



## Olasılık Dağılımı İle İlgili Hipotezler

- Gözlenmiş bir örnekten elde edilen frekans dağılımının seçilen bir teorik dağılım fonksiyonuna uygunluğunu kontrol etmek için iki basit yol
  - ☐ Kullanılan teorik dağılıma ait olasılık kağıdı üzerinde grafiksel kontrol,
  - Örnekten hesaplanan yüksek mertebeden momentlerin (çarpıklık katsayısı, kurtosis katsayısı gibi) seçilen fonksiyonun teorik moment değerleri ile karşılaştırılması ile uygunluğunun kontrolüdür.
- Ancak her iki yöntem de güvenilir değildir.
- Çeşitli dağılım fonksiyonlarının biçimleri çok farklı olduğu halde yüksek mertebeden momentleri birbirine yakın çıkabilir.
- Bu nedenle olasılık dağılımlarının uygunluğunun kontrolünde de istatistik testler kullanmak gereklidir.



■ NOT: Bu ders materyali sadece ilgili bölümün mevcut dönemi için geçerlidir. Her yıl güncellenebilmektedir. Sadece kayıtlı olduğunuz ders için kullanılabilir. Ders harici her türlü paylaşım yasaktır, herhangi başka bir yerde yayımlanamaz.

Ç.Ü. İnş.Müh.Böl.

3





Olasılık Dağılımı İle İlgili Hipotezler

■ Dağılım Uygunluk Testleri
□ χ² Testi
□ Smirnov – Kolmogorov Testi



## χ² Testi

- Bir rastgele değişkene ait *N* elemanlı bir örneği *m* sınıfa ayırarak herbir sınıftaki *N*<sub>i</sub> eleman sayısını hesaplansın.
- Seçilen o.d.f una göre aynı sınıf aralıklarında bulunma olasılıkları p<sub>i</sub> ile gösterilsin.

7



## χ² Testi

$$\chi^{2} = \sum_{i=1}^{m} \frac{(N_{i} - N.p_{i})^{2}}{N.p_{i}}$$

- istatistiğinin örnekleme dağılımı asimptotik olarak n = s.d.= m-1 olan χ² dağılımıdır.
- (N.p<sub>i</sub>) rastgele değişkenin dağılımının seçilen dağılıma uyması halinde i ninci sınıfa düşecek eleman sayısıdır.
- Bütün sınıf aralıklarında gözlenen eleman sayısının  $(N_i)$ , teorik sayıya  $(N.p_i)$  eşit olması halinde  $\chi^2=0$  olacağı görülmektedir.
- Aradaki farkların büyümesiyle χ² değeri de artar.
- Buna göre hesaplanan  $\chi^2$  değeri n=m-1 serbestlik derecesinde aşılma olasılığı  $\alpha$  olan  $\chi \alpha^2$  değerinden küçükse gözlenen dağılımın seçilen teorik dağılıma uygunluğu hipotezi kabul, aksi halde reddedilir.
- Seçilen o.d.f. nin n adet parametresi eldeki örnekten hesaplanmakta ise n = s.d. = m n 1 olur.



### **Smirnov - Kolmogorov Testi**

■ Eldeki örneğin düzenlendiğini ve düzenlenmiş örnekten (x1 ≤ x2 ≤ x3 ≤... ≤ xn ) frekans dağılımının:

$$F*(x_i) = \frac{i}{N}$$

şeklinde hesaplandığını düşünelim. Seçilen dağılım fonksiyonu F(x) ile gösterilirse:

$$\Delta = \max_{i} |F(x_i) - F^*(x_i)|$$

istatistiğinin örnekleme dağılımı bilinmektedir.

9



## **Smirnov - Kolmogorov Testi**

- Bu dağılım gözönüne alınan o.d.f den bağımsızdır.
- Bu dağılım bilindiğine göre seçilen  $\alpha$  anlamlılık düzeyinde aşılması olasılığı  $\alpha$  olan  $\Delta_{\alpha}$  değeri <u>Tablo 6.1</u> den okunabilir(  $\Delta_{\alpha}$  değeri örnekteki **N** eleman sayısına da bağlıdır).
- Formülden hesaplanan  $\Delta$  değeri  $\Delta_{\alpha}$  dan küçükse hipotez kabul, aksi halde reddedilir.



