MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-13 EXAMINATION

Model Answer

Subject & code: STI(12078)

Important instructions to examiners:

- 1. The answers should be examined by keywords and not as word to word as given in the model answer scheme.
- 2. The model answer and the answer written by candidate may vary, but the examiner may try to assess the understanding level of the candidate.
- 3. The language errors such as grammatical, spelling errors should not given more importance.
- 4. While assessing figures, examiner may give credit for principal components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answer and model answer.
- 6. In case of some questions credit may be given by judgment of relevant answer based on candidates understanding.

Q	Answer	Mark	Total
No:			marks
1-a	Ideal gas equation is	2	2
	PV=nRT		
	Where P= pressure		
	V=Volume		
	n= number of moles		
	R= Universal gas constant		
	T= absolute temperature		
1-b	Amagat's law:		2
	Amagat's law states that total volume occupied by a gas mixture is	1	
	equal to the sum of pure component volumes.		

STI(12078) Page **1** of **16**

	$V=V_A+V_B+V_C$	1	
	Where V is the total volume of gas mixture		
	V _A ,V _B ,V _C are pure component volumes		
1-c	Vander Waal's equation of state:	2	2
	$(P+a/V^2)(V-b)=nRT$		
	Where a & b are constants.		
1-d	Yield of a chemical reaction	2	2
	= moles of reactant reacted to form desired product* 100		
	Total moles of reactant reacted		
1-e	Stoichiometric equation:		2
	It is defined as the balanced chemical reaction	1	
	Eg: $N_2+3H_2\rightarrow 2NH_3$	1	
1-f	At NTP conditions the values are		2
	P=1atm (101.325KPa)	2	
	T=273 K		
	V=22.41 m ³		
1-g	Hess's law:		2
	It states that the heat involved in a chemical reaction is same	1	
	whether the reaction takes place in a single or in several steps.		
	A — → B ΔH1		
	B — C ΔH2		
	C → D ΔH3	1	
	$A \longrightarrow D \Delta H$		
	Then $\Delta H = \Delta H1 + \Delta H2 + \Delta H3$		
1-h	Law of conservation of mass: It states that	2	2
	For any process input= output + accumulation		
1-i	Stream-1	2	2
	Stream-2 Mixing Product		
	Stream-3		

STI(12078) Page **2** of **16**

1-j	Limiting component in a chemical reaction:	2	2
	It is the reactant which decides the extent of a reaction.	Any	
	Or	definition	
	It is the reactant which is added in limited quantity.	may be	
	Or	given	
	It is the reactant which disappear first if a reaction goes to	mark	
	completion		
1-k	Standard heat of combustion:	2	2
	It is the amount of heat liberated when one mol of a compound is		
	combusted or burned in oxygen at standard conditions.(25°C and		
	1atm pressure)		
1-1	Given data:150.46KPa.g		2
	Absolute pr= Gauge pressure + atmospheric pressure	1	
	=150.46+101.325		
	= 251.785 KPa	1	
2-a	Basis: 100 kg. azeotrope	1	4
	Weight of ethanol = 96 kg .		
	Kg moles of ethanol = $96/46 = 2.09$	1	
	Weight of water = 4 kg .		
	Kg. moles of water = $4/18 = 0.22$	1	
	Total moles $= 2.31$		
	Mole % of ethanol = $2.09 * 100/2.31 = 90.48\%$		
	Mole % of water = $0.22 * 100 / 2.31 = 9.52\%$	1	
2-b	Weight of $CO = N_2 = 100 \text{ kg}$.		4
	Kg. moles of $CO = 100/28 = 3.57$		
	Kg. moles of $N_2 = 100/28 = 3.57$	1	
	Mole fraction of $N_2 = 0.5$	1	
	Total pressure = 405.3 KPa		
	Partial pressure of N_2 = total pressure * mole fraction of N_2	1	
	=405.3*0.5=202.65 KPa	1	

