

Lecture 4: VI Measurements, Wheatstone Bridge, Delta-to-Wye Equivalent Circuits

Instructors: Ogbonnaya Bassey & Dr. Karen Butler-Purry

ECEN 214 – Electrical Circuit Theory (Spring 2020)

Outline

- Voltage & Current Measurements
- Wheatstone Bridge
- Delta-to-Wye Equivalent Circuit

Highlights from Last Lecture

Kirchhoff's Current Law (KCL)

Assign current entering as +ive and current leaving as -ive:

$$i_1 + i_2 + (-i_3) + (-i_4) = 0$$
 (1)

Or Assign current entering as –ive and current leaving as +ive:

$$(-i_1) + (-i_2) + i_3 + i_4 = 0$$
 (2)

Or simply equate the sum of current entering to sum of current leaving

$$i_1 + i_2 = i_3 + i_4$$
 (3)

Equations (1), (2) and (3) are exactly equivalent

Highlights from Last Lecture Cont'd

Kirchhoff's Voltage Law (KVL)

As you move through the loop in clockwise direction, use the sign of the first polarity you come across in each element:

$$(-v_1) + v_2 + v_3 + (-v_4) = 0$$
 (1)

Or Use the sign of the second polarity you come across in each element:

$$v_1 + (-v_2) + (-v_3) + v_4 = 0$$
 (2)

Equations (1) and (2) are exactly equivalent as equation (1) multiplied through by -1 will give equation (2)

Current Measurement

- Current is measured with the use of an ammeter
- An ammeter is connected in series with the circuit element whose current is to be measured
- To ensure that the ammeter adds minimal distortion on the circuit it is connected to, it is desired that its internal resistance is very small (R → 0) compared to the resistances in the circuit

Voltage Measurement

- Voltage is measured with the use of a voltmeter
- A voltmeter is usually connected in parallel with the circuit element whose voltage is to be measured
- To ensure that the voltmeter adds minimal distortion on the circuit it is connected to, it is desired that its internal resistance is very large (→ ∞, i.e. open circuit) compared to the resistances in the circuit

The Wheatstone Bridge (Resistance Measurement)

- Resistance can be measured using the Wheatstone bridge shown on the right
- R_x is the unknown resistance
- The resistance of R_3 is varied until the current through the galvanometer reads zero current $(i_g = 0)$
- When $i_g = 0$ the bridge is said to be balanced

The Wheatstone Bridge (Resistance Measurement)

- $i_g = 0$ implies that point a and b are at the same potential, i.e., $v_{ab} = 0$
- By KCL, given $i_g = 0$, then $i_1 = i_3$ and $i_2 = i_x$
- Apply KVL and Ohm's law to loop 1 and 2:

$$0 - i_1 R_1 + i_2 R_2 = 0, \rightarrow i_1 R_1 = i_2 R_2$$
 (1)
Similarly, $i_3 R_3 = i_x R_x$ (2)
(2)/(1) gives $\frac{i_3 R_3}{i_1 R_1} = \frac{i_x R_x}{i_2 R_2}$

The Wheatstone Bridge (Resistance Measurement)

• since $i_1 = i_3$ and $i_2 = i_x$

$$\frac{i_3 R_3}{i_1 R_1} = \frac{i_x R_x}{i_2 R_2} \to \frac{R_3}{R_1} = \frac{R_x}{R_2}$$

And
$$R_{\chi} = \frac{R_2 R_3}{R_1}$$

Example 1 (Example 3.10 from textbook)

For the Wheatstone bridge shown on the right, R_3 can be varied from 10Ω to $2k\Omega$. What range of R_x can it measure?

$$R_{x} = \frac{R_{2}R_{3}}{R_{1}}$$

$$R_{x,min} = \frac{R_{2}R_{3,min}}{R_{1}} = 4000 \times \frac{10}{1000} = 40\Omega$$

$$R_{x,max} = \frac{R_{2}R_{3,max}}{R_{1}} = 4000 \times \frac{2000}{1000} = 8k\Omega$$

The range of resistance value it can measure is from 40Ω to $8k\Omega$

Example 2a (Assessment problem 3.7 from textbook)

The bridge circuit shown is balanced when $R_1 = 100\Omega$, $R_2 = 1000\Omega$, and $R_3 = 150\Omega$. v = 5VWhat is the value of R_x ?

Example 2b (Assessment problem 3.7 from textbook)

 $v=5V, R_1=100\Omega, R_2=1000\Omega$, and $R_3=1500\Omega$, from part a $R_x=1500\Omega$ Suppose each bridge resistor has a capacity of dissipating 250mW. Can the bridge be left in this balance state?

Delta-to-Wye (or Pi-to-Tee) Equivalent Circuit

- There are resistive networks in which series and parallel evaluation of resistances alone is not sufficient to find their equivalent resistance
- Delta-to-Wye Transformation can be used to transform complex resistive network into forms where we can evaluate the equivalent resistance

Delta/Pi Configuration

- Three nodes connecting three resistors in a cycle
- Both are equivalent

(a) Delta (Δ) Structure (b) Pi (π) Structure

Wye/T Configuration

- Four nodes with center node connected to the other three nodes through a resistor
- Both are equivalent

(a) Wye (Y) Structure (b) T Structure

Δ-to-Y Transformation

Assuming the two circuits on the right are equivalent, then the equivalent resistance through any two terminal must be the same. Therefore,

$$R_{ab} = \frac{R_c(R_a + R_b)}{R_a + R_b + R_c} = R_1 + R_2$$

$$R_{bc} = \frac{R_a(R_b + R_c)}{R_a + R_b + R_c} = R_2 + R_3$$

$$R_{ca} = \frac{R_b(R_a + R_c)}{R_a + R_b + R_c} = R_1 + R_3$$

or

we can solve for R_a , R_b , & R_c for the Δ equivalence of a Y network

Δ-to-Y Transformation

Solving for R_1 , R_2 , & R_3 gives:

$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$$

$$R_2 = \frac{R_a R_c}{R_a + R_b + R_c}$$

$$R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$$

Solving for R_a , R_b , & R_c gives:

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_1}$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_2}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_3}$$

Example 3

Convert the following Y/T configuration (top right) to its equivalent delta configuration (bottom right) given $R_1 = 20\Omega$, $R_2 = 10\Omega$, $R_3 = 5\Omega$

Example 4

A)Find the equivalent resistance seen by the current source as shown in the figure on the top right

B)Find v

