INFORME DE EVALUACIÓN Y PROPUESTAS

Proyecto Semestral de Geoinformática

Análisis Personalizado y Recomendaciones Universidad de Santiago de Chile

Estudiante: Byron Caices

Profesor: Dr. Francisco Parra O.

Área de Interés: Negocios y Urbanismo **Enfoque:** Análisis Inmobiliario y Plusvalía

Agosto 2025

${\bf \acute{I}ndice}$

1. Resumen Ejecutivo

ANÁLISIS DEL PERFIL

Byron presenta un **perfil ideal** para proyectos de geoinformática aplicada al sector inmobiliario:

- Fortaleza técnica: Dominio de Python y SQL, fundamentales para análisis geoespacial
- Sin experiencia previa en GIS: Oportunidad de aprendizaje significativo
- Interés comercial claro: Enfoque en negocios y urbanismo con aplicación práctica
- Visión específica: Análisis de plusvalía y factores urbanos

Recomendación: Desarrollar un proyecto que combine machine learning espacial con análisis del mercado inmobiliario chileno, aprovechando su experiencia en Python para crear una solución innovadora y comercialmente viable.

2. Análisis del Perfil del Estudiante

2.1. Competencias Técnicas

Habilidad	Nivel	Aplicación en Geoinformática
Python	Avanzado	GeoPandas, Rasterio, Scikit-learn para ML espacial
SQL	Intermedio	PostGIS para consultas espaciales complejas
JavaScript	Básico	Google Earth Engine, Leaflet para visualización
R	Básico	Análisis estadístico espacial complementario
Datos Geográficos	Principiante	Curva de aprendizaje acelerada esperada

2.2. Áreas de Interés y Potencial

2.2.1. Negocios y Geomarketing

- Análisis de localización óptima para retail
- Predicción de éxito comercial basado en variables espaciales
- Segmentación de mercado geográfica
- Optimización de rutas de distribución

2.2.2. Urbanismo y Plusvalía

- Modelado de precios inmobiliarios
- Análisis de factores de valorización
- Predicción de desarrollo urbano

Evaluación de impacto de infraestructura

3. Propuesta de Proyecto 1: Sistema Inteligente de Valoración Inmobiliaria

3.1. Descripción General

Desarrollo de una plataforma que utiliza machine learning espacial para predecir y analizar el valor de propiedades en el Gran Santiago, considerando múltiples variables urbanas y su evolución temporal.

