Linear Model

Fitted Model

```
(catheter.df <- read.table("catheter-1.data", header = TRUE))</pre>
```

```
## 1 42.8 40.0 37
## 2 63.5 93.5 50
## 3 37.5 35.5 34
## 4 39.5 30.0 36
## 5 45.5 52.0 43
## 6 38.5 17.0 28
## 7 43.0 38.5 37
## 8 22.5 8.5 20
## 9 37.0 33.0 34
## 10 23.5 9.5 30
## 11 33.0 21.0 38
## 12 58.0 79.0 47
```

```
catheter.lm <- lm(ca~., data=catheter.df)
summary(catheter.lm)</pre>
```

```
##
## lm(formula = ca ~ ., data = catheter.df)
## Residuals:
      Min
             10 Median
                               3Q
                                     Max
## -6.7419 -1.2034 -0.2595 1.8892 6.6566
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.3758 8.3859 2.430
                                            0.038 *
                         0.3455 0.610
## ht
               0.2107
                                            0.557
                         0.1583 1.207
## wt
                0.1911
                                            0.258
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.778 on 9 degrees of freedom
## Multiple R-squared: 0.8254, Adjusted R-squared:
## F-statistic: 21.27 on 2 and 9 DF, p-value: 0.0003888
```

Estimated Coefficients

For linear model $Y \sim N(\mu, \sigma^2 I)$, the link function is $\mu = X\beta$, and the estimated coefficients is $\hat{\beta} = (X^t X)^{-1} X^t Y$.

```
Given U=MV, then \mu_U = M\mu_V, we can get \mu_B = (X^tX)^{-1}X^t(X\beta) = \beta
```

```
x1 <- catheter.df[,1]
x2 <- catheter.df[,2]
X <- cbind(1,x1,x2)
y <- matrix(catheter.df[,3],12,1)
(BETAhat <- solve(t(X)%*%X)%*%t(X)%*%y)</pre>
```

```
## [,1]
## 20.3757645
## x1 0.2107473
## x2 0.1910949
```

Estimated σ^2 (= RSE^2)

```
From theory, \frac{RSS}{\sigma^2} \sim \chi^2_{n-k-1}, thus \frac{E(RSS)}{\sigma^2} = n-k-1 \rightarrow \sigma^2 = \frac{E(RSS)}{n-k-1}
```

```
res = residuals(catheter.lm)
(sig2hat = sum(res^2)/(12-2-1))
```

```
## [1] 14.27543
```

```
(rse = sqrt(sig2hat))
```

```
## [1] 3.778284
```

Covariance Matrix

```
Given U=MV, then \Sigma_U=M\Sigma_VM^t, we can get \Sigma_{\hat{\beta}}=(X^tX)^{-1}X^t\sigma^2I((X^tX)^{-1}X^t)^t=(X^tX)^{-1}X^t\sigma^2IX(X^tX)^{-1}=\sigma^2(X^tX)^{-1}
```

```
(XtXinv <- solve(t(X)%*%X))</pre>
```

```
## x1 x2

## 4.9262358 -0.197172444 0.081695704

## x1 -0.1971724 0.008363701 -0.003681904

## x2 0.0816957 -0.003681904 0.001754749
```

summary(catheter.lm)\$cov.unscaled

```
## (Intercept) ht wt
## (Intercept) 4.9262358 -0.197172444 0.081695704
## ht -0.1971724 0.008363701 -0.003681904
## wt 0.0816957 -0.003681904 0.001754749
```

```
(catheter.cov <- sig2hat*XtXinv)</pre>
```

```
## x1 x2

## 70.324134 -2.81472140 1.16624129

## x1 -2.814721 0.11939543 -0.05256076

## x2 1.166241 -0.05256076 0.02504980
```

Hypothesis Test

Say, if we want to test $H_0: \hat{\beta}_1 = 0$, we can calculate $t - stat = \frac{\hat{\beta}_1 - 0}{se(\hat{\beta}_1)}$, then $p - value = 2 * Pr(t_{12-9-1} \ge |t - stat|)$

```
2*(1-pt(BETAhat[2,1]/sqrt(catheter.cov[2,2]), 12-2-1))
```

```
## x1
## 0.5570028
```

Say, if we want to get a $(1-\alpha)\%$ confidence interval for $\hat{\beta}_1$, then $\hat{\beta}_1 \pm t_{12-9-1}(1-\alpha/2)*se(\hat{\beta}_1)$

```
(max = BETAhat[2,1] + sqrt(catheter.cov[2,2]) * qt(1-0.05/2, 12-2-1))
```

```
## x1
## 0.992405
```

```
(min = BETAhat[2,1] - sqrt(catheter.cov[2,2]) * qt(1-0.05/2, 12-2-1))
```

```
## x1
## -0.5709104
```

R^2

Correlation (otherwise known as "R") is a number between 1 and -1 where a value of +1 implies that an increase in x results in some increase in y, -1 implies that an increase in x results in a decrease in y, and 0 means that there isn't any relationship between x and y. Like correlation, R² tells you how related two things are. However, we tend to use R² because it's easier to interpret. R² measures how much of the total variability is explained by our model.

