Introduction and Basic Implementation for Finite Element Methods

Chapter 6: Finite elements for 2D steady Stokes equation

Xiaoming He
Department of Mathematics & Statistics
Missouri University of Science & Technology

Outline

- Weak/Galerkin formulation
- PE discretization
- 3 Dirichlet boundary condition
- 4 FE Method
- More Discussion

Outline

- Weak/Galerkin formulation
- 2 FE discretization
- 3 Dirichlet boundary condition
- 4 FE Method
- More Discussion

Weak/Galerkin formulation

Consider the 2D Stokes equation:

$$\begin{cases} -\nabla \cdot \mathbb{T}(\mathbf{u}, p) = \mathbf{f} & \text{in } \Omega, \\ \nabla \cdot \mathbf{u} = 0 & \text{in } \Omega, \\ \mathbf{u} = \mathbf{g} & \text{on } \partial \Omega. \end{cases}$$

Dirichlet boundary condition

where

$$\mathbf{u}(x,y) = (u_1, u_2)^t, \ \mathbf{g}(x,y) = (g_1, g_2)^t, \ \mathbf{f}(x,y) = (f_1, f_2)^t.$$

• The stress tensor $\mathbb{T}(\mathbf{u}, p)$ is defined as

$$\mathbb{T}(\mathbf{u}, \mathbf{p}) = 2\nu \mathbb{D}(\mathbf{u}) - \mathbf{p}\mathbb{I}$$

where ν is the viscosity and the deformation tensor

$$\mathbb{D}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + (\nabla \mathbf{u})^t)$$

- Since p appears in the equation without any derivative, then, if (\mathbf{u}, p) is a solution, then $(\mathbf{u}, p + c)$ is also a solution where c is a constant. Hence we need to impose additional condition for p. Here are three regular choices:
- (1) Fix p at one point in the domain Ω .
- (2) Apply a stress or Robin boundary condition (at least in the normal direction) on part of the boundary $\partial\Omega$.
- (3) Apply $\int_{\Omega} p dx dy = 0$.

Target problem

In more details, the deformation tensor can be written as

$$\mathbb{D}(\mathbf{u}) = \begin{pmatrix} \frac{\partial u_1}{\partial x} & \frac{1}{2} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) & \frac{\partial u_2}{\partial y} \end{pmatrix}$$

Dirichlet boundary condition

Hence the stress tensor can be written as

$$\mathbb{T}(\mathbf{u}, p) = \begin{pmatrix} 2\nu \frac{\partial u_1}{\partial x} - p & \nu \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) \\ \nu \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) & 2\nu \frac{\partial u_2}{\partial y} - p \end{pmatrix}$$

 First, take the inner product with a vector function $\mathbf{v}(x,y) = (v_1, v_2)^t$ on both sides of the Stokes equation:

$$\begin{aligned}
-\nabla \cdot \mathbb{T}(\mathbf{u}, p) &= \mathbf{f} & \text{in } \Omega \\
\Rightarrow & -(\nabla \cdot \mathbb{T}(\mathbf{u}, p)) \cdot \mathbf{v} &= \mathbf{f} \cdot \mathbf{v} & \text{in } \Omega \\
\Rightarrow & -\int_{\Omega} (\nabla \cdot \mathbb{T}(\mathbf{u}, p)) \cdot \mathbf{v} \, dxdy &= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, dxdy.
\end{aligned}$$

 Second, multiply the divergence free equation by a function q(x, y):

$$abla \cdot \mathbf{u} = 0 \quad \Rightarrow \quad (\nabla \cdot \mathbf{u})q = 0$$

$$\Rightarrow \quad \int_{\Omega} (\nabla \cdot \mathbf{u})q \, dxdy = 0.$$

• $\mathbf{u}(x,y)$ and p(x,y) are called trail functions and $\mathbf{v}(x,y)$ and q(x, y) are called test functions.

• Using integration by parts in multi-dimension:

$$\int_{\Omega} (\nabla \cdot \mathbb{T}) \cdot \mathbf{v} \ dx dy = \int_{\partial \Omega} (\mathbb{T} \mathbf{n}) \cdot \mathbf{v} \ ds - \int_{\Omega} \mathbb{T} : \nabla \mathbf{v} \ dx dy,$$

where $\mathbf{n} = (n_1, n_2)^t$ is the unit outer normal vector of $\partial \Omega$, we obtain

$$\int_{\Omega} \mathbb{T}(\mathbf{u}, p) : \nabla \mathbf{v} \ dxdy - \int_{\partial \Omega} (\mathbb{T}(\mathbf{u}, p) \mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy.$$

Here,

$$A: B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} : \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$
$$= a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}.$$

• Using the above definition for A: B, it is not difficult to verify (an independent study project topic) that

$$\mathbb{T}(\mathbf{u}, p) : \nabla \mathbf{v} = (2\nu \mathbb{D}(\mathbf{u}) - p\mathbb{I}) : \nabla \mathbf{v}
= 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) - p(\nabla \cdot \mathbf{v}).$$

Hence we obtain

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy$$
$$- \int_{\partial\Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy,$$
$$- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0.$$

Here we multiply the second equation by -1 in order to keep the matrix formulation symmetric later.

- Since the solution on the domain boundary $\partial\Omega$ are given by $\mathbf{u}=\mathbf{g}$, then we can choose the test function $\mathbf{v}(x,y)$ such that $\mathbf{v}=0$ on $\partial\Omega$.
- Hence

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy,$$
$$-\int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0.$$

• Weak formulation in the vector format: find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ and $p \in L^2(\Omega)$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy,$$
$$-\int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0,$$

for any $\mathbf{v} \in H_0^1(\Omega) \times H_0^1(\Omega)$ and $q \in L^2(\Omega)$.

- Let $a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy$, $b(\mathbf{u}, q) = -\int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy$, and $(\mathbf{f}, \mathbf{v}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy$.
- Weak formulation: find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ and $p \in L^2(\Omega)$ s. t.

$$a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) = (\mathbf{f}, \mathbf{v}),$$

 $b(\mathbf{u}, q) = 0,$

for any $\mathbf{v} \in H_0^1(\Omega) \times H_0^1(\Omega)$ and $q \in L^2(\Omega)$.

• In more details,

$$\mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \\
= \begin{pmatrix} \frac{\partial u_1}{\partial x} & \frac{1}{2} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) & \frac{\partial u_2}{\partial y} \end{pmatrix} \\
: \begin{pmatrix} \frac{\partial v_1}{\partial x} & \frac{1}{2} \left(\frac{\partial v_1}{\partial y} + \frac{\partial v_2}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial v_1}{\partial y} + \frac{\partial v_2}{\partial x} \right) & \frac{\partial v_2}{\partial y} \end{pmatrix} \\
= \frac{\partial u_1}{\partial x} \frac{\partial v_1}{\partial x} + \frac{1}{4} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) \left(\frac{\partial v_1}{\partial y} + \frac{\partial v_2}{\partial x} \right) \\
+ \frac{1}{4} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) \left(\frac{\partial v_1}{\partial y} + \frac{\partial v_2}{\partial x} \right) + \frac{\partial u_2}{\partial y} \frac{\partial v_2}{\partial y}.$$

Hence

$$\mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v})
= \frac{\partial u_1}{\partial x} \frac{\partial v_1}{\partial x} + \frac{\partial u_2}{\partial y} \frac{\partial v_2}{\partial y} + \frac{1}{2} \frac{\partial u_1}{\partial y} \frac{\partial v_1}{\partial y}
+ \frac{1}{2} \frac{\partial u_1}{\partial y} \frac{\partial v_2}{\partial x} + \frac{1}{2} \frac{\partial u_2}{\partial x} \frac{\partial v_1}{\partial y} + \frac{1}{2} \frac{\partial u_2}{\partial x} \frac{\partial v_2}{\partial x}.$$

Then

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \, dxdy$$

$$= \int_{\Omega} \nu \left(2 \frac{\partial u_1}{\partial x} \frac{\partial v_1}{\partial x} + 2 \frac{\partial u_2}{\partial y} \frac{\partial v_2}{\partial y} + \frac{\partial u_1}{\partial y} \frac{\partial v_1}{\partial y} + \frac{\partial u_1}{\partial y} \frac{\partial v_1}{\partial y} + \frac{\partial u_2}{\partial x} \frac{\partial v_2}{\partial x} \right) \, dxdy.$$

We also have

$$\int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy = \int_{\Omega} \left(p \frac{\partial v_1}{\partial x} + p \frac{\partial v_2}{\partial y} \right) \ dxdy,$$

$$\int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy = \int_{\Omega} (f_1 v_1 + f_2 v_2) \ dxdy,$$

$$\int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = \int_{\Omega} \left(\frac{\partial u_1}{\partial x} q + \frac{\partial u_2}{\partial y} q \right) \ dxdy.$$

More Discussion

Weak formulation

Weak/Galerkin formulation

• Weak formulation in the scalar format: find $u_1 \in H^1(\Omega)$, $u_2 \in H^1(\Omega)$, and $p \in L^2(\Omega)$ such that

$$\int_{\Omega} \nu \left(2 \frac{\partial u_1}{\partial x} \frac{\partial v_1}{\partial x} + 2 \frac{\partial u_2}{\partial y} \frac{\partial v_2}{\partial y} + \frac{\partial u_1}{\partial y} \frac{\partial v_1}{\partial y} \right)
+ \frac{\partial u_1}{\partial y} \frac{\partial v_2}{\partial x} + \frac{\partial u_2}{\partial x} \frac{\partial v_1}{\partial y} + \frac{\partial u_2}{\partial x} \frac{\partial v_2}{\partial x} \right) dxdy
- \int_{\Omega} \left(p \frac{\partial v_1}{\partial x} + p \frac{\partial v_2}{\partial y} \right) dxdy
= \int_{\Omega} (f_1 v_1 + f_2 v_2) dxdy.
- \int_{\Omega} \left(\frac{\partial u_1}{\partial x} q + \frac{\partial u_2}{\partial y} q \right) dxdy = 0.$$

Dirichlet boundary condition

for any $v_1 \in H_0^1(\Omega)$, $v_2 \in H_0^1(\Omega)$, and $q \in L^2(\Omega)$.

Weak/Galerkin formulation

- Consider a finite element space $U_h \subset H^1(\Omega)$ for the velocity and a finite element space $W_h \subset L^2(\Omega)$ for the pressure. Define U_{h0} to be the space which consists of the functions of U_h with value 0 on the Dirichlet boundary.
- Then the Galerkin formulation is to find $\mathbf{u}_h \in U_h \times U_h$ and $p_h \in W_h$ such that

$$a(\mathbf{u}_h, \mathbf{v}_h) + b(\mathbf{v}_h, p_h) = (\mathbf{f}, \mathbf{v}_h),$$

 $b(\mathbf{u}_h, q_h) = 0,$

for any $\mathbf{v}_h \in U_{h0} \times U_{h0}$ and $q_h \in W_h$.

• For an easier implementation, we use the following Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $\mathbf{u}_h \in U_h \times U_h$ and $p_h \in W_h$ such that

$$a(\mathbf{u}_h, \mathbf{v}_h) + b(\mathbf{v}_h, p_h) = (\mathbf{f}, \mathbf{v}_h),$$

 $b(\mathbf{u}_h, q_h) = 0,$

for any $\mathbf{v}_h \in U_h \times U_h$ and $q_h \in W_h$.

