第七章 抽樣分配

7-1 抽樣方法

四種常用之隨機抽樣方法。

- 1.簡單隨機抽樣 (simple random sampling):母體中所有可能的樣本,其被抽出的機率均相等的抽樣方法。一般常用抽籤法及亂數表法兩種方式。
 - ◎抽籤法:將母體資料加以編號,再抽出所需之樣本。
 - ◎亂數表法:將母體資料加以編號,依據亂數表的號碼抽取樣本。

	1~5	6~10	11~15	16~20	21~25	26~30	31~35	36~40
1	96785	80611	34685	65191	72368	19084	66191	32084
2	10825	76142	38134	45677	95470	64884	97107	53488
3	86859	49239	79498	56836	54556	94973	89702	52496
4	23404	37047	39263	31466	78460	31158	73571	15200
5	87554	92226	77595	64579	45630	17678	97310	61950
6	19859	58322	48283	11556	69630	44655	98076	28645
7	20460	31353	93940	42581	95901	77839	52420	94286
8	36478	67663	82434	83289	49766	64573	48341	24745
9	50632	38030	44608	31677	85697	86030	98620	92817
10	21136	78012	83198	31287	37805	25679	55380	74513
11	12822	14547	23045	80602	51618	14019	75914	11580
12	69536	18815	62535	58718	57070	29557	19754	40315
13	97750	55325	86302	77254	62777	96019	26991	96585
14	31466	17280	69157	78523	11531	85851	27837	37121
15	98332	98164	41299	29941	97066	29928	73459	87062
16	17041	49607	64755	84689	12058	33531	48039	83736
17	95951	25486	41068	78633	97390	68586	22103	36712
18	92968	42263	70256	73483	72657	92127	77081	24075
19	66691	35599	11001	56207	27925	41029	51137	54968
20	68776	63205	42087	54705	76735	62989	16233	78389

(例 1): 班上 50 人,要抽出 5 人到國際會議廳聽演講,用亂數表法,若從第 5 列第 3 行開始抽,則那 5 位被抽中?

解:

將 50 位編成 01~50

55,49,22,26,77,59,56,45,79,45,63,01

故 5 位為 49,22,26,45,01

- 2.系統抽樣 (systematic sampling): 將母體資料依序由 1 至 N 加以編號,並以抽樣間隔 k,利用簡單隨機抽樣的方式,從 1 到 k 抽出第一個樣本,以此數為起點,每隔 k 個抽取一個樣本,直到抽取所需之樣本為止。
 - ◎抽樣間隔 k=母體個數 N/樣本個數 n
- 3.分層抽樣(stratified sampling):將母體資料按其相異性分為若干個次群體,稱之為層,任兩個層的交集為空集合,所有層的聯集為整個母體,利用簡單隨機抽樣法,依其母體的比率抽出各層之樣本。
- 4.集群抽樣(cluster sampling): 將母體依其相似性分成若干個次群體,稱之為集群, 任兩個集群的交集為空集合,所有集群的聯集為整個母體,利用簡單隨機抽樣 法,抽出若干集群。

7-2 大數法則及中央極限定理

- ◎大數法則(law of large number):
 - 從一母體隨機抽出n個樣本,當樣本大小n很大($n \ge 30$)時,則抽出的樣本平均數 \overline{X} 接近母體平均數 μ 。
- ◎中央極限定理(central limit theorem):從一母體隨機抽出 n 個樣本,當樣本大小 n 很大(n≥30)時,則抽出的樣本平均數X之分配接近常態分配。

7-3 樣本平均數之抽樣分配

若母體為常態分配 $X \sim N(\mu, \sigma^2)$, 自母體中隨機抽取 n 個為樣本,則

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

◎樣本平均數標準常態化

$$Z = \frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

- ◎樣本平均數的平均數 $\mu_{\overline{X}}=E(\overline{X})=\mu$
- ②樣本平均數的變異數 $\sigma_{\bar{x}}^2 = \frac{\sigma^2}{n}$
- ①樣本平均數的標準差(標準誤) $\sigma_{\overline{X}} = \sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}}$

