Nama : Muhammad Hisyam Kamil

NIM : 202210370311060

Mata Kuliah : Pemodelan dan Simulasi Data

Kelas : 6B

Source Code : https://github.com/hisyam99/data-modelling-task5

Google Colab (IPYNB) : https://mil.kamil.my.id/data-modelling-task5-hisyam99

Google Drive (Result Files) : https://mil.kamil.my.id/data-modelling-task5-files-hisyam99

Kaggle Dataset : https://www.kaggle.com/datasets/bhanupratapbiswas/weather-data

Laporan Simulasi Perpindahan Panas dengan Data Cuaca Kaggle

Pendahuluan

Simulasi perpindahan panas ini bertujuan untuk memodelkan perubahan suhu sebuah objek dalam berbagai skenario menggunakan pendekatan numerik. Simulasi ini terdiri dari empat tugas utama:

- 1. **Tugas 1**: Menganalisis efek laju pendinginan yang berbeda terhadap penurunan suhu objek.
- 2. **Tugas 2**: Membandingkan proses pendinginan dan pemanasan objek.
- 3. **Tugas 3**: Mensimulasikan perpindahan panas menggunakan data suhu lingkungan nyata dari dataset Kaggle.
- 4. **Tugas 4**: Membandingkan simulasi menggunakan pendekatan Continuous Event Simulation (CES) dan Discrete Event Simulation (DES).

Simulasi dilakukan dengan parameter sebagai berikut:

- Suhu awal objek (INITIAL TEMP): 100°C
- Suhu lingkungan konstan (AMBIENT TEMP): 25°C (untuk Tugas 1, 2, dan 4)
- Total waktu simulasi (SIM TIME): 20 unit (dianggap 20 jam)
- Jumlah langkah waktu (TIME STEPS): 200
- Langkah waktu (DT): 0.1 unit

Dataset cuaca diambil dari Kaggle (bhanupratapbiswas/weather-data) dan digunakan pada Tugas 3. Dataset ini berisi data suhu per jam (Temp_C) dari tanggal 1 Januari 2012, yang diinterpolasi untuk mencocokkan langkah waktu simulasi.

Hasil dan Analisis

Tugas 1: Efek Laju Pendinginan terhadap Penurunan Suhu

Pada tugas ini, simulasi dilakukan dengan tiga laju pendinginan berbeda: 0.05, 0.1, dan 0.15. Suhu lingkungan konstan sebesar 25°C. Berikut adalah hasilnya:

- **Laju 0.05**: Suhu akhir = 52.66°C
- **Laju 0.1**: Suhu akhir = 35.15°C
- **Laju 0.15**: Suhu akhir = 28.71°C
- Suhu Minimum (Laju 0.15): 28.71°C
- Suhu Maksimum (Laju 0.05): 100.00°C (suhu awal)

Analisis: Grafik berikut menunjukkan penurunan suhu objek seiring waktu untuk masing-masing laju pendinginan.

Laju pendinginan yang lebih besar (0.15) menghasilkan penurunan suhu yang lebih cepat, sehingga suhu akhir lebih mendekati suhu lingkungan (25°C). Sebaliknya, laju 0.05 memberikan penurunan suhu yang lebih lambat, dengan suhu akhir yang lebih tinggi (52.66°C). Hal ini sesuai dengan persamaan perpindahan panas yang digunakan:

$$\frac{dT}{dt} = - k \left(T - T_{lingkungan} \right)$$

di mana k adalah laju pendinginan.

Tugas 2: Simulasi Pendinginan vs Pemanasan

Tugas ini membandingkan proses pendinginan (dari 100°C menuju suhu lingkungan 25°C) dan pemanasan (dari 25°C menuju suhu target 100°C) dengan laju yang sama, yaitu 0.05. Berikut adalah hasilnya:

Pendinginan:

Suhu akhir: 52.66°C Suhu minimum: 52.66°C

Pemanasan:

Suhu akhir: 72.34°C Suhu maksimum: 72.34°C

Analisis: Grafik berikut membandingkan proses pendinginan dan pemanasan.

Proses pendinginan menunjukkan penurunan suhu secara eksponensial dari 100°C menuju 25°C, tetapi tidak mencapai suhu lingkungan dalam waktu simulasi (20 jam), berhenti di 52.66°C. Sebaliknya, proses pemanasan menunjukkan kenaikan suhu dari 25°C menuju 100°C, tetapi juga tidak mencapai suhu target, berhenti di 72.34°C. Hal ini disebabkan oleh laju perpindahan panas yang sama (0.05) dan durasi simulasi yang terbatas. Persamaan yang digunakan untuk kedua proses adalah:

