LES SUITES NUMÉRIQUES E04C

EXERCICE N°3 Suite arithmétique et formule explicite : départ à 1

- (u_n) est la suite arithmétique de premier terme $u_1 = -8000$ et de raison q = 0.1.
- 1) Pour tout entier nature $n \neq 0$, exprimer u_{n+1} en fonction de u_n .
- 2) Calculer les termes u_2 , u_3 et u_4 .
- 3) Pour tout entier $n \neq 0$, exprimer u_n en fonction de n.
- 4) Donner alors les valeurs de u_7 , u_{10} et u_{14} .
- 5) Quel est le rang du terme égal à 80 ? Justifier.
- 1) Pour tout entier nature $n \neq 0$, exprimer u_{n+1} en fonction de u_n .

Pour $n \in \mathbb{N}^*$, $u_{n+1} = 0,1 u_n$

* » pour enlever 0.

- 2) Calculer les termes u_2 , u_3 et u_4 .
- $u_2 = u_1 \times q = -8000 \times 0.1$ ainsi $u_2 = -800$
- $u_3 = u_2 \times q = -800 \times 0.1$, ainsi $u_3 = -80$
- $u_4 = u_3 \times q = -80 \times 0.1$, ainsi $u_4 = -8$
- 3) Pour tout entier $n \neq 0$, exprimer u_n en fonction de n.

Pour $n \in \mathbb{N}^*$ $u_n = u_1 \times q^{n-1}$

On commence à 1 donc on enlève 1

$$u_n = -8000 \times 0,1^{n-1}$$

- 4) Donner alors les valeurs de u_7 , u_{10} et u_{14} .
- $u_7 = -8000 \times 0.1^{7-1}$, ainsi $u_7 = -0.008$
- $u_{10} = -8000 \times 0.1^{10-1}$, ainsi $u_{10} = -0.000008$
- $u_{14} = -8000 \times 0.1^{14-1}$, ainsi $u_{14} = -0.00000000008$
- 5) Quel est le rang du terme égal à -0.08? Justifier.

À l'aide de la calculatrice, on trouve que $u_6 = -0.08$,

donc le rang cherché est 6 .

Nous n'avons pas encore de méthode « experte » pour résoudre une équation du type $-8000 \times 0.1^n = -0.08$ (même si celle-ci se fait de tête...)