

1 SAR A/D Controller

1.1 Overview

The A/D in JZ4740 is CMOS low-power dissipation 12bit touch screen SAR analog to digital converter. It operates with 3.3/1.8V power supply. It is developed as an embedded high resolution ADC targeting to the 0.18um CMOS process and has wide application in portable electronic devices, high-end home entertainment center, communication systems and so on.

The SAR A/D controller is dedicated to control A/D to work at three different modes: Touch Screen (measure pen position and pen down pressure), Battery (check the battery power), and SADCIN (external ADC input). Touch Screen can transfer the data to memory though the DMA or CPU. Battery and SADCIN can transfer the data to memory though CPU.

Features:

- 6 Channel
- Resolution: 12-bit
- Integral nonlinearity: ±0.5 LSB
 Differential nonlinearity: ±0.4 LSB
 Resolution/speed: up to12bit 187.5ksps
- Max Frequency: 6.0MHzPower-down current: 1uA
- Support touch screen measurement (Through pin XP, XN, YP, YN)
- Support voltage measurement (Through pin PBAT)
- Support external SAR-ADC input (Through pin SADCIN)
- Separate Channel Conversion Mode
- Single-end and Differential Conversion Mode
- Auto X/Y, X/Y/Z and X/Y/Z1/Z2 position measurement

1.2 Pin Description

Table 1-1 SADC Pins Description

Name	I/O	Description
XN	Al	Touch screen analog differential X- position input
YN	Al	Touch screen analog differential Y- position input
XP	Al	Touch screen analog differential X- position input
YP	Al	Touch screen analog differential Y- position input
ADIN0 (PBAT)	Al	Analog input for VBAT measurement.
ADIN1 (SADCIN)	Al	External SAR-ADC input

1.3 Register Description

In this section, we will describe the registers in SAR A/D controller. Following table lists all the registers definition. All register's 32bit address is physical address. And detailed function of each register will be described below.

Name	Description	RW	Reset Value	Address	Access
					Size
ADENA	ADC Enable Register	RW	0x00	0x10070000	8
ADCFG	ADC Configure Register	RW	0x0002002C	0x10070004	32
ADCTRL	ADC Control Register	RW	0x00	0x10070008	8
ADSTATE	ADC Status Register	RW	0x00	0x1007000C	8
ADSAME	ADC Same Point Time Register	RW	0x0000	0x10070010	16
ADWAIT	ADC Wait Time Register	RW	0x0000	0x10070014	16
ADTCH	ADC Touch Screen Data Register	RW	0x00000000	0x10070018	32
ADBDAT	ADC PBAT Data Register	RW	0x0000	0x1007001C	16
ADSDAT	ADC SADCIN Data Register	RW	0x0000	0x10070020	16
ADDPIN	ADC IP DATA PIN	R	0x0000	0x10070024	16

1.3.1 ADC Enable Register (ADENA)

The register ADENA is used to trigger A/D to work.

Bits	Name	Description	RW
7	ADEN*1	A/D Enable Control. (Only used in test mode)	RW
		Check the channel function of ADC. When A/D finish sampling the	
		data, ADEN will be cleared by hardware auto.	
		0: disable	
		1: enable	
6:3	Reserved	These bits always read 0, and written are ignored.	R
2	TCHEN*2	Touch Screen Enable Control.	RW
		0: disable	
		1: enable	
1	PBATEN*2	PBAT Enable Control.	RW
		Sample the voltage of battery, PBATEN can be set to 1 no matter	
		TCHEN is disable or enable, and when the voltage of battery is ready.	
		PBATEN will be cleared by hardware auto.	
0	SADCINEN*2	SADCIN Enable Control.	RW
		Sample SADCIN, SADCINEN can be set to 1 no matter TCHEN is	
		disable or enable, and when SADCIN is ready, SADCINEN will be	
		cleared by hardware auto.	

Note:

- *1. When ADEN is set to 1, other bits cannot be set to 1 at the same time. This mode only used in test mode.
- *2. TCHEN, PBATEN and SADCINEN can be set to 1 at the same time. The priority of the three mode is SADCIN > PBAT > TCH.

