Module Interface Specification for IP Simulator

Mina Mahdipour

April 19, 2023

1 Revision History

Date	Version	Notes
March 2, 2023	1.0	First version created and added introduction parts
March 12, 2023	1.1	Added the modules
March 17, 2023	1.2	Updated ODE modules
March 21, 2023	1.3	Updated according to feedback of reviewers
April 16, 2023	1.4	Updated according to feedback of Prof. Smith

2 Symbols, Abbreviations and Acronyms

The reader can refer to SRS.

Contents

1	Rev	vision History	i			
2	Syn	nbols, Abbreviations and Acronyms	ii			
3	Inti	Introduction				
4	Not	tation	1			
5	Mo	dule Decomposition	1			
6	\mathbf{MI}	IS of Input Parameters Module	2			
	6.1	Module	2			
	6.2	Uses	2			
	6.3	Syntax	2			
		6.3.1 Exported Constants	2			
		6.3.2 Exported Access Programs	3			
	6.4	Semantics	3			
	0.1	6.4.1 State Variables	3			
		6.4.2 Environment Variables	3			
		6.4.3 Assumptions	3			
		6.4.4 Access Routine Semantics	4			
-	л /гт					
7		S of Output Module	7 7			
	7.1	Module				
	7.2	Uses	7			
	7.3	Syntax	7			
		7.3.1 Exported Constants	7			
		7.3.2 Exported Access Programs	7			
	7.4	Semantics	7			
		7.4.1 State Variables	7			
		7.4.2 Environment Variables	7			
		7.4.3 Assumptions	7			
		7.4.4 Access Routine Semantics	7			
		7.4.5 Local Functions	8			
8	MIS	S of Constant Parameter Module	9			
	8.1	Module	9			
	8.2	Uses	9			
	8.3	Syntax	9			
	0.0	8.3.1 Exported Constants	9			
		8.3.2 Exported Access Programs	9			
	Q 1	Semantics	9			
	0.4	Demained				

9	MIS	of Mo	tion ODE Module	LC
	9.1	Module	9	10
	9.2	Uses .		10
	9.3	Syntax		10
		9.3.1	Exported Constants	10
		9.3.2	Exported Access Programs	10
	9.4	Semant	iics	10
		9.4.1	State Variables	10
				10
		9.4.3	Assumptions	10
				10
				11
10	MIS	of IP	Control Module	<u>1</u> 2
-0				12
				12
				12
	10.0	•		12
			1	12
	10.4			12
	10.1			12
				12
				12
			1	12
				13
	NATO			
11				L4 14
				14 14
	11.5	•		
			1	14 14
	11 /			14 14
	11.4			14 14
				14
				14
			•	14 14
				15
		11.4.0	Local Functions	ΙŪ
12			8	16
				16 16
				16 16
	17.3	\mathbf{o}_{VHTAX}		ır

12.3.1	Exported Constants
	Exported Access Programs
12.4 Sema	ntics
12.4.1	State Variables
12.4.2	Environment Variables
12.4.3	Assumptions
12.4.4	Access Routine Semantics
12.4.5	Local Functions
$oldsymbol{a}$ Appendix $oldsymbol{ ext{ist of T}}$	

3 Introduction

The following document details the Module Interface Specifications for IP Simulator software. This document specifies how every module is interfacing with every other part of the program based on "module state machine" approach.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at the github repository for the IP Simulator. The author uses [3] as a reference to write this document.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper [2], with the addition that template modules have been adapted from [1]. The mathematical notation comes from Chapter 3 of Hoffman and Strooper [2]. For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1 | c_2 \Rightarrow r_2 | ... | c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by IP Simulator.

Data Type	Notation	Description
character	char	a single symbol or digit
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of IP Simulator uses some derived data types: sequences and strings. Sequences are lists filled with elements of the same data type and strings are sequences of characters. In addition, IP Simulator uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
Behaviour-Hiding Module	Input Parameters Module Output Module Constant Parameter Module Motion ODE Module IP Control Module
Software Decision Module	ODE Solver Module Array Data Structure Module Plotting Module

Table 1: Module Hierarchy

6 MIS of Input Parameters Module

This module is responsible for reading the input parameters from a file and storing them in the data structures. It also verifies them using Constant Parameter Module.

