Problema 16. Se produce metanol haciendo reaccionar monóxido de carbono e hidrógeno:

$$CO+2H_2 \longrightarrow CH_3OH$$

La corriente de alimentación fresca que contiene CO y H_2 se une a la corriente de recirculación y la corriente combinada se alimenta a un reactor. El flujo de salida del reactor es 350 mol/min y contiene 10.6% de H_2 , 64.0% de CO y 25.4% de CH_3OH (en masa). Esta corriente entra a un condensador donde casi todo el metanol se condensa. El metanol líquido condensado se retira como producto. La corriente de gas que sale del condensador contiene CO, H_2 y 0.40% (mol) de vapor de CH_3OH sin condensar, se recircula y combina con la alimentación fresca.

- a) Hacer el diagrama de flujo del proceso.
- b) Hacer el análisis de grados de libertad, ¿Qué concluyes?
- c) Calcula:
 - i. El flujo molar de CO y H₂ en la alimentación fresca.
 - ii. El flujo molar de metanol líquido producido.
 - iii. La conversión en un paso y la conversión total de CO.
- d) Presenta todos los flujos másicos en una tabla.
- e) Tras varios meses de operación, el flujo de metanol líquido comienza a disminuir. Presente tres posibles explicaciones para este hecho e indique cómo podría comprobar su validez.

Las unidades de flujo molar que vamos a usar en el diagrama de flujo son mol/min. Sabemos que cualquier cantidad de una mezcla tendrá la misma composición másica y molar, además que en 100 g del flujo de salida del reactor hay 10.6 g de $\rm H_2$, 64 g de $\rm CO$ y 25.4 g de $\rm CH_3OH$. Conociendo que $\rm C=12$ g/mol, $\rm H=1$ g/mol y $\rm O=16$ g/mol se tiene que la masa molecular del $\rm H_2$, $\rm CO$ y $\rm CH_3OH$ es [1(2)] g/mol = 2 g/mol, [12+16] = 28 g/mol y [12+1(3)+16+1] g/mol = 32 g/mol, respectivamente:

Por lo que en 100 g de la mezcla hay (5.3+2.2857+0.7938) mol = 8.3795 mol de mezcla:

$$y_{\rm H_2} = \frac{\text{Moles de H}_2}{\text{Moles totales}} = \frac{5.3 \text{ mol}}{8.3795 \text{ mol}} = 0.6325$$

$$y_{\text{CO}} = \frac{\text{Moles de CO}}{\text{Moles totales}} = \frac{2.2857 \text{ mol}}{8.3795 \text{ mol}} = 0.2728$$

$$y_{\text{CH}_3\text{OH}} = \frac{\text{Moles de CH}_3\text{OH}}{\text{Moles totales}} = \frac{0.7938 \text{ g}}{8.3795 \text{ mol}} = 0.0947$$

Entonces, en esta corriente hay $(350 \text{ mol/min})(0.6325 \text{ mol H}_2/\text{mol})=221.3745 \text{ mol H}_2/\text{min}, (350 \text{ mol/min})(0.2728 \text{ mol CO/mol})=95.4715 \text{ mol CO/min y} (350 \text{ mol/min})(0.0947 \text{ mol CH}_3\text{OH/mol})=33.1540 \text{ mol CH}_3\text{OH/min}.$

a)

Como es un proceso continuo en estado estacionario reaccionante, entonces la ecuación general de balance es:

- o Sistema general y Reactor:
- Reactivos:

$$\label{eq:entrada} \begin{split} \operatorname{Entrada} + \operatorname{Generaci\'on} & \operatorname{-Salida} - \operatorname{Consumo} = \operatorname{Acumulaci\'on} \\ \operatorname{Entrada} & = \operatorname{Salida} + \operatorname{Consumo} \end{split}$$

• Productos:

$$\label{eq:entrada} \begin{split} \text{Entrada} + \text{Generación} & \text{-} \text{Salida} \text{-} \frac{\text{Consumo}}{\text{Ceneración}} \\ \text{Entrada} & = \text{Salida} \text{-} \text{Generación} \end{split}$$

o Condensador y Mezclador:

$$\label{eq:entrada} \begin{split} \operatorname{Entrada} + \operatorname{Generaci\'on} \text{-} &\operatorname{Salida} \text{-} &\operatorname{Consumo} = \operatorname{Acumulaci\'on} \\ &\operatorname{Entrada} = \operatorname{Salida} \end{split}$$

