



OFFICE OF NAVAL RESEARCH

Sonerace NOO014-76-C-0826, NSF-MPS-73-05416

Task No. NR 056-625

TECHNICAL REPORT, NO. 7705

14) TR-27-05

Octa(isopropoxy)dimolybdenum and Bis(nitrosyl)hexa
(isopropoxy)dimolybdenum. Structure and Bonding in Compounds
Containing Molybdenum Atoms with Fourteen
Valence Shell Electronic Configurations.

M. W./Extine, R. L./Kelly and W. W./Reichert

Prepared for Publication

in

Journal of the American Chemical Society

Departments of Chemistry

¹Princeton University,

Princeton, New Jersey 08540

and

<sup>2</sup>Texas A & M University College Station, Texas 77843

3 November 30, 1977

Reproduction in whole or in part is permitted for any purpose of the United States Government

Approved for Public Release: Distribution Unlimited

AU NO.

400 363

113

| REPORT DOCUMENTATION PAGE                                                                               | BEFORE COMPLETING FORM                                         |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 1. REPORT NUMBER 2. GOVT ACCESSION N                                                                    | O. 3. RECIPIENT'S CATALOG NUMBER                               |
| and Bis(nitrosyl)hexa(isopropoxy)dimolybdenum denum. Structure and Bonding in Compounds                 | Technical Report, 1977                                         |
| Containing Molybdenum Atoms with Fourteen Valence Shell Electronic Configurations.                      | FERFORMING ORG. REPORT NUMBER TR-77-05                         |
| 7. AUTHOR(s)                                                                                            | B. CONTRACT OR GRANT NUMBER(*)                                 |
| M. H. Chisholm, F. A. Cotton, M. W. Extine<br>R. L. Kelly and W. W. Reichert                            | N00014-76-C                                                    |
| Departments of Chemistry Princeton University, Princeton, N. J. Texas A & M Univ., College Station, Tx. | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                 | 12. REPORT DATE                                                |
| Office of Naval Research                                                                                | November 30, 1977                                              |
| Department of the Navy                                                                                  | 13. NUMBER OF PAGES<br>12                                      |
| 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)                              | 15. SECURITY CLASS. (of this report)                           |
|                                                                                                         | 154. DECLASSIFICATION/DOWNGRADING                              |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                             |                                                                |

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Metal-to-Metal Multiple Bonds, Molybdenum, Alkoxides, Nitrosyl

(OPR(i))

20. A STRACT (Continue on reverse elde if necessary and identify by block number)

The compounds Mo2(OPr1) 6(NO) 2, I, and Mo2(OPr1) 8, II have been structurally characterized. Each compound has rigorous inversion symmetry and virtual C2v symmetry and in each there is essentially trigonal bipyramidal coordination about each molybdenum atom. There is a central planar  $Mo_2(\mu-0)_2$  moiety involving bridging isopropoxy ligands which form alternately long (axial) and short (equatorial) Mo-0 bonds. The most striking differences

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102- LF- 014- 6601

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

between the two structures are (i) the Mo-to-Mo distances which are 3.335(2) and 2.525(1)Å, for I and II, respectively, and (ii) the angles of the Mo<sub>2</sub>( $\mu$ -0)<sub>2</sub> moiety. These differences are rationalized in terms of simple ligand field considerations. In compound I, which contains molybdenum in a formal oxidation state of +2, there are four electrons in  $d_{XZ}$ ,  $d_{YZ}$  atomic orbitals which are extensively involved in back bonding to the NO<sup>+</sup> ligand. In compound II, which contains molybdenum in a formal oxidation state of +4, there are only two electrons in the  $d_{XZ}$ ,  $d_{YZ}$  atomic orbitals. These electrons then form a Mo-Mo double bond; this accounts for the short Mo-to-Mo bond distance and the diamagnetic nature of compound II.



S/N 0102- LF- 014- 6601

Octa(isopropoxy)dimolybdenum and Bis(nitrosyl)hexa(isopropoxy)dimolybdenum.

Structure and Bonding in Compounds Containing Molybdenum Atoms with

Fourteen Valence Shell Electronic Configurations.

