Risoluzione di equazioni non lineari Calcolo Numerico

Elena Loli Piccolomini

3/11 F: Ca, b]cR -R F(x)=0 1) Esistema della solurione 2) Meto di , cel colore la solurione: A SISE FONE (B) A PPROSSINATION' SUCCESSIVE 6217 OTHUR O / (E) HEWTON (Tangenhi) Testeure di convergence globalle 3) Criten di arresto dei eveto di 4) Con dinouverents del problems

Obiettivo

 Calcolare con metodi numerici la soluzione di un'equazine non lineare

- 1. Shidware coudinoui esisteura e mui vite della solurione
- 2. Algoritui x colcolore le solurione
- 3. Conditionements del probleme

Caso unidimensionale

 $f: I \subset \mathbb{R} \to \mathbb{R}$.

- Esistenza di uno zero di f.
 Se f è una funzione continua in [a,b] e tale che f(a)f(b) < 0, allora esiste almeno uno zero di f in (a, b).</p>
- Individuazione di un intervallo in cui esiste un solo zero di f.

- Non è possibile in generale costruire metodi numerici che calcolino le radici di un'equazione non lineare in un numero finito di passi.
- ▶ I metodi per questo tipo di problema sono metodi iterativi.
- A partire da uno o piú dati iniziali, calcolano dei valori x_k attraverso un procedimento che si ripete (itera) sempre uguale ad ogni passo k:

$$x_k = G(x_{k-1})$$

Sotto opportune condizionigli iterati x_k convergono alla soluzione x^* (tale che $f(x^*) = 0$) per $k \to \infty$.

Schema algoritmo iterativo:

- 1. Dati: x₀
- 2.k = 1
- 3. Ripeti finchè convergenza

$$3.1 x_k = G(x_{k-1})$$

$$3.2 \ k = k + 1$$

end

Sono da specificare nel singolo metodo le condizioni di convergenza che comunque contengono sempre la seguente:

$$k \leq maxit$$

enti

Convergenza metodi iterativi.

Si dice che la successione x_k generata da un metodo iterativo converge ad x^* con ordine $p \ge 1$ se:

$$\frac{|x_{k+1} - x^*|_p}{|x_k - x^*|_p} = C, \forall k \ge k_0$$

dove k_0 è un intero opportuno e $C \in R$ tale che.

$$\left\{ \begin{array}{ccc} 0 < C \leq 1 & \text{se} & p = 1 \\ C > 0 & \text{se} & p > 1 \end{array} \right.$$

In tal caso si dirà che il metodo è di ordine p.

Osservazione. nel caso p=1 per avere convergenza deve essere C<1. In questo caso C prende il nome di *fattore di convergenza*.

$$e_{k+1} = \frac{1}{2} e_k$$

$$|\times_{k+1}-\times^*|=\frac{1}{2}|\times_{k}-\times^*|$$

In generale la convergenza di un metodo iterativo per la risoluzione di un'equazione non lineare dipende dalla scelta del valore iniziale x_0 . Esisteranno quindi risultati di **convergenza globale** quando il metodo converge per *ogni* scelta di x_0 e teoremi di **convergenza locale** quando il metodo converge solo se x_0 è scelto in un *opportuno intorno della radice esatta*.

Posizione del problema

$$f_{\epsilon}(x) = f(x) + \epsilon h(x)$$
, ϵ piccolo, x_{ϵ}^* zero semplice di $f_{\epsilon}(x)$. Sviluppando in serie di Taylor di punto inziale x^* :

$$0 = f_{\epsilon}(x_{\epsilon}^{*}) = f_{\epsilon}(x^{*}) + f_{\epsilon}'(x^{*})(x_{\epsilon}^{*} - x^{*}) + \frac{1}{2}f_{\epsilon}''(\xi)(x_{\epsilon}^{*} - x^{*})^{2}$$

