CS32 Week 6: Trees & BSTs

Doga Kisa

- Common data structure in computer science
 - Organizing data hierarchy
 - Make decisions decision tree
 - Fast retrieval binary search tree

Directed link

descendant

- Only link to children, no link to parent
- Only one parent for each node (except for root)

- Concepts
 - All nodes are connected.
 - No loops.
 - height/depth
 - subtree

- How many edges should there be in a tree of n nodes?
 - □ n-1
 - Each node has a link pointing to it
 - Except root node.
 - Proof of at least n-1 edges:
 - All nodes are connected.
 - Proof of at most n-1 edges:
 - A graph with n nodes and n edges
 - have to have a loop.

- Binary Tree
 Each internal (non-leaf) node has at most 2 children
- Full Binary Tree
 Each internal node has exactly 2 children
- Perfect Binary Tree
 Full binary tree, in which
 all leaves are at the same depth
 - For h: height, what is n?
 - □ 2^(h+1) 1

- Tree traversal
 - Pre-order
 - current, left, right
 - In-order
 - left, current, right
 - Post-order
 - left, right, current

- Tree traversal
 - What's the output for
 - Pre-order traversal
 - In-order traversal
 - Post-order traversal

pre: 5213486

• in: 1234568

post: 1432685

Definition

For any node with value *v*,

- all nodes on the left subtree
 have smaller values than v,
- all nodes on the right subtree have larger values than v.

 For a same set of data, there exists multiple binary search trees.

- Structure for storing data
 - Pros and cons

- Operations:
 - Search
 - Insert
 - Delete
 - Traversal

- Search for a value
 - At the root, compare the value v of current node with desired value x
 - If x = v, found it!
 - If x < v</p>
 - Search for x in the left subtree
 - If x > v
 - Search for x in the right subtree

- Search
 - Search for 6
 - Search for 3
 - Search for 9
 - Complexity
 - For balanced binary search
 - □ O(log n)
 - What affects the performance of search?
 - Tree height!

- Search
 - Using binary search on a sorted array
 - Complexity?
 - □ O(log n)
 - Why use a binary search tree?
 - More flexibility for modification insertion/ deletion

- Insertion
 - Put the new value in the correct position
 - First do a search
 - Until we hit the NULL pointer
 - Create a new Node
 - Put it at the position of the NULL pointer
 - Fix the link

- Insertion
 - Insert 7
 - Insert 0

- Complexity?
 - Search + insert
 - \bigcirc O(log n) + O(1)
 - \Box = O(log n)

- Insertion
 - Given a sorted array of integers
 - How to construct a BST?
 - Insertion by linear order?
 - Insertion by random order?
 - Pick the middle one as the root?

- Challenge:
 - Given a sorted array, build the best BST.
 - Node* buildBST(int array[], int size);

Hint: use recursion

```
struct Node {
   int m_value;
   Node* m_left;
   Node* m_right;
   Node(int val){
       m_value = val;
       m_left = NULL;
       m_right = NULL;
   }
};
```

Challenge:

- Given a sorted array, build the best BST.
 Node* buildBST(int array[], int size);
 {
 return buildBST(array, 0, size-1);
 }
- Node* buildBST(int array[], int start, int end)

Challenge:

- Given a sorted array, build the best BST.
- Node* buildBST(int array[], int start, int end)
- Recursion
 - How to break down the problem?
 - Use first half to construct left subtree
 - Use second half to construct right subtree
 - How to merge results?
 - Use middle one to create a node, link left and right subtree
 - Base case?
 - When start > end.

Challenge:

Given a sorted array, build the best BST.

```
Node* buildBST(int array[], int start, int end)
{
    if (start > end) return NULL;
    int mid = (start + end) / 2;
    Node* root = new Node(array[mid]);
    Node* left = buildBST(array, start, mid - 1);
    Node* right = buildBST(array, mid + 1, end);
    root->m_left = left;
    root->m_right = right;
    return root;
```

- Traversal
 - Basic tree traversal techniques
 - Pre-order
 - Post-order
 - In-order
 - Which one is special for BST?
 - In-order traversal produce the values in order.

- Deletion
 - Remove one node from the tree
 - Fix links, move node if necessary
 - Tree still remain a valid BST

- Run a search first and find the node to delete
- Delete the node
 - 3 cases

- □ 3 cases
 - The node is a leaf
 - The node has one child
 - The node has two children

- Deletion
 - The node is a leaf
 - Delete the node
 - Set the parent's child pointer to NULL

- The node has one child
 - Link the parent to child
 - If node is a left child, then
 - □ parent->left = child;
 - If node is a right child, then
 - □ parent->right = child;
 - Order remains the same.

- The node has one child
 - Link the parent to child
 - If node is a left child, then
 - □ parent->left = child;
 - If node is a right child, then
 - □ parent->right = child;
 - Order remains the same.

- The node has two children
 - Find a replacement
 - The one next to current node's value from left or right
 - Largest one in the left subtree
 - Smallest one in the right subtree
 - This node has no children or only one child.
 - Update the value of the current node
 - Delete the replacement node (use case 1 or 2)

- Height of a BST?
 - int getHeight(Node* p){ }
 - height of a tree: the length of the longest path from the root to a leaf.
 - Hint: use recursion

Height of a BST?

```
int getHeight(Node* p)
{
    if (p == NULL)
        return -1;
    int left_height = getHeight(p->m_left);
    int right_height = getHeight(p->m_right);
    if (left_height > right_height)
        return left_height + 1;
    else
        return right_height + 1;
```

- Find the max in BST
 - int GetMax(Node* p){ }

- Find the max in a binary tree
 - int GetMax(Node* p){ }

```
int GetMax(Node* p)
{
    if (p == NULL) return INT_MIN; // empty
    int max = p->m_value;
    int left_max = GetMax(p->m_left);
    if (left_max > max)
        max = left_max;
    int right_max = GetMax(p->m_right);
    if (right_max > max)
        max = right_max;
    return max;
```

Balanced Binary Search Tree

- Balanced
 - for any node, the difference between height for left subtree and right subtree is at most 1.
- Height affects the performance of searching for BST.
 - a balanced tree will have the smallest height among the BSTs.
 - Rotation techniques.
 - AVL tree, etc.