■ 분산분석 검진(ANOVA Diagnostics)

- 기본가정: $\varepsilon_{ij} \sim \text{iid } N(0,\sigma^2) \hookrightarrow \text{ 잔차분석(residual analysis)}$
 - 등분산성
 - 독립성 ⇨ 잔차들 간에는 항상 상관관계가 존재
 - 정규성
 - 이상치 유무
- 잔차그림
 - 잔차 vs 적합값
 - 정규확률그림
 - Box-plot
- 수치적 방법

● 잔차

$$\circ \quad e_{ij} = Y_{ij} - \hat{Y}_{ij} = Y_{ij} - \overline{Y}_{i.}$$

 \circ studentized 잔차 : $r_{ij} = \frac{e_{ij}}{\widehat{se(e_{ij})}}$

$$- \ e_{ij} = \frac{n_i - 1}{n_i} \ Y_{ij} - \frac{1}{n_i} \sum_{k \neq j} Y_{ik}$$

-
$$Var(e_{ij}) = \frac{(n_i - 1)^2}{n_i^2} \sigma^2 + \frac{n_i - 1}{n_i^2} \sigma^2 = \frac{n_i - 1}{n_i} \sigma^2$$

-
$$\widehat{se(e_{ij})} = \sqrt{\frac{(n_i - 1)MSE}{n_i}}$$

 \circ studentized deleted 잔차 : $t_{ij} = e_{ij} \bigg[\frac{N-p-1}{SSE(1-1/n_i)-e_{ij}^2} \bigg]^{1/2}$

사료 (평균)	L	내용		1	2	3	4	5	6	7	8	9	10
(0 =)	관측집	 가 삸		90	76	90	64	86	51	72	90	95	78
1	잔차			10.8	-3.2	10.8	-15.2	6.8	-28.2	-7.2	10.8	15.8	-1.2
(79.2)	stud.	R.		0.76	-0.23	0.76	-1.07	0.48	-1.99	-0.51	0.76	1.11	-0.08
	stud.	Del.	R.	0.76	-0.22	0.76	-1.08	0.48	-2.09	-0.51	0.76	1.12	-0.08
2 (100)	관측	가 삸		73	102	118	104	81	107	100	87	117	111
	잔차			-27	2	18	4	-19	7	0	-13	17	11
	stud.	R.		-1.90	0.14	1.27	0.28	-1.34	0.49	0.00	-0.92	1.20	0.78
	stud.	Del.	R.	-1.99	0.14	1.29	0.28	-1.36	0.49	0.00	-0.92	1.21	0.78
3 (83.9)	관측집	가 삸		107	95	97	80	98	74	74	67	89	58
	잔차			23.1	11.1	13.1	-3.9	14.1	-9.9	-9.9	-16.9	5.1	-25.9
	stud.	R.		1.63	0.78	0.92	-0.27	0.99	-0.70	-0.70	-1.19	0.36	-1.83
	stud.	Del.	R.	1.68	0.78	0.93	-0.27	1.00	-0.70	-0.70	-1.21	0.36	-1.90
	관측집	가 삸		98	74	56	111	95	88	82	77	86	92
4	잔차			12.1	-11.9	-29.9	25.1	9.1	2.1	-3.9	-8.9	0.1	6.1
(85.9)	stud.	R.		0.85	-0.84	-2.11	1.77	0.64	0.15	-0.27	-0.63	0.01	0.43
	stud.	Del.	R.	0.86	-0.84	-2.24	1.84	0.64	0.15	-0.27	-0.63	0.01	0.43

□ 등분산 검정

- 반복수가 같은 경우 동일한 분산을 가진다는 가정을 약간 어기는 경우 분산분석 방법은 robust함
- 반복수가 다르거나 어떤 한 분산이 다른 분산들보다 상당히 큰 경우 분산분석 방법은 robust하지 않음 ⇒ 분산들이 같은지 다른지를 검정필요
- ullet 가설: H_0 : $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_p^2$ VS H_1 : 최소한 하나 이상의 분산은 다름