$$= (f(x^{*}) + \epsilon h(x^{*}) + f_{\epsilon}'(x^{*})(x^{*} - x_{\epsilon}^{*}) - \epsilon h'(x^{*})(x^{*} - x_{\epsilon}^{*}) + \frac{1}{2}f''(\xi)(x_{\epsilon}^{*} - x^{*})^{2} + \frac{1}{2}\epsilon h''(\xi)(x_{\epsilon}^{*} - x^{*})^{2}$$

$$= (f(x^{*}) + \epsilon h(x^{*}) + f_{\epsilon}'(x^{*})(x^{*} - x_{\epsilon}^{*}) - \epsilon h'(x^{*})(x^{*} - x_{\epsilon}^{*}) + \frac{1}{2}f''(\xi)(x_{\epsilon}^{*} - x^{*})^{2} + \frac{1}{2}\epsilon h''(\xi)(x_{\epsilon}^{*} - x^{*})^{2}$$

$$= (f(x^{*}) + \epsilon h(x^{*}) + f_{\epsilon}'(x^{*})(x^{*} - x^{*}) - \epsilon h'(x^{*})(x^{*} - x^{*}) + \frac{1}{2}f''(\xi)(x_{\epsilon}^{*} - x^{*})^{2} + \frac{1}{2}\epsilon h''(\xi)(x_{\epsilon}^{*} - x^{*})^{2}$$

 $\xi \in (x^*, x^*_{\epsilon})$. Tralasciando perturbazioni del II ordine:

Posizione del problema

La perturbazione sul risultato è pari a quella del dato amplificata di un fattore

, che è detto numero di condizione del problema.

Se il numero di condizione è grande il problema è mal condizionato se è piccolo il problema è ben condizionato.

Se x^* è zero di molteplicità m si dimostra che:

$$|x_{\epsilon}^* - x^*| \le \left|\frac{m!\epsilon h(x^*)}{f^m(x^*)}\right|^{1/m}$$

quindi il problema è sempre mal condizionato, perchè $\epsilon^{1/m}$ può essere grand ϵ .

Posizione del problema. Esempi

Polinomio di Wilkinson (Wilkinson, [1959]) (esempio da Quarteroni)

$$P_{10}(x) = (x+1)(x+2)...(x+10) = x^{10} + 55x^9 + ... + 10!$$

Sia: $\tilde{P}_{10}(x) = P_{10} + \epsilon x^9$, con $\epsilon = 2^{-23} \simeq 1.2 \cdot 10^{-7}$. Secondo le stime precedenti, il massimo errore $|x_{\epsilon}^{*(i)} - x^{*(i)}|$ si ha in corrispondenza di i = 8, $|x_{\epsilon}^* - x_i^*| \leq 1.9843 \cdot 10^{-4}$. L'errore effettivo in corrispondenza di i = 8 è $1.98767 \cdot 10^{-4}$, quindi il problema è mal condizionato.

Posizione del problema. Esempi

Radici multiple. (da Quarteroni)

$$P_4(x) = (x-1)^7$$

ha radici coincidenti $x^{*(i)} = 1$.

$$\tilde{P}_4(x) = (x-1)^7 - \epsilon, \quad \epsilon << 1$$

ha radici semplici $\alpha_i=1+\sqrt[7]{\epsilon}$. Quindi $|x^{*(i)}_{\epsilon}-x^{*(i)}|=\sqrt[7]{\epsilon}$. Se $\epsilon=10^{-7}$ allora ... $|x_{\epsilon}^{*(i)} - x^{*(i)}| = (10^{-7})^{1/7} = 1,$ l'errore

$$|x_{\epsilon}^{*(i)} - x^{*(i)}| = (10^{-7})^{1/7} = 1,$$

quindi il problema è mal condizionato.

