MAE 544 - Nonlinear Control

Fall 2017

Homework # 4

- Assigned: November 30, 2017.
- Due: December 7, 2017 (Thursday) by 3:00 pm in class.
 - 1. Consider the system:

$$\dot{x}_1 = -x_2 + \epsilon x_1 (x_1^2 + x_2^2) \sin(x_1^2 + x_2^2)$$
$$\dot{x}_2 = x_1 + \epsilon x_2 (x_1^2 + x_2^2) \sin(x_1^2 + x_2^2)$$

where $\epsilon \in [-1, 1]$. Can you use linearization to show stability of the origin (0, 0)? If not, then use the direct method of Lyapunov to investigate stability in this case.

- 2. As we know, the linear time invariant system $\dot{x}(t) = Ax(t)$, $t \ge 0$, is asymptotically stable if the matrix A is Hurwitz. Can we say that a time varying system $\dot{x}(t) = A(t)x(t)$, $t \ge 0$ is asymptotically stable if A(t) is Hurwitz for all $t \ge 0$?

 In addition, show that the system $\dot{x}(t) = A(t)x(t)$ is asymptotically stable if $A(t) + A^T(t)$ is a Hurwitz matrix for all $t \ge 0$.
- 3. Consider the nonlinear system:

$$x = Ax + f(x) + B\operatorname{sat}(u),$$

where $f: \mathbb{R}^n \to \mathbb{R}^n$ is globally Lipschitz with Lipschitz constant $\Gamma_f > 0$ and f(0) = 0. Let $P = P^T > 0$ be a solution for the Lyapunov equation

$$A^T P + P A = -Q,$$

where $Q = Q^T > 0$. Show that the origin (x = 0) is globally stabilizable by a linear state feedback u = Kx if

$$\Gamma_f < \frac{\lambda_{\min}(Q)}{2\lambda_{\max}(P)}.$$

Also, design a feedback law that stabilizes the system.

- 4. Show that if $f \in L_1 \cap L_\infty$, then $f \in L_p$ for every $p \in [1, \infty)$.
- 5. Consider the system:

$$\dot{y} = -2y + \text{sat}(y) + u, \qquad y(0) = y_0.$$

1

Show that the system is passive. Is the system strictly passive?