

MATLAB è una piattaforma di programmazione e calcolo numerico utilizzata da milioni di ingegneri e scienziati per l'analisi di dati, lo sviluppo di algoritmi e la creazione di modelli.

MATLAB combina un ambiente desktop ottimizzato per l'analisi iterativa e i processi di progettazione con un linguaggio di programmazione che esprime le operazioni matematiche con matrici e array in modo diretto.

MATLAB dispone di toolbox sviluppati professionalmente, rigorosamente testati e interamente documentati.

Le applicazioni MATLAB consentono di vedere come algoritmi differenti lavorano con i dati. Possono essere eseguite iterazioni finché non si ottengono i risultati desiderati, quindi può essere generato automaticamente un programma MATLAB per riprodurre o automatizzare il lavoro da svolgere.

Le analisi possono essere dimensionate per eseguirle su cluster, GPU e cloud solo con lievi modifiche al codice. Non è necessario riscrivere il codice o apprendere la programmazione di big data e tecniche out-of-memory.

https://it.mathworks.com/videos/matlab-overview-61923.html

Funzionalità MATLAB

Analisi dei dati

Esplora, modella e visualizza dati

Creazione di app

Creazione di app web e desktop

Grafica

Visualizzazione ed esplorazione dei dati

Programmazione

Creazione di script, funzioni e classi

Utilizzo di MATLAB con altri linguaggi

Utilizzo di MATLAB con Python, C/C++, Fortran, Java e altri linguaggi

Hardware

Connetti MATLAB all'hardware

Calcolo parallelo

Esegui calcoli su larga scala utilizzando computer desktop multicore, GPU, cluster, grid e cloud

Distribuzione su desktop e via web

Condividi i tuoi programmi MATLAB

Cloud computing

Lavora in ambienti cloud da MathWorks Cloud a cloud pubblici, inclusi AWS e Azure

Dalla ricerca alla produzione

Distribuzione ai sistemi IT aziendali

Il codice MATLAB è pronto per la produzione, così da poter accedere direttamente ai <u>sistemi cloud e</u> <u>aziendali</u>, integrandosi con sistemi business e fonti di dati.

Implementazione in dispositivi embedded

Converti automaticamente algoritmi MATLAB in codice C/C++ e HDL per essere implementati in <u>dispositivi embedded</u>.

Integrazione con la progettazione Model-Based

MATLAB lavora con Simulink per supportare la progettazione Model-Based, che è utilizzata per la simulazione multidominio, la generazione automatica del codice e i test e le verifiche dei sistemi embedded.

Esempi di aree di applicazione

Sistemi di controllo

Progetta, testa e implementa sistemi di controllo

Machine Learning

Addestra modelli, regola i parametri e distribuisci applicazioni

Elaborazione di segnali

Analizza segnali e dati di serie storiche. Modella, progetta e simula sistemi di elaborazione dei segnali.

Deep Learning

Prepara i dati, la progettazione, simulazione e distribuzione per reti neurali profonde

Manutenzione predittiva

Sviluppa e distribuisci software di monitoraggio delle condizioni e di manutenzione predittiva

Verifica e misurazione

Acquisisci, analizza ed esplora i dati e automatizza i test

Elaborazione di immagini e Computer Vision

Acquisisci, elabora e analizza immagini e video per lo sviluppo di algoritmi e la progettazione di sistemi

Robotica

Converti le tue idee e i tuoi concetti di robotica in sistemi autonomi che operano senza problemi in ambienti reali.

Comunicazioni wireless

Crea, progetta, testa e verifica sistemi di comunicazione wireless

https://it.mathworks.com/help/index.html?s_tid=CRUX_lftnav

https://matlabacademy.mathworks.com/?s_tid=getstart_mlacad

ESERCITAZIONI MATLAB – Installazione

https://www.ict.univpm.it/node/237

https://it.mathworks.com/help/install/install-products.html

https://it.mathworks.com/help/matlab/matlab_env/check-for-software-updates.html

ESERCITAZIONI MATLAB – Installazione

Aggiungere (se non sono stati già aggiunti) i seguenti Toolbox:

- -MATLAB
- -Image Processing Toolbox
- -Statistics and Machine Learning Toolbox
- -Simulink
- -Control System Toolbox
- -Symbolic Math Toolbox

ESERCITAZIONI MATLAB – Installazione

Al fine di effettuare un check sui Toolbox installati, utilizzare il comando ver.

Per aggiungere Toolbox, seguire i seguenti passi:

- 1) Aprire Matlab.
- 2) Click su Add-Ons sulla barra in alto.
- 3) Click su Get Add-Ons.
- 4) Digitare il nome del Toolbox da installare (ad esempio Simulink) nello spazio bianco Search for add-ons.
- 5) Click sul Toolbox da installare.
- 6) Click su Install ed eseguire la procedura di installazione.
- Una volta terminata la procedura di installazione dei Toolbox indicati, utilizzare nuovamente il comando ver al fine di verificare che essi siano stati aggiunti.

Nozioni di base sul desktop

Quando si avvia MATLAB®, il desktop viene visualizzato nel layout predefinito.

Il desktop comprende i seguenti pannelli:

- · Current Folder: consente di accedere ai file dell'utente.
- Command Window: consente di inserire i comandi dalla riga di comando, indicata dal prompt (>>).
- · Workspace: consente di visualizzare i dati creati o importati dai file.

