

HT7M2126/27/36/56/76 PIR Detector Miniaturized Module

General Description

Holtek's human body infrared detector micro modules, the HT7M21xx series, come fully integrated with optical lenses, a passive infrared (PIR) sensor and DSP algorithms. These modules include a wide range of features such as low power consumption, an I²C communication interface and DSP algorithms which improve the reliability of the PIR detector. Their application range includes home security and surveillance system as well as basic industrial safety detection.

Features

- Operating voltage: 2.7V ~ 5.5V
 Operating temperature: -10 ~ 60°C
- Low power consumption:
 - Operating mode (Moving objects to be detected)
 < 1.5mA
 - Standby with detecting mode < 50μA (Operating voltage 3.3V)
- Intelligent signal recognition algorithm

- Optional communication interfaces: I²C for Network Mode or I/O for Stand-alone Mode
- Adjustable sensing sensitivity Network Mode
- Customisable trigger modes: Single/Continuous Network Mode
- Adjustable trigger output time: 16-bit×100ms Network Mode
- Low voltage detection: 2.0/2.2/2.4/2.7/3.0/3.3/3.6/
 4.0V options Network Mode
- Supports external optical sensors (eg. photo transistors)
- Integrated temperature sensor with temperature compensation
- Quick stabilisation: ready for stable operation within 12 seconds after power on

Applications

- · Security Monitoring Systems
- Intelligent Lighting Control
- · Home Appliances Energy-saving Control
- · Office and Factory Equipment Automation

Block Diagram

Rev. 1.20 1 June 17, 2016

Mode Selection

The MODE/ACT (MODE/DT) pin is used to select the Network or Stand-alone mode. When a pull-low resistor is externally connected between the MODE/ACT (MODE/DT) pin to the ground, the Stand-alone mode is selected. Otherwise, the Network mode is selected if a pull-high resistor or no resistor is externally on this pin.

Network Application Circuit – Network Mode

Interface & Pin Assignment - Network Mode

Pin#	Function	Description				
1	VSS	Negative power supply, GND				
2	VDD	Positive power supply				
3	SDA	Serial Data Input/Output for I ² C interface				
4	SCL	Serial Clock Input for I ² C interface				
5	FTS	Photo transistor signal				
6	VSS	Negative power supply, GND				
7	MODE/ACT	Mode Selection/Motion Detection Output				
8	TP1	No connection (Test pin)				

Note: When the HT7M21xx selects Network mode and the internal enable bit ACTEN is high, the MODE/ACT pin will output a high pulse signal with a width of 30 seconds.

Stand-alone Application Circuit - Stand-alone Mode

Rev. 1.20 2 June 17, 2016

Interface & Pin Assignment - Stand-alone Mode

Pin #	Function	Description
1	VSS	Negative power supply, GND
2	VDD	Positive power supply
3	STATUS	Warm-up/Detecting/Low voltage status
4	TRO	PIR trigger output
5	FTS	Photo transistor signal
6	VSS	Negative power supply, GND
7	MODE/DT	Mode & Duration time Selection
8	TP1	No connection (Test pin)

The default configurations for the Stand-alone Mode are as follow:

- 1. Continuous trigger mode
- 2. The TRO pin will output a high pulse signal when an available trigger is detected. The high pulse duration is determined by the external pull-low resistance of $(R_A + R_T)$ together with the capacitance of C_T with a fixed value of $0.22\mu F$.

External capacitance C_T = 0.22uF*, V_{DD} = 3.3V

RA+RT Resistance (Ω)	1.8K	2.2K	2.7K	3K	3.3K	3.6K	3.9K
TRO output duration time *	3sec.	10sec.	38sec.	1mins.	3mins.	5mins.	10mins.

Note: (a) The TRO output high duration is 30 seconds in default if there is no external capacitor C_T.

- (b) The value of the resistance, capacitance and TRO output duration time in the above table is used for reference only.
- 3. The STATUS pin will output various types of signals corresponding to the device in the warm-up mode, standby detection mode or low operating voltage mode where the operating voltage is lower than 2.7V respectively.
 - (a) Warm-up mode: A toggle output with a frequency of 2.5Hz will be output on the STATUS pin.

(b) Standy detection mode: A signal composed of a low pulse of 10ms and a high pulse of 4s will continuously be output on the STATUS pin.

(c) Low voltage mode: Two low pulses with a width of 10ms will first be output on the STATUS pin and the time duration between these two low pulses is 80ms. Then a high pulse with the width of 1 second will consecutively be output. Such an output signal will continuously be output on the STATUS pin.

