Fixed Point Models for Theories of Properties and Classes

Greg Restall

CLMPS 2015 · HELSINKI · 5 AUGUST 2015

Today's Plan

Our Target Model Construction Classifying Class Theories Order and Continuity Order Models

OUR TARGET

Class Abstraction

$$a \in \{x : \phi(x)\} \text{ iff } \phi(a)$$

Property Abstraction

$$\alpha \in \lambda x. \varphi(x)$$
 iff $\varphi(\alpha)$

Russell's Paradox

$$\{x: x \not\in x\} \in \{x: x \not\in x\} \text{ iff } \{x: x \not\in x\} \not\in \{x: x \not\in x\}$$

Russell's Paradox

$$\{x:x\not\in x\}\in \{x:x\not\in x\} \text{ iff } \{x:x\not\in x\}\not\in \{x:x\not\in x\}$$

In general,

$${x : F(x \in x)} \in {x : F(x \in x)}$$
 iff

$$F(\{x : F(x \in x)\} \in \{x : F(x \in x)\})$$

The Heterological Paradox

$$\lambda x.(x \not\in x) \in \lambda x.(x \not\in x) \text{ iff } \lambda x.(x \not\in x) \not\in \lambda x.(x \not\in x)$$

The Heterological Paradox

$$\lambda x.(x \not\in x) \in \lambda x.(x \not\in x) \text{ iff } \lambda x.(x \not\in x) \not\in \lambda x.(x \not\in x)$$

In general,

$$\lambda x.F(x \varepsilon x) \varepsilon \lambda x.F(x \varepsilon x) \text{ iff}$$

$$F(\lambda x.F(x \varepsilon x) \varepsilon \lambda x.F(x \varepsilon x))$$

Extensionality

If a and b have the same members, then a = b.

Extensionality

If a and b have the same members, then a = b.

$$\frac{\Gamma, x \in a \vdash x \in b, \Delta \quad \Gamma, x \in b \vdash x \in a, \Delta}{\Gamma \vdash a = b, \Delta}$$

Extensionality

If a and b have the same members, then a = b.

$$\frac{\Gamma, x \in a \vdash x \in b, \Delta \quad \Gamma, x \in b \vdash x \in a, \Delta}{\Gamma \vdash a = b, \Delta}$$

(Extensionality will not play a significant role in what follows.)

MODEL CONSTRUCTION

Defining validity.

Defining validity.

Providing counterexamples, including proving non-triviality.

Defining validity.

Providing counterexamples, including proving non-triviality.

Relating theories.

Defining validity.

Providing counterexamples, including proving non-triviality.

Relating theories.

Giving a sense of what the theory can be *about*.

Defining validity.

Providing counterexamples, including proving non-triviality.

Relating theories.

Giving a sense of what the theory can be *about*.

Motivating the theory.

Defining validity.

Providing counterexamples, including proving non-triviality.

Relating theories.

Giving a sense of what the theory can be *about*.

Motivating the theory.

Defining validity.

Providing counterexamples, including proving non-triviality.

Relating theories.

Giving a sense of what the theory can be *about*.

Motivating the theory.

ZFC and its Cousins: The Iterative Conception of Set

 $\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$

These models are good for (1) relating ZFC to AFA,

These models are good for (1) *relating* ZFC to AFA, (2) motivating a choice of the anti-foundation axiom,

These models are good for (1) relating ZFC to AFA, (2) motivating a choice of the anti-foundation axiom, and (3) explaining what the theory could be about.

Untyped λ Calculus

If x is a variable and M is a term, λx . M is a term.

Untyped λ Calculus

If x is a variable and M is a term, λx . M is a term.

For any terms, M and N, MN is M applied to N.

Untyped λ Calculus

If x is a variable and M is a term, λx . M is a term.

For any terms, M and N, MN is M applied to N.

$$(\lambda x.M)N = M[x := N].$$

$$D \cong D \rightarrow D$$

You bump up against Cantor's Theorem.

$$D \cong [D \rightarrow D]$$

 $[D \rightarrow E]$: the order preserving functions from (D, \sqsubseteq) to (E, \sqsubseteq) .

 $[D \rightarrow E]$: the order preserving functions from (D, \sqsubseteq) to (E, \sqsubseteq) .

It's ordered too: $f \sqsubseteq g \text{ iff } (\forall x)(f(x) \sqsubseteq g(x)).$

 $[D \rightarrow E]$: the order preserving functions from (D, \sqsubseteq) to (E, \sqsubseteq) .

