

Eletrónica Geral

7º Trabalho de Laboratório: Transístor de Efeito de Campo e Transístor Bipolar de Junção

Turma:

Fábio Santos - 42111

André Faria – 44731

Afonso Correia - 47521

João Jacinto - 48659

Indice

1 - Introdução	3
2 - Objetivos	3
3 - Esquema de Montagem	4
4 - Dimensionamento	4
4.1	4
4.2	5
5 – Condução do trabalho	6
5.1	6
5.2	8
5.3	10
5.4	12
6 – Análise de resultados	16
6.1	16
6.2	17
6.3	17
7 – Conclusão	18

1 - Introdução

Enquanto o transístor bipolar de junção (TBJ) funciona com a polarização de duas junções, entre o emissor e a base, e entre a base e o coletor, dando lugar à circulação de dois tipos de corrente (portadores maioritários e minoritários), o transístor de efeito de campo (JFET – Junction Field Effect Transístor) é de caráter monopolar, isto porque no seu funcionamento só intervêm portadores maioritários (eletrões ou lacunas). Os transístores de efeito de campo têm dois tipos básicos de aplicações: comutação (condução e corte) e amplificação, de acordo com a correspondente zona de funcionamento. Os circuitos onde os transístores funcionam à comutação são normalmente aplicados em sistemas de eletrónica de potência, sendo os circuitos de amplificação com transístores utilizados em sistemas de eletrónica analógica.

2 - Objetivos

- Tomar contato com transístores do tipo TBJ e JFET;
- Analisar as zonas de funcionamento de um transístor JFET;
- Compreender a função dos diversos componentes num circuito de comutação de um transístor bipolar auxiliado por um dispositivo unipolar do tipo JFET;
- Verificar experimentalmente o funcionamento de um circuito de comutação de um transístor bipolar auxiliado por um dispositivo unipolar do tipo JFET.

3 - Esquema de Montagem

Figura 1 - Esquema da montagem

4 - Dimensionamento

Considerando que VP=VGsoff=-4V, IDSS=12mA, VLed≈3V e β=100.

4.1 - Explique o princípio de funcionamento do circuito da Figura 1.

O circuito da Figura 1 tem como função ligar um Led através de dois transístores, um TBJ (junção bipolar), que é controlado por corrente, e um JFET (efeito de campo), que é controlado por tensão.

Com o interruptor S aberto (OFF), o TBJ não tem uma corrente de base (IB) suficiente para funcionar, logo estará ao corte e o Led apagado.

Com o interruptor S fechado (ON), o TBJ recebe uma tensão proveniente da fonte V1 e o JFET varia entre as zonas de Corte e de Saturação, fazendo com que o TBJ varie entre as zonas Ativa

Direta e de Corte respetivamente, resultando no Led com brilho intermitente. Devido à frequência ser muito elevada não é possível observar tal experiência a olho nu, e como tal o Led fica com um brilho constante.

Figura 2 – Simulação

Figura 3 - $R2=47k\Omega$ com S aberto

Figura 4 - $R2=47k\Omega$ com S fechado

Figura 5 - $R2=15k\Omega$ com S fechado

5 - Condução do trabalho

5.1 - Monte o circuito da Figura 2 com R_2 =47k Ω . Com o interruptor S aberto, ajuste a saída da fonte de alimentação (V_1) para 10V e a saída do gerador de sinais (V_i) para uma onda quadrada com uma amplitude entre 0 e -10V, com uma frequência de 1kHz. Com o auxílio do osciloscópio observe e registe, sincronizadamente no tempo, os seguintes pares de evoluções temporais: V_i (V_{GS}), V_{DS} e V_{DG} = V_{DS} - V_{GS} ; V_{BE} , V_{CE} e V_{CB} = V_{CE} - V_{BE} .

Figura 6 - Vgs e Vds

Figura 7 – Vdg

Figura 8 - Vbe e Vce

Figura 9 – Vcb

5.2 - Com R_2 =47k Ω feche o interruptor e com o auxílio do osciloscópio observe e registe, sincronizadamente no tempo, os seguintes pares de evoluções temporais: Vi (V_{GS}), V_{DS} e V_{DG}=V_{DS}-V_{GS}; V_{BE}, V_{CE} e V_{CB}=V_{CE}-V_{BE}; V₁, V_k e V_{AK} =V₁-V_K.

Figura 10 - Vgs e Vds

Figura 11 – Vdg

Figura 12 - Vbe Vce

Figura 13 - Vcb

Figura 14 - V1 e Vk

Figura 15 - Vak

5.3 - Faça variar a frequência da onda quadrada até que o Led deixe de apresentar um brilho constante (isto é, veja o Led a piscar). Anote o valor dessa frequência (lida no osciloscópio), observe e registe, sincronizadamente no tempo, os seguintes pares de evoluções temporais: V_i (V_{GS}), V_{DS} e V_{DG} = V_{DS} - V_{GS} ; V_{BE} , V_{CE} e V_{CB} = V_{CE} - V_{BE} ; V_1 , V_k e V_{AK} = V_1 - V_K .

