

Microprocessor and Interfacing CSE2006

Lab Assignment 3

Slot: L3+L4

Name: Kulvir Singh

Register Number: 19BCE2074

1)ASCII to BCD Conversion

Aim:

Write a program in 8086 Assembly Language to convert the ASCII to BCD number

Requirements:

8086 EMU - An emulator to run the 8086 Assembly Language Code Operating System - Any valid operating system that can execute the emulator

Inference:

The program can successfully change ascii value 39h to bcd value 9 which is accurate.

2)BCD to ASCII Conversion

Aim:

Write a program in 8086 Assembly Language to convert the BCD to ASCII number

Requirements:

8086 EMU - An emulator to run the 8086 Assembly Language Code Operating System - Any valid operating system that can execute the emulator

	19BCERD74 Kulvis Lingh
*	Program: BCD To ASCII Convision.
	DATA SEGMENT
-	NUMI DW JEH ; set value to be conve
	NUM2 DW? . Store moult.
	DATA ENDS
	CODE SEGMENT
	ASSUME & CS : CODE . DS ! DATA
	TART; NON TARTS
	MON DS AX
	MON AX, DOODH ; clear AX (AL and AX)
71.	MOV AL, 76H AL 4 76H (Numi)
	MOV AH, AL ; AH 4 AL 5 76H
	1000
	AND AL, DEH ; legical operator AL => 6H.
	MOV CL, DAH ; (2 4 04H
	SHR AH, CL ; shift and Rotate AH & CL
	OR AX, 3030H : OR logical operator to get &
	MON NUM2, AX ; store woult
	INT 214 ; terminate
	CODE ENDS
	END START

Inference:

The program can successfully change 76 a bcd number to equivalent ascii 3736 which is accurate.

3)BCD to BINARY Conversion

Aim:

Write a program in 8086 Assembly Language to convert the BCD to Binary number

Requirements:

8086 EMU - An emulator to run the 8086 Assembly Language Code Operating System - Any valid operating system that can execute the emulator

Inference:

The program can successfully change 64 a bcd number to equivalent binary 01000000b which is accurate.

4)BINARY to BCD Conversion

Aim:

Write a program in 8086 Assembly Language to convert the BCD to Binary number

Requirements:

8086 EMU - An emulator to run the 8086 Assembly Language Code Operating System - Any valid operating system that can execute the emulator

1980626	au Kilini	n ling	L 1900-3500
geodien :	BINAFY	To ge	p Convenien
DATA SEGN	AENT		
	DR 06H	man 1	BINDRY multibur to be or
	01 3	1	great to be stored
ENDS ATAG			
CODE SEGM			
	E CODE CS	ATAC	1.55
	: MON AX,		
	DS. AM		23 000
			AL - NUM 1 D OGH
			BX + OFFFFH
			BL - EL+1
Sug	AL , 68 64	Hote	AL + AL - 64
JNC	BACK.	;	of cashy primat sump
ADD	AL, GH		AL - AL +64
BACKI : INC	BH	22000	1 H - + BH+1
SUB	AL, DAH		AL - AL -DAH
JNC	BACKI		of early present som
ADD	AL, DAH	1000	AL + AL +OAH
MW	CL, 04H		CL & DAH
ROE	SH, CL		rotate EH, CL
	AL, BH	;	AL & AL + BH
MOU	NUMS, AL		NUMS & AL
MOV	NUME +1, BI	2 1	[NUM2+1] = AL
TOE END	1		Accominate.
END START		-	

Inference:

The program can successfully change 00000110b a binary number to equivalent bcd 6 which is accurate.

5)Smallest and Largest Number in an array

Aim:

Write a program in 8086 Assembly Language to find the smallest and largest number in an array.

Requirements:

8086 EMU - An emulator to run the 8086 Assembly Language Code Operating System - Any valid operating system that can execute the emulator

П	andwritten Program :
	198082074 Kuluin bigh
*	Program: Smellest and darget Weember
	DATA SEGMENT
	A DB 5, 1, 5, 7, 4, 2 ; Arreay of number
	LARGEST DB ? sterr looged & other
	SMALLEST DB ? sterr logical of sorry
	ENDS THE ENDS
	CODE SEGMENT
	ACCUME DS: DATA, CS: CODE
	START : MOV AX, DATA
	Mov DS, AX
	MOV CX,0000 's clear CX
	MOV CL, Ob ; CL 4 OC Six of arrang
	NOO LEA BX, A & Load address of A to BX.
	MOV AL, CO , clear AL
	MOV AH, ENTE PTREEX] ; AH + (EX) & LITTLE
	LI CMP AL, EYTE PTREAX]; compare at and shape
	MOV AL, EYTE PTK (EX); else AL = [Ex] o record
	MOV AL, EYTE PTE (EX); else AL = [Ex] o Tett
	(2: CMP AH, BYTE PTE(BX); duck for smallest
	JC 13 , Jemp to 13
	JC L3 , Jemp to L3 MOV AU, EYTE PTESEX3 ; also atom smalled
	LB: INC EX ; increme whiley counter
	ace of I became their contra
	CMF CL, Or ; compute of suched and.
	DNZ LI if not repet promo
	MOV LARCHEST, AL , LARCHEST & AL

Inference:

The program can successfully find the largest value 7 and smallest value 1 from the array 5,1,5,7,4,3