Project IV-Within Distance

Assume distance of two instances x and c is defined as $D^d(x,c) = \|x-c\|_d$ as the d-degree norm of their difference vector. For a set of instances $X = \{x_i\}$, a representor c can be defined with a deviation vector $\mathbf{V}^d(\mathbf{c})$ such that its \mathbf{i}^{th} element is equal to the distance of x_i from \mathbf{c} , i.e. $V_i^d(c) = D_d(x_i,c)$. Then $e^{d,d'}(X,c)$ as deviation of X respect to c is the norm of $V^d(c)$ with degree d'. Both \mathbf{d}' and \mathbf{d} can be from any degrees of 0, 1, 2 or ∞ . Then, given a set of instances X (dataset of Iris can be downloaded from UCI repository), find the representator c of X to minimize deviation vector associated with each pair of degrees d and d' from the following set:

d	d'
1	2
1	8
2	0
2	1
2	8
∞	0
8	1
8	2

With the best wishes M. Taheri