Soft cosine similarity

Computational Communication Science 2 Week 3 - Lecture »Bottom up approaches to text analysis«

Anne Kroon

a.c.kroon@uva.nl. @annekroon

April 17, 2023

Digital Society Minor, University of Amsterdam

Today

From text to features: vectorizers
General idea
Pruning
Cosine Similarity
Soft cosine similarity
Word embeddings
Implemention in Python
From test to large-scale

From text to features: vectorizers

From text to features: vectorizers

General idea

A text as a collections of word

Let us represent a string

```
t = "This this is is a test test test"
# like this:
print(Counter(t.split()))
```

```
Counter({'is': 3, 'test': 3, 'This': 1, 'this': 1, 'a': 1})
1
```

1

A text as a collections of word

Let us represent a string

```
t = "This this is is a test test test"
# like this:
print(Counter(t.split()))
```

```
Counter({'is': 3, 'test': 3, 'This': 1, 'this': 1, 'a': 1})
```

Compared to the original string, this representation

- is less repetitive
- preserves word frequencies
- but does *not* preserve word order
- can be interpreted as a vector to calculate with (!!!)

Of course, still a lot of stuff to fine-tune... (for example, This/this)

Soft cosine similarity

From vector to matrix

If we do this for multiple texts, we can arrange the vectors in a table.

t1 = "This this is is a test test test"

t2 = "This is an example"

	а	an	example	is	this	This	test
t1	1	0	0	3	1	1	3
t2	0	1	1	1	0	1	0

What can you do with such a matrix? Why would you want to represent a collection of texts in such a way?

What is a vectorizer

- Transforms a list of texts into a sparse (!) matrix (of word frequencies)
- Vectorizer needs to be "fitted" to the training data (learn which words (features) exist in the dataset and assign them to columns in the matrix)
- Vectorizer can then be re-used to transform other datasets

What is a vectorizer

- Transforms a list of texts into a sparse (!) matrix (of word frequencies)
- Vectorizer needs to be "fitted" to the training data (learn which words (features) exist in the dataset and assign them to columns in the matrix)
- Vectorizer can then be re-used to transform other datasets

What is a vectorizer

- Transforms a list of texts into a sparse (!) matrix (of word frequencies)
- Vectorizer needs to be "fitted" to the training data (learn which words (features) exist in the dataset and assign them to columns in the matrix)
- Vectorizer can then be re-used to transform other datasets

The cell entries: raw counts versus tf-idf scores

• In the example, we entered simple counts (the "term frequency")

But are all terms equally important?

- In the example, we entered simple counts (the "term frequency")
- But does a word that occurs in almost all documents contain much information?
- And isn't the presence of a word that occurs in very few documents a pretty strong hint?
- Solution: Weigh by the number of documents in which the term occurs at least once) (the "document frequency")

⇒ we multiply the "term frequency" (tf) by the inverse document frequency (idf)

(usually with some additional logarithmic transformation and normalization applied, see https: //scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html)

The cell entries: raw counts versus tf-idf scores

- In the example, we entered simple counts (the "term frequency")
- But does a word that occurs in almost all documents contain much information?
- And isn't the presence of a word that occurs in very few documents a pretty strong hint?
- Solution: Weigh by the number of documents in which the term occurs at least once) (the "document frequency")

The cell entries: raw counts versus tf-idf scores

- In the example, we entered simple counts (the "term frequency")
- But does a word that occurs in almost all documents contain much information?
- And isn't the presence of a word that occurs in very few documents a pretty strong hint?
- Solution: Weigh by the number of documents in which the term occurs at least once) (the "document frequency")
- ⇒ we multiply the "term frequency" (tf) by the inverse document frequency (idf)

(usually with some additional logarithmic transformation and normalization applied, see https: //scikit-learn.org/stable/modules/generated/sklearn.feature extraction.text.TfidfTransformer.html)

Soft cosine similarity

From text to features: vectorizers

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 $tf_{i,j} = \text{number of occurrences of } i \text{ in } j$ df_i = number of documents containing i N = total number of documents

Is tf-idf always better?

It depends.

