VIII

Геометрия подпространств

- 1 Найдите какой-либо базис и размерность подпространства $L \subseteq \mathbb{R}^n$, которое задаётся условием $x_1 + x_2 + \ldots + x_n = 0$.
- 2 Найдите размерность и базис пространства решений однородной СЛАУ с матрицей коэффициентов

$$\left(\begin{array}{cccc}
3 & -2 & 5 & 4 \\
6 & -4 & 4 & 3 \\
9 & -6 & 3 & 2
\end{array}\right).$$

- 3 Составьте СЛАУ, задающую линейную оболочку системы векторов:
- a) $(1,1,1)^T$, $(1,2,3)^T$;
- 6) $(-1,1)^T$, $(1,1)^T$;
- B) $(2,3)^{\mathsf{T}}$, $(1,1)^{\mathsf{T}}$;
- Γ) $(1, 1, 1, 1)^{\mathsf{T}}$, $(1, 2, 1, 3)^{\mathsf{T}}$;
- д) $(1,1,2,2)^{\mathsf{T}}$;
- e) $(1, 1, 1, 1)^T$, $(1, 1, 1, 3)^T$, $(3, -5, 7, 2)^T$, $(1, -7, 5, -2)^T$;
- \ddot{e}) $(1,1,1,1)^{T}$, $(1,2,1,3)^{T}$, $(1,1,2,2)^{T}$, $(1,1,1,3)^{T}$;
- \mathbb{K}) $(0,0,0,0)^{\mathsf{T}}$;
- $(1,-1,1,-1,1)^{\mathsf{T}}, (1,1,0,0,3)^{\mathsf{T}}, (3,1,1,-1,7)^{\mathsf{T}}, (0,2,-1,1,2)^{\mathsf{T}}.$
- 4 На рёбрах театраэдра написаны числа b_1, b_2, \ldots, b_6 . При каких условиях на эти числа можно написать ещё 4 числа на грани так, чтобы число на каждом ребре оказалось равно сумме чисел, написанных на двух примыкающих к этому ребру гранях?
- $\boxed{5}$ В вершинах куба написаны числа b_1, b_2, \ldots, b_8 . При каких условиях на эти числа можно написать ещё 6 чисел на грани так, чтобы число в каждой вершине было равно сумме чисел на трёх сходящихся в этой вершине гранях?
 - 6 Найдите СЛАУ, задающую линейное многообразие

$$L = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \left\langle \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix} \right\rangle.$$

7 Постройте неоднородную СЛАУ, описывающую линейное многообразие минимальной размерности, содержащее векторы $(-5,1,2,2)^{\mathsf{T}}$, $(5,1,2,2)^{\mathsf{T}}$, $(4,1,1,1)^{\mathsf{T}}$, $(1,1,1,0)^{\mathsf{T}}$.

8 Найдите размерности и базисы суммы и пересечения подпространств U и V:

a)
$$U = \langle (4, 2, 1)^T, (-3, 2, 0)^T, (-1, 4, 0)^T \rangle,$$

 $V = \langle (2, -3, 1)^T, (5, 3, 13)^T, (7, 0, 12)^T \rangle;$

6)
$$U = \langle (1,2,3)^T, (4,3,1)^T, (2,-1,-5)^T \rangle,$$

 $V = \langle (1,1,1)^T, (-3,2,0)^T, (-2,3,1)^T \rangle;$

в)
$$U = \langle (1,2,3,1,1)^T, (1,0,1,-2,-2)^T, (2,0,1,-1,0)^T, (0,1,1,0,0)^T \rangle,$$

 $V = \langle (1,2,0,0,2)^T, (0,1,-2,3,-3)^T, (-1,2,1,2,0)^T, (1,1,-2,0,0)^T \rangle;$

r)
$$U: x_1 + x_2 - x_3 + x_4 - x_5 = 0,$$

 $V = \langle (1, 1, 1, 1, 1)^T, (1, 0, -1, 1, -1)^T, (0, 1, -1, -1, 1)^T, (-2, 1, 0, 1, -1)^T \rangle;$

