

Máster universitario de Ciencia de Datos

Práctica 2

Diseño y uso de bases de datos analíticas – identificación, diseño y desarrollo de los procesos ETL.

Autor:

Mario Ubierna San Mamés

Índice de Contenido

Índice de Co	ntenido	3
Índice de tab	olas	5
Índice de ilus	straciones	6
1. Introdu	cción	11
1.1. Pre	esentación	11
1.2. Des	scripción	11
2. Identific	cación de los procesos ETL	13
2.1. Blo	que IN	13
2.2. Blo	que TR	15
2.2.1.	Dimensiones	15
2.2.2.	Hechos	15
3. Diseño	y desarrollo de los procesos ETL	17
3.1. Cre	eación de tablas	17
3.1.1.	Tablas del área intermedia (staging area)	17
3.1.2.	Tablas de las dimensiones	21
3.1.3.	Tablas de hechos	23
3.2. Blo	que IN	24
3.2.1.	Definición de variables de entorno	24
3.2.2.	Conexión base de datos SQL Server	25
3.2.3.	Transformación IN_DENUNCIAS_INFRACCIONES	26
3.2.4.	Transformación IN_POBLACION	31
3.2.5.	Transformación IN_MOVILIDAD	34
3.2.6.	Transformación IN_AGLOMERACION	39

	3.2.7.	Transformación IN_LLAMADAS112	46
	3.2.8.	Transformación IN_FECHAS	. 52
3	.3. Blo	que TR Dimensiones	61
	3.3.1.	Transformación TR_DIM_GRUPO_EDAD	61
	3.3.2.	Transformación TR_DIM_Medicion	64
	3.3.3.	Transformación TR_DIM_TIPOLOGIA	68
	3.3.4.	Transformación TR_DIM_AMBITO_GEOGRAFICO	. 72
	3.3.5.	Transformación TR_DIM_FECHA	. 77
4.	Bibliogra	afía	84

Índice de tablas

Tabla 1 - Procesos ETL Bloque IN.	14
Tabla 2 - Procesos ETL Bloque TR Dimensiones	15
Tabla 3 - Procesos ETL Bloque TR Hechos	16

Índice de ilustraciones

Ilustración 1 - STG_Denuncias_Infracciones
Ilustración 2 - STG_Poblacion
Ilustración 3 - STG_Llamadas112
Ilustración 4 - STG_Movilidad
Ilustración 5 - STG_Evitar_Aglomeracion
Ilustración 6 - STG_Fechas
Ilustración 7 - Tablas de staging area
Ilustración 8 - DIM_Ambito_Geografico21
Ilustración 9 - DIM_Fecha
Ilustración 10 - DIM_Grupo_Edad
Ilustración 11 - DIM_Medicion
Ilustración 12 - DIM_Tipologia22
Ilustración 13 - Tablas de dimensiones
Ilustración 14 - FACT_Llamadas11223
Ilustración 15 - FACT_Mediciones
Ilustración 16 - Alter table hechos
Ilustración 17 - Tablas de hechos
Ilustración 18 - Variables de entorno
Ilustración 19 - Conexión a la base de datos
Ilustración 20 - IN_DENUNCIAS_INFRACCIONES
Ilustración 21 - Lectura IN_DENUNCIAS_INFRACCIONES
Ilustración 22 - Lectura IN_DENUNCIAS_INFRACCIONES
Ilustración 23 - Lectura IN_DENUNCIAS_INFRACCIONES
Ilustración 24 - Mapeo Valores IN_DENUNCIAS_INFRACCIONES
Ilustración 25 - Normalización Strings IN_DENUNCIAS_INFRACCIONES 29

Ilustración 26 - Ordenación IN_DENUNCIAS_INFRACCIONES	. 29
Ilustración 27 - Guardado IN_DENUNCIAS_INFRACCIONES	. 30
Ilustración 28 - Métricas IN_DENUNCIAS_INFRACCIONES	. 30
Ilustración 29 - IN_POBLACION	. 31
Ilustración 30 - Lectura IN_POBLACION	. 31
Ilustración 31 - Separación Campos IN_POBLACION	. 32
Ilustración 32 - Mapeo Valores IN_POBLACION	. 32
Ilustración 33 - Normalización Strings IN_POBLACION	. 33
Ilustración 34 - Guardado IN_POBLACION	. 33
Ilustración 35 - Guardado IN_POBLACION	. 34
Ilustración 36 - Métricas IN_POBLACION	. 34
Ilustración 37 - IN_MOVILIDAD	. 35
Ilustración 38 - Lectura IN_MOVILIDAD	. 35
Ilustración 39 - Mapeo Valores IN_MOVILIDAD	. 36
Ilustración 40 - Normalización IN_MOVILIDAD	. 36
Ilustración 41 - Replace IN_MOVILIDAD	. 37
Ilustración 42 - Select Values IN_MOVILIDAD.	. 37
Ilustración 43 - Guardado IN_MOVILIDAD	. 38
Ilustración 44 - Guardado IN_MOVILIDAD	. 39
Ilustración 45 - Métricas IN_MOVILIDAD	. 39
Ilustración 46 - IN_AGLOMERACION	40
Ilustración 47 - Lectura IN_AGLOMERACION	40
Ilustración 48 - Lectura IN_AGLOMERACION	41
Ilustración 49 - Lectura IN_AGLOMERACIONES	41
Ilustración 50 - Mapeo Valores IN_AGLOMERACION	42
Ilustración 51 - Replace IN_AGLOMERACION	42
Ilustración 52 - Split IN_AGLOMERACION	43
Ilustración 53 - Normalización Strings IN_AGLOMERACION	43
Ilustración 54 - Replace IN_AGLOMERACION	44
Ilustración 55 - Normalización Filas IN_AGLOMERACION	44
Ilustración 56 - Guardado IN_AGLOMERACIONES	45
Ilustración 57 - Guardado IN_AGLOMERACIONES	46

Ilustración 58 - Métricas IN_AGLOMERACION	. 46
Ilustración 59 - IN_LLAMADAS112	. 47
Ilustración 60 - Lectura IN_LLAMADAS112	. 47
Ilustración 61 - Lectura IN_LLAMADAS112	. 48
Ilustración 62 - Lectura IN_LLAMADAS112	. 48
Ilustración 63 - Mapeo Valores IN_LLAMADAS112	. 49
Ilustración 64 - Mapeo Valores IN_LLAMADAS112	. 50
Ilustración 65 - Normalización IN_LLAMADAS112	. 50
Ilustración 66 - Guardado IN_LLAMADAS112	. 51
Ilustración 67 - Guardado IN_LLAMADAS112	. 52
Ilustración 68 - Métricas IN_LLAMADAS112	. 52
Ilustración 69 - IN_FECHAS.	. 53
Ilustración 70 - Borrado IN_FECHAS.	. 53
Ilustración 71 - Lectura IN_FECHAS	. 54
Ilustración 72 - Añadimos Constante IN_FECHAS	. 54
Ilustración 73 - Concatenación IN_FECHAS	. 55
Ilustración 74 - Conversión IN_FECHAS.	. 55
Ilustración 75 - Guardado IN_FECHAS	. 56
Ilustración 76 - Lectura IN_FECHAS	. 57
Ilustración 77 - Guardado IN_FECHAS	. 58
Ilustración 78 - Lectura IN_FECHAS	. 59
Ilustración 79 - Guardado IN_FECHAS	. 60
Ilustración 80 - Métricas IN_FECHAS	. 60
Ilustración 81 - TR_DIM_GRUPO_EDAD	. 61
llustración 82 - Borrado TR_DIM_GRUPO_EDAD	. 61
Ilustración 83 - Grid TR_DIM_GRUPO_EDAD	. 62
Ilustración 84 - Grid TR_DIM_GRUPO_EDAD	. 62
Ilustración 85 - Normalización TR_DIM_GRUPO_EDAD	. 62
Ilustración 86 - Secuenciación TR_DIM_GRUPO_EDAD	. 63
Ilustración 87 - Guardado TR_DIM_GRUPO_EDAD	. 63
Ilustración 88 - Guardado TR_DIM_GRUPO_EDAD	. 64
llustración 89 - Métricas TR_DIM_GRUPO_EDAD	. 64

