Application of Information Theory, Lecture 11

Pseudo-Entropy and Pseudorandom Generators

Handout Mode

Iftach Haitner

Tel Aviv University.

January 6, 2015

Part I

Motivation

Encryption schemes

Definition 1

A pair of algorithms (E, D) is (perfectly correct) encryption scheme, if for any $k \in \{0,1\}^n$ and $m \in \{0,1\}^\ell$, it holds that D(k, E(k,m)) = m

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_K(m) \equiv \mathsf{E}_K(m')$, for any $m, m' \in \{0, 1\}^\ell$ and $K \sim \{0, 1\}^n$, letting $\mathsf{E}_k(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $\ell \ge n$.
- Is is bad? Is it optimal?
- ▶ Proof: Let $M \sim \{0, 1\}^n$.
- ▶ Perfect secrecy \implies $H(M, E_K(M)) = H(M, E_K(0^{\ell}))$
- $\blacktriangleright \implies H(M|\mathsf{E}_K(M)) = H(M,\mathsf{E}_K(M)) H(\mathsf{E}_K(M)) = H(M|\mathsf{E}_K(0^\ell)) = n$
- ▶ Perfect correctness \implies $H(M|E_K(M), K) = 0$
- $\blacktriangleright \implies H(M|\mathsf{E}_K(M)) \le H(M,K|\mathsf{E}_K(M)) \le H(K|\mathsf{E}_K(M)) + 0 \le H(K)$
- $ightharpoonup m \leq \ell.\square$
- Statistical security? HW. Computational security?

Part II

Statistical Vs. Computational distance

Distributions and statistical distance

Let $\mathcal P$ and $\mathcal Q$ be two distributions over a finite set $\mathcal U$. Their statistical distance (also known as, variation distance) is defined as

$$SD(\mathcal{P}, \mathcal{Q}) := \frac{1}{2} \sum_{x \in \mathcal{U}} |\mathcal{P}(x) - \mathcal{Q}(x)| = \max_{S \subseteq \mathcal{U}} (\mathcal{P}(S) - \mathcal{Q}(S))$$

We will only consider finite distributions.

Claim 2

For any pair of (finite) distributions \mathcal{P} and \mathcal{Q} , it holds that

$$\mathsf{SD}(\mathcal{P},\mathcal{Q}) = \max_{\mathsf{D}} \{\Delta^{\mathsf{D}}(\mathcal{P},\mathcal{Q}) := \Pr_{x \leftarrow \mathcal{P}} \left[\mathsf{D}(x) = 1 \right] - \Pr_{x \leftarrow \mathcal{Q}} \left[\mathsf{D}(x) = 1 \right] \},$$

where D is any algorithm.

Let $\mathcal{P}, \mathcal{Q}, \mathcal{R}$ be finite distributions, then

Triangle inequality: $SD(P, R) \leq SD(P, Q) + SD(Q, R)$

Repeated sampling: $SD(\mathcal{P}^2 = (\mathcal{P}, \mathcal{P}), \mathcal{Q}^2 = (\mathcal{Q}, \mathcal{Q})) \leq 2 \cdot SD(\mathcal{P}, \mathcal{Q})$

Section 1

Computational Indistinguishability

Computational indistinguishability

Definition 3 (computational indistinguishability)

 \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, if $\Delta_{\mathcal{P}, \mathcal{Q}}^{\mathsf{D}} \leq \varepsilon$, for any s-size D.

- Adversaries are circuits (possibly randomized)
- $lackbox(\infty,arepsilon)$ -indistinguishable is equivalent to statistical distance arepsilon
- ▶ We sometimes think of $s = n^{\omega(1)}$ and $\varepsilon = 1/s$, where n is the "security parameter"
- Can it be different from the statistical case?
- ▶ Unless said otherwise, distributions are over $\{0,1\}^n$

Repeated sampling

Question 4

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, what about \mathcal{P}^2 and \mathcal{Q}^2 ?

