【高速先生原创|生产与高速系列】怎样才是合适的线间距?

作者: 刘为霞 一博科技高速先生团队队员

"间距我已经按照 3H 处理了而且布线空间也没办法调整了"

"这个 DDR4 是要跑 2400M 的,麻烦您调整一个合适的间距,尽量不要出问题"

但是怎样才是合适的间距,在 layout 工程师眼里一直都是一个玄学的命题,只能放飞想象的翅膀,而不是一个可以用数字量化的结果。就好像串扰,也是一个抽象的世界,所以每每遇到这种问题,大家就只能佛系一点啦。

对于串扰,我们可能了解是怎么产生的,以及变化的趋势,但实际上,在遇到间距太近没有空间调整,或者双带线层叠的时候,我们能做的就是尽量拉开间距,却没有太直观的办法评估多大的间距会是比较合适的。在没有测试参数,没有仿真结果的情况下,是不是只能靠拍脑袋了呢?此时,Allegro17.2中的功能——线间耦合串扰分析"duang"就适时出场。这个功能可以帮 layout 工程师去衡量间距和串扰之间的平衡,用具体的参数告诉大家,怎样的间距才是合适的。还是一样用一个例子来说明新功能的实用性。

如下图所示 DDR3 信号,工作频率为 1600Mbps,按照客户要求设置了比较严格的等长要求±5mil,由于空间的影响,部分地方间距压缩到 5mil 才能完成时序等长,这个间距和我们平时的设计规范是违背的,这种时候就需要准确的数据,用严谨的态度去说服客户修改等长要求,下面我们用线间耦合串扰分析去看一下 5mil 的间距对于信号的影响大不大。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

首先选择 Coupling Workflow,开始设置其他参数。选择需要分析的网络,设置耦 合阈值为2%,意味着耦合率为2%以下时忽略不计。一般的遵循的规则是耦合率应该 为5%以下, 当耦合率高于5%以上时, 信号间距就需要调整了。设置比较简单, 傻瓜 式操作,对于英语渣的我而言,可以说是非常的人性化了。选择 start analysis。

结果也是通过两种方式显示: coupling Vision,比较直观的一种方式,把鼠标放置 在相应的线段上时, 也会显示相应的耦合系数。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

