Covariate-Adaptive Method in Multiple Testing: AdaFDR

Kyurhi Kim

Seoul National University kyurhi99@snu.ac.kr

January 19, 2023

1/25

Overview

- Introduction
- Previous Methods
- AdaFDR
 - Scheme
 - Definitions and Notations
 - Multiple Testing via AdaFDR
 - Algorithm
 - Optimization
 - FDP control
- Results On The Paper
- Simulation

Introduction

- In multiple testing problem, general goal is to maximize the number of discoveries while controlling False Discovery.
- Well-known standard multiple testing procedures such as the BH method are based only on the p-values.
- However, they fail to utilize additional information (i.e. covariates) that is often available but not directly captured by the p-value.

3/25

Kyurhi Kim (SNU) Seminar January 19, 2023

Conventional Methods

Benjamini-Hochberg (BH)

- Order the original p-values then find $i_{max} = \{i : p_i \leq \frac{i\alpha}{N}\}.$
- Then reject $p_1, ..., p_{i_{max}}$.

Storey-BH (SBH)

- Measure q-value: $Pr(H_{0i} \text{ is true } | z \geq z_0)$
- Reject all hypotheses with a q-value that is less than or equal to the cutoff value for the false discovery rate.
- These methods use only p-values and have the same p-value threshold for all hypotheses with respect to covariates.

4 / 25

Kyurhi Kim (SNU) Seminar Janu

Covariate Adaptive Methods

IHW

- Group hypotheses into a prespecified number of groups and applies a constant threshold for each group.
- Only supports for univariate covariates and uses a stepwise-constant function for the threshold, which limits detection power.

Boca and Leek

- A regression framework to estimate the null proportion conditional on the covariate, and weight the BH-adjusted p-values by $\pi_0(x_i)$.
- Not using covariate-dependent alternative distribution information.

AdaPT

- Mask p-values to control FDR in iterative method.
- Able to use the entire data, but computationally expensive due to many iterations of optimization in p-value masking procedure.

Kyurhi Kim (SNU) Seminar January 19, 2023 5/25

Scheme of AdaFDR

- Input: hypotheses, each with a p-value and a covariate vector
- Ouput: a set of rejected hypotheses

Kyurhi Kim (SNU) Seminar January 19, 2023 6/25

AdaFDR

- Data may have an enrichment of small p-values for certain values of the covariate, which suggests an enrichment of alternative hypotheses around these covariate values.
- AdaFDR learns the covariate-dependent threshold by fitting a mixture model using an EM algorithm.
 - The mixture model is a combination of a generalized linear model and Gaussian mixtures.
- Then it produces local adjustments in the p-value threshold by optimizing for more discoveries.

Kyurhi Kim (SNU) Seminar

Definitions and Notations

- There are N hypothesis tests where each of them with p-value P_i , a d-dimensional covariate x_i , and an indicator variable h_i , with $h_i = 1$ for the hypothesis to be true alternative.
- Set of true null hypothesis : $\mathcal{H}_0 \stackrel{\text{def}}{=} \{i : i \in \{1, 2, ..., N\}, h_i = 0\}$ Set of true alternative hypothesis : $\mathcal{H}_1 \stackrel{\text{def}}{=} \{i : i \in \{1, 2, ..., N\}, h_i = 1\}$
- Reject ith null hypothesis if $P_i \leq t(x_i)$, for threshold function t(x).
- The number of discoveries : $D(t) \stackrel{\text{def}}{=} \sum_{i \in \{1,...,N\}} \mathbb{I}_{\{P_i \leq t(x_i)\}}$
- FDP(t) $\stackrel{\mathrm{def}}{=} \frac{FD(t)}{D(t) \lor 1}$ where FD(t) $\stackrel{\mathrm{def}}{=} \sum_{i \in \mathcal{H}_0} \mathbb{I}_{\{P_i \le t(x_i)\}}$
- ullet FDR $\stackrel{\mathrm{def}}{=} \mathbb{E}(\mathsf{FDP})$

