

Conectivos e Inferência

Professor: Mário Benevides

Monitores: Bianca Munaro

Diogo Borges

Jonas Arêas

Renan Iglesias

Vanius Farias

Conectivos

- O que são conectivos?
- São operadores que conectam sentenças como "e", "ou", "se-então" (implica) e "se-e-somente-se".
- Na lógica difusa são utilizados os mesmos conectivos da lógica clássica.

Conectivos

Como são usados?

- Uma sentença modificada pela palavra "não" é dita "negação" da sentença original.
- A palavra "e" é usada para juntar duas sentenças formando uma "conjunção" de duas sentenças.
- Ao conectarmos duas sentenças com a palavra "ou" é dita "disjunção" das duas sentenças.
- A partir de duas sentenças podemos construir a forma "se . . . então . . ." que é dita sentença "condicional"

Conectivos

• Na lógica fuzzy utilizamos a mesma notação da lógica clássica para representar os conectivos:

```
¬ para"não"

^ para"e"

v para"ou"

⇒ para"implica"

⇔ para"se e somente se"
```

Linguagem

 φ :: p | φ 1 ^ φ 2 | φ 1 v φ 2 | φ 1 \rightarrow φ 2 | φ 1 \leftrightarrow φ 2 | $\neg\varphi$

Tabelas Verdade

• Forma de Cayley X Forma Cartesiana

• Tabelas verdade semelhantes as da lógica clássica podem ser construidas na lógica fuzzy.

• Nos exemplos a seguir, utilizaremos os valores {0, 0.5, 1} para as funções de pertinência das variáveis. Estes valores indicam os casos onde x não pertence, talvez pertença e pertence ao conjunto fuzzy, respectivamente.

Disjunção

- A "disjunção" é equivalente à operação de união teórica, ou seja, p v q = p max q, o que induz a função de pertinência $\mu_{(p \vee q)}(x) = \max(\mu_p(x), \mu_q(x))$.
- Tabela verdade da operação "ou": p v q

pq	0	0.5	1
0	0	0.5	1
0.5	0.5	0.5	1
1	1	1	1

Conjunção

- A "conjunção" é equivalente a operação p ^ q = p min q, o que induz a função de pertinência $\mu_{(p \wedge q)}(x) = \max(\mu_p(x), \mu_q(x))$.
- Tabela verdade da operação "e": p ^ q

pq	0	0.5	1
0	0	0	0
0.5	0	0.5	0.5
1	0	0.5	1

Negação

• Assumiremos que a "negação" é definida como o complemento, ou seja, $\neg p = 1 - p$. Isso induz a função de pertinência $\mu_p(x) = 1 - \mu_p(x)$.

Negação

- Tabela verdade da operação "nao-e": \neg (p ^ q) = 1 (p ^ q) à esquerda.
- Tabela verdade da operação "nao-ou": \neg (p v q) = 1 (p v q) à direita.

pq	0	0.5	1
0	1	1	1
0.5	1	0.5	0.5
1	1	0.5	0

pq	0	0.5	1
0	1	0.5	0
0.5	0.5	0.5	0
1	0	0	0

Implicação

- - Diferente das anteriores, a operação de "implicação" possui várias interpretações.
 - Se definirmos o operador na forma usual, ou seja, $p \Rightarrow q \equiv \neg p \vee q$, obteremos uma tabela verdade que é contra-intuitiva onde algumas leis lógicas deixam de ser respeitadas.
 - Uma das interpretações mais aceitas é a "implicação de Gödel", que é mais adequada que a interpretação clássica pois mais relações da lógica clássica são preservadas.

Implicação de Gödel

• A implicação de Gödel pode ser escrita como:

$$p \Rightarrow q \equiv (p \leq q) \vee q$$

• Tabela verdade da operação "implicação de Gödel":

pq	0	0.5	1
0	1	1	1
0.5	0	1	1
1	0	0.5	1

Implicação: equivalência

- A tabela verdade para equivalência (\Leftrightarrow) pode ser determinada a partir da implicação (de Gödel) e conjunção, visto que p \Leftrightarrow q é o mesmo que (p \Rightarrow q) ^ (q \Rightarrow p).
 - Tabela verdade da operação "equivalência":

pq	0	0.5	1
0	1	0	0
0.5	0	1	0.5
1	0	0.5	1

- Interpretação para o operador de "implicação" muito utilizado em controladores fuzzy.
- A implicação de Mamdani é definida por:

$$a \Rightarrow b \equiv a * min b$$

• Onde *min é o "produto externo", correspondendo à aplicação de min a cada elemento do produto cartesiano entre a e b. Na prática, é equivalente à conjunção, ou seja, a min b.

• A operação está ilustrada na tabela a seguir:

Tabela: Produto externo

*****min

b_1	b_2		b_m
-------	-------	--	-------

a₁ a₂ : a_n

$a_1 \wedge b_1$	$a_1 \wedge b_2$	 $a_1 \wedge b_m$
$a_2 \wedge b_1$	$a_2 \wedge b_2$	 $a_2 \wedge b_m$
$a_n \wedge b_1$	$a_n \wedge b_2$	 $a_n \wedge b_m$

- Exemplo do tanque:
- Considere a implicação "se o nível é baixo então abra a válvula V1"
- Para os níveis [0 litros, 25 litros, 50 litros, 75 litros, 100 litros] tem-se "baixo" = [1, 0.75, 0.5, 0.25, 0], respectivamente.
- Para os estados [fechada, meio aberta, aberta], tem-se "abrir" = [0, 0.5, 1], respectivamente.