1.3.2 ADC Configure Register (ADCFG)

The register ADCFG is used to configure the A/D.

	AD	CF	G																										0x	100	070	004
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SPZZ	EX_IN					Re	ser	ved					CLKOLITD		∑ O Z	DMA_EN	V.V.7	717		SNUM				CLKDIV			BAT_MD			5	
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0

Bits	Name		Description	RW						
31	SPZZ*1	The $X_d Y_d Z_m Z_n$ of different	ent point measure can be different.	RW						
		But the $X_dY_dZ_mZ_n$ of the	e same point measure can be same or different.							
		0:The $X_dY_dZ_mZ_n$ of the	same point measure is all the same.							
		$(X_dY_dZ1Z2, X_dY_dZ1Z$	$(2, X_dY_dZ1Z2, X_dY_dZ1Z2 X_dY_dZ1Z2)$							
		1: The $X_dY_dZ_mZ_n$ of the	same point measure maybe different.							
		(X_dY_dZ1Z2, X_dY_dZ3Z)	$4, X_d Y_d Z 3 Z 4, X_d Y_d Z 1 Z 2 X_d Y_d Z 1 Z 2)$							
30	EX_IN	Choose external driver	or internal driver.	RW						
		0: X_sY_s or X_sY_sZ								
		1: X_dY_d or X_dY_dZ								
		It is no use for $X_dY_dZ_mZ_d$	no use for $X_d Y_d Z_m Z_n$.							
		It is no use when ADCI								
		It is useful when ADCF	G.XYZ = 00/01.							
29:19	Reserved	Γhese bits always read 0, and written are ignored.								
18:16	DNUM	This will set which is th	This will set which is the sampled data is the virtual value.							
		Default: = 3'b010	,							
		DNUM	Number							
		3'b000	Reserved							
		3'b001	The virtual value is the 2nd sampled data							
		3'b010	The virtual value is the 3rd sampled data							
		3'b011	The virtual value is the 4th sampled data							
		3'b100	The virtual value is the 5th sampled data							
		3'b101	The virtual value is the 6th sampled data							
		3'b110	The virtual value is the 7th sampled data							
		3'b111	The virtual value is the 8th sampled data							
15	DMA_EN	When A/D is used as T	ouch Screen (CMD=1100), DMA_EN is used as	RW						
		follows:								
		0: The sample data is r	read by CPU							
		1: The sample data is r	read by DMA							
14:13	XYZ	When A/D is used in To	ouch Screen mode (CMD=1100), XYZ is used as	RW						

		follows:			
		XYZ	Measure (EX_IN = 1)	Measure (EX_IN = 0)	
		00	$X_d \rightarrow Y_d$	$X_s \rightarrow Y_s$	
		01	$X_d \rightarrow Y_d \rightarrow Z_s$	$X_s \rightarrow Y_s \rightarrow Z_s$	
		10	$X_d \rightarrow Y_d \rightarrow Z1_d \rightarrow Z2_d$	$X_d \rightarrow Y_d \rightarrow Z1_d \rightarrow Z2_d$	
			or	or	
			$X_d \rightarrow Y_d \rightarrow Z3_d \rightarrow Z4_d$	$X_d \rightarrow Y_d \rightarrow Z3_d \rightarrow Z4_d$	
		11	Reserved	Reserved	
12:10	SNUM	The number	of repeated sampling on	e point. When A/D is used as Touch	RW
		Screen (CMI	D=1100), SNUM is used	as follows:	
		SNUM	Number		
		000	1		
		001	2		
		010	3		
		011	4		
		100	5		
		101	6		
		110	8		
		111	9		
9:5	CLKDIV	A/D converte	er frequency.		RW
		A/D works at	the frequency between	500KHz and 6MHz.	
		If CLKDIV =1	N, Then the frequency div	vide number = 12MHz/N+1.	
		0< N < 24			
4	BAT_MD	When AD is	used as PBAT measure	the following channel mode can be	RW
		chose to mea	asure the battery power.		
		0: PBAT (full	battery voltage>=2.5V)		
		1: PBAT (full	battery voltage<2.5V)		