Sir:

The occurrence of compounds containing metal-to-metal bonds of order 4,3,2 and 1 is now well recognized. As yet, however, the systematic manner in which C-C bond order may be changed in organic chemistry has no parallel in transition metal chemistry. The products of addition/elimination reactions involving dinuclear compounds appear to be unpredictable, although a subsequent rationale may usually be advanced with judicious hindsight. We report here the structural characterization of two closely related and yet contrasting compounds, namely,  $Mo_2(OPr^i)_6(NO)_2$ , I, and  $Mo_2(OPr^i)_8$ , II. Each one may be considered formally as an addition product of  $Mo_2(OPr^i)_6$ , a compound containing a metal-to-metal triple bond. Compound I is indeed directly formed by the addition of NO (2 equiv) to  $Mo_2(OPr^i)_6$ .  $Mo_2(OPr^i)_8$  is best prepared from the reaction between  $Mo(NMe_2)_4$  and  $Pr^iOH$ . The addition of 2 NO causes cleavage of the M-M triple bond, while addition of  $2Pr^iO$ . (a hypothetical reaction) transforms an M-M triple bond to an M-M double bond.

Figure 1 shows the essential features of the coordination geometry in each molecule. Pertinent bond distances and angles are given in Tables I and II. Each compound has rigorous inversion symmetry and virtual C<sub>2v</sub> symmetry and in each there is essentially trigonal bipyramidal coordination about each below atom. The asymmetry of the central planar Mo<sub>2</sub>(u-o)<sub>2</sub> moiety is most profin I due to the high trans-influence of the nitrosyl ligands which occupy the court axial positions. The most striking differences between the two structures

are (i) the Mo-to-Mo distances which are 3.335(2) and 2.525(1)Å, for I and II, respectively, and (ii) the angles of the  $Mo_2(\mu-0)_2$  moiety.

With a Mo-Mo distance of 3.335(2)A it may be safely assumed that no significant metal-to-metal bond exists in I, while in II, a Mo-Mo distance of 2.525A is suggestive of a metal-to-metal double bond. This conclusion is supported by the following considerations of bonding. A trigonal bipyramidal field splits the metal d orbitals into three sets  $e'(d_{xz}^2, d_{xy})$ ,  $e''(d_{xz}, d_{yz})$ and a'(d 2) with the d xz, d degenerate pair lying lowest in energy. In I, each Mo atom may be assumed, formally, to have four 4d electrons after the formation of  $\sigma$  bonds to each of the five ligands, provided we also use the conventional though purely formal description of the linear Mo-N-O moiety as  $\overline{\text{Mo-(NO}^+)}$ . These four electrons should then fill up the e''( $d_{xz}, d_{yz}$ ) orbitals, where they can participate very effectively in backbonding to the NO, thus explaining the very low (1632 cm $^{-1}$ ) value of  $v_{NO}$ . In compound II, where the formal oxidation number of Mo is +2, each Mo atom has two 4d electrons. It is possible to envision the formation of a double bond as the result of  $d_{xz}-d_{xz}$ and  $d_{vz} - d_{vz}$  overlaps. This could be construed as a combination of one  $\pi$  bond and one & bond, but whether the lower symmetry that actually exists will materially alter such a formal description is problematic. In any event, in both I and II the molybdenum atoms have 14-electron valence shell configurations.

Finally, we note two other reactions of  ${\rm Mo_2(OR)_6}$  compounds which result in the formation of fourteen valence shell electronic configurations for molybdenum:  $^2$ 

(i) 
$$Mo_2(OR)_6 + 2L \stackrel{+}{\rightarrow} Mo_2(OR)_6L_2$$
 where L = an amine

(ii) 
$$Mo_2(OR)_6 + 2CO_2 \neq Mo_2(OR)_4(O_2COR)_2$$
.

Here the M-M triple bond is retained (Mo-Mo = 2.242(2)A) between molybdenum atoms which are four coordinated. 7

#### Acknowledgements

We thank the donors of the Petroleum Research Fund administered by the American Chemical Society, the Office of Naval Research and the National Science Foundation (Grant MPS-73-05016) at Princeton University and the National Science Foundation (Grant No. CHE-75-05509) at Texas A&M University for support of this work.

M. H. Chisholm\*8, R. L. Kelly and W. W. Reichert Department of Chemistry, Princeton University, Princeton, New Jersey 08540