Metodo di bisezione

Si costruisce una successione di intervalli $(f(a_1) < 0, f(b_1) > 0)$:

$$I_1 = [a_1, b_1], I_2 = [a_2, b_2], \dots, I_k = [a_k, b_k]$$

tali che:

$$I_{\nu} \subset I_{\nu-1} \subset \ldots \subset I_1$$

con $f(a_k)f(b_k) < 0, k = 1, 2 \dots$ $(a_1 = a, b_1 = b)$. Al passo k si calcola

punto medio
$$c_k = \frac{a_k + b_k}{2}, \quad k = 1, 2 \dots$$

e il valore $f(c_k)$. Se $f(c_k) = 0$, $c_k = x^*$, altrimenti:

$$[a_{k+1}, b_{k+1}] = \begin{cases} [a_k, c_k], & \text{se } f(c_k) > 0 \\ A[c_k, b_k], & \text{se } f(c_k) < 0. \end{cases}$$

Metodo di bisezione

Esempio. Si vuole risolvere
$$x^2 - 78.8 = 0$$
 in [6, 12].
$$f(6) = 36 - 78.8 < 0$$

 2
 6
 9 *
 7.5 *
 -22.55

 3
 * 7.5
 9 *
 8.25
 -10.7375

 4
 8.25
 9 *
 8.625
 -4.409375

 5
 8.625
 9 *
 8.9125
 -1.139844

 6
 8.8125
 9 *
 8.90625
 0.5212891

 7
 8.8125
 8.90625
 8.859375
 -0.3114746

 8
 8.859375
 8.90625
 8.882813
 0.1043579

8.882813 è una approssimazione della soluzione $\sqrt{78.8} \simeq 8.876936408$ tale che

$$|8.882813 - x^*| \le \frac{1}{2^8} 6 = 0.0234$$

L'errore assoluto è 0.00587... Occorrono 10 valutazioni di funzione.

$$[a_8, b_8] \rightarrow \frac{1}{2^8} \cdot [a, b] = \frac{1}{2^8} \cdot 6$$

Metodo di bisezione
$$c_{k} = a_{k} + \frac{b_{k} - a_{k}}{2}$$

Osservazioni.

- $c = a + \frac{b-a}{2}$ altrimenti c_{k+1} può cadere esterno all'intervallo $[a_k, b_k]$. esemplo: $a = 0.983, b = 0.986, \mathbb{F}(10, 3, -5, 5).$
- ightharpoonup f(a)f(b) può non essere rappresentabile sulla macchina. per verificare il segno conviene quindi usare la funzione sign:

$$sign(x) = \begin{cases} 1, & x > 0; \\ -1, & x < 0; \\ 0, & x = 0. \end{cases}$$

$$\begin{cases} 0.986 = \\ 1.969 \longrightarrow = 0.1969.10^{1} = \\ 0.196.10^{1} / 2 = 0.098010^{1} \\ 1.960.10^{1} = 0.980.10^{1} \end{cases}$$

0.983 +

F (10,3,-5,5)

[0.98**3**, D.986]

- L'algoritmo in aritmetica finita può non avere fine. esempio: $a_k = 98.5$, $b_k = 98.6$, $\epsilon = 0.004$ in $\mathbb{F}(10, 3, -5, 5)$. Infatti $c_k = 98.55$, ma $f(c_k) = 0.985 \cdot 10^2$, quindi si genera una successione
- $c_k = 98.55$, ma $f(c_k) = 0.985 \cdot 10^2$, quindi si genera una successione di iterati costanti.

Test modificato:

$$|b_k - a_k| < \epsilon + eps \cdot max(|b|, |a|)$$
 & iter < itmax

dove eps è la precisione di macchina.

Convergenza metodo di bisezione

Al passo k,

$$b_{k+1} - a_{k+1} = \frac{1}{2}(b_k - a_k) = \frac{1}{2^2}(b_{k-1} - a_{k-1}) = \ldots = \frac{1}{2^k}(b_1 - a_1)$$

quindi $x^* = c_{k+1} \pm \epsilon_{k+1}$, dove

$$\epsilon_{k+1} \leq \frac{1}{2^{k+1}}(b-a).$$

Viceversa, fissato ϵ tale che $\epsilon = \frac{1}{2^{k+1}}(b-a)$, il numero c_{k+1} è una approssimazione di x^* entro una tolleranza ϵ .

$$\mathcal{E} = 10^{-4} = 10^{-4} = \frac{1}{2^{\frac{1}{2}+1}} (b-a)$$

Convergenza metodo di bisezione

Quindi per $k \to \infty$, $\{c_k\} \to x^*$ con velocità di convergenza pari a quella della successione $\{\frac{1}{2^k}\}$.

