A. Modular Exponentiation

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input

output: standard input

The following problem is well-known: given integers n and m, calculate

,

where $2^n = 2 \cdot 2 \cdot ... \cdot 2$ (*n* factors), and denotes the remainder of division of *x* by *y*.

You are asked to solve the "reverse" problem. Given integers n and m, calculate

.

Input

The first line contains a single integer n ($1 \le n \le 10^8$).

The second line contains a single integer m ($1 \le m \le 10^8$).

Output

Output a single integer — the value of .

Examples

input	
4 42	
output	
10	

```
input

1
58

output
0
```

input	
98765432 23456789	
output	
23456789	

Note

In the first example, the remainder of division of 42 by $2^4\!=\!16$ is equal to 10.

In the second example, 58 is divisible by $2^1 = 2$ without remainder, and the answer is 0.