Inference for Regression with Variables Generated by AI or Machine Learning

Laura Battaglia (Oxford) Tim Christensen (Yale) Stephen Hansen (UCL) Szymon Sacher (Stanford) May 29, 2025

Outline

1. Introduction

- 2. Setup and Use Cases
- 3. Two-Step Inference is Biased
- 4. How to Do Valid Inference
- 5. Application: Remote Work and Wage Inequality
- 6. Application: CEO Time Use and Firm Performance
- 7. Application: Central Bank Communication
- 8. Conclusio

Motivation

Economists now routinely generate variables by AI/ML methods

- quantify unstructured data (text, images, ...)
- measure subtle concepts (uncertainty, sentiment, ...)
- generate variables previously too costly, labor-intensive, or infeasible to collect

The generated variables are inputs to downstream econometric models

Motivation

Economists now routinely generate variables by AI/ML methods

- quantify unstructured data (text, images, ...)
- measure subtle concepts (uncertainty, sentiment, ...)
- generate variables previously too costly, labor-intensive, or infeasible to collect

The generated variables are inputs to downstream econometric models

Almost all papers use a two-step strategy:

- 1. Generate estimate $\hat{\theta}_i$ of true variable θ_i using Al/ML algorithm
- 2. Plug estimates $(\hat{\theta}_i)$ into an econometric model, treating $\hat{\theta}_i$ as regular numeric data

This Paper

1. Two-step strategy leads to invalid inference: Cls have right width but wrong centering (bias)

Bias depends on relative importance of

- (a) measurement error in $\hat{\theta}_i$
- (b) sampling error in downstream model

Valid two-step inference requires (a) \ll (b)

This is not the case in most leading applications

2. Two solutions: bias correction + one-step strategy

NB: Measurement error is AI/ML-generated variables in non-classical.

3. Shows empirical relevance in several empirical applications

Related Work

Recent work (mainly stats/poli sci) has pointed out potential for generated variables to cause problems

- General ML-generated variables: Fong and Tyler (2021), Allon et al. (2023), Angelopoulos et al. (2023a, 2023b), Zhang et al. (2023), Zrnic and Candès (2024), and Miao and Lu (2024)
- Variables generated by LLMs: Egami et al. (2023, 2024), Ludwig et al. (2025), Carlson and Dell (2025).

Related Work

Recent work (mainly stats/poli sci) has pointed out potential for generated variables to cause problems

- General ML-generated variables: Fong and Tyler (2021), Allon et al. (2023), Angelopoulos et al. (2023a, 2023b), Zhang et al. (2023), Zrnic and Candès (2024), and Miao and Lu (2024)
- Variables generated by LLMs: Egami et al. (2023, 2024), Ludwig et al. (2025), Carlson and Dell (2025).

These works propose bias corrections assuming a validation subsample in which $(Y_i, \theta_i, \hat{\theta}_i)$ are observed

- But one can estimate the model using (Y_i, θ_i) in validation sample! AI/ML gen. vars only helpful for efficiency
- Not feasible in most economic use cases where θ_i is truly latent (uncertainty, sentiment, ...)

Outline

- 1. Introduction
- 2. Setup and Use Cases
- 3. Two-Step Inference is Biased
- 4. How to Do Valid Inference
- 5. Application: Remote Work and Wage Inequality
- 6. Application: CEO Time Use and Firm Performance
- 7. Application: Central Bank Communication
- 8. Conclusion

Setup

Want: perform inference on γ and/or α in the model

$$Y_i = \gamma^T \theta_i + \alpha^T \mathbf{q}_i + \varepsilon_i, \qquad \mathbb{E}\left[\varepsilon_i | \theta_i, \mathbf{q}_i\right] = 0,$$

- θ_i is a latent variable of economic interest
- **q**_i are observed numeric covariates
- Unstructured/high-dim dataset \mathbf{x}_i available for estimating $\mathbf{ heta}_i$

Setup

Want: perform inference on γ and/or α in the model

$$Y_i = \gamma^T \theta_i + \alpha^T \mathbf{q}_i + \varepsilon_i, \qquad \mathbb{E}\left[\varepsilon_i | \theta_i, \mathbf{q}_i\right] = 0,$$

- θ_i is a latent variable of economic interest
- **q**_i are observed numeric covariates
- Unstructured/high-dim dataset \mathbf{x}_i available for estimating $\mathbf{ heta}_i$

Two-Step Strategy:

- 1. Estimate $\hat{\theta}_i$ of θ_i obtained from unstructured data \mathbf{x}_i
- 2. Regress Y_i on $\hat{\theta}_i$ and \mathbf{q}_i . Perform inference treating $\hat{\theta}_i$ as regular numeric data.

