PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-092727

(43) Date of publication of application: 07.04.1995

(51)Int.Cl.

G03G 9/08 G03G 9/087

(21)Application number: 05-262893

(00)D + C C!!

(71)App

(71)Applicant : RICOH CO LTD

(22)Date of filing:

27.09.1993

(72)Inventor: MASUDA MINORU

TOMITA MASAMI MATSUI AKIO

KAWASAKI KANJIRO

(54) ELECTROPHOTOGRAPHIC DEVELOPER AND ITS MANUFACTURE

(57)Abstract:

PURPOSE: To provide a dry type one-component electrophotographic developer which does not lower image density even after a long time of use, and does not cause a development obstruction due to contamination in a developer carrying-transfer member and a latent image holder.

CONSTITUTION: The developer is composed of a nucleus toner consisting of at least binding resin, a coloring agent and a charge control agent and silica fine powder being at a ratio of 0.2 to 2.0% in weight to the nucleus toner, and 5 to 70% of the silica fine powder is buriedly provided on the surface of the nucleus toner, and 30 to 95% of the silica fine powder adheres to the surface, and 0 to 10% of the silica fine powder floats.

LEGAL STATUS

[Date of request for examination]

28.06.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the

examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

3309294

[Date of registration]

24.05.2002

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision

of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-92727

(43)公開日 平成7年(1995)4月7日

	9/08 9/087	識別記号	庁 内整理番号	FΙ	技術表示箇所			
				G 0 3 G	9/ 08	3 7 5		
						3 8 1		
				客查請求	未請求	請求項の数3	FD	(全 5 頁)
(21)出顧番号		特膜平5-262893		(71)出願人) 出題人 000006747			
					株式会社	生リコー		
(22) 出顧日		平成5年(1993)9月27日			東京都大田区中馬込1丁目3番6号			
				(72)発明者	増田 和	3		
					東京都大	大田区中馬込1	丁目3番	6号 株式
					会社リニ	コー内		
				(72)発明者	富田 正	E実		
					東京都大	大田区中馬込1	丁目3番	6号 株式
					会社リニ	3一内		
				(72)発明者	松井 和	火雄		
					東京都	大田区中馬込1	丁目3番	6号 株式
					会社リニ	コー内		
				(74)代理人	弁理士	池浦 敏明	(外1名))
					最終頁に続く			

(54) 【発明の名称】 電子写真用現像剤及びその製造方法

(57)【要約】

【目的】 長時間使っても画像濃度の低下がない上に、 現像剤の担持搬送部材や潜像保持体の汚染による現像障 害等を起さない電子写真用乾式一成分現像剤を提供する こと。

【構成】 少なくとも結着樹脂、着色剤及び荷電制御剤からなる母体トナーと、該母体トナーの0.2~2.0 重量%のシリカ微粉から成り、かつ該シリカ微粉のうち5~70%が上記母体トナーの表面に埋没し、30~95%が上記母体トナーの表面に付着し、0~10%のシリカ微粉は浮遊していることを特徴とする電子写真用現像剤。

【特許請求の範囲】

【請求項1】 少なくとも結着樹脂、着色剤及び荷電制御剤からなる母体トナーと、該母体トナーの0.2~2.0重量%のシリカ微粉から成り、かつ該シリカ微粉のうち5~70%が上記母体トナーの表面に埋没し、30~95%が上記母体トナーの表面に付着し、0~10%のシリカ微粉は浮遊していることを特徴とする電子写真用現像剤。

【請求項2】 少なくとも結着樹脂、着色剤及び荷電制御剤からなる母体トナーに、該母体トナーの0.1~1.4重量%のシリカ微粉を添加して撹拌することにより、添加したシリカ微粉の一部又は全部を表面に埋没させたトナーを形成後、該トナーに上記母体トナーの0.1~1.9重量%のシリカ微粉を添加して撹拌し、母体トナー表面にシリカ微粉を付着させたトナーを形成すると共に、浮遊したシリカ微粉をシリカ全量の0~10%にすることを特徴とする電子写真用現像剤の製造方法。

【請求項3】 シリカ微粉を付着させたトナーの形成後、浮遊したシリカ微粉の一部を除去して、該シリカ量をシリカ全量の10%以下にすることを特徴とする請求 20項2に記載の電子写真用現像剤の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は電子写真、静電印刷等に 用いられる電子写真用乾式現像剤及びその製造方法に関 するものである。

[0002]