Kyurhi Kim (SNU)

Multiple Testing via AdaFDR

- Assumption: null p-values follows uniform regardless of the covariate value. (alternative p-values and likelihood for hypotheses to be true null/alternative may have dependencies on the covariate.)
- Aim: Optimize over a set of decision rules
 t(x) ∈ T(set of decision threhsolds) to maximize the number of discoveries, with constraint that the FDP is less than α.
 (i.e. maximize D(t) s.t. FDP(t) ≤ α)
- Challenges in this optimization
 - f O needs to be parametrized in such a way that captures the covariate information and scales well with the covariate dimension.
 - The actual FDP is not available from the data.
 - Overfitting that might lead to fail FDR control.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

Multiple Testing via AdaFDR

- The idea for the first challenge: The decision threshold should have large values where the alternative hypotheses are enriched
 - Such enrichment pattern usually consists of local bumps at certain covariate locations and a global slope that represents generic monotonic relationships.
- AdaFDR addresses these structures by using a mixture of GLM and K-component Gaussian mixture with diagonal covariance matrices.

$$t(x) = \exp(a^T x + b) + \sum_{k=1}^K \exp[w_k - (x - \mu_k)^T \operatorname{diag}(\sigma_k)(x - \mu_k)]$$

• The set of parameters to optimize:

$$a \in \mathbb{R}^d, b \in \mathbb{R}, \left\{ w_k \in \mathbb{R}, \mu_k \in \mathbb{R}^d, \sigma_k \in \mathbb{R}^d \right\}_{k=1}^K$$

Kyurhi Kim (SNU) Seminar January 19, 2023 10/25

Relation between p-values and covariates

Kyurhi Kim (SNU) Seminar January 19, 2023 11 / 25

Multiple Testing via AdaFDR

 For the second challenge, use mirror statistic to estimate the number of False Discoveries:

$$\widehat{\mathsf{FD}(t)} \stackrel{\scriptscriptstyle\mathrm{def}}{=} \sum_{i=1}^n \mathbb{I}_{\{P_i \geq 1 - t(x_i)\}}$$
 , $\widehat{\mathsf{FDP}(t)} = \frac{\widehat{\mathsf{FD}(t)}}{\mathsf{D}(t)}$

- For the third challenge, AdaFDR controls FDP via hypotheses splitting.
 - The hypotheses are randomly split into two folds.
 - A separate decision threshold is learned on each fold and applied to the other.
 - Covered in later Theorem.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Kyurhi Kim (SNU) Seminar January 19, 2023 12 / 25

Algorithm of AdaFDR

Algorithm 1 AdaFDR for multiple hypothesis testing

- 1: Randomly split the data $\mathscr{D} = \{(P_i, \mathbf{x}_i)\}_{i=1}^N$ into two folds $\mathscr{D} = \mathscr{D}_1 \cup \mathscr{D}_2$ of equal size.
- 2: **for** (j, j') = (1, 2), (2, 1) **do**
- 3: Set \mathcal{D}_i to be the training set and $\mathcal{D}_{i'}$ the testing set.
- 4: Learn the decision threshold $t^*(\mathbf{x})$ on the training set by optimizing

$$\underset{t}{\text{maximize}} \quad D_{\text{train}}(t) \quad s.t. \quad \widehat{\text{FDP}}_{\text{train}}(t) \leq \alpha.$$

5: Compute the best rescale factor γ^* on the testing set

$$\gamma^* = \sup_{\gamma > 0} \{ \gamma : \widehat{\text{FDP}}_{\text{test}}(\gamma t^*) \le \alpha \}.$$

- 6: Reject the hypotheses $\mathcal{R}_{j'} = \{i : i \in \mathcal{D}_{j'}, P_i \leq \gamma^* t^*(\mathbf{x}_i)\}.$
- 7: Report discoveries on both folds $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Optimization