Example 1: AI/ML-Generated Labels

- ML algorithms often deployed to impute missing observations from unstructured data.
 Goldsmith-Pinkham and Shue (2023), Adams-Prassl et. al. (2023), Argyle et al. (2025), and Wu and Yang (2024)
- Leading use case: missing θ_i is binary (e.g., race indicator)
- Generate estimate $\hat{\theta}_i$ of θ_i using unstructured data \mathbf{x}_i (e.g., voter registration data)
- Regress Y_i on $\hat{\theta}_i$ and controls \mathbf{q}_i

Example 1: AI/ML-Generated Labels

- ML algorithms often deployed to impute missing observations from unstructured data.
 Goldsmith-Pinkham and Shue (2023), Adams-Prassl et. al. (2023), Argyle et al. (2025), and Wu and Yang (2024)
- Leading use case: missing θ_i is binary (e.g., race indicator)
- Generate estimate $\hat{\theta}_i$ of θ_i using unstructured data \mathbf{x}_i (e.g., voter registration data)
- Regress Y_i on $\hat{\theta}_i$ and controls \mathbf{q}_i
- Measurement error due to misclassification error:

$$\mathsf{Pr}(heta_i = 1 | \mathbf{x}_i, \mathbf{q}_i)
eq \mathsf{Pr}(\hat{ heta}_i = 1 | \mathbf{x}_i, \mathbf{q}_i)$$

Example 2: Dimensionality Reduction

- · Obtain low-dimensional representation of unstructured data which is plugged into regression:
 - <u>Text data:</u> Hansen McMahon Prat (2018); Mueller and Rauh (2018); Larsen and Thorsrud (2019); Thorsrud (2020); Bybee Kelly Manela Xiu (2024); Ash Morelli Vannoni (2025)
 - Survey data: Bandiera Prat Hansen Sadun (2020); Draca and Schwarz (2020)
 - Network data: Nimczik (2017)

Example 2: Dimensionality Reduction

- Obtain low-dimensional representation of unstructured data which is plugged into regression:
 - <u>Text data:</u> Hansen McMahon Prat (2018); Mueller and Rauh (2018); Larsen and Thorsrud (2019); Thorsrud (2020); Bybee Kelly Manela Xiu (2024); Ash Morelli Vannoni (2025)
 - Survey data: Bandiera Prat Hansen Sadun (2020); Draca and Schwarz (2020)
 - Network data: Nimczik (2017)
- Obs i is a V-dim vector of feature counts \mathbf{x}_i
- Factor structure on multinomial probabilities (as in probabilistic latent semantic analysis/LDA):

$$\mathbf{x}_i | (C_i, \boldsymbol{\vartheta}_i) \sim \mathsf{Multinomial}(C_i, \mathbf{B}^T \boldsymbol{\vartheta}_i)$$

- $\mathbf{B}^T = [\beta_1, \dots, \beta_K]$, each $\beta_k \in \Delta^{V-1}$ is a topic
- observation-specific topic weights $artheta_i \in \Delta^{K-1}$
- subset of interest: $\theta_i = S\vartheta_i$

Example 2: Dimensionality Reduction

- · Obtain low-dimensional representation of unstructured data which is plugged into regression:
 - <u>Text data:</u> Hansen McMahon Prat (2018); Mueller and Rauh (2018); Larsen and Thorsrud (2019); Thorsrud (2020); Bybee Kelly Manela Xiu (2024); Ash Morelli Vannoni (2025)
 - Survey data: Bandiera Prat Hansen Sadun (2020); Draca and Schwarz (2020)
 - Network data: Nimczik (2017)
- Obs i is a V-dim vector of feature counts \mathbf{x}_i
- Factor structure on multinomial probabilities (as in probabilistic latent semantic analysis/LDA):

$$\mathbf{x}_i | (C_i, \boldsymbol{\vartheta}_i) \sim \mathsf{Multinomial}(C_i, \mathbf{B}^T \boldsymbol{\vartheta}_i)$$

