УДК 550.4

Использование бентонитовых глин Кудринского месторождения (Горный Крым) для охраны окружающей среды

Аблаева Л.А.

Крымская академия природоохранного и курортного строительства,

г. Симферополь

В статье описаны результаты экспериментального использование бентонитовых глин Кудринского месторождения для очистки почв и сточных вод в лабораторных и реальных условиях.

В последние годы возросла потребность в природных адсорбентах для природоохранных целей. По значимости в природоохранных мероприятиях природные адсорбенты ранжируются следующим образом: бентонитовые глины, цеолиты, глаукониты, трепела, опоки, сапониты, палыгорскит, вермикулит, перлиты. Физико-химические и адсорбционные свойства различных видов адсорбентов во многом сходны, потому они взаимозаменяемы. Имеющийся опыт использования бентонитов у нас и за рубежом свидетельствует об эффективности их применения [1]. Нами проведены экспериментальные исследования по захвату тяжелых металлов из почв и сточных вод бентонитовыми глинами Кудринского месторождения.

Очистка почвы. По данным эколого-геохимической съемки территории сел Перекоп и Филатовка Красноперекопского района выбраны экспериментальные участки сильного загрязнения (по величине коэффициента суммарного загрязнения Zc). .На опытных участках (размером 1х1,5 м каждый) с глубины 10-20 см отобраны пробы почв, в которых определено содержание тяжелых металлов (ТМ). На эти же участки в почву внесена бентонитовая глина (размер частиц 1-2 мм). Через 10 дней на этих экспериментальных участках отобраны пробы почв с бентонитовой глиной.

Атомно-абсорбционным методом определены валовый состав и содержание подвижных форм некоторых ТМ (цинк, медь, свинец, кадмий) в пробах почв до и после внесения бентонитовой глины Кудринского месторождения. Бентонитовая глина из почвы не выделялась. Результаты приведены в таблице 1.

Установлено, что валовое содержание меди на участке 2 увеличилось на 12,3%, на участке 3 — на 15%, на участке 4 — на 13,4%. Валовое содержание цинка на всех участках в среднем снизилось на 7,3 %. Валовое содержание свинца на участке 2 увеличилось на 11%, на участках 3 и 4 — на 18%, содержание кадмия на участках 1, 2 и 3 снизилось в среднем на 5,7 %.

Содержание подвижных форм цинка в почве уменьшается в среднем на 40%, меди – на 32%, свинца – на 18%, кадмия – на 39%. Подвижные формы ТМ определяют накопление элементов в фитомассе. Применение бентонитовой глины Кудринского месторождения обеспечит захат подвижной формы ТМ и позволит снизить их миграцию из почвы в овощные культуры. Экспериментальные исследования позволяют рекомендовать санирование на интенсивно загрязненных ТМ участках с использованием бентонитовой глины.

Таблица 1 Содержание тяжелых металлов в почвах экспериментальных участков в селах Перекоп и Филатовка (в мг/кг)

No	Zn_		Cu		Pb		Cd	
участка	1	2	1	2	1	2	1	2
1	102,20/10,30	100,10/8,20	20,90/0,90	20,30/0,50	20,30/4,10	20,30/3,10	0,60/0,43	0,56/0,25
2	118,50/8,60	102,70/6,50	17,10/0,60	19,50/0,50	23,60/3,80	26,50/3,60	0,70/0,40	0,65/0,25
3	136,00/14,90	131,20/12,60	19,40/0,60	22,80/0,50	17,00/2,30	20,80/2,00	0,60/0,37	0,66/0,23
4	77,20/1,50	69,20/<0,1	16,80/0,40	19,40/0,20	15,40/1,90	18,80/1,30	0,60/0,20	0,58/0,14

Примечание. В числителе — валовое содержание, в знаменателе — содержание подвижных форм. 1 — до внесения бентонитовой глины, 2 — после внесения.

Очистка сточных вод и искусственных растворов от тяжелых металлов. Проведен эксперимент извлечению ТМ из искусственных растворов и сточных вод бентонитовыми глинами Кудринского месторождения. В приготовленные модельные растворы сульфатов меди, железа, никеля и хрома был внесен сорбент. Продолжительность контакта раствора с сорбентом изменялась от 30 до 90 минут. Результаты сорбции катионов ТМ представлены в таблице 2.

Таблица 2 Сорбция тяжелых металлов из модельных растворов бентонитовыми глинами

Металл	Концентрация металла в исходном растворе, мг/л	Продолжите яьность опыта, мин	Концентрация металла в растворе после очистки, мг/л	Степень очистки, %
Cu	2	30	1,24	38
	1	60	1,1	45
		90	0,9	55
Fe	1	30	0,5	50
		60	0,27	73
		90	0,2	80
Ст	2,5	30	0,35	86
		60	0,15	94
		90	0.07	97
Ní	2	30	0,077	96,1
		60	0,077	96,1
		90	0,075	96,3

Примечание. Содержание глины в растворе до очистки 1 г/л.

