UNIVERSIDADE FEDERAL DE VIÇOSA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

ERIAN ALÍRIO DE OLIVEIRA ALVES - 3862 PEDRO CARDOSO DE CARVALHO MUNDIM - 3877

TRABALHO PRÁTICO 2 - REDES DE COMPUTADORES (CCF 452)

Segundo Trabalho Prático da disciplina Redes de Computadores - CCF 452, do curso de Ciência da Computação da Universidade Federal de Viçosa -Campus Florestal

Professora: Thais Regina de Moura Braga Silva

FLORESTAL

SUMÁRIO

1. Introdução	1
2. Desenvolvimento: Uma Visão Geral do Packet Tracer	2
3. Desenvolvimento: Parte 1 - Configuração	11
Configuração 1	11
Configuração 2	11
Configuração 3	13
Configuração 4	15
Configuração 5	15
4. Desenvolvimento: Parte 2 - Execução	16
Atividade 1	16
Atividade 2	21
Atividade 3	22
Atividade 4	23
Atividade 5	28
5. Considerações Finais	31
6. Referências	32

1. Introdução

Este trabalho consiste em realizar um estudo prático simulado sobre os conteúdos teóricos sobre as camadas de rede, transporte e aplicação discutidos durante a disciplina. Para a realização do mesmo, será utilizado o software de simulação **Packet Tracer**.

Primeiramente, foi instalado o Packet Tracer, conforme pedido na especificação. O Packet Tracer permite simular uma rede de computadores, através de equipamentos e configurações presentes em situações reais. Neste trabalho serão realizadas algumas simulações, a fim de praticar e obter uma melhor visualização do funcionamento das camadas citadas acima.

2. Desenvolvimento: Uma Visão Geral do Packet Tracer

Será apresentado agora uma visão geral da ferramenta que será utilizada para a realização deste trabalho. Ao registrar e fazer o login na ferramenta, a tela inicial mostrada é dada pela Figura 1 abaixo.

Figura 1: Tela Inicial do Packet Tracer.

Será apresentado um exemplo básico de uso da ferramenta, com base no vídeo disponível no link: https://www.youtube.com/watch?v=nfn1EaRyHag

Primeiro, selecionamos "End Devices" e em seguida adicionamos dois PCs, selecionando "PC", conforme mostrado na Figura 2 a seguir.

Figura 2: Exemplo de Simulação Parte 1.

Agora, selecionamos o cabo de conexão. Para isto, selecione "Connections" e em seguida escolha o cabo desejado. Neste exemplo selecionamos o "Copper Cross-Over". A Figura 3 mostra essa parte.

Figura 3: Exemplo de Simulação Parte 2.

Uma observação é, para conectar o cabo em um dispositivo são apresentadas antes as entradas possíveis para realizar tal conexão. No caso dos PCs utilizados temos as entradas mostradas na Figura 4. Selecionamos a entrada de rede.

Figura 4: Exemplo de Simulação Parte 3.

Podemos agora testar a comunicação entre eles realizando um ping entre os dois. Mas antes disso é preciso configurar o endereço IP de cada um deles. Para isso, clicamos em um dos computadores e teremos o que é mostrado na Figura 5.

Figura 5: Exemplo de Simulação Parte 4.

Em seguida, selecionamos Desktop na parte superior desta tela, seguido de IP Configuration na próxima tela aberta ao ter selecionado Desktop.

Figura 6: Exemplo de Simulação Parte 5.

Ao selecionar "IP Configuration", a tela da Figura 7 é mostrada. Digite um IPv4 Address. A máscara será automaticamente preenchida. Repita o processo para o outro PC.

Figura 7: Exemplo de Simulação Parte 6.

Agora selecionamos um dos PCs e em seguida selecionamos seu "Command Prompt".

Figura 8: Exemplo de Simulação Parte 6.

Ao selecionar o "Command Prompt", tem-se o que é mostrado na Figura 9.

