2012.12.12

This report describes data from 2012.12.12 experiment (3 days of D and / or T).

day 1 body weight (g)

Treatment	Average (SD; n)
Vehicle	24.2 (0.278; n = 4)
Dexa	24.1 (0.552; n = 5)
Testo	23.7 (0.627; n = 5)
Dexa + Testo	25.3 (0.361; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.147

	contrasts four	dunns.P
5	V vs D	0.03809
1	D vs DT	0.3954

Kruskal-Wallis p value for the three-way comparison is $0.157\,$

	Comparison	P value	Direction
3	V vs D	0.06932	V < D
1	D vs DT	0.4479	D > DT

day 2 body weight (g)

Treatment	Average (SD; n)
Vehicle	24.6 (0.413; n = 4)
Dexa	24.6 (0.38; n = 5)
Testo	24.8 (0.606; n = 5)
Dexa + Testo	26 (0.306; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.128

contrasts four	dunns.P
V vs D	0.02288
D vs DT	0.4604
	V vs D

	Comparison	P value	Direction
3	V vs D	0.07994	V > D
1	D vs DT	0.397	D > DT

day 3 body weight (g)

Treatment	Average (SD; n)
Vehicle	24.7 (0.243; n = 4)
Dexa	24.5 (0.432; n = 5)
Testo	25 (0.648; n = 5)
Dexa + Testo	26.4 (0.284; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0411

	contrastsfour	dunns.P
5	V vs D	0.003748
1	D vs DT	0.3601

Kruskal-Wallis p value for the three-way comparison is 0.021

	Comparison	P value	Direction
3	V vs D	0.01183	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.347	D < DT

day 4 body weight (g)

Treatment	Average (SD; n)
Vehicle	25 (0.393; n = 4)
Dexa	25 (0.369; n = 5)
Testo	25.6 (0.628; n = 5)
Dexa + Testo	26.2 (0.277; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.173

	contrastsfour	dunns.P
5	V vs D	0.02616
1	D vs DT	0.4841

	Comparison	P value	Direction
3	V vs D	0.07947	V > D
1	D vs DT	0.3968	D < DT

body weight gain after 1 days (g)

Treatment	Average (SD; n)
Vehicle	0.4 (0.163; n = 4)
Dexa	0.48 (0.203; n = 5)
Testo	1.08 (0.111; n = 5)
Dexa + Testo	0.72 (0.218; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0423

	contrastsfour	dunns.P
$\frac{-}{5}$	V vs D D vs DT	0.155 0.3281

Kruskal-Wallis p value for the three-way comparison is 0.359

	Comparison	P value	Direction
3	V vs D	0.2345	V > D
1	D vs DT	0.347	D < DT

body weight gain after 2 days (g)

Treatment	Average (SD; n)
Vehicle	0.425 (0.111; n = 4)
Dexa	0.32 (0.132; n = 5)
Testo	1.26 (0.117; n = 5)
Dexa + Testo	1.1 (0.187; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0115

	contrastsfour	dunns.P
5	V vs D	0.01299
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.4158

	Comparison	P value	Direction
3	V vs D	0.03143	V > D
1	D vs DT	0.3473	D < DT

body weight gain after 3 days (g)

Treatment	Average (SD; n)
Vehicle	0.8 (0.147; n = 4)
Dexa	0.84 (0.254; n = 5)
Testo	1.86 (0.117; n = 5)
Dexa + Testo	0.9 (0.253; n = 5)

Kruskal-Wallis p value for the four-way comparison is $0.0103\,$

	contrastsfour	dunns.P
5	V vs D	0.3465
1	D vs DT	0.3209

Kruskal-Wallis p value for the three-way comparison is 0.456

	Comparison	P value	Direction
3	V vs D	0.4348	V > D
1	D vs DT	0.1556	D < DT

body weight gain after 1 days (percent)

Treatment	Average (SD; n)
Vehicle	1.63 (0.654; n = 4)
Dexa	2.06 (0.854; n = 5)
Testo	4.57 (0.515; n = 5)
Dexa + Testo	2.88 (0.871; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0458

	contrastsfour	dunns.P
5	V vs D	0.2966
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.2645

	Comparison	P value	Direction
3	V vs D	0.4142	V > D
1	D vs DT	0.2292	D < DT

body weight gain after 2 days (percent)

Treatment	Average (SD; n)
Vehicle	1.76 (0.473; n = 4)
Dexa	1.37 (0.569; n = 5)
Testo	5.32 (0.513; n = 5)
Dexa + Testo	4.38 (0.763; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0117

	contrasts four	dunns.P
5	V vs D	0.01633
1	D vs DT	0.463

Kruskal-Wallis p value for the three-way comparison is 0.0877

	Comparison	P value	Direction
3	V vs D	0.03871	V > D
1	D vs DT	0.397	D < DT

body weight gain after 3 days (percent)

Treatment	Average (SD; n)
Vehicle	3.29 (0.581; n = 4)
Dexa	3.56 (1.08; n = 5)
Testo	7.86 (0.541; n = 5)
Dexa + Testo	3.6 (1; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0103

	contrastsfour	dunns.P
5 1	V vs D D vs DT	0.3894 0.2712
1	DVSDI	0.2112

	Comparison	P value	Direction
3	V vs D	0.4713	V > D
1	D vs DT	0.192	D < DT

levator (mg)

Treatment	Average (SD; n)
Vehicle	52.2 (5.68; n = 4)
Dexa	47.3 (6.48; n = 5)
Testo	66.7 (3.8; n = 5)
Dexa + Testo	62.3 (3.21; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.131

	contrasts four	dunns.P
5 1	V vs D D vs DT	0.04591 0.2372
-	D VS DI	0.2012

Kruskal-Wallis p value for the three-way comparison is $0.435\,$

	Comparison	P value	Direction
3	V vs D	0.148	V > D
1	D vs DT	0.4309	D < DT

tibialis (mg)

