Package 'hyperoverlap'

February 7, 2019

Title Overlap Detection in n-Dimensional Sp	ace
---	-----

Version 0.1

Description Uses support vector machines to identify a perfectly separating hyperplane (linear or curvilinear) between two entities in high-dimensional space. If this plane exists, the entities do not overlap. Applications include overlap detection in morphological, resource or environmental dimensions.

Depends R (>= 3.4.4)

Imports e1071, matlib, ggplot2, rgl, misc3d, methods, stats, MASS

License GPL-3 Encoding UTF-8 LazyData true

R topics documented:

hypeı	roverlap	Hype Dime	•		teci	tio	n	an	d	Vis	ѕис	ılis	ati	ion	! (of	C)ve	rl	ар	,	in	n	-
Index																								-
	hyperoverlap_set		 	 	•		٠		•		•	•		•	•		•	•	•			•	•	(
	hyperoverlap_plot																							
	hyperoverlap_pair	s_plot	 	 																				4
	hyperoverlap_lda		 	 																				
	hyperoverlap_dete																							
	hyperoverlap-class	s	 	 																				2
	nyperoveriap		 	 			•		•			•		•	•		•	•	•				•	

Description

Uses support vector machines to identify a perfectly separating hyperplane (linear or curvilinear) between two entities in high-dimensional space. If this plane exists, the entities do not overlap. Applications include overlap detection in morphological, resource or environmental dimensions.

2 hyperoverlap_detect

Details

More details available in our forthcoming paper and vignette.

Author(s)

Matilda Brown <matilda.brown@utas.edu.au>

hyperoverlap-class

Storage class for the description of hyperoverlaps

Description

Storage class for the description of hyperoverlaps

Slots

```
entity1 A length-one character vector
```

entity2 A length-one character vector

dimensions A length n character vector containing the variables used to define the space

occurrences A matrix containing the labelled input data

shape shape of the decision boundary; either "linear" or "curvilinear"

polynomial.order a length-one numeric vector showing the polynomial order of the most accurate kernel function. "0" if linear kernel.

result a length-one character vector, either "overlap" or "non-overlap"

accuracy a 2x2 table with the true (y) and predicted (pred) labels

number.of.points.misclassified a length-one numeric vector

decision. boundary list of 2; used for plotting decision boundary

hyperoverlap_detect

Overlap detection in n-dimensional space using support vector machines (SVMs)

Description

Given a matrix containing the data and labels for two entities, a support vector machine is trained on these data and the predicted label of each point is evaluated. If every point has been classified correctly, the entities can be separated and they do not overlap.

Usage

hyperoverlap_lda 3

Arguments

x A matrix or data.frame containing the data for both entities

y A vector of labels for each observation

kernel A length-one character vector, either "linear" or "polynomial" kernel.degree Parameter needed for kernel of type polynomial (default=3).

cost Specifies the SVM margin 'hardness'. Default value is 50, but can be increased

for improved accuracy, although this increases runtimes and memory usage.

stoppage.threshold

Numeric. If the number of points misclassified using a linear hyperplane exceeds this proportion of the number of observations, non-linear separation is not attempted. Must be between 0 and 1 (default = 0.2).

Details

Input data should be preprocessed so that all variables are comparable (e.g. same order of magnitude). Polynomial kernels allow curvilinear decision boundaries to be found between entities (see https://www.cs.cmu.edu/~ggordon/SVMs/new-svms-and-kernels.pdf). Smaller values of kernel.degree permit less complex decision boundaries; biological significance is likely to be lost at values > 5.

Value

A hyperoverlap-class object

Examples

```
## Not run:
data = iris[which(iris$Species!=("versicolor")),]
x = hyperoverlap_detect(data[,1:3],data$Species, kernel="linear")
## End(Not run)
```

hyperoverlap_lda

Hyperoverlap visualisation using linear discriminant analysis

Description

Hyperoverlap visualisation using linear discriminant analysis

Usage

```
hyperoverlap_lda(x, return.plot=TRUE, visualise3d=FALSE)
```

Arguments

x An object of class "Hyperoverlap"

return.plot Logical. If TRUE, data are plotted using plot()

visualise3d Logical. If FALSE, data are projected onto two axes (LDA1, residualPCA1). If

TRUE, data are projected onto three axes (LDA1, residualPCA1, residualPCA2)

Details

This function provides a way to visualise overlap (or non-overlap) between classes of high dimensional data. For inspection, it is useful to use the base graphics package (implemented by return.plot=TRUE). The transformed coordinates of each point are also returned as a dataframe, which can be plotted with user-defined parameters.

