

EM600 - Engineering Economics and Cost Analysis

Lecture 08: Inflation

Lecture 08 1 of 52

References:

- Park, Chan S. <u>Contemporary Engineering</u>
 <u>Economics</u>. New Jersey: Pearson Prentice
 Hall, 2006 (Chapter 11)
- Ganguly, A. <u>Engineering Economics Using</u>
 Excel. New Jersey: SSE, 2008

After completing this module you should understand the following:

- Introduction to Inflation
- Measuring / assessing inflation
- Equivalence calculation under inflation (real, constant, actual dollars)
- Impact of inflation on capital projects

Key Definitions: (Chan S. Park)

- Inflation:
 - The rate at which the general level of prices and goods and services is rising and subsequently, purchasing power is falling.

– Deflation:

- Opposite to inflation.
- Gain in purchasing power.
- Not covered in this lecture, inflation is far more realistic to our every day lives.

Lecture 08 4 of 52

Key Definitions: (Chan S. Park)

- Measuring Inflation:
 - Consumer Price Index (CPI):
 - Is an inflationary indicator that measures the change in the cost of a fixed basket of products and services.
 - The CPI compares the cost of a sample "market basket" of goods and services in a specific period relative to the cost of the same "market basket" in an earlier reference period. This reference period is known as the base period.
 - Producer Price Index (PPI):
 - Is an inflationary indicator published by the U.S.
 Bureau of Labor Statistics to evaluate wholesale price levels in the economy.

Lecture 08 5 of 52

Key Definitions: (Chan S. Park)

- Measuring Inflation:
 - Average Inflation Rate (f):
 - a single rate that accounts for the effect of varying yearly inflation rates over a period of several years.
 - General Inflation Rate (f)
 - the average inflation rate calculated based on the CPI for all items in the market basket. The market interest rate is expected to respond to this inflation rate.
 - Specific Inflation Rate (f_i)
 - This rate is based on the CPI specific to segment j of the economy. Focuses on the future cost estimation of a particular item e.g. labor.

Lecture 08 6 of 52

- Average inflation rate (f)
 - Example 1:
 - Calculate the average inflation for a 5 year period with the following details:
 - Base price (year 1), P = \$150
 - Inflation rates:

$$\Rightarrow$$
 Year 1 = 2.90%

$$\Rightarrow$$
 Year 2 = 3.76%

$$\Rightarrow$$
 Year 3 = 5.91%

$$^{\circ}$$
 Year 4 = 2.78%

$$\Rightarrow$$
 Year 5 = 6.38%

- Average inflation rate (f)
 - Example 1:
 - Step 1: Calculate the price at the end of the 5th year, F
 - Use the compounding method

$$F = P(1+i)^{N} = P(1+f)^{N} \qquad \dots \text{ eqn } (1)$$

$$F = P(F/P,i,N) = P(F/P,f,N) \qquad \dots \text{ eqn } (2)$$
where, $i = \text{ interest rate}; f = \text{ average inflation rate}$
In this case f varies each year, therefore,
$$F = P(1+f_1)(1+f_2)(1+f_3)(1+f_4)(1+f_5)$$

$$F = \$100(1+0.029)(1+0.0376)(1+0.0591)(1+0.0278)(1+0.0638)$$

$$F = \$185.46$$

- Average inflation rate (f)
 - Example 1:
 - Step 2: Calculate the overall average inflation rate, f
 - Use the compounding method

$$F = P(1+i)^N = P(1+f)^N$$
 eqn (1)
 $F = P(F/P,i,N) = P(F/P,f,N)$ eqn (2)
where, $i = \text{interest rate}; f = \text{average inflation rate for N periods}$
Rearranging eqn (1) yields,

$$f = \left(\frac{F}{P}\right)^{1/N} - 1$$

$$f = \left(\frac{\$185.46}{\$150}\right)^{1/5} - 1 = 4.34\%$$

- General inflation rate (f)
 - In terms of the CPI, the general inflation rate can be defined as follows:

$$\overline{f} = \left[\frac{CPI_n}{CPI_0}\right]^{1/n} - 1$$

where,

 \overline{f} = general inflation rate

 CPI_n = consumer price index at the end of period n

 CPI_0 = consumer price index for the base period

 Knowing the CPI values for 2 consecutive years, the annual general inflation rate is:

$$\overline{f_n} = \frac{CPI_n - CPI_{n-1}}{CPI_{n-1}} = \text{general inflation rate for period n}$$

