Math 611 HW5

```
Jeff Gould
10/3/2020
```

```
1)
```

a) Write down an expression for $Q(\theta, \theta')$ using $r_{i1} = P(z_i = 1 \mid \hat{X}_i, \theta)$, $r_{i2} = P(z_i = 2 \mid \hat{X}_i, \theta)$ and the pdfs of the normals. Then give a formula for r_{i1} and r_{i2} in terms of θ and the X_i

```
Q(\theta, \theta') = \sum_{i=1}^{N} E_{\theta}[\log P(\hat{X}_i, z_i \mid \theta')] =
```

 $P(X, z_i | \theta) = \prod_{i=1}^{N} p_1^{z_{i1}} \mathcal{N}(X_i | \mu_1, \sigma_1^2)^{z_{i1}} \cdot p_2^{z_{i2}} \mathcal{N}(X_i | \mu_2, \sigma_2^2)^{z_{i2}} \Rightarrow$

 $\log P(X, z_i | \theta) = \sum_{i=1}^{N} z_{i1} [\log p_1 + \log \mathcal{N}(X_i | \mu_1, \sigma_1^2)] + z_{i2} [\log p_2 + \log \mathcal{N}(X_i | \mu_2, \sigma_2^2)]$

 $\sum_{i=1}^{N} E_{\theta}[\log P(\hat{X}_{i}, z_{i} \mid \theta')] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{1}, \sigma_{1}^{2})] + P(z_{i} = 2)[\log p_{2} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{1}, \sigma_{1}^{2})] + P(z_{i} = 2)[\log p_{2} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{1}, \sigma_{1}^{2})] + P(z_{i} = 2)[\log p_{2} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{1}, \sigma_{1}^{2})] + P(z_{i} = 2)[\log p_{2} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{1}, \sigma_{1}^{2})] + P(z_{i} = 2)[\log p_{2} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})] = \sum_{i=1}^{N} P(z_{i} = 1)[\log p_{1} + \log \mathcal{N}(X_{i} | \mu_{2}, \sigma_{2}^{2})]$

 $\sum_{i=1}^{N} r_{i1}[\log p_1 + \log \mathcal{N}(X_i|\mu_1, \sigma_1^2)] + r_{i2}[\log p_2 + \log \mathcal{N}(X_i|\mu_2, \sigma_2^2)] =$

 $\sum_{i=1}^{N} r_{i1} [\log p_1 + \log \frac{1}{\sqrt{2\pi\sigma_1^2}} e^{-(X_i - \mu_1)^2/(2\sigma_1^2)}] + r_{i2} [\log p_2 + \log \frac{1}{\sqrt{2\pi\sigma_1^2}} e^{-(X_i - \mu_1)^2/(2\sigma_1^2)}] =$

 $\sum_{i=1}^{N} r_{i1} [\log p_1 + -(X_i - \mu_1)^2/(2\sigma_1^2) - \tfrac{1}{2} \log(2\pi\sigma_1^2)] + r_{i2} [\log p_2 + -(X_i - \mu_2)^2/(2\sigma_2^2) - \tfrac{1}{2} \log(2\pi\sigma_2^2)]$

 $r_{i1} = \frac{p_1 \mathcal{N}(X_i | \mu_1, \sigma_1^2)}{p_1 \mathcal{N}(X_i | \mu_1, \sigma_1^2) + p_2 \mathcal{N}(X_i | \mu_2, \sigma_2^2)}$

 $r_{i2} = \frac{p_2 \mathcal{N}(X_i | \mu_2, \sigma_2^2)}{p_2 \mathcal{N}(X_i | \mu_1, \sigma_2^2) + p_2 \mathcal{N}(X_i | \mu_2, \sigma_2^2)}$

b) Compute $\operatorname{argmax}_{\theta'} Q(\theta, \theta')$ $\frac{\partial}{\partial p_1} \sum_{i=1}^{N} r_{i1} [\log p_1 + -(X_i - \mu_1)^2 / (2\sigma_1^2) - \frac{1}{2} \log(2\pi\sigma_1^2)] + r_{i2} [\log p_2 + -(X_i - \mu_2)^2 / (2\sigma_2^2) - \frac{1}{2} \log(2\pi\sigma_2^2)] =$

