ÄKTA start 层析系统操作指南

整个操作过程严格避免气体进入流路!!!

金属螯合层析分离纯化 GFP

1、实验准备

- 层析柱: HisTrap HP 1 mL。
- 缓冲液 A (配制 200 mL): Tris-HCl 20 mmol/L (pH7.9), Imidazole 10 mmol/L, NaCl 0.5 mol/L, 5%甘油。
- 缓冲液 B (配制 100 mL): Tris-HCl 20 mmol/L (pH7.9), Imidazole 300 mmol/L, NaCl 0.5 mol/L, 5%甘油。
- 其他溶液:超纯水;20%乙醇(助教提供,每台仪器已经各配备一瓶)。
- 4人一组,使用1台仪器。
- 每台仪器准备 2 个 250 mL 蓝盖试剂瓶,一个试剂瓶装 180 mL 的缓冲液 A,另外一个试剂瓶装 100 mL 的缓冲液 B。
- 每台仪器配有 3 个 50 mL 离心管,清洗后分装 30 mL 超纯水、30 mL 20%乙醇、20 mL 缓冲液 A。超纯水和 20%乙醇从公用溶液分装,不要从装有仪器泵的试剂瓶分装,避

免污染。缓冲液 A 从自配的 200 mL 中提前分装。

● 250 mL 塑料烧杯用于装废液,使用后清洗干净。

2、配制溶液和准备样品

- 按配方配制缓冲液 A 和缓冲液 B, AKTA 临用前用真空泵过 0.22 μm 或 0.45 μm 的滤膜 去除杂质。
- 细菌提取液在 20 000 × g 离心后,用 10 mL 注射器吸取上清液,针头注意避开管底的沉淀。上清液用 0.22 μm 或 0.45 μm 滤器过滤,转移至 15 mL 离心管中待使用。(注射器重复使用,处理样品后需洗净干净,注意针头盖好盖子。)

3、开机

将仪器通过 USB 接口连接到电脑上,启动电脑,打开仪器左侧电源开关。待仪器启动完毕后,打开电脑桌面上的 Unicorn start 软件,共含四个窗口,在 System Control 中点击"Connect",等待电脑与仪器连接。

4、超纯水清洗流路

首先将 A、B 泵的泵头分别用洗瓶中的超纯水冲洗,放入装有超纯水的试剂瓶中(试剂瓶用 Parafilm 膜封口,留通气孔),所有废液出口(共三条导管)插入废液缸中。点击 System Control 菜单中的"Manual Run",在跳出的窗口点击选中"Zero flow rate"。

按照以下操作进行数据保存及命名。点击窗口中的"Browse"选择保存程序的位置,选中 Default Home 文件夹,右键选择 New folder,要求用实验日期命名新建的文件夹,点击 OK 保存。选中新建的文件夹,在窗口下方 Name 处给本次实验文件命名。实验文件要求按照以下规则命名,实验名-小组组号(2个小组)-AKTA 仪器编号-日期,如GFP-Group1+4-AKTA01-20200827。同时填写仪器登记表,并在个人实验记录本上做好仪器的使用记录。点击 OK 后等待程序运行完毕,此时收集器会旋转归位。

在 Process Picture 界面"Pump"位置下方设置流速 1(mL/min),点击右侧"Set flow rate" (图 1),开始用超纯水清洗 A 管道及泵。观察 A、B 泵右侧的"Current State"窗口,当累计时间增加 5 min 或累计体积增加 5 mL 后,点击流路图缓冲液阀"Buffer Valve"(图 2)的相应位置 (B 泵侧空白小圆点),改换清洗 B 管道及泵。5 min 后,改换清洗流路上侧其余管道,即点击清洗阀"Wash Valve"(图 3)相应位置,清洗 1 min。

图 1 设置流速

图 2 缓冲液阀

图 3 清洗阀

注意在 Process Picture 界面操作时,**建议在流速运行状态下更改阀门**,否则程序容易出错。仪器的响应需要缓冲时间,**任何操作切勿连续点击**。即使不确定是否点击中,也需等待 30 s 后再进行重复操作(或检查操作指令日志),否则极易引起程序报错,甚至出现流路运行状态(阀门位置)与实际不符。

Chromatogram 界面显示层析图谱,可观察系统的清洗状态,若有气泡会引起 UV 曲线的波动。Run Log 界面记录操作指令日志。

5、泵上样流路清洗

图 4 仪器的样品阀及上样管

图 5 样品阀

暂停流速(可在电脑上点击"Pause"键,也可直接点击仪器显示屏上的"Pause"),将样品阀"Sample Valve"处的透明上样管插入装有超纯水的 50 mL 离心管中,恢复流速,点击流路图左下角阀门(图 5)的相应位置,选择从上样管进液,清洗流路 5 min。结束后将流路重新切换至 A 泵或 B 泵。

