

Теория вероятностей и математическая статистика

Случайные события. Условная вероятность. Формула Байеса. Независимые испытания

На этом уроке мы изучим

- 1. Что такое случайное событие, какие они бывают.
- 2. Понятие статистической вероятности.
- 3. Формулы комбинаторики.
- 4. Понятие условной вероятности, формулу полной вероятности.
- 5. Формула Байеса.

Случайные события

Случайные события

Случайное событие — любой исход опыта, который может произойти или не произойти.

Случайные события

Случайное событие — любой исход опыта, который может произойти или не произойти.

Например,

- 1. При броске двух игральных костей на одной выпало число 1, а на другой 2.
- 2. Клиент банка не вернул кредит.
- 3. Температура воздуха в Москве за последние десять дней не превышала 29 градусов по Цельсию.

Операции над случайными событиями

Пусть A и B — случайные события.

- Сумма событий A+B соответствует наступлению хотя бы одного из событий A и B. Такое событие иногда называют объединением.
- Произведение $A \cdot B$ соответствует наступлению событий A и B одновременно. Такое событие ещё называется совместным.
- Отрицание \overline{A} соответствует тому, что событие A не наступило. Такое событие также называется дополнительным.

Событие называется достоверным, если в результате испытания оно обязательно произойдет.

Событие называется достоверным, если в результате испытания оно обязательно произойдет.

Например,

- 1. При броске игральной кости выпало число, не превышающее 6.
- 2. Подбросили монету, и выпал либо орел, либо решка.
- 3. Монету подбросили стократно, и решка выпала не более 100 раз.

Невозможным событием мы называем событие, которое никогда не произойдет.

Невозможным событшем мы называем событие, которое никогда не произойдет.

Например,

- 1. Две игральные кости бросили один раз, и сумма выпавших чисел составила 15.
- 2. Монету подбросили стократно, и решка выпала 55 раз, а орел 56.

Совместные и несовместные события

Совместными называются события, которые могут произойти вместе. Соответственно, *несовместными* называются события, которые вместе случиться не могут.

Совместные и несовместные события

Совместными называются события, которые могут произойти вместе. Соответственно, *несовместными* называются события, которые вместе случиться не могут.

Например,

- 1. При броске монеты не могут одновременно выпасть орел и решка.
- 2. При броске дротика в круглую мишень можно попасть одновременно в правую половину мишени и в нижнюю половину.

Статистическая вероятность

Относительная частота

Для случайного события существует понятие *относительной частомы*. Это отношение количества испытаний, в которых данное событие состоялось, к общему числу испытаний:

$$W(A) = \frac{m}{n}$$

Здесь

- W(A) относительная частота события A,
- m число испытаний, в результате которых произошло событие A,
- n общее число испытаний.

Статистическая вероятность

Статистической вероятностью (или просто *вероятностью*) события A называется его относительная частота при достаточно большом («бесконечном») количестве опытов. Вероятность события A обозначается P(A).

Статистическая вероятность

Статистической вероятностью (или просто *вероятностью*) события A называется его относительная частота при достаточно большом («бесконечном») количестве опытов. Вероятность события A обозначается P(A).

Например, при многократном повторении бросков монеты относительная частота выпадения орла может различаться, однако, вероятность выпадения орла равна 0.5.

Свойства вероятности

- $0 \le P(A) \le 1$ для любого события A.
- $P(\varnothing) = 0$, $P(\Omega) = 1$, где \varnothing невозможное событие, Ω достоверное событие.
- P(A + B) = P(A) + P(B) P(AB), где A + B объединение событий (происходит хотя бы одно), а AB совместное событие (происходят оба).
- В частности, для несовместных событий P(A + B) = P(A) + P(B).
- $P(A) + P(\overline{A}) = 1$ для любого события A.

Комбинаторика

Раздел математики, в котором изучаются задачи выбора элементов из заданного множества и расположения их в группы по заданным правилам.

Комбинаторика

Перестановки

Сочетания

Размещение из n элементов по k элементов — это упорядоченный набор из k элементов, выбранных из множества, содержащего n элементов.

Замечание: **здесь** k и n — натуральные числа и 0 ≤ k ≤ n.

Например, набор (1, 3, 5) является размещением из множества $\{1, 2, 3, 4, 5\}$.

В размещениях важен порядок.

Так, (1, 2, 3) и (3, 1, 2) — разные размещения.

