

ATmega328/P

AVR® Microcontroller with picoPower® Technology

Introduction

The picoPower® ATmega328/P is a low-power CMOS 8-bit microcontroller based on the AVR® enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega328/P achieves throughputs close to 1 MIPS per MHz. This empowers system designers to optimize the device for power consumption versus processing speed.

Feature

High Performance, Low-Power AVR® 8-Bit Microcontroller Family

- Advanced RISC Architecture
 - 131 Powerful instructions
 - Most single clock cycle execution
 - 32 x 8 General purpose working registers
 - Fully static operation
 - Up to 20 MIPS throughput at 20 MHz
 - On-chip 2-cycle multiplier
- High Endurance Nonvolatile Memory Segments
 - 32K Bytes of in-system self-programmable Flash program memory
 - 1K Bytes EEPROM
 - 2K Bytes internal SRAM
 - Write/erase cycles: 10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/100 years at 25°C⁽¹⁾
 - Optional boot code section with independent lock bits
 - In-system programming by on-chip boot program
 - True read-while-write operation
 - Programming lock for software security
- QTouch Library Support
 - Capacitive touch buttons, sliders and wheels
 - QTouch and QMatrix acquisition
 - Up to 64 sense channels
- Peripheral Features
 - Two 8-bit Timer/counters with separate prescaler and Compare mode
 - One 16-bit Timer/counter with separate prescaler, Compare mode, and Capture mode
 - Real time counter with separate oscillator
 - Six PWM channels

© 2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 1

- 8-channel 10-bit ADC in TQFP and QFN/MLF package
 - Temperature measurement
- 6-channel 10-bit ADC in PDIP package
 - Temperature measurement
- Two master/slave SPI serial interface
- One programmable serial USART
- One byte-oriented 2-wire serial interface (Philips I²C compatible)
- Programmable watchdog timer with separate on-chip oscillator
- One on-chip analog comparator
- Interrupt and wake-up on pin change
- Special Microcontroller Features
 - Power-on Reset and programmable Brown-out Detection
 - Internal calibrated oscillator
 - External and internal interrupt sources
 - Six sleep modes: idle, ADC noise reduction, power-save, power-down, standby, and extended standby
- I/O and Packages
 - 23 Programmable I/O lines
 - 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF
- Operating Voltage:
 - 1.8 5.5V
- Temperature Range:
 - -40°C to 105°C
- Speed Grade:
 - ATmega328/P: 0 4 MHz @ 1.8 5.5V, 0 10 MHz @ 2.7 5.5V, 0 20 MHz @ 4.5 5.5V
- Power Consumption at 1 MHz, 1.8V, 25°C
 - Active mode: 0.2 mA
 - Power-Down mode: 0.1 μA
 - Power-Save mode: 0.75 μA (Including 32 kHz RTC)

© 2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 2

Table of Contents

Inti	roduction	1
Fe	ature	1
1.	Description	9
2.	Configuration Summary	10
3.	Ordering Information 3.1. ATmega328 3.2. ATmega328P	11
4.	Block Diagram	13
	Pin Configurations. 5.1. Pinout. 5.2. Pin Descriptions. I/O Multiplexing.	14 17
7.	Resources	21
8.	Data Retention	22
9.	About Code Examples	23
10.	. Capacitive Touch Sensing	
11.	AVR CPU Core	
12.	. AVR Memories	36
	12.1. Overview	36 37 38
	12.6. Register Description	40

