

機器學習運作流程

取得資料

- pandas
- read_csv
- 資料觀察

資料清理

- 遺漏值處理
- 格式轉換

資料切割

- •訓練 70%
- 測試 30%

模型選擇與使用

sklearn

結果分析與驗證

metrics

練習一:房價預測

Linear Regression

練習二:鐵達尼號生存預測

Logistic Regression

媡習:房價預測

取得資料

- pandas
- read_csv
- 資料觀察

```
• 遺漏值處理
```

- 格式轉換

- •訓練70%
- 測試 30%

sklearn

metrics

```
#import modules
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#%matplotlib inline
import seaborn as sns
```


#import dataset

```
df = pd.read_csv("data/Housing_Dataset_Sample.csv")
```

#observing dataset

```
df.head()
```

df.describe().T

sns.distplot(df['Price'])

sns.jointplot(df['Avg. Area Income'],df['Price'])

取得資料

- pandas
- read_csv
- 資料觀察

資料清理

- 遺漏值處理
- 格式轉換

資料切割

- •訓練 70%
- 測試 30%

模型選擇與使用

sklearn

結果分析與驗證

metrics

sns.pairplot(df)

取得資料

- pandas
- read_csv
- 資料觀察

資料清理

- 遺漏值處理
- 格式轉換

資料切割

- •訓練 70%
- 測試 30%

模型選擇與使用

sklearn

結果分析與驗證

metrics

#prepare to train model

#X是所有可能的影響變因

#取得所有的列的0,1,2,3,4欄位

X = df.iloc[:,:5]

#y是目標值

y = df['Price']

#split to training data & testing data

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=54)


```
#using linear regression model
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(X_train, y_train)

#get the result
predictions = reg.predict(X_test)
predictions
```

```
[24] predictions

A predictions

array([ 614607.96220755, 1849444.80372635, 1118945.08884266, ..., 834789.03428584, 1787928.10906905, 1455422.23696488])
```


取得資料

- pandas
- read_csv
- 資料觀察

資料清理

- 遺漏值處理
- 格式轉換

資料切割

- •訓練 70%
- 測試 30%

模型選擇與使用

sklearn

結果分析與驗證

metrics

from sklearn.metrics import r2_score
r2_score(y_test, predictions)
plt.scatter(y_test, predictions, color='blue')

0.9216604865707106

取得資料

- pandas
- read_csv
- 資料觀察

資料清理

- 遺漏值處理
- 格式轉換

資料切割

- •訓練 70%
- 測試 30%

模型選擇與使用

sklearn

后果分析與驗證

metrics

<pre>#import modules import pandas as pd import numpy as np import matplotlib.pyplot as plt #%matplotlib inline import seaborn as sns</pre>
<pre>#import dataset df = pd.read_csv("data/train_data_titanic.csv") df.head() df.info()</pre>

功能變數名稱	說明
PassengerId	乘客編號
Survived	是否存活(0:否、1:是)
Pclass	船票等級(1等、2等、3等)
Name	乘客姓名
Sex	性別
Age	年龄
Sibsp	有多少兄弟姊妹/配偶在船上
Parch	有多少父母/小孩在船上
Ticket	船票編號
Fare	票價
Cabin	艙房編號
Embarked	登船港口 C 瑟堡 Q 皇后鎮 S南安普頓

取得資料

- pandas
- read_csv
- 資料觀察

資料清理

- 遺漏值處理
- 格式轉換

資料切割

- •訓練 70%
- 測試 30%

模型選擇與使用

sklearn

結果分析與驗證

metrics

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

取得資料

- pandas
- read_csv
- 資料觀察

資料清理

- 遺漏值處理
- 格式轉換

資料切割

- •訓練 70%
- 測試 30%

模型選擇與使用

sklearn

結果分析與驗證

metrics

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)

memory usage: 83.7+ KB

取得資料

- pandas
- read_csv
- 資料觀察

資料清理

- 遺漏值處理
- 格式轉換

資料切割

- •訓練 70%
- 測試 30%

模型選擇與使用

• sklearn

結果分析與驗證

metrics

```
#Remove the columns model will not use
df.drop(['Name','Ticket'],axis=1,inplace=True)
df.head()
```

sns.pairplot(df[['Survived','Fare']], dropna=True)

練習:請嘗試觀察 其他欄位與Survived之間的關聯


```
#Remove the columns model will not use
df.drop(['Name','Ticket'],axis=1,inplace=True)
df.head()
```

sns.pairplot(df[['Survived','Fare']], dropna=True)

#data observing
df.groupby('Survived').mean()

存活者 平均年齡稍低一些! 票價平均较高一些!

