Clase 28

IIC 1253

Prof. Cristian Riveros

Outline

Grafos

Propiedades

Colorabilidad

Outline

Grafos

Propiedades

Colorabilidad

Definición

Un grafo (no dirigido) G es un par (V, E) tal que:

- V ≠ Ø es el conjunto de vértices (o nodos) y
- $E \subseteq 2^V$ es el conjunto de aristas (o conexiones) tal que:

|e| = 2 para todo $e \in E$.

Ejemplo

- $V = \{a, b, c, d, e, f\}$
- $E = \{\{a,b\}, \{a,c\}, \{a,d\}, \{b,e\}, \{c,d\}, \{d,e\}, \{d,f\}, \{e,f\}\}\}$

Definición

Un grafo (no dirigido) G es un par (V, E) tal que:

- $V \neq \emptyset$ es el conjunto de vértices (o nodos) y
- $E \subseteq 2^V$ es el conjunto de aristas (o conexiones) tal que:

$$|e| = 2$$
 para todo $e \in E$.

Ejemplo

1

3 4

- $V = \{1, 2, 3, 4\}$
- \blacksquare $E = \emptyset$

Definición

Un grafo (no dirigido) G es un par (V, E) tal que:

- V ≠ Ø es el conjunto de vértices (o nodos) y
- $E \subseteq 2^V$ es el conjunto de aristas (o conexiones) tal que:

$$|e| = 2$$
 para todo $e \in E$.

Ejemplo

- $V = \{a, b, c, d\}$

¿cuál es el máximo de aristas que puede tener un grafo con n vértices?

Definición

Un grafo (no dirigido) G es un par (V, E) tal que:

- V ≠ Ø es el conjunto de vértices (o nodos) y
- $E \subseteq 2^V$ es el conjunto de aristas (o conexiones) tal que:

$$|e| = 2$$
 para todo $e \in E$.

Notar que un grafo no dirigido . . .

- No tiene aristas que parte y terminan en el mismo vértice (loops).
- Aristas no tiene dirección.
- A lo más una arista por par de vértices.

Grafos dirigidos o con múltiples aristas también son estudiados.

Familias de grafos

Definiciones

■ Se define el grafo **completo** (clique) de *n* vértices como $K_n = (V, E)$ tal que |V| = n y $E = \{\{u, v\} \mid u, v \in V \land u \neq v\}$.

Familias de grafos

Definiciones

- Se define el grafo **completo** (clique) de *n* vértices como $K_n = (V, E)$ tal que |V| = n y $E = \{\{u, v\} \mid u, v \in V \land u \neq v\}$.
- Se define la linea de n vértices como $L_n = (V, E)$ tal que $V = \{0, \ldots, n-1\}$ y $E = \{\{i, i+1\} \mid 0 \le i < n-1\}$.

Ejemplos

$$L_5: 0 - 1 - 2 - 3 - 4$$

$$L_2: 0 - 1$$

$$L_8: 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7$$

Familias de grafos

Definiciones

- Se define el grafo **completo** (clique) de *n* vértices como $K_n = (V, E)$ tal que |V| = n y $E = \{\{u, v\} \mid u, v \in V \land u \neq v\}$.
- Se define la linea de n vértices como $L_n = (V, E)$ tal que $V = \{0, \ldots, n-1\}$ y $E = \{\{i, i+1\} \mid 0 \le i < n-1\}$.
- Se define el ciclo de n vértices como $C_n = (V, E)$ tal que $V = \{0, \ldots, n-1\}$ y $E = \{\{i, (i+1) \bmod n\} \mid 0 \le i < n-1\}$.

Outline

Grafos

Propiedades

Colorabilidad

No! Los tres grafos son distintos, pero tienen "la misma forma".

¿cómo se define que dos grafos tienen "la misma forma"?

Definición

Dos grafos $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ se dicen **isomorfos** si existe una biyección $f : V_1 \rightarrow V_2$ tal que:

$$\mathsf{para} \ \mathsf{todo} \ u,v \in V_1 \text{:} \quad \{u,v\} \in E_1 \quad \mathsf{ssi} \quad \{f(u),f(v)\} \in E_2$$

Definición

Dos grafos $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ se dicen **isomorfos** si existe una biyección $f : V_1 \rightarrow V_2$ tal que:

para todo
$$u, v \in V_1$$
: $\{u, v\} \in E_1$ ssi $\{f(u), f(v)\} \in E_2$

Escribiremos que $G_1 \cong G_2$ si G_1 y G_2 son isomorfos.

¿qué propiedad cumple la relación $G_1 \cong G_2$?

- Refleja. ✓
- 2. Simétrica. ✓
- 3. Transitiva.

$G_1 \cong G_2$ es una relación de equivalencia entre grafos!

¿cuáles son las clases de equivalencia de $G_1 \cong G_2$?

Definición

Dos grafos $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ se dicen **isomorfos** si existe una biyección $f: V_1 \rightarrow V_2$ tal que:

para todo
$$u, v \in V_1$$
: $\{u, v\} \in E_1$ ssi $\{f(u), f(v)\} \in E_2$

Escribiremos que $G_1 \cong G_2$ si G_1 y G_2 son isomorfos.

Un propiedad de G se dice que es **preservada bajo isomorfismo** si G tiene la propiedad y $G \cong G'$, entonces G' también tiene la propiedad.

¿qué propiedades de un grafo son preservadas bajo isomorfismo?

