

FTA – SOLUTIONS TO EXAMPLES

Dr. RICHARD DAWSON

Example for finding minimal cutsets

So in this case:		So in this case:	
11,12	Replace I1	D,E,F	We could go down the list
I3,I2 A,I2 B,I2 C,I2	Replace I2	D,E,H D,E,C A,F A,H A,C B,F	determining if we have a minimal cutset but in this simple case we can see that, if C occurs we need no other failure to give the top event so any cutset combined with C is
13,F		B,H	not a minimal cutset.
13,H 13,C		B,C C,F	Hence minimal cutsets:
A,F A,H		C,H C,C	D,E,F
A,C		0,0	D,E,H
B,F			A,F
B,H			A,H
B,C			B,F
C,F			B,H C
C,H			
C,C	Replace I3		

Jabiru 5100 air cooled flat 8

Toilet problem

Mission time example

CUT SETS

In this case all consists are minimal.

(1) Probability of failure (rarecent approximation) is somety minimal cutsels.

```
Extractly frequencys on an annual basis. [Assury non-reparable failures]
A (system on): 0.5
D (o'ring): 1-8×10-4 × 1000 = 1-8×10-1
E (Fuel plate): 3.5 × 10-5 × 500 = 1.75×10-2
B (seriou ourpoussur):
  Our data tells us a frequency of 0.000DI/month
  Our mission time is 12 months hence very our exponetal
   reliability model (non-repairable)
             QB= 1-e-xt where & is our failure rate and t is our mission fine.
             Q = 1 - e - 12 x 0.00001
             Q = 1.199 ×10-4
C (Moderate overpressure):
    Same applies as for B:
             Qc = 1-e-12 × 0.001
              Qc = 1.193×10-3
```

Hence probability of top exact is approximately. (in the year) $A \times C \times D + A \times C \times E + A \times B$ $0.5 \times 1.193 \times 10^{-3} \times 1.8 \times 10^{-1} + 0.5 \times 1.193 \times 10^{-3} \times 1.75 \times 10^{-2} + 0.5 \times 10^{-2} \times 10^{-2}$

= 1.78×10-4 = 2×10-4/year.

0.5 × 1.199 ×10-9