

EEE6212"Semiconductor Materials"-Quantum Mechanics (2)

Professor Richard Hogg,
Centre for Nanoscience & Technology, North Campus
Tel 0114 2225168,
Email - r.hogg@shef.ac.uk

Purpose

- Continue by considering finite quantum wells
- We will first look at single barriers, and tunnelling structures
- Then look at how to solve the finite QW
- Optical transitions are discussed with regards to absorption and emission

Finite Barrier – $E>V_1$, $E>V_2$

- V₁ Everything to left of x=0
- V₂ Everything to right of x=0
- Step change in V at X=0
- E>V₂>V₁

Solutions to Wave Equation

Region 1

$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} (E - V_1) \psi = 0 \qquad \qquad \frac{d^2\psi}{dx^2} + k_1^2 \psi = 0 \qquad \qquad k_1^2 = \frac{2m}{\hbar^2} (E - V_1)$$

$$\frac{d^2\psi}{dx^2} + k_1^2\psi = 0$$

$$k_1^2 = \frac{2m}{\hbar^2} \left(E - V_1 \right)$$

A exp (jk_1x) wave travelling in +ve x direction

B exp (-jk₁x) wave travelling in -ve x direction

General solution $\Psi_1 = A \exp(jk_1x) + B \exp(-jk_1x)$

Solutions to Wave Equation (2)

Region 2

$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} (E - V_2)\psi = 0 \qquad \qquad \frac{d^2\psi}{dx^2} + k_2^2 \psi = 0 \qquad \qquad k_2^2 = \frac{2m}{\hbar^2} (E - V_2)$$

General solution $\Psi_2 = C \exp(jk_2x) + D \exp(-jk_2x)$

An incident wave from left can be reflected or transmitted

Only $\Psi_2 = C \exp(jk_2x)$ has physical meaning for wave in +ve x direction

Need to consider boundary conditions to determine details....

Boundary Conditions

At x=0, $\Psi_1 = \Psi_2$ (matter is conserved) so A+B = C At x=0 $d\Psi_1/dx = d\Psi_2/dx$ (momentum is conserved) so $k_1A - k_1B = k_2C$

Eliminate B and C and give the reflected and transmitted waves in terms of the amplitude of the incident wave

$$B = \left[\frac{k_1 - k_2}{k_1 + k_2}\right] A$$

$$C = \left[\frac{2k_1}{k_1 + k_2}\right] A$$

Incident
$$A \exp(-jk_1x)$$

Reflected
$$\left[\frac{k_1 - k_2}{k_1 + k_2}\right] A \exp(-jk_1x)$$

Transmitted
$$\left[\frac{k_1 - k_2}{k_1 + k_2}\right] A \exp(-jk_1x)$$

Finite Barrier – E>V₁, E<V₂

Same formalism as before....

$$\Psi_1 = A \exp(jk_1x) + B \exp(-jk_1x)$$
 $\Psi_2 = C \exp(jk_2x) + D \exp(-jk_2x)$

Apply intuition again....if a particle encounters a barrier it cannot surmount.....put as a boundary condition....

As
$$x \rightarrow 0$$
 $\Psi_2 \rightarrow 0$
-Only true if C=0, so $\Psi_2 = D \exp(-jk_2x)$ $k_2^2 = \frac{2m}{\hbar^2}(E - V_2) < 0$

 K_2 is therefore imaginary and so Ψ_2 is attenuated within the barrier

Tunnelling into Barrier

Tunnelling -Finite Barrier

Wave Equations etc.

In region 1

$$\Psi_1 = A \exp(jk_1x)$$

In region 2

$$k'_2$$
 is imaginary = jk_2 (k_2 is real)

$$\Psi_2 = B \exp(jk'_2x) + C \exp(-jk'_2x)$$

$$\Psi_2 = B \exp(-k_2 x) + C \exp(k_2 x)$$

In region 3

$$\Psi_3 = D \exp(k_1 x) + E \exp(-k_1 x)$$

(k₁ same as region 1)

