Advanced Communication Systems

Chapter 2: Characteristic of Propagation in Communication Systems

October 2018
Lectured by Prof. Dr. Thuong Le-Tien

Slides with references from HUT Finland, La Hore uni., Mc. Graw Hill Co., A.B. Carlson's "Communication Systems", and Leon W.Couch "Digital and Analog Communication Systems" books

Signals and Spectra

A generic sinusoidal signal

$$v(t) = A\cos(\omega_0 t + \phi); \quad \omega_0 = 2\pi f_0$$

Phasor representation

$$A \cos (\omega_0 t + \phi) = A \operatorname{Re} \left[e^{j(\omega_0 t + \phi)} \right]$$
$$= \operatorname{Re} \left[A e^{j\phi} e^{j\omega_0 t} \right]$$

- Frequency domain representation
 - Rotating phasors
 - Frequency plots
 - Amplitude
 - Phase

Two sided spectra can be seen from

$$A\cos(\omega_0 t + \phi) = \frac{A}{2}e^{j\phi}e^{j\omega_0 t} + \frac{A}{2}e^{-j\phi}e^{-j\omega_0 t}$$

- This represents two rotating phasors
- Amplitude and phase spectrum (two sided)

(a) Conjugate phasors; (b) two-sided spectrum.

Periodic Signals

- A signal x_p(t) is periodic if there exists T such that x_p(t) = x_p(t + T)
- Smallest such ⊤ is called fundamental period T₀
- Any integer multiple of To is also a period

Average signal and Power

Average signal

$$\langle v(t) \rangle \stackrel{\triangle}{=} \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} v(t) dt$$

For periodic signals

$$\langle v(t) \rangle = \frac{1}{T_0} \int_{t_0}^{t_1+T_0} v(t) dt = \frac{1}{T_0} \int_{T_0} v(t) dt$$

Average power

$$P \stackrel{\triangle}{=} \langle |v(t)|^2 \rangle = \frac{1}{T_0} \int_{T_0} |v(t)|^2 dt$$

- In the concept of *normalized* power, R is assumed to be 1Ω, although it may be another value in the actual circuit.
 - Another way of expressing this concept is to say that the power is given on a per-ohm basis.
 - It can also be realized that the square root of the normalized power is the rms value.

Definition. The *average normalized power* is given by: Where s(t) is the voltage or current waveform

$$P = \langle s^{2}(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} s^{2}(t) dt$$

Decibel

- A base 10 logarithmic measure of power ratios.
- The ratio of the power level at the output of a circuit compared with that at the input is often specified by the decibel gain instead of the actual ratio.
- Decibel measure can be defined in 3 ways
 - Decibel Gain
 - Decibel signal-to-noise ratio (SNR in dB)
 - Mili-watt Decibel or dBm
- Definition: Decibel Gain
 The decibel gain of a circuit is:

$$dB = 10\log\left(\frac{average \quad power \quad out}{average \quad power \quad in}\right) = 10\log\left(\frac{P_{out}}{P_{in}}\right)$$

Decibel Gain

If resistive loads are involved,

$$P = \frac{\left\langle v^2(t) \right\rangle}{R} = \left\langle i^2(t) \right\rangle R = \frac{V_{rms}^2}{R} = I_{rms}^2 R = V_{rms} I_{rms}$$

Definition of dB may be reduced to,

$$dB = 20\log\left(\frac{V_{\mathit{rms-out}}}{V_{\mathit{rms-in}}}\right) + 10\log\left(\frac{R_{\mathit{in}}}{R_{\mathit{load}}}\right)$$

$$dB = 20\log\left(\frac{I_{rms out}}{I_{rms in}}\right) + 10\log\left(\frac{R_{load}}{R_{in}}\right)$$

Decibel signal-to-noise ratio (SNR)

Definition. The *decibel signal-to-noise ratio* (SNR) is:

 $(S/N)_{dB} = 10 \log \left(\frac{P_{signal}}{P_{noise}} \right) = 10 \log \left(\frac{\langle s^2(t) \rangle}{\langle n^2(t) \rangle} \right)$

Where, Signal Power (S) =
$$\frac{\left\langle s^{\,2}(t)\right\rangle}{R} = \frac{V_{rms\ signal}^{\,2}}{R}$$

And, Noise Power (N)
$$=\frac{\left\langle n^2(t)\right\rangle}{R}=\frac{V_{rms\ noise}^2}{R}$$

$$(S/N)_{dB} = 20 \log \left(\frac{V_{rms \ signal}}{V_{rms \ noise}} \right)$$

Decibel with mili watt reference (dBm)

Definition. The decibel power level with respect to 1 mW

$$dBm = 10\log\left(\frac{actual \quad power \quad level \quad (watts)}{10^{-3}}\right)$$

= 30 + 10 log (Actual Power Level (watts)

- Here the "m" in the dBm denotes a milliwatt reference.
- When a 1-W reference level is used, the decibel level is denoted dBW;
- when a 1-kW reference level is used, the decibel level is denoted dBk.