Figura 9: Exemplo de Simulação Parte 7.

Aqui estamos no PC0 e iremos "pingar" o PC1. Com a verificação concluída, temos:

```
Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time=5ms TTL=128
Reply from 192.168.1.2: bytes=32 time<1ms TTL=128
Reply from 192.168.1.2: bytes=32 time<1ms TTL=128
Reply from 192.168.1.2: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.1.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 5ms, Average = 1ms

C:\>
```

Figura 10: Exemplo de Simulação Parte 8.

Agora, vamos realizar um Switch entre dois PCs. Seguindo o que foi passado acima, temos a Figura 11. Para acrescentar o Switch basta ir em "Network Devices" seguido por "Switches". Por fim, escolha o Switch desejado. Para este exemplo foi utilizado a conexão com o cabo "Copper Straight-Through". Configure o IP dos PCs e verifique a comunicação.

Figura 11: Exemplo de Simulação Parte 9.

Também é possível inserir um roteador entre os computadores. Para acrescentar o roteador basta ir em "Network Devices" seguido por "Routers". Por fim, escolha o roteador desejado. Para este exemplo foi utilizado a conexão com o cabo "Copper Straight-Through". A Figura 12 mostra essa configuração.

Figura 12: Exemplo de Simulação Parte 10.

Note que o roteador vem por padrão com as interfaces desligadas. Por isso temos a cor vermelha nos leds. Precisamos ligar estas interfaces. A configuração IP destes dois PCs estarão em redes diferentes. Isso porque o roteador conecta redes diferentes. Para este exemplo, utilizamos o seguinte:

- PC4 192.168.1.10
- PC5 192.168.2.10

Agora, selecionamos o roteador. A seguinte tela será exibida.

Figura 13: Exemplo de Simulação Parte 11.

Para ligar as interfaces, faremos o seguinte: Selecione a aba "Config" na parte superior. Em seguida digite o endereço IP e marque "On" no canto superior direito, conforme mostrado na próxima figura.

Figura 14: Exemplo de Simulação Parte 12.

Repita o processo para a outra interface. Com isso teremos ambas ligadas.

Figura 15: Exemplo de Simulação Parte 13.

Verificando:

Figura 16: Exemplo de Simulação Parte 14.

Agora, vamos selecionar o modo simulação. Este encontra-se no canto inferior direito da tela inicial mostrada anteriormente.

Selecione "Simulation", seguido por "Edit Filters". Neste exemplo vamos deixar apenas os pacotes ICMP.

Figura 17: Exemplo de Simulação Parte 15.

Agora selecionamos o "envelope". Clique primeiro na máquina de origem e em seguida na máquina de destino.

Figura 18: Exemplo de Simulação Parte 16.

PC0 PC1 PC0 PC1 Event List Vis. Time(sec) Last Device At Device Туре ICMP 0.000 PC0 PC0 0.001 ICMP PC1 PC1 0.002 PC0 ICMP

Dê o "play" e será possível observar o envio do pacote.

Figura 19: Exemplo de Simulação Parte 17.

É uma ferramenta muito versátil, completa e de fácil utilização. Este foi apenas um exemplo básico de funcionamento. A seguir tem-se a resolução das partes pedidas na especificação do trabalho.

3. Desenvolvimento: Parte 1 - Configuração

Configuração 1

Primeiramente foi criada uma rede local wireless (CasaAluno), conforme a figura abaixo. Nela temos:

- ➤ Um roteador que implementa o protocolo 802.11.
- ➤ Dois laptops conectados a essa rede. Os IPs são os seguintes:

HomeRouter	Laptop0	Laptop1
192.168.3.2	192.168.3.3	192.168.3.4

Figura 20: Configurando a rede WLAN.

Figura 21: Configurando a rede WLAN: Exemplo de envio de PDU.

