

Linneuniversitetet

Kalmar Växjö

Exam

Performance Engineering 2DV608

Author: Omer Irfan Semester: Spring 2021

Email: oi222ay@student.lnu.se

Table of Contents

1	Problem A	2
	1.1 Calculations	2
	1.2 WebServer	2
	1.3 WinnerPaymentServer	2
	1.4 Database	2
	1.5 BettingServer	3
2	Problem B	3
	2.1 Model	3
	2.2 Service Time	3
	2.3 Routing	4
	2.4 System Response Time	5
	2.5 Utilization	ϵ
	2.6 Throughput	7
3	Problem C	7
	3.1 PlayerEngagementServer Calculations	8
	3.2 Database Calculations	8
	3.3 Updated Iterations and Users per minute and No. of Servers	8

1 Problem A

This section shows the calculations for each server. It also shows the calculations for the service time of the *WinnerPaymentServer*, *Database*, *BettingServer*, and the utilization for the *WebServer*.

1.1 Calculations

Cells that with '-' signify that the value was not needed for further calculations. Values in red are the ones that were required.

Server	S	X	U
WebServer	0.03	1.5	0.045
WinnerPaymentServer	1	0.375	0.375
PlayerEngagementServer	0.4	-	-
Database	0.06	-	-
BettingServer	0.199	1.049	0.2091

1.2 WebServer

$$S_{ws} = 0.03$$
, $C_{ws} = 648,000$, $T = 432,000$

$$X_{ws} = C_{ws}/T = 648,000 / 432,000 = 1.5$$

$$U_{ws} = X_{ws} * S_{ws} = 1.5 * 0.03 = 0.045$$

1.3 WinnerPaymentServer

$$U_{\rm wps}=0.375$$

$$C_{wps} = 648,000 * 0.25 = 162,000 (25\% \text{ of C})$$

$$X_{wps} = C_{wps} \ / \ T = 162,\!000 \ / \ 432,\!000 = 0.375$$

$$S_{wps} = U_{wps} / X_{wps} = 0.375 / 0.375 = 1$$
 (Using Utilization Law)

1.4 Database

$$D_{db} = 0.12$$
, $V_{db} = 2$

$$S_{db} = D_{db} / V_{db} = 0.12 / 2 = 0.06$$

1.5 BettingServer

$$N_{bs} = 0.265$$
 , $R_{bs} = 0.2525$, $U_{bs} = 0.2091\,$

$$X_{bs} = N_{bs} / R_{bs} = 0.265 / 0.2525 = 1.049$$
 (Using Little's Law)

$$S_{bs} = U_{bs} / X_{bs} = 0.2091 / 1.049 = 0.199$$
 (Using Utilization Law)

Frequency at which users proceed to betting server or finish session:

$$C_{bs} = X_{bs} * T = 1.049 * 432,000 = 453,168$$

Frequency =
$$(C_{bs} / C) * 100 = (453,168 / 648,000) * 100 = 69.99\%$$

2 Problem B

This section contains screenshots from the JMT Model including the *System Response Time*, *Utilization* and *Throughput* for each server.

2.1 Model

2.2 Service Time

WebServer

WinningPaymentServer

PlayerEngagementServer

Database

BettingServer

Class arrival rate

2.3 Routing

WebServer

Database (Iterating Twice to

PlayerEngagementServer)

PERouter (From PlayerEngagingServer to

BettingServer or finishing)

Two servers for PlayerEngagementServer

2.4 System Response Time

2.5 Utilization

WebServer

WinningPaymentServer

PlayerEngagementServer

Database

BettingServer

2.6 Throughput

WebServer

WinningPaymentServer

PlayerEngagementServer

Database

BettingServer

3 Problem C

This section includes the calculations and screenshots of the updated JMT model.

3.1 PlayerEngagementServer Calculations

$$X = 3$$
 (180 users per minute), $S_{pes} = 0.4$, $V_{pes} = 4$, $c_{pes} = 2$

$$X_{pes} = V_{pes} * X = 4 * 3 = 12$$

$$U_{pes} = (X_{pes} * S_{pes}) / c_{pes} = (12 * 0.4) / 2 = 2.4 = 240\%$$

With 2 parallel servers the system saturates. However, using 5 parallel servers (c = 5) prevents saturation as seen below:

$$U_{pes} = (X_{pes} * S_{pes}) / c_{pes} = (12 * 0.4) / 5 = 0.96 = 96\%$$

3.2 Database Calculations

$$X = 3$$
 , $S_{pes} = 0.06$, $V_{pes} = 4$

$$X_{pes} = V_{pes} * X = 4 * 3 = 12$$

$$U_{pes} = X_{pes} * S_{pes} = 12 * 0.06 = 0.72 = 72\%$$

Out of the PlayerEngagementServer and the Database, the PlayerEngagementServer will saturate first. For the database no extra parallel servers are needed.

3.3 Updated Iterations and Users per minute and No. of Servers

Iterating four times to PlayerEngagementServer

180 users per minute

Three parallel servers for PlayerEngagementServer

3.4 System Response Time

As shown the System Response Time is 10.7. It is also red; this is due to the high variance and the fact that the PlayerEngagementServer and Database are so close to being saturated.