### Kolegji UBT - Studimet bachelor

## Rrjetet kompjuterike dhe komunikimi

Prof.Asoc.Dr. techn. Salem Lepaja Maj 2019

### Rrjetet kompjuterike dhe komunikimi

Kapitulli 5

# Protokollet në rrjetet kompjuterike

### Përmbajtja

- Koncepti i protokolleve
- Modeli OSI
- Modeli TCP/IP
- Protokollet TCP/IP
- Protokolli IP
- Protokolli ICMP
- Protokolli TCP
- Protokolli UDP
- Protokolli DHCP

### Protokollet (1)

#### <u>Protokollet në jetën e</u> <u>përditshme:</u>

- "Sa është ora?"
- "E kam një pyetje"

- ... dërgohet mesazh i caktuar
- ... kur të pranohet mesazhi kryhet veprim i caktuar

#### Protokollet në rrjete:

- Komunikimi në mes të pajisjeve e jo njerëzve
- Të gjitha komunikimet në Internet bëhen përmes protokolleve

#### Protokollet e përcaktojnë:

- formatin dhe renditjen e mesazheve që shkëmbehen në mes të entiteteve të rrjetit
- veprimet që duhet të bëhen kur një mesazh transmetohet ose pranohet.

### Protokollet (2)

Protokolli në mes të njerëzve dhe në mes të kompjuterëve:



### Protokollet

- Bashkësi e rregullave që e përcaktojnë komunikimin në mes të entiteteve të rrjetit
- Gjuha e komunikimit
  - Duhet të jetë e njëjtë
- Entitetet
  - Aplikacionet
  - Kompjuterët
  - Terminalet
  - Sensorët në largësi

### Modeli OSI dhe TCP/IP

- Funksionet e komunikimit përkatësisht protokollet e komunikimit janë të organizuara (ndara) në shtresa:
- Dy modelet shtresore më të njohura janë:
  - Modeli referent OSI (Open System Interconnection)
    - Është model teorik i vonuar
    - Nuk i ka përmbushur parashikimet
  - Modeli TCP/IP
    - Familja e protokolleve TCP/IP është në përdorim më të gjerë nga të gjitha standardet
    - Praktikisht është standard
- Standardi Systems Network Architecture (SNA) i IBM-it

### Modeli referent OSI

- E ka zhvilluar organizata ndërkombëtare për standarde ISO (International Organization for Standardization)
- Model shtresor i përbërë prej 7 shtresave
  - Çdo shtresë kryen funksione të caktuara të komunikimit
  - Përkufizohen vetëm funksionet e çdo shtrese
    - o Implementimi në mënyra të ndryshme rezulton në protokoll
  - Shtresat janë të pavarura
    - Ndërrimet në një shtresë nuk ndikojnë që shtresat e tjera të ndërrojnë
    - Çdo shtresë i ofron servise shtresës që është mbi të
    - Çdo shtresë llogarit se shtresa nën të do t`i kryejë disa funksione
  - Komunikimi në mes të shtresave
    - Drejtpërsëdrejti vetëm me shtresën mbi dhe nën të
    - Tërthorazi me shtresën përkatëse në kompjuterin tjetër

### Shtresat e modelit OSI (1)

| Application  | Aplikacionit |
|--------------|--------------|
| Presentation | Presentimit  |
| Session      | Sesionit     |
| Transport    | Transportit  |
| Network      | Rrjetit      |
| Data Link    | Data Linkut  |
| Physical     | Fizike       |

### Shtresat e modelit OSI (2)

- Shtresa Fizike
  - Interfejsi fizik
    - Mekanike
      - Ka të bëjë me vetit fizike të interfejsit me medim transmetues
      - Konektor me përçues
    - Elektrike
      - Paraqitjen e bitave (niveleve të tensionit) dhe shpejtësinë transmetimit në bit/s
    - Funksionale
      - Specifikon funksionet e pinave (pëçuesëve) të interfejsit fizik në mes të pajisjes dhe mediumit transmetues
    - o Procedurale
      - Specifikon sekuencen e veprimeve me të cilat informacionet binare shkëmbehen nëpër medium transmetues

### Shtresat e modelit OSI (3)

#### Shtresa e Data Linkut

- Aktivizimi, mirëmbajta dhe çaktivizimi i linkut të sigurt (reliable)
- Detektimi dhe kontrollimi i gabimeve
- Shtresat e larta mund të konsiderojnë (llogarisin) se transmetimi bëhet pa gabime

#### Shtresa e Rrjetit

- Bartjen e paketave të informacioneve, p.sh. datagrameve IP prej burimit deri te caku (palëve në komunikim, pajisjeve fundore)
- Shtresat e larta nuk kanë nevojë të dinë se cila teknologji e rrjetit fizik po përdoret

### Shtresat e modelit OSI (4)

#### Shtresa e Transportit

- Shkëmbimi i informacioneve në mes të aplikacioneve të pajisjeve fundore
- Transmetim pa gabime
- Transmetim pa humbje të segmenteve
- Transmetim pa duplifikime
- Sekuencimi (radhitja) e segmenteve
- Cilësia e shërbimit (Quality of Service)

#### Shtresa e Sesionit

- Kontrollimi i dialogut në mes të aplikacioneve
- Disiplina e dialogut
- Grupimi

### Shtresat e modelit OSI (5)

- Shtresa e Prezantimit
  - Mjet për aplikacione që t'i qasen mjedisit komunikues OSI
  - Formatimi i informacioneve dhe kodimi
  - Komprimimi i informacioneve
  - Enkriptimi
- Shtresa e Aplikacionit
  - Është shtresa më e afërt me aplikacionet e shfrytëzuesve
  - Mbështet aplikacionet e shfrytëzuesve
  - Janë interfejs në mes të aplikacioneve të shfrytëzuesve dhe shërbimeve të Internetit

### Komunikimi në bazë të modelit OSI (1)



### Komunikimi në bazë të modelit OSI (2)



### Modeli TCP/IP (1)

- TCP/IP është e zhvilluar nga US Defense Advanced Research Project Agency (DARPA) për rrjetin ARPANET
- Përdoret në Internetin global dhe në rrjete private Intranet
- Nuk është model zyrtar, por model në përdorim praktik
  - Shtresa e aplikacionit
  - Shtresa e transportit
  - Shtresa Internet
  - Shtresa e interfejsit me rrjetin
    - Shtresa për qasje në rrjet
    - Shtresa fizike

