TITLE: COVID-19 VACCINE ANALYSIS

DOCUMENTATION:

Step-1: Problem Definition

- The objective of this project is to conduct a comprehensive analysis of Covid-19 vaccine data, with a primary focus on vaccine efficacy, distribution, and adverse effects.
- The ultimate goal is to provide valuable insights that can aid policymakers and health organizations in optimizing vaccine deployment strategies.
- This multifaceted project encompasses data collection, data preprocessing, exploratory data analysis (EDA), statistical analysis, visualization, and the formulation of actionable recommendations.

Step 2: Data Collection

- We will gather Covid-19 vaccine data from reliable sources, including health organizations (e.g., WHO, CDC), government databases, and peer-reviewed research publications.
- The dataset located at (https://www.kaggle.com/datasets/gpreda/covid worldvaccination-progress) will serve as a primary source.
- Data is collected daily from Our World in Data GitHub repository for covid-19, merged and uploaded. Country level vaccination data is gathered and assembled in one single file.
- Then, this data file is merged with locations data file to include vaccination sources information. A second file, with manufacturers information, is included.

Design Thinking Process

Understanding the Problem: We began by gaining a deep understanding of the Covid-19 pandemic, its global impact, and the significance of vaccination in managing the crisis.

Data Collection: We sourced our data from the Kaggle dataset "Covid-19 World Vaccination Progress" (Dataset Link:

https://www.kaggle.com/datasets/gpreda/covid-world-vaccination-progress). This dataset provides information on vaccination progress across countries.

Data Preprocessing: We conducted data cleaning and transformation to make the dataset suitable for analysis. This involved handling missing values, standardizing data formats, and aggregating relevant information.

Exploratory Data Analysis (EDA): EDA involved generating summary statistics, visualizations, and conducting initial data exploration to identify patterns and trends.

Hypothesis Testing: We formulated hypotheses about vaccination trends and effectiveness and used statistical tests to validate them.

Visualization and Reporting: We created informative visualizations to present our findings effectively.

Recommendations: Based on our analysis, we developed recommendations for policymakers and healthcare practitioners to improve vaccination strategies.

Development Phases

The project development can be summarized in the following phases:

Data Collection and Preprocessing: Gathering data from the Kaggle dataset, cleaning and transforming it for analysis.

Exploratory Data Analysis: Generating descriptive statistics, data visualizations, and identifying trends in the vaccination data.

Hypothesis Testing: Formulating and testing hypotheses related to vaccination rates, vaccine types, and their impact on Covid-19 case numbers.

Visualization and Reporting: Creating informative graphs and reports to communicate our findings.

Recommendations: Formulating actionable recommendations based on the analysis results.

Data Sources and Analysis

Data Sources

The primary data source for this project is the Kaggle dataset titled "Covid-19 World Vaccination Progress" (https://www.kaggle.com/datasets/gpreda/covid-world-vaccination-progress). This dataset contains information on Covid-19 vaccination progress, including vaccination doses administered, vaccine types, and population data for various countries.

Data Preprocessing

Data preprocessing steps included:

- Handling missing values by imputation or removal.
- Standardizing data formats for consistency.
- Merging datasets to consolidate information.
- Aggregating data for meaningful analysis.

Analysis Techniques

- Descriptive statistics and summary metrics.
- Data visualization using libraries like Matplotlib and Seaborn.
- Hypothesis testing, including t-tests and chi-squared tests.
- Regression analysis to identify relationships between vaccination variables and Covid-19 case numbers.

Key Findings and Recommendations

- Variations in vaccination rates exist among countries, and these differences can be attributed to factors such as population size, vaccine availability, and distribution infrastructure.
- Certain vaccine types may be more effective in reducing Covid-19 cases, and further investigation is warranted.
- Ongoing monitoring and adjustments to vaccination strategies are crucial to achieving global herd immunity and preventing future outbreaks.

Based on these findings, we recommend the following:

- Implement targeted vaccination campaigns in regions with low vaccination rates.
- Continuously update vaccination strategies based on the latest data and research.
- Promote vaccine education and awareness to combat vaccine hesitancy.

Software used:

Jupiter notebook (or) vs code.

Language used: python.