Il metodo fornisce inoltre una maggiorazione dell'errore, cioè fissata una tolleranza δ è possibile determinare il numero minimo di iterazioni k per ottenere un errore minore di δ . Infatti k è tale che:

$$\frac{1}{2^{k}}(b-a) < \delta \Rightarrow 2^{k} \ge \frac{b-a}{\delta} \Rightarrow$$

$$k \ge \log_{2} \frac{b-a}{\delta}$$

$$\delta = \mathcal{E}$$

Complessità computazionale del metodo: ad ogni iterazione occorrono 2 valutazioni di funzione.

Il problema di determinare lo zero di una funzione in genere non si risolve in un numero finito di passi. Si deve generare un procedimento iterativo.

- be determinare una approssimazione iniziale alla soluzione x^* di f(x) = 0
- **Determinare una relazione funzionale a partire da** f(x)
- ▶ a partire da x_0 , generare una successione di iterati x_k fino ad ottenere la precisione desiderata per l'approssimazione del risultato.

Il problema di cercare una radice di

$$f(x)=0$$

è connesso al problem di cercare una soluzione dell'equazione

(2)
$$x = g(x)$$
 equex out di
punts fisso

cioè un punto fisso della funzione g(x).

$$g(x) = x - f(x)\Phi(x)$$

Se f(x) si annulla in [a, b] e $\Phi(x)$ è una funzione tale che:

$$0<|\Phi(x)|<\infty,\ x\in[a,b]$$

allora è equivalente risolvere una delle due equazioni:

(1)
$$f(x) = 0$$
 $g(x) = x$.

Quindi si riporta il problema di calcolare lo zero di una funzione f(x) al problema di calcolare il punto fisso di una funzione g(x).

Geometricamente è l'intersezione delle due curve:

$$y = x$$
 $y = g(x)$

$$\times_{0}, \times_{1}, \times_{2}, \times_{k} \longrightarrow_{k} \times_{0} \times_{k} \times_{0} \times$$

$$x_{k+1} = g(x_k)$$

$$x - f(x) \phi(x)$$

A
$$\{i,j,k\}$$

$$|h=0,1,2|$$

$$B=A(:,i,0)$$

$$C=\{i,j,k\}$$

$$|h=0,1,2|$$

$$C=\{i,j,k\}$$

$$|h=0,1,2|$$

$$|h=$$

Teorema di esistenza e unicità del punto fisso nel modello continuo. Sia g(x) continua in [a,b] è tale che $g(x) \in [a,b]$. Sia L una costante $0 \le L < 1$ tale che, per ogni $x,y \in [a,b]$ si ha:

$$|g(x)-g(y)|\leq L|x-y|$$

ossia g è una contrazione in [a,b]. Allora esiste un unico punto fisso x^* di g(x) in [a,b]. Dimostrazione in aula

Osservazione. Se g(x) è derivabile in [a,b] con $|g'(x)| \le L < 1$ per $x \in [a,b]$, allora g(x) è una contrazione. Il viceversa non è vero perchè g(x) può non essere differenziabile.

Data una approssimazione iniziale x_0 di x^* , punto fisso di g(x) in [a,b] si genera una successioe di iterati mediante il metodo delle approssimazioni successive o del punto fisso o iterazione funzionale:

$$x_{k+1} = g(x_k)$$

Convergenza del metodo allo zero della funzione.