STI(12078) Page **3** of **16**

2-c	con.H ₂ SO ₄		
	Mixing → Mixed acid	1	4
	con.HNO ₃		
	Basis: 100 kg. mixed acid.	1	
	Weight of HNO_3 in mixed acid = 40 kg .	1	
	Weight of H_2SO_4 in mixed acid = 43 kg.		
	Weight ratio of H_2SO_4 to HNO_3 in mixed acid = $43/40 = 1.075$	1	
	OR		
	Let weight of con.H ₂ SO ₄ be X kg and weight of con.HNO ₃ be Y kg	1	
	Balance for H ₂ SO ₄		
	0.98X = 43 or X = 43.88 kg.	1	
	Balance for HNO ₃		
	0.12 Y = 40 or Y = 333.33 kg.	1	
	Weight ratio of H ₂ SO ₄ to HNO ₃ fed=43.88/333.33=0.132	1	
2-d	$SO_2 + \frac{1}{2}O_2 \longrightarrow SO_3$	1	4
	SO_2 fed = 100 kg. moles		
	SO_3 formed = 80 kg. moles	1	
	1 kg. mole SO_2 reacted = 1 kg. mole SO_3 formed		
	? = $80 \text{ kg. mole SO}_3 \text{ formed}$	1	
	kg. mole SO_2 reacted = 80		
	% conversion of SO ₂ =(SO ₂ reacted/SO ₂ fed)* 100	1	
	= 80*100/100 = 80%		
2-е	Mass flow rate of ethanol(m) = 100 kg./hr.	1	4
	Latent heat of vaporization of ethanol(λ) = 842.3KJ/kg.		
	Heat transferred to generate saturated ethanol vapour = $m^* \lambda$	1	
	= 100*842.3		
	= 8423 KJ.	2	
2-f	$C_{pm}^0 = 29.3955 \text{KJ} / (\text{K mol. K})$	1	4
	Moles of air $(n) = 3$		

STI(12078) Page **4** of **16**

	$T = 473K$ $T_0 = 298$		
	Heat added $Q = n^* C^0_{pm} (T - T_0)$	1	
	= 3*29.3955(473-298)		
	= 15432.64 KJ	2	
3-a	BASIS:1000 kg of final solution.	1	8
	A 107. salt 1000kg 35% salt 50% salt		
	Let kg of A=x Let kg of B=y Therefore overall balance X+y=1000(1) Salt balance 0.1x+0.5y=1000*0.35 0.1x+0.5y=350(2) Multiplying equation (1) by 0.1 0.1x+0.1y=100(3)	2	
	From eqution (2) and (3) 4y=250 Therefore y=250/4 =625kg X=375kg Wt of 10% solution=375 kg Wt of 50% solution=625kg	2	
3-b	Basis 100 kg of groundnut seeds.	1	8

STI(12078) Page **5** of **16**

	Ground put Expeller OIL us 1. solid V cake V 807. solid 57. 011	1	
	kg of solid=45kg kg of oil=45kg unchanging component is solid let weight of cake=x kg solid balance 0.8x=45 Therefore x=45/0.8=56.25kg Oil in cake=56.25*0.05	1 1 1	
	=2.81kg Therefore oil recovered=45-2.81 =42.19 % recovery of oil =(42.19/45)*100 =93.75	1	
3-с	detailed outline of the procedure for material balance calculations 1. assume suitable basis of calculation as given in problem. 2. adopt weight units in case of problem of process without chemical reaction. 3. draw block diagram of process 4. show input and output streams 5. write overall material balance 6. write individual material balance 7. solve above two algebric equations 8. Get values of two unknown quantities.	1 mark each	8
4-a	a) pv=nRT p=100kpa v=5m³ R=8.3145m³kpa/kmol⁰k T=400⁰K Therefore n=pv/RT =100*5/8.3145*400	1 1 1	4

