Completely Randomized Designs: Model, Estimation, Inference

Lecture 3

Completely Randomized Designs: Model, Estimation, Inference

STAT 8050 Design and Analysis of Experiments January 16, 2020

> Whitney Huang Clemson University

Statistical Model

Randomized
Designs: Model,
Estimation, Inference

Let Y_{ij} be the random variable that represents the response for the j^{th} experimental unit to treatment i. Also, let $\mu_i = \mathrm{E}(Y_{ij})$ be the mean response for the i^{th} treatment. We have

$$Y_{ij} = \mu_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i,$$

where ϵ_{ij} is the random variable representing error associated with Y_{ij} with $E(\epsilon_{ij}) = 0$. This is called a means model.

Statistical Model

$$Y_{ij} = \mu_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i,$$

where ϵ_{ij} is the random variable representing error associated with Y_{ij} with $E(\epsilon_{ij}) = 0$. This is called a means model.

Alternatively, we could let $\mu_i = \mu + \alpha_i$, which leads to

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i.$$

This is called an effects model

Distributional Assumption on Error

In both the means model and the effects model. We further assume

$$\epsilon_{ij} \sim N(0, \sigma^2),$$

and ϵ_{ij} 's are independent to each other.

This yields

$$Y_{ij} \sim N(\mu + \alpha_i, \sigma^2)$$
 Effects Model $Y_{ij} \sim N(\mu_i, \sigma^2)$ Means Model

Distributional Assumption on Error

Randomized
Designs: Model,
Estimation, Inference

In both the means model and the effects model. We further assume

$$\epsilon_{ij} \sim N(0, \sigma^2),$$

and ϵ_{ij} 's are independent to each other.

This yields

$$Y_{ij} \sim \mathrm{N}(\mu + lpha_i, \sigma^2)$$
 Effects Model $Y_{ij} \sim \mathrm{N}(\mu_i, \sigma^2)$ Means Model

Note: We make the common variance assumption here

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \cdots, g, \quad j = 1, \cdots, n_i,$$

is overparameterized

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \cdots, g, \quad j = 1, \cdots, n_i,$$

is overparameterized

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i,$$

- is overparameterized
- is nonidentifiable

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i,$$

- is overparameterized
- is nonidentifiable

The model

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i,$$

- is overparameterized
- is nonidentifiable

Example

Suppose g = 2, then we have to esimtate μ , α_1 , and α_2 .

$$\mu=10,\alpha_1=-1,\alpha_2=1,$$
 and
$$\mu=11,\alpha_1=-2,\alpha_2=0.$$

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i,$$

- is overparameterized
- is nonidentifiable

Example

Suppose g = 2, then we have to esimtate μ , α_1 , and α_2 .

$$\mu = 10, \alpha_1 = -1, \alpha_2 = 1,$$
 and $\mu = 11, \alpha_1 = -2, \alpha_2 = 0.$

 \Rightarrow each yield $Y_{1j} \sim N(9, \sigma^2)$ and $Y_{2j} \sim N(11, \sigma^2)$

•
$$Y_{i\cdot} = \sum_{j=1}^{n_i} Y_{ij}$$
 – Total for i^{th} treatment

•
$$Y_{i\cdot} = \sum_{j=1}^{n_i} Y_{ij}$$
 – Total for i^{th} treatment

- $\bar{Y}_{i\cdot} = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij} i^{\text{th}}$ treatment mean
- $Y_{i\cdot} = \sum_{i=1}^{n_i} Y_{ij}$ Total for i^{th} treatment
- $Y_{\cdot \cdot} = \sum_{i=1}^g \sum_{j=1}^{n_i} Y_{ij} = \sum_{i=1}^j Y_{i\cdot}$ Total of all observations

- $\bar{Y}_{i\cdot} = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij} i^{\text{th}}$ treatment mean
- $Y_{i\cdot} = \sum_{i=1}^{n_i} Y_{ij}$ Total for i^{th} treatment
- $Y_{\cdot \cdot} = \sum_{i=1}^g \sum_{j=1}^{n_i} Y_{ij} = \sum_{i=1}^j Y_{i\cdot}$ Total of all observations

- $\bar{Y}_{i\cdot} = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij} i^{\text{th}}$ treatment mean
- $Y_{i\cdot} = \sum_{j=1}^{n_i} Y_{ij}$ Total for i^{th} treatment
- $Y_{\cdot \cdot} = \sum_{i=1}^g \sum_{j=1}^{n_i} Y_{ij} = \sum_{i=1}^j Y_{i\cdot}$ Total of all observations
- $\bar{Y}_{..} = \frac{1}{N} \sum_{i=1}^{g} \sum_{j=1}^{n_i} Y_{ij}$ Grand mean of all observations where $N = \sum_{i=1}^{g} n_i$

