Schemat działania algorytmu CYK

Algorytm zaczyna działanie od gramatyki $G = (V_N, V_T, P, S)$ dla języka L.

Uwaga – gramatyka musi być w postaci normalnej Chomsky'ego

Wejście: $w = a_1 a_2 \dots a_n \in V_T^*, a_i \in V_T, 1 \le i \le n$.

W czasie $O(n^3)$ CYK tworzy tablicę, na podstawie której rozstrzyga, czy $w \in L$.

Przy obliczaniu czasu działania sama G uważana jest za ustaloną, a jej wielkość wchodzi do czasu wykonywania, mierzonego względem długości w, którego należenie do L testujemy, tylko jako czynnik stały.

Tablica konstruowana przez CYK

$$G = (V_N, V_T, P, S)$$
 Niech $w = a_1 a_2 a_3 a_4 a_5$, $|w| = n = 5$. Idea: $X_{ij} = \{A \in V_N : A \Rightarrow^* a_i a_{i+1} \dots a_j\}$
$$w \in L(G) \Leftrightarrow S \in X_{1n}$$

Tablicę wypełniamy rzędami idąc od dołu. Rząd 1 odpowiada podsłowom o długości 1, kolejny – podsłowom o długości 2 itd.; ostatni, jednoelementowy – odpowiada całemu słowu, o długości n.

Obliczenie każdej komórki zajmuje O(n), a komórek jest $O(n^2)$, zatem całkowity czas to $O(n^3)$

Algorytm obliczania X_{ij} w tablicy CYK

Obliczanie dowolnego X_{ij} w rzędzie j-i+1. Zakładamy, że obliczyliśmy już niższe rzędy. $A \Rightarrow^* a_i a_{i+1} \dots a_j$ musi się zacząć od jakiejś $A \rightarrow BC$ gdzie $B \Rightarrow^* a_i \dots a_k$, $C \Rightarrow a_{k+1} \dots a_j$.

Więc aby $A \in X_{ij}$, trzeba znaleźć k oraz B, C t., że:

1)
$$i \le k < j$$
. 2) $B \in X_{ik}$. 3) $C \in X_{k+1,j}$. 4) $A \to BC \in P$

Znalezienie takich A wymaga porównania co najwyżej n par poprzednio obliczonych zbiorów $(X_{ii}, X_{i+1,j}), (X_{i,i+1}, X_{i+2,j}), ..., (X_{i,j-1}, X_{ij}).$

Algorytm obliczania X_{ij} w tablicy CYK

Formalnie:

$$X_{ii} = \{ A \in V_N : A \to a_i \in P \}$$

Dla $1 \le i < j \le n$:

$$X_{ij} = \bigcup_{k=i}^{J} \{ A \in V_N : A \to BC \in P, B \in X_{ik}, C \in X_{k+1,j} \}$$

$$w = a_1 a_2 \dots a_n \in L \Leftrightarrow S \in X_{1n}$$

Algorytm CYK – przykład

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algorytm CYK – przykład

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algorytm CYK – przykład

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algorytm CYK – przykład

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algorytm CYK – przykład

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algorytm CYK – przykład

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algorytm CYK – przykład

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algorytm CYK – przykład

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algorytm CYK – przykład

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Algorytm CYK – przykład

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Ø				
Ø	В	В		
S, A	В	S, C	S, A	
В	<i>A, C</i>	A, C	В	<i>A, C</i>
b	а	а	b	a

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Ø	S, C			
Ø	В	В		
S, A	В	S, C	S, A	
В	<i>A, C</i>	<i>A, C</i>	В	<i>A, C</i>
b	а	а	b	а

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Ø	SAC			
Ø	В	В		
S, A	В	S, C	S, A	
В	<i>A, C</i>	<i>A, C</i>	В	<i>A, C</i>
b	а	а	b	а

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Ø	SAC			
Ø	В	В		
S, A	В	S, C	S, A	
В	<i>A, C</i>	A, C	В	<i>A, C</i>
b	а	а	b	а

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

S, A				
Ø	SAC			
Ø	В	В		
S, A	В	S, C	S, A	
В	<i>A, C</i>	<i>A, C</i>	В	<i>A, C</i>
b	а	а	b	а

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

SAC				
Ø	SAC			
Ø	В	В		
S, A	В	S, C	S, A	
В	<i>A, C</i>	A, C	В	<i>A, C</i>
b	а	а	b	a

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

SAC				
Ø	SAC			
Ø	В	В		
S, A	В	S, C	S, A	
В	<i>A, C</i>	A, C	В	<i>A, C</i>
b	a	а	b	а

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

SAC				
Ø	SAC			
Ø	В	В		
S, A	В	S, C	S, A	
В	<i>A, C</i>	<i>A, C</i>	В	A, C
b	а	а	b	а

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

SAC				
Ø	SAC			
Ø	В	В		
S, A	В	S, C	S, A	
В	<i>A, C</i>	<i>A, C</i>	В	<i>A, C</i>
b	а	а	b	а

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Testowane słowo: w = baaba

 $S \in V_{15}$, zatem $w \in L(G)$