SoundSpaces: Audio-Visual Navigation in 3D Environments

Changan Chen*^{1,4}, Unnat Jain*^{†2,4}, Carl Schissler³, Sebastia Vicenc Amengual Gari³, Ziad Al-Halah¹, Vamsi Krishna Ithapu³, Philip Robinson³, and Kristen Grauman^{1,4}

¹UT Austin, ²UIUC, ³Facebook Reality Labs, ⁴Facebook AI Research

ECCV 2020

Audio-Visual Navigation

• AudioGoal (AG): Visual+Audio

https://arxiv.org/pdf/1912.11474.pdf

Pipeline

https://arxiv.org/pdf/1912.11474.pdf

Audio helps navigation

SPL:
$$\frac{1}{N} \sum_{i=1}^{N} S_i \frac{\ell_i}{\max(p_i, \ell_i)}.$$
 (1)

Table 2: Adding sound to sight and GPS sensing improves navigation performance significantly. Values are success rate normalized by path length (SPL); higher is better.

		I	Replica	Matterport3D		
		PointGoal	Audio Point Goal	PointGoal	AudioPointGoal	
	Random	0.044	0.044	0.021	0.021	
Baselines	Forward	0.063	0.063	0.025	0.025	
	Goal follower	0.124	0.124	0.197	0.197	
	Blind	0.480	0.681	0.426	0.473	
Varying visual sensor	RGB	0.521	$\boldsymbol{0.632}$	0.466	$\boldsymbol{0.521}$	
	Depth	0.601	0.709	0.541	0.581	

Audio gives similar or even better cues than displacements

Fig. 5: Audio as a learned spatial sensor. (a) Navigation accuracy with increasing GPS noise. Unlike existing PointGoal agents, our AudioGoal agent does not rely on GPS, and hence is immune to GPS noise. (b) t-SNE projection of audio features, color coded to reveal their correlation with the goal location (left) and direction (right), *i.e.*, source is far (red) or near (violet), and to the left (blue) or right (red) of the agent.

Impact of each modality on action selection

Turn Left Move Forward Turn Right

Effect of different sound sources

- same sound: sound source of 'telephone' test in unseen scenes.
- varied heard sounds: 78 sounds heared in training and test in unseen scenes.
- varied unheard sounds: 18 unheared sounds test in unseen scenes.

Table 3: Navigation performance (SPL) when generalizing to unheard sounds. Higher is better. Results are averaged over 7 test runs; all standard deviations are ≤ 0.01 .

			Same sound		Varied heard sounds		Varied unheard sounds	
Dataset		PG	AG	APG	AG	APG	AG	APG
	Blind	0.480	0.673	0.681	0.449	0.633	0.277	0.649
Replica	RGB	0.521	0.626	0.632	0.624	0.606	0.339	0.562
	Depth	0.601	0.756	0.709	0.645	0.724	0.454	0.707
	Blind	0.426	0.438	0.473	0.352	0.500	0.278	0.497
Matterport3D	RGB	0.466	0.479	0.521	0.422	0.480	0.314	0.448
	Depth	0.541	0.552	0.581	0.448	0.570	0.338	0.538

Semantic Audio-Visual Navigation

Changan Chen^{1,2} Ziad Al-Halah¹ Kristen Grauman^{1,2}
¹UT Austin ²Facebook AI Research

CVPR 2021

Limitation

- 1. Prior work assumes the target object constantly makes a steady repeating sound.
- 2. In current realistic 3D environment simulators, the sound emitting target has neither a visual embodiment nor any semantic context.

Semantic Audio-Visual Navigation

Pipeline

 $https://openaccess.thecvf.com/content/CVPR2021/papers/Chen_Semantic_Audio-Visual_Navigation_CVPR_2021_paper.pdf$

SAVi outperforms all other models

- SNA: success weighted by inverse number of actions.
- DTG: average distance to goal when episodes are finished.
- SWS: fraction of successful episodes when the agent reaches the goal after sound stops.

	Heard Sounds					Unheard Sounds				
	Success ↑	$SPL \uparrow$	SNA ↑	$DTG\downarrow$	SWS ↑	Success ↑	$SPL \uparrow$	SNA ↑	DTG↓	$SWS \uparrow$
Random	1.4	3.5	1.2	17.0	1.4	1.4	3.5	1.2	17.0	1.4
ObjectGoal RL	1.5	0.8	0.6	16.7	1.1	1.5	0.8	0.6	16.7	1.1
Gan et al. [19]	29.3	23.7	23.0	11.3	14.4	15.9	12.3	11.6	12.7	8.0
Chen et al. [11]	21.6	15.1	12.1	11.2	10.7	18.0	13.4	12.9	12.9	6.9
AV-WaN [12]	20.9	16.8	16.2	10.3	8.3	17.2	13.2	12.7	11.0	6.9
SMT [15] + Audio	22.0	16.8	16.0	12.4	8.7	16.7	11.9	10.0	12.1	8.5
SAVi (Ours)	33.9	24.0	18.3	8.8	21.5	24.8	17.2	13.2	9.9	14.7

Table 1: Navigation performance on the SoundSpaces Matterport3D dataset [11]. Our SAVi model has higher success rates and follows a shorter trajectory (SPL) to the goal compared to the state-of-the-art. Equipped with its explicit goal descriptor and having learned semantically grounded object sounds from training environments, our model is able to reach the goal more efficiently—even after it stops sounding—at a significantly higher rate than the closest competitor (see the SWS metric).

Navigation trajectories

Other experiments

- Location predictor has a comparatively larger impact on the model's performance.
- Aggregation stabilizes the goal descriptor prediction.
- The proposed model is able to cope with long silence to reach goals.

	Success ↑	SPL ↑	SNA ↑	DTG↓	SWS↑
C_t -only	20.5	13.5	11.6	9.8	11.0
L_t -only	23.9	16.2	13.5	9.3	13.8
w/o aggregation	21.9	14.3	11.1	9.7	13.4
Full model	24.8	17.2	13.2	9.9	14.7

Table 3: Ablation experiment results.

Figure 4: Cumulative success rate vs. silence percentage.

Thanks!