A SURVEY OF MORSE-SMALE SYSTEMS

Hai Nguyen Au

Advisor: Professor Slobodan Simić

Committee Members:

Professor Richard Kubelka

Professor Samih Obaid

April 25, 2016

Introduction

Introduction

- The field of dynamical systems, which originated from classical Newtonian mechanics in the beginning of the 20th century, was first developed by Henri Poincaré (1854-1912).
- Started by his interest in studying the stability of the Solar System.
- "What we should always try to do, is to solve the qualitative problem.". We should not try to solve differential equations, because that is rarely possible.

- Henri Poincaré(1854-1912): analyzed the orbits, or trajectories, of these solutions.
- Aleksandr Lyapunov (1857-1918): studied the stability of dynamical systems, generalized the determination of the asymptotic behavior of these equilibria.
- George Birkhoff(1884-1944): proved Poincaré's "Last Geometric Theorem," a special case of the three-body problem.
- **Stephen Smale**(1930): developed the *Smale horseshoe*.

What is the behavior of dynamical systems as time goes to infinity? It is useful to investigate this behavior using some generic dynamical systems.

- Kupka-Smale systems
- Morse-Smale systems

This project:

- Morse-Smale systems in two-dimensional compact manifolds M^2 (the sphere S^2 and the torus T^2).
- Structural stability of Morse-Smale systems.
- Density of Morse-Smale systems.
- Approximating rational and irrational flows on a torus T^2 by Morse-Smale fields.

└ Preliminaries

Preliminaries

Topology and Geometry

Definition

A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- lacksquare \emptyset , X are in \mathcal{T}
- lacksquare The union of the elements of any subcollection of $\mathcal T$ is in $\mathcal T$.
- The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

 \mathcal{T} is called the **topology** of the topological space (X, \mathcal{T}) . A subset U of X is called an **open set** if $U \in \mathcal{T}$.

A topological manifold is a topological space M such that:

- M is Hausdorff (any two distinct points are contained in disjoint open sets)
- M is second countable (has a countable basis)
- M is locally Euclidean (every point has a neighborhood homeomorphic to an open set in \mathbb{R}^n).

A map $F: U \to \mathbb{R}^n$, where U is an open set in \mathbb{R}^n , is called **smooth** if it has partial derivatives of all orders at every point in U.

Definition

Let $f:U\to\mathbb{R}$ be a smooth function on an open set $U\subset\mathbb{R}^n$. The C^r -norm of f is defined by

$$||f||_{C^r} = \max\{||f||, ||f^1||, ..., ||f^{(r)}||\}$$

Preliminaries

Topology and Geometry

Definition

A bijective map $F: M \to N$ is a **diffeomorphism** if both F and F^{-1} are smooth.

■ Example: The antipodal map.

- A tangent vector at a point $p \in \mathbb{R}^n$ is a vector anchored at p.
- The set of all tangent vectors at p is call the **tangent space** of \mathbb{R}^n at p.
- The tangent space at $p \in M$ is denoted as T_pM . The set of all tangent spaces at all points on M is called the **tangent** bundle TM.

└ Preliminaries

La Topology and Geometry

Definition

Let U and V be submanifolds of M. U is **transverse** to V if for all points $p \in U \cap V$, the tangent spaces T_pU and T_pV span T_pM .

Example: x-axis and y-axis in \mathbb{R}^2 .

Let $F: M \to N$ be a smooth map of smooth manifolds. Given a point $p \in M$, the derivative map:

$$D_pF:T_pM\to T_{F(p)}N$$

is called the **pushforward** map (F_*) .

A vector field of class C^r on a manifold M is a C^r map

 $X: M \to TM$ that takes a point p on M to a vector $X_p \in T_pM$.

Example: Two linearly independent, non-vanishing vector fields $\frac{\partial}{\partial \theta_1}$ and $\frac{\partial}{\partial \theta_2}$ on T^2 .

Preliminaries

Topology and Geometry

Definition

Let M,N be smooth manifolds and $F:M\to N$ a diffeomorphism.

For every vector field X, there exists a unique vector field Y on N such that Y is F-related to X. That is, $F_*(X) = Y$.

