Student Name: Homoud Alghanim

Student ID: 2132131306

Result:

1.

Variables identification

Column Name	Variable definition	Data Type	Missing data report	distribution of the data	level of analysis
eventid	The incidents ID from the Global Terrorism Database	Discrete(int64)	False	smallest first event id 197000000001 and the last 201701270001	Event
year	The year which the incident accured	Continues(int64)	False	Left Skewed	Event
month	The month which the incident accured	Continues(int64)	False	Left Skewed	Event
day	The Day which the incident accured	Continues(int64)	False	Right Skewed	Event
extended	The duration of an incident if it extended more than 24h or not	String	False	No Distribution	Event
summary	An information's summary of the incident	String	True(66138)	No Distribution	Event
Criterion_1	If the goal was for those things(political, economic, religious, or social goal) if it's 0 then was for something else.	String	False	No Distribution	Event

Column Name	Variable definition	Data Type	Missing data report	distribution of the data	level of analysis
Criterion_2	If the goal was for those things(intention to coerce, intimidate, or publicize to larger audiences) if it's 0 then was for something else.	String	False	No Distribution	Event
Criterion_3	If then the goal was something outside the international humanitarian law	String	False	No Distribution	Event
doubt_terr	If there's a doubt whether the incident is an act of terrorism.	String	False	No Distribution	Event
multiple	If the attack is part of a multiple incident	String	False	No Distribution	Event
related	The event ID related to this event if it was from multiple attacks	String	True(147505)	No Distribution	Event
city	The City where the incident occurred	String	True(446)	No Distribution	City
country	The Country where the incident occurred	String	False	No Distribution	Country
region	The Region where the incident occurred	String	False	No Distribution	Region
attacktype_1	The method of attack happened in the event	String	False	No Distribution	Event
attacktype_2	The method of attack happened in the event	String	True(164720)	No Distribution	Event
success	If the strike hasn't been stopped before it happened then it count as success	String	False	No Distribution	Event
weaptype	The type of weapon used in the event	String	False	No Distribution	Event
targ_type	The main target the terrorist want to strike	String	False	No Distribution	Event
targ_subtype	The sub target the terrorist want to strike	String	True(9345)	No Distribution	Event
nationality	The nationality of the terrorist or group that occured the event	String	True(1394)	No Distribution	Country
group_name	The name of group whom responsible for the event	String	False	No Distribution	Group

Column Name	Variable definition	Data Type	Missing data report	distribution of the data	level of analysis	
kills_num	The number of people who died in the event	Continues(int64)	True(9682)	minimum kills 0 and maximum 1500	Event	
wounded_num	The number of people who got wounded in the event	Continues(int64)	True(15325)	min 0 wounded maximum 7366	Event	
latitude	The latitude of the city the event occurred in	Continues(float)	True(4606)	Left Skewed	Event	
longitude	The longitude of the city the event occurred in	Continues(float)	True(4606)	Left Skewed	Event	

2.

Transformed Variables

Variable Names	Variable description	Steps in transformation	level of analysis
crit_all'	It's an easy approuch for the thee column's(Criterion_1, Criterion_2, Criterion_3) joind them in one place	By applying the val function to go through multiple conditions	Event
top5_attacked_region	Has the information for the top 5 attacked regions	By getting the head of the value_counts and using isin while adding them	Region
top5_attacked_countries		By getting the head of the value_counts and using isin while adding them	Country
top5_attacked_cities	The most 5 attacked cities informations	By getting the head of the value_counts and using isin while adding them	City
top5_target_nationality	The most 5 targeted nationalities informations	By getting the head of the value_counts and using isin while adding them	Country
top5_attacktype	The top 5 used attack types	By getting the head of the value_counts and using isin while adding them	Event
top5_target_type The top 5 targeted types of peo		By getting the head of the value_counts and using isin while adding them	Event
top5_target_Subtype	The top 5 Sub-targeted types of people	By getting the head of the value_counts and using isin while adding them	Event

Variable Names	Variable description	Steps in transformation	level of analysis
top5_target_grpName	The top 5 active group named responsible for the event's	By getting the head of the value_counts and using isin while adding them	Group

3.

insights:

insight list:

Many event's before 1997 was not recoded if it was a terrorist act or not

May, Jul and November have many holidays in it or near it and the terrorist looks for clustered people, that's why they has a large amount of kills

The amount of people killed in the remaining months is kind of stable

Most people died from the terrorist attacks was in 2014

There is a decrease in the number of wounded people by the attacks after the year 2013

There is a decrease in the number of deads people by the attacks after the year 2014

ISIL now known as ISIS

World plot of the most countries effected from terrorist

Why the numbers of killed people in 2001 increased very much from Taliban and from Al-Shabaab in 2007?