E.g.: If an antenna receives a signal power of 0.3W, what is the received power level in dBm?

$$dBm = 30 + 10x\log(0.3) = 30 + 10x(-0.523)3 = 24.77 dBm$$

Fourier Series Representation

- Projection of periodic signals onto basis functions
 - Periodic signal is a weighted sum of these basis functions
- Exponentials are used as basis functions for writing Fourier series
- Any periodic signal can be expressed as a sum of infinite number of exponentials (or sinusoids for real signals)

Fourier Series

$$v(t) = \sum_{n=-\infty}^{\infty} c_n e^{j2\pi n f_0 t} \qquad n = 0, 1, 2, ...$$

$$n = 0, 1, 2, \dots$$

$$c_n = \frac{1}{T_0} \int_{T_0} v(t) e^{-j2\pi n f_0 t} dt$$

$$c_n = |c_n| e^{j \arg c_n}$$

$$c_n = |c_n| e^{j \arg c_n}$$
 $c_n e^{j 2\pi n f_0 t} = |c_n| e^{j \arg c_n} e^{j 2\pi n f_0 t}$

DC component:
$$c(0) = \frac{1}{T_0} \int_{T_0} v(t) dt = \langle v(t) \rangle$$

$$f_0 = \frac{1}{T_0}$$
 (fundamental frequency)

Line spectra at frequencies that are integer multiple of fundamental frequency

Fourier series example:

$$v(t) = \begin{cases} A & |t| < \tau/2 \\ 0 & |t| > \tau/2 \end{cases}$$

Thus

$$c_{n} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} v(t) e^{-j2\pi n f_{0}t} dt = \frac{1}{T_{0}} \int_{-\tau/2}^{\tau/2} A e^{-j2\pi n f_{0}t} dt$$

$$= \frac{A}{-j2\pi n f_{0} T_{0}} \left(e^{-j\pi n f_{0}\tau} - e^{+j\pi n f_{0}\tau} \right)$$

$$= \frac{A}{T_{0}} \frac{\sin \pi n f_{0} \tau}{\pi n f_{0}}$$

Multiplying and dividing by τ finally gives

$$c_n = \frac{A\tau}{T_0} \operatorname{sinc} n f_0 \tau$$

Fourier Series: Example T_0 $|c(nf_0)|$ $A f_0 \tau | \operatorname{sinc} f \tau |$ $-f_0 \quad 0 f_0 2 f_0 \quad \frac{1}{\tau} = 4 f_0 \quad \frac{2}{\tau}$ (a) $arg[c(f_0)]$ 180° -180°

(b)

Fourier Transform

Back to the Fourier series:

$$v(t) = \sum_{n=-\infty}^{\infty} c(nf_0)e^{j2\pi nf_0 t}$$

$$= \sum_{n=-\infty}^{\infty} \left[\frac{1}{T_0} \int_{T_0} v(t)e^{-j2\pi nf_0 t} dt \right] e^{j2\pi nf_0 t}$$

$$v(t) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} v(t)e^{-j2\pi ft} dt \right] e^{j2\pi ft} df$$
 [3]

The bracketed term is the Fourier transform of v(t) symbolized by V(f) or $\mathcal{F}[v(t)]$ and defined as

$$V(f) = \mathcal{F}[v(t)] \stackrel{\triangle}{=} \int_{-\infty}^{\infty} v(t)e^{-j2\pi ft} dt$$
 [4]

Three major properties of V(f)

- The Fourier transform is a complex function, so |V(f)| is the amplitude spectrum of v(t) and arg V(f) is the phase spectrum.
- 2. The value of V(f) at f = 0 equals the **net area** of v(t), since

$$V(0) = \int_{-\infty}^{\infty} v(t) dt$$
 [6]

which compares with the periodic case where c(0) equals the average value of v(t).

