1. Transformada de Fourier de tiempo continuo

Para la Transformada y Antitransformada de Fourier de tiempo continuo se tienen las siguientes definiciones:

1. Transformada de Fourier:

$$\mathcal{F}\left\{x(t)\right\} = X(jw) = \int_{-\infty}^{\infty} x(t)e^{-jwt}dt$$

2. Antitransformada de Fourier:

$$\hat{x}(t) = \frac{x(t^{+}) + x(t^{-})}{2} = \mathcal{F} \{X(jw)\}^{-1} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(jw) e^{jwt} dw$$

En el cuadro 1.1 se tienen los pares básicos de la Transformada de Fourier de tiempo continuo.

Señal	Transformada de Fourier	Coeficientes de la Serie de Fourier
$\sum_{k=-\infty}^{\infty} a_k e^{jkw_0 t}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta\left(w - kw_0\right)$	a_k
e^{jw_0t}	$2\pi\delta\left(w-w_{0}\right)$	$\begin{cases} a_1 = 1 \\ a_k = 0 k \neq 1 \end{cases}$
$\cos\left(w_0t\right)$	$\pi \left(\delta \left(w - w_0\right) + \delta \left(w + w_0\right)\right)$	$\begin{cases} a_1 = -a_{-1} = \frac{1}{2} \\ a_k = 0 & k \neq 1, k \neq -1 \end{cases}$
$\sin\left(w_0t\right)$	$\frac{\pi}{j} \left(\delta \left(w - w_0 \right) - \delta \left(w + w_0 \right) \right)$	$\begin{cases} a_1 = -a_{-1} = \frac{1}{2j} \\ a_k = 0 & k \neq 1, k \neq -1 \end{cases}$
x(t) = 1	$2\pi\delta\left(w\right)$	$\begin{cases} a_0 = 1 \\ a_k = 0 k \neq 0 \end{cases}$
$x(t) = \begin{cases} 1 & t < T_1 \\ 0 & T_1 < t < \frac{T}{2} \end{cases}, x(t+T) = x(t)$	$\sum_{k=-\infty}^{\infty} \frac{2\sin(kw_0 T_1)}{k} \delta\left(w - kw_0\right)$	$\frac{w_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k w_0 T_1}{\pi}\right) = \sin\left(\frac{k w_0 T_1}{k \pi}\right)$
$\sum_{n=-\infty}^{\infty} \delta\left(t - nT\right)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(w - \frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$
$x(t) = \begin{cases} 1 & t < T_1 \\ 0 & t > T_1 \end{cases}$	$\frac{2\sin(wT_1)}{w}$	-
$\frac{\sin(Wt)}{\pi t}$	$X(jw) = \begin{cases} 1 & w < W \\ 0 & w > W \end{cases}$	-
$\delta\left(t ight)$	1	-
$u\left(t\right)$	$\frac{1}{jw} + \pi\delta\left(w\right)$	-
$\delta \left(t-t_{0} ight)$	e^{-jwt_0}	-
$e^{-\alpha t}u\left(t\right),\ \mathcal{R}e\left(a\right)>0$	$\frac{1}{\alpha + jw}$	-
$te^{-\alpha t}u\left(t\right),\ \mathcal{R}e\left(a\right)>0$	$\frac{1}{(\alpha+jw)^2}$	-
$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u\left(t\right),\ \mathcal{R}e\left(a\right)>0$	$\frac{1}{(\alpha+jw)^n}$	-

Cuadro 1.1: Tabla de Transformadas de Fourier de tiempo continuo.

En la figura 1.1 se tienen algunas propiedades de la Transformada de Fourier de tiempo continuo.

