

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУ

КАФЕДРА ИУ6

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

Студент:	Андреев Александр Алексеевич фамилия, имя, отчество					
Группа:	ИУ7-44Б					
Название	Синхронные одноступенчатые триггеры со статическим и динамическим управлением записьк					
Дисципл ина:	Архитект	Архитектура ЭВМ				
Студент	9 марта 2021	Андреев А.А.				
	подпись, дата	фамилия, и.о.				
Преподав атель						
	подпись, дата	фамилия, и.о.				
Оценка						

Оглавление

Оглавление	1
Цель работы.	2
Ход выполнения работы.	3
Задание 1. Исследовать работу асинхронного RS-триггера с инверсными входами в статическом режиме.	3
Задание 2. Исследовать работу синхронного RS-триггера в статическом режиме.	5
Задание 3. Исследовать работу синхронного D-триггера в статическом режиме.	6
Задание 4. Исследовать схему синхронного D-триггера с динамическим управлением записью в статическом режиме.	7
Задание 5. Исследовать схему синхронного DV-триггера с динамическим управлением записью в динамическом режиме.	8
Вывод о выполнении работы.	9

Цель работы.

Цель работы – изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

Ход выполнения работы.

Задание 1. Исследовать работу асинхронного RS-триггера с инверсными входами в статическом режиме.

Асинхронный RS -триггер - это триггер, который используется как запоминающая ячейка. Состояния RS-триггера, соответствующие различным сочетаниям сигналов на его входах R и S. Асинхронный RS - триггер сохраняет одно из устойчивых состояний независимо от многократного изменения информационного сигнала на одном входе при нулевом значении информационного сигнала на другом входе.

S	R	Q	Q_{n+1}	режим
		n		
0	0	0	0	хранение
0	0	1	1	
0	1	0	0	уст. 0
0	1	1	0	
1	0	0	1	уст. 1
1	0	1	1	
1	1	0	Недопустимое	запрещенное
1	1	1	Недопустимое	состояние

При S=0 и R=1 триггер устанавливается в состояние "0" $(Q_{n+1}=0)$, а при S=1 и R=0 - в состояние "1" $(Q_{n+1}=1)$. Если S=0 и R=0, то в триггере сохраняется предыдущее внутреннее состояние $(Q_{n+1}=Q_n)$.

Состояние триггера неопределенное при S=R, S=1, R=1, поэтому такая комбинация запрещенная.

Задание 2. Исследовать работу синхронного RS-триггера в статическом режиме.

Синхронный RS-триггер имеет два информационных входа R и S и вход синхронизации C. ЛЭ 3 и 4 образуют схему управления, ЛЭ 1 и 2 — асинхронный RS - триггер (запоминающую ячейку). Синхронный RS - триггер при C = 0 сохраняет предыдущее внутреннее состояние, т.е. $Q_n = Q_{n+1}$. Сигналы по входам S и R переключают синхронный RS-триггер только с поступлением импульса на вход синхронизации C. При C = 1 синхронный триггер переключается как асинхронный. Одновременная подача сигналов C = S = R = 1 запрещена. При S = R = 0 триггер не изменяет своего состояния.

C	S	R	Q _n	Q_{n+1}	режим
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	0	
0	0	1	1	1	
0	1	0	0	0	хранение
0	1	0	1	1	
0	1	1	0	0	
0	1	1	1	1	
1	0	0	0	0	vnanama
1	0	0	1	1	хранение
1	0	1	0	0	yor 0
1	0	1	1	0	уст. 0
1	1	0	0	1	yor 1
1	1	0	1	1	уст. 1
1	1	1	0	X	запрещенн
1	1	1	1	X	oe
					состояние

Задание 3. Исследовать работу синхронного D-триггера в статическом режиме.

Синхронный D -триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы.

Поэтому D - триггер – элемент задержки (хранения) входных сигналов на один такт.

Схему синхронного D -триггера можно получить из схемы синхронного RS – триггера, подавая сигнал $\neg D$ на вход S, а сигнал, т.е. с выхода инвертора сигнала D, на вход R. В результате на входах RS-триггера возможны только наборы сигналов SR =01 при D=0 или SR =10 при D=1, что соответствует записи в триггер логического 0 или 1. У D – триггера отсутствует запрещенное состояние.

C	D	Q _n	Q_{n+1}	режим
0	0	0	0	
0	0	1	1	
0	1	0	0	хранение
0	1	1	1	
1	0	0	0	уст. 0
1	0	1	0	yc1. 0
1	1	0	1	yor 1
1	1	1	1	уст. 1

Задание 4. Исследовать схему синхронного D-триггера с динамическим управлением записью в статическом режиме.

Прием информационных сигналов и передача синхронных триггеров с динамическим управлением записью на выход принятой информации выполняются в момент изменения синхросигнала на С -входе из "0" в "I" или из "I" в "0", т.е. перепадом синхросигнала.

Такой С -выход называется динамическим, причем в первом случае динамический С -вход - прямой, во втором - инверсный.

Синхронный триггер с динамическим управлением записью принимает только те информационные сигналы, которые были на его информационных входах в течение времени, необходимого для переключения триггера и определяемого переходными процессами, до и после прихода синхросигнала.

Задание 5. Исследовать схему синхронного DV-триггера с динамическим управлением записью в динамическом режиме.

Т-триггер имеет один информационный асинхронный (счетный) вход Т, который переходит в противоположное состояние каждый раз при подаче на него единичного сигнала.

Синхронный Т-триггер имеет вход С и вход Т. Синхронный Т-триггер переключается в противоположное состояние сигналом С, если на счетном входе Т действует сигнал логической 1.

При изменении синхросигнала С с "0" на "1" меняются Q и ¬Q. (Происходит инверсия)

Сигнал принимается в тот момент, когда С переходит из состояния нуля в единицу, иначе будет сохранение предыдущего состояния.

Задание 6. Синхронный Т-Триггер

Т-триггер имеет один информационный вход Т, называемый счетным входом. Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на Т-вход единичного сигнала. Таким образом Т-триггер реализует счет по модулю 2: . Синхронный Т-триггер имеет вход С и вход Т. Синхронный Т-триггер переключается в противоположное состояние сигналом С, если на счетном входе Т действует сигнал логической 1.

Вывод о выполнении работы.

Я познакомился со схемами синхронных RS- и D-триггеров со статическим управлением записью, DV-триггера с динамическим управлением записью и асинхронного RS-триггера, а также рассмотрел их сходства и различия.