Сдача решений до $12:00~\mathrm{MCK}~03.03.2022$ на адрес e-mail: ant.biryukov@gmail.com

Распределение вариантов заданий

N	ФИО	Вариант
1	Бузмаков Игорь Николаевич	1
2	Венедиктов Дмитрий Владимирович	2
3	Воронцова Юлия Александровна	3
4	Галиуллин Арслан Анварович	4
5	Даутов Зинур Юмагулович	1
6	Иванова Вероника Валериевна	2
7	Калазанс де Брито Луис Филипе	3
8	Камалетдинов Сергей Раильевич	4
9	Кардаш Иван Юрьевич	1
10	Костенко Олеся Владимировна	2
11	Сафронов Геннадий Сергеевич	3
12	Слинько Андрей Владимирович	4
13	Таркаева Елизавета Владимировна	1
14	Тимошук Игорь Леонидович	2
15	Титова Анастасия Викторовна	3
16	Тоноян Давид Суренович	4
17	Тукбаев Загир Зуфарович	1

Сдача решений до 12:00 МСК 03.03.2022 на адрес e-mail: ant.biryukov@gmail.com

Вариант 1

- 1. В первом приближении, плотность вещества внутри Солнца меняется линейно с расстоянием от центра: $\rho(r) = \rho_c (1 r/R_{\odot})$, где ρ_c центральная плотность R_{\odot} радиус Солнца, причём $r < R_{\odot}$. Найдите выражение для гравитационного потенциала внутри Солнца.
- 2. Цефеиды класс пульсирующих переменных звёзд. Их светимости периодически меняются, так как в ходе радиальных пульсаций изменяются радиусы и, что важнее, температуры этих звёзд (так, при увеличении радиуса на ~ 15% эффективная температура фотосферы цефеиды падает с ~ 6500 K до ~ 5500 K). Зная это, определите в каком диапазоне электромагнитного спектра (ультрафиолетовом, видимом или инфракрасном) амплитуда изменения видимого блеска цефеиды будет максимальной?
- 3. Представим, что одна из будущих автоматических станций по изучению Солнца сможет подлететь к его фотосфере на расстояние много меньшее, чем радиус Солнца R_{\odot} . Пусть тепловой щит такого аппарата будет иметь диаметр D. Какой поток лучистой энергии от Солнца должен будет суметь поглотить и отвести такой щит?
- 4. Некоторая звезда наблюдается с расстояния в 3 килопарсека в двух очень узких фотометрических фильтрах: синем (на длине волны $\lambda_b \approx 333$ нм) и визуальном ($\lambda_v = 500$ нм). Насколько будет отличаться наблюдаемый показатель цвета этой звезды от истинного, если считать что оптическая толща в направлении наблюдения сотавляет $\tau_0 = 1.66$ на каждый килопарсек расстояния при наблюдении на длине волны $\lambda_0 = 555.5$ нм
- 5. Оцените минимально возможное время жизни массивной звезды на главной последовательности. Учтите, что калорийность CNO-цикла составляет $\varepsilon_{\rm CNO}\sim 5~{\rm MpB/hyk}$ нуклон.

Сдача решений до 12:00 МСК 03.03.2022 на адрес e-mail: ant.biryukov@gmail.com

Вариант 2

- 1. Профиль плотности некой сферически-симметриченой системы тел описывается степенным законом виде $\rho(r) \propto r^{-\alpha}$. Как при этом будет зависеть круговая скорость v(r) пробной частицы от расстояния r до центра системы?
- 2. Двух измерений $nomoкos\ F(\nu_1)$ и $F(\nu_2)$ на разных частотах от абсолютно чёрного тела расположенном на произвольном (неизвестном) расстоянии, зачастую достаточно, для того чтобы однозначно измерить температуру этого тела. Покажите это строго. В каком диапазоне частот, однако, такой метод определения температуры будет работать плохо?
- 3. Иногда звёзды являются мощными источниками ультрафиолетовых фотонов. Например горячие звёзды ранних спектральных классов (скажем, типа О5 с $T_{\rm eff} \sim 5.5 \times 10^4$ K). Такие звезды эффективно ионизуют нейтральный водород в своей окресности. Пусть $h\nu_0$ энергия фотоиноизации, σ_{ν} сечение фотоиноизации, а n концентрация атомов некоторого типа. Получите общую формулу для темпа фотоионизации ξ , то есть количества ионизуемых атомов в единице объёма за единицу времени в поле излучения I_{ν} .
- 4. Сферическое непрозрачное тело излучает как АЧТ с температурой T_c . Оно окружено сферической термализованной оболочкой, нагретой до температуры $T_s < T_c$ (см Рис. 1). Эта оболочка поглощает в пределах очень узкого интервала частот так что коэффициент поглощения $\alpha_{\nu} = 0$ везде кроме $\nu \sim \nu_0$. Пусть вся эта система наблюдается на двух частотах: ν_0 и $\nu_1 \neq \nu_0$ и вдоль двух направлений A и B. Пусть функция Планка $B(T,\nu_0) \approx B(T,\nu_1)$ для обеих температур T_c и T_s . Определите: на какой из частот (ν_0 или ν_1) наблюдаемая интенсивность такой системы будет максимальна, при наблюдении вдоль направления A? А при наблюдении вдоль направления B?
- 5. Воспользовавшись теоремой вириала получите формулу для скорости звука внутри звезды массы M и радиуса R. Оцените период основной моды механических колебаний звезды типа Солнца.

