PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2001237247 A

(43) Date of publication of application: 31.08.01

(51) Int. CI

H01L 21/322 H01L 21/205

(21) Application number: 2000048461

(22) Date of filing: 25.02.00

(71) Applicant:

SHIN ETSU HANDOTAI CO LTD

(72) Inventor:

IIDA MAKOTO KIMURA MASAKI

(54) METHOD OF MANUFACTURING EPITAXIAL WAFER, EPITAXIAL WAFER AND CZ SILICON WAFER FOR EPITAXIAL GROWTH

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an epitaxial wafer having a superior crystallinity and a high IG ability by a simple method.

SOLUTION: The epitaxial wafer manufacturing method

comprises epitaxially growing a carbon-doped CZ silicon wafer at low temperatures lower than 1000°C A. The epitaxial wafer is composed of a carbon-doped CZ silicon wafer to be a substrate and an epitaxial layer grown at low temperatures lower than 1000°C. The CZ silicon wafer for epitaxially growing at low temperatures lower than 1000°C is a CZ silicon wafer doped with carbon.

COPYRIGHT: (C)2001,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-237247 (P2001 - 237247A)

(43)公開日 平成13年8月31日(2001.8.31)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H01L 21/322

21/205

HO1L 21/322 21/205

Y 5F045

審査請求 未請求 請求項の数8 OL (全 6 頁)

(21)出願番号

特臘2000-48461(P2000-48461)

(71)出顧人 000190149

信越半導体株式会社

東京都千代田区丸の内1丁目4番2号

(22)出願日

平成12年2月25日(2000.2.25)

(72)発明者 飯田 誠

群馬県安中市磯部2丁目13番1号 信越半

導体株式会社半導体磯部研究所内

(72)発明者 木村 雅規

群馬県安中市磯部2丁目13番1号 信越半

導体株式会社半導体磯部研究所內

(74)代理人 100102532

弁理士 好宮 幹夫

Fターム(参考) 5F045 AB02 AD10 AD11 AD12 AD13

AF17 BB12 DA59

エピタキシャルウエーハの製造方法及びエピタキシャルウエーハ、並びにエピタキシャル成長用 (54) 【発明の名称】 CZシリコンウエーハ

(57)~【要約】

簡易な方法により結晶性に優れ、IG能力の 【課題】 高いエピタキシャルウエーハを提供する。

【解決手段】 炭素がドープされたCZシリコンウエー ハに1000℃未満の温度でエピタキシャル成長を行う エピタキシャルウエーハの製造方法。及び、炭素がドー プされたCZシリコンウエーハである基板と、1000 ℃未満の温度で成長されたエピタキシャル層からなるエ ピタキシャルウエーハ。並びに、1000℃未満の温度 でエピタキシャル成長を行うためのエピタキシャル成長 用CZシリコンウエーハであって、該CZシリコンウエ ーハは炭素がドープされたものであるエピタキシャル成 長用CZシリコンウエーハ。

【特許請求の範囲】

【請求項1】・ 炭素がドープされたCZシリコンウエー ハに1000℃未満の温度でエピタキシャル成長を行う ことを特徴とするエピタキシャルウエーハの製造方法。

【請求項2】 前記CZシリコンウエーハの炭素濃度を 1. 0 p p m a 以上とすることを特徴とする請求項1に 記載したエピタキシャルウエーハの製造方法。

【請求項3】 前記エピタキシャル成長前のCZシリコ ンウエーハに、600~1000℃の温度で、少なくと も1時間の熱処理を行うことを特徴とする請求項1また 10 は請求項2に記載したエピタキシャルウエーハの製造方 法。

【請求項4】 前記エピタキシャル成長後のエピタキシ ャルウエーハに、600~1000℃の温度で、少なく とも1時間の熱処理を行うことを特徴とする請求項1な いし請求項3のいずれか1項に記載したエピタキシャル ウエーハの製造方法。