▶ Let D be an s'-size algorithm with $\Delta^{D}(\mathcal{P}^{2}, \mathcal{Q}^{2}) = \varepsilon'$

$$\varepsilon' = \Pr_{x \leftarrow \mathcal{P}^2} [\mathsf{D}(x) = 1] - \Pr_{x \leftarrow \mathcal{Q}^2} [\mathsf{D}(x) = 1]$$

$$= (\Pr_{x \leftarrow \mathcal{P}^2} [\mathsf{D}(x) = 1] - \Pr_{x \leftarrow (\mathcal{P}, \mathcal{Q})} [\mathsf{D}(x) = 1])$$

$$+ (\Pr_{x \leftarrow (\mathcal{P}, \mathcal{Q})} [\mathsf{D}(x) = 1] - \Pr_{x \leftarrow \mathcal{Q}^2} [\mathsf{D}(x) = 1])$$

$$= \Delta^{\mathsf{D}}_{(\mathcal{P}^2, (\mathcal{P}, \mathcal{Q})} + \Delta^{\mathsf{D}}_{((\mathcal{P}, \mathcal{Q}), \mathcal{Q}^2)}$$

- ▶ So either $\Delta^{\mathbb{D}}_{(\mathcal{P}^2,(\mathcal{P},\mathcal{Q})} \ge \varepsilon'/2$, or $\Delta^{\mathbb{D}}_{((\mathcal{P},\mathcal{Q}),\mathcal{Q}^2)} \ge \varepsilon'/2$
- ▶ Hence, $\varepsilon' < 2\varepsilon$ implies $s' \ge s 2n$.

Repeated sampling cont.

What about \mathcal{P}^k and \mathcal{Q}^k ?

Claim 5

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, then \mathcal{P}^k and \mathcal{Q}^k are $(s - kn, k\varepsilon)$ -indistinguishable.

Proof: ?

- ► For $i \in \{0, ..., k\}$, let $H^i = (P_1, ..., P_i, Q_{i+1}, ..., Q_k)$, where the P_i 's are iid $\sim \mathcal{P}$ and the Q_i 's are iid $\sim \mathcal{Q}$. (hybrids)
- ▶ Let D be a s'-size algorithm with $\Delta^{D}(\mathcal{P}^{k}, \mathcal{Q}^{k}) = \varepsilon'$
- $\blacktriangleright \ \varepsilon' = \textstyle \sum_{i \in [k]} \mathsf{Pr} \left[\mathsf{D}(H^i) = 1 \right] \mathsf{Pr} \left[\mathsf{D}(H^{i-1}) = 1 \right] = \textstyle \sum_{i \in [k]} \Delta^{\mathsf{D}}(H^i, H^{i-1})$
- ▶ $\implies \exists i \in [k] \text{ with } \Delta^{\mathsf{D}}(H^i, H^{i-1}) \geq \varepsilon'/k.$
- ▶ Thus, $\varepsilon' \le k\varepsilon$ implies s' > s kn
- When considering bounded time algorithms, things behaves very differently!

Part III

Pseudorandom Generators

Pseudorandom generator

Definition 6 (pseudorandom distributions)

A distribution \mathcal{P} over $\{0,1\}^n$ is (s,ε) -pseudorandom, if it is (s,ε) -indistinguishable from U_n .

▶ Do such distributions exit for interesting (s, ε)

Definition 7 (pseudorandom generators (PRGs))

A poly-time computable function $g: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ is a (s,ε) -pseudorandom generator, if for any $n \in \mathbb{N}$

- g is length extending (i.e., $\ell(n) > n$)
- ▶ $g(U_n)$ is $(s(n), \varepsilon(n))$ -pseudorandom
- ▶ We omit the "security parameter", i.e., *n*, when its value is clear from the context
- Do such generators exist?
- Applications?

Section 2

Pseudorandom generators (PRGs) from One-Way Permutations (OWPs)

OWP to PRG

Claim 8

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a poly-time permutation and let $b: \{0,1\}^n \mapsto \{0,1\}$ be a poly-time (s,ε) -hardcore predicate of f, then g(x) = (f(x),b(x)) is a $(s-O(n),\varepsilon)$ -PRG.

- ▶ Hence, OWP ⇒ PRG
- ▶ Proof: Let D be an s'-size algorithm with $\Delta_{g(U_n),U_{n+1}}^{D} = \varepsilon'$, we will show $\exists (s' + O(n))$ -size P with Pr $[P(f(U_n)) = b(U_n)] = \frac{1}{2} + \varepsilon'$.
- ▶ Let $\delta = \Pr[D(U_{n+1}) = 1]$ (hence, $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon'$)
- Compute

$$\begin{split} \delta &= \Pr[\mathsf{D}(f(U_n), U_1) = 1] \\ &= \Pr[U_1 = b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n), U_1) = 1 \mid U_1 = b(U_n)] \\ &+ \Pr[U_1 = \overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n), U_1) = 1 \mid U_1 = \overline{b(U_n)}] \\ &= \frac{1}{2}(\delta + \varepsilon') + \frac{1}{2} \cdot \Pr[\mathsf{D}(f(U_n), U_1) = 1 \mid U_1 = \overline{b(U_n)}]. \end{split}$$

▶ Hence, $Pr\left[D(f(U_n), \overline{b(U_n)}) = 1\right] = \delta - \varepsilon'$

OWP to PRG cont.

