Qual a resistência total de duas resistências de 33 Ω cada quando ligadas em paralelo ?

4)	33 Ω	***************************************	
0)	330 Ω		
d)	16,5 _Ω	***************************************	\boxtimes

Notar Dois ou mais componentes de um circuito eléctrico ditem-se ligados em paralelo quando a corrente eléctrica é obrigada a "dividir-se" passendo um pouco por cada componente. Também pode definir-se a ligação em paralelo como aquele tipo de ligação onde, retirando um componente do paralelo o circuito continua sem interrupção (modificando mas não interrompendo).

Para esta pergunta, a resposta está baseada na seguinte fórmula:

$$R = \frac{R1 \times R2}{R1 + R2}$$

$$R_{t} = \frac{33 \times 33}{33 + 33} = \frac{1.089}{66} = 16.5 \Omega$$

2.2.4.2

3 remistências de 42,4 Ω ; 21,6 Ω e 33,2 Ω estão montadas em paralelo. Qual é a remistência equivalente?

a)	30 Ω		
p)	20 Ω	.,	
c)	10 Ω		\boxtimes
q)	5 Ω	42,4	
Nota:		21,6 R1	

$$\frac{1}{R_{1}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} = \frac{1}{42.4} + \frac{1}{21.6} + \frac{1}{33.2}$$