MAE 345 Robotics and Intelligent Systems

Assignment #3 due: October 11, 2011

The goal of this assignment is to simulate functions of a Type-2, two-link robotic manipulator using SIMULINK. The device is described in the figure below, which is Fig. 4.7 in *Introduction to Robotics*, P. J. McKerrow, Addison-Wesley, 1991, p. 188.

Equations for the manipulator's dynamics are derived in Example 7.1 (pp. 388-390, in Blackboard Course Materials). These equations lead to the following fourth-order, nonlinear state-space model:

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= \frac{1}{\cos^2 x_3} \left(x_2 x_4 \sin 2x_3 + \frac{u_1}{m l_2^2} \right) \\ \dot{x}_3 &= x_4 \\ \dot{x}_4 &= -\frac{g}{l_2} \cos x_3 - \frac{x_2}{2} \sin 2x_3 + \frac{u_2}{m l_2^2} \end{aligned}$$

The state is defined as,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} Angle of 1^{st} link, \theta_1, rad \\ Angular \ rate \ of 1^{st} link, \dot{\theta}_1, rad / sec \\ Angle of 2^{nd} link, \theta_2, rad \\ Angular \ rate \ of 2^{nd} link, \dot{\theta}_2, rad / sec \end{bmatrix}$$

and the control vector consists of the torques at each joint:

$$\left[\begin{array}{c} u_1 \\ u_2 \end{array}\right] = \left[\begin{array}{c} \tau_1 \\ \tau_2 \end{array}\right]$$

The angles, θ_1 and θ_2 (positive up), are zero when they are aligned with their respective x axes. Inertial properties are modeled simply by a point mass, m, at the distal end of the manipulator, and the length of the second link is l_2 . Thus the mass and inertia of the links are neglected. Link 2 is mounted at distance d_1 from the base.

1) Prepare a SIMULINK simulation of the system. Assign the following values to the model parameters:

$$d_1 = 1.5 \text{ m};$$
 $m = 2 \text{ kg}$
 $l_2 = 1 \text{ m};$ $g = 9.807 \text{ m/s}2$

Neglecting any implied mechanical blockage, what equilibrium torque is required to hold Link 2 at equilibrium values of θ_{2_o} (= x_3) from -90 deg to 90 deg (plot your answer)? The Link 1 position does not matter, as it merely rotates Link 2 about a vertical axis and has no effect on the equilibrium torque at Joint 2.

- Assume that the first control torque, u_1 , is driven by a sine wave, with a frequency of 3.14 rad/sec.
 - a) With $\theta_2 = x_3$ fixed at -45 deg, find the amplitude of u_1 that produces an oscillation amplitude of $\Delta\theta_1$ (= x_1) of 5 deg. Your answer may be approximate, and you may use the simulation to derive and demonstrate the result. Plot the output for a 20-sec interval.
 - b) For the same torque amplitude, show the result when the driving frequency is 6.28 rad/sec. Comment on the differences between (a) and (b).
- Assume that the second control torque, u_2 , is driven by a sine wave, with a frequency of 3.14 rad/sec, plus the fixed torque, u_{2_o} , required to hold Link 2 at its equilibrium value.
 - a) With $\theta_1 = x_1$ fixed at 0 deg, find the amplitude of u_2 that produces an oscillation amplitude of $\Delta\theta_2$ (= x_3) of 5 deg, measured about an equilibrium value of $\theta_{2_o} = -45$ deg. Your answer may be approximate, and you may use the simulation to derive and demonstrate the result. Plot the output for a 20-sec interval.
 - b) Repeat the process with $\theta_{2_o} = -1$ deg, then $\theta_{2_o} = 45$ deg. Comment on the differences between (a) and (b).

Provide some discussion of methods and results. Be sure to make your reasoning clear in presenting your results.