

Department of Software Engineering BAHRIA UNIVERSITY Discovering Knowledge

Lecture 2-Algorithm Analysis

Bushra Fazal(Assistant Professor)

Department of Software Engineering
Bahria University Karachi Campus

Algorithm

- An *algorithm* is a set of instructions to be followed to solve a problem.
 - There can be more than one solution (more than one algorithm) to solve a given problem.
 - An algorithm can be implemented using different programming languages on different platforms.
- An algorithm must be correct. It should correctly solve the problem.
 - e.g. For sorting, this means even if (1) the input is already sorted, or (2) it contains repeated elements.
- Once we have a correct algorithm for a problem, we have to determine the efficiency of that algorithm.

Algorithmic Performance

There are two aspects of algorithmic performance:

Time

- Instructions take time.
- How fast does the algorithm perform?
- What affects its runtime?

Space

- Data structures take space
- What kind of data structures can be used?
- How does choice of data structure affect the runtime?

> We will focus on time:

- How to estimate the time required for an algorithm
- How to reduce the time required

Analysis of Algorithms

- Analysis of Algorithms is the area of computer science that provides tools to analyze the efficiency of different methods of solutions.
- How do we compare the time efficiency of two algorithms that solve the same problem?

Naïve Approach: implement these algorithms in a programming language (C++), and run them to compare their time requirements. Comparing the programs (instead of algorithms) has difficulties.

- How are the algorithms coded?
 - Comparing running times means comparing the implementations.
 - We should not compare implementations, because they are sensitive to programming style that may cloud the issue of which algorithm is inherently more efficient.
- What computer should we use?
 - We should compare the efficiency of the algorithms independently of a particular computer.
- What data should the program use?
 - Any analysis must be independent of specific data.

Analysis of Algorithms

• When we analyze algorithms, we should employ mathematical techniques that analyze algorithms independently of *specific implementations*, computers, or data.

- To analyze algorithms:
 - First, we start to count the number of significant operations in a particular solution to assess its efficiency.
 - Then, we will express the efficiency of algorithms using growth functions.

The Execution Time of Algorithms

- Each operation in an algorithm (or a program) has a cost.
 - → Each operation takes a certain of time.

count = count + 1; \rightarrow take a certain amount of time, but it is constant

A sequence of operations:

count = count + 1; Cost:
$$c_1$$
 sum = sum + count; Cost: c_2

 \rightarrow Total Cost = $c_1 + c_2$

The Execution Time of Algorithms (cont.)

Example: Simple If-Statement

	<u>Cost</u>	<u>Times</u>
if (n < 0)	c1	1
absval = -n	c2	1
else		
absval = n;	c3	1

Total Cost \leq c1 + max(c2,c3)

The Execution Time of Algorithms (cont.)

Example: Simple Loop

	<u>Cost</u>	<u>Times</u>
i = 1;	c1	1
sum = 0;	c2	1
while (i <= n) {	c3	n+1
i = i + 1;	c4	n
sum = sum + i;	c5	n
}		

Total Cost =
$$c1 + c2 + (n+1)*c3 + n*c4 + n*c5$$

The time required for this algorithm is proportional to n

The Execution Time of Algorithms (cont.)

Example: Nested Loop

	<u>Cost</u>	<u>Times</u>
i=1;	с1	1
sum = 0;	c2	1
while (i \leq n) {	с3	n+1
j=1;	С4	n
while $(j \le n)$ {	c5	n*(n+1)
sum = sum + i;	С6	n*n
j = j + 1;	с7	n*n
}		
i = i +1;	с8	n
}		

Total Cost = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5+n*n*c6+n*n*c7+n*c8

→ The time required for this algorithm is proportional to n²

General Rules for Estimation

- **Loops**: The running time of a loop is at most the running time of the statements inside of that loop times the number of iterations.
- **Nested Loops**: Running time of a nested loop containing a statement in the inner most loop is the running time of statement multiplied by the product of the sized of all loops.
- Consecutive Statements: Just add the running times of those consecutive statements.
- If/Else: Never more than the running time of the test plus the larger of running times of S1 and S2.

