IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 06719

Applicants:

Norio SUGAWARA OTO Rec'd PCT/PTO 0 7 SEP 2004

PATENT

Intn'l. Appln. No.:

PCT/JP04/000035

Intn'l Filing Date:

January 7, 2004

For:

EXTERNAL STORAGE APPARATUS

745 Fifth Avenue New York, NY 10151

EXPRESS MAIL

Mailing Label Number:

EV385413683US

Date of Deposit:

September 7, 2004

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" Service under 37 CFR 1.10 on the date indicated above and is addressed to Mail Stop PCT, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22312-1450.

Typed or printed name of person mailing paper or fee)

(Signature of person mailing paper or fee)

CLAIM OF PRIORITY UNDER 37 C.F.R. § 1.78(a)(2)

Mail Stop PCT Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

Pursuant to 35 U.S.C. 119, this application is entitled to a claim of priority to Japan Application Nos. 2003-002675, 2003-156072 and 2003-400876 filed 08 January, 30 May and 28 November 2003.

Respectfully submitted,

FROMMER LAWRENCE & HAUG LLP Attorneys for Applicants

William S. Frommer Reg. No. 25,506

Tel. (212) 588-0800

PCT/JP 2004/000035

10/506729

07. 1. 2004

PCT

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 1月 8日

REC'D 2 7 FEB 2004

WIPO

出願番号 Application Number:

特願2003-002675

[ST. 10/C]:

Applicant(s):

[JP2003-002675]

出 願 人

ソニー株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 47.1 (a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 2月13日

今井康

Best Available Copy

【書類名】 特許顯

【整理番号】 0390009201

【提出日】 平成15年 1月 8日

【あて先】 特許庁長官 太田 信一郎 殿

【国際特許分類】 G11C 11/34

H05K 05/03

【発明者】

【住所又は居所】 東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】 菅原 典夫

【発明者】

【住所又は居所】 栃木県河内郡南河内町大字下坪山字栄1724番地 ソ

ニー栃木株式会社内

【氏名】 安藤 敬

【特許出願人】

【識別番号】 000002185

【氏名又は名称】 ソニー株式会社

【代理人】

【識別番号】 100072350

【弁理士】

【氏名又は名称】 飯阪 泰雄

【電話番号】 045(212)5517

【手数料の表示】

【予納台帳番号】 043041

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0011328

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 外部記憶装置

【特許請求の範囲】

【請求項1】 本体と、

少なくとも半導体メモリが搭載され一端縁部に外部接続端子を有するメモリ基 板と、

前記メモリ基板が挿通される基板挿通孔を内部に有し、前記基板挿通孔の一端 開口部から前記外部接続端子を外方へ突出させた状態で前記メモリ基板を前記本 体に固定する基板ホルダと、

前記基板ホルダに対して着脱可能とされ前記外部接続端子を保護するためのキャップとを備えた外部記憶装置であって、

前記本体の内部には、前記メモリ基板の組付姿勢が適正でない場合にその組付けを規制する誤組付規制手段が設けられている

ことを特徴とする外部記憶装置。

【請求項2】 前記誤組付規制手段が、前記メモリ基板の他端縁部と交差する方向に延在するリブであって、前記本体に対する前記メモリ基板の組付姿勢が適正でない場合に前記メモリ基板の他端縁部に当接して前記メモリ基板の前記本体内部への進入を規制する

ことを特徴とする請求項1に記載の外部記憶装置。

【請求項3】 前記リブには、前記本体に対する前記メモリ基板の組付姿勢 が適正な場合に前記メモリ基板の他端縁部を挟持する挟持溝が形成されている

ことを特徴とする請求項2に記載の外部記憶装置。

【請求項4】 前記挟持溝が、前記メモリ基板の進入による塑性変形を伴って前記メモリ基板を挟持する

ことを特徴とする請求項3に記載の外部記憶装置。

【請求項5】 前記リブには、前記本体に対する前記メモリ基板の組付姿勢が適正な場合に前記メモリ基板の前記本体内部への進入をガイドするガイド溝が 形成されている

ことを特徴とする請求項2に記載の外部記憶装置。

【請求項6】 前記本体の底部には、前記進入したメモリ基板の他端縁部を 挟持する挟持部が設けられている

ことを特徴とする請求項5に記載の外部記憶装置。

【請求項7】 前記挟持部が、前記メモリ基板の進入による塑性変形を伴って前記メモリ基板を挟持する

ことを特徴とする請求項6に記載の外部記憶装置。

【請求項8】 前記本体には前記基板ホルダが挿通される空所を有し、

前記空所の内面には、前記本体に対する前記基板ホルダの組付姿勢が適正でない場合に前記基板ホルダに当接して前記基板ホルダの前記空所内部への進入を規制する規制部が設けられている

ことを特徴とする請求項1に記載の外部記憶装置。

【請求項9】 前記基板ホルダの、前記空所に挿着される側の端部領域外面には、前記空所に対する前記基板ホルダの挿通方向に沿って直線的なリブが複数設けられており、

前記複数のリブは、前記本体に対する前記基板ホルダの組付姿勢が適正な場合には前記規制部に当接せず、前記基板ホルダの組付姿勢が適正でない場合には前記規制部に当接する位置に各々設けられている

ことを特徴とする請求項8に記載の外部記憶装置。

【請求項10】 前記複数のリブのうち少なくとも一部が、前記本体と前記 基板ホルダとの間の超音波溶着時において溶着用リブとして機能する

ことを特徴とする請求項9に記載の外部記憶装置。

【請求項11】 前記本体が略円柱形状を呈し、その周面部には、前記基板ホルダが挿通される空所が開口されているとともに、

前記キャップの前記本体側端部が、前記本体の周面部に対応した形状を呈して いる

ことを特徴とする請求項1に記載の外部記憶装置。

【請求項12】 前記略円柱形状を呈する本体の各々の端部が、内方に湾曲する曲面形状を呈しているとともに、

前記キャップの表裏面には滑り止め用の波状部が設けられている

ことを特徴とする請求項11に記載の外部記憶装置。

【請求項13】 前記メモリ基板が、前記本体の軸心位置に対してオフセットした位置に配置されている

ことを特徴とする請求項1に記載の外部記憶装置。

【請求項14】 前記本体が、

前記基板ホルダが挿着される第1本体部と、

前記第1本体部の、前記基板ホルダが挿着される側とは反対側の端部領域を形成する第2本体部とからなり、

前記第2本体部には、前記メモリ基板に対してカード状半導体メモリ装置を着 脱するためのスロットが設けられている

ことを特徴とする請求項1に記載の外部記憶装置。

【請求項15】 前記第2本体部が、前記第1本体部に対して複数の係合爪を介してのスナップ係合により結合されている

ことを特徴とする請求項14に記載の外部記憶装置。

【請求項16】 前記第1本体部には、前記第2本体部の組付姿勢が適正でない場合に前記複数の係合爪のうち少なくとも一部の係合爪の前記第1本体部への進入を規制する壁部が設けられている

