Diterima: 07/02/2019 Jurnal Matematika Vol.18 No.1 Mei 2019 Disetujui: 10/05/2019 Publikasi Online: 30/05/2019 http://ejournal.unisba.ac.id

Teknik Penentuan Solusi Sistem Persamaan Diferensial **Linear Non-Homogen Orde Satu**

Technical to Find The System of Linear Non-Homogen Differential Equation of First Order

Ahmad Nurul Hadi*, Eddy Djauhari, Asep K. Supriatna, Muhamad Deni Johansyah Departemen Matematika, FMIPA, Universitas Padjadjaran *ahmadnurulhadi99king@gmail.com

Abstrak. Penentuan solusi sistem persamaan diferensial linear non-homogen orde satu dengan koefisien konstanta, dilakukan dengan mengubah sistem persamaan tersebut menjadi persamaan diferensial linear non homogen tunggal. Dari persamaan diferensial linear non homogen tunggal tersebut kemudian dicari solusi homogennya menggunakan akar-akar karakteristiknya, dan mencari solusi partikularnya dengan metode variasi parameter. Solusi umum dari persamaan diferensial linear tersebut adalah jumlah dari solusi homogen dan solusi partikularnya. Persamaan diferensial linear tunggal tersebut berorde-n, yang solusi umumnya berbentuk x_n . Selanjutnya dicari solusi umum berebentuk x_{n-1} yang berkaitan dengan x_n , solusi umum berbentuk x_{n-2} yang berkaitan dengan x_n dan x_{n-1} , solusi umum berbentuk x_{n-3} yang berkaitan dengan x_n , x_{n-1} , dan x_{n-2} , demikian seterusnya sampai mencari solusi umum berbentuk x_1 yang berkaitan dengan x_n , x_{n-1},x_{n-2} , $x_{n-3},...,x_2$. Kumpulan solusi umum yang berbentuk $x_n,x_{n-1},x_{n-2},...,x_1$ merupakan solusi umum dari sistem persamaan diferensial linear non homogen orde satu tersebut.

Kata kunci: Diferensial, Linear, Non-Homogen, Orde, Satu.

Abstract. Determination of first-order non-homogeneous linear differential equation system solutions with constant coefficients, carried out by changing the system of equations into a single non-homogeneous linear differential equation. From a single non-homogeneous differential equation, a homogeneous solution is then used using its characteristic roots, and looking for a particular solution with the parameter variation method. The general solution of these linear differential equations is the number of homogeneous solutions and their particular solutions. The single linear differential equation is n-order, the solution being in the form of x_n . Then look for a general solution in the form of $x_{(n-1)}$ related to x_n , a general solution in the form of $x_{(n-2)}$ related to x_n and $x_{(n-1)}$, general solutions in the form of $x_{(n-3)}$ related to x_n , $x_{(n-1)}$, and $x_{(n-2)}$, and so on until looking for a general solution in the form of x_1 related to $x_n, x_{(n-1)}, x_{(n-2)}$, $x_{(n-3)}$, ..., x_2 . A collection of general solutions in the form of $x_n, x_{(n-1)}$, $x_{(n-2)}$, ..., x_1 is the general solution of the first-order non-homogeneous linear differential equation system.

Keywords: Linear, Differential, First, Order, Non-Homogeneous

1. Pendahuluan

Banyak permasalahan dalam bidang lain seperti bidang sains, teknik, ekonomi bahkan bidang bisnis yang dapat diformulasikan secara matematis membentuk suatu persamaan diferensial. Persamaan diferensial adalah persamaan yang memuat atau melibatkan turunan (derivative) atau diferensial dari fungsi yang tidak diketahui. Selain permasalahan yang melibatkan persamaan diferensial, banyak pula permasalahan yang melibatkan sistem dari persamaan diferensial. Salah satunya adalah sistem yang melibatkan persamaan diferensial linear orde satu. Ada beragam metode yang bisa digunakan dalam menentukan sistem persamaan diferensial linear, diantaranya adalah metode nilai eigen dan metode operator diferensial.

Dalam karya tulis ini, akan disajikan cara menentukan solusi sistem persamaan diferensial linear non homogen orde satu dengan koefisien konstanta, yaitu dengan mengonstruksi sistem persamaan

tersebut menjadi persamaan diferensial linear tunggal orde-n. Kemudian dari persamaan tersebut akan dicari solusi homogen dengan menggunakan akar-akar karakteristiknya, selanjutnya mencari solusi partikularnya dengan metode variasi parameter. Jumlah dari solusi homogen dan solusi partikularnya adalah solusi umum dari persamaan diferensial linear tunggal orde-n tersebut. Setelah itu akan dicari persamaan lain yang membentuk sistem persamaan diferensial linear orde satu tersebut

2. Metode Penelitian

Pada bagian ini dijelaskan mengenai langkah-langkah dalam menentukan solusi sistem persamaan diferensial linear non homogen orde satu. Berikut langkah-langkahnya:

- Mengonstruksi sistem persamaan diferensial linear non homogen orde satu dengan koefisien konstanta menjadi persamaan diferensial linear tunggal atau persamaan diferensial biasa.
- b. Mencari solusi homogen dari persamaan diferensial tersebut dengan menggunakan akar-akar karakteristiknya.
- c. Mencari solusi partikular dari persamaan diferensial tersebut dengan menggunakan metode variasi parameter.
- d. Menentukan solusi umum dari persamaan diferensial linear tunggal tersebut yaitu menjumlahkan solusi homogen dan solusi partikularnya.
- e. Menentukan solusi dari persamaan-persamaan lain yang membentuk sistem persamaan diferensial linear non homogen tersebut.

