Prüfungsteilnehmer		Prüfungstermin	Einzelprü	Einzelprüfungsnummer	
Kennzahl:					
Kennwort:		Herbst	46	46113	
Arbeitsplatz-Nr.:		2011	70	TULLU	
Erste S	staatsprüfung	für ein Lehramt a	n öffentlichen Se	chulen	
	· · · · · · · · · · · · · · · · · · ·	Prüfungsaufgabei	n —		
Fach:	Informatik (Unt	errichtsfach)			
Einzelprüfung:	Theoretische Int	formatik			
Anzahl der gestell	ten Themen (Aufga	ben): 2			
Anzahl der Druck	seiten dieser Vorlag	e: 6			

Bitte wenden!

Thema Nr. 1 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

Aufgabe 1: reguläre Sprachen

- a) Formulieren Sie die Aussage des Pumping-Lemmas für reguläre Sprachen. Wie kann das Pumping-Lemma dazu verwendet werden, zu zeigen, dass eine Sprache nicht regulär ist?
- b) Beweisen Sie mit Hilfe des Pumping-Lemmas für reguläre Sprachen, dass die Sprache $L_1 = \{a^n b^n a^m b^m \mid m \geq 1, n \geq 1\}$ nicht regulär ist. Erläutern Sie Ihre Argumentation.
- c) Sei L eine reguläre Sprache. Sei n die Zahl des Pumping-Lemmas zu L. Beweisen Sie, dass folgende Aussage gilt: $|L|=\infty \Leftrightarrow$ es gibt in L ein Wort w mit $n\leq |w|<2n$
- d) Begründen Sie, warum reguläre Sprachen unter Vereinigung abgeschlossen sind. Betrachten Sie dazu zwei reguläre Sprachen L und M und begründen Sie, warum auch $L \cup M$ eine reguläre Sprache ist.
- e) Sei $A=(Q,\Sigma,\delta,q_0,F)$ ein deterministischer endlicher Automat, der eine reguläre Sprache L erkennt. Konstruieren Sie zu A einen deterministischen endlichen Automaten B, der die reguläre Sprache $\bar{L}=\Sigma^*-L$ akzeptiert. Erläutern Sie die Funktionsweise des von Ihnen konstruierten Automaten.

Aufgabe 2:

kontextfreie Sprachen und Kellerautomaten

a) Betrachten Sie die folgende Sprache

$$L_1 = \{a^n b^n a^m b^m \mid m \ge 1, n \ge 1\}$$

Geben Sie eine kontextfreie Grammatik mit Terminalsymbolen, Nichtterminalsymbolen und Produktionen an, die L_1 erzeugt. Erläutern Sie die Arbeitsweise der von Ihnen angegebenen Grammatik.

- b) Definieren Sie die Begriffe Linksableitung und Rechtsableitung einer kontextfreien Grammatik. Geben Sie für die von Ihnen in Aufgabenteil (a) konstruierte Grammatik eine Linksableitung für das Wort $abaabb \in L_1$ an.
- c) Kontextfreie Sprachen können mit Hilfe von Kellerautomaten erkannt werden. Geben Sie eine mathematisch exakte Definition eines Kellerautomaten an. Erläutern Sie den Unterschied zwischen nicht-deterministischen und deterministischen Kellerautomaten. Welche Unterschiede in den Verarbeitungsschritten gibt es?
- d) Konstruieren Sie einen Kellerautomaten $K = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, der die Sprache L_1 aus Aufgabenteil (a) akzeptiert. Geben Sie eine mathematisch exakte Definition der Übergangsrelation δ an. Erläutern Sie die Arbeitsweise des von Ihnen konstruierten Kellerautomaten K und begründen Sie, warum K alle Worte aus L_1 akzeptiert. Ist der von Ihnen konstruierte Kellerautomat deterministisch oder nicht-deterministisch? Begründen Sie, warum L_1 durch einen deterministischen Kellerautomaten erkannt werden kann.
- e) Formulieren Sie die Aussage des Pumping-Lemmas für kontextfreie Sprachen. Erläutern Sie die Gültigkeit dieses Lemmas. Erläutern Sie, wie das Pumping-Lemma für kontextfreie Sprachen dazu verwendet werden kann zu beweisen, dass eine gegebene Sprache nicht kontextfrei ist.
- f) Betrachten Sie die folgende Sprache $L_2=\{a^nb^ma^nb^m\mid m\geq 1, n\geq 1\}$. Beweisen Sie mit Hilfe des Pumping-Lemmas für kontextfreie Sprachen, dass L_2 nicht kontextfrei ist.

