

ÉTABLISSEMENTS FONDATEURS

Méthodes et Programmation Numériques Avancées

Master CHPS, parcours IHPS

chps.uvsq.fr

(2018-2019)

Laboratoire
d'Informatique
Parallélisme
Réseaux
Algorithmique
Distribuée

PROBLEM TO SOLVE

Let A be a very large and sparse matrix

```
(P_n) = A \in \mathbb{C}^{n \times n}, b \in \mathbb{C}^{n \times n} \text{ seek } x \in \mathbb{C}^n: Ax = b
A \in \mathbb{C}^{n \times n}, \text{ seek a few } k \text{ Ritz pairs } A_k = (\lambda_1, \dots, \lambda_k) \in \mathbb{C}^k
and U_k = (u_1, \dots, u_k) \in \mathbb{C}^{n \times k}: Au_i = \lambda_i u_i \ (i = 1, \dots, k)
```

RESTARTED KRYLOV SUBSPACE METHODS

SUJETS PROJETS

- 1. MÉTHODES DES PUISSANCES & PUISSANCES INVERSES
- 2. MÉTHODES DE LANCZOS & BI-LANCZOS
- 3. MÉTHODE DES ITÉRATIONS SIMULTANÉES
- 4. MÉTHODES DE MOINDRES CARRÉES
- 5. DÉCOMPOSITION EN VALEURS SINGULIÈRES
- 6. ARNOLDI (ERAM/IRAM)
- 7. DAVIDSON
- 8. MÉTHODE PADÉ-RAYLEIGH-RITZ (PRR)

MÉTHODE DE LA PUISSANCE (P1)

Soit $v^{(0)}$ un vecteur non nul. L'idée de base est de générer une suite de Vecteurs $A^k v^{(0)}$:

ALGORITHM: 1. The Power Method

- 1. Choose a nonzero initial vector $v^{(0)}$.
- 2. For $k = 1, 2, \ldots$, until convergence, Do:
- 3. $v^{(k)}=rac{1}{lpha_k}Av^{(k-1)}$ where
- 4. $\alpha_k = \operatorname{argmax}_{i=1,...,n} |(Av^{(k-1)})_i|$
- 5. EndDo

 α_k est la plus grande —en module — des composantes de $Av^{(k-1)}$. Dans la pratique, on normalise le vecteur $v_k = Av^{(k-1)}$.

MÉTHODE DE LA PUISSANCE (ET MP SHIFTÉ)

- Supposons que λ_1 , la plus grande (en module) vp de A, est simple et que $v^{(0)}$ est un vecteur non nul qui n'est pas vecteur propre associé à λ_1 . On peut montrer alors que α_k tend vers λ_1 et v_k tend vers le vecteur propre associé à λ_1 . La vitesse de convergence est définie par le ratio: $|\lambda_2|/|\lambda_1|$.
- Cette méthode ne fonctionne pas pour le cas où 1 et -1 sont les valeurs propres dominantes en module de A. Dans ce cas, il suffit de considérer la matrice I+A qui a une seule vp dominante -2- et les mêmes vecteurs propres que A.
- Plus généralement, on peut appliquer PM à la matrice $B(\sigma)=A+\sigma I$ au lieu de A (PM shifté). Quel est le meilleur shift σ ?

MÉTHODE DE LA PUISSANCE SHIFTÉ

Quand toutes vps sont réelles et vérifient:

$$\lambda_1 > \lambda_2 \geq \lambda_3 \geq \ldots \geq \lambda_{n-1} \geq \lambda_n$$

Alors, la valeur de donnant la meilleure convergence est:

$$\sigma_{\text{optimal}} = (\lambda_2 + \lambda_n)/2$$

MÉTHODE DES ITÉRATIONS INVERSES (P2)

$$Au_i = \lambda_i u_i$$
 est équivalent à $A^{-1}u_i = (1/\lambda_i)u_i$

A⁻¹ a les mêmes vecteurs propres que A. Les valeurs propres de A⁻¹ sont l'inverses de celles de A.

- En appliquant PM à la matrice de A⁻¹, on calcule les vps les plus proches de zéro.
- En appliquant PM à la matrice $(A-\sigma I)^{-1}$, on calcule les valeurs propres les plus proches de σ .

Méthode performante mais nécessite une décomposition de la matrice (LU ou autres).