### Modeli TCP/IP (2)

**Shtresat** 

Aplikacionit

Transportit

Internetit

Qasja në rrjet

**Fizike** 

Modeli 5 shtresor

**Shtresat** 

Aplikacionit

Transportit

Internetit

Interfejsit me rrjetin

Modeli 4 shtresor

### Krahasimi i Modeleve TCP/IP - OSI (1)

| TCP/IP                | OSI          |
|-----------------------|--------------|
| Aplikacionit          | Aplikacionit |
|                       | Prezantimit  |
|                       | Sesionit     |
| Transportit           | Transportit  |
| Internetit            | Rrjetit      |
| Interfejsi me rrjetin | Data linkut  |
|                       | Fizike       |

### Krahasimi i Modeleve TCP/IP - OSI (2)

| OSI          | TCP/IP            |  |
|--------------|-------------------|--|
| Application  |                   |  |
| Presentation | Application       |  |
| Session      |                   |  |
|              | Transport         |  |
| Transport    | (host-to-host)    |  |
| Network      | Internet          |  |
| Data Link    | Network<br>Access |  |
| Physical     | Physical          |  |
|              |                   |  |

### Shtresat e modelit TCP/IP (1)

#### Shtresa fizike

- Interfejs fizik në mes të pajisjes komunikuese (p.sh. kompjuterit) dhe mediumit transmetues ose rrjetit
- Karakteristikat e mediumit transmetues
- Nivelet e sinjaleve
- Shpejtësinë e transmetimit

### Shtresat e modelit TCP/IP (2)

#### Shtresa për Qasje në Rrjet

- Shkëmbimi i informacioneve në mes të pajisjeve fundore dhe rrjetit
- Kërkon shërbime të veçanta nga rrjeti, si p.sh përparësinë

### Shtresat e modelit TCP/IP (3)

#### Shtresa Internet

- E bart segmentin e shtresës së transportit (T\_PDU) prej hostit dhënës deri te hosti marrës
- Në dhënës bën enkapsulimin e segmenteve në datagrame
- Në marrës e nxjerr segmentin nga datagrami dhe ia përcjell shtresës së transportit
- Protokollet e shtresës së rrjetit instalohen në çdo host dhe ruter



#### Ruterat

- Komponente të rrjetit në të cilat janë të instaluara protokolli IP dhe protokollet e rrugëtimit
- I takojnë shtresës së Internetit (modeli TCP/IP) përkatësisht shtresës së rrjetit (sipas modelit OSI)
- Ruterat rëndom kanë disa porta (interfejsa)
- Ruteri aktual i analizon fushat e hederit të çdo datagrami IP që kalon nëpër te



#### Funksionet e ruterave

- Funksionet themelore të ruterave janë:
  - Ekzekutimi i protokolleve të rugëtimit (RIP, OSPF, BGP)
  - Ekzekutimi i algoritmave të rrugëtimit
  - Krijimi i tabelave të rrugëtimit
  - Krijimi i tabelave të forvardimit
  - Forvardimi i datagrameve prej linjave (portave) hyrëse në linjat dalëse, në bazë të adresës IP të paketave dhe tabelës së forvardimit

### Rrugëtimi

#### Protokollet e rrugëtimit (Routing Protocols)

- Shkëmbimi i informacioneve në mes të nyjave të rrjetit në lidhje me topolgjinë e rrjetit
- Këto informacione shfrytëzohen për t'i krijuar tabelat e rrugëtimit
- Tabelat e rrugëtimit përmbajnë informacionet e nevojshme për rrugëtimin e paketave (datagrameve IP) deri te cakut
- Tabelat e forvardimit përmbajnë informacionet e nevojshme për forvardimin e paketave deri te nyja e ardhshme drejt cakut
- Link state dhe Distance vector

#### Algoritmat e rrugëtimit

- Për ta gjetur rrugën më të shkurtër prej burimit deri te caku
- Te protokollet e rrugëtimit të bazuara në link state përdoret algoritmi Dijkstra për ta gjetur rrugën me të shkurtër deri te nyjat e tjera në rrjet dhe për ta zgjedhur next hop
- Te protokollet e rrugëtimit të bazuara në distance vector përdoret algoritmi Bellman Ford, për ta gjetur rrugën më të shkurtër deri te nyjat e tjera në rrjet dhe për ta zgjedhur next hop

### Rrugëtimi dhe forvardimi

- Forvardimi: i dërgon paketat prej hyrjeve të ruterit në daljet e caktuara të ruterit
- Rrugëtimi: përcaktimi i rrugës së paketave prej burimit deri te destinacioni
  - Algoritmat e rrugëtimit

### Analogji:

- Rrugëtimi: process i planifikimit të udhëtimit prej burimit deri te destinacioni
- Forvardimi: proces i kalimit nëpër çdo udhëkryç

### Rrugëtimi dhe forvardimi



### Tabela për forvardim të datagrameve

- Protokolli IP forvardimi i datagrameve IP në baze të adreses destinuese IP dhe tabeles së forvardimit
- Të supozojmë se ruteri i ka 4 intefejse (0-3) dhe paketat duhet të forvardohen te këto interfejse si në vijim

| Intervali i adresave destinuese                                                       | Interfejsi |
|---------------------------------------------------------------------------------------|------------|
| 11001000 00010111 00010000 00000000<br>deri te<br>11001000 00010111 00010111 11111111 | 0          |
| 11001000 00010111 00011000 00000000<br>deri te<br>11001000 00010111 00011000 11111111 | 1          |
| 11001000 00010111 00011001 00000000<br>deri te<br>11001000 00010111 00011111 11111111 | 2          |
| përndryshe                                                                            | 3          |

### Prefiksi me përputhja më të gjatë

| Përputhja e prefiksit               | Interfejsi |
|-------------------------------------|------------|
| (përmbajtja e rreshtave të tabelës) | •          |
| 11001000 00010111 00010             | 0          |
| 11001000 00010111 00011000          | 1          |
| 11001000 00010111 00011             | 2          |
| përndryshe                          | 3          |

#### Shembuj:

1) AD: 11001000 00010111 00010110 10100001 Cili interfejs?

