Revisit RoCEv2 issues in large scale deployment and the future that UEC promise

AMD and Edgecore



# Revisit RoCEv2 issues in large scale deployment and the future that UEC promise



#### **PoWen Tsai**

Director Technical Sales, Edgecore Networks



#### **Azeem Suleman**

Sr. Director Technical Product Management, AMD

#### **NETWORKING**







# **Agenda**



# Al Scale-out Networking Challenges

#### Network Utilization

Inefficient GPU-to-GPU communication



#### Reliability

Link, NIC and Switch failure



#### **Scalability**

PFC & Queue Pair stalls Elephant flows sharing



#### **Operations**

Poor telemetry and lack of network state at CCL



#### **TCO**

Require deep buffer switches, lack of multi-plane/rail networks





# RoCEv2 Requires Improvements for modern GenAl & HPC deployments



- PFC requires at least BW\*RTT+MTU buffering for fully lossless transmission
- Blocked victim flows
- · PFC storms



 Flexibility for End-to-End confidentiality and service protection. Large session state (keys)



Different DCQCN implementations



Link Level Reliability or Network Reliability

 Delays become more significant as scale increases – Requires error handling at link layer



 RoCEv2 core design natively does not support different transport protocols for different services





## **Edgecore AIS800 Tomahawk 5 AI Switch**

- 51.2Tbps while <1W per 100Gbps
- Best-in-Class SerDes that enable LPO
- (OSFP, QSFP) (AFO, AFI) complete portfolio
- Adaptive Routing & Cognitive Routing for all traffic types Improved Network Utilization ⇒ Lowest Tail Latency
- Programmable out-of-band telemetry (6 ARM cores) and Programmable inband telemetry ⇒ Minimized Packet Drops and Latency Jitter







# AMD Pensando<sup>™</sup> Pollara 400 Al NIC

- Fully Programable Customizable Transports
- Offload and Acceleration
- PCIe® Gen5, 400G
- Scale-Out Choice No Fabric Dependency



# AMD Pensando<sup>™</sup> Pollara 400 Al NIC

- P4-based architecture 72 MPU
- ATS and RDMA translation services to P4DMA
- High PPS / message rate and low latency RDMA services
- RDMA transport datapath with P4DMA Programmability



Pollara Al NIC RDMA Architecture

High performance and Scale with the Flexibility of a FULLY P4 Programmable System

# **AMD AI Networking Solution**

# Network Utilization

Reliable Multi-path packet Spray, Out-oforder data placement, Flexible source routing



#### Reliability

Fast data loss recovery with SACK and probes



#### **Scalability**

Programmable Transport, Multi-path aware Congestion Management



#### **Operations**

Visibility into network paths and granular transport layer functions with extensible API. Easier to debug



#### **TCO**

No Fabric dependency, multiplane network with fault isolation, redundancy and scale







### **Network Load-Balancing**

Pollara supports multiple solutions for efficient network load-balancing for Al workload traffic

NIC

- Multi-path Packet-Spray for efficient load-balancing of individual RDMA Qpairs for ECMP-based Networks
- Source-Routing for traffic-engineering of RDMA traffic over multiple available network paths
  - Segment-routing / PBR based solutions with control-plane driven Entropy-value sets per RDMA Queue-pair

sw

· Network Switch driven dynamic-load-balancing (DLB) solutions with NIC Out-of-order data delivery



# **Handling Out-of-order Data Delivery**

AMD Pensando™ Pollara supports inline **Out-of-order data reception** (No NIC buffering) and delivery to handle packet reordering in network due to Packet Spray / DLB

- In-order completions of RDMA messages, ensuring packet re-ordering is transparent to AI workload applications
- Configurable Out-of-order Rx Window buffer for enhanced tolerance to reordering in network
- Lossy Network support UEC-NSCC based congestion control
  - · No PFC requirement in the network
  - · Window-based congestion-control algorithm with multiple congestion signals
  - · Switch drop congestion notification based Fast-Retransmissions
  - Selective Acknowledgement and Selective Retransmissions for Fast data-loss recovery (SACK, SLEEK Algorithm)



# ~25% Higher Performance due to UEC Software differentiation



PEN-016 - Testing conducted by AMD Performance Labs as of [28th April 2025] on the [AMD Pensando™ Pollara 400 Al NIC ], on a production system comprising of: 2 Nodes of 8xMl300X AMD GPUs (16 GPUs): Broadcom Tomahawk-4 based leaf switch (64x400G) from MICAS network; CLOS Topology; AMD Pensando Pollara Al NIC – 16 NICs; CPU Model in each of the 2 nodes - Dual socket 5th gen Intel® Xeon® 8568 - 48 core CPU with PCle® Gen-5 BIOS version 1.3.6; Mitigation - Off (default) System profile setting - Performance (default) SMT- enabled (default); Operating System Ubuntu 22.04.5 LTS, Kernel 5.15.0-139-generic. Following operation were measured: Allreduce Average 25% for All-Reduce operations with 4QP and using UEC ready RDMA vs the RoCEv2 for multiple different message size samples (512MB, 1GB, 2GB, 4GB, 8GB, 16GB). The results are based on the average at least 8 test runs.



# AMD Pensando™ Pollara NIC and Edgecore Tomahawk 5 AI Switch provides UEC-Ready Infrastructure that enable modern GenAI Deployment



# **Complete Al System**

#### Front End Network



Integrate into enterprise with security\*

#### **CPU Node**



x86 application and Al Execution

#### **GPU Node**



Al model training and inference

#### Scale Up Network



Large AI model training and efficient inference

# Scale Out Network



Drives gigawatt level scaling

**ROCm™** Infrastructure Software

\*No technology or product can be completely secure



### **Call to Action**

Ultra Ethernet Consortium (UEC)

<u>Validated Reference Guide</u>

- Where to find additional information (URL links)
  - https://www.amd.com/pensando

### **Thank You!**



#### **PoWen Tsai**

- powen\_tsai@edge-core.com
- http://www.edge-core.com



#### **Azeem Suleman**

- ≥ azeem.suleman@amd.com
- http://www.amd.com





