Endomorphismes symétriques, matrices symétriques réelles.

Antoine MOTEAU antoine.moteau@wanadoo.fr

Table des matières

1	Endomorphismes symétriques	2
2	Endomorphismes anti-symétriques	2
3	Réduction orthonormale des endomorphismes symétriques et des matrices symétriques réelles	3
4	Exemples	4

Endomorphismes symétriques, matrices symétriques réelles

1 Endomorphismes symétriques

Définition 1.0.1.

Un endomorphisme u d'un espace euclidien est symétrique si et seulement si

$$\forall x, y \in \mathbb{E}, < u(x) \mid y > = < x \mid u(y) >$$

Exemple 1.0.0.1. Les symétries orthogonales d'un espace euclidien sont symétriques :

Une symétrie s vérifie $s^2 = id$ et, comme une symétrie orthogonale est un automorphisme orthogonal,

$$\forall x, y \in \mathbb{E}, \langle s(x) \mid y \rangle = \langle s(s(x) \mid s(y) \rangle = \langle x \mid s(y) \rangle$$

Théorème 1.0.1. Matrice d'un endomorphisme symétrique, dans une base orthonormale

Un endomorphisme est symétrique si et seulement si sa matrice associée, relativement à une base orthonormale, est symétrique (et réelle) (ide A réelle et $^tA = A$).

Preuve.

En notant A la matrice de u dans la base orthonormale \mathcal{B} , X et Y les matrices colonne des composantes de x et y dans cette même base,

$$^{t}(AX) Y = \langle u(x) | y \rangle = \langle x | u(y) \rangle = {}^{t}X A Y$$
, d'où ${}^{t}X^{t}A Y = {}^{t}X A Y$

On a donc, $\forall X, Y$, tX (${}^tA - A$) Y = (0), ce qui prouve que $A = {}^tA$

ATTENTION:

- 1. Une symétrie n'est pas forcément symétrique
- 2. Une symétrie orthogonale est symétrique

2 Endomorphismes anti-symétriques

Définition 2.0.2.

Un endomorphisme u d'un espace euclidien est anti-symétrique si et seulement si

$$\forall \, x,y \in \mathbb{E}, \, < u(x) \mid y> = - < x \mid u(y) >$$

Exemple 2.0.0.2. En dimension 3, les endomorphismes anti-symétriques sont les applications de la forme :

$$\begin{array}{cccc} h_w: & E & \longrightarrow & \mathbb{E} \\ & v & \longmapsto & h_w(v) & = v \wedge w \end{array}$$

Théorème 2.0.2. Matrice d'un endomorphisme anti-symétrique, dans une base orthonormale

Un endomorphisme est anti-symétrique si et seulement si sa matrice associée, relativement à une base orthonormale, est anti-symétrique (et réelle) (ide A réelle et ${}^tA = -A$).

Preuve. Quasi identique à celle fournie pour les endomorphismes symétriques.

Exemple 2.0.0.3. Soit la matrice antisymétrique réelle $A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$. (diagonale nulle!).

A est la matrice de l'endomorphisme f de \mathbb{R}^3 , relativement à la base canonique orthornomale directe. On a : $\ker f = Vect\left(\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}\right)$ donc $f\left(\overrightarrow{v}\right) = \overrightarrow{v} \wedge \overrightarrow{w}$ où \overrightarrow{w} est colinéaire à $\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$.

Un simple ajustement permet de constater qu'il faut prendre $w = -\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$.

3 Réduction orthonormale des endomorphismes symétriques et des matrices symétriques réelles

L'espace euclidien ($\mathbb{E}, < | >$) de dimension n > 0, est muni d'une base orthonormale $\mathcal{B} = (e_1, e_2, \cdots, e_n)$, que l'on déclare canonique (et directe). E peut être identifié à \mathbb{R}^n , muni de sa base canonique.

Une matrice symétrique réelle sera considérée comme la matrice d'un endomorphisme symétrique de \mathbb{E} (ou de \mathbb{R}^n) par rapport à la base orthonormale canonique.