Se g(x) è continua e la successione $\{x_k\}$ converge per $k \to \infty$ a un punto x^* , allora x^* è punto fisso di g(x) Infatti:

$$x^* = \lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} g(x_k) = g(\lim_{k \to \infty} x_k) = g(x^*)$$

Geometricamente, il metodo dell'iterazione funzionale equivale alla costruzione di una poligonale orientata con lati orizzontali e verticali nel piano xy.

Convergenza monotona:

 $\{x_k\}$ converge a x^* approssimando sempre per eccesso o per difetto.

Convergenza alternata:

 $\{x_k\}$ converge a x^* approximando per eccesso e per difetto.

Il metodo delle approssimazioni successive

Teorema di convergenza globale del metodo delle approssimazioni successive. Sia g(x) una funzione definita in [a,b]. Sia:

- ightharpoonup g(x) continua in [a, b],
- \Rightarrow $g(x) \in [a, b]$
 - ightharpoonup g(x) una contrazione in [a, b]

Allora per ogni $x_0 \in [a,b]$ la successione degli iterati $\{x_k\}$ con $x_k = g(x_{k-1})$ k = 1,2... converge per $k \to \infty$ all'unico punto fisso x^+ di g(x) in [a,b]. Inoltre valo:

Il metodo delle approssimazioni successive

Esempio.

$$f(x) = x^3 + 4x^2 - 10 = 0, x \in [1, 2]$$

si considera $x_0 = 1.5$.

1.
$$x = x - x^3 - 4x^2 + 10 = g_1(x)$$

2.
$$x = \left(\frac{1}{x} - 4x\right)^{1/2} = g_2(x) \text{ (da } x^3 = 10 - 4x^2\text{)}$$

3.
$$x = \frac{1}{2}(10 - x^3)^{1/2} = g_3(x) \left(da \ x^2 = \frac{1}{4}(10 - x^3) \right)$$

4.
$$x = \left(\frac{10}{x+4}\right)^{1/2} = g_4(x) \text{ (da } x^3 + 4x^2 = 10)$$

5.
$$xx - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x} = g_5(x)$$
 da $x = x - \frac{f(x)}{f'(x)}$

Il metodo delle approssimazioni successive

$\times \mu = g_1(\times \mu - 1) \times \mu = g_2(\times \mu - 1)$					
/					Neutoll
\boldsymbol{k}	(a)	(b)	(c)	(d)	(e)
1	-0.875	0.8165	1.286953768	1.348399725	1.373333333
2	6.732	2.9969	1.402540804	1.367376372	1.365262015
3	-469.7	$(-8.65)^{1/2}$	1.345458374	1.364957015	1.365230014
4	$1.08\ 10^{8}$	impossibile	1.375170253	1.365264748	1.365230013
	diverge				
15			1.365223680	1.365230013	
30	4		1.365230013	•	

Non tutte le scelte portano ad un metodo convergente (caso 1) o ben definito (caso 2). Inoltre la velocità di convergenza del metodo è diversa nei vari casi (con il metodo di bisezione per avere la stessa precisione sono necessarie 27 valutazioni di funzione)

Teorema di convergenza locale

Teorema Sia x^* un punto fisso di g(x); si suppone che g(x) sia continua e sia una contrazione per ogni $x \in [x^* - \rho, x^* + \rho] = I_\rho$. Allora, per ogni $x_0 \in I_\rho$ la successione degli $\{x_k\}$ è ben definita, ossia $x_k \in I_\rho$ e converge per $k \to \infty$ a x^* . Inoltre, x^* è l'unico punto fisso di g(x) in I_ρ .

Propagazione degli errori

Poichè si opera coi numeri finiti, è impossibile calcolare esattamente la funzione g(x) per x assegnato. Piuttosto, si calcola una approssimazione di g(x) data da

$$a(x) = g(x) + \delta(x)$$

ove $\delta(x)$ è l'errore commesso. Di solito è nota una maggiorazione dell'errore:

$$|\delta(x)| \leq \delta.$$

Operando in aritmetica finita, il metodo delle approssimazioni successive diventa:

$$w_{k+1} = a(w_k) = g(w_k) + \delta, \quad k = 0, 1, 2, \dots$$

ove w_k è il k-esimo iterato ottenuto operando coi numeri finiti e $|\delta_k| \leq \delta$.

