Replicating a Study that Analysed Fossil Fuel Tax Levels in 2003-2015

Mark Roche

11/04/22

1) INTRODUCTION

Outline of Original Paper

- Mahdavi et al (2020) 'Why Do Governments Tax or Subsidise Fossil Fuels?'
- Measured fossil fuel tax and subsidy levels and change between 2003-2015 and analysed whether either varies under different political and economic settings
- Relationship between fossil fuel tax/subsidies and political and economic factors

Data: Outcome and Predictor Variables

- Outcome variable: Implicit Fossil fuel tax/subsidy level; measured by comparing a country's fuel and gas prices against the international supply price of fuel.
- Authors argue that if the local price is above the international supply price, it implies that the country is likely a net taxer of oil and gas and vice-versa for subsidisers.
- In other words, it is the difference between the price of fuel and the price it is to bring the fuel to consumers, implies that a subsidy has been put in place by government
- Economic explanatory variables: GNI per-capita, government debt and fossil fuel wealth.
- Political explanatory variables: Democracy and Government Effectiveness

Testing Findings of Original Paper

- I analyse explanations for fossil fuel tax/subsidy levels in 2003-2015 via cross-national data
- I Do not analyse reasons for fossil fuel tax/subsidy change from 2003-15 (i.e. across time)
- This tests two out of four major findings of original paper:
 - Finding 1: The relationship between tax/subsidies and economic predictors is by far the strongest.
 - Finding 2: There is a weak relationship between tax/subsidies and political predictors.

Adding an Interaction Term

- Particularly wishes to expand on original study by focusing on the European Union and whether a member state's fuel wealth explained its 2003-2015 tax and subsidy levels
- This is achieved by adding an interation term between the EU countries and fuel wealth indicators

Method

1) Data Collection:

- Collected the Data From the Harvard Database Website
- Load Data into RStudio

2) Data Analysis I: Analyse Expanations for Tax and Subsidy Levels

- Run a glm() linear regression to regress tax/subsidy levels on economic and political predictors.
- Linear regression is used as the outcome is continuous
 OVERALL, RESULTS FOUND WERE QUITE SIMILAR TO ORIGINAL PAPER

3. Data Analysis II: Analyse Whether EU Country's Wealthy From Oil and Gas Tax and Subsidise Less

- Run a glm() linear regression to regress tax/subsidy change on economic and political predictors.
- Linear regression used as outcome variable is continuous

2) ANALYSIS PART I: EXPLAINING TAX AND SUBSIDY LEV-ELS

```
# Libraries
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(tidyr)
library(ggplot2)
# Load dataset
dataset <- read.csv('cross_national_ffs_final.csv')</pre>
View(dataset)
### 1) RUN REGRESSION MODEL ###
## Try with glm()
lm <- glm(meanbmgap2015adj ~ meanfuelexports+fuel_income_dependence+average_oilgas_exports_pc +</pre>
           meangdppc + meangdppcatlas + gdp_ppc_gd + autocracy_polity + meangoveffect +
           avg_gov_debt + meanvat, data = dataset, family=gaussian(link="identity"))
# Summarise the output
summary(lm)
```

```
##
## Call:
  glm(formula = meanbmgap2015adj ~ meanfuelexports + fuel income dependence +
      average_oilgas_exports_pc + meangdppc + meangdppcatlas +
##
##
      gdp_ppc_gd + autocracy_polity + meangoveffect + avg_gov_debt +
      meanvat, family = gaussian(link = "identity"), data = dataset)
##
##
## Deviance Residuals:
##
       Min
                  10
                        Median
                                      30
                                               Max
## -0.53684 -0.16762 0.01626
                                 0.14600
                                           1.01056
## Coefficients:
                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            -9.903e-03 1.093e-01 -0.091 0.927934
                            -7.876e-03 1.625e-03 -4.848 3.78e-06 ***
## meanfuelexports
## fuel_income_dependence
                             4.542e-03 5.524e-03
                                                   0.822 0.412541
## average_oilgas_exports_pc -1.005e-05 1.658e-05
                                                   -0.606 0.545481
                            -3.412e-06 4.279e-06
                                                  -0.797 0.426811
## meangdppc
                            1.416e-05 3.735e-06
## meangdppcatlas
                                                   3.790 0.000237 ***
## gdp_ppc_gd
                            -2.215e-14 1.729e-14
                                                   -1.281 0.202654
## autocracy_polity
                            -4.778e-02 1.005e-01 -0.475 0.635389
                             1.472e-02 5.477e-02
                                                  0.269 0.788549
## meangoveffect
                             1.963e-03 8.185e-04 2.398 0.018003 *
## avg_gov_debt
                             3.187e-02 4.663e-03 6.835 3.64e-10 ***
## meanvat
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 0.06727797)
##
##
      Null deviance: 31.9020 on 130 degrees of freedom
## Residual deviance: 8.0734 on 120 degrees of freedom
     (25 observations deleted due to missingness)
## AIC: 30.714
##
## Number of Fisher Scoring iterations: 2
```

