Reconocimiento de patrones

Clase 7: Clasificación por medio de funciones de distancia

Para el día de hoy...

- Introducción
- Clasificación de distancia mínima
 - Prototipo único
 - Múltiples prototipos

Introducción

- Si un patrón es representado por un vector en \mathbb{R}^n el decir que x e y son similares significa que los dos vectores están "cerca"
- La distancia entre ellos es "pequeña"
- Si las clases pueden ser representadas por un prototipo o varios, los métodos basados en distancia pueden ser eficientes

Clasificación de distancia mínima

1

Es uno de los primeros conceptos en reconocimiento de patrones

2

Es una técnica efectiva cuando los patrones tienen limitada variabilidad

Prototipo único

- Sean $C_1, ..., C_m$ m clases en \mathbb{R}^n representadas por un prototipo único $y_1, ..., y_m$ respectivamente.
- Las distancias entre un nuevo patrón y un prototipo es

$$D_i = ||x - y_i|| = ((x - y_i)^T (x - y_i))^{\frac{1}{2}}, 1 \le i \le m$$

• Un clasificador de distancia mínima clasificará a x en \mathcal{C}_j tal que

$$D_j = \min ||x - y_j||$$

Un poco de manipulación

- Es preferible minimizar D_i^2 $D_i^2 = (x - y_i)^T (x - y_i) = x^T x - 2x^T y_i + y_i^T y_i$
- ¿Por qué?

Un poco de manipulación

• Es preferible minimizar D_i^2 $D_i^2 = (x - y_i)^T (x - y_i) = x^T x - 2x^T y_i + y_i^T y_i$

Un poco de manipulación

• Es preferible minimizar D_i^2

$$D_i^2 = (x - y_i)^T (x - y_i) = x^T x - 2x^T y_i + y_i^T y_i$$

• x^Tx es constante y lo podemos eliminar. Entonces podemos utilizar

$$2x^{T}y_{i} - y_{i}^{T}y_{i}, 1 \leq i \leq m$$

La función de decisión

• Podemos definir la función de decisión como

$$d_i(x) = x^T y_i - \frac{1}{2} y_i^T y_i, 1 \le i \le m$$

- $x \in C_i$ si y solo si $d_i(x) > d_j(x), j \neq i$
- La función de decisión lineal

$$d_i(x) = w_i^T x, 1 \le i \le m$$

• Donde $x = (1, x_1, ... x_n)^T$, $w_i = (w_{i0}, w_{i1}, w_{i2}, ..., w_{in})^T$ son determinados por $y_i = (y_{i1}, ..., y_{in})^T$, $1 \le i \le m$ como

$$w_{ij} = y_{ij}, 1 \le i \le m, 1 \le j \le n$$

 $w_{i0} = -\frac{1}{2}y_i^T y_i, 1 \le i \le m$

Ejercicio

 Calcule la función de decisión del clasificador de distancia mínima para el caso de dos patrones en dos dimensiones donde solo hay dos clases.

Solución

• Calcule la función de decisión del clasificador de distancia mínima para el caso de dos patrones

$$d_{12}(x) = d_1(x) - d_2(x)$$

= $x^T (y_1 - y_2) - \frac{1}{2} y_1^T y_1 + \frac{1}{2} y_2^T y_2 = 0$

• Sustituyendo $x = \frac{y_1 + y_2}{2}$

$$d_{12}(x) = \frac{1}{2}(y_1 + y_2)^T(y_1 - y_2) - \frac{1}{2}y_1^Ty_1 + \frac{1}{2}y_2^Ty_2 = 0$$

Múltiples prototipos

- Ahora, cada clase tiene varios grupos
- Cada grupo es representado por un prototipo
- Entonces, cada clase puede ser caracterizada por un conjunto finito de prototipos
- Ejemplo
 - $C_1 = \{y_1, y_2\}$
 - $C_2 = \{y_3, y_4, y_5\}$

