Übungen zur Algebraischen Zahlentheorie I

Wintersemester 2021/22

Universität Heidelberg Mathematisches Institut Prof. A. Schmidt Dr. K. Hübner

Blatt 1

Abgabetermin: Freitag, 29.10.2021, 9.30 Uhr

Aufgabe 1 (6 Punkte). Seien p, q zwei verschiedene Primzahlen und N = pq. Weiterhin sei $m \in \mathbb{N}$ mit $m \equiv 1 \mod \varphi(N)$. Man zeige: Für jede ganze Zahl h gilt $h^m \equiv h \mod N$.

Aufgabe 2 (6 Punkte). Seien a, n natürliche Zahlen und $n \ge 2$, so dass $a^n - 1$ eine Primzahl ist. Man beweise, dass a = 2 und n eine Primzahl ist.

Eine Funktion $f: \mathbb{N} \to \mathbb{C}$ heißt zahlentheoretische Funktion. f heißt multiplikativ, wenn für teilerfremde $m, n \in \mathbb{N}$ stets f(mn) = f(m)f(n) gilt.

Aufgabe 3 (6 Punkte). Die Möbius-Funktion $\mu \colon \mathbb{N} \to \mathbb{C}$ ist definiert durch:

$$\mu(n) = \begin{cases} 1, & \text{wenn } n = 1, \\ (-1)^k, & \text{wenn } n \text{ ein Produkt von } k \text{ paarweise verschiedenen Primzahlen ist,} \\ 0, & \text{wenn } n \text{ durch eine Quadratzahl } > 1 \text{ teilbar ist.} \end{cases}$$

Man zeige

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{für } n = 1, \\ 0 & \text{für } n > 1, \end{cases}$$

wobei die Summation über alle natürlichen Teiler von n durchgeführt wird. Man folgere: Sind f, F zahlentheoretische Funktionen mit $F(n) = \sum_{d|n} f(d) \ \forall \ n \in \mathbb{N}$, so gilt

$$f(n) = \sum_{d|n} F(d)\mu\left(\frac{n}{d}\right) \quad \forall \ n \in \mathbb{N}$$
 (Möbius'sche Umkehrformel).

 ${\bf Aufgabe}~{\bf 4}$ (6 Punkte). Seien f und g multiplikative zahlentheoretische Funktionen. Man zeige, dass die Funktion

$$(f \star g)(n) := \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

wieder multiplikativ ist.

Die Sicherheit des Verfahrens beruht auf der Tatsache, dass die Bestimmung von d als Inversem von e in $(\mathbb{Z}/N\mathbb{Z})^{\times}$ die Kenntnis von $\varphi(N)$ und damit der Primfaktorzerlegung von N erfordert. Für genügend große N ist die Faktorisierung mit den heute bekannten Methoden aber praktisch unmöglich.

[†]Auf dieser einfachen Tatsache basiert der sogenannte RSA-Verschlüsselungsalgorithmus. Bei diesem hat jeder Teilnehmer einen öffentlichen Schlüssel (e,N), bei dem N das Produkt zweier verschiedener Primzahlen und $e \in \mathbb{N}$ teilerfremd zu $\varphi(N)$ ist, und einen privaten Schlüssel (d,N), wobei $d \in \mathbb{N}$, $de \equiv 1 \mod \varphi(N)$ gilt. Hat man eine Nachricht in Form einer natürlichen Zahl a < N, die man diesem Teilnehmer verschlüsselt zukommen lassen will, so berechnet man $b = a^e \mod N$ und sendet dies an den Teilnehmer. Dieser kann es dann mit seinem privaten Schlüssel dechiffrieren, indem er $b^d \equiv a \mod N$ berechnet. (Größere Nachrichten werden in kleine Pakete zerteilt und verschlüsselt).