MMM MMM	***************************************	ннн ннн	ннн		RRRRRRRR	***************************************	LLL
MMM MMM	TTTTTTTTTTTTTTT	ннн	HHH		RRRRRRRR	TTTTTTTTTTTTTTT	LLL
ммммм ммммм	TTT	ннн	HHH	RRR	RRR	TTT	LLL
ммммм мммммм	TTT	ннн	HHH	RRR	RRR	TTT	LLL
ммммм мммммм	TTT	ннн	HHH	RRR	RRR	TTT	LLL
MMM MMM MMM	III	ннн	HHH	RRR	RRR	TTT	LLL
MMM MMM MMM	TTT	ННН	HHH	RRR	RRR	TTT	LLL
MMM MMM MMM	TTT	ннн	HHH	RRR	RRR	TTT	LLL
MMM MMM	TTT	нинининини			RRRRRRRR	TTT	LLL
MMM MMM	TTT	нинининини		RRRR	RRRRRRRR	TTT	LLL
MMM MMM	TTT	нинининини	нннн		RRRRRRRR	TTT	LLL
MMM MMM	TTT	ННН	HHH	RRR	RRR	TTT	LLL
MMM MMM	111	ннн	HHH	RRR	RRR	TTT	LLL
MMM MMM	III	ННН	HHH	RRR	RRR	TTT	LLL
MMM MMM	TTT	ННН	HHH	RRR	RRR	TTT	LLL
MMM MMM	TTT	ннн	HHH	RRR	RRR	TTT	LLL
MMM MMM	III	ннн	HHH	RRR	RRR	TTT	LLL
MMM MMM	TTT	ннн	HHH	RRR	RRR	TTT	LLLLLLLLLLLLLL
MMM MMM	TTT	ННН	HHH	RRR	RRR	TTT	LLLLLLLLLLLLLL
MMM MMM	TTT	ннн	HHH	RRR	RRR	TTT	LLLLLLLLLLLLLL

SYMIT MITTER MIT

MM MM MMM MMM MMMM MMM MM MM MM MM MM MM	HH H	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MM MM MMMM MMM MMMM MMMM MMMM MM MM MM MM	000000 00	DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
	\$				

MT 1-

E 8 MTH\$AMOD Table of contents 16-SEP-1984 01:03:23 VAX/VMS Macro V04-00 Page 0 HISTORY : Detailed Current Edit History DECLARATIONS MTH\$AMOD - F REAL*4 remainder 49 56 90 (1) (2) (3)

Page (1)

.TITLE MTH\$AMOD .IDENT /3-001/

F 8

; File: MTHAMOD.MAR Edit: JCW3001

COPYRIGHT (c) 1978, 1980, 1982, 1984 BY DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

; FACILITY: MATH LIBRARY

ABSTRACT:

This module contains the routine MTH\$AMOD: It returns the remainder of the division of arg1/arg2 using the following equation: arg1 - (int(arg1/arg2))*arg2

AUTHOR: Bob Hanek, CREATION DATE: 21-DEC-1982

MODIFIED BY:

Jeffrey C. Wiener, 29-DEC-82

.SBTTL HISTORY ; Detailed Current Edit History

Edit History for Version 3.0:

3-001 Original version of a complete rewrite

JCW 29-DEC-82

222222222333333333334444444444555555

Ph In Coasy Pay Sys Cras

MT

MT

PS

Sy Ps Cr As Th 14 Th 13

> Ma _\$

0 Th

MA

16-SEP-1984 01:03:23 VAX/VMS Macro V04-00 6-SEP-1984 11:20:22 [MTHRTL.SRC]MTHAMOD.MAR;1

Page 2

0000 56 .SBTTL DECLARATIONS 0000 57 : 0000 58 : INCLUDE FILES:

00 60 : NONE 00 61 : 00 62 : EXTERNAL SYMBOLS:

DECLARATIONS

.DSABL GBL ; Force all external symbols to be declared .EXTRN MTH\$\$SIGNAL .EXTRN MTH\$K_FLOUNDMAT .EXTRN MTH\$K_INVARGMAT