3.2. Arquitectura Técnica

```
import geopandas as gpd
   import pandas as pd
  from sklearn.ensemble import GradientBoostingRegressor
   from sklearn.model_selection import train_test_split
   import folium
   from shapely.geometry import Point
  import osmnx as ox
   class RealEstateValuationSystem:
9
       def __init__(self, study_area):
10
11
           self.study_area = study_area
           self.properties = gpd.GeoDataFrame()
12
           self.urban_features = {}
13
           self.model = None
14
15
       def collect_property_data(self):
16
           """Recolecta datos de portales inmobiliarios"""
17
           # Web scraping de portalinmobiliario.com
18
           # Geocodificaci n de direcciones
19
           # Estructuraci n en GeoDataFrame
20
21
           pass
22
       def extract_urban_features(self):
23
           """Extrae caracter sticas urbanas relevantes"""
24
           features = {}
25
           # 1. Accesibilidad a metro
27
           metro_stations = gpd.read_file('metro_santiago.geojson'
28
           features['dist_metro'] = self.
              calculate_nearest_distance(
               self.properties, metro_stations
30
           )
31
32
                       verdes (NDVI desde Sentinel-2)
33
           features['green_index'] = self.calculate_ndvi_buffer(
34
               self.properties, radius=500
35
36
37
           # 3. Densidad comercial (POIs desde OSM)
```

```
features['commercial_density'] = self.
39
               calculate_poi_density(
                categories=['shop', 'restaurant', 'bank']
40
41
42
           # 4. Calidad del aire (datos SINCA)
           features['air_quality'] = self.interpolate_air_quality
44
               ()
45
                         de seguridad (datos de delitos)
           # 5. ndice
46
           features['safety_index'] = self.calculate_safety_score
47
               ()
           # 6. Conectividad vial
49
           G = ox.graph_from_place('Santiago, Chile', network_type
              ='drive')
           features['street_connectivity'] = self.
               calculate_connectivity(G)
           return features
53
       def train_valuation_model(self):
           """Entrena modelo de valoraci n con validaci n
56
               espacial"""
           X = pd.DataFrame(self.urban_features)
57
           y = self.properties['price_per_m2']
58
59
           # Agregar coordenadas para autocorrelaci n espacial
60
           X['lat'] = self.properties.geometry.y
           X['lon'] = self.properties.geometry.x
62
63
           # Split con consideraci n espacial
           X_train, X_test, y_train, y_test = self.
65
               spatial_train_test_split(
               X, y, test_size=0.2
66
68
           # Modelo con regularizaci n espacial
69
           self.model = GradientBoostingRegressor(
70
               n_{estimators} = 500,
71
               max_depth=8,
72
               learning_rate=0.01,
73
                subsample=0.8,
74
                min_samples_split=10,
                random_state=42
76
77
78
           self.model.fit(X_train, y_train)
80
           # Feature importance
81
           self.analyze_feature_importance()
82
83
           return self.model
84
85
       def predict_property_value(self, address):
86
87
           """Predice valor de propiedad nueva"""
           location = self.geocode_address(address)
88
           features = self.extract_features_for_point(location)
```

```
90
            prediction = self.model.predict([features])[0]
91
            confidence_interval = self.
92
               calculate_confidence_interval(features)
            return {
                'predicted_value': prediction,
95
                'confidence_interval': confidence_interval,
96
                'main_factors': self.explain_prediction(features)
97
            }
98
99
        def generate_heatmap(self):
            """Genera mapa de calor de valores"""
            # Crear grid hexagonal
            hexagons = self.create_hexgrid(self.study_area)
103
104
            # Predecir valor para cada hex gono
            for hex in hexagons:
106
                centroid = hex.centroid
                features = self.extract_features_for_point(centroid
                hex['predicted_value'] = self.model.predict([
109
                   features])[0]
110
            # Visualizar con Folium
111
            return self.create_interactive_map(hexagons)
112
```

Listing 1: Pipeline principal del sistema

3.3. Fuentes de Datos

Dato	Fuente	Procesamiento	Frecuencia
Precios inmobiliarios	PortalInmobiliario.com	Web scraping + geo-	Diaria
		coding	
Transporte público	DTPM / Metro San-	API REST + GTFS	Mensual
	tiago		
Áreas verdes	Sentinel-2 (GEE)	Cálculo NDVI	Quincenal
POIs comerciales	OpenStreetMap	Overpass API	Semanal
Demografía	Censo 2017 (INE)	Agregación por man-	Estático
		zana	
Delitos	Subsecretaría Preven-	Geocodificación +	Trimestral
	ción	KDE	
Calidad del aire	SINCA	Interpolación IDW	Horaria
Permisos construcción	DOM municipales	Scraping + análisis	Mensual

3.4. Indicadores de Éxito

- MAPE ¡12 % en predicción de precios
- R² ¿0.85 en validación cruzada espacial
- Tiempo de respuesta ¡2 segundos por consulta

■ Cobertura ; 90 % del Gran Santiago

4. Propuesta de Proyecto 2: Plataforma de Inteligencia Locacional para Retail

4.1. Descripción General

Sistema de análisis espacial avanzado para determinar ubicaciones óptimas de nuevos locales comerciales, prediciendo su rendimiento basado en variables demográficas, de competencia y accesibilidad.