Rev. 1.20 3 June 17, 2016

Light Sensing

If there is an external component such as a photo transistor, micro solar cell or CDS device connected to the FTS pin, the PIR module output function will be enabled when the voltage on the FTS pin is greater than $0.24 \times V_{DD}$. Otherwise, the PIR module output function will be enabled in default.

A pull-high resistor with a value of $680k\Omega$ is internally connected to the FTS pin in the PIR module. If the voltage on the FTS pin is greater than $0.24 \times V_{DD}$ as the internal pull-high resistor and external component are all taken into account, the PIR module output function will be enabled. The voltage threshold to enable the PIR module output function is fixed as $0.24 \times V_{DD}$ in the Stand-alone mode. If the device is in the Network mode, the voltage threshold can be adjusted by configuring the LUMI[6:0] field in the HT7M21xx device using the I²C interface.

Detection Range

With regard to the HT7M2126, the horizontal view angle is 121°, the Pitch Angle is 77° and the detection distance has about 3.5~6 meters of visual range, as shown below.

HT7M21xx: Lenses FOV (Field of View)

In addition to the HT7M2126, the HT7M21xx series include the HT7M2136, the HT7M2156 and the HT7M2176, etc. Different modules will support different detection distances (far or close) as well as different horizontal and vertical viewing angles (narrow or wide).

Part Number	Viewing Angle H/V	Center Distance	Lens Color
HT7M2126	121° 77°	3.5 ~ 6 meters	Nature
HT7M2127	121° 77°	2.8 ~ 5 meters	Black
HT7M2136	91° 10°	5.5 ~ 8 meters	Nature
HT7M2156	10° 20°	8 ~ 12 meters	Nature
HT7M2176	86° 75°	5 ~ 7.5 meters	Nature

Absolute Maximum Ratings

Supply Voltage	V_{SS} -0.3V to V_{SS} +6.0V
Input Voltage	V_{SS} -0.3V to V_{DD} +0.3V
Storage Temperature	40°C to 80°C
Operating Temperature	10°C to 60°C
I _{OL} Total	150mA
I _{OH} Total	100mA
Total Power Dissipation	500mW

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to these devices. Functional operation of these devices at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may

Rev. 1.20 4 June 17, 2016

affect devices reliability.

Electrical Characteristics

Ta=25°C

Curre le a l	Domenator		Test Conditions	B.d.i.o.	T	May	l lm!4	
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit	
V _{DD}	Operating Voltage	_	_	2.7	3.3	5.5	V	
I _{DD1}	Operating Current	3.3V	Moving objects to be detected	_	1.2	2.0	mA	
I _{DD2}	Operating Current	3.3V	Standby with detection mode, the ACC wake-up time is 4ms.	_	30	50	μA	
T _{PIR}	PIR Stabilization Time	3.3V	_	_	12	_	s	
V _{IL}	Input Low Voltage (I/O)	_	_	0	_	0.2V _{DD}	V	
V _{IH}	Input High Voltage (I/O)	_	_	0.8V _{DD}	_	V _{DD}	V	
I _{OL}	I/O Port Sink Current		Voi =0.1Vpp	6	12	_	mA	
I/O FOIL SIIIK C	I/O FOIL SIIIK GUITEIIL	5V	VOL-O. I VDD	10	25	_ ""		
Іон	I/O Port Source Current	3.3V	V _{OH} =0.9V _{DD}	-2	-4	_	mA	
IOH	1/O Fort Source Current	5V	VOH-0.9VDD	-5	-8	_	ША	
R _{PH}	Pull-high Resistance (FTS)	_	_	-5%	680	+5%	kΩ	
				$LVDEN = 1, V_{LVD} = 2.0V$		2.0		
			LVDEN = 1, V _{LVD} = 2.2V		2.2			
			LVDEN = 1, V _{LVD} = 2.4V		2.4			
V_{LVD}	Low Voltage Detector Voltage		LVDEN = 1, V _{LVD} = 2.7V	-5%	2.7	+5%	V	
V LVD	Low voltage Detector voltage	_	$LVDEN = 1, V_{LVD} = 3.0V$	-5/6	3.0	+5%		
			LVDEN = 1, V _{LVD} = 3.3V	-	3.3			
			LVDEN = 1, V _{LVD} = 3.6V		3.6			
			LVDEN = 1, V _{LVD} = 4.0V		4.0			

