Write your name:	
Write your student number:	

Exam

1. Nonconvex function. (3 points) One of the following functions $f: \mathbf{R} \to \mathbf{R}$ is <u>not</u> convex:

(A)
$$f(x) = (x^2 - x)_+ - x$$

(B)
$$f(x) = -((x_+))^2 + x^2 + x$$

(C)
$$f(x) = (x - x_+)^2 - x$$

(D)
$$f(x) = ((x_+))^2 - x^2 + x$$

(E)
$$f(x) = x_+ + x^2 - x$$

(F)
$$f(x) = (x + x_+)^2 - (x_+)^2$$

Which one?

Write your answer (A, B, C, D, E, or F) here:

2. Least-squares. (2 points) Consider the following six optimization problems:

(A)
$$\underset{x \in \mathbf{R}^n}{\text{minimize}} \quad \|A(c+x) - b\|_2^2 + \rho \|x\|_2^2$$

(B)
$$\min_{x \in \mathbf{R}^n} \|Ax - (Bx + b)\|_2^2 + \rho \|x - c\|_2^2$$

(C)
$$\min_{x \in \mathbf{R}^n} \|Ax\|_2^2 + \rho \|(B(x-c) + b)\|_2^2$$

(D)
$$\min_{x \in \mathbf{R}^n} \|(Ax - b) + \rho(Bx)\|_2^2 + \|x - c\|_2^2$$

(E)
$$\underset{x \in \mathbf{R}^n}{\text{minimize}} \quad (\|Ax - b\|_2 + \rho \|Bx\|_2)^2 + \|x - c\|_2^2$$

(F)
$$\underset{x \in \mathbf{R}^n}{\text{minimize}} \quad (Ax + Bx - b)^T (Ax + Bx - b) + \rho x^T x$$

In each of the six problems above, the variable to optimize is $x \in \mathbf{R}^n$. The matrices A and B, and the vector c are given. The scalar ρ is also given and is positive: $\rho > 0$.

One of the optimization problems above is **not** a least-squares problem.

Which one?

Write your answer (A, B, C, D, E, or F) here:

3. Optimal value of a constrained problem. (3 points) Consider the constrained problem

minimize
$$\underbrace{\frac{1}{2} \sum_{n=1}^{N} x_n^T R_n x_n}_{f(x_1, \dots, x_N)}$$
 subject to
$$\underbrace{x_1 + \dots + x_N = s}_{s, t}$$
,

where the variable to optimize is (x_1, \ldots, x_N) , with $x_n \in \mathbf{R}^d$ for $1 \leq n \leq N$. The matrices $R_n \in \mathbf{R}^{d \times d}$ are given for $1 \leq n \leq N$. Assume that each R_n is a symmetric, positive-definite matrix. The vector $s \in \mathbf{R}^d$ is also given.

One of the following expressions is the minimum value that f attains over the feasible set, that is, one of the following expressions is the number $\min\{f(x_1,\ldots,x_N)\colon x_1+\cdots+x_N=s\}$:

(A)
$$\frac{1}{2}s^T (R_1 + \dots + R_N) s$$

(B)
$$\frac{1}{2}s^T \left(R_1^{-1} + \dots + R_N^{-1}\right)^{-1} s$$

(C)
$$\frac{1}{2}s^T \left(R_1^{-2} + \dots + R_N^{-2}\right)^{-1} s$$

(D)
$$\frac{1}{2}s^T \left(R_1^{-1} + \dots + R_N^{-1}\right)s$$

(E)
$$\frac{1}{2}s^T (R_1 + \dots + R_N)^{-1} s$$

(F)
$$\frac{1}{2}s^T (R_1^2 + \dots + R_N^2) s$$

Which one?

