Experimentell Metodik

Zacharias Brohn* Elis Bergdahl[†] Mikael Baer[‡]

Luleå tekniska universitet 971 87 Luleå, Sverige

11 december 2024

Sammanfattning

Denna rapport presenterar en undersökning av volymflödet genom smala horisontella rör. Genom dimensionsanalys och experimentella metoder studeras sambandet mellan volymflöde och olika fysikaliska parametrar.

1 Inledning

Vi kommer undersöka volymflödet av materia genom smala, horisontella rör. Experimenten utförs med vatten (H_2O) , men de framtagna matematiska modellerna är generellt tillämpbara för andra fluider.

2 Teori

2.1 Dimensionsanalys

Dimensionsanalys är en metod för att verifiera matematiska samband genom att kontrollera dimensionell konsekvens hos ingående variabler. Metoden är särskilt användbar för att validera fysikaliska ekvationer.

*email: zacbro-8@student.ltu.se †email: elieba-4@student.ltu.se

[‡]email: DinMejl

2.2 Linjärisering

För en potensfunktion av formen:

$$Y = C \cdot x^a \tag{1}$$

kan exponenten a bestämmas genom logaritmering:

$$\ln Y = \ln C + a \cdot \ln x \equiv Y' = m + k \cdot X \tag{2}$$

där:

$$Y' = \ln y, \quad k = a, \quad X = \ln x, \quad m = \ln C \tag{3}$$

3 Grafer och Resultat

Vi har fått fram 3 exponenter genom att linjärisera data från experimenten, vi börjar med hur volymflödet beror på höjden:

Ln(Q)

4 Dimensionsanalys av Volymflöde

Det generella sambandet för volymflödet ges av:

$$Q = C \cdot d^{\alpha} \cdot h^{\beta} \cdot l^{\gamma} \cdot \rho^{\delta} \cdot g^{\epsilon} \cdot \mu^{\epsilon}$$

$$\tag{4}$$

där variablerna har följande dimensioner:

- Q är volymflödet $[L^3T^{-1}]$
- d är rörets diameter [L]
- h är höjdskillnaden [L]
- *l* är rörets längd [L]
- ρ är vätskans densitet [ML⁻³]
- g är tyngdaccelerationen [LT⁻²]
- μ är vätskans viskositet [ML⁻¹T⁻¹]

Från dimensionsanalysen vet vi att:

$$[Q] = L^3 T^{-1} M^0 \tag{5}$$

Dimensionell analys ger:

$$[Q] = [C] \cdot [d^{\alpha}] \cdot [h^{\beta}] \cdot [l^{\gamma}] \cdot [\rho^{\delta}] \cdot [g^{\epsilon}] \cdot [\mu^{\epsilon}]$$
(6)

Från tidigare beräkningar har vi fått:

$$\alpha = 4 \tag{7}$$

$$\beta = 1 \tag{8}$$

$$\gamma = -1 \tag{9}$$

Det resulterande ekvationssystemet blir:

$$L^{3}T^{-1} = L^{\alpha+\beta+\gamma} \cdot (ML^{-3})^{\delta} \cdot (LT^{-2})^{\epsilon} \cdot (ML^{-1}T^{-1})^{\epsilon}$$
(10)

$$L^{3}T^{-1} = M^{\delta + \varepsilon} \cdot L^{\alpha + \beta + \gamma - 3\delta + \epsilon - \varepsilon} \cdot T^{-2\epsilon - \varepsilon}$$
(11)

Genom att jämföra exponenter får vi:

$$M: \delta + \varepsilon = 0 \tag{12}$$

$$L: \alpha + \beta + \gamma - 3\delta + \epsilon - \varepsilon = 3 \tag{13}$$

$$T: -2\epsilon - \varepsilon = -1 \tag{14}$$

Ur ekv. (12) får vi:

$$\epsilon = -\delta \tag{15}$$

Substitution i ekv. (13) ger:

$$4 + 1 - 1 - 3\delta - \delta + \varepsilon = 3 \tag{16}$$

$$4 - 4\delta + \varepsilon = 3 \tag{17}$$

$$\varepsilon = 2\delta - 1 \tag{18}$$

från ekv. (14):

$$-1 = -(-\delta) - 2(2\delta - 1) \tag{19}$$

$$-1 = \delta - 4\delta + 2 \tag{20}$$

$$-3 = -3\delta \tag{21}$$

$$\delta = 1 \tag{22}$$

från det kan vi lösa ekv. (15)

$$\epsilon = -\delta = -1 \tag{23}$$

alltså får vi att ekponenterna är

$$\delta = 1 \tag{24}$$

$$\epsilon = -1 \tag{25}$$

$$\varepsilon = 2(1) - 1 = 1 \tag{26}$$