CIMA

P1

CIMA Automation 27 Group Scenario FQP

Workbook

Contents

Introduction

Hey here's an introduction	i
Appendix 1: My test appendix	,

Hey here's an introduction

Appendix 1: My test appendix

The title of my appendix document

Present value of \$1, that is $(1+r)^{-n}$ where r = interest rate; n = number of periods until payment or receipt.

Periods Interest rates (r)											
(n)	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	
1	0.990	0.980	0.971	0.962	0.952	0.943	0.935	0.926	0.917	0.909	
2	0.980	0.961	0.943	0.925	0.907	0.890	0.873	0.857	0.842	0.826	
3	0.971	0.942	0.915	0.889	0.864	0.840	0.816	0.794	0.772	0.751	
4	0.961	0.924	0.888	0.855	0.823	0.792	0.763	0.735	0.708	0.683	
5	0.951	0.906	0.863	0.822	0.784	0.747	0.713	0.681	0.650	0.621	
6	0.942	0.888	0.837	0.790	0.746	0705	0.666	0.630	0.596	0.564	
7	0.933	0.871	0.813	0.760	0.711	0.665	0.623	0.583	0.547	0.513	
8	0.923	0.853	0.789	0.731	0.677	0.627	0.582	0.540	0.502	0.467	
9	0.914	0.837	0.766	0.703	0.645	0.592	0.544	0.500	0.460	0.424	
10	0.905	0.820	0.744	0.676	0.614	0.558	0.508	0.463	0.422	0.386	
11	0.896	0.804	0.722	0.650	0.585	0.527	0.475	0.429	0.388	0.350	
12	0.887	0.788	0.701	0.625	0.557	0.497	0.444	0.397	0.356	0.319	
13	0.879	0.773	0.681	0.601	0.530	0.469	0.415	0.368	0.326	0.290	
14	0.870	0.758	0.661	0.577	0.505	0.442	0.388	0.340	0.299	0.263	
15	0.861	0.743	0.642	0.555	0.481	0.417	0.362	0.315	0.275	0.239	
16	0.853	0.728	0.623	0.534	0.458	0.394	0.339	0.292	0.252	0.218	
17	0.844	0.714	0.605	0.513	0.436	0.371	0.317	0.270	0.231	0.198	
18	0.836	0.700	0.587	0.494	0.416	0.350	0.296	0.250	0.212	0.180	
19	0.828	0.686	0.570	0.475	0.396	0.331	0.277	0.232	0.194	0.164	
20	0.820	0.673	0.554	0.456	0.377	0.312	0.258	0.215	0.178	0.149	
Period						st rates (r)					
(n) ———	11%	12%	13%	14%	15%	16%	17%	18%	19%	20%	
1	0.901	0.893	0.885	0.877	0.870	0.862	0.855	0.847	0.840	0.833	
2	0.812	0.797	0.783	0.769	0.756	0.743	0.731	0.718	0.706	0.694	
3	0.731	0.712	0.693	0.675	0.658	0.641	0.624	0.609	0.593	0.579	
4	0.659	0.636	0.613	0.592	0.572	0.552	0.534	0.516	0.499	0.482	
5	0.593	0.567	0.543	0.519	0.497	0.476	0.456	0.437	0.419	0.402	
6	0.535	0.507	0.480	0.456	0.432	0.410	0.390	0.370	0.352	0.335	
7	0.482	0.452	0.425	0.400	0.376	0.354	0.333	0.314	0.296	0.279	
8	0.434	0.404	0.376	0.351	0.327	0.305	0.285	0.266	0.249	0.233	
9	0.391	0.361	0.333	0.308	0.284	0.263	0.243	0.225	0.209	0.194	
10	0.352	0.322	0.295	0.270	0.247	0.227	0.208	0.191	0.176	0.162	
11	0.317	0.287	0.261	0.237	0.215	0.195	0.178	0.162	0.148	0.135	
12	0.286	0.257	0.231	0.208	0.187	0.168	0.152	0.137	0.124	0.112	
13	0.258	0.229	0.204	0.182	0.163	0.145	0.130	0.116	0.104	0.093	
14	0.232	0.205	0.181	0.160	0.141	0.125	0.111	0.099	0.088	0.078	
15	0.209	0.183	0.160	0.140	0.123	0.108	0.095	0.084	0.079	0.065	
16	0.188	0.163	0.141	0.123	0.107	0.093	0.081	0.071	0.062	0.054	
17	0.170	0.146	0.125	0.108	0.093	0.080	0.069	0.060	0.052	0.045	
18	0.153	0.130	0.111	0.095	0.081	0.069	0.059	0.051	0.044	0.038	
19	0.138	0.116	0.098	0.083	0.070	0.060	0.051	0.043	0.037	0.031	
20	0.124	0.104	0.087	0.073	0.061	0.051	0.043	0.037	0.031	0.026	

Some formulae

$$\lim_{x\to\infty}\sqrt{b^2-4ac}\iiint_{/65}1234$$

$$1x\sum_{1}763549$$

Tell us what you think

Got comments or feedback on this book? Let us know. Use your QR code reader:

Or, visit: https://bppgroup.fra1.qualtrics.com/jfe/form/SV_3aqjFwuyl34Cz77