# Smirnov - Kolmogorov Testi

■ Tablo 6.1.  $\Delta_{\alpha}$  Değerleri

| N   | 0.20                 | 0.10       | 0.05                 | 0.01                 |
|-----|----------------------|------------|----------------------|----------------------|
| 5   | 0.45                 | 0.51       | 0.56                 | 0.67                 |
| 10  | 0.32                 | 0.37       | 0.41                 | 0.49                 |
| 15  | 0.27                 | 0.30       | 0.34                 | 0.40                 |
| 20  | 0.23                 | 0.26       | 0.29                 | 0.36                 |
| 25  | 0.21                 | 0.24       | 0.27                 | 0.32                 |
| 30  | 0.19                 | 0.22       | 0.24                 | 0.29                 |
| 35  | 0.18                 | 0.20       | 0.23                 | 0.27                 |
| 40  | 0.17                 | 0.19       | 0.21                 | 0.25                 |
| 45  | 0.16                 | 0.18       | 0.20                 | 0.24                 |
| 50  | 0.15                 | 0.17       | 0.19                 | 0.23                 |
| >50 | 1.07                 | 1.22       | 1.36                 | 1.63                 |
|     | $\frac{1}{\sqrt{N}}$ | $\sqrt{N}$ | $\frac{1}{\sqrt{N}}$ | $\frac{1}{\sqrt{N}}$ |
|     |                      |            |                      | •                    |

11



## Örnek

 Aşağıda yapılmış deney sonuçlarına göre betonarme kirişin çatlama yüklerinin <u>normal dağılıma</u> uyup uymadığını χ² testi ile % 10 anlamlılık düzeyinde kontrol ediniz.

| Çatlama Yükü (kg) | Çatlama Yükü (kg) | Çatlama Yükü (kg) |
|-------------------|-------------------|-------------------|
| 520               | 740               | 840               |
| 570               | 760               | 850               |
| 595               | 780               | 860               |
| 610               | 790               | 860               |
| 635               | 790               | 890               |
| 660               | 800               | 930               |
| 685               | 810               | 940               |
| 710               | 810               | 990               |
| 730               | 810               | 1045              |
| 740               | 840               | 1080              |





| 1 | [1] 500-599 600-699 700-799 800-899 900-999 1000-1100 | Frekans [2] 3 4 8 10 3 2     |                                |                           | $(N.p_i)^2$ $(P_i)^2$ $(N.p_i)^2$ $(R_i)^2$ | $z = \frac{x - \mu_x}{\sigma_x} \qquad F(x)$ -1.36 | ΔF(x)<br>(p <sub>i</sub> )<br>0.0869<br>0.1742<br>0.2708<br>0.2562<br>0.1464<br>0.0655 |
|---|-------------------------------------------------------|------------------------------|--------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------|
|   | X                                                     | Frekans<br>(f <sub>i</sub> ) | $\Delta F(x) \leftarrow (p_i)$ | $N*\Delta F(x)$ $(N*p_i)$ | $(N_i - N*p_i)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\chi^2$                                           |                                                                                        |
|   | [1]                                                   | [2]                          | [3]                            | [4]=30*[3]                | [5]=([2]-[4]) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [6]=[5]/[3]                                        |                                                                                        |
|   | 500-600                                               | 3                            | 0.0869                         | 2.607                     | 0,154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,059                                              |                                                                                        |
|   | 600-700                                               | 4                            | 0.1742                         | 5.226                     | 1,503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,288                                              |                                                                                        |
|   | 700-800                                               | 8                            | 0.2708                         | 8.124                     | 0,015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,002                                              |                                                                                        |
|   | 800-900                                               | 10                           | 0.2562                         | 7.686                     | 5,355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,697                                              |                                                                                        |
|   | 900-1000                                              | 3                            | 0.1464                         | 4.392                     | 1,938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,441                                              |                                                                                        |
|   | 1000-1100                                             | 2                            | 0.0655                         | 1.965                     | 0,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,001                                              |                                                                                        |
|   |                                                       |                              |                                |                           | Toplam=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,487                                              |                                                                                        |



•  $\chi^2$  = 1.487 (Hesaplanan)

Sınıf sayısı

$$m = 6$$

- Parametre sayısı = 2
- Serbestlik derecesi:

$$n = s.d. = 6 - 2 - 1 = 3$$

- Aşılma olasılığı = % 10
- $\chi^2$  tablosundan  $\chi^2$  = **6.251** (0.10 ve 3 için)
- Hesaplanan  $\chi^2 = 1.487 < \chi^2 = 6.251$
- olduğundan normal dağılıma uyduğu kabul edilir.

