Assignment 2

Manpreet Kaur

November 12, 2019

Class: ALY6020- **Predictive Analytics Professor: **Marco Montes de Oca

Introduction:

Although the term Logistic regression is used, it is a classification technique. It is geometrically a very elegant algorithm. Logistic regression can be derived from geometry, probability and loss function.

It can be used if the data is linearly separable (i.e. there are lines/planes separating the two classes). This data is separated by a plane represented as below:

$$\prod = W^T X + b$$

Where W is the normal to the plane and b is the intercept. Both W and X are vectors while, b is a scalar.

If plane passes through the origin, then b= 0,

$$\Pi = W^T X$$

Image representation of:

$$\prod = W^T X + b$$

Geometric derivation of the logistic regression model:

Given Data of Logistic Regression:

The dataset consists of two classes, red and blue in color. Let the red color class be the positive class and blue color class be the negative class

$$D_n = \{+_{ve}, -_{ve}\}$$

Assumption of Logistic Regression

Classes are almost/perfectly linearly separated.

Task of Logistic Regression

Find W and b which will be the used to find the best find plane - \prod for the given classes. In other words, find the plane which best separated the two classes.

Geometric Derivation

For simplicity, I have assumed that the plane passes through the origin.

$$\Pi = W^T X$$

If a query point belongs the positive class, it is denoted with +1 and if belongs the negative class, it is denoted by -1.

$$Y_i = \{+1, -1\}$$

The distance of the point 'i' to the plane is Di.

$$Di = \frac{W^T X i}{||W||}$$

Assuming that W is normal to the plane.

$$Di = \frac{W^T X i}{1}$$

When W and X_i are pointing to the same side of the plane, $D_i = W^T X_i > 0$

When W and X_i are pointing to the opposite side of the plane, $D_i = W^T X_i < 0\,$

When $W^TX_i > 0$ the point is classified as a positive point, $Y_i = +1$ When $W^TX_i < 0$ the point is classified as a negative point, $Y_i = -1$

Cases when point has been correctly classified and incorrectly classified-

Case 1:

Given $Y_i = +_{ve}$ and $W^T X_i > 0$, then the plane has **correctly** classified the point $Y_i(W^T X_i) > 0$

Case 2:

Given $Y_i = -v_e$ and $W^T X_i < 0$, then the plane has **correctly** classified the point $Y_i(W^T X_i) > 0$

Case 3:

Given $Y_i = +_{ve}$ and $W^T X_i < 0$, then the plane has **incorrectly** classified the point $Y_i(W^T X_i) < 0$

Case 4:

Given $Y_i = -v_e$ and $W^T X_i > 0$, then the plane has **correctly** classified the point $Y_i(W^T X_i) < 0$

We can maximize the number of points having points $Y_i(W^TX_i) > 0$ The variable 'W' decides the same.

Problem Statement

Character recognition with Logistic Regression

About the Dataset

There are 2 files with 28 *28 grayscale images. Each image is encoded as a row of 784 integer values between 0 and 255 indicating the brightness of each pixel. The label associated with each image is encoded as an integer value between 0 and 9. The dataset is an MNIST dataset.

Code Explanation:

Imported the necessary libraries for the project and also the train and test csv files from my local location

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
image_size = 28 # width and length
no_of_different_labels = 10 # i.e. 0, 1, 2, 3, ..., 9
image_pixels = image_size * image_size
test_data = np.loadtxt("/Users/manu/Downloads/MNIST-data/mnist_test.csv", delimiter=",")
train_data = np.loadtxt("/Users/manu/Downloads/MNIST-data/mnist_train.csv", delimiter=",")
```

Before we begin the model formation, a look how each of the 784 pixels form the digits of the image

```
fac = 0.99 / 255
train_imgs = np.asfarray(train_data[:, 1:]) * fac + 0.01
test_imgs = np.asfarray(test_data[:, 1:]) * fac + 0.01
train_labels = np.asfarray(train_data[:, :1])
test_labels = np.asfarray(test_data[:, :1])
```

```
import numpy as np
lr = np.arange(10)
for label in range(10):
    one_hot = (lr==label).astype(np.int)
    print("label: ", label, " in one-hot representation: ", one_hot)

label: 0 in one-hot representation: [1 0 0 0 0 0 0 0 0 0 0 0]
label: 1 in one-hot representation: [0 1 0 0 0 0 0 0 0 0 0]
label: 2 in one-hot representation: [0 0 1 0 0 0 0 0 0 0]
label: 3 in one-hot representation: [0 0 1 0 0 0 0 0 0 0]
label: 4 in one-hot representation: [0 0 0 1 0 0 0 0 0 0]
label: 5 in one-hot representation: [0 0 0 0 1 0 0 0 0 0]
label: 6 in one-hot representation: [0 0 0 0 0 1 0 0 0 0]
label: 7 in one-hot representation: [0 0 0 0 0 1 0 0 0]
label: 8 in one-hot representation: [0 0 0 0 0 0 0 1 0 0]
label: 9 in one-hot representation: [0 0 0 0 0 0 0 0 0 1 0]
```

