FCC SAR Test Report

APPLICANT : Bullitt Group

EQUIPMENT: Rugged Smart Phone

BRAND NAME : CAT MODEL NAME : S40

MARKETING NAME : \$40

FCC ID : ZL5S40

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2003

We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Eric Huang / Deputy Manager

Este huans

Approved by: Jones Tsai / Manager

lac-MRA

Report No. : FA552956

SPORTON INTERNATIONAL INC.

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.)

Page 1 of 63

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: ZL5S40

Issued Date : Jul. 16, 2015 Form version. : 150415

Table of Contents

1. Statement of Compliance	
2. Administration Data	
3. Guidance Standard	5
4. Equipment Under Test (EUT)	
4.1 General Information	6
4.2 Maximum Tune-up Limit	
4.3 General LTE SAR Test and Reporting Considerations	
5. RF Exposure Limits	
5.1 Uncontrolled Environment	
5.2 Controlled Environment	
6. Specific Absorption Rate (SAR)	
6.1 Introduction	
6.2 SAR Definition	
7. System Description and Setup	
8. Measurement Procedures	13
8.1 Spatial Peak SAR Evaluation	13
8.2 Power Reference Measurement	
8.3 Area Scan	
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring	15
9. Test Equipment List	
10. System Verification	
10.1 Tissue Verification	
10.2 System Performance Check Results	
11. RF Exposure Positions	19
11.1 Ear and handset reference point	19
11.2 Definition of the cheek position	
11.3 Definition of the tilt position	21
11.4 Body Worn Accessory	22
11.5 Wireless Router	22
12. Conducted RF Output Power (Unit: dBm)	
13. Antenna Location	
14. SAR Test Results	
14.1 Head SAR	
14.2 Hotspot SAR	
14.3 Body Worn Accessory SAR	
14.4 Repeated SAR Measurement	
15. Simultaneous Transmission Analysis	
15.1 Head Exposure Conditions	
15.2 Hotspot Exposure Conditions	58
15.3 Body-Worn Accessory Exposure Conditions	60
16. Uncertainty Assessment	
17. References	63
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

Revision History

Report No.: FA552956

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA552956	Rev. 01	Initial issue of report	Jul. 16, 2015

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 3 of 63

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **Bullitt Group**, **Rugged Smart Phone**, **S40**, are as follows.

Report No.: FA552956

			Highest SAR Summary					
Equipment Class	Frequency Band	Head (Separation 0mm)	Body-worn (Separation 10mm)	Wireless Router (Separation 10mm)	Highest Simultaneous Transmission			
			1g SAR (W/kg)					
	GSM850	0.64	0.72	0.72				
	GSM1900	0.47	1.09	1.09				
	WCDMA Band V	0.87	0.89	0.89				
	WCDMA Band IV	0.96	1.14	1.14				
	WCDMA Band II	0.64	1.33	1.33				
PCE	LTE Band 12	0.09	0.27	0.27	1.51			
	LTE Band 17	0.11	0.28	0.28				
	LTE Band 5	0.74	0.82	0.82				
	LTE Band 4	0.91	1.15	1.15				
	LTE Band 2	0.63	1.29	1.29				
	LTE Band 7	0.38	0.42	0.42				
DTS	WLAN 2.4GHz Band	0.55	0.10	0.10	1.51			
DSS	Bluetooth	0.07	0.01	0.01	1.33			
Date of	f Testing:	2015/6/26 ~ 2015/07/01						

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003.

2. Administration Data

Testing Laboratory								
Test Site SPORTON INTERNATIONAL INC.								
Test Site Location	No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978							

Report No. : FA552956

Applicant Applicant						
Company Name	Bullitt Group					
Address	One Valpy, Valpy Street, Reading, Berkshire, RG1 1AR United Kingdom					

Manufacturer						
Company Name	Compal Electronics, INC.					
Address	No. 385, Yangguang St. Neihu District, Taipei City 11491, Taiwan, R.O.C					

3. Guidance Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2003
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03
- FCC KDB 865664 D02 SAR Reporting v01r01
- FCC KDB 447498 D01 General RF Exposure Guidance v05r02
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r02
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r01
- FCC KDB 941225 D01 3G SAR Procedures v03
- FCC KDB 941225 D05 SAR for LTE Devices v02r03

4. Equipment Under Test (EUT)

4.1 General Information

	Product Feature & Specification
Equipment Name	Rugged Smart Phone
Brand Name	CAT
Model Name	S40
Marketing Name	S40
FCC ID	ZL5S40
IMEI Code	351932070001846
S/N	b33fcae8 / b32bca5b
Sample 1	EUT with 16G eMMC and Dual SIM
Sample 2	EUT with 16G eMMC and Single SIM
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 17: 706.5 MHz ~ 713.5 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz NFC: 13.56 MHz
Mode	GSM/GPRS/EGPRS RMC 12.2Kbps HSDPA HSUPA DC-HSDPA LTE: QPSK, 16QAM 802.11b/g/n HT20 Bluetooth v3.0+EDR Bluetooth v4.0-LE NFC:ASK
HW Version	1.0
SW Version	LTE_D0201121.0_S40_0.012.00
GSM / (E)GPRS Dual Transfer mode	Class A – EUT can support Packet Switched and Circuit Switched Network simultaneously.
EUT Stage	Identical Prototype
Remark:	

Report No.: FA552956

Remark

- 1. This device supported VoIP in EGPRS, WCDMA, LTE (e.g. 3rd party VoIP).
- 2. This device supports GRPS/EGPRS mode up to multi-slot class33 and supports DTM up to multi-slot class11.
- 3. All the test cases were used sample 1 perform.

<Difference>

Content of the con								
S40 has 2 different Variant								
eMMC								
Sample 1	16G	Dual SIM						
Sample 2	16G	Single Sim						

For Dual-SIM or Single-SIM control by SW, HW is the same

SPORTON INTERNATIONAL INC.

4.2 Maximum Tune-up Limit

	Maria	Burst average power(dBm)					
	Mode	GSM 850	GSM 1900				
GSN	// (GMSK, 1 Tx slot)	33.50	30.50				
GPR	S (GMSK, 1 Tx slot)	33.50	30.50				
GPR	S (GMSK, 2 Tx slots)	30.50	27.50				
GPR	S (GMSK, 3 Tx slots)	28.50	25.50				
GPR:	S (GMSK, 4 Tx slots)	27.50	24.50				
EDG	SE (8PSK, 1 Tx slot)	27.50	26.50				
EDG	E (8PSK, 2 Tx slots)	27.30	26.30				
EDG	EDGE (8PSK, 3 Tx slots) 27.10		26.10				
EDG	E (8PSK, 4 Tx slots)	26.90	25.90				
DTM 5	GSM (GMSK, 1 Tx slot)	30.50	27.50				
DINIS	GPRS (GMSK, 1 Tx slot)	30.50	27.50				
DTM 9	GSM (GMSK, 1 Tx slot)	30.50	27.50				
DIMB	GPRS (GMSK, 1 Tx slot)	30.50	27.50				
DTM11	GSM (GMSK, 1 Tx slot)	28.50	25.50				
DIMIT	GPRS (GMSK, 2 Tx slots)	28.50	25.50				
DTME	GSM (GMSK, 1 Tx slot)	30.50	27.50				
DTM 5	EDGE (8PSK, 1 Tx slot)	27.30	26.30				
DTM 9	GSM (GMSK, 1 Tx slot)	30.50	27.50				
פואום	EDGE (8PSK, 1 Tx slot)	27.30	26.30				
DTM 11	GSM (GMSK, 1 Tx slot)	28.50	25.50				
ווואווט	EDGE (8PSK, 2 Tx slots)	27.10	26.10				

Report No.: FA552956

Mo	ode	Average Power (dBm)				
	Band V	24.00				
WCDMA	Band IV	24.00				
	Band II	24.00				
	Band 12	24.00				
	Band 17	24.00				
LTE	Band 5	24.00				
LIE	Band 4	24.00				
	Band 2	24.00				
	Band 7	24.00				
	802.11b	17.00				
2.4GHz WLAN	802.11g	13.00				
	802.11n-HT20	12.00				
Bluetooth	Bluetooth v3.0+EDR					
Bluetoot	h v4.0+LE	2.75				

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 7 of 63

4.3 General LTE SAR Test and Reporting Considerations

		Sun	nmarize	d neces	sarv item	s addre	essed in KDF	3 94	1225 D05 v02	r03			
FC	C ID	- Cui		d necessary items addressed in KDB 941225 D05 v02r03 ZL5S40									
	uipment Name			Rugged Smart Phone									
Ор	erating Frequen	n LTE	LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 17: 706.5 MHz ~ 713.5 MHz LTE Band 05: 824.7 MHz ~ 848.3 MHz LTE Band 04: 1710.7 MHz ~ 1754.3 MHz LTE Band 02: 1850.7 MHz ~ 1909.3 MHz LTE Band 07: 2502.5 MHz ~ 2567.5 MHz										
Ch	annel Bandwidth		LTE Bar LTE Bar LTE Bar LTE Bar LTE Bar	LTE Band 12:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 17: 5MHz, 10MHz LTE Band 05:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 05:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 04:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 02:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 07: 5MHz, 10MHz, 15MHz, 20MHz									
Re	lease and Categ	jory		Rel9, Ca	at4								
upl	ink modulations	used		QPSK, a	and 16QA	М							
LTI	E Voice / Data re	equirements		Data on	ly								
				Mo	Table odulation				Reduction (MF / Transmission	and Pauline, the resi		3 MPR (dB)	7
LTI	E MPR permane	ently built-in by de	esign			1.4 MHz		5 MH	lz MHz	15 MHz	20 MHz		
					QPSK 6 QAM	>5 ≤5	> 4 ≤ 4	>		> 16 ≤ 16	> 18 ≤ 18	≤ 1 ≤ 1	4
					6 QAM	>5	>4	>		> 16	> 18	≤2	
	E A-MPR ectrum plots for	RB configuration		In the base station simulator configuration, Network Setting value is set to NS_01 to disable A-MPR during SAR testing and the LTE SAR tests was transmitting on all TTI frames (Maximum TTI) A properly configured base station simulator was used for the SAR and power measurement; therefore, spectrum plots for each RB allocation and offset configuration are not included in the SAR report.							mes ower		
		Transm	ission (enci	es in each LT	E band			
			`			TE Bar							
	Bandwidtl	h 1.4 MHz		Bandwid	lth 3 MHz		Band	widtl	h 5 MHz		Bandwidt	h 10 MHz	
	Ch. #	Freq. (MHz)	Cł	n. #	Freq. (I	MHz)	Ch. #		Freq. (MHz)	С	h. #	Freq. (MF	Hz)
L	23017	699.7	23	025	700	,	23035		701.5		3060	704	
М	23095	707.5	23	095	707	.5	23095		707.5	23	3095	707.5	
Н	23173	715.3	23	165	714	.5	23155		713.5	23	3130	711	
						TE Ban							
		Bandwid	th 5 MH	Z					Bandw	dth 10 Mł	-lz		
	Chan	nnel #	WI O IVII I		(MHz)			hanı	nel #	LITTO IVII	Freq.	(MHz)	
L		755		<u> </u>	6.5			237			7(,	
М		790			10								
Н		825			3.5		23790 23800				710 711		
	230			, ,		LTE Bai	nd 5	200					
	Bandwidtl		lth 3 MHz			widt	h 5 MHz	Bandw		h 10 MHz			
	Ch. #	Freq. (MHz)		n. #	Freq. (I	MHz) _	Ch. #	wiati	Freq. (MHz)		h. #	Freq. (MF	lz)
L	20407	824.7		415	825.	,	20425		826.5)450	829	12)
М	20525	836.5		525	836		20525		836.5)525	836.5	
Н	20643	848.3	20	635	847.	.ວ	20625		846.5	20	0600	844	

Report No. : FA552956

	Transmission /U. M. I.) shannel numbers and fraguencies in each LTC hand												
	Transmission (H, M, L) channel numbers and frequencies in each LTE band												
	LTE Band 4												
	Bandwidtl	h 1.4 MHz	Bandwid	th 3 MHz	Band	Bandwidth 5 MHz E		h 10 MH	Hz Bandwid	th 15 MHz	Bandwid	th 20 MHz	
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq (MHz		Freq. (MHz)	Ch. #	Freq. (MHz)	
L	19957	1710.7	19965	1711.5	1997	5 1712.5	20000	1715	20025	1717.5	20050	1720	
М	20175	1732.5	20175	1732.5	2017	5 1732.5	20175	1732.	.5 20175	1732.5	20175	1732.5	
Н	20393	1754.3	20385	1753.5	2037	5 1752.5	20350	1750	20325	1747.5	20300	1745	
	LTE Band 2												
	Bandwidth 1.4 MHz Bandwid		Bandwid	th 3 MHz Bandwidth 5 MHz		Bandwidth 10 MHz Bandwidth		th 15 MHz Bandwidth		th 20 MHz			
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq (MHz		Freq. (MHz)	Ch. #	Freq. (MHz)	
L	18607	1850.7	18615	1851.5	1862	5 1852.5	18650	1855	18675	1857.5	18700	1860	
М	18900	1880	18900	1880	1890	0 1880	18900	1880	18900	1880	18900	1880	
Н	19193	1909.3	19185	1908.5	1917	5 1907.5	19150	1905	5 19125	1902.5	19100	1900	
						LTE Ba	ind 7						
	Baı	ndwidth 5	MHz	Ban	dwidth	10 MHz	Bandwidth 15 MHz			Bandwidth 20 MHz			
	Ch. #	Fr	eq. (MHz)	Ch. #		Freq. (MHz)	Ch. #		Freq. (MHz)	Ch. #	Fr	eq. (MHz)	
L	20775	775 2502.5 20800 2505		2505	20825		2507.5	20850)	2510			
М	21100)	2535	21100)	2535	21100)	2535	21100)	2535	
Н	21425	5	2567.5	21400)	2565	21375	5	2562.5	21350)	2560	

Report No.: FA552956

5. <u>RF Exposure Limits</u>

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA552956

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jul. 16, 2015 FCC ID: ZL5S40 Page 10 of 63 Form version.: 150415

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA552956

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA552956

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing,
 AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps,
- The phantom, the device holder and other accessories according to the targeted measurement.

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA552956

- Read the WWAN RF power level from the base station simulator.
- For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power
- Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- Find out the largest SAR result on these testing positions of each band (e)
- Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement (a)
- (b) Area scan
- (c) Zoom scan
- Power drift measurement

SPORTON INTERNATIONAL INC.

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- Extraction of the measured data (grid and values) from the Zoom Scan
- Calculation of the SAR value at every measurement point based on all stored data (A/D values and (b) measurement parameters)
- Generation of a high-resolution mesh within the measured volume (c)
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface (e)
- Calculation of the averaged SAR within masses of 1g and 10g

FCC ID: ZL5S40 Page 13 of 63

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA552956

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz			
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$			
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°			
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$			
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.				

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jul. 16, 2015

Form version.: 150415 FCC ID: ZL5S40 Page 14 of 63

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA552956

Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume x, y, z			≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jul. 16, 2015

Form version. : 150415 FCC ID: ZL5S40 Page 15 of 63

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}, \leq 8 \text{ mm}, \leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calib	ration
Manuracturer	Name of Equipment	i ype/wodei	Serial Number	Last Cal.	Due Date
SPEAG	750MHz System Validation Kit	D750V3	1012	May. 28, 2015	May. 27, 2016
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 20, 2015	Mar. 19, 2016
SPEAG	1750MHz System Validation Kit	D1750V2	1068	Nov. 14, 2014	Nov. 13, 2015
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 24, 2015	Mar. 23, 2016
SPEAG	2450MHz System Validation Kit	D2450V2	924	Nov. 19, 2014	Nov. 18, 2015
SPEAG	2600MHz System Validation Kit	D2600V2	1070	Nov. 19, 2014	Nov. 18, 2015
SPEAG	Data Acquisition Electronics	DAE4	1388	Sep. 24, 2014	Sep. 23, 2015
SPEAG	Data Acquisition Electronics	DAE3	577	Oct. 06, 2014	Oct. 05, 2015
SPEAG	Data Acquisition Electronics	DAE4	1279	Jul. 23, 2014	Jul. 22, 2015
SPEAG	Data Acquisition Electronics	DAE3	495	May. 22, 2015	May. 21, 2016
SPEAG	Dosimetric E-Field Probe	EX3DV4	3697	Sep. 29, 2014	Sep. 28, 2015
SPEAG	Dosimetric E-Field Probe	EX3DV4	3931	Sep. 25, 2014	Sep. 24, 2015
SPEAG	Dosimetric E-Field Probe	EX3DV4	3954	Nov. 21, 2014	Nov. 20, 2015
SPEAG	Dosimetric E-Field Probe	EX3DV4	3925	May. 27, 2015	May. 26, 2016
Wisewind	Thermometer	HTC-1	TM642	Oct. 21, 2014	Oct. 20, 2015
Wisewind	Thermometer	HTC-1	TM281	Oct. 21, 2014	Oct. 20, 2015
H.M.IRIS	Thermometer	TH-08	TM658	Oct. 21, 2014	Oct. 20, 2015
Wisewind	Thermometer	ETP-101	TM225	Oct. 21, 2014	Oct. 20, 2015
Anritsu	Radio Communication Analyzer	MT8820C	6201074414	Feb. 06, 2015	Feb. 05, 2016
Agilent	Wireless Communication Test Set	E5515C	MY50266977	May. 14, 2015	May. 13, 2016
SPEAG	Device Holder	N/A	N/A	N/A	N/A
Agilent	Signal Generator	N5181A	MY50145381	Dec. 11, 2014	Dec. 10, 2015
Agilent	ENA Network Analyzer	E5071C	MY46316648	Feb. 11, 2015	Feb. 10, 2016
SPEAG	Dielectric Probe Kit	DAK-3.5	1138	Nov. 18, 2014	Nov. 17, 2015
Anritsu	Power Meter	ML2495A	1349001	Dec. 03, 2014	Dec. 02, 2015
Anritsu	Power Sensor	MA2411B	1306099	Dec. 03, 2014	Dec. 02, 2015
R&S	Spectrum Analyzer	FSP 7	101131	Jul. 10, 2014	Jul. 09, 2015
Agilent	Dual Directional Coupler	778D	50422	Not	te 1
Woken	Attenuator 1	WK0602-XX	N/A	Not	te 1
PE	Attenuator 2	PE7005-10	N/A	Not	te 1
PE	Attenuator 3	PE7005- 3	N/A	Not	te 1
AR	Power Amplifier	5S1G4M2	0328767	Not	te 1
Mini-Circuits	Power Amplifier	ZVE-3W	162601250	Not	te 1

Report No.: FA552956

General Note:

1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

FCC ID : ZL5S40 Page 16 of 63 Form version. : 150415

10. System Verification

10.1 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target

Report No.: FA552956

tissue parameters required for routine SAR evaluation.