MÉTHODE DES ITÉRATIONS INVERSES (P2)

L'idée principale est d'appliquer la méthode de la puissance (ou Arnoldi ou Lanczos ou MIS) à la matrice $C=(A-\sigma I)^{-1}$ au lieu de aa matrice A. La matrice C ne doit pas être calculée explicitement. À chaque fois qu'on a besoin d'appliquer C à un vecteur, nous résolvons un système linéaire

$$C^{-1}=B=(A-\sigma I)x=y.$$

Soit B=A-σI=LU, alors pour résoudre Bx=y, il suffit de résoudre Lz=y et Ux=z.

GÉNÉRALISATION DE PM: MIS

Méthode des itérations de sous-espaces (orthogonalisation des X_k):

- 1. Start: $Q_0 = [q_1, \dots, q_m]$
- 2. Iterate: Until convergence do,
- 3. $X := AQ_{k-1}$
- 4. $X = Q_k R$ (QR factorization)
- 5. EndDo

Méthode des itérations de sous-espaces:

MÉTHODE DES ITÉRATIONS SIMULTANÉES (P3)

Start: Choose $Q_0 = [q_0, \ldots, q_m]$

Iterate: For $k = 1, \ldots,$ until convergence do:

Compute $\hat{Z} = AQ_{k-1}$.

 $\hat{Z}=ZR_Z$ (QR factorization) Les vecteurs de Z orthonormalisent ceux de Ž

$$B = Z^H A Z$$

Compute the Schur factorization $B = YRY^H$ Y: les vecteurs de Schur de B

$$Q_k = ZY$$

 $Q_k = ZY$ La nouvelle matrice « initiale »

EndDo

Supposons:

$$|\lambda_1| \geq |\lambda_2| \geq \cdots |\lambda_m| > |\lambda_{m+1}| \geq \cdots \geq |\lambda_n|,$$

Alors, la vitesse de convergence pour λ_1 est: $|\lambda_{m+1}/\lambda_1|$

ARNOLDI PROJECTION/FACTORIZATION

$$AR(input:A,m,v;output: H_m, V_m)$$
For $j=1,...,m$ do:
 $h_{i,j}=(Av_j,v_i)$, for $i=1,...,j$
 $z_j=Av_j-\sum_{i=1}^{j}h_{i,j}v_i$
 $h_{j+1,j}=||z_j||$
 $v_{j+1}=z_j/h_{j+1,j}$

Gramm-Schmidt orthogonalization process

$$AV_m = V_m H_m + f_m e^T_m$$
 with $f_m = h_{m+1,m} v_{m+1}$

$$f_m = h_{m+1,m} v_{m+1}$$

Eigenproblem in the subspace $H_m y_i = \lambda_i y_i$ for i = 1, ...m

ARNOLDI PROJECTION/FACTORIZATION

ALGORITHM: 6. Arnoldi's procedure

For
$$j=1,...,m$$
 do

Compute
$$w := Av_j$$

For
$$i=1,\ldots,j$$
 , do

For
$$i=1,\ldots,j$$
, do $egin{cases} h_{i,j}:=(w,v_i)\ w:=w-h_{i,j}v_i \end{cases}$

$$h_{j+1,j} = \|w\|_2$$
;

$$v_{j+1}=w/h_{j+1,j}$$

End

PROBLEM IN KSM: $K_M = K(A, V)$

Saad's solution (ERAM) For a fixed small size m, improve K(A, v, m) by updating explicitly v and restart the process

Sorrensen's approach (IRAM) For a fixed small size m, improve K(A, v, m) by updating **implicitly** v and restart the process

Problem with clustered eigenvalues

MÉTHODES D'ARNOLDI (ERAM) – (P4)

ALGORITHM: 7 • Restarted Arnoldi (computes rightmost eigenpair)

- 1. Start: Choose an initial vector v_1 and a dimension m.
- 2. Iterate: Perform m steps of Arnoldi's algorithm.
- 3. Restart: Compute the approximate eigenvector $oldsymbol{u}_1^{(m)}$
- 4. associated with the rightmost eigenvalue $\lambda_1^{(m)}$.
- 5. If satis£ed stop, else set $v_1 \equiv u_1^{(m)}$ and goto 2.

MÉTHODES D'ARNOLDI (IRAM) – (P5)

Calculer une étape d'Arnoldi: $AV_m = V_{mi}H_m + f_m e^T_m$

Calculer les valeurs et vecteurs de Ritz recherchés

En cas de non-convergence, garder les k premières colonnes de l'équation ci-dessus:

$$AV_m = V_{mi}H_m + f_m e^T_m$$

et la compléter pour obtenir la factorization complète.

