Energy Coaster

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Frank owns a roller coaster in the 4th Years fun park. The roller coaster track is a continuous circle supported on N pillars of different heights. The roller coaster starts from the pillar 1, and due to earth's gravitation, a transition from consecutive pillars i to pillar j would expend an energy = $|h_i - h_j|$, either going up or down. Frank wants to save electricity, hence wants to rearrange the pillars in such a way that the energy expended in each round is minimum possible. You need to print the minimum possible energy.

Input

The first line contains $N(1 \le N \le 10^5)$, the number of pillars. The next line contains N integers $h_1, h_2, ..., h_N(1 \le h_i \le 10^7)$ denoting the heights of the pillars.

Output

One integer denoting the energy expended for one round.

Example

standard input	standard output
4	6
1 3 4 2	

Note

The sample case:

We can rearrange in the form [1,4,3,2]. The total energy for a round will be |1-4|+|4-3|+|3-2|+|2-1|=6. You can see that this is the minimum energy possible.