

Validate your CEST simulation!

<u>Patrick Schuenke</u>¹, Kai Herz^{2,3}, Zhongliang Zu⁴, Nirbhay Yadav⁵, Markus Huemer⁶, Rudolf Stollberger⁶, Jiadi Xu^{5,7}, Kexin Wang⁸, Dario Livio Longo⁹, Peter C.M. van Zijl^{5,10}, and Moritz Zaiss¹¹

¹Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany, ²Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, ³Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany, ⁴Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, United States, ⁵FM Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, United States, ⁶Institute of Medical Engineering, Graz University of Technology, Graz, Austria, ⁷Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States, ⁸Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States, ⁹Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Torino, Italy, ¹¹0Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States, ¹¹Institute for Neuroradiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany

Declaration of Financial Interests or Relationships

Speaker Name: Patrick Schuenke

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

PB Motivation

- qCEST approaches (e.g., BMC fitting^{1,2}, CEST-MRF³) provide access to quantitative parameters like exchange rates or solute concentrations
- all methods rely on Bloch-McConnell equations
- reported qCEST values show strong deviations⁴

Do our BMC simulations differ?

Let's compare & validate them!

- 1. Zaiss et al. NMR Biomed. **32**, e4113 (2019)
- 2. Woessner et al. Magn. Reson. Med. **53**, 790–9 (2005)

B. Perlman et al. NMR Biomed. e4710 (2022)

3

4. Zaiss et al. doi:10.1016/B978-0-12-822479-3.00040-3 (2021)

different preparations:

- steady-state APT CEST
- transient-state APT CEST
- WASABI

two different pool models:

- simple: creatine in water
- complex: WM-like tissue

4 well-defined simulation cases:

"Reference" Z-spectra and MTR_{asym} curves

[mag] ωΔ

preparation schemes

pool models

https://github.com/pulseq-cest/BMsim_challenge

- a fully relaxed initial magnetization (Z_i = 1) for every offset
- post-preparation delay of 6.5 ms (mimic gradient spoiler)
- gyromagnetic ratio of exactly 42.5764 MHz/T
- field strength of 3T (ω_0 = 127.7292 MHz/T)
- L. Layton et al. Magn. Reson. Med. **77**, 1544–52 (2017) 2. Ravi et al. J. Open Source Softw. **4**, 1725 (2019)

0.020

0.015

0.005

0.000

15

PB Initial Results: Case 3 (2 μT, 2s, 5 pool)

-15

-10

 $\Delta\omega$ [ppm]

- pulseq-CEST¹ sim as reference (NOT the ground truth!)
- 5 different results for ΔZ-spec
- 4 different results for Δ MTR_{asym}

up to 100% deviation between MTR_{asym} values

1. Herz et al. Magn. Reson. Med. 86, 1845–1858 (2021)

- discussion with participants
- exchange with experts from MT community
- identify sources of deviations

May 2023

Summary of most important findings:

- 1. z-MT and xyz-MT are NOT interchangeable
- 2. simulation of post-preparation spoiler is mandatory

PIB Online Evaluation Script

publication of the study

- paper invitation by MRM
- currently preparing first draft

MAGNETIC RESONANCE IN MEDICINE

generalized Bloch model

RESEARCH ARTICLE | 🙃 Full Access

Generalized Bloch model: A theory for pulsed magnetization transfer

Jakob Assländer 🔀 Cem Gultekin, Sebastian Flassbeck, Steffen J. Glaser, Daniel K. Sodickson

First published: 23 November 2021 | https://doi.org/10.1002/mrm.29071 | Citations: 1

match of z-MT and xyz-MT implementations?

2nd study with 4 additional cases

goal: include shaped pulse trains

cover clinical CEST protocols

case 5: 2 pool model, 272 shaped pulses (50 ms), 5 ms gaps case 6: 2 pool model, 36 shaped pulses (50 ms), 5 ms gaps case 7: 5 pool model, 36 shaped pulses (50 ms), 5 ms gaps case 8: 5 pool model, 2 rect pulses (5 ms), 100 μs gap

PID Acknowledgements

Maxim Zaitsev Kelvin J. Layton Keerthi S. Ravi

Moritz Zaiss Moritz Fabian

Rudolf Stollberger Markus Huemer Christina Graf Clemens Stilianu

Tobias Schäffter Bernd Ittermann Christoph Kolbitsch

Nirbhay Yadav Qing Zeng Peter van Zijl

Nikola Stikov Matthew Boudreau

Or Perlman

Kexin Wang Jiadi Xu Hye-Young Heo

Kai Herz

Dario Livio Longo

MAX-PLANCK-INSTITUT

