Session 2 - Optimisation strategies

Jamie M. Taylor (CUNEF Universidad, Madrid, Spain) jamie.taylor@cunef.edu

(Stochastic) Gradient Descent

(Stochastic) Gradient Descent

Momentum and related optimisers

Other strategies

Continuum gradient descent

- ▶ For now, let us consider an abstract, differentiable loss function $\mathcal{L}: \mathbb{R}^N \to \mathbb{R}$ and try to minimise it.
- As with loss functions, we will start by thinking "in the continuum", with the gradient descent: Given an initial state θ_0 , we aim to find the solution to

$$\theta'(t) = -\nabla \mathcal{L}(\theta(t)).$$

$$\theta(0) = \theta_0.$$
(1)

► The chain rule gives that

$$rac{d}{dt}\mathcal{L}(heta(t)) = heta'(t)\cdot
abla \mathcal{L}(heta(t)) = -||
abla \mathcal{L}(heta(t))||^2.$$

▶ The loss decreases.

Continuum gradient descent

- ▶ We don't just want it to decrease, we want it to decrease *quickly*.
- Lets keep things simple Say $\mathcal{L}(\theta) = \frac{1}{2}A\theta \cdot \theta$, A a PD symmetric matrix. Then $\theta^* = 0$ is the minimiser, and $\theta'(t) = -A\theta(t)$.
- ▶ If λ_{\min} is the smallest eigenvalue of A, then we expect

$$||\theta(t)|| \leq C \exp(-\lambda_{\min} t).$$

▶ That is, a (nearly) degenerate matrix A will lead to slow convergence.

Discrete gradient descent

 \triangleright Of course, we have to discretise. Effectively, we use finite differences: We initialise at θ_0 , and update via

$$\theta_{k+1} = \theta_k - \gamma \nabla \mathcal{L}(\theta_k).$$

ightharpoonup Again, if \mathcal{L} is quadratic, we obtain

$$\theta_{k+1} = (I - \gamma A)\theta_k.$$

- ▶ The solution is $\theta_k = (I \gamma A)^k \theta_0$, so the norm is $||\theta_k|| \sim ||I \gamma A||^k$ (in operator norm).
- We can see two problems if the smallest eigenvalue of $1-\gamma\lambda_{min}(A)\approx 1$, or $1-\gamma\lambda_{max}(A)\approx -1$, then convergence will be very slow. If $1-\gamma\lambda_{max}(A)>1$, the norm will explode.
- lacktriangle That is, γ too big means things explode, γ too small means it takes forever.

Examples with learning rates

- ▶ We consider our linear problem, where the matrix A is such that it has eigenvalues distributed log-uniformly between 10⁻¹ and 10.
- If γ < 0.2, we should have exponential convergence.
- Let's see the effect of the learning rate.
- If $\gamma > 0.2$, then the error explodes exponentially.

Stochastic gradient descent

- ▶ In reality, we can't always access the full gradient \mathcal{L} .
- ▶ In "interpolation" problems, it may be too memory-intensive to evaluate the loss over the entire data set (and we only have a finite sample).
- In PDEs, we cannot integrate the loss exactly, we can only use a quadrature rule with error.
- ▶ This yields a *stochastic gradient descent*. We have a collection of "data" ξ , and a loss function that can be written as

$$\mathcal{L}(heta) = rac{1}{J} \sum_{j=1}^J L(heta; \xi_j) \; \; ext{or} \; \; \mathcal{L}(heta) = \mathbb{E}\left(L(heta; \xi)
ight).$$

► We then perform updates as

$$\theta_{k+1} = \theta_k - \gamma \underbrace{\frac{\partial L}{\partial \theta}(\theta_k, \xi_k)}_{\text{Stochastic gradient}} = \theta_k - \gamma \underbrace{\frac{\partial L}{\partial \theta}(\theta_k)}_{\text{Exact gradient}} - \gamma \underbrace{\epsilon_k}_{\text{Error}}.$$

The good and the bad of SGD

- ▶ By introducing noise into the system, this can help prevent overfitting when data is finite, as it is harder for the NN to "cheat".
- ▶ It can also help the NN "jump" out of undesirable local minima.
- Noisy gradients can also impede convergence.
- ► The "best" we can usually hope for is to reach an equilibrium where we are oscillating around a "good" minimiser.
- ▶ If we split into batches, the parameters update per batch, not per epoch, and this adds an "overhead" cost (potentially big, potentially small).