- Definitions: (Chan S. Park)
 - Actual Dollars (A_n)
 - The cash flow measured in terms of dollars at the time of the transaction.
 - Out-of-pocket dollars paid at the time of purchasing goods and services.
 - Estimates of future cash flows for year n that take into account any anticipated changes in amounts caused by the effects of inflation or deflation.
 - Also known as: Current dollars.

- Definitions: (Chan S. Park)
 - Constant Dollars (A'_n)
 - Represents constant purchasing power that is independent of the passage of time.
 - Used to adjust for the effects of inflation.
 - Also known as: Base-year, Nominal or Real dollars.

Lecture 08 13 of 52

– Conversion equations:

Constant to Actual Dollars

$$A_n = A_n \left(1 + \overline{f}\right)^n = A_n \left(F/P, \overline{f}, n\right)$$

Actual to Constant Dollars

$$A'_{n} = \frac{A_{n}}{\left(1 + \overline{f}\right)^{n}} = A_{n}\left(P/F, \overline{f}, n\right)$$

where,

 A_n = Actual - dollar expression for the cash flow at the end of year n A'_n = Constant - dollar expression for the cash flow at the end of year n \overline{f} = General inflation rate

Note:

If the future price of a specific cash flow element (j) is not expected to follow the general inflation rate (\overline{f}) , the average inflation rate (f_j) applicable to that cash flow element should be used instead.

Lecture 08 14 of 52

Equivalence Calculations under Inflation

- Two different interest rates involved
 - Inflation free interest rate, i'
 - Market interest rate, i
- Two methods of analysis
 - Constant-dollar analysis (Inflation free interest rate, i')
 - Actual-dollar analysis (Market interest rate, i)
- Three common cases for the nature of project cash flows
 - Case 1: All cash flow elements are estimated in constant dollars
 - Case 2: All cash flow elements are estimated in actual dollars
 - Case 3: Some cash flow elements estimated in constant dollars, others in actual dollars

Lecture 08 15 of 52

Market & Inflation-Free Interest Rates

- Inflation-free interest rate (i ')
 - Estimate of the true earning power of money when the inflation effects have been removed.
 - Also known as: Real Interest Rate or MARR without inflation.
- Market interest rate (i)
 - Takes into account the combined effects of earning power (earning value of capital) and purchasing power (inflation and deflation).
 - Also known as: Inflation Adjusted MARR or MARR with inflation.
 - Used to evaluate investment projects.
 - In the absence of inflation, i = i'

Lecture 08 16 of 52

- All cash flow elements in constant dollars
- Use i' as the interest rate to find the equivalent worth.

$$P_{n} = \frac{A'_{n}}{(1+i')^{n}} = A'_{n}(P/F,i',n)$$

where,

 P_n = the present worth equivalent of the constant dollar amount (A'_n) at i', occurring in year n

- Constant dollar analysis is common in the evaluation of many long-term public projects, because government do not pay income taxes.
- For private sector, income taxes are levied based on the taxable income in actual dollars, the actual dollar analysis is more common.

Lecture 08 18 of 52

– Example 2:

 Assume the following cash flow data for JoeRx, a manufacturer of an anti-inflammatory drug for their first 5 years in business:

Period, n	Net Cash Flow in Constant Dollars	
0	-\$350,000	
1	\$125,000	
2	\$145,000	
3	\$160,000	
4	\$185,000	
5	\$172,500	

• With a 15% inflation-free rate of return (i') calculate the present worth of the cash flow series in constant dollars.