```
lr = np.arange(no_of_different_labels)
# transform labels into one hot representation
#train_labels_one_hot = (lr==train_labels).astype(np.float)
test_labels_one_hot = (lr==test_labels).astype(np.float)
# we don't want zeroes and ones in the labels neither:
#train_labels_one_hot[train_labels_one_hot==0] = 0.01
#train_labels_one_hot[train_labels_one_hot==1] = 0.99
test_labels_one_hot[test_labels_one_hot==0] = 0.01
test_labels_one_hot[test_labels_one_hot==1] = 0.99
```

```
for i in range(10):
    img = test_imgs[i].reshape((28,28))
    plt.imshow(img, cmap="Greys")
    plt.show()
```


The train dataset is of the type array

```
#Checking the output format of train dataset
#it is of type array
train_data
```

It is simpler to work with data frames, hence converted the arrays to data frames

```
#Converting from array to data frame
df = pd.DataFrame.from_records(train_data)
df_test = pd.DataFrame.from_records(test_data)
```

Converting the target variable of test case to a list

```
# conerting target of test case values to list
Y_test = df_test[0].tolist()
print(Y_test)
```

 $[7.0,\ 2.0,\ 1.0,\ 0.0,\ 4.0,\ 1.0,\ 4.0,\ 9.0,\ 5.0,\ 9.0,\ 0.0,\ 6.0,\ 9.0,\ 0.0,\ 1.0,\ 5.0,\ 9.0,\ 7.0,\ 3.0,\ 4.0,\ 9.0,\ 6.0,\ 6.0,\ 5.0,\ 9.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0$ $.0,\ 4.0,\ 0.0,\ 7.0,\ 4.0,\ 0.0,\ 1.0,\ 3.0,\ 1.0,\ 3.0,\ 4.0,\ 7.0,\ 2.0,\ 7.0,\ 1.0,\ 2.0,\ 1.0,\ 1.0,\ 7.0,\ 4.0,\ 2.0,\ 3.0,\ 5.0,\ 1.0$, 2.0, 4.0, 4.0, 6.0, 3.0, 5.0, 5.0, 6.0, 0.0, 4.0, 1.0, 9.0, 5.0, 7.0, 8.0, 9.0, 3.0, 7.0, 4.0, 6.0, 4.0, 3.0, 0.0, 7.0, 0.0, 2.0, 9.0, 1.0, 7.0, 3.0, 2.0, 9.0, 7.0, 7.0, 6.0, 2.0, 7.0, 8.0, 4.0, 7.0, 3.0, 6.0, 1.0, 3.0, 6.0, 9.0, 3. $0, \ 1.0, \ 4.0, \ 1.0, \ 7.0, \ 6.0, \ 9.0, \ 6.0, \ 0.0, \ 5.0, \ 4.0, \ 9.0, \ 9.0, \ 2.0, \ 1.0, \ 9.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 4.0, \ 4.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 4.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 4.0, \ 8.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 3.0, \ 9.0, \ 7.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.0, \ 9.