Tail.

N-

hinou advection diffusion eq doscribes both the advection and diffusion of a system via a linear FDE.

misma regordin

- Advection eq Describes the hanspartation of some convened quantity or matrial by but motion of a fluid

ADJUECTION [DU/OF = FRANCH DU/OX FOR GUARTITY [UIGH).

Player to some gion function.

- Delluxien eq

Describes diffusion of material/ which quantity ute, to be due to macroscopic movements of particles via collection, etc. in the flow.

dy = D d2u] EQUATION FOR U(8)4)

where Di som the diffusion coefficient.

As the advection of aid diffusion of are levoley independent, they can be added together to fin the advector-diffusion eq:

To the eg guian in the sequester, f = a(t) and D=6.

A unour PDE is a function of the form (ign-acces)

F(x; u(x); d* 4/6x, ..., dis/2x2 =) = O JPDE

FUM F(x) = Z a o(x) d = / d x u

that is, F(5) is a programme of more an of its descenter. Our sig deady

```
P9 Z
WATHS453 Numers OCI
[QZ] From Standard Taylor expraision in two variables to 3nd orders
 win [using t-1/2 St]: (about most of (x), tn+12)
   U" = U + UE (-1/2 DE) + 1/2 UH (-1/2) (DE) +
        16 (-1/2 Dt) 3 Utt
      = works man found (At) after
        14 + -1/2 Dt ut + 1/3 (At) 2 ut - 1/48 (At) 5 letter +-
und [using & - 1/2 DE + DE] (about legithal/2)
    inti = u + 1 a 1/2 Dt ut + 1/8 (Dt) ut + 1/40 (Dt) 3 atter ...
Then proving (2.80)
Jeografia Bo That 1/2 1/20
delau(x, + +50+) = U(x, (++120+)+120+) - U(x, (++120+)-120+)
         1997 = u(x, + + d+) - u(x, +)
              de ujn+1/2 = utjn+1 - ujn
wing Take appearage;
 deunitie = [u-u] + [1/21-(-1/2)] uest + [1/8-1/8] West
            + [ /48 - (- /40)] (At)3 um + ...
        = 0 + Atue + 1/24 (At)3 util + ....
As required.
Prowing (2.81)
long dx2 u(x, t+st) = u(x+sx, t+st) - Zu(x, t+st)
```

that is, de 2 ant = ujer - Zayner + 2 ujer

Until Z MILLENGE 146177

```
2 HATHS4S 3
                                                                                                                                                                                                                                                                                                                                  P93
     Expansion up to n=6 using f(x-\Delta x, t-\Delta t)=\frac{1}{2} \sqrt{n!} \sum_{k=0}^{\infty} \frac{1}{k!(n-k)!} \frac{\partial f}{\partial x} \frac{1}{x!} \frac{\partial f}
       this wing (1/2 At) 4, (OAx)

All a son terms wear trans underding & are converted so -
                    uj" = u + 1/2 Atue + 1/2 / 1 4 (At) 2 ug + 1/3! (1/2 DE) 3 uner +
                                                    /4! (1/2 DE) aut + 1/6! (1/2 DE) aut + 1/6! (1/2 DE) autere.
     With + With wing (NoAt), with has (-Dx), with has (Dx).
Then we target expanses because -
         [Zno/n! Zho "kin-e)! offarter (-Ax) (A/2E) +
         [ Zn=0 /n! Zn=0 "/k!(n-k)! dru dxnftk(Ax)"-k (1/2 At) k]
    = Zno/n! Zno n/k!(u-k)! dnu oxne bt (1/2 de) [ (- dx) n-k + (dx) n-k]
                        " ux [ -Δx+Δx] + ue (1/2 Δb)[1+1]
   1/2 [ 2/2 U KK (1/2 AE) [ -(AX) 2 + (AX) 2] + 2 UKE (1/2 AE) [0]
                        3/2 U4 (1/2 OE) 2[2] = 1/2 UXX 2(OX) + 1/2 OXAQ + 1/2 (AE) UH
  N=3 (2-2) n+=1
/3.[ 31/1 Umx[0] + 31/2 Uxx (1/2 M)[2(Ax)] + 31/2 Uxxx (1/2 At)^2[0]
11=4 14=01->N-K=4 [1-1]->N-K=3 [1-2]->N-K=
   1/4: [4] uxxx 2(Dx)++ 4! uxxx (1/2 dt)[0] + 4! uxxxx (1/2 dt) [2(Ax)]
```

```
MATHS453
                                                          PG 3
 1032 Caulinal
    4 2 (DK) "WXXX + 3 WXXX (DE) 2 (AZ) 2 + 1/92 (DE) 4 WHIT .
                                  Shouldn't those be zero?
              K=17-11-4=4
 1/5 [ Uxxxxx ][0] + 5/4 Uxxxxx (1/200)[2(0x)4] + 5/2 Uxxxxxx (1/200)2[0]
  + SI UXXXX (1/2 At) 3 Z(AX) 2 + SI UXXXX (1/2 At) 4. [0]
      5/ umm (1/20t) 2 = [Suxxhe(10t)(10x) + 5/2 uxxhe (10t) 3 (10x) 2] + 1/3 1/2 umm (10t) 5.
N=6 (k=0)-n-k=6 [K=1]-n-k=5
16. [ 56 Uxxxxxx WAR 2(DX)6 + 61 Uxxxxxx (2DE)[0]
 [K=2]->n-k=84
                           [K=3] = n-2=3
  6 | Uxxxtttt (1/204) + 2(4x)2 + [0]
K=47-984-6-2
K= 67-911-K=0
                             2/61 UXXXXX (Dx)6 + 1/2/54)
  6: unu (1/2 st) 6 7 %
                              + /4! /16 (AH " (AD) + 3/1 UHH (4/1)
                           = 1/360 UXXXXX (DX)6 + 1/96 UXXXXXX (DE) 2/4)4
                                + 1/384 $ (AE)4 (AE)2+1/20 6! WHEHE (AE)6
 got present terms Corouping lems:
 Atut(1-21/2)+(Dt) = att (1/4-21/21/4)+(Dt) = att (1/2721/31=1/2-21/31/2=)
Wt-demates -
  + .... = 0. As any serial - 2 or 1/2 En (At) + 3 mu (At) 2 = 0.
 2 [ Liver yal (Dx) 2 uxx + 1/41 (Dx) 2 uxxxx + 1/61 (Dx) 2 uxxxxxxx ] Jespertol values
 x-demates-
wood x-t pacuates - [ should cancel ] as sean.
    4 loavers why hung may no cauge
         Semes in Taylor series faulte by me mode by me
```


