4.9 Theorem. Let $a, n \in \mathbb{N}$ with (a, n) = 1 and let $k = \operatorname{ord}_n(a)$. For any natural number m, a^m is congruent modulo n to one of the numbers $a^1, a^2, ..., a^k$.

Proof. By TDA, let m - qk + r where $0 \le r \le k - 1$. Since $k = \operatorname{ord}_n(a)$, $a^k \equiv 1 \pmod{n}$. By Theorem 1.18,

$$(a^k)^q \equiv 1^q \pmod{n},$$

$$a^{qk} \equiv 1 \pmod{n},$$

$$a^{qk}a^r \equiv a^r \pmod{n},$$

$$a^{qk+r} \equiv a^r \pmod{n},$$

$$a^m \equiv a^r \pmod{n}.$$

Recall $0 \le r \le k-1$. If r=0, $a^m \equiv a^0 \pmod{n}$ which is $a^m \equiv 1 \pmod{n}$ and we find $a^m \equiv a^k \pmod{n}$. Thus, for any natural number m, a^m is congruent modulo n to one of the numbers $a^1, a^2, ..., a^k$.