Antenas Eléctricamente Pequeñas

Marcelo Peruzzi

¿Qué es una antena ESA?

Efectos de miniaturizar las antenas

Disminuye la R y aumenta la X

Redes de adaptación

Dispositivos más voluminosos

Menor eficiencia (Ganancia)

Menor alcance o baterías más grandes

Aumenta el Q (Disminuye el AB) 4

Menores prestaciones

Mojones RFID en ambientes sin GPS

- ✓ Constructivamente simple
- / Impedancia muy inductiva (18 +j 180 Ω)

La medición de la antena de un tag RFID

Impedance (Ohm)

Corrientes de malla

Medición imprecisa

¿Cómo se mide la impedancia de la antena del tag?

Medición con balun

$$\Gamma_a = \frac{\Gamma_e - S_{11}}{S_{22}(\Gamma_e - S_{11}) + S_{12}^2}$$

Balun PCB

Lado desbalanceado

Dimensionamiento del balun

- ✓ Impedancia de línea balanceada de 180 Ω .
- ✓ Longitud de línea balanceada 3/8 λ.
- ✓ Línea microstrip de 50 Ω y longitud mínima.

$$|\Gamma_e| = \left| \frac{\Gamma + \Gamma_a e^{-2j\theta_b}}{1 + \Gamma \Gamma_a e^{-2j\theta_b}} \right|$$

Diseño con simulador del balun

Medición de parámetros del balun

Medición de impedancia con balun

Evaluación de las corrientes de malla

Antena con polarización circular para un tag

- ✓ Esquema constructivo simple.
- ✓ Polarización circular.
- ✓ Impedancia inductiva (18 + j180 Ω).

Los dipolos cruzados

$$\vec{E} = E_x \cos(\omega t - kz - \phi_x)\vec{x} + E_y \cos(\omega t - kz - \phi_y)\vec{y}$$

Los dipolos cruzados

- ✓ Las fases de las corrientes deben diferir en 90°.
- ✓ Ambos dipolos deben irradiar igual potencia.

$$R_y = X_y = R_x = X_x = R$$

La impedancia de los dipolos cruzados es R

La red de adaptación

La red de adaptación

Modelo final

Simulación de los dipolos vertical y horizontal

Simulación de los dipolos vertical y horizontal

Z vertical = 31.7+j31.2 Ω

Z horizontal = 27-j 26.7Ω

Simulación de los dipolos cruzados

DEL SUR

Dimensiones de la red de adaptación

Depende de L y W

Depende de L

Dimensionamiento de la red de adaptación

Impedancia para W fijo y L variable (área del lazo).

Dimensionamiento de la red de adaptación

Impedancia para L fijo y W variable (α variable).

Network of Competence on Internet of Things

Dimensiones de la red de adaptación

ure 6: Antenna input resistance for different matching strips dimensions.

Wm=3.8 mm LMv=16.6 mm LMh=17 mm W=4 mm LMv=LMh=17 mm

Dimensiones de la red de adaptación

Evaluación de la antena

Medición de la impedancia

Figura 6.3: Impedancia de entrada de la antena en función de la frecuencia por medición diferencial (rojo a trazos), por simulación (azul) y por medición con balun (verde en punto y trazos).

Medición de la relación axial

Medición del AB de la relación axial

Medición del rango con un lector comercial

$$r = d\sqrt{\frac{EIRP}{P_{min}G_tL}}$$

Comparación con antenas similares

Ant	Rango (m)	-3 dB AR (MHz)	-10 dB S (MHz)	Dim. mm.	EIRP W
Deavours (2009)	-	900-930 2	890-940 1	120x120	-
Liu et al. (2013)	6.5	903-934 1	_ 3	68x68	4
Tran et al. (2015)	7.6	905.2-916.6 1	890-929	35.6x35.6	3.28
Chiu and Hong (2017)	15.5	892-932 1	884-941 1	95.8x95.8	4
Esta Tesis	12.8	910-940	886-924	64x64	1

Por simulación

² Medición indirecta

 $^{^{3}}$ 894-929 MHz a -3 dB

Panorama actual y futuro

Panorama actual y futuro

Compact Ultra-Wideband Printed Inverted-F Antenna for Location Systems Desarrollo de una antena para vehículos con el fin de lograr una conexión de datos con satélites geoestacionarios.

Proyecto Fase Cero Fundación Sadoski

Panorama actual y futuro

Desarrollo de biosensores de Escherichia Coli para envasado inteligente de productos cárnicos.

PIP 2021-2023 (en evaluación)

9618

IEEE SENSORS JOURNAL VOL 20 NO 17 SEPTEMBER 1 20

Potential Chipless RFID Sensors for Food Packaging Applications: A Review

DESARROLLO DE PELÍCULAS PLÁSTICAS CON CAPACIDAD DE CAPTURA Y ALMACENAMIENTO DE ENERGÍA PICT 2020 (en evaluación)

¿Preguntas?

