Factory Production Optimization

Prepared by : Huixin Li, Prashanti Bijapur, Roshni Victor, Shrutanvi Datar, Vrinda Sehgal

Table of Contents

Company Overview	3
Project Statement	3
Objective Function	3
Constraints	3
Optimal Solution	3
Heading 1	2

Company Overview

In the heart of an industrial town, a bustling factory stands as a hub of productivity and innovation. This factory specializes in manufacturing seven products (Glassware, Home Decor, Plumbing, Automotives, Kitchen Appliances, Electronics, Furnitures) using a range of 5 different types of machines including:

- Four grinders
- Two vertical drills
- Three horizontal drills
- One borer
- One planer

These seven products are brought to life through the combined efforts of **five types of machines** within the factory.

The profit of each product per unit sold are included in the table below:

	Glassware	Home Decor	Plumbing	Automotive	Kitchen Appliances	Electronics	Furniture
Profit	\$10	\$6	\$8	\$4	\$11	\$9	\$3

Project Statement:

To determine the **optimal production and maintenance plans** for a factory that manufactures seven different products using various machines. The goal is to **maximize the profit** while satisfying the constraints on machine maintenance, product sales limitations, and inventory requirements.

Production Time Requirements (in hours)

	Glassware	Home Decor	Plumbing	Automotive	Kitchen Appliances	Electronics	Furniture
Grinder	0.5	0.7	/	/	0.3	0.2	0.5
Vertical Drill	0.1	0.2	/	0.3	/	0.6	/
Horizontal Drill	0.2	/	0.8	/	/	/	0.6
Borer	0.05	0.03	/	0.07	0.1	/	0.08
Planner	/	/	0.01	/	0.05	/	0.05

Maximum Products Sold

Months	Glassware	Home Decor	Plumbing	Automotive	Kitchen Appliances	Electronics	Furniture
January	500	1000	300	300	800	200	100
February	600	500	200	0	400	300	150
March	300	600	0	0	500	400	100
April	200	300	400	500	200	0	100
May	0	100	500	100	1000	300	0
June	500	500	100	300	1100	500	60

Sets ,Indices and Decision Variables

Sets and Indices

```
n \in \text{Months} = \{\text{Jan, Feb, Mar, Apr, May, Jun}\}: \text{Set of months.}
p \in \text{Products} = \{\text{"} \ Glassware ", \text{"} \ HomeDecor ", \dots, \text{"} \ Furniture "\}: \text{Set of products.}
m \in \text{Machines} = \{\text{Grinder, VertDrill, horiDrill, Borer, Planer}\}: \text{Set of machines.}
```

Decision Variables

 $\operatorname{Produce}_{n,p} \in \mathbb{R}^+$: Number of units of product p to manufacture at month n.

Inventory_{n,p} \in [0, max_inventory] $\subset \mathbb{R}^+$: Number of units of product p to store at month p.

 $\operatorname{Sold}_{n,p} \in [0, \max_{\operatorname{sales}_{n,p}}] \subset \mathbb{R}^+$: Number of units of product p to sell at month n.

Maintenance_{n,m} $\in \{0, 1, ..., down_{req_m}\} \subset \mathbb{N}$: Number of machines of type m scheduled for maintenance at month n.

Objective Function

The objective function is formulated according to the goal which is maximizing profit.

Profit: Maximize the total profit (in USD).

$$\text{Maximize} \quad T = \sum_{n \in \text{Months}} \sum_{p \in \text{Products}} (\text{Profit}_p * \text{Produce}_{n,p} - \text{Inventory_cost} * \text{Inventory}_{n,p})$$

The above function means Sum of profit achieved from each product in all 6 months minus sum of inventory expense for each product in all 6 months.

Different Constraints

• **Initial Balance:** For each product *p*, the number of units produced should be equal to the number of units sold plus the number stored (in units of product).

$$Produce_{Jan,p} = Sold_{Jan,p} + Inventory_{Jan,p} \quad \forall p \in Products$$
 (1)

 Balance: For each product p, the number of units produced in month n and previously stored should be equal to the number of units sold and stored in that month (in units of product).

Inventory_{$$n-1,p$$} + Produce _{n,p} = Sold _{n,p} + Inventory _{n,p} $\forall (n,p) \in Months \setminus \{Jan\}$
× Products

Inventory Target: The number of units of product p kept in inventory at the end of the
planning horizon should hit the target (in units of product).

Inventory_{Jun,p} = store_target
$$\forall p \in \text{Products}$$
 (3)

 Maintenance: The number of machines of type m scheduled for maintenance should meet the requirement.

$$\sum_{n \in Months} Maintenance_{n,m} = down_req_m \quad \forall m \in Machines$$
 (4)

Machine Capacity: Total time used to manufacture any product at machine type m
cannot exceed its monthly capacity (in hours).

$$\sum_{p \in \text{Products}} \text{time_req}_{m,p} * \text{Produce}_{n,p} \le \text{hours_per_month}$$
 (5)

* (installed_m – Maintenance_{n,m}) $\forall (n,m) \in Months \times Machines$

Optimal Solution

Optimal Result: The result of the optimization model shows that the maximum profit we can achieve is **\$108,855.00**

	Glassware	Home Decor	Plumbing	Automotive	Kitchen Appliances	Electronics	Furniture
Jan	500	1000	300	300	800	200	100
Feb	600	500	200	0	400	300	150
Mar	400	700	100	100	600	400	200
Apr	0	0	0	0	0	0	0
May	0	100	500	100	1000	300	0
Jun	550	550	150	350	1150	550	110

References

https://colab.research.google.com/github/Gurobi/modelingexamples/blob/master/factory_planning_1_2/factory_planning_2_gcl.ipynb#scrollTo=vRQPrTlx UeUB