 $\frac{\partial}{\partial p_1} \sum_{i=1}^{N} r_{i1} \log p_1 + r_{i2} \log (1 - p_1) = \frac{\sum r_{i1}}{p_1} + \frac{\sum r_{i2}}{1 - p_1} = \frac{(1 - p_1) \sum r_{i1}}{p_1 (1 - p_1)} + \frac{p_1 \sum r_{i2}}{p_1 (1 - p_1)} = 0 \rightarrow$

 $(1-p_1)\sum r_{i1}+p_1\sum r_{i2}=0 \rightarrow p_1=\frac{\sum r_{i1}}{\sum (r_{i1}+r_{i2})}=\frac{1}{N}\sum r_{i1}$, and by symmetry $p_2=\frac{\sum r_{i2}}{\sum (r_{i1}+r_{i2})}=\frac{1}{N}\sum r_{i2}$

 $\frac{\partial}{\partial u_1} \sum_{i=1}^{N} r_{i1} [\log p_1 + -(X_i - \mu_1)^2 / (2\sigma_1^2) - \frac{1}{2} \log(2\pi\sigma_1^2)] + r_{i2} [\log p_2 + -(X_i - \mu_2)^2 / (2\sigma_2^2) - \frac{1}{2} \log(2\pi\sigma_2^2)] =$ $\frac{\partial}{\partial \mu_1} \sum_{i=1}^{N} r_{i1} [-(X_i - \mu_1)^2 / (2\sigma_1^2)] = \sum_{i=1}^{N} r_{i1} (X_i - \mu_1) / \sigma_1^2 = 0 \to \sum_{i=1}^{N} r_{i1} (X_i - \mu_1) = 0$

 $\sum_{i=1}^{N} r_{i1}(X_i - \mu_1) = \sum_{i=1}^{N} (r_{i1}X_i - r_{i1}\mu_1) = \sum_{i=1}^{N} r_{i1}X_i - \mu_1 \sum_{i=1}^{N} r_{i1} = 0 \rightarrow \sum_{i=1}^{N} r_{i1}X_i = \mu_1 \sum_{i=1}^{N} r_{i1} \rightarrow \mu_1 = \frac{\sum_{i=1}^{N} r_{i1}X_i}{\sum_{i=1}^{N} r_{i1}}$ By symmetry, solving $\frac{\partial}{\partial \mu_2} \sum_{i=1}^N r_{i1} [\log p_1 + -(X_i - \mu_1)^2/(2\sigma_1^2) - \frac{1}{2} \log(2\pi\sigma_1^2)] + r_{i2} [\log p_2 + -(X_i - \mu_2)^2/(2\sigma_2^2) - \frac{1}{2} \log(2\pi\sigma_2^2)]$ for μ_2 , we

 $\mu_2 = \frac{\sum_{i=1}^{N} r_{i2} X_i}{\sum_{i=1}^{N} r_{i2}}$ $\frac{\partial}{\partial \sigma_1^2} \sum_{i=1}^{N} r_{i1} [\log p_1 + -(X_i - \mu_1)^2 / (2\sigma_1^2) - \frac{1}{2} \log(2\pi\sigma_1^2)] + r_{i2} [\log p_2 + -(X_i - \mu_2)^2 / (2\sigma_2^2) - \frac{1}{2} \log(2\pi\sigma_2^2)] =$

 $\frac{\partial}{\partial \sigma_{1}^{2}} \sum_{i=1}^{N} r_{i1} \left[-(X_{i} - \mu_{1})^{2} / (2\sigma_{1}^{2}) - \frac{1}{2} \log(\sigma_{1}^{2}) \right] = \sum_{i=1}^{N} r_{i1} \left(\frac{(X_{i} - \mu_{1})^{2}}{2(\sigma_{i}^{2})^{2}} - \frac{1}{2\sigma_{i}^{2}} \right) = \sum_{i=1}^{N} r_{i1} \left(\frac{(X_{i} - \mu_{1})^{2}}{2(\sigma_{i}^{2})^{2}} - \frac{\sigma_{1}^{2}}{2(\sigma_{i}^{2})^{2}} - \frac{\sigma_{1}^{2}}{2(\sigma_{i}^{2})^{2}} \right) = 0 \rightarrow 0$

 $\sigma_1^2 = \frac{\sum_{i=1}^N r_{i1}(X_i - \mu_1)^2}{\sum_{i=1}^N r_{i1}}$

Again, by symmetry, $\sigma_2^2 = \frac{\sum_{i=1}^{N} r_{i2}(X_i - \mu_2)^2}{\sum_{i=1}^{N} r_{i2}}$ c) Compare your updates for the parameters to the heuristic updates of soft EM

