Cloud and Machine Learning CSCI-GA.3033-085 Spring 2024

Prof. Hao Yu Prof. I-Hsin Chung

Lecture 7-2: Containers, Docker, Kubernetes

Agenda

- Lecture
 - Al workflows
 - Introduction to Containers
 - Docker and ecosystem
 - Container orchestration
 - Kubernetes
- Lab
 - Use Docker on your virtual machine
 - Use Container to run a web application on your laptop

What is propelling current generation Al

- Data
- Compute infrastructure
- Algorithms

Equally important how these capabilities are packaged and distributed

Different VM architectures

Native VM using Hypervisor

Hosted VM using VMM

Al Workflow: critical steps in ML

Data preparation

Workflow of steps (e.g., remove hate and profanity, deduplicate)

Distributed training

Long-running job on massive infrastructure

Model adaptation

Model tuning with custom data set for downstream tasks

Inference

May have sensitivity to latency, throughput, power

Hours to days

10-2000+ low to mid-end CPU cores10+ low to mid-end GPUs per10-100+ concurrent jobs

on-prem Pu

Public clouds

weeks to months

10-500+ high-end GPUs (per job) 10+ concurrent jobs

on-prem Public clouds

minutes to hours

1+ mid to high-end GPU (per job) 100+ concurrent jobs

on-prem

Public clouds

sub-second API request

Single low-end GPU per fine tuning task **Fraction** to multiple GPUs per inference, or specialized accelerator

Thousands of API requests

on-prem Public clouds

Edge

Example data processing

TABLE 2: Statistics of commonly-used data sources.

Corpora	Size	Source	Latest Update Time
BookCorpus [153]	5GB	Books	Dec-2015
Gutenberg [154]	-	Books	Dec-2021
C4 [82]	800GB	CommonCrawl	Apr-2019
CC-Stories-R [155]	31GB	CommonCrawl	Sep-2019
CC-NEWS [27]	78GB	CommonCrawl	Feb-2019
REALNEWs [156]	120GB	CommonCrawl	Apr-2019
OpenWebText [157]	38GB	Reddit links	Mar-2023
Pushift.io [158]	2TB	Reddit links	Mar-2023
Wikipedia [159]	21GB	Wikipedia	Mar-2023
BigQuery [160]	-	Codes	Mar-2023
the Pile [161]	800GB	Other	Dec-2020
ROOTS [162]	1.6TB	Other	Jun-2022

IBM Research data governance summary stats

https://arxiv.org/pdf/2303.18223.pdf

Typical data pre-processing pipeline

Typical data pre-processing pipeline

Fig. 7: An illustration of a typical data preprocessing pipeline for pre-training large language models.

