K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Design of single stage amplifier

 25^{th} June, 2020

Numerical

1. Design a single RC coupled JFET amplifier for the following specifications:

$$V_o = 2.2 \text{V}, f_l \le 20 \text{ Hz}, |A_v| \ge 9$$

Calculate A_v, R_i, R_o

Solution:

1) Data:

$$V_o = 2.2 \text{V}, f_l \le 20 \text{ Hz}, |A_v| \ge 9$$

2) Selection of JFET:

We select n channel JFET BFW11 from the datasheet with the following specifications: $g_{mo} = 5600\mu \mho, V_p = -2.5V, r_d = 50k\Omega, IDSS = 7mA$

3) Selection of baising circuit:

Self bais circuit is selected to give mid point baising

Figure 1: Self baised Circuit 1

4) Selection of Q point:

a) For mid point baising :
$$I_D = \frac{I_{DSS}}{2} = \frac{7}{2} = 3.5 \text{mA}$$

b)
$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_p} \right)^2$$

$$\frac{3.5}{7} = \left(1 - \frac{V_{GS}}{V_p}\right)^2$$

$$0.5 = \left(1 - \frac{V_{GS}}{V_p}\right)^2$$

$$V_{GS} = V_p \left(1 - \sqrt{\frac{I_D}{I_{DSS}}} \right)$$

$$V_{GS} = -2.5 \left(1 - \sqrt{\frac{1}{2}} \right)$$

$$V_{GS} = -0.732V$$

c) Calculation g_m :

$$g_m = g_{mo} \left(1 - \frac{V_{GS}}{V_p} \right)$$

$$g_m = 5600 \times 10^{-6} \left(1 - \frac{-0.732}{-2.5} \right)$$

$$g_m = 3.96 \text{mV}$$

5) Selection of R_S :

$$V_{GS} = V_G - V_S$$
 $(V_G = 0 : self baised)$

$$V_{GS} = -V_S$$

$$V_{GS} = -I_D R_S$$

$$R_S = -V_{GS}/I_D = -(-0.732)/3.5mA = 209.142\Omega, 1/4 \text{ W (H.S.V)}$$

Select
$$R_S = 220\Omega$$
, 1/4 W (H.S.V)

6) Selection of R_D :

$$A_v = -g_m(r_d||R_D)$$

$$-9 = -3.96 \times 10^{-3} (50 \times 10^3 || R_D)$$

$$-9 = -3.96 \times 10^{-3} \left(\frac{50 \times 10^3 \times R_D}{50 \times 10^3 + R_D} \right)$$

$$R_D = 2.380 f\Omega$$

Select
$$R_D = 2.7k\Omega$$
, 1/4 W (H.S.V)

7) Selection of R_G :

Select
$$R_G = 1M\Omega$$
, 1/4 W (H.S.V)

8) Selection of V_{DD} :

$$V_{DS} \ge V_{o(peak)} + |V_p|$$

$$V_{DS} = 1.5(V_{o(peak)} + 2.5)$$

$$V_{DS} = 1.5(2\sqrt{2} + 2.5)$$

$$V_{DS} = 8.416V$$

Applying KVL to the DS loop

$$V_{DS} = V_{DD} - I_D R_D - I_D R_S$$

$$V_{DD} = V_{DS} + I_D(R_D + R_S)$$

$$V_{DD} = 3.416 + 3.5 \times 10^{-3} (2.7 \times 10^3 + 220)$$

$$V_{DD} = 18.636V$$

Select
$$V_{DD} = 20V$$

9) Selection of C_S :

$$X_{CS} \le 0.1R_S$$

$$\frac{1}{2\pi \times f_{LCS}C_S} \le 0.1R_S \qquad (f_{LCS} = f_L \le 20Hz)$$

$$C_S \ge \frac{1}{2\pi \times 0.1R_S} \ge \frac{1}{2\pi \times 0.1 \times 220}$$

$$C_S \ge 361.715\mu F$$
 Select $C_S = 390\mu F$, 25V (H.S.V)

10) Selection of C_{C1} :

$$C_{C1} = \frac{1}{2\pi \times f_{LCC1}R_{eq}} \qquad (f_{LCC1} = f_L \le 20Hz)$$

$$R_{eq} = R_G = 1M\Omega$$

$$C_{C1} = \frac{1}{2\pi \times 20 \times 1 \times 10^6}$$

$$2\pi \times 20 \times 1 \times$$

$$C_{C1} = 7.9 \text{ nF}$$

Small signal equivalent circuit:

Figure 2: Small signal equivalent circuit for CC1

Select
$$C_{C1} = 8.2 \text{ nF}, 25 \text{V} \text{ (H.S.V)}$$

11) Selection of C_{C2} :

$$C_{C2} = \frac{1}{2\pi \times f_{LCC2}R_{eq}} \qquad (f_{LCC2} = f_L \le 20Hz)$$

$$R_{eq} = r_d ||R_D = 2.7 \times 10^3||20 \times 10^3 = 2.56k\Omega$$

$$C_{C2} = \frac{1}{2\pi \times 2.56 \times 10^3 \times 20}$$

$$C_{C2} = 3.107\text{nF}$$

Small signal equivalent circuit:

Figure 3: Small signal equivalent circuit for CC2

Select $C_{C2} = 3.3 \text{nF}, 25 \text{V} \text{ (H.S.V)}$

12) Designed Circuit is:

Figure 4: Designed circuit 1

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows

Figure 5: Circuit schematic 1

Figure 6: Circuit Schematic: Input Output Waveform

$\ \, {\bf Comparsion \ between \ simulated \ and \ theoretical \ values:}$

Parameters	Simulated	Theoretical
I_{DQ}	$3.420 \mathrm{mA}$	$3.5 \mathrm{mA}$
A_v	10.418	≥9