It's ordered too: $f \sqsubseteq g \text{ iff } (\forall x)(f(x) \sqsubseteq g(x)).$

Embed D_i into $[D_i \rightarrow D_i] = D_{i+1}$ (Use the constant functions.)

$$[D \rightarrow E]$$
: the order preserving functions from (D, \sqsubseteq) to (E, \sqsubseteq) .

It's ordered too: $f \sqsubseteq g \text{ iff } (\forall x)(f(x) \sqsubseteq g(x)).$

Embed D_i into $[D_i \rightarrow D_i] = D_{i+1}$ (Use the constant functions.)

Let D_{∞} be the limit: $D_{\infty} \cong [D_{\infty} \to D_{\infty}]$. This is a model of the untyped λ calculus.

Truth Theories: Kripke, Woodruff, Gilmore, Brady

Class Theories

Class Theories

This is *not* like the other model constructions: the domain is constant—the terms $\{x : \phi(x)\}$.

Class Theories

This is *not* like the other model constructions: the domain is constant—the terms $\{x : \phi(x)\}$.

This shows what the theory is *about* in only a very weak sense.

CLASSIFYING CLASS THEORIES

Underlying Logic: Negation

Gaps or Gluts?

Underlying Logic: Negation

Gaps or Gluts?

Paraconsistent or Paracomplete?

Underlying Logic: The Conditional

Do we have a conditional in the language?

Underlying Logic: The Conditional

Do we have a conditional in the language?

And if so, what is it like?

Underlying Logic: Not that important

These decisions are not *that* important.

Underlying Logic: Not that important

These decisions are not *that* important.

The logic must allow for fixed points.

Underlying Logic: Not that important

These decisions are not that important.

The logic must allow for fixed points.

For any sentence context F(-), we need to allow for some p to be *equivalent to* F(p). If $c =_{df} \{x : F(x \in x)\}$, then $c \in c$ iff $F(c \in c)$

D

▶ D: the *ordinary* domain.

D

▶ D: the *ordinary* domain.

D

0

▶ D: the *ordinary* domain.

• Ω : truth values.

C

 $D \rightarrow \Omega$

▶ D: the *ordinary* domain.

• Ω : truth values.

• C: the classes

$$\mathbf{C} \qquad (\mathbf{C} \cup \mathbf{D}) \rightarrow \mathbf{\Omega}$$

- ▶ D: the *ordinary* domain.
- Ω : truth values.
- C: the classes

$$C \cong (C \cup D) \rightarrow \Omega$$

- ▶ D: the *ordinary* domain.
- Ω : truth values.
- C: the classes

$$C \cong [(C \cup D) \rightarrow \Omega]$$

▶ D: the *ordinary* domain.

• Ω : truth values.

• C: the classes

Extensionality

We won't focus on extensionality here.

Extensionality

We won't focus on extensionality here.

But we'll identify classes by their extensions as much as possible.

Sharpening our Target

$$C \cong [C \cup D \to \Omega]$$

Sharpening our Target

$$C \cong [C \cup D \to \Omega]$$

 $\phi(x)$ gives a function $[C \cup D \rightarrow \Omega]$. So we can find a class C to *match*.

 $\alpha \in \{x : \varphi(x)\}$ has the same value in Ω as $\varphi(\alpha)$.

ORDER AND CONTINUITY

 Ω is ordered by \sqsubseteq .

 Ω is ordered by \sqsubseteq .

All connectives & quantifiers are ⊑-order preserving.

 Ω is ordered by \sqsubseteq .

All connectives & quantifiers are ⊑-order preserving.

(If $x \sqsubseteq x'$ and $y \sqsubseteq y'$ then $x \sharp y \sqsubseteq x' \sharp y'$, etc.)

 K_3 or LP, but not \pounds_3 In \pounds_3 , $*\to *$ is 1; but $1\to 0$ is 0

 K_3 or LP, but not \pounds_3 or RM_3 In \pounds_3 , * \rightarrow * is 1; but 1 \rightarrow 0 is 0 In RM_3 , 1 \rightarrow * is 0; but 1 \rightarrow 1 is 1

Preservation on candidates for Ω

Preservation on candidates for Ω

 K_3 or LP, but not \pounds_3 or RM_3 In \pounds_3 , $*\to *$ is 1; but $1\to 0$ is 0 In RM_3 , $1\to *$ is 0; but $1\to 1$ is 1

FDE, but no robust conditionals.

