

Rad-Hard N-channel, 60 V, 40 A Power MOSFET

Datasheet - production data

Figure 1. Internal schematic diagram

Features

V _{DSS}	I _D	R _{DS(on)}	Q_g
60 V	40 A	12 mΩ	134.4 nC

- Fast switching
- 100% avalanche tested
- · Hermetic package
- 50 krad TID
- SEE radiation hardened

Applications

- Satellite
- High reliability

Description

This N-channel Power MOSFET is developed with STMicroelectronics unique STripFET™ process. It has specifically been designed to sustain high TID and provide immunity to heavy ion effects. This Power MOSFET is fully ESCC qualified.

Table 1. Device summary

Part numbers	ESCC part number	Quality level	Package	Lead finish	Mass (g)	Temp. range	EPPL
STRH100N6HY1	-	Engineering model		Gold	10		-
STRH100N6HYG	5205/022/01	ESCC flight	TO-254AA			-55 to 150 °C	Target
STRH100N6HYT	5205/022/02	Loco Iligin		Solder dip	10		-

Note: Contact ST sales office for information about the specific conditions for product in die form and for other packages.

December 2015 DocID18353 Rev 7 1/19

Contents STRH100N6

Contents

1	Electrical ratings
2	Electrical characteristics 5
3	Radiation characteristics 8
4	Electrical characteristics (curves)11
5	Test circuits
6	Package mechanical data
7	Order codes 16 7.1 Other information 17
В	Revision history

STRH100N6 Electrical ratings

1 Electrical ratings

(T_C= 25 °C unless otherwise specified)

Table 2. Absolute maximum ratings (pre-irradiation)

Symbol	Parameter	Value	Unit
V _{DS} ⁽¹⁾	Drain-source voltage (V _{GS} = 0)	60	V
V _{GS} ⁽²⁾	Gate-source voltage	±20	V
I _D ⁽³⁾	Drain current (continuous) at T _C = 25 °C	40	Α
I _D ⁽³⁾	Drain current (continuous) at T _C = 100 °C	25	Α
I _{DM} ⁽⁴⁾	Drain current (pulsed)	160	Α
P _{TOT} (3)	Total dissipation at T _C = 25 °C	176	W
dv/dt (5)	Peak diode recovery voltage slope	2.5	V/ns
T _{stg}	Storage temperature	-55 to 150	°C
T _j	Max. operating junction temperature	150	°C

- 1. This rating is guaranteed @ $T_J \ge 25$ °C (see Figure 10: Normalized BV_{DSS} vs temperature).
- 2. This value is guaranteed over the full range of temperature.
- 3. Rated according to the Rthj-case + Rthc-s.
- 4. Pulse width limited by safe operating area.
- 5. $I_{SD} \leq 40 \text{ A}, \text{ di/dt } \leq 600 \text{ A/}\mu\text{s}, V_{DD} = 80 \%V_{(BR)DSS}.$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case max	0.50	°C/W
Rthc-s	Case-to-sink typ	0.21	°C/W

Electrical ratings STRH100N6

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj max)	40	Α
E _{AS} ⁽¹⁾	Single pulse avalanche energy (starting Tj= 25 °C, I _D = I _{AR} , V _{DD} =40 V)	954	mJ
E _{AS}	Single pulse avalanche energy (starting Tj= 110 °C, I _D = I _{AR} , V _{DD} =40 V)	280	mJ
E _{AR}	Repetitive avalanche $(V_{DD} = 40 \text{ V}, I_{AR} = 40 \text{ A}, f = 10 \text{ KHz}, T_J = 25 °C, duty cycle} = 50%)$	40	mJ
E	Repetitive avalanche $(V_{DD} = 40 \text{ V}, I_{AR} = 40 \text{ A}, f = 100 \text{ KHz}, T_J = 25 °C, duty cycle = 10%)$	24	mJ
E _{AR}	Repetitive avalanche ($V_{DD} = 40 \text{ V}$, $I_{AR} = 40 \text{ A}$, $f = 100 \text{ KHz}$, $T_J = 110 ^{\circ}\text{C}$, duty cycle = 10%)	7.7	mJ

^{1.} Maximum rating value.