17



# Örnek

 Aşağıda yapılmış deney sonuçlarına göre betonarme kirişin çatlama yüklerinin <u>normal dağılıma</u> uyup uymadığını Smirnov-Kolmogorov testi ile %5 anlamlılık düzeyinde kontrol ediniz.

| Çatlama Yükü (kg) | Çatlama Yükü (kg) | Çatlama Yükü (kg) |
|-------------------|-------------------|-------------------|
| 520               | 740               | 840               |
| 570               | 760               | 850               |
| 595               | 780               | 860               |
| 610               | 790               | 860               |
| 635               | 790               | 890               |
| 660               | 800               | 930               |
| 685               | 810               | 940               |
| 710               | 810               | 990               |
| 730               | 810               | 1045              |
| 740               | 840               | 1080              |







|                       | F(Xi)  | <u>z</u> | $F^*(Xi) = I/n$ | <u>Xi</u> | i   |
|-----------------------|--------|----------|-----------------|-----------|-----|
|                       | [5]    | [4]      | [3] =[1]/N      | [2]       | [1] |
| Normal Dağılım        | 0.0223 | -2.01    | 0.033           | 520       | 1   |
| Tablosundan           | 0.0511 | -1.63    | 0.067           | 570       | 2   |
| Tablosulluali         | 0.0738 | -1.45    | 0.100           | 595       | 3   |
|                       | 0.0908 | -1.34    | 0.133           | 610       | 4   |
| z = -2,01 için 0,0023 | 0.1252 | -1.15    | 0.167           | 635       | 5   |
| z = -1,63 için 0,0511 | 0.1678 | -0.96    | 0.200           | 660       | 6   |
|                       | 0.2188 | -0.78    | 0.233           | 685       | 7   |
|                       | 0.2777 | -0.59    | 0.267           | 710       | 8   |
|                       | 0.3298 | -0.44    | 0.300           | 730       | 9   |
|                       | 0.3573 | -0.37    | 0.333           | 740       | 10  |
|                       | 0.3573 | -0.37    | 0.367           | 740       | 11  |
|                       | 0.4143 | -0.22    | 0.400           | 760       | 12  |
|                       | 0.4732 | -0.07    | 0.433           | 780       | 13  |
|                       | 0.5030 | 0.01     | 0.467           | 790       | 14  |
|                       | 0.5030 | 0.01     | 0.500           | 790       | 15  |
|                       | 0.5327 | 0.08     | 0.533           | 800       | 16  |
|                       | 0.5623 | 0.16     | 0.567           | 810       | 17  |
|                       | 0.5623 | 0.16     | 0.600           | 810       | 18  |
|                       | 0.5623 | 0.16     | 0.633           | 810       | 19  |
|                       | 0.6483 | 0.38     | 0.667           | 840       | 20  |
|                       | 0.6483 | 0.38     | 0.700           | 840       | 21  |
|                       | 0.6756 | 0.46     | 0.733           | 850       | 22  |
|                       | 0.7019 | 0.53     | 0.767           | 860       | 23  |
|                       | 0.7019 | 0.53     | 0.800           | 860       | 24  |
|                       | 0.7745 | 0.75     | 0.833           | 890       | 25  |
|                       | 0.8537 | 1.05     | 0.867           | 930       | 26  |
|                       | 0.8701 | 1.13     | 0.900           | 940       | 27  |
|                       | 0.9332 | 1.50     | 0.933           | 990       | 28  |
|                       | 0.9720 | 1.91     | 0.967           | 1045      | 29  |
|                       | 0.9851 | 2.17     | 1.000           | 1080      | 30  |