4.2. Componentes del Sistema

```
import geopandas as gpd
   import networkx as nx
  from scipy.spatial import Voronoi
   from sklearn.cluster import DBSCAN
   import h3
   class RetailLocationIntelligence:
       def __init__(self, city_bounds):
           self.city = city_bounds
9
           self.competitors = gpd.GeoDataFrame()
10
           self.demographics = gpd.GeoDataFrame()
11
           self.foot_traffic = {}
12
       def analyze_market_saturation(self, business_type):
14
           """Analiza saturaci n del mercado por tipo de negocio
15
           # Obtener competidores
16
           competitors = self.get_competitors_osm(business_type)
17
18
                          de influencia (Voronoi)
           # Crear reas
19
           vor = Voronoi(competitors[['x', 'y']])
20
           market_areas = self.voronoi_to_geodataframe(vor)
21
22
           # Calcular ndice de saturaci n
23
           for area in market_areas:
24
               population = self.get_population_in_area(area)
               n_competitors = len(competitors.within(area))
26
               area['saturation_index'] = n_competitors /
27
                  population * 1000
           return market_areas
29
30
       def calculate_accessibility_score(self, location):
31
           """Calcula score de accesibilidad multimodal"""
32
           scores = {}
33
34
           # 1. Accesibilidad peatonal (is cronas)
35
36
           walking_iso = self.calculate_isochrone(
               location, mode='walk', time=10
37
```

```
scores['walking'] = self.population_in_polygon(
39
               walking_iso)
40
           # 2. Accesibilidad en auto
41
           driving_iso = self.calculate_isochrone(
42
               location, mode='drive', time=15
44
           scores['driving'] = self.population_in_polygon(
45
              driving_iso)
46
           # 3. Transporte p blico
47
           transit_iso = self.calculate_isochrone(
               location, mode='transit', time=20
50
           scores['transit'] = self.population_in_polygon(
51
              transit_iso)
           # 4. Estacionamientos cercanos
53
           parking = self.count_parking_spots(location, radius
54
               =300)
           scores['parking'] = parking
56
           # Score ponderado
57
           weights = {'walking': 0.4, 'driving': 0.2,
58
                      'transit': 0.3, 'parking': 0.1}
59
           total_score = sum(scores[k] * weights[k] for k in
60
               scores)
61
           return total_score, scores
63
       def predict_foot_traffic(self, location, datetime):
64
           """Predice tr fico peatonal usando datos m viles"""
65
           # Usar hex gonos H3 para agregaci n
66
           h3\_index = h3.geo\_to\_h3(
67
               location.y, location.x, resolution=9
68
           )
69
70
           # Features temporales
71
           hour = datetime.hour
72
           day_of_week = datetime.dayofweek
73
           is_weekend = day_of_week >= 5
74
75
           # Features espaciales
           nearby_pois = self.count_pois_by_category(location,
              radius=200)
78
           # Modelo de predicci n (pre-entrenado)
79
           features = [hour, day_of_week, is_weekend] + list(
              nearby_pois.values())
           predicted_traffic = self.traffic_model.predict([
81
              features])[0]
           return predicted_traffic
83
84
       def optimize_location_portfolio(self, n_locations,
85
          constraints):
           """Optimiza portfolio de ubicaciones"""
86
           from scipy.optimize import differential_evolution
```

```
88
            def objective(locations):
89
                # Reshape a coordenadas
90
                locs = locations.reshape(n_locations, 2)
91
92
                total_coverage = 0
93
                overlap_penalty = 0
94
95
                for i, loc in enumerate(locs):
96
                     # Cobertura de mercado
97
                     coverage = self.calculate_market_coverage(loc)
98
                     total_coverage += coverage
99
                    # Penalizaci n por solapamiento
                     for j in range(i+1, len(locs)):
                         distance = np.linalg.norm(loc - locs[j])
103
                         if distance < constraints['min_distance']:</pre>
104
                             overlap_penalty += 1000 / distance
106
                return -(total_coverage - overlap_penalty)
107
            # Optimizaci n
109
            bounds = [(self.city.bounds[0], self.city.bounds[2])] *
110
                 (n_{locations} * 2)
            result = differential_evolution(objective, bounds)
112
            optimal_locations = result.x.reshape(n_locations, 2)
113
            return self.create_location_report(optimal_locations)
114
        def generate_opportunity_map(self):
116
            """Genera mapa de oportunidades comerciales"""
117
            # Crear grid de an lisis
118
119
            grid = self.create_analysis_grid(resolution=100)
120
            for cell in grid:
                centroid = cell.centroid
122
123
                # Calcular m tricas
124
                cell['population_density'] = self.
                    get_population_density(centroid)
                cell['competition_index'] = self.
126
                    calculate_competition(centroid)
                cell['accessibility'] = self.
127
                    calculate_accessibility_score(centroid)[0]
                cell['income_level'] = self.get_average_income(
128
                    centroid)
129
                # Score de oportunidad
130
                cell['opportunity_score'] = (
131
                     cell['population_density'] * 0.3 +
132
                     (1 - cell['competition_index']) * 0.3 +
133
                     cell['accessibility'] * 0.2 +
134
                     cell['income_level'] * 0.2
136
137
138
            return self.visualize_opportunity_grid(grid)
```