Preservation on candidates for Ω

 K_3 or LP, but not \pounds_3 or RM_3 In \pounds_3 , * \to * is 1; but 1 \to 0 is 0 In RM_3 , 1 \to * is 0; but 1 \to 1 is 1

FDE, but no robust conditionals.
Similar behaviour here.

Candidates for Ω

Many other choices for Ω are possible.

Candidates for Ω

Many other choices for Ω are possible.

Even $\{0, 1\}$ can be ordered: $0 \subseteq 1$. Then $\land, \lor, 0, 1$ are order preserving, but \neg and \supset are *not* order preserving.

3: our choice of Ω

3: our choice of Ω

(I really don't care if you think of * as true, or as untrue.)

ORDER MODELS

$$\langle C, \sqsubseteq, \uparrow, \downarrow \rangle$$
 is a $\langle D, \Omega \rangle$ order model iff

Given an order algebra Ω , and a domain D of urelements

$$\langle C, \sqsubseteq, \uparrow, \downarrow \rangle$$
 is a $\langle D, \Omega \rangle$ order model iff

ightharpoonup is a partial order on C.

$$\langle C, \sqsubseteq, \uparrow, \downarrow \rangle$$
 is a $\langle D, \Omega \rangle$ order model iff

- ightharpoonup is a partial order on C.
- \uparrow : $C \to [C \cup D \to \Omega]$ is order preservering and invertible.

$$\langle C, \sqsubseteq, \uparrow, \downarrow \rangle$$
 is a $\langle D, \Omega \rangle$ order model iff

- ightharpoonup is a partial order on C.
- \uparrow : $C \to [C \cup D \to \Omega]$ is order preservering and invertible.
- ▶ \Downarrow : $[C \cup D \to \Omega] \to C$, where $\Downarrow = \Uparrow^{-1}$, is also order preserving.

$$\langle C, \sqsubseteq, \uparrow, \downarrow \rangle$$
 is a $\langle D, \Omega \rangle$ order model iff

- ightharpoonup is a partial order on C.
- \uparrow : $C \to [C \cup D \to \Omega]$ is order preservering and invertible.
- ▶ \Downarrow : $[C \cup D \to \Omega] \to C$, where $\Downarrow = \Uparrow^{-1}$, is also order preserving.
- Write ' \uparrow (c)' as ' c_{\uparrow} ' and ' \downarrow (f)' as ' f_{\downarrow} .' So $c_{\uparrow\downarrow} = c$ and $f_{\downarrow\uparrow\uparrow} = f$.

$$\langle C, \sqsubseteq, \uparrow, \downarrow \rangle$$
 is a $\langle D, \Omega \rangle$ order model iff

- ightharpoonup is a partial order on C.
- ▶ \uparrow : $C \to [C \cup D \to \Omega]$ is order preservering and invertible.
- ▶ \Downarrow : $[C \cup D \to \Omega] \to C$, where $\Downarrow = \Uparrow^{-1}$, is also order preserving.
- Write ' \uparrow (c)' as ' c_{\uparrow} ' and ' \downarrow (f)' as ' f_{\downarrow} .' So $c_{\uparrow \downarrow} = c$ and $f_{\downarrow \uparrow} = f$.
- If $b \in C \cup D$ and $c \in C$, then $c_{\uparrow\uparrow}(b)$ tells you whether b is in c.

If
$$x \sqsubseteq x'$$
 and $y \sqsubseteq y'$ then $x_{\uparrow}(y) \sqsubseteq x'_{\uparrow}(y')$.

If
$$x \sqsubseteq x'$$
 and $y \sqsubseteq y'$ then $x_{\uparrow}(y) \sqsubseteq x'_{\uparrow}(y')$.

$$x_{\uparrow}(y) \sqsubseteq x_{\uparrow}(y')$$
 — $y \sqsubseteq y'$ and x_{\uparrow} is order preserving.

If
$$x \sqsubseteq x'$$
 and $y \sqsubseteq y'$ then $x_{\uparrow}(y) \sqsubseteq x'_{\uparrow}(y')$.

$$x_{\uparrow\uparrow}(y) \sqsubseteq x_{\uparrow\uparrow}(y')$$
 — $y \sqsubseteq y'$ and $x_{\uparrow\uparrow}$ is order preserving.
 $x_{\uparrow\downarrow} \sqsubseteq x_{\uparrow\uparrow}'$ — $x \sqsubseteq x'$ and $\uparrow\uparrow$ is order preserving.

— $x \sqsubseteq x'$ and \uparrow is order preserving.