3. Hasil dan Pembahasan

Diberikan sistem persamaan diferensial linear non homogen orde satu dengan n persamaan dan n fungsi yang tidak diketahui, sebagai berikut

$$x'_{1} = a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} + f_{1}(t)$$

$$x'_{2} = a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} + \dots + a_{2n}x_{n} + f_{2}(t)$$

$$x'_{3} = a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} + \dots + a_{3n}x_{n} + f_{3}(t)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x'_{n-1} = a_{(n-1)1}x_{1} + a_{(n-1)2}x_{2} + a_{(n-1)3}x_{3} + \dots + a_{(n-1)n}x_{n} + f_{n-1}(t)$$

$$x'_{n} = a_{n1}x_{1} + a_{n2}x_{2} + a_{n3}x_{3} + \dots + a_{nn}x_{n} + f_{n}(t)$$

$$(1)$$

dengan a_{ij} adalah koefisien konstanta atau fungsi konstan untuk i, j = 1, 2, 3, ..., n dan $f_j(t)$ adalah fungsi yang dapat diturunkan, untuk j = 1, 2, 3, ..., n.

Jika solusi pertama yang akan dicari adalah persamaan x'_n , maka persamaan x'_n diturunkan satu kali terhadap t, diperoleh

$$x_n'' = a_{n1}x_1' + a_{n2}x_2' + a_{n3}x_3' + \dots + a_{nn}x_n' + f_n'(t), \tag{2}$$

ISSN: 1412-5056 / 2598-8980

dari (1) diketahui bahwa

$$\begin{aligned}
 x_1' &= a_{11}x_1 &+ a_{12}x_2 &+ a_{13}x_3 &+ \dots + a_{1n}x_n &+ f_1(t) \\
 x_2' &= a_{21}x_1 &+ a_{22}x_2 &+ a_{23}x_3 &+ \dots + a_{2n}x_n &+ f_2(t) \\
 x_3' &= a_{31}x_1 &+ a_{32}x_2 &+ a_{33}x_3 &+ \dots + a_{3n}x_n &+ f_3(t) \\
 &\vdots &\vdots &\vdots &\ddots &\vdots &\vdots \\
 x_{(n-1)}' &= a_{(n-1)1}x_1 + a_{(n-1)2}x_2 + a_{(n-1)3}x_3 + \dots + a_{(n-1)n}x_n + f_{(n-1)}(t).
 \end{aligned}
 \tag{3}$$

Selanjutnya dengan mensubstitusikan persamaan (3) ke persamaan (2) didapat

$$x_{n}^{"} = \sum_{i_{1}=1}^{n-1} a_{ni_{1}} a_{i_{1}1} x_{1} + \sum_{i_{1}=1}^{n-1} a_{ni_{1}} a_{i_{1}2} x_{2} + \sum_{i_{1}=1}^{n-1} a_{ni_{1}} a_{i_{1}3} x_{3} + \dots + \sum_{i_{1}=1}^{n-1} a_{ni_{1}} a_{i_{1}n} x_{n} + \sum_{i_{1}=1}^{n-1} a_{ni_{1}} f_{i_{1}}(t) + a_{nn} x_{n}^{"} + f_{n}^{"}(t).$$

$$(4)$$

Misalkan

$$\begin{split} C_{1_1} &= \sum_{i_1=1}^{n-1} a_{ni_1} \, a_{i_11}, \quad C_{1_2} = \sum_{i_1=1}^{n-1} a_{ni_1} \, a_{i_12}, \quad C_{1_3} = \sum_{i_1=1}^{n-1} a_{ni_1} \, a_{i_13}, \dots, \quad C_{1_n} = \sum_{i_1=1}^{n-1} a_{ni_1} \, a_{i_1n}, \\ f_{1_1}(t) &= \sum_{i_1=1}^{n-1} a_{ni_1} \, f_{i_1}(t) + f'_n(t). \end{split}$$

Sehingga persamaan (4) dituliskan menjadi

$$x_n'' = C_{1_1}x_1 + C_{1_2}x_2 + C_{1_3}x_3 + \dots + C_{1_n}x_n + a_{nn}x_n' + f_{1_1}(t).$$
 (5)

Berdasarkan persamaan (1) dapat diketahui bahwa

$$x_1 = \frac{x_n' - a_{n2}x_2 - a_{n3}x_3 - \dots - a_{nn}x_n - f_n(t)}{a_{n1}},$$
(6)

