Como resolver a equação abaixo?

$$x^2 - 64 \cdot x + 448 = 0$$

Como resolver a equação abaixo?

$$x^2 - 64 \cdot x + 448 = 0$$

Solução: fórmula de Bhaskara.

$$\Delta = b^2 - 4 \cdot a \cdot c$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2 \cdot a}$$

Como resolver a equação abaixo sem utilizar a fórmula de Bhaskara?

$$x^2 - 64 \cdot x + 448 = 0$$

Método da bissecção

Quantas tentativas são necessárias para descobrir um número inteiro escolhido aleatoriamente entre 0 e 1000?

Método da bissecção

Se f(x) é uma função contínua e se f(a) e f(b) têm sinais opostos, então f(x) possui pelo menos uma raiz real no intervalo [a;b].

Método da bissecção

1. Calcule ponto médio m do intervalo [a; b].

$$m=\frac{a+b}{2}$$

- 2. Calcule o valor de f(m).
 - 2.1 Se f(m) = 0, então a raiz é igual a m. Pare os cálculos.
 - 2.2 Se f(m) tiver sinal oposto a f(a), então a raiz está no intervalo [a, m], ou seja, à esquerda de m.
 - 2.3 Se f(m) tiver sinal oposto a f(b), então a raiz está no intervalo [m, b], ou seja, à direita de m.
- 3. Repita o procedimento com o subintervalo que contém a raiz.

Sabendo que a função $f(x) = x^2 - 64 \cdot x + 448$ possui uma raiz real no intervalo [12; 140], encontre esta raiz pelo método da bissecção.

Resolução do exercício - intervalo inicial

Resolução do exercício — $1^{\underline{a}}$ iteração

Resolução do exercício – 2^a iteração

Resolução do exercício – 3^a iteração

Resolução do exercício – 4^a iteração

Resolução do exercício – 5^a iteração

Resolução do exercício - resumo

Sabendo que a função $f(x) = x^2 - 64 \cdot x + 448$ possui uma raiz real no intervalo [12; 140], encontre esta raiz pelo método da bissecção.

$$f(12) = 12^2 - 64 \cdot 12 + 448 = -176$$

 $f(140) = 140^2 - 64 \cdot 140 + 448 = +11088$

Iteração	а	m	Ь	f(m)
1	12 -\	76 +	140 +	+1360
2	12 -	<u> </u>	776 +	-432
3	44 -	60 +	1 76 +	+208
4	44 -		60 +	-176
5	52 - *	56 raiz	1 60 +	0

Sabendo que a função $f(x) = x - \cos x$ possui uma raiz real no intervalo [0; 1], encontre esta raiz pelo método da bissecção (calcule até a $5^{\underline{a}}$ iteração).

Resolução do exercício

Sabendo que a função $f(x) = x - \cos x$ possui uma raiz real no intervalo [0; 1], encontre esta raiz pelo método da bissecção (calcule até a 5^{a} iteração).

$$f(0) = 0 - \cos 0 = 0 - 1 = -1$$

 $f(1) = 1 - \cos 1 = 1 - 0,540302306 = 0,459697694$

Iteração	а	m	Ь	f(m)
1	0 —	0,5 —	1 +	-0,377582562
2	0,5 —	0,75 —	1 +	+0,018311131
3	0,5 —	0,625 +	0,75 +	-0,185963119
4	0,625 —	0,6875 —	0,75 +	-0,085334946
5	0,6875 —	0,71875 —	0,75 +	-0,033879372

Escreva um programa que encontre a raiz da função $f(x) = \sec x - \ln x$, utilizando o método da bissecção a partir do intervalo [1;5]. Utilize |f(m)| < 0,001 como condição de parada.

Implementação computacional do método da bissecção

```
double f(double x){
     return sin(x)-log(x);
   int main(){
     double a, b, m, fm;
6
     a = 1:
     b = 5;
     while(1){
9
       m = (a+b)/2;
10
       fm = f(m);
       if(fabs(fm) < 0.001){
12
         printf("%lf\n", m);
         return 0;
14
15
       if(fm*f(a) > 0){
16
         a = m:
       }else{
18
         b = m;
19
20
```

Método de Newton-Raphson

Encontre esta raiz da função $f(x) = x^2 - 64 \cdot x + 448$ pelo método de Newton, utilizando x = 140 como valor inicial.

Resolução do exercício - valor inicial

Resolução do exercício - valor inicial

Resolução do exercício — $1^{\underline{a}}$ iteração

Resolução do exercício — $1^{\underline{a}}$ iteração

Resolução do exercício – 2^a iteração

Resolução do exercício – 2ª iteração

Resolução do exercício – 3ª iteração

Método de Newton-Raphson

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Encontre esta raiz da função $f(x) = x^2 - 64 \cdot x + 448$ pelo método de Newton, utilizando x = 140 como valor inicial (calcule até a $5^{\underline{a}}$ iteração).

Exercício - resolução

Encontre esta raiz da função $f(x) = x^2 - 64 \cdot x + 448$ pelo método de Newton, utilizando x = 140 como valor inicial (calcule até a $5^{\frac{a}{2}}$ iteração).

A derivada de f(x) é $f'(x) = 2 \cdot x - 64$.

Iteração	X	f(x)	f'(x)
0	140	11088	216
1	88,66666667	2635,111111	113,3333333
2	65,41568627	540,6080892	66,83137255
3	57,32654986	65,4341279	50,65309972
4	56,03474091	1,66877038	48,06948181
5	56,00002511	0,001205187	48,00005022

Encontre esta raiz da função $f(x) = x - \cos x$ pelo método de Newton, utilizando x = 0 como valor inicial (calcule até a $5^{\underline{a}}$ iteração).

Escreva um programa que encontre a raiz da função $f(x) = x - \cos x$ pelo método de Newton, utilizando x = 0 como valor inicial. Utilize |f(m)| < 0,001 como condição de parada.