DATA VISUALISATION AND INTERPRETATION

With the explanatory and outcome variable in place in a summarised regression, the covariates can now be interpreted and visualised using ggplot.

This can test whether findings observed in the original paper are valid.

ECONOMIC PREDICTORS:

Fossil Fuel Wealth: Fuel income dependence, meanfuel exports and average oil exports per capita.

Fuel income dependence

• Strongly negative correlation between fuel income dependence and net implicit gas tax/subs

```
ggplot(dataset, aes(fuel_income_dependence, meanbmgap2015adj)) +
  geom_point() +
```

- ## Warning: Removed 2 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 2 rows containing missing values (geom_point).

Average Fuel Exports

- ## Warning: Removed 9 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 8 rows containing missing values (geom_point).

Average Oil Exports Per Capita

- ## Warning: Removed 1 rows containing non-finite values (stat_smooth).
- ## Warning: Removed 1 rows containing missing values (geom_point).

GNI Per Capita

Warning: Removed 1 rows containing non-finite values (stat_smooth).

Warning: Removed 1 rows containing missing values (geom_point).

Average Government Debt

Warning: Removed 15 rows containing non-finite values (stat_smooth).

Warning: Removed 15 rows containing missing values (geom_point).

POLITICAL PREDICTORS

Democracy

Government Effectiveness

INTERACTION ANALYSIS: HOW DOES THE EUROPEAN UNION VARIABLE INTERACT WITH FOSSIL FUEL WEALTH

```
imodel1 <- glm(meanbmgap2015adj ~ fuel_income_dependence*europeanunion, data = dataset, family=gaussian
# Summarise the output
summary(imodel1)
##
## Call:
## glm(formula = meanbmgap2015adj ~ fuel_income_dependence * europeanunion,
##
       family = gaussian(link = "identity"), data = dataset)
##
## Deviance Residuals:
##
       Min
                  1Q
                         Median
                                       3Q
                                                Max
## -0.83354 -0.21881 -0.05585
                                0.22699
                                            1.72496
##
## Coefficients:
                                         Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                         0.485189
                                                    0.037023 13.105 < 2e-16 ***
## fuel_income_dependence
                                        -0.020219
                                                    0.003366 -6.006 1.38e-08 ***
## europeanunion
                                         0.563381
                                                    0.084037
                                                               6.704 3.86e-10 ***
## fuel_income_dependence:europeanunion 0.116782
                                                    0.078349
                                                              1.491
                                                                        0.138
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
  (Dispersion parameter for gaussian family taken to be 0.1302581)
##
##
       Null deviance: 35.701 on 153 degrees of freedom
## Residual deviance: 19.539 on 150 degrees of freedom
     (2 observations deleted due to missingness)
##
## AIC: 129.09
##
## Number of Fisher Scoring iterations: 2
ggplot(dataset, mapping=aes(fuel_income_dependence*europeanunion, meanbmgap2015adj)) +
  geom_point() +
  stat_smooth(method = "lm",
              formula = y \sim x,
              geom = "smooth")
```

Warning: Removed 2 rows containing non-finite values (stat_smooth).

