Analysis of existing circuit

- Check what is the frequency update of each digit : use the core with resistor. Every sec, get the core to publish event with measured frequency
- Check what are the signals connected to the Atmega and how they are used
- See if it is possible to add a UART to the Atmega and replace it with Arduino chip
- Measure the voltage of one digit, see if it getting 5V or less. Can it be connected to 3.3v??
- Draw global schematic
- Write code see http://www.electroschematics.com/10512/arduino-4-digit-7-segment-led-display/

- ★ Power Input
 - o 12Vdc +/-25%
 - Regulated with KA7805 on Power Supply Board 2
 - 5V reach Display Board on CON1
- ★ Display Board
 - Front
 - INPUT: information from the wheel, used to measure the KM
 - CON1: 5V+GND, see 1)
 - Buzzer is soldered
 - DP: External Push Button
 - MICRO: Switch activated by rotating the "For Hire" handle
 - ATMEL ATMEGA48PA-PU with quartz 4Mhz
 - It seems there is one I2C connector not soldered (maks SDA/SCL)
 - Back
 - The numeric displayed are soldered directly on the back. They all have a comma, to see if it is connected
 - There are:
 - One line with 5 big digits (E10561-G)
 - One line with 4 big digits (E10561-G)
 - One line with 4 small digits (E10391-G)
 - The displays are controlled by a chip 74HCT154N
 - There are 13 transistors CTBC 557B. These are NPN between the 74HCT154N and each digit http://www.farnell.com/datasheets/296678.pdf through a resitor
- ★ ATMEL ATMEGA48PA-PU chip
 - Seems to be very low ram
 - Using with Arduino
 http://www.thinkcreate.org/index.php/arduino-porting-to-atmega48/

- Spec: http://www.atmel.com/images/doc8161.pdf
- Spec2:

http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A -48PA-88A-88PA-168PA-328-328P datasheet Complete.pdf

 Seems to be compatible with pin to pin with Arduino Atmega168 from Arduino duemilanove. See below

1 R18 - Vcc 28 R4 - segmF **Odometer Brown** 27 R14 - segmE 3 R11 - segmD 26 (nothing) 74HCT pin 23 (A0) 25 R10 - segmC 74HCT pin 22 (A1) 5 24 R8 - segmB 74HCT pin 21 (A2) 6 23 R6 - segmA 7 Vcc 22 GND - R16 - Odometer Black **GND** 8 21 Vcc Quartz 9 20 Vcc - R18 - Odometer Red 10 19 R27 - Transistor - Buzzer Quartz 74HCT pin 20 (A3) R26 - DP external button 11 18 U1 pin 5 12 17 (nothing) U1 pin 6 13 16 74HCT pin 18+19 (EN) RB25 - MICRO Handle 14 15 R3 - segmG

0

★ 74HCT154N chip

- Spec http://www.nxp.com/documents/data_sheet/74HC_HCT154.pdf
- This chip is a MUX 4->16
- It is probably used to enable individually each of the 13 digits
- o Vcc min is 4.5V. Cannot work under 3.3V. However similar 74HC154N can...

★ E10xx1-G Digits

- Spec http://www.py2bbs.qsl.br/projetos/freq dl4yhf/TOYO-E10561.pdf
- They are Code G, so common anode. So they are active at high level
- The pin 8 is connected to the output of the PNP transistor, which is coming from the mux. If the pin 8 is down, display is off.
- All digits of a row are using the digit selection signal. There are 7 signals commanded by resistors

First line of digits

Resistor	R3	R4	R6	R8	R10	R11	R14
Pin	10	9	7	6	4	2	1
Segment	G	F	Α	В	С	D	Е

Note: pin 5 is not connected, this is the dot (DP). Also pin 3 is not connected

Second line of digits

• It seems the pins are connected to the same resistors as first line

■ Third line of digits

Resistor	R3	R4	R6	R8	R10	R11	R14
Pin	1	2	10	9	7	5	4
Segment	G	F	А	В	С	D	Е

Note: pin 6 is not connected, this is the dot (DP). Also pin 3 is connected to pin 8