ことを特徴とする請求項15に記載の外部記憶装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、パーソナルコンピュータ等の外部記憶媒体として交換又は持ち運びが可能な外部記憶装置に関する。

[0002]

【従来の技術】

従来、各種データ又は音声/画像などの記録・保存が可能な記憶装置又は記憶素子として、パーソナルコンピュータ等の機器本体に固定内蔵したものと、機器本体に任意に着脱可能(もしくは交換可能)なものとがある。

[0003]

そして、機器本体に対して自由に取り外しができる外部記憶装置として、例え ばフレキシブルディスク装置などの場合は、ワンタッチで着脱することができ、 目的や対象などに対応して使い分けてデータ類を記録・保存し得るので、整理な どを行い易いという大きな利点がある。

$[0\ 0\ 0\ 4]$

しかし、フレキシブルディスクの場合は、データ類の記録・保存において、信 頼性の点で不十分であるばかりでなく、アクセス時間も遅いという不都合がある 。また、軽薄短小化の動向に対応してコンパクト化すると、必然的に記憶媒体の 面積が小さくなり、記憶容量も低減するので、小型かつ高容量化には限界がある

[0005]

一方、半導体メモリを外部記憶装置として用いる場合、フレキシブルディスク における欠点、すなわちデータ類の記録・保存の信頼性の問題や、アクセス時間 が遅いという問題を解消できるという利点がある。

[0006]

ここで、従来の半導体メモリを使用した外部記憶装置においては、例えば下記 特許文献1に開示されているようなカード型のものが広く知られている。しかし 、このようなカード型の外部記憶装置においては、それを読み書きするドライバ 装置の汎用性に欠け、ユーザーにとっては使い勝手が悪い。

[0007]

【特許文献1】

特開平6-312593号公報

【特許文献2】

特開平11-354213号公報

【特許文献3】

特開2001-160390号公報

[0008]

そこで本出願人は、パーソナルコンピュータのUSB (Universal Serial Bus) ポート等に差し込んで利用する形態の外部記憶装置を先に提案した(特願20

02-187534号)。この外部記憶装置は、専用のドライバを必要とせず、 パーソナルコンピュータに一般的に付属されているUSBポートに差し込むだけ でデータの保存や読み出しが可能であるので非常に利便性に富む。図23~図2 5に上記外部記憶装置の構成を示す。

[0009]

従来の外部記憶装置1は、合成樹脂製の本体2に、半導体メモリが搭載された メモリ基板6を収容した合成樹脂製の基板ホルダ5が挿着され、そのメモリ基板 6の一端縁部に取り付けられたコネクタ等外部接続端子3を本体2の外部へ露出 させた構造を有している。

[0010]

そして、使用時には、外部接続端子3が図示しないパーソナルコンピュータの USBポート等に接続されることによって、当該半導体メモリに記録された情報 が読み出されたり、当該半導体メモリへ情報が記録される。また、非使用時には 、合成樹脂製のキャップ4を本体2に装着することによって、外部接続端子3を 塵埃の付着などから防護し、情報の正確な読み出しや記録・保存を確保するよう にしている。

[0011]

【発明が解決しようとする課題】

さて、上述したようなUSB対応の外部記憶装置1は、本体2、キャップ4、 基板ホルダ5及びメモリ基板6の4つの部品の結合体として構成されており、製 品形態としては、本体2、基板ホルダ5及びメモリ基板6がそれぞれ一体的に固 定され、キャップ4は基板ホルダ5に対して着脱自在とされる。

[0012]

ここで問題となるのは、これら本体 2、基板ホルダ 5 及びメモリ基板 6 のそれぞれの間に組付け姿勢が定められており、これらの部品がひとつでも誤った姿勢で組み付けられると、製品としての信頼性が損なわれる場合があるということである。特に、この種の外部記憶装置は、主としてデザイン的な観点を理由としてその表裏面に対称性を持たせているために外観上の表裏の区別がつきにくく、組付工程において部品の誤組付が発生し易い。

[0013]

上記のように部品間の組付け姿勢が規定されている理由としては種々存在する が、その一例としては、図24に示すように、メモリ基板6が本体2の中心線2 Cに対して裏面側へオフセットして位置するためである。これは、メモリ基板6 の一端縁部に設けられる外部接続端子3の軸心を本体2の軸心2 C上に位置させ るための設計上の理由に依る。この場合、本体2と基板ホルダ5との間でメモリ 基板6のガタツキを防ぐ機構を設ける際、当該機構はメモリ基板6のオフセット 位置に対応した部位に設けられことになるため、本体2及び基板ホルダ5の内部 構成に表裏方向の非対称性が生まれることとなる。

[0014]

ところが、上記のような理由などにより部品の内部構成に表裏方向の非対称性 を持たせていても、作業者が部品の誤組付を認識できない場合がある。部品の誤 組付が認識されないまま組付工程が遂行されると、適正に部品が組み付けられた 製品と比較して機能的に不十分であったり耐久性が劣っているなど、製品として の品質に関する問題にまで発展する場合があるとともに、製品の品質にバラツキ を生じさせる結果となる。

[0015]