IRAM (M=K+P)

 $V_{k+p}QQ^{T}H_{k+p}Q+f_{k+p}e^{T}_{k+p}Q$ after p implicitly shifted QR

 $V_k H_k + f_k e^T_k$ from a k-step AF after discarding the last p columns

Beginning with $AV_k^+=V_k^+H_k^++f_k^+e_m^T$, complete an m-step

$$AV_{m} = V_{mi}H_{m} + f_{m}e^{T}_{m}$$

MÉTHODE DE LANCZOS SYMÉTRIQUE (P6)

Méthode d'Arnoldi appliquée à une matrice hermitienne $(A=A^H)$ et $V_m^H A V_m = H_m$ donc $H_m = H_m^H$. On a alors:

Avec une récurrence à 3 termes:

$$eta_{j+1}v_{j+1}=Av_j-lpha_jv_j-eta_jv_{j-1}$$

MÉTHODE DE LANCZOS SYMÉTRIQUE (P6)

ALGORITHM: 8 Lanczos

- 1. Choose an initial vector v_1 of norm unity. Set $eta_1 \equiv 0, v_0 \equiv 0$
- 2. For j = 1, 2, ..., m Do:
- 3. $w_j := Av_j \beta_j v_{j-1}$
- 4. $\alpha_j := (w_j, v_j)$
- $\mathbf{5.} \qquad w_j := w_j \alpha_j v_j$
- 6. $\beta_{j+1} := \|w_j\|_2$. If $\beta_{j+1} = 0$ then Stop
- 7. $v_{j+1} := w_j/\beta_{j+1}$
- 8. EndDo

MÉTHODE PRR- CAS SYMÉTRIQUE (P7)

Iterative PRR algorithm

- Step 1. Choice of m.
- **Step 2**. Choice of initial vector x.
- **Step 3**. Normalization of x: $y_0 = x/ ||x||$, $C_0 = ||y_0||^2 = 1$.
- **Step 4.** Computation of C_1, \dots, C_{2m-1} .

• For
$$k = 1, m - 1$$
, do
$$C_{2k-1} = (y_k, y_{k-1})$$

$$C_{2k} = (y_k, y_k)$$

$$y_{k+1} = Ay_k$$

- End for k
- \bullet $C_{2m-1} = (y_m, y_{m-1})$
- **Step 5**. Linear system solving (63).
- **Step 6.** Computation of the roots of $Q_m(\lambda)$ polynomial. **Step 7.** Computation of the Ritz vectors $u_i^{(m)}$ by (66) and (67).
- **Step 8.** If $(\max_{1 \le i \le r} || (A \lambda_i^{(m)} I) u_i^{(m)} || \le requested precision)$ then stop, otherwise with a new initial vector go to step 3.

MÉTHODE BI-LANZOS (P8)

ALGORITHM: 9 The Lanczos Bi-Orthogonalization Procedure

- 1. Choose v_1,w_1 such that $(v_1,w_1)=1$. Set $eta_1=\delta_1\equiv 0$, $w_0=v_0\equiv 0$
- 2. For j = 1, 2, ..., m Do:

3.
$$\alpha_j = (Av_j, w_j)$$
 [$\alpha_j = (Av_j - \beta_j v_{j-1}, w_j)$]

4.
$$\hat{v}_{j+1} = Av_j - \alpha_j v_j - \beta_j v_{j-1}$$
 [$\hat{v}_{j+1} = (Av_j - \beta_j v_{j-1}) - \alpha_j v_j$]

5.
$$\hat{w}_{j+1} = A^H w_j - \bar{\alpha}_j w_j - \delta_j w_{j-1} \hat{w}_{j+1} = (A^H w_j - \delta_j w_{j-1}) - \bar{\alpha}_j w_j$$

6.
$$\delta_{j+1} = |(\hat{v}_{j+1}, \hat{w}_{j+1})|^{1/2}$$
. If $\delta_{j+1} = 0$ Stop

7.
$$\beta_{j+1} = (\hat{v}_{j+1}, \hat{w}_{j+1})/\delta_{j+1}$$

8.
$$w_{j+1} = \hat{w}_{j+1}/ar{eta}_{j+1}$$

9.
$$v_{j+1}=\hat{v}_{j+1}/\delta_{j+1}$$

10. EndDo

MÉTHODE BI-LANZOS (P8)

Cette méthode calcule une paire de bases bi-orthogonales pour les deux sous espaces de Krylov :

$$K_{m}(A, v_{1})$$
 et $K_{m}(A, w_{1})$.

