Math 185 - Quiz 9 Definitions & Theorems

- 1. **Lemma 0.1.** z_0 is a pole of f iff there is a punctured disc $D_r(z_0) \setminus \{z_0\}$ on which |f| is bounded below (by an R > 0) and unbounded above.
- 2. Casorati-Weierstrauss. Let $f: \Omega \to \mathbb{C}$ with $z_0 \in \Omega$. Also let f have an essential singularity at z_0 and f is holomorphic on $D_r(z_0) \setminus \{z_0\}$. Then, $f(D_r(z_0) \setminus \{z_0\})$ is dense in \mathbb{C} .
- 3. **Meromorphic.** Let $f: \Omega \to \mathbb{C}$. f is <u>meromorphic</u> if it is holomorphic on Ω except at a discrete set of poles.
- 4. **Residue Theorem.** Let $\Omega \subseteq \mathbb{C}$ be open and connected and let γ be a simple closed curve in Ω homotopic to a point in Ω . Then, let f be holomorphic on Ω except at a set of points z_1, \ldots, z_N inside γ . Then, we obtain the following:

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^{N} \operatorname{Res}_{z_{k}}(f).$$