ISSN: 1412-5056 / 2598-8980

dengan mensubstitusikan persamaan (6) ke persamaan (5) didapat

$$x_{n}^{"} = \left(C_{1_{2}} - \frac{C_{1_{1}}a_{n2}}{a_{n1}}\right)x_{2} + \left(C_{1_{3}} - \frac{C_{1_{1}}a_{n3}}{a_{n1}}\right)x_{3} + \dots + \left(C_{1_{n}} - \frac{C_{1_{1}}a_{nn}}{a_{n1}}\right)x_{n} + \left(a_{nn} + \frac{C_{1_{1}}}{a_{n1}}\right)x_{n}^{"} + f_{1_{1}}(t) - \frac{C_{1_{1}}}{a_{n1}}f_{n}(t).$$

$$(7)$$

Misalkan

$$\begin{split} C_{2_2} &= \left(C_{1_2} - \frac{C_{1_1} a_{n2}}{a_{n1}}\right), \qquad C_{2_3} = \left(C_{1_3} - \frac{C_{1_1} a_{n3}}{a_{n1}}\right), \dots, \qquad C_{2_n} = \left(C_{1_n} - \frac{C_{1_1} a_{nn}}{a_{n1}}\right) \\ C_{k_1} &= \left(a_{nn} + \frac{C_{1_1}}{a_{n1}}\right), \qquad f_{1_2}(t) = f_{1_1}(t) - \frac{C_{1_1}}{a_{n1}} f_n(t) \;. \end{split}$$

Persamaan (7) dituliskan menjadi

$$x_n'' = C_{2_2} x_2 + C_{2_3} x_3 + \dots + C_{2(n-1)} x_{n-1} + C_{2_n} x_n + C_{k_1} x_n' + f_{1_2}(t).$$
 (8)

Persamaan (8) diturunkan satu kali terhadap t, menjadi

$$x_n''' = C_{2_2}x_2' + C_{2_3}x_3' + \dots + C_{2(n-1)}x_{n-1}' + C_{2_n}x_n' + C_{k_1}x_n'' + f_{1_2}'(t).$$
 (9)

Berdasarkan (1) diketahui bahwa

$$x'_{2} = a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} + \dots + a_{2n}x_{n} + f_{2}(t)$$

$$x'_{3} = a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} + \dots + a_{3n}x_{n} + f_{3}(t)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x'_{(n-1)} = a_{(n-1)1}x_{1} + a_{(n-1)2}x_{2} + a_{(n-1)3}x_{3} + \dots + a_{(n-1)n}x_{n} + f_{(n-1)}(t),$$

$$(10)$$

dengan mensubstitusikan persamaan (10) ke (9) didapat

$$x_{n}^{"'} = \sum_{i_{2}=2}^{n-1} C_{2i_{2}} a_{i_{2}1} x_{1} + \sum_{i_{2}=2}^{n-1} C_{2i_{2}} a_{i_{2}2} x_{2} + \sum_{i_{2}=2}^{n-1} C_{2i_{2}} a_{i_{2}3} x_{3} + \dots + \sum_{i_{2}=2}^{n-1} C_{2i_{2}} a_{i_{2}n} x_{n} + C_{2n} x_{n}^{"} + C_{k_{1}} x_{n}^{"} + f_{1_{2}}^{"}(t) + \sum_{i_{2}=2}^{n-1} C_{2i_{2}} f_{i_{2}}(t),$$

$$(11)$$

Misalkan

$$\begin{split} C_{3_1} &= \sum_{i_2=2}^{n-1} C_{2i_2} a_{i_21} \,, \qquad C_{3_2} &= \sum_{i_2=2}^{n-1} C_{2i_2} a_{i_22} \,, \qquad C_{3_3} &= \sum_{i_2=2}^{n-1} C_{2i_2} a_{i_23} \,, \dots \,, \\ C_{3_n} &= \sum_{i_2=2}^{n-1} C_{2i_2} a_{i_2n} \,, \qquad f_{1_3}(t) &= f'_{1_2}(t) + \sum_{i_2=2}^{n-1} C_{2i_2} f_{i_2}(t) \,. \end{split}$$

Persamaan (11) dituliskan menjadi

$$x_n''' = C_{3_1}x_1 + C_{3_2}x_2 + C_{3_3}x_3 + \dots + C_{3_n}x_n + C_{2_n}x_n' + C_{k_1}x_n'' + f_{1_3}(t), \tag{12}$$

dengan mensubstituikan persamaan (6) ke persamaan (12) didapat

$$x_n^{\prime\prime\prime} = \left(C_{3_2} - \frac{C_{3_1}a_{n2}}{a_{n1}}\right)x_2 + \left(C_{3_3} - \frac{C_{3_1}a_{n3}}{a_{n1}}\right)x_3 + \dots + \left(C_{3_n} - \frac{C_{3_1}a_{nn}}{a_{n1}}\right)x_n + \left(C_{2_n} + \frac{C_{3_1}}{a_{n1}}\right)x_n^{\prime} + C_{k_1}x_n^{\prime\prime} + f_{1_3}(t) - \frac{C_{3_1}}{a_{n1}}f_n(t).$$

$$(13)$$

Misalkan

$$C_{4_{2}} = \left(C_{3_{2}} - \frac{C_{3_{1}}a_{n2}}{a_{n1}}\right), \qquad C_{4_{3}} = \left(C_{3_{3}} - \frac{C_{3_{1}}a_{n3}}{a_{n1}}\right), \dots, \qquad C_{4_{n}} = \left(C_{3_{n}} - \frac{C_{3_{1}}a_{nn}}{a_{n1}}\right),$$

$$C_{k_{2}} = \left(C_{2_{n}} + \frac{C_{3_{1}}}{a_{n1}}\right), \qquad f_{1_{4}}(t) = f_{1_{3}}(t) - \frac{C_{3_{1}}a_{n1}}{a_{n1}}f_{n}(t).$$