Lecture 08 19 of 52

- Example 2:

•			
Period, n	Net Cash Flow in Constant Dollars	(P/F, 15%, n)	
0	-\$350,000	-	
1	\$125,000	0.8696	
2	\$145,000	0.7561	
3	\$160,000	0.6575	
4	\$185,000	0.5718	
5	\$172,500	0.4972	

$$PW = -P + \sum_{n=1}^{N} A_{n}(P/F, i, n)$$

$$PW = -\$350,000 + \$125,000(P/F,15\%,1) + \$145,000(P/F,15\%,2)$$

$$+\$160,000(P/F,15\%,3)+\$185,000(P/F,15\%,4)+\$172,500(P/F,15\%,5)$$

$$PW = -\$350,000 + \$125,000(0.8696) + \$145,000(0.7561)$$

$$+\$160,000(0.6575) + \$185,000(0.5718) + \$172,500(0.4972)$$

$$PW = $165,085$$

Lecture 08 20 of 52

- All cash flow elements in actual dollars
- Use i as the interest rate to find the equivalent worth.
- Two Methods:
 - Deflation Method:
 - 1. Convert actual dollars into equivalent constant dollars by discounting by the general inflation rate (common purchasing power)
 - 2. Use i' to find the equivalent present worth (consider the earning power)
 - Adjusted Discount Method:
 - Combines steps 1 and 2 of the deflation method.
 - Performs deflation and discounting in one step using the market interest rate (i).

Lecture 08 21 of 52

- Deflation Method
 - Example 3:
 - Assume the following cash flow data:

Period, n	Net Cash Flow in Actual Dollars				
0	-\$95,000				
1	\$39,000				
2	\$41,500				
3	\$27,250				
4	\$33,750				
5	\$61,000				

- Calculate the equivalent constant dollars if the general inflation rate (f) is 4% per year.
- With a 12% inflation-free rate of return (i ') calculate the present worth of the cash flow series in constant dollars.

Lecture 08 22 of 52

- Deflation Method
 - Example 3:
 - Calculate the equivalent constant dollars if the general inflation rate (\overline{f}) is 4% per year.

Period, n	Net Cash Flow in Actual Dollars	(P/F,4%,n)	Net Cash Flow in Constant Dollars
0	-\$95,000	•	-\$95,000
1	\$39,000	0.9615	\$37,499
2	\$41,500	0.9246	\$38,371
3	\$27,250	0.8890	\$24,225
4	\$33,750	0.8548	\$28,850
5	\$61,000	0.8219	\$50,136

Lecture 08 23 of 52

- Deflation Method
 - Example 3:
 - With a 12% inflation-free rate of return (i) calculate the present worth of the cash flow series.

Period, n	Net Cash Flow in Constant Dollars	(P/F, 12%, n)	
0	-\$95,000	-	
1	\$37,499	0.8929	
2	\$38,371	0.7972	
3	\$24,225	0.7118	
4	\$28,850	0.6355	
5	\$50,136	0.5674	

$$PW = -P + \sum_{n=1}^{N} A'_{n} (P/F, i', n)$$

$$PW = -\$95,000 + \$37,499(P/F,12\%,1) + + \$50,136(P/F,12\%,5)$$

$$PW = -\$95,000 + \$37,499(0.8929) + \dots + \$50,136(0.5674)$$

$$PW = $33,096$$

Lecture 08 24 of 52

- Adjusted Discount Method
 - The market interest rate (i) reflects both the earning power and the purchasing power.
 - The market interest rate (i) is therefore a function of:

```
\overline{f}, general inflation rate
```

i, inflation - free interest rate

and can be expressed as:

$$i = i' + \overline{f} + i' \overline{f}$$

- Adjusted Discount Method
 - Since the market rate (i) reflects both the earning power and the purchasing power,

$$P_n = \frac{A_n}{(1+i)^n} = A_n(P/F, i, n)$$

where,

 P_n = the present worth equivalent of the constant dollar amount (A_n) at i, occurring in year n

Lecture 08 26 of 52

- Adjusted Discount Method
 - Example 4:
 - Assume the same cash flow data for example 3:

Period, n	Net Cash Flow in Actual Dollars				
0	-\$95,000				
1	\$39,000				
2	\$41,500				
3	\$27,250				
4	\$33,750				
5	\$61,000				

– With a general inflation rate (\overline{f}) of 4% per year and a 12% inflation-free rate of return (i') calculate the present worth of the cash flow series.

