(intended learning outcomes): Student should be able to use microscope for

Study the different parts of the microscope.

- The support system of the microscope (body, base and stage).
- The illumination system (mirror, condenser and iris diaphragm). - The magnifying system (eye piece lens, objective lenses).
- The adjusting system (coarse and fine adjustment knobs).

Magnification:

- The magnification achieved by a microscope is a product of the magnifying power of the eye piece and the objective lenses (low power, high power and oil immersion lenses).
- Calculate the magnification of the microscope when using:

 - Oil-immersion lens: 100... x ... = 11.00... times.

Resolution:

- The resolving power of the microscope is its capacity to distinguish two neighboring points as separate entities.

It depends on: 1. Wave length of light aumyrical a perture of objective length

What is the smallest size that ordinary microscope can visualize? 700mm

How to examine a stained film by oil-immersion lens?

1. Put the slide on Microscope

2. Use oll over Slide

3. Use the Course then fine

4. Look at eye picce

Report(2): <u>Preparing a smear for simple staining?</u>

ILOs: 1. To prepare a smear for staining. 2. To perform simple stain.

- How to prepare a smear for staining?
 - Sten'unced backerislogic Loo Pe by het
 - Wait for the loope to be Cold quiefly
 - take adrop of water and Put it on side
 - Sterlize theleop agam
- take adrop of aspe comen byloop and in the Stide and spread
- dry the Slide and fix it by flame

List steps of simple staining by methylene blue?

Put methylen blue after PEParation wast for minute then wash it bywater, Dryslide then Put adoptoful then examine blemmersion leng

• Examine the stained smear under oil-immersion lens (OIL) of the microscope.

place one dist of emners on the stide for light Description of the stained bacteria.

- Morphology: ba Gill

- Arrangement: Ousters?

- Drawing of the bacteria:

Gram staining ILOs: 1. To perform Gram stain procedure. 2. To examine and identify bacteria of different morphology and Gram reaction. List the steps of Gram staining: - Cover the smear with crystal violet or methyl usolet for (30-60) Se. - Pow 17 olland with war - add I odine solution and leave it to act for I min then four italy and washwithway - De Colourize by adding 95% al Cohol or Colour a Kohol Downit of and worn rapidg with water Counter Stain With S. franin ordilute basis fus chinfor imin Wash Witnwater then Place the Stale to air dry How do Gm +ve and Gm -ve bacteria behave during the following

Staining with the counter	Com-ve (LS) 7 dean of della led (Ver) (e)
---------------------------	---

Examine the Gm stained smear under OIL of the microscope.

Setup the mi'es Scope for Ging a good Sowce light
Place small drop of emersion it on Swale
- Put the Slide on the Stage of micros Scope and use of immersion
- Description of the Gm stained bacteria:

Lens and focus on ob Ject

- Morphology: Backing

- Morphology: Bace 11 1
- Arrangement: Clasters Nospeeral arrangement of Just ment

- Gm reaction: ~ V.

- Drawing of the bacteria:

Report (4): Sterilization and disinfection

ILOs: To examine some tools of physical method of sterilization (simple autoclave, hot air oven and seitz filter)

- Sterilization is: Killing of au signs of life including spores

 Methods:

 1. Physical roduction
- - 2. Chemical du fectant.
 3. gale atmiseptic

 - 4. Apartation Galplane oxid

Outline physical methods of sterilization.

heat

Interpolated flame

The disposal of medical woste

More has interested flame

(burning)

Interested flame

(burning) = 100 boiling Steam

Radiation Ionizing
Sum auto Clave Under Pressure
Sultyavidet

filtration

Draw a labeled diagram of simple autoclave.

His the principle of plasma-gas sterilizer?

(XCITCA by rodio free, energy) Filtration is the suitable sterilization method for: Biological Fluids (soyum, blood, Plasma) Explain why? destroyed by heat • Mention types of filters: Syringe filter (pore war volumes) Seitz filter air filter (HEDA) · Vaccum Fiter Ionizing radiation method is mainly used for Plastic devices (Slowers, Catheless, Sulvers) · Disinfection is Killing of nost Patrosan or games not including endospores Mention examples of chemical disinfectants and their uses: Protes denaturation al Cohol (ethyl a cohol) 722 - Presendenting Phenols 1901 inactivational Esperies

Chlorine Liquid Kospitalihome slolehyde Mand Stenutery · For deryde - - two de rigde Dete gent Catinic - QAC Signature: & Kar - Nection ille latel

Report (5): Demonstration of different culture media.

ILOs: To examine and identify different culture media.

