regions in sequences are marked using sliding window analysis using threshold criteria of correlation score
 - Window size of 30 sites
- Contiguous homologous segments of length 150 sites are identified and combined

Iterative refinement using WSP (Weighted Sum of Pairs) scores

Iterative refinement using both, WSP and Consistency scores

Weighted Sum of Pairs

- WSP is calculated as proposed by Gotoh, 1995 as follows:
- For a MSA 'A' of alignment length I and composed of N nucleotides or protein sequences, the sum of pair scores of A i.e., SP (A) is defined as

$$SP(A) = \sum_{j=2}^{N} \sum_{k=1}^{j-1} S_{j,k}$$

where $S_{j,k}$ is the score of pairwise alignment between j^{th} and k^{th} sequences as defined by a scoring matrix within A

WSP is defined as:

WSP(A) =
$$\sum_{j=2}^{N} \sum_{k=1}^{j-1} w_{jk} S_{j,k}$$

where $w_{j,k}$ is the weight of individual pairs of sequences in \boldsymbol{A}

Consistency Scores

- Consistency scores adopted from TCOFFEE algorithm
- Two alignment scores (local and global) are derived based on a library of local and global alignments
- In the library, each alignment is represented as a list of pairwise residue matches
- The pairwise residue score for a similar pair between local and global alignment libraries is the sum of both scores
- Weights are assigned based on consistency of given residue pair relative to other residue pairs in the library

MSA: Interpretations & Applications

Tracking Evolution of SARS-CoV-2 at the onset of pandemic

Virus bioinformatics @ SPPU Data led discovery framework: DBT CoE | DeiTY CoE |

Exploring the unknown of (un)known Data → Discovery

Recombination analysis

- Detection of recombination events
- Identify major & minor parent
- RDP4 package (RDP, ENCONV, BOOTSCAN, MAXICHI, CHIMAERA, SiScan & 3SEQ)
- Input: MSA of genes/genomes

Population structure

- Identify genetically distinct lineages
- Map emerging lineages
- Identify admixed individuals
- Bayesian-based clustering approach
- STRUCTURE software
- Input: Gene/Complete genomes; PI sites
- LD (LIAN & DNASP)

Phylogenetic analysis

Nucleotide Substitution Rate

Divergence Time Estimation

analysis Gene based

Evolutionary

- Genome based
- Alignment-based (NJ, ML)
- Alignment-free (RTD: Return Time Distribution; developed in house)
- Geno- and Sero-Typing (RTD based)
- Input: MSA/Sequences

Selection pressure

- Pervasive positive selection (SLAC, FEL, IFEL methods) lineages
 - Episodic positive selection (MEME method)
 - Codon-based alignment
 - Input: CDS of gene/genome
 - Antigenic variation (experimental & predicted B- and T-cell epitopes

Across

all

of

SARS-CoV-2 | Phylogenetic analysis of RdRp gene

SARS-CoV-2: population structure

Plot of K vs delta K which depicts the major peak at K = 3 and minor peak at K = 7.

A: Population stratification at optimal peak k=3 wherein the labels 1, 2, and 3 represent SARS-CoV-2, SARS-CoV, and Bat-CoV. Population stratification at minor peak k=7 wherein the labels 1 (Pangolin-CoV), 2(SARS-CoV-2), 3(Bat-CoV-Cluster_1), 4(SARS-CoV), 5(Bat-CoV-Cluster_2), 6(Bat-CoV-Cluster_3), 7(Bat-CoV-Cluster_4)

MSA Genome to Function via Sequence & Structure

Depends on the question you want to ask and answer using alignment output

Data to Information Perspectives from similarity (JEV story)

Species & Strain specific variations

Loop1 in TBEV: TLADEHQGG

Loop1 in JEVN: HNEKRADSS

Loop1 in JEVS: HNKKRADSS

Biodiversity & Biocomplexity:

Isolates, strains, genotypes, serotypes, species & clades

Genus, subfamilies, families

Sequence-based analyses

Structure-based analyses

MSA \rightarrow Explaining immune escape Case study: Mumps virus story

Kulkarni-Kale et al., 2007. Funded by: Serum Institute of India

MSA → Tracing emergence of drug resistance Case study: Human Rhinoviruses

Waman et al., Unpublished

MAFFT References

- Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66. doi: 10.1093/nar/gkf436. PMID: 12136088; PMCID: PMC135756.
- Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005 Jan 20;33(2):511-8. doi: 10.1093/nar/gki198. PMID: 15661851; PMCID: PMC548345.
- Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics. 2008 Apr 25;9:212. doi: 10.1186/1471-2105-9-212. PMID: 18439255; PMCID: PMC2387179.
- Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008 Jul;9(4):286-98. doi: 10.1093/bib/bbn013. Epub 2008 Mar 27. PMID: 18372315.
- Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol. 2009;537:39-64. doi: 10.1007/978-1-59745-251-9 3. PMID: 19378139.
- Katoh K, Toh H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics. 2010 Aug 1;26(15):1899-900. doi: 10.1093/bioinformatics/btq224. Epub 2010 Apr 28. PMID: 20427515; PMCID: PMC2905546.
- Katoh K, Frith MC. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics. 2012 Dec 1;28(23):3144-6.
 doi: 10.1093/bioinformatics/bts578. Epub 2012 Sep 27. PMID: 23023983; PMCID: PMC3516148.
- Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013 Apr;30(4):772-80. doi: 10.1093/molbev/mst010. Epub 2013 Jan 16. PMID: 23329690; PMCID: PMC3603318.
- Katoh K, Standley DM. MAFFT: iterative refinement and additional methods. Methods Mol Biol. 2014;1079:131-46. doi: 10.1007/978-1-62703-646-7 8. PMID: 24170399.