Lecture 08 27 of 52

- Adjusted Discount Method
 - Example 4:
 - Calculate the market interest rate (i) with,
 - » general inflation rate (\overline{f}) of 4%
 - » inflation-free rate of return (i') of 12%

$$i = i' + \overline{f} + i' \overline{f}$$

 $i = 12\% + 4\% + (12\% \times 4\%)$
 $i = 16.48\%$

- Adjusted Discount Method
 - Example 4:
 - With a 16.48% market interest rate of return (i)
 calculate the present worth of the cash flow series.

Period, n	Net Cash Flow in Actual Dollars	(P/F, 16.48%, n)	
0	-\$95,000	-	
1	\$39,000	0.8585	
2	\$41,500	0.7371	
3	\$27,250	0.6328	
4	\$33,750	0.5432	
5	\$61,000	0.4664	

$$PW = -P + \sum_{n=1}^{N} A_n (P/F, i, n)$$

$$PW = -\$95,000 + \$39,000(P/F,16.48\%,1) + \dots + \$61,000(P/F,16.48\%,5)$$

$$PW = -\$95,000 + \$39,000(0.8585) + \dots + \$61,000(0.4664)$$

$$PW = $33,097$$

Lecture 08 29 of 52

Case 3: Mixed-Dollar Analysis

- All cash flow elements should be converted into the same dollar units
 - Converted to *constant* dollars = use the inflation-free interest rate (i') when calculating the equivalent present worth.
 - Converted to actual dollars = use the market interest rate (i) when calculating the equivalent present worth.

Lecture 08 30 of 52

Effects of Inflation on Project Cash Flows:

- Two areas of focus:
 - Depreciation expenses
 - Interest expenses
- Why focus on these areas?
 - Always given in actual dollars (with inflation), therefore, they are essentially immune to the effects of inflation.

Lecture 08 31 of 52

- Example 5: (Chan S. Park, example 11.8)
 - Refer to example 1, Lecture 7
 - Project: Installation of a new computer system
 - Financial Data:
 - Investment: \$125,000
 - Project life: 5 years
 - Salvage value: \$50,000
 - Annual labor savings (Annual Revenues): \$100,000
 Annual manufacturing costs:
 - - » Labor: \$20,000
 - » Materials: \$12,000
 - » Overhead: \$8,000
 - Depreciation method: 7-year MACRS
 - Income tax rate: 40%
 - Inflation-free interest rate (i '): 15%

Lecture 08 32 of 52

- Example 5: (Chan S. Park, example 11.8)
 - PW in the absence of inflation: \$43,153
 - Using the deflation method:
 - Determine the PW of the project if the general inflation rate (f) during the next 5 years is expected to increase by 5% annually.

Lecture 08 33 of 52

- Example 5: (Chan S. Park, example 11.8)
 - Identify the items in the Income Statement and Cash Flow Statement that are impacted by the general inflation rate:
 - Income Statement:
 - » Revenues
 - » Expenses
 - » Labor
 - » Material
 - » Overhead
 - Cash Flow Statement:
 - » Salvage
 - » Will also have an impact on the gains tax

Lecture 08 34 of 52

- Example 5: (Chan S. Park, example 11.8)
 - Notes:
 - The items identified in the previous slide are all the cash flow elements assumed to be in constant dollars.
 - » These need to be converted to actual dollars
 - » Depreciation expenses are not included
 - The Net Cash Flows (operating activities and investment activities) are in actual dollars.
 - » These need to be converted to constant dollars before the PW can be calculated.
 - General inflation rate of 5% is assumed to apply to each of the identified cash flow elements on the previous slide starting in year 1