• Pendinginan:
$$\frac{dT}{dt} = -k(T - T_{lingkungan})$$

• Pemanasan: $\frac{dT}{dt} = k(T_{target} - T)$

• Pemanasan:
$$\frac{dT}{dt} = k(T_{target} - T)$$

Tugas 3: Perpindahan Panas dengan Data Cuaca Kaggle

Pada tugas ini, suhu lingkungan tidak konstan, melainkan diambil dari dataset cuaca Kaggle. Dataset berisi data suhu per jam dari 1 Januari 2012 (0:00 hingga 19:00), yang diinterpolasi untuk menghasilkan 200 titik data sesuai langkah waktu simulasi. Suhu awal objek tetap 100°C, dan laju pendinginan 0.05. Berikut adalah hasilnya:

• Suhu Akhir Objek: 37.10°C

• Rata-rata Suhu Lingkungan: -0.13°C

• Suhu Minimum Objek: 37.10°C

• Suhu Maksimum Lingkungan: 3.77°C

Analisis: Grafik berikut menunjukkan suhu objek dan suhu lingkungan seiring waktu.

Suhu lingkungan bervariasi antara sekitar -1.8°C hingga 3.77°C, dengan rata-rata -0.13°C, mencerminkan data cuaca dunia nyata pada musim dingin (Januari 2012). Suhu objek turun dari 100°C ke 37.10°C, lebih cepat dibandingkan Tugas 1 (laju 0.05, suhu akhir 52.66°C), karena suhu lingkungan rata-rata jauh lebih rendah (-0.13°C dibandingkan 25°C). Variasi suhu lingkungan yang kecil tidak terlalu memengaruhi tren penurunan suhu objek secara signifikan, tetapi memberikan konteks realistis pada simulasi.

Tugas 4: CES vs DES untuk Simulasi Perpindahan Panas

Tugas ini membandingkan dua pendekatan simulasi: Continuous Event Simulation (CES) dan Discrete Event Simulation (DES). Simulasi dilakukan dengan laju pendinginan 0.05 dan suhu lingkungan konstan 25°C. Berikut adalah hasilnya:

• CES:

o Suhu akhir: 52.66°C o Suhu minimum: 52.66°C

DES:

o Suhu akhir: 52.66°C

o Suhu maksimum: 100.00°C

Analisis: Grafik berikut membandingkan hasil CES dan DES [CES_vs_DES.png]. Kedua pendekatan menghasilkan suhu akhir yang identik (52.66°C), menunjukkan bahwa implementasi CES (menggunakan iterasi langsung) dan DES (menggunakan simpy) memberikan hasil yang konsisten untuk simulasi ini. Perbedaan utama terletak pada pendekatan komputasi: CES menghitung suhu pada setiap langkah waktu secara eksplisit, sedangkan DES menggunakan event scheduling untuk memperbarui suhu pada interval waktu diskret. Namun, karena langkah waktu (DT = 0.1) sama, hasilnya identik.

Visualisasi Gabungan

Grafik gabungan berikut merangkum hasil dari semua tugas dalam satu tampilan.

Grafik ini mempermudah perbandingan antar skenario:

- Efek Laju Pendinginan: Menunjukkan penurunan suhu dengan laju 0.05, 0.1, dan 0.15.
- **Pendinginan vs Pemanasan**: Membandingkan tren pendinginan dan pemanasan.
- Data Cuaca: Menampilkan suhu objek dengan suhu lingkungan nyata.
- CES vs DES: Menunjukkan kesamaan hasil antara dua metode simulasi.

Ringkasan

Berikut adalah ringkasan komprehensif hasil simulasi:

1. Laju Pendinginan:

- o Laju 0.05: Suhu akhir = 52.66°C
- o Laju 0.1: Suhu akhir = 35.15°C
- o Laju 0.15: Suhu akhir = 28.71°C
- o Suhu minimum (laju 0.15): 28.71°C
- o Suhu maksimum (laju 0.05): 100.00°C

2. Pendinginan vs Pemanasan:

- o Suhu akhir pendinginan: 52.66°C
- o Suhu akhir pemanasan: 72.34°C
- o Suhu minimum pendinginan: 52.66°C
- o Suhu maksimum pemanasan: 72.34°C

3. Data Cuaca:

- o Suhu akhir objek: 37.10°C
- o Rata-rata suhu lingkungan: -0.13°C
- o Suhu minimum objek: 37.10°C
- o Suhu maksimum lingkungan: 3.77°C

4. CES vs DES:

- o Suhu akhir CES: 52.66°C
- o Suhu akhir DES: 52.66°C
- o Suhu minimum CES: 52.66°C
- o Suhu maksimum DES: 100.00°C

Kesimpulan

Simulasi ini berhasil memodelkan perpindahan panas dalam berbagai skenario:

- Laju pendinginan yang lebih besar menghasilkan penurunan suhu yang lebih cepat, sesuai dengan teori perpindahan panas.
- Proses pendinginan dan pemanasan dengan laju yang sama memiliki tren simetris, meskipun tidak mencapai suhu target dalam waktu simulasi.
- Pendekatan CES dan DES dapat menghasilkan hasil yang identik untuk simulasi sederhana seperti ini, selama langkah waktu konsisten.