SGD with "infinite data"

- Let's return to a toy linear problem, but now with a noisy gradient.
- We take $\theta_{k+1} = \theta_k \gamma (A\theta_k + \epsilon_k)$, where ϵ_k is a random variable with mean zero and variance 10^{-2} .
- Recall that in the case without noise, we had exponential convergence, achieving errors of order 10⁻¹¹ in some cases in a few thousand iterations.

SGD with noisy data

- ► The noise impedes the convergence significantly.
- ▶ In our toy linear model, we can explicitly compute the long term behaviour: The iterates behave as

$$x_k \sim \mathcal{N}(0, V)$$

► The covariance *V* solves

$$(1 - \gamma A)V(1 - \gamma A) + \gamma^2 \Sigma = V.$$

- This is a steady state, on average the exact solution, but positive variance.
- ▶ As $\gamma \to 0$, $V = O(\gamma)$ we should reduce step sizes.

SGD with noisy data

- ▶ One method to overcome this is to reduce the learning rate during training, so $\gamma = \gamma_k$.
- Mhilst exponential decrease is common in the literature, there are various works that suggest an algebraic decay is better $\gamma_k \sim k^{-\alpha}$ with $\alpha \in (\frac{1}{2}, 1]$.
- ▶ When algebraic, under technical hypotheses (that probably don't hold in NNs...), we have that

$$\frac{\theta_k - \theta^*}{\gamma_k} \to \mathcal{N}(0, V),$$

where V solves a Lyupanov equation,

$$VH_{\mathcal{L}}(\theta^*) + H_{\mathcal{L}}(\theta^*)V = Var(\nabla \mathcal{L}(\theta^*))$$

► This suggests two things: Degeneracy of the Hessian or large variances make *V* big (poor convergence).

^aTiejun Li, Tiannan Xiao, and Guoguo Yang. Revisiting the central limit theorems for the SGD-type methods. arXiv preprint arXiv:2207.11755, 2022.

^bGuillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic) gradient methods. arXiv preprint arXiv:2301.11235, 2023.

Decaying learning rates

- We consider our toy, linear, noisy model, taking $\theta_{k+1} = \theta_k \gamma_k (A\theta_k + \epsilon_k)$.
- ▶ We consider 3 regimes A constant learning rate, an exponentially decaying learning rate, and an algebraically $(\sim \frac{1}{k})$ decaying learning rate.

Some concluding remarks on SGD

- ► Gradient descent for simple, deterministic problems has exponential convergence.
- When noise is present, this significantly impedes convergence.
- Decaying learning rates can overcome this, but convergence will be much slower if it converges at all.

Momentum and related optimisers

(Stochastic) Gradient Descent

Momentum and related optimisers

Other strategies

Momentum

- ▶ (S)GD can be understood as a discretisation of a continuum gradient descent, $\theta' = -\nabla \mathcal{L}(\theta)$.
- ▶ Momentum methods can be understood as discretisations of a second order system,

$$\theta'' + \mu\theta' = -\nabla \mathcal{L}(\theta).$$

The updates in the discrete system are written as

$$m_{k+1} = \beta m_k - \gamma \nabla \mathcal{L}(\theta_k)$$

$$\theta_{k+1} = \theta_k + m_{k+1}.$$
(2)

▶ $0 < \beta < 1$ is typically taken close to 1.

The good and bad of Momentum

- ▶ The momentum vector *m* acts like an "average" of recent gradients This can smooth out noisy gradients.
- ▶ When the loss is very "flat", momentum can accelerate convergence (think of a ball rolling down a soft slope)
- Near a minimum, the use of momentum may lead to more oscillatory behaviour (think damped harmonic oscillator versus exponential decay $y' = -\omega y$).
- ▶ When the gradient is changing a lot, the momentum "remembers" previous gradients that are not as useful, this can lead to instability.

Examples SGD(+M)

▶ We revisit our 1D PINN problem, using SGD with a fixed learning rate (10^{-3}) and varying the momentum parameter.

