华东理工大学 2012 - 2013 学年第二学期

《微分几何》课程期末考试试卷 A 2013.6.26

开课学院:理	<u>学院</u> , -	专业: <u>数、</u>	信计,	考试形式:	闭卷,	所需时间 <u>12</u>	<u>20</u> 分钟
考生姓名:		学号:		_ 班级:		_ 任课教师	: 杨勤民
题序	_	=	Ξ	四	五	总分	
得分							
评卷人		杨	勤	民			
一、单项选择题 1. 下列各量 ^v		,					(
(A) 曲面的				由面上曲线	的测协曲	率 •	
(C) 曲面上			` /			• •	
2. 如果曲线			` ′			<u>!</u>	(
(A) 测地线						_	
3. 曲面上曲线							(
$(A) k = k_g +$		(B)	O		. > C 1 . > C		
(C) $k^2 = k_g^2$							
4. 球面上测量			0	n o			(
(A) 大于180				小干180度	: (D) -	其他。	
5. 曲面上的					(D)	X 100	(
$(A) F \equiv M$					$L \equiv N \equiv 0$	0	
6. 曲面上高				(-)-	, -,		(
(A) 椭圆点				(D) 抛物	n点。		
7. 单参数曲							(
(A) $5x^2 + (2)$			_	_			
(C) $5x^2 + (2)$							
二、填空题(请				•			
1. 曲线 <i>r</i> (t) =	$(3t-t^3, 3)$	$3t^2, 3t + t^3$)在点 <i>t</i> = 1	处:单位均	刀向量 a(1	a) =	,
主法向量 <i>β</i> (1) =_		,副]法向量河	1) =		_,	
密切平面方程为			,从切	7平面方程	为		,
密切平面方程为 法平面方程为_			_,曲率k	(1) =	,挠丝	$ \tilde{r}(1) = \underline{\hspace{1cm}} $	•
2. 曲面 r(u,	(v) = (u -	$\frac{u^3}{3} + uv^2,$	$v - \frac{v^3}{3} + \iota$	u^2v , u^2-v	2) 在点(0	,0)处: 第一	一类基本
量E(0,0) =	F(0,0)	=, <i>G</i>	$(0,0) = _{_}$,第一基	本形式I	$(0,0) = _{__}$;
第二类基本量L($(0,0) = _{__}$, M(0	,0) =	, N(0,0) =	_,第二基》	本形式
T (0 0)		ひん 止 か …	(() ()	<u></u> 1	と 止 か マンバ		

3. 设曲面的第一基本形式是 $ds^2 = [U(u) + V(v)](du^2 + dv^2)$,则相对分量

ω^1	=	$\omega^2 =$	ω	$v_1^2 = 0.00$

[注:请在试卷空白处或试卷背面解答以下各题]

三、(共10分)设曲面S上的高斯曲率处处为负或零,试用高斯-波涅公式证明该曲面上不能有两条测地线交于相异的两点P和Q。

四、(共10分)设V是n维实向量空间, $\{e_1,e_2,\cdots,e_n\}$ 是它的一组基, $\alpha=e_1\wedge e_2\wedge\cdots\wedge e_p(0< p< n)$,V中一向量v满足 $v\wedge\alpha=0$,求证:v是 e_1,e_2,\cdots,e_p 的线性组合。

五、(共8分)证明在正则曲面上任一点,每对共轭方向上的法曲率的倒数之和为 $\frac{2H}{K}$,其中H和K分别为该点处曲面的平均曲率和高斯曲率。

华东理工大学 2012 - 2013 学年第二学期

《微分几何》课程期末考试试卷 B 2013.6.26

开课学院:理	学院,	专业: 数、	信计,	考试形式:	闭卷,	所需时间	120 9	分钟
考生姓名:		学号:		_ 班级:		_ 任课教!	师: 4	<u></u>
题序	1	=	=	四	五	总	分	
得分								
评卷人		杨	勤	民				
一、单项选择题	(每小题	4分,共28	3分)					
1. 若两曲面	•			线在对应点	点必具有村	目同的	((
(A) 曲率;	(B) 挠	率;	(C) 法曲率	(D)	测地曲率	· ·		
2. 曲率和挠	率均为非零	定常数的曲	线一定是				(·)
(A) 直线;	(B) 圆	柱螺线;	(C) 圆	; (D)	平面曲线	ξ.		
3. 曲面上非原	序点处的两	丙个主方向	之间的夹	角为			(
(A) $\frac{\pi}{2}$:	(B) 0	; (C) π;	(D) 不	确定。			
· · · · · 2 4. 下列关于统							(· \
4. 1 列头 1 7 (A) 若曲线.				则该曲组	笔必为首组	፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟	(.)
(B) 平面曲5					()	~ ,		
(C) 沿渐近1					刀平面重台	; ;		
(D) 沿测地:	线,曲面的	勺切平面与	该测地线	的密切平面	面垂直。			
5. 曲面上的	曲纹坐标网	冈是共轭网	的充要条	件是			(()
(A) $F \equiv M$	≡ 0; (B	$F \equiv 0;$	(C) <i>M</i> ≡	0; (D)	$L \equiv N \equiv 0$	0		
6. 曲面上高其	斯曲率 <i>K</i> <	(0的点称)	为曲面的				(()
(A) 椭圆点:	; (B) 脐	·点; (C)) 双曲点;	(D) 抛物	为点。			
7. 单参数平面	面族 α ² x +	$2\alpha y + 2z =$	= 2α 的包织	各是			(
(A) $(y-1)^2$								
(C) $(y-1)^2$								
二、填空题(请					4分)			
1. 曲线 <i>r</i> (t) =						-1) =		
主法向量 $\vec{\beta}(-1)$ =								
密切平面方程为			. 从切	、	 为			
法平面方程为_			 _,曲率k(-	-1) =	 ,挠ዻ	$\tau(-1) = $		°
2. 曲面 r(u, v								
$F(0,0) = \underline{\hspace{1cm}}$								
类基本量 <i>L</i> (0,0)								

