Solutions of Assignment 10

Theory of Computation, Fall 2022

Keys

Q1

Proof:

For every recursively enumerable language R, there exists a Turing machine M_R that semidecides it.

Then there is a recursive function $f(w) = {}''M_R{}'''w$ such that for any $x \in \Sigma^*$, $x \in R \iff f(x) \in H$.

Therefore, $f(w) = {}''M_R{}'''w$ is a reduction from R to H. Thus every recursively enumerable language can be reduced to H.

Q2

Proof:

 $A \leq B$ implies that there is a reduction $f: \Sigma^* \to \Sigma^*$ from A to B such that for any $x \in \Sigma^*$, $x \in A \iff f(x) \in B$.

That is, for any $x \in \Sigma^*$, $x \in \overline{A} \iff f(x) \in \overline{B}$.

Therefore, f is also a reduction from \overline{A} to \overline{B} . Thus $\overline{A} \leq \overline{B}$.

According to the conclusion of **Q2**, there is $A \leq \overline{A} \implies \overline{A} \leq A$.

According to the conclusion of **Q5** (a) in *Assignment 9* (If $A \leq B$ and that B is recursively enumerable, then A is also recursively enumerable), there is

A is recursively enumerable $\implies \overline{A}$ is recursively enumerable.

Since A and \overline{A} are recursively enumerable, A is recursive.

Note: To show that A is recursive if A and \overline{A} are recursively enumerable, we can construct 2 Turing machines M_A and $M_{\overline{A}}$ that semidecide A and \overline{A} respectively. Then we construct a Turing machine M as follows:

$$M=$$
 on input $w:$
 $0.$ For $i=1,2,\ldots$ loop
 $1.$ Run M_A on w for i steps
 $2.$ If M_A halts on w in i steps
 $3.$ Accept w
 $4.$ Run $M_{\overline{A}}$ on w for i steps
 $5.$ If $M_{\overline{A}}$ halts on w in i steps
 $6.$ Reject w

On an input w, either M_A or $M_{\overline{A}}$ halts, hence M accepts w if M_A halts on w, i.e. $w \in A$, and rejects w if $M_{\overline{A}}$ halts on w, i.e. $w \in \overline{A}$. Therefore, M decides A. Thus A is recursive.

*Q*4

No.

Consider 2 languages $A = \{a^n b^n : n \ge 0\}$ and $B = \{a\}$ on $\Sigma = \{a, b\}$. Obviously A is not regular while B is. Besides, they are both recursive, so there exists a Turing machine M_A that decides A.

We can construct a function $f: \Sigma^* \to \Sigma^*$ as follows:

$$f(w) = \begin{cases} a, & w \in A \\ b, & w \in \overline{A} \end{cases}$$
 (26)

To show that f is recursive, we can construct a Turing machine M_f that computes f as follows:

M = on input w:
1. Run M_A on w2. If M_A accepts w3. Output a4. Else $(M_A \text{ rejects } w)$ 5. Output b

Now we have that f is recursive, and $w \in A \iff f(w) \in B$, so f is a reduction from A to B, hence $A \leq B$.

This implies that A is not necessarily regular even if $A \leq B$ and B is regular.

Note: We should keep an eye on whether f is recursive when constructing a reduction.

Q5

 \overline{A} is not recursively enumerable.

According to the conclusion of **Q2**, there is $H \leq A \implies \overline{H} \leq \overline{A}$.

We have proved that \overline{H} is not recursively enumerable. Thus \overline{A} is not recursively enumerable either.

Note1: We can find that if a language A is recursively enumerable but not recursive, then \overline{A} is not recursively enumerable.

Note2: The last step is based on the fact that if $A \le B$ and A is not recursively enumerable, then B is not recursively enumerable either. You can refer to the solution of **Q5** (b) of *Assignment 9* to write the proof of this statement.

Q6

Proof:

Given that

$$A = \{"M" : M \text{ is a Turing machine that halts on some input}\}$$

$$L = \{"M_1""M_2""k" : M_1 \text{ and } M_2 \text{ are two Turing machines with } |L(M_1) \cap L(M_2)| \ge k\}$$

$$(28)$$

We have proved that A is not recursive, so we can construct a reduction from A to L to show that L is not recursive.

Firstly, construct a Turing machine M_{all} as follows.

$$M_{all} =$$
 on input w :
1. Accept w (29)

We get that $L(M_{all}) = \Sigma^*$, and $L(M) \cap L(M_{all}) = L(M)$.

Then we construct a recursive function f as follows.

$$f("M") = "M""M_{all}""1" (30)$$

We will show that it is a reduction from A to L.

Note1: Here f("M") = "M""M""1" is also a correct reduction from A to L.

For any Turing machine M,

$$''M'' \in A \iff M \text{ halts on some input} \iff |L(M)| = |L(M) \cap L(M_0)| \ge 1 \iff f(x) \in L$$
 (31)

Therefore, $f("M") = "M""M_{all}""1"$ is a reduction from A to L. Thus L is not recursive.

Note2: The proof below is incorrect.

$$D = \{ "M_1""M_2" : M_1 \text{ and } M_2 \text{ are 2 Turing machines with } L(M_1) = L(M_2) \}$$

$$f("M_1""M_2") = "M_1""M_2"" \max\{|L(M_1)|, |L(M_2)|\}"$$
(32)

D is not recursive, and f is a reduction from D to L.

Here f is not a recursive function since $|L(M_1)|$ and $|L(M_2)|$ are not computable and neither is $\max\{|L(M_1)|,|L(M_2)|\}$.

A reduction must be a recursive function first, so f is **NOT** a reduction from D to L.

Grading

100 pts. in total

- Q1. 15 pts.
- Q2. 15 pts.
- Q3. 15 pts.
- Q4. 20 pts.
- Q5. 15 pts.
- Q6. 20 pts.