Amendment to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1

Claims 1-18 (canceled).

- 1 19. (currently amended) A system according to Claim 18, further for 2 providing efficient document scoring of concepts within and clustering of 3 documents in an electronically-stored document set, comprising: 4 [[the]] a scoring module evaluating the score scoring a document in an 5 electronically-stored document set, comprising: 6 a frequency submodule determining a frequency of occurrence of 7 at least one concept within a document; 8 a concept weight submodule analyzing a concept weight reflecting 9 a specificity of meaning for the at least one concept within the document, wherein 10 the concept weight is based on a number of terms for the at least one concept; 11 a structural weight submodule analyzing a structural weight 12 reflecting a degree of significance based on structural location within the 13 document for the at least one concept; 14 a corpus weight submodule analyzing a corpus weight inversely 15 weighing a reference count of occurrences for the at least one concept within the 16 document; 17 a scoring evaluation submodule evaluating a score to be associated with the at least one concept as a function of a summation of the frequency, 18 19 concept weight, structural weight, and corpus weight in accordance with the 20 formula:
- $S_{i} = \sum_{1 \to n}^{J} f_{ij} \times cw_{ij} \times sw_{ij} \times rw_{ij}$

22	where S_i comprises the score, f_{ij} comprises the frequency, $0 < cw_{ij} \le 1$ comprises
23	the concept weight, $0 < sw_{ij} \le 1$ comprises the structural weight, and $0 < rw_{ij} \le 1$
24	comprises the corpus weight for occurrence j of concept i :
25	a vector submodule forming the score assigned to the at least one
26	concept as a normalized score vector for each such document in the
27	electronically-stored document set; and
28	a determination submodule determining a similarity between the
29	normalized score vector for each such document as an inner product of each
30	normalized score vector;
31	a clustering module grouping the documents by the score into a plurality
32	of clusters, comprising:
33	a selection submodule selecting a set of candidate seed documents
34	from the electronically-stored document set;
35	a cluster seed submodule identifying seed documents by applying
36	the similarity to each such candidate seed document and selecting those candidate
37	seed documents that are sufficiently unique from other candidate seed documents
38	as the seed documents;
39	an identification submodule identifying a plurality of non-seed
40	documents;
41	a comparison submodule determining the similarity between each
42	non-seed document and a cluster center of each cluster; and
43	a clustering submodule assigning each such non-seed document to
44	the cluster with a best fit, subject to a minimum fit; and
45	a threshold module relocating outlier documents, comprising determining
46	the similarity between each of the documents grouped into each cluster based on
47	the center of the cluster and the scores assigned to each of the at least one
48	concepts in that document, dynamically determining a threshold for each cluster
49	as a function of the similarity between each of the documents, and identifying and
50	reassigning each of the documents with the similarity falling outside the
51	threshold.

- 1 20. (previously presented) A system according to Claim 19, further
- 2 comprising:
- 3 the concept weight module evaluating the concept weight in accordance
- 4 with the formula:

5
$$cw_{ij} = \begin{cases} 0.25 + (0.25 \times t_{ij}), & 1 \le t_{ij} \le 3\\ 0.25 + (0.25 \times [7 - t_{ij}]), & 4 \le t_{ij} \le 6\\ 0.25, & t_{ij} \ge 7 \end{cases}$$

- 6 where cw_{ij} comprises the concept weight and t_{ij} comprises the number of terms for
- 7 occurrence *j* of each such concept *i*.
- 1 21. (previously presented) A system according to Claim 19, further
- 2 comprising:
- 3 the structural weight module evaluating the structural weight in
- 4 accordance with the formula:

$$sw_{ij} = \begin{cases} 1.0, & if(j \approx SUBJECT) \\ 0.8, & if(j \approx HEADING) \\ 0.7, & if(j \approx SUMMARY) \\ 0.5 & if(j \approx BODY) \\ 0.1 & if(j \approx SIGNATURE) \end{cases}$$

- 6 where sw_{ij} comprises the structural weight for occurrence j of each such concept i.
- 1 22. (previously presented) A system according to Claim 19, further
- 2 comprising:
- 3 the corpus weight module evaluating the corpus weight in accordance with
- 4 the formula:

$$rw_{ij} = \begin{cases} \left(\frac{T - r_{ij}}{T}\right)^{2}, & r_{ij} > M \\ 1.0, & r_{ij} \leq M \end{cases}$$