6.1 Module

InputM

6.2 Uses

ConstantM (Section 8)

6.3 Syntax

6.3.1 Exported Constants

6.3.2 Exported Access Programs

Name	In	Out	Exceptions
load_inputs	string	-	FileError
verify_inputs	-	-	ValueError
m_p	_	\mathbb{R}	
l_p	-	\mathbb{R}	
m_c	-	\mathbb{R}	
friction	-	\mathbb{R}	
$f_external(t)$	\mathbb{R}	\mathbb{R}	
i_p	-	\mathbb{R}	
$\dot{x_i}$	-	\mathbb{R}	
$\dot{x_i}$	-	\mathbb{R}	
heta i	-	\mathbb{R}	
$\dot{ heta}i$	-	\mathbb{R}	

6.4 Semantics

6.4.1 State Variables

```
#From R1:

m_p: \mathbb{R}

l_p: \mathbb{R}

m_c: \mathbb{R}

friction: \mathbb{R}

f_-external(t): t: \mathbb{R} \to res: \mathbb{R}

i_p: \mathbb{R}

x_i: \mathbb{R}

\dot{x}_i: \mathbb{R}

\dot{\theta}i: \mathbb{R}
```

6.4.2 Environment Variables

In the case of this module, the environment variable is the fName, the name of input file which is containing the input data.

6.4.3 Assumptions

- load_inputs will be called before the values of any state variables will be accessed.
- The file contains the expected inputs data in order, each on a new line. The order of the input data is as below:

- line 1: a string of "test case" to specify the start of test
- line 2: the cart mass
- line 3: the pendulum mass
- line 4: the pendulum length
- line 5: the friction of the cart
- line 6: the external force as a function of time
- line 7: the initial condition for the position of the cart
- line 8: the initial condition for the velocity of the cart
- line 9: the initial condition for the angle of the pendulum
- line 10: the initial condition for the velocity of the pendulum
- line 11: a string of "end" to specify the end of this test

6.4.4 Access Routine Semantics

The value of each state variable can be accessed through its name (getter). An access program is available for each state variable. There are no setters for the state variables, since the values will be set by load params and not changed for the life of the program.

load_inputs(fName: string):

- transition: The filename fName is associated with the input file. The state variables are modified with the following procedures:
 - 1. Read data from input file to populate the state variables from R1.
 - 2. Store the data parameters.
 - 3. Calculate the derived quantity as follows (from DD3 in SRS): $i_p = m_p(l_p^2)$
 - 4. Verify the inputs through verify_inputs().
 - 5. Convert the format of inputs through convert_inputs().
- exception: exc := a file name fName cannot be found OR the format of input file is incorrect \Rightarrow FileError

verify_inputs():

- out: out := none
- exception: exc :=

```
\neg (m_{\text{pmin}} \le m_p \le m_{\text{pmax}})
                                               \Rightarrow ValueError
\neg (l_{\text{pmin}} \le l_p \le l_{\text{pmax}})
                                                \Rightarrow ValueError
\neg (m_{\rm cmin} \le m_c \le m_{\rm cmax})
                                               \Rightarrow ValueError
\neg (0 \leq \text{friction})
                                                \Rightarrow ValueError
                                                \Rightarrow ValueError
\neg (0 < x_i)
\neg (0 < \dot{x_i})
                                                \Rightarrow ValueError
\neg (0 < \theta i < 2\pi)
                                                \Rightarrow ValueError
\neg (0 < \dot{\theta}i)
                                                \Rightarrow ValueError
```

etc. See Appendix (Section 13) for the complete list of exceptions and associated error messages.

convert_inputs():

- out: out := none
- exception: none

InputM. m_p :

- output: $out := m_p$
- exception: none

InputM. l_p :

- output: $out := l_p$
- exception: none

InputM. i_p :

- output: $out := i_p$
- exception: none

InputM. m_c :