(例 2): 母體具常態分配 N(3,0.04), 抽出 25 個,則

(1)樣本平均數大於 3.01 之機率

(2) 樣本平均數介於 2.9 到 3.1 之機率

解

$$(1)P(\overline{X} > 3.01) = p\left(\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} > \frac{3.01 - 3}{\frac{0.2}{\sqrt{25}}}\right) = P\left(Z > \frac{0.01}{\frac{0.2}{5}}\right) = P(Z > 0.25)$$

$$= 0.5 - P(0 \le Z \le 0.25) = 0.5 - 0.0987 = 0.4013$$

$$(2) P(2.9 \le \overline{X} \le 3.1) = p \left(\frac{2.9 - 3}{\sqrt{\frac{0.04}{25}}} \le \frac{\overline{X} - \mu}{\sqrt{\frac{\sigma^2}{25}}} \le \frac{3.1 - 3}{\sqrt{\frac{0.04}{25}}} \right) = P \left(\frac{-0.1}{\frac{0.2}{5}} \le Z \le \frac{0.1}{\frac{0.2}{5}} \right)$$

$$=P(-2.5 \le Z \le 2.5)=2 \times P(0 \le Z \le 2.5)=2 \times 0.4938=0.9876$$

(例 3): 某國小全校學生的體重呈現常態分配,且其平均體重為 45 公斤,標準差為 4 公斤。隨機抽出 25 位學生為樣本,其平均體重大於 50 公斤之機率為何?

解:

$$P(\overline{X} > 50) = P(Z > \frac{50 - 45}{4/5}) = P(Z > 6.25) = 0$$

(例 4):假設某學校學生每週上圖書館的時間呈現常態分配,平均為 12 小時,變異數為 25 小時,若隨機抽 100 位學生,其每週上圖書館的時間平均為 13 至 14 小時之機率為多少?

解:

$$P(13 \le \overline{X} \le 14) = P\left(\frac{13 - 12}{\frac{5}{\sqrt{100}}} \le \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \le \frac{14 - 12}{\frac{5}{\sqrt{100}}}\right) = P(2 \le Z \le 4)$$

 $=P(0\leq Z\leq 4)-P(0\leq Z\leq 2)=0.5-0.4772=0.0228$

7-4 樣本比例之抽樣分配

樣本比例 \overline{P} 抽樣分配之期望值 $\mu_{\overline{P}} = E(\overline{P}) = P$

樣本比例
$$\overline{P}$$
抽樣分配之變異數 $\sigma_{\overline{P}}^2 = \frac{P(1-P)}{n}$

樣本比例
$$\overline{P}$$
抽樣分配之標準差 $\sigma_{\overline{P}} = \sqrt{\frac{P(1-P)}{n}}$

需為無限母體或有限母體但樣本數 Π 與母體數 \mathbb{N} 之比小或等於 \mathbb{N} 0.05,才能使用上述之變異數,否則須修正成:

$$\sigma_{\overline{P}}^2 = \frac{N-n}{N-1} \times \frac{P(1-P)}{n}$$

◎樣本比例標準常態化

$$Z = \frac{\overline{P} - \mu_{\overline{P}}}{\sigma_{\overline{P}}} = \frac{\overline{P} - P}{\sqrt{\frac{P(1 - P)}{n}}}$$

(例5):

騎機車上學的比例 P=0.6,則隨機抽出 100 位,其樣本比例會落在母體比例 0.55~0.65 之範圍內的標準誤及機率各為何?

解:

$$(1)\sigma_{\overline{P}} = \sqrt{\frac{P(1-P)}{n}} = \sqrt{\frac{0.6(1-0.6)}{100}} = 0.049$$

$$(2)P(0.55 \le \overline{P} \le 0.65) = P\left(\frac{0.55 - 0.6}{0.049} \le \frac{\overline{P} - P}{\sqrt{\frac{P(1 - P)}{n}}} \le \frac{0.65 - 0.6}{0.049}\right)$$

 $=P(-1.02 \le Z \le 1.02) = 2P(0 \le Z \le 1.02) = 2 \times 0.3461 = 0.6922$

第七章之 EXCEL 應用

(實例 1): 以全班為母體,學號為抽樣對象,利用 Excel 之資料分析,隨機抽取樣本數 5 個,學號不能重複。

解:

- 1.資料分析→抽樣→確定
- 2.輸入範圍 → 隨機 樣本數 → 輸出範圍 → 確定

綜合練習7

- 1.常態分配 N(80,25),則
 - (1)抽出 16 個,樣本平均低於 78 之機率
 - (2)抽出 25 個,樣本平均介於 78 至 82 之機率
- 2.假設某產品之重量呈現常態分配,且平均數 100 公克,變異數為 25 公克,今 隨機抽取該產品 16 件作為樣本,則樣本平均數小於 102 公克之機率為何?
- 3. 某品牌之鮪魚罐頭,每罐重量呈常態分配,平均重量為500公克,標準差為24公克。現抽驗16罐,則該16罐的平均重量在490至510公克之間的機率為多少?