Treatment	Average (SD; n)
Vehicle	49.3 (0.996; n = 4)
Dexa	49 (3.16; n = 5)
Testo	55.9 (4.88; n = 5)
Dexa + Testo	47.7 (2.44; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.44

	contrastsfour	dunns.P
5	V vs D	0.3679
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.3262

	Comparison	P value	Direction
3	V vs D	0.2468	V > D
1	D vs DT	0.2712	D < DT

gastrocnemius (mg)

Treatment	Average (SD; n)
Vehicle	135 (6.72; n = 4)
Dexa	113 (5.63; n = 5)
Testo	130 (8.14; n = 5)
Dexa + Testo	125 (5.53; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.122

	contrasts four	dunns.P
5	V vs D	0.05151
1	D vs DT	0.01439

Kruskal-Wallis p value for the three-way comparison is 0.076

	Comparison	P value	Direction
3	V vs D	0.04516	V > D
1	D vs DT	0.01182	D < DT

quadriceps (mg)

Treatment	Average (SD; n)
Vehicle	167 (14.2; n = 4)
Dexa	146 (3.65; n = 5)
Testo	162 (9.65; n = 5)
Dexa + Testo	167 (8.84; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.444

	contrastsfour	dunns.P
5	V vs D	0.0646
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.109

	Comparison	P value	Direction
3	V vs D	0.08543	V > D
1	D vs DT	0.1115	D < DT

triceps (mg)

Treatment	Average (SD; n)
Vehicle	94.4 (1.91; n = 4)
Dexa	92.9 (7.03; n = 5)
Testo	94.7 (4.26; n = 5)
Dexa + Testo	84.1 (2.26; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.214

contrastsfour	dunns.P
V vs D	0.08872 0.312

Kruskal-Wallis p value for the three-way comparison is 0.129

	Comparison	P value	Direction
3	V vs D	0.2355	V > D
1	D vs DT	0.192	D < DT

levator (permille)

Treatment	Average (SD; n)
Vehicle	2.08 (0.219; n = 4)
Dexa	1.88 (0.239; n = 5)
Testo	2.6 (0.116; n = 5)
Dexa + Testo	2.38 (0.141; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.113

	contrastsfour	dunns.P
5	V vs D	0.08872
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.2539

	Comparison	P value	Direction
3	V vs D	0.3197	V > D
1	D vs DT	0.4653	D < DT

tibialis (permille)

Treatment	Average (SD; n)
Vehicle	1.97 (0.0314; n = 4)
Dexa	1.96(0.11; n = 5)
Testo	2.17 (0.144; n = 5)
Dexa + Testo	1.82 (0.088; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.119

	contrastsfour	dunns.P
5	V vs D	0.119
1	D vs DT	0.4736

Kruskal-Wallis p value for the three-way comparison is 0.343

	Comparison	P value	Direction
3	V vs D	0.132	V > D
1	D vs DT	0.4653	D < DT

gastrocnemius (permille)

Treatment	Average (SD; n)
Vehicle	5.39 (0.253; n = 4)
Dexa	4.54 (0.191; n = 5)
Testo	5.07 (0.303; n = 5)
Dexa + Testo	4.78 (0.166; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.144

	contrastsfour	dunns.P
5	V vs D	0.1843
1	D vs DT	0.01217

	Comparison	P value	Direction
3	V vs D	0.1102	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.009385	D < DT

quadriceps (permille)

Treatment	Average (SD; n)
Vehicle	6.64 (0.525; n = 4)
Dexa	5.86 (0.127; n = 5)
Testo	6.33 (0.392; n = 5)
Dexa + Testo	6.37 (0.293; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.581

	contrasts four	dunns.P
5	V vs D	0.1428
1	D vs DT	0.09943

Kruskal-Wallis p value for the three-way comparison is 0.216

	Comparison	P value	Direction
3	V vs D	0.0912	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.04086	D < DT

triceps (permille)

Treatment	Average (SD; n)
Vehicle	3.77 (0.0513; n = 4)
Dexa	3.71 (0.243; n = 5)
Testo	3.7 (0.168; n = 5)
Dexa + Testo	3.21 (0.076; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0425

	contrastsfour	dunns.P
5	V vs D	0.0188
1	D vs DT	0.2668

	Comparison	P value	Direction
3	V vs D	0.2355	V > D
1	D vs DT	0.192	D < DT

fat mass before (g)

Treatment	Average (SD; n)
Vehicle	2.46 (0.169; n = 4)
Dexa	3.18 (0.161; n = 5)
Testo	2.4 (0.27; n = 5)
Dexa + Testo	2.56 (0.0699; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0723

	contrastsfour	dunns.P
$\frac{-5}{1}$	V vs D D vs DT	0.03184 0.01878

Kruskal-Wallis p value for the three-way comparison is 0.0971

	Comparison	P value	Direction
3	V vs D	0.03304	V > D
1	D vs DT	0.01836	D < DT

lean mass before (g)

Treatment	Average (SD; n)
Vehicle	20.6 (0.289; n = 4)
Dexa	19.5 $(0.572; n = 5)$
Testo	20.4 (0.445; n = 5)
Dexa + Testo	21.5 (0.33; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0684

	contrastsfour	dunns.P
5	V vs D	0.004131
1	D vs DT	0.109

	Comparison	P value	Direction
3	V vs D	0.005254	V > D
1	D vs DT	0.1115	D < DT

total water before (g)

Treatment	Average (SD; n)
Vehicle	17.6 (1.12; n = 4)
Dexa	15.5 (0.972; n = 5)
Testo	15.6 (0.766; n = 5)
Dexa + Testo	16.5 (0.34; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.172

	contrasts four	dunns.P
5	V vs D	0.072
T	D vs DT	0.04136

Kruskal-Wallis p value for the three-way comparison is 0.103

	Comparison	P value	Direction
3	V vs D	0.02807	V > D
1	D vs DT	0.02265	D < DT

fat mass after (g)