Persamaan (13) dituliskan menjadi

$$x_n''' = C_{4_2}x_2 + C_{4_2}x_3 + \dots + C_{4_n}x_n + C_{k_2}x_n' + C_{k_1}x_n'' + f_{1_4}(t). \tag{14}$$

Berdasarkan persamaan (8) dapat diketahui bahwa

$$x_2 = \frac{x_n'' - C_{2_3} x_3 - \dots - C_{2_n} x_n - C_{k_1} x_n' - f_{1_2}(t)}{C_{2_2}},$$
(15)

dengan mensubsitusikan persamaan (15) ke persamaan (14) didapat

$$x_{n}^{\prime\prime\prime} = \left(C_{4_{3}} - \frac{C_{4_{2}}C_{2_{3}}}{C_{2_{2}}}\right)x_{3} + \left(C_{4_{4}} - \frac{C_{4_{2}}C_{2_{4}}}{C_{2_{2}}}\right)x_{4} + \dots + \left(C_{4_{n}} - \frac{C_{4_{2}}C_{2_{n}}}{C_{2_{2}}}\right)x_{n} + \left(C_{k_{2}} - \frac{C_{4_{2}}C_{k_{1}}}{C_{2_{2}}}\right)x_{n}^{\prime\prime} + \left(C_{k_{1}} + \frac{C_{4_{2}}}{C_{2_{2}}}\right)x_{n}^{\prime\prime\prime} + f_{1_{4}}(t) - \frac{C_{4_{2}}}{C_{2_{2}}}f_{1_{2}}(t).$$

$$(16)$$

Misalkan

$$C_{5_3} = \left(C_{4_3} - \frac{C_{4_2}C_{2_3}}{C_{2_2}}\right), \qquad C_{5_4} = \left(C_{4_4} - \frac{C_{4_2}C_{2_4}}{C_{2_2}}\right), \dots, \qquad C_{5_n} = \left(C_{4_n} - \frac{C_{4_2}C_{2_n}}{C_{2_2}}\right),$$

$$C_{k_3} = \left(C_{k_2} - \frac{C_{4_2}C_{k_1}}{C_{2_2}}\right), \qquad C_{k_4} = \left(C_{k_1} + \frac{C_{4_2}}{C_{2_2}}\right), \qquad f_{1_5}(t) = f_{1_4}(t) - \frac{C_{4_2}}{C_{2_2}}f_{1_2}(t),$$

sehingga persamaan (16) dituliskan menjadi

$$x_n^{\prime\prime\prime} = C_{5_3}x_3 + C_{5_4}x_4 + \dots + C_{5(n-1)}x_{n-1} + C_{5_n}x_n + C_{k_3}x_n^{\prime} + C_{k_4}x_n^{\prime\prime} + f_{1_5}(t). \tag{17}$$

Jika persamaan x_n''' diturunkan satu kali lagi terhadap t, maka akan diperoleh persamaan $x_n^{(4)}$, nilai-nilai yang dapat disubstitusikan ke persamaan $x_n^{(4)}$ adalah $x_3', x_4', x_5', \dots x_{n-1}'$ dan x_1, x_2, x_3 . Jika penurunan dari persamaan x_n' terhadap t dilakukan hingga (n-1) kali, maka akan diperoleh persamaan $x_n^{(n)}$, nilai-nilai yang dapat disubstitusikan ke persamaan $x_n^{(n)}$ adalah x_{n-1}' dan $x_1, x_2, x_3, \dots, x_{n-2}$. Sehingga persamaan $x_n^{(n)}$ dapat dituliskan dalam bentuk persamaan diferensial linear tunggal oerde-n, yaitu:

$$x_n^{(n)} = C_{j_i} x_n + C_{k_{p_1}} x_n' + C_{k_{p_2}} x_n'' + C_{k_{p_2}} x_n''' + \dots + C_{k_{p_{n-1}}} x_n^{(n-1)} + f_{1_q}(t)$$
(18)

ISSN: 1412-5056 / 2598-8980

dengan C_{j_i} , $C_{k_{p_1}}$, $C_{k_{p_2}}$, $C_{k_{p_3}}$, ..., $C_{k_{p_n}}$ adalah konstanta dan $f_{1_q}(t)$ adalah fungsi. Bentuk persamaan (18) dapat dituliskan menjadi

$$x_n^{(n)} - C_{k_{p_{n-1}}} x_n^{(n-1)} - \dots - C_{k_{p_2}} x_n^{(n')} - C_{k_{p_2}} x_n^{(n')} - C_{k_{p_1}} x_n^{(n)} - C_{j_i} x_n = f_{1_q}(t).$$

$$(19)$$

Akan dicari solusi homogen untuk persamaan (19), persamaan (19) dituliskan menjadi

$$x_n^{(n)} - C_{k_{p_{n-1}}} x_n^{(n-1)} - \dots - C_{k_{p_3}} x_n^{\prime\prime\prime} - C_{k_{p_2}} x_n^{\prime\prime} - C_{k_{p_1}} x_n^{\prime} - C_{j_i} x_n = 0$$
 (20)

Solusi dari bentuk persamaan diferensial tersebut yaitu:

Misalkan
$$x_n = e^{\lambda t}$$
, $x_n' = \lambda e^{\lambda t}$, $x_n'' = \lambda^2 e^{\lambda t}$, $x_n''' = \lambda^3 e^{\lambda t}$, ..., $x_n^{(n)} = \lambda^n e^{\lambda t}$.