○ Hartley 검정

- 동일 반복수 *n*
- 검정통계량 : $H^* = \frac{\max(S_i^2)}{\min(S_i^2)} \sim H(p, n-1)$

$$\circ \quad S_i^2 = \sum (Y_{ij} - \overline{Y}_{i.})^2 / (n_i - 1)$$

• 기각역 : $H^* > H(1-\alpha, p, n-1)$

● 쥐 성장량

$$\circ$$
 $S_1^2 = 192.84$, $S_2^2 = 229.11$, $S_3^2 = 246.77$, $S_4^2 = 225.66$

○
$$H = \frac{246.77}{192.84} = 1.280$$
 < $H(0.95,4,9) = 6.31$ ⇒ 등분산을 만족함

○ Brown-Forsythe 검정

● 절대편차를 먼저 계산

$$D_{ij} = \left| \ Y_{ij} - \widetilde{Y}_i \right|$$

- \circ \widetilde{Y}_i : i 번째 그룹의 중앙값
- ullet 검정통계량 : $F_{BF}^* = rac{MSTR}^*{MSE}^* \simeq F_{p-1,N-p}$
- 쥐 성장량
 - \circ 중앙값: $\widetilde{Y}_{i.}=82$, $\widetilde{Y}_{2.}=103$, $\widetilde{Y}_{3.}=84.5$, $\widetilde{Y}_{4.}=87$
 - $\circ \quad \overline{D}_{1.} = 11 \; , \; \; \overline{D}_{2.} = 11.4 \; , \; \; \overline{D}_{3.} = 13.3 \; , \; \; \overline{D}_{4.} = 10.9 \; , \; \; \overline{D}_{..} = 11.65 \;$
 - TSS=2804.6, SSTR=37.7 , SSE=2766.9
 - $\circ MSTR^* = 12.567, MSE^* = 76.858 \implies F_{BF}^* = 0.164$

○ Bartlett 검정

• 검정통계량 : $\chi_0^2 = 2.3026 \frac{q}{c} \sim \chi_{p-1}^2$

$$q = (N-p)\log_{10}MSE - \sum_{i=1}^{p} (n_i - 1)\log_{10}S_i^2$$

$$\circ c = 1 + \frac{1}{3(p-1)} \left\{ \sum_{i=1}^{p} \frac{1}{n_i - 1} - \frac{1}{N-p} \right\}$$

- Bartlett's 검정 통계량은 **정규 가정**에 매우 민감하기 때문에 정규 가정이 의심스러우면 사용할 수 없음
- 쥐 성장량

$$q = 0.0614$$
, $c = 1.0463$ $\Rightarrow \chi_0^2 = 0.135$

□ 정규성 검정

- Shapiro-Wilk test, Kolmogorov-Smirnov test, Cramer-von Mises test,
 Anderson-Darling test
- Jarque-Bera test

$$JB = \frac{n}{6} \left(b_1 + \frac{1}{4} (b_2 - 3)^2 \right)$$

- \circ $\sqrt{b_1}$: 왜도(skewness)
- b₂: 첨도(kurtosis)

□ 문제 발생 시 해결방안

① 변환(transformation)

- 분산상수화변환(variance stablizing transformation, 분산안정화 변화)
 - \circ 잔차그림에서 잔차의 표준편차(분산)이 \hat{Y} 의 값과 연관성을 보이는 경우
 - 분산을 상수화시키기 위한 변환을 찾는 방법
 - $\sigma_i^2 = Var(Y_{ij})$ 와 $\mu_i = E(Y_{ij})$ 사이에 함수관계가 존재하는 경우:

$$\sigma_i^2 = f(\mu_i)$$

- 예: $\sigma_i^2=c\,\mu_i^2$ $(\sigma_i=c\mu_i)$, $\sigma_i^2=c\mu_i$ $(\sigma_i=\sqrt{\mu_i})$
- \circ $g(Y_{ij})$ 의 분산이 μ_i 에 영향을 받지 않게 하는 함수 $g(\,ullet\,)$ 를 찾는 방법
 - 함수 $g(Y_{ij})$ 를 μ_i 에 대한 1차 테일러전개

$$g(Y_{ij}) \simeq g(\mu_i) + (Y_{ij} - \mu_i)g'(\mu_i)$$

- $g(Y_{ij})$ 의 분산

$$Var\left[g(Y_{ij})\right] \simeq Var\left[g(\mu_i) + (Y_{ij} - \mu_i)g'(\mu_i)\right]$$

$$= \{g'(\mu_i)\}^2 \ Var(Y_{ij}) = \{g'(\mu_i)\}^2 f(\mu_i)$$

- $g(Y_{ij})$ 의 분산이 μ_i 와 무관한 상수가 되려면 $c\simeq \{g'(\mu_i)\}^2 f(\mu_i)$

$$\Rightarrow g'(\mu_i)^2 \propto \frac{1}{f(\mu_i)} \Rightarrow g'(\mu_i) \propto \frac{1}{\sqrt{f(\mu_i)}}$$

$$\Rightarrow$$
 변환함수: $g(x) \propto \int \frac{1}{\sqrt{f(x)}} dx$

- \circ $\sigma_i^2 = c \mu_i^2$ $(\sigma_i = c \mu_i)$ \Rightarrow 자연로그변환인 $\log(Y_{ij})$ 를 이용

- Box-Cox transformation (1964)
 - 최대가능도 추정에 의한 변환선택

$$g(x,\lambda) = \begin{cases} (x^{\lambda} - 1)/\lambda, & \lambda \neq 0 \\ \log(x), & \lambda = 0. \end{cases}$$

Yeo-Johnson transformation (2000)

$$g(x,\lambda) = \begin{cases} ((x+1)^{\lambda} - 1)/\lambda, & \lambda \neq 0, & x \geq 0 \\ \log(x+1), & \lambda = 0, & x \geq 0 \\ -((-x+1)^{2-\lambda} - 1)/(2-\lambda), & \lambda \neq 2, & x < 0 \\ -\log(-x+1), & \lambda = 2, & x < 0. \end{cases}$$

Modulus transformation (2000)

$$g(x,\lambda) = \begin{cases} sign(x) \frac{(|x|+1)^{\lambda} - 1}{\lambda}, & \lambda \neq 0 \\ sign(x)log(|x|+1), & \lambda = 0. \end{cases}$$

② 일반화선형모형(generalized linear models, GLM)

- Y_{ij} 의 분포 지수족(exponential family)
 - 정규분포, 이항분포, 음의 이항분포, 포아송분포, 감마분포(지수분포), ...
- 구조식
 - $\circ \quad E(Y_{ij}) = \mu_i$
 - $\circ g(\mu_i) = \boldsymbol{x}_{ij}^T \boldsymbol{\beta}$
 - g: 연결함수(link function)
 - logit link: $\log(\mu_i/(1-\mu_i))$, $0<\mu_i<1$
 - log link: $\log(\mu_i)$, $\mu_i > 0$
- 최대가능도법을 이용하여 모수추정

③ 비모수적 방법

- 자료의 값 대신 순위(rank)를 사용
 - 자료를 정렬한 후 해당 자료의 순위를 구함
 - tie가 있는 경우 순위의 중간값 사용

$$\circ \quad TSS = \sum_{i} \sum_{j} \left(R_{ij} - \overline{R}_{..} \right)^{2}$$

$$\circ SSE = \sum_{i} \sum_{j} (R_{ij} - \overline{R}_{i.})^{2}$$

$$\circ SSTR = \sum_{i} n_{i} (\overline{R}_{i.} - \overline{R}_{..})^{2}$$

○ 검정통계량

$$F_0 = \frac{SSTR/(p-1)}{SSE/(N-p)} = \frac{MSTR}{MSE} \sim F_{p-1,N-p}$$