Treatment	Average (SD; n)
Vehicle	3.1 (0.223; n = 4)
Dexa	4.48 (0.23; n = 5)
Testo	3.35 (0.264; n = 5)
Dexa + Testo	4.09 (0.173; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0123

	contrastsfour	dunns.P
5	V vs D	0.1559
1	D vs DT	0.002025

	Comparison	P value	Direction
3	V vs D	0.0912	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.003486	D > DT

lean mass after (g)

Treatment	Average (SD; n)
Vehicle	20.8 (0.404; n = 4)
Dexa	18.1 (0.562; n = 5)
Testo	21.1 (0.458; n = 5)
Dexa + Testo	20.2 (0.407; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0202

	contrastsfour	dunns.P
5	V vs D	0.04591
1	D vs DT	0.008872

Kruskal-Wallis p value for the three-way comparison is 0.076

	Comparison	P value	Direction
3	V vs D	0.04516	V > D
1	D vs DT	0.01182	D < DT

total water after (g)

Treatment	Average (SD; n)
Vehicle	16.8 (1.21; n = 4)
Dexa	14.6 (1.33; n = 5)
Testo	16.5 (0.428; n = 5)
Dexa + Testo	15.4 (0.565; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.148

	contrastsfour	dunns.P
5	V vs D	0.1843
1	D vs DT	0.03796

	Comparison	P value	Direction
3	V vs D	0.07472	V > D
1	D vs DT	0.01836	D < DT

fat mass before (percent of BW)

Treatment	Average (SD; n)
Vehicle	10.2 (0.711; n = 4)
Dexa	13.2 (0.819; n = 5)
Testo	10.1 (0.997; n = 5)
Dexa + Testo	10.1 (0.367; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.115

	contrasts four	dunns.P
5 1	V vs D D vs DT	0.03184 0.03796
1	ועפא ע	0.03790

Kruskal-Wallis p value for the three-way comparison is 0.103

	Comparison	P value	Direction
3	V vs D	0.01998	V > D
1	D vs DT	0.03379	D < DT

lean mass before (percent of BW)

Treatment	Average (SD; n)
Vehicle	85 (0.916; n = 4)
Dexa	80.9 (0.635; n = 5)
Testo	85.8 (0.874; n = 5)
Dexa + Testo	85 (1.17; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0263

	contrastsfour	dunns.P
5	V vs D	0.0188
1	D vs DT	0.009195

	Comparison	P value	Direction
3	V vs D	0.03871	V > D
1	D vs DT	0.01478	D < DT

total water before (percent of BW)

Treatment	Average (SD; n)
Vehicle	72.9 (5.06; n = 4)
Dexa	64.6 (4.91; n = 5)
Testo	65.6 (1.63; n = 5)
Dexa + Testo	65.3 (1.89; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.156

	contrasts four	dunns.P
$\frac{-5}{1}$	V vs D D vs DT	$0.1305 \\ 0.0126$

Kruskal-Wallis p value for the three-way comparison is 0.0505

	Comparison	P value	Direction
3	V vs D	0.06062	V > D
1	D vs DT	0.007403	D < DT

fat mass after (percent of BW)

Treatment	Average (SD; n)
Vehicle	12.4 (0.939; n = 4)
Dexa	18 (0.975; n = 5)
Testo	13.1 (0.87; n = 5)
Dexa + Testo	15.6 (0.701; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0116

	contrastsfour	dunns.P
5	V vs D	0.1305
1	D vs DT	0.002112

	Comparison	P value	Direction
3	V vs D	0.0912	V > D
1	D vs DT	0.003486	D > DT

lean mass after (percent of BW)

Treatment	Average (SD; n)
Vehicle	82.9 (0.569; n = 4)
Dexa	72.4 (1.41; n = 5)
Testo	82.6 (0.834; n = 5)
Dexa + Testo	77.2 (1.1; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.003

	contrastsfour	dunns.P
5	V vs D	0.1559
1_	D vs DT	0.001861

Kruskal-Wallis p value for the three-way comparison is 0.0136

	Comparison	P value	Direction
3	V vs D	0.1036	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.002674	D < DT

total water after (percent of BW)

Treatment	Average (SD; n)
Vehicle	67.2 (4.42; n = 4)
Dexa	58.3 (4.64; n = 5)
Testo	64.5 (1.55; n = 5)
Dexa + Testo	58.8 (2.11; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.145

	${\rm contrasts four}$	dunns.P
5	V vs D	0.2325
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.03184

	Comparison	P value	Direction
3	V vs D	0.148	V > D
1	D vs DT	0.01836	D < DT

fat mass gain (g)

Treatment	Average (SD; n)
Vehicle	0.635 (0.166; n = 4)
Dexa	1.3 (0.0894; n = 5)
Testo	0.948 (0.372; n = 5)
Dexa + Testo	1.53 (0.109; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.03

	contrastsfour	dunns.P
5	V vs D	0.1559
1	D vs DT	0.02911

Kruskal-Wallis p value for the three-way comparison is 0.0227

	Comparison	P value	Direction
3	V vs D	0.2246	V > D
1	D vs DT	0.08187	D < DT

lean mass gain (g)

Treatment	Average (SD; n)
Vehicle	0.142 (0.245; n = 4)
Dexa	-1.45 (0.152; n = 5)
Testo	0.776 (0.208; n = 5)
Dexa + Testo	-1.28 (0.369; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.00257

	contrastsfour	dunns.P
5	V vs D	0.2871
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.01543

	Comparison	P value	Direction
3	V vs D	0.4713	V > D
1	D vs DT	0.03379	D < DT

total water gain (g)

Treatment	Average (SD; n)
Vehicle	-0.797 (1.23; n = 4)
Dexa	-0.942 (1.72; n = 5)
Testo	0.892 (0.65; n = 5)
Dexa + Testo	-1.09 (0.895; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.473

	contrastsfour	dunns.P
$egin{array}{c} 5 \\ 1 \end{array}$	V vs D D vs DT	0.4331 0.5

