Semaine n° 7: du 16 octobre au 20 octobre

Lundi 16 octobre

- Cours à préparer : Chapitre VII Théorie des ensembles
 - Partie 2.1 : Appartenance, égalité.
 - Partie 2.2: Inclusion, ensemble des parties, cardinal de $\mathcal{P}(E)$.

Mardi 17 octobre

- Cours à préparer : Chapitre VII Théorie des ensembles
 - Partie 2.3: Réunion, intersection, complémentaire; relations de De Morgan.
 - Partie 2.4 : Produit cartésien.
- Cours à préparer : Chapitre VIII Notion d'application
 - Partie 1 : Application, image d'un élément par une application, antécédent; image d'une application; famille indexée par un ensemble; fonction indicatrice.
 - Partie 2: Restriction, prolongement.
 - Partie 3: Composition.
- Exercices à corriger en classe
 - Feuille d'exercices nº 6 : exercices 3, 5.

Jeudi 19 octobre

- Cours à préparer : Chapitre VIII Notion d'application
 - Partie 4 : Injectivité, surjectivité, bijectivité.
- Exercices à corriger en classe
 - Feuille d'exercices n° 6 : exercices 2, 6, 8.

Vendredi 20 octobre

- Cours à préparer : Chapitre VIII Notion d'application
 - Partie 5 : Image directe; tiré en arrière.
- Cours à préparer : Chapitre IX Calcul matriciel
 - Partie 1.1 : Somme de deux matrices; produit par un scalaire; produit matriciel.
- Exercices à corriger en classe
 - Feuille d'exercices n° 6 : exercices 9, 10.

Échauffements

Mardi 17 octobre

• Donner une équation paramétrique de la droite d'équation cartésienne

$$\left\{ \begin{array}{lll} 2x - y + z & = & 1 \\ -2x + y + z & = & 2 \end{array} \right..$$

• Cocher toutes les assertions vraies : Soit $P = X^2 - X + 1$.

 \square P a deux racines distinctes, complexes et conjuguées.

 \square Le produit de ces deux racines vaut 1.

 \square La somme de ces deux racines vaut -1.

Calculez ces deux racines sans utiliser le discriminant.

Soit $Q = X^2 - iX - 1$.

 \square Q a deux racines distinctes, complexes et conjuguées.

 \square Le produit de ces deux racines vaut -1.

 \square La somme de ces deux racines vaut i.

Trouvez une relation entre les racines de Q et celles de P et en déduire les racines de Q, tout cela sans utiliser le discrimant.

Jeudi 19 octobre

• Cocher toutes les assertions vraies : Soit (\mathscr{E}) : $y' + 2y = e^x$.

 \square L'ensemble des solutions de l'équation homogène est $\{Ke^{-2x}, K \in \mathbb{R}\}.$

 $\Box x \mapsto \frac{1}{3} e^x \text{ est une solution particulière de } (\mathscr{E}).$ $\Box x \mapsto \frac{1}{3} e^x + \frac{2}{3} e^{-2x} \text{ est la seule solution de } (\mathscr{E}) \text{ qui vaut 1 en 0.}$

 \square Si f est une solution de (\mathscr{E}) qui s'annule, alors c'est la fonction nulle.

• Cocher toutes les assertions vraies : Soit $n \in \mathbb{N}^*$.

 \square Tous les complexes ont n racines n-èmes.

 \square Tous les réels non nuls ont n racines n-èmes complexes.

 \square Tous les réels non nuls ont n racines n-èmes réelles.

 \square Les racines n-èmes d'un complexe z non nul sont sur un même cercle de centre 0.

Vendredi 20 octobre

• Cocher toutes les assertions vraies : Soit $(\mathscr{E}): y'' + 2y = 0$.

 \square Le polynôme caractéristique de (\mathscr{E}) est $X^2 + 2$.

 \square (\mathscr{E}) n'a pas de solution réelle.

 $\Box \text{ L'ensemble des solutions réelles de } (\mathscr{E}) \text{ est } \left\{ \begin{array}{l} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & \lambda \cos(\sqrt{2}x) + \mu \sin(\sqrt{2}x) \end{array} \right\}.$ $\Box \text{ L'ensemble des solutions complexes de } (\mathscr{E}) \text{ est } \left\{ \begin{array}{l} \mathbb{R} & \to & \mathbb{C} \\ t & \mapsto & \lambda \cos(\sqrt{2}x) + \mu \sin(\sqrt{2}x) \end{array} \right\}, \ \lambda, \mu \in \mathbb{C} \right\}.$

 \bullet Cocher toutes les assertions vraies : Soit A et B deux ensembles.

 $\Box (A \backslash B) \cup B = A;$

 $\Box (A \backslash B) \cup B \supset A; \qquad \Box (A \cup B) \backslash B \subset A;$ $\Box (A \cup B) \backslash B = A; \qquad \Box (A \cup B) \backslash B \supset A.$

 $\Box (A \backslash B) \cup B \subset A;$