Announcement

- For students who haven't attend the first three classes, make sure you attend at least one of the first five in-person classes to avoid the WN grade and being withdrawn by the registrar.
- The Lecture Recordings will be available on the following YouTube Playlists Link: https://youtube.com/playlist?list=PLZaTmV9UMKliRBuEs0-dL968iQqE0qwpc

Representations of Integers

- Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form $n=a_kb^k+a_{k-1}b^{k-1}+\cdots+a_1b+a_0$, where k is a nonnegative integer, a_0,a_1,\ldots,a_k are nonnegative integers less than b, and $a_k\neq 0$.

Example of Expended Forms

- Find the expended form of 12034 in base 10.

$$12034 = 1 \cdot 10^4 + 2 \cdot 10^3 + 0 \cdot 10^2 + 3 \cdot 10 + 4$$
$$(12034)_{10} = (12034)_{10}$$

- Find the expended form of 46 in base 2.

$$2^{6} = 64$$
, $2^{5} = 32$, $2^{4} = 16$, $2^{3} = 8$, $2^{2} = 4$, $2^{1} = 2$, $2^{0} = 1$.
 $46 = 1 \cdot 2^{5} + 0 \cdot 2^{4} + 1 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2 + 0$
 $(46)_{10} = (101110)_{2}$

Representations of Integers

- The representation of n above is called **the base** b **expansion of** n. The base b expansion of n is denoted by $(a_k a_{k-1} ... a_1 a_0)_b$.
 - o For instance, $(245)_8$ represents $2\cdot 82 + 4\cdot 8 + 5 = 165$. Typically, the subscript 10 is omitted for base 10 expansions of integers because base 10, or decimal expansions, are commonly used to represent integers.

Examples of Integer Representations

- What is the decimal expansion of the number with binary expansion $(1\,0101\,1111)_2$?

$$(1\ 0101\ 1111)_2 = 1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2 + 1$$

= 256 + 0 + 64 + 0 + 16 + 8 + 4 + 2 + 1 = (351)₁₀

- What is the decimal expansion of the number with octal expansion $(7016)_8$? $(7016)_8 = 7 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8 + 6 = 7 \cdot 512 + 0 + 8 + 6 = (3598)_{10}$
- What is the decimal expansion of the number with hexadecimal expansion $(2AE0B)_{16}$?

In hexadecimal,
$$10 = A$$
, $11 = B$, $12 = C$, $13 = D$, $14 = E$, $15 = F$. $(2AE0B)_{16} = 2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16 + 11 = (175627)_{10}$

- Find the decimal expansion of $(12034)_{10}$.

```
12034 = 10(1203) + 4
1203 = 10(120) + 3
120 = 10(12) + 0
12 = 10(1) + 2
```

1 = 10(0) + 1 Stop when quotient is zero.

Take the remainders from bottom up, you got $(12034)_{10}$.

- Find the binary expansion of $(46)_{10}$.

$$46 = 2(23) + 0$$

$$23 = 2(11) + 1$$

$$11 = 2(5) + 1$$

$$5 = 2(2) + 1$$

$$2 = 2(1) + 0$$

1 = 2(0) + 1 Stop when quotient is zero.

Take the remainders from bottom up, you got $(101110)_2$.

From the previous exercise, we know that $(46)_{10} = (101110)_2$.

Base Conversion

- We will now describe an algorithm for constructing the base b expansion of an integer n. First, divide n by b to obtain a quotient and remainder, that is,

$$n = bq_0 + a_0$$
, $0 \le a_0 < b$.

The remainder, a_0 , is the rightmost digit in the base b expansion of n. Next, divide q_0 by b to obtain

$$q_0 = bq_1 + a_1$$
, $0 \le a_1 < b$.

We see that a_1 is the second digit from the right in the base b expansion of n. Continue this process, successively dividing the quotients by b, obtaining additional base b digits as the remainders. This process terminates when we obtain a quotient equal to zero. It produces the base b digits of n from the right to the left.

Examples of Base Conversion

- Find the octal expansion of $(12345)_{10}$.

$$12345 = 8(1543) + 1$$

$$1543 = 8(192) + 7$$

$$192 = 8(24) + 0$$

$$24 = 8(3) + 0$$

3 = 8(0) + 3 Stop when quotient is zero.

Take the remainders from bottom up, you got $(17003)_8$.

- Find the hexadecimal expansion of $(177130)_{10}$.

$$177130 = 16(11070) + \mathbf{10} \rightarrow A$$

$$11070 = 16(691) + 14 \rightarrow E$$

$$691 = 16(43) + 3$$

$$43 = 16(2) + 11 \rightarrow B$$

2 = 16(0) + 2 Stop when quotient is zero.

