

DelftX: OT.1x Observation theory: Estimating the Unknown

Help

Bookmarks

- 0. Getting Started
- 1. Introduction to Observation Theory

Warming up

- 1.1 What is the Problem?
- 1.2 Quality and Types of Errors part 1
- 1.2 Quality and Types of Errors part 2
- 1.3 Elements of the Estimation Problem

Assessment

Graded Assignment due Feb 8, 2017 17:30 IST

Q&A Forum

Feedback

2. Mathematical model

1. Introduction to Observation Theory > 1.2 Quality and Types of Errors - part 1 > Exercises: Random errors

Exercises: Random errors

 \square Bookmark this page

GPS positioning

5/5 points (ungraded)

The figure shows the errors in a set of estimated GPS positions. Values specific for this receiver may be graphically derived.

- 3. Least Squares Estimation (LSE)
- 4. Best Linear Unbiased Estimation (BLUE)
- Pre-knowledgeMathematics
- MATLAB Learning Content

1. What is the standard deviation for the East error (σ_E) (in meters)?

0.5 **▼ Answer:** 0.5

2. What is the standard deviation for the North error σ_N (in meters)? (up to 1 digit)

Outlier Influence

In this demo you will calculate the influence of one bad data point. What will happen to the mean and standard deviation? What will be the influence when you have only a small data set? To find out, finish the Matlab code below.

You may also copy the Matlab code below to the Matlab Online environment.

Your Solution

Save C Reset MATLAB Documentation (https://www.mathworks.com/help/)

```
1 % The following two lines will generate a random data set
2 % with random errors, with variance of 0.3 m2
           = mvnrnd(0,0.3,500);
 3 X
5 % task 1. compute the mean and standard deviations (std)
6 % of the data set
7 \times mean = mean(x)
8 x std
           = std(x)
10 % Now we add a blunder (outlier) in the data.
11 x outlier
                 = x;
12 outlier
                 = 10:
13 x outlier(10) = x outlier(10)+outlier;
14
15 % task 2. Find the new std and mean of the new data set with the blunder.
16 x outlier mean = mean(x outlier);
17 x outlier std = std(x outlier);
18
19 % Now we shorten the data set to the first 10 entries. This will affect the
20 % influence of the outlier on the mean and std.
21 x outlier 10
                   = x outlier(1:10);
22
23 % task 3. Find the new std and mean of the shorter data set with the blunder.
```

```
24 x outlier 10 mean= mean(x outlier 10);
25 x outlier 10 std = std(x outlier 10);
26
27 % task 4. Run the code and compare the means and standard deviations
28 % You will see that the influence is larger in case of fewer observations.
```

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