3:0	CMD	CMD is used t	o choose the current sample com	mand when adc_en_r is	RW
		set to 1 (single	e channel test mode).		
		CMD	Function	Reference mode	
		0000	Measure X Position (X-plate is	Single-end	
			driven by external DC power)		
		0001	Measure Y Position (Y-plate is	Single-end	
			driven by external DC power)		
		0010	Measure X Position	Differential	
		0011	Measure Y Position	Differential	
		0100	Measure Z1 Position	Differential	
		0101	Measure Z2 Position	Differential	
		0110	Measure Z3 Position	Differential	
		0111	Measure Z4 Position	Differential	
		1000	Measure Touch Pressure Z	Single-end	
		1001	Measure PBAT (>=2.5V)	Single-end	
		1010	Measure PBAT (<2.5V)	Single-end	
		1011	Measure SADCIN	Single-end	
		1100	INT_PEN enable, this mode is t	he default value.	
		1101~1111	Reserved		

Note*1:

 $X_s,\,Y_s,\,Z_s$ means the reference mode of X, Y, Z is single-end mode.

X_d, Y_d, Z1_d, Z2_d, Z3_d, Z4d means the reference mode of X, Y, Z1, Z2, Z3, Z4 is differential mode.

When you measure Xs you need to make sure that X-plate is driven by external DC power.

When you measure Ys you need to make sure that Y-plate is driven by external DC power.

1.3.3 ADC Control Register (ADCTRL)

The register ADCTRL is used to control A/D to work.

Bits	Name	Description	RW
7:5	Reserved	These bits always read 0, and written are ignored.	R
4	PENDM	Pen down interrupt mask.	RW
		0= enabled	
		1= masked	

3	PENUM	Pen up interrupt mask.	RW
		0= enabled	
		1= masked	
2	DTCHM	Touch Screen Data Ready interrupt mask.	RW
		0= enabled	
		1= masked	
1	DRDYM	Data ready interrupt mask. (ADCEN = 1)	RW
		PBAT data ready interrupt mask.	
		0= enabled	
		1= masked	
0	SRDYM	SADCIN Data Ready interrupt mask.	RW
		0= enabled	
		1= masked	

1.3.4 ADC Status Register (ADSTATE)

The register ADCSTATE is used to keep the status of A/D.

Bits	Name	Description	RW
7:5	Reserved	These bits always read 0, and written are ignored.	R
4	PEND	Pen down interrupt flag. Write 1 to this bit, the bit will clear this	RW
		bit.	
		1: active	
		0: not active	
3	PENU	Pen up interrupt flag. Write 1 to this bit, the bit will clear this bit.	RW
		1: active	
		0: not active	
2	DTCH	Touch screen data ready interrupt flag. Write 1 to this bit, the	RW
		bit will clear this bit.	
		1: active	
		0: not active	
1	DRDY	Data ready interrupt flag when ADCEN = 1.	RW
		PBAT data ready interrupt flag. Write 1 to this bit, the bit will	
		clear this bit.	
		1: active	
		0: not active	

0	SRDY	SADCIN Data ready interrupt flag. Write 1 to this bit, the bit will	RW
		clear this bit.	
		1: active	
		0: not active	

1.3.5 ADC Same Point Time Register (ADSAME)

The register ADSAME is used to store the interval time between repeated sampling the same point. The clock frequency of the counter is 12M/128.

1.3.6 ADC Wait Pen Down Time Register (ADWAIT)

The register ADWAIT is used to store the interval time of wait pen down. And the register can be used as the interval time among the different point. The clock frequency of the counter is 12M/128.

1.3.7 ADC Touch Screen Data Register (ADTCH)

The read-only ADTCH is corresponded to 2x32 bit FIFO, it keep the sample data for touch screen. 0~11 bits are data, 15 bit is data type. 16~27 bits are data, 31 bit is data type. When write to the register, DATA will be clear to 0.

