# Digital plots of Modulus and Strength ratio for Rocks

Release 0.0

**Grasselli's Geomechanics Group - University of Toronto** 

## **CONTENTS:**

| 1  | Intro  | oduction                          | 1             |
|----|--------|-----------------------------------|---------------|
|    | 1.1    | Deere-Miller - Modulus Ratio (MR) | 1             |
|    | 1.2    | Tatone et al Strength Ratio (SR)  | 5             |
|    | 1.3    | Poisson's Ratio and Density Plots | 6             |
|    | 1.4    | UCS Classification Systems        | 8             |
|    |        | pyrockmodulus package             | <b>9</b><br>9 |
| 3  | Indi   | ces and tables                    | 17            |
| Ру | thon ] | Module Index                      | 19            |
| In | dex    |                                   | 21            |

**CHAPTER** 

ONE

#### INTRODUCTION

The package herein helps visualise the relationship between the uniaxial compressive strength (UCS), Young's Modulus (E), and the in-direct tensile strength, commonly known as the Brazilian Disc (BD). The Modulus Ratio (**MR**) is the correlation between the UCS and E while the Strength Ratio (**SR**) is the correlation between the BD and UCS.

For any suggestions, bugs or if you wish to contribute to the project => REPO

## 1.1 Deere-Miller - Modulus Ratio (MR)

Cite: Deere DU, Miller RP. Engineering Classification and Index Properties for Intact Rocks. Fort Belvoir, VA: Defense Technical Information Center; 1966.

Loads the digitized Deere\_Miller clusters and plots them based on the Major Rock Type (i.e., Igneous / Metamorphic / Sedimentary).

- Plot all Major Rock Type in one graph.
- Plots them individually.

#### **Modulus Ratio Example**

1. Plot the Modulus Ratio of just the Sedimentary clusters with the ISRM 1979 category classification.



2. Plot the Modulus Ratio with all the categories without the classification. Legend enabled.

```
import pyrockmodulus
import matplotlib.pyplot as plt

xx = pyrockmodulus.modulus_ratio()
xx.initial_processing(plot_all_clusters=True)
plt.ylabel("E (GPa)")
plt.xlabel("UCS (MPa)")
plt.legend()
plt.show()
```



3. Plot the Modulus Ratio of just the Sedimentary clusters overlaid with data from tests.

(continues on next page)

(continued from previous page)

plt.legend()
plt.show()



## 1.2 Tatone et al. - Strength Ratio (SR)

Tatone, B.S.A., Abdelaziz, A. & Grasselli, G. Novel Mechanical Classification Method of Rock Based on the Uniaxial Compressive Strength and Brazilian Disc Strength. Rock Mech Rock Eng 55, 2503–2507 (2022). https://doi.org/10.1007/s00603-021-02759-7

Loads the constructed Tatone et al. UCS:BDS clusters and plots them based on the Major Rock Type (i.e., Igneous / Metamorphic / Sedimentary).

- Plot all Major Rock Type in one graph.
- Plots them individually.

The functionality is similar to that of the modulus ratio.

```
import pyrockmodulus
import matplotlib.pyplot as plt

xx = pyrockmodulus.strength_ratio()
xx.initial_processing(plot_all_clusters=False, rock_type_to_plot='Sedimentary')
plt.ylabel("BDS (MPa)")
plt.xlabel("UCS (MPa)")
plt.show()
```



## 1.3 Poisson's Ratio and Density Plots

Plot the most common ranges of density and poisson's ratio for rock. This data can then be overlaid with data from a specific source to show comparison.

```
import matplotlib.pyplot as plt
import pyrockmodulus
xx = pyrockmodulus.poisson_density()
df_data = xx.initial_processing()
ax1 = xx.plot_span_chart(df_data, ['Min_D', 'Max_D'], 'Density', r'$\rho$ g/cm$^{3}$')
ax1.axvline(2.0, lw=1, ls='--')
plt.show()
```



## 1.4 UCS Classification Systems

This file holds the dictionaries for the various UCS classification systems available. References for those systems are within the file. All values **must** be in **MPa**. Available classification systems 'ISRM\n1977', 'ISRMCAT\n1979', 'Bieniawski\n1974', 'Jennings\n1973', 'Broch & Franklin\n1972', 'Geological Society\n1970', 'Deere & Miller\n1966', 'Coates\n1964', 'Coates & Parsons\n1966', 'ISO 14689\n2017', 'Anon\n1977', 'Anon\n1979', 'Ramamurthy\n2004'

#### **UCS Classification System Examples**

1. Display the limits and the classification system default in the script.

```
import pyrockmodulus.rock_variables as ucs_class
ucs_class.ucs_strength_criteria('ISRMCAT\n1979')
```