 In more details of the vector format, the Galerkin formulation (without considering the Dirichlet boundary condition, which

Galerkin formulation

will be handled later) is to find $\mathbf{u}_h \in U_h \times U_h$ and $p_h \in W_h$ such that $\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}_h) : \mathbb{D}(\mathbf{v}_h) \ dxdy - \int_{\Omega} p_h(\nabla \cdot \mathbf{v}_h) \ dxdy = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \ dxdy,$

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}_h) : \mathbb{D}(\mathbf{v}_h) \, dxdy - \int_{\Omega} p_h(\nabla \cdot \mathbf{v}_h) \, dxdy = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \, dxdy,
- \int_{\Omega} (\nabla \cdot \mathbf{u}_h) q_h \, dxdy = 0,$$

for any $\mathbf{v}_h \in U_h \times U_h$ and $q_h \in W_h$.

• In our numerical example, $U_h = span\{\phi_j\}_{j=1}^{N_b}$ and $W_h = span\{\psi_j\}_{j=1}^{N_{bp}}$ are chosen to be the finite element spaces with the quadratic global basis functions $\{\phi_j\}_{j=1}^{N_b}$ and linear

- global basis functions $\{\psi_j\}_{j=1}^{N_{bp}}$, which are defined in Chapter 2. They are called Taylor-Hood finite elements.
- Why do we choose the pairs of finite elements in this way?
- Stability of mixed finite elements: inf-sup condition.

$$\inf_{0 \neq q_h \in W_h} \sup_{0 \neq \mathbf{u}_h \in U_h \times U_h} \frac{b(\mathbf{u}_h, q_h)}{\|\nabla \mathbf{u}_h\|_0 \|q_h\|_0} > \beta,$$

where $\beta > 0$ is a constant independent of mesh size h.

 See other course materials and references for the theory and more examples of stable mixed finite elements for Stokes equation.

Galerkin formulation

 In the scalar format, the Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later) is to find $u_{1h} \in U_h$, $u_{2h} \in U_h$, and $p_h \in W_h$ such that

$$\int_{\Omega} \nu \left(2 \frac{\partial u_{1h}}{\partial x} \frac{\partial v_{1h}}{\partial x} + 2 \frac{\partial u_{2h}}{\partial y} \frac{\partial v_{2h}}{\partial y} + \frac{\partial u_{1h}}{\partial y} \frac{\partial v_{1h}}{\partial y} \right) + \frac{\partial u_{1h}}{\partial y} \frac{\partial v_{2h}}{\partial x} + \frac{\partial u_{2h}}{\partial x} \frac{\partial v_{1h}}{\partial y} + \frac{\partial u_{2h}}{\partial x} \frac{\partial v_{2h}}{\partial x} \right) dxdy - \int_{\Omega} \left(p_h \frac{\partial v_{1h}}{\partial x} + p_h \frac{\partial v_{2h}}{\partial y} \right) dxdy \\
= \int_{\Omega} (f_1 v_{1h} + f_2 v_{2h}) dxdy. \\
- \int_{\Omega} \left(\frac{\partial u_{1h}}{\partial x} q_h + \frac{\partial u_{2h}}{\partial y} q_h \right) dxdy = 0.$$

- Weak/Galerkin formulation
- 2 FE discretization
- Oirichlet boundary condition
- 4 FE Method
- More Discussion

Recall the following definitions from Chapter 2:

- N: number of mesh elements.
- N_m : number of mesh nodes.
- E_n $(n = 1, \dots, N)$: mesh elements.
- Z_k ($k = 1, \dots, N_m$): mesh nodes.
- N_I : number of local mesh nodes in a mesh element.
- P:information matrix consisting of the coordinates of all mesh nodes.

Dirichlet boundary condition

• T: information matrix consisting of the global node indices of the mesh nodes of all the mesh elements.

Weak/Galerkin formulation

- We only consider the nodal basis functions (Lagrange type) in this course.
- N_{lb} : number of local finite element nodes (=number of local finite element basis functions) in a mesh element.
- N_b : number of the finite element nodes (= the number of unknowns = the total number of the finite element basis functions).
- X_i $(j = 1, \dots, N_b)$: finite element nodes.
- Ph: information matrix consisting of the coordinates of all finite element nodes.
- T_b: information matrix consisting of the global node indices of the finite element nodes of all the mesh elements.

Weak/Galerkin formulation

• Since u_{1h} , $u_{2h} \in U_h = span\{\phi_i\}_{i=1}^{N_b}$ and $p_h \in W_h = span\{\psi_i\}_{i=1}^{N_{bp}}$, then

$$u_{1h} = \sum_{j=1}^{N_b} u_{1j}\phi_j, \quad u_{2h} = \sum_{j=1}^{N_b} u_{2j}\phi_j, \quad p_h = \sum_{j=1}^{N_{bp}} p_j\psi_j$$

for some coefficients u_{1i} , u_{2i} $(j = 1, \dots, N_b)$, and p_i $(i=1,\cdots,N_{bp}).$

• If we can set up a linear algebraic system for u_{1i} , u_{2i} $(j=1,\cdots,N_b)$, and p_i $(j=1,\cdots,N_{bp})$, then we can solve it to obtain the finite element solution $\mathbf{u}_h = (u_{1h}, u_{2h})^t$ and p_h .

Weak/Galerkin formulation

 For the first equation in the Galerkin formulation, we choose $\mathbf{v}_{h} = (\phi_{i}, 0)^{t} \ (i = 1, \cdots, N_{h}) \text{ and }$ $\mathbf{v}_b = (0, \phi_i)^t$ $(i = 1, \dots, N_b)$. That is, in the first set of test functions, we choose $v_{1h} = \phi_i$ $(i = 1, \dots, N_h)$ and $v_{2h} = 0$; in the second set of test functions, we choose $v_{1h} = 0$ and $v_{2h} = \phi_i \ (i = 1, \cdots, N_b).$

Dirichlet boundary condition

 For the second equation in the Galerkin formulation, we choose $q_h = \psi_i$ $(i = 1, \dots, N_{hp})$.

• Set $\mathbf{v}_h = (\phi_i, 0)^t$, i.e., $v_{1h} = \phi_i$ and $v_{2h} = 0$ $(i = 1, \dots, N_b)$, in the first equation of the Galerkin formulation. Then

$$2\int_{\Omega} \nu \left(\sum_{j=1}^{N_{b}} u_{1j} \frac{\partial \phi_{j}}{\partial x} \right) \frac{\partial \phi_{i}}{\partial x} dxdy + \int_{\Omega} \nu \left(\sum_{j=1}^{N_{b}} u_{1j} \frac{\partial \phi_{j}}{\partial y} \right) \frac{\partial \phi_{i}}{\partial y} dxdy + \int_{\Omega} \nu \left(\sum_{j=1}^{N_{b}} u_{2j} \frac{\partial \phi_{j}}{\partial x} \right) \frac{\partial \phi_{i}}{\partial y} dxdy - \int_{\Omega} \left(\sum_{j=1}^{N_{bp}} p_{j} \psi_{j} \right) \frac{\partial \phi_{i}}{\partial x} dxdy = \int_{\Omega} f_{1} \phi_{i} dxdy.$$

Dirichlet boundary condition

• Set $\mathbf{v}_h = (0, \phi_i)^t$, i.e., $v_{1h} = 0$ and $v_{2h} = \phi_i$ $(i = 1, \dots, N_b)$, in the first equation of the Galerkin formulation. Then

$$2\int_{\Omega} \nu \left(\sum_{j=1}^{N_b} u_{2j} \frac{\partial \phi_j}{\partial y} \right) \frac{\partial \phi_i}{\partial y} dxdy + \int_{\Omega} \nu \left(\sum_{j=1}^{N_b} u_{1j} \frac{\partial \phi_j}{\partial y} \right) \frac{\partial \phi_i}{\partial x} dxdy + \int_{\Omega} \nu \left(\sum_{j=1}^{N_b} u_{2j} \frac{\partial \phi_j}{\partial x} \right) \frac{\partial \phi_i}{\partial x} dxdy - \int_{\Omega} \left(\sum_{j=1}^{N_{bp}} p_j \psi_j \right) \frac{\partial \phi_i}{\partial y} dxdy = \int_{\Omega} f_2 \phi_i dxdy.$$

• Set $q_h = \psi_i$ $(i = 1, \dots, N_{bp})$ in the second equation of the Galerkin formulation. Then

$$-\int_{\Omega} \left(\sum_{j=1}^{N_b} u_{1j} \frac{\partial \phi_j}{\partial x} \right) \psi_i \, dx dy - \int_{\Omega} \left(\sum_{j=1}^{N_b} u_{2j} \frac{\partial \phi_j}{\partial y} \right) \psi_i \, dx dy = 0.$$

Simplify the above three sets of equations, we obtain

$$\begin{split} &\sum_{j=1}^{N_b} u_{1j} \left(2 \int_{\Omega} \nu \frac{\partial \phi_j}{\partial x} \frac{\partial \phi_i}{\partial x} \ dxdy + \int_{\Omega} \nu \frac{\partial \phi_j}{\partial y} \frac{\partial \phi_i}{\partial y} \ dxdy \right) \\ &+ \sum_{j=1}^{N_b} u_{2j} \left(\int_{\Omega} \nu \frac{\partial \phi_j}{\partial x} \frac{\partial \phi_i}{\partial y} \ dxdy \right) + \sum_{j=1}^{N_{bp}} p_j \left(- \int_{\Omega} \psi_j \frac{\partial \phi_i}{\partial x} \ dxdy \right) = \int_{\Omega} f_1 \phi_i dxdy, \\ &\sum_{j=1}^{N_b} u_{1j} \left(\int_{\Omega} \nu \frac{\partial \phi_j}{\partial y} \frac{\partial \phi_i}{\partial x} \ dxdy \right) \\ &+ \sum_{j=1}^{N_b} u_{2j} \left(2 \int_{\Omega} \nu \frac{\partial \phi_j}{\partial y} \frac{\partial \phi_i}{\partial x} \ dxdy \right) \\ &+ \sum_{j=1}^{N_{bp}} p_j \left(- \int_{\Omega} \psi_j \frac{\partial \phi_i}{\partial y} \ dxdy \right) = \int_{\Omega} f_2 \phi_i dxdy, \\ &\sum_{j=1}^{N_b} u_{1j} \left(- \int_{\Omega} \frac{\partial \phi_j}{\partial x} \psi_i \ dxdy \right) + \sum_{j=1}^{N_b} u_{2j} \left(- \int_{\Omega} \frac{\partial \phi_j}{\partial y} \psi_i \ dxdy \right) + \sum_{j=1}^{N_{bp}} p_j * 0 = 0. \end{split}$$

Dirichlet boundary condition

Define

$$A_{1} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial x} dx dy \right]_{i,j=1}^{N_{b}}, \quad A_{2} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i,j=1}^{N_{b}},$$

$$A_{3} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i,j=1}^{N_{b}}, \quad A_{4} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial x} dx dy \right]_{i,j=1}^{N_{b}},$$

$$A_{5} = \left[\int_{\Omega} -\psi_{j} \frac{\partial \phi_{i}}{\partial x} dx dy \right]_{i=1,j=1}^{N_{b},N_{bp}}, \quad A_{6} = \left[\int_{\Omega} -\psi_{j} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i=1,j=1}^{N_{b},N_{bp}},$$

$$A_{7} = \left[\int_{\Omega} -\frac{\partial \phi_{j}}{\partial x} \psi_{i} dx dy \right]_{i=1,j=1}^{N_{bp},N_{b}}, \quad A_{8} = \left[\int_{\Omega} -\frac{\partial \phi_{j}}{\partial y} \psi_{i} dx dy \right]_{i=1,j=1}^{N_{bp},N_{b}}.$$

• Define a zero matrix $\mathbb{O}_1 = [0]_{i=1,j=1}^{N_{bp},N_{bp}}$ whose size is $N_{bp} \times N_{bp}$. Then

$$A = \left(\begin{array}{ccc} 2A_1 + A_2 & A_3 & A_5 \\ A_4 & 2A_2 + A_1 & A_6 \\ A_7 & A_8 & \mathbb{O}_1 \end{array} \right)$$

Matrix formulation

Weak/Galerkin formulation

- Each matrix above can be obtained by Algorithm I-3 in Chapter 3.
- It is not difficult to verify (an independent study project topic) that

$$A_4 = A_3^t$$
, $A_7 = A_5^t$, $A_8 = A_6^t$.