F. A. Cotton and M. W. Extine
Department of Chemistry, Texas A&M University
College Station, Texas 77843

#### REFERENCES

- F. A. Cotton, Chem. Soc. Rev., 4, 27 (1975).
- M. H. Chisholm, F. A. Cotton, C. A. Murillo and W. W. Reichert, <u>Inorg. Chem.</u>, <u>16</u>, 1801 (1977).
- M. H. Chisholm, F. A. Cotton, M. W. Extine and R. L. Kelly,
   J. Amer. Chem. Soc., submitted for publication.
- M. H. Chisholm, W. W. Reichert and P. Thornton, J. Amer. Chem. Soc., submitted for publication.
- 5. Crystals of I and II were grown from hexane solutions.
- Data for both compounds were collected at 23°C on a Syntex Pl auto-diffractometer using monochromatized MoKα radiation (λ = 0.710730Å). Unique data having 0.0°<20MoKα<45.0° were collected and data having I>3σ(I) were considered observed and used in structure solution and refinement. Structures were solved and refined using the Enraf-Nonius Structure Determination Package and a PDP 11/45 compouter owned by Molecular Structure Corporation, College Station, Texas.
- Crystal data for  $Mo_2(OPr^1)_3$ : a = 9.902(2), b = 17.867(3), c = 9.725(2)A,  $\beta = 102.89(1)$ ,  $V = 1677.2(9)A^3$ , Z = 2, space group =  $P2_1/n$ . The molecule has Ci symmetry. Refinement of non-hydrogen atoms (1826 obs. and 154 variables) employing anisotropic thermal parameters yielded R = 0.040 and  $R_w = 0.068$ .
- Crystal data for  $Mo_2(OPr^i)_6(NO)_2$ : a = 10.823(1), b = 15.848(2), c = 9.885(2)Å,  $\alpha = 90.21(2)$ ,  $\beta = 115.93(2)$ ,  $\gamma = 82.42(1)^\circ$ , V = 1509.4(4)Å<sup>3</sup>, Z = 4, space group  $P\bar{1}$ . There are two unique molecules per asymmetric unit, each possessing  $C_1$  symmetry. Refinement of non-hydrogen atoms (2052 obs. and 181 variables) employing anisotropic thermal parameters for the Mo, O, and N atoms and isotropic thermal parameters for the carbon atoms yielded R = 0.061 and  $R_1 = 0.093$ .
- T. N. Appleton, H. C. Clark and L. E. Manzer, Coord. Chem. Rev., 10, 335 (1973).
  - M. H. Chisholm, F. A. Cotton, M. W. Extine and W. W. Reichert, J. Amer. Chem. Soc., in press.
  - Alfred P. Sloan Fellow 1976-78.

Table I. Selected Bond Distances (A) and Angles (Deg) in Mo2(OPr1)8.

| Atoms       | Distance | Atoms         | Angle    |
|-------------|----------|---------------|----------|
| Mo-Mo'      | 2.523(1) | Mo-Mo'-0(4)   | 105.1(1) |
| -0(1)       | 1.958(3) | 0(1)-Mo-O(1)' | 103.5(1) |
| -0(1)'      | 2.111(3) | -0(2)         | 120.9(1) |
| -0(2)       | 1.872(3) | -0(3)         | 83.5(1)  |
| -0(3)       | 1.976(3) | -((4)         | 120.2(2) |
| -0(4)       | 1.884(3) | 0(1)'-Mo-O(2) | 84.9(1)  |
|             |          | -0(3)         | 173.1(1) |
| Atoms       | Angle    | -0(4)         | 81.0(1)  |
| Mo'-Mo-0(1) | 54.45(9) | 0(2)-Mo-0(3)  | 91.2(1)  |
| -0(1)'      | 49.00(9) | -0(4)         | 118.9(2) |
| -0(2)       | 108.9(1) | 0(3)-Mo-0(4)  | 95.8(2)  |
| -0(3)       | 137.9(1) |               |          |

Atoms are labelled as in Figure 1A. Esd's are in parentheses.

Table II. Selected Bond Distances (A) and Angles (Deg) in  $Mo_2(OPr^1)_6(NO)_2$ .

| Atoms             | Molecule I | Molecule II |
|-------------------|------------|-------------|
|                   | Dista      | nce         |
| Mo(1)-Mo(1)'      | 3.334(2)   | 3.337(2)    |
| 0(1)              | 1.951(6)   | 1.946(6)    |
| 0(1)'             | 2.195(6)   | 2.194(6)    |
| 0(2)              | 1.850(7)   | 1.849(8)    |
| 0(3)              | 1.861(6)   | 1.857(7)    |
| N(1)              | 1.747(9)   | 1.761(10)   |
| N(1)-0(4)         | 1.205(11)  | 1.184(11)   |
|                   | Ang        | gles        |
| Mo(1)'-Mo(1)-O(1) | 39.1(2)    | 38.9(2)     |
| 0(1)'             | 34.1(2)    | 33.8(2)     |
| 0(2)              | 102.8(2)   | 102.8(3)    |
| 0(3)              | 101.4(2)   | 102.6(2)    |
| N(1)              | 137.9(3)   | 138.0(3)    |
| 0(1)-Mo(1)-O(1)'  | 73.1(3)    | 72.7(3)     |
| 0(2)              | 119.3(3)   | 119.1(3)    |
| 0(3)              | 117.3(3)   | 118.6(3)    |
| N(1)              | 98.8(4)    | 99.1(4)     |
| 0(1)'-Mo(1)-0(2)  | 88.4(3)    | 84.6(3)     |
| 0(3)              | 83.8(3)    | 84.6(3)     |
| N(1)              | 171.9(4)   | 171.9(4)    |
| 0(2)-Mo(1)-0(3)   | 115.1(3)   | 114.2(3)    |
| N(1)              | 100.8(4)   | 100.0(4)    |
| 0(3)-Mo(1)-N(1)   | 99.5(4)    | 99.4(4)     |
| Mo(1)-N(1)-O(4)   | 178(1)     | 177(1)      |
|                   |            |             |

