

Biostatistics BT2023

Lecture 19 Hypothesis testing and T Distribution

Himanshu Joshi 13 October 2023

Class objective

Plotting PDF for various distribution

Understanding the table for normal, T and χ^{2} , distribution

Integration using python

Fill_in_between in python

Loop in python

Probability distribution function

T-distribution

$$t(x, df) = \frac{\Gamma \frac{(df+1)}{2}}{\sqrt{\pi * df} \times \Gamma \frac{df}{2} \times \frac{1+x^2}{df}}$$

χ^2 distribution

$$f(x,k) = \begin{cases} \frac{x^{\frac{k}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{k}{2}} \Gamma(\frac{k}{2})}; & x > 0\\ 0, & otherwise \end{cases}$$

Normal distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}exp - \left[\frac{(x-x_0)^2}{2\sigma^2}\right]$$

Numerical Integration

Samson 1/3rd rule

$$\int_a^b f(x) \, dx pprox rac{b-a}{6} \left[f(a) + 4 f\left(rac{a+b}{2}
ight) + f(b)
ight] .$$

Trapezoidal rule

$$\int_a^b f(x) \, dx pprox (b-a) \cdot rac{1}{2} (f(a) + f(b)).$$

Student's t test

Method to test the null hypothesis

William Sealy Gosse one of the brilliant mind of this time in 1908 published this test by pseudo name "Student"

$$t \ value = \frac{signal}{noise}$$

$$= \frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{\sigma_1}{n_1} + \frac{\sigma_2}{n_2}}}$$

T test

If t value < a critical value; we accept the null hypothesis

If t value >= critical value; we reject the null hypothesis

p value

Chi-square Table

Dist	Distribution of µ.							
		Probability						
d.f.	0.5	0.10	0.05	0.02	0.01	0.001		
1	0.455	2.706	3.841	5.412	6.635	10.827		
2	1.386	4.605	5.991	7.824	9.210	13.815		
3	2.366	6.251	7.815	9.837	11.345	16.268		
4	3.357	7.779	9.488	11.668	13.277	18.465		
5	4.351	9.236	11.070	13.388	15.086	20.517		
6	5.348	10.645	12.592	15.033	16.812	22.457		
7	6.346	12.017	14.067	16.622	18.475	24.322		
8	7.344	13.362	15.507	18.168	20.090	26.125		
9	8.343	14.684	16.919	19.679	21.666	27.877		
10	9.342	15.987	18.307	21.161	23.209	29.588		
11	10.341	17.275	19.675	22.618	24.725	31.264		
12	11.340	18.549	21.026	24.054	26.217	32.909		
13	12.340	19.812	22.362	25.472	27.688	34.528		
14	13.339	21.064	23.685	26.873	29.141	36.123		
15	14. 339	22.307	24.996	28.259	30.578	37.697		

Sum of squares

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1054	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
8.0	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817

Two tailed test t table

Degrees of Freedom	p=0.05	p=0.025	p-0.01	p=0.035
1	12.71	25.45	63.66	127.32
2	4 30	6.20	9.92	14.09
3	3 18	4.17	5.84	7.45
4	2 78	3.50	4.60	5.60
5	2 57	3.16	4.03	4.77
6	2.45	2.97	3.71	4,32
?	2.36	2.84	3.50	4,03
3	2.31	2.75	3.36	3,83
9	2.26	2.68	3.25	3,69
10	2.23	2.63	3.17	3,58
11	2.20	2,59	3.11	3.50
12	2.18	2,56	3.05	3.43
13	2.16	2,53	3.01	3.37
14	2.14	2,51	2.93	3.33
15	2.13	2,49	2.95	3.29
16	2.12	2.47	2.93	3.25
17	2.11	2.46	2.90	3.22
18	2.10	2.44	2.83	3.20
19	2.09	2.43	2.86	3.17
20	2.09	2.42	2.84	3.15
2:	2.08	2.41	2.83	3.14
22	2.07	2.41	2.82	3.12
23	2.07	2.40	2.81	3.10
24	2.06	2.39	2.83	3.09
25	2.06	2.38	2.79	3.08
26	2.06	2.38	2.73	3.07
27	2.05	2.37	2.77	3.06
28	2.05	2.37	2.76	3.05
29	2.04	2.36	2.76	3.04
30	2.04	2.36	2.75	3.03
40	2.02	2.33	2.70	2.97
60	2.00	2.30	2.66	2.92
120	1.98	2.27	2.62	2.86
infirity	1.96	2.24	2.53	2.81

T vs normal distribution

T distribution PDF

$$t(x, df) = \frac{\Gamma \frac{(df+1)}{2}}{\sqrt{\pi * df} \times \Gamma \frac{df}{2} \times \frac{1+x^2}{df}} (df+1)/2$$

$$\Gamma n = (n-1)!$$

$$= \int_0^\infty x^{n-1} e^{-x} dx$$

Confidence interval

A statistical measure used to determine the likelihood that the observed outcome is result of chance.

Next Class

4:00 PM Tuesday, 16 October 2023