

TRABAJO FIN DE GRADO INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN

Controlador Neuronal

Esquemas de aprendizaje de modelos internos de brazo robótico con múltiples articulaciones

Autor

Julio Jesús Vizcaíno Molina

Directores

Jesús Garrido Alcázar Eva Martínez Ortigosa

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Granada, hoy de 2016

Controlador Neuronal

Esquemas de aprendizaje de modelos internos de brazo robótico con múltiples articulaciones

Autor

Julio Jesús Vizcaíno Molina

Directores

Jesús Garrido Alcázar Eva Martínez Ortigosa

Controlador Neuronal: Esquemas de aprendizaje de modelos internos de brazo robótico con múltiples articulaciones

Julio Jesús Vizcaíno Molina

Palabras clave: robot_controller, neural_networks, deep_learning, baxter_robot

Resumen

Calcular el modelo dinámico de un brazo robótico es la mejor manera de entender y diseñar un controlador para dicho brazo. Sin embargo, es una tarea complicada que se basa en el conocimiento del funcionamiento del robot, así como de sus características. El controlador que aquí se presenta resuelve estos problemas. Se basa en el auto-aprendizaje del modelo, así como de los parámetros del robot. Para ello hace uso de técnicas de aprendizaje automático (Deep Learning). Estas redes son sistemas de propósito general que parametrizan variables internas en la fase de entrenamiento, para así obtener un modelo concreto al final de esta fase. Este modelo es capaz de desempeñar el papel del controlador empleado para modelarlo sobre datos no visto antes.

Neural Controller: Project Subtitle

Julio Jesús Vizcaíno Molina

Keywords: Keyword1, Keyword2, Keyword3,

Abstract

Write here the abstract in English.

- D. **Jesús Garrido Alcázar**, Profesor del Área de XXXX del Departamento ATC de la Universidad de Granada.
- D.ª Eva Martínez Ortigosa, Profesora del Área de XXXX del Departamento ATC de la Universidad de Granada.

Informan:

Que el presente trabajo, titulado Controlador Neuronal, Esquemas de aprendizaje de modelos internos de brazo robótico con múltiples articulaciones, ha sido realizado bajo su supervisión por Julio Jesús Vizcaíno Molina, y autorizamos la defensa de dicho trabajo ante el tribunal que corresponda.

Y para que conste, expiden y firman el presente informe en Granada a X de mes de 201 .

Los directores:

Jesús Garrido Alcázar

Eva Martínez Ortigosa

Agradecimientos

Poner aquí agradecimientos...

Índice general

1.	Intr	oducción	15
	1.1.	Motivación	15
	1.2.	Objetivos	15
	1.3.		15
2.	Mat	ceriales y métodos	17
	2.1.	ROS	17
	2.2.	Baxter	17
	2.3.	Redes Neuronales	17
		2.3.1. Tensorflow	17
		2.3.2. Keras	17
	2.4.	Controladores	17
	2.1.	2.4.1. Control realimentado	17
		2.4.2. Control Anticipativo	17
3.	Dise	eño experimental y resultados	19
-	3.1.	Diseño experimental	19
	3.2.		19
4.	Con	aclusiones	21
	4.1.	Trabajo realizado	21
	4.2.	Objetivos alcanzados	21
	4.3.	Trabajo futuro	21
Bi	bliog	grafía	21
${f A}.$	Defi	niciones	23
	A.1.	Red Neuronal	23
		A.1.1. Definición	$\frac{1}{23}$
		A.1.2. Arquitecturas	

Introducción

1.1. Motivación

1.2. Objetivos

Los objetivos del trabajo son los siguientes:

- 1. Estudio de los mecanismos de control implementados en el robot biomórfico Baxter.
- 2. Caracterización y obtención de una base de datos de movimientos utilizando los controladores incluidos en el robot.
- 3. Estudio de la viabilidad de implementación de un sistema de control adaptativo basado en técnicas de machine learning.

1.3. Metodología

Materiales y métodos

- 2.1. ROS
- 2.2. Baxter
- 2.3. Redes Neuronales
- 2.3.1. Tensorflow
- 2.3.2. Keras
- 2.4. Controladores
- 2.4.1. Control realimentado
- 2.4.2. Control Anticipativo

Diseño experimental y resultados

- 3.1. Diseño experimental
- 3.2. Resultados

Conclusiones

- 4.1. Trabajo realizado
- 4.2. Objetivos alcanzados
- 4.3. Trabajo futuro

Apéndice A

Definiciones

A.1. Red Neuronal

A.1.1. Definición

Una red neuronal artificial es un conjunto de algoritmos de aprendizaje automático capaces de extraer modelos a partir de un conjunto de datos de aprendizaje. De esta manera, estos sistemas son capaces de emular la fuente generadora de datos y producir salidas coherentes a partir de entradas no vistas con anterioridad.

A.1.2. Arquitecturas

En función de la topología de la red, se contemplan dos tipos fundamentales:

Propagación hacia delante

Las conexiones entre las neuronas es de un solo sentido, de modo que no se forman bucles entre ninguna de las neuronas (figura A.1)

Figura A.1: Red neuronal de propagación hacia adelante