CMSC 207- Lecture 23 CHAPTER 8: Relations (8.5)

Dr. Ahmed Tarek

Antisymmetry

- •We have defined three properties of relations: reflexivity, symmetry, and transitivity. A fourth property of relations is called *antisymmetry*.
- •In terms of the arrow diagram of a relation, saying that a relation is **antisymmetric** is the same as saying that whenever there is an arrow going from one element to another *distinct* element, there is *not* an arrow going back from the second to the first.

Antisymmetry

Definition

Let R be a relation on a set A. R is **antisymmetric** if, and only if,

for all a and b in A, if a R b and b R a then a = b.

• By taking the negation of the definition, a relation R is **not** antisymmetric if, and only if, there are elements a and b in A such that a R b and b R a but $a \neq b$.

Example 2 – Testing for Antisymmetry of "Divides" Relations

•Let R_1 be the "divides" relation on the set of all positive integers, and let R_2 be the "divides" relation on the set of all integers.

For all
$$a, b \in Z^+$$
, $a R_1 b \Leftrightarrow a \mid b$.
For all $a, b \in Z$, $a R_2 b \Leftrightarrow a \mid b$.

- **a.** Is R_1 antisymmetric? Prove or give a counterexample.
- •**b.** Is R_2 antisymmetric? Prove or give a counterexample.

Example 2 – Solution

•a. R_1 is antisymmetric.

•Proof:

Suppose a and b are positive integers such that $a R_1 b$ and $b R_1 a$. [We must show that a = b.] By definition of R_1 , $a \mid b$ and $b \mid a$.

•Thus, by definition of divides, there are integers k_1 and k_2 with $b = k_1 a$ and $a = k_2 b$. It follows that

$$b = k_1 a = k_1 (k_2 b) = (k_1 k_2) b$$
.

Dividing both sides by b gives

$$k_1k_2 = 1$$
.

Example 2 – Solution

- •Now since a and b are both integers k_1 and k_2 are both positive integers also.
- •But the only product of two positive integers that equals 1 is 1 · 1.
- •Thus $k_1 = k_2 = 1$
- •and so $a = k_2 b = 1 \cdot b = b$.

•[This is what was to be shown.]

Example 2 – Solution

- •b. R₂ is not antisymmetric.
 - •Counterexample:
 - •Let a = 2 and b = -2. Then $a \mid b$ [since -2] $= (-1) \cdot 2$] and $b \mid a$ [since 2 = (-1)(-2)].
 - •Hence $a R_2 b$ and $b R_2 a$ but $a \neq b$.

Partial Order Relations

•A relation that is reflexive, antisymmetric, and transitive is called a *partial order relation*.

Definition

Let *R* be a relation defined on a set *A*. *R* is a **partial order relation** if, and only if, *R* is reflexive, antisymmetric, and transitive.

•Two fundamental partial order relations are the "less than or equal to" relation on a set of real numbers and the "subset" relation on a set of sets.

Example 4 – A "Divides" Relation on a Set of Positive Integers

•Let | be the "divides" relation on a set A of positive integers. That is, for all $a, b \in A$,

$$a \mid b \Leftrightarrow b = ka$$
 for some integer k .

•Prove that | is a partial order relation on A.

•Solution:

| is reflexive: [We must show that for all $a \in A$, $a \mid a$.] Suppose $a \in A$. Then $a = 1 \cdot a$, so $a \mid a$ by definition of divisibility.

Example 4 – Solution

- | is antisymmetric: [We must show that for all a, $b \in A$, if $a \mid b$ and $b \mid a$ then a = b.] The proof of this is virtually identical to that of Example 2(a).
- •/ is transitive: To show transitivity means to show that for all a, b, $c \in A$, if $a \mid b$ and $b \mid c$ then $a \mid c$. But this was proved as Theorem 4.3.3.
- •Since | is reflexive, antisymmetric, and transitive, | is a partial order relation on A.

Theorem 4.3.3 Transitivity of Divisibility

For all integers a, b, and c, if a divides b and b divides c, then a divides c.

Partial Order Relations

Notation

Because of the special paradigmatic role played by the \leq relation in the study of partial order relations, the symbol \leq is often used to refer to a general partial order relation, and the notation $x \leq y$ is read "x is less than or equal to y" or "y is greater than or equal to x."

•Let $A = \{1, 2, 3, 9, 18\}$ and consider the "divides" relation on A: For all $a, b \in A$,

$$a \mid b \Leftrightarrow b = ka \text{ for some integer } k.$$

The directed graph of this relation has the

following appearance:

- •There is a loop at every vertex, all other arrows point in the same direction (upward), and any time there is an arrow from one point to a second and from the second point to a third, there is an arrow from the first point to the third.
- •Given any **partial order relation** defined on a finite set, it is possible to draw the directed graph in such a way that all of these properties are satisfied.

- This makes it possible to associate a somewhat simpler graph, called a <u>Hasse diagram</u> with a partial order relation defined on a finite set.
- To obtain a Hasse diagram, proceed as follows:
- Start with a directed graph of the relation, placing vertices on the page so that all arrows point upward. <u>Then eliminate</u>
- •1. the loops at all the vertices,

- •2. all arrows whose existence is implied by the transitive property,
- •3. the direction indicators on the arrows.

•For the relation given previously, the **Hasse** diagram is as follows:

Example 7 – Constructing a Hasse Diagram

•Consider the "subset" relation, \subseteq , on the set \mathscr{D} ($\{a, b, c\}$). That is, for all sets U and V in \mathscr{D} ($\{a, b, c\}$),

$$U \subseteq V \iff \forall x, \text{ if } x \in U \text{ then } x \in V.$$

Construct the Hasse diagram for this relation.

Solution:

•Draw the directed graph of the relation in such a way that all arrows except loops point upward.

Example 7 – Solution

•Then strip away all loops, unnecessary arrows, and direction indicators to obtain the **Hasse** diagram. $\{a, b, c\}$

- •To recover the directed graph of a relation from the **Hasse diagram**, just reverse the instructions given previously, using the knowledge that the original directed graph was sketched so that all arrows pointed upward:
- 1. Reinsert the direction markers on the arrows making all arrows point upward.
- 2.Add loops at each vertex.
- 3. For each sequence of arrows from one point to a second and from that second point to a third, add an arrow from the first point to the third.

In-class Assignment #1

 Consider the "subset" relation on \$\mathscr{P}\$ (S) for the following set S. Draw the **Hesse diagram** for each relation.

• $S = \{0, 1\}$

In-class Assignment #2

• Let $A = \{3, 4, 5, 6, 7, 8, 9\}$ and define a binary relation R_3 on A as follows: For all $x, y \in A$, xRy if and only if $x \mid y$. List the pairs in the relation. Draw a Hasse diagram for the partially ordered set.