Introduction to Data Science

Daniel Gutierrez, Data Scientist Los Angeles, Calif.

Course Outcomes

- Explore supervised machine learning for prediction
- How to use the linear model in R
- How to use R for classification problems using logistic regression and Random Forest

Lesson Objectives

- Be able to employ supervised machine learning using – linear regression and classification
- Using the lm() algorithm in R
- Using the glm() algorithm in R
- Using the randomForest() algorithm in R
- Training the model to obtain coefficients
- Making predictions using the trained model and test set
- Measuring performance of the model

- Overview of supervised machine learning
- Linear regression is the work horse of supervised learning
- Classification is the most popular supervised learning technique
- Create a training set (60%) to train the model, and also a test set (40%) to test accuracy of model
- Feature engineering drives process. Can use forward and/or backward stepwise selection

- Simple linear regression with a continuous response variable and one continuous predictor
- Use EDA to understand the data: distribution of each feature variable, check correlation using scatterplot
- Use lm() to fit a linear model
- Use trained model coefficients to make predictions
- Plot regression line
- Residuals plot distance between actual points and regression line

- Multiple linear regression with a response variable and more than one predictor
- Use EDA to understand the data and detect a trend
- Use lm() to fit a linear model
- Use trained model coefficients to make predictions on test set

- Classification using logistic regression with a 2 class (binary) categorical response variable and one or more predictor
- Use glm() for logistic regression
- Use the trained model to make predictions on test set (probabilities of class membership)

- Classification using the Random Forest algorithm with a multi-class categorical response variable and one or more predictor
- Use randomForest() for Random Forest
- Use the trained model to make predictions on test set

- Evaluating model performance
- Overfitting
- Measuring regression performance
- Measuring classification performance
- Diagnostic plots

7. How to know which regression model is best fit for the data?

The most common metrics to look at while selecting the model are:

STATISTIC	CRITERION
R-Squared	Higher the better
Adj R-Squared	Higher the better
F-Statistic	Higher the better
Std. Error	Closer to zero the better
t-statistic	Should be greater 1.96 for p-value to be less than 0.05
AIC	Lower the better
BIC	Lower the better
Mallows cp	Should be close to the number of predictors in model
MAPE (Mean absolute percentage error)	Lower the better
MSE (Mean squared error)	Lower the better
Min_Max Accuracy => mean(min(actual, predicted))	Higher the better

Code modules

- WEEK 9-1 Code module EDA for simple regression
- WEEK 9-2 Code module Fit a linear model to make a prediction
- WEEK 9-3 Code module Residuals plot
- WEEK 9-4 Code module Create training and test set for multiple linear regression
- WEEK 9-5 Code module Fit a linear model
- WEEK 9-6 Code module Use trained model with the test set

Summary

- In WEEK 9 of Introduction to Data Science, we continued the data science process by exploring a popular supervised machine learning algorithm – linear regression.
- We used the lm() algorithm for both simple and multiple linear regression.
- We also saw useful plots to better understand the regression model.
- We split the data set into a training set and test set to come up with a test set error metric to see how well our model generalizes.