

Το πρόβλημα SAT:

- Είσοδος: Δίνεται φόρμουλα φ σε κάνονική συζευκτική μορφή.
- **Ερώτημα:** Είναι η φ ικανοποιήσιμη;
- Παράδειγμα 1: $\varphi_1 = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee x_3 \vee \overline{x_4})$ που είναι ικανοποιήσιμη, π.χ. με την αποτίμηση $x_1 = A_1 x_2 = A_1 x_3 = A_1 x_4 = A$
- Παράδειγμα 2: $\varphi_2 = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \land$ $(x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_2} \lor x_3)$ $x_2 \vee \overline{x_3}$) Λ $(x_1 \vee \overline{x_2} \vee \overline{x_3})$ Λ $(\overline{x_1} \vee \overline{x_2} \vee \overline{x_3})$. Η οποία δεν είναι ικανοποιήσιμη.

Το πρόβλημα 3SAT:

- Είσοδος: Δίνεται φόρμουλα φ σε κάνονική συζευκτική μορφή όπου κάθε πρόταση έχει ακριβώς 3 όρους.
- Ερώτημα: Είναι η φ ικανοποιήσιμη;

Το πρόβλημα 1in3SAT:

- Είσοδος: Δίνεται φόρμουλα 3SAT φ.
- Ερώτημα: Υπάρχει αποτίμηση που να ικανοποιεί την φ, αλλά σε κάθε πρόταση να ικανοποιείται μόνο ένας από τους 3 όρους.

Το πρόβλημα NAE3SAT:

- **Είσοδος:** Δίνεται φόρμουλα 3SAT φ.
- Ερώτημα: Υπάρχει αποτίμηση που να ικανοποιεί την φ, αλλά σε κάθε πρόταση να μην αληθεύουν και οι 3 όροι

Το πρόβλημα 3SAT:

- Είσοδος: Δίνεται φόρμουλα φ σε κάνονική συζευκτική μορφή όπου κάθε πρόταση έχει ακριβώς 3 όρους.
- Ερώτημα: Είναι η φ ικανοποιήσιμη;

1. Δείχνουμε ότι το 3SAT ανήκει στο NP

Δεδομένης μίας φόρμουλας φ με m προτάσεις και n μεταβλητές

- Σε μη ντετερμινιστικό χρόνο O(n) μαντεύουμε μία αποτίμηση των προτασιακών μεταβλητών
- σε χρόνο O(m) επαληθεύουμε ότι ικανοποιεί την φόρμουλα
- Ο χρόνος είναι πολυωνυμικός. Συνεπώς το πρόβλημα 3SAT ανήκει στο NP

2.A) Δίνουμε αναγωγή από το SAT στο 3SAT

Δίνουμε αναγωγή από το SAT στο 3SAT, δηλαδή δεδομένης μιας φόρμουλας φ του SAT, κατασκευάζουμε φόρμουλα φ' του 3SAT: φ ικανοποιήσιμη⇔φ' ικανοποιήσιμη

Για κάθε πρόταση του SAT κατασκευάζουμε ένα σύνολο από προτάσεις του 3SAT. Διακρίνουμε περιπτώσεις ανάλογα με το πλήθος των όρων (έστω k) της πρότασης:

Αν k=1, δηλαδή η πρόταση του SAT στην φόρμουλα φ είναι π.χ. $\mathbf{C} = (x_1)$ τότε την αντικαθιστούμε στην φ' με τις ακόλουθες 4 προτάσεις 3SAT:

$$\underline{C'} = (x_1 \vee y_1 \vee y_2) \wedge (x_1 \vee y_1 \vee \overline{y_2}) \wedge (x_1 \vee \overline{y_1} \vee y_2) \wedge (x_1 \vee \overline{y_1} \vee \overline{y_2})$$

Δν k=2, δηλαδή η πρόταση του SAT στην φόρμουλα φ είναι π.χ. $\mathbf{C} = (x_1 \lor x_2)$ τότε την αντικαθιστούμε στην φ' με τις ακόλουθες 2 προτάσεις 3SAT:

$$\underline{C}' = (x_1 \lor x_2 \lor y_1) \land (x_1 \lor x_2 \lor \overline{y_1})$$

Αν k=3, κρατάμε την αρχική πρόταση, δηλαδή θέτουμε: C' = C

Αν k>3, δηλαδή η πρόταση του SAT στην φόρμουλα φ είναι π.χ. $\mathbf{C} = (x_1 \lor x_2 \lor x_3 \lor \cdots \lor x_k)$ τότε την σπάμε στην ισοδύναμη πρόταση $(x_1 \lor x_2 \lor \cdots \lor x_{\lfloor k/2 \rfloor} \lor y_1) \land (x_{\lfloor k/2 \rfloor+1} \lor \cdots \lor x_k \lor \overline{y_1})$

Έπειτα επαναλαμβάνουμε αναδρομικά στις δύο υποπροτάσεις μέχρι να αποκτήσει κάθε μία από αυτές ακριβώς τρείς όρους όπου y_i είναι νέες μεταβλητές που δεν υπήρχαν πριν στην φόρμουλα.

2.Β) Δείχνουμε ότι η αναγωγή είναι πολυωνυμικού χρόνου

- Ο χρόνος της μετατροπής της φόρμουλας του SAT σε ισοδύναμη φόρμουλα του 3SAT είναι πολυωνυμικός. Πράγματι το στιγμιότυπο του SAT αντικαθίσταται με στιγμιότυπο που είναι πολυωνυμικά μεγαλύτερο από αυτό.
- Αποδεικνύεται ότι μία πρόταση με k μεταβλητές θα αντικατασταθεί από πλήθος προτάσεων που καθορίζονται από την αναδρομική σχέση T(k)=2T(k/2) με T(3)=1 και η οποία έχει πολυωνυμική λύση.