Listing 2: Motor de análisis locacional

4.3. Análisis de Competencia Espacial

```
def spatial_competition_analysis(self, business_location,
      competitor_locations):
       """An lisis de competencia usando modelos de gravitaci n
2
       import numpy as np
3
       from scipy.spatial.distance import cdist
4
5
       # Modelo de Huff para probabilidad de visita
6
       def huff_model(target, competitors, alpha=1, beta=2):
           # Atractivo de cada tienda (tama o, calidad, etc.)
           attractiveness = np.array([store['rating'] * store['
9
              size']
                                       for store in competitors])
10
11
           # Distancias
12
           distances = cdist([target], competitor_locations)[0]
13
14
           # Utilidad de cada tienda
15
           utilities = attractiveness / (distances ** beta)
16
17
           # Probabilidad de visitar tienda objetivo
18
           prob_target = utilities[0] / np.sum(utilities)
19
           return prob_target
21
22
       # An lisis de canibalizaci n
23
       def cannibalization_risk(new_location, existing_locations):
24
           overlap_areas = []
25
           for existing in existing_locations:
26
               # rea de influencia compartida
27
               overlap = self.calculate_overlap_area(new_location,
                    existing)
               overlap_areas.append(overlap)
29
30
           total_cannibalization = sum(overlap_areas)
31
           return total_cannibalization / self.total_market_area
32
33
       return {
           'market_share': huff_model(business_location,
35
              competitor_locations),
           'cannibalization': cannibalization_risk(
36
              business_location, existing_stores),
           'competitive_advantage': self.
37
              calculate_competitive_metrics(business_location)
       }
```

Listing 3: Análisis avanzado de competencia

5. Propuesta de Proyecto 3: Monitor de Desarrollo Urbano y Plusvalía

5.1. Descripción General

Sistema de monitoreo continuo que detecta cambios urbanos usando imágenes satelitales y predice su impacto en la plusvalía inmobiliaria, generando alertas tempranas de oportunidades de inversión.

5.2. Tecnologías Clave

- Detección de cambios: Análisis multitemporal con Sentinel-2
- Deep Learning: CNN para clasificación de uso de suelo
- Series temporales: Prophet para proyección de plusvalía
- Visualización: Dashboard interactivo con Streamlit