Kruskal-Wallis p value for the three-way comparison is 0.926

	Comparison	P value	Direction
3	V vs D	0.457	V < D
1	D vs DT	0.3639	D > DT

fat mass gain (percent of BW)

Treatment	Average (SD; n)
Vehicle	2.22 (0.644; n = 4)
Dexa	4.74 (0.325; n = 5)
Testo	2.99 (1.45; n = 5)
Dexa + Testo	5.5 (0.365; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0301

	contrastsfour	dunns.P
5	V vs D	0.1697
1	D vs DT	0.03

	Comparison	P value	Direction
3	V vs D	0.1744	V < D
1	D vs DT	0.1289	D > DT

lean mass gain (percent of BW)

Treatment	Average (SD; n)
Vehicle	-2.17 (0.6; n = 4)
Dexa	-8.52 (0.856; n = 5)
Testo	-3.22 (1.21; n = 5)
Dexa + Testo	-7.87 (2.08; n = 5)

Kruskal-Wallis p value for the four-way comparison is $0.0203\,$

	contrastsfour	dunns.P
5	V vs D	0.2682
1	D vs DT	0.00388

Kruskal-Wallis p value for the three-way comparison is 0.103

	Comparison	P value	Direction
3	V vs D	0.3197	V < D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.03379	D > DT

total water gain (percent of BW)

Treatment	Average (SD; n)
Vehicle	-5.67 (5; n = 4)
Dexa	-6.37 (7.62; n = 5)
Testo	-1.1 (2.48; n = 5)
Dexa + Testo	-6.49 (3.78; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.811

	contrastsfour	dunns.P
5	V vs D	0.4553
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.3753

	Comparison	P value	Direction
3	V vs D	0.4285	V < D
1	D vs DT	0.397	D > DT

fat mass gain (percent)

Treatment	Average (SD; n)
Vehicle	26.2 (6.78; n = 4)
Dexa	41 (1.96; n = 5)
Testo	45.6 (16.8; n = 5)
Dexa + Testo	59.7 (2.98; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0474

	contrastsfour	dunns.P
5	V vs D	0.03184
1	D vs DT	0.1668

Kruskal-Wallis p value for the three-way comparison is 0.0173

	Comparison	P value	Direction
3	V vs D	0.07472	V > D
1	D vs DT	0.2167	D < DT

lean mass gain (percent)

Treatment	Average (SD; n)
Vehicle	0.683 (1.19; n = 4)
Dexa	-7.4 (0.788; n = 5)
Testo	3.83 (1.04; n = 5)
Dexa + Testo	-5.95 (1.65; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.00241

	contrastsfour	dunns.P
5	V vs D	0.25
1	D vs DT	0.01348

	Comparison	P value	Direction
3	V vs D	0.3728	V > D
1	D vs DT	0.02265	D < DT

total water gain (percent)

Treatment	Average (SD; n)
Vehicle	-3.95 (6.44; n = 4)
Dexa	-4.69 (9.58; n = 5)
Testo	6.38 (4.18; n = 5)
Dexa + Testo	-6.19 (5.3; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.47

	contrasts four	dunns.P
5	V vs D	0.4553
1	D vs DT	0.4526

Kruskal-Wallis p value for the three-way comparison is 0.817

	Comparison	P value	Direction
3	V vs D	0.3866	V < D
1	D vs DT	0.2712	D > DT

gastrocnemius proteasome activity (rel.u.)

Treatment	Average (SD; n)
Vehicle	9840 (844; n = 4)
Dexa	14400 (1350; n = 5)
Testo	17900 (2760; n = 5)
Dexa + Testo	16000 (2100; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0428

	contrastsfour	dunns.P
5	V vs D	0.368
1	D vs DT	0.0194

	Comparison	P value	Direction
3	V vs D	0.4004	V > D
1	D vs DT	0.04086	D < DT

quadriceps proteasome activity (rel.u.)

Treatment	Average (SD; n)
Vehicle	23400 (7220; n = 4)
Dexa	27700 (2910; n = 5)
Testo	30300 (3050; n = 5)
Dexa + Testo	21000 (709; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.111

	contrastsfour	dunns.P
5 1	$\begin{array}{c} V \text{ vs D} \\ D \text{ vs DT} \end{array}$	$0.08872 \\ 0.08016$

Kruskal-Wallis p value for the three-way comparison is 0.188

	Comparison	P value	Direction
3	V vs D	0.1036	V > D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.03379	D < DT

triceps proteasome activity (rel.u.)

Treatment	Average (SD; n)
Vehicle	6550 (1800; n = 4)
Dexa	13800 (2940; n = 5)
Testo	12200 (2110; n = 5)
Dexa + Testo	9670 (1970; $n = 5$)

Kruskal-Wallis p value for the four-way comparison is 0.208

	contrastsfour	dunns.P
5	V vs D	0.1697
1	D vs DT	0.02275

	Comparison	P value	Direction
3	V vs D	0.3327	V < D
1	D vs DT	0.3008	D > DT

gastrocnemius cathepsin activity (rel.u.)

Treatment	Average (SD; n)
Vehicle	27400 (2710; n = 4)
Dexa	22000 (1740; n = 5)
Testo	32100 (3070; n = 5)
Dexa + Testo	22700 (1160; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0397

	contrasts four	dunns.P
$\frac{-}{5}$ 1	V vs D D vs DT	$0.4776 \\ 0.09714$

Kruskal-Wallis p value for the three-way comparison is 0.318

	Comparison	P value	Direction
3	V vs D	0.4713	V > D
1	D vs DT	0.1481	D < DT

gastrocnemius calpain activity (rel.u.)