- output: $out := m_c$
- exception: none

InputM. friction:

- \bullet output: out := friction
- exception: none

InputM. $f_external(t)$:

- output: $out := f_{-}external(t)$
- exception: none

InputM. x_i :

- output: $out := x_i$
- exception: none

InputM. $\dot{x_i}$:

- output: $out := \dot{x_i}$
- exception: none

${\rm InputM.} \theta i :$

- output: $out := \theta i$
- exception: none

Input M.
 $\dot{\theta}i$:

- \bullet output: $out := \dot{\theta}i$
- exception: none

7 MIS of Output Module

7.1 Module

OutputM

7.2 Uses

ConstantM (Section 8)

7.3 Syntax

7.3.1 Exported Constants

None

7.3.2 Exported Access Programs

Name	In	Out	Exceptions
output	$fOName$: string, t : \mathbb{R}^n , x : \mathbb{R}^n , \dot{x} : \mathbb{R}^n , θ : \mathbb{R}^n ,	-	FileError
	$\dot{ heta} \colon \mathbb{R}^n$		
verify_out	$[x: \mathbb{R}^n, \dot{x}: \mathbb{R}^n, \theta: \mathbb{R}^n, \dot{\theta}: \mathbb{R}^n]$	-	InvalidOutput

7.4 Semantics

7.4.1 State Variables

None

7.4.2 Environment Variables

The environment variable is the fOName, the name of the output file which includes a sequence of angle of the pendulum and a sequence of position of the cart with regards to the data inputs during the time of simulation.

7.4.3 Assumptions

None

7.4.4 Access Routine Semantics

output (fOName: string, $t: \mathbb{R}^n$, $x: \mathbb{R}^n$, $\dot{x}: \mathbb{R}^n$, $\dot{\theta}: \mathbb{R}^n$):

• transition: The filename fOName is associated with the outputFile. The inputs of this function are the sequence of x and \dot{x} , the array of position and velocity of the cart

while the sequence of θ and $\dot{\theta}$ are the array of position and velocity of the pendulum at time t. The below procedure is followed:

- 1. verify_out $(x: \mathbb{R}^n, \dot{x}: \mathbb{R}^n, \theta: \mathbb{R}^n, \dot{\theta}: \mathbb{R}^n)$
- 2. write the calculated cart position, cart velocity, pendulum angle, and pendulum velocity for a specified time in the output file.
- exception: exc := a file name fOName cannot be found \Rightarrow FileError verify_out $(x: \mathbb{R}^n, \dot{x}: \mathbb{R}^n, \theta: \mathbb{R}^n, \dot{\theta}: \mathbb{R}^n)$:
 - output: none
 - exception: exec:=

```
# for (0 \le i \le n), all items in the sequence of outputs: \neg (0 < \theta < 2 \cdot \pi) \Rightarrow Invalid Angle the Pendulum \neg (0 < x) \Rightarrow Invalid Velocity of the Pendulum
```

7.4.5 Local Functions

8 MIS of Constant Parameter Module

8.1 Module

ConstantM

8.2 Uses

Not Applicable

8.3 Syntax

8.3.1 Exported Constants

From Table 2 in SRS

Name	Type	Value	Description
\overline{g}	\mathbb{R}	$9.81~{\rm ms^{-2}}$	the gravity of the earth
$m_{ m pmin}$	\mathbb{R}	0.01 kg	minimum value of the pendulum mass
$m_{ m pmax}$	\mathbb{R}	50 kg	maximum value of the pendulum mass
$l_{ m pmin}$	\mathbb{R}	$0.01 \mathrm{\ m}$	minimum value of the length of the pendu-
			lum
$l_{ m pmax}$	\mathbb{R}	$10 \mathrm{m}$	maximum value of the length of the pendu-
-			lum
$m_{ m cmin}$	\mathbb{R}	0.01 kg	minimum value of the mass of the cart
$m_{\rm cmax}$	\mathbb{R}	50 kg	maximum value of the mass of the cart
$t_{ m start}$	\mathbb{R}	0 s	the start time of simulation
$t_{\rm span}$	\mathbb{R}	$20 \mathrm{\ s}$	the duration time of simulation

