

The Routing Table: A Closer Look

Routing Protocols and Concepts – Chapter 8

Cisco | Networking Academy® | Mind Wide Open™

Objectives

- Describe the various route types found in the routing table structure.
- Describe the routing table lookup process.
- Describe routing behavior in routed networks.

Introduction

- Chapter focus:
 - Structure of the routing table.
 - Lookup process of the routing table.
 - Classless and classful routing behaviors.

- Lab topology
- 3 router setup:
 - R1 and R2 share a common 172.16.0.0/16 network with 172.16.0.0/24 subnets
 - R2 and R3 are connected by the 192.168.1.0/24 network
 - R3 also has a 172.16.4.0/24 subnet, which is disconnected, or discontiguous, from the 172.16.0.0 network that R1 and R2 share

- Routing table entries come from the following sources:
 - Directly connected networks
 - Static routes
 - Dynamic routing protocols

Router#show ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, <output omitted> Gateway of last resort is not set 172.16.0.0/24 is subnetted, 4 subnets S 172.16.4.0 is directly connected, Serial0/0/1 R 172.16.1.0 [120/1] via 172.16.2.1, 00:00:08, Serial0/0/0 C 172.16.2.0 is directly connected, Serial0/0/0 C 172.16.3.0 is directly connected, FastEthernet0/0 10.0.0.0/16 is subnetted, 1 subnets S 10.1.0.0 is directly connected, Serial0/0/1 C 192.168.1.0/24 is directly connected, Serial0/0/1 S 192.168.100.0/24 is directly connected, Serial0/0/1 Router#

- Level 1 routes
- As soon as the no shutdown command is issued the route is added to routing table


```
IP routing debugging is on

R2#conf t

R2(config) #interface serial 0/0/1

R2(config-if) #ip address 192.168.1.1 255.255.255.0

R2(config-if) #clock rate 64000

R2(config-if) #no shutdown

R2(config-if) #

00:11:06: %LINK-3-UPDOWN: Interface Serial0/0/1, changed state to up

R2(config-if) #

RT: add 192.168.1.0/24 via 0.0.0.0, connected metric [0/0]

RT: interface Serial 0/0/1 added to routing table

R2(config-if) #end

R2#undebug all

All possible debugging has been turned off
```

- Cisco IP routing table is a hierarchical structure
- The reason for this is to speed up lookup process


```
R2#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

C 192.168.1.0/24 is directly connected, Serial0/0/1
```

- Level 1 routes:
 - Have a subnet mask equal to or less than the classful mask of the network address
- Level 1 routes can function as:
 - Default routes
 - Supernet routes
 - Network routes

- Level 1 routes:
 - Ultimate routes includes either:
 - A next-hop address

OR

An exit interface

Routing Table: Level 1 Routes

C 192.168.1.0/24 is directly connected, Serial0/0/1

- Parent and child routes:
 - A parent route is a level 1 route
 - A parent route does not contain any nexthop IP address or exit interface information


```
Parent and Child Routes

R2 (config) #interface fastethernet 0/0
R2 (config-if) #ip address 172.16.3.1 255.255.255.0
R2 (config-if) #no shutdown
R2 (config-if) #end
R2#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile,
<text omitted>

Gateway of last resort is not set

172.16.0.0/24 is subnetted, 1 subnets
C 172.16.3.0 is directly connected, FastEthernet0/0
C 192.168.1.0/24 is directly connected, Serial0/0/1
R2#
```

- Automatic creation of parent routes:
 - Occurs any time a subnet is added to the routing table

Child routes:

- Child routes are level 2 routes
- Child routes are a subnet of a classful network address

Routing Table: Parent/Child Relationship

172.16.0.0/24 is subnetted, 1 subnets
C 172.16.3.0 is directly connected, FastEthernet0/0

- Level 2 child routes contain route source and the network address of the route
- Level 2 child routes are also considered ultimate routes
 - Reason: they contain the next hop address and/or exit interface

Parent and Child Route Details

Subnet mask for child routes

 Both child routes have the same subnet mask. This means the parent route maintains the /24 mask

Routing Table: Parent/Child Relationship

```
172.16.0.0/24 is subnetted, 1 subnets
C 172.16.2.0 is directly connected, Serial0/0/0
C 172.16.3.0 is directly connected, FastEthernet0/0
```


 Diagram illustrates 2 child networks belonging to the parent route 172.16.0.0 / 24:

 In classless networks, child routes do not have to share the same subnet mask.

