CPT_S 515: Homework #2

Instructor: Zhe Dang

Sheng Guan

Problem 1

1. In Lesson 3, we talked about the Tarjan algorithm (SCC algorithm). Now, you are required to find an efficient algorithm to solve the following problem. Let G be a directed graph where every node is labeled with a color. Many nodes can share the same color. Let v_1 , v_2 , v_3 be three distinct nodes of the graph (while the graph may have many other nodes besides the three). I want to know whether the following items are all true: there is a walk α from v_1 to v_2 and a walk β from v_1 to v_3 such that

- α is longer than β ;
- α contains only red nodes (excluding the two end nodes);
- β contains only green nodes (excluding the two end nodes).

Answer:

For simplicity, we can assume the edge that connects two distinct nodes or self-loop edge on one node all is with the weight as 1 to indicate the distance. And I believe this assumption satisfies the requirement of this problem since this problem doesn't explicitly require us to consider the weight of the edge. The most difficult criteria to tackle is the criteria 1 which requires us to compare the walk length between α and β Then for this criteria, we have two different scenarios:

• Scenario1. the walk α and walk β both have no loops. In this case, the efficient algorithm for this problem is:

Step 1: keep v_1 and v_2 , only all red nodes in the graph to form a new graph G_1 , similarly, keep v_1 and v_3 , only all green nodes in the graph to form a new graph G'_1 .

Step 2: check whether v_1 in G_1 connects with v_2 by running the DFS algorithm starting from v_1 , if no such path, the α doesn't exist, return false; if such path exists, we recursively run DFS from v_1 to v_2 using adjacency list representation to find all paths from v_1 to v_2 . The detailed algorithm implementation can be found at Answer 4-(2). The key part here is we use path[] to store actual vertices and $path_{index}$ is current index in path[]. Then we select the path with the largest length, here we call it l_1 . Step 3: similarly check whether v_1 in G'_1 connects with v_3 by running the BFS algorithm starting from v_1 , if no such path, the β doesn't exist, return false; if such path exists, since BFS discovers all vertices at distance k from v_1 before discovering any vertices at distance k+1. We here keep the distance when we identified v_3 and v_1 . Then the length of β equals to $l'_1 = D(v_3) - D(v_1)$, this simple path from v_1 to v_3 also corresponds to a shortest path from v_1 to v_3 in G'_1 .

Step 4: compare whether $l_1 > l'_1$, if yes, return true; else, return false.

• Scenario2. the walk α contains loop. In this case, the efficient algorithm for this problem is: Step 1: keep v_1 and v_2 , only all red nodes in the graph to run the SCC algorithm on $v_1 \to v_2$, if there's

one or more strongly connected components founded with the size i1 or at least one strongly connected component is with the self loop, then potentially the walk α with infinite length exists. If not, return false since the α cannot be infinitely long in this case. Then the problem becomes we must be certain that v_1 can reach v_2 at this time.

Step 2: Since in each strongly connected component, one node can always find a way to reach to all other nodes. We can symbolically treat each SCC as one big node (potentially save some scan and computation here but implementation detail is not given here, for example we can store the edge information across the boundaries when we identify SCCs, then we no longer need to do DFS within one SCC since we can treat one SCC as a very big node) and we run DFS to search whether v_1 can reach v_2 in this case. If v_2 can be reached, at this time, the walk of α can always become longer. Even if at this time walk β also contains loop, we can fix a walk β here we call it β_1 . We are always able to increase the length of loop in α to make it longer than β_1 , so here return true. If not, such α doesn't

exist, return false

Problem 2

2. In Lesson 4, we learned network flow. In the problem, capacities on a graph are given constants (which are the algorithm's input, along with the graph itself). Now, suppose that we are interested in two edges e_1 and e_2 whose capacities c_1 and c_2 are not given but we only know these two variables are nonnegative and satisfying $c_1 + c_2 < K$ where K is a given positive number (so the K is part of the algorithm's input). Under this setting, can you think of an efficient algorithm to solve network flow problem? This is a difficult problem.

Answer:

From c1 + c2 < K, we can get c1 + c2 <= K - 1

This problem differs from the traditional network flow problem is that for specific edges e_1 and e_2 we don't have the capacity bound for these two edges. Firstly I drop these two edges and find a network flow F_1 as the baseline Hence as a starting point , we can equally divide the k-1 and assign them as the capacity bound for edge e_1 and e_2 . Then we apply the traditional FordFulkerson algorithm to update the residual graph compute the augmentation path and adjust f until no augmenting path can be found. In this case I will get a F_2 . I compute the percentage gain when comparing F_1 and F_2 Then I would like to dynamically adjust the weight of c_1 and c_2 into two different directions at this time to apply the greedy update to find the new augmenting path if I have the chance, with the bound $|c_1| + |c_2| < K$. In this case I will get a F_3 . I compute the percentage gain when comparing F_1 and F_3 One possible approach is I always try to use bi-partition in the given range to get the new capacity values. Then I try to find the new augmenting path until I cannot. The same approach I will get F_4 , F_5 , ..., and so on. When my percentage gain is convergent, I will stop the approach and say the current capacity allocation is optimal and solve the network flow problem.

