Entregable 1 – Juan Pablo Santangelo

Data set inicial:

	marca	modelo	km	potencia	fecha registro	tipo_gasolina	color	tipo_coche	volante_regulab	aire_acondicion	camara trasera	asientos_trasero	elevalunas_elect	bluetooth	gps	alerta_lim_veloc	precio	fecha venta
				F-1					le	ado		s_plegables	rico		31-	idad	,	
0	NaN	118	140411.0	100.0	1/2/2012	diesel	black	NaN	True	True	False	NaN	True	NaN	True	NaN	11300.0	1/1/2018
1	BMW	M4	13929.0	317.0	NaN	petrol	grey	convertible	True	True	False	NaN	False	True	True	True	69700.0	1/2/2018
2	BMW	320	183297.0	120.0	1/4/2012	diesel	white	NaN	False	False	False	NaN	True	False	True	False	10200.0	1/2/2018
3	BMW	420	128035.0	135.0	NaN	diesel	red	convertible	True	True	False	NaN	True	True	True	NaN	25100.0	1/2/2018
4	BMW	425	97097.0	160.0	NaN	diesel	silver	NaN	True	True	False	False	False	True	True	True	33400.0	1/4/2018

- 1. Las columnas eliminadas fueron: (1) "asientos_traseros_plegables" (70% de valores NaN) y baja incidencia en el precio del vehículo (dispersión de datos según scatterplot), (2) "fecha_registro" y "fecha_venta" (las utilicé para crear otra variable que mida la diferencia en días desde el registro hasta la venta del vehículo. A su vez, las variables con fechas no serán de gran ayuda en el modelo predictivo), (3) "marca" (eran todas BMW o NaN, por ende, luego de asignárselas al mismo BMW, decidí elimarlas); (4) "bluetooth", porque no tenía información representativa; (5) "modelo", ya que utilicé la columna para agrupar los automóviles según su serie; (6) columnas altamente correlacionadas luego de hacer OneHotEncoder (que básicamente son lo mismo o explican lo mismo): "tipo_gasolina_diesel" y "tipo_coche_suv".
- 2. Con los nulos hice diferentes tratamientos. Calculé las proporciones de nulos en cada columna y a partir de allí analicé cada uno. La columna "asientos traseros plegables" la eliminé porque tenía 70% de nulos. La columna "fecha registro" tiene 2423 nulos, el 50% de las observaciones y los relleno con la mediana o medida central. La "fecha venta" tiene un solo NaN y le hago un fillna con la moda. "Tipo coche" la agrupé según aquellas categorías cuyo valores eran más frecuentes y rellené sus NaN con un string "Desconocido". Creé una nueva variable restando fecha venta y fecha registro (la llamé "diferencia", me devuelve la diferencia en días entre un suceso y el otro y rellené sus nulos con la media de sus valores). "Marca" tiene 970 NaN, el 20% del total, se los imputo a la marca "BMW" pero luego decido eliminar la columna marca porque no tiene información sensible. Los NaN de alerta lim velocidad son 728, el 15% del total, y los asigné equitativamente a True y False porque tienen proporciones parecidas (utilizando random choices). "Bluetooth" tiene 15% de NaN, 728 en total y los imputo a los valores False luego de calcular sus proporciones, de manera del de mantener la proporción relativa de los valores existentes. "Aire acondicionado", le asigné a los valores NaN un valor entero de 1. (0: no tiene aire, 1: tiene aire, según el análisis anterior, el 79% de los autos posee aire acondicionado). Color tiene 9% de NaN, y los relleno con un string "others". Además, agrupo los colores según la densidad de las observaciones. "Potencia" tiene un solo valor NaN, así que elimino esa fila, lo mismo con "km" (2 Nan), "elevalunas electrico" (2 NaN), "cámara trasera" (2 NaN), "volante regulable" (4 NaN) y "modelo" (tiene 3 NaN, lo agrupé según series de BMW que coloqué en una nueva columna que se llama "categoría" y eliminé la columna "modelo"), "tipo gasolina" (5 NaN) y precio (6 NaN).
- **3.** Análisis univariable: a priori puede verse que las más representativas para el precio serán "km" y "potencia", aunque "diferencia" guarda una mínima correlación inversa. Sí pueden detectarse outliers, en la columna "km" (97), en la columna "potencia" (587), en "aire_acondicionado" (887), en "cámara_trasera" (971), en "bluetooth" (991), en "gps" (325), en "diferencia" (1089), etc. Por ello utilizo una transformación logarítmica de los outliers para reducir su impacto. Asimismo, agrupé "modelo", "tipo_coche" y "color" para mayor organización, legibilidad y eficiencia del código.
- **4.** No, en el análisis de correlación inicial (antes de realizar OneHotEncoder y min max scaler) no he detectado variables altamente correlacionadas. Utilicé una función para detectar y dropear las columnas correlacionadas y también la varianza mínima entre variables. A priori puede observarse que "potencia" y "precio" tienen una correlación de 0.65 y que "precio" y "km" tienen una correlación de -0.4. No son representativas, pero son los valores más altos que exhibe esta primera matriz de correlación.