If
$$x \sqsubseteq x'$$
 and $y \sqsubseteq y'$ then $x_{\uparrow}(y) \sqsubseteq x'_{\uparrow}(y')$.

$$x_{\uparrow\uparrow}(y) \sqsubseteq x_{\uparrow\uparrow}(y')$$
 — $y \sqsubseteq y'$ and $x_{\uparrow\uparrow}$ is order preserving.

$$\chi_\pitchfork\sqsubseteq\chi_\pitchfork'$$

— $x \sqsubseteq x'$ and \uparrow is order preserving.

$$x_{\pitchfork}(y')\sqsubseteq x'_{\pitchfork}(y')$$

— by the definition of \sqsubseteq for functions.

Given a $\langle D, 3 \rangle$ order model $\mathfrak{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle$,

Given a
$$\langle D, 3 \rangle$$
 order model $\mathfrak{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle$,

– An assignment α , takes variables to values in $C \cup D$.

Given a
$$\langle D, 3 \rangle$$
 order model $\mathfrak{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle$,

- An assignment α , takes variables to values in $C \cup D$.
- $[x]_{\mathfrak{M},\alpha} = \alpha(x)$ is the interpretation of the variable x.

Given a
$$\langle D, 3 \rangle$$
 order model $\mathfrak{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle$,

- An assignment α , takes variables to values in $C \cup D$.
- $[x]_{\mathfrak{M},\alpha} = \alpha(x)$ is the interpretation of the variable x.
- (We abbreviate this [x] when \mathfrak{M} and α is clear.)

Given a
$$\langle D, 3 \rangle$$
 order model $\mathfrak{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle$,

- An assignment α , takes variables to values in $C \cup D$.
- $[x]_{\mathfrak{M},\alpha} = \alpha(x)$ is the interpretation of the variable x.
- (We abbreviate this [x] when $\mathfrak M$ and α is clear.)
- ▶ $[s \in t]_{\mathfrak{M},\alpha}$ is $[t]_{\uparrow}([s])$ when $[t] \in C$, and is 0 when $[t] \in D$.

Given a
$$\langle D, 3 \rangle$$
 order model $\mathfrak{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle$,

- An assignment α , takes variables to values in $C \cup D$.
- $[x]_{\mathfrak{M},\alpha} = \alpha(x)$ is the interpretation of the variable x.
- (We abbreviate this [x] when $\mathfrak M$ and α is clear.)
- ▶ $[s \in t]_{\mathfrak{M},\alpha}$ is $[t]_{\uparrow}([s])$ when $[t] \in C$, and is 0 when $[t] \in D$.
- ► Connectives and quantifiers are interpreted as usual.

Given a
$$\langle D, 3 \rangle$$
 order model $\mathfrak{M} = \langle C, \sqsubseteq, \uparrow, \downarrow \rangle$,

- An assignment α , takes variables to values in $C \cup D$.
- $[x]_{\mathfrak{M},\alpha} = \alpha(x)$ is the interpretation of the variable x.
- (We abbreviate this [x] when $\mathfrak M$ and α is clear.)
- $[s \in t]_{\mathfrak{M},\alpha}$ is $[t]_{\uparrow}([s])$ when $[t] \in C$, and is 0 when $[t] \in D$.
- Connectives and quantifiers are interpreted as usual.
- (Connectives and quantifiers are order preserving functions on 3 or $[C \cup D \rightarrow 3]$.)

Extending the Language with Terms

$$\{x:\varphi(x)\}$$

Extending the Language with Terms

$$\{x: \varphi(x)\}$$

Since $[\![\phi(x)]\!]_{\mathfrak{M},\alpha[x:=\nu]}$ is order preserving in ν we can use that function, in $[C \cup D \to 3]$, to select the extension of $\{x : \phi(x)\}$.

Extending the Language with Terms

$$\{x: \varphi(x)\}$$

Since $[\![\phi(x)]\!]_{\mathfrak{M},\alpha[x:=\nu]}$ is order preserving in ν we can use that function, in $[C \cup D \to 3]$, to select the extension of $\{x : \phi(x)\}$.

