Technical Report Supporting Evidence Retrieval on SSQA

最近更新時間: 2018/09/13 周良冠

Data Formulation (Hypothesis & Paragraph -> matrices)

For each data, there are two kinds of content. One is called "hypothesis", indicated by \mathcal{H} ; and the other is called "Paragraph", indicated by \mathcal{P} . Both of them are sets of sentence, \mathcal{H}_i and \mathcal{P}_j , where i and j are their orders in the contents. For each sentence \mathcal{H}_i and \mathcal{P}_j , we turn them into matrices \mathbf{H}_i , \mathbf{P}_j by tokening and word embedding. Therefore, every sentence is represented by a matrix, and each hypothesis and paragraph are both a set of matrix.

$$\begin{aligned} \mathcal{H} &= \{\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_m\} & \mathcal{P} &= \{\mathcal{P}_1, \mathcal{P}_2, ..., \mathcal{P}_n\} \\ \mathcal{H}_i &\to \mathbf{H_i} & \mathcal{P}_j &\to \mathbf{P_i} \end{aligned}$$

(這張圖有錯, $\mathbf{H}_{\mathbf{i}}$ 並不是 $\mathbf{m} \times \mathbf{d}$,而是要看這句話有幾個tokens。)

Model Structure

The structure of the model can be split into three parts: sentence embedding, fusing and function. (名字暫定). We've tried different method in each part.

1. **Sentence Embedding**: As mentioned above, a hypothesis (so as to paragraph) is represented by a matrix. This part is aimed to condense the matrix into a vector, which is called sentence embedding. For formulation, we can write $\mathbf{h_i} = \mathbf{sent_emb}(\mathbf{H_i})$, where lower case indicates vector. We use the last hidden state of BiLSTM to be the embedding and the dimension of the hidden state is d. After this part, a sentence can be represented by an embedding vector $\mathbf{h_i}$ (or $\mathbf{p_i}$), and it should contain semantics meanings of the corresponding sentence.

- 2. **Fusing**: This part takes in sentence embeddings of both hypothesis and paragraph and generate scores for each sentence of paragraph. That is, each pari of $\mathbf{h_i}$ and $\mathbf{p_j}$ will go through a scoring function $\alpha()$ and generate s_{ij} . $\alpha()$ could be any trainable function. In our case, we simply compute the inner product. Then, we compute $s_j = \beta(s_{ij})$, where $i \in [1,m]$. We have tried two different $\beta()$, one is mean function and the other is max function. We will compare the difference in the results.
- 3. **Function**: This part takes in scores s_j and output the probability of the corresponding $\mathbf{p_j}$, which indicate how possible $\mathbf{p_j}$ is the supporting evidence for \mathcal{H} . We use two different functions to transform scores into probability, Sigmoid() and tanh(abs()). Having probabilities, we can use negative log likelihood as our loss function.

Result

We evaluate results by F1 score and exact match score.

從下面兩張圖可看出,training data的曲線很快速地上升,然而testing data幾乎沒有成長的趨勢,這不是一個好結果。其中可能是因為model設計錯誤,另一個可能原因是data太少導致overfit。

後來做了錯誤分析,去看句子與句子之間的分數是不是真的我們預期的那樣,有相關的句子 分數就會高,不相關的句子分數就會很低。

我們分別看training和testing的圖發現,在training的圖中,分數是很離散的,因為model就是照著training data學的,但testing的分數就沒有分的很清楚,很多分數都落在模稜兩可的值,儘管如此,我們依然能夠觀察到,如果兩個句子意思相近的話,他們彼此的分數也會傾向高一點。

另外,我們觀察到,paragraph中的句子如果是supporting evidence,通常只會和hypothesis裡面的某一句子有關聯。如果 β ()使用mean,那麼即使paragraph有個句子和hypothesis其中一個句子高度相關,只要它和其餘句子不相關,它的score就會被其餘句子稀釋掉。因此,我們認

為max會比mean合理。從下圖也能發現,如果使用mean,分數會傾向更均匀;相反的,使用 max,分數會較為離散。

除此之外,我們意識到,計算兩個向量的相關程度時,越不相關分數不應該是越低,而是趨近於0。如果分數是個非常小的負數,應該也能夠算是某方面的相關。因此,我們嘗試在score之後加絕對值,讓分數的最小值為0。但這麼做會遇到一個問題,因為Sigmoid(0)=0.5,如此一來所有預測機率都會大於0.5。為了解決這個問題,將Sigmoid改為tanh。(這實在是非常不可取,當初只是為了跑出結果,先擋著用,老師表示:必須了解機率真正的意義)

後來實習接近尾聲,也沒多少時間測試了,於是做了max+tanh(abs())的實驗。training set是訓練集與發展集併在一起,而testing set就只有測試集。跟之前不同的是,之前train的時候都只有用到訓練集,想說data多一點,或許會好一點(但依然不多)。實驗結果的分數趨勢圖如下,過程中model卡住了,重新執行後分數才開始往上爬,從圖可以看出,結果依然不佳。不過,新的model產生的分數矩陣圖比起之前更合理。下兩張圖為訓練資料其中一筆的分數,可以看出使用絕對值讓句子與句子之間的分數更合理。

在testing data中也可以看得出來。

當然也有不太合理的例子。

一些個人想法與未來發展

- 1. code是用pytorch寫的,因為我整理資料的方式讓input data不是每一筆都是一樣形狀的 tensor,導致我無法善用pytorch平行的特性,在model裡面刻了一些很醜的for迴圈,跑起來超級慢,建議要把code大大翻修。
- 2. 我覺得hypothesis和paragraph的命名不太好,尤其是paragraph,改成knowledge應該比較好,但因為一直以來都這樣稱呼,後來就沒有改了。
- 3. 從分數轉換到機率的公式是不太合理的,待修改。
- 4. 有label的資料真的太少了,或許可以試試unsupervised或semi-supervised。
- 5. 目前的方法其實是完全依賴sentence embedding的,但是這個model產生sent_emb的機制並不會考慮整個文章,而是每個句子彼此獨立,這並不合理。而且可能有種情況是,多個句子組起來才有意義,單獨存在很難看出其意義。
- 6. 老師的建議是,直接排列組合出所有可能的candidate,例如一段paragraph有五個句子 abcde,那麼candidate就是,a, b, c, d, e, ab, bc,, abcde。然後直接去比這些candidate是 supporting evidence的可能性。