

International Security and Machine Learning

AVIAD COHEN
AVIADJO@GMAIL.COM

Lab: Feature Extraction, Selection and Dataset Creation

Outline

- Feature Extraction
 - Byte N-gram
 - String N-gram
 - PDF Keywords
- Dataset Creation
- Feature Selection In Excel
 - Fisher Score

PDF File Structure

%PDF-1.3

Header

PDF - Keywords Extraction using PDFid

PDF Keywords feature extractor extracts only 14 features from each file.

Keywords extraction

```
# pdfid.py test.pdf
PDFiD 0.0.2 test.pdf
PDF Header: %PDF-1.1
 obj
 endob,j
 stream
 endstream
 xref
 trailer
 startxref
 /Page
 /Encrypt
 /JavaScript
 /AA
 ∕OpenAction
 ∕JBIG2Decode
```


Feature Extraction – Example 2 – N-gram

- OWhen using N-gram approach you should define what is a gram? Character/Word/Line/Byte
- OWhen working on documents or code, a gram can be character/word/Line.
- olt is common to use skip of 1 gram.

1-gram, 2-grams, 3-grams (gram=word)

5-grams (gram=character)

0 10	•
	n-gram
Once upon a time	'Once_'
Once upon a time	'nce_u'
Once upon a time	'ce_up'
Ond <u>e upo</u> n a time	'e_upo'
and so on	

Feature Extraction – Example 2 – N-gram

- OWhen working on files without textual content (e.g., executable files, binary files) the preferred gram is byte (8 bits).
- OAny file can be read as byte array (Byte[]).
- Obyte value is between 0-255 ($2^8 = 256$).
- Objective Byte can be represented with two hexadecimal (base 16) characters (16 * 16 = 256).

```
TestBinary.bson
          54 68 69 73 20 77 69 6C 6C 20 62 65 20 61 20 34
                                                            This will be a
          30 47 42 20 62 79 74 65 20 73 74 72 65 61 6D 21
          64 00 00 00 03 48 65 61 64 65 72 00 4E 00 00 00
                                                           d....Header.N..
                                                            .SubHeader1.!..
          03 53 75 62 48 65 61 64 65 72 31 00 21 00 00 00
                                                            .Name....Bond..
                                                            License....Su
          4C 69 63 65 6E 73 65 00 07 00 00 00 00 03 53 75
          62 48 65 61 64 65 72 32 00 10 00 00 00 08 49
                                                            bHeader2.....Is
          41 63 74 69 76 65 00 01 00 00 0A 50 61 79 6C 6F
                                                           Active....Paylo
00000080
          61 64 00 00
                                                            ad..
```


108

100

Feature Extraction – Example 2 – N-gram

Byte N-gram 63 [0] [0] 63 [0] 1-gram 2-gram 3-gram 72 1-gram 2-gram 101 3-gram 101 101 1-gram 2-gram 3-gram [3] 108 108 1-gram 2-gram [4] 108 3-gram 108 108 111 32 111 111 [6] [6] 32 6 32 87 87 87 [8] 111 [8] [8] 111 111 [9] 114 9 114 9 114

108

100

Aviad Cohen 8

108

100

33

Feature Extraction – Example 2 – N-gram

9	[0]	63
0	[1]	72
9	[2]	101
9	[3]	108
9	[4]	108
9	[5]	111
9	[6]	32
9	[7]	87
9	[8]	111
9	[9]	114
9	[10]	108
9	[11]	100
9	[12]	33

1-gram	Freq.
63	1
72	1
101	1
108	3
111	2
32	1
87	1
114	1
100	1
33	1

2-gram	Freq.
63,72	1
72,101	1
101,108	1
108,108	1
108,111	1
111,32	1
32,87	1
87,111	1
111,114	1
114,108	1
108,100	1
100,33	1

3-gram	Freq.
63,72,101	1
72,101,108	1
101,108,108	1
108,108,111	1
108,111,32	1
111,32,87	1
32,87,111	1
87,111,114	1
111,114,108	1
114,108,100	1
108,100,33	1

Feature Selection

Feature Selection – Filter Methods

Fisher Score

- OCalculates the difference between positive and negative examples relative to certain feature, in terms of mean and standard deviation.
- OHigher rank = higher contribution.

$$OR_i = \frac{\left|\mu_{i,p} - \mu_{i,n}\right|}{\sigma_{i,p} + \sigma_{i,n}}$$