УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа Часть 2

Часть 2 Вариант 84

> Студент Нодири Хисравхон Р3131

Преподаватель Поляков Владимир Иванович

Задание

Построить комбинационную схему реализующую функцию C=A*B (C — 4 бита, A и B — по 2 бита, $A\neq 0$) при t=0 и функцию C=A/B (c_1c_2 — частное, c_3c_4 — остаток, $A\neq 0$ и $B\neq 0$) при t=1.

Таблица истинности

№	t	a_1	a_2	b_1	b_2	c_1	c_2	c_3	c_4
0	0	0	0	0	0	d	d	d	d
1	0	0	0	0	1	d	d	d	d
2	0	0	0	1	0	d	d	d	d
3	0	0	0	1	1	d	d	d	d
4	0	0	1	0	0	0	0	0	0
5	0	0	1	0	1	0	0	0	1
6	0	0	1	1	0	0	0	1	0
7	0	0	1	1	1	0	0	1	1
8	0	1	0	0	0	0	0	0	0
9	0	1	0	0	1	0	0	1	0
10	0	1	0	1	0	0	1	0	0
11	0	1	0	1	1	0	1	1	0
12	0	1	1	0	0	0	0	0	0
13	0	1	1	0	1	0	0	1	1
14	0	1	1	1	0	0	1	1	0
15	0	1	1	1	1	1	0	0	1
16	1	0	0	0	0	d	d	d	d
17	1	0	0	0	1	d	d	d	d
18	1	0	0	1	0	d	d	d	d
19	1	0	0	1	1	d	d	d	d
20	1	0	1	0	0	d	d	d	d
21	1	0	1	0	1	0	1	0	0
22	1	0	1	1	0	0	0	0	1
23	1	0	1	1	1	0	0	0	1
24	1	1	0	0	0	d	d	d	d
25	1	1	0	0	1	1	0	0	0
26	1	1	0	1	0	0	1	0	0
27	1	1	0	1	1	0	0	1	0
28	1	1	1	0	0	d	d	d	d
29	1	1	1	0	1	1	1	0	0
30	1	1	1	1	0	0	1	0	1
31	1	1	1	1	1	0	1	0	0

Минимизация булевых функций на картах Карно

$$c_1 = a_1 \, \overline{b_1} \, t \vee a_1 \, a_2 \, b_1 \, b_2 \, \overline{t} \quad (S_Q = 10)$$

$$c_2 = \left(a_1 \vee \overline{b_1}\right) \, \left(b_1 \vee t\right) \, \left(\overline{a_2} \vee \overline{b_2} \vee t\right) \, \left(a_2 \vee \overline{b_2} \vee \overline{t}\right) \quad (S_Q = 14)$$

$$c_3 = \overline{a_2} \, b_1 \, b_2 \vee \overline{a_1} \, b_1 \, \overline{t} \vee a_1 \, \overline{b_1} \, b_2 \, \overline{t} \vee a_2 \, b_1 \, \overline{b_2} \, \overline{t} \quad (S_Q = 18)$$

$$c_4 = a_2 \, \overline{b_2} \, t \vee \overline{a_1} \, b_1 \, t \vee a_2 \, b_2 \, \overline{t} \quad (S_Q = 12)$$

Преобразование системы булевых функций

$$\begin{cases} c_{1} = a_{1} \, \overline{b_{1}} \, t \vee a_{1} \, a_{2} \, b_{1} \, b_{2} \, \overline{t} & (S_{Q}^{c_{1}} = 10) \\ c_{2} = \left(a_{1} \vee \overline{b_{1}}\right) \, \left(b_{1} \vee t\right) \, \left(\overline{a_{2}} \vee \overline{b_{2}} \vee t\right) \, \left(a_{2} \vee \overline{b_{2}} \vee \overline{t}\right) & (S_{Q}^{c_{2}} = 14) \\ c_{3} = \overline{a_{2}} \, b_{1} \, b_{2} \vee \overline{a_{1}} \, b_{1} \, \overline{t} \vee a_{1} \, \overline{b_{1}} \, b_{2} \, \overline{t} \vee a_{2} \, b_{1} \, \overline{b_{2}} \, \overline{t} & (S_{Q}^{c_{3}} = 18) \\ c_{4} = a_{2} \, \overline{b_{2}} \, t \vee \overline{a_{1}} \, b_{1} \, t \vee a_{2} \, b_{2} \, \overline{t} & (S_{Q}^{c_{4}} = 12) \\ (S_{Q} = 54) \end{cases}$$