Bits	Name	Description	RW
31	TYPE1	Type of the Touch Screen Data1.	RW
		When A/D is used as Touch Screen, ADCFG.XYZ=10	
		TYPE1=1: $X_d \rightarrow Y_d \rightarrow Z1 \rightarrow Z2$	
		TYPE1=0: $X_d \rightarrow Y_d \rightarrow Z3 \rightarrow Z4$	
		When A/D is used as Touch Screen, ADCFG.XYZ=00 or XYZ=01,	
		TYPE1=0.	
30:28	Reserved	These bits always read 0, and written are ignored.	R
27:16	TDATA1	The concert data of touch screen A/D.	RW
15	TYPE0	Type of the Touch Screen Data2.	RW
		When A/D is used as Touch Screen, ADCFG.XYZ=10	
		TYPE0=1: $X_d \rightarrow Y_d \rightarrow Z1 \rightarrow Z2$	
		TYPE0=0: $X_d \rightarrow Y_d \rightarrow Z3 \rightarrow Z4$	
		When A/D is used as Touch Screen, ADCFG.XYZ=00 or XYZ=01,	
		TYPE0=0.	
14:12	Reserved	These bits always read 0, and written are ignored.	R
11:0	TDATA0	The concert data of touch screen A/D.	RW

Note:

(1) When A/D is used as Touch Screen, EX_IN=0 and ADCFG.XYZ=00.

The format of touch screen data is as follows:

Type1	Reserved	Data1	Type0	Reserved	Data0
0	000	Ys	0	000	X _s

(2) When A/D is used as Touch Screen, EX_IN=1 and ADCFG.XYZ=00.

The format of touch screen data is as follows:

Type1	Reserved	Data1	Type0	Reserved	Data0
0	000	Y _d	0	000	X _d

(3) When A/D is used as Touch Screen, EX_IN=0 and ADCFG.XYZ=01.

The format of touch screen data is as follows:

Type1	Reserved	Data1	Type0	Reserved	Data0
0	000	Ys	0	000	X _s
0	000	00000000000	0	000	Z _s

Users need to read twice to get the whole data. The first time reading gets the data Y_s and X_s . The second time reading gets the data Z_s . The relation between "touch pressure" and " Z_s " are inverse ratio.

(4) When A/D is used as Touch Screen, EX_IN=1 and ADCFG.XYZ=01

The format of touch screen data is as follows:

Type1	Reserved	eserved Data1		Reserved	Data0
0	000	Y_d	0	000	X _d
0	000	000000000000	0	000	Z _s

Users need to read twice to get the whole data. The first time reading gets the data Y_d and X_d . The second time reading gets the data Z_s . The relation between "touch pressure" and " Z_s " are inverse ratio.

(5) When A/D is used as Touch Screen, ADCFG.XYZ=11,TYPE=1

The format of touch screen data is as follows:

Type1	Reserved	Data1	Type0	Reserved	Data0
1	000	Y_d	1	000	X _d
1	000	Z2 _d	1	000	Z1 _d

Users need to read twice to get the whole data. The first time reading gets the data Y_d and X_d . The second time reading gets the data $Z2_d$ and $Z1_d$.

The touch pressure measurement formula is as follows: (You can use formula 1 or formula 2.)

$$R_{\text{TOUCH}} = R_{\text{X-Plate}} \bullet \frac{\text{X-Position}}{4096} \left(\frac{Z_2}{Z_1} - 1 \right)$$
 (1)*

$$R_{\text{TOUCH}} = \frac{R_{\text{X-Plate}} \bullet \text{X-Position}}{4096} \left(\frac{4096}{Z_1} - 1\right) - R_{\text{Y-Plate}} \bullet \left(1 - \frac{\text{Y-Position}}{4096}\right)$$
 (2)*1

(6) When A/D is used as Touch Screen, ADCFG.XYZ=11,TYPE=0

The format of touch screen data is as follows:

Type1	Reserved	Data1	Type0	Reserved	Data0
0	000	Y _d	0	000	X _d
0	000	Z4 _d	0	000	Z3 _d

Users need to read twice to get the whole data. The first time reading gets the data Y_d and X_d . The second time reading gets the data $Z4_d$ and $Z3_d$.