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)		
For Head										
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9		
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5		
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5		
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0		
2450	55.0	0	0	0	0	45.0	1.80	39.2		
2600	54.8	0	0	0.1	0	45.1	1.96	39.0		
				For Body						
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5		
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2		
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0		
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3		
2450	68.6	0	0	0	0	31.4	1.95	52.7		
2600	68.1	0	0	0.1	0	31.8	2.16	52.5		

Simulating Liquid for 5GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	64~78%
Mineral oil	11~18%
Emulsifiers	9~15%
Additives and Salt	2~3%

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
750	HSL	22.4	0.893	42.633	0.89	41.90	0.34	1.75	±5	2015/6/28
835	HSL	22.5	0.889	42.598	0.90	41.50	-1.22	2.65	±5	2015/6/29
1750	HSL	22.5	1.366	39.761	1.37	40.10	-0.29	-0.85	±5	2015/6/29
1900	HSL	22.6	1.416	40.600	1.40	40.00	1.14	1.50	±5	2015/6/28
1900	HSL	22.4	1.450	39.300	1.40	40.00	3.57	-1.75	±5	2015/6/30
2450	HSL	22.1	1.862	37.833	1.80	39.20	3.44	-3.49	±5	2015/6/30
2450	HSL	22.3	1.849	39.044	1.80	39.20	2.72	-0.40	±5	2015/7/1
2600	HSL	22.3	2.021	37.864	1.96	39.00	3.11	-2.91	±5	2015/7/1
750	MSL	22.6	0.975	55.039	0.96	55.50	1.56	-0.83	±5	2015/6/28
835	MSL	22.5	0.984	56.447	0.97	55.20	1.44	2.26	±5	2015/6/27
1750	MSL	22.3	1.529	52.221	1.49	53.40	2.62	-2.21	±5	2015/6/27
1900	MSL	22.3	1.546	52.216	1.52	53.30	1.71	-2.03	±5	2015/6/26
1900	MSL	22.4	1.540	54.200	1.52	53.30	1.32	1.69	±5	2015/6/30
2450	MSL	22.1	2.032	51.139	1.95	52.70	4.21	-2.96	±5	2015/6/30
2450	MSL	22.3	1.920	53.118	1.95	52.70	-1.54	0.79	±5	2015/7/1
2600	MSL	22.2	2.201	52.823	2.16	52.50	1.90	0.62	±5	2015/6/26
2600	MSL	22.2	2.201	52.823	2.16	52.50	1.90	0.62	±5	2015/6/26

FCC ID : ZL5S40 Page 17 of 63 Form version. : 150415

10.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2015/6/28	750	HSL	250	D750V3-1012	EX3DV4 - SN3954	DAE4 Sn1279	2.08	8.22	8.32	1.22
2015/6/29	835	HSL	250	D835V2-499	EX3DV4 - SN3954	DAE4 Sn1279	2.33	9.20	9.32	1.30
2015/6/29	1750	HSL	250	D1750V2-1068	EX3DV4 - SN3954	DAE4 Sn1279	8.61	36.80	34.44	-6.41
2015/6/28	1900	HSL	250	D1900V2-5d041	EX3DV4 - SN3954	DAE4 Sn1279	10.10	40.00	40.40	1.00
2015/6/30	1900	HSL	250	D1900V2-5d041	EX3DV4 - SN3697	DAE4 Sn1388	10.20	40.00	40.80	2.00
2015/6/30	2450	HSL	250	D2450V2-924	EX3DV4 - SN3925	DAE3 Sn495	13.90	51.90	55.60	7.13
2015/7/1	2450	HSL	250	D2450V2-924	EX3DV4 - SN3925	DAE3 Sn495	13.80	51.90	55.20	6.36
2015/7/1	2600	HSL	250	D2600V2-1070	EX3DV4 - SN3925	DAE3 Sn495	13.90	56.90	55.60	-2.28
2015/6/28	750	MSL	250	D750V3-1012	EX3DV4 - SN3954	DAE4 Sn1279	2.08	8.61	8.32	-3.37
2015/6/27	835	MSL	250	D835V2-499	EX3DV4 - SN3954	DAE4 Sn1279	2.36	9.30	9.44	1.51
2015/6/27	1750	MSL	250	D1750V2-1068	EX3DV4 - SN3954	DAE4 Sn1279	9.13	38.00	36.52	-3.89
2015/6/26	1900	MSL	250	D1900V2-5d041	EX3DV4 - SN3954	DAE4 Sn1279	10.10	39.80	40.40	1.51
2015/6/30	1900	MSL	250	D1900V2-5d041	EX3DV4 - SN3697	DAE4 Sn1388	9.70	39.80	38.80	-2.51
2015/6/30	2450	MSL	250	D2450V2-924	EX3DV4 - SN3925	DAE3 Sn495	12.70	51.40	50.80	-1.17
2015/7/1	2450	MSL	250	D2450V2-924	EX3DV4 - SN3925	DAE3 Sn495	12.00	51.40	48.00	-6.61
2015/6/26	2600	MSL	250	D2600V2-1070	EX3DV4 - SN3931	DAE3 Sn577	14.70	55.30	58.80	6.33
2015/6/26	2600	MSL	250	D2600V2-1070	EX3DV4 - SN3954	DAE4 Sn1279	14.10	55.30	56.40	1.99

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jul. 16, 2015

FCC ID : ZL5S40 Page 18 of 63 Form version. : 150415

11. RF Exposure Positions

11.1 Ear and handset reference point

Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

Fig 9.1.1 Front, back, and side views of SAM twin phantom

Fig 9.1.2 Close-up side view of phantom showing the ear region.

Report No.: FA552956

Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jul. 16, 2015 FCC ID: ZL5S40 Page 19 of 63 Form version.: 150415

SPORTON LAB. FCC SAR Test Report

11.2 Definition of the cheek position

- Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output: however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.
- 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. 6.
- While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report.

Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case

Fig 9.2.2 Handset vertical and horizontal reference lines-"clam-shell case"

vertical

center line

acoustic output

Report No.: FA552956

Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40

Page 20 of 63

11.3 Definition of the tilt position

Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.

Report No.: FA552956

- While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- Rotate the handset around the horizontal line by 15°.
- 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point

Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jul. 16, 2015 Form version.: 150415 FCC ID: ZL5S40 Page 21 of 63

11.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB 648474 D04v01r02, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v05r02 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Report No.: FA552956

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Fig 9.4 Body Worn Position

11.5 Wireless Router

Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC HDB Publication 941225 D06 v02 where SAR test considerations for handsets (L x W ≥ 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05r02 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40

Page 22 of 63

12. Conducted RF Output Power (Unit: dBm)

<GSM Conducted Power>

General Note:

1. For DTM multi-slot class mode, the device was linked with base station simulator (Agilent E5515C) and transmit maximum power on maximum number of TX slots, i.e. one CS timeslot, and additional PS timeslots (1 for DTM class 5 and 9, 2 for DTM class 11) in one TDMA frame.

Report No.: FA552956

2. Agilent E5515C was used to setup the device operated under DTM mode for power measurement and SAR testing. For conducted power, the power of the burst for voice and the power of the bursts for data was reported separately in the table above, and the frame-average power is derived below to determine SAR testing.

DTM frame average power (dBm) = $10*log [\sum (power of each slot, in mW)/8]$

- 3. Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 4. Per KDB 941225 D01v03, considering the possibility of e.g. 3rd party VoIP operation for Head and body-worn SAR test reduction for GSM and GPRS and EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the EUT was set in GPRS (4Tx slots) for GSM850 and EDGE (4 Tx slots) for GSM1900.
- 5. Per KDB 941225 D01v03, for Hotspot SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance, for modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested, therefore, the EUT was set in GPRS (4Tx slots) for GSM850 and EDGE (4 Tx slots) for GSM1900.

	Band GSM850	Burst Av	erage Pow	er (dBm)	Tune-up	Frame-A	verage Pov	ver (dBm)	Tune-up
	TX Channel	128	189	251	Limit	128	189	251	Limit
	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)	
C	GSM (GMSK, 1 Tx slot)	33.18	33.21	32.88	33.50	24.18	24.21	23.88	24.50
G	PRS (GMSK, 1 Tx slot)	33.21	33.24	32.91	33.50	24.21	24.24	23.91	24.50
G	PRS (GMSK, 2 Tx slots)	30.08	30.20	30.16	30.50	24.08	24.20	24.16	24.50
G	PRS (GMSK, 3 Tx slots)	28.18	28.13	28.03	28.50	23.92	23.87	23.77	24.24
G	PRS (GMSK, 4 Tx slots)	26.89	26.95	26.97	27.50	23.89	23.95	23.97	24.50
E	DGE (8PSK, 1 Tx slot)	27.02	26.87	26.79	27.50	18.02	17.87	17.79	18.50
Е	DGE (8PSK, 2 Tx slots)	26.81	26.72	26.67	27.30	20.81	20.72	20.67	21.30
Е	DGE (8PSK, 3 Tx slots)	26.64	26.52	26.42	27.10	22.38	22.26	22.16	22.84
Е	DGE (8PSK, 4 Tx slots)	26.17	26.07	26.00	26.90	23.17	23.07	23.00	23.90
DTM 5	GSM (GMSK, 1 Tx slot)	30.05	30.16	30.14	30.50	24.02	24.13	24.10	24.48
(2Tx slots)	GPRS (GMSK, 1 Tx slot)	30.03	30.14	30.11	30.50	24.02			
DTM 9	GSM (GMSK, 1 Tx slot)	30.01	30.12	30.08	30.50	23.98	24.08	04.04	24.48
(2Tx slots)	GPRS (GMSK, 1 Tx slot)	30.00	30.09	30.05	30.50	23.96	24.06	24.04	24.40
DTM 11	GSM (GMSK, 1 Tx slot)	28.16	28.11	28.01	28.50	23.88	23.84	23.74	24.24
(3Tx slots)	GPRS (GMSK, 2 Tx slots)	28.13	28.09	27.99	28.50	23.00	23.04	23.74	24.24
DTM 5	GSM (GMSK, 1 Tx slot)	30.05	30.17	30.12	30.50	22.72	22.82	22.80	23.17
(2Tx slots)	EDGE (8PSK, 1 Tx slot)	26.85	26.93	26.96	27.30	22.12	22.02	22.00	23.17
DTM 9	GSM (GMSK, 1 Tx slot)	30.01	30.14	30.08	30.50	22.68	22.90	22.77	22.17
(2Tx slots)	EDGE (8PSK, 1 Tx slot)	26.83	26.91	26.95	27.30	22.00	22.80	22.77	23.17
DTM 11	GSM (GMSK, 1 Tx slot)	28.16	28.09	28.01	28.50	22.02	22.04	22.74	00.05
(3Tx slots)	EDGE (8PSK, 2 Tx slots)	26.61	26.50	26.39	27.10	22.93	22.84	22.74	23.36

FCC ID : ZL5S40 Page 23 of 63 Form version. : 150415

	Band GSM1900	Burst Av	erage Pow	er (dBm)	Tune-up	Frame-A	erage Pov	wer (dBm)	Tune-up
	TX Channel	512	661	810	Limit	512	661	810	Limit
	Frequency (MHz)			1909.8	(dBm)	1850.2	1880	1909.8	(dBm)
(GSM (GMSK, 1 Tx slot)	29.98	30.07	30.34	30.50	20.98	21.07	21.34	21.50
G	PRS (GMSK, 1 Tx slot)	30.00	30.08	30.35	30.50	21.00	21.08	21.35	21.50
G	PRS (GMSK, 2 Tx slots)	26.98	26.83	27.03	27.50	20.98	20.83	21.03	21.50
G	PRS (GMSK, 3 Tx slots)	25.21	25.20	25.35	25.50	20.95	20.94	21.09	21.24
G	PRS (GMSK, 4 Tx slots)	24.17	23.95	24.15	24.50	21.17	20.95	21.15	21.50
E	EDGE (8PSK, 1 Tx slot)	25.94	25.82	26.05	26.50	16.94	16.82	17.05	17.50
E	DGE (8PSK, 2 Tx slots)	25.86	25.75	25.96	26.30	19.86	19.75	19.96	20.30
Е	DGE (8PSK, 3 Tx slots)	25.77	25.64	25.85	26.10	21.51	21.38	21.59	21.84
E	DGE (8PSK, 4 Tx slots)	25.14	25.04	25.25	25.90	22.14	22.04	22.25	22.90
DTM 5	GSM (GMSK, 1 Tx slot)	26.95	26.80	27.00	27.50	20.92	20.77	20.96	21.48
(2Tx slots)	GPRS (GMSK, 1 Tx slot)	26.93	26.78	26.97	27.50	20.92			
DTM 9	GSM (GMSK, 1 Tx slot)	26.89	26.75	26.93	27.50	20.85	20.71	20.89	21.48
(2Tx slots)	GPRS (GMSK, 1 Tx slot)	26.85	26.71	26.89	27.50	20.03	20.71	20.03	21.40
DTM 11	GSM (GMSK, 1 Tx slot)	25.19	25.16	25.32	25.50	20.91	20.89	21.03	21.24
(3Tx slots)	GPRS (GMSK, 2 Tx slots)	25.16	25.14	25.28	25.50	20.91	20.09	21.03	21.24
DTM 5	GSM (GMSK, 1 Tx slot)	26.95	26.81	27.02	27.50	20.41	20.28	20.49	20.92
(2Tx slots)	EDGE (8PSK, 1 Tx slot)	25.84	25.72	25.93	26.30	20.41	20.20	20.49	20.92
DTM 9	GSM (GMSK, 1 Tx slot)	26.93	26.78	26.99	27.50	20.39	20.24	20.45	20.92
(2Tx slots)	EDGE (8PSK, 1 Tx slot)	25.81	25.68	25.88	26.30	20.39	20.24	20.45	20.92
DTM 11	GSM (GMSK, 1 Tx slot)	25.18	25.15	25.30	25.50	21 30	21.20	21.40	21.65
(3Tx slots)	EDGE (8PSK, 2 Tx slots)	25.74	25.61	25.83	26.10	21.30	21.20	21.40	21.00

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 24 of 63

<WCDMA Conducted Power>

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.
- 2. The procedures in KDB 941225 D01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion.

Report No.: FA552956

3. For DC-HSDPA, the device was configured according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1, with the primary and the secondary serving HS-DSCH Cell enabled during the power measurement.

A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements. b.
- A call was established between EUT and Base Station with following setting:
 - Set Gain Factors (βc and βd) and parameters were set according to each
 - Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - Set RMC 12.2Kbps + HSDPA mode.
 - Set Cell Power = -86 dBm
 - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - Set CQI Repetition Factor to 2 х.
 - Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded. d.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βa	βa	βc/βd	Внѕ	CM (dB)	MPR (dB)
			(SF)		(Note1, Note 2)	(Note 3)	(Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
	(Note 4)	(Note 4)		(Note 4)			
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

- Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$. Note 1:
- For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Note 2: Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c .
- CM = 1 for β_o/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-Note 3: DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

Setup Configuration

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jul. 16, 2015 Form version.: 150415 Page 25 of 63

FCC ID: ZL5S40

SPORTON INTERNATIONAL INC.

HSUPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting *:
 - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121

Report No.: FA552956

- iii. Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- Set UE Target Power
- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βς	βa	β _d (SF)	βc/βd	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: $\Delta_{\rm ACK}$, $\Delta_{\rm NACK}$ and $\Delta_{\rm CQI}$ = 30/15 with β_{ks} = 30/15 * β_c .
- CM = 1 for β_c/β_d =12/15, $\beta_h s/\beta_c$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH Note 2: and E-DPCCH the MPR is based on the relative CM difference.
- For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by Note 3: setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- For subtest 5 the β_d/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by Note 4: setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

FCC ID: ZL5S40 Page 26 of 63

SPORTON INTERNATIONAL INC.

DC-HSDPA 3GPP release 8 Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration below
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting: C.
 - Set RMC 12.2Kbps + HSDPA mode.
 - ii. Set Cell Power = -25 dBm
 - Set HS-DSCH Configuration Type to FRC (H-set 12, QPSK) iii.
 - Select HSDPA Uplink Parameters iv.
 - Set Gain Factors (β_c and β_d) and parameters were set according to each Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121

Report No.: FA552956

- a). Subtest 1: $\beta_c/\beta_d=2/15$ b). Subtest 2: $\beta_c/\beta_d=12/15$
- c). Subtest 3: $\beta_c/\beta_d=15/8$
- d). Subtest 4: $\beta_c/\beta_d=15/4$
- Set Delta ACK, Delta NACK and Delta CQI = 8 vi.
- vii. Set Ack-Nack Repetition Factor to 3
- Set CQI Feedback Cycle (k) to 4 ms
- Set CQI Repetition Factor to 2 ix.
- Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded.