13.	System Clock a	and Clock Options	49
	13.1. Clock Syste	ems and Their Distribution	49
	13.2. Clock Source	ces	50
	13.3. Low-Power	Crystal Oscillator	52
	13.4. Full Swing	Crystal Oscillator	54
	13.5. Low-Freque	ency Crystal Oscillator	55
	13.6. Calibrated I	nternal RC Oscillator	56
	13.7. 128 kHz Int	ernal Oscillator	57
	13.8. External Clo	ock	58
	13.9. Timer/Coun	ter Oscillator	59
	13.10. Clock Outp	ut Buffer	59
	13.11. System Clo	ck Prescaler	59
	13.12. Register De	escription	60
14.	Power Manage	ment and Sleep Modes	64
	14.1. Overview		64
	14.2. Sleep Mode	9S	64
	14.3. BOD Disab	le	65
	14.4. Idle Mode		65
	14.5. ADC Noise	Reduction Mode	65
	14.6. Power-Dow	n Mode	66
	14.7. Power-Save	e Mode	66
	14.8. Standby Mo	ode	67
	14.9. Extended S	tandby Mode	67
	14.10. Power Red	uction Register	67
	14.11. Minimizing	Power Consumption	67
	14.12. Register De	escription	69
15.	System Contro	I and Reset	74
	15.1. Resetting th	ne AVR	74
	15.2. Reset Sour	ces	74
	15.3. Power-on F	leset	75
	15.4. External Re	set	76
	15.5. Brown-out I	Detection	76
	15.6. Watchdog S	System Reset	77
	15.7. Internal Vol	tage Reference	77
	15.8. Watchdog 7	-imer	78
	15.9. Register De	escription	80
16.	Interrupts		84
	16.1. Interrupt Ve	ctors in ATmega328/P	84
		escription	
17.	EXTINT - Exter	nal Interrupts	89
	17.1. Pin Change	Interrupt Timing	89
		escription	
	_	•	
18	I/O-Ports		99

	18.1.	Overview	99
	18.2.	Ports as General Digital I/O	100
	18.3.	Alternate Port Functions	103
	18.4.	Register Description	115
19.	8-bit	Timer/Counter0 (TC0) with PWM	127
	19.1.	Features	127
	19.2.	Overview	127
	19.3.	Timer/Counter Clock Sources	129
	19.4.	Counter Unit	129
	19.5.	Output Compare Unit	130
	19.6.	Compare Match Output Unit	132
	19.7.	Modes of Operation	134
	19.8.	Timer/Counter Timing Diagrams	138
	19.9.	Register Description	140
20.	16-bi	t Timer/Counter1 (TC1) with PWM	152
	20.1.	Overview	152
	20.2.	Features	152
	20.3.	Block Diagram	152
	20.4.	Definitions	153
	20.5.	Registers	154
	20.6.	Accessing 16-bit Timer/Counter Registers	154
	20.7.	Timer/Counter Clock Sources	157
	20.8.	Counter Unit	157
	20.9.	Input Capture Unit	158
	20.10.	Output Compare Units	160
	20.11.	Compare Match Output Unit	162
	20.12.	Modes of Operation	163
		Timer/Counter 0, 1 Prescalers	
		Timer/Counter Timing Diagrams	
	20.15.	Register Description	173
21.	Time	r/Counter 0, 1 Prescalers	186
	21.1.	Internal Clock Source	186
	21.2.	Prescaler Reset	186
	21.3.	External Clock Source	186
	21.4.	Register Description	188
22.	8-bit	Timer/Counter2 (TC2) with PWM and Asynchronous Operation	190
	22.1.	Features	190
	22.2.	Overview	190
	22.3.	Timer/Counter Clock Sources	192
	22.4.	Counter Unit	192
	22.5.	Output Compare Unit	193
	22.6.	Compare Match Output Unit	195
	22.7.	Modes of Operation	196
	22.8.	Timer/Counter Timing Diagrams	200