5.3. Pipeline de Procesamiento

```
import ee
   import tensorflow as tf
   from prophet import Prophet
   import streamlit as st
   class UrbanDevelopmentMonitor:
       def __init__(self):
           ee.Initialize()
           self.model = self.load_pretrained_model()
10
       def detect_urban_changes(self, aoi, date_start, date_end):
11
           """Detecta cambios urbanos usando Sentinel-2"""
12
           # Obtener im genes
           col_before = ee.ImageCollection('COPERNICUS/S2_SR')\
14
               .filterBounds(aoi)\
15
               .filterDate(date_start, ee.Date(date_start).advance
16
                   (3, 'month'))\
                .median()
18
           col_after = ee.ImageCollection('COPERNICUS/S2_SR')\
19
               .filterBounds(aoi)\
20
               .filterDate(date_end, ee.Date(date_end).advance(3,
21
                   'month'))\
               .median()
22
23
              ndices
                     espectrales
           ndbi_before = self.calculate_ndbi(col_before)
25
           ndbi_after = self.calculate_ndbi(col_after)
26
27
           # Detecci n de cambios
           change = ndbi_after.subtract(ndbi_before)
29
30
           # Clasificar tipos de cambio
31
           new_construction = change.gt(0.15)
```

```
demolition = change.lt(-0.15)
33
34
35
           return {
                'new_construction': new_construction,
36
                'demolition': demolition,
37
                'change_magnitude': change
           }
39
40
       def classify_development_type(self, change_area):
41
           """Clasifica tipo de desarrollo usando CNN"""
42
           # Extraer chip de imagen
43
           image_chip = self.extract_image_chip(change_area, size
44
               =224)
45
           # Predicci n con modelo pre-entrenado
46
           predictions = self.model.predict(image_chip)
47
48
           classes = ['residential', 'commercial', 'industrial',
49
                      'infrastructure', 'park', 'mixed_use']
50
51
           return {
                'type': classes[np.argmax(predictions)],
53
                'confidence': float(np.max(predictions))
54
           }
55
56
       def predict_plusvalue_impact(self, location,
57
          development_type):
           """Predice impacto en plusval a"""
           # Datos hist ricos de proyectos similares
59
           historical_data = self.get_historical_impacts(
60
                development_type,
61
                radius=2000
62
63
           )
64
           # Preparar serie temporal
65
           df = pd.DataFrame({
66
                'ds': historical_data['date'],
67
                'y': historical_data['price_change_pct']
68
           })
69
70
           # Agregar regresores
71
           df['distance'] = self.calculate_distance_to_development
72
               (location)
           df['size'] = self.get_development_size()
           df['type_commercial'] = int(development_type == '
74
               commercial')
           df['type_infrastructure'] = int(development_type == '
75
               infrastructure')
76
           # Modelo Prophet con regresores
           model = Prophet(
                changepoint_prior_scale = 0.05,
79
                seasonality_mode='additive'
80
           )
81
           model.add_regressor('distance')
82
83
           model.add_regressor('size')
           model.add_regressor('type_commercial')
84
           model.add_regressor('type_infrastructure')
85
```

```
86
            model.fit(df)
87
88
            # Predicci n a 24 meses
89
            future = model.make_future_dataframe(periods=24, freq='
               M')
            future['distance'] = df['distance'].iloc[-1]
91
            future['size'] = df['size'].iloc[-1]
92
            future['type_commercial'] = df['type_commercial'].iloc
93
               [-1]
            future['type_infrastructure'] = df['type_infrastructure
94
               '].iloc[-1]
            forecast = model.predict(future)
96
97
            return {
98
                'expected_appreciation': forecast['yhat'].iloc[-1],
                'confidence_interval': (forecast['yhat_lower'].iloc
100
                    [-1],
                                         forecast['yhat_upper'].iloc
                                             [-1]),
                'time_to_peak': self.find_peak_time(forecast)
            }
103
104
        def create_investment_alert(self, opportunity):
            """Genera alerta de oportunidad de inversi n"""
106
            score = self.calculate_opportunity_score(opportunity)
107
            if score > 0.8:
109
                alert = {
110
                     'level': 'HIGH',
111
                     'message': f"Oportunidad de inversi n
112
                        detectada en {opportunity['location']}",
                     'expected_roi': opportunity['
113
                        expected_appreciation'],
                     'risk_level': self.assess_risk(opportunity),
114
                     'recommended_action': self.
115
                        generate_recommendation(opportunity)
                }
116
117
                # Enviar notificaci n
118
                self.send_alert(alert)
119
120
            return alert
```

