Problèmes inverses et test bayésien d'adéquation du modèle

Pierre Palud

doctorant en 3e année sous la supervision de Pierre Chainais, Franck Le Petit

avec la collaboration de Emeric Bron, Pierre-Antoine Thouvenin

Ecole Centrale de Lille, CRIStAL, LERMA funded by CNRS via 80|Prime

Vue d'ensemble

modèle génératif / modèle d'observation ${\mathcal M}$

- \star dépend d'un paramètre Θ inféré à partir d'obs. Y
- \star génère des reproduction d'obs. $Y \sim \pi(Y|\Theta,\mathcal{M})$
- \star évalue la pdf / le score $\pi(\widetilde{Y}|\Theta,\mathcal{M})$

Générer un modèle ${\mathcal M}$: souvent coûteux.

Le modèle \mathcal{M} est-il valide ?

Permet-il de reproduire des observations \hat{Y} aussi vraisemblables que les vraies observations Y ?

Vue d'ensemble

Vue d'ensemble

utilisation de la valeur-p:

- \star hypothèse nulle \mathcal{H}_0 : " \mathcal{M} permet de reproduire Y"
- \star déf. a priori d'un niveau de confiance α , par ex. 0.05
- \star calcul valeur-p
- \star si $p \leq \alpha$: rejet \mathcal{H}_0 (niveau de confiance 1α)

Distribution a posteriori prédictive

$$\star$$
 observations reproduites : $Y | \Theta \sim \pi(Y | \Theta, \mathcal{M})$

* distribution a posteriori prédictive :

$$\pi\left(\widetilde{Y}|Y,\mathcal{M}\right) = \int_{\Theta} \pi\left(\widetilde{Y}|\Theta,\mathcal{M}\right) \pi\left(\Theta|Y,\mathcal{M}\right) d\Theta$$

$$\star$$
 si $\pi\left(\Theta|Y,\mathcal{M}\right)=\delta_{\widehat{\Theta}}(\Theta)$:

$$\pi\left(\widetilde{Y}|Y,\mathcal{M}\right) = \pi\left(\widetilde{Y}|\Theta,\mathcal{M}\right)$$

$\pi(Y = Y|Y, \mathcal{M})$ sans rejet de modèle

$\pi(Y=Y|Y,\mathcal{M})$ sans rejet de modèle

$(Y=Y|Y,\mathcal{M})$ sans rejet de modèle

$$p = \int_{\widetilde{Y}} 1_I(\widetilde{Y}, \widehat{\Theta}) \pi \left(\widetilde{Y} | \widehat{\Theta}, \mathcal{M} \right) d\widetilde{Y}$$

avec
$$I = \{(\widetilde{Y}, \Theta) \mid \pi(\widetilde{Y}|\Theta, \mathcal{M}) \leq \pi(Y|\Theta, \mathcal{M})\}$$

$\pi(Y = Y | Y, \mathcal{M})$ sans rejet de modèle

$$p = \int_{\widetilde{Y}} 1_I(\widetilde{Y}, \widehat{\Theta}) \, \pi \left(\widetilde{Y} | \widehat{\Theta}, \mathcal{M} \right) \, d\widetilde{Y}$$

avec
$$I = \{(\widetilde{Y}, \Theta) \mid \pi(\widetilde{Y}|\Theta, \mathcal{M}) \leq \pi(Y|\Theta, \mathcal{M})\}$$

$\pi(Y = Y | Y, \mathcal{M})$ avec rejet de modèle

$$p = \int_{\widetilde{Y}} 1_I(\widetilde{Y}, \widehat{\Theta}) \pi \left(\widetilde{Y} | \widehat{\Theta}, \mathcal{M} \right) d\widetilde{Y}$$

avec
$$I = \{(\widetilde{Y}, \Theta) \mid \pi(\widetilde{Y}|\Theta, \mathcal{M}) \leq \pi(Y|\Theta, \mathcal{M})\}$$

comment calculer valeur-p si modèle non gaussien ? ou si estimateur non ponctuel ?

