1.3 Ειδικές περιπτώσεις πινάκων

Ορισμός

Αν A είναι πίνακας $m \times n$, ο **ανάστροφος** του A συμβολίζεται με A^T και είναι ένας $n \times m$ πίνακας που προκύπτει κάνοντας τις γραμμές του A στήλες και τις στήλες γραμμές.

Παράδειγμα

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \\ 5 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 3 & 5 \end{pmatrix}$$

Σ. Δημόπουλος ΜΑΣ029 1 /

Ιδιότητες

2
$$(A \pm B)^T = A^T \pm B^T$$

$$(\lambda A)^T = \lambda A^T \quad (\lambda \in \mathbb{R})$$

$$(AB)^T = B^T A^T$$

MAΣ029 2/9

Ειδικές περιπτώσεις τετραγωνικών πινάκων

Ένας τετραγωνικός πίνακας λέγεται διαγώνιος αν κάθε στοιχείο εκτός της κυρίας διαγωνίου είναι μηδενικό.

Παράδειγμα

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Ένας τετραγωνικός πίνακας λέγεται άνω τριγωνικός αν κάθε στοιχείο κάτω από την κύρια διαγώνιο είναι μηδενικό.

Παράδειγμα

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$

Σ. Δημόπουλος MAΣ029

Ειδικές περιπτώσεις τετραγωνικών πινάκων

Ένας τετραγωνικός πίνακας λέγεται κάτω τριγωνικός αν κάθε στοιχείο πάνω από την κύρια διαγώνιο είναι μηδενικό.

Παράδειγμα

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{pmatrix}$$

1 Ένας τετραγωνικός πίνακας A λέγεται **συμμετρικός** αν $A^T = A$. δηλαδή η κύρια διαγώνιος είναι άξονας συμμετρίας.

Παράδειγμα

$$A = \begin{pmatrix} 1 & 4 & 5 \\ 4 & 2 & 6 \\ 5 & 6 & 3 \end{pmatrix}$$

Σ. Δημόπουλος MAΣ029

Ειδικές περιπτώσεις τετραγωνικών πινάκων

⑤ Ένας τετραγωνικός πίνακας A λέγεται αντισυμμετρικός αν $A^T = -A$.

Παράδειγμα

$$A = \begin{pmatrix} 0 & -4 & -5 \\ 4 & 0 & -6 \\ 5 & 6 & 0 \end{pmatrix}$$

Αν ο A είναι αντισυμμετρικός τότε τα στοιχεία της κυρίας διαγωνίου είναι ίσα με 0 και τα συμμετρικά ως προς την διαγώνιο στοιχεία είναι αντίθετα.

Σ. Δημόπουλος ΜΑΣ029 5 /

Ιδιότητες

- Ο ανάστροφος κάτω τριγωνικού πίνακα είναι άνω τριγωνικός.
- Ο ανάστροφος άνω τριγωνικού πίνακα είναι κάτω τριγωνικός.
- **3** Αν ο A είναι συμμετρικός, τότε και ο A^T είναι συμμετρικός.
- Av of A, B elval summetrikol tote kal of A B kal B A elval συμμετρικοί.
- Αν ο Α είναι συμμετρικός τότε και ο λΑ είναι συμμετρικός για κάθε $\lambda \in \mathbb{R}$.

MAΣ029 6 / 9

Παρατήρηση

Αν οι A, B είναι συμμετρικοί, είναι πιθανόν ο AB να μην είναι συμμετρικός.

Παράδειγμα

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, B = \begin{pmatrix} -4 & 1 \\ 1 & 0 \end{pmatrix}$$

Σ. Δημόπουλος ΜΑΣ029 7 / 9

Θεώρημα

Έστω A, B συμμετρικοί πίνακες. Τότε ο AB είναι συμμετρικός αν και μόνο αν AB = BA.

Απόδειξη:

Σ. Δημόπουλος ΜΑΣ029 8 / 9

Θεώρημα

Έστω Α, B συμμετρικοί πίνακες. Τότε ο AB-BA είναι αντισυμμετρικός.

Απόδειξη:

Σ. Δημόπουλος ΜΑΣ029 9 / 9