

(EN MAYÚSCULAS) Apellidos, Nombre	GR <u>U</u> PO

1. (1 pto.) Un router tiene la tabla de reenvío (forwarding) adjunta, ¿por dónde reenviará los datagramas con la dirección de destino ...

Destino	Enviar
	por
192.72.80.0 /20	Α
192.72.84.0 /22	В
192.72.0.0 /13	С
192.72.140.0 /22	D
192.64.0.0 /12	Е
0.0.0.0 /0	F

IP destino	Enviar por
192.72.87.1	
192.72.88.2	
192.73.84.3	
192.80.86.4	
192.72.143.5	

Tab	la conv	ersión	Binario	-Hex-D	Decima	l			С	uatro L	oits me	nos sigi	nificativ	vos			
											▼ LSB						
		0:0000	1:0001	2:0010	3:0011	4:0100	5:0101	6:0110	7:0111	8:1000	9:1001	A:1010	B:1011	C:1100	D:1101	E:1110	F:1111
	0:0000	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1:0001	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	2:0010	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
	3:0011	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
	4:0100	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
	5:0101	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
	6:0110	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
MSB	7:0111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
Σ	8:1000	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
\vdash	9:1001	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
	A:1010	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
	B:1011	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
	C:1100	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
	D:1101	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
	E:1110	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
	F:1111	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
Cuc	itro bit	s más s	ignifica	ativos													

Ejemplo de uso: Binario → Decimal: 10010111 → 151

2. (1,5 ptos.) Responda <u>brevemente</u> las siguientes preguntas **sobre IP**

Con relación al protocolo IP	Respuesta
¿Cuántos bits tiene una dirección IPv4?	
¿Y cuántos tiene una dirección IPv6?	
Si TCP proporciona un servicio orientado a conexión, ¿qué tipo de servicio proporciona IPv4?	
¿Qué hace un <i>router</i> cuando recibe un datagrama cuyo TTL = 1?	
¿Cuál es la utilidad del campo "Identificación" de la cabecera IPv4?	
En IPv4. ¿Qué significa el flag DF?	
¿Cuál es el tamaño típico de la cabecera de IPv4? (sin campos opcionales)	
¿Por qué un fragmento IP que NO es el último no puede tener 247 bytes en total? (se supone una cabecera IPv4 de longitud típica).	
En la cabecera IPv4, ¿qué caracteriza el "último fragmento" de un datagrama?	
Suponiendo que la dirección IP = 88.88.88.0 identifica una red IP, ¿cuál es el menor prefijo de red (p.ej. /16 < /24) que puede aplicársele?	

red para e mínimo qu	ue el prefijo o la r el bloque de dire ue permita a la e de 90 direccio n su red.	ecciones empresa					d
anterior y l tabla sigui	eedor asigna a a dirección IP 15 ente para que la con las capacida	55.5.64.0. Con empresa pue	nplete la da crear	Número de hosts 20 20 50		Dirección de red	Prefijo de red
Observe quality La tabla sign un insta	ue todos los enla guiente muestra ante posterior, <u>el</u> a evolución del	aces tienen co los vectores d enlace R3-R4	ste 1 salv le distanci l deja de e	o el R2-R4 cor las de los <i>route</i> estar disponible	n coste 3. ers R1-R3 en re e.	sado en <u>vector de distancias</u> lación al destino R4 , tras la c para alcanzar el destino R4	convergencia del algoritmo.
	nza a R4 ste 3 vía R2	R1	1	R2 1	R3	1 R4	
	Iteración	R1		R2	R3		
	Inicial	3, R2		2, R3	1, R4		
	miolai	· · · · · · · · · · · · · · · · · · ·	l e R3-R4. I	ndicad evoluci			
	1a				-		
	2ª						
	3ª						
	4 ^a						
	5ª						
, ,	otos.) Dibuje el ci o que el polinom	•	•	•	•	ón del CRC en un sistema de	comunicaciones,

3. (1 pto.) Una empresa necesita contratar con un proveedor un bloque de direcciones IPv4 públicas para su red. La empresa no prevé un crecimiento significativo en los próximos tres años.

6. (2 ptos.) Una organización presenta la topología que se observa en la siguiente figura. Se supone que las cachés ARP están vacías en todos los sistemas y que el router está correctamente configurado, pero el switch acaba de reiniciarse y no dispone de información sobre la red. Las estaciones A y B están asociadas al punto de acceso (PA).

