CH-8: Finite State Machine Optimization

Contemporary Logic Design

YONSEI UNIVERSITY

Fall 2016

Finite State Machine Optimization

- State minimization
 - fewer states require fewer state bits
 - fewer bits require fewer logic equations
- Encodings: state, inputs, outputs
 - state encoding with fewer bits has <u>fewer equations</u> to implement
 - however, each may be more complex
 - state encoding with more bits (e.g., one-hot) has simpler equations
 - complexity directly related to complexity of state diagram
 - input/output encoding may or may not be under designer control

Finite State Machine Optimization

State minimization

- Odd Parity Checker: two alternative state diagrams
 - Identical output behavior on all input strings
 - FSMs are equivalent, but require different implementations
 - Design state diagram without any concern for # of states, Reduce later

Algorithmic Approach to State Minimization

- Goal identify and combine states that have equivalent behavior
- Equivalent states:
 - same output
 - for all input combinations, states <u>transition to same or equivalent states</u>
- Algorithm sketch to find equivalent states
 - 1. place all states in one set
 - 2. initially partition set based on output behavior
 - 3. successively partition resulting subsets based on next state transitions
 - 4. repeat (3) until no further partitioning is required
 - states left in the same set are equivalent
 - polynomial time procedure

- Sequence detector EX for 1010 or 0110
 - single input X, output Z
 - taking inputs grouped four at a time, output 1 if last four inputs were the string 1010 or 0110

```
1st bit Example I/O Behavior:

X = 0010 0110 1100 1010 0011 ...

Z = 0000 0001 0000 0001 0000 ...
```

Upper bound on FSM complexity:

```
Fifteen states (1 + 2 + 4 + 8)
```

Thirty transitions (2 + 4 + 8 + 16)

sufficient to recognize any binary string of length four!

State diagram for example FSM

		Next	State	Out	put
Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S_0	S_1	S_2	0	0
О	S ₁	S_3	S_4	0	O
1	S_2	S_5	S_6	0	O
OO	S_3	S_7	S_8	0	O
O1	S_4	S_9	S_{10}	0	Ο
10	S_5	S ₁₁	S_{12}	0	Ο
11	S ₄ S ₅ S ₆	S_{13}	S_{14}	0	O
000	S ₇	S_0	S_0	0	O
00 1	S ₈ S ₉ S ₁₀	S ₀ S ₀	S_0	0	Ο
010	S_9°	S_0	S_0	0	Ο
011	S ₁₀	S_0	S_0	1	O
100	S ₁₁	S_0	S_0	0	Ο
101	S ₁₁ S ₁₂	S ₀ S ₀	S_0	1	Ο
110	S_{13}	S_0	တိတိတိတိတိတိတိ	0	Ο
111	S ₁₃ S ₁₄	S ₀ S ₀	S_0	0	Ο

		Next	State	Out	put
Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S_0	S ₁	S_2	0	0
0	S ₁	S_3	S_4	0	0
1	S_2	S_5	S_6	0	O
00	S_3	S ₇	S ₈	0	O
01	S_4	S_9	S_{10}	0	Ο
10	S_5	S ₁₁	$S_{10} S_{12}$	0	O
11	S ₄ S ₅ S ₆ S ₇ S ₈ S ₉	S_{13}	S_{14}	0	O
000	S ₇	S_0	S_0	0	O
001	S ₈	S_0	S_0	0	Ο
010	S_9	S_0	S_0	0	0
011	S ₁₀	S_0	S_0	1	0
100	S ₁₁	S_0	S_0	0	0
101	S ₁₂	S_0	S_0	1	0
110	S ₁₃	S_0	S_0	0	0
111	S ₁₃ S ₁₄	S_0	S_0	0	Ο

		Next	State	Out	put
Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S_0	S ₁	S_2	0	0
0	S ₁	S_3	S_4	0	0
1	S_2	S ₃ S ₅	S_6	0	0
00	S_3	S_7	S_8	0	0
01	S_4	S ₇ S ₉	S ₁₀	0	0
10	S_5	S_{11}	S ₁₀	0	0
11	S ₁ S ₂ S ₃ S ₄ S ₅ S ₆ S ₇ S ₈ S ₉ S ₁₀ S ₁₀	S ₁₃	S_{14}	0	0
000	S ₇	S_0	S_0	0	0
001	S_8	S_0	S _O O	0	0
010	S_9^{S}	S ₀ S ₀ S ₀	$\overset{\circ}{S_0}$	0	0
011 or 101	S _{1.0}	S_0	S_0	1	0
100	S ₁₁	S_0°	S ₀	0	0
110	S_{13}	S_0	So	0	0
111	S ₁₁ S ₁₃ S ₁₄	S ₀ S ₀ S ₀	S ₀ S ₀ S ₀	0	0

