ASSIGNMENT #4

- (1) Let K be a field, and R be a positively graded K-algebra. Let M be an \mathbb{N} -graded R-module.
 - (a) Show that $(R_+)M = M$ implies M = 0.
 - (b) Show that for a subset $S \subset M$, M is generated by S as an R-module if and only if $M/(R_+)M$ is generated by the images of the elements of S as a K-vector space.
- (2) Compute the dimension of each of the following rings R, where K is a field and x, y, z, u, v are indeterminates:

(a)
$$R = \frac{K[x, y, z]}{(x^3, x^2y, xyz)}$$
.

(b)
$$R = K[x^2u, xyu, y^2u, x^2v, xyv, y^2v] \subseteq K[x, y, u, v]$$

(c)
$$R = \frac{K[x, y, z, u, v]}{(x^3u^2 + y^3uv + z^3v^2)}$$
.

(d)
$$R = \frac{K[x, y, u, v]}{(u^3 - xy, v^5 - x^2u - y^3)}$$
.

- (3) Let K be a field, and $R \subseteq S$ be a module-finite inclusion of finitely generated K-algebras that are both domains². Show that for any $\mathfrak{q} \in \operatorname{Spec}(S)$, height(\mathfrak{q}) = height($\mathfrak{q} \cap R$).
- (4) Let $\psi: R \hookrightarrow S$ be an algebra-finite inclusion of rings.
 - (a) Show that if R is a domain, then $\operatorname{im}(\psi^*)$ contains a nonempty open subset of $\operatorname{Spec}(R)$.
 - (b) Show that for every minimal prime \mathfrak{p} of R, im(ψ^*) contains a nonempty open subset of $V(\mathfrak{p})$.
- (5) Let $X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix}$ be a 2×3 matrix of indeterminates over \mathbb{C} and $R = \mathbb{C}[X]$. Let I be the ideal of 2×2 minors of X. Show⁴ that $\mathbb{C}[x_{11}, x_{12} x_{21}, x_{13} x_{22}, x_{23}]$ is a Noether normalization for R/I, and conclude that the height of I is two.

¹Note that we are not assuming that M is finitely generated.

 $^{^{2}}$ Note that we are not assuming that R is normal.

³First show that each minimal prime $\mathfrak p$ is in the image of $\operatorname{im}(\psi^*)$, so $\mathfrak pS \cap R = \mathfrak p$. To see this, you may want to consider the localization of the map ψ at $(R \setminus \mathfrak p)$.

⁴Hint: You may want to use the problem (1) to show that that the map is module-finite.