取得資料

- pandas
- read_csv
- 資料觀察

資料清理

- 遺漏值處理
- 格式轉換

資料切割

- •訓練 70%
- 測試 30%

模型選擇與使用

• sklearn

結果分析與驗證

metrics

#data observing

```
df['SibSp'].value_counts()
df['Parch'].value_counts()
df['Sex'].value_counts()
```

```
0 608
1 209
2 28
4 18
3 16
8 7
5 5
Name: SibSp, dtype: int64 Na
```

```
0 678
1 118
2 80
5 5
3 5
4 4
6 1
Name: Parch, dtype: int64
```

```
male 577
female 314
```

Name: Sex, dtype: int64

#Handle missing values

df.isnull().sum()

len(df)

len(df)/2

df.isnull().sum()>(len(df)/2)

[23]	df.isnull().s	um()
×	PassengerId Survived Pclass Sex Age SibSp Parch Fare Cabin	0 0 0 177 0 0 0
	Embarked dtype: int64	2

```
[24] len(df)

×

891

[25] len(df)/2

∴

445.5
```

[26]	<pre>df.isnull().sum()>len(df)/2</pre>							
×	PassengerId Survived Pclass Sex Age SibSp Parch	False False False False False False False False						
	Cabin Embarked dtype: bool	True False						

資料清理 資料切割 模型選擇與使用 結果分析與驗證 取得資料 •訓練 70% • 遺漏值處理 pandas sklearn metrics read csv • 格式轉換 • 測試 30% • 資料觀察 #Cabin has too many missing values 25 df.drop('Cabin',axis=1,inplace=True) 20 df.head() 15 df['Age'].isnull().value counts() #Age is also have some missing values df.groupby('Sex')['Age'].median().plot(kind='bar')

#缺失值男生就用男生的中位數(29)、女生就用女生的中位數(27)來填補

```
df['Age'] = df.groupby('Sex')['Age'].apply(lambda x: x.fillna(x.median()))
```

```
[38]df['Age'].isnull().value_counts()[40]df.groupby('Sex')['Age'].median()XFalse 714<br/>True 177<br/>Name: Age, dtype: int64Sex<br/>female 27.0<br/>male 29.0<br/>Name: Age, dtype: float64
```


dtype: int64

結果分析與驗證

metrics

取得資料

- pandas
- read csv
- 資料觀察

#所有缺失值搞定! df.isnull().sum()

資料清理

- 遺漏值處理
- •格式轉換

資料切割

- •訓練 70%
- 測試 30%

模型選擇與使用

sklearn

結果分析與驗證

metrics

PassengerId 0 Survived Pclass 0 Sex 0 0 Age SibSp 0 Parch 0 0 Fare **Embarked** 0 dtype: int64

取得資料

- pandas
- read csv
- 資料觀察

資料清理

- 遺漏值處理
- 格式轉換

資料切割

- •訓練 70%
- 測試 30%

模型選擇與使用

sklearn

結果分析與驗證

metrics

#將Sex, Embarked進行轉換

#Sex轉換成是否爲男生、是否爲女生, Embarked轉換爲是否爲S、是否爲C、是否爲Q

df = pd.get_dummies(data=df, columns=['Sex', 'Embarked'])

df.head()

#是否爲男生與是否爲女生只要留一個就好,留下是否爲男生

df.drop(['Sex_female'], axis=1, inplace=True)

df.head()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	Sex_male	Embarked_C	Embarked_Q	Embarked_S
0	1	0	3	22.0	1	0	7.2500	1	0	0	1
1	2	1	1	38.0	1	0	71.2833	0	1	0	0
2	3	1	3	26.0	0	0	7.9250	0	0	0	1
3	4	1	1	35.0	1	0	53.1000	0	0	0	1
4	5	0	3	35.0	0	0	8.0500	1	0	0	1


```
df.corr()
#Prepare training data
#把Survived, Pclass丟掉
X = df.drop(['Survived','Pclass'],axis=1)
y = df['Survived']

#split to training data & testing data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=67)
```


取得資料

- pandas
- read_csv
- 資料觀察

資料清理

- 遺漏值處理
- 格式轉換

資料切割

- •訓練 70%
- 測試 30%

模型選擇與使用

• sklearn

結果分析與驗證

metrics

```
#using Logistic regression model
```

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression()

lr.fit(X_train, y_train)

predictions = lr.predict(X_test)

