

Programa del curso EL-2207

Elementos Activos

Escuela de Ingeniería Electrónica Licenciatura en Ingeniería Electrónica

I parte: Aspectos relativos al plan de estudios

1 Datos generales

Nombre del curso: Elementos Activos

Código: EL-2207

Tipo de curso: Teórico

Electivo o no:

Nº de créditos: 4

Nº horas de clase por semana: 4

Nº horas extraclase por semana: 12

% de las áreas curriculares:

Ubicación en el plan de

estudios:

Cuarto semestre de Ingeniería Electrónica e Ingeniería

en Computadores

Requisitos: EL-2113 Circuitos Eléctricos en Corriente Continua

Correquisitos: EL-2114 Circuitos Eléctricos en Corriente Alterna

El curso es requisito de: EL-3212 Circuitos Discretos

Asistencia: Obligatoria a lecciones presenciales

(Modalidad semipresencial)

Suficiencia: Sí

Posibilidad de reconocimiento: No

Vigencia del programa: Il Semestre 2022

2 Descripción general

Este curso cubre la teoría básica de los semiconductores y los dispositivos activos semiconductores más importantes, a saber, la unión PN, diodos, los transistores MOSFET y bipolares y sus aplicaciones analógicas y digitales. El estudiante logrará un conocimiento de la teoría básica de dispositivos con semiconductores, sus curvas características, modelos matemáticos, análisis y diseño de circuitos en que son empleados, como base para los cursos de Circuitos Discretos y Diseño Lógico.

El curso busca desarrollar los siguientes atributos de egreso, de acuerdo con la definición del ente acreditador Canadian Engineering Acreditation Board (CEAB).

Atributo	Nivel
Conocimiento Base de Ingeniería	Inicial
Uso de Herramientas de Ingeniería	Inicial
Análisis de Problemas	Inicial

En casos de estudiantes con necesidades educativas especiales se elaborará un plan específico de atención con ayuda del Departamento de Orientación y Sicología.

3 Objetivos generales

Objetivo(s) del curso	Atributo(s)	Nivel de
	correspondiente(s)	desarrollo de
		cada atributo que
		se planea
		alcanzar.
		(Inicial - I,
		intermedio - M o
		avanzado – A)
Explicar a nivel electrónico		
utilizando fundamentos de la física		
del semiconductor el		
funcionamiento los siguientes		
dispositivos semiconductores	Conocimientos	1
diodos, transistores MOSFET y	base de Ingeniería	'
bipolar, e interpretar correctamente		
el funcionamiento de un dispositivo		
(diodo, transistor, etc) a partir de		
sus curvas características.		
Aplicar técnicas de análisis y		
diseño en circuitos constituidos por		
diodos y transistores, mediante el	Análisis de	1
planteamiento de problemas	Problemas	1
teóricos y prácticos, en torno al		
tema de semiconductores.		

4 Contenidos

4.1 Semiconductores: (2.5 semanas)

- 4.1.1 Conceptos básicos: niveles de energía, cristal, bandas de conducción, valencia, nivel de Fermi, ecuación estadística de Fermi-Dirac.
- 4.1.2 Clasificación de los materiales de acuerdo con la conducción eléctrica: semiconductores, aislantes y conductores.
- 4.1.3 Semiconductores intrínsecos y extrínsecos, dopado, el concepto de hueco, corriente de huecos, generación y recombinación.
- 4.1.4 Transporte de portadores de carga: movilidad, conductividad, corriente de difusión, corriente de arrastre, relación de Einstein.
- 4.1.5 Modelo de bandas de energía: nivel de Fermi, afinidad electrónica, función de trabajo, nivel de vacío, concentración de portadores de carga en función de la energía, deformación de bandas.

4.2 Contactos metal-semiconductor y semiconductorsemiconductor (1 semanas)

- 4.2.1 Contactos metal-semiconductor: Schottky y Óhmico.
- 4.2.2 La unión PN y electrostática de la juntura.