### Shtresat e modelit TCP/IP (4)

#### Shtresa e transportit

- Transmetimi apo shpërndarjen e saktë (reliable delivery) e informacioneve
- Shpërndarja e informacioneve me radhë

#### Shtresa e aplikacionit

- Është shtresa më e afërt me aplikacionet e shfrytëzuesve
- Janë interfejs në mes të aplikacioneve të shfrytëzuesve dhe shërbimeve të Internetit

### Protokollet TCP/IP (1)



### Protokollet TCP/IP (2)

IP Internet Protocol **TCP** Transmission Control Protocol **UDP User Datagram Protocol** RIP **Routing Information Protocol Open Shortest Path First OSPF ICMP** Internet Control Message Protocol **ARP** Address Resolution Protocol Reverse Address Resolution Protocol RARP TELNET Terminal Emulation FTP File Transfer Protocol SMTP Simple Mail Transfer Protocol **TFTP** Trivial File Transfer Protocol DNS **Domain Name Service DHCP Dynamic Host Configuration Protocol Bootstrap Protocol** BOOTP Simple Network Management Protocol SNMP

### Protokollet standarde

| Internet Protocol (IP)                                  | RFC 791    |
|---------------------------------------------------------|------------|
| Internet Control Message Protocol (ICMP)                | RFC 792    |
| Internet Group Multicast Protocol (IGMP)                | RFC 1112   |
| <ul> <li>User Datagram Protocol (UDP)</li> </ul>        | RFC 768    |
| Transmission Control Protocol (TCP)                     | RFC 793    |
| Telnet Protocol (TELNET)                                | RFC 854/5  |
| File Transfer Protocol (FTP)                            | RFC 959    |
| Simple Mail Transfer Protocol (SMTP)                    | RFC 821    |
| <ul> <li>Domain Name System (DOMAIN)</li> </ul>         | RFC 1034/5 |
| Simple Network Management Protocol (SNMP)               | RFC 1157   |
| Trivial File Transfer Protocol (TFTP)                   | RFC 1350   |
| Point-to-Point Protocol (PPP)                           | RFC 1661   |
| <ul> <li>Open Shortest Path First Routing V2</li> </ul> | RFC 2328   |

### Protokolli IP (1)

- Protokolli IP shërben për bartjen e segmentit të shtresës së transportit (T\_PDU) prej hostit dhënës deri te hosti marrës
- Protokolli më i rëndësishëm nga bashkësia TCP/IP
- Ekzistojnë dy versione të protokollit IP: IPv4 dhe IPv6
- Protokolli IPv4
  - Në përdorim të gjerë, shumë i suksesshëm
  - Implementohet lehtë dhe bashkëvepron me një numër të madh të protokolleve
  - Njësia themelore e organizimit të informacionit është paketa IP datagrami

### Protokolli IP (2)

- Paketat forvardohen duke e shfrytëzuar adresën IP të hostit destinues dhe tabelën e forvardimit
- IP routing përdor "longest-prefix match" të adresës IP të paketave me përmbajtjen e tabelës së forvardimit
- Madhësia e tabelave, sa më e vogël
- Paketat të cilat i takojnë të njëjtit mesazh mund të udhëtojnë nëpër rrugë të ndryshme



### Struktura e datagramit IPv4

- Datagrami IP përbëhet nga hederi ballina dhe fusha për vendosjen e paketes (segmentit ose T-PDU) nga shtresa e sipërme
- Hederi paraqet protokollin IP dhe përbëhet prej 14 fushave
- Gjatësia e hederit mund të jetë prej 20 deri në 60 bajt dhe mund të zgjerohet me multipël nga katër bajta
  - 40 bajtat e fundit përdoren për opcione të nevojshme për kontrollim, për funksione që nuk përfshihen në heder
- Madhësia e fushës ku vendoset paketa e shtresës së sipërme është e ndryshueshme dhe mund të jetë prej 8 deri në 65,516 bajtë

| Header Segmenti (Transport level PDU ) |  |
|----------------------------------------|--|
|----------------------------------------|--|

# Struktura e hederit IPv4 (1)

| 0 4                    | . 8                   | 16              | 6 19         | 9 24            | 31 |  |
|------------------------|-----------------------|-----------------|--------------|-----------------|----|--|
| Vers                   | HLEN                  | Type of Service | Total Length |                 |    |  |
| Identification         |                       |                 | Flags        | Fragment Offset |    |  |
| Time t                 | Time to Live Protocol |                 |              | Header Checksum |    |  |
|                        | Source IP Address     |                 |              |                 |    |  |
| Destination IP Address |                       |                 |              |                 |    |  |
| IP Options             |                       |                 |              | Padding         |    |  |
| Data                   |                       |                 |              |                 |    |  |

## Struktura e hederit IPv4 (2)

#### Përshkrimi i fushave të Hederit IPv4

- Fusha **vers** (4 bitshe) e tregon versionin e hederit IP
- Fusha HLEN (4 bitshe) e tregon gjatësinë e hederit IP
  - Gjatësia e hederit paraqitet në fjalë binare 32 bitshe, d.m.th. në blloqe me nga 4 bajtë
  - Madhësia minimale e hederit është 5 blloqe, dmth 20 bajtë.
- Fusha **type of service** (8 bitshe) tregon kualitetin e servisit (QoS) që ruterat duhet ta përdorin për forvardimin e datagramit aktual
- Fusha **Total length** (16 bitshe) tregon gjatësinë e datagramit
- Fusha Identification (16 bitshe) e identifikikon datagramin aktual
- Fusha Flag (3 bitshe) përmban informacion për fragmentim
- Fusha Fragment offset (13 bitshe) përdoret për ta përcaktuar pozitën e çdo fragmenti brenda datagramit (paylodit)
- Fusha TTL (8 bitshe), përdoret për të treguar se sa kohë mund të qëndrojë datagrami në rrjet

## Struktura e hederit IPv4 (3)

#### Përshkrimi i fushave të Hederit IPv4

- Fusha Protocol (8 bitshe) e tregon protokollin e shtresës së sipërme (TCP 6, UDP 17)
- Fusha **Header Checksum** (16 bitshe) sigurimin e integritetit të hederit
- Fusha Source IP address (32 bitshe), e tregon adresën e hostit që e gjeneron datagramin (adresën e burimit të informacionit)
- Fusha Destination IP address (32 bitshe), e tregon adresën e hostit të cilit i dedikohet datagrami (adresën e destinimit të informacionit)
- Fusha Options (gjatësi variabile) mundëson që IP të mbështesë shumë opcione (p.sh sigurinë e komunikimit)
- Fusha Padding (gjatësi variabile) përdoret për të shtuar zero në mënyrë që IP hederi të jetë gjithmonë multipël i 32 bitave
- Në fushën Data vendoset informacioni burimor (payload)

## Fragmentimi dhe ribashkimi i datagrameve

- Linjat e rrjetit e kanë të kufizuar madhësinë e frejmit - MTU (max.transfer size) – vlera maksimale e mundshme e frejmit.
  - Linjat e ndryshme kanë MTU të ndryshme: ETHERNET 1500 bajta, ATM 48 bajta (48 + 5)
- Datagramet e mëdha IP ndahen (fragmentohen) brenda rrjetit (në rutera)
  - Prej një datagrami fitohen disa datagrame
  - Ribashkimi vetëm në destinim
  - Për t'i identifikuar dhe radhitur fragmentet e një datagrami përdoren bitë të caktuar në hederin IP



