

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004 Contact No.: +91-175-2393201

Email: info@thapar.edu

Materials Based on electrical resistivity

Resistivity range in Ohm m ⇒ 25 orders of magnitude

Metallic materials

Semi-conductors

10-9		10-7	10-5		10-3		10-1		10-1	10^3	
Ag Cu Au	Al	Ni Pb	Sb E	Bi raphite	(d	Ge loped)	G	e		Si	

Insulators

105	107	109	1011	10 ¹³	10 ¹⁵	10 ¹⁷
Window glass Ionic conductiv ity		Bakelite	Porcelain Diamond Rubber Polyethyl ene	Lucite	PVC	SiO ₂ (pure)

Class of insulators which polarizes on application of electric field

- Difficult to excite electrons from valence to conduction band by thermal means or by applied electric field.
- Very poor conductor of electricity.
- Exhibits or may be made to exhibit an electric dipole structure;
- Separation of positive and negative charged entities on a molecular/ atomic level.

Capacitance

When a voltage is applied across a capacitor, one plate becomes positively charged, the other negatively charged, with the corresponding electric field directed from the positive to the negative.

$$C = \frac{Q}{V}$$

For a parallel plate with area A and distance t, in vacuum, C is given by

$$C_0 = \frac{\varepsilon_0 A}{t}$$

$$\varepsilon_0 = 8.85 \text{x} 10^{-12} \text{ F/m}$$

Relative permittivity of a free space

For a given dielectric material with plates having area A and thickness t, C is given by

$$C = \frac{\varepsilon A}{t}$$

ε - Relative permittivity of a medium

The relative permittivity ϵ_r , often called the dielectric constant, is equal to the ratio

$$\varepsilon_{r} = \frac{\varepsilon}{\varepsilon_{0}} = \frac{C}{C_{0}}$$

Dielectric constant - Charge storage capacity of the material

Polarization

Electric dipole, there is a separation between a + ve and a - ve electric charge.

Electric dipole moment p = q.d

No electric field

In presence of an electric field

In presence of an electric field E, there will be a force (or torque) on the electric dipole to orient it with the applied field;

The process of dipole alignment is termed Polarization.

Polarization

Polarization is total dipole moment per unit volume

Polarization electric field within the dielectric that results from the mutual alignment of the many atomic or molecular dipoles with the externally applied field *E*.

For many dielectric materials, P is proportional to E through the relationship

$$P = \varepsilon_0 (\varepsilon_r - 1)E$$

For many practical applications AC field is necessary

So, Dipoles has to reorient with the field

How much time does it take?

- For each polarization type, some minimum reorientation time exists.
- This time depends on the ease with which the particular dipoles are capable of realignment.
- This time is called as relaxation time.

$$P(t) = P_0 [1 - e^{-t/t_r}]$$

 P_0 = Maximum polarization attained on prolonged application of a static field.

P(t) = Polarization attained in time t.

 t_r = relaxation time.

Relaxation frequency = Reciprocal of the relaxation time.

Dielectric loss/Power loss

Absorption of electrical energy by a dielectric material that is subjected to an alternating electric field.

Dielectric loss is the dissipation of energy through the movement of charges in an alternating electromagnetic field as polarization switches direction.

The dipoles could not follow the AC field and get relaxed or lose energy to become stable.

A dielectric material can have more than one polarizations present

- 1. Electronic polarization (P_e)
- 2. Ionic polarization (P_i)
- 3. Orientation/Dipolar polarization (P_o)
- 4. Space charge polarization (P_s)

The total polarization P of a substance is equal to sum of all types of polarizations

$$P = P_e + P_i + P_o + P_s$$

1. Electronic polarization

- 1. May be induced to one degree or another in all atoms.
- 2. Results from a displacement of the center of the negatively charged electron cloud relative to the positive nucleus of an atom by applied field.
- 3. Present in all dielectric materials and only when an electric field is applied.
- 4. Independent of temperature.
- 5. Relaxation frequency: ~ 10¹⁵ Hz.

2. Ionic polarization

- 1. Occurs only in ionic materials.
- 2. Cations & anions are displaced in opposite direction due to field.
- 3. Magnitude of dipole moment for each ion pair.
 - $p_i = qd_i$; d_i is relative displacement
- 4. Independent of temperature.
- 5. Relaxation frequency: $\sim 10^{13}$ Hz.

3. Orientation/Dipolar polarization

- 1. Found only in materials with permanent dipole moments.
- 2. Results from a rotation of the permanent moments into the direction of the applied field.
- 3. This alignment tendency is counteracted by the thermal vibrations of the atoms, such that polarization decreases with increasing temperature.
- 4. Relaxation frequency: ~ 10¹⁰ Hz.

4. Space charge polarization

- Occurs due to accumulation of charges at electrodes, grain boundaries or at interfaces in a multiphase materials.
- Ions diffuse over appreciable distance in response to the applied electric field → redistribution of charges in the dielectric medium.
- 3. Increases with temperature.
- 4. Relaxation frequency: $\sim 10^2$ Hz.

Dielectric polarization vs frequency

The polarization decreases with frequency

Dielectric field strength

Upper limit of the applied electric field

When very high electric fields are applied across dielectric materials, large numbers of electrons gets excited to energies within the conduction band.

As a result

- 1. The current increases through the dielectric dramatically
- 2. Localized melting,
- 3. burning,
- 4. or vaporization

This causes irreversible degradation and even failure of the material.

This phenomenon is known as dielectric breakdown.

The dielectric strength, sometimes called the breakdown strength, represents the magnitude of an electric field necessary to produce breakdown.

Selected dielectric materials

Material	8	ε_r	tan δ ,	Dielectic	
Matchai	60 Hz	10^6 Hz	10^6 Hz	strength,	
				10^6 V m^{-1}	
Electrical porcelain	6	6	0.02	5	
Steatite, MgO·SiO ₂	6	6	0.001	12	
Fused silica	4	3.8	0.0001	10	
Soda-lime-glass	7	7	0.005	10	
Mica	8	5	0.0005	100	
Nylon 6, 6	4	3.5	0.02	15	
Polyethylene	2.3	2.3	0.0004	4	
Polyvinylchloride	7	3.4	0.05	2	
(plasticized)					
Vulcanized rubber	4	2.7	0.003	25	
Bakelite	4.4	4.4	0.028	15	
Transformer oil	5	2.5	0.0001	10	

Summary

- 1. Dielectric materials are a class of insulator which gets polarizes on application of electric field.
- 2. Dielectric constant represents charge storage ability of the material.
- 3. Dipoles cannot reorient with applied AC field and lose some energy called as polarization loss.
- 4. Electronic polarization is fast while space charge polarization is slow.
- 5. Dielectric field strength is the ability to sustain electric field.

