UNIVERSITY OF MAURITIUS MODULE CATALOGUE

1. GENERAL INFORMATION

Academic Year: 2023-2024

Semester(s): 2

Title	Code	Duration (hrs)	No. of credits
Computer Architecture	ICT1201(1)	Lectures: 15	3 ECTS
		Tutorials/Practicals: 15	
		Self-study: 15	
		Other Learning Activities*: 45	
		Total Contact Hours: 30	

^{*}working on assignments, sitting for Class Tests and preparation time for same, sitting for Examinations and preparation time for same, group work, attending Workshops/Conference recommended by the Department/Faculty, fieldwork, site visits/trips, additional practicals, presentations among peers, experiential learning, placements/internships and guest lectures.

2. PRE-REQUISITE(S)/PRE-REQUIREMENT(S)

None

3. AIMS

The module covers the main components of Computer Architecture. It aims at providing a broad spectrum of this topic that includes (1) the microprocessor-based system and the Operating System, (2) memory organization, (3) data transfer between memory and peripheral devices, (4) Elementary error detection and correction during data transfer, (5) pipelining and related hazards, (6) CPU and Disk scheduling algorithms, (7) an introduction to the MIPS Assembly language programming, and (8) the conversion from assembly language to machine code.

4. OUTLINE SYLLABUS

Through Contact Hours:

Functional organization of a computer, machine-level representation of data and program, Assembly level machine organization and programming, role of programming languages, Libraries and Operating Systems, Types of memory, Interruptions and I/O, CPU and Disk scheduling algorithms

Through Self-Learning:

Types of processors, Evolution of the microprocessor - size (bits), clock speed (Hz), generation, type (RISC/CISC), Secondary storage devices, Disk partitioning, Components required to assemble a PC from scratch, Additional instructions from the MIPS assembly language.

5. LEARNING OUTCOMES AND ASSESSMENT CRITERIA

Having studied this module, the students should be able to achieve the following learning outcomes. The assessment criteria used to reflect the expected learning outcomes are also given hereunder:

Learning Outcomes	Assessment Criteria		
 Learn about the microprocessor- based system 	Understand the functions of the microprocessor and memory		
based system	Understand the main components		
	working around the microprocessor		
	Ability to compare the performances		
	of computer systems		
	Learn to use different metrics in the		
	computation of performance		
	Understand the factors to consider		
	for improving performance		
Learn about how the peripherals and	Differentiate between the Input		
the microprocessor-based system	Output Techniques		
interacts	Understand the principle behind		
	Direct Memory Access		
	Understand how error detection and		
	correction is performed when data is		
	transferred		
	➤ Understand the mapping of main		
➤ Learn about CPU and disks	memory to cache Understand how the scheduling of a		
scheduling algorithms/policies	Understand how the scheduling of a process takes place		
scheduling algorithms/poncies	Understand the main scheduling		
	algorithms for scheduling processes		
	Ability to simulate the scheduling		
	algorithms when given a set of		
	processes with their respective		
	service time required		
	Learn about the parameters to		
	consider when measuring the		
	performance of a disk		
	Understand and simulate the major		
	disk scheduling policies		

➤ Learn about how pipelining is used	Understand how the running of
to improve performance	instructions can be rearranged to
	increase the performance of the CPU
	Understand the potential hazards
	that can be introduced with the use
	of pipelining
➤ Learn to write programs using MIPS	Write simple programs in Assembly
Assembly Language	Language
	Translate Assembly Language into
	Machine Code

6. COORDINATORS

	Programme	Area Coordinator	Module Coordinator
	Coordinator	(if applicable)	
Name	Baby Gobin		Paramasiven Appavoo
Department	Software and		Information and
	Information		Communication
	Systems,		Technologies
Building	FoICDT		FoICDT
Room Number			2.18A
Phone No.			403 7751
E-mail address			p.appavoo@uom.ac.mu
Consultation Time			09:00 to 16:00 on
			weekdays (on
			appointment)

7. LECTURER(S)

Name	Paramasiven Appavoo	
Department Information and Communication		
	Technologies	
Building FoICDT		
Room Number	2.18A	
Phone No.	403 7751	
E-mail address	p.appavoo@uom.ac.mu	
Contact Hours	Fridays (13:00 - 16:00)	
Consultation	09:00 to 16:00 on weekdays (on	
Time	appointment)	
Contact Address		
(for P/T)		

8. VENUE AND HOURS/WEEK

All lectures will be held online. Tutorials and practical sessions will be held on campus.

