CSE 311 Algorithms Analysis Empirical Study

Mahmut Selim YILBAŞ 20190702119

This report is prepared as part of the CSE 311 Algorithms Analysis course's Empirical Study assignment. The primary objective of this study is to evaluate the performance of various sorting algorithms by implementing and analyzing their execution times across different input sizes. The sorting algorithms examined in this study include Bubble Sort, Selection Sort, Quick Sort, Merge Sort, Improved Bubble Sort, and Improved Quick Sort.

To conduct this analysis, Python was chosen as the programming language due to its simplicity and powerful libraries. The development environment used for this project was Visual Studio Code (VSCode), which provided an efficient platform for coding, testing, and debugging. The performance of each algorithm was measured by running them on randomly generated datasets of varying sizes (100, 1000, 10000, 100000 elements) and recording the time taken for each run.

The results of these experiments were systematically recorded, averaged over multiple runs, and then visualized using Excel to create informative line charts. These charts offer a clear comparison of the efficiency of the different algorithms under study, highlighting their strengths and weaknesses in terms of time complexity and practical performance. The insights gained from this empirical study provide valuable knowledge on the behavior of these algorithms in real-world scenarios.

Bubble Sort

Bubble Sort repeatedly steps through the list, compares adjacent elements and swaps them if they are in the wrong order. The process is repeated until the list is sorted. It has a time complexity of O(n^2) in the worst and average case. It is primary practical usage is in educational contexts for teaching basic sorting concepts. It is not suitable for performance-critical applications.

Selection Sort

Selection Sort divides the list into two parts: the sorted part at the beginning and the unsorted part at the end. It repeatedly selects the smallest (or largest, depending on the order) element from the unsorted part and swaps it with the first unsorted element. The time complexity is O(n^2) in all cases. It is practical usage is limited to small datasets or educational purposes. It may be used in scenarios where memory writes are costly, as it performs fewer swaps than BubbleSort.

Quick Sort

Quick Sort is a divide-and-conquer algorithm that selects a 'pivot' element from the array and partitions the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. It then recursively sorts the sub-arrays. Its average time complexity is O(n log n), but it can be O(n^2) in the worst case. QuickSort is suitable for a wide range of applications, including systems programming and large-scale data processing.

```
def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    return quick_sort(left) + middle + quick_sort(right)
```

Merge Sort

Merge Sort is another divide-and-conquer algorithm. It divides the array into two halves, recursively sorts them, and then merges the two sorted halves. It has a consistent time complexity of O(n log n) for all cases, making it reliable for large datasets. It is particularly useful for sorting linked lists and external sorting (sorting data that doesn't fit into memory). However, MergeSort requires additional memory for merging, which can be a drawback in memory-constrained environments. It is well-suited for applications where stable sorting (preserving the relative order of equal elements) is required.

```
rge_sort(arr):
if len(arr) > 1:
   mid = len(arr) // 2
   L = arr[:mid]
   R = arr[mid:]
   merge_sort(L)
   merge_sort(R)
   while i < len(L) and j < len(R):
       if L[i] < R[j]:</pre>
          arr[k] = L[i]
           i += 1
           arr[k] = R[j]
       k += 1
       arr[k] = L[i]
       arr[k] = R[j]
       k += 1
```

Improved Bubble Sort

Improved Bubble Sort is an optimization of Bubble Sort. It includes a flag that checks if any swaps were made during the iteration. If no swaps were made, the list is already sorted, and the algorithm can terminate early. This reduces the number of passes through the list. ImprovedBubbleSort enhances the basic BubbleSort by adding an early exit mechanism if the list becomes sorted before completing all passes. This optimization improves performance for nearly sorted datasets but does not significantly impact the worst-case time complexity of $O(n^2)$. It can be used in educational contexts or for small datasets that are expected to be nearly sorted.

Improved Quick Sort

Improved Quick Sort uses a hybrid approach. For small arrays (less than 20 elements), it uses Selection Sort, which is more efficient for small datasets. For larger arrays, it uses the traditional Quick Sort algorithm. This can help to optimize performance, leveraging the strengths of both algorithms. It maintains an average-case time complexity of O(n log n) and is suitable for a broad range of applications, including performance-critical systems and large-scale data processing.

```
def quick_sort_helper(arr, low, high):
    if low < high:</pre>
        pi = partition(arr, low, high)
        quick_sort_helper(arr, low, pi-1)
        quick_sort_helper(arr, pi+1, high)
def partition(arr, low, high):
    pivot = arr[high]
    i = low - 1
    for j in range(low, high):
        if arr[j] < pivot:</pre>
            i += 1
            arr[i], arr[j] = arr[j], arr[i]
    arr[i+1], arr[high] = arr[high], arr[i+1]
    return i+1
def improved_quick_sort(arr):
    if len(arr) < 20:</pre>
        selection_sort(arr)
        quick_sort_helper(arr, 0, len(arr) - 1)
```

The Outputs of Each Algorithm (Execution Time)