A.C. Characteristics - I²C Interface

Ta=25°C

Cumah al	Donomoton		Test Conditions	Min	T	Man	11
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
f _{SCL}	Clock Frequency	_	_	_	_	400	kHz
t _{BUF}	Bus Free Time	_	Time in which the bus must be free before a new transmission can start	1.3	_	_	μs
thd: STA	Start Condition Hold Time	_	After this period, the first clock pulse is generated	0.6	_	_	μs
t _{LOW}	SCL Low Time	_	_	1.3	_	_	μs
t _{HIGH}	SCL High Time	_	_	0.6	_	_	μs
tsu: sta	Start Condition Setup Time	_	Time only relevant for repeated START condition	0.6	_	_	μs
t _{HD: DAT}	Data Hold Time	_	_	0	_	_	ns
tsu: DAT	Data Setup Time	_	_	100	_	_	ns
t _R	SDA and SCL Rise Time	_	Note	_	_	0.3	μs
t _F	SDA and SCL Fall Time	_	Note	_	_	0.3	μs
t _{SU: STO}	Stop Condition Set-up time	_	_	0.6	_	_	μs
t _{AA}	Output Valid from Clock	_	_	_	_	0.9	μs
t _{SP}	Input Filter Time Constant (SDA and SCL Pins)	_	Noise suppression time	_	_	50	ns

Note: These parameters are periodically sampled but not 100% tested.

Rev. 1.20 5 June 17, 2016

Temperature Sensor Characteristics

Ta=25°C

Symbol	Dovemeter		Test Conditions	Min	Typ.	Max.	Unit
Symbol	Parameter	V _{DD}	Conditions	Min.	Typ.	IVIAX.	Oilit
V _{DD}	Analog Voltage	_	_	2.7	_	5.5	V
V _{REFO}	Bandgap Output voltage	3V	No Load	-3%	1.04	+3%	V
V _{TPS}	Temperature Sensor Voltage	_	Bypass pre-buffer	-10%	0.91	+10%	V
T _{slope}	Temperature Sensor Slope	_	Bypass pre-buffer	_	3.12	_	mV/°C

Power-on Reset Characteristics

Ta=25°C

Symbol	Parameter	Test	Conditions	Min.	Tien	Max.	Unit
Syllibol	r ai ailietei		Conditions	IVIIII.	Тур.	IVIAA.	Oilit
V _{POR}	V _{DD} Start Voltage to Ensure Power-on Reset	_	_	_	_	100	mV
RR _{VDD}	V _{DD} Rising Rate to Ensure Power-on Reset	_	_	0.035	_	_	V/ms
t _{POR}	Minimum Time for V _{DD} Stays at V _{POR} to Ensure Power-on Reset	_	_	1	_	_	ms

Timing Diagrams

I²C Timing

Rev. 1.20 6 June 17, 2016

PIR Module Outline Dimensions

HT7M2126 - Dimensions in mm (Typical Value)

HT7M2127 - Dimensions in mm (Typical Value)

Rev. 1.20 7 June 17, 2016

HT7M2136 - Dimensions in mm (Typical Value)

HT7M2156 - Dimensions in mm (Typical Value)

Rev. 1.20 8 June 17, 2016

HT7M2176 - Dimensions in mm (Typical Value)

Appendix A - Communication Protocol

Protocol definitions

Module I²C Address Defined

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
I ² C Address	IICA6	IICA5	IICA4	IICA3	IICA2	IICA1	IICA0	R/W
	1	0	0	1	1	0	0	Х

Register Pointer

HOST CMD	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
11001_CWD	D7	D6	D5	D4		Point	er Bit	

Bit 7~4 **D7~D4**: Writable bits, must be fixed at "0"

Bit 7~4 must always be cleared or written to "0". This device has additional registers that are reserved for test and calibration. If these registers are accessed, the device may not perform according to the specification.

Bit 3~0 Pointer Bits:

0000 = Config standby with detecting mode

0001 = Configuration register (CONFIG)

0010 = Config module address

0011 = Config Trig time interval

0100 = EEPROM access

0101 = PIR A/D RAW data

0110 = Optical sensor A/D RAW data

0111 = Temperature sensor A/D RAW data

1000 = Trig register

1001 = Manufacture ID

1010 = Device ID/Revision register

1011 = Test result inquire

1100 = Reset test result

1xxx = RFU (Note)

Note: Some registers contain calibration codes and should not be accessed. Accessing these registers could cause permanent sensor decalibration.