Cas général : valeur-p bayésienne

 \star si $\pi(\Theta|Y,\mathcal{M}) \neq \delta_{\widehat{\Theta}}(\Theta)$, valeur-p bayésienne

$$p = \int_{\widetilde{Y}} \int_{\Theta} 1_{I}(\widetilde{Y}, \Theta) \, \pi \left(\widetilde{Y} | \Theta, \mathcal{M} \right) \, \pi \left(\Theta | Y, \mathcal{M} \right) \, d\Theta \, d\widetilde{Y}$$

$$\text{avec } I = \{ (\widetilde{Y}, \Theta) \mid \pi(\widetilde{Y} | \Theta, \mathcal{M}) \leq \pi(Y | \Theta, \mathcal{M}) \}$$

Cas général : valeur-p bayésienne

 \star si $\pi\left(\Theta|Y,\mathcal{M}\right)\neq\delta_{\widehat{\Theta}}\left(\Theta\right)$, valeur-p bayésienne

$$p = \int_{\widetilde{Y}} \int_{\Theta} 1_{I}(\widetilde{Y}, \Theta) \pi \left(\widetilde{Y}|\Theta, \mathcal{M}\right) \pi \left(\Theta|Y, \mathcal{M}\right) d\Theta d\widetilde{Y}$$

$$\star$$
 estimateur Monte Carlo $\widehat{p}^{(t)}$ (Gelman et al., 1996)

avec $I = \{(\widetilde{Y}, \Theta) \mid \pi(\widetilde{Y}|\Theta, \mathcal{M}) \leq \pi(Y|\Theta, \mathcal{M})\}$

$$\widehat{p}^{(t)} = \frac{1}{t} \sum_{\tau=1}^{t} 1_{I} \left(\widetilde{Y}^{(\tau)}, \Theta^{(\tau)} \right)$$

$$\text{avec }\Theta^{(\tau)} \sim \pi\left(\Theta|Y,\mathcal{M}\right) \text{ et } \widetilde{Y}^{(\tau)} \sim \pi(\widetilde{Y}|\Theta^{(\tau)},\mathcal{M})$$

Cas général : valeur-p bayésienne

 \star si $\pi\left(\Theta|Y,\mathcal{M}\right)\neq\delta_{\widehat{\Theta}}(\Theta)$, valeur-p bayésienne

$$p = \int_{\widetilde{Y}} \int_{\Theta} 1_{I}(\widetilde{Y}, \Theta) \, \pi\left(\widetilde{Y}|\Theta, \mathcal{M}\right) \, \pi\left(\Theta|Y, \mathcal{M}\right) \, d\Theta \, d\widetilde{Y}$$

$$\text{avec } I = \{(\widetilde{Y}, \Theta) \mid \pi(\widetilde{Y}|\Theta, \mathcal{M}) \leq \pi(Y|\Theta, \mathcal{M})\}$$

 \star estimateur Monte Carlo $\widehat{p}^{(t)}$ (Gelman et al., 1996)

$$\widehat{p}^{(t)} = \frac{1}{t} \sum_{t=1}^{t} 1_{I} \left(\widetilde{Y}^{(au)}, \Theta^{(au)} \right)$$

avec $\Theta^{(au)}\sim\pi\left(\Theta|Y,\mathcal{M}
ight)$ et $\widetilde{Y}^{(au)}\sim\pi(\widetilde{Y}|\Theta^{(au)},\mathcal{M})$

 \star intégrale haute dim. \rightarrow erreur sur estimation ? 7/13

Erreur sur l'estimation MC de la valeur-p

$$\bigstar \ p = \mathbb{P}_{\left(\widetilde{Y},\Theta\right)}\left[1_{I}\left(\widetilde{Y},\Theta\right) = 1\right] \ \to \ \text{test Bernoulli sur } 1_{I}$$

 \star loi Bêta-binomiale pour quantifier l'incertitude sur p^{-1}

$$p^{(t)} | \left\{ Y^{(t)}, \Theta^{(t)}
ight\} \sim \mathsf{B\hat{e}ta} \left(1 + T^{(t)} \hat{p}^{(t)}, 1 + T^{(t)} (1 - \hat{p}^{(t)})
ight)$$

 $\bigstar \ \, \mathsf{proba}. \,\, \mathsf{rejet} = \mathbb{P}_{p^{(t)} \left| \left\{ \widetilde{Y}^{(t)}, \Theta^{(t)} \right\} \right.} \left[p^{(t)} \leq \alpha \right] = \mathsf{cdf}(\alpha)$