Statistics of public models

	Model	Release Time	Size (B)	Base Model		aptation RLHF	Pre-train I Data Scale T	itest Data imestamp	Hardware (GPUs / TPUs)	Training Time		uation CoT
	T5 [82]	Oct-2019	11	_	_	_	1T tokens	Apr-2019	1024 TPU v3	_	√	
	mT5 [83]	Oct-2020	13	-	_	-	1T tokens	-	-	-	1	-
	PanGu- α [84]	Apr-2021	13*	-	_	-	1.1TB	-	2048 Ascend 910	-	\checkmark	-
	CPM-2 [85]	Jun-2021	198	-	-	-	2.6TB	-	-	-	-	-
	T0 [28]	Oct-2021	11	T5	\checkmark	-	-	-	512 TPU v3	27 h	\checkmark	-
	CodeGen [86]	Mar-2022	16	-	-	-	577B tokens	-	-	-	\checkmark	-
	GPT-NeoX-20B [87]	Apr-2022	20	-	-	-	825GB	-	96 40G A100	-	\checkmark	-
	Tk-Instruct [88]	Apr-2022	11	T5	\checkmark	-	-	-	256 TPU v3	4 h	\checkmark	-
	UL2 [89]	May-2022	20	-	-	-	1T tokens	Apr-2019	512 TPU v4	-	\checkmark	\checkmark
	OPT [90]	May-2022	175	-	-	-	1805 tokens		992 80G A100	-	\checkmark	-
	NLLB [91]	Jul-2022	54.5	-	-	-	-	-	-	-	\checkmark	-
	CodeGeeX [92]	Sep-2022	13	-	-	-	850B tokena	-	1536 Ascend 910	60 d	\checkmark	-
	GLM [93]	Oct-2022	130	-	-	-	400B tokens	-	768 40G A100	60 d	\checkmark	-
	Flan-T5 [69]	Oct-2022	11	T5	\checkmark	-	-	-	-	-	\checkmark	\checkmark
	BLOOM [78]	Nov-2022	176	-	-	-	366B tokens	-	384 80G A100	105 d	\checkmark	-
	mT0 [94]	Nov-2022	13	mT5	\checkmark	-	-	-	-	-	\checkmark	-
	Galactica [35]	Nov-2022	120	-	-	-	106B tokens	-	-	-	\checkmark	\checkmark
	BLOOMZ [94]	Nov-2022	176	BLOOM	\checkmark	-	-	-	-	-	\checkmark	-
Publicly	OPT-IML [95]	Dec-2022	175	OPT	\checkmark	-		-	128 40G A100	-	\checkmark	\checkmark
Available	LLaMA [<u>57]</u>	Feb-2023	65	-	-	-	1.4T tokens	-	2048 80G A100	21 d	\checkmark	-
	Pythia [96]	Apr-2023	12	-	-	-	300B tokens	-	256 40G A100	-	\checkmark	-
	CodeGen2 [97]	May-2023	16	-	-	-	400B tokens	-	-	-	\checkmark	-
	StarCoder [98]	May-2023	15.5	-	-	-	1T tokens	-	512 40G A100	-	\checkmark	\checkmark
	LLaMA2 [99]	Jul-2023	70	-	\checkmark	\checkmark	2T tokens	-	2000 80G A100	-	\checkmark	-
	Baichuan2 [100]	Sep-2023	13	-	\checkmark	\checkmark	2.6T tokens	-	1024 A800	-	\checkmark	-
	QWEN [101]	Sep-2023	14	-	\checkmark	\checkmark	3T tokens	-	-	-	\checkmark	-
	FLM [102]	Sep-2023	101	-	\checkmark	-	311B tokens	-	192 A800	22 d	\checkmark	-
	Skywork [103]	Oct-2023	13	-	-	-	3.2T tokens	-	512 80G A800	-	✓	