Dirichlet boundary condition

Hence the matrix A is actually symmetric:

$$A = \left(egin{array}{cccc} 2A_1 + A_2 & A_3 & A_5 \ A_3^t & 2A_2 + A_1 & A_6 \ A_5^t & A_6^t & \mathbb{O}_1 \end{array}
ight)$$

FE Method

Matrix formulation

Define the load vector

$$ec{b} = \left(egin{array}{c} ec{b}_1 \ ec{b}_2 \ ec{0} \end{array}
ight)$$

where

$$\vec{b}_1 = \left[\int_{\Omega} f_1 \phi_i dx dy\right]_{i=1}^{N_b}, \quad \vec{b}_2 = \left[\int_{\Omega} f_2 \phi_i dx dy\right]_{i=1}^{N_b}.$$

Here the size of the zero vector is $N_{bp} \times 1$. That is, $\vec{0} = [0]_{i=1}^{N_{bp}}$.

• Each of \vec{b}_1 and \vec{b}_2 can be obtained by Algorithm II-3 in Chapter 3.

Define the unknown vector

$$ec{X} = \left(egin{array}{c} ec{X}_1 \ ec{X}_2 \ ec{X}_3 \end{array}
ight)$$

where

$$\vec{X}_1 = [u_{1j}]_{j=1}^{N_b}, \quad \vec{X}_2 = [u_{2j}]_{j=1}^{N_b}, \quad \vec{X}_3 = [p_j]_{j=1}^{N_{bp}}.$$

• Then we obtain the linear algebraic system

$$A\vec{X} = \vec{b}$$
.

Outline

- Weak/Galerkin formulation
- Oirichlet boundary condition

Dirichlet boundary condition

- Basically, the Dirichlet boundary condition $\mathbf{u} = \mathbf{g}$ (i.e., $u_1 = g_1$ and $u_2 = g_2$) provides the solutions at all boundary finite element nodes.
- Since the coefficient u_{1j} and u_{2j} in the finite element solutions $u_{1h} = \sum_{j=1}^{N_b} u_{1j}\phi_j$ and $u_{2h} = \sum_{j=1}^{N_b} u_{2j}\phi_j$ are actually the numerical solutions at the finite element node X_j $(j=1,\cdots,N_b)$ when nodal basis functions are used, we actually know those u_{1j} and u_{2j} which are corresponding to the boundary finite element nodes.
- Recall that boundarynodes(2,:) store the global node indices
 of all boundary finite element nodes.
- If $m \in boundarynodes(2,:)$, then the m^{th} equation is called a boundary node equation for u_1 and the $(N_b + m)^{th}$ equation is called a boundary node equation for u_2 .
- Set *nbn* to be the number of boundary nodes;

Weak/Galerkin formulation

 One way to impose the Dirichlet boundary condition is to replace the boundary node equations in the linear system by the following equations

$$u_{1m} = g_1(X_m)$$

 $u_{2m} = g_2(X_m).$

for all $m \in boundarynodes(2,:)$. This is similar to $u_m = g(X_m)$ in Chapter 3. We already discussed about this in Chapter 6.

Since the Dirichlet boundary condition only involves u₁ and u₂, not p, only the first two rows of the 3 × 3 block matrix A need to be modified for the Dirichlet boundary condition. This is similar to how we handle Dirichlet boundary condition in Chapter 6. Hence we can still use Algorithm III-3 in Chapter 6.

Dirichlet boundary condition

Recall Algorithm III-3 from Chapter 6:

Deal with the Dirichlet boundary conditions:

```
FOR k = 1, \dots, nbn:
     If boundarynodes(1, k) shows Dirichlet condition, then
          i = boundary nodes(2, k);
         A(i,:) = 0;
         A(i, i) = 1:
         b(i) = g_1(P_b(:,i));
         A(N_b + i, :) = 0;
         A(N_b + i, N_b + i) = 1.
         b(N_b + i) = g_2(P_b(:, i)):
     FNDIF
```

Additional treatment for the solution uniqueness

Recall:

• Since p appears in the equation without any derivative, then, if (\mathbf{u}, p) is a solution, then $(\mathbf{u}, p + c)$ is also a solution where c is a constant. Hence we need to impose additional condition for p. Here are three regular choices:

Dirichlet boundary condition

- (1) Fix p at one point in the domain Ω .
- (2) Apply a stress or Robin boundary condition (at least in the normal direction) on part of the boundary $\partial\Omega$.
- (3) Apply $\int_{\Omega} p dx dy = 0$.

- Weak/Galerkin formulation
- 2 FE discretization
- 3 Dirichlet boundary condition
- 4 FE Method
- More Discussion

Universal framework of the finite element method

Recall from Chapter 3:

- Generate the mesh information: matrices P and T;
- Assemble the matrices and vectors: local assembly based on P and T only;
- Deal with the boundary conditions: boundary information matrix and local assembly;
- Solve linear systems: numerical linear algebra.

- Generate the mesh information matrices P and T.
- Assemble the stiffness matrix A by using Algorithm I. (We will choose Algorithm I-3 in class)
- Assemble the load vector \vec{b} by using Algorithm II. (We will choose Algorithm II-3 in class)
- Deal with the Dirichlet boundary condition by using Algorithm III-3.
- Fix the pressure at one point in the domain Ω .
- Solve $A\vec{X} = \vec{b}$ for \vec{X} by using a direct or iterative method.

Recall Algorithm I-3 from Chapter 3:

- Initialize the matrix: $A = sparse(N_b, N_b)$;
- Compute the integrals and assemble them into A:

```
FOR n = 1, \dots, N:
         FOR \alpha = 1, \dots, N_{lb}:
                  FOR \beta = 1, \dots, N_{lb}:
                           Compute r = \int_{E_n} c \frac{\partial^{r+s} \psi_{n\alpha}}{\partial x^r \partial y^s} \frac{\partial^{p+q} \psi_{n\beta}}{\partial x^p \partial y^q} dxdy;
                           Add r to A(T_b(\beta, n), T_b(\alpha, n)).
                   END
         END
FND
```

• Call Algorithm I-3 with r=1, s=0, p=1, q=0, $c=\nu$, basis type of **u** for trial function, and basis type of **u** for test function, to obtain A_1 .

Dirichlet boundary condition

- Call Algorithm I-3 with r=0, s=1, p=0, q=1, $c=\nu$, basis type of **u** for trial function, and basis type of **u** for test function, to obtain A_2 .
- Call Algorithm I-3 with r=1, s=0, p=0, q=1, $c=\nu$, basis type of **u** for trial function, and basis type of **u** for test function, to obtain A_3 .
- Call Algorithm I-3 with r = 0, s = 0, p = 1, q = 0, c = -1, basis type of p for trial function, and basis type of **u** for test function, to obtain A_5 .
- Call Algorithm I-3 with r = 0, s = 0, p = 0, q = 1, c = -1, basis type of p for trial function, and basis type of **u** for test function, to obtain A_6 .
- Generate a zero matrix $\mathbb O$ whose size is $N_{bp} \times N_{bp}$.
- Then the stiffness matrix $A = [2A_1 + A_2 \ A_3 \ A_5; A_3^t \ 2A_2 + A_1 \ A_6; A_5^t \ A_6^t \ \mathbb{O}].$

Recall Algorithm II-3 from Chapter 3:

- Initialize the vector: $b = sparse(N_b, 1)$;
- Compute the integrals and assemble them into b:

```
FOR n = 1, \dots, N:
       FOR \beta = 1, \cdots, N_{lb}:
               Compute r = \int_{E_n} f \frac{\partial^{p+q} \psi_{n\beta}}{\partial x^p \partial y^q} dx dy;
               b(T_b(\beta, n), 1) = b(T_b(\beta, n), 1) + r;
       END
END
```

• Call Algorithm II-3 with p = q = 0 and $f = f_1$ to obtain b_1 .

Dirichlet boundary condition

- Call Algorithm II-3 with p = q = 0 and $f = f_2$ to obtain b_2 .
- Define a zero column vector $\vec{0}$ whose size is $N_{bp} \times 1$.
- Then the load vector $\vec{b} = [b_1; b_2; \vec{0}].$

Recall Algorithm III-3 from this Chapter:

Deal with the Dirichlet boundary conditions:

```
FOR k = 1, \dots, nbn:
     If boundarynodes(1, k) shows Dirichlet condition, then
          i = boundary nodes(2, k);
         A(i,:) = 0;
         A(i, i) = 1:
         b(i) = g_1(P_b(:,i));
         A(N_b + i, :) = 0;
         A(N_b + i, N_b + i) = 1;
         b(N_b + i) = g_2(P_b(:, i));
     FNDIF
END
```

Measurements for errors

• L^{∞} norm error:

$$\begin{aligned} \|\mathbf{u} - \mathbf{u}_h\|_{\infty} &= \max \left(\|u_1 - u_{1h}\|_{\infty}, \|u_2 - u_{2h}\|_{\infty} \right), \\ \|u_1 - u_{1h}\|_{\infty} &= \sup_{\Omega} |u_1 - u_{1h}|, \\ \|u_2 - u_{2h}\|_{\infty} &= \sup_{\Omega} |u_2 - u_{2h}|, \\ \|p - p_h\|_{\infty} &= \sup_{\Omega} |p - p_h|. \end{aligned}$$

Measurements for errors

• L^2 norm error:

$$\|\mathbf{u} - \mathbf{u}_h\|_0 = \sqrt{\|u_1 - u_{1h}\|_0^2 + \|u_2 - u_{2h}\|_0^2},$$

$$\|u_1 - u_{1h}\|_0 = \sqrt{\int_{\Omega} (u_1 - u_{1h})^2 dx dy},$$

$$\|u_2 - u_{2h}\|_0 = \sqrt{\int_{\Omega} (u_2 - u_{2h})^2 dx dy},$$

$$\|p - p_h\|_0 = \sqrt{\int_{\Omega} (p - p_h)^2 dx dy}.$$

Measurements for errors

• H^1 semi-norm error:

$$\begin{aligned} |\mathbf{u} - \mathbf{u}_h|_1 &= \sqrt{|u_1 - u_{1h}|_1^2 + |u_2 - u_{2h}|_1^2}, \\ |u_1 - u_{1h}|_1 &= \sqrt{\int_{\Omega} \left(\frac{\partial (u_1 - u_{1h})}{\partial x}\right)^2 + \left(\frac{\partial (u_1 - u_{1h})}{\partial y}\right)^2 dxdy}, \\ |u_2 - u_{2h}|_1 &= \sqrt{\int_{\Omega} \left(\frac{\partial (u_2 - u_{2h})}{\partial x}\right)^2 + \left(\frac{\partial (u_2 - u_{2h})}{\partial y}\right)^2 dxdy}, \\ |p - p_h|_1 &= \sqrt{\int_{\Omega} \left(\frac{\partial (p - p_h)}{\partial x}\right)^2 + \left(\frac{\partial (p - p_h)}{\partial y}\right)^2 dxdy}. \end{aligned}$$

• Basic idea: call Algorithm IV and Algorithm V in Chapter 3 for each of u_1 , u_2 , and p; then plug the results into the above formulas for the errors of \mathbf{u} and p.