Write your answer (A, B, C, D, E, or F) here:

4. Sparse linear regression with asymmetric loss. (4 points) Consider the optimization problem

$$\underset{s \in \mathbf{R}^{n}, r \in \mathbf{R}}{\text{minimize}} \quad \underbrace{\sum_{k=1}^{K} \alpha \left((s^{T} x_{k} + r - y_{k})_{-} \right)^{2} + \beta \left((s^{T} x_{k} + r - y_{k})_{+} \right)^{2} + \rho \|s\|_{1}}_{f(s,r)},$$

where the variable to optimize is $(s,r) \in \mathbf{R}^n \times \mathbf{R}$. The vectors $x_k \in \mathbf{R}^n$ and the scalars $y_k \in \mathbf{R}$ are given for $1 \le k \le K$. The scalars α , β , and ρ are given and denote positive constants: $\alpha > 0$, $\beta > 0$, and $\rho > 0$. The functions $(\cdot)_-$ and $(\cdot)_+$ are defined as $(z)_- = \max\{-z, 0\}$ and $(z)_+ = \max\{z, 0\}$ for $z \in \mathbf{R}$.

Show that the function f is convex.

5. A simple control problem. (4 points) Consider the optimization problem

where the variables to optimize are $x_t \in \mathbf{R}^n$ for $1 \leq t \leq T$ and $u_t \in \mathbf{R}^p$ for $1 \leq t \leq T - 1$. The vector $x_{\text{initial}} \in \mathbf{R}^n$ and the matrices $D_t \in \mathbf{R}^{n \times p}$ are given for $1 \leq t \leq T - 1$. The scalar ρ is also given and denotes a positive constant: $\rho > 0$.

Give a closed-form solution for the optimal $\{u_t : 1 \le t \le T - 1\}$.

6. Moureau envelope. (4 points) Let $f: \mathbf{R} \to \mathbf{R}$ be a convex function. For $\lambda > 0$, we define a function $e_{\lambda}[f]: \mathbf{R} \to \mathbf{R}$ as follows: for $x \in \mathbf{R}$, the image of x under the function $e_{\lambda}[f]$ is the number $\min\{f(u) + \frac{1}{2\lambda}(u-x)^2 : u \in \mathbf{R}\}$.

That is, the function $e_{\lambda}[f]$ maps each number x to the number $e_{\lambda}[f](x)$, where $e_{\lambda}[f](x)$ is the minimum value attained by $f(u) + \frac{1}{2\lambda}(u-x)^2$ as u varies in \mathbf{R} .

Let $\lambda_1 > 0$ and $\lambda_2 > 0$. Show that

$$e_{\lambda_1}[e_{\lambda_2}[f]](x) = e_{\lambda_1 + \lambda_2}[f](x),$$

for each $x \in \mathbf{R}$.

CHATTASTIMITAS

(Instituto Superior Tecnico) -Solution of the exam -

Problem 1

Problem 2

Problem 3

Problem 4

• Note that
$$f(s,r) = \sum_{k=1}^{K} \phi(s^{T}x_{k} + r - y_{k}) + p \|s\|_{1}$$

$$f_{2}(s,r) \qquad f_{3}(s,r)$$

where \$: 1R → 1R, \$ (21 = x (2-)2 + B (2+)2.

• The function
$$\phi$$
 is convex. This can be seen directly from its graph:
$$\phi(z) = \begin{cases} \alpha z^2 & \text{if } z \ge 0 \\ \beta z^2 & \text{if } z \le 0 \end{cases}$$

. The function f_k: R^h×R→R, f_k(sr) = φ(s⁷x_k+r-y_k), can be decomposed as

where &: R^XR-0 IR, g_ (5,r)= 5xx+r-yx.

Becouse g_ is affine and \$\phi\$ is convex, we conclude that fx

. The function for RMXR-DIR, for (s,r) = 11811, can be decomposed as

where p: R"xIR - 12", p(s) = 3, and q: 12" - 12", q(2)=11211,.

Because p is an affine map and q is a (well-known) convex function, we conclude that fo is convex.

. Finally, f = fit-+fk+pfo, being a linear combination with monnegative weights of convex functions, is itself convex.

