

Базовая математика

Урок 10. Показательная функция: график и основные свойства функции

Определение 1. Функция, заданная формулой $y = a^x$ (где $a > 0, a \ne 1$), называется *показательной* ϕ ункцией с основанием a.

Свойства показательной функции.

- 1. Областью определения показательной функции является множество вещественных чисел.
- 2. Областью значений показательной функции является множество всех положительных вещественных чисел. Иногда это множество для краткости записи обозначают как \mathbb{R}_+ .
- 3. Если в показательной функции основание а больше единицы, то функция является возрастающей на всей области определения. Если в показательной функции для основания a выполнено условие 0 < a < 1, то функция убывает.
- 4. Справедливы все основные свойства степеней:

•
$$a^x \cdot a^y = a^{x+y}$$

•
$$a^x/a^y = a^{x-y}$$

$$\bullet \ (a \cdot b)^x = a^x \cdot b^x$$

$$\bullet \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

•
$$(a^x)^y = a^{x}$$

Данные равенства справедливы для всех действительных значений x и y.

- 5. График показательной функции всегда проходит через точку с координатами (0; 1).
- 6. В зависимости от того, возрастает или убывает показательная функция, её график имеет один из двух видов:

7. Показательная функция не имеет точек экстремума, другими словами, она не имеет точек минимума и максимума. Если рассматривать функцию на каком-либо конкретном отрезке, то минимальное и максимальное значения функция будет принимать на концах этого промежутка.

8. Функция не является чётной или нечётной. Показательная функция — это функция общего вида. Это видно из графиков: ни один из них не симметричен ни относительно оси Oy, ни относительно начала координат.

Пример 1. Построим график функции $y=2^x$, использовав рассмотренные свойства и найдя несколько точек, принадлежащих графику.

Решение. График функции $y = 2^x$ проходит через точку (0;1) и расположен выше оси Ox. Если x < 0 и убывает, то график быстро приближается к оси Ox (но не пересекает её). Если x > 0 и возрастает, то график быстро поднимается вверх.

Такой вид имеет график любой функции $y=a^x$, если a>1.

-8

Пример 2. Исследовать функцию $y = -3^x + 1$.

Решение.

- 1. Область определения функции все действительные числа.
- 2. Найдём множество значений функции. Так как $3^x>0$, то $-3^x<0$, значит, $-3^x+1<1$, то есть множество значений функции $y=-3^x+1$ представляет собой промежуток $(-\infty;1)$.
- 3. Так как функция $y=3^x$ монотонно возрастает, то функция $y=-3^x$ монотонно убывает. Значит, и функция $y=-3^x+1$ также монотонно убывает.
- 4. Эта функция будет иметь корень:

$$-3^x + 1 = 0 \Rightarrow 3^x = 1 \Rightarrow x = 0$$

Замечание. Acumnmoma — это прямая, к которой неограниченно близко приближается график функции при удалении его переменной точки в бесконечность.

Пример 3. Найти множество значений функции $y = 3^{x+1} - 3$.

Решение. Так как $3^{x+1}>0$, то $3^{x+1}-3>-3$. Итак, множество значений: $(-3;\infty)$. Ответ: $(-3;\infty)$.

Решение показательных уравнений

Простейший вид показательного уравнения:

$$a^{x} = b$$
, где $a > 0$, $a \neq 1$

Из свойств показательной функции мы знаем, что её область значений ограничена положительными вещественными числами. Тогда если $b \le 0$, уравнение не имеет решений.

Теперь допустим, что b > 0. Если в показательной функции основание a больше единицы, то функция возрастает на всей области определения. Если в показательной функции для основания a выполнено условие 0 < a < 1, то функция убывает на всей области определения.

Исходя из этого, получаем, что уравнение $a^x = b$ имеет один единственный корень при b > 0 и положительном a, не равном единице. Чтобы его найти, необходимо представить b в виде: $b = a^c$.

Тогда очевидно, что c будет являться решением уравнения:

$$a^x = b = a^c$$

Пример 4. Решить уравнение $5^{x^2-2x-1}=25$.

Peшение. Представим 25 как 5^2 , получим:

$$5^{x^2 - 2x - 1} = 5^2$$

Это равносильно:

$$x^2 - 2x - 1 = 2$$

Решаем полученное квадратное уравнение любым из известных способов. Получаем два корня: $x_1 = 3$ и $x_2 = -1$.

Omeem: 3; -1.

Пример 5. Решить уравнение $4^x - 5 \cdot 2^x + 4 = 0$.

Pewenue. Выполнив замену $t=2^x$, получим следующее квадратное уравнение:

$$t^2 - 5t + 4 = 0$$

Решаем это уравнение любым из известных способов. Получаем корни $t_1 = 1$, $t_2 = 4$. Теперь применяем обратную замену, получаем два уравнения:

$$2^x = 1, 2^x = 4$$

Omeem: 0; 2.

Решение показательных неравенств

Решение простейших показательных неравенств основывается на тех же свойствах возрастания и убывания функции. Если в показательной функции основание a больше единицы, то функция возрастает на всей области определения. Если в показательной функции для основания a выполнено условие 0 < a < 1, то функция убывает на всей области определения.

Пример 6. Решить неравенство $(0.5)^{7-3x} < 4$.

Решение. Заметим, что

$$4 = (0.5)^{-2}$$

Значит, неравенство можно переписать: $(0.5)^{7-3x} < (0.5)^{-2}$ Основание показательной функции 0.5 меньше единицы, следовательно, она убывает. Значит, переходя от показательных функций к их степеням, нужно поменять знак неравенства на противоположный:

$$7 - 3x > -2$$

Отсюда получаем, что x < 3.

Omeem: x < 3.

Замечание. Если бы в неравенстве основание было больше единицы, то при избавлении от основания знак неравенства менять было бы не нужно.

Домашнее задание

- 1. Построить график функции $y=\left(\frac{1}{2}\right)^x$. 2. Решить уравнение $\left(\frac{3}{2}\right)^x=\frac{16}{81}$. 3. Решить неравенство $2^{2x-4}>64$.