Banker's Algorithm

William ZHENG

Example

- Considering a system with five processes T₀ through T₄ and three resources of type A, B, C.
- Resource type A has 10 instances, B has 5 instances and type C has 7 instances.
- Suppose at time t₀ following snapshot of the system has been taken

Example of Banker's Algorithm

• 5 threads T_0 through T_4 ;

3 resource types:

A (10 instances), B (5 instances), and C (7 instances)

• Snapshot at time T₀:

	<u>Allocation</u>	<u>Max</u>	<u>Available</u>
	ABC	ABC	ABC
T_0	010	753	3 3 2
T_1	200	3 2 2	
T_2	302	902	
T_3	211	222	
T_4	002	433	

Need Matrix

• The content of the matrix **Need** is defined to be **Max – Allocation**

	<u>Need</u>	
	A B C	
T_0	743	
T_1	122	
T_2	600	
T_3	011	
T_4	431	

```
• For i=1, Need<sub>1</sub> = (1,2,2)
```

- Finish[1] = false && Need₁ $(1,2,2) \leq Work (3,3,2)$
- So T₁ is kept in safe sequence

- Work = Work + Allocation₁
- Work = (3,3,2) + (2,0,0) = (5,3,2)
- Finish[5] = {false, true, false, false, false}

<u>Need</u>
ABC
$T_0 7 4 3$
T_1 122
T_2600
T_3^{-} 011
$T_4 4 3 1$

	<u>Allocation</u>	<u> Max</u>	<u>Available</u>
	ABC	ABC	ABC
T_{0}	010	753	3 3 2
T_1	200	3 2 2	
T_2	302	902	
T_3	211	222	
T_4	002	433	

- For i=2, Need₂ = (6,0,0)
- Finish[2] = false && Need₂ (6,0,0) > Work (5,3,2)
- So T₂ must wait

	<u>Need</u>			
	Α	В	C	
T_0	7	4	3	
T_1	1	2	2	
T_2	6	0	0	
T_3	0	1	1	
T_{Δ}	4	3	1	

	<u> Allocation</u>	<u> Max</u>	<u>Available</u>
	ABC	ABC	ABC
T_0	010	753	3 3 2
T_1	200	3 2 2	
T_2	302	902	
T_3	211	222	
T_4	002	433	

- For i=3, Need₃ = (0,1,1)
- Finish[3] = false && Need₃ $(0,1,1) \le Work (5,3,2)$
- So T₃ is kept in safe sequence

<u>Need</u>
ABC
$T_0 7 4 3$
$T_1 1 2 2$
T_2600
T ₃ 011
T_4 431

	<u>Allocation</u>	<u>Max</u>	<u>Available</u>
	ABC	ABC	ABC
T_0	010	753	3 3 2
T_1	200	3 2 2	
T_2	302	902	
T_3	211	222	
T_4	002	433	

- Work = Work + Allocation₃
- Work = (5,3,2) + (2,1,1) = (7,4,3)
- Finish[5] = {false, true, false, true, false}

<u> </u>	<u>Need</u>		
,	4	В	C
$T_{\rm o}$	7	4	3
T_1	1	2	2
T_2	6	0	0
T_3	2	1	1
T_4	4	3	1

	<u> Allocation</u>	<u>Max</u>	<u>Available</u>
	ABC	ABC	ABC
T_0	010	753	3 3 2
T_1	200	3 2 2	
T_2	302	902	
T_3	211	222	
T_4	002	433	

```
• For i=4, Need<sub>3</sub> = (4,3,1)
```

- Finish[4] = false && Need₄ $(4,3,1) \le Work (7,4,3)$
- So T₄ is kept in safe sequence

	Need		
	Α	В	C
T_0	7	4	3
T_1	1	2	2
T_2	6	0	0
T_3	0	1	1
T_4	4	3	1

	<u> Allocation</u>	<u>Max</u>	<u>Available</u>
	ABC	ABC	ABC
T_{0}	010	753	3 3 2
T_1	200	3 2 2	
T_2	302	902	
T_3	211	222	
T_4	002	433	

- Work = Work + Allocation₄
- Work = (7,4,3) + (0,0,2) = (7,4,5)
- Finish[5] = {false, true, false, true, true}