The wounded numbers increase every time the kills increase

from the graph we can see that 2014 was the highest

The graph shows that May, August and november are the highest, maybe because of the holidays?

89.05% the operations of the terrorist succeeded

less than 5% of the strikes in the database, event's stayed more than 24 hour

We can see that most attacks choose all the three:

Criterion_1 (political, economic, religious, or social goal),

Criterion_2 (intention to coerce, intimidate, or publicize to larger audiences)

Criterion_3 Something outside the international humanitarian law

The Middle East and North Africa are the most attacked region

The most active month in the Middle east & North Africa is july

Iraq attacks increased after saddam hussain death in 2003

Baghdad attacks spiked after 1991 and Lima city attacks stopped in 1992

The percentage of the attacks on those nationality

Even after the event's extended more than 24 hour there's small amount still doubting if it's a terrorism attack or not

The event which is part of multiple event's spiked after 2011

Lima and Baghdad got the most multiple event's

Baghdad got bombed the most then Karachi got Armed assault the most

The highest nationalities who got multiple event's are Iraqis and India

The Kidnapping attack type looks like the most frequent one used in the event's that extends for more than 24 hour's

most attacks target type are Private Citizens & Property

we can see that the ISIL and Taliban the most active groups

Question's:

- Why all the terrorist activities increased mostly after 2010?
- Can we predict about when the next attack if we feed this information to a machine?
- The countries with the less damage and attacks are they good at defending themselves or they're not targeted?
- Why the numbers of killed people in 2001 increased very much from Taliban and from Al-Shabab in 2007?

Analysis:

In [1]:

```
import pandas as pd
import altair as alt
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
```

In [2]:

```
df=pd.read_csv('Global_Terrorism_Database.csv',low_memory=False)
pd.options.display.max_columns=False
```

In []:

In [12]:

df.head()

Out[12]:

	eventid	year	month	day	extended	summary	Criterion_1	Crit
0	198808180003	1988	8	18	No	NaN	Yes	
1	198301030001	1983	1	3	No	NaN	Yes	
2	201208060015	2012	8	6	No	08/06/2012: Three gunmen armed with automatic 	Yes	
3	201507250018	2015	7	25	No	07/25/2015: Assailants attacked an army base i	Yes	
4	201304250031	2013	4	25	No	04/25/2013: Assailants threw a petrol bomb at	Yes	
4								•

In [6]:

df.describe()

Out[6]:

	eventid	year	month	day	ext
count	1.703500e+05	170350.000000	170350.000000	170350.000000	170350.0
mean	2.001776e+11	2001.709997	6.474365	15.466845	0.0
std	1.314444e+09	13.144146	3.392364	8.817929	0.2
min	1.970000e+11	1970.000000	0.000000	0.000000	0.0
25%	1.990053e+11	1990.000000	4.000000	8.000000	0.0
50%	2.007121e+11	2007.000000	6.000000	15.000000	0.0
75%	2.014023e+11	2014.000000	9.000000	23.000000	0.0
max	2.017013e+11	2016.000000	12.000000	31.000000	1.0
4					•

In [5]:

df.dtypes

Out[5]:

eventid int64 year int64 month int64 day int64 extended int64 object summary Criterion 1 int64 Criterion_2 int64 Criterion_3 int64 doubt_terr int64 multiple int64 related object city object country object region object attacktype_1 object attacktype_2 object success int64 weaptype object targ_type object targ_subtype object nationality object group_name object kills num float64 wounded_num float64 latitude float64 longitude float64

dtype: object

In [6]:

```
print(df.isnull().sum())
#We can see the each column and how many missing data it has.
```

eventid	0
year	0
month	0
day	0
extended	0
summary	66138
Criterion_1	0
Criterion_2	0
Criterion_3	0
doubt_terr	0
multiple	0
related	147505
city	446
country	0
region	0
attacktype_1	0
attacktype_2	164720
success	0
weaptype	0
targ_type	0
targ_subtype	9345
nationality	1394
group_name	0
kills_num	9682
wounded_num	15325
latitude	4606
longitude	4606
dtype: int64	

