Uvod v računalništvo

Aleksander Sadikov 2015/2016

What is a bit?

Arithmetic is simple in binary.

Sign & magnitude notation: easy for humans, very rare in computers.

I don't need subtraction!

Fractional numbers.

 $\pm M \times B^{\pm E}$

Real π **Real Algebraic Rational** -2π $-\sqrt{3}$ **Integer** Transcen- $1+\sqrt{5}$ **Natural** $-\frac{2}{3}$ dental -2Irrational 2.25 N

Integers vs floats. Textual information.

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	/	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	Т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

www.unicode.org

Characters with lower numerical values, which tend to occur more frequently, are encoded using fewer bytes.

International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

Sound.

Sound is analog information as opposed to numbers and text which are digital.

... and sound is also a time series.

The Nyquist–Shannon Sampling Theorem

44.1 kHz

44.1 kHz

So how many pixels/mm can your camera do?

How much information to store for each pixel?

A picture is worth a thousands words. Only a thousand?!?

Let's talk about compression a little bit...

Reliability.

Building a reliable decimal machine would be an engineering nightmare.

Hardware device should meet these four criteria:

- 1. Two stable energy states.
- 2. Large energy barrier between both states.
- 3. Possible to detect/sense state without destroying it.
- 4. Possible to switch state by applying enough energy.

Simplified model of a transistor

Today transistors are the building blocks for... ... well, everything. But...

Moore's Law

Boolean logic.

Inputs		Output a AND b
a	Ь	(also written a · b)
False	False	False
False	True	False
True	False	False
True	True	True

Inputs		Output a OR b
a	Ь	(also written a + b)
False	False	False
False	True	True
True	False	True
True	True	True

Input	Output NOT a
a	(also written a)
False	True
True	False

Why AND, OR, and NOT?

Gates.

No, not Bill.

Not this time.

Gates just seen are **not** abstract ideas as mathematical definitions were.

Combinational Circuit.

Every Boolean expression can be represented as a circuit diagram, and every output value in a circuit diagram can be written as a Boolean expression.

Sum of Products algorithm.

- 1. Truth table construction.
- 2. Subexpression construction using AND and NOT gates (product phase).
- 3. Subexpression combination using OR gates.
- 4. Circuit diagram production.

The resulting circuit is **not** necessarily optimal in the number of logic gates used.

(money, space, power, heat)

Compare for Equality (CE) circuit.

Complement circuit.

1-ADD circuit.

Control circuits.
Multiplexor & Decoder.

Registers

Levels of abstraction: from transistors to gates, from electricity to arithmetic.

Levels of abstraction: from transistors to gates, from electricity to arithmetic.

Take away lessons #P4/P5

Practically everything can be represented with ones and zeros (with a little imagination). If it is presented in this way, we can algorithmically manipulate such data.

Abstraction. No need to think of electrical (or other) details once we build basic gates. Think logically instead!

Electricity is not the only way.