【請求項5】 請求項1ないし請求項4のいずれか1項 に記載の方法で製造されたエピタキシャルウエーハ。

【請求項6】 炭素がドープされたCZシリコンウエー 20 ハである基板と、1000℃未満の温度で成長されたエ ピタキシャル層からなることを特徴とするエピタキシャ ルウエーハ。

【請求項7】 1000℃未満の温度でエピタキシャル 成長を行うためのエピタキシャル成長用CZシリコンウ エーハであって、該CZシリコンウエーハは炭素がドー プされたものであることを特徴とするエピタキシャル成 長用CZシリコンウエーハ。

【請求項8】 前記CZシリコンウエーハの炭素濃度が 1. Oppma以上であることを特徴とする請求項7に 30 記載したエピタキシャル成長用CZシリコンウエーハ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、優れたIG能力を 有する、エピタキシャルウエーハの製造方法およびエピ タキシャルウエーハ並びにエピタキシャル成長用CZシ リコンウエーハに関する。

[0002]

【従来の技術】チョクラルスキー(Czochrals ki;CZ) 法により製造されたエピタキシャル成長用 40 CZシリコンウエーハ(以下、単に基板と呼ぶことがあ る。)にエピタキシャル(以下、単にエピと呼ぶことあ る。) 成長を行って作製したエピタキシャルウエーハ (以下、単にエピウエーハと呼ぶことがある。) は、そ のエピタキシャル層の良好な結晶性から、高集積デバイ スの作製に広く用いられている。

【0003】しかし、このようなエピタキシャルウエー ハは、エピタキシャル成長を行う際に、通常1000℃ 以上の高温プロセスを施されて製造される。そのため酸 素析出の核が高温プロセス中に溶解してしまい、その後 50

のデバイスプロセスにてバルク中に酸素が析出せず、充 分な量のBMD (Bulk Micro Defec t:内部微小欠陥)を得ることができないことから、 I G(インターナルゲッタリング)能力不足となるという 問題があった。

【0004】そこで、上記問題を解決するために以下の ような対策がとられている。第1に、基板となるCZシ リコンウエーハの酸素濃度を高くすることにより酸素を 析出させる。第2に、エピタキシャル成長プロセスを低 温化し、析出核の溶解を抑制することにより、析出不足 を防ぐ。第3に、エピ前又はエピ後に熱処理を施すこと により、前者は析出核を高温で安定なサイズまで成長さ せ、後者は新たに析出核を作り出すことにより酸素析出 を確保する。

【0005】しかし、これらの対策では以下の問題点が あった。第1の酸素濃度を高くする、すなわち高酸素結 晶の育成を行った場合は、チョクラルスキー法において ルツボの劣化速度を速めるため、ルツボの耐久性が低下 し、結晶が有転位化しやすくなっていた。第2の100 ○℃未満の低温にて成長したエピタキシャルウエーハ は、高温成長と比較すれば、その後のデバイスプロセス において確かに析出は起こりやすいが、ゲッタリングサ イトとしては密度がまだ不十分である。第3のエピ前後 の熱処理は、低温(600~1000c)で長時間(4 時間以上)の熱処理が必要でコストアップとなる。

【0006】また、上記対策とは別に、シリコン単結晶 中に酸素析出を助長するドーパントを添加してIG能力 を向上させる試みもなされた。このような酸素析出特性 に影響を与える不純物としては、窒素および炭素が良く 知られている。中でも窒素がドープされたCZシリコン ウエーハは、高温で安定な酸素析出核が形成されるた め、1000℃以上の高温のエピタキシャル成長を行っ てもその酸素析出核は消滅せず、その後のデバイスプロ セスにおいて十分な酸素析出物を確保できる利点があ る。しかしながら、極めて高い酸素析出物密度が要求さ れる場合には、窒素を高濃度にドープする必要があるた め、このような高濃度に窒素がドープされたウエーハに エピタキシャル成長を行うと、エピタキシャル層に結晶 欠陥が発生する場合があった。