$ 4.0, 9.0, 2.0, 5.0, 4.0, 7.0, 6.0, 7.0, 9.0, 0.0, 5.0, 8.0, 5.0, 6.0, 6.0, 5.0, 7.0, 8.0, 1.0, 0.0, 1.0, 6.0, 4.0, 6. 0, 7.0, 3.0, 1.0, 7.0, 1.0, 8.0, 2.0, 0.0, 2.0, 9.0, 9.0, 5.0, 5.0, 1.0, 5.0, 6.0, 0.0, 3.0, 4.0, 4.0, 6.0, 5.0, 4.0, 6.0, 5.0, 4.0, 5.0, 1.0, 4.0, 4.0, 7.0, 2.0, 3.0, 2.0, 7.0, 1.0, 8.0, 1.0, 8.0, 1.0, 8.0, 5.0, 0.0, 8.0, 9.0, 2.0, 5. 5.0, 9.0, 3.0, 9.0, 0.0, 3.0, 6.0, 5.0, 5.0, 7.0, 2.0, 2.0, 7.0, 1.0, 2.0, 8.0, 4.0, 1.0, 7.0, 3.0, 3.0, 8.0, 8.0, 7. $0,\ 9.0,\ 2.0,\ 2.0,\ 4.0,\ 1.0,\ 5.0,\ 9.0,\ 8.0,\ 7.0,\ 2.0,\ 3.0,\ 0.0,\ 4.0,\ 4.0,\ 2.0,\ 4.0,\ 1.0,\ 9.0,\ 5.0,\ 7.0,\ 7.0,\ 2.0,\ 8.0,\ 8.0,\ 7.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\ 1.0,\$ 2.0, 6.0, 8.0, 5.0, 7.0, 7.0, 9.0, 1.0, 8.0, 1.0, 8.0, 0.0, 3.0, 0.0, 1.0, 9.0, 9.0, 4.0, 1.0, 8.0, 2.0, 1.0, 2.0, 9. 0.0, 2.0, 7.0, 4.0, 3.0, 3.0, 0.0, 0.0, 3.0, 1.0, 9.0, 6.0, 5.0, 2.0, 5.0, 9.0, 2.0, 9.0, 3.0, 0.0, 4.0, 2.0, 0.0, 7. $0, \ 1.0, \ 1.0, \ 2.0, \ 1.0, \ 5.0, \ 3.0, \ 3.0, \ 9.0, \ 7.0, \ 8.0, \ 6.0, \ 5.0, \ 6.0, \ 1.0, \ 3.0, \ 8.0, \ 1.0, \ 0.0, \ 5.0, \ 1.0, \ 3.0, \ 1.0, \ 5.0, \ 1.0, \ 3.0, \ 1.0, \ 5.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 1.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.0, \ 3.$ 5.0, 6.0, 1.0, 8.0, 5.0, 1.0, 7.0, 9.0, 4.0, 6.0, 2.0, 2.0, 5.0, 0.0, 6.0, 5.0, 6.0, 3.0, 7.0, 2.0, 0.0, 8.0, 8.0, 5. $0,\ 4.0,\ 1.0,\ 1.0,\ 4.0,\ 0.0,\ 3.0,\ 3.0,\ 7.0,\ 6.0,\ 1.0,\ 6.0,\ 2.0,\ 1.0,\ 9.0,\ 2.0,\ 8.0,\ 6.0,\ 1.0,\ 9.0,\ 5.0,\ 2.0,\ 5.0,\ 4.0,$ $4.0,\ 2.0,\ 8.0,\ 3.0,\ 8.0,\ 2.0,\ 4.0,\ 5.0,\ 0.0,\ 3.0,\ 1.0,\ 7.0,\ 7.0,\ 5.0,\ 7.0,\ 9.0,\ 7.0,\ 1.0,\ 9.0,\ 2.0,\ 1.0,\ 4.0,\ 2.0,\ 9.0$ $0,\ 2.0,\ 0.0,\ 4.0,\ 9.0,\ 1.0,\ 4.0,\ 8.0,\ 1.0,\ 8.0,\ 4.0,\ 5.0,\ 9.0,\ 8.0,\ 8.0,\ 3.0,\ 7.0,\ 6.0,\ 0.0,\ 0.0,\ 3.0,\ 0.0,\ 2.0,\ 6.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\$ $6.0,\ 4.0,\ 9.0,\ 3.0,\ 3.0,\ 3.0,\ 2.0,\ 3.0,\ 9.0,\ 1.0,\ 2.0,\ 6.0,\ 8.0,\ 0.0,\ 5.0,\ 6.0,\ 6.0,\ 6.0,\ 3.0,\ 8.0,\ 8.0,\ 2.0,\ 7.0,\ 5.0,\ 5.