Lecture 08 35 of 52

- Example 5: (Chan S. Park, example 11.8)
 - Income Statement

YEAR:	\overline{f}	1	2	3	4	5
Revenues	5%	\$105,000	\$110,250	\$115,763	\$121,551	\$127,628
Expenses:						
Labor	5%	\$21,000	\$22,050	\$23,153	\$24,310	\$25,526
Material	5%	\$12,600	\$13,230	\$13,892	\$14,586	\$15,315
Overhead	5%	\$8,400	\$8,820	\$9,261	\$9,724	\$10,210
Depreciation		\$17,863	\$30,613	\$21,863	\$15,613	\$5,581
Taxable Income		\$45,137	\$35,537	\$47,595	\$57,317	\$70,996
Income Taxes (40%)		\$18,055	\$14,215	\$19,038	\$22,927	\$28,398
Net Income		\$27,082	\$21,322	\$28,557	\$34,390	\$42,598

Lecture 08 36 of 52

- Example 5: (Chan S. Park, example 11.8)
 - Cash Flow Statement

YEAR:	\overline{f}	0	1	2	3	4	5
Operating Activities:							
Net Income			\$27,082	\$21,322	\$28,557	\$34,390	\$42,598
Depreciation			\$17,863	\$30,613	\$21,863	\$15,613	\$5,581
Investment Activities:							
Investment		-\$125,000					
Salvage	5%						\$63,814
Gains Tax							-\$12,138
Net Cash Flow (Actual Dollars)		-\$125,000	\$44,945	\$51,935	\$50,419	\$50,003	\$99,855

Lecture 08 37 of 52

Example 5: (Chan S. Park, example 11.8)

- Income Statement Notes
 - 1. Revenues = $$100,000 \times (1 + 5\%)^n$
 - 2. Labor = $$20,000 \times (1 + 5\%)^n$
 - 3. Material = $$12,000 \times (1 + 5\%)^n$
 - 4. Overhead = $\$8,000 \times (1 + 5\%)^n$
- Cash Flow Statement Notes
 - 1. Salvage Value = $$50,000 \times (1 + 5\%)^n$
 - 2. Gains tax increases as salvage value has increased due to conversion to actual dollars from constant dollars.

Example 5: (Chan S. Park, example 11.8)

Period, n	Net Cash Flow in Actual Dollars	(P/F, 5%, n)	Net Cash Flow in Constant Dollars	(P/F, 15%, n)
0	-\$125,000	1	-\$125,000	-
1	\$44,945	0.8658	\$42,804	0.8696
2	\$51,935	0.7496	\$47,106	0.7561
3	\$50,419	0.6490	\$43,554	0.6575
4	\$50,003	0.5619	\$41,138	0.5718
5	\$99,855	0.4865	\$78,239	0.4972

$$PW = -P + \sum_{n=1}^{N} A'_{n} (P/F, i', n)$$

$$PW = -\$125,000 + \$42,804 (P/F,15\%,1) + \dots + \$78,239 (P/F,12\%,5)$$

$$PW = -\$125,000 + \$42,804 (0.8696) + \dots + \$78,239 (0.4972)$$

$$PW = \$38,899$$

Note: The adjusted-discount method can also be used here.

Effects of Multiple Inflation Rates on Project Cash Flows

- Methodology:
 - Apply the same methodology as in example 5.
 - In this case, where inflation rates are given for specific elements, apply them to those elements.
 - Use the general rate of inflation and the inflationfree interest rates to calculate the PW using either,
 - The deflation method, or
 - The adjusted-discount method
 - as previously shown
- Refer to Chan S. Park, example 11.9

Lecture 08 40 of 52

– Notes:

- Loan repayment is based on a historical contract amount.
- Debt payment size does not change with inflation.
- Future payments are calculated based on year-0 dollars.
- Under the effect of inflation, the constant-dollar costs of both interest and principal repayments on a debt are reduced.

