

La placchetta in ottone raffigurata si usa per coprire le prese elettriche. Le dimensioni della placchetta sono 140 mm \times 105 mm, mentre le dimensioni delle cavità sono 15 mm \times 30 mm. La placchetta subisce un'escursione termica di 5 °C. Il coefficiente di dilatazione lineare dell'ottone vale 1.9×10^{-5} °C⁻¹.

$$\Delta t = 5 ^{\circ}C$$

 $\lambda = 4.3 \times 10^{-5} ^{\circ}C^{-1}$

▶ Calcola la variazione percentuale di superficie.

[0,02%]

$$S = S_{\lambda} (1 + 2\lambda \Delta t)$$

$$\frac{S}{S_{\lambda}} = 1 + 2\lambda \Delta t$$

$$\frac{S}{S_{\lambda}} = 1 + 2\lambda \Delta t$$

$$= \frac{(S - 1) \times 100\%}{(S_{\lambda} - 1) \times 100\%}$$

$$\frac{S}{S_{\lambda}} = 1 = 2\lambda \Delta t = 2(1.9 \times 10^{-5} \text{ °C}^{-1}) (5 \text{ °C}) = 2(1.9 \times 10^{-4} = 0.00019 = 0.019\%)$$

22 ***

Una rondella di alluminio che a 283 K ha il foro di diametro interno 30,05 mm e di diametro esterno di 50,00 mm è montata nel motore di un'auto, e raggiunge una temperatura di 85 °C.

Calcola la nuova dimensione del foro.

[30,10 mm]

NUOVO DIAMETE DEL FORD:

$$Q = Q_i (1 + \lambda \Delta t) = (x)$$

$$\triangle t = 85^{\circ}C - 283K =$$

$$= (85 + 273) k - 283K = 75 K$$

$$(30,05 \, \text{mm}) (1 + (23,1 \times 10^{-6} \, \text{K}^{-1}) (75 \, \text{K})) =$$

$$= 30,1020... \, \text{mm} \simeq 30,10 \, \text{mm}$$