Clasificador de distancia mínima

- Sean C_1,\ldots,C_m varias clases con múltiples prototipos y C_i incluye los prototipos $y_i^{(i)},\ldots,y_i^{(n_i)}$ para $1\leq i\leq m$
- La distancia de un patrón z a C_i se define como

$$D_i = \min_{1 \le j \le n_i} \left\| z - y_i^{(j)} \right\|$$

• El máximo ocurre en j = j(i, z). La función de decisión para z es

$$d_i(z) = z^T \left(y_i^{\left(j(i,z) \right)} \right) - \frac{1}{2} \left(y_i^{\left(j(i,z) \right)} \right)^T y_i^{\left(j(i,z) \right)}, 1 \le i \le m$$

• z es clasificado en C_i si y solo si $d_i(z) > d_j(z)$, para todo $j \neq i$

Ejercicio

- Considere el problema de tres clases en \mathbb{R}^2 donde las clases están representadas por:
 - C_1 : (1,0), (1,1)
 - C_2 : (0,1), (3,1)
 - C_3 : (1,2), (0,0), (-1,1)
- Clasifique el patrón z = (1, -1)

Solución

$$y_3^{(3)}$$
 $y_2^{(1)}$ $y_1^{(2)}$ $y_2^{(2)}$ $y_2^{(2)}$ $y_2^{(2)}$ $y_1^{(2)}$ $y_1^{(2)}$ $y_1^{(1)}$ $y_1^{(1)}$ $y_1^{(2)}$

$$j(1,z) = 1$$
 , $\mathbf{y}_{1}^{(j(1,z))} = (1,0)^{T}$
 $j(2,z) = 1$, $\mathbf{y}_{2}^{(j(2,z))} = (0,1)^{T}$
 $j(3,z) = 2$, $\mathbf{y}_{3}^{(j(3,z))} = (0,0)^{T}$

$$d_1(\mathbf{x}) = (x_1, x_2)(1,0)^T - (1,0)(1,0)^T = x_1 - \frac{1}{2}$$

$$d_2(\mathbf{x}) = (x_1, x_2)(0,1)^T - (0,1)(0,1)^T = x_2 - \frac{1}{2}$$

$$d_3(\mathbf{x}) = (x_1, x_2)(0,0)^T - (0,0)(0,0)^T = 0$$

$$d_{12}(\mathbf{x}) = d_1(\mathbf{x}) - d_2(\mathbf{x}) = x_1 - x_2 = 0$$

$$d_{23}(\mathbf{x}) = d_2(\mathbf{x}) - d_3(\mathbf{x}) = x_2 - \frac{1}{2} = 0$$

$$d_{31}(\mathbf{x}) = d_3(\mathbf{x}) - d_1(\mathbf{x}) = \frac{1}{2} - x_1 = 0$$

$$z \in C_1$$

Algoritmo MC-MP

- Entrada: n el número de dimensiones, m el número de clases, n_i el número de prototipos, $\{y_i^{(j)}\}$ los prototipos, x una nueva observación
- Salida: k la clase en la cual se clasifica a x
- Paso 1:
 - Para i = 1, ..., m encontrar j(i, x) tal que

•
$$x^T y_i^{(j(i,x))} - \frac{1}{2} (y_i^{(j(i,x))})^T y_i^{(j(i,x))} = \max_{1 \le j \le n_i} [x^T y_i^{(j)} - \frac{1}{2} (y_i^{(j)^T} y_i^{(j)})]$$

- Paso 2:
 - Encontrar k que satisfaga

•
$$x^T y_k^{(j_k)} - \frac{1}{2} (y_k^{(j_k)})^T y_k^{(j_k)} = \max_{1 \le i \le m} [x^T y_i^{(j_i)} - \frac{1}{2} (y_i^{(j_i)})^T y_i^{(j_i)}] \text{ donde } j_i = j(i, x)$$

Notas

- ¿Es correcto?
- ¿Complejidad en tiempo?
- ¿Complejidad en espacio?
- ¿Existen regiones indeterminadas?

Clasificador multiprototipo

- Dado un conjunto de clases \mathcal{C}_i con un conjunto de prototipos y_j
- Dado un nuevo ejemplo x
 - Calculamos el prototipo más cercano de cada clase
 - Asignamos x a la clase que tenga el prototipo más cercano a x
- ¿Cómo elegimos los prototipos de cada clase?

Para la otra vez...

- Clasificador de vecino más cercano
- Ref
 - Julius T. Tou y Rafael C. Gonzalez
 - Pág. 75-83