Ilustración 90 - TR_DIM_MEDICION	65
Ilustración 91 - Borrado TR_DIM_MEDICION	65
Ilustración 92 - Grid TR_DIM_DIM_MEDICION	65
Ilustración 93 - Grid TR_DIM_MEDICION	66
Ilustración 94 - Normalización TR_DIM_MEDICION	66
Ilustración 95 - Secuenciación TR_DIM_MEDICION	67
Ilustración 96 - Guardado TR_DIM_MEDICION	67
Ilustración 97 - Guardado TR_DIM_MEDICION	68
Ilustración 98 - Métricas TR_DIM_MEDICIONES.	68
Ilustración 99 - TR_DIM_TIPOLOGIA	69
Ilustración 100 - Borrado TR_DIM_TIPOLOGIA	69
Ilustración 101 - Lectura TR_DIM_TIPOLOGIA	70
Ilustración 102 - Secuenciación TR_DIM_TIPOLOGIA	71
Ilustración 103 - Guardado TR_DIM_TIPOLOGIA	71
Ilustración 104 - Guardado TR_DIM_TIPOLOGIA	. 72
Ilustración 105 - Métricas TR_DIM_TIPOLOGIA	. 72
Ilustración 106 - TR_DIM_AMBITO_GEOGRAFICO	. 73
Ilustración 107 - Borrado TR_DIM_AMBITO_GEOGRAFICO	. 73
Ilustración 108 - Lectura TR_DIM_AMBITO_GEOGRAFICO	74
Ilustración 109 - Lectura TR_DIM_AMBITO_GEOGRAFICO	74
Ilustración 110 - Nulos TR_DIM_AMBITO_GEOGRAFICO	. 75
Ilustración 111 - Secuenciación TR_DIM_AMBITO_GEOGRAFICO	76
Ilustración 112 - Guardado TR_DIM_AMBITO_GEOGRAFICO	76
Ilustración 113 - Guardado TR_DIM_AMBITO_GEOGRAFICO	. 77
Ilustración 114 - Métricas TR_DIM_AMBITO_GEOGRAFICO	. 77
Ilustración 115 - TR_DIM_FECHA	. 78
Ilustración 116 - Borrado TR_DIM_FECHA	. 78
Ilustración 117 - Lectura TR_DIM_FECHA	. 79
Ilustración 118 - Conversión String TR_DIM_FECHA	. 79
Ilustración 119 - Split TR_DIM_FECHA	. 80
Ilustración 120 - Split TR_DIM_FECHA	. 80
Ilustración 121 - Concatenación TR DIM FECHA	81

Ilustración 122 - Conversión TR_DIM_FECHA	81
Ilustración 123 - Secuenciación TR_DIM_FECHA	82
Ilustración 124 - Guardado TR_DIM_FECHA	82
Ilustración 125 - Métricas TR_DIM_FECHA	83

1. Introducción

1.1. Presentación

A partir de la solución oficial de la primera práctica (PRA1), el estudiante debe diseñar, implementar y ejecutar los procesos de extracción, transformación y carga de los datos de las fuentes de datos proporcionadas.

Así pues, esta actividad tiene como objetivo identificar y desarrollar los procesos de carga del almacén de datos y que esta sea efectiva.

1.2. Descripción

Si nos centramos en los subobjetivos, esta segunda parte del caso práctico consiste en lo siguiente:

- Identificar los procesos de extracción, transformación y carga de datos (ETL) hacia el almacén de datos.
- Diseñar y desarrollar los procesos ETL mediante las herramientas de diseño proporcionadas.
- Implementar con los trabajos (*jobs*) los procesos ETL para que su carga planificada sea efectiva.

Además del documento con la solución de la PRA2 que se debe entregar, también se tendrá en consideración la implementación sobre la máquina virtual proporcionada en el curso.

En resumen, el documento de la solución de la PRA2 debe incluir los siguientes aspectos:

• Descripción de todas las acciones que se han realizado.

- Capturas de pantalla que muestren todas las partes significativas del ETL, sus características y su correspondiente explicación.
- Capturas de pantalla que demuestren la correcta ejecución de la ETL y el tiempo de ejecución.
- Capturas de pantalla que demuestren las correcta carga de los datos (cargados en la base de datos).

2. Identificación de los procesos ETL

A la hora de diseñar los procesos de carga de una base de datos analítica no hay una única estrategia. Es habitual estructurar los procesos ETL sobre la base de las entidades de datos que se deben actualizar, ya que existen diferencias conceptuales en la actualización de una dimensión con respecto a la de una tabla de hechos. La división del proceso de carga inicial en diferentes bloques de actualización facilitará el diseño de un orden de ejecución y la gestión de las dependencias. Cada uno de estos bloques de actualización se dividirá en las correspondientes etapas de extracción, transformación y carga.

Se identifican los dos bloques siguientes:

- **Bloque IN:** procesos de carga de los datos desde las fuentes a las tablas intermedias en el área de maniobras (*staging area*). Estos procesos se distinguen por el prefijo «IN » en el nombre.
- Bloque TR: procesos de transformación para cargar los datos desde las tablas intermedias hasta nuestro almacén, según el modelo multidimensional diseñado. Así pues, son diferentes los procesos ETL de transformación para cargar las dimensiones de aquellos que se realizan para cargar las tablas de hechos. Estos procesos se distinguen con el prefijo «TR_» en el nombre.

2.1. Bloque IN

Respecto al bloque In, el cual nos va a permitir almacenar la información en el staging area, tenemos los siguientes procesos:

Nombre ETL	Descripción	Orígenes de los datos	Tabla de destino (stage)

IN_ DENUNCIAS_ INFRACCIONE S	Carga de los datos correspondientes a las estadísticas sobre los expedientes incoados por el artículo 36.6 LOPSC de desobediencia durante el estado de emergencia sanitaria COVID-19 en la comunidad de Euskadi.	ACUMULADO- DENUNCIAS- INFRACCIONES.xlsx	STG_Denuncias _Infracciones
IN_POBLACIO N	Carga los datos respectivos a las cifras de la población española.	población_9687bsc .csv	STG_Poblacion
IN_MOVILIDA D	Movilidad de la población durante el estado de alarma.	35167bsc.csv	STG_Movilidad
IN_AGLOMER ACION	Porcentaje de la población que evitaba las aglomeraciones con motivo del coronavirus, por grupo de edad y provincia.	statistic_id1104235 _covid19 poblacion-que- evitabalas- aglomeraciones- segunedad-en- espana-2020.xlsx	STG_Evitar_Aglo meracion
IN_LLAMADA S_112	Llamadas al 112 por ámbito geográfico y tipología (accidentes de tráfico, civismo, incendios, asistencia sanitaria, seguridad)	rows.xml	STG_Llamadas1 12
IN_FECHAS	Almacenamos todas las fechas de todos los ficheros de datos proporcionados.	STG_Llamadas112 STG_Denuncias_Inf racciones STG_Movilidad	STG_Fechas

Tabla 1 - Procesos ETL Bloque IN.

2.2. Bloque TR

Respecto al bloque TR tenemos tanto los procesos para dotar de datos a las dimensiones como a los hechos.