Value

Returns a dataframe with columns "Entity", "LDA1", "residualPCA1", "residualPCA2" (if visualise3d = TRUE)

See Also

hyperoverlap_detect

Examples

```
## Not run:
#using iris dataset reduced to two species
data = iris[which(iris$Species!=("versicolor")),]
x = hyperoverlap_detect(data[1:4], data$Species)
hyperoverlap_lda(x)
## End(Not run)
```

hyperoverlap_pairs_plot

Overlap heatmap plots for comparison of multiple entities

Description

This function plots a matrix of overlap.

Usage

```
hyperoverlap_pairs_plot(x, cols = pal)
```

Arguments

x A matrix of the form produced by produced by hyperoverlap_set() which

contains the columns entity1, entity2, and result

cols A vector of colours (defaults to red (a)non-overlap) and blue (overlap))

hyperoverlap_plot 5

Value

```
A ggplot object
```

Examples

```
## Not run:
hyperoverlap_pairs_plot(hyperoverlap.set.iris)
## End(Not run)
```

hyperoverlap_plot

Overlap plotting

Description

Plot the optimal separating hyperplane found by hyperoverlap_detect(). Only used for data of three dimensions or fewer.

Usage

```
hyperoverlap_plot(x)
```

Arguments

Х

an hyperoverlap-class object

Value

plot of data and decision boundary

See Also

hyperoverlap_detect

Examples

```
## Not run:
hyperoverlap_plot(hyperoverlap_iris)
## End(Not run)
```

6 hyperoverlap_set

hyperoverlap_set	Pairwise overlap detection in n-dimensional space of multiple entities using support vector machines (SVMs)
	using support vector machines (5 vivis)

Description

This function is a wrapper for hyperoverlap_detect

Usage

```
hyperoverlap_set(x,y,kernel="polynomial",kernel.degree=3, cost=50, stoppage.threshold=0.2, write.to.file=TRUE, path=paste0("hyperoverlap_",Sys.time(),"/"))
```

Arguments

x A matrix or data.frame containing the ecological data

y A vector of labels for each observation

kernel A length-one character vector, either "linear" or "polynomial"

kernel.degree For kernel="polynomial", specifies the order of polynomial kernel function.

Smaller orders allow less complex boundary shapes. Values greater than 5 are

not recommended for this parameter.

cost Specifies the SVM margin 'hardness'. Default value is 50, but can be increased

for improved accuracy, although this increases runtimes and memory usage.

stoppage.threshold

Default = 0.2. If the number of points misclassified using a linear hyperplane

exceeds this proportion of the number of observations, non-linear separation is

not attempted. Can be made 1 to force non-linear separation.

write.to.file TRUE or FALSE, specifies whether each Hyperoverlap object should be saved

as a .rds file

path where to write .rfds files to. Defaults to a folder in the working directory titled

by Sys.time()

Value

A long-form matrix with the following columns: entity1, entity2, shape,polynomial.order (if kernel=polynomial), result, number.of.points.misclassified. If specified, individual Hyperoverlap-class objects are written to file

Examples

```
## Not run:
data(iris)
hyperoverlap.iris.set = hyperoverlap_set(iris[1:3],iris$Species, kernel="linear")
## End(Not run)
```

Index

```
hyperoverlap, 1
hyperoverlap-class, 2
hyperoverlap-package (hyperoverlap), 1
hyperoverlap_detect, 2, 5, 6
hyperoverlap_lda, 3
hyperoverlap_pairs_plot, 4
hyperoverlap_plot, 5
hyperoverlap_set, 6
```