【従来技術及びその問題点】感光体上に静電潜像を形成し、これを現像剤によって可視像化して記録画像を得る電子写真複写機、プリンター、ファクシミリ等の電子写真を利用する画像形成装置では、粉体状の乾式現像剤を使う現像装置が広く採用されている。このような粉体状乾式現像剤としては、トナーとキャリアを含む二成分現像剤とキャリアを含まない一成分現像剤とが知られ、前者を使った現像方式は比較的安定した良好な記録画像が得られるが、キャリアの劣化やトナーとキャリアの混合比変動が発生し易く、装置の維持管理が煩雑で装置が大型化してしまう欠点がある。一方、一成分現像方式は現像剤がトナーだけで構成されているから前記の欠点がなく、トナーとキャリアとの撹拌やトナー濃度の制御機構が不要である。

【0003】一成分現像を行う場合は、トナーを現像剤の担持搬送部材へ補給する前に帯電を目的に現像部ホッパー内でトナーを撹拌する。また、一成分現像方式は二成分現像方式よりトナー帯電の機会が少ないために、現像剤塗布ブレードを現像剤の担持搬送部材に圧着してトナーの帯電量を高めているから、トナーにストレスがかかってトナーの流動性や現像性を悪化させる。そこで、トナーにシリカ微粉を混合してトナーの流動性を向上させているが、この方法で繰り返し現像しているとシリカ50

微粉がトナー表面に埋没して流動性を低下させてしまう。特開昭57-93352号公報には、トナー表面にあらかじめシリカ微粉を埋没させると共に浮遊状のシリカ微粉も混在させて、流動性低下を防止する現像剤が開示されている。しかし、該現像剤では浮遊状のシリカ微粉が現像剤の担持搬送部材や潜像保持体を汚染し、その

ために現像障害を起す等の問題が発生する。

[0004]

【発明が解決しようとする課題】本発明は、長期間使用しても画像濃度の低下がない上に、現像剤の担持搬送部材や潜像保持体の汚染による現像障害等を起さない電子写真用一成分現像剤を提供することをその課題とする。 【0005】

【課題を解決するための手段】本発明者らは、前記課題を達成すべく鋭意研究を重ねた結果、本発明を完成するに至った。すなわち、本発明によれば、少なくとも結着樹脂、着色剤及び荷電制御剤からなる母体トナーと、該母体トナーの0. $2\sim2$. 0重量%のシリカ微粉から成り、かつ該シリカ微粉のうち5~70%が上記母体トナーの表面に埋没し、30~95%が上記母体トナーの表面に埋没し、30~95%が上記母体トナーの表面に付着し、0~10%のシリカ微粉は浮遊していることを特徴とする電子写真用現像剤が提供される。

【0006】また、本発明によれば、少なくとも結着樹脂、着色剤及び荷電制御剤からなる母体トナーに、該母体トナーの0.1~1.4重量%のシリカ微粉を添加して撹拌することにより、添加したシリカ微粉の一部又は全部を表面に埋没させたトナーを形成後、該トナーに上記母体トナーの0.1~1.9重量%のシリカ微粉を付着させたトナーを形成すると共に、浮遊したシリカ微粉を付着させたトナーを形成すると共に、浮遊したシリカ微粉をシリカ全量の0~10%にすることを特徴とする電子写真用現像剤の製造方法が提供される。さらに、本発明によれば、シリカ微粉の一部を除去して、該シリカ量をシリカ全量の10%以下にすることを特徴とする前記電子写真用現像剤の製造方法が提供される。

【0007】本発明者らの詳細な研究によると、母体トナーに添加されるシリカ微粉の挙動及び該シリカ微粉の添加効果は以下のとおりである。

40 **○**母体トナーは融着性の結着樹脂を主成分としているから、帯電させるために母体トナーとシリカ微粉を撹拌する際に、母体トナー表面にシリカ微粉が埋没する現象が起るのは避けられない。

②母体トナー表面にシリカ微粉が埋没していると、該微粉の埋没は次第に困難となって遂に埋没不能となる。すなわち、母体トナーの表面に埋没しているシリカ微粉は、該表面に付着しているシリカ微粉の埋没を抑制している。また、母体トナー表面に付着しているシリカ微粉は、シリカ微粉が母体トナー表面に埋没することを抑制する役割も持っている。

【0008】3トナーの流動性は、母体トナーの表面に 付着しているシリカ微粉によって向上するが、該表面に 埋没しているシリカ微粉や浮遊しているシリカ微粉はト ナーの流動性向上に寄与しない。