Treatment	Average (SD; n)
Vehicle	14900 (1460; n = 4)
Dexa	20100 (1580; n = 5)
Testo	17800 (2030; n = 5)
Dexa + Testo	19000 (1080; $n = 4$)

Kruskal-Wallis p value for the four-way comparison is 0.216

	contrastsfour	dunns.P
5	V vs D	0.2979
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.0194

	Comparison	P value	Direction
3	V vs D	0.2836	V > D
1	D vs DT	0.03503	D < DT

quadriceps calpain activity (rel.u.)

Treatment	Average (SD; n)
Vehicle	20100 (3230; n = 4)
Dexa	26500 (1890; n = 5)
Testo	21300 (2210; n = 4)
Dexa + Testo	20300 (1850; n = 4)

Kruskal-Wallis p value for the four-way comparison is $0.213\,$

	contrastsfour	dunns.P
5 1	V vs D D vs DT	$0.03826 \\ 0.04481$

Kruskal-Wallis p value for the three-way comparison is 0.113

	Comparison	P value	Direction
3	V vs D	0.02827	V < D
1	D vs DT	0.02827	D < DT

quadriceps cathepsin activity (rel.u.)

	Treatment	Average (SD; n)
	Vehicle	34700 (1070; n = 4)
	Dexa	19200 (1860; n = 5)
	Testo	37200 (2590; n = 5)
Ι	0exa + Testo	30000 (1200; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.00248

	contrastsfour	dunns.P
5	V vs D	0.05781
1	D vs DT	0.001784

	Comparison	P value	Direction
3	V vs D	0.07994	V > D
1	D vs DT	0.004512	D < DT

triceps cathepsin activity (rel.u.)

Treatment	Average (SD; n)
Vehicle	27900 (979; n = 4)
Dexa	15500 (344; n = 5)
Testo	30300 (1450; n = 5)
Dexa + Testo	18800 (875; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.00123

	contrastsfour	dunns.P
5 1	V vs D D vs DT	$0.08003 \\ 0.002202$

Kruskal-Wallis p value for the three-way comparison is 0.0136

	Comparison	P value	Direction
3	V vs D	0.1036	V > D
1	D vs DT	0.002674	D < DT

triceps calpain activity (rel.u.)

Treatment	Average (SD; n)
Vehicle	12800 (913; n = 4)
Dexa	8380 (4480; n = 5)
Testo	15400 (2390; n = 5)
Dexa + Testo	1960 (555; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0162

	contrastsfour	dunns.P
5	V vs D	0.1082
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.109

	Comparison	P value	Direction
3	V vs D	0.4004	V < D
1	D vs DT	0.04086	D > DT

gastrocnemius Ct(Becn1) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	3.94 (1.88; n = 4)
Dexa	7.23 (0.631; n = 4)
Testo	5.83 (0.605; n = 4)
Dexa + Testo	5.95 (0.165; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.105

	contrastsfour	dunns.P
5	V vs D	0.03735
1	D vs DT	0.008742

Kruskal-Wallis p value for the three-way comparison is 0.159

	Comparison	P value	Direction
3	V vs D	0.07633	V > D
1	D vs DT	0.02827	D < DT

gastrocnemius Ct(Ctsl) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	4.29 (1.22; n = 4)
Dexa	6.25 (0.689; n = 4)
Testo	6.14 (0.501; n = 4)
Dexa + Testo	6.27 (0.371; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.382

	contrasts four	dunns.P
5	V vs D	0.3552
1	D vs DT	0.1034

	Comparison	P value	Direction
3	V vs D	0.07633	V > D
1	D vs DT	0.5	D > DT

gastrocnemius Ct(Ddit4) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	8.95 (0.581; n = 3)
Dexa	4.15 (0.652; n = 4)
Testo	6.11 (0.942; n = 4)
Dexa + Testo	3.65 (0.353; n = 4)

Kruskal-Wallis p value for the four-way comparison is $0.0261\,$

	contrasts four	dunns.P
$\frac{-}{5}$ 1	V vs D D vs DT	0.3176 0.01023

Kruskal-Wallis p value for the three-way comparison is 0.0639

	Comparison	P value	Direction
3	V vs D	0.3759	V < D
1	D vs DT	0.0548	D < DT

gastrocnemius Ct(Fbxo32) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	2.63 (1.42; n = 4)
Dexa	2.51 (0.688; n = 4)
Testo	3.51 (0.623; n = 5)
Dexa + Testo	2.92 (0.235; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.562

	contrastsfour	dunns.P
5	V vs D	0.2254
1	D vs DT	0.1447

	Comparison	P value	Direction
3	V vs D	0.07994	V > D
1	D vs DT	0.04909	D < DT

gastrocnemius Ct(Foxo1) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	8.05 (0.401; n = 3)
Dexa	7.29 (0.725; n = 4)
Testo	7.16 (0.576; n = 4)
Dexa + Testo	7.5 (0.218; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.529

	contrasts four	dunns.P
5	V vs D	0.2384
1	D vs DT	0.08216

Kruskal-Wallis p value for the three-way comparison is 0.0863

	Comparison	P value	Direction
3	V vs D	0.05692	V > D
1	D vs DT	0.0139	D < DT

gastrocnemius Ct(Foxo3) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	8.33 (0.658; n = 3)
Dexa	8.24 (0.744; n = 4)
Testo	7.27 (0.495; n = 4)
Dexa + Testo	8.33 (0.263; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.477

	contrastsfour	dunns.P
5	V vs D	0.4372
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.4322

	Comparison	P value	Direction
3	V vs D	0.04585	V > D
1	D vs DT	0.07123	D < DT

gastrocnemius Ct(Foxo4) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	7.8 (0.614; n = 3)
Dexa	8.15 (0.754; n = 4)
Testo	7.42 (0.585; n = 4)
Dexa + Testo	7.66 (0.0886; n = 4)

