Client case: Rauson Energy Co.

Frank

Nelson-Siegel Model:

We use the Nelson-Siegel model to model the yield curves of USD and EUR zero-coupon bond rates.

The Nelson-Siegel model proposes that the instantaneous forward curve can be modeled with the following:

$$f = \beta_0 + \beta_1 e^{\frac{-m}{\tau}} + \beta_2 e^{\frac{-m}{\tau}} \frac{m}{\tau}$$

m - maturity

 τ - unit time interval

This can be integrated to derive an equation for the zero curve:

$$s=\beta_0+(\beta_1+\beta_2)\frac{\tau}{m}(1-e^{\frac{-m}{\tau}})-\beta_2e^{\frac{-m}{\tau}}$$

The modeled USD yield curve:

The modeled EUR yield curve:

FX (USD/EUR) Simulation Process:

Domestic point of view: USD Foreign point of view: EUR

Underlying dynamic from domestic prospective:

$$F_t = F_t(r_{\text{USD}t} - r_{\text{EUR}t}) dt + F_t \sigma_t dW_t$$

Local Volatility Model For FX Simulation:

0 - 0.25	0.25 - 0.5	0.5 - 0.75	0.75 - 1	1 – 2	2 – 3
σ_1	σ_2	σ_3	σ_4	σ_5	σ_6

The model implied volatilities are calibrated to

Maturity (yrs)	0.25	0.5	0.75	1	
ISD	0.1135	0.112	na	0.111	

Key assumption: we assume the volatility beyond year 1 is the same at the volatility at year 1 due to the stable nature of FX volatility.

Simulation timesteps: weekly (deltaT= 1/52)