Figura 16 - V1 e Vk 47kΩ fechado piscar

Figura 17 - Vak 47kΩ fechado piscar

Figura 18 - Vgs e Vds $47k\Omega$ piscar

Figura 19 - Vdg $47k\Omega$ piscar

Figura 20 - Vbe Vce 47kΩ piscar

Figura 21 - Vcb 47kΩ piscar

5.4 - Com R_2 =15kΩ repita as alíneas 5.2 e 5.3.

Figura 22 - Vgs e Vds 15kΩ fechado

Figura 23 – Vdg 15kΩ fechado

Figura 24 - Vbe e Vce $15k\Omega$ fechado

Figura 25 – Vcb 15 $k\Omega$ fechado

Figura 26 - V1 e Vk 15 $k\Omega$ fechado

Figura 27 – Vak 15kΩ fechado

Figura 28 - Vgs Vds e Vdg 15k piscar

Figura 29 - Vbe e Vce 15k piscar

Figura 30 - Vcb 15k piscar

Figura 31 - V1 e Vk 15k piscar

Figura 32 - Vak 15k piscar

6 - Análise de resultados

6.1 - Pelo registo das tensões obtidas em 5.2, 5.3 e 5.4, indique as zonas de funcionamento do JFET e do TBJ. Justifique.

Com o interruptor em aberto:

TBJ (T2) encontra-se na zona de corte, visto que não tem corrente a chegar à sua base.

JFET(T1) encontra-se na zona de tríodo, visto que $V_{ds} < V_{gs}$.

Quando V_i = -10V, V_{gs} = -10 V e então temos de assumir que o Jfet encontra-se na zona de corte, quando V_i = 0 V o Jfet encontra-se na zona de saturação.

Com o interruptor fechado:

TBJ (T2) encontra-se na zona ativa direta, visto termos $V_{be} > 0.7 \text{ V}$ e $V_{ce} > 0.2 \text{ V}$.

JFET (T1) encontra-se na zona de saturação, pois V_{ds} > V_{gs}

A mudança da resistência para $15k\Omega$, muda os valores das tensões em estudo, porém não muda as zonas de funcionamento de TBJ e de JFET, estas mantêm-se, TBJ na zona ativa direta e JFET na zona de saturação.

6.2 - Calcule a energia consumida pelo Led durante 5 minutos na situação 5.3.

(Nota:
$$V_{Led}=V_1-V_K$$
)

$$X = 300 \text{ segundos} = 5 \text{ min}$$

$$P_{Led} = \frac{V_{Led}^2}{R_{Led}} = \frac{3^2}{100} = 0.09 W$$

$$E_{Led} = P_{Led} \times T = 0.09 \times 300 = 27 \text{ Ws}^{-1} = 27 \text{ J}$$

6.3 - Explique o fato do díodo Led ter deixado de apresentar um brilho constante com a alteração da frequência do sinal de comando.

A frequência do sinal de comando vai alterar a frequência com que o Led acende (e consequentemente quanto tempo o mesmo fica aceso / apagado.

Quando a frequência é mais elevada a luz parece ser contínua, embora não o seja realmente, porque está a piscar tão rápido que o olho humano não consegue distinguir os ciclos individuais, sendo que a estas frequências mais elevadas a resposta ao estímulo provocado nos olhos pela luz dura mais tempo do que o ciclo em si, criando a ilusão de uma luz contínua. Ao diminuir a frequência, chega-se a um ponto em que conseguimos passar a distinguir os ciclos individuais, e, portanto, podemos ver a luz a piscar. Este ponto crítico da frequência, onde a luz deixa de piscar e começa a aparentar ser uma luz contínua, depende de vários fatores, como a intensidade do brilho de cada ciclo e a pessoa que o está a ver.

Ou seja, ao alterar o valor da frequência torna-se possível verificar os instantes em que o LED fica aceso e apagado, quanto menor for a frequência maior é o período tal pode ser verificado através da fórmula que os relaciona $f=\frac{1}{T}$.

7 - Conclusão

Este ensaio teve como objeto de estudo o transístor bipolar de junção (TBJ) e do transístor de efeito de campo (JEFT), onde foram conduzidos ensaios para verificar as diversas zonas de funcionamento dos mesmos. No TBJ verificaram-se as zonas: ao corte com o interruptor aberto e zona ativa direta com o interruptor fechado. Para o JFET as zonas verificadas são: zona de tríodo com o interruptor aberto e zona de saturação para a situação de interruptor fechado.

Aquando da mudança do valor da resistência, em 5.5, os valores das tensões em estudo mudam, porém, as zonas de funcionamento de TBJ e de JFET mantêm-se inalteradas, TBJ na zona ativa direta e JFET na zona de saturação.