¹pour un estimateur ponctuel $\widehat{\Theta}$, $T^{(t)} = t$

pour considérer la corrélation dans MCMC $T^{(t)} = \mathsf{ESS}^{(t)}$

$$\left|p^{(t)}
ight|\left\{\widetilde{Y}^{(t)},\Theta^{(t)}
ight\}\sim \mathsf{B\hat{e}ta}\left(1+T^{(t)}\,\widehat{p}^{(t)},1+T^{(t)}(1-\widehat{p}^{(t)})
ight)$$

Test robuste

 \star seuil $\delta \in [0, \frac{1}{2}] \rightarrow 3$ cas

$$\begin{cases} \mathbb{P}\left[p^{(t)} \leq \alpha\right] = \mathsf{cdf}(\alpha) \leq \delta & \Longrightarrow \text{ non rejet } \checkmark \\ \mathbb{P}\left[p^{(t)} \leq \alpha\right] = \mathsf{cdf}(\alpha) \geq 1 - \delta & \Longrightarrow \text{ rejet } \checkmark \\ \text{otherwise} & \Longrightarrow \text{ indéterminé } \end{cases}$$

Test robuste

 \star seuil $\delta \in [0, \frac{1}{2}] \to 3$ cas

$$\begin{cases} \mathbb{P}\left[p^{(t)} \leq \alpha\right] = \operatorname{cdf}(\alpha) \leq \delta & \Longrightarrow \text{ non rejet } \checkmark \\ \mathbb{P}\left[p^{(t)} \leq \alpha\right] = \operatorname{cdf}(\alpha) \geq 1 - \delta & \Longrightarrow \text{ rejet } \checkmark \\ \text{otherwise} & \Longrightarrow \text{ indéterminé } \end{cases}$$

 \star Par exemple, pour $\delta = 0.1$,

Introduit et résolu dans Palud et al. (2023)

$$\star \Theta = (\boldsymbol{\theta}_n) \in \mathbb{R}^{100 \times 4}, \quad Y = (\boldsymbol{y}_n) \in \mathbb{R}^{100 \times 10}$$

vraisemblance $\pi(Y|\Theta, \mathcal{M})$

* modèle bruit : non gaussien, i.i.d. par pixel, censure

Viaise in Dianice $\pi(T|\Theta, \mathcal{M})$

$$igstar$$
 modèle direct $\mathbf{f}:m{ heta}\in\mathbb{R}^4\mapsto\mathbf{f}(m{ heta})\in\mathbb{R}^{10}$ non linéaire

distribution a priori $\pi(\Theta)$

$$\star$$
 régularisation spatiale $+$ ensemble validité sur $oldsymbol{ heta}_n$

distribution a posteriori $\pi(\Theta|Y,\mathcal{M})$

 \star neg log pdf : \mathscr{C}^2 , non gradient-Lipschitz

non rejet

Conclusion

valeur-p bayésienne et estimateur Monte Carlo

- vérifier **validité modèle** \mathcal{M} et $\pi(Y|\Theta,\mathcal{M})$, par ex.,
- ★ un modèle génératif
- ★ un modèle d'obs. dans un problème inverse

incertitude liée à estimateur Monte Carlo

- ★ loi Bêta-binomiale calculs simples ✓
- ★ cas "indéterminé" test robuste aux cas limites
- \star valeurs- $p \operatorname{sur} \widetilde{\boldsymbol{y}}_n | \Theta$ diagnostic $+ \operatorname{fin}^2 \checkmark$

application : problème inverse complexe synthétique ✓

²peut être pertinent ou non, selon le modèle de bruit

Conclusion

Once we have accomplished the first two steps of a Bayesian analy sis — constructing a probability model and computing the posterior distribution of all estimands — we should not ignore the relatively easy step of assessing the fit of the model to the data and to our substantive knowledge.

(Gelman et al., 2015)

References I

- Gelman, Andrew, Xiao-Li Meng, and Hal Stern (1996). "Posterior Predictive Assessment of Model Fitness Via Realized Discrepancies". In: Statistica Sinica 6.4, pp. 733–760.
- Gelman, Andrew et al. (July 2015). Bayesian Data Analysis. 3rd ed. New York: Chapman and Hall/CRC.
- Palud, Pierre, Pierre-Antoine Thouvenin,
 Pierre Chainais, Emeric Bron, and Franck Le Petit
 (2023). "Efficient Sampling of Non Log-Concave
 Posterior Distributions With Mixture of Noises". In:
 IEEE Transactions on Signal Processing 71,
 pp. 2491–2501.