Рис. 1: Излучающее тело температуры T_c , окруженное термализованной оболочкой с температурой T_s

Сдача решений до 12:00 МСК 03.03.2022 на адрес e-mail: ant.biryukov@gmail.com

Вариант 3

- 1. В первом приближении, плотность вещества внутри Солнца меняется линейно с расстоянием от центра: $\rho(r) = \rho_c(1-r/R_\odot)$, где ρ_c центральная плотность R_\odot радиус Солнца, причём $r < R_\odot$. Найдите полную гравитационную энергию Солнца и сравните её с энергией однородного шара тех же массы и радиуса.
- 2. Остаток сверхновой наблюдается в радиодиапазоне на частоте $f=100~\mathrm{MF}$ ц. Его угловой диаметр равен $\theta=4.3'$, а радиопоток от него $F_{100}=16~\mathrm{кЯн}$. Какова наблюдаемая яркостная температура источника? Если предположить, что излучение остатка тепловое, то каким из двух приближений функции Планка его корректнее описывать?
- 3. Покажите строго, что в центре Солнца, при плотности $\rho_c \sim 160~{\rm r/cm^3}$ давление излучения много меньше газового давления. Газ считайте идеальным.
- 4. Сферическое непрозрачное тело излучает как АЧТ с температурой T_c . Оно окружено сферической термализованной оболочкой, нагретой до температуры $T_s > T_c$ (см Рис. 2). Эта оболочка поглощает в пределах очень узкого интервала частот так что коэффициент поглощения $\alpha_{\nu} = 0$ везде кроме $\nu \sim \nu_0$. Пусть вся эта система наблюдается на двух частотах: ν_0 и $\nu_1 \neq \nu_0$ и вдоль двух направлений A и B. Пусть функция Планка $B(T,\nu_0) \approx B(T,\nu_1)$ для обеих температур T_c и T_s . Определите: на какой из частот (ν_0 или ν_1) наблюдаемая интенсивность такой системы будет максимальна, при наблюдении вдоль направления A? А при наблюдении вдоль направления B?
- 5. Период основной моды механических колебаний звезды со средней плотностью $\bar{\rho}$ равен $P \sim (G\bar{\rho})^{-1/2}$. Покажите, что для массивной звезды период пульсаций и её светимость будут связаны соотношением $L \propto P^{\alpha}$, где $\alpha \sim 0.5$

Рис. 2: Излучающее тело температуры T_c , окруженное термализованной оболочкой с температурой T_s

Сдача решений до 12:00 МСК 03.03.2022 на адрес e-mail: ant.biryukov@gmail.com

Вариант 4

1. Воспользовавшись законом сохранения момента импульса в системе двух точечных масс m_1 и m_2 , выведете третий закон Кеплера:

$$T^2 = \frac{4\pi^2}{G(m_1 + m_2)}a^3,$$

где T – орбитальный период системы, а $a = a_1 + a_2$ – сумма больших полуосей двух орбит относительно центра масс системы.

- 2. Остаток сверхновой наблюдается в радиодиапазоне на частоте $f=100~\mathrm{MF}$ ц. Его угловой диаметр равен $\theta=4.3'$, а радиопоток от него $F_{100}=16~\mathrm{кЯ}$ н. Если предположить, что излучение остатка тепловое, то на какой длине волны будет максимум спектральной плотности его потока?
- 3. Зная, что реакции термояденого горения водорода начинаются при температурах $\sim 1.5 \times 10^7$ K, оцените количество тепловых фотонов в ядре Солнца. Сравните полученное число с темпом образования ядер гелия $f_{\rm He} \sim 10^{38}~{\rm cek}^{-1}$ в ходе протон-протонной цепочки и сделайте из этого сравнения вывод о времени, за которое фотон покидает ядро Солнца.
- 4. Пусть планетарная туманность описывается как оптически тонкая нагретая оболочка радиуса R и толщины $\delta R = R/50$. Во сколько раз поверхностная яркость этой туманности вблизи её центра (мимо центрального остатка) меньше чем поверхностная яркость её границы при наблюдении с Земли?
- 5. Пусть наблюдается сферически-симметричное тело с приблизительно планковским спектром. Как из наблюдений показать, что его видимая граница не является твёрдой поверхностью? (См. 3)

Рис. 3: Солнце – тело без твёрдой поверхности. Но почему мы так в этом уверены?