## Fragmentimi dhe ribashkimi i datagrameve

#### **Shembull**

- Datagrami 4000 bajta
- MTU = 1500 bajta

1480 bajta në fushën data

offset = 1480/8 ···

4000 = 3980 + 20

3980 - 1480 - 1480 = 1020

1040 = 1020 + 20



Një datagram i madh ndahet në disa datagram më të vegjël



| length | ID             | fragflag | offset |  |
|--------|----------------|----------|--------|--|
| =1500  | .≡x            | =1       | ·▶=185 |  |
| 1300   | <del></del> .∧ |          | 185    |  |

| longth | ID | fro afloa | offoot |  |
|--------|----|-----------|--------|--|
|        | וט | fragflag  | offset |  |
| =1040  | =X | =0        | =370   |  |
|        |    |           |        |  |

### Adresa IPv4

#### Adresa IPv4

- Është 32 bitshe: XX.XXX.XXX.XXX
- XXX paraqitet si numër decimal0 deri 255
- Gjithsej 4 miliardë adresa
- Identifikues për interfejs të hostave dhe ruterave
- Interfejsi: lidhësi në mes të hostit ose ruterit dhe linjës fizike
  - Ruterët rëndom kanë disa interfejsë
  - Hostët rëndom kanë nga një interfejs
  - Adresat IP iu shoqërohen (ndahen) interfejsëve

#### Shembull i adresës IPv6:

2031:0000:1F1F:0000:0000:0100:11A0:ADDF

2031:0:1F1F:0:0:0100:11A0:ADDF

2031:0:1F1F::0100:11A0:ADDF



### Alokimi i adresave

Internet Assigned Numbers Authority (IANA) ua alokon hapësiren (intervalin) e adresave autoriteteve (regjistruesve) rajonal

- RIPE NCC (EMEA), Evropë
- APNIC (Asia Pacific)
- ARIN (North America)
- LACNIC (Latin America) AfriNIC (African Region)

http://www.iana.org/assignments/ipv6-unicast-addressassignments

### Adresimi IPv4: Classfull, CIDR dhe VLSM

- Adresat IPv4, janë të ndara në dy pjesë:
  - ID e rrjetit (Network ID)
  - ID e hostit(Host ID)
- Tre skema të adresimit
  - Skema e adresimit IP: Classful addressing
  - Skema e adresimit IP: CIDR (Classless InterDomain Routing)
  - Skema e adresimit IP: VLSM (variable length subnet mask)

## Adresimi IPv4: Classfull, CIDR dhe VLSM

- Adresat IPv4, janë të ndara në dy pjesë:
  - ID e rrjetit (Network ID)
  - ID e hostit(Host ID)
- Skema e adresimit IP: Classful addressing
  - Pjesa e rrjetit e një adrese IP është e kufizuar të jetë me gjatësi fikse:
     8, 16, ose 24 bitëshe
- Skema e adresimit IP: CIDR (Classless InterDomain Routing)
  - Pjesa e rrjetit të adresës IP mund të ketë gjatësi të ndryshme
  - Të gjitha nënrrjetet e kanë subnetmaskën e barabartë
  - Formati i adresës është: a.b.c.d/x, x është numri i bitëve në pjesën e rrjetit të adresës IP
- Skema e adresimit IP: VLSM (variable length subnet mask)
  - Nënrrjetet mund ta kenë subnetmasken me gjatësi të ndryshme



## Klasat e adresave të IPv4 (1)

- 5 klasa të adresave A, B, C, D, E
- Adresat e klasve A, B, C janë të ndara në dy pjesë:
  - ID e rrjetit (**Network ID**), përcaktohet nga RIPE (Réseaux IP Européen) në Evropë, ARIN (Internet Assigned Number Authority) në SHBA
  - ID e hostit (Host ID), përcaktohet nga administratori i rrjetit



## Klasat e adresave të IPv4 (2)

- Adresat e klasës A fillojnë me çfarëdo numri në mes të 1 dhe 126
- Adresat e klasës B fillojnë me çfarëdo numri në mes të 128 dhe 191
- Adresat e klasës C fillojnë me çfarëdo numri në mes të 192 dhe 223
- Adresat e klasës D fillojnë me çfarëdo numri në mes të 224 dhe 239
- Adresat e klasës E fillojnë me çfarëdo numri në mes të 240 dhe 254

## Adresat IPv4 private dhe APIPA

#### Adresat private

- IANA (Internet Assigned Numbers Authority) i ka rezervuar tre blloqe të adresave për shfrytëzim në Intranet
- Këto adresa njihen me emrin adresa private IP d.m.th mund të shfrytëzohen vetëm brenda rrjeteve private:
- 10.0.0.1 10.255.255.254 adresa të klasës A (vetëm një adresë për rrjet të klasës A), maska 8 bitëshe
- 172.16.0.1 172.31.255.254 adresa të klasës B (16 adresa të njëpasnjëshme për rrjete të klasës B), maska 12 bitshe
- 192.168.0.1 192.168.255.254 adresa të klasës C (256 adresa të njëpasnjëshme për rrjete të klasës C), maska 16 bitshe
- Adresat IP në brezin 169.254.0.0 -169.254.255.255
  - Janë të rezervuara për adresim privat automatik (APIPA Automatic Private IP addressing)
  - Adresim automatik i hostave kur nuk ekziston serveri DHCP

## Nënrrjetet (1)

- Ndarjen e rrjeteve në rrjete më të vogla - nënrrjete (subnets)
- Kjo njihet me emrin subnetting
- Fleksibilitet për administratorët e rrjetit
- A munden pajisjet e shfrytëzuesve të nënrrjeteve të ndryshme të komunikojnë në mes veti pa ndërmjetësimin e ruterave?



Rrjeti i përbërë prej tre nënrrjeteve

# Nënrrjetet (2)

- Për ta caktuar numrin e nënrrjeteve, e shkëpusim lidhjen e çdo interfejsi nga ruteri
- Krijohen rrjete të izoluara
- Çdo rrjet i tillë, i izoluar, paraqet një nënrrjet



Rrjeti i përbërë prej tre nënrrjeteve

# Adresat IP të nënrrjeteve

- Adresat IP të nënrrjeteve gjithashtu ndahen në klasa: A, B,C
  - A: 255.0.0.0
  - B: 255.255.0.0
  - C: 255.255.255.0
  - Dy pjesë
    - Pjesa e nënrrjetit (bitat me peshë të lartë)
    - Pjesa e hostit (bitat me peshë të ulët)

ose

#### Tre pjesë

 Pjesa e rrjetit (network portion), fusha për subnet (subnet field), fusha për adresë të hostit (host field)

### Shembulli 1

#### Për rrjetin e treguar në figurë të caktohet:

- a. Numri i nënrrjeteve
- b. Numri i interfejsave
- c. Adresat IP të nënrrjeteve
- d. Adresat IP për secilin interfejs



# Zgjidhja e shembullit 1



Rrjeti i përbërë prej tre nënrrjeteve

### Shembulli 2



# Zgjidhja e shembullit 2



### Shembulli 3

Një rrjeti të caktuar i është dhënë adresa IP 207.209.68.0/24

- a. Të krijohen 9 nënrrjete
- b. Të caktohet adresa e nënrrjetit të pestë
- c. Adresa e kompjuterit të tretë në nënrrjetin e pestë
- d. Adresa broadkast në nënrrjetin e shtatë.