| i   | <u>Xi</u> | F*(Xi) = I/n | <u>z</u>        | F(Xi)  | F(Xi) -F*(Xi) |
|-----|-----------|--------------|-----------------|--------|---------------|
| [1] | [2]       | [3] =[1]/N   | <u>=</u><br>[4] | [5]    | [6]=[5]-[3]   |
| 1   | 520       | 0.033        | -2.01           | 0.0223 | 0.011         |
| 2   | 570       | 0.067        | -1.63           | 0.0511 | 0.016         |
| 3   | 595       | 0.100        | -1.45           | 0.0738 | 0.026         |
| 4   | 610       | 0.133        | -1.34           | 0.0908 | 0.043         |
| 5   | 635       | 0.167        | -1.15           | 0.1252 | 0.041         |
| 6   | 660       | 0.200        | -0.96           | 0.1678 | 0.032         |
| 7   | 685       | 0.233        | -0.78           | 0.2188 | 0.015         |
| 8   | 710       | 0.267        | -0.59           | 0.2777 | 0.011         |
| 9   | 730       | 0.300        | -0.44           | 0.3298 | 0.030         |
| 10  | 740       | 0.333        | -0.37           | 0.3573 | 0.024         |
| 11  | 740       | 0.367        | -0.37           | 0.3573 | 0.009         |
| 12  | 760       | 0.400        | -0.22           | 0.4143 | 0.014         |
| 13  | 780       | 0.433        | -0.07           | 0.4732 | 0.040         |
| 14  | 790       | 0.467        | 0.01            | 0.5030 | 0.036         |
| 15  | 790       | 0.500        | 0.01            | 0.5030 | 0.003         |
| 16  | 800       | 0.533        | 0.08            | 0.5327 | 0.001         |
| 17  | 810       | 0.567        | 0.16            | 0.5623 | 0.004         |
| 18  | 810       | 0.600        | 0.16            | 0.5623 | 0.038         |
| 19  | 810       | 0.633        | 0.16            | 0.5623 | 0.071         |
| 20  | 840       | 0.667        | 0.38            | 0.6483 | 0.018         |
| 21  | 840       | 0.700        | 0.38            | 0.6483 | 0.052         |
| 22  | 850       | 0.733        | 0.46            | 0.6756 | 0.058         |
| 23  | 860       | 0.767        | 0.53            | 0.7019 | 0.065         |
| 24  | 860       | 0.800        | 0.53            | 0.7019 | 0.098         |
| 25  | 890       | 0.833        | 0.75            | 0.7745 | 0.059         |
| 26  | 930       | 0.867        | 1.05            | 0.8537 | 0.013         |
| 27  | 940       | 0.900        | 1.13            | 0.8701 | 0.030         |
| 28  | 990       | 0.933        | 1.50            | 0.9332 | 0.000         |
| 29  | 1045      | 0.967        | 1.91            | 0.9720 | 0.005         |
| 30  | 1080      | 1.000        | 2.17            | 0.9851 | 0.015         |

|     | Xi   | F*(Xi) = I/n | <u>z</u>        | F(Xi)  | F(Xi) -F*(Xi) |
|-----|------|--------------|-----------------|--------|---------------|
| [1] | [2]  | [3] =[1]/N   | <u>=</u><br>[4] | [5]    | [6]=[5]-[3]   |
| 1   | 520  | 0.033        | -2.01           | 0.0223 | 0.011         |
| 2   | 570  | 0.067        | -1.63           | 0.0511 | 0.016         |
| 3   | 595  | 0.100        | -1.45           | 0.0738 | 0.026         |
| 4   | 610  | 0.133        | -1.34           | 0.0908 | 0.043         |
| 5   | 635  | 0.167        | -1.15           | 0.1252 | 0.041         |
| 6   | 660  | 0.200        | -0.96           | 0.1678 | 0.032         |
| 7   | 685  | 0.233        | -0.78           | 0.2188 | 0.015         |
| 8   | 710  | 0.267        | -0.59           | 0.2777 | 0.011         |
| 9   | 730  | 0.300        | -0.44           | 0.3298 | 0.030         |
| 10  | 740  | 0.333        | -0.37           | 0.3573 | 0.024         |
| 11  | 740  | 0.367        | -0.37           | 0.3573 | 0.009         |
| 12  | 760  | 0.400        | -0.22           | 0.4143 | 0.014         |
| 13  | 780  | 0.433        | -0.07           | 0.4732 | 0.040         |
| 14  | 790  | 0.467        | 0.01            | 0.5030 | 0.036         |
| 15  | 790  | 0.500        | 0.01            | 0.5030 | 0.003         |
| 16  | 800  | 0.533        | 0.08            | 0.5327 | 0.001         |
| 17  | 810  | 0.567        | 0.16            | 0.5623 | 0.004         |
| 18  | 810  | 0.600        | 0.16            | 0.5623 | 0.038         |
| 19  | 810  | 0.633        | 0.16            | 0.5623 | 0.071         |
| 20  | 840  | 0.667        | 0.38            | 0.6483 | 0.018         |
| 21  | 840  | 0.700        | 0.38            | 0.6483 | 0.052         |
| 22  | 850  | 0.733        | 0.46            | 0.6756 | 0.058         |
| 23  | 860  | 0.767        | 0.53            | 0.7019 | 0.065         |
| 24  | 860  | 0.800        | 0.53            | 0.7019 | ( 0.098 )     |
| 25  | 890  | 0.833        | 0.75            | 0.7745 | 0:059         |
| 26  | 930  | 0.867        | 1.05            | 0.8537 | 0.013         |
| 27  | 940  | 0.900        | 1.13            | 0.8701 | 0.030         |
| 28  | 990  | 0.933        | 1.50            | 0.9332 | 0.000         |
| 29  | 1045 | 0.967        | 1.91            | 0.9720 | 0.005         |
| 30  | 1080 | 1.000        | 2.17            | 0.9851 | 0.015         |