2.2.1. Dimensiones

Los procesos ETL que se encargar de añadir la información a la dimensiones son los siguientes:

Nombre del ETL	Descripción	Tabla de origen	Tabla de destino (dimensión)
TR_DIM_FECHA	Carga y transformación de la dimensión temporal.	STG_Fechas	DIM_Fecha
TR_DIM_AMBITO_ GEOGRAFICO	Carga y transformación de la dimensión con los datos de los ámbitos geográficos.	STG_Poblacion STG_Llamadas112 STG_Evitar_Aglom eracion	DIM_Ambito_G eografico
TR_DIM_GRUPO_E DAD	Carga y transformación de la dimensión con los datos de los grupo de edad.	Manual, a partir de un grid.	DIM_Grupo_Ed ad
TR_DIM_MEDICIO N	Carga y transformación de la dimensión con los datos de las mediciones.	Manual, a partir de un grid.	DIM_Medicion
TR_DIM_TIPOLOGI A	Carga y transformación de la dimensión con los datos de la tipología.	STG_Llamadas112	DIM_Tipologia

Tabla 2 - Procesos ETL Bloque TR Dimensiones.

2.2.2. Hechos

Respecto a los hechos tenemos los siguientes procesos de carga:

Nombre del ETL	Descripción	Tabla de origen
TR_FACT_LLAMADAS112	Carga y transformación de la tabla de hechos Fact_Llamadas112.	STG_Llamadas112
TR_FACT_MEDICIONES	Carga y transformación de la tabla de hechos Fact_Mediciones	STG_Denuncias_infracciones STG_Evitar_Aglomeracion STG_Movilidad STG_Poblacion

Tabla 3 - Procesos ETL Bloque TR Hechos.

3. Diseño y desarrollo de los procesos ETL

En este apartado, se deben diseñar los procesos de carga identificados en el punto anterior con la herramienta de diseño proporcionada. En este caso es Pentho Data Integration (PDI).

3.1. Creación de tablas

El primer paso para la implementación de los procesos ETL consiste en la creación de las tablas. Esto se llevará a cabo una única vez, mediante *scripts*, sobre la base de dastos proporcionada (en nuestro caso: SQL Server). Se deberán crear las tablas intermedias y las tablas del modelo dimensional de la solución oficial, es decir, las dimensiones y las tablas de hechos. Para hacerlo, deben utilizarse los *scripts* facilitados junto a la solución de la PRA1.

3.1.1. Tablas del área intermedia (staging area)

Lo primero que vamos a hacer es la creación de las tablas intermedias:

Tabla intermedia STG_Denuncias_Infracciones

```
USE [DB mariousm]
G0
/****** Object: Table [dbo].[STG_Denuncias_Infracciones]
SET ANSI_NULLS ON
G0
SET QUOTED_IDENTIFIER ON
|CREATE TABLE [dbo].[STG Denuncias Infracciones](
    [provincia] [varchar](100) NULL,
    [identificados ertzaintza] [float] NULL,
    [detenidos_ertzaintza] [float] NULL,
    [denuncias_ertzaintza] [float] NULL,
    [vehic_intercept_ertzaintza] [float] NULL,
    [identificados_ppll] [float] NULL,
    [detenidos_ppll] [float] NULL,
    [denuncias_ppll] [float] NULL,
    [vehic_intercept_ppll] [float] NULL,
    [fecha] [datetime] NULL
) ON [PRIMARY]
GO
```

Ilustración 1 - STG Denuncias Infracciones.

Tabla intermedia STG_Poblacion

```
USE [DB_mariousm]

GO

/****** Object: Table [dbo].[STG_Denuncias_Infracciones]

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

ICREATE TABLE [dbo].[STG_Poblacion](
     [provincia_codigo] [varchar](2) NULL,
     [provincia_nombre] [varchar](100) NULL,
     [poblacion] [bigint] NULL,
     [periodo] [varchar](25) NULL

) ON [PRIMARY]

GO
```

Ilustración 2 - STG Poblacion.

Tabla intermedia STG_Llamadas112

```
USE [DB_mariousm]
GO

/****** Object: Table [dbo].[STG_Denuncias_Infracciones]
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE TABLE [dbo].[STG_Llamadas112](
        [anio] [int] NULL,
        [mes] [int] NULL,
        [provincia] [varchar](100) NULL,
        [comarca] [varchar](100) NULL,
        [municipio] [varchar](100) NULL,
        [tipo] [varchar](100) NULL,
        [tlamadas] [int] NULL

ON [PRIMARY]
```

Ilustración 3 - STG Llamadas112.

Tabla intermedia STG_Movilidad

```
USE [DB_mariousm]

GO

/****** Object: Table [dbo].[STG_Denuncias_Infracciones]

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

ICREATE TABLE [dbo].[STG_Movilidad](
        [zonas_movilidad] [varchar](27) NULL,
        [periodo] [datetime] NULL,
        [total] [decimal](5, 2) NULL

) ON [PRIMARY]

GO
```

Ilustración 4 - STG_Movilidad.

Tabla intermedia STG_Evitar_Aglomeracion

```
USE [DB_mariousm]

GO

/****** Object: Table [dbo].[STG_Denuncias_Infracciones]

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE TABLE [dbo].[STG_Evitar_Aglomeracion](
    [provincia] [varchar](100) NULL,
    [comunidad_autonoma] [varchar](100) NULL,
    [grupo_edad] [varchar](7) NULL,
    [porc_poblacion] [float] NULL
) ON [PRIMARY]

GO
```

Ilustración 5 - STG_Evitar_Aglomeracion.

Tabla intermedia STG_Fechas

```
USE [DB_mariousm]
GO

/****** Object: Table [dbo].[STG_Fechas]
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE TABLE [dbo].[STG_Fechas](
        [fecha] [date] NOT NULL
) ON [PRIMARY]
GO
```

Ilustración 6 - STG_Fechas.

Comprobamos que todas las tabla intermedias se han creado correctamente:

```
        ⊞ dbo.STG_Denuncias_Infracciones

        ⊞ dbo.STG_Evitar_Aglomeracion

        ⊞ dbo.STG_Fechas

        ⊞ dbo.STG_Llamadas112

        ⊞ dbo.STG_Movilidad

        ⊞ dbo.STG_Poblacion
```

Ilustración 7 - Tablas de staging area.

3.1.2. Tablas de las dimensiones

Lo segundo que debemos de hacer es la creación de las tablas de dimensiones:

Tabla dimensión DIM_Ambito_Geografico

```
USE [DB_mariousm]

60

/******* Object: Table [dbo].[STG_Denuncias_Infracciones] ******/

SET ANSI_NULLS ON

60

SET QUOTED_IDENTIFIER ON

60

CREATE TABLE [dbo].[DIM_Ambito_Geografico](
    [pk_ambito_geografico] [int] NOT NULL,
    [provincia_codigo] [varchar](100) NOT NULL,
    [provincia_nombre] [varchar](100) NOT NULL,
    [comunidad_autonoma] [varchar](100) NULL,
    [comarca] [varchar](100) NULL,
    [municipio] [varchar](100) NULL,
    [municipio] [varchar](100) NULL,
    [pk_ambito_geografico] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLON_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

60
```

Ilustración 8 - DIM_Ambito_Geografico.

Tabla dimensión DIM Fecha

Ilustración 9 - DIM_Fecha.

Tabla dimensión DIM_Grupo_Edad

```
USE [DB_mariousm]
60

/****** Object: Table [dbo].[STG_Denuncias_Infracciones] ******/
SET ANSI_NULLS ON
60

SET QUOTED_IDENTIFIER ON
60

CREATE TABLE [dbo].[DIM_Grupo_Edad](
    [pk_grupo_edad] [int] NOT NULL,
    [nombre] [varchar](20) NOT NULL,
    [intervalo] [varchar](20) NOT NULL,
    (constraint [PK_DIM_Grupo_Edad] PRIMARY KEY CLUSTERED
(
    [pk_grupo_edad] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

ON [PRIMARY]
```

Ilustración 10 - DIM_Grupo_Edad.

Tabla dimensión DIM_Medicion

```
USE [DB_mariousm]

(6)

/****** Object: Table [dbo].[STG_Denuncias_Infracciones] ******/

SET ANSI_NULLS ON

(6)

SET QUOTED_IDENTIFIER ON

(6)

CREATE TABLE [dbo].[DIM_Medicion](
    [pk_medicion] (int] NOT NULL,
    [nombre] [varchar](100) NOT NULL,
    [unidad_medida] [varchar](20) NOT NULL,
    [unidad_medida] [varchar](20) NOT NULL,

CONSTRAINT [PK_DIM_Medicion] PRIMARY KEY CLUSTERED

(    [pk_medicion] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

(6)
```

Ilustración 11 - DIM_Medicion.