<sup>&</sup>lt;sup>a</sup>Atoms are labelled as in Figure lb. Esd's are in parentheses.

Table III. POSITIONAL AND THERMAL PARAMETERS AND THEIR ESTIMATED STANDARD DEVIATIONS, for Mo $_2$  (OPr $^1$ ) $_8$ .

| β23.                | -0.08019(5)            | 0.0006(4)  | -0.0012(4) | -6.0007(4) | 0.0005(5)  | 0.0026( 6)           | 0.00600 8) | 0.0007(9)             | 0.0016(8)            | 0.0029(11) | 6.0015(11) | -0.0023(8)            | -0.0018(10)           | -0.0024(12)                      | -0.0001(8) | -0.0038(16)          | 0.0019(13)               |  |
|---------------------|------------------------|------------|------------|------------|------------|----------------------|------------|-----------------------|----------------------|------------|------------|-----------------------|-----------------------|----------------------------------|------------|----------------------|--------------------------|--|
| , B13.              | 0,00315(9) -0.00019(5) | 0.0043(7)  | -0.0006(8) | 0.0059(8)  | 0.0100(8)  | 0.011(1)             | 0.009(1)   | 0.010(1)              | -0.003(1)            | 0.003(2)   | 0.002(2)   | 0.006(2)              | 0.011(3)              | -0.001(2)                        | 0.009(1)   | -0.013(3)            | 0.027(2)                 |  |
| β12.                | 0.00756(6) -0.00019(5) | -0.0008(4) | -0.0014(4) | -0.0016(4) | 0.0018(5)  | 0.0105(7) -0.0001(7) | 0.0014( 9) | 0.0176(10) -0.0026(8) | 0.0099(7) -0.0003(7) | 0.0005(12) | 0.0004(9)  | 0.0161(10) -0.0038(8) | 0.0264(17) 0.0003(11) | 0.0260(15) -0.0087(10) -0.001(2) | 0.0055( 7) | 0.0107(12) -0.013(3) | 0.0232(13) 0.027(2)      |  |
| β33                 | 0.00756(6)             | 0.0081(4)  | 0.0098(5)  | 0.0109(5)  | 0.0151(6)  | 0.0105(7)            | 0.0134(9)  | 0.0176(10)            | 0.6699 (7)           | 0.0108( 9) | 0.0210(11) | 0.0161(10)            | 0.0264(17)            | 0.0260(15)                       | 0.0166(9)  | 0.0329(20)           | 0.0205(13)               |  |
| β22                 | 0.00182(2)             | 0.0022(1)  | 0.0026(1)  | 0.0020(1)  | 0.0027(1)  | 0.0029(2)            | 0.0037(3)  | 0.0046(3)             | 0.0034(2)            | 0.0066(4)  | 0.0045(3)  | 0.0021(2)             | 0.0024(3)             | 0.0047(3)                        | 0.0029(2)  | 0.0062(4)            | 0.0076(4)                |  |
| $^{\beta}$ $_{1}$ . | 0.00689(5)             | 0.0078(4)  | 0.0093(5)  | 0.0124(5)  | 0.6698(5)  | 0.0121(7)            | 0.0174(10) | 0.00910 7)            | (7 ) 2600.0          | 0.0185(12) | 0.0097(8)  | 0.0186(11)            | 0.0278(17)            | 0.0165(11)                       | 0.0123( 7) | 0.0193(13)           | 0.0460(19)               |  |
| ΝI                  | 0.06040(5)             | -0.1343(4) | 0.2083(4)  | 0.0146(4)  | 3,1019(5)  | -0.2279(7)           | -0.3089(8) | -0.1423(0)            | 0.2916(6)            | 0.4438(7)  | 0.2799(9)  | 0.1190(8)             | 0.0607(10)            | 0.1447(11)                       | 0.1115(8)  | 0.0167(13)           | 0.2615(10)               |  |
| >-1                 | 0.06291(3)             | 0.0441(2)  | 0.0614(2)  | 0.1675(2)  | 6.6521(2)  | 0.0677(3)            | 0.1349(4)  | 0.6834(4)             | 0.9941(4)            | 0.0134(5)  | 0.0152(5)  | 0.2232(4)             | 0.2978(5)             | 0.4317(5)                        | 0.1526(4)  | 0.1467(6)            | 0.1630(6)                |  |
| ×ι                  | 0.01279(5)             | 0.0269(4)  | 0.1705(4)  | 0.6561(4)  | -0.1610(4) | 0.1153(7)            | 0.0510(8)  | 0.2653(7)             | 0.2491(7)            | 6.2331(9)  | 0.4001(8)  | 0.0972(8)             | n.n268(10)            | 0.2545(9)                        | -0.2292(7) | -0.3765(10)          | <b>C(12)</b> -0.2447(12) |  |
| Atom                | Mo                     | 0(1)       | 0(2)       | 0(3)       | 0(4)       | c(1)                 | C(2)       | c(3)                  | C(4)                 | c(5)       | (9)0       | (7)                   | c(8)                  | (6)0                             | c(10)      | c(11)                | C(12)                    |  |
| нот н               |                        |            |            |            |            |                      |            |                       |                      |            |            |                       |                       |                                  |            |                      |                          |  |