- ullet Ultimately, it's an empirical question which works better (o machine learning)
- In many scenarios, "discounting" too frequent words and "boosting" rare words makes a lot of sense (most frequent words in a text can be highly un-informative)
- Beauty of raw tf counts, though: interpretability + describes document in itself, not in relation to other documents

From test to large-scale

1. CountVectorizer (=simple word counts)

Different vectorizers

From text to features: vectorizers

- 1. CountVectorizer (=simple word counts)
- TfidfVectorizer (word counts ("term frequency") weighted by number of documents in which the word occurs at all ("inverse document frequency"))

From test to large-scale

Internal representations

Sparse vs dense matrices

- ullet ightarrow tens of thousands of columns (terms), and one row per document
- Filling all cells is inefficient and can make the matrix too large to fit in memory (!!!)
- Solution: store only non-zero values with their coordinates! (sparse matrix)
- dense matrix (or dataframes) not advisable, only for toy examples

DENSE

Soft cosine similarity

	0	7	0	0	0	0	6
	0	7	6	3	0	4	0
	0	4	3	0	0	0	0
į	4	2	0	0	0	0	0
	0	0	0	0	3	2	4

O Matt Eding

https://matteding.github.io/2019/04/25/sparse-matrices/

We justed learned how to tokenize with a list comprehension (and that's often a good idea!). But what if we want to directly get a DTM instead of lists of tokens?

OK, good enough, perfect?

scikit-learn's CountVectorizer (default settings)

- applies lowercasing
- deals with punctuation etc. itself
- minimum word length > 1
- more technically, tokenizes using this regular expression:
 r"(?1)\b\w\w+\b"¹

```
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer()
dtm_sparse = cv.fit_transform(docs)
```

 $^{^{1}}$?u = support unicode, b =word boundary

OK, good enough, perfect?

CountVectorizer supports more

- stopword removal
- custom regular expression
- or even using an external tokenizer
- ngrams instead of unigrams

see

 $https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html$

Best of both worlds

Use the Count vectorizer with a NLTK-based external tokenizer! (see book

OK, good enough, perfect?

CountVectorizer supports more

- stopword removal
- custom regular expression
- or even using an external tokenizer
- ngrams instead of unigrams

see

 $https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html$

Best of both worlds

Use the Count vectorizer with a NLTK-based external tokenizer! (see book)

From text to features: vectorizers

Pruning

General idea

- Idea behind both stopword removal and tf-idf: too frequent words are uninformative

General idea

- Idea behind both stopword removal and tf-idf: too frequent words are uninformative
- (possible) downside stopword removal: a priori list, does not take empirical frequencies in dataset into account
- (possible) downside tf-idf: does not reduce number of features

Pruning: remove all features (tokens) that occur in less than X or more than X of the documents

General idea

- Idea behind both stopword removal and tf-idf: too frequent words are uninformative
- (possible) downside stopword removal: a priori list, does not take empirical frequencies in dataset into account
- (possible) downside tf-idf: does not reduce number of features

From text to features: vectorizers

- Idea behind both stopword removal and tf-idf: too frequent words are uninformative
- (possible) downside stopword removal: a priori list, does not take empirical frequencies in dataset into account
- (possible) downside tf-idf: does not reduce number of features

Pruning: remove all features (tokens) that occur in less than X or more than X of the documents

```
1
```

```
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
myvectorizer = CountVectorizer(stop_words=mystopwords)
```

CountVectorizer, better tokenization, stopword removal (pay attention that stopword list uses same tokenization!):

Additionally remove words that occur in more than 75% or less than n = 2 documents:

All togehter: tf-idf, explicit stopword removal, pruning

What is "best"? Which (combination of) techniques to use, and how to decide?

Cosine Similarity

Soft cosine similarity

Cosine Similarity

Cosine Similarity

 A measure that helps you determine how similar two documents are, irrespective of their size

Applications in Communication Science

- For example, to map linguistic alignment of romantic couples over time Brinberg and Ram (2021)
- Or, in the political domain, agenda overlap between public opinion and political speech Hager and Hilbig (2020)

Soft cosine similarity

Cosine Similarity

Cosine Similarity

 A measure that helps you determine how similar two documents are, irrespective of their size

Applications in Communication Science

- For example, to map linguistic alignment of romantic couples over time Brinberg and Ram (2021)

Cosine Similarity

Cosine Similarity

• A measure that helps you determine how similar two documents are, irrespective of their size

Applications in Communication Science

- For example, to map *linguistic alignment* of romantic couples over time Brinberg and Ram (2021)
- Or, in the political domain, agenda overlap between public opinion and political speech Hager and Hilbig (2020)

From text to features: vectorizers

similarity
$$= \cos(\theta) = \frac{\mathsf{A} \cdot \mathsf{B}}{\|\mathsf{A}\| \|\mathsf{B}\|} = \frac{\sum_{i=1}^n A_i B_i}{\sqrt{\sum_{i=1}^n A_i^2} \sqrt{\sum_{i=1}^n B_i^2}}$$

Soft cosine similarity

Cosine Similarity

similarity =
$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

- It measures the cosine of the angle between two vectors projected in a multi-dimensional space.