特に、上記の問題は、この種の外部記憶装置の小型化によってより顕著なもの となる。

例えば、ノートブックタイプと呼ばれる携帯型のパーソナルコンピュータなど に当該外部記憶装置を使用する場合においては、パーソナルコンピュータの側面 等に設けられているUSBポートからの突出量が大きく、ユーザーに対し扱いに 煩わしさを感じさせることがあるので、外部記憶装置の小型化を図りたい場合が ある。このような場合、小型化された各部品の組付けの際における部品の表裏の 区別はより一層困難性を増し、誤った方向で組付ける可能性が高まってしまう。

[0016]

本発明は上述の問題に鑑みてなされ、組付姿勢が定められた部品間の誤組付を 防止して品質のバラツキの発生を抑止できる外部記憶装置を提供することを課題 とする。

[0017]

【課題を解決するための手段】

以上の課題を解決するに当たり、本発明は、本体と、少なくとも半導体メモリが搭載され一端縁部に外部接続端子を有するメモリ基板と、メモリ基板が挿通される基板挿通孔を内部に有し、この基板挿通孔の一端開口部から外部接続端子を外方へ突出させた状態でメモリ基板を本体に固定する基板ホルダと、基板ホルダに対して着脱可能とされ外部接続端子を保護するためのキャップとを備えた外部記憶装置であって、本体の内部に、メモリ基板の組付姿勢が適正でない場合にその組付けを規制する誤組付規制手段を設けたことを特徴とする。これにより、本体に対するメモリ基板の誤組付を防止するようにしている。

[0018]

誤組付防止手段としては、メモリ基板の他端縁部と交差する方向に延在するリブであって、本体に対するメモリ基板の組付姿勢が適正でない場合にメモリ基板の他端縁部に当接してメモリ基板の本体内部への進入を規制するように構成される。

[0019]

【発明の実施の形態】

以下、本発明の各実施の形態について図面を参照して説明する。

[0020]

(第1の実施の形態)

図1~図12は本発明の第1の実施の形態による外部記憶装置10を示している。

ここで、図1は外部記憶装置10の平面図(表面側から見た図。以下同じ。)、図2は同側面図、図3は外部記憶装置10のキャップを取り外して見たときの平面図、図4は同側面図、図5は外部記憶装置10の本体11側とキャップ14とを分離して示す斜視図、図6は外部記憶装置10の分解斜視図、図7は基板ホルダ13の裏面側斜視図、図8は基板ホルダ13の基板挿通孔25を示す斜視図、図9は本体11の正面図、図10はキャップ14の内部構造を示す斜視図、図11は外部記憶装置10の要部側断面図、図12は外部記憶装置10の一実施態

様を示す斜視図である。

[0021]

本実施の形態の外部記憶装置10は、主として、本体11と、メモリ基板12 と、基板ホルダ13と、キャップ14とから構成される(図5)。

[0022]

本体11は、有色不透明な例えばポリカーボネート樹脂の射出成形体でなり、 内部に基板ホルダ13を収容する空所15を有した略円柱形状に形成されている (図6)。本体11の外周面には当該外部記憶装置10の記録容量に応じた塗装 が施されるとともに、その表面11A側には図示せずともメーカー名のロゴマー クの印刷が施されている。

[0023]

本体11は図9において左右対称に構成されており、その周面部には空所15が開口されている。この空所15の開口形状は、後述する基板ホルダ13の端部領域26の断面形状に対応して、本体11の軸心11Cに関して対称に形成されている。空所15の内壁面には複数本の直線的な規制リブ37,38a及び38bが設けられている。また、本体11の各々の端部11a,11bは凹状に湾曲する曲面形状を呈している(図2、図4~図6)。

[0024]

メモリ基板12は、例えばガラスエポキシ系基板の両面にフラッシュメモリ等の半導体メモリ21や水晶振動子、発光ダイオードなどの電子部品22を搭載したプリント配線板23と、プリント配線板23の表面側の一端縁部に設けられた外部接続端子としてのコネクタ24とで構成されている(図6)。本実施の形態において、メモリ基板12は半導体メモリ21が搭載される側を表面としている

[0025]

コネクタ24は、コンピュータ及びその周辺機器との接続を行うステンレス等の金属からなり、内部には複数本の接続端子が配列されている。なお、本実施の形態においては、コネクタ24はUSB (Universal Serial Bus) に準拠して構成されている。

[0026]

基板ホルダ13は、例えばスモーク色等の半透明なポリカーボネート樹脂の射出成形体でなり、外観的には表裏略対称な形状を有している(図4)。基板ホルダ13の表面13Aには例えば半導体メモリ21の記憶容量などの印刷が施されている。一方、基板ホルダ13の裏面13Bには例えば各国の安全規格に適用したロゴマークなどの印刷が施されている。

[0027]

基板ホルダ13の内部には、メモリ基板12を挿通するための基板挿通孔25が形成されている(図6~図8)。基板ホルダ13の全長は、メモリ基板12の全長よりも短く、基板挿通孔25にメモリ基板12を挿通させた状態では、基板挿通孔25のそれぞれの開口部からメモリ基板12のコネクタ24及びプリント配線板23の縁部42がそれぞれ突出するように形成されている(図3~図5、図11)。

[0028]

メモリ基板12は、基板ホルダ13の基板挿通孔25に対し、図6において矢印A方向に沿って挿通される。このとき、メモリ基板12の挿通方向から見て前方端部に位置するコネクタ24が図3及び図4に示すように基板ホルダ13の一端開口部39から外方へ所定の突出量だけ突出される。開口部39の形状は、コネクタ24の外形に対応して形成されている。また、開口部39の幅方向中心線39Cは本体11の軸心11Cと同一高さに位置している。

[0029]

そこで、メモリ基板12の外周部には、基板挿通孔25の内部であって上記開口部39の近傍に形成された左右一対のストッパ40,40(図6,図8)に当接することにより、開口部39に対するコネクタ24の突出量を規制する段部41(図6)が設けられている。本実施の形態では、段部41は、コネクタ24よりも若干幅広に形成されたプリント配線板23の、コネクタ24が設けられる側の縁部の両隅で構成されている。

[0030]

特に、ストッパ40, 40は、図8に示すように、基板ホルダ13の開口部3

9の幅方向中心線39Cに対して裏面13B側にオフセットした位置に設けられている。このオフセット量は、コネクタ24とプリント配線板23との軸心間の 距離に対応している。