The form of the anisotropic thermal parameter is:  $\exp[-(\beta_{11}h^2+\beta_{22}k^2+\beta_{33}t^2+\beta_{12}hk+\beta_{13}ht+\beta_{23}kt)]$ .

Table IV. FOSITIONEL AND THERMAL PARAMETERS AND THEIR ESTIMATED STANDARD BEVIATIONS. FOR MO $_2$  (OP $_2$ ),  $_3$ (NO) $_2$ .

|   |       | 111111      |             |             |            |            |           |            | 0 1 7           | ,                 |
|---|-------|-------------|-------------|-------------|------------|------------|-----------|------------|-----------------|-------------------|
| , | Atom  | ×ı          | >-1         | 81          | 811.       | , B22.     | , B33.    | , B12.     | β <sub>13</sub> | , B <sub>23</sub> |
|   | Mo(1) | -0.1685(1)  | 0.05358(8)  | 0.0592(1)   | 0.0133(1)  | 0.00682(6) | 0.0181(1) | -0.0010(1) | 9.9164(2)       | 0.0008(2)         |
|   | Mo(2) | 0.3931(1)   | 0.55137(8)  | 0.5638(1)   | 0.8146(1)  | 0.00647(6) | 0.0197(2) | -6.0028(2) | 0.0138(2)       | -0.0004(2)        |
|   | 0(1)  | 0.0053(7)   | -0.0572(5)  | 0.0883( 5)  | 0.0133(8)  | 0.0058(4)  | 0.018(1)  | -0.001(1)  | 0.017(1)        | 0.004(1)          |
|   | 0(2)  | -0.0235(9)  | 0.1478(6)   | 0.1392(9)   | 0.0199(11) | 0.0075(5)  | 0.020(1)  | -0.003(1)  | 0.019(2)        | -0.004(1)         |
|   | 0(3)  | -0.2702(8)  | 0.0250(6)   | -0.1203( 9) | 0.0124( 9) | 0.0088(5)  | 0.022(1)  | -0.004(1)  | 0.012(2)        | 0.002(1)          |
|   | 0(4)  | -0.2279(10) | 0.0250(8)   | 0.2695(11)  | 0.0302(13) | 0.0154(9)  | 0.036(1)  | -0.661(2)  | 6.849(2)        | 0.007(2)          |
|   | 0(5)  | 0.4039(7)   | 0.5251(5)   | 0.3764(8)   | 0.0094(9)  | 0.0085(5)  | R.015(1)  | -0.661(1)  | 0.003(2)        | 0.001(1)          |
|   | (9)0  | 0.4957(10)  | 0.6310(6)   | 0.6820(11)  | 0.0242(14) | 0.0083(6)  | 0.027(2)  | -0.006(1)  | 0.020(2)        | -0.006(2)         |
|   | 0(7)  | 0.3676(8)   | 0.4652(6)   | 0.6717(9)   | 0.0164(10) | 0.0080(5)  | 0.025(1)  | -0.005(1)  | 0.020(2)        | 0.000(1)          |
|   | 0(8)  | 0.1159(11)  | 0.6538(7)   | 0.4427(13)  | 0.6214(14) | (2)9010.0  | 0.040(2)  | 0.009(2)   | 0.024(3)        | 0.003(2)          |
|   | N(1)  | -0.181(1)   | 0.0355(8)   | 0.182(1)    | 0.021(1)   | 0.0113(8)  | 0.024(1)  | 0.004(2)   | 0.030(2)        | 8.884(2)          |
|   | N(2)  | 0.226(1)    | 0.6108(7)   | 0.489(1)    | 0.917(1)   | 0.0085(7)  | 0.026(2)  | 0.000(2)   | 0.021(2)        | 0.002(2)          |
|   | c(1)  | 0.034(1)    | -0.1349( 9) | 0.182(2)    | 7.7(.4)    |            |           |            |                 |                   |
|   | C(2)  | 8,169(2)    | -0.1130(11) | 0.357(2)    | 9.6(5)     |            |           |            |                 |                   |
|   | c(3)  | -0.103(2)   | -0.1630(11) | 0.139(2)    | 9.4(5)     |            |           |            |                 |                   |
|   | C(4)  | -0.011(2)   | 9.1915(11)  | 9.274(2)    | 9.3(5)     |            |           |            |                 |                   |
|   | c(5)  | 0.121(2)    | 0.1494(14)  | 0.416(2)    | (3.4( 7)   |            |           |            |                 |                   |
|   | (9)3  | -0.693(2)   | 0.2814(14)  | 0.250(2)    | 13.9( 7)   |            |           |            |                 |                   |
|   | (1)   | -8.413(2)   | 0.0696(11)  | 9.148(2)    | 10.3(-5)   |            |           |            |                 |                   |
|   | c(8)  | 6.495(2)    | 0.1504(16)  | -0.212(3)   | 16.2(8)    |            |           |            |                 |                   |
|   | (6)   | -6.479(3)   | 0.0096(17)  | -6.238(3)   | 17.7(10)   |            |           |            |                 |                   |
|   | C(10) | 0.309(2)    | 0.5507(10)  | 0.215(2)    | 8.8(4)     |            |           |            |                 |                   |
|   | c(11) | 0.175(2)    | 0.5100(13)  | 6.173(2)    | 12.4(6)    |            |           |            |                 |                   |
|   | C(12) | 0.289(2)    | 6.6457(13)  | 0.196(2)    | 12.0(6)    |            |           |            |                 |                   |
|   | c(13) | 0.454(2)    | 0.7252(14)  | 0.698(2)    | 13.6( 7)   |            |           |            |                 |                   |
|   | C(14) | 0.492(3)    | 0.7677(19)  | 0.596(3)    | 18.9(10)   |            |           |            |                 |                   |
|   | c(15) | 9,424(4)    | 0.7357(22)  | 0.859(4)    | 23.8(13)   |            |           |            |                 |                   |
|   |       |             |             |             |            |            |           |            |                 |                   |