 $II(0,0) = _______;$ 平均曲率 $H(0,0) = _______,$ 高斯曲率 $K(0,0) = ________.$

3. 设曲面的第一基本形式是
$$ds^2 = \frac{du^2 - 4v \, du \, dv + 4u \, dv^2}{4(u-v^2)} (u > v^2)$$
,则相对分量

$$\omega^1 =$$
_______, $\omega^2 =$ ______,高斯曲率 $K =$ _____。

[注:请在试卷空白处或试卷背面解答以下各题]

三、(共10分)利用高斯-波涅公式证明:若曲面S上存在两族夹角为定角的测地线,则它的高斯曲率处处为零。

四、(共10分)设
$$\omega = \sum_{1 \le i < j \le n} a_{ij} \, \mathrm{d} x^i \wedge \mathrm{d} x^j, \ a_{ij} + a_{ji} = 0, \ 求证:$$

$$\mathrm{d} \omega = \sum_{1 \le i < j \le n} \left(\frac{\partial a_{ij}}{\partial x^k} + \frac{\partial a_{jk}}{\partial x^i} + \frac{\partial a_{ki}}{\partial x^j} \right) \mathrm{d} x^i \wedge \mathrm{d} x^j \wedge \mathrm{d} x^k.$$

五、(共8分)设曲线 $\vec{r}=\vec{r}(s)$ 有固定的非零挠率 τ_0 , $\vec{\beta}$ 和 \vec{r} 分别为该曲线的主法向量和副法向量,(1)证明曲线 $\vec{r}^*=\frac{1}{\tau_0}\vec{\beta}-\int \vec{\gamma}\,\mathrm{d}s$ 有固定的曲率 $k^*=|\tau_0|$; (2)求 \vec{r}^* 的挠率 τ^* 。

华东理工大学 2012 - 2013 学年第二学期 《微分几何》课程期末考试标准答案 A 2013.8

一、单项选择题(每小题4分,共28分)

D C C A B A B

二、填空题(请在每空中填入最简结果,每空2分,共44分)

1.
$$(0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}),$$
 $(-1, 0, 0),$ $(0, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}),$ $y - z + 1 = 0,$ $x - 2 = 0,$ $y + z - 7 = 0,$ $\frac{1}{12},$ $\frac{1}{12}.$

2. 1, 0, 1, $du^2 + dv^2$, 2, 0, -2, $2 du^2 - 2 dv^2$, 0, -4.

3.
$$\sqrt{U(u) + V(v)} du$$
, $\sqrt{U(u) + V(v)} dv$, $\frac{U' dv - V' du}{2(U+V)}$, $\frac{U'U' + V'V' - (U'' + V'')(U+V)}{2(U+V)^3}$.

三、(共10分)设曲面S上的高斯曲率处处为负或零,试用高斯-波涅公式证明该曲面上不能有两条测地线交于相异的两点P和Q。

证:设在曲面域内两测地线相交于两点A, B, 它们包围的区域是G, 在交点处的内角分别为 $\angle A$ 和 $\angle B$, 由Gauss-Bonnet公式有

$$\int_{G} K\omega^{1} \wedge \omega^{2} + \int_{\partial G} k_{g} \, \mathrm{d}s + (\pi - \angle A) + (\pi - \angle B) = 2\pi.$$

因 $k_g = 0$, 所以

$$\int_G K\omega^1 \wedge \omega^2 = \angle A + \angle B > 0,$$

这与 $K \leq 0$ 矛盾.

四、(共10分)设V是n维实向量空间, $\{e_1,e_2,\cdots,e_n\}$ 是它的一组基, $\alpha=e_1\wedge e_2\wedge\cdots\wedge e_p(0< p< n)$,V中一向量v满足 $v\wedge\alpha=0$,求证:v是 e_1,e_2,\cdots,e_p 的线性组合。

证: 设 $v = a_1e_2 + a_2e_2 + \cdots + a_ne_n$, 由已知, $v \wedge a = 0$, 即

$$(a_1e_2 + a_2e_2 + \cdots + a_ne_n) \wedge (e_1 \wedge e_2 \wedge \cdots \wedge e_p) = 0,$$

所以有 $(a_1e_1 \wedge e_1 \wedge e_2 \wedge \cdots \wedge e_p)$ + $(a_2e_2 \wedge e_1 \wedge e_2 \wedge \cdots \wedge e_p)$ + \cdots + $(a_ne_n \wedge e_1 \wedge e_2 \wedge \cdots \wedge e_p)$ = 0 由于 $e_i \wedge e_i = 0$,于是有

 $(-1)^{p}a_{p+1}e_{1} \wedge e_{2} \wedge \cdots \wedge e_{p} \wedge e_{p+1} + (-1)^{p}a_{p+2}e_{1} \wedge e_{2} \wedge \cdots \wedge e_{p} \wedge e_{p+2} + \cdots + (-1)^{p}a_{n}e_{1} \wedge e_{2} \wedge \cdots \wedge e_{p} \wedge e_{n} = 0.$

由于 $\{e_1, e_2, \dots e_n\}$ 是V的一组基, 所以 $a_{p+1} = a_{p+2} = \dots = a_n = 0$, 因此 $v = a_1e_2 + a_2e_2 + \dots + a_pe_p$.

五、(共8分)证明在正则曲面上任一点,每对共轭方向上的法曲率的倒数之和为 $\frac{2H}{K}$,其中H和K分别为该点处曲面的平均曲率和高斯曲率。

证:设曲面 $\vec{r} = \vec{r}(u,v)$ 在任一点P的一对共轭方向为P(u,v) du + Q(u,v) dv = 0,与(LQ - MP) $\delta u + (MQ - NP)\delta v = 0$.设 k_1 和 k_2 为这对共轭方向的法曲率,则

$$\begin{split} \frac{1}{k_1} + \frac{1}{k_2} &= \frac{E \, \mathrm{d}u^2 + 2F \, \mathrm{d}u \, \mathrm{d}v + G \, \mathrm{d}v^2}{L \, \mathrm{d}u^2 + 2M \, \mathrm{d}u \, \mathrm{d}v + N \, \mathrm{d}v^2} + \frac{E \delta u^2 + 2F \delta u \delta v + G \delta v^2}{L \delta u^2 + 2M \delta u \delta v + N \delta v^2} \\ &= \frac{E Q^2 - 2F P Q + G P^2}{L Q^2 - 2M P Q + N P^2} + \frac{E (MQ - NP)^2 - 2F (MQ - NP)(LQ - MP) + G (LQ - MP)^2}{L (MQ - NP)^2 - 2M (MQ - NP)(LQ - MP) + N (LQ - MP)^2} \\ &= \frac{(NE - 2MF + LG)(LQ^2 - 2MPQ + NP^2)}{(LN - M^2)(LQ - 2MPQ + NP^2)} \\ &= \frac{NE - 2MF + LG}{LN - M^2} = \frac{2H}{K} \end{split}$$