另一种结果显示方式是 coupling table,数据比较清晰具体,主要关注的是最大耦 合系数以及耦合系数大于5%的部分线长比例。

orst Case Mode									4027			
unmary Table												
Net Name	Max Coupling				%	% Length with Coupling Coef						
	Aggressor Net Name		Coef(%) Length(%)		(%)	> 5%	2%~5%	Total Coupling Index (mils-%)				
DATA_D10	DATA D13		5.40	0.21	2,9	7	34.28	8525.39				
DATA D11	DATA D10		5.40	0.14	0.4		30.23	6476.66				
DATA D12	DATA D13		5.10	0.23	6.7	5	36.60	10557.76				
DATA_D13	DATA_D10		5.40	0.23	6.0)	43.09	9889.00				
DATA_D14	DATA_D15	4	1.80	5.11	0.0)	48.76	12346.70				
DATA_D15	DATA_D14		1.80	5.08	0.0)	39.45	7167.10				
DATA D16	DATA D17			0.65	9.3		18.93	7596.04				
DATA_D17	DATA_D16			1.31	3.1		23.78	5842.39				
DATA_D18	DATA_D17		5.40	1.28	1.2		34.96	7130.96				
DATA_D19	DATA_D22			0.22	10.		39.35	11173.97				
DATA_D20	DATA_D18		1.60	0.73	0.0		34.10	7266.94				
DATA_D21	DATA_D12		5.20	1.31	6.3		25.27	5433.06				
DATA_D22	DATA_D19		9.70	0.23	11		41.29	16746.83				
DATA_D23	DATA_D16		9.70	0.39	11.		22.75	11788.90				
DATA_D8	DATA_D9 DATA_D11		4.80 7.09 4.80 1.32		0.0		29.59 37.43	6399.22 11786.21				
DATA_D9	DAIA_DII	-	1.00	1.52	0.0	,	37.43	11/00.21				
etailed Table												
Victim Trace Ref		ggressor Net	let ggressor Trace R Coupling		oling Coef	Coef Length		Victim Segme		Segment		Aggressor Segment
	9::DATA_D16 D	ATA_D23	Trace1879::0	A 9.68		17.403	06LAY04	(3980	0.000 1207.831	, (3980.000	1225.234)	
▷ (2) Trace287	9::DATA D16 D	ATA D17	Trace2695::I	A 9.66		10.000	06LAY04	(3950	0.000 1423.796	(3950.000	1433,796)	
▶ (4) Trace286	3::DATA D16 D	ATA D17	Trace2695::1	Δ 9.66		10.000	06LAY04	(395)	0.000 1343.796	(3950.000	1353.796)	
▶ (4) Trace287		ATA D17	Trace2695::I			10.000	06LAY04		0.000 1383.796			
		ATA D23	Trace1879::			9.766	06LAY04					
▷ (2) Trace285	_	_							0.000 1235.234			
▷ (3) Trace286		ATA_D23	Trace1879::0			10.000	06LAY04		0.000 1363.796			
▷ (3) Trace285	9::DATA_D16 D	ATA_D23	Trace1879::0	OA 9.62		20.234	06LAY04	(3980	0.000 1245.000	, (3980.000	1265.234)	
	9::DATA_D16 D	ATA_D23	Trace1879::0	OA 9.62		30.000	06LAY04	(3980	0.000 1275.234	, (3980.000	1305.234)	
▷ (3) Trace287	5::DATA_D16 D	ATA_D23	Trace1879::[A 9.62		10.000	06LAY04	(3980	0.000 1403.796	, (3980.000	1413.796)	
▷ (3) Trace288	3::DATA_D16 D	ATA D23	Trace1879::[OA 9.62		11.204	06LAY04	(3980	0.000 1443.796	, (3980.000	1455.000)	
		ATA_D23	Trace1879::[A 9.62		18,562	06LAY04		0.000 1315.234			
(3) Trace285		ATA D23	Trace1879::[4.766	06LAY04		0.000 1225.234			
		ATA D17	Trace2675::1			5.234	06LAY04		0.000 1223.234			
		AIA_DI/	irace20/5::t	JA 9.33		3.234		(3980	J.000 1230.000;	, (5980.000		
	O DATA DAG C	ATA D17	Trace2683::0			10.000	06LAY04		0.000 1265.234			

从上面的结果可以看到,部分网络的耦合系数达到9.7%,串扰太大,对信号质量 可能影响会比较大。但这些地方都比较短,比较容易调整,所以可以选择适当放宽等长 规则到±25mil,把间距拉开到9mil,这是可以满足时序,调整也比较小的一种方式, 结果如下图,耦合系数均在5%以下。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

这种数据让我们在设计的时候,能够清楚的了解到自己板子的实际情况,不需要靠想象去完成板子的修改,也有直观的数据指导修改,修改点清晰明了,对于提升设计效率以及设计的准确性是有很大帮助的。

【关于一博】

- 一博科技成立于 2003 年 3 月,专注于高速 PCB 设计、PCB 制板、SMT 焊接加工和供应 链服务。我司在中国、美国、日本设立研发机构,全球研发工程师 600 余人。
- 一博旗下 PCB 板厂位于深圳松岗,采用来自日本、德国等一流加工设备,TPS 精益生产管理以及品质管控体系的引入,致力为广大客户提供高品质、高多层的制板服务。
- 一博旗下 PCBA 总厂位于深圳,并在上海、成都设立分厂,厂房面积 15000 平米,现有 20 条 SMT 产线,配备全新进口富士 XPF、NXT3、AIMEX III、全自动锡膏印刷机、十温 区回流炉、波峰焊等高端设备,并配有 AOI、XRAY、SPI、智能首件测试仪、全自动分 板机、BGA 返修台、三防漆等设备,专注研发打样、中小批量的 SMT 贴片、组装等服 务。作为国内 SMT 快件厂商,48 小时准交率超过 95%。常备一万余种 YAGEO、MURATA、AVX、KEMET 等全系列阻容以及常用电感、磁珠、连接器、晶振、二三极管,源自原厂或一级代理,现货在库,并提供全 BOM 元器件供应。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

【关于高速先生】

高速先生由深圳市一博科技有限公司 R&D 技术研究部创办,用浅显易懂的方式讲述高 速设计,成立至今保持每周发布两篇原创技术文章,已和大家分享了百余篇呕心沥血之 作,深受业内专业人士欢迎,是中国高速电路第一自媒体品牌。

扫一扫,即可关注

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

