vclsi-01-mueller

April 10, 2019

```
In [2]: import pandas as pd
        import numpy as np
In [3]: data = pd.read_excel("breast-cancer-wisconsin.xlsx")
        data.head()
Out[3]:
                                        uniCelShape marAdh epiCelSize bareNuc \
                   thickness
                               uniCelS
        0 1000025
                             5
                                      1
                                                   1
                                                                        2
                                                                                1.0
        1 1002945
                             5
                                      4
                                                            5
                                                                        7
                                                                              10.0
        2 1015425
                             3
                                      1
                                                   1
                                                            1
                                                                        2
                                                                               2.0
        3 1016277
                             6
                                      8
                                                   8
                                                            1
                                                                        3
                                                                               4.0
        4 1017023
                             4
                                      1
                                                   1
                                                            3
                                                                        2
                                                                                1.0
           blaChroma normNuc mitoses
        0
                   3
                             1
                                      1
        1
                   3
                             2
                                      1
                                             2
        2
                   3
                             1
                                      1
                                             2
        3
                   3
                             7
                                      1
                                             2
                   3
                             1
                                      1
In [4]: #data.loc[:,"thickness"] #Get all values in column thickness
        \verb|#data.loc[:,["thickness", "mitoses"]]| \verb|#Get all values in column thickness, mitoses|
        #data.loc[2:5, :] #row 2-5, all columns
        #data.loc[:,"class"]==2 #index of all rows where class equals 2
        #data.loc[data.loc[:,"class"]==2, ["thickness", "mitoses"]] #column thickness, mitoses of
        #data.iloc[:, [0, -2, -1]] #all rows showing colums with last index and second last
        #data.iloc[:5,[0, -2, -1]] #first 5 rows showing colums with last index and second last
        #data[np.logical_and(data.thickness > 3, data.epiCelSize<7)] #all rows + columns where t
        #data.loc[:, ["mitoses", "thickness"]].iloc[:100, :] #first 100 rows with columns "mitsd
In [5]: #data.class #class is a reseved keyword
In [6]: data.isnull().sum()
Out[6]: code
                        0
        thickness
                        0
                        0
        uniCelS
        uniCelShape
                        0
```

```
epiCelSize
                            0
         bareNuc
                           16
         blaChroma
                            0
                            0
         normNuc
         mitoses
                            0
         class
                            0
         dtype: int64
In [7]: data.isnull().sum().sum()
Out[7]: 16
In [8]: data[data.isnull().any(axis=1)] #axis = 1 -> rows, axis = 0 -> columns
Out[8]:
                                      uniCelS uniCelShape marAdh
                         thickness
                                                                          epiCelSize
                                                                                       bareNuc \
                  code
         23
               1057013
                                   8
                                              4
                                                             5
                                                                                     2
                                                                       1
                                                                                             {\tt NaN}
                                   6
                                              6
                                                             6
                                                                       9
                                                                                     6
         40
               1096800
                                                                                             NaN
         139
               1183246
                                   1
                                              1
                                                             1
                                                                       1
                                                                                     1
                                                                                             {\tt NaN}
         145
               1184840
                                   1
                                              1
                                                             3
                                                                       1
                                                                                     2
                                                                                             {\tt NaN}
                                   1
                                              1
                                                             2
                                                                                     3
         158
               1193683
                                                                       1
                                                                                             {\tt NaN}
                                   5
                                                                                     2
         164
               1197510
                                              1
                                                             1
                                                                       1
                                                                                             {\tt NaN}
                                                             4
                                                                                     2
         235
               1241232
                                   3
                                              1
                                                                       1
                                                                                             {\tt NaN}
         249
                169356
                                   3
                                              1
                                                             1
                                                                       1
                                                                                     2
                                                                                             {\tt NaN}
         275
                                   3
                                              1
                                                             3
                                                                                     2
                432809
                                                                       1
                                                                                             {\tt NaN}
         292
                                   8
                                              8
                                                             8
                                                                                     2
                563649
                                                                       1
                                                                                             NaN
                                                                                     2
         294
                606140
                                   1
                                              1
                                                             1
                                                                       1
                                                                                             NaN
         297
                 61634
                                   5
                                              4
                                                             3
                                                                       1
                                                                                     2
                                                                                             NaN
                704168
                                   4
                                                             5
                                                                                     7
         315
                                              6
                                                                       6
                                                                                             NaN
         321
                733639
                                   3
                                              1
                                                             1
                                                                       1
                                                                                     2
                                                                                             NaN
         411
                                                             1
               1238464
                                   1
                                              1
                                                                       1
                                                                                     1
                                                                                             NaN
                                   1
                                              1
                                                             1
                                                                       1
                                                                                     1
         617
               1057067
                                                                                             {\tt NaN}
               blaChroma
                           normNuc
                                      mitoses
                                                 class
         23
                        7
                                   3
                                              1
                                                      4
         40
                        7
                                   8
                                              1
                                                      2
                                                      2
         139
                        2
                                   1
                                              1
         145
                        2
                                   1
                                              1
                                                      2
         158
                        1
                                   1
                                              1
                                                      2
                                                      2
         164
                        3
                                   1
                                              1
         235
                        3
                                   1
                                              1
                                                      2
                                                      2
         249
                        3
                                   1
                                              1
         275
                        2
                                   1
                                              1
                                                      2
         292
                        6
                                  10
                                                      4
                                              1
         294
                        2
                                              1
                                                      2
                                   1
         297
                        2
                                   3
                                              1
                                                      2
```

marAdh

411	2	1	1	2
617	1	1	1	2

In [9]: data.drop("code", axis=1)