- 6 where rw_{ij} comprises the corpus weight, r_{ij} comprises a reference count for
- 7 occurrence j of each such concept i, T comprises a total number of reference

- 8 counts of documents in the document set, and M comprises a maximum reference 9 count of documents in the document set.
- 1 23. (previously presented) A system according to Claim 19, further comprising:
- a compression module compressing the score in accordance with the formula:
- $S_i' = \log(S_i + 1)$
- 6 where S'_i comprises the compressed score for each such concept i.
- 1 24. (currently amended) A system according to Claim 18 Claim 19, further comprising:
- a global stop concept vector cache maintaining concepts and terms; and a filtering module filtering selection of the at least one concept based on the concepts and terms maintained in the global stop concept vector cache.
- 1 25. (currently amended) A system according to Claim 18 Claim 19, further comprising:
- a parsing module identifying terms within at least one document in the document set, and combining the identified terms into one or more of the concepts.
- 1 26. (original) A system according to Claim 25, further comprising: 2 the parsing module structuring each such identified term in the one or 3 more concepts into canonical concepts comprising at least one of word root, 4 character case, and word ordering.
- 1 27. (original) A system according to Claim 25, wherein at least one of nouns, proper nouns and adjectives are included as terms.
- 1 Claims 28-30 (canceled).

1 31. (currently amended) A system according to Claim 18 Claim 19,
2 further comprising:
3 the similarity submodule calculating the similarity in accordance with the

$$\cos \sigma_{AB} = \frac{\left\langle \vec{S}_A \cdot \vec{S}_B \right\rangle}{\left| \vec{S}_A \right\| \vec{S}_B \right|}$$

- 6 where $\cos \sigma_{AB}$ comprises a similarity between a document A and a document B,
- 7 \vec{S}_A comprises a score vector for document A, and \vec{S}_B comprises a score vector for
- 8 document B.

formula:

4

- 1 Claims 32-35 (canceled).
- 1 36. (currently amended) A method according to Claim 35, further for
- 2 providing efficient document scoring of concepts within and clustering of
- documents in an electronically-stored document set, comprising:
- 4 evaluating the score scoring a document in an electronically-stored
- 5 document set, comprising:
- 6 determining a frequency of occurrence of at least one concept
- 7 within a document;
- 8 analyzing a concept weight reflecting a specificity of meaning for
- 9 the at least one concept within the document, wherein the concept weight is based
- on a number of terms for the at least one concept;
- analyzing a structural weight reflecting a degree of significance
- based on structural location within the document for the at least one concept;
- analyzing a corpus weight inversely weighing a reference count of
- 14 occurrences for the at least one concept within the document; and
- evaluating a score to be associated with the at least one concept as
- a function of a summation of the frequency, concept weight, structural weight,
- 17 and corpus weight and in accordance with the formula:

18	$S_i = \sum_{1 \to n} f_{ij} \times cw_{ij} \times sw_{ij} \times rw_{ij}$
19	where S_i comprises the score, f_{ij} comprises the frequency, $0 < cw_{ij} \le 1$ comprises
20	the concept weight, $0 < sw_{ij} \le 1$ comprises the structural weight, and $0 < rw_{ij} \le 1$
21	comprises the corpus weight for occurrence j of concept i;
22	forming the score assigned to the at least one concept as a normalized
23	score vector for each such document in the electronically-stored document set;
24	determining a similarity between the normalized score vector for each
25	such document as an inner product of each normalized score vector;
26	grouping the documents by the score into a plurality of clusters,
27	comprising:
28	selecting a set of candidate seed documents from the
29	electronically-stored document set;
30	identifying seed documents by applying the similarity to each such
31	candidate seed document and selecting those candidate seed documents that are
32	sufficiently unique from other candidate seed documents as the seed documents;
33	identifying a plurality of non-seed documents;
34	determining the similarity between each non-seed document and a
35	center of each cluster; and
36	assigning each non-seed document to the cluster with a best fit,
37	subject to a minimum fit; and
38	relocating outlier documents, comprising:
39	determining the similarity between each of the documents grouped
40	into each cluster based on the center of the cluster and the scores assigned to each
41	of the at least one concepts in that document;
42	dynamically determining a threshold for each cluster as a function
43	of the similarity between each of the documents; and
44	identifying and reassigning each of the documents with the
45	similarity falling outside the threshold.