【0007】一方、炭素がドープされたCZシリコンウ エーハも、酸素析出を促進する働きがあることが知られ ていた。例えば、特開平10-229093号公報及び 特開平11-204534号公報には、シリコン単結晶 中に炭素をドープすることにより、IG能力を向上させ る発明が記載されている。しかし、炭素がドープされた シリコンウエーハを基板としてエピタキシャル成長を行 うと、窒素をドープしたシリコンウエーハを基板として エピタキシャル成長を行った場合に比べて、酸素析出を 促進する働きが劣り、十分なIG能力を得ることができ ないという欠点があった。

【発明が解決しようとする課題】本発明は、上記問題点 を解決するためになされたもので、特別な工程を付加し てコストを高めてしまうことなく、簡易な方法により結 晶性に優れ、IG能力の高いエピタキシャルウエーハを 製造することを目的とする。

[0009]

【課題を解決するための手段】上記課題を解決するため の本発明は、炭素がドープされたCZシリコンウエーハ に1000℃未満の温度でエピタキシャル成長を行うこ 10 とを特徴とするエピタキシャルウエーハの製造方法であ る(請求項1)。このように、炭素がドープされたCZ シリコンウエーハに1000℃未満の低温エピタキシャ ル成長を行うことにより、従来の炭素ドープシリコンウ エーハにエピタキシャル成長を行った場合に比べて多く の酸素析出を得ることができ、より良好なIG能力を得 ることができる。

【0010】この場合、前記CZシリコンウエーハの炭 素濃度を1. Oppma以上とすることが好ましい(請 求項2)。このように、基板とするCZシリコンウエー ハの炭素濃度を1. Oppma以上とすれば、比較的低 酸素濃度のウエーハであっても、確実に酸素析出を促進 する効果を得ることができ、IG能力を向上させること ができるからである。尚、CZ単結晶引上げ時の単結晶 化の妨げとなる場合があるので、炭素濃度は5ppma 以下とするのが好ましい。

【0011】この場合、前記エピタキシャル成長前のC Zシリコンウエーハに、600~1000℃の温度で、 少なくとも1時間の熱処理を行うことが好ましい (請求 項3)。このように、エピタキシャル成長前に、600 ~1000℃の低温熱処理を行うことにより、酸素析出 核を安定なサイズにまで成長させることができ、より多 くのBMDを得ることができる。さらに、本発明ではエ ピタキシャル成長を行うCZシリコンウエーハに炭素が ドープされているため、従来から行われていたエピタキ シャル成長前熱処理のように、長時間の熱処理は要しな ٧١.

【0012】この場合、前記エピタキシャル成長後のエ ピタキシャルウエーハに、600~1000℃の温度 で、少なくとも1時間の熱処理を行うことが好ましい (請求項4)。このように、エピタキシャル成長後の6 00~1000℃の低温熱処理によっても、新たな析出 核を作り出すことができ、BMD密度を増大させること ができる。この場合も本発明ではエピタキシャルウエー ハに炭素がドープされているので、従来から行われてい たエピタキシャル成長後の熱処理のように、長時間の熱 処理は要しない。

【0013】そして、このような本発明の製造方法で製 造されたエピタキシャルウエーハ(請求項5)は、例え ば、炭素がドープされたCZシリコンウエーハである基 50

板と、1000℃未満の温度で成長されたエピタキシャ ル層からなることを特徴とするエピタキシャルウエーハ である(請求項6)。このように、本発明の炭素がドー プされたCZシリコンウエーハである基板に、1000 ℃未満の温度でエピタキシャル層が成長されたエピタキ シャルウエーハは、高いIG能力を有する上に、窒素を ドープされた基板を用いたエピタキシャルウエーハのよ うにエピタキシャル層に結晶欠陥が生じることもなく、 極めて高品質のエピタキシャルウエーハである。

【0014】また本発明は、1000℃未満の温度でエ ピタキシャル成長を行うためのエピタキシャル成長用C Zシリコンウエーハであって、該CZシリコンウエーハ は炭素がドープされたものであることを特徴とするエピ タキシャル成長用CZシリコンウエーハである(請求項 7)。このように、炭素がドープされたCZシリコンウ エーハを、1000℃未満の温度でエピタキシャル成長 を行うためのエピタキシャル成長用CZシリコンウエー ハとして供すれば、従来に比べてはるかに大きいIG能 力を有するエピタキシャルウエーハを得ることができ