STI(12078) Page **6** of **16**

	0.1Fl/m.al		
	=0.15kmol Therefore wt of chlorine=0.15*71 =10.67 kg	1	
4-b	a) Basis 100 kmol/hr of N_2 $T_1=303$ $T_2=373$	1	4
	Q=m ∫ cpΔT =100 (∫ 29.5905-5.1414*10 ⁻³ T+11.1829*10 ⁻⁶ T ²)	1	
	$= 100((324.5905-3.1414-10^{-1411.1824-10^{-1}})$ $= 100[(29.5905(T)-5.141*10^{-3}/2(T^2)+11.1829*10^{-6}/3(T^3)]_{373}$ $= 303$		
	=100[2071.335-121.636+89.75] =203.94*10 ³ kg/hr	2	
4-c	Basis:2000kg/hr of mixture		4
	45% Benzene Work Benzene Work Benzene		
	overall material balance D+W=2000 Benzene balance 0.98D +0.08w=2000*0.45 0.98D +0.08w=900 Multiplying eqution (1) by 0.08 0.08D+0.08W=160(2)	1	
	90D=740 Therefore D=740/90 =822.22 kg/hr W=2000-822.22	1	

STI(12078) Page **7** of **16**

	=1177.77	1	1
		1	
	% composition of Toulene=92%	1	
	OR		
	Benzene in bottom =1177.77*0.08		
	=94.22		
	Therefore toluene in bottom=1177.77-94.22		
	=1083.54		
	Therefore composition in bottom=1083.54		
	% composition=(1083.54/1177.77)*100		
	=92%		
	-7270		
4d			4
			·
	Basis _ 50 Kmol Soz and 150 kmol Air.		
	d) chemical Reaction	1	
	$30_2 + \frac{1}{2}0_2 - 30_8 \qquad (1 \text{ mark})$	1	
	1 kmol So2 = 2 kmol O2		
	50 kmol $30_2 = \frac{50}{2}$		
	= 25 kmol 02 (1 mark)	1	
	Air equivalent to this 02 = 100 x 25		
	= 119.04 (1mark)	1	
	1. excess air supplied = 150-119.04 ×100	1	
	= 26.00 ·/ (Imask)	1	
	A second		
4-e	general energy balance procedure	4	4
'	1.assume suitable basis of calculation	•	'
	2.draw block diagram of the process and label the terms.		
	3.determine flowrates of all stream components.		
	4. determine the enthalpies of each stream component entering and		
	leaving.		
	5.if chemical reaction is involved ,it must be included in the energy		
	balance equation.		
	6. if heat capacity data is provided for components involved choose		
	reference temp on which they are based.		

STI(12078) Page **8** of **16**

4-f	f) Basis -> 1 Kmol Cetty Reacted.	1	4
	Reaction $C_2H_4 + \frac{1}{2}C_2 \rightarrow C_2H_{40}$ $C_2H_{40} + \frac{1}{2}C_2 \rightarrow C_2H_{40}$	_	
	DHR = standard heat of seaction. [EDHR] products - [EDHR] steatants.	1	
	= [1 × Δ H F C2 H40] - [1 × Δ H F C2 H4 + 1 Δ H F C2] Zinak = [1 × C 52 · 63)] - [1 × (52 · 50 + 1 × (0.0)]] = -105 · 13 kJ	1	
	= [1×(52.63)] - [1×(52.50 +2 ×(6.0)]] = -105.13 kJ	1	
5-a	Basis: 10,000 Kg/hr of 20% methanol feed solution to column	1	8
		-	
	Distillate		
	98% methanol	4	
	10000 kg/h Feed Distillation Column	1	
	20% methanol Waste solution		
	└─→ 1% methanol		
	(bottom product)		
	Let X and Y be the mass flow rates of distillate and bottom product		
	respectively		
	Overall Material Balance:		
		1	
	X + Y = 10,000 (i)		
	Material Balance of Methanol :	1	
	(98/100)*X + (1/100)*Y = (20/100)*10000	1	
	0.98*X + 0.01*Y = 2000		
	2000 - 0.98*X		
	Y = 0.01		
	Y = 200000 - 98*X (ii)		
	Put the value of Y in Equation(i)		