Algorithm Growth Rates

- We measure an algorithm's time requirement as a function of the *problem* size.
 - Problem size depends on the application: e.g. number of elements in a list for a sorting algorithm, the number disks for towers of hanoi.
- So, for instance, we say that (if the problem size is n)
 - Algorithm A requires **5*n²** time units to solve a problem of size n.
 - Algorithm B requires 7*n time units to solve a problem of size n.
- The most important thing to learn is how quickly the algorithm's time requirement grows as a function of the problem size.
 - Algorithm A requires time proportional to n².
 - Algorithm B requires time proportional to n.
- An algorithm's proportional time requirement is known as growth rate.
- We can compare the efficiency of two algorithms by comparing their growth rates.

Algorithm Growth Rates (cont.)

Common Growth Rates

Function	Growth Rate Name
c	Constant
log N	Logarithmic
log^2N	Log-squared
N	Linear
N log N	
N^2	Quadratic
N^3	Cubic
2^N	Exponential

Figure 6.1
Running times for small inputs

Figure 6.2
Running times for moderate inputs

Asymptotic Notation

- O notation: Big-O is the formal method of expressing the upper bound of an algorithm's running time.
- It's a measure of the longest amount of time it could possibly take for the algorithm to complete.
- Formally, for non-negative functions, f(n) and g(n), if there exists an integer n_0 and a constant c > 0 such that for all integers $n > n_0$, $f(n) \le cg(n)$, then f(n) is Big O of g(n).

Asymptotic notations

• O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic upper bound* for f(n).

Asymptotic Notation

- Big-Omega Notation Ω
- This is almost the same definition as Big Oh, except that " $f(n) \ge cg(n)$ "
- This makes g(n) a lower bound function, instead of an upper bound function.
- It describes the **best that can happen** for a given data size.
- For non-negative functions, f(n) and g(n), if there exists an integer n_0 and a constant c > 0 such that for all integers $n > n_0$, $f(n) \ge cg(n)$, then f(n) is omega of g(n). This is denoted as " $f(n) = \Omega(g(n))$ ".

Asymptotic notations (cont.)

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

 $\Omega(g(n))$ is the set of functions with larger or same order of growth as g(n)

g(n) is an *asymptotic lower bound* for f(n).

Asymptotic Notation

Theta Notation Θ

• Theta Notation For non-negative functions, f(n) and g(n), f(n) is theta of g(n) if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$. This is denoted as "f(n) = O(g(n))".

This is basically saying that the function, f(n) is bounded both from the top and bottom by the same function, g(n).

Asymptotic notations (cont.)

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $\Theta(g(n))$ is the set of functions with the same order of growth as g(n)

g(n) is an *asymptotically tight bound* for f(n).

Order-of-Magnitude Analysis and Big O Notation

- If Algorithm A requires time proportional to f(n), Algorithm A is said to be order f(n), and it is denoted as O(f(n)).
- The function f(n) is called the algorithm's growth-rate function.
- Since the capital O is used in the notation, this notation is called the Big O notation.
- If Algorithm A requires time proportional to n², it is O(n²).
- If Algorithm A requires time proportional to **n**, it is **O(n)**.

Definition of the Order of an Algorithm

Definition:

Algorithm A is order f(n) – denoted as O(f(n)) – if constants k and n_0 exist such that A requires no more than k*f(n) time units to solve a problem

of size $n \ge n_0$.

- The requirement of $n \ge n_0$ in the definition of O(f(n)) formalizes the notion of sufficiently large problems.
 - In general, many values of k and n can satisfy this definition.

Order of an Algorithm

• If an algorithm requires $n^2-3*n+10$ seconds to solve a problem size n. If constants k and n_0 exist such that

$$k*n^2 > n^2-3*n+10$$
 for all $n \ge n_0$.

the algorithm is order n^2 (In fact, k is 3 and n_0 is 2)

$$3*n^2 > n^2-3*n+10$$
 for all $n \ge 2$.