【0015】この場合、前記CZシリコンウエーハの炭 素濃度が1.0ppma以上であることが好ましい(請 求項8)。前述のように、このような炭素濃度であれ ば、比較的低酸素濃度であっても充分な I G効果を得る ことができるからである。

[0016]

【発明の実施の形態】以下、本発明の実施の形態につい て、さらに詳細に説明するが本発明はこれに限定される ものではない。まず本発明者らは、炭素がドープされた CZ結晶のOSF (Oxidation-induce d Stacking Fault) ∜Grown-i n 欠陥に及ぼす影響を詳細に調査した。その結果、炭素 ドープ結晶は窒素ドープ結晶とは違い、OSFリングが 発生しやすくなったり、又その位置に転位ループが発生 することは無いということが確認できた。すなわち、エ ピタキシャル成長により発生するエピタキシャル層の結 晶欠陥の発生源となる、エピタキシャル成長用CZシリ コンウエーハの結晶欠陥がない(少ない)ことになり、 この点に関しては炭素ドープウエーハは、基板として適 40 した材料といえる事が分かった。

【0017】しかし、前述のように炭素ドープウエーハ にエピタキシャル成長を行うと、窒素をドープしたウエ ーハにエピタキシャル成長を行った場合に比べて、その 後のデバイスプロセスで酸素析出があまり促進されず、 IG能力が低いという欠点がある。

【0018】そこで、本発明者らは炭素ドープウエーハ のIG能力を向上させるべく、炭素ドープウエーハの酸 素析出特性を調査した。図1は、炭素が低濃度(図1

- (a):狙い値O. 1 p p m a) および高濃度(図1
- (b):狙い値1. Oppma)にドープされ、酸素濃

度が $10\sim19$ p p m a - J E I D A (日本電子工業振興協会規格)・の範囲で引き上げられた6 インチ、結晶方位<100>、p型、 10Ω ・c mのC Z 単結晶から作製されたウエーハに対して800 C / 4 h + 1000 C / 16 h / 2 和類の熱処理を行い、酸素析出特性を調査した結果を示したものである。【0019】尚、炭素ドープ結晶の引き上げは、18 インチの石英ルツボを使用し、ルツボ内のシリコン融液に炭素棒を浸漬することにより行った。ルツボ回転速度、結晶回転速度をそれぞれ2 r p m、15 r p m / 2 して、炭素棒は表面積約2500 m m / 2 の領域を浸漬し、浸漬時間は、15 分(0.1 p p m a)または120分(1.0 p p m a)とした。

【0020】図1(a)より、低炭素濃度(0.1ppma)のウエーハサンプルに800+1000℃の熱処理を施した場合には、通常の15ppma-JEIDA程度以上の酸素濃度を有するウエーハにおいて、約 1×10^{10} (個 $/cm^3$)程度あるいはそれ以上のBMDが観察されたことが判る。

【0021】また、図1 (b) より、高炭素濃度 (1.0ppma) のウエーハサンプルに800+1000℃の熱処理を施した場合には、12ppma-JEIDA程度以上の酸素濃度を有するウエーハにおいて、約1×1010 (個/cm³)程度あるいはそれ以上のBMDが観察されたことが判る。

【0022】一方、図1(a)(b)が示すように、1000 $\mathbb{C}/16h$ の熱処理を施した場合のBMDは非常に少なく、特に酸素濃度14ppma-JEIDA以下では、低炭素濃度あるいは高炭素濃度とした場合のいずれも約 1×10^7 (個 $/cm^3$)程度のBMDしか観察 30 されなかった。

【0023】つまり、炭素ドープにより酸素析出が促進されるのは、初段熱処理の800℃前後の温度において安定な(消滅しない)析出核のみであり、初段が1000℃以上の高温では析出核が消滅しやすいため、あまり析出しないことが確認された。これは、炭素ドープをした基板上に通常の100℃以上の高温工程でエピタキシャル層を成長させても、酸素析出核が消滅してしまい、その後のデバイスプロセスで高いIG能力は期待できないことを意味する。