Listing 4: Detección de cambios urbanos y predicción de plusvalía

6. Recomendaciones de Implementación

6.1. Plan de Desarrollo Sugerido

Semana	Fase	Actividades	Entregable
1-2	Fundamentos	Aprender GeoPandas, PostGIS	Notebook tutorial
		básico	
3-4	Datos	Recolección y limpieza de datos	Dataset limpio
		inmobiliarios	
5-6	Análisis	Exploración espacial, correlacio-	EDA completo
		nes	
7-8	Modelado	Desarrollo de modelos ML	Modelos entrenados
9-10	Validación	Testing y ajuste de parámetros	Métricas finales
11-12	Visualización	Dashboard interactivo	App Streamlit
13-14	Documentación	Manual técnico y de usuario	Documentación
15	Presentación	Preparación presentación final	Demo en vivo

6.2. Stack Tecnológico Recomendado

TECNOLOGÍAS ESENCIALES

- Python: GeoPandas, Shapely, Rasterio, Folium
- Base de datos: PostgreSQL + PostGIS
- Machine Learning: Scikit-learn, XGBoost, Prophet
- Visualización: Streamlit, Plotly, Kepler.gl
- Cloud: Google Earth Engine para procesamiento satelital
- APIs: OpenStreetMap Overpass, Transporte público GTFS

6.3. Recursos de Aprendizaje Prioritarios

1. GeoPandas fundamentals:

- Curso: "Spatial Analysis with Python" (2 semanas)
- Documentación oficial de GeoPandas

2. Machine Learning Espacial:

- Paper: "Machine Learning for Spatial Environmental Data"
- Tutorial: Spatial Cross-Validation techniques

3. Mercado Inmobiliario:

- Informes trimestrales CCHC
- Portal de datos abiertos del SII

7. Métricas de Evaluación del Proyecto

7.1. Criterios Técnicos (50%)

- Correcta implementación de análisis espacial
- Calidad del código y documentación
- Performance de modelos ML (MAPE, R²)
- Manejo eficiente de datos geoespaciales

7.2. Criterios de Negocio (30%)

- Viabilidad comercial de la solución
- Claridad del modelo de negocio
- Potencial de escalabilidad
- Diferenciación de competencia

7.3. Criterios de Innovación (20%)

- Originalidad del enfoque
- Uso creativo de datos alternativos
- Integración de múltiples fuentes
- Potencial de publicación académica

8. Riesgos y Mitigaciones

Riesgo	Probabilidad	Impacto	Mitigación
Disponibilidad de	Alta	Alto	Web scraping +
datos inmobiliarios			múltiples fuentes
Complejidad de	Media	Medio	Tutoriales + office
GeoPandas			hours
Overfitting en mo-	Media	Alto	Cross-validation es-
delos			pacial rigurosa
Performance con	Baja	Medio	Uso de Dask + op-
big data			timización

9. Conclusiones y Siguientes Pasos

9.1. Fortalezas Identificadas

- Base técnica sólida: Python y SQL facilitan la curva de aprendizaje
- Visión clara: Interés específico en inmobiliario reduce ambigüedad

- Mercado atractivo: Sector inmobiliario chileno en crecimiento
- Aplicabilidad inmediata: Proyectos con potencial comercial real

9.2. Recomendación Final

RECOMENDACIÓN DEL PROFESOR

Byron debe enfocarse en el Proyecto 1: Sistema Inteligente de Valoración Inmobiliaria

Razones:

- 1. Alinea perfectamente con sus intereses en negocios y plusvalía
- 2. Aprovecha su fortaleza en Python para ML
- 3. Tiene aplicación comercial inmediata
- 4. Permite aprendizaje gradual de conceptos GIS
- 5. Potencial para convertirse en startup

Primeros pasos sugeridos:

- 1. Instalar ambiente: conda install geopandas folium scikit-learn
- 2. Tutorial GeoPandas: 2-3 días de práctica intensiva
- 3. Comenzar con dataset de 100 propiedades para prototipo
- 4. Implementar modelo básico con 5 variables urbanas
- 5. Iterar agregando complejidad gradualmente

Meta: Tener MVP funcional en 4 semanas

9.3. Cronograma Inicial Detallado

Semana 1: Inmersión en Geoinformática

- Lunes-Martes: Tutorial completo de GeoPandas
- Miércoles-Jueves: Ejercicios con datos de Santiago
- Viernes: Configurar PostgreSQL + PostGIS