Kruskal-Wallis p value for the four-way comparison is $0.916\,$

	contrastsfour	dunns.P
5	V vs D	0.29
1	D vs DT	0.4708

Kruskal-Wallis p value for the three-way comparison is 0.607

	Comparison	P value	Direction
3	V vs D	0.2635	V > D
1	D vs DT	0.1587	D > DT

gastrocnemius Ct(Igf1) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	6.84 (0.302; n = 3)
Dexa	8.85 (0.312; n = 4)
Testo	6.51 (0.203; n = 4)
Dexa + Testo	7.5 (0.182; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0099

	contrastsfour	dunns.P
5	V vs D	0.07736
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.008402

	Comparison	P value	Direction
3	V vs D	0.07001	V > D
1	D vs DT	0.009815	D > DT

gastrocnemius Ct(Igf1r) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	5.72 (0.814; n = 3)
Dexa	7.39 (0.629; n = 4)
Testo	5.69 (0.59; n = 4)
Dexa + Testo	6.58 (0.439; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.278

	contrastsfour	dunns.P
$egin{array}{c} 5 \\ 1 \end{array}$	V vs D D vs DT	$0.2635 \\ 0.07162$

Kruskal-Wallis p value for the three-way comparison is 0.705

	Comparison	P value	Direction
3	V vs D	0.3759	V > D
1	D vs DT	0.3446	D > DT

gastrocnemius Ct(Insr) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	3.72 (0.615; n = 3)
Dexa	4.37 (0.773; n = 4)
Testo	3.46 (0.572; n = 4)
Dexa + Testo	3.08 (0.302; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.556

	contrastsfour	dunns.P
5	V vs D	0.07736
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.3128

	Comparison	P value	Direction
3	V vs D	0.2991	V > D
1	D vs DT	0.4734	D > DT

gastrocnemius Ct(Klf15) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	5.24 (0.411; n = 3)
Dexa	4.02 (0.484; n = 4)
Testo	5.36 (0.439; n = 4)
Dexa + Testo	4.89 (0.117; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.248

	contrastsfour	dunns.P
5 1	V vs D D vs DT	$0.152 \\ 0.06518$

Kruskal-Wallis p value for the three-way comparison is 0.105

	Comparison	P value	Direction
3	V vs D	0.04585	V > D
1	D vs DT	0.01938	D < DT

gastrocnemius Ct(Map1lc3b) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	0.24 (1.69; n = 4)
Dexa	2.73 (0.793; n = 4)
Testo	0.885 (0.912; n = 4)
Dexa + Testo	1.63 (0.59; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.571

	contrastsfour	dunns.P
5	V vs D	0.207
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.1174

	Comparison	P value	Direction
3	V vs D	0.3515	V > D
1	D vs DT	0.462	D < DT

gastrocnemius Ct(Nr3c1) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	4.3 (1.03; n = 4)
Dexa	6.89 (0.604; n = 5)
Testo	5.37 (0.536; n = 5)
Dexa + Testo	6.47 (0.565; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.102

	contrasts four	dunns.P
$\frac{-}{5}$ 1	V vs D D vs DT	0.4553 0.02422

Kruskal-Wallis p value for the three-way comparison is 0.115

	Comparison	P value	Direction
3	V vs D	0.4856	V < D
1	D vs DT	0.06948	D < DT

gastrocnemius Ct(Nr3c4) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	2.96 (0.594; n = 3)
Dexa	5.06 (0.455; n = 4)
Testo	3.03 (0.764; n = 4)
Dexa + Testo	3.45 (0.541; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.113

	contrasts four	dunns.P
5	V vs D	0.05692
1	D vs DT	0.01794

	Comparison	P value	Direction
3	V vs D	0.1459	V < D
1	D vs DT	0.04779	D < DT

gastrocnemius Ct(Psma6) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	4.1 (0.618; n = 3)
Dexa	4.83 (0.746; n = 4)
Testo	3.94 (0.629; n = 4)
Dexa + Testo	4.32 (0.616; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.878

	contrastsfour	dunns.P
$egin{array}{c} 5 \ 1 \end{array}$	V vs D D vs DT	0.29 0.2957

Kruskal-Wallis p value for the three-way comparison is 0.678

	Comparison	P value	Direction
3	V vs D	0.1995	V > D
1	D vs DT	0.2317	D < DT

gastrocnemius Ct(Psmb10) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	8.66 (0.754; n = 3)
Dexa	10.8 (0.7; n = 4)
Testo	7.92 (0.814; n = 4)
Dexa + Testo	9.01 (0.513; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.155

	contrastsfour	dunns.P
5	V vs D	0.05692
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.05106

	Comparison	P value	Direction
3	V vs D	0.1714	V > D
1	D vs DT	0.1151	D < DT

gastrocnemius Ct(Psmd4) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	5.05 (0.634; n = 3)
Dexa	4.78 (0.891; n = 4)
Testo	5.17 (0.753; n = 4)
Dexa + Testo	4.58 (0.119; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.81

	contrasts four	dunns.P
5 1	V vs D D vs DT	0.3759 0.2321
1	D vs D1	0.2321

Kruskal-Wallis p value for the three-way comparison is 0.105

	Comparison	P value	Direction
3	V vs D	0.04585	V > D
1	D vs DT	0.01938	D < DT

gastrocnemius Ct(Stk11) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	2.78 (0.533; n = 3)
Dexa	3.38 (0.587; n = 4)
Testo	2.79 (0.44; n = 4)
Dexa + Testo	3.15 (0.109; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.988

	contrastsfour	dunns.P
5	V vs D	0.4685
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.4036

