Topic: Degree measure of an arc

Question: \overline{FR} is a diameter of the circle (with center at P). What is the sum of the measures of $\stackrel{\frown}{RO}$ and $\stackrel{\frown}{FD}$?

Answer choices:

- **A** 110°
- B 140°
- C 250°
- D 360°

Solution: C

 \overline{FR} is a diameter, so the sum of the measures of \widehat{RO} and \widehat{OF} is 180° .

$$\widehat{mRO} + \widehat{mOF} = 180^{\circ}$$

$$\widehat{mRO} + 70^{\circ} = 180^{\circ}$$

$$\widehat{mRO} = 110^{\circ}$$

Likewise, the sum of the measures of \widehat{FD} and \widehat{DR} is 180° .

$$\widehat{mFD} + \widehat{mDR} = 180^{\circ}$$

$$\widehat{mFD} + 40^{\circ} = 180^{\circ}$$

$$\widehat{mFD} = 140^{\circ}$$

The sum of the measures of arcs $\stackrel{\frown}{RO}$ and $\stackrel{\frown}{FD}$ is

$$110^{\circ} + 140^{\circ} = 250^{\circ}$$

Topic: Degree measure of an arc

Question: \overline{TR} is a diameter of the circle (with center at O) in the figure. What is the difference between the measures of \widehat{AR} and \widehat{UT} ?

Answer choices:

- **A** 82°
- B 38°
- **C** 22°
- D 13°

Solution: D

 \overline{TR} is a diameter, so the sum of the measures of \widehat{TA} and \widehat{AR} is 180° .

$$\widehat{mTA} + \widehat{mAR} = 180^{\circ}$$

$$120^{\circ} + \widehat{mAR} = 180^{\circ}$$

$$\widehat{mAR} = 60^{\circ}$$

Likewise, the sum of the measures of \widehat{RU} and \widehat{UT} is 180° , and the measure of \widehat{RU} can be written as the sum of the measures of arcs \widehat{RD} , \widehat{DN} , and \widehat{NU} . Therefore,

$$\widehat{mRU} + \widehat{mUT} = 180^{\circ}$$

$$(m\widehat{RD} + m\widehat{DN} + m\widehat{NU}) + m\widehat{UT} = 180^{\circ}$$

$$(50^{\circ} + 45^{\circ} + 38^{\circ}) + m\widehat{UT} = 180^{\circ}$$

$$133^{\circ} + m\widehat{UT} = 180^{\circ}$$

$$m\widehat{UT} = 47^{\circ}$$

The difference between the measures of \widehat{AR} and \widehat{UT} is

$$60^{\circ} - 47^{\circ} = 13^{\circ}$$

Topic: Degree measure of an arc

Question: Angles $\angle MOC$ and $\angle ROA$ are right angles. $m\angle MOA = 40^\circ$ and $m\angle YOR = 100^\circ$. Which arc has the largest measure?

Answer choices:

 \widehat{RC}

B \widehat{YRC}

C \widehat{YMA}

 $D \qquad \widehat{MCY}$

Solution: B

Use the fact that $\angle MOA = 40^\circ$, and that $\angle MOC$ and $\angle ROA$ each have measure 90° , to figure out that $\angle AOC$ and $\angle ROM$ each have measure 50° .

Now you know the measures of the following four central angles: $\angle YOR$, $\angle ROM$, $\angle MOA$, and $\angle AOC$.

$$m \angle YOR = 100^{\circ}$$

$$m \angle ROM = 50^{\circ}$$

$$m \angle MOA = 40^{\circ}$$

$$m \angle AOC = 50^{\circ}$$

Subtract their total (240°) from 360° to get $m \angle COY = 120$ °.

Knowing the measures of those five central angles, you can figure out the measures of the arcs given as the answer choices.

$$\widehat{mRC} = 50^{\circ} + 40^{\circ} + 50^{\circ} = 140^{\circ}$$

$$mYRC = 100^{\circ} + 50^{\circ} + 40^{\circ} + 50^{\circ} = 240^{\circ}$$

$$mYMA = 100^{\circ} + 50^{\circ} + 40^{\circ} = 190^{\circ}$$

$$m\widehat{MCY} = 40^{\circ} + 50^{\circ} + 120^{\circ} = 210^{\circ}$$

Of these, \widehat{YRC} has the largest measure.