- In the previous slide, the aim was written as $\underset{t \in \mathcal{T}}{\textit{maximize}} \ \mathsf{D(t)} \ \mathsf{s.t.} \ \mathsf{FDP(t)} \leq \alpha.$
- Note that optimization is conducted soley on the training set \mathcal{D}_{train} , and FDP is replaced by mirror estimate.
- Then the optimization problem can be rewritten as

$$\underset{t \in \mathcal{T}}{\textit{maximize}} \ \mathsf{D}_{\textit{train}}(\mathsf{t}) \ \mathsf{s.t.} \frac{\widehat{\mathsf{FD}}_{\textit{train}}(\mathsf{t})}{\mathsf{D}_{\textit{train}}(\mathsf{t})} \leq \alpha$$

• To achieve this, first need to compute a good initialization point and then perform optimization (by gradient descent in the paper).

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

i. Initialization

• **Idea**: It is intuitive to let threshold $t(x) \propto \frac{\pi_1(x)}{\pi_0(x)}$, since the threshold should be large when the number of alternative hypotheses is high and the number of null hypotheses is low.

 $(\pi_0(x), \pi_1(x))$: covariate distribution for the null and alternative hypotheses respectively)

Process

- **①** Treat $\{x_i : i \in \mathcal{D}_{train}, P_i \geq 0.75\}$ and $\{x_i : i \in \mathcal{D}_{train}, P_i \leq t_{BH}\}$ as an approximate ensemble of the null hypotheses and alternative hypotheses respectively.
- ② Mixture model is fitted on the null ensemble using an EM algorithm, resulting in an estimate of the null hypothesis distribution $\widehat{\pi}_0(x)$.
- § Each point in the alternative ensemble receives a sample weight $\frac{1}{\widehat{\pi_0}(X)}$.
- Mixture model is fitted on the weighted alternative ensemble using an EM algorithm to obtain the final initialization threshold.

Kyurhi Kim (SNU)

ii. Optimization

- $\underset{t \in \mathcal{T}}{minimize}[-D_{train}(t) + \left\{\lambda_1(\widehat{FD}_{train}(t) \alpha D_{train}(t)) \lor 0\right\}]$, where λ_1 is chosen heuristically to be $\frac{10}{\alpha}$.
- ② The sigmoid function is used to control the discontinuity of the indicator functions in $D_{train}(t)$ and $\widehat{FD}_{train}(t)$:

$$egin{aligned} & \mathsf{D}_{\mathit{train}}(t) = \sum_{i \in \mathcal{D}_{\mathit{train}}} \mathbb{I}_{\{P_i \leq t(\mathsf{x}_i)\}} pprox \sum_{i \in \mathcal{D}_{\mathit{train}}} S[\lambda_0(t(\mathsf{x}_i) - P_i)] \ & \widehat{\mathsf{FD}}_{\mathit{train}}(t) = \sum_{i \in \mathcal{D}_{\mathit{train}}} \mathbb{I}_{\{P_i \geq 1 - t(\mathsf{x}_i)\}} pprox \sum_{i \in \mathcal{D}_{\mathit{train}}} S[\lambda_0(P_i - 1 + t(\mathsf{x}_i))] \end{aligned}$$

where sigmoid function $S(\cdot) = \frac{1}{1+e^{-x}}$, and λ_0 is automatically chosen at the beginning of the optimization.

Adam optimizer is used for gradient descent.