- 1 37. (previously presented) A method according to Claim 36, further
- 2 comprising:
- 3 evaluating the concept weight in accordance with the formula:

$$cw_{ij} = \begin{cases} 0.25 + (0.25 \times t_{ij}), & 1 \le t_{ij} \le 3\\ 0.25 + (0.25 \times [7 - t_{ij}]), & 4 \le t_{ij} \le 6\\ 0.25, & t_{ij} \ge 7 \end{cases}$$

- 5 where cw_{ij} comprises the concept weight and t_{ij} comprises the number of terms for
- 6 occurrence j of each such concept i.
- 1 38. (previously presented) A method according to Claim 36, further
- 2 comprising:
- 3 evaluating the structural weight in accordance with the formula:

$$sw_{ij} = \begin{cases} 1.0, & if(j \approx SUBJECT) \\ 0.8, & if(j \approx HEADING) \\ 0.7, & if(j \approx SUMMARY) \\ 0.5 & if(j \approx BODY) \\ 0.1 & if(j \approx SIGNATURE) \end{cases}$$

- 5 where sw_{ij} comprises the structural weight for occurrence j of each such concept i.
- 1 39. (previously presented) A method according to Claim 36, further
- 2 comprising:
- 3 evaluating the corpus weight in accordance with the formula:

$$rw_{ij} = \begin{cases} \left(\frac{T - r_{ij}}{T}\right)^2, & r_{ij} > M \\ 1.0, & r_{ij} \leq M \end{cases}$$

- 5 where rw_{ij} comprises the corpus weight, r_{ij} comprises a reference count for
- 6 occurrence j of each such concept i, T comprises a total number of reference
- 7 counts of documents in the document set, and M comprises a maximum reference
- 8 count of documents in the document set.

(previously presented) A method according to Claim 36, further 2 comprising: 3 compressing the score in accordance with the formula: 4 $S_i' = \log(S_i + 1)$ 5 where S'_i comprises the compressed score for each such concept i. 1 41. (currently amended) A method according to Claim 35, 2 further comprising: maintaining concepts and terms in a global stop concept vector cache; and 3 4 filtering selection of the at least one concept based on the concepts and 5 terms maintained in the global stop concept vector cache. 1 42. (currently amended) A method according to Claim 35 Claim 36, 2 further comprising: 3 identifying terms within at least one document in the document set; and combining the identified terms into one or more of the concepts. 4 (original) A method according to Claim 42, further comprising: 1 43. 2 structuring each such identified term in the one or more concepts into canonical concepts comprising at least one of word root, character case, and word 3 4 ordering. (original) A method according to Claim 42, further comprising: 44. 1 2 including as terms at least one of nouns, proper nouns and adjectives. Claims 45-47 (canceled). 1 1 48. (currently amended) A method according to Claim 35 Claim 36, 2 further comprising: 3 calculating the similarity in accordance with the formula:

1

40.

$$4 \qquad \cos \sigma_{AB} = \frac{\left\langle \vec{S}_A \cdot \vec{S}_B \right\rangle}{\left| \vec{S}_A \right| \left| \vec{S}_B \right|}$$

- 5 where $\cos \sigma_{AB}$ comprises a similarity between a document A and a document B,
- 6 \vec{S}_A comprises a score vector for document A, and \vec{S}_B comprises a score vector for
- 7 document *B*.
- 1 Claims 49-51 (canceled).
- 1 52. (currently amended) A computer-readable storage medium holding
- 2 code for providing efficient document scoring of concepts within and clustering
- 3 of documents in an electronically-stored document set, comprising:
- 4 code for scoring a document in an electronically-stored document set,
- 5 comprising:
- 6 code for determining a frequency of occurrence of at least one
- 7 concept within a document;
- 8 code for analyzing a concept weight reflecting a specificity of
- 9 meaning for the at least one concept within the document, wherein the concept
- weight is based on a number of terms for the at least one concept;
- code for analyzing a structural weight reflecting a degree of
- significance based on structural location within the document for the at least one
- 13 concept;
- 14 code for analyzing a corpus weight inversely weighing a reference
- count of occurrences for the at least one concept within the document; and
- 16 code for evaluating a score to be associated with the at least one
- 17 concept as a function of a summation of the frequency, concept weight, structural
- weight, and corpus weight in accordance with the formula:

$$S_{i} = \sum_{1 \to n}^{j} f_{ij} \times cw_{ij} \times sw_{ij} \times rw_{ij}$$