The touch pressure measurement formula is as follows: (You can use formula 3 or formula 4.)

$$R_{\text{TOUCH}} = R_{\text{Y-Plate}} \bullet \frac{\text{Y-Position}}{4096} \left(\frac{Z_4}{Z_3} - 1 \right)$$
 (3)*1

$$R_{\text{TOUCH}} = \frac{R_{\text{Y-Plate}} \bullet \text{Y-Position}}{4096} \left(\frac{4096}{Z_3} - 1\right) - R_{\text{X-Plate}} \bullet \left(1 - \frac{X - \text{Position}}{4096}\right) \tag{4}^{*1}$$

Note*1:

To determine pen or finger touch, the pressure of the touch needs to be determined. Generally, it is not necessary to have very high performance for this test; therefore, the 8-bit resolution mode is recommended (however, calculations will be shown here are in 12-bit resolution mode).

 $R_{X-plate}$: Total X-axis resistor value (about $200\Omega \sim 600\Omega$)

 $R_{Y-plate}$: Total Y-axis resistor value (about 200 Ω ~ 600 Ω)

X-Position: X-axis voltage sample value

Y-Position: Y-axis voltage sample value

Z1, Z2: Z1, Z2 voltage sample value

Z3, Z4: Z3, Z4 voltage sample value

1.3.8 ADC PBAT Data Register (ADBDAT)

The read-only ADBDAT is a 16-bit register, it keep the sample data of both "PBAT mode" and "Single channel check" mode. 0~11 bits are data.

ADBDAT									0x	100	700	1C
Bit	15 14 13 12	2 11 1	10 9	8	7	6	5	4	3	2	1	0
	Reserved					BD	ATA	Α				
RST	0 0 0 0	0	0 0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
15:12	Reserved	These bits always read 0, and written are ignored.	R
11:0	BDATA	Data of A/D convert when ADCEN = 1.	RW
		Data of PBAT A/D convert.	
		When write to the register, DATA will be clear to 0.	

When ADCCFG.BAT_MD = 0 (full battery voltage>=2.5V), the measured voltage V_{BAT} is as follows:

$$V_{BAT} = \frac{BDATA}{4096} \bullet 7.5V$$

When ADCCFG.BAT_MD = 1 (full battery voltage < 2.5V), the measured voltage V_{BAT} is as follows:

$$V_{BAT} = \frac{BDATA}{4096} \bullet 2.5V$$

It is recommended to connect a capacitance of about 0.1uF near to pin ADIN0 to have a more stable battery measurement and better ESD protection.

1.3.9 ADC SADCIN Data Register (ADSDAT)

The read-only ADSDAT is a 16-bit register, it keep the sample data. 0~11 bits are data.

Bits	Name	Description	RW
15:12	Reserved	These bits always read 0, and written are ignored.	R
11:0	SDATA	Data of SADCIN A/D convert.	RW
		When write to the register, DATA will be clear to 0.	

1.3.10 ADC IP DATA PIN (ADDPIN)

The read-only ADDPIN is a 16-bit fake register. The transfer data is come from SADC IP output data directly. This is used to check IP data.

Bits	Name	Description	RW
15:12	Reserved	These bits always read 0, and written are ignored.	R
11:0	DATA	Data of transfer.	R

1.4 SAR A/D Controller Guide

The following describes steps of using SAR-ADC.

- **1.4.1 Single Operation (**only used as a test mode to check the channel function)
- (1) Set ADTCTL to 0x1f to mask all the interrupt of SADC.
- (2) Set ADCFG.CMD to choose one CMD;(0000~1011)
- (3) Set ADCFG.CLKDIV to set A/D clock frequency;
- (4) Set ADTCTL.PDEN to 0;
- (5) Set ADENA.ADEN to 1 to start A/D;
- (6) When ADSTATE.DRDY to 1, you can read the sample data from ADBDAT and ADENA.ADEN will be set to 0 auto.