- ▶ $Pr[D(f(U_n), b(U_n)) = 1] = \delta + \varepsilon'$
- ▶ $Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta \varepsilon'$

Algorithm 9 (P)

Input: $y \in \{0, 1\}^n$

- 1. Flip a random coin $c \leftarrow \{0, 1\}$.
- **2.** If D(y, c) = 1 output c, otherwise, output \overline{c} .
- It follows that

$$\begin{aligned} \Pr[\mathsf{P}(f(U_n)) &= b(U_n)] = \Pr[c = b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n), c) = 1 \mid c = b(U_n)] \\ &+ \Pr[c = \overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n), c) = 0 \mid c = \overline{b(U_n)}] \\ &= \frac{1}{2} \cdot (\delta + \varepsilon') + \frac{1}{2} (1 - \delta + \varepsilon') = \frac{1}{2} + \varepsilon'. \end{aligned}$$

Part IV

PRG from Regular OWF

Computational notions of entropy

Definition 10

X has (s, ε) -pseudoentropy at least k, if \exists rv Y with $H(Y) \ge k$ and $\Delta^{\mathbb{D}}(X, Y) \le \varepsilon$ for any s-size D. (s, ε) -pseudo min/Reiny -entropy are analogously defined.

- Example
- Repeated sampling
- Non-monotonicity
- Ensembles
- ▶ In the following we will simply write (s, ε) -entropy, etc

High entropy OWF from regular OWF

Claim 11

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a 2^k -regular (s,ε) -one-way, let $\mathcal{H} = \{h: \{0,1\}^n \mapsto \{0,1\}^{m=k+\lceil \log n \rceil}\}$ be 2-universal family, and let g(h,x) = (g(x),h,h(x)). Then

- 1. $H_2(g(U_n, H)) \geq 2n \frac{1}{n}$, for $H \leftarrow \mathcal{H}$.
- **2.** g is $(\Theta(s\varepsilon^2/n), 2\varepsilon)$ -one-way.
- \blacktriangleright k and m and \mathcal{H} are parameterized by of n
- ▶ We assume $\log |\mathcal{H}| = n$ and $s \ge n$

g has high Renyi entropy

$$CP(g(U_n, H)) := \Pr_{w, w' \leftarrow \{0,1\}^n \times \mathcal{H}} [g(w) = g(w')]$$

$$= \Pr_{h, h' \leftarrow \mathcal{H}} [h = h'] \cdot \Pr_{(x, x') \leftarrow \{\{0,1\}^n\}^2} [f(x) = f(x')]$$

$$\cdot \Pr_{h \leftarrow \mathcal{H}: (x, x') \leftarrow \{\{0,1\}^n\}^2} [h(x) = h(x') \mid f(x) = f(x')]$$

$$= CP(H) \cdot CP(f(U_n)) \cdot (2^{-k} + (1 - 2^{-k}) \cdot 2^{-m})$$

$$\leq CP(H) \cdot CP(f(U_n)) \cdot (2^{-k} + 2^{-m})$$

$$\leq CP(H) \cdot (2^{-n} + 2^{-n - \log n}) = CP(H) \cdot CP(U_n) \cdot (1 + \frac{1}{n}).$$

Hence, $H_2(g(U_n, H)) \ge H_2(\mathcal{H}) + H_2(U_n) + \log \frac{1}{1 + \frac{1}{n}} \ge n + n - \frac{1}{n}$.

g is one-way

Let A be an s'-size algorithm that inverts g w.p ε' and let $\ell = k - \lceil 2 \log \frac{1}{\varepsilon'} \rceil$.

Consider the following inverter for f

Algorithm 12 (B)

Input: $y \in \{0, 1\}^n$.

Return D(y, h, z), for $h \leftarrow \mathcal{H}$ and $z \leftarrow \{0, 1\}^{\ell}$.

Algorithm 13 (D)

Input: $y \in \{0,1\}^n$, $h \in \mathcal{H}$ and $z_1 \in \{0,1\}^{\ell}$.