 $\Delta = 0,098$  (Hesaplanan)

N = 30

 $\mu_{x} = 789$ 

 $\sigma_{x} = 139$ 

N = 30 ve  $\alpha$  = % 5 için Tablodan  $\Delta$  = 0.24

 $\Delta = 0.098$  (Hesaplanan)  $\leq \Delta = 0.24$  (Tablodan)

#### **Hipotez Kabul**

25



# Örnek

 Aşağıda yapılmış deney sonuçlarına göre betonarme kirişin çatlama yüklerinin log-<u>normal dağılıma</u> uyup uymadığını Smirnov-Kolmogorov testi ile %5 anlamlılık düzeyinde kontrol ediniz.

| Çatlama Yükü (kg) | Çatlama Yükü (kg) | Çatlama Yükü (kg) |
|-------------------|-------------------|-------------------|
| 520               | 740               | 840               |
| 570               | 760               | 850               |
| 595               | 780               | 860               |
| 610               | 790               | 860               |
| 635               | 790               | 890               |
| 660               | 800               | 930               |
| 685               | 810               | 940               |
| 710               | 810               | 990               |
| 730               | 810               | 1045              |
| 740               | 840               | 1080              |



| <u>i</u> | <u>Xi</u> | Yi=In(Xi) |                                        |
|----------|-----------|-----------|----------------------------------------|
| [1]      | [2]       | [3]       |                                        |
| 1        | 520       | 6.25      | $y_i = \ln(520) = 6,25$                |
| 2        | 570       | 6.35      |                                        |
| 3        | 595       | 6.39      |                                        |
| 4        | 610       | 6.41      | 1 (550) (25                            |
| 5        | 635       | 6.45      | $y_i = \ln(570) = 6.35$                |
| 6        | 660       | 6.49      |                                        |
| 7        | 685       | 6.53      |                                        |
| 8        | 710       | 6.57      |                                        |
| 9        | 730       | 6.59      |                                        |
| 10       | 740       | 6.61      |                                        |
| 11       | 740       | 6.61      | (                                      |
| 12       | 760       | 6.63      | $y_i = \ln(780) = 6,66$                |
| 13       | 780       | 6.66      |                                        |
| 14       | 790       | 6.67      |                                        |
| 15       | 790       | 6.67      |                                        |
| 16       | 800       | 6.68      |                                        |
| 17       | 810       | 6.70      |                                        |
| 18       | 810       | 6.70      |                                        |
| 19       | 810       | 6.70      | N =30                                  |
| 20       | 840       | 6.73      | y = In(X)                              |
| 21       | 840       | 6.73      | , - 6 656                              |
| 22       | 850       | 6.75      | $\mu_{y} = 6.656$ $\sigma_{y} = 0.174$ |
| 23       | 860       | 6.76      | $\sigma_{V} = 0.174$                   |
| 24       | 860       | 6.76      | ,                                      |
| 25       | 890       | 6.79      |                                        |
| 26       | 930       | 6.84      |                                        |
| 27       | 940       | 6.85      |                                        |
| 28       | 990       | 6.90      |                                        |
| 29       | 1045      | 6.95      |                                        |
| 30       | 1080      | 6.98      |                                        |

|          | <u>Xi</u> | Yi=In(Xi) | F*(Yi) = I/n |
|----------|-----------|-----------|--------------|
| <u>.</u> |           |           |              |
| [1]      | [2]       | [3]       | [4] =[1]/N   |
| 1        | 520       | 6.25      | 0.033        |
| 2        | 570       | 6.35      | 0.067        |
| 3        | 595       | 6.39      | 0.100 —      |
| 4        | 610       | 6.41      | 0.133        |
| 5        | 635       | 6.45      | 0.167        |
| 6        | 660       | 6.49      | 0.200        |
| 7        | 685       | 6.53      | 0.233        |
| 8        | 710       | 6.57      | 0.267        |
| 9        | 730       | 6.59      | 0.300        |
| 10       | 740       | 6.61      | 0.333        |
| 11       | 740       | 6.61      | 0.367        |
| 12       | 760       | 6.63      | 0.400        |
| 13       | 780       | 6.66      | 0.433        |
| 14       | 790       | 6.67      | 0.467        |
| 15       | 790       | 6.67      | 0.500        |
| 16       | 800       | 6.68      | 0.533        |
| 17       | 810       | 6.70      | 0.567        |
| 18       | 810       | 6.70      | 0.600        |
| 19       | 810       | 6.70      | 0.633        |
| 20       | 840       | 6.73      | 0.667        |
| 21       | 840       | 6.73      | 0.700        |
| 22       | 850       | 6.75      | 0.733        |
| 23       | 860       | 6.76      | 0.767        |
| 24       | 860       | 6.76      | 0.800        |
| 25       | 890       | 6.79      | 0.833        |
| 26       | 930       | 6.84      | 0.867        |
| 27       | 940       | 6.85      | 0.900        |
| 28       | 990       | 6.90      | 0.933        |
| 28       | 1045      | 6.95      | 0.933        |
|          |           |           |              |
| 30       | 1080      | 6.98      | 1.000        |

