Monte Carlo simulation of diffusion

We are here focusing on diffusion in one dimension, and therefore you need to keep track of the position x(i, j) of particles i = 1...N at time step j = 1...n.

- 1. At time j=0, initialize N=10000 particles at $x=0\mu m$. Create a loop to update the positions of the particles at each time step: the position must be updated by a normal distributed random step of mean zero and variance $\sigma=1\mu m$ (in matlab use the function randn). Produce a plot of the average position and mean square displacement as a function of time step j=1...n with n=1000. On the latter plot, include a line corresponding to the theoretical expectation (which you can derive and relate to D, diffusivity).
- 2. What is the effect of increasing the number of particles N (try N = 100000, 500000).
- 3. Repeat 1) using 10000 particles, and $\sigma = 2 \mu m$. Plot the mean square displacement including the theoretical expectation.
- 4. So far, no reference has been made to the collision time or the value of the time step Δt . What value have you been using implicitly so far? Repeat 3) using instead $\Delta t = 0.5\,\mathrm{ms}$ and $\Delta t = 2\,\mathrm{ms}$, and plot the mean square displacement as a function of time (not time step). How is D related to σ and Δt ?
- 5. Restricted diffusion with reflecting boundary conditions: now we imagine placing the particles in a box of total length 100 μm . Each time a particle attempts to update its position beyond $x=\pm 50\,\mu m$, nothing happens. In other words, the positions of those particles are not updated at that time step. Plot the mean square displacement as a function of time, and the apparent diffusion coefficient is a function of time. Include the theoretical expectations on both plots.

Next we use the narrow pulse approximation to compute the MR signal resulting from this simulation.

Figure 1 Narrow pulse diagram. Assume that the first gradient is applied immediately after a $\pi/2$ pulse, and gradients are applied with a time separation of Δ . They are only on for a time equal to your simulation time step, so phase increment is $\pm \gamma g \Delta t x(t)$. Hence total MR signal is $\langle \exp(-i\gamma g \Delta t(x(t) - x(0)) \rangle$. You need to take real part because of "numerical noise".

- 6. Use a simulation defined by $\sigma=0.1\mu m$ and $D=0.5\mu m^2/ms$ using N=50000 particles starting at x=0. Compute the signal at t=10ms for different g given by $q=0\dots 0.1\mu m^{-1}$, where $q\equiv \gamma g\Delta t$. Plot it as a function of b-factor, $b\equiv q^2t$. Include the theoretical curve $S=\exp{(-bD)}$.
- 7. Now we consider diffusion in a box with reflecting walls placed at -50 $\,\mu m$ and +50 $\,\mu m$, like in question 5. Compute the diffusion signal corresponding to a fixed diffusion wave vector of q=0.01, and as a function of diffusion time $t=\Delta t\dots 1000\Delta t$. Plot the results as a function of b-factor, and include the theoretical curve corresponding to free diffusion. Explain your observations.
- 8. Diffusion diffraction: Finally, plot the signal as a function of $q = 0...0.3 \, \mu m^{-1}$ and for a fixed time corresponding to t = 10ms. You should see zero crossings, which you may try to explain.

