Planifier une tâche de calcul coûteuse mais découpable en fonction de critères multiples dont environnementaux (rapport d'analyse)

Fait par IJJA Ziad, SAINTE-LUCE Clément, ROGER Aurivel.

Structures des données utilisées :

Production: C'est un enregistrement.

Contient:

- 4 entiers (region, mois, jour, heure)
- 7 **Energie**(thermique, nucleaire, eolien, solaire, hydraulique, bioenergie,importation)

Energie: C'est un enregistrement imbriqué à « Production ».

Contient:

- -1 double (production)
- -1 double (taux_production) initialisé à 0

Description:

L'enregistrement **Production** est ce qui va contenir les valeurs (des entiers) des données de production comme la région, l'heure, le jour, l'importation, etc. Néanmoins, les types de production comme l'énergie thermique, nucléaire, éolien, etc. seront de type **Energie**. C'est un second enregistrement qui est imbriqué dans **Production**. Il contient un double « production » et un double « taux_production », qui sont respectivement la production en MWh ainsi que le taux de cette production par rapport à la production totale, c'est pourquoi « taux_production » est initialisé à 0, car on calcul le taux après avoir pris toutes les productions. Cela permettra une manipulation plus simple des valeurs.

<u>Tache_calcul</u>: C'est un enregistrement.

Contient:

- -7 **entiers** (identifiant, mois_depart, jour_depart, horaire_depart, mois_terminaison, jour_terminaison, horaire_terminaison)
- -1 **chaîne** de caractère (nom)
- -6 flottant (duree, cout_moyen_maximum, cout_marginale_maximum, pourcentage_minimum_production_marginale, pourcentage_maximal_importation, pourcentage_maximal_importation_nation)

Description:

L'enregistrement va contenir toutes les données des fichiers **tache_calcul** passés en paramètre pour pouvoir les utiliser plus simplement plus tard.

Couts: C'est un enregistrement.

Contient:

6 entiers (couts thermiques, couts nucleaire, ..., couts bioenergie)

Description:

L'enregistrement **Couts** contient les valeurs des couts (entiers) Thermique, Nucléaire, ..., Bioénergies (en g eqCO2/KWh).

Sous-algorithmes:

Procédure taux_production_energie:

<u>Rôle</u>: permet de calculer le taux de production de chaque type de production ainsi que les échanges d'une région à partir de l'enregistrement **Production**.

Entrée : 1 entier « production_totale » et 1 Production « p_r » (diminutif de production_region)

<u>Modification</u>: 7 double: p_r.thermique.taux_production

p_r.nucleaire.taux_production p_r.eolien.taux_production p_r.solaire.taux_production p_r.hydraulique.taux_production p_r.bioenergie.taux_production p_r. Importation.taux_production

<u>Signature</u>: procédure taux_production_energie (M p_r)

<u>Précondition(s)</u>: production_totale > 0. Si production_totale est = 0, on divise par 0 ce qui est impossible.

<u>Dépendances</u>: Dépend uniquement de l'enregistrement **Production** pour les productions. Ne dépend d'aucune autre fonction.

Fonction couts_moyens:

Rôle : permet de calculer le coût moyen de la production locale avec l'enregistrement Couts.

Entrée: 1 Production "p_r" (production_région) et 1 Couts "cout".

Sortie: 1 flottant "résultats"

Signature: float couts movens(**E**) p r Production, **E**) cout Couts)

Préconditions:

Dépendance: Nécessite la fonction taux production energie pour faire les calculs.

Fonction cout_marginal_regional:

Rôle: permet de calculer le coût marginal d'une region en fonction d'une tâche de calcul.

Entrée : 1 Production « regional » , 1 Tache_calcul « tache_de_calcul » et 1 Cout « cout ».

Sortie: 1 entier « cout_marginal »

<u>Signature</u>: int cout_marginal_regional($\stackrel{\textcircled{}}{\mathbb{E}}$ regional Production, $\stackrel{\textcircled{}}{\mathbb{E}}$ tache_de_calcul Tache calcul, $\stackrel{\textcircled{}}{\mathbb{E}}$ cout Cout).

Fonction importation_max:

Rôle: -Vérifie si le taux d'importation d'une région est inférieur ou supérieur au taux maximal autorisé.

Entrée: 1 Production « regional », 1Tache_calcul « tache_de_calcul »

Sortie: 1 Bool «import_max »

<u>Signature</u>: bool import_max(© regional Production, © tache_de_calcul Tache_calcul)

<u>Dépendance</u>: Cette fonction dépend de la fonction taux_production_energie pour avoir le taux d'échanges physiques.

Fonction importation_max_national:

Rôle: - Calcul le taux d'échange physique total de toutes les régions puis vérifie s'il dépasse ou pas le taux maximal national autorisé.

<u>Entrée</u>: 1 **Production** « regional », 1 **Tache_calcul** « tache_de_calcul », 1 **entier** « production_totale », 1 **entier** « echanges_totaux »

Sortie: 1 Bool « import_max_national »

<u>Signature</u>: bool importation_max_national (© regional Production, © tache_de_calcul Tache_calcul, © production_totale entier, © echanges_totaux entier)

Répartition des tâches :

IJJA Ziad:

- -Création des enregistrements Production et Energie.
- -Création du sous-algorithme **taux_production_energie** permettant de calculer le taux de production de chaque type de production.
- -Création du sous-algorithme importation_max_national.

ROGER Aurivel:

- -Création de l'enregistrement Tache_calcul; c'est un enregistrement qui contient qui contient
- -Création du sous-algorithme cout_marginal_regional.
- -Création du sous-algorithme lire_tache_calcul permettant de lire un fichier de calcul.

SAINTE-LUCE Clément:

- -Création du sous-algorithme cout_moyen.
- -Création du sous-algorithme **importation_max** qui compare le taux d'importation d'une région par rapport au taux d'importation maximal présent dans la feuille de calcule.