#### Zgjidhja:

Adresa IP e dhënë 207.209.68.0 në formë binare do të jetë :

11001111 11010001 01000100 00000000

- Për të krijuar 9 nënrrjete (subnete) nevojiten të përdoren 4 bita nga pjesa e adresës të paraparë për host.
- Me këta 4 bita mund të krijohen gjithsej 16 nënrrjete.

# Zgjidhja e shembullit 3

| Bitat e nënrrjetit<br>NNNN | Adresa e nënrrjetit | Adresat e hostave | Adresat broadkast |
|----------------------------|---------------------|-------------------|-------------------|
| 0000HHHH                   | 207.209.68.0        | .1 deri .15       | 207.209.68.16     |
| 0001                       | 207.209.68.16       | .17 deri .30      | 207.209.68.31     |
| 0010                       | 207.209.68.32       | .33 deri .46      | 207.209.68.47     |
| 0011                       | 207.209.68.48       | .49 deri .62      | 207.209.68.63     |
| 0100                       | 207.209.68.64       | .65 deri .78      | 207.209.68.79     |
| 0101                       | 207.209.68.80       | .81 deri .94      | 207.209.68.95     |
| 0110                       | 207.209.68.96       | .97 deri .110     | 207.209.68.111    |
| 0111                       | 207.209.68.112      | .113 deri .126    | 207.209.68.127    |
| 1000                       | 207.209.68.128      | .129 deri .142    | 207.209.68.143    |
| 1001                       | 207.209.68.144      | .145 deri .158    | 207.209.68.159    |
| 1010                       | 207.209.68.160      |                   |                   |
| 1011                       | 207.209.68.176      |                   |                   |
| 1100                       | 207.209.68.192      |                   |                   |
| 1101                       | 207.209.68.208      |                   |                   |
| 1110                       | 207.209.68.224      |                   |                   |
| 1111                       | 207.209.68.240      |                   |                   |

- Adresa e nënrrjetit të pestë është: 207.209.68.64, ndërsa adresa e hostit të tretë brenda këtij nënrrjeti është: 207.209.68.67.
- Adresa broadkast në nënrrjetin e shtatë është: 207.209.68.111

- Motivimi: rrjeti lokal (Intraneti) e përdor vetëm një adresë IP për komunikm në Internet
  - Nuk ka nevojë për bllok të adreseve prej ISP-së: vetëm një adresë publike IP shfrytëzohet për të gjitha pajisjet e lidhura në Intranet
  - Adresat e pajisjeve në Intranet mund të ndërrohen pa pasur kurrfarë ndikimi në rrjetin e jashtëm (Internet)
  - ISP mund të ndërrohet pa i ndërruar adresat e pajisjeve në rrjetin lokal
  - Adresat e pajisjeve brenda rrjetit lokal nuk shihen nga rrjeti i jashtëm (rritet shkalla e sigurisë)



Të gjitha datagramet të cilat transmetohen nga rrjeti lokal e përdorin adresën e njëjtë burimore IP (NAT): 138.76.29.7, me numra të ndryshëm të porteve burimore.

Datagramet që transmetohen nga ky rrjet ose që janë të destinuar për këtë rrjet e përdorin adresën 10.0.0/24 për adresë burimore ose destinuese të rrjetit, respektivisht.

#### Implementimi i funksionit NAT/PAT në ruter:

- Në datagramet e transmetuara nga rrjeti lokal: adresa burimore IP dhe numri i portit zëvendësohen me adresën IP NAT të ruterit dhe numër të ri të portit, respektivisht
- Klientët ose serverët jashtë rrjetit lokal do të përgjigjen duke e përdorur si adresë destinimi adresën IP NAT të ruterit dhe numrin e ri të portit
- Tabela NAT përmban informacionin e korespodencës së çiftit adresa IP, numri i portit me çiftin adresa IP NAT e ruterit dhe numri i ri i portit
- Në datagramet e destinuar për rrjetin lokal: adresa IP NAT e ruterit dhe numri i ri i portit zëvendësohen me çiftin korespondues adresën burimore IP dhe numrin e portit, sipas tabeles NAT



### Potokolli ICMP

#### ICMP - Internet Control Message Protocol

- Përdoret nga hostat dhe ruterat për komunikim të informacioneve në shtresën e rrjetit
  - Raportimi i gabimeve: hosti, rrjeti,
     porti, ose protokolli janë të paarritshëm
  - Kërkesë/përgjigjje për eho (përdoret urdhërin ping)
- Mesazhi ICMP bartet në datagramin IP
- Mesazhet ICMP përmbajnë:
  - tipin
  - kodin
  - 8 bajtat e parë të datagramit, i cili e ka shkaktuar gabimin

| <u>Type</u> | <u>Code</u> | description               |
|-------------|-------------|---------------------------|
| 0           | 0           | echo reply (ping)         |
| 3           | 0           | dest. network unreachable |
| 3           | 1           | dest host unreachable     |
| 3           | 2           | dest protocol unreachable |
| 3           | 3           | dest port unreachable     |
| 3           | 6           | dest network unknown      |
| 3           | 7           | dest host unknown         |
| 4           | 0           | source quench (congestion |
|             |             | control - not used)       |
| 8           | 0           | echo request (ping)       |
| 9           | 0           | route advertisement       |
| 10          | 0           | router discovery          |
| 11          | 0           | TTL expired               |
| 12          | 0           | bad IP header             |

### **Traceroute**

- Hosti burimor e dërgon një seri të paketave UDP (Cisco IOS, Linux, Mac OS X) ose ICMP (Windows) te destinimi
  - Segmentin e parë me TTL =1
  - Segmentin e dytë me TTL=2
  - Segmentin e tretë me TTL=3, etj.
  - Numër jo i rëndomtë (i papritur) i portit
- Kur datagrami i n-të arrin në ruterin e n-të:
  - Routeri e hedh poshtë datagramin
  - E dërgon te hosti mesazhin ICMP: koha TTL ka kaluar (TTL expired, tipi 11, kodi 0)
  - Mesazhi përmban emrin dhe adresën
     IP të ruterit