		Next	State	Out	put .
Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S_0	S₁	S_2	0	0
0	S_1	S_3	S_4	0	0
1	S_2	S ₃ S ₅	S_{ϵ}	0	0
00	S_3	S ₇ S ₉ S ₁₁	S_8	0	0
01	S_4	So	S' ₁₀	0	0
10	S_5	S ₁₁	S _{1.0}	0	0
11	S ₁ S ₂ S ₃ S ₄ S ₅ S ₆ S ₇ S ₈ S ₉ S ₁₀ S ₁₃ S ₁₄	S_{12}	S ₈ S' ₁₀ S' ₁₀ S ₁₄	0	0
000	S ₇	S_0 S_0	S_0	0	O
001	S_8	S_0	S_0	0	0
010	S_9	S_0	S_0	0	O
011 or 101	S' ₁₀	S_0	S_0	Н	0
100	S ₁₁	S_0	S_0	0	0
110	S ₁₃	S_0	$\overset{\circ}{S_0}$	0	0
111	S ₁₄	s_0	S_0°	0	O

		Next	State	Out	out
Input Sequence	Present State	X = 0	X=1	X=0	X=1
Reset	S_0	S_1	S ₂	0	0
0	S_1	S_3	S_4	0	0
1	S_2	S_5	S_6	0	0
00	S_3	S_7	S' ₇	0	0
01	S_4	S ₇	S' ₁₀	0	0
10	S ₃ S ₄ S ₅	S ₇	S _{1.0}	0	0
11	S_6	$S_7^{'}$	$S_7^{'}$	0	0
not (011 or 101)	S ₇	S_0	So	0	0
011 or 101	S' ₁₀	S_0	S_0	1	0

		Next	State	Out	put
Input Sequence	Present State			X=0	X=1
Reset	S_0	S_1	S ₂	0	0
0	S_1	S_3	S_4	0	0
1	S_2	S_5	S	0	0
00	S_3	S ₇	S ₇	0	0
01	S ₄ S ₅	S ₇	S' ₁₀	0	0
10	S_5	S ₇	S' ₁₀	0	0
11	S ₆	S ₇	S ₇	0	0
not (011 or 101)	S ₇	S_0	S	0	0
011 or 101	S' ₁₀	S_0	S_0	1	0

Final Reduced State Transition Table

	Next State		Out	put
Present State	X=0	X=1	X=0	X=1
S0	S1	S2	0	0
S 1	S3'	S4'	0	0
S2	S4'	S3'	0	0
S3'	S7'	S7'	0	0
S4'	S7'	S10'	0	0
S7'	S0	S0	0	0
S10'	S0	S0	1	0
	\$0 \$1 \$2 \$3' \$4' \$7'	Present State X=0 S0 S1 S1 S3' S2 S4' S3' S7' S4' S7' S7' S0	S0 S1 S2 S1 S3' S4' S2 S4' S3' S3' S7' S7' S4' S7' S10' S7' S0 S0	Present State X=0 X=1 X=0 S0 S1 S2 0 S1 S3' S4' 0 S2 S4' S3' 0 S3' S7' S7' 0 S4' S7' S10' 0 S7' S0 S0 0

Corresponding State Diagram

State Minimization Example

Sequence detector for 010 or 110

Input		Ne	xt State	0	utput
Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S0	S1	S2	0	0
0	S1	S3 S5	S4	0	0
1	S1 S2	S5	S6	0	0
00	S3 S4	S0	S0	0	0
01	S4	S0	S0	1	0
10	S5	S0	S0	0	0
11	S6	S0	S0	1	0