= [(Dx)20xx + (Ax)60xxxxx + (4 2/6! (Dx)60 usaxxxx]
+ [(At)(Ax)60xxx +]

no time to write hell espainer

Piong 8 7.83 x 2.84

Nead know for de units.

So $d_{\varepsilon} u_{i}^{n+1/2} = u_{i}^{n+1} - u_{j}^{n+1} + u_{i}^{n+1/2} + u_{i}^{$

Ty " = $\frac{1}{\Delta \epsilon} (u_j^{n+1} - u_j^{n}) - \frac{1}{\Delta \epsilon} [\Theta [g_i u_j^{n+1} - Zu_j^{n+1} + u_j^{n+1}]$ $+ (1-\Theta) [u_j^{n} - Zu_j^{n} + u_j^{n+1}]$

No true to so full repaired o realizinge all those terms have been precially calculated.

03.

QQ31 central

O-scheme

For for expect or under scheme?

with weighting (@ 0 000 00000 1) Case - a < 0:

/ wither schools

elphiet

Case - a > 0 :

Mesh and undering that het

het H= IL-LPI was passing LyLpEIR.

A we define & Ax points Ax = 5 mesh points & x -

Ax= 1/2.

and N mesh pauls A to
Ot= 1/N. St. # J does

A not have to equal N, but

Not have to much most

for an indowing of the moon, are Uj"=[x] Joseph James

g may were some issue) at J-1, a N-1.

Boundarios + ICS.

That is, If the property of the n = 0,1,..., N-1?

But 0,1 = 1 = 1 = 0,1... = 0Uf 0,1 = 1 = 0,1,... = 0Where 0,1 = 1 = 0 0,1 = 1 = 0Where 0,1 = 1 = 0 0,1 = 1 = 0Where 0,1 = 1 = 0 0,1 = 1 = 0Where 0,1 = 1 = 0 0,1 = 1 = 0 0,1 = 1 = 0 0,1 = 1 = 0Where 0,1 = 1 = 0 0,1

1/Δε(U)ⁿ⁺ μⁿ_j) - θε (Δε)²

/Δε(U)ⁿ⁺ + 2^e(Δε)²

/Δε(U)ⁿ⁺ + 2^e(Δε)²

/Δε(U)ⁿ⁺ + (1-Θ)

(Θ(U)ⁿ⁺ + U)ⁿ⁺ - (1-Θ)(U)ⁿ⁺ + U)ⁿ⁺

(

- Ba (Ujt) + (1-0) / (Ujt)