	<u>Need</u>			
	Α	В	C	
T_0	7	4	3	
T_1				
T_2	6	0	0	
T_3	0	1	1	
T_4	4	3	1	

	<u> Allocation</u>	<u> Max</u>	<u>Available</u>
	ABC	ABC	ABC
T_0	010	753	3 3 2
T_1	200	3 2 2	
T_2	302	902	
T_3	211	222	
T_4	002	4 3 3	

- For i=0, Need₀ = (7,4,3)
- Finish[0] = false && Need₀ $(7,4,3) \le Work (7,4,5)$
- So T₀ is kept in safe sequence

	<u>neea</u>			
	Α	В	C	
T_0				
T_1				
T_2	6	0	0	
T_3	0	1	1	
T_4				

	<u> Allocation</u>	<u>Max</u>	<u>Available</u>
	ABC	ABC	ABC
T_0	010	753	3 3 2
T_1	200	3 2 2	
T_2	302	902	
T_3	211	222	
T_4	002	433	

- Work = Work + Allocation₀
- Work = (7,4,5) + (0,1,0) = (7,5,5)
- Finish[5] = {true, true, false, true, true}

<u>Need</u>				
ABC				
T_0743				
T_1 122				
$T_2 600$				
$T_3 0 1 1$				
$T_4 4 3 1$				

	<u> Allocation</u>	<u>Max</u>	<u>Available</u>
	ABC	ABC	ABC
T_0	010	753	3 3 2
T_1	200	3 2 2	
T_2	302	902	
T_3	211	222	
T_4	002	433	

- For i=2, Need₂ = (6,0,0)
- Finish[2] = false && Need₂ $(6,0,0) \le Work (7,5,5)$
- So T₂ is kept in safe sequence

<u>Need</u>				
	Α	В	C	
T_0	7	4	3	
T_1				
			0	
T_3	0	1	1	
Τ.	4	3	1	

	<u>Allocation</u>	<u> Max</u>	<u>Available</u>
	ABC	ABC	ABC
T_0	010	753	3 3 2
T_1	200	3 2 2	
T_2	302	902	
T_3	211	222	
T_4	002	433	

- Work = Work + Allocation₂
- Work = (7,5,5) + (3,0,2) = (10,5,7)
- Finish[5] = {true, true, true, true}

<u>Need</u>			
ABC			
T_0 7 4 3			
T_1 1 2 2			
T_2600			
$T_3 0 1 1$			
$T_4 4 3 1$			

	<u>Allocation</u>	<u>Max</u>	<u>Available</u>
	ABC	ABC	ABC
T_{0}	010	753	3 3 2
T_{1}	200	3 2 2	
T_2	302	902	
T_3	211	222	
T_4	002	433	

Safe Sequence

• The system is in a safe state since the sequence $< T_1, T_3, T_4, T_2, T_0 >$ satisfies safety criteria

T_1 Request (1,0,2)

(1,2,2) - (1,0,2) = (0,2,0) Need

```
T<sub>1</sub> checks
Step1: Request<sub>1</sub> \leq Need<sub>1</sub> i.e.,(1,0,2) \leq (1,2,2) and
Step2: Request<sub>1</sub> \leq Available i.e.,(1,0,2) \leq (3,3,2)
According to Step3 in Resource-Request Algorithm for Process T_i
Available = Available - Request;;
Allocation; = Allocation; + Request;
Need<sub>i</sub> = Need<sub>i</sub> - Request<sub>i</sub>;
We have
(3,3,2) - (1,0,2) = (2,3,0) Available
(2,0,0) + (1,0,2) = (3,0,2) Allocation
```

T_1 Request (1,0,2)

• Determine whether this new state is safe. Execute Safety Algo

- m=3, n=5
- Work = Available = (2,3,0)
- Finish[5] = {false, false, false, false, false}

- For i=0, Need₀ = (7,4,3)
- Finish[0] = false && Need₀ (7,4,3) > Work (2,3,0)
- So T₀ has to wait

, ,	•	<u> Allocation</u>	<u>Need</u>	<u>Available</u>
		ABC	ABC	ABC
T_{0}		010	743	230
T_1		302	020	
T_2		302	600	
T_3		211	011	
T_4		002	431	

