NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

ADVANCED FLIGHT DESIGN SYSTEMS SUBSYSTEM PERFORMANCE MODELS

TE AUTHORIT

JUNE 1980

CONTRACT NO. NAS9-15793

(NASA-CR-160769) ADVANCED FLIGHT DESIGN N80-31045
SYSTEMS SUBSYSTEM PERFORMANCE MODELS. USER
GUIDE: ENVIRONMENTAL ANALYSIS ROUTINE
LIBRARY (TRW Defense and Space Systems Unclas
Group) 138 p HC A07/MF A01 CSCL 06K G3/54 28522

USER GUIDE ENVIRONMENTAL ANALYSIS ROUTINE LIBRARY

Prepared By

K. C. Parker

J. G. Torian

Systems Engineering and Analysis

Department

TRW DEFENSE AND SPACE EYSTEMS GROUP

ADVANCED FLIGHT DESIGN SYSTEMS SUBSYSTEM PERFORMANCE MODELS

JUNE 1980

CONTRACT NO. NAS9-15793

USER GUIDE ENVIRONMENTAL ANALYSIS ROUTINE LIBRARY

Prepared By

K. C. Parker

J. G. Torian

Systems Engineering and Analysis

Department

PREFACE

1.

Subsystem performance analysis is required in Flight Design to assess the capability of the Environmental Control and Life Support System (ECLSS) to support the flight requirements and define operational procedures under contingency flight conditions. Current ECLSS modeling techniques are limited in the variety of configurations and they employ batch mode computer programs execution methods. Future spacecraft will require analysis of both a greater variety and a greater number of ECLSS than for previous spacecraft programs. Improvements in the variety of configurations that can be modeled and a reduction in effort required for modeling and analysis can be accomplished by developing a modular computer program which operates interactively.

An effort has been conducted to develop a modular interactive ECLSS performance analysis tool. The final reports on the effort are included in an Executive Summary and two Technical Reports. The Technical Reports include a User Guide and a sample model.

The Executive Summary presents an overview of the effort.

This Technical Reports presents a User Guide which, due to the modular nature of the Program Library, includes a greater degree of technical detail than one for a conventional program. A sample model report supplements the User Guide and illustrates a complete ECLSS model set up and execution.

--

CONTENTS

				Page
۱.	Introduction			1.1
2.	Formulation of Envi Analytical Models		ol and Life Support System	2.1
3.	Library of Routines	· · · · · · · · ·		3.1
	3.1 Referenced Ro	outines		3.1.1
	3.1.1 Progra	am Control Routir	nes	3.1.1.1
	3.1.1.1	Routine START	• • • • • • • • • • • • • • • • • • • •	3.1.1.1.1
	3.1.1.2	Routine PRINT		3.1.1.2.1
	3.1.1.3	Routine LOOP	• • • • • • • • • • • • • • • • • • • •	3.1.1.3.1
	3.1.1.4	Routine CONVRG		3.1.1.4.1
	3.1.2 Compor	nent Performance	Routines	3.1.2.1
	3.1.2.1	Routine PLATE		3.1.2.1.1
	3.1.2.2	Routine EVAP		3.1.2.2.1
	3.1.2.3	Routine SPLIT		3.1.2.3.1
	3.1.2.4	Routine MIX		3.1.2.4.1
	3.1.2.5	Routine MOD		3.1.2.5.1
	3.1.2.6	Routine RAD		3.1.2.6.1
	3.1.2.7	Routine EXCH		3.1.2.7.1
	3.1.2.8	Routine HEATER		3.1.2.8.1
	3.1.2.9	Routine ATMO		3.1.2.9.1
	3.1.2.10	Routine LIOH		3.1.2.10.
	3.1.2.11	Routine CONXG		3.1.2.11.
	3 1 2 12	Routine CONXI		3.1.2.12

CONTENTS (Continued)

																				Page
	3.1.3 Inp	out Utility	Routines	5	•		•	•	•	•	•	•	•	•	•	•			•	3.1.3.1
	3.1.3.	1 Routine	TABLE			•	•		•	•	•	•			•			•	•	3.1.3.1.1
	3.1.3.	2 Routine	STEP			•	•	•	•			•	•		•		•	•	•	3.1.3.2,1
3.2	Unreferenc	ed Routines		•		•	•	•	•	•	•	•	•	•		•			•	3.2.1
	3.2.1 Bou	ındary Condi	tion Ro	ıti	ine	28		•	•	•	•	•	•	•	•	•			•	3,2.1.1
	3.2.1.	l Routine	COUPL	•	•	•	•	•	•	•	•	•	•			•		•	•	3.2.1.1.1
	3.2.1.	2 Routine	REPS	•	•		•	•	•	•	•	ı			•	•		•	•	3.2.1.2.1
	3.2.1.	3 Routine	CONSUM	•	•	•	•	•	•	•	•	•		•				•	•	3.2.1.3.1
	3.2.1.	4 Routine	TRAJ	•	•	•	•	•	•	•	•	•	•	•					•	3.2.1.4.1
	3.2.1.	5 Routine	SHAD	•	•		•	•	•	•	•		•	•		•	•	•	•	3.2.1.5.1
	3.2.2 Out	put Routine	s	•		•	•	•	·	•	•	•	•	•					•	3.2,2.1
	3.2.2.	1 Routine	NODPRT		•	•		•	•	•	•	•	•	•	•	•	•	•	•	3.2.2.1.1
	3.2.2.	2 Routine	NASPRT		•	•	•	•	•	•	•	•	•		•	•		•	•	3.2.2.2.1
	3.2.2.	3 Routine	GASPR			•	•		•	•	•	•		•			•	•	•	3.2.2.3.1
	3.2.2.	4 Routine	CONPRT		•		•	•	•	•		•	•				•	•	•	3.2.2.4.1
	3.2.2.	5 Routine	PLOOT		•	•		•	•	•		•	•	•				•	•	3.2.2.5.1
	3.2.2.	6 Routine	SCHEM																	3.2.2.6.1

LIST OF FIGURES

		Page
2.1	ECLSS Program Assembly Procedure	2.4
2.2	ECLSS Program Execution Procedure	2.5
3.1.1.1.1	Routine START	3.1.1.2
3.1.1.1.2	Typical Run Mode Option Display	3.1.1.1.4
3.1.1.1.3	Typical Initialization Data Display	3.1.1.1.5
3.1.1.2.1	Routine PRINT	3.1.1.2.2
3.1.1.2.2	Typical Print Option Display	3.1.1.2.8
3.1.2.1.1	Typical Cold Plate Interactive Display	3.1.2.1.4
3.1.2.1.2	Typical Atmospheric Property Display	3.1.2.1.5
3.1.2.1.3	Typical EPS Data Assignment Interactive Display	3.1.2.1.6
3.1.2.1.4	Typical Thermal Coupling Interactive Display	3.1.2.1.7
3.1.2.2.1	Typical Evaporate Interactive Display	3.1.2.2.3
3.1.2.2.2	Typical Consumables Source Display	3.1.2.2.4
3.1.2.3.1	Typical Branching of Flow Interactive Display	3.1.2.3.2
3.1.2.4.1	Typical Junction Interactive Display	3.1.2.4.2
3.1.2.5.1	Typical Modulation Value Interactive Display	3.1.2.5.2
3.1.2.6.1	Typical Radiator Panel Interactive Display	3.1.2.6.3
3.1.2.6.2	Panel Positioning with Respect to Spacecraft Axes	3.1.2.6.4
3.1.2.6.3	Typical Shadowing Parameter Interactive Display	3.1.2.6.5
3.1.2.7.1	Typical Counter or Parallel Flow Heat Exchanger Interactive Display	3.1.2.7.2
3.1.2.8.1	Typical In-line Heater Interactive Display	3.1.2.8.3
3.1.2.9.1	Typical Atmospheric Compartment Interactive Display	3.1.2.9.3
31292	Typical Crew Metabolic Data Interactive Display	3.1.2.9.

LIST OF FIGURES (Continued)

		Page
3.1.2.10.1	Typical Lithium Hydroxide Interactive Display	3.1.2.10.3
3.1.2.11.1	Counterflow Condensing Heat Exchanger Performance	3.1.2.11.3
3.1.2.11.2	Typical Condensing Heat Exchanger (Condensing Side) Interactive Display	3.1.2.11.4
3.1.2.12.1	Typical Condensing Heat Exchanger (Interface Side) Interactive Display	3.1.2.12.2
3.1.3.1.1	Typical Interactive Tabular Display	3.1.3.1.2
3.2.1.2.1	Electrical Power Assignment Menu	3.2.1.2.2
3.2.1.3.1	Typical Interactive Source Initial Loading Quantity Display	3.2.1.3.3
3.2.1.4.1	Typical Interactive Orbital Heating Control Display	3.2.1.4.7
3.2.1.4.2	Typical Interactive Orbital Parameter Display	3.2.1.4.9
3.2.1.4.3	Illustration of Euler Angle Sequence Showing Spacecraft Position	3.2.1.4.10
3.2.1.4.4	Planetary Thermal Radiation to a Flat Plate	3.2.1.4.12
3.2.1.4.5	Planetary Albedo to a Flat Plate	3.2.1.4.13
3.2.1.5.1	Typical Solar Shadowing Illustration	3.2.1.5.3
3.2.2.1.1	Typical Fluid Property Output Data-Generic Names	3.2.2.1.2
3.2.2.2.1	Typical Fluid Property Output Data-Assigned Names	3.2.2.2.2
3.2.2.3.1	Typical Atmospheric Data Output	3.2.2.3.2
3.2.2.4.1	Typical Consumables Data Output	3.2.2.4.2
3.2.2.5.1	Typical Plot Control Data Display	3.2.2.5.2
3.2.2.6.1	Typical Schematic Output	3.2.2.6.2

LIST OF TABLES

		Page
2.1	Typical MAIN Contents	2.3
3.1.1.1	Summary of Program Control Routines	3.1.1.2
3.1.1.1.1	Dynamic Communication Cross Reference for Program Control.	3.1.1.1.6
3.1.2.1	Summary of ECLSS Component Routines	3.1.2.2
3.1.2.1.1	Dynamic Communication Cross Reference for Routine PLATE Parameters at Node I	3.1.2.1.8
3.1.2.2.1	Dynamic Communication Cross Reference for Routine EVAP Parameters at Node I	3.1.2.2.5
3.1.2.3.1	Dynamic Communication Cross Reference for Routine SPLIT Parameters at Node I	3.1.2.3.3
3.1.2.4.1	Dynamic Communication Cross Reference for Routine MIX Parameters at Node I	3.1.2.4.3
3.1.2.5.1	Dynamic Communication Cross Reference for Routine MOD Parameters at Node I	3.1.2.5.3
3.1.2.6.1	Dynamic Communication Cross Reference for Routine RAD Parameters at Node I	3.1.2.6.6
3.1.2.7.1	Dynamic Communication Cross Reference for Routine EXCH Parameters at Node I	3.1.2.7.3
3.1.2.8.1	Dynamic Communication Cross Reference for Routine HEATER Parameters at Node I	3.1.2.8.4
3.1.2.9.1	Dynamic Communication Cross Reference for Routine ATMO Parameters at Node I	3.1.2.9.4
3.1.2.10.1	Dynamic Communication Cross Reference for Routine LIOH Parameters at Node I	3.1.2.10.4
3.1.2.11.1	Dynamic Communication Cross Reference to Routine CONXG Parameters at Node I Interfaced to Node M	3.1.2.11.5
3.1.2.12.1	Dynamic Communication Cross Reference to Routine CONXI Parameters at Node M	3.1.2. 2.3
3.1.3.1	Summary of Input Utility Routines	3.1.3.2

LIST OF TABLES (Continued)

		Page
3.2.1.1	Summary of Boundary Condition Routines	3.2.1.2
3.2.1.3.1	Consumables Media Index for Source I	3.2.1.3.3
3.2.1.4.1	Edited Trajectory Tape Format	3.2.1.4.8
3.2.1.4.2	Classical Elements of an Orbit	3.2.1.4.11
3.2.1.4.3	Dynamic Cross Reference to Orbital Parameters	3.2.1.4.14
3.2.1.5.1	Dynamic Cross Reference for Node I Shadowed by Node J with Stand-Off Vector Storage in M	5.2.1.5.4
3.2.2.1	Summary of Output Routines	3.2.2.2

1. INTRODUCTION

This report presents a user guide for a library of interactive computer routines used to develop performance analysis models of specific Environmental Control and Life Support Subsystems (ECLSS). This volume is supplemented by a second volume in this series of reports which presents an example of a complete model set up and execution.