Thus, the algorithm requires no more than k^*n^2 time units for $n \ge n_0$, So it is $O(n^2)$

Growth-Rate Functions

- **O(1)** Time requirement is **constant**, and it is independent of the problem's size.
- O(log₂n) Time requirement for a logarithmic algorithm increases increases slowly as the problem size increases.
- **O(n)** Time requirement for a **linear** algorithm increases directly with the size of the problem.
- O(n*log₂n) Time requirement for a n*log₂n algorithm increases more rapidly than a linear algorithm.
- O(n²) Time requirement for a quadratic algorithm increases rapidly with the size of the problem.
- O(n³) Time requirement for a cubic algorithm increases more rapidly with the size of the problem than the time requirement for a quadratic algorithm.
- O(2ⁿ) As the size of the problem increases, the time requirement for an exponential algorithm increases too rapidly to be practical.

A Comparison of Growth-Rate Functions

(a)					n		
	Function	10	100	1,000	10,000	100,000	1,000,000
	1	1	1	1	1	1	1
	log ₂ n	3	6	9	13	16	19
	n	10	10 ²	10^{3}	104	105	106
	n * log ₂ n	30	664	9,965	105	106	10 ⁷
	n²	10 ²	10 ⁴	10 ⁶	108	1010	1012
	n³	10³	10 ⁶	10 ⁹	1012	10 ¹⁵	10 ¹⁸
	2 ⁿ	10 ³	1030	1030	1 103,0	10 1030,	103 10301,030

A Comparison of Growth-Rate Functions (cont.)

Growth-Rate Functions

- If an algorithm takes 1 second to run with the problem size 8, what is the time requirement (approximately) for that algorithm with the problem size 16?
- If its order is:

O(1)
$$\rightarrow$$
 T(n) = 1 second
O(log₂n) \rightarrow T(n) = (1*log₂16) / log₂8 = 4/3 seconds
O(n) \rightarrow T(n) = (1*16) / 8 = 2 seconds
O(n*log₂n) \rightarrow T(n) = (1*16*log₂16) / 8*log₂8 = 8/3 seconds
O(n²) \rightarrow T(n) = (1*16²) / 8² = 4 seconds
O(n³) \rightarrow T(n) = (1*16³) / 8³ = 8 seconds
O(2ⁿ) \rightarrow T(n) = (1*2¹⁶) / 2⁸ = 2⁸ seconds = 256 seconds

How much better is $O(log_2n)$?

<u>n</u>	<u> O(log₂n)</u>
16	4
64	6
256	8
1024 (1KB)	10
16,384	14
131,072	17
262,144	18
524,288	19
1,048,576 (1MB)	20
1,073,741,824 (1GB)	30

Properties of Growth-Rate Functions

- We can ignore low-order terms in an algorithm's growth-rate function.
 - If an algorithm is $O(n^3+4n^2+3n)$, it is also $O(n^3)$.
 - We only use the higher-order term as algorithm's growth-rate function.
- 2. We can ignore a multiplicative constant in the higher-order term of an algorithm's growth-rate function.
 - If an algorithm is O(5n³), it is also O(n³).
- 3. O(f(n)) + O(g(n)) = O(f(n)+g(n))
 - We can combine growth-rate functions.
 - If an algorithm is $O(n^3) + O(4n)$, it is also $O(n^3 + 4n^2) \rightarrow So$, it is $O(n^3)$.
 - Similar rules hold for multiplication.

Some Mathematical Facts

• Some mathematical equalities are:

$$\sum_{i=1}^{n} 1 = 1 + 1 + \dots + 1 = n$$

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n*(n+1)}{2} \approx \frac{n^{2}}{2}$$

$$\sum_{i=1}^{n} i^{2} = 1 + 4 + \dots + n^{2} = \frac{n * (n+1) * (2n+1)}{6} \approx \frac{n^{3}}{3}$$

$$\sum_{i=1}^{n} i^3 = 1 + 8 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\sum_{i=0}^{n-1} 2^i = 0 + 1 + 2 + \dots + 2^{n-1} = 2^n - 1$$

Growth-Rate Functions — Example 1

$$T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*c5$$
$$= (c3+c4+c5)*n + (c1+c2+c3)$$
$$= a*n + b$$

→ So, the growth-rate function for this algorithm is O(n)

