

Master's Thesis

DATA ANALYSIS: CLUSTERING OF ELECTRICITY CONSUMPTION PROFILES

July 2015

Student: Josep Otal

Academic Supervisor: Salvatore Manco'

Company supervisor: Pep Salas

OUTLINE

- 1. OVERALL INTRODUCTION
- 2. ENERBYTE
- 3. CASE OF STUDY: ELECTRICITY LOAD PROFILES CLUSTERING
 - 3.1. Introduction
 - 3.2. Objectives
 - 3.3. Methodology
 - 3.4. Collection and cleaning the data
 - 3.5. Customer segmentation by load profiles
 - 3.5.1. Pre-clustering: input data processing
 - 3.5.2. Clustering: Hierarchical, K-means, SOM
 - 3.5.3. Post-clustering
 - 3.6. Results
- 4. FINAL CONCLUSIONS

1. OVERALL INTRODUCTION

2. ENERBYTE

Small Energy Consumers

Residential

ELECTRIC UTILITIES 10.000 citizens

CITIES
1.500 citizens

ELECTRIC DATA COLLECTION

Utility Smart meter Submetering device

CASE OF STUDY:

ELECTRICITY LOAD PROFILES CLUSTERING

3.1. INTRODUCTION

RUBÍ BRILLA PROJECT

- > PUBLIC, PRIVATE, PEOPLE
- > RESIDENTIAL (SERVICE TO CITIZEN)
- > SOFTWARE AND HARDWARE

CONSUMER BEHAVIOUR

- ENERGY EFFICIENY RECOMMENDATIONS
- DEMAND RESPONSE
- > SAVINGS 10%

DATA ANALYTICS "R"

- LARGE AMOUNT OF DATA GENERATED
- DATA MINING AND ANALYTICS
- PROGRAMMING LANGUAGES

3.2. OBJECTIVES

DATA EXPLORATION
AND VISUALIZATION

CONSUMERS
SEGMENTATION
BY LOAD PROFILE

PERSONALISED ENERGY
EFFICIENCY
RECOMMENDATIONS

HOUSEHOLD AND HOUSEHOLDERS CHARACTERISTICS

3.3. METHODOLOGY

ı

- DATA COLLECTION
- DATA CLEANING
- > DATA EXPLORATION AND VISUALIZATION

- PRE-CLUSTERING
- ➤ CLUSTERING: HIERARCHICAL, K-MEANS AND SOM
- POST-CLUSTERING

Ш

ANALYSE HOUSEHOLDS AND HOUSEHOLDERS DATA

3.4. DATA COLLECTION & CLEANING

ELECTRICITY CONSUMPTION DATA COLLECTION

- Sub-metering devices
- Small dataset 150 users
- Hourly measures (0-23h)
- Around 1 year period
- Missing values → Wi-Fi

