

Space Based Range Demonstration and Certification (SBRDC)

**Robert Sakahara, STARS Dryden Flight Research Center
(DFRC) Project Manager
October 25, 2005**

Space Based Range (SBR) Goals and Objectives

SBR Goal:

Reduce the cost of operating and maintaining range systems supporting space launch vehicles while increasing range responsiveness

SBR Strategic Objective:

Demonstrate space based range technologies to provide more responsive, robust, and economical tracking and communication systems

- Responsive
 - Reduce launch turn-around times
 - Reduce launch delays and scrubs due to range instrumentation problems
 - Support multiple vehicles simultaneously
- Robust
 - Increase vehicle telemetry data rates
 - Increase launch trajectories
 - Launch from any spaceport in the world
- Economical
 - Reduce range operations and maintenance (O&M) costs by \$50M per year by eliminating ground based down-range infrastructure

SBR Project Objectives

SBR Technology Development:

Develop, utilize, test, and demonstrate state-of-the-art technologies for Range Safety and Range User Systems.

- Range Safety System (Flight Termination, Vehicle Tracking, Key Flight Telemetry Data)
 - Support simultaneous forward links
 - Meet intent of range safety requirements
- Range User System (Video, Voice, Vehicle Data)
 - Maximize high data rate capabilities

Today's United States Range

- A complex ground based infrastructure consisting of:
 - Radars
 - High power UHF transmitters
 - Telemetry receive stations
- Very costly to operate and maintain
- Eleven percent of launches are scrubbed or delayed due to range instrumentation problems

Future Range

Another Vision for the Future Range

STARS Project Goals

- ◆ **STARS will utilize existing space-based platforms to provide reliable communications for flight termination commands, telemetry, and vehicle tracking for Range Safety and Range Users**
 - Tracking and Data Relay Satellite System (TDRSS) for command/data relay
 - Global Positioning System (GPS) for metric tracking
- ◆ **STARS will develop and utilize state of the art technologies that can be applied to Launch Vehicles:**
 - Multi-channel transceivers (TDRS/GPS)
 - Antennas (Ka/Ku-band phased array)
 - Data formatting (Error-correction, Encryption, Standard Protocols, Compression)
- ◆ **STARS will conduct a series of incremental proof of concept flight demonstrations to increase the Test Readiness Level (TRL)**
- ◆ **STARS team members will participate in the development of requirements for space based range full scale development**
- ◆ **STARS team members will support the United States Air Force (USAF) in the certification of the Range Safety System and the Range User System on the Operational Space-lift Ranges (i.e. ER and WR)**

STARS Content

◆ **STARS has four flight demonstrations planned**

- **Flight Demo 1 – Completed successfully June 2003**

- Proof of concept using F-15B as test vehicle
- Range Safety (RS) System
 - Developed Low Power Transceiver (LPT) with basic flight termination receiver capabilities and low-rate return link
 - Developed Command & Data Handler (C&DH) for command decoding and telemetry formatting
 - Utilized commercial off-the-shelf (COTS) Ashtech Z-12 GPS receiver
 - Utilized Omni patch antennas (combined S-band/L-band receive antennas on top and bottom of the F-15B and S-band transmit antennas located on the top and bottom of the F-15B)
- Range User (RU) System
 - Utilized COTS hardware transmitting up to 500 kbps data rate
 - Utilized Omni patch antennas (S-band transmit antennas only located on top and bottom of the F-15B)

STARS Configuration Flight Demonstrations 1 & 2

Hardware Locations

F-15B

Antenna Locations

◆ F-15B – Top View

Antenna Locations

◆ F-15B – Bottom View

Spaceport And Range Technologies

STARS Objectives and Results

FD1 Test Objectives and Results:

◆ **Range Safety (RS)**

- Verify link margin, acquisition/reacquisition, signal lock, Bit Error Rate (BER), and simultaneous forward links (satellite and launch head)
- Receive and process FTS commands (100% of all FTS commands were successfully initiated: over 300 Arm and Terminate commands were sent during the flight tests)
- Receive and process GPS metric tracking data
- Transmit tracking, telemetry, and status data from a high dynamic vehicle to DFRC via WSC (Data was also transmitted to Kennedy Space Center (KSC) and Wallops Flight Facility (WFF) in near real-time for monitoring)
- Process and display the RS return link data

- The objectives were satisfied, although the RS return link margin was less than predicted due to interferometer effects and surface wave interference
 - Interferometer effects and surface wave interference will be corrected for FD2

◆ **Range User (RU)**

- Verify link margin, acquisition/reacquisition, and signal lock
- Transmit RU data (video, voice, and telemetry) from a high dynamic vehicle to DFRC via WSC
- Process and display the RU return link data

- The objectives were satisfied, achieving higher link margin than predicted

Spaceport And Range Technologies

STARS FD2 Objectives

FD2 Test Objectives

- ◆ **Similar to FD1 with modified flight hardware**
- ◆ **Range Safety System**
 - Integrate the LPT, C&DH, and GPS receiver into single unit
 - Characterize latency, implement encryption on the forward link, implement Reed-Solomon encoding on both forward and return links
 - Verify link margin, acquisition/reacquisition, latency, signal lock, BER
 - Verify ability to send commands to transceiver and respond with flight termination action, measure the Signal to Noise ratio, test with 2 TDRS simultaneously, verify vehicle location (GPS with inertial navigation system (INS))
- ◆ **Range User System**
 - Develop Ku-band transmitter and Phased Array Antenna supporting 5 Mbps data rates
 - Integrate hardware on test aircraft with GPS/INS controller
 - Verify link margin, latency, acquisition/reacquisition performance, BER in dynamic environment, compression system performance, antenna capabilities & performance, antenna flight control interface and control algorithms performance
- ◆ **Schedule: 8 Test Flights on NASA F-15B, July 06**
- ◆ **Status**
 - All Range Safety and Range User hardware for Flight Demo 2 has been designed, developed and acceptance tested.
 - STARS RU hardware is currently in the integration and test phase prior to aircraft installation
 - Additional testing will occur after aircraft installation prior to flight testing

Range Safety Hardware

Range Safety Unit

Range User Hardware

IP Formatter

Ku-band Transmitter

Ku-band Phased Array Antenna

Past/Future Flight Demo Plans

- **Global Flyer support – FY05 (Flight Demo 1a)**
 - STARS was asked to provide hardware to the Global Flyer program to provide continuous video during the 67 hour global flight
 - STARS Flight Demo #2 RS hardware was delivered January 13, 2005
 - Flight was successfully completed March 3, 2005
 - STARS system exceeded performance expectations. Eb/No's were greater than 10dB for most of the flight.
- **Flight Demo 3 – 2007**
 - Develop smaller, lighter version of the RSU for the Range Safety system
 - Use low cost transmitter (LCT) 2 developed in-house at NASA Wallops and port C&DH functionality into digital signal processor on LCT2
 - RSU dimensions would be roughly 5"x5"x6" (with internal high power amplifier)
 - RSU weight would be roughly 3 lbs
 - Perform flight test on a hypersonic vehicle over the horizon
 - Sounding rocket is baselined, however, possible opportunity on expendable launch vehicle (ELV)
- **Flight Demo 4 – 2008**
 - Develop Ka-band transmitter and phased array antenna for Range User system
 - Re-fly RSU design from Flight Demo 3 with enhancements
 - Perform flight test

QUESTIONS

◆ ???