AUTOVALORES Y AUTOVECTORES DE UNA MATRIZ

Definición. Si A es una matriz $n \times n$, entonces un vector \mathbf{x} diferente de cero en R^n se denomina *eigenvector* de A si $A\mathbf{x}$ es un múltiplo escalar de \mathbf{x} ; es decir,

$$Ax = \lambda x$$

para algún escalar λ . El escalar λ se denomina eigenvalor de A, y se dice que x es un eigenvector de A correspondiente a λ .

Ejemplo 1 El vector $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ es un eigenvector de

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

correspondiente al eigenvalor $\lambda = 3$, ya que

$$A\mathbf{x} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\mathbf{x}$$

DETERMINACIÓN DE LOS AUTOVALORES DE UNA MATRIZ

Para encontrar los eigenvalores de una matriz $A n \times n$, $Ax = \lambda x$ se vuelve a escribir como

$$Ax = \lambda Ix$$

o bien, de manera equivalente,

$$(\lambda I - A)\mathbf{x} = \mathbf{0} \tag{1}$$

Para que λ sea un eigenvalor, debe existir una solución diferente de cero para esta ecuación. Sin embargo, por el teorema 6.2.7, la ecuación (1) tiene una solución diferente de cero si y sólo si

$$\det(\lambda I - A) = 0$$

Esta expresión se denomina ecuación característica de A; los escalares que satisfacen esta ecuación son los eigenvalores de A. Al desarrollar $\det(\lambda I - A)$ se obtiene un polinomio en λ , denominado polinomio característico de A.

$$\det(\lambda I - A) = \lambda^n + c_1 \lambda^{n-1} + \dots + c_n$$

Para más comodidad en la expresión, se puede utilizar la ecuación característica en su forma equivalente:

$$\det(A - \lambda I) = 0$$

Ejemplo 2 Encontrar los eigenvalores de

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

Solución. El polinomio característico de A es

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{bmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4$$

Por consiguiente, los eigenvalores de A deben satisfacer la ecuación cúbica

$$\lambda^3 - 8\lambda^2 + 17\lambda - 4 = 0$$

$$(\lambda - 4)(\lambda^2 - 4\lambda + 1) = 0$$

Así, las otras soluciones de (2) satisfacen la ecuación de segundo grado que se

$$\lambda^2 - 4\lambda + 1 = 0$$

puede resolver aplicando la fórmula cuadrática. Así, los eigenvalores de A son

$$\lambda = 4$$
, $\lambda = 2 + \sqrt{3}$, $y \qquad \lambda = 2 - \sqrt{3}$ Δ

DETERMINACIÓN DE LOS AUTOVECTORES DE UNA MATRIZ: BASES DE LOS AUTOESPACIOS

Los autovectores correspondientes a cada autovalor λ_i de una matriz, son los vectores (distintos de cero) solución del sistema homogéneo:

$$(A - \lambda_i I) \overline{x} = \overline{o}$$

Ejemplo 5 Encontrar bases para los eigenespacios de

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Solución. La ecuación característica de A es $\lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$ o bien, en forma factorizada, $(\lambda - 1)(\lambda - 2)^2 = 0$ (comprobar); así los eigenvalores de A son $\lambda = 1$ y $\lambda = 2$, de modo que existen dos eigenespacios de A.

Por definición,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

es un eigenvector de A correspondiente a λ si y sólo si x es una solución no trivial de $(\lambda I - A)x = 0$; es decir, de

$$\begin{bmatrix} \lambda & 0 & 2 \\ -1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (3)

Si $\lambda = 2$, entonces (3) se convierte en

$$\begin{bmatrix} 2 & 0 & 2 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Resolviendo este sistema se obtiene (comprobar)

$$x_1 = -s, \qquad x_2 = t, \qquad x_3 = s$$

Así, los eigenvectores de A correspondientes a $\lambda = 2$ son los vectores diferentes de cero de la forma

$$\mathbf{x} = \begin{bmatrix} -s \\ t \\ s \end{bmatrix} = \begin{bmatrix} -s \\ 0 \\ s \end{bmatrix} + \begin{bmatrix} 0 \\ t \\ 0 \end{bmatrix} = s \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Como

$$\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{y} \qquad \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

son linealmente independientes, estos vectores forman una base para el eigenespacio correspondiente a $\lambda = 2$.

Si $\lambda = 1$ entonces:

$$\begin{bmatrix} \lambda & 0 & 2 \\ -1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Se convierte en

$$\begin{bmatrix} 1 & 0 & 2 \\ -1 & -1 & -1 \\ -1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Resolviendo este sistema se obtiene (comprobar)

$$x_1 = -2s, \qquad x_2 = s, \qquad x_3 = s$$

Así, los eigenvectores correspondientes a $\lambda = 1$ son los vectores diferentes de cero de la forma

$$\begin{bmatrix} -2s \\ s \\ s \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

de modo que

$$\begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

es una base para el eigenespacio correspondiente a $\lambda = 1$.

PRÁCTICA:

Secc. 7.1, p. 423: 1-6.