Numerical example

Weak/Galerkin formulation

 Example 1: Use the finite element method to solve the following equation on the domain $\Omega = [0,1] \times [-0.25,0]$:

$$\nabla \cdot \mathbf{T}(\mathbf{u}, p) = \mathbf{f} \quad \text{on } \Omega,
\nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega,
u_1 = e^{-y} \quad \text{on } x = 0,
u_1 = y^2 + e^{-y} \quad \text{on } x = 1,
u_1 = \frac{1}{16}x^2 + e^{0.25} \quad \text{on } y = -0.25,
u_1 = 1 \quad \text{on } y = 0,
u_2 = 2 \quad \text{on } x = 0,
u_2 = -\frac{2}{3}y^3 + 2 \quad \text{on } x = 1,
u_2 = \frac{1}{96}x + 2 - \pi \sin(\pi x) \quad \text{on } y = -0.25,
u_2 = 2 - \pi \sin(\pi x) \quad \text{on } y = 0.$$

Numerical example

Here

$$f_1 = -2\nu x^2 - 2\nu y^2 - \nu e^{-y} + \pi^2 \cos(\pi x) \cos(2\pi y),$$

$$f_2 = 4\nu xy - \nu \pi^3 \sin(\pi x) + 2\pi (2 - \pi \sin(\pi x)) \sin(2\pi y).$$

The analytic solution of this problem is

$$u_1 = x^2 y^2 + e^{-y}, \quad u_2 = -\frac{2}{3} x y^3 + 2 - \pi \sin(\pi x),$$

 $p = -(2 - \pi \sin(\pi x)) \cos(2\pi y),$

which can be used to compute the errors between the numerical solution and the analytic solution. We can also verify f_1 and f_2 above by plugging the analytic solutions into the Stokes equation.

- Let's code for the Taylor-Hood finite elements for the 2D Stokes equation together!
- Taylor-Hood finite elements: linear finite elements for the pressure and quadratic finite elements for the velocity.
- Open your Matlab!

Weak/Galerkin formulation

$\|\mathbf{u} - \mathbf{u}_h\|_{\infty}$ $\|\mathbf{u} - \mathbf{u}_h\|_{0}$ $|\mathbf{u} - \mathbf{u}_h|_1$ 1.6765×10^{-3} 2.0424×10^{-2} 3.5687×10^{-4} 1/8 2.0256×10^{-4} 4.4059×10^{-5} 5.0674×10^{-3} 1/16 2.5182×10^{-5} 1.2623×10^{-3} 1/32 5.4832×10^{-6} 3.1057×10^{-6} 6.8444×10^{-7} 3.1522×10^{-4} 1/64

Table: The numerical errors for quadratic finite elements of the velocity.

- Any Observation?
- Third order convergence $O(h^3)$ in L^2/L^{∞} norm and second order convergence $O(h^2)$ in H^1 semi-norm, which match the optimal approximation capability expected from piecewise quadratic functions.

Numerical example

Weak/Galerkin formulation

h	$\left\ p - p_h \right\ _{\infty}$	$\ p-p_h\ _0$	$ p-p_h _1$
1/8	1.3124×10^{-1}	2.1810×10^{-2}	1.2651×10^{0}
1/16	4.5401×10^{-2}	8.4643×10^{-3}	6.3072×10^{-1}
1/32	1.2473×10^{-2}	2.4475×10^{-3}	3.1369×10^{-1}
1/64	3.2434×10^{-3}	6.5205×10^{-4}	1.5658×10^{-1}

Table: The numerical errors for linear finite elements of the pressure.

- Any Observation?
- Second order convergence $O(h^2)$ in L^2/L^∞ norm and first order convergence O(h) in H^1 semi-norm, which match the optimal approximation capability expected from piecewise linear functions.

More Discussion

- Weak/Galerkin formulation
- 2 FE discretization
- 3 Dirichlet boundary condition
- 4 FE Method
- More Discussion

Consider

$$\begin{cases} -\nabla \cdot \mathbb{T}(\mathbf{u}, p) = \mathbf{f} & in \quad \Omega, \\ \nabla \cdot \mathbf{u} = 0 & in \quad \Omega, \\ \mathbb{T}(\mathbf{u}, p)\mathbf{n} = \mathbf{p} & on \quad \partial \Omega. \end{cases}$$

where $\mathbf{n} = (n_1, n_2)^t$ is the unit outer normal vector of $\partial \Omega$ and

$$\mathbf{p}(x,y) = (p_1, p_2)^t, \ \mathbf{f}(x,y) = (f_1, f_2)^t.$$

Recall

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy$$
$$- \int_{\partial \Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy,$$
$$- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0.$$

Hence

$$\begin{split} & \int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy - \int_{\partial \Omega} \mathbf{p} \cdot \mathbf{v} \ ds \\ & = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy, \\ & - \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0. \end{split}$$

- Is there anything wrong? The solution is not unique!
- Recall that

$$\mathbb{D}(\mathbf{u}) = \begin{pmatrix} \frac{\partial u_1}{\partial x} & \frac{1}{2} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) & \frac{\partial u_2}{\partial y} \end{pmatrix}.$$

• If $\mathbf{u} = (u_1, u_2)^t$ is a solution, then $\mathbf{u} + \mathbf{c}$ is also a solution where \mathbf{c} is a constant vector. 4 D > 4 B > 4 B > 4 B > B = 900

Consider

$$-\nabla \cdot \mathbb{T}(\mathbf{u}, p) = \mathbf{f} \quad \text{in} \quad \Omega,$$

$$\nabla \cdot \mathbf{u} = 0 \quad \text{in} \quad \Omega,$$

$$\mathbb{T}(\mathbf{u}, p)\mathbf{n} = \mathbf{p} \quad \text{on} \quad \Gamma_{\mathcal{S}} \subset \partial \Omega,$$

$$\mathbf{u} = \mathbf{g} \quad \text{on} \quad \Gamma_{D} = \partial \Omega / \Gamma_{\mathcal{S}}.$$

Recall

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy$$
$$- \int_{\partial \Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy,$$
$$- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0.$$

- Since the solution on $\Gamma_D = \partial \Omega / \Gamma_S$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x, y)$ such that $\mathbf{v} = 0$ on $\partial \Omega/\Gamma_{S}$.
- Then

$$\int_{\partial\Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_S} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds + \int_{\partial\Omega/\Gamma_S} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_S} \mathbf{p} \cdot \mathbf{v} \, ds.$$

• The weak formulation is to find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ and $p \in L^2(\Omega)$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy + \int_{\Gamma_{S}} \mathbf{p} \cdot \mathbf{v} \ ds,$$

$$- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0,$$

for any $\mathbf{v} \in H^1_{0D}(\Omega) \times H^1_{0D}(\Omega)$ and $q \in L^2(\Omega)$. Here

$$\int_{\Gamma_{S}} \mathbf{p} \cdot \mathbf{v} \ ds = \int_{\Gamma_{S}} p_{1}v_{1} \ ds + \int_{\Gamma_{S}} p_{2}v_{2} \ ds,$$
$$H_{0D}^{1}(\Omega) = \{ v \in H^{1}(\Omega) : v = 0 \text{ on } \Gamma_{D} \}.$$

• Then the Galerkin formulation is to find $\mathbf{u}_h \in U_h \times U_h$ and $p_h \in W_h$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}_h) : \mathbb{D}(\mathbf{v}_h) \, dxdy - \int_{\Omega} p_h(\nabla \cdot \mathbf{v}_h) \, dxdy$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \, dxdy + \int_{\Gamma_S} \mathbf{p} \cdot \mathbf{v}_h \, ds,$$

$$- \int_{\Omega} (\nabla \cdot \mathbf{u}_h) q_h \, dxdy = 0,$$

for any $\mathbf{v}_h \in U_{h0} \times U_{h0}$ and $a_h \in W_h$.

• For an easier implementation, we use the following Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $\mathbf{u}_h \in U_h \times U_h$ and $p_h \in W_h$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}_h) : \mathbb{D}(\mathbf{v}_h) \ dxdy - \int_{\Omega} p_h(\nabla \cdot \mathbf{v}_h) \ dxdy$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \ dxdy + \int_{\Gamma_S} \mathbf{p} \cdot \mathbf{v}_h \ ds,$$

$$- \int_{\Omega} (\nabla \cdot \mathbf{u}_h) q_h \ dxdy = 0,$$

for any $\mathbf{v}_h \in U_h \times U_h$ and $q_h \in W_h$.

• Since u_{1h} , $u_{2h} \in U_h = span\{\phi_i\}_{i=1}^{N_b}$ and $p_h \in W_h = span\{\psi_i\}_{i=1}^{N_{bp}}$, then

$$u_{1h} = \sum_{j=1}^{N_b} u_{1j}\phi_j, \quad u_{2h} = \sum_{j=1}^{N_b} u_{2j}\phi_j, \quad p_h = \sum_{j=1}^{N_{bp}} p_j\psi_j$$

for some coefficients u_{1j} , u_{2j} $(j = 1, \dots, N_b)$, and p_i $(i=1,\cdots,N_{bn}).$

- For the first equation in the Galerkin formulation, we choose $\mathbf{v}_{h} = (\phi_{i}, 0)^{t} \ (i = 1, \dots, N_{h}) \ \text{and} \ \mathbf{v}_{h} = (0, \phi_{i})^{t} \ (i = 1, \dots, N_{h}).$ That is, in the first set of test functions, we choose $v_{1h} = \phi_i$ $(i = 1, \dots, N_h)$ and $v_{2h} = 0$; in the second set of test functions, we choose $v_{1h} = 0$ and $v_{2h} = \phi_i$ $(i = 1, \dots, N_b)$.
- For the second equation in the Galerkin formulation, we choose $q_b = \psi_i \ (i = 1, \cdots, N_{bp}).$

Then by the same procedure to derive the matrix formulation before, we obtain the following linear system

$$\begin{split} \sum_{j=1}^{N_b} u_{1j} \left(2 \int_{\Omega} \nu \frac{\partial \phi_j}{\partial x} \frac{\partial \phi_i}{\partial x} \ dx dy + \int_{\Omega} \nu \frac{\partial \phi_j}{\partial y} \frac{\partial \phi_i}{\partial y} \ dx dy \right) + \sum_{j=1}^{N_b} u_{2j} \left(\int_{\Omega} \nu \frac{\partial \phi_j}{\partial x} \frac{\partial \phi_i}{\partial y} \ dx dy \right) \\ + \sum_{j=1}^{N_{bp}} p_j \left(- \int_{\Omega} \psi_j \frac{\partial \phi_i}{\partial x} \ dx dy \right) = \int_{\Omega} f_1 \phi_i dx dy + \int_{\Gamma_{\mathcal{S}}} p_1 \phi_i \ ds, \\ \sum_{i=1}^{N_b} u_{1j} \left(\int_{\Omega} \nu \frac{\partial \phi_j}{\partial y} \frac{\partial \phi_i}{\partial x} \ dx dy \right) \end{split}$$

$$+\sum_{j=1}^{N_b} u_{2j} \left(2 \int_{\Omega} \nu \frac{\partial \phi_j}{\partial y} \frac{\partial \phi_i}{\partial y} \ dxdy + \int_{\Omega} \nu \frac{\partial \phi_j}{\partial x} \frac{\partial \phi_i}{\partial x} \ dxdy \right)$$

$$+\sum_{j=1}^{N_{bp}}p_{j}\left(-\int_{\Omega}\psi_{j}\frac{\partial\phi_{i}}{\partial y}\ dxdy\right)=\int_{\Omega}f_{2}\phi_{i}dxdy+\int_{\Gamma_{S}}p_{2}\phi_{i}\ ds,$$

$$\int_{\Omega} p_j \left(\int_{\Omega} \psi_j \, \partial y \, dx dy \right) = \int_{\Omega} p_j \psi_j \, dx dy + \int_{\Gamma_5} p_j \psi_j \, dx dy + \int_{\Gamma_5} p_j \psi_j \, dx dy + \sum_{i=1}^{N_{bp}} p_i \psi_i \, dx dy + \sum$$

Recall

$$A_{1} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial x} dx dy \right]_{i,j=1}^{N_{b}}, \quad A_{2} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i,j=1}^{N_{b}},$$

$$A_{3} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i,j=1}^{N_{b}},$$

$$A_{5} = \left[\int_{\Omega} -\psi_{j} \frac{\partial \phi_{i}}{\partial x} dx dy \right]_{i=1,i=1}^{N_{b}, N_{bp}}, \quad A_{6} = \left[\int_{\Omega} -\psi_{j} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i=1,i=1}^{N_{b}, N_{bp}},$$

and

$$A = \left(\begin{array}{ccc} 2A_1 + A_2 & A_3 & A_5 \\ A_3^t & 2A_2 + A_1 & A_6 \\ A_5^t & A_6^t & \mathbb{O}_1 \end{array} \right)$$

where \mathbb{O}_1 is a zero matrix whose size is $N_{bp} \times N_{bp}$.