Tabla dimensión DIM_Tipologia

Ilustración 12 - DIM_Tipologia.

Comprobamos que todas las tablas de dimensiones se han creado correctamente:

Ilustración 13 - Tablas de dimensiones.

3.1.3. Tablas de hechos

Finalmente creamos las diferentes tablas de los hechos:

Tabla hecho FACT_Llamadas112

```
USE [DB_mariousm]

60

/****** Object: Table [dbo].[STG_Denuncias_Infracciones] ******/

SET ANSI_NULLS ON

60

SET QUOTED_IDENTIFIER ON

60

ICREATE TABLE [dbo].[FACT_Llamadas112](
    [pk_fk_fecha] [int] NOT NULL,
    [pk_fk_ambito_geografico] [int] NOT NULL,
    [pk_fk_tipologia] [int] NOT NULL,
    [llamadas] [int] NULL,

CONSTRAINT [PK_FACT_Llamadas112] PRIMARY KEY CLUSTERED

(
    [pk_fk_echa] ASC,
    [pk_fk_ambito_geografico] ASC,
    [pk_fk_tipologia] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLON_ROW_LOCKS = ON, ALLON_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]
```

Ilustración 14 - FACT_Llamadas112.

Tabla hecho FACT_Mediciones

```
USE [DB_mariousm]
60

/****** Object: Table [dbo].[STG_Denuncias_Infracciones] ******/
SET ANSI_NULLS ON
60

SET QUOTED_IDENTIFIER ON
60

CREATE TABLE [dbo].[FACT_Mediciones](
    [pk_id] [int] NOT NULL,
    [fk_fecha] [int] NOT NULL,
    [fk_fecha] [int] NOT NULL,
    [fk_medicion] [int] NOT NULL,
    [fk_medicion] [int] NOT NULL,
    [valon] [decimal](17, 2) NULL,
    [valon] [decimal](17, 2) NULL,
    (constraint [PK_FACT_Mediciones] PRIMARY KEY CLUSTERED
(
    [pk_id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
```

Ilustración 15 - FACT_Mediciones.

Realizamos los alter table de las tablas de hechos:

```
BALTER TABLE [dbo].[FACT_Llamadas112] NITH CHECK ADD CONSTRAINT [FK_FACT_Llamadas112_DIM_Ambito_Geografico] FOREIGN KEY([pk_fk_ambito_geografico])

ALTER TABLE [dbo].[FACT_Llamadas112] CHECK CONSTRAINT [FK_FACT_Llamadas112_DIM_Fecha] FOREIGN KEY([pk_fk_fecha])

ALTER TABLE [dbo].[FACT_Llamadas112] NITH CHECK ADD CONSTRAINT [FK_FACT_Llamadas112_DIM_Fecha] FOREIGN KEY([pk_fk_fecha])

ALTER TABLE [dbo].[DIM_Fecha] ([pk_fecha])

ALTER TABLE [dbo].[FACT_Llamadas112] NITH CHECK ADD CONSTRAINT [FK_FACT_Llamadas112_DIM_Fecha]

ALTER TABLE [dbo].[FACT_Llamadas112] NITH CHECK ADD CONSTRAINT [FK_FACT_Llamadas112_DIM_Tipologia] FOREIGN KEY([pk_fk_tipologia])

REFERENCES [dbo].[DIM_Tipologia] ([pk_tipologia])

ALTER TABLE [dbo].[FACT_Llamadas112] CHECK CONSTRAINT [FK_FACT_Llamadas112_DIM_Tipologia]

ALTER TABLE [dbo].[FACT_Llamadas112] CHECK CONSTRAINT [FK_FACT_Llamadas112_DIM_Tipologia]

ALTER TABLE [dbo].[FACT_Llamadas112] CHECK CONSTRAINT [FK_FACT_Mediciones_DIM_Ambito_Geografico] FOREIGN KEY([fk_ambito_geografico])

ALTER TABLE [dbo].[FACT_Mediciones] MITH CHECK ADD CONSTRAINT [FK_FACT_Mediciones_DIM_Ambito_Geografico]

ALTER TABLE [dbo].[FACT_Mediciones] CHECK CONSTRAINT [FK_FACT_Mediciones_DIM_Ambito_Geografico]

ALTER TABLE [dbo].[FACT_Mediciones] MITH CHECK ADD CONSTRAINT [FK_FACT_Mediciones_DIM_Fecha] FOREIGN KEY([fk_fecha])

REFERENCES [dbo].[DIM_Fecha] ([pk_fecha])

ALTER TABLE [dbo].[FACT_Mediciones] MITH CHECK ADD CONSTRAINT [FK_FACT_Mediciones_DIM_Grupo_Edad] FOREIGN KEY([fk_grupo_edad])

REFERENCES [dbo].[DIM_Fecha] ([pk_grupo_edad])

ALTER TABLE [dbo].[FACT_Mediciones] MITH CHECK ADD CONSTRAINT [FK_FACT_Mediciones_DIM_Grupo_Edad] FOREIGN KEY([fk_medicion])

BALTER TABLE [dbo].[FACT_Mediciones] MITH CHECK ADD CONSTRAINT [FK_FACT_Mediciones_DIM_Medicion] FOREIGN KEY([fk_medicion])

BALTER TABLE [dbo].[FACT_Mediciones] CHECK CONSTRAINT [FK_FACT_Mediciones_DIM_Medicion] FOREIGN KEY([fk_medicion])

BALTER TABLE [dbo].[FACT_Mediciones] CHECK CONSTRAINT [FK_FACT_Mediciones_DIM_Medicion] FOREIGN KEY([fk_medicion])
```

Ilustración 16 - Alter table hechos.

Comprobamos que se han creado todas las tablas correspondientes:

 ⊞ dbo.FACT_Llamadas112

 ⊞ dbo.FACT_Mediciones

Ilustración 17 - Tablas de hechos.

3.2. Bloque IN

En este bloque se van a realizar las transformaciones para que la información en forma bruta se pase a las tablas intermedias, y luego haremos uso de éstas para crear las transformaciones de dimensiones y hechos.

3.2.1. Definición de variables de entorno

Es una buena práctica utilizar variables de entorno para así poder evitar errores en el definiciones futuras. Para ello accedemos a *kettle.properties* y definimos las siguientes variables:

Para el origen en el que se encuentran todos los archivos definimos la variables DIR_ENT:

Nombre: DIR

Valor: F:\Mario\PRA2\data

Para la cadena de conexión a la base de datos vamos a usar:

Nombre: HOSTNAMEValor: UCS1R1UOCSQL02

Nombre: DBNAMEValor: DB_mariousm

Nombre: PORTValor: 1433

Nombre: USERNAME

Valor: STUDENT_mariousm

```
🔚 kettle properties 🔣
     # This file was generated by Pentaho Data Integration version 8.0.0.0-28.
    # Here are a few examples of variables to set:
  3
    # PRODUCTION SERVER = hercules
  6 # TEST SERVER = zeus
  7 # DEVELOPMENT SERVER = thor
  8
     # Note: lines like these with a # in front of it are comments
  9
 10
 11
 12
    DIR = F:\\Mario\\PRA2\\data
 14 HOSTNAME = UCS1R1UOCSQL02
 15 DBNAME = DB mariousm
 16 PORT = 1433
 17 USERNAME = STUDENT mariousm
```

Ilustración 18 - Variables de entorno.

3.2.2. Conexión base de datos SQL Server

El siguiente paso es crear la conexión a la base de datos que va a ser usada tanto por las transformaciones como por los jobs que se realicen en esta práctica.