	22.9.	Asynchronous Operation of Timer/Counter2	201
	22.10.	Timer/Counter Prescaler	203
	22.11.	Register Description	203
23.	Seria	l Peripheral Interface (SPI)	218
	23.1.	Features	218
	23.2.	Overview	218
	23.3.	SS Pin Functionality	222
	23.4.	Data Modes	222
	23.5.	Register Description	223
24.	Unive	ersal Synchronous Asynchronous Receiver Transceiver (USART)	228
	24.1.	Features	228
	24.2.	Overview	228
	24.3.	Block Diagram	228
	24.4.	Clock Generation	229
	24.5.	Frame Formats	232
	24.6.	USART Initialization	233
	24.7.	Data Transmission – The USART Transmitter	234
	24.8.	Data Reception – The USART Receiver	236
	24.9.	Asynchronous Data Reception	240
	24.10.	Multi-Processor Communication Mode	243
	24.11.	Examples of Baud Rate Setting	243
	24.12.	Register Description	246
25.	USAI	RT in SPI (USARTSPI) Mode	256
	25.1.	Features	256
	25.2.	Overview	256
	25.3.	Clock Generation	256
	25.4.	SPI Data Modes and Timing	257
	25.5.	Frame Formats	257
	25.6.	Data Transfer	259
	25.7.	AVR USART MSPIM vs. AVR SPI	260
	25.8.	Register Description	261
26.	Two-	Wire Serial Interface (TWI)	262
	26.1.	Features	262
	26.2.	Two-Wire Serial Interface Bus Definition	262
	26.3.	Data Transfer and Frame Format	263
	26.4.	Multi-Master Bus Systems, Arbitration, and Synchronization	266
	26.5.	Overview of the TWI Module	268
	26.6.	Using the TWI	270
	26.7.	Transmission Modes	273
	26.8.	Multi-Master Systems and Arbitration	291
	26.9.	Register Description	292
27.	Analo	og Comparator (AC)	300
	27.1.	Overview	300

	27.2.	Analog Comparator Multiplexed Input	300
	27.3.	Register Description	301
28.	Anal	og-to-Digital Converter (ADC)	305
	28.1.	Features	305
		Overview	
	28.3.	Starting a Conversion	307
	28.4.	Prescaling and Conversion Timing	308
	28.5.	Changing Channel or Reference Selection	310
	28.6.	ADC Noise Canceler	312
	28.7.	ADC Conversion Result	315
	28.8.	Temperature Measurement	316
	28.9.	Register Description	316
29.	debu	gWIRE On-chip Debug System	325
	29.1.	Features	325
	29.2.	Overview	325
	29.3.	Physical Interface	325
	29.4.	Software Breakpoints	326
	29.5.	Limitations of debugWIRE	326
	29.6.	Register Description	326
30.	Boot	Loader Support – Read-While-Write Self-programming (BTLDR)	328
	30.1.	Features	328
	30.2.	Overview	328
	30.3.	Application and Boot Loader Flash Sections	328
	30.4.	Read-While-Write and No Read-While-Write Flash Sections	329
	30.5.	Boot Loader Lock Bits	331
	30.6.	Entering the Boot Loader Program	332
	30.7.	Addressing the Flash During Self-Programming	333
	30.8.	Self-Programming the Flash	334
	30.9.	Register Description	342
31.	Mem	ory Programming (MEMPROG)	345
	31.1.	Program And Data Memory Lock Bits	345
	31.2.	Fuse Bits	346
	31.3.	Signature Bytes	348
	31.4.	Calibration Byte	349
	31.5.	Serial Number	349
	31.6.	Page Size	349
	31.7.	Parallel Programming Parameters, Pin Mapping, and Commands	349
	31.8.	Parallel Programming	351
	31.9.	Serial Downloading	359
32.	Elect	rical Characteristics	364
	32.1.	Absolute Maximum Ratings	364
		Common DC Characteristics	
	32.3.	Speed Grades	367