3. If v(t) is real, then

$$V(-f) = V^*(f)$$
 [7a]

and

$$|V(-f)| = |V(f)|$$
 arg $V(-f) = -\arg V(f)$ [7b]

so again we have even amplitude symmetry and odd phase symmetry. The term hermitian symmetry describes complex functions that obey Eq. (7).

Rectangular pulse spectrum

 $V(f) = A\tau \operatorname{sinc} f\tau$ |V(f)| $A\tau$

Operation	Function	Fourier Transform
Linearity	$a_1w_1(t) + a_2w_2(t)$	$a_1W_1(f) + a_2W_2(f)$
Time delay	$w(t-T_d)$	$W(f) e^{-j\omega T_d}$
Scale change	w(at)	$\frac{1}{ a }W\left(\frac{f}{a}\right)$
Conjugation	$w^*(t)$	$W^*(-f)$
Duality	W(t)	w(-f)
Real signal frequency translation $[w(t)]$ is real]	$w(t)\cos(w_c t + \theta)$	$rac{1}{2}[e^{j heta}W(f-f_c)+e^{-j heta}W(f+f_c)]$
Complex signal frequency translation	$w(t)e^{j\omega_c t}$	$W(f-f_c)$
Bandpass signal	$\operatorname{Re}\{g(t)e^{j\omega_c t}\}$	$rac{1}{2}[G(f-f_c) + G^*(-f-f_c)]$
Differentiation	$\frac{d^n w(t)}{dt^n}$	$(j2\pi f)^n W(f)$
Integration	$\int_{-\infty}^{r} w(\lambda) d\lambda$	$(j2\pi f)^{-1}W(f) + \frac{1}{2}W(0) \delta(f)$
Convolution	$J_{-\infty}$	$W_1(f)W_2(f)$
	$w_2(t-\lambda) d\lambda$	•••
Multiplication ^b	$w_1(t)w_2(t)$	$W_1(f) * W_2(f) = \int_{-\infty}^{\infty} W_1(\lambda) W_2(f - \lambda) d\lambda$
Multiplication	$t^n w(t)$	$(-j2\pi)^{-n}\frac{d^nW(f)}{df^n}$

Function	Time Waveform $w(t)$	Spectrum W(f)
Rectangular	$\Pi\left(\frac{t}{T}\right)$	$T[Sa(\pi fT)]$
Triangular	$\Lambda\left(\frac{t}{T}\right)$	$T[Sa(\pi fT)]^2$
Unit step	$u(t) \triangleq \begin{cases} +1, & t > 0 \\ 0, & t < 0 \end{cases}$	$\frac{1}{2}\delta(f)+\frac{1}{j2\pi f}$
Signum	$\operatorname{sgn}(t) \triangleq \begin{cases} +1, & t > 0 \\ -1, & t < 0 \end{cases}$	$\frac{1}{j\pi f}$
Constant	1	$\delta(f)$
Impulse at $t = t_0$	$\delta(t-t_0)$	$e^{-j2\pi f t_0}$
Sinc	$Sa(2\pi Wt)$	$\frac{1}{2W} \Pi\left(\frac{f}{2W}\right)$
Phasor	$e^{j(\omega_0 r + \varphi)}$	$e^{j\varphi} \delta(f-f_0)$
Sinusoid	$\cos(\omega_c t + \varphi)$	$\frac{1}{2}e^{j\varphi}\delta(f-f_c)+\frac{1}{2}e^{-j\varphi}\delta(f+f_c)$
Gaussian	$e^{-\pi(t/t_0)^2}$	$t_0e^{-\pi(f_{i_0})^2}$
Exponential, one-sided	$\begin{cases} e^{-t/T}, & t > 0 \\ 0, & t < 0 \end{cases}$	$\frac{T}{1+j2\pi fT}$
Exponential, two-sided	$e^{- t /T}$	$\frac{2T}{1+(2\pi fT)^2}$
Impulse train	$\sum_{k=-\infty}^{k=\infty} \delta(t-kT)$	$f_0 \sum_{n=-\infty}^{n=\infty} \delta(f-nf_0),$
	2	where $f_0 = 1/T$

Convolution

The *convolution* of a waveform $w_1(t)$ with a waveform $w_2(t)$ to produce a third waveform $w_3(t)$ which is

$$w_3(t) = w_1(t) * w_2(t) \equiv \int_{-\infty}^{\infty} w_1(\lambda) w_2(t-\lambda) d\lambda$$

Evaluation of the integral involves 3 steps.

