Math 4720: Statistical Methods

 5^{th} and 6^{th} Week Summary (2/20/25)

• Confidence intervals (Estimation)

An interval calculated from the data, usually of the form: estimate \pm margin of error.

confidence interval for
$$\mu$$
 is $\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ if

data is coming from normal population having unknown mean μ and known σ . or

large random sample from a non-normal population having unknown mean μ and known σ .

- The confidence interval will have a specified margin of error m when the sample size is: $n = \left(\frac{z_{\alpha/2}\sigma}{m}\right)^2$
- Hypothesis tests (a.k.a., tests of significance) for population parameter

 H_0 is called the *null hypothesis* while H_a is called the *alternative hypothesis*.

Usually the null hypothesis is a statement of no effect or no difference.

The claim about the population that we are trying to find evidence for is the alternative hypothesis.

A **test statistic** calculated from the sample data measures how far the data diverge from the null hypothesis H_0 . Define the test statistic $z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$

Decision Rule: Given fixed $\alpha = P(\text{Type-I Error})$.

$$H_a: \mu > \mu_0$$
, Reject H_0 if $z > z_\alpha$

$$H_a: \mu < \mu_0$$
, Reject H_0 if $z < -z_0$

$$H_a: \mu \neq \mu_0$$
, Reject H_0 if $|z| > -z_{\alpha/2}$

• If we reject H_0 when in fact H_0 is true, this is a **Type I error**.

The significance level α of any fixed-level test is the probability of a Type I error.

• If we fail to reject H_0 when in fact H_a is true, this is a **Type II error**, also called β .

For one sided alternative test
$$(H_a: \mu > \mu_0 \text{ or } H_a: \mu < \mu_0)$$
: $\beta = P\left(Z \le z_\alpha - \frac{|\mu_0 - \mu_a|}{\sigma/\sqrt{n}}\right)$

For two sided alternative test
$$(H_a: \mu \neq \mu_0)$$
: $\beta = P\left(Z \leq z_{\alpha/2} - \frac{|\mu_0 - \mu_a|}{\sigma/\sqrt{n}}\right)$

- The **power of a test against any alternative** is 1 minus the probability of a Type II error for that alternative: power = 1β .
- Power analysis (Sample size determination):

For one sided alternative test
$$(H_a: \mu > \mu_0 \text{ or } H_a: \mu < \mu_0)$$
: $n = \sigma^2 \frac{(z_\alpha + z_\beta)^2}{\Delta^2}$

For two sided alternative test $(H_a: \mu \neq \mu_0)$: $n = \sigma^2 \frac{(z_{\alpha/2} + z_{\beta})^2}{\Delta^2}$