In [71]:

df.corr()

Out[71]:

	eventid	year	month	day	extended	Criteric
eventid	1.000000	0.999996	0.006579	0.015797	0.090726	0.001
year	0.999996	1.000000	0.003989	0.015718	0.090716	0.001
month	0.006579	0.003989	1.000000	0.004970	0.000017	0.001
day	0.015797	0.015718	0.004970	1.000000	-0.004475	0.011
extended	0.090726	0.090716	0.000017	-0.004475	1.000000	-0.015
Criterion_1	0.001329	0.001304	0.001393	0.011779	-0.015347	1.000
Criterion_2	0.026638	0.026635	0.001366	-0.002234	0.001771	-0.00§
Criterion_3	-0.003225	-0.003218	-0.000917	-0.004240	0.048633	-0.03§
doubt_terr	0.290603	0.290638	-0.012174	0.001049	0.010386	-0.059
multiple	0.094126	0.094136	-0.002086	-0.005037	-0.014125	0.029
success	-0.070257	-0.070249	-0.002810	-0.008578	0.069034	-0.009
kills_num	0.015053	0.015042	0.004255	-0.003799	0.022931	0.010
wounded_num	0.018573	0.018565	0.002945	-0.000979	-0.007283	0.007
latitude	0.171345	0.171396	-0.015723	0.002978	-0.021142	0.020
longitude	0.553012	0.553031	-0.004085	0.010984	0.036189	-0.005
4						>

In [24]:

```
ax= sns.heatmap(
    df.pivot_table(
        'kills_num',
        top5_target_grpName.group_name[top5_target_grpName['group_name'].no'
        'year'),cmap="Blues")

# Why the numbers of killed people in 2001 increased very much from Taliban
# Those data was taken directly from the dataframe not the sample
```


In [237]:

In [222]:

In [3]:

```
def con(x):
    if str(x)=='nan' or str(x)=='None':
        return x
    else:
        return int(np.round(x))

df['kills_num']=df['kills_num'].apply(con)
df['wounded_num']=df['wounded_num'].apply(con)
#Here we needed to change data type to integer because we can't kill or injection
```

In [8]:

df['year'].hist()
Left skewed distribution

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99a0be908>

In [9]:

df['month'].hist()
Left skewed distribution

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99a5b8cf8>

In [10]:

df['day'].hist()
Right skewed distribution

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99a160c88>

In [11]:

df['latitude'].hist()
#The distribution skewed to the left

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99a201fd0>

In [12]:

```
df['longitude'].hist()
#The distribution skewed to the left
```

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99a2e20f0>

In [15]:

```
df_sample=df.sample(2000).reset_index(drop=True)
# Taking a sample from the dataframe because altasir can't take more than 5
```

In [4]:

```
def val(x):
    if str(x)=='nan' or str(x)=='None':
        return x
    elif x==1:
        return 'Yes'
    elif x==-9:
        return 'Not recorded'
    else:
        return 'No'
```

In [6]:

```
df_sample['extended']=df_sample['extended'].apply(val)
df_sample['Criterion_1']=df_sample['Criterion_1'].apply(val)
df_sample['Criterion_2']=df_sample['Criterion_2'].apply(val)
df_sample['Criterion_3']=df_sample['Criterion_3'].apply(val)
df_sample['multiple']=df_sample['multiple'].apply(val)
df_sample['doubt_terr']=df_sample['doubt_terr'].apply(val)
df_sample['success']=df_sample['success'].apply(val)

# Changing the values from 1 to Yes and 0 to No
# So when we plot them they'll be easy to read.
```

In [16]:

```
alt.Chart(df_sample).mark_line().encode(
    x='year:T',
    y=alt.Y('count(*)',title='Attacks'),
)
# from the graph we can see that 2014 was the highest
# We can check by df_sample.year.value_counts().head()
```


In [143]:

```
alt.Chart(df_sample).mark_bar().encode(
    x=alt.X('month:T', timeUnit='month',title="Month's"),
    y=alt.Y('count(*)',title='Attacks'),
    color='count(*):N',
    size='count(*)'
)
# from the graph we can see that May is the highest
# We can check the top 5 by using df_sample.month.value_counts().head()
```