Проведем совместную декомпозицию системы.

$$\varphi_{0} = a_{2} b_{2} \overline{t}, \quad \overline{\varphi_{0}} = \overline{a_{2}} \vee \overline{b_{2}} \vee t$$

$$\begin{cases} \varphi_{0} = a_{2} b_{2} \overline{t} & (S_{Q}^{\varphi_{0}} = 3) \\ c_{1} = a_{1} \overline{b_{1}} t \vee \varphi_{0} a_{1} b_{1} & (S_{Q}^{c_{1}} = 8) \\ c_{2} = (a_{1} \vee \overline{b_{1}}) (b_{1} \vee t) \overline{\varphi_{0}} (a_{2} \vee \overline{b_{2}} \vee \overline{t}) & (S_{Q}^{c_{2}} = 11) \\ c_{3} = \overline{a_{2}} b_{1} b_{2} \vee \overline{a_{1}} b_{1} \overline{t} \vee a_{1} \overline{b_{1}} b_{2} \overline{t} \vee a_{2} b_{1} \overline{b_{2}} \overline{t} & (S_{Q}^{c_{3}} = 18) \\ c_{4} = a_{2} \overline{b_{2}} t \vee \overline{a_{1}} b_{1} t \vee \varphi_{0} & (S_{Q}^{c_{4}} = 9) \end{cases}$$

Проведем раздельную факторизацию системы.

$$\begin{cases} \varphi_{0} = a_{2} b_{2} \bar{t} & (S_{Q}^{\varphi_{0}} = 3) \\ c_{1} = a_{1} \left(\varphi_{0} b_{1} \vee \overline{b_{1}} t \right) & (S_{Q}^{c_{1}} = 8) \\ c_{2} = \left(a_{1} \vee \overline{b_{1}} \right) \left(b_{1} \vee t \right) \overline{\varphi_{0}} \left(a_{2} \vee \overline{b_{2}} \vee \overline{t} \right) & (S_{Q}^{c_{2}} = 11) \\ c_{3} = b_{1} \bar{t} \left(\overline{a_{1}} \vee a_{2} \overline{b_{2}} \right) \vee \overline{a_{2}} b_{1} b_{2} \vee a_{1} \overline{b_{1}} b_{2} \bar{t} & (S_{Q}^{c_{3}} = 17) \\ c_{4} = \varphi_{0} \vee t \left(a_{2} \overline{b_{2}} \vee \overline{a_{1}} b_{1} \right) & (S_{Q}^{c_{4}} = 10) \\ & (S_{Q} = 50) \end{cases}$$

Проведем совместную декомпозицию системы.

$$\varphi_{1} = a_{2} \overline{b_{2}}$$

$$\begin{cases}
\varphi_{1} = a_{2} \overline{b_{2}} & (S_{Q}^{\varphi_{1}} = 2) \\
\varphi_{0} = a_{2} b_{2} \overline{t} & (S_{Q}^{\varphi_{0}} = 3) \\
c_{1} = a_{1} (\varphi_{0} b_{1} \vee \overline{b_{1}} t) & (S_{Q}^{c_{1}} = 8) \\
c_{2} = (a_{1} \vee \overline{b_{1}}) (b_{1} \vee t) \overline{\varphi_{0}} (a_{2} \vee \overline{b_{2}} \vee \overline{t}) & (S_{Q}^{c_{2}} = 11) \\
c_{3} = b_{1} \overline{t} (\overline{a_{1}} \vee \varphi_{1}) \vee \overline{a_{2}} b_{1} b_{2} \vee a_{1} \overline{b_{1}} b_{2} \overline{t} & (S_{Q}^{c_{3}} = 15) \\
c_{4} = \varphi_{0} \vee t (\varphi_{1} \vee \overline{a_{1}} b_{1}) & (S_{Q}^{c_{4}} = 8) \\
(S_{Q} = 48)
\end{cases}$$

Синтез комбинационной схемы в булемов базисе

Будем анализировать схему на следующем наборе аргументов:

$$a_1 = 1, a_2 = 1, b_1 = 0, b_2 = 1, t = 1$$

Выходы схемы из таблицы истинности:

Цена схемы: $S_Q=48$. Задержка схемы: $T=4\tau$.