Nonregular Languages – the Pumping Lemma

Consider

```
L = \{a^n b^n \mid n \ge 0\}= \{\epsilon, ab, aabb, aaabbb, aaaabbb, \dots\}
```

Intuitively: must remember how many a's we have seen to match with the number of b's:

But FAs has only finite memory, and the center can be arbitrarily far from the start.

Pigeonhole Principle

To prove formally that there is no DFA that accepts L we need:

The Pigeonhole Principle: If A and B are finite sets and |A| > |B| then there is no 1-1 function from A to B, i.e., if we assign each element of A (the "pigeons") to an element of B (the "pigeonholes") eventually we must put more than one pigeon in the same hole.

Proof that *L* is not Regular

The proof is by contradiction. Suppose L is regular. Then there is a DFA M such that L = L(M).

- Let n = number of states in M.
- Given $a^{\ell}b^{\ell}$ for $\ell > n$, M must be in some state p more than once while the a's are scanned, by the pigeonhole principle.
- Partition $a^{\ell}b^{\ell}$ into x,y, and z, where y is the string of a's scanned between two times state p is entered. Let i=|y|.

Observe: We can leave out y or repeat y any number of times and end up in the same state. But then for any $k \geq 0$, $a^{\ell+(k-1)i}b^{\ell} \in L(M)$! E.g., $a^{\ell-i}b^{\ell} \in L(M)$.

The Pumping Lemma

Theorem: Let L be a regular language. Then there is a number n > 0 (the "pumping length" of L) such that for every string w in L such that $|w| \geq n$, we can break w into three strings, w = xyz, such that:

- 1. $|xy| \leq n$
- 2. $y \neq \epsilon$
- 3. $xy^kz \in L$ for each $k \ge 0$.

Proof of the Pumping Lemma

- Let n be the number of states in the finite automaton $M=(Q,\Sigma,\delta,q_0,F)$ which accepts L. Let $w=w_1w_2...w_\ell$ be a string of length $\ell \geq n$. Let $r_1...r_{\ell+1}$ be the sequence of states M enters into while processing w.
- By the Pigeonhole Principle, two of the states among the first $\ell + 1$ states are the same. Call the first r_s and the second r_t .
- - Let $x = w_1...w_{s-1}$, $y = w_s...w_{t-1}$, $z = w_t...w_{\ell}$.
 - We can easily verify each of the conditions of the lemma.

Proving a Language L is not Regular

The Pumping Lemma gives a condition that must be satisfied by every regular language. How can we use it to show a language is *not* regular?

Contrapositive: For any language L:

IF for every n>0, there exists a string $w\in L$, $|w|\geq n$, such that for any decomposition of w into xyz with $|xy|\leq n$, there is some $k\geq 0$ such that $xy^kz\notin L$

THEN L is **not** regular

Example:
$$L = \{a^rb^s \mid r \geq s\}$$

We are given n > 0.

We pick $w = a^n b^n \in L$.

We are given xyz with the following properties:

- 1. w = xyz
- $2. |xy| \leq n$
- 3. $y \neq \epsilon$.

We pick k = 0.

Now, since $|xy| \le n$, it *must* be the case that $xy = a^j$ for some $j \ge 0$. Since $y \ne \epsilon$, it *must* be the case that $y = a^i$ with i > 0. So $xy^kz = xy^0z = a^{n-i}b^n \notin L$ since there are more b's than a's. So L is *not* regular. (Pumping down)

Using Closure Properties

Theorem: The class of languages accepted by finite automata is closed under

- 1. union;
- 2. concatenation;
- 3. star;
- 4. complementation;
- 5. intersection.
- 6. reversal

 $L = \{w \in \{a, b\}^* \mid w \text{ has an equal number of } a's \text{ and } b's\}$

If L is regular then $L \cap L(a^*b^*)$ is regular, since the regular languages are closed under intersection. But $L \cap L(a^*b^*) = \{a^nb^n \mid n \geq 0\}$. which we already showed is not regular, giving a contradiction.

Or Using the Pumping Lemma

We are given n > 0.

We pick $w = a^n b^n \in L$.

We are given xyz with the following properties:

- 1. w = xyz
- $|xy| \leq n$
- 3. $y \neq \epsilon$.

We pick k = 2.

Now, since $|xy| \le n$, it *must* be the case that $xy = a^j$ for some $j \ge 0$. Since $y \ne \epsilon$, it *must* be the case that $y = a^i$ with i > 0. So $xy^kz = xy^2z = a^{n+i}b^n \notin L$ since $n+i \ne n$. So L is *not* regular.

$$L = \{ww \mid w \in \{0,1\}^*\}$$

We are given n > 0.

We pick $w = 0^n 1^n 0^n 1^n \in L$.

We are given xyz with the following properties:

- 1. w = xyz
- $|xy| \leq n$
- 3. $y \neq \epsilon$.

We pick k = 0.

Now, since $|xy| \le n$, it *must* be the case that $xy = 0^j$ for some $j \ge 0$. Since $y \ne \epsilon$, it *must* be the case that $y = 0^i$ with i > 0. So $xy^kz = xy^0z = 0^{n-i}1^n0^n1^n \notin L$ since $n-i \ne n$. So L is *not* regular.

$$L = \{010^n 1^n \mid n \ge 0\}$$

More than one case for the decomposition xyz. (What are the possible values of xy and y?)