In [18]:

```
alt.Chart(df_sample).mark_bar().encode(
    x=alt.X('day:T', timeUnit='day',title="Day's"),
    y=alt.Y('count(*)',title='Attacks'),
    color='count(*):N',
)
# We can clearly see that Thursday is the most day of the
# week the strikes occurred in.
```


In [19]:

df_sample.success.value_counts().plot(kind='pie',autopct='%1.2f%%',pctdista
89.05% the operations of the terrorist succeeded

Out[19]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99a3adc18>

In [20]:

df_sample.extended.value_counts().plot(kind='pie',autopct='%1.2f%%',pctdist
We can see that less than 5% of the strikes in the database
#event's stayed more than 24 hour

Out[20]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99a395128>

In [22]:

```
df_sample['crit_all']=''

for index, row in df_sample.iterrows():
    x=''
    if row['Criterion_1']=='Yes':
        x='Criterion_1'

if row['Criterion_2']=='Yes':
    x+=' Criterion_2'

if row['Criterion_3']=='Yes':
    x+=' Criterion_3'

df_sample.loc[index,'crit_all']=x

#Create new column out of three to have a better comparison
```

In [144]:

```
alt.Chart(df_sample).mark_line().encode(
    x=alt.X('year:T', timeUnit='year',title="Year's"),
    y=alt.Y('count(*)',title='Attacks'),
    color='crit_all',
)
#We can see that most attacks choose all the three:
#Criterion_1 (political, economic, religious, or social goal),
#Criterion_2 (intention to coerce, intimidate, or publicize to larger audient #Criterion_3 Something outside the international humanitarian law
```


In [24]:

```
alt.Chart(df_sample).mark_line().encode(
    x=alt.X('year:T', timeUnit='year',title="Year's"),
    y=alt.Y('count(*)',title='Attacks'),
    color='doubt_terr',
)
# we can see that many event's before 1997 was not recoded if
#it was a terrorist act or not
```


In [25]:

```
alt.Chart(df_sample[df_sample.extended=='Yes']).mark_bar().encode(
    x='doubt_terr',
    y='count(*)',
    color='doubt_terr',
)

# Even after the event's extended more than 24 hour there's
#small amount still doubting if it's a terrorism attack or not
```


In [26]:

```
alt.Chart(df_sample[df_sample.multiple=='Yes']).mark_line().encode(
    x=alt.X('year:T', timeUnit='year',title="Year's"),
    y='count(*)',
)
#The event which is part of multiple event's spiked after 2011
```


In [27]:

```
print(df_sample.region[(df_sample.region.notnull())&(df_sample.region!='Unk

top5_attacked_region=df_sample[df_sample.region.isin([
    'Middle East & North Africa',
    'South Asia',
    'South America',
    'Western Europe',
    'Sub-Saharan Africa'])]
```

```
South Asia 525
Middle East & North Africa 521
Sub-Saharan Africa 211
South America 203
Western Europe 181
Name: region, dtype: int64
```

In [28]:

top5_attacked_region.success.value_counts().plot(kind='pie',autopct='%1.2f%

Out[28]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99b547438>

In [29]:

```
alt.Chart(top5_attacked_region).mark_line().encode(
    x=alt.X('year:T', timeUnit='year',title="Year's"),
    y='count(*)',
    color='region'
)
# The Middle East and North Africa are the most attacked region
```


In [30]:

```
alt.Chart(top5_attacked_region).mark_area().encode(
    x='month:N',
    y='count(*)',
    color='region',
    size='count(*)'
)

# We can see the most active month in the Middle east & North Africa is july
```


In [31]:

```
alt.Chart(top5_attacked_region[top5_attacked_region.multiple=='Yes']).mark_
    x='region',
    y='count(*)',
    color='region',
    size='count(*)',
)

# Middle East & North Africa got the most attacks
```


In [32]:

```
alt.Chart(top5_attacked_region[top5_attacked_region.extended=='Yes']).mark_
    x='count(*)',
    y='region',
    color='region',
)
# We can see that South Asia are the most region with events continue for management.
```


In [33]:

```
alt.Chart(top5_attacked_region[
    (top5_attacked_region.attacktype_1.notnull())&(top5_attacked_region.attacktype_1.notnull())&(top5_attacked_region.attacktype_region),
    y='region',
    color='attacktype_1',
)
#The bombing mostly in South Asia and (middle east & north africa)
```


