

SEGMENTEZ LES CLIENTS D'UN SITE E-COMMERCE

Projet 5 - Parcours Data Scientist – OpenClassrooms

Christophe ABALLEA – Mai 2024

Olist: entreprise brésilienne proposant une solution de vente sur les marketplaces en ligne

- Requêtes SQL pour le Dashboard
- Mission principale :
 Réaliser une segmentation de la clientèle de type RFM
- Compléter par une simulation de contrat de maintenance

PLAN

1 — 2 — 3 — 4

Les données

- Analyse
- Feature ingeniering
- Dataset final

Les modèles

- KMeans
 - DBSCAN
- AgglomerativeClustering

Le clustering

- Focus sur le modèle retenu
- Interprétations métiers

- La maintenance
 - Démarche
 - Évolution des scores ARI

Les données

SCHÉMA RELATIONNEL

ANALYSE EXPLORATOIRE

Sélection des features pour réaliser une segmentation des clients de type **RFM** :

- Récence : Nombre de jours écoulés depuis le dernier achat
- Fréquence : Nombre total d'achats effectués par un client
- Montant : Montant total dépensé par un client

Création d'un dataset complet 94 703 observations X 24 features

1 observation = 1 commande

Basé sur les tables :

- 'customers'
- 'orders'
- 'order items'
- 'order_reviews'

Méthode: groupby + merge

	Distribution Montant
140000 -	
120000 -	
100000 -	
용 80000 -	
Nombre de Clients 80000 -	
Š 40000 -	
20000 -	
0 -	
	0 0000
	0 2000 4000 6000 8000 10000 12000 14000 Montant total dépensé

0 1 91829 96.97 1 2 2639 2.79 2 3 187 0.20 3 4 29 0.03 4 5 9 0.01 5 6 5 0.01 6 7 3 0.00 7 9 1 0.00 8 16 1 0.00		nb_commandes	Nbre de clients	%
2 3 187 0.20 3 4 29 0.03 4 5 9 0.01 5 6 5 0.01 6 7 3 0.00 7 9 1 0.00	0	1	91829	96.97
3 4 29 0.03 4 5 9 0.01 5 6 5 0.01 6 7 3 0.00 7 9 1 0.00	1	2	2639	2.79
4 5 9 0.01 5 6 5 0.01 6 7 3 0.00 7 9 1 0.00	2	3	187	0.20
5 6 5 0.01 6 7 3 0.00 7 9 1 0.00	3	4	29	0.03
6 7 3 0.00 7 9 1 0.00	4	5	9	0.01
7 9 1 0.00	5	6	5	0.01
	6	7	3	0.00
8 16 1 0.00	7	9	1	0.00
	8	16	1	0.00

1 Les données

- MinMaxScaler systématique
- Binarisation feature 'Fréquence'
- Création de la variable Satisfaction

FEATURE INGENIERING

· Classements des montants en tranches facilement interprétables par l'équipe marketing

```
# Définition des bornes pour les intervalles de classement
bins = [0, 25, 50, 100, 150, 200, 250, 500, 1000, float('inf')]
labels = range(len(bins) - 1)

df_features['Montant_class'] = pd.cut(df_features['Montant'], bins=bins, labels=labels, right=False)
```

1 Les données

DATASET FINAL

- Récence : date_dernière_commande, Récence, Récence minmax
- Fréquence : Fréquence, Fréquence_minmax
- Montant: Montant, Montant_log_minmax
 Montant_qtuni_minmax,
 Montant_qtnorm_minmax,
 Montant_boxcox_minmax,
 Montant_class_minmax
- Satisfaction: Satisfaction
- 97 905 commandes
- 94 703 clients

+ 1 version du dataset avant transformations pour la simulation du contrat de maintance

Récence, Fréquence (binarisée), Montant

Les modèles

DBSCAN

Algorithme: DBSCAN

Biblitohèque: Scikit-learn

Algorithme de clustering basé sur la densité qui peut identifier un nombre arbitraire de clusters de formes variées

Fonctionnement:

- Recherche des points voisins dans un rayon <= epsilon
- S'il en trouve au moins min_samples, le point est considéré comme point central d'un cluster
- Propagation par répétition du processus
- Tous les points trop éloignés d'un cluster sont considérés comme des points de bruit

0.00

4000

Échantillon (10 % des observations)

6000

Les modèles

DBSCAN

4000

Échantillon (10 % des observations)

6000

	Unnamed: 0	feature_montant	eps	min_samples_value	n_clusters	n_noise
245	245	Montant_class_minmax	0.110000	20	11	244
244	244	Montant_class_minmax	0.110000	15	12	142
251	251	Montant_class_minmax	0.112222	20	12	222
257	257	Montant_class_minmax	0.114444	20	12	222
263	263	Montant_class_minmax	0.116667	20	12	222
250	250	Montant_class_minmax	0.112222	15	13	127
281	281	Montant_class_minmax	0.123333	20	13	178
269	269	Montant_class_minmax	0.118889	20	13	202

0.00

Répartition des clients par clusters

AGGLOMERATIVE CLUSTERING

Algorithme: AgglomerativeClustering

Biblitohèque: Scikit-learn

Algorithme de clustering hiérarchique qui considère chaque observation comme un cluster, et qui fusionne les clusters deux à deux jusqu'à n'en obtenir plus qu'un.

