

Probabilidade e Estatística Estatística Descritiva

Curso: Ciência da Computação

Prof. Fermín A. Tang Montané

Estatística

▶ É uma parte da Matemática Aplicada que fornece métodos para a coleta, organização, descrição, análise e interpretação de dados quantitativos e para a utilização dos mesmos na tomada de decisões acertadas.

Estatística Descritiva

▶ É a parte da estatística que se preocupa com a coleta, organização e descrição dos dados observados, porém sem tirar conclusões mais genéricas.

Estatística Indutiva ou inferencial

- È a parte da estatística que trabalha com a análise e interpretação de dados.
- Ela tem como base os resultados obtidos de uma amostra, procurando inferir ou tirar conclusões para o comportamento da população, dando a precisão dos resultados e com que probabilidade se pode confiar neles.

População e Amostra

- População é o conjunto de todos os elementos (indivíduos ou objetos) que têm pelo menos uma característica em comum e que está sob investigação ou estudo.
- Amostra é qualquer subconjunto de uma população.
 O processo de obter amostras recebe o nome de amostragem.

População e Amostra

Exemplo:

- ▶ Suponha que você está interessado em avaliar a altura média dos alunos de uma escola. Para conhecer esta característica, deverá medir a altura dos alunos (dados).
- Como o seu interesse atinge somente uma determinada escola, então todos os alunos desta escola formam a população da pesquisa e o conjunto dos alunos de uma determinada sala representa uma amostra.

Parâmetros e Estatísticas

- As medidas estatísticas obtidas com base em uma população são chamadas de **parâmetros** (representadas por letras gregas)
- Já, as medidas baseadas em amostras são chamadas estatísticas (representadas por letras do alfabeto latino).

Parâmetros populacionais:

μ: Média

σ: Desvio padrão

Estatísticas amostrais:

 \overline{x} : Média

s: Desvio padrão

Amostragem

- As análises estatísticas geralmente são realizadas através de amostras, já que em geral a maior parte das populações são representadas por um número muito grande de indivíduos ou objetos, o que ocasiona um número muito grande de dados.
- Para que se possa fazer inferências estatísticas válidas sobre uma população apartir de uma amostra, deve-se definir cuidadosamente a população de interesse, selecionar a característica que irá pesquisar e cuidar para que a amostra seja representativa.

Variáveis

- Variável é a característica que é objeto de estudo numa pesquisa.
- ▶ Variável qualitativa: é aquela que não pode ser medida numericamente.
- Exemplos: cor dos olhos, marca de refrigerante, etc.
- Variável quantitativa: é aquela que pode ser medida numericamente.
- Exemplos: peso, altura, número de defeitos, etc.

Variáveis

- ▶ Variável discreta: é a variável quantitativa que pode assumir um número infinito enumerável de valores.
- Exemplo: número de filhos: 0, 1, 2, 3, ...
- Variável contínua: é a variável quantitativa que pode assumir um número infinito não enumerável de valores.
- Exemplo: altura dos alunos: 1,73m, 1,84m,...

- Feita a coleta, os dados originais ainda não se encontram prontos para análise, por não estarem numericamente organizados. Por essa razão, são chamados de dados brutos.
- Para obter informações de interesse sobre a característica em estudo, deve-se agrupar os dados obtidos em uma distribuição de freqüência, onde os valores observados não mais aparecerão individualmente.

▶ Os dados abaixo representam as idades(em anos) dos alunos de Estatística de um determinado curso da UENF do ano de 2024.

20	21	21	21	22	22	22
22	23	23	23	23	23	23
23	24	24	24	24	24	24
24	24	24	25	25	25	25
25	25	26	26	26	26	28

Idade (x _i)	Número de Alunos (f _i)	f _{ac}	f _r
20	I		0,0286
21	3	4	0,0857
22	4	8	0,1143
23	7	15	0,2000
24	9	24	0,2571
25	6	30	0,1714
26	4	34	0,1143
27	0	34	0,0000
28	<u> </u>	35	0,0286
Total	35		l

Onde:

x_i: valor observado;

f_i: frequência observada ou absoluta;

f_{ac}: frequência acumulada (F_i);

f_r: frequência relativa.

