CS2100 Computer Organisation AY2021/22 Semester 1 Assignment 2 Answer Sheet

FULL NAME:	
STUDENT ID:	
TUTORIAL GROUP:	

Question 0. Submission instructions (3 marks)

a. Name your file with your student number (eg: AxxxxxxxY>.pdf). (1 mark)	Y/N
b. Submit your assignment as a single PDF file. (1 mark)	Y/N
c. Your submission has your tutorial group number, student number and name. (1 mark)	Y/N

Question 1. Datapath (8 marks)

Field	Value
RegDst	X
MemRead	0
MemWrite	1
ALUSrc	1
RegWrite	0
Instruction[31-26] *	0b101011
Instruction[25-21] *	0b11101
Instruction[20-16] *	0b10010
Instruction[15-11] *	0b11111
Instruction[5-0] *	0b011000
• (output from sign-extend)	0xffff ffD8
2 *	0x0000 0004
3 *	0x0000 00A4
4 * (read data 2)	0x0004 0200
5 *	0x7FFF EFCC
6 (ALU control output)	0010

- \$s2 = \$18; \$sp = \$29; -40 = 0b1111 1111 1111 1111 1111 1111 1101 1000.
- Instruction encoding = 0b[101011] [11101] [10010] [1111 1111 1101 1000].
- **2**: 0xFFFFFD8<<2 + 0x000000A4 = 0x00000004.
- **5**: 0x7FFFEFF4 + 0xFFFFFFD8 = 0x7FFFEFCC.

Question 2. Simplification (14 marks)

(a)
$$B \cdot Y \cdot E' \cdot (A' \cdot X + A \cdot X' + A \cdot X + A' \cdot X') + B' \cdot L \cdot U \cdot E' \cdot S' \cdot K \cdot Y + Y \cdot E' \cdot S'$$

[6 marks]

 $B \cdot Y \cdot E' \cdot (\underline{A' \cdot X} + \underline{A} \cdot \underline{X'} + \underline{A} \cdot \underline{X} + \underline{A' \cdot \underline{X'}}) + B' \cdot \underline{L} \cdot \underline{U} \cdot \underline{E'} \cdot \underline{S'} \cdot \underline{K} \cdot \underline{Y} + \underline{Y} \cdot \underline{E'} \cdot \underline{S'}$

Step 1: = $B \cdot Y \cdot E' \cdot (\underline{A' \cdot X' + A' \cdot X} + \underline{A \cdot X' + A \cdot X}) + B' \cdot L \cdot U \cdot E' \cdot S' \cdot K \cdot Y + Y \cdot E' \cdot S'$

(associative law; commutative law)

Step 2: = $B \cdot Y \cdot E' \cdot (A' \cdot (X' + X) + A \cdot (X' + X)) + B' \cdot L \cdot U \cdot E' \cdot S' \cdot K \cdot Y + Y \cdot E' \cdot S'$ (distributive law)

Step 3: = $B \cdot Y \cdot E' \cdot (A' \cdot 1 + A \cdot 1) + B' \cdot L \cdot U \cdot E' \cdot S' \cdot K \cdot Y + Y \cdot E' \cdot S'$ (complement law)

Step 4: $= B \cdot Y \cdot E' \cdot (A' + A) + B' \cdot L \cdot U \cdot E' \cdot S' \cdot K \cdot Y + Y \cdot E' \cdot S'$ (identity law)

Step 5: = $\underline{B \cdot Y \cdot E' \cdot 1} + B' \cdot L \cdot U \cdot E' \cdot S' \cdot K \cdot Y + Y \cdot E' \cdot S'$ (complement law)

Step 6: $= B \cdot Y \cdot E' + \underline{B' \cdot L \cdot U \cdot E' \cdot S' \cdot K \cdot Y} + Y \cdot E' \cdot S'$ (identity law)

Step 7: = $B \cdot Y \cdot E' + \underline{Y \cdot E' \cdot S' \cdot (B' \cdot L \cdot U \cdot K) + Y \cdot E' \cdot S'}$ (associative law; commutative law)

Step 8: $= B \cdot Y \cdot E' + Y \cdot E' \cdot S'$ (absorption theorem 1)

Step 9: $= Y \cdot E' \cdot (B + S')$ (distributive law)

(b)

(c)

[4 marks]

#PIs	4
	$(A' \cdot D, B' \cdot D, B \cdot C \cdot D', A' \cdot B \cdot C)$
#EPIs	2
	$(B' \cdot D, B \cdot C \cdot D')$
Simplest SOP	$B' \cdot D + B \cdot C \cdot D' + A' \cdot D$
Simplest POS	$C \cdot (B+D) \cdot (A'+B'+D')$

[4 marks]

#PIs	6
	$(B'\cdot C, C\cdot D', B\cdot D', A\cdot B', A\cdot D', A\cdot C)$
#EPIs	1
	(B'⋅C)
Simplest SOP	$B' \cdot C + B \cdot D' + A \cdot B'$ or
	$B' \cdot C + B \cdot D' + A \cdot D'$ or
	$B' \cdot C + C \cdot D' + A \cdot B'$ or
	$B' \cdot C + C \cdot D' + A \cdot D'$
Simplest POS	$(A+C)\cdot (B'+D')$

Question 3. Circuit Design (8 marks)

(a) [2 marks]

- (b) $M = E + A' \cdot C \cdot D' + B' \cdot C \cdot D$ [3 marks]
- (c) Draw the circuits for *V*. [3 marks]

 $V = A + B + C \cdot D \cdot E$

Question 4. Block-level design (7 marks)

(a)
$$F(A,B,C,D) = \Sigma m(1, 4, 5, 6, 7, 13)$$

[3 marks]

(b) $G(A,B,E) = \Sigma m(3,5)$

 $H(A,B,E) = \Sigma m(1,2,4,6)$

[4 marks]

Α	В	Ε	<i>S</i> 1	C1	$R = E \oplus C1$	G	Н
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	1
0	1	0	1	0	0	0	1
0	1	1	1	0	1	1	0
1	0	0	1	0	0	0	1
1	0	1	1	0	1	1	0
1	1	0	0	1	1	0	1
1	1	1	0	1	0	0	0

Α	В	Ε	<i>S</i> 1	C1	<i>S2</i>	G	<i>H</i> = <i>S</i> 2 ⊕ <i>C</i> 1
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	1
0	1	0	1	0	1	0	1
0	1	1	1	0	0	1	0
1	0	0	1	0	1	0	1
1	0	1	1	0	0	1	0
1	1	0	0	1	0	0	1
1	1	1	0	1	1	0	0