Propiedad	Señal aperiódica	Transformada de Fourier	
	x(t)	$X(j\omega)$	
	y(t)	$Y(j\omega)$	
	The state of the s	9 %	
Linealidad	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$	
Desplazamiento de tiempo	$x(t-t_0) \\ e^{j\omega_0 t} x(t)$	$e^{-j\omega t_0}X(j\omega)$	
Desplazamiento de frecuencia		$X(j(\omega-\omega_0))$	
Conjugación	$x^*(t)$	$X^*(-j\omega)$	
Inversión de tiempo	x(-t)	$X(-j\omega)$	
Escalamiento de tiempo y de frecuencia	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$	
Convolución	x(t) * y(t)	$X(j\omega) Y(j\omega)$	
Multiplicación	x(t)y(t)	$\frac{1}{2\pi}X(j\omega)*Y(j\omega)$	
Diferenciación en tiempo	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$	
Integración	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$	
Diferenciación en frecuencia	tx(t)	$j\frac{d}{d\omega}X(j\omega)$	
Simetría conjugada para señales reales	x(t) real	$\begin{cases} X(j\omega)' = X''(-j\omega) \\ \Re_{\sigma}\{X(j\omega)\} = \Re_{\sigma}\{X(-j\omega)\} \\ \Re_{m}\{X(j\omega)\} = -\Re_{m}\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ 4X(j\omega) = -4X(-j\omega) \end{cases}$	
Simetría para señales real y par	x(t) real y par	$X(j\omega)$ real y par	
Simetría para señales real e impar	x(t) real e impar	$X(j\omega)$ puramente imaginaria e impar	
Descomposición par-impar de señales reales	$ \begin{aligned} x_e(t) &= \mathcal{E}\nu[x(t)] & \{x(t) \text{ real}\} \\ x_o(t) &= \mathcal{O}d[x(t)] & \{x(t) \text{ real}\} \end{aligned} $	$\mathcal{R}_{\sim}\{X(j\omega)\}$ $j\mathcal{G}_{m}\{X(j\omega)\}$	

Relación de Parseval para señales aperiódicas
$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 \ d\omega$$

Figura 1.1: Propiedades de la Transformada de Fourier de tiempo continuo.

2. Transformada de Fourier de tiempo discreto

Para la Transformada y Antitransformada de Fourier de tiempo discreto se tienen las siguientes definiciones:

1. Transformada de Fourier:

$$\mathcal{F}\left\{x\left[n\right]\right\} = X(j\Omega) = \sum_{n = -\infty}^{\infty} x\left[n\right] e^{-j\Omega n} \quad \Omega \in \left[-\pi, \pi\right)$$

2. Antitransformada de Fourier:

$$\hat{x}[n] = x[n] = \mathcal{F}\left\{X(j\Omega)\right\}^{-1} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(j\Omega) e^{j\Omega n} d\Omega$$

En el cuadro 2.1 se tienen los pares básicos de la Transformada de Fourier de tiempo discreto.

Señal	Transformada de Fourier
$\sum_{k=\langle N\rangle} a_k e^{jk\Omega_0 n}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta \left[\Omega - \frac{2k\pi}{N} \right]$
$e^{j\Omega_0 n}$	$2\pi \sum_{k=-\infty}^{\infty} \delta \left[\Omega - \Omega_0 - 2\pi k\right]$
$\cos \left[\Omega_0 n \right]$	$\pi \sum_{\substack{k=-\infty \\ \infty}}^{\infty} \left(\delta \left[\Omega - \Omega_0 - 2\pi k\right] + \delta \left[\Omega + \Omega_0 - 2\pi k\right]\right)$
$\sin \left[\Omega_0 n\right]$	$\frac{\pi}{j} \sum_{k=-\infty}^{\infty} \left(\delta \left[\Omega - \Omega_0 - 2\pi k \right] + \delta \left[\Omega + \Omega_0 - 2\pi k \right] \right)$
$x\left[n\right] =1$	$2\pi \sum_{k=-\infty}^{\infty} \delta\left[\Omega - 2\pi k\right]$
$x[n] = \begin{cases} 1 & n \le N_1 \\ 0 & N_1 < n \le \frac{N}{2} \end{cases}, x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta \left[\Omega - \frac{2\pi k}{N}\right]$ $\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta \left[\Omega - \frac{2\pi k}{N}\right]$
$\sum_{n=1}^{\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta \left[\Omega - \frac{2\pi k}{N} \right]$
$\frac{k=-\infty}{\alpha^n u[n] \alpha < 1}$	$k=-\infty$ $\frac{1}{1-\alpha e^{-j\Omega}}$
$x[n] = \begin{cases} 1 & n \le N_1 \\ 0 & n > N_1 \end{cases}$	$\frac{\sin[\Omega(N_1+1/2)]}{\sin(\Omega/2)}$
$x[n] = \begin{cases} 1 & 0 \le n \le N - 1 \\ 0 & \text{otro caso} \end{cases}$	$e^{-j\Omega\frac{N-1}{2}}\frac{\sin(\Omega^{N/2})}{\sin(\Omega^{N/2})}$
$\frac{\sin(Wn)}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right), \ 0 < W < \pi$	$X(j\Omega) = \begin{cases} 1 & 0 \le \Omega \le W \\ 0 & W < \Omega \le \pi \end{cases}, X(j\Omega) \text{ periodica en } 2\pi$
$\delta\left[n ight]$	1
$u\left[n ight]$	$\frac{1}{1 - e^{-j\Omega}} + \sum_{k = -\infty}^{\infty} \pi \delta \left[\Omega - 2k\pi \right]$
$\delta \left[n-n_{0}\right]$	$ \begin{array}{c c} k = -\infty \\ e^{-j\Omega n_0} \end{array} $
$(n+1)\alpha^n u[n], \alpha < 1$	$\frac{1}{(1-\alpha e^{-j\Omega})^2}$
$\frac{(n+r-1)!}{n!(r-1)!}\alpha^n u[n], \alpha < 1$	$\frac{1}{(1-\alpha e^{-j\Omega})^r}$

Cuadro 2.1: Tabla de Transformadas de Fourier de tiempo discreto.

En la figura 2.1 se tienen algunas propiedades de la Transformada de Fourier de tiempo continuo.

Propiedad	Señal aperiódica		Transformada de Fourier
	x[n]		$X(e^{j\omega})$ periódica con
	y[n]		$Y(e^{j\omega})^{\int}$ periodo 2π
Linealidad	ax[n] + by[n]		$aX(e^{j\omega}) + bY(e^{j\omega})$
Desplazamiento de tiempo	$x[n-n_0]$		$e^{-j\omega n_0}X(e^{j\omega})$
Desplazamiento de frecuencia			$X(e^{j(\omega-\omega_0)})$
Conjugación Inversión en tiempo	x*[n]		$X^*(e^{-j\omega})$ $X(e^{-j\omega})$
inversion en tiempo	x[-n] $(x[n/k].$	si n = múltiplo de k	$A(e^{-j\omega})$
Expansión en tiempo	$x_{(k)}[n] = \begin{cases} x_1, & x_2, \\ 0, & x_3 \end{cases}$	si n = múltiplo de k $si n \neq múltiplo de k$	$X(e^{jk\omega})$
Convolución	x[n] * y[n]		$X(e^{j\omega})Y(e^{j\omega})$
Multiplicación	x[n]y[n]		$\frac{1}{2\pi}\int_{2\rho}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
Diferenciación en tiempo	x[n] - x[n-1]		$(1-e^{-j\omega})X(e^{j\omega})$
Acumulación	$\sum_{k=-\infty}^{n} x[k]$		$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$
	k=-∞		1 6
	,		$+ \pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$
Diferenciación en frecuencia	nx[n]		$j\frac{dX(e^{j\omega})}{d\omega}$
1			$\int X(e^{j\omega}) = X^*(e^{-j\omega})$
			$\Re[X(e^{j\omega})] = \Re[X(e^{-j\omega})]$ $\Im[X(e^{j\omega})] = -\Im[X(e^{-j\omega})]$ $ X(e^{j\omega}) = X(e^{-j\omega}) $ $\measuredangle(e^{j\omega}) = -\measuredangle(e^{-j\omega})$
Simetría conjugada para	x[n] real		$\left \Im m[X(e^{j\omega})] = -\Im m[X(e^{-j\omega})] \right $
señales reales			$ X(e^{j\omega}) = X(e^{-j\omega}) $
			$\langle X(e^{j\omega}) = -\langle X(e^{-j\omega}) \rangle$
Simetría para señales par reales	x[n] real y par		$X(e^{j\omega})$ real y par
	x[n] real e impar	. 7	$X(e^{i\omega})$ puramente imaginaria e impar
Descomposición de señales	$x_e[n] = \delta_i\{x[n]\}$	[x[n] real]	$\Re[X(e^{j\omega})]$
reales en par e impar	$x_0[n] = Od\{x[n]\}$		$j \Im m[X(e^{j\omega})]$
Relación de P	arseval para señales	aperiódicas	
	$ ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) $		

Figura 2.1: Propiedades de la Transformada de Fourier de tiempo discreto.

3. Transformada de Laplace

Para la Transformada y Antitransformada de Laplace se tienen las siguientes definiciones:

1. Transformada de Laplace:

$$\mathcal{L}\left\{x(t)\right\} = X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

2. Antitransformada de Laplace:

$$x(t) = \mathcal{L}^{-1} \{X(s)\} = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) e^{st} ds$$

Se debe tener en cuenta, tanto para la transformada como la antitransformada, que para poder determinar unívocamente una señal es necesario también conocer su *región de convergencia (ROC)*. En el cuadro 3.1 se tienen los pares básicos de la Transformada de Laplace.

Señal	Transformada	ROC
$\delta(t)$	1	Toda s
u(t)	1 - s 1	$\mathcal{R}e\left(s\right) > 0$
-u(-t)	$\frac{1}{s}$	$\mathcal{R}e\left(s\right) < 0$
$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\mathcal{R}e\left(s\right) > 0$
$-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$\mathcal{R}e\left(s\right) < 0$
$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\Re e\left(s\right) > -\alpha$
$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\Re e(s) < -\alpha$
$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\left(s\right) > -\alpha$
$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$ e^{-sT}	$\Re\left(s\right) < -\alpha$
$\delta\left(t-T\right)$	e^{-sT}	Toda s
$\cos\left(w_0t\right)u(t)$	$\frac{s}{s^2 + w_0^2}$	$\mathcal{R}e\left(s\right) > 0$
$\sin\left(w_0t\right)u(t)$	$\frac{w_0}{s^2 + w_0^2}$	$\mathcal{R}e\left(s\right) > 0$
$\cosh\left(w_0t\right)u(t)$	$\frac{s}{s^2 - w_0^2}$	$\mathcal{R}e\left(s\right) > 0$
$\sinh\left(w_0t\right)u(t)$	$\frac{w_0}{s^2 - w_0^2}$	$\mathcal{R}e\left(s\right) > 0$
$\cos\left(w_0t\right)u(t)e^{-\alpha t}$	$\frac{s+\alpha^0}{\left(s+\alpha\right)^2+w_0^2}$	$\Re e\left(s\right) > -\alpha$
$\sin\left(w_0 t\right) u(t) e^{-\alpha t}$	$\frac{w_0}{\left(s+\alpha\right)^2+w_0^2}$ s^n	$\Re e\left(s\right) > -\alpha$
$u_n(t) = \frac{d^n \delta(t)}{dt^n}$	s^n	Toda s
$u_{-n}(t) = \underbrace{(u(t) \star \cdots \star u(t))}_{}$	$\frac{1}{s^n}$	$\mathcal{R}e\left(s\right) > 0$
n veces		

Cuadro 3.1: Tabla de Transformadas de Laplace.

En la figura 3.1 se tienen algunas propiedades de la Transformada de Laplace.

Sección	Propiedad	Señal	Transformada de Laplace	ROC
		$x(t) \\ x_1(t) \\ x_2(t)$	$X(s)$ $X_1(s)$ $X_2(s)$	R R ₁ R ₂
9.5.1	Linealidad	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	Al menos $R_1 \cap R_2$
9.5.2	Desplazamiento en tiempo	$x(t-t_0)$	$e^{-st_0}X(s)$	R
-9.5.3	Desplazamiento en el dominio de s	$e^{s_0t}x(t)$	$X(s-s_0)$	Versión desplazada de R (es decir, s está en la ROC si
9.5.4	Escalamiento ел tiempo	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	s - s ₀ está en R) ROC escalada (es decir, s está en la ROC si s/a está en R)
9.5.5	Conjugación	$x^*(t)$	$X^*(s^*)$	R
9.5.6	Convolución	$x_1(t) * x_2(t)$ $\frac{d}{dt}x(t)$	$X_1(s)X_2(s)$	Al menos $R_1 \cap R_2$
9.5.7	Diferenciación en el dominio del tiempo	$\frac{d}{dt}x(t)$	sX(s)	Al menos R
9.5.8	Diferenciación en el dominio de s	-tx(t)	$\frac{d}{ds}X(s)$	R
9.5.9	Integración en el dominio del tiempo	$\int_{-\infty}^{t} x(\tau)d(\tau)$	$\frac{1}{s}X(s)$	Al menos $R \cap \{\Re[s] > 0\}$

Teoremas del valor inicial y final

9.5.10 Si x(t) = 0 para t < 0 y x(t) no contiene impulsos o funciones singulares de orden superior en t = 0, entonces

$$x(0^+) = \lim_{s \to \infty} sX(s)$$

$$\lim_{t\to\infty}x(t)=\lim_{s\to0}sX(s)$$

Figura 3.1: Propiedades de la Transformada de Laplace.

