CLAIMS

We claim:

1. An optical device comprising:

5

a freestanding membrane comprising a plurality of thin-film layers represented by L(i), i=1,2,3,...,N where N is a positive odd integer; and

10

said membrane having a mirror symmetrical layer structure relative to a middle layer L(m) where m=(N+1)/2, and layer L(m-j) and layer L(m+j) having a same thickness, material composition, shape and size, where j=1, 2, 3, ..., (N-1)/2.

15

2. The optical device of claim 1 further comprising:

an electromagnetic means for controlling and moving said freestanding membrane.

20

3. The optical device of claim 1 wherein:

25

said layers L(i) having an alternate high-low refraction index configuration with layers L(i_H) having a set of relatively higher refraction indexes and layers L(i_L) having a set of relatively lower refraction indexes where i_H = 1, 3, 5, N and i_L = 2, 4, 6, ..., (N-1).

4. The optical device of claim 1 wherein:

30

said layers L(i) having an alternate high-low refraction index configuration with layers L(i_H) having a set of relatively higher refraction indexes and layers L(i_L) having a set of relatively lower refraction indexes where i_L = 1, 3, 5, ..., N and i_H = 2, 4, 6, ..., (N-1).

	5.	The optical device of claim 1 further comprising.
5		a resonant cavity supported on a silicon substrate covered by said freestanding membrane.
	6.	The optical device of claim 5 further comprising:
10		an antireflection (AR) layer coated on the bottom of said silicon substrate.
	7.	The optical device of claim 1 wherein:
15		at least one of said layers $L(i)$, $i = 1, 2, 3,N$, is a polysilicon layer.
	8.	The optical device of claim 1 wherein:
20		at least one of said layers $L(i)$, $i = 1, 2, 3,N$, is a silicon nitride layer.
20	9.	The optical device of claim 1 further comprising:
		a HR coating layer coated on said freestanding membrane.
25	10.	A freestanding membrane comprising:
		a plurality of thin-film layers represented by L(i), $i=1, 2, 3,, N$ where N is a positive odd integer; and
30		said thin film layers having a mirror symmetrical layer structure relative to a middle layer $L(m)$ where $m=(N+1)/2$, and layer $L(m-j)$ and layer $L(m+j)$ having a same thickness, material composition, shape and size, where $j=1, 2, 3,, (N-j)$

1)/2.

11. An method for manufacturing an optical device comprise	vice comprising:
--	------------------

forming a freestanding membrane with a plurality of thinfilm layers represented by L(i), i=1, 2, 3, ..., N where N is a positive odd integer; and

configuring said thin film layers with a mirror symmetrical layer structure relative to a middle layer L(m) where m=(N+1)/2, and layer L(m-j) and layer L(m+j) having a same thickness, material composition, shape and size, where j=1,2,3,...,(N-1)/2.

12. The method of claim 11 further comprising:

controlling and moving said freestanding membrane with an electromagnetic means.

13. The method of claim 11 wherein:

said step of configuring said thin film layers further comprising a step of configuring said layers L(i) with an alternate high-low refraction index configuration with layers $L(i_H)$ having a set of relatively higher refraction indexes and layers $L(i_L)$ having a set of relatively lower refraction indexes where $i_H = 1, 3, 5, N$ and $i_L = 2, 4, 6, ..., (N-1)$.

14. The method of claim 11 wherein:

said step of configuring said thin film layers further comprising a step of configuring said layers L(i) with an alternate high-low refraction index configuration with layers $L(i_H)$ having a set of relatively higher refraction indexes and layers $L(i_L)$ having a set of relatively lower refraction indexes where $i_L = 1, 3, 5, ..., N$ and $i_H = 2, 4, 6, ..., (N-1)$.

30

25

1

5

10

15

20

	15.	The method of claim 11 further comprising:
5		supporting a resonant cavity on a silicon substrate and covering said resonant cavity with said freestanding membrane.
	16.	The method of claim 11 further comprising:
10		coating an antireflection (AR) layer on the bottom of said silicon substrate.
	17.	The method of claim 11 wherein:
15		said step of configuring said thin-film layers further comprising a step of forming a polysilicon layer for at least one of said layers $L(i)$, $i = 1, 2, 3,N$.
	18.	The method of claim 11 wherein:
20		said step of configuring said thin-film layers further comprising a step of forming a silicon nitride layer for at least one of said layers $L(i)$, $i = 1, 2, 3,N$.
25	19.	The method of claim 11 further comprising:
		coating a HR coating layer on said freestanding membrane.

20. A method of forming a freestanding membrane comprising:

forming a plurality of thin-film layers represented by L(i), i=1, 2, 3, ..., N where N is a positive odd integer; and

configuring said thin film layers with a mirror symmetrical layer structure relative to a middle layer L(m) where m=(N+1)/2, and layer L(m-j) and layer L(m+j) having a same thickness, material composition, shape and size, where j=1,2,3,...,(N-1)/2.

5

10