The Environmental Analysis Routine Library (EARL) is designed such that additional ECLSS component performance routines may be added as required. To facilitate report revisions associtated with such additions a page, Table, and Figure numbering system based on the sections numbers is used. In this system the last number identifies the page, Table, or Figure number for that section whose number preceds. This system facilitates revisions and additions without requiring complete renumbering.

2. FORMULATION OF ENVIRONMENTAL CONTROL AND LIFE SUPPORT SYSTEM ANALYTICAL MODELS

Evaluation of various Environmental Control and Life Support Systems (ECLSS) performance may be conducted by the application of the subject interactive computer program with which the user accesses a library of routines simulating the performance of various components and functions common to ECLSS. These routines are assembled with a driver routine (MAIN) to simulate the particular ECLSS under consideration. The assembled program is then loaded and executed to produce the transient performance parameters of the ECLSS under prescribed boundary conditions. The contents of the MAIN are typified on Table 2.1.

The assembly procedures for a program are shown in Figure 2.1. The master library of routines is extracted from a secure file. The user has the option to enter a MAIN routine (as for initial development of an ECLSS model), or extract a particular MAIN from his individual library (as for update/edit and/or additional studies with a previously developed ECLSS model). The extracted MAIN may be altered as part of the update/edit process. The program is then MAP'ed and the MAIN may be stored in the user's file for future use. The particular ECLSS program is then ready for execution.

The execution procedure including a variety of input/output options is shown in Figure 2.2. The component characteristic data and initial conditions may be read in from restart data stored previously or entered directly. If the user desires, the system will output a schematic of the ECLSS modeled. The user has the option to select particular nodes (component locations) to be included in tabular output or the system will default to include output for all nodes defined in the model. If plots are desired, the user simply defines the particular parameters to be plotted. Restart data may be stored for future use. Up to this point the program is executed in an interactive mode. The

program then transfers to a second stage of execution.

ĺ.

The second stage of execution is passive in the sense the data is processed with no interaction on the part of the user except to produce hard copy of the output. The processing accesses Electrical Power System (EPS) data and/or trajectory data automatically, if required. The data can be accessed from tape, secure files, or interface to other programs resident in the system. This stage of execution produces the tabular and plot data.

Table 2.1. Typical MAIN Contents

	CALL START	}	PROGRAM CONTROL
333	CONTINUE		
	CALL STEP()	}	CALL TO INPUT UTILITY ROUTINES
3133	CONTINUE		
	CALL LOOP()	}	CONVERGENCE CONTROL
	CALL PLATE()	1	
	••••	{	CALL TO COMPONENT ROUTINES
	CALL MIX())	
	CALL CONVRG()	}	CONVERGENCE CONTROL
	CALL PRINT	}	PROGRAM CONTROL AND TIMING UPDATE
	GO TO 333		
	END		

Figure 2.1. ECLSS Program Assembly Procedure

C

(

Figure 2.2. ECLSS Program Execution Procedure

C

Figure 2.2. ECLSS Program Execution Procedure (Continued)

Figure 2.2. ECLSS Program Execution Procedure (Concluded)

3. LIBRARY OF ROUTINES

Two catagories of Routines make up the library. The first catagory is Referenced Routines, which are directly referenced in the user's MAIN. The second catagory includes the Unreferenced Routines which are automatically executed, but are not referenced directly by the user. All Referenced Routines are discussed in the following section. Those Unreferenced Routines with which the user may desire indirect communication are discussed in the subsequent section. Unreferenced Routines also include a variety of Control, Computational, and Support Routines.

3.1 REFERENCED ROUTINES

This section presents a description of the functions, application, and parameters associated with those Library Routines which are directly referenced in the user's MAIN. These include Program Control Routines, Component Performance Routines, and Input Utility Routines. The following discussion includes the reference procedure, interactive communication, and a cross reference to the various parameters for dynamic communication.

3.1.1 Program Control Routines

C

(t

€.

Four Routines are used for basic program control. These control Routines are summarized on Table 3.1.1.1. Routines START and PRINT are mandatory as they control initialization, communication with boundary condition routines, timing, and output. Routines LOOP and CONVRG are optional depending on the configuration of the ECLSS model.

Control and timing parameters are entered through interactive displays during active execution of START and PRINT. It may be desirable to dynamically communicate with the timing parameters during passive execution. This type of communication is affected by entries in the user's MAIN. The following Control Routine descriptions include information on the interactive displays as well as cross reference to the timing parameters. Examples of dynamic communication are included in the sample model text.

Table 3.1.1.1. Summary of Program Control Routines

START

C

Initialization control

PRINT

Boundary Condition Routine communication, timing

control, and output control

LOOP

Timing control for first referenced ECLSS component

in closed loop system

CONVRG

Convergence control in closed loop system

3.1.1.1 Routine START

C.

A flow diagram of the functions of Routine START is given on Figure 3.1.1.1.

A reference procedure is

CALL START

for program execution initialization. The call to Routine START is the mandatory first executable statement in the MAIN.

Interactive communication with the initialization parameters is through console displays as shown on Figures 3.1.1.1.2 and 3.1.1.1.3.

The cross reference to initialization parameters is shown on Table 3.1.1.1.1.

Figure 3.1.1.1.1. Routine START

(,

Figure 3.1.1.1. Routine START (Concluded)

3.1.1.1.3

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.1.1.1.2. Typical Run Mode Option Display

Figure 3.1.1.3. Typical Initialization Data Display

Table 3.1.1.1.1. Dynamic Communication Cross Reference for Program Control

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Compute time increment	ΔΤ	HRS	DELT*	R	TIMES
Start Time	to	HRS	TIME	R	TIMES
Stop Time	-	HRS	TSTOP	R	TIMES
Print increment	-	HRS	PRNT	R	TIMES
Initial System Temp.	-	DEG	TEMP [†]		TIMES
Simulated Time	t	HRS	TIME	i	TIMES
Present Time index	-	INTEGER	Ł	1	MEAT
Previous Time index	-	INTEGER	K	I	MEAT

[†]Default value for component temperatures.

3.1.1.2 Routine PRINT

A flow diagram of the functions of Routine PRINT is given on Figure 3.1.1.2.1.

The reference procedure is

CALL PRINT

for program control. The call to PRINT is the last Routine call in the timing loop.

Basic interactive communication is through the console display shown on Figure 3.1.1.2.2. If the MAIN references component simulation routines which imply consumables usage and/or orbital heating data is required the display shown on Figure 3.1.1.2.2 will be preceded by initialization and control data displays for these boundary condition functions. The Boundary Condition Routines are discussed in Section 3.2.1. Selection of the various output options will bring the various Output Routines and their associated control displays into effect. The Output Routines are discussed in Section 3.2.2.

Figure 3.1.1.2.1. Routine PRINT

Figure 3.1.1.2.1. Routine PRINT (Continued)

(*)

S

(

Figure 3.1.1.2.1. Routine PRINT (Continued)

3.1.1.2.4

Figure 3.1.1.2.1. Routine PRINT (Continued)

3.1.1.2.5

()

Figure 3.1.1.2.1. Routine PRINT (Continued)

3.1.1.2.6

A Property of the same of the

O

Figure 3.1.1.2.1. Routine PRINT (Concluded) 3.1.1.2.7

> ORIGINAL PAGE IS OF POOR QUALITY

(]

3.1.1.3 Routine LOOP

O

Special timing control is required for the nodal designation i associated with the first referenced ECLSS component in a closed loop system. Routine LOOP provides this control.

The reference procedure

CALL LOOP(I)

which precedes the call to a component simulation routine with the nodal designation I.

There is no further user communication with the functions or parameters of this Routine. The use of this routine is mandatory for closed loop systems.

3.1.1.4 Routine CONVRG

()

Routines LOOP and CONVRG are used in conjunction for a closed loop system to control iteration to a prescribed convergence tolerance. A typical application for iteration about the node i follows:

NN1 CONTINUE
 CALL LOOP(I)
 CALL PLATE(I,J)
 .
 .
 .
 CALL EVAP(M,I)
 CALL CONVRG(I,TOL,MAX,\$NN2,\$NN1)

NN2 CONTINUE

The call to CONVRG compares the inlet fluid temperature at node I used in the first component call to the outlet fluid temperature at node I calculated by the last component call. If the two temperatures agree within the tolerance specified by the value of TOL, a return to statement number NN2 in the MAIN is made. Whereas, if the agreement is not in effect, the value of the temperature at mode I for the first component call will be modified and the return will be to statement number NN1 in the MAIN. The parameter MAX is a user selected maximum number of non-converging iterations before CONVRG will terminate the execution.

There is no further user communication with the functions of Routine CONVRG. The use of Routine CONVRG is optional.

3.1.2 Component Performance Routine

This section provides information on the simulation of various ECLSS components through application of the Library of Component Routines. This Library and a brief description of their function is summarized on Table 3.1.2.1.

Initial characteristics of the various components are entered or updated through an interactive display during active execution. It is often desirable to dynamically update or access various characteristics and variables during the passive execution. This latter updating is accomplished by entries in the user's MAIN which communicate with the subject routine variables. The following component routine descriptions include information on the interactive display as well as cross reference data for dynamic communication. Several simple dynamic updating examples are included in the sample model.

Table 3.1.2.1. Summary of ECLSS Component Performance Routines

PLATE	Forced cooled internal heat generating equipment
EVAP	Evaporator
SPLIT	Branching of coolant flow
MIX	Mixing of coolant legs into a single junction
MOD	Controlled proportioning of flow between two branches
RAD	Radiator panel
EXCH	Counterflow and parallel flow heat exchanges
HEATER	Controlled fluid line heater
ATMO	Atmospheric compartment (Cabin)
LIOH	Carbon Dioxide removal with Expendable Lithium Hydroxide
CONXG	Condensing Heat Exchanger, condensing side
CONXI	Condensing Heat Exchanger, interface (sink) side

3.1.2.1 Routine PLATE

The transient performance of forced cooled internal heat generating equipment is simulated by Routine Plate. The routine is an adaptive transfer function for the fluid flow segment from node i to j which processes the following equations.

$$(mC)_{1} \frac{d T_{C_{1}}}{dt} = Q_{I_{1}} - Q_{C} - (UA)_{1} \Delta T_{\ell m}$$

and

$$(MC_p)_1 (1_1 - T_1) = (UA)_1 \Delta T_{f_m}$$
.

where

$$\Delta T_{\ell m} = \frac{(T_{c_i} - T_i) - (T_{c_i} - T_j)}{\ell n \left[\frac{T_{c_i} - T_j}{T_{c_i} - T_j} \right]}.$$

The net loss of heat due to thermal coupling to m nodes defined by $K(\underline{\ell})$ is given by

$$Q_c = \sum_{i=1}^{m} c_{iK(\ell)} (T_{c_i}^a - T_{cK(\ell)}^a).$$

where

$$C_{1K(\ell)} = (UA)_{1K(\ell)}$$

and

for conduction or convective coupling, and,

CIK(1) = GEAFIK(1) .

and

O

(1

a = 4

for radiation coupling of node i to $K(\underline{f})$.

The reference procedure is

CALL PLATE(I,J)

to process the transfer function through node I to J.

Interactive communication with the parameters and functions of the simulated component is through a console display as illustrated on Figure 3.1.2.1.1. An integer value greater than zero assigned to item 6, 7, and/or 8 will extend the communication upon exit from this display as follows:

ITEM 6 Atmospheric Coolant. The atmospheric parameters shown on Figure 3.1.2.1.2 will be put through to node J. This feature is used for continuity and mass conservation when PLATE is used as a component simulation.

ITEM 7 EPS Data Assignment. The interactive display shown on Figure 3.1.2.1.3 is used to assign word numbers in the EPS data array to $Q_{\tilde{I}_1}$. (See Routine REPS.)

ITEM 8 Thermal Coupling. The interactive display shown on Figure 3.1.2.1.4 is used to thermally couple node I to m nodes defined by K(2). The 100 series nodes are used for convective coupling. The 200 series nodes are used for radiation coupling. To thermally couple node I to node 8 by conduction or convection assign 108 as the coupling code.

Assignment of a 208 as the coupling will result in node I being coupled

....

to node 8 by radiation. Note the respective units of the coupling values as displayed.

(

The cross reference to Routine PLATE parameters is shown on Table 3.1.2.1.1.