$$[\![\{x:\varphi(x)\}]\!]_{\mathfrak{M},\alpha}=(\lambda\nu.[\![\varphi(x)]\!]_{\mathfrak{M},\alpha[x:=\nu]})_{\Downarrow}$$

$$[\![t\in\{x:\varphi(x)\}]\!]_{\mathfrak{M},\alpha}$$

$$[\![t\in\{x:\varphi(x)\}]\!]_{\mathfrak{M},\alpha}\ =\ [\![\{x:\varphi(x)\}]\!]_{\alpha_{\pitchfork}}([\![t]\!]_{\alpha})$$

$$\begin{split} \llbracket t \in \{x : \varphi(x)\} \rrbracket_{\mathfrak{M},\alpha} &= \ \llbracket \{x : \varphi(x)\} \rrbracket_{\alpha_{\widehat{\Pi}}} (\llbracket t \rrbracket_{\alpha}) \\ &= \ (\lambda \nu. \llbracket \varphi(x) \rrbracket_{\alpha[x := \nu]})_{\Downarrow \widehat{\Pi}} (\llbracket t \rrbracket_{\alpha}) \end{split}$$

$$\begin{split} \llbracket t \in \{x : \varphi(x)\} \rrbracket_{\mathfrak{M},\alpha} &= \ \llbracket \{x : \varphi(x)\} \rrbracket_{\alpha_{\widehat{\Pi}}} (\llbracket t \rrbracket_{\alpha}) \\ &= \ (\lambda \nu. \llbracket \varphi(x) \rrbracket_{\alpha[x := \nu]})_{\psi \uparrow} (\llbracket t \rrbracket_{\alpha}) \\ &= \ (\lambda \nu. \llbracket \varphi(x) \rrbracket_{\alpha[x := \nu]}) (\llbracket t \rrbracket_{\alpha}) \end{split}$$

$$\begin{split} \llbracket \mathbf{t} \in \{\mathbf{x} : \varphi(\mathbf{x})\} \rrbracket_{\mathfrak{M},\alpha} &= \llbracket \{\mathbf{x} : \varphi(\mathbf{x})\} \rrbracket_{\alpha_{\uparrow}}(\llbracket \mathbf{t} \rrbracket_{\alpha}) \\ &= (\lambda \nu. \llbracket \varphi(\mathbf{x}) \rrbracket_{\alpha[\mathbf{x} := \nu]})_{\downarrow \uparrow}(\llbracket \mathbf{t} \rrbracket_{\alpha}) \\ &= (\lambda \nu. \llbracket \varphi(\mathbf{x}) \rrbracket_{\alpha[\mathbf{x} := \nu]})(\llbracket \mathbf{t} \rrbracket_{\alpha}) \\ &= \llbracket \varphi(\mathbf{x}) \rrbracket_{\alpha[\mathbf{x} := \llbracket \mathbf{t} \rrbracket_{\alpha}]} \end{split}$$

$$\begin{split} \llbracket t \in \{x : \varphi(x)\} \rrbracket_{\mathfrak{M},\alpha} &= \ \llbracket \{x : \varphi(x)\} \rrbracket_{\alpha_{\widehat{\mathbb{T}}}} (\llbracket t \rrbracket_{\alpha}) \\ &= \ (\lambda \nu. \llbracket \varphi(x) \rrbracket_{\alpha[x := \nu]})_{\downarrow \uparrow} (\llbracket t \rrbracket_{\alpha}) \\ &= \ (\lambda \nu. \llbracket \varphi(x) \rrbracket_{\alpha[x := \nu]}) (\llbracket t \rrbracket_{\alpha}) \\ &= \ \llbracket \varphi(x) \rrbracket_{\alpha[x := \llbracket t \rrbracket_{\alpha}]} \\ &= \ \llbracket \varphi(t) \rrbracket_{\mathfrak{M},\alpha} \end{split}$$

Logical Constants

0 1

Logical Constants

0 * 1

$$\Lambda = \{x:0\}$$

$$\Lambda = \{x:0\}$$
 $x \in \Lambda \text{ is always false.}$

$$\Lambda = \{x:0\}$$
 $x \in \Lambda \text{ is always false.}$

$$V = \{x : 1\}$$

$$\Lambda = \{x:0\}$$
 $x \in \Lambda \text{ is always false.}$

$$V \ = \ \{x:1\}_{x \in V \text{ is always true.}}$$

$$\Lambda = \{x:0\}_{x \in \Lambda \text{ is always false.}}$$

$$V = \{x:1\}_{x \in V \text{ is always true.}}$$

$$X = \{x:*\}$$

$$\Lambda = \{x : 0\}_{x \in \Lambda \text{ is always false.}}$$

$$V = \{x : 1\}_{x \in V \text{ is always true.}}$$

$$X = \{x : *\}_{x \in X \text{ is always *.}}$$

In fact, $[\![X]\!] \sqsubseteq c$ for every class $c \in C$.

