1 Incompressible Navier Stokes Equation

1.1 Problem/Strong Form

We want to find

$$(u,p): \Omega \times (0,T) \to \mathbb{R}^d \times \mathbb{R}$$

where u is unknown velocity and p is unknown pressure such that

$$\begin{cases}
\frac{\partial u}{\partial t} + (u \cdot \nabla)u - \nu \triangle u + \nabla p = f & \text{in } \Omega \times (0, T) \\
\nabla \cdot u = 0 & \text{in } \Omega \times (0, T) \\
u = 0 & \text{on } \partial \Omega \times (0, T) \\
u = u^{0} & \text{in } \Omega, \text{ at } t = 0
\end{cases} \tag{1}$$

where $f: \Omega \times (0,T) \to \mathbb{R}^d$ and $u^0: \Omega \to \mathbb{R}^d$ are given functions, $\nu > 0$ is a viscosity.

1.2 Weak Form

The weak formulation for equation (1) is shown below. We want to find $\{(u,p)(t) \in V \times Q; t \in (0.T)\}$ such that for $t \in (0,T)$

$$\begin{cases} \left(\frac{\partial u}{\partial t} + (u \cdot \nabla)u, v\right) + a(u, v) + b(v, p) + b(u, q) = (f, v) &, \forall (v, q) \in V \times Q \\ u = u^0 &, t = 0 \end{cases}$$
(2)

where

$$a(u,v) = \nu \int_{\Omega} \nabla u : \nabla v \, dx$$

$$b(v,q) = -\int_{\Omega} (\nabla \cdot v) q \, dx$$

$$V = H_0^1(\Omega, \mathbb{R}^d) = H_0^1(\Omega)^d$$

$$Q = \{ q \in L^2(\Omega); \int_{\Omega} q \, dx = 0 \}.$$

1.3 Discretization

Before applying to FreeFEM++, we need to discritize $\frac{\partial u}{\partial t} + (u \cdot \nabla)u_i$ part, where dt as time increment

• Using convect and first order time discretization, we obtain

$$\frac{\partial u_i}{\partial t} + (u \cdot \nabla)u_i = \frac{u_i^n - u_i^{n-1}(X(u^{n-1}, dt))}{dt}$$

1.4 Error estimate

To estimate the error in 2D, we use L_2 -norm

$$\begin{split} E(h,dt) &= \|u_h^n - u^n\|_{L^{\infty}(L^2)} \\ &= \max \|u_h^n - u^n\|_{L^2(\Omega)}^2 \\ &= \max \{\|u_{h_1}^n - u_1^n\|_{L^2(\Omega)}^2 + \|u_{h_2}^n - u_2^n\|_{L^2(\Omega)}^2\}^{1/2} \\ &= \max \{\int_{\Omega} (u_{h_1}^n - u_1^n)^2 \ dx + \int_{\Omega} (u_{h_2}^n - u_2^n)^2 \ dx\}^{1/2} \end{split}$$

To estimate the error in 3D, we use

$$\begin{split} E(h,dt) &= \|u_h^n - u^n\|_{L^{\infty}(L^2)} \\ &= \max \|u_h^n - u^n\| \\ &= \max \{\|u_{h_1}^n - u_1^n\|_{L^2(\Omega)}^2 + \|u_{h_2}^n - u_2^n\|_{L^2(\Omega)}^2 + \|u_{h_3}^n - u_3^n\|_{L^2(\Omega)}^2\}^{1/2} \\ &= \max \{\int_{\Omega} (u_{h_1}^n - u_1^n)^2 dx + \int_{\Omega} (u_{h_2}^n - u_2^n)^2 dx + \int_{\Omega} (u_{h_3}^n - u_3^n)^2 dx\}^{1/2} \end{split}$$

To estimate the error, we also use H-norm

$$E(h, dt) = \|u_h^n - u^n\|_{L^{\infty}(H^1)} = \max \sqrt{\|u_{h_1}^n - u_1^n\|_{L^2(\Omega)}^2 + \|\nabla(u_{h_1}^n - u_1^n)\|_{L^2(\Omega)}^2}$$

1.5 2D Simulation

Below, is the exact solution to check if the program for 2D is working.

$$u = (u_1, u_2)$$

$$u_1 = -\cos(x_1)\sin(x_2)e^{-4t}$$

$$u_2 = -\sin(x_1)\cos(x_2)e^{-4t}$$

$$p = \frac{1}{4}(\cos(2x_1) + \cos(2x_2))e^{-4t}$$

such that equation (1) is satisfied with $f = (f_1, f_2)$. With $f_1 = -e^{-4t} sin(2x_1)$ and $f_2 = -e^{-4t} sin(2x_2)$. with the error estimate:

0.01000 error for 2D Navier-Stokes error 2D by scheme 0 error 2D by convect x/100 x*x/10 0.00100 0.00010 0.00001

Figure 1:

As we can see, the error using convect is slightly better than scheme 0. By the graphic, we have O(h).

