Máquina de Turing

Aula 6
Gregory Moro Puppi Wanderley

Pontifícia Universidade Católica do Paraná (PUCPR) Bacharelado em Ciência da Computação - 4º Período

Plano de Aula

- Introdução
- Hipótese de Church-Turing
- Modelo
- Variações

Gregory Moro Puppi Wanderley (gregory.puppi@pucpr.br)

Máquina de Turing

- Proposta em 1936 pelo cientista da computação Alan Turing.
- Modelo computacional genérico capaz de implementar qualquer algoritmo ou função computável.
- Formaliza um procedimento efetivo (algoritmo), i.e., sequência finita de instruções, realizadas mecanicamente, num tempo finito.
 - Um modelo formal de um procedimento efetivo deve:
 - Ter descrição finita.
 - Ser composto de passos discretos que podem ser executados mecanicamente.

Máquina de Turing

- Aceita linguagens recursivamente enumeráveis ou tipo 0.
 - Classes de linguagens mais complexas (Hierarquia de Chomsky).
 - Conjunto de todas as linguagens que podem ser reconhecidas mecanicamente num tempo finito.

Hipótese de Church-Turing

- Existe um procedimento efetivo para solucionar um problema se e somente se existir uma máquina de Turing que pare para todas as entradas possiveis e que resolva o problema.
 - "A capacidade de computação representada pela máquina de Turing é o limite máximo que pode ser atingido por qualquer dispositivo de computação".

Componentes

- Fita
 - Usada simultaneamente como dispositivo de entrada, de saída e de memória.
 - Finita à esquerda e infinita à direita.
 - Dividida em células, cada uma armazenando um símbolo. O símbolos podem:
 - Pertencer ao alfabeto de entrada.
 - Pertencer ao alfabeto auxiliar.
 - Ser "branco".
 - Ser "marcador de início da fita".

- Componentes
 - Unidade de controle
 - Reflete o estado atual da máquina.
 - Possui uma unidade de leitura e gravação (cabeça da fita), a qual acessa as células da fita e se movimenta para a esquerda/direita.
 - Função de transição

Gregory Moro Puppi Wanderley (gregory.puppi@pucpr.br)

Define o estado da máquina, leituras, gravações, e o sentido do movimento da cabeça.

Dinâmica

 Inicialmente, a entrada a ser processada ocupa as células mais à esquerda após o marcador de início da fita (símbolo
 Δ). As demais células possuem o símbolo "branco" (β).

- Dinâmica (cont.)
 - A unidade de controle possui um número finito/predefinido de estados.
 - A cabeça da fita lê o símbolo de uma célula de cada vez e grava um novo símbolo na célula sendo lida.
 - A cabeça move para direita/esquerda (definido pela função de transição).

Definição

- $M = (\Sigma, Q, \delta, q_0, F, V, \beta, \bullet)$
 - Σ é um alfabeto de símbolos de entrada.
 - Q é o conjunto finito de estados da máquina.
 - δ é uma função de transição:
 - δ : Q x (Σ U V U { β , \bullet }) \rightarrow Q x (Σ U V U { β , \bullet }) x {E, D}
 - q_0 é o estado inicial (sendo $q_0 \in Q$).
 - F é um subconjunto de Q, denominados estados finais.
 - V é um alfabeto auxiliar (pode ser vazio).
 - β é o símbolo especial "branco".
 - é o símbolo de início ou marcador de início da fita.

Esquerda (E) e Direita (D), representam o sentido de movimento da cabeça.

- Função de transição (δ)
 - Características

Gregory Moro Puppi Wanderley (gregory.puppi@pucpr.br)

Suponha a transição $\delta(p, x) = (q, y, m)$:

- Processamento da máquina
 - Aplicação sucessiva da função de transição para cada símbolo de uma palavra de entrada w. Condição de parada:
 - Aceita a entrada w. Atinge um estado final: a máquina pára, e w é aceita.
 - Rejeita a entrada w, se:
 - (a) O argumento corrente da função de transição define um movimento à esquerda, e a cabeça da fita já se encontra na célula mais à esquerda. A máquina pára e w é rejeitada.
 - (b) Ao longo do processamento de w, a função de transição é indefinida para o argumento (símbolo lido e estado atual). A máquina pára e w é rejeitada.

12

 Construa uma máquina de Turing para reconhecer a linguagem L = {aⁿbⁿ | n ≥ 0}.

 Construa uma máquina de Turing para reconhecer a linguagem L = {aⁿbⁿ | n ≥ 0}.

 Construa uma máquina de Turing para reconhecer a linguagem L = {aⁿbⁿ | n ≥ 0}.

 Construa uma máquina de Turing para reconhecer a linguagem L = {aⁿbⁿ | n ≥ 0}.

O Algoritmo reconhece o primeiro símbolo a e o marca como A, movimentado a cabeça para a Direita (D).

 Construa uma máquina de Turing para reconhecer a linguagem L = {aⁿbⁿ | n ≥ 0}.

O Algoritmo procura o b correspondente e o marca como B.

Construa uma máquina de Turing para reconhecer a linguagem L = $\{a^nb^n \mid n \ge 0\}$.

O Ciclo é repetido sucessivamente até identificar para cada a o seu correspondente b.

Gregory Moro Puppi Wanderley (gregory.puppi@pucpr.br)

Exemplo 2

Construa uma máquina de Turing para reconhecer a linguagem gerada por: abc(a+b+c)*

Plano de Aula

- Introdução
- Hipótese de Church-Turing
- Modelo
- Variações

Plano de Aula

- Variações
 - Máquina com cabeçote imóvel
 - Fita infinita à esquerda e à direita
 - Múltiplas fitas
 - Não-determinismo

Variações e Modelos Equivalentes

- Máquina de Turing (MT) é o dispositivo mais geral da computação.
 - Demais modelos e máquinas, bem como variações, possuem no máximo o mesmo poder computacional de uma MT.
 - Uma máquina de Turing tradicional é capaz de simular diferentes variações ou combinações delas.

Cabeçote imóvel

O cabeçote pode permanecer imóvel (sem se movimentar para a direta/esquerda) após uma transição.

Exemplo

Gregory Moro Puppi Wanderley (gregory.puppi@pucpr.br)

Fita infinita à esquerda e à direita

 Seja a variação abaixo de MT com fita infinita à esquerda e à direita:

 Mostre que uma MT tradicional pode simular uma máquina com fita infinita à esquerda e à direita.

Fita infinita à esquerda e à direita

 Seja a variação abaixo de MT com fita infinita à esquerda e à direita:

 Mostre que uma MT tradicional pode simular uma máquina com fita infinita à esquerda e à direita.

b) Uma Fita separada em diferentes trilhas

- Máquina de Turing com múltiplas fitas
 - A MT tem múltiplas fitas, cada uma com seu cabeçote de leitura/escrita (operados de modo independente).

- Dinâmica da máquina
 - Dependendo do estado corrente da máquina e do símbolo lido em cada uma das fitas:
 - Grava um novo símbolo em cada uma das fitas.
 - Move a cabeça de cada fita independentemente.
 - A máquina assume um (único) novo estado.

Construa uma MT para somar dois inteiros.

- Construa uma MT para somar dois inteiros.
 - Representação dos números:
 - 2 => //
 - 3 => ///
 - // + /// = /////

Não-Determinismo

 Dependendo do estado atual e do símbolo lido, pode assumir um conjunto de estados.

Não-Determinismo

- Processamento da máquina
 - Aplicação sucessiva da função de transição para cada símbolo de uma palavra de entrada w. Condição de parada:
 - Aceita a entrada w, se após processar seu último símbolo, existe pelo menos um estado final petencente ao conjunto de estados alternativos atingidos.
 - Rejeita a entrada w, se:

Gregory Moro Puppi Wanderley (gregory.puppi@pucpr.br)

- (a) Após processar o último símbolo de w, todos os estados alternativos atingidos são não-finais.
- (b) Ao longo do processamento de w, a função de transição é indefinida para o conjunto de estados alternativos e o símbolo corrente da palavra.

Próxima Aula

• Trabalho 4.