- **5.** Sí, hay varios aspectos a destacar. Primeramente, una correlación inversa (aunque poco significativa) entre "diferencia" y "precio" y también entre "km" y "precio", lo cual nos sugiere que, a mayor cantidad de días entre venta y registro o mayor cantidad de km, menor será el precio. Por otro lado, la columna potencia guarda una relación positiva con el precio, lo cual es esperable dado que, a mayor potencia del auto, mayor será su valor. Respecto de los booleanos transformados a integer, no arrojan demasiada información excepto por alerta límite de velocidad (cuando el automóvil posee esta característica, el precio parece elevarse). Luego, dentro de la columna tipo gasolina, se destaca "hybrid petrol" que parece ser la que guarda mayor relación con el precio.
- **6.** Creé una función para generar lista numéricas y categóricas. Una vez que hice ello, utilicé las listas categóricas para hacer un OneHotEncoder a través de get dummies. Transformé las siguientes variables: ['tipo_gasolina', 'color', 'tipo_coche', 'categoria']
- 7. Hay variables luego de hacer el OneHotEncoder que están altamente correlacionadas. Ejemplo: tipo_gasolina_petrol y tipo_gasolina_diesel (-0.95) y tipo_coche_suv y categoría_suv (0.8). Esto tiene que ver con los agrupamientos anteriores a la correlación y la utilización de técnicas OneHotEncoder y min max scaler, ya que se cruzan tipos de gasolina y tipos de coche con categorías similares. En este caso, opté por eliminar uno de cada par ya que estas columnas prácticamente están explicando lo mismo, se asemejan.

8. Data columns (total 34 columns):

#	Column	Non-Null Count	Dtype
0	precio	4817 non-null	int32
1	tipo_gasolina_Diesel	4817 non-null	int32
2	tipo_gasolina_electro	4817 non-null	int32
3	tipo_gasolina_hybrid_petrol	4817 non-null	int32
4	tipo_gasolina_petrol	4817 non-null	int32
5	color_black	4817 non-null	int32
6	color_blue	4817 non-null	int32
7	color_grey	4817 non-null	int32
8	color_others	4817 non-null	int32
9	tipo_coche_Desconocido	4817 non-null	int32
10	tipo_coche_estate	4817 non-null	int32
11	tipo_coche_otros	4817 non-null	int32
12	tipo_coche_sedan	4817 non-null	int32
13	categoria_BMWi	4817 non-null	int32
14	categoria_Deportivo	4817 non-null	int32
15	categoria_SUV	4817 non-null	int32
16	categoria_Serie 1	4817 non-null	int32
17	categoria_Serie 2	4817 non-null	int32
18	categoria_Serie 3	4817 non-null	int32
19	categoria_Serie 4	4817 non-null	int32
32	<pre>minMax_alerta_lim_velocidad</pre>	4817 non-null	float64
33	minMax_diferencia	4817 non-null	float64
dtyp	es: float64(10), int32(24)		

Aquí hay un pantallazo final del DataFrame:

	precio tipo gasolina D tipo gasolina el tipo gasolina h tipo gasolina p issel ectro ybrid petrol etrol		color black	color black	color black	color black	color black	color black	color black	color black	color black	color black	color blu	color con	color other	tipo_coche_Desc	tipo_coche_esta_tipo_coche_ot	tipo_coche_otro	tipo_coche_seda	catagoria BMMi	categoria_Depo	catamoria GIV	categoria, Seri	categoria Ser	ie categoria_Seri	e categoria Ser	e categoria S	Serie categoria Ser	,Serie categoria,Se	categoria Z line	minMax	minMax,potenc minMax,yolant minMax,aire,ac minMax,camara minMax,elevalu minMax,bluet						minMax ons	ninMax,alerta, l	minMax_diferen
			iesel ec		brid_petrol etrol		coo, sec	turi, una		COOLSON	onocido	te	5	n	Canyona, com	rtivo	tatagoria, 201		1	2	3	4	5	6	, conguna, con		ia ia	e regulable	ondicionado	trasera n	nas electrico	oth		im_velocidad	cia					
0	113	00	0	0	0	0	1		3 (0 1	0	0	0		0	0		1	0	0	0	0	0 1	0 0	0.1399	349 0.236407	1.0	1.0	0.0	1.0	0.0	1.0	1.0	0.193767					
1	6971	100	0	0	0	1	0		1		0 0	0	1	0		1	0		3	0	0	0	0	0 1) (0.0134	454 0.749409	1.0	1.0	0.0	0.0	1.0	1.0	1.0	0.145474					
2	102	100	0	0	0	0	0		0		1 1	0	0	0		0	0		3	0	1	0	0	0 1) (0.1828	339 0.283688	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.190879					
3	2511	00	0	0	0	0	0		3 (1 0	0	- 1	0					3	0	0	1	0	0 1		0.1275	572 0.319149	1.0	1.0	0.0	1.0	1.0	1.0	1.0	0.145474					
4	334	00	0	0	0	0	0		3 (1 1	0	0	0					3	0	0	1	0	0 1	0	0.0966	631 0.378251	1.0	1.0	0.0	0.0	1.0	1.0	1.0	0.151349					