- Time reversal of w_2 to obtain $w_2(-\lambda)$,
- Time shifting of w_2 by t seconds to obtain $w_2(-(\lambda-t))$, and
- Multiplying this result by w_1 to form the integrand $w_1(\lambda)w_2(-(\lambda-t))$.

Note: we denote a signal s(t) as a waveform w(t)

Example for Convolution

Figure 2-7 Convolution of a rectangle and an exponential.

$$w_1(t) = \Pi \left(\frac{t - \frac{T}{2}}{T} \right)$$

$$w_2(t) = e^{-\frac{t}{T}} u(t)$$

For
$$0 \le t \le T$$

$$w_3(t) = \int_0^t 1e^{+(\lambda-t)/T} d\lambda = T(1-e^{-t/T})$$

For
$$t > T$$

$$w_3(t) = \int_0^T 1e^{+(\lambda-t)/T} d\lambda = T(e-1)e^{-t/T}$$

$$w_3(t) = \begin{cases} 0, & t < 0 \\ T(1 - e^{-t/T}), & 0 < t < T \\ T(e - 1)e^{-t/T}, & t > T \end{cases}$$

Power Spectral Density (PSD)

We define the truncated version of the waveform by:

$$w_{T}(t) = \begin{cases} w(t) & -T/2 < t < T/2 \\ 0 & t & elsewhere \end{cases} = w(t)$$

The average normalized power:

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} w^{2}(t) dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\infty}^{\infty} w_{T}^{2}(t) dt$$

 Using Parseval's theorem to calculate power from the frequency domain

$$P = \lim_{f \to \infty} \frac{1}{f} \int_{-\infty}^{\infty} \left| W_f(f) \right|^2 dt = \int_{-\infty}^{\infty} \left(\lim_{f \to \infty} \frac{\left| W_f(f) \right|^2}{f} \right) df$$

Definition: The Power Spectral Density (PSD) for a deterministic power waveform is

$$P_W(f) = \lim_{f \to \infty} \frac{\left| W_f(f) \right|^2}{f}$$

- where $w_T(t) \leftrightarrow W_T(f)$ and $P_w(f)$ has units of watts per hertz.
- The PSD is always a real nonnegative function of frequency.
- PSD is not sensitive to the phase spectrum of w(t)
- The normalized average power is

$$P = \langle w^2(t) \rangle = \int_{-\infty}^{\infty} P_w(f) df$$

• This means the area under the PSD function is the normalized average power.

Autocorrelation Function

- Definition: The autocorrelation of a real (physical)
 - waveform is

$$R_{w}(\tau) \equiv \left\langle w(t)w(t+\tau) \right\rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} w(t)w(t+\tau)dt$$

• Wiener-Khintchine Theorem: PSD and the autocorrelation function are Fourier transform pairs; $R_w(\tau) \leftrightarrow P_w(f)$

The PSD can be evaluated by either of the following two methods:

- 1. Direct method: by using the definition,
- 2. *Indirect method*: by first evaluating the autocorrelation function and then taking the Fourier transform:

$$P_{w}(f) = \Im \left[R_{w}(\tau) \right]$$

• The average power can be obtained by any of the four techniques.

$$P = \langle w^{2}(t) \rangle = W_{rms}^{2} = \int_{-\infty}^{\infty} P_{w}(f) df = R_{w}(0)$$

Normalized Power

Theorem: For a periodic waveform w(t), the normalized power is given by:

$$P_{w} = \left\langle w^{2}(t) \right\rangle = \sum_{n=-\infty}^{\infty} \left| c_{n} \right|^{2}$$

where the $\{c_n\}$ are the complex Fourier coefficients for the waveform.

Proof: For periodic w(t), the Fourier series representation is valid over all time and one may evaluate the normalized power:

$$P_{w} = \left\langle \left(\sum_{n} c_{n} e^{jn\omega_{0}t}\right)^{2} \right\rangle = \left\langle \sum_{n} \sum_{m} c_{n} c_{m}^{*} e^{jn\omega_{0}t} e^{-jm\omega_{0}t} \right\rangle$$

$$= \sum_{n} \sum_{m} c_{n} c_{m}^{*} \left\langle e^{j(n-m)\omega_{0}t} \right\rangle = \sum_{n} \sum_{m} c_{n} c_{m}^{*} \delta_{nm} = \sum_{n} c_{n} c_{n}^{*}$$

$$P_{w} = \sum_{n} |c_{n}|^{2}$$

Power Spectral Density for Periodic Waveforms

Theorem: For a periodic waveform, the power spectral density (PSD) is given by

$$P(f) = \sum_{n=-\infty}^{n=\infty} |c_n|^2 \delta(f - nf_0)$$

where $T_0 = 1/f_0$ is the period of the waveform and $\{c_n\}$ are the corresponding Fourier coefficients for the waveform.