Input			xt State		utput
Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S0	S1	S2	0	0
0	S1 S2	S3 S5	S4 S6	0	0
	52	55	S6 S0	0	0
01	S3 S4	S0 S0	50 S0	1	0
10	S5	S0	S0	0	0
_ 11	S6	S0	S0	1	0

```
(S0 S1 S2 S3 S4 S5 S6)
S1 is equivalent to S2
(S0 S1 S2 S3 S5) (S4 S6)
S3 is equivalent to S5
(S0 S3 S5) (S1 S2) (S4 S6)
S4 is equivalent to S6
(S0) (S3 S5) (S1 S2) (S4 S6)
```

Input			utput		
Sequence	Present State	X=0	X=1	X=0	`X=1
Reset 0 1 00 01 10	\$0 \$1 \$2 \$3 \$4' \$5	S1 S3 S5 S0 S0 S0	\$2 \$4' \$4' \$0 \$0 \$0	0 0 0 0 1	0 0 0 0 0

```
( S0 S1 S2 S3 S4 S5 S6 )
S1 is equivalent to S2
( S0 S1 S2 S3 S5 ) ( S4 S6 )
S3 is equivalent to S5
( S0 S3 S5 ) ( S1 S2 ) ( S4 S6 )
S4 is equivalent to S6
( S0 ) ( S3 S5 ) ( S1 S2 ) ( S4 S6 )
```

Input	Next State				utput
Sequence	Present State	X=0	X=1	X=0	X=1
Reset 0 1 00 01	S0 S1 S2 S3' S4'	S1 S3' S3' S0 S0	S2 S4' S4' S0 S0	0 0 0 0 1	0 0 0 0

```
( S0 S1 S2 S3 S4 S5 S6 )
S1 is equivalent to S2
( S0 S1 S2 S3 S5 ) ( S4 S6 )
S3 is equivalent to S5
( S0 S3 S5 ) ( S1 S2 ) ( S4 S6 )
S4 is equivalent to S6
( S0 ) ( S3 S5 ) ( S1 S2 ) ( S4 S6 )
```

Input Sequence	Present State		t State X=1	X=0	utput X=1
Reset	S0	S1	\$2	0	0
0	S1'	S3'	\$4'	0	0
00	S3'	S0	\$0	0	0
01	S4'	S0	\$0	1	0

```
( S0 S1 S2 S3 S4 S5 S6 )
S1 is equivalent to S2
( S0 S1 S2 S3 S5 ) ( S4 S6 )
S3 is equivalent to S5
( S0 S3 S5 ) ( S1 S2 ) ( S4 S6 )
S4 is equivalent to S6
( S0 ) ( S3 S5 ) ( S1 S2 ) ( S4 S6 )
```

Minimized FSM

State minimized sequence detector for 010 or 110

Input		Next State		Ou	tput
Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S0	S1 '	S1 '	0	0
0 + 1	S1'	S3 '	S4 '	0	0
X0	S3'	S0	S0	0	0
X1	S4'	S0	S0	1	0

Row Matching Method

- Straightforward to understand and easy to implement
- Problem: does not yield the most reduced state table!

Example: 3 State Odd Parity Checker

Next State				
Present State	X=0	X=1	Output	
S_0	S ₀	S₁	0	
S_1	S_1	S_2	1	
S_2	S_2	S_1^-	0	

We know S0, S2 can be combined 1/0

No way to combine states S0 and S2 based on Next State Criterion!

0/1

Enumerate all possible combinations of states taken two

S0

Naive Data Structure: Xij will be the same as Xji Also, can eliminate the diagonal

Implication Chart

Fill in the Implication Chart

Entry Xij: Row is Si, Column is Sj

Si is equivalent to Sj if outputs are the same and next states are equivalent

Xij contains the next states of Si, Sj which must be equivalent if Si and Sj are equivalent

If Si, Sj have different output behavior, then Xij is crossed out

```
Example:
```

S0 transitions to S1 on 0, S2 on 1; S1 transitions to S3 on 0, S4 on 1;

So square X<0,1> contains entries S1-S3 (transition on zero) S2-S4 (transition on one)

S0 S1-S3 S2-S4

S1

Results of First Marking Pass

Second Pass (Adds No New Information)

S3 and S5 are equivalent S4 and S6 are equivalent This implies that S1 and S2 are too!