[0031]

したがって、メモリ基板12がその表裏を逆にして基板挿通孔25へ挿通されると、メモリ基板12の段部41が基板挿通孔25内のストッパ40に当接せずに、基板挿通孔25の底部25aに当接することになる。この場合、開口部39からのコネクタ24の突出量が所定量を大きく上回る結果、作業者に誤組付であることを認識させることが可能となる。

[0032]

なお、基板ホルダ13の開口部39の内部には、基板挿通孔25に挿通された メモリ基板12のコネクタ24を支持する複数の支持部18が突設されており、 これらの支持部18によってコネクタ24の厚さ方向に作用する外力から、開口 部39に対するコネクタ24の傾きを抑制するようにしている。

[0033]

一方、基板ホルダ13の、本体11の空所15に挿着される側の端部領域26には、空所15に挿入された際に当該空所15の内壁面30との間に隙間Gを全周に亘って均一に保つための複数の直線リブ28、29a及び29bが設けられている(図6、図7、図11)。これらの直線リブ28、29a及び29bは、空所15に対する基板ホルダ13の挿通方向に沿って設けられている。

[0034]

このうち、直線リブ28は基板ホルダ13の表面13A側に設けられ、直線リブ28a及び直線リブ29bは基板ホルダ13の裏面13B側に設けられている(図6、図7)。特に、基板ホルダ表面13A側の直線リブ28は、図9に示す本体11の空所15の裏面11B側内壁面に設けられる規制リブ37の形成位置に対応しており、基板ホルダ裏面13B側の直線リブ29a及び直線リブ29bは、図9に示す本体11の空所15の表面11A側内壁面に設けられる規制リブ38a及び規制リブ38bの形成位置にそれぞれ対応している。

[0035]

なお、本実施の形態においては、直線リブ28,29a,29b及び規制リブ37,38a,38bの高さ寸法は各々同一とされ、例えば0.03mm~0.07mmに設定されている。

[0036]

基板ホルダ13の端部領域26が挿着される本体11の空所15の底部には、 図9に示すように複数の溶着リブ31が設けられている。これらの溶着リブ31 は、基板ホルダ13の端部領域26の溶着面27に当接するように、当該溶着面 27の対向位置に対応して計8箇所に点在配置されている。

[0037]

また、本体11の空所15の底部であって、メモリ基板12の他端縁部(コネクタ24側とは反対側のプリント配線板23縁部)42に対向する部位には、当該メモリ基板12の縁部42を挟持する略V字形状の挟持溝32が設けられている(図9,図11)。挟持部32の開放側端部43は、メモリ基板12の進入を容易にするためにR加工が施されている。

[0038]

挟持部32は、メモリ基板12の縁部と交差する方向に延在するように空所15底部と一体的に形成された一対のリブ44,44に対して、図11に示すようにすり鉢状に形成され、メモリ基板12の縁部42の進入方向に向かって漸次隙間が小さくなる形状を呈している。基板ホルダ13の溶着面27が溶着リブ31を介して空所15の底部に固着された際、挟持溝32の底部と挟持溝32に挟持されるメモリ基板12の縁部42との間には所定のクリアランスDが形成されるようになっている(図11)。

[0039]

ここで、メモリ基板12はプレスによる打抜き加工等で形成されるが、パンチ及びダイの摩耗状態によって切断面の形状が徐々に変化するために寸法精度が悪いことが多く、本実施の形態においてはメモリ基板12の長手方向の寸法バラツキが例えば±0.1mm程度となっている。また、基板ホルダ13の溶着面27に対する本体11側の溶着リブ31の溶着深さのバラツキも例えば±0.05mm程度であり、射出成形部品である本体11及び基板ホルダ13の寸法バラツキ

もそれぞれ例えば ± 0.05 mm程度であるため、トータルでは ± 0.25 mm以上の寸法バラツキが発生し得る。

[0040]

そこで本実施の形態では、当該寸法バラツキを上記構成の挟持溝32で吸収するようにしている。その結果、クリアランスDの大きさは、寸法バラツキがない状態で例えば0.5mmに設定すれば、寸法バラツキの大きさによって0.25mm~0.75mmの間で変動することになる。

[0041]

すなわち、図11を参照して、すり鉢状に形成された挟持溝32の底部における隙間の大きさgは、メモリ基板12の厚さtよりも小さく形成されており、図示するように挟持溝32を塑性変形させた状態でメモリ基板12を挟持するようにしている。また、上記寸法バラツキの影響を受けてメモリ基板12が挟持溝32に対して浅めに進入した場合であっても、メモリ基板12は挟持溝32を塑性変形させて挟持されるようにしている。

[0042]

ところで、挟持溝32は、図9に示すように本体11の軸心11Cに対して裏面11B側にオフセットした位置に形成されている。このオフセット量は、メモリ基板12におけるコネクタ24とプリント配線板23との軸心間の距離に対応している。

[0043]

したがって、メモリ基板12がその表裏を逆にして本体11の空所15へ挿通されると、メモリ基板12の縁部42がリブ44の頂部に当接することになる。この場合、メモリ基板12の縁部42を挟持溝32で挟持できなくなる結果、空所15内へのメモリ基板12の進入が規制され、作業者に誤組付であることを認識させることが可能となる。

[0044]

また、この誤組付が看過されたとしても、メモリ基板12が挟持溝32内に進入しないために基板ホルダ13の溶着面27が空所15の底部に到達せず、その結果、本体11と基板ホルダ13との溶着不良を引き起こし、当該誤組付での製

品の完成を阻止することも可能となる。

[0045]

以上のようにして、本体11に対するメモリ基板12の組付姿勢が適正ない場合にその組付けを規制する、本発明に係る「誤組付規制手段」が構成される。

[0046]

続いて、外部記憶装置10の非使用時におけるコネクタ24の破損や塵埃などの付着から保護するキャップ14の構成について説明する。

[0047]

