Exercises-2

Course: Matrix Analysis and Applications

Instructor: Minghua Xia

TA: Qiyong Chen (E-mail: chenqy263@mail2.sysu.edu.cn)

I hereby certify that all the work in these exercises is mine alone. I have neither received assistance from another person or group, nor have I given assistance to another person.

Name:_____ Student ID:_____ Signature:____ Date:____

1. Find the eigenvalues and eignevectors of the matrices

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -3 & 1 & -3 \\ 20 & 3 & 10 \\ 2 & -2 & 4 \end{bmatrix}.$$

2. Determine if either of the following matrices is diagonalizable

$$\mathbf{A} = \begin{bmatrix} -1 & -1 & -2 \\ 8 & -11 & -8 \\ -10 & 11 & 7 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & -4 & -4 \\ 8 & -11 & -8 \\ -8 & 8 & 5 \end{bmatrix}.$$

- 3. Estimate the eigenvalues of $\mathbf{A} = \begin{bmatrix} 5 & 1 & 1 \\ 0 & 6 & 1 \\ 1 & 0 & -5 \end{bmatrix}$.
- 4. Determine the induced norm $\|A\|_2$ as well as $\|A^{-1}\|_2$ for the nonsingular matrix

$$\boldsymbol{A} = \frac{1}{\sqrt{3}} \begin{bmatrix} 3 & -1 \\ 0 & \sqrt{8} \end{bmatrix}.$$

- 5. Let $\mathbf{A} \in \mathbb{C}^{m \times n}$. Please prove the following statements.
 - (a) $\|A\|_p = \max_{\|x\|_p=1} \|Ax\|_p$ is a norm for any $p \ge 1$;
 - (b) $\|\mathbf{A}\mathbf{x}\|_p \leq \|\mathbf{A}\|_p \|\mathbf{x}\|_p$ holds for any $p \geq 1$;
 - (c) $\|\mathbf{A}\mathbf{B}\|_p \le \|\mathbf{A}\|_p \|\mathbf{B}\|_p$ holds for any $p \ge 1$;
 - (d) $\|\mathbf{Q}\mathbf{A}\mathbf{U}\|_F = \|\mathbf{A}\|_F$ holds for any unitary matrices $\mathbf{Q} \in \mathbb{C}^{m \times m}$ and $\mathbf{U} \in \mathbb{C}^{n \times n}$;
 - (e) $\|QAU\|_2 = \|A\|_2$ holds for any unitary matrices $Q \in \mathbb{C}^{m \times m}$ and $U \in \mathbb{C}^{n \times n}$.
- 6. Using the induced matrix norm, prove that if A is nonsingular, then

$$\min_{\|x\|=1} \|Ax\| = \frac{1}{\|A^{-1}\|}.$$

1

- 7. Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ is a Vandemonde matrix with distinct roots. Please verify that any collection of r columns of \mathbf{A} , with $r \leq m$, is linearly independent.
- 8. Suppose \boldsymbol{A} has eigenvalues 0, 3, 5 with independent eigenvectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$.
 - a) Give a basis for the nullspace and a basis for the column space;
 - b) Find a particular solution to Ax = v + w;
 - c) Find all solutions to Ax = v + w;
 - d) $\mathbf{A}\mathbf{x} = \mathbf{u}$ has no solution. If it did then _____ would be in the column space.