Kemudian dengan mensubstitusikan pemisalan di atas ke dalam persamaan (20) diperoleh

$$\begin{split} \lambda^n e^{\lambda t} - C_{k_{p_{n-1}}} \lambda^{n-1} e^{\lambda t} - \dots - C_{k_{p_3}} \lambda^3 e^{\lambda t} - C_{k_{p_2}} \lambda^2 e^{\lambda t} - C_{k_{p_1}} \lambda e^{\lambda t} - C_{j_i} e^{\lambda t} &= 0 \\ e^{\lambda t} \left(\lambda^n - C_{k_{p_{n-1}}} \lambda^{n-1} - \dots - C_{k_{p_3}} \lambda^3 - C_{k_{p_2}} \lambda^2 - C_{k_{p_1}} \lambda - C_{j_i} \right) &= 0 \end{split}$$

Nilai dari $e^{\lambda t}$ tidak mungkin sama dengan nol, berarti

$$\lambda^n - C_{k_{p_{n-1}}} \lambda^{n-1} - \dots - C_{k_{p_3}} \lambda^3 - C_{k_{p_2}} \lambda^2 - C_{k_{p_1}} \lambda - C_{j_i} = 0.$$

Cara menentukan solusi persamaan diferensial di atas yaitu :

1. Jika akar-akar karakteristik yang diperoleh real dan berbeda $(\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \cdots \neq \lambda_n)$, maka solusi dari (20) adalah

$$x_n h(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + c_3 e^{\lambda_3 t} + \dots + c_n e^{\lambda_n t}.$$

2. Jika akar-akar karakteristik yang diperoleh real dan sama $(\lambda_1 = \lambda_2 = \lambda_3 = \dots = \lambda_n)$, maka solusi dari (20) adalah

$$x_n h(t) = (c_1 + c_2 t + c_3 t^2 + \dots + c_n t^{n-1}) e^{\lambda t}.$$

3. Jika akar-akar karakteristik yang diperoleh kompleks sekawan tidak berulang $(\lambda_{ij} = \alpha \pm \beta)$ maka solusi dari (20) yang memuat akar kompleks sekawan adalah

$$x_n h(t) = c_1 e^{\alpha t} \cos \beta t + c_2 e^{\alpha t} \sin \beta t.$$

4. Jika akar-akar yang diperoleh kompleks sekawan berulang ($\lambda_{12} = \lambda_{34} = \alpha \pm \beta$) maka solusi dari (20) yang memuat akar kompleks sekawan berulang adalah

$$x_n h(t) = c_1 e^{\alpha t} \cos \beta t + c_2 e^{\alpha t} \sin \beta t + c_3 t e^{\alpha t} \cos \beta t + c_4 t e^{\alpha t} \sin \beta t.$$

Selanjutnya akan dicari solusi partikular untuk persamaan (19). Misal solusi homogen untuk persamaan (19) adalah

$$x_n h(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + c_3 e^{\lambda_3 t} + \dots + c_n e^{\lambda_n t}$$

$$x_n h(t) = c_1 x_{n1} + c_2 x_{n2} + c_3 x_{n3} + \dots + c_n x_{nn}.$$

Menurut metode variasi parameter, penyelesaian partikular $x_n p(t)$ diberikan

$$x_n p(t) = u_1(t) x_{n1}(t) + u_2(t) x_{n2}(t) + u_3(t) x_{n3}(t) + \dots + u_n(t) x_{nn}(t)$$

dalam hal ini $u_1(t), u_2(t), u_3(t), ..., u_n(t)$ harus ditentukan sehingga dapat memenuhi persamaan (19), yang diperoleh dari

$$\begin{bmatrix} x_{n1} & x_{n2} & x_{n3} & \cdots & x_{nn} \\ x'_{n1} & x'_{n2} & x'_{n3} & \cdots & x'_{nn} \\ x''_{n1} & x''_{n2} & x''_{n3} & \cdots & x''_{nn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n1}^{(n-1)} & x_{n2}^{(n-1)} & x_{n3}^{(n-1)} & \cdots & x_{nn}^{(n-1)} \end{bmatrix} \begin{bmatrix} u'_1 \\ u'_2 \\ u'_3 \\ \vdots \\ u'_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ f_{1q}(t) \end{bmatrix}$$

karena $x_{n1}, x_{n2}, x_{n3}, \dots, x_{nn}$ adalah solusi bebas linear untuk persamaan $x_n^{(n)} - C_{k_{p_{n-1}}} x_n^{(n-1)} - \dots - C_{k_{p_3}} x_n''' - C_{k_{p_2}} x_n'' - C_{k_{p_1}} x_n' - C_{j_i} x_n = 0$, maka Wronskian-nya adalah tak nol. Bentuk Wronskian-nya dapat ditulis sebagai

$$W(t) = W(x_1, x_2, x_3, ..., x_n) = \begin{vmatrix} x_{n1} & x_{n2} & x_{n3} & \cdots & x_{nn} \\ x'_{n1} & x'_{n2} & x'_{n3} & \cdots & x'_{nn} \\ x''_{n1} & x''_{n2} & x''_{n3} & \cdots & x''_{nn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n1}^{(n-1)} & x_{n2}^{(n-1)} & x_{n3}^{(n-1)} & \cdots & x_{nn}^{(n-1)} \end{vmatrix}$$