Hours/week: 3 hours

9. MODULE MAP

Week	Topics	DC	SS	OA
	START OF SEMESTER TWO			
1	Introduction to Computer Architecture	3	2	3
	A Microprocessor-based system			
	Memory			
	I/O devices			
	System bus			
	Low/High level languages			
	Compilers/Interpreters			
	Operating System			
2	Data Transfer between Memory and Peripheral Devices	3	2	2
	Microprocessor operations			
	I/O interfaces			
	I/O techniques			
	 Programmed I/O 			
	 Interrupt-Driven I/O 			
	o Direct Memory Access (DMA)			
3	Memory	3	1	5
	Memory Organization			
	Memory Classification			
	Memory operations			
	Hit ratio			
	Direct mapping of main memory to cache			
	Virtual Memory			
	Deadline for Assignment #1			
4	Elementary Error Detection and Correction	3	2	5
	Binary number system			
	Parity checks			
	Hamming codes			
	Check bits			

	Quiz			
5	Performance measurement	3	2	5
	• MIPS			
	• MFLOPS			
	Amdahl's Law			
	• Speedup			
6	Pipelining	3	1	5
	Introduction to Pipelining			
	Structural Hazards			
	Data Hazards			
	Control Hazards.			
	Test #1	•		•
7, 8	MIPS Assembly Language Programming	6	3	10
	Arithmetic			
	Data transfer			
	Conditional Branching			
	Unconditional Branching / Jumping			
	Logical operations			
9	CPU scheduling	3	1	5
	Operating Systems Concept			
	• Processes			
	• Threads			
	CPU Scheduling			
	Deadline for Assignment #2	1	1	1
10	Disk scheduling	3	1	5
	Disk performance parameters			
	Disks Scheduling			
	Test #2	I	1	ı
	Total	30	15	45

Abbreviations: DC: Direct Contact; SS: Self Study; OA: Other Learning Activities

DC includes L: Lectures, P: Practicals, T: Tutorials;

10. RECOMMENDED BOOKS/JOURNALS/WEBSITES

Microprocessor Architecture, Programming and Applications by Ramesh S. Gaonkar.

Computer Organization and Design: The Hardware/Software Interface by Patterson & Hennessy.

Structured Computer Organization by Andrew S. Tanenbaum.

Kann, Charles W., "Introduction To MIPS Assembly Language Programming" (2015). Open Textbooks.

https://academo.org/demos/logic-gate-simulator/

11. TEST(S)/ASSIGNMENT(S)/PRACTICAL(S)

Semester	Title	Max Marks
2	Quiz (week 4)	10
	Covering week 1 - 3	
	Class Test 1 (after Week 6)	20
	Topics assessed: Lecture 1 - 5	
	Class Test 2 (after Week 10)	25
	Topics assessed: Lecture 6 - 10	
	Assignment 1 (individual): Building your own PC	10
	You are required to (1) lay out your respective requirements, (2) investigate all components of the PC, (3) select your motherboard, and (4) label the main components on the motherboard. All the selected components/parts should be "compatible" with the chosen motherboard. You also need to select an OS for your PC based on your	
	requirements that justifies any cost associated with the OS. Compare and contrast with open source alternatives.	
	Deadline: End of Week 3	
	Assignment 2 (Group of 2 students): Design and implement a	30
	program to compute the maximum, minimum and sum of a set	
	of numbers entered by the user. The user is limited to a	
	maximum of 10 numbers.	
	In this assignment, you are also required to investigate and use	
	MIPS subprograms to reduce the lines of code.	
	Platform: MIPS assembly language in MARS	
	<u>Deadline: End of Week 9</u>	

There will be a penalty for late submission of assignments. Submissions are closed one week after the prescribed deadline.

12. ASSESSMENT

(i) Continuous Assessment

	Weighting (100%)
Assignment(s):	40
Quiz:	10
Test(s):	45
Class participation:	5
Total Marks:	100

13. OFFICE HOURS

Monday to Friday from 9:00 to 16:00 (on appointment)

14. PORTFOLIO REQUIREMENT

All students should keep a portfolio of all coursework for their respective Programme of studies and same should be made available upon request, to the Faculty/Centre Examination Office.

15. OTHER INFORMATION

Plagiarism and cheating will not be tolerated. It will be dealt with according to the policies of the University of Mauritius regarding academic dishonesty. Please read these policies at http://mysites.uom.ac.mu/uomintranet/students/Student_Charter.pdf.

16. APPROVAL BY HEAD OF DEPARTMENT/OIC, CILL

at Departmental Meeting (where applicable) on:	
Head of Department/OiC, CILL Signature:	

A copy of the approved Module Catalogue has to be submitted to the relevant Dean of Faculty for records purposes.