Deducción de las fórmulas de Black-Scholes mediante valor esperado del pago futuro *

Alexis Sánchez Tello de Meneses 4 Septiembre 2014

1 Abstract

Se desarrollará a partir del modelo de evolución log-normal para un subyacente, las fórmulas de Black-Scholes para el precio de opciones plain vanilla (call/put) europeas, as mismo, mediante derivación directa de las fórmulas con respecto a sus parámetros obtendremos las griegas más representativas.

2 Modelo *log-normal* del subyacente.

Se asume que la evolución del precio del subyacente (precio de una de acción en el mercado de renta variable), S, es un proceso estocástico continuo y log-normal. La descripción matemática de este proceso queda recogida en la siguiente ecuación diferencial estocástica.

$$dS_t = \mu S_t dt + \sigma S_t dW_t \tag{1}$$

Aquí, dS_t es $S_{t+dt} - S_t$. La deriva del proceso sería μ , que coincidirá con el tipo de interés continuo y anual libre de riesgo de la cuenta bancaria, escogiéndose esta como numerario, para que el proceso del logaritmo del subyacente sea una martingala. La volatilidad anualizada del subyacente será σ , siendo dW_t un salto gaussiano de media cero y desviación tíca \sqrt{dt} .

Si incorporamos a (1) los pagos de dividendo, de manera continua, con una tasa anual δ , el subyacente, al pasar del valor S_t en t al valor S_{t+dt} en t+dt, disminuye su valor en la cuantía δS_t , que es justamente el dividendo que se acaba de repartir. La ecuación (1) corregida con el pago de dividendos, quedaría de la forma:

$$dS_t = \mu S_t dt - \underbrace{\delta S_t dt}_{dividendo} + \sigma S_t dW_t \tag{2}$$

^{*} LATEX