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

C.8.1.12 Fixed Reference Channel Definition H-Set 12

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value
Nominal	Avg. Inf. Bit Rate	kbps	60
Inter-TTI	Distance	TTI's	1
Number	of HARQ Processes	Proces	6
		ses	· ·
Informati	on Bit Payload (N_{INF})	Bits	120
Number	Code Blocks	Blocks	1
Binary C	hannel Bits Per TTI	Bits	960
Total Ava	ailable SML's in UE	SML's	19200
Number	of SML's per HARQ Proc.	SML's	3200
Coding F	Rate		0.15
Number	of Physical Channel Codes	Codes	1
Modulation	on		QPSK
Note 1:	The RMC is intended to be used for	or DC-HSD	PA
	mode and both cells shall transmit	with identi	cal
	parameters as listed in the table.		
Note 2:	Maximum number of transmission	is limited to	o 1, i.e.,
	retransmission is not allowed. The	e redundan	cy and
	constellation version 0 shall be use	ed.	

Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

Setup Configuration

Form version.: 150415 FCC ID: ZL5S40 Page 27 of 63

<WCDMA Conducted Power>

General Note:

1. Per KDB 941225 D01v03, SAR for Head / Hotspot / Body-worn exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".

Report No. : FA552956

2. Per KDB 941225 D01v03, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is ≤ 1/4 dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA.

	Ban	d		WCDMA V	1		WCDMA II		WCDMA IV		
	TX Cha	nnel	4132	4182	4233	9262	9400	9538	1312	1413	1513
	Rx Cha	nnel	4357	4407	4458	9662	9800	9938	1537	1638	1738
	Frequency (MHz)			836.4	846.6	1852.4	1880	1907.6	1712.4	1732.6	1752.6
MPR	3GPP Rel 99	AMR 12.2Kbps	23.75	23.72	23.82	23.81	23.82	23.84	23.66	23.81	23.91
(dB)	3GPP Rel 99	RMC 12.2Kbps	23.77	23.75	23.85	23.84	23.84	23.87	23.68	23.83	23.92
0	3GPP Rel 6	HSDPA Subtest-1	23.16	23.14	23.35	23.16	23.19	23.31	23.08	23.27	23.28
0	3GPP Rel 6	HSDPA Subtest-2	23.15	23.13	23.34	23.15	23.18	23.30	23.07	23.23	23.27
0.5	3GPP Rel 6	HSDPA Subtest-3	22.73	22.77	22.75	22.74	22.71	22.85	22.67	22.72	22.84
0.5	3GPP Rel 6	HSDPA Subtest-4	22.71	22.64	22.74	22.73	22.70	22.84	22.59	22.71	22.83
0	3GPP Rel 8	DC-HSDPA Subtest-1	23.14	23.10	23.33	23.13	23.16	23.28	23.06	23.25	23.24
0	3GPP Rel 8	DC-HSDPA Subtest-2	23.13	23.08	23.31	23.10	23.14	23.25	23.03	23.21	23.20
0.5	3GPP Rel 8	DC-HSDPA Subtest-3	22.70	22.75	22.73	22.72	22.67	22.81	22.64	22.68	22.81
0.5	3GPP Rel 8	DC-HSDPA Subtest-4	22.68	22.62	22.70	22.68	22.64	22.79	22.57	22.68	22.79
0	3GPP Rel 6	HSUPA Subtest-1	22.55	22.46	22.75	23.17	23.20	23.13	22.67	22.86	22.81
2	3GPP Rel 6	HSUPA Subtest-2	21.90	21.88	21.97	21.93	21.99	21.91	21.85	21.72	21.89
1	3GPP Rel 6	HSUPA Subtest-3	21.85	21.65	22.19	21.15	22.23	22.17	21.99	22.15	22.05
2	3GPP Rel 6	HSUPA Subtest-4	21.88	21.85	21.93	21.85	21.96	21.81	21.79	21.81	21.98
0	3GPP Rel 6	HSUPA Subtest-5	22.95	22.92	23.03	22.96	23.01	23.05	22.86	22.98	23.05

<LTE Conducted Power>

General Note:

 Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.

Report No.: FA552956

- 2. Per KDB 941225 D05v02r03, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r03, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 6. Per KDB 941225 D05v02r03, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r03, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is not required.

FCC ID : ZL5S40 Page 29 of 63 Form version. : 150415

SPORTON LAB. FCC SAR Test Report

<LTE Band 12>

Char Frequence QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM		0 24 49 0 12 24 0	Ch. / Freq. 23060 704 23.08 23.06 23.00 22.26 22.13 22.24 22.14	Ch. / Freq. 23095 707.5 23.42 23.29 23.16 22.32 22.30 22.19 22.28	Ch. / Freq. 23130 711 23.36 23.23 23.31 22.29 22.25 22.28 22.21	Tune-up limit (dBm) 24 23	MPR (dB)
Frequence QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	2y (MHz) 1 1 1 25 25 25 50 1 1 1	24 49 0 12 24 0 0	704 23.08 23.06 23.00 22.26 22.13 22.24 22.14 22.06	707.5 23.42 23.29 23.16 22.32 22.30 22.19 22.28	711 23.36 23.23 23.31 22.29 22.25 22.28	24	0
QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 1 1 25 25 25 25 50 1 1	24 49 0 12 24 0 0	23.08 23.06 23.00 22.26 22.13 22.24 22.14 22.06	23.42 23.29 23.16 22.32 22.30 22.19 22.28	23.36 23.23 23.31 22.29 22.25 22.28		
QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM	1 25 25 25 25 50 1 1	24 49 0 12 24 0 0	23.06 23.00 22.26 22.13 22.24 22.14 22.06	23.29 23.16 22.32 22.30 22.19 22.28	23.23 23.31 22.29 22.25 22.28		
QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 25 25 25 25 50 1 1	49 0 12 24 0 0 24	23.00 22.26 22.13 22.24 22.14 22.06	23.16 22.32 22.30 22.19 22.28	23.31 22.29 22.25 22.28		
QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	25 25 25 25 50 1 1	0 12 24 0 0 24	22.26 22.13 22.24 22.14 22.06	22.32 22.30 22.19 22.28	22.29 22.25 22.28	- 23	1
QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM	25 25 50 1 1	12 24 0 0 24	22.13 22.24 22.14 22.06	22.30 22.19 22.28	22.25 22.28	23	1
QPSK QPSK 16QAM 16QAM 16QAM 16QAM	25 50 1 1 1	24 0 0 24	22.24 22.14 22.06	22.19 22.28	22.28	23	1
QPSK 16QAM 16QAM 16QAM 16QAM	50 1 1 1	0 0 24	22.14 22.06	22.28		23	'
16QAM 16QAM 16QAM 16QAM	1 1 1	0 24	22.06		22 21		
16QAM 16QAM 16QAM	1	24		00.05	22.21		
16QAM 16QAM	1		00.40	22.25	22.68		
16QAM		10	22.18	22.51	22.50	23	1
	25	49	22.35	22.39	22.64		
16QAM		0	21.15	21.14	21.23		
	25	12	21.08	21.25	21.28	20	_
16QAM	25	24	21.32	21.31	21.27	22	2
16QAM	50	0	21.07	21.02	21.26		
Char	nnel		23035	23095	23155	Tune-up limit	MPR
Frequenc	cy (MHz)		701.5	707.5		(dBm)	(dB)
QPSK	1	0	23.13	23.24	23.15		
QPSK	1	12	23.40	23.36	23.39	24	0
QPSK	1					=	
QPSK	12						
						23	1
						1	
						23	1
						20	•
						1	
				1		22	2
						1	
		0			-	Tuno un limit	MPR
							(dB)
<u> </u>		0				(42)	(42)
						24	0
							3
				1		-	
						23	1
						22	1
				1		23	1
						22	2
	16QAM 16QAM Frequence QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	16QAM 25 16QAM 50 Channel Frequency (MHz) QPSK 1 QPSK 1 QPSK 12 QPSK 12 QPSK 12 QPSK 12 QPSK 12 In the control of t	16QAM 25 24 16QAM 50 0 Channel Frequency (MHz) QPSK 1 0 QPSK 1 24 QPSK 12 0 QPSK 12 6 QPSK 12 11 QPSK 25 0 16QAM 1 12 16QAM 1 12 16QAM 12 0 16QAM 12 1 16QAM 12 11 16QAM 12 11 16QAM 12 11 16QAM 25 0 Channel Frequency (MHz) QPSK 1 0 QPSK 1 7 QPSK 8 0 QPSK 8 4 QPSK 8 7 QPSK 15 0 16QAM	16QAM 25 24 21.32 16QAM 50 0 21.07 Channel 23035 Frequency (MHz) 701.5 QPSK 1 0 23.13 QPSK 1 12 23.40 QPSK 1 24 23.35 QPSK 12 0 22.30 QPSK 12 6 22.14 QPSK 12 11 22.07 QPSK 12 11 22.07 QPSK 12 11 22.07 QPSK 25 0 22.11 16QAM 1 12 22.61 16QAM 1 24 22.67 16QAM 12 0 21.21 16QAM 12 1 21.26 16QAM 12 11 21.26 16QAM 12 1 21.26 16QAM 12 1 0 23.24	16QAM 25 24 21.32 21.31 16QAM 50 0 21.07 21.02 Channel 23035 23095 Frequency (MHz) 701.5 707.5 QPSK 1 0 23.13 23.24 QPSK 1 12 23.40 23.36 QPSK 1 24 23.35 23.37 QPSK 12 0 22.30 22.48 QPSK 12 6 22.14 22.53 QPSK 12 11 22.07 22.55 QPSK 12 11 22.07 22.55 QPSK 25 0 22.11 22.45 16QAM 1 0 22.98 22.64 16QAM 1 12 22.61 22.72 16QAM 12 0 21.21 21.40 16QAM 12 1 21.26 21.53 16QAM 12 <	16QAM 25 24 21.32 21.31 21.27 16QAM 50 0 21.07 21.02 21.26 Channel 23035 23095 23155 Frequency (MHz) 701.5 707.5 713.5 QPSK 1 0 23.13 23.24 23.15 QPSK 1 12 23.40 23.36 23.39 QPSK 1 24 23.35 23.37 23.17 QPSK 12 0 22.30 22.48 22.17 QPSK 12 6 22.14 22.53 22.22 QPSK 12 11 22.07 22.55 22.24 QPSK 12 11 22.07 22.55 22.24 QPSK 12 11 22.07 22.55 22.22 QPSK 12 11 22.07 22.55 22.24 QPSK 12 0 22.11 22.45 22.27	16QAM

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 30 of 63

SPORTON LAB. FCC SAR Test Report

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR (dB)
	Cha	nnel		23017	23095	23173	(dBm)	
	Frequen	cy (MHz)		699.7	707.5	715.3		
1.4	QPSK	1	0	22.97	23.31	23.24		
1.4	QPSK	1	2	23.14	23.42	23.26		0
1.4	QPSK	1	5	23.06	23.37	23.31	24	
1.4	QPSK	3	0	23.05	23.24	23.34	7 24	
1.4	QPSK	3	1	23.07	23.41	23.28		
1.4	QPSK	3	2	23.14	23.39	23.24		
1.4	QPSK	6	0	22.14	22.38	22.23	23	1
1.4	16QAM	1	0	22.49	22.80	22.61		
1.4	16QAM	1	2	22.49	22.77	22.71		
1.4	16QAM	1	5	22.54	22.83	22.83	23	1
1.4	16QAM	3	0	22.57	22.55	22.77	23	'
1.4	16QAM	3	1	22.42	22.63	22.86		
1.4	16QAM	3	2	22.59	22.78	22.80		
1.4	16QAM	6	0	21.07	21.55	21.12	22	2

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 31 of 63

<LTE Band 17>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		23780	23790	23800	(dBm)	(dB)
	Frequen	cy (MHz)		709	710	711		
10	QPSK	1	0	23.33	23.44	23.34		
10	QPSK	1	24	23.31	23.36	23.31	24	0
10	QPSK	1	49	23.10	23.21	23.23		
10	QPSK	25	0	22.24	22.26	22.21		
10	QPSK	25	12	22.15	22.07	22.05	23	4
10	QPSK	25	24	22.18	22.16	22.18	23	1
10	QPSK	50	0	22.18	22.19	22.15		
10	16QAM	1	0	21.99	22.35	22.44		
10	16QAM	1	24	22.36	22.40	22.45	23	1
10	16QAM	1	49	22.36	22.55	22.47		
10	16QAM	25	0	21.25	21.34	21.13		
10	16QAM	25	12	21.26	21.13	21.02	22	2
10	16QAM	25	24	21.24	21.27	21.30	22	
10	16QAM	50	0	21.08	21.13	21.07		
	Cha	nnel		23755	23790	23825	Tune-up limit	MPR
	Frequen	cy (MHz)		706.5	710	713.5	(dBm)	(dB)
5	QPSK	1	0	23.29	23.32	23.36		
5	QPSK	1	12	23.39	23.37	23.33	24	0
5	QPSK	1	24	23.28	23.31	23.38		
5	QPSK	12	0	22.21	22.24	22.18		
5	QPSK	12	6	22.25	22.31	22.33	23	1
5	QPSK	12	11	22.27	22.36	22.33	23	,
5	QPSK	25	0	22.31	22.32	22.33		
5	16QAM	1	0	22.50	22.52	22.49		
5	16QAM	1	12	22.50	22.58	22.56	23	1
5	16QAM	1	24	22.38	22.57	22.43		
5	16QAM	12	0	21.20	21.15	21.14		
5	16QAM	12	6	21.22	21.20	21.24	22	2
5	16QAM	12	11	21.17	21.16	21.27	22	2
5	16QAM	25	0	21.31	21.20	21.25		

Report No.: FA552956

<LTE Band 5>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel	·	20450	20525	20600	(dBm)	(dB)
	Frequen	cy (MHz)		829	836.5	844		
10	QPSK	1	0	23.41	23.57	23.55		
10	QPSK	1	24	23.32	23.42	23.52	24	0
10	QPSK	1	49	23.11	23.26	23.27		
10	QPSK	25	0	22.31	22.37	22.35		
10	QPSK	25	12	22.30	22.14	22.22	90	4
10	QPSK	25	24	22.23	22.28	22.33	23	1
10	QPSK	50	0	22.24	22.33	22.30		
10	16QAM	1	0	22.49	22.42	22.45		
10	16QAM	1	24	22.49	22.48	22.64	23	1
10	16QAM	1	49	22.36	22.45	22.07		
10	16QAM	25	0	21.28	21.13	21.22		
10	16QAM	25	12	21.20	21.09	21.21	22	2
10	16QAM	25	24	21.14	21.14	21.21	22	2
10	16QAM	50	0	21.16	21.11	21.21		
	Cha	nnel		20425	20525	20625	Tune-up limit	MPR
	Frequen	cy (MHz)		826.5	836.5	846.5	(dBm)	(dB)
5	QPSK	1	0	23.41	23.39	23.48		
5	QPSK	1	12	23.38	23.38	23.52	24	0
5	QPSK	1	24	23.46	23.41	23.47		
5	QPSK	12	0	22.58	22.56	22.65	23	
5	QPSK	12	6	22.64	22.46	22.71		1
5	QPSK	12	11	22.56	22.55	22.69	23	
5	QPSK	25	0	22.56	22.51	22.66		
5	16QAM	1	0	22.89	22.78	22.97		
5	16QAM	1	12	22.86	22.86	22.89	23	1
5	16QAM	1	24	22.88	22.78	22.84		
5	16QAM	12	0	21.51	21.43	21.58		
5	16QAM	12	6	21.47	21.31	21.52	22	2
5	16QAM	12	11	21.43	21.41	21.42	22	2
5	16QAM	25	0	21.71	21.46	21.62		
	Cha	nnel		20415	20525	20635	Tune-up limit	MPR
	Frequen	cy (MHz)		825.5	836.5	847.5	(dBm)	(dB)
3	QPSK	1	0	23.43	23.51	23.44		
3	QPSK	1	7	23.35	23.47	23.52	24	0
3	QPSK	1	14	23.33	23.54	23.38		
3	QPSK	8	0	22.61	22.58	22.83		
3	QPSK	8	4	22.80	22.61	22.69	23	1
3	QPSK	8	7	22.62	22.72	22.74		
3	QPSK	15	0	22.57	22.54	22.70		
3	16QAM	1	0	22.89	22.93	22.96		
3	16QAM	1	7	22.93	22.89	22.91	23	1
3	16QAM	1	14	22.96	22.96	22.95		
3	16QAM	8	0	21.49	21.43	21.70		
3	16QAM	8	4	21.50	21.73	21.58	22	2
3	16QAM	8	7	21.47	21.52	21.63		2
3	16QAM	15	0	21.52	21.45	21.45		

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 33 of 63

SPORTON LAB. FCC SAR Test Report

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR (dB)
	Cha	nnel		20407	20525	20643	(dBm)	
	Frequen	cy (MHz)		824.7	836.5	848.3		
1.4	QPSK	1	0	23.40	23.38	23.43		
1.4	QPSK	1	2	23.48	23.47	23.44		0
1.4	QPSK	1	5	23.47	23.43	23.45	24	
1.4	QPSK	3	0	23.40	23.34	23.40	7 24	
1.4	QPSK	3	1	23.43	23.42	23.44		
1.4	QPSK	3	2	23.34	23.41	23.42		
1.4	QPSK	6	0	22.75	22.67	22.59	23	1
1.4	16QAM	1	0	22.97	22.93	22.95		
1.4	16QAM	1	2	22.89	22.90	22.69		
1.4	16QAM	1	5	22.99	22.78	22.99	23	1
1.4	16QAM	3	0	22.84	22.87	22.71	23	•
1.4	16QAM	3	1	22.85	22.87	22.93		
1.4	16QAM	3	2	22.86	22.84	22.45		
1.4	16QAM	6	0	21.49	21.46	21.48	22	2

