

Data Provenance for Distributed Data Sets

Curt Tilmes

NASA Goddard Space Flight Center Code 614.5, Greenbelt, MD 20771

Curt.Tilmes@nasa.gov

NOAA EDMC 2011 2011-06-22

When scientific research is published, it should *reference* all data used in that research to a sufficient extent for *others* to *reproduce* that research and confirm the conclusions.

NOAA EDMC 2011 2 Of 16 2011-06-22

OAIS-RM Preservation Information

Identifiers to uniquely

identify Content

☐ Reference

Provenance

- Source of all Content Information
- Custody since Origination
- Processing History

☐ Context ☐ Fixity

- How the Content relates to other information
- Protection of Content from alteration
- Checksums or digital signatures

NOAA EDMC 2011 4 Of 16 2011-06-22

☐ "On the Utility of Identification Schemes for Digital Earth Science Data: An Assessment and Recommendations"

Table 2 Suitable Identifiers for Each Use Case where Solid Green Indicates High Suitability, Vertical Yellow Stripes Indicates Good to Fair Suitability; and Orange Diagonal Stripes Indicates Low Suitability.

Identifier Type	Unique Identifier		Unique Locator		Citable Locator		Scientifically Unique Identifier	
	Dataset	Item	Dataset	Item	Dataset	Item	Dataset	Item
ARK								
DOI								
XRI								
Handle								
LSID								
OID								
PURL								
URL/URN/								
URI								
UUID								

NOAA EDMC 2011 5 Of 16 2011-06-22

☐ ESIP Fed

- Identifiers Study and Testbed On the Utility of Identification Schemes for Digital Earth Science Data: An Assessment and Recommendations
- Developing Citation Standard See draft
- ☐ Uniquely distinguish all data granules
 - Always assign a unique identifier, even when a granule is reproduced the 'same' way.
 - UUID gaining popularity
 - e.g. 7096bf5a-dec3-49fa-a54e-0404194b87d6
- ☐ Reference all Data Sets with identifiers suitable for citations
 - Actionable (Can someone do something with it?)
 - Persistent (What happens when you reprocess? What happens when a data set is transferred to a new organization?)
 - DOI is widely used for citations
 - doi:10.3334/ORNLDAAC/549
- ☐ Keep cited references valid, even if the data are obsolete/replaced
 - Provenance data can be used to reproduce the data, if you keep it!

Static vs. Dynamic Dataset Identifiers

Earth science remote sensing missions often have very long lifespans.
Move to measurement based datasets makes these even longer, spanning multiple missions.
Static dataset – A bunch of data go into the dataset and stay there
Dynamic dataset – New granules are added to the 'end' of the dataset as time passes.
For an operational mission, we also have operational issues that occasionally change older granules in the dataset.
Identifiers for Static datasets are easy, Dynamic datasets are more difficult

Need to reference/cite a specific set of granules used

Date/timestamp is a start.

NOAA EDMC 2011 2011-06-22

Provenance and Context

☐ ESIP Fed developing an "Earth Science Provenance and Context Content Standard" (PCCS)

 The 1998 U.S. Global Change Research Program (USGCRP) workshop on Global Change Science Requirements for Long-Term Archiving Hunolt Report.

☐ Categories:

- Preflight/Pre-Operations: Instrument/Sensor characteristics including pre-flight/preoperations performance measurements; calibration method; radiometric and spectral response; noise characteristics; detector offsets
- Products (Data): Raw instrument data, Level 0 through Level 4 data products and associated metadata
- Product Documentation: Structure and format with definitions of all parameters and metadata fields; algorithm theoretical basis; processing history and product version history; quality assessment information
- Mission Calibration: Instrument/sensor calibration method (in operation) and data; calibration software used to generate lookup tables; instrument and platform events and maneuvers
- Product Software: Product generation software and software documentation
- Algorithm Input: Any ancillary data or other data sets used in generation or calibration of the data or derived product; ancillary data description and documentation
- Validation: Record and data sets
- Software Tools: product access (reader) tools.

NOAA EDMC 2011 8 Of 16 2011-06-22

Provenance and Context

□ "Earth Science Provenance and Context Content Standard" (PCCS)

☐ Fields:

- Item Number
- Category
- Content Name
- Definition/ Description
- Rationale (Why content is needed)
- Criteria (How good the content should be)
- Priority
- Source
- Project Phase for Capture
- User Community
- Representation*
- Distribution Restrictions
- Source identifying item

NOAA EDMC 2011 9 Of 16 2011-06-22

Equivalence of Scientific Data

- ☐ Two granules sharing identical provenance are identical.
- ☐ Two granules with different provenance are distinct.

NOAA EDMC 2011 10 Of 16 2011-06-22

- ☐ For two granules of data to be *Perfectly Identical*, they must not only have identical contents, but also identical identifiers and identical creation provenance.
 - This is only meaningful if you really are talking about the same granule, or two 'copies' of the same granule.
- ☐ Two granules are *Scientifically Identical* if the data contents are the same, even if the identifiers of the granules, or the provenance of the granules are different. We also call this *Equal Content*. It doesn't matter how the content came to be each such granule can be used in the same analysis and would result in the same results/conclusions.
 - Digital signatures can show this.

- ☐ Two granules have *Scientifically Equivalent Content* if the use of those granules in every possible scientific analysis will lead to the same results or conclusions.
- ☐ This definition allows 'slight' differences in the content as long as they are close enough not to affect any analysis in a scientifically meaningful way.
- ☐ This is what we usually end up with for Process-On-Demand.
- ☐ Proving perfect Scientific Equivalence in the general case is very difficult (impossible?), or at the least, very manual.

- □ Scientifically Reproducible refers to a process which is capable of reproducing granules that are Scientifically Equivalent to the original granules. Scientific Reproducibility is the extent to which a process is Scientifically Reproducible.
- ☐ Some processes are chaotic in that very slight differences in processing are compounded producing possibly drastically different results. We can apply sensitivity analyses to assess this characteristic and help determine if the process is suitably reproducible.
- ☐ If a process is unable to reliably reproduce data granules that are *scientifically equivalent*, we would claim that the process is not *reproducible*.

NOAA EDMC 2011 13 Of 16 2011-06-22

- ☐ There are two primary approaches for mechanically approximating this equivalence in a useful way:
 - Content Equivalence Can I show that the contents of two granules are sufficiently equivalent?
 - Provenance Equivalence Can I show that two granules were created in essentially the same way?
 - A Provenance Equivalence Identifier (PEI) can created with a digital signature from a canonical serialization of the essential provenance of the granule.
 - Each granule sharing a PEI is made in a sufficiently similar manner (they share all essential provenance elements) that they are scientifically equivalent.

NOAA EDMC 2011 14 Of 16 2011-06-22

ESIP Fed Data Preservation Activities

- ☐ The Federation of Earth Science Information Partners (ESIP) Preservation and Stewardship Cluster is working in a number of related areas:
 - Data Identifiers Publishing recommendations, Test Bed, working on longer term schemes
 - Data Citations Recommendations, best practices, standards
 - Provenance and Context Content Standard What artifacts should be preserved? Why? How should they be represented?
 - Earth Science Preservation Ontology An Earth Science domain profile built on the Open Provenance Model.

http://wiki.esipfed.org/index.php/Preservation_and_Stewardship

NOAA EDMC 2011 2011-06-22

Thank You!

NOAA EDMC 2011 2011-06-22