LIBRARY MACROS CALLS:

\$SFDEF ; Define SF\$ (stack frame) symbols

EQUATED SYMBOLS:

NONE

OWN STORAGE:

NONE

PSECT DECLARATIONS:

.PSECT _MTH\$CODE

PIC, SHR, LONG, EXE, NOWRT

CONSTANTS:

NONE

```
16-SEP-1984 01:03:23
6-SEP-1984 11:20:22
                                         VAX/VMS Macro V04-00
[MTHRTL.SRC]MTHAMOD.MAR; 1
```

(3)

MT

```
MTH$AMOD - F REAL*4 remainder
                                    .SBTTL MTH$AMOD - F REAL*4 remainder
       FUNCTIONAL DESCRIPTION:
                                   Return the remainder of arg1/arg2 in F_floating point format Remainder = arg1 - (int(arg1/arg2))*arg2
                          The algorithm used to evaluate the AMOD function is as follows:
                                                X = the first argument.
                                                Y = the second argument.
                                    step 1. m = the exponent of Y.
                                               n = the exponent of X.
                                                c = n - m
                                   If c < 0, end with result = X.

step 2. I = the fractional part of X*2^24

J = the fractional part of Y*2^24
                                   If I >= J, I = I - J

step 3. c = c - 31

If c < 0 go to step 7.

step 4. L = 2*31*I

I = L - J*int(L/J)

c = c - 31

If c >= 0 go to step 4.

step 5. c = c + 31

If c >= 0 go to step 7.
                                                              go to step 4.
                                   If c >= 0 go to step

step 6. L = 2*c*I

I = L - J*int(L/J)

step 7. Result = 2*(m-24) * I
                                                              go to step 7.
                          CALLING SEQUENCE:
                                    Remainder.wf.v = MTH$AMOD (dividend.rf.r, divisor.rf.r)
                          INPUT PARAMETERS:
                                    The two input parameters are f_floating-point values. They are
                                   passed by reference.
       DIVIDEND = 4
                                                                                               ; Dividend = X in the algorithm.
; Divisor = Y in the algorithm.
                                   DIVISOR = 8
                          IMPLICIT INPUTS:
                                   NONE
```

00000004

FUNCTION VALUE:

Remainder of the division of arg1/arg2 is returned as an **F_floating** point value.

IMPLICIT OUTPUTS:

NONE

COMPLETION CODES:

```
16-SEP-1984 01:03:23 VAX/VMS Macro V04-00 Page 6-SEP-1984 11:20:22 [MTHRTL.SRC]MTHAMOD.MAR;1
```

SAMOD 01					MTHS	AMOD -	F REAL*	4 rem	ainder	1.0	16-SEP-1984 6-SEP-1984	01:03:23	VAX/VMS M	acro V04-00 RCJMTHAMOD.MA	R;1 Page	(3)
						0000	147 : 148 : 149 :	SIDE	NONE EFFECTS:							
						0000 0000 0000 0000	151 152 153 154		MTHS_IN MTHS_FL the	VARGMAT - OUNDMAT - FU bit is	Invalid arg Floating un set in the	gument to ma nderflow in callers PSL	ath librar math libr	y if the divi ary is signal	sor is zer ed if	0.
					001C	0000	156		.ENTRY	MTH\$AMOD,	^M <f< td=""><td>R2, R3, R4></td><td></td><td></td><td></td><td></td></f<>	R2, R3, R4>				
		000	52 8000 50 01 00000 GF	10 0F	50 AA 12 78 9A FB 04	0002 0006 0008 000D 0011 0015	158 159 160 161 162 163 164 165 166 167 ST		MOVF BICW2 BNEQ ASHL MOVZBL CALLS RET	adivisor (#^x8000, START #15, #1, #MTH\$K IN #1, G^MTH	RO IVARGMAT, -	(SP)	: !Y!=0.	Division by		
50	04	ВС	000080000	8F	СВ	001D 001D	166 167 ST	ART:	BICL3	#^x8000,	aDIVIDEND (AP), RO	; RO = 1	x:		
5	54	52 50	FFFF007F FFFF007F 53	8F 8F 54	CB C2	0026 002E 0036	168 169 170 171		BICL3 BICL3 SUBL2	#^XFFFF00 #^XFFFF00 R4, R3	7F, R2, R4 7F, R0, R3		; R3 = n ; R3 = c	the exponent the exponent = m-n	of X	
				69	19	0039 0038 0038	173 174 175 :+ 176 :		BLSS	GET_SIGN			; If c<0	ome low order then :X: > : it is X	Y! and the	
						003B 003B 003B 003B	178 :		STEP_2 Extract fractio	the fract	ion part of f Y*2^24, c	f X*2^24, ca	illed I, a	nd the		
						003B 003B 003B 003B 003B 003B	180 181 182 183 184 185		point r	epresentat	ion, the hi	idden bit ne	eds to be	ernal F_float added into t e converted t	he	
		50	50 7F80 00000080 50 50	8F 8F 10	AA CO 9C	003B 003B 0040 0047	185 186 187 188 189 190 191		BICW ADDL2 ROTL	#^X7F80, #^X80, R0 #16, R0,			; Replac	the exponent e hidden bit t to integer		
		52	52 7F80 00000080 52 52	8F 8F 10	AA CO 9C	004B 0050 0057	192 193 194		BICW ADDL2 ROTL	#^X7F80, #^X80, R2 #16, R2,	R2 R2		; Replac	the exponent e hidden bit t to integer		
			52 50	50 03 52	D1 19 C2	005B 005E 0060 0063	195 196 197 198 199		CMPL BLSS SUBL2	RO, R2 STÉP 3 R2, RO			: Compar : Branch : I <	e I and J if I < J I - J		
						0063 0063 0063	200 :+ 201 :+ 202 : 203 :		STEP_3 Convert	c = expon	ent of X -	exponent of	Y into a	n integer.		

					MIHP	AMUD - F KE	AL*4 rem	ainder	6-SEP-1984 11:20:22	LMTHRTL.SRCJMTHAMOD.MAR;1 (3)
						0063 206 0063 206 0063 206 0063 206 0063 206	-	Subtrac of the	t 31 from c in order to determ algorithm is needed. If c-31>=	tine if an iteration then go to STEP_5.
	53	53	53 ^{F9}	8F 1F 1A	9C A2 19	0063 208 0063 209 0068 210 006B 211 006D 213	STEP_3:	ROTL SUBW BLSS	#-7, R3, R3 #31, R3 STEP_5	<pre>; Convert c to an integer value ; Check shift count, c = c-31 ; Branch, if c < 0</pre>
						006D 216 006D 215 006D 216 006D 218 006D 218	-	STEP_4 Compute J were	$I = L - J*int(2^c*I/J)$ by remscaled to integer values.	(2^c*I, J) since I and
50	51 51	7FF	FFFFF	8F 8F	9C CB	006D 220 006D 221 0072 222 007A 223	STEP_4:	ROTL BICL3	#-1, RO, R1 #^X7FFFFFFF, R1, RO	; RO/R1=2^31*I. This and the next ; two instructions are equivalent
	50	51	51 50 53	50 52 1F E6	C2 7B A2 18	007A 224 007D 225 0082 226 0085 227		SUBL2 EDIV SUBW2 BGEQ	RO, R1 R2, RO, R1, RO #31, R3 STEP_4	; RO/R1=2^31*I. This and the next ; two instructions are equivalent ; to ASHQ #31,RO,RO, but are faster ; RO/R1 contains L = 2^31*I ; RO = rem(2^31*I,J) ; Check shift count, c = c-31 ; Branch if c >=0
			53	1F 0B	A0 13	0087 229 0087 229 008A 230	STEP_5:	ADDW2 BEQL	#31, R3 STEP_7	; Restore shift count, c = c+31 ; If zero, branch to STEP_7
						008C 233 008C 233 008C 233 008C 233 008C 233 008C 233 008C 238 008C 238		STEP_6 Compute J were	$I = L - J*int(2^c*I/J)$ by remscaled to integer values.	(2^c*I, J) since I and
	50	50 51	50 50	51 53 52	79 78	008C 238 008E 239 0092 240		CLRL ASHQ EDIV	R1 R3, R0, R0 R2, R0, R1, R0	; RO = 2°c*I ; RO = rem(2°c*I, J)
		50	50 4000 50	50 8F 54 09	4E A2 A0 19	0092 240 0097 242 0097 243 0098 244 0098 245 0084 247 0084 247	STEP_7:	CVTLF SUBW2 ADDW2 BLSS	RO, RO #^X4COO, RO R4, RO UNDERFLOW	: Convert I to floating point : R0 = 2^(-24) * I : R0 = 2^(m-24) * I : Branch if underflow occured
			04 50	8C 03 50	85 18 52 04	00A4 247 00A7 248 00A9 249 00AC 250 00AD 251	GET_SIG	TSTW BGEQ MNEGF RET	adividend(AP) RETURN RO, RO	: Check for sign of result : and adjust answer accordingly :
		OD 04	AD	50 06	D4 E1	00AD 253 00AF 254	UNDERFL	OW: CLRL BBC	RO #SF\$V_FU, SF\$W_SAVE_PSW(FP),	set up default result to 0.0
	000	00000	00000 GF		DD FB 04	00B4 255 00BA 257 00C1 258 00C2 259 00C2 260	NO_FU:	PUSHL CALLS RET	#MTH\$K FLOUNDMAT #1, G^MTH\$\$SIGNAL	: Branch if caller has not enabled F : Report MTH\$_FLOUNDMAT : Signal the error : Return
						0002 260		.END		