- $\mathbf{B}^T = [\beta_1, \dots, \beta_K]$, each $\beta_k \in \Delta^{V-1}$ is a topic
- observation-specific topic weights $artheta_i \in \Delta^{K-1}$
- subset of interest: $\theta_i = S\vartheta_i$
- Measurement error due to upstream sampling error in $\hat{m{ heta}}_i$

Example 3: Indices

- Several influential works generate indices by classifying documents + aggregating
 Baker Bloom Davis (2016), Caldara and Iacoviello (2022), Gorodnichenko Pham Talavera (2023)
- Each month observe C_i documents (e.g., set of newspapers)
- Of these, X_i are classified as pertaining to concept (e.g., policy uncertainty)
- Latent true uncertainty $\theta_i \in [0,1]$
- Naive estimator: $\hat{\theta}_i = X_i/C_i$ (cf. BBD's EPU measure)

Example 3: Indices

- Several influential works generate indices by classifying documents + aggregating
 Baker Bloom Davis (2016), Caldara and Iacoviello (2022), Gorodnichenko Pham Talavera (2023)
- Each month observe C_i documents (e.g., set of newspapers)
- Of these, X_i are classified as pertaining to concept (e.g., policy uncertainty)
- Latent true uncertainty $\theta_i \in [0,1]$
- Naive estimator: $\hat{\theta}_i = X_i/C_i$ (cf. BBD's EPU measure)
- **Problem**: $\hat{\theta}_i$ is a signal of θ_i
- e.g., could change set of newspapers and get a different (but related) measure

Example 3: Indices

• Topic model representation:

$$\mathbf{x}_i | (C_i, \boldsymbol{\vartheta}_i) \sim \mathsf{Multinomial}(C_i, \mathbf{B}^T \boldsymbol{\vartheta}_i),$$
 for $\mathbf{x}_i = (X_i, C_i - X_i)^T$,
$$\mathbf{B}^T = \underbrace{\begin{bmatrix} \beta_1 & \beta_0 \\ (1 - \beta_1) & (1 - \beta_0) \end{bmatrix}}_{\mathsf{misclass. rates}}, \quad \boldsymbol{\vartheta}_i = \begin{bmatrix} \theta_i \\ 1 - \theta_i \end{bmatrix}$$

Measurement error due to misclassification error and upstream sampling error

Outline

- 1. Introduction
- 2. Setup and Use Cases
- 3. Two-Step Inference is Biased
- 4. How to Do Valid Inference
- 5. Application: Remote Work and Wage Inequality
- 6. Application: CEO Time Use and Firm Performance
- 7. Application: Central Bank Communication
- 8. Conclusio

Asymptotics: General Case

• Consider a sequence of DGPs for $(Y_i, \theta_i, \hat{\theta}_i, \mathbf{q}_i, \mathbf{x}_i)_{i=1}^n$ indexed by sample size n, in which

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n \hat{\theta}_i(\hat{\theta}_i - \theta_i)^T \to_{\rho} \kappa \Omega,$$

(expressions are DGP-specific)

- Scalar $\kappa \geq 0$ measures the importance of measurement error relative to sampling error
- Positive κ allows both sampling error and measurement error to play a role
- ullet Reflects prevailing trend: increasingly large data sets + increasingly accurate algorithms

Asymptotics: κ and Ω

• ML-generated binary labels:

$$\sqrt{n} imes \underbrace{\mathbb{E}\left[\hat{ heta}_i(1- heta_i)
ight]}_{ ext{false-positive rate}}
ightarrow \kappa, \qquad \mathbf{\Omega} = 1$$

• Topic models:

$$\sqrt{n} \times \mathbb{E}\left[\frac{1}{C_i}\right] \to \kappa, \qquad \mathbf{\Omega} = \mathbf{S}(\mathbf{B}\mathbf{B}^T)^{-1}\mathbf{B}\operatorname{diag}(\mathbf{B}^T\mathbb{E}[\vartheta_i])\mathbf{B}^T(\mathbf{B}\mathbf{B}^T)^{-1}\mathbf{S}^T - \mathbb{E}\left[\boldsymbol{\theta}_i\,\boldsymbol{\theta}_i^T\right]$$