4. Transformada Z

Para la Transformada y Antitransformada Z se tienen las siguientes definiciones:

1. Transformada Z:

$$X(z) = \mathcal{Z}\left\{x\left[n\right]\right\} = \sum_{n=-\infty}^{\infty} x\left[n\right]z^{-n}$$

2. Antitransformada Z:

$$x[n] = \mathcal{Z}^{-1} \{X(z)\} = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

Se debe tener en cuenta, tanto para la transformada como la antitransformada, que para poder determinar unívocamente una señal es necesario también conocer su *región de convergencia (ROC)*. En el cuadro 4.1 se tienen los pares básicos de la Transformada de Laplace.

Señal	Transformada	ROC	
$\delta[n]$	1	Todo z	
$u\left[n ight]$	$\frac{1}{1-z^{-1}}$	z > 1	
$-u\left[-n-1\right]$	1	z < 1	
$\delta [n-m]$	$\frac{1-z^{-1}}{z^{-m}}$	Todo z excepto el 0 (si $m > 0$) o ∞ (si $m < 0$)	
$\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $	
$-\alpha^n u \left[-n-1\right]$	$\frac{1}{1 - \alpha z^{-1}}$ αz^{-1}	$ z < \alpha $	
$n\alpha^n u\left[n ight]$	$\frac{\alpha z^{-1}}{(1 - \alpha z^{-1})^2}$ αz^{-1}	$ z > \alpha $	
$-n\alpha^n u \left[-n-1\right]$	$\frac{\alpha z^{-1}}{(1 - \alpha z^{-1})^2}$ $1 - \cos(w_0) z^{-1}$	$ z < \alpha $	
$\cos(w_0 n) u[n]$	$\frac{1 - \cos(w_0) z^{-1}}{1 - 2\cos(w_0) z^{-1} + z^{-2}}$ $\frac{\sin(w_0) z^{-1}}{\sin(w_0) z^{-1}}$	z > 1	
$\sin\left(w_0 n\right) u\left[n\right]$	$\frac{\sin(w_0) z^{-1}}{1 - 2\cos(w_0) z^{-1} + z^{-2}}$ $1 - r\cos(w_0) z^{-1}$	z > 1	
$r^n\cos\left(w_0n\right)u\left[n\right]$	$\frac{1 - r\cos(w_0)z^{-1}}{1 - 2r\cos(w_0)z^{-1} + r^2z^{-2}}$ $r\sin(w_0)z^{-1}$	z > r	
$r^{n} \sin(w_{0}n) u[n]$ $\frac{r \sin(w_{0}) z^{-1}}{1 - 2r \cos(w_{0}) z^{-1} + r^{2} z^{-2}}$		z > r	
$\begin{cases} \alpha^n & 0 \le n \le N - 1 \\ 0 & \text{otro caso} \end{cases}$	$\frac{1 - \alpha^N z^{-N}}{1 - \alpha z^{-1}}$	z > 0	

Cuadro 4.1: Tabla de Transformadas Z.

En la figura 4.1 se tienen algunas propiedades de la Transformada Z.

Número de propiedad	Referencia de sección	Secuencia	Transformada	RDC
		x[n]	X(z)	R_x
		$x_1[n]$	$X_1(z)$	R_{x_1}
		$x_2[n]$	$X_2(z)$	R_{x_2}
1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contiene $R_{x_1} \cap R_{x_2}$
2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , excepto por la posible adición o eliminación del origen o del ∞
3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
4	3.4.4	nx[n]	$ \begin{array}{c} -z \frac{dX(z)}{dz} \\ X^*(z^*) \end{array} $	R_x
5	3.4.5	$x^*[n]$	$X^*(z^*)^{\mathcal{L}}$	R_x
6		$Re\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Contiene R_x
7		$Im\{x[n]\}$	$\frac{1}{2i}[X(z) - X^*(z^*)]$	Contiene R_x
8	3.4.6	$x^*[-n]$	$X^*(1/z^*)$	$1/R_x$
9	3.4.7	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Contiene $R_{x_1} \cap R_{x_2}$

Figura 4.1: Propiedades de la Transformada Z.