④前記の流動性向上は、母体トナー同士の接触がシリカ 同士の接触に変るために起る。母体トナーは、融着性結 着樹脂が主成分だから多少の粘着性を持ち、そのために 母体トナー同士の接触では摩擦抵抗が大きく流動性が悪 い。また、母体トナーの表面にシリカ微粉が付着してい ると帯電性も大幅に向上する。

⑤浮遊状のシリカ微粉は現像剤の担持搬送部材や潜像保 持体に付着してフィルミング現象等の現像障害発生の原 因となる。しかし、浮遊状のシリカ微粉量がシリカ微粉 量全体の10%以下であれば問題となる程の現像障害を 起さない。

【0009】本発明は、前記の母体トナーに添加される シリカ微粉の挙動及び効果に関する詳細な研究に基づい てなされたものである。そして、母体トナーの0.2~ 2. 0重量%のシリカ微粉が添加されると共に、シリカ 微粉の5~70%、好ましくは20~50%が母体トナ 20 一の表面に埋没し、シリカ微粉の30~95%、好まし くは50~80%が母体トナーの表面に付着し、シリカ 微粉の0~10%、好ましくは0~5%が浮遊状態で存 在していることを特徴にしている。以上に詳記したシリ カ微粉の好ましい存在比は試行錯誤的に得られたもので あるが、これらのシリカ微粉存在量は以下の方法で求め られる。

分析法で求める。すなわち、あらかじめシリカ微粉の添 加量が明らかなトナーの蛍光X線分析で検量線を作成 し、この検量線を使ってトナー中のシリカ量を蛍光X線 分析法で求める。

②浮遊シリカ微粉量は、トナーを界面活性剤を含む水に 浸漬して浮遊状のシリカ微粉を洗い流してから前記の方 法で該トナー中のシリカ量を求め、●に記載したトナー 中の全シリカ量との差から求める。

③表面に付着したシリカ微粉量は、走査型電子顕微鏡で 観察して求める。この方法では、測定するトナーの母体 トナーと同粒径でシリカ不在の母体トナーに一定量のシ リカ微粉を加えて標品を作製し、これを使って表面付着 40 量を求める。

④表面に埋没しているシリカ微粉量は、
●に記した全シ リカ量から♥に記した浮遊シリカ微粉量と**③**に記した表 面付着のシリカ微粉量を除いて求める。

【0011】本発明による。現像剤の好ましい製造方法 は、シリカ微粉を2回に分けて母体トナーに添加する方 法である。すなわち、最初の添加後にアイブリタイザー やミキサー等で高速に比較的長時間撹拌し、添加したシ リカ微粉の一部又は全部を母体トナー表面に埋没させ、

表面に付着させれば良い。また、実施例からも分るよう に、撹拌・混合法が適切であれば1回のシリカ微粉添加 でも本発明の現像剤を得ることができる。本発明で使用 されるシリカ微粉は、一次粒子の直径が少なくとも1_µ m以下、好ましくは0. 1 μ m以下のシリカ微粉であ る。また、本発明の現像剤を作製する場合に実施される 浮遊状シリカ微粉の減少法は、シリカ微粉を含有してい る現像剤の分級によって行われる。

【0012】本発明で使用される母体トナー用の結着樹 10 脂は、ポリスチレン、ポリーp-クロルスチレン、ポリ ビニルトルエン等のスチレン系単重合体:スチレン/p ークロルスチレン共重合体、スチレン/プロピレン共重 合体、スチレン/ビニルトルエン共重合体、スチレン/ ビニルナフタリン共重合体、スチレン/アクリル酸メチ ル共重合体、スチレン/アクリル酸エチル共重合体、ス チレン/アクリル酸ブチル共重合体、スチレン/アクリ ル酸オクチル共重合体、スチレン/メタクリル酸メチル 共重合体、スチレン/メタクリル酸エチル共重合体、ス チレン/メタクリル酸ブチル共重合体、スチレン/α-クロルメタクリル酸メチル共重合体、スチレン/アクリ ロニトリル共重合体、スチレン/ビニルメチルエーテル 共重合体、スチレン/ビニルエチルエーテル共重合体、 スチレン/ビニルメチルケトン共重合体、スチレン/ブ タジエン共重合体、スチレン/イソプレン共重合体、ス チレン/アクリロニトリル/インデン共重合体、スチレ ン/マレイン酸共重合体、スチレン/マレイン酸エステ ル共重合体等のスチレン系共重合体;ポリメチルメタク リレート;ポリブチルメタクリレート;ポリ塩化ビニ ル;ポリ酢酸ビニル;ポリエチレン;ポリプロピレン; ポリエステル;ポリウレタン;ポリアミド;エポキシ樹 脂;ポリビニルブチラール;ポリアクリル酸樹脂;ロジ ン;変性ロジン;テルペン樹脂;フェノール樹脂;脂肪 族又は脂環族炭化水素樹脂; 芳香族系石油樹脂; 塩素化 パラフィン;パラフィンワックス等であり、これらは単 独又は混合して使用される。なお、本発明者等の検討に よると上記のうち特にスチレン/ブチルアクリレート共