Para ello creamos la nueva conexión y establecemos los valores definidos en las variables de entorno:

Ilustración 19 - Conexión a la base de datos.

3.2.3. Transformación IN_DENUNCIAS_INFRACCIONES

Una vez que ya hemos definido las variables de entorno y la conexión podemos proceder a realizar todas las transformaciones y trabajos.

primera La transformación realizar llama que vamos а se "IN_DENUNCIAS_INFRACCIONES", su objetivo es leer todos los datos del archivo "ACUMULADO-DENUNCIAS-INFRACCIONES.xlsx" la tabla intermedia en "STG_Denuncias_Infracciones".

En este caso no hemos hecho ninguna modificación en el Excel original, por lo que la transformación nos queda de la siguiente forma:

Ilustración 20 - IN_DENUNCIAS_INFRACCIONES.

Ahora vamos a explicar paso a paso lo que hemos hecho:

Lectura del Excel

Lo primero de todo es leer el fichero Excel que se nos proporciona, y para ello usamos el componente "Microsoft Excel Input", una vez hecho eso escribimos el nombre del paso, le indicamos el fichero que va a utilizar, y le indicamos que el formato del fichero Excel es XLSX:

Ilustración 21 - Lectura IN_DENUNCIAS_INFRACCIONES.

Una vez hecho eso, le indicamos qué hoja tiene que leer y desde qué fila y columna, en nuestro caso la hoja "Datos tratados" y la fila 5 columna 0:

Ilustración 22 - Lectura IN DENUNCIAS INFRACCIONES.

Posteriormente obtenemos los campos leídos en la pestaña "Field":

Ilustración 23 - Lectura IN_DENUNCIAS_INFRACCIONES.

Mapeo

Una vez leídos los datos vemos que las provincias están escritas en euskera, por lo que para homogeneizar los datos hemos decidido convertirlas al castellano. Por lo tanto, hacemos la traducción tal y como vemos en la siguiente captura:

Ilustración 24 - Mapeo Valores IN_DENUNCIAS_INFRACCIONES.

Normalización

Posteriormente hacemos una normalización de los campos que son de tipo "string", ya que en éstos vamos a convertir los valores a mayúsculas y sin espacios, tal y como vemos en la siguiente ilustración:

Ilustración 25 - Normalización Strings IN_DENUNCIAS_INFRACCIONES.

Ordenación

Posteriormente, ordenamos todos los campos de forma ascendente:

Ilustración 26 - Ordenación IN_DENUNCIAS_INFRACCIONES.

Guardado

Finalmente, introducimos todos los valores en la base de datos, es decir, en la tabla intermedia STG_Denuncias_Infracciones, indicamos que haga un truncate de la tabla y con la conexión definida guardamos los valores en la tabla correspondiente:

Ilustración 27 - Guardado IN_DENUNCIAS_INFRACCIONES.

Al ejecutar la anterior transformación obtenemos las siguiente métricas:

Ilustración 28 - Métricas IN_DENUNCIAS_INFRACCIONES.

Observamos que tenemos 219 registros leídos y en nuestra base de datos se han almacena también 219 registros, por lo que la información es correcta.

3.2.4. Transformación IN_POBLACION

La segunda transformación que vamos a realizar se llama "IN_POBLACION", su objetivo es leer todos los datos del archivo "poblacion_9687bsc.csv" y almacenarlos en la taba intermedia "STG_Poblacion".

En este caso no hemos hecho ninguna modificación al fichero original, por lo que la transformación nos queda de la siguiente forma:

Ilustración 29 - IN_POBLACION.

Lectura CSV

Lo primero que debemos de hacer es cargar la información que se nos proporciona a partir del fichero CSV correspondiente. Por lo tanto, lo primero escribimos el nombre del paso, indicamos el fichero y el delimitador del CSV, en nuestro caso ";":

Ilustración 30 - Lectura IN_POBLACION.

Cabe destacar que hemos tenido que modificar el tipo del campo "Total" ya que lo reconocía como decimal cuando realmente es un entero.

Split

Luego separamos el campo "Provincias", para así obtener tanto el código como la provincia correspondiente, para ello indicamos que el campo que queremos separar es "Provincias", y luego en el grid establecemos los nuevos campos:

Ilustración 31 - Separación Campos IN_POBLACION.

Mapeo

Una vez hecho el paso anterior tenemos que mapear valores, esto se debe a que los nombres de las provincias no son del todo correctos (aparecen en gallego, euskera, catalán y valenciano). Además, al hacer la separación algunos nombres de provincias compuestas han desaparecido, es por ello que necesitamos de este paso para solventar los problemas:

Ilustración 32 - Mapeo Valores IN_POBLACION.

Normalización

Antes de almacenar los datos en la base de datos, vamos a normalizar los strings para que todos estén en mayúsculas y no tengan espacios ni al principio ni al final:

Ilustración 33 - Normalización Strings IN_POBLACION.

Guardado

Finalmente, guardamos los datos en la tabla "STG_Poblacion", indicando que haga un truncate de la tabla y asociamos los campos:

Ilustración 34 - Guardado IN_POBLACION.

Ilustración 35 - Guardado IN_POBLACION.

Al ejecutar la anterior transformación obtenemos las siguientes métricas:

Ilustración 36 - Métricas IN_POBLACION.

Observamos que tenemos 53 registros (52 registros + 1 cabecera) y se han almacenado 52 registros, por lo que la información es correcta.

3.2.5. Transformación IN_MOVILIDAD

La tercera transformación que vamos a realizar se llama "IN_MOVILIDAD", su objetivo es leer todos los datos del archivo "35167bsc.csv" y guardarlos en la tabla intermedia "STG_Movilidad".

En este caso no hemos hecho ninguna modificación en el fichero CSV original, por lo que la transformación nos queda de la siguiente manera:

Ilustración 37 - IN_MOVILIDAD.

Ahora vamos a explicar paso a paso lo que hemos hecho:

Lectura CSV

Lo primero que tenemos que hacer es leer el fichero CSV que se nos proporciona, luego escribimos el nombre del paso, indicamos el fichero y el delimitador del CSV, en nuestro caso ",":

Ilustración 38 - Lectura IN_MOVILIDAD.

Cabe destacar que el atributo "Total" hemos indicado que sea de tipo string, ya que si considerábamos que fuera numérico a la hora de introducirlo en la base de datos no guardaba los decimales.

Mapeo

Una vez leídos todos los datos, tenemos que realizar un mapeo del campo "Zonas de movilidad", esto se debe a que los nombres de las provincias vienen en (euskera, gallego, catalán, valenciano y balear), sin embargo para homogeneizar todas las provincias las traducimos al castellano.

Ilustración 39 - Mapeo Valores IN_MOVILIDAD.

Normalización

Una vez que tenemos ya los datos de forma correcta, normalizamos las provincias para que no haya un espacio al principio o al final de la cadena, y establecemos que todas las cadenas estén en mayúsculas:

Ilustración 40 - Normalización IN_MOVILIDAD.

Replace

Posteriormente reemplazamos en el string de "Total" la coma por el punto, ya que de esta manera cuando luego introduzcamos el valor en la base de datos sí que no va a aparecer con decimales:

Ilustración 41 - Replace IN_MOVILIDAD.

Select Values

Cuando ya tenemos el string modificado, hay que convertirlo de decimal, ya que en la tabla de la base de datos el "Total" lo almacenamos como un número. Para ello, hacemos uso del componente "Select_Values" y en "Meta-data" establecemos que cree un nuevo campo que sea de tipo numérico con el campo original "Total", el resultado de esta operación lo guardamos en "totalSQL":

Ilustración 42 - Select Values IN_MOVILIDAD.

Guardado

Finalmente, guardamos todo el proceso realizado en la tabla "STG_Movilidad", indicando que hay un truncate de la tabla y asociamos los campos obtenidos con los de la tabla:

Ilustración 43 - Guardado IN_MOVILIDAD.

Ilustración 44 - Guardado IN_MOVILIDAD.