		Next	State	Out	o ut
Input Sequence	Present State	X = 0	X=1	X = 0	X=1
Reset	S ₀	S¦	S' ₁	0	0
0 or 1	S¦	S_3	S ₄	0	0
00 or 10	S_3^{i}	S_0	S_0	0	0
01 or 11	Si	S	S_{α}	1	0

Reduced State Transition Table

More Complex State Minimization

Multiple input example

symbolic state transition table

Minimized FSM

- Implication chart method
 - cross out incompatible states based on outputs
 - then cross out more cells if indexed chart entries are already crossed out

present	next state				output
state	00	01	10	11	
S0'	S0'	S1	S2	S3'	1
S1	S0'	S3'	S1	S3'	0
S2	S1	S3'	S2	S0'	1
S3'	S1	S0'	S0'	S3'	0

minimized state table (S0==S4) (S3==S5)

Odd Parity EX

Example: 3 State Odd Parity Checker

Next State			
Present State	X=0	X=1	Output
S ₀	S ₀	S ₁	0
$\overset{\circ}{S_1}$	$S_1^{"}$	S_2	1
S_2	S_2	S_1^-	0

S0, S2 cannot be combined by using row matching method

Example: 3 State Odd Parity Checker

Does the method solve the problem with the odd parity checker-

S0 is equivalent to S2 since nothing contradicts this assertion!

Minimized FSM

Example: 3 State Odd Parity Checker

Implication Chart Summary

- 1. Construct implication chart, one square for each combination of states taken two at a time
- 2. Square labeled Si, Sj, *if outputs differ, then square gets "X". Otherwise write down implied state pairs* for all input combinations
- 3. Advance through chart top-to-bottom and left-to-right. If square Si, Sj contains next state pair Sm, Sn and that pair labels a square already labeled "X", then Si, Sj is labeled "X".
- 4. Continue executing Step 3 until no new squares are marked with "X".
- 5. For each remaining unmarked square Si, Sj, then Si and Sj are equivalent.

Minimizing States May Not Yield Best Circuit

Example: edge detector - outputs 1 when last two input changes from 0 to 1

Χ	Q_1	Q_0	Q_1^+	Q_0^+
0	0	0	0	0
0	0	1	0	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	1	1	1
-	1	0	0	0

$$Q_1^+ = X (Q_1 xor Q_0)$$

$$Q_0^+ = X \ Q_1' \ Q_0'$$

Another Implementation of Edge Detector

"Ad hoc" solution - not minimal but cheap and fast

State Assignment

- Choose bit vectors to assign to each "symbolic" state
 - for n state bits for m states there are 2ⁿ! / (2ⁿ m)!
 [log n <= m <= 2ⁿ]
 - 2ⁿ codes possible for 1st state, 2ⁿ-1 for 2nd, 2ⁿ-2 for 3rd, ...
 - huge number even for small values of n and m
 - intractable for state machines of any size
 - heuristics are necessary for practical solutions
 - optimize some metrics for the combinational logic
 - size (amount of logic and number of FFs)
 - speed (depth of logic and fanout)
 - dependencies (decomposition)

State Assignment Strategies

- Possible strategies
 - sequential just number states as they appear in the state table
 - random pick random codes
 - one-hot use as many state bits as there are states (bit=1 –> state)
 - output use outputs to help encode states
 - heuristic rules of thumb that seem to work in most cases
- No guarantee of optimality another intractable problem

Pencil & Paper Heuristic Methods

■ State Maps: similar in concept to K-maps
If state X transitions to state Y, then assign "close" assignments to X and Y

State Name		ign r Q₁	nent Q ₀	
S_0	0	0	0	
S ₀ S₁	1	0	1	
S_2	1	1	1	
S_3	0	1	Ο	
S_2 S_3 S_4	0	1	1	
Assignment				

	Ass	signr	ment
State Name	Q_2	Q_1	Q_0
S_0	0	0	0
S ₀ S₁	0	0	1
S_2	0	1	0
S_3	0	1	1
S ₄	1	1	1

Assignment

Pencil & Paper Heuristic Methods

Minimum Bit Distance Criterion

	First Assignment	Second Assignment
Transition	Bit Changes	Bit Changes
S0 to S1:	2	1
S0 to S2:	3	1
S1 to S3:	3	1
S2 to S3:	2	1
S3 to S4:	1	1
S4 to S1:	2	2
	13	7

Traffic light controller: HG = 00, HY = 01, FG = 11, FY = 10 yields minimum distance encoding but not best assignment!