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,\ 6.0,$ 0, 8.0, 9.0, 6.0, 1.0, 8.0, 4.0, 1.0, 2.0, 5.0, 9.0, 1.0, 9.0, 7.0, 5.0, 4.0, 0.0, 8.0, 9.0, 9.0, 1.0, 0.0, 5.0, 2.0, 3.0, 7.0, 8.0, 9.0, 4.0, 0.0, 6.0, 3.0, 9.0, 5.0, 2.0, 1.0, 3.0, 1.0, 3.0, 6.0, 5.0, 7.0, 4.0, 2.0, 2.0, 6.0, 3.0, 2. $0,\; 6.0,\; 5.0,\; 4.0,\; 8.0,\; 9.0,\; 7.0,\; 1.0,\; 3.0,\; 0.0,\; 3.0,\; 8.0,\; 3.0,\; 1.0,\; 9.0,\; 3.0,\; 4.0,\; 4.0,\; 6.0,\; 4.0,\; 2.0,\; 1.0,\; 8.0,\; 2.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\; 1.0,\;$ 5.0, 4.0, 8.0, 8.0, 4.0, 0.0, 0.0, 2.0, 3.0, 2.0, 7.0, 7.0, 0.0, 8.0, 7.0, 4.0, 4.0, 7.0, 9.0, 6.0, 9.0, 0.0, 9.0, 8.0 $0,\ 0.0,\ 4.0,\ 6.0,\ 0.0,\ 6.0,\ 3.0,\ 5.0,\ 4.0,\ 8.0,\ 3.0,\ 3.0,\ 9.0,\ 3.0,\ 3.0,\ 3.0,\ 7.0,\ 8.0,\ 0.0,\ 8.0,\ 2.0,\ 1.0,\ 7.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\$ $6.0,\ 5.0,\ 4.0,\ 3.0,\ 8.0,\ 0.0,\ 9.0,\ 6.0,\ 3.0,\ 8.0,\ 0.0,\ 9.0,\ 6.0,\ 8.0,\ 6.0,\ 8.0,\ 5.0,\ 7.0,\ 8.0,\ 6.0,\ 0.0,\ 2.0,\ 4.0,\ 4.0,\ 5.0,\ 5.0,\ 7.0,\ 8.0,\ 6.0,\ 5.0,\ 7.0,\ 8.0,\ 6.0,\ 7.0,\ 8.0,\ 6.0,\ 7.0,\ 8.0,\ 6.0,\ 7.0,\ 8.0,\ 6.0,\ 7.0,\ 8.0,\ 6.0,\ 7.0,\ 8.0,\ 6.0,\ 7.0,\ 8.0,\ 6.0,\ 7.0,\ 8.0,\ 6.0,\ 7.0,\ 8.0,\ 6.0,\ 7.0,\ 8.0,\ 6.0,\ 7.0,\ 8.0,\ 6.0,\ 7.0,\ 8.0,\ 6.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 6.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 7.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,\ 8.0,$ 0, 0.0, 2.0, 2.0, 3.0, 1.0, 9.0, 7.0, 5.0, 1.0, 0.0, 8.0, 4.0, 6.0, 2.0, 6.0, 7.0, 9.0, 3.0, 2.0, 9.0, 8.0, 2.0, 2.0, 9.0, 2.0, 7.0, 3.0, 5.0, 9.0, 1.0, 8.0, 0.0, 2.0, 0.0, 5.0, 2.0, 1.0, 3.0, 7.0, 6.0, 7.0, 1.0, 2.0, 5.0, 8.0, 0.0, 3. 0, 7.0, 2.0, 4.0, 0.0, 9.0, 1.0, 8.0, 6.0, 7.0, 7.0, 4.0, 3.0, 4.0, 9.0, 1.0, 9.0, 5.0, 1.0, 7.0, 3.0, 9.0, 7.0, 6.0,9.0, 1.0, 3.0, 7.0, 8.0, 3.0, 3.0, 6.0, 7.0, 2.0, 8.0, 5.0, 8.0, 5.0, 1.0, 1.0, 4.0, 4.0, 3.0, 1.0, 0.0, 7.0, 7.0, 0. $0,\ 7.0,\ 9.0,\ 4.0,\ 4.0,\ 8.0,\ 5.0,\ 5.0,\ 4.0,\ 0.0,\ 8.0,\ 2.0,\ 1.0,\ 0.0,\ 8.0,\ 4.0,\ 5.0,\ 0.0,\ 4.0,\ 0.0,\ 6.0,\ 1.0,\ 7.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\ 3.0,\$

Forming 9 columns in the train datasets with values 0/1 depending on whether the values 0 -9 are present

