Dimension finie

Dans ce chapitre $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

I. Existence de bases en dimension finie

Définition. On dit qu'un \mathbb{K} -espace vectoriel E est de dimension finie s'il admet une famille génératrice finie. Dans le cas contraire, E est dit de dimension infinie.

Exemple. \mathbb{R}^2 , \mathbb{R}^3 et plus généralement \mathbb{R}^n sont de dimensions finies. $\mathbb{K}[X]$ et $\mathcal{F}([a,b],\mathbb{K})$ ne sont pas de dimensions finies.

Remarque : Par convention, le sous-espace vectoriel de E, $\{0_E\}$, est de dimension finie et engendré par la famille vide

Proposition. Théorème de la base extraite : Si E est de dimension finie, alors de toute famille génératrice finie de E on peut extraire une base.

Proposition. Tout espace vectoriel de dimension finie admet une base de cardinal fini.

Proposition. Théorème de la base incomplète :

Si E est de dimension finie, alors toute famille libre de E peut être complétée en une base.

Théorème. Soit $(g_1, ..., g_r)$ une famille génératrice de E et $(f_1, ..., f_p)$ une famille libre de E alors on peut compléter la famille $(f_1, ..., f_p)$ avec des vecteurs de $(g_1, ..., g_r)$ pour en faire une base.

II. Dimension

Théorème. Si E est engendré par n vecteurs, alors :

- toute famille de n+1 éléments de E est liée.
- toute famille d'éléments de E ayant strictement plus de n éléments est liée.
- toute famille libre d'éléments de E est de cardinal inférieur ou égal à n.

Proposition. Soit $(e_1, ..., e_n)$ une famille génératrice de E et $(f_1, ..., f_p)$ une famille libre de E alors $p \le n$.

Proposition. Si E est de dimension finie alors toutes ses bases sont de même cardinal appelé dimension de E.

Définition. Tout sous-espace vectoriel de dimension un est appelé une droite vectorielle. Tout sous-espace vectoriel de dimension deux est appelé une plan vectoriel.

Exemple. \mathbb{R}^n est de dimension n, $\mathbb{R}_n[X]$ est de dimension n+1.

Remarque: Le corps de base est primordial.

Ainsi, \mathbb{C} est un \mathbb{R} -espace vectoriel de dimension 2 et un \mathbb{C} -espace vectoriel de dimension 1. Plus généralement, \mathbb{C}^n est un \mathbb{R} -espace vectoriel de dimension 2n et un \mathbb{C} -espace vectoriel de dimension n.

Proposition. Soit E un \mathbb{K} -espace vectoriel de dimension n.

Une famille génératrice de E a au moins n éléments.

Une famille de E ayant strictement moins de n éléments n'est pas génératrice.

Une famille libre de E a au plus n éléments.

Une famille de E ayant strictement plus de n éléments n'est pas libre.

Proposition. Si E est de dimension finie n alors :

- Toute famille libre à n éléments est une base de E.
- Toute famille génératrice à n éléments est une base de E.

Proposition. Si E et F sont de dimensions finies, alors $E \times F$ aussi et

$$\dim(E \times F) = \dim E + \dim F.$$

Corollaire. Si E est un \mathbb{K} -espace vectoriel de dimension finie, alors pour tout entier p, E^p est de dimension finie égale à $p \times \dim E$.

Proposition. Soient E et F deux \mathbb{K} -espaces vectoriels isomorphes.

- Si E est de dimension finie, alors F aussi et dim $E = \dim F$;
- sinon, E et F sont tous les deux de dimensions infinies.

Remarque : On a donc montré que si E et F sont deux \mathbb{K} -espaces vectoriels isomorphes, alors ils sont de même dimension (finie ou pas).

Proposition. Deux espaces vectoriels de dimension finie sont de même dimension si, et seulement s'ils sont isomorphes.

Ainsi, tout \mathbb{K} -espace vectoriel de dimension n est isomorphe à \mathbb{K}^n .

Proposition. Si E et F sont de dimensions finies, alors $\mathcal{L}(E,F)$ aussi et

$$\dim \mathcal{L}(E, F) = \dim E \times \dim F.$$

III. Sous-espaces vectoriels d'un espace vectoriel de dimension finie

Soit E de dimension finie n.