| _         |           | 10.1.00   |              |            |
|-----------|-----------|-----------|--------------|------------|
| <u> [</u> | <u>Xi</u> | Yi=In(Xi) | F*(Yi) = I/n | <u>z</u>   |
| [1]       | [2]       | [3]       | [4] =[1]/N   | <u>[5]</u> |
| 1         | 520       | 6.25      | 0.033        | -2.32 ◀-   |
| 2         | 570       | 6.35      | 0.067        | -1.79 🥋    |
| 3         | 595       | 6.39      | 0.100        | -1.54      |
| 4         | 610       | 6.41      | 0.133        | -1.40      |
| 5         | 635       | 6.45      | 0.167        | -1.17      |
| 6         | 660       | 6.49      | 0.200        | -0.94      |
| 7         | 685       | 6.53      | 0.233        | -0.73      |
| 8         | 710       | 6.57      | 0.267        | -0.52      |
| 9         | 730       | 6.59      | 0.300        | -0.36      |
| 10        | 740       | 6.61      | 0.333        | -0.29      |
| 11        | 740       | 6.61      | 0.367        | -0.29      |
| 12        | 760       | 6.63      | 0.400        | -0.13      |
| 13        | 780       | 6.66      | 0.433        | 0.02       |
| 14        | 790       | 6.67      | 0.467        | 0.09       |
| 15        | 790       | 6.67      | 0.500        | 0.09       |
| 16        | 800       | 6.68      | 0.533        | 0.16       |
| 17        | 810       | 6.70      | 0.567        | 0.23       |
| 18        | 810       | 6.70      | 0.600        | 0.23       |
| 19        | 810       | 6.70      | 0.633        | 0.23       |
| 20        | 840       | 6.73      | 0.667        | 0.44       |
| 21        | 840       | 6.73      | 0.700        | 0.44       |
| 22        | 850       | 6.75      | 0.733        | 0.51       |
| 23        | 860       | 6.76      | 0.767        | 0.58       |
| 24        | 860       | 6.76      | 0.800        | 0.58       |
| 25        | 890       | 6.79      | 0.833        | 0.78       |
| 26        | 930       | 6.84      | 0.867        | 1.03       |
| 26<br>27  | 930       | 6.85      | 0.867        | 1.03       |
|           |           |           |              |            |
| 28        | 990       | 6.90      | 0.933        | 1.39       |
| 29        | 1045      | 6.95      | 0.967        | 1.70       |
| 30        | 1080      | 6.98      | 1.000        | 1.89       |