★ Digit activation

The digits are activated through PNP which are controlled by the 74HCT154

Outpu t	Pin HCT	Resist or	Transi stor	Output	Pin HCT	Resist or	Transi stor
Y0	1	R13	Q5	Y8	9	R17	Q9
Y1	2	R5	Q4	Y9	10	R21	Q13
Y2	3	R7	Q3	Y10	11	R22	Q12
Y3	4	R9	Q2	Y11	13	R23	Q11
Y4	5	R12	Q1	Y12	14	R21	Q10
Y5	6	R15	Q6	Y13	15		
Y6	7	R20	Q7	Y14	16		
Y7	8	R19	Q8	Y15	17		

• The digits are installed like following:

Q1	Q2	Q3	Q4	Q5
Y4	Y3	Y2	Y1	Y0

Q7	Q8	Q9	Q6
Y8	Y7	Y6	Y5

Q10	Q11	Q12	Q13
			-,
Y12	Y11	Y10	Y9
		_	_

★ Using Arduino

Switch to 4Mhz quartz
 http://iot-playground.com/2-uncategorised/9-arduino-low-power-sensor

o Compatibility table:

PIN	ATMEGA48PA-PU PIN	ATMEGA 168	Arduino	Compatible?
1	R18 - Vcc	RESET		ОК
2	Odometer Brown	PD0	0	ОК
3	(nothing)	PD1	1	ОК
4	74HCT pin 23 (A0)	PD2	2	ОК
5	74HCT pin 22 (A1)	PD3	3	ОК
6	74HCT pin 21 (A2)	PD4	4	ОК
7	Vcc	Vcc		ОК
8	GND	GND		ОК
9	Quartz	Quartz		ОК
10	Quartz	Quartz		ОК
11	74HCT pin 20 (A3)	PD5	5	ОК
12	U1 pin 5	PD6	6	ОК
13	U1 pin 6	PD7	7	ОК
14	RB25 - MICRO Handle	PB0	8	ОК
15	R3 - segmG	PB1	9	ОК
16	74HCT pin 18+19 (EN)	PB2	10	ОК
17	(nothing)	PB3	11	ОК
18	R26 - DP external button	PB4	12	ОК
19	R27 - Transistor - Buzzer	PB5	13	ОК
20	Vcc - R18 - Odometer Red	Vcc		ОК
21	Vcc	Vcc		ОК

22	GND - R16 - Odometer Black	GND		ОК
23	R6 - segmA	PC0	A0(14)*	ОК
24	R8 - segmB	PC1	A1(15)*	ОК
25	R10 - segmC	PC2	A2(16)*	ОК
26	R11 - segmD	PC3	A3(17)*	ОК
27	R14 - segmE	PC4	A4(18)*	ОК
28	R4 - segmF	PC5	A5(19)*	OK

^{*}PortC is not named on the board, however it is named Ax in pins_arduino.h

★ Measuring 7segments refresh rate

- Method: by using Photon, measure the time between consecutive updates of one digit
- This can be done by measuring either:
 - when the signal EN to 74HCT is active. Assumption is that EN is toggled for every segment, which is not sure
 - when one particular 7segment is active: when it's transistor is switched ON, and for how long

★ Buzzer connection

- The buzzer is controlled by Atmega pin 19 (PB5) through a PNP transistor 5578 (BC 557). The transistor base is connected to PB5 through R27 (2.2K), the base is also connected to Vcc through R28 (100K).
- When PB5 is 5V, buzzer is OFF
- When PB5 is 0V, buzzer is ON
- When Arduino is starting, PB5 is 0V, so buzzer is ON.
- => Arduino shall be reprogrammed so that the default status is 5V