Project Day 2022

April 9, 2022

Team SolarSize

Tristan Brown-Hannibal Karlee Fidek Kaden Goski

Team SolarSize

Tristan
Front-End Development
Server Management

KarleeFront-End Development
Documentation Management

KadenBack-End Development
Solar Model

About This Project

- A tool that utilizes building consumption metrics and solar intensity data to calculate accurate ROIs
- Helps to determine over/under generation windows and size solar generation solutions accordingly

The Application

- Web application
- User-friendly form which considers:
 - Location
 - Regular consumption data
 - Multiple panel types
 - Financial factors
- Built-in knowledgebase and information
- Suggests optimal solar panel setup

Graphs

- Regular consumption vs. solar power generation
- Value resulting from full-credit generation vs. overgeneration
- Annual cash flows

Calculations

- Total return on investment.
- Estimated kWh of solar power generated

Our Why?

- Fossil fuels are the primary source of energy in Canada
- Solar energy is renewable and sustainable
 - Alternative for fossil fuels

Persuade more people and businesses to install solar generation solutions

The Problem

How do you choose the best panel?

How many panels should you use?

How much return will you get?

Architecture

Frontend

Backend

Data

Solar Model

- Calculates estimated power output
- NASA POWER provides global solar irradiation data
- Python converts the global data to direct and diffuse components which are used in the calculations

direct radiation + diffuse radiation = global radiation

Overgeneration

- Production of solar energy beyond consumption needs
- SaskPower only provides half-credit (7.5¢/kWh) for overgeneration
- This makes overgeneration inherently less valuable, but not valueless

Inputs

Location

Panel Options

Grants

Analysis Dates

Cost of kWh

Roof Area

Loan Rate

Consumption Data

Return on Investment

- 20 year analysis
- Calculates breakdown of solar power installation:
 - Capital Cost
 - Maintenance Cost
 - Loan Interest
 - Full-credit Value
 - Overgeneration Value
- Determines which setup provides the best financial return

Capital Cost: \$46,927.00

Savings Earned: \$156,921.00

ROI and Annual Cash Flow Analysis Calculations

```
\frac{Cost}{KW\ Installed}) + Interconnection\ Study\ Fee + Bidirectional\ Meter-Grants
```

 ${\color{red}Balance\:Remaining}(end\:of\:1st\:year) = Capital\:Cost + Loan\:Interest - Amount\:Sa{\color{red}ved}$

 $Balance Remaining (2nd\ year\ and\ on) = Balance\ Remaining + Loan\ Interest - Amount\ Saved$

 $Amount \, Saved = (Full \, Credit \, Power \cdot Value \, of Full \, Credit) \\ + (Overgeneration \, Power \cdot Value \, of \, Overgeneration) - Maintenance \, Costs$

Optimal Solar Panel Installation

Full Credit Value Vs. Overgeneration Value

Monthly kWh Generated

Cash Flows

Cash Flows

Yearly Savings/Balance

Consumption Vs. Solar Generation

Future Iterations

Acknowledgements

We would like to thank the following people for their involvement with our project.

- Project Advisor: Dr. Timothy Maciag
- Project Mentor: Dr. Kin-Choong Yow
- Project Idea: Greenwave Innovations