Theorem on Two-Step Inference

Theorem: Two-Step Inference is Invalid Unless $\kappa = 0$

1. OLS estimator $\hat{\psi} = (\hat{\gamma}, \hat{\alpha})$ of $\psi = (\gamma, \alpha)$ from regressing Y_i on $\hat{\xi}_i = (\hat{\theta}_i, \mathbf{q}_i)$ has asy dist

$$\sqrt{n} \begin{pmatrix} \hat{\boldsymbol{\psi}} - \boldsymbol{\psi} \end{pmatrix} \rightarrow_{d} N \begin{pmatrix} -\kappa \mathbb{E}[\boldsymbol{\xi}_{i} \, \boldsymbol{\xi}_{i}^{T}]^{-1} \begin{pmatrix} \boldsymbol{\Omega} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \boldsymbol{\psi} \,, \underbrace{\mathbb{E}[\boldsymbol{\xi}_{i} \, \boldsymbol{\xi}_{i}^{T}]^{-1} \mathbb{E}[\varepsilon_{i}^{2} \boldsymbol{\xi}_{i} \, \boldsymbol{\xi}_{i}^{T}] \mathbb{E}[\boldsymbol{\xi}_{i} \, \boldsymbol{\xi}_{i}^{T}]^{-1}}_{=: \mathbf{V}} \end{pmatrix}$$

where $\boldsymbol{\xi}_i = (\boldsymbol{\theta}_i, \mathbf{q}_i)$ are the "true" covariates

Theorem on Two-Step Inference

Theorem: Two-Step Inference is Invalid Unless $\kappa = 0$

1. OLS estimator $\hat{\psi} = (\hat{\gamma}, \hat{\alpha})$ of $\psi = (\gamma, \alpha)$ from regressing Y_i on $\hat{\xi}_i = (\hat{\theta}_i, \mathbf{q}_i)$ has asy dist

$$\sqrt{n} \begin{pmatrix} \hat{\boldsymbol{\psi}} - \boldsymbol{\psi} \end{pmatrix} \rightarrow_{d} N \begin{pmatrix} -\kappa \mathbb{E}[\boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i}^{T}]^{-1} \begin{pmatrix} \boldsymbol{\Omega} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \boldsymbol{\psi} , \underbrace{\mathbb{E}[\boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i}^{T}]^{-1} \mathbb{E}[\varepsilon_{i}^{2} \boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i}^{T}] \mathbb{E}[\boldsymbol{\xi}_{i} \boldsymbol{\xi}_{i}^{T}]^{-1}}_{=: \mathbf{V}} \end{pmatrix}$$

where $\boldsymbol{\xi}_i = (\boldsymbol{\theta}_i, \mathbf{q}_i)$ are the "true" covariates

2. Eicker–Huber–White standard errors are consistent for all $\kappa \geq 0$:

$$\hat{\mathbf{V}} := \left(\frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{\xi}}_{i} \hat{\boldsymbol{\xi}}_{i}^{T}\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} \hat{\boldsymbol{\xi}}_{i} \hat{\boldsymbol{\xi}}_{i}^{T}\right) \left(\frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{\xi}}_{i} \hat{\boldsymbol{\xi}}_{i}^{T}\right)^{-1} \rightarrow_{p} \mathbf{V}$$

Implications

- $\kappa \in (0, \infty)$: two-step inference is **biased**
 - degree of bias is increasing in κ (relative importance of measurement vs sampling error)
 - no variance distortion, unlike generated regressors
- $\kappa=0$: two-step inference is **valid**: treat $\hat{\theta}_i$ as if they are the true latent θ_i
- Take-away: if κ is large, consider using resources to improve precision of $\hat{\pmb{\theta}}_i$

Implications

- $\kappa \in (0, \infty)$: two-step inference is **biased**
 - degree of bias is increasing in κ (relative importance of measurement vs sampling error)
 - no variance distortion, unlike generated regressors
- $\kappa = 0$: two-step inference is **valid**: treat $\hat{\theta}_i$ as if they are the true latent θ_i
- Take-away: if κ is large, consider using resources to improve precision of $\hat{\theta}_i$
- To the extent empirical papers flag concerns about 2-step inference, usually about std errors
- Common intuition is wrong: problem is measurement error not standard errors

