ECON 165, Review Section # 8

Daniele Caratelli

May 21, 2021

Plan for Today

- Exchange rates
- PPP
- UIP

ER and LOOP

• Nominal exchange rate: relative price of two currencies

$$1\$ = \frac{1}{S} \quad 1 \in \longleftrightarrow S \cdot 1\$ = 1 \in$$
exchange rate

- we say the \$ appreciates via à vis the \in if $\frac{1}{S}$ increases
- we say the \$ depreciates via à vis the \in if $\frac{1}{S}$ decreases
- Law of One Price (LOOP):

ER and LOOP

• Nominal exchange rate: relative price of two currencies

$$1\$ = \frac{1}{S} \quad 1 \in \longleftrightarrow S \cdot 1\$ = 1 \in$$
exchange rate

- we say the \$ appreciates via à vis the \in if $\frac{1}{S}$ increases
- we say the \$ depreciates via à vis the \in if $\frac{1}{S}$ decreases
- Law of One Price (LOOP): The price of the same good in different countries is the same when converted to the same currency
- No-arbitrage argument: if not just buy where it's cheaper, sell where it's more expensive, and make a profit!

ER and LOOP

• Nominal exchange rate: relative price of two currencies

$$1\$ = \frac{1}{S} \quad 1 \in \longleftrightarrow S \cdot 1\$ = 1 \in$$
exchange rate

- we say the \$ appreciates via à vis the \in if $\frac{1}{S}$ increases
- we say the \$ depreciates via à vis the \in if $\frac{1}{S}$ decreases
- Law of One Price (LOOP): The price of the same good in different countries is the same when converted to the same currency
- No-arbitrage argument: if not just buy where it's cheaper, sell where it's more expensive, and make a profit!
- The price of an avocado in Mexico is the same as the price of an avocado in Canada. T/F/U?

Beyond LOOP

• Suppose the average American makes \$20,000 and the average Indian makes 5,000 rupees with a exchange rate $\frac{1}{5} = 1$ (i.e. each rupee is worth 2 dollars). Does this mean that the average American is twice better off?

Beyond LOOP

- Suppose the average American makes \$20,000 and the average Indian makes 5,000 rupees with a exchange rate $\frac{1}{5} = 1$ (i.e. each rupee is worth 2 dollars). Does this mean that the average American is twice better off?
- NO! Say that the consumption good costs 0 in India and 1 the US, then the average Indian is infinitely better off!
- → Need to adjust for the coast of living, that is the cost of the consumption basket
 - Combine the prices of all consumption goods weighed by the relative importance of each good (e.g. flour weighs more than quinoa), into one price aggregators P

$\mathsf{LOOP} \to \mathsf{PPP}$

- While LOOP states that the price of the same good must be the same across countries when put in the same currency...
- ... Purchasing Power Parity (PPP) states that...

$\mathsf{LOOP} \to \mathsf{PPP}$

- While LOOP states that the price of the same good must be the same across countries when put in the same currency...
- ... Purchasing Power Parity (PPP) states that... the price of the same consumption basket must be the same across countries when put in the same currency:

$$P^H = \frac{1}{S} \cdot P^F$$

 No-arbitrage argument: if not just buy where it's cheaper, sell where it's more expensive, and make a profit!

$\mathsf{LOOP} \to \mathsf{PPP}$

- While LOOP states that the price of the same good must be the same across countries when put in the same currency...
- ... Purchasing Power Parity (PPP) states that... the price of the same consumption basket must be the same across countries when put in the same currency:

$$P^H = \frac{1}{S} \cdot P^F$$

- No-arbitrage argument: if not just buy where it's cheaper, sell where it's more expensive, and make a profit!
- What are some reasons for which this might not be true in the real world?

• Real Exchange Rate: relative price of two countries' baskets of goods

$$e = \frac{\frac{1}{S} \cdot P^F}{P^H}$$

Note: this is equal to 1 if PPP holds.

