Math 280A Fall '21 Lecture 2

Sections 1.6 - 1.8 of the text

Generators: As at ene of last class $C \subset P(\Omega)$.

Define F(C):={J:Jisao-field, FDC} $\sigma(C) := \bigcap \{B : B \in F(C)\}$ (the o-field generated by (2)

Theorem (a) $\sigma(C)$ is a σ -field and $\sigma(C) > C$

(b) If B is a σ -field with $C \subset B$ then $\sigma(C) \subset B$

(o(e) is the minimal (in the sense of c)

ofield containing e)

Silly example:
$$C = \beta \implies \sigma(C) = \{ \beta, \Omega \}$$
 (2)

Loss silly ex.:
$$C = \{A\}$$
 where $A \subset \mathcal{Q}$.
 $\sigma(C) = \{\emptyset, A, A', \Omega\}$
Proof. (a) Suppose A , A_2 , ... are elements of $\sigma(C)$.
Fix $\exists \in F(C)$. Then $A_n \in \mathcal{F}$, $\forall n$.
So $\bigcup A_n \in \mathcal{F}$ because \exists is a σ field.
As $\exists \in F(C)$ was arbitrary, this means

that $\bigcup_{n} A_n \in \bigcap \{ \exists : \exists \in F(e) \}$ i.e. $\bigcup_{n} A_n \in \mathcal{T}(e)$ Similar arguments show $\sigma(C)$ contains ϕ and $\sigma(C)$ is closed under complementation. (b) If B is a r-field with $C \subset B$, then $B \in F(C)$.

$$\therefore B \supset \bigcap \{\exists : \exists \in F(C)\} = \sigma(C)$$

Ex. Borel subsets of R $B(R) := \sigma(\text{ open subsets of }R)$ ② σ ({ (a, b): a < b, a ∈ Q, b ∈ Q}) $= \sigma \left(\left\{ \left(-\infty, b \right) : b \in \mathbb{R} \right\} \right)$ = \(\delta\) (\delta\) (\ = o (closed subsets of TR)

for example: = because any open subset of PR can be written as a countable union of open intervals If a < b are real, choose rationals an, bn with a < an < bn < b and anta, bytb. Then $(a,b) = \bigcup (a_n,b_n)$

Trace ofield

Context: (2, 8) some mensionable space 2, 2 (non-void)

$$B_o := B \cap \Omega_o := \{B \cap \Omega_o : B \in B\}$$

Check: Bo is a o-field of subsets of 20.

7

Theorem (trace vs. generators) $\sigma(\mathcal{C} \cap \mathcal{L}_o) = \sigma(\mathcal{C}) \cap \mathcal{L}_o$ Proof. (i) $C \subset \sigma(C)$ (by definition) : en20 co(c)ns20 a r-field on Ω. ·i $\sigma(C \cap \Omega_0) \subset \sigma(C) \cap \Omega_0$ (minimality of $\sigma(C \cap \Omega_0)$) (ii) \supset needs a new technique:

"good sets principle"

Define: $\mathcal{G} := \{ A \subset \Omega : A \cap \Omega_o \in \sigma(\mathcal{C} \cap \Omega_o) \}$

because if $B \in C$ then $B \cap \Omega_0$ is an element of $C \cap \Omega_0 \subset \sigma(C \cap \Omega_0)$ so $B \in \mathcal{Y}$

· y is a σ-field of subsets of Ω. (Check!)

··· es > o(C) by minimality of o(C)

1.e.
$$A \in \Gamma(C) = A \cap A_0 \in \sigma(C \cap A_0)$$

so $\sigma(C) \cap A_0 \subset \sigma(C \cap A_0)$.

Ex. (More Borel sets)

If (S, d) is a metric space, we have an a sosociated notion of open set. Let I be the collection of all open subsets of S.

 $B(S) := \sigma(J)$ (Borel subsets of S)

 $\frac{E_{\times}}{R}$ $\mathcal{B}(0,1]) = \mathcal{B}(\mathcal{R}) \cap (0,1]$

n)