

Команда

Наумов Михаил Алгоритмы ML

Рыбников Демьян Датчики

Гущенко Антон Датчики

Гущенко Александра Алгоритмы ML

Швецов Антон DL

Ильенкова Дарья EDA

Башкиров Иван Лит.обзор

Биологические особенности болезни Паркинсона

Болезнь Паркинсона

Болезнь Паркинсона — дегенеративное заболевание головного мозга, сопровождающееся симптомами нарушения двигательной функции (замедленностью движений, тремором, ригидностью и потерей равновесия) и другими осложнениями, включая снижение когнитивных функций, психические расстройства, нарушения сна, боли и расстройства чувствительности

Число пациентов с БП (млн)

Зависимость распространенности от возраста

Болезнь Паркинсона

Брадикинезия

Ригидность

Тремор покоя

Постуральная неустойчивость

Диагностика болезни Паркинсона

Золотым стандартом постановки диагноза болезни Паркинсона при жизни больного является клинический метод. В качестве примера можно привести МРТ головного мозга.

Другим примером диагностики болезни Паркинсона является ТСКГ (транскраниальная сонография)

VASILENKO ROGAPOV MA

a A 0.31 cm2 C 2.51 cm

Биомедицинские датчики для диагностики болезни Паркинсона

Виды датчиков для диагностики болезни Паркинсона

Датчики движения

Акселерометр Электромиограф

Гироскоп GyroGear

Нейрофизиологические тесты и электроэнцефалография (ЭЭГ)

Электроэнцефалограф (ЭЭГ)

Система отслеживания позы и осанки

MC10 BioStamp RC

Система Computer Dyno Graphy (CDG)

Устройства биологической обратной связи (Biofeedback)

- Электромиограф (ЭМГ)
- Электроэнцефалограф (ЭЭГ)
- Электрокардиограф (ЭКГ)
- Плетизмограф
- Гальваническая кожная реакция (ГКР)
- Респираторные датчики
- Капнометр
- Реоэнцефалограф

Датчик MC10 BioStamp RC

Режим	Частота дискретизации (Гц)	Динамический диапазон	Максимальное время работы (в часах)	
Акселерометр	50, 100, 200	±2, ±4, ±8, ±16 G	8-35	
ЭКГ	ЭКГ 125, 250		17-35	
ЭМГ	250	±0.2 V	17	
Гироскоп + Акселерометр	25, 50, 100, 250	±2, ±4, ±8, ±16 G (ускорение); ±250, ±500, ±1000,	2-4	
		±2000 °/сек (гироскоп)		

Датчик Computer Dyno Graphy

Классическое машинное обучение

Графики сигнала с акселерометров

Здоровый

Болезнь Паркинсона

В вектор признаков (ВП) можно включить СКО сигнала, средние интервалы между пиками, характеристики спектра Выборка — 29 пациентов.

Методы формирования вектор признаков. Классификаторы

Методы формирования ВП

- 1. BΠ: [STD_X, STD_Y, STD_Z]*[ch, lh, ll, rh, rl]
- ΒΠ: [MEAN_PEAKS_INTERVALS_X[:50],
 MEAN_PEAKS_INTERVALS_Y[:50],
 MEAN_PEAKS_INTERVALS_Z[:50]]*[ch, lh, ll, rh, rl]
- 3. BΠ: [MEAN_PEAKS_INTERVALS_XYZ]*[ch, lh, ll, rh, rl]
- 4. BΠ: [STD_XYZ, STD_SPECTRUM]*[ch, lh, ll, rh, rl]
- 5. BΠ: [STD_X, STD_Y, STD_Z, STD_SPECTRUM,