Configuração 2

Em seguida, foi criada uma rede local com fibra óptica, denominada rede UFV, conforme a figura abaixo. Nela temos:

- ➤ 4 máquinas servidoras em cluster (A,B,C,D) com IPs configurados.
- ➤ As máquinas estão conectadas a um switch.
- > A máquina A possui um processo servidor HTTP atendendo pelo nome DNS "ufv.br".
- ➤ A máquina B possui um processo servidor DNS configurado para resolver o domínio "ufv.br", a qual retorna o endereço da máquina A.
- > Os laptops da rede CasaAluno foram configurados para utilizarem a máquina servidora B como servidor DNS.

Os IPs de cada servidor estão na tabela a seguir:

A	В	С	D
192.168.4.2	192.168.4.3	192.168.4.4	192.168.4.5

Figura 22: Configurando a rede UFV: Servidores conectados ao Switch.

Figura 23: Configurando a rede UFV: Cluster.

Como a máquina B possui o processo servidor DNS, então todas as outras, bem como os laptops terão como DNS server o seu endereço IP (192.168.4.3). Um exemplo será mostrado na próxima figura (do laptop 1).

Figura 24: Configurando a rede UFV: Exemplo de dispositivo que utiliza o DNS Server.

Como pedido, a máquina A possui um processo servidor HTTP atendendo pelo nome DNS "ufv.br". Na figura seguinte temos a ilustração do acesso ao "site" por uma das outras máquinas servidoras.

Figura 25: Configurando a rede UFV: Exemplo de acesso ao site www.ufv.br.

Configuração 3

O próximo passo consiste na criação de nós entre as duas redes criadas acima. Agora teremos adicionalmente:

- ➤ 3 roteadores (RA, RB, RC) conectados como um grafo completo. Cada um possui duas placas de rede para ligação entre elas e, para cada conexão entre dois roteadores diferentes, têm-se IPs específicos para ela.
- > RA será o gateway da CasaAluno.
- > RC será o gateway da rede UFV.

A figura a seguir mostra o esquema conectado completo.

Figura 26: Conectando os roteadores às redes existentes.

As configurações de conexão serão mostradas na tabela a seguir. Notamos aqui o que foi dito anteriormente sobre cada uma delas necessitar de uma faixa de IPs diferente.

As conexões são:

- > FastEthernet4/0 do RA com o FastEthernet4/0 do RB.
- > FastEthernet5/0 do RA com o FastEthernet5/0 do RC.
- > FastEthernet5/0 do RB com o FastEthernet4/0 do RC.

RA para RB	RA para RC	RB para RC
192.168.10.1 ou .2	192.168.30.1 ou .2	192.168.20.1 ou .2

Antes de partir para a parte prática, vejamos na figura seguinte um exemplo de envio de PDUs.

Figura 27: Exemplo de envio de PDUs.

Configuração 4

Nesta parte foram configurados para os roteadores RA, RB, RC o roteamento dinâmico RIP. Para isso, todos os três roteadores recebem todas as faixas de IPs existentes na configuração geral da rede. A figura a seguir mostra essa configuração no roteador RA.

Figura 28: Roteamento RIP.

- > IP .3.0 utilizados nos laptops.
- ➤ IP .4.0 utilizados nos servidores em cluster.
- ➤ IP .10.0; .20.0; .30.0 utilizados nas conexões entre os roteadores RA, RB e RC.

Configuração 5

O arquivo PKT está enviado juntamente com este relatório no local de entrega do trabalho.

 Observação: Ao fechar o arquivo e reiniciá-lo, devido a um problema desconhecido, o IP do laptop 1 precisa ser configurado novamente, pois o mesmo não encontra-se configurado.

4. Desenvolvimento: Parte 2 - Execução

Na segunda parte do trabalho, a qual envolvia realizar testes com base nas máquinas configuradas na parte 1, desenvolveu-se uma série de atividades relacionadas com o modo simulação do Packet Tracer para possibilitar a visualização dos caminhos percorridos pelos pacotes, entre outros detalhes.