华东理工大学 2012 - 2013 学年第二学期《微分几何》课程期末考试标准答案 B 2013.6

一、单项选择题(每小题4分,共28分)

二、填空题(请在每空中填入最简结果,每空2分,共44分)

1.
$$(0, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}),$$
 $(1,0,0),$ $(0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}),$ $y+z+1=0,$ $x+2=0,$ $y-z-7=0,$ $\frac{1}{12},$ $\frac{1}{12}.$

2. 2, 0, 2, $2 du^2 + 2 dv^2$, 0, -2, 0, -4 du dv, 0, -1.

$$\frac{\mathrm{d}u - 2v\,\mathrm{d}v}{2\,\sqrt{u - v^2}}, \qquad \qquad \mathrm{d}v, \qquad \qquad 0, \qquad \qquad 0.$$

三、(共10分)利用高斯-波涅公式证明:若曲面S上存在两族夹角为定角的测地线,则它的高斯曲率处处为零。

证 设K为高斯曲率, k_g 为测地曲率。在每族测地线上任取两条,围成曲面S上的一块曲边四边形区域 $G(2\, \mathcal{G})$,则有高斯-波涅公式:

$$\iint_G K \, \mathrm{d}S + \oint_{\partial G} k_g \, \mathrm{d}s + \sum_{i=1}^4 (\pi - \alpha_i) = 2\pi \quad (3 \, \hat{\pi})$$

设两族测地线所夹的定角为 α ,则

$$\sum_{i=1}^{4} (\pi - \alpha_i) = \alpha + (\pi - \alpha) + \alpha + (\pi - \alpha) = 2\pi \quad (2\%)$$

因 ∂G 为测地线,所以 $k_g=0$ 。上述高斯-波涅公式化简为 $\iint_G K \, \mathrm{d}S=0$.

若S的高斯曲率不是处处为零,则必存在某点P处的高斯曲率 $K_P \neq 0$,不妨设 $K_P > 0$ 。则在P点的邻近K > 0,从而对于围绕P点的充分小的区域G'有K > 0,于是 $\iint_{G'} K \, \mathrm{d}S > 0$ 。这与K在上述任选的由测地线围成的区域G上积分为零相矛盾,故S的高斯曲率是处处为零。 (3分)

四、(共10分)设
$$\omega = \sum_{1 \le i < j \le n} a_{ij} \, dx^j \wedge dx^j, \ a_{ij} + a_{ji} = 0, \ 求证:$$

$$d\omega = \sum_{1 \le i < j < k \le n} \left(\frac{\partial a_{ij}}{\partial x^k} + \frac{\partial a_{jk}}{\partial x^i} + \frac{\partial a_{ki}}{\partial x^j} \right) dx^i \wedge dx^j \wedge dx^k.$$
证 由外微分的定义, $d\omega = \sum_{1 \le i < j \le n} \sum_{k=1}^n \frac{\partial a_{ij}}{\partial x^k} \partial x^k \wedge \partial x^j \wedge \partial x^j$ (4分)
$$= \sum_{1 \le k < i < j \le n} \frac{\partial a_{ij}}{\partial x^k} \partial x^k \wedge \partial x^i \wedge \partial x^j + \sum_{1 \le i < k < j \le n} \frac{\partial a_{ij}}{\partial x^k} \partial x^k \wedge \partial x^i \wedge \partial x^j + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ij}}{\partial x^k} \partial x^k \wedge \partial x^i \wedge \partial x^j + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ij}}{\partial x^k} \partial x^k \wedge \partial x^i \wedge \partial x^j \wedge \partial x^j$$

$$= \sum_{1 \le i < j < k \le n} \frac{\partial a_{jk}}{\partial x^i} \partial x^i \wedge \partial x^j \wedge \partial x^k + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ik}}{\partial x^j} \partial x^j \wedge \partial x^i \wedge \partial x^k + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ij}}{\partial x^k} \partial x^k \wedge \partial x^i \wedge \partial x^j \wedge \partial x^j$$

$$= \sum_{1 \le i < j < k \le n} \frac{\partial a_{jk}}{\partial x^i} \partial x^i \wedge \partial x^j \wedge \partial x^k - \sum_{1 \le i < j < k \le n} \frac{\partial a_{ik}}{\partial x^j} \partial x^i \wedge \partial x^j \wedge \partial x^k + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ij}}{\partial x^k} \partial x^i \wedge \partial x^j \wedge \partial x^k$$

$$= \sum_{1 \le i < j < k \le n} \left(\frac{\partial a_{jk}}{\partial x^i} - \frac{\partial a_{jk}}{\partial x^j} + \frac{\partial a_{ij}}{\partial x^k} \right) \partial x^i \wedge \partial x^j \wedge \partial x^k$$

$$= \sum_{1 \le i < j < k \le n} \left(\frac{\partial a_{ij}}{\partial x^k} + \frac{\partial a_{ij}}{\partial x^k} + \frac{\partial a_{ij}}{\partial x^k} \right) \partial x^i \wedge \partial x^j \wedge \partial x^k$$

$$= \sum_{1 \le i < j < k \le n} \left(\frac{\partial a_{ij}}{\partial x^k} + \frac{\partial a_{ik}}{\partial x^i} + \frac{\partial a_{ij}}{\partial x^k} \right) \partial x^i \wedge \partial x^j \wedge \partial x^k$$