In [34]:

```
alt.Chart(top5_attacked_region[top5_attacked_region.region.notnull()]).mark
    x='region',
    y='kills_num',
    color='region',
    size='kills_num',
)
#The highest region got the most kills numbers: 1st Middle east & north afr
```


In [35]:

```
alt.Chart(top5_attacked_region[(
    top5_attacked_region.region.notnull())&(top5_attacked_region.wounded_nu
    x='region',
    y='wounded_num',
    color='region',
)
# (Middle East & North Africa) equals Sub-Saharan Africa in the wounded nume
```


In [36]:

```
print(df_sample.country[(df_sample.country.notnull())&(df_sample.country!='\)
top5_attacked_countries=df_sample[df_sample.country.isin([
    'Iraq',
    'Pakistan',
    'Afghanistan',
    'India',
    'Colombia'])]
```

Iraq 240
Pakistan 165
India 146
Afghanistan 138
Colombia 94

Name: country, dtype: int64

In [38]:

top5_attacked_countries.success.value_counts().plot(kind='pie',autopct='%1.

Out[38]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99c3cbfd0>

In [39]:

```
alt.Chart(top5_attacked_countries).mark_line().encode(
    x=alt.X('year:T', timeUnit='year',title="Year's"),
    y='count(*)',
    color='country'
)
# Iraq attacks increased after saddam death in 2003
```


In [40]:

```
alt.Chart(top5_attacked_countries).mark_square().encode(
    x='month:N',
    y='count(*)',
    color='country',
    size='count(*)'
)

# Most attacks happened in november
```


In [37]:

```
alt.Chart(top5_attacked_countries[
    (top5_attacked_countries.attacktype_1.notnull())&(top5_attacked_countries)
    x='country',
    y='count(*)',
    color='attacktype_1',
)
# most attack type in iraq: Bombing and the most Armed Assault happened in its analysis and the most Armed Assault happened in its analysis.
```


In [41]:

```
alt.Chart(top5_attacked_countries[top5_attacked_countries.multiple=='Yes'])
    x='country',
    y='count(*)',
    color='country',
    size='count(*)',
)

# Iraq got the most event's which connected to multiple events
```


In [42]:

```
alt.Chart(top5_attacked_countries[top5_attacked_countries.extended=='Yes'])
    x='count(*)',
    y='country',
    color='country',
)
# Afghanistan got the most event's extended for more than 24 hour's
```


In [43]:

```
alt.Chart(top5_attacked_countries[top5_attacked_countries.kills_num.notnull
    x='country',
    y='kills_num',
    color='country',
    size='kills_num',
)

# Most country got killed people: 1st Iraq
```


In [44]:

```
alt.Chart(top5_attacked_countries[top5_attacked_countries.wounded_num.notnu
    x='country',
    y='wounded_num',
    color='country',
)
# Iraq got the most wounded people
```


In [45]:

```
alt.Chart(top5_attacked_countries[
         (top5_attacked_countries.attacktype_1.notnull())&(top5_attacked_countriex='country',
         y='count(*)',
         color='attacktype_1',
)
#Iraq got explotions the most
```


In [46]:

print(df_sample.city[(df_sample.city.notnull())&(df_sample.city!='Unknown')

Baghdad 70 Karachi 36 Lima 23 San Salvador 22 Belfast 19

Name: city, dtype: int64

In [47]:

```
top5_attacked_cities=df_sample[df_sample.city.isin([
    'Baghdad',
    'Belfast',
    'Karachi',
    'Lima',
    'Mosul'])]
```

In [48]:

top5_attacked_cities.success.value_counts().plot(kind='pie',autopct='%1.2f%

Out[48]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99c3edc88>

In [49]:

```
alt.Chart(top5_attacked_cities).mark_line().encode(
    x=alt.X('year:T', timeUnit='year',title="Year's"),
    y='count(*)',
    color='city'
)
# Baghdad attacks spiked after 1991 and Lima city attacks stopped in 1992
```


In [50]:

```
alt.Chart(top5_attacked_cities).mark_area().encode(
    x='month:N',
    y='count(*)',
    color='city',
)
# Most of the attacks come in June most of the time
# except for Mosul
```


In [115]:

```
alt.Chart(top5_attacked_cities[top5_attacked_cities.multiple=='Yes']).mark_
    x='city',
    y='count(*)',
    color='city',
)

# Lima and Baghdad got the most multiple event's
```