	32.4. Clock Characteristics	368
	32.5. System and Reset Characteristics	369
	32.6. SPI Timing Characteristics	
	32.7. Two-Wire Serial Interface Characteristics	
	32.8. ADC Characteristics	
	32.9. Parallel Programming Characteristics	374
33.	Typical Characteristics (T _A = -40°C to 85°C)	377
	33.1. ATmega328 Typical Characteristics	
0.4		
34.	Typical Characteristics (T _A = -40°C to 105°C)	
	34.1. ATmega328P Typical Characteristics	402
35.	Register Summary	427
	35.1. Note	429
26	Instruction Cot Cummon	424
30.	Instruction Set Summary	43।
37.	Packaging Information	436
	37.1. 32-pin 32A	436
	37.2. 32-pin 32M1-A	437
	37.3. 28-pin 28M1	438
	37.4. 28-pin 28P3	438
38.	Errata	440
	38.1. Errata ATmega328/P	440
39.	Datasheet Revision History	441
	39.1. Rev. A – 2/2018	
	39.2. Pre Microchip Revisions	
Th	a Microschin Wah Cita	440
1116	e Microchip Web Site	442
Cu	stomer Change Notification Service	442
Cu	stomer Support	442
IVIIC	crochip Devices Code Protection Feature	442
Leg	gal Notice	443
Tra	ademarks	443
Qu	ality Management System Certified by DNV	444
\\\\c	orldwide Sales and Service	445

1. Description

The AVR[®] core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in a single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega328/P provides the following features: 32Kbytes of in-system programmable Flash with read-while-write capabilities, 1Kbytes EEPROM, 2Kbytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), three flexible timer/counters with Compare modes and PWM, 1 serial programmable USARTs, 1 byte-oriented 2-wire Serial Interface (I²C), a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable watchdog timer with internal oscillator, an SPI serial port, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, timer/counters, SPI port, and interrupt system to continue functioning. The Power-Down mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware Reset. In Power-Save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. In Extended Standby mode, both the main oscillator and the asynchronous timer continue to run.

Microchip offers the QTouch[®] library for embedding capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression[™] (AKS[™]) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.

The device is manufactured using Microchip's high density nonvolatile memory technology. The on-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an on-chip boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the boot Flash section will continue to run while the application Flash section is updated, providing true read-while-write operation. By combining an 8-bit RISC CPU with in-system self-programmable Flash on a monolithic chip, the ATmega328/P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega328/P is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

2. Configuration Summary

Features	ATmega328/P
Pin Count	28/32
Flash (Bytes)	32K
SRAM (Bytes)	2K
EEPROM (Bytes)	1K
General Purpose I/O Lines	23
SPI	2
TWI (I ² C)	1
USART	1
ADC	10-bit 15 kSPS
ADC Channels	8
8-bit Timer/Counters	2
16-bit Timer/Counters	1

3. Ordering Information

3.1 ATmega328

Speed [MHz] ⁽³⁾	Power Supply [V]	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20	1.8 - 5.5	ATmega328-AU ATmega328-AUR ⁽⁵⁾ ATmega328-MMH ⁽⁴⁾ ATmega328-MMHR ⁽⁴⁾⁽⁵⁾ ATmega328-MU ATmega328-MUR ⁽⁵⁾ ATmega328-PU	32A 32A 28M1 28M1 32M1-A 32M1-A 28P3	Industrial (-40°C to 85°C)

Note:

- 1. This device can also be supplied in wafer form. Please contact your local Microchip sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. Please refer to Speed Grades for Speed vs. V_{CC}
- 4. Tape & Reel.
- 5. NiPdAu Lead Finish.

Package	Package Type		
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)		
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)		
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)		
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)		

3.2 ATmega328P

Speed [MHz] ⁽³⁾	Power Supply [V]	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20	1.8 - 5.5	ATmega328P-AU ATmega328P-AUR ⁽⁵⁾ ATmega328P-MMH ⁽⁴⁾ ATmega328P-MMHR ⁽⁴⁾⁽⁵⁾ ATmega328P-MU	32A 32A 28M1 28M1 32M1-A	Industrial (-40°C to 85°C)

Ordering Information

Speed [MHz] ⁽³⁾	Power Supply [V]	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
		ATmega328P-MUR ⁽⁵⁾ ATmega328P-PU	32M1-A 28P3	
		ATmega328P-AN ATmega328P-ANR ⁽⁵⁾ ATmega328P-MN ATmega328P-MNR ⁽⁵⁾ ATmega328P-PN	32A 32A 32M1-A 32M1-A 28P3	Industrial (-40°C to 105°C)

Note:

- 1. This device can also be supplied in wafer form. Please contact your local Microchip sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. Please refer to Speed Grades for Speed vs. V_{CC}
- 4. Tape & Reel.
- 5. NiPdAu Lead Finish.

