Cấu trúc rời rạc

October 26, 2025

1 Cơ sở Logic

- 1.1 Phép toán
- 1.1.1 Phủ định

\overline{P}	$\neg P$
0	1
1	0

1.1.2 Hội (và)

\overline{P}	Q	$P \wedge Q$
0	0	0
0	1	0
1	0	0
1	1	1

1.1.3 Tuyển (hoặc)

\overline{P}	Q	$P \lor Q$
0	0	0
0	1	1
1	0	1
1	1	1

1.1.4 Kéo theo

Q	$P \to Q$
0	1
1	1
0	0
1	1
	0 1 0

1.1.5 Tương đương (Nếu và chỉ nếu)

\overline{P}	Q	$P \leftrightarrow Q$
0	0	1
0	1	0
1	0	0
1	1	1

1.2 Dạng mệnh đề

- Sơ cấp
- Hằng đúng
- Hằng sai

1.3 Tương đương logic & Hệ quả logic

1.3.1 Tương đương logic

- $P, Q \rightarrow \text{công thức} \dots$
- $P \Leftrightarrow Q(P \equiv Q, P = Q)$ đ
gl tương đương logic.
- $P \leftrightarrow Q$ đgl hằng đúng.

1.3.2 Hệ quả logic

- $P\Rightarrow Q$ đ
gl hệ quả logic. $P\to Q$ đ
gl hằng đúng.

Note

• C/m $P \Rightarrow Q \rightarrow$ c/m $P \rightarrow Q$ chân trị 1.

1.4 Quy luật logic

Luật	Công thức
Phủ định của phủ định	$\neg\neg P \equiv P$
De Morgan	$\neg(P \land Q) \equiv \neg P \lor \neg Q \ \neg(P \lor Q) \equiv \neg P \land \neg Q$
Giao hoán	$P \vee Q \equiv Q \vee P \ P \wedge Q \equiv Q \wedge P$
Kết hợp	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$
	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
Phân phối	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$
	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
Luỹ đẳng	$P \wedge P \equiv P \ P \vee P \equiv P$
Trung hoà	$P \wedge 1 \equiv P \ P \vee 0 \equiv P$
Phần tử bù	$P \land \neg P \equiv 0 \ P \lor \neg P \equiv 1$
Thống trị	$P \land 0 \equiv 0 \ P \lor 1 \equiv 1$
Hấp thụ	$P \wedge (P \vee Q) \equiv P \ P \vee (P \wedge Q) \equiv P$

Luật	Công thức
Phản chứng	$P \to Q \equiv \neg P \lor Q \equiv \neg Q \to \neg P$
	$\neg(P \to Q) \equiv P \land \neg Q$

1.5 Quy tắc suy diễn

• Khẳng định

$$\frac{P \to Q, \; P}{::Q}$$

• Phủ định

$$\frac{P \to Q, \ \neg Q}{\because \neg P}$$

• Tam đoạn luận

$$\frac{P \to Q, \; Q \to R}{:: P \to R}$$

• Tam đoạn luận rời

$$\frac{P \vee Q, \, \neg Q}{\therefore P}$$

or

$$\frac{P \vee Q, \ \neg P}{ \therefore Q}$$

• Mâu thuẫn

$$P \to Q \equiv (P \land \neg Q) \to 0$$

trong đó $P=P_1 \wedge P_2 \wedge \ldots \wedge P_N$

1.6 Vị từ - lượng từ

1.6.1 Vị từ

 $P(x,y,\ldots) \to P(a,b,\ldots)$ có chân trị 0 hoặc 1.

1.6.2 Lượng từ

Với mọi

- \forall trong đó \land
 - Đúng với tất cả.

- Sai với một.
- $\neg(\forall x \in A, P(x)) \equiv \exists x \in A, \neg P(x)$

Tồn tại

- \exists trong đó \lor
 - Đúng với một.
 - Sai với tất cả.
- $\neg(\exists x \in A, P(x)) \equiv \forall x \in A, \neg P(x)$

Đặc biệt hoá phổ dụng

Tổng quát hoá phổ dụng

1.6.3 Quy tắc suy diễn

C/m Phản chứng

$$P \Rightarrow Q \equiv (P \land \neg Q) \Rightarrow 0$$

C/m trực tiếp

C/m theo trường hợp (vét cạn)

C/m gián tiếp (PC) $P \Rightarrow Q$ và $\neg Q \Rightarrow \neg P$

 $\P - Q - P P Q$

C/m quy nạp

$$\frac{P(n_0), \quad \forall n > n_0, \ P(n) \to P(n+1)}{ .. \forall n \geq n_0, \ P(n)}$$

B1. C/m $P(n_0)$ đúng

B2. G/s $n \in \mathbb{N}$ và $n \ge n_0$, P(n) đúng. C/m P(n+1) đúng.

