Cox PH model Model building	
Modeling goals • Valid effect estimation of risk factors • Make good prediction • Parsimonious	
Model Building 1. Establish the main scientific research question. 2. Check data quality - Univariate summaries for each variable - Look for • Errors in coding (e.g. 9999 used for missing) • Outliers • Missing values	

Model building

- 3. Pairwise associations
 - Collinearity: Strong correlation between any two covariates
- 4. Bivariate analysis to exam the marginal association between each covariate and survival time.
 - For categorical covariates, plot the K-M estimators of group specific survival functions and test the group difference using Log-rank test.
 - For continuous covariates, break into quantiles or other clinically meaningful groups and do similar plot as the categorical covariates.

Mod	-		110	110	•
17/16/16	. — .	ווחו	111		עו
					-

- 5. Regression model
 - Determine variables (main effects) to be included
 - After the variables are selected, determine the functional form for the continuous covariates
 - Suggested by the clinical consideration
 - Suggested by data (martingale residues)
 - Determine any interactions
 - Assess the final model using the residual diagnosis methods.

Model Building

- 6. Presentation of model(s):
 - Report and interpret coefficients and SE's
 - Graphical display

-	
_	
-	
-	
-	
-	
-	
_	
-	
-	
•	
-	
•	
-	

Model selection

- The method for variable selection for Cox PH model are essentially the same as in linear regression models.
- In practice, model selection is conducted through a combination of
 - Prior knowledge
 - Automatic variable selection procedures
 - Forward selection
 - Backward selection
 - Stepwise selection

Backward selection

- Start with all the predictors in the model
- Remove the predictor with highest p-value greater than α_{RE}
- Refit the model and go to step 2
- Stop when all p-values are less than α_{RE}
- α_{RE} is the threshold to remove predictors from the model.
- Often a cut-off $\alpha_{\it RE}$ with value 15-20% is used.

Forward selection

- Start with no predictors in the model For all predictors not in the model, check their p-value if they are added to the model. Choose the one with lowest p-value less than αE
- Continue until no new predictors can be added.
- αE is the threshold to select predictors to enter the model.
- Often a cut-off αE with value 20-25% is used.

Stepwise procedure

- It is a combination of backward elimination and forward selection.
- At each step, a variable may be added or removed.
- Unlike the forward procedure, it allows one to delete variables that enter the model early.
- Unlike the backward procedure, it allows add the early removed variables back into the model.

Summary

- Model building strategies
- Variable selection in Cox PH model