

SIPMOS ® **Power Transistor**

- N channel
- Enhancement mode
- Avalanche-rated

Pin 1	Pin 2	Pin 3
G	D	S

Туре	V _{DS}	I _D	R _{DS(on)}	Package	Ordering Code
BUZ 73	200 V	7 A	0.4 Ω	TO-220 AB	C67078-S1317-A2

Maximum Ratings

Parameter	Symbol	Values	Unit
Continuous drain current	I _D		Α
$T_{\rm C}$ = 28 °C		7	
Pulsed drain current	I _{Dpuls}		
$T_{\rm C}$ = 25 °C		28	
Avalanche current, limited by T_{jmax}	I _{AR}	7	
Avalanche energy, periodic limited by T_{jmax}	E _{AR}	6.5	mJ
Avalanche energy, single pulse	E _{AS}		
I_{D} = 7 A, V_{DD} = 50 V, R_{GS} = 25 Ω			
$L = 3.67 \text{ mH}, T_j = 25 ^{\circ}\text{C}$		120	
Gate source voltage	V _{GS}	± 20	V
Power dissipation	P _{tot}		W
$T_{\rm C}$ = 25 °C		40	
Operating temperature	$T_{\rm j}$	-55 + 150	°C
Storage temperature	T _{stg}	-55 + 150	
Thermal resistance, chip case	R _{thJC}	≤ 3.1	K/W
Thermal resistance, chip to ambient	R _{thJA}	75	
DIN humidity category, DIN 40 040		E	
IEC climatic category, DIN IEC 68-1		55 / 150 / 56	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	$V_{(BR)DSS}$				V
$V_{\rm GS} = 0 \text{ V}, I_{\rm D} = 0.25 \text{ mA}, T_{\rm j} = 25 ^{\circ}\text{C}$		200	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\text{GS}} = V_{\text{DS}}$, $I_{\text{D}} = 1 \text{ mA}$		2.1	3	4	
Zero gate voltage drain current	I _{DSS}				μΑ
$V_{\mathrm{DS}} = 200 \; \mathrm{V}, \; V_{\mathrm{GS}} = 0 \; \mathrm{V}, \; T_{\mathrm{j}} = 25 \; \mathrm{^{\circ}C}$		-	0.1	1	
$V_{\rm DS} = 200 \ {\rm V}, \ V_{\rm GS} = 0 \ {\rm V}, \ T_{\rm j} = 125 \ {\rm ^{\circ}C}$		-	10	100	
Gate-source leakage current	I _{GSS}				nA
$V_{\text{GS}} = 20 \text{ V}, \ V_{\text{DS}} = 0 \text{ V}$		-	10	100	
Drain-Source on-resistance	R _{DS(on)}				Ω
$V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 4.5 A		-	0.3	0.4	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g_{fs}				S
$V_{\rm DS} \ge 2 * I_{\rm D} * R_{\rm DS(on)max}, I_{\rm D} = 4.5 \text{ A}$		3	4.2	-	
Input capacitance	C_{iss}				pF
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	400	530	
Output capacitance	$C_{ m oss}$				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	85	130	
Reverse transfer capacitance	C_{rss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = 25 \text{ V}, \ f = 1 \text{ MHz}$		-	45	70	
Turn-on delay time	$t_{d(on)}$				ns
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 3 \; {\rm A}$					
$R_{\rm GS} = 50~\Omega$		-	10	15	
Rise time	t _r				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 3 \; {\rm A}$					
$R_{\rm GS}$ = 50 Ω		-	40	60	
Turn-off delay time	$t_{d(off)}$				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 3 \; {\rm A}$					
$R_{\rm GS}$ = 50 Ω		-	55	75	
Fall time	t_{f}				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 3 \; {\rm A}$					
$R_{\rm GS} = 50~\Omega$		-	30	40	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	Is				А
$T_{\rm C}$ = 25 °C		-	-	7	
Inverse diode direct current,pulsed	/ _{SM}				
$T_{\rm C}$ = 25 °C		-	-	28	
Inverse diode forward voltage	V_{SD}				V
$V_{GS} = 0 \text{ V}, I_{F} = 14 \text{ A}$		-	1.3	1.7	
Reverse recovery time	t _{rr}				ns
$V_{R} = 100 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	200	-	
Reverse recovery charge	Q _{rr}				μC
$V_{R} = 100 \text{ V}, I_{F} = I_{S,} di_{F}/dt = 100 \text{ A/}\mu\text{s}$		-	0.6	-	

Power dissipation

$$P_{\text{tot}} = f(T_{\text{C}})$$

Safe operating area

$$I_{\mathsf{D}} = f(V_{\mathsf{DS}})$$

parameter: D = 0.01, $T_C = 25$ °C

Drain current

$$I_{\mathsf{D}} = f(T_{\mathsf{C}})$$

parameter: V_{GS} ≥ 10 V

Transient thermal impedance

$$Z_{\text{th JC}} = f(t_{\text{p}})$$

parameter: $D = t_p / T$

Typ. output characteristics

 $I_{\mathsf{D}} = f(V_{\mathsf{DS}})$

parameter: $t_p = 80 \mu s$

Typ. transfer characteristics $I_D = f(V_{GS})$

parameter: $t_p = 80 \mu s$

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Typ. drain-source on-resistance

 $R_{\mathrm{DS}\,(\mathrm{on})}=f(I_{\mathrm{D}})$

parameter: $V_{\rm GS}$

Typ. forward transconductance $g_{fs} = f(I_D)$

parameter: $t_p = 80 \mu s$,

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Drain-source on-resistance

 $R_{\rm DS~(on)} = f(T_{\rm j})$ parameter: $I_{\rm D} = 4.5~{\rm A},~V_{\rm GS} = 10~{\rm V}$

Gate threshold voltage

 $V_{GS (th)} = f(T_j)$

parameter: $V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$

Typ. capacitances

 $C = f(V_{DS})$

parameter: $V_{GS} = 0V$, f = 1MHz

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_j , $t_p = 80 \mu s$

Avalanche energy $E_{AS} = f(T_j)$

parameter: $I_D = 7 \text{ A}$, $V_{DD} = 50 \text{ V}$

 $R_{\rm GS} = 25 \ \Omega, \ L = 3.67 \ {\rm mH}$

Typ. gate charge

 $V_{\mathsf{GS}} = f(Q_{\mathsf{Gate}})$

parameter: $I_{D \text{ puls}} = 14 \text{ A}$

Drain-source breakdown voltage

 $V_{(BR)DSS} = f(T_j)$

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.