Bounded Rationality in Macroeconomic Models:

A Continuous-Time Approach

Chandler Lester

Overview

Adaptive Learning:

Behavioral modeling technique wherein decision makers use forecasts and data to make choices

Continuous-Time Modeling

Framework that allows for high-frequency information and fast changes to the economy

Models with

high-frequency dynamics that allow for expectations to develop

Motivation

- Continuous-Time modeling is emerging as a powerful modeling paradigm
 - Faster computation, often using sparse grids
 - Detailed information on distributions
 - Addition of financial frictions to macroeconomic models
 - Examination of systems with kinks
 - Simulation of models with high frequency data
- · Adaptive learning is a beneficial tool used in discrete-time modeling
 - Relaxes strict assumption of rational expectations (RE)
 - Provides insight into how individuals react to certain policy rules or changes
- Using adaptive learning in continuous-time will eventually open up tools

Main Questions

- Can models with continuous-time learning dynamics converge to RE?
- How do results of learning models differ in continuous-time vs discrete-time?
 - Do certain properties differ between continuous and discrete versions of the model?
- Are there alternative ways to study learning in high frequency settings?
 - Do agents need to take in data points continuously?
 - Can agents approximate continuous-time processes using partial information?

Results

- Continuous-time models can converge to rational expectations
 - I build a framework for learning in dynamic programming problems
- In continuous-time learning an agent converges to RE differently
 - Near RE equilibrium agents have less volatile forecasts of key parameters
 - Adjustments to forecasts tend to be smaller
- Agent in continuous model can sample at lower frequencies with similar results

Building Our Framework

- 1. Continuous-time linear quadratic (LQ) Model
 - Outline a continuous-time LQ framework
 - Linearize a Real-Business Cycle (RBC) model
- 2. Mapping between our agent's perceptions and reality
 - Define learning dynamics, the T-map, for our continuous-time model
- 3. Continuous-time updating rule
 - Continuous-time analog of recursive least squares

Why Use a Linear-Quadratic Real Business-Cycle Model?

- Linear-Quadratic Framework
 - Contains feedback mechanisms useful for learning
 - Tractable methods for solving models
- Real-Business Cycle Models
 - Want to test adaptive learning on a workhorse model
 - · Has linear constraints that allow it to be put in the LQ format
 - · Can examine learning dynamics without market imperfections or heterogeneity

A General Linear-Quadratic Format

To use the LQ setting, the problem first needs to be in the following form

$$V(x_0) = \max_{u_t} - \mathbb{E} \int_{t=0}^{\infty} e^{-\rho t} (\hat{x}_t' R \hat{x}_t + \hat{u}_t' Q \hat{u}_t + 2\hat{x}_t' W \hat{u}_t)$$

where the state variables evolve according to

$$dx_t = Ax_t + Bu_t + CdZ_t$$

ullet x_t and u_t are vectors of state and control variables respectively

The Continuous-Time Real Business-Cycle Model

- Macroeconomic fluctuations are driven by changes in productivity/technology
- These fluctuations impact consumption and labor decisions
- The continuous RBC model:

$$V(k_0, z_0) = \max_{c_t, k_t, h_t} \mathbb{E} \int_{t=0}^{\infty} e^{-\rho t} \left\{ \frac{c_t^{1-\sigma}}{1-\sigma} - \chi \frac{h_t^{1+\varphi}}{1+\varphi} \right\}$$

• subject to

$$c_t + i_t = Ak_t^{\alpha} (z_t h_t)^{1-\alpha}$$
$$dk_t = (-\delta k_t + i_t) dt$$
$$d\log(z_t) = -\theta \log(z_t) dt + \sigma_z dZ_t$$

- dZ_t is the increment of the Wiener process
 - Approximate this as $\varepsilon_t \sqrt{dt}$, $dZ_t \sim N(0, dt)$
- Increments of the Wiener process are therefore independent and Gaussian

Linearizing the RBC Model I

Rewrite the objective function

$$r(x_t, u_t) = \frac{1}{1 - \sigma} [Ak_t^{\alpha} (z_t h_t)^{1 - \alpha} - i_t]^{1 - \sigma} - \chi \frac{h_t^{1 + \varphi}}{1 + \varphi}$$

In this case,

$$x_t = \begin{bmatrix} 1 \\ k_t \\ \log(z_t) \end{bmatrix} \quad u_t = \begin{bmatrix} h_t \\ i_t \end{bmatrix}$$