Sehingga dapat ditentukan solusi untuk u_1' , u_2' , u_3' , ..., u_n' , dengan menggunakan metode Cramer yaitu

$$u_m'(t) = \frac{f_{1_q}(t)W_m(t)}{W(t)}$$

dengan m = 1, 2, 3, ... n dan $W_m(t)$ adalah determinan yang diperoleh dengan mengganti kolom ke-m dari W(t) dengan (0, 0, 0, ..., 1). Sehingga

$$u_m(t) = \int \frac{f_{1q}(t)W_m(t)}{W(t)}dt$$

karena $x_n p(t) = u_1(t) x_{n1}(t) + u_2(t) x_{n2}(t) + u_3(t) x_{n3}(t) + \dots + u_n(t) x_{nn}(t)$ maka

$$x_n p(t) = \sum_{m=1}^n u_m(t) \cdot x_{nm}(t).$$

Sehingga solusi umum dari persamaan (19) adalah

$$x_n(t) = x_n h(t) + x_n p(t)$$

$$x_n(t) = c_1 x_{n1} + c_2 x_{n2} + c_3 x_{n3} + \dots + c_n x_{nn} + \sum_{m=1}^{n} u_m(t) \cdot x_{nm}(t).$$

Selanjutnya adalah menentukan solusi untuk $x_1, x_2, x_3, ..., x_{n-1}$. Misal yang akan dicari adalah solusi untuk x_2 , maka yang perlu dilakukan adalah melakukan operasi terhadap persamaan (15), untuk

mencari solusi x_1 maka harus dilakukan operasi terhadap persamaan (6). Begitupun untuk mencari solusi yang lainnya.

Contoh 3.1

Diberikan sistem persamaan diferensial sebagai berikut

$$x'_{1}(t) = \frac{1}{10^{3}}x_{3}(t) - \frac{1}{10^{3}}x_{1}(t) + \frac{125}{10^{3}}$$

$$x'_{2}(t) = \frac{1}{10^{3}}x_{1}(t) - \frac{1}{10^{3}}x_{2}(t) + \frac{125}{10^{4}}$$

$$x'_{3}(t) = \frac{1}{10^{3}}x_{2}(t) - \frac{1}{10^{3}}x_{3}(t) - \frac{125}{10^{4}}.$$
(21)

Sistem persamaan di atas dibagi menjadi tiga persamaan yaitu

$$x_1' = \frac{1}{10^3} x_3 - \frac{1}{10^3} x_1 + \frac{125}{10^3},\tag{22}$$

$$x_2' = \frac{1}{103}x_1 - \frac{1}{103}x_2 + \frac{125}{104},\tag{23}$$

$$x_{2}' = \frac{1}{10^{3}}x_{1} - \frac{1}{10^{3}}x_{2} + \frac{125}{10^{4}},$$

$$x_{3}' = \frac{1}{10^{3}}x_{2} - \frac{1}{10^{3}}x_{3} - \frac{125}{10^{4}}.$$
(23)

Jika solusi pertama yang akan dicari adalah persamaan (24), maka persamaan (24) diturunkan satu kali terhadap t, diperoleh

$$x_3^{"} = \frac{1}{10^3} x_2^{\prime} - \frac{1}{10^3} x_3^{\prime}. \tag{25}$$

Selanjutnya dengan mengikuti langkah-langkah yang dimulai dari persamaan (3) sampai persamaan (18) akan diperoleh

$$x_3^{\prime\prime\prime} + \frac{3}{10^3} x_3^{\prime\prime} + \frac{3}{10^6} x_3^{\prime} = \frac{125}{10^9}.$$
 (26)

Selanjutnya dicari solusi homogen untuk persamaan (26), dengan persamaan karakteristik persamaan (26) dinyatakan sebagai

$$\lambda^3 + \frac{3}{10^3}\lambda^2 + \frac{3}{10^6}\lambda = 0. \tag{27}$$

ISSN: 1412-5056 / 2598-8980

Dengan memfaktorkan persamaan (27) didapat akar-akar karakteristiknya yaitu

$$\lambda = 0, \lambda = \frac{-3 + \sqrt{3}i}{2000}, \lambda = \frac{-3 - \sqrt{3}i}{2000}.$$

Sehingga solusi homogen untuk persamaan (26) adalah

$$x_3 h(t) = C_1 + C_2 e^{-\frac{3}{2000}t} \sin \frac{\sqrt{3}}{2000} t + C_3 e^{-\frac{3}{2000}t} \cos \frac{\sqrt{3}}{2000} t.$$
 (28)

