#### 1. Цель

Целью данной лабораторной работы является обработка кардиологического датасета и построение бинарного классификатора по признаку Healthy\_Status с применением AutoML-фреймворков. Основные задачи включают:

- загрузку и фильтрацию 5000 записей ЭКГ данных;
- формирование признакового пространства по выбранным параметрам;
- обучение моделей с помощью AutoML;
- оценка качества классификации по матрице ошибок и F1-мере.

### 2. Методы

1) Подготовка данных

Из датасета «модуль 3...» были выбраны 5000 строк и следующие столбцы:

#### 1. 目的

本实验旨在处理心电图(ECG)数据集,并基于 Healthy\_Status 特征构建一个二元分类器。主要目标包括:

- 加载并筛选 5000 条心电图数据;
- 构建由特定特征组成的特征空间;
- 使用 AutoML 框架训练分类模型;
- 通过混淆矩阵和 F1-分数评估模型性能。

# 2. 方法

1) 数据准备

从提供的"模块 3..."数据集中加载 5000 条记录,选取以下字段:

# загружаем полный датасет
raw\_table\_data = pd.read\_csv('https://raw.githubusercontent.com/TAUforPython/BioMedAI/main/test\_datasets/test\_data\_ECG.csv', nrows=5000)
# raw\_table\_data = pd.read\_csv()
raw\_table\_data.head(10)

| subject_i | d Count_subj | study_id | cart_id | Healthy_Status | eeg_time    | eeg_date   | report_0                  | report_1                               | report_2                                |   | filtering                      | rr_interval | p_onset | p_end | qrs_onset | qrs_end | t_end | p_axis | qrs_axis | t_axis |
|-----------|--------------|----------|---------|----------------|-------------|------------|---------------------------|----------------------------------------|-----------------------------------------|---|--------------------------------|-------------|---------|-------|-----------|---------|-------|--------|----------|--------|
| 1955766   | 2 27         | 40000017 | 6848296 | 0              | 8:44 AM     | 27.06.2015 | Sinus rhythm              | Possible right atrial abnormality      | NaN                                     | - | 60 Hz notch Baseline<br>filter | 659         | 40      | 128   | 170       | 258     | 518   | 81     | 77       | 79     |
| 1 1847713 | 7 93         | 40000029 | 6848296 | 0              | 9:54 AM     | 27.06.2015 | Sinus rhythm              | Possible right atrial abnormality      | NaN                                     | - | 60 Hz notch Baseline<br>filter | 722         | 40      | 124   | 162       | 246     | 504   | 77     | 75       | 70     |
| 2 1659861 | 6 3          | 40000035 | 6376932 | 1              | 9:07 AM     | 28.06.2015 | Sinus tachycardia         | NaN                                    | Normal ECG except for rate              | - | 60 Hz notch Baseline<br>filter | 600         | 40      | 130   | 162       | 244     | 474   | 79     | 72       | 77     |
| 1636828   | 7 7          | 40000079 | 6214760 | 1              | 5:14 PM     | 15.07.2015 | Sinus rhythm              | NaN                                    | Normal ECG                              | - | 60 Hz notch Baseline<br>filter | 659         | 40      | 146   | 180       | 254     | 538   | 79     | 66       | 69     |
| 1837036   | 6 2          | 40000084 | 6632385 | 0              | 1:52 PM     | 27.09.2015 | Sinus rhythm              | NaN                                    | NaN                                     | - | ≺not specified≻                | 659         | 368     | 29999 | 504       | 590     | 868   | 84     | 80       | 77     |
| 1560615   | 7 55         | 40000089 | 6632385 | 0              | 2:29 PM     | 29.10.2013 | Sinus rhythm              | NaN                                    | NaN                                     |   | <not specified=""></not>       | 822         | 365     | 29999 | 499       | 592     | 852   | 26     | 46       | 30     |
| 6 1257605 | 8 43         | 40000115 | 6852956 | 1              | 12:54 PM    | 23.03.2016 | Sinus rhythm              | NaN                                    | Normal ECG                              | - | 60 Hz notch Baseline<br>filter | 952         | 40      | 146   | 198       | 282     | 598   | 24     | 80       | 20     |
| 7 1469108 | 9 1          | 40000143 | 6551957 | 0              | 10:01<br>AM | 10.12.2016 | Sinus rhythm              | rSr'(V1) - probable normal variant     | Low QRS voltages in<br>precordial leads | _ | 60 Hz notch Baseline<br>filter | 923         | 40      | 140   | 188       | 278     | 594   | 26     | 86       | 13     |
| B 1414472 | 5 7          | 40000144 | 6924910 | 0              | 7:24 AM     | 11.12.2011 | Sinus rhythm with PAC(s). | NaN                                    | Borderline ECG                          | - | 60 Hz notch Baseline<br>filter | 952         | 40      | 180   | 196       | 294     | 610   | 59     | -17      | 3      |
| 1608978   | 0 2          | 40000152 | 6919786 | 0              | 12:35 PM    | 13.12.2011 | Sinus rhythm              | Extensive T wave changes may be due to | NaN                                     |   | 60 Hz notch Baseline           | 1000        | 40      | 156   | 178       | 274     | 584   | 8      | -11      | 19     |