| i   | <u>Xi</u> | Yi=In(Xi) | $F^*(Yi) = I/n$ | <u>z</u> | <u>F(Yi)</u> |                     |
|-----|-----------|-----------|-----------------|----------|--------------|---------------------|
| [1] | [2]       | [3]       | [4] =[1]/N      | [5]      | [6]          | Normal Dağılım      |
| 1   | 520       | 6.25      | 0.033           | -2.32    | 0.010        | Tablosundan         |
| 2   | 570       | 6.35      | 0.067           | -1.79    | 0.037        |                     |
| 3   | 595       | 6.39      | 0.100           | -1.54    | 0.062        | z=-2,32 için 0,010  |
| 4   | 610       | 6.41      | 0.133           | -1.40    | 0.081        |                     |
| 5   | 635       | 6.45      | 0.167           | -1.17    | 0.122        | z= -1,79 için 0,037 |
| 6   | 660       | 6.49      | 0.200           | -0.94    | 0.173        |                     |
| 7   | 685       | 6.53      | 0.233           | -0.73    | 0.233        |                     |
| 8   | 710       | 6.57      | 0.267           | -0.52    | 0.300        |                     |
| 9   | 730       | 6.59      | 0.300           | -0.36    | 0.358        |                     |
| 10  | 740       | 6.61      | 0.333           | -0.29    | 0.387        |                     |
| 11  | 740       | 6.61      | 0.367           | -0.29    | 0.387        |                     |
| 12  | 760       | 6.63      | 0.400           | -0.13    | 0.447        |                     |
| 13  | 780       | 6.66      | 0.433           | 0.02     | 0.507        |                     |
| 14  | 790       | 6.67      | 0.467           | 0.09     | 0.536        |                     |
| 15  | 790       | 6.67      | 0.500           | 0.09     | 0.536        |                     |
| 16  | 800       | 6.68      | 0.533           | 0.16     | 0.564        |                     |
| 17  | 810       | 6.70      | 0.567           | 0.23     | 0.592        |                     |
| 18  | 810       | 6.70      | 0.600           | 0.23     | 0.592        |                     |
| 19  | 810       | 6.70      | 0.633           | 0.23     | 0.592        |                     |
| 20  | 840       | 6.73      | 0.667           | 0.44     | 0.671        |                     |
| 21  | 840       | 6.73      | 0.700           | 0.44     | 0.671        |                     |
| 22  | 850       | 6.75      | 0.733           | 0.51     | 0.695        |                     |
| 23  | 860       | 6.76      | 0.767           | 0.58     | 0.718        |                     |
| 24  | 860       | 6.76      | 0.800           | 0.58     | 0.718        |                     |
| 25  | 890       | 6.79      | 0.833           | 0.78     | 0.781        |                     |
| 26  | 930       | 6.84      | 0.867           | 1.03     | 0.848        |                     |
| 27  | 940       | 6.85      | 0.900           | 1.09     | 0.862        |                     |
| 28  | 990       | 6.90      | 0.933           | 1.39     | 0.917        |                     |
| 29  | 1045      | 6.95      | 0.967           | 1.70     | 0.955        |                     |
| 30  | 1080      | 6.98      | 1.000           | 1.89     | 0.970        |                     |

| <u>i</u> | <u>Xi</u> | Yi=In(Xi) | $F^*(Yi) = I/n$ | <u>z</u>   | F(Yi) | F(Yi) - F*(Yi) |
|----------|-----------|-----------|-----------------|------------|-------|----------------|
| [1]      | [2]       | [3]       | [4] =[1]/N      | <u>[5]</u> | [6]   | [7]=[6]-[4]    |
| 1        | 520       | 6.25      | 0.033           | -2.32      | 0.010 | 0.023          |
| 2        | 570       | 6.35      | 0.067           | -1.79      | 0.037 | 0.030          |
| 3        | 595       | 6.39      | 0.100           | -1.54      | 0.062 | 0.038          |
| 4        | 610       | 6.41      | 0.133           | -1.40      | 0.081 | 0.052          |
| 5        | 635       | 6.45      | 0.167           | -1.17      | 0.122 | 0.045          |
| 6        | 660       | 6.49      | 0.200           | -0.94      | 0.173 | 0.027          |
| 7        | 685       | 6.53      | 0.233           | -0.73      | 0.233 | 0.001          |
| 8        | 710       | 6.57      | 0.267           | -0.52      | 0.300 | 0.033          |
| 9        | 730       | 6.59      | 0.300           | -0.36      | 0.358 | 0.058          |
| 10       | 740       | 6.61      | 0.333           | -0.29      | 0.387 | 0.054          |
| 11       | 740       | 6.61      | 0.367           | -0.29      | 0.387 | 0.021          |
| 12       | 760       | 6.63      | 0.400           | -0.13      | 0.447 | 0.047          |
| 13       | 780       | 6.66      | 0.433           | 0.02       | 0.507 | 0.073          |
| 14       | 790       | 6.67      | 0.467           | 0.09       | 0.536 | 0.069          |
| 15       | 790       | 6.67      | 0.500           | 0.09       | 0.536 | 0.036          |
| 16       | 800       | 6.68      | 0.533           | 0.16       | 0.564 | 0.031          |
| 17       | 810       | 6.70      | 0.567           | 0.23       | 0.592 | 0.026          |
| 18       | 810       | 6.70      | 0.600           | 0.23       | 0.592 | 0.008          |
| 19       | 810       | 6.70      | 0.633           | 0.23       | 0.592 | 0.041          |
| 20       | 840       | 6.73      | 0.667           | 0.44       | 0.671 | 0.004          |
| 21       | 840       | 6.73      | 0.700           | 0.44       | 0.671 | 0.029          |
| 22       | 850       | 6.75      | 0.733           | 0.51       | 0.695 | 0.038          |
| 23       | 860       | 6.76      | 0.767           | 0.58       | 0.718 | 0.048          |
| 24       | 860       | 6.76      | 0.800           | 0.58       | 0.718 | 0.082          |
| 25       | 890       | 6.79      | 0.833           | 0.78       | 0.781 | 0.052          |
| 26       | 930       | 6.84      | 0.867           | 1.03       | 0.848 | 0.019          |
| 27       | 940       | 6.85      | 0.900           | 1.09       | 0.862 | 0.038          |
| 28       | 990       | 6.90      | 0.933           | 1.39       | 0.917 | 0.016          |
| 29       | 1045      | 6.95      | 0.967           | 1.70       | 0.955 | 0.011          |
| 30       | 1080      | 6.98      | 1.000           | 1.89       | 0.970 | 0.030          |