Б.

Recall

$$ec{b} = \left(egin{array}{c} ec{b}_1 \ ec{b}_2 \ ec{0} \end{array}
ight)$$

where

$$\vec{b}_1 = \left[\int_{\Omega} f_1 \phi_i dx dy \right]_{i=1}^{N_b}, \quad \vec{b}_2 = \left[\int_{\Omega} f_2 \phi_i dx dy \right]_{i=1}^{N_b}, \quad \vec{0} = [0]_{i=1}^{N_{bp}}.$$

Recall the unknown vector

$$ec{X} = \left(egin{array}{c} ec{X}_1 \ ec{X}_2 \ ec{X}_3 \end{array}
ight)$$

where
$$\vec{X}_1 = [u_{1j}]_{j=1}^{N_b}, \quad \vec{X}_2 = [u_{2j}]_{j=1}^{N_b}, \quad \vec{X}_3 = [p_j]_{j=1}^{N_{bp}}.$$

Define the additional vector from the stress boundary condition:

$$ec{v} = \left(egin{array}{c} ec{v}_1 \ ec{v}_2 \ ec{0} \end{array}
ight)$$

where

$$\vec{v}_1 = \left[\int_{\Gamma_S} p_1 \phi_i \ ds \right]_{i=1}^{N_b}, \quad \vec{v}_2 = \left[\int_{\Gamma_S} p_2 \phi_i \ ds \right]_{i=1}^{N_b}, \quad \vec{0} = [0]_{i=1}^{N_{bp}}.$$

- Define the new vector $\overset{\sim}{\vec{b}} = \vec{b} + \vec{v}$.
- Then we obtain the linear algebraic system

$$A\vec{X} = \widetilde{\vec{b}}.$$

• Similar to Chapter 6, we essentially only need repeat the code of Neumman condition in Chapter 3 for \vec{v}_1 and $\vec{v}_2.$

FE Method

Based on Algorithm VI-2 in Chapter 6, we obtain Algorithm VI-4:

- Initialize the vector: $v = sparse(2N_b + N_{bp}, 1)$;
- Compute the integrals and assemble them into v:

```
FOR k = 1, \dots, nbe:
       IF boundaryedges (1, k) shows stress boundary, THEN
               n_k = boundaryedges(2, k);
              FOR \beta = 1, \cdots, N_{lb}:
                      Compute r = \int_{e_{\nu}} p_1 \frac{\partial^{a+b} \psi_{n_k \beta}}{\partial x^a \partial x^b} ds;
                      v(T_b(\beta, n_k), 1) = v(T_b(\beta, n_k), 1) + r;
                      Compute r = \int_{e_{\nu}} p_2 \frac{\partial^{a+b} \psi_{n_k \beta}}{\partial x^a \partial y^b} ds;
                       v(N_b + T_b(\beta, n_k), 1) = v(N_b + T_b(\beta, n_k), 1) + r;
               END
       ENDIF
FND
```

Robin boundary conditions

Consider

$$-\nabla \cdot \mathbb{T}(\mathbf{u}, p) = \mathbf{f} \quad \text{in} \quad \Omega,$$

$$\nabla \cdot \mathbf{u} = 0 \quad \text{in} \quad \Omega,$$

$$\mathbb{T}(\mathbf{u}, p)\mathbf{n} + r\mathbf{u} = \mathbf{q} \quad \text{on} \quad \Gamma_R \subseteq \partial \Omega,$$

$$\mathbf{u} = \mathbf{g} \quad \text{on} \quad \Gamma_D = \partial \Omega / \Gamma_R.$$

Recall

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy$$
$$- \int_{\partial \Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy,$$
$$- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0.$$

- Since the solution on $\Gamma_D = \partial \Omega / \Gamma_R$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x,y)$ such that $\mathbf{v} = 0$ on $\partial \Omega / \Gamma_R$.
- Then

$$\begin{split} & \int_{\partial\Omega} (\mathbb{T}(\mathbf{u},p)\mathbf{n}) \cdot \mathbf{v} \ ds \\ = & \int_{\Gamma_R} (\mathbb{T}(\mathbf{u},p)\mathbf{n}) \cdot \mathbf{v} \ ds + \int_{\partial\Omega/\Gamma_R} (\mathbb{T}(\mathbf{u},p)\mathbf{n}) \cdot \mathbf{v} \ ds \\ = & \int_{\Gamma_R} \mathbf{q} \cdot \mathbf{v} \ ds - \int_{\Gamma_R} r\mathbf{u} \cdot \mathbf{v} \ ds. \end{split}$$

Robin boundary condition

• The weak formulation is find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ and $p \in L^2(\Omega)$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy + \int_{\Gamma_{R}} r\mathbf{u} \cdot \mathbf{v} \ ds$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy + \int_{\Gamma_{R}} \mathbf{q} \cdot \mathbf{v} \ ds,$$

$$- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0,$$

for any $\mathbf{v} \in H^1_{0D}(\Omega) \times H^1_{0D}(\Omega)$ and $q \in L^2(\Omega)$. Here

$$\int_{\Gamma_R} \mathbf{q} \cdot \mathbf{v} \ ds = \int_{\Gamma_R} q_1 v_1 \ ds + \int_{\Gamma_R} q_2 v_2 \ ds,$$

$$\int_{\Gamma_R} r \mathbf{u} \cdot \mathbf{v} \ ds = \int_{\Gamma_R} r u_1 v_1 \ ds + \int_{\Gamma_R} r u_2 v_2 \ ds,$$

$$H^1_{0D}(\Omega) = \{ v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_D \}.$$

Robin boundary condition

• Then the Galerkin formulation is to find $\mathbf{u}_h \in U_h \times U_h$ and $p_h \in W_h$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}_{h}) : \mathbb{D}(\mathbf{v}_{h}) \, dxdy - \int_{\Omega} p_{h}(\nabla \cdot \mathbf{v}_{h}) \, dxdy
+ \int_{\Gamma_{R}} r \mathbf{u}_{h} \cdot \mathbf{v}_{h} \, ds
= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_{h} \, dxdy + \int_{\Gamma_{R}} \mathbf{q} \cdot \mathbf{v}_{h} \, ds,
- \int_{\Omega} (\nabla \cdot \mathbf{u}_{h}) q_{h} \, dxdy = 0,$$

for any $\mathbf{v}_h \in U_{h0} \times U_{h0}$ and $a_h \in W_h$.

Weak/Galerkin formulation

 For an easier implementation, we use the following Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $\mathbf{u}_h \in U_h \times U_h$ and $p_h \in W_h$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}_h) : \mathbb{D}(\mathbf{v}_h) \, dxdy - \int_{\Omega} p_h(\nabla \cdot \mathbf{v}_h) \, dxdy$$

$$+ \int_{\Gamma_R} r \mathbf{u}_h \cdot \mathbf{v}_h \, ds$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \, dxdy + \int_{\Gamma_R} \mathbf{q} \cdot \mathbf{v}_h \, ds,$$

$$- \int_{\Omega} (\nabla \cdot \mathbf{u}_h) q_h \, dxdy = 0,$$

for any $\mathbf{v}_h \in U_h \times U_h$ and $q_h \in W_h$.

• Since u_{1h} , $u_{2h} \in U_h = span\{\phi_j\}_{j=1}^{N_b}$ and $p_h \in W_h = span\{\psi_j\}_{j=1}^{N_{bp}}$, then

$$u_{1h} = \sum_{j=1}^{N_b} u_{1j}\phi_j, \quad u_{2h} = \sum_{j=1}^{N_b} u_{2j}\phi_j, \quad p_h = \sum_{j=1}^{N_{bp}} p_j\psi_j$$

for some coefficients u_{1j} , u_{2j} $(j=1,\cdots,N_b)$, and p_j $(j=1,\cdots,N_{bp})$.

- For the first equation in the Galerkin formulation, we choose $\mathbf{v}_h = (\phi_i, 0)^t \ (i = 1, \cdots, N_b)$ and $\mathbf{v}_h = (0, \phi_i)^t \ (i = 1, \cdots, N_b)$. That is, in the first set of test functions, we choose $v_{1h} = \phi_i \ (i = 1, \cdots, N_b)$ and $v_{2h} = 0$; in the second set of test functions, we choose $v_{1h} = 0$ and $v_{2h} = \phi_i \ (i = 1, \cdots, N_b)$.
- For the second equation in the Galerkin formulation, we choose $q_h = \psi_i \ (i = 1, \dots, N_{bp}).$

• Then by the same procedure to derive the matrix formulation before, we obtain the following linear system

$$\begin{split} &\sum_{j=1}^{N_{b}} u_{1j} \left(2 \int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial x} \ dxdy + \int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial y} \ dxdy + \int_{\Gamma_{R}} r \phi_{j} \phi_{i} \ ds \right) \\ &+ \sum_{j=1}^{N_{b}} u_{2j} \left(\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial y} \ dxdy \right) + \sum_{j=1}^{N_{bp}} p_{j} \left(- \int_{\Omega} \psi_{j} \frac{\partial \phi_{i}}{\partial x} \ dxdy \right) \\ &= \int_{\Omega} f_{1} \phi_{i} dxdy + \int_{\Gamma_{S}} \mathbf{q}_{1} \phi_{i} \ ds, \end{split}$$

and

$$\begin{split} &\sum_{j=1}^{N_{b}} u_{1j} \left(\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial x} \ dxdy \right) \\ &+ \sum_{j=1}^{N_{b}} u_{2j} \left(2 \int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial y} \ dxdy + \int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial x} \ dxdy + \int_{\Gamma_{R}} r \phi_{j} \phi_{i} \ ds \right) \\ &+ \sum_{j=1}^{N_{bp}} p_{j} \left(- \int_{\Omega} \psi_{j} \frac{\partial \phi_{i}}{\partial y} \ dxdy \right) \\ &= \int_{\Omega} f_{2} \phi_{i} dxdy + \int_{\Gamma_{S}} q_{2} \phi_{i} \ ds, \\ &\sum_{j=1}^{N_{b}} u_{1j} \left(- \int_{\Omega} \frac{\partial \phi_{j}}{\partial x} \psi_{i} \ dxdy \right) + \sum_{j=1}^{N_{b}} u_{2j} \left(- \int_{\Omega} \frac{\partial \phi_{j}}{\partial y} \psi_{i} \ dxdy \right) \\ &+ \sum_{j=1}^{N_{bp}} p_{j} * 0 = 0. \end{split}$$

Recall

$$A_{1} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial x} dx dy \right]_{i,j=1}^{N_{b}}, \quad A_{2} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i,j=1}^{N_{b}},$$

$$A_{3} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i,j=1}^{N_{b}},$$

$$A_{5} = \left[\int_{\Omega} -\psi_{j} \frac{\partial \phi_{i}}{\partial x} dx dy \right]_{i=1,i=1}^{N_{b},N_{bp}}, \quad A_{6} = \left[\int_{\Omega} -\psi_{j} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i=1,i=1}^{N_{b},N_{bp}},$$

and

$$A = \left(\begin{array}{ccc} 2A_1 + A_2 & A_3 & A_5 \\ A_3^t & 2A_2 + A_1 & A_6 \\ A_5^t & A_6^t & \mathbb{O}_1 \end{array} \right)$$

where \mathbb{O}_1 is a zero matrix whose size is $N_{bp} \times N_{bp}$.