Statistics of closed models

	Model	Release Time	Size (B)	Base Model		aptation RLHF		atest Data imestamp	Hardware (GPUs / TPUs)	Training Time		uation CoT
	GPT-3 [55]	May-2020	175	_	_	-	300B tokens	-	-	_	√	
	GShard [104]	Jun-2020	600	-	-	-	1T tokens	-	2048 TPU v3	4 d	-	-
	Codex [105]	Jul-2021	12	GPT-3	-	-	100B tokens	May-2020	-	-	\checkmark	-
	ERNIE 3.0 [106]	Jul-2021	10	-	-	-	375B tokens	Ť -	384 V100	-	\checkmark	-
	Jurassic-1 [107]	Aug-2021	178	-	-	-	300B tokens	-	800 GPU	-	\checkmark	-
	HyperCLOVA [108]	Sep-2021	82	-	-	-	300B tokens	-	1024 A100	13.4 d	\checkmark	-
	FĽÂN [67]	Sep-2021		LaMDA-PT	\checkmark	-	-	-	128 TPU v3	60 h	\checkmark	-
	Yuan 1.0 [109]	Oct-2021	245	-	-	-	180B tokens	-	2128 GPU	-	\checkmark	-
	Anthropic [110]	Dec-2021	52	-	-	-	400B tokens	-	-	-	\checkmark	-
	WebGPT [81]	Dec-2021	175	GPT-3	-	\checkmark	-	-	-	-	\checkmark	-
	Gopher [64]	Dec-2021	280	-	-	-	300B tokens	-	4096 TPU v3	920 h	\checkmark	-
	ERNIE 3.0 Titan [111]		260	-	-	-	-	-	-	-	\checkmark	-
	GLaM [112]	Dec-2021	1200	-	-	-	280B tokens	-	1024 TPU v4	574 h	\checkmark	-
	LaMDA [<u>68]</u>	Jan-2022	137	-	-	-	768B tokens	-	1024 TPU v3	57.7 d	-	-
Closed	MT-NLG [113]	Jan-2022	530	-	-	-	270B tokens	-	4480 80G A100	-	\checkmark	-
Source	AlphaCode [114]	Feb-2022	41	-	-	-	967B tokens	Jul-2021	-	-	-	-
Source	InstructGPT [66]	Mar-2022	175	GPT-3	\checkmark	\checkmark	-	-	-	-	\checkmark	-
	Chinchilla [34]	Mar-2022	70	-	-	-	1.4T tokens	-	-	-	\checkmark	-
	PaLM [56]	Apr-2022	540	-	-	-	780B tokens	-	6144 TPU v4	-	\checkmark	\checkmark
	AlexaTM [115]	Aug-2022	20	-	-	-	1.3T tokens	-	128 A100	120 d	\checkmark	\checkmark
	Sparrow [116]	Sep-2022	70	-	-	\checkmark	-	-	64 TPU v3	-	\checkmark	-
	WeLM [117]	Sep-2022	10	-	-	-	300B tokens	-	128 A100 40G	24 d	\checkmark	-
	U-PaLM [118]	Oct-2022	540	PaLM	-	-	-	-	512 TPU v4	5 d	\checkmark	\checkmark
	Flan-PaLM [69]	Oct-2022	540	PaLM	\checkmark	-	-	-	512 TPU v4	37 h	\checkmark	✓
	Flan-U-PaLM [69]	Oct-2022	540	U-PaLM	\checkmark	-	-	-	-	-	\checkmark	\checkmark
	GPT-4 [46]	Mar-2023	-	-	\checkmark	\checkmark	-	-	-	-	\checkmark	\checkmark
	PanGu- Σ [119]	Mar-2023	1085	PanGu- $lpha$	-	-	329B tokens	-	512 Ascend 910	100 d	\checkmark	-
	PaLM2 [120]	May-2023	16	-	✓	-	100B tokens	-	-	-	√	√