 $\Rightarrow P(n)$ đúng $\forall n \geq n_0$

2 Tập hợp - Ánh xạ

- 2.1 Tập hợp
 - Cách diễn tả
 - Bằng lời
 - Liệt kê
 - Tính chất đặc trưng

- Lực lượng k/h |A|
- Tích Descarte
 - 2 tập hợp
 - Nhiều tập hợp
- Tập con
 - $k/h B \subset A \Leftrightarrow \{ \forall x | x \in B \Rightarrow x \in A \}$
 - Tập hợp tập con của A k/h P(A)

2.1.1 Phép toán

- Hợp $A \cup B = \{x | x \in A \lor x \in B\}$
- Giao $A \cap B = \{x | x \in A \land x \in B\}$
- Hiệu $A \backslash B = \{x | x \in A \land x \notin B\}$
- Phần bù $B\subset A,$ k/h $\overline{B_A}$ or \overline{B}

Tính chất

Luật	Công thức
Giao hoán	$A \cap B = B \cap A \ A \cup B = B \cup A$
Kết hợp	$(A \cap B) \cap C = A \cap (B \cap C)$
	$(A \cup B) \cup C = A \cup (B \cup C)$
Phân phối	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
De Morgan	$\overline{A \cap B} = \overline{A} \cup \overline{B} \ \overline{A \cup B} = \overline{A} \cap \overline{B}$
Luỹ đẳng	$A \cap A = A \ A \cup A = A$

2.2 Ánh xạ

Ánh xạ bằng nhau

Ånh

Ånh ngược

Tính chất

2.2.1 Loại

Đơn ánh

• Có tối đa 1 nghiệm

$$\forall x, x' \in X, x \neq x' \Rightarrow f(x) \neq f(x')$$

hay

$$\forall x, x' \in X, f(x) \neq f(x') \Rightarrow x \neq x'$$

• Không là đơn ánh (có nhiều hơn 1 nghiệm)

$$\exists x, x' \in X, x \neq x' \land f(x) = f(x')$$

Toàn ánh

• Luôn có ít nhất 1 nghiệm

$$\forall y \in Y, \exists x \in X, y = f(x)$$

hay

$$\forall y \in Y, f^{-1}(y) \neq \emptyset$$

• Không là toàn ánh (Tồn tại vô nghiệm)

$$\exists y \in Y, f^{-1}(y) = \emptyset$$

hay

$$\exists y \in Y, \forall x \in X, y \neq f(x)$$

Song ánh

• Vừa đơn ánh vừa toàn ánh.

$$\forall y \in Y, \exists ! x \in X, y = f(x)$$

hay

$$\forall y \in Y, f^{-1}(y)$$
 có đúng 1 phần tử

2.2.2 Ngược

$$f^{-1}:Y\to Xy\mapsto f^{-1}(y)=x,\quad f(x)=y$$

2.2.3 Hợp

$$h = g \circ f : X \to Y \to Zx \mapsto f(x) \mapsto g(f(x))$$

• Định lý

$f:X\to Y$ song ánh

$$f\circ f^{-1}=Id_Yf^{-1}\circ f=Id_X$$

Trong đó

- $\bullet \quad Id_X(x): X \to X, \quad Id_X(x) = x$
- $\bullet \ Id_Y(y): Y \to Y, \quad Id_Y(y) = y$

3 Phương pháp đếm

3.1 Cơ bản

- Cộng
 - Trường hợp
- Nhân
 - Bước
 - Thứ tự không quan trọng
 - Bắt buộc
- Nguyên lý chuồng bồ câu
 - n vật, k hộp $\to \lceil \frac{n}{k} \rceil$ vật trong ít nhất 1 hộp.
- Nguyên lý bù trừ
 - $|A \cup B| = |A| + |B| |A \cap B|$
 - $-\ |A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$

3.2 Hoán vị - Tổ hợp - Chỉnh hợp

- Hoán vị
 - $-P_n=n!$
- Tổ hợp
 - $C_n^k = \frac{n!}{(n-k)!k!}$
 - $-\,$ Không thứ tự, không lặp lại.
- Chỉnh hợp
 - $A_n^k = \frac{n!}{(n-k)!}$
 - $-\,$ Có thứ tự, không lặp lại.

3.3 Hoán vị - Tổ hợp - Chỉnh hợp (Lặp)

- Hoán vị lặp
 - $\ \, \frac{n!}{n_1! n_2! ... n_k!}$
 - Nhóm n_1, n_2, \dots, n_k .
- Chỉnh hợp lặp

$$- \overline{A}_n^k = n^k$$

- Tổ hợp lặp
 - $\ \overline{C}_n^k = C_{n+(k-1)}^k$
 - Bài toán chia k vật đồng chất vào n hộp phân biệt
 - $* \ x_1+x_2+\ldots+n_n=k$
 - * $k \rightarrow$ không phân biệt.
 - * $n \rightarrow$ phân biệt.