- Adjacent codes to states that <u>share a common next state</u>
 - group 1's in next state map

Ī	Q	Q ⁺	Ο
i	а	С	j
i	b	С	k

$$c = i * a + i * b$$

- Adjacent codes to states that <u>share a common ancestor state</u>
 - group 1's in next state map

Ι	Q	Q ⁺	0
i	a	b	j
k	a	С	1

- Adjacent codes to states that <u>have a common output behavior</u>
 - group 1's in output map

Ι	Q	Q ⁺	Ο
İ	а	b	j
i	С	d	j

Example: 3-bit Sequence Detector

Highest Priority: (S3', S4')

Medium Priority: (S3', S4')

Lowest Priority:

0/0: (S0, S1', S3')

1/0: (S0, S1', S3', S4')

Example: 3-bit Sequence Detector

Another Example: 4 bit String Recognizer

Highest Priority: (S3', S4'), (S7', S10')

Medium Priority: (S1, S2), 2x(S3', S4'), (S7', S10')

Lowest Priority:

0/0: (S0, S1, S2, S3', S4', S7') 1/0: (S0, S1, S2, S3', S4', S7')

Another Example: 4 bit String Recognizer

State Map

Q1 Q2	Q0			
Q2\	00	01	11	10
0	S0		S	
1	S7'		\$4 '	S10'

00 = Reset = S0

(S3', S4'), (S7', S10') placed adjacently, Then (S1, S2)

Effect of Adjacencies on Next State Map

Current State	Next State X = 0 X = 1		
$(S_0) 000$	001	101	
(S ₁) 001	011	111	
(S ₂) 101	111	011	
(S ₃) 011	010	010	
(S ₄ ') 111	010	110	
(S ₇) 010	000	000	
(S' ₁₀) 110	000	000	

Q_2	Q ₁	01	11	10
Q ₀ X	1	0	0	X
01	1	0	0	Х
11	1	0	0	1
10	1	0	0	1
•		F	0	

Current State	Next State X = 0 X = 1		
(S ₀) 000	001	010	
(S ₁) 001	011	100	
$(S_2) 010$	100	011	
(S ₃ ') 011	101	101	
(S ₄) 100	101	110	
(S ₇) 101	000	000	
(S' ₁₀) 110	000	000	

Q_2	Q ₁ 00			
$Q_0 \times \sqrt{}$	00	01	11	10
Q ₀ X	0	1	0	1
01	0	0	0	1
11	1	1	Х	0
10	0	1	Χ	0
<u>'</u>		F	2	

$Q_2 Q_1$ 00 01 11 10					
$Q_0 \times $	00	01	11	10	
Q ₀ X	0	0	0	0	
01	1	1	0	1	
11	0	0	Χ	0	
10	1	0	Х	0	
'	P ₁				

First encoding exhibits a better clustering of 1's in the next state map

General Approach to Heuristic State Assignment

- All current methods are variants of this
 - 1) determine which states "attract" each other (weighted pairs)
 - 2) generate constraints on codes (which should be in same cube)
 - 3) place codes on Boolean cube so as to maximize constraints satisfied (weighted sum)
- Different weights make sense depending on whether we are optimizing for two-level or multi-level forms

Why Partition?

- Mapping FSMs onto programmable logic components:
 - <u>limited number of input/output pins</u>
 - <u>limited number of product terms</u> or other programmable resources

Example of Input/Output Partitioning:

5 outputs depend on 15 inputs

5 outputs depend on different overlapping set of 15 inputs

Introduction of Idle States

Introduction of Idle States

After Partitioning

Rules for Partitioning

Rule #1: Source State Transformation; SA is the Idle State

Rule #2: Destination State Transformation

Rules for Partitioning

Rule #3: Multiple Transitions with Same Source or Destination

Rule #4: Hold Condition for Idle State

Another Example

6 state up/down counter

building block has 2 FFs + combinational logic

6 State Up/Down Counter

Introduction of the two idle state SA, SB

Count sequence S0, S1, S2, S3, S4, S5: S2 goes to SA and holds, leaves after S5 S5 goes to SB and holds, leaves after S2

Down sequence is similar

Sequential Logic Optimization Summary

- State minimization
 - straightforward in fully-specified machines
 - computationally intractable, in general (with don't cares)
- State assignment
 - many heuristics
 - best-of-10-random just as good or better for most machines
 - output encoding can be attractive (especially for PAL implementations)