Dynamics

Definition

A **dynamical system** (or a flow) on a manifold M is a smooth map $\phi : \mathbb{R} \times M \to M$ with the properties:

$$\phi_0(p) = p.$$

$$\phi_t \circ \phi_s = \phi_{t+s}$$
, for $t, s \in \mathbb{R}$.

Example: The first-order differential equation $\dot{x}=ax$ has the solution $\phi_t(x_0)=x_0e^{at}$ $(t\in\mathbb{R}).$

The **orbit** of a flow ϕ at a point p is the set

$$\mathcal{O}(p) = \{ \phi_t(p) : t \in \mathbb{R} \}.$$

Definition

Two flows ϕ and ψ on M are called **topologically conjugate** if there exists a homeomorphism $h: M \to M$ such that

$$h(\phi_t(p)) = \psi_t(h(p))$$

for all $t \in T$ and $p \in M$.

A vector field Y is ε -close to X in the C^r-topology if

$$\|Y - X\|_{C^r} < \varepsilon$$

This means X and Y are ε -close together with their first r derivatives.

A point $p \in M$ is called a **singularity** of a vector field X if

$$X_p=0.$$

Examples:

└ Preliminaries

L Dynamics

Definition

Given a vector field X on M, an ω -limit set of a point $p \in M$ is the destination of the orbit of p as $t \to \infty$. An α -limit set of p is the origin of the orbit of p as $t \to -\infty$.

Example:

For any point p that is not p_N or p_S , $\omega(p) = p_N$ and $\alpha(p) = p_S$

Preliminaries
Dynamics

Definition

The **critical elements** of a vector field X are all the singularities and closed orbits of X. A critical element may be an **attractor** or a **repellor**.

Definition

A singularity p of X is called **hyperbolic** if D_pX has eigenvalues with non-zero real parts, where D_pX is the derivative of X at p.

The Poincaré Map

- $P:V\to\Sigma$
- P(x): first return point.
- x_* : fixed point.

Preliminaries

└ Dynamics

Definition

If $p \in M$ is a fixed point of a diffeomorphism f of M, then p is a hyperbolic fixed point if the derivative matrix

 $D_pF:T_pM\to T_pM$ has no eigenvalue of modulus 1.

Let p be a hyperbolic fixed point of M. The **stable manifold** $W^s(p)$ of p is the set of all points that have p as their ω -limit. The **unstable manifold** $W^u(p)$ of p is the set of all point that have p as their α -limit.

$$W^s(p) = \{q \in M | \omega(q) = p\}$$

$$W^{u}(p) = \{q \in M | \alpha(q) = p\}$$

Example:

- $W^s(p_N) = S^2 \{p_S\}.$
- $W^u(p_N) = \{p_N\}.$
- $W^s(p_S) = \{p_S\}.$
- $W^u(p_S) = S^2 \{p_N\}.$

Theorem (Poincaré-Bendixson)

Let X be a vector field on the sphere S^2 with a finite number of singularities, and let p be a point on the sphere. Then exactly one of the following is true:

- **1** $\omega(p)$ is a singularity;
- **2** $\omega(p)$ is a closed orbit;
- 3 $\omega(p)$ consists of singularities $p_1, ..., p_n$ and regular orbits such that if an orbit $\gamma \subset \omega(p)$, then $\alpha(\gamma) = p_i$ and $\omega(\gamma) = p_j$ for some i, j between 1 and n.

└ Preliminaries

└ Dynamics

The Poincaré-Bendixson suggests that in S^2 , the asymptotic behavior of dynamical systems are predictable.

A vector field X is a **Kupka-Smale** vector field if:

- 1 All critical elements of X are hyperbolic;
- 2 For any pair critical elements of X, their stable and unstable manifolds are transverse to each other.

Theorem

Kupka-Smale vector fields are dense in $\mathfrak{X}^r(M)$.

Preliminaries

L_Dynamics

Examples of Kupka-Smale and non-Kupka-Smale vector fields:

Morse-Smale Vector Fields

Morse-Smale Vector Fields

The concept of Morse-Smale systems comes from that of Kupka-Smale systems. In this section:

- The definition of Morse-Smale systems.
- Examples of Morse-Smale and non-Morse-Smale systems.