En las siguientes preguntas SOLO nos interesa las tramas que ENVÍA el PA.

a) C manda un *ARP.request* buscando la MAC de R. ¿Provoca esto que PA mande alguna trama? ¿Cuál(es)?. Indíquelo en la tabla, rellenado los valores de los campos indicados

Tipo	Dir 1 (dest)	Dir 2 (orig)	Dir 3 (aux)	Significado

b) B manda una solicitud DHCP DISCOVER. ¿Provoca esto que PA mande alguna trama? ¿Cuál(es)?. Indíquelo en la tabla rellenado los valores de los campos indicados

Tipo	Dir 1	Dir 2	Dir 3	Significado

c) El servidor DHCP manda la respuesta DHCP OFFER. ¿Provoca esto que PA mande alguna trama? ¿Cuál(es)?. Indíquelo en la tabla rellenado los valores de los campos indicados

Tipo	Dir 1	Dir 2	Dir 3	Significado

d) ¿Llegará a PA una tram	a del router dirigida a C? Teng	ja en cuenta los pasos anterio	ores. Justifique la respuesta.	

7. (1 pto.) Responda a las siguientes preguntas sobre el estándar IEEE 802.11 (WiFi) con respuestas cortas

WiFi	Respuesta
¿Cuántas direcciones MAC hay en la cabecera de una trama?	
¿Qué tipo de detección de errores incluye una trama?	
Una red Wifi sin PA's se denomina AdHoc. ¿Cómo se denominan las WiFi que usan PAs?	
¿Por qué es necesario el campo "Número de secuencia" en una trama?	
El intervalo de tiempo que debe esperar una estación antes de enviar un ACK se denomina	
¿Qué estándar presenta mayor tasa de errores, Ethernet o WiFi?	
¿Qué mecanismo introduce WiFi para garantizar la entrega de las tramas?	
¿En qué campos de la trama podrá aparecer la dirección MAC del punto de acceso?	
¿Qué protocolo MAC emplea WiFi?	
Indique un motivo por el que no se puede usar CSMA/CD en WiFi	

8. (1 pto.) Indica la afirmación correcta en cada uno de los casos. Respuesta errónea resta puntos

ETHER	NET	RESP
Emplea	ndo CSMA/CD, la primera vez que una estación intenta transmitir un paquete:	
a)	Lo hace inmediatamente independientemente de la ocupación del canal.	
b)	Lo hace inmediatamente si el canal está libre.	
c)	Espera un tiempo de backoff y después transmite inmediatamente.	
d)	Espera un tiempo de backoff y después transmite si el canal está libre	
En Ethe	ernet, si una estación colisiona por segunda vez al transmitir una trama, antes de volver a intentarlo espera un	
tiempo.	· · · · · · · · · · · · · · · · · · ·	
a)	Siempre mayor que tras la primera colisión.	
b)	Probablemente mayor, pero podría ser igual o menor, a lo que esperó tras la primera colisión.	
c)	Espera el mismo tiempo que esperó tras detectar la primera colisión.	
ď)	Espera el doble de tiempo que esperó tras detectar la primera colisión.	
Dos do	minios de difusión podrán estar separados por:	
a)	Un hub o repetidor.	
b)	Un switch, pero nunca por un router.	
c)	Un router. pero nunca por un switch.	
d)	Un switch o un router. Ambos son correctos	
¿Qué o	curre cuando un adaptador Ethernet recibe una trama con el CRC erróneo?	
a)	Se descarta la trama y nada más.	
b)	Se descarta la trama y se genera una excepción que afecta a todas las estaciones de la red.	
c)	Se descarta la trama y se informa a IP del error.	
d)	Se descarta la trama y se envía al origen un reconocimiento negativo (NACK negative-ACK).	
En Ethe	ernet, la prioridad de las estaciones en el acceso al canal (para transmitir)	
a)	Se puede configurar por el administrador en cada ordenador.	
b)	Depende del tipo de protocolo (IP, ARP, ICMP) transportado en la trama.	
c)	Depende del número de colisiones que ha sufrido la trama.	
d)	No existe ningún mecanismo de prioridades.	

9. 1 pto.) Un sistema de transmisión envía de forma periódica la secuencia 011 (3 bits) codificado en NRZ (banda base) a 3 Gbps. Se

pide: a) Calcule el **ancho de banda mínimo necesario** para recibir 8 armónicos y b) ¿Cuántos armónicos pasarán si disminuimos la velocidad de transmisión a 300 Mbps?