Cosine Similarity

$$\text{similarity } = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^n A_i B_i}{\sqrt{\sum_{i=1}^n A_i^2} \sqrt{\sum_{i=1}^n B_i^2}}$$

- It measures the cosine of the angle between two vectors projected in a multi-dimensional space.
- 0 means orthogonal vectors (90 degrees); very dissimal

Cosine Similarity

$$\text{similarity } = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^n A_i B_i}{\sqrt{\sum_{i=1}^n A_i^2} \sqrt{\sum_{i=1}^n B_i^2}}$$

- It measures the cosine of the angle between two vectors projected in a multi-dimensional space.
- 0 means orthogonal vectors (90 degrees); very dissimal
- 1 means vectors are the same (0 degrees); similar

how can we calculate this in python?

Let's review a practical application ³.

³https://github.com/uva-cwccs2/2223s2/blob/master/week03/exercises/OPTIONALovertimesimilarity.ipynb

```
from sklearn.feature_extraction.text import CountVectorizer,
1

→ TfidfVectorizer

     import pandas as pd
2
3
     doc1 = "When I eat breakfast, I usually drink some tea".lower()
4
5
     doc2 = "I like my tea with my breakfast".lower()
     doc3 = "She likes cereal and coffee".lower()
6
7
     vec = CountVectorizer(stop_words='english')
8
     count_matrix = vec.fit_transform([doc1, doc2, doc3])
9
10
     print(pd.DataFrame(count_matrix.A,
11

    columns=vec.get_feature_names()).to_string())
```

```
from sklearn.feature_extraction.text import CountVectorizer,
1

→ TfidfVectorizer

     import pandas as pd
2
3
     doc1 = "When I eat breakfast, I usually drink some tea".lower()
4
5
     doc2 = "I like my tea with my breakfast".lower()
     doc3 = "She likes cereal and coffee".lower()
6
7
     vec = CountVectorizer(stop_words='english')
8
     count_matrix = vec.fit_transform([doc1, doc2, doc3])
9
10
     print(pd.DataFrame(count_matrix.A,
11

    columns=vec.get_feature_names()).to_string())

          breakfast cereal coffee drink eat like
                                                      likes
                                                                  usually
                                                             tea
1
                               0
                                                 0
                                                        0
                                      0
                                                 1
```

```
The vector belonging to doc1: [1, 0, 0, 1, 1, 0, 0, 1, 1]
The vector belonging to doc2: [1, 0, 0, 0, 0, 1, 0, 1, 0]
```

```
The vector belonging to doc1: [1, 0, 0, 1, 1, 0, 0, 1, 1]
The vector belonging to doc2: [1, 0, 0, 0, 0, 1, 0, 1, 0]
```

Now, lets populate the formula. 1. Execute the part of the formula in the numerator. Specifically, take the dot product of the vectors:

Cosine Similarity

$$\sum_{i=1}^{n} A_i B_i$$

```
doc1: [1, 0, 0, 1, 1, 0, 0, 1, 1]
doc2: [1, 0, 0, 0, 0, 1, 0, 1, 0]
```

$$dot_product = (1 \cdot 1) + (0 \cdot 0) + (0 \cdot 0) + (1 \cdot 0) + (1 \cdot 0) + (0 \cdot 0) + (1 \cdot 1) + (1 \cdot 0)$$

Now, lets populate the formula. 1.Execute the part of the formula in the numerator. Specifically, take the dot product of the vectors:

$$\sum_{i=1}^n A_i B_i$$

```
doc1: [1, 0, 0, 1, 1, 0, 0, 1, 1]
doc2: [1, 0, 0, 0, 0, 1, 0]
```

```
dot\_product = (1 \cdot 1) + (0 \cdot 0) + (0 \cdot 0) + (1 \cdot 0) + (0 \cdot 0) + (1 \cdot 1) + (1 \cdot 0)
```

Or, using Python:

Now, lets populate the formula. 1.Execute the part of the formula in the numerator. Specifically, take the dot product of the vectors:

$$\sum_{i=1}^{n} A_i B_i$$

```
doc1: [1, 0, 0, 1, 1, 0, 0, 1, 1]
doc2: [1, 0, 0, 0, 0, 1, 0]
```

```
dot\_product = (1 \cdot 1) + (0 \cdot 0) + (0 \cdot 0) + (1 \cdot 0) + (0 \cdot 0) + (1 \cdot 1) + (1 \cdot 0)
```

Or, using Python:

1

2.Execute the part of the formula in the denumerator. Take the cross product of the two vectors.

$$\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}$$

Calculate this by hand:

$$doc1_{=}\sqrt{1^2+0^2+0^2+1^2+1^2+0^2+1^2+1^2}$$

 $doc1_{=}\sqrt{1^2+0^2+0^2+0^2+1^2+0^2+1^2+0^2}$

Implementation in Python:

```
import math
doc1_ = math.sqrt(sum( [i**2 for i in doc1_vector]) )
doc2_ = math.sqrt(sum( [i**2 for i in doc2_vector]) )
```

2.Execute the part of the formula in the denumerator. Take the cross product of the two vectors.

$$\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}$$

Calculate this by hand:

$$\begin{aligned} & \textit{doc} 1_{=} \sqrt{1^2 + 0^2 + 0^2 + 1^2 + 1^2 + 0^2 + 1^2 + 1^2} \\ & \textit{doc} 1_{=} \sqrt{1^2 + 0^2 + 0^2 + 0^2 + 1^2 + 0^2 + 1^2 + 0^2} \end{aligned}$$

Implementation in Python:

```
import math
doc1_ = math.sqrt(sum( [i**2 for i in doc1_vector]) )
doc2_ = math.sqrt(sum( [i**2 for i in doc2_vector]) )
doc1_ * doc2_
```

2.Execute the part of the formula in the denumerator. Take the cross product of the two vectors.

$$\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}$$

Calculate this by hand:

$$\begin{aligned} & \textit{doc} 1_{=} \sqrt{1^2 + 0^2 + 0^2 + 1^2 + 1^2 + 0^2 + 1^2 + 1^2} \\ & \textit{doc} 1_{=} \sqrt{1^2 + 0^2 + 0^2 + 0^2 + 1^2 + 0^2 + 1^2 + 0^2} \end{aligned}$$

Implementation in Python:

```
import math
doc1_ = math.sqrt(sum( [i**2 for i in doc1_vector]) )
doc2_ = math.sqrt(sum( [i**2 for i in doc2_vector]) )
doc1_ * doc2_
```

3. Finally:

```
cos_sim = dot_product / (doc1_ * doc2_)
print(cos_sim)
```

0.5163977794943222

3. Finally:

```
cos_sim = dot_product / (doc1_ * doc2_)
    print(cos_sim)
2
```

```
0.5163977794943222
```

From text to features: vectorizers

We can, however, do this much faster using sklearn's cosine_similarity.

```
from sklearn.metrics.pairwise import cosine_similarity
cosine_similarity([doc1_vector, doc2_vector])
```

```
1 array([[1. , 0.51639778],
2 [0.51639778, 1. ]])
```

We can, however, do this much faster using sklearn's cosine_similarity.

```
from sklearn.metrics.pairwise import cosine_similarity
cosine_similarity([doc1_vector, doc2_vector])
```

```
array([[1. , 0.51639778],
[0.51639778, 1.
                    ]])
```

How to use this in practice

What can you do with this?

- This is especially powerful if you want to compare different news articles, movies, song texts, etc.

How to use this in practice

What can you do with this?

- This is especially powerful if you want to compare different news articles, movies, song texts, etc.
- For example, which movies are most similair in terms of genre composition?

	title	Avatar	Pirates of the Caribbean: At World's End	Spectre	The Dark Knight Rises	John Carter
	genre	action adventure fantasy science fiction	adventure fantasy action	action adventure crime	action crime drama thriller	action adventure science fiction
title	genres					
Avatar	action adventure fantasy science fiction	1.000000	0.691870	0.315126	0.084696	0.859850
Pirates of the Caribbean: At World's End	adventure fantasy action	0.691870	1.000000	0.455470	0.122417	0.366490
Spectre	action adventure crime	0.315126	0.455470	1.000000	0.473354	0.366490
The Dark Knight Rises	action crime drama thriller	0.084696	0.122417	0.473354	1.000000	0.098501
John Carter	action adventure science fiction	0.859850	0.366490	0.366490	0.098501	1.00000

Indentify movies that are similar in terms of genre ⁴

 $^{^4} https://www.learndatasci.com/glossary/cosine-similarity/\\$

Considering Cosine Similarity

Things to consider

- What type of overlap are you interested in?

