Python Data Analysis Reference Card
Fabricio Ferrari www.ferrari.pro.br
A,B: 2D array x,y: 1D vector M,N integers

Numpy Arrays

Numpy A	irays
Creation	
zeros((M,N))	Returns array filled zeros, M lines, N columns
ones((M,N))	Returns array filled with ones, MxN
<pre>empty((M,N))</pre>	Returns array not filled (random values), MxN
zeros_like(A)	Return an array of zeros with shape and type of in-
	put.
ones_like(A)	Return an array of ones with shape and type of in-
	put.
<pre>empty_like(A)</pre>	Return an empty array with shape and type of input.
random.random((M,N))	Returns array filled with random numbers [01]
identity(3,float)	Identity 3x3 array of floats
array([(1.5,2,3),(4,5,6)])	specify values, 2x3 array of floats
mgrid[1:3,2:5]	rectangular mesh grid with x values [1,2] and y values
	[2,3,4]
fromfunction(f, (3,3))	Returns 3x3 array with function f(i,j) evaluated
	for all combinations of indices
arange(1., 10., 0.5)	Array with range and step of values
linspace(0,2,9)	9 numbers from 0 to 2
Methods	
A.sum()	Sum array (may specify axis)
A.min()	Minimum value
A.max()	Maximum Value
A.mean()	Average value
A.std()	Standard Deviation
A.var()	Variance
A.trace()	Array trace
A.size()	Number of elements
A.shape()	Shape
A.ptp()	Peak-to-peak (maximum - minimum)
A.ravel()	1-d version of A
A.transpose(), A.T	transpose indices of array
A.resize(M,N)	Replicate or truncate array to new shape in place
A.reshape(M,N)	Returns array with new shape
A.clip(Amin,Amax)	Clip values of array a at values Amin, Amax
A.compress(condition, axis=None)	Selects elements from array A based on condition
A.conjugate()	Return an array with all complex-valued elements
	conjugated.
A.copy	Return a copy of the array.
A.cumprod(axis=0)	Cumulative product along specied axis.
A.cumsum(axis=0)	Return the cumulative sum of the elements along the
	given axis.
A.diagonal(offset=0, axis1=0, axis2=1)	Returns diagonal of 2D matrix with optional offsets.
A.fill(value)	fills in with a specified value

Numpy Arrays (cont.)

Operations	Arithmetic operations are elementwise
C = A - B	Elementwise subtraction $(C_{i,j} = A_{i,j} - B_{i,j})$
A**2	Returns array with each A element squared
dot(A,B)	Matrix product
<pre>mat(A) * mat(B)</pre>	Matrix product
matrixmultiply(A, B)	Matrix product
inner(A, B)	Inner product
outer(A, B)	Outer product
<pre>product(A, axis=0)</pre>	Net product of elements along specified axis.
concatenate(arrays, axis=0)	Concatenate arrays contained in sequence of arrays
vstack(A,B)	Vertically stacks two arrays
hstack(A,B)	Horizontally stacks two arrays
vsplit(A,2)	Vertically splits A in 2
hsplit(A,2)	Horizontally Splits A in 2
Indexing	
x[2]	3rd elements (zero based indexing)
x[-2]	Counting from the end
x[2:5]	subarray, $[x[2], x[3], x[4]]$
x[:5]	from the beginning to the 4th element
x[2:]	from the 3rd to the end
x[:]	the whole array
x[2:9:3]	every 3 elements, $[x[2], x[5], x[8]]$
x[numpy.where(x>7)]	returns elements in x that satisfy criteria
indices(shape, type=None)	Generate array with values corresponding to position
	of selected index of the array
A[j][i]	Indexing convention (j row, i column)
A[3][2]	3rd element in the 4th row
A[1]	2nd row

Numpy Arrays Caution: The cumulative class of operations that either sum or multiply elements of an array (sum, product, cumsum, cumproduct) use the input array type as the type to perform the cumulative sum or product. If you are not using the largest type for the array (i.e., int64, Float64, etc.) you are asking for trouble. One is likely to run into integer overflows or Floating point precision problems if you don't specifically ask for a higher precision result, especially for large array. One should get into the habit of specifying the keyword argument dtype to a highest precision type when using these functions, e.g. sum(arr, dtype=Float64).

Numpy Arrays (cont.)

```
Questions
all(A, axis=None )
                                                   are all elements of array nonzero?
                                                                                               [also]
                                                   method], identical to alltrue()
allclose(A, B, rtol=1.e-5, atol=1.e-8)
                                                   True if all elements within specied amount (between
                                                   two arrays)
alltrue(A, axis=0)
                                                   Are all elements nonzero along specied axis true.
any(A , axis=None)
                                                   Are any elements of an array nonzero [also method],
                                                   identical to sometrue()
sometrue(A, axis=0)
                                                   Are any elements along specified axis true
where(a)
                                                   Find true locations in array a
     Ordering
                                                   Return array with min/max locations for selected
argmax(A, axis=-1), argmin(a,axis=-1)
argsort(A, axis=-1)
                                                   Returns indices of results of sort on an array
searchsorted(bin, A)
                                                   Return indices of mapping values of an array a into
                                                   a monotonic array bin
                                                   Sort array elements along selected axis
sort(A, axis=-1)
choose(selector, population, clipmode=CLIP)
                                                   Fills specied array by selecting corresponding values
                                                   from a set of arrays using integer selection array (po-
                                                   pulation is a tuple of arrays)
     File Ops
                                                   Use binary data in file to form new array of specified
fromfile(file, type, shape=None)
fromstring(datastring, type, shape=None)
                                                   Use binary data in datastring to form new array of
                                                   specified shape and type
     Numeric Types
A.astype(type)
                                                   Copy of the array, cast to a specified type.
int8, uint8, int16, uint16, int32, uint32,
                                                   Possible numeric types dtype=
int64, uint64, float32, float64, complex64,
complex128
```