#### Output

```
(['R0', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6'], [0.25, 1, 5, 25, 50, 100, 250, 1000])
```

2. A horizontal bar like plot to show the various uniaxial strength classification systems.

```
import pyrockmodulus.ucs_bar_chart_plot as ucs_classification_plot
import matplotlib.pyplot as plt

ucs_class = ucs_classification_plot.initial_processing()
plt.show()
```



**CHAPTER** 

**TWO** 

#### **PYROCKMODULUS**

## 2.1 pyrockmodulus package

#### 2.1.1 Submodules

Deere-Miller - Modulus Ratio (MR)

class pyrockmodulus.pyrockmodulus.modulus\_ratio

Bases: object

Based on the classification of Deere DU, Miller RP. Engineering Classification and Index Properties for Intact Rocks. Fort Belvoir, VA: Defense Technical Information Center; 1966. Data digitization courtesy of Rohatgi, Ankit. "WebPlotDigitizer." (2017).

# ADVANCED: By assigning the \_rocktype\_dictionary variable, more control over the clusters being plotted is gained.

**abline**(*slope*, *intercept*, *dr\_state*, *multiplier=1*, *ratio="*, *ax=None*, *x\_text\_loc=0.15*)

Function to plot the slopped lines based on a slope and a y-intercept, basically mx+c. It is defined to form the Low/Avg/High MR ratio in the deere-miller classification plot.

#### **Parameters**

- slope (float) the slope of the line
- **intercept** (*float*) the intercept of the lube
- **dr\_state** (*str*) draw state to move between the line drawing and the placement/writing of the text. Options [Line, Text]
- multiplier (int) in case of a need of a multiplier
- ratio (str) text associated with the MR modulus
- ax (matplotlib) Matplotlib Axis
- **x\_text\_loc** (*float*) slope to write text

#### Returns

#### Return type

**deere\_miller\_clusters**(*ax*, *df\_of\_clusters\_deere\_miller*, *r\_type=None*, *plot\_all\_clusters\_bool=False*)

Load information needed to plot

#### **Parameters**

• ax (matplotlib) - Axis to plot on

- **df\_of\_clusters\_deere\_miller** (*dict*) will plot defined cluster. Options Sedimentary, Igneous, Metamorphic.
- **r\_type** (*str*) Define the rock type to be plotted. plot\_all\_clusters\_bool MUST be false.
- plot\_all\_clusters\_bool (bool) Plot all the clusters.

#### Returns

#### **Return type**

```
format_axis(ax, state=", major_axis_vline=True)
```

Format log-log Axis

#### **Parameters**

- ax (matplotlib) Axis to plot on
- **state** state to enable to disable slopped lines
- major\_axis\_vline (bool) Plot the major axis vlines

#### Returns

#### Return type

 $\textbf{initial\_processing}(\textit{rock\_type\_to\_plot}=None, \textit{plot\_all\_clusters}=\textit{False}, \textit{ucs\_class\_type}=None, \textit{ax}=None)$ 

Main function to plot the Modulus Ratio underlay

#### param rock\_type\_to\_plot

Rock cluster type to plot.

#### type rock\_type\_to\_plot

UCS Strength Criteria adopted. Options Sedimentary, Igneous, Metamorphic.

#### param ucs\_class\_type

UCS Strength Criteria adopted. Options 'ISRM

1977', 'ISRMCAT 1979', 'Bieniawski 1974', 'Jennings 1973', 'Broch & Franklin 1972', 'Geological Society 1970', 'Deere & Miller 1966', 'Coates 1964', 'Coates & Parsons 1966', 'ISO 14689 2017', 'Anon 1977', 'Anon 1979', 'Ramamurthy 2004'

```
type ucs_class_type
```

str

#### param ax

Axis to plot on

#### type ax

matplotlib

#### return

Axis

#### rtype

Matplotlib Axis

plot\_clusters(k, v, ax, df\_of\_clusters\_deere\_miller)

Plot the clusters

#### **Parameters**

- $\mathbf{k} (str) \text{key}$
- **v** (str) value

- ax (matplotlib) Axis to plot on
- **df\_of\_clusters\_deere\_miller** (*dict*) dictionary containing the type of rock and the points that form its cluster.