Take the remainders from bottom up, you got $(2B3EA)_{16}$.

Divisibility Rules

- Divisibility Rule for 2: Check the last digit.
 - o An integer ${\it N}$ is divisible by 2 if and only if the last digit of N is divisible by 2.
 - o A number that's divisible by 2 will congruent to $0 \pmod{2}$.
 - o If we can show that $N \equiv last \ digit \ of \ N \ (mod \ 2)$, then if one of them divisible by 2, so does the other one.
 - o To show $N \equiv last \ digit \ of \ N \ (mod \ 2)$, we need to rewrite N such that its last digit appears. We can put N in the division algorithm form with d=10, then we have N=10q+r, $0 \le r < 10$, and r will be the last digit of N.
 - o Compute $N \pmod{2}$: $N \equiv 10q + r \equiv 0q + r \equiv r \pmod{2}$.

- o Since $N \equiv last \ digit \ of \ N \ (mod \ 2)$, you can check whether the number is divisible by 2 by checking its last digits.
- Similar Divisibility Rules that check the last (few) digit(s):
 - o Divisibility Rule for 5: Check the last digit.
 - o Divisibility Rule for 10: Check the last digit.
 - o Divisibility Rule for 4: Check the last two digits.
 - o Divisibility Rule for 8: Check the last three digits.
- Divisibility Rule for 3: Check the sum of the digits.
 - o An integer N is divisible by 3 if and only if the sum of all digits of N is divisible by 3.
 - o Similar to divisibility rule for 2, if we can show that $N \equiv sum\ of\ all\ digits\ of\ N\ (mod\ 3)$, then we know this divisibility rule is true.
 - o To have all digits of N appears, we can write N in the expended form of base 10, i.e., $N=a_k10^k+a_{k-1}10^{k-1}+\cdots+a_1\cdot 10+a_0$, where a_0,a_1,\ldots,a_k are digits of N.
 - o Compute $N \pmod{3}$: $N \equiv a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 \cdot 10 + a_0 \pmod{3}$.
 - $10^x \equiv 10 \cdot 10 \cdot \dots \cdot 10 \equiv 1 \cdot 1 \cdot \dots \cdot 1 \equiv 1^k \equiv 1 \pmod{3}$ $N \equiv a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 \cdot 10 + a_0 \pmod{3}$ $\equiv a_k \cdot 1 + a_{k-1} \cdot 1 + \dots + a_1 \cdot 1 + a_0 \pmod{3}$ $\equiv a_k + a_{k-1} + \dots + a_1 + a_0 \pmod{3}$
 - o Since $N \equiv sum \ of \ all \ digits \ of \ N \ (mod \ 3)$, you can check whether the number is divisible by 3 by checking the sum of its digits.
- Similar Divisibility Rule that checks the sum of its digits.
 - o Divisibility Rule for 9: Check the sum of its digits.
 - o Divisibility Rule for 11: Check the alternate sum of its digits.
- Divisibility Rule for 11:
 - O Let's observe the following: Let $N=a_k10^k+a_{k-1}10^{k-1}+\cdots+a_1\cdot 10+a_0$, where a_0,a_1,\ldots,a_k are digits of N .
 - o Compute $N \pmod{11}$: $N \equiv a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 \cdot 10 + a_0 \pmod{11}$.
 - $10^x \equiv 10 \cdot 10 \cdot \dots \cdot 10 \equiv (-1) \cdot (-1) \cdot \dots \cdot (-1) \equiv (-1)^k \pmod{11}$ $10^x \equiv 1 \pmod{11}$ when x is even, $10^x \equiv -1 \pmod{11}$ when x is odd. Then, $N \equiv a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 \cdot 10 + a_0 \pmod{11}$ $\equiv a_k (-1)^k + a_{k-1} (-1)^{k-1} + \dots + a_1 \cdot (-1) + a_0 \pmod{11}$

$$\equiv a_k(-1)^k + a_{k-1}(-1)^{k-1} + \dots + a_4 - a_3 + a_2 - a_1 + a_0 \pmod{11}$$
 o Since $N \equiv alternate \ digits \ sum \ of \ N \pmod{11}$, you can check whether the number is divisible by 11 by checking the alternate sum of its

- digits.
 Divisibility Rules Reference Link:
- Divisibility Rules Reference Link:
 https://brilliant.org/wiki/proof-of-divisibility-rules/

What to expect or prepare for the next class:

- Prime and composite
- Greatest Common Divisor

Suggested Problems (You don't need to hand in.)

- Discrete Mathematics and its Application 4.2 # 1,3,5,7
- zyBook Additional Exercises #1.3.1, 1.3.2