4.3 El diodo: (2.5 semanas)

- 4.3.1 Funcionamiento, curvas características, punto de operación.
- 4.3.2 Modelo del diodo ideal, tensión constante, lineal incremental, Shockley.
- 4.3.3 Línea de carga y punto de operación, resistencia estática y dinámica.
- 4.3.4 Circuitos de aplicación: rectificadores, reguladores, limitadores.

4.4 El transistor bipolar BJT: (4 semanas)

- 4.4.1 Construcción, símbolo y funcionamiento.
- 4.4.2 Curvas características y polarización.
- 4.4.3 Modelos del BJT (gran señal, Ebers-Moll y pequeña señal).
- 4.4.4 Aplicaciones del BJT.

4.5 El transistor de efecto de campo MOSFET y la tecnología CMOS (6 semanas)

- 4.5.1 El condensador MOS: diagramas de bandas, voltaje de umbral, funcionamiento en acumulación, agotamiento, inversión débil y fuerte.
- 4.5.2 Construcción, símbolo, clasificación del MOSFET.
- 4.5.3 Funcionamiento, curvas características y polarización.
- 4.5.4 Efecto de cuerpo, modulación de largo de canal.
- 4.5.5 Modelo del MOSFET para aplicaciones analógicas.
- 4.5.6 Aplicaciones analógicas del MOSFET: fuente común, compuerta común, drenador común, ganancia e impedancias de entrada y salida.
- 4.5.7 Modelo del MOSFET para aplicaciones digitales.
- 4.5.8 Aplicaciones digitales del MOSFET: compuerta de transmisión, inversor NMOS, inversor CMOS, compuertas lógicas básicas.

Il parte: Aspectos operativos

5 Metodología de enseñanza v aprendizaje

Exposición magistral de la teoría con interacción de parte del estudiante y resolución de problemas de cálculo en la clase por parte del profesor. El curso es de 4 créditos y por tanto exige 12 horas de trabajo semanal: 4 h en lecciones más 8 h de trabajo individual o grupal. Un factor clave para el éxito del estudiante es el estudio y resolución de ejercicios extra clase

6 Evaluación

La evaluación consistirá en tres exámenes individuales escritos y un porcentaje de tareas, desglosados como sigue:

Tipo de evaluación	Semana	%	Contenido
Tareas		25%	
1er Examen Parcial	Semana 7 V9/9/2022 7:30am	25%	4.1-4.3
2do Examen Parcial	Semana 12 V14/10/2022 7:30am	25%	4.4
3er Examen Parcial	Semana 18 L21/11/2022 8:00am	25%	4.5

7 Bibliografía

Bibliografía obligatoria:

Behzad Razavi. Fundamentals of Microelectronics, 2nd Ed. Wiley, 2013. Boylestad R. Electrónica: Teoría de circuitos y dispositivos electrónicos. 10^{ma} Ed. Pearson. 2009.

Pedro Julián. Dispositivos Semiconductores: Principios y Modelos. Alfaomega, 2013.

Baker, R. J. CMOS: Circuit Design, Layout, and Simulation, IEEE Press Series on Microelectronic Systems, 4th ed, John Wiley & Sons, 2019. ISBN: 9781119481515.

- R. Pierret. Fundamentos de Semiconductores. Colección Temas Selectos de Ingeniería. Adisson-Wesley Iberoamericana.
- G. Neudeck. El diodo PN de unión. Colección Temas Selectos de Ingeniería. Adisson-Wesley Iberoamericana
- R. Pierret. Dispositivos de efecto de campo. Colección Temas Selectos de Ingeniería. Adisson-Wesley Iberoamericana
- G. Neudeck. El transistor bipolar de unión. Colección Temas Selectos de Ingeniería. Adisson-Wesley Iberoamericana

Bibliografía complementaria:

R. Pierret. Semiconductor Device Fundamentals, Addison-Wesley, 1996. Tsividis, Y. and McAndrew C. Operation and Modeling of the MOS Transistor, 3rd Ed. Oxford University Press, 2011.

8 Profesor

M.Sc. Aníbal Coto Cortés Correo: acotoc@itcr.ac.cr Teléfono: 2550-9186 Oficina Edificio K1, 313 Consulta: K, J: 9:30-11:20

M: 15:00-16:50

Grupo 03