Problem 3

3. There are a lot of interesting problems concerning graph traversal – noticing that a program in an abstract form can be understood as a directed graph. Let G be a SCC, where v_0 is a designated initial node. In particular, each node in G is labeled with a color. I have the following property that I would like to know whether the graph satisfies:

For each infinitely long path α starting from v_0 , α passes a red node from which, there is an infinitely long path that passes a green node and after this green node, does not pass a yellow node.

Answer:

Because G is SCC that makes the things easier since each node can find a way to all other nodes. To facilitate illustration, we define that the last green node as g_l that after g_l the path can no longer have yellow node. We at the same time call our traversed red node as r_t . To get the traversed red node r_t , without loss generality, we can use a topological ordering to order all the green nodes in G and we will get $r_1, r_2, ..., r_n$. Here the r_n will be r_t . The reason we choose one representative r_t is if the path traverses r_t satisfies the property, then for any r_i , i = 1, 2, ...n, there definitely has corresponding path satisfies the property since r_i connects with r_t bi-direction. In short, we don't need to trace back to search all possible red nodes in the below recursively DFS based algorithm.

To my best understanding, this problem requires:

- (1) v_0 connects to the g_l , this is trivial since the SCC guarantees this;
- (2) there will be r_t lies in the path from v_0 to g_l ;
- (3) There is not any yellow node behind g_l , and g_l is one part of SCC with self-loop or |SCC| > 1.

Then naturally we will get the figure 3-1 as below:

Step1: We start with v_0 and use DFS to reach to one red node r_t and push this node into the stack.

Step2: After we reach to r_t , we use DFS again to reach to green node g_l and push this node into the stack.

Step3: Then starting from g_l , we need to make sure that g_l falls into one SCC and this SCC contains no yellow nodes. Here we run the SCC algorithm after removing all yellow nodes. Then we locate the SCC which contains the green node g_l . If this SCC is a self-loop or |SCC| > 1, then all the properties satisfy, this path stays true and we move to the next path by tracking back according to the DFS algorithm; Otherwise, if SCC is not a self-loop and |SCC| = 1, the path is no longer with the infinite length, return false.

Step4: We restore all the deleted yellow nodes and track back according to the DFS algorithm and from r_t to search all possible green nodes g'_t . The remaining step is as same as step2 and step3.

Step5: If all infinitely long path α remain true which satisfy all the above three properties, return true.

Problem 4

4. Path counting forms a class of graph problems. Let G be a DAG where v and v_0 be two designated nodes. Again, each node is labeled with a color. (1). Design an algorithm to obtain the number of paths from v to v_0 in G. (2). A good path is one where the number of green nodes is greater than the number of yellow nodes. Design an algorithm to obtain the number of good paths from v to v0 in G.

Answer:

- (1). Here we try to determine the number of paths from v to v_1 using dynamic programming algorithm. We use a topological ordering to order $v'_1, v'_2, ..., v'_n$ and we let $v'_1 = v$ and $v'_n = v_1$. The subproblems as follows: let S[i] be the number of paths from v'_i to v'_n . The solution to these subproblems is $S[i] = sum_{j \in adj(i)} S[j]$
 - where adj(i) is the set of all vertices v such that $(i, v) \in E$ The total time required to solve the O(V) subproblems is O(E), and the topological sort requires O(V +E) time, so the total running time is O(V + E).
- (2). Step 1: We can recursively run DFS algorithm on v to v_0 to obtain a list L of all paths using adjacency list representation from v to v_0 , the pseudo code to achieve this is shown as Algorithm–Store all paths from a source to destination
 - Step 2: Then for each path l_i we stored, we scan, count and compare the number of green nodes traversed vs. the number of yellow nodes traversed. If this path is a good path, we increase the number of good paths from v to v_0 by 1. In the end, we will get the total number of good paths. Of course, this step can be further combined into step 1. When we get and store the individual path information, we can do the green nodes and yellow nodes counting and comparison at that time. Then when we finish the all paths identification, we get the number of good paths at the same time.

Algorithm 1 Store all paths from a source to destination

```
1: procedure MyProcedure
       #Initialize the vertices and a dictionary to store the graph, numOfGoodPath =0
 2:
       class Graph:
3:
              def
                        init(self, vertices):
 4:
                    self.V= vertices
 5:
                    self.graph = defaultdict(list)
 6:
              def
                        addEdge(self, u, v):
 7:
 8:
                    self.graph[u].append(v)
              "'A recursive function to collect all paths from 'u' to 'd'. visited[] keeps track of vertices in
9:
   current path. path[] stores actual vertices and path_{index} is current index in path[]"
10:
              def collectAllPathsUtil(self, u, d, visited, path):
11:
                    visited[u] = True
12:
                    path.append(u)
13:
                    # If current vertex is same as destination, then this path meets the end, we need to
   compare the number of green and yellow nodes traversed
14:
                    if u==d:
                           store the current path from v and v_0 into a list L
15:
                    "'If current vertex is not destination Recur for all the vertices adjacent to this vertex"'
16:
17:
18:
                           for i in self.graph[u]:
                                  if visited[i]==False:
19:
20:
                                         self.collectAllPathsUtil(i, d, visited, path)
                     # Remove current vertex from path[] and mark it as unvisited
21:
22:
                    path.pop()
                    visited[u] = False
23:
```

Refer to:

 $[1] \\ http://www.geeks for geeks.org/find-paths-given-source-destination/$