【0013】本発明で使用される母体トナー用の荷電制 御剤としては、正帯電性に制御するものでは第四級アン モニウム塩等の塩基性電子供与性有機物質が、負帯電性 に制御するものとしてはモノアゾ染料の金属錯体、テト ラフェニルホウ素ナトリウム及びカリウム等のテトラフ エニルホウ素誘導体等が挙げられる。また、母体トナー 中に含有される荷電制御剤量は結着樹脂量の1~10重 量%である。本発明で使用される母体トナー用の着色剤 は、既知の電子写真用乾式現像剤に使用される着色剤の 全部が使用可能であり、カーボンブラックや各種の染顔 料が使用される。また、本発明で使用される母体トナー には、従来の電子写真用乾式現像剤に添加されている各 二回目に添加したシリカ微粉はミキサー等で母体トナー 50 種添加剤、例えば離型剤や熱融着防止剤や滑剤等を添加

重合体の使用時に好ましい結果が得られる。

5

しても良く、これらの添加で大幅に性能が向上する場合もある。

【0014】本発明の一成分現像用トナーを磁性トナーとして使用する場合の磁性材料としては、マグネタイト、ヘマタイト、フェライト等の酸化鉄;鉄、コバルト、ニッケル等の金属;これらの金属とアルミニウム、コバルト、銅、鉛、マグネシウム、スズ、亜鉛、アンチモン、ベリリウム、ビスマス、カドミウム、カルシウム、マンガン、セレン、チタン、タングステン、バナジウム等との合金及びその混合物等が挙げられる。これら*10

〈母体トナーの製造〉

ポリエステル スチレンーアクリル酸ブチル共重合体 サリチル酸亜鉛塩(荷電制御剤) カルナウバワックス(離型剤) 赤色顔料

上記組成物をブレンダーで十分に混合してから、120~140℃に熱した2本のロールで溶融・混合した。次に、該混練物を自然放冷後にカッターミルで粗粉砕し、ジェト気流を使った微粉砕機で粉砕後に風力分級機を使 20って分級し、体積平均粒径11μmの母体トナーを得た。この母体トナーにシリカ微粉を加え、その混合条件を変えて実施例に記載した一成分現像剤を作製した。また、該現像剤をレーザープリンターに装填して現像を行い、画像濃度等を測定・評価した。

【0017】実施例1

前記の方法で作製した母体トナー100部に1.0部のシリカ微粉を添加し、ミキサーで30分間混合した。その結果、シリカ微粉の6%が浮遊シリカ、85%が表面付着シリカ、9%が表面埋没シリカとなっている一成分30現像剤を得た。この現像剤使用時の初期画像濃度は1.25で、10,000枚プリント後の画像濃度は1.19となり、劣化の少ない良好な画像が得られた。

【0018】実施例2

前記の母体トナー100部に0.5部のシリカ微粉を添加し、ミキサーで60分間混合してから更に0.5部のシリカ微粉を加えてミキサーで1分間混合し、シリカ微粉の8%が浮遊シリカ、表面付着シリカが82%、表面埋没シリカが10%となっている一成分現像剤を得た。この現像剤使用時の初期画像濃度は1.30で、10,000枚プリント後の画像濃度は1.26となり、劣化の少ない良好な画像が得られた。

【0019】実施例3

前記の母体トナー100部に0.6部のシリカ微粉を添加し、ハイブリタイザーで混合してから更に0.4部のシリカ微粉を加えてミキサーで1分間混合し、シリカ微粉の6%が浮遊シリカ、表面付着シリカが33%、表面埋没シリカが60%となっている一成分現像剤を得た。この現像剤使用時の初期画像濃度は1.28で、10,000枚プリント後の画像濃度は1.27となり、金化