1.6 3D Simulation

Below, is the exact solution to check if the program 3D is working.

$$u = (u_1, u_2, u_3)$$

$$u_1 = -\cos(x_1)\sin(x_2)\cos(x_3)e^{-2t}$$

$$u_2 = -\sin(x_1)\cos(x_2)\cos(x_3)e^{-2t}$$

$$u_3 = 0$$

$$p = \frac{1}{4}e^{-4t}(\cos(2x_1) + \cos(2x_2) + \cos(2x_3))$$

such that equation (1) is satisfied with $f = (f_1, f_2, f_3)$. With $f_1 = -\cos(x_1)\sin(x_2)\cos(x_3)e^{-2t}$, $f_2 = -\sin(x_1)\cos(x_2)\cos(x_3)e^{-2t}$, and $f_3 = -(\frac{1}{4})e^{-4t}\sin(2x_3)(2\cos(2x_3) + 1)$

With the error estimate 1st order using scheme 0 and 2nd order using Adam-Bashforth

Plot of L2 and H1 error for 3D Navier-Stokes

Figure 2:

Below is the FreeFEM++ code used to solve the problem above with the discritization of time using scheme 0 with convect term :

```
load "iovtk"
load "msh3"
// Variable declaration
real nu = 1.0;
real delta = 1.0;
real error, Herror;
real errormax = 0, Herrormax = 0;
real t=0;
func \operatorname{exactu1} = -\cos(x) * \sin(y) * \cos(z) * \exp(-2 * t);
func \ exactu2 = \sin(x) * \cos(y) * \cos(z) * \exp(-2*t);
func exactu3 = 0.;
func dx1 = \sin(x) * \sin(y) * \cos(z) * \exp(-2*t);
func dy2 = \sin(x)*(-\sin(y))*\cos(z)*\exp(-2*t);
func dz3 = 0.;
func f1 = -\cos(x) * \sin(y) * \cos(z) * \exp(-2*t);
func f2 = \sin(x) * \cos(y) * \cos(z) * \exp(-2*t);
func f3 = (-\exp(-4*t)/4)*\sin(2*z)*(2*\cos(2*z)+1);
int[int] rup = [0,1], rdown = [0,1], rmid = [1,1,2,1,3,1,4,1];
real zmin=0, zmax=1;
ofstream ff("1error_3D.txt");
ofstream hh("1error_H.txt");
//iteration for each mesh devider
for (int n=24; n>=4; n=n-4)
real dt = 1./n; //take dt=h
// Create the mesh
mesh Th2=square(n,n);
mesh3 Th=buildlayers (Th2, n,
zbound=[zmin,zmax], labelmid=rmid, reffaceup = rup, reffacelow = rdown);
plot ( Th, ps = "NS_3D_mesh_1.ps" );
fespace Uh(Th, [P1, P1, P1, P1]);
fespace Vh(Th, P13d);
macro Grad(u) [dx(u), dy(u), dz(u)]// EOM
macro div(u1, u2, u3) (dx(u1)+dy(u2)+dz(u3)) //EOM
macro L2norm(Th, u, exactu) (int3d(Th)(square(u-exactu))) //EOM
Uh [u1, u2, u3, p];
Uh [v1, v2, v3, q];
Vh u1old, u2old, u3old;
problem navierstokes ([u1, u2, u3, p], [v1, v2, v3, q]) =
int 3d \, (Th) \  \, \left(u1*v1/dt \, \right) \, - \, int 3d \, (Th) \  \, \left(convect \, \left( \, [\,u1old \, , u2old \, , u3old \, ] \, , (\, -\, dt \, ) \, , u1old \, \right) *v1/dt \, \right)
+ int3d (Th) (u2*v2/dt) - int3d (Th) (convect([u1old, u2old, u3old], (-dt), u2old)*v2/dt)
+ int3d (Th) (u3*v3/dt) - int3d (Th) (convect([u1old, u2old, u3old], (-dt), u3old)*v3/dt)
+ int3d(Th, qforder=3)(Grad(u1)'*Grad(v1) + Grad(u2)'*Grad(v2) + Grad(u3)'*Grad(v3) //)'
- \operatorname{div}(u1, u2, u3)*q - \operatorname{div}(v1, v2, v3)*p)
-\inf 3d (Th) ((f1*v1) + (f2*v2) + (f3*v3))
- int3d(Th) (delta* hTriangle * hTriangle * Grad(q)) '*Grad(q))
+ \text{ on} (1, u1=\text{exactu1}, u2=\text{exactu2}, u3=\text{exactu3}) ;
u1old = -\cos(x) * \sin(y) * \cos(z) ;
u2old = \sin(x) * \cos(y) * \cos(z) ;
u3old = 0;
for ( int it = 1; it \leq n; it++)
```

```
t=it*dt;
 navierstokes;
 error = sqrt( L2norm(Th,u1,exactu1) + L2norm(Th,u2,exactu2) + L2norm(Th,u3,exactu3));
Herror = sqrt(square(error) + L2norm(Th, dx(u1), dx1) + L2norm(Th, dy(u2), dy2) + L2norm(Th, dx(u1), dx1) + L2norm(Th, dx(u2), dy2) + L2norm(Th, dx(u1), dx1) + L2norm(Th, dx(u1), dx1) + L2norm(Th, dx(u2), dx2) + L2norm(Th, dx(u3), dx3) + L2norm(Th, d
 if (error > errormax) errormax = error ;
 if (Herror > Herrormax) Herrormax = Herror;
if (n==24)
 plot ( Th, [u1, u2, u3], nbiso = 60, fill = 0, value = 1, wait = 0);
savevtk("NS_3D_1_plot"+n+"_"+it+".vtk",Th,[u1,u2,u3],p,dataname="NavSto");
 plot (p, nbiso = 60, fill = 0, value = 1, wait = 0);
}
u1old = u1; u2old=u2; u3old=u3;
cout << ">>>>>MESH>>>> " << n << " executed \setminusn" ;
errormax = 0;
}
//
             Terminate.
//
cout << "\n";
cout << "NAVIERSTOKES:\n";
cout << "Normal end of execution.\n";</pre>
```