Recall

$$ec{b} = \left(egin{array}{c} ec{b}_1 \ ec{b}_2 \ ec{0} \end{array}
ight)$$

where

$$\vec{b}_1 = \left[\int_{\Omega} f_1 \phi_i dx dy\right]_{i=1}^{N_b}, \quad \vec{b}_2 = \left[\int_{\Omega} f_2 \phi_i dx dy\right]_{i=1}^{N_b}, \quad \vec{0} = [0]_{i=1}^{N_{bp}}.$$

Recall the unknown vector

$$ec{X} = \left(egin{array}{c} ec{X}_1 \ ec{X}_2 \ ec{X}_3 \end{array}
ight)$$

where $\vec{X}_1 = [u_{1j}]_{j=1}^{N_b}, \quad \vec{X}_2 = [u_{2j}]_{j=1}^{N_b}, \quad \vec{X}_3 = [p_j]_{j=1}^{N_{bp}}.$

Define the additional vector from the Robin boundary condition:

$$ec{w} = \left(egin{array}{c} ec{w}_1 \ ec{w}_2 \ ec{0} \end{array}
ight)$$

where

$$\vec{w}_1 = \left[\int_{\Gamma_S} q_1 \phi_i \ ds \right]_{i=1}^{N_b}, \quad \vec{w}_2 = \left[\int_{\Gamma_S} q_2 \phi_i \ ds \right]_{i=1}^{N_b}, \quad \vec{0} = [0]_{i=1}^{N_{bp}}.$$

- Define the new vector $\vec{\vec{b}} = \vec{b} + \vec{w}$.
- Since each of \vec{w}_1 and \vec{w}_2 is similar to the \vec{w} for the Robin condition in Chapter 3, we essentially only need repeat the code of \vec{w} in Chapter 3 for \vec{w}_1 and \vec{w}_2 .

Define the additional matrix from the Robin boundary condition

$$R = [r_{ij}]_{i,j=1}^{N_b} = \left[\int_{\Gamma_R} r \phi_j \phi_i \ ds \right]_{i,j=1}^{N_b}.$$

Dirichlet boundary condition

 Since R is the same as the R in Chapter 3, the code for R is the same. But R needs to be added to the matrix A twice as showed above to obtain A.

Define the new matrix:

$$\widetilde{A} = \left(\begin{array}{ccc} 2A_1 + A_2 + R & A_3 & A_5 \\ A_3^t & 2A_2 + A_1 + R & A_6 \\ A_5^t & A_6^t & \mathbb{O}_1 \end{array} \right)$$

Dirichlet boundary condition

Then we obtain the linear algebraic system

$$\widetilde{A}\vec{X} = \widetilde{\vec{b}}.$$

Pesudo code? (Part of a project for you)

Dirichlet/stress/Robin mixed boundary condition

Consider

$$-\nabla \cdot \mathbb{T}(\mathbf{u}, p) = \mathbf{f} \quad \text{in} \quad \Omega,
\nabla \cdot \mathbf{u} = 0 \quad \text{in} \quad \Omega,
\mathbb{T}(\mathbf{u}, p)\mathbf{n} = \mathbf{p} \quad \text{on} \quad \Gamma_S \subset \partial \Omega,
\mathbb{T}(\mathbf{u}, p)\mathbf{n} + r\mathbf{u} = \mathbf{q} \quad \text{on} \quad \Gamma_R \subseteq \partial \Omega,
\mathbf{u} = \mathbf{g} \quad \text{on} \quad \Gamma_D = \partial \Omega / (\Gamma_S \cup \Gamma_R).$$

Recall

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy$$
$$- \int_{\partial \Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy,$$
$$- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0.$$

Dirichlet/stress/Robin mixed boundary condition

- Since the solution on $\Gamma_D = \partial \Omega / (\Gamma_S \cup \Gamma_R)$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x,y)$ such that $\mathbf{v}=0$ on $\partial \Omega/(\Gamma_S \cup \Gamma_R)$.
- Then

$$\begin{split} & \int_{\partial\Omega} (\mathbb{T}(\mathbf{u},p)\mathbf{n}) \cdot \mathbf{v} \, ds \\ = & \int_{\Gamma_S} (\mathbb{T}(\mathbf{u},p)\mathbf{n}) \cdot \mathbf{v} \, ds + \int_{\Gamma_R} (\mathbb{T}(\mathbf{u},p)\mathbf{n}) \cdot \mathbf{v} \, ds \\ & + \int_{\partial\Omega/(\Gamma_S \cup \Gamma_R)} (\mathbb{T}(\mathbf{u},p)\mathbf{n}) \cdot \mathbf{v} \, ds \\ = & \int_{\Gamma_S} \mathbf{p} \cdot \mathbf{v} \, ds + \int_{\Gamma_R} \mathbf{q} \cdot \mathbf{v} \, ds - \int_{\Gamma_R} r \mathbf{u} \cdot \mathbf{v} \, ds. \end{split}$$

Weak/Galerkin formulation

• The weak formulation is to find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ and $p \in L^2(\Omega)$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy + \int_{\Gamma_R} r\mathbf{u} \cdot \mathbf{v} \ ds$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy + \int_{\Gamma_R} \mathbf{q} \cdot \mathbf{v} \ ds + \int_{\Gamma_S} \mathbf{p} \cdot \mathbf{v} \ ds,$$

$$- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0,$$

for any
$$\mathbf{v} \in H^1_{0D}(\Omega) \times H^1_{0D}(\Omega)$$
 and $q \in L^2(\Omega)$. Here $H^1_{0D}(\Omega) = \{ v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_D \}.$

 Code? Combine all of the subroutines for Dirichlet/stress/Robin boundary conditions.

Consider

$$-\nabla \cdot \mathbb{T}(\mathbf{u}, p) = \mathbf{f} \quad \text{in} \quad \Omega,
\nabla \cdot \mathbf{u} = 0 \quad \text{in} \quad \Omega,
\mathbf{n}^{t} \mathbb{T}(\mathbf{u}, p) \mathbf{n} = p_{n}, \quad \tau^{t} \mathbb{T}(\mathbf{u}, p) \mathbf{n} = p_{\tau} \quad \text{on} \quad \Gamma_{S} \subset \partial \Omega,
\mathbf{u} = \mathbf{g} \quad \text{on} \quad \Gamma_{D} = \partial \Omega / \Gamma_{S}.$$

Dirichlet boundary condition

where $\mathbf{n} = (n_1, n_2)^t$ is the unit outer normal vector of $\partial \Omega$ and $\tau = (\tau_1, \tau_2)^t$ is the corresponding unit tangential vector of $\partial \Omega$.

Recall

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy$$
$$- \int_{\partial \Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy,$$
$$- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0.$$

• Since the solution on $\Gamma_D = \partial \Omega / \Gamma_S$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x,y)$ such that $\mathbf{v}=0$ on $\partial \Omega/\Gamma_{S}$.

• Using the above conditions, orthogonal decomposition of a vector, and the definition of unit normal/tangential vector, we obtain

$$\int_{\partial\Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_{S}} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds + \int_{\partial\Omega/\Gamma_{S}} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_{S}} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_{S}} [(\mathbf{n}^{t}\mathbb{T}(\mathbf{u}, p)\mathbf{n})\mathbf{n} + (\tau^{t}\mathbb{T}(\mathbf{u}, p)\mathbf{n})\tau] \cdot [(\mathbf{n}^{t}\mathbf{v})\mathbf{n} + (\tau^{t}\mathbf{v})\tau] \, ds$$

$$= \int_{\Gamma_{S}} (\mathbf{n}^{t}\mathbb{T}(\mathbf{u}, p)\mathbf{n})(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{S}} (\tau^{t}\mathbb{T}(\mathbf{u}, p)\mathbf{n})(\tau^{t}\mathbf{v}) \, ds$$

$$= \int_{\Gamma_{S}} p_{n}(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{S}} p_{\tau}(\tau^{t}\mathbf{v}) \, ds.$$

• Then the weak formulation is to find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ and $p \in L^2(\Omega)$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy + \int_{\Gamma_{S}} p_{n}(\mathbf{n}^{t}\mathbf{v}) \ ds + \int_{\Gamma_{S}} p_{\tau}(\tau^{t}\mathbf{v}) \ ds,$$

$$- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0,$$

for any $\mathbf{v} \in H^1_{0D}(\Omega) \times H^1_{0D}(\Omega)$ and $\mathbf{q} \in L^2(\Omega)$.

• Then the Galerkin formulation is to find $\mathbf{u}_h \in U_h \times U_h$ and $p_h \in W_h$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}_h) : \mathbb{D}(\mathbf{v}_h) \ dxdy - \int_{\Omega} p_h(\nabla \cdot \mathbf{v}_h) \ dxdy
= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \ dxdy + \int_{\Gamma_S} p_n(\mathbf{n}^t \mathbf{v}_h) \ ds + \int_{\Gamma_S} p_{\tau}(\tau^t \mathbf{v}_h) \ ds,
- \int_{\Omega} (\nabla \cdot \mathbf{u}_h) q_h \ dxdy = 0,$$

for any $\mathbf{v}_h \in U_{h0} \times U_{h0}$ and $a_h \in W_h$.

• For an easier implementation, we use the following Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $\mathbf{u}_h \in U_h \times U_h$ and $p_h \in W_h$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}_h) : \mathbb{D}(\mathbf{v}_h) \, dxdy - \int_{\Omega} p_h(\nabla \cdot \mathbf{v}_h) \, dxdy$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \, dxdy + \int_{\Gamma_S} p_n(\mathbf{n}^t \mathbf{v}_h) \, ds + \int_{\Gamma_S} p_{\tau}(\tau^t \mathbf{v}_h) \, ds,$$

$$- \int_{\Omega} (\nabla \cdot \mathbf{u}_h) q_h \, dxdy = 0,$$

for any $\mathbf{v}_h \in U_h \times U_h$ and $q_h \in W_h$.

• Since u_{1h} , $u_{2h}\in U_h=span\{\phi_j\}_{j=1}^{N_b}$ and $p_h\in W_h=span\{\psi_j\}_{j=1}^{N_{bp}}$, then

$$u_{1h} = \sum_{j=1}^{N_b} u_{1j}\phi_j, \quad u_{2h} = \sum_{j=1}^{N_b} u_{2j}\phi_j, \quad p_h = \sum_{j=1}^{N_{bp}} p_j\psi_j$$

for some coefficients u_{1j} , u_{2j} $(j=1,\cdots,N_b)$, and p_j $(j=1,\cdots,N_{bp})$.