- 1. Simple media
- Complete the following table (1)

Medium	Main component	Use
Peptone water	wat ex-Peptone-Nad	-production of other media - test for inclose
N. broth	Performator ment extract	- hlood Culture
N. agar	Peptone water + Agar	-Isolation of organism

- 2. Enriched media: (contain highly nutritive substances as blood, serum, egg)
- Complete the following table (2)

	ı	
Medium	How to prepare & sterilize	Use
Blood agar	emanto clave under or con e at 121 & for 20 hrs (nutice tog) - Blood at 65 2 (Blood St. b) fill at	- Isolation of bacteria
	Caballe but hicocladded	for Premocaco mentera
Chocolate agar	1.75 Sevan +	Isolation of dipthoria
Loffler's serum	7:25 glusse	

3. <u>Selective media:</u> (contain selective agent(s) that inhibits all but not Complete the following table (3)

Medium	G 1401C (3)	
Lowenstein Jensen	Selective agent(s) Mal uchite green	Grown bacteria
TCBS	Popossium tellurite	T.B.
MSA	modified cholocate	diPhtnena
4. Differential	agar	gonory hoen

4. <u>Differential (Indicator media)</u>

Complete the following table (4)

	Total tile followin	g table (4)	
Medium	Test sugar	Indicator	Different colours of growing colonies
MacConkey	La Ctose	neutral red	- Jellow - Pink
`TCBS	Sucrase.	promothymol blue	- Yellow - græn
MSA .	Manniel	Premised	- Jellon - Pink
Media fo	or anaerobic bact	etia:	

Media for anaerobic bactetia:

Robertson's Cookeel meat -Thioghy Collate broth

Anaerobic Gas Pack system:

How the anaerobic atmosphere (or microaerophilic) is generated by gas pack system inside the anaerobic jar? the Morgen is Jenerated iside the Jar by Placing as Pecial Gas Pack o envelope immediately before Placing it in the Jar, it will release by droger & Coz

The Dresence of the Cold Catalyst in the Jar allows the hydrogen released to Combine With the of ygen in the Jar to give Strictly an acrobic Condition

expres annototic sensitivity test. ranque for isolation of bacteria.

Draw a diagrammatic description of plating out technique.

- How to get a pure culture?
 - by Culture
 - 2ry Culture
 - Testisy
 - S Shaped
 - -> Colony
- Pure culture is used for:
 - I dentification mosphology character
 - antibiatic Sensitivity test

Cone of inhibition

- Complete the following table:

The antibiotic disc No.	Susceptibility of bacteria
	Low
2 .	migh
3	no
4	Moedium

Demonstration of bacterial culture characteristics

ILOs: To examine and identify different selected culture characteristics of bacteria.

Complete the following table (1):

Medium	Type of hemolysis	Other	Example of grown
0	Plate (A)	features Catale +ve	bacteria 5! aurcus
agar plate	Plate (B)	Catalose ve	Str. PJogenes
	×	by oft can	Str. Viridans
Inoculated blood	Plate (C)	Catalose	Str. bouis
nocı		Plate (D)	
			0 = 1

Complete the following table (2):

Medium	Colour of colonies (or other features)	Explanation	Example of grown bacteria
	Plate (A) golden yellow	endoPigment	5. aurens
N. agar	Plate (B) greenish	exopigment	Pseudomonas
Inoculated N.	Plate (C)		
Inc	Plate (D) Swarm ming	mahhity	Protens

• Complete the following table (3):

Medium	Colour of colonies	Explanation	Example of
Inoculated MacConkey	Plate (A)	Lactose fermentation	grown bacteria
Inoc	Plate (B) Yellon	non-lactuse fermentation	Salmonelle Shigella
noculated MSA	Plate (C)	non-ferment ofmannite	5-epidermidi
Inocula	Plate (D) Yellow	fermentation of mannite & acid Production	5- aureus
ed TCBS	Plate (E) Yellow	Sucrose fermentation	1,139ztypes of Cholera
Inoculated	Plate (F)	non- Sulvae Fermentation	of cholera

Report(8): <u>Demonstration of some selected biochemical</u>

ILOs: 1. To examine and identify some selected biochemical reactions.

1. Catalase test:

- Principle: differentiation between staphylococcifrom streptococci

	Description of	Examples (organisms)
+ve test	How bubbling	Staphylacica
-ve test	nobubbling	StroptoGecci

2. Oxidase test:

- Principle: Some bucteria es versena Produce ti dase e.
Which reduces the oxidase reagent (tetrametry) - ? Phentiene diamine hydrichie toadeep Pur ple Clour.