20	where S_i comprises the score, J_{ij} comprises the frequency, $0 < cw_{ij} \le 1$ comprises
21	the concept weight, $0 < sw_{ij} \le 1$ comprises the structural weight, and $0 < rw_{ij} \le 1$
22	comprises the corpus weight for occurrence j of concept i;
23	code for forming the score assigned to the at least one concept as a
24	normalized score vector for each such document in the electronically-stored
25	document set;
26	code for determining a similarity between the normalized score vector for
27	each such document as an inner product of each normalized score vector;
28	code for grouping the documents by the score into a plurality of clusters,
29	comprising:
30	code for selecting a set of candidate seed documents from the
31	electronically-stored document set;
32	code for identifying seed documents by applying the similarity to
33	each such candidate seed document and selecting those candidate seed documents
34	that are sufficiently unique from other candidate seed documents as the seed
35	documents;
36	code for identifying a plurality of non-seed documents;
37	code for determining the similarity between each non-seed
38	document and a center of each cluster; and
39	code for assigning each non-seed document to the cluster with a
10	best fit, subject to a minimum fit; and
41	code for relocating outlier documents, comprising:
12	code for determining the similarity between each of the documents
13	grouped into each cluster based on the center of the cluster and the scores
14	assigned to each of the at least one concepts in that document;
45	code for dynamically determining a threshold for each cluster as a
16	function of the similarity between each of the documents; and
1 7	code for identifying and reassigning each of the documents with
48	the similarity falling outside the threshold.

1 53. (currently amended) An apparatus for providing efficient 2 document scoring of concepts within and clustering of documents in an 3 electronically-stored document set, comprising: 4 means for scoring a document in an electronically-stored document set, 5 comprising: 6 means for determining a frequency of occurrence of at least one 7 concept within a document; 8 means for analyzing a concept weight reflecting a specificity of 9 meaning for the at least one concept within the document, wherein the concept 10 weight is based on a number of terms for the at least one concept; 11 means for analyzing a structural weight reflecting a degree of 12 significance based on structural location within the document for the at least one 13 concept; 14 means for analyzing a corpus weight inversely weighing a reference count of occurrences for the at least one concept within the document; 15 16 and means for evaluating a score to be associated with the at least one 17 18 concept as a function of a summation of the frequency, concept weight, structural weight, and corpus weight in accordance with the formula: 19 $S_{i} = \sum_{i \to n}^{j} f_{ij} \times cw_{ij} \times sw_{ij} \times rw_{ij}$ 20 where S_i comprises the score, f_{ij} comprises the frequency, $0 < cw_{ij} \le 1$ comprises 21 22 the concept weight, $0 < sw_{ii} \le 1$ comprises the structural weight, and $0 < rw_{ii} \le 1$ comprises the corpus weight for occurrence *j* of concept *i*; 23 24 means for forming the score assigned to the at least one concept as a 25 normalized score vector for each such document in the electronically-stored 26 document set; 27 means for determining a similarity between the normalized score vector

for each such document as an inner product of each normalized score vector;

28

29	means for grouping the documents by the score into a plurality of clusters
30	comprising:
31	means for selecting a set of candidate seed documents from the
32	electronically-stored document set;
33	means for identifying seed documents by applying the similarity to
34	each such candidate seed document and selecting those candidate seed documents
35	that are sufficiently unique from other candidate seed documents as the seed
36	documents;
37	means for identifying a plurality of non-seed documents;
38	means for determining the similarity between each non-seed
39	document and a center of each cluster; and
40	means for assigning each non-seed document to the cluster with a
41	best fit, subject to a minimum fit; and
42	means for relocating outlier documents, comprising:
43	means for determining the similarity between each of the
14	documents grouped into each cluster based on the center of the cluster and the
45	scores assigned to each of the at least one concepts in that document;
46	means for dynamically determining a threshold for each cluster as
1 7	a function of the similarity between each of the documents; and
48	means for identifying and reassigning each of the documents with
1 9	the similarity falling outside the threshold.