Package	Package Type		
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)		
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)		
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)		
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)		

4. Block Diagram

Figure 4-1. Block Diagram

5. Pin Configurations

5.1 Pinout

Figure 5-1. 28-pin PDIP

Figure 5-2. 28-pin MLF Top View

Figure 5-4. 32-pin MLF Top View

5.2 Pin Descriptions

5.2.1 VCC

Digital supply voltage pin.

5.2.2 GND

Ground.

5.2.3 Port B (PB[7:0]) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each pin). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated during a Reset condition even if the clock is not running.

DS40001984A-page 18

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting oscillator amplifier.

If the internal calibrated RC oscillator is used as chip clock source, PB[7:6] is used as TOSC[2:1] input for the asynchronous timer/counter2 if the AS2 bit in ASSR is set.

5.2.4 Port C (PC[5:0])

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each pin). The PC[5:0] output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated during a Reset condition even if the clock is not running.

5.2.5 **PC6/RESET**

If the RSTDISBL fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a Reset.

The various special features of Port C are elaborated in the Alternate Functions of Port C section.

5.2.6 Port D (PD[7:0])

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each pin). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated during a Reset condition even if the clock is not running.

5.2.7 AV_{CC}

 AV_{CC} is the supply voltage pin for the A/D Converter (ADC), PC[3:0], and PE[3:2]. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter. Note that PC[6:4] use digital supply voltage, V_{CC} .

5.2.8 AREF

AREF is the analog reference pin for the A/D Converter.

5.2.9 ADC[7:6]

In the TQFP and VFQFN package, ADC[7:6] serve as analog inputs to the A/D converter. These pins are powered by the analog supply and serve as 10-bit ADC channels.

6. I/O Multiplexing

Each pin is by default controlled by the PORT as a general purpose I/O and alternatively it can be assigned to one of the peripheral functions.

The following table describes the peripheral signals multiplexed to the PORT I/O pins.

Table 6-1. PORT Function Multiplexing

(32-pin MLF/TQFP) Pin#	(28-pin MLF) Pin#	(28-pin PIPD) Pin#	PAD	EXTINT	PCINT	ADC/AC	osc	T/C #0	T/C #1	USART 0	I ² C 0	SPI 0
1	1	5	PD3	INT1	PCINT19			OC2B				
2	2	6	PD4		PCINT20			ТО		XCK0		
4	3	7	VCC									
3	4	8	GND									
6	-	-	VCC									
5	-	-	GND									
7	5	9	PB6		PCINT6		XTAL1/ TOSC1					
8	6	10	PB7		PCINT7		XTAL2/ TOSC2					
9	7	11	PD5		PCINT21			OC0B	T1			
10	8	12	PD6		PCINT22	AIN0		OC0A				
11	9	13	PD7		PCINT23	AIN1						
12	10	14	PB0		PCINT0		CLKO	ICP1				
13	11	15	PB1		PCINT1			OC1A				
14	12	16	PB2		PCINT2			OC1B				SS0
15	13	17	PB3		PCINT3			OC2A				MOSI0
16	14	18	PB4		PCINT4							MISO0
17	15	19	PB5		PCINT5							SCK0
18	16	20	AVCC									
19	-	-	ADC6			ADC6						
20	17	21	AREF									
21	18	22	GND									
22	-	-	ADC7			ADC7						
23	19	13	PC0		PCINT8	ADC0						
24	20	24	PC1		PCINT9	ADC1						
25	21	25	PC2		PCINT10	ADC2						
26	22	26	PC3		PCINT11	ADC3						
27	23	27	PC4		PCINT12	ADC4					SDA0	
28	24	28	PC5		PCINT13	ADC5					SCL0	

