10/17/2016 hw3

HW3 due 11:30a Mon Oct 24

1. Inner product on \mathbb{C}^n

Given $x,y\in\mathbb{C}^n$, define the inner product $\langle x,y\rangle$ by the formula

$$\langle x,y
angle = \sum_{\ell=1}^n \overline{x}_\ell \cdot y_\ell$$

where $\overline{x}_\ell \cdot y_\ell$ denotes the complex scalar multiplication between the complex conjugate \overline{x}_ℓ of x_ℓ and the complex number y_ℓ .

a. $\langle \cdot, \cdot \rangle$ is a function that takes two complex *n*-vectors as arguments; what is its codomain?

b. Is $\langle \cdot, \cdot \rangle$ linear in its second argument? In other words, does the following equality hold?

$$orall x,y,z\in\mathbb{C}^n,\zeta\in\mathbb{C}:\langle x,y+\zeta z
angle=\langle x,y
angle+lpha\langle x,z
angle$$

c. Is $\langle \cdot, \cdot \rangle$ symmetric? In other words, does the following equality hold?

$$orall x,y\in\mathbb{C}^n:\langle x,y
angle=\langle y,x
angle$$

If not, how is $\langle x,y \rangle$ related to $\langle y,x \rangle$?

d. Is $\langle \cdot, \cdot \rangle$ positive definite? In other words, is the following true?

$$orall x \in \mathbb{C}^n: \langle x, x
angle \geq 0, \; \langle x, x
angle = 0 \iff x = 0$$

2. Linear functions

Let (m imes n) denote the set

$$(m imes n)=\left\{ \left(i,j
ight) :i\in\left\{ 1,\ldots,m
ight\} ,\;j\in\left\{ 1,\ldots,n
ight\}
ight\} .$$

a. Show that the set $\mathcal{A}=\{A:(m\times n)\to\mathbb{F}\}$ of matrices with m rows and n columns is a vector space over the field \mathbb{F} . (You need to define vector addition $+:\mathcal{A}\times\mathcal{A}\to\mathcal{A}$ and scalar multiplication $\cdot:\mathbb{F}\times\mathcal{A}\to\mathcal{A}$ and show that they satisfy the commutative, associative, distributive, and zero element properties that define a vector space.)

Let V,W be vector spaces over the same field $\mathbb{F}.$

a. Show that the set $\mathcal{L}=\{L:V\to W\mid L \text{ is linear}\}$ of linear maps from V to W is a vector space over the field \mathbb{F} (You need to define vector addition $+:\mathcal{L}\times\mathcal{L}\to\mathcal{L}$ and scalar multiplication $\cdot:\mathbb{F}\times\mathcal{L}\to\mathcal{L}$ and show that they satisfy the commutative, associative, distributive, and zero element properties that define a vector space.)

10/17/2016 hw3

3. Project control system

This problem is repeated from HW2 to provide the opportunity for you to revise your project system to address any issues that arose during the self-assessment or feedback from the TAs. If you already addressed each point below in your HW2 submission and dot wish to make any changes, simply include a statement to that effect in your submission for HW3.

Select a control system for your Project; refer to Canvas/Pages/Project for ideas and requirements.

- a. What is the system state? Indicate any parameters (i.e. "states" that don't change in time). (≥ 3 dimensions)
- b. What are the inputs to the system? Explain the inputs in physical terms, i.e. what physical device or mechanism actuates the input. (≥ 2 inputs; create one if needed)
- c. What are the outputs from the system? Explain the outputs in physical terms, i.e. what physical device or mechanism measures the output. (≥ 2 outputs; create one if needed)
- d. Write an ODE control system model for your system's dynamics in the form $\dot{x}=f(x,u),\ y=h(x,u)$. Be sure to specify the domain and codomain of f,h.
- e. Is the control system linear or nonlinear? Show algebraically or graphically the source of nonlinearity. (must be nonlinear)
- f. What disturbances could affect the system's dynamics? Specify what elements of f and/or h the disturbance would affect. (≥ 1 disturbance that affects f, ≥ 1 disturbance that affects h)
- g. Why is your Project system synergistic with your education, research, and/or professional interests?
- h. Add your Project system title and a link to ≥ 1 relevant paper / preprint / technical report in Canvas/Collaboration/Projects; upload the paper .pdf with your hw2 Assignment on Canvas.