

Machine Learning Systems for Engineers

Where Data Science Meets Engineering

Who Am I?

- I'm Cameron!
 - LinkedIn https://www.linkedin.com/in/cameron-joannidis/
 - Twitter @CamJo89
- Consult across a range of areas and have built many big data and machine learning systems
- Buzz Word Bingo
 - Big Data
 - Machine Learning
 - Functional Programming

Agenda

- Data
- Deployment
- Metrics
- Big Data Iteration Speed

Data

Example Use Case: Churn Prediction

We want to predict which users are likely to leave our service soon so that we can try and give them reasons to stay

Data Sources Customer Date F1 F2 F3 Label Feature Logic

Training Data Creation

- Historical Data (need actual churn events as examples)
- We know the labels at train time
- Produce Features to try and predict the label

> 30 No Yes < 13 == 7 Yes Yes No No/ Churn No Churn Churn No Churn

Train Our Model

 Minimise our loss function to best predict our labels (Churn/ No Churn)

Prediction Time

• Jason's red feature value > 30

Solution Solution Solution No Churn Jason 12 3 33 Yes No No Yes Yes No Churn No Churn

Prediction Time

- Jason's red feature value > 30
- Jason's yellow feature value != 7

> 30 No Yes < 13 == 7 Yes Yes No, No Churn Churn No Churn Churn Jason

Prediction Time

- Jason's red feature value > 30
- Jason's yellow feature value != 7
- We predict Jason will churn

Moving to Production

Data Issues

- Data ingestion lags (systematic) or failures (random)
- Data is incorrect

Data Issues

- Data ingestion lags (systematic) or failures (random)
- Data is incorrect

Before We Change the System

- Fix the data source if that's and option
- Measure the importance of the feature in the model to quantify the cost/effort

Naive Best Effort

- Use most recent data for all features
 - Inconsistent customer view
- Retrain model with data lag in mind
 - Tightly couple model

Consistently Lagged

- Get a consistent snapshot at the time of the most lagged data source
 - Predictions will be outdated equal to the slowest data source lag

? t = now - lag t = now

Imputation

- Fill in missing values with median for numerical, mode for continuous
 - Every users experience is the median experience? Not useful.
- Contextual Imputing (e.g. Median male height for men, median female height for women)
 - Lots of custom model specific code necessary

Graceful Model Degradation

- Model Specific fallback to give a best guess from the distribution given the current inputs
 - Doesn't come out of the box in most cases

Deployment

Data to Model Deployments

- Containerised model exposing scoring API
- Clean and simple model management semantics
- Send your data to your models
 - Network shuffle costs can be substantial for larger datasets

Model to Data Deployment

- Distributed processing framework performs scoring (e.g. Spark)
- Send your models to your data
 - Efficient but less portable
 - Model lifecycle more difficult to manage

Future Solutions

- Spark on Kubernetes
 - Models and Executors colocated in pods with data locality.
 - Model lifecycle management through Kubernetes
 - Rollouts
 - Rollbacks
 - Canary Testing
 - A/B testing
 - Managed cloud solutions
 - Complexity hidden from users

Metrics

A Few ML System Metrics

- Data Distribution
- Effectiveness in Market

Data Distribution

Your training data will have some distribution of labels

Data Distribution

- •In production, your data distribution may be significantly different
- •This can happen over time as these systems tend to be dynamic

Possible Causes

- Changes to the domain you're modelling
- Seasonality or external effects
- Changes to the customers themselves or the way the customers are using your service
- Problems with the data collection pipelines (corrupted data feeds etc)

Effectiveness in Market

- Production is the first real test
- Need to capture metrics to measure the effect of the model for its intended purpose
- Paves the road towards;
 - Effective A/B testing
 - Incremental model improvement
 - Measurability of ROI

Big Data Iteration Speed

Training Models on Big Data is Slow

- Not all algorithms scale linearly as data/model complexity increases
- Hit computation/memory bottlenecks
- Number of hypothesis we can test is reduced
- Generating new features can become prohibitively expensive

Stratified Sampling

Customer Subset Sampling

Know Where to Spend Your Time

- Bad performance on training data = Bias Problem
 - Improve features
 - More complex model
 - Train longer
- Good performance on training data and bad performance on test set = Variance Problem
 - Get more data for training
 - Regularisation

Choice of Framework / Technology

- Modelling in R/Python and rewriting in production in Scala/Spark is an expensive process
- Choose a tech stack that allows engineers and data scientists to work together and productionise things quickly. Leads to faster feedback loops

What We've Covered

- Data issues can be be a central issue to ML systems are require a lot of up front design thought
- There are several modes of deployment, each with their own tradeoffs for different scenarios
- Production is not the end of the process for ML models. Metrics are a fundamental part of enabling improvement and growth.
- Ways to improve iteration speed on ML projects

Thank You

Questions?