Vértices y grados

Definiciones

Para un grafo G = (V, E) y dos vértices $u, v \in V$:

Decimos que *u* y *v* son adyacentes si estan conectados por una arista.

$$u$$
 es adyacente a v ssi $\{u, v\} \in E$

■ El grado de *u* se define como la cantidad de nodos adyacentes a *u*.

$$deg(u) = |\{v \in V \mid \{u, v\} \in E\}|$$

Ejemplos

$$deg(a) = ?$$
 $deg(d) = ?$ $deg(f) = ?$

Vértices y grados

Definiciones

Para un grafo G = (V, E) y dos vértices $u, v \in V$:

Decimos que u y v son adyacentes si estan conectados por una arista.

$$u$$
 es adyacente a v ssi $\{u, v\} \in E$

E | El grado de u se define como la cantidad de nodos adyacentes a u.

$$deg(u) = |\{v \in V \mid \{u, v\} \in E\}|$$

Lema (Handshaking)

- Para todo G = (V, E) se cumple que: $\sum_{v \in V} deg(v) = 2 \cdot |E|$.
- Todo grafo tiene una cantidad par de vértices con grado impar.

Demostración (ejercicio).

Vértices y grados

Definiciones

Para un grafo G = (V, E) y dos vértices $u, v \in V$:

Decimos que u y v son adyacentes si estan conectados por una arista.

$$u$$
 es adyacente a v ssi $\{u, v\} \in E$

 \blacksquare El grado de u se define como la cantidad de nodos adyacentes a u.

$$deg(u) = |\{v \in V \mid \{u, v\} \in E\}|$$

¿qué propiedades son preservadas bajo isomorfismo?

- 1. El vértices a del grafo tiene grado 5.
- 2. Hay un vértice del grafo que tiene grado 5.
- 3. Los vértices par del grafo tiene grado par.
- 4. Hay una cantidad par de vertices que tiene grado par.

Subgrafos

Definición

Un grafo G' = (V', E') es un subgrafo de G = (V, E) si $V' \subseteq V$ y $E' \subseteq E$.

¿cuáles son los posibles subgrafos del grafo?

Subgrafos

Definición

Un grafo G' = (V', E') es un subgrafo de G = (V, E) si $V' \subseteq V$ y $E' \subseteq E$.

Si G' es subgrafo de G lo denotaremos por $G' \subseteq G$.

¿qué propiedades cumple la relación $G' \subseteq G$?

¿qué propiedades son preservadas bajo isomorfismo?

- 1. K_5 es subgrafo de G.
- 2. L_{10} es subgrafo de G.
- 3. G' es subgrafo de G.

Ninguna de ellas es preservada bajo isomorfismo!

Subgrafos isomorfos

Definición

Un grafo G' = (V', E') es un subgrafo isomorfo de G = (V, E) si existe un grafo $G'' \subseteq G$ y G' es isomorfo a G''.

Si G' es subgrafo isomorfo de G lo denotaremos por $G' \lesssim G$.

¿qué propiedades cumple la relación $G' \lesssim G$?

¿qué propiedades son preservadas bajo isomorfismo?

- 1. K_5 es subgrafo isomorfo de G.
- 2. L_{10} es subgrafo isomorfo de G.
- 3. G' es subgrafo **isomorfo** de G.

Desde ahora en adelante nos interesa las propiedades de los grafos que son **preservadas bajo isomorfismo**.

Outline

Grafos

Propiedades

Colorabilidad

¿cómo programar los exámenes de fin de semestre?

Debemos programar los exámenes de:

Programación Avanzada (PA), Matemáticas Discretas (MD), Arquitectura de Computadores (AC), Bases de Datos (BD) y Estructuras de Datos (ED)

- Los exámenes pueden realizarse solo en las mañanas.
- No puede haber un alumno que tenga dos exámenes en un mismo día.

¿cuánto es el mínimo de días que necesitamos?

¿cómo programar los exámenes de fin de semestre?

Grafo de conflictos:

"una arista entre los cursos c_1 y c_2 si ambos cursos tienen algún alumno en común."

¿podemos hacer los exámenes en 5 días? ¿en 4 días? ¿en 3 días?

Programar los exámenes en colores . . .

Los colores en el grafo deben cumplir que:

"si c_1 esta conectado con c_2 , entonces c_1 y c_2 tienen colores distintos."

Cantidad de colores = Cantidad de días para exámenes.

¿es posible colorear el grafo con menos de 3 colores?

Coloración de un grafo

Definición

Una k-coloración de un grafo G = (V, E) es una función:

$$C: V \to \{0, \ldots, k-1\}$$

tal que para todo $u, v \in V$, si $\{u, v\} \in E$, entonces $C(u) \neq C(v)$.

Ejemplo

Coloración de un grafo

Definición

Una k-coloración de un grafo G = (V, E) es una función:

$$C: V \to \{0,\ldots,k-1\}$$

tal que para todo $u, v \in V$, si $\{u, v\} \in E$, entonces $C(u) \neq C(v)$.

El mínimo valor k tal que G = (V, E) tiene una k-coloración se define como el número cromático de G y lo denotaremos por $\chi(G)$.

¿cuál es el número cromático de . . .

- \blacksquare el grafo completo K_n ?
- el grafo línea *L*_n?
- el grafo ciclo *C_n*?

¿cómo encontramos el número cromático de un grafo?

Encontrar el número cromático de un grafo es un problema díficil!

(NP-completo)

Teorema

Un grafo G con grado máximo a lo más k es (k+1)-coloreable.

Demostración

Sea un $k \ge 0$. Por inducción (simple) sobre el **número de vértices** n:

P(n) := todo grafo G con n vértices y grado máximo a los más k es (k+1)-coloreable.

(Ejercicio: termine la demostración.)

¿es posible que un grafo tenga grado máximo k, pero sea coloreable con menos de k colores?