 $\sum_{i=1}^{N} r_{i1} \left((X_i - \mu_1)^2 - \sigma_1^2 \right) = 0 \to \sum_{i=1}^{N} r_{i1} (X_i - \mu_1)^2 = \sum_{i=1}^{N} r_{i1} \sigma_1^2 \Rightarrow$

2)

a) E-Step: Given X, $\theta = (\mu^{(1)}, \mu^{(2)}, p_1, p_2)$, and $p_1 + p_2 = 1$. If applying soft EM, calculate the probabily each X_i is in the first or second

distribution:

 $z'_{1i} = p_1 P(X_i | \mu_1) = p_1 \prod_{d=1}^{10} \mu_{1d}^{X_{id}} (1 - \mu_{1d})^{(1 - X_{id})}$ $z'_{2i} = p_2 P(X_i | \mu_2) = p_2 \prod_{d=1}^{10} \mu_{2d}^{X_{id}} (1 - \mu_{2d})^{(1 - X_{id})}$

 $z_{2i} = \frac{z'_{2i}}{z'_{2i} + z'_{2i}}$

 $z_{1i} = \frac{z'_{1i}}{z'_{1i} + z'_{2i}}$

M-Step: Given X, $Z = (z_1 z_2)$, calculate $\theta = (\mu^{(1)}, \mu^{(2)}, p_1, p_2)$ $M1 = \sum z_1$, $M2 = \sum z_2$

 $\mu_1 = \frac{1}{M_1} \sum z_{i1} X_i$ $\mu_2 = \frac{1}{M2} \sum z_{i2} X_i$

 $p_1 = \frac{M1}{M1 + M2}$

 $p_2 = \frac{M2}{M1 + M2}$ log-likelihood:

 $\log p(X|\theta) = \sum_{i=1}^{N} \log(p_1 P(X_i|\mu_1) + p_2 P(X_i|\mu_2))$ b)

0.0

0.0

0.2

noisy bits <- read csv("noisy bits.csv")</pre> noisy_bits %>% as.matrix() %>% image()

0.8 9.0 0.2

0.4

0.6

0.8

1.0


```
V1
                            V2
                                       V3
                                                  V4
                                                              V5
 ## mul 0.2250306 0.2210770 0.2173989 0.1614023 0.2386598 0.8141468 0.7926998
 ## mu2 0.8090003 0.7851571 0.7808418 0.7683933 0.7758493 0.2793200 0.2053043
                 V8
                            V9
 ## mu1 0.8121408 0.7537884 0.7926516
 ## mu2 0.2060544 0.2077925 0.1855540
 ## $Pi
 ## [1] 0.4948892 0.5051108
We see that we did a good job of finding the true distribution, as p_1 = p_2 = 0.5, \mu_1 = (0.8, 0.8, 0.8, 0.8, 0.8, 0.2, 0.2, 0.2, 0.2, 0.2), and
\mu_2 = (0.2, 0.2, 0.2, 0.2, 0.2, 0.8, 0.8, 0.8, 0.8, 0.8)
Correct classifications:
 mean(test[["probs"]][1:250,2] > 0.5)
 ## [1] 0.976
 mean(test[["probs"]][251:500,1] > 0.5)
```

explanation - that $(a \cdot b)^2 = a^T M a$ where M is an $n \times n$ matrix given by $M = b b^T$.

 $(a \cdot b)^2 = (a \cdot b)(a \cdot b) = (a \cdot b)(b \cdot a) = (a \cdot b)(b^T a) = a \cdot bb^T a = a \cdot Ma = a^T Ma$, where the last step follows because M is symmetric b) Let $\hat{\Sigma}$ be the covariance matrix of the data. Then, by definition

[1] 0.956

3

0.8

9.0

0.4

0.2

0.0

0.0

image(X_result)

0.2

0.4

] * matrix(rep(test θ_2), some = 500, byrow = T)

0.6

 $X_{\text{result}} \leftarrow \text{test}[["probs"]][,1] * matrix(rep(test$theta$Mu[1,], 500), nrow = 500, byrow = T) + test[["probs"]][,2]$

8.0

1.0

 $\hat{\Sigma}_{jk} = \frac{1}{N} \sum_{i=1}^{N} (X_j^{(i)} - \mu_j) (X_k^{(i)} - \mu_k)$ Show that $\hat{\Sigma}$ can also be written in the following two forms

