

Рис. 3.1. Искажение изображения среды на временном сейсмическом разрезе ОСТ в случаях: а - наклонной границы; б - узкой синклинальной складки; в - точки дифракции. 1 — истинное положение в разрезе, 2 — положение на разрезе ОСТ.

a) MIGRATION OF A POINT

b) MIGRATION OF A DIFFRACTION

c) MIGRATION OF A DIPPING EVENT

15_001_Stack_PostMig_vol

	2530 5274	2530 5343	2530 5412	2530 5481	2530 5550	2530 5619	2530 5688	2530 5757	2530 5826	2530 5895	2530 5964	2530 6033	2530 6102	2530 6171
	16.1													
													ALC:	
				Line		. 7								
		1					Ø			S	$ \mathcal{O} $			
						/N								
							1	1-		93 1				
						1	,	5		1				
		11	1	1/				-3/						
				1						1				
100		/		9/1	T.						11/2			
				\mathbf{y}						> /				
32			-										30	
							11							270
				-	92	-17	R							
							11		1					
				4		1								11
				1000			12					1	.,	
		9//	1			1					1			
	1						1/1							
		-				-/	1				-			7
1	1557/159	39.2	100/10	70000		and I	12.39	ALCOHOL: N	100	N. O. S.		5.4667		215714

 Table 4-1. Migration strategies.

Case	Migration			
dipping events	time migration			
conflicting dips with different stacking velocities	prestack migration			
3-D behavior of fault planes and salt flanks	3-D migration			
Case	Migration			
strong lateral velocity variations associated with complex overburden structures	depth migration			
complex nonhyperbolic moveou	t prestack migration			
3-D structures	3-D migration			