五、(共8分)设曲线 $\vec{r} = \vec{r}(s)$ 有固定的非零挠率 τ_0 , $\vec{\beta}$ 和 $\vec{\gamma}$ 分别为该曲线的主法向量和副法向量,(1)证明曲线 $\vec{r}^* = \frac{1}{\tau_0}\vec{\beta} - \int \vec{\gamma} \,\mathrm{d}s$ 有固定的曲率 $k^* = |\tau_0|$; (2)求 \vec{r}^* 的挠率 τ^* 。

$$\mathbf{P}(1) \vec{r}^* = \frac{1}{\tau_0} \vec{\beta} - \int \vec{\gamma} \, \mathrm{d}s, \qquad (\vec{r}^*)' = \frac{1}{\tau_0} \dot{\vec{\beta}} - \vec{\gamma} = \frac{1}{\tau_0} (-k\vec{\alpha} + \tau_0 \vec{\gamma}) - \vec{\gamma} = -\frac{k}{\tau_0} \vec{\alpha}, \qquad (2\hat{\mathcal{D}})$$

$$(\vec{r}^*)'' = -\frac{\dot{k}}{\tau_0}\vec{\alpha} - \frac{k}{\tau_0}\dot{\vec{\alpha}} = -\frac{\dot{k}}{\tau_0}\vec{\alpha} - \frac{k}{\tau_0}(k\vec{\beta}) = -\frac{\dot{k}}{\tau_0}\vec{\alpha} - \frac{k^2}{\tau_0}\vec{\beta},$$

$$(\vec{r}^*)' \times (\vec{r}^*)'' = \frac{k^3}{\tau_0^2} \vec{\gamma}, \qquad |(\vec{r}^*)' \times (\vec{r}^*)''| = \frac{k^3}{\tau_0^2}, \qquad |(\vec{r}^*)'| = \frac{k}{|\tau_0|},$$

$$k^* = \frac{|(\vec{r}^*)' \times (\vec{r}^*)''|}{|(\vec{r}^*)'|^3} = \frac{k^3}{\tau_0^2} / (\frac{k}{|\tau_0|})^3 = |\tau_0|.$$
 (25)

$$(2) \ (\vec{r}^*)''' = -\frac{\ddot{k}}{\tau_0} \vec{\alpha} - \frac{\dot{k}}{\tau_0} \dot{\vec{\alpha}} - \frac{2k\dot{k}}{\tau_0} \vec{\beta} - \frac{k^2}{\tau_0} \dot{\vec{\beta}} = -\frac{\ddot{k}}{\tau_0} \vec{\alpha} - \frac{\dot{k}}{\tau_0} (k\vec{\beta}) - \frac{2k\dot{k}}{\tau_0} \vec{\beta} - \frac{k^2}{\tau_0} (-k\vec{\alpha} + \tau_0 \vec{\gamma})$$

$$= \frac{k^3 - \ddot{k}}{\tau_0} \vec{\alpha} - \frac{3k\dot{k}}{\tau_0} \vec{\beta} - k^2 \vec{\gamma},$$

$$((\vec{r}^*)', (\vec{r}^*)'', (\vec{r}^*)''') = -\frac{k^5}{\tau_0^2}, \tag{2}$$

$$\tau^* = \frac{\left((\vec{r}^*)', (\vec{r}^*)'', (\vec{r}^*)''' \right)}{\left| (\vec{r}^*)' \times (\vec{r}^*)''' \right|^2} = -\frac{k^5}{\tau_0^2} / \left| \frac{k^3}{\tau_0^2} \right|^2 = -\frac{\tau_0^2}{k}. \tag{2}$$

华东理工大学 2013 - 2014 学年第二学期

《微分几何》课程期末考试试卷 A 2014.6.27

开课学院: 理学院,	专业: 数、信计,	, 考试开	/式: 闭卷,	所需时	间 <u>120</u> 分	钟
考生姓名:	学号:	班纟	፩ :	任课	教师: 杨	勤民
题序 一	- <u>=</u>	四	五	六	总	分
得分						
评卷人						
一、判断题(在正确	—————————————————————————————————————	为画"√"	错误的后	面画"X"	每小:	—— 题2分
共18分)	, , , , , , , , , , , , , , , , , , , ,	, –, ,	74 06 7		, , ,	C=70 ,
,	自面的切平面与该渐:	近曲线的从	人切平面重	合. ()	
, ·	有主法线必过一个定)		,	
	一定是测地线. (,			
	率和挠率完全确定了	,	内形状和位	三置. ()	
	是曲线的副法向量对		-	`	,	
	平面和密切平面,但			` ′		
	二类基本量有关,不			,		
	$= \vec{r}(s)$ 为一般螺线的		` · ´	= 0. ()	
	密切平面经过一个定		` , , ,	`	()	
二、单项选择题(每		, ,			,	
	线的说法中, 不正确	的是			()
(A) 测地线具有						,
(B) 平面上的测量						
(C) 测地线一定;	是连接其上两点的最	短的曲面	曲线;			
(D) 通过曲面上-	一点, 且具有相同切	线的一切由	由 面曲线中	, 测地线的	9曲率最	小.
	列哪个量恒等于零				()
(A) 曲率; (B)	相对曲率; (C) 挠	率; (D)	测地曲率.			
` '	·有固定长的充要条件				()
	(B) $\vec{r} \cdot \vec{r}' = 0$;					
4. 曲面上的曲线;	是下列哪种曲线的充	要条件是	沿此曲线的	的曲面的法	线组成-	一可展
曲面.					()
	(B) 曲率线; (C)			戋.		
三、填空题(请在每						
1. 曲线 $\vec{r}(t) = (t \sin t)$						
主法向量β(0) =	,副法[向量 7 (0) =		,		
密切平面方程为		从切平面	方程为			
注亚面方积为	the state of the s	お窓 /(∩) −		找 滚 ~(∩)	_	

五、(共10分)求 C^3 类曲线 $\vec{r}(u)$ 的切线面 $\vec{R}(u,v) = \vec{r}(u) + v\vec{r}'(u)$ 上的曲线u + v = c 的法曲率.