Fonctionnement:

- Au départ, chaque point est considéré comme un cluster individuel
- L'algorithme fusionne les clusters deux à deux en fonction de leur proximité
- Répétition de l'étape jusqu'à ce que le nombre de clusters désiré soit atteint ou que tous les points ne forment qu'un seul cluster

AGGLOMERATIVE CLUSTERING

Algorithme: Kmeans Biblitohèque: Scikit-learn

Algorithme de clustering hiérarchique qui regroupe des ensembles de données en k groupes distincts basés sur des similarités. Particulièrement efficace pour identifier des clusters bien séparés si les données sont relativement bien distribuées.

Fonctionnement:

- L'algorithme commence par initialiser k points aléatoires appelés centroïdes, chacun représentant le centre initial d'un cluster
- Ensuite, chaque point du jeu de données est assigné au cluster dont le centroïde est le plus proche
- Les positions des centroïdes sont recalculées en tant que moyenne de tous les points assignés à leur cluster respectif
- Répétition du processus jusqu'à que les positions des centroïdes n'évoluent plus

Hyperparamètres: n_clusters & init (k-means++)

Le clustering

KMEANS

Recherche du nombre optimal de clusters :

n_clusters entre 3 et 10

init = 'k-means++'

random_state = 0

KMEANS

	KMeans labels	Client
0	0	25217
1	1	2874
2	2	15678
3	3	16430
4	4	24062
5	5	10442
,	,	10

- Cluster 0 : clients ayant commandé il y relativement longtemps (Récence moyenne), n'ayant passé qu'une seule commande (Fréquence à 0), ayant peu dépensé (Montant dans la tanche basse)
- Cluster 1 : clients ayant passé plusieurs commandes
- Cluster 2 : clients ayant commandé il y a longtemps, ayant passé une seule commande, dépense plus faible
- Cluster 3 : clients ayant commandé plus récemment, une seule commande, dépense plus élevée
- Cluster 4 : clients ayant commandé plus récemment, une seule commande, dépense faible
- Cluster 5 : clients ayant commandé il y a longtemps, une seule commande, dépense plus élevée

KMEANS

L'algorithme a très bien réagi par rapport au classement des montants par tranches

	Récence_mois					Fréquence						Montant	Client	Percentage
	min	max	mean	median	min	max	mean	median	min	max	mean	median	count	
KMeans labels														
0	6.0	12.0	8.617480	9.0	0	0	0.0	0.0	10.07	199.95	87.080396	79.640	25217	26.627456
1	0.0	20.0	7.361169	7.0	1	1	1.0	1.0	35.94	7571.63	308.360480	225.620	2874	3.034751
2	12.0	20.0	15.362419	15.0	0	0	0.0	0.0	11.63	199.98	85.041647	77.570	15678	16.554914
3	0.0	8.0	4.014851	4.0	0	0	0.0	0.0	150.00	7274.88	328.044922	226.180	16430	17.348975
4	0.0	6.0	2.945516	3.0	0	0	0.0	0.0	9.59	149.89	78.464869	73.610	24062	25.407854
5	8.0	20.0	12.646045	12.0	0	0	0.0	0.0	150.00	13664.08	382.157604	266.695	10442	11.026050

Définition des bornes pour les intervalles de classement bins = [0, 25, 50, 100, 150, 200, 250, 500, 1000, float('inf')]

Le Clustering

KMEANS

Le VIP

3 % des clients

Le Récent à fort potentiel

17 %

11 %

25 %

8,47 / 10 לאון

- 8,34 / 10
- A passé plusieurs commandes
- 50 % des VIP ont dépensé plus de 225 \$R et jusqu'à plus de 7 500 \$R

17 %

- N'a passé qu'une commande
- Il y a moins de 8 mois

8,40 / 10 לת

• A dépensé plus de 150 \$R

N'a passé qu'une commande

Le Nouveau économe

- Il y a moins de 6 mois
- A dépensé moins de 150 \$R

L'Occasionnel **8,40 / 10**

- N'a passé qu'une commande
- Il y a plus d'1 an
- A dépensé moins de 200 \$R

L'Ancien de valeur 8,12 / 10

- N'a passé qu'une commande
- Il y a plus de 8 mois
- A dépensé plus de 150 \$R et jusqu'à plus de 10 000 \$R

Le Dormant

8,12 / 10

- N'a passé qu'une commande
- Entre 6 mois et 1 an
- A dépensé moins de 200 \$R

27 %

La maintenance

Simulation maintenance

DÉMARCHE

« Est-ce qu'un modèle entraîné à la date D0 ferait une segmentation pertinente des clients à la date D1?» Calculer les features RFM jusqu'à D0

D₀

Les transformer (MinMaxScaler...)
Et <u>conserver les transformers</u>: **transformers_D0**

Entrainer le modèle et le conserver : model_D0

Récupérer les **RFM_D1**

Les transformer avec les transformers_D0

Récupérer les labels par un predict labels simul D1 = model D0. predict(transformer D0.transform(RFM D1))

RI: Random index

ARI: Adjusted Random index

$$ARI = \frac{RI - Expected RI}{\max(RI) - Expected RI}$$

ari_score = adjusted_rand_score(labels_simul_D1, labels_D1)

Calculer les features RFM: RFM D1

Les transformer (MinMaxScaler...)

Appliquer le modèle

Récupérer les labels de clusters : labels_D1

SCORES ARI

