HD74HC11

Triple 3-input AND Gates

HITACHI

Features

High Speed Operation: t_{pd} = 9 ns typ (C_L = 50 pF)
 High Output Current: Fanout of 10 LSTTL Loads

• Wide Operating Voltage: $V_{CC} = 2$ to 6 V

• Low Input Current: 1 μA max

• Low Quiescent Supply Current: I_{CC} (static) = 1 μ A max (Ta = 25°C)

Pin Arrangement

HD74HC11

DC Characteristics

	Ta = -40 to
Ta = 25°C	+85°C

Item	Symbol	V _{cc} (V)	1a = 25°C		T03 C					
			Min	Тур	Max	Min	Max	Unit	Test Conditions	
Input voltage	V _{IH}	2.0	1.5	-		1.5	1910 1911 - 1911	V	-1.	
		4.5	3.15	_		3.15	s x	=3		
		6.0	4.2	_	_	4.2	_			
	V _{IL}	2.0	<u></u>	_	0.5	_	0.5	V		
		4.5	% <u></u> %		1.35	F <u>B. 18</u>	1.35	_		
		6.0	<u></u>	_	1.8	2. 12	1.8			
	V _{OH}	2.0	1.9	2.0	-	1.9	8 2	V	Vin = V _{IH} or V _{IL}	I _{OH} = −20 ∝A
		4.5	4.4	4.5	-	4.4	s 25	=8		
		6.0	5.9	6.0	_	5.9	_			
		4.5	4.18	_	_	4.13	<u></u>			I _{он} = -4 mA
		6.0	5.68	_		5.63	16—41	_		$I_{OH} = -5.2 \text{ mA}$
	V _{oL}	2.0	<u></u>	0.0	0.1	25. 12 1	0.1	V	Vin = V _{IH} or V _{IL}	I _{oL} = 20 ∝A
		4.5		0.0	0.1	-	0.1			
		6.0	·	0.0	0.1	==	0.1			
		4.5	8	-	0.26	_	0.33			I _{OL} = 4 mA
		6.0	-	_	0.26	_	0.33			I _{OL} = 5.2 mA
Input current	lin	6.0			±0.1	<u> </u>	±1.0	«Α	Vin = V _{cc} or GND	
Quiescent supply current	I _{cc}	6.0	ş - ş		1.0	2. [2]	10	∝A	Vin = V_{cc} or GND, lout = $0 \propto A$	

HD74HC11

AC Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

Ta = -40 to Ta = 25°C +85°C

	Symbol	V _{cc} (V)	14 - 20 0 .00 0				•		
Item			Min	Тур	Max	Min	Max	Unit	Test Conditions
Propagation delay	t _{PLH}	2.0	i = − 1 i = −	_	100	-	125	ns	
time $\overline{t_{\mbox{\tiny PHL}}}$		4.5	1-1	9	20	2.15	25		
		6.0		_	17	=	21		
	t _{PHL}	2.0	,—,,	-	100		125	ns	
		4.5	-	9	20	-	25		
		6.0	-	-	17	-	21	-	
Output rise time t _{TLH}	t _{TLH}	2.0		-	75	_	95	ns	
		4.5	-	5	15	2.13	19	*)	
		6.0		=	13	=	16		
Output fall time	t _{THL}	2.0	ş—ş;	-	75	-	95	ns	
		4.5	-	5	15	-	19		
		6.0	s 3	_	13	1 9-11	16		
Input capacitance	Cin	=	S-03	5	10	==	10	pF	

Unit: mm

Hitachi Code	DP-14	
JEDEC	Conforms	
EIAJ	Conforms	
Weight (reference value)	0.97 g	

*Dimension including the plating thickness
Base material dimension

Hitachi Code	FP-14DA
JEDEC	
EIAJ	Conforms
Weight (reference value)	0.23 g

Unit: mm

*Pd plating

Hitachi Code	FP-14DN
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.13 g

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Öhte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

Maidenhead

NorthAmerica URI http://semiconductor.hitachi.com/ Europe http://www.hitachi-eu.com/hel/eca

Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm http://www.hitachi.com.hk/eng/bo/grp3/index.htm

Japan http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose, CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 Hitachi Tower Singapore 049318 D-85622 Feldkirchen, Munich Germany Tel: 535-2100 Fax: 535-1533 Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Hitachi Asia Ltd

Taipei Branch Office Electronic Components Group. Whitebrook Park 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Lower Cookham Road Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Malderineau Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre,

Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Harbour City, Canton Road, Tsim Sha Tsui,