	Comparison	P value	Direction
3	V vs D	0.05692	V > D
1	D vs DT	0.1587	D < DT

gastrocnemius Ct(Trim63) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	1 (0.356; n = 3)
Dexa	-1.92 (0.679; n = 4)
Testo	-0.25 (0.726; n = 4)
Dexa + Testo	-0.944 (0.416; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0552

	contrasts four	dunns.P
5	V vs D	0.2146
1	D vs DT	0.003915

Kruskal-Wallis p value for the three-way comparison is 0.0429

	Comparison	P value	Direction
3	V vs D	0.1714	V > D
1	D vs DT	0.008198	D < DT

quadriceps Ct(Becn1) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	7.04 (0.151; n = 4)
Dexa	6.9 (0.0525; n = 3)
Testo	7.15 (0.264; n = 4)
Dexa + Testo	8.03 (0.46; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.213

	contrastsfour	dunns.P
5	V vs D	0.03015
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.3942

	Comparison	P value	Direction
3	V vs D	0.05124	V > D
1	D vs DT	0.2838	D < DT

quadriceps Ct(Bnip3) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	3.57 (0.257; n = 4)
Dexa	2.56 (0.215; n = 3)
Testo	3.88 (0.271; n = 4)
Dexa + Testo	3.94 (0.141; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0569

	contrasts four	dunns.P
$\frac{-}{5}$ 1	V vs D D vs DT	0.005207 0.03949

Kruskal-Wallis p value for the three-way comparison is 0.223

	Comparison	P value	Direction
3	V vs D	0.04321	V < D
1	D vs DT	0.1103	D < DT

quadriceps Ct(Ctsl) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	4.92 (0.291; n = 4)
Dexa	4.07 (0.348; n = 3)
Testo	5.01 (0.222; n = 4)
Dexa + Testo	5.56 (0.287; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0646

	contrastsfour	dunns.P
5	V vs D	0.003915
1	D vs DT	0.07853

	Comparison	P value	Direction
3	V vs D	0.03019	V < D
1	D vs DT	0.1442	D > DT

quadriceps Ct(Ddit4) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	9.03 (0.451; n = 4)
Dexa	4.83 (0.148; n = 3)
Testo	7.83 (0.343; n = 4)
Dexa + Testo	5.97 (0.82; n = 4)

Kruskal-Wallis p value for the four-way comparison is $0.0251\,$

	contrasts four	dunns.P
5	V vs D	0.2629
1	D vs DT	0.002917

Kruskal-Wallis p value for the three-way comparison is 0.0781

	Comparison	P value	Direction
3	V vs D	0.3121	V < D
1	D vs DT	0.04321	D < DT

quadriceps Ct(Fbxo32) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	3.48 (0.277; n = 4)
Dexa	1.37 (0.349; n = 3)
Testo	3.92 (0.28; n = 4)
Dexa + Testo	4.02 (0.428; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0471

	contrastsfour	dunns.P
5	V vs D	0.006413
1	D vs DT	0.05367

	Comparison	P value	Direction
3	V vs D	0.03622	V < D
1	D vs DT	0.1265	D < DT

quadriceps Ct(Foxo1) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	8.45 (0.314; n = 4)
Dexa	5.97 (0.193; n = 3)
Testo	7.94 (0.343; n = 4)
Dexa + Testo	7.49 (0.56; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0355

	contrastsfour	dunns.P
5	V vs D	0.05367
1	D vs DT	0.002155

Kruskal-Wallis p value for the three-way comparison is 0.131

	Comparison	P value	Direction
3	V vs D	0.1442	V < D
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.03019	D < DT

quadriceps Ct(Foxo3a) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	9.52 (0.404; n = 4)
Dexa	7.86 (0.147; n = 3)
Testo	9.66 (0.302; n = 4)
Dexa + Testo	9.44 (0.782; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.113

	contrastsfour	dunns.P
5	V vs D	0.05921
1	D vs DT	0.02272

	Comparison	P value	Direction
3	V vs D	0.1846	V < D
1	D vs DT	0.09571	D > DT

quadriceps Ct(Foxo4) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	6.88 (0.344; n = 4)
Dexa	6.29 (0.208; n = 3)
Testo	6.54 (0.337; n = 4)
Dexa + Testo	7.49 (0.768; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.447

	contrasts four	dunns.P
5	V vs D	0.07162
1	D vs DT	0.1067

Kruskal-Wallis p value for the three-way comparison is 0.648

	Comparison	P value	Direction
3	V vs D	0.1846	V < D
1	D vs DT	0.2838	D > DT

quadriceps Ct(Igf1) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	8.57 (0.292; n = 4)
Dexa	10.1 (0.314; n = 3)
Testo	8.81 (0.391; n = 4)
Dexa + Testo	10.2 (0.438; n = 4)

Kruskal-Wallis p value for the four-way comparison is $0.0131\,$

	contrastsfour	dunns.P
5	V vs D	0.4322
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.005986

	Comparison	P value	Direction
3	V vs D	0.3415	V < D
1	D vs DT	0.03622	D < DT

$quadriceps\ Ct(Igf1r)\ -\ Ct(Gapdh)$

Treatment	Average (SD; n)
Vehicle	8.52 (0.293; n = 4)
Dexa	8.34 (0.256; n = 3)
Testo	8.53 (0.159; n = 4)
Dexa + Testo	9.82 (0.449; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0472

	contrastsfour	dunns.P
5	V vs D	0.005986
1	D vs DT	0.2957

Kruskal-Wallis p value for the three-way comparison is 0.0877

	Comparison	P value	Direction
3	V vs D	0.08256	V > D
1	D vs DT	0.4675	D < DT

quadriceps Ct(Klf15) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	6.8 (0.307; n = 4)
Dexa	5.81 (0.238; n = 3)
Testo	7.44 (0.162; n = 4)
Dexa + Testo	7.52 (0.347; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0429

	contrastsfour	dunns.P
5	V vs D	0.006867
1	D vs DT	0.09799

	Comparison	P value	Direction
3	V vs D	0.03019	V < D
1	D vs DT	0.1442	D < DT

quadriceps Ct(Map1lc3b) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	2.36 (0.255; n = 4)
Dexa	1.86 (0.0556; n = 3)
Testo	2.7 (0.186; n = 4)
Dexa + Testo	3.38 (0.257; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0167