- Kur mesazhi ICMP (tipi 11, kodi 0) mbërrin te hosti burimor, hosti e llogaritë kohën RTT
- Traceroute e dërgon paketen e njëjtë UDP (ICMP) 3 herë

#### Kriteri i përfundimit te segmenteve

- Paketa UDP (ICMP) ma në fund arrin te hosti destinues
- Hosti destinues e kthen mesazhin ICMP: porti i paarritshëm (port unreachable), tipi 3, kodi 3, për paketen UDP (Linux)
- Hosti destinues e kthen mesazhin ICMP: echo replay tipi 0, kodi 0, për paketen ICMP (Windows)
- Kur hosti burimor e merr këtë mesazh e ndal transmetimin e paketeve UDP (ICMP)

## Protokollet e shtresës së transportit

- Protokollet
  - TCP (Transmission Control Protocol)
  - UDP (User Datagram Protocol)

## Protokolli TCP (1)

- Connection oriented, IETF RFC 793
- Transmetim të sigurt End-to-End nëpër Internet
  - Kontrollimin adaptiv të transmetimit të informacionit (flow control adaptiv - sliding window)
  - Segmentimin e mesazheve që transmetohen
  - Riasemblimin e mesazheve në pranim nga segmentet përbërëse
  - Ritransmetmin e segmenteve të humbura
  - Krijon kanalin virtual në mes të aplikacioneve

## Protokolli TCP (2)

- TCP është protokolli më i përdorshëm i shtresës së transportit
  - Garanton lidhje të besueshme (reliable)
- Lidhja
  - Asociacion i përkohshëm logjik në mes të entiteteve në sisteme të ndryshme
- TCP PDU
  - Quhet segmenti TCP
  - Përmban portin burimor dhe destinues (SAP)
    - o Identifikim të aplikacioneve
    - o Lidhja referohet si lidhje në mes të portave
- TCP evidenton segmentet në mes të entiteteve në çdo lidhje
- TCP-në e shfrytëzojnë shërbimet si : Web, SSH, SMTP, IMAP/POP, FTP, etj.

# Struktura e segmentit TCP (1)



# Struktura e segmentit TCP (2)

#### Përshkrimi i fushave të segmentit TCP

- Fusha Source port (16 bitshe) e tregon shfrytëzuesin (aplikacionin) burimor të TCP
- Fusha **Destination port** (16 bitshe) e tregon shfrytëzuesin destinues të TCP
- Fusha Sequence number (32 bitshe) e tregon numrin e sekuencës të oktetit të parë në segmentin aktual, përveç në rastin kur flegu SYN = 1
- Fusha **Acknowledgement number** (32 bitshe) e tregon numrin e sekuencës të oktetit të ardhshëm të cilin entiteti TCP e pret.
- Fusha HLEN (4 bitshe) përdoret për të treguar sa fjalë 32 bitshe janë në heder
- Fusha **Reserved** (6 bitshe) e rezervuar për përdorin në të ardhmen
- Fusha Flags ose Code bits (6 bitshe), për cdo fleg (nëse flegu është i setuar) ka këto domethënie: URG, ACK, PSH, RST, SYN, FIN
- Fusha Window (16 bitshe), përdoret të flow control për të treguar se sa oktete mund të transmetohen pa vërtetim nga marrësi
- Fusha Cheksum (16 bitshe), përdoret për sigurimin e integritetit të segmentit
- Fusha Urgent pointer (16 bitshe), përmban numrin e sekuencës së oktetit të fundit në sekuencën e informacioneve urgjente
- Fusha Options (variabile), përdoret p.sh. për specifikimin e madhësisë maksimale të segmentit që mund të pranohet

### Protokolli UDP

#### Connectionless, IETF RFC 768

- Protokoll i thjeshtë
- Informacioni shtesë (overhead) është minimal
- Përparësia që ofron është shpejtësia e transmetimit (komunikimit)
- Nuk ka kontrollim të rrjedhjes së informacionit (flow control)
- Nuk garantohet arritja e informacionit (paketave) në marrës
- Mbetet që protokollet e shtresave më të larta të bëjnë procesimin e gabimeve dhe ritransmetimin
- Nuk garantohet sekuencimi i njësive përbërëse të informacionit
- Nuk ka mbrojtje ndaj duplifikimeve
- Përdoret kur mekanizmat e TCP nuk janë të nevojshëm
- Është i pështatshëm të përdoret për aplikacione (shërbime) real-time
- UDP-në e shfrytëzojnë shërbimet si DNS, SNMP, RIP, DHCP, etj.

## Struktura e segmentit UDP

#### Përshkrimi i fushave të segmentit UDP

- Fusha Source port (16 bitshe) e tregon numrin e portit burimor UDP
- Fusha Destination port (16 bitshe) e tregon numrin e portit destinues
- Fusha length e tregon gjatësinë e segmentit
   UDP së bashku me heder, në bajtë
- Fusha cheksum (16 bitshe), përdoret për sigurimin e integritetit të segmentit UDP

| ← 32 bits →   |                    |  |
|---------------|--------------------|--|
| source port # | dest port #        |  |
| length        | checksum           |  |
| • •           | tion data<br>sage) |  |

# Segmenti UDP, datagrami IP, frejmi

|       | 0                             | 4      | 8 -                  | 16                       | 19            |             | 31 |
|-------|-------------------------------|--------|----------------------|--------------------------|---------------|-------------|----|
| Frame | Destination Address bytes 0-3 |        |                      |                          |               |             |    |
|       | Destination Address bytes 4-5 |        |                      | Source Address bytes 0-1 |               | s bytes 0-1 |    |
|       | Source Address bytes 2-5      |        | Data Length/Protocol |                          |               |             |    |
|       | VERS                          | HLEN   | Service Type         | Total Length             |               | _ength      |    |
|       | Identification                |        | Flags                | Fra                      | agment Offset |             |    |
| IP    | Time T                        | o Live | Protocol             | Header Checksum          |               | hecksum     |    |
|       | Source IP Address             |        |                      |                          |               |             |    |
|       | Destination IP Address        |        |                      |                          |               |             |    |
|       | IP Options (if any)           |        |                      |                          |               | Padding     |    |
| UDP   | UDP Source Port               |        |                      | UDP Destination Port     |               |             |    |
|       | UDP Message Length            |        |                      | UDP Checksum             |               |             |    |
|       | Data                          |        |                      |                          |               |             |    |
|       |                               |        |                      |                          |               |             |    |