In generale, la successione dei w_k non converge. Tuttavia, sotto opportune condizioni, è possibile determinare una approssimazione di x^* tunto piú accurata tanto piú δ è piccolo.

Teorema Sia x^* un punto fisso di g(x). Supponiamo che, in un intervallo $I_{\rho} = [x^* - \rho, x^* + \rho]$, g(x) sia continua e contrattiva. Allora, per ogni $w_0 \in I_{\rho_0} = [x^* - \rho_0, x^* + \rho_0]$ con $\rho_0 = \rho - \frac{1}{1-L}$, con $\delta \geq |\delta_k|$, la successione dei w_k è tale che:

$$|w_k - w^*| \le \frac{\delta}{L} + L^k \Big(\rho_0 - \frac{\delta}{1 - L} \Big)$$
 e $w_k \in I_\rho$.

Il primo termine e puo essere grande se L è prossimo a 1; il secondo termine tende a 0 per $k \to \infty$. Pertanto, non si ha piú convergenza della successione degli iterati a x^* .

Osservazione

Si osservi che:

$$|w_{k+1} - w_k| = |w_{k+1} - x^* + x^* - w_k|$$

$$\leq |w_{k+1} - x^*| + |x^* - w_k|$$

$$\leq \frac{\delta}{1 - L} + L^k \left(\rho_0 - \frac{\delta}{1 - L}\right) + \frac{\delta}{1 - L} + L^{k+1} \left(\rho_0 - \frac{\delta}{1 - L}\right)$$

$$= \frac{2\delta}{1 - L} + L^k (L + 1) \left(\rho_0 - \frac{\delta}{1 - L}\right)$$

Per quanto k sia preso grande, la differenza tra due iterati successivi non può essere piú piccola di $\frac{2\delta}{1-L}$ a causa degli errori di arrotondamento nel calcolo di g(x).

Criteri di arresto

Occorre determinare un criterio per vedere se l'approssimazione ottenuta è un punto fisso di g(x) ossia se $x - g(x) = \phi(x)f(x) = 0$.

Si ritiene che x_k sia una approssimazione accettabile se contemporaneamente:

$$|f(x_k)| \leq \epsilon_1$$
 e $|x_k - x_{k-1}| \leq \epsilon_2$ 3 soluh.

oppure

$$\frac{|f(x_k)|}{|f_{\max}|} \leq \sigma_1 \quad \text{e} \quad \frac{|x_k - x_{k-1}|}{|x_k|} \leq \sigma_2$$
 dove $\epsilon_1, \epsilon_2, \sigma_1, \sigma_2$ sono tolleranze assegnate e $f_{\max} = \max_{x \in I_\rho} |f(x)|$

Inoltre deve essere $\epsilon_2 \geq \frac{2\delta}{1-L}$, poichè questo termine che tiene conto degli errori di arrotondamento non converge a 0 per $k \to \infty$.

 $x_k - x_{k-1}$ può convergere a 0, pur essendo le due successioni divergenti. Se non si conosce nulla di f(x) conviene applicare i test relativi.

Ordine di convergenza

Definizione Sia x^* un punto fisso di g(x). Se per ogni $x_0 \in I_\rho = [x^* - \rho, x^* + \rho]$, la successione generata con l'iterazione funzionale è tale che esistono una costante positiva e un positivo p tale che

$$|x_k - x'| \le C|x_{k-1} - x'|^p \quad k \ge 1$$

 $|x_k-x| \le C|x_{k-1}-x|^p \quad k \ge 1$ con C>0 per p>1 é 0< C<1 per p=1, allora il metodo iterativo è di ordine p.

