1 Линейная Алгебра

1.1 Линейное (векторное) пространство

Линейное пространство — это набор элементов (векторов), для которых определена операция сложения и умножения на число. Эти операции должны подчиняться набору аксиом.

Детальная статья в Википедии: Векторное пространство. В этой же статье:

- Линейная комбинация векторов
- Подпространство
- Линейная (не)зависимость векторов
- Базис, размерность (ранг)
- Норма вектора

1.2 Системы линейных уравнений

Урок на Stepik: Существование систем линейных уравнений.

1.2.1 Частный случай. Число уравнений равно числу неизвестных.

Рассмотрим следующую систему линейных уравнений:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

В такой системе количество уравнений совпадает с количеством неизвестных. Запишем систему в следующем виде:

$$x_1 \cdot \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + x_2 \cdot \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix} + x_3 \cdot \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

В таком виде задачу о нахождении решения данной системы можно рассматривать как задачу о представлении вектора \mathbf{b} в виде линейной комбинации векторов $\mathbf{a_1}$, $\mathbf{a_2}$ и $\mathbf{a_3}$.

Если вектора ${\bf a_1}$, ${\bf a_2}$ и ${\bf a_3}$ образуют базис, то решение у такой системы существует при любом векторе ${\bf b}$, причем такое решение будет единственным. Если же эти вектора базис не образуют, то решение у системы будет существовать только в том случае, если вектор ${\bf b}$ будет принадлежать подпространству, пораждаемому векторами ${\bf a_1}$, ${\bf a_2}$ и ${\bf a_3}$, причем решений в таком

случае будет бесконечно много.

Аналогичные утверждения верны и для системы линейных уравнений с n уравнениями и n неизвестными.

1.2.2 Общий случай

Рассмотрим теперь более общий случай. А именно, рассмотрим систему, состояющую из n линейных уравнений с m неизвестными:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2$$

$$\dots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_n$$

Перепишем систему в следующем виде:

$$x_1 \cdot \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + x_2 \cdot \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} + \dots + x_m \cdot \begin{pmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

В таком виде задачу о нахождении решения для данной системы уравнений можно рассматривать как задачу о представлении вектора \mathbf{b} в виде линейной комбинации векторов $\mathbf{a_1}, \mathbf{a_2}, \cdots, \mathbf{a_m}$, каждый из которых является элементом n-мерного линейного пространства.

Рассмотрим линейное подпространство минимальной размерности, которое содержит все эти m векторов. Такое подпространство также называется линейной оболочкой, образуемой данными векторами. Размерность такого подпространства (линейной оболочки) называется **рангом** системы линейных уравнений.

Касательно существования решения для системы таких уравнений. Возможны два случая:

- Если вектор b не принадлежит данной линейной оболочке, то решений у системы нет.
- Если вектор b принадлежит данной линейной оболочке то, решение существует. При этом если n=m, то решение будет единственным, так как набор векторов $\mathbf{a_1}, \mathbf{a_2}, \cdots, \mathbf{a_m}$ будет образовывать базис. Если же число векторов больше, чем размерность линейной оболочки, то система будет иметь бесконечно много решений.

1.3 Решение систем линейных уравнений. Метод Гаусса.

Урок на Stepik: Решение систем линейных алгебраических уравнений. Метод Гаусса.

Основная идея метода Гаусса заключается в том, чтобы ...