Growth-Rate Functions — Example 2

```
Times
                               Cost
 i=1;
                                с1
 sum = 0;
                                с2
 while (i \le n) {
                                с3
                                             n+1
      j=1;
                                С4
                                             n
      while (j \le n) {
                            c5
                                            n*(n+1)
           sum = sum + i; c6
                                          n*n
           j = j + 1;
                             с7
                                             n*n
     i = i + 1;
                                С8
                                             n
T(n)
     = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5 + n*n*c6 + n*n*c7 + n*c8
      = (c5+c6+c7)*n^2 + (c3+c4+c5+c8)*n + (c1+c2+c3)
      = a*n^2 + b*n + c
```

 \rightarrow So, the growth-rate function for this algorithm is $O(n^2)$

Growth-Rate Functions — Example3

for (i=1; i<=n; i++) c1 Times

for (j=1; j<=i; j++) c2
$$\sum_{j=1}^{n} (j+1)$$
for (k=1; k<=j; k++) c3
$$\sum_{j=1}^{n} \sum_{k=1}^{j} (k+1)$$

$$x=x+1; c4 \sum_{j=1}^{n} \sum_{k=1}^{j} k$$

$$T(n) = c1*(n+1) + c2*(\sum_{j=1}^{n} (j+1)) + c3*(\sum_{j=1}^{n} \sum_{k=1}^{j} (k+1)) + c4*(\sum_{j=1}^{n} \sum_{k=1}^{j} k)$$

$$= c1n + c1 + c2n^2 + c2n + c3n^3 + (c3 + c4)2n^2$$

$$= (c1 + c2)n + (c2 + 2c3 + 2c4)n^2 + c3n^3$$

→ So, the growth-rate function for this algorithm is O(n³)

 $= a*n^3 + b*n^2 + c*n + d$

Sequential Search

```
int sequentialSearch(const int a[], int item, int n) {
  for (i = 0; i < n && a[i]!= item; i++);
  if (i == n)
     return -1;
  return i;
}
Unsuccessful Search: → O(n)</pre>
```

Successful Search:

Best-Case: item is in the first location of the array \rightarrow O(1)

Worst-Case: *item* is in the last location of the array \rightarrow O(n)

Average-Case: The number of key comparisons 1, 2, ..., n

$$\frac{\sum_{i=1}^{n} i}{n} = \frac{(n^2 + n)/2}{n} \rightarrow O(n)$$

Binary Search-Iterative

```
int binarySearch(int a[], int size, int x) {
 int low = 0;
 int high = size -1;
 int mid; // mid will be the index of
                  // target when it's found.
 while (low <= high) {
   mid = (low + high)/2;
   if (a[mid] == x)
    return mid;
   else if (a[mid] > x)
       high = mid - 1;
  else
       low = mid + 1;
 return -1;
```

Binary Search-Recursive

```
int binarySearch(int []a, int lo, int hi, int x)
{
  int mid= (lo+hi)/2;
  if(a[mid]==x) return mid;
  else if(a[mid]>x)
    return binarySearch(a,lo,mid-1);
  else return binarySearch(a mid+1,hi);
}
```

Binary Search – Analysis

```
T(n)=T(n/2)+c
                                                       T(1)=c
                                               T(\frac{n}{2}) = T(\frac{\frac{n}{2}}{2}) + c
                                                      = T(\frac{n}{2^2}) + c
T(n) = T\left(\frac{n}{2^2}\right) + 2c
                                             T(n/2^2) = T(n/2^3) + c
T(n)=T(n/2^3)+3c
T(n)=T(n/2^k)+kc
                              suppose n=2^k => \log(n)=k
T(n)=T(n/n)+clog(n)
T(n)=T(1)+clog(n)
T(n)=c+clog(n)
T(n)=c(\log(n)+1)
T(n)=O(log(n))
```