Atividade 1

Para a primeira tarefa, foi solicitado a realização de uma requisição ping de um dos *laptops* da rede CasaAluno para cada um das máquinas servidoras na rede UFV. O notebook escolhido foi "Laptop0". Na Figura 29, pode ser observado a realização da solicitação de ping pelo terminal para o servidor A, enquanto na Figura 30 é mostrado o painel de eventos para essa requisição. Completando as informações a serem extraídas entre a requisição do *laptop* para o servidor A, tem-se as informações do pacote exibidas na Figura 31.

```
C:\>ping 192.168.4.2

Pinging 192.168.4.2 with 32 bytes of data:

Reply from 192.168.4.2: bytes=32 time=10ms TTL=126

Ping statistics for 192.168.4.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 10ms, Maximum = 10ms, Average = 10ms
```

Figura 29: Execução do comando ping para o servidor A.

Figura 30: Painel de eventos, ping servidor A.

Figura 31: Informações do pacote, ping servidor A.

Quanto à requisição de ping do servidor B, as figuras 32, 33 e 34 exibem, respectivamente, a execução do comando, o painel de eventos e os dados do pacote.

```
C:\>ping 192.168.4.3

Pinging 192.168.4.3 with 32 bytes of data:

Reply from 192.168.4.3: bytes=32 time=10ms TTL=126
Ping statistics for 192.168.4.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 10ms, Maximum = 10ms, Average = 10ms
```

Figura 32: Execução do comando ping para o servidor B.

Figura 33: Painel de eventos, ping servidor B.

Figura 34: Informações do pacote, ping servidor B.

Na sequência, figuras 35, 36 e 37, são apresentadas as mesmas informações, mas agora para a requisição de ping no servidor C.

```
C:\>ping 192.168.4.4

Pinging 192.168.4.4 with 32 bytes of data:

Reply from 192.168.4.4: bytes=32 time=10ms TTL=126
Ping statistics for 192.168.4.4:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 10ms, Maximum = 10ms, Average = 10ms
```

Figura 35: Execução do comando ping para o servidor C.

Figura 36: Painel de eventos, ping servidor C.

Figura 37: Informações do pacote, ping servidor C.

Por fim, no exercício 1, as informações da execução do comando ping para o servidor D, semelhante aquelas dispostas previamente, podem ser visualizadas nas figuras abaixo.

```
C:\>ping 192.168.4.5

Pinging 192.168.4.5 with 32 bytes of data:

Reply from 192.168.4.5: bytes=32 time=10ms TTL=126
Ping statistics for 192.168.4.5:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 10ms, Maximum = 10ms, Average = 10ms
```

Figura 38: Execução do comando ping para o servidor D.

Figura 39: Painel de eventos, ping servidor D.

Figura 40: Informações do pacote, ping servidor D.

A fim de concluir a análise das informações obtidas pelas requisições ping, observou-se que para cada servidor o valor de RTT obtido, na média, foi de 10ms.

Atividade 2

Já para a segunda atividade, foi pedido que fosse realizado uma requisição HTTP GET para o servidor A, sem a utilização do DNS, e partir disso observar quantas PDUs de cada camada, a partir da camada de rede, foram trafegadas. Na Figura 41, é possível visualizar o resultado da execução da tarefa solicitada.

Figura 41 - Requisição HTTP GET para servidor A (HTTP) sem DNS, PDUs.

A partir da imagem acima, é possível contar que o *laptop* interagiu com 4 PDU's da camada de rede (TCP), e 1 PDU da camada de aplicação (HTTP). A contagem realizada considera tanto os recebidos quanto os enviados no cálculo. De modo a completar as informações da presente tarefa, na Figura 42 é mostrado dados do primeiro pacote desta requisição.

Figura 42: Informações do pacote, requisição HTTP GET ao servidor A sem utilizar o DNS.