Drawbacks

Considering Cosine Similarity

Things to consider

- What type of overlap are you interested in?
- What is the meaning of n-grams, stems, stopwords when considering your RQ? How you should preproces, depends on your RQ and aim.

Drawbacks

Considering Cosine Similarity

Things to consider

- What type of overlap are you interested in?
- What is the meaning of n-grams, stems, stopwords when considering your RQ? How you should preproces, depends on your RQ and aim.

Soft cosine similarity

 Computationally cheap and fast; works well in e.g., recommender systems (week 4!)

Drawbacks

• An exact match in terms of words is needed. Is that realistic?

Considering Cosine Similarity

Things to consider

- What type of overlap are you interested in?
- What is the meaning of n-grams, stems, stopwords when considering your RQ? How you should preproces, depends on your RQ and aim.
- Computationally cheap and fast; works well in e.g., recommender systems (week 4!)

Drawbacks

An exact match in terms of words is needed. Is that realistic?

3

```
doc1 = "When I eat breakfast, I usually drink some tea".lower()
doc2 = "I like my tea with my breakfast".lower()
doc3 = "She likes cereal and coffee".lower()
```

What do you expect here? Should there be some level of overlap?

1

```
doc1 = "When I eat breakfast, I usually drink some tea".lower()
doc2 = "I like my tea with my breakfast".lower()
doc3 = "She likes cereal and coffee".lower()
```

```
print(cosine_similarity([doc1_vector, doc2_vector, doc3_vector]))
```

```
    1
    [[1.
    0.51639778 0.
    ]

    2
    [0.51639778 1.
    0.
    ]

    3
    [0.
    0.
    1.
    ]]
```

Zero overlap between doc3 and the other documents. Is that correct?

```
doc1 = "When I eat breakfast, I usually drink some tea".lower()
doc2 = "I like my tea with my breakfast".lower()
doc3 = "She likes cereal and coffee".lower()
```

```
print(cosine_similarity([doc1_vector, doc2_vector, doc3_vector]))
```

```
    1
    [[1.
    0.51639778 0.
    ]

    2
    [0.51639778 1.
    0.
    ]

    3
    [0.
    0.
    1.
    ]]
```

Zero overlap between doc3 and the other documents. Is that correct?

```
doc1 = "When I eat breakfast, I usually drink some tea".lower()
    doc2 = "I like my tea with my breakfast".lower()
3
    doc3 = "She likes cereal and coffee".lower()
```

```
print(cosine_similarity([doc1_vector, doc2_vector, doc3_vector]))
1
```

```
Γ[1. 0.51639778 0.
1
   [0.51639778 1.
                                11
    ГО.
```

Zero overlap between doc3 and the other documents. Is that correct?

...enter soft cosine similarty Sidorov et al. (2014)

"Soft Cosine Measure (SCM) is a method that allows us to assess the similarity between two documents in a meaningful way, even when they have no words in common. It uses a measure of similarity between words, which can be derived using [word2vec] vector embeddings of words."

⁵https://radimrehurek.com/gensim//auto_examples/tutorials/run_scm.html

...enter soft cosine similarty Sidorov et al. (2014)

"Soft Cosine Measure (SCM) is a method that allows us to assess the similarity between two documents in a meaningful way, even when they have no words in common. It uses a measure of similarity between words, which can be derived using [word2vec] vector embeddings of words." 5

 $^{^{5}} https://radimrehurek.com/gensim//auto_examples/tutorials/run_scm.html$

Soft Cosine Measure (SCM)

SCM

- Even if two sentences do not share the same words, we can calculate similarity by modelling synonym

How?

SCM

- Even if two sentences do not share the same words, we can calculate similarity by modelling synonym
- For example, the words 'play' and 'game' are different but related Sidorov et al. (2014) ⁶
- How can we capture 'semantic' meaning?

How?