Representação Gráfica mediante Histograma.

- Exemplo:
- Considere que as alturas(em metros) de 30 alunos de uma sala de aula são os seguintes:

1,50	1,53	1,68	1,51	1,63	1,65
1,54	1,55	1,65	1,56	1,57	1,50
1,60	1,48	1,61	1,52	1,63	1,47
1,52	1,50	1,52	1,46	1,45	1,66
1,65	1,59	1,51	1,58	1,62	1,60

▶ Chama-se classe ao intervalo considerado para agrupar os dados observados.

- Para se construir uma distribuição de frequência utilizando classes, deve-se determinar:
 - ▶ a) Número de classes (k);
 - b) Amplitude total dos dados (A);
 - c) Amplitude do intervalo de classe (h);
 - d) Limite inferior (LI_i) e Limite superior (LS_i) da classe i.

- ▶ a) Número de classes (k):
 - Sugere-se utilizar a fórmula de Sturges: k = 1 + 3,32.log n
 - ▶ onde:
 - n é o número de dados e
 - k deve ser um número inteiro positivo.
- b) Amplitude total dos dados (A):
 - $A = X_{max} X_{min}$
 - ▶ onde:
 - X_{max} é o valor máximo da amostra e
 - X_{min} é o valor mínimo da amostra.

- c) Amplitude do intervalo de classe (h):
 - h = A/k
 - h deve ser um valor de modo que as classes acomodem todos os dados da amostra.
- - Lli é o menor valor aceito na classe i;
 - ightharpoonup LS_i = LI_i+ h.

Observação:

Os intervalos de classe são definidos de maneira que possuam igual amplitude. Para isso, sugere-se ajustar o limite inferior da primeira classe e/ou o limite superior da última classe, sempre que conveniente.

▶ c)

Inter de C Altura	lasse		N° Alunos f _i	f _{ac}	X i • O (
[1,45	1,49	>	4	4	1,47
[1,49	1,53	>	8	12	1,51
[1,53	1,57	>	4	16	1,55
[1,57	1,61	>	5	21	1,59
[1,61	1,65	>	4	25	1,63
[1,65	1,69	>	5	30	1,67
Total			30		

Medidas de Tendencia Central

- Medidas de tendência central são medidas estatísticas, cujos valores estão próximos do centro de um conjunto de dados dispostos ordenadamente em sentido crescente ou decrescente.
- As mais conhecidas são:
 - Média aritmética
 - Média geométrica
 - Mediana
 - Moda

- a) Dados não agrupados
- A média aritmética de um conjunto de n valores:
- $x_1, x_2, x_3, ..., x_n$ é definida por:

$$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Exemplo:

As idades (em anos) de 5 jogadores de futebol são: 18, 16, 15,17, 17. A média aritmética das idades destes jogadores é:

$$\overline{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5} = \frac{18 + 16 + 15 + 17 + 17}{5} = 16,6$$

a) Dados agrupados

No caso em que os dados estão agrupados em classes discretas. Se x₁, x₂, x₃, ... ,x_n ocorrem com as frequências f₁, f₂, f₃, ... ,f_n, a média aritmética é calculada por:

$$\overline{x} = \frac{x_1 f_1 + x_2 f_2 + x_3 f_3 + \dots + x_n f_n}{n} = \frac{\sum_{i=1}^{n} x_i f_i}{\sum_{i=1}^{n} f_i}$$

No caso em que os dados estão agrupados em intervalos de classes. Os valores x₁, x₂, x₃, ... ,x_n correspondem aos pontos médios de cada classe, assim:

$$x_i = \frac{LI_i + LS_i}{2}$$

a) Dados agrupados em classes discretas

ldade (x _i)	Número de Alunos (f _i)	x _i f _i
20	I	20
21	3	63
22	4	88
23	7	161
24	9	216
25	6	150
26	4	104
27	0	0
28	1	28
Total	35	830

