Analyse de mesures anthropométriques

David Abulius, Romain Lagarde, Yanis Marmier

PLAN

- 1. Présentation globale du projet
 - a. Description
 - b. Objectifs
 - c. Outils
- 2. Base de données:
 - a. Présenter les bases
 - b. Attester de leur véracité
 - c. Normalisation
- 3. Objectif; la prédictions de données anthropométriques.
 - a. Corrélation et clustering.
 - i. Corrélation linéaire
 - ii. Motivation derrière le clustering
 - iii. Clustering: PCA et TSNE
 - iv. Modélisations.
 - b. Prédictions
 - i. Régression linéaire
 - ii. Arbre de tri
 - iii. Réseau RNN
- 4. Conclusion.

Description

Kleep

Objectifs

Recherche de corrélations

Prédictions de mesure

Outils

organisation

langage

Les bases de données

TrouserWaist_Height_Front	Ankle_Girth_Left	Ankle_Girth_Right	Calf_Height	Ankle_Height	Ankle_Circ	Thigh_Height	Shoulder_Width_thruTheBody	Hip_Width_ThruTheBody	Overarm_Width_ThruTheBody	photo_names
1029.0	271.0	263.0	455	706	267.0	35	379.0	400.0	484	male0181
1164.0	292.0	274.0	460	740	283.0	40	409.0	450.0	488	male0195
1127.0	307.0	306.0	450	746	306.0	40	437.0	458.0	527	male0803
1147.0	298.0	294.0	500	784	296.0	40	451.0	423.0	542	male0817
1069.0	266.0	270.0	410	693	268.0	40	368.0	402.0	452	male0142
1062.0	267.0	254.0	455	733	261.0	40	407.0	403.0	493	male0624
951.0	255.0	251.0	400	635	253.0	40	404.0	410.0	489	male0630
1183.0	286.0	286.0	545	877	286.0	45	385.0	430.0	464	male0156
955.0	254.0	249.0	385	626	252.0	40	371.0	390.0	476	male1248
1015.0	271.0	279.0	445	721	275.0	40	394.0	395.0	459	male1260
1013.0	282.0	285.0	445	696	283.0	40	298.0	391.0	404	male0618
961.0	264.0	257.0	420	658	261.0	40	349.0	397.0	441	male1274
1038.0	243.0	249.0	445	706	246.0	40	365.0	381.0	446	male0383
1133.0	269.0	266.0	475	789	267.0	40	372.0	406.0	455	male0397
1016.0	234.0	233.0	450	686	233.0	40	336.0	313.0	389	male1089
1218.0	297.0	287.0	510	812	292.0	45	381.0	402.0	461	male0426
1195.0	282.0	305.0	480	771	294.0	40	399.0	402.0	456	male0340
956.0	255.0	247.0	415	652	251.0	40	323.0	327.0	376	male0354
1089.0	267.0	272.0	440	731	269.0	40	368.0	374.0	462	male0432
1193.0	303.0	314.0	505	772	308.0	40	407.0	418.0	522	male1062
1090.0	271.0	272.0	470	758	271.0	40	425.0	430.0	554	male1076
1116.0	269.0	281.0	490	780	275.0	40	403.0	406.0	466	male0368
990.0	268.0	279.0	360	631	273.0	40	393.0	421.0	481	male0591
1072.0	269.0	284.0	480	757	276.0	40	389.0	380.0	458	male0585
1031.0	245.0	245.0	450	719	245.0	40	384.0	387.0	477	male0552
1004.0	281.0	265.0	460	706	273.0	40	375.0	395.0	432	male0234
1035.0	310.0	297.0	450	733	303.0	40	428.0	436.0	506	male0220
1107.0	275.0	294.0	460	715	284.0	40	386.0	411.0	441	male0546
1062.0	293.0	274.0	450	738	283.0	40	393.0	393.0	506	male0208
989.0	415.0	272.0	420	681	343.0	40	412.0	389.0	485	male1116
1053.0	249.0	258.0	450	724	253.0	40	395.0	400.0	465	male1102
995.0	263.0	272.0	425	696	267.0	40	392.0	406.0	481	male0793
979.0	306.0	328.0	405	676	317.0	40	410.0	460.0	539	male0787
994.0	278.0	315.0	360	641	296.0	35	386.0	487.0	497	male0977
1098.0	303.0	291.0	485	777	297.0	40	447.0	415.0	528	male0963
1016.0	275.0	416.0	435	703	346.0	35	339.0	378.0	413	male1328

Environ 9000 individus différents

Pas uniquement des nombres.