Sum of Squares Total/SST: $\sum_{i=1}^{n} (y_i - \bar{y})^2 = \text{Sum of Squares Regression/SSR: } \sum_{i=1}^{n} (\hat{y_i} - \bar{y})^2 + \text{Sum of Squares Error/SSE/RSS: } \sum_{i=1}^{n} (y_i - \hat{y_i})^2$

$$R^2 = \frac{SSR}{SST}$$

```
yhat = X%*%BETAhat
sst = sum((y-mean(y))^2)
ssr = sum((yhat-mean(y))^2)
(rs = ssr/sst)
```

```
## [1] 0.8253572
```

Adjusted $R^2 = 1 - \frac{(1-R^2)*(n-1)}{(n-k-1)}$. The adjusted R^2 is always smaller than the R^2 , as it penalises excessive use of variables.

```
(1- (1-rs)*(12-1)/(12-2-1))
```

```
## [1] 0.7865477
```

F-Test

The F-statistic for the added variable test is defined in terms of the residual sums of squares (RSS) for the two models and the number of explanatory variables k in each model:

$$f_0 = \frac{(RSS_S - RSS_F)/(k_F - k_S)}{RSS_F/(n - k_F - 1)}$$

p-value= $\Pr(F \ge f_0)$ where $F \sim F_{k_F-k_S,n-k_F-1}$ e.g. the bottom line of the output from summary is an added F-test where the submodel is the null model (just contains the intercept) and the full model contains all of the regressors.

Setup

```
null.lm<-lm(ca~1,data=catheter.df)
ht.lm<-lm(ca~ht,data=catheter.df)
wt.lm<-lm(ca~wt,data=catheter.df)
full.lm<-lm(ca~ht+wt,data=catheter.df)</pre>
```

null vs. height

```
anova(null.lm, ht.lm)
```

```
## Analysis of Variance Table
##
## Model 1: ca ~ 1
## Model 2: ca ~ ht
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 11 735.67
## 2 10 149.29 1 586.38 39.278 9.295e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

null vs. weight

```
anova(null.lm, wt.lm)
```

```
## Analysis of Variance Table
##
## Model 1: ca ~ 1
## Model 2: ca ~ wt
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 11 735.67
## 2 10 133.79 1 601.88 44.987 5.317e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

height vs. full

```
anova(ht.lm, full.lm)
```

```
## Analysis of Variance Table
##
## Model 1: ca ~ ht
## Model 2: ca ~ ht + wt
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 10 149.29
## 2 9 128.48 1 20.81 1.4578 0.2581
```

weight vs. full

```
anova(wt.lm, full.lm)
```

```
## Analysis of Variance Table
##
## Model 1: ca ~ wt
## Model 2: ca ~ ht + wt
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 10 133.79
## 2 9 128.48 1 5.3104 0.372 0.557
```

full vs. null

```
anova(null.lm, full.lm)
```

```
## Analysis of Variance Table
##
## Model 1: ca ~ 1
## Model 2: ca ~ ht + wt
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 11 735.67
## 2 9 128.48 2 607.19 21.267 0.0003888 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

We can conclude that we need height or weight, but when one is present, the other provide little additional information (there's probably some correlation between two variables)

Predicted Values

Applying the result to ht=44 and wt=35, the expected value is

```
new = cbind(1, 44, 35)
(estimate = new %*% BETAhat)
```

```
## [,1]
## [1,] 36.33697
```

Estimated Variance

```
(variance = new %*% catheter.cov %*% t(new))
```

```
## [,1]
## [1,] 4.213942
```

95% confidence interval for the expected value

```
(max = estimate + sqrt(variance) * qt(1-0.05/2, 12-2-1))
```

```
## [,1]
## [1,] 40.9807
```

```
(min = estimate - sqrt(variance) * qt(1-0.05/2, 12-2-1))
```

```
## [,1]
## [1,] 31.69324
```

95% prediction interval (an interval for a single observation) for the expected value

```
(max = estimate + sqrt(catheter.cov[2,2]+variance) * qt(1-0.05/2, 12-2-1))
```

```
## [,1]
## [1,] 41.04602
```

```
(min = estimate - sqrt(catheter.cov[2,2]+variance) * qt(1-0.05/2, 12-2-1))
```

```
## [,1]
## [1,] 31.62791
```

Using 'predict' function

```
new.df <- data.frame(ht=44, wt=35)
predict(catheter.lm, new.df, interval="confidence")</pre>
```

```
## fit lwr upr
## 1 36.33697 31.69324 40.9807
```

predict(catheter.lm, new.df, interval="prediction")

fit lwr upr ## 1 36.33697 26.60986 46.06408