A point p in M is called a wandering point for a vector field X if there exists a neighborhood V of p and a number $t_0 > 0$ such that $X_t(V) \cap V = \emptyset$ for $|t| > t_0$, where X_t is the flow of X. Otherwise, p is called a nonwandering point.

The set of all nonwandering points of X is denoted by $\Omega(X)$. Examples: In the North Pole-South Pole vector field, p_N and p_S are non-wandering, and other points are wandering.

A vector field X on a compact manifold M is a Morse-Smale vector field if:

- There are only a finite number of critical elements on X and they are all hyperbolic.
- 2 For any two critical elements of X, their stable and unstable manifolds are transverse to each other
- $\mathfrak{I}(X)$ is the union of all the critical elements of X.

Proposition

A vector field X on a compact manifold M is Morse Smale if and only if:

- **1** There are only a finite number of critical elements on X and they are all hyperbolic.
- **2** There are no saddle-connections.
- **3** Each orbit on M has a unique critical element as its ω -limit and a unique critical element as its α -limit.

Let X be a Morse-Smale vector field. The **phase diagram** of X is the simplest way to represent the qualitative behavior of X.

Figure: A non-Morse-Smale vector field with infinitely many critical elements

Structural Stability of Morse-Smale systems

Structural Stability of Morse-Smale systems

Structural Stability of Morse-Smale systems

Definition

A vector field X is **structurally stable** if there exists a C^r neighborhood U of X such that for every vector field Y in U, Y is topologically equivalent to X.

To show that two vector fields X and Y are topologically equivalent to each other, we need to construct a homeomorphism that takes orbits of X to orbits of Y.

Structural Stability of Morse-Smale systems

Theorem

Given a Morse-Smale vector field X on M, there exists a neighborhood U of X such that for every vector field $Y \in U$, Y is Morse-Smale and its phase diagram is isomorphic to that of X.

Theorem

If X is a Morse-Smale vector field, then X is structurally stable.

Proof: (for the North Pole-South Pole vector field)

- By the previous theorem: there exists a neighborhood U of X such that for all $Y \in U$, Y is Morse-Smale.
- lacktriangle By the previous theorem: there exists an isomorphism σ that takes the phase diagram of X to the phase diagram of Y.
- Let ψ_t be the flow by X and φ_t be the flow by Y.

Construct a homeomorphism $h: M \to M$ that takes orbits of X to orbits of Y

- Let h map $\sigma_1(X)$ to $\sigma_1(Y)$ and $\sigma_2(X)$ to $\sigma_2(Y)$.
- Define h(p) = p for all $p \in \Sigma$.
- For a point p (neither a singularity nor a a point on Σ), $\pi(p) = \psi_t(p)$ and $h(p) = \varphi_{-t}(\psi_t(p))$.

☐ Density of Morse-Smale systems

Density of Morse-Smale systems

Density of Morse-Smale systems

- Morse-Smale systems are always structurally stable and open in the C^r -topology.
- Only in dimension 2, Morse-Smale systems are dense.

Density of Morse-Smale systems

Lemma

All hyperbolic singularities are isolated.

Lemma

Hyperbolic closed orbits are isolated.

Theorem

Every Kupka-Smale field on S^2 is Morse-Smale.

It can be shown that every Kupka-Smale field X on S^2 satisfies:

- There are finitely many critical elements and they are all hyperbolic.
- 2 There are no saddle-connections.
- 3 Each orbit has a unique critical element as its ω -limit and a unique critical element as its α -limit.

Thus, Morse-Smale fields are dense in S^2 .

Approximating the Irrational Flow on a Torus by a Morse-Smale Field

Approximating the Irrational Flow on a Torus by a Morse-Smale Field

- Since Morse-Smale systems are dense in M^2 , they can be used to approximate a non-Morse-Smale vector field.
- We will show how to approximate a rational flow on T^2 by a Morse-Smale vector field.
- Irrational flow \rightarrow rational flow \rightarrow Morse-Smale field.