In [53]:

```
alt.Chart(top5_attacked_cities[top5_attacked_cities.kills_num.notnull()]).m
    x='city',
    y='kills_num',
    color='city',
    size='kills_num',
)

#Baghdad got the most killing
```


In [54]:

```
alt.Chart(top5_attacked_cities[top5_attacked_cities.wounded_num.notnull()])
    x='city',
    y='wounded_num',
    color='city',
)
#Baghdad got the most wounded people
```


In [55]:

```
alt.Chart(top5_attacked_cities[
    (top5_attacked_cities.attacktype_1.notnull())&(top5_attacked_cities.attacktype_1.notnull())&(top5_attacked_cities.attacktype_reconstructions);
    y='city',
    color='attacktype_1',
)
# Baghdad got bombed the most then Karachi got Armed assault the most
```


In [56]:

```
print(df_sample.nationality[
          (df_sample.nationality.notnull())&(df_sample.nationality!='Unknown')].v.
#Here we can see the most targeted nationality
```

Iraq 235
Pakistan 155
India 150
Afghanistan 112
Colombia 84

Name: nationality, dtype: int64

In [57]:

```
top5_target_nationality=df_sample[df_sample.nationality.isin([
    'Iraq',
    'Pakistan',
    'India',
    'Afghanistan',
    'Colombia'])]
```

In [121]:

top5_target_nationality.nationality.value_counts().plot(kind='pie',autopct=
The percentage of the attacks on those nationality

Out[121]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99c4e6780>

In [59]:

```
alt.Chart(top5_target_nationality).mark_line().encode(
    x=alt.X('year:T', timeUnit='year',title="Year's"),
    y='count(*)',
    color='nationality'
)
```


In [60]:

```
alt.Chart(top5_target_nationality).mark_line().encode(
    x='month:N',
    y='count(*)',
    color='nationality',
    size='count(*)'
)
```


In [61]:

```
alt.Chart(top5_target_nationality[top5_target_nationality.multiple=='Yes'])
    x='nationality',
    y='count(*)',
    color='nationality',
)
# The highest nationalities who got multiple event's are Iraqis and India
```


In [62]:

```
alt.Chart(top5_target_nationality[top5_target_nationality.extended=='Yes'])
    x='nationality',
    y='count(*)',
    color='nationality',
    size='count(*)'
)
# The highest nationalities who got Extended event's are Afghanistan and Inc.
```


In [63]:

```
alt.Chart(top5_target_nationality[top5_target_nationality.kills_num.notnull
    x='nationality',
    y='kills_num',
    color='nationality',
    size='kills_num',
)
# Iraqi people got the highest number of kills
```


In [64]:

In [65]:

```
alt.Chart(top5_target_nationality[top5_target_nationality.attacktype_1!='Un
    x='count(*)',
    y='nationality',
    color='attacktype_1',
)

# We can see Iraqis got Bombed most of the time
```


In [66]:

```
print(df_sample.attacktype_1[(df_sample.attacktype_1.notnull())&(df_sample.

top5_attacktype=df_sample[df_sample.attacktype_1.isin([
    'Bombing/Explosion',
    'Armed Assault',
    'Assassination',
    'Hostage Taking (Kidnapping)',
    'Facility/Infrastructure Attack'])]
```

Bombing/Explosion	952
Armed Assault	478
Assassination	230
Facility/Infrastructure Attack	124
Hostage Taking (Kidnapping)	113
Name: attacktype 1, dtype: int64	

In [67]:

top5_attacktype.attacktype_1.value_counts().plot(kind='pie',autopct='%1.2f% #The most attack type used from all the event's are Bombing

Out[67]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99c4352b0>

In [68]:

```
alt.Chart(top5_attacktype).mark_line().encode(
    x=alt.X('year:T', timeUnit='year',title="Year's"),
    y='count(*)',
    color='attacktype_1'
)
# The 1st one Bombing/Explosion and the 2nd Armed Assault
```


In [69]:

```
alt.Chart(top5_attacktype).mark_line().encode(
    x='month:N',
    y='count(*)',
    color='attacktype_1',
    size='count(*)'
)

# It Looks like most of the attacks happened in august
```


In [70]:

```
alt.Chart(top5_attacktype[top5_attacktype.multiple=='Yes']).mark_bar().enco
    x='attacktype_1',
    y='count(*)',
    color='attacktype_1',
)

# As we can see the Boming is in the most used attack type
```