```
df['Target_0'] = np.where(df[0]==0, 1, 0)
df['Target_1'] = np.where(df[0]==1, 1, 0)
df['Target_2'] = np.where(df[0]==2, 1, 0)
df['Target_3'] = np.where(df[0]==3, 1, 0)
df['Target_4'] = np.where(df[0]==4, 1, 0)
df['Target_5'] = np.where(df[0]==5, 1, 0)
df['Target_6'] = np.where(df[0]==5, 1, 0)
df['Target_7'] = np.where(df[0]==7, 1, 0)
df['Target_8'] = np.where(df[0]==8, 1, 0)
df['Target_9'] = np.where(df[0]==9, 1, 0)
```

Importing the libraries to carry out logistic regression.

```
from sklearn.datasets import make_classification
from matplotlib import pyplot as plt
from sklearn.linear_model import LogisticRegression
```

There will be 10 models, each predicting separately whether the target digit is 0-9. To carry out this there are 10 training sets suitably formed.

```
x_train_0= df.drop([0,'Target_0','Target_1', 'Target_2', 'Target_3', 'Target_4', 'Target_5', 'Target_6', 'Target_7', '
Target_8', 'Target_9'], axis=1)
 x_train_1= df.drop([0,'Target_0','Target_1', 'Target_2', 'Target_3', 'Target_4', 'Target_5', 'Target_6', 'Target_7', '
Target_8', 'Target_9'], axis=1)
 x_train_2= df.drop([0,'Target_1', 'Target_2','Target_0', 'Target_3', 'Target_4', 'Target_5', 'Target_6', 'Target_7', '
Target_8', 'Target_9'], axis=1)
 x_train_3= df.drop([0,'Target_1', 'Target_3','Target_2', 'Target_0', 'Target_4', 'Target_5', 'Target_6', 'Target_7', '
Target_8', 'Target_9'], axis=1)
x_train_4= df.drop([0,'Target_1', 'Target_4','Target_2', 'Target_3', 'Target_0', 'Target_5', 'Target_6', 'Target_7', '
Target_8', 'Target_9'], axis=1)
x_train_5= df.drop([0,'Target_1', 'Target_5','Target_2', 'Target_3', 'Target_4', 'Target_0', 'Target_6', 'Target_7', '
Target_8', 'Target_9'], axis=1)
x_train_6= df.drop([0,'Target_1', 'Target_6','Target_2', 'Target_3', 'Target_4', 'Target_5', 'Target_0', 'Target_7', '
Target_8', 'Target_9'], axis=1)
x_train_7= df.drop([0, 'Target_1', 'Target_7', 'Target_2', 'Target_3', 'Target_4', 'Target_5', 'Target_6', 'Target_0', '
Target_8', 'Target_9'], axis=1)
x_train_8= df.drop[[0,'Target_1', 'Target_8','Target_2', 'Target_3', 'Target_4', 'Target_5', 'Target_6', 'Target_7', '
Target_0', 'Target_9'], axis=1)
x_train_9= df.drop([0,'Target_1', 'Target_9','Target_2', 'Target_3', 'Target_4', 'Target_5', 'Target_6', 'Target_7', 'Target_8', 'Tar
Target_8', 'Target_0'], axis=1)
```

The target value of each train dataset is from Target 0 - Target 9 values

```
Y_0 = df["Target_0"].tolist()
Y_1 = df["Target_1"].tolist()
Y_2 = df["Target_2"].tolist()
Y_3 = df["Target_3"].tolist()
Y_4 = df["Target_4"].tolist()
Y_5 = df["Target_5"].tolist()
Y_6 = df["Target_6"].tolist()
Y_7 = df["Target_7"].tolist()
Y_9 = df["Target_8"].tolist()
Y_9 = df["Target_9"].tolist()
```

Converting the train datasets to list

```
X_0 = x_train_0.values.tolist()
X_1 = x_train_1.values.tolist()
X_2 = x_train_2.values.tolist()
X_3 = x_train_3.values.tolist()
X_4 = x_train_4.values.tolist()
X_5 = x_train_5.values.tolist()
X_6 = x_train_6.values.tolist()
X_7 = x_train_7.values.tolist()
X_8 = x_train_8.values.tolist()
X_9 = x_train_9.values.tolist()
```

Forming the logistic models and fitting it to the respective 10 train datasets. This took approximated 30 mins to run successfully.

```
lr_0 = LogisticRegression()
lr_1 = LogisticRegression()
lr_2 = LogisticRegression()
lr_3 = LogisticRegression()
lr_4 = LogisticRegression()
lr_5 = LogisticRegression()
lr 6 = LogisticRegression()
lr_7 = LogisticRegression()
lr 8 = LogisticRegression()
lr_9 = LogisticRegression()
lr_0.fit(X_0, Y_0)
lr_1.fit(X_1, Y_1)
lr_2.fit(X_2, Y_2)
lr_3.fit(X_3, Y_3)
lr 4.fit(X 4, Y 4)
lr_5.fit(X_5, Y_5)
lr 6.fit(X 6, Y 6)
lr_7.fit(X_7, Y_7)
lr_8.fit(X_8, Y_8)
lr_9.fit(X_9, Y_9)
```

To test the train model, the output and type of the test data was checked as below

```
df_test_0
```

	1	2	3	4	5	6	7	8	9	10	 775	776	777	778	779	780	781	782	783	784
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

10 rows × 784 columns

The final target variables of the test data was saved as a list in the variable 'df_test_final'

df_test_final = df_test.drop([0], axis=1)

#df_test_final

The trained datasets were predicted against each of the models. The output is a list of lists indicating the probability that the value will be wither 0 or 1. The first value is the prediction for 0, while the other value is the prediction for 1.

