7.																	
9.	fc) = ((-	¥,	XZ	O							-1	1			
	f(x)	l	_ <u>X</u> _x+2		×>	0								ì			
		it	ίζ	One	_ 	or (
														1			
10.	fl	x) =	2	- x ²	, ×	(<u></u>					_	-	-5				
					ne .		ne										
32.	H.	k):	N/V	-3				E	DVNC	ain	. (- E	10	10	(1,	100)	
	+		V	y					Parcy								
			14	-3				'			1	19)	U	19,	D		
	×(1			5													
			= '														
/\	14	- 3x	= 1	4													
	15 (x					1											

33.	fl	= (X	Ks -	-24	, 7	(4)										
	let	. {	· (y)	=4			12	oma	· \	[-1,0	(2					
	Ŋ=	X2-	ZX				Po	rge	•	(-a	,1]					
				× +	(-											
	•															
)2 -												
		=														
	_	= +1-														
		+ =														
	F	(y) =	(+ 10	<u>)</u> †1											
	f-1	(x)=	1 +	Jx.	-											
41	C) = Y	3-3	χ ¹ -	١,	X2.	1									
				3 y 2												
	at	X :	-1.	-5	y=	٥	0(3	but	- y	4	uld	be	3		

$$|z|^{2} + \frac{1}{3} + \frac{1}$$

X= 9 + 516+4(54)	
2	
= 9 + V9(4+(5+y))	
2	
= A+254+(5fg)	
Z Z	
replace x with y	
y = 2 + (9+9	
(-(x) = 2 + 19tx	
10-1	
df-1 (
1x 2+15+x	
X=0=f(5)	
df-1	
df-1 dx = 2545 = 2514	

43, h = f(x), f passes though point (7,4), slope = 1/3, x=9 $y-y=\frac{1}{3}(x-2)$ $(y-\frac{1}{3}x-\frac{2}{3}+4)3$ $(x-\frac{1}{3}x-\frac{2}{3}x-\frac{1}{3}$ 3y= K-2+12 3y=x+10 3y-10=x 57. range of 9 lies in the domain of f. f is one to one, g is one to one $x \neq x_2$, $g(x_1) \neq g(x_2)$ $f(g(x)) \neq f(g(x))$ So, fog 13 also one to one

58- Yes, 9 must be one to one since, if we say that g is not one to one, and we say that X. & 12 belongs to the domain of from: Note that $\chi_1 \neq \chi_2$, $g(x_1) = g(x_2) = y$ - (fog) (x1) = f(g(x1)) = f(y) - (fog)(x1) - f(5(x2))= f(y) -> (fog)(x) = (fog) (x2) we can see that both of both of them are the same. Thurstore the fact that g is not one to one 15 wrong

7	-7															
2.	a)	ln	125	= n	5-3=	- 3	ln 5									
	b)	ln	9.8	= [n 5											
				=	~ 49	1- lu	5									
				=	n 72	- 10	5									
				÷	2 ln 7	-(/	5									
	()	u 7	-112	11	n 7	12/2	-		2/2							
	Cj	TOI ,	V /					(n								
							7	, W								
	1	ln	122	< -		7.8	5×4	G								
		Nr.	1u		= (,				2 ⁷							
					2											
					2	WS	Т	L 14	+							
	2)	lu	D. 0	56	-	1 ₄ 2	.r 1) 0	08								
	,								3							
					= In = In	7	-3	n S								
	(1)															
	t) (ln 3	5+	10 7)/h	25 =	In	7×5	+ 6	,7-1	_	n7 t	- Ins	- (v	7	
								In	52			105 2105	2 la 5			
											=	215	=	2		

70	. y = ln (ln (ln x))					
ν	() (Con (in x))					
	A _	1 1				
	$\frac{dy}{dx} = \frac{1}{\ln(\ln x)}$					
	ln(lnx)	lux X				
	-					
	(nllux)·lnx·x					
	. y = /x² (n t					
2+	Vχ					
27	· 4= 1	- 11				
) 12 (n 15	at				
	UX/					
	= X ² In Tto	12	In St A			
	= (X.2	1				
	1.5	1 2	1 - 1			
	nuta	(t -	h Vt H			
	Vo	J 6				
	dy = 2x lux -	X In X				
	de l'il	1				
Re	[4					
45						
	$\sqrt{2}$ $\sqrt{(\ln x)^2}$	1.1				
			(20			
	[9]					
	$=\int_{2}^{4} \frac{1}{x \left(\ln x\right)^{2}} dx$	du = -				
	/X (m)	72-				
	V2	ax ;				
	C4	dr=x	- 4.			
=		X	-20			
	A JN					
	$(1)^2$					
	1 du -	١ - و	J-1 /9 -	-114	th	
-	1,5 do -		12 -	- INX 3	- Tay Ta	2