2 Electrical characteristics

 $(T_C = 25^{\circ}C \text{ unless otherwise specified}).$

Pre-irradiation

Table 5. Pre-irradiation on/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Zoro gato voltago drain	80% BV _{Dss}			10	
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	80% BV _{Dss} T _C = 125 °C			100	μΑ
lasa	, Gate body leakage current	V _{GS} = 20 V V _{GS} = -20 V	-100		100	nA
I_{GSS} $(V_{DS} = 0)$	V _{GS} = 20 V, T _C = 125 °C V _{GS} = -20 V, T _C = 125 °C	-200		200	IIA	
BV _{DSS} (1)	Drain-to-source breakdown voltage	$V_{GS} = 0, I_D = 1 \text{ mA}$	60			V
		$V_{DS} = V_{GS}$, $I_D = 1$ mA, $T_C = -55$ °C	2.2		5	
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	2		4.5	V
		$V_{DS} = V_{GS}$, $I_D = 1$ mA, $T_C = 125$ °C	1.6		3.5	
	Static drain-source on	$V_{GS} = 12 \text{ V}; I_D = 40 \text{ A}$		0.012	0.0135	
R _{DS(on)}	resistance	$V_{GS} = 12 \text{ V; } I_D = 40 \text{ A;}$ $T_C = 125 \text{ °C}$			0.024	Ω

^{1.} This rating is guaranteed @ $T_J \ge 25$ °C (see Figure 10: Normalized BV_{DSS} vs temperature).

Electrical characteristics STRH100N6

Table 6. Pre-irradation dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		3900	4895	5900	pF
C _{oss} ⁽¹⁾	Output capacitance	$V_{GS} = 0, V_{DS} = 25 V,$	860	1080	1300	pF
C _{rss}	Reverse transfer capacitance	f=1MHz	300	407	470	pF
Qg	Total gate charge	V _{DD} = 30 V, I _D = 40 A,	100	134.4	160	nC
Q_{gs}	Gate-to-source charge		18	24	30	nC
Q _{gd}	Gate-to-drain ("Miller") charge	V _{GS} =12 V	29	46.5	51	nC
R _G ⁽²⁾	Gate input resistance	f=1MHz Gate DC bias=0 test signal level= 20 mV open drain	1.6	2	2.4	Ω

^{1.} This value is guaranteed over the full range of temperature.

Table 7. Pre-irradation switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		16	28	40	ns
t _r	Rise time	V _{DD} = 30 V, I _D = 40 A,	60	115	260	ns
t _{d(off)}	Turn-off-delay time	$R_G = 4.7 \Omega, V_{GS} = 12 V$	50	86	120	ns
t _f	Fall time		60	69	160	ns

^{2.} Not tested, guaranteed by process.

Table 8. Pre-irradation source drain diode⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current				40	Α
I _{SDM} (2)	Source-drain current (pulsed)				160	Α
	V _{SD} ⁽³⁾ Forward on voltage	I _{SD} = 40 A, V _{GS} = 0		1.1	1.5	
V _{SD} ⁽³⁾		I _{SD} = 40 A, V _{GS} = 0, T _C = 125 °C			1.275	V
t _{rr} ⁽⁴⁾	Reverse recovery time	I _{SD} = 40 A,	307	384	461	ns
Q _{rr} ⁽⁴⁾	Reverse recovery charge	di/dt = 100 A/μs		4.7		μC
I _{RRM} ⁽⁴⁾	Reverse recovery current	V _{DD} = 48 V, Tj = 25 °C		24.6		Α
t _{rr} ⁽⁴⁾	Reverse recovery time	I _{SD} = 40 A, di/dt = 100 A/μs V _{DD} = 48 V, Tj = 150 °C	370	462.4	55	ns
Q _{rr} ⁽⁴⁾	Reverse recovery charge			6.5		μC
I _{RRM} ⁽⁴⁾	Reverse recovery current			28.3		Α

- 1. Refer to Figure 16: Source drain diode.
- 2. Pulse width limited by safe operating area.
- 3. Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%
- 4. Not tested in production, guaranteed by process.

Radiation characteristics STRH100N6

3 Radiation characteristics

The technology of STMicroelectronics Rad-Hard Power MOSFETs is extremely resistant to radiative environments. Every manufacturing lot is tested for total ionizing dose (irradiation done according to the ESCC 22900 specification, window 1.) using the TO-3 package. Both pre-irradiation and post-irradiation performance are tested and specified using the same circuitry and test conditions in order to provide a direct comparison.

