Mixed Precision Runge-Kutta methods using Half Precision on the A64FX Processor

Ben Burnett 1 Sigal Gottlieb 1 Zachary J. Grant 2 Alfa Heryudono 1

¹University of Massachusetts Dartmouth

²Oak Ridge National Laboratory

3th Annual Boston Area Architecture Workshop January 28th, 2022

Table of Contents

Introduction

Mixed-Precision Runge-Kutta Methods

Conclusions and Future Work

Table of Contents

Introduction

2 Mixed-Precision Runge-Kutta Methods

3 Conclusions and Future Work

No Free Lunch

"Nothing is acquired for free, and necessarily must cost us some thing" -Epictetus

No Free Lunch

"Nothing is acquired for free, and necessarily must cost us some thing" -Epictetus

IEEE 754 Floating Point Standard						
Name	Significand	Exponent	Exponent	Exponent		
	Bits	Bits	Min	Max		
Half	11	5	-14	+15		
Single	24	8	-126	+127		
Double	53	11	-1022	+1023		
Quadruple	113	15	-16382	+16383		

No Free Lunch

"Nothing is acquired for free, and necessarily must cost us some thing" -Epictetus

IEEE 754 Floating Point Standard						
Name	Significand	Exponent	Exponent	Exponent		
	Bits	Bits	Min	Max		
Half	11	5	-14	+15		
Single	24	8	-126	+127		
Double	53	11	-1022	+1023		
Quadruple	113	15	-16382	+16383		

Operation:	Energy (pJ)	Relative Energy Cost	Area (μm²)	Relative Area Cost
8b Add	0.03		36	1
16b Add	0.05		67	
32b Add	0.1		137	
16b FP Add	0.4		1360	
32b FP Add	0.9		4184	
8b Mult	0.2		282	
32b Mult	3.1		3495	
16b FP Mult	1.1		1640	
32b FP Mult	3.7		7700	
32b SRAM Read (8KB)	5		N/A	
32b DRAM Read	640		N/A	

Figure: Mark Horowitz, ISSCC presentation 2014

Table of Contents

Introduction

Mixed-Precision Runge-Kutta Methods

3 Conclusions and Future Work

Motivating Example: The Van der Pol Equation

For the General ODE

$$\frac{d}{dt}u = F(u)$$

solve the Van der Pol system

$$u_1' = u_2$$

 $u_2' = u_2(1 - u_1^2) - u_1$

Motivating Example: The Van der Pol Equation

For the General ODE

$$\frac{d}{dt}u = F(u)$$

solve the Van der Pol system

$$u'_1 = u_2$$

 $u'_2 = u_2(1 - u_1^2) - u_1$

using the Implicit Midpoint

$$y^{(1)} = u^{n} + \frac{\Delta t}{2} F(y^{(1)})$$
$$u^{n+1} = u^{n} + \Delta t F(y^{(1)})$$

Motivating Example: The Van der Pol Equation

For the General ODE

$$\frac{d}{dt}u = F(u)$$

solve the Van der Pol system

$$u'_1 = u_2$$

 $u'_2 = u_2(1 - u_1^2) - u_1$

using the Implicit Midpoint

$$y^{(1)} = u^n + \frac{\Delta t}{2} F(y^{(1)})$$

$$u^{n+1} = u^n + \Delta t F(y^{(1)})$$

Newton-Raphson Method

$$g(y^{(1)}) = 0 = u^n + \frac{\Delta t}{2} F(y^{(1)}) - y^{(1)}$$

To solve, use an expensive iteration until a tolerance is reached

$$y_{i+1}^{(1)} = y_i^{(1)} - J_i^{-1}g(y_i^{(1)})$$

Mixed-Precision Implicit Midpoint Method

$$y_{\epsilon}^{(1)} = u^n + \frac{\Delta t}{2} F^{\epsilon} (y_{\epsilon}^{(1)})$$

$$u^{n+1} = u^n + \Delta t F(y_{\epsilon}^{(1)})$$

Mixed-Precision Implicit Midpoint Method

$$y_{\epsilon}^{(1)} = u^n + \frac{\Delta t}{2} F^{\epsilon} (y_{\epsilon}^{(1)})$$

$$u^{n+1} = u^n + \Delta t F(y_{\epsilon}^{(1)})$$

Figure: Errors from mixed-precision implicit midpoint rule

Errors calculated in extended precision regardless of computations base precision from a reference solution done in quadruple precision using a 4th order RK method with smaller Δt

Mixed-Precision Implicit Midpoint Method

$$y_{\epsilon}^{(1)} = u^n + \frac{\Delta t}{2} F^{\epsilon} (y_{\epsilon}^{(1)})$$

$$u^{n+1} = u^n + \Delta t F(y_{\epsilon}^{(1)})$$

Mixed-Precision Implicit Midpoint Method

$$y_{\epsilon}^{(1)} = u^n + \frac{\Delta t}{2} F^{\epsilon} (y_{\epsilon}^{(1)})$$
$$u^{n+1} = u^n + \Delta t F(y_{\epsilon}^{(1)})$$

Corrected Mixed-Precision Implicit Midpoint Method for k = 1, ..., p - 1

$$y_{[0]}^{(1)} = u^{n} + \frac{\Delta t}{2} F^{\epsilon}(y_{[0]}^{(1)})$$

$$y_{[k]}^{(1)} = u^{n} + \frac{\Delta t}{2} F(y_{[k-1]}^{(1)})$$

$$u^{n+1} = u^{n} + \Delta t F(y_{[p-1]}^{(1)})$$

Performance of Mixed-Precision Methods

Figure: No corrections

Figure: One correction

Performance of Mixed-Precision Methods

Figure: No corrections

Figure: One correction

Power Consumption of Mixed-Precision Methods

Ereal128 R:real128 F:real128,R:real64 2.1×10^{0} Ereal128 R:real32 2.08×10^{0} Ereal64 R:real64 2.06 x 10⁰ Ereal64 R:real16 F:real32.R:real32 F:real32,R:real16 2.04 × 10⁵ - Ereal16 R:real16 2.02 × 10⁰ 2×10^{0} 1.98 × 10⁰ 1.96×10^{0} 1.94×10^{0} 10-4 10-2 10-3 103 102 Runtime (s)

Figure: Energy (J) Consumption vs Run Time of Solver

Figure: Power (W) Consumption vs Run Time of Solver

Power and energy consumption was collected from the A64FX processors energy counters using perf

Table of Contents

Introduction

2 Mixed-Precision Runge-Kutta Methods

Conclusions and Future Work

Conclusions

Key Takeaway:

Potential to save an appreciable amount of time while still being able to maintain high accuracy.

Conclusions

Key Takeaway:

Potential to save an appreciable amount of time while still being able to maintain high accuracy.

Further Work:

- More problems (Are problems that require other methods to solve the implicit stage more likely to benefit?)
- More methods (Do solvers with more stages benefit more/less?)

Conclusions

Key Takeaway:

Potential to save an appreciable amount of time while still being able to maintain high accuracy.

Further Work:

- More problems (Are problems that require other methods to solve the implicit stage more likely to benefit?)
- More methods (Do solvers with more stages benefit more/less?)

Thank you for attending! Any questions?