ATmega328/P

I/O Multiplexing

(32-pin MLF/TQFP) Pin#	(28-pin MLF) Pin#	(28-pin PIPD) Pin#	PAD	EXTINT	PCINT	ADC/AC	osc	T/C #0	T/C #1	USART 0	I ² C 0	SPI 0
29	25	1	PC6/RESET		PCINT14							
30	26	2	PD0		PCINT16					RXD0		
31	27	3	PD1		PCINT17					TXD0		
32	28	4	PD2	INT0	PCINT18							

7. Resources

A comprehensive set of development tools, application notes, and datasheets are available for download on http://www.microchip.com/design-centers/8-bit/microchip-avr-mcus.

8. Data Retention

Reliability qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C.

9. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Confirm with the C compiler documentation for more details.

For I/O registers located in extended I/O map, IN, OUT, SBIS, SBIC, CBI, and SBI instructions must be replaced with instructions that allow access to extended I/O. Typically LDS and STS combined with SBRS, SBRC, SBR, and CBR.

10. Capacitive Touch Sensing

10.1 QTouch Library

The QTouch[®] library provides a simple to use solution to realize touch sensitive interfaces on most AVR[®] microcontrollers. The QTouch library includes support for the QTouch and QMatrix[™] acquisition methods.

Touch sensing can be added to any application by linking the appropriate QTouch library for the AVR microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API's to retrieve the channel information and determine the touch sensor states.

The QTouch library is FREE and downloadable from QTouch Library . For implementation details and other information, refer to the QTouch Library User Guide, also available for download from the Microchip website.

11. AVR CPU Core

11.1 Overview

This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must, therefore, be able to access memories, perform calculations, control peripherals, and handle interrupts.

Figure 11-1. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

The fast-access register file contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the register file, the operation is executed, and the result is stored back in the register file – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for data space addressing – enabling efficient address calculations. One of these address pointers can be used as an

address pointer for lookup tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided into two sections, the Boot Program section and the Application Program section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes into the Application Flash memory section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently, the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the Stack Pointer (SP) in the Reset routine (before subroutines or interrupts are executed). The SP is read/write accessible in the I/O space. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the Status register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control registers, SPI, and other I/O functions. The I/O memory can be accessed directly, or as the data space locations following those of the register file, 0x20 - 0x5F. In addition, this device has extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used.

11.2 Arithmetic Logic Unit (ALU)

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories: arithmetic, logical, and bit-functions. Some implementations of the architecture provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See *Instruction Set Summary* section for a detailed description.

Related Links

Instruction Set Summary

11.3 Status Register

The Status register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. The Status register is updated after all ALU operations, as specified in the instruction set reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.

© 2018 Microchip Technology Inc. Datasheet Complete DS40001984A-page 26

24. Universal Synchronous Asynchronous Receiver Transceiver (USART)

24.1 Features

- Full Duplex Operation (Independent Serial Receive and Transmit Registers)
- · Asynchronous or Synchronous Operation
- Master or Slave Clocked Synchronous Operation
- High-Resolution Baud Rate Generator
- Supports Serial Frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits
- Odd or Even Parity Generation and Parity Check Supported by Hardware
- Data OverRun Detection
- Framing Error Detection
- · Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
- Three Separate Interrupts on TX Complete, TX Data Register Empty, and RX Complete
- Multi-processor Communication Mode
- Double Speed Asynchronous Communication Mode

24.2 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a highly flexible serial communication device.

The USART can also be used in Master SPI mode. The Power Reduction USART bit in the Power Reduction Register (PRR.PRUSARTn) must be written to '0' in order to enable USARTn.

