3. Gestión de proyectos

Índice

- Referencias
- Introducción
- Personal
 - Participantes.
 - Jefe de equipo.
 - Equipos software.
 - Comunicación y coordinación.
- Producto
 - Ámbito del software.
 - Descomposición del problema.

Índice

- Proceso
 - Descomposición del proceso.
 - Estructura de descomposición del trabajo.
- Proyecto
- Conclusiones

Referencias

- Pressman, R.S. *Ingeniería del Software. Un Enfoque Práctico. Sexta Edición.* McGraw-Hill, 2005
- Sommerville, I. *Ingeniería del Software*. 7^a edición. Addison-Wesley, 2005

Introducción

- La gestión de proyectos software es vital
- Una mala gestión produce:
 - Proyectos mal organizados.
 - Fechas límite imposibles de cumplir.
 - Sistemas que no cumplen lo que esperaban los usuarios.
 - Sistemas imposibles de mantener
- Solución: buena gestión de proyectos sw.

Introducción

- Gestión eficaz de un proyecto software se basa en las *cuatro pes*:
 - 1. Personal.
 - 2. Producto.
 - 3. Proceso.
 - 4. Proyecto
- Además, por ese orden

Personal Introducción

- Necesitamos personal preparado y motivado
- Es el factor más valorado por los gestores de proyectos...
 - ... ya que en última instancia los proyectos los desarrollan personas
- Disponemos de un *Modelo de madurez de la capacidad de gestión de personal* SEI

Personal Participantes

- En un proyecto software hay cinco tipos de participantes:
 - Gestores superiores, que definen los aspectos del negocio que a menudo tienen una influencia significativa en el proyecto.
 - Gestores (técnicos) del proyecto, que deben planificar, motivar, organizar y controlar a los profesionales que desarrollan software.

Personal Participantes

- *Profesionales*, que proporcionan las capacidades técnicas necesarias para la ingeniería de un producto o aplicación.
- *Clientes*, que especifican los requisitos del proyecto.
- *Usuarios finales*, que interactúan con el software una vez que se ha entregado.

Personal Jefe de equipo

- Es la persona que lidera a un equipo
- En función de la organización y el proyecto puede ser un gestor técnico o un profesional
- Un buen profesional informático no quiere decir buen jefe de equipo

Personal Jefe de equipo

- Características buen jefe de equipo:
 - Motivación. Capacidad para motivar al personal.
 - Organización. Capacidad para aplicar procesos.
 - *Ideas o innovación*. Capacidad para fomentar la creatividad del personal.
 - Resolución de problemas. Capacidad para entender el problema, gestionar las ideas y proporcionar una solución.

Personal Jefe de equipo

- *Competencia tecnológica*. Grado de conocimiento de las últimas tecnologías.
- *Dotes de gestión*. Capacidad para manejar el problema y el personal.
- *Incentivo de logros*. Capacidad para optimizar la productividad de un equipo premiando la iniciativa y los logros.
- *Influencia y construcción del espíritu de equipo*. Capacidad para cohesionar al grupo y entender los problemas personales.

- El jefe de personal elige al personal para cada proyecto
- Valora
 - Experiencia en el dominio de la aplicación. Para desarrollar un proyecto con éxito, debemos entender el dominio.
 - *Experiencia con la plataforma*. Solo es importante si hay programación de bajo nivel.

- Experiencia con el lenguaje de programación. Sobre todo en proyectos cortos.
- Fondo educativo. Nuevos programadores.
- Capacidad de comunicación. Comunicarse con los otros miembros del equipo, con los gestores y con el cliente.
- Adaptabilidad. Capacidad de aprender.
- Actitud. Ante el trabajo y las dificultades.
- Personalidad. Capacidad de trabajo en grupo

- El gestor del proyecto es el responsable de organizar el personal
- Opciones:
 - Individuos trabajando de forma independiente en distintas tareas, con poco trabajo conjunto y coordinados por el gestor del proyecto.
 - Formación de equipos informales que acometen distintas tareas, donde se puede elegir un jefe, y los equipos los coordina el gestor.

- Organización de equipos bien determinados, donde a cada equipo se le asigna un conjunto de tareas bien definido. Cada equipo tiene una estructura específica y bien definida. La coordinación se dividen entre el equipo y el gestor del proyecto.
- De estas opciones, la más productiva es la última

- Si optamos por utilizar equipos, tenemos tres posibles organizaciones (Mantei):
 - Descentralizado Democrático (DD).
 - Descentralizado Controlado (DC).
 - Centralizado Controlado (CC).

- Descentralizado Democrático (DD)
 - No tiene un jefe permanente.
 - Se nombra un jefe en función de cada tarea.
 - Las decisiones, problemas y enfoques se llevan a consenso del grupo.
 - La comunicación entre los miembros del equipo es horizontal.

- Descentralizado Controlado (DC)
 - Tiene un jefe de equipo para las tareas.
 - Tiene jefes secundarios para subtareas.
 - La resolución de problemas se hace en grupo.
 - El jefe de grupo distribuye la implementación de tareas entre los subgrupos.
 - La comunicación entre subgrupos e individuos es horizontal.
 - Hay comunicación vertical entre los jefes secundarios y el jefe de equipo.

- Centralizado Controlado (CC)
 - Hay un único jefe de equipo.
 - Este jefe resuelve los problemas a alto nivel, y la coordinación del equipo.
 - Comunicación vertical entre el jefe y los miembros del equipo.
 - Fue el primer organigrama que se empezó a aplicar.

Estructuras de equipo Mantei

- Mantei identifica siete *factores de un proyecto** para determinar la estructura a elegir:
 - Dificultad del problema.
 - Tamaño en líneas de código (LDC) o puntos de función (PF).
 - Duración del equipo.
 - Modularidad del problema.

- Calidad y fiabilidad del sistema a construir.
- Fecha de entrega.
- Comunicación requerida en el proyecto.

Tamaño
Modularidad
Fiabilidad
Fecha entrega

CC DC DD

Dificultad
Duración
Comunicación

- Con independencia de la estructura, la *cohesión* del equipo es fundamental
- Ventajas de un equipo cohesionado:
 - Desarrollo estándar de calidad de grupo.
 - Los miembros del grupo trabajan mejor juntos.
 - Se conoce el trabajo de los otros miembros del grupo.
 - Se practica la programación sin ego.

Inconvenientes

- Resistencia al cambio en el liderazgo.
- Pensamiento de grupo

- Según Jackman hay cinco *toxinas* que afectan a la cohesión del equipo:
 - Atmósfera de trabajo frenética.
 - Frustración causada por factores tecnológicos, del negocio o personales.
 - Falta de un modelo de proceso adecuado.
 - Definición confusa de los papeles.
 - Continua y repetida exposición al fallo.

- También es fundamental la *coordinación* y *comunicación* del equipo.
- Factores como:
 - Escala.
 - Incertidumbre.
 - Interoperatividad

hacen necesaria la coordinación y comunicación

Producto Introducción

- Dilema del gestor al inicio del proyecto:
 - Necesita planificar proyecto.
 - No se dispone de información sólida.
 - La especificación de requisitos puede ser la solución.
 - Dicha especificación aún no está disponible.
 - El plan del proyecto se necesita ya.
- Solución: determinar el ámbito del software

- Primera actividad de gestión de un proyecto software: determinar el ámbito del software
- El ámbito es:
 - Contexto.
 - Objetivos de información.
 - Funciones y rendimiento.

- Contexto
 - Forma de integrarse el software en el sistema,
 producto o contexto de negocios mayor.
 - Limitaciones resultantes del contexto.
- Objetivos de información
 - Datos visibles al cliente.
 - Datos de entrada requeridos.

- Funciones y rendimiento
 - Funciones realizadas por el software para transformar la información de entrada en salida.
 - Características especiales de rendimiento.
- El ámbito debe ser:
 - Unívoco.
 - Entendible a nivel técnico y de gestión.

- En esta fase se lleva a cabo la *partición* horizontal
 - Se descompone el sistema en *módulos*.
 - Un *módulo* es una agrupación de funciones que llevan a cabo tareas de naturaleza similar.
 - Por ej. En un sistema CAD*:
 - Módulo de dibujo.
 - Módulo de transformaciones.
 - Módulo de archivo.
 - Módulo de impresión.

*CAD: Computer Aided Design

Producto Descomposición del problema

- La descomposición del problema está muy ligada al análisis de requisitos
- En esta fase se lleva a cabo la *partición* vertical
 - Durante la exposición del ámbito se produce una descomposición de primer nivel
 - Ahora se refina dicha descomposición hasta el nivel de *funciones*

Producto Descomposición del problema

- Una *función* representa un procesamiento directamente invocable por el usuario que transforma información de entrada en información de salida.
- En el proceso de descomposición pueden definirse nuevos submódulos.

Producto Descomposición del problema

- En el ej. del programa CAD:
 - Módulo de dibujo
 - Dibujo 2D
 - Líneas
 - Cuadrados.
 - Circunferencias.
 - Por centro y radio.
 - Por tres puntos.
 - Splines.

••••••

- Dibujo 3D

Proceso Introducción

- Las actividades comunes al proceso de IS se encuentran presentes en todos los modelos de proceso
- El problema es aplicar el modelo de proceso más adecuado para el proyecto
- El gestor elige dicho modelo en base a:
 - El cliente.
 - Las características del producto.
 - El equipo de desarrollo

Proceso Descomposición del proceso

- Como ya hemos comentado, las actividades estructurales del proceso deben descomponerse en un *conjunto de tareas de IS*, las cuales se agrupan en *acciones*
- Dicha descomposición depende, básicamente del tipo de proyecto

Proceso Descomposición del proceso

- Por ejemplo, para un proyecto de desarrollo de un producto nuevo, la AE *ingeniería* puede descomponerse en las acciones *análisis y diseño*
- Para un proyecto de reingeniería, la AE ingeniería puede descomponerse en las acciones reingeniería, análisis, diseño

Proceso Descomposición del proceso

- A su vez, estas acciones se descomponen en conjuntos de tareas distintos para cada proyecto
- Así, la acción *Análisis* puede descomponerse en las tareas: *Realizar diagramas casos de uso, Realizar diagramas actividades, Realizar diagramas clases análisis*, etc.

Proceso

Estructura descomposición...

- La Estructura de Descomposición del Trabajo EDT, o WBS (Work Breakdown Structure) determina las tareas de trabajo concretas que se asignan a individuos concretos con plazos concretos con el fin de desarrollar un proyecto de software
- Dicha asignación de individuos plazos es la planificación temporal

- Al desarrollo de la WBS, Pressman lo denomina *Maduración/combinación del producto y proceso*
- Normalmente se representa como una estructura de árbol, donde las hojas representan las tareas concretas o actividades
- Nosotros seguiremos la aproximación Pressman que utiliza una estructura de tabla para definir las tareas concretas

- Así, en las columnas se colocan las actividades estructurales
- En las filas los módulos/operaciones del producto
- En las casillas intersección se definen las tareas de trabajo

AE	AE1					A	E2			•••••	•	AEn			
\boldsymbol{A}	$a_{1.1}$ $a_{1.2}$		$a_{1.m1}$		$a_{2.1}$	$a_{2,2}$	$a_{2.m2}$		••••	••••	••••	$a_{n.1}$	$a_{n.2}$	••••	$a_{n,m}$
M1															
f1.1															
f1.2															
$f1.i_1$															
M2															
f2.1															
f2.2															
$f2.i_2$															
										tarea _x - recursos - fecha inicio - fecha fin - entrega					
Mk															
fk.1															
fk.2															
fk.i _k															

Acción de Ingeniería del software

AE	Comunicación Cliente		Planificación		Análisis de riesgos		Ingeniería		Construcción y adaptación			Evaluación Cliente	
Acción	TUE	SRS	Estim.	Planif.	Valor.	RSGR	Anal.	Diseño	Codif.	Prueba	Ensam.	Instal.	Eval.
Módulo dibujo													
Módulo transformaciones									Ana, Luis, Paco 13.11.06 17.11.06 Código m. transf.				
Módulo archivo													
Módulo impresión													

Tarea de trabajo

Ejemplo tabla EDT + información planificación temporal

Proceso

Estructura descomposición...

Representación arbórea dirigida por el producto de la anterior tabla EDT + información planificación temporal Ingeniería del Software

Antonio Navarro

Representación arbórea dirigida por el proceso de la anterior tabla EDT + información planificación temporal

- La misión del gestor es rellenar *todas* las celdas de la tabla para obtener una planificación temporal
- La tabla es *orientativa*
- Los niveles de descomposición pueden ser varios

- Nótese que la tabla anterior contiene todas las actividades comunes del marco de trabajo
- Así, casi cualquier modelo de proceso podría ser representado por la tabla anterior, eliminando o incluyendo alguna actividad estructural

• Otra visión alternativa, a mi juicio, más intuitiva, es que cada vez que fijemos un modelo de proceso ponemos sus AEs como columnas de la tabla y procedemos a hacer la WBS

- Para gestionar un proyecto debemos comprender que puede ir mal.
- Reel identifica diez *señales* que indican que un proyecto está en peligro:
 - Los desarrolladores no comprenden las necesidades del cliente.
 - El ámbito del producto está definido pobremente.
 - Los cambios están mal realizados.

- La tecnología elegida cambia.
- Las necesidades del negocio cambian o están mal definidas.
- Las fechas de entrega no son realistas.
- Los usuarios se quejan.
- Se pierden recursos económicos.
- El equipo carece de personal adecuado.
- Gestor y equipo no aplican prácticas de IS

- Proyectos mal gestionados hacen cierta la regla del 90-90
- El primer 90% de un sistema absorbe el 90% del tiempo y esfuerzo asignado. El último 10% se lleva el otro 90% del esfuerzo y tiempo asignado.

- Reel sugiere una aproximación de *sentido común* para evitar una mala gestión:
 - Empezar con el pie derecho.
 - Mantenerse.
 - Seguimiento del progreso.
 - Tomar decisiones inteligentes.
 - Realizar un análisis al finalizar el proyecto.

Conclusiones

- Gestion: vital
- Gestión: cuatro pes
- No todo el mundo vale para jefe de equipo
- Podemos optar por distintas estructuras de equipo
- Control vs. creatividad
- Producto: ámbito y descomposición

Conclusiones

- Proceso: descomposición
- Tabla EDT
- Proyecto: Regla del 90-90
- Sentido común IS