#### Returns

#### **Return type**

#### plot\_v\_lines(vlines, ax)

Plot lines and annotate the UCS Strength Criteria adopted

#### **Parameters**

- vlines (list[float]) Locations of V Lines
- ax (matplotlib) Axis to plot

#### Returns

Return type

#### Tatone et al. - Strength Ratio (SR)

#### class pyrockmodulus.pyrockmodulus.strength\_ratio

Bases: object

Based on the classification of Tatone, B.S.A., Abdelaziz, A. & Grasselli, G. Novel Mechanical Classification Method of Rock Based on the Uniaxial Compressive Strength and Brazilian Disc Strength. Rock Mech Rock Eng 55, 2503–2507 (2022). https://doi.org/10.1007/s00603-021-02759-7 Data was built using a bivariant KDE # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian\_kde.html # https://towardsdatascience.com/simple-example-of-2d-density-plots-in-python-83b83b934f67

# ADVANCED: By assigning the rocktype dict variable, more control over the clusters being plotted is gained.

#### **abline**(*slope*, *intercept*, *dr\_state*, *multiplier=1*, *ratio=''*, *ax=None*)

Function to plot the slopped lines based on a slope and a y-intercept, basically mx+c. It is defined to form the Low/Avg/High MR ratio in the deere-miller classification plot.

#### **Parameters**

- **slope** (*float*) the slope of the line
- intercept (float) the intercept of the lube
- **dr\_state** (*str*) draw state to move between the line drawing and the placement/writing of the text. Options [Line, Text]
- **multiplier** (*int*) in case of a need of a multiplier
- ratio (str) text associated with the MR modulus
- ax (matplotlib) Matplotlib Axis
- x\_text\_loc (float) slope to write text

#### Returns

#### Return type

```
format_axis(ax, state=", major_axis_vline=True)
           Format log-log Axis
               Parameters
                   • ax (matplotlib) - Axis to plot on
                   • state – state to enable to disable slopped lines
                   • major_axis_vline (bool) – Plot the major axis vlines
               Returns
               Return type
     initial_processing(rock_type_to_plot=None, plot_all_clusters=False, ucs_class_type=None, ax=None)
               Main function to plot the Modulus Ratio underlay
                   param rock_type_to_plot
                     Rock cluster type to plot.
                   type rock type to plot
                     UCS Strength Criteria adopted. Options Sedimentary, Igneous, Metamorphic.
                   param ucs_class_type
                     UCS Strength Criteria adopted. Options 'ISRM
           1977', 'ISRMCAT 1979', 'Bieniawski 1974', 'Jennings 1973', 'Broch & Franklin 1972', 'Geological
           Society 1970', 'Deere & Miller 1966', 'Coates 1964', 'Coates & Parsons 1966', 'ISO 14689 2017', 'Anon
           1977', 'Anon 1979', 'Ramamurthy 2004'
                   type ucs_class_type
                     str
                   param ax
                     Axis to plot on
                   type ax
                     matplotlib
                   return
                     Axis
                   rtype
                     Matplotlib Axis
Poisson's Ratio and Density Plots
```

```
class pyrockmodulus.pyrockmodulus.poisson_density
```

Bases: object

Load Poisson Ratio and Density information

check\_df\_col\_validity(df\_to\_plot, var, err\_message="['Min\_P', 'Max\_P'] or ['Min\_D', 'Max\_D']") Checks if values are within the DataFrame column passed.

#### **Parameters**

- **df\_to\_plot** (pandas.DataFrame) Panda Dataframe to plot
- var (str) Valriable name to check
- **err\_message** (*str*) Validation message for Options available to user

#### Returns

True

#### Return type

bool

#### Raises

**KeyError** – The value entered is not within the available options.

#### initial\_processing()

Load the variables and initialise the dataframe.

#### Returns

DataFrame containing the Min/Max Poisson Ratio and the Min/Max Density divided by Rock Name nad ROck Group. The latter two impact the y-axis and the hbars and titles.

#### Return type

pandas.DataFrame

**plot\_span\_chart**(*df\_to\_plot*, *variable\_span*, *variable\_label*, *variable\_units*, *ax=None*, \*\*kwargs)

Plot a chart divided by the rock type and rock group.

#### **Parameters**

- **df\_to\_plot** (pandas.DataFrame) Panda Dataframe to plot
- variable\_span (list[str, str]) Span (i.e., min and max values) passed as a list. Must be the Column Header name in the DataFrame!
- variable\_label (str) Variable Name. X axis label
- variable\_units (str) Variable Units. X axis label unit
- ax (Matplolib) Matplotlib Axis to plot On
- **kwargs** (*keywords*) Options to pass to matplotlib plotting method

#### **Returns**

Matplotlib AxesSubplots

#### Return type

Matplotlib Axis

#### **UCS Classification Systems**

pyrockmodulus.rock\_variables.ucs\_strength\_criteria(type)

## Insert all UCS Strength Criterion Here. ## ALL VALUES ARE IN MPa # Name Format {Reference Name: [Name of Category]} # Value Format {Reference Name: [Boundaries Location]} <=> in MPa # converted\_psi [Reference name that are converted from psi to MPa]