キャップ14は例えば不透明なポリカーボネート樹脂の射出成形体で形成されている。キャップ14は図2に示すように外観的に表裏略対称な形状を有している。キャップ14の表面14A及び裏面14Bにはそれぞれ、基板ホルダ13に対する着脱操作の際の滑り止め機能を果たす波状の指掛け部34A,34Bが形成されている。

[0048]

キャップ14の内部には、基板ホルダ13を収容するための空所16が形成されている。空所16の開口内縁17は、図11に示すように本体11の周面部に対応した形状を呈しており、基板ホルダ13への装着時に本体11の周面部に密着してシール部を構成し、内部への塵埃の侵入防止効果を図っている。

[0049]

また、空所16内の左右側面部には、図10に一方側のみ示すが、基板ホルダ 13の側面部に摺接してキャップ14の着脱をガイドするガイドリブ19が設け られている。

[0050]

さらに、基板ホルダ13に対するキャップ14の着脱操作にクリック感をもたせるために、基板ホルダ13の表面13A及び裏面13Bと、キャップ14の表面14A側及び裏面14B側の各々の内面とに、互いに係合する第1及び第2の係合凸部35,36をそれぞれ設けている(図3~図6、図10、図11)。本実施の形態では、これら第1及び第2の係合凸部35,36が、それぞれ計2箇所に設けられている。

[0051]

なお、キャップ14の先端部には、ストラップを挿通させるための通孔45が 形成されている(図5,図6)。通孔45は、キャップ14の先端に形成された 溝46と、この溝46を橋絡する橋絡部47とで構成される。したがって、上記 ストラップは橋絡部47で結合されることになる。

[0052]

次に、以上のように構成される本実施の形態の外部記憶装置 1 0 の組立方法に ついて説明する。

[0053]

先ず、メモリ基板12と基板ホルダ13とを図6に示すようにそれぞれの表面側を同一方向に向けた適正な組付姿勢で対向させた後、矢印A方向に沿って、基板ホルダ13の基板挿通孔25へメモリ基板12を挿通する。そして、メモリ基板12のコネクタ24が基板挿通孔25の開口部39を所定量通過すると、メモリ基板12の段部41が基板挿通孔25内のストッパ40に当接して、それ以上のメモリ基板12の進入が規制される。

[0054]

次いで、メモリ基板12を収容した基板ホルダ13と本体11とを互いに表面13A,11A側を同一方向に向けた適正な組付姿勢で対向配置させる。そして、基板ホルダ13を本体11の空所15へ挿入し、基板ホルダ13の溶着面27と空所15底部の溶着リブ31とを超音波溶着法によって溶着する。これにより、基板挿通孔25の開口部39からコネクタ24を外方へ突出させた状態で、本体11と基板ホルダ13とが固定される。

[0055]

なお、このとき、本体11に対する基板ホルダ13の組付姿勢が適正であるので、直線リブ28,29a,29bと規制リブ37,38a,38bとが互いに当接することはなく、したがって本体11の空所15への基板ホルダ13の進入が規制されることはない。

[0056]

このとき、メモリ基板12の他端側縁部42は、本体11の空所15底部に設

けられた挟持溝32によって挟持される。挟持溝32は略V字形状を呈しているので、メモリ基板12に進入量のバラツキ(プリント配線板23自体の寸法バラツキ、超音波溶着条件のバラツキ等)が生じていたとしも、挟持溝32を塑性変形させる程度が異なるだけで、結果的に当該バラツキを吸収することができる。これにより、メモリ基板12が、基板ホルダ13の基板挿通孔25のストッパ40と、本体11の内部の挟持溝32との間に確実に位置決めされる。

[0057]

これにより、当該外部記憶装置 10の携帯時にメモリ基板 12のガタツキ音の発生を防止でき、ユーザーに機能的な不安や不快感を与えることがなくなる。また、溶着時の振動で基板実装部品の接合材(はんだ)が剥離したり、精密な電子部品である半導体メモリ 21 や水晶振動子などが破損するのを防止でき、各種データまたは音声/画像などの正確な記録・保存機能を確保することができる。

[0058]

次に、基板ホルダ13と一体化された本体11とキャップ14とを対向させる。このとき、両者の組付姿勢に制限はない。そして、キャップ14を基板ホルダ13に装着させるべく、ガイドリブ19と基板ホルダ13の側面部との間の摺接作用を経て基板ホルダ13をキャップ14の空所16へ収容する。

[0059]

基板ホルダ13に対するキャップ14のスライド長が所定量に達すると、第1及び第2の係合凸部35,36が係合する。すなわち、基板ホルダ13側の第1の係合凸部35が、キャップ14を外方へ押し広げるように第2の係合凸部36を乗り越え、図11に示すように第1,第2の係合凸部35,36が互いに係合する。これにより、基板ホルダ13に対するキャップ14の装着作用が完了する

[0060]

以上、本実施の形態の外部記憶装置10によれば、本体11に対して基板ホルダ13を表裏が逆の誤った(適正でない)組付姿勢で組み付けようとしても、基板ホルダ13側の直線リブ28と本体11側の規制リブ37、更に、基板ホルダ13側の直線リブ29a,29bと本体11側の規制リブ38a,38bとが、

互いに当接して本体11に対する基板ホルダ13の組付けを阻止することが可能 となる。

[0061]

また、本体11と基板ホルダ13との間の組付姿勢が適正であっても、基板ホルダ13とメモリ基板12との間の組付姿勢が適正でない場合も想定されるが、この場合においても本体11に対するメモリ基板12の進入を空所15底部のリブ44によって規制することができるので、本体11に対するメモリ基板12の誤組付を回避することができる。

[0062]

これにより、部品間の誤組付を確実に防止して、誤組付による品質の低下及び製品間の品質のバラツキを防止することができる。このような構成は、従来の外部記憶装置1 (図23) に比べて小型化された本実施の形態の外部記憶装置10において、特に顕著な効果を発揮し、部品の小型化に起因する誤組付発生を確実に回避して製品の信頼性を高めることができる。

[0063]

また、部品の小型化に伴って、本体(基板ホルダ)に対するキャップの着脱操作がしづらくなる傾向があるが、本実施の形態によれば、本体11の左右の端部11a,11bが凹状の湾曲面に形成されているとともに、キャップ14の表裏面14A,14Bには波状の指掛け部34A,34Bが設けられているので、キャップ14の着脱操作性の低下を抑制することができる。