4 Hệ thức truy hồi & Hàm sinh

4.1 Tuyến tính thuần nhất bậc k

 $(\tilde{\text{D}}$ ề thi sẽ cho (bậc 2, 3 tối đa))

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

- $\bullet \ \ a_0=C_0, a_1=C_1, \dots, a_{k-1}=C_{k-1}.$
- Các dạng không phải tuyến tính thuần nhất bậc k:

$$-H_n = H_{n-1} + 1$$

$$-A_n = \mathbf{n}A_{n-1}$$

$$- B_n = 4B_{n-1} - 3B_{n-2}^2$$

4.1.1 Phương pháp giải

Phương pháp thế (giải bậc 1) B1. Thay a_n bởi $a_{n-1},\ a_{n-1}$ bởi a_{n-2},\dots,a_0 bởi $C_0\to {\rm Thu}$ được công thức trực tiếp cho a_n

B2. Chứng minh tính đúng đắn của công thức \boldsymbol{a}_n

Phương pháp phương trình đặc trưng

Bậc 2

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

B1. Tính phương trình đặc trưng $r^2=c_1r+c_2\rightarrow$ nghiệm r

B2. (Check nghiệm)

- 2 nghiệm phân biệt $r_1, r_2 \rightarrow a_n = d_1 r_1^n + d_2 r_2^n$
- Nghiệm kép $r_1 \rightarrow a_n = (d_1 + d_2 n) r_1^n$ và $a_0 = C_0, a_1 = C_1$

B3. Dùng điều kiện đề cho $a_0, a_1, ... \rightarrow d_1, d_2$

B4. Thay d_1,d_2 vào a_n ở B2 và kết luận.

Bậc 3 $(k \ge 3)$ (tỉ lệ thi thấp)

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

B1. Tính phương trình đặc trung $r^k = c_1 r^{k-1} + c_2 r^{k-2} + \dots + c_k$

B2. (Nghiệm tổng quát)

- Nghiệm thực phân biệt $r_1, r_2, r_k \rightarrow a_n = d_1 r_1^n + d_2 r_2^n + \ldots + d_k r_k^n$
- tnghiệm thực phân biệt r_1, r_2, \ldots, r_t tương ứng với bội m_1, m_2, \ldots, m_t

$$\Rightarrow a_n = (d_{10} + d_{11}n + \dots + d_{1(m_1 - 1)}n^{m_1 - 1})r_1^n + \dots + (d_{t0} + d_{t1}n + \dots + d_{t(m_t - 1)}n^{m_t - 1})$$

5 Quan hệ

• $(a,b) \in \mathcal{R}$

 $a\mathcal{R}b$

- $\mathcal{R} = \{(a,b) \mid a \text{ là } \dots b\}$
- $\mathcal{R} = \{(..,.),(..,.),..\}$

5.1 Các loại quan hệ

5.1.1 Phản xạ

$$(a,a) \in \mathcal{R}, \forall a \in A$$

- Tính chất:
 - \leq Có phản xạ
 - < Không phản xạ
 - − | (ước) Có phản xa

5.1.2 Đối xứng

 $\forall a,b \in A$

$$a\mathcal{R}b \to b\mathcal{R}a$$

5.1.3 Phản xứng

 $\forall a,b \in A$

$$(a\mathcal{R}b) \wedge (b\mathcal{R}a) \rightarrow (a=b)$$

5.1.4 Bắc cầu

 $\forall a, b, c \in A$

$$(a\mathcal{R}b) \wedge (b\mathcal{R}c) \rightarrow a\mathcal{R}c$$

5.2 Biểu diễn

 $A = \{1,2,3,4\}, \, B = \{u,v,w\}, \, \mathcal{R} = \{(1,u),(1,v),(2,w),(3,w),(4,u)\}$ Cách biểu diễn

 $A = \{a_1, a_2, \dots, a_m\}, \, B = \{b_1, b_2, \dots, b_n\}, \, M_{\mathcal{R}} = [m_{ij}]_{m \times n}$

$$m_{ij} = \begin{cases} 0 & (a_i,b_j) \notin \mathcal{R} \\ 1 & (a_i,b_j) \in \mathcal{R} \end{cases}$$

- $\mathcal R$ quan hệ trên A, k/h $M_{\mathcal R}$
- Các loại quan hệ:
 - Phản xạ $\rightarrow m_{ii}=1$ (đường chéo chính)
 - Đối xứng
 $\rightarrow m_{ij} = m_{ji}, \forall i,j$
 - Phản xứng $\to m_{ij} = 0 \ m_{ji} = 0, \ i,j, i \ j \$

5.3 Quan hệ tương đương

- Thoả:
 - Phản xứng
 - Đối xứng
 - Bắc cầu
- Lớp tương đương, $\mathcal R$ quan hệ tương đương trên $A,a\in A$ k/h: $[a]_{\mathcal R}=\overline a=\{b\in A\mid b\mathcal RA\}$
- Định lý:
 - $a\mathcal{R}b \Rightarrow [a]_{\mathcal{R}} = [b]_{\mathcal{R}}$
 - $[a]_{\mathcal{R}} \neq [b]_{\mathcal{R}} \Rightarrow [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} = \emptyset$

5.4 Quan hệ thứ tự

- Thoả:
 - Phản xạ
 - Đối xứng
 - Bắc cầu
- Tập sắp thứ tự (Poset), k/h: (A, \prec)
- Sắp thứ tự:
 - Toàn phần
 - Bộ phận
- $\bullet~$ Trội và Trội trực tiếp
- Tối tiểu và Tối đại
- Phần tử nhỏ nhất và Phần tử lớn nhất