 $\int \frac{dx}{2\sqrt{x}} dx$ = \(\frac{1}{2\overline{x} t2x} dx \) $= \int_{2\sqrt{x}(1+\sqrt{x})}^{1} dx \qquad \text{for } x = 1+\sqrt{x}$ $= \int_{2\sqrt{x}(1+\sqrt{x})}^{1} dx = \frac{1}{2} \times \frac{1}{2}$ $= \int_{2\sqrt{x}(1+\sqrt{x})}^{1} dx \qquad \text{for } x = \frac{1}{2} \times \frac{1}{2}$ $= \int_{2\sqrt{x}(1+\sqrt{x})}^{1} dx \qquad \text{for } x = \frac{1}{2} \times \frac{1}{2}$ = \frac{1}{2}\lambda \lambda \lambda \lambda \frac{1}{2}\times \text{
= \int \frac{1}{2}\lambda \lambda \lambda \frac{1}{2}\times \text{
= \int \lambda \lambda \lambda \frac{1}{2}\times \text{
= \int \lambda \lambda \lambda \text{
= \int \lambda \text{
= \int \int \int \lambda \text{
= \int \int \int \int \int \int \text{
= \int \lambda \lambda \text{
= \int \lamb Sy. Sec x dx

[In (Sicx+tanx) = Seex du let u = ln (seex + tanx)

To seex du du = Sec x

To du dx = do

Seex

67. y = 3 x(x-2)			
$= (x(x-2))^{\frac{1}{3}}$			
$\frac{2(x(x-c))}{(x^2+i)^{\frac{1}{3}}}$			
=(x(x-2))3 · (x-+1	3		
=(X(X-11) (X 10)	1 - 3		
(ny = (x(x-2))3, (x2	TU 3		
= = (x(x-2)))	
3 (((((()))	3 10 0 7		
y dy = dy 1 h	$(x^2-2x)-\frac{1}{2}$	h (x2+1)	
		C	
	2X		
$\int dx = 3(x^2-2x)$	3(7+1)		
dy 7 7 (2x. 31)	$\frac{-2}{2} - \frac{2x}{x}$		
36	x-24) 3(x+1)/		
= y (\frac{7}{2})	X-1) - 2 () x-1) - 2 () x ¹ -x) - 3 (x ²	X	
	1	71,	
$\frac{3}{2}$	(-1) (+ 1	2)	
ax 3 Ux	+1 (x + x-	-2 3(x+1)/	

70. a) [$(x) = x - a_x $	
/ [-r/- r - 10 x	
$ \cdot $	(x)70	
	- 1 70	
X	_ \ > 0	
	$\frac{-1}{x} > 0$ $x > 1$	
	X >1	
م) (ط	x < x if x > 1	
	n x Zx	
(lux	-x)20	
9 (10x-x) (0	
ax	In x -x) < 0	
	1 6 0	
X		
文	2	
J		

1	7. a) y= (x2/p) - lnx, 4 < x < 8	
	$\int_{\mathbb{R}} \int_{\mathbb{R}} f(x)^2$	
	J4 1 1 4 W)	
	$\frac{dy}{dx} = \frac{x^2 - 4}{4x^2}$	
	4×	
	1 1 (x ² -4)	
-	(4x)	
7	1 + X - dx2+16	
	(6x2	
	0 x 2 + x 4 + 16	
	[6 x ²]	
	, = [P 1x2 + x2 + 11	
	- Jy (x2+x4+1)	
	- 6+ h2	

b. x=(9/4)2-2/n(9/4), 9=9=12	
dy = 47 - 16	
dy by	
= (+ (42-16)2	
- 1 + y ^y - 32y ² + 256	
by 9 ²	
= 32 y2 + y4 + 256	
Tygr I	
= (12 3242 + 9 + 1256	
= A + lag	

7	-6							
•0	0	cl.,						
(3	X-71	Sin-1 X	= 811	N (1)				
			= 7					
27	y= C	05-1 (1/x						
	= 5	e (-1 X						
	d. Sec (x)						
	dx		X-1					
41	dx							
	$\int \frac{dx}{x\sqrt{5}}$	x ² -4						
	Let v=	(C)2	1st	2 a=4				
	0 =	V5x2 XV5		7 = 2		0		
					1 00 00	12-92		
	1 2 x du = 15	V 5			- (-	2		
	dx du				= 1	102 a'	C	
	TS =	dχ			2 2	-1 \SX 1	C	
	1 5=	dx			= 250	12-a2 10	C	

ζι Λ2 II	
51. (2 dt	= (at
0. 1162	= \(\frac{at}{8+2+2}
Let a = 8 9 = 2 \(\overline{1}{2} \)	- (dy
	$=\int \frac{dy}{\sqrt{z}}$
Let 12 = 2t2	
U = 12t	$=\frac{1}{a}\cdot\sqrt{2}$
10 - 12 0	
$\frac{dv = \sqrt{2}}{at}$	= ta-1(1) = To
du=12 dt	C' Y
	- L - 1 (5th 12
1/2 = dt	$=\frac{1}{2\sqrt{2}}\cdot\sqrt{2}\tan\left(\frac{\sqrt{2}}{2\sqrt{2}}\right)$
	= 1 1 - 1 + 1 2
	$=\frac{1}{2\cdot 2} \left[\frac{1}{2} \right] \left[\frac{2}{2} \right]$
	$=\frac{1}{4}$, $\frac{\pi}{y}$ $-\frac{1}{4}$ $=$
	$=\frac{1}{4}$, $\frac{70}{4}$
	= 70_
	16

