PREDICCIÓN DE FUERZAS EN EL PROCESO DE MICROFRESADO DE COBRE

VICENTE GONZÁLEZ BUGUEÑO

PROYECTO DE TITULACIÓN II

COMISIÓN EVALUADORA:

Dr. Ing. Carlos Garrido Soto

Dr. Ing. Alexander Alfonso Alvarez

DR. ING. WILMER VELILLA DÍAZ

11 DE SEPTIEMBRE DE 2024

ESPECIFICACIÓN DE LA INVESTIGACIÓN

Figura: Microfresadora Minitech Mini-Mill/GX.

Tabla: Características.

Características	Unidades
Recorrido X	0-300 mm
Recorrido Y	0-200 mm
Recorrido Z	0-200 mm
Revoluciones N	0-60000 rev/min
Avance f	0.1-1200 mm/min

PLANTAMIENTO DE EL PROBLEMA

Efectos:

· Aumento en las fuerzas.

Riesgos:

- Daños a la pieza trabajada.
- Fractura de la microfresa.

Figura: Desgaste de la microfresa durante el maquinado.

[Sahu et al., 2024]

JUSTIFICACIÓN DE LA INVESTIGACIÓN

Figura: Microfresa de díametro 0.5 mm.

Figura: Diagrama de fuerzas en corte oblicuo.

[Malekian et al., 2009]

HIPÓTESIS Y SUPUESTOS

 Teniendo mediciones de fuerzas y conociendo los parámetros de operación de la fresadora se podrá predecir las fuerzas durante futuros maquinados de cobre.

OBJETIVO GENERAL Y ESPECÍFICOS

- Filtrar ruido en mediciones de fuerza.
- Modelar las fuerzas durante el microfresado.
- Determinar coeficientes de corte para el conjunto cobre/microfresa.
- Resolver los modelos al variar los parámetros de operación.

MARCO TEÓRICO

- Análisis de frecuencias con la transformada de Fourier.
- Modelado de fuerzas durante el microfresado.
- Regresiones lineales.

METODOLOGÍA

Figura: Logo de python.

```
#!/usr/bin/python3
# Procesamiento de datos
import pandas
import numpy
import math
import scipy.fft
import os
import csv
```

Figuras
import matplotlib.pyplot
import gc

RESULTADOS: FILTRADO DE RUIDO

Figura: Filtrado de fuerzas antes y durante el corte.

8

RESULTADOS: MODELADO DE LAS FUERZAS

Figura: Maquinando con fresa convencional.

Movimiento de la microfresa:

- √ Rotación de la microfresa.
- ✓ Avance de la microfresa.
- ✓ Profundidad de corte.

RESULTADOS: MODELADO DE LAS FUERZAS

Figura: Microfresa de 0.5 mm.

Geometría de la microfresa:

- √ Radio de el borde cortante.
- ✓ Inclinación del borde cortante.
- √ Diámetro de la microfresa.

RESULTADOS: MODELADO DE LAS FUERZAS

Figura: Diagrama de fuerzas en arratre de la herramienta.

Propiedades de el material:

- √ Recuperación elástica.
- √ Coeficientes de corte.
- ✓ Mínimo espesor de viruta antes de el corte.
- Coeficientes de arrastre.

RESULTADOS: COEFICIENTES DE CORTE (%50)

$$c0_{(\theta)} = \sum_{z=0}^{a} h_{(\theta_{(z)})} sin(\theta_{(z)}), \quad c1_{(\theta)} = \sum_{z=0}^{a} sin(\theta_{(z)})$$

$$c2_{(\theta)} = \sum_{z=0}^{a} h_{(\theta_{(z)})} cos(\theta_{(z)}), \quad c3_{(\theta)} = \sum_{z=0}^{a} cos(\theta_{(z)})$$

$$\sum_{\theta = \theta_{\text{in}}}^{\theta_{\text{out}}} \begin{bmatrix} F_y(\theta) c_0(\theta) \\ F_y(\theta) c_1(\theta) \\ F_y(\theta) c_2(\theta) \\ F_y(\theta) c_3(\theta) \end{bmatrix} = \sum_{\theta = \theta_{\text{in}}}^{\theta_{\text{out}}} \begin{bmatrix} K_{tc} c_0(\theta) c_2(\theta) & K_{te} c_0(\theta) c_3(\theta) & K_{fc} c_0(\theta) c_0(\theta) & K_{fe} c_1(\theta) c_0(\theta) \\ K_{tc} c_1(\theta) c_2(\theta) & K_{te} c_1(\theta) c_3(\theta) & K_{fc} c_0(\theta) c_1(\theta) & K_{fe} c_1(\theta) c_1(\theta) \\ K_{tc} c_2(\theta) c_2(\theta) & K_{te} c_2(\theta) c_3(\theta) & K_{fc} c_0(\theta) c_2(\theta) & K_{fe} c_1(\theta) c_2(\theta) \\ K_{tc} c_2(\theta) c_3(\theta) & K_{te} c_3(\theta) c_3(\theta) & K_{fc} c_0(\theta) c_3(\theta) & K_{fe} c_1(\theta) c_3(\theta) \end{bmatrix}$$

RESULTADOS: PREDICCIÓN DE FUERZAS

Figura: Fuerzas calculadas con modelos de corte.

Discución

Figura: Diferencia entre los modelos y las mediciones de fuerza de corte.

CONCLUSIONES

En progreso

References I

Sahu, A. K., IQBAL, F., AND JHA, S. (2024).

QUALITY ENHANCEMENT OF MICRO-MILLED CHANNELS WITH AUTOMATED LASER ASSISTANCE.

The International Journal of Advanced Manufacturing Technology.

