

嵌入式智慧影像分析與實境界面 Fall 2021

Instructor: Yen-Lin Chen(陳彥霖), Ph.D.

Professor

Dept. Computer Science and Information Engineering National Taipei University of Technology

Lecture 4

Resnet神經網路介紹

Resnet介紹

ResNet

• ResNet是中國大陸計算機科學家何凱明在2015年提出的一種網路結構,在ILSVRC-2015獲得了分類任務的第一名,同時在ImageNet detection, ImageNet localization, COCO detection和COCO segmentation等任務中均獲得了第一名,在當時可謂是轟動一時。

ResNet

• ResNet又名為殘差神經網路,指的是在傳統卷積神經網路中加入 殘差學習(residual learning)的思想,解決了深層網路中梯度消 失和精度下降(訓練集)的問題,使網路能夠越來越深,既保證 了精度,又控制了速度。

Residual / Bottleneck Block

- Residual Network 使用 Residual Block 的架構(如下圖)
- Skip connection跳過一層線性轉換和非線性輸出,直接成為上兩層中 activation function 的輸入

Why Residual Learning

•神經網路層數多→ gradient vanishing與degradation問題(如下圖, layer越多training error越高, testing error也越高)

Residual Learning(殘差學習)

- $y = F(x, \{W_i\}) + x$
 - x: 本身的對映,也就是 x 本身(identity mapping)
 - y: outputs to the layers
 - $F(x, \{W_i\})$: 殘差對映,也就是y x (the residual mapping to be learned)

Residual Learning(殘差學習)

- 殘差單元可以表示為 $(x_l, x_{l+1}$ 為第l個殘差單元的輸入和輸出,F是殘差函數, $h(x_l) = x_l$ 為恆等映射,f為ReLU):
 - $y_l = h(x_l) + F(x_l, W_l)$
 - $\bullet \ x_{l+1} = f(y_l)$
- · 從淺層 1 到深層 L 的學習特徵為

•
$$x_L = x_l + \sum_{i=1}^{L-1} F(x_i, W_i)$$

Back propagation

•
$$\frac{\partial loss}{\partial x_l} = \frac{\partial loss}{\partial x_L} \cdot \frac{\partial x_L}{\partial x_l} = \frac{\partial loss}{\partial x_L} \cdot (1 + \frac{\partial}{\partial x_L} \sum_{i=1}^{L-1} F(x_i, W_i))$$

Plain Network vs Residual Network

- · ResNet網絡參考了VGG19網絡,在其基礎 上進行了修改,並通過短路機制加入了殘 差單元
- 在ResNet使用stride=2的卷積做down sample, 並且用global average pool層替換了fully connected layer
- feature map大小降低一半時, feature map的數量增加一倍,保持了layer複雜度

Plain Network vs Residual Network

• 擁有 Residual Blocks 的 Residual Network(右下) 在 training error 的表現會比起Plain Network(左下)更低

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

3x3, s=2

Input

stem

Resnet架構

- ·不管是哪種ResNet,整體架構都可以分為三大部分:
 - Input stem:
 - 使用7*7 convolution layer, output channel of 64, stride = 2
 - 使用3*3 max pooling layer, stride = 2
 - Stage block:
 - ResNet共有4個Stage block,每個stage block都是由數個building block堆疊而成。不論是用stride或是pooling,每個stage一般都會先降低解析度並加大寬度 (channel),再做一連串的residual learning
 - Output stem:
 - 依照任務,設計不同的輸出。一般來說這邊會隨著任務轉變,所以通常不 算在ResNet的backbone裡

ResNet架構 cont.

• 針對不同深度的ResNet,作者提出了兩種Residual Block:

- 1. 圖左為基本的residual block, residual mapping為兩個64通道的3x3卷積,輸入輸出均為64通道,可直接相加。此block主要使用在較淺層的網路,如ResNet-34
- 2.圖右為針對深層網路提出的block,稱為 "bottleneck" block,主要目的就是為了降維。首先通過一個1x1卷積將256維通道 (channel) 降到64通道,最後通過一個256通道的1x1卷積恢復。

Resnet架構比較

- ResNet18、ResNet34使用一般的residual block
- ResNet50、ResNet101、ResNet152使用了expansion為4的 bottleneck block

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
conv2_x	56×56	3×3 max pool, stride 2						
		$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	\[\begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array} \times 3	\[\begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array} \times 3		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	\[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \] \times 4	\[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \times 8 \]		
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 6	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 23	1×1, 256 3×3, 256 1×1, 1024 ×36		
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \] \times 3	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \times 3		
	1×1	average pool, 1000-d fc, softmax						
FLOPs		1.8×10 ⁹	3.6×10 ⁹	3.8×10^{9}	7.6×10 ⁹	11.3×10 ⁹		

Resnet比較

- Resnet層數越多, Accuracy越高、loss越低
- 但是同時層數越多,運算時間越長
- 可以根據裝置運算能力選擇不同層數的Resnet

Model	Top-1/Top-5 Error (%)	Pruned Para. (%)	FLOPs (%)	Speed-up \times
			Pruning	Pruning + Quantization
ResNet-18(Baseline)	29.36/10.02	0	100	1
ResNet-18	30.29/10.43	30.0	71.4	11.4
ResNet-18	30.65/11.93	50.0	44.2	16.0
ResNet-18	33.40/13.37	66.7	29.5	28.2
ResNet-50(Baseline)	24.87/6.95	0	100	1
ResNet-50	23.42/6.93	30.0	66.7	12.0
ResNet-50	24.21/7.65	50.0	47.6	16.0
ResNet-50	28.73/8.37	75.3	27.0	29.6

Resnet50

- Input stem (conv1)
- Stage block (conv2_x, conv3_x, conv4_x, conv5_x)
- Output stem
- 網路計算量為3.8x10⁹FLOPs

Resnet18

- Input stem (conv1)
- Stage block (conv2_x, conv3_x, conv4_x, conv5_x)
- Output stem
- 網路計算量為1.8x10⁹FLOPs
- 本次project會使用Resnet18來進行道路辨識模型訓練。

參考資料

TAIPEI TECH

參考資料

Resnet

- https://ithelp.ithome.com.tw/articles/10204727
- https://medium.com/%E8%BB%9F%E9%AB%94%E4%B9%8B%E5%BF%8
 3/deep-learning-residual-leaning%E8%AA%8D%E8%AD%98resnet%E8%88%87%E4%BB%96%E7%9A%8
 4%E5%86%A0%E5%90%8D%E5%BE%8C%E7%B9%BC%E8%80%85resn
 ext-resnest-6bedf9389ce
- https://kknews.cc/zh-tw/code/xpaz689.html
- https://arxiv.org/pdf/1812.01187.pdf