Al Workflow: critical steps in ML

Data preparation

Workflow of steps (e.g., remove hate and profanity, deduplicate)

Distributed training

Long-running job on massive infrastructure

Model adaptation

Model tuning with custom data set for downstream tasks

Inference

May have sensitivity to latency, throughput, power

Hours to days

10-2000+ low to mid-end CPU cores10+ low to mid-end GPUs per10-100+ concurrent jobs

on-prem

Public clouds

weeks to months

10-500+ high-end GPUs (per job)10+ concurrent jobs

on-prem Public clouds

minutes to hours

1+ mid to high-end GPU (per job) 100+ concurrent jobs

on-prem Pu

Public clouds

sub-second API request

Single low-end GPU per fine tuning task **Fraction** to multiple GPUs per inference, or specialized accelerator

Thousands of API requests

on-prem Public clouds

Edge

Statistics of public models

	Model	Release Time	Size (B)	Base Model		aptation RLHF	Pre-train Data Scale	Latest Data Timestamp	Hardware (GPUs / TPUs)	Training Time	Evalı ICL	uation CoT
	T5 [82]	Oct-2019	11	-	_	-	1T tokens	Apr-2019	1024 TPU v3	-	√	_
	mT5 [83]	Oct-2020	13	-	-	-	1T tokens	· -	-	-	✓	-
	PanGu- α [84]	Apr-2021	13*	-	-	-	1.1TB	-	2048 Ascend 910	-	✓	-
	CPM-2 [85]	Jun-2021	198	-	-	-	2.6TB	-	-	-	-	-
	T0 [28]	Oct-2021	11	T5	\checkmark	-	-	-	512 TPU v3	27 h	✓	-
	CodeGen [86]	Mar-2022	16	-	-	-	577B tokens	-	-	-	✓	-
	GPT-NeoX-20B [87]	Apr-2022	20	-	-	-	825GB	-	96 40G A100	-	✓	-
	Tk-Instruct [88]	Apr-2022	11	T5	\checkmark	-	-	-	256 TPU v3	4 h	✓	-
	UL2 [89]	May-2022	20	-	-	-	1T tokens	Apr-2019	512 TPU v4	-	✓	\checkmark
	OPT [90]	May-2022	175	-	-	-	180B tokens	· -	992 80G A100	-	✓	-
	NLLB [91]	Jul-2022	54.5	-	-	-	-	-	-	-	✓	-
	CodeGeeX [92]	Sep-2022	13	-	-	-	850B tokens	-	1536 Ascend 910	60 d	✓	-
	GLM [93]	Oct-2022	130	-	-	-	400B tokens	-	768 40G A199	60 d	✓	-
	Flan-T5 [69]	Oct-2022	11	T5	\checkmark	-	-	-	-	-	✓	\checkmark
	BLOOM [78]	Nov-2022	176	-	-	-	366B tokens	-	384 80G A100	105 d	✓	-
	mT0 [94]	Nov-2022	13	mT5	\checkmark	-	-	-	-	-	✓	-
	Galactica [35]	Nov-2022	120	-	-	-	106B tokens	-	-	-	\checkmark	\checkmark
	BLOOMZ [94]	Nov-2022	176	BLOOM	\checkmark	-	-	-	-	-	\checkmark	-
Publicly	OPT-IML [95]	Dec-2022	175	OPT	\checkmark	-	-	-	128 40G A100	-	✓	✓
Available	LLaMA [57]	Feb-2023	65	-	-	-	1.4T tokens	-	2048 80G A100	21 d	\checkmark	-
	Pythia [96]	Apr-2023	12	-	-	-	300B tokens	-	256 40G A100	-	✓	-
	CodeGen2 [97]	May-2023	16	-	-	-	400B tokens	-	-	-	✓	-
	StarCoder [98]	May-2023	15.5	-	-	-	1T tokens	-	512 40G A100	-	✓	\checkmark
	LLaMA2 [99]	Jul-2023	70	-	\checkmark	\checkmark	2T tokens	-	2000 80G A100	-	✓	-
	Baichuan2 [100]	Sep-2023	13	-	\checkmark	\checkmark	2.6T tokens	-	1024 A800	-	✓	-
	QWEN [101]	Sep-2023	14	-	\checkmark	\checkmark	3T tokens	-	-	-	✓	-
	FLM [102]	Sep-2023	101	-	\checkmark	-	311B tokens	-	192 A800	22 d	✓	-
	Skywork [103]	Oct-2023	13	-	-	-	3.2T tokens	-	512 80G A800	-	✓	-

Statistics of closed models

	Model	Release Time	Size (B)	Base Model		aptation RLHF	Pre-train Data Scale	Latest Data Timestamp	Hardware (GPUs / TPUs)	Training Time	Evalı ICL	
Closed Source	GPT-3 [55] GShard [104] Codex [105] ERNIE 3.0 [106] Jurassic-1 [107] HyperCLOVA [108] FLAN [67] Yuan 1.0 [109] Anthropic [110] WebGPT [81] Gopher [64] ERNIE 3.0 Titan [111] GLaM [112] LaMDA [68] MT-NLG [113] AlphaCode [114] InstructGPT [66] Chinchilla [34] PaLM [56] AlexaTM [115] Sparrow [116]	May-2020 Jun-2020 Jul-2021 Jul-2021 Aug-2021 Sep-2021 Oct-2021 Dec-2021 Dec-2021 Dec-2021 Dec-2021 Jan-2022 Jan-2022 Mar-2022 Mar-2022 Aug-2022 Sep-2022	(B) 175 600 12 10 178 82 137 245 52 175 280 260 1200 137 530 41 175 70 540 20 70		- - - - -		300B tokens 1T tokens 100B tokens 375B tokens 300B tokens 300B tokens 400B tokens 400B tokens 280B tokens 280B tokens 768B tokens 270B tokens 967B tokens 967B tokens 1.4T tokens 780B tokens	Timestamp	- 2048 TPU v3 - 384 V100 800 GPU 1024 A100 128 TPU v3 2128 GPU - 4096 TPU v3 - 1024 TPU v4 1024 TPU v3 4480 80G A100	7 Time - 4 d	ICL	
	WeLM [117] U-PaLM [118] Flan-PaLM [69] Flan-U-PaLM [69] GPT-4 [46] PanGu- Σ [119] PaLM2 [120]	Sep-2022 Oct-2022 Oct-2022 Oct-2022 Mar-2023 Mar-2023 May-2023	10 540 540 540 - 1085 16	PaLM PaLM U-PaLM - PanGu- α	-	- - - - - -	300B tokens 329B tokens 100B tokens	- - - -	128 A100 40G 512 TPU v4 512 TPU v4 - - 512 Ascend 910	24 d 5 d 37 h - - 100 d	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-