Atividade 3

Para a terceira atividade, deveria-se seguir o mesmo roteiro do exercício 2 quanto aos procedimentos e as informações a serem obtidas, mas utilizando o nome "ufv.br" para realizar a requisição HTTP GET. O resultado atingido pode ser visualizado na Figura 43.

Figura 43: Requisição HTTP GET para servidor A (HTTP) com DNS, PDUs.

Ao utilizar o DNS para efetuar a requisição, houve um aumento interessante na quantidade de PDUs trafegadas até que a solicitação fosse atendida. A quantidade de PDU's, relacionadas diretamente com o *laptop*, da camada de rede foi 5 (TCP), sendo o mesmo valor da camada de aplicação (4 DNS e 1 HTTP). Nas figuras 44 e 45 é mostrado os dados do pacote inicial desta solicitação HTTP GET.

Figura 44: Informações do pacote, requisição HTTP GET ao servidor A com DNS, parte 1.

Figura 45: Informações do pacote, requisição HTTP GET ao servidor A com DNS, parte 2.

Atividade 4

Já na atividade de número 4, houve a solicitação de que fosse removida uma conexão entre os roteadores que representam a internet (RA, RB e RC) e com base nisso fosse realizado os mesmo procedimentos da questão 1. A ligação desfeita foi aquela entre os roteadores RA e RC, como mostrado na Figura 46.

Figura 46: Configuração após remoção da ligação entre RA e RB.

Quanto à requisição de ping do servidor A, as figuras 47, 48 e 49 exibem, respectivamente, a execução do comando ping, o painel de eventos e os dados do pacote.

```
C:\>ping 192.168.4.2

Pinging 192.168.4.2 with 32 bytes of data:

Reply from 192.168.4.2: bytes=32 time=12ms TTL=125
Ping statistics for 192.168.4.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 12ms, Maximum = 12ms, Average = 12ms
```

Figura 47: Execução do comando ping para o servidor A.

Figura 48: Painel de eventos, ping servidor A.

Figura 49: Informações do pacote, ping servidor A.

Já para a solicitação relacionada com o servidor B, as figuras 50, 51 e 52 exibem, respectivamente, a execução do comando ping, o painel de eventos e os dados do pacote.

```
C:\>ping 192.168.4.3

Pinging 192.168.4.3 with 32 bytes of data:

Reply from 192.168.4.3: bytes=32 time=12ms TTL=125
Ping statistics for 192.168.4.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 12ms, Maximum = 12ms, Average = 12ms
```

Figura 50: Execução do comando ping para o servidor B.

Figura 51: Painel de eventos, ping servidor B.

Figura 52: Informações do pacote, ping servidor B.

Na sequência, tem-se à disposição das mesmas informações apresentadas anteriormente, mas agora para o servidor C.

```
C:\>ping 192.168.4.4

Pinging 192.168.4.4 with 32 bytes of data:

Reply from 192.168.4.4: bytes=32 time=12ms TTL=125

Ping statistics for 192.168.4.4:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 12ms, Maximum = 12ms, Average = 12ms
```

Figura 53: Execução do comando ping para o servidor C.

Figura 54: Painel de eventos, ping servidor C.

Figura 55: Informações do pacote, ping servidor C.

Finalizando, as informações associadas com a requisição ping ao servidor D são exibidas nas figuras 56, 57 e 58.

```
C:\>ping 192.168.4.5

Pinging 192.168.4.5 with 32 bytes of data:

Reply from 192.168.4.5: bytes=32 time=12ms TTL=125

Ping statistics for 192.168.4.5:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 12ms, Maximum = 12ms, Average = 12ms
```

Figura 56: Execução do comando ping para o servidor D.