| (\$)226.0 (2000) |                     | 0.4323(11) 0.696(2) | 10.40   |
|------------------|---------------------|---------------------|---------|
| C(11)            | 0.3565(17) 0.682(3) | 0.682(3)            | 16.8(9) |

The form of the anisotropic thermal parameter is:  $\exp[-(\beta_{11}h^2+\beta_{22}k^2+\beta_{33}a^2+\beta_{12}hk+\beta_{13}hk+\beta_{23}kt)]$ .

Figure 1. Coordination geometries of (A)  ${\rm Mo_2(OPr^1)_8}$  and (B)  ${\rm Mo_2(OPr^1)_6(NO)_2}$  showing some pertinent bond distances. Distances shown for b are averaged over two independent molecules. In both A and B the molecules possess rigorous  ${\rm C_1}$  and virtual  ${\rm C_{2v}}$  symmetry.





Mo2(0-i-Pr)

Skeleton

| No. C                                                                                                        | opies   | <u>N</u>                                                                                                           | o. Copies |
|--------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------|-----------|
| Office of Naval Research<br>Arlington, Virginia 22217<br>Attn: Code 472                                      | 2       | Defense Documentation Center<br>Building 5, Cameron Station<br>Alexandria, Virginia 22314                          | 12        |
| Office of Naval Research<br>Arlington, Virginia 22217<br>Attn: Code 102IP 1                                  | 6       | U.S. Army Research Office<br>P.O. Box 12211<br>Research Triangle Park, N.C. 2770<br>Attn: CRD-AA-IP                | 9 1       |
| ONR Branch Office<br>536 S. Clark Street<br>Chicago, Illimois 60605<br>Attn: Dr. Jerry Smith                 | 1       | Maval Ocean Systems Center<br>San Diego, California 92152<br>Attn: Mr. Joe McCartney                               | 1         |
| ONR Branch Office<br>715 Broadway<br>New York, New York 10003<br>Attn: Scientific Dept.                      | 1       | Naval Weapons Center China Lake, California 93555 Attn: Head, Chemistry Division                                   | 1         |
| ONR Branch Office<br>1030 East Green Street<br>Pasadena, California 91106<br>Attn: Dr. R. J. Marcus          | 1       | Naval Civil Engineering Laborator<br>Port Hueneme, California 93041<br>Attn: Mr. W. S. Haynes                      | y<br>1    |
| ONR Branch Office<br>760 Market Street, Rm. 447<br>San Francisco, California 94102<br>Attn: Dr. P. A. Miller | 1       | Professor O. Heinz<br>Department of Physics & Chemistry<br>Naval Postgraduate School<br>Monterey, California 93940 | 1         |
| ONR Branch Office<br>495 Summer Street<br>Boston, Massachusetts 02210<br>Attn: Dr. L. H. Peebles             | 1       | Dr. A. L. Slafkosky<br>Scientific Advisor<br>Commandant of the Marine Corps (C<br>Washington, D.C. 20380           | ode RD-1) |
| Director, Naval Research Laborato<br>Washington, D.C. 20390<br>Attn: Code 6100                               | ry<br>1 | Office of Naval Research<br>Arlington, Virginia 22217<br>Attn: Dr. Richard S. Miller                               | 1         |
| The Asst. Secretary of the Navy (                                                                            | R&D)    |                                                                                                                    |           |