```
y_pred_0 = lr_0.predict_proba(df_test_final)
y_pred_1 = lr_1.predict_proba(df_test_final)
y_pred_2 = lr_2.predict_proba(df_test_final)
y_pred_3 = lr_3.predict_proba(df_test_final)
y_pred_4 = lr_4.predict_proba(df_test_final)
y_pred_5 = lr_5.predict_proba(df_test_final)
y_pred_6 = lr_6.predict_proba(df_test_final)
y_pred_7 = lr_7.predict_proba(df_test_final)
y_pred_9 = lr_9.predict_proba(df_test_final)
y_pred_9 = lr_9.predict_proba(df_test_final)
y_pred_0 = lr_9.predict_proba(df_test_final)
print(y_pred_0)

[[1.00000000e+00 8.24615623e-19]
[9.99999991e-01 8.56466181e-09]
[9.9999999e-01 1.24319875e-09]
[1.00000000e+00 1.94722107e-18]
[1.00000000e+00 1.32017097e-15]]
```

Independently checked for the probability of the input to be either of the 10 digits is true

```
lst0 = [x[1] for x in y_pred_0]
lst1 = [x[1] for x in y_pred_1]
lst2 = [x[1] for x in y_pred_2]
lst3 = [x[1] for x in y_pred_3]
lst4 = [x[1] for x in y_pred_4]

lst5 = [x[1] for x in y_pred_5]
lst6 = [x[1] for x in y_pred_6]
lst7 = [x[1] for x in y_pred_7]
lst8 = [x[1] for x in y_pred_8]
lst9 = [x[1] for x in y_pred_9]
```

```
print(1st0)
[8.2461562349225195e-19, 8.564661813351862e-09, 3.136920343941586e-07, 0.999582698813646, 0.0011238351289612222, 1.54
```

65066496130965e-07, 4.116105463160546e-06, 1.0654777868870154e-14, 0.0005786219878589414, 1.5198301016005015e-16, 0.9 917310176203888, 0.00017988175443033012, 5.069652819871545e-14, 0.9994468953144159, 5.34617244802962e-10, 0.000155547 40145354258, 4.8820773682721655e-06, 4.81272093383758e-15, 8.608344189543287e-07, 0.00019201743183998538, 2.269801164 5820567e-06, 1.2213953358369974e-05, 3.5756064028884047e-10, 9.02006551200632e-05, 0.0015004861750545866, 0.999989512 e-09, 6.743204313489364e-08, 2.5101516369908304e-07, 0.17412084691209162, 8.84644368198457e-07, 0.0001496268428690303 8, 2.4736016265044707e-13, 9.618283689589506e-10, 0.0052223575137874375, 3.935884028672456e-08, 1.1020686243687866e-06, 2.288320920647428e-10, 1.1606646980615745e-09, 0.00024156526021655076, 2.975409822401017e-07, 0.000374144938928741 75, 1.0182370440733717e-11, 7.795955061251259e-21, 1.2348785146287174e-09, 3.348952922654613e-05, 0.01276370193372732 3, 4.8512400296900566e-05, 0.00018052575411527298, 0.0026013301993428137, 4.1357684290409126e-07, 0.9981899562747025, 3.8215371529788955e-05, 2.4156848692309075e-08, 1.4576158221923864e-13, 0.01278502027505293, 3.6058636819793376e-38, 5.0420700603690014e-05, 5.648300572591114e-07, 2.086224216250154e-05, 5.608330552715699e-16, 2.373377082008532e-05, 3.985233887134516e-08, 0.003010372163320679, 1.1863513885474305e-07, 0.997689378431164, 6.161136377312005e-08, 0.99997889722168804, 0.0017821181052675849, 7.324897371625239e-08, 4.09975531099175e-09, 2.0055651029258867e-16, 5.288124579 464603e-05, 0.00011224587168809534, 6.210587334493798e-09, 1.3048789448713995e-18, 1.1409865241426873e-19, 0.00162211 70180532276 0.00011224587168809534, 6.210587

Implemented the SoftMax function to normalize the probability distribution

```
df_final_1['sum'] = df_final_1.sum(axis=1)
softmax = df_final_1.loc[:,'lst0':'lst9'].div(df_final_1["sum"], axis=0)
#softmax
#Dataframe with maximum values
#df_final_3 = df_final_1.idxmax(axis=1)
```

The values represent the chances of the input being the particular digit. The larger the value, higher is the probability of it being the digit