Additional information related to communication with the Thermal Coupling
parameters is given in the section on Routine COUPL.

****	**************************************					
ITEM		PLATE				
1 2	THERMAL CAPACITY OVERALL HEAT TRANSFER	150.000	BTU/DEG			
3	COEF. COOLANT FLOW RATE INITIAL COMPONENT	2500.000 1490.484	BTU/HR DEG BTU/HR DEG			
5	TEMP. INITIAL COOLANT	521.000	DEG			
6	INLET TEMP. ATMOSPHERIC COCLANT 0 = NO	498.474 0	DEG Integer			
7	1 = YES EPS DATA ASSIGNMENT 0 = NO	0	INTEGER			
8	THERMAL COUPLING	0	INTEGER			
	INLET NODE NUMBER	OUTLET N	ODĘ NUMBER			
*****	**********	****	*****			

Figure 3.1.2.1.1. Typical Cold Plate Interactive Display

```
*************************************

ATMOSPHERIC COOLANT

PROPERTIES FOR

NODE NUMBER 3
INFORMATION ONLY

NOT EDITABLE

PARTIAL PRESSURE OF WATER 154 PSIA
PARTIAL PRESSURE OF NITROGEN 11.600 PSIA
PARTIAL PRESSURE OF OXYGEN 3.100 PSIA
PARTIAL PRESSURE OF CARBON .097 PSIA
DIOXIDE
ATMOSPHERIC PRESSURE 14.700 PSIA
```

(

Figure 3.1.2.1.2. Typical Atmospheric Property Display

C

Figure 3.1.2.1.3. Typical EPS Data Assignment Interactive Display

8

Figure 3.1.2.1.4. Typical Thermal Coupling Interactive Display

Table 3.1.2.1.1. Dynamic Communication Cross Reference for Routine PLATE Parameters at Node I

VARIABLE	SYMBOL.	UNITS	STORAGE	TYPE	COMMON
Component temperature	Tci	DEG	P(I,X [†])	R	MEAT
Fluid inlet temperature	Ti	DEG	F(I,X [†])	R	MEAT
Thermal capacitance	(MC) _i	BTU/DEG	C(I,1)	R	MEAT
Heat transfer coefficient	(UA)	BTU/HR DEG	C(1,2)	R	MEAT
Coolant flow rate	(WC _p)	BTU/HR DEG	C(1,3)	R	MEAT
Internal heat generation	QIi	BTU/HR	C(I,4)	R	MEAT
Specific heat of gas mixture	-	BTU/LB DEG	C(1,5)	R	MEAT
Partial pressure of H ₂ 0	-	PSI	C(1,6)	R	MEAT
N ₂	-	PSI	C(I,7)	R	MEAT
02	-	PSI	C(I,8)	R	MEAT
cō,	-	PSI	C(I,9)	R	MEAT
Pressure of gas mixture	-	PSI	C(I,10)	R	MEAT
Coupling values 1st ref. node	C _{1K(1)}	*	C(I,15)	R	MEAT
2nd ref. node	C _{iK(2)}	*	C(1,16)	R	MEAT
		•	•		
			•		
			•		
6th ref. node	C _{iK(6)}	*	C(1,20)	R	MEAT
Number of coupled nodes	m	INTEGER	IC(I,4)	R	MEAT
Coupling node number 1st ref.	K(1)	INTEGER	IC(1,5)	R	MEAT
2nd ref.	K(2)	INTEGER	IC(1,6)	R	MEAT
			•		
			•]
			•		1.
6th ref.	K(6)	INTEGER	IC(1,10)	R	MEAT

[†]X = L present value X = K previous value

 $^{^{\}star}$ BTU/HR DEG for convection and conduction coupling (series 100). BTU/HR DEG 4 for radiation coupling (series 200).

3.1.2.2 Routine EVAP

The transient performance of an evaporator used as an ultimate heat sink is simulated by Routine EVAP. The routine is a transfer function for the fluid flow segment from node i to j which processes the following equations.

$$(WC_{p})_{i} (T_{j} - T_{i}) = (UA)_{i} \Delta T_{pm}$$

where

C

$$\Delta T_{\mathbf{l}m} = \frac{T_{\mathbf{j}} - T_{\mathbf{i}}}{\mathbf{l}n \begin{bmatrix} T_{\mathbf{s}} - T_{\mathbf{i}} \\ T_{\mathbf{s}} - T_{\mathbf{j}} \end{bmatrix}}.$$

The media evaporated over the time span a to b is calculated as

$$M = \frac{1}{h_{fg}} \int_{a}^{b} (WC_{p})_{i} (T_{j} - T_{i}) dt$$

and is withdrawn from a source n as prescribed by the user.

The simulation assumes the media to be at the saturation temperature T_{S} and does not account for sensible heat requirements to achieve this temperature.

The reference procedure is

to process the transfer function through node I to J.

Interactive communication with the parameters and functions of the simulated component is through a console display as illustrated on Figure 3.1.2.2.1. Reference to this Routine will automatically bring up the consumables source initial loading display as illustrated on Figure 3.1.2.2.2. This display is brought up immediately prior to passive execution and includes all referenced consumables sources as well as the source referenced through a particular call to EVAP.

The cross reference to Routine EVAP parameters is shown on Table 3.1.2.2.1. Additional information related to source assignment and initial loading quantity for the evaporating media is given in the section on Routine CONSUM.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.1.2.2.1. Typical Evaporator Interactive Display

CONSUMABLES		
TYPE OF.	IINTT	INITIAL
NITROGEN	LBS	LOADING .000
	LBS LBS	. 000 . 000
WATER	LBS	. 000
POTABLE WATER	LBS	. 000 . 000
	CONSUMABLES SOURCES TYPE OF, CONSUMABLE NITROGEN OXYGEN LITHIUM HYDROXIDE WATER ELECTRIC FOWER	CONSUMABLES SOURCES TYPE OF, CONSUMABLE UNIT NITROGEN LBS OXYGEN LBS LITHIUM HYDROXIDE LBS WATER LBS ELECTRIC FOWER WATT HRS

 \mathbf{C}

Figure 3.1.2.2.2. Typical Consumables Source Display

Dynamic Communication Cross Reference for the Routine EVAP Parameters at Node I Table 3.1.2.2.1.

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Saturation temperature	Ts	DEG	P(I,X [†])	R	MEAT
Fluid inlet temperature	Т,	DEG	F(I,X [†])	R	MEAT
Heat of vaporation	hfg	BTU/LB	C(I,1)	R	MEAT
Heat transfer coefficient	(UA)	BTU/HR DEG	C(1,2)	R	MEAT
Coolant flow rate	(WC _p)	BTU/HR DEG	C(1,3)	R	MEAT
Consumables type	-	INTEGER	10(1,3)*	1	MEAT
Tank (source) number	n	INTEGER	IC(1,4)	1	MEAT
Media consumed	M	LBS	CONTOT(N)	R	CONS

[†]X = L present value X = K previous value

0

The consumables type is used only for print out heading control and is transferred to IAMCON(N) during initialization. IAMCON(N) is stored in the common CONS. (See Routine CONSUM.)

3.1.2.3 Routine SPLIT

The splitting of flow at node i in n branches with a fixed flow proportion $m_{j(K)}$ at each node j(K) is simulated by Routine SPLIT. The routine processes the equations

$$\{ (MC_p)_{j(K)} = m_{j(K)} (MC_p)_i \}$$
 $T_{j(K)} = T_i$

The reference procedure is

to split node I onto N branches.

Interactive communication with the parameters and functions of the branching is through a console display as shown on Figure 3.1.2.3.1. An integer value of unity assigned to item 4 will bring up the Atmospheric Property display as shown on Figure 3.1.2.1.2. The atmospheric properties at node I will be put through to the branches j(K).

The cross reference to Routine SPLIT parameters is shown on Table 3.1.2.3.1.

Figure 3.1.2.3.1. Typical Branching of Flow Interactive Display

Table 3.1.2.3.1. Dynamic Communication Cross Reference for the Routine SPLIT Parameters at Node I

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Fluid inlet temperature	T ₁	DEG	F(I,X [†])	R	MEAT
Coolant flow rate	(WC _D);	BTU/HR DEG	C(1,3)	R	MEAT
1st branch node number	j(1)	INTEGER	IC(1,2)	1	MEAT
2nd branch node number	j(2)	INTEGER	IC(1,3)	1	MEAT
•	•	•	•	•	•
•		•	•	•	
9th branch node number	j(9)	INTEGER	IC(1,10)	1	MEAT
1st branch flow proportion	M ₅ (1)	FRACTION	C(1,12)	R	MEAT
2nd branch flow proportion	M _{j(2)}	FRACTION	C(I,13)	R	MEAT
•	•	•	•	٠	•
			•		
9th branch flow proportion	M _J (9)	FRACTION	C(1,20)	R	MEAT
Specific heat of gas mixture	-	BTU/LB DEG	C(1,5)	R	MEAT
Partial pressure of H ₂ 0	-	PSI	C(1,6)	R	MEAT
N ₂	-	PSI	C(1,7)	R	MEAT
02	-	PSI	C(1,8)	R	MEAT
co ₂	-	PSI	C(I,9)	R	MEAT
Pressure of gas mixture	<u> </u>	PSI	C(I,10)	R	MEAT

[†]X = L present X = K previous

3.1.2.4 Routine MIX

The mixing of flow from n legs defined by the nodes j(K) into a single node i is simulated by Routine MIX. The routine processes the equations

$$(WC_p)_i = \sum_{K=1}^n (WC_p)_{j(K)}$$

$$T_{i} = \frac{\sum_{K=1}^{n} (WC_{p})_{j(K)} T_{j(K)}}{(WC_{p})_{i}}$$

The reference procedure is

to mix N legs into the junction I.

Interactive communication with the parameters and functions of the mixing is through a console display as shown on Figure 3.1.2.4.1. An integer value of unity assigned to item 4 will result in processing of the atmospheric properties at the N nodes into the node I.

The cross reference to Routine MIX parameters is shown on Table 3.1.2.4.1.

Figure 3.1.2.4.1. Typical Junction Interactive Display

Table 3.1.2.4.1. Dynamic Communication Cross Reference for Routine MIX at Node I

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Fluid temperature at junction	Ti	DEG	F(1,X [†])	R	MEAT
Coolant flow rate at junction	(WC _p);	BTU/HR DEG	C(1,3)	R	MEAT
lst mixing node number	J(1)	INTEGER	MIXUM(M)*	1	MIXUP
2nd mixing node number	J(2)	INTEGER	MINUM (M+1)	I	MIXUP
•		•	٠	•	•
•		•	•	•	•
•		•	•	•	•
nth mixing node number	J(n)	INTEGER	MIXUM (M+N-1)	I	MIXUP
Specific heat of gas mixture	-	BTU/LB DEG	C(1,5)	R	MEAT
Partial pressure of H ₂ O	-	PSI	C(1,6)	R	MEAT
N ₂	-	PSI	C(I,7)	R	MEAT
02	-	PSI	C(1,8)	R	MEAT
co ₂	-	PSI	C(1,9)	R	MEAT
Pressure of gas mixture	-	PSI	C(I,10)	R	MEAT

[†]X = L present

C

X = K previous

^{*}The value of M is dynamically assigned during initialization and is one greater than the total number of mixed nodes referenced prior to a particular call to MIX. M can be determined as the location of the value I in the IMIX array. That is, IMIX(M) = I. IMIX is in the common MIXUP.

3.1.2.5 Routine MOD

The branching of flow at node i onto two legs defined by nodes j and n such that the flow proportioning f_j and f_n is modulated to maintain a fixed temperature T_c at a control node m is simulated by routine MOD. The routine processes equations similar to Routine SPLIT except that the flow proportioning is dynamic, such that

$$\Delta f_i = g(T_m - T_c)$$

where Δm_j is a change in the flow proportioning factor from the previous calculation, g is a proportional gains, and

$$f_n = 1 - f_j$$
.

A maximum and minimum value for f_j is prescribed by the user. Note that a positive gains will favor node j if T_n is greater than T_c (i.e., node j in this case is assumed to be the cooling leg).

S

The reference procedure is

to modulate the branching of flow at node I.

Interactive communication with the parameters and functions of the modulation is through a console display as shown on Figure 3.1.2.5.1. An integer value of unity assigned to item 11 will bring up the atmospheric properties display for node I (see Figure 3.1.2.1.2) and put through the properties to the branches J and N.