Bit Assignment Summary for all Registers

				F	or User Mode				
Register	Msb/				Bit As	sigment			
Pointer (hex)	Lsb	7	6	5	4	3	2	1	0
00H	Msb	Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0
R/W	Lsb	_	_	_	_	_	_	ACC1	ACC0
01H	Msb	VLVD2	VLVD1	VLVD0	LVDEN	PirEN	D10	Trig mode	ACTEN
R/W	Lsb	Threshold2	Threshold1	Threshold0	PGAC4	PGAC3	PGAC2	PGAC1	PGAC0
02H	Msb	Lumi6	Lumi5	Lumi4	Lumi3	Lumi2	Lumi1	Lumi0	LUMIEN
R/W	Lsb	Madd6	Madd5	Madd4	Madd3	Madd2	Madd1	Madd0	D0
03H	Msb	Titv15	Titv14	Titv13	Titv12	Titv11	Titv10	Titv9	Titv8
R/W	Lsb	Titv7	Titv6	Titv5	Titv4	Titv3	Titv2	Titv1	Titv0
04H	Msb	Dbit7	Dbit6	Dbit5	Dbit4	Dbit3	Dbit2	Dbit1	Dbit0
R/W	Lsb	_	EEOK	R/W	_	EEADD3	EEADD2	EEADD1	EEADD0
05H	Msb	_	_	_	_	PirRAW11	PirRAW10	PirRAW9	PirRAW8
R	Lsb	PirRAW7	PirRAW6	PirRAW5	PirRAW4	PirRAW3	PirRAW2	PirRAW1	PirRAW0
06H	Msb	_	_	_	_	LumiRAW11	LumiRAW10	LumiRAW9	LumiRAW8
R	Lsb	LumiRAW7	LumiRAW6	LumiRAW5	LumiRAW4	LumiRAW3	LumiRAW2	LumiRAW1	LumiRAW0
07H	Msb	_	_	_	_	TsRAW11	TsRAW10	TsRAW9	TsRAW8
R	Lsb	TsRAW7	TsRAW6	TsRAW5	TsRAW4	TsRAW3	TsRAW2	TsRAW1	TsRAW0
08H	Msb	Ini	_	_	_	_	_	_	LVD
R	Lsb	BLumi	_	_	_	_	Fnoise	Fagtrg	Ftrg
09H	Msb	0	0	0	0	0	1	0	0
R	Lsb	1	1	0	1	1	0	0	1
0AH	Msb	Ver15	Ver14	Ver13	Ver12	Ver11	Ver10	Ver9	Ver8
R	Lsb	Ver7	Ver6	Ver5	Ver4	Ver3	Ver2	Ver1	Ver0

[&]quot;—": Unimplemented, read as "0".

0. Config standby with detecting mode

• Config Register \rightarrow ADDRESS: 00H

Bit	15	14	13	12	11	10	9	8
Name	Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	ACC1	ACC0
R/W	_	_	_	_	_	_	R/W	R/W

Bit 15~8 **Temp7~ Temp0**: Current Temperature (°C)

Bit 7~2 Unimplemented, read as "0"

Bit 1~0 ACC1~ACC0: Define the preiod of standby with detecting mode

00: 4ms (Default)

01: 8ms 10: 16ms 11: 32ms

1. Sensor Config Register - CONFIG

Sensor Config Register → ADDRESS: 01H

Bit	15	14	13	12	11	10	9	8
Name	VLVD2	VLVD1	VLVD0	LVDEN	PirEN	D10	Trig mode	ACTEN
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	7	6	5	4	3	2	1	0
Name	Threshold2	Threshold1	Threshold0	PGAC4	PGAC3	PGAC2	PGAC1	PGAC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 15~13 VLVD2~VLVD0: Select LVD Voltage

000: 2.0V

001: 2.2V

010: 2.4V

011: 2.7V (Default)

100: 3.0V

101: 3.3V

110: 3.6V

111: 4.0V

Bit 12 LVDEN

1: Turn on the low voltage detection function (Default)

0: Turn off the low voltage detection function

Bit 11 PirEN

1: Enable PIR detect (Default)

0: Disable PIR detect

Bit 10 **D10**: Reserved bit

1: Not use, reserve for test mode

0: Not use, reserve for test mode (Default)

Bit 9 **Trig mode**

1: Continuous trigger (Default)

0: Single trigger

Bit 8 ACTEN

1: Enable ACT pin function (Default)

0: Disable ACT pin function

Bit 7~5 Threshold2~Threshold0

000: Threshold Trigger 1 (offset \pm 0.2), (Default)

001: Threshold Trigger 2 (offset \pm 0.3)

010: Threshold Trigger 3 (offset \pm 0.4)

011: Threshold Trigger 4 (offset \pm 0.5)

100: Threshold Trigger 5 (offset \pm 0.6)

101: Threshold Trigger 6 (offset \pm 0.7)

110: Threshold Trigger 7 (offset \pm 0.8)

111: Threshold Trigger 8 (offset \pm 0.9)

Note: lower sensitivity when at high threshold trigger.