## Numrat e portave TCP dhe UDP (1)

- Numrat e portave janë të ndara në tre breza:
  - Portat e njohura mirë (the well known ports)
  - Portat e regjistruara (the registered ports)
  - Portat dinamike ose private
- Portat e njohura mirë janë në intervalin 0 -1023
- Portat e njohura mirë nuk duhet të përdoren pa u regjistruar në IANA
  - Procedura e regjistrimit është e përkufizuar në RFC4340
- Portat e regjistruara janë në intervalin 1024 deri te 49151
  - Janë të registruar në IANA
- Portat në intervalin 49152–65535 njihen me emrin portat dinamike ose private
  - Nuk mund të regjistrohen në IANA

#### Numrat e portave TCP dhe UDP (2)

#### Disa nga portet e njohura mirë

- ftp 20
- ftp 21
- telnet 23
- smtp 25
- http 80
- pop3 110
- imap 143
- snmp 161
- https 443

#### Protokollet e shtresës së aplikacionit (1)

- Janë interfejs në mes të aplikacioneve të shfrytëzuesve dhe shërbimeve të Internetit
- Shërbimet e Internetit bazohen në modelin client-server (dy komponente)
  - Komponentja client është vet aplikacioni i instaluar në kompjuter
  - Komponentja server është vetë shërbimi i instaluar në kompjuterin server
- Ekzistojnë protokolle të shumta të shtresës së aplikacionit
  - Çdo aplikacion e ka të shoqëruar një protokoll të aplikacionit

#### Protokollet e shtresës së aplikacionit (2)

- Telnet
- SSH (Secure Shell) Protocol
- FTP (File Transfer Protocol)
- TFTP (Trivial File Transfer Protocol)
- SMTP (Simple Mail Transfer Protocol)
- POP3 (Post Office Protocol version 3)
- IMAP (Internet Message Access Protocol)
- HTTP (HyperText Transfer Protocol)
- HTTPS (Secure Hyper Text Transfer Protocol)
- BOOTP (Bootstrap Protocol)
- DHCP (Dynamic Host Configuration Protocol)
- SNMP (Simple Network Management Protocol)
- DNS (Domain Name System)

#### Protokolli DHCP (1)

#### DHCP - Dynamic Host Configuration Potocol

- Mundëson që kur një host lidhet në rrjet ta merrë një adresë IP në mënyrë dinamike nga serveri
- Mundëson zgjatjen e kohës së shfrytëzimit të adresës IP aktuale
- Hosti e mban adresën e njëjtë derisa është i lidhur në rrjet dhe është aktiv
- Adresa e njëjtë mund t'i jepet hostave të ndryshëm (ripërdorimi i adresave)

#### Protokolli DHCP (2)

#### Përshkrimi i protokollit DHCP:

- Hosti e transmeton mesazhin "DHCP discover" në modin broadkast
- Serveri DHCP përgjigjet me mesazhin "DHCP offer"
- Hosti e kërkon nga serveri një adresë IP me mesazhin "DHCP request"
- Serveri DHCP përgjigjet me mesazhin "DHCP ack"

#### Skenari DHCP klient-server



### Protokolli IPv6 (1)

- Motivimi themelor: numri i adresave 32-bitshe IPv4 në hargjim
- Numër i pakufizuar i adresave 128 bitshe IPv6
- Veti tjera të avancuara në krahasim me IPv4
  - Eliminon nevojën për shfrytëzimin e teknikës NAT
  - Formati i hederit është më i thjeshtë, procesimi më i lehtë i datagrameve IP
  - Checksum: është eliminuar dhe është zvogëluar koha e nevojshme për procesim në çdo "hop"
  - Nuk ka fragmentim në rutera
    - ICMPv6: version i ri protokollit ICMP
      - Mesazhe shtesë p.sh. "Packet Too Big"
  - Mbështet autokonfigurimin
  - Mbështet mobilitetin e shfrytëzuesve (Mobile IP)

### Protokolli IPv6 (2)

- Veti tjera të avancuara
  - Mbështet protokollet që kanë përdorim të gjerë
  - Arkitekturë hierarkike e adresimit, rrugëtimi efikas
  - Ofron mbrojtje të informacioneve, duke përdorur familjen e protokolleve IPSec
  - Mbështet cilësinë e shërbimit QoS (Quality of Service)
  - Ofron numër të madh të adresave multicast

#### Struktura e Paketit IPv6

#### Datagrami IPv6 përbëhet prej:

- 1. Hederit kryesor IPv6
  - Gjatësi konstante 40 bajta, 8 fusha
  - Paraqet protokollin IPv6
- 2. Numër të ndryshueshëm të hederave shtesë (extension header)
  - Në vend të fushës option të hederi IPv4
- 3. Fushës për insertimin e fragmentit TPDU-së

| IPv6 Main | Extension | <br>Extension | Transport level |
|-----------|-----------|---------------|-----------------|
| Header    | Header    | Header        | PDU             |

# Struktura e Hederit Kryesor IPv6 (1)



# Struktura e Hederit Kryesor IPv6 (2)

#### Përshkrimi i fushave të Hederit IPv6

- Fusha Version (4 bitshe) e tregon versionin e hederit IP, vlerën 6
- Fusha Traffic Class (8 bitshe) për prioritet të ndryshëm të paketave IPv6
- Fusha Flow Label (20 bitshe) përdoret nga burimi i paketes t'i shenoi paketet që i takojnë një rrjedhe të veçantë e që kërkojnë tretman shtesë për QoS (p.sh. rel-time video).
- Fusha Payload Length (16 bitshe) e tregon gjatësinë e paketes së shtresës së sipërme dhe hederave shtesë
- Fusha Next Heder (8 bitshe) përmban informacion për hederin që pason pas hederit kryesor (hederi shtesë ose TCP/UDP)
- Fusha Hop Limit (8 bitshe) është e ngjashme me TTL te IPv4
  - Është më e thjeshtë për procesim
- Fusha Source Address (128 bitshe), e tregon adresën e hostit që e gjeneron datagramin (adresën e burimit të datagramit)
- Fusha **Destination Address** (128 bitshe), e tregon adresën e hostit, të cilit i dedikohet datagrami (adresën e destinimit)

#### Hederat Shtesë IPv6

Hederat shtesë të IPv6 janë opcional dhe përdoren për

- Fragmentim
- Siguri
- Menaxhimin e rrjetit
- Rrugëtimin e përcaktuar nga hosti burimor
- Funksione të tjera

### Adresimi IPv6 (1)

- Adresa IP është 128 bitshe
  - Gjithsej 3.4 x 10<sup>38</sup> adresa, 1030 adresa për çdo person në tokë
  - Adresat paraqiten me 8 numra heksadecimal 16 bitësh të ndarë me dy pika ":"
  - Shembull:

2031:0000:1F1F:0000:0000:0100:11A0:ADDF

- Përdoren këto shkurtesa:
  - Zerot mund të komprimohen (0000 = 0).

