Differentiability: When $f: \mathbb{R} \to \mathbb{R}, x \in \mathbb{R}$ we define

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (*)

provided the limit exists. In case $f: \mathbb{R}^3 \to \mathbb{R}$ and $X = (x_1, x_2, x_3) \in \mathbb{R}^3$ the above definition of the differentiability of functions of one variable (*) cannot be generalized as we cannot divide by an element of \mathbb{R}^3 . So, in order to define the concept of differentiability, what we do is that we rearrange the above definition (*) to a form which can be generalized.

Let $f: \mathbb{R} \to \mathbb{R}$. Then f is differentiable at x if and only if there exists $\alpha \in \mathbb{R}$ such that

$$\frac{\mid f(x+h) - f(x) - \alpha \cdot h \mid}{\mid h \mid} \to 0 \quad as \ h \to 0.$$

When f is differentiable at x, α has to be f'(x). We generalize this definition to the functions of several variables.

Definition: Let $f: \mathbb{R}^3 \to \mathbb{R}$ and $X = (x_1, x_2, x_3)$. We say that f is differentiable at X if there exists $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}^3$ such that the error function

$$\varepsilon(H) = \frac{f(X+H) - f(X) - \alpha \cdot H}{\parallel H \parallel}$$

tends to 0 as $H \to 0$.

In the above definition $\alpha \cdot H$ is the scalar product. Note that the derivative $f'(X) = (\alpha_1, \alpha_2, \alpha_3)$.

Theorem 26.2: Suppose f is differentiable at X. Then the partial derivatives $\frac{\partial f}{\partial x}|_X$, $\frac{\partial f}{\partial y}|_X$ and $\frac{\partial f}{\partial z}|_X$ exist and the derivative

$$f'(X) = (\alpha_1, \alpha_2, \alpha_3) = (\frac{\partial f}{\partial x} \mid_X, \frac{\partial f}{\partial y} \mid_X, \frac{\partial f}{\partial z} \mid_X).$$

Proof: Suppose f is differentiable at X and $f'(X) = (\alpha_1, \alpha_2, \alpha_3)$. Then by taking H = (t, 0, 0), we have

$$\varepsilon(H) = \frac{f(X+H) - f(X) - \alpha_1 t}{|t|} \to 0 \text{ as } t \to 0, \text{ i.e., } \frac{f(X+H) - f(X) - \alpha_1 t}{t} \to 0$$

This implies that $\alpha_1 = \frac{\partial f}{\partial x} \mid_X$. Similarly we can show that $\alpha_2 = \frac{\partial f}{\partial y} \mid_X$ and $\alpha_3 = \frac{\partial f}{\partial x} \mid_X$.

Example 3 : Let

$$f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2} \quad at \quad (x,y) \neq (0,0)$$
$$= 0 \quad at \quad (0,0)$$

To verify that f is differentiable at (0,0), let us choose $\alpha = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})|_{(0,0)}$ and verify that $\epsilon(H) \to 0$ as $H = (h,k) \to 0$. In this case $\alpha = (0,0)$ and

$$\mid \varepsilon(H) \mid = \mid \frac{f(0+H) - f(0) - (0,0) \cdot H}{\parallel H \parallel} \mid \leq \mid \frac{hk}{\sqrt{h^2 + k^2}} \mid \leq \sqrt{h^2 + k^2} \to 0 \ as \ H \to 0.$$

Hence f is differentiable at (0,0).