Try PCA for embarc

2019-1-30

How about clustering the PCs instead of variables?

Apply PCA on the dataset.

Draw variance plot:

```
plot(prin_comp, type = 'l')
```

prin_comp

Maybe we could select first 4 pcs?

```
pca_data = prin_comp$x[,1:4]
pca_data = as.data.frame(pca_data)
pca_data$ProjectSpecificId = merged$ProjectSpecificId
pca_data$trt = merged$trt
```

```
dim(pca_data)
```

```
## [1] 150 6
head(pca_data)
```

```
##
            PC1
                       PC2
                                  PC3
                                              PC4 ProjectSpecificId trt
## 1 -0.5717660 -1.6985164
                           0.2976318
                                       2.48851509
                                                             CU0011
                                                                      1
    0.4101561 -2.7930809 -1.0161340
                                       0.98530249
                                                             CU0014
                                                                      1
## 3 3.3495284 3.0639121 1.1848662 0.14257675
                                                             CU0016
                                                                      2
## 4 -1.6587150   0.8456167 -1.3515450 -0.07077259
                                                             CU0022
                                                                      2
## 5 0.8730392 -0.5039017 -1.9045270 -0.16311165
                                                                      2
                                                             CU0024
## 6 0.7742141 -1.9016804 -1.2662060 3.38649196
                                                             CU0027
                                                                      2
```

Apply k-means to cluster the pcs

k = 2

km_pca = kmeans(pca_data[,1:4], 2, nstart = 25)

The VI value:

vi(cbind(pca_data\$trt, km_pca\$cluster))

[1] 1.370982

kable(cluster_summary_table(km_pca,pca_data))

	cluster 1	cluster 2	Total
Drug	31	45	76
Placebo	31	43	74
Total	62	88	150

cluster_score_plot2(km_pca,pca_data)

cluster 1 score plot

0 2 4 6 8 week

cluster 2 score plot

k = 4

km_pca = kmeans(pca_data[,1:4], 4, nstart = 25)

The VI value:

vi(cbind(pca_data\$trt, km_pca\$cluster))

[1] 2.036596

kable(cluster_summary_table(km_pca,pca_data))

	cluster 1	cluster 2	cluster 3	cluster 4	Total
Drug	11	20	25	20	76
Placebo	15	13	25	21	74
Total	26	33	50	41	150

cluster_score_plot2(km_pca,pca_data)

cluster 1 score plot

0 2 4 6 8 week

cluster 2 score plot

cluster 3 score plot

cluster 4 score plot

