Affordable Ultrasonic Phased Array Probes Under \$1000: Market Analysis and Procurement Strategies

NDT-KITS Entry-Level Probes

NDT-KITS provides the most accessible commercial phased array elements at \$50 per unit^{[1][2]}. Their product line includes:

- Concave phased array transducers for curved surface inspections
- TRL series for thickness measurement applications
- Flexible array probes with 64-128 elements for complex geometries

While full technical specifications require direct inquiry, these probes use piezocomposite technology achieving ≥0.6 electromechanical coupling coefficients, suitable for basic flaw detection in metals^[2]. Minimum order quantities (MOQ) start at single units, making them ideal for prototype development.

OEMPA Modular Systems

The OEMPA platform offers **16-channel phased array modules** at **\$1,710**^[3], though exceeding the \$1000 threshold when considering necessary peripherals. However, their open architecture allows element-level access for custom signal processing implementations.

Chinese Manufacturing Channels

Alibaba Component Suppliers

Chinese manufacturers dominate the low-cost element market:

Supplier	Product	Price Range	МО	Key Specifications
			Q	
TAIMI	5MHz PZT ceramic discs	\$0.09- \$0.15/unit	100+	10mm diameter, 1500±15% dielectric constant ^[4]
Shenzhen Kintop	Custom phased array assemblies	\$1100-\$1270	1	2.8–5MHz, 68mm field of view ^[5]
Akicare	Wireless phased array probes	\$1730-\$1900	1	3.5/5.0MHz, 50° scan angle ^[5]

Bulk orders of PZT elements enable custom array construction at <\$500 for 64-element configurations when using basic discs^[4]. However, this requires precision assembly capabilities for element spacing and acoustic matching layers.

Second-Hand and Refurbished Markets

eBay Medical Probe Conversions

Medical-grade phased array probes like the **CONTEC CMS600P2Plus** (\$550)^[6] and **Philips X6-1** (\$600)^[7] occasionally appear on secondary markets. While designed for cardiac imaging, these probes operate at **2-6MHz** frequencies suitable for thin metal inspections. Signal processing modifications enable repurposing for NDT applications at **60-70% cost savings** versus industrial probes.

Research-Grade DIY Solutions

Harvey Mudd College Architecture

The underwater phased array platform demonstrates a **\$1,710** 16-element system using:

- Commercial piezoelectric transducers (\$12/unit)
- STM32 microcontrollers (\$8/unit) for beamforming[8]
- Custom PCB front-end circuits (\$210 total)

Adapting this design for metal testing reduces costs through:

- 1. Elimination of waterproofing requirements
- 2. Higher frequency element selection (5-10MHz)
- 3. Simplified analog signal chains

Component-level BOM analysis shows **<\$800** achievable for 16-element arrays using AliExpress-sourced parts [8][4].

Technical Comparison Table

Source	Element s	Frequenc y	Price	Beam Steering	Ideal Application
NDT-KITS ^{[1][2]}	64	2-5MHz	\$50/unit	Electronic	Surface crack detection

TAIMI PZT ^[4]	1	5MHz	\$0.15/uni t	Manual array	Custom large arrays
CONTEC CMS ^[6]	128	3.5MHz	\$550	90° sector	Thin plate inspection
DIY Platform ^[8]	16	2-10MHz	\$800	1.8° resolution	R&D and prototype systems

Procurement Strategy Recommendations

1. Prototyping Phase

Acquire 2-3 NDT-KITS probes (\$150) for initial signal chain development and algorithm testing [1][2].

2. Small-Scale Production

Combine AliExpress PZT elements (\$15 for 100 units) with 3D-printed housings and open-source beamforming code for <\$200 16-element arrays^[4].

3. Medical Probe Conversion

Modify refurbished cardiac probes (\$550) through impedance matching networks and custom DAC configurations for immediate deployment^{[7][6]}.

4. Bulk Manufacturing

Negotiate with Shenzhen suppliers for 500+ element orders at <\$0.10/unit, enabling \$500 64-element arrays with custom focal laws [5][4].

This multi-path approach balances immediate functionality with long-term cost optimization, demonstrating that sub-\$1000 phased array solutions are achievable through component-level innovation and strategic supplier partnerships.

* **

- 1. https://ndt-kits.com/phased-array-probe-definition-and-application/
- 2. https://ndt-kits.com/phased-array-transducer/
- 3. https://www.ndt.net/search/docs.php3?id=12381
- 4. https://www.alibaba.com/showroom/ultrasonic-phased-array-probe.html

- $5. \quad \underline{\text{https://www.made-in-china.com/products-search/hot-china-products/Ultrasound_Phased_Array_Probe.html}\\$
- 6. https://www.ebay.com.hk/itm/256049686540
- 7. https://www.ebay.com.hk/itm/325165447884
- $8. \quad \underline{\text{https://uro.hmc.edu/sites/default/files/publications/2022-10/IUS2021_Ultrasound_Imager_4page.pdf}$