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 34 of 63

<LTE Band 4>

DW 50411.3		DD 0:	DD 0" 1	Power	Power	Power		
BW [MHz]	Modulation	RB Size	RB Offset	Low Ch. / Freq.	Middle Ch. / Freq.	High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		20050	20175	20300	(dBm)	(dB)
	Frequen			1720	1732.5	1745	1	
20	QPSK	1	0	23.58	23.67	23.65		
20	QPSK	1	49	23.55	23.43	23.58	24	0
20	QPSK	1	99	23.25	23.50	23.45	_	
20	QPSK	50	0	22.50	22.75	22.60		
20	QPSK	50	24	22.47	22.68	22.59		
20	QPSK	50	49	22.34	22.66	22.53	23	1
20	QPSK	100	0	22.35	22.67	22.58		
20	16QAM	1	0	22.78	22.80	22.87		
20	16QAM	1	49	22.64	22.78	22.79	23	1
20	16QAM	1	99	22.14	22.81	22.78		
20	16QAM	50	0	21.59	21.64	21.44		
20	16QAM	50	24	21.49	21.63	21.52		•
20	16QAM	50	49	21.26	21.57	21.54	22	2
20	16QAM	100	0	21.31	21.73	21.61		
	Cha	nnel		20025	20175	20325	Tune-up limit	MPR
	Frequen	cy (MHz)		1717.5	1732.5	1747.5	(dBm)	(dB)
15	QPSK	1	0	23.64	23.33	23.53		
15	QPSK	1	37	23.43	23.13	23.55	24	0
15	QPSK	1	74	23.40	23.36	23.43		
15	QPSK	36	0	22.63	22.34	22.64	22	
15	QPSK	36	18	22.42	22.23	22.58		4
15	QPSK	36	37	22.43	22.25	22.51	23	1
15	QPSK	75	0	22.60	22.30	22.69		
15	16QAM	1	0	22.83	22.60	22.86		
15	16QAM	1	37	22.78	22.47	22.82	23	1
15	16QAM	1	74	22.37	22.64	22.79		
15	16QAM	36	0	21.47	21.19	21.57		
15	16QAM	36	18	21.26	21.09	21.50	22	2
15	16QAM	36	37	21.27	21.12	21.39		2
15	16QAM	75	0	21.47	21.26	21.52		
	Cha	nnel		20000	20175	20350	Tune-up limit	MPR
	Frequen	cy (MHz)		1715	1732.5	1750	(dBm)	(dB)
10	QPSK	1	0	23.47	23.49	23.60		
10	QPSK	1	24	23.59	23.51	23.58	24	0
10	QPSK	1	49	23.38	23.31	23.40		
10	QPSK	25	0	22.63	22.52	22.68		
10	QPSK	25	12	22.63	22.50	22.76	23	1
10	QPSK	25	24	22.52	22.36	22.54	23	ı
10	QPSK	50	0	22.58	22.41	22.57		
10	16QAM	1	0	22.84	22.77	22.85		
10	16QAM	1	24	22.79	22.68	22.87	23	1
10	16QAM	1	49	22.66	22.66	22.69		
10	16QAM	25	0	21.62	21.50	21.60		
10	16QAM	25	12	21.61	21.48	21.60	22	2
10	16QAM	25	24	21.50	21.34	21.54		
10	16QAM	50	0	21.68	21.39	21.56		

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40

SPORTON LAB. FCC SAR Test Report

				Power	Power	Power		
BW [MHz]	Modulation	RB Size	RB Offset	Low	Middle	High	Tune-up limit	MPR
	Ch-			Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	(dBm)	(dB)
	Cha			19975	20175	20375	- '	
_	Frequen			1712.5	1732.5	1752.5		
5	QPSK	1	0	23.46	23.37	23.58		•
5	QPSK	1	12	23.39	23.55	23.62	24	0
5	QPSK	1	24	23.42	23.45	23.48		
5	QPSK	12	0	22.41	22.44	22.57	_	
5	QPSK	12	6	22.41	22.43	22.58	23	1
5	QPSK	12	11	22.42	22.36	22.60		
5	QPSK	25	0	22.43	22.38	22.60		
5	16QAM	1	0	22.63	22.72	22.86		
5	16QAM	1	12	22.61	22.67	22.80	23	1
5	16QAM	1	24	22.57	22.61	22.76		
5	16QAM	12	0	21.19	21.33	21.38		
5	16QAM	12	6	21.41	21.21	21.27	22	2
5	16QAM	12	11	21.22	21.35	21.40	22	2
5	16QAM	25	0	21.42	21.36	21.49		
	Cha	nnel		19965	20175	20385	Tune-up limit	MPR
	Frequen	cy (MHz)		1711.5	1732.5	1753.5	(dBm)	(dB)
3	QPSK	1	0	23.50	23.51	23.53		
3	QPSK	1	7	23.47	23.31	23.61	24	0
3	QPSK	1	14	23.47	23.29	23.58	1	
3	QPSK	8	0	22.42	22.50	22.58		
3	QPSK	8	4	22.43	22.44	22.53	-	
3	QPSK	8	7	22.42	22.44	22.56	23	1
3	QPSK	15	0	22.43	22.38	22.52	1	
3	16QAM	1	0	22.73	22.79	22.87		
3	16QAM	1	7	22.74	22.72	22.79	23	1
3	16QAM	1	14	22.73	22.72	22.83		•
3	16QAM	8	0	21.35	21.61	21.56		
3	16QAM	8	4	21.33	21.38	21.67	-	
3	16QAM	8	7		21.37		22	2
3	16QAM	15	0	21.28 21.20	21.37	21.60 21.44	-	
<u> </u>	Cha		U				- P 2	MDD
				19957	20175	20393	Tune-up limit (dBm)	MPR (dB)
4.4	Frequen			1710.7	1732.5	1754.3	(dBIII)	(GD)
1.4	QPSK	1	0	23.42	23.37	23.59	-	
1.4	QPSK	1	2	23.50	23.40	23.60	-	
1.4	QPSK	1	5	23.43	23.32	23.56	24	0
1.4	QPSK	3	0	23.42	23.46	23.62		
1.4	QPSK	3	1	23.58	23.63	23.64		
1.4	QPSK	3	2	23.52	23.52	23.61	0.0	
1.4	QPSK	6	0	22.37	22.47	22.61	23	1
1.4	16QAM	1	0	22.75	22.72	22.67		
1.4	16QAM	1	2	22.66	22.60	22.78		
1.4	16QAM	1	5	22.69	22.47	22.88	23	1
1.4	16QAM	3	0	22.68	22.50	22.85		1
1.4	16QAM	3	1	22.74	22.59	22.83		
1.4	16QAM	3	2	22.66	22.72	22.85		
1.4	16QAM	6	0	21.36	21.34	21.48	22	2

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 36 of 63

BW [MHz]	Modulation	RB Size	RB Offset	Power Low	Power Middle	Power High	Tune-up limit	MPR
	Ol			Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	(dBm)	(dB)
	Cha			18700	18900	19100	(==::,	(/
00	Frequen			1860	1880	1900		
20	QPSK	1	0	23.58	23.67	23.64		0
20	QPSK	1	49	23.54	23.50	23.48	24	0
20	QPSK	1 50	99	23.33	23.36	23.23		
20	QPSK	50	0	22.69	22.70	22.68		
20	QPSK	50	24	22.43	22.49	22.56	23	1
20	QPSK	50	49	22.34	22.39	22.47	4	
20	QPSK	100	0	22.53	22.55	22.52		
20	16QAM	1	0	22.98	22.88	22.95		
20	16QAM	1	49	22.62	23.00	22.68	23	1
20	16QAM	1	99	22.57	22.66	22.67		
20	16QAM	50	0	21.50	21.57	21.58		
20	16QAM	50	24	21.45	21.38	21.57	22	2
20	16QAM	50	49	21.34	21.45	21.51		_
20	16QAM	100	0	21.31	21.41	21.52		
	Cha			18675	18900	19125	Tune-up limit	MPR
		cy (MHz)		1857.5	1880	1902.5	(dBm)	(dB)
15	QPSK	1	0	23.32	23.43	23.29		
15	QPSK	1	37	23.34	23.65	23.53	24	0
15	QPSK	1	74	23.15	23.29	23.05		
15	QPSK	36	0	22.31	22.36	22.41		
15	QPSK	36	18	22.19	22.35	22.38	23	1
15	QPSK	36	37	22.18	22.25	22.25	23	'
15	QPSK	75	0	22.27	22.29	22.35		
15	16QAM	1	0	22.59	22.64	22.68		
15	16QAM	1	37	22.56	22.51	22.64	23	1
15	16QAM	1	74	22.50	22.49	22.46		
15	16QAM	36	0	21.24	21.31	21.33		
15	16QAM	36	18	21.16	21.22	21.33		
15	16QAM	36	37	21.13	21.30	21.21	22	2
15	16QAM	75	0	21.19	21.36	21.34	1	
	Cha	nnel		18650	18900	19150	Tune-up limit	MPR
	Frequen	cy (MHz)		1855	1880	1905	(dBm)	(dB)
10	QPSK	1	0	23.31	23.49	23.30		
10	QPSK	1	24	23.60	23.51	23.35	24	0
10	QPSK	1	49	23.18	23.26	23.26		
10	QPSK	25	0	22.35	22.36	22.31		
10	QPSK	25	12	22.33	22.30	22.30		
10	QPSK	25	24	22.18	22.31	22.30	23	1
10	QPSK	50	0	22.19	22.41	22.25		
10	16QAM	1	0	22.55	22.66	22.68		
10	16QAM	1	24	22.76	22.57	22.58	23	1
10	16QAM	1	49	22.60	22.58	22.65	I	,
10	16QAM	25	0	21.24	21.25	21.20		
10	16QAM	25	12	21.20	21.38	21.33		
	16QAM	25	24	21.16	21.35	21.35	22	2
10			//					

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 37 of 63

BW [MHz]	Modulation	RB Size	RB Offset	Power Low	Power Middle	Power High		
, ,				Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		18625	18900	19175	(dBm)	(dB)
	Frequenc	cy (MHz)		1852.5	1880	1907.5		
5	QPSK	1	0	23.25	23.21	23.19		
5	QPSK	1	12	23.23	23.34	23.49	24	0
5	QPSK	1	24	23.18	23.23	23.20		
5	QPSK	12	0	22.19	22.28	22.22		
5	QPSK	12	6	22.25	22.36	22.23	22	4
5	QPSK	12	11	22.24	22.29	22.23	23	1
5	QPSK	25	0	22.17	22.29	22.29		
5	16QAM	1	0	22.51	22.61	22.58		
5	16QAM	1	12	22.48	22.54	22.54	23	1
5	16QAM	1	24	22.47	22.56	22.52		
5	16QAM	12	0	21.12	21.28	21.17		
5	16QAM	12	6	21.18	21.25	21.23	00	0
5	16QAM	12	11	21.11	21.21	21.16	22	2
5	16QAM	25	0	21.36	21.30	21.30		
	Cha	nnel		18615	18900	19185	Tune-up limit	MPR
	Frequenc	cy (MHz)		1851.5	1880	1908.5	(dBm)	(dB)
3	QPSK	1	0	23.19	23.33	23.11		
3	QPSK	1	7	23.37	23.25	23.47	24	0
3	QPSK	1	14	23.31	23.20	23.05		
3	QPSK	8	0	22.24	22.33	22.39		
3	QPSK	8	4	22.15	22.35	22.31		
3	QPSK	8	7	22.20	22.36	22.31	23	1
3	QPSK	15	0	22.13	22.34	22.31		
3	16QAM	1	0	22.47	22.63	22.50		
3	16QAM	1	7	22.53	22.58	22.50	23	1
3	16QAM	1	14	22.61	22.60	22.47	-	
3	16QAM	8	0	21.15	21.42	21.24		
3	16QAM	8	4	21.14	21.41	21.29		
3	16QAM	8	7	21.33	21.50	21.26	22	2
3	16QAM	15	0	20.89	21.28	21.16	1	
	Cha	-		18607	18900	19193	Tune-up limit	MPR
	Frequence			1850.7	1880	1909.3	(dBm)	(dB)
1.4	QPSK	1	0	23.17	23.14	22.94	, ,	
1.4	QPSK	1	2	23.27	23.25	23.39		
1.4	QPSK	1	5	23.10	23.19	23.11		
1.4	QPSK	3	0	23.12	23.18	23.33	24	0
1.4	QPSK	3	1	23.36	23.22	23.45		
1.4	QPSK	3	2	23.30	23.21	23.37		
1.4	QPSK	6	0	22.22	22.27	22.34	23	1
1.4	16QAM	1	0	22.22	22.31	22.09	20	
1.4	16QAM	1	2	22.40	22.59	22.35		
1.4	16QAM	1	5	22.40	22.43	22.68		
1.4	16QAM	3	0	22.48	22.77	22.55	23	1
1.4	16QAM	3	1	22.36	22.41	22.58		
1.4	16QAM	3	2	22.46	22.25	22.67		
1.4	16QAM	6	0	21.11	21.15	20.99	22	2
1.4	TOCAM			21.11	21.10	20.99	22	2

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 38 of 63

<lte band<="" th=""><th><u> 7></u></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lte>	<u> 7></u>							
				Power	Power	Power		
BW [MHz]	Modulation	RB Size	RB Offset	Low Ch. / Freq.	Middle Ch. / Freq.	High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		20850	21100	21350	(dBm)	(dB)
	Frequen			2510	2535	2560	-	
20	QPSK	1	0	23.41	23.34	23.64		
20	QPSK	1	49	23.36	23.21	23.50	24	0
20	QPSK	1	99	23.01	23.16	23.50	<u> </u>	ŭ
20	QPSK	50	0	22.27	22.17	22.54		
20	QPSK	50	24	22.19	22.05	22.44	1	
20	QPSK	50	49	22.23	22.15	22.41	23	1
20	QPSK	100	0	22.14	22.04	22.52	_	
20	16QAM	1	0	22.21	22.33	22.67		
20	16QAM	1	49	22.51	22.20	22.29	23	1
20	16QAM	1	99	22.01	22.23	22.33		'
20	16QAM	50	0	21.34	21.09	21.57		
20	16QAM	50	24	21.28	21.08	21.31	_	
20	16QAM	50	49	21.16	21.17	21.35	22	2
20	16QAM	100	0	21.10	21.17	21.48	_	
20	Cha		U	20825	21.13	21375	True a rue line it	MDD
	Freguen			2507.5	2535	2562.5	Tune-up limit (dBm)	MPR (dB)
15	QPSK	, ,	0	23.14	23.01	23.47	(dBIII)	(d <i>D</i>)
		1	37		23.01	23.39	24	0
15	QPSK QPSK	1		23.33 23.19	23.11	23.41	24	0
15		1	74					
15	QPSK	36	0	22.24	22.14	22.55	_	
15	QPSK	36	18	22.26	22.12	22.52	23	1
15	QPSK	36	37	22.19	22.06	22.51	_	
15	QPSK	75	0	22.30	22.14	22.55		
15	16QAM	1	0	22.23	22.45	22.70		_
15	16QAM	1	37	22.36	22.27	22.73	23	1
15	16QAM	1	74	22.53	22.34	22.83		
15	16QAM	36	0	21.19	21.20	21.56	_	
15	16QAM	36	18	21.24	21.08	21.58	22	2
15	16QAM	36	37	21.27	21.17	21.65	_	
15	16QAM	75	0	21.30	21.18	21.45		
		nnel		20800	21100	21400	Tune-up limit	MPR
4.0	Frequen			2505	2535	2565	(dBm)	(dB)
10	QPSK		0	23.24	23.14	23.57	0.4	0
10	QPSK	1	24	23.45	23.36	23.60	24	0
10	QPSK	1	49	23.22	23.20	23.56		
10	QPSK	25	0	22.21	22.16	22.61		
10	QPSK	25	12	22.32	22.26	22.67	23	1
10	QPSK	25	24	22.33	22.22	22.72		
10	QPSK	50	0	22.30	22.17	22.66		
10	16QAM	1	0	22.24	22.31	22.70		
10	16QAM	1	24	22.45	22.31	22.77	23	1
10	16QAM	1	49	22.44	22.61	22.93		
10	16QAM	25	0	21.40	21.25	21.65		
10	16QAM	25	12	21.31	21.38	21.73	22	2
10	16QAM	25	24	21.45	21.41	21.70		
10	16QAM	50	0	21.29	21.17	21.58		

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 39 of 63

BW [MHz]					Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		20775	21100	21425	(dBm)	(dB)
	Frequency (MHz)				2535	2567.5		
5	5 QPSK 1		0	23.31	23.14	23.51		
5	QPSK	1	12	23.18	23.32	23.61	24	0
5	QPSK	1	24	23.19	23.10	23.52		
5	QPSK	12	0	22.23	22.15	22.53		
5	QPSK	12	6	22.30	22.10	22.55	22	4
5	QPSK	12	11	22.23	22.14	22.62	23	1
5	QPSK	25	0	22.22	22.07	22.56		
5	16QAM	1	0	22.61	22.42	22.83		
5	16QAM	1	12	22.36	22.29	22.72	23	1
5	16QAM	1	24	22.47	22.32	22.80		
5	16QAM	12	0	21.26	21.18	21.60		
5	16QAM 12		6	21.14	21.17	21.62	22	2
5	16QAM	12	11	21.15	21.18	21.61	- 22	2
5	16QAM	25	0	21.19	21.37	21.61		

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 40 of 63

<WLAN Conducted Power>

General Note:

1. Per KDB 248227 D01v02r01, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.

Report No.: FA552956

- 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
- 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
- 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following:
 - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
 - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
 - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

<2.4GHz WLAN>

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %	
		CH 1	2412		16.82	17.00		
	802.11b	CH 6	2437	1Mbps	16.90	17.00	97.63	
2.4GHz WLAN		CH 11	2462		16.89	17.00		
2.4GHZ WLAIN		CH 1	2412		12.62	13.00		
	802.11g	CH 6	2437	6Mbps	12.93	13.00	87.34	
		CH 11	2462		12.70	13.00		
		CH 1	2412		11.98	12.00		
	802.11n-HT20	CH 6	2437	MCS0	11.99	12.00	86.49	
		CH 11	2462		11.75	12.00		

<2.4GHz Bluetooth>

General Note:

- 1. For 2.4GHz Bluetooth SAR testing was selected 1Mbps, due to its highest average power.
- 2. The duty factor is selected theoretical 83.3% perform Bluetooth SAR testing.