Selanjutnya akan dicari solusi partikular untuk persamaan (26) dengan metode variasi parameter, dari persamaan (28) diperoleh

$$x_{31} = 1$$
, $x_{32} = e^{-\frac{3}{2000}t} \sin{\frac{\sqrt{3}}{2000}t}$, $x_{33} = e^{-\frac{3}{2000}t} \cos{\frac{\sqrt{3}}{2000}t}$

sehingga Wronskiannya adalah

$$W(t) = \begin{vmatrix} x_{31} & x_{32} & x_{33} \\ x'_{31} & x'_{32} & x'_{33} \\ x''_{31} & x''_{32} & x''_{33} \end{vmatrix}$$

$$W(t) =$$

$$\begin{vmatrix} 1 & e^{-\frac{3}{2000}t}\sin\frac{\sqrt{3}}{2000}t & e^{-\frac{3}{2000}t}\cos\frac{\sqrt{3}}{2000}t \\ 0 & -\frac{3}{2000}e^{-\frac{3}{2000}t}\sin\frac{\sqrt{3}}{2000}t + \frac{\sqrt{3}}{2000}e^{-\frac{3}{2000}t}\cos\frac{\sqrt{3}}{2000}t & -\frac{3}{2000}e^{-\frac{3}{2000}t}\cos\frac{\sqrt{3}}{2000}t - \frac{\sqrt{3}}{2000}e^{-\frac{3}{2000}t}\sin\frac{\sqrt{3}}{2000}t \\ 0 & \frac{3}{2\cdot10^6}e^{-\frac{3}{2000}t}\sin\frac{\sqrt{3}}{2000}t - \frac{3\sqrt{3}}{2\cdot10^6}e^{-\frac{3}{2000}t}\cos\frac{\sqrt{3}}{2000}t & \frac{3}{2\cdot10^6}e^{-\frac{3}{2000}t}\cos\frac{\sqrt{3}}{2000}t + \frac{3\sqrt{3}}{2\cdot10^6}e^{-\frac{3}{2000}t}\sin\frac{\sqrt{3}}{2000}t \end{vmatrix}$$

$$W(t) = -\frac{3\sqrt{3}}{2\cdot10^9}e^{-\frac{6}{2000}t},$$

selanjutnya dicari nilai-nilai $W_1(t)$, $W_2(t)$, dan $W_3(t)$

$$W_1(t) = \begin{vmatrix} 0 & x_{32} & x_{33} \\ 0 & x'_{32} & x'_{33} \\ 1 & x''_{32} & x''_{33} \end{vmatrix}$$

$$W_1(t) =$$

$$\begin{vmatrix} 0 & e^{-\frac{3}{2000}t} \sin \frac{\sqrt{3}}{2000}t \\ 0 & -\frac{3}{2000}e^{-\frac{3}{2000}t} \sin \frac{\sqrt{3}}{2000}t + \frac{\sqrt{3}}{2000}e^{-\frac{3}{2000}t} \cos \frac{\sqrt{3}}{2000}t \\ 1 & \frac{3}{2\cdot 10^6}e^{-\frac{3}{200}t} \sin \frac{\sqrt{3}}{2000}t - \frac{3\sqrt{3}}{2\cdot 10^6}e^{-\frac{3}{2000}t} \cos \frac{\sqrt{3}}{2000}t - \frac{3\sqrt{3}}{2\cdot 10^6}e^{-\frac{3}{2000}t} \cos \frac{\sqrt{3}}{2000}t + \frac{3\sqrt{3}}{2\cdot 10^6}e^{-\frac{3}{2000}t} \sin \frac{\sqrt{3}}{2000}t \end{vmatrix}$$

$$W_1(t) = -\frac{\sqrt{3}}{2000}e^{-\frac{6}{2000}t}$$

$$W_2(t) = \begin{vmatrix} x_{31} & 0 & x_{33} \\ x_{31}' & 0 & x_{33}' \\ x_{10}'' & 1 & x_{10}'' \end{vmatrix}$$

$$W_2(t) = \begin{vmatrix} 1 & 0 & e^{-\frac{3}{2000}} \cos \frac{\sqrt{3}}{2000} t \\ 0 & 0 & -\frac{3}{2000} e^{-\frac{3}{2000}} \cos \frac{\sqrt{3}}{2000} t - \frac{\sqrt{3}}{2000} e^{-\frac{3}{2000}} \sin \frac{\sqrt{3}}{2000} t \\ 0 & 1 & \frac{3}{2 \cdot 10^6} e^{-\frac{3}{2000}} \cos \frac{\sqrt{3}}{2000} t + \frac{\sqrt{3}}{2 \cdot 10^6} e^{-\frac{3}{2000}} \sin \frac{\sqrt{3}}{2000} t \end{vmatrix}$$

$$W_2(t) = \frac{3}{2000} e^{-\frac{3}{2000}} \cos \frac{\sqrt{3}}{2000} t + \frac{\sqrt{3}}{2000} e^{-\frac{3}{2000}} \sin \frac{\sqrt{3}}{2000} t + \frac{\sqrt{3}}{2000} e^{-\frac{3}{2000}} \sin \frac{\sqrt{3}}{2000} t + \frac{\sqrt{3}}{2000} e^{-\frac{3}{2000}} \sin \frac{\sqrt{3}}{2000} t + \frac{\sqrt{3}}{2000} e^{-\frac{3}{2000}} \cos \frac{\sqrt{3}}{2000} t + \frac{125}{2000} e^{-\frac{3}{2000}} \cos$$

$$+ \frac{250 \cdot 500}{2000\sqrt{3}} \sin \frac{\sqrt{3}}{2000} t \cos \frac{\sqrt{3}}{2000} t - 2 \left(\frac{250 \cdot 500}{2000 \cdot 3} \right) \cos^2 \frac{\sqrt{3}}{2000} t$$
$$x_3 p(t) = \frac{1}{24} t - \frac{125}{3}.$$

