Calcolatori Elettronici – II parte (CdL Ingegneria Informatica) Esame del 19 luglio 2017 – tempo a disposizione: 1 ora e 30 minuti
Compito Num. 2 COGNOME:NOME:
 (20%) Si vuole realizzare una CPU dual core dotata di due cache L1 separate (una per ciascun core) e una cache L2 condivisa. I core della CPU sono identici, hanno un'architettura superscalare di tipo RISC, sono dotati di una ALU in grado di svolgere 32 operazioni su numeri in virgola mobile e di tre bus: due che collegano i registri ai due ingressi della ALU e uno che collega l'uscita della ALU ai registri. Tutte le altre specifiche possono essere liberamente scelte. A) Disegnare l'architettura generale di un core di tale CPU (comprensiva dei segnali di controllo) e illustrare coincisamente il suo funzionamento. B) Indicare e descrivere le modalità di comunicazione dei core con le cache (di primo e secondo livello) e con la memoria. C) Indicare concisamente come sia possibile introdurre un meccanismo di esecuzione fuori ordine delle istruzioni e una pipeline a più stadi nell'architettura progettata specificando cosa avviene in cicli successivi del segnale di temporizzazione. La risposta deve essere possibilmente contenuta nello spazio che segue. SOLO PER QUESTO ESERCIZIO E' CONSENTITO UN EVENTUALE FOGLIO AGGIUNTIVO.

- 2) (20%) Si supponga di voler progettare un linguaggio macchina con istruzioni a lunghezza fissa di 8 bit, in cui occorrono 2 bit per indirizzare ciascun operando e in cui si vuole utilizzare la tecnica dell'espansione dei codici operativi.
 - A) Volendo avere 2 istruzioni a tre indirizzi, 12 a un indirizzo e 8 a zero indirizzi, quante istruzioni a due indirizzi è possibile avere al massimo?
 - B) Mostrare schematicamente la corrispondente organizzazione dei codici operativi.
 - C) Calcolare quante istruzioni a zero indirizzi è possibile avere al massimo con la scelta individuata al punto A

risposta de ve	e essere contenuta n	eno spazio che seg	gue	

3) (20%) Scrivere un programma in linguaggio assemblativo 8088 che, dato una stringa S di caratteri di un byte memorizzata in memoria principale e terminata da un punto: (1) calcola il numero di caratteri della stringa mediante una subroutine DIM che ha come argomento l'indirizzo dei primo elemento della stringa e (2) verifica se nella stringa compaiono n occorrenze del carattere c con una subroutine TEST che ha come argomenti: l'indirizzo dei primo elemento della stringa, il valore di n e il carattere c (entrambi in memoria principale). La risposta deve essere contenuta nello spazio che segue
La risposta deve essere contenuta neno spazio che segue

DOMANDE A RISPOSTA MULTIPLA (40%) Indicare **in fondo al foglio** se le seguenti affermazioni sono vere (con una croce su [V]) o false (con una croce su [F]).

- 4) Con riferimento ai linguaggi macchina, indicare se le seguenti affermazioni sono vere o false.
 - A) Il linguaggio macchina del processore i7 è caratterizzato da istruzioni di lunghezza variabile.
 - B) L'indirizzamento a registro non richiede accessi a memoria.
 - C) L'indirizzamento SIB (Scale, Base, Index) dell'17 viene generalmente utilizzato per operare su array.
 - **D)** Nell'indirizzamento indiretto a registro l'operando si trova in memoria principale.
 - E) L'indirizzamento indiretto a registro richiede meno bit dell'indirizzamento indiretto a memoria.
 - F) L'indirizzamento a stack richiede un supporto hardware da parte della CPU.
 - G) Nell'indirizzamento a registro richiede un precedente caricamento del dato in un registro.
 - H) Nel linguaggio macchina del processore i7 un operando è sempre un registro.
- 5) Con riferimento ai meccanismi di gestione delle cache, indicare se le seguenti affermazioni sono vere o false.
 - A) Una cache hit in lettura può richiedere comunque l'accesso alla memoria.
 - B) Il numero di collisioni su una slot di cache diminuisce se diminuisce la dimensione della cache.
 - C) La politica di rimpiazzamento di linee LRU vale solo per cache a più vie.
 - **D)** È impossibile indirizzare da programma macchina una slot di cache.
 - E) Gli accessi ad array risultano tipicamente più efficienti se è presente una cache.
 - F) Il meccanismo di gestione write through è meno efficiente del meccanismo write back.
 - G) Nel caching la lunghezza del campo LINE di un indirizzo dipende dalla dimensione della cache.
 - H) In una cache a mappatura diretta non avvengono collisioni.
- 6) Si consideri una CPU che sa avviare 2 istruzioni per ciclo di clock e che richiede 2 cicli per completare somme e differenze e 3 cicli per completare divisioni e prodotti. Con riferimento al seguente programma macchina: (1) R9 = R4 * R1;
 - (2) R3 = R4 + R5; (3) R2 = R6 / R3; (4) R6 = R7 R1; indicare se le seguenti affermazioni sono vere o false.
 - A) L'esecuzione con avvio e ritiro fuori ordine richiede 7 cicli di clock.
 - B) L'ordine di avvio delle istruzioni nell'esecuzione con avvio fuori ordine è (1)(2)(3)(4).
 - C) L'esecuzione fuori ordine del programma richiede un solo registro segreto.
 - **D)** L'ordine di ritiro delle istruzioni nell'esecuzione con ritiro fuori ordine è (2)(1)(4)(3).
 - **E)** Tra l'istruzione (1) e l'istruzione (2) non ci sono vincoli.
 - F) L'esecuzione con avvio e ritiro in ordine (senza registri segreti) richiede 10 cicli di clock.
 - G) L'esecuzione con avvio fuori ordine e ritiro in ordine richiede 9 cicli di clock.
 - H) L'avvio dell'istruzione (2) richiede l'uso di un registro segreto in una esecuzione fuori ordine.
- 7) Con riferimento alle tecniche di esecuzione di istruzioni in un CPU con pipeline, indicare se le seguenti affermazioni sono vere o false.
 - A) L'esecuzione speculativa richiede una memoria dedicata.
 - B) La tavola di predizione dei salti contiene una riga per ogni istruzione del programma.
 - C) L'esecuzione speculativa e l'esecuzione fuori ordine possono essere combinate.
 - D) La predizione con due bit memorizza il comportamento delle ultime quattro esecuzioni di una istruzione di salto.
 - E) Le architetture che eseguono fuori ordine le istruzioni dispongono di unità dedicate allo scheduling delle istruzioni.
 - F) La tavola di predizione dei salti si memorizza in una memoria dedicata.
 - G) Nella predizione statica di salti si memorizza cosa è avvenuto nelle precedenti esecuzioni di una istruzione di salto.
 - H) È possibile fare predizioni di salto dinamico a livello di linguaggio macchina.

```
Risposte domanda 4 = A:[V][F] B:[V][F] C:[V][F] D:[V][F] E:[V][F] F:[V][F] G:[V][F] H:[V][F] Risposte domanda 5 = A:[V][F] B:[V][F] C:[V][F] D:[V][F] E:[V][F] F:[V][F] G:[V][F] H:[V][F] Risposte domanda 6 = A:[V][F] B:[V][F] C:[V][F] D:[V][F] E:[V][F] F:[V][F] G:[V][F] H:[V][F] Risposte domanda 7 = A:[V][F] B:[V][F] C:[V][F] D:[V][F] E:[V][F] F:[V][F] G:[V][F] H:[V][F]
```