• Resultado da operação:

Tabela: Exemplo de produto externo: "baixo" ★ min "abrir"

* min

0	0, 5	1
---	------	---

1 0,75 0,5 0,25

0	0, 5	1
0	0, 5	0,75
0	0, 5	0, 5
0	0,25	0, 25
0	0	0

- A tabela nos mostra que, quanto maior é o meu grau de crença de que o nível do tanque está baixo, maior também é minha crença de que a torneira estará aberta.
- E se o nível do tanque está alto?
 - Nada podemos afirmar!!

Outras interpretações para implicação

Nome	Implicação
Mamdani	min(a, b)
Larsen	a * b
Brower - Gödel	1, se a <= b b, caso contrário
Rescher-Gaines	_ 1, se a <= b
"sharp"	0, caso contrário
Zadeh - Wilmott	max(1-a, min(a, b))
Kleene-Diemes	max(1-a, b)
Lukasiewicz	min(1-a+b, 1)

Análise Semântica

limitado.

Análise Semântica

- Exemplo: "modus ponens" $[p \land (p \Rightarrow q)] \Rightarrow q$
- A sentença tem duas variáveis e assumiremos uma discretização tal que a variável possa tomar três valores (0, 0.5, 1).
- Isto implica que teremos 3² = 9 combinações, ilustradas na tabela a seguir.
- Verifica-se que o "modus ponens" é válido para lógica fuzzy, tratando a implicação como sendo de Gödel.
- A validade é limitada ao domínio escolhido, mas pode ser estendida para um caso de maior dimensão.

Análise Semântica

Tabela: Tabela verdade do "modus ponens": $[p \land (p \Rightarrow q)] \Rightarrow q$

р	q	$p \Rightarrow q$	$[p \land (p \Rightarrow q)]$	$[p \land (p \Rightarrow q)] \Rightarrow q$
0	0	1	0	1
0	0,5	1	0	1
0	1	1	0	1
0,5	0	0	0	1
0,5	0,5	1	0,5	1
0,5	1	1	0,5	1
1	0	0	0	1
1	0,5	0,5	0,5	1
1	1	1	1	1

- O exemplo mostra que a lógica fuzzy traz outras soluções e requer mais esforço computacional do que no caso da lógica clássica.
- Pode-se notar que a implicação de Gödel preserva a tautologia.
- Este é o preço que se paga para termos valores-verdade intermediários, que capturem a incerteza.

Inferência

- Para se chegar a conclusões a partir de uma base de regras, é necessário um mecanismo que produza uma saída a partir de uma coleção de regras do tipo "se-então".
- Isto é conhecido como "inferência composicional de regras".
- O verbo "*inferir*" significa concluir a partir de evidências, deduzir ou ter uma consequência lógica.

Inferência

- Para compreendermos melhor o que é inferência, podemos pensar em uma função y = f(x), onde f é uma determinada função, x é a variável independente e y é o resultado da função.
- O valor *y0* é inferido a partir de *x0* com a função f.

• Consideremos novamente o exemplo do Modus Ponens. Podemos escrevê-lo da seguinte forma:

Ou seja, se P então Q é verdade e se P é verdade, então Q é verdade.

Podemos generalizar o Modus Ponens dizendo:

Lembrando que, em Lógica Fuzzy, P' poderá ser ligeiramente diferente de P, utilizando-se modificadores. A seguir daremos um exemplo.

• Exemplo da implicação de Mamdani ("modus ponens generalizado"), vista no exemplo do tanque:

• R = baixo *min abrir

0	0,5	1
0	0,5	0,75
0	0,5	0,5
0	0,25	0, 25
0	0	0

• Um novo vetor de entrada para "nível", sendo:

Nível quase baixo = [0.75, 1, 0.75, 0.5, 0.25] (1)

- Fazendo-se a multiplicação das matrizes "nível" e "R", representada por "v.^", temos o vetor:
- $V1 = nivel \lor . \land R$

$$V1 = [0, 0.5, 0.75]$$
 (2)

0.75	1	0.75	0.5	0.25	v.^	0	0.5	1
					=	0	0.5	0.75
						0	0.5	0.5
						0	0.25	0.25
						0	0	0

0	0.5	0.75
0	0.5	0.75
+	+	+
0	0.5	0.75
+	+	+
0	0.5	0.5
+	+	+
0	0.25	0.25
+	+	+
0	0	0
+	+	
0.25	0	

Controle de nível:

- O A entrada "nível" dada por (1) é um conjunto fuzzy que representa o nível um pouco acima de "baixo".
- O O resultado após realizar inferência é um vetor V1 ligeiramente abaixo de "aberto" conforme mostra (2).
- O Se tentássemos colocar "nível=baixo", esperaríamos obter um vetor V1 com valor "aberto" após realizar a composição com R.