The cross reference to Routine MOD parameters is shown on Table 3.1.2.5.1.

```
NODE NUMBER 10 MODULATION VALUE
              DESCRIPTION
LEG 1 NODE NUMBER
LEG 2 NODE NUMBER
CONTROL NODE NUMBER
CONTROL TEMP
                                                                                                                     UNIT
INTEGER
ITEM
                                                                                                          12
    1+
2+
3+
                                                                                                                    INTEGER
INTEGER
DEG
DEG
                                                                                             505.000
              INITIAL TEMP AT CONTROL NODE PROPORTIONAL GAINS MAX HARD OVER MIN HARD OVER INITIAL TEMP AT MOD NODE COOLANT FLOW AT MOD NODE ATMOSPHERIC COOLANT
    567
                                                                                              521.000
                                                                                                                    FRACTION/DEG
FRACTION
FRACTION
                                                                                                   . 001
1.000
                                                                                          1.000
.000 FRACTION
518.891 DEG
1490.484BTU/HR.DEG.
0 INTEGER
    ġ
9
                            0 = NO.
1 = YES
     * MUST BE DEFINED BEFORE YOU EXIT DISPLAY
```

()

Figure 3.1.2.5.1. Typical Modulation Value Interactive Display

Table 3.1.2.5.1. Dynamic Communication Cross Reference for Routine MOD at Node I

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Leg 1 node number	j	INTEGER	IC(1,4)	1	MEAT
Leg 2 node number	n	INTEGER	IC(1,5)	1	MEAT
Control node	m	INTEGER	IC(1,6)	1	MEAT
Control temperature	T _c	DEG	C(1,15)	R	MEAT
Temperature at control node	T _m	DEG	F(M,X [†])	R	MEAT
Proportional gains	g	FRACTION	C(I,16)	R	MEAT
Maximum hard over	MAX f	FRACTION	C(I,17)	R	MEAT
Minimum hard over	MIN f	FRACTION	C(I, 18)	R	MEAT
Coolant temperature at MOD node	T _i	DEG	F(I,X [†])	R	MEAT
Coolant flow at MOD node	(WC _p);	BTU/HR DEG	C(I,3)	R	MEAT
Specific hear of gas mixture	-	BTU/LB DEG	C(I,5)	R	MEAT
Partial pressure of H ₂ 0	-	PSI	C(1,6)	R	MEAT
N ₂	-	PSI	C(I,7)	R	MEAT
02	-	PSI	C(1,8)	R	MEAT
c ₂	-	PSI	C(1,9)	R	MEAT
Pressure of gas mixture	-	PSI	C(1,10)	R	MEAT

 $^{^{\}dagger}X = L$ present X = K previous

3.1.2.6 Routine RAD

The transient performance of a radiator consisting of fluid flow paths attached to, or integral with, a panel is simulated by Routine RAD. Each fluid flow path is paralled by a right and left section of the panel. The panel is subject to incident heat resulting from on-orbit operation. The Routine is an adaptive transfer function for the fluid flow segment from node i to j which processes the following equations.

$$(MC)_{i} \frac{d T_{c_{i}}}{dt} = -(Q_{REJ} + Q_{c}) - (UA)_{i} \Delta T_{fm},$$

and

C

(

$$(WC_p)_i (T_j - T_i) = (UA)_i \Delta T_{\ell m}$$

where

$$\Delta T_{fm} = \frac{(T_{c_i} - T_i) - (T_{c_i} - T_j)}{f_n \left[\frac{T_{c_i} - T_j}{T_{c_i} - T_j} \right]}$$

$$Q_{REJ} = \sigma \epsilon \sum_{n=1}^{2} A_n T_{c_i}^4 \left[1 - \frac{Q_{ABS}}{\sigma \epsilon T_{c_i}^4} \right] \eta_n ,$$

 Q_{ABS} is the absorbed heat, and Q_{c} is the net flow of heat resulting from thermal coupling. (The thermal coupling calculations are the same as those used for a cold plate, Section 3.1.2.1.)

The reference procedure is

to process the transfer function through node I to J. Reference to this routine

will automatically bring up an interactive display for definition of orbital information immediately prior to passive execution. (See Routine TRAJ.)

Interactive communication with the parameters and functions is through a console display as illustrated on Figure 3.1.2.6.1. Positioning of the panel with respect to the spacecraft axes is defined by the angle of incident and dihedral angle as shown on Figure 3.1.2.6.2. The normal vector is calculated internally. An integer value of unity assigned to item 14 will bring up the interactive node coupling display as for a cold plate. (See Section 3.1.2.1, Figure 3.1.2.1.4.) An integer value greater than zero for item 15 indicates shadowing by the node number indicated. The interactive display for communication with the shadowing parameters shown on Figure 3.1.2.6.3 is brought up in this case. This display is in communication with the shadowing routines. (See Routine SHAD.)

The cross reference to Routine RAD parameters is shown on Table 3.1.2.6.1.

******************************* NODE NUMBER 13 RADIATOR PANEL İTEM VALUE UNIT THERMAL CAPACITANCE OVERALL HEAT TRANSFER COOLANT FLOW RATE SOLAR ABSORBIVITY EMMISIVITY RIGHT FIN EFFECTIVENESS LEFT FIN AFFECTIVENESS RIGHT FIN AREA LEFT FIN AREA ANGLE OF INCIDINCE DIHEDERIAL ANGLE INITIAL FIN ANGLE INITIAL COOLANT INLET NODE COUPLING BTU/DEG BTU/HR DEG BTU/HR DEG FRACTION FRACTION FRACTION FRACTION SQ FT SQ FT RAD RAD DEG DEG 25.000 1500.000 384.545 .100 1234567 COEF. 008. 008. 10.000 10.000 .000 89 10 11 12 13 521.000 518.691 INLET TEMP. 14 ŏ INTEGER NO = 0 YES = 1 SHADOW NODE NUMBER INLET NODE NUMBER 13 INTEGER OUTLET NODE NUMBER ***********

()

Figure 3.1.2.6.1. Typical Radiator Panel Interactive Display

X,Y,Z = SPACE CRAFT AXES

a = ANGLE OR INCIDENCE

8 - DIHEDRAL ANGLE

N = NORMAL TO SURFACE

= (-sin α)i

(

+ $(\cos \alpha \sin \beta)j$

Figure 3.1.2.6.2. Panel Positioning with Respect to Spacecraft Axes

SHADOWING DATA FOR NODE NO. 13 SHADOWED BY 25

ITEM			
1	SHADOW NODE AREA	1.000	SQ FT
÷			
4		. 000	RAD
3	DIHEDRAL ANGLE	. 000	RAD
ŭ	STAND-OFF VECTOR DATA	26	INTEGER
5	STAND-OFF DISTANCE	2.000	FT
6	EQUIV. STAND-OFF ANGLE OF INCIDENCE	. 000	RAD
7	EQUIV. STAND-OFF DIHEDRAL ANGLE		RAD
•		. 00 0	KHU
****	******************************	*******	

Figure 3.1.2.6.3. Typical Shadowing Parameter Interactive Display

Table 3.1.2.6.1. Dynamic Communication Cross Reference for Routine RAD Parameters at Node I

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Base temperature	Tci	DEG	P(I,X [†])	R	MEAT
Fluid inlet temperature	T4'	DEG	F(I,X)	R	MEAT
Thermal capacitance	(MC)	BTU/DEG	C(1,1)	R	MEAT
Heat transfer coefficient	(UA)	BTU/HR DEG	C(1,2)	R	MEAT
Coolant flow rate	(WC _D);	BTU/HR DEG	C(1,3)	R	MEAT
Incident heat	QABS	BTU/HR FT ²	C(1,4)	R	MEAT
Solar absorbability	α	FRACTION	C(I,5)	R	MEAT
Thermal emissivity	β	FRACTION	C(1,6)	R	MEAT
Right fin effectivity	rı	FRACTION	C(1,7)	R	MEAT
Left fin effectivity	r ₂	FRACTION	C(I,8)	R	MEAT
Right fin surface area	A ₁	FT ²	C(I,9)	R	MEAT
Left fin surface area	A ₂	FT ²	C(I,10)	R	MEAT
Angle of incidence	α	RAD	C(I,11)	R	MEAT
Dihedral angle	β	RAD	C(I,12)	R	MEAT
Coupling value 1st ref node	C _{1K(1)}	*	C(I,15)	R	MEAT
2nd ref node	C _{1K(2)}	*	C(1,16)	R	MEAT
:		•		:	
6th ref node	C _{1K(6)}	*	C(1,20)	R	MEAT
Number of coupled nodes	M	INTEGER	IC(1,4)	I	MEAT
Coupling node number 1st ref	K(1)	INTEGER	IC(1,5)	1	MEAT
2nd ref	K(2)	INTEGER	IC(1,6)	I	MEAT
•	•	•		!	
		:	:	:	
6th ref	K(6)	INTEGER	IC(1,10)	I	MEAT
Shadowing node number	•	INTEGER	IC(1,2)	I	MEAT

[†]X = L present value X = K previous value

(-)

^{*}BTU/HR DEG $_4$ for convection and conduction coupling (series 100). BTU/HR DEG $^+$ for radiation coupling (series 200).

3.1.2.7 Routine EXCH

The exchange of heat in counter flow and parallel flow heat exchangers is simulated by Routine EXCH. The routine is a transfer function for the fluid flow segment from node i to j where the interfacing fluid flow from m to n. The routine processes the equation for counter and parallel flow heat exchangers based of the methods of Reference 1.

The reference procedure is

CALL EXCH(I,J,M,N)

to process the transfer function through node I to J based on the interfacing condition at nodes M and N. A second call is normally referenced in the interfacing coolant loop part of the model as

CALL EXCH(M,N,I,J)

(

which processes the transfer function through node M to N based on conditions at nodes I and J. The second call is not mandatory. It is used only as the model requires updating of the conditions at node N in the interfacing loop.

Interactive communication is through a console display as illustrated on Figure 3.1.2.7.1. Note that information pertaining to the interfacing side is also included.

An integer value of unity for item 5 will cause the routine to put through the atmospheric properties from node I to J. This routine should not be used when the conditions at the interface could result in condensation. (See Routines CONXG and CONXI.)

The cross reference to Routine EXCH parameters is shown on Table 3.1.2.7.1.

	HEAT EXCHANGER		
M		VALUE	UNIT
	*** CALLING SIDE ***		
1	HEAT TRANSFER COEF.	300.000	BTU/HR DEG
2	COOLANT FLOW RATE	100.000	BTU/HR DEG
3	FLUID INLET TEMPERATURE	521.000	DEG
4	TYPE	0	INTEGER
5	COUNTERFLOW = 0 PARALLEL FLOW = 1 ATMOSPHERIC COOLANT	0	INTEGER
	NO = 0 YES = 1 444 INTERFACE SIDE ***		
6	HEAT TRANSFER COEF.	3000,000	BTU/HR DEG
7	COOLANT FLOW RATE	1490.484	ETU/HP DEG
દ	FLUID INLET TEMPERATURE	518.751	DEG

Figure 3.1.2.7.!. Typical Counter or Parallel Flow Heat Exchanger Interactive Display

Table 3.1.2.7.1. Dynamic Communication Cross Reference for Routine EXCH Parameters at Node I Interfaced to Node M

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Calling Side					
Fluid inlet temperature	Ti	DEG	F(I,X [†])	R	MEAT
Heat transfer coefficient	(UA);*	BTU/HR DEG	C(I,2)	R	MEAT
Coolant flow rate	(WC _p) _i	BTU/HR DEG	C(I,3)	R	MEAT
Specific heat of mixture		BTU/LB DEG	C(1,5)	R	MEAT
Partial pressure of H ₂ O	-	PSI	C(I,6)	R	MEAT
N ₂	-	PSI	C(I,7)	R	MEAT
02	-	PSI	C(I,8)	R	MEAT
co ₂	-	PSI	C(I,9)	R	MEAT
Pressure of mixture	-	PSI	C(I,10)	R	MEAT
Interface Side				:	
Fluid inlet temperature	T _m	DEG	F(M,X [†])	R	MEAT
Heat transfer ceofficient	(UA) _m *	BTU/HR DEG	C(M,2)	R	MEAT
Coolant flow rate	(WC _p) _m	BTU/HR DEG	C(M,3)	R	MEAT

[†]X = L present value X = K previous value

(,

$$(UA)_{0} = \frac{1}{\frac{1}{(UA)_{1}} + \frac{1}{(UA)_{m}}}$$

^{*}The Routine processes an overall heat transfer coefficient

3.1.2.8 Routine HEATER

The performance of an in-line fluid heater, whose power is Q_{PWR} switched in response to the fluid temperature at a control node n and a control temperature of $T_{\rm C}$. The routine is an adaptive transfer function for the fluid flow segment i to j and processes equations as for Routine PLATE except that $Q_{\rm I}$, is either $Q_{\rm PWR}$ or zero depending on the on/off configuration, respectively.

