

Regression Tree

disusun oleh:

Bagus Sartono bagusco@apps.ipb.ac.id 0852-1523-1823

Prodi Statistika dan Sains Data

Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor

2020

Outline

- Pendahuluan
- Bentuk dan Kegunaan Model Regression Tree
- Bagaimana Memperoleh Modelnya?
- Implementasi-nya di R
- Pengenalan Random Forest

$$y = \begin{cases} 2x & \text{untuk } 5 < x \le 10 \\ -380 + 40x & \text{untuk } 10 < x \le 12 \\ 40 + 5x & \text{untuk } 12 < x \le 14 \\ 670 - 40x & \text{untuk } 14 < x < 15 \end{cases}$$

+ Error ~ Normal (0, 10)

Regresi Linear vs Pohon Regresi

Bentuk dan Kegunaan

Bentuk dan Komponennya

Bentuk dan Komponennya

Bentuk dan Komponennya

Apa gunanya?

Kegunaan #1: Memprediksi Nilai dari Individu Baru

Preno = 34% Jalur Hijau = 87% MITA = 40%

Berapa rata-rata
Dwelling Time hari ini?

Kegunaan #1: Memprediksi Nilai dari Individu Baru

Preno = 34%

Jalur Hijau = 87%

MITA = 40%

Berapa rata-rata
Dwelling Time hari ini?

DT = 2.9 hari

Kegunaan #2: Mengidentifikasi karakteristik dari segmen tertentu

... misal yang DT-nya singkat itu seperti apa?

Kegunaan #2: Mengidentifikasi karakteristik dari segmen tertentu

... misal yang DT-nya singkat itu seperti apa?

... ditandai dengan simpul biru

. . .

preno lebih dari 20% jalur hijau lebih dari 85%

dan MITA lebih dari 50%

Bagaimana memperoleh pohon regresi?

Tahapan Umum Proses Partisi/Penyekatan (splitting)

1. Cari batas partisi/sekatan terbaik untuk masingmasing variabel prediktor

- 2. Bandingkan partisi terbaik dari semua variabel prediktor... pilih yang paling baik
 - 3. Lakukan penyekatan berdasarkan variabel yang dihasilkan pada langkah ke-2
 - 4. Lakukan 1-2-3 untuk setiap simpul, sampai tercapai kriteria penghentian algoritma

Details on tree growing

- Let j_r denote the index of the split variable at the step r, i.e. the coordinate X_{j_r} will be used for the rth split.
- Let t_r be the split point to be used at the step r.
- How to determine j_r and t_r efficiently?
- Let $R_{1,r-1}, \ldots R_{m_{r-1},r-1}$ be the sets obtained for the r-1 partition (leaves at the step r-1).
- Fix j so that a potential split variable is x_j.
- A potential split point t of $R_{k,r-1}$ must be one of x_j 's for those x's that are in $R_{k,r-1}$.
- For such x_j 's let consider the split $R_1(x_j)$, $R_2(x_j)$ of $R_{k,r-1}$.
- Choose x_i 's such that the reduction of the mean square error is the largest, i.e. choose x_i 's maximizing

$$N_{k,r-1} Q_k(T_{r-1}) - \sum_{x_i \in R_1(x_i)} (y_i - \hat{c}_{1,x_i})^2 - \sum_{x_i \in R_2(x_i)} (y_i - \hat{c}_{2,x_i})^2,$$

 $N_{k,r-1}$ – the number of x's in $R_{k,r-1}$, \hat{c}_{1,x_j} and \hat{c}_{2,x_j} – averages of the responses over the splits $R_1(x_i)$, $R_2(x_i)$, respectively.

Aturan penghentian algoritma partisi/splitting

Algoritma splitting akan berhenti jika tercapai salah satu dari kriteria berikut:

- 1. Simpul hanya berisi amatan yang **sedikit**... pada fungsi rpart() ditentukan menggunakan opsi **minsplit** dan **minbucket**
- 2. Pohon sudah **terlalu besar**... pada fungsi rpart() ditentukan menggunakan fungsi **maxdepth**

Menilai Kebaikan Hasil Prediksi

MAPE (mean absolute percentage error)

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{y_i} \times 100\%$$

Gunakan data lain untuk melakukan penilaian!

Kita lihat implementasinya di R

• https://rpubs.com/bagusco/regressiontree

Random Forest

- pengembangan dari metode bagging (Bootstrap and Aggregating)
- Awalnya, terdapat sebuah gugus data training.
- Lakukan resampling bootstrap
- jalankan algoritma pohon klasifikasi dan diperoleh sebuah pohon (variabel pemisah diambil yang terbaik dari sampel acak variabel)
- Proses ini diulang sebanyak k kali untuk menghasilkan k buah pohon yang berbeda
- Lakukan prediksi menggunakan k pohon dan prediksi akhir diperoleh dengan cara rata-rata (averaging)

Algoritma

For b = 1 to B:

- (a) Draw a bootstrap sample Z* of size N from the training data.
- (b) Grow a random-forest tree to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select **m** variables at random from the **p** variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.

Output the ensemble of trees.

To make a prediction at a new point x we do:

For regression: average the results

For classification: majority vote

Kita lihat implementasinya di R

• https://rpubs.com/bagusco/regressiontree

Terima Kasih

Inspiring Innovation with Integrity in Agriculture, Ocean and Biosciences for a Sustainable World