2. Let V be a finite-dimensional vector space and let $T:V\to V$ be a linear map with eigenvalue λ . If the dot diagram for the eigenvalue λ consists of (only) two dots in the first row and two dots in the second, show that the "top-to-bottom" approach to finding Jordan canonical form will always succeed. . . There are four dots and it ends at the second stage. ... \Rightarrow (Denoting $T-\lambda I$ by U, $\dim \ker U=2$ "top-to-bottom" simply means & $\dim \ker U^k = 4 \forall k \geq 2$.)

O find a basis of ker U first => there will be two vectors V, & Vz.

2) Solve $V \cdot v = V_1$, say u_1 , and $u_1 = v_2$, say u_2 a solin. Then, $v_1 \cdot v_2 \cdot v_3 = v_4 \cdot v_4 \cdot v_5 \cdot v_5 \cdot v_5 \cdot v_6 \cdot v_6 \cdot v_7 \cdot v_8 \cdot$

proof. Grister W= ker U2. dim W=4 & W is U-invariant. (Why?)

Then, $U^2|_W = O_{\mathcal{L}(W,W)}$, so $\ker(U|_W) \geq \bar{r}m(U|_W)$ $\Longrightarrow 2-J\bar{r}m'L$.

 $\ker U = \ker (U|_{W}) = \operatorname{Im}(U|_{W}) \subseteq \operatorname{Im}(U|_{W})$ By the dim thm, $\dim \operatorname{Tim}(U|w)=2$.

1. Decide whether or not the following pairings are inner products. a) $\langle (x,y),(w,z)\rangle = 2xw + 3yz$ on \mathbb{R}^2 .

a)
$$\langle (x,y), (w,z) \rangle = 2xw + 3yz$$
 on \mathbb{R}^2 .

Remember \mathcal{D} Linear \mathcal{D} Symmetric \mathcal{D} (Strictly) Positive c :

 c : $\langle p,q \rangle = p(0)q(0) + p(1)q(1) + p(2)q(2)$ on $\mathbb{P}_2(\mathbb{R})$.

a) $\langle (x,y), (\omega,z) \rangle$? $\langle (\omega,z), (x,y) \rangle$ (C) $\mathbf{1}$ and $\mathbf{2}$: one easily $\mathbf{2}$:

 $\mathbf{2}$: $\mathbf{2}$: $\mathbf{2}$: $\mathbf{2}$: $\mathbf{3}$: $\mathbf{2}$: $\mathbf{3}$: $\mathbf{4}$: $\mathbf{5}$: \mathbf

=0 <=> x=y=0

 $(\Rightarrow)(x,y)=\overrightarrow{0}$

21/2+342 ≥0 (√)

(C) 1 and 2 are easy exercises. $3 \langle b, b \rangle = b(0)_{5} + b(1)_{7} + b(5)_{5} \geq 0$

 $= 0 \iff b(0) = 0 \cdot b(1) = 0$ Possible approaches: · Lagrange interpolation

$$= + C \cdot (2\pi\omega' + 3\eta z')$$

$$\langle (\pi, \eta), (\pi, \eta) \rangle \geq 0 \text{ and } = 0 \text{ iff } (\pi, \eta) = 0.3$$

$$2\pi^2 + 3\eta^2 \geq 0 \text{ (V)}$$

$$= 0 \iff \pi = 0 \text{ in } 1 \text{ and plup in } 1 \text{ in } 1 \text{ in } 2\pi^2 + 3\eta^2 \geq 0 \text{ (V)}$$

$$= 0 \iff \pi = 0 \text{ in } 1 \text{ in$$

. Let
$$u, v \in \mathbb{R}^n$$
 be unit vectors (their lengths are 1) such that $u \cdot v = 1/2$. Calculate $||u + v||$.

4. Let
$$u, v \in \mathbb{R}^n$$
 be unit vectors (their lengths are 1) such that $u \cdot v = 1/2$. Calculate $||u + v||$.

$$||u + v|| = \sqrt{\langle u + v, u + v \rangle} = \sqrt{3}$$

$$||u + v|| = \sqrt{\langle u + v, u + v \rangle} = \sqrt{3}$$

2. For
$$x, y, z \in \mathbb{R}$$
, find the maximum possible value of $x + 2y + 2z$ subject to the constraint that $x^2 + y^2 + z^2 = 1$ and find values the achieve this maximum. (Hint: use Cauchy-Schwarz)

Cauchy-Schwarz:
$$\langle u,v\rangle \leq ||u|| \cdot ||v||$$
 (or equivalently, $\langle u,v\rangle^2 \leq \langle u,u\rangle \cdot \langle v,v\rangle$).

Consider $|R^2 \omega|$ the standard inner product, namely dot product. $\langle (a,b,c), (x,y,z) \rangle = ax+by+cz$.

: $\chi + 2y + 2z \le 3$. The equality holds iff $(1,2,2) // (x_1y_1z) \iff (x_1y_2z) = r \cdot (1,2,2) (r)0$ (Same Livertim) $\iff (x_1y_1z) = \frac{1}{2} (1,2,2)$

3. Using Cauchy-Schwarz, show that if $f:[0,1]\to\mathbb{R}$ is continuous, then $\left(\int_0^1 f(x)dx\right)^2 \le \int_0^1 f(x)^2 dx.$

Consider V = the vector space of continuous functions from [0,1] to IR.

Give an innor product as follows: $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$. (For a very rigorous proof,) take Math 104:

Apply CS meguality to u= the constant function 1 and v= f. $\langle l, f \rangle^2 \leq \langle l, l \rangle \cdot \langle f, f \rangle$ $\left(\int_{0}^{1} (f(x)dx)^{2} \int_{0}^{1} 1dx \int_{0}^{1} f(x)^{2}dx\right)$

3. Let V be a finite-dimensional vector space and let $\langle \cdot, \cdot \rangle$ be an inner product on V. Show that the map $\Phi: V \to V^*$ defined by $\Phi(v)w = \langle v, w \rangle$ is an isomorphism. As a special case (of surjectivity), every linear map $T: \mathbb{R}^n \to \mathbb{R}$ is of the form $T(v) = w \cdot v$ for some fixed $w \in \mathbb{R}^n$. Three things to check: Linearity, one-to-one, ando.

2 If $\underline{\Phi}(v) = O_{V*}$, then for any $w \in V$, $\underline{\Phi}(v)(w) = O_{V*}(w) = O$.

Consider the case w=v, then $\langle v,v\rangle=0 \Rightarrow v=0$. You could use

3 Given $f \in V^*$, we wont $V_f st \langle V_f w \rangle = f(w)$. dimV=dimV* · Use Gran-Schmidt!!! (Maybe go back. and skip 3. · Consider kert and find it "perpendicular" to keert.