To estimate $\mu, \alpha_1, \cdots, \alpha_g$, we find the values for these parameters that minimize

$$\sum_{i=1}^g \sum_{j=1}^{n_i} e_{ij}^2 = \sum_{i=1}^g \sum_{j=1}^{n_i} \left(Y_{ij} - \left(\mu + \alpha_i \right) \right)^2.$$

$$\sum_{i=1}^g \sum_{j=1}^{n_i} e_{ij}^2 = \sum_{i=1}^g \sum_{j=1}^{n_i} \left(Y_{ij} - \left(\mu + \alpha_i \right) \right)^2.$$

To obtain the estimates, we have a system of g+1 equations with g+1 unknowns. Unfortunately, we only have g treatment means that can be used to solve this system of equations \Rightarrow no unique solution exists for $\hat{\mu}, \hat{\alpha}_1, \cdots, \hat{\alpha}_g$

To estimate $\mu, \alpha_1, \cdots, \alpha_g$, we find the values for these parameters that minimize

$$\sum_{i=1}^g \sum_{j=1}^{n_i} e_{ij}^2 = \sum_{i=1}^g \sum_{j=1}^{n_i} \left(Y_{ij} - \left(\mu + \alpha_i \right) \right)^2.$$

To obtain the estimates, we have a system of g+1 equations with g+1 unknowns. Unfortunately, we only have g treatment means that can be used to solve this system of equations \Rightarrow no unique solution exists for $\hat{\mu}, \hat{\alpha}_1, \cdots, \hat{\alpha}_g$

Typically constraints are used to obtain solutions and hence estimators.

Note: Different software uses different constraints

Constraints

Constraint	$\hat{\mu}$	\hat{lpha}_i	$\hat{\mu} + \hat{\alpha}_i$	$\hat{\alpha}_i - \hat{\alpha}_{i'}$
$\hat{\alpha}_g = 0$				
$\hat{\mu} = 0$				
$\sum_{i=1}^g n_i \hat{\alpha}_i = 0$				

Constraints

Completely						
Randomized						
Designs: Model,						
Estimation, Inference						

Constraint	$\hat{\mu}$	$\hat{\alpha}_i$	$\hat{\mu} + \hat{\alpha}_i$	$\hat{\alpha}_i - \hat{\alpha}_{i'}$
$\hat{\alpha}_g = 0$				
$\hat{\mu} = 0$				
$\sum_{i=1}^g n_i \hat{\alpha}_i = 0$				

 $\hat{\mu}$ and $\hat{\alpha}_i$ depends upon the constraint used. $\hat{\mu} + \hat{\alpha}_i$ and $\hat{\alpha}_i - \hat{\alpha}_{i'}$ are invariant to the constraint used.

Constraints

(E	Ν	13	S	, de	1	
Ū	N	т	٧	Е	R	S	т	Т	γ

Constraint	$\hat{\mu}$	\hat{lpha}_i	$\hat{\mu} + \hat{\alpha}_i$	$\hat{\alpha}_i - \hat{\alpha}_{i'}$
$\hat{\alpha}_g = 0$				
$\hat{\mu} = 0$				
$\sum_{i=1}^g n_i \hat{\alpha}_i = 0$				

 $\hat{\mu}$ and $\hat{\alpha}_i$ depends upon the constraint used. $\hat{\mu} + \hat{\alpha}_i$ and $\hat{\alpha}_i - \hat{\alpha}_{i'}$ are invariant to the constraint used.

Note: If we use the **means model**, $\hat{\mu}_i = \bar{Y}_{i\cdot}$, and we do not have these issues here, but we will have other issues later on.

$$SS_T = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{..})^2$$

This quantity can be decomposed to variation between treatments (SS_{TRT}) and variation within treatment (SS_E):

$$SS_{T} = \sum_{i=1}^{j} \sum_{j=1}^{n_{i}} (Y_{ij} - \bar{Y}_{..})^{2} = \underbrace{\sum_{i=1}^{g} n_{i} (\bar{Y}_{i.} - \bar{Y}_{..})^{2}}_{SS_{TRT}} + \underbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}} (Y_{ij} - \bar{Y}_{i.})^{2}}_{SS_{E}}$$

$$SS_T = \sum_{i=1}^g \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{..})^2 = \sum_{i=1}^g \sum_{j=1}^{n_i} Y_{ij}^2 - \frac{Y_{..}^2}{N}$$

$$SS_T = \sum_{i=1}^g \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{..})^2 = \sum_{i=1}^g \sum_{j=1}^{n_i} Y_{ij}^2 - \frac{Y_{..}^2}{N}$$

$$SS_T = \sum_{i=1}^g \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{..})^2 = \sum_{i=1}^g \sum_{j=1}^{n_i} Y_{ij}^2 - \frac{Y_{..}^2}{N}$$