Очищение данных от выбросов осуществлялось с помощью логических условий:

应用逻辑筛选条件以清洗异常值(通过去除 异常值、合并和清理文本报告数据,使用 Word2Vec 模型将文本转化为数值表示,并 将其作为新的特征用于后续分析):

```
# Yōupaem ชωбросы数据过滤。过滤特所存在 columns to filter 列中具有大于 2000 的値的行。
# 薄透出 p_onset 小子 p_end 且 qrs_onset 小子 qrs_end 的行。这是为了主服数据中的异常值(如时间顺序错误等)
columns to filter = ['rr_interval', 'p_onset', 'p_end', 'qrs_end', 't_end', 'p_axis', 'qrs_axis', 't_axis']
full df filtered = raw table data[(raw table data[columns_to filter] < 2000).all(axis=1)]
full df filtered = full_df filtered[(full_df filtered['p_onset'] < full_df filtered['p_end']) & (full_df filtered['qrs_onset'] < full_df filtered['qrs_end'])]
# Creenseem & course ownerms & odum & footwoox z本教育技能是
# 符 report 0 到 report 17 列中的文本教旨并成一个单一的文本列 report . 每个报告通过空格连接。接著,去除子符单中的 nan 和多余的空格,确保文本格式清洁。
reports = [freport_{0}'] for x in range(18)]
full_df filtered['report_0'] = full_df filtered['report_0'] str.replace(r'\bnan\b', '', regex=True).str.replace(r'\s+', '', regex=True).str.strip()
full_df filtered[report_0'] = full_df filtered['report_0'] inplace=True)

# ouncour weeka comonous 修正则名子,删除了 bandwidth 和 filtering 列 (王夫利)
full_df filtered = full_df filtered.drop(reports_to_drop, axis=1)

# ouncour weeka comonous 修正则名子,删除了 bandwidth 和 filtering 列 (王夫利)
full_df filtered = full_df filtered.drop(columns = ('bandwidth', 'filtering'))

# Pasour weeka comonous 你正的名书 # House of the filtered.drop(columns = ('bandwidth', 'filtering'))

# Pasour weeka comonous component womenous momenous and weeka and momenous and mo
```

Предварительно обработанные характеристики ЭКГ были классифицированы с использованием модели Гаусса Naive Bayes, после чего была проанализирована эффективность модели.

用 Gaussian Naive Bayes 模型对预处理后的 ECG 特征进行分类,并对模型进行性能分析。



## 2) Обучение модели AutoML

Изучены следующие AutoML-фреймворки:

- H2O AutoML: прост в применении, есть графический интерфейс, хорошо масштабируется.
- TPOT: генетический подход к построению моделей.
- AutoSklearn: использует байесовскую оптимизацию, высокое качество, требует больше времени.

Выбор: H2O AutoML как оптимальный по соотношению качества и простоты настройки.

Здесь используется фреймворк AutoML от H2O для автоматического перебора нескольких комбинаций моделей (GLM, GBM, DRF, DeepLearning, StackedEnsemble и т. д.)

По умолчанию в качестве основы для оценки модели используются AUC и показатель F1.

# 2) AutoM 模型训练

对比以下 AutoML 框架:

- H2O AutoML:易用,支持图形界面,适合大数据;
- TPOT: 基于遗传算法构建模型;
- AutoSklearn: 基于贝叶斯优化,准确率高但耗时较长。

选择结果: H2O AutoML 平衡了效果与使用便捷性。

使用 H2O 的 AutoML 框架自动尝试多种模型组合 (GLM、GBM、DRF、DeepLearning、StackedEnsemble 等)。

默认采用 AUC、F1-score 为模型评估依据。

```
# 在 AutoML 中启用 XGBoost

from h2o.automl import H2OAutoML

automl = H2OAutoML(
    max_runtime_secs=60,
    seed=42,
    include_algos=["XGBoost", "GBM", "GLM", "DRF", "DeepLearning", "StackedEnsemble"],
    verbosity="info"
)
automl.train(x=x, y=y, training_frame=train_h2o)
```

3) Матрица путаницы и максимальные результаты F1

Матрица путаницы: оценивает эффективность модели классификации, показывая истинно положительные, ложно положительные, истинно отрицательные и ложно отрицательные результаты.

3)混淆矩阵与最大 F1 分数结果 混淆矩阵:评估分类模型的性能,显示真阳 性、假阳性、真阴性和假阴性。



F1-мера: это гармоническое среднее значение точности и полноты, подходящее для оценки несбалансированных наборов данных.