Mode	Channel	Frequency	Average power (dBm)					
iviode	Channel	(MHz)	1Mbps	2Mbps	3Mbps			
	CH 00	2402	7.86	6.61	6.60			
v3.0 with EDR	CH 39	2441	8.73	7.45	7.45			
	CH 78	2480	7.29	6.02	6.02			

Report No.: FA552956

Mode	Channel	Frequency (MHz)	Average power (dBm) GFSK
	CH 00	2402	-2.46
v4.0 with LE	CH 19	2440	0.17
	CH 39	2480	-2.95

13. Antenna Location

Top Side

Bottom Side <u>Back View</u>

Report No.: FA552956

Distance of the Antenna to the EUT surface/edge													
Antennas	Antennas Back Front Top Side Bottom Side Right Side Left Side												
WWAN Main	WWAN Main ≤ 25mm ≤ 25mm 128mm ≤ 25mm ≤ 25mm												
BT&WLAN	BT&WLAN ≤ 25mm ≤ 25mm 113mm ≤ 25mm 63mm												

Positions for SAR tests; Hotspot mode													
Antennas	Antennas Back Front Top Side Bottom Side Right Side Left Side												
WWAN Main	Yes	Yes	No	Yes	Yes	Yes							
BT&WLAN Yes Yes No Yes No													

General Note:

Referring to KDB 941225 D06 v02, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge

FCC ID : ZL5S40 Page 43 of 63 Form version. : 150415

14. SAR Test Results

General Note:

- Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA552956

- b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- d. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- Per KDB 447498 D01v05r02, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - \cdot ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- Pre KDB648474 D04v01r02, when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

GSM Note:

- Per KDB 941225 D01v03, considering the possibility of e.g. 3rd party VoIP operation for Head and body-worn SAR test reduction for GSM and GPRS and EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the EUT was set in GPRS (4Tx slots) for GSM850 and EDGE (4Tx slots) for GSM1900.
- Per KDB 941225 D01v03, for Hotspot SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance, for modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested, therefore, the EUT was set in GPRS (4Tx slots) for GSM850 and EDGE (4Tx slots) for GSM1900.

UMTS Note:

SPORTON INTERNATIONAL INC.

- 1. Per KDB 941225 D01v03, SAR for next to the ear head / Hotspot / Body-worn exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".
- Per KDB 941225 D01v03, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jul. 16, 2015

FCC ID: ZL5S40 Form version. : 150415 Page 44 of 63

LTE Note:

 Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.

Report No.: FA552956

- 2. Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941225 D05v02r03, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 4. Per KDB 941225 D05v02r03, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, 16QAM SAR testing is not required.
- 5. Per KDB 941225 D05v02r03, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is not required.

WLAN Note:

- 1. Per KDB 248227 D01v02r01, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- 3. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 4. During SAR testing the WLAN transmission was verified using a spectrum analyzer.

SPORTON INTERNATIONAL INC.

14.1 Head SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
01	GSM850	GPRS (4 Tx slots)	Right Cheek	0mm	251	848.8	26.97	27.50	1.130	-0.13	0.567	0.641
	GSM850	GPRS (4 Tx slots)	Right Cheek	0mm	128	824.2	26.89	27.50	1.151	0.06	0.436	0.502
	GSM850	GPRS (4 Tx slots)	Right Cheek	0mm	189	836.4	26.95	27.50	1.135	-0.05	0.524	0.595
	GSM850	GPRS (4 Tx slots)	Right Tilted	0mm	251	848.8	26.97	27.50	1.130	-0.03	0.314	0.355
	GSM850	GPRS (4 Tx slots)	Left Cheek	0mm	251	848.8	26.97	27.50	1.130	0.11	0.566	0.639
	GSM850	GPRS (4 Tx slots)	Left Tilted	0mm	251	848.8	26.97	27.50	1.130	-0.05	0.341	0.385
	GSM1900	EDGE (4 Tx slots)	Right Cheek	0mm	810	1909.8	25.25	25.90	1.161	-0.19	0.163	0.189
	GSM1900	EDGE (4 Tx slots)	Right Tilted	0mm	810	1909.8	25.25	25.90	1.161	0.19	0.060	0.070
	GSM1900	EDGE (4 Tx slots)	Left Cheek	0mm	810	1909.8	25.25	25.90	1.161	0.03	0.341	0.396
02	GSM1900	EDGE (4 Tx slots)	Left Cheek	0mm	512	1850.2	25.14	25.90	1.191	0.01	0.397	0.473
	GSM1900	EDGE (4 Tx slots)	Left Cheek	0mm	661	1880	25.04	25.90	1.219	0.06	0.362	0.441
	GSM1900	EDGE (4 Tx slots)	Left Tilted	0mm	810	1909.8	25.25	25.90	1.161	0.14	0.079	0.092

Report No. : FA552956

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
03	WCDMA V	RMC 12.2Kbps	Right Cheek	0mm	4233	846.6	23.85	24.00	1.035	-0.1	0.836	0.865
	WCDMA V	RMC 12.2Kbps	Right Cheek	0mm	4132	826.4	23.77	24.00	1.054	0.05	0.625	0.659
	WCDMA V	RMC 12.2Kbps	Right Cheek	0mm	4182	836.4	23.75	24.00	1.059	-0.15	0.714	0.756
	WCDMA V	RMC 12.2Kbps	Right Tilted	0mm	4233	846.6	23.85	24.00	1.035	0.13	0.427	0.442
	WCDMA V	RMC 12.2Kbps	Left Cheek	0mm	4233	846.6	23.85	24.00	1.035	0.02	0.753	0.779
	WCDMA V	RMC 12.2Kbps	Left Tilted	0mm	4233	846.6	23.85	24.00	1.035	0.01	0.440	0.455
	WCDMA IV	RMC 12.2Kbps	Right Cheek	0mm	1513	1752.6	23.92	24.00	1.019	-0.12	0.567	0.578
	WCDMA IV	RMC 12.2Kbps	Right Tilted	0mm	1513	1752.6	23.92	24.00	1.019	-0.17	0.413	0.421
	WCDMA IV	RMC 12.2Kbps	Left Cheek	0mm	1513	1752.6	23.92	24.00	1.019	0.04	0.884	0.900
04	WCDMA IV	RMC 12.2Kbps	Left Cheek	0mm	1312	1712.4	23.68	24.00	1.076	-0.08	0.890	0.958
	WCDMA IV	RMC 12.2Kbps	Left Cheek	0mm	1413	1732.6	23.83	24.00	1.040	-0.02	0.910	0.946
	WCDMA IV	RMC 12.2Kbps	Left Tilted	0mm	1513	1752.6	23.92	24.00	1.019	-0.1	0.435	0.443
	WCDMA II	RMC 12.2Kbps	Right Cheek	0mm	9538	1907.6	23.87	24.00	1.030	-0.008	0.267	0.275
	WCDMA II	RMC 12.2Kbps	Right Tilted	0mm	9538	1907.6	23.87	24.00	1.030	-0.065	0.095	0.098
	WCDMA II	RMC 12.2Kbps	Left Cheek	0mm	9538	1907.6	23.87	24.00	1.030	0.196	0.473	0.487
05	WCDMA II	RMC 12.2Kbps	Left Cheek	0mm	9262	1852.4	23.84	24.00	1.038	0.178	0.616	0.639
	WCDMA II	RMC 12.2Kbps	Left Cheek	0mm	9400	1880	23.84	24.00	1.038	-0.037	0.513	0.532
	WCDMA II	RMC 12.2Kbps	Left Tilted	0mm	9538	1907.6	23.87	24.00	1.030	0.142	0.117	0.121

<LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq.	Average Power	Tune-Up Limit	Tune-up Scaling	Power Drift	Measured 1g SAR	Reported 1g SAR
140.	LTE Daniel 40	` '	ODOK				` '	00005	` '	(dBm)	(dBm)	Factor	(dB)	(W/kg)	(W/kg)
	LTE Band 12	10M	QPSK QPSK	1RB	0Offset	Right Cheek	0mm	23095	707.5	23.42	24.00	1.143	0.11	0.078	0.089
	LTE Band 12	10M		25RB	0Offset	Right Cheek	0mm	23095	707.5	22.32	23.00	1.169	0.08	0.064	0.075
	LTE Band 12	10M	QPSK	1RB	0Offset	Right Tilted	0mm	23095	707.5	23.42	24.00	1.143	0.12	0.051	0.058
00	LTE Band 12 LTE Band 12	10M	QPSK QPSK	25RB 1RB	0Offset	Right Tilted	0mm	23095	707.5 707.5	22.32	23.00	1.169	-0.07	0.040	0.047
06	LTE Band 12	10M 10M			0Offset	Left Cheek	0mm	23095			24.00	1.143		0.081	0.093
			QPSK	25RB	0Offset	Left Cheek	0mm	23095	707.5	22.32	23.00	1.169	0.19	0.066	0.077
	LTE Band 12	10M	QPSK	1RB	0Offset	Left Tilted	0mm	23095	707.5	23.42	24.00	1.143	-0.11	0.056	0.064
	LTE Band 12	10M	QPSK	25RB	0Offset	Left Tilted	0mm	23095	707.5	22.32	23.00	1.169	0.14	0.044	0.051
	LTE Band 17	10M	QPSK	1RB	0Offset	Right Cheek	0mm	23790	710	23.44	24.00	1.138	-0.01	0.088	0.100
	LTE Band 17	10M	QPSK	25RB	0Offset	Right Cheek	0mm	23790	710	22.26	23.00	1.186	-0.02	0.072	0.085
	LTE Band 17	10M	QPSK	1RB	0Offset	Right Tilted	0mm	23790	710	23.44	24.00	1.138	0.08	0.062	0.071
	LTE Band 17	10M	QPSK	25RB	0Offset	Right Tilted	0mm	23790	710	22.26	23.00	1.186	0.04	0.049	0.058
07	LTE Band 17	10M	QPSK	1RB	0Offset	Left Cheek	0mm	23790	710	23.44	24.00	1.138	0.05	0.094	0.107
	LTE Band 17	10M	QPSK	25RB	0Offset	Left Cheek	0mm	23790	710	22.26	23.00	1.186	0.06	0.077	0.091
	LTE Band 17	10M	QPSK	1RB	0Offset	Left Tilted	0mm	23790	710	23.44	24.00	1.138	0.02	0.066	0.075
	LTE Band 17	10M	QPSK	25RB	0Offset	Left Tilted	0mm	23790	710	22.26	23.00	1.186	0.18	0.054	0.064
	LTE Band 5	10M	QPSK	1RB	0Offset	Right Cheek	0mm	20525	836.5	23.57	24.00	1.104	-0.05	0.569	0.628
	LTE Band 5	10M	QPSK	1RB	0Offset	Right Cheek	0mm	20450	829	23.41	24.00	1.146	-0.05	0.570	0.653
80	LTE Band 5	10M	QPSK	1RB	0Offset	Right Cheek	0mm	20600	844	23.55	24.00	1.109	-0.06	0.663	0.735
	LTE Band 5	10M	QPSK	25RB	0Offset	Right Cheek	0mm	20525	836.5	22.37	23.00	1.156	-0.07	0.461	0.533
	LTE Band 5	10M	QPSK	1RB	0Offset	Right Tilted	0mm	20525	836.5	23.57	24.00	1.104	-0.07	0.344	0.380
	LTE Band 5	10M	QPSK	25RB	0Offset	Right Tilted	0mm	20525	836.5	22.37	23.00	1.156	-0.06	0.293	0.339
	LTE Band 5	10M	QPSK	1RB	0Offset	Left Cheek	0mm	20525	836.5	23.57	24.00	1.104	-0.05	0.541	0.597
	LTE Band 5	10M	QPSK	25RB	0Offset	Left Cheek	0mm	20525	836.5	22.37	23.00	1.156	-0.05	0.451	0.521
	LTE Band 5	10M	QPSK	1RB	0Offset	Left Tilted	0mm	20525	836.5	23.57	24.00	1.104	-0.11	0.339	0.374
	LTE Band 5	10M	QPSK	25RB	0Offset	Left Tilted	0mm	20525	836.5	22.37	23.00	1.156	-0.14	0.284	0.328
	LTE Band 4	20M	QPSK	1RB	0Offset	Right Cheek	0mm	20175	1732.5	23.67	24.00	1.079	-0.19	0.454	0.490
	LTE Band 4	20M	QPSK	50RB	0Offset	Right Cheek	0mm	20175	1732.5	22.75	23.00	1.059	-0.12	0.355	0.376
	LTE Band 4	20M	QPSK	1RB	0Offset	Right Tilted	0mm	20175	1732.5	23.67	24.00	1.079	-0.05	0.273	0.295
	LTE Band 4	20M	QPSK	50RB	0Offset	Right Tilted	0mm	20175	1732.5	22.75	23.00	1.059	-0.03	0.212	0.225
09	LTE Band 4	20M	QPSK	1RB	0Offset	Left Cheek	0mm	20175	1732.5	23.67	24.00	1.079	-0.1	0.843	0.910
	LTE Band 4	20M	QPSK	1RB	0Offset	Left Cheek	0mm	20050	1720	23.58	24.00	1.102	-0.04	0.798	0.879
	LTE Band 4	20M	QPSK	1RB	0Offset	Left Cheek	0mm	20300	1745	23.65	24.00	1.084	-0.11	0.721	0.782
	LTE Band 4	20M	QPSK	50RB	0Offset	Left Cheek	0mm	20175	1732.5	22.75	23.00	1.059	-0.04	0.667	0.707
	LTE Band 4	20M	QPSK	100RB	0Offset	Left Cheek	0mm	20175	1732.5	22.67	23.00	1.079	-0.03	0.654	0.706
	LTE Band 4	20M	QPSK	1RB	0Offset	Left Tilted	0mm	20175	1732.5	23.67	24.00	1.079	0.13	0.287	0.310
	LTE Band 4	20M	QPSK	50RB	0Offset	Left Tilted	0mm	20175	1732.5	22.75	23.00	1.059	0.04	0.234	0.248

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 47 of 63

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 2	20M	QPSK	1RB	0offset	Right Cheek	0mm	18900	1880	23.67	24.00	1.079	0.064	0.225	0.243
	LTE Band 2	20M	QPSK	50RB	0offset	Right Cheek	0mm	18900	1880	22.70	23.00	1.072	0.026	0.170	0.182
	LTE Band 2	20M	QPSK	1RB	0offset	Right Tilted	0mm	18900	1880	23.67	24.00	1.079	-0.037	0.112	0.121
	LTE Band 2	20M	QPSK	50RB	0offset	Right Tilted	0mm	18900	1880	22.70	23.00	1.072	0.042	0.081	0.087
	LTE Band 2	20M	QPSK	1RB	0offset	Left Cheek	0mm	18900	1880	23.67	24.00	1.079	-0.02	0.486	0.524
10	LTE Band 2	20M	QPSK	1RB	0offset	Left Cheek	0mm	18700	1860	23.58	24.00	1.102	0.051	0.574	0.632
	LTE Band 2	20M	QPSK	1RB	0offset	Left Cheek	0mm	19100	1900	23.64	24.00	1.086	0.11	0.474	0.515
	LTE Band 2	20M	QPSK	50RB	0offset	Left Cheek	0mm	18900	1880	22.70	23.00	1.072	0.015	0.386	0.414
	LTE Band 2	20M	QPSK	1RB	0offset	Left Tilted	0mm	18900	1880	23.67	24.00	1.079	0.092	0.166	0.179
	LTE Band 2	20M	QPSK	50RB	0offset	Left Tilted	0mm	18900	1880	22.70	23.00	1.072	0.032	0.124	0.133
	LTE Band 7	20M	QPSK	1RB	0offset	Right Cheek	0mm	21350	2560	23.64	24.00	1.086	0.03	0.149	0.162
	LTE Band 7	20M	QPSK	50RB	0offset	Right Cheek	0mm	21350	2560	22.54	23.00	1.112	0.05	0.127	0.141
	LTE Band 7	20M	QPSK	1RB	0offset	Right Tilted	0mm	21350	2560	23.64	24.00	1.086	0.02	0.090	0.098
	LTE Band 7	20M	QPSK	50RB	0offset	Right Tilted	0mm	21350	2560	22.54	23.00	1.112	-0.04	0.075	0.083
	LTE Band 7	20M	QPSK	1RB	0offset	Left Cheek	0mm	21350	2560	23.64	24.00	1.086	-0.06	0.288	0.313
	LTE Band 7	20M	QPSK	1RB	0offset	Left Cheek	0mm	20850	2510	23.41	24.00	1.146	0.17	0.272	0.312
11	LTE Band 7	20M	QPSK	1RB	0offset	Left Cheek	0mm	21100	2535	23.34	24.00	1.164	-0.11	0.330	0.384
	LTE Band 7	20M	QPSK	50RB	0offset	Left Cheek	0mm	21350	2560	22.54	23.00	1.112	0.05	0.232	0.258
	LTE Band 7	20M	QPSK	1RB	0offset	Left Tilted	0mm	21350	2560	23.64	24.00	1.086	0.19	0.086	0.093
	LTE Band 7	20M	QPSK	50RB	0offset	Left Tilted	0mm	21350	2560	22.54	23.00	1.112	-0.11	0.068	0.076

