Modelo predictivo de detección de fraude en tarjetas bancarias

Sergio Mañanas López Juan José Hernández Villlar *Diciembre 2020*

Metodología del proyecto

1. Comprensión de Negocio

En 2019, se realizaron
 4,5 billones de
 operaciones con
 tarjetas en TPV's en
 España, con un
 importe de 160.000
 millones de euros,
 según el BDE.

1. Comprensión de Negocio

 En el primer trimestre de 2020, el comercio electrónico supero los 12.200 millones de euros según la CNMC.

1. Comprensión de Negocio

- En 2018, se registraron más de un millón de operaciones fraudulentas con tarjetas por importe de 88 millones, con el 64 % por operativa remota y el 34% por TPV.
- El coste de este fraude repercute tanto en el banco como en los clientes, no solo por la cantidad defraudada, también los seguros contratados, departamentos de gestión, y el coste de reputación de la entidad financiera y de satisfacción de sus clientes.

2. Estrategia de análisis

El problema principal en la detección de fraude **es el desbalance de clases.**

En nuestro dataset, representa **solo un 3.5%** de todos los registros.

- 1. Para resolver el modelo, se elegirá entre varios **clasificadores de boosting.**
- 2. La métrica a utilizar es el **área bajo la** curva ROC (AUC).
- 3. Analizaremos los resultados a través de Uplift modelling para segmentar las transacciones y prescribir que cuantiles detener para maximizar la detección de fraude reduciendo los falsos positivos.

3. Comprensión de los datos

La principal dificultad para el análisis de las variables es **la anonimización** de los datos reales. Las columnas poseen contenido con significado enmascarado.

	Transaction columns	C _i columns	D _i columns	M _i columns	V _i columns	
	Categóricas y numéricas	Numéricas	Numéricas	Categóricas	Numéricas	
7						

1 transacción por fila

Tamaño de **Train**: 590540 filas x 394 columnas Tamaño de **Test**: 506691 filas x 393 columnas

3. Comprensión de los datos

1. Análisis exploratorio de las variables.

 Feature Selection a partir de correlacion de Pearson, número de NaNs y Feature Importance.

3. Análisis de la identificación de cliente / tarjeta utilizando Adversarial Validation, con Catboost y LightGBM.

4. Preparación del dato

Preprocesamiento adaptado a LightGBM y XGBoosting, dependiendo del resultado obtenido en cada uno de los modelos:

LightGBM XGBoosting

- Conversión de valores NaNs de campos de tarjeta (card_i), direcciones (addr_i), columnas de concordancias (M_i) y dominios correo (emaildomain).
- Conversion de columnas de strings a numéricas a través de Label
 Encoding.

XGBoosting

- Conversión del resto de NaNs a un valor definido: -999, -1.
- **Feature Engineering**: Frequency encoding a las mejores columnas según Feature Selection.

5. Modelado

#	learning_rate	num_leaves	max_depth	colsample_bytree	subsample	AUC
1	0.03215518473989215	294	14	0.4	0.8	0.9194457912401148
2	0.04	278	13	0.4	0.9	0.9164233793906151
3	0.027832622205538907	268	15	0.3740990054742914	0.589171882228726	0.9188929389573968
4	0.029827755272285032	262	15	0.7823490596970961	0.8631490082348747	0.92719808846762

Optimización de parámetros a

través de Bayesian Optimization

5. Modelado: LightGBM

5. Modelado: XGBoost

6. Evaluación: LightGBM

Model	Local Score	Private Score	Public Score	Overfitting with Local
LightGBM	0.923519	0.905291	0.927122	1.97%
XGBoost	0.938792	0.905261	0.929851	3.42%

6. Evaluación: XGBoost

Model	Local Score	Private Score	Public Score	Overfitting with Local
LightGBM	0.923519	0.905291	0.927122	1.97%
XGBoost	0.938792	0.905261	0.929851	3.42%

7. Trabajo a futuro

- 1. Evaluar **nuevas variables generadas por Feature Engineering**, controlando AUC y overfitting, hasta obtener el máximo área debajo de la curva ROC posible y poder reducir con ello los falsos positivos al mínimo.
- 2. Comparar los clasificadores de boosting con utilizar redes neuronales.
- 3. Aplicar **SMOTE** para intentar balancear las clases.
- 4. Aplicar optimizadores de hiperparámetros en XGBoost.

¡GRACIAS!

Pasamos a la presentación del código...