【0024】また、これらの炭素ドープウエーハに対し、Seccoエッチングを30分行い、LEP(Large Etch Pit)と呼ばれるエッチピットを観察した。LEPは転位クラスターに起因する欠陥であり、LEPが存在するウエーハにエピタキシャル層を形成すると、LEPが存在する領域にエピ層欠陥が発生することがわかっている(特願平11-294523号公報参照)。観察の結果、炭素ドープされたウエーハにはこのようなLEPは全く観察されないことが確認できた。したがって、炭素ドープウエーハにエピタキシャル 50

層を形成すれば、窒素ドープウエーハのような2次欠陥 が発生することがないことが確認された。

【0025】以上より、本発明者らは、炭素ドープ基板 の酸素析出に対する上記特性を実験的に初めて把握し た。そして、この特性を生かし、高いBMD密度、すな わち高いIG能力を有するエピタキシャウエーハを得る ことを検討した結果、本発明を完成させたものである。 すなわち、本発明は、炭素ドープした結晶をエピタキシ ャルウエーハの基板に用い、高いBMDを得るため、1 000℃未満の低温のエピ成長を行うものである。この 温度でエピ成長させれば、その後のデバイスプロセスに おいて約 1×10^{10} (個 $/cm^3$)程度あるいはそれ 以上のBMD密度が得られ、かつ、2次欠陥の発生もな い優れたエピタキシャルウエーハを、特別な工程を付加 することなく得ることが出来る。ただし、600℃未満 の温度ではエピ成長中に酸素析出核の成長が十分におこ らない場合があり、その後の熱処理条件によっては溶解 してしまう場合があるので、エピ成長温度は600℃以 上とするのが好ましい。

【0026】尚、従来技術と同様にエピ成長前後に60 0~1000℃の低温熱処理を行い、酸素析出核を成長 させる処理を加えることにより、よりBMD密度を多く することが出来るのでより好ましい。この場合、基板に 炭素がドープされているため、熱処理時間は1時間程度 の短時間の熱処理でも十分に酸素析出が促進されるの で、熱処理のコストは安くすむ。

【0027】次に、BMD密度の炭素濃度依存性を調査するため、上記実験で得られた炭素ドープサンプルから、酸素濃度が $13.5\sim15.5$ ppma(JEIDA)のサンプルを抜き出して炭素濃度とBMD密度との関係を図2にプロットした。

【0028】図2より、炭素が1.0ppma以上ドープされ、初段に1000℃未満の熱処理を行った場合には、比較的低酸素濃度のウエーハでも、約1×1010(個/cm³)以上の極めて高密度のBMD密度が得られることが判る。すなわち、このようなウエーハに1000℃未満でエピ成長を行えば、その後のデバイスプロセスにおいて高密度のBMDを生ずることができるエピウエーハが得られることが期待できる。さらに、特定のBMD密度を有するウエーハ用の結晶を引き上げる際の酸素濃度に大きなマージンを与えることになり、引き上げ結晶の酸素濃度バラツキの制限が緩和される。また、この波及効果として単結晶の高速成長が可能になり、生産コストダウンにつながる。

[0029]

【実施例】以下、本発明の実施例および比較例を挙げて 具体的に説明するが、本発明はこれらに限定されるもの ではない。

(実施例) 18インチの石英ルツボを使用してルツボ内 に原料多結晶を投入して溶融し、ルツボ内のシリコン融

8

液に炭素棒を浸漬することにより、直径6インチ、結晶 方位<100>、p型、10~20Ω・c mの炭素ドープCZシリコン単結晶棒を引き上げた。

【0030】結晶の引き上げ速度は1.0mm/min、ルツボ回転速度、結晶回転速度をそれぞれ2rpm、15rpmとして、炭素棒は面積約2500mm²の領域を120分浸漬した。この単結晶棒の直胴部のトップから30cmの位置からウエーハを切り出し通常の加工方法により鏡面研磨ウエーハを複数枚作製し、炭素濃度および酸素濃度をFT-IR法(フーリエ変換赤外 10分光法)により測定した。その結果、炭素濃度は約1.*

*1ppma、酸素濃度は約15.3ppma(JEIDA)であった。

【0031】そして、これらの鏡面研磨ウエーハ4枚 (A, B, C, D) に下記処理を施した後、1000℃ /16hの熱処理を行って析出核を成長させ、ウエーハ 中のBMD密度を赤外散乱トモグラフ法(測定装置MO -401:三井金属鉱業社製)により測定した。結果を 表1に示す。

[0032]

【表1】

	ウエーハ	各处理条件	BMD 密度(個/cm*)
实粒例	A	①900℃、5μmのエピタキシャル層形成	2.0×10 ⁹
	В	①800℃、1時間の熱処理	6.0×10 ^a
		②900℃、5μmのエピタキシャル層形成	
	С	①900℃、5μmのエピタキシャル欄形成	6.0×10°
		②600℃、1時間の熱処理	
	D	①600℃、1時間の熱処理	1.0×1010
	l	②900℃、5μmのエピタキシャル層形成	
	ł	②600℃、1時間の無処理	
比較例	E	①1125℃、5µmのエピタキシャル層形成	6.0×10 ^a

【0033】表1より、本発明の炭素がドープされたC Zウエーハである基板と、1000℃未満の温度で成長 20 されたエピタキシャル層からなるエピタキシャルウエーハは、高いBMD密度を有し、IG能力の高いウエーハであることが判る。また、このIG能力は、エピタキシャル成長の前後に低温短時間の熱処理を加えることによりさらに向上することも判る。さらに、これらのウエーハ(A~D)に対し、Séccoエッチングを30分行い、LEPを観察した結果、これらの炭素ドープされたウエーハにはそのようなLEPは全く観察されないことを確認した。

【0034】(比較例)炭素をドープして実施例と同一条件で鏡面研磨ウエーハを作製後、1125℃、5μmのエピタキシャル成長熱処理によりエピタキシャル層を形成し、エピタキシャルウエーハを作製した。このウエーハEについて実施例と同様にBMD密度を測定し、その結果を表1に併記した。表1より、ウエーハEのBMD密度は6.0×106(個/cm³)であり、炭素をドープされたCZシリコンウエーハを基板としているにもかかわらず、IG能力は実施例のエピタキシャルウエーハに比べてはるかに劣ることが判る。

【0035】なお、本発明は、上記実施形態に限定され 40 るものではない。上記実施形態は、例示であり、本発明 の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いか

なるものであっても本発明の技術的範囲に包含される。 【0036】例えば、上記実施形態においては、直径6 インチのエピタキシャルウエーハを育成する場合につき 例を挙げて説明したが、本発明はこれには限定されず、 直径8~16インチあるいはそれ以上のエピタキシャル ウエーハにも適用でき、より有効に作用し得る。

[0037]

【発明の効果】以上より明らかなように本発明によれば、比較的低酸素濃度のウエーハからも高いIG能力を有するエピタキシャルウエーハを製造することができる。また、この事は初期酸素濃度幅に大きなマージンを与えることにつながり、引き上げ結晶の酸素濃度バラツキの制限が緩和され、この波及効果として単結晶の高速成長が可能になり、生産コストダウンにつながる。加えて、窒素ドープウエーハを基板に使用した場合に見られるようなエピタキシャル層の欠陥が発生することがなく、結晶性に優れたエピタキシャル層を有するエピタキシャルウエーハを得ることができる。

【図面の簡単な説明】

【図1】(a)(b)は、炭素ドープウエーハを基板としたエピタキシャルウエーハの炭素濃度、酸素濃度、熱処理温度とBMD密度との関係を示した図である。

【図2】炭素ドープウエーハを基板としたエピタキシャルウエーハの炭素濃度とBMD密度との関係を示した図である。

【図1】

BEST AVAILABLE COPY