Para terminar con esta transformación obtenemos las métricas de su ejecución:

Ilustración 45 - Métricas IN MOVILIDAD.

Como podemos observar, leemos 4733 registros (4732 observaciones + 1 cabecera) y almacenamos 4732, por lo que la información es correcta.

3.2.6. Transformación IN_AGLOMERACION

La cuarta transformación que vamos a realizar se llama "IN_AGLOMERACION", su objetivo es leer todo los datos del Excel "statistic_id1104235_covid-19_-poblacion-que-evitaba-las-aglomeraciones-segun-edad-en-espana-2020.xlsx" y guardarlos en la tabla intermedia "STG_AGLOMERACION".

En este caso sí hemos hecho una modificación en el fichero Excel, no sabemos por qué motivo determinadas provincias tenían un espacio o caracter especial que no era visible y al hacer la lectura, independientemente de si hacíamos un "trim" o usábamos un "string operations" no eliminaba ese "espacio/carácter especial", es por ello que hemos eliminado de forma manual dicho espacio en el campo "provincia" de los registros afectados.

La transformación nos queda de la siguiente manera:

Ilustración 46 - IN_AGLOMERACION.

Lectura

Lo primero que tenemos que hacer es leer el fichero Excel que se nos ha proporcionado, para ello escribimos el nombre del paso, indicamos el fichero y su formato correspondiente a XLSX:

Ilustración 47 - Lectura IN_AGLOMERACION.

Una vez hecho eso, le indicamos qué hoja tiene que leer y desde qué fila y columna, en nuestro caso la hoja "Datos_provincias" y la fila 5 columna 2:

Ilustración 48 - Lectura IN AGLOMERACION.

Posteriormente obtenemos los campos leídos en la pestaña "Fields", los nombres de los campos han sido definidos de forma manual:

Ilustración 49 - Lectura IN_AGLOMERACIONES.

Mapeo

Al igual que ha sucedido con transformaciones anteriores, muchas provincias vienen también con su nombre en catalán/gallego/euskera/valenciano... Es por ello que hemos decido mantener el nombre en castellano, mapeando así los valores de las provincias que venían en otro idioma:

Ilustración 50 - Mapeo Valores IN_AGLOMERACION.

Replace

Posteriormente tenemos que hacer un replace del símbolo ")" por nada, de esta forma luego podemos dividir el campo en dos, para así obtener el nombre de la provincia y su comunidad autónoma:

Ilustración 51 - Replace IN_AGLOMERACION.

Split

Una vez que ya tenemos la información que queremos, la podemos separar estableciendo como separado "[espacio](", de esta forma creamos dos nuevos campos: uno para la provincia y otro para la comunidad.

Ilustración 52 - Split IN_AGLOMERACION.

Normalización

Cuando ya tenemos la información separada, podemos hacer uso de un "string operations" para normalizar todos los strings, es decir, establecer mayúsculas y eliminar espacios:

Ilustración 53 - Normalización Strings IN_AGLOMERACION.

Replace

Analizando los datos hemos visto que todas las comunidades y provincias cumplían las reglas ortográficas, sin embargo, la comunidad Aragón la escribían sin tilde. Es por ello que para mantener la misma lógica en todas las transformaciones hemos corregido dicho problema:

Ilustración 54 - Replace IN_AGLOMERACION.

Normalización filas

Posteriormente, hemos tenido que normalizar filas para que las columnas respectivas al grupo de edad fueran filas y no columnas. Para ello establecemos el nuevo campo que vamos a crear y los valores que va a tener dicho campo:

Ilustración 55 - Normalización Filas IN_AGLOMERACION.

Guardado

Finalmente, una vez que tenemos ya todos los datos normalizados podemos proceder al guardado de los mismo en la tabla intermedia "STG_AGLOMERACION". Tenemos que marcar el truncate table y asociar los campos:

Ilustración 56 - Guardado IN_AGLOMERACIONES.

Ilustración 57 - Guardado IN_AGLOMERACIONES.

Al ejecutar la anterior transformación obtenemos las siguientes métricas:

Ilustración 58 - Métricas IN AGLOMERACION.

Como podemos observar leemos 50 registros y almacenamos 300, esto se debe a la normalización de las filas para el atributo "grupo" edad".

3.2.7. Transformación IN_LLAMADAS112

La penúltima transformación respecto al bloque IN es "IN_LLAMADAS112", ésta se encarga de hacer la lectura del archivo "rows.xml" el cual contiene todas las llamadas, y las vamos a guardar en la tabla intermedia "STG_Llamadas112".

En este caso no hemos hecho ninguna modificación en el fichero XML original, por lo que la transformación nos queda de la siguiente forma:

Ilustración 59 - IN_LLAMADAS112.

Lectura XML

Lo primero que tenemos que hacer es leer la información que se nos proporciona en el fichero XML. Para ello escribimos el nombre del paso e indicamos el fichero:

Ilustración 60 - Lectura IN LLAMADAS112.

Luego nos dirigimos a la pestaña "Content" y definimos desde qué loop tiene que empezar a leer nuestro fichero XML:

Ilustración 61 - Lectura IN_LLAMADAS112.

Finalmente, obtenemos los campos y los definimos nosotros de forma manual:

Ilustración 62 - Lectura IN_LLAMADAS112.

Mapeo

Una vez leído los registros tenemos que hacer un cambio de valor de algunas provincias, ya que éstas aparecen en catalán y vamos a mantener en la base de datos solamente la traducción al castellano:

Ilustración 63 - Mapeo Valores IN_LLAMADAS112.

Mapeo

Necesitamos hacer otro mapeo de valores para el campo "tipo" ya que éste representa el motivo de la llamada y sus valores están en catalán. Por lo tanto, realizamos lo mismo que en el paso anterior:

Ilustración 64 - Mapeo Valores IN LLAMADAS112.

Normalización

Antes de introducir todos los datos a la base de datos, tenemos que normalizar las cadenas de valores, es decir, establecer los campos string a mayúscula y sin espacios al comienzo ni al final:

Ilustración 65 - Normalización IN_LLAMADAS112.

Finalmente, guardamos los datos en la tabla "STG_Llamadas112", indicando que haga un truncate de la tabla y asociamos los campos:

Ilustración 66 - Guardado IN_LLAMADAS112.

Ilustración 67 - Guardado IN_LLAMADAS112.

Al ejecutar la anterior transformación obtenemos las siguientes métricas:

Ilustración 68 - Métricas IN LLAMADAS112.

Observamos que tenemos 340307 registros leídos y almacenamos el mismo número de registros, por lo que la información es correcta.

3.2.8. Transformación IN_FECHAS

La última transformación que vamos a realizar respecto a este bloque es "IN_FECHAS", su objetivo es leer todas las fechas que hay en todos los ficheros fuente y almacenarlas en una tabla intermedia llamada "STG_Fechas".

La transformación nos ha quedado de la siguiente forma:

Ilustración 69 - IN_FECHAS.

Borrado

Lo primero de todo es hacer un borrado de la tabla, ya que al no obtener la información directamente de los ficheros puede darse el caso de que ya tengamos información en dicha tabla, por lo tanto borramos todos los registros de forma manual a partir de una sentencia SQL:

Ilustración 70 - Borrado IN_FECHAS.

Lectura

Una vez eliminados todos los registros leemos todas las fechas que se encuentran en la tabla intermedia "STG_Llamadas112", para ello cargamos la información del mes y año tal y como se muestra en la siguiente ilustración:

Ilustración 71 - Lectura IN_FECHAS.

Añadimos el día

Una característica de la información de "STG_Llamadas112" es que sí que se nos proporciona el año y mes pero no el día, es por ello que creamos un nuevo campo para el día cuyo valor va a ser siempre 1:

Ilustración 72 - Añadimos Constante IN_FECHAS.