6、安装层析柱

检查流路,确认经过接柱位并保持流速为1 mL/min,在运行流速的状态下准备安

裝层析柱。将层析柱上下两端的黑色堵头拧开(新柱子下端的封闭堵头需卸掉,直接 掰,勿旋转),接柱位管道从**红色螺丝**拧开,待上方管道流出液体后接入柱子的上端, 确保管道深入内部并顶住,排出空气见液体溢出后拧紧。当柱子下方持续流出液体后, 将柱子下端接入管道并拧紧(下方管道的两个部件也可拆分后依次与层析柱连接)。将 层析柱用纸巾擦干,观察是否漏液。层析柱连接好后,继续用超纯水清洗流路 5 min。

1. 打开层析柱上下堵头 上端管道深入柱子上端内部

3. 将柱子下端拧入管道中, 保证不漏

图 6 层析柱的安装

7、样品纯化

缓冲液清洗流路

- 1) **暂停流速**,将 A、B 泵分别放入相应的缓冲液 A、缓冲液 B 试剂瓶中,使用缓冲液清洗各流路,流速 1 mL/min,每种缓冲液各清洗 5 CV(柱体积),即清洗 5 min。注意 先清洗 B 管道,再清洗 A 管道,最终使层析柱及相应管道处于缓冲液 A 中待进样。
- 2) **暂停流速**,将样品阀的上样管从超纯水中转移至分装有缓冲液 A 的 50 mL 离心管,上样管需始终保持插入离心管底部的状态,使用缓冲液清洗上样管,流速 1 mL/min,清洗 2 CV(柱体积),即清洗 2 min。结束后将流路切换至 A 泵。

注意:样品阀的上样管在整个纯化过程中需始终保持插入液体中的状态,保持管道深入离心管底部,避免气泡进入系统。实验过程中注意观察离心管的液面状态,如果出现异常下降,及时检查流路是否正确。

收集器摆放收集管

3) 在收集器的外圈从1号位置开始摆放玻璃试管5支(1号位收集延迟体积),内圈从4

号或 5 号位置开始摆放 1.5 mL 离心管 20 支。具体收集的样品体积与实际操作过程相关,可适当多摆放离心管。电脑操作界面的收集器处 (图 7) 可设置每管的收集体积,先设为 10 mL,在外圈收集 GFP 上样透过液。可在上样开始前 1-2 min,提前开始收集,即点击收集器下方的"Start Fractionation"。收集器收集的第 1 管是延迟体积,小于 1 mL,从第 2 管开始,按照每管 10 mL 收集,在软件的层析图谱上有相应的标识。收集器开启后,一直保持收集状态,根据 UV 曲线的图谱保留透过峰和洗脱样品。收集器自动运转,严禁手动强制改变收集器底盘。使用后的试管清洗干净并放回原处,未使用且保持干净的离心管也放回原处。

注意:控制收集器必须通过图 7 所示的 "Start"和 "Stop"标识,不能使用图 8 所示的出口阀。出口阀只能控制溶液进入该侧导管,而收集器不会运转。

上样及开始收集

4) 在 Chromatogram 界面检查 UV 基线稳定后,在 Process Picture 界面的 UV 检测器处点击"Auto Zero"。暂停流速,将样品阀处的上样管插入准备好的样品中,在软件界面检查流路(确认样品阀和清洗阀的状态),点击继续,操作相应的阀门使流路与图 9 所示一致,开始上样。若之前未提前开始收集,此时应设置收集器并点击下方的"Start Fractionation"开始收集。

注意:观察样品剩余量,保持上样管始终位于液面下方,残留少量样品即暂停流速停止上样,严格避免气泡进入管道。

图 9 上样流路

平衡层析柱

5) 离心管中的样品上样结束后,**暂停流速**,将样品阀的上样管放入分装有缓冲液 A 的离心管中(切勿在运行流速时更换溶液,会引入气泡),恢复流速,将管道内残留的样品推入层析柱。待 UV 曲线开始下降后,切换为 A 泵流路,平衡层析柱。(若前一步中未能及时停止上样,已有气体进入上样管,则放弃残留的样品,直接用 A 泵流路平衡层析柱。)