- For the first equation in the Galerkin formulation, we choose $\mathbf{v}_h = (\phi_i, 0)^t \ (i = 1, \cdots, N_b)$ and $\mathbf{v}_h = (0, \phi_i)^t \ (i = 1, \cdots, N_b)$. That is, in the first set of test functions, we choose $v_{1h} = \phi_i \ (i = 1, \cdots, N_b)$ and $v_{2h} = 0$; in the second set of test functions, we choose $v_{1h} = 0$ and $v_{2h} = \phi_i \ (i = 1, \cdots, N_b)$.
- For the second equation in the Galerkin formulation, we choose $q_h = \psi_i \ (i = 1, \dots, N_{bp}).$

• Then by the same procedure to derive the matrix formulation before, we obtain the following linear system

$$\begin{split} \sum_{j=1}^{N_b} u_{1j} \left(2 \int_{\Omega} \nu \frac{\partial \phi_j}{\partial x} \frac{\partial \phi_i}{\partial x} \ dxdy + \int_{\Omega} \nu \frac{\partial \phi_j}{\partial y} \frac{\partial \phi_i}{\partial y} \ dxdy \right) + \sum_{j=1}^{N_b} u_{2j} \left(\int_{\Omega} \nu \frac{\partial \phi_j}{\partial x} \frac{\partial \phi_i}{\partial y} \ dxdy \right) \\ + \sum_{j=1}^{N_{bp}} \rho_j \left(- \int_{\Omega} \psi_j \frac{\partial \phi_i}{\partial x} \ dxdy \right) = \int_{\Omega} f_1 \phi_i dxdy + \int_{\Gamma_S} \rho_n \phi_i n_1 \ ds + \int_{\Gamma_S} \rho_{\tau} \phi_i \tau_1 \ ds, \\ \sum_{i=1}^{N_b} u_{1j} \left(\int_{\Omega} \nu \frac{\partial \phi_j}{\partial y} \frac{\partial \phi_i}{\partial x} \ dxdy \right) \end{split}$$

$$+\sum_{j=1}^{N_b} u_{2j} \left(2 \int_{\Omega} \nu \frac{\partial \phi_j}{\partial y} \frac{\partial \phi_i}{\partial y} \ dxdy + \int_{\Omega} \nu \frac{\partial \phi_j}{\partial x} \frac{\partial \phi_i}{\partial x} \ dxdy \right)$$

$$+\sum_{j=1}^{N_{bp}}p_{j}\left(-\int_{\Omega}\psi_{j}\frac{\partial\phi_{i}}{\partial y}\ dxdy\right)=\int_{\Omega}f_{2}\phi_{i}dxdy+\int_{\Gamma_{S}}p_{n}\phi_{i}n_{2}\ ds+\int_{\Gamma_{S}}p_{\tau}\phi_{i}\tau_{2}\ ds,$$

$$\sum_{j=1}^{N_b} u_{1j} \left(-\int_{\Omega} \frac{\partial \phi_j}{\partial x} \psi_i \ dx dy \right) + \sum_{j=1}^{N_b} u_{2j} \left(-\int_{\Omega} \frac{\partial \phi_j}{\partial y} \psi_i \ dx dy \right) + \sum_{j=1}^{N_{bp}} p_j * 0 = 0.$$

Recall

$$A_{1} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial x} dx dy \right]_{i,j=1}^{N_{b}}, \quad A_{2} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i,j=1}^{N_{b}},$$

$$A_{3} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i,j=1}^{N_{b}},$$

$$A_{5} = \left[\int_{\Omega} -\psi_{j} \frac{\partial \phi_{i}}{\partial x} dx dy \right]_{i=1}^{N_{b}, N_{bp}}, \quad A_{6} = \left[\int_{\Omega} -\psi_{j} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i=1}^{N_{b}, N_{bp}},$$

and

$$A = \left(egin{array}{cccc} 2A_1 + A_2 & A_3 & A_5 \ A_3^t & 2A_2 + A_1 & A_6 \ A_5^t & A_6^t & \mathbb{O}_1 \ \end{array}
ight)$$

where \mathbb{O}_1 is a zero matrix whose size is $N_{bp} \times N_{bp}$.

Recall

$$ec{b} = \left(egin{array}{c} ec{b}_1 \ ec{b}_2 \ ec{0} \end{array}
ight)$$

where

$$\vec{b}_1 = \left[\int_{\Omega} f_1 \phi_i dx dy\right]_{i=1}^{N_b}, \quad \vec{b}_2 = \left[\int_{\Omega} f_2 \phi_i dx dy\right]_{i=1}^{N_b}, \quad \vec{0} = [0]_{i=1}^{N_{bp}}.$$

Recall the unknown vector

$$ec{X} = \left(egin{array}{c} ec{X}_1 \ ec{X}_2 \ ec{X}_3 \end{array}
ight)$$

where
$$\vec{X}_1 = [u_{1j}]_{j=1}^{N_b}, \quad \vec{X}_2 = [u_{2j}]_{j=1}^{N_b}, \quad \vec{X}_3 = [p_j]_{j=1}^{N_{bp}}.$$

 Define the additional vector from the stress boundary condition:

$$\vec{v} = \left(\begin{array}{c} \vec{v}_1 + \vec{v}_2 \\ \vec{v}_3 + \vec{v}_4 \\ \vec{0} \end{array} \right)$$

where

$$\vec{v}_{1} = \left[\int_{\Gamma_{S}} p_{n} \phi_{i} n_{1} \ ds \right]_{i=1}^{N_{b}}, \ \vec{v}_{2} = \left[\int_{\Gamma_{S}} p_{\tau} \phi_{i} \tau_{1} \ ds \right]_{i=1}^{N_{b}},$$

$$\vec{v}_{3} = \left[\int_{\Gamma_{S}} p_{n} \phi_{i} n_{2} \ ds \right]_{i=1}^{N_{b}}, \ \vec{v}_{4} = \left[\int_{\Gamma_{S}} p_{\tau} \phi_{i} \tau_{2} \ ds \right]_{i=1}^{N_{b}},$$

$$\vec{0} = [0]_{i=1}^{N_{bp}}.$$

• Define the new vector $\tilde{\vec{b}} = \vec{b} + \vec{v}$.

• Then we obtain the linear algebraic system

$$A\vec{X} = \widetilde{\vec{b}}.$$

Dirichlet boundary condition

- Since each of \vec{v}_i (i=1,2,3,4) is similar to the \vec{v} for the Neumann condition in Chapter 3, we can borrow the code of Neumann condition in Chapter 3 for \vec{v}_i (i=1,2,3,4).
- The major difference between \vec{v}_i (i=1,2,3,4) here and the \vec{v} for the Neumann condition in Chapter 3 is that here we need to provide the unit normal/tangential vectors. That is, we need to provide $\mathbf{n}=(n_1, n_2)^t$ and $\tau=(\tau_1, \tau_2)^t$, in the information matrix boundaryedges.

Based on Algorithm VI-3 in Chapter 6, we obtain Algorithm VI-5:

- Initialize the vector: $v = sparse(2N_b + N_{bp}, 1)$;
- Compute the integrals and assemble them into v:

```
FOR k = 1, \dots, nbe:
```

IF boundaryedges (1, k) shows stress boundary in normal/tangential directions, THEN

```
n_k = boundaryedges(2, k);
```

FOR
$$\beta = 1, \cdots, N_{lb}$$
:

Compute
$$r = \int_{e_k} p_n \frac{\partial^{s+b}\psi_{n_k\beta}}{\partial x^a \partial y^b} n_1 \ ds + \int_{e_k} p_r \frac{\partial^{s+b}\psi_{n_k\beta}}{\partial x^a \partial y^b} \tau_1 \ ds;$$

$$v(T_b(\beta, n_k), 1) = v(T_b(\beta, n_k), 1) + r;$$
Compute $r = \int_{e_k} p_n \frac{\partial^{s+b}\psi_{n_k\beta}}{\partial x^a \partial y^b} n_2 \ ds + \int_{e_k} p_r \frac{\partial^{s+b}\psi_{n_k\beta}}{\partial x^a \partial y^b} \tau_2 \ ds;$

Compute
$$r = \int_{e_k} p_n \frac{\partial \psi_{n_k \beta}}{\partial x^3 \partial y^b} n_2 ds + \int_{e_k} p_\tau \frac{\partial \psi_{n_k \beta}}{\partial x^3 \partial y^b} n_2 ds$$

$$v(N_b + T_b(\beta, n_k), 1) = v(N_b + T_b(\beta, n_k), 1) + r;$$

END

ENDIF

END

Consider

$$\begin{split} & -\nabla \cdot \mathbb{T}(\mathbf{u},p) = \mathbf{f} & \text{in } \Omega, \\ & \nabla \cdot \mathbf{u} = 0 & \text{in } \Omega, \\ & \mathbf{n}^t \mathbb{T}(\mathbf{u},p) \mathbf{n} + r \mathbf{n}^t \mathbf{u} = q_n, \ \tau^t \mathbb{T}(\mathbf{u},p) \mathbf{n} + r \tau^t \mathbf{u} = q_\tau \ \text{on } \Gamma_R \subseteq \partial \Omega, \\ & \mathbf{u} = \mathbf{g} \ \text{on } \Gamma_D = \partial \Omega / \Gamma_R. \end{split}$$

where $\mathbf{n} = (n_1, n_2)^t$ is the unit outer normal vector of $\partial \Omega$ and $\tau = (\tau_1, \tau_2)^t$ is the corresponding unit tangential vector of $\partial \Omega$.

Recall

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy$$
$$- \int_{\partial \Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy,$$
$$- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0.$$

Dirichlet boundary condition

• Since the solution on $\Gamma_D = \partial \Omega / \Gamma_R$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x, y)$ such that $\mathbf{v} = 0$ on $\partial \Omega / \Gamma_R$.

• Using the above conditions, orthogonal decomposition of a vector, and the definition of unit normal/tangential vector, we obtain

$$\int_{\partial\Omega} (\mathbb{T}(\mathbf{u}, \rho)\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_R} (\mathbb{T}(\mathbf{u}, \rho)\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_R} \left[(\mathbf{n}^t \mathbb{T}(\mathbf{u}, \rho)\mathbf{n}) \mathbf{n} + (\tau^t \mathbb{T}(\mathbf{u}, \rho)\mathbf{n})\tau \right] \cdot \left[(\mathbf{n}^t \mathbf{v}) \mathbf{n} + (\tau^t \mathbf{v})\tau \right] \, ds$$

$$= \int_{\Gamma_S} (\mathbf{n}^t \mathbb{T}(\mathbf{u}, \rho)\mathbf{n}) (\mathbf{n}^t \mathbf{v}) \, ds + \int_{\Gamma_S} (\tau^t \mathbb{T}(\mathbf{u}, \rho)\mathbf{n}) (\tau^t \mathbf{v}) \, ds$$

$$= \left[\int_{\Gamma_R} q_n(\mathbf{n}^t \mathbf{v}) \, ds + \int_{\Gamma_R} q_\tau(\tau^t \mathbf{v}) \, ds \right]$$

$$- \left[\int_{\Gamma_S} (r\mathbf{n}^t \mathbf{u}) (\mathbf{n}^t \mathbf{v}) \, ds + \int_{\Gamma_S} (r\tau^t \mathbf{u}) (\tau^t \mathbf{v}) \, ds \right],$$

• Then the weak formulation is to find ${\bf u}\in H^1(\Omega) imes H^1(\Omega)$ and $p\in L^2(\Omega)$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \, dxdy - \int_{\Omega} \rho(\nabla \cdot \mathbf{v}) \, dxdy
+ \int_{\Gamma_R} (r\mathbf{n}^t \mathbf{u})(\mathbf{n}^t \mathbf{v}) \, ds + \int_{\Gamma_R} (r\tau^t \mathbf{u})(\tau^t \mathbf{v}) \, ds
= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, dxdy + \int_{\Gamma_R} q_n(\mathbf{n}^t \mathbf{v}) \, ds + \int_{\Gamma_R} q_\tau(\tau^t \mathbf{v}) \, ds,
- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \, dxdy = 0,$$

for any $\mathbf{v} \in H^1_{0D}(\Omega) \times H^1_{0D}(\Omega)$ and $q \in L^2(\Omega)$.