Données réelles.

Confidentialité.

Cohérence des données : comparer les données entre elles

```
Écart de 5% à 95%:

- 'Calf Left', 'Calf Right': Mollet gauche, Mollet droit
- 'Calf Left', 'Calf Circ': Mollet gauche, Circonférence du mollet
- 'Calf Right', 'Calf Circ': Mollet droit, Circonférence du mollet
- 'TrouserWaist Height Back', 'Outseam': Hauteur du pantalon à la taille (arrière), Couture extérieure
- 'TrouserWaist Height Back', 'Waist Height Back EZ': Hauteur du pantalon à la taille (arrière), Hauteur de la taille du pantalon (arrière, facile)
- 'Outseam', 'TrouserWaist Height Front': Couture extérieure, Hauteur du pantalon à la taille (avant)
- 'Outseam', 'Waist Height Back EZ': Couture extérieure, Hauteur de la taille du pantalon (arrière, facile)
```

```
3% à 97%:

('Calf_Left', 'Calf_Circ')

('Calf_Right', 'Calf_Circ')

('TrouserWaist_Height_Back', 'Waist_Height_Back_EZ')

('Shoulder_to_floor_Right', 'Shoulder_to_floor_Left')
```

Cohérence des données : Comparer les données à des moyennes nationales

Résultat de l'enquête ObePi Roche 2020

```
df[df["gender"] == "male"]["height_cm"].mean()
176.23761357429717
df[df["gender"] == "female"]["height_cm"].mean()
163.67015257628816
df[df["gender"] == "female"]["IMC"].mean()
25.127469795622645
df[df["gender"] == "male"]["IMC"].mean()
25.7032752491774
```

Nos données

Cohérence des données : vérifier qu'il n'y a pas de valeurs aberrantes

Nettoyage et normalisation

$$X_{standard} = \frac{X - \mu}{\sigma}$$
,

Corrélation linéaire

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

Corrélation

- Longueur du bras taille : 0,9140225338321994
- Longueur du bras longueur de la jambe : 0,9301998252048627
- Poitrine taille de taille : 0,9301641850546507
- Poitrine poids en kg : 0,9181131886573974
- Taille longueur du bras : 0,9140225338321994
- Taille longueur de la jambe : 0,906996751170562

Coefficient de Pearson

Motivation derrière le clustering

- On souhaite savoir s'il est possible de répartir les corps dans différents clusters
- Chaque cluster se voit attribuer un corps type

Rendu du corps type pour quelques catégories d'IMC.

Méthode PCA et clustering

Proportion de la variance expliquée par les deux premières composantes principales: 0.94

Méthode PCA, t-SNE, et Clustering

11.080243

7.243426

6.237599

Régression linéaire

```
def deduce_missing_components(vector_with_missing, covariance_matrix, mean_vector):
    missing_indices = np.isnan(vector_with_missing)
    known_values = vector_with_missing[~missing_indices]
    unknown_indices = np.where(missing_indices)[0]
    cov_known = covariance_matrix[~missing_indices][:, ~missing_indices]
    cov_mixed = covariance_matrix[~missing_indices][:, missing_indices]
    deduced_values = np.dot(np.dot(cov_mixed.T, np.linalg.inv(cov_known)), known_values - mean_vector[~missing_indices])
    + mean_vector[unknown_indices]
    vector_with_missing[missing_indices] = deduced_values
    return vector_with_missing
```

Mean Sauared Error (données normalisées): 0.01778173548586269

Changer d'échelle : Arbre de tri et RNN

$$Gini = 1 - \sum_{i=1}^{C} (p_i)^2$$

Arbres de décisions, les résultats

Arbres de décisions, les résultats

Réseau de Neurones Récurrents

- -> Prédire le poids avec le moins d'éléments possibles
- -> Coefficient de détermination R2 = 0.96

$$R^2 = 1 - rac{\sum_{i=1}^n \left(y_i - \hat{y_i}
ight)^2}{\sum_{i=1}^n \left(y_i - ar{y}
ight)^2}$$


```
# Replicate model_1 and add an extra layer
model_2 = tf.keras.Sequential([tf.keras.layers.Dense(64, activation='relu', input_shape=(11,)), # Couche avec 64 neurones et input_shape=(16,)
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(32, activation='relu'), # Couche avec 32 neurones
    tf.keras.layers.Dense(1) # add a second layer
])
```

Conclusion

- Différentes méthodes

- Différents cas d'usage

- À la base de tout modèle prédictif; la qualité des données.

Merci pour votre écoute