[0064]

更に、部品の小型化に伴って、本体と基板ホルダとの間の溶着面積の低下による接合強度不足が懸念されるが、本実施の形態によれば、基板ホルダ14の溶着面27と本体11内部の溶着リブ31との間の溶着作用だけでなく、本発明に係る「規制部」を構成する規制リブ37,38a,38b、あるいは基板ホルダ13側の直線リブ28,29a,29bの少なくとも一部を溶着リブとして機能させることができ、これにより接合強度の低下を回避することができる。

[0065]

なお、基板ホルダ13側の直線リブ28,29a,29bは、基板ホルダ13

の表面13A側に1本、裏面13B側に2本形成されているので、これら直線リブの形成数を目視確認しながら表裏の識別を行うことが可能となる。したがって、基板ホルダ13の表面13A及び裏面13Bに異なる塗装あるいは印刷を施すような場合には表裏の識別が効率的となり、作業性を向上させることができる。

[0066]

図12は、クレードルと呼ばれるUSBケーブル延長機能を備えた補助具50 に上述した構成の外部記憶装置10を適用した例を示している。

補助具50は、パーソナルコンピュータのUSBポートに接続されるUSBケーブル(図示略)を収容するドラム部51と、このドラム部51に対して立設されキャップを取り外した外部記憶装置10が挿着される挿着部52とを備えている。この挿着部52の内部には、外部記憶装置10のコネクタと接続される端子が設けられている。また、この挿着部52の周面には窓52aが設けられており、基板ホルダ13の裏面13Bを部分的に外部に露出している。

このような補助具50を用いることにより、外部記憶装置10とパーソナルコンピュータとを直接接続することなく使用できるようになっている。

[0067]

(第2の実施の形態)

図13~図22は本発明の第2の実施の形態による外部記憶装置110を示している。

ここで、図13は外部記憶装置110の平面図、図14は外部記憶装置110をキャップを取り外して見たときの斜視図、図15は第1本体部121に対するメモリ基板112の支持構造を示す断面図、図16は外部記憶装置110の側断面図、図17は第1本体部121の正面図、図18は第1本体部121を背面側から見た要部の斜視図、図19は第1本体部121とメモリ基板112とを分離して示す斜視図、図20は第1本体部121にメモリ基板112を固定した状態を示す第1本体部121の背面側の要部斜視図、図21は外部記憶装置110に対してメモりカード200の挿脱操作を説明する斜視図、図22は第2本体部122をその正面側から見た斜視図である。

[0068]

本実施の形態の外部記憶装置110は、主として、本体111と、メモリ基板 112と、基板ホルダ113と、キャップ114とから構成され、本体111は 、第1本体部121と第2本体部122との結合体とされる(図13~図16)

[0069]

本体111及びキャップ114はそれぞれ、有色不透明な例えばポリカーボネート樹脂でなる射出成形体で形成されている。第1本体部121は、内部にメモリ基板112及び基板ホルダ113を収容する空所115を有している(図17~図20)。また、キャップ114には、内部にコネクタ124を収容する空所116を有している(図16)。

[0070]

メモリ基板112は、プリント配線板123と、その一端縁部に設けられた外部接続端子としてのコネクタ124とで構成されている(図15)。メモリ基板112の表面112A側には後述するメモリカード200が接続されるカード用コネクタ120が搭載されている。また、メモリ基板112の裏面側には図示せずともフラッシュメモリ等の半導体メモリや水晶振動子などの電子部品が搭載されている。コネクタ124は、コンピュータ及びその周辺機器との接続を行うステンレス等の金属からなり、内部には複数本の接続端子が配列されている。なお本実施の形態においては、コネクタ124はUSB(Universal Serial Bus)に準拠して構成されている。

[0071]

基板ホルダ113は、例えば有色又は無色透明なポリカーボネート樹脂の射出成形体で形成されている。本実施の形態では、基板ホルダ113は外観的に表裏略対称な形状に形成されている。基板ホルダ113の内部には、メモリ基板112を挿通するための基板挿通孔125が形成されている(図15)。基板ホルダ113の全長は、コネクタ124を含むメモリ基板112の全長よりも短く、基板挿通孔125にメモリ基板112を挿通させた状態では、基板挿通孔125のそれぞれの開口部からメモリ基板12のコネクタ部124およびプリント配線板123の端部がそれぞれ突出している(図16)。

[0072]

また、基板ホルダ113の中央部周囲には、フランジ127が形成されている (図15)。フランジ127は、第1本体部121の開口端117に超音波溶着 によって一体化される溶着リブとして構成されている。

[0073]

第1本体部121及びキャップ114の表裏面にそれぞれ形成される切欠き部121s及び切欠き部114sは、基板ホルダ113の表面を部分的に外部へ露出する窓として形成されている(図13,図14,図17,図19)。また、基板ホルダ113の外面及びキャップ114の内面には、図示せずとも、基板ホルダ113に対するキャップ114の装着時に、互いに係合する第1および第2の係合凸部がそれぞれ複数箇所に設けられている。

[0074]

次に、第1本体部121に対するメモリ基板112の位置決め機構について説明する。

[0075]

メモリ基板112は、基板ホルダ13の基板挿通孔125に対し、図15において矢印E方向に沿って挿通される。このとき、メモリ基板112の挿通方向から見て前方端部に位置するコネクタ124が、図15に示すように基板ホルダ113の一端開口部135から外方へ所定の突出量だけ突出される。そこで、メモリ基板112の外周部には、基板ホルダ113のフランジ127に当接することにより、開口部135に対するコネクタ124の突出量を規制する段部137が設けられている(図15)。

[0076]

一方、本体11の内面には、基板ホルダ113に収容されたメモリ基板112の外周部に摺接して、メモリ基板112の進入をガイドするガイド溝119,119が設けられている(図17、図19)。ガイド溝119は、第1本体部121の開口部117近傍に形成されたリブ144,144に形成されており、その形成位置は、第1本体部121の中心線121Cよりも裏面121B側にオフセットした位置とされる(図17)。このオフセット量は、コネクタ124とプリ

