# **D3**

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: df=pd.read\_csv(r"C:\Users\user\Downloads\4\_drug200.csv")
 df

### Out[2]:

|     | Age | Sex | ВР     | Cholesterol | Na_to_K | Drug  |
|-----|-----|-----|--------|-------------|---------|-------|
| 0   | 23  | F   | HIGH   | HIGH        | 25.355  | drugY |
| 1   | 47  | М   | LOW    | HIGH        | 13.093  | drugC |
| 2   | 47  | М   | LOW    | HIGH        | 10.114  | drugC |
| 3   | 28  | F   | NORMAL | HIGH        | 7.798   | drugX |
| 4   | 61  | F   | LOW    | HIGH        | 18.043  | drugY |
|     |     |     |        |             |         |       |
| 195 | 56  | F   | LOW    | HIGH        | 11.567  | drugC |
| 196 | 16  | М   | LOW    | HIGH        | 12.006  | drugC |
| 197 | 52  | М   | NORMAL | HIGH        | 9.894   | drugX |
| 198 | 23  | М   | NORMAL | NORMAL      | 14.020  | drugX |
| 199 | 40  | F   | LOW    | NORMAL      | 11.349  | drugX |

200 rows × 6 columns

## In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

| #                                                  | Column      | Non-Null Count | Dtype   |  |  |  |  |
|----------------------------------------------------|-------------|----------------|---------|--|--|--|--|
|                                                    |             |                |         |  |  |  |  |
| 0                                                  | Age         | 200 non-null   | int64   |  |  |  |  |
| 1                                                  | Sex         | 200 non-null   | object  |  |  |  |  |
| 2                                                  | BP          | 200 non-null   | object  |  |  |  |  |
| 3                                                  | Cholesterol | 200 non-null   | object  |  |  |  |  |
| 4                                                  | Na_to_K     | 200 non-null   | float64 |  |  |  |  |
| 5                                                  | Drug        | 200 non-null   | object  |  |  |  |  |
| <pre>dtypes: float64(1), int64(1), object(4)</pre> |             |                |         |  |  |  |  |

memory usage: 9.5+ KB

In [4]: df.describe()

Out[4]:

|       | Age        | Na_to_K    |
|-------|------------|------------|
| count | 200.000000 | 200.000000 |
| mean  | 44.315000  | 16.084485  |
| std   | 16.544315  | 7.223956   |
| min   | 15.000000  | 6.269000   |
| 25%   | 31.000000  | 10.445500  |
| 50%   | 45.000000  | 13.936500  |
| 75%   | 58.000000  | 19.380000  |
| max   | 74.000000  | 38.247000  |

In [5]: df.columns

Out[5]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na\_to\_K', 'Drug'], dtype='object')

In [6]: sns.pairplot(df)

Out[6]: <seaborn.axisgrid.PairGrid at 0x1eb144434d0>



In [7]: sns.distplot(df["Age"])

C:\Users\user\AppData\Local\Temp\ipykernel\_7792\2732350774.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df["Age"])

Out[7]: <Axes: xlabel='Age', ylabel='Density'>



In [8]: df1=df[['Age', 'Sex', 'BP', 'Cholesterol', 'Na\_to\_K', 'Drug']]

```
In [9]: sns.heatmap(df1.corr())
```

C:\Users\user\AppData\Local\Temp\ipykernel\_7792\781785195.py:1: FutureWarnin
g: The default value of numeric\_only in DataFrame.corr is deprecated. In a fu
ture version, it will default to False. Select only valid columns or specify
the value of numeric\_only to silence this warning.
 sns.heatmap(df1.corr())

### Out[9]: <Axes: >



```
In [10]: x=df1[['Age']]
y=df1['Na_to_K']
```

In [11]: from sklearn.model\_selection import train\_test\_split
x\_train,x\_test,y\_train,y\_test=train\_test\_split(x,y,test\_size=0.3)

Out[12]: v LinearRegression LinearRegression()

```
In [13]: print(lr.intercept_)
```

15.435320212781702

```
In [14]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

### Out[14]:

#### Co-efficient

**Age** 0.011889

```
In [15]: prediction=lr.predict(x_test)
    plt.scatter(y_test, prediction)
```

Out[15]: <matplotlib.collections.PathCollection at 0x1eb0f056250>



```
In [16]: print(lr.score(x_test,y_test))
```

-0.017709603394363116

In [17]: from sklearn.linear\_model import Ridge,Lasso

In [18]: rr=Ridge(alpha=10)
 rr.fit(x\_train,y\_train)

Out[18]: Ridge
Ridge(alpha=10)