We also try to use discretization of time using Adam-Bashfoth with convect term, the code is:

```
load "iovtk"
load "msh3"
// Variable declaration
real nu = 1.0;
real delta = 1.0;
real error, Herror;
real errormax = 0, Herrormax = 0;
real t=0;
func \operatorname{exactu1} = -\cos(x) * \sin(y) * \cos(z) * \exp(-2 * t);
func \operatorname{exactu2} = \sin(x) * \cos(y) * \cos(z) * \exp(-2 * t);
func exactu3 = 0.;
func dx1 = \sin(x)*\sin(y)*\cos(z)*\exp(-2*t);
func dy2 = \sin(x)*(-\sin(y))*\cos(z)*\exp(-2*t);
func dz3 = 0.;
func f1 = -\cos(x) * \sin(y) * \cos(z) * \exp(-2*t);
func f2 = \sin(x) * \cos(y) * \cos(z) * \exp(-2*t);
func f3 = (-\exp(-4*t)/4)*\sin(2*z)*(2*\cos(2*z)+1);
int[int] rup = [0,1], rdown = [0,1], rmid = [1,1,2,1,3,1,4,1];
real zmin=0,zmax=1;
ofstream ff("2error_3D.txt");
ofstream hh("2error_H.txt");
//iteration for each mesh devider
for (int n=24; n>=4; n=n-4)
real dt = 1./n; //take dt=h
// Create the mesh
mesh Th2=square(n,n);
mesh3 Th=buildlayers (Th2, n,
zbound = [zmin, zmax] \;, \; \; labelmid = rmid \;, \; \; refface up \; = \; rup \;, \; \; refface low \; = \; rdown \;) \;;
plot ( Th, ps = "NS_3D_mesh_2.ps" );
fespace Uh(Th, [P1, P1, P1, P1]);
fespace Vh(Th, P13d);
macro Grad(u) [dx(u), dy(u), dz(u)] // EOM
macro div(u1, u2, u3) (dx(u1)+dy(u2)+dz(u3)) //EOM
macro L2norm(Th,u,exactu) (int3d(Th)(square(u-exactu))) //EOM
Uh [u1, u2, u3, p];
Uh [v1, v2, v3, q];
Vh u1old, u2old, u3old;
Vh u1oldd, u2oldd, u3oldd;
Vh u1star, u2star, u3star;
problem navierstokesinit ([u1, u2, u3, p], [v1, v2, v3, q]) =
int3d (Th) (u1*v1/dt) - int3d (Th) (convect([u1old,u2old,u3old],(-dt),u1old)*v1/dt)
+ int3d (Th) (u2*v2/dt) - int3d (Th) (convect([u1old, u2old, u3old], (-dt), u2old)*v2/dt)
+ int3d (Th) (u3*v3/dt) - int3d (Th) (convect([u1old, u2old, u3old], (-dt), u3old)*v3/dt)
+ int3d(Th, qforder=3)(Grad(u1)'*Grad(v1) + Grad(u2)'*Grad(v2) + Grad(u3)'*Grad(v3) //)'
- \operatorname{div}(u1, u2, u3)*q - \operatorname{div}(v1, v2, v3)*p)
-\inf 3d (Th) ((f1*v1) + (f2*v2) + (f3*v3))
-\inf 3d(Th) (delta* hTriangle * hTriangle * Grad(p)'*Grad(q))
+ \text{ on} (1, u1=\text{exactu1}, u2=\text{exactu2}, u3=\text{exactu3}) ;
problem navierstokes ([u1, u2, u3, p], [v1, v2, v3, q]) =
int 3d \, (Th) \  \, (3*u1*v1/dt) \, \, - \, \, int 3d \, (Th) \  \, (\, convect \, (\, [\, u1star \, , u2star \, , u3star \, ] \, , (\, -dt \, ) \, , u1old \, )*4*v1/dt \, )