	А	В	С	D	Е	F	G	Н	I
1	Input Size	BubbleSort	SelectionSort	QuickSort	MergeSort	ImprovedBubl	ImprovedQuic	kSort	
2	100	0,000186	0,000088	0,000078	0,000073	0,00019	0,000034		
3	1000	0,023872	0,010322	0,000765	0,000857	0,022926	0,000545		1s run
4	10000	2,622928	1,053325	0,007953	0,01095	2,602136	0,007334		
5	100000	262,20189	306,06036	0,072654	0,13829	272,85953	0,089052		
6									
7									

/								
8								
9	Input Size	BubbleSort	SelectionSort	QuickSort	MergeSort	ImprovedBubl	ImprovedQuick	Sort
10	100	0,000184	0,000092	0,00007	0,000061	0,000192	0,00003	
11	1000	0,023489	0,010371	0,000736	0,000804	0,023034	0,000538	2nd run
12	10000	2,647879	1,057422	0,007818	0,010959	2,606662	0,007339	
13	100000	262,40426	105,67247	0,072035	0,138437	275,53243	0,088996	
14								
15								

Input Size	BubbleSort	SelectionSort	QuickSort	MergeSort	ImprovedBubl	ImprovedQuick	Sort		
100	0,000184	0,000087	0,000071	0,000061	0,000212	0,000035			
1000	0,022548	0,010467	0,000755	0,000806	0,023018	0,000553		3rd run	
10000	2,575431	1,054517	0,007825	0,010889	2,630054	0,007336			
100000	265,29354	106,54342	0,071765	0,13906	278,2795	0,088842			
	100 1000 10000	100 0,000184 1000 0,022548 10000 2,575431	100 0,000184 0,000087 1000 0,022548 0,010467 10000 2,575431 1,054517	100 0,000184 0,000087 0,000071 1000 0,022548 0,010467 0,000755 10000 2,575431 1,054517 0,007825	100 0,000184 0,000087 0,000071 0,000061 1000 0,022548 0,010467 0,000755 0,000806 10000 2,575431 1,054517 0,007825 0,010889	100 0,000184 0,000087 0,000071 0,000061 0,000212 1000 0,022548 0,010467 0,000755 0,000806 0,023018 10000 2,575431 1,054517 0,007825 0,010889 2,630054	100 0,000184 0,000087 0,000071 0,000061 0,000212 0,000035 1000 0,022548 0,010467 0,000755 0,000806 0,023018 0,000553 10000 2,575431 1,054517 0,007825 0,010889 2,630054 0,007336	100 0,000184 0,000087 0,000071 0,000061 0,000212 0,000035 1000 0,022548 0,010467 0,000755 0,000806 0,023018 0,000553 10000 2,575431 1,054517 0,007825 0,010889 2,630054 0,007336	100 0,000184 0,000087 0,000071 0,000061 0,000212 0,000035 1000 0,022548 0,010467 0,000755 0,000806 0,023018 0,000553 3rd run 10000 2,575431 1,054517 0,007825 0,010889 2,630054 0,007336

24									
25	Input Size	BubbleSort	SelectionSort	QuickSort	MergeSort	ImprovedBubl	ImprovedQuic	kSort	
26	100	0,00019	0,000086	0,000062	0,000068	0,000188	0,00003		
27	1000	0,022688	0,010366	0,000725	0,000808	0,023105	0,000533		4th run
28	10000	2,577956	1,056542	0,00786	0,011085	2,606986	0,007315		
29	100000	266,24013	107,335	0,071628	0,139082	276,34176	0,088774		
30									
31									

100	BubbleSort 0,000184	SelectionSort 0,000092	QuickSort 0,000058		ImprovedBubl	ImprovedQuickSort	
	0,000184	0,000092	0.000050				
			0,000058	0,000061	0,000192	0,000029	
1000	0,02251	0,010378	0,000817	0,0008	0,023063	0,000539	5th run
10000	2,578971	1,054718	0,007982	0,010936	2,60675	0,007458	
100000	270,34139	108,44779	0,071471	0,139921	275,65652	0,088913	
		,		· · · · · ·			

	А	R	C	D	E	F	G	Н	I
1	Input Size	BubbleSort	SelectionSort	QuickSort	MergeSort	ImprovedBubbleSort	ImprovedQuickSort		
2	100	0,000186	0,000089	0,000068	0,000065	0,000195	0,000032		
3	1000	0,023021	0,010381	0,00076	0,000815	0,023029	0,000542		Average of
4	10000	2,600633	1,055305	0,007888	0,010964	2,610518	0,007356		5 runs
5	100000	265,296244	146,811805	0,071911	0,138958	275,733947	0,088915		
6									
7									

What is the biggest problem size you can run in two seconds?

- BubbleSort 1000 elements
- SelectionSort 1000 elements
- QuickSort 100000 elements
- MergeSort 100000 elements
- ImprovedBubbleSort 10000 elements
- ImprovedQuickSort 100000 elements

```
The control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D | Posses | Accords |
Date to control place | Limits | D
```

www.youtube.com/watch?v=pmqzkHfuml0