Otimização de Redes Neurais

Alunos: Carlos Vinicios

ResNet

- A utilização de camadas convolucionais empilhadas melhora a performance
- Inception foi uma das primeiras arquiteturas a demonstra uma boa performance com uma arquitetura bastante profunda
- Entretanto, através de estudos, foi notado que com o acréscimo de mais camadas, em um dado momento, temos uma perda de performance

ResNet

 Resolvemos o problema com uma conexão (skip connections) entre as camadas mais rasas e as mais profundas

ResNet

Fig. 1 - Residual Block

DenseNet

- As DenseNets necessitam de poucos parâmetros se comparadas às suas equivalentes
- Os blocos da DenseNet são bem menores e eles apenas realizam a adição de uma pequena parte dos mapas de características
- Cada bloco tem acesso direto aos gradientes calculados pela função de loss e a imagem original

DenseNet

As DeseNets não realizam a adição dos resíduos vindas das camadas iniciais da rede, substituindo a adição por concatenação

Densenet

Fig. 2 - DenseNet

Deep Features

- Classificadores utilizados para otimização:
 - SVM
 - Xgboost
 - Random Forest
 - KNN Classifier
 - Gaussian NB
 - Multilayer Perceptron

Espaço de Otimização

ResNet152					
Pooling	Optimizer	Stacks	Dense		
Average Max GlobalAverage GlobalMax	Adam Rmsprop	Qtd: [0, 1, 2] Filters: [1024, 2048] Layers: [3, 4, 6, 8, 23, 36]	Qtd: [1, 2, 3, 4] Filters: [256, 512, 1024] Dropout: [0.5, 0.6, 0.7]		

Espaço de Otimização

DenseNet121					
Pooling	Optimizer	Dense Blocks	Dense		
Average Max GlobalAverage GlobalMax	Adam Rmsprop	Qtd: [0, 1, 2] Blocks: [6, 12, 16, 24, 32, 48]	Qtd: [1, 2, 3, 4] Filters: [256, 512, 1024] Dropout: [0.5, 0.6, 0.7]		

Resultados

ResNet152

Método	Acurácia	Melhor Modelo	Parâmetros
Otimização da Arquitetura	92,1%	-	Dropout: 0.5 Filters: 256 Optimizer: rmsprop Pooling: GlobalAverage Stacks: 0
Deep Features	95,7%	MLP	Activation: logistic Layers_size: 50 Learning_rate: invscaling Learning_rate_init: 0.001

Resultados

DenseNet121

Método	Acurácia	Melhor Modelo	Parâmetros
Otimização da Arquitetura	88,2%	-	Dropout: 0.7 Filters: 512 Optimizer: Adam Pooling: GlobalAverage Dense_blocks: (1, 6)
Deep Features	94,2%	MLP	Activation: tanh Layers_size: 20 Learning_rate: constant Learning_rate_init: 0.001