Sehingga solusi umum untuk persamaan (4.a.16) adalah

$$x_3 = x_3 h(t) + x_3 p(t)$$

$$x_3 = C_1 + C_2 e^{-\frac{3}{2000}t} \sin \frac{\sqrt{3}}{2000} t + C_3 e^{-\frac{3}{2000}t} \cos \frac{\sqrt{3}}{2000} t + \frac{1}{24} t - \frac{125}{3}.$$
(29)

Solusi untuk x_2 adalah

$$x_{2} = C_{1} - \frac{1}{2}C_{2}e^{-\frac{3}{2000}t}\sin\frac{\sqrt{3}}{2000}t + \frac{\sqrt{3}}{2}C_{2}e^{-\frac{3}{2000}t}\cos\frac{\sqrt{3}}{2000}t - \frac{1}{2}C_{3}e^{-\frac{3}{2000}t}\cos\frac{\sqrt{3}}{2000}t - \frac{\sqrt{3}}{2}C_{3}e^{-\frac{3}{2000}t}\cos\frac{\sqrt{3}}{2000}t + \frac{1}{24}t + \frac{125}{10}.$$
(30)

Solusi untuk x_1 adalah

$$x_{1} = C_{1} - \frac{1}{2}C_{2}e^{-\frac{3}{2000}t}\sin\frac{\sqrt{3}}{2000}t - \frac{\sqrt{3}}{2}C_{2}e^{-\frac{3}{2000}t}\cos\frac{\sqrt{3}}{2000}t - \frac{1}{2}C_{3}e^{-\frac{3}{2000}t}\cos\frac{\sqrt{3}}{2000}t + \frac{\sqrt{3}}{2}C_{3}e^{-\frac{3}{2000}t}\cos\frac{\sqrt{3}}{2000}t + \frac{1}{24}t + \frac{125}{3}.$$
(31)

ISSN: 1412-5056 / 2598-8980

Jadi solusi umum dari sistem persamaan diferensial di atas adalah

$$\begin{split} x_1 &= C_1 - \frac{1}{2}C_2 e^{-\frac{3}{2000}t} \sin\frac{\sqrt{3}}{2000}t - \frac{\sqrt{3}}{2}C_2 \, e^{-\frac{3}{2000}t} \cos\frac{\sqrt{3}}{2000}t \\ &- \frac{1}{2}C_3 e^{-\frac{3}{2000}t} \cos\frac{\sqrt{3}}{2000}t + \frac{\sqrt{3}}{2}C_3 e^{-\frac{3}{2000}t} \cos\frac{\sqrt{3}}{2000}t + \frac{1}{24}t + \frac{125}{3}, \\ x_2 &= C_1 - \frac{1}{2}C_2 e^{-\frac{3}{2000}t} \sin\frac{\sqrt{3}}{2000}t + \frac{\sqrt{3}}{2}C_2 \, e^{-\frac{3}{2000}t} \cos\frac{\sqrt{3}}{2000}t \\ &- \frac{1}{2}C_3 e^{-\frac{3}{2000}t} \cos\frac{\sqrt{3}}{2000}t - \frac{\sqrt{3}}{2}C_3 e^{-\frac{3}{2000}t} \cos\frac{\sqrt{3}}{2000}t + \frac{1}{24}t + \frac{125}{10}, \\ x_3 &= C_1 + C_2 e^{-\frac{3}{2000}t} \sin\frac{\sqrt{3}}{2000}t + C_3 e^{-\frac{3}{2000}t} \cos\frac{\sqrt{3}}{2000}t + \frac{1}{24}t - \frac{125}{3}. \end{split}$$

Solusi yang diperoleh di atas sudah diperiksa kembali.

4. Kesimpulan

Salah satu teknik yang dapat digunakan dalam menentukan solusi sistem persamaan diferensial linear non homogen orde satu dengan koefisien konstanta adalah dengan mengonstruksinya menjadi persamaan diferensial linear tunggal setelah itu dicari solusi homogen dari persamaan diferensial linear tunggal tersebut dan dicari juga solusi partikularnya dengan metode variasi parameter. Setelah itu menentukan solusi umum dari persamaan diferensial linear tunggal tersebut. Kemudian menentukan solusi dari persamaan-persamaan lain yang membentuk sistem persamaan diferensial tersebut.

Referensi

- [1] Finizio, N dan G. Ladas. 1988. *Persamaan Diferensial Biasa dengan Penerapan Modern*. Terjemahan oleh Dra. W. Santoso. Jakarta: Erlangga.
- [2] Goode, S. W. 1991. *An Introductional to Differential Equations and Linear Algebra*. New York: Prentice-Hall International, Inc.
- [3] Jwamer, K. H. F and Rashid, A. M. 2012. New Technique For Solving System of First Order Linear Differential Equations. *Journal Applied Mathematical Sciences*, 64: 3177-3183.
- [4] Waluya, B. 2006. Buku Ajar Persamaan Diferensial. Semarang: Universitas Negeri Semarang.
- [5] MD Johansyah, J Nahar, FH Badruzzaman. 2017. Analisis Turunan dan Integral Fraksional Fungsi Pangkat Tiga dan Fungsi Eksponensial. *Jurnal Matematika* 16 (2).