Out[9]:	thickness	uniCelS	uniCelShape	marAdh	epiCelSize	bareNuc	blaChroma	\
0	5	1	1	1	2	1.0	3	
1	5	4	4	5	7	10.0	3	
2	3	1	1	1	2	2.0	3	
3	6	8	8	1	3	4.0	3	
4	4	1	1	3	2	1.0	3	
5	8	10	10	8	7	10.0	9	
6	1	1	1	1	2	10.0	3	
7	2	1	2	1	2	1.0	3	
8	2	1	1	1	2	1.0	1	
9	4	2	1	1	2	1.0	2	
10	1	1	1	1	1	1.0	3	
11	2	1	1	1	2	1.0	2	
12	5	3	3	3	2	3.0	4	
13	1	1	1	1	2	3.0	3	
14	8	7	5	10	7	9.0	5	
15	7	4	6	4	6	1.0	4	
16	4	1	1	1	2	1.0	2	
17	4	1	1	1	2	1.0	3	
18	10	7	7	6	4	10.0	4	
19	6	1	1	1	2	1.0	3	
20	7	3	2	10	5	10.0	5	
21	10	5	5	3	6	7.0	7	
22	3	1	1	1	2	1.0	2	
23	8	4	5	1	2	NaN	7	
24	1	1	1	1	2	1.0	3	
25	5	2	3	4	2	7.0	3	
26	3	2	1	1	1	1.0	2	
27	5	1	1	1	2	1.0	2	
28	2	1	1	1	2	1.0	2	
29	1	1	3	1	2	1.0	1	
• •			• • •	• • •				
669	5	10	10	8	5	5.0	7	
670	3	10	7	8	5	8.0	7	
671	3	2	1	2	2	1.0	3	
672	2	1	1	1	2	1.0	3	
673	5	3	2	1	3	1.0	1	
674	1	1	1	1	2	1.0	2	
675	4	1	4	1	2	1.0	1	
676	1	1	2	1	2	1.0	2	
677	5	1	1	1	2	1.0	1	
678	1	1	1	1	2	1.0	1	
679	2	1	1	1	2	1.0	1	

680	10	10	10	10	5	10.0	10
681	5	10	10	10	4	10.0	5
682	5	1	1	1	2	1.0	3
683	1	1	1	1	2	1.0	1
684	1	1	1	1	2	1.0	1
685	1	1	1	1	2	1.0	1
686	1	1	1	1	2	1.0	1
687	3	1	1	1	2	1.0	2
688	4	1	1	1	2	1.0	1
689	1	1	1	1	2	1.0	1
690	1	1	1	3	2	1.0	1
691	5	10	10	5	4	5.0	4
692	3	1	1	1	2	1.0	1
693	3	1	1	1	2	1.0	2
694	3	1	1	1	3	2.0	1
695	2	1	1	1	2	1.0	1
696	5	10	10	3	7	3.0	8
697	4	8	6	4	3	4.0	10
698	4	8	8	5	4	5.0	10

	normNuc	mitoses	class
0	1	1	2
1	2	1	
2	1	1	2 2
3	7	1	
4	1	1	2 2 4
5	7	1	4
6	1	1	
7	1	1	2
8	1	5	2
9	1	1	2 2 2 2 2 2 4 2 4
10	1	1	2
11	1	1	2
12	4	1	4
13	1	1	2
14	5	4	4
15	3	1	4
16	1	1	2
17	1	1	2 4
18	1	2	4
19	1	1	2
20	4	4	4
21	10	1	4
22	1	1	2
23	3	1	4
24	1	1	2 4
25	6	1	4
26	1	1	2

```
27
                      1
                              2
            1
28
            1
                      1
                              2
29
            1
                      1
                              2
. .
          . . .
                    . . .
           10
669
                      1
                              4
670
            4
                      1
                              2
671
            1
                      1
672
                              2
            1
                      1
673
            1
                      1
                              2
674
            1
                      1
                              2
675
                              2
            1
                      1
676
            1
                      1
                              2
677
                              2
            1
                      1
678
                              2
            1
                      1
                              2
679
            1
                      1
680
           10
                      7
                              4
681
            6
                      3
                              4
682
            2
                      1
                              2
                              2
683
            1
                      1
684
            1
                      1
                              2
685
                              2
            1
                      1
                              2
686
            1
                      1
            3
                              2
687
                      1
                              2
688
            1
                      1
689
            1
                      8
                              2
                              2
690
            1
                      1
691
            4
                      1
                              4
692
                              2
            1
                      1
                      2
                              2
693
            1
                              2
694
            1
                      1
                              2
695
            1
                      1
696
           10
                      2
                              4
697
            6
                      1
                              4
698
            4
                      1
                              4
```

[699 rows x 10 columns]

results = {}

for column in data.columns:
 if column == "class":

```
continue
             mean = data[column].mean()
             group_means = groups[column].mean()
             group_variances = groups[column].var()
             F = ((group_means[2] - mean)**2 + (group_means[4] - mean)**2) / (group_variances[2])
             print(f"F score for column {column}: {F}")
             results[column] = F
F score for column code: 0.009469207736910977
F score for column thickness: 1.1317247225583984
F score for column uniCelS: 1.8363064117529115
F score for column uniCelShape: 1.8986351151927807
F score for column marAdh: 0.8488204387140027
F score for column epiCelSize: 0.8084139123636951
F score for column bareNuc: 1.9368428273239722
F score for column blaChroma: 1.3013895528628854
F score for column normNuc: 0.9282550362104417
F score for column mitoses: 0.18783851825754008
In []:
```