Concatenación

Un aspecto a tener en cuenta es que respecto a "STG_Llamadas112" no tenemos una fecha como tal, sino que tenemos tres campos de tipo entero que nos indican el año, mes y día. Por lo tanto, lo primero que debemos de hacer es concatenar estos campos en un string:

Ilustración 73 - Concatenación IN_FECHAS.

Conversión

Una vez que tenemos el string con el formato de la fecha, tenemos que convertir dicho campo a tipo date, para así poder almacenarlo en la base de datos:

Ilustración 74 - Conversión IN_FECHAS.

Finalmente, guardamos todas las fechas de la tabla "STG_Llamadas112" en la tabla intermedia "STG_Fechas", para ello asociamos el campo de la transformación con el de la tabla de la base de datos:

Ilustración 75 - Guardado IN_FECHAS.

Lectura

Al igual que hicimos con las llamadas al 112, tenemos que leer todas las fechas que hay en la tabla "STG_Denuncias_Infracciones", para ello cargamos los datos a partir de la siguiente secuencia SQL:

Ilustración 76 - Lectura IN_FECHAS.

Como en este caso la tabla "STG_Denuncias_Infracciones" ya contiene todas las fechas de forma correcta las podemos guardar directamente en la base de datos, para ello asociamos los campos:

Ilustración 77 - Guardado IN_FECHAS.

Lectura

Por último, tenemos las fechas que se encuentran en "STG_Movilidad", éstas las tenemos que leer y lo hacemos al igual que en los casos anterior con una sentencia SQL:

Ilustración 78 - Lectura IN_FECHAS.

Al igual que en "STG_Denuncias_Infracciones" en "STG_Movilidad" no necesitamos realizar ninguna transformación, ya que todos los datos están de forma correcta. Debido a esto podemos almacenarlos directamente en la base de datos, y para ello asociamos los campos:

Ilustración 79 - Guardado IN_FECHAS.

Al ejecutar la anterior transformación obtenemos las siguientes métricas:

Ilustración 80 - Métricas IN FECHAS.

De la anterior ejecución vemos que en "STG_Llamadas112" tenemos 82 fechas, en "STG_Denuncias_Infracciones" hay 219 fechas y en "STG_Movilidad" 4732. Estas fechas no significan que sean únicas, de hecho todo lo contrario, como veremos más adelante solo 170 fechas son diferentes.

3.3. Bloque TR Dimensiones

Una vez que hemos almacenado toda la información en la base de datos gracias a las tablas intermedias, ahora vamos a hacer uso de estos datos para crear las diferentes dimensiones de nuestro modelo.

3.3.1. Transformación TR_DIM_GRUPO_EDAD

La primera transformación que vamos a realizar se llama "TR_DIM_GRUPO_EDAD", su objetivo es almacenar los diferentes grupos de edad para así hacer uso de ellos en el hecho de mediciones, el resultado de esta transformación va a ser los datos almacenados en "DIM_Grupo_Edad".

La transformación nos ha quedado de la siguiente forma:

Ilustración 81 - TR_DIM_GRUPO_EDAD.

Borrado

Lo primero que debemos de hacer es el borrado de los registros que contenía la dimensión, para ello escribimos directamente la sentencia SQL y la ejecutamos:

Ilustración 82 - Borrado TR_DIM_GRUPO_EDAD.

Grid

Puesto que la información de esta dimensión es fija y tiene tan solo 7 registros, nos resulta más fácil almacenar la información a partir de un grid (ya que en el enunciado de la práctica no se indica que no se pueda hacer uso de ellos), es por ello que hemos definido el siguiente grid:

Ilustración 83 - Grid TR_DIM_GRUPO_EDAD.

Una vez definidos los campos, introducimos los registros de forma manual. Cabe destacar que vamos a tener un registro con valores "NA", esto significa que está dimensión no va a aplicar para calcular ciertas medidas:

Ilustración 84 - Grid TR_DIM_GRUPO_EDAD.

Normalización

Normalizamos tanto el nombre como el intervalo para que estén en mayúsculas y no tengan espacios ni al principio ni al final:

Ilustración 85 - Normalización TR_DIM_GRUPO_EDAD.

Secuenciación

Otro aspecto a destacar es que las dimensiones ya tienen claves primarias, por lo tanto vamos a definir la misma como un autonumérico incrementándose de uno en uno:

Ilustración 86 - Secuenciación TR_DIM_GRUPO_EDAD.

Finalmente, realizamos el guardado en la dimensión indicando la tabla destino como "DIM_Grupo_Edad" y asociamos los atributos:

Ilustración 87 - Guardado TR_DIM_GRUPO_EDAD.

Ilustración 88 - Guardado TR_DIM_GRUPO_EDAD.

Al ejecutar la anterior transformación obtenemos las siguientes métricas:

Ilustración 89 - Métricas TR_DIM_GRUPO_EDAD.

Como podemos observar generamos los 7 registros creados manualmente y guardamos todos en la base de datos.

3.3.2. Transformación TR_DIM_Medicion

La segunda transformación que vamos a realizar se llama "TR_DIM_GRUPO_EDAD", su objetivo es almacenar las diferentes medidas que vamos a usar en la tala de hechos mediciones, el resultado de esta transformación va a ser los datos almacenados en "DIM_Medicion".

La transformación nos ha quedado de la siguiente forma:

Ilustración 90 - TR_DIM_MEDICION.

Borrado

Lo primero que debemos de hacer es borrar todos los registros que hay en la tabla, por si había previos:

Ilustración 91 - Borrado TR_DIM_MEDICION.

Grid

Como los datos de esta dimensión no se encuentran en ningún fichero, la única solución que tenemos es introducirlos de forma manual, es por ello que hemos creado el siguiente grid:

Ilustración 92 - Grid TR_DIM_DIM_MEDICION.

Una vez definidos los campos, introducimos los registros de forma manual:

Ilustración 93 - Grid TR_DIM_MEDICION.

Normalización

Normalizamos tanto el nombre como la unidad de mediada, para que así todo esté en mayúsculas y sin espacios:

Ilustración 94 - Normalización TR_DIM_MEDICION.

Secuenciación

Al igual que sucedía antes, las tablas dimensiones ya tienen claves primarias, por lo que tenemos que definir la misma para esta dimensión:

Ilustración 95 - Secuenciación TR_DIM_MEDICION.

Una vez que ya tenemos todos los datos de forma correcta, procedemos a realizar el guardado en la tabla correspondiente, en nuestro caso "DIM Medicion":

Ilustración 96 - Guardado TR_DIM_MEDICION.

Ilustración 97 - Guardado TR_DIM_MEDICION.

Al ejecutar la anterior transformación nos proporciona las siguientes métricas:

Ilustración 98 - Métricas TR_DIM_MEDICIONES.

Como podemos observar generamos los 11 registros de forma manual y los guardamos perfectamente en la base de datos.

3.3.3. Transformación TR_DIM_TIPOLOGIA

La tercera transformación de este bloque se corresponde con "TR_DIM_TIPOLOGIA", su objetivo es almacenar las diferentes tipologías en las llamadas al 112 en Cataluña, el resultado de esta transformación va a ser los datos almacenados en "DIM_Tipologia".

La transformación nos ha quedado de la siguiente forma:

Ilustración 99 - TR_DIM_TIPOLOGIA.

Borrado

Al igual que en las transformaciones anteriores lo primero que debemos de hacer es el borrado de los registros que tenemos en la dimensión:

Ilustración 100 - Borrado TR_DIM_TIPOLOGIA.

Lectura

Aunque en este caso hay también pocas tipologías, para ser más exactos hay 10, podríamos haber usado un grid pero hemos considerado que lo mejor es hacer la lectura de la tabla intermedia "SGT_Llamadas112" porque la información no es fija, es decir, en un futuro pueden pasarnos tipologías nuevas y de no hacerlo así tendríamos que modificar la transformación.

Al hacer la lectura indicamos el campo "tipo", la tabla "STG_Llamadas112" y con la función distinct nos quedamos con todas las tipologías diferentes:

Ilustración 101 - Lectura TR_DIM_TIPOLOGIA.