 $(T_{amb} = 22 \pm 3 \degree C \text{ unless otherwise specified}).$

Total dose radiation (TID) testing

One bias conditions using the TO-3 package:

V_{GS} bias: + 15 V applied and V_{DS}= 0 V during irradiation

The following parameters are measured (see *Table 9*, *Table 10* and *Table 11*):

- before irradiation
- after irradiation
- after 24 hrs @ room temperature
- after 168 hrs @ 100 °C anneal

Table 9. Post-irradiation on/off states @ T_J = 25 °C, (Co60 γ rays 50 K Rad(Si))

Symbol	Parameter	Test conditions	Drift values Δ	Unit
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	80% BV _{Dss}	+10	μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = 20 V V _{GS} = -20 V	1.5 -1.5	nA
BV _{DSS}	Drain-to-source breakdown voltage	V _{GS} = 0, I _D = 1 mA	-15%	V
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	-60%/ + 25%	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}; I_D = 40 \text{ A}$	±15 %	Ω

Table 10. Dynamic post-irradiation @ T_J= 25 °C, (Co60 γ rays 50 K Rad(Si))

Symbol	Parameter	Test conditions	Drift values Δ	Unit
Qg	Total gate charge		-5% / +50%	
Q_{gs}	Gate-source charge	$I_G = 1 \text{ mA}, V_{GS} = 12 \text{ V}, V_{DS} = 30 \text{ V}, I_{DS} = 40 \text{ A}$	±35 %	nC
Q _{gd}	Gate-drain charge	. 50	-5% / +110%	

Table 11. Source drain diode post-irradiation @ T_J = 25 °C, (Co60 γ rays 50 K Rad(Si))⁽¹⁾

Symbol	Parameter	Test conditions	Drift values Δ .	Unit
V _{SD} (2)	Forward on voltage	$I_{SD} = 40 \text{ A}, V_{GS} = 0$	± 5%	V

^{1.} Refer to Figure 16.

Single event effect, SOA

The technology of the STMicroelectronics Rad-Hard Power MOSFETs is extremely resistant to heavy ion environment for single event effect (irradiation per MIL-STD-750E, method 1080 bias circuit in *Figure 3: Single event effect, bias circuit*) SEB and SEGR tests have been performed with a fluence of 3e+5 ions/cm².

The accept/reject criteria are:

- SEB test: drain voltage checked, trigger level is set to V_{ds} = 2 V. Stop condition: as soon as a SEB occurs or if the fluence reaches 3e+5 ions/cm².
- SEGR test: the gate current is monitored every 100 ms. A gate stress is performed before and after irradiation. Stop condition: as soon as the gate current reaches 1 mA (during irradiation or during PIGS test) or if the fluence reaches 3e+5 ions/cm².

The results are:

- SEB immune at 60 MeV/mg/cm²
- SEGR immune at 60 MeV/mg/cm² within the safe operating area (SOA) given in Table 12: Single event effect (SEE), safe operating area (SOA) and Figure 2: Single event effect, SOA

Table 12. Single event effect (SEE), safe operating area (SOA)

lon	Let (Mev/(mg/cm ²)	Energy (MeV)	Range (µm)	V _{DS} (V)					
1011	Let (Mev/(mg/cm)			@V _{GS} =0	@V _{GS} = -2 V	@V _{GS} = -5 V	@V _{GS} = -10 V	@V _{GS} = -20 V	
Kr	32	768	94	60	48	39	27	15	
Xe	60	1217	89	30	30	-	-	-	

^{2.} Pulsed: pulse duration = 300 µs, duty cycle 1.5%

Radiation characteristics STRH100N6

Figure 2. Single event effect, SOA

Figure 3. Single event effect, bias circuit^(a)

10/19 DocID18353 Rev 7

a. Bias condition during radiation refer to Table 12: Single event effect (SEE), safe operating area (SOA).