The holy grail - Newton methods

- **Each** component of the trainable parameters θ has a different "role", and will generally perform better if a correct learning rate is defined for each one.
- The Newton method goes further, we approximate the loss locally via

$$\mathcal{L}(\theta) \approx \mathcal{L}(\theta_k) + \nabla \mathcal{L}(\theta_k) \cdot (\theta - \theta_k) + \frac{1}{2} H_{\mathcal{L}}(\theta_k) \cdot (\theta - \theta_k) \cdot (\theta - \theta_k),$$

whose exact minimum is attained at

$$\theta = \theta_k - H_{\mathcal{L}}(\theta_k)^{-1} \nabla \mathcal{L}(\theta_k).$$

- The problem is the cost if we have 5,000 variables, the Hessian involves evaluating $O(10^7)$ derivatives, then we have to solve the corresponding linear system. As the Hessian is usually very ill-conditioned, "small" errors in $H_{\mathcal{L}}$ lead to big errors in its inverse.
- Nonetheless, they tell us that we should be thinking of "learning rates" that act on different parameters differently and depend on the local structure of the loss.

Adam

- There are many different optimisers with varying levels of sophisitication and applicability
 - One of the most popular is Adam (which I have used in almost every simulation I have shown), employing adaptive moment estimates to obtain per-parameter learning rates.
- ► The precise algorithm has many ingredients, but the key objects are a momentum estimate m_k and a second-moment estimate v_k of $\nabla \mathcal{L}(\theta_k)^2$, then

$$\theta_{k+1} = \theta_k - \gamma \frac{1}{\sqrt{v_k} + \epsilon} m_k.$$

 $\gamma \frac{1}{\sqrt{v_k}+\epsilon}$ acts as an effective learning rate - hand waving arguments say that it captures both the noise and curvature (Hessian) of the loss.

The good and the bad of Adam

- Adam is typically significantly faster to converge than SGD (in my experience, a lot).
- ▶ It is not as sensitive as SGD to the chosen learning rate it adapts the learning rate itself. In particular, it is more "scale invariant".
- Adam can be very unstable You may have noticed that in the previous simulations the loss occasionally "jumps" and then quickly returns to its original value.
- Adam contains many parameters that need to be tuned (learning rate, decay for first moment estimates, decay for second moment estimates, regulariser ϵ)

Comparison Adam vs SGD

- ▶ We employ SGD, SGDM and Adam on the same problem with the same initial learning rate for a 1D PINN problem.
- ▶ Note: I have shown moving averages All three are noisy.
- SGDM required fine-tuning of the momentum parameter, Adam used the default settings.

Some concluding remarks on momentum-based methods

- Momentum and Adam can yield significant gains in convergence for the same cost.
- Adam tends to be the optimiser of choice for problems with NNs.
- Momentum/Adam methods have internal hyperparameters that need to be tuned, and this may heavily effect convergence.
- Different trainable parameters have different roles, and may need different approaches (simplest case - distinct learning rates)

Other strategies

(Stochastic) Gradient Descent

Momentum and related optimisers

Other strategies

Least-square solver

- ► The issue with Newton methods is the cost, the system is huge, the derivatives expensive to compute, the loss is not convex and it may be unstable.
- ▶ Take a fully-connected feedforward NN, and we will write it as

$$u_{NN}(x) = \sum_{n=1}^{N} c_n u_n(x).$$

- ▶ Each u_n corresponds to a node in the last layer, c_n are trainable.
- ▶ We can rewrite the mean-squared error loss as

$$\mathcal{L}(u_{NN}) = \frac{1}{J} \sum_{j=1}^{J} (u_{NN}(x_j) - y_j)^2$$

$$= \sum_{n,m=1} c_n c_m \left(\frac{1}{J} \sum_{j=1}^{J} u_n(x_j) u_m(x_j) \right) - 2 \sum_{n=1}^{N} c_n \left(\frac{1}{J} \sum_{j=1}^{J} u_n(x_j) y_j \right) + \text{constant.}$$

Least-squares solver

We can write the loss, defining ω to be the other trainable parameters of u_{NN} apart from c, as

$$\mathcal{L}(u_{NN}) = A(\omega)c \cdot c - 2b(\omega) \cdot c + \text{constant},$$

whose exact minimiser over c is $A(\omega)^{-1}b(\omega)$.