六、(共10分)设曲面的第一基本形式是 $\mathrm{d}s^2=\frac{1}{v^2}(\mathrm{d}u^2+\mathrm{d}v^2)$,计算该曲面的活动标架的相对分量 $\omega^1,\omega^2,\omega_1^2$ 和高斯曲率K.

华东理工大学 2013 - 2014 学年第二学期

《微分几何》课程期末考试试卷 B 2014.6.27

开课学院	完: <u>理学院</u> ,	专业:	数、信计,	考试形	式: 闭卷,	所需时间	可 <u>120</u> 分	分钟
考生姓名:		学号	:	班纫	ξ:	任课	教师: 🟄	
题序	_	_	三	四	五	六	总	分
得分								
评卷人								
一、判断方	题(在正确	命题后面	的括号内	勺画"√"	错误的后	面画"X",	——— 每小	题2分
共18分)		, , , , , , , , , , , , , , , , , , , ,		, -, ,	74 00 70	-, -, · · · ,	J	/ C= / V
	上任意两点	点之间的测	地线一定	是唯一的.	()			
		有法平面必)			
		无是渐近线)			
		可一点处有	,		,			
		,			` /			
•		7. 3. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.		,	, ,	线 ()	
		の向量在Le		,		`)	
		5的重在LC 家的曲面必				11 44.	,	
·		方向夹固定		`	,)		
		小题4分,		人人人	۷. (,		
		•		문 I – Fd	$u^2 \perp G dv^2$	$II = L du^2$	$\perp M dv^2$	加曲
1. Q岀 面的两个主			17 26 74 74	$\mathcal{L} I = L \mathbf{u}$	u +ouv,	$\Pi = L \operatorname{d} u$	+ 1 v u v	, хіщ (
	- '	$=\frac{N}{G};$	($\mathbf{B}) k_1 = \frac{E}{L},$	$k_2 = \frac{G}{N}$;	,	,
(C) k_1	$= k_2 = -\frac{1}{2}$	$\frac{1}{\sqrt{G}} \frac{\partial \ln E}{\partial v}$; (D) $k_1 = k_2$	$= \frac{1}{2\sqrt{E}} \frac{\partial 1}{\partial x}$	$\frac{\operatorname{n} G}{u}$.		
		是正则曲线			•		(()
(A) $\vec{r}(t)$	$=(t^3,t^2,t$	t), $t \in \mathbb{R}$;		(B) $\vec{r}(t) =$	$=(\cos t,\sin$	$(t,t), t \in \mathbb{R}$;	
					$=(\cos t,\sin t)$	$t,0), t \in \mathbb{R}.$		
		有固定方					(()
` ´		` '		ŕ		$\vec{r}' \times \vec{r}'' = 0$		
						曲面曲线-	-定是(()
(A) 渐	近曲线;	(B) 曲率组	美; (C) ?	则地线;	(D) 法截线	€.		
		空中填入車	,	• ,	•			
1. 曲线	$\vec{r}(t) = (\cos \theta)$	$s t$, $\sin t$, $\sqrt{2}$	Ēt ²) 在点t	=0处的鸟	单位切向量	$\vec{\alpha}(0) = $		
主法向量成	(0) =		_, 副法位	句量√(0) =				
密切平面方	程为			从切平面	方程为			
去平面方程	_为		. 曲	9 = k(0) =	_	挠率τ(0):	=	_

五、(共10分)求单参数曲面族 $x^2 + (y - 2\alpha)^2 + (z - 3\alpha)^2 = 1$ 的包络.

六、(共10分)设曲面的第一基本形式是 $\mathrm{d}s^2=\mathrm{d}u^2+2\cos\varphi\,\mathrm{d}u\,\mathrm{d}v+\mathrm{d}v^2$, 其中 φ 是u,v 的连续可微函数, 计算此曲面的活动标架的相对分量 $\omega^1,\omega^2,\omega_1^2$ 和高斯曲率K.

华东理工大学 2013 - 2014 学年第二学期 《微分几何》课程期末考试标准答案 A 2014.8

一、判断题(每小题2分,共18分)

1. \times 2. \times 3. \checkmark 4. \times 5. \checkmark 6. \checkmark 7. \times 8. \checkmark 9. \checkmark

二、单项选择题(每小题4分,共16分)

1. C **2.** C **3.** B **4.** B

三、填空题(每空2分,共36分)

1.
$$\frac{\sqrt{2}}{2}(0, 1, 1), \qquad \frac{\sqrt{6}}{6}(2, -1, 1), \qquad \frac{\sqrt{3}}{3}(1, 1, -1),$$
$$x + y - z = 0, \qquad 2x - y + z = 0, \qquad y + z = 0, \qquad \frac{\sqrt{6}}{2}, \qquad -1.$$

2. 2, 1, 1, $2 du^2 + 2 du dv + dv^2$, 0, -1, -1, $-2 du dv - dv^2$, 0, -1. 四、(共10分)设 $x = r \sin \varphi \cos \theta$, $y = r \sin \varphi \sin \theta$, $z = r \cos \varphi$, 将 $dx \wedge dy \wedge dz$ 用 $dr \wedge d\varphi \wedge d\theta$

表示出来.

 $\mathbf{M} dx = \sin \varphi \cos \theta dr + r \cos \varphi \cos \theta d\varphi - r \sin \varphi \sin \theta d\theta,$

 $dy = \sin \varphi \sin \theta dr + r \cos \varphi \sin \theta d\varphi + r \sin \varphi \cos \theta d\theta,$

$$dz = \cos\varphi \, dr - r\sin\varphi \, d\varphi. \qquad (3\,\hat{\pi})$$

 $dx \wedge dy \wedge dz = (\sin \varphi \cos \theta dr + r \cos \varphi \cos \theta d\varphi - r \sin \varphi \sin \theta d\theta)$

 $\wedge (\sin \varphi \sin \theta \, dr + r \cos \varphi \sin \theta \, d\varphi + r \sin \varphi \cos \theta \, d\theta)$

$$\wedge (\cos \varphi \, dr - r \sin \varphi \, d\varphi) \quad \dots \qquad (3\,\%)$$

$$= \begin{vmatrix} \sin \varphi \cos \theta & r \cos \varphi \cos \theta & -r \sin \varphi \sin \theta \\ \sin \varphi \sin \theta & r \cos \varphi \sin \theta & r \sin \varphi \cos \theta \\ \cos \varphi & -r \sin \varphi & 0 \end{vmatrix} dr \wedge d\varphi \wedge d\theta$$

$$= r^2 \sin \varphi \, \mathrm{d}r \wedge \, \mathrm{d}\varphi \wedge \, \mathrm{d}\theta \, \dots (4\hat{\pi})$$

五、(共10分)求 C^3 类曲线 $\vec{r}(u)$ 的切线面 $\vec{R}(u,v) = \vec{r}(u) + v\vec{r}'(u)$ 上的曲线u + v = c 的法曲

率.