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i f_i}{\sum_{i=1}^{n} f_i} = \frac{830}{35} = 23,71429$$

$$\overline{x} = 23,7$$
 anos

a) Dados agrupados em intervalos de classes

Interv Cla Altura	ısse		Número de Alunos (f _i)	Χį	f _i x _i
[1,45	1,49	>	4	1,47	5,88
[1,49	1,53	>	8	1,51	12,08
[1,53	1,57	>	4	1,55	6,20
[1,57	1,61	>	5	1,59	7,95
[1,61	1,65	>	4	1,63	6,52
[1,65	1,69	>	5	1,67	8,35
Total			30		46,98

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i f_i}{\sum_{i=1}^{n} f_i} = \frac{46,98}{30} = 1,5666$$

 $\bar{x} \sim 1,57 \text{ metros}$

- Dados não agrupados
- A média geométrica de um conjunto de n valores:
- $x_1, x_2, x_3, ..., x_n$ é definida por:

é definida por:
$$M_g = \sqrt[n]{x_1.x_2.x_3....x_n} = 10^{\frac{\sum_{i=1}^n \log x_i}{n}} \circ 0$$
Lembre que:
$$\log b^c = c \log b$$

Exemplo:

A média geométrica das idades dos 5 jogadores de futbol citados anteriormente é:

$$M_g = \sqrt[5]{x_1 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x_5} = \sqrt[5]{18.16.15.17.17} = 16,56823 \sim 16,6 \text{ anos}$$

- a) Dados agrupados
- No caso em que os dados estão agrupados em classes discretas. Se $x_1, x_2, x_3, ..., x_n$ ocorrem com as frequências $f_1, f_2, f_3, ..., f_n$, a média geométrica é calculada por:

$$M_g = \sqrt[n]{x_1^{f_1}.x_2^{f_2}.x_3^{f_3}....x_n^{f_n}} = 10^{\sum_{i=1}^n f_i \log x_i}$$

No caso em que os dados estão agrupados em intervalos de classes. Os valores x_1 , x_2 , x_3 , ..., x_n correspondem aos pontos médios de cada classe, assim:

$$x_i = \frac{LI_i + LS_i}{2}$$

a) Dados agrupados em classes discretas

Idade (x _i)	Número de Alunos (f _i)	f _i .log(x _i)
20	I	1,30
21	3	3,97
22	4	5,37
23	7	9,53
24	9	12,42
25	6	8,39
26	4	5,66
27	0	0,00
28	I	1,45
Total	35	48,09

$$M_g = 10^{\frac{\sum_{i=1}^{n} f_i \log x_i}{n}} = 10^{\frac{48,09}{35}} = 23,6592$$

$$M_{g} = 23,7 \text{ anos}$$

a) Dados agrupados em classes discretas

Inter de C Altura	lasse		Número de Alunos (f _i)	Χi	f _i .log(x _i)
	1,49	>	4	1,47	0,67
[1,49	1,53	>	8	1,51	1,43
[1,53	1,57	>	4	1,55	0,76
[1,57	1,61	>	5	1,59	1,01
[1,61	1,65	>	4	1,63	0,85
[1,65	1,69	>	5	1,67	1,11
Total			30		5,83

$$M_{g} = 10^{\frac{\sum_{i=1}^{n} f_{i} \log x_{i}}{n}}$$

$$= 10^{\frac{5,83}{30}} = 1,5643$$

$$M_{g} = 1,56 \text{ metros}$$

- a) Dados não agrupados
- A mediana M_e de um conjunto de n valores ordenado x₁, x₂, x₃,...,x_n é representada pelo valor central do conjunto para n ímpar e pela média aritmética dos dois valores centrais para n par.
- Exemplos:
- a) 3, 3, 4, 5, 7, 8, 9, 10, 12

Como n = 9, então, $M_e = 7$

b) 3, 3, 4, 5, 7, 7, 9, 10

Como n = 8, então,
$$M_e = \frac{5+7}{2} = 6$$

- b) Para dados agrupados em classes discretas considera-se:
- Se o número de elementos é impar, calcula-se a posição da mediana e identifica-se a classe que a contêm. O valor da mediana corresponderá ao valor da classe. Calcula-se a posição da mediana como:

$$P = \left| \frac{n}{2} \right| + 1$$

Se o número de elementos é par, a mediana será calculada como a média dos dois valores centrais. Neste caso, a mediana não pertence a uma classe. Calcula-se a posição do primeiro elemento central como:

$$P = \frac{n}{2}$$

▶ Para dados agrupados em classes discretas.

Idade (x _i)	Número de Alunos (f _i)	f _{ac}
20	ĺ	
21	3	4
22	4	8
23	7	15
24	9	24
25	6	30
26	4	34
27	0	34
28	<u> </u>	35
Total	35	

$$P = \left| \frac{35}{2} \right| + 1 = 17 + 1 = 18$$

$$M_e = 24$$
 anos

b) Para dados agrupados em intervalos de classe utiliza-se a expressão:

$$M_e = LI_e + \left(\frac{P - f'_{ac}}{f_{M_e}}\right).h$$

onde:

- LI_e: limite inferior da classe mediana;
- P: posição da mediana;
- f'_{ac}: frequência acumulada da classe anterior a classe mediana;
- ▶ f_{Me}: frequência da classe mediana;
- h: amplitude do intervalo de classe.

▶ Para dados agrupados em intervalos de classe.

Interva Cla Altura	sse		Número de alunos f _i	f ac
[1,45	1,49	>	4	4
[1,49	1,53	>	8	12
[1,53	1,57	>	4	16
[1,57	1,61	>	5	21
[1,61	1,65	>	4	25
[1,65	1,69	>	5	30
Total			30	

$$M_e = LI_e + \left(\frac{P - f'_{ac}}{f_{M_e}}\right).h$$

$$P = \frac{30}{2} = 15$$

$$M_e = 1,53 + \left(\frac{15 - 12}{4}\right).0,04$$

= 1,56 metros

- a) Dados não agrupados
- Moda M_o de um conjunto de n valores $x_1, x_2, x_3,...,x_n$ é o número desse conjunto que possuir a maior repetição.
- Se o conjunto não tiver valores repetidos não existirá moda (amodal).
- ▶ Se dois valores estiverem igualmente repetidos, tem-se então duas modas e o conjunto será dito bimodal.
- A moda é o valor ao qual está associado a frequência mais alta.

b) Para dados agrupados em classes discretas.

Idade (x _i)	Número de Alunos (f _i)
20	Ī
21	3
22	4
23	7
24	9
25	6
26	4
27	0
28	l
Total	35

Moda é a idade que mais se repete, ou seja, a que têm maior frequência absoluta.

$$M_o = 24$$
 anos

b) Para dados agrupados em intervalos de classe utiliza-se a formula de Czuber:

$$M_o = LI_o + \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right).h$$

onde:

- LI₀: limite inferior da classe modal; Chama-se classe modal a classe com maior frequência absoluta.
- $ightharpoonup \Delta_I$: diferença entre a frequência da classe modal e a classe imediatamente anterior;
- h: amplitude do intervalo de classe.

▶ Para dados agrupados em intervalos de classe.

_	Cla	alo de sse is (m)		Número de alunos f _i	f_{ac}
[1,45	1,49	>	4	4
[1,49	1,53	>	8	12
[1,53	1,57	>	4	16
[1,57	1,61	>	5	21
[1,61	1,65	>	4	25
[1,65	1,69	>	5	30
•	Total			30	

A segunda classe é a classe modal.

$$M_o = LI_o + \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right).h$$

$$M_o = 1,49 + \left(\frac{4}{4+4}\right).0,04$$

= 1,51 metros