0

4 Electrical characteristics (curves)

Figure 4. Safe operating area

AM07261v1

(A)

100

Opening transport of the property of the

Figure 5. Thermal impedance

Figure 6. Output characteristics

Figure 7. Transfer characteristics

Figure 8. Gate charge vs gate-source voltage

Figure 9. Capacitance variations

47/

Figure 10. Normalized $\mathrm{BV}_{\mathrm{DSS}}$ vs temperature

Figure 11. Static drain-source on-resistance

Figure 12. Normalized gate threshold voltage vs temperature

Figure 13. Normalized on resistance vs temperature

Figure 14. Source drain-diode forward characteristics

12/19 DocID18353 Rev 7

STRH100N6 Test circuits

5 Test circuits

Figure 15. Switching times test circuit for resistive load ⁽¹⁾

1. Max driver V_{GS} slope = 1V/ns (no DUT)

Figure 16. Source drain diode

Figure 17. Unclamped inductive load test circuit (single pulse and repetitive)

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 13. TO-254AA mechanical data

Dim		mm			Inch		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	13.59		13.84	0.535		0.545	
В	13.59		13.84	0.535		0.545	
С	20.07		20.32	0.790		0.800	
D	6.32		6.60	0.249		0.260	
E	1.02		1.27	0.040		0.050	
F	3.56		3.81	0.140		0.150	
G	16.89		17.40	0.665		0.685	
Н		6.86			0.270		
I	0.89	1.02	1.14	0.035	0.040	0.045	
J		3.81			0.150		
K		3.81			0.150		
L	12.95		14.50	0.510		0.571	
М	2.92		3.18				
N			0.71				
R1			1.00			0.039	
R2	1.52	1.65	1.78	0.060	0.065	0.070	

Figure 18. TO-254AA drawing

Order codes STRH100N6

7 Order codes

Table 14. Ordering information

Order codes	ESCC part number	Quality level	EPPL	Package	Lead finish	Marking	Packing
STRH100N6HY1	-	Engineer model	-		Gold	STRH100N6FSY1 + BeO	
STRH100N6HYG	5205/022/01		Target	TO-254AA		520502201F + BeO	Strip pack
STRH100N6HYT	5205/022/02	ESCC flight	1		Solder dip	520502202F + BeO	-

For specific marking only the complete structure is:

- ST Logo
- ESA Logo
- Date code (date of sealing of the package): YYWWA
 - YY: year
 - WW: week number
 - A: week index
- ESCC part number (as mentioned in the table)
- Warning signs (e.g. BeO)
- Country of origin: FR (France)
- Part serial number within in the assembly lot

Contact ST sales office for information about the specific conditions for products in die form and for other packages.

STRH100N6 Order codes

7.1 Other information

Date code

The date code for "ESCC flight" is structured as follows: yywwz

where:

yy: last two digits of year

• ww: week digits

z: lot index in the week

Documentation

The table below provide a summary of the documentation provided with each type of products.

Table 15. Summary of the documentation provided

Quality level	Radiation level	Documentation
Engineering model	-	-
ESCC flight	50Krad	Certificate of conformance radiation verification test report

Revision history STRH100N6

8 Revision history

Table 16. Document revision history

Date	Revision	Changes		
04-Jan-2011	1	First release.		
27-Jul-2011	2	Updated order codes in Table 1: Device summary and Table 14: Ordering information. Minor text changes.		
09-Nov-2011	3	Updated dynamic values on Table 6: Pre-irradation dynamic and Table 7: Pre-irradation switching times.		
27-Feb-2013 4		Corrected ID value on: - Features - Table 2: Absolute maximum ratings (pre-irradiation) - Table 5: Pre-irradation on/off states - Table 6: Pre-irradation dynamic - Table 8: Pre-irradation source drain diode - Table 9: Post-irradiation on/off states @ TJ= 25 °C, (Co60 g rays 70 K Rad(Si)) - Table 10: Dynamic post-irradiation @ TJ= 25 °C, (Co60 g rays 70 K Rad(Si)) - Table 11: Source drain diode post-irradiation @ TJ= 25 °C, (Co60 g rays 70 K Rad(Si))		
02-Jul-2013	5	Updated Table 1: Device summary and Table 14: Ordering information. Added Chapter 7.1: Other information.		
16-Dec-2013	6	Modified: Description Minor text changes		
16-Dec-2015	7	Updated features in cover page. Updated <i>Table 5, Table 8, Table 9, Table 10, Table 11</i> and <i>Table 15</i> .		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