Se p=1, il prétodo si dice lineare; se p=2, ha velocità di convergenza quadratica

Velocità convergenza meto do pueto fino

Se x^* è un punto fisso di g(x) e $g \in C^1$, con $g'(x^*) \neq 0$ e $|g'(x^*)| < 1$, allora esiste un intorno $I_\rho = [x^* - \rho, x^* + \rho]$ per cui |g'(x)| < 1 per $x \in I_\rho$. Nell'intervallo I_ρ , per ogni $x_0 \in I_\rho$ il metodi iterativo converge al punto fisso in modo lineare.

ordine our. p=1 - lineaue

Se x^* è un punto fisso di g(x) e $g \in C^2$, con $g'(x^*) = 0$ e $g''(x^*) \neq 0$, allora esiste un intorno $I_{\rho} = [x^* - \rho, x^* + \rho]$ tale che per ogni $x_0 \in I_{\rho}$ il metodi iterativo converge al punto fisso con velocità di convergenza quadratica e vale

$$\lim_{x \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \frac{|g''(x^*)|}{2}$$

o equivalentemente

$$|x_{k+1} - x^*| = \frac{|g''(\xi^*)|}{2} |x_k - x^*|^2 \quad \text{con } \xi_k \in I_\rho$$

Metodo di Newton particolare pueto do di

▶ Data l'equazione f(x) = 0, si può determinare la soluzione x^* come punto fisso di

$$x = x - \phi(x)f(x) = g(x)$$

con $\phi(x) \neq 0$ per ogni x nell'intervallo in cui si cerca la soluzione.

▶ Velocità di convergenza Vale $g'(x) = 1 - \phi(x)f'(x) - \phi'(x)f(x)$ e $g'(x^*) = 1 - \phi(x^*)f'(x^*)$. Il metodo iterativo ha velocità di convergenza lineare se

$$\phi(x^*) \neq \frac{1}{f'(x^*)}$$
, supposto $f'(x^*) \neq 0$.

Se $\phi(x)$ è costante, $\phi(x) = m \neq \frac{1}{f'(x^*)}$, il metodo è lineare.

se
$$\phi(x^*) = \frac{1}{\sqrt{1-(x^*)}} \Rightarrow \rho = 2 \text{ (another in)}$$

La convergenza è quadratica se

•
$$\phi(x^*) = \frac{1}{f'(x^*)}$$
 con $f'(x^*) \neq 0$.

Allora o si pone $\phi(x) = \frac{1}{f'(x^*)}$ costante (ma x^* è incognito), oppure si pone

$$\phi(x) = \frac{1}{f'(x)} \rightarrow g(x) = x - f(x) \cdot \phi(x)$$

$$= x - f(x)$$

ottenendo un metodo a convergenza quadratica dato da

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Il metodo è detto metodo di Newton.

Vale

$$g'(x) = 1 - \frac{f'(x^*)^2 - f(x^*)f''(x^*)}{f'(x^*)^2} = \frac{f(x^*)f''(x^*)}{f'(x^*)^2} = 0$$

$$g''(x) = \frac{(f'(x^*)f''(x^*) + f(x^*)f'''(x^*))f'(x^*)^2 - 2f(x^*)f''(x^*)^2 f'(x^*)}{f'(x^*)^4} = \frac{f''(x^*)^4}{f'(x^*)^4}$$

Allora, se $f(x^*) = 0$, $f'(x^*) \neq 0$, $f''(x^*) \neq 0$, il metodo di Newton ha convergenza quadratica con costante asintotica di convergenza $\frac{f''(x^*)}{2f'(x^*)}$

E' detto anche *metodo delle tangenti* perchè geometricamente il punto x_{k+1} è il punto d'intersezione tra y = 0 e la retta tangente a f(x) in $(x_k, f(x_k))$:

$$y = f(x_k) + f'(x_k)(x - x_k)$$

Convergenza locale del metodo di Newton

Convergenza locale del metodo di Newton

g del justo do di Hentoy

Sia x^* uno zero di f(x). Sia f(x) continua insieme alle sue derivate prima, seconda e terza (continuità di g, g', g'').