Bit 4~0 PGAC4~PGAC0

OPA2 Gain Control: gain = $32 + (PGAC \times 2)$, Default gain = 64

Note: Higher sensitivity when at high magnification

Note: This is an example routine: (See Appendix B: "Source Code")

• Reading the CONFIG Register

Note: 1. It is not necessary to select the register pointer if it was set from the previous read/write.

2. This is an example routine: (See Appendix B: "Source Code")

2. Config Module Address - Madd

• CONGIF MODULE ADDRESS \rightarrow ADDRESS: 02H

Bit	15	14	13	12	11	10	9	8
Name	Lumi6	Lumi5	Lumi4	Lumi3	Lumi2	Lumi1	Lumi0	LUMIEN
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	7	6	5	4	3	2	1	0
Name	Madd6	Madd5	Madd4	Madd3	Madd2	Madd1	Madd0	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 15~9 Lumi6~Lumi0

These bits define the photo transistor A/D conversion thresholds for threshold triggering of brightness setting.

When the value is larger, environment needs more dark (Default 1Fh).

Bit 8 LUMIEN

- 1: Enable Brightness detection and make it associate with PIR detect
 PIR detection will be started when the brightness less than Lumi setting which is the brightness value of the corresponding.
- 0: Disable Brightness detection and make it associate with PIR detect

Bit 7~1 **Madd6~Madd0**: Config Module I²C Address

The Address can not be changed, must be fixed as 4Ch.

Bit 0 **D0**: Reserved bit.

Note: Address is MSB 7 bits, bit 0 reserved.

Note: This is an example routine: (See Appendix B: "Source Code")

```
i2c start();
                                  // send START command
i2c_write(AddressByte & 0xFE);
                                  // WRITE Command
                                  // also, make sure bit 0 is cleared '0'
i2c write(0x02);
                                  // Write MADD Register
i2c write(0x00);
                                  // Write data
i2c write(0x54);
                                  // Write data
i2c_stop();
                                  // send STOP command
i2c start();
                                  // send START command
i2c_write(0x54& 0xFE);
                                  // WRITE Command MUST use the new address
```

3. Trig Time Interval

• MODULE TRIG TIME INTERVAL \rightarrow ADDRESS: 03H

Bit	15	14	13	12	11	10	9	8
Name	Titv15	Titv14	Titv13	Titv12	Titv11	Titv10	Titv9	Titv8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	7	6	5	4	3	2	1	0
Name	Titv7	Titv6	Titv5	Titv4	Titv3	Titv2	Titv1	Titv0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 15~0 **Titv15~Titv0**

Trigger flags keep time: [Titv15:Titv0]×100ms (default 10 seconds)

Note: Ftrg flag keep time that can be used for delay switching of the lighting control products. Because of the PIR signal characteristics, we recommend to set retention time above 500ms, otherwise there will be a single detection trigger repeat status when using single trigger function. While the continuity trigger that will not have this condition.

4. EEPROM ACCESS

MODULE EEPROM ACCESS → ADDRESS: 04H

Bit	15	14	13	12	11	10	9	8
Name	Dbit7	Dbit6	Dbit5	Dbit4	Dbit3	Dbit2	Dbit1	Dbit0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	7	6	5	4	3	2	1	0
Name	_	EEOK	R/W	_	EEADD3	EEADD2	EEADD1	EEADD0
R/W	_	R/W	R/W	_	R/W	R/W	R/W	R/W

Bit 15~8 **Dbit7~Dbit0**: EEPROM data

Bit 7 Unimplemented, read as 0

Bit 6 EEOK

1: Read /Write EEPROM Finish, need to clr by user 0: Read /Write command not execute yet or failed

Bit 5 R/W: EEPROM Read/Write Control

1: Read EEPROM0: Write EEPROM

Bit 4 Unimplemented, read as 0

Bit 3~0 **EEADD3~EEADD0**: EEPROM Address

Note: 0000~1111 Addresses for custom defined.