#### **Parameters**

type (str) – rock classification system to load

#### Returns

#### Return type

### 2.1.2 Supporting Modules

```
pyrockmodulus.formatting_codes
pyrockmodulus.formatting_codes.bold_text(val)
     Returns text as bold
          Parameters
              val (str) - Text
          Returns
              Text as bold
          Return type
              str
pyrockmodulus.formatting_codes.calc_timer_values(end_time)
     Function to calculate the time
          Parameters
              end_time (float) - Time (Difference in time in seconds)
              Time in minutes and seconds
          Return type
              float
pyrockmodulus.formatting_codes.docstring_creator(df)
     Write the example output for a docstring DataFrame
          Parameters
              df (pandas.DataFrame) – DataFrame to be read
              prints the docstring and type for each element in the DataFrame
          Return type
pyrockmodulus.formatting_codes.green_text(val)
     Returns text as bold in green font color
          Parameters
              val (str) - Text
          Returns
              Text as bold in green font color
          Return type
pyrockmodulus.formatting_codes.print_progress(iteration, total, prefix=", suffix=", decimals=1,
                                                      bar_length=50)
     Call in a loop to create terminal progress bar Adjusted bar length to 50, to display on small screen
```

#### **Parameters**

- **iteration** (*int*) current iteration
- total (int) total iteration

```
• prefix (str) – prefix string
```

- **suffix** (*str*) suffix string
- **decimals** (*int*) positive number of decimals in percent complete
- bar\_length (int) character length of bar

#### Returns

system output showing progress

#### Return type

```
pyrockmodulus.formatting_codes.red_text(val)
```

Returns text as bold in red font color

#### **Parameters**

val(str) - Text

#### Returns

Text as bold in red font color

#### Return type

str

#### pyrockmodulus.ucs\_bar\_chart\_plot

pyrockmodulus.ucs\_bar\_chart\_plot.initial\_processing()

Load the UCS Strength Criterion and plot them in a Horizontal Bar Chart with the various criteria

#### **Returns**

Matplotlib AxesSubplots

#### Return type

Matplotlib Axis

| Digital plots of Modulus and Strength ratio for Ro | ocks, Release 0.0 |
|----------------------------------------------------|-------------------|
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |
|                                                    |                   |

#### **CHAPTER**

## **THREE**

## **INDICES AND TABLES**

- genindex
- modindex
- search

| Digital plots of Modulus and Strength ratio for Rocks, Release 0.0 |  |  |
|--------------------------------------------------------------------|--|--|
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |
|                                                                    |  |  |

## **PYTHON MODULE INDEX**

## p

```
pyrockmodulus.formatting_codes, 14
pyrockmodulus.pyrockmodulus, 12
pyrockmodulus.rock_variables, 13
pyrockmodulus.ucs_bar_chart_plot, 15
```

| Digital : | plots of Modulus | and Strength ratio | for Rocks. | Release 0.0 |
|-----------|------------------|--------------------|------------|-------------|
|           |                  |                    |            |             |

20 Python Module Index

## **INDEX**

| A abline() (pyrockmodulus.pyrockmodulus.modulus_ratio method), 9 abline() (pyrockmodulus.pyrockmodulus.strength_ratio method), 11                                                                                   | <pre>initial_processing()</pre>                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B bold_text() (in module pyrockmodulus.formatting_codes), 14  C calc_timer_values() (in module pyrockmodulus.formatting_codes), 14 check_df_col_validity() (pyrockmodulus.pyrockmodulus.poisson_density method), 12 | M module    pyrockmodulus.formatting_codes, 14    pyrockmodulus.pyrockmodulus, 9, 11, 12    pyrockmodulus.rock_variables, 13    pyrockmodulus.ucs_bar_chart_plot, 15 modulus_ratio (class in pyrockmodulus.pyrockmodulus), 9  P |
| D  deere_miller_clusters()                                                                                                                                                                                          | <pre>plot_clusters() (pyrockmodulus.pyrockmodulus.modulus_ratio</pre>                                                                                                                                                           |
| F format_axis() (pyrockmodulus.pyrockmodulus.modulus.modulus.method), 10 format_axis() (pyrockmodulus.pyrockmodulus.strength_method), 11  G green_text() (in module pyrockmodulus.formatting_codes), 14             | pyrockmodulus.formatting codes                                                                                                                                                                                                  |
| initial_processing() (in module pyrockmodulus.ucs_bar_chart_plot), 15 initial_processing()                                                                                                                          | R red_text() (in module pyrockmodulus.formatting_codes), 15  S strength_ratio (class in                                                                                                                                         |

pyrockmodulus.pyrockmodulus), 11

ucs\_strength\_criteria() (in module pyrockmodulus.rock\_variables), 13

U

22 Index