Binary Search – Analysis

- For an unsuccessful search:
 - The number of iterations in the loop is $\lfloor \log_2 n \rfloor + 1$ \longrightarrow O($\log_2 n$)
- For a successful search:
 - **Best-Case:** The number of iterations is 1. \rightarrow O(1)
 - Worst-Case: The number of iterations is $\lfloor \log_2 n \rfloor + 1$ \rightarrow O($\log_2 n$)
 - Average-Case: The avg. # of iterations $< \log_2 n$ \rightarrow $O(\log_2 n)$
 - 0 1 2 3 4 5 6 7 \leftarrow an array with size 8
 - 3 2 3 1 3 2 3 4 \leftarrow # of iterations

The average # of iterations = $21/8 < log_2 8$

Growth-Rate Functions — Recursive Algorithms

- The time-complexity function T(n) of a recursive algorithm is defined in terms of itself, and this is known as **recurrence equation** for T(n).
- To find the growth-rate function for a recursive algorithm, we have to solve its recurrence relation.

Growth-Rate Functions — Hanoi Towers

• What is the cost of hanoi(n,'A','B','C')?

```
when n=0
T(0) = c1
when n>0
T(n) = c1 + c2 + T(n-1) + c3 + c4 + T(n-1)
= 2*T(n-1) + (c1+c2+c3+c4)
= 2*T(n-1) + c
recurrence equation for the growth-rate function of hanoi-towers algorithm
```

• Now, we have to solve this recurrence equation to find the growth-rate function of hanoi-towers algorithm

Growth-Rate Functions — Hanoi Towers (cont.)

• There are many methods to solve recurrence equations, but we will use a simple method known as *repeated substitutions*.

$$T(n) = 2*T(n-1) + c \qquad T(n-1) = 2*T(n-2) + c$$

$$= 2*(2*T(n-2) + c) + c$$

$$= 2^{2*}T(n-2) + 2c + c \qquad T(n-2) = 2*T(n-3) + c$$

$$= 2^{2*}(2*T(n-3) + c) + 2^{1}c + 2^{0}c$$

$$= 2^{3}*T(n-3) + (2^{2} + 2^{1} + 2^{0}) * c \qquad (assuming n>2)$$
when substitution repeated k-1th times
$$= 2^{k}*T(n-k) + (2^{k-1} + ... + 2^{1} + 2^{0}) * c$$
When k=n
$$= 2^{n}*T(0) + (2^{n-1} + ... + 2^{1} + 2^{0}) * c$$

$$= 2^{n}*c1 + (\sum_{i=0}^{n-1} 2^{i}) * c$$

 $= 2^{n} * c1 + (2^{n}-1)*c = 2^{n}*(c1+c) - c$ \rightarrow So, the growth rate function is $O(2^{n})$

What to Analyze

- An algorithm can require different times to solve different problems of the same size.
 - Eg. Searching an item in a list of n elements using sequential search. → Cost: 1,2,...,n
- Worst-Case Analysis The maximum amount of time that an algorithm require to solve a problem of size n.
 - This gives an upper bound for the time complexity of an algorithm.
 - Normally, we try to find worst-case behavior of an algorithm.
- **Best-Case Analysis** The minimum amount of time that an algorithm require to solve a problem of size n.
 - The best case behavior of an algorithm is NOT so useful.
- Average-Case Analysis The average amount of time that an algorithm require to solve a problem of size n.
 - Sometimes, it is difficult to find the average-case behavior of an algorithm.
 - We have to look at all possible data organizations of a given size n, and their distribution probabilities of these organizations.
 - Worst-case analysis is more common than average-case analysis.

What is Important?

- An array-based list retrieve operation is O(1), a linked-list-based list retrieve operation is O(n).
- But insert and delete operations are much easier on a linked-listbased list implementation.
 - → When selecting the implementation of an Abstract Data Type (ADT), we have to consider how frequently particular ADT operations occur in a given application.
- If the problem size is always small, we can probably ignore the algorithm's efficiency.
 - In this case, we should choose the simplest algorithm.

What is Important? (cont.)

- We have to weigh the trade-offs between an algorithm's time requirement and its memory requirements.
- We have to compare algorithms for both style and efficiency.
 - The analysis should focus on gross differences in efficiency and not reward coding tricks that save small amount of time.
 - That is, there is no need for coding tricks if the gain is not too much.
 - Easily understandable program is also important.
- Order-of-magnitude analysis focuses on large problems.