2031:0:1F1F:0:0:0100:11A0:ADDF

 Grupet 16 bitshe të zerove mund të zevendësohen me "::", por vetëm në një pozitë

2031:0:1F1F::0100:11A0:ADDF

### Adresimi IPv6 (2)

- Kompatibilitet dhe bashkëveprim me IPv4
  - 32 bitët e fundit mund të paraqiten sikurse adresa IPv4 0:0:0:0:0:0.192.168.0.1.
  - Mundëson bashkekzistimin e rrjeteve IPv6 me rrjetet IPv4
- Gjatësia e prefiksit
  - Informacion tjetër i rëndësishëm është gjatësia e prefiksit (/prefixlength)
  - Vlera decimale e bitave më të lartë në adresë që paraqesin pjesën e adresës së rrjetit.
  - 1080:6809:8086:6502::/64

# Adresimi IPv6 (3)

#### Formati i përgjithshëm i adresimit në IPv6



XXXX = 0000 through FFFF

## Adresimi IPv6 (4)

#### Tri tipe themelore të adresave IPv6:

- Unicast
- Multicast
- Anycast

- Source burimi
- Destination destinacioni



## Operimi i IPv6 (1)

#### Dy procese janë thelbësore:

- Neighbour discovery
  - Ekuivalente me ARP te IPv4
  - U mundëson nyjave IP ta përcaktojnë adresën (link–layer) të nyjave fqinje në linjën e njëjtë (subnet)
  - I përdor mesazhet ICMPv6 për Neighbouring advertisement message me adresë destinuese solicited node multicast addresses
- Router discovery
  - Për zbulimin e ruterave në linjën lokale (subnet)
  - Për këtë qëllim përdoren dy mesazhe:
    - Router advertisement dhe Router solicitation

## Operimi i IPv6 (2)

#### Router advertisment

- Dërgohen periodikisht nga çdo interfejs i routerit dhe si përgjigje në mesazhin router solicitation
- Përmban informacionin për llojin e autokonfigurimit të adresës që duhet nyja me e përdor (stateless, statefull), hop limit, prefiksin e rrjetit për adresën unicast, default router
- Nuk e përmban adresën IP të serverit DNS, për këtë arsyje nevojitet një server DHCP që quhet stateless dhcp server, detyra e të cilit ështe me ia dërgua klientit adresën IP të serverit DNS

#### Router solicitation

 Kur hosti nuk ka adresë unicast të konfigurueme, shpejtohet procesi i autokonfigurimit

# Konfigurimi i Nyjave IPv6 (1)

#### Stateless autoconfiguration

- Hosti e gjeneron adresën e vet IP duke e kombinuar prefiksin e rrjetit me identifikuesin e interfejsit të vet (adresën MAC)
- Prefiksi i rrjetit përmbahet në mesazhin router advertisment dhe përdoret si prefiks /64 i adresës së hostit
- Pjesa tjetër e adresës përpilohet në formatin EUI-64 duke bërë insertimin e numrit FFFE në mes të adresës MAC dhe duke invertuar bitin e 7-të nga ana e majtë e adresës MAC
  - Nyja me adresë 00 03 B6 1A 20 61 (në interfejsin Ethernet) e kombinuar me prefixin e rrjetit 2001:0001:1EEF:0000/64 do ta ketë adresën IPv6: 2001:0001:1EEF:0000:0203:B6FF:FE1A:2061
- Hosti duhet të bëjë kontrollimin e adresimit të dyfishtë
- Riadresimi i nyjave IPv6 (Router renumbering RFC 2894)
  - Mundësohet nga mesazhi router advertisment i cili e përmban prefiksin e vjetër dhe prefiksin e ri të rrjetit
  - Gjatë kësaj kohe nyjat i kanë nga dy adresa unicast

# Konfigurimi i Nyjave IPv6 (2)

#### Stateful autoconfiguration

- Serveri DHCPv6
- Hosti e merr adresën e interfejsit si dhe informacionet e konfigurimit IP prej serverit me përjashtim të adresës IP për default ruter e cila merret nga router advertisment
- Serverët mbajnë evidencën se cilat adresa i janë ndarë cilave nyja
- Përdoret edhe në rastet kur hosti nuk mundet ta bën vetkonfigurimin (stateless)

### Adresat IPv6 (1)

#### AdresaUnicast

- Përdoret për ta identifikuar një interfejs të vetëm
  - Varësisht nga aritshmëria, adresat unicast ndahen në tri lloje të adresave
- Global unicast
  - Adrese globale (Global Routing prefix, subnet ID, interface ID)
  - E ngjashme me adresat publike te IPv4
- Unique local unicast
  - Brenda rrjetit lokal të shfrytzuesit
  - E ngjashme me adresat private IPv4: 10.0.0.0/8 dhe 192.168.0.0/16

## Adresat IPv6 (2)

- Adresa Unicast (vazhdim)
  - Link local unicast
    - Është e arritshme vetëm nga nyjat në të njëjtin link lokal, ngjashëm me APIPA
  - Interface ID duhet të jetë 64 bitsh i përpiluar sipas formatit
     Extended Universal Identifier (EUI)-64
  - ID e interfejsit derivohet prej adresës 48 bitshe MAC duke bëre insertimin e numrit FFFE në mes të tre bajtave të epërm dhe të poshtëm të adresës MAC, duke invertuar bitin e 7të të adresës MAC nga ana e majtë

### Adresat IPv6 (3)

- Një interfejsi mund t`i jepen disa adresa të çfarëdo lloji (unicast, multicast, anycast)
- Çdo interfejs IPv6 duhet ta përmbajë së paku një adresë për testim (loopback) dhe një adresë link-local
- Çdo interfejs IPv6 mund t`l ketë (opcionale) adresa të shumëfishta unique local dhe globale
- Adresat IPv6 mund t'iu jepen hostave në disa mënyrë:
  - Konfigurim statik
  - Autoconfigurim Stateless
  - Serveri DHCPv6

#### Bashkekzistimi IPv4 – IPv6

- Grupi punues IETF IPv6 i ka dizajnuar disa strategji transitimi prej adresimit IPv4 në adresimin IPv6:
  - IPv6 over dual stack backbones
    - Të gjithë ruterat në rrjet i përmbajnë edhe protokollet IPv4 dhe ato IPv6
  - IPv6 over IPv4 tunneling
    - Enkapsulimi i paketave IPv6 brenda paketave IPv4
    - Pikat fundore të tunelit duhet t'i implementojnë protokollet IPv4 dhe IPv6

## Tunelimi (1)



### Tunelimi (2)