ント配線板123との軸心間の距離に対応している。

[0077]

したがって、メモリ基板112をその表裏を逆にして第1本体部121へ組み付けようとすると、メモリ基板112の他端縁部(コネクタ124側とは反対側の端部)142がリブ144に当接してメモリ基板112の第1本体部121内部への進入が規制されることになり、作業者に対して誤組付を認識させることができる。

[0078]

以上のようにして、第1本体部121に対するメモリ基板112の組付姿勢が 適正でない場合にその組付けを規制する、本発明に係る「誤組付規制手段」が構 成される。

[0079]

一方、第1本体部121に対してメモリ基板112が適正な組付姿勢で組み付けられると、上述のように、ガイド溝119によるメモリ基板112のガイド機能が得られ、メモリ基板112とともに基板ホルダ113が第1本体部121の空所115に挿通されることになる。第1本体部121に対する基板ホルダ113のガイド機構は、第1本体部121の切欠き部121sと基板ホルダ113の表裏面に形成された隆起部113sとの間の摺接作用によって得られるようになっている。

[0080]

ガイド溝119の後端部には、メモリ基板112の縁部142を挟持する第1挟持部132が設けられている(図18,図20)。この第1挟持部132は例えば略V字形状の溝部からなり、上述の第1の実施の形態で説明した挟持溝32と同様な構成を有している。第1挟持部132は、基板ホルダ113のフランジ127と第1本体部121の開口部117との間の超音波溶着時において、メモリ基板112の進入による塑性変形を伴ってメモリ基板112の縁部142を挟持する(図20)。これにより、第1本体部121の内部における長手方向の寸法バラツキを吸収するようにしている。特に、本実施の形態では、メモリ基板112の側周部がガイド溝119に当接しているために、基板全周にわたって第1

本体部121及び基板ホルダ113によって支持されることになる。

[0081]

なお、基板ホルダ113と第1本体部121との溶着時、基板ホルダの他端開口部136は、第1本体部121の切欠き部121s, 121a末端に形成された第2挟持部133, 133(図16, 図17)によって挟持されるようになっている。

[0082]

以上のようにして、第1本体部121に対して基板ホルダ113が挿着され、 メモリ基板112はそのコネクタ124を基板ホルダ113の開口部135から 外部へ突出した状態で、基板ホルダ113と第1本体部121との間で支持される。

[0083]

次に、第2本体部122の構成について説明する。

[0084]

第2本体部122は、第1本体部121に対してその後端側開口部118(図17,図18,図20)を覆うように取り付けられている。第2本体部122にはメモリカード200を挿脱するためのスロット150が形成されており、このスロット150に隣接して、挿入されたメモリカード200の下面側を支持する受け面151が設けられている。

[0085]

メモリカード200は、半導体メモリが内蔵されたカード状半導体メモリ装置に相当するもので、本実施の形態では例えば「メモリスティック(商標)」が用いられている。スロット150に挿入されたメモリカード200は、第1本体部1・21の開口端118を介してメモり基板112のカード用コネクタ120に直線的に導かれるようになっている(図16)。

[0086]

本実施の形態の外部記憶装置 1 1 0 は、このメモリカード 2 0 0 を具備することによって、情報の記憶容量の飛躍的な増大を図ることが可能となっている。また、この種のメモリカード 2 0 0 は専用のドライバが必要とされる一方、外部記

憶装置110はパーソナルコンピュータに標準装備されたUSBポートに接続して使用するものであるので汎用性が高い。したがって、メモリカード200の専用ドライバを装備していないコンピュータであっても、当該外部記憶装置110を介してメモリカード200を使用することが可能となり、これによりメモリカード110の利用範囲を拡大することができる。

[0087]

さて、上記のようなことを主眼として構成される本実施の形態の外部記憶装置 110にあっては、第1本体部121と第2本体部122からなる本体111を 一度の成形で形成することは困難であるため、これらを別部材として形成し、後 に結合するようにしている。通常、合成樹脂の射出成形体の接合には、低コスト で信頼性の高い接合強度が得られる超音波溶着が用いられる場合が多いが、本例 では以下の理由で採用することができない。

[0088]

すなわち、図示するように第2本体部122の周面は湾曲面をなしているために、これに用いる超音波溶着ホーンを別途作製する必要が生じる。また、第2本体部122の外形状に対応する溶着ホーンを作製したとしても、第2本体部122の押圧面全域に均等に超音波振動を付与することは困難であるので、局所的に大きな振動力が印加されることになる。したがって、例えば第2本体部122の外面に艶消し処理が施されている場合、不均等な超音波振動の印加によって製品外面に局所的に「照り」と呼ばれる光沢を発生させてしまい、これが原因で外観品質を損ねることになる。

[0089]

そこで、本実施の形態では、第1本体部121と第2本体部122との間の結合をスナップ係合によって行うようにしている。これにより、第2本体部122 をその外観品質を損ねることなく第1本体部121へ結合することが可能となる

[0090]

具体的には、図22に示すように、第2本体部122の内部にはスロット15 0の周囲を囲むように表面122A側、裏面122B側及び左右側部にそれぞれ

係合爪152A, 152A, 152B, 152B, 152S, 152Sが立設されている。これらの係合爪は、第1本体部121の開口端118に対応して形成された、結合面153よりも第1本体部121側に突出している。

[0091]

係合爪152A, 152Aは、第1本体部121の開口端118に形成された被係合部162A, 162Aに係合するようになっており、係合爪152B, 152Bは同じく被係合部162B, 162Bに係合するようになっている(図17, 図18)。また、係合爪152S, 152Sは被係合部162S, 162Sに係合するようになっている(図18, 図20)。

[0092]

特に、被係合部162S, 162Sはともに第1本体部121の軸心と直交する幅方向中心線121Cよりも、表面121A側にオフセットした位置に設けられているので、係合爪152S, 152Sもそれらに対応する位置に形成されている。

[0093]

