

Desalination Technology with Low Energy Consumption: Developments and Applications

Dr. Wang-Kuan Chang

Deputy Division Director
Div. of Water Technology Research
Material and Chemical Research Laboratories

2021.10.15

wkchang@itri.org.tw

- Unconventional water resources, such as desalinated water, are key to support SDG 6 achievement.
- Currently, desalinated water production is
 95.37 million m³/day.
- With glowing water scarcity, desalination of various water source is one of the viable options to fulfill the water supply-demand gap.

IMPLEMENT

Sustainable Development Goals

GLEAN WATER AND SANITATION

Global Distribution of Large Desalination Plants

ITRI
Industrial Technolo
Research Institute

Operational Desalination Facilities by Technology and Feed Water Type

- Membrane technology (RO) and thermal technology (i.e., MSF & MED) are the two main desalination methods.
- Energy consumption and brine production are key barriers to desalination expansion.

Science of The Total Environment 657 (2019) 1343-1356

Recovery ratio of different feed water-technology combinations producing desalinated water

Feedwater type	Technology							
	RO	MSF	MED	NF	ED	EDI	EDR	Other
Seawater (SW)	0.42	0.22	0.25	0.69	0.86	0.90		0.40
Brackish (BW)	0.65	0.33	0.34	0.83	0.90	0.97	0.90	0.60
River (RW)	0.81		0.35	0.86	0.90	0.97	0.96	0.60
Pure (PW) ^a	0.86	0.35		0.89	0.90	0.97	0.96	0.60
Brine (BR)	0.19	0.09	0.12		0.85			0.40
Wastewater (WW) ^b	0.65	0.33	0.34	0.83	0.90	0.97		0.60

Based on data from: Ahmed et al. (2001), Allison (1993), Almulla et al. (2003

Average recovery ratio:

Electrodialysis (ED, EDR) > Membrane (RO, NF) > Thermal (MSF, MED)

Can be optimized by systematic design

ITRI
Industrial Technology
Research Institute

Current Status of Desalination Technology

Category	Membrane				Thermal				Adsorption		
Technology	Reverse Osmosis (RO)	Forward Osmosis (FO)	Membrane Distillation (MD)	Electro- Dialysis (ED)	Nano- filtration (NF)	Multi- Stage Flash (MSF)	Multi- effect Distillation (MED)	Vapor Compression (VC)	Adsorption/ Desorption Desalination (AD)	Capacitive Deionization (CDI)	lon Exchange (IE)
technological readiness level	9	5	6	8-9	8-9	9	9	9	5	4	9
Capital cost	Medium	Medium	High	Medium	Medium	Medium	Medium	Medium	Medium-high	High	Medium
Operating cost	High	Medium	Medium	Medium	Medium	High	High	Medium	Low	Medium	High
Full scale applications	+++	+	+	++	++	+++	+++	++	-	-	+

20000 Total 100 17500 Desalination Capacity (million m³/day) - MED 80 - ED plants opposit 60 12500 등 40 60 10000 20 7500 7500 Jamper Number 5000 1980 1985 1990 1995 2000 2005 2010 2015 2020 2500 1960 1965 1975 1980 1985 1990 1995 2000 2005 2010 2015 Desalination Plants Operational Desalination Plants

Operational Desalination Capacity

--- Desalination Capacity

Science of The Total Environment 657 (2019) 1343-1356

ITRI
Industrial Technology
Research Institute

Forward Osmosis (FO)

- Key barriers/needs for FO:
- —FO membrane with high permeate flux, low concentration polarization, low reverse solute flux and low fouling potential
- Recyclable draw solution with low energy consumption for recovery (the proportion of consumption in FO process for draw solution separation: > 90%)

Thermal Responsive Draw Solute

 The LCST type mono-cationic and di-cationic phosphonium-based IL draw solutes with several anions, including p-toluenesulfonate (TSO), hydrogen maleate (Mal), and trimethylbenzenesulfonate (TMBS) were developed in ITRI.

P.-I. Liu et al. / Desalination and Water Treatment 200 (2020) 1-7

ED/EDR technology

Electrodialysis (ED)

removes ions from water and wastewater using a direct electric charge to drive the ions in anion or cation exchange membranes. The cations migrate to cathodes and anion migrate to anodes.

Electro-Dialysis Reversal (EDR)

reverses the polarity of electrodes periodically to improve anti-scaling and anti-fouling property, and also extends the life of ion exchange membranes.

Ion-exchange Membrane from ITRI

Low Membrane Resistance

Membrane resistance:

CEM<10 Ω -cm² / AEM<5 Ω -cm²

- ➤ Swelling ratio: ≤1%
- ➤ Burst strength: ≥5 kg/cm²
- > pH tolerance: 2~12
- > Permselectivity: 90%
- > Dimension: 40 cm (W) x 80 cm (L)

High Chemical Tolerance

- Membrane resistance:
 CEM<20 Ω-cm² / AEM<20 Ω-cm²
- ➤ Swelling ratio: ≤1%
- ➤ Burst strength: ≥5 kg/cm²
- ▶ pH tolerance: 1~13
- Permselectivity: 90%
- Dimension: 50 cm (W) x 100 cm (L)

0.5 Kg/batch

3 Kg/batch

10 Kg/batch

Comparison of Desalination Technology (EDR v.s. RO)

High operational pressure (P > 15 kg/cm²)

● Limitation of influent WQ (SDI < 15)

Reverse Osmosis (RO)

Water Recovery Rate < 50% (affect by influent WQ)

Energy consumption > 2.5 kWh/m³

Maintenance method for Fouling prevention

Chemical cleaning

(acid/alkali, anti-scalants, etc.)

Electrodialysis reversal (EDR)

- Electrical drive for ion separation
- Less influent requirement (SDI > 15)
- Simple process (less pretreatment requirements)

Water Recovery Rate > 70%
(higher tolerance for complex influent WQ)

Energy consumption < 1.5 kWh/m³

Polarity reversal

(membrane self-cleaning with less chemicals usage)

Maintenance method for Fouling prevention

Industrial Wastewater Reclamation for Petrochemical Plant

- Wastewater treatment effluent contains high concentration of Ca⁺² and SO₄⁻² with high scaling potential.
- EDR is used as the major desalination unit for wastewater reclamation and the treated water is recycled as cooling tower make up.
- The wastewater reclamation plant is completed at 2020 with a daily production of 3,000 m³ of reclaim water.

EDR wastewater reclamation plant

EDR system for wastewater reclamation

Industrial Wastewater Reclamation for Semiconductor Manufacturing

- Pretreatment and post-treatment are key factors for successful wastewater reclamation from industrial effluent.
- Integration of physical, biological and desalination technologies to achieve high quality requirement of reclaimed water applying to semiconductor manufacturing.
- The wastewater reclamation plant is expected to completed at the end of 2021 with a daily production of 20,000 m3 of reclaim water.

ED Hybrid System for Seawater Desalination

	SWRO	ED/LPRO	REMARKS
CapEX (NTD/CMD)	50,000 - 60,000	30,000 - 40,000	Expense of desalination unit
OpEX (NTD/m³)	30 - 65	25 - 30	Including EC, chemicals, manpower, etc.
EC (kwh/m³)	3.5 - 4.5	2.0 - 2.5	Based on TDS of produced water < 400 mg/L

Brine Management Is Critical for Desalination

Brine produced from seawater desalination and wastewater reclamation have huge environmental impact on receiving water body.

Desalination Plant

Brine

Desalted Water

Adverse effect to the environment

-Innovation and developments in brine management and disposal options are required.

From Waste to Resources? Valuable Resource Recovery from Brine

Membrane-Based Electro-Separation Technology

- In-line separation anionic/cationic ions
- Selective production of HCI/H₂SO₄/NaOH

Recovery to Acid and Alkali (R2A)

an IEM processes applies a selective membrane to split water into H⁺ and OH⁻ for acid and alkali production.

Applications

- Brine recovery (cation/anion)
- Production of acid/caustic from mixed salt in liquid phase
- Pretreatment for final MVR/MED of ZLD process

High Conductivity Waste Liquor Converting to Acid/Caustic Soda

Product:

- √ HCI/NaOH: concentration > 10
 wt% and purity > 90%
- √ Waste liquor Conductivity reduce to below 1 mS/cm

- For 90 CMD waste liquor, 3.0 t/d of 20.8 wt% NaOH and 3.0 t/d of 15.3 wt% HCl are produced.
- Purity of acid and caustic soda >90% and energy consumption of 3.4 kwh/kg-NaOH.
- ROI for investment is about 5.3 years.

ITRI Industrial Technology Research Institute

16

Capacitive Deionization (CDI)

water

Existing desalination technologies

	Reversed osmosis (RO)	Electrodialysis reversal (EDR)	Capacitive deionization (CDI)
Process	Pressure-driven	Electrical-driven	Electrical-driven
Property	 High energy consumption (1.5~ 1.85 kWh/m³) Membrane fouling Mature technology 	(1.1~ 1.35 kWh/m ³)	 Low energy consumption (0.3~0.6 kWh/m³) No membrane needed Developing technology

CDI technology

Salts and minerals are removed from water by applying an electric field between two porous electrodes

- Ideal electrode materials for CDI Highly conductive, high surface area, suitable pore size distribution
- Application More economical at lower concentrations

Selective CDI Technology for Various Ion Recovery

Tailoring inorganic/organic functional electrode materials for specific ion electro-

18

Conclusion

- Unconventional water resources are key to support SDG 6 achievement.
 With glowing water scarcity, desalination as a water supply option has risen globally.
- Generally, membrane technology and thermal technology are the major desalination methods. Both technologies face drawbacks such as high freshwater production cost, intensive carbon emission and significant impact to environment. Innovative technologies with economic benefit and low environmental impact are critical to desalination expansion.
- Innovation and developments in brine management and disposal options are key factors in desalination plants. R2A system is promising for brine treatment and further producing valuable resources for reuse.

Thanks for your attention!

Dr. Wang-Kuan Chang

Deputy Division Director
Div. of Water Technology Research
Material and Chemical Research Laboratories

2021.10.15

wkchang@itri.org.tw