The on/off configuration is control to a dead-band ΔT about the control temperature T_c . The heater is switched on when T_n is less than T_c - ΔT and does not go off until T_n is greater than T_c + ΔT . The energy in watt hours consumed over the time span a to b is calculated as

$$E = 3.4130 \int_{a}^{b} Q_{I_{i}} dt.$$

and is drawn from a source ix as prescribed by the user.

The reference procedure is

to process the transfer function through node I to J.

Interactive communication with the parameters and functions of the in-line heater is through a console display as illustrated on Figure 3.1.2.8.1. Integer values of unity for items 10 and/or 11 will put through the atmospheric properties and/or set up for thermal coupling data entry, respectively. (See Routine PLATE). Reference to this Routine will automatically bring up the consumables source initial loading display as illustrated on Figure 3.1.2.2.2. This display is brought up immediately prior to passive execution and includes all referenced consumables sources as well as the source referenced through a particular call to HEATER.

The cross reference to Routine HEATER parameters is shown on Table 3.1.2.8.1. Additional information related to source assignment for the energy is given in the section on Routine CONSUM.

O

()

C

****	**************************************	k de	******
•	HEATER		
İTEM		VALUE	UNIT
1	THERMAL CAPACITY	200.000	BTU/DEG
. 2	OVEALL HEAT TRANSFER COEF.	1500.000	BTU/HR DEG
• 3	COOLANT FLOW RATE	501.000	BTU/HR DEG
• 4	INITIAL COMPONENT TEMPERATURE	521.000	DEG.
. 2	INITIAL INLET TEMPERATURE	500.83 0	DEG.
. 6	HEATER POWER	450.000	BTU/HR DEG.
7	CONTROL NODE NUMBER	2	INTEGER
. 8	CONTROL TEMPERATURE	532.000	DEG.
. 9	DEAD BAND	2.000	DEG.
10	INITIAL TEMP AT CONTROL NODE	510.169	DEG
11	ATMOSPHERIC COOLANT	1	INTEGER
•	0 = NO 1 = YES		
12	THERMAL COUPLING	U	INTEGER
•	O = NO 1 = YES		
13	POWER SOURCE	5	INTEGER
•	INLET NODE NO.	OUTLET NODE	
**********	************************	******************	pr部水水烙水水水烙烙堆 4 水水水烙

Figure 3.1.2.8.1. Typical In-line Heater Interactive Display

Table 3.1.2.8.1. Dynamic Communication Cross Reference for Routine HEATER Parameters at Node I

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Component temperature	T _{Ci}	DEG	P(I,X [†])	R	MEAT
Fluid inlet temperature	Ti	DEG	F(I,X [†])	R	MEAT
Thermal Capacitance	(MC)	BTU/DEG	C(I,1)	R	MEAT
Heat transfer coefficient	(UA)	BTU/HR DEG	C(I,2)	R	MEAT
Coolant flow rate	(WC _p)	BTU/HR DEG	C(I,3)	R	MEAT
Power Applied	OI;	BTU/HR	C(I,4)	R	MEAT
Control node number	n ⁻¹	INTEGER	IC(1,2)	1	MEAT
Control temperature	T _c	DEG	C(I,11)	R	MEAT
Deadband	ΔΤ	DEG	C(I,13)	R	MEAT
Temperature at control node	Tn	DEG	F(N,X [†])	R	MEAT
Heater power (ON)	Q _{PWR}	BTU/HR	C(I,12)	R	MEAT
Energy source	ix	INTEGER	IC(1,3)	1	MEAT
Energy	E	WATT HRS	CONTOT(IX) R	CONS
Specific heat of mixture	-	BTU/LB DEG	C(I,5)	R	MEAT
Partial pressure of H ₂ 0	-	PSI	C(I,6)	R	MEAT
N ₂	-	PSI	C(I,7)	R	MEAT
02	-	PSI	C(1,8)	R	MEAT
co ₂	-	PSI	C(I,9)	R	MEAT
Pressure of mixture	-	PSI	C(I,10)	R	MEAT
Coupling value 1st ref. node	C _{IK(1)}	*	C(I,15)	R	MEAT
2nd ref. node	C _{1K(2)}	*	C(I,16)	R	MEAT
:		•	•	1:	! :
•		•	•		
6th ref. node	^C iK(6)	*	C(I,20)	R	MEAT
Number of coupled nodes	М	INTEGER	IC(I,4)	I	MEAT
Coupling node number 1st ref.	K(1)	INTEGER	IC(I,5)	I	MEAT
2nd ref.	K(2)	INTEGER	IC(I,6)	I	MEAT
<u>.</u>	:		:	1:	:
		•	•	•	
6th ref.	K(6)	INTEGER	IC(I,10)	I	MEAT

[†]X = L present value X = K previous value

(;

O

^{*}BTU/HR DEG for convection and conduction coupling (series 100). BTU/HR DEG 4 for radiation coupling (series 200).

3.1.2.9 Routine ATMO

Processing of a gas stream through atmospheric compartment subject to heat addition, moisture generation, carbon dioxide generation, oxygen consumption, and external leakage is simulated by Routine ATMO. The heat addition results from equipment heat generation, $Q_{I_{ij}}$, and the sensible metabolic heat of up to six crew members. Crew sensible heat, water addition, carbon dioxide addition, and oxygen consumption are proportional to the user specified metabolic load of the occupants. Oxygen and Nitrogen external leakage make up is supplied from sources n_{ij} and n_{ij} specified by the user. The routine is an adaptive transfer function for the gas flow segment from the inlet i to the exit j and performs a mass balance on the atmospheric constituents. The atmospheric conditions at node j represent the compartment conditions.

The reference procedure is

CALL ATMO(I,J)

to process the transfer function from node I to J. The first component simulation call in an atmospheric loop should reference this routine.

Interactive communication with the parameters and functions of the atmospheric compartment simulation is through console displays as shown on Figures 3.1.2.9.1 and 3.1.2.9.2. Reference to this routine will automatically bring up the consumables source initial loading display as illustrated on Figure 3.1.2.2.2. This display is brought up immediately prior to passive execution and includes all referenced consumables sources as well as the source referenced through a particular call to ATMO.

The cross reference to Routine ATMO parameters is shown on Table 3.1.2.9.1 Additional information related to source assignment for the oxygen and nitrogen is given in the section on Routine CONSUM.

भी भी की भी भी भी भी	**************************************						
İTEM		VALUE	UNIT				
1	COMPARTMENT VOLUME	1000.000	CUBIC FT				
2	LEAKAGE RATE	2.000	LB/HR				
3	COOLANT FLOW RATE	501.000	BTU/HR DEG				
• 4	HEAT LOAD	2001.000	BTU/HR				
· 5	SPECIFIC HEAT OF GAS	. 210	BTU/LB DEG				
. 6	PARTIAL PRESSURE OF WATER	. 130	PSI				
7	PARTIAL PRESSURE OF NITROGEN	11.600	PSI				
- 8	PARTIAL PRESSURE OF OXYGEN	3.100	PSI				
. 9	PARTIAL PRESSURE OF CARBON DIOXIDE	. 093	PSI				
10	TOTAL PRESSURE	14.700	PSI				
11	NITROGEN TANK	1	INTEGER				
12	OXYGEN TANK	2	INTEGER				

505.100

DEG

13

0

INLET GAS TEMPERATURE

Figure 3.1.2.9.1. Typical Atmospheric Compartment Interactive Display

C

0

Figure 3.1.2.9.2. Typical Crew Metabolic Data Interactive Display

Table 3,1,2,9.1 Dynamic Communication Cross Reference Parameters for ATMO Parameters at Node I

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Gas inlet temperature	T _i	DEG	F(I,X [†])	R	MEAT
Compartment volume	٧,	FT ³	C(I,1)	R	MEAT
Leakage rate	W _{ei}	LB/HR	C(I,2)	R	MEAT
Gas flow rate	(WC _p) _i	LB/HR DEG	C(I,3)	R	MEAT
Equipment heat load	QI	BTU/HR	C(I,4)	R	MEAT
Specific heat of gas mixture	-	BTU/LB DEG	C(I,5)	R	MEAT
Partial pressure of H ₂ 0	-	PSI	C(I,6)	R	MEAT
N ₂	-	PSI	C(I,7)	R	MEAT
02	-	PSI	C(I,8)	R	MEAT
co ₂	-	PSI	C(I,9)	R	MEAT
Pressure of gas mixture	-	PSI	C(,10)	R	MEAT
Metabolic rate 1st member	-	BTU/HR	C(I,15)	R	MEAT
2nd member	-	BTU/HR	C(I,16)	R	MEAT
•	•	•	•		
		•	•		
6th member	-	BTU/HR	C(I,20)	R	MEAT
Source of N ₂	n	INTEGER	IC(I,5)	I	MEAT
Same for 0 ₂	n ₂	INTEGER	IC(I,6)	I	MEAT
N ₂ consumed	M _{N2}	LBS	CONTOT(N1) R	MEAT
0 ₂ consumed	M ₀₂	LBS	CONTOT (N2) R	MEAT

[†]X = L present value X = K previous value

3.1.2.10 Routine LIOH

The removal of Carbon Dioxide from a gas stream by a Lithium Hydroxide canister is simulated by Routine LIOH. The routine is an adaptive transfer function for the gas stream segment from node i to j which processes the following equations.

$$P_{CO_2j} = P_{CO_2i} (1 - \phi)$$

where ϕ , an efficiency factor is given by

$$\phi = \frac{1 - e^{-\alpha}}{1 - e^{-\alpha} + e^{\alpha\beta - \alpha}}.$$

here

$$\alpha = \frac{K M_i \rho_i}{W_i},$$

where K is an empirically determined reaction rate (Reference 1) given by

$$K = 1100. - 700. (1 - e^{10.\beta})$$

$$K = 400$$
.

and

()

$$\beta = \int_a^b \frac{c_{CO_2} W_i}{M_i} dt$$

where ${\rm C_{\rm CO}}_2$ is the Carbon Dioxide concentration. Heat and moisture is added to the stream by the reaction.

The amount of Lithium Hydroxide consumed is equal to the number of canister changes time the mass of the canisters. A canister is automatically changed when

The state of the s

PCO21 > (PCO21)MAX.

The Lithium Hydroxide is withdrawn from a source n specified by the user. The reference procedure is

CALL LIOH(I,J)

to process the transfer function through node I to J.

Interactive communication with the parameters and functions of the canister is through a console display as shown on Figure 3.1.2.10.1 Reference to this routine will automatically bring up the consumables source initial loading display as illustrated on Figure 3.1.2.2.2. This display is brought up immediately prior to passive execution and includes all referenced consumables sources as well as the source referenced through a particular call to LIOH. The routine automatically processes the remaining atomospheric properties.

The cross reference to Routine LIOH parameters is shown on Table 3.1.2.10.1. Additional information related to source assignment for the Lithium Hydroxide is given in the section on Routine CONSUM.