したがって、第2本体部122が第1本体部121に対して、表裏方向を同一とした適正な組付姿勢で組み付けられる場合には、各係合爪152A, 152B, 152Sが被係合部162A, 162B, 162Sに係合して、第2本体部121の結合面153が第1本体部121の開口端118に当接した結合状態を得ることができる。

[0094]

一方、第2本体部122が第1本体部121に対して、表裏を逆にした適正でない組付姿勢で組み付けられる場合には、係合爪152S,152Sが第1本体部121の開口端118に当接し、第1本体部121内部への進入が規制されることになる。これにより、第1本体部121に対する第2本体部122の誤組付が防止されるので、第2本体部122のスロット150と第1本体部121内部のカード用コネクタ120との間の正対関係を満足した適正な組付状態を確保することができる。

[0095]

以上までにおいては、第1本体部121に対するメモリ基板112の誤組付防止機構と、第1本体部121に対する第2本体部122の誤組付防止機構とについて説明したが、基板ホルダ113に対するメモリ基板112の誤組付防止対策と、第1本体部121に対する基板ホルダ113の誤組付防止対策としては、基板ホルダ113の表面113A及び裏面113Bに施される印刷パターンの相違によって基板ホルダ113の表裏を区別するようにしている。

[0096]

そこで本実施の形態では、図15に示すように、基板ホルダ113のフランジ127後面に対し、左右非対称となるように突起128を1箇所にのみ形成し、この突起128によって印刷工程の際の基板ホルダ113の表裏を区別するようにしている。例えば、印刷工程に用いられる基板ホルダ113の押え治具に対し、基板ホルダ113の表面113A側が上方を向いているときにのみ当該突起128に嵌合するニゲを形成しておき、基板ホルダ113の裏面113B側が上方を向いているときにセット位置に基板ホルダ113をセットできないようにすればよい。

[0097]

以上、本発明の各実施の形態について説明したが、勿論、本発明はこれらに限 定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。

[0098]

例えば以上の第1の実施の形態では、本体11と基板ホルダ13との誤組付を 防止するために各々に直線的なリブを形成したが、これらリブの形成本数は上記 の実施の形態に限られず、その数を更に増加してもよい。これにより、溶着時に おける接合強度信頼性をより一層高めることができる。

[0099]

また、以上の第2の実施の形態では、第1本体部121と第2本体部122との誤組付を防止するために、係合爪152Sと非係合部162Sとの係合位置のみ表裏に関し非対称な位置に配置したが、これ以外の係合爪と被係合部との係合位置に関しても表裏に関して非対称な位置に配置するようにしてもよい。

[0100]

【発明の効果】

以上述べたように、本発明の外部記憶装置によれば、本体に対するメモリ基板の誤組付を確実に防止することができるので、誤組付に起因する製品の品質のバラツキや、製品の信頼性の低下を回避することができる。

【図面の簡単な説明】

【図1】

本発明の第1の実施の形態による外部記憶装置10の平面図である。

【図2】

同側面図である。

【図3】

外部記憶装置10のキャップを取り外して見たときの平面図である。

【図4】

同側面図である。

【図5】

外部記憶装置10の本体11側とキャップ14とを分離して示す斜視図である

【図6】

外部記憶装置10の分解斜視図である。

【図7】

基板ホルダ13の裏面13B側斜視図である。

【図8】

基板ホルダ13の基板挿通孔25を示す斜視図である。

【図9】

本体11の正面図である。

【図10】

キャップ14の内部構造を示す斜視図である。

【図11】

外部記憶装置10の要部側断面図である。

【図12】

外部記憶装置10の一実施態様を示す斜視図である。

【図13】

本発明の第2の実施の形態による外部記憶装置110を示す平面図である。

【図14】

外部記憶装置110をキャップを取り外して見たときの斜視図である。

[図15]

第1本体部121に対するメモリ基板112の支持構造を示す断面図である。

【図16】

外部記憶装置110の側断面図である。

【図17】

第1本体部121の正面図である。

【図18】

第1本体部121を背面側から見た要部の斜視図である。

【図19】

第1本体部121とメモリ基板112とを分離して示す斜視図である。

【図20】

第1本体部121にメモリ基板112を固定した状態を示す、第1本体部12 1の背面側の要部斜視図である。

【図21】

外部記憶装置110に対してメモりカード200の挿脱操作を説明する斜視図である。

【図22】

第2本体部122をその正面側から見た斜視図である。

【図23】

従来の外部記憶装置1の側面図である。

【図24】

従来の外部記憶装置1のキャップを取り外した状態を示す側面図である。

【図25】

同平面図である。

【符号の説明】

10,110…外部記憶装置、11,111…本体、12,112…メモリ基板、13,113…基板ホルダ、14,114…キャップ、15,115…空所、21…半導体メモリ、23,123…プリント配線板、24,124…コネクタ、25,125…基板挿通孔、26…端部領域、27…溶着面、28,29a,29b…直線リブ、31…溶着リブ、32…挟持溝、34…指掛け部、37,38a,38b…規制リブ、39…開口部、42…メモリ基板12の他端側縁部、44,144…リブ、119…ガイド溝、121…第1本体部、122…第2本体部、132…第1挟持部、133…第2挟持部、150…スロット、152A,152B,152S…係合爪、200…メモリカード。

【書類名】図面

【図1】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

特 2 0 0 3 - 0 0 2 6 7 5

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【図23】

【図24】

【図25】

【書類名】

要約書

【要約】

【課題】 組付姿勢が定められた部品間の誤組付を防止して品質のバラツキの発生を抑止できる外部記憶装置を提供すること。

【解決手段】 本体11と、コネクタ24を有するメモリ基板12と、コネクタ24を外部へ突出させた状態でメモリ基板12を本体に固定する基板ホルダ13と、基板ホルダ13に対して着脱可能とされコネクタ24を保護するキャップ14とを備えた外部記憶装置10において、本体11とメモリ基板12と基板ホルダ13とのそれぞれの間に誤組付を規制する手段38,37、40、32を設ける。

【選択図】 図6

特願2003-002675

出願人履歴情報

識別番号

[000002185]

1. 変更年月日 [変更理由]

1990年 8月30日

住所

新規登録

任 所 名

東京都品川区北品川6丁目7番35号

ソニー株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.