д) U:
$$\begin{cases} x_1 + x_3 + x_4 - x_5 &= 0; \\ x_2 - x_4 &= 0; \end{cases}$$
V:
$$\begin{cases} x_3 + 2x_4 &= 0; \\ x_1 - x_2 - x_5 &= 0; \end{cases}$$

e)
$$U = \langle (1, 2, -2, 2, 1)^T, (2, 4, -5, 4, 1)^T, (2, 3, -3, 3, 2)^T \rangle$$
,
 $V : \begin{cases} x_3 + 2x_4 = 0; \\ x_1 - x_2 + x_5 = 0. \end{cases}$

9 Пусть заданы два подпространства в \mathbb{R}^4 :

$$U = \left\langle (1, 1, 1, 1)^T, (-1, -2, 0, 1)^T \right\rangle, \ V = \left\langle (-1, -1, 1, -1)^T, (2, 2, 0, 1)^T \right\rangle.$$

Докажите, что $\mathbb{R}^4=U\oplus V$ и найдите проекцию вектора $(4,2,4,4)^\mathsf{T}$ на подпространство U параллельно подпространству V.

 10^* Пусть в \mathbb{R}^n заданы два подпространства:

$$U = \{x \in \mathbb{R}^n \mid x_1 + x_2 + \ldots + x_n = 0\}, \ U = \{x \in \mathbb{R}^n \mid x_1 = x_2 = \ldots = x_n\}.$$

Докажите, что $\mathbb{R}^n=U\oplus V$ и найдите проекции векторов стандартного базиса \mathbb{R}^n на U и на V.

11* В пространстве $\mathbb{R}[x]_{\leqslant 7}$ многочленов степени не выше 7 заданы два подпространства:

$$\begin{split} V_1 &= \{f(x) \in \mathbb{R}[x]_{\leqslant 7} \mid f(-1) = f'(-1) = f''(-1) = 0\}, \\ V_2 &= \{f(x) \in \mathbb{R}[x]_{\leqslant 7} \mid f(2) = f'(2) = f''(2) = 0\}. \end{split}$$

Найдите базисы суммы и пересечения этих подпространств.

 12^* В пространстве $\mathbb{R}[x]_{\leqslant 8}$ многочленов степени не выше 8 заданы два подпространства:

$$\begin{split} V_1 = & \{ f(x) \in \mathbb{R}[x]_{\leqslant 8} \, | \, f(1) = f'(1) = f''(1) = 0 \}, \\ V_2 = & \{ f(x) \in \mathbb{R}[x]_{\leqslant 8} \, | \, f(-1) = f'(-1) = f''(-1) = 0 \}. \end{split}$$

Найдите базисы суммы и пересечения этих подпространств.

- 13^* Пусть U, V, W подпространства некоторого конечномерного векторного пространства.
 - а) Справедлива ли формула $\dim(U+V+W)=\dim U+\dim V+\dim W-\dim(U\cap V)-\dim(V\cap W)-\dim(W\cap U)+\dim(U\cap V\cap W)?$
- б) Предположим, что выполнены условия $U \cap V = V \cap U = W \cap U = \{0\}$. Верно ли тогда, что сумма U + V + W прямая? Если нет, то как нужно изменить данные условия, чтобы это было верно?
- 14^* Пусть U, V, W подпространства в $M_n(\mathbb{R})$, состоящие соответственно из кососимметрических, симметрических и верхнетреугольных матриц. Докажите, что V и W различные прямые дополнения к U в $M_n(\mathbb{R})$, и найдите проекции стандартных матричных единиц на U параллельно V и на U параллельно W.
- 15^* Пусть U подпространство пространства $M_4(\mathbb{F})$ размерности 7. Докажите, что U содержит ненулевую симметрическую матрицу.
- 16* Пусть $A \in M_n(\mathbb{F})$, $rk(A) \leqslant \frac{n}{2}$. Докажите, что среди решений уравнения $AX = \mathbb{O}$ есть ненулевая симметрическая матрица.
- 17^* Приведите пример такого пространства V, что $V=U_1\cup U_2\cup U_3$, где $U_1,\ U_2,\ U_3$ собственные подпространства в V.