****		:*************** : NO. 2	***********************
•	LITHIUM	1 HYDROXIDE	
•	CAN	IISTER	
İTEM		VALUE	UNITS
1	CANISTER MASS	1.000	LBS
2	GAS FLOM RATE	501.000	BTU/HR DEG
3	CANISTER PRESSURE CHANGE	. 150	PSI
4	SPECIFIC HEAT OF GAS	. 210	BTU/LB DEG
5	PARTIAL PRESSURE OF WATE	iR . 130	PSI
6	PARTIAL PRESSURE OF NITE	ROGEN 11.600	PSI
7	OXYO	SEN 3.100	PSI
8	CARE	ON . 093	PSI
•	C	IOXIDE	
• 9	TOTAL PRESSURE	14.700	PSI
10	INITIAL ABSORBED QUANTIT	Y .00 0	FRACTION
11	CANISTER SOURCE	3	INTEGER
12	INLET GAS TEMPERATURE	510.165	DEG

Figure 3.1.2.10.1. Typical Lithium Hydroxide Canister Interactive Display

Table 3.1.2.10.1. Dynamic Cross Reference to Routine LIOH Parameters at Node I

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Gas inlet temperature	T,	DEG	F(1,X [†])	R	MEAT
Canister mass	M	DEG	C(1,1)	R	MEAT
Gas flow rate	(WC _D)	BTU/HR DEG	C(1,3)	R	MEAT
Canister change pressure (I	CO ₂)MAX	PSI	C(I,11)	R	MEAT
Heat added	-	BTU/HR	C(1,4)	R	MEAT
Specific heat of mixture	-	BTU/LB DEG	C(1,5)	R	MEAT
Partial pressure of H ₂ O	•	PSI	C(1,6)	R	MEAT
N ₂	-	PSI	C(I,7)	R	MEAT
02	-	PSI	C(I,8)	R	MEAT
co ₂	Pco ₂	PSI	C(I,9)	R	MEAT
Pressure of gas mixture	-	PSI	C(1,10)	R	MEAT
Lithium Hydroxide source	n	INTEGER	IC(I,5)	1	MEAT
Consumed Litaium Hydroxide		LBS	CONTOT(N)	R	CONS

[†]X = L present value X = K previous value

C

C

3.1.2.11 Routine CONXG

The performance of a counterflow condensing heat exchanger is simulated by Routines CONXG and CONXI. Routine CONXG, discussed in this section, processes the condensing side of the heat exchanger. Routine CONXI, discussed in the next section, processes the interface (or sink) side of the heat exchanger. The routine discussed in this section is a transfer function for the gas stream segment i to j interfacing with a counterflow segment m to n. Processing is as follows and is illustrated on Figure 3.1.2.11.1.

The gas and water vapor mixture enter at a temperature t_i and partial pressure P_{H_2Oi} . The mixture experiences only sensible cooling until the dew point is reached. The remaining portion of the heat exchanger dehumifies and cools the mixture to t_j and P_{H_2Oj} at the exit. The sensible cooling portion of the heat exchanger is referred to as the "dry" section with a heat transfer coefficient of UA_{D_i} if the entire heat exchanger were dry. The dehumidifying section is referred to as the "wet" section with a heat transfer coefficient of UA_{W_i} if the entire heat exchanger were wet. Internal calculation proportion the dry and wet sections and the applicable value of the heat transfer coefficients. The condensation is stored in a source (tank) n_i as prescribed by the user.

The reference procedure is

(

CALL CONXG(I.J M,N)

to process the condensing side from node I through node J with nodes M and N as the respective inlet and outlet of the interfacing sink fluid. A call to CONXI is mandatory in the interfacing coulant loop part of the model.

Interactive communication with the parameters and functions of the condensing side of the heat exchanger is through a console display as shown on Figure

3.1.2.11.2. Reference to this routine will automatically bring up the consumables source initial loading display as illustrated on Figure 3.1.2.2.2. This display is brought up immediately prior to passive execution and includes all reference consumables sources as well as the source referenced through a particular call to CONXG. The routine automatically processes the remaining atmospheric properties.

The cross reference to Routine CONXG parameters is shown on Table 3.1.2.11.1. Additional information related to storage assignment for the condensation is given in the section on Routine CONSUM.

(

0

... jure 3.1.2.11.1. Counterflow Condensing Heat Exchanger Performance

ITEM	*** CALLING SIDE *	**	UNIT
-NEWS-	CONDENSING HEAT TRANSFER COEF. DRY HEAT TRANSFER COEF. COOLANT FLOW RATE FLUID INLET TEMP CONDENSATE TANK NO.	2000.000 1000.000 501.000 512.278	BTU/HR DEG BTU/HR DEG BTU/HR DEG DEG INTEGER
•	*** INTERFACE SIDE	**	
6 7	COOLANT FLOW PATE FLUID INLET TEMP	1490.48 4 499.000	RTU/HR DEG DEG
•	CALLING SIDE NODES IN 3 INTERFACE SIDE NODES IN 7	0UT 4 0UT 8	

Figure 3.1.2.11.2. Typical Condensing Heat Exchanger (Condensing Side) Interactive Display

()

Table 3.1.2.11.1. Dynamic Cross Reference to Routine CONXG at Node 1 Interfaced to Node M

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Gas inlet temperature	T4	DEG	F(I,X [†])	R	MEAT
Heat transfer coefficient, wet	ua _{w i}	BTU/HR DEG	C(I,1)	R	MEAT
Heat transfer coefficient, dry	UA _D i	BTU/HR DEG	C(I,2)	R	MEAT
Gas flow rate	(WC _p);	BTU/HR DEG	C(I,3)	R	MEAT
Heat rejected	-	BTU/HR	C(M,4)	R	MEAT
Specific heat of mixture	-	BRU/LB DEG	C(I,5)	R	MEAT
Partial pressure of H ₂ 0	P _{H2} 0i	PSI	C(I,6)	R	MEAT
N ₂	-	PSI	C(I,7)	R	MEAT
02	-	PSI	C(I,8)	R	MEAT
co ₂	-	PSI	C(1,9)	R	MEAT
Pressure of mixture	-	13 9	C(I,10)	R	MEAT
Condensate tank number	ող	INTEGER	IC(1,3)	I	MEAT
Condensate stored	-	LBS	CONTOT (N1) R	CONS

[†]X = L present value X = K previous value

C

0

3.1.2.12 Routine CONXI

0

Routine CONXI is a mandatory companion routine to CONXG of the preceding section for simulation of a counterflow condensing heat exchanger. The routine discussed in this section is a transfer function for the interfacing side of a condensing heat exchanger fluid segment m to n with counterflow on the condensing segment from i to J. The routine processes the following equation

$$T_n = T_m + Q_m/(WC_p)_m$$

where $\boldsymbol{Q}_{\boldsymbol{m}}$ has been assigned by the processing of Routine CONXG.

Interactive communication with the parameters and functions of the interface side of a condensing heat exchanger is through a console display as shown on Figure 3.1.2.12.1. Entry of an integer value of unity for item 3 will put through the atmospheric properties of node m to node n.

The cross reference to the parameters for interfacing side of a condensing heat exchanger are shown on Table 3.1.2.12.1.

CONDENSING HEAT EXCHANGER
INTERFACE SIDE

VALUE UNIT

*** CALLING SIDE ***

1 COOLANT FLOW RATE 14'0.484 BTU/HR DEG 14'9.715 DEG 15'9.715

Control of the second s

Table 3.1.2.12.1. Dynamic Cross Reference to Routine CONXI at Node M

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Fluid inlet temperature	Tm	DEG	F(I,X [†])	R	MEAT
Coolant flow rate	(WC _p) _m	BTU/HR DEG	C(M,3)	R	MEAT
Heat absorbed	Qm	BTU/HR	C(M,4)*	R	MEAT
Specific heat of mixture	_	BTU/LB DEG	C(M,5)	R	MEAT
Partial pressure of H ₂ 0	-	PSI	C(M,6)	R	MEAT
N ₂	-	PSI	C(M,7)	R	MEAT
02	-	PSI	C(M,8)	R	MEAT
co ₂	-	PSI	C(M,9)	R	MEAT
Pressure of mixture	_	PSI	C(M,10)	R	MEAT

[†]X = L present value X = K previous value

^{*}Value assigned by companion call to CONXG.

3.1.3 Input Utility Routine

0

Two routines are available for tabular data look-up and interpolation. The routines TABLE and STEP as summarized on Table 3.1.3.1 differ only in the manner of interpolation.

The Input Utility Routine descriptions which follow include reference procedure and interactive communication in the table data set up.

Table 3.1.3.1. Summary of Input Utility Routines

C

0

TABLE Linear interpolation of dependent variable in tabular data.

STEP Interpolates tabular data as step function.

3.1.3.1. Routine TABLE

C

Linear interpolation of input tabular data is performed by Routine TABLE.

The reference procedure is

CALL TABLE(NTAB, XX1, YY1)

where NTAB is the table number. The Routine returns the linear interpolated value of YYl for the prescribed independent variable XXl from the tabular arrays XX and YY.

Interactive communication is through a console display as shown on Figure 3.1.3.1.1.

Figure 3.1.3.1.1. Typical Interactive Tabular Data Display

O

3,1,3.2 Routine STEP

Interpolation of input step function tabular data is performed by Routine STEP.

The reference procedure is

CALL STEP(NTAB, XX1, YY1).

The functions and interactive communication with the routine is the same as for Routine TABLE except for the method of interpolation.

3.2 UNREFERENCED ROUTINES

C

This section presents a description of the functions and parameters of those library routines which are automatically brought into execution as a result of use of and/or specific option selection with respect to the referenced routines of Section 3.1. Only those library routines with which the user has interactive communication and/or may desire dynamic communication are included. These types of routines include Boundary Condition Routines and Output Routines.

3.2.1 Boundary Condition Routines

Five routines are directly associated with development of Boundary Conditions. The function of these routines are summarized on Table 3.2.1.1.

Table 3.2.1.1. Summary of Boundary Condition Control Routines

COUPL Provides for initial cross coupling of thermally connected nodes.

REPS Provides data array for electrical power assignment.

CONSUM Provides for integration of expended or generated media for various source assignments.

TRAJ Performs incident (orbital) heating calculations.

SHAD Assembles absorbed (orbital) heat for a panel.

3.2.1.1 Routine COUPL

The appropriate the second of the second second second second second second second second second second second

All thermal coupling data is performed internal to the argumented component performance routines. Initial coupling data is loaded through the interactive displays associated with these routines. Routine COUPL performs the cross coupling during this initial loading. If the user specifies node I is coupled to node J, Routine COUPL automatically couples node J to I with the same coupling value. This function is performed only during initial loading. Accordingly, any dynamic communication with coupling values and/or type of coupling requires that the user search out the location and change the coupling data for both node I and J.

3.2.1.2 Routine REPS

Electric power data assignment is controlled through the initial interactive communication with the argument component performance routine reference. Routine REPS provides the interface of the data assignment to the electrical power data to be read from tape or assigned through an interface to another program. The communication is trhough the dimensioned variables NEPS(100) and DEPS(100) in the COMMON/EPS/. The resident value P_i of electrical power (BTU/HR) in DEPS(I) is assigned to node J by setting

NEPS(I) = J.

The argumented component performance routine at node J searches the NEPS array for the integer J and sums all corresponding values of DEPS into C(J,4). Dynamic reassignment is accomplished by control of the NEPS array.

The current version of Routine REPS assigns specific Shuttle Crbiter electrical power heating value to the NEPS array words shown on the menu illustrated on Figure 3.2.1.2.1. The routine reads a dictionary of active components from Unit 10 and the power timeline from Unit 11.

```
MPL3
          YOU WANT TO DISPLAY MENU ENTER 1, OTHERWISE BLANK
                                                                         HEAT LÖAD MENU
  WORD NO.
                                     DESCRIPTION
                                    AVIONICS A
AVIONICS A
AVIONICS A
AVIONICS A
AVIONICS A
CABIN AIR
CABIN FAN
COLDPLATE
COLDPLATE
COLDPLATE
TBD
                                                          AIR BAY 1
AIR BAY 2
AIR BAY 3
FAN 1A/18
FAN 2A/28
FAN 3A/38
R COOLED
             234567890123456789012345678901234567890
                                                                                      BAY
                                                                                      BAY
                                                                                      BAY
                                                              FREON
FREON
FREON
                                                                              DFI
DFI
DFI
                                                                                        MID-BDY
MID-BDY
                                                                                                             CONTAINER
CONTAINER
                                                                                         MID-BDY
                                                                                                              CONTAINER
                                     TBD
                                    COLDPLATE WATER COLDPLATE FREON COLDPLATE FREON COLDPLATE FREON COLDPLATE FREON
                                                                              DFI
BAY
BAY
BAY
                                                                                        FWD
                                                                                                  CONTRINER
                                                                                              4
                                                                              BAY = 5
BAY = 6
OUTSIDE
                                                                                                  FREON BAYS
                                     TBD
                                     COLDPLATE FREON MIDSECTION
FREON PUMP
                                     TBD
                                     CABIN AIR COOLED(DIRECT TO HEAT EXCHANGER)
                                    IMU
IMU FAN
NOT ACTIVELY COOLED
PAYLOAD HEAT EXCHANGER
COLDPLATE WATER BAY =1
COLDPLATE WATER BAY =2
COLDPLATE WATER BAY =3A
COLDPLATE WATER BAY =3B
CABIN COLDPLATE WATER
WATER PUMP
INVERTER =1
INVERTER =2
INVERTER =3
INVERTER =4
INVERTER =5
FUEL CELL =1
                                     IMU
                                     FUEL CELL
FUEL CELL
FUEL CELL
FOOD PREP
                                                             =1
=2
                 FOR HARDCOPY. ENTER ANY CHARACTER TO CONTINUE
```

0

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.2.1.2.1 Electrical Power Assignment Menu

3.2.1.3 Routine CONSUM

The integration of expended or generated media for the various sources assignments is performed in Routine CONSUM. The control is through the COMMON/CONS/ which contains the dimensioned variables CONRAT(20), CONTOT(20), and IAMCON(20),

where

IAMCON(I) = Type of media for source I indexed as shown on Table 3.2.1.3.1.

and

CONTOT(I) = Total (integrated) expended (+) or generated for source I at current time.