Al Workflow: critical steps in ML

Data preparation

Workflow of steps (e.g., remove hate and profanity, deduplicate)

Distributed training

Long-running job on massive infrastructure

Model adaptation

Model tuning with custom data set for downstream tasks

Inference

May have sensitivity to latency, throughput, power

Hours to days

10-2000+ low to mid-end CPU cores10+ low to mid-end GPUs per10-100+ concurrent jobs

on-prem

Public clouds

weeks to months

10-500+ high-end GPUs (per job)10+ concurrent jobs

on-prem Public clouds

100+ concurrent jobs

on-prem Public clouds

minutes to hours

1+ mid to high-end GPU (per job)

sub-second API request

Single low-end GPU per fine tuning task

Fraction to multiple GPUs per inference,
or specialized accelerator

Thousands of API requests

on-prem Public clouds

ıds Edge

Example resources for model adaptation

Models	A800 I #GPU			A800 1 #GPU			A800 In #GPU	ference (16-bit) #Token/s	3090 Inf #GPU	ference (16-bit) #Token/s	3090 In : #GPU	ference (8-bit) #Token/s
LLaMA (7B)	2	8	3.0h	1	80	3.5h	1	36.6	1	24.3	1	7.5
LLaMA (13B)	4	8	3.1h	1	48	5.1h	1	26.8	2	9.9	1	4.5
LLaMA (30B)	8	4	6.1h	1	24	14.3h	1	17.7	4	3.8	2	2.6
LLaMA (65B)	16	2	11.2h	1	4	60.6h	2	8.8	8	2.0	4	1.5

Al Workflow: critical steps in ML

Data preparation

Workflow of steps (e.g., remove hate and profanity, deduplicate)

Distributed training

Long-running job on massive infrastructure

Model adaptation

Model tuning with custom data set for downstream tasks

Inference

May have sensitivity to latency, throughput, power

Hours to days

10-2000+ low to mid-end CPU cores10+ low to mid-end GPUs per10-100+ concurrent jobs

on-prem

Public clouds

weeks to months

10-500+ high-end GPUs (per job)10+ concurrent jobs

on-prem Public clouds

minutes to hours

1+ mid to high-end GPU (per job) 100+ concurrent jobs

on-prem

Public clouds

sub-second API request

Single low-end GPU per fine tuning task Fraction to multiple GPUs per inference, or specialized accelerator

Thousands of API requests

on-prem

Public clouds

Edge

Al Workflow: summary of job types

Data preparation

Workflow of steps (e.g., remove hate and profanity, deduplicate)

Distributed training

Long-running job on massive infrastructure

Model adaptation

Model tuning with custom data set for downstream tasks

Inference

May have sensitivity to latency, throughput, power

Bag of tasks

10-2000+ low to mid-end CPU cores10+ low to mid-end GPUs per10-100+ concurrent jobs

on-prem

Public clouds

Batch jobs

10-500+ high-end GPUs (per job)10+ concurrent jobs

on-prem Public clouds

1+ mid to high-end GPU (per job) 100+ concurrent jobs

on-prem

Bag of tasks + batch

8

Public clouds

Web services

Single low-end GPU per fine tuning task **Fraction** to multiple GPUs per inference, or specialized accelerator

Thousands of API requests

Public clouds E

Edge

Al Workflow: Platform requirements

Data preparation

Workflow of steps (e.g., remove hate and profanity, deduplicate)

Distributed training

Long-running job on massive infrastructure

Model adaptation

Model tuning with custom data set for downstream tasks

Inference

May have sensitivity to latency, throughput, power

Bag of tasks

High throughput
Pack for efficiency

Public clouds

Batch jobs

Optimize for performance Communication intensive Efficient I/O Performance: Input, Checkpoint

em Public clouds

High throughput

High performance

em Public clouds

Bag of tasks + batch

Web services

Horizontal scaling
Distributed load balancing
High availability

Public clouds Edge

Al Workflow: Platform requirements

Data preparation

Workflow of steps (e.g., remove hate and profanity, deduplicate, etc.)