Nozioni di base sul desktop

0.5403

Mentre si lavora in MATLAB, si utilizzano comandi che creano variabili e richiamano funzioni. Ad esempio, creare una variabile denominata a digitando questa dichiarazione dalla riga di comando
a = 1
MATLAB aggiunge la variabile a al workspace e visualizza il risultato nella finestra di comando.
a =
1
Creare alcune altre variabili.
b = 2
b =
2
c = a + b
c =
3
d = cos(a)

Nozioni di base sul desktop

Quando non si specifica una variabile di output, MATLAB utilizza la variabile ans, che sta per answer ('risposta' in lingua inglese), per memorizzare i risultati del calcolo effettuato.

sin(a)

ans =

0.8415

Se si termina una dichiarazione con un punto e virgola, MATLAB effettua il calcolo, ma sopprime la visualizzazione dell'output nella finestra di comando.

e = a*b;

È possibile richiamare i comandi precedenti premendo i tasti Freccia in alto e Freccia in basso, ↑ e ↓. Premere i tasti freccia da una riga di comando vuota o dopo aver digitato i primi caratteri di un comando. Ad esempio, per richiamare il comando b = 2, digitare b e quindi premere il tasto Freccia in alto.

Matrici e array

MATLAB è un'abbreviazione di "matrix laboratory", "laboratorio di matrici". Mentre altri linguaggi di programmazione lavorano principalmente su un numero per volta, MATLAB® consente di operare soprattutto su intere matrici e array.

Tutte le variabili di MATLAB sono array multidimensionali, indipendentemente dal tipo di dati. Una matrice è un array bidimensionale frequentemente utilizzato nell'algebra lineare.

Creazione di array

Per creare un array di quattro elementi su un'unica riga, separare gli elementi con una virgola (,) o uno spazio.

$$a = [1 \ 2 \ 3 \ 4]$$

$$a = 1 \times 4$$

$$1 \quad 2 \quad 3 \quad 4$$

Questo tipo di array è definito vettore riga.

Per creare una matrice con righe multiple, separare le righe con punti e virgole.

```
a = [1 3 5; 2 4 6; 7 8 10]

a = 3x3

1 3 5
2 4 6
7 8 10
```


Matrici e array

Creazione di array

Un altro metodo per creare una matrice consiste nell'utilizzare una funzione, come ones, zeros o rand. Ad esempio, creare un vettore colonna 5x1 composto da zeri.

```
z = zeros(5,1)

z = 5×1

0
0
0
0
0
```

Operazioni su matrici e array

MATLAB consente di elaborare tutti i valori di una matrice utilizzando un unico operatore o funzione aritmetica.

```
a + 10

ans = 3 \times 3

11    13    15
12    14    16
17    18    20
```


Matrici e array

3

Operazioni su matrici e array

```
sin(a)

ans = 3×3

0.8415  0.1411  -0.9589
0.9093  -0.7568  -0.2794
0.6570  0.9894  -0.5440
```

Per la trasposizione di una matrice utilizzare l'apice ('):

8

10

4

```
a' ans = 3 \times 3

1 2 7
```


Matrici e array

Operazioni su matrici e array

Utilizzando l'operatore * è possibile eseguire moltiplicazioni standard di matrici che calcolano i prodotti interni tra righe e colonne. Ad esempio, confermare che moltiplicando una matrice per il suo inverso si ottiene la matrice identità:

```
p = a*inv(a)

p = 3x3

1.0000   0.0000   -0.0000

   0   1.0000   -0.0000

   0   0.0000   1.0000
```

Si noti che p non è una matrice di valori interi. MATLAB memorizza i numeri come valori a virgola mobile e le operazioni aritmetiche distinguono tra piccole differenze tra il valore reale e la sua rappresentazione con virgola mobile. È possibile visualizzare più cifre decimali con il comando format:

Per ripristinare la visualizzazione al formato più breve utilizzare

1.00000000000000000

0.0000000000000014

```
format short
```

format ha effetto solo sulla visualizzazione dei numeri, non sul modo in cui MATLAB li calcola o li salva.

-0.0000000000000003

0.99999999999995

Matrici e array

343

512

1000

Operazioni su matrici e array

Per eseguire moltiplicazioni basate sugli elementi, non moltiplicazioni di matrici, utilizzare l'operatore .*:

```
p = a.*a
p = 3x3
1 \quad 9 \quad 25
4 \quad 16 \quad 36
49 \quad 64 \quad 100
```

Tutti gli operatori di matrici per moltiplicazione, divisione ed elevazione a potenza presentano un corrispettivo operatore di array che opera in modo analogo. Ad esempio, elevare al cubo ciascun elemento di a:

Matrici e array

Concatenazione

La concatenazione è il processo di congiunzione di array, per crearne di più grandi. In realtà il primo array è stato creato quando se ne sono concatenati i singoli elementi. L'operatore per la concatenazione è la coppia di parentesi quadre [].

La concatenazione con virgole di array disposti uno accanto all'altro è definita concatenazione orizzontale. Ogni array deve presentare lo stesso numero di righe. Analogamente, quando gli array presentano lo stesso numero di colonne, è possibile concatenare queste ultime verticalmente, utilizzando dei punti e virgole.

Matrici e array

Numeri complessi

sqrt(-1)

I numeri complessi comprendono sia parti reali che parti immaginarie, in cui l'unità immaginaria è costituita dalla radice quadrata di -1.

```
ans = 0.0000 + 1.0000i

Per rappresentare la parte immaginaria dei numeri complessi utilizzare i o j.

c = [3+4i, 4+3j; -i, 10j]
```

Riferimenti Bibliografici

[1] https://it.mathworks.com