Package 'bivgeom'

October 12, 2022

Type Package

Title Roy's Bivariate Geometric Distribution

Version 1.0
Date 2018-10-17
Author Alessandro Barbiero
Maintainer Alessandro Barbiero <alessandro.barbiero@unimi.it></alessandro.barbiero@unimi.it>
Imports methods, stats, utils, bbmle, copula
Description Implements Roy's bivariate geometric model (Roy (1993) <doi:10.1006 jmva.1993.1065="">): joint probability mass function, distribution function, survival function, random generation, parameter estimation, and more.</doi:10.1006>
License GPL
NeedsCompilation no
Repository CRAN
Date/Publication 2018-10-26 15:20:06 UTC
R topics documented:
bivgeom-package
corbivgeomRoy
dbivgeomRoy
estbivgeomRoy
EyxbivgeomRoy
FbivgeomRoy
FyxbivgeomRoy
lambda1Roy
lambda2Roy
loglikgeomRoy

 minuslogRoy
 13

 rbivgeomRoy
 14

 RelbivgeomRoy
 15

 S.n
 16

 SbivgeomRoy
 17

2 bivgeom-package

Index 18

bivgeom-package	Roy's Bivariate Geometric Distribution
-----------------	--

Description

Implements Roy's bivariate geometric model (Roy (1993) <doi:10.1006/jmva.1993.1065>): joint probability mass function, distribution function, survival function, random generation, parameter estimation, and more.

Details

The DESCRIPTION file:

Package: bivgeom Type: Package

Title: Roy's Bivariate Geometric Distribution

Version: 1.0 Date: 2018-10-17

Author: Alessandro Barbiero

Maintainer: Alessandro Barbiero <alessandro.barbiero@unimi.it>

Imports: methods, stats, utils, bbmle, copula

Description: Implements Roy's bivariate geometric model (Roy (1993) <doi:10.1006/jmva.1993.1065>): joint probab

License: GPL NeedsCompilation: no

Packaged: 2018-10-16 12:34:47 UTC; Barbiero

Index of help topics:

EyxbivgeomRoy Conditional moment

FbivgeomRoy Joint distribution function FyxbivgeomRoy Conditional distribution RelbivgeomRoy Reliability parameter

S.n Empirical joint survival function

SbivgeomRoy Joint survival function

bivgeom-package Roy's Bivariate Geometric Distribution

corbivgeomRoy Linear correlation

dbivgeomRoy Joint probability mass function

estbivgeomRoy Parameter estimation
lambda1Roy Bivariate failure rates
lambda2Roy Bivariate failure rate
loglikgeomRoy Log-likelihood function
minuslogRoy Log-likelihood function
rbivgeomRoy Pseudo-random generation

bivgeom-package 3

Author(s)

Alessandro Barbiero

Maintainer: Alessandro Barbiero (alessandro.barbiero@unimi.it)

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

Barbiero, A. (2018) Properties and estimation of a bivariate geometric model with locally constant failure rates, submitted

See Also

dbivgeomRoy, rbivgeomRoy, estbivgeomRoy, FbivgeomRoy

```
#### MONTE CARLO SIMULATION PLAN ####
# setting the parameters' values
theta1 <- 0.3
theta2 <- 0.7
theta3 <- 0.6
N <- 20 # number of Monte Carlo runs
n <- 100 # sample size
# arranging the array containig the simulation results
# N runs, 7 methods, 3 estimates
h <- array(0,c(N,7,3))
# setting the seed
set.seed(12345)
# function for handling missing values
# when computing the mean and standard deviation of the estimates:
meanrm <- function(x){mean(x,na.rm=TRUE)}</pre>
sdrm <- function(x){sd(x,na.rm=TRUE)}</pre>
colnames <- c("ML","MMP","MM1","MM2","MM3","MM4","LS")</pre>
dimnames(h)[[2]] <- colnames</pre>
# Monte Carlo simulation:
for(i in 1:N)
d <- rbivgeomRoy(n,theta1,theta2,theta3)</pre>
cat("MC run #",i,"\n")
x < -d[,1]
y < -d[,2]
# implementing all the estimation methods
# and saving the point estimates in the array
h[i,1,] \leftarrow estbivgeomRoy(x, y, "ML")
h[i,2,] \leftarrow estbivgeomRoy(x, y, "MMP")
h[i,3,] \leftarrow estbivgeomRoy(x, y, "MM1")
h[i,4,] \leftarrow estbivgeomRoy(x, y, "MM2")
h[i,5,] \leftarrow estbivgeomRoy(x, y, "MM3")
```