Distributed training

Long-running job on massive infrastructure

Model adaptation

Model tuning with custom data set for downstream tasks

Inference

May have sensitivity to latency, throughput, power,

Hours to days

10-2000+ low to mid-end CPU cores 10+ low to mid-end GPUs per 10-100+ concurrent jobs

on-prem

Public clouds

weeks to months

10-500+ high-end GPUs (per job) 10+ concurrent jobs

Public clouds on-prem

minutes to hours

1+ mid to high-end GPU (per job) 100+ concurrent jobs

Public clouds

sub-second API request

Single low-end GPU per fine tuning task Fraction to multiple GPUs per inference, or specialized accelerator

Thousands of API requests

on-prem

Public clouds

Edge

Al Workflow summary

- Al workloads cover a range of job types
 - Bag of tasks pre-processing tools
 - Batch jobs training software
 - Model adaptation various tools
 - Inference web services
- Supporting these workloads require a cloud platform

 Traditional HPC systems are good at supporting bag of tasks and batch but not the others

Agenda

- Lecture
 - AI workflows
 - Introduction to Containers
 - Docker and ecosystem
 - Container orchestration
 - Kubernetes
- Lab
 - Use Docker on your virtual machine
 - Use Container to run a web application on your laptop

Use case for Containers

If you look at Cloudera's first attempt at a cloud offering, <u>Altus</u>, it was based on deployment via virtual machines (VMs), a process that typically took about 8 minutes to spin up clusters. With Docker and Kubernetes on CDP, that goes down to 30 seconds.

https://www.zdnet.com/article/where-does-cloudera-go-from-here/

What's a Container and how it differs from a VM?

- The concept of containers emerged a decade ago (e.g. Sun Solaris Zones and IBM AIX's WPARs). **Docker** is built on open source container capabilities inside Linux kernel (cgroups, namespaces, selinux, etc)
- A container encapsulates an application and its dependencies which run in an isolated <u>process</u> on the host's operating system (all application share the same OS)
- Traditional hardware virtualization creates an entire virtual machine. Each VM contains not only the application (which may only be 10's of MB) but must include and an entire Guest operating System (which may measure in 1-10s of GB).

What is a container?

Image Runtime: A sandbox for a process Dockerfile From My application P2 Pn Name space (pid, network) **Ubuntu with Tomcat & SSH** Cgroups (Memory, CPU, GPU) Host: Linux Ubuntu with Tomcat Ubuntu with SSH Ubuntu

Scrtach

What are the Basic Functions of Containers

Docker is an evolution of the Container Technology

Light weight virtualization container

- Portable
- Fast start
- Lightweight
- Tool and container ecosystem

Potential impact

- DevTest
- Platform as a Service
- Cloud Platform Services
- Software delivery

- Provision in seconds / milliseconds
- Near bare metal runtime performance
- VM-like agility it's still "virtualization"
- Flexibility
 - Containerize "application(s)"
 - Deliver Polyglot apps
 - Repeatability
- Lightweight
- Open source free lower TCO
- Supported OOTB modern Linux kernel
- Runs on baremetal
- Growing set of tools and ecosystem
- Versioning and Portability
- Others: containerd, cri-o, lmctfy, rkt, wpar, Solaris zones

Containers vs VMs

Containers	VMs
Share the host operating system	Each VM has an operating system
Light weight	Heavy weight
Native performance	Some overhead
Memory and CPU can be changed flexibly	Change in Memory/CPU changes require reboot
Isolation at the process	Fully isolated
Virtually no startup time	Startup time in minutes
Support for HW like GPUs/FPGA not fully mature	Mature support for HW

Containers and VMs will co-exist for a long time

Docker by the numbers

80B

32,000+

200+

Container downloads

GitHub Stars

Meetups Around the Globe

650+

2M

100K+

Commercial Customers Dockerized Applications in Hub Third-party projects using Docker

Docker by the numbers

105B

750+

200+

Container downloads

Docker Enterprise Customers

Meetups around the Globe

32,000+

5.8M

100K+

GitHub Stars

Dockerized Apps on Hub

3rd-party projects using Docker

Feb 2019

Oct 2019

Docker Layered Filesystem

- Docker uses a Copy-On-Write layered filesystem
 - Only changes from the read-only layers are copied.
- You can see the layers when you pull or push an image