Boundary Conditions

Boundary conditions at x=a

$$\Psi_1(a) = \Psi_2(a) \text{ so...}$$

$$\Psi_1(a) = \Psi_2(a)$$
 so... A exp (jk₁x) = B exp (-k₂x) + C exp (k₂x)

$$d\Psi_1(a)/dx = d\Psi_2(a)/dx$$
 - j (k₁ / k₂) A exp (jk₁x) = B exp (-k₂x) + C exp (k₂x)

Solving in terms of A

$$B = \frac{A}{2} \left(1 - j \frac{k_1}{k_2} \right) \exp\left[\left(j k_1 + k_2 \right) a \right]$$

$$C = \frac{A}{2} \left(1 + j \frac{k_1}{k_2} \right) \exp\left[\left(j k_1 - k_2 \right) a \right]$$

Boundary Conditions (2)

D - E = -j
$$(k_2/k_1)$$
 (C - B)

Solving for D and E in terms of B and C

$$D = \frac{B}{2} \left(1 + j \frac{k_2}{k_1} \right) + \frac{C}{2} \left(1 - j \frac{k_2}{k_1} \right)$$

$$E = \frac{B}{2} \left(1 - j \frac{k_2}{k_1} \right) + \frac{C}{2} \left(1 + j \frac{k_2}{k_1} \right)$$

Now replace B and C by relevant terms in A

Final Steps

$$D = \frac{A}{4} \left[\left(1 - j \frac{k_1}{k_2} \right) \left(1 + j \frac{k_2}{k_1} \right) \exp(jk_1 + k_2) a + \left(1 - j \frac{k_2}{k_1} \right) \left(1 + j \frac{k_1}{k_2} \right) \exp(jk_1 - k_2) a \right]$$

$$D = \frac{A \exp(jk_1 a)}{4} \left[\left(1 - j\frac{k_1}{k_2} \right) \left(1 + j\frac{k_2}{k_1} \right) \exp(k_2 a) + \left(1 - j\frac{k_2}{k_1} \right) \left(1 + j\frac{k_1}{k_2} \right) \exp(-k_2 a) \right]$$

If k₂a is large then second term in brackets may be neglected.

$$DD^* = \frac{AA^*}{16} \left[\left(1 + \frac{k_{\parallel}^2}{k_2^2} \right) \left(1 + \frac{k_2^2}{k_{\parallel}^2} \right) \exp(2k_2 a) \right]$$
$$\frac{AA^*}{DD^*} = \frac{16 \exp(-2k_2 a)}{\left(1 + \frac{k_{\parallel}^2}{k_2^2} \right) \left(1 + \frac{k_2^2}{k_{\parallel}^2} \right)}$$

Tunnelling Everywhere!

- Radioactive decay
- Microscopy
- Spontaneous DNA mutation
- Drude model (conduction)
- Resonant tunnelling diode

Finite Well – Constant Mass

Similar to previous solution for infinite well

$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} (E - V_2) \psi = 0 \qquad \frac{d^2\psi}{dx^2} + \frac{2m_w}{\hbar^2} (E) \psi = 0 \qquad \frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} (E - V_2) \psi = 0$$

$$E = \frac{\hbar^2 k^2}{2m_w}$$

Requires function, f, that when differentiated twice gives +f

Finite Well – Constant Mass (2)

$$\int_{\text{all space}} \psi^*(z) \psi(z) dz = 1$$

So $\Psi(x) \rightarrow 0$ and $d\Psi(x)/dx \rightarrow 0$ as $x \rightarrow \pm \infty$ For even parity states-

$$\Psi(x) = B \exp(\kappa x)$$
 $\Psi(x) = A \cos(kx)$ $\Psi(x) = B \exp(-\kappa x)$

Finite Well – Constant Mass (3)

$$k = \frac{\sqrt{2m^*E}}{\hbar}$$

$$k = \frac{\sqrt{2m^*E}}{\hbar} \qquad \qquad \kappa = \frac{\sqrt{2m^*(V_2 - E)}}{\hbar}$$

Both $\Psi(x)$ and $d\Psi(x)/dx$ must be continuous –consider interface at x=l_w/2

Equating Ψ

$$A\cos\left(\frac{kl_{w}}{2}\right) = B\exp\left(-\frac{\kappa l_{w}}{2}\right)$$