Il existe beaucoup de choix pour δ_{i+1} et β_{i+1} des lignes 6 et 7 de l'algorithme précédent. La seule contrainte est que:

de l'algorithme précédent. La seule contrainte est que:
$$\delta_{j+1}\beta_{j+1}=(\hat{v}_{j+1},\hat{u})$$
 Soit:
$$T_m=\begin{pmatrix} \alpha_1 & \beta_2 & & & \\ \delta_2 & \alpha_2 & \beta_3 & & & \\ & & \ddots & \ddots & & \\ & & & \delta_{m-1} & \alpha_{m-1} & \beta_m \\ & & & \delta_m & \alpha_m \end{pmatrix}$$

 v_i dans K_m (A, v_1) et w_i dans K_m (A, w_1)

DÉCOMPOSITION SVD (P9)

Pour toute matrice rectangulaire A de n lignes et de m colonnes, il existent deux matrice orthogonales U d'ordre n et V d'ordre m tel que:

$$A = U \Sigma V^T$$

Où Σ est une matrice diagonale avec des valeurs nonnégatives sur la diagonale

MÉTHODE DE DAVIDSON(P9)

ALGORITHM: 11 Davidson's method (Real symmetric case)

```
Choose an initial unit vector v_1. Set V_1 = [v_1].
 1.
 2.
        Until convergence Do:
          For j = 1, \ldots, m Do:
 3.
             w := Av_i.
 4.
             Update H_j \equiv V_i^T A V_j
 5.
             Compute the smallest eigenpair \mu, y of H_j.
 6.
             z := V_i y \quad r := Az - \mu z
 7.
             Test for convergence. If satis£ed Return
 8.
             If j < m compute t := M_i^{-1} r
 9.
                         compute V_{i+1} := ORTHN([V_i, t])
10.
11.
             EndIf
12.
             Set v_1 := z and go to 3
13.
          EndDo
14.
        EndDo
```

UNITE AND CONQUER APPROACH

Méthodes hybrides:

Une combinaison des méthodes classiques de projection avec redémarrages

UNITE AND CONQUER APPROACH

Saad (Chebyshev acceleration techniques for solving nonsymmetric eigenvalue; 1984), *Brezinski* (hybrid procedures for solving linear systems; 1994), Code coupling (in simulation), ...

MIRAM WITH NESTED SUBSPACES

$$K_{ml} = span(v_1, Av_1, ..., A^{ml-1}v_1, A^{ml}v_1, ..., A^{m2-1}v_1, A^{m2}v_1, ..., A^{m3-1}v_1, ..., A^{ml-1}v_1)$$

$$K_{m1} \subset K_{m2} \subset ... \subset K_{ml}$$

MIRAM WITH NESTED SUBSPACES

$$AV_{ml} = V_{ml}H_{ml} + f_{ml}e^{T}_{ml} \qquad (\Lambda_{k}, U_{k})_{ml}$$

$$AV_{m2} = V_{m2}H_{m2} + f_{m2}e^{T}_{m2} \qquad (\Lambda_{k}, U_{k})_{m2}$$

$$\dots \qquad (\Lambda_{k}, U_{k})_{m2}$$

$$\dots \qquad (\Lambda_{k}, U_{k})_{ml}$$

$$AV_{ml} = V_{ml}H_{ml} + f_{ml}e^{T}_{ml} \qquad (\Lambda_{k}, U_{k})_{ml}$$

$$m_i = k + p_i$$
 for $i = 1, ..., l$

Let
$$m=m_{best}$$
 $p=p_{best}=m_{best}-k$

$$AV_{k+p} = V_{k+p}H_{k+p} + f_{k+p}e^{T}_{k+p}$$

MPNA CHPS/IHPS

MIRAM WITH NESTED SUBSPACES

 $V_{k+p}QQ^{T}H_{k+p}Q+f_{k+p}e^{T}_{k+p}Q$ after p implicitly shifted QR

 $V_k H_k + f_k e^T_k$ from a k-step AF after discarding the last p columns

Beginning with $AV_{k}^{+}=V_{k}^{+}H_{k}^{+}+f_{k}^{+}e_{m}^{T}$, $l m_{i}$ -step AF $AV_{2018-2019}=V_{mi}H_{mi}+f_{mi}e_{mi}^{T} \quad for \ i=1,...,l$ MPNA CHPS/IHPS