

Mathématiques 2

PSI

1. Pour $a, b \in \mathbb{R}$, on introduit la matrice suivante

$$M(a,b) = \begin{pmatrix} 3a-2b & -6a+6b+3 \\ a-b & -2a+3b+1 \end{pmatrix}$$

On note e(a,b) le réel $|\lambda_1-\lambda_2|$ où λ_1 et λ_2 sont les valeurs propres complexes de M(a,b).

Écrire une fonction ecart qui étant donnés deux entiers a et b renvoie une valeur approchée décimale à 10^{-2} près de e(a,b).

2. a. Soient A et B deux variables aléatoires indépendantes, à valeurs dans \mathbb{N}^* , de même loi géométrique $\mathcal{G}(p)$ avec $p \in]0,1[$.

Écrire une fonction hasard qui, étant donné p réalise la simulation de 500 valeurs (a,b) du couple de variables aléatoires (A,B) et renvoie le nombre de fois où ecart(a,b) est supérieur ou égal à 10^{-1} .

b. Pour $p = \frac{1}{100}, \frac{2}{100}, ..., \frac{99}{100}$, relier les points de coordonnées $\left(p, \frac{\mathtt{hasard}(p)}{500}\right)$.

c. Sur le même graphe, tracer la courbe de la fonction $p\mapsto \frac{2-2\,p+p^2}{2-p}$ pour p dans]0,1[.

3. a. Montrer que la matrice M(a,b) est semblable à $\begin{pmatrix} a+1 & 1 \\ 0 & b \end{pmatrix}$.

b. À quelle condition la matrice $\begin{pmatrix} a+1 & 1 \\ 0 & b \end{pmatrix}$ est-elle diagonalisable ?

c. Calculer la probabilité de l'événement « M(A,B) est diagonalisable ».