The source assignment I and the type of media is assigned through the cross reference data for the argumented component performance routine(s) during active execution. The arrays CONRAT and CONTOT reflect the algebraic sum of all transaction referencing that source.

8

In the latter stages of active execution the IAMCON array is searched for nonzero values. The existance of one or more such values brings up the initial loading interactive display shown on Figure 3.2.1.3.1. The COMMON/CMORE/ which contains the variable NCON, and the dimensioned variables ICON(20) and CONSTA(20) is loaded at this time,

where

NCON = Number of nonzero elements in IAMCON.

ICON = Contains the NCON referenced source numbers in the first NCON locations,

3.2.1.3.1

and

O

CONSTA(I) = Initial quantity for source I.

It should be noted that the ICON array is used for initial loading and output (see Routine CONPR) control rather than a repeated search of IAMCON. The ICON array includes only those sources referenced immediately prior to initial loading. Accordingly, any dynamic communication must refer only to sources that have been referenced at this time. Additional source references may be enforced by setting

IAMCON(I) = J,

where I is the source number and J is the media index. Such an entry is best affected immediately after the call to START and outside the timing loop.

Quantity remaining for each of the sources is calculated in the output Routine CONPR.

Table 3.2.1.3.1. Consumables Media Index for Source I

IAMCON(I)		SYMBOL	UNITS
1	Potable water	H ₂ 0	LSB
2	Water	H ₂ 0	LBS
3	Carbon Dioxide	co ²	LBS
4	Oxygen	02	LBS
5	Hydrogen	H ₂	LBS
6	Nitrogen	N ₂	LBS
7	Methane	CH ₄	LBS
8	Hydrogen Peroxide	H ₂ 0 ₂	LBS
9	Ammonia	NH ₃	LBS
10	0ther	•	LBS
11	Electrical Power	-	WATT HRS
12	Lithium Hydroxide	LIOH	LBS

 C^{i}

		CONSUMABLES SOURCES		
	SOURCE	TYPE OF.		INITIAL
ITEM	NO.	CONSUMABLE	UNIT	LORDING
1	1	NITROGEN	LBS	. 000
3	Ž	OXYGEN Lithium Hydroxide	LBS	. 000
3	3	LITHIUM HYDROXIDE WATER	LBS LBS	. 000 . 000
2	2	ELECTRIC POWER	WATT HRS	. 000
6	Š	POTABLE WATER	LBS	. 00 0
****	****	*********		

()

Figure 3.2.1.3.1. Typical Interactive Source Initial Loading Quantity Display

3.2.1.4 Routine TRAJ

Reference to component simulation routines which imply incident (orbital) heating as a boundary condition automatically brings Routine TRAJ into execution. There are three components of incident heat resulting from orbital operation.

- (1) Solar radiation directly from the Sun,
- (2) Thermal radiation from the planet being orbited, and
- (3) Albedo (reflected solar radiation) from the planet.

 Routine TRAJ controls the calculations for these three heating components.

The items required to evaluate the incident heating are:

- (1) Location of the panel with respect to the vehicle coordinate system.
- (2) Attitude of the spacecraft with respect to a geocentric inertial or local vertical.
- (3) Position of the Sun with respect to the geocentric system, and
- (4) Position of the spacecraft with respect to the geocentric system.

The first item is characteristic of the subject panel. These parameters are entered through the subject component simulation routine. Two options are available to establish the latter items. The data may be read in from a previously generated trajectory tape or calculated with respect to a prescribed set of orbital parameters. Both options use the following coordinate systems.

- (1) The Geocentric Inertial System (GCI). The coordinate system origin is at the center of the Earth. The X-axis lies in the equatorial plane and points toward the vernal equinox. The Z-axis passes through the North Pole. The Y-axis lies in the equatorial plane and forms a right-handed system.
- (2) The Vehicle System (VS). This is the principal system in which the flat plate vehicle geometry is defined. It differs from the geocentric inertial (GCI) system by the amount of pitch, yaw, and roll.

The interactive communication is initially through a console display requesting the selection of these options as shown on Figure 3.2.1.4.1. Item 2 on this display is a control parameter related to the dimensional units on the tape and is active only for the tape read option.

The format of the trajectory tape is shown on Table 3.2.1.4.1. With this option in effect dynamic communication should be limited to the characteristic of the subject panel.

Interactive communication is further extended through the console display shown on Figure 3.2.1.4.2 for the calculated trajectory option. The orbited parameters are initially loaded with a default inertial hold circular equatorial orbit with the Sun located out the X-axis.

The attitude hold key establishes whether the spacecraft defined pitch, yaw, and roll are referenced to the inertial (GCI) or the orbital plane (Local Vertical System). In the Local Vertical System the X-axis is along the planet to spacecraft vector, the Z-axis is perpendicular to the orbital plane, and the Y-axis completes a right-handed system.

The Euler angles which are defined as:

- w Rotation about the Z-axis
- 8 Rotation about the Y-axis
- $$\phi$$ Rotation about the Z-axis and are illustrated on Figure 3.2.1.4.3.

The orbital parameters, which are used to calculate the time dependent coordinate location of the spacecraft are illustrated on Table 3.2.4.1.2.

Dynamic cross reference to these parameters is shown on Table 3.2.4.1.3.

Absorbed heat is processed and assembled for the panels through a call to Routine SHAD directly from the component performance routine. (See Routine SHAD.)

Having established the basic parameters the vector manipulation is performed to obtain the required angles and the components of incident heating are evaluated as follows:

Solar Radiation to a Flat Plate

The direct solar radiation to a flat plate is given by

$$q_s = S \cos \theta_3$$

whe re

(

C

 q_s = Incident energy from the Sun (BTU/HR FT²)

S = Solar constant (BTU/HR FT²)

 θ_3 = The angle between the vehicle-Sun vector and a normal to a flat plate element (DEG)

Planetary Thermal Radiation to a Flat Plate

The planetary thermal radiation from an isothermal body to a flat plate is given by:

$$q_t = F_t I_t$$

where

 q_t = Incident planetary thermal radiation (BTU/HR FT²)

 F_{+} = View factor for a flat plate (nd)

 I_t = Total energy emitted from planet unit area (BTU/HR FT²)

and

$$I_t = (1 - a) S \frac{A_p}{A_t} = (1 - a) S/4$$
3.2.1.4.3

where S is the solar constant, a is the planetary albedo constant, A_p is the projected area of the planet, and A_t is the total surface area of the planet. For a sphere, $A_p/A_t = 1/4$.

The view factor F, for a flat plate is defined by the following:

$$F_{t} = \frac{1}{2\pi} \left[\pi - 2 \sin^{-1} \frac{\sqrt{H^{2} - R^{2}}}{H \sin \theta_{2}} \right] - \frac{1}{2\pi} \sin \left[2 \sin^{-1} \frac{\sqrt{H^{2} - R^{2}}}{H \sin \theta_{2}} \right] +$$

$$\frac{1}{2} \frac{R^2}{H^2} \left\{ -1 + \frac{2}{\pi} \sin^{-1} \frac{\sqrt{H^2 - R^2}}{R \tan \theta_2} + \frac{1}{\pi} \sin \left[2 \sin^{-1} \frac{\sqrt{H^2 - R^2}}{R \tan \theta_2} \right] \right\} \cos \theta_2$$

or if

(

C

$$\theta_2 < \tan^{-1} \frac{\sqrt{H^2 - R^2}}{R}$$

the expression for F_t is

$$F_{t} = \frac{-R^2}{H^2} \cos \theta_2$$

where

H = R + h

R = The radius of the planet (n mi)

h = Vehicle altitude (n mi)

 $^{\rm 0}2$ = The angle between a normal to the flat plate and the radius vector from the planet to the vehicle

Figure 3.2.1.4.4 shows the geometric relationships for planetary thermal radiation from an isothermal body to a flat plate.

Planetary Albedo to a Flat Plate

The planetary albedo radiation to a flat plate is given by

where

 q_a = Incident planetary albedo (BTU/HR FT²)

F = View factor for a flat plate (nd)

S = Solar constant (BTU/HP FT²)

a = Albedo constant

The view factor F_a for a flat plate was obtained from Reference 2. This expression is a modified solution for planetary thermal radiation multiplied with a correction term, which, since planetary albedo obeys Lambert's Law, accounts for the cosine distribution not only with respect to the angular radiation from a given area but over the sunlit surface of the planet as well.

The view factor for planetary albedo is expressed as

$$F_{a} = F_{t} (\theta_{2},h) \left(0.86 + 0.14e^{-0.757 h/R}\right)$$

$$\cos \left[\theta_{1} - \left[0.1369 (\pi - \theta_{2})^{3} \cos (\theta_{c}) \left(1 - e^{-5.66 h/R} (\pi - \theta_{2})^{2}\right)\right]\right]$$

where

O

h = Vehicle altitude (n mi)

 θ_2 = Angle between a normal to the flat plate and the radius vector

91 = The angle between the planet-Sun vector and the radius vector from the planet to the vehicle

ec = The angle of rotation of a normal to a flat plate element, measured from a plane containing the planet-Sun vector and the radius vector from the planet to the vehicle

Figure 3.2.1.4.5 shows the geometric relationships between the parameters. When the spacecraft is shadowed by the planet it is orbiting, the solar heating rate to each flat element is set to zero. The position of the spacecraft relative to the Sun and the planet is checked in this subroutine to see if occulation has occurred.

ORBITAL HEATING
CONTROL PARAMETERS

ITEM VALUE UNIT

1 CONTROL INDICATOR 2 INTEGER
1 = READ TAPE
2 = CALCULATE TRAJECTORY

2 UNIT CONVERSION FOR TAPE 1 INTEGER
1 = EARTH RADII(ER.)
2 = KILOMETERS (KM.)

()

O

Table 3.2.1.4.1. Edited Trajectory Tape Format

FORTRAN Tape Number 13

Identification: Edited Trajectory Information Tape Type: Binary Density: 800 1108 File Letter: K

0

()

Record Description

Word Number	Type	Description	<u>Units</u>
1 2	R I	Ground Elapsed Time (GET) in decimal hours Year	HR
2 3 4 5 6 7	Ī	Month	
4	I	Day Calendar date	
5	I	Hour Calendar date	
6	I	Minute	
	I	Second	
.8	I	Revolution Counter	
9	Ī	Physical Eclipse indicator (O Sun, 1 shadow)	
10	Ī	Noon indicator (1 noon, 0 other)	
]]	Ī	Not Used	
12	I	Not Used	CD 101
13	R	Vehicle vector X	ER or KM
14 35	R	Vehicle vector Y Vehicle vector Z	ER or KM ER or KM
15 16	R R	Vehicle vector X (x dot)	
10	R R		ER/HR or KM/HR ER/HR or KM/HR
17	R	Vehicle vector Y (y dot) Vehicle vector Z (z dot)	ER/HR or KM/HR
19	R	Vehicle vector R (radius vector to	EKYTIK OF KMYTIK
13	**	spacecraft)	ER or KM
20	R	Direction Cosines XTX	
21	Ř	Direction Cosines XTY	
22	Ř	Direction Cosines XTZ	
23	R	Direction Cosines YTX	
24	R	Direction Cosines YTY	
25	R	Direction Cosines YTZ	
26	R	Direction Cosines ZTX	
27	R	Direction Cosines ZTY	
28	R	Direction Cosines ZTZ	
29	R	Sun vectors X SUN	ER or KM
30	R	Sun vectors Y SUN	ER or KM
31	R	Sun vectors Z SUN	ER or KM
32	R	Solar Incidence Angle Beta	DEG
33	R	Orbital period	HR ,