Outline

- 1. Introduction
- 2. Setup and Use Cases
- 3. Two-Step Inference is Biased

4. How to Do Valid Inference

- 5. Application: Remote Work and Wage Inequality
- 6. Application: CEO Time Use and Firm Performance
- 7. Application: Central Bank Communication
- 8. Conclusion

How to Do Valid Inference

1. Explicit Bias Correction: use analytical expressions in Theorem to adjust two-step estimates/Cls

Advantage: Simple and scalable

Disadvantage: Not feasible in complex models; poor approximation with large κ

2. One-Step Strategy: MLE using joint likelihood for upstream IR model + regression model

Advantage: General purpose and flexible

Disadvantage: More computationally demanding

NB: Measurement error is AI/ML-generated variables in non-classical.

Outline

- 1. Introduction
- 2. Setup and Use Cases
- 3. Two-Step Inference is Biasec
- 4. How to Do Valid Inference
- 5. Application: Remote Work and Wage Inequality
- 6. Application: CEO Time Use and Firm Performance
- 7. Application: Central Bank Communication
- 8. Conclusion

Hansen Lambert Bloom Davis Sadun Taska (WP, 2023)

- Consider n = 16,315 SD food+accom sector (NAICS code 72) job postings from January 2022
- Regress log wages Y_i on ML-generated remote work indicator $\hat{ heta}_i$
- Fixed effects for SOC code (job type) and full/part time

Hansen Lambert Bloom Davis Sadun Taska (WP, 2023)

- Consider n = 16,315 SD food+accom sector (NAICS code 72) job postings from January 2022
- Regress log wages Y_i on ML-generated remote work indicator $\hat{ heta}_i$
- Fixed effects for SOC code (job type) and full/part time
- Estimate FPR from a subsample of size m=1,000 postings, $\widehat{FPR} \approx 0.009$
- For 1-step: use 3 component Gaussian mixture for errors $arepsilon_i| heta_i$

Two-Step Estimates Smaller

		No Fixed Effects			With Fixed Effects		
	Est.	Std Err	95% CI	Est.	Std Err	95% CI	
OLS	0.648	0.024	[0.599, 0.697]	0.363	0.021	[0.321, 0.406]	
ВС	1.052	0.140	[0.777, 1.326]	0.641	0.099	[0.446, 0.836]	
1-Step	0.563	0.016	[0.532, 0.595]	0.448	0.017	[0.415, 0.480]	

Corrected CIs to the right of Two-Step CIs

		No Fixed Effects			With Fixed Effects		
	Est.	Std Err	95% CI	Est.	Std Err	95% CI	
OLS	0.648	0.024	[0.599, 0.697]	0.363	0.021	[0.321, 0.406]	
BC	1.052	0.140	[0.777, 1.326]	0.641	0.099	[0.446, 0.836]	
1-Step	0.563	0.016	[0.532, 0.595]	0.448	0.017	[0.415, 0.480]	

Outline

- 1. Introduction
- 2. Setup and Use Case
- 3. Two-Step Inference is Biasec
- 4. How to Do Valid Inference
- 5. Application: Remote Work and Wage Inequality
- 6. Application: CEO Time Use and Firm Performance
- 7. Application: Central Bank Communication
- 8. Conclusion

Bandiera Hansen Prat Sadun (JPE, 2020)

- Time-use survey data for 916 CEOs
- 654 combinations of activities (e.g., meeting with suppliers) in 15min intervals
- LDA with K=2: 2 types of CEO behaviors β_1 (leaders) and β_2 (managers).
- Two-step strategy: regress log sales Y_i on leader weight $\hat{\theta}_{i,1}$ and firm characteristics \mathbf{q}_i .

Bandiera Hansen Prat Sadun (JPE, 2020)

- Time-use survey data for 916 CEOs
- 654 combinations of activities (e.g., meeting with suppliers) in 15min intervals
- LDA with K=2: 2 types of CEO behaviors β_1 (leaders) and β_2 (managers).
- Two-step strategy: regress log sales Y_i on leader weight $\hat{\theta}_{i,1}$ and firm characteristics \mathbf{q}_i .

Original Paper: $\hat{\kappa} = 0.44$ (average $C_i = 88.4$).

Modified Sample: draw 10% of activities for each CEO (without replacement) $\longrightarrow \hat{\kappa} = 4.26$.