Then linearize using a Taylor expansion about the non-stochastic steady state

$$\begin{split} r(x,u) &= r(\bar{x},\bar{u}) + (x-\bar{x})' r_x(\bar{x},\bar{u}) + (u-\bar{u})' r_u(\bar{x},\bar{u}) \\ &+ \frac{1}{2} (x-\bar{x})' r_{xx}(\bar{x},\bar{u})(x-\bar{x}) + \frac{1}{2} (u-\bar{u})' r_{uu}(\bar{x},\bar{u})(u-\bar{u}) \\ &+ (x-\bar{x})' r_{xu}(\bar{x},\bar{u})(u-\bar{u}) \end{split}$$

Linearizing the RBC Model II

Now the problem can be put into the LQ format

$$V(x_0) = \max_{u_t} -\mathbb{E} \int_{t=0}^{\infty} e^{-\rho t} (\hat{x}_t' R \hat{x}_t + \hat{u}_t' Q \hat{u}_t + 2\hat{x}_t' W \hat{u}_t)$$

where the state variables evolve according to

$$d\hat{x}_t = A\hat{x}_t + B\hat{u}_t + CdZ_t$$

here $\hat{x}_t = x_t - \bar{x}$ and $\hat{u} = u_t - \bar{u}$

Linearization Detai

Solving the LQ Model I

• The Hamilton-Jacobi-Bellman (HJB) equation for the LQ problem

$$\rho V(x) = \max_{u} - x' Rx - u' Qu - 2x' Wu + \mathbb{E}\left(V_{x}(x) dx_{t} + \frac{1}{2} V_{xx}(x) (dx_{t})^{2}\right)$$

ullet Using "guess and verify," posit that $V(x) = -x'Px - \xi$

$$\rho x'Px + \rho \xi = \max_{u} \{x'Rx + u'Qu + 2x'Wu + 2x'P(Ax + Bu) + P(CC')\}$$

ullet Using first order conditions, the policy function for u is

$$u = -(Q')^{-1}(W + PB)'x = -\tilde{F}x$$

Solving the LQ Model II

P and ξ can now be found with the following recursive algorithm

$$\begin{split} P_i &= -(2\tilde{A}_i')^{-1}(\tilde{F}_i'Q^{-1}\tilde{F}_i + R - 2W\tilde{F}_i) \\ \xi_i &= \rho^{-1} \mathrm{trace}(P_{i-1}CC'), \end{split}$$

where
$$\tilde{A}_i = (A - B \tilde{F}_i - .5 \rho)$$
 and $\tilde{F}_i = (Q')^{-1} (W + P_{i-1} B)'$

Adaptive Learning Dynamics

Continuous-Time Shadow-Price Learning

· Our setting contains a distinct relationship between perceptions and actuality

$$\rho V(x) = \max_{u} - x' Rx - u' Qu - 2x' Wu + \mathbb{E}\left(V_{x}(x) dx_{t} + \frac{1}{2} V_{xx}(x) (dx_{t})^{2}\right)$$

- ullet $V_x(x)$ is a vector of state variable shadow prices, under RE $V_x(x)=2Px$
- Use this to develop a mapping between agent's forecasts and actuality
 - Our agent forms expectations of future shadow prices via linear forecasting model

$$\lambda_t = Hx_t + \mu_t$$

We can re-analyze the value function problem using

$$\mathbb{E}[V_x(x)] = \lambda^e = Hx$$

Continuous-Time Shadow-Price Learning

ullet Using Hx as an approximation for $V_x(x)$, we can rewrite the HJB as,

$$\rho V^{P}(x) = \max_{u} \{-x'Rx - u'Qu - 2x'Wu + (Hx)'(Ax + Bu) + \frac{1}{2}(H'CC')\}.$$

• The policy function for this problem is then,

$$u = -\frac{1}{2}(Q^{-1})'(2W - H'B)x = -F^{SP}(H, B)x$$

Map perceptions to actuality using the policy function & the envelope theorem

$$\mathbb{E}[V_x(x)] = \lambda^e = T^{SP}(H, A, B)x$$

= $\rho^{-1} (-2R + 2H'A - (H'B - 2W)F^{SP}(H, B))x$

• This mapping is called the T-map, it directly impacts agents expectations

Continuous-Time Updating Rule

The System

Recursive Least Squares (RLS)

• Suppose we want to estimate coefficients for:

$$y_t = \theta \cdot x_{t-1} + \varepsilon_t$$
Dependent Coefficients Observations White Noise Variable

• In discrete-time RLS takes the following form:

$$\underbrace{\theta_t}_{\text{Parameter of interest}} = \underbrace{\theta_{t-1}}_{\text{Previous value}} + \underbrace{\gamma_t}_{\text{Strength of Response to new info.}} \cdot \underbrace{R_{t-1}^{-1} \cdot x_{t-1}}_{\text{Weighted by Obs.}} \underbrace{(y_t - \theta'_{t-1} x_{t-1})}_{\text{Forecast Error Weighted by Obs.}}$$