Report No. : FA552956

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor			Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN2.4GHz	802.11b 1Mbps	Right Cheek	0mm	6	2437	16.90	17.00	1.023	97.63	1.024	0.18	0.208	0.218
	WLAN2.4GHz	802.11b 1Mbps	Right Tilted	0mm	6	2437	16.90	17.00	1.023	97.63	1.024	0.1	0.180	0.189
	WLAN2.4GHz	802.11b 1Mbps	Left Cheek	0mm	6	2437	16.90	17.00	1.023	97.63	1.024	0.03	0.403	0.422
12	WLAN2.4GHz	802.11b 1Mbps	Left Cheek	0mm	1	2412	16.82	17.00	1.042	97.63	1.024	-0.04	0.516	0.551
	WLAN2.4GHz	802.11b 1Mbps	Left Cheek	0mm	11	2462	16.89	17.00	1.026	97.63	1.024	-0.02	0.394	0.414
	WLAN2.4GHz	802.11b 1Mbps	Left Tilted	0mm	6	2437	16.90	17.00	1.023	97.63	1.024	0.01	0.209	0.219

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	Bluetooth	1Mbps	Right Cheek	0mm	39	2441	8.73	8.75	1.005	0.18	0.035	0.035
	Bluetooth	1Mbps	Right Tilted	0mm	39	2441	8.73	8.75	1.005	-0.17	0.032	0.032
13	Bluetooth	1Mbps	Left Cheek	0mm	39	2441	8.73	8.75	1.005	0.06	0.073	0.073
	Bluetooth	1Mbps	Left Cheek	0mm	0	2402	7.86	8.75	1.227	0.07	0.047	0.058
	Bluetooth	1Mbps	Left Cheek	0mm	78	2480	7.29	8.75	1.400	0.13	0.037	0.052
	Bluetooth	1Mbps	Left Tilted	0mm	39	2441	8.73	8.75	1.005	0.12	0.034	0.034

FCC ID : ZL5S40 Page 48 of 63 Form version. : 150415

14.2 Hotspot SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	GPRS (4 Tx slots)	Front	10mm	251	848.8	26.97	27.50	1.130	-0.11	0.623	0.704
14	GSM850	GPRS (4 Tx slots)	Back	10mm	251	848.8	26.97	27.50	1.130	-0.07	0.633	0.715
	GSM850	GPRS (4 Tx slots)	Back	10mm	128	824.2	26.89	27.50	1.151	-0.03	0.614	0.707
	GSM850	GPRS (4 Tx slots)	Back	10mm	189	836.4	26.95	27.50	1.135	-0.13	0.607	0.689
	GSM850	GPRS (4 Tx slots)	Left Side	10mm	251	848.8	26.97	27.50	1.130	-0.07	0.291	0.329
	GSM850	GPRS (4 Tx slots)	Right Side	10mm	251	848.8	26.97	27.50	1.130	-0.18	0.096	0.108
	GSM850	GPRS (4 Tx slots)	Bottom Side	10mm	251	848.8	26.97	27.50	1.130	-0.14	0.066	0.075
	GSM1900	EDGE (4 Tx slots)	Front	10mm	810	1909.8	25.25	25.90	1.161	-0.15	0.518	0.602
15	GSM1900	EDGE (4 Tx slots)	Back	10mm	810	1909.8	25.25	25.90	1.161	-0.07	0.934	1.085
	GSM1900	EDGE (4 Tx slots)	Back	10mm	512	1850.2	25.14	25.90	1.191	-0.06	0.724	0.862
	GSM1900	EDGE (4 Tx slots)	Back	10mm	661	1880	25.04	25.90	1.219	-0.04	0.797	0.972
	GSM1900	EDGE (4 Tx slots)	Left Side	10mm	810	1909.8	25.25	25.90	1.161	-0.19	0.168	0.195
	GSM1900	EDGE (4 Tx slots)	Right Side	10mm	810	1909.8	25.25	25.90	1.161	-0.08	0.112	0.130
	GSM1900	EDGE (4 Tx slots)	Bottom Side	10mm	810	1909.8	25.25	25.90	1.161	-0.1	0.526	0.611

Report No. : FA552956

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WCDMA V	RMC 12.2Kbps	Front	10mm	4233	846.6	23.85	24.00	1.035	0.14	0.697	0.721
16	WCDMA V	RMC 12.2Kbps	Back	10mm	4233	846.6	23.85	24.00	1.035	-0.12	0.858	0.888
	WCDMA V	RMC 12.2Kbps	Back	10mm	4132	826.4	23.77	24.00	1.054	-0.1	0.771	0.813
	WCDMA V	RMC 12.2Kbps	Back	10mm	4182	836.4	23.75	24.00	1.059	-0.16	0.787	0.834
	WCDMA V	RMC 12.2Kbps	Left Side	10mm	4233	846.6	23.85	24.00	1.035	-0.07	0.417	0.432
	WCDMA V	RMC 12.2Kbps	Right Side	10mm	4233	846.6	23.85	24.00	1.035	-0.12	0.126	0.130
	WCDMA V	RMC 12.2Kbps	Bottom Side	10mm	4233	846.6	23.85	24.00	1.035	-0.15	0.097	0.100
	WCDMA IV	RMC 12.2Kbps	Front	10mm	1513	1752.6	23.92	24.00	1.019	-0.17	1.030	1.049
17	WCDMA IV	RMC 12.2Kbps	Front	10mm	1312	1712.4	23.68	24.00	1.076	-0.11	1.060	1.141
	WCDMA IV	RMC 12.2Kbps	Front	10mm	1413	1732.6	23.83	24.00	1.040	-0.14	1.070	1.113
	WCDMA IV	RMC 12.2Kbps	Back	10mm	1513	1752.6	23.92	24.00	1.019	-0.18	1.020	1.039
	WCDMA IV	RMC 12.2Kbps	Back	10mm	1312	1712.4	23.68	24.00	1.076	-0.09	1.040	1.120
	WCDMA IV	RMC 12.2Kbps	Back	10mm	1413	1732.6	23.83	24.00	1.040	-0.04	1.010	1.050
	WCDMA IV	RMC 12.2Kbps	Left Side	10mm	1513	1752.6	23.92	24.00	1.019	-0.01	0.137	0.140
	WCDMA IV	RMC 12.2Kbps	Right Side	10mm	1513	1752.6	23.92	24.00	1.019	-0.11	0.068	0.069
	WCDMA IV	RMC 12.2Kbps	Bottom Side	10mm	1513	1752.6	23.92	24.00	1.019	-0.06	0.138	0.141
	WCDMA II	RMC 12.2Kbps	Front	10mm	9538	1907.6	23.87	24.00	1.030	-0.12	0.623	0.642
18	WCDMA II	RMC 12.2Kbps	Back	10mm	9538	1907.6	23.87	24.00	1.030	-0.13	1.290	1.329
	WCDMA II	RMC 12.2Kbps	Back	10mm	9262	1852.4	23.84	24.00	1.038	-0.02	1.040	1.079
	WCDMA II	RMC 12.2Kbps	Back	10mm	9400	1880	23.84	24.00	1.038	-0.02	1.210	1.255
	WCDMA II	RMC 12.2Kbps	Left Side	10mm	9538	1907.6	23.87	24.00	1.030	-0.12	0.264	0.272
	WCDMA II	RMC 12.2Kbps	Right Side	10mm	9538	1907.6	23.87	24.00	1.030	-0.1	0.136	0.140
	WCDMA II	RMC 12.2Kbps	Bottom Side	10mm	9538	1907.6	23.87	24.00	1.030	-0.12	0.519	0.535

FCC ID : ZL5S40 Page 49 of 63 Form version. : 150415

<LTE SAR>

Plot	Band	BW	Modulation	RB	RB	Test	Gap	Ch.	Freq.	Average Power	Tune-Up Limit	Tune-up Scaling	Power Drift	Measured 1g SAR	Reported 1a SAR
No.		(MHz)		Size	offset	Position	(mm)		(MHz)	(dBm)	(dBm)	Factor	(dB)	(W/kg)	(W/kg)
	LTE Band 12	10M	QPSK	1RB	0offset	Front	10mm	23095	707.5	23.42	24.00	1.143	-0.09	0.124	0.142
	LTE Band 12	10M	QPSK	25RB	0offset	Front	10mm	23095	707.5	22.32	23.00	1.169	-0.01	0.101	0.118
19	LTE Band 12	10M	QPSK	1RB	0offset	Back	10mm	23095	707.5	23.42	24.00	1.143	-0.14	0.239	0.273
	LTE Band 12	10M	QPSK	25RB	0offset	Back	10mm	23095	707.5	22.32	23.00	1.169	-0.1	0.187	0.219
	LTE Band 12	10M	QPSK	1RB	0offset	Left Side	10mm	23095	707.5	23.42	24.00	1.143	-0.05	0.082	0.094
	LTE Band 12	10M	QPSK	25RB	0offset	Left Side	10mm	23095	707.5	22.32	23.00	1.169	-0.09	0.066	0.077
	LTE Band 12	10M	QPSK	1RB	0offset	Right Side	10mm	23095	707.5	23.42	24.00	1.143	0.16	0.108	0.123
	LTE Band 12	10M	QPSK	25RB	0offset	Right Side	10mm	23095	707.5	22.32	23.00	1.169	-0.09	0.089	0.104
	LTE Band 12	10M	QPSK	1RB	0offset	Bottom Side	10mm	23095	707.5	23.42	24.00	1.143	-0.18	0.011	0.013
	LTE Band 12	10M	QPSK	25RB	0offset	Bottom Side	10mm	23095	707.5	22.32	23.00	1.169	-0.18	0.009	0.010
	LTE Band 17	10M	QPSK	1RB	0offset	Front	10mm	23790	710	23.44	24.00	1.138	-0.09	0.133	0.151
	LTE Band 17	10M	QPSK	25RB	0offset	Front	10mm	23790	710	22.26	23.00	1.186	0.03	0.110	0.130
20	LTE Band 17	10M	QPSK	1RB	0offset	Back	10mm	23790	710	23.44	24.00	1.138	-0.14	0.244	0.278
	LTE Band 17	10M	QPSK	25RB	0offset	Back	10mm	23790	710	22.26	23.00	1.186	-0.1	0.193	0.229
	LTE Band 17	10M	QPSK	1RB	0offset	Left Side	10mm	23790	710	23.44	24.00	1.138	-0.02	0.086	0.098
	LTE Band 17	10M	QPSK	25RB	0offset	Left Side	10mm	23790	710	22.26	23.00	1.186	-0.04	0.069	0.082
	LTE Band 17	10M	QPSK	1RB	0offset	Right Side	10mm	23790	710	23.44	24.00	1.138	-0.15	0.114	0.130
	LTE Band 17	10M	QPSK	25RB	0offset	Right Side	10mm	23790	710	22.26	23.00	1.186	-0.1	0.093	0.110
	LTE Band 17	10M	QPSK	1RB	0offset	Bottom Side	10mm	23790	710	23.44	24.00	1.138	-0.06	0.012	0.014
	LTE Band 17	10M	QPSK	25RB	0offset	Bottom Side	10mm	23790	710	22.26	23.00	1.186	-0.16	0.009	0.011
	LTE Band 5	10M	QPSK	1RB	0offset	Front	10mm	20525	836.5	23.57	24.00	1.104	-0.11	0.677	0.747
	LTE Band 5	10M	QPSK	25RB	0offset	Front	10mm	20525	836.5	22.37	23.00	1.156	-0.07	0.559	0.646
	LTE Band 5	10M	QPSK	1RB	0offset	Back	10mm	20525	836.5	23.57	24.00	1.104	-0.01	0.739	0.816
	LTE Band 5	10M	QPSK	1RB	0offset	Back	10mm	20450	829	23.41	24.00	1.146	-0.15	0.692	0.793
21	LTE Band 5	10M	QPSK	1RB	0offset	Back	10mm	20600	844	23.55	24.00	1.109	-0.09	0.742	0.823
	LTE Band 5	10M	QPSK	25RB	0offset	Back	10mm	20525	836.5	22.37	23.00	1.156	-0.09	0.579	0.669
	LTE Band 5	10M	QPSK	50RB	0offset	Back	10mm	20525	836.5	22.33	23.00	1.167	-0.11	0.572	0.667
	LTE Band 5	10M	QPSK	1RB	0offset	Left Side	10mm	20525	836.5	23.57	24.00	1.104	-0.16	0.147	0.162
	LTE Band 5	10M	QPSK	25RB	0offset	Left Side	10mm	20525	836.5	22.37	23.00	1.156	-0.14	0.078	0.090
	LTE Band 5	10M	QPSK	1RB	0offset	Right Side	10mm	20525	836.5	23.57	24.00	1.104	-0.16	0.196	0.216
	LTE Band 5	10M	QPSK	25RB	0offset	Right Side	10mm	20525	836.5	22.37	23.00	1.156	-0.08	0.156	0.180
	LTE Band 5	10M	QPSK	1RB	0offset	Bottom Side	10mm	20525	836.5	23.57	24.00	1.104	-0.13	0.060	0.066
	LTE Band 5	10M	QPSK	25RB	0offset	Bottom Side	10mm	20525	836.5	22.37	23.00	1.156	-0.12	0.048	0.055

Report No.: FA552956

Plot	Band	BW	Modulation	RB	RB	Test	Gap	Ch.	Freq.	Average Power	Tune-Up Limit	Tune-up Scaling	Power Drift	Measured 1g SAR	Reported 1g SAR
No.	Dallu	(MHz)	Modulation	Size	offset	Position	(mm)	CII.	(MHz)	(dBm)	(dBm)	Factor	(dB)	(W/kg)	(W/kg)
	LTE Band 4	20M	QPSK	1RB	0offset	Front	10mm	20175	1732.5	23.67	24.00	1.079	-0.01	0.956	1.031
	LTE Band 4	20M	QPSK	1RB	0offset	Front	10mm	20050	1720	23.58	24.00	1.102	-0.1	1.000	1.102
	LTE Band 4	20M	QPSK	1RB	0offset	Front	10mm	20300	1745	23.65	24.00	1.084	-0.11	0.852	0.924
	LTE Band 4	20M	QPSK	50RB	0offset	Front	10mm	20175	1732.5	22.75	23.00	1.059	-0.12	0.791	0.838
	LTE Band 4	20M	QPSK	50RB	0offset	Front	10mm	20050	1720	22.50	23.00	1.122	-0.07	0.817	0.917
	LTE Band 4	20M	QPSK	50RB	0offset	Front	10mm	20300	1745	22.60	23.00	1.096	-0.12	0.791	0.867
	LTE Band 4	20M	QPSK	100RB	0offset	Front	10mm	20175	1732.5	22.67	23.00	1.079	-0.07	0.767	0.828
	LTE Band 4	20M	QPSK	1RB	0offset	Back	10mm	20175	1732.5	23.67	24.00	1.079	-0.12	1.000	1.079
22	LTE Band 4	20M	QPSK	1RB	0offset	Back	10mm	20050	1720	23.58	24.00	1.102	-0.12	1.040	1.146
	LTE Band 4	20M	QPSK	1RB	0offset	Back	10mm	20300	1745	23.65	24.00	1.084	-0.13	0.970	1.051
	LTE Band 4	20M	QPSK	50RB	0offset	Back	10mm	20175	1732.5	22.75	23.00	1.059	-0.1	0.804	0.852
	LTE Band 4	20M	QPSK	50RB	0offset	Back	10mm	20050	1720	22.50	23.00	1.122	-0.1	0.835	0.937
	LTE Band 4	20M	QPSK	50RB	0offset	Back	10mm	20300	1745	22.60	23.00	1.096	-0.13	0.828	0.908
	LTE Band 4	20M	QPSK	100RB	0offset	Back	10mm	20175	1732.5	22.67	23.00	1.079	-0.11	0.810	0.874
	LTE Band 4	20M	QPSK	1RB	0offset	Left Side	10mm	20175	1732.5	23.67	24.00	1.079	0.01	0.160	0.173
	LTE Band 4	20M	QPSK	50RB	0offset	Left Side	10mm	20175	1732.5	22.75	23.00	1.059	-0.04	0.128	0.136
	LTE Band 4	20M	QPSK	1RB	0offset	Right Side	10mm	20175	1732.5	23.67	24.00	1.079	-0.11	0.063	0.068
	LTE Band 4	20M	QPSK	50RB	0offset	Right Side	10mm	20175	1732.5	22.75	23.00	1.059	-0.1	0.047	0.050
	LTE Band 4	20M	QPSK	1RB	0offset	Bottom Side	10mm	20175	1732.5	23.67	24.00	1.079	-0.18	0.150	0.162
	LTE Band 4	20M	QPSK	50RB	0offset	Bottom Side	10mm	20175	1732.5	22.75	23.00	1.059	-0.19	0.119	0.126
	LTE Band 2	20M	QPSK	1RB	0offset	Front	10mm	18900	1880	23.67	24.00	1.079	0.006	0.584	0.630
	LTE Band 2	20M	QPSK	50RB	0offset	Front	10mm	18900	1880	22.70	23.00	1.072	-0.004	0.488	0.523
	LTE Band 2	20M	QPSK	1RB	0offset	Back	10mm	18900	1880	23.67	24.00	1.079	-0.08	1.070	1.154
	LTE Band 2	20M	QPSK	1RB	0offset	Back	10mm	18700	1860	23.58	24.00	1.102	-0.02	1.020	1.124
23	LTE Band 2	20M	QPSK	1RB	0offset	Back	10mm	19100	1900	23.64	24.00	1.086	-0.05	1.190	1.293
	LTE Band 2	20M	QPSK	50RB	0offset	Back	10mm	18900	1880	22.70	23.00	1.072	-0.019	0.893	0.957
	LTE Band 2	20M	QPSK	50RB	0offset	Back	10mm	18700	1860	22.69	23.00	1.074	0.002	0.829	0.890
	LTE Band 2	20M	QPSK	50RB	0offset	Back	10mm	19100	1900	22.68	23.00	1.076	-0.099	0.912	0.982
	LTE Band 2	20M	QPSK	100RB	0offset	Back	10mm	18900	1880	22.55	23.00	1.109	0.092	0.775	0.860
	LTE Band 2	20M	QPSK	1RB	0offset	Left Side	10mm	18900	1880	23.67	24.00	1.079	-0.118	0.252	0.272
	LTE Band 2	20M	QPSK	50RB	0offset	Left Side	10mm	18900	1880	22.70	23.00	1.072	-0.013	0.199	0.213
	LTE Band 2	20M	QPSK	1RB	0offset	Right Side	10mm	18900	1880	23.67	24.00	1.079	0.015	0.146	0.158
	LTE Band 2	20M	QPSK	50RB	0offset	Right Side	10mm	18900	1880	22.70	23.00	1.072	-0.02	0.111	0.119
	LTE Band 2	20M	QPSK	1RB	0offset	Bottom Side	10mm	18900	1880	23.67	24.00	1.079	-0.05	0.638	0.688
	LTE Band 2	20M	QPSK	50RB	0offset	Bottom Side	10mm	18900	1880	22.70	23.00	1.072	0.07	0.552	0.591
24	LTE Band 7	20M	QPSK	1RB	0offset	Front	10mm	21350	2560	23.64	24.00	1.086	0.01	0.390	0.424
	LTE Band 7	20M	QPSK	1RB	0offset	Front	10mm	20850	2510	23.41	24.00	1.146	-0.19	0.285	0.326
	LTE Band 7	20M	QPSK	1RB	0offset	Front		21100	2535	23.34	24.00	1.164	-0.19	0.283	0.329
	LTE Band 7	20M	QPSK	50RB	0offset	Front	10mm	21350	2560	22.54	23.00	1.112	-0.13	0.202	0.225
	LTE Band 7	20M	QPSK	1RB	0offset	Back		21350	2560	23.64	24.00	1.086	0.05	0.390	0.424
	LTE Band 7	20M	QPSK	50RB	0offset	Back	10mm	21350	2560	22.54	23.00	1.112	0.06	0.263	0.292
	LTE Band 7	20M	QPSK	1RB	0offset	Left Side		21350	2560	23.64	24.00	1.086	0.15	0.170	0.185
	LTE Band 7	20M	QPSK	50RB	0offset	Left Side		21350	2560	22.54	23.00	1.112	0.01	0.161	0.179
	LTE Band 7	20M	QPSK	1RB	0offset	Right Side	10mm	21350	2560	23.64	24.00	1.086	-0.09	0.040	0.043
	LTE Band 7	20M	QPSK	50RB	0offset	Right Side	10mm	21350	2560	22.54	23.00	1.112	-0.13	0.046	0.051
	LTE Band 7	20M	QPSK	1RB	0offset	Bottom Side	10mm	21350	2560	23.64	24.00	1.086	0.09	0.161	0.175
	LTE Band 7	20M	QPSK	50RB	0offset	Bottom Side	10mm	21350	2560	22.54	23.00	1.112	-0.16	0.139	0.155