1

Department of the Navy Room 4E736, Pentagon Washington, D.C. 20350

Commander, Naval Air Systems Command Department of the Navy Washington, D.C. 20360 Attn: Code 310C (H. Rosenwasser) 1

| <u>No</u>                                                                                                     | . Copies | No.                                                                                                           | Copie    |
|---------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------|----------|
| Dr. M. A. El-Sayed<br>University of California<br>Department of Chemistry<br>Los Angeles, California 90024    | 1        | Dr. G. B. Schuster<br>University of Illinois<br>Chemistry Department<br>Urbana, Illinois 61801                | 1        |
| Dr. M. W. Windsor<br>Washington State University<br>Department of Chemistry<br>Pullman, Washington 99163      | 1        | Dr. E. M. Eyring<br>University of Utah<br>Department of Chemistry<br>Salt Lake.City, Utah                     | 1        |
| Dr. E. R. Bernstein<br>Colorado State University<br>Department of Chemistry<br>Fort Collins, Colorado 80521   | 1        | Dr. A. Adamson<br>University of Southern Californ<br>Department of Chemistry<br>Los Angeles, California 90007 | nia<br>1 |
| Dr. C. A. Heller<br>Naval Weapons Center<br>Code 6059<br>China Lake, California 93555                         | 1        | Dr. M. S. Wrighton Massachusetts Institute of Tech Department of Chemistry Cambridge, Massachusetts 02139     | -        |
| Princeton University Department of Chemistry Princeton, New Jersey 08540                                      | 1        | Dr. M. Rauhut<br>American Cyanamid Company<br>Chemical Research Division<br>Bound Brook, New Jersey 08805     | 1        |
| Dr. J. R. MacDonald<br>Naval Research Laboratory<br>Chemistry Division<br>Code 6110<br>Washington, D.C. 20375 | 1        |                                                                                                               |          |
|                                                                                                               |          |                                                                                                               |          |

|   | No. Co                                                                                                  | pies | No. Copt                                                                                                                     | es |
|---|---------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------|----|
|   | Dr. D. A. Vroom IRT P.O. Box 80817 San Diego, California 92138                                          | 1    | Dr. R. W. Vaughan California Institute of Technology Division of Chemistry & Chemical Engineering Pasadena, California 91125 | 1  |
|   | Dr. G. A. Somorjai<br>University of California<br>Department of Chemistry<br>Berkeley, California 94720 | 1    | Dr. Keith H. Johnson Massachusetts Institute of Technology Department of Metallurgy and Materials Science                    |    |
|   | Dr. L. N. Jarvis<br>Surface Chemistry Division                                                          |      | Cambridge, Massachusetts 02139                                                                                               | 1  |
|   | 4555 Overlook Avenue, S.W. Washington, Q.C. 20375                                                       | 1    | Dr. M. S. Wrighton Massachusetts Institute of Technology Department of Chemistry                                             |    |
|   | Or. W. M. Risen, Jr.<br>Brown University                                                                |      | Cambridge, Massachusetts 02139                                                                                               | 1  |
|   | Department of Chemistry Providence, Rhode Island 02912                                                  | 1    | Dr. J. E. Demuth IBM Corp. Thomas J. Watson Research Center                                                                  |    |
| • | Princeton University Chemistry Department                                                               |      | P.O. Box 218<br>Yorktown Heights, New York 10598                                                                             | 1  |
|   | Princeton, New Jersey 08540  Dr. J. B. Hudson                                                           | 1    | Dr. C. P. Flynn University of Illinois Department of Physics                                                                 |    |
|   | Rensselaer Polytechnic Institute Materials Division                                                     |      | Urbana, Illinois 61801                                                                                                       | 1  |
|   | Troy, New York 12181 Dr. John T. Yates                                                                  | 1    | Dr. W. Kohn University of California (San Diego) Department of Physics                                                       |    |
|   | National Bureau of Standards<br>Department of Commerce                                                  |      | La Jolla, California 92037                                                                                                   | 1  |
|   | Surface Chemistry Section<br>Washington, D.C. 20234                                                     | 1    | Dr. R. L. Park Director, Center of Materials Research University of Maryland                                                 |    |
|   | Dr. Theodore E. Madey Department of Commerce National Bureau of Standards Surface Chemistry Section     |      | College Park, Maryland 20742                                                                                                 | 1  |
|   | Washington, D.C. 20234                                                                                  | 1    |                                                                                                                              |    |
|   | Dr. J. M. White<br>University of Texas<br>Department of Chemistry                                       |      |                                                                                                                              |    |
|   | Austin, Texas 78712                                                                                     | 1    |                                                                                                                              |    |