Théorème 3.0.3.

Les valeurs propres d'une matrice symétrique réelle, d'un endomorphisme symétrique, sont réelles.

 \underline{Preuve} . Soit A une matrice symétrique $\underline{r\'{e}elle}$, d'ordre n.

On interprète A comme la matrice d'un endomorphisme de \mathbb{C}^n , relativement à la base canonique de \mathbb{C}^n . Soit λ une valeur propre (complexe) de A et V un vecteur propre (complexe) associé.

- On a $AV = \lambda V$ d'où $A\overline{V} = \overline{\lambda} \overline{V}$ puis ${}^tV A \overline{V} = \overline{\lambda} {}^tV \overline{V} = \overline{\lambda} \|V\|^2$
- De $AV = \lambda V$ on déduit ${}^tVA = \lambda {}^tV$ puis ${}^tVA\overline{V} = \lambda {}^tV\overline{V} = \lambda {}^tVV^2 = \lambda {}^tV^2 = \lambda {}^tV^$

Ainsi $\overline{\lambda} \|V\|^2 = \lambda \|V\|^2$ et, comme $\|V\|^2 \neq 0$, λ est réel.

On en déduit immédiatement le théorème suivant :

Théorème 3.0.4.

Le polynôme caractéristique d'un endomorphisme symétrique, d'une matrice symétrique <u>réelle</u>, est scindé dans \mathbb{R} .

On a alors un enchaînement de théorèmes qui conduisent, étape par étape, à la diagonalisation des endomorphismes symétriques et des matrices symétriques <u>réelles</u>: (on démontrera ensuite ces théorèmes un à un).

Théorème 3.0.5. (1)

Deux vecteurs propres, associés à des valeurs propres distinctes d'un endomorphisme symétrique, sont orthogonaux.

Théorème 3.0.6. (2)

Les espaces propres d'un endomorphisme symétrique sont orthogonaux deux à deux.

Théorème 3.0.7.

Soit u un endomorphisme symétrique.

- \bullet Le supplémentaire orthogonal d'un sous-espace propre de u est stable par u
- La restriction de u au supplémentaire orthogonal d'un sous-espace propre est symétrique.

Théorème 3.0.8. (4) Diagonalisation des endomorphismes symétriques

Tout endomorphisme symétrique est DIAGONALISABLE dans \mathbb{R} . et on peut **choisir** une base orthonormale de vecteurs propres.

Théorème 3.0.9. (5) Diagonalisation des matrices symétriques <u>réelles</u>

Toute matrice symétrique réelle A est diagonalisable dans \mathbb{R} , sous la forme :

 $A = PDP^{-1}$ et on peut choisir P orthogonale (ide, telle que $P^{-1} = {}^{t}P$).

ATTENTION!

- 1 Les vecteurs propres "natifs" ne sont pas forcément orthogonaux ni normés.
- 2 Il faudra <u>construire</u> une base orthonormée de vecteurs propre.

4 4

<u>Preuve</u>. (1). Soit u un endomorphisme symétrique, v et w vecteurs propres de u, associées à λ et μ .

On a < u(v)|w> = < v|u(w)> d'où $\lambda < v|w> = \mu < v|w>$ puis $(\lambda - \mu) < v|w> = 0$ et enfin < v|w> = 0, c'est à dire $v \perp w$.

<u>Preuve</u>. (2). L'orthogonalité des sous-espaces propres est une conséquence directe du théorème précédent.

<u>Preuve</u>. (3). Soit \mathbb{F} l'espace propre associé à la valeur propre λ de l'endomorphisme symétrique u de \mathbb{E} .

Si $\mathbb{F} = \mathbb{E}$, c'est fini. On suppose dans la suite que $\mathbb{F} \neq \mathbb{E}$.