• Convert words to word vectors and then compute similarities ⁷

⁶http://www.scielo.org.mx/pdf/cys/v18n3/v18n3a7.pdf

https://www.machinelearningplus.com/nlp/cosine-similarity/

Soft Cosine Measure (SCM)

SCM

- Even if two sentences do not share the same words, we can calculate similarity by modelling synonym
- For example, the words 'play' and 'game' are different but related Sidorov et al. (2014) ⁶
- How can we capture 'semantic' meaning?

How?

⁶http://www.scielo.org.mx/pdf/cys/v18n3/v18n3a7.pdf

SCM

- Even if two sentences do not share the same words, we can calculate similarity by modelling synonym
- For example, the words 'play' and 'game' are different but related Sidorov et al. (2014) ⁶
- How can we capture 'semantic' meaning?

How?

Convert words to word vectors and then compute similarities ⁷

⁶http://www.scielo.org.mx/pdf/cys/v18n3/v18n3a7.pdf

⁷https://www.machinelearningplus.com/nlp/cosine-similarity/

 $\begin{array}{c} {\sf Soft\ cosine\ similarity\ ^8} \\ {}^8{\sf https://radimrehurek.com/gensim//auto_examples/tutorials/run_scm.html} \end{array}$

Word embeddings

Word embeddings

• To use the SCM, you need word embeddings.

Soft cosine similarity

Word embeddings

Soft cosine similarity

0000000000000

Understanding SCM

SCM estimates extracts similarity from word embeddings.

- No technical details here, just the general idea
- Word embeddings help capturing the meaning of text
- Word embeddings are low-dimensional vector representations that capture semantic meaning
- State-of-the-art in NLP.
- "...a word is characterized by the company it keeps..." (Firth, 1957)

Understanding SCM

SCM estimates extracts similarity from word embeddings.

- No technical details here, just the general idea
- Word embeddings help capturing the meaning of text
- Word embeddings are low-dimensional vector representations that capture semantic meaning
- State-of-the-art in NLP
- "...a word is characterized by the company it keeps..." (Firth, 1957)

Understanding SCM

SCM estimates extracts similarity from word embeddings.

- No technical details here, just the general idea
- Word embeddings help capturing the meaning of text
- Word embeddings are low-dimensional vector representations that capture semantic meaning

Soft cosine similarity

0000000000000

Understanding SCM

SCM estimates extracts similarity from word embeddings.

- No technical details here, just the general idea
- Word embeddings help capturing the meaning of text
- Word embeddings are low-dimensional vector representations that capture semantic meaning
- State-of-the-art in NLP...
- "...a word is characterized by the company it keeps..." (Firth, 1957)

Understanding SCM

SCM estimates extracts similarity from word embeddings.

- No technical details here, just the general idea
- Word embeddings help capturing the meaning of text
- Word embeddings are low-dimensional vector representations that capture semantic meaning
- State-of-the-art in NLP...
- "...a word is characterized by the company it keeps..." (Firth, 1957)

Soft cosine similarity

Implemention in Python

Calculating Soft Cosine Measure

- To use the SCM, you need embeddings.
- We can train embeddings on our own corpus (if we had a lotted of data) . . .
- But for now we will use pre-trained models ⁹. . . .

```
import gensim.downloader as api
```

fasttext model300 = api.load('fasttext-wiki-news-subwords-300')

⁹https://github.com/uva-cw-ccs2/2223s2/blob/master/week03/exercises/cosine-similarity-basics.ipynb

Calculating Soft Cosine Measure

- To use the SCM, you need embeddings.
- We can train embeddings on our own corpus (if we had a lot of data) . . .
- But for now we will use pre-trained models §

import gensim.downloader as api

fasttext model300 = api.load('fasttext-wiki-news-subwords-300')

⁹https://github.com/uva-cw-ccs2/2223s2/blob/master/week03/exercises/cosine-similarity-basics.ipynb

Calculating Soft Cosine Measure

- To use the SCM, you need embeddings.
- We can train embeddings on our own corpus (if we had a lot of data) . . .
- But for now we will use pre-trained models ⁹. . . .

import gensim.downloader as api

fasttext model300 = api.load('fasttext-wiki-news-subwords-300')

 $^{^{9}} https://github.com/uva-cw-ccs2/2223s2/blob/master/week03/exercises/cosine-similarity-basics.ipynb$

1

3

Calculating Soft Cosine Measure

- To use the SCM, you need embeddings.
- We can train embeddings on our own corpus (if we had a lot of data) . . .
- But for now we will use pre-trained models ⁹. . . .

```
import gensim.downloader as api

fasttext_model300 = api.load('fasttext-wiki-news-subwords-300')
```

