/SU/FSI/MASTER/INFO/MU4IN503 (APS)

Analyse des Programmes et Sémantique

Janvier 2021

Pascal Manoury - Romain Demandeon pascal.manoury@lip6.fr

3 : Sémantique

Sémantique

Signification des éléments du langage Description du comportement des programmes à l'exécution

Sémantique formelle

- axiomatique : interprétation des programmes comme système de déduction entre formules décrivant des états mémoire
- dénotationnelle : interprétation des programmes comme une fonction sur les états mémoire
- opérationnelle : interprétation des programmes comme une relation de transition entre états mémoires ou valeurs

Sémantique opérationnelle de APS0

Domaines sémantiques

Valeurs sémantiques : V

- Valeurs immédiates : Z
- Valeurs fonctionnelles : fermetures, F
- Valeurs fonctionnelles récursives : fermeture récursives,
 FR

```
Union disjointe : V = Z \oplus F \oplus FR
Injections canoniques : \begin{cases} inZ & : & Z \to V \\ inF & : & F \to V \\ inFR & : & FR \to V \end{cases}
cf. type union ou types sommes
```

Domaines sémantiques

Environnements d'évaluation : E

Association entre identificateurs et valeurs (fonction partielle)

$$E = ident \rightarrow V$$

Extension : $\rho \in E$, $x \in ident$, $v \in V$

$$\begin{cases} \rho[x = v](x) = v \\ \rho[x = v](y) = \rho(y) \text{ si } y \neq x \end{cases}$$

Abréviation:

$$\rho[x_1 = v_1; ...; x_n = v_n] \text{ pour } \rho[x_1 = v_1] ... [x_n = v_n]$$

Les environnements sont construits par

- les définitions
- ▶ les applications de fonction

Fermeture

Valeurs d'une fonction \equiv Ce qu'il faut pour appliquer la fonction

- 1. une expression (le corps de la fonction)
- 2. une fonction sémantique pour étendre un environnement (passage des valeurs des paramètres)

$$F = \text{Expr} \times (V^* \to E)$$

Notation (lambda)

$$inF(e, \lambda v_1, \dots, v_n.\rho[x_1 = v_1, \dots, x_n = v_n])$$

Réduction (exemple) :

$$\lambda v_1, v_2.\rho[x = v_1, y = v_2](inZ(45), inZ(67))$$

= $\rho[x = inZ(45), y = inZ(67)]$

Fermeture récursive

L'environnement d'une fermeture récursive contient la fermeture récursive

Schématiquement

$$inF(e, \lambda v_1, \dots \rho[x_1 = v_1; \dots][x = f]$$

avec $f = inF(e, \lambda v_1, \dots \rho[x_1 = v_1; \dots][x = f]$

Briser le cycle : retarder la liaison

$$inFR(\lambda f.inF(e, \lambda v_1, \dots, v_n.\rho[x_1 = v_1; \dots; x_n = v_n][x = f]))$$

$$FR = V \rightarrow F$$

Domaines sémantiques

Résumé

Valeurs $V = Z \oplus F \oplus FR$

Valeurs immédiates Z

Fermetures $F = \text{Expr} \times (V^* \to E)$

Fermetures récursives $FR = V \rightarrow F$

Environnement $E = ident \rightarrow V$

Modélisation du flux de sortie

(instruction ECHO)

$$O = Z^*$$

(Suite de valeurs immédiates)

Fonctions sémantiques

Lapalissade formelle

Valeur numériques : $\nu : \text{num} \rightarrow Z$

Exemple : $\nu(42) = 42$

Fonctions primitives :
$$\pi_1: Z \to V$$
, $\pi_2: Z \times Z \to V$

$$\pi_1(\text{not})(0) = 1$$

 $\pi_1(\text{not})(1) = 0$

$$\pi_2(eq)(n_1, n_2) = 1$$
 si $n_1 = n_2$
= 0 sinon
 $\pi_2(lt)(n_1, n_2) = 1$ si $n_1 < n_2$
= 0 sinon

$$\pi_2(\text{add})(n_1, n_2) = n_1 + n_2$$

 $\pi_2(\text{sub})(n_1, n_2) = n_1 - n_2$
 $\pi_2(\text{mul})(n_1, n_2) = n_1 \times n_2$
 $\pi_2(\text{div})(n_1, n_2) = n_1 \div n_2$

Règles sémantiques

Contexte d'évaluation : $E \times O$ notation ρ, ω

- 1. Programmes : production d'un flux de sortie $PROG \times O$ notation $\vdash p \leadsto \omega$.
- 2. Suite de commandes : idem $E \times O \times \text{CMDS} \times O$ notation $\rho, \omega \vdash_{\text{CMDS}} cs \leadsto \omega'$.
- 3. Instruction : idem $E \times O \times \text{STAT} \times O \qquad \text{notation } \rho, \omega \vdash_{\text{STAT}} s \leadsto \omega.$
- 4. Déclaration : produit un environnement $E \times \mathrm{DEC} \times E$ notation $\rho \vdash_{\mathrm{DEC}} d \rightsquigarrow \rho'$.
- 5. Expression : produit une valeur $E \times \text{EXPR} \times V$ notation $\rho \vdash_{\text{EXPR}} e \leadsto v$.