In fact, $[X] \sqsubseteq c$ for every class $c \in C$.

From now, we'll use \mathscr{V} , \mathscr{V} and \mathscr{W} as both the *class terms* in the language, and as their denotations, names for objects in C.

Sharp Classes

In a model \mathfrak{M} , a class c is SHARP iff for each object b in $C \cup D$ $c_{\uparrow\uparrow}(b)$ takes the value 0 or 1

Sharp Classes

In a model \mathfrak{M} , a class c is sharp iff for each object b in $C \cup D$ $c_{\uparrow\uparrow}(b)$ takes the value 0 or 1

 Λ and V are sharp.

Sharp Classes

In a model \mathfrak{M} , a class c is SHARP iff for each object b in $C \cup D$ $c_{\uparrow\uparrow}(b)$ takes the value 0 or 1

 Λ and V are sharp.

X is *not* sharp.

If
$$c_{\uparrow\uparrow}(b) = 1$$
 and $c_{\uparrow\uparrow}(b') = 0$, then $c_{\uparrow\uparrow}(X) = *$.

If
$$c_{\uparrow\uparrow}(b) = 1$$
 and $c_{\uparrow\uparrow}(b') = 0$, then $c_{\uparrow\uparrow}(X) = *$.

$$X \sqsubseteq b$$
, so $c_{\uparrow}(X) \sqsubseteq c_{\uparrow}(b) = 1$.

If
$$c_{\uparrow\uparrow}(b) = 1$$
 and $c_{\uparrow\uparrow}(b') = 0$, then $c_{\uparrow\uparrow}(X) = *$.

$$X \sqsubseteq b$$
, so $c_{\uparrow}(X) \sqsubseteq c_{\uparrow}(b) = 1$.

$$X \sqsubseteq b'$$
, so $c_{\uparrow}(X) \sqsubseteq c_{\uparrow}(b') = 0$.

If
$$c_{\uparrow\uparrow}(b) = 1$$
 and $c_{\uparrow\uparrow}(b') = 0$, then $c_{\uparrow\uparrow}(X) = *$.

$$X \sqsubseteq b$$
, so $c_{\uparrow}(X) \sqsubseteq c_{\uparrow}(b) = 1$.

$$X \sqsubseteq b'$$
, so $c_{\uparrow}(X) \sqsubseteq c_{\uparrow}(b') = 0$.

It follows that $c_{\uparrow}(X) = *$

There is no classical recapture through crisp classes

Once a class includes something and excludes something, it is indecisive about **X**.

There is no classical recapture through crisp classes

Once a class includes something and excludes something, it is indecisive about **X**.

It follows that there are no *crisp singletons*: objects $\{a\}$ for which $[a \in \{x\}] = 1$ and $[b \in \{x\}] = 0$ for all other b.

Singletons and Anti-Signetons: $\{t\}$ and $\{t\}$

- $[\{t\}]_{\alpha}$: (the class representative of) the function that
 - assigns 1 to x iff $[t]_{\alpha} \sqsubseteq x$,
 - and 0 to x iff there is no z where $x \subseteq z$ and $[t]_{\alpha} \subseteq z$,
 - and * otherwise.
- ▶ [] $t{]_{\alpha}$: (the class representative of) the function that
 - assigns 0 to x iff $[t]_{\alpha} \sqsubseteq x$, and
 - and 1 to x if there is no z where $x \sqsubseteq z$ and $[t]_{\alpha} \sqsubseteq z$,
 - and * otherwise.

▶ Study *pure* order models (where D is empty),

Study pure order models (where D is empty),... and impure order models.

- Study pure order models (where D is empty),... and impure order models.
- ► Find perspicuous ways to *construct* order models.

- ▶ Study *pure* order models (where D is empty),
 - ... and impure order models.
- ► Find perspicuous ways to *construct* order models.
- ▶ Relate these constructions to other known model constructions.

- ► Study *pure* order models (where D is empty),
 - ... and impure order models.
- ► Find perspicuous ways to *construct* order models.
- ▶ Relate these constructions to other known model constructions.
- ► *Axiomatise* the logic of order models.

- ▶ Study *pure* order models (where D is empty),
 - ... and *impure* order models.
- ► Find perspicuous ways to *construct* order models.
- ▶ Relate these constructions to other known model constructions.
- ► *Axiomatise* the logic of order models.
- ► Examine different *motivations* of order models.

THANK YOU!