Théorème. Tout sous-espace vectoriel F de E est de dimension finie et $\dim F \leq n$ avec égalité si, et seulement si, F = E.

Proposition. Tout sous-espace vectoriel de E admet un supplémentaire.

Proposition. Si F et G sont deux sous-espaces vectoriels de E supplémentaires, alors

$$\dim F + \dim G = \dim E.$$

Remarque: Il n'y a pas unicité du supplémentaire mais si G_1 et G_2 sont deux supplémentaires d'un sous-espace vectoriel F de E, alors dim G_1 = dim G_2 . Les sous-espaces vectoriels G_1 et G_2 sont donc isomorphes.

Corollaire. Les hyperplans de E sont exactement les sous-espaces vectoriels de E de dimension n-1

Proposition. Formule de Grassman:

 $Si\ F\ et\ G\ sont\ deux\ sous-espaces\ vectoriels\ de\ E,\ alors$

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G).$$

Corollaire. Si F_1 et F_2 sont deux sous-espaces vectoriels de E, alors

$$\dim(F_1 + F_2) \le \dim F_1 + \dim F_2$$

avec égalité si, et seulement si, F_1 et F_2 sont en somme directe.

Proposition. Soient F et G deux sous-espaces vectoriels de E.

- Si F et G sont en somme directe et si dim $F + \dim G = n$, alors $E = F \oplus G$.
 - $Si \ F + G = E \ et \ si \ dim \ F + dim \ G = n, \ alors \ E = F \oplus G.$

IV. Dimension et applications linéaires

Proposition. Soit $f \in \mathcal{L}(E, F)$ avec E de dimension finie, alors :

- Imf est de dimension finie;
- $\dim Imf \leq \dim E$ avec égalité si, et seulement si, f est injective

Proposition. Soit $f \in \mathcal{L}(E, F)$ avec F de dimension finie, alors :

- Imf est de dimension finie;
- $\dim Imf \leq \dim F$ avec égalité si, et seulement si, f est surjective

Corollaire. Soit $f \in \mathcal{L}(E, F)$ avec E et F deux \mathbb{K} -espaces vectoriels de même dimension finie. Alors f est injective si, et seulement si, f est surjective si, et seulement si, f est bijective.

Corollaire. Soit $f \in \mathcal{L}(E)$ avec E de dimension finie, alors f est surjective si, et seulement si, f est injective.

Proposition. Soient E et F de dimension finie.

Si $f \in \mathcal{L}(E, F)$ est injective, alors dim $E \leq \dim F$.

Si $f \in \mathcal{L}(E, F)$ est surjective, alors dim $E \ge \dim F$.

Proposition. Soit $f \in \mathcal{L}(E, F)$ et G un sous-espace vectoriel de E.

Le sous-espace vectoriel f(G) est alors de dimension finie et $\dim f(G) \leq \dim G$.

V. Rang

Définition. On appelle rang d'une application linéaire la dimension de son image lorsque celle-ci est finie.

Proposition. Si $f \in \mathcal{L}(E, F)$ et si E ou F est de dimension finie, alors Imf aussi. Plus précisément :

- si E est de dimension finie, alors $rq f \leq \dim E$ avec égalité ssi f est injective;
- si F est de dimension finie, alors $rgf \leq \dim F$ avec égalité ssi f est surjective.

Proposition. Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$ telles que les rangs de f et de g soient définis. Alors $rg(g \circ f) \leq \min(rg f, rg g)$.

Proposition. Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$ telles que le rang de g soit défini et que f soit surjective. Alors $rg(g \circ f) = rg g$.

Proposition. Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$ telles que le rang de f soit défini et que g soit injective. Alors $rg(g \circ f) = rg f$.

Théorème. Théorème du rang :

Si $f \in \mathcal{L}(E, F)$ et si E est de dimension finie, alors dim $E = rg f + \dim Kerf$.

On retrouve les deux résultats suivants :

Proposition. Soit $f \in \mathcal{L}(E, F)$ avec E et F de même dimension finie, alors f est surjective si, et seulement si, f est bijective.

Corollaire. Soit $f \in \mathcal{L}(E)$ avec E de dimension finie, alors f est surjective si, et seulement si, f est injective.