 MEAN_PEAKS_INTERVALS_XYZ]*[ch, lh, ll, rh, rl]
- 6. BΠ: [STD_X, STD_Y, STD_Z, STD_XYZ, STD_SPECTRUM,

 MEAN_PEAKS_INTERVALS_XYZ, MEAN_PEAKS_INTERVALS_X,

 MEAN_PEAKS_INTERVALS_Y, MEAN_PEAKS_INTERVALS_Z]*

 [ch, lh, ll, rh, rl]
- 7. BIT: [STD_X, STD_Y, STD_Z, STD _XYZ, STD_SPECTRUM, MEAN_PEAKS_INTERVALS_XYZ[:50], MEAN_PEAKS_INTERVALS_X[:50], MEAN_PEAKS_INTERVALS_Y[:50], MEAN_PEAKS_INTERVALS_Z[:50]]*[ch, lh, ll, rh, rl]

Применяемые классификаторы

- 1. Random Forest
- 2. Linear Discriminant Analysis
- 3. Logistic Regression
- XGBClassifier
- 5. Support Vector Machine

Обозначения:

STD_X, STD_Y, STD_Z - СКО сигнала по каждой из осей

STD _XYZ — СКО сигнала, рассчитанного по среднему геометрическому сигналов по трём осям (далее XYZ)

STD_SPECTRUM – CKO спектра сигнала XYZ

MEAN_PEAKS_INTERVALS_XYZ[:50] — средний временной интервал между пиками выше среднего сигнала

MEAN_PEAKS_INTERVALS_X[:50], MEAN_PEAKS_INTERVALS_Y[:50],

MEAN_PEAKS_INTERVALS_Z[:50]] — средний временной интервал между

пиками выше среднего сигнала по каждой из осей

Результаты применения алгоритмов на разных ВП. Лучшие результаты

Метод форм. ВП	Классификатор	Accuracy	Balanced accuracy	Precision	Recall	Fl	ROC-AUC score
1	XGBClassifier	0.75	0.73	0.67	0.67	0.67	0.73
2	Random Forest	0.75	0.73	0.67	0.67	0.67	0.73
	LDA	0.88	0.90	0.75	1.00	0.86	0.90
4	Random Forest	0.62	0.70	0.50	1.00	0.67	0.70
5	Random Forest	0.75	0.73	0.67	0.67	0.67	0.73
	LDA	0.62	0.70	0.50	1.00	0.67	0.70
	Logistic Regression	0.62	0.70	0.50	1.00	0.67	0.70
	XGBClassifier	0.75	0.73	0.67	0.67	0.67	0.73
6	Logistic Regression	0.75	0.80	0.60	1.00	0.75	0.80
	XGBClassifier	0.75	0.73	0.67	0.67	0.67	0.73
7	Random Forest	0.88	0.90	0.75	1.00	0.86	0.90
	Logistic Regression	0.75	0.80	0.6	1.00	0.75	0.80
	XGBClassifier	0.75	0.73	0.67	0.67	0.67	0.73

Результаты применения кросс-валидации на ВП №5

Классификатор	Кол-во фолдов	Accuracy	Balanced accuracy	Precision	Recall	F1	ROC-AUC score
RandomForestClassifier	3	0,69	0,69	0,71	0,74	0,73	0,69
LinearDiscriminantAnalysis		0,55	0,54	0,57	0,68	0,61	0,54
LogisticRegression		0,59	0,57	0,6	0,62	0,57	0,57
XGBClassifier		0,56	0,56	0,59	0,58	0,58	0,56
SVC		0,55	0,5	0,55	1	0,71	0,5
RandomForestClassifier	4	0,56	0,55	0,62	0,62	0,62	0,55
LinearDiscriminantAnalysis		0,49	0,5	0,46	0,5	0,46	0,5
LogisticRegression		0,42	0,41	0,38	0,5	0,43	0,41
XGBClassifier		0,59	0,59	0,67	0,62	0,6	0,59
SVC		0,48	0,45	0,49	0,81	0,6	0,45
RandomForestClassifier	5	0,56	0,57	0,62	0,57	0,57	0,57
LinearDiscriminantAnalysis		0,37	0,36	0,36	0,42	0,38	0,36
LogisticRegression		0,46	0,43	0,43	0,53	0,47	0,43
XGBClassifier		0,55	0,53	0,56	0,67	0,6	0,53
SVC		0,52	0,47	0,53	0,93	0,68	0,47
RandomForestClassifier	6	0,62	0,64	0,67	0,64	0,59	0,64
LinearDiscriminantAnalysis		0,43	0,46	0,48	0,42	0,4	0,46
LogisticRegression		0,39	0,4	0,36	0,47	0,4	0,4
XGBClassifier		0,47	0,49	0,4	0,5	0,43	0,49
SVC		0,45	0,42	0,49	0,83	0,61	0,42