In [71]:

```
alt.Chart(top5_attacktype[top5_attacktype.extended=='Yes']).mark_circle().e
    x='attacktype_1',
    y='count(*)',
    color='attacktype_1',
    size='count(*)'
)
# The Kidnapping attack type looks like the most frequent one used in the e
```


attacktype_1

In [124]:

```
alt.Chart(top5_attacktype[top5_attacktype.kills_num.notnull()]).mark_bar().
    x='kills_num',
    y='attacktype_1',
    color='attacktype_1',
)

#Kidnapping got the highest kills number than bombing
```


In [73]:

```
alt.Chart(top5_attacktype[top5_attacktype.wounded_num.notnull()]).mark_bar(
    x='attacktype_1',
    y='wounded_num',
    color='attacktype_1',
)

# Bombing and Armed Assault got the highest wounded number of people
```


In [74]:

print(4£ 6	complo	woantw	no [/	'4 £	camplo	woantw	no notr	11 <i>(</i>)	12/	1£	camplo	woon	-vno
bi.Tiir(ut s	sampre.	weapty	per (ит	Sample	.weapty	pe.notr	iutt()) Ox ((JΤ	Sampre	·weap	Lype

Explosives/Bombs/Dynamite	986
Firearms	651
Incendiary	134
Melee	43
Chemical	4

Name: weaptype, dtype: int64

In [75]:

```
print(df_sample.weaptype[(df_sample.weaptype.notnull())&(df_sample.weaptype

top5_weapon_type=df_sample[df_sample.weaptype.isin([
    'Explosives/Bombs/Dynamite',
    'Firearms',
    'Incendiary',
    'Melee',
    'Chemical'])]
```

Explosives/Bombs/Dynamite								
Firearms								
Incendiary	134							
Melee	43							
Chemical	4							
Name: weaptype, dtype: int64								

In [76]:

top5_weapon_type.weaptype.value_counts().plot(kind='pie',autopct='%1.2f%%',

Out[76]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99c4583c8>

In [77]:

```
alt.Chart(top5_weapon_type).mark_line().encode(
    x=alt.X('year:T', timeUnit='year',title="Year's"),
    y='count(*)',
    color='weaptype'
)
```


In [78]:

```
alt.Chart(top5_weapon_type).mark_area().encode(
    x='month:N',
    y='count(*)',
    color='weaptype',
    size='count(*)'
)
#Explosives mostly used in november
```


In [80]:

```
alt.Chart(top5_weapon_type[top5_weapon_type.kills_num.notnull()]).mark_bar(
    x='kills_num',
    y='weaptype',
    color='weaptype',
)

# Explosives/Bombs/Dynamite are the most weapon type used in the event's
```


In [81]:

```
alt.Chart(top5_weapon_type[top5_weapon_type.extended=='Yes']).mark_bar().en
    x='count(*)',
    y='weaptype',
    color='weaptype',
)
# FireArms are the most type who keeps the event for more than 24 hours
```


In [82]:

```
print(df_sample.targ_type[(df_sample.targ_type.notnull())&(df_sample.targ_type)
top5_target_type=df_sample[df_sample.targ_type.isin([
    'Private Citizens & Property',
    'Military',
    'Police',
    'Business',
    'Government (General)'])]
```

```
Private Citizens & Property 471
Military 311
Police 287
Government (General) 254
Business 230
Name: targ type, dtype: int64
```

In [83]:

top5_target_type.targ_type.value_counts().plot(kind='pie',autopct='%1.2f%%'
most attacks target type are Private Citizens & Property

Out[83]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99c47a278>

In [84]:

```
alt.Chart(top5_target_type).mark_line().encode(
    x=alt.X('year:T', timeUnit='year',title="Year's"),
    y='count(*)',
    color='targ_type'
)
```


In [85]:

```
alt.Chart(top5_target_type).mark_line().encode(
    x='month:N',
    y='count(*)',
    color='targ_type',
    size='count(*)'
)

# We can see that most targeted types are private citizens
```


In [86]:

```
alt.Chart(top5_target_type[top5_target_type.multiple=='Yes']).mark_bar().en
    x='targ_type',
    y='count(*)',
    color='targ_type',
)
# The most multiple event's happened for targeting Private Citizen's & Property
```


