Prof. R Naciri $\not\cong dr.r.naciri@gmail.com$ Travaux digérés : Analyse des données Semestre 5: EE

Année universitaire : 2020-2021

Exercice 1:

On considère une matrice de données $\mathcal{A} = (x_{ij})$ de dimensions $r \times s$. Rappelons que x_{ij} est l'observation du i-ème individu à la j-ème variable. Indiquer la ou les réponses exactes.

1	La	matrice	de	corrélation	\mathcal{R}	e i	evnrime	nar	
т.	Lа	matrice	uе	Correration	κ	D	exprime	pai	

$$\bigcirc \mathcal{R} = {}^t \mathcal{A} \mathcal{A} \qquad \bigcirc \mathcal{R} = (\frac{1}{s}) {}^t \mathcal{A} \mathcal{A} \qquad \bigcirc \mathcal{R} = \mathcal{A} \mathcal{A}$$

$$\bigcirc \mathcal{R} = (\frac{1}{r}) {}^t \mathcal{A} \mathcal{A} \qquad \bigcirc \mathcal{R} = (\frac{1}{r}) \mathcal{A} {}^t \mathcal{A}$$

- 2. Calculer les composantes principales à partir de la matrice X revient à :
 - \bigcirc Diagonaliser la matrice de corrélation associée à ${\mathcal A}$.
 - \bigcirc Diagonaliser la matrice de corrélation associée à \mathcal{A} .
 - \bigcirc Diagonaliser la matrice $(\frac{1}{n})\mathcal{A}$.
- 3. La somme des variances de toutes les composantes principales est égale à :

$$\bigcirc r \times s. \quad \bigcirc s. \quad \bigcirc r. \quad \bigcirc \frac{r}{s}.$$

4. La première composante principale est :

- O Une combinaison linéaire des variables observées ayant une variance maximale.
- O La variable ayant la plus grande variance
- \bigcirc Une combinaison linéaire des lignes de la matrice $\mathcal A$
- O Une combinaison linéaire des variables observées.
- $5. \ \, {\rm La}$ variance de la première composante principale :
 - \bigcirc Est toujours ≥ 1 . \bigcirc Peut être < 1.
- 6. La qualité de la représentation des variables sur le plan principal 1-2 se mesure en fonction de la proximité du vecteur par rapport :

 A la première composante principale.
 - O au cercle de corrélation.
 - a l'origine du repère.

Si \mathcal{R} désigne la matrice de corrélation de cette analyse on note par λ_i sa *i*-éme grande valeur propre.

- 1. ACP est l'acronyme (abréviation) de :
- 2. Donner l'expression de la matrice de corrélation \mathcal{R} en fonction de \mathcal{A} . Quelle est la dimension de \mathcal{R} ?
- Quel le nombre d'axes principaux obtenus à partir de cette ACP.
- 4. Donner les propriétés du premier axe principale.
- 5. Quel la valeur de la moyenne et la variance de la première composante principale?
- 6. Quelle est la somme des contributions de tout les individus par apport à la première composante principale?
- 7. Quelle est la somme des carrés des facteurs de corrélation de tout les variables par apport à la première composante principale?

Exercice 2:

On a effectué l'ACP de la matrice de corrélations d'un jeu de 10 données avec 3 variables (var_1, var_2, var_3) . Les valeurs est les vecteurs propres (normés) de la matrice de corrélation sont :

$$u_1 = \begin{pmatrix} -0.70 \\ -0.15 \\ \mathbf{x} \end{pmatrix} \quad u_2 = \begin{pmatrix} 0.05 \\ -0.98 \\ 0.17 \end{pmatrix} \quad u_3 = \begin{pmatrix} -0.71 \\ 0.08 \\ 0.70 \end{pmatrix}$$

Les composante principale de quelques observations sont données dans le tableau suivant :

	$comp_1$	$comp_2$	$comp_2$
Obs_1	1.48	-1.92	-0.08
Obs_2	0.02	0.44	1.38
Obs_3	-0.04	-0.85	0.02
:	:	:	:
Obs_{10}	-0.14	0.73	-0.56

Table 1 - Composantes principales

- 1. Quel est l'enertie totale du nuage.
- 2. Donner la valeur de x.
- Compléter le tableau suivant en donnant les relation utilisées.

Valeur propre (λ_i) Inertie expliqué Inertie expliqué cumuler						
-	-	0,56				
-	-	-				
0,33	-	-				

Table 2 – Inerties expliquées

Exercice 3:

partir d'une ACP normé (données centrées réduites) On souhaite étudier la relation entre un ensemble de critères contribuant à la qualité de l'air dans 30 région différentes d'un pays. Les variables prises en considération sont :

- ☐ airq : Un indicateur de la qualité de l'air (des valeurs faibles de cet indicateur indiquent une bonne qualité de l'air).
- □ vala : La valeur ajoutée des compagnies de la région (exprimée en milliers de dollars)
- ☐ rain : Quantité de pluie (exprimée en inch)
- ☐ dens : Densité de la population
- ☐ **medi** : Revenu moyen par habitant.

	airq	vala	rain	dens	medi
$région_1$	104	2734.4	12.63	1815.86	4397

Table 3 – Données concernant la première région

$\mid \text{comp}_1 \mid$	$comp_2$	$comp_3$	$comp_4$	$ comp_5 $
2.116	x	0.983	0.753	0.104

Table 4 - Variances des composantes principales

- 1. Quel est l'inertie totale du nuage?
- 2. Calculer la valeur de x dans le tableau 2.
- 3. Quel est le signe de y et z dans le tableau 3.
- 4. Calculer la valeur de y et z.
- 5. Calculer les cordonnées du vecteur propre associé à la première composante principale.

- 4. Calculer la qualité de représentation de la première observation par apport au deuxième axe principale, sachant que sa qualité de représentation par apport au premier axe principale est égale à 0.37.
- Après avoir donné la formule, calculer la contribution de la première observation pour la deuxième composante principale.
- 6. (a) Donner l'expression de $comp_1$ en fonction de var_1 , var_2 et var_3 .
 - (b) Monter qu'il existe une forte corrélation entre la var_1 et la première composante principale.

Variables	comp ₁	$ comp_2 $
airq	-0.481	-0.492
vala	y	-0.009
rain	0.207	z
dens	-0.277	0.832
medi	-0.929	-0.09

Table 5 – Corrélations entre les variables avec comp₁ et comp₂

- 6. Quelle est la valeur de la cordonnée de la région $_1$ sur le premier axe principale.
- 7. Calculer la qualité de représentation de la région $_1$ par apport au premier axe principale. Cette région est-elle bien représentée ?
- 8. Après avoir donné la formule, calculer la contribution de la région₁ pour la première composante principale.