MATH 271, Quiz 2

Due September 18th at the end of class

Instructions You are allowed a textbook, homework, notes, worksheets, material on our Canvas page, but no other online resources (including calculators or WolframAlpha) for this quiz. **Do not discuss any problem any other person.** All of your solutions should be easily identifiable and supporting work must be shown. Ambiguous or illegible answers will not be counted as correct.

THERE ARE 5 TOTAL PROBLEMS.

Problem 1. For the following, say whether the statement is true or false. For full credit, justify your answer with an explanation.

- (a) (2 pts.) If x_1 and x_2 are solutions to a second order linear inhomogeneous equation, then $x = \alpha_1 x_1 + \alpha_2 x_2$ is also a solution.
- (b) (2 pts.) The system given by the ODE x'' + x' + x = 0 exhibits decaying oscillatory behavior.

Problem 2. (6 pts.) Classify the following equations (e.g., n^{th} order, separable, linear, etc.) and explain your reasoning. Then put which method you would use to find a general solution.

- (a) x' + x = xt.
- (b) x'' + 5x' + 2x = 0.
- (c) $x' + e^t x = e^t$.

Problem 3. (5 pts.) Consider the following autonomous equation

$$x' = (x-1)(x-2)(x-3)$$

- (a) Draw the phase line for this system.
- (b) Label the equilibria on your phase line.
- (c) Which equilibria are stable? Also, explain what the different behaviors of the system will be over a long period of time. Hint: consider initial conditions in the different regions of your phase line.

Problem 4. (6 pts.) Let

$$x' = \frac{1}{xt}$$

Make a quick argument for why the above equation is separable. Then, find the particular solution given x(1) = 1.

Problem 5. (4 pts.) For the following chemical reactions, determine the rate of change of the concentration for species A. Mention whether the equation is linear or nonlinear.

- (a) $3A \rightarrow B$.
- (b) $B+C \rightarrow 2A$.