Facial Keypoints Detection

Jordan Meyer Aswin Thiruvengadam Sweta Bhattacharya Leon Rafael Gutierrez Angulo

Objective:

Detect the location of keypoints on face images¹

Applications:

- Tracking faces in images and video
- Analysing facial expressions
- Detecting dysmorphic facial signs for medical diagnosis
- Biometrics / face recognition

Data

Dataset provided via Dr. Yoshua Bengio, University of Montreal

- 1. Each example contains:
 - a. Unique identification code
 - b. Image stored as 96 x 96 pixel arrays (9216 features)
 - c. 30 key point features
 - i. 15 pairs of X and Y's
- 2. Training Examples 7,049
- 3. Test Examples 1,783

Feature Pair (x , y)	Percent Missing
right_eyebrow_outer_end	69%
left_eye_inner_corner	68%
left_eye_outer_corner	68%
right_eye_inner_corner	68%
right_eye_outer_corner	68%
left_eyebrow_inner_end	68%
left_eyebrow_outer_end	68%
right_eyebrow_inner_end	68%
mouth_left_corner	68%
mouth_right_corner	68%
mouth_center_top_lip	68%
mouth_center_bottom_lip	0.4%
right_eye_center	0.2%
left_eye_center	0.1%
nose_tip	0.0%

Modeling strategy

Baseline Model

- Cascade model
 - a. Phase 0: OLS
 - b. Phase 1: DNN
 - c. Phase 2: CNN
 - d. Phase 3: CNN with transfer learning

Loss: RMSE

Understanding data characteristics

Augmenting data with more samples

Creating more samples for misclassified images

Comparison of architectures

Model architecture optimization

Hyperparameter optimization

Model dashboard

Visualizing misclassifications

Root-cause analysis

Baseline - Location Means

Cascade model

Analysis of predictions (Stage 1: DNN)

Long tail region Core region

Next steps

Data Augmentation

- Model performance improves with increased training data
- Challenge: Limited training data w.r.t. number of features to train.
- Solution: Create new training examples via data augmentation

original

Image Preprocessing

 Models perform better with less noise and features

 Challenge: Lots of unnecessary features assessed by each model

 Solution: Crop Images for each feature to reduce number of features to train

Transfer Learning

Model Parameters are Critical

- Challenge: Training each CNN is very time consuming
- Solution: Leverage pretrained existing models via transfer learning

Tasks

Data exploration

Sweta and Leon to look at

Operating model

- Final submission in notebook
 - Only add final(or working) version to the main submission notebook
- Create functions in your own notebook or import as a py file
- Store all work in Git (including your own work-in-progress code too)

Reference

Augmentation

https://journalofbigdata.sp ringeropen.com/articles/1 0.1186/s40537-019-019 7-0

 https://fairyonice.github.io
 /Data-augmentation-for-f acial-keypoint-detection.ht ml GANN for increasing training data on misclassified samples

Model

Model dashboard

Learning curves

Model architecture and hyperparameter optimization

Genetic algo optimization?

Transfer learning
Batch normalization
Dropout

Thank you!