PROCEDURES:

Step-1: Importing the required modules:

#import all relevant libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics **import** accuracy_score, precision_score, recall_score, fl score, confusion matrix, classification report

Step-2: Data collection

Download the dataset from the given kaggle link. And load into code

#loading the dataset

data=pd.read_csv("C:\\Users\\velpr\\Desktop\\nm\\country_vaccinations.csv")
data.head()

	country	iso_code	date	total_vaccinations	people_vaccinated	people_fully_vaccinated	daily_vaccinations_raw	daily_vaccinations	total_vaccinations_per
0	Afghanistan	AFG	2021- 02-22	0.0	0.0	NaN	NaN	NaN	
1	Afghanistan	AFG	2021- 02-23	NaN	NaN	NaN	NaN	1367.0	
2	Afghanistan	AFG	2021- 02-24	NaN	NaN	NaN	NaN	1367.0	
3	Afghanistan	AFG	2021- 02-25	NaN	NaN	NaN	NaN	1367.0	
4	Afghanistan	AFG	2021- 02-26	NaN	NaN	NaN	NaN	1367.0	
4									

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 86512 entries, 0 to 86511
Data columns (total 15 columns):

	COLUMN (COCCUL 13 COLUMN 3).			
#	Column	Non-Null Count	Dtype	
0	country	86512 non-null	object	
1	iso_code	86512 non-null	object	
2	date	86512 non-null	object	
3	total_vaccinations	43607 non-null	float64	
4	people_vaccinated	41294 non-null	float64	
5	<pre>people_fully_vaccinated</pre>	38802 non-null	float64	
6	daily_vaccinations_raw	35362 non-null	float64	
7	daily_vaccinations	86213 non-null	float64	
8	total_vaccinations_per_hundred	43607 non-null	float64	
9	<pre>people_vaccinated_per_hundred</pre>	41294 non-null	float64	
10	<pre>people_fully_vaccinated_per_hundred</pre>	38802 non-null	float64	
11	daily_vaccinations_per_million	86213 non-null	float64	
12	vaccines	86512 non-null	object	
13	source_name	86512 non-null	object	
14	source_website	86512 non-null	object	
dtypes: float64(9), object(6)				

data.describe()

memory usage: 9.9+ MB

	total_vaccinations	<pre>people_vaccinated</pre>	<pre>people_fully_vaccinated</pre>	\
count	4.360700e+04	4.129400e+04	3.880200e+04	
mean	4.592964e+07	1.770508e+07	1.413830e+07	
std	2.246004e+08	7.078731e+07	5.713920e+07	
min	0.000000e+00	0.000000e+00	1.000000e+00	
25%	5.264100e+05	3.494642e+05	2.439622e+05	
50%	3.590096e+06	2.187310e+06	1.722140e+06	
75%	1.701230e+07	9.152520e+06	7.559870e+06	
max	3.263129e+09	1.275541e+09	1.240777e+09	

```
daily_vaccinations_raw daily_vaccinations
                                       8.621300e+04
count
                  3.536200e+04
mean
                  2.705996e+05
                                       1.313055e+05
std
                  1.212427e+06
                                       7.682388e+05
min
                  0.000000e+00
                                       0.000000e+00
25%
                  4.668000e+03
                                       9.000000e+02
50%
                  2.530900e+04
                                       7.343000e+03
75%
                  1.234925e+05
                                       4.409800e+04
                  2.474100e+07
                                       2.242429e+07
max
       total_vaccinations_per_hundred
                                         people_vaccinated_per_hundred
                          43607.000000
                                                           41294.000000
count
                              80.188543
                                                               40.927317
mean
std
                              67.913577
                                                               29.290759
min
                               0.000000
                                                                0.000000
25%
                             16.050000
                                                               11.370000
50%
                              67.520000
                                                               41.435000
75%
                            132.735000
                                                               67.910000
                            345.370000
                                                             124.760000
max
       people_fully_vaccinated_per_hundred
                                              daily_vaccinations_per_million
                                38802.000000
                                                                  86213.000000
count
                                   35.523243
mean
                                                                   3257.049157
std
                                   28.376252
                                                                   3934.312440
                                    0.000000
min
                                                                      0.000000
25%
                                    7.020000
                                                                    636.000000
50%
                                   31.750000
                                                                   2050,000000
75%
                                   62.080000
                                                                   4682.000000
                                  122.370000
                                                                 117497.000000
max
```

Step 3: Data Preprocessing

- Cleaning and preprocessing the data are essential steps in preparing it for analysis.
- This involves addressing issues such as duplicate records, inconsistent formatting, handling missing values, and converting categorical features into numerical representations.

data.dtypes

country	object
iso_code	object
date	object
total_vaccinations	float64
<pre>people_vaccinated</pre>	float64
<pre>people_fully_vaccinated</pre>	float64
daily_vaccinations_raw	float64

daily_vaccinations	float64
total_vaccinations_per_hundred	float64
<pre>people_vaccinated_per_hundred</pre>	float64
<pre>people_fully_vaccinated_per_hundred</pre>	float64
daily_vaccinations_per_million	float64
vaccines	object
source_name	object
source_website	object
dtype: object	

data.isnull().sum()

country	0
iso_code	0
date	0
total_vaccinations	0
<pre>people_vaccinated</pre>	0
<pre>people_fully_vaccinated</pre>	0
daily_vaccinations_raw	0
daily_vaccinations	0
total_vaccinations_per_hundred	0
<pre>people_vaccinated_per_hundred</pre>	0
<pre>people_fully_vaccinated_per_hundred</pre>	0
daily_vaccinations_per_million	0
vaccines	0

