EEIN SIGNAL AND SYSTEMS

Homework # 1

By shine-hale

1. a) proof: $x + h = \int_{-\infty}^{\infty} x_i t t_i h_i t_i - t_i dt$ and $h + x = \int_{-\infty}^{+\infty} h_i t_i x_i t_i - t_i dt$ Let $S = t - t \Rightarrow t = t - s$ then we have the Conculusion that $h + x = \int_{-\infty}^{+\infty} h_i t_i - s_i x_i s_i ds = \int_{-\infty}^{+\infty} x_i t_i h_i t_i - t_i dt = x + h$ b) proof: $x + ch_i + h = \int_{-\infty}^{+\infty} x_i t_i t_i + h_i t_i - t_i t_i dt$ $= \int_{-\infty}^{+\infty} x_i t_i h_i (t - t_i) dt + \int_{-\infty}^{+\infty} x_i t_i h_i t_i - t_i dt$ $= x + h_i + x + h_i$

c) proof: $X*h_1*h_2 = \int_{-\infty}^{+\infty} X(t) (h_1*h_2)(t-t) dt = \int_{-\infty}^{+\infty} X(t) \int_{-\infty}^{+\infty} h_1(s) h_2(t-t-s) ds$ $= \int_{-\infty}^{+\infty} X(t) h_1(s) h_2(t-t-s) dt ds \quad \text{and} \quad (X*h_1)*h_2 = \int_{-\infty}^{+\infty} (X*h_1)(s) h_2(t-t-s) ds$ $= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} X(t) h_1(s-t) h_2(t-s) dt ds \quad \text{let } s-t=p \text{ we have } s=t+p \text{ so}$ $\text{Original} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} X(t) h_1(p) h_2(t-p-t) dt dp, \quad \text{they equal to each other.}$

- 2 a) $htn]=utn]-utn-10]=\sum_{k=0}^{p} stn-k]$ and $\sum_{k=0}^{q} |stn-k||=|o<\infty|$ so it is stable, and for htn], all the related components are less than n. so it is access, and a FIR system
 - b) htn]=2"utn], which is a stable. Causal IIX system
 - c) htm]-zhuttn], which is a stable, not causal, IIR system
 - d) htm]= n 10.8) nutn]. which is a stable, causal. IIR system

3. a) if signals XIn], yIn] satisfy the equation. We have when \hat{x} In]= λx In] assume: λy In] + λa . yIn-i]+... + an λy In-n] = λb o xIn] +... + λb mxIn-n] 0 when $\lambda \pm 0$, both side devided, we gain the condition happen in the test. ω when $\lambda = 0$. Obviously, it satisfy.

An the above, \hat{x} tri) = dxtri), \hat{y} tri) = $d\hat{y}$ tri) also satisfy the equation.

b) if Xitis]. Yitis] and X>tis] ystis satisfy the difference equation. we have yitis] + aiyitin-1] + ... + anyitin-n] = boxitis) + ... + bmxitin-m] or ystis] + asystin-1] + ... + anyitin-n] = boxztis] + ... + bmxitin-m] or add the equation or and or, then let \$\hat{x}tis] = (xi+xi)tis], \$\hat{y}tis] = (yi+yi)tis]. We have \$\hat{x}tis] + ai\hat{y}tin-1] + ... + an\hat{y}tin-n] = bo\hat{x}tis] + ... + bm\hat{x}tin-m]

o) if \$\hat{x}tis], \$\hat{y}tis] \text{ satisfy the difference equation, then let \$k=n-L\$, we have \$\hat{y}tis] + \hat{aiy}tis-1] + ... + an\hat{y}tis-n] = bo\hat{x}tis] + ... + bm\hat{x}tis-m) for \$k\$ is any and then substitute it. We can verify the \$\hat{x}tis] = \hat{x}tin-1], \$\hat{y}tis] = \hat{y}tis-1] also satisfied when \$\hat{x}tis] is unit impulse, \$\hat{x}tis] = \hat{x}tis_1. We have \$\hat{y}tis] = \hat{x}tis_1 + \hat{x}tis_1 \rightarrow \hat{x}tis_1 \rightarrow

the same constant.

(e) When ytn= 10, n<0. From the above analysis, we can easily ytn-1+xtn]. n/o verify its linearity and time-invariant

4.0)let xtn]= Stn], we have ytn]=htn]= 0.x stn-i] +0.5 stn] + ax stn+i] b) $H(e^{jw}) = \sum_{k=0}^{+\infty} htk]e^{jwn} = \sum_{k=0}^{+\infty} L0.x s$ tn-i] +0.x stn) +0.x stn+i)] $e^{jwn} = 0.x e^{jw} +0.x e^{-jw} +0.5 = 0.5 cos w +0.5$ $\Rightarrow H(e^{jw}) = 0.5 (H cos w) = 0.5 \frac{w}{2}$

c) the type of filter is low-pass.

I a) let x(t) = e^{jwt}, y(t) = H(jw)e^{jwt} so substitute them and we have Pc = +y(t) = x(t) => (Ac.jw+1) H(jw) e^{jwt} = e^{jwe} => H(jw) = I+P(jw) = b). H(jw) = \frac{1}{1+Pczw2}(1-jPew), when w /. (H(jw)) I confirm a low-pass