

1 point

1.

Which of the following measures can be used as external measures for clustering validation? Select all that apply.

Silhouette coefficient

Purity

Beta-CV measure

Normalized cut

F-measure

1 point

2

The following table summarizes the clustering results of a newly designed algorithm where C_1 , C_2 , and C_3 denote the clusters, while C_1 , C_2 , and C_3 denote the clusters, while C_1 , C_2 , and C_3 denote the clustering algorithm.

C\T	T ₁	T ₂	Тз	Sum
C ₁	20	30	10	60
C ₂	30	40	10	80
C ₃	0	0	60	60
mi	50	70	80	200

0.65

0.6

30+40+60/200 = 0.65

0.667

()

0.35

1 point

3.

The following table summarizes the clustering results of a newly designed algorithm where C_1 , C_2 , and C_3 denote the clusters, while C_1 , C_2 , and C_3 are ground truth. Based on the table, calculate the maximum matching score of the clustering algorithm.

C\T	T ₁	T ₂	Т3	Sum
C ₁	20	30	10	60
C ₂	30	40	10	80
C ₃	0	0	60	60
mi	50	70	80	200

20(C1-T1)+40(C2-T2)+60(C3-T3) / 200 = 0.6

0.65

() 0.

0.35

1 point

The following table summarizes the clustering results of a newly designed algorithm where C_1 , and C_2 denote the clusters, while T_1 , and T_2 are ground truth. Which of the following statements are correct? Select all that apply.

C/T		T ₂	Sum	
C ₁	9	1	10	
C ₂	2	8	10	
mj	11	9	20	

	The true positive is 65.	combination of 9 take 2 + combination of 8 take 2			
	The true positive is 64.	= 9!/(2!)*7! + 8!/2!*6!			
	The true negative is 64.				
	The true negative is 65.				
✓ I, Yuhui Chou , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.					
L€	earn more about Coursera's Honor Code				
Submit Quiz					