| No. C                                                                                                                             | copies | No.                                                                                                                   | Copie |
|-----------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------|-------|
| Dr. W. T. Peria<br>Electrical Engineering Department<br>University of Minnesota<br>Minneapolis, Minnesota 55455                   | :<br>1 | Dr. Leonard Wharton James Franck Institute Department of Chemistry 5640 Ellis Avenue Chicago, Illinois 60637          | 1     |
| Dr. Narkis Tzoar<br>City University of New York<br>Convent Avenue at 138th Street<br>New York, New York 10031<br>Dr. Chia-wei Woo | 1      | Dr. M. G. Lagally Department of Metallurgical and Mining Engineering University of Wisconsin Madison, Wisconsin 53706 | 1     |
| Northwestern University Department of Physics Evanston, Illinois 60201 Dr. D. C. Mattis                                           | 1      | Dr. Robert Gomer James Franck Institute Department of Chemistry 5640 Ellis Avenue                                     |       |
| Yeshiva University Physics Department Amsterdam Avenue & 185th Street New York, New York 10033                                    | 1      | Chicago, Illinois 60637  Dr. R. F. Wallis University of California (Irvine) Department of Physics                     | 1     |
| Dr. Robert M. Hexter University of Minnesota Department of Chemistry Minneapolis, Minnesota 55455                                 | 1      | Irvine, California 92664                                                                                              | 1     |

| No. Cop                                                                                                            | ries | No. Cop                                                                                                              | ies    |
|--------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------|--------|
| Dr. R. M. Grimes<br>University of Virginia<br>Department of Chemistry<br>Charlottesville, Virginia 2290            | ווו  | Dr. W. Hatfield<br>University of North Carolina<br>Department of Chemistry<br>Chapel Hill, North Carolina 27514      | 1      |
| Dr. M. Tsutsui<br>Texas A&M University<br>Department of Chemistry<br>College Station, Texas 77843                  | 1    | Dr. D. Seyferth<br>Massachusetts Institute of Technolog<br>Department of Chemistry<br>Cambridge, Massachusetts 02139 | y<br>1 |
| Dr. C. Quicksall<br>Georgetown University<br>Department of Chemistry<br>37th & O Streets<br>Washington, D.C. 20007 | 1    | Br. H. H. Chrisholm  Princeton University  Separtment of Chemistry  Princeton, New Jersey 08540                      | 1      |
| Dr. M. F. Hawthorne<br>University of California<br>Department of Chemistry<br>Los Angeles, California 90024        | 1    | Dr. B. Foxman Brandeis University Department of Chemistry Waltham, Massachusetts 02154                               | 1      |
| Dr. D. B. Brown University of Vermont Department of Chemistry Burlington, Vermont 05401                            | 1    | Dr. T. Marks Northwestern University Department of Chemistry Evanston, Illinois 60201                                | 1      |
| Dr. W. B. Fox<br>Naval Research Laboratory<br>Chemistry Division<br>Code 6130                                      |      | Dr. G. Geoffrey Pennsylvania State University Department of Chemistry University Park, Pennsylvania 16802            | 1      |
| Washington, D.C. 20375  Dr. J. Adcock University of Tennessee Department of Chemistry                              | 1    | Dr. J. Zuckerman<br>University of Oklahoma<br>Department of Chemistry<br>Norman, Oklahoma 73019                      | 1      |
| Cowley University of Texas Department of Chemistry                                                                 | 1    |                                                                                                                      |        |
| Austin, Texas 78712                                                                                                | 1    |                                                                                                                      |        |