

European Project n° 613817 2nd Annual Meeting

Modelling the impact of extreme events on phenology and fruit set in grapes

Luisa Leolini

Department of Agri-Food and Environmental Science - University of Florence Piazzale delle Cascine 18 - 50144, Firenze, Italy.

Tel: +39 3349789679, E-mail: luisa.leolini@unifi.it

Roma - November 3-4, 2015

Climate change impact on grapevine

Granecitetabilitarisespected tockesseance by peidseneuwilimabe mostong impateron and traditional wine-reading impateron and traditiona

Effects of changes caused by mean climate

Phenology

 In a context of global warming, the number of chilling unit accumulated by fruit trees will be reduced (Baldocchi and Wong, 2008).

Long term trend in accumulated chill hours (Baldocchi and Wong, 2008)

Trends in Winter Chill Hour Accumulation (hours per year) November-March, 0 to 7.22 C (Baldocchi and Wong, 2008)

<u>Yield</u>

- A future increase in temperature may lead to a higher level of photosynthesis in high CO₂ concentration levels (Moriondo et al., 2015).
- Grape yield may be reduced because of insect and diseases infestations.

(Moriondo et al., 2015)

Effects of changes caused by extreme events

Dormant

Early Bud Swell

Late Bud Swell

Bud Burst

1-to 3-inch shoots

<u>Budbreak</u>

At budbreak date, frost events (**Tmin<-2°C**) cause shoot loss and lower yield (Narcico et al., 1992; Mullins et al., 1992).

Flowering

 A lower ovule fertility, caused by a decreasing in organic nutrients available to the ovaries, may occurs at temperature of 35°C or 40°C (Kliewer, 1977).

4-to 8-inch shoots

10-to 16-inch shoots

Immediate prebloom

First bloom

Full bloom

Buckshot berries

Bunch closure

Veraison

Harvest

Veraison and Post-veraison

 Temperature higher than 35°C during berry ripening cause lower yield and the production of small berries (Kliewer, 1977).

Extreme events effect on grape flowering

Optimum temperature for ovule fertility and fruit-set range between 20°C and 30 °C (day) and 10-20°C (night) (Buttrose and Hale,1973; Haeseler and Fleming, 1967; May 2004; Winkler et al., 1974).

Temperature of 25°C during bloomfruit set period carried out to greater size and fresh weight of Cabernet Sauvignon berries respect to temperature of 32.5°C and higher (Kliewer, 1977).

Related studies

Temperature exposure were:

1954	1955	1956
treatm day/minimu	ents for maxin im night temp	num eratures:
78°F	25 ₆ /ፈቲ0°C 15°/10°C	69°F
85°F	2 <i>5</i> 732 0 °C	79°F
	82°F	89°F

The contribution of the simulation models

Crop simulation models represent useful tools for evaluating the impact of mean climate change on crop growth and development in present and future scenarios.

Fila et al. (2014) Bindi et al. (1996)

Objective

Grape model implementation

a) Phenology:

Chilling unit will be implemented in order to define better the budbreak date.

Extreme events consider the effects on: <u>fertility and yield</u>

Temperature increase cause changes in anthesis days (Moriondo et al., 2015)

Relationship between Relative fertility and Maximum temperature (Moriondo et al., 2011)

Methodology

Phenology: was estimated using cumulative maximum temperature and degree days.

Leaf area: was estimated using the number of actively growing shoots and the rate of leaf appearance and expansion.

Total biomass: was calculated from radiation intercepted and radiation use efficiency (RUE).

Harvest index: The increase allows to estimate daily fruit growth.

Original Bindi's model (Fortran code)

<u>Phenology</u>

$$C_c = \sum_{n=1^{St} August}^{N_{db}} C_u$$
 where $C_u = Q_{10c}^{\frac{-Tx(n)}{10}} + Q_{10c}^{\frac{-Tn(n)}{10}}$

 C_c = chilling unit requirement N_{db} = threshold for dormancy break C_u = critical amount of chilling units T_x = daily maximum temperature T_n =daily minimum temperature Q_{10c} = rate of the geometric progression of the thermal dormancy response.

Extreme events

$$f_t = \left(\frac{T - T_0}{T_{Opt} - T_0}\right)^q \cdot \left(\frac{T'_0 - T}{T'_0 - T_{Opt}}\right)$$

 f_t = temperature factor

T = daily temperature

 T_0 = base temperature

 T_{Opt} = optimum temperature

 T'_0 = cut off temperature

 $\it q = {\rm exponent}$ that determines the shape of the curve

First Results

Chilling units requirement

Grape flowering date

Effects of extreme events on grape flowering

A relationship between high temperature and the percentage of fruit set was established using data from literature (Haeseler and Fleming, 1967; Ewart and Kliewer, 1977; Kliewer, 1977; Tukey, 1958)

Acknowledgement

"The research leading to these results has received funding from the European Community's Seventh Framework Programme – FP7 (KBBE.2013.1.4-09) under Grant Agreement No. 613817, 2013-2016"