Similar Estimates in Full Sample

Table 1: Estimates of Impact of CEO Behavior on Firm Performance

Sample	Estimation Strategy			
	Two-Step	Bias Correction	Joint	
Full	0.405	0.474	0.402	
	[0.224, 0.585]	[0.294, 0.655]	[0.240, 0.603]	
10% Subsample	0.227	1.054	0.439	
	[-0.038, 0.492]	[0.789, 1.319]	[0.153, 0.711]	

Difference in Subsample

Table 2: Estimates of Impact of CEO Behavior on Firm Performance

Sample	Estimation Strategy		
	Two-Step	Bias Correction	Joint
Full	0.405	0.474	0.402
	[0.224, 0.585]	[0.294, 0.655]	[0.240, 0.603]
10% Subsample	0.227	1.054	0.439
	[-0.038, 0.492]	[0.789, 1.319]	[0.153, 0.711]

Outline

- 1. Introduction
- 2. Setup and Use Cases
- 3. Two-Step Inference is Biasec
- 4. How to Do Valid Inference
- 5. Application: Remote Work and Wage Inequality
- 6. Application: CEO Time Use and Firm Performance
- 7. Application: Central Bank Communication
- 8. Conclusio

Central Bank Communication

• Does written central bank communication drive long rates? Estimate

$$Y_i = \gamma \theta_i + \alpha' \mathbf{q}_i + u_i$$

- Y_i is the path factor from Gürkaynak, Sack, and Swanson (2005) (mkt perceptions of future rates)
- θ_i is a hawkish/dovish index (cf. Gorodnichenko, Pham, Talavera (2023))
- **q**_i are controls (including shadow short rate)

Central Bank Communication

Does written central bank communication drive long rates? Estimate

$$Y_i = \gamma \theta_i + \alpha' \mathbf{q}_i + u_i$$

- Y_i is the path factor from Gürkaynak, Sack, and Swanson (2005) (mkt perceptions of future rates)
- θ_i is a hawkish/dovish index (cf. Gorodnichenko, Pham, Talavera (2023))
- qi are controls (including shadow short rate)
- Hawkish/dovish index:
 - ullet classify FOMC sentences as hawkish/dovish/neutral using fine-tuned BERT + aggregate
 - sentiment estimate

$$\hat{\theta}_i = \frac{N_i^H - N_i^D}{N_i^H + N_i^D}$$

Central Bank Communication

• Does written central bank communication drive long rates? Estimate

$$Y_i = \gamma \theta_i + \alpha' \mathbf{q}_i + u_i$$

- Y_i is the path factor from Gürkaynak, Sack, and Swanson (2005) (mkt perceptions of future rates)
- θ_i is a hawkish/dovish index (cf. Gorodnichenko, Pham, Talavera (2023))
- qi are controls (including shadow short rate)
- Hawkish/dovish index:
 - ullet classify FOMC sentences as hawkish/dovish/neutral using fine-tuned BERT + aggregate
 - sentiment estimate

$$\hat{\theta}_i = \frac{N_i^H - N_i^D}{N_i^H + N_i^D}$$

Compare 1 and 2 step methods over 02/1995-06/2023

Central Bank Communication: One-Step Effect Size 3x Larger

	Estimation Strategy		
	Two-Step	One-Step	
Sentiment (θ_i)	0.039	0.114	
	[0.012, 0.066]	[0.027, 0.198]	
Policy Rate (q_i)	-0.004	-0.003	
	[-0.011, 0.003]	[-0.011, 0.004]	
$eta_{f 0}$		0.009	
		[0.001, 0.026]	
eta_1		0.676	
		[0.585, 0.768]	
Observations	200	200	
R^2	0.0425	0.1429	

Outline

- 1. Introduction
- 2. Setup and Use Cases
- 3. Two-Step Inference is Biasec
- 4. How to Do Valid Inference
- 5. Application: Remote Work and Wage Inequality
- 6. Application: CEO Time Use and Firm Performance
- 7. Application: Central Bank Communication
- 8. Conclusion

Conclusion

- Empirical work routinely uses AI/ML algorithms to generate new variables
- Common empirical practice leads to invalid inference
- We propose two solutions: bias correction + one-step strategy
- Illustrate important differences in simulations + applications
- Works in progress: specific methods tailored to important use cases
 - $\bullet\,$ VARs and impulse response analysis w/ Hansen and Shin