Semana 2: Recolección de Datos

- Lunes-Martes: Web scraping Portal Inmobiliario
- Miércoles: Geocodificación de direcciones
- Jueves-Viernes: Descarga datos OSM y censo

Semana 3: Análisis Exploratorio

- Lunes-Martes: Cálculo de variables urbanas
- Miércoles-Jueves: Visualizaciones y correlaciones
- Viernes: Identificar patrones espaciales

Semana 4: Primer Modelo

- Lunes-Martes: Implementar regresión baseline
- Miércoles-Jueves: Agregar XGBoost con tuning
- Viernes: Evaluación y presentación de avance

10. Material de Apoyo Adicional

10.1. Código de Inicio Rápido

```
# Instalar librer as necesarias
  # pip install geopandas folium scikit-learn beautifulsoup4
      requests
  import geopandas as gpd
4
  import pandas as pd
5
6 import folium
7 from shapely.geometry import Point
  import requests
  from bs4 import BeautifulSoup
  # 1. Crear primer GeoDataFrame
11
  data = {
12
       'direccion': ['Providencia 123', 'Las Condes 456', ' uoa
13
           789'],
       'precio': [150000000, 280000000, 95000000],
14
       'm2': [65, 110, 45],
15
       'lat': [-33.4489, -33.4089, -33.4589],
16
       'lon': [-70.6693, -70.5693, -70.6093]
17
18
19
  df = pd.DataFrame(data)
  geometry = [Point(xy) for xy in zip(df.lon, df.lat)]
  gdf = gpd.GeoDataFrame(df, geometry=geometry, crs='EPSG:4326')
  # 2. Calcular precio por m2
  gdf['precio_m2'] = gdf['precio'] / gdf['m2']
  # 3. Crear buffer de 500m alrededor de cada propiedad
27
  gdf_utm = gdf.to_crs('EPSG:32719') # Proyectar a UTM para
      Chile
  gdf_utm['buffer'] = gdf_utm.geometry.buffer(500)
29
  # 4. Visualizar en mapa interactivo
  m = folium.Map(location=[-33.45, -70.65], zoom_start=12)
34 for idx, row in gdf.iterrows():
  folium.CircleMarker(
```

```
[row.geometry.y, row.geometry.x],
36
           radius=5,
37
           popup=f"Precio: ${row['precio']:,.0f}<br>m : {row['m2
38
               ']} < br> $ / m : $ {row['precio_m2']:,.0f}",
           color='red',
39
           fill=True
40
       ).add_to(m)
41
42
   m.save('mi_primer_mapa_inmobiliario.html')
43
   print("Mapa creado exitosamente!")
44
45
   # 5. An lisis espacial b sico
   from sklearn.neighbors import NearestNeighbors
47
48
   # Encontrar 3 propiedades m s cercanas a cada una
49
   coords = gdf_utm[['geometry']].apply(lambda x: [x.geometry.x, x
      .geometry.y], axis=1).tolist()
  nbrs = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').
      fit(coords)
   distances, indices = nbrs.kneighbors(coords)
52
   print("\nDistancias a vecinos m s cercanos (metros):")
54
   for i, dist in enumerate(distances):
55
       print(f"Propiedad {i}: {dist[1]:.0f}m y {dist[2]:.0f}m")
56
57
   # Este es tu punto de partida, Byron.
                                            Ahora a construir algo
58
      incre ble!
```

Listing 5: Script inicial para Byron

10.2. Enlaces Útiles

- Datos Santiago: https://datos.gob.cl/dataset?q=santiago
- IDE Chile: http://www.ide.cl/
- GeoPandas Docs: https://geopandas.org/
- Ejemplos ML Espacial: https://github.com/giswqs/geospatial-machine-learning

Dr. Francisco Parra O.

Profesor Curso Geoinformática Universidad de Santiago de Chile francisco.parra.o@usach.cl

¡Éxito en tu proyecto, Byron! Agosto 2025