Secuenciación

Al igual que en las transformaciones anteriores, definimos la clave primaria de "DIM_Tipologia" a partir de una secuencia numérica:

Ilustración 102 - Secuenciación TR_DIM_TIPOLOGIA.

Finalmente, realizamos el guardado en la dimensión indicando la tabla destino como "DIM_Tipologia" y asociamos los campos:

Ilustración 103 - Guardado TR_DIM_TIPOLOGIA.

Ilustración 104 - Guardado TR_DIM_TIPOLOGIA.

Al ejecutar la anterior transformación obtenemos las siguientes métricas:

Ilustración 105 - Métricas TR_DIM_TIPOLOGIA.

3.3.4. Transformación TR_DIM_AMBITO_GEOGRAFICO

La cuarta transformación se corresponde con una dimensión compartida por ambos hechos, esta transformación se llama "TR_DIM_AMBITO_GEOGRAFICO" y se encarga de almacenar todos los datos geográficos recogidos de la fuentes proporcionadas, es decir, datos que se encuentran en las tablas intermedias.

Una vez que hemos leído todos los datos los vamos a almacenar a la tabla "DIM_Ambito_Geografico", ya que es ésta la que se corresponde con la dimensión.

La transformación nos ha quedado de la siguiente forma:

Ilustración 106 - TR_DIM_AMBITO_GEOGRAFICO.

Borrado

Lo primero que debemos de hacer es un borrado de los registros (si hay) de "DIM_Ambito_Geografico", para ello escribimos directamente la sentencia SQL y la ejecutamos:

Ilustración 107 - Borrado TR DIM AMBITO GEOGRAFICO.

Lectura

En este caso tenemos que introducir en la dimensión todos los datos relativos al ámbito geográfico que tenemos en las tablas intermedias. Tal y como está definida la dimensión los atributos "provincia_codigo" y "provincia_nombre" son obligatorios (no pueden ser nulos), es por ello que hacemos diferentes joins entre las tablas implicadas (STG_Evitar_Aglomeracion, STG_Poblacion, STG_Llamadas112) ya que no todas tienen el atributo "provincia_codigo". Además aprovechando los joins, establecemos el nombre de la comunidad a cada provincia.

El script necesario para realizar la operación comentada en el párrafo anterior es el siguiente:

```
Jselect provincia_codigo, provincia_nombre, comunidad_autonoma, comarca, municipio
from STG_Evitar_Aglomeracion

RIGHT JOIN STG_Poblacion
ON STG_Evitar_Aglomeracion.provincia = STG_Poblacion.provincia_nombre

FULL OUTER JOIN STG_Llamadas112
ON STG_Evitar_Aglomeracion.provincia = STG_Llamadas112.provincia
group by STG_Evitar_Aglomeracion.provincia, comunidad_autonoma, provincia_codigo, provincia_nombre, comarca, municipio
order by comunidad_autonoma
```

Ilustración 108 - Lectura TR_DIM_AMBITO_GEOGRAFICO.

De tal forma, al agrupar por los campos que apreciamos en la imagen anterior, obtenemos todos los datos geográficos de forma única, es decir, no tenemos duplicados. Finalmente, ordenamos dichos valores por su comunidad para que sea más legible, una vez hecho todo esto usamos Spoon para realizar la carga:

Ilustración 109 - Lectura TR DIM AMBITO GEOGRAFICO.

Nulos

Al hacer los joins anteriores en determinados atributos (comunidad autónoma, comarca y municipio) no siempre tienen valor, por ejemplo, la ciudad Ceuta o Melilla no tienen una comunidad como tal, porque son ciudades autónomas pero no comunidades.

Para solventar estos problemas sustituimos los valores nulos de todos los campos por "NA", esto significa que no es aplicable, de tal forma en Spoon nos quedaría la siguiente configuración:

Ilustración 110 - Nulos TR DIM AMBITO GEOGRAFICO.

Secuenciación

En este caso no normalizamos los datos porque ya lo hicimos al crear las tablas STG, de tal forma que todos los datos están en mayúsculas y sin espacios.

Otro aspecto a tener en cuenta es la creación de la clave primaria para esta dimensión, por lo que vamos a definir la misma como un autonumérico incrementándose de uno en uno:

Ilustración 111 - Secuenciación TR_DIM_AMBITO_GEOGRAFICO.

Guardado

Finalmente, realizamos el guardado en la dimensión indicando la tabla destino como "DIM_Ambito_Geografico" y asociamos los atributos:

Ilustración 112 - Guardado TR_DIM_AMBITO_GEOGRAFICO.

Ilustración 113 - Guardado TR_DIM_AMBITO_GEOGRAFICO.

El ejecutar la anterior transformación obtenemos las siguientes métricas:

Ilustración 114 - Métricas TR_DIM_AMBITO_GEOGRAFICO.

Como podemos observar leemos 1019 registros y almacenamos en la dimensión los mismos 1019 registros.

3.3.5. Transformación TR_DIM_FECHA

La última transformación respecto a las dimensiones es "TR_DIM_FECHA", su objetivo es almacenar todas las fecha que se encuentran en las tablas intermedias y almacenarlas en "DIM_Fecha".

La transformación nos ha quedado de la siguiente forma:

Ilustración 115 - TR_DIM_FECHA.

Borrado

Lo primero que debemos hacer es el borrado de los registros que contenía la dimensión, para ello escribimos directamente la sentencia SQL y la ejecutamos:

Ilustración 116 - Borrado TR_DIM_FECHA.

Lectura

Para hacer la lectura de las fechas tenemos que cargar todos los registros distintos de "STG_Fechas", ya que es en esta tabla intermedia donde están almacenadas todas las fechas de todos los ficheros fuentes que nos han proporcionado.

Ilustración 117 - Lectura TR_DIM_FECHA.

Conversión

Lo siguiente que debemos hacer es convertir el campo fecha que hemos leído en el paso anterior a string, ya que para esta dimensión no solo tenemos que guardar la fecha como tal, sino que también el día, mes y año por separado. Por lo tanto, convertimos a string la fecha:

Ilustración 118 - Conversión String TR_DIM_FECHA.

Split

La fecha que tenemos en la base de datos nos proporciona también la hora, pero estos datos no nos interesan, es por ello que usamos split, le indicamos que divida la fecha a partir de un espacio en blanco:

Ilustración 119 - Split TR DIM FECHA.

Split

Una vez que tenemos solamente la fecha en formato string, volvemos a hacer un split de los campos para obtener el día, mes y año en formato numérico:

Ilustración 120 - Split TR_DIM_FECHA.

Concatenación

Al hacer split sobre el campo fecha hemos perdido ese campo como tal, es decir, hemos perdido el campo que tenía tanto el mes, día y año con el formato "yyyy/MM/dd", es por ello que a partir de los campos creados en el paso anterior volvemos a crear la fecha:

Ilustración 121 - Concatenación TR_DIM_FECHA.

Conversión

Ese nuevo campo fecha está en formato string, pero en la dimensión necesitamos que sea de tipo date, es por ello que la convertimos a dicho tipo:

Ilustración 122 - Conversión TR_DIM_FECHA.

Secuenciación

Al igual que sucedía con las dimensiones anteriores, necesitamos definir una clave primaria, es por ello que creamos un nuevo campo autonumérico que se va incrementado de uno en uno:

Ilustración 123 - Secuenciación TR_DIM_FECHA.

Guardado

Finalmente realizamos el guardado de todo este proceso en la "DIM_Fecha", para ello asociamos los campos con la tabla de la base de datos:

Ilustración 124 - Guardado TR_DIM_FECHA.

Al ejecutar la anterior transformación obtenemos las siguientes métricas:

Ilustración 125 - Métricas TR_DIM_FECHA.

Como podemos apreciar de la anterior ilustración, tenemos 170 fechas únicas entre todos los ficheros proporcionados, y éstas mismas 170 se almacenan en la dimensión de forma correcta.

4. Bibliografía

а