Bac 2022 Métropole (jour 1)

Correction © https://labolycee.org

Spécialité physique chimie Exercice C – DÉFIBRILLATEUR CARDIAQUE (5 points)

MOTS-CLÉS: modèle du circuit RC série

Q1. Pour réaliser la charge du condensateur, l'interrupteur doit être basculé du côté du générateur, soit en position 1.

Q2. D'après la loi des mailles : $E - u_r - u_C = 0 \Leftrightarrow E = u_r + u_C$

D'après la loi d'Ohm aux bornes de la résistance r: $u_r = r.i$

De plus, l'intensité du courant étant un débit de charges électriques : $i = \frac{dq}{dt}$

Ainsi :
$$i = \frac{dq}{dt} = \frac{d(C.u_C)}{dt} = C.\frac{du_C}{dt}$$
 car C est une constante.

Ainsi,
$$u_r = r.i = r.C. \frac{du_C}{dt}$$

$$u_r + u_C = E$$
 devient $r.C.\frac{du_C}{dt} + u_C = E$

Q3. Vérifions que $u_{\rm C} = E \times \left(1 - e^{-\frac{t}{\tau_{charge}}}\right)$ est solution de l'équation différentielle précédente.

$$\frac{du_{C}}{dt} = \frac{d\left(E \times (1 - e^{-\frac{t}{\tau_{charge}}})\right)}{dt} = E \times \frac{d(1 - e^{-\frac{t}{\tau_{charge}}})}{dt} = E \times \left(0 - \left(-\frac{1}{\tau_{charge}}\right) \times e^{-\frac{t}{\tau_{charge}}}\right) = \frac{E}{\tau_{charge}} \times e^{-\frac{t}{\tau_{charge}}}$$

Injectons les expressions de $u_{\rm C}$ et $\frac{du_{\rm C}}{dt}$ dans l'équation différentielle $r.C.\frac{du_{\rm C}}{dt}+u_{\rm C}=E$:

$$r.C.\frac{E}{\tau_{charge}}.e^{-\frac{t}{\tau_{charge}}} + E.(1 - e^{-\frac{t}{\tau_{charge}}}) = E$$

$$\Leftrightarrow r.C.\frac{E}{\tau_{charge}}.e^{-\frac{t}{\tau_{charge}}} + E - E.e^{-\frac{t}{\tau_{charge}}} = E$$

 $\Leftrightarrow \left(r.C. \frac{E}{\tau_{charge}} - E \right) e^{-\frac{t}{\tau_{charge}}} = 0 \text{ Pour que la solution convienne, il faut que cette égalité soit vraie quel}$

que soit t. Cela implique que
$$r.C.\frac{E}{\tau_{charge}} - E = 0 \Leftrightarrow r.C.\frac{E}{\tau_{charge}} = E \Leftrightarrow \frac{r.C}{\tau_{charge}} = 1$$

 $\Leftrightarrow \tau_{charge} = r.C$ Ce temps caractéristique de la charge s'exprime en s.

La solution proposée convient à condition de prendre cette expression de τ_{charge}.

Autre méthode :

On écrit l'équation différentielle $r.C.\frac{du_C}{dt} + u_C = E$ sous la forme y' = a.y + b qui admet des solutions de

la forme
$$y = K.e^{a.x} - \frac{b}{a}$$
:

$$\frac{du_{\rm C}}{dt} = -\frac{1}{rC}.u_{\rm C} + \frac{E}{rC}$$

Par analogie,
$$a = -\frac{1}{r.C}$$
 et $b = \frac{E}{r.C}$

ainsi les solutions sont de la forme
$$u_{\mathbb{C}}(t) = K.e^{-\frac{t}{r.C}} - \frac{E}{\frac{r.C}{r.C}} = K.e^{-\frac{t}{r.C}} + E$$
.

En tenant compte des conditions initiales, on peut trouver l'unique solution : $u_c(t=0)=0$.

$$K \times e^{-\frac{0}{r.C}} + E = 0$$
 donc $K + E = 0$ donc $K = -E$ donc $U_c = -E.e^{-\frac{t}{r.C}} + E$

Finalement on retrouve la solution proposée : $u_{\rm C} = E \times \left(1 - e^{-\frac{t}{\tau_{charge}}}\right)$ avec $\tau_{charge} = r.C$

Q4.
$$u_C = E \times \left(1 - e^{-\frac{t}{\tau_{charge}}}\right) \text{ donc } u_C(t=0) = E \times \left(1 - e^{-\frac{0}{\tau_{charge}}}\right) = 0$$

Quand t tend vers l'infini, $e^{-\frac{\iota}{\tau_{charge}}}$ tend vers 0 donc $u_{c}(\infty) \to E$.

À la date $t_1 = 5 \times \tau_{charge}$, la tension aux bornes du condensateur a atteint 99 % de sa valeur finale.

Q6. L'interrupteur est basculé de la position 1 à la position 2 quand le condensateur commence à se décharger donc quand $u_{\rm C}$ diminue.

Graphiquement, cela correspond à la date $t_2 = 0.024$ s.

Q7. La décharge du condensateur commence à la date $t_2 = 0.024$ s. Ainsi, pour trouver le temps caractéristique τ_{graph} , on détermine la date t_3 correspondant à l'abscisse de l'intersection de la tangente à la courbe de décharge <u>au début de la décharge</u> (c'est-à-dire à la date t_2) avec l'axe des temps.

$$\tau_{\text{graph}} = t_3 - t_2 = 0.040 - 0.024 = 0.016 \text{ s} = 16 \text{ ms}.$$

Variante pour trouver t_3 : lors de la décharge d'un dipôle RC, le temps caractéristique est égal au temps nécessaire pour que la tension atteigne 37 % de sa tension initiale.

Cette valeur semble suffisamment faible pour que la décharge d'énergie dans le thorax soit quasiinstantanée. **8.** On peut considérer que la décharge est terminée au bout de $5 \times \tau_{décharge}$ avec $\tau_{décharge} = R.C$ R est compris entre 50 Ω et 150 Ω et $C = 170~\mu F$ donc la durée de décharge est comprise entre $5 \times 50 \times 170 \times 10^{-6} \, \mathrm{s}$ et $5 \times 150 \times 170 \times 10^{-6} \, \mathrm{s}$ soit entre 0,043 s et 0,128 s La durée est bien inférieure aux 4 secondes maximale indiquées dans les données de la notice.