Proof. Let $w(t) = \sum_{n} c_n e^{jn\omega_0 t}$. Then the autocorrelation function of w(t) is

$$R(\tau) = \left\langle w^*(t)w(t+\tau) \right\rangle = \left\langle \sum_{n=-\infty}^{\infty} c_n^* e^{-jn\omega_0 t} \sum_{m=-\infty}^{\infty} c_m e^{jm\omega_0(t+\tau)} \right\rangle$$
$$R(\tau) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} c_n^* c_m e^{jm\omega_0 \tau} \left\langle e^{j\omega_0(m-n)t} \right\rangle$$

But
$$\langle e^{j\omega_0(n-m)t} \rangle = \delta_{nm}$$
, so $R(\tau) = \sum_{n=-\infty}^{\infty} |c_n|^2 e^{jn\omega_0 \tau}$
 $P(f) = \Im[R(\tau)] = \Im\left[\sum_{n=-\infty}^{\infty} |c_n|^2 e^{jn\omega_0 \tau}\right]$ PSD is the FT of the Autocorrelation function

26

$$= \sum_{n=-\infty}^{\infty} \left| c_n \right|^2 \Im[e^{jn\omega_0 \tau}] = \sum_{n=-\infty}^{\infty} \left| c_n \right|^2 \delta(f - nf_0)$$

Power Spectral Density for a Square Wave

- The PSD for the periodic square wave will be found.
- Because the waveform is periodic, FS coefficients can be used to evaluate the PSD. Consequently this problem becomes one of evaluating the FS coeffic.

$$\mathscr{P}(f) = \sum_{n=-\infty}^{n=-\infty} |c_n|^2 \ \delta(f-nf_0)$$

Noise in communication systems

Thermal noise is described by a zero-mean Gaussian random process, n(t).

Its PSD is flat, hence, it is called white noise.

Probability density function

Signal transmission through linear systems

Deterministic signals:

$$V(f) - V(f)H(f)$$

Random signals:

Ideal distortion less transmission:

All the frequency components of the signal not only arrive with an identical time delay, but also are amplified or attenuated equally.

$$y(t) - Kx(t - t_{11}) \text{ or } H(t) - Kc^{-i2\pi ft_{11}}$$

Ideal filters:

- Realizable filters:
 - RC filters

$$II(f) - \frac{1}{1 \perp i} \frac{1}{2\pi} f \mathcal{D} f$$

Butterworth filter

$$|\Pi_n(\Gamma)| = \frac{1}{\sqrt{1+(1/t_n)^{\frac{1}{2}}}}$$

Bandwidth of signal

Baseband versus bandpass:

- Bandwidth dilemma:
- Bandlimited signals are not realizable!
- Realizable signals have infinite bandwidth!

Bandwidth of signal ...

Different definition of bandwidth:

- a) Half-power bandwidth
- b) Noise equivalent bandwidth
- c) Null-to-null bandwidth

- a) Fractional power containment bandwidth
- b) Bounded power spectral density
- c) Absolute bandwidth

Power Transfer Function

Poerive the relationship between the power spectral density (PSD) at the input, $P_x(f)$, and that at the output, $P_y(f)$, of a linear time-invariant network.

Using the definition of PSD

$$P_W(\mathsf{f}) = \lim_{f \to \infty} \frac{|W_T(f)|^2}{f}$$

PSD of the output is

$$P_{y}(f) = \lim_{f \to \infty} \frac{\left| W_{y}(f) \right|^{2}}{f}$$

Using transfer function in a formal sense, we obtain

$$P_{y}(f) = |H(f)|^{2} \lim_{f \to \infty} \frac{|W_{x}(f)|^{2}}{f}$$

$$P_{y}(f) = |H(f)|^{2} P_{x}(f)$$

Thus, the power transfer function of the network is

$$G_h(f) = \frac{P_y(f)}{P_x(f)} = |H(f)|^2$$