4 corbivgeomRoy

```
h[i,6,] <- estbivgeomRoy(x, y, "MM4")
h[i,7,] <- estbivgeomRoy(x, y, "LS")
}
# printing MC expected values and standard errors
# for each of the proposed estimation methods
cat("hattheta1:","\n")
cbind(mean=apply(h,c(2,3),meanrm)[,1],se=apply(h,c(2,3),sdrm)[,1])
cat("hattheta2:","\n")
cbind(mean=apply(h,c(2,3),meanrm)[,2],se=apply(h,c(2,3),sdrm)[,2])
cat("hattheta3:","\n")
cbind(mean=apply(h,c(2,3),meanrm)[,3],se=apply(h,c(2,3),sdrm)[,3])
# boxplots of MC distribution of the estimators of theta3
boxplot(h[,,3])
abline(h=theta3, lty=3)</pre>
```

corbivgeomRoy

Linear correlation

Description

Linear correlation for Roy's bivariate geometric model

Usage

```
corbivgeomRoy(theta1, theta2, theta3)
```

Arguments

theta1 paramater θ_1 theta2 paramater θ_2 theta3 paramater θ_3

Value

the value of Pearson's linear correlation - see Barbiero (2018). The linear correlation for Roy's bivariate geometric distribution is negative (or null, for $\theta_3=1$) for any feasible choice of its parameters

Author(s)

Alessandro Barbiero

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

Barbiero, A. (2018) Properties and estimation of a bivariate geometric model with locally constant failure rates, submitted

dbivgeomRoy 5

See Also

dbivgeomRoy

Examples

```
corbivgeomRoy(0.3, 0.7, 0.5)
```

dbivgeomRoy

Joint probability mass function

Description

Joint probability mass function for Roy's bivariate geometric model

Usage

```
dbivgeomRoy(x, y, theta1, theta2, theta3)
```

Arguments

Χ	vector of values for the first variable X
У	vector of values for the second variable Y
theta1	paramater $ heta_1$
theta2	paramater $ heta_2$
theta3	paramater θ_3

Value

```
Value of the probability p(x, y) := P(X = x, Y = y).
```

Author(s)

Alessandro Barbiero

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

See Also

FbivgeomRoy

6 estbivgeomRoy

Examples

```
dbivgeomRoy(x=2, y=0, theta1=0.7, theta2=0.2, theta3=0.8) dbivgeomRoy(0:5, y=0, theta1=0.7, theta2=0.2, theta3=0.8) # these are p(0,0), p(1,0), ..., p(5,0) dbivgeomRoy(0:2, 1:3, theta1=0.7, theta2=0.2, theta3=0.8) # these are p(0,1), p(1,2), p(2,3)
```

estbivgeomRoy

Parameter estimation

Description

Parameter estimation for Roy's bivariate geometric model

Usage

```
estbivgeomRoy(x, y, method = "LS")
```

Arguments

x vector of observations from the first variable X

y vector of observations from the first variable y, same length as x

method One of the possible estimation methods: "ML" (maximum likelihood), "LS"

(least squares), "MMP" (method of moment and poroportion), "M1", "M2",

"M3", and "M4" (several variants of the method of moments)

Value

a vector of length 3 containing the estimates of $theta_1$, $theta_2$, and $theta_3$

Author(s)

Alessandro Barbiero

References

Barbiero, A. (2018) Properties and estimation of a bivariate geometric model with locally constant failure rates, submitted

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

See Also

dbivgeomRoy, minuslogRoy

EyxbivgeomRoy 7

Examples

```
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# random sample of size n=1000:
set.seed(12345)
n <- 1000
d <- rbivgeomRoy(n, theta1, theta2, theta3)
# parameter estimation, using the different proposed methods:
hattheta <- estbivgeomRoy(d[,1], d[,2], "ML")
hattheta # MLEs
estbivgeomRoy(d[,1], d[,2], "LS")
estbivgeomRoy(d[,1], d[,2], "MMP")</pre>
```

EyxbivgeomRoy

Conditional moment

Description

Conditional moment of Y given X = x for Roy's bivariate geomtric model

Usage

```
EyxbivgeomRoy(theta1, theta2, theta3, x)
```

Arguments

```
theta1 paramater \theta_1 theta2 paramater \theta_2 theta3 paramater \theta_3 x value of the conditioning variable X
```

Value

Value of the conditional moment of Y given X = x

Author(s)

Alessandro Barbiero

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

See Also

FyxbivgeomRoy

8 FbivgeomRoy

Examples

```
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
EyxbivgeomRoy(theta1, theta2, theta3, 2)</pre>
```

FbivgeomRoy

Joint distribution function

Description

Joint cumulative distribution function for Roy's bivariate geometric model

Usage

```
FbivgeomRoy(x, y, theta1, theta2, theta3)
```

Arguments

```
x vector of values for the first variable X y vector of values for the second variable Y theta1 paramater \theta_1 theta2 paramater \theta_2 theta3 paramater \theta_3
```