\$ docker pull ubuntu:15.04

15.04: Pulling from library/ubuntu

1ba8ac955b97: Pull complete f157c4e5ede7: Pull complete 0b7e98f84c4c: Pull complete a3ed95caeb02: Pull complete

Digest: sha256:5e279a9df07990286cce22e1b0f5b0490629ca6d187698746ae5e28e604a640e

Status: Downloaded newer image for ubuntu:15.04

Images and Layers

- Each Docker image references a list of readonly layers that represent filesystem differences
- Layers are stacked on top of each other to form a base for a container's root filesystem
- When you create a new container, you add a new, thin, writable layer on top of the underlying stack
- All changes made to the running container such as writing new files, modifying existing files, and deleting files - are written to this thin writable container layer

Layers are exposed to Top

• Files from the read-only layers below are visible to the top layer

Add Layers with more Files

• As you add layers more files become visible at the top layer

New Versions

• A new version of file1 is added and it hides the old file1 version

White-out Files

 Special files called "white-out" files are used to make files appear to be deleted

How Layers are Reused

Note when you provision with Vagrant how Redis: Alpine reuses Alpine layer:

```
Alpine layer is being reused
                                                                  by Redis:Alpine
==> default: Running provisioner: docker...
  default: Installing Docker onto machine...
====default: Pulling Docker images.....
==> default: -- Image: alpine:latest
==> default: stdin: is not a ttv
==> default: latest: Pulling from library/alpine
==> default: 3690ec4760f9: Pulling fs layer
==> default: 3690ec4760f9: Verifying Checksum
==> default: 3690ec4760f9: Download complete
==> default: 3690ec4760f9: Pull complete
                                                   eca1611a51c9f2b88b61f24283ee8200bf9a54f2e5c
==> default: Digest: sha256:1354db23ff5478120c98
==> default: Status: Downloaded newer image for
                                                 ipine:latest
==> default: -- Image: redis:alpine
==> default: stdin: is not a tty
==> default: alpine: Pulling from library/re
==> default: 3690ec4760f9: Already exists
==> gefault: 5e231r/pgf9g: Pulling is layer
==> default: 5a74fb2950f8: Pulling fs layer
```

What Can you Do with Docker?

- You can run **Containers** from the Images in the Docker Registry (e.g., Docker Hub)
- You can build <u>Docker Images</u> that hold your applications and their dependancies
- You can create <u>Docker Containers</u> from those Docker images to run your applications
- You can share those <u>Docker images</u> via Docker Hub or your own Docker registry
- You can pull those <u>images</u> from the Docker registry to <u>deploy them as Containers</u> on a server running Docker Engine

Docker ecosystem

- Docker github:
 - https://github.com/docker
- Docker registry
 - https://hub.docker.com
- Orchestration
 - Docker swarm, Kubernetes, Mesos, OpenStack, etc

1000K docker contianers on a single POWER system and 2Million on a single Z system

Docker at insane scale on IBM Power Systems https://www.ibm.com/blog/docker-insane-scale-on-ibm-power-systems/

Lab objectives

Use Docker on your virtual machine

Use Container to run an application on your laptop

4 ways to work with Docker

- In this class we are going to use Vagrant but I want you to be aware of all of your options:
 - 1. Docker for macOS Mac only
 - 2. Docker for Windows Windows only
 - 3. Docker Toolbox Older Mac and Windows
 - 4. Vagrant and Virtualbox Mac, Windows, and Linux

Sample Docker file for the exercise

- Clone this repo: https://github.com/nyufall2019/vg-ibmcloud
- git clone https://github.com/nyufall2019/vg-ibmcloud.git
- Move to the directory and fire up your VM (vagrant up, vagrant ssh)

Now deploy the application with the Docker

- Notice the Dockerfile in `vg-ibmcloud`
- Git pull to sync
- Build the application docker image
 - docker build -t hello-app .
- Run the application:
 - docker run -p 8001:8001 -it hello-app

Suggested Study Material

- Docker adoption from Data dog
 - https://www.datadoghq.com/docker-adoption/

History of containers

Download and try different docker containers

- Study how the layer file system works in Docker:
 - https://www.slideshare.net/DmitrySkaredov/the-docker-ecosystem