| <u>i</u> | <u>Xi</u> | Yi=In(Xi) | $F^*(Yi) = I/n$ | <u>z</u> | <u>F(Yi)</u> | F(Yi) - F*(Yi)   |
|----------|-----------|-----------|-----------------|----------|--------------|------------------|
| [1]      | [2]       | [3]       | [4] =[1]/N      | [5]      | [6]          | [7]=[6]-[4]      |
| 1        | 520       | 6.25      | 0.033           | -2.32    | 0.010        | 0.023            |
| 2        | 570       | 6.35      | 0.067           | -1.79    | 0.037        | 0.030            |
| 3        | 595       | 6.39      | 0.100           | -1.54    | 0.062        | 0.038            |
| 4        | 610       | 6.41      | 0.133           | -1.40    | 0.081        | 0.052            |
| 5        | 635       | 6.45      | 0.167           | -1.17    | 0.122        | 0.045            |
| 6        | 660       | 6.49      | 0.200           | -0.94    | 0.173        | 0.027            |
| 7        | 685       | 6.53      | 0.233           | -0.73    | 0.233        | 0.001            |
| 8        | 710       | 6.57      | 0.267           | -0.52    | 0.300        | 0.033            |
| 9        | 730       | 6.59      | 0.300           | -0.36    | 0.358        | 0.058            |
| 10       | 740       | 6.61      | 0.333           | -0.29    | 0.387        | 0.054            |
| 11       | 740       | 6.61      | 0.367           | -0.29    | 0.387        | 0.021            |
| 12       | 760       | 6.63      | 0.400           | -0.13    | 0.447        | 0.047            |
| 13       | 780       | 6.66      | 0.433           | 0.02     | 0.507        | 0.073            |
| 14       | 790       | 6.67      | 0.467           | 0.09     | 0.536        | 0.069            |
| 15       | 790       | 6.67      | 0.500           | 0.09     | 0.536        | 0.036            |
| 16       | 800       | 6.68      | 0.533           | 0.16     | 0.564        | 0.031            |
| 17       | 810       | 6.70      | 0.567           | 0.23     | 0.592        | 0.026            |
| 18       | 810       | 6.70      | 0.600           | 0.23     | 0.592        | 0.008            |
| 19       | 810       | 6.70      | 0.633           | 0.23     | 0.592        | 0.041            |
| 20       | 840       | 6.73      | 0.667           | 0.44     | 0.671        | 0.004            |
| 21       | 840       | 6.73      | 0.700           | 0.44     | 0.671        | 0.029            |
| 22       | 850       | 6.75      | 0.733           | 0.51     | 0.695        | 0.038            |
| 23       | 860       | 6.76      | 0.767           | 0.58     | 0.718        | 0.048            |
| 24       | 860       | 6.76      | 0.800           | 0.58     | 0.718        | ( <u>0.082</u> ) |
| 25       | 890       | 6.79      | 0.833           | 0.78     | 0.781        | 0.052            |
| 26       | 930       | 6.84      | 0.867           | 1.03     | 0.848        | 0.019            |
| 27       | 940       | 6.85      | 0.900           | 1.09     | 0.862        | 0.038            |
| 28       | 990       | 6.90      | 0.933           | 1.39     | 0.917        | 0.016            |
| 29       | 1045      | 6.95      | 0.967           | 1.70     | 0.955        | 0.011            |
| 30       | 1080      | 6.98      | 1.000           | 1.89     | 0.970        | 0.030            |

•

N =30

y = ln(X)

 $\mu_{y} = 6.656$ 

 $\sigma_{y} = 0.174$ 

N = 30 ve  $\alpha$  =% 5 için Tablodan  $\Delta$  =0.24

 $\Delta$  = 0.082 (Hesaplanan) <  $\Delta$  = 0.24 (Tablodan)

**Hipotez Kabul** 