> ELECTRICITY CONSUMPTION DATA CLEANING

- Discarded sub-meters
- ZEROS → Wi-Fi OFF
- FROZEN → Device issue

121 Valid users

	row.r	name	s idmeter	00:00	01:00	02:00	03:00	04:00	05:00	06:00	07:00	08:00	09:	00 10	:00 1	1:00	12:00	13:00	14:00	15:00	16
1	773	773 112695		9	0	0	0	0	0	0	0	0	0	0	e	9	0	0	0	0	0
2	774		112695	0	0	0	0	0	0	0	0	0	0	0	6	9	0	0	0	0	0
3	775		112695	0	0	0	0	0	0	0	0	0	0	0	6)	0	0	0	0	0
4	776		112695	9	9	0	0	0	0	0	0	0	0	0	e	9	0	0	0	9	0
5	777	112695		0	0	0	0	0	0	0	0	0	0	0	6	9	0	0	0	0	0
6	778	778 112695		0	0	0	0	0	0	0	0	0	0	0	6)	0	0	0	0	0
7	779		112695	149	152	156	186	149	142	142	148	231	160	13	9 4	158	826	247	192	238	201
8	780		112695	240	166	190	125	160	140	187	178	169	159	28	6 2	237	166	115	140	165	187
9	781		112000	220	215	144	107	131	161	170	146	220	107			co.	EGA	140	1/10	163	219
0	782	١.	row.names	idmeter 112769	date 24/04/26		:00 01:0 5 218	00 02:00 134	03:00	04:00 120	05:00	06:00 95	07:00 109	08:00 152	09:00	10:00	11:00	12:00	13:00	14:00	206
u	783	2	19820	112769	25/04/20			128	83	128	127	80	132	162	121	168	150	135	170	158	148
_		3	19821	112769	26/04/20				94	127	121	89	133	118	98	238	90	128	125	87	
		4	19822	112769	27/04/20			305	217	135	98	103	133	134	99	154	128	85	123	128	
		5	19823	112769	28/04/20				134	112	108	137	86	226	290	129	128	203	199	133	
		6	19824	112769	29/04/20	19	5 195	195	195	195	195	195	195	195	195	195	195	195	195	195	
		7	19825	112769	30/04/20	14 19	5 195	195	195	195	195	195	195	195	195	195	195	195	195	195	
		8	19826	112769	01/05/20	19	5 195	195	195	195	195	195	195	195	195	195	195	195	195	195	
		9	19827	112769	02/05/20	19	5 195	195	195	195	195	195	195	195	195	195	195	195	195	195	
		10	19828	112769	03/05/20	19	5 195	195	195	195	195	195	195	195	195	195	195	195	195	195	
		11	19829	112769	04/05/20	914 19	5 195	195	195	195	195	195	195	195	195	195	195	195	195	195	
		12	19830	112769	05/05/20	914 19	5 195	195	195	195	195	195	195	195	195	195	195	195	195	195	
		13	19831	112769	06/05/20	19	5 195	195	195	195	195	195	195	195	195	195	195	195	195	195	
		14	19832	112769	07/05/20	914 19	5 195	195	195	195	195	195	195	195	195	195	195	195	195	195	
		15	19833	112769	08/05/20	314 19	5 195	195	195	195	195	195	195	195	195	195	195	195	195	195	1

3.5. CONSUMER SEGMENTATION

> VISUALIZATION "RUBÍ" LOAD PROFILES

3.5.1. PRE-CLUSTERING

INPUT DATA CALCULATION

> COMMON FRAMEWORK:

FAIRLY COMPARISON

- > PROPORTION OF HOURLY ENERGY USAGE (%)
- Sum all daily values (0-23h)
- Divide each hour value by the sum of each row
- Mean hourly percentage values per user (%)

INPUT DATA FOR CLUSTERING

- ➤ ONLY WEEKDAYS (MONDAY-FRIDAY)
- > 24 HOUR'S VECTOR (00:00-23:00H)

3.5.2. CLUSTERING

PROCEDURE

DISTANCES AND LINKAGES

TIMES SERIES DATA

CLUSTERING TECHNIQUES

- > Hierarchical
- K-means
- Self-Organizing Maps (SOM)

3.5.2. CLUSTERING

Hierarchical

- > Bottom-up
- Dendrogram (tree)
- ➤ Manhattan distance & Ward linkage
- ➤ Cut the tree (a posteriori) → 7 groups

K-means

- ➤ k-means algorithm
 - K defined a priori
 - Not global minimum (WCSS)

 $arg \min \sum_{i} \sum_{i} ||x_i - \bar{\mu}||^2$

- > Hartigan-Wong's algorithm
- ➤ K= 7 groups

Self-Organizing Maps

- Dimension reduction in a Map
- From 121 users to 4x4 nodes Map
- ➤ Apply clustering techniques → Hierarchical
- ➤ Manhattan distance, Ward linkage, 7 groups

3.5.3. POST-CLUSTERING

- > Base solution: Hierachical Clustering
 - 7 groups and Manhattan distance and Ward linkage
- Visualization and Statistical
- > Find outliers:
 - Cluster of a cluster
 - Distance to the mean
- > Members reallocation

3.6. FINAL SEGMENTATION RESULTS

Cluster	Members
1	7
2	17
3	28
4	28
5	16
6	18
7	7

3.6. FINAL SEGMENTATION RESULTS

4. Evening peaks

6. Double peak

7. Business

5. Daytime consumers

High evening peak, small morning peak

Morning and evening peaks

Not residential. Small business

Highest period of consumption during the day

4. FINAL CONCLUSIONS

- > Energy efficiency in Residential sector
 - Translate technical data into call -to-action measures
 - GPS effect
- > Benefits or applications of consumer segmentation
 - Personalised advices
 - Increase effectiveness
 - Test different energy efficiency strategies to same group
 - Reference or baseline groups
 - Keep track of users
 - Change the load profile group or not
 - Quantify the savings for each consumer (in kWh)
- > Further steps
 - Larger datasets and better data quality -> Smart meter data
 - Improve Households and householders analysis

THANK YOU!!!