Договоренность: будем обозначать круглыми скобками упорядоченные наборы, а фигурными — неупорядоченные.

Количество размещений из n по k:

$$A_n^k = \frac{n!}{(n-k)!}$$

Здесь $n! = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 2 \cdot 1$ — факториал.

Перестановки

Перестановкой из n элементов называется размещение из n элементов по n элементов.

Количество перестановок из n элементов:

$$P_n = n!$$

Сочетания

Сочетание из n элементов по k элементов — это неупорядоченный набор из k элементов, выбранных из множества, содержащего n элементов.

Например, набор $\{1, 3, 5\}$ является размещением из множества $\{1, 2, 3, 4, 5\}$.

При этом, $\{1, 3, 5\}$ и $\{5, 1, 3\}$ — одно и то же сочетание.

Сочетания

Сочетаний из n по k меньше, чем размещений. Насколько меньше?

В каждом конкретном сочетании можно переставить элементы любым образом и получить размещение. Итак, число сочетаний из n по k:

$$C_n^k = \frac{n!}{k!(n-k)!}$$

Зачем все это нужно?

Сформулируем классическое определение вероятности.

Предположим, проводится опыт с *п* возможными исходами, причем все эти исходы *равновозможны* и *несовместны*. Такие исходы называются элементарными событиями.

Например,

- Игральный кубик бросается однажды. Его выпадение каждой из 6 сторон — все элементарные события.
- Кубик бросается дважды. Элементарные события все пары его значений.

Зачем все это нужно?

Рассмотрим событие A, которое можно «собрать» из элементарных событий (т.е. указать, какие элементарные события повлекут за собой событие A, а какие — нет).

Например, выпадение кубика стороной, значение которого не превышает 3 включает в себя три элементарных события.

Вероятность события A:

$$P(A) = \frac{m}{n}$$

Здесь n — общее число исходов, а m — число исходов, которые влекут за собой событие A.

Условная вероятность

Условная вероятность

Наступление одного события может влиять на наступление другого.

Например, если подброшенная монета выпала орлом, она не может также выпасть решкой.

Условная вероятность P(B|A) — это вероятность наступления события B при условии, что произошло событие A.

$$P(B|A) = \frac{P(AB)}{P(A)}$$

Замечание: P(A) ≠ 0, поскольку событие A произошло.

Независимые события

События A и B называются *независимыми*, если $P(B \mid A) = P(B)$.

Например, если монета подбрасывается дважды, то выпадение орла в первый раз и выпадение орла во второй — независимые события.

Для независимых событий: $P(AB) = P(A) \cdot P(B)$.

Независимые события

События A и B называются *независимыми*, если $P(B \mid A) = P(B)$.

Например, если монета подбрасывается дважды, то выпадение орла в первый раз и выпадение орла во второй — независимые события.

Для независимых событий: $P(AB) = P(A) \cdot P(B)$.

Не стоит путать *независимые* события и *несовместные*. Например, если монета подбрасывается один раз, то выпадение орла и выпадение решки — несовместные события, а не независимые.

Формула полной вероятности. Формула Байеса

Формула полной вероятности

Говорят, что события $H_1, H_2, ..., H_n$ образуют полную группу событий, если в ходе любого испытания одно из этих событий произойдет. Другими словами, $P(H_1 + H_2 + ... + H_n) = 1$.

 ϕ ормула полной вероятности для таких событий и произвольного события A:

$$P(A) = P(H_1) \cdot P(A|H_1) + P(H_2) \cdot P(A|H_2) + \dots + P(H_n) \cdot P(A|H_n)$$

В частности, для любых событий A и B:

$$P(A) = P(B) \cdot P(A \mid B) + P(\overline{B}) \cdot P(A \mid \overline{B})$$

Формула Байеса

Из определения условной вероятности следует, что

$$P(AB) = P(B \mid A) \cdot P(A)$$
.

Однако, эту же вероятность можно посчитать и наоборот:

$$P(AB) = P(A \mid B) \cdot P(B)$$
.

Из этих двух равенств вытекает формула Байеса:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Итого

- 1. Случайные события: достоверные и невозможные, совместные и несовместные.
- 2. Статистическая вероятность.
- 3. Формулы комбинаторики.
- 4. Условная вероятность. Зависимые и независимые события.
- 5. Формула полной вероятности.
- 6. Формула Байеса.