- Approximating the Irrational Flow on a Torus by a Morse-Smale Field
 - Approximating a Simple Rational Flow

Approximating a Simple Rational Flow

Consider a rational flow induced by a vector field X on T² that has infinitely many closed orbits. This vector field is not Morse-Smale (has infinitely many non-hyperbolic critical elements).

- Approximating the Irrational Flow on a Torus by a Morse-Smale Field
 - Approximating a Simple Rational Flow

We will approximate this non-Morse Smale field by the Morse-Smale vector field Y with two closed orbits: an attractor γ_1 and a repellor γ_2 .

- Approximating the Irrational Flow on a Torus by a Morse-Smale Field

 Approximating a Simple Rational Flow
 - Vector field *X*:

$$X = \frac{\partial}{\partial y}.$$

■ Vector field *Y*: approximate by

$$X_{\varepsilon} = \frac{\partial}{\partial y} + f_{\varepsilon}(x) \frac{\partial}{\partial x},$$

Approximating the Irrational Flow on a Torus by a Morse-Smale Field

Approximating a Simple Rational Flow

Find the function $f_{\varepsilon}(x)$:

- $f_{\varepsilon}(x) = 0$ for $x = 0, \frac{1}{2}$ and 1.
- $f_{\varepsilon}(x) > 0$ for $x \in (0, \frac{1}{2})$.
- $f_{\varepsilon}(x) < 0$ for $x \in (\frac{1}{2}, 1)$

One example of $f_{\varepsilon}(x)$: $f_{\varepsilon}(x) = \varepsilon \sin(2\pi x)$ for $x \in [0,1]$

Since the norm of this function is less than 1, $|f_{arepsilon}(x)|<arepsilon$ and

- Approximating the Irrational Flow on a Torus by a Morse-Smale Field
- LApproximating a Simple Rational Flow

Let us investigate the projection of the approximated vector field to T^2 .

 γ_1 is an attractor and γ_2 is a repellor.

Approximating the Irrational Flow on a Torus by a Morse-Smale Field

Approximating a General Rational Flow

Approximating a General Rational Flow

- Any vector field that induces a rational flow on T^2 has an infinite number of closed orbits.
- If we can take each closed orbit and convert it into a closed orbit as in the last example, then the two vector fields are topologically equivalent.
- Approximate by a Morse-Smale vector field.

- lacktriangle The previous rational flow in \mathbb{R}^2 : $\begin{cases} \dot{x} = 0 \\ \dot{y} = 1 \end{cases}$
- The general rational flow in \mathbb{R}^2 : $\begin{cases} \dot{x}=1\\ \dot{y}=\alpha \end{cases}$, where $\alpha=\frac{m}{n}$ and $m,n\in\mathbb{Z}$ and are relatively prime.
- We can write these two vector fields on T^2 as $X = \frac{\partial}{\partial y}$ and $X_{\alpha} = \frac{\partial}{\partial x} + \alpha \frac{\partial}{\partial y}$ respectively.
- They both have infinitely many non-hyperbolic closed orbits on T².

LApproximating a General Rational Flow

- Define the projection map $\pi: \mathbb{R}^2 \to \mathcal{T}^2$ as a quotient map that takes a point $p \in \mathbb{R}^2$ to its equivalence class in \mathcal{T}^2 .
- Each orbit of X has period of 1. Each orbit of X_{α} has period of n and goes around the torus m times.
- Consider the matrix:

$$A = \begin{bmatrix} a & n \\ b & m \end{bmatrix}$$
, where a and b are integers such that $am - bn = 1$. Since $\det A = am - bn = 1$, A is invertible.

Approximating the Irrational Flow on a Torus by a Morse-Smale Field

Approximating a General Rational Flow

$$AX = \begin{bmatrix} a & n \\ b & m \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} n \\ m \end{bmatrix} = n \begin{bmatrix} 1 \\ \frac{m}{n} \end{bmatrix} = nX_{\alpha}$$

■ For any vector $v = \begin{vmatrix} x \\ y \end{vmatrix}$ where $x, y \in \mathbb{Z}$,

$$Av = \begin{bmatrix} a & n \\ b & m \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + ny \\ bx + my \end{bmatrix}$$

$$A^{-1}v = A^{-1} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{\det A} \begin{bmatrix} m & -n \\ -b & a \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} mx - ny \\ -bx + ay \end{bmatrix}$$

- Both A and A^{-1} map integer vectors to an integer vectors.
- Define a map $f: T^2 \to T^2$ by $f(\pi(p)) = \pi(Ap)$
- \blacksquare It can be shown that f is a diffeomorphism.