J 8

! Psect synopsis !

PSECT name	Allocation		PSECT		Attrib	utes									
. ABS . \$ABS\$ _MTH\$CODE	00000000 (00000000 (00000002 (0.) 0.) 194.)	00 (01 (02 (0.) 1.) 2.)	NOPIC NOPIC PIC	USR USR USR	CON CON	ABS ABS REL	L C L	NOSHR NOSHR SHR	NOEXE EXE EXE	NORD RD RD	NOWRT WRT NOWRT	NOVEC	BYTE

! Performance indicators !

Page faults	CPU Time	Elapsed Time
30	00:00:00.10	00:00:01.11
122		00:00:03.31
56	00:00:00.02	00:00:00.05
3	00:00:00.02	00:00:00.03
0	00:00:00:00	00:00:00:00
	Page faults 30 122 115 0 56 3 2 0 330	30 00:00:00.10 122 00:00:00.50 115 00:00:01.17 0 00:00:00.02 56 00:00:00.60 3 00:00:00.02 2 00:00:00.03

The working set limit was 1050 pages.
5219 bytes (11 pages) of virtual memory were used to buffer the intermediate code.
There were 10 pages of symbol table space allocated to hold 44 non-local and 0 local symbols.
260 source lines were read in Pass 1, producing 13 object records in Pass 2.
8 pages of virtual memory were used to define 7 macros.

16-SEP-1984 01:03:23 VAX/VMS Macro V04-00 6-SEP-1984 11:20:22 EMTHRTL.SRCJMTHAMOD.MAR;1

Page

(3)

Macro library statistics !

Macro library name

MTH\$AMOD VAX-11 Macro Run Statistics

_\$255\$DUA28:[SYSLIB]STARLET.MLB;2

Macros defined

4

88 GETS were required to define 4 macros.

There were no errors, warnings or information messages.

MACRO/ENABLE=SUPPRESSION/DISABLE=(GLOBAL, TRACEBACK)/LIS=LIS\$:MTHAMOD/OBJ=OBJ\$:MTHAMOD MSRC\$:MTHAMOD/UPDATE=(ENH\$:MTHAMOD)

- 1

0257 AH-BT13A-SE

DIGITAL EQUIPMENT CORPORATION CONFIDENTIAL AND PROPRIETARY

