Diszkrét matematika 1.

4. gyakorlat

- 1. Mutassa meg, hogy az $\frac{1}{7}$ szakaszos tizedestört alakba írható!
- **2.** Adja meg az alábbi raconális számok tizedestört alakját! A felsoroltak közül melyik írható fel véges tizedestörtként?

$$\frac{3}{7}$$
, $\frac{5}{16}$, $\frac{1}{15}$, $\frac{3}{15}$, $\frac{8}{9}$, $\frac{13}{11}$, $\frac{5}{6}$, $\frac{7}{25}$, $\frac{3}{20}$.

3. Írja fel az alábbi tizedestört alakban megadott racionális számokat két egész szám hányadosaként!

$$2.375;$$
 $1.06;$ $1.\dot{8};$ $0.2\dot{7};$ $0.\dot{9};$ $1.2\dot{9};$ $4.23\dot{4};$ $0.\dot{8}\dot{1};$ $0.\dot{1}\dot{6}\dot{7};$ $0.02\dot{9}\dot{0};$ $0.\dot{0}\dot{5}\dot{4};$ $0.\dot{6}\dot{1}\dot{5}\dot{3}\dot{8}\dot{4};$ $0.0\dot{5}\dot{7}\dot{1}\dot{4}\dot{2}\dot{8}.$

4. Határozza meg a valós számok legbővebb részhalmazát, ahol az alábbi függvény értelmezhető! Adja meg az ezen értelmezési tartományhoz tartozó értékkészletet!

(a)
$$f(x) = (x+2)^2 - 1$$
, (e) $f(x) = \sqrt[3]{(x-8)}$, (j) $f(x) = \lg(1+x)$,
(b) $f(x) = \frac{1}{x+2}$, (f) $f(x) = \sqrt[4]{(1+x)}$, (k) $f(x) = \log_2(2-x)$,
(c) $f(x) = \frac{x-3}{2x+4}$, (g) $f(x) = x^{-3/2}$, (l) $f(x) = \sqrt{1+\ln x}$,
(d) $f(x) = \frac{x^2-1}{x+1}$, (i) $f(x) = \frac{1}{1+e^{-2x}}$, (m) $f(x) = 3^{\log_3(2x)}$.

5. Hozza egyszerűbb alakra az alábbi kifejezéseket!

(a)
$$\sqrt[3]{\frac{(a^3b)^2}{ab^2}}a^7$$
, $a, b \neq 0$,
(b) $\frac{\left(a^{\frac{1}{2}}b^{\frac{2}{3}}\right)^{-\frac{3}{4}}\left(a^{\frac{1}{3}}b^{\frac{1}{4}}\right)^2}{a^{\frac{1}{4}}a^{\frac{1}{4}}}$, $a, b \geq 0$

(b)
$$\frac{\left(a^{\frac{1}{2}}b^{\frac{2}{3}}\right)^{-\frac{3}{4}}\left(a^{\frac{1}{3}}b^{\frac{1}{4}}\right)^{2}}{\left(a^{\frac{1}{12}}\right)^{-\frac{1}{2}}}, \quad a, b > 0,$$

(c)
$$\sqrt[3]{b^{6-\log_b 8}}$$
, $b > 0, b \neq 1$,

(d)
$$19^{1+\frac{1}{2}\log_{19}36}$$
,

(e)
$$\frac{1}{2}\log_3 45 + \log_3 \sqrt{20} - \log_3 30 + \log_3 6 - \log_3 2$$
,

- (f) $2^{\log_8 a}$, a > 0,
- (g) $2^{-3+\lg 8} \cdot 5^{1+\lg 8}$.

6. Mely valós számok esetén igaz az alábbi egyenlőtlenség?

(a)
$$\log_3(3x-2) > 0$$
,

(b)
$$\log_2(x+3) > \log_2 2x$$
,

(c)
$$\log_{\frac{1}{2}}(2+x) > 1$$
,

(d)
$$\log_2 x - \log_4 x < 0$$
,

(e)
$$3^{x-4} < 1$$
,

(f)
$$2^{2x+3} - 4 \cdot 2^{x-1} > 0$$
,

(g)
$$\left(\frac{2}{3}\right)^{x+1} - \frac{3}{2} \cdot \left(\frac{2}{3}\right)^{2x-1} \ge 0$$
,

(h)
$$2^{8x-12} + 5^{\frac{3}{4}+x} + \left(\frac{1}{3}\right)^{x-6} > 0$$
,

(i)
$$\left(\frac{1}{2}\right)^{\lg(2x-1)} < 2^{\lg\left(\frac{1}{x}\right)}$$
.

7. Oldja meg a valós számok halmazán az alábbi egyenleteket!

(a)
$$10 \cdot 2^x = 4^x + 16$$
,

(d)
$$\lg(4-x) = \lg 4 - \lg x$$
,

(b)
$$2^x + 3^{x-2} = 3^x - 2^{x+1}$$
,

(e)
$$\log_4 x - \log_{0.25} x = 4$$
,

(c)
$$x^{\lg x} = 1000x^2$$
,

(f)
$$\log_2 x - 2\log_4 x = 3\log_8 x + 1$$
.