Exemple. Soient $a_1, ..., a_{n+1}, n+1$ scalaires distincts.

L'application $\mathbb{K}_n[X] \to \mathbb{K}^{n+1}$, $P \mapsto (P(a_1), \dots, P(a_{n+1}))$ est bijective.

On retrouve le théorème d'interpolation de Lagrange.

Définition. Soit $(f_1,..,f_p)$ une famille de vecteurs de E.

On appelle rang de la famille $(f_1,..,f_p)$ et on note $rg(f_1,..,f_p)$ la dimension de $Vect(f_1,..,f_p)$.

Proposition. Soit $(f_1, ..., f_p)$ une famille de vecteurs de E. On a alors $rg(f_1, ..., f_p) \leq p$ avec égalité si, et seulement si, $(f_1, ..., f_p)$ est libre.

Proposition. Soit E de dimension finie n et $(f_1, ..., f_p)$ une famille de vecteurs de E. On a alors $rg(f_1, ..., f_p) \le n$ avec égalité si, et seulement si, $(f_1, ..., f_p)$ engendre E.

Proposition. Soit $g \in \mathcal{L}(E, F)$ et $(f_1, ..., f_p)$ une famille de vecteurs de E. Alors $rg(g(f_1), ..., g(f_p)) \leq rg(f_1, ..., f_p)$.

Remarque : Pour qu'il y ait égalité il suffit que g soit injective.

En fait, il y a égalité si, et seulement si, $g_{|Vect(f_1,..,f_p)}$ est injective c'est-à-dire si, et seulement si, $Kerg \cap Vect(f_1,..,f_p) = \{0\}.$

VII. Dimension et hyperplans

Soit E de dimension finie n.

Proposition. Soit $(e_1,...,e_n)$ une base de E et $(a_1,...,a_n) \in \mathbb{K}^n$ non nul, alors

$$H = \left\{ \sum_{i=1}^{n} x_{i} e_{i} \text{ avec } (x_{1}, ..., x_{n}) \in \mathbb{K}^{n} \text{ tel que } \sum_{k=1}^{n} a_{i} x_{i} = 0 \right\}$$

est un hyperplan, il s'agit du noyau de la forme linéaire non nulle

$$\phi: E \to \mathbb{K}, \ x = \sum_{i=1}^n x_i e_i \mapsto \sum_{k=1}^n a_i x_i.$$

Réciproquement, si H' est un hyperplan de E, alors il existe des scalaires $b_1,...,b_n$ non tous nuls tels que $x = \sum_{k=1}^n x_i e_i \in H'$ si, et seulement si, $\sum_{k=1}^n b_i x_i = 0$ c'est-à-dire tels que

$$H' = \left\{ \sum_{i=1}^{n} x_i e_i \text{ avec } (x_1, ..., x_n) \in \mathbb{K}^n \text{ tel que } \sum_{k=1}^{n} b_i x_i = 0 \right\}$$

On dit que $\sum_{k=1}^{n} b_i x_i = 0$ est **une** équation de H' dans la base $(e_1, ..., e_n)$.

Proposition. Soient $(a_1,...,a_n) \in \mathbb{K}^n$ et $(b_1,...,b_n) \in \mathbb{K}^n$ deux vecteurs non nuls et H_1 , H_2 les hyperplans d'équations respectives $\sum_{k=1}^n a_i x_i = 0$ et $\sum_{k=1}^n b_i x_i = 0$ dans une même base de E. Alors $H_1 = H_2$ si, et seulement si, les vecteurs $(a_1,...,a_n)$ et $(b_1,...,b_n)$ sont proportionnels.

Proposition. Soit H un hyperplan de E et F un sous-espace vectoriel de E. Alors $\dim(F \cap H) \ge \dim F - 1$.

Plus précisément,
$$\dim(F \cap H) = \begin{cases} \dim F & \text{si } F \subset H \\ \dim F - 1 & \text{sinon} \end{cases}$$

Proposition. L'intersection de m hyperplans de E est de dimension au moins n-m.

Proposition. Tout sous-espace vectoriel de E de dimension d peut s'écrire comme l'intersection de n-d hyperplans.