Warning: Removed 2 rows containing missing values (geom_point).


```
# Analyse interaction between avg oil exports per capita and EU members
imodel2 <- glm(meanbmgap2015adj ~ average_oilgas_exports_pc*europeanunion, data = dataset, family=gauss
summary(imodel2)</pre>
```

```
##
## Call:
## glm(formula = meanbmgap2015adj ~ average_oilgas_exports_pc *
## europeanunion, family = gaussian(link = "identity"), data = dataset)
```

```
##
## Deviance Residuals:
       \mathtt{Min}
                  1Q
                        Median
                                      3Q
                                                Max
                                            1.62868
## -1.02130 -0.17614 -0.01442 0.22382
## Coefficients:
                                            Estimate Std. Error t value Pr(>|t|)
                                            4.093e-01 3.544e-02 11.547 < 2e-16
## (Intercept)
## average_oilgas_exports_pc
                                           -4.115e-05 1.179e-05 -3.490 0.000634
## europeanunion
                                            6.655e-01 8.375e-02
                                                                 7.946 4.12e-13
## average_oilgas_exports_pc:europeanunion 4.409e-04 6.366e-04 0.693 0.489660
## (Intercept)
                                           ***
## average_oilgas_exports_pc
                                           ***
## europeanunion
                                           ***
## average_oilgas_exports_pc:europeanunion
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 0.1483491)
##
##
      Null deviance: 35.507 on 154 degrees of freedom
## Residual deviance: 22.401 on 151 degrees of freedom
     (1 observation deleted due to missingness)
## AIC: 150.05
## Number of Fisher Scoring iterations: 2
ggplot(dataset, mapping=aes(meanfuelexports*europeanunion, meanbmgap2015adj)) +
 geom_point() +
  stat_smooth(method = "lm",
             formula = y \sim x,
             geom = "smooth")
## Warning: Removed 8 rows containing non-finite values (stat_smooth).
```



```
interaction.plot(
x.factor = dataset$fuel_income_dependence,
trace.factor = dataset$europeanunion,
response = dataset$europeanunion,
fun = median,
ylab = "Implicity Tax and Subsidy Level",
xlab = "EU Member",
trace.label = "Fuel Dependence",
col = c("#0198f9", "#f95801"),
lyt = 1,
lwd = 3
)
## Warning in plot.window(...): "lyt" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "lyt" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "lyt" is not a
## graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "lyt" is not a
```

graphical parameter

Warning in box(...): "lyt" is not a graphical parameter
Warning in title(...): "lyt" is not a graphical parameter

Warning in axis(1, x, ...): "lyt" is not a graphical parameter

4) CONCLUSION

Economic Explanations of Fuel Tax and Subsidy Levels

- It Is Not Surpising that Fossil Fuel Wealth Indicators are Overall Negatively Correlated With Fuel and Tax Levels.
- Positive relationship between government debt and taxes not surprising.
- Somehwat positive U shaped relation between GNI per capita and taxes also not too surprising.

Political Explanations of Fuel Tax and Subsidy Levels

- Slightly positive relation between government effectiveness and tax and subsidy levels also not too surprising
- Idea that Autocracies tax less than democracies also not surprising
- Overall, finding of original paper that political predictors are not strongly correlated with tax and subsidy levels, relative to economic factors, is shown here also.

There appears to be no interaction between EU member oil dependency on tax/subsidy levels in 2015

Significance Levels

- \bullet Caveat that only GNI per capita, avetage fuel exports and government debt coefficients p-values were $<\!0.05$
- Other variables greater than 0.05

Room for Further Work

 $\bullet\,$ Analyse the second dataset and look at tax and subsidy changes between 2003-15