– Summary:

 Borrowers repay historical loan amounts with dollars of decreased purchasing power, reducing the debt-financing cost.

Lecture 08 41 of 52

- Example 6: (Chan S. Park, example 11.10)
 - Recall example 5
 - Assume a debt ratio of 0.5.
 - \$62,500 borrowed
 - Debt borrowed at an annual interest rate of 15.5%.
 - General Inflation Rate $(\overline{f}) = 5\%$
 - Calculate the loan repayment schedule
 - In actual dollars
 - In constant dollars
 - What is the borrowers gain in constant dollars?

Lecture 08 42 of 52

- Example 6: (Chan S. Park, example 11.10)
 - Calculate annual loan repayment in actual dollars:

\rightarrow	A	В
1	P, amount borrowed	\$62,500
2	i	15.50%
3	N	5
4	AE	\$18,866

\langle	A	В
1	P, amount borrowed	\$62,500
2	i	15.50%
3	N	51
4	=PMT	(B2,B3,-B1,,)

Loan repayment breakdown:

Year	Beginning	Interest	Principal	Ending
	Balance	Payment	Payment	Balance
1	\$62,500	\$9,688	\$9,178	\$53,322
2	\$53,322	\$8,265	\$10,601	\$42,720
3	\$42,720	\$6,622	\$12,244	\$30,476
4	\$30,476	\$4,724	\$14,142	\$16,334
5	\$16,334	\$2,532	\$16,334	\$0

Lecture 08 43 of 52

- Example 6: (Chan S. Park, example 11.10)

Equivalent Loan repayment cash flows measured in year-0 dollars and borrowers gain over the life of the loan (Chan S. Park, Figure 11.3)

Lecture 08 44 of 52

Effects of Inflation on Return on Investment

– Notes:

- Unless revenues are sufficiently increased to keep pace with inflation, tax effects and/or a working capital drain result in lower rate of return or lower NPW.
- Under inflation, true (real) rate of return should be based on constant dollars.
- Under inflation, if the rate of return is calculated based on actual dollars, the real rate of return can be calculated as: $i = \frac{1+i}{1+\overline{f}} 1$ where,

i' = the real rate of return based on constant dollars

i = the market rate of return based on actual dollars

$$\overline{f}$$
 = general rate of inflation

Lecture 08 45 of 52

Effects of Inflation on Return on Investment: No Inflation

MARR = 20%

IRR' = 21.88%

The investment is acceptable.

	0	1	2	3	4
Income statement:					
Revenues		\$ 24,500	\$ 24,500	\$ 24,500	\$ 24,500
Expenses					
O&M		10,000	10,000	10,000	10,000
Depreciation		10,000	13,333	4,445	2,222
Taxable income		4,500	1,167	10,055	12,278
Income taxes (40%)		1,800	467	4,022	4,911
Net income		\$ 2,700	\$ 700	\$ 6,033	\$ 7,367
Cash flow statement:					
Operating activities					
Net income		2,700	700	6,033	7,367
Depreciation		10,000	13,333	4,445	2,222
Investment activities					
Machine center	\$ (30,000)				
Salvage					0
Gains tax					0
Net cash flow					
(in actual dollars)	\$ (30,000)	\$ 12,700	\$ 14,033	\$ 10,478	\$ 9,589

Example 11.11 (Chan S. Park, Table 11.5)

Lecture 08 46 of 52

Effects of Inflation on Return on Investment: Inflation

MARR = 20%

IRR' = 19.40%

The investment is no longer acceptable.

