7. Gyakorlat (2019.03.26.)

Bináris fa láncolt ábrázolása

Két pointeres csúcs. Node.

Három pointeres csúcs. Node3.

```
Node3
+ key : \mathfrak{I} // \mathfrak{I} \text{ valamilyen ismert tipus} \\ + left, right, parent : Node3* \\ + Node3(p:Node3*) { left = right = <math>\emptyset ; parent = p } \\ + Node3(x : \mathfrak{I}, p:Node3*) { left = right = \emptyset ; parent = p ; key = x }
```

Jegyzetben szereplő három rekurzív algoritmus:

BinTree – absztrakt bináris fa típus, $t\rightarrow$ left, $t\rightarrow$ right helyett szokás left(t) és right(t) jelölést is használni. Az üres fát szokták Ω -val jelöli, így t=0 helyett $t=\Omega$ is használható. Láncolt ábrázolású bináris fák esetében a bejáró algoritmusok paramétere lehetne t:Node*, vagy t:Node3*.

1. feladat

Egy konkrét bináris fa bejárása a tanult rekurzív algoritmusokkal, milyen sorrendben írják ki a kulcsokat?

2. feladat

Egy nem teljes bináris fa preorder + inorder, vagy postorder + inorder bejárásból rekonstruáljuk, hogyan nézhetett ki a fa. Miért nem lehet rekonstruálni a preorder + postorder bejárásból?

PREORDER: D E M L A H P B K G N Q C F INORDER: L M H A E D B G K N P C F Q

Megoldás:

Miért nem jó a preorder és postorder? Ha egy-gyerekes a csúcs, nem lehet tudni belőle, hogy az egy-gyerek melyik irányban van:

PRE: a b a b POST: b a b a

Rekurzív algoritmusok készítése bináris fákkal kapcsolatos feladatokhoz:

Előadáson szerepelt a magasság függvény kétféle módon: (a) a függvény visszatérési értéke a magasság, postorder bejárásra támaszkodba, (b) preorder bejárás+segédváltozó, ebben az esetben egy nem rekurzív algoritmus kerül a rekurzív fölé, ami gondoskodik a belső rekurzív algoritmus megfelelően paraméterezett meghívásáról és az abból kapott eredmény visszaadásáról. Így néznek ki:

(a)

(b)

3. feladat

Hány levele vana fának?

hányLevél(t:BinTree):N

4. feladat

Mi a legnagyobb kulcsa egy bináris fának? A fa esetleg lehet üres, azaz t = 0 eset is előfordulhat, Oldjuk meg (a) és (b) módszerrel is! Itt most (a) esetben is kell egy "indító" algoritmus, mert le kell ellenőrizni, hogy a fa nem üres-e? Ne használjuk a maximum kezdőértéknek a -∞ értéket. Ha nem üres a fa, induljunk a gyökér kulcsával, ha üres a fa, jelezzünk hibát!

(a) nem használ segéd paramétert. Üres fát le kell ellenőrizni!

maxKulcs(t:BinTree):T

t = 0		0	
EmptyTreeError		return(maxBejár(t))	

maxBejár(t:BinTree):T

t->left = 0 ∧ t->right = 0						
	t->left ≠ 0 ∧ t->right ≠ 0	t->left ≠ 0 ∧ t->right = 0	t->left = 0 ∧ t->right ≠ 0			
	max1 := maxBejár(t-> left)					
return t->key	max2 :=maxBejár(t-> right)	max1:=maxBejár(t-> left)	max1:=maxBejár(t-> right)			
	max1 := max(max1, max2)					
	return max(max1, t->key)					

Megjegyzések: maxBejár algoritmus előfeltétele, hogy t nem lehet üres! Ezért a rekurzív hívásokat szét kell bontani a t fa alakja szerint.

- t lehet levél, vagy belső pont
- belső pont esetei: két gyerekes, csak bal-, illetve jobb gyerekkel rendelkező.

(b) A másik megoldási lehetőséget választva a fő eljárás ellenőrzi az előfeltételt, és ha a fa nem üres, akkor gondoskodik a max változó kezdőértékéről, majd elindít egy bejáró algoritmust. A bejárás végeztével max változó a legnagyobb értéket fogja tartalmazni, így azzal visszatér.

maxKulcs(t:BinTree): T

preorder Max(t: BinTree, &max : T)

Végrekurzió helyett ciklus (jegyzet ajánlása)

preorder_Max(t: BinTree, &max : T)

"Klasszikus preorder bejárással"

A bejáró algoritmus viszi magával a max változót, ha kell, módosítja. FONTOS, hogy a max cím szerint átadott paraméter legyen!

5. feladat

Keressünk egy negatív kulcsot a fában. Ha találunk, adjuk vissza a címét, ha nem találunk, adjunk 0 értéket vissza. Ügyeljünk a hatékonyságra, ha siekres a keresés, minl hamarabb térjen vissza a rekurzió.

vanNegKulcs(t.BinTree): Node*

6. feladat

Bevezetjük a szint fogalmát. 0. szint a gyökér, majd 0. szint 2.szint stb. A feldolgozás csak egy adott szintig történik, vagy adott szinttől a teljes mélységig. Feladatok: (a) hány egy-gyerekes csúcsa van a fának a 0..k szinteken, vagy (b) a knál nagyobb szinteket?

Megoldás:

(a)

egyGyerekesekSzáma(t:BinTree, k: Z):N

egyGyerekesekSzáma(t:BinTree, k: Z):N

7. feladat

Kifejezés fa. Az egy és két operandusú műveletekből álló kifejezést ábrázoljuk egy bináris fával. Például egy aritmetikai kifejezés fája:

A b/(a-c)+b^2*d kifejezést ábrázoló kifejezés fa:

A kifejezés fa postorder bejárása pont a lengyel formát adja: b a c - / b 2 ^ d * +