- b) Sea ξ el grado de avance de la reacción.
- o Sistema general:

Ecuaciones independientes (3):

• Balance de H₂:

$$\label{eq:corrected_formula} \begin{split} & \text{Corriente 1} = \text{Consumo} \\ & \text{A}_2 \text{ mol } \text{H}_2/\text{min} = 2\xi \text{ mol } \text{H}_2/\text{min} \end{split}$$

• Balance de CO:

 \bullet Balance de CH₃OH:

$$0 = {\rm Corriente} \ 4 \ {\rm -} \ {\rm Generaci\'on}$$
0 mol ${\rm CH_3OH/min} = {\rm C} \ {\rm mol} \ {\rm CH_3OH/min}$ - $\xi \ {\rm mol} \ {\rm CH_3OH/min}$

En donde hay 4 incógnitas = $\{A_1, A_2, C, \xi\}$. Entonces, el grado de libertad es:

$$\mathrm{GL}=\#$$
 Incógnitas - $\#$ Ecuaciones independientes = 4 - $3=1$

• Reactor:

Ecuaciones independientes (3):

• Balance de H₂:

$$\label{eq:corriente} Corriente~2 = Corriente~3 + Consumo \\ B_2~mol~H_2/min = 221.3745~mol~H_2/min + 2\xi~mol~H_2/min$$

• Balance de CO:

• Balance de CH₃OH:

$$\label{eq:Corriente} Corriente~2=Corriente~3~-~Generación$$
 $B_3~mol~CH_3OH/min~-~\xi~mol~CH_3OH/min~-~\xi~mol~CH_3OH/min$

En donde hay 4 incógnitas = $\{B_1, B_2, B_3, \xi\}$. Entonces, el grado de libertad es:

$$GL = \#$$
 Incógnitas - $\#$ Ecuaciones independientes = 4 - 3 = 1

o Condensador:

Corriente
$$3 = \text{Corriente } 4 + \text{Corriente } 5$$

Ecuaciones independientes (2):

- Balance de CH₃OH: 33.1540 mol CH₃OH/min = C mol CH₃OH/min + B₃ mol CH₃OH/min
- Relación de CH₃OH: $[0.004 \text{ mol CH}_3\text{OH/mol}][(95.4715+221.3745+B_3) \text{ mol/min}] = B_3 \text{ mol CH}_3\text{OH/min}$ En donde hay 2 incógnitas = $\{B_3, C\}$. Entonces, el grado de libertad es:

$$\mathrm{GL}=\#$$
 Incógnitas - $\#$ Ecuaciones independientes = 2 - $2=0$

o Mezclador:

Corriente
$$1 + \text{Corriente } 5 = \text{Corriente } 2$$

Ecuaciones independientes (2):

- Balance de H₂: A_2 mol $H_2/min + 221.3745$ mol $H_2/min = B_2$ mol H_2/min
- Balance de CO: A_1 mol $CO/\min + 95.4715$ mol $CO/\min = B_1$ mol CO/\min

En donde hay 4 incógnitas = $\{A_1, A_2, B_1, B_2\}$. Entonces, el grado de libertad es:

$$\mathrm{GL}=\#$$
 Incógnitas - $\#$ Ecuaciones independientes = 4 - $2=2$

Con los cálculos de grados de libertad anteriores podemos ver que primero se tiene que resolver el Condensador y obtener B_3, C . Así el Reactor tiene GL = 0 y se halla B_1, B_2, ξ . Finalmente el Mezclador tiene GL = 0 y se calcula A_1, A_2 .

c)

• Condensador:

Con la relación de CH₃OH:

$$[0.004 \ mol \ CH_3OH/mol][(95.4715+221.3745+B_3) \ mol/min] = B_3 \ mol \ CH_3OH/min$$

$$B_3 \ mol \ CH_3OH/min = \frac{[0.004 \ mol \ CH_3OH/mol][(95.4715+221.3745) \ mol/min]}{1-0.004} = 1.2725 \ mol \ CH_3OH/min$$