解
$$\vec{R}_u(u,v) = \vec{r}'(u) + v\vec{r}''(u), \qquad \vec{R}_v(u,v) = \vec{r}'(u), \qquad (1分)$$

$$E(u,v) = \vec{R}_u^2(u,v) = \vec{r}'^2(u) + 2v\vec{r}'(u) \cdot \vec{r}''(u) + v^2\vec{r}''^2(u),$$

$$F(u,v) = \vec{R}_u(u,v) \cdot \vec{R}_v(u,v) = \vec{r}'^2(u) + v\vec{r}'(u) \cdot \vec{r}''(u), \quad G(u,v) = \vec{R}_v^2(u,v) = \vec{r}'^2(u). \qquad (2分)$$

$$\vec{n}(u,v) = \frac{\vec{R}_u(u,v) \times \vec{R}_v(u,v)}{|\vec{R}_u(u,v) \times \vec{R}_v(u,v)|} = \frac{v\vec{r}''(u) \times \vec{r}'(u)}{|v|\vec{r}''(u) \times \vec{r}'(u)|},$$

$$\vec{R}_{uu}(u,v) = \vec{r}''(u) + v\vec{r}'''(u), \quad \vec{R}_{uv}(u,v) = \vec{v}''(u), \quad \vec{R}_{vv}(u,v) = \vec{0}. \qquad (2分)$$

$$L(u,v) = \vec{n}(u,v) \cdot \vec{r}_{uu}(u,v) = -\frac{|v|(\vec{r}''(u),\vec{r}''(u),\vec{r}'''(u))}{|\vec{r}'(u) \times \vec{r}''(u)|},$$

$$M(u,v) = \vec{n}(u,v) \cdot \vec{r}_{uv}(u,v) = 0, \quad N(u,v) = \vec{n}(u,v) \cdot \vec{r}_{vv}(u,v) = 0. \qquad (2分)$$

$$\dot{E} \text{ the } \xi_u + v = c \pm \vec{n} \text{ du} + \text{ dv} = 0, \quad \exists \psi \text{ du} = -\text{ dv}. \qquad (1分)$$

$$\dot{\Xi} \text{ the } \varphi_{R_u}(u,v) = \frac{L(u,v)}{L(u,v)} \frac{du^2 + 2M(u,v)}{du^2 + 2F(u,v)} \frac{du}{dv} + N(u,v) \frac{dv^2}{dv^2} = \frac{-(\vec{r}'(u),\vec{r}''(u),\vec{r}'''(u))}{|v|\vec{r}''(u) \times \vec{r}''(u)|}. \quad (2分)$$

$$\dot{\pi}, \quad (\pm 10 分) \psi \text{ de } \text{ de } \hat{m} + \vec{m} + \vec{m}$$

华东理工大学 2013 - 2014 学年第二学期《微分几何》课程期末考试标准答案 B 2014.6

一、判断题(每小题2分,共18分)

1.
$$\times$$
 2. \checkmark 3. \checkmark 4. \times 5. \checkmark 6. \checkmark 7. \checkmark 8. \times 9. \times

二、单项选择题(每小题4分,共16分)

三、填空题(每空2分,共36分)

1.
$$(0, 1, 0),$$
 $(-\frac{1}{3}, 0, \frac{2\sqrt{2}}{3}),$ $(\frac{2\sqrt{2}}{3}, 0, \frac{1}{3}),$ $2\sqrt{2}x + z - 2\sqrt{2}z = 0,$ $x - 2\sqrt{2}z - 1 = 0,$ $y = 0,$ 3, 0.

2. 1, 0, 1,
$$du^2 + dv^2$$
, 0, 1, 1, $2 du dv + dv^2$, $\frac{1}{2}$, -1.

四、(共10分) 设x = x(u,v,w), y = y(u,v,w), z = z(u,v,w) 是u,v,w 的光滑函数,证明 $dx \wedge dy \wedge dz = \frac{\partial(x,y,z)}{\partial(u,v,w)} du \wedge dv \wedge dw$.

$$\mathbf{i}\mathbf{E} \, dx = x_u \, du + x_v \, dv + x_w \, dw, \, dy = y_u \, du + y_v \, dv + y_w \, dw, \, dz = z_u \, du + z_v \, dv + z_w \, dw, \, (2\,\mathbf{\hat{n}})$$

$$dx \wedge dy \wedge dz$$

$$= (x_u du + x_v dv + x_w dw) \wedge (y_u du + y_v dv + y_w dw) \wedge (z_u du + z_v dv + z_w dw) \dots (2\%)$$

$$= [(x_u y_v - x_v y_u) du \wedge dv + (x_w y_v - x_v y_w) dv \wedge dw + (x_w y_u - x_u y_w) dw \wedge du] \wedge (z_u du + z_v dv + z_w dw)$$

$$= [(x_u y_v - x_v y_u)z_w - (x_w y_v - x_v y_w)z_u + (x_w y_u - x_u y_w)z_v] du \wedge dv \wedge dw \dots (4 \mathcal{H})$$

$$= \begin{vmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & zx_w \end{vmatrix} du \wedge dv \wedge dw = \frac{\partial (x, y, z)}{\partial (u, v, w)} du \wedge dv \wedge dw \qquad (2\%)$$

五、(共10分)求单参数曲面族 $x^2 + (y - 2\alpha)^2 + (z - 3\alpha)^2 = 0$ 的包络.