Value

```
The probability F(x, y) := P(X \le x, Y \le x)
```

Author(s)

Alessandro Barbiero

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

See Also

```
dbivgeomRoy, SbivgeomRoy
```

```
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# probability that X<=2 and Y<=3:
FbivgeomRoy(2, 3, theta1, theta2, theta3)</pre>
```

FyxbivgeomRoy 9

FyxbivgeomRoy	Conditional distribution

Description

Conditional distribution function of Y given X = x

Usage

```
FyxbivgeomRoy(y, theta1, theta2, theta3, x)
```

Arguments

```
y vector of observations from Y theta1 paramater \theta_1 theta2 paramater \theta_2 theta3 paramater \theta_3 x value of the conditioning variable X
```

Value

The value of the conditional cumulative distribution function $F_{Y|x}$ in y. Used in rbivgeomRoy for conditional sampling

Author(s)

Alessandro Barbiero

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

See Also

EyxbivgeomRoy, rbivgeomRoy

```
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# probability that Y<=3 given that X=2:
FyxbivgeomRoy(3, theta1, theta2, theta3, 2)
# the unconditional probability would be
pgeom(3, 1-theta2) # i.e. a geometric distribution with parameter 1-theta2</pre>
```

10 lambda1Roy

lambda1Roy

Bivariate failure rates

Description

Bivariate failure rate λ_1

Usage

```
lambda1Roy(x, y, theta1, theta2, theta3)
```

Arguments

x observation from the first variable y observation from the second variable theta1 paramater θ_1 theta2 paramater θ_2

theta3

paramater θ_3

Details

```
It is defined as P(X=x,Y\geq y)/P(X\geq x,Y\geq y). For this model, \lambda_1(x,y)=1-\theta_1\theta_3^y
```

Value

Value of the bivariate failure rate λ_1 for Roy's bivariate geometric model (Roy, 1993)

Author(s)

Alessandro Barbiero

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

See Also

lambda2Roy

lambda2Roy 11

Examples

```
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# bivariate failure rate lambda1
# computed in x=1, y=2
x <- 1
y <- 2
lambda1Roy(x,y,theta1,theta2,theta3)</pre>
```

lambda2Roy

Bivariate failure rate

Description

Bivariate failure rate λ_2

Usage

```
lambda2Roy(x, y, theta1, theta2, theta3)
```

Arguments

X	observation from the first variable
У	observation from the second variable
theta1	paramater $ heta_1$
theta2	paramater θ_2
theta3	paramater θ_3

Details

```
It is defined as P(X \ge x, Y = y)/P(X \ge x, Y \ge y). For this model, \lambda_2(x, y) = 1 - \theta_2 \theta_3^x
```

Value

Value of the bivariate failure rate λ_2 for Roy's bivariate geometric model (Roy, 1993)

Author(s)

Alessandro Barbiero

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

12 loglikgeomRoy

See Also

lambda1Roy

Examples

```
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# bivariate failure rate lambda 2
# computed in x=1, y=2
x <- 1
y <- 2
lambda2Roy(x,y,theta1,theta2,theta3)</pre>
```

loglikgeomRoy

Log-likelihood function

Description

Negative log-likelihood function for Roy's bivariate geometric model

Usage

```
loglikgeomRoy(par, x, y)
```

Arguments

par	a vector containing the values of the three parameters θ_1, θ_2 , and θ_3
x	numeric vector of sample x-values (non-negative integers)
У	numeric vector of sample x-values (non-negative integers), same length as x

Value

Value of the negative log-likelihood function

Author(s)

Alessandro Barbiero

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

See Also

dbivgeomRoy

minuslogRoy 13

Examples

```
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# random sample of size n=1000:
set.seed(12345)
n <- 1000
d <- rbivgeomRoy(n, theta1, theta2, theta3)
# parameter estimation, using the different proposed methods:
hattheta <- estbivgeomRoy(d[,1], d[,2], "ML")
loglikgeomRoy(hattheta, x=d[,1], y=d[,2])
# negative value of the (maximized) log-likelihood function</pre>
```

minuslogRoy

Log-likelihood function

Description

Log-likelihood function (with minus sign) for Roy's bivariate geometric model

Usage

```
minuslogRoy(x, y, theta1 = 0.5, theta2 = 0.5, theta3 = 1)
```

Arguments

```
x a vector of observed values (non-negative integers) y a vector of observed values (non-negative integers) of the same length as x theta1 paramater \theta_1 theta2 paramater \theta_2 theta3 paramater \theta_3
```

Value

The value of the log-likelihood function, changed in sign

Note

Just to be used inside the estbivgeomRoy function

Author(s)