	0	1	2	3	4
Income statement:					
Revenues		\$26,950	\$29,645	\$32,610	\$35,870
Expenses					
O&M		11,000	12,100	13,310	14,641
Depreciation		10,000	13,333	4,445	2,222
Taxable income		5,950	4,212	14,855	19,007
Income taxes (40%)		2,380	1,685	5,942	7,603
Net income		\$ 3,570	\$ 2,527	\$ 8,913	\$11,404
Cash flow statement:					
Operating activities					
Net income		3,570	2,527	8,913	11,404
Depreciation		10,000	13,333	4,445	2,222
Investment activities					
Machine center	\$(30,000)				
Salvage					0
Gains tax					0
Net cash flow					
(in actual dollars)	\$(30,000)	\$13,570	\$15,860	\$13,358	\$13,626
Net cash flow					
(in constant dollars)	\$(30,000)	\$12,336	\$13,108	\$10,036	\$ 9,307
Note: PW(20%) = \$(321)	; IRR (actual do	llars) = 31.3	4%; IRR′ (co	nstant dollars) = 19.40%

Example 11.11 (Chan S. Park, Table 11.6)

Lecture 08 47 of 52

Effects of Inflation on Working Capital

– Notes:

- Known as working capital drain, the cost of working capital increases in an inflationary environment.
- Additional cash must be invested to maintain new price levels.
- Additional working capital requirements can significantly reduce a project's rate of return.

Lecture 08 48 of 52

Effects of Inflation on Working Capital: No Inflation

MARR = 20%

IRR' = 20.88%

The investment is acceptable.

Case 1: Without Inflation	0	1	2	3	4
Income statement:					
Revenue		\$ 24,500	\$ 24,500	\$ 24,500	\$ 24,500
Expenses					
O&M		10,000	10,000	10,000	10,000
Depreciation		10,000	13,333	4,445	2,222
Taxable income		4,500	1,167	10,055	12,278
Income taxes (40%)		1,800	467	4,022	4,911
Net income		\$ 2,700	\$ 700	\$ 6,033	\$ 7,367
Cash flow statement:					
Operating activities					
Net income		2,700	700	6,033	7,367
Depreciation		10,000	13,333	4,445	2,222
Investment activities					
Machine center	\$ (30,000)				
Working capital	(1,000)				1,000
Salvage					0
Gains tax					0
Net cash flow					
(in actual dollars)	\$ (31,000)	\$ 12,700	\$ 14,033	\$ 10,478	\$ 10,589

Example 11.12 (Chan S. Park, Table 11.7)

Lecture 08 49 of 52

Effects of Inflation on Working Capital: Inflation

MARR = 20%

IRR' = 18.09%

The investment is no longer acceptable.

Case 2: With Inflation (10%)	0	1	2	3	4
Income statement:					
Revenue		\$ 26,950	\$ 29,645	\$ 32,610	\$ 35,870
Expenses					
O&M		11,000	12,100	13,310	14,641
Depreciation		10,000	13,333	4,445	2,222
Taxable income		5,950	4,212	14,855	19,007
Income taxes (40%)		2,380	1,685	5,942	7,603
Net income		\$ 3,570	\$ 2,527	\$ 8,913	\$ 11,404
Cash flow statement:					
Operating activities					
Net income		3,570	2,527	8,913	11,404
Depreciation		10,000	13,333	4,445	2,222
Investment activities					
Machine center	\$ (30,000)				
Working capital	(1,000)	(100)	(110)	(121)	\$ 1,331
Salvage					0
Gains tax					0
Net cash flow					
(in actual dollars)	\$ (31,000)	\$ 13,470	\$ 15,750	\$ 13,237	\$ 14,957
Net cash flow					
(in constant dollars)	\$ (31,000)	\$ 12,245	\$ 13,017	\$ 9,945	\$ 10,216

Note: PW(20%) = \$(1,074); IRR (actual dollars) = 29.89%; IRR' (constant dollars) = 18.09%.

Effects of Inflation on Working Capital:

(a) Without inflation

(b) With inflation

Working Capital Requirements under inflation (Chan S. Park, example 11.12; figure 11.4)

Lecture 08 52 of 52