Related Links

USART in SPI (USARTSPI) Mode I/O-Ports PRR

24.3 Block Diagram

In the USART block diagram, the CPU accessible I/O registers and I/O pins are shown in bold. The dashed boxes in the block diagram separate the three main parts of the USART (listed from the top): Clock generator, transmitter, and receiver. Control registers are shared by all units. The clock generation logic consists of synchronization logic for external clock input used by synchronous slave operation, and the baud rate generator. The XCKn (Transfer clock) pin is only used by synchronous transfer mode. The transmitter consists of a single write buffer, a serial Shift register, parity generator, and control logic for handling different serial frame formats. The write buffer allows a continuous transfer of data without any delay between frames. The receiver is the most complex part of the USART module due to its clock and data recovery units. The receiver units are used for asynchronous data reception. In addition to the recovery units, the receiver includes a parity checker, control logic, a Shift register, and a two-level receive buffer (UDRn). The receiver supports the same frame formats as the transmitter and can detect frame error, data overrun, and parity errors.

Figure 24-1. USART Block Diagram

Note: Refer to the *Pin Configurations* and the *I/O-Ports* description for USART pin placement.

24.4 Clock Generation

The clock generation logic generates the base clock for the transmitter and receiver. The USART supports four modes of clock operation: Normal asynchronous, Double Speed asynchronous, Master synchronous, and Slave synchronous mode. The USART mode select bit 0 in the USART Control and Status Register n C (UCSRnC.UMSELn0) selects between asynchronous and synchronous operation. Double speed (asynchronous mode only) is controlled by the U2Xn found in the UCSRnA register. When using synchronous mode (UMSELn0=1), the data direction register for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode) or external (Slave mode). The XCKn pin is only active when using Synchronous mode.

Below is a block diagram of the clock generation logic.

Figure 24-2. Clock Generation Logic, Block Diagram

Signal description:

- txclk: Transmitter clock (internal signal).
- rxclk: Receiver base clock (internal signal).
- xcki: Input from XCKn pin (internal signal). Used for synchronous slave operation.
- xcko: Clock output to XCKn pin (internal signal). Used for synchronous master operation.
- fosc: System clock frequency.

24.4.1 Internal Clock Generation – The Baud Rate Generator

Internal clock generation is used for the Asynchronous and the Synchronous Master modes of operation. The description in this section refers to the clock generation logic block diagram in the previous section.

The USART Baud Rate Register (UBRRn) and the down-counter connected to it function as a programmable prescaler or baud rate generator. The down-counter, running at system clock (fosc), is loaded with the UBRRn value each time the counter has counted down to zero or when the UBRRnL register is written. A clock is generated each time the counter reaches zero. This clock is the baud rate generator clock output (= f_{osc}/(UBRRn+1)). The transmitter divides the baud rate generator clock output by 2, 8, or 16 depending on the mode. The baud rate generator output is used directly by the receiver's clock and data recovery units. However, the recovery units use a state machine that uses 2, 8, or 16 states depending on the mode set by the state of the UMSEL, U2Xn and DDR_XCK bits.

The table below contains equations for calculating the baud rate (in bits per second) and for calculating the UBRRn value for each mode of operation using an internally generated clock source.

Table 24-1. Equations for Calculating Baud Rate Register Setting

Operating Mode	Equation for Calculating Baud Rate 1)	Equation for Calculating UBRRn Value
Asynchronous Normal mode (U2Xn = 0)	$BAUD = \frac{f_{OSC}}{16(\mathbf{UBRR}n + 1)}$	$\mathbf{UBRR}n = \frac{f_{\mathrm{OSC}}}{16\mathrm{BAUD}} - 1$
Asynchronous Double Speed mode (U2Xn = 1)	$BAUD = \frac{f_{OSC}}{8(\mathbf{UBRR}n + 1)}$	$\mathbf{UBRR}n = \frac{f_{\mathrm{OSC}}}{8\mathrm{BAUD}} - 1$
Synchronous Master mode	$BAUD = \frac{f_{OSC}}{2(\mathbf{UBRR}n + 1)}$	$\mathbf{UBRR}n = \frac{f_{\mathrm{OSC}}}{2\mathrm{BAUD}} - 1$

Universal Synchronous Asynchronous Receiver ...