En el balance de CH₃OH:

$$33.1540~mol~CH_3OH/min=C~mol~CH_3OH/min+1.2725~mol~CH_3OH/min\\ C~mol~CH_3OH/min=33.1540~mol~CH_3OH/min-1.2725~mol~CH_3OH/min=31.8815~mol~CH_3OH/min$$

• Reactor:

En el balance de CH₃OH:

 $1.2725~mol~CH_3OH/min=33.1540~mol~CH_3OH/min-\xi~mol~CH_3OH/min$ $\xi~mol~CH_3OH/min=33.1540~mol~CH_3OH/min-1.2725~mol~CH_3OH/min=31.8815~mol~CH_3OH/min$

En el balance de H₂:

 $B_2 \text{ mol } H_2/\min = 221.3745 \text{ mol } H_2/\min + 2(31.8815) \text{ mol } H_2/\min = 285.1375 \text{ mol } H_2/\min$

En el balance de CO:

 $B_1 \mod \mathrm{CO/min} = 95.4715 \mod \mathrm{CO/min} + 31.8815 \mod \mathrm{CO/min} = 127.3530 \mod \mathrm{CO/min}$

o Mezclador:

En el balance de H_2 :

 $A_2 \ mol \ H_2/min + 221.3745 \ mol \ H_2/min = 285.1375 \ mol \ H_2/min$ $A_2 \ mol \ H_2/min = 285.1375 \ mol \ H_2/min - 221.3745 \ mol \ H_2/min = 63.7630 \ mol \ H_2/min$

En el balance de CO:

$$A_1 \ mol\ CO/min + 95.4715\ mol\ CO/min = 127.353\ mol\ CO/min$$

$$A_1 \ mol\ CO/min = 127.353\ mol\ CO/min - 95.4715\ mol\ CO/min = 31.8815\ mol\ CO/min$$

Flujo molar (mol/min)						Fracción molar					
	1	2	3	4	5		1	2	3	4	5
CO	31.8815	127.3530	95.4715	0	95.4715	CO	0.3333	0.3078	0.2728	0	0.3001
H_2	63.7630	285.1375	221.3745	0	221.3745	H_2	0.6667	0.6891	0.6325	0	0.6959
CH ₃ OH	0	1.2725	33.1540	31.8815	1.2725	$\mathrm{CH_{3}OH}$	0	0.0031	0.0947	1	0.004
Total	95.6445	413.7630	350	31.8815	318.1185						

- i) En la alimentación fresca hay $31.8815 \text{ mol CO/min y } 63.763 \text{ mol H}_2/\text{min.}$
- ii) Se produce 31.8815 mol CH₃OH/min líquido.

iii)

$$\label{eq:conversion} \begin{aligned} & \text{Conversion del reactor} = \frac{\text{Reactivo consumido}}{\text{Reactivo suministrado}} \ge 100\% = \frac{31.8815 \text{ mol/min}}{127.353 \text{ mol/min}} \ge 100\% = 25.03396\% \\ & \text{Conversion del proceso} = \frac{\text{Reactivo consumido}}{\text{Reactivo suministrado}} \ge 100\% = \frac{31.8815 \text{ mol/min}}{31.8815 \text{ mol/min}} \ge 100\% = 100\% \end{aligned}$$

d)

Flujo másico (g/min)										
	1	2	3	4	5					
CO	892.6819	3565.8838	2673.2019	0	2673.2019					
H_2	127.526	570.275	442.7491	0	442.7491					
$\mathrm{CH_{3}OH}$	0	40.7192	1060.927	1020.2078	40.7192					
Total	1020.2078	4176.878	4176.878	1020.2078	3156.6702					

e)

- La conversión de CO disminuyó: Calcular cuántos mol/min entran, se consumen y salen de CO en el reactor.
- En el condensador sale más CH₃OH a la recirculación que al producto, es decir, disminuye su rendimiento de condensación: Obtener el flujo y composición molar en la recirculación y el producto de CH₃OH.
- Entra menos CO al proceso: Ver cuántos mol/min de CO hay en la alimentación fresca.