Wavelets

do the wave! Os

Change the base

The math behind

Figure 3 The Haar wavelets for W^1

Algorithm

```
procedure DecompositionStep(C: array [1..h] of reals)
   for i \leftarrow 1 to h/2 do
       C'[i] \leftarrow (C[2i-1] + C[2i])/\sqrt{2}
       C'[h/2+i] \leftarrow (C[2i-1]-C[2i])/\sqrt{2}
   end for
   C \leftarrow C'
end procedure
procedure Decomposition(C: array [1..h] of reals)
   C \leftarrow C/\sqrt{h} (normalize input coefficients)
   while h > 1 do
       DecompositionStep(C[1..h])
       h \leftarrow h/2
   end while
end procedure
```


transform columns


```
procedure StandardDecomposition(C: array [1..h, 1..w] of reals)
for row \leftarrow 1 to h do
Decomposition(C[row, 1..w])
end for
```

for $col \leftarrow 1$ to w do Decomposition(C[1..h, col])

end for end procedure

Implementation

__syncthreads()