取得資料

- pandas
- read_csv
- 資料觀察

資料清理

- 遺漏值處理
- 格式轉換

資料切割

- •訓練 70%
- 測試 30%

模型選擇與使用

sklearn

• metrics

#Evaluate

pd.DataFrame(confusion_matrix(y_test, predictions), columns=['Predict not Survived',
 'Predict Survived'], index=['True not Survived', 'True Survived'])

	Predict not Survived	Predict Survived
True not Survived	146	16
True Survived	29	77

延伸練習 - 鐵達尼號生存密碼

- 請仿造上述練習,探索還有哪些因素跟生存可能有關連性
 - -乘客姓名、船票編號、艙房編號、家屬人數...意想不到的越好
 - -走完五個步驟(觀察->清理->切割->模型->分析)
 - -最後寫上你分析完後的結論
- 評分標準
 - 創意思考 40%
 - 流程完整度 40%
 - 結論分析 20%

Titanic was filmed in pool and the water was warm

常見評量方式

- 迴歸
 - -mean_squared_error
 - mean_absolute_error
 - explained_variance_score
 - -r2_score
- 分類
 - Precision
 - Recall
 - -F1 Score
 - Accuracy

常見評量方式

n = 100		預測爲No	預測爲Yes		
實際上是 No	TN	35	FP	15 (Type I Error)	
實際上是 Yes	FN	5 (Type II Error)	TP	45	

Precision 準確率 = 模型預測爲Yes且實際上爲Yes 模型預測爲Yes的個數

F1 Score = $2 * \frac{Precision * Recall}{Precision + Recall}$

Accuracy 精準率 = $\frac{模型預測爲Yes且實際上爲Yes+模型預測爲No且實際上爲No}$ 所有預測的個數

使用時間

- 機率爲Yes或No比例相當時,大多數可用Accuracy
 - 因爲當Yes或No明顯比例偏高時,就全部猜那一邊Accuracy會大幅提升
- 怕Type I Error的,要用Precision
 - Type I Error 就是預測爲Yes但實際爲No
 - 例如門禁系統把陌生人當成自家人
- 怕Type II Error的,要用Recall
 - Type II Error 就是預測爲No但實際爲Yes
 - 例如廣告投放判斷不是潜在客戶但結果却是潜在客戶
- F1 Score 可以避免Precision & Recall的極端誤差

訓練資料

• 多元化

The Right Data

I want to train a model to detect shoes

訓練資料

- 越真實越好,實驗室的資料有時太乾淨反而脫離現實
- 多樣且平均分散,避免資料僅來自部分類別,造成偏差
 - 各種可能的情境
 - 真實世界的影像(不是在攝影棚/錄音室/實驗室內拍攝的)
 - 有背景噪音的聲音資料
 - 各種風格的手寫字
 - 不同種類的資要,但盡可能蒐集數量均衡一些
 - 確認標註的正確性

模型評估

- 80%訓練+20%測試或80%測試+10%驗證+10%測試
- 訓練資料與測試資料都盡量平均分散分配,效果最佳

The model is evaluated against a test set of data

80% - training data 10% - validation data 10% - test data

*NOTE: Test data is always separated from the training data

Precision & Recall

- Precision 準確率(你的模型判斷是對的中,有多少真的是對的)
- Recall 召回率(真的是對的的項目中,你的模型找到幾個)
- 準確率是從模型的角度出發、召回率是用真實的狀况來看

Precision 準確率 = 模型預測爲Yes且實際上爲Yes 模型預測爲Yes的個數

Recall 召回率 = 實際上爲Yes而模型也預測爲Yes 實際上爲Yes的所有個數

範例:是否懷孕的判斷

Actual Values

1 0

Recall & Precision練習

模型預測結果

Cat

Dog

Cat

Precision 準確率 = 模型預測爲Yes且實際上爲Yes 模型預測爲Yes的個數

Precision for Cat = ———

Precision for Dog = ————

Precision for Mouse = ————

Precision for Whole Model = 每一種類別的精確率加總 類別數

Recall & Precision練習

模型預測結果

Cat

Dog

Cat

Recall for Cat = ————

Recall for Dog = —

Recall for Mouse = ————

Recall for Whole Model = 每一種類別的召回率加總類別數

= _____

Summary

- 面對問題首先釐清是分類/數值預測/時間序列等類型,再決定方法
- 了解數據特徵、確認遺失值狀況,選擇合適方式填補或直接捨去
- 選擇演算法、選擇評估方式,過程中亦可搭配視覺化方式進行探索