Как видно из таблицы, сорбция катионов металлов бентонитовыми глинами из раствора (Cu2+, Ni2+, Cr6+, Fe3+) составляет: для меди – до 50%, для железа – до 80%, для хрома – до 97%, для никеля – до 96%.

Проведены также экспериментальные исследования в промышленных условиях в резервуаре первичного отстойника очистных канализационных сооружений г. Симферополя. Глина массой 100 кг загружалась в резервуар первичного отстойника, объем которого составляет 1724 м3. Содержание бентонитовой глины в первичном отстойнике – 53 мг/л. Поскольку время нахождения сточных вод в резервуаре первичного отстойника очистных канализационных сооружений составляет 90 минут, именно на протяжении этого периода с момента поступления сточных вод из отстойника каждые 10 минут отбирали пробы для анализа на следующие компоненты: взвешенные вещества, аммонийный азот, железо, хром, медь, никель (табл. 3).

Таблица 3 Содержание тяжелых металлов в сточной воде первичного отстойника до и после применения бентонитовых глин (мг/л)

76			K DART (MIVA		
Компо-	Содерж	Время	Содержание	Снижение	
нент до обра- ботки		обработки,	После	содержания в	
Cr	0,09	мин 25	обработки 0,08	сточной воде, %	
0.	,,,,,	35	0,03	16,7	
		45	0,073	22,2	
		55	0,07	22,2	
		65	0,07	22,2	
		75	0,06	33	
		90	0,08	11	
Fe	0,06	25	0,05	16,7	
. •	0,00	35	0,03	50	
		45	0,03	50	
		55	0,03	66,7	
		65	0,02		
	ľ	75	1	33,3	
		L	0,03	50	
	2.12	90	0,08	_	
Cu	0,13	25	0,13	0	
		35	0,09	30,8	
		45	0,03	76,9	
	ĺ	55	0	100	
		65	0,09	30,8	
		75	0	100	
		90	0,13	0	
Взвешен-	22,3	25	10,2	54,3	
ные		35	8,9	60,1	
вещества		45	14,9	33,2	
		55	16,6	25,6	
	•	65	22	1,35	
		75	23,8		
		90	26		
Аммоний-	0,9	25	0,83	7,8	
ный азот		35	0,84	6,7	
	}	45	0,81	10	
		55	0,81	10	
		65	0,72	20	
		75	0,7	22,2	
	<u> </u>	90	0,8	11,1	
	l	<u> </u>	1		

Повышение содержания тяжелых металлов через 90 минут связано со следующим поступлением в первичный отстойник загрязненной сточной воды.

Использование бентонита на первичной стадии очистки сточных вод позволяет снизить концентрации в них ТМ, значительно ускорить работу очистных сооружений на других этапах и снизить нагрузку на микроорганизмы в аэротенках. В среднем объем сточных вод очистных

канализационных сооружений г. Симферополя в сутки составляет 160–170 тыс м³. Перегрузка первичных отстойников и сокращение времени отстаивания приводит к тому, что в отстойнике задерживается всего 25–30% взвешенных веществ и около 10–15% БПК–5 (биохимическое потребление кислорода). Следовательно, основная доля переработки загрязнений приходится на аэротенки, нагрузка на активный ил увеличивается до 460-500 мг/г ила. Это вызывает вспухание активного ила, что затрудняет очистку сточных вод.

Автор рекомендует в чашах первичных отстойников применять съемные блоки с бенто-

нитом по всей поверхности отстойника, либо использовать фильтры с кварцевым песком и бентонитом. Эксперимент подтвержден актом внедрения от 11 сентября 2000 г., рекомендации по использованию бентонитовых глин Кудринского месторождения на станции очистных канализационных сооружений переданы в Горводоканал г. Симферополя.

Проведенные исследования позволяют определить направления эффективного использования бентонитовых глин Кудринского месторождения и подтверждают перспективность дальнейших исследований возможности их применения для охраны окружающей среды.

1. Буглак Н.П., Каладзе Н.Н., Кириченко Л.П., Тарасенко В.С. Природные глинистые сорбенты Крыма и перспективы их комплексного использования в народном хозяйстве и здравоохранении // Вестник физиотерапии и курортологии. — 1996. — № 3. — С. 36-38.

У статті розглянуто результати експериментального застосування бентонітових глин Кудринського родовища для очищення грунтів та стічних вод у лабораторних та реальних умовах.

The article considers results of experimental use of bentonitic clays of Kudrin field for soils and manufacturing waters in laboratory and real-life environment conditions.