Examenul de bacalaureat național 2015

Proba E. c)

Matematică *M_tehnologic*

Clasa a XII-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_2 = 3$	3p
	$a_1 + a_2 + a_3 = 1 + 3 + 5 = 9$	2p
2.	$x^2 - x = 2x - 2 \Leftrightarrow x^2 - 3x + 2 = 0$	3p
	$x_1 = 1$ şi $x_2 = 2$	2p
3.	$3^{2-x} = 3^{-2} \Leftrightarrow 2 - x = -2$	3p
	x = 4	2p
4.	$p-15\% \cdot p = 34$, unde p este prețul obiectului înainte de ieftinire	2p
	p = 40 de lei	3 p
5.	$x_M = 1$, $y_M = 2$, unde punctul M este mijlocul laturii BC	2p
	AM = 2	3 p
6.	$tg30^{\circ}ctg60^{\circ} + tg60^{\circ}ctg30^{\circ} = \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} + \sqrt{3} \cdot \sqrt{3} =$	3p
	$=\frac{1}{3}+3=\frac{10}{3}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 3 & 6 \\ 1 & 2 \end{vmatrix} = 3 \cdot 2 - 6 \cdot 1 =$	3p
	= 0	2p
b)	$A \cdot A = \begin{pmatrix} 15 & 30 \\ 5 & 10 \end{pmatrix} =$	3p
	$=5\begin{pmatrix} 3 & 6 \\ 1 & 2 \end{pmatrix} = 5A$, de unde obținem $x = 5$	2p
c)	$\det(A+aI_2) = \begin{vmatrix} 3+a & 6\\ 1 & 2+a \end{vmatrix} = (3+a)(2+a)-6 = a^2+5a$	3p
	$a^2 + 5a = 0 \Leftrightarrow a_1 = -5 \text{ si } a_2 = 0$	2p
2.a)	x * y = xy + 2x + 2y + 4 - 2 =	2p
	= x(y+2)+2(y+2)-2=(x+2)(y+2)-2, pentru orice numere reale x şi y	3 p
b)	x*(-2) = -2 şi $(-2)*y = -2$, pentru x şi y numere reale	3 p
	(-2015)*(-2)*0*2*2015 = ((-2015)*(-2))*0*2*2015 = (-2)*(0*2*2015) = -2	2p
c)	$n*(-n)=(n+2)(-n+2)-2=2-n^2$	2p
	$2 - n^2 \in \mathbb{N} \Rightarrow n_1 = 0 \text{ si } n_2 = 1$	3p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \frac{1 \cdot (x+2) - (x-2) \cdot 1}{(x+2)^2} =$	3p
	$=\frac{4}{\left(x+2\right)^2},\ x\in\left(-2,+\infty\right)$	2p
b)	f(0) = -1, f'(0) = 1	3p
	Ecuația tangentei este $y - f(0) = f'(0)(x - 0) \Rightarrow y = x - 1$	2p
c)	$\lim_{x \to +\infty} \frac{x-2}{x+2} = 1$	3p
	Dreapta $y = 1$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
2.a)	$\int_{0}^{1} (f(x)+1) dx = \int_{0}^{1} 2x dx = x^{2} \Big _{0}^{1} =$	2p
	=1-0=1	3 p
b)	$F'(x) = (x^2 - x + 1)' = 2x - 1 =$	3p
	= f(x), pentru orice număr real x , deci F este o primitivă a funcției f	2p
c)	$\int_{0}^{n} F(x) dx = \int_{0}^{n} (x^{2} - x + 1) dx = \left(\frac{x^{3}}{3} - \frac{x^{2}}{2} + x\right) \Big _{0}^{n} = \frac{n^{3}}{3} - \frac{n^{2}}{2} + n$	2p
	$\frac{n^3}{3} - \frac{n^2}{2} + n = \frac{n^3}{3} \Leftrightarrow n^2 - 2n = 0 \text{ si cum } n \text{ este număr natural nenul, obținem } n = 2$	3p