Dinámica de Fluidos Geofísicos

Guía 1b: Problemas cuantitativos-descriptivos de la atmósfera

Septiembre de 2024

Problema 1: Si la atmósfera estuviera compuesta de un fluido incompresible, ¿cúal sería su profundidad para dar cuenta de las condiciones medias en la superficie ($p=1013~\mathrm{hPa}$ y $\rho=1.25~\mathrm{kg}$ m⁻³)?.

Problema 2: Calcule la masa total de la atmósfera suponiendo una presión constante de 1013hP en toda la superficie de la Tierra la cual tiene un radio medio de $6370 \ km$. ¿Cuál sería la escala de altura en una atmósfera isotérmica si la densidad en la superficie es de $1.25 \ kg \ m^{-3}$?

Problema 3: En una estación ecuatorial se registró una temperatura $T=40~^{\circ}C$ y una presión $P=1000~\rm{hPa}$ mientras en la tropopausa ubicada ese día a los 10 km la temperatura fue de $-60~^{\circ}C$. ¿Cúal será el perfil de presión y densidad en la tropósfera?. Compare con los resultados que se obtendrían de suponer una temperatura constante.

Problema 4: ¿En que altura a partir de la turbopausa el H_2 es el gas dominante suponiendo una atmósfera isotérmica a 400 K y que a esa altura (en la turbopausa) la fracción molar del H_2 es de 0.0001 (Los principales constituyentes del aire seco son N_2 0.7809 fracciones molares, O_2 0.2095, Ar 0.0093 y CO_2 0.0003).

Problema 5: Describa cualitativamente cuales son las causas del perfil de temperatura medio observado en la atmósfera, T(z), el cual es mostrado en la Figura 1.

Figure 1: Perfil de temperatura medio (zonal y anual) tomado de CIRA reference.

Constantes

Constante de los gases	$R = 8.314 \text{ Jmol}^{-1} \text{K}^{-1}$
Peso molecular medio del aire	$M_a = 28.96$
Peso molecular del agua	$M_{H_2O} = 18.02$
Capacidad calorífica del aire a p constante	$C_p = 29.1 \text{ Jmol}^{-1} \text{K}^{-1}$
Calor latente de vaporización $0^{o}C$	$L_v = 4.50 \ 10^4 \ \mathrm{Jmol^{-1}}$
Calor latente de sublimación $0^{o}C$	$L_f = 6.01 \ 10^4 \ \mathrm{Jmol^{-1}}$
Presión de saturación del vapor de agua	$6.11 \text{ hPa a } 0^{o}\text{C}$

GICA © 2017