• Then the Galerkin formulation is to find $\mathbf{u}_h \in U_h \times U_h$ and $p_h \in W_h$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}_{h}) : \mathbb{D}(\mathbf{v}_{h}) \, dxdy - \int_{\Omega} p_{h}(\nabla \cdot \mathbf{v}_{h}) \, dxdy
+ \int_{\Gamma_{R}} (r\mathbf{n}^{t}\mathbf{u}_{h})(\mathbf{n}^{t}\mathbf{v}_{h}) \, ds + \int_{\Gamma_{R}} (r\tau^{t}\mathbf{u}_{h})(\tau^{t}\mathbf{v}_{h}) \, ds
= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_{h} \, dxdy + \int_{\Gamma_{R}} q_{n}(\mathbf{n}^{t}\mathbf{v}_{h}) \, ds + \int_{\Gamma_{R}} q_{\tau}(\tau^{t}\mathbf{v}_{h}) \, ds,
- \int_{\Omega} (\nabla \cdot \mathbf{u}_{h})q_{h} \, dxdy = 0,$$

for any $\mathbf{v}_h \in U_{h0} \times U_{h0}$ and $a_h \in W_h$.

 For an easier implementation, we use the following Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $\mathbf{u}_h \in U_h \times U_h$ and $p_h \in W_h$ such that

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}_{h}) : \mathbb{D}(\mathbf{v}_{h}) \, dxdy - \int_{\Omega} p_{h}(\nabla \cdot \mathbf{v}_{h}) \, dxdy
+ \int_{\Gamma_{R}} (r\mathbf{n}^{t}\mathbf{u}_{h})(\mathbf{n}^{t}\mathbf{v}_{h}) \, ds + \int_{\Gamma_{R}} (r\tau^{t}\mathbf{u}_{h})(\tau^{t}\mathbf{v}_{h}) \, ds
= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_{h} \, dxdy + \int_{\Gamma_{R}} q_{n}(\mathbf{n}^{t}\mathbf{v}_{h}) \, ds + \int_{\Gamma_{R}} q_{\tau}(\tau^{t}\mathbf{v}_{h}) \, ds,
- \int_{\Omega} (\nabla \cdot \mathbf{u}_{h})q_{h} \, dxdy = 0,$$

for any $\mathbf{v}_h \in U_h \times U_h$ and $q_h \in W_h$.

• Since u_{1h} , $u_{2h} \in U_h = span\{\phi_j\}_{j=1}^{N_b}$ and $p_h \in W_h = span\{\psi_j\}_{j=1}^{N_{bp}}$, then

$$u_{1h} = \sum_{j=1}^{N_b} u_{1j}\phi_j, \quad u_{2h} = \sum_{j=1}^{N_b} u_{2j}\phi_j, \quad p_h = \sum_{j=1}^{N_{bp}} p_j\psi_j$$

for some coefficients u_{1j} , u_{2j} $(j=1,\cdots,N_b)$, and p_j $(j=1,\cdots,N_{bp})$.

- For the first equation in the Galerkin formulation, we choose $\mathbf{v}_h = (\phi_i, 0)^t \ (i=1, \cdots, N_b)$ and $\mathbf{v}_h = (0, \phi_i)^t \ (i=1, \cdots, N_b)$. That is, in the first set of test functions, we choose $v_{1h} = \phi_i \ (i=1, \cdots, N_b)$ and $v_{2h} = 0$; in the second set of test functions, we choose $v_{1h} = 0$ and $v_{2h} = \phi_i \ (i=1, \cdots, N_b)$.
- For the second equation in the Galerkin formulation, we choose $q_h = \psi_i \ (i = 1, \dots, N_{bp}).$

• Then by the same procedure to derive the matrix formulation before, we obtain the following linear system:

$$\sum_{j=1}^{N_{b}} u_{1j} \left(2 \int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial x} dx dy + \int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial y} dx dy \right)$$

$$+ \int_{\Gamma_{R}} (r n_{1} \phi_{j}) (\phi_{i} n_{1}) ds + \int_{\Gamma_{R}} (r \tau_{1} \phi_{j}) (\phi_{i} \tau_{1}) ds$$

$$+ \sum_{j=1}^{N_{b}} u_{2j} \left(\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial y} dx dy + \int_{\Gamma_{R}} (r n_{2} \phi_{j}) (\phi_{i} n_{1}) ds \right)$$

$$+ \int_{\Gamma_{R}} (r \tau_{2} \phi_{j}) (\phi_{i} \tau_{1}) ds + \sum_{j=1}^{N_{bp}} p_{j} \left(-\int_{\Omega} \psi_{j} \frac{\partial \phi_{i}}{\partial x} dx dy \right)$$

$$= \int_{\Omega} f_{1} \phi_{i} dx dy + \int_{\Gamma_{R}} q_{n} \phi_{i} n_{1} ds + \int_{\Gamma_{R}} q_{\tau} \phi_{i} \tau_{1} ds,$$

and

$$\begin{split} &\sum_{j=1}^{N_{b}} u_{1j} \Big(\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial x} \ dxdy + \int_{\Gamma_{R}} (rn_{1}\phi_{j}) (\phi_{i}n_{2}) \ ds \\ &+ \int_{\Gamma_{R}} (r\tau_{1}\phi_{j}) (\phi_{i}\tau_{2}) \ ds \Big) + \sum_{j=1}^{N_{b}} u_{2j} \Big(2 \int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial y} \ dxdy \\ &+ \int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial x} \ dxdy + \int_{\Gamma_{R}} (rn_{2}\phi_{j}) (\phi_{i}n_{2}) \ ds \\ &+ \int_{\Gamma_{R}} (r\tau_{2}\phi_{j}) (\phi_{i}\tau_{2}) \ ds \Big) + \sum_{j=1}^{N_{bp}} p_{j} \left(- \int_{\Omega} \psi_{j} \frac{\partial \phi_{i}}{\partial y} \ dxdy \right) \\ &= \int_{\Omega} f_{2}\phi_{i} dxdy + \int_{\Gamma_{R}} q_{n}\phi_{i}n_{2} \ ds + \int_{\Gamma_{R}} q_{\tau}\phi_{i}\tau_{2} \ ds, \end{split}$$

and

$$\sum_{j=1}^{N_b} u_{1j} \left(-\int_{\Omega} \frac{\partial \phi_j}{\partial x} \psi_i \, dx dy \right) + \sum_{j=1}^{N_b} u_{2j} \left(-\int_{\Omega} \frac{\partial \phi_j}{\partial y} \psi_i \, dx dy \right)$$

$$+ \sum_{j=1}^{N_{bp}} p_j * 0 = 0.$$

Dirichlet boundary condition

- Matrix formulation? Pesudo code? (Part of a project for you)
- Similar to the previous ones for Robin condition, we need to add eight sub-matrices and four sub-vectors into the block linear system.
- The major difference is that here we need to provide the unit normal/tangential vectors. That is, we need to provide $\mathbf{n} = (n_1, n_2)^t$ and $\tau = (\tau_1, \tau_2)^t$, in the information matrix boundarvedges.

Dirichlet/stress/Robin mixed boundary condition in normal/tangential directions

Consider

$$\begin{split} -\nabla \cdot \mathbb{T}(\mathbf{u}, p) &= \mathbf{f} & \text{in} \quad \Omega, \\ \nabla \cdot \mathbf{u} &= 0 & \text{in} \quad \Omega, \\ \mathbf{n}^t \mathbb{T}(\mathbf{u}, p) \mathbf{n} &= p_n, \ \tau^t \mathbb{T}(\mathbf{u}, p) \mathbf{n} = p_\tau \ \text{on} \ \Gamma_S \subset \partial \Omega, \\ \mathbf{n}^t \mathbb{T}(\mathbf{u}, p) \mathbf{n} + r \mathbf{n}^t \mathbf{u} &= q_n, \ \tau^t \mathbb{T}(\mathbf{u}, p) \mathbf{n} + r \tau^t \mathbf{u} = q_\tau \ \text{on} \ \Gamma_R \subseteq \partial \Omega, \\ \mathbf{u} &= \mathbf{g} \ \text{on} \ \Gamma_D &= \frac{\partial \Omega}{\Gamma_S} \left(\Gamma_S \cup \Gamma_R \right). \end{split}$$

where $\mathbf{n} = (n_1, n_2)^t$ is the unit outer normal vector of $\partial \Omega$ and $\tau = (\tau_1, \tau_2)^t$ is the corresponding unit tangential vector of $\partial \Omega$.

Dirichlet/stress/Robin mixed boundary condition in normal/tangential directions

Recall

Weak/Galerkin formulation

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy$$
$$- \int_{\partial \Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy,$$
$$- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0.$$

• Since the solution on $\Gamma_D = \partial \Omega / (\Gamma_S \cup \Gamma_R)$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x,y)$ such that $\mathbf{v}=0$ on $\partial\Omega/(\Gamma_S\cup\Gamma_R)$.

Dirichlet/stress/Robin mixed boundary condition in normal/tangential directions

Combining the above derivation for stress and Robin boundary conditions in normal/tangential directions, we obtain

$$\int_{\partial\Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_{S}} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds + \int_{\Gamma_{R}} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$+ \int_{\partial\Omega/(\Gamma_{S} \cup \Gamma_{R})} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \left[\int_{\Gamma_{S}} p_{n}(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{S}} p_{\tau}(\tau^{t}\mathbf{v}) \, ds \right]$$

$$+ \left[\int_{\Gamma_{R}} q_{n}(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{R}} q_{\tau}(\tau^{t}\mathbf{v}) \, ds \right]$$

$$- \left[\int_{\Gamma_{R}} (r\mathbf{n}^{t}\mathbf{u})(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{R}} (r\tau^{t}\mathbf{u})(\tau^{t}\mathbf{v}) \, ds \right],$$

FE Method

Dirichlet/stress/Robin mixed boundary condition in normal/tangential directions

• Weak formulation: find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ and $p \in L^2(\Omega)$ s.t.

$$\begin{split} &\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy \\ &+ \int_{\Gamma_R} (r\mathbf{n}^t \mathbf{u})(\mathbf{n}^t \mathbf{v}) \ ds + \int_{\Gamma_R} (r\tau^t \mathbf{u})(\tau^t \mathbf{v}) \ ds \\ &= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy + \int_{\Gamma_R} q_n(\mathbf{n}^t \mathbf{v}) \ ds + \int_{\Gamma_R} q_{\tau}(\tau^t \mathbf{v}) \ ds \\ &+ \int_{\Gamma_S} p_n(\mathbf{n}^t \mathbf{v}) \ ds + \int_{\Gamma_S} p_{\tau}(\tau^t \mathbf{v}) \ ds, \\ &- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0, \end{split}$$

for any $\mathbf{v} \in H^1_{0D}(\Omega) \times H^1_{0D}(\Omega)$ and $q \in L^2(\Omega)$.

 Code? Combine all of the subroutines for Dirichlet/stress/Robin boundary conditions. 4 D > 4 B > 4 B > 4 B > B = 900