ITEM VALUE UNIT 1 COMP FREQUENCY INTEGER ATTITUDE HOLD KEY 1 = INERTIAL 2 = LOCAL VERTICAL 2 INTEGER SUN COORDINATE XYZ RAD. RAD. RAD. 678 EULER ANGLE ABOUT . 000 . 000 . 000 . 9 ER. ORBIT SEMIMAJOR AXIS 1.029 io ORBIT ECCENTRICITY . 000 N/D RAD. iı ORBIT INCLINATION . 000 12 RIGHT ASCENSION .000 RAD. i3 ARGUMENT OF PERIGEE .000 RAD. 14 TIME OF PERIGEE PASSAGE ER. . 000

()

Figure 3.2.1.4.2. Typical Interactive Orbital Parameter Display

1. SC axis initially aligned with QCI axis

2. Rotate 90 degrees about Z-axis (Positive rotation is X-axis towards Y-axis)

Y = 90 DEG 0 = 0 DEG

φ = O DEG

3. Rotate 90 degrees about Y-axis (Positive rotation is Z-axis towards X-axis)

Ψ = 90 DEG 6 = -90 DEC

6 = -90 DEG

4. Rotate 90 degrees about X-axis (Positive rotation is Y-axis towards Z-axis)

0

¥ = 90 DEG

0 = -90 DEG

- -90 DEG

Figure 3.2.1.4.3. Illustration of Euler Angle Sequence Showing Spacecraft Position

Table 3.2.1.4.2. Classical Elements of an Orbit

The elements which define an orbit are:

- a Semimajor axis of the orbit
- e Eccentricity of the orbit
- i Inclination of the orbit, angle between the orbital plane and the equator $0^{\circ} \leq i \leq 180^{\circ}$
- Ω Right ascension of the ascending node 0° \leq Ω \leq 360°
- ω Argument of perigee
- τ Time of perigee passage

Figure 3.2.1.4.4. Planetary Thermal Radiation to a Flat Plate 3.2.1.4.12

(])

Figure 3.2.1.4.5. Planetary Albedo to a Flat Plate 3.2.1.4.13

Table 3.2.4.1.3. Dynamic Cross Reference to Orbital Parameters

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Compute frequency	-	INTEGER	IFREQ	1	HCONT
Attitude hold key	-	INTEGER	IHOLD	1	HEAT
Sun coordinate X	Xs	ER	SUN(1)	R	HEAT
Y	Ys	ER	SUN(2)	R	HEAT
Z	Z _S	ER	SUN(3)	R	HEAT
Euler angle about Z	ψ	RAD	EULAN(1)	R	HEAT
Y	0	RAD	EULAN(2)	R	HEAT
X	ф	RAD	EULAN(3)	R	HEAT
Orbit semimajor axis	a	ER	A	R	HEAT
Orbit eccentricity	е	FRACTION	E	R	HEAT
Right ascention	r	RAD	во	R	HEAT
Argument of perigee	W	RAD	Sφ	R	HEAT
Time of perigee passage	τ	HRS	TAU	R	HEAT
Inclination	1	RAD	Ε	R	HEAT

0

0

3.2.1.5 Routine SHAD

()

The absorbed heat for a panel i is assembled in Routine SHAD in response to a direct call from the component routine processing node i.

If the component routine processing node i does not reference shadowing the assembly is simply

$$q_{ABS} = \alpha(q_s + q_a) + \epsilon q_t$$

from the three incident heat components calculated by control through Routine TRAJ and the panel solar absorbtivity and thermal emissivity prescribed for node i.

If the component routine processing node i references a shadowing node j and a stand-off vector storage location n the shadowing effect is taken into account before the absorbed heat is calculated.

The shadowing calculations set up two concentric solid angles defined by the angles of lune α_1 and α_2 , which define the total and partial shadowing bounds for solar radiation as shown for a simple configuration on Figure 3.2.1.5.1. For simplicity the configuration is representative of a system in which the normal to i and j and the stand-off vector coincide. The panels may have any relative position on the spacecraft defined by their dihedral angle (β) and angle of incidence (α). Simularly for the stand-off vector parameters β_m and α_m . The parameters α_m and β_m are the angle of incidence and dihedral angles of a panel that result in a normal that is in the direction of a vector drawn from the center of panel i to the center of panel j. Panels i and j are separated by the distance m along this vector. Albedo and thermal shadowing effects are evaluated as:

$$0 \le q_a = q_{ai} - q_{aj}$$

and

for node i.

Interactive communication with the shadowing node and stand-off vector parameters is through the console display shown on Figure 3.1.2.6.3.

The cross reference to shadowed node, shadowing node and stand-off vector parameters are shown on Table 3.2.1.5.1.

ANGLE SETWEEN SUN VECTOR AND STAND OFF VECTOR

Figure 3.2 1.5.1. Typical Solar Shadowing Illustration

3.2.1.5.3

()

Table 3.2.1.5.1. Dynamic Cross Reference Parameters for Node I Shadowed by Node J With Stand-Off Vector Storage in M

VARIABLE	SYMBOL	UNITS	STORAGE	TYPE	COMMON
Shadowed node area	Ai	FT ²	C(I,9) + C(I,10)	R	MEAT
Shadowing node area	Aj	FT ²	C(J,10)	R	MEAT
Angle of incidence shadowed node	α ₁	RAD	C(1,11)	R	MEAT
Angle of incidence shadowing node	αj	RAD	C(J,11)	R	MEAT
Angle of incidence stand-off vector (equivalent)	α _m	RAD	C(M,11)	R	MEAT
Dihedral angle shadowed node	81	RAD	C(1,12)	R	MEAT
Dihedral angle shadowing node	βj	RAD	C(J,12)	R	MEAT
Dihedral angle stand-off vector (equivalent)	6 _m	RAD	C(M,12)	R	MEAT
Stand-off distance	m	FT	C(M,10)	R	MEAT

C

3.2.2 Output Routines

0

The basic control of output data is through the control Routine PRINT via initial Interactive Print Option Display shown on Figure 3.1.1.2.2. This section discusses the subsequent interactive, and possible dynamic, communication resulting from the selection or various print options, as well as various output functions which are automatically executed in response to the particular model component performance routines characteristics. A summary of the output routines is shown on Table 3.2.2.1.

Table 3.2.2.1. Summary of Output Routines

NODPRT Displays fluid property data with generic names at selected print frequency.

NASPRT Displays fluid property data with assigned node names at selected print frequency.

GASPR Displays atmospheric property data at selected print frequency.

CONPRT Displays consumables data for referenced sources at selected print frequency.

PLOOT Stores data for plotting.

SCHEM Displays modelled system schematic.

3.2.2.1. Routine NODPRT

The basic output of fluid property data is written from Routine NODPRT.

The routine automatically outputs data during passive execution for all referenced node numbers in the order of reference as shown on Figure 3.2.2.1.1 unless the user specifies the select node option. The output at the print frequency specified at the time of initialization control (Figure 3.1.1.3). The generic name of the referenced nodes is included.

TFEAR
TEST TFEAR PLOT OPTION
FLUID PROPERTIES TIME = HEAT LOAD BTU/HR 2001.000 COMP TEMP DEG FLUID TEMP WCP BIU/HR NODE. N-234567-89 DEG DEG 501.000 501.000 CABIN OUT WHEATER OUT 501.000 501.000 1490.483 1490.483 1490.483 1490.483 1490.483 COND. IN CHEATER IN CONDINCTION LICH OUT COMPOUT EVAP OUT EVAP OUT PLATE OUT INTF OUT PLATE OUT EXCH OUT 498.448 495.000 IN 450.000 PLATE IN /PLATE IN /EXCH IN 495.601 3793.755 150.000 499.816 102113745689012 /DIVERT LEG /BRANCH /MIXER 7. 452 1483.7266 3.7266 3.7266 3.7266 3.7266 3.7266 3.7266 1000 **48**2.899 **48**2.899 **47**5.798 **470**.936 LEG **/RADIN** LEG RADOUT RADOUT /RADIN /RADIN /RADIN /MIXER RADOUT 475.798 371.416 RADOUT RADOUT **ZRADIN** /MIXER /PLATE OU /PLATE IN RADOUT EXCH IN EXCH OUT OUT 523.615 100.090 200.000

1,

()

Figure 3.2.2.1.1. Typical Fluid Property Output Data - Generic Names

3.2.2.2 Routine NASPRT

()

If the option to select nodes in is effect, output interactive communication is extended through a display requesting the node numbers to be output and whether or not to use assigned or generic node names. If the generic name option is in effect, the output is through Routine NODPRT, except that the selected set of node numbers (in the order they were input), rather than all referenced model nodes are printed. Selection of the option of assigning node names extends the interactive communication through a display requesting the nodal names in the same order as the node number selection. Subsequent output is through Routine NASPRT reflecting the selected node numbers and the assigned names as shown on Figure 3.2.2.2.1.

()

3.2.2.3 Routine GASPR

Reference to atmospheric properties for one or more component performance routines will automatically execute the atmospheric data output Routine GASPR. The data as shown on Figure 3.2.2.3.1 is at the selected print frequency and includes all node numbers referencing atmospheric processing.

GAS PROPERTIES

TIME =	1.500					
NODE NO	SPECIFIC HEAT	WATER PSI	NITROGEN PSI	OXYGEN PSI	C@2 PSI	TOTAL PSI
1	. 210	. 106	11.600	3.100	. 073	14.700
2	. 210	. 107	11.600	3.1 00	. 073	14.700
3	. 210	. 107	11.600	3.100	. 073	14.700
4	. 210	. 106	11.600	3.1 00	. 073	14.700
ale ale ale ale ale al	ate afte afte afte afte afte afte afte a	No also also also also also also also als	alle alle alle alle alle alle alle alle	ple the please are pleased and please also please at	in the size of the size size size size and	de ade ade ade

3.2.2.4 Routine CONPRT

0

Reference to one or more storage sources will automatically execute Routine CONPRT to output the summary of the status of the various sources. The output is at the selected print frequency and reflects the remaining quantity at the given time as shown on Figure 3.2.2.4.1. The remaining quantity for a source i is calculated internally as

CONSTA(I) - CONTOT(I)

referenced in the discussion of Routine CONSUM. Dynamic communication with the remaining quantity should reference these variables.

1 500			
	GUANTITY	QUANTITY	
ÄŸÄİLÄBLE	USED	REMAINING	
. 000	2.298	-2.298	
. 000		848	
. 000	. 000	. 000	
. 000	~.324	. 324	
. 000	197.947	-197.947	
.000	11.900	-11.900	
	.000 .000 .000 .000 .000	INITIAL QUANTITY AVAILABLE USED .000 2.298 .000 .848 .000 .000 .000 .324 .000 197.947	

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3.2.2.4.1. Typical Consumables Data Output

3.2.2.5 Routine PLOOT

C

Selection of the Plot Option will extend the interactive communication through a display requesting the node numbers and type of information to be plotted. A completed display of this type is shown on Figure 3.2.2.5.

The Plot Option automatically executes Routine PLOOT which stores the data to be plotted at each calculated time point. Near run termination the data stored is prepared in screen plots by Routine DRAW.

*******	*********	***********	***********	********	
		PLOT CONTROL			
TEM	NODE NO	TYPE	MAX	MIN	
· - ii	2	FLUID TEMP		``. ëss	
ż	• 5		. 000	. 000	
4	12		. 999	. 0 00 . 00 0	
5	22	HEAT	. 000	. 098	

0

Figure 3.2.2.5. Typical Plot Control Data Display

3.2.2.6 Routine SCHEM

Request for a schematic of the modelled system will automatically execute Routine SCHEM immediately prior to passive execution. Routine SCHEM processes the referenced node numbers and their generic names to assign a node number and type to each subplot in a composite display of the system schematic. Routine SCHEM prepares the control parameters for a single page of the schematics and then processes a call to Routine PICT to display that page. The paging process continues until the schematic is complete. A typical single page schematic is shown on Figure 3.2.2.6.1.

Figure 3.2.2.6.1. Typical Schematic Output 3.2.2.6.2

REFERENCES

- Paul D. Aaron and M. R. Reumont, "Correlation of Carbon Dioxide System Performance with Qualification Test Data and Apollo 11 through 15 Flights," TRM 72.4910.1-3, 29 March 1972.
- 2. R. R. McMurchy and A. J. Kessler, "ASIS Incident Heating Model Computer Program," TRM 3141-23.111, 3 March 1967.

O