Thema Nr. 2 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

Annahmen:

Sie dürfen als bekannt und bewiesen voraussetzen: Die Sprache $\{a^n b^n c^n \mid n \ge 1\}$ ist nicht kontext-frei.

Um zu zeigen, dass eine Sprache L regulär (bzw. konxtexfrei) ist, reicht die Angabe einer entsprechenden Beschreibung (Automat, Grammatik, Ausdruck). Sie müssen nicht mehr zeigen, dass Ihre Beschreibung korrekt ist und genau die vorgegebene Sprache beschreibt.

Aufgabe 1: reguläre Mengen

Sei L die Menge aller Worte über dem Alphabet {0,1}, die eine durch vier teilbare Binärzahl ohne führende Nullen darstellen.

- a) Beschreiben Sie L durch einen regulären Ausdruck.
- b) Geben Sie eine vollständige Beschreibung eines deterministischen endlichen Automaten A für L an.
- c) Wenn Ihr Automat A nicht minimal ist, konstruieren Sie einen äquivalenten minimalen Automaten.
- d) Beschreiben und begründen Sie in Worten, warum der Automat aus Teilaufgabe 1 b bzw. 1 c minimal ist.

Durch welche Eigenschaft(en) wird ein minimaler Automat charakterisiert?

Fortsetzung nächste Seite!

Aufgabe 2: deterministisch

Konstruieren Sie zum folgenden Automaten einen äquivalenten deterministischen endlichen Automaten. Anfangszustand ist der Zustand 0, akzeptierende Endzustände sind 2 und 5:

Aufgabe 3: regulär oder nicht

$$L \ = \{ w \in \ \{a,b,c\}^* \ | \ w = a^i \ b^j \ c^k \ mit \ i,j,k \geq 0 \ und \ j = k \}$$

Ist die Sprache L regulär oder nicht? Begründen Sie Ihre Antwort.

Aufgabe 4:

Zeigen Sie, dass die Sprache

 $L = \{w \in \{a,b,c\}^* \mid w = a^i \ b^j \ c^k \ \text{mit } i,j,k \geq 1 \ \text{und} \ (j=k \ \text{oder } i=j)\}$ kontextfrei ist.

Es reicht die Angabe einer entsprechenden Grammatik bzw. eines Kellerautomaten.

Fortsetzung nächste Seite!

Aufgabe 5:

- a) Konstruieren Sie eine Turingmaschine für die Sprache $L = \{\ u \ \# \ v \mid \ u,v \in \ \{a,b\}^* \quad und \ u \neq v\}.$
- b) Welche Zeit-Komplexität hat Ihre Turingmaschine M? Welche Speicher-Komplexität hat Ihre Turingmaschine M?

Aufgabe 6: NP

Sei BE = $\{\alpha \mid \alpha \text{ ist ein erfüllbarer boolescher Ausdruck über } ^, \vee, \neg, \Rightarrow, \Leftarrow, \Leftrightarrow\}$

Begründen Sie in Worten:

- a) BE ist in NP.
- b) BE ist NP-vollständig. Hierzu darf nach dem Satz von Cook & Levin vorausgesetzt werden, dass das Erfüllbarkeitsproblem (SAT) NP-vollständig ist.