- 1. Soit $w \in \mathbb{F}^{\perp}$. $\forall v \in \mathbb{F}$, $\langle v | u(w) \rangle = \langle u(v) | w \rangle = \lambda \langle v | w \rangle = 0$, ce qui prouve que $u(w) \in \mathbb{F}^{\perp}$. On a donc prouvé que \mathbb{F}^{\perp} est stable par u.
- 2. Soit (f_1, \dots, f_q) une base orthonormale de \mathbb{F} , que l'on complète par $f_{q+1}, \dots f_n$, vecteurs orthonormés de \mathbb{F}^{\perp} , pour former une base de \mathbb{E} (ce qui est possible, d'après le procédé de Schmidt).

Dans cette base orthonormale, la matrice de u est symétrique <u>réelle</u>, de la forme $\begin{pmatrix} C & (0) \\ (0) & D \end{pmatrix}$ où C et D sont carrées, symétriques <u>réelles</u>.

D est la matrice de la restriction de u à \mathbb{F}^{\perp} (endomoprhisme de \mathbb{F}^{\perp}), relativement à la base orthonormale $(f_{q+1},...,f_n)$ de \mathbb{F}^{\perp} .

Comme D est symétrique <u>réelle</u>, on en déduit (cf Th 1.0.1.) que la restriction de u à \mathbb{F}^{\perp} est un endomorphisme symétrique de \mathbb{F}^{\perp} .

 \underline{Preuve} . (4). Le théorème précédent a préparé le terrain pour une démonstration par récurrence sur la dimension de E:

Soit la propriété, dépendant de $n \in \mathbb{N}^*$: "Tout endomorphisme symétrique d'un espace euclidien de dimension n est diagonalisable dans \mathbb{R} , dans une base orthonormale".

- Pour n = 1, c'est évident puisque u est de la forme λid .
- Supposons la propriété vraie jusqu'à $n \ge 1$ et montrons la pour n+1: u étant un endomorphisme symétrique de l'espace euclidien $\mathbb E$ de dimension n+1, soit λ une valeur propre de u, et $\mathbb F$ l'espace propre associé.
 - Si $\mathbb{F} = \mathbb{E}$, alors $u = \lambda id$ est diagonalisable et toute base orthonormale de \mathbb{E} est une base de vecteurs propres de u.
 - Si $dim(\mathbb{F}) = p$, avec $1 \leqslant p \leqslant n$ (p est inconnu, d'où l'importance de "jusqu'à" dans l'hypothèse).

Les restrictions u_1 de u à \mathbb{F} et u_2 de u à \mathbb{F}^{\perp} sont des endomorphismes symétriques d'espaces euclidiens de dimension inférieure ou égale à n. Ils sont diagonalisables (d'après l'hypothèse de récurrence) dans des bases orthonormales \mathcal{C}' de \mathbb{F} et \mathcal{C}'' de \mathbb{F}^{\perp} respectivement.

En choisissant la base $C = C' \cup C''$, comme base orthonormale de \mathbb{E} , la matrice de u dans cette base orthonormale est diagonale.

Résumé : Si la propriété est vraie jusqu'à l'ordre $n \ge 1$, alors elle est vraie jusqu'à l'ordre n + 1 et, comme elle est vraie à l'ordre 1, on en déduit qu'elle est vraie à tout ordre $n \ge 1$.

<u>Preuve</u>. (5). Simple traduction du théorème précédent en termes de matrice symétrique <u>réelle</u>.

4 Exemples

- 1. Si on donne une matrice symétrique <u>réelle</u> n'ayant <u>que des valeurs propres simples</u>, en cherchant les vecteurs propres, on obtiendra automatiquement une base orthogonale de vecteurs propres et il n'y a plus qu'à la normer pour obtenir une base orthonormale de vecteurs propres. C'est trop simple!
- 2. Pour que cela soit intéressant, il faudrait diagonaliser une matrice symétrique <u>réelle</u> ayant des valeurs propres <u>multiples</u>: la probabilité pour que l'on obtienne directement, par hasard, une base orthogonale de vecteurs propres est faible.

Il faudra alors faire un <u>travail d'orthormalisation</u>, sous-espace propre par sous-espace propre, pour construire une base orthonormale de vecteurs propres.