```
print(softmax)
           1st0
                        lst1
                                       1st2
                                                     1st3
                                                                   lst4 \
  9.785937e-07
                1.212587e-28 4.370989e-08 4.772061e-09
                                                           4.668999e-14
  8.739429e-07 1.080124e-22 4.693976e-01 3.911194e-06 1.641823e-28
2 4.983605e-12 9.999886e-01 6.999690e-07 6.458759e-06 3.134099e-08
3 9.999822e-01 2.691772e-31 4.305052e-16 3.423074e-31 3.268781e-24
4 3.815462e-12 2.690244e-16 3.430649e-08 1.384743e-17 9.633661e-01
  1.087604e-14 9.999423e-01 1.260796e-07 2.974237e-09
                                                           6.451926e-11
6 9.328616e-14 1.347362e-14 1.441833e-25 3.969322e-10 9.999573e-01
7 2.354201e-19 3.583002e-02 5.062560e-17 2.194537e-04 6.219448e-09
8 1.432200e-06 1.352592e-01 8.573988e-01 1.140367e-30 7.339950e-03
9 1.675448e-10 7.914207e-24 7.727860e-24 1.307885e-23 1.737007e-07
                                       1st7
                                                     1st8
          1st5
                        lst6
0 7.275548e-17 1.457133e-23 9.999990e-01 8.416781e-11 2.134391e-13
1 7.123208e-09 5.305976e-01 1.609018e-35 3.563909e-18 1.173936e-12
2 7.519593e-12 2.054505e-06 1.909710e-06 7.761346e-08 1.318132e-07 3 1.516496e-10 5.209207e-11 1.783050e-05 5.732940e-22 1.930725e-24
4 1.940200e-26 1.257995e-06 6.634947e-10 3.064076e-04 3.632617e-02
5 1.509865e-14 1.063983e-11 5.760209e-05 3.781541e-09 1.358081e-08
6 4.079876e-05 8.240710e-14 7.223972e-19 5.303258e-08 1.882297e-06
   2.360177e-08 1.707913e-07 1.479123e-08 4.468690e-13
                                                           9.639503e-01
8 1.233466e-10 6.228275e-07 1.422910e-29 6.136357e-18 2.999790e-17
9 2.555539e-17 2.861477e-11 6.196717e-02 3.753786e-10 9.380327e-01
df_final_3 = softmax.idxmax(axis=1)
type(df final 3)
pandas.core.series.Series
```

Replaced the column names to their corresponding digits in numerical format

```
df_final_3 = df_final_3.replace(to_replace = ['lst0', 'lst1','lst2', 'lst3','lst4', 'lst5','lst6', 'lst7','lst8', 'lst
9',], value = [0,1,2,3,4,5,6,7,8,9])
df_final_3
0
        2
2
        1
        0
6
8
        6
10
        0
11
12
13
14
15
16
17
18
        3
19
        9
20
```

Imported the libraries to find the confusion matrix, accuracy and classification report

```
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
results = confusion_matrix(df_test[0], df_final_3)
print ('Confusion Matrix :')
print(results)