*の強磁性体は、平均粒径が0.1~2μm程度の微粉状のものが望ましく、母体トナー中への含有量は結着樹脂 100重量部当り20~200重量部、好ましくは40~150重量部とするのが良い。

[0015]

【実施例】以下、本発明を実施例によってさらに具体的に説明するが、本発明はこの実施例で限定されるものではない。なお、以下に示す部及び%は重量基準である。 【0016】

4 3 部 4 3 部 3 部 4 部 7 部

のない良好な画像が得られた。

【0020】実施例4

前記の母体トナー100部に0.3部のシリカ微粉を添加し、ハイブリタイザーで混合してから更に0.8部のシリカ微粉を加えてミキサーで1分間混合した。次いで、これを分級して浮遊しているシリカ微粉を取り除いた。その結果、シリカ微粉全体の1%が浮遊シリカ、69%が表面付着シリカ、30%が表面埋没シリカとなっている一成分現像剤を得た。この現像剤使用時の初期画像濃度は1.35で、10,000枚プリント後の画像濃度は1.34となり、劣化のない良好な画像が得られた。

【0021】比較例1

前記の母体トナー100部に1.0部のシリカ微粉を添加し、ミキサーで1分間混合してから該混合物を分級して浮遊状シリカ微粉を除いた。その結果、シリカ微粉の7%が浮遊シリカ、93%が表面付着シリカで表面埋没シリカがない一成分現像剤を得た。この現像剤使用時の初期画像濃度は1.27で、10,000枚プリント後の画像濃度は0.85となり、該現像剤では使用していると得られる画像濃度が著しく減少することが認められた。

【0022】比較例2

前記の母体トナー100部に0.8部のシリカ微粉を添加し、ハイブリタイザーで混合してから更に0.2部のシリカ微粉を加えてミキサーで1分間混合し、シリカ微粉の2%が浮遊シリカ、18%が表面付着シリカ、80%が表面埋没シリカとなっている一成分現像剤を得た。この現像剤使用時の初期画像濃度は1.00であったが、5000枚までプリントした時点でホッパー内の現像剤が凝集して現像剤の補給ができなくなった。

【0023】比較例3

この現像剤使用時の初期画像濃度は1.28で、10, 前記の母体トナー100部に0.3部のシリカ微粉を添000枚プリント後の画像濃度は1.27となり、劣化 50 加し、ハイブリタイザーで混合してから更に0.6部の

シリカ微粉を加えてミキサーで1分間混合し、次いで 0. 1部のシリカ微粉を添加してスパチラで混合した。 このようにして作製した現像剤では、シリカ微粉の15 %が浮遊シリカ、55%が表面付着シリカ、30%が表 面埋没シリカとなっていた。この現像剤使用時の初期画 像濃度は1.31で、10,000枚プリント後の画像 濃度は1.29であったが、この複写実験では複写中の 感光体上にシリカ微粉が付着して現像障害を起した。

【0024】以上の結果からも分るように、実施例の現 枚複写後の画像濃度の差が僅少な上に、複写中のトラブ ル発生が皆無なことが分る。また、母体トナー表面に埋 没しているシリカ微粉と表面に付着しているそれと浮遊 状シリカ微粉の比が理想的な実施例4や理想に近い実施 例3では、10,000枚複写後の画像濃度と初期画像 濃度が同じであり、シリカ微粉の配分を適確に行えば理 想的な一成分現像剤が得られることが分る。一方、前記* * のシリカ微粉配分が本発明の現像剤と違う現像剤を使っ た比較例の実験では、10,000枚の複写実験中にト ラブルが発生したり(比較例2,3)、複写実験中の経 時的画像濃度低下が著しかったりして(比較例1)、実 施例の現像剤と同じ原料を使っているのに大幅に品質差 のあることが分る。

[0025]

【発明の効果】本発明の電子写真用乾式一成分現像剤 は、母体トナー表面に付着しているシリカ微粉が、母体 像剤を使った複写実験では初期画像濃度と10、000 10 トナー表面に埋没しているシリカ微粉及びシリカ微粉の 適切な配分比のために安定しており、そのために該現像 剤を使った複写画像は画像濃度が高い上に、その画像濃 度が10,000枚の複写後もほとんど低下せず、且つ 現像剤の担持搬送部材や潜像保持体を汚染したり傷付け たりすることもないから、複写による現像障害を起さな い現像剤である。

フロントページの続き

(72)発明者 川崎 寛治郎

東京都大田区中馬込1丁目3番6号 株式 会社リコー内