Continuous-Time Recursive Least Squares I

- The Kalman filter has a continuous-time analog
- We can use this to build a continuous-time version of recursive least squares

$$\dot{x}_t = Ax_t + \nu_t,$$
 $\nu_t \sim N(0, R_t)$
 $y_t = \theta' x_t + e_t,$ $e_t \sim N(0, r_t)$

• Kalman Filter for this system

Covariance Update:
$$\dot{\mathcal{P}} = A\mathcal{P} + \mathcal{P}A' + R_t - \mathcal{P}\theta_t'r_t^{-1}\theta_t\mathcal{P}$$

Kalman Gain: $K = \mathcal{P}\theta_t' r_t^{-1}$

Forecast Update: $\dot{\hat{x}}_t = A\hat{x}_t + K[y_t - \theta_t'\hat{x}_t]$

Continuous-Time Recursive Least Squares II

Now, re-imagine the state-space model as

$$\dot{\theta}_t = \nu_t, \qquad \nu_t \sim N(0, R_t)
y_t = \theta'_t x_t + e_t, \qquad e_t \sim N(0, r_t)$$

- where $R_t = 0$ and $r_t = 1/\alpha_t$
- The RLS system will be

Covariance Update:
$$\dot{P} = -\alpha_t P x_t' x_t P$$

Kalman Gain:
$$K = \alpha_t \mathcal{P} x_t'$$

Parameter Update:
$$\dot{\hat{\theta}}_t = K[y_t - \hat{\theta}_t' x_t].$$

Discrete and Continuous-Time RLS

Discrete-Time RLS:

$$\underbrace{\theta_t}_{\text{Parameter of interest}} = \underbrace{\theta_{t-1}}_{\text{Previous value}} + \underbrace{\gamma_t}_{\text{Strength of Response}} \cdot \underbrace{R_{t-1}^{-1} \cdot x_{t-1}}_{\text{Weighted by Obs.}} \underbrace{(y_t - \theta'_{t-1} x_{t-1})}_{\text{Forecast Error}}$$

Continuous-Time RLS:

$$\frac{\dot{\theta}_t}{\text{Change in}} = \underbrace{\gamma_t}_{\text{Change in}} \cdot \underbrace{\mathcal{P}_t \cdot x_t}_{\text{Chycle for Engenose}} \underbrace{(y_t - \theta_t' x_t)}_{\text{Forecast Error}}$$
Response Weighted by Obs.

The Shadow-Price Learning Model

Shadow-Price Learning

- Agents learn to optimize and forecast
- They make decisions based on the economy around them
- AND the economy is impacted by these choices

Shadow-Price Learning Algorithm

Mathematically we can model our economy as

$$\begin{split} dx_t &= Ax_t dt + Bu_t dt + C dZ_t \\ d\mathcal{P}_t &= -\gamma_t \mathcal{P}_t x_t x_t' \mathcal{P}_t dt \\ dH_t' &= \gamma_t \mathcal{P}_t x_t (\lambda_t - H_t x_t)' dt \\ dA_t' &= \gamma_t \mathcal{P}_t x_t (dx_t - Bu_t dt - A_t x_t dt)' \\ u_t &= -F^{SP}(H_t, B) x_t = -\frac{1}{2} (Q')^{-1} (2W - H_t' B) x_t \\ \lambda_t &= T^{SP}(H_t, A_t, B) x_t \\ \gamma_t &= \kappa (t+N)^{-\nu} \end{split}$$

- \mathcal{P}_t is a covariance matrix for the state variables x_t
- ullet Agents do know B but must estimate A

Analyzing the Models

Comparing Learning Outcomes I

- Both shadow-price learning models ran for 50,000 periods (quarters)
- ullet The increment of time for the continuous model was set to dt=1/100
- The discrete model updated 50,000 times
- \bullet The continuous model updated $50,000\times100$ times
- ullet Models were initialized equal distances from REE values of A and H

Comparing Learning Outcomes III

Shadow-Price Parameter Outcomes

	Learning	g Outcome	REE Value		
Variable	Discrete	Continuous	Discrete	Continuous	
Constant	-189.909	-190.564	-190.764	-190.642	
	(0.026)	(0.0018)			
Capital	-0.077	-0.075	-0.075	-0.072	
	(0.0002)	(0.0000)			
Productivity	2.544	2.548	2.731	2.644	
	(4.64)	(0.004)			

- Standard deviation were measured over the last 1,000 simulated iterations
- Discrete matrix norm has a mean of 4.05 and standard deviation of 1.61
- ullet Same measures for the continuous-time version are 2.36 and 1.84×10^{-5}