Par induction sur la construction des programmes

Programme

Relation ⊢

Soit
$$p \in PROG$$
 tel que $p = [cs]$
$$(PROG) \text{ si } \emptyset, \emptyset \vdash_{CMDS} (cs; \varepsilon) \leadsto \omega$$

$$\text{alors} \vdash [cs] \leadsto \omega$$
 avec \emptyset, \emptyset contexte d'évaluation vide.

Suite de commandes

Relation \vdash_{CMDS}

Hypothèse : les suites de commandes se terminent pas ε

Déclaration

(DECS) si
$$\rho, \omega \vdash_{\mathrm{DEC}} d \leadsto \rho'$$

et si $\rho', \omega \vdash_{\mathrm{CMDS}} cs \leadsto \omega'$
alors $\rho, \omega \vdash_{\mathrm{CMDS}} (d; cs) \leadsto \omega'$

Instruction

(STATS) si
$$\rho, \omega \vdash_{\text{STAT}} s \leadsto \omega'$$

et si $\rho, \omega' \vdash_{\text{CMDS}} cs \leadsto \omega''$
alors $\rho, \omega \vdash_{\text{CMDS}} (s; cs) \leadsto \omega''$

Commande vide

(END)
$$\rho, \omega \vdash_{\text{CMDS}} \varepsilon \leadsto \omega$$

Instruction

Relation \vdash_{STAT}

Émission d'une valeur sur le flux de sortie

(ECHO) si
$$\rho, \omega \vdash_{\text{EXPR}} e \leadsto \text{inZ}(n)$$

alors $\rho, \omega \vdash_{\text{STAT}} (\text{ECHO } e) \leadsto (n \cdot \omega)$

Déclaration de constante

Relation \vdash_{DEC}

Ajout à l'environnement de la valeur de la constante

(CONST) si
$$\rho \vdash_{\text{EXPR}} e \leadsto v$$

alors $\rho \vdash_{\text{DEC}} (\text{CONST } x \ t \ e) \leadsto \rho[x = v]$

La valeur est obtenue avec \vdash_{Expr}

Déclaration de fonction

Relation \vdash_{STAT}

- Construction de la fermeture
- Capture de l'environnement de définition

Liaison statique

(FUN)
$$\rho \vdash_{\text{DEC}} (\text{FUN } x \ t \ [x_1:t_1,\ldots,x_n:t_n] \ e)$$

 $\rightsquigarrow \rho[x = inF(e, \lambda v_1 \ldots v_n.\rho[x_1 = v_1;\ldots;x_n = v_n])$

Déclaration de fonction récursive

Relation \vdash_{STAT}

Fermeture récursive

```
(FUNREC) \rho \vdash_{\text{DEC}} (FUN REC x t [x_1:t_1, \ldots, x_n:t_n] e) \rightsquigarrow \rho[x = inFR(\lambda f.inF(e, \lambda v_1 \ldots v_n.\rho[x_1 = v_1; \ldots; x_n = v_n][x = f])
```

Expressions atomiques

Relation \vdash_{EXPR}

Les constantes booléennes sont interprétée par 0 et 1

(TRUE)
$$\rho \vdash_{\text{EXPR}} \text{true} \leadsto inZ(1)$$

(FALSE) $\rho \vdash_{\text{EXPR}} \text{false} \leadsto inZ(0)$

La valeur d'une constante numérique est donnée par la fonction ν :

```
(NUM) si n \in \text{num}
alors \rho \vdash_{\text{EXPR}} n \leadsto inZ(\nu(n))
```

La valeur d'un identificateur est celle donnée par l'environnement :

(ID) si
$$x \in \text{ident et } \rho(x) = v$$

alors $\rho \vdash_{\text{Expr}} x \rightsquigarrow v$

Fonction primitive

Relation \vdash_{EXPR}

Opérateur unaire

```
\begin{array}{l} (\text{PRIM1}) \ \text{si} \ \rho \vdash_{\text{EXPR}} e \leadsto \textit{inZ}(\textit{n}), \\ \text{et si} \ \pi_1(\textit{not})(\textit{n}) = \textit{n}' \\ \text{alors} \ \rho \vdash_{\text{EXPR}} (\text{not } e) \leadsto \textit{inZ}(\textit{n}') \end{array}
```