8.3.2 Exported Access Programs

None

8.4 Semantics

Not Applicable

9 MIS of Motion ODE Module

9.1 Module

EqMo

9.2 Uses

ConstantM (Section 8)

9.3 Syntax

9.3.1 Exported Constants

None

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
	m_p : \mathbb{R} , l_p : \mathbb{R} , m_c : \mathbb{R} , friction: \mathbb{R} , f _external(t): string, i_p : \mathbb{R} , x_i : \mathbb{R} , \dot{x}_i : \mathbb{R} , $\dot{\theta}i$: \mathbb{R}	\dot{x} : \mathbb{R} , \ddot{x} : \mathbb{R} , $\dot{\theta}$: \mathbb{R} , $\ddot{\theta}$: \mathbb{R}	-

9.4 Semantics

9.4.1 State Variables

None

9.4.2 Environment Variables

None

9.4.3 Assumptions

None

9.4.4 Access Routine Semantics

ODE_Motion $(m_p: \mathbb{R}, l_p: \mathbb{R}, m_c: \mathbb{R}, friction: \mathbb{R}, f_external(t), i_p: \mathbb{R}, x_i: \mathbb{R}, \dot{x_i}: \mathbb{R}, \dot{\theta}i: \mathbb{R})$:

$$\dot{x} = \dot{x}$$

$$\ddot{x} = \frac{-friction}{(m_c + m_p)}\dot{x} + \frac{f_{-}external(t) - m_p l_p \ddot{\theta}\cos\theta + m_p l_p (\dot{\theta})^2 \sin\theta}{(m_c + m_p)}$$

$$\dot{\theta} = \dot{\theta}$$

$$\ddot{\theta} = \frac{m_p g l_p}{(i_p + m_p l_p^2)} \sin\theta - \frac{m_p l_p \ddot{x}}{(i_p + m_p l_p^2)} \cos\theta$$

• output: $[\dot{x}, \ddot{x}, \dot{\theta}, \ddot{\theta}]$

• exception: none

9.4.5 Local Functions

10 MIS of IP Control Module

10.1 Module

main

10.2 Uses

InputM (Section 6), OutputM (Section 7), EqMo (Section 9), ODE Solver (Section 11), Plot (Section 12),

10.3 Syntax

10.3.1 Exported Constants

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
main	_	_	_

10.4 Semantics

The Control Module is designed to control the process flow in the software. It organizes all other modules to satisfy all the requirements and also helps maintainability and expandability of IP Simulator by classifying different parts of the code.

10.4.1 State Variables

None

10.4.2 Environment Variables

None

10.4.3 Assumptions

None

10.4.4 Access Routine Semantics

main():

• transition: Control the flow input data, calculation, and the output data by following below steps:

Get (fName: string, fOName: string) from user load_inputs(fName)

```
verify_inputs()
ODE_Motion(m_p: \mathbb{R}, l_p: \mathbb{R}, m_c: \mathbb{R}, friction: \mathbb{R}, f_external(t), i_p: \mathbb{R}, x_i: \mathbb{R}, \dot{x}_i: \mathbb{R}, \dot{\theta}i: \mathbb{R})
solveODE(ODE_Motion, m_p: \mathbb{R}, l_p: \mathbb{R}, m_c: \mathbb{R}, friction: \mathbb{R}, f_external(t), i_p: \mathbb{R}, x_i: \mathbb{R}, \dot{x}_i: \mathbb{R}, \dot{\theta}i: \mathbb{R}, \dot{\theta}i: \mathbb{R}, t_{\text{start}}: \mathbb{R}, [x_i, \dot{x}_i, \dot{\theta}i, \dot{\theta}i]: \mathbb{R}^4, t_{\text{span}}: \mathbb{R})
verify_out(x: \mathbb{R}^n, \dot{x}: \mathbb{R}^n, \dot{\theta}: \mathbb{R}^n)
plot(t: \mathbb{R}^n, x: \mathbb{R}^n, \dot{\theta}: \mathbb{R}^n)
output(fOName, x: \mathbb{R}^n, \dot{x}: \mathbb{R}^n, \dot{\theta}: \mathbb{R}^n, \dot{\theta}: \mathbb{R}^n)
```