解 曲面族为
$$x^2 + (y - 2\alpha)^2 + (z - 3\alpha)^2 = 0$$
(1)

将上式两边关于
$$\alpha$$
 求导得 $2(y-2\alpha)(-2)+2(z-3\alpha)(-3)=0$, 即 $2y+3z-13\alpha=0$ (2) (4分)

由(2)得
$$\alpha = (2y + 3z)/13$$
,(2分)

华东理工大学 2014 - 2015 学年第二学期

《微分几何》课程期末考试试卷 A 2015.7.8

开课学院:理学院, 专业:数、信计, 考试形式:闭卷, 所需时间 120 分钟

考生姓名: _____ 学号: _____ 班级: ____ 任课教师: 杨勤民

题序	_	=	=	四	五	六	七	八	总分
得分									
评卷人									

二、(共16分) 求曲面 $\vec{r}(u, v) = (v \cos u, v \sin u, u + v)$ 在 $\vec{r}(0, 0)$ 处的第一基本形式,第二基本形式,平均曲率和高斯曲率.

三、(共22分) 已知曲面的第一基本形式为 $I = \cos^2 u (du)^2 + \sin^2 v (dv)^2$, 它上面的三条曲面曲线 u + v = 0, u - v = 0 和 v = 1 围成一个曲边三角形, 求

- (1) 该曲边三角形所围曲面域的面积;
- (2) 该曲边三角形的三个内角:
- (3) 该曲边三角形的三条曲边的长度.

四、(共12分) 设 $\varphi = yz dx + dz$, $\xi = \sin z dx + \cos z dy$, $\eta = dy + z dz$, 计算

- (1) $\varphi \wedge \xi$, $\xi \wedge \eta$, $\eta \wedge \varphi$;
- (2) $d\varphi$, $d\xi$, $d\eta$.

五、(共10分) 设曲面的第一基本形式是 $I = (u + \sin v)[(du)^2 + (dv)^2]$, 计算该曲面的活动标架的相对分量 $\omega^1, \omega^2, \omega_1^2$ 和高斯曲率K.

六、(共10分)判断曲面 r(u, v) = (u + v, u - v, 2uv) 是不是可展曲面, 并给出理由.

七、(共10分)设曲面S上的高斯曲率处处为负,证明曲面S上不存在围成单连通区域的 光滑的闭测地线.

八、(共5分)高斯绝妙定理是什么?为什么说它是微分几何发展史上的一个里程碑?

华东理工大学 2014 - 2015 学年第二学期

《微分几何》课程期末考试试卷 B 2015.7.8

开课学院:理学院, 专业:数、信计, 考试形式:闭卷, 所需时间 120 分钟

学号: 考生姓名: 任课教师: 杨勤民 班级:

题序	_	_	三	四	五	六	七	八	总分	,
得分										
评卷人										

一、(共15分) 求曲线 $\vec{r}(t) = (3t, t^2 + t, t^3 + 2t^2)$ 在 t = 0 处的三个基本向量, 密切平面 方程, 从切平面方程, 法平面方程, 曲率和挠率,

二、(共16分) 求曲面 $\vec{r}(u, v) = (v \cos u, v \sin u, u - v)$ 在 $\vec{r}(0, 0)$ 处的第一基本形式, 第二 基本形式, 平均曲率和高斯曲率.

三、(共22分) 已知曲面的第一基本形式为 $I = \cos^2 u (du)^2 + \sin^2 v (dv)^2$, 它上面的三条 曲面曲线 u+v=0, u-v=0 和 u=1 围成一个曲边三角形, 求

- (1) 该曲边三角形所围曲面域的面积;
- (2) 该曲边三角形的三个内角:
- (3) 该曲边三角形的三条曲边的长度.

四、(共12分)设f和g是两个光滑函数, d为外微分算子, 计算

- (1) d(f dg + g df); (2) d[(f g)(df + dg)];
- (3) $d[(f dg) \land (g df)];$ (4) d(g df) + d(f dg).

五、(共10分) 设曲面的第一基本形式是 $I = \frac{(du)^2 - 4v \, du \, dv + 4u (dv)^2}{4(u-v^2)}$ (其中 $u > v^2$), 计 算该曲面的活动标架的相对分量 $\omega^1,\omega^2,\omega_1^2$ 和高斯曲率K.

六、(共10分)判断曲面 $xy = (z-1)^2$ 是不是可展曲面, 并给出理由.

七、(共10分)求圆柱面 $\vec{r}(u, v) = (\cos u, \sin u, v)$ 上的测地线.

八、(共5分)活动标架法的基本思想和步骤是什么?

华东理工大学 2014 - 2015 学年第二学期 《微分几何》课程期末考试标准答案 A 2015.7

一、解、(1)
$$\vec{P}'(t) = (2, 2t+1, 3t^2+6t)$$
, $\vec{P}'(0) = (2, 1, 0)$, $|\vec{P}'(0)| = \sqrt{5}$, $\vec{\sigma}'(0) = \frac{\vec{P}(0)}{|\vec{P}''(0)|} = (2, 1, 0)/\sqrt{5} = (\frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5}, 0);$ (2分) $\vec{P}'''(t) = (0, 2, 6t+6)$, $\vec{P}''(0) = (0, 2, 6)$, $\vec{P}'(0) \times \vec{P}'''(0) = (6, -12, 4)$, $|\vec{P}''(0) \times \vec{P}'''(0)| = 14$, $\vec{P}'(0) = \frac{\vec{P}'(0) \times \vec{P}''(0)}{|\vec{P}'(0) \times \vec{P}''(0)|} = (3, -6, 2)/7 = (\frac{3}{7}, -\frac{6}{7}, \frac{2}{7});$ (2分) $\vec{P}''(0) \times \vec{P}''(0) = (0, 0, 0)$ $\vec{P}'''(0) \times \vec{P}'''(0) = (0, 0, 0)$ $\vec{P}'''(0) \times \vec{P}'''(0) = (0, 0, 0)$ $\vec{P}''''(0) \times \vec{P}'''(0) = (0, 0, 0)$ $\vec{P}''''(0) \times \vec{P}'''(0) = (0, 0, 0)$ $\vec{P}''''(0) \times \vec{P}'''(0) \times \vec{P}'''(0) = (0, 0, 0)$ $\vec{P}''''(0) \times \vec{P}'''(0) \times \vec{P}'''(0) \times \vec{P}'''(0) = (0, 0, 0)$ $\vec{P}''''(0) \times \vec{P}'''(0) \times \vec{P}'''(0)$