65-(y dy	
July	
Let 02= y4	- Jaz-v2
J = 24 J = 24	
	$\frac{1}{2}\int \frac{dv}{a^2-v^2}$
dy = y dy Jy = 1	= 1. Sin y² +C
4 a=1	
70. (1 6dt	
1/2 3+4+4+	
$C = \left(-\frac{1}{2}\right)^2 = \frac{1}{4}$	
4t - 4t ² - 4 (t-t ²) = 9 (t-t ²)	
$= 44 - 4t^{2}$	
= - (4t ² - u	1+1)+1

$= \int_{1/2}^{1} \frac{6 dt}{3 - (4t^{2} - 4t^{4}) + 1}$ $= \int_{1/2}^{1} \frac{6 dt}{\sqrt{2^{2} (2t - 1)^{2}}}$ $= \int_{1/2}^{1} \frac{6 dt}{\sqrt{2^{2} (2t - 1)^{2}}}$
$= \int_{1/2}^{1} \frac{6 dt}{\sqrt{4-(2t-1)^2}}$
$= \int_{1/2}^{1} \frac{6 dt}{\sqrt{4-(2t-1)^2}}$
$= \int_{1/2}^{1/2} \frac{6dt}{\sqrt{4-(2t-1)^2}}$ $= \int_{1/2}^{1/2} \frac{6dt}{\sqrt{4-(2t-1)^2}}$
$= \int_{1/2}^{1/2} \sqrt{4-(2t-1)^2}$ $= \int_{1/2}^{1/2} \sqrt{4-(2t-1)^2}$
= \(\frac{6}{4} - (2t-1)^2 \)
= (1 6dt
6 dt
J/2 (2t-1)
Let $a^2=4$ Let $v=2t-1$ $a=2$ $dv=2$ $dv=dt$
$\alpha = 2$ $dv = 2dt$
d= dt
$=\int_{1}^{3}\sqrt{3}\sqrt{3}$
$\sqrt{2}\sqrt{a^2-v^2}$
= 3 (du
J (a2-03
= 3. Sin (U)
$= 3. \sin^{-1}(2+-1)/12$
$\frac{1}{3} \cdot \frac{3}{\sin^{-1}\left(\frac{1}{2}\right) - 3} \sin^{-1}\left(\frac{1}{2} \cdot \frac{1}{2} - 1\right)$
- 3. Sin-1(1/2)-3 Sin-1 (0) -= 3. to = I

74	. (, y	7	dχ												
74	J	2	12	6x!	- -ln											
	\mathcal{C}			6)		0										
		X	- 1					+9.								
				-	(;	x-3)2 .	-9								
=	- (4	20	x												
	J	2	X-3	x) ¹ +(
				d×_												
	J	1	(X+	3) ¹	-t											
	le	t ·						-3	 9	du que	= 1	t'	an (<u>U</u>) -	f C	
=	2		1	Lav	- (X-	2)	14								
				_ 1 /	n .			12	- (ſ	1					
	,	2	tav		-) -			- (
-	-	2 .	Pa	_	2 (1)									
	= -	ण														

 $\begin{array}{c} 80 \cdot \int \frac{dx}{(x-2)(x^2-4x^2)} \\ b = \left(-\frac{4}{2}\right)^2 \\ = \left(-2\right)^2 \\ = 4 \end{array}$ $x^{2}-4x=x^{2}-4x+4-4$ $=(x-2)^{2}-4$ $\int dx$ $\int (x-1)^{2}(x-1)^{2}+4$ J dx (x2) 1x2)-1 let v=x-2 let a=1 = Juv=== = = Sec | = +c $= Scc \left(\frac{x-2}{1} \right) + C$ = S(C-1 (x-2)+C

84. Stan'x dx

1 + x2

Let U = tan'x

Tx = 1+v2 = \langle \frac{1}{2} \lan - 1 3/1 +C = 2 (tan x) 3h + c = 2 (tan x) + c Scosudu = sinu Let v=50c-1x = Sin (sic (2))-sinsec (3) - Sin to - Sin To du = 1 dx = Sin 60 - Sin 30 = 1 \sqrt{2} - V3-1 2

(07.			
69.			
F. \			
/ V= 3	To. 72h		
/ 1 \ 3	CV		
3/ 1/ V=3.	0.22		
/ L=30	osb		
11 (3 (14) 2 (2 (A))	- 9TI	30)	
3 th (3 Sin p) 2 (3 cos B)	- 10 (0	ost - cost)	
du TI		2 10	
d0 = 9 to ((sin θ)-	Sin O 3 Cos	()	
		/	
= -9 to sind(1-3	cost A)		
7 3 3 7 0 ()	(03 0)		
D=0 When sin A	=7)		
		al max =	051
04	Co	a max -	13
0 ((1)		0	
$\theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$	loc	al win = 0	
2 (13)			