Alessandro Barbiero

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

14 rbivgeomRoy

See Also

```
estbivgeomRoy
```

rbivgeomRoy

Pseudo-random generation

Description

Generation of pseudo-random values from Roy's bivariate geometric model

Usage

```
rbivgeomRoy(n, theta1, theta2, theta3)
```

Arguments

```
n a positive integer, corresponding to the sample size theta1 paramater \theta_1 theta2 paramater \theta_2 theta3 paramater \theta_3
```

Value

A $n \times 2$ numeric matrix containing the bivariate sample values

Author(s)

Alessandro Barbiero

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

See Also

```
dbivgeomRoy, FbivgeomRoy
```

```
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# random sample of size n=1000:
set.seed(12345)
n <- 1000
d <- rbivgeomRoy(n, theta1, theta2, theta3)
# joint frequency distribution:
table(d[,1],d[,2])</pre>
```

RelbivgeomRoy 15

Description

Stress-strength reliability parameter R for Roy's bivariate geometric model

Usage

```
RelbivgeomRoy(theta1, theta2, theta3)
```

Arguments

```
theta1 paramater \theta_1 theta2 paramater \theta_2 theta3 paramater \theta_3
```

Value

The probability $R:=P(X\leq Y)$ for Roy's bivariate geometric model - see Barbiero (2018) for its computation

Author(s)

Alessandro Barbiero

References

Barbiero, A. (2018) Properties and estimation of a bivariate geometric model with locally constant failure rates, submitted

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

See Also

```
dbivgeomRoy, FbivgeomRoy
```

```
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
RelbivgeomRoy(theta1, theta2, theta3)
# theoretical stress-strength reliability parameter R=P(X<=Y)</pre>
```

16 S.n

S.n

Empirical joint survival function

Description

Empirical joint survival function

Usage

```
S.n(x, X)
```

Arguments

x matrix with two columns of non-negative integer values where the empirical joint survival function is computed

X matrix with two columns corresponding to the full observed sample

Value

value of the empirical joint survival function $\hat{S}_X(x)$

Author(s)

Alessandro Barbiero

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

See Also

```
estbivgeomRoy
```

```
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
set.seed(12345)
n <- 1000
d <- rbivgeomRoy(n, theta1, theta2, theta3)
S.n(cbind(1,1),d) # empirical sf
# compare it with the theoretical
SbivgeomRoy(1,1,theta1,theta2,theta3)</pre>
```

SbivgeomRoy 17

|--|

Description

Joint survival function for Roy's bivariate geometric model

Usage

```
SbivgeomRoy(x, y, theta1, theta2, theta3)
```

Arguments

```
x vector of observations from the first variable X y vector of observations from the second variable Y (same length as x) theta1 parameter \theta_1 theta2 parameter \theta_2 theta3 parameter \theta_3
```

Value

The probability $P(X \ge x, Y \ge y)$. For this model it is equal to $S(x, y) = \theta_1^x \theta_2^y \theta_3^{xy}$

Author(s)

Alessandro Barbiero

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

See Also

FbivgeomRoy

```
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# probability that X>=2 and Y>=3:
SbivgeomRoy(2, 3, theta1, theta2, theta3)
```

Index

* datagen	loglikgeomRoy, 12
rbivgeomRoy, 14	
* distribution	minuslogRoy, 6 , 13
corbivgeomRoy, 4	
dbivgeomRoy, 5	rbivgeomRoy, 3 , 9 , 14
estbivgeomRoy, 6	RelbivgeomRoy, 15
EyxbivgeomRoy, 7	0 16
FbivgeomRoy, 8	S.n, 16
FyxbivgeomRoy, 9	SbivgeomRoy, 8, 17
lambda1Roy, 10	
lambda2Roy, 11	
loglikgeomRoy, 12	
minuslogRoy, 13	
rbivgeomRoy, 14	
RelbivgeomRoy, 15	
S.n, 16	
SbivgeomRoy, 17	
* htest	
estbivgeomRoy, 6	
loglikgeomRoy, 12	
minuslogRoy, 13	
* nonparametric	
S.n, 16	
* package	
bivgeom-package, 2	
DIVgeom-package, 2	
bivgeom (bivgeom-package), 2	
bivgeom-package, 2	
bitgeom package, 2	
corbivgeomRoy, 4	
3	
dbivgeomRoy, 3, 5, 5, 6, 8, 12, 14, 15	
estbivgeomRoy, <i>3</i> , <i>6</i> , <i>14</i> , <i>16</i>	
EyxbivgeomRoy, 7, 9	
51: 5 3.5 0.14.15.17	
FbivgeomRoy, 3, 5, 8, 14, 15, 17	
FyxbivgeomRoy, 7, 9	
lambda1Pov 10 12	
lambda1Roy, 10, 12	
lambda2Roy, <i>10</i> , 11	