Step 4: Data Exploration

dtype: int64

- Perform exploratory data analysis (EDA) to understand the data's distribution, correlations, and trends.
- In this phase, we will dive into the dataset to gain a deeper understanding of its characteristics. EDA will involve generating statistical summaries, visualizing data distributions, and identifying trends and outliers.
- Key areas of exploration include vaccine distribution across regions, vaccination rates over time, and potential anomalies.
- Visualize the data to gain insights into vaccine distribution and adverse effects

```
#data cleaning data transformation data reduction
#drop irrelevant variables
data=data.drop(['source_name','source_website'],axis=1)
#identifying and treating missing values
data.isnull().sum()
data=data.fillna(0)
data.head()
       country iso_code
                              date total_vaccinations people_vaccinated
 Afghanistan
                    AFG 2021-02-22
                                                    0.0
                                                                        0.0
                                                    0.0
                                                                        0.0
1 Afghanistan
                    AFG 2021-02-23
2 Afghanistan
                    AFG 2021-02-24
                                                    0.0
                                                                        0.0
3 Afghanistan
                    AFG 2021-02-25
                                                    0.0
                                                                        0.0
4 Afghanistan
                    AFG 2021-02-26
                                                    0.0
                                                                        0.0
   people fully vaccinated daily vaccinations raw daily vaccinations \
0
                                                0.0
                                                                    0.0
                       0.0
1
                       0.0
                                                0.0
                                                                 1367.0
2
                       0.0
                                                0.0
                                                                 1367.0
3
                       0.0
                                                0.0
                                                                 1367.0
4
                       0.0
                                                0.0
                                                                 1367.0
   total vaccinations per hundred people vaccinated per hundred \
0
                              0.0
                                                              0.0
1
                              0.0
                                                              0.0
2
                              0.0
                                                              0.0
3
                              0.0
                                                              0.0
4
                              0.0
                                                              0.0
   people_fully_vaccinated_per_hundred daily_vaccinations_per_million \
0
                                    0.0
                                                                    0.0
1
                                    0.0
                                                                    34.0
2
                                    0.0
                                                                   34.0
3
                                                                   34.0
                                    0.0
4
                                    0.0
                                                                   34.0
                                             vaccines
  Johnson&Johnson, Oxford/AstraZeneca, Pfizer/Bi...
  Johnson&Johnson, Oxford/AstraZeneca, Pfizer/Bi...
1
  Johnson&Johnson, Oxford/AstraZeneca, Pfizer/Bi...
  Johnson&Johnson, Oxford/AstraZeneca, Pfizer/Bi...
```

4 Johnson&Johnson, Oxford/AstraZeneca, Pfizer/Bi...

```
#convert the date to datetime
data['date'] = pd.to_datetime(data['date'])
data.dtypes
                                                object
country
iso code
                                                object
date
                                        datetime64[ns]
total vaccinations
                                               float64
people vaccinated
                                               float64
                                               float64
people fully vaccinated
daily vaccinations raw
                                               float64
daily_vaccinations
                                               float64
total_vaccinations_per_hundred
                                               float64
people_vaccinated_per_hundred
                                               float64
people fully vaccinated per hundred
                                               float64
daily vaccinations per million
                                               float64
vaccines
                                                object
source name
                                                object
                                                object
source_website
dtype: object
# Calculate mean and median total vaccinations
mean_total_vaccinations = data['total_vaccinations'].mean()
median total vaccinations = data['total vaccinations'].median()
# Calculate the correlation between total vaccinations and people fully vacci
nated
correlation = data['total vaccinations'].corr(data['people fully vaccinated']
# Display the results
print(f"Mean Total Vaccinations: {mean total vaccinations:.2f}")
print(f"Median Total Vaccinations: {median_total_vaccinations:.2f}")
print(f"Correlation (Total Vaccinations vs. People Fully Vaccinated): {correl
ation:.2f}")
Mean Total Vaccinations: 45929644.64
Median Total Vaccinations: 3590096.00
Correlation (Total Vaccinations vs. People Fully Vaccinated): 0.99
#eda
data.country.value counts()
Norway
                                    482
Latvia
                                    480
Denmark
                                    476
United States
                                    471
Russia
                                    470
```

```
Bonaire Sint Eustatius and Saba
                                   146
Tokelau
                                   114
Saint Helena
                                    92
Pitcairn
                                    85
Falkland Islands
                                    67
Name: country, Length: 223, dtype: int64
data["Total vaccinations(count)"] = data.groupby("country").total vaccinations
.tail(1)
#Top countries with most vaccinations
data.groupby("country")["Total_vaccinations(count)"].mean().sort_values(ascen
ding= False).head(20)
country
China
                  3,263129e+09
India
                  1.834501e+09
United States
                  5.601818e+08
Brazil
                  4.135596e+08
Indonesia
                  3.771089e+08
Japan
                  2.543456e+08
Bangladesh
                  2.436427e+08
Pakistan
                  2.193686e+08
Vietnam
                  2.031444e+08
                  1.919079e+08
Mexico
Germany
                  1.719400e+08
Russia
                  1.636012e+08
                  1.487991e+08
Philippines
                  1.468819e+08
Turkey
Iran
                  1.467926e+08
France
                  1.416662e+08
United Kingdom
                  1.409683e+08
Italy
                  1.358709e+08
                  1.288824e+08
Thailand
South Korea
                  1.206045e+08
Name: Total vaccinations(count), dtype: float64
#barplot visualization of top countries with most vaccinations
x= data.groupby("country")["Total_vaccinations(count)"].mean().sort_values(as
cending= False).head(20)
sns.set_style("whitegrid")
plt.figure(figsize= (8,8))
ax= sns.barplot(x.values,x.index)
ax.set_xlabel("Total vaccinations(count)")
plt.show()
```