(2)
$$\vec{r}_{uu}(u,v) = (-v\cos u, -v\sin u, 0), \quad \vec{r}_{uu}(0,0) = (0,0,0),$$
 $\vec{r}_{uv}(u,v) = (-\sin u,\cos u,0), \quad \vec{r}_{uv}(0,0) = (0,1,0),$
 $\vec{r}_{vv}(u,v) = (0,0,0), \quad (1 $\hat{\gamma}$)
 $\vec{r}_{v}(0,0) \times \vec{r}_{v}(0,0) = (0,1,0), \quad |\vec{r}_{u}(0,0) \times \vec{r}_{v}(0,0)| = 1,$
 $\vec{r}_{u}(0,0) \times \vec{r}_{v}(0,0) \times \vec{r}_{v}(0,0) |\vec{r}_{u}(0,0) \times \vec{r}_{v}(0,0)| = (0,1,0), \quad (1 $\hat{\gamma}$)
$$L(0,0) = \vec{r}_{uu}(0,0) \cdot \vec{n}(0,0) = 0, \quad (1 $\hat{\gamma}$)
$$M(0,0) = \vec{r}_{uv}(0,0) \cdot \vec{n}(0,0) = 0, \quad (1 $\hat{\gamma}$)
$$M(0,0) = \vec{r}_{vv}(0,0) \cdot \vec{n}(0,0) = 0, \quad (1 $\hat{\gamma}$)
$$M(0,0) = \vec{r}_{vv}(0,0) \cdot \vec{n}(0,0) = 0, \quad (1 $\hat{\gamma}$)
$$M(0,0) = \vec{r}_{vv}(0,0) \cdot \vec{n}(0,0) = 0, \quad (1 $\hat{\gamma}$)
$$M(0,0) = \frac{LG - 2MF + NE}{2(EG - F^2)}\Big|_{(0,0)} = \frac{0 - 2 \times 1 \times 1 + 0}{2(1 \times 2 - 1^2)} = -1. \quad (2 $\hat{\gamma}$)
$$K(0,0) = \frac{LN - M^2}{EG - F^2}\Big|_{(0,0)} = \frac{0 - 1^2}{1 \times 2 - 1^2} = -1. \quad (2 $\hat{\gamma}$)
$$\vec{x} \times \vec{x} \times \vec$$$$$$$$$$$$$$$$$$

$d\xi = d(\sin z dx + \cos z dy) = d\sin z \wedge dx + d\cos z \wedge dy = \sin z dy \wedge dz + \cos z dz \wedge dx;$	(2分)
$d\eta = d(dy + z dz) = d(dy) + dz \wedge dz = 0. $	(2分)
五、解. 因为 $I = (u + \sin v)[(du)^2 + (dv)^2] = (\sqrt{u + \sin v} du)^2 + (\sqrt{u + \sin v} dv)^2$,
所以 $\omega^1 = \sqrt{u + \sin v} du$, $\omega^2 = \sqrt{u + \sin v} dv$;	(4分)
$\omega^{1} \wedge \omega^{2} = (u + \sin v) du \wedge dv, d\omega^{1} = -\frac{\cos v}{2\sqrt{u + \sin v}} du \wedge dv, d\omega^{2} = \frac{1}{2\sqrt{u + \sin v}} dv$	du∧dv;
$\omega_1^2 = \frac{\mathrm{d}\omega^1}{\omega^1 \wedge \omega^2} \omega^1 + \frac{\mathrm{d}\omega^2}{\omega^1 \wedge \omega^2} \omega^2 = -\frac{\cos v}{2(u + \sin v)} \mathrm{d}u + \frac{1}{2(u + \sin v)} \mathrm{d}v, \dots \dots$	(3 分)
$d\omega_1^2 = -\frac{u \sin v + 2}{2(u + \sin v)^2} du \wedge dv, K = -\frac{d\omega_1^2}{\omega^1 \wedge \omega^2} = \frac{u \sin v + 2}{2(u + \sin v)^3}.$	(3分)
六、解. 该曲面方程可化为 $x^2 - y^2 = 2z$,	(5分)
可见该曲面为双曲抛物面(马鞍面), 故不为可展曲面	(5分)
另外得出 $LN - M^2 = -\frac{4}{2u^2 + 2v^2 + 1} \neq 0$ 或 $K = -\frac{1}{(2u^2 + 2v^2 + 1)^2} \neq 0$ 也可.	
七、证. (反证法) 若存在所述闭测地线,设它所围成的曲面部分为 G ,则有高	斯-波涅
公式 $\iint_G K d\sigma + \oint_{\partial G} k_g ds = 2\pi$, 其中 K 为曲面的高斯曲率, ∂G 为 G 的正向边界曲	线, k_g 为
测地曲率	(3分)
高斯曲率 $K < 0$,所以 $\iint_G K d\sigma \le 0$	(2分)
又 ∂G 为测地线, 所以 $k_g=0$,	(2分)
代入上述公式得 $2\pi \leq 0$. 最后一式显然不可能成立, 故曲面 S 上不存在围成单连	通区域
的光滑的闭测地线	(3分)
八、解. 高斯绝妙定理是说曲面的高斯曲率是曲面的内蕴量	(2分)
该定理说明曲面的度量本身蕴含着一定的弯曲性质,并由此产生了曲面的内蕴	几何学.
初县投行人户册投广列宣始由站几何兴 取上初县几何 国北宣北级协户册目	
黎曼将这个定理推广到高维内蕴几何学, 形成黎曼几何. 因此高斯绝妙定理是	_微分几

华东理工大学 2014 - 2015 学年第二学期《微分几何》课程期末考试标准答案 B 2015.8