Note: This is an example routine: (See Appendix B: "Source Code")

```
i2c start();
                               // send START command
i2c write(AddressByte & OxFE); // WRITE Command
                               // also, make sure bit 0 is cleared '0'
i2c write(0x04);
                              // Write EEPROM Register
i2c write(0x05);
                              // Write data(Write mode, Write address 0x05)
i2c write(0xAA);
                              // Write data(Write data 0xAA)
i2c stop();
                              // send STOP command
                              // send START command
i2c start();
i2c write(AddressByte & OxFE); // WRITE Command
                              // also, make sure bit 0 is cleared '0'
i2c write(0x04);
                              // Write EEPROM Register
i2c write(0x25);
                             // Write data(Read mode, read address 0x05)
i2c write(0x00);
                             // Write data(Write any data will not affect result)
i2c stop();
i2c start();
                              // send START command
i2c write(AddressByte & OxFE); // WRITE Command
                               // also, make sure bit 0 is cleared '0'
i2c write(0x04);
                              // Write EEPROM Register
i2c start();
                              // send Repeat START command
i2c_write(AddressByte | 0x01); // READ Command
                               // also, make sure bit 0 is set '1'
UpperByte = i2c_read(ACK);
                               // READ 8 bits (UpperByte = 0x25)
                               // and Send ACK bit
                               // READ 8 bits (LowerByte = 0xAA)
LowerByte = i2c read(NAK);
                               // and Send NAK bit
```

5. PIR RAW DATA

PIR A/D CONVERSION RAW DATA → ADDRESS: 05H

Bit	15	14	13	12	11	10	9	8
Name	_	_	_	_	PirRAW11	PirRAW10	PirRAW9	PirRAW8
R/W		_	_	_	R	R	R	R

Bit	7	6	5	4	3	2	1	0
Name	PirRAW7	PirRAW6	PirRAW5	PirRAW4	PirRAW3	PirRAW2	PirRAW1	PirRAW0
R/W	R	R	R	R	R	R	R	R

Bit 15~12 Unimplemented read as 0

Bit 11~0 **PirRAW11~PirRAW0**: Pir Signal A/D Conversion Raw data

Note: Can be used for developed recognition algorithms or for custom define recognition function. Recommended polling time is greater than 4ms.

Note: This is an example routine: (See Appendix B: "Source Code")

Rev. 1.20 16 June 17, 2016

6. Optical Sensor RAW DATA

- Optical Sensor A/D CONVERSION RAW DATA \rightarrow ADDRESS: 06H

Bit	15	14	13	12	11	10	9	8
Name	_	_	_	_	LumiRAW11	LumiRAW10	LumiRAW9	LumiRAW8
R/W	_	_	_	_	R	R	R	R

Bit	7	6	5	4	3	2	1	0
Name	LumiRAW7	LumiRAW6	LumiRAW5	LumiRAW4	LumiRAW3	LumiRAW2	LumiRAW1	LumiRAW0
R/W	R	R	R	R	R	R	R	R

Bit 15~12 Unimplemented read as 0

Bit 11~0 LumiRAW11~LumiRAW0: Optical Sensor Signal A/D Conversion Raw Data

Note: To Read the environment brightness value that can be used to setting brightness threshold value.

(To read special brightness and then to write in lumi (02H Msb) registers)

Note: This is an example routine: (See Appendix B: "Source Code")

```
i2c start();
                               // send START command
i2c write(AddressByte & OxFE); // WRITE Command
                              // also, make sure bit 0 is cleared '0'
i2c write(0x06);
                              // Write PHORAW Register
                             // send Repeat START command
i2c start();
i2c write(AddressByte | 0x01); // READ Command
                              // also, make sure bit 0 is set '1'
UpperByte = i2c_read(ACK);
                              // READ 8 bits (UpperByte = High 4bit)
                               // and Send ACK bit
LowerByte = i2c read(NAK);
                              // READ 8 bits (LowerByte = Low 8bit)
                               // and Send NAK bit
```

7. Temperature RAW DATA

• Temperature Sensor A/D CONVERSTION RAW DATA \rightarrow ADDRESS: 07H

Bit	15	14	13	12	11	10	9	8
Name	_	_	_	_	TsRAW11	TsRAW10	TsRAW9	TsRAW8
R/W	_	_	_	_	R	R	R	R

Bit	7	6	5	4	3	2	1	0
Name	TsRAW7	TsRAW6	TsRAW5	TsRAW4	TsRAW3	TsRAW2	TsRAW1	TsRAW0
R/W	R	R	R	R	R	R	R	R

Bit 15~12 Unimplemented read as 0

Bit 11~0 TsRAW11~TsRAW0: Temperature Signal A/D Conversion Raw data

Rev. 1.20 17 June 17, 2016

Temperature sensor Specifications

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V_{DD}	Analog Voltage	_	2.7	_	5.5	V
V _{REFO}	Bandgap output voltage	No load @ 3V	-3%	1.04	+3%	V
V _{TPS}	Temperature Sensor Voltage	_	-10%	0.91	+10%	V
T _{slope}	Temp. sensor Slope	_	_	3.12	_	mV/°C