For all $z_2 \in \{0, 1\}^{m-\ell}$:

- **1.** Let $(x, h) = A(y, h, z_1 \circ z_2)$.
- **2.** If f(x) = y, return x.
- ▶ B's size is $((s' + O(n)) \cdot 2^{2 \log \frac{1}{\varepsilon'} + \log n + 1} = \Theta(s'n/\varepsilon^2)$
- ▶ $\Pr_{x \leftarrow \{0,1\}^n; h \leftarrow \mathcal{H}} \left[\mathsf{D}(f(x), h, h(x)_{1,...,\ell}) \in f^{-1}(f(x)) \right] \geq \varepsilon'$

g is one-way, cont.

We saw that

$$\Pr_{x \leftarrow \{0,1\}^n; h \leftarrow \mathcal{H}} \left[\mathsf{D}(f(x), h, h(x)_{1,\dots,\ell}) \in f^{-1}(f(x)) \right] \ge \varepsilon' \tag{1}$$

By the leftover hash lemma

$$SD((f(x), h, h(x)_{1,\dots,\ell})_{x \leftarrow \{0,1\}, h \leftarrow \mathcal{H}}, (f(x), h, U_{\ell})_{x \leftarrow \{0,1\}, h \leftarrow \mathcal{H}}) \leq \varepsilon'/2$$
 (2)

Hence,

$$\Pr_{\mathbf{x} \leftarrow \{0,1\}^n} \left[\mathsf{B}(f(\mathbf{x})) \in f^{-1}(f(\mathbf{x})) \right] \ge \varepsilon' - \varepsilon'/2 = \varepsilon'/2.$$

The generator

Claim 14

Let $g: \{0,1\}^n \mapsto \{0,1\}^m$ be a function with $H_2(f(U_n)) \ge n - \frac{1}{2}$, and let b be (s,ε) -hardcore predicate for g. Then $v(U_n) = (g(U_n),b(U_n))$ has (s,ε) -Renyi-entropy $n+\frac{1}{2}$.

Proof: ?

We call such *v* a pseudo Renyi-entropy generator.

Claim 15

The function
$$v^n(x_1, \ldots, x_n) = (v(x_1), \ldots, v(x_n))$$
 has $(s - n^2, n\varepsilon)$ -Renyi-entropy $n^2 + \frac{n}{2}$.

Proof:

- Let Z be a rv with $H_2(Z) \ge n + \frac{1}{2}$ such that Z and $v(U_n)$ are (s, ε) indistinguishable.
- ► $H_2(Z^n) \ge n^2 + \frac{n}{2}$
- ▶ Z^n and $v^n(U_n^n)$ are $(s-n^2, n\varepsilon)$ indistinguishable

The generator cont.

Claim 16

Let $\mathcal{H}\colon\{0,1\}^{n^2+n}\mapsto\{0,1\}^{n^2+n/4}$ be an 2-universal family and let $G\colon\{0,1\}^n\times\mathcal{H}$ defined by $G(x_1,\ldots,x_n,h)=(h,h(v^n(x_1,\ldots,x_n)))$. Then $G(H,U_n^n)$ is $(s-ns_v-s_\mathcal{H},n\varepsilon+2^{-n/4})$ indistinguishable from $(H,U_{n^2+n/4})$, for $H\leftarrow\mathcal{H}$ and $s_\mathcal{H}$ being the size of sampling and evaluating algorithm for \mathcal{H} .

Corollary 17

If f and b and \mathcal{H} (?) are poly-time computable, then G is a $(s-n^2-s_{\mathcal{H}},n_{\mathcal{E}}+2^{-n/4})$ -PRG.

Proof: (of claim)

- ▶ By the leftover hash lemma $SD((H, H(Z^n)), (H, U_{n^2+n/4})) \le 2^{-n/4}$
- Let D be an s'-size algorithm that distinguishes $G(U_n^n, H)$ from $(H, U_{n^2+n/4})$ with advantage $\varepsilon' + 2^{-n/4}$
- ▶ Hence, \exists $(s' + s_H)$ -size algorithm that distinguishes $G(U_n^n, H)$ from $(H, H(Z^n))$ with advantage ε'
- ▶ Hence $s' \le s n^2 s_{\mathcal{H}} \implies \varepsilon' \le n\varepsilon$.

Remarks

- PRG "length extension"
- PRG from any OWF