1. [5 marks] Short answer. You do not need to show your work	for any part	t of this question.
--	--------------	---------------------

(a)	[1 mark]	Consider	a predicate	P(n),	where n	$\in\mathbb{N},$	and	suppose	that	you	have	proven	that	P(2)	is
	True, and	also that	$\forall k \in \mathbb{N}, P(k)$	$) \Rightarrow P($	2k).										
	D 4 (57	-11 1		1		1 1	.1 .			1 1	. 1	TT.			

Put an "X" in the box next to each statement below that you can conclude to be True.

Solution						
X $P(4)$	\square $P(5)$	\square $P(6)$	\square $P(7)$	X $P(8)$	$\square P(9)$	

(b) [1 mark] Consider the natural number n whose decimal representation is $(14)_{10}$. Put an "X" in the box next to **each** correct statement below.

Solution			
$n = (1011)_2$	$X n = (1110)_2$	$X n = (112)_3$	

(c) [1 mark] Put an "X" in the box next to each correct statement below about functions $f,g:\mathbb{N}\to\mathbb{R}^{\geq 0}$ where:

$$f(n) = 6n + 1 \qquad \text{and} \qquad g(n) = n^2$$

Solution	
X f is eventually dominated by g	\Box g is eventually dominated by f
\Box f is dominated by g up to a constant factor	
$ f \in \Omega(g) $	$X g \in \Omega(f)$

(d) [1 mark] Let $RT_f(n): \mathbb{N} \to \mathbb{R}^{\geq 0}$ be the running time function of the following algorithm.

```
def f(n: int) -> None:
    """Precondition: n >= 0."""
    i = 1
    while i < n:
        i = i * 2</pre>
```

Put an "X" in the box next to each correct statement below.

Solution	
$RT_f(n) \in \mathcal{O}(1)$	$X RT_f(n) \in \mathcal{O}(n)$
$X RT_f(n) \in \mathcal{O}(\log_2 n)$	$ RT_f(n) \in \Theta(n) $

(e) [1 mark] Let S be a non-empty finite set of real numbers, and let $m \in \mathbb{R}$. Put an "X" in the box next to the expression below that is equivalent to the English statement

"m is a lower bound on the minimum value of S"?

a 1	. •
Sol	ution

 $\exists x \in S, x \le m$

 $\boxed{\mathbf{X}} \ \forall x \in S, m \leq x$

 $\exists x \in S, m \le x$

2. [5 marks] Induction.

Prove the following statement using induction.

$$\forall n \in \mathbb{N}, \ (n \ge 2) \Rightarrow \left(\prod_{i=2}^{n} \left(1 - \frac{1}{i}\right) = \frac{1}{n}\right)$$

Solution

Note: This solution is wordier than expected and provides more intermediate steps than some might find necessary.

Proof. Base case: Let n = 2. Then

$$\prod_{i=2}^{n} \left(1 - \frac{1}{i}\right) = \prod_{i=2}^{2} \left(1 - \frac{1}{i}\right)$$
$$= \left(1 - \frac{1}{2}\right)$$
$$= \frac{1}{2}$$
$$= \frac{1}{n},$$

as required. The base case is satisfied.

(Or take a 'compute left hand side', 'compute right hand side' approach, and compare.)

 $\overline{(k+1)}$. We have:

$$\begin{split} \prod_{i=2}^{k+1} \left(1 - \frac{1}{i}\right) &= \left(\prod_{i=2}^{k} \left(1 - \frac{1}{i}\right)\right) \cdot \left(1 - \frac{1}{(k+1)}\right) \\ &= \left(\frac{1}{k}\right) \cdot \left(1 - \frac{1}{(k+1)}\right) \qquad \text{(by the I.H.)} \\ &= \left(\frac{1}{k}\right) \cdot \left(\frac{(k+1)-1}{(k+1)}\right) \\ &= \left(\frac{1}{k}\right) \cdot \left(\frac{k}{(k+1)}\right) \\ &= \frac{1}{(k+1)}, \end{split}$$

CSC165H1S, Winter 2023	Term Test 2, Version 1
as required.	

3. [5 marks] Asymptotic analysis.