1.4.2 A simple Touch Screen Operation

(Pen Down → Sample some data of several points → Pen Up)

- (1) Set ADTCTL to 0x1f to mask all the interrupt of SADC.
- (2) Set DMA_EN to choose whether to use DMA to read the sample data out or to use CPU to read the sample data out;
- (3) Set ADCFG.SPZZ, ADCFG.EX IN and ADCFG.XYZ to choose sample mode
 - 1: $X_s \rightarrow Y_s$ (Single-end X \rightarrow Single-end Y).
 - 2: $X_d \rightarrow Y_d$ (Differential $X \rightarrow$ Differential Y).
 - 3: $X_s \rightarrow Y_s \rightarrow Z_s$ (Single-end $X \rightarrow$ Single-end $Z \rightarrow$ Single-end $Z \rightarrow$
 - 4: $X_d \rightarrow Y_d \rightarrow Z_s$ (Differential $X \rightarrow$ Differential $Y \rightarrow$ Single-end Z)
 - $5:X_d \rightarrow Y_d \rightarrow Z1_d \rightarrow Z2_d$ or $X_d \rightarrow Y_d \rightarrow Z3_d \rightarrow Z4_d$ (Reference register ADCFG.SPZZ)
 - (Differential X→Differential Y→Differential Z1→Differential Z2 or Differential X→Differential Y→Differential Z3→Differential Z4,)
- (4) Set ADCFG.CLKDIV to set A/D clock frequency;
- (5) Set ADWAIT to decide the wait time of pen down and the interval time between sampling different points. This time delay is necessary because when pen is put down or pen position change, there should be some time to wait the pen down signal to become stable.
- (6) Set ADSAME to decide the interval time between repeated sampling the same point. User can repeat sampling one point to get the most accurate data.
- (7) Set ADTCTL.PENDM to 0 to enable the pen down interrupt of touch panel;
- (8) Set ADENA.TCHEN to 1 to start touch panel;
- (9) When pen down interrupt is happened, you should set ADTCTL.PENDM to 1 and clear ADSTATE.PEND to close pen down interrupt. Then you should clear ADSTATE.PENDU and set ADTCTL.PENUM to 0 to enable pen up interrupt.
- (10) When pen down interrupt is happened, the SAR ADC is sampling data. When ADSTATE.DTCH to 1, user must read the sample data from ADTCH. The SAR ADC will not sample the next point until the whole data of the one point are read (no matter by CPU or DMA). If ADCFG.XYZ is mode one and mode two, user only needs to read once to get the whole data. In other modes, user needs to read twice to get the whole data.
- (11) Repeat 10 till pen up interrupt happened.
- (12) When pen up interrupt is happened, you should set ADTCTL.PENUM to 1 and clear ADSTATE.PENU. Then you should clear ADSTATE.PENDD and set ADTCTL.PENPM to 0 to enable pen down interrupt.
- (13) Wait pen down interrupt and repeat from 9.

(14) When you want to shut down the touch screen, user can set the ADENA.TCHEN to 0. If the last point is not sampled completely, user can abandon it.

1.4.3 PBAT Sample Operation

- (1) Set ADCFG.CLKDIV to set A/D clock frequency;
- (2) Set ADCFG.CH MD to choose PBAT test mode channel.
- (3) Set ADENA.PBATEN to 1 to enable the channel.
- (4) When ADSTATE.DRDY = 1, you can read the sample data from ADPBAT. And the PBATEN will be set to 0 auto.

1.4.4 SADCIN Sample Operation

- (1) Set ADCFG.CLKDIV to set A/D clock frequency;
- (2) Set ADENA.SADCINEN to 1 to enable the channel.
- (3) When ADSTATE. SRDY = 1, you can read the sample data from ADSDAT. And the SADCINEN will be set to 0 auto.

Note:

Touch Screen mode can be interrupt by the PBAT and SADCIN mode. And the priority is SADCIN > PBAT > TOUCH. If SADCINEN or PBATEN is set to 1 before or at the same time with TCHEN, SAR ADC will first work in SADCIN mode then in PBAT mode at last in touch screen mode. If SADCINEN and PBATEN are set to 1 after the TCHEN, the SAR ADC will work in touch screen mode first and finish sampling the same point completely then turn to the SADCIN or PBAT mode. And return to touch screen mode.