Содержание

1	Предисловие	1
2	Развитие отечественной науки	2
3	Венера - русская планета	2
4	Зачем запускать обсерватории	2
5	Mapc	2
6	Луна	2
7	Оптические инструменты	3
8	Наземные радиотелескопы	3
9	Многоволновая астрономия	3
10	Телескоп им. Хаббла	3
11	"Радиоастрон"	3
12	Рентгеновский диапазон	4
13	Сверхновые	4
14	Нейтронные звезды	4
15	Спектр-РГ	5
16	Что дальше?	5

Аннотация

Космическая наука: сегодня и завтра. Лектор: Александр Анатольевич Лутовинов, заместитель директора института космических исследований, член-корреспондент РАН, лауреат премии Правительства Р Φ в области науки и техники

1 Предисловие

Космос - это и новые материалы, и биологические исследования, и некоторые даже сельскохозяйственные вещи.

2 Развитие отечественной науки

- 1986 Вега апогей программы СССР по исследованию планет и малых тел Солнечной системы
- 1976 Луна-24
- 1986 Вега-2 (миссия к Венере мимо кометы Галлея)
- 1989-1999 ГРАНАТ (рентгеновская обсерватория)
- 1987-2001 МИР-КВАНТ

3 Венера - русская планета

- Венера-1 Венера-16
- Еще ни одна страна в мире не садила аппарат на Венеру

4 Зачем запускать обсерватории

- Для того, чтобы понять откуда мы пришли и куда мы придем
- Мы изучаем планеты «земной группы» Венеру, Марс и нашу Луну

5 Mapc

- \bullet 2001 Mars-Oddysey / HEND
- 2003 Mars-Express / OMEGA, SPICAM, PFS
- 2003 Spirit, Opportunity / Mossbauer spectrometer
- 2011 MSL / DAN
- Curiosity с помощью российского прибора пытается искать на Луне воду
- 2016 ExoMars, цели: поиск следов жизни, эволюция климата, состав атмосферы и поверхности

6 Луна

- 2009 LRO / LEND
- 2023 Луна-25 (неудача при орбитальном манёвре)

7 Оптические инструменты

- Телескопы Галлея и Ньютона
- Телескопы Very Large Telescope , 8м (ESO)
- Телескоп БТА, (6м)
- Телескоп Extremely Large Telescope, 39м (ESO)

Однако главная проблема - атмосфера, она пропускает оптику, ИК, совсем немного У Φ , а гамму практически не пропускает

8 Наземные радиотелескопы

- Jodrell Bank (76_M)
- Aresibo (300m)
- Efffelsberg
- Око Поднебесной

Атмосфера - полметра свинца, которая позволяет нам жить. Вся остальная информация заблокирована, чтобы ее получить надо лететь в космос.

9 Многоволновая астрономия

- Радио Спектр-Р 2011-2018
- Инфракрасное излучение Спектр-М 2035
- Ультрафиолет Спектр-УФ, 2031
- Рентген Спектр-РГ, 2019

10 Телескоп им. Хаббла

- Поверхность отшлифована до 10 нм
- Можно читать книги с расстояния 10км
- Можно увидеть 200-ваттную лампочку с Венеры

11 "Радиоастрон"

Спектр-Р - самый крупный радиоинтерферометр, 10м в диаметре, отработал 7 лет на расстоянии $350~000~\mathrm{km}$

12 Рентгеновский диапазон

- Первая обсерватория «Свобода», ее создателю дали Нобелевскую премию. «Свободу» вывели в 1970. Когда ее вывели, оказалось, что в рентгене звезды не светят, хотя обсерватория зарегистрировала около 30 источников.
- Постепенно люди поняли, что такая энергия излучается не термоядерной реакцией, а аккрецией («падение» с английского). Если взять черную дыру и бросать на нее кирпичи, то если бросить 400кг кирпичей, можно обеспечить энергией всю Россию.
- Если у вас есть компактный объект с огромной массой, то у этого объекта огромная гравитация. Окружающее вещество скапливается в диски и нагревается до сотни миллионов Кельвинов.
- 11607 °C = 1 эВ
- Масса нашей галактики 5×10^{11} масс Солнца

Белый карлик - несколько масс солнца и размер Земли, удерживаются такие карлики разреженным электронным газом

Термоядерные процессы идут до железа, и получается луковица: железо - сера - кремний, а когда гореть нечему, вещество схлопывается и происходит вспышка сверхновой, 8-20 масс солнца - нейтронная звезда, больше 20 масс - черная дыра.

13 Сверхновые

Именно во время вспышек мы видим как синтезируются элементы тяжелее железа, мы можем это понять по радиораспаду

Есть вспышки в которых синтезируется титан

14 Нейтронные звезды

- Радиус 10-15 км (примерно от Сириуса до Абхазии)
- Масса 1.2 2 масс Солнца
- Магнитное поле $10^8 10^{15}$ G
- Плотность $\rho \approx 10^{14} 10^{15} /$
- Гигантское ядро с примерным числом нейтронов 10^{57} .
- Период вращения от полутора миллисекунд то примерно 13 минут
- Свойства: слияние звезд фабрика по производству тяжелых элементов

Система с двумя нейтронными звездами одна из первых подтвердила гравитационные волны, их зарегистрировали в 2015 году. Если топнуть ногой, то этот сигнал будет в миллионы раз больше чем сигнал слияния двух таких звёзд.

2017 августа мы впервыве увидели слияние нейтронных звезд, мы услышим звук *фщщщщть* и увидим гамма-всплеск

Слияние нейтронных звезд - фабрика золота и урана, то что есть на Земле - результат слияния нейтронных звезд.

15 Спектр- $P\Gamma$

• Задача: рентгеновская карта вселенной

Спектр-Рентген-Гамма занимается полной "переписью населения" ближней Вселенной. Чтобы отразить рентген, нужна очень гладкая поверхность формы параболы или гиперболы, как кинуть блинчик на воде

13 июля 2019 года с Байконура обсерватория вылетела в точку L2, вращается она 6 раз в день. Зафиксировали очень далекий квазар, когда вселенной было всего 800 миллионов лет. Одна из загадок - как в таком юном возрасте появилась черная дыра в миллиард масс Солнца.

Мы ищем скрытые в облаках газа объекты, как можно искать в лесу трюфели среди других грибов.

В 2022 году увидели самый мощный гамма-всплеск, на 21 порядок ярче Солнца. Остальные приборы не заметили, потому что буквально ослепли.

У каждой нейтронной звезды есть очень устойчивые и уникальные осцилляции

16 Что дальше?

- HII "Kocmoc"2026-2036
- Cπektp-PΓH 2025-2032
- Спектр-РГМ 2031-2040 Разрабатываются кремние детекторы, разрабатываются специализированные микросхемы площадью миллиметр квадратный. Будут изучать взрывные процессы, поэтому увеличат чувтвительность в 50 раз.
- 2035 "Миллиметрон креогенное зеркало в 10 К, чтобы уменьшить шумы
- Венера-Д комплексное исследование планеты: поиск признаков жизни, параметры атмосферы и история климата, анализ грунта и топология поверхности.
- 2028 Орбитальная станция Луна-26 (ретранслятор)
- 2029-2030 Посадки Луны-27-А и Луны-37-Б