⁹https://github.com/uva-cw-ccs2/2223s2/blob/master/week03/exercises/cosine-similarity-basics.ipynb

Let's review our 3 documents:

```
doc1 = "When I eat breakfast, I usually drink some tea".lower()
doc2 = "I like my tea with my breakfast".lower()
doc3 = "She likes cereal and coffee".lower()
```

Initialize a Dictionary. This step assigns a token_id to each word:

```
from gensim.utils import simple_preprocess
from gensim.corpora import Dictionary
dictionary = corpora.Dictionary([simple_preprocess(doc) for doc in [doc1, doc2, doc3]])
```

Now, let's check whether a specific word—for example coffee—is in our dictionary:

```
1 coffee' in dictionary.token2id
```

Let's review our 3 documents:

```
doc1 = "When I eat breakfast, I usually drink some tea".lower()
doc2 = "I like my tea with my breakfast".lower()
doc3 = "She likes cereal and coffee".lower()
```

Initialize a Dictionary. This step assigns a token_id to each word:

```
from gensim.utils import simple_preprocess
from gensim.corpora import Dictionary
dictionary = corpora.Dictionary([simple_preprocess(doc) for doc in [doc1, doc2, doc3]])
```

Now, let's check whether a specific word-for example coffee-is in our dictionary:

```
1 'coffee' in dictionary.token2id
```

True

Let's review our 3 documents:

```
doc1 = "When I eat breakfast, I usually drink some tea".lower()
doc2 = "I like my tea with my breakfast".lower()
doc3 = "She likes cereal and coffee".lower()
```

Initialize a Dictionary. This step assigns a token_id to each word:

```
from gensim.utils import simple preprocess
from gensim.corpora import Dictionary
dictionary = corpora.Dictionary([simple_preprocess(doc) for doc in [doc1, doc2, doc3]])
```

Now, let's check whether a specific word-for example coffee-is in our dictionary:

```
'coffee' in dictionary.token2id
```

Let's review our 3 documents:

```
doc1 = "When I eat breakfast, I usually drink some tea".lower()
doc2 = "I like my tea with my breakfast".lower()
doc3 = "She likes cereal and coffee".lower()
```

Initialize a Dictionary. This step assigns a token_id to each word:

```
from gensim.utils import simple preprocess
from gensim.corpora import Dictionary
dictionary = corpora.Dictionary([simple_preprocess(doc) for doc in [doc1, doc2, doc3]])
```

Now, let's check whether a specific word-for example coffee-is in our dictionary:

```
'coffee' in dictionary.token2id
```

True

Create a bag-of-words representation

Next, let's represent each document by (token_id, token_count) tuples:

```
bag_of_words_vectors = [ dictionary.doc2bow(simple_preprocess(doc))

→ for doc in [doc1, doc2, doc3]]
```

Build a term similarity matrix and compute a sparse term similarity matrix

```
from gensim.similarities import SparseTermSimilarityMatrix
from gensim.similarities import WordEmbeddingSimilarityIndex

similarity_index = WordEmbeddingSimilarityIndex(fasttext_model300)
similarity_matrix = SparseTermSimilarityMatrix(similarity_index,

dictionary)
```

Create a bag-of-words representation

3

5

Next, let's represent each document by (token_id, token_count) tuples:

Build a term similarity matrix and compute a sparse term similarity matrix:

Inspect results

Get SCM using .inner_product()::

```
#hetween doc1 and doc2:
      scm_doc1_doc2 = similarity_matrix.inner_product(bag_of_words_vectors[0],

→ bag of words vectors[1], normalized=(True, True))
3
      #between doc1 and doc3:
4
5
      scm_doc1_doc3 = similarity_matrix.inner_product(bag_of_words_vectors[0],

→ bag of words vectors[2], normalized=(True, True))
6
      #between doc2 and doc3:
      scm_doc2_doc3 = similarity_matrix.inner_product(bag_of_words_vectors[1],

→ bag of words vectors[2], normalized=(True, True))
9
10
      print(f"SCM between:\ndoc1 <-> doc2: {scm_doc1_doc2:.2f}\ndoc1 <-> doc3:
```

Do the results make more sense?:

```
1 SCM between:
2 doc1 <-> doc2: 0.29
3 doc1 <-> doc3: 0.15
4 doc2 <-> doc3: 0.28
```