Sia $f'(x) \neq 0$ per x in un opportuno intorno di x^* e sia $f''(x^*) \neq 0$ (f(x)/f'(x) deve essere definita e deve essere $g''(x) \neq 0$).

Allora, per ogni $x_0 \in I_\rho$, la successione generata dal metodo di Newton converge a x^* in modo quadratico.

Convergenza globale del metodo di Newton

Teorema Sia $f \in C^2[a, b]$. Sia inoltre:

- f(a) < 0, f(b) > 0;
- ► $f'(x) \neq 0$;
- $f''(x) \leq 0;$
- ► $|f(b)| \le (b-a)|f'(b)|$.

Allora il metodo di Newton genera una successione di iterati convergenti all'unica soluzione di f(x) = 0 appartenente ad [a, b] a partire da qualunque $x_0 \in [a, b]$.

TODE ALTERNATION

Il teorema resta valido se valgono le seguenti condizioni:

►
$$f'(x) \neq 0$$
;

►
$$f''(x) \ge 0$$
;

▶
$$|f(a)| \le (b-a)|f'(a)|$$
.

oppure

►
$$f'(x) \neq 0$$
;

►
$$f''(x) \ge 0$$
;

▶
$$|f(b)| \leq (b-a)|f'(b)|$$
.

oppure

- ► f(a) > 0, f(b) < 0;
- ► $f'(x) \neq 0$;
- ► $f''(x) \leq 0$;
- ▶ $|f(a)| \le (b-a)|f'(a)|$.

Esempio 1

$$f'(x) = \cos(x) - \left(\frac{x}{2}\right)^2 \text{ in } [1,2].$$

$$f'(x) = \cos(x) - \frac{x}{2}; \qquad f''(x) = -\sin(x) - \frac{1}{2}$$

$$x_{k+1} = x_k - \frac{\sin(x_k) - \left(\frac{x_k}{2}\right)^2}{\cos(x) - \frac{x_k}{2}} \qquad \text{ weatou.}$$

$$\text{costante as intotica d'errore } \frac{g''(x^*)}{2} = \frac{f''(x^*)}{2f'(x^*)} \simeq 0.54$$

$$\frac{k}{0} \frac{x_k}{0} \frac{f(x_k)}{0} \frac{f'(x_k)}{0} \frac{-f(x_k)/f'(x_k)}{0} \frac{f'(x_k)}{0} \frac{-f(x_k)/f'(x_k)}{0} \frac{f'(x_k)}{0} \frac{-f(x_k)/f'(x_k)}{0} \frac{-f(x_k)/f'(x_k)}$$

Esempio 2

$$\begin{aligned} x_{k+1} &= x_k - \frac{x_k^2 - \gamma}{2x_k} = \frac{1}{2} \left(x_k + \frac{\gamma}{x_k} \right) & \text{ weator} \\ \text{Per } \gamma &= 2 \text{ e } [1, 2] \text{ si ha:} & \text{ } | \mathbf{x_k} - \mathbf{x_k}| \leq c \left| \mathbf{x_{k-1}} - \mathbf{x_k} \right|^2 \\ & \frac{\mathbf{k}}{0} & 1.5 \\ & 1 & 1.41666666 \\ & 2 & 1.41421568 \end{aligned}$$

costante asintotica d'errore $\frac{f''(x^*)}{2f'(x^*)} = \frac{1}{2\sqrt{\gamma}}$ se γ è piccolo, la convergenza può essere lenta.

1.414213561 1.414213562

Considerazioni algoritmiche

I criteri di arresto del metodo di newton sono gli stessi del metodo delle approssimazioni successive.

La **complessità computazionale** del metodo di Newton è pari ad una valutazione della funzione e una valutazione della derivata prima per passo. Se la complessità di f' è analoga a quella di f, si dice che il metodo richiede due valutazioni di funzioni per passo.