	contrasts four	dunns.P
5	V vs D	0.000824
1	D vs DT	0.07162

Kruskal-Wallis p value for the three-way comparison is 0.0588

	Comparison	P value	Direction
3	V vs D	0.02061	V < D
1	D vs DT	0.1846	D < DT

quadriceps Ct(Nr3c1) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	3.31 (0.279; n = 4)
Dexa	3.98 (0.179; n = 3)
Testo	3.75 (0.299; n = 4)
Dexa + Testo	5.19 (0.263; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0175

	contrastsfour	dunns.P
5	V vs D	0.06518
1	D vs DT	0.08982

	Comparison	P value	Direction
3	V vs D	0.1265	V < D
1	D vs DT	0.3415	D < DT

$quadriceps\ Ct(Odc)\ \hbox{-}\ Ct(Gapdh)$

Treatment	Average (SD; n)
Vehicle	2.42 (0.542; n = 4)
Dexa	1.31 (0.397; n = 3)
Testo	1.52 (0.379; n = 4)
Dexa + Testo	2.49 (0.196; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.165

	contrasts four	dunns.P
5 1	V vs D D vs DT	0.03185 0.06834
1	D vs DT	0.06834

Kruskal-Wallis p value for the three-way comparison is 0.301

	Comparison	P value	Direction
3	V vs D	0.07082	V < D
1	D vs DT	0.07082	D < DT

quadriceps Ct(Stk11) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	5.97 (0.335; n = 4)
Dexa	6.01 (0.15; n = 3)
Testo	5.87 (0.306; n = 4)
Dexa + Testo	7.21 (0.535; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.219

	${\rm contrasts four}$	dunns.P
5	V vs D	0.04855
1	\mathbf{D} vs $\mathbf{D}\mathbf{T}$	0.4226

	Comparison	P value	Direction
3	V vs D	0.2071	V > D
1	D vs DT	0.4675	D < DT

quadriceps Ct(Trim63) - Ct(Gapdh)

Treatment	Average (SD; n)
Vehicle	5.02 (0.351; n = 4)
Dexa	2.79 (0.398; n = 3)
Testo	4.8 (0.504; n = 4)
Dexa + Testo	5.33 (0.351; n = 4)

Kruskal-Wallis p value for the four-way comparison is 0.0673

	contrasts four	dunns.P
5	V vs D	0.006413
1	D vs DT	0.01405

Kruskal-Wallis p value for the three-way comparison is 0.264

	Comparison	P value	Direction
3	V vs D	0.05124	V < D
1	D vs DT	0.09571	D < DT

quadriceps Akt protein (normalized to GAPDH)

Treatment	Average (SD; n)
Vehicle	0.47 (0.13; n = 4)
Dexa	0.709 (0.0251; n = 5)
Testo	0.672 (0.103; n = 5)
Dexa + Testo	0.737 (0.0501; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.197

	contrastsfour	dunns.P
5	V vs D	0.3065
1	D vs DT	0.06723

	Comparison	P value	Direction
3	V vs D	0.457	V < D
1	D vs DT	0.05859	D < DT

quadriceps eEF2 protein (normalized to GAPDH)

Treatment	Average (SD; n)
Vehicle	0.421 (0.0604; n = 4)
Dexa	0.224 (0.0554; n = 5)
Testo	0.466 (0.0161; n = 5)
Dexa + Testo	0.372 (0.0409; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0247

	contrasts four	dunns.P
5	V vs D	0.1082
1	D vs DT	0.01136

Kruskal-Wallis p value for the three-way comparison is 0.157

	Comparison	P value	Direction
3	V vs D	0.1172	V < D
1	D vs DT	0.02776	D < DT

quadriceps phospho-eEF2 protein (normalized to GAPDH)

Treatment	Average (SD; n)
Vehicle	0.858 (0.209; n = 4)
Dexa	1.03 (0.0442; n = 5)
Testo	1.18 (0.13; n = 5)
Dexa + Testo	1.04 (0.0937; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.591

	contrastsfour	dunns.P
5	V vs D	0.4331
1	D vs DT	0.3074

	Comparison	P value	Direction
3	V vs D	0.4856	V < D
1	D vs DT	0.3008	D > DT

quadriceps phospho / total eEF2

Treatment	Average (SD; n)
Vehicle	2.08 (0.413; n = 4)
Dexa	8.33 (2.64; n = 5)
Testo	2.56 (0.332; n = 5)
Dexa + Testo	2.84 (0.402; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.0391

contrastsfour	dunns.P
V vs D D vs DT	0.04591 0.00388
	V vs D

Kruskal-Wallis p value for the three-way comparison is 0.0632

	Comparison	P value	Direction
3	V vs D	0.05244	V < D
1	D vs DT	0.009385	D < DT

quadriceps phospho-Foxo1/3 protein (normalized to GAPDH)

Treatment	Average (SD; n)
Vehicle	0.34 (0.037; n = 4)
Dexa	0.365 (0.0411; n = 5)
Testo	0.405 (0.0842; n = 5)
Dexa + Testo	0.311 (0.0581; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.504

	contrastsfour	dunns.P
5	V vs D	0.2682
1	D vs DT	0.3262

	Comparison	P value	Direction
3	V vs D	0.457	V < D
1	D vs DT	0.3639	D < DT

quadriceps MuRF1 protein (normalized to GAPDH)

Treatment	Average (SD; n)
Vehicle	0.274 (0.0846; n = 4)
Dexa	0.165 (0.0271; n = 5)
Testo	0.223 (0.0485; n = 5)
Dexa + Testo	0.119 (0.0177; n = 5)

Kruskal-Wallis p value for the four-way comparison is 0.218

	contrastsfour	dunns.P
$egin{array}{c} 5 \ 1 \end{array}$	V vs D D vs DT	0.119 0.2134

	Comparison	P value	Direction
3	V vs D	0.1398	V < D
1	D vs DT	0.3639	D < DT