• Real Exchange Rate: relative price of two countries' baskets of goods

$$e = \frac{\frac{1}{S} \cdot P^F}{P^H}$$

Note: this is equal to 1 if PPP holds.

• Caveat: the price of consumption baskets is not always easily available for all countries. Look at change in the price of the consumption basket!

$$\Rightarrow \Delta \log \left(e_{t}
ight) \;\; = \;\; \Delta \log \left(rac{1}{S}
ight) + \pi_{t}^{F} - \pi_{t}^{H}$$

$$\Delta \log \left(e_{t}
ight) = \Delta \log \left(rac{1}{\mathcal{S}}
ight) + \pi_{t}^{F} - \pi_{t}^{H}$$

 $\Delta \log \left(e_t
ight)$ is the percent change in the real exchange rate between period t-1 and t

- $\Delta \log \left(rac{1}{5}
 ight)$ is the percent change in the nominal exchange rate between period t-1 and t
- $\pi^{ extsf{F}}_t \pi^{ extsf{H}}_t$ is the differential in inflation across the two countries

$$\Delta \log \left(e_{t}
ight) = \Delta \log \left(rac{1}{\mathcal{S}}
ight) + \pi_{t}^{F} - \pi_{t}^{H}$$

- $\Delta \log \left(e_t
 ight)$ is the percent change in the real exchange rate between period t-1 and t
- $\Delta \log \left(rac{1}{5}
 ight)$ is the percent change in the nominal exchange rate between period t-1 and t
- $\pi^{ extsf{F}}_t \pi^{ extsf{H}}_t$ is the differential in inflation across the two countries
 - Suppose Venezuela prints money and inflation hits it while the US keeps inflation under control, what happens then?

Exercise (8.3 in SUW)

Prices in US are in USD and in Argentina in pesos. Tradable goods move freely.

	United States		Argentina	
Good	Quantity	Price	Quantity	Price
Tradable	10	5	4	50
Non-Tradable	20	15	8	100

1. What is the market (nominal) exchange rate?

Exercise (8.3 in SUW)

Prices in US are in USD and in Argentina in pesos. Tradable goods move freely.

	United States		Argentina	
Good	Quantity	Price	Quantity	Price
Tradable	10	5	4	50
Non-Tradable	20	15	8	100

- 1. What is the market (nominal) exchange rate?
- 2. What are the price levels in the US (in USD) and in Argentina (in pesos)?

Exercise (8.3 in SUW)

Prices in US are in USD and in Argentina in pesos. Tradable goods move freely.

	United States		Argentina	
Good	Quantity	Price	Quantity	Price
Tradable	10	5	4	50
Non-Tradable	20	15	8	100

- 1. What is the market (nominal) exchange rate?
- 2. What are the price levels in the US (in USD) and in Argentina (in pesos)?
- 3. What is the US/Argentina real exchange rate?

• For UIP to hold, it must be that there is no free lunch:

$$\$(1+i) = \$\frac{\frac{1}{S_{t+1}}}{\frac{1}{S_t}}(1+i^*)$$

• Why might this not hold?

UIP

- Exchange rates move around (a lot!) and in unpredictable ways.
- So the exchange rate tomorrow is unknown! We get the relation known as uncovered interest parity:

$$\$(1+i) = \$\frac{\mathbb{E}\left[\frac{1}{S_{t+1}}\right]}{\frac{1}{S_t}}(1+i^*)$$

• What happens to the exchange rate when the interest rate *i* falls?

Speed Round

- Is the nominal exchange rate between Italy and Spain equal to 1? Is the real exchange rate between Italy and Spain equal to 1?.
- Deviations from PPP are mainly driven by differences tradable prices across countries.
- The interest rate in Japan is 0 percent and the interest rate in the United States is 1.75 percent. There is clearly an arbitrage opportunity.
- If there is free capital mobility between the United States and Germany, then dollar deposits in New York and Frankfurt should have the same interest rate.