Chapter 1: Introduction: Databases and Database Users

- Types of Databases & Database Applications:
 - Banking, University, Airlines, E-commerce, Social media
 - Centralized, Distributed, Cloud, NoSQL
- Basic Definitions:
 - Data: Raw facts
 - Information: Meaningful data
 - Database: Organized data collection
 - DBMS: Software managing databases
 - Database System: DB + DBMS + users + applications
- Typical DBMS Functionality:
 - Define, store, retrieve, update data
 - Access control, backup, concurrency
- Example: University DB with STUDENT, COURSE, ENROLL
- Main Characteristics of DB Approach:
 - Self-describing, insulation, data abstraction
 - Multiple views, data sharing, control of redundancy
- Types of Database Users:
 - DBA, Designers, Developers, End users
- Advantages of DB Approach:
 - Reduced redundancy, improved sharing, security
 - Backup, recovery, data independence
- When Not to Use Databases:
 - Small/simple data, single user, cost or speed constraints

- Understand differences between database applications and general applications.
- Know main DBMS functions and user roles.
- Be able to explain advantages and limitations of database approach.

Chapter 2: Database System Concepts and Architecture

- Data Models and Categories:
 - High-level (Conceptual): ER model
 - Logical (Representational): Relational model
 - Physical (Low-level): Storage details
- History of Data Models:
 - Hierarchical, Network, Relational, Object-Oriented/NoSQL
- Schemas, Instances, and States:
 - Schema: Structure
 - Instance/State: Data at a moment
- Three-Schema Architecture:
 - External (user view), Conceptual (logical), Internal (physical)
- Data Independence:
 - Logical: schema changes don't affect apps
 - Physical: storage changes don't affect logical design
- DBMS Languages and Interfaces:
 - DDL, DML, DCL, SQL
 - Menu-based, query-based, app interfaces
- Database Utilities:
 - Backup, recovery, indexing, monitoring
- Architecture:

- Centralized vs Client-Server
- Classification of DBMS:
 - Based on data model, users, sites, cost, usage

- Know different data models and their levels.
- Understand schemas and instances.
- Be able to explain three-schema architecture and data independence.
- Know DBMS languages and common utilities.

Chapter 3: Data Modeling Using the Entity-Relationship (ER) Model

- Database Design Process:
 - Requirements analysis, conceptual (ER), logical, physical, implementation
- Example COMPANY Database:
 - Entities: Employee, Department, Project
 - Relationships: Works_On, Manages, Controls
- ER Model Concepts:
 - Entity: real-world object
 - Attribute: property of entity
 - Relationship: link between entities
- Entities and Attributes:
 - Simple, Composite, Derived, Multivalued attributes
- Entity Types, Key Attributes, Value Sets
- Relationships and Cardinality (1:1, 1:N, M:N)
- Weak Entities: dependent on strong entities

- Roles and Attributes in Relationships
- ER Diagram Notation: rectangles, ellipses, diamonds
- Alternative Notations: UML class diagrams

- Be able to identify entities, attributes, and relationships.
- Understand weak entities and relationship roles.
- Practice drawing ER diagrams using correct notation.

Chapter 4: Enhanced Entity-Relationship (EER) Modeling

- EER extends ER with advanced modeling concepts.
- Subclasses and Superclasses:
 - Specialization: create subclasses from a superclass
 - Generalization: combine entities into a superclass
- Categories (Union Types): subclasses with multiple superclasses.
- Attribute and Relationship Inheritance:
 - Subclasses inherit attributes and relationships from superclasses.
- EER adds object-oriented concepts like inheritance.
- Useful for modeling complex real-world applications more accurately.

Exam Tips:

- Know the difference between specialization and generalization.
- Understand how inheritance works in EER.
- Be able to draw EER diagrams with subclasses and superclasses.

Chapter 5: The Relational Data Model and Relational Database Constraints

- Relational Model Concepts:
 - Data stored in tables (relations) with rows (tuples) and columns (attributes).
- Relational Constraints:
 - Domain constraints: attribute values from correct domain
 - Key constraints: primary key uniqueness
 - Entity integrity: primary key not NULL
 - Referential integrity: foreign key matches primary key or NULL
- Relational Schemas:
- Define table structure, attributes, keys.
- Update Operations:
 - Insert, delete, update
- Dealing with Constraint Violations:
 - Reject or fix updates that break constraints

- Know how tables represent entities and relationships.
- Understand primary and foreign keys and integrity constraints.
- Be able to explain update operations and constraint enforcement.

Chapter 8: Functional Dependencies and Normalization for Relational Databases

- Informal Design Guidelines:
- Clear attribute meanings, avoid redundancy and anomalies
- Handle null values and spurious tuples
- Functional Dependencies (FDs):
 - X -> Y means knowing X determines Y
 - Armstrong's axioms: reflexivity, augmentation, transitivity
- Normal Forms:

- 1NF: atomic values, no repeating groups
- 2NF: no partial dependencies on part of composite key
- 3NF: no transitive dependencies
- BCNF: every determinant is a superkey
- Keys:
 - Candidate keys, primary keys, superkeys
- Normalization:
 - Process to reduce redundancy and update anomalies

- Practice identifying functional dependencies.
- Understand each normal form and how to apply normalization.
- Know definitions of keys and their roles in normalization.