F1 分数:综合考虑了精确率和召回率的调和平均数,适用于不平衡数据集的评估。

$$Precision = \frac{TP}{TP + FP}$$
 
$$Recall = \frac{TP}{TP + FN}$$
 
$$F1 = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

### 3. Сравнение моделей

### 3.模型对比

$$Precision = \frac{TP}{TP + FP} \approx 0.9766$$
 
$$Recall = \frac{TP}{TP + FN} \approx 1.0$$
 
$$F1 = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall} \approx 0.9881$$

Следующие экспериментальные данные показывают, что модель GBM\_5 имеет наилучшие характеристики на тестовом наборе:

- В тестовом наборе только 3 отрицательных класса были классифицированы неправильно (почти идеальная классификация)
- Оценка F1 достигла 0,9881, что является одним из важнейших показателей в оценке
- AUC достигает 0,9998, и модель обладает сильной дискриминационной способностью.

以下实验数据说明, GBM\_5 模型在测试集上评估性能最优:

- 在测试集上,仅有3个负类被误分(几乎 完美分类)
- F1 分数达到 0.9881, 这是评估中最重要的指标之一
- AUC 也高达 0.9998,模型具有极强区分能力

00:53:06.581: New leader: GBM\_5\_AutoML\_2\_

MSE: 0.0056893233587090985 RMSE: 0.07542760342678997 LogLoss: 0.01841294346956109

Mean Per-Class Error: 0.0038461538461538464

AUC: 0.9998153846153847 AUCPR: 0.9994308033611844 Gini: 0.9996307692307693

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.1346544244507371

|       | 0   | 1   | Error  | Rate        |
|-------|-----|-----|--------|-------------|
|       |     |     |        |             |
| 0     | 387 | 3   | 0.0077 | (3.0/390.0) |
| 1     | 0   | 125 | 0      | (0.0/125.0) |
| Total | 387 | 128 | 0.0058 | (3.0/515.0) |

Maximum Metrics: Maximum metrics at their respective thresholds metric threshold value idx

max f1 0.134654 0.988142 115

Лучшая производительность модели (на тестовом наборе):

最优模型性能表现(在测试集上):

| Значение /指标 | Показателя/数值 | Описание/说明                              |  |  |  |  |  |
|--------------|---------------|------------------------------------------|--|--|--|--|--|
|              |               | Модель обладает сильными возможностями   |  |  |  |  |  |
| AUC          | 0.9998        | классификации.                           |  |  |  |  |  |
|              |               | 模型分类能力极强                                 |  |  |  |  |  |
|              |               | Учитываются как точность, так и скорость |  |  |  |  |  |
| F1-score     | 0.9881        | отклика, почти идеальная.                |  |  |  |  |  |
|              |               | 准确率与召回率兼顾,几乎完美                           |  |  |  |  |  |
| Aggurgay     | ≈ 0.994       | Общая точность классификации высокая.    |  |  |  |  |  |
| Accuracy     | ~ 0.994       | 整体分类正确率高                                 |  |  |  |  |  |
| Laglaga      | 0.01841       | Вероятность выходных данных модели       |  |  |  |  |  |
| LogLoss      | 0.01041       | стабильна и достоверна.                  |  |  |  |  |  |

| Значение /指标                         | Показателя/数值        | Описание/说明                                                                                         |  |  |  |  |  |
|--------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                      |                      | 模型输出概率稳定且可信                                                                                         |  |  |  |  |  |
| Ошибка матрицы<br>путаницы<br>混淆矩阵误差 | результат/假阳性 FP = 3 | Почти все нездоровые люди были успешно идентифицированы (Полнота = 1,0) 非健康者几乎全部被成功识别(Recall = 1.0) |  |  |  |  |  |

### 5. Заключение

В этом проекте используется фреймворк H2O AutoML для автоматического выбора и обучения нескольких моделей классификации для данных цифровых характеристик ЭКГ с целью решения задачи бинарной классификации (определения того, является ли человек «здоровым») и оценки эффективности на основе таких показателей, как матрица неточностей и показатель F1. Были получены следующие результаты:

- H2O AutoML может эффективно и автоматически искать и определять оптимальную модель классификации
- Характеристики ЭКГ имеют значительную дискриминационную силу для оценки состояния здоровья
- Окончательная модель GBM\_5 имеет точность  $\approx 99,4\%$  и оценку F1  $\approx 0,988,$  что делает ее готовым к развертыванию высококачественным классификатором.

### 5.结论

本项目针对 ECG 数字特征数据,利用 H2O AutoML 框架自动选择和训练多个分类模型,解决二分类问题(判断个体是否为"健康"),并基于混淆矩阵、F1 分数等指标进行性能评估。得出以下结果:

- H2O AutoML 能够有效自动搜索并识别最优分类模型
- ECG 特征对于健康状态判断具有显著判别力
- 最终模型  $GBM_5$  准确率≈ 99.4%, F1-score ≈ 0.988,是一个可部署的高质量分类器

# 6. Ссылки на литературу

- [1] L. van der Maaten, G. Hinton. Visualizing data using t-SNE, JMLR, 2008.
- [2] I. T. Jolliffe, Principal Component Analysis, Springer, 2002.