STI(12078) Page **9** of **16**

	X + (200000 - 98*X) = 10,000		
	200000 - 10000 = (98 - 1) * X		
	By solving $X = 1959 \text{ Kg/hr}$ Put in equation (i)		
	Y = 10000 - X = 10000 - 1959 = 8041 Kg/hr	1	
	Y= 8041 kg/hr		
	Mass flow rates of distillate = 1959 Kg/hr ans. (a)		
	Mass flow rates of bottom Product = 8041 kg/hr ans.(a)		
	Methanol in Waste solution = 0.01 * 8041 = 80.41 Kg/hr Methanol in feed = 0.2 *10000 = 2000 Kg/hr	1	
	Methanol in Waste Solution % loss of Methanol = * 100 Methanol in Waste Solution	1	
	% loss of Methanol = 80.41* * 100 2000	1	
	% loss of Methanol = 4.02 % ans. (b)	1	
5-b	Basis: 100 Kmol of ethylene fed to a reactor.	1	8
	Ethylene, $O_2 \longrightarrow Reactor \longrightarrow Product$ $C_2H_4O, C_2H_4, CO, etc.$	1	
	Reaction 1: C ₂ H ₄ + ¹ / ₂ O ₂ > C ₂ H ₄ O Reaction 2: C ₂ H ₄ + 3O ₂ > 2CO ₂ + 2H ₂ O	1	

STI(12078) Page **10** of **16**

Amount of C ₂ H ₄ O produced = 80 Kmol		
Amount of CO ₂ produced = 10 Kmol		
C ₂ H ₄ reacted to produce C ₂ H ₄ O by Reaction 1		
1	1	
= * 80 = 80 Kmol		
From Reaction 2,		
$1 \text{ Kmol C}_2\text{H}_4 \equiv 2 \text{ Kmol CO}_2$		
C ₂ H ₄ reacted to produce 10 Kmol CO ₂ by reaction 2		
1		
= * 10 = 5 Kmol		
C_2H_4 totally reacted = C_2H_4 reacted by reaction 1 +		
C ₂ H ₄ reacted by reaction2		
= 80+5 = 85 Kmol		
C ₂ H ₄ totally reacted	1	
% conversion of C ₂ H ₄ = * 100		
C ₂ H ₄ totally feed		
85		
= * 100 = 85 % 100		
	1	
% conversion of $C_2H_4 = 85 \%$ ans. (a)		
Kmol C ₂ H ₄ reacted to Produce C ₂ H ₄ O		
% yield of C ₂ H ₄ O = * 100	1	
C ₂ H ₄ totally reacted		
80		
= * 100 = 94.12 % 85		
65	1	
% yield of C ₂ H ₄ O = 94.12% ans. (b)		
	i	i i

STI(12078) Page **11** of **16**

5-c	Basis: 1 mol of gaseous ethyl alcohol	1	8
	1. $C(s) + O_2(g)$ > $CO_2(g)$ $\Delta H_1 = -393.51 \text{ KJ/mol}$		
	2. H ₂ (g) +1/2 O ₂ (g)> H ₂ O(l) Δ H ₁ = - 285.83 KJ/mol		
	$3.C_2 \text{ H}_5\text{OH}(g) + 3 O_2(g)> 2CO_2(g) + 3H_2O(l)$	2	
	$\Delta H^0 c = -1410.09 \text{ KJ/mol}$		
	4. $2C(s) + 3 H_2(g) + 1/2 O_2(g)$ > $C_2 H_5OH(g)$		
	$\Delta H^0 f = ?$		
	$\Delta H^0 f$ = Standard heat of formation of gaseous ethyl alcohol At 2198.15 K		
	Reaction(4) = $2*$ Reaction (1) + $3*$ Reaction (2) – Reaction (3)	2	
	$\Delta H^0 f = 2*\Delta H_1 + 3*\Delta H_2 - \Delta H^0 c$		
	= 2(-393.51) +3*(-285.83) -(-1410.09)	2	
	= (-787.02) + (-857.49) - (-1410.09		
	= -234.42 KJ/mol		
	$\Delta \mathbf{H}^{0}\mathbf{f} = -234.42 \text{ KJ/mol}$ ans.	1	
6-a	Basis: 4 Kmol of FeS ₂	1	8
	4 FeS ₂ + 11 O ₂ > 2Fe ₂ O ₃ + 8 SO ₂		
	Theoretical requirement of O ₂ = * 4 = 11 kmol O ₂ reacted = O ₂ theoretically required = 11 Kmol		
	Theoretical requirement of air = 11* 100 21 21	1	
	Air is used 60% in excess		