TEL: 886-3-327-3456 / FAX: 886-3-328-4978
FCC ID: ZL5S40 Page 51 of 63

Issued Date : Jul. 16, 2015 Form version. : 150415

Report No.: FA552956

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cyclo		Delfa	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN2.4GHz	802.11b 1Mbps	Front	10mm	6	2437	16.90	17.00	1.023	97.63	1.024	0.09	0.065	0.068
25	WLAN2.4GHz	802.11b 1Mbps	Front	10mm	1	2412	16.82	17.00	1.042	97.63	1.024	0.01	0.089	0.095
	WLAN2.4GHz	802.11b 1Mbps	Front	10mm	11	2462	16.89	17.00	1.026	97.63	1.024	-0.1	0.061	0.064
	WLAN2.4GHz	802.11b 1Mbps	Back	10mm	6	2437	16.90	17.00	1.023	97.63	1.024	-0.01	0.062	0.065
	WLAN2.4GHz	802.11b 1Mbps	Left Side	10mm	6	2437	16.90	17.00	1.023	97.63	1.024	-0.17	0.009	0.009
	WLAN2.4GHz	802.11b 1Mbps	Right Side	10mm	6	2437	16.90	17.00	1.023	97.63	1.024	-0.05	0.043	0.045
	WLAN2.4GHz	802.11b 1Mbps	Top Side	10mm	6	2437	16.90	17.00	1.023	97.63	1.024	-0.03	0.042	0.044

Report No.: FA552956

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	Bluetooth	1Mbps	Front	10mm	39	2441	8.73	8.75	1.005	-0.18	0.005	0.005
26	Bluetooth	1Mbps	Front	10mm	0	2402	7.86	8.75	1.227	0.07	0.008	0.010
	Bluetooth	1Mbps	Front	10mm	78	2480	7.29	8.75	1.400	-0.07	0.002	0.002
	Bluetooth	1Mbps	Back	10mm	39	2441	8.73	8.75	1.005	0.15	0.003	0.003
	Bluetooth	1Mbps	Left Side	10mm	39	2441	8.73	8.75	1.005	0	0.001	0.001
	Bluetooth	1Mbps	Right Side	10mm	39	2441	8.73	8.75	1.005	0.15	0.002	0.002
	Bluetooth	1Mbps	Top Side	10mm	39	2441	8.73	8.75	1.005	0.18	0.003	0.003

14.3 Body Worn Accessory SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	GPRS (4 Tx slots)	Front	10mm	251	848.8	26.97	27.50	1.130	-0.11	0.623	0.704
27	GSM850	GPRS (4 Tx slots)	Back	10mm	251	848.8	26.97	27.50	1.130	-0.07	0.633	0.715
	GSM850	GPRS (4 Tx slots)	Back	10mm	128	824.2	26.89	27.50	1.151	-0.03	0.614	0.707
	GSM850	GPRS (4 Tx slots)	Back	10mm	189	836.4	26.95	27.50	1.135	-0.13	0.607	0.689
	GSM1900	EDGE (4 Tx slots)	Front	10mm	810	1909.8	25.25	25.90	1.161	-0.15	0.518	0.602
28	GSM1900	EDGE (4 Tx slots)	Back	10mm	810	1909.8	25.25	25.90	1.161	-0.07	0.934	1.085
	GSM1900	EDGE (4 Tx slots)	Back	10mm	512	1850.2	25.14	25.90	1.191	-0.06	0.724	0.862
	GSM1900	EDGE (4 Tx slots)	Back	10mm	661	1880	25.04	25.90	1.219	-0.04	0.797	0.972

Report No. : FA552956

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Headset	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WCDMA V	RMC 12.2Kbps	Front	10mm	-	4233	846.6	23.85	24.00	1.035	0.14	0.697	0.721
29	WCDMA V	RMC 12.2Kbps	Back	10mm	-	4233	846.6	23.85	24.00	1.035	-0.12	0.858	0.888
	WCDMA V	RMC 12.2Kbps	Back	10mm	-	4132	826.4	23.77	24.00	1.054	-0.1	0.771	0.813
	WCDMA V	RMC 12.2Kbps	Back	10mm	-	4182	836.4	23.75	24.00	1.059	-0.16	0.787	0.834
	WCDMA IV	RMC 12.2Kbps	Front	10mm	-	1513	1752.6	23.92	24.00	1.019	-0.17	1.030	1.049
30	WCDMA IV	RMC 12.2Kbps	Front	10mm	-	1312	1712.4	23.68	24.00	1.076	-0.11	1.060	1.141
	WCDMA IV	RMC 12.2Kbps	Front	10mm	-	1413	1732.6	23.83	24.00	1.040	-0.14	1.070	1.113
	WCDMA IV	RMC 12.2Kbps	Back	10mm	-	1513	1752.6	23.92	24.00	1.019	-0.18	1.020	1.039
	WCDMA IV	RMC 12.2Kbps	Back	10mm	-	1312	1712.4	23.68	24.00	1.076	-0.09	1.040	1.120
	WCDMA IV	RMC 12.2Kbps	Back	10mm	1	1413	1732.6	23.83	24.00	1.040	-0.04	1.010	1.050
	WCDMA II	RMC 12.2Kbps	Front	10mm	-	9538	1907.6	23.87	24.00	1.030	-0.12	0.623	0.642
31	WCDMA II	RMC 12.2Kbps	Back	10mm	-	9538	1907.6	23.87	24.00	1.030	-0.13	1.290	1.329
	WCDMA II	RMC 12.2Kbps	Back	10mm	-	9262	1852.4	23.84	24.00	1.038	-0.02	1.040	1.079
	WCDMA II	RMC 12.2Kbps	Back	10mm	-	9400	1880	23.84	24.00	1.038	-0.02	1.210	1.255
	WCDMA II	RMC 12.2Kbps	Back	10mm	Headset	9538	1907.6	23.87	24.00	1.030	-0.064	1.270	1.309
	WCDMA II	RMC 12.2Kbps	Back	10mm	Headset	9262	1852.4	23.84	24.00	1.038	-0.14	1.010	1.048
	WCDMA II	RMC 12.2Kbps	Back	10mm	Headset	9400	1880	23.84	24.00	1.038	-0.06	1.150	1.193

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date : Jul. 16, 2015 Form version. : 150415

FCC ID: ZL5S40 Page 53 of 63

<LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Headset	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 12	10M	QPSK	1RB	0offset	Front	10mm	-	23095	707.5	23.42	24.00	1.143	-0.09	0.124	0.142
	LTE Band 12	10M	QPSK	25RB	0offset	Front	10mm	-	23095	707.5	22.32	23.00	1.169	-0.01	0.101	0.118
32	LTE Band 12	10M	QPSK	1RB	0offset	Back	10mm	-	23095	707.5	23.42	24.00	1.143	-0.14	0.239	0.273
	LTE Band 12	10M	QPSK	25RB	0offset	Back	10mm	-	23095	707.5	22.32	23.00	1.169	-0.1	0.187	0.219
	LTE Band 17	10M	QPSK	1RB	0offset	Front	10mm	-	23790	710	23.44	24.00	1.138	-0.09	0.133	0.151
	LTE Band 17	10M	QPSK	25RB	0offset	Front	10mm	-	23790	710	22.26	23.00	1.186	0.03	0.110	0.130
33	LTE Band 17	10M	QPSK	1RB	0offset	Back	10mm	-	23790	710	23.44	24.00	1.138	-0.14	0.244	0.278
	LTE Band 17	10M	QPSK	25RB	0offset	Back	10mm	-	23790	710	22.26	23.00	1.186	-0.1	0.193	0.229
	LTE Band 5	10M	QPSK	1RB	0offset	Front	10mm	-	20525	836.5	23.57	24.00	1.104	-0.11	0.677	0.747
	LTE Band 5	10M	QPSK	25RB	0offset	Front	10mm	-	20525	836.5	22.37	23.00	1.156	-0.07	0.559	0.646
	LTE Band 5	10M	QPSK	1RB	0offset	Back	10mm	-	20525	836.5	23.57	24.00	1.104	-0.01	0.739	0.816
	LTE Band 5	10M	QPSK	1RB	0offset	Back	10mm	-	20450	829	23.41	24.00	1.146	-0.15	0.692	0.793
34	LTE Band 5	10M	QPSK	1RB	0offset	Back	10mm	-	20600	844	23.55	24.00	1.109	-0.09	0.742	0.823
	LTE Band 5	10M	QPSK	25RB	0offset	Back	10mm	-	20525	836.5	22.37	23.00	1.156	-0.09	0.579	0.669
	LTE Band 5	10M	QPSK	50RB	0offset	Back	10mm	-	20525	836.5	22.33	23.00	1.167	-0.11	0.572	0.667
	LTE Band 4	20M	QPSK	1RB	0offset	Front	10mm	-	20175	1732.5	23.67	24.00	1.079	-0.01	0.956	1.031
	LTE Band 4	20M	QPSK	1RB	0offset	Front	10mm	-	20050	1720	23.58	24.00	1.102	-0.1	1.000	1.102
	LTE Band 4	20M	QPSK	1RB	0offset	Front	10mm	-	20300	1745	23.65	24.00	1.084	-0.11	0.852	0.924
	LTE Band 4	20M	QPSK	50RB	0offset	Front	10mm	-	20175	1732.5	22.75	23.00	1.059	-0.12	0.791	0.838
	LTE Band 4	20M	QPSK	50RB	0offset	Front	10mm	-	20050	1720	22.50	23.00	1.122	-0.07	0.817	0.917
	LTE Band 4	20M	QPSK	50RB	0offset	Front	10mm	-	20300	1745	22.60	23.00	1.096	-0.12	0.791	0.867
	LTE Band 4	20M	QPSK	100RB	0offset	Front	10mm	-	20175	1732.5	22.67	23.00	1.079	-0.07	0.767	0.828
	LTE Band 4	20M	QPSK	1RB	0offset	Back	10mm	-	20175	1732.5	23.67	24.00	1.079	-0.12	1.000	1.079
35	LTE Band 4	20M	QPSK	1RB	0offset	Back	10mm	-	20050	1720	23.58	24.00	1.102	-0.12	1.040	1.146
	LTE Band 4	20M	QPSK	1RB	0offset	Back	10mm	-	20300	1745	23.65	24.00	1.084	-0.13	0.970	1.051
	LTE Band 4	20M	QPSK	50RB	0offset	Back	10mm	-	20175	1732.5	22.75	23.00	1.059	-0.1	0.804	0.852
	LTE Band 4	20M	QPSK	50RB	0offset	Back	10mm	-	20050	1720	22.50	23.00	1.122	-0.1	0.835	0.937
	LTE Band 4	20M	QPSK	50RB	0offset	Back	10mm	-	20300	1745	22.60	23.00	1.096	-0.13	0.828	0.908
	LTE Band 4	20M	QPSK	100RB	0offset	Back	10mm	-	20175	1732.5	22.67	23.00	1.079	-0.11	0.810	0.874
	LTE Band 2	20M	QPSK	1RB	0offset	Front	10mm	-	18900	1880	23.67	24.00	1.079	0.006	0.584	0.630
	LTE Band 2	20M	QPSK	50RB	0offset	Front	10mm	-	18900	1880	22.70	23.00	1.072	-0.004	0.488	0.523
	LTE Band 2	20M	QPSK	1RB	0offset	Back	10mm	-	18900	1880	23.67	24.00	1.079	-0.08	1.070	1.154
	LTE Band 2	20M	QPSK	1RB	0offset	Back	10mm	-	18700	1860	23.58	24.00	1.102	-0.02	1.020	1.124
36	LTE Band 2	20M	QPSK	1RB	0offset	Back	10mm	-	19100	1900	23.64	24.00	1.086	-0.05	1.190	1.293
	LTE Band 2	20M	QPSK	50RB	0offset	Back	10mm	-	18900	1880	22.70	23.00	1.072	-0.019	0.893	0.957
	LTE Band 2	20M	QPSK	50RB	0offset	Back	10mm	-	18700	1860	22.69	23.00	1.074	0.002	0.829	0.890
	LTE Band 2	20M	QPSK	50RB	0offset	Back	10mm	-	19100	1900	22.68	23.00	1.076	-0.099	0.912	0.982
	LTE Band 2	20M	QPSK	100RB	0offset	Back	10mm	-	18900	1880	22.55	23.00	1.109	0.092	0.775	0.860
	LTE Band 2	20M	QPSK	1RB	0offset	Back	10mm	Headset	19100	1900	23.64	24.00	1.086	0.028	1.160	1.260
	LTE Band 2	20M	QPSK	1RB	0offset	Back	10mm	Headset	18700	1860	23.58	24.00	1.102	0.106	1.070	1.179
	LTE Band 2	20M	QPSK	1RB	0offset	Back	10mm	Headset	18900	1880	23.67	24.00	1.079	-0.029	1.090	1.176
37	LTE Band 7	20M	QPSK	1RB	0offset	Front	10mm	-	21350	2560	23.64	24.00	1.086	0.01	0.390	0.424
	LTE Band 7	20M	QPSK	1RB	0offset	Front	10mm	-	20850	2510	23.41	24.00	1.146	-0.19	0.285	0.326
	LTE Band 7	20M	QPSK	1RB	0offset	Front	10mm	-	21100	2535	23.34	24.00	1.164	-0.19	0.283	0.329
	LTE Band 7	20M	QPSK	50RB	0offset	Front	10mm	-	21350	2560	22.54	23.00	1.112	-0.13	0.202	0.225
	LTE Band 7	20M	QPSK	1RB	0offset	Back	10mm	-	21350	2560	23.64	24.00	1.086	0.05	0.390	0.424
	LTE Band 7	20M	QPSK	50RB	0offset	Back	10mm	-	21350	2560	22.54	23.00	1.112	0.06	0.263	0.292

Report No.: FA552956

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 54 of 63

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor		CVCIA	Drift	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN2.4GHz	802.11b 1Mbps	Front	10mm	6	2437	16.90	17.00	1.023	97.63	1.024	0.09	0.065	0.068
38	WLAN2.4GHz	802.11b 1Mbps	Front	10mm	1	2412	16.82	17.00	1.042	97.63	1.024	0.01	0.089	0.095
	WLAN2.4GHz	802.11b 1Mbps	Front	10mm	11	2462	16.89	17.00	1.026	97.63	1.024	-0.1	0.061	0.064
	WLAN2.4GHz	802.11b 1Mbps	Back	10mm	6	2437	16.90	17.00	1.023	97.63	1.024	-0.01	0.062	0.065