#Top countries with fully vaccinated peoples
data["Full_vaccinations(count)"]= data.groupby("country").people_fully_vaccin
ated.tail(1)

data.groupby("country")["Full_vaccinations(count)"].mean().sort_values(ascend
ing= False).head(20)

country	
India	828229455.0
United States	217498967.0
Brazil	160272858.0
Indonesia	158830466.0
Bangladesh	107712737.0
Pakistan	101881176.0
Japan	100633737.0
Mexico	79711762.0
Vietnam	77754108.0
Russia	72841232.0
Philippines	65804988.0
Germany	63142649.0

Iran 56810058.0 Turkey 52968985.0 France 52438706.0 Thailand 50159803.0 United Kingdom 49404026.0 Italy 47817555.0 South Korea 44482876.0 England 41501690.0

Name: Full_vaccinations(count), dtype: float64

```
#barplot visualization of top countries with most full vaccinations
sns.set_style("whitegrid")
plt.figure(figsize= (8,8))
ax= sns.barplot(x.values,x.index)
ax.set_xlabel("Fully vaccinated(count)")
plt.show()
```


#most common vaccines
data.vaccines.value_counts()

```
Johnson&Johnson, Moderna, Oxford/AstraZeneca, Pfizer/BioNTech
7608
Moderna, Oxford/AstraZeneca, Pfizer/BioNTech
Oxford/AstraZeneca
6022
Oxford/AstraZeneca, Pfizer/BioNTech
Johnson&Johnson, Moderna, Novavax, Oxford/AstraZeneca, Pfizer/BioNTech
3564
Johnson&Johnson, Oxford/AstraZeneca, Sinovac
Moderna, Oxford/AstraZeneca, Pfizer/BioNTech, Sinovac, Sputnik V
Johnson&Johnson, Moderna
251
Johnson&Johnson, Pfizer/BioNTech, Sinopharm/Beijing
228
EpiVacCorona, Oxford/AstraZeneca, QazVac, Sinopharm/Beijing, Sputnik V, ZF200
1
Name: vaccines, Length: 84, dtype: int64
```

```
#daily vaccinations
x= data.groupby("date").daily_vaccinations.sum()
plt.figure(figsize= (15,5))
sns.lineplot(x.index,x.values)
plt.show()
```



```
#preferred vaccine in India
x= data[data["country"]=="India"]
z= x.vaccines.value_counts()
c= list(z.index)
c
```

['Covaxin, Oxford/AstraZeneca, Sputnik V']

#COMPARING TOP 5 COUNTRIES WITH MOST VACCINATIONS

data.groupby("country")["Total_vaccinations(count)"].mean().sort_values(ascen
ding= False).head()

country

China 3.263129e+09
India 1.834501e+09
United States 5.601818e+08
Brazil 4.135596e+08
Indonesia 3.771089e+08

Name: Total_vaccinations(count), dtype: float64

```
#creating dataframe for top 5 vaccinated countries
x= data.loc[(data.country== "United States") | (data.country== "China")| (data.country== "India")| (data.country== "Unted Kingdom")|(data.country== "Engla nd")]
```

```
#total vaccination comparison
plt.figure(figsize= (15,5))
sns.lineplot(x= "date",y= "total_vaccinations" ,data= x,hue= "country")
plt.show()
```