STI(12078) Page **12** of **16**

	Air supp	60 blied = 52.38 *(1 + 100	-) = 83.80 kmol	1	
	Amount of O ₂ in su	applied Air = 83.80*	21 = 17.6 kmol 100		
	Amount of N2 in su	applied Air = 83.80 - 1	7.6 = 66.20 kmol	1	
	Amount of O_2 unreacted = $17.6 - 11 = 6.6$ kmol		1		
	From reaction,				
	$4 \text{ kmol FeS}_2 = 8 \text{ kmol SO}_2$				
	Amount of SO ₂ pro	3 kmol	1		
	N ₂ in the gas leaving = N ₂ in air supplied = 66.20 kmol Composition of Gases:				
	Component	Quantity in kmol	Mole %		
	O ₂	6.6	8.17		
	N ₂	66.20	81.93	2	
	SO ₂	8.0	9.9		
	Total	80.8	100		
6-b	Basis: Gas sample containing CH ₄ ,CO ₂ and NH ₃ For ideal gases, Volume % = Mole % Mole % of CH ₄ = 66, Mole % of CO ₂ = 30, Mole % of NH ₃ = 4			1	8
				1	
	Mole % of CH ₄ 66 Mole Fraction of CH ₄ = X CH ₄ = = 0.66 100 100				
	Mole Fraction of CF				
		100 $Mole \% of C$ $O_2 = X co_2 =$	100 CO ₂ 30		
		100 Mole % of C	100 CO ₂ 30		

STI(12078) Page **13** of **16**

Mole Fraction of NH ₃ = X NH ₃ = = 0.04	1	
100 100	•	
Mavg = Average molecular weight of gas = M CH4 * X CH4 + M CO2 * X CO2 + M NH3 * X NH3 = (16*0.66)+(44*0.30)+(0.04*17) = 24.44	1	
Mavg =24.44 ans.(a)	1	
$\begin{array}{c} P Mavg \\ Density of gas mixture = \rho = \end{array}$		
R T Absolute Pressure = Gauge Pressure + Atmospheric Pressure P = 202.65 + 101.325 = 303.975 KPa	1	
T = 303 K, Mavg = 24.44, R= 8.31451 m ³ .Kpa/(kmol.K)	1	
$\rho = \frac{(303.975 * 24.44)}{(8.31451 * 303)} = 2.95 \text{ kg/m}^3$		
Density of gas mixture = ρ = 2.95 kg/m ³ ans.(b)	1	
6-c Basis : 100 kg of fresh juice fed to the process	1	8
Fresh juice 15% solids Evaporator 55% solids Concentrated 15% solids (x) Evaporator (z) iuice 40% solids (y) bypass juice 15% solids	1	
Let 'X' and 'Y' be the kg of juice fed to the evaporator and kg of juice bypasses the evaporator		
Let 'Z' be the kg of juice leaving the evaporator and 'P' be the kg of concentrated juice obtained.		
Overall Material Balance before evaporation	1	
X + Y = 100 (i)		
Material Balance of Solids over evaporation		

STI(12078) Page **14** of **16**

STI(12078) Page **15** of **16**

100		
= 14.06 %		
Fraction of juice that bypass evaporation = 14.06 %	1	
ans.		

STI(12078) Page **16** of **16**