Equating derivatives

$$A\cos\left(\frac{kl_{w}}{2}\right) = B\exp\left(-\frac{\kappa l_{w}}{2}\right) \qquad -kA\sin\left(\frac{kl_{w}}{2}\right) = -\kappa B\exp\left(-\frac{\kappa l_{w}}{2}\right)$$

Finite Well – Constant Mass (4)

Dividing the previous two equations

$$-\frac{1}{k}\cot\left(\frac{kl_w}{2}\right) = -\frac{1}{\kappa} \qquad \therefore k\tan\left(\frac{kl_w}{2}\right) - \kappa = 0$$

If we repeat the previous analysis for odd parity states, then we would use $\Psi(x) = A \sin(kx)$, and the equation to be solved for the odd parity eigenenergies is

 $k \cot\left(\frac{kl_w}{2}\right) + \kappa = 0$

k and κ are functions of energy, so these equations are functions of energy E only

How to Solve?

Can use graphical method - if all you have is pencil and ruler!

FIG. 7. Graphical solution for Eqs. (7) and (8). Solutions are located at the intersections of the straight line with slope k_o^{-1} with curves $y = \cos kL/2$ (with $\tan kL/2 > 0$; ——; even wave functions) or $y = \sin kL/2$ (with $\tan kL/2 < 0$; ——; odd solutions).

Computationally – use e.g. Newton-Raphson iteration

$$E^{(n+1)} = E^{(n)} - \frac{f(E^{(n)})}{f'(E^{(n)})}$$

Examples – GaAs QW

n.b. Effective masses different in barrier and well – not included in previous derivations

Quantum Well - Transitions

Fermi's Golden Rule

$$W_{i\to f} = \frac{2\pi}{\hbar} |\langle f| - e\mathbf{r} \cdot \boldsymbol{\varepsilon} |i\rangle|^2 g(\hbar\omega),$$

$$M = \langle f | x | i \rangle = \int \Psi_{\rm f}^*(\mathbf{r}) x \Psi_{\rm i}(\mathbf{r}) d^3 \mathbf{r}.$$

Due to Symmetry transitions

$$\theta = 1 \rightarrow \theta = 1$$
 allowed

$$\theta = 2 \rightarrow \theta = 2$$
 allowed

$$\theta$$
 =1,2 \rightarrow θ =2,1 forbidden

 $\theta = 1,2 \rightarrow \theta = 2,1$ forbidden © The University of Sheffield

QW Absorption + Excitons

Quantum confinemnt forces electrons and holes closer together than in bulk materials ~2.5x increase in exciton binding energy – excitonic effects at RT

Quantum Confined Stark Effect

- Field causes a decrease in the transition energy
- Reducing wavefunction overlap with increasing bias
- Application as a modulator for optical communications

QW - Optical Emission

- Shift of emission peak by the confinement energy emission energy now can be tuned by alloy composition of QW and QW width. In bulk materials only the band-gap of the alloy can be used to tune emission wavelength.
- Increased overlap between electron and hole means emission probability is high. Radiative efficiency is therefore higher in QW materials, making brighter light emitters.
- Total thickness of QW is small ~10nm. Lattice mismatched layers may therefore be used (so long as less than the critical thickness).
 This allows further flexibility in the choice of emission wavelength.

QW Active Element - Laser

In addition to reducing the volume (and hence total number of states) Quantum confinement acts to concentrate the carriers at the required wavelength further reducing nth and increasing dg/dn

Band-Structure Engineering

Able to vary alloy compositions to create a "pseudo electric field"

Drives both electrons and holes into the QW e.g. Graded Index Separate Confinement Heterostructure (GRINSCH) laser

Band-Offsets

Alignment of energy bands not uniform

Band-offsets describe sharing of differences in band-gaps between materials

Combinations of different alloys allows for different types of quantum well

Types of QW

Type 1 QW – high e-h overlap

Type 2 QW – flexibility in wavelength selection

Possibly low e-h overlap – "Type W" to partially solve this

Intersubband Transitions

Intersubband photodetector

Quantum Cascade Laser

Summary

- Described finite barriers, resonant tunnelling, and solution to finite quantum well
- Discussed absorption process and QCSE
- Explored effect of QW on light emitters
- Touched upon band-structure engineering possible through careful choice of materials, leading to more exotic devices