	Description of	Examples (organisms)
+ve test	deep Purple	Neisseria
-ve test	Yellow	Staphylocai

3. Indole test:
- Principle Demenstrate ability of bacterin to decompose A. A

tryptophan in Peptane to Prools G indolethen we test for indole by Kovo Cs

reagent

-	Description of	Examples (organisms)
ve test	Red ring	F. 64
-ve test	Yellow ring	Klebsiella

4. Simmonds' citrate test:

- Principle: Demonstrate ability of Certain bettern toutible Citrate as only Source of Carbon

	Description of	Examples (organisms)	
+ve test	blue Colon	Klobsiella	
-ve test green Color		E. G.U.	

5. Urease test:

-Principle: Detect Production of wrease enzyme in media Centain Phenol ved - weasede Compose weas release ammonia So pH arkaline >

+ve test	Description of deep Pink	Examples (organisms) Proteus-KlebSiella
-ve test	Jellow -	Es Culi-Salmonella

6. Coagulase test:
- Principle: detects Production of Coagulase enzyme leads to Clothing of Plasme, its Produced by 5. aureus

U.	Description of Examples (organism		
+ve test	Clot	5. Aureus	
-ve test	not Clot	any	

7. Methyl red (MR) test:

- Principle: Detect Production of acid in glu Cose Phosphate Peptone

Description of Examples (organisms) +ve test Pink Colony F. Gli -ve test Yellow Colony Kleb Siella		Danis	
+ve test Pink Colony E. Coli		Description of	Examples (organisms)
-ve test Yellow Colour Kleb Siella	+ve test	Pink Colow	
	-ve test	Yellow Colour	Kleb Siella

8. Voges-Proskauer (VP) test:
- Principle: Detect Production of a Cettle Methyl Carbinol &
Small a Cid in glucose Phosphate Perfone during glucose fermentation

	Description of	Examples (organisms)		
+ve test	Pink Colow	Icleb Sieller		
-ve test	yellon Colour	E. Coli		

Triple Sugar Iron agar:

Composition:

- Sugars (%): 0. 1% glucose 1% lactore 1% sucrose ferrous sulphate - Phenolies , beef extraction

- Ferrous sulphate to detect: for detection H25

- agar agar:-Solidif Catlon
- Soft agar Cracks on gas Production

The TSI agar is poured in test tubes in the form of Slands. With a deep butt The medium is of low concentration of agar (soft agar), why?

Cracks on gas Production

Interpretation of TSI test:

- Complete the following table:

Drawing of TSI pattern	Butt	Slant	H ₂ S and gas	Explanation	Example (organisms)
	Red	Red	No	No Car bo- mydrate fermentingt	Spelomone
	Jellow	Red	no	Frement glucose only will release small amount of a Cid	C) 10 all
	yellow	Jellow		ferment La CTOSES or Sucrose relesse bigamount sta Cid	E-Coli
	black	red		frementing Glucoseonly With Hzs Production	Sa I monelle

1205.1. 10 identify some selected serological tests. of serological diagnostic tests 2. To distinguish positive and negative tests and read the titres of positive tests. Tube agglutination test: 1. Widal test: Mention antigen suspensions used in this test.

Sal monella o antigenfor 3 organism H antigen of S. EJPhi S. ParatyPhiA S. ParatyPhi3 Examine the visible clumping at the bottom of the tubes. Identify the highest dilution that shows visible agglutination Interpretation of the test: 2. Brucella standard agglutination test: Examine the test and determine the titre: 1./8.0 A wide range of dilution of the patients' serum are used. Why? to a void Zone Phenomenon if - antibody excess in first -IgA blocking antibodie) Draw a diagram describing the test: -x Cess ant gen Excess antibody No visible reaction No Visiber Each on

3. Antistreptolysin O titre:

A test for determination of antibodies titre to streptolysin O

- The highest dilution of the patients' serum showing the ASO titre.
- When should the test is considered positive? titremore than 1/200
- What is the type of antigen-antibody reaction?
 - Agglutination - Precepitation Complement fixation

 - immunoflour scence EtISA Toxinantitoxin Neutralization

resre pased on antigen - antibody reactions and some principle of some serological molecular techniques.

ILOs: To know and understands the principle of the tests.

Direct and indirect florescent technique.

Draw a diagrammatic explanation of the tests.

Antifuman globulan bridges entil Rhostindres Rh +ve Ald Municipal Leading to egiletimation Hobister cating gr-P R BCs (0) noblect Courbitest 19

ELISA test.

Draw a diagrammatic explanation of the test.

Draw a diagrammatic explanation of the test.