Opérateurs binaires

```
\begin{array}{l} (\text{PRIM2}) \text{ si } x \in \{\text{eq lt add sub mul div}\}, \\ \text{si } \rho \vdash_{\text{EXPR}} e_1 \leadsto \text{inZ}(n_1), \\ \text{si } \rho \vdash_{\text{EXPR}} e_2 \leadsto \text{inZ}(n_2) \\ \text{et si } \pi_2(x)(n_1,n_2) = n \\ \text{alors } \rho \vdash_{\text{EXPR}} (x \ e_1 e_2) \leadsto \text{inZ}(n) \end{array}
```

Opérateurs séquentiels

Relation \vdash_{EXPR}

```
Opérateurs booléens : évaluation paresseuse
       (AND0) si \rho \vdash_{\text{EXPR}} e_1 \rightsquigarrow inZ(0)
                         alors \rho \vdash_{\text{ExpR}} (\text{and } e_1 \ e_2) \rightsquigarrow in Z(0).
       (AND1) si \rho \vdash_{\text{Expr}} e_1 \rightsquigarrow inZ(1)
                         si \rho \vdash_{Exp} e_2 \rightsquigarrow v
                          alors \rho \vdash_{\text{ExpR}} (\text{and } e_1 e_2) \rightsquigarrow v.
          (OR1) si \rho \vdash_{\text{EXPR}} e_1 \rightsquigarrow inZ(1)
                         alors \rho \vdash_{\text{ExpR}} (\text{or } e_1 \ e_2) \rightsquigarrow inZ(1).
          (OR0) si \rho \vdash_{\text{EXPR}} e_1 \rightsquigarrow inZ(0)
                         si \rho \vdash_{EXPR} e_2 \rightsquigarrow v
                         alors \rho \vdash_{\text{Expr}} (\text{or } e_1 e_2) \rightsquigarrow v.
```

Alternative

Relation \vdash_{EXPR}

Opérateur de contrôle

- 1. évaluer la condition
- 2. selon le résultat, évaluer l'une ou l'autre alternative

(IF1) si
$$\rho \vdash_{\text{EXPR}} e_1 \rightsquigarrow \textit{inZ}(1)$$

si $\rho \vdash_{\text{EXPR}} e_2 \rightsquigarrow \textit{v}$
alors $\rho \vdash_{\text{EXPR}}$ (if $e_1 \ e_2 \ e_3$) $\rightsquigarrow \textit{v}$
(IF0) si $\rho \vdash_{\text{EXPR}} e_1 \rightsquigarrow \textit{inZ}(0)$
si $\rho \vdash_{\text{EXPR}} e_3 \rightsquigarrow \textit{v}$
alors $\rho \vdash_{\text{EXPR}}$ (if $e_1 \ e_2 \ e_3$) $\rightsquigarrow \textit{v}$

Abstraction

Relation \vdash_{EXPR}

Capture de l'environnement courant

(ABS)
$$\rho \vdash_{\text{EXPR}} [x_1 : t_1, \dots, x_n : t_n] e \rightsquigarrow inF(e, \lambda v_1, \dots, v_n. \rho[x_1 = v_1; \dots; x_n = v_n])$$

Application 1

Relation \vdash_{EXPR}

Expression de la forme $(e e_1 \dots e_n)$

- 1. e s'évalue sur une fermeture :
 - ightharpoonup corps de la fonction e'
 - passage des paramètres
- 2. évaluer les arguments
- 3. ajouter leurs valeurs à l'environnement capturé

(APP) si
$$\rho \vdash_{\text{EXPR}} e \rightsquigarrow inF(e', r)$$
,
si $\rho \vdash_{\text{EXPR}} e_1 \rightsquigarrow v_1$,
...,
si $\rho \vdash_{\text{EXPR}} e_n \rightsquigarrow v_n$
et si $r(v_1, \dots, v_n) \vdash_{\text{EXPR}} e' \rightsquigarrow v$
alors $\rho \vdash (e e_1 \dots e_n) \rightsquigarrow v$

Application 2

Relation \vdash_{EXPR}

Fermeture récursive $inFR(\lambda f.inF(e, \underbrace{\lambda v_1 \dots v_n.\rho[x_1 = v_1; \dots; x_n = v_n][x = f]}_{r}))$

- liaison auto-référente (φ)
- passage des paramètres (r)

(APPR) si
$$\rho \vdash_{\text{EXPR}} e \leadsto inFR(\varphi)$$
,
si $\varphi(inFR(\varphi)) = inF(e', r)$,
si $\rho \vdash_{\text{EXPR}} e_1 \leadsto v_1, \dots$, si $\rho \vdash_{\text{EXPR}} e_n \leadsto v_n$
et si $r(v_1, \dots, v_n) \vdash_{\text{EXPR}} e' \leadsto v$
alors $\rho \vdash (e e_1 \dots e_n) \leadsto v$