FDP control

- ullet When the number of rejections is small (< 100), the result should be treated with precaution.
- For the theoretical result, it is require that for each fold, the best scale factor γ^* should have a number of discoveries exceeding c_0N for some pre-specified small proportion c_0 .
- If this condition is not satisfied, there will be no rejection in the fold.
- ullet i.e. γ^* in algorithm is substituted to a modified version as follows:

$$\gamma^* = \sup_{\gamma \geq 0} \left\{ \gamma : \widehat{\mathsf{FDP}}_{\mathsf{test}}(\gamma t^*) \leq \alpha, \mathsf{D}_{\mathsf{test}}(\gamma t^*) \geq c_0 N \right\} \cup \{0\}$$

Kyurhi Kim (SNU)

Theorem1

Theorem (FDP control)

Assume that all null p-values $P_i \in \mathcal{H}_0$, conditional on the covariates, are independently and identically distributed following Unif[0,1]. Then with probability at least $1-\delta$, **AdaFDR** with the modificated scale factor γ^* controls FDP at level $(1+\epsilon)\alpha$, where $\epsilon = O(\sqrt{(\log \frac{1}{\delta})/(\alpha N)})$.

- The assumption can be easily relaxed to the assumptin that the null p-values, conditional on the covariates, are independently distributed and stochastically greater than Unif[0,1].
- Proof for above Thm1 is avilable in [Zhang, 2019]

Kyurhi Kim (SNU) Seminar January 19, 2023 18 / 25

Proof

This is overall step of the proof.

- **step1.** It suffices to show that $\mathbb{P}(\mathsf{FDP}_2 \geq (1+\epsilon)\alpha) \leq \frac{\delta}{2}$
- **step2.** Covert the above probability to some analyzable stochastic process by introducing the set of random variables to condition on.
- The random variable set might include hypotheses splitting, all covariates, the type of hypotheses, and the alternative p-values.
- step3. Get upper bound of the probability.

19 / 25

Kyurhi Kim (SNU) Seminar January 19, 2023

Results

b number of selected eQTLs in the two adipose tissues

unit: million	вн	SBH	IHW	AdaFDR	AdaFDR (aug)	AdaFDR (ctrl)
Adipose_ Subcutaneous	1.64	1.66 (+1.2%)	1.72 (+4.9%)	2.09 (+27.4%)	2.56 (+56.1%)	2.14 (+30.5%)
Adipose_ Visceral_ Omentum	1.09	1.10 (+0.9%)	1.17 (+7.3%)	1.43 (+31.2%)	1.99 (+82.6%)	1.48 (+35.8%)

Kyurhi Kim (SNU) Seminar January 19, 2023 23 / 25

Results

a results in other applications

	ВН	SBH	AdaPT	IHW	AdaFDR			
small_GTEx: Adipose_ Subcutaneous	1182	1188 (+0.5%)	1333 (+12.8%)	1333 (+12.8%)	1469 (+24.3%)			
small_GTEx: Adipose_ Visceral_Omentum	549	553 (+0.7%)	1037 (+88.9%)	724 (+31.9%)	1360 (+148%)			
RNA-Seq: Bottomly	1583	1693 (+6.9)	2109 (+33.2%)	1714 (+8.3%)	2144 (+35.4%)			
RNA-Seq: Pasilla	687	687 (+0.0%)	853 (+24.2%)	785 (+14.3%)	856 (+24.6%)			
RNA-Seq: airway	4079	4079 (+0.0%)	6045 (+48.2%)	4862 (+19.2%)	6050 (+48.3%)			
microbiome: enigma_ph	61	65 (+6.6%)	96 (+57.4%)	89 (+45.9%)	124 (+103.3%)			
microbiome: enigma_al	206	437 (+112.1%)	496 (+140.8%)	243 (+18.0%)	503 (+144.2%)			
proteomics	244	358 (+46.7%)	384 (+57.4%)	245 (+0.4%)	402 (+64.8%)			
fMRI: auditory	888	888 (+0%)	-	1015 (+14.3%)	1058 (+19.1%)			
fMRI: imagination	2141	2228 (+4.1%)	-	2151 (+0.5%)	2239 (+4.6%)			

References

Zhang, M. J., Xia, F., Zou, J. (2019, April)

AdaFDR: A Fast, Powerful and Covariate-Adaptive Approach to Multiple Hypothesis Testing

In RECOMB (pp. 330-333).