print ('Accuracy Score :',accuracy_score(df_test[0], df_final_3))
print ('Report : ')
print (classification_report(df_test[0], df_final_3))
```

The model has an accuracy of 0.9175. The maximum number of misclassifications is for the digit 5. While the minimum number of misclassifications is for the digit 0.

nfusi	on Ma	trix	:						
960	0	2	1	0	3	7	3	3	1]
0	1108	4	3	0	1	5	1	13	0]
10	10	904	20	7	3	12	15	48	3]
4	0	17	918	2	23	5	10	23	8]
1	2	5	5	911	0	9	3	10	36]
9	1	0	39	10	767	16	7	35	8]
8	4	8	0	5	20	907	0	6	0]
4	8	25	5	7	2	1	941	4	31]
14	13	6	20	12	20	10	11	858	10]
9	7	2	14	29	8	0	27	12	901]]
curac	y Sco	re :	0.917	5					
port	:								
		pre	cisio	n	recal	l f1	-scor	e s	support
									980
									1135
									1032
									1010
									982
									892
									958
									1028
									974
	9.0		0.9	0	0.89	9	0.9	0	1009
	_								10000
									10000
ighte	d avg		0.9	2	0.92	2	0.9	2	10000
	960 0 10 4 1 9 8 4 14 9 curac port	960 0 0 1108 10 10 4 0 1 2 9 1 8 4 4 8 14 13 9 7 curacy Scoport: 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	960 0 2 0 1108 4 10 10 904 4 0 17 1 2 5 9 1 0 8 4 8 4 8 25 14 13 6 9 7 2 curacy Score: port: pre	0 1108 4 3 10 10 904 20 4 0 17 918 1 2 5 5 9 1 0 39 8 4 8 0 4 8 25 5 14 13 6 20 9 7 2 14 curacy Score : 0.917 port : precisio 0.0 0.9 1.0 0.9 2.0 0.9 3.0 0.9 4.0 0.9 5.0 0.9 6.0 0.9 7.0 0.9 8.0 0.9 micro avg 0.9 micro avg 0.9 micro avg 0.9	960 0 2 1 0 0 1108 4 3 0 10 10 904 20 7 4 0 17 918 2 1 2 5 5 911 9 1 0 39 10 8 4 8 0 5 4 8 25 5 7 14 13 6 20 12 9 7 2 14 29 curacy Score: 0.9175 port: precision 0.0 0.94 1.0 0.96 2.0 0.93 3.0 0.90 4.0 0.93 5.0 0.91 6.0 0.93 7.0 0.92 8.0 0.85 9.0 0.90 micro avg 0.92 macro avg 0.92	960 0 2 1 0 3 0 1108 4 3 0 1 10 10 904 20 7 3 4 0 17 918 2 23 1 2 5 5 911 0 9 1 0 39 10 767 8 4 8 0 5 20 4 8 25 5 7 2 14 13 6 20 12 20 9 7 2 14 29 8 curacy Score : 0.9175 port : precision recal: 0.0 0.94 0.96 2.0 0.93 0.86 3.0 0.90 0.93 4.0 0.93 0.93 5.0 0.91 0.86 6.0 0.93 0.93 7.0 0.92 0.93 8.0 0.85 0.86 9.0 0.90 0.92 0.93 micro avg 0.92 0.93 micro avg 0.92 0.93	960 0 2 1 0 3 7 0 1108 4 3 0 1 5 10 10 904 20 7 3 12 4 0 17 918 2 23 5 1 2 5 5 911 0 9 9 1 0 39 10 767 16 8 4 8 0 5 20 907 4 8 25 5 7 2 1 14 13 6 20 12 20 10 9 7 2 14 29 8 0 curacy Score: 0.9175 port: precision recall f1 0.0 0.94 0.98 1.0 0.96 0.98 2.0 0.93 0.88 3.0 0.90 0.91 4.0 0.93 0.93 5.0 0.91 0.86 6.0 0.93 0.93 5.0 0.91 0.86 6.0 0.93 0.95 7.0 0.92 0.92 8.0 0.85 0.88 9.0 0.90 0.90	960 0 2 1 0 3 7 3 0 1108 4 3 0 1 5 1 10 10 904 20 7 3 12 15 4 0 17 918 2 23 5 10 1 2 5 5 911 0 9 3 9 1 0 39 10 767 16 7 8 4 8 0 5 20 907 0 4 8 25 5 7 2 1 941 14 13 6 20 12 20 10 11 9 7 2 14 29 8 0 27 curacy Score: 0.9175 port: precision recall f1-score 0.0 0.94 0.98 0.9 2.0 0.93 0.88 0.9 3.0 0.90 0.91 0.9 4.0 0.93 0.98 0.9 3.0 0.90 0.91 0.9 4.0 0.93 0.93 0.93 5.0 0.91 0.86 0.8 6.0 0.93 0.95 0.9 7.0 0.92 0.92 0.92 8.0 0.85 0.88 0.8 9.0 0.90 0.90 0.91	960 0 2 1 0 3 7 3 3 0 1108 4 3 0 1 5 1 13 10 10 904 20 7 3 12 15 48 4 0 17 918 2 23 5 10 23 1 2 5 5 911 0 9 3 10 9 1 0 39 10 767 16 7 35 8 4 8 0 5 20 907 0 6 4 8 25 5 7 2 1 941 4 14 13 6 20 12 20 10 11 858 9 7 2 14 29 8 0 27 12 curacy Score: 0.9175 cort: precision recall f1-score s 0.0 0.94 0.98 0.96 1.0 0.96 0.98 0.97 2.0 0.93 0.88 0.90 3.0 0.90 0.91 0.90 4.0 0.93 0.93 0.93 5.0 0.91 0.86 0.88 6.0 0.93 0.95 0.94 7.0 0.92 0.92 0.92 8.0 0.85 0.88 0.86 9.0 0.90 0.90 0.90 micro avg 0.92 0.92 0.92 macro avg 0.92 0.92 0.92 macro avg 0.92 0.92 0.92

References:

*Berd Klein (2011 - 2019) , Retrieved from Python machine learning Tutorial: https://www.python-course.eu/neural_network_mnist.php

*2019, Retrieved from Applied Al Course: https://www.appliedaicourse.com/lecture/11/applied-machine-learning-online-course/3011/geometric-intuition-of-logistic-regression/3/module-3-foundations-of-natural-language-processing-and-machine-learning

*Vibhu Singh (Jan 24, 2018) , Retrieved from Introduction to K-NN: https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj7yfST0 OXIAhVvhOAKHaNbDIOQMwhGKAlwAg&url=http%3A%2F%2Fstrijov.com%2Fsources%2FdemoDataGen.php&psig= AOvVaw2y8-sTxud9a5-4GVf9kwHT&ust=1573680855153767&ictx=3&uact=3