Vis.	Time(sec)	Last Device	At Device	Туре	
	0.000		Laptop0	ICMP	
	0.001	Laptop0	CasaAluno	ICMP	
	0.002	CasaAluno	RA	ICMP	
	0.003	RA	RB	ICMP	
	0.004	RB	RC	ICMP	
	0.005	RC	UFV	ICMP	
	0.006		CasaAluno	ICMP	
	0.007	CasaAluno	Laptop1	ICMP	
	0.007	CasaAluno	Laptop0	ICMP	
	0.008	UFV	RC	ICMP	
	0.009	RC	RB	ICMP	
	0.010	RB	RA	ICMP	
	0.011	RA	CasaAluno	ICMP	
	0.012	CasaAluno	Laptop1	ICMP	
	0.012	CasaAluno	Laptop0	ICMP	
	1.013		Laptop0	ICMP	
	1.014	Laptop0	CasaAluno	ICMP	
	1.015	CasaAluno	RA	ICMP	
	1.016	RA	RB	ICMP	
	1.017	RB	RC	ICMP	
	1.018	RC	UFV	ICMP	
	1.019		CasaAluno	ICMP	
	1.020	CasaAluno	Laptop1	ICMP	
	1.020	CasaAluno	Laptop0	ICMP	
	1.021	UFV	RC	ICMP	
	1.022	RC	RB	ICMP	
	1.023	RB	RA	ICMP	

Figura 57: Painel de eventos, ping servidor D.

Figura 58: Informações do pacote, ping servidor D.

Ao analisar os RTTs obtidos para este novo conjunto de requisições, tem-se que a média para cada servidor foi de 12ms, duas unidades a mais do que aquelas observadas na primeira atividade. Uma explicação plausível para esse acontecimento é a remoção da ligação entre dois dos roteadores intermediários, logo que elimina um caminho mais favorável para tráfego dos dados, sendo necessário um remanejamento nas rotas utilizadas até o momento.

Atividade 5

Por fim, em relação a quinta tarefa, houve o requerimento para utilização da ferramenta Traffic Generator, a qual deveria ser configurada para gerar um fluxo contínuo de requisições HTTP para o servidor HTTP da máquina "ufv.br". Na Figura 59, é exibido a página de configuração dessa ferramenta.

Figura 59: Tela de configuração da ferramenta Traffic Generator.

Após todos os ajustes necessários e estabelecimento de um tráfego contínuo de requisições HTTP para o servidor A, foi solicitado a utilização do outro *laptop* na rede CasaAluno para tentar realizar a execução do comando ping para algum outro servidor da rede UFV. É possível observar a execução do comando mencionado na Figura 60.

```
C:\>ping 192.168.4.5

Pinging 192.168.4.5 with 32 bytes of data:

Reply from 192.168.4.5: bytes=32 time=21ms TTL=125
Reply from 192.168.4.5: bytes=32 time=25ms TTL=125
Reply from 192.168.4.5: bytes=32 time=12ms TTL=125
Reply from 192.168.4.5: bytes=32 time=12ms TTL=125
Ping statistics for 192.168.4.5:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 12ms, Maximum = 25ms, Average = 17ms
```

Figura 60: Execução do comando ping para o servidor D durante tráfego intenso na rede.

O resultado apresentado na imagem acima mostra que, ao contrário das requisições realizadas nas atividades 1 e 4, houve uma variação no valor do RTT para cada uma das solicitações enviadas para o servidor na rede UFV. A média de 17ms, com um mínimo de 12ms e máximo de 25ms, evidencia, ao se comparar com resultados de outros testes, como o uso concomitante da rede por mais de um elemento pode afetar no tempo de resposta das requisições.

Na Figura 61, é possível visualizar melhor como o tráfego de PDUs estava se desenrolando durante a execução do comando ping e o fluxo contínuo gerado pela ferramenta Traffic Generator.

