Problema 25. Sigui A un anell commutatiu.

(a) Demostreu que $A - A^*$ (el conjunt complementari de les unitats) és un ideal si, i només si, A té un únic ideal maximal.

Solució. \Longrightarrow Vegem que si $A-A^*$ és un ideal, aleshores $A-A^*$ és l'únic ideal maximal. Suposem que $A-A^*$ és un ideal i que no és maximal; aleshores existeix $x \in A-A^*$ tal que

$$A - A^* \subseteq A - A^* + (x) \subseteq A$$
.

Observem que, si $x \notin A - A^*$ aleshores $x \in A^*$. Ja hem vist que si $I \subset A$ és un ideal, si existeix $u \in A^*$, $u \in I \Rightarrow I = A$; per tant, com que hem vist que $x \in A^*$ i tenim un ideal que conté $(A - A^* + (x)) \Rightarrow A - A^* + (x) = A$. Arribem doncs a una contradicció. Fins aquí, hem demostrat que $A - A^*$ és maximal. Falta veure que és l'únic. Suposem que existeix un ideal maximal B tal que $B \neq A - A^*$. Pel fet de ser maximal, no existeix u tal que $u \in A^*$ i $u \in B$. Com que B és un ideal maximal, només pot contenir elements no-unitats; o sigui, si $x \in B$, llavors x no és unitat, de manera que $x \in A - A^*$. Això demostra que $B \subseteq A - A^*$ i, si B és maximal, $B = A - A^*$. Arribem doncs a una contradicció.

Finalment, doncs, si $A - A^*$ és un ideal aleshores $A - A^*$ és l'únic ideal maximal. Wegem que si M és l'únic ideal maximal de A, aleshores $A - A^*$ és un ideal.

Vegem que $M = A - A^*$, demostrem les dues inclusions:

 \subseteq Ja hem vist que per a tot $I \neq A \Rightarrow I \cap A^* = \emptyset$, per tant, sent M un ideal ha d'estar contingut en el complementari de les unitats $A - A^*$. Hem vist doncs que $M \subseteq A - A^*$.

 \supseteq Si $a \in A - A^* \Rightarrow a \in M$, ja que suposem que M és l'únic ideal maximal i tot element no invertible està en algun ideal maximal. Aleshores $A - A^* \subseteq M$.

(b) Demostreu que A té un únic ideal primer si, i només si, tot element de A és invertible o nilpotent.

Solució. \Longrightarrow Si A té un únic ideal primer \Rightarrow tot element de A és invertible o nilpotent. Sabem que si I és ideal maximal $\Rightarrow I$ és ideal primer.

Altrament, l'ideal dels element nilpotents $(\eta(A)) = \bigcap P$, on P són els primers de A.

Si només tenim un ideal P primer aleshores tenim un ideal maximal P i, per tant,

 $P = A - A^*$. D'altra banda, ja hem vist que $\eta(A) = \bigcap P = P$ que són nilpotents, per tant, la resta d'elements de A estan continguts a A^* (invertibles).

 $(P \text{ és un ideal primer de } A) \Rightarrow a \in \eta(A) \subset (p \cap q) \Rightarrow a \in q$; per tant $p \subseteq q$.

Anàlogament es demostra que $q \subseteq p$; d'on p = q.

Queda demostrat doncs que A té un únic ideal primer.