Ex1.Let (S,o) be a semigroup with the identity element e. If for each a $\in S$ there exists an element a in S such that a o a = e. Show that (S,o) is a group.

Solⁿ: It is given that e o a = a o e = a \forall a \in S.

By the condⁿ each element in S has a right inverse in S.

Let a" be a right inverse of a

i.e. a'o a'' = e.

Now a'o a = (a'o a) o e = (a'o a) o (a'o a'')

= a'o (a o a') o a", since o is associative

$$=(a'o e) o a'' = a'o a'' = e$$

Thus a'o a = a o a' = e & this shows that a' is the inverse of a.

Thus each element in S has an inverse & hence (S,o) is a group.

Ex2.Let (S,o) be a semigroup with a right identity element e. If for every two distinct elements a,b ϵ S there exists a unique x in S such that a o x = b. Show that (S,o) is a group.

Solⁿ: By the condⁿ, a o e = a \forall a \in S.

Let, $a\neq e$. Then there exists a unique element a' in S such that a o a' = e. This shows that a has a right e-inverse.

By the condⁿ e o e = e. This shows that e has a right e-inverse. Consequently, each element in S has a right e-inverse.

Thus (S. o) is a semigroup with a right identity element e and each element in S has a right e-inverse. Therefore (S, o) is a group.

Ex3.Let (G,o) be a group & a ϵ G. Show that aG = G where aG={a o g : g ϵ G}

Solⁿ: Let, $p \in aG$. Then $p = a \circ g$ for some $g \in G$ a $o g \in G$ since $a \in G \otimes g \in G$.

Therefore p ϵ G.

Thus p ϵ aG => p ϵ G. Therefore aG \subset G --> (i)

Let, $q \in G$. There exists a unique element x in G such that a o x = q.

As $q = a \circ x \& x \in G$, $q \in aG$

Thus $q \in G \Rightarrow q \in aG$.

Therefore $G \subset aG \longrightarrow (ii)$

From (i) & (ii) G=aG.

Subgroups

Let, (G,o) be a group & H be a non empty subset of G. H is said to be stable(closed) under o if a ϵ H, b ϵ H => aob ϵ H. If H is stable under o then the restriction of o to H \times H is a mapping from H \times H \rightarrow H. This restriction say * is a composition on H & is defined by a*b=aob \forall a,b ϵ H. * is called the induced composition on H.

Defⁿ: Let (G,o) be a group & H be a non empty subset of G. If (H,o) is a group where o is the induced composition then (H,o) is said to be a subgroup of (G,o).

Ex1. Let (G,o) be a group & e be the identity element. G being a subset of G, (G,o) is a subgroup of (G,o). This subgroup (G,o) is said to be the improper subgroup of (G,o).

The singleton set {e} forms a group under the induced composition o. The subgroup ({e},o) is said to be the trivial subgroup of (G,o).

The subgroup other than (G,o) and ({e},o) are said to be nontrivial proper subgroups of (G,o).

Ex2. (Q,+) is a group. Z is a non empty subset of Q and (Z,+) is a group. Therefore (Z,+) is a subgroup of (Q,+).

Ex3. (Q,+) is group. $Q^*=Q-\{0\}$ is a subset of Q and $(Q^*,.)$ is a group. But $(Q^*,.)$ is not a subgroup of (Q,+).

Theorem: Let, (H,o) be a subgroup of (G,o). Then

- i) the identity element of (H,o) is the identity element of (G,o)
- ii) if aεH then the inverse of a in (H,o) is same as the inverse of a in (G,o).

Proof: i) Let, e_H be the identity element in (H,o) & e_G be the identity element in (G,o).

Then e_H o h = h o $e_H = h \forall h$ in H.

Also e_G o h = h o e_G = h, considering h as an element of G.

If follows that h o $e_H = h$ o e_G in G.

Therefore $e_H = e_G$ by left cancellation law in (G,o).

ii) Let, a' be the inverse of a in (H,o) & a⁻¹ be the inverse of a in (G,o).

Then a'o $a = a \circ a' = e_H$, since (H,o) is a group.

Also
$$a^{-1}$$
 o $a = a o a^{-1} = e_G$

It follows that a' o $a = a^{-1}$ o a in (G,o) by (i)

Therefore $a' = a^{-1}$, by right cancellation law in (G,o).

Theorem: Let, (G,o) be a group. A non-empty subset H of G form a subgroup of (G,o) iff

- i) a ϵ H, b ϵ H => aob ϵ H, and
- ii) $a \in H => a^{-1} \in H$

Proof: Let (H,o) be a subgroup of (G,o).

Since (H,o) is a group, (i) and (ii) are satisfied.

Conversely, let H be a non-empty subset of G satisfying (i) and (ii).

Since (i) holds, H is closed under o.

Since H is a subset of G and o is associative on G, o is then associative on H.

Since (ii) holds, the inverse of each element in H exists in H.

Let a ε H. Then by (ii) a⁻¹ ε H. And since a, a⁻¹ ε H, (i) implies a o a⁻¹ = e ε H.

Therefore (H,o) is a group and hence (H,o) is a subgroup of (G,o).