$$SS_{TRT} = \sum_{i=1}^{g} n_i (\bar{Y}_{i\cdot} - \bar{Y}_{\cdot\cdot})^2 = \sum_{i=1}^{g} \frac{Y_{i\cdot}^2}{n_i} - \frac{Y_{\cdot\cdot}^2}{N}$$

$$SS_T = \sum_{i=1}^g \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{..})^2 = \sum_{i=1}^g \sum_{j=1}^{n_i} Y_{ij}^2 - \frac{Y_{..}^2}{N}$$

$$SS_{TRT} = \sum_{i=1}^{g} n_i (\bar{Y}_{i\cdot} - \bar{Y}_{\cdot\cdot})^2 = \sum_{i=1}^{g} \frac{Y_{i\cdot}^2}{n_i} - \frac{Y_{\cdot\cdot}^2}{N}$$

$$SS_T = \sum_{i=1}^g \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{..})^2 = \sum_{i=1}^g \sum_{j=1}^{n_i} Y_{ij}^2 - \frac{Y_{..}^2}{N}$$

$$SS_{TRT} = \sum_{i=1}^{g} n_i (\bar{Y}_{i.} - \bar{Y}_{..})^2 = \sum_{i=1}^{g} \frac{Y_{i.}^2}{n_i} - \frac{Y_{..}^2}{N}$$

$$SS_E = \sum_{i=1}^g \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i\cdot})^2 = \sum_{i=1}^g \sum_{j=1}^{n_i} Y_{ij}^2 - \sum_{i=1}^g \frac{Y_{i\cdot}^2}{n_i}$$

Mean Squares

Dividing mean squares by their associated degrees of freedom yield "variance-like" quantities called mean squares.

■ We have N – 1 total degrees of freedom (Why?)

■ We have N – 1 total degrees of freedom (Why?)

Dividing mean squares by their associated degrees of freedom yield "variance-like" quantities called mean squares.

- We have N-1 total degrees of freedom (Why?)
- We have ___ treatment degrees of freedom ⇒

Dividing mean squares by their associated degrees of freedom yield "variance-like" quantities called mean squares.

- We have N-1 total degrees of freedom (Why?)
- We have ___ treatment degrees of freedom ⇒

Mean Squares

Completely
Randomized
Designs: Model,
Estimation, Inference

Dividing mean squares by their associated degrees of freedom yield "variance-like" quantities called mean squares.

- We have N-1 total degrees of freedom (Why?)
- We have ___ treatment degrees of freedom ⇒

$$MS_{TRT} = \frac{SS_{TRT}}{g - 1}$$

We have ___ error degrees of freedom ⇒

Mean Squares

Completely
Randomized
Designs: Model,
Estimation, Inference

Dividing mean squares by their associated degrees of freedom yield "variance-like" quantities called mean squares.

- We have N-1 total degrees of freedom (Why?)
- We have ___ treatment degrees of freedom ⇒

$$MS_{TRT} = \frac{SS_{TRT}}{g - 1}$$

We have ___ error degrees of freedom ⇒

Mean Squares

Completely Randomized Designs: Model, Estimation, Inference

Dividing mean squares by their associated degrees of freedom yield "variance-like" quantities called mean squares.

- We have N-1 total degrees of freedom (Why?)
- We have ___ treatment degrees of freedom ⇒

$$MS_{TRT} = \frac{SS_{TRT}}{g - 1}$$

We have ___ error degrees of freedom ⇒

$$MS_E = \frac{SS_E}{N - g}$$

Note that

$$MS_E = \frac{1}{N-g} \underbrace{\sum_{i=1}^{g} (n_i - 1) s_i^2}_{SS_E}$$

provides an **unbiased** estimator of σ^2 regardless of whether the treatment population means differ or not.

$$MS_E = \frac{1}{N-g} \underbrace{\sum_{i=1}^{g} (n_i - 1) s_i^2}_{SS_E}$$

provides an **unbiased** estimator of σ^2 regardless of whether the treatment population means differ or not.

Also, it can be shown that

$$MS_{TRT} = \frac{1}{g-1} \underbrace{\sum_{i=1}^{g} n_i (\bar{Y}_{i\cdot} - \bar{Y}_{\cdot\cdot})^2}_{SS_{TRT}}$$

is an **unbiased** estimator of σ^2 if all treatment population means are equal.

Mean Squares Cont'd

lf

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_g = 0$$

is true, then MS_{TRT} and MS_E will be "similar". Otherwise, they will be different. We can show that

$$E(\mathsf{MS}_{TRT}) = \sigma^2 + \sum_{i=1}^g n_i \alpha_i^2 / (g-1) \ge \sigma^2 = E(\mathsf{MS}_E)$$

 \Rightarrow if H_0 is false, MS_{TRT} will tend to be larger than MS_E .