+ int3d (Th) (convect ([u1star, u2star, u3star], (-2*dt), u1oldd)*v1/dt)
+ int3d(Th) (3*u2*v2/dt) - int3d(Th) (convect([u1star,u2star,u3star],(-dt),u2old)*4*v2/dt)
```

```
+ int3d (Th) (convect ([u1star, u2star, u3star], (-2*dt), u2oldd)*v2/dt)
+ \; int3d \, (Th) \; \; (3*u3*v3/dt) \; - \; int3d \, (Th) \; \; (convect \, ([\,u1star\,, u2star\,, u3star\,], (\,-dt\,)\,, u3old\,)*4*v3/dt\,)
+ int3d (Th) (convect ([u1star, u2star, u3star], (-2*dt), u3oldd)*v3/dt)
+ \operatorname{int} 3d(\operatorname{Th}, \operatorname{qforder} = 3)(\operatorname{Grad}(\operatorname{u1}) * \operatorname{Grad}(\operatorname{v1}) + \operatorname{Grad}(\operatorname{u2}) * \operatorname{Grad}(\operatorname{v2}) + \operatorname{Grad}(\operatorname{u3}) * \operatorname{Grad}(\operatorname{v3}) / )
- \operatorname{div}(u1, u2, u3)*q - \operatorname{div}(v1, v2, v3)*p)
-\inf 3d (Th) ((f1*v1) + (f2*v2) + (f3*v3))
- int3d(Th) (delta* hTriangle * hTriangle * Grad(q))
+ \text{ on} (1, u1 = \text{exactu1}, u2 = \text{exactu2}, u3 = \text{exactu3}) ;
u1old = -\cos(x) * \sin(y) * \cos(z) ;
u2old = \sin(x)*\cos(y)*\cos(z) ;
u3old = 0;
for ( int it = 1; it \leq n; it++)
t=it*dt;
if (it == 1) { naviers to ke sinit; }
else {
navierstokes;
error = sqrt( L2norm(Th,u1,exactu1) + L2norm(Th,u2,exactu2) + L2norm(Th,u3,exactu3));
Herror = sqrt(square(error) + L2norm(Th, dx(u1), dx1) + L2norm(Th, dy(u2), dy2) + L2norm(Th, dx(u1), dx1) + L2norm(Th, dx(u2), dy2) + L2norm(Th, dx(u1), dx1) + L2norm(Th, dx(u1), dx1) + L2norm(Th, dx(u2), dx2) + L2norm(Th, dx(u1), dx1) + L2norm(Th, dx(u2), dx2) + L2norm(Th, dx(u3), dx3) + L2norm(Th, d
if (error > errormax) errormax = error;
if (Herror > Herrormax) Herrormax = Herror;
cout << "L2-error at " << t << "is " << error << "max = " << errormax << "\n" ;
cout << "H1-error at " << t << "is " << Herror << "max = " << Herrormax << "\n";
if (n==24){
plot (Th, [u1, u2, u3], nbiso = 60, fill = 0, value = 1, wait = 0);
savevtk ("NS_3D_2_plot"+n+"_"+it+".vtk",Th,[u1,u2,u3],p,dataname="NavSto");
plot (p, nbiso=60, fill =0, value =1, wait =0);
}
u1oldd = u1old; u2oldd = u2old; u3oldd = u3old;
u1old = u1; u2old=u2; u3old=u3;
u1star = 2*u1old-u1oldd; u2star = 2*u2old-u2oldd; u3star = 2*u3old-u3oldd;
}
ff \ll dt \ll "\t" \ll errormax \ll "\n";
hh \ll dt \ll " \ t" \ll Herrormax \ll " \ ";
cout << ">>>> MESH>>>> