

B40R...B500R

Single Phase Bridge Rectifier Einphasen-Brückengleichrichter

Version 2016-02-26

Typical Application 50/60 Hz Mains Rectification, **Power Supplies** Commercial grade 1)

Features UL recognized, File E175067 Compliant to RoHS, REACH, Conflict Minerals 1)

Mechanical Data 1) Packed in bulk

Solder & assembly conditions

Typische Anwendung

 $V_{RRM} = 50...1000 V$

= 45/50 A

~ 1500 ns

50/60 Hz Netzgleichrichtung, Stromversorgungen Standardausführung 1)

Besonderheit UL-anerkannt, Liste E175067 Konform zu RoHS, REACH, Konfliktmineralien 1)

Mechanische Daten 1)

1000 Lose verpackt Weight approx. 1.2 g Gewicht ca. UL 94V-0 Case material Gehäusematerial 260°C/10s Löt- und Einbaubedingungen

 V_F < 1.0 V

 $T_{jmax} = 150$ °C

MSL N/A

Maximum ratings 2) Grenzwerte²)

Type Typ	Max. alternating input voltage Max. Eingangswechselspannung V_{VRMS} [V] 3)	Repetitive peak reverse voltage Periodische Spitzensperrspannung $V_{\text{RRM}}\left[V\right]^4)$
B40R	40	80
B80R	80	160
B125R	125	250
B250R	250	600
B380R	380	800
B500R	500	1000

Repetitive peak forward current Periodischer Spitzenstrom	f > 15 Hz	${ m I}_{\sf FRM}$	10 A ⁵)
Peak forward surge current, 50/60 Hz half sine-wave Stoßstrom für eine 50/60 Hz Sinus-Halbwelle	$T_A = 25$ °C	I_{FSM}	45/50 A
Rating for fusing, t < 10 ms Grenzlastintegral, t < 10 ms	T _A = 25°C	i²t	12.5 A ² s
Operating junction temperature – Sperrschichttemperatur Storage temperature – Lagerungstemperatur		$T_{\rm j}$ $T_{\rm S}$	-50+150°C -50+150°C

Please note the <u>detailed information on our website</u> or at the beginning of the data book Bitte beachten Sie die <u>detaillierten Hinweise auf unserer Internetseite</u> bzw. am Anfang des Datenbuches

 $T_j = 25$ °C unless otherwise specified – $T_j = 25$ °C wenn nicht anders angegeben

Eventual superimposed voltage peaks must not exceed V_{RRM} Evtl. überlagerte Spannungsspitzen dürfen V_{RRM} nicht überschreiten

Valid per diode – Gültig pro Diode

Valid, if leads are kept at ambient temperature $T_A = 25$ °C at a distance of 5 mm from case Gültig, wenn die Anschlussdrähte in 5 mm vom Gehäuse auf Umgebungstemperatur TA = 25°C gehalten werden

haracteristics Kennwerte

Max. rectified output current Dauergrenzstrom am Brückenausgang	T _A = 25°C	R-load C-load	$I_{FAV}\\I_{FAV}$	2.0 A ¹) 1.6 A ¹)
Forward voltage – Durchlass-Spannung	$T_j = 25$ °C	$I_{\text{F}} = 1 \text{ A}$	V_{F}	< 1.0 V ²)
Leakage current – Sperrstrom	$T_j = 25$ °C	$V_{\text{R}} = V_{\text{RRM}}$	\mathbf{I}_{R}	< 5 μA ²)
Reverse recovery time – Sperrverzug $I_F = 0.5$ A through/über $I_R = 1$ A to $I_R = 0.25$ A			t _{rr}	typ. 1500 ns ²)
Typical junction capacitance – Typische Sperrschichtkapazität $V_R = 4 \text{ V}$				30 pF ²)
Thermal resistance junction to ambient – Wärmewiderstand Sperrschicht – Umgebung			R_{thA}	< 40 K/W ¹)

$R_t^{3)}$	
~	+
	::::::::::::::::::::::::::::::::::::::

Type Typ	Recomm. protective resistance Empf. Schutzwiderstand $R_t \left[\Omega\right] ^3)$	Admiss. load capacitor at R_t Zul. Ladekondensator mit R_t $C_L\left[\mu F\right]^4)$
B40R	1.6	3100
B80R	3.2	1500
B125R	5.0	1000
B250R	12.0	400
B380R	16.0	300
B500R	20.0	250

Disclaimer: See data book page 2 or <u>website</u> **Haftungssauschluss:** Siehe Datenbuch Seite 2 oder oder <u>Internet</u>

Falls die R_t C_L Zeitkonstante kleiner ist als ¼ der 50Hz-Netzperiode, kann C_L innerhalb einer einzigen Netzhalbwelle komplett geladen werden. I_{FSM} tritt dann nur als Einzelpuls auf!

Valid, if leads are kept at ambient temperature at a distance of 5 mm from case Gültig, wenn die Anschlussdrähte in 5 mm Abstand vom Gehäuse auf Umgebungstemperatur gehalten werden

² Valid per diode – Gültig pro Diode

³ $R_t = V_{RRM} / I_{FSM}$ R_t is the equivalent resistance of any protective element which ensures that I_{FSM} is not exceeded

 R_t ist der Ersatzwiderstand eines jeglichen Schutzelementes, welches ein Überschreiten von I_{FSM} verhindert 4 $C_L = 5 \text{ ms}$ / R_t If the R_t C_L time constant is less than a quarter of the 50Hz mains period, C_L can be charged completely in a single half wave of the mains. Hence, I_{FSM} occurs as a single pulse only!