In [87]:

```
alt.Chart(top5_target_type[top5_target_type.extended=='Yes']).mark_bar().en
    x='count(*)',
    y='targ_type',
    color='targ_type',
)

# event's extended for more than 24 hours usually have something to do with
# 1st (Private Citizen's & Property)
# 2nd Business
```


In [88]:

```
print(df_sample.targ_subtype[
        (df_sample.targ_subtype.notnull())&(df_sample.targ_subtype!='Unnamed Cir
#Here we can see the Sub type target
```

```
Police Security Forces/Officers

1
Military Unit/Patrol/Convoy
9
Military Personnel (soldiers, troops, officers, forces)
8
Government Personnel (excluding police, military)
7
8
Politician or Political Party Movement/Meeting/Rally
9
Name: targ_subtype, dtype: int64
```

In [89]:

```
top5_target_Subtype=df_sample[df_sample.targ_subtype.isin([
    'Police Security Forces/Officers',
    'Military Unit/Patrol/Convoy',
    'Military Personnel (soldiers, troops, officers, forces)',
    'Government Personnel (excluding police, military)',
    'Politician or Political Party Movement/Meeting/Rally'])]
```

In [90]:

top5_target_Subtype.targ_subtype.value_counts().plot(kind='pie',autopct='%1

Out[90]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d99b552518>

In [91]:

```
alt.Chart(top5_target_Subtype).mark_line().encode(
    x=alt.X('year:T', timeUnit='year',title="Year's"),
    y='count(*)',
    color='targ_subtype'
)
```


In [92]:

```
alt.Chart(top5_target_Subtype).mark_area().encode(
    x='month:N',
    y='count(*)',
    color='targ_subtype',
    size='count(*)'
)
```


targ_subtype

- Government Personnel (excluding police, military)
- Military Personnel (soldiers, troops, officers, forces)
- Military Unit/Patrol/Convoy
- Police Security Forces/Officers
- Politician or Political Party Movement/Meeting/Rally

In [93]:

```
alt.Chart(top5_target_Subtype[top5_target_Subtype.multiple=='Yes']).mark_ba
    x='targ_subtype',
    y='count(*)',
    color='targ_subtype',
)

#The following subtype are more likely to get into multiple events:
# 1st Police Security Forces/Officers
# 2nd Military Personnel (soldiers, troops, officers, forces)
```


In [94]:

```
alt.Chart(top5_target_Subtype[top5_target_Subtype.extended=='Yes']).mark_ci
    x='targ_subtype',
    y='count(*)',
    color='targ_subtype',
    size='count(*)'
)

# The most subtype who gets into event's stays longer than 24 hour's are
# the Government Personnel (excluding police, military)
```


In [6]:

In [7]:

```
top5_target_grpName=df_sample[df_sample.group_name.isin([
    'Taliban',
    'Shining Path (SL)',
    'Islamic State of Iraq and the Levant (ISIL)',
    'Farabundo Marti National Liberation Front (FMLN)',
    'Irish Republican Army (IRA)'])]
```

In [16]:

top5_target_grpName.group_name.value_counts().plot(kind='pie',autopct='%1.2

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x2b2d68150f0>

In [98]:

```
alt.Chart(top5_target_grpName).mark_line().encode(
    x=alt.X('year:T', timeUnit='year',title="Year's"),
    y='count(*)',
    color='group_name'
)

# we can see that the ISIL and Taliban the most active groups
```


In [99]:

```
alt.Chart(top5_target_grpName).mark_square().encode(
    x='month:N',
    y='count(*)',
    color='group_name',
    size='count(*)'
)

# We can see the groups activities got lower in the beginning and the end of
```


In [100]:

```
alt.Chart(top5_target_grpName[top5_target_grpName.multiple=='Yes']).mark_ba
    x='group_name',
    y='count(*)',
    color='group_name',
)

#Here we can see usually ISIL cause multiple event's
```


In [101]:

```
alt.Chart(top5_target_grpName[top5_target_grpName.extended=='Yes']).mark_ci
    x='group_name',
    y='count(*)',
    color='group_name',
    size='count(*)'
)

# Groups who get their event's to extend for more than 24 hour's:
#1st Taliban
#2nd ISIL
```


In [102]:

```
alt.Chart(top5_target_grpName[top5_target_grpName.attacktype_1!='Unknown'])
    x='count(*)',
    y='group_name',
    color='attacktype_1',
)
#The most used attack type in Taliban is Boming and Armed Assault
```