• exception: none

10.4.5 Local Functions

11 MIS of ODE Solver Module

11.1 Module

ODE Solver

11.2 Uses

None

11.3 Syntax

11.3.1 Exported Constants

None

11.3.2 Exported Access Programs

Name	In	Out	Except.
solveODE	$ODE_Motion : (\mathbb{R}^n \to \mathbb{R}^n), [x_i, \dot{x_i}, \theta i, \dot{\theta} i]: \mathbb{R}^4, t_{\text{start}} : \mathbb{R}, t_{\text{span}} : \mathbb{R}$	\mathbf{y} : $[x : \mathbb{R}, \dot{x} : \mathbb{R}, \theta : \mathbb{R}, \dot{x} : $	ODE_Error
	na, ostart · na, ospan · na	$\dot{ heta}:\mathbb{R}$]	

11.4 Semantics

11.4.1 State Variables

None

11.4.2 Environment Variables

None

11.4.3 Assumptions

None

11.4.4 Access Routine Semantics

solveODE(ODE_Motion, $m_p : \mathbb{R}, l_p : \mathbb{R}, m_c : \mathbb{R}, friction : \mathbb{R}, f_{\text{-}external}(t), i_p : \mathbb{R}, x_i : \mathbb{R}, \dot{x_i} : \mathbb{R}, \dot{\theta}i : \mathbb{R}, \dot{\theta}i : \mathbb{R}, t_{\text{start}} : \mathbb{R}, [x_i, \dot{x_i}, \dot{\theta}i, \dot{\theta}i] : \mathbb{R}^4, t_{\text{span}} : \mathbb{R})$:

• output: $out := \mathbf{y}(t)$ where

$$\mathbf{y}(t) = \mathbf{y}_{\text{iniCond}} + \int_{t_{\text{start}}}^{t_{\text{span}}} \mathbf{f}(s, \mathbf{y}(s)) ds$$

and $\mathbf{y}_{\text{iniCond}} = [x_i, \dot{x_i}, \theta i, \dot{\theta i}]$

f is the ODE_Motion , the function in module EqMo 9. y(t) is calculated from $t = t_{\text{start}}$ to $t = t_{\text{span}}$, and the $\mathbf{y}_{\text{iniCond}}$ is the initial conditions for solving the ODE. We have two coupled ODEs in the IP software, which the first one describes the motion of the cart and the second one describes the motion of the pendulum.

• exception: $exc := (ODE Solver Fails \Rightarrow ODE_ERR)$

11.4.5 Local Functions

12 MIS of Plotting Module

12.1 Module

Plot

12.2 Uses

Not Applicable

12.3 Syntax

12.3.1 Exported Constants

None

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
plot	$t: \mathbb{R}^n, x: \mathbb{R}^n, \theta: \mathbb{R}^n$	-	_

12.4 Semantics

12.4.1 State Variables

None

12.4.2 Environment Variables

win: 2D diagram displayed on the screen

12.4.3 Assumptions

12.4.4 Access Routine Semantics

plot $(t: \mathbb{R}^n, x: \mathbb{R}^n, \theta: \mathbb{R}^n)$:

- transition: Modify win to display a plot where the vertical axis is the angle of the pendulum and the position of the cart. The time should run from t_{start} to t_{span} .
- exception: none

12.4.5 Local Functions

References

- [1] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.
- [2] Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.
- [3] W. Spencer Smith. A rational document driven design process for scientific computing software. In Jeffrey C. Carver, editor, *Software Engineering for Science*, chapter Section I Examples of the Application of Traditional Software Engineering Practices to Science. Submitted 2016. 30 pp.

13 Appendix

Table 2: Possible Exceptions

Message ID	Error Message
FileError	Error: The expected file does not exist.
ValueError	Error: The input is not valid.
InvalidOutput	Error: The output is not valid.
ODE_Error	Error: When fails to solve the ODE.