Problem 5

The constraints $\begin{cases} x_1 = x_{initial} \\ x_{t+1} = x_t + D_t u_t \end{cases}$ for $1 \le t \le T-1$

Thus, our problem can be written as

minimize 1/2 || xinitial + Duit---+Divill2 + P > | nut ||2,

ui,-, ui-1

where $D = [D, D_2 \cdots D_{T-1}]$ and $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$.

Because f is differentiable, its global minimizer, say us, is the point satisfying Tf(u+1=0 => DT (xm+101 + Du+) + pu+ =0

imply x7 = x10, +== + D, N, + --- + D-47-1.

The last step is valid because DD+pI is invertible; indeed, it is a positive-definite

metra: for v+0, we have

$$\sqrt{1} \left(D^T D_{+p} I \right) v = \frac{||D_v||^2}{20} + \frac{||D_v||^2}{20} > 0$$

Problem 6 Let x be fixed.

= min
$$\left\{ f(v) + \frac{1}{2\lambda_2}(v-u)^2 : v \in \mathbb{R}^{\frac{1}{2}} + \frac{1}{2\lambda_1}(u-x)^2 : u \in \mathbb{R}^{\frac{1}{2}} \right\}$$

= min {
$$f(v) + \frac{1}{2\lambda_1}(u-x)^2 + \frac{1}{2\lambda_2}(v-u)^2 : u,v \in \mathbb{R}$$
}

= min
$$\left\{ f(v) + \frac{1}{2(\lambda_1 + \lambda_2)} (v - x)^2 : v \in \mathbb{R} \right\}$$

Proof that man
$$\left\{\frac{1}{2\lambda_1}(u-x)^2 + \frac{1}{2\lambda_2}(v-u)^2 : u \in \mathbb{R}^n\right\} = \frac{1}{2(x_1+\lambda_2)}(v-x)^2$$

• Let
$$\phi(u) = \frac{1}{2\lambda_1} (u-x)^2 + \frac{1}{2\lambda_2} (v-u)^2$$
, which is a strongly convex function

· Its global minimizer, say ut, can be found by solving
$$\phi(u^{at})=0$$
:

$$\phi(u^q) = 0 \implies \frac{u^q - x}{\lambda_1} + \frac{u^q - y}{\lambda_2} = 0$$

$$\Rightarrow u^{\frac{1}{2}} = \frac{\lambda_1^{-1} \times + \lambda_2^{-1} \vee \dots}{\lambda_1^{-1} + \lambda_2^{-1}}$$

$$= \int_{2} \lambda_{1}^{-1} (u^{*} - x)^{2} + \int_{2} \lambda_{2}^{-1} (u^{*} - v)^{2}$$

$$= I_{12} \lambda_{1}^{-1} \left(\frac{\lambda_{2}^{-1} (v - x)}{\lambda_{1}^{-1} + \lambda_{2}^{-1}} \right)^{2} + I_{12} \lambda_{2}^{-1} \left(\frac{\lambda_{1}^{-1} (x - v)}{\lambda_{1}^{-1} + \lambda_{2}^{-1}} \right)^{2}$$

$$= I_{12} \frac{\lambda_{1}^{-1} \lambda_{2}^{-2} + \lambda_{2}^{-1} \lambda_{1}^{-2}}{(\lambda_{1}^{-1} + \lambda_{2}^{-1})^{2}} (v - x)^{2}$$

$$= \frac{1}{2} \frac{(\lambda_1^{-1} + \lambda_2^{-1})^2}{(\lambda_1^{-1} + \lambda_2^{-1})^2} (v_- x)^2$$

$$= \frac{1}{2} \frac{\lambda_1^{-1} \lambda_2^{-1} (\lambda_1^{-1} + \lambda_2^{-1})^{2}}{(\lambda_1^{-1} + \lambda_2^{-1})^{2}} (v - x)^{2}$$

$$= \frac{1}{2} \frac{\lambda_1^{-1} \lambda_2^{-1} (\lambda_1^{-1} + \lambda_2^{-1})}{(\lambda_1^{-1} + \lambda_2^{-1})^2} (v_0 x)$$

= 1/2 = 1 = (v-x)2