/is.	Time(sec)	Last Device	At Device	Туре	/
	0.000		Laptop1	ICMP	
	0.001	Laptop0	CasaAluno	TCP	
	0.002	CasaAluno	RA	TCP	
	0.003	RA	RB	TCP	
	0.004	RB	RC	TCP	
	0.004		Laptop1	ICMP	
	0.005	Laptop1	CasaAluno	ICMP	
	0.005	RC	UFV	TCP	
	0.006	CasaAluno	RA	ICMP	
	0.007	RA	RB	ICMP	
	0.007		CasaAluno	TCP	
	0.008	CasaAluno	Laptop1	TCP	
	0.008	CasaAluno	Laptop0	TCP	
	0.008	RB	RC	ICMP	
	0.008	UFV	RC	TCP	
	0.009	RC	UFV	ICMP	
	0.009	RC	RB	TCP	
	0.009		CasaAluno	ICMP	
	0.010	CasaAluno	Laptop1	ICMP	
	0.010	CasaAluno	Laptop0	ICMP	
	0.010	RB	RA	TCP	
	0.011	RA	CasaAluno	TCP	
	0.012	CasaAluno	Laptop0	TCP	
	0.012	CasaAluno	Laptop1	TCP	
	0.012	UFV	RC	ICMP	
	0.012		Laptop0	TCP	
	0.013	RC	RB	ICMP	

Figura 61: Painel de eventos, ping no servidor D e tráfego gerado pela ferramenta Traffic generator .

Apenas para finalizar com uma análise completa, na Figura 62 é exibido os dados do pacote do primeiro item presente no painel do evento.

Figura 62: Informações do pacote, ping no servidor D durante tráfego intenso na rede.

5. Considerações Finais

A partir da produção deste trabalho foi possível ver na prática os conteúdos teóricos da disciplina ao se utilizar a ferramenta Packet Tracer, a qual mostrou-se bastante poderosa em suas capacidades, sendo bem versátil. Além disso, ao realizar a prática na ferramenta, pudemos observar melhor o funcionamento das camadas estudadas.

6. Referências

[1] Wikipedia, **Packet Tracer.** Disponível em https://pt.wikipedia.org/wiki/Packet_Tracer. Acesso em Outubro de 2021.

[2]IFNR, Disponível em https://docente.ifrn.edu.br/jeffersonduarte/disciplinas/redes-de-computadores-e-aplicacoes%2 0/aulas/tutorial-sobre-o-cisco-packet-tracer/view Acesso em Outubro de 2021.

[3]ItExamAnswers, Cisco Packet Tracer for Beginners – Chapter 1: Startup Guide,
Disponível

https://itexamanswers.net/cisco-packet-tracer-beginners-chapter-1-startup-guide.html
Acesso
em Outubro de 2021

[4]ITPRC, **Ultimate Guide to Packet Tracer,** Disponível em https://www.itprc.com/packet-tracers/ Acesso em Outubro de 2021.

[5]Cpscetec, Aula 05 - Criando e configurando uma Rede Wireless - Parte I, Disponível em: http://www.cpscetec.com.br/adistancia/cisco/aula05.html Acesso em Outubro de 2021.

[6]Simple Network Design With DNS Servers in Packet Tracer, Disponível em https://blog.poudelmadhav.com.np/network-with-dns-server/ Acesso em Outubro de 2021.

[7] Vídeos Utilizados sobre o Packet Tracer

- > Aprendizado Geral da Ferramenta
 - o https://www.youtube.com/watch?v=AEvZ9A-dJP8
 - https://www.youtube.com/watch?v=rlmSGhU_wqM
 - o https://www.youtube.com/watch?v=nfn1EaRyHag
- Desenvolvimento: Execução Atividade 2
 - o https://www.youtube.com/watch?v=zwxi4jgdB18
- > DNS e Web
 - https://www.voutube.com/watch?v=6crmLn654As
- ➤ Conexão de Clusters
 - https://www.youtube.com/watch?v=JtrEwL4Jw5s
- > Fibra
 - https://www.youtube.com/watch?v=fEOnYmnQlVE
- ➤ Wi-Fi
 - o https://www.youtube.com/watch?v=84rpfWWU22Q
 - https://www.youtube.com/watch?v=VD8siw72gkI

Acesso em Outubro de 2021.