

Ħ	
Bookmar	ks

- ▶ How To?
- Week 1
- ▶ Week 2
- ▼ Week 3

Sorting And Search Algorithms

3rd Week Problems

Laboratory due Nov 20, 2016 at 21:00 UTC

- ▶ Week 4
- ▶ Week 5

Week 3 > 3rd Week Problems > Inversions

Inversions

☐ Bookmark this page

Inversions

2.0 points possible (graded)

Input file:	inversions.in
Output file:	inversions.out
Time limit:	2 seconds
Memory limit:	256 megabytes

Recall that an inversion in an integer sequence A is a situation when i < j, but $A_i > A_i$.

Given a sequence of integers. Your task is to count the number of inversions in it.

Hint: to make it faster, you may adapt the mergesort algorithm to solve this problem.

Input

The first line of the input file contains an integer n (1 \leq n \leq 100 000) – the number of elements in the sequence. The sequence itself follows in the second line. All numbers in this sequence do not exceed 10⁹ by the absolute value.

Output

Output the number of inversions in the first and only line of the output file.

Example

inversions.in	inversions.out
10	17
1821473236	
<u>Download</u>	<u>Download</u>