Modeling Enhanced Geothermal Systems (EGS) for Energy and Metal Recovery

Samy Palaniappan, July 2019

Objective

Creating a model pipeline to analyze data for valorizing metals and energy

System Modeling

Focussed on processes 3 to 6

Electro-precipitation

Model Approach

Individual System
-Model Training
Logistic regression
was used to model
the system
components, using
experimental data.

Testing Data
GenerationStochastic Model

Monte Carlo method was used to generate input data from a given distribution.

Test Data

The model was tested with real brine data from 1. Mol, Belgium, Reykjavik, Iceland, Landau, Germany, Cornwall, UK, and Pannoni, Romania.

Model Approach

Model Algorithm

Model Results - Energy (EP)

Model Results - Li Recovery

Model Results - Sensitivity study

Results - Mol, Belgium

Results - Metals - Mol, Belgium

Results - Energy - Mol, Belgium

Results - Summary

	Reykjanes	Landau	Balmatt	Cornwall	Romania		
Q (L/s)	100	40	40	40	55		
T /°C)	150	123	121	175	140		
S (g/L)	35	103	169	10.8	10.8		

(/ / / / / / XXXII									
El. generation MW _e									
Binary plant	3.6	1.3	2.2	2.3	1.6				
Salt gradient plant	0.083	0.084	0.6	0.008	0.01				
Electrolysis comp.	-0.3	-0.12	-0.00016	-0.005	-0.003				
Gas diffusion comp.	-0.3	-0.6	-3	-0.08	-6				
Net el. generation	3.1	0.7	-0.2	2.2	-4.4				
Heatgangration	,	2	<i>c</i> o	2.4	77				

Metal extracted	mg/L	kg/h	mg/L	kg/h	mg/L	kg/h	mg/L	kg/h	mg/L	kg/h
Cu – Copper	17	6.12	0.038	0.005	0.017	0.002	0.4	0.058	0.2	0.04
As – Arsenic	0.11	0.039	9.7	1.4						
Ag –Silver	0.06	0.022								
Sb – Antimony	0.013	0.005								
Fe- Iron	40	14.4	40	5.8	300	43.2			0.7	0.14
Br – Bromine	30	10.8	100	14.4	70	10.1				
Zn – Zink	5	1.8							1.3	0.26
Sr – Strontium			230	33.1	220	31.7	13	1.9	200	40
Li – Lithium			50	7.2			6	0.86		
Ba – Barium					10	1.4			5	1
B – Boron							4	0.58		
Mn - Manganese							3.4	0.49		
Total metal extr.	92	33	430	62	600	86	27	3.9	207	41

Conclusion

- 1. A model pipeline was constructed, which will output the metals recovered, and the net energy for power plant, upon putting in details about a geothermal fluid can be input
- 2. HTHP electrodeposition is feasible if brine is rich in noble metal content It consumes very little power for 1 kg of metal removed.
- 3. Electro-precipitation process consumes a lot of energy. However, this can be improved by better cell design.
- 4. Salinity gradient / Reverse electrodialysis produces enough energy to sustain Electrochemical process.
- 5. Among the brines studied, Reykjavik Iceland site is most suitable for pilot plant construction (metal value & net energy)

Future Direction

- 1. Improve cell design for EP.
- 2. Collect more data for SGP-RED and ED.
- 3. Try bootstrapped / ensemble models