- For i=1, Need₁ = (0,2,0)
- Finish[1] = false && Need₁ $(0,2,0) \le Work (2,3,0)$
- So T₁ is kept in safe sequence

	<u>Allocation</u>	<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC
T_0	010	7 4 3	230
T_1	302	020	
T_2	302	600	
T_3	211	011	
T_4	002	431	

- Work = Work + Allocation₁
- Work = (2,3,0) + (3,0,2) = (5,3,2)
- Finish[5] = {false, true, false, false, false}

	<u> Allocation</u>	<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC
T_{0}	010	743	230
T_1	302	020	
T_2	302	600	
T_3	2 1 1	011	
T_4	002	431	

- For i=2, Need₂ = (6,0,0)
- Finish[2] = false && Need₂ (6,0,0) > Work (5,3,2)
- So T₂ must wait

	<u> Allocation</u>	<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC
T_{0}	010	743	230
T_{1}	302	020	
T_2	302	600	
T_3	211	011	
T_4	002	431	

- For i=3, Need₃ = (0,1,1)
- Finish[3] = false && Need₃ $(0,1,1) \le Work (5,3,2)$
- So T₃ is kept in safe sequence

	<u> Allocation</u>	Need	<u> Available</u>
	ABC	ABC	ABC
T_0	010	743	230
T_1	302	020	
T_2	302	600	
T_3	211	011	
T_4	002	431	

- Work = Work + Allocation₃
- Work = (5,3,2) + (2,1,1) = (7,4,3)
- Finish[5] = {false, true, false, true, false}

	<u> Allocation</u>	<u>Need</u>	<u> Available</u>
	ABC	ABC	ABC
T_{0}	010	743	230
T_1	302	020	
T_2	302	600	
T_3	211	011	
T_4	002	431	

- For i=4, Need₄ = (4,3,1)
- Finish[4] = false && Need₄ $(4,3,1) \leq Work (7,4,3)$
- So T₄ is kept in safe sequence

	<u> Allocation</u>	<u>Need</u>	<u> Available</u>
	ABC	ABC	ABC
T_0	010	743	230
T_1	302	020	
T_2	302	600	
T_3	211	011	
T_4	002	431	

- Work = Work + Allocation₄
- Work = (7,4,3) + (0,0,2) = (7,4,5)
- Finish[5] = {false, true, false, true, true}

<u> Allocation</u>	<u>Need</u>	<u> Available</u>
ABC	ABC	ABC
010	7 4 3	230
302	020	
302	600	
211	011	
002	431	
	ABC 010 302 302 211	ABC ABC 010 743 302 020 302 600 211 011

- For i=0, Need₀ = (7,4,3)
- Finish[0] = false && Need₀ $(7,4,3) \le Work (7,4,5)$
- So T₀ is kept in safe sequence

<u> Allocation</u>	<u>Need</u>	<u> Available</u>
ABC	ABC	ABC
010	743	230
302	020	
302	600	
211	011	
002	431	
	ABC 010 302 302 211	ABC 010 302 302 302 600 211 011

- Work = Work + Allocation₀
- Work = (7,4,5) + (0,1,0) = (7,5,5)
- Finish[5] = {true, true, false, true, true}

	<u> Allocation</u>	<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC
T_0	010	743	230
T_1	302	020	
T_2	302	600	
T_3	211	011	
T_4	002	431	

- For i=2, Need₂ = (6,0,0)
- Finish[2] = false && Need₂ $(6,0,0) \le Work (7,5,5)$
- So T₂ is kept in safe sequence

	<u>Allocation</u>	<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC
T_0	010	743	230
T_1	302	020	
T_2	302	600	
T_3	211	011	
T_4	002	431	

- Work = Work + Allocation₂
- Work = (7,5,5) + (3,0,2) = (10,5,7)
- Finish[5] = {true, true, true, true}

	<u> Allocation</u>	<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC
T_{0}	010	743	230
T_1	302	020	
T_2	302	600	
T_3	211	011	
T_4	002	431	

Safe Sequence

• The system is in a safe state since the sequence $<T_1$, T_3 , T_4 , T_0 , $T_2>$ satisfies safety criteria