PyFits

```
load FITS module
import pyfits
                                                          show info about file
pyfits.info('pix.fits')
img = pyfits.getdata('pix.fits')
                                                          read image data from file
                                                           read header from file
hdr = pyfits.getheader('pix.fits')
hdr['date']
                                                           header keyword value
hdr['date'] = '4th of July'
                                                           modify value
hdr.update('flatfile','flat17.fits')
                                                           add new keyword 'flatfile'
                                                           create new fits file
pyfits.writeto('newfile.fits',data,hdr)
pyfits.append('existingfile.fits',data, hdr)
                                                           append to file
pyfits.update('existingfile.fits',data, hdr, ext=3)
                                                           update file
```

Creating a fits image file with header

```
import pyfits
h0 = pyfits.Header()
h0.update('SERSICN',4.5)
h0.update('SERSICRN',22.1)
h0.update('SERSICIN',-2.3)
data = random((100,100))
fitsfile = pyfits.PrimaryHDU(data, h0)
fitsfile.update_header()
print fitsfile._header
fitsfile.writeto('my.fits')
```

Matplotlib/pylab

D1-4 C	Mathorin/pylan
Plot functions	
acorr(x)	plot autocorrelation function
bar(x,y)	bar charts
barh(x,y)	horizontal bar charts
broken_barh(x,y)	a set of horizontal bars with gaps
boxplot(x)	box and whisker plots
cohere(x,y)	plot of coherence
contour(A)	contour plot
contourf(A)	filled contours
csd(x,y)	plot of cross spectral density
errorbar(x,y,yerr,xerr)	errorbar plot
hist(x)	histogram plot
imshow(A)	display image within axes boundaries (resamples image)
loglog(x,y)	log log plot
matshow(A)	display a matrix in a new figure preserving aspect
pcolor(A)	make a pseudocolor plot
pcolormesh(A)	make a pseudocolor plot using a quadrilateral mesh
pie(x)	pie chart
plot(x,y)	basic x, y plots
<pre>plot_date(x,y)</pre>	plot using x or y argument as date values and label axis accordingly
polar(x)	polar plot
psd(x)	power spectral density (FFT)
quiver(x,y)	vector field plot
<pre>scatter(x,y)</pre>	scatter plot
semilogx(x,y)	log x, linear y, x y plot
semilogy(x,y)	linear x, log y, x y plot
specgram	spectrogram plot (FFT)
stem(x,y)	stem plot (similar to histogram)
spy(A)	plot sparsity pattern using markers
xcorr(x,y)	plot the autocorrelation function of x and y

Matplotlib/Pylab

Decorations	annotate something in figure
annotate	
arrow	add arrow to plot
axhline	plot horizontal line across axes
axvline	plot vertical line across axes
axhspan	plot horizontal bar across axes
axvspan	plot vertical bar across axes
clabel	label contour lines
clim	adjust color limits of current image
fill	make filled polygons
grid	set whether grids are visible
legend	add legend to current axes
rgrids	customize the radial grids and labels for polar plots
table	add table to axes
text	add text to axes
thetagrids	for polar plots
title	add title to axes
xlabel	add x axes label
ylabel	add y axes label
xlim	set/get x axes limits
ylim	set/get y axes limits
xticks	set/get x ticks
yticks	set/get y ticks
Figure functions	
colorbar	add colorbar to current Figure
figimage	display unresampled image in Figure
figlegend	display legend for Figure
figtext	add text to Figure

Matplotlib/Pylab

Objects	iviatpiotiib/ r ylab
axes	create axes object on current figure
box	set axis frame state on or off
cla	clear current axes
clf	clear current figure
close	close a figure window
delaxes	delete axes object from the current figure
draw	force a redraw of the current figure
figure	create or change active figure
gca	get the current axes object
gcf	get the current figure
gci	get the current image
getp	get a handle graphics property
hold	set the hold state (overdraw or clear?)
ioff	set interactive mode off
ion	set interactive mode on
isinteractive	test for interactive mode
ishold	test for hold mode
plotting	list plotting commands
rc	control the default parameters
savefig	save the current figure
setp	set a handle graphics property
show	show the current figures (for non-interactive mode)
subplot	create an axes within a grid of axes
subplot_tool Color Maps	launch the subplot configuration tool
autumn	set the default colormap to autumn
bone	set the default colormap to bone
cool	set the default colormap to cool
copper	set the default colormap to copper
flag	set the default colormap to flag
gray	set the default colormap to gray
hot	set the default colormap to hot
hsv	set the default colormap to hsv
jet	set the default colormap to jet
pink	set the default colormap to pink
prism	set the default colormap to prism
spring	set the default colormap to spring
summer	set the default colormap to summer
winter	set the default colormap to winter
spectral	set the default colormap to spectral

Examples

Based on:

- \star $Using\ Python\ for\ Interactive\ Data\ Analysis\ by$ Perry Greenfield and Robert Jedrzejewski, Space Telescope Science Institute, May 10, 2007
- \star Tentative NumPy Tutorial, www.scipy.org, March 01, 2009.