注意: 观察离心管中缓冲液 A 的液面,及时切换 A 泵流路。切勿从上样管进入大量气体,会损坏层析柱。

- 6) 待 UV 曲线降至基线后,点击 "Stop Fractionation"停止收集透过峰。注意收集器不会立刻停止,会继续走完延迟体积,严**禁连续点击"Stop"**。即使不确认是否点击中,也需等待 1 min 后再进行重复操作(或检查操作指令日志)。
- 7) UV 基线稳定后,再用缓冲液 A 平衡 3 min。
- 8) 待收集器的"Start Fractionation"标识恢复蓝色后,更改收集体积为 1 mL,并将收集器导管改放到内圈,为收集洗脱峰做好准备。

注意: 內圈收集的管位顺接外圈(不是从1号位重新开始收集)。收集器自动运转,严禁手动强制改变收集器底盘。

洗脱及停止收集

9) 确认流路状态是用 A 泵平衡层析柱,在此条件下设置梯度洗脱(图 10)。在 Manual 菜单中选择第一项 Execute Manual Instructions,在 Pumps 的 Gradient 中设置洗脱条件。 Target 设置为 100%B,即洗脱过程是 Buffer B 从 0%变为 100%。本次实验 Length 设置为 15 mL,即完成梯度洗脱的溶液量为 15 mL。可提前开始收集,在确认收集器无异常后,点击 Execute 执行。此时可听到仪器阀门不停变换的声音,并可在图形界面 A、B 泵下方的混合器处看到 B 溶液百分比的变化。

图 10 梯度洗脱

- 10) 建议提前开始收集,但也可在梯度洗脱出峰后重启收集器,点击"Start Fractionation" 在內圈以每管 1 mL 收集洗脱峰。注意收集的第一管是延迟体积,不足 1 mL。
- 11) 洗脱峰结束后点击"Stop Fractionation"停止收集。注意收集器不会立刻停止,因为有延迟体积。严禁连续点击"Stop Fractionation",即使不确认是否点击中,也需等待 1 min 后再进行重复操作(或检查操作指令日志)。
- 12) 等待梯度洗脱结束,切勿提前终止程序或直接更换 A、B 溶液。当混合器处的 B 溶液显示 100%后,继续运行 5 min,方可进行下一步操作。注意 A、B 泵在更换溶液前需 暂停流速,防止气泡进入系统。

8、清洗流路及拆卸层析柱

1) **暂停流速**, A、B 泵清洗后放入超纯水的试剂瓶中, 在 1 mL/min 流速条件下, 按图 11 设置流路, 清洗系统 3 min。点击缓冲液阀切换为 A 泵, 将收集器导管置于废液缸

内,点击出口阀切换为收集器导管,按图 12 所示的流路清洗 3 min。暂停流速,将样品阀的上样管插入到分装有超纯水的 50 mL 离心管底部,恢复流速,点击切换样品阀和清洗阀,按图 13 所示的流路清洗 3 min。

图 11 清洗流路 1

图 12 清洗流路 2

图 13 清洗流路 3

- 2) **暂停流速**,将 A、B 泵放入 20%乙醇中,在 1 mL/min 流速条件下,对整个系统进行清洗,清洗过程与超纯水相同。注意样品阀的上样管也用分装的 20%乙醇进行清洗。(进行此步骤时先通知老师已完成纯化实验)
- 3) 系统清洗结束后,更改流路经过层析柱(图 11),在运行 1 mL/min 流速的条件下拆卸层析柱。**先拆层析柱下端**,再拆层析柱上端,让液体从层析柱溢出后安装上端堵头,然后安装下端堵头。同时接柱位的管道也需连接好。(**拆卸层析柱前先咨询老师**)
- 9、结束程序: 点击电脑操作界面的方形图标 End 键。程序停止后才会保存完整的实验数据, 否则无法用 Evaluation 窗口打开实验文件。
- 10、保存样品:对应层析图谱,在收集器上寻找装有目标组分的离心管并做好标记。
- **11、导出层析图谱:** 在 Unicorn start 软件的 Evaluation 窗口打开实验文件,按需求编辑层析图谱的样式,导出 PDF 文件。在电脑桌面新建文件夹,按实验日期命名,将导出的数据保存在该文件夹下。(电脑可联网传输文件,**切勿使用个人 U 盘连接公共电脑**)

注意:样品纯化后应严格按照操作流程完成整个系统所有流路的清洗,不可随意缩短清洗时长。必须按要求正常停止程序,实验中途不可关闭程序窗口,否则可能遗失实验数据。本次实验要求仪器在运行流速时,至少留有一人监督仪器状态。实验结束后清洁并整理台面至初始状态,收集器上不可留有试管或离心管,3 支 50 mL 离心管需清洗干净(尤其缓冲液 A 管中会混有蛋白质样品)。