Solutions for Problems 3.4, 3.5, and 3.7

3.4. The choice of the D-H coordinate frames is shown in the figure below.

The corresponding D-H table is:

	a_i	α_i	d_i	θ_i
Link 1	a_1	90^o	0	θ_1^*
Link 2	0	0	d_2^*	0

Hence, the homogeneous transformation matrices A_1 and A_2 and the homogeneous transformation mation matrix H_2^0 are given as:

$$A_{1} = \begin{bmatrix} c_{1} & 0 & s_{1} & a_{1}c_{1} \\ s_{1} & 0 & -c_{1} & a_{1}s_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} ; A_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_{2}^{0} = \begin{bmatrix} c_{1} & 0 & s_{1} & a_{1}c_{1} + d_{2}s_{1} \\ s_{1} & 0 & -c_{1} & a_{1}s_{1} - d_{2}c_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(1)$$

$$H_2^0 = \begin{bmatrix} c_1 & 0 & s_1 & a_1c_1 + d_2s_1 \\ s_1 & 0 & -c_1 & a_1s_1 - d_2c_1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2)

3.5. The choice of the D-H coordinate frames is shown in the figure below.

The corresponding D-H table is:

	a_i	α_i	d_i	θ_i
Link 1	0	90^{o}	0	θ_1^*
Link 2	0	-90°	d_2^*	0
Link 3	a_3	0	0	θ_3^*

Hence, the homogeneous transformation matrices A_1 , A_2 , and A_3 and the homogeneous transformation matrix H_3^0 are given as:

$$A_{1} = \begin{bmatrix} c_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -c_{1} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad ; \quad A_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad ; \quad A_{3} = \begin{bmatrix} c_{3} & -s_{3} & 0 & a_{3}c_{3} \\ s_{3} & c_{3} & 0 & a_{3}s_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(3)$$

$$H_3^0 = \begin{bmatrix} c_1c_3 - s_1s_3 & -c_1s_3 - c_3s_1 & 0 & d_2s_1 + a_3c_1c_3 - a_3s_1s_3 \\ c_1s_3 + c_3s_1 & c_1c_3 - s_1s_3 & 0 & a_3c_1s_3 - d_2c_1 + a_3c_3s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4)

3.7. The choice of the D-H coordinate frames is shown in the figure below.

The corresponding D-H table is:

	a_i	α_i	d_i	θ_i
Link 1	0	-90°	d_1^*	0
Link 2	0	-90°	d_2^*	90^{o}
Link 3	0	0	d_3^*	0

Hence, the homogeneous transformation matrices A_1 , A_2 , and A_3 and the homogeneous transformation matrix H_3^0 are given as:

$$A_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad ; \quad A_{2} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad ; \quad A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (5)

$$H_3^0 = \begin{bmatrix} 0 & 0 & -1 & -d_3 \\ 0 & -1 & 0 & d_2 \\ -1 & 0 & 0 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (6)