

Prof. Dr.-Ing. Frank Neitzel, Dr.-Ing. Sven Weisbrich

Exercise 5: Propagation of observation errors - part III - Propagation of variances and covariances -			
Group:	Surname, First name:	Matriculation number:	Signature*:
* With my signature I declare that I was involved in the elaboration of this homework.			
Submission until: 01.12.2024			

Objective

This exercise deals with the propagation of variances of correlated and uncorrelated observations for one or several unknown parameters.

Task 1:

The angles α_1 and α_2 as well as the distances s_1 , s_2 and s_3 of the rectangle, depicted in Figure 1, were observed.

• Calculate the distance between point 2 and 4 and its standard deviation.

$$s_1 = 824,62 m$$
 $m_{s_1} = 1,2 cm$
 $s_2 = 1026,98 m$ $m_{s_2} = 1,9 cm$
 $s_3 = 802,00 m$ $m_{s_3} = 3,6 cm$
 $a_1 = 68,3582 gon$ $m_{a_1} = 1,5 mgon (15^{\infty})$
 $a_2 = 52,9212 gon$ $m_{a_2} = 4,1 mgon (41^{\infty})$

Figure 1: Observed rectangle

Task 2 (Homework):

A car is moving on a straight line in two dimensions (2D) with a constant velocity. The following quantities were observed in two individual positions, as depicted in Figure 2, with the accompanied standard deviations:

- azimuth angles $a_1~=~35.1550~{\rm gon}$ and $\alpha_2~=~55.1200~{\rm gon}$, with $\sigma_\alpha~=~0.001~{\rm gon}$
- distances $s_1=20.005~\mathrm{m}\,\mathrm{and}\,s_2=30.001~\mathrm{m}$, with $\sigma_s=1~\mathrm{mm}$
- time $t_1 = 9.7$ s and $t_2 = 23.1$ s, with $\sigma_t = 0.1$ s

Your tasks are:

- Estimate the velocity of the object v, as well as the standard deviation σ_v . Explain clearly all the steps you needed for the results.
- Estimate the position of the object (coordinates y_3 and x_3 in 2D) at the time $t_3=30\,\mathrm{s}$ as well as the standard deviations σ_{y_3} and σ_{x_3} .

Figure 2: Movement of a car in 2D