Chapter 9 - Networks and Trees

10/27/20

Arrange Networks and Trees

Networks

Node-Link Diagrams

- Data: nodes and edges
- Task: understand connectivity, paths, structure (topology)
- Encoding:
 - nodes as point marks (distributed in space), connections by line marks (straight or curved)
 - space used to communicate hierarchical orientation
- Scalability: hundreds

Social Networks

Force-Directed Network Layout

- Algorithm
- Nodes push away from each other but edges are springs that pull them together
- Weakness: nondeterministic, algorithm may produce different results each time it runs
- (Deterministic approaches such as bar charts and scatterplots)

Force-Directed Network Layout Limitations

Adjacency Matrix

- Change network to tabular data and use a matrix representation
- Derived data: nodes are keys, edges are Boolean values
- Task: lookup connections, find well-connected clusters
- Scalability: millions of edges

Adjacency Matrix

- Encoding of additional information about another attribute:
 - Coloring matrix cells
 - Size coding (limited by pixel availability per cell; typically only a few levels would be distinguishable between largest and smallest size)
 - ▶ Show weighted networks; link has an associated quantitative value attribute encoded by an ordered channel such as luminance or size

Node-Link or Adjacency Matrix?

- Empirical study:
 - Node-link better for small graphs; familiarity among audience as well
 - Adjacency better for large graphs; unfamiliarity
- Multi-link paths hard with adjacency matrix
- More familiarity with node-link diagrams
- Link density problematic with node-link but not with adjacency matrices

Structures from Adjacency Matrices

Trees

Trees

- Directed acyclic graphs
 - Each edge has a direction; origin is the parent, destination is the child
- Has a root and every other node hangs off it
- Can consider enclosure in trees using parent-child relationships
- Primary concern: spatial layout of nodes and edges
- Goal is to effectively depict the graph structure:
 - Connectivity, path-following
 - Network distance
 - Clustering
 - Ordering (e.g. hierarchy level)

Tree Visualizations

Node-Link Diagram

- Trees are graphs, but with more structure
- Horizontal or vertical
- Parent-child relationship

Reingold-Tilford Algorithm

- ► Goal:
 - Make smarter use of space
 - Maximize density and symmetry
- Design concerns
 - Clearly encode depth level
 - No edge crossings
 - Isomorphic subtrees drawn identically
 - Compact
- Approach
 - Bottom up recursive approach
 - Make sure every subtree is drawn for each parent
 - ▶ Pack subtrees as closely as possible
 - Center parent over subtrees

Icicle Plot

- Line marks
- Depth shown by vertical positioning
- Links and sibling order shown by horizontal positioning

Radial Node-Link

- Use polar coordinates instead of rectilinear
- Same layout algorithm works (e.g. Reingold-Tilford)
- Benefit: space usage, labels

https://observablehq.com/@d3/radial-tidy-t

Sunburst

- Icicle plot in radial layout
- Reading labels?
- Intuitive imagination

Trees - Containment

Treemaps

- Containment marks instead of connection marks
- Orientation of division (horizontal/vertical) changes at each step
- Not as easy to see the intermediate rectangles
- Scalability: millions of leaf nodes and links possible

Nested Circles

- Looks like a cluster diagram, but shows hierarchy
- Containment shown by layering of semi-transparent circles
- Labeling is more difficult

Indented Outline

- Similar to a filesystem tree
- Horizontal position shows depth, vertical positions shows sibling/order

Compound Networks

- Add a hierarchy to the network (e.g. from clustering)
- GrouseFlocks: uses nested circles with colors

Sources/Credits

- ► Tamara Munzner, Visualization Analysis & Design, A K Peters Visualization Series, CRC Press, 2014.
- ▶ Utah, Miriah Meyer, Visualization (2014).
- ▶ UMass Dartmouth, David Koop, Data Visualization (2015).