BİM539, Ders 4: Test Planı ve Traceability Matrix (İzlenebilirlik Matrisi)

Gereksinimlere sahipsiniz ve hataları arıyorsunuz...

Nasil?

Test planı geliştirerek!

• Resmi veya resmi olmayan gereksinim olabilir.

Neyi test edeceksiniz? Sorumluluğunuz nedir?
 Takip etmek gerekli midir?

Neyi test edeceksiniz?

- Throw-away script?
- Geliştirme aracını?
- Dahili bir web sayfasını?
- Girişimci bir uygulamayı?
- Ticari bir uygulamayı?
- İşletim sistemini?
- Aviyonik uygulamayı?

Test konsept bağımlı bir eylemdir

- Nasıl test edeceksin
- Ne kadar test edeceksin
- Hangi araçları kullanacaksın
- Hangi belgeleri sağlayacaksınız
- ...Bütün bunların tamamı yazılımın konseptine göre değişkenlik gösterebilir.

Test Planları ve Test Senaryoları

• Test, bir test planının işletilmesi ile gerçekleştirilir.

 Test planı: Birlikte çalıştırılacak ilişkili test senaryolarından oluşan bir listedir.

- Test senaryosu: Bireysel davranışa sahip en küçük test plan parçasıdır.
 - Neyin, nasıl test edileceği tanımlanır
 - Beklenen davranış tanımlanır

Bir test senaryosu temel olarak şu bileşenlerden oluşur:

- Öncül Koşul: Test başlamadan önce sistemin durumu
 - Environment / global değişken değerleri, ...
 - Ekran durumu, veritabanı durumu, ...
- İşlem Adımları: Son koşulları elde etmek için uygulanacak adımlar
- Son Koşul: Sistemi test ettikten sonra BEKLENEN durum
 - Environment / global değişkenler atanır, ...
 - Çıktı ekrana yazdırılır, paket network ile gönderilir, ...

IEEE 829, "Standard for Software Test Documentation", kaynaklar/IEEE829.pdf'a bakılabilir

Örnek

Alışveriş sepeti boşken, "Satın Al" butonuna tıkladığımda sepetteki nesne sayısı 1 olmalıdır.

Ön koşul: Boş alışveriş sepeti

İşlem Adımları: "Satın Al" butonuna tıklamak

Son Koşul: Alışveriş sepeti 1 nesne gösterir

Ayrıca şöyle bir şey eklenebilir:

- Tanımlayıcı: Test senaryosu tanımlama yolu
 - Sayı olabilir
 - Genellikle bir etiketi bulunur, ör: INVALID-PASSWORD-THREE-TIMES-TEST
- Test Senaryosu: Test senaryosu tanımı

Birim test yapmak istersek, aşağıdakileri de eklemeliyiz:

- Girdi değerleri: Metot parametresi olarak geçilecek değerler
- Çıktı değerleri: Metottan dönecek beklenen değer/değerler
- Girdi değerleri ve ön koşul arasındaki farklılıklar
 - Metodu etkileyen parametreler dışındaki her şey ön koşuldur
 - Metot tarafından okunan global değişkenler
 - Metot tarafından okunan dosyanın içeriği
- Çıktı değerleri ile son koşul arasındaki farklılıklar
 - Metodun etkilediği çıktı değerleri hariç her şey son koşuldur
 - Metot tarafından değiştirilen global değişken
 - Metot tarafından değiştirilmiş dosya içeriği

Örnek

SORT_ASCENDING işaretlendiğinde, [9,3,4,2] parametresi ile sıralama fonksiyonu çalışır ve küçükten büyüğe sıralanmış yeni dizi döndürür: [2,3,4,9].

Ön koşul: SORT_ASCENDING işaretleme

Girdi değerleri: Array [9,3,4,2]

İşlem adımları: sort metodunu girdi değerleri ile

çağır

Çıktı değeri: Array [2,3,4,9]

Son koşul: None

Bir başka örnek

```
int print_hello_world() {
    System.out.print("Hello World");
    return 1;
}
```

- Yukarıdaki metot için test senaryosu yazacağımızı varsayalım:
 - Çıktı değerleri nedir?
 - Son koşul ne olmalıdır??
 - Çıktı değeri: 1
 - Son koşul: Hello World ekrana basılır

Tam olarak bir test senaryosu aşağıdaki bileşenleri içerir

- Tanımlayıcı
- Test senaryosu
- Ön koşul
- Girdi değerleri
- İşlem adımları
- Çıktı değerleri
- Son koşul

IEEE 829, "Standard for Software Test Documentation", kaynaklar/IEEE829.pdf

Test Plani

 Alt sistem veya bir özelliğe ait test senaryoları listesi

- Örnekler:
 - Veritabanı bağlantı test planı
 - Pop-up uyarıları test planı
 - Basınç güvenlik kilidi test planı
 - Sistem kapatma test plani

Basınç güvenlik kiliti test planı

LOW-PRESSURE-TEST HIGH-PRESSURE-TEST

SAFETY-LIGHT-TEST

SAFETY-LIGHT-OFF-TEST

RESET-SWITCH-TEST

RESET-SWITCH2-TEST

FAST-MOVEMENT-TEST

RAPID-CHANGE-TEST

GRADUAL-CHANGE-TEST

MEDIAN-PRESSURE-TEST

LIGHT-FAILURE-TEST

SENSOR-FAILURE-TEST

SENSOR-INVALID-TEST

Bir grup test planı ise test suite (test paketi) oluşturur...

