Nom:	DS6					
Prénom:	APP	ANA	REA	VAL	сом	RCO
Exercice 1 – Mission Rosetta						
1. $r_{\text{com}} = \left(\frac{3m_{\text{com}}}{4\pi\rho_{\text{com}}}\right)^{1/3} = 1.8 \text{ km}.$	•		•			
2. Mouvement uniforme: TMC ou TPC.						••
3. $v_1 = \sqrt{\frac{Gm_{\text{com}}}{r_1}} = 0.15 \text{m} \cdot \text{s}^{-1}$.			•			••
4. $\frac{T_1^2}{r_1^3} = \frac{4\pi^2}{Gm_{\text{com}}}$, d'où $T_1 = 2\pi \sqrt{\frac{r_1^3}{Gm_{\text{com}}}} = 14,6$ jours.			•			••
5. $\mathcal{E}_{\mathrm{m}} = -G \frac{m_{\mathrm{ros}} m_{\mathrm{com}}}{2r_{\mathrm{v}}}$.						••
6. Schéma de la trajectoire, avec O, A, P, r_a et r_p .					••	
7. $\mathcal{E}_{\rm m} = -G \frac{m_{\rm ros} m_{\rm com}}{r_a + r_p}$.	••					
7. $\mathcal{E}_{\rm m} = -G \frac{m_{\rm ros} m_{\rm com}}{r_a + r_p}$. 8. $v_p = \sqrt{\frac{2G m_{\rm com} r_a}{r_p (r_a + r_p)}} = 0.30 \mathrm{m \cdot s^{-1}}$.			•••			
9. $\Delta v = \sqrt{\frac{Gm_{\text{com}}}{r_p}} \left(1 - \sqrt{\frac{2r_a}{r_a + r_p}} \right) = -40 \text{mm} \cdot \text{s}^{-1}.$			••			
10. $\vec{F}_G = -G \frac{m_{\rm ph} m_{\rm com}}{r^2} \vec{e_r} = m_{\rm ph} \vec{g}_{\rm com}, g_{\rm com} \text{ en m} \cdot \text{s}^{-2}.$	•		•			•
11. Champ de gravitation non uniforme : $\frac{g_{\text{com}}(r_{\text{com}})}{g_{\text{com}}(r_{\text{larg}})} = 160$.		•		•		
12. $\ddot{r} + \frac{Gm_{\text{com}}}{r^2} = 0.$			••			
13. Courbe a, $\tau_0 \approx 145 \times 10^3 \mathrm{s} = 1.7 \mathrm{jours} < T_{\mathrm{ros}} = 9.6 \mathrm{jours} \mathrm{donc} \approx \mathrm{galil\acute{e}en}.$	••			•		
14. Courbe f, $v_0 = -0.75 \mathrm{m \cdot s^{-1}}$.	••					
15. $v_f = \dot{r} = 1.1 \mathrm{m \cdot s^{-1}}.$		••				
16. Mouvement conservatif: $v_f = \sqrt{v_0^2 + 2Gm_{\text{com}} \left(\frac{1}{r_{\text{com}}} - \frac{1}{r_{\text{larg}}}\right)} = 1.1 \text{m} \cdot \text{s}^{-1}$:			•	•	•	
cohérent.						
17. Confusion entre poids et masse, $m = F_G/g_{\text{Terre}} = 2.1 \text{g}$.	•	•	•	•	•	
EXERCICE 2 – Mesure de l'intensité du champ de pesanteur terrestre						
1. $\ddot{\theta} + \frac{amg}{J}\sin\theta = 0$. Approximation harmonique : $T = 2\pi\sqrt{\frac{J}{amg}}$.			•			••
$2. s = \frac{\delta T}{T} = -\frac{\delta g}{2g}.$		••				
3. $\ddot{\theta} + \frac{K}{J}\theta - \frac{amg}{J}\sin\theta = 0.$			••			
4. $\mathcal{E}_{p}(\theta) = amg(\cos \theta - 1) + \frac{1}{2}K\theta^{2}$.			••			
5. $amg \sin \theta_{\text{\'eq}} = K\theta_{\text{\'eq}}$, avec $\theta_{\text{\'eq}} = 0$ solution triviale. Résolution graphique, deux cas.			••		•	•
6. Minimum d'énergie potentielle : $K \geqslant amg$.			••			
7. $\mathcal{E}_{\rm m} = \frac{1}{2}J\dot{\theta}^2 + amg(\cos\theta - 1) + \frac{1}{2}K\theta^2$.			•••			
Mouvement conservatif, d'où $\ddot{\theta} - \frac{amg}{J}\sin\theta + \frac{K}{J}\theta = 0$.						
8. Approximation harmonique : $T' = 2\pi \sqrt{\frac{J}{K-amg}}$.			••			
9. $s' = \frac{\delta T'}{T'} = \frac{am}{2(K - amg)} \delta g$.		••				
10. $amg < K < 2amg$.		••				
EXERCICE 3 – Qui tombe le plus vite?						
1. Cas de la bille : $\tau_{\text{bille}} = \sqrt{\frac{2h}{g}} = \sqrt{\frac{\ell}{g}}$.	••	••	••••	••	••	
Cas de la tige : $ au_{ ext{tige}} = \mathcal{I}\sqrt{rac{\ell}{3g}}.$						
Conclusion : $\frac{\tau_{\rm bille}}{\tau_{\rm tige}} = \frac{\sqrt{3}}{\mathcal{I}} \approx 1.1$: la tige l'emporte!						
Présentation de la copie					••	
Total	APP	ANA	REA	VAL	сом	RCO
Nombre total de points	11	12	31	6	9	12
Nombre de points obtenus						
COMMENTAIRES:	$\eta =$	%;	$\tau =$	%;		/81