- Purpose By defining $c = c(\omega) = A(\omega)^{-1}b(\omega)$, we obtain a (very non-linear) loss to be optimised over ω, which can be done via (e.g.) SGD or Adam.
- ► The idea is that the loss is quadratic in a certain variables, so we can find the minimum via linear algebra, whilst the remaining variables can be solved by a gradient-based method.
- ▶ This is the idea of the hybrid LS-solver of Cyr et. al. ^a

^aCyr, Eric C., et al. "Robust training and initialization of deep neural networks: An adaptive basis viewpoint." Mathematical and Scientific Machine Learning. PMLR, 2020.

The good and the bad of LS

- ► The method can be very good at approximating oscillatory solutions, where many gradient-based methods get trapped easily in local minima.
- ▶ It can highly accelerate convergence, even improving the initial loss by orders of magnitude.
- Matrix inverses are very sensitive, errors in $A(\omega)$ can lead to large errors in $A(\omega)^{-1}$ and this can produce erroneous results.
- ▶ It is unclear how to apply the idea to minibatches with data Constructing the full LS system is expensive, but lacking data points may lead to significant errors.
- Key idea: Different variables play different roles in the NN, so we should think about more "structured" optimisers - SGD treats everything the same.

LS Example

- ▶ We take a Deep Ritz Method in 1D with an oscillatory solution.
- Note there is little noise, this is because LS is very unstable with poor integration, so I used a very precise integration method (not feasible in 3D).
- We see Adam fails this highlights the issue of spectral bias.

LS Example

► If we use fewer integration points, we can see how sensitive the LS method is to integration errors

Spectral bias

- ► Neural Networks suffer from *spectral bias*, also referred to as the *frequency principle* (F-principle).
- It states that, during training, first the low-frequency features are learned, and then the high frequency features.
- ► The "corollary" of this is that when solutions are naturally high frequency, it can be hard to train an NN to approximate it.
- ▶ It also means that the error at the end of training should be dominated by high-frequency components.
- We can try to take advantage of this idea to develop a new training approach.

- Multi-level Neural Networks^a are based on a multi-step training process.
- We will not follow their exact methodology, but instead the spirit of it here.
- Suppose we have a PINNs type-problem, u''(x) = f(x), and we train a neural network u_0 to approximate the solution.
- ▶ The error, $u_1 = u u_0$, also satisfies an ODE,

$$u_1''(x) = u''(x) - u_0''(x) = f(x) - u_0''(x).$$

- We can then view u_0 as fixed (no more training), and try to approximate the error. This is an ODE of the same type and $u_0 + u_1$ is our approximate solution.
- \blacktriangleright We train u_1 with this loss and consider u_0+u_1 , and repeat for the error $u_2=u-(u_1+u_2)$.

^aAldirany, Ziad, et al. "Multi-level neural networks for accurate solutions of boundary-value problems." Computer Methods in Applied Mechanics and Engineering 419 (2024): 116666.

- Due to the F-principle, we expect u_1 to have high-frequency modes, u_2 to have higher-frequency modes and so on.
- As such, we use an architecture that facilitates high-frequency modes.
- We take the first layer of our NN to be

$$L_1(x) = (x, \cos(k_1 x), \sin(k_1 x), \cos(k_2 x), \sin(k_2 x), ...)$$

for some $(k_i)_{i=1}^K$. The remaining layers are those of a fully-connected feed-forward NN. (These are known as *Fourier features* and aid with the approximation of high-frequency components)

We take higher frequencies in the later refinements.

- ▶ We show the results of training below, with refinements marked in red.
- ▶ We see not only a reduction in the loss, but a reduction in the noise during training.

Comparison

▶ We can compare this with training the full neural network together.

Some concluding remarks on other strategies

- Going beyond gradient-based strategies can lead to significant gains in convergence.
- Neural networks suffer from spectral bias low frequency features are learned easily, high frequency features are slower, if learned at all
- LS-based solvers can be a huge help, but it is unclear how they work with batches/data, are sensitive to errors, and limited to losses linear in the NN.
- Iterative strategies can train following the F-principle this may include "forcing" high-frequency modes into your NN (Fourier Features)