- Regresyon Test Paketi
 - Basınç Güvenlik Regresyon Test Planı
 - Güç Dengeleme Regresyon Test Planı
 - Su Akış Regresyon Test Planı
 - Kontrol Akış Regresyon Test Planı
 - Güvenlik Regresyon Test Planı

Test Paketi Oluşturma...

- top-down olarak başlayın
 - Sistemi özelliklere göre bölmenin en iyi yolu nedir?
- Belirli bir özellik için (test planı), hangi açılardan test etmek istiyorum belirle
- Her bir bakış açısı için, denklik sınıflarını/edge veya/corner sınıfların vs. hangi test senaryoları ile kapsanacağını belirle
- Her bir test senaryosu birbirinden bağımsız ve tekrarlanabilir olmalıdır.
 - Bağımsız: Bir test senaryosu bir başka senaryonun çalışmasını etkilememelidir
 - Tekrarlanabilir: Ön koşul + çalıştırma adımları her zaman son koşulu oluşturmalıdır

Test Run - Testleri Yürütme

• Test run: Test plan veya test paketinin yürütülmesidir.

- Bir test senaryosu bağımsız olmaz ise ne olur?
 - Test senaryosunun davranışı daha öncesinde bir başka test senaryosunu çalıştırıp çalıştırmamanıza bağlı olarak değişebilir
- Test senaryosu tekrarlanabilir olmaz ise ne olur?
 - Aynı girdi ve işlem adımları ile farklı davranışlar gözlemlenebilir
- Büyük ihtimalle her ikisi de ön koşulların oluşturulmaması sebebiyle gerçekleşir
 - OS durumu, DB durumu, dosya sistemi durumu, hafıza durumu, ...

Ön Koşul Kurulum Scripti

- Bir test planı belli bir ön koşula bağımlı olabilir
 - Bu durumda test planı yürütülmeden ön koşulun ayarlanması gerekir
 - Bir test senaryosu ön koşulu değiştirirse, testin ortasında tekrar aynı koşulun oluşturulması gerekir
 - Ön koşulu oluşturmak çoğu zaman gereksiz görülen ve yorucu bir iştir
- Ön Koşul Kurulum Scripti
 - Makinaya bir uygulamanın kurulumu/tekrar kurulumu olabilir
 - Test için uygun veritabanı girdilerinin oluşturulması olabilir
 - Hafıza veri ile başlatılabilir
 - Donanım cihazının tekrar başlatılması olabilir

Test Koşmasından Sonraki Durum

 Test koşması sırasında test eden kişi manuel olarak veya otomatik olarak her bir test senaryosunu çalıştırır ve her biri için bir durum ataması yapar

Olası Durumlar

- PASSED Beklenen değer ile sonuçlandı
- FAILED Sonuçlandı ancak beklenen değer değil
- PAUSED Çalıştırma sırasında test durduruldu
- RUNNING Test çalıştırılıyor
- BLOCKED Ön koşul sağlanmadığı için test tamamlanamadı
- ERROR Test çalıştırılmasında problem

Hatalar

- Bir test senaryosu hata ile karşılaşılırsa bu hata dosyalanmalıdır
 - Aynı hataları tekrar tekrar dosyalamaya gerek yoktur
- Bir sonraki derste bu hataların dosyalanması üzerine konuşacağız

Traceability Matrix (İzlenebilirlik Matrisi)

- Ele alalım:
 - Bir test senaryosu birden fazla gereksinimi test ediyor olabilir
 - Bir gereksinim birden fazla test senaryosu ile test ediliyor olabilir
 - Bu many-to-many türünde karmaşık bir ilişkidir!
 - Neyin ne kadar test edildiği nasıl takip edilir?
- İzlenebilirlik Matrisi: gereksinimler ve test senaryoları arasındaki ilişkiyi tanımlayan tablodur
 - Yazılım geliştirme süresince gereksinimler nasıl uygulanır?
 - Test kapsamının eksikliğini veya gereksiz testleri belirlemede yardımcı olur

İyi İzlenebilirlik Matrisi Örneği

```
GER1: TEST_CASE_1, TEST_CASE_2
```

GER2: TEST_CASE_3

GER3: TEST_CASE_4, TEST_CASE_7

GER4: TEST_CASE_5, TEST_CASE_9

GER5: TEST_CASE_6, TEST_CASE_10

• Tüm gereksinimler kendileri ile ilişkili en az bir test senaryosuna sahiptir ve tüm test senaryoları bir gereksinim ile eşlenir

Problemli İzlenebilirlik Matrisi 1

```
GER1: TEST_CASE_1, TEST_CASE_2
```

GER2:

GER3: TEST_CASE_4, TEST_CASE_7

GER4: TEST_CASE_5, TEST_CASE_9

GER5: TEST_CASE_6, TEST_CASE_10

Gereksinim 2 için test senaryosu yok!

Problemli İzlenebilirlik Matrisi 2

```
GER1: TEST_CASE_1, TEST_CASE_2
GER2: TEST_CASE_3
```

GER3: TEST_CASE_4, TEST_CASE_7

GER4: TEST_CASE_5, TEST_CASE_9

GER5: TEST CASE 6, TEST CASE 10

?????: TEST_CASE_11

 Test senaryosu 11 neyi test ediyor?

Uygulamalı İzlenebilirlik Matrisi

Textbook Chapters 6 ve 8'i okuyunuz

Daha ileri bir şeyler okumak isterseniz:

IEEE Standard for Software Test Documentation (IEEE 829-2008)

kaynaklar/IEEE829.pdf içerisinde bulunmaktadır.