Let C be the $n \times n$ matrix formed by $\tilde{X}^T \tilde{X}$. Then the c_{jk} entry in C is

• Let \tilde{X} be the $N \times n$ matrix with the $X^{(i)} - \mu$ as the rows $\hat{\Sigma} = \frac{1}{N} \tilde{X}^T \tilde{X}$

a) Let $a, b \in \mathbb{R}^n$ be column vectors. Show in any way you like - by proof, through example, by intuitive

 $\tilde{x}_{i1}^T \tilde{x}_{1k} + \tilde{x}_{j2}^T \tilde{x}_{2k} + \dots + \tilde{x}_{iN}^T \tilde{x}_{Nk} = \sum_{i=1}^N \tilde{X}_{ii}^T \tilde{X}_{ik} = \sum_{i=1}^N (X_i^{(i)} - \mu_i)(X_k^{(i)} - \mu_k)$ $\frac{1}{N}\tilde{X}^T\tilde{X} = \frac{1}{N}C$, so each entry in $\frac{1}{N}C = \frac{1}{N}\sum_{i=1}^N (X_i^{(i)} - \mu_i)(X_k^{(i)} - \mu_k)$ which is $\hat{\Sigma}$ • Thinking of the $X^{(i)}$ as column vectors,

 $\hat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (X^{(i)} - \mu)(X^{(i)} - \mu)^{T}$ For each $(X^{(i)} - \mu)(X^{(i)} - \mu)^T$ we get an $n \times n$ matrix. The jk^{th} entry in each matrix is $(X_j^{(i)} - \mu_j)(X_k^{(i)} - \mu_k)$

 $X^{(i)} \approx \mu + c_i w^{(1)}$.

Derive the values of c_i and $w^{(1)}$ that optimize this approximation. (We did this in class.) Then, compute the mean and variance of the c_i

 $\sum_{i=1}^{N} (X_i^{(i)} - \mu_i)(X_k^{(i)} - \mu_k)$, and divide by N to get $\hat{\Sigma}$. See attached scan for a (very) rough outline.

Then when we some up the matrices, the result is that each jk^{th} entry in the resulting matrix is

The 1-d PCA involves the parameters μ , $w^{(1)}$ and $c_i \in \mathbb{R}$ for $i=1,2,\ldots,N$ that are used to approximate $X^{(i)}$ according to

 $l(w^{(1)}, c_1, \dots, c_N) = \sum_{i=1}^N ||\hat{X}^{(i)} - \mu - c_i w^{(1)}||^2 \rightarrow$ $\frac{\partial l}{\partial c_k} = \frac{\partial}{\partial c_k} ||\hat{X}^{(k)} - \mu - c_k w^{(1)}||^2 = \frac{\partial}{\partial c_k} \left[(\hat{X}^{(k)} - \mu - c_k w^{(1)}) \cdot (\hat{X}^{(k)} - \mu - c_k w^{(1)}) \right] = -2w^{(1)} \cdot (X^{(k)} - \mu - c_k w^{(1)}) = 0 \rightarrow 0$

• compute the mean and variance of $C = (c_1, c_2, \dots c_N)$

 $X^{(i)} = \mu + c_i w^{(1)} \rightarrow c_i = \frac{X^{(i)} - \mu}{w^{(1)}}$

c)

 $(X^{(k)} - \mu - c_k w^{(1)}) = 0 \to X^{(k)} = \mu + c_k w^{(1)}$

 $E[C] = E\left[\frac{X-\mu}{w^{(1)}}\right] = 0$

 $Var(C) = Var\left[\frac{X-\mu}{w^{(1)}}\right] = \frac{1}{w^{(i)^2}}Var[X-\mu] = \frac{1}{w^{(i)^2}}Var(X)$

 $\frac{1}{N} \sum_{i} (\chi^{(i)} z_{i}) (\chi^{(i)} z_{i})^{T}$ kn NXI DAKA (x(1)-m)(x(1)-m)T CX - MITH - MIT - MITH (Cost) 4-4, (M. 24-4 (169) 3 3 0 Cradbush (of (of)) (xy-M)(Xy-M) (xy-M) (X12-Ms) Chi-Mi(Xal Ma) [(A-1)fel(4) \$) + 18fel(1) \$) John 60 (Xnn zun)(Xnn zun) 0=107 100 = 100 6 = 2-91 - \$ En,