In this question, refer to the following definition:

$$g \in \mathcal{O}(f): \quad \exists c, n_0 \in \mathbb{R}^+, \ \forall n \in \mathbb{N}, \ n \geq n_0 \Rightarrow g(n) \leq c \cdot f(n), \quad \text{where } f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$$

Prove or disprove the following statement, using only the definition of Big-O:

$$\forall f,g:\mathbb{N}\to\mathbb{R}^{\geq 0},\ \left(\left(\forall n\in\mathbb{N},\ n\geq 165\Rightarrow g(n)\leq 100\ n\right)\wedge\left(\forall n\in\mathbb{N},\ n\geq 108\Rightarrow n\leq 2\ f(n)\right)\right)\Rightarrow g\in\mathcal{O}(f)$$

Solution

Proof. Let f, g be arbitrary functions from $\mathbb{N} \to \mathbb{R}^{\geq 0}$.

Assume $\forall n \in \mathbb{N}, n \ge 165 \Rightarrow g(n) \le 100 \ n \text{ and } \forall n \in \mathbb{N}, n \ge 108 \Rightarrow n \le 2 \ f(n).$

We need to prove $g \in \mathcal{O}(f)$.

That is, we need to prove $\exists c, n_0 \in \mathbb{R}^+, \ \forall n \in \mathbb{N}, \ n \geq n_0 \Rightarrow g(n) \leq c \cdot f(n)$

Let c=200 and $n_0=165$. (Any $c\geq 200$ or $n_0\geq 165$ work too.)

Let $n \in \mathbb{N}$ and assume $n \geq n_0$.

Since $n \ge 165$, $g(n) \le 100 \ n$.

Since $n \ge 108$, $n \le 2$ f(n).

Together, we have

$$g(n) \le 100 \ n$$

 $\le 100 \ (2 \ f(n))$
 $= 200 \ f(n)$
 $= c \cdot f(n),$

as required.

- 4. [10 marks] Running time analysis.
 - (a) [4 marks] Consider the following algorithm.

Find the exact total number of iterations of the Loop 2 body, across all iterations of Loop 1 when f is run, in terms of its input n, assuming $n \ge 2$. To simplify your calculations, you may ignore floors and ceilings.

Note: make sure to explain your analysis in English, rather than writing only calculations.

Solution

The values of i executing the Loop 1 body are $i=2,4,6,\ldots$, up to and including n-1 or n, i.e. $i=2\cdot 1,2\cdot 2,2\cdot 3,\ldots,2\cdot \lfloor n/2\rfloor$ (or just n/2 ignoring floors and ceilings).

For each i, the values of j executing the Loop 2 body are $j = 0 \cdot (n/i), 1 \cdot (n/i), 2 \cdot (n/i), 3 \cdot (n/i), \ldots$, up to just before $n = i \cdot (n/i)$ (trace with a concrete n and some is for intuition), which is (ignoring floors and ceilings) i iterations.

The total is
$$\sum_{k=1}^{n/2} 2k = 2\sum_{k=1}^{n/2} k = 2(n/2)(1+n/2)/2 = n(2+n)/4 = (2n+n^2)/4.$$

(b) [6 marks] Consider the following algorithm, which takes as input a list of nonnegative integers.

NOTE: range(a, b) is empty when b <= a.

Prove matching upper (Big-O) and lower (Omega) bounds on the worst-case running time of alg, where the size n of the input is the length of the list. Clearly label which part of your solution is a proof of the upper bound, and which part is a proof of the lower bound.

Solution

Upper bound on worst-case running time.

Let $n \in \mathbb{N}$ and A be a list of integers of non-negative integers of length n.

Loop 1 iterates no more than n times.

Its body takes 1 step each time, except at most once if the if condition is true in which case it executes Loop 2 and then ends execution.

Loop 2 executes its body $n - \min(A[i], n)$ times (the minimum is for when there are no iterations due to $A[i] \ge n$). This is at most n times since that minimum is non-negative. The body is 1 step each time. Then there is 1 more step for the return which ends the execution.

So the total number of steps is no more than $n \cdot 1 + n \cdot 1 + 1 = 2n + 1 \in \mathcal{O}(n)$.

Lower bound on worst-case running time.

Let $n \in \mathbb{N}$ and $A = [1, \dots, 1]$ be the list of length n with non-negative integer 1 for each element.

Then each element is odd so the if condition is always false, so Loop 1 iterates to the end taking 1 step each time, for a total number of steps $n \cdot 1 = n \in \Omega(n)$.