Parent and Child Routes with VLSM

Parent and Child Routes with VLSM

```
RouterX#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
<output omitted>

Gateway of last resort is not set

172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks
C 172.16.1.4/30 is directly connected, Serial0/0/0
C 172.16.1.8/30 is directly connected, Serial0/0/1
C 172.16.3.0/24 is directly connected, FastEthernet0/0

RouterX#
```

Parent & Child Routes: Classless Networks

Network type	Parent route's classful mask is displayed	Term variably subnetted is seen in parent route in routing table	Includes the # of different masks of child routes	Subnet mask included with each child route entry
Class- ful	No	No	No	No
Class- less	Yes	Yes	Yes	Yes

Parent & Child Routes: Classless Networks

- The Route Lookup Process
 - Examine level 1 routes:
 - If best match a level 1 ultimate route and is not a parent route this route is used to forward packet
 - Router examines level 2 (child) routes:
 - If there is a match with level 2 child route then that subnet is used to forward packet
 - If no match then determine routing behavior type
 - Router determines classful or classless routing behavior:
 - If classful then packet is dropped
 - If classless then router searches level one supernet and default routes
 - If there exists a level 1 supernet or default route match then Packet is forwarded, if not packet is dropped

- Longest Match: Level 1 Network Routes:
 - Best match is also known as the longest match
 - The **best match** is the one that has the <u>most number of left</u> <u>most bits</u> matching between the destination IP address and the route in the routing table

Longest Match is the Preferred Route

IP Packet Destination	172.16.0.10	10101100.00010000.00000000.00
Route 1	172.16.0.0/12	10101100.00010000.00000000.00000000
Route 2	172.16.0.0/18	10101100.00010000.00000000.00000000
Route 3	172.16.0.0/26	10101100.00010000.00000000.0000000

Longest Match to IP Packet Destination

 Finding the subnet mask used to determine the longest match

Scenario:

- PC1 pings 192.168.1.2
- Router examines level 1 route for best match
- There exist a match between 192.168.1.2 and 192.168.1.0 / 24
- Router forwards packets out s0/0/0

Step 1a: If best match is a level 1 ultimate route, use it to forward the packet.

- The process of matching:
 - 1st there must be a match made between the parent route & destination IP
 - If a match is made then an attempt at finding a match between the destination IP and the child route is made

172.16.0.0/16 Level 1 Parent Route

route and moves to the next route entry.

- Finding a match between the packet's destination IP address and the next route in the routing table:
 - The figure shows a match between the destination IP of 192.168.1.2 and the level one IP of 192.168.1.0 / 24 then packet forwarded out s0/0/0

- Level 1 Parent & Level 2 Child Routes
- Before level 2 child routes are examined
 - There must be a match between classful level one parent route and destination IP address

Example: Level 1 Parent Route and Level 2 Child Routes


```
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

<urborerally content of the content
```

- After the match with parent route has been made Level 2 child routes will be examined for a match
 - Route lookup process searches for child routes with a match with destination IP

- How a router finds a match with one of the level 2 child routes:
 - First router examines parent routes for a match. If a match exists then:
 - Child routes are examined
 - Child route chosen is the one with the longest match

Example: Level 1 Parent Route and Level 2 Child Routes

Destination of IP Packet	172.16.3.10	10101100 00010000 00000011 00001010
Level 1 Parent Route	172.16.0.0/16	10101100 00010000 00000000 00000000
Level 2 Child Route	172.16.1.0/24	10101100 00010000 00000001 00000000
Level 2 Child Route	172.16.2.0/24	10101100 00010000 00000010 00000000
Level 2 Child Route	172.16.3.0/24	10101100 00010000 00000011 00000000

First 24 bits match.

- Example Route Lookup Process with VLSM:
 - The use of VLSM does not change the lookup process
 - If there is a match between destination IP address and the level 1 parent route then Level 2 child routes will be searched

- Classful & classless routing protocols:
 - Influence how routing table is populated
- Classful & classless routing behaviors:
 - Determines how routing table is searched after it is filled

Routing Protocols vs Routing Behaviors

Routing Sources Directly Connected Networks Static Routes Classful Routing Protocols RIPv1 IGRP Classless Routing Protocols RIPv2 EIGRP OSPF IS-IS

- Routing sources (including protocols) are used to build the routing table.
- Multiple sources and routing protocols can be used.

```
Routing Behaviors

Classful

no ip classless

IP Classless

ip classless
```

- Routing behaviors are used to locate information in the routing table.
- · Only a single routing behavior can be used.

- Classful Routing Behavior: no ip classless
- What happens if there is not a match with any level 2 child routes of the parent?
 - Router must determine if the routing behavior is classless or classful
 - If router is utilizing
 classful routing
 behavior then lookup
 process is terminated
 and packet is dropped

- Classful Routing Behavior Search Process
- An example of when classful routing behavior is in effect and why the router drops the Packet
 - The destination's subnet mask is a /24 and none of the child routes left most bits match the first 24 bits. This means packet is dropped.

- Classful Routing Behavior Search Process
- The reason why the router will not search beyond the child routes:
 - Originally networks were all classful
 - This meant an organization could subnet a major network address and "enlighten" all the organization's routers about the subnetting
 - Therefore, if the subnet was not in the routing table, the subnet did not exist and packet was dropped

- Classless Routing Behavior: ip classless
- Beginning with IOS 11.3, ip classless was configured by default
- Classless routing behavior works for:
 - Discontiguous networks and
 - CIDR supernets

- Classless Routing Behavior: ip classless
- Route lookup process when ip classless is in use:
 - If classless routing behavior in effect then:
 - Search level 1 routes
 - Supernet routes checked first
 - If a match exists then forward packet
 - Default routes checked second
 - If there is no match or no default route then the packet is dropped

- Classless Routing Behavior Search Process
- Router begins search process by finding a match between destination IP and parent route
 - After finding the above mentioned match, then there is a search of the child route

- Classless Routing Behavior Search Process
- If no match is found in child routes of previous slide then:
 - Router continues to search the routing table for a match that may have fewer bits in the match

- Classful vs. Classless Routing Behavior:
 - It is recommended to use classless routing behavior
 - Reason: so supernet and default routes can be used whenever needed

Summary

- Content / structure of a routing table:
- Routing table entries:
 - Directly connected networks
 - Static route
 - Dynamic routing protocols
- Routing tables are hierarchical:
 - Level 1 route:
 - Have a subnet mask that is less than or equal to classful subnet mask for the network address.
 - Level 2 route:
 - These are subnets of a network address.

Summary

- Routing table lookup process:
 - Level 1 route examination:
 - Begins with examining level 1 routes for best match with packet's destination IP. If the best match equals an ultimate route then packet is forwarded, or else...
 - Parent route is examined. If parent route & destination IP match then Level 2 (child) routes are examined.

– Level 2 route examination:

- If a match between destination IP and child route found then packet forwarded, or else...
- If Router is using classful routing behavior then packet is dropped, or else...
- If router is using classless routing behavior then router searches Level 1 supernet and default routes for a match. If a match is found then Packet is forwarded, or else...
- Packet is dropped.

Summary

- Routing behaviors:
 - This refers to how a routing table is searched.
- Classful routing behavior:
 - Indicated by the use of the no ip classless command.
 - Router will not look beyond child routes for a lesser match.
- Classless routing behavior:
 - Indicated by the use of the ip classless command.
 - Router will look beyond child routes for a lesser match.