Inspect results

Get SCM using .inner_product()::

```
#hetween doc1 and doc2:
      scm_doc1_doc2 = similarity_matrix.inner_product(bag_of_words_vectors[0],

    bag_of_words_vectors[1], normalized=(True, True))

3
      #between doc1 and doc3:
5
      scm_doc1_doc3 = similarity_matrix.inner_product(bag_of_words_vectors[0],

→ bag of words vectors[2], normalized=(True, True))
6
      #between doc2 and doc3:
      scm_doc2_doc3 = similarity_matrix.inner_product(bag_of_words_vectors[1],

→ bag of words vectors[2], normalized=(True, True))
9
10
      print(f"SCM between:\ndoc1 <-> doc2: {scm doc1 doc2:.2f}\ndoc1 <-> doc3:
```

Do the results make more sense?

```
SCM between:
doc1 <-> doc2: 0.29
doc1 <-> doc3: 0.15
doc2 <-> doc3: 0.28
```

Applications of *cosine* and *soft cosine* in the field of Communication Science generally involve some overtime dynamics.

Trace convergence or agenda setting dynamics over time

- Beyond the scope this course to discuss it here, but if you are interested in how you can apply cosine and soft cosine in an overtime analysis, we have prepared a notebook that will help you do just that.
- https://github.com/uva-cw-ccs2/2223s2/main/week03/ exercises/OPTIONAL overtime similarity.ipynb

From test to large-scale

1. Take a single string and test your idea

```
t = "This is a test test test."
print(t.count("test"))
```

2a. You'd assume it to return 3. If so, scale it up:

1. Take a single string and test your idea

```
t = "This is a test test test."
print(t.count("test"))
```

2a. You'd assume it to return 3. If so, scale it up:

```
results = []
1
    for t in listwithallmytexts:
        r = t.count("test")
        print(f"{t} contains the substring {r} times")
             results.append(r)
5
```

2b. If you *only* need to get the list of results, a list comprehension is more elegant:

```
results = [t.count("test") for t in listwithallmytexts]
```

Test on a single string, then make a for loop or list comprehension!

Test on a single string, then make a for loop or list comprehension!

Own functions

1

If it gets more complex, you can write your ow= function and then use it in the list comprehension:

```
def mycleanup(t):
     # do sth with string t here, create new string t2
    return t2
results = [mycleanup(t) for t in allmytexts]
```

Pandas string methods as alternative

If you select column with strings from a pandas dataframe, pandas offers a collection of string methods (via .str.) that largely mirror standard Python string methods:

```
df['newcoloumnwithresults'] = df['columnwithtext'].str.count("bla")
```

To pandas or not to pandas for text?

Partly a matter of taste

1

Not-too-large dataset with a lot of extra columns? Advanced statistical analysis planned? Sounds like pandas.

It's mainly a lot of text? Wanna do some machine learning later on anyway? It's large and (potentially) messy? Doesn't sound like pandas is a good idea.

1

Pandas string methods as alternative

If you select column with strings from a pandas dataframe, pandas offers a collection of string methods (via .str.) that largely mirror standard Python string methods:

```
df['newcoloumnwithresults'] = df['columnwithtext'].str.count("bla")
```

To pandas or not to pandas for text?

Partly a matter of taste.

Not-too-large dataset with a lot of extra columns? Advanced statistical analysis planned? Sounds like pandas.

It's mainly a lot of text? Wanna do some machine learning later on anyway? It's large and (potentially) messy? Doesn't sound like pandas is a good idea.

Thank you!!

Thank you for your attention!

• Questions? Comments?

Soft cosine similarity

From text to features: vectorizers

References

Brinberg, M., & Ram, N. (2021). Do new romantic couples use more similar language over time? Evidence from intensive longitudinal text messages. Journal of Communication, 71(3), 454-477. https://doi.org/10.1093/joc/jqab012

Hager, A., & Hilbig, H. (2020). Does public opinion affect political speech? American Journal of Political Science, 64(4), 921-937. https://doi.org/10.1111/ajps.12516

Sidorov, G., Gelbukh, A., Gómez-Adorno, H., & Pinto, D. (2014). Soft similarity and soft cosine measure: Similarity of features in vector space model. Computacion y Sistemas, 18(3), 491-504, https://doi.org/10.13053/CvS-18-3-2043