Parseo y Generación de Código – $2^{\rm do}$ semestre 2017 Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Práctica 5 Análisis sintáctico ascendente

En todos los ejercicios, recordar que la gramática se debe extender con un símbolo inicial S' y una producción $S' \to S\$$ si es necesario.

Ejercicio 1. Para la gramática $G = (\{E, T, F\}, \{\mathbf{n}, +, *, -, (,)\}, P, E)$:

$$E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow \mathbf{n} \mid -F \mid (E)$$

- 1. Dibujar el autómata LR(0) y construir la tabla de análisis sintáctico LR(0).
- 2. Observar que la tabla tiene dos conflictos **shift/reduce** y concluir que la gramática no es LR(0).
- 3. Calcular los conjuntos FOLLOW(E), FOLLOW(T) y FOLLOW(F).
- 4. Modificar la tabla de análisis sintáctico ya construida para obtener una tabla de análisis sintáctico SLR, en la que se reduce por una producción $A \to \beta$ solamente si el siguiente símbolo de la entrada está en FOLLOW(A).
- 5. Observar que la tabla modificada no tiene conflictos y concluir que la gramática es SLR.
- 6. Analizar sintácticamente la cadena
 -n*n usando la tabla SLR construida.
- 7. Las entradas de la tabla que no tienen acciones corresponden a errores de sintaxis. Pensar qué mensaje de error podría emitir el analizador sintáctico para cada una de las entradas vacías de la tabla.

Ejercicio 2. Construir la tabla de análisis sintáctico LR(0) para las siguientes gramáticas:

1.
$$G_1 = (\{S\}, \{a, b\}, P, S)$$

$$S \rightarrow aSb \mid ab$$

Mostrar que es LR(0) y analizar sintácticamente la cadena aaabbb

2.
$$G_2 = (\{S\}, \{+, *, a\}, S)$$

$$S \rightarrow +SS \mid *SS \mid a$$

Mostrar que es LR(0) y analizar sintácticamente la cadena * + aa + aa

3.
$$G_3 = (\{S\}, \{+, *, a\}, S)$$

$$S \rightarrow SS + |SS*| a$$

Mostrar que G_3 no es LR(0). ¿Qué conflictos aparecen? Mostrar que G_3 es SLR modificando la tabla para reducir por una producción $A \to \beta$ cuando el siguiente símbolo de la entrada está en FOLLOW(A). Analizar sintácticamente la cadena aa*aa*+

4.
$$G_4 = (\{S\}, \{+, *, a\}, S)$$

$$S \rightarrow S(S)S \mid \epsilon$$

Mostrar que G_4 no es LR(0) ni SLR.

5.
$$G_5 = (\{S, A\}, \{0, 1\}, S)$$

$$\begin{array}{ccc} S & \rightarrow & S0 \mid A1 \\ A & \rightarrow & S \mid 1 \end{array}$$

Mostrar que G_5 no es LR(0) pero sí SLR. Analizar sintácticamente la cadena 1101.

6.
$$G_6 = (\{S, A\}, \{0, 1\}, S)$$

$$\begin{array}{ccc} S & \rightarrow & SA \mid A \\ A & \rightarrow & 0S1 \mid 01 \end{array}$$

Mostrar que G_5 no es LR(0) pero sí SLR. Analizar sintácticamente la cadena 010011.

Ejercicio 3. Dar una gramática que sea LR(0) pero que no sea LL(1).

Ejercicio 4. Construir la tabla de análisis sintáctico LR(1) para la gramática $G_6 = (\{S, A\}, \{0, 1\}, S)$:

$$\begin{array}{ccc} S & \rightarrow & SA \mid A \\ A & \rightarrow & 0S1 \mid 01 \end{array}$$

Analizar sintácticamente la cadena 01.

Ejercicio 5. Mostrar que la gramática $G = (\{S, A, B\}, \{a, b\}, P, S)$ no es LR(0), SLR, LR(1) ni LALR:

$$\begin{array}{ccc} S & \rightarrow & AaAb \mid BbBa \\ A & \rightarrow & \epsilon \\ B & \rightarrow & \epsilon \end{array}$$

Ejercicio 6. Para la gramática $G = (\{S, A\}, \{a, b, c, d\}, P, S)$:

$$\begin{array}{ccc} S & \rightarrow & Aa \mid bAc \mid dc \mid bda \\ A & \rightarrow & d \end{array}$$

- 1. Mostrar que la gramática extendida no es LR(0). Para esto, armar el autómata LR(0) y verificar que tiene dos conflictos **shift/reduce**.
- 2. Calcular los conjuntos $\mathsf{FOLLOW}(S)$ y $\mathsf{FOLLOW}(A)$, y notar que la gramática tampoco es SLR, porque uno de los dos conflictos **shift/reduce no** se resuelve usando SLR.
- 3. Mostrar que la gramática es LR(1). Para esto, armar el autómata LR(1) y verificar que no hay conflictos.
- 4. Mostrar que la gramática es LALR. Para esto, fusionar los estados del autómata LR(1) que tengan el mismo núcleo, y verificar que no se introduce ningún conflicto.