ANOVA Table

Source	df	SS	MS	EMS
Treatment	g – 1	SS _{TRT}	$MS_{TRT} = \frac{SS_{TRT}}{g-1}$	$\sigma^2 + \frac{\sum_{i=1}^g n_i \alpha_i^2}{g-1}$
Error	N-g	SS_E	$MS_E = \frac{SS_E}{N-g}$	σ^2
Total	<i>N</i> – 1	SS_T		

Testing for treatment effects

$$H_0: \alpha_i = 0$$
 for all i
 $H_a: \alpha_i \neq 0$ for some i

Test statistics: $F = \frac{\text{MS}_{TRT}}{\text{MS}_E}$. Under H_0 , the test statitic follows an F-distribution with g-1 and N-g degrees of freedom

Reject H_0 if

$$F_{obs} > F_{g-1,N-g;\alpha}$$

for an α -level test, $F_{g-1,N-g;\alpha}$ is the $100\times(1-\alpha)\%$ percentile of a central F-distribution with g-1 and N-g degrees of freedom.

F-Test

Completely
Randomized
Designs: Model,
Estimation, Inference

Reject H_0 if

$$F_{obs} > F_{g-1,N-g;\alpha}$$

for an α -level test, $F_{g-1,N-g;\alpha}$ is the $100 \times (1-\alpha)\%$ percentile of a central F-distribution with g-1 and N-g degrees of freedom.

P-value

The P-value of the F-test is the probability of obtaining F at least as extreme as F_{obs} , that is, $P(F > F_{obs})$.

F-Test

Completely
Randomized
Designs: Model,
Estimation, Inference

Reject H_0 if

$$F_{obs} > F_{g-1,N-g;\alpha}$$

for an α -level test, $F_{g-1,N-g;\alpha}$ is the $100 \times (1-\alpha)\%$ percentile of a central F-distribution with g-1 and N-g degrees of freedom.

P-value

The P-value of the F-test is the probability of obtaining F at least as extreme as F_{obs} , that is, $P(F > F_{obs})$.

We reject H_0 if P-value $< \alpha$.

F Distribution and the F-Test

Consider the observed F test statistic: $F_{obs} = \frac{MS_{TRT}}{MS_E}$

Completely Randomized Designs: Model, Estimation, Inference

F Distribution and the F-Test

Consider the observed F test statistic: $F_{obs} = \frac{MS_{TRT}}{MS_E}$

Should be "near" 1 if the treatment means are equal

Completely Randomized Designs: Model, Estimation, Inference

F Distribution and the F-Test

Consider the observed F test statistic: $F_{obs} = \frac{MS_{TRT}}{MS_E}$

Should be "near" 1 if the treatment means are equal

Completely Randomized Designs: Model, Estimation, Inference

- Should be "near" 1 if the treatment means are equal
- Should be "larger than" 1 if treatment means are not equal

- Should be "near" 1 if the treatment means are equal
- Should be "larger than" 1 if treatment means are not equal

- Should be "near" 1 if the treatment means are equal
- Should be "larger than" 1 if treatment means are not equal

 \Rightarrow We use the null distribution $F \sim F_{df_1=g-1,df_2=N-g}$ to quantify if F_{obs} is large enough to reject H_0

An experiment was conducted to determine if experience has an effect on the time it takes for mice to run a maze. Four treatment groups, consisting of mice having been trained on the maze one, two, three and four times were run through the maze and their times recorded. Three mice were originally assigned to each group, but it was discovered that some lab assistants, in an attempt to win a bet, gave one mouse a stimulant and another mouse a sedative. These mice were removed from the analysis.

Training runs	1	2	3	4
Times	11, 9	7,8,9	6,5,7	5,3
y_{i} .	20	24	18	8
n_i	2	3	3	2
s_i^2				

Example Cont'd

Completely Randomized Designs: Model, Estimation, Inference

Training runs	1	2	3	4
Times	11, 9	7,8,9	6,5,7	5,3
y_{i} .	20	24	18	8
n_i	2	3	3	2
s_i^2				

Write down the model.

Example Cont'd

Completely Randomized Designs: Model, Estimation, Inference

Training runs	1	2	3	4
Times	11, 9	7,8,9	6,5,7	5,3
y_{i} .	20	24	18	8
n_i	2	3	3	2
s_i^2				

Write down the model.

Example Cont'd

Training runs	1	2	3	4
Times	11, 9	7,8,9	6,5,7	5,3
y_{i} .	20	24	18	8
n_i	2	3	3	2
s_i^2				

- Write down the model.
- Fill out the ANOVA table and test whether the time to run the maze is affected by training. Use a significant level of .05.