LApproximating a General Rational Flow

Proposition

Let φ_t and ψ_t be the flows of X and Y on M respectively and $f: M \to M$ a diffeomorphism such that $f_*(X) = Y$, then

$$f(\varphi_t(p)) = \psi_t(f(p))$$

for all $p \in M$, i.e., f is a topological conjugacy.

Approximating the Irrational Flow on a Torus by a Morse-Smale Field

Approximating a General Rational Flow

Proposition

If ψ_t is the flow of Y, then $\psi_{\lambda t}$ is a flow of λY where $\lambda \in \mathbb{R}$. That is, if $\gamma(t)$ is an orbit of Y, then $\gamma(\lambda t)$ is an orbit of λY .

The process of converting Y to λY is called a **reparametrization** of Y.

Approximating a General Rational Flow

- Since $f_* = A$, $f_*(X) = nX_{\alpha}$.
- Let φ_t and ψ_t^{α} be the flows of X and X_{α} respectively.
- By the two previous Propositions, the flow of nX_{α} is ψ_{nt}^{α} , and for all $p \in T^2$,

$$f(\varphi_t(p)) = \psi_{nt}^{\alpha}(f(p)).$$

- f takes the orbits of p in X to the orbits of f(p) in X_{α} .
- f does not preserve the period. Therefore, f is a topological equivalence, not a topological conjugacy.

Find a Morse-Smale approximation of the general rational flow X_{α}

Let $\varepsilon>0$ be arbitrary, there exists a Morse-Smale vector field Y such that

$$\|Y-X\|_{C^1}<\varepsilon.$$

$$||f_*(Y) - f_*(X)||_{C^1} < c\varepsilon,$$

for some number c depending only on m and n.

$$\left\|\frac{1}{n}f_*(Y)-\frac{1}{n}f_*(X)\right\|_{C^1}<\frac{c}{n}\varepsilon.$$

Approximating the Irrational Flow on a Torus by a Morse-Smale Field

Approximating a General Rational Flow

Since
$$f_*(X) = nX_{\alpha}$$
 and $\frac{1}{n}f_*(X) = X_{\alpha}$,
$$\left\|\frac{1}{n}f_*(Y) - X_{\alpha}\right\|_{C^1} < \frac{c}{n}\varepsilon,$$

- The vector field $Z = \frac{1}{n} f_*(Y)$ is C^1 -close to X_α .
- Z is Morse-Smale because f_{*}(Y) is the pushforward of the Morse-Smale field Y.
- Thus, Z is a Morse-Smale approximation of the general rational flow field X_{α} .

└ Conclusion

Conclusion

Conclusion

- Morse-Smale systems are structurally stable and form an open set in the space of dynamical systems in any dimension. In dimension two, they are also dense.
- We only showed a few simple examples in S^2 and T^2 , but some of these properties can be generalized to more complicated cases.
- Besides S^2 and T^2 , there are also studies that show the same results for the projective plane P^2 and the Klein bottle K^2 .

- In higher dimensions, Morse-Smale systems are not dense. On these manifolds, there are also structurally stable systems that are not Morse-Smale.
- Morse-Smale systems cannot be used to approximate all vector fields in higher dimensions

References

- Herbert Edelsbrunner and John L. Harer, Computational topology: An introduction, AMS, 2009.
- K. Janich, *Topology*, Undergraduate Texts in Mathematics, Springer-Verlag, 1984.
- J. M. Lee, *Introduction to smooth manifolds*, second ed., Graduate Texts in Math, vol. 218, Springer, 2013.
- J. Palis and W. de Melo, Geometric theory of dynamical systems, Springer-Verlag, 1982.
- 5 S. Smale M. Hirsch and R. Devaney, *Differential equations, dynamical systems and an introduction to chaos*, Elsevier, 2004.
- Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101-120.