Calculating Different Measures

The BRAPH 2 Developers

September 24, 2023

This is the developer tutorial for adapting a script for calculating different graph measures. In this tutorial, we will explain how to edit an example script to calculate different graph measures in braph2genesis. Here, we use. EXAMPLE_ST_MP_WU as an example to show how to edit this script to calculate different graph measures for structural data using a multiplex weighted undirected graph.

Contents

Atlas Loading 2
Data Loading 2
Group Analysis 3
Measure Calculation 3
Group Comparison 4

Atlas Loading

We started with implementing the brain atlas. Here we use the function ImporterBrainAtlasXLS as an example. The function allows users to import the atlas from an XLS/XLSX file.

Code 1: **Brain Atlas Importer.** The header section of the pipeline EXAMPLE_ST_MP_WU. It defines the importer for Atlas loading.

```
2 % EXAMPLE_ST_MP_WU
_{\rm 3} % Script example pipeline ST MP WU
5 clear variables %#ok<*NASGU>
7 %% Load BrainAtlas
8 im_ba = ImporterBrainAtlasXLS( ... (1)
      'FILE', [fileparts(which('example_ST_MP_WU')) filesep 'Example data
       ST_MP XLS' filesep 'atlas.xlsx'], ...
      'WAITBAR', true ...
11
      );
13 ba = im_ba.get('BA');
```

(1) First, the script loads the brain atlas from the excel file atlas.xlsx

Data Loading

This step is to load the data of two groups. In this section, we use ImporterGroupSubjectST_MP_XLS as an example, Users can define the path to the group data in XLS/XLSX files contained in a folder.

Code 2: **Group Subject Data Importer.** The group data importer section provides the code for loading group subject data.

```
im_gr1 = ImporterGroupSubjectST_MP_XLS( ...(1)
      'DIRECTORY', [fileparts(which('SubjectST_MP')) filesep 'Example data
       ST_MP XLS' filesep 'ST_MP_Group_1_XLS'], ...
      'BA', ba, ...
      'WAITBAR', true ...
  gr1 = im_gr1.get('GR');
9 im_gr2 = ImporterGroupSubjectST_MP_XLS( ...(2)
      'DIRECTORY', [fileparts(which('SubjectST_MP')) filesep 'Example data
       ST_MP XLS' filesep 'ST_MP_Group_2_XLS'], ...
      'BA', ba, ...
11
      'WAITBAR', true ...
12
13
15 gr2 = im_gr2.get('GR');
```

- (1) ImporterGroupSubjectST_MP_XLS imports a group of subjects with structural data and their covariates (optional) from another XLS/XLSX file.
- (2) imports a second group of subjects with structural data and their covariates (optional) from another XLS/XLSX file.

Group Analysis

This step is to initialize the group data analysis. Users are allowed to specify the correlation type and NEGATIVE_WEIGHT_RULE in this section, the script will perform the group analysis automatically for each group loaded from previous step.

Code 3: Group Subject Data Analysis. The group data analysis provides code for initialization of group data analysis.

```
a_WU1 = AnalyzeGroup_ST_MP_WU( ...(1)
      'GR', gr1, ...
      'CORRELATION_RULE', Correlation.PEARSON ...
6 a_WU2 = AnalyzeGroup_ST_MP_WU( ...(1)
     'TEMPLATE', a_WU1, ...
      'GR', gr2 ...
     );
```

(1) creation of the group analysis with the loaded atlas and groups data.

Measure Calculation

This step is to calculate graph measures with data loaded in the previous step. Here we use overlapping strength as an example.

Code 4: Group Subject Data Analysis. The group data analysis provides code for initialization of group data analysis.

```
g_WU1 = a_WU1.memorize('G'); 1
ovstrength_WU2 = g_WU2.get('MEASURE', 'OverlappingS').get('M');(2)
3 ovstrength_av_WU2 = g_WU2.get('MEASURE', 'OverlappingSAv').get('M'); (3)
5 g_WU2 = a_WU2.get('G');
6 ovstrength_WU2 = g_WU2.get('MEASURE', 'OverlappingS').get('M');(2)
ovstrength_av_WU2 = g_WU2.get('MEASURE', 'OverlappingSAv').get('M');(3)
```

- (1) memorize in case there are measures with non-default rules. (2) The function calculates graph measure. In this case, overlapping strength is calculated.
- (3) Other measures can also be calculated by changing the measure name. For example, OverlappingS calculates overlapping strength and OverlappingSAv calculates overlapping strength average

Group Comparison

The last step is to perform group comparison. CompareGroup contains the results of a group-based comparison for a given measure. Specifically, it contains the one-tailed and two-tailed p-values and the 95% confidence interval.

Code 5: Group Subject Data Analysis. The group data analysis provides code for initialization of group data analysis.

```
1 % comparison
  c_WU = CompareGroup(...(1)
      'P', 10, ...
      'A1', a_WU1, ...
      'A2', a_WU2, ...
      'WAITBAR', true, ...
      'VERBOSE', false, ...
      'MEMORIZE', true ...
      );
ovstrength_WU_diff = c_WU.get('COMPARISON', 'OverlappingS').get('DIFF');(2)
ovstrength_WU_p1 = c_WU.get('COMPARISON', 'OverlappingS').get('P1');(3)
ovstrength_WU_p2 = c_WU.get('COMPARISON', 'OverlappingS').get('P2');(4)
ovstrength_WU_cil = c_WU.get('COMPARISON', 'OverlappingS').get('CIL');(5)
ovstrength_WU_ciu = c_WU.get('COMPARISON', 'OverlappingS').get('CIU'); 6
```

- (1) Creation of group comparison based on previous group analysis.
- (2) DIFF calculates the difference of group comparison.
- (3) P1 calculates the one-tailed p-value.
- (4) P1 calculates the two-tailed p-value.
- (5) CIL calculates the lower value of the 95% confidence interval.
- (6) CIU calculates the upper value of the 95% confidence interval.