Matrix Norms Over Time

(a) Discrete-time Matrix Norms

(b) Continuous-Time Matrix Norms

Second Moment Analysis I

- Compare second moments of continuous and discrete RBC models against data
- Using data on consumption, output, investment, hours, and wages (1960-2019)
- Detrend data using a HP-filter and logarithmic transformations
- Compared these data against 1,000 simulations of the learning models

Second Moment Analysis II

Second Moments and Correlations with Output of Key Economic Variables

	Standard Deviation*				Correlation with Output		
Variable	Data	Discrete	Cont.	•	Data	Discrete	Cont.
Output	1.43%	1.02%	0.99%		1.00	1.00	1.00
Consumption	0.510	0.300	0.474		0.748	0.970	0.957
Investment	2.88	2.76	2.80		0.799	0.989	0.985
Hours	0.646	0.362	0.370		0.650	0.982	0.980
Wage	0.660	0.650	0.644		0.172	0.994	0.993
*standard deviations for variables other than output are measured relative to output							

- Second moments of the continuous-time model are slightly closer
- Correlations with output also match the data more closely

An Alternative Sampling Scheme

- Assuming agents get information and update continuously may be unrealistic
- ullet Data is generated according to a continuous-time process that depends on dt
- ullet The agent samples the data at a lower-frequency Δ , for simplicity $rac{dt}{\Delta}\in\mathbb{N}$

$$dx_t = Ax_t dt + Bu_t dt + C dZ_t$$

$$\Delta \mathcal{P}_t = -\gamma_t \mathcal{P}_t x_t x_t' \mathcal{P}_t \Delta$$

$$\Delta H_t' = \gamma_t \mathcal{P}_t x_t (\lambda_t - H_t x_t)' \Delta$$

$$\Delta A_t' = \gamma_t \mathcal{P}_t x_t (x_t - Bu_t \Delta - A_t x_t \Delta - x_{t-\Delta})'$$

$$u_t = -F^{SP}(H_t, B) x_t = -\frac{1}{2} (Q')^{-1} (2W - H'B) x_t$$

$$\lambda_t = T^{SP}(H_t, A_t, B) x_t$$

$$\gamma_t = \kappa(t+N)^{-\nu}$$

- The agent still views the world as continuous
- However, they understand that their data observations are at a lower-frequency

Results of Alternative Data Sampling Schemes

Continuous-Time Learning Results under Varying Data Frequencies

\overline{dt}	Specification	Matrix Norm	Computational Time (sec)
dt = 1/364	$\Delta = 1/364$	2.44	4429
	$\Delta = 1/91$	2.41	560
	$\Delta = 1/52$	2.39	504
	$\Delta = 1/26$	2.37	231
	$\Delta = 1/100$	2.35	664
dt=1/100	$\Delta = 1/50$	2.43	287
	$\Delta = 1/25$	2.57	132

- Continuous-time learning can take a lot of computational time
- Computational time can be reduced without losing precision

Concluding Remarks

Conclusion

- The model does converge to REE under shadow-price learning dynamics
- Near the REE the continuous-time model's estimates of shadow-price parameters have less volatility than the discrete-time model's estimates
- Continuous-time convergence appears to be less volatile may be more stable
- Alternative sampling schemes maintain the continuous-time model's accuracy and take less computational time

Linearization Details

Now the problem can be put into the LQ format

$$V(x_0) = \max_{u_t} - \mathbb{E} \int_{t=0}^{\infty} e^{-\rho t} (\hat{x}_t' R \hat{x}_t + \hat{u}_t' Q \hat{u}_t + 2\hat{x}_t' W \hat{u}_t)$$

where the state variables evolve according to

$$d\hat{x}_t = A\hat{x}_t + B\hat{u}_t + CdZ_t$$

here $\hat{x}_t = x_t - \bar{x}$ and $\hat{u} = u_t - \bar{u}$ and

$$R_{3\times3} = \begin{bmatrix} r(\bar{x},\bar{u}) & \frac{1}{2}r_x(\bar{x},\bar{u}) \\ \frac{1}{2}r_x(\bar{x},\bar{u}) & \frac{1}{2}r_{xx}(\bar{x},\bar{u}) \end{bmatrix} \quad Q_{2\times2} = \begin{bmatrix} \frac{1}{2}r_{uu}(\bar{x},\bar{u}) \end{bmatrix} \quad W_{3\times2} = \begin{bmatrix} r_u(\bar{x},\bar{u}) \\ r_{xu}(\bar{x},\bar{u}) \end{bmatrix}.$$

The continuous-time version of the state transition matrix A will differ from the discrete time version while B and C will remain the same. Thus,

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\delta & 0 \\ 0 & 0 & -\theta \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \quad C = \begin{bmatrix} 0 \\ 0 \\ \sigma_{\varepsilon} \end{bmatrix}$$

Back