Bluetooth Low Energy (BLE) Communication Process

by Sage Mooneyham

Background

- Relatively new technology (introduced in 2010)
- Digital Radio Protocol
 - Transmits via Radio Waves
- Designed for low power consumption, bandwidth, complexity
- Classic Bluetooth is not directly compatible with BLE

Table 1-1. Specification configurations

Device	BR/EDR (classic Bluetooth) support	BLE (Bluetooth Low Energy) support
Pre-4.0 Bluetooth	Yes	No
4.x Single-Mode (Bluetooth Smart)	No	Yes
4.x Dual-Mode (Bluetooth Smart Ready)	Yes	Yes

BLE and the ISM Radio Band

- ISM: Industrial, Scientific, Medical
- Range of frequencies reserved for ISM purposes.
- Frequency ranges must be defined and allotted, as devices operating on the same/similar frequencies can interfere with each other
- BLE operates on the 2.4 GHz ISM band (2.4000 2.4835 GHz range)
 - 40 channels of 2 MHz spacing (37 for connection, 3 for advertising)
 - Operates in the same frequency as Bluetooth Classic and Wifi

Frequency Hopping Spread Spectrum (FHSS)

- Method by which the carrier frequency hops to different channels in the range
- BLE uses FHSS to reduce potential interference and eavesdropping
- NextChannel = (CurrentChannel + Hop) % 37
 - Hop is defined randomly at connection time between two devices
- These hops occur multiple times a second, sending data in bursts
- BLE goes a step further, using a variation of FHSS

Adaptive Frequency Hopping (AFH)

- Works the same as Frequency Hopping Spread Spectrum
- Main device in connection creates a channel map
- Continuously updates status of channels and shares with connection

BLE Packet Format (v4.2)

- Preamble: used for synchronization
- Access Address: Random value (distinguishes devices on same channel)
- PDU: Protocol Data Unit
 - Differs based on channel type
 - Header: formatting
 - Payload: message being sent
 - MIC: message integrity check
- CRC: Cyclic Redundancy Check

Preamble Access Address Protocol Data Unit (PDU) CRC 1 Byte 4 Bytes 2-257 Bytes 3 Bytes Advertising Channel PDU Advertising/Data PDU Header Payload

0-37 Bytes

Data Channel PDU

2 Bytes

BLE Packet

Header	Payload	MIC.
2 Bytes	up to 255 Bytes (incl. MIC)	4 Bytes

Signal Modulation

- Generally, signals are low frequency, and need to be modulated (coded/packaged) in order to be properly transmitted.
 - Especially important in long range wireless communication
- Amplitude, Frequency, and Phase Modulation
- BLE uses a variation of Frequency Modulation
 - Gaussian Frequency Shift Keying (GFSK)

Frequency Shift Keying

 In FSK, frequency of the carrier signal is shifted(changed) to multiple discrete frequencies based on the digital signal

Binary FSK is used (switch between 2 frequencies)

- Gaussian FSK applies Gaussian filter to carrier
 - Reduces sideband power and interference
- Data Throughput: 1 Mbps

Synchronous Demodulation

- Data must be demodulated (unpacked) when at receiver.
- Performed through the use of two bandpass filters and envelope detectors
- Envelope detectors take the shape of the peak of a signal, and return the original shape of the intended message
- From here, a decision circuit compares the inputs, and chooses which input is most likely the original message

Figure 3: demodulation by conversion-to-ASK

Sources

- https://en.wikipedia.org/wiki/Bluetooth Low Energy#:~:text=Bluetooth%20Low%20Energy%20t echnology%20operates,has%2040%202%2DMHz%20channels.
- https://www.bluetooth.com/blog/how-bluetooth-technology-uses-adaptive-frequency-hoppingto-overcome-packet-interference/
- https://en.wikipedia.org/wiki/Frequency-shift keying
- https://www.tutorialspoint.com/digital communication/digital communication frequency shift keying.htm
- https://www.eng.auburn.edu/~troppel/courses/TIMS-manualsr5/TIMS%20Experiment%20Manuals/Student_Text/Vol-D1/D1-07.pdf