Note: 1. The baud rate is defined to be the transfer rate in bits per second (bps)

BAUD Baud rate (in bits per second, bps)

fosc System oscillator clock frequency

UBRRn Contents of the UBRRnH and UBRRnL registers, (0-4095).

Some examples of UBRRn values for some system clock frequencies are found in Examples of Bould Rate Settings

of Baud Rate Settings.

24.4.2 Double Speed Operation (U2Xn)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has effect on the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling the transfer rate for asynchronous communication. However, in this case, the Receiver will only use half the number of samples (reduced from 16 to 8) for data sampling and clock recovery, and therefore a more accurate baud rate setting and system clock are required when this mode is used.

For the transmitter, there are no downsides.

24.4.3 External Clock

External clocking is used by the synchronous slave modes of operation. The description in this section refers to the clock generation logic block diagram in the previous section.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the chance of meta-stability. The output from the synchronization register must then pass through an edge detector before it can be used by the transmitter and receiver. This process introduces a two CPU clock period delay and therefore the maximum external XCKn clock frequency is limited by the following equation:

$$f_{\text{XCKn}} < \frac{f_{\text{OSC}}}{4}$$

The value of f_{osc} depends on the stability of the system clock source. It is therefore recommended to add some margin to avoid possible loss of data due to frequency variations.

24.4.4 Synchronous Clock Operation

When synchronous mode is used (UMSEL = 1), the XCKn pin will be used as either clock input (slave) or clock output (master). The dependency between the clock edges and data sampling or data change is the same. The basic principle is that data input (on RxDn) is sampled at the opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 24-3. Synchronous Mode XCKn Timing

The UCPOL bit UCRSC selects which XCKn clock edge is used for data sampling and which is used for data change. As the above timing diagram shows, when UCPOL is zero, the data will be changed at rising XCKn edge and sampled at falling XCKn edge. If UCPOL is set, the data will be changed at falling XCKn edge and sampled at rising XCKn edge.

24.5 Frame Formats

A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of the following as valid frame formats:

- 1 start bit
- 5, 6, 7, 8, or 9 data bits
- no, even or odd parity bit
- 1 or 2 stop bits

A frame starts with the start bit, followed by the data bits (from five up to nine data bits in total): first the least significant data bit, then the next data bits ending with the most significant bit. If enabled, the parity bit is inserted after the data bits, before the one or two stop bits. When a complete frame is transmitted, it can be directly followed by a new frame, or the communication line can be set to an idle (high) state. the figure below illustrates the possible combinations of the frame formats. Bits inside brackets are optional.

Figure 24-4. Frame Formats

St	Start bit, always low.
(n)	Data bits (0 to 8).
Р	Parity bit. Can be odd or even.
Sp	Stop bit, always high.
IDLE	No transfers on the communication line (RxDn or TxDn). An IDLE line must be high.

The frame format used by the USART is set by:

- Character Size bits (UCSRnC.UCSZn[2:0]) select the number of data bits in the frame.
- Parity Mode bits (UCSRnC.UPMn[1:0]) enable and set the type of parity bit.
- Stop Bit Select bit (UCSRnC.USBSn) select the number of stop bits. The Receiver ignores the second stop bit.

The receiver and transmitter use the same setting. Note that changing the setting of any of these bits will corrupt all ongoing communication for both the receiver and transmitter. An FE (Frame Error) will only be detected in cases where the first stop bit is zero.

24.5.1 **Parity Bit Calculation**

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the result of the exclusive or is inverted. The relation between the parity bit and data bits is as follows:

$$P_{\text{even}} = d_{n-1} \oplus ... \oplus d_3 \oplus d_2 \oplus d_1 \oplus d_0 \oplus 0$$