

A Signer-Invariant Conformer and Multi-Scale Fusion Transformer for Continuous Sign Language Recognition

Md Rezwanul Haque^{1*}, Md. Milon Islam^{1*}, S M Taslim Uddin Raju¹, Fakhri Karray^{1,2}

¹University of Waterloo, ²Mohammad bin Zayed University of Artificial Intelligence

Introduction & Challenges

Introduction

- Sign language: a rich visual-gestural language for deaf and hard-of-hearing individuals.
- Continuous Sign Language Recognition (CSLR): Converts sequences of sign gestures into textual representations.

Key Challenges in CSLR

- Inter-Signer Variability: Different people sign the same sentence in unique ways (speed, style, etc.).
- Co-articulation: The appearance of a sign changes based on the signs that come before and after it.
- Generalization to New Sentences: Models struggle to understand novel grammatical structures they have not seen during training.

Our Solution: A Dual-Architecture Framework

Signer-Invariant Conformer (for SI Task)

- Focus: Learning robust, signer-agnostic representations.
- Input: Pose-based skeletal keypoints.

Multi-Scale Fusion Transformer (for US Task)

- Focus: Enhancing linguistic generalization to novel sentence structures.
- Input: Pose-based skeletal keypoints with multi-scale feature fusion.

Signer-Invariant Conformer

- Pose Estimator: Extracts 2D landmarks (pose, hands, face).
- Temporal Encoder: Initial 1D convolutional layers capture short-range local correlations.
- Conformer Blocks: Stacked blocks integrating:
- ✓ Multi-Head Self-Attention (MHSA) for global dependencies.
- ✓ Convolution Module for local, fine-grained patterns.
- Positional Encodings: Provides sequence order information.
- Classifier Head: Generates sign gloss predictions.

Multi-Scale Fusion Transformer

- Pose Estimator: Retrieves keypoint data.
- Joint Attention Mechanism: Dynamically weighs feature importance at the frame level to focus on salient gestural information.
- Dual-Path Temporal Encoder:
 - ✓ Main Block: Uses 1D convolutions for fine-grained, frame-level temporal dynamics.
 - ✓ Auxiliary Block: Uses max-pooling for downsampled representations, learning temporal features.
- Transformer Encoder: Models long-range dependencies and complex grammatical relationships from fused multi-scale features.
- Classifier Head: Generates US gloss predictions using CTC loss.

System Architecture

Figure 1. Signer-Invariant Conformer.

Figure 2. Multi-Scale Fusion Transformer.

Dataset and Evaluation

- Large-scale, multi-scene Continuous Saudi Sign Language (CSSL) dataset.
- Signer-Independent (SI) Split: Evaluates generalization to new signers.
- Our primary metric is Word Error Rate (WER), where lower is better.

Results and Analysis

Methods	Dev	Test
VAC* [31]	18.9	31.9
SMKD* [19]	18.5	35.1
TLP* [21]	19.0	32.0
SEN* [23]	19.1	36.4
CorrNet* [22]	18.8	31.9
Swin-MSTP* [5]	17.9	26.6
SlowFastSign* [3]	19.0	32.1
LLM-SlowFast	43.90	72.24
LLaMA-Former	21.83	51.21
LLaMA-SlowFast	30.13	46.98
Mamba-Sign	29.31	37.28
Multi-Scale Fusion Transformer	27.54	33.91
BiLSTM	17.02	26.08
Sign-Conformer	16.25	26.63
CNN-BiLSTM	<u>14.54</u>	22.62
Signer-Invariant Conformer	7.31	13.07

Methods	Dev	Test
VAC* [31]	57.0	49.6
SMKD* [19]	<u>56.6</u>	48.0
TLP* [21]	70.8	63.3
SEN* [23]	66.2	57.3
CorrNet* [22]	63.7	55.0
Swin-MSTP* [5]	73.5	66.1
SlowFastSign* [3]	65.5	56.2
LLM-SlowFast	93.07	-
ST-GCN-Conformer	91.80	-
LLaMA-Former	86.90	-
DistilBERT-Former	81.70	-
BiLSTM	79.93	-
Sign-Conformer	77.50	-
CNN-BiLSTM	74.96	-
Signer-Invariant Conformer	64.48	-
Mamba-Sign	59.51	-
Multi-Scale Fusion Transformer	55.08	47.78

Conclusion & Future Work

Conclusion

*results come from [

- Introduced a dual-architecture framework addressing SI and US CSLR distinct issues.
- Signer-Invariant Conformer: Achieves new SOTA for signer-agnostic feature learning (SI task).
- Multi-Scale Fusion Transformer: Achieves new SOTA for linguistic generalization (US task).
- Our models demonstrate the effectiveness of task-specific networks for CSLR, establishing new baselines.

Future Directions:

- Apply advanced encoders to Sign Language Translation (SLT).
- Investigate multi-modal fusion (RGB features like hand shape, face expressions) to enhance robustness against pose estimation errors.
- Develop a unified, multi-task architecture for both SI and US recognition within a single, efficient framework.

Models and codes are publicly available

Link: https://github.com/rezwanh001/MSLRPose86K-CSLR-Isharah

[1] Alyami et al., "Isharah: A large-scale multi-scene dataset for continuous sign language recognition," arXiv:2506.03615, 2025.

[2] Alyami & Luqman, "Swin-MSTP: Swin transformer with multi-scale temporal perception for continuous sign language recognition," Neurocomputing, 617:129015, 2025.

Table 1. Performance on the Isharah-1000 SI benchmark

^{*}results come from [7

Table 2. Performance on the Isharah-1000 US benchmark