Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	5
1.2 Описание выходных данных	5
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	8
3.1 Алгоритм конструктора класса Triangle	8
3.2 Алгоритм метода Perimetr класса Triangle	8
3.3 Алгоритм метода Square класса Triangle	8
3.4 Алгоритм функции main	9
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	10
5 КОД ПРОГРАММЫ	11
5.1 Файл main.cpp	11
5.2 Файл Triangle.cpp	11
5.3 Файл Triangle.h	12
6 ТЕСТИРОВАНИЕ	13
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	14

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект «треугольник», который содержит длины сторон треугольника.

Значения длин сторон натуральные числа.

Объект вычисляет периметр и площадь треугольника.

Функционал:

- параметризированный конструктор с параметрами длин сторон;
- метод вычисления и возврата значения периметра;
- метод вычисления и возврата значения площади.

Написать программу:

- 1. Вводит стороны треугольника.
- 2. Создает объект «треугольник»,
- 3. Выводит периметр.
- 4. Выводит площадь.

1.1 Описание входных данных

Три целых числа, соответствующие длинам сторон треугольника, разделенные пробелом.

Подразумевается, что для заданных данных треугольник существует.

1.2 Описание выходных данных

Первая строка:

P = «периметр»

Вторая строка:

S = «площадь»

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект Triangle класса Triangle;
- функция sqrt для Вычисление корня квадрата;
- функция main для Основная функция;
- Объект стандартного потока ввода/вывода cin/cout.

Класс Triangle:

- свойства/поля:
 - о поле Сторона:
 - наименование а;
 - тип целое;
 - модификатор доступа private;
 - о поле Сторона:
 - наименование b;
 - тип целое;
 - модификатор доступа private;
 - о поле Сторона:
 - наименование с;
 - тип целое;
 - модификатор доступа private;
- функционал:
 - о метод Triangle Параметрический конструктор;
 - о метод Perimetr Вычисление периметра;
 - о метод Square Вычисление площади.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса Triangle

Функционал: Параметрический конструктор.

Параметры: нет.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса Triangle

ľ	□ Предикат	Действия	No
			перехода
1		Присвоение полям класса параметров конструктора	Ø

3.2 Алгоритм метода Perimetr класса Triangle

Функционал: Находит и возвращает значение периметра.

Параметры: нет.

Возвращаемое значение: целое число, периметр.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода Perimetr класса Triangle

N₂	Предикат	Действия	N₂
			перехода
1		Возвращает вычисленное значение периметра	Ø

3.3 Алгоритм метода Square класса Triangle

Функционал: Находит и возвращает значение площади.

Параметры: нет.

Возвращаемое значение: действительное, площадь.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода Square класса Triangle

[]	Vο	Предикат	Действия	No
				перехода
	L		Возвращает вычисленное значение площади	Ø

3.4 Алгоритм функции main

Функционал: основная функция.

Параметры: нет.

Возвращаемое значение: целое, признак успеха.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции таіп

No	Предикат	Действия	No
			перехода
1		Ввод целочисленных переменных a, b, c	2
2		Создание объекта Triangle	3
3		Вывод периметра и площади	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-1.

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "Triangle.h"
int main()
{
    int a, b,c;
    cin >> a >> b >> c;
    Triangle triangle = {a,b,c};
    cout << "P = " << triangle.Perimetr()<<endl;
    cout << "S = " << triangle.Square();
    return(0);
}</pre>
```

5.2 Файл Triangle.cpp

Листинг 2 – Triangle.cpp

```
#include "Triangle.h"
Triangle::Triangle(int a1, int b1, int c1)
{
    a = a1;
    b = b1;
    c = c1;
}

int Triangle::Perimetr()
{
    return a + b + c;
}

double Triangle::Square()
{
    double p = Perimetr()/2.0;
```

```
return sqrt(p * (p - a) * (p - b) * (p - c));
}
```

5.3 Файл Triangle.h

Листинг 3 – Triangle.h

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 5.

Таблица 5 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные
	данные	данные
9 12 15	P = 36 S = 54	P = 36 S = 54

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).