Metis Intro to Data Science Fall 2018

Decision Trees and Ensembling

Decision Trees

- Goal: Segmenting the predictor space into a number of simple regions
- Benefits: Easily Interpretable
- Drawbacks: Variance and accuracy
- Regression trees
 - Response is continuous
 - Use the mean of the region as the predictive value
- Classification trees
 - Response is discrete (classes)
 - Use the mode of the region as the predictive value

Use the Hitters data from the ISLR library for a simple example

```
data("Hitters")
# Remove incomplete cases
Hitters <- na.omit(Hitters)
kable(head(Hitters,3))</pre>
```

	AtBat	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun
-Alan Ashby	315	81	7	24	38	39	14	3449	835	69
-Alvin Davis	479	130	18	66	72	76	3	1624	457	63
-Andre	496	141	20	65	78	37	11	5628	1575	225

Decision Trees

- From ISLR: hitters data set
- Interpretable anatomy

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

Decision Trees – Choosing regions

- Divide the predictor space into J distinct and non overlapping regions
- For every observation that falls into R_j we make the same prediction. The mean of the response values from the training set

Decision Trees – Choosing regions

- Recursive Binary Splitting greedy approach
- Start from the top of the tree where all the observations are in one single region
- Greedy because only the best split is made at that particular step, rather than looking ahead and picking a split that will lead to a better tree in some future step

Decision Trees – Choosing regions

- Successively split the predictor space
- Each split will be indicated by 2 new branches down the tree

 $R_1(j,s) = \{X | X_j < s\}$ and $R_2(j,s) = \{X | X_j \ge s\}$, seek the value of j and s that minimize the equation

$$\sum_{i: x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2,$$

Decision Trees – Choosing regions

- Repeat the process looking for the best predictor and best cut point
- Minimize the Regional Sum of Squares

 $R_1(j,s) = \{X | X_j < s\}$ and $R_2(j,s) = \{X | X_j \ge s\}$, seek the value of j and s that minimize the equation

$$\sum_{i: x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2,$$

Decision Trees – Choosing regions

- Process continues until it reaches a stopping criterion
 - Example: Limit the number of observations in a node to 5
- We can now predict a new test observation by returning the mean of the training observations in the given region

Decision Trees – Pruning

- Full tree may over fit the training dataset, leading to poor prediction on test.
- Pruning will lower the variance and increase the bias
- Consider sub-trees and look for the one with the lowest test error using cross validation

Decision Trees – Pruning

- For each additional node (sub tree)
 - Run cross validation
 - Return the error
 - Select the tree with the lowest error

```
CP nsplit rel error xerror
## 1 0.246750
                       1.00000 1.00686 0.13924
## 2 0.189906
                       0.75325 0.80766 0.12971
                      0.56334 0.63206 0.10662
## 3 0.020522
## 4 0.014281
                       0.54282 0.67086 0.10992
                       0.52854 0.70686 0.11418
## 5 0.011625
## 6 0.010870
                       0.51692 0.71573 0.11457
## 7 0.010267
                       0.48430 0.71287 0.11489
                      0.46377 0.71403 0.11488
## 8 0.010000
```

size of tree

Decision Trees – Pruning

Pruned tree

size of tree

0.017

0.013

0.011

0.011

0.01

Inf

0.22

0.062

Decision Trees – Classification

- Used to predict a qualitative response vs a quantitative response
- Using the mode of the region's observations instead of the mean
- Also interested in the class proportions of observations per region

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

Decision Trees – Classification

- Process is the same as regression trees, except splitting criterion
- Gini Index measure of node purity how often an element is labeled correctly
 - P_{mk} represents the proportion of observations in the mth region from the kth class
 - Small value indicates that a node predominantly contains observations from a single class
- Cross Entropy alternative measure of purity

Decision Trees – Classification

- Fully grown Classification Tree
- Nodes show
 - Proportion of classes
 - Mode/prediction of node

Trees vs Linear Model
Depends on how the
separation of the data
is composed

- Top row: Linear classifier provides a better fit than trees for a linear space
- Bottom row: Trees provide a better fit for non linear space

Ensembling – Improving Trees

- Biggest problem with building a decision tree is high variance.
- Solution is ensembling
- We can use multiple trees to get more accurate predictions and lower the variance

Ensemble 1 – Bagging Bootstrap Aggregation

• Step 1

- bootstrap the data & create data set 1
- build dec tree 1

• Step 2

- bootstrap the data & create data set 2
- build dec tree 2
- Step n
 - bootstrap the data & create data set n
 - build dec tree n

Final Step

- Aggregate predictions
- Regression mean
- Classification mode

Sample Population 1

Sample Population 2

Sample Population n

Aggregate predictions

Ensemble 1 – Bagging
Bootstrap
Aggregation

- OOB Out of Bag observations
- Bootstrap method uses 2/3 of the data, 1/3 is for the test set

Ensemble Interpretation Feature Importance

- Interpretation of the features is lost because we have many trees
- Different trees and different features combine to give the aggregated prediction
- Remove one feature and measure how much error changes
- Importance is relative to the most important predictor

Ensemble 2 – Random Forest

- Random Forest is very similar to Bagging
- Difference is in how we make our splits (which features we consider)
- Every time we make a split, we take a random sample of subset of N features
- Regression subset: $^{N}/_{3}$
- Classification subset: \sqrt{N}

Ensemble 3 – Gradient Boosted Trees

- Difference is trees sequential and dependent
- Residual output of the first tree is the input to the next tree
- Typically use short trees (stumps)
- Slow learner progresses to become powerful
- Learning rate parameter
 - $\lambda = 0.01 \ or \ 0.001$
- Regression or Classification tasks

Questions?

Acknowledgments

Material for this class was taken from

 James, <u>Introduction to Statistical</u> <u>Learning</u>