Note: This is an example routine: (See Appendix B: "Source Code")

```
// send START command
i2c start();
i2c_write(AddressByte & 0xFE); // WRITE Command
                              // also, make sure bit 0 is cleared '0'
i2c write(0x07);
                              // Write TSRAW Register
i2c start();
                             // send Repeat START command
i2c_write(AddressByte | 0x01);  // READ Command
                              // also, make sure bit 0 is set '1'
UpperByte = i2c_read(ACK);
                              // READ 8 bits (UpperByte = High 4bit)
                               // and Send ACK bit
LowerByte = i2c_read(NAK);
                              // READ 8 bits (LowerByte = Low 8bit)
                               // and Send NAK bit
```

8. Module Status

• MODULE STATUS \rightarrow ADDRESS: 08H

Bit	15	14	13	12	11	10	9	8
Name	Ini	_	_	_	_	_	_	LVD
R/W	R	_	_	_	_	_	_	R

Bit	7	6	5	4	3	2	1	0
Name	BLumi	_	_	_	_	Fnoise	Fagtrg	Ftrg
R/W	R	_	_	_	_	R	R	R

Bit 15 Ini

1: module initialing/module initial failed

0: module initial ok

Bit 14~9 Unimplemented read as 0

Bit 8 LVD

1: Low Voltage Detect0: No Low Voltage Detect

Bit 7 BLumi

1: Night, darkness detected0: Day, brightness detected

Bit 6~3 Unimplemented read as 0

Bit 2 Fnoise

1: PIR noise detected0: No PIR noise detected

Bit 1 Fagtrg

1: PIR trig again (notice: This bit can be trig when Trig mode = 1)

0: No PIR trig again

Bit 0 Ftrg

1: PIR Trigged 0: No PIR Trigged

Note: This is an example routine: (See Appendix B: "Source Code")

```
i2c start();
                               // send START command
i2c_write(AddressByte & OxFE); // WRITE Command
                              // also, make sure bit 0 is cleared '0'
i2c_write(0x08);
                               // Write PIRRAW Register
                              // send Repeat START command
i2c start();
i2c_write(AddressByte | 0x01);  // READ Command
                              // also, make sure bit 0 is set '1'
UpperByte = i2c read(ACK);
                              // READ 8 bits (UpperByte = MSB)
                               // and Send ACK bit
LowerByte = i2c read(NAK);
                              // READ 8 bits (LowerByte =LSB)
                               // and Send NAK bit
```

9. Manufacture ID

• MANUFACTURE ID (MID) → ADDRESS: 09H

Bit	15	14	13	12	11	10	9	8
Name	0	0	0	0	0	1	0	0
R/W	R	R	R	R	R	R	R	R

Bit	7	6	5	4	3	2	1	0
Name	1	1	0	1	1	0	0	1
R/W	R	R	R	R	R	R	R	R

Bit $15\sim 0$ Manufacture ID = 0x04D9

Note: This is an example routine: (See Appendix B: "Source Code")

Rev. 1.20 19 June 17, 2016

10. Firmware Version

• Firmware Version \rightarrow ADDRESS: 0AH

Bit	15	14	13	12	11	10	9	8
Name	Ver15	Ver14	Ver13	Ver12	Ver11	Ver10	Ver9	Ver8
R/W	R	R	R	R	R	R	R	R

Bit	7	6	5	4	3	2	1	0
Name	Ver7	Ver6	Ver5	Ver4	Ver3	Ver2	Ver1	Ver0
R/W	R	R	R	R	R	R	R	R

Bit 15~0 **Ver15~Ver0**: Firmware Version

Note: This is an example routine: (See Appendix B: "Source Code")

```
i2c_start();
                               // send START command
i2c_write(AddressByte & OxFE); // WRITE Command
                                // also, make sure bit 0 is cleared ^{\circ}0'
i2c write(0x0a);
                               // Write PID Register
i2c start();
                               // send Repeat START command
i2c_write(AddressByte | 0x01); // READ Command
                               // also, make sure bit 0 is set '1'
UpperByte = i2c_read(ACK);
                               // READ 8 bits (UpperByte = 0x02)
                               // and Send ACK bit
LowerByte = i2c_read(NAK);
                               // READ 8 bits (LowerByte = 0x00)
                                // and Send NAK bit
```

• EEPROM Planning

The storage area is used to record the user-defined data

00h: user define	01h: user define	02h: user define	03h: user define
04h: user define	05h: user define	06h: user define	07h: user define
08h: user define	09h: user define	0Ah: user define	0Bh: user define
0Ch: user define	0Dh: user define	0Eh: user define	0Fh: user define

Note: EEPROM 16×8

Appendix B

```
/**********************************
FileName: I2C.c
Processor:HT66F60 Microcontrollers
Complier: IDE-3000 V7.71 V2 compiler
Company: holtek semiconductor .Inc
#include <HT66F60.h> // This code is developed for HT66F
//It can be modified to be used with any HTmicro With GPIO
/** PRIVATE PROTOTYPES***************************/
void i2c init(void);
void i2c start(void);
void i2c_stop(void);
unsigned char i2c wait ack ()
void i2c ack()
void i2c nack()
unsigned char i2c write( unsigned char txd );
unsigned char i2c read( unsigned char ack );
#define SDA_IN() _pcc3=1
#define SDA OUT() pcc3=0
#define SDA PUH() pcpu3 = 1
#define IIC SDA pc3 //SDA
#define READ SDA pc3 //SDA
#define SCL IN() _pcc4 = 1
#define SCL OUT() pcc4 = 0
#define SCL_PUH() _pcpu4 = 1
#define IIC_SCL __pc4 //SCL #define READ_SCL __pc4
/*****************
* Function Name: i2c_init
* Return Value: void
* Parameters: Set IO status
* Description: This function sets up
* HT66F device for use with a IO simulate I2C
void i2c_init(void) {
        SCL OUT();
                         //scl set output
         SDA OUT();
                          //sda set output
        SCL PUH();
         SDA PUH();}
* Function Name: i2c start
* Return Value: void
* Parameters: void
* Description: Send I2C Start Command
void i2c start(void) {
         SDA OUT();
                          //sda output setting
         IIC SDA=1;
         IIC SCL H();
                          //IIC SCL=1;
         delay(4);
         IIC SDA=0;
                          //START:when CLK is high, DATA change form high to low
         delay(4);
         IIC_SCL_L();}
```



```
/************************
* Function Name: i2c_stop
* Return Value: void
* Parameters: void
* Description: Send I2C Stop command
void i2c stop(void) {
        SDA OUT();
                  //sda output
        IIC SCL L(); //IIC SCL=0;
                  //STOP:when CLK is high DATA change form low to high
        IIC SDA=0;
        delay(4);
        IIC SCL H();
        IIC SDA=1;
        delay(4);
/************************************
* Function Name: i2c write
* Return Value:
* Parameters: Single data byte for I2C2 bus.
* Description: This routine writes a single byte to the
* I2C2 bus.
void i2c write( unsigned char txd ) {
        uint8 t,buf;
        SDA OUT();
        IIC SCL L();//IIC SCL=0;
        for(t=0;t<8;t++)
          buf=txd&0x80;
          IIC SDA = buf>>7; //IIC SDA=(txd&0x80)>>7;
          txd<<=1;
           delay(2);
           IIC SCL H();
                           //IIC SCL=1;
           delay(2);
           IIC SCL_L();
                           //IIC SCL=0;
           delay(2);
* Function Name: i2c read
* Return Value: read iic data
* Parameters: ack = 1 and nak = 0
* Description: Read a byte from I2C bus and ACK/NAK device
unsigned char i2c_read( unsigned char ack ) {
        unsigned char i, receive=0;
        SDA IN();
        for(i=0;i<8;i++ )
           IIC SCL L();
                        //IIC SCL=0;
           delay(2);
           IIC SCL H();
                        //IIC SCL=1;
           receive<<=1;
           if(READ SDA)receive++;
           delay(2);
```



```
if (ack)
       i2c ack();
                   //send ACK
       else
                   //send ACK
       i2c nack();
       return receive;
* Function Name: i2c wait ack
* Return Value: 1:get ack success ,0:get ack failed
* Parameters:
* Description: wait ack from i2c bus
unsigned char i2c_wait_ack ()
 uint8 ucErrTime=0;
 SDA IN();
 IIC_SDA=1;_delay(1);
 IIC SCL H();//IIC SCL=1;
  delay(1);
 while(READ SDA)
  ucErrTime++;
  if(ucErrTime>50)
    IIC_Stop();
    return 1;
  delay(1);
 IIC SCL L();
            //IIC SCL=0;
 return 0;
/***********************************
* Function Name: i2c_ack
* Return Value:
* Parameters:
^{\star} Description: generate ack to i2c bus
void i2c ack()
 IIC SCL L();
            //IIC SCL=0;
 SDA OUT();
 IIC_SDA=0;
 delay(2);
 IIC_SCL_H();
            //IIC_SCL=1;
 delay(2);
 IIC_SCL_L();
            //IIC_SCL=0;
/***********************
* Function Name: i2c_ nack
* Return Value:
* Parameters:
* Description: generate nack to i2c bus
```


Copyright[©] 2016 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Rev. 1.20 25 June 17, 2016