#### MATRIZ DE A DIASCÊNCIA

\*\*DEFINIÇÃO: DADO UM GRAFO SIMPLES G=(VIE) COM N VÉRTICES, A MATRIZ DE ADIASCÊNCIA DE G É UMA MATRIZ A=(aij)nxn ONDE

aij o senão



- O MATRIZ AQUASCENTE É SIMÉTRICA PARA TODO GRAFO NÃO DIRIGIDO.
- PARA GRAFOS NÃO SIMPLES, Q¡ É Q QUANTIDADE DE ARESTAS QUE LIGA V; E Vj, SE i=j, CADA LAZO CONTA Z VEZES EXEMPLO

$$\begin{cases} v, & A = \begin{bmatrix} z & z \\ z & 0 \end{bmatrix} \end{cases}$$

## CAMINHOS OF U À W

• DADA A MATRIZ  $A=(a_{ij})$  REPRESENTANDO UM GRAFO, CRIA-MOS A MATRIZ  $A^{R}=(b_{ij})$  TAL QUE:

(bij) 
$$\begin{cases} i\neq j \Rightarrow b$$
; representa quantos caminhos com R vértices HÁ DO VÉRTICE I AO  $j$ 
 $i=j \Rightarrow SE G(V_iF)$  é simples,  $b_{ij}$  é O GRAU DE  $i$ 

SE  $G(V_iF)$  NÃO É SIMPLES, REPRESENTAM QUANTOS CAMINHOS DE  $i$  À  $i$  COM  $i$  VÉRTICES

## TEOREMA]

SEJA G(V,E) UM GRAFO SIMPLES E À A SUA MATRIZ DE ADJASCÊNCIA. ENTÃO A ENTRADA ¡¡ DA MATRIZ Aª É A QUANTI-DADE DE CAMINHOS DE COMPRIMENTO N DE U; À U;.

DEM

INDUÇÃO EM M.

 $\eta=1 \rightarrow SEJA A=(a_{ij})$ . ENTRO  $a_{ij} \not\in 1$  SE EXISTE UMA ARESTA ENTRE  $U_i \in U_j$ ,  $e \in 0$ .

# HIPOTESE INDUTIVA

SUPOMOS QUE A TESE É VÁLIDA PARA A<sup>1</sup>, A<sup>2</sup>,...,A<sup>n</sup>
CONSIDERAMOS

$$A^{n+1} = A^{n} \cdot A$$

$$(A^{n+1})_{ik} = \begin{bmatrix} S_{1}, S_{2}, \dots, S_{n} \end{bmatrix} \begin{bmatrix} t_{1} \\ t_{2} \\ \vdots \\ t_{n} \end{bmatrix} = S_{1}t_{1} + \dots + S_{n}t_{n}$$

$$Cownak De A$$



PELA HIPÓTESE INDUTIVA,  $\delta_j \in O$  NÚMERO DE CAMINHOS DE U; À Uj DE COMPRIMENTO n. E  $t_j \in O$  SE NÃO HÁ ARESTA  $\{U_k, U_j\}$ , I caso contrário. Logo  $\delta_j t_j$  representa a quantidade de caminhos de comprimento n+1 de  $U_k$  à  $U_j$ . Fazendo a soma  $\sum_{j=1}^{m} s_j t_j$  contamos todos os caminhos de comprimento n+1 de  $U_i$  à  $U_i$ .

MATRIZ DE ADJASCÊNCIA (GRAFO DIRIGIDO)

ODEF: DADO O GRAFO DIRIGIDO G(V,F), DEFINIMOS SUA MATRIZ DE ADJASCÊNCIA DNOE

DOLIJ = QUANTIDADE DE ARESTAS DIRIGIDAS NA FORMA (Ui, Uj)

$$A_{nxn} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

### PERGUNTAS

- O O TEOREMA VALE PARA MATRIZ DE GRAFO DIRIGIDO E CAMINHOS DIRIGIDOS?
- O O TEOREMA É VÁLIDO PARA GRAFOS SEM LAÇOS? (COM ARESTAS PARALELAS).

### MATRIZ DE INCIDÊNCIA

ODEF: DADO UM GRAFO G(VIE), A MATRIZ DE INCIDÊNCIA A=(aij) É DADA POR:

EXEMPLO

OBSERVAÇÃO: SE O GRAFO FOR DESCONEXO, A MATRIZ PODE SER REARRANDADA EM BLOCOS.

$$V_{1}$$
  $A_{1}$   $O$ 
 $V_{2}$   $O$   $A_{2}$ 
 $E_{1}$   $E_{2}$ 
 $E_{2}$ 
 $E_{3}$ 
 $E_{4}$ 
 $E_{2}$ 
 $E_{4}$ 
 $E_{5}$ 
 $E_{5}$ 
 $E_{7}$ 
 $E_{1}$ 
 $E_{1}$ 
 $E_{2}$ 
 $E_{3}$ 
 $E_{4}$ 
 $E_{5}$ 
 $E_{5}$ 
 $E_{7}$ 
 $E_{1}$ 
 $E_{1}$ 
 $E_{2}$ 
 $E_{3}$ 
 $E_{4}$ 
 $E_{5}$ 
 $E_{5}$ 
 $E_{7}$ 
 $E_{7}$