Результаты применения кросс-валидации на ВП №7

Классификатор	Кол-во фолдов	Accuracy	Balanced accuracy	Precision	Recall	F1	ROC-AUC score
RandomForestClassifier	3	0,73	0,73	0,74	0,76	0,75	0,73
LinearDiscriminantAnalysis		0,49	0,5	0,58	0,38	0,45	0,5
LogisticRegression		0,39	0,38	0,38	0,46	0,4	0,38
XGBClassifier		0,63	0,63	0,68	0,63	0,65	0,63
SVC		0,55	0,5	0,55	1	0,71	0,5
RandomForestClassifier	4	0,69	0,7	0,82	0,69	0,68	0,7
LinearDiscriminantAnalysis		0,49	0,5	0,46	0,38	0,41	0,5
LogisticRegression		0,48	0,47	0,45	0,62	0,52	0,47
XGBClassifier		0,62	0,64	0,79	0,62	0,62	0,64
SVC		0,48	0,45	0,49	0,81	0,6	0,45
RandomForestClassifier	5	0,73	0,72	0,76	0,73	0,74	0,72
LinearDiscriminantAnalysis		0,53	0,52	0,5	0,48	0,48	0,52
LogisticRegression		0,56	0,53	0,41	0,6	0,48	0,53
XGBClassifier		0,62	0,62	0,69	0,67	0,62	0,62
SVC		0,52	0,47	0,53	0,93	0,68	0,47
RandomForestClassifier	6	0,69	0,69	0,76	0,69	0,7	0,69
LinearDiscriminantAnalysis		0,52	0,53	0,61	0,53	0,54	0,53
LogisticRegression		0,46	0,5	0,3	0,5	0,37	0,5
XGBClassifier		0,52	0,54	0,47	0,5	0,43	0,54
SVC		0,45	0,42	0,49	0,83	0,61	0,42

Глубокое обучение

Отбор признаков

Оценка метрик качества

Metric	value
accuracy	0.7
precision	0.75
recall	0.71
specificity	0.69
01	0.13
O2	0.29
ROC-AUC	0.8

Выводы

- 1. Методы классического машинного обучения позволяют провести классификацию здоровый/больной. Наилучшая полученная точность 0,88 (классификатор LDA, ВП №2; классификатор Random Forest, ВП №7).
- 2. Полученные векторы признаков не позволяют получать стабильные результаты обучения моделей при использовании кросс-валидации. В зависимости от выбора тестовой части выборки итоговый результат, метрики модели, сильно меняется, что демонстрируют заниженные результаты метрик при усреднении всех результат при использовании кросс-валидации.
- 3. Использование метода главных компонент для уменьшения размерности ВП ухудшило итоговые метрики.

Возможные направления развития работы:

- 1. Применение предобработки данных, фильтрация. Оценка влияния предобработки на получаемые результаты.
- 2. Комбинация данных различных функциональных проб при проведении классификации (использование данных с акселерометра не только при совершении походки).

Кластер «Инженерия в науках о жизни»

Вместе к улучшению качества жизни!

Факультет «Биомедицинская техника»

Ильенкова Дарья, Рыбников Демьян, Швецов Антон, Башкиров Иван, Гущенко Александра, Гущенко Антон, Наумов Михаил