Report No.: FA552956

Issued Date: Jul. 16, 2015

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	Bluetooth	1Mbps	Front	10mm	39	2441	8.73	8.75	1.005	-0.18	0.005	0.005
39	Bluetooth	1Mbps	Front	10mm	0	2402	7.86	8.75	1.227	0.07	0.008	0.010
	Bluetooth	1Mbps	Front	10mm	78	2480	7.29	8.75	1.400	-0.07	0.002	0.002
	Bluetooth	1Mbps	Back	10mm	39	2441	8.73	8.75	1.005	0.15	0.003	0.003

14.4 Repeated SAR Measurement

No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	WCDMA V	RMC 12.2Kbps	Back	10mm	4233	846.6	23.85	24.00	1.035	-0.12	0.858	-	0.888
2nd	WCDMA V	RMC 12.2Kbps	Back	10mm	4233	846.6	23.85	24.00	1.035	-0.16	0.797	1.08	0.825
1st	WCDMA IV	RMC 12.2Kbps	Front	10mm	1413	1732.6	23.83	24.00	1.040	-0.14	1.070	-	1.113
2nd	WCDMA IV	RMC 12.2Kbps	Front	10mm	1413	1732.6	23.83	24.00	1.040	-0.13	1.040	1.03	1.082
1st	WCDMA II	RMC 12.2Kbps	Back	10mm	9538	1907.6	23.87	24.00	1.030	-0.13	1.290	-	1.329
2nd	WCDMA II	RMC 12.2Kbps	Back	10mm	9538	1907.6	23.87	24.00	1.030	-0.043	1.250	1.03	1.288

General Note:

- 1. Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 2. Per KDB 865664 D01v01r03, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

FCC ID : ZL5S40 Page 55 of 63 Form version. : 150415

15. Simultaneous Transmission Analysis

NO	Cincillana and Tananaisaisa Confirmation	F	ortable Hands	Nete	
NO.	Simultaneous Transmission Configurations	Head	Body-worn	Hotspot	Note
1.	GSM(Voice) + WLAN2.4GHz(data)	Yes	Yes		
2.	WCDMA(Voice) + WLAN2.4GHz(data)	Yes	Yes		
3.	GSM(Voice) + Bluetooth(data)	Yes	Yes		
4.	WCDMA((Voice) + Bluetooth(data)	Yes	Yes		
5.	GPRS/EDGE(Data) + WLAN2.4GHz(data)	Yes	Yes	Yes	2.4GHz Hotspot
6.	WCDMA(Data) + WLAN2.4GHz(data)	Yes	Yes	Yes	2.4GHz Hotspot
7.	LTE(Data) + WLAN2.4GHz(data)	Yes	Yes	Yes	2.4GHz Hotspot
8.	GPRS/EDGE(Data) + Bluetooth(data)	Yes	Yes	Yes	Bluetooth Tethering
9.	WCDMA(Data) + Bluetooth(data)	Yes	Yes	Yes	Bluetooth Tethering
10.	LTE(Data) + Bluetooth(data)	Yes	Yes	Yes	Bluetooth Tethering

Report No.: FA552956

General Note:

- 1. This device supported VoIP in EGPRS, WCDMA, LTE (e.g. 3rd party VoIP).
- 2. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 3. The Scaled SAR summation is calculated based on the same configuration and test position.
- 4. Per KDB 447498 D01v05r02, simultaneous transmission SAR is compliant if,
 - i) Scalar SAR summation < 1.6W/kg.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.

15.1 Head Exposure Conditions

			1	2	3		
λΛ/\Λ/ Δ	N Band	Exposure Position	WWAN	2.4GHz WLAN	2.4GHz Bluetooth	1+2 Summed	1+3 Summed
VVVA	IN Dalla	Exposure i osition	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
		Right Cheek	0.641	0.218	0.035	0.86	0.68
		Right Tilted	0.355	0.189	0.032	0.54	0.39
	GSM850	Left Cheek	0.639	0.551	0.073	1.19	0.71
		Left Tilted	0.385	0.219	0.034	0.60	0.42
GSM		Right Cheek	0.189	0.218	0.035	0.41	0.22
	00144000	Right Tilted	0.070	0.189	0.032	0.26	0.10
	GSM1900	Left Cheek	0.473	0.551	0.073	1.02	0.55
		Left Tilted	0.092	0.219	0.034	0.31	0.13
		Right Cheek	0.865	0.218	0.035	1.08	0.90
	14/05144.1/	Right Tilted	0.442	0.189	0.032	0.63	0.47
	WCDMA V	Left Cheek	0.779	0.551	0.073	1.33	0.85
		Left Tilted	0.455	0.219	0.034	0.67	0.49
		Right Cheek	0.578	0.218	0.035	0.80	0.61
14/00144)	Right Tilted	0.421	0.189	0.032	0.61	0.45
WCDMA	WCDMA IV	Left Cheek	0.958	0.551	0.073	1.51	1.03
		Left Tilted	0.443	0.219	0.034	0.66	0.48
	WCDMA II	Right Cheek	0.275	0.218	0.035	0.49	0.31
		Right Tilted	0.098	0.189	0.032	0.29	0.13
	WCDMA II	Left Cheek	0.639	0.551	0.073	1.19	0.71
		Left Tilted	0.121	0.219	0.034	0.34	0.16
		Right Cheek	0.089	0.218	0.035	0.31	0.12
	TE D 140	Right Tilted	0.058	0.189	0.032	0.25	0.09
	LTE Band 12	Left Cheek	0.093	0.551	0.073	0.64	0.17
		Left Tilted	0.064	0.219	0.034	0.28	0.10
	LTE Band 17	Right Cheek	0.100	0.218	0.035	0.32	0.14
		Right Tilted	0.071	0.189	0.032	0.26	0.10
		Left Cheek	0.107	0.551	0.073	0.66	0.18
		Left Tilted	0.075	0.219	0.034	0.29	0.11
		Right Cheek	0.735	0.218	0.035	0.95	0.77
	LTC Dand 5	Right Tilted	0.380	0.189	0.032	0.57	0.41
	LTE Band 5	Left Cheek	0.597	0.551	0.073	1.15	0.67
ITE		Left Tilted	0.374	0.219	0.034	0.59	0.41
LTE		Right Cheek	0.490	0.218	0.035	0.71	0.53
	LTE Band 4	Right Tilted	0.295	0.189	0.032	0.48	0.33
	LIE Dand 4	Left Cheek	0.910	0.551	0.073	1.46	0.98
		Left Tilted	0.310	0.219	0.034	0.53	0.34
		Right Cheek	0.243	0.218	0.035	0.46	0.28
	ITE Band 2	Right Tilted	0.121	0.189	0.032	0.31	0.15
	LTE Band 2	Left Cheek	0.632	0.551	0.073	1.18	0.71
		Left Tilted	0.179	0.219	0.034	0.40	0.21
		Right Cheek	0.162	0.218	0.035	0.38	0.20
	ITE Pond 7	Right Tilted	0.098	0.189	0.032	0.29	0.13
	LTE Band 7	Left Cheek	0.384	0.551	0.073	0.94	0.46
		Left Tilted	0.093	0.219	0.034	0.31	0.13

Report No.: FA552956

15.2 Hotspot Exposure Conditions

			1	2	3		
WWA	N Band	Exposure Position	WWAN	2.4GHz WLAN	2.4GHz Bluetooth	1+2 Summed	1+3 Summed
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
		Front	0.704	0.095	0.010	0.80	0.71
		Back	0.715	0.065	0.003	0.78	0.72
	GSM850	Left side	0.329			0.33	0.33
	GSIVIOSO	Right side	0.108	0.045	0.002	0.15	0.11
		Top side		0.044	0.003	0.04	0.00
GSM		Bottom side	0.075			0.08	0.08
GSIVI		Front	0.602	0.095	0.010	0.70	0.61
		Back	1.085	0.065	0.003	1.15	1.09
	CSM4000	Left side	0.195			0.20	0.20
	GSM1900	Right side	0.130	0.045	0.002	0.18	0.13
		Top side		0.044	0.003	0.04	0.00
		Bottom side	0.611			0.61	0.61
		Front	0.721	0.095	0.010	0.82	0.73
		Back	0.888	0.065	0.003	0.95	0.89
)4/OD144)/	Left side	0.432			0.43	0.43
	WCDMA V	Right side	0.130	0.045	0.002	0.18	0.13
		Top side		0.044	0.003	0.04	0.00
		Bottom side	0.100			0.10	0.10
		Front	1.141	0.095	0.010	1.24	1.15
		Back	1.120	0.065	0.003	1.19	1.12
\\(CD\$44	MODAAA IV	Left side	0.140			0.14	0.14
WCDMA	WCDMA IV	Right side	0.069	0.045	0.002	0.11	0.07
		Top side		0.044	0.003	0.04	0.00
		Bottom side	0.141			0.14	0.14
		Front	0.642	0.095	0.010	0.74	0.65
		Back	1.329	0.065	0.003	1.39	1.33
	WCDMA !!	Left side	0.272			0.27	0.27
	WCDMA II	Right side	0.140	0.045	0.002	0.19	0.14
		Top side		0.044	0.003	0.04	0.00
		Bottom side	0.535			0.54	0.54

Report No. : FA552956

Report No.: FA552956

			1	2	3		
ww	'AN Band	Exposure Position	WWAN	2.4GHz WLAN	2.4GHz Bluetooth	1+2 Summed	1+3 Summed
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
		Front	0.142	0.095	0.010	0.24	0.15
		Back	0.273	0.065	0.003	0.34	0.28
	175 5 140	Left side	0.094			0.09	0.09
	LTE Band 12	Right side	0.123	0.045	0.002	0.17	0.13
		Top side		0.044	0.003	0.04	0.00
		Bottom side	0.013			0.01	0.01
		Front	0.151	0.095	0.010	0.25	0.16
		Back	0.278	0.065	0.003	0.34	0.28
	1.TE D 1.47	Left side	0.098			0.10	0.10
	LTE Band 17	Right side	0.130	0.045	0.002	0.18	0.13
		Top side		0.044	0.003	0.04	0.00
		Bottom side	0.014			0.01	0.01
		Front	0.747	0.095	0.010	0.84	0.76
		Back	0.823	0.065	0.003	0.89	0.83
	1.75.0	Left side	0.162			0.16	0.16
	LTE Band 5	Right side	0.216	0.045	0.002	0.26	0.22
		Top side		0.044	0.003	0.04	0.00
		Bottom side	0.066			0.07	0.07
LTE		Front	1.102	0.095	0.010	1.20	1.11
		Back	1.146	0.065	0.003	1.21	1.15
		Left side	0.173			0.17	0.17
	LTE Band 4	Right side	0.068	0.045	0.002	0.11	0.07
		Top side		0.044	0.003	0.04	0.00
		Bottom side	0.162			0.16	0.16
		Front	0.630	0.095	0.010	0.73	0.64
		Back	1.293	0.065	0.003	1.36	1.30
	LTE D 4.0	Left side	0.272			0.27	0.27
	LTE Band 2	Right side	0.158	0.045	0.002	0.20	0.16
		Top side		0.044	0.003	0.04	0.00
		Bottom side	0.688			0.69	0.69
		Front	0.424	0.095	0.010	0.52	0.43
		Back	0.424	0.065	0.003	0.49	0.43
	LTE Dand 7	Left side	0.185			0.19	0.19
	LTE Band 7	Right side	0.051	0.045	0.002	0.10	0.05
		Top side		0.044	0.003	0.04	0.00
		Bottom side	0.175			0.18	0.18

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jul. 16, 2015 Form version. : 150415 FCC ID: ZL5S40 Page 59 of 63

15.3 Body-Worn Accessory Exposure Conditions

WWAN Band			1	2	3		
		Exposure Position	WWAN	2.4GHz WLAN	2.4GHz Bluetooth	1+2 Summed	1+3 Summed
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
	GSM850	Front	0.704	0.095	0.010	0.80	0.71
GSM	GSIVIOSO	Back	0.715	0.065	0.003	0.78	0.72
GSIVI	GSM1900	Front	0.602	0.095	0.010	0.70	0.61
	GSW1900	Back	1.085	0.065	0.003	1.15	1.09
	WCDMA V	Front	0.721	0.095	0.010	0.82	0.73
	WCDMA V	Back	0.888	0.065	0.003	0.95	0.89
	MODMA IV	Front	1.141	0.095	0.010	1.24	1.15
WCDMA	WCDMA IV	Back	1.120	0.065	0.003	1.19	1.12
	WCDMA II	Front	0.642	0.095	0.010	0.74	0.65
		Back	1.329	0.065	0.003	1.39	1.33
		Back with Headset	1.309	0.065	0.003	1.37	1.31
	1.TE D 140	Front	0.142	0.095	0.010	0.24	0.15
	LTE Band 12	Back	0.273	0.065	0.003	0.34	0.28
	LTE Band 17	Front	0.151	0.095	0.010	0.25	0.16
		Back	0.278	0.065	0.003	0.34	0.28
	1.75.0	Front	0.747	0.095	0.010	0.84	0.76
	LTE Band 5	Back	0.823	0.065	0.003	0.89	0.83
LTE	1.75.0	Front	1.102	0.095	0.010	1.20	1.11
	LTE Band 4	Back	1.146	0.065	0.003	1.21	1.15
		Front	0.630	0.095	0.010	0.73	0.64
	LTE Band 2	Back	1.293	0.065	0.003	1.36	1.30
		Back with Headset	1.260	0.065	0.003	1.33	1.26
	LTE D	Front	0.424	0.095	0.010	0.52	0.43
	LTE Band 7	Back	0.424	0.065	0.003	0.49	0.43

Report No. : FA552956

Test Engineer: Frank Wu, Iran Wang, Vic Yang, Angelo Chang, Thomas Wang and Bevis Chang

16. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Report No.: FA552956

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 16.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Uncertainty Standard Standard **Probability** Ci Ci **Error Description** Value Divisor Uncertainty Uncertainty Distribution (1g) (10g) (±%) (10g) (1g)**Measurement System Probe Calibration** 6.0 Normal 1 1 ± 6.0 % ± 6.0 % 0.7 **Axial Isotropy** 4.7 Rectangular √3 0.7 ± 1.9 % ± 1.9 % √3 0.7 0.7 Hemispherical Isotropy 9.6 Rectangular ± 3.9 % ± 3.9 % **Boundary Effects** 1.0 Rectangular √3 1 1 ± 0.6 % ± 0.6 % 4.7 √3 1 1 Linearity Rectangular $\pm 2.7 \%$ $\pm 2.7 \%$ System Detection Limits 1.0 Rectangular 1 1 √3 \pm 0.6 % $\pm 0.6 \%$ Readout Electronics 0.3 Normal 1 1 1 ± 0.3 % ± 0.3 % 8.0 √3 1 ± 0.5 % ± 0.5 % Response Time Rectangular 1 1 Integration Time 2.6 Rectangular √3 ± 1.5 % ± 1.5 % **RF Ambient Noise** 3.0 √3 1 1 ± 1.7 % Rectangular ± 1.7 % **RF Ambient Reflections** 3.0 Rectangular √3 1 1 ± 1.7 % ± 1.7 % Probe Positioner 0.4 ± 0.2 % Rectangular 1 1 ± 0.2 % √3 **Probe Positioning** 2.9 Rectangular √3 1 1 ± 1.7 % ± 1.7 % √3 1 Max. SAR Eval. 1.0 1 Rectangular \pm 0.6 % \pm 0.6 % Test Sample Related **Device Positioning** 2.9 Normal 1 1 1 ± 2.9 % ± 2.9 % Device Holder 3.6 Normal 1 1 1 ± 3.6 % ± 3.6 % Power Drift 5.0 Rectangular √3 1 1 ± 2.9 % $\pm 2.9 \%$ **Phantom and Setup** Phantom Uncertainty 4.0 Rectangular 1 1 $\pm 2.3 \%$ $\pm 2.3 \%$ √3 Liquid Conductivity (Target) 5.0 0.64 0.43 ± 1.2 % Rectangular √3 ± 1.8 % Liquid Conductivity (Meas.) 2.5 1 0.64 Normal 0.43 ± 1.6 % ± 1.1 % √3 Liquid Permittivity (Target) 5.0 Rectangular 0.6 0.49 ± 1.7 % ± 1.4 % Liquid Permittivity (Meas.) 2.5 Normal 1 0.6 0.49 ± 1.5 % ± 1.2 %

Report No. : FA552956

± 10.8 %

± 21.5 %

K=2

± 11.0 %

± 22.0 %

Table 16.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

Combined Standard Uncertainty

Coverage Factor for 95 %

Expanded Uncertainty

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jul. 16, 2015 Form version.: 150415 FCC ID: ZL5S40 Page 62 of 63

17. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No.: FA552956

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02r01, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Jun 2015.
- [6] FCC KDB 447498 D01 v05r02, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Feb 2014
- [7] FCC KDB 648474 D04 v01r02, "SAR Evaluation Considerations for Wireless Handsets", Dec 2013
- [8] FCC KDB 941225 D01 v03, "3G SAR MEAUREMENT PROCEDURES", Oct 2014
- [9] FCC KDB 941225 D05 v02r03, "SAR Evaluation Considerations for LTE Devices", Dec 2013
- [10] FCC KDB 941225 D06 v02, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2014.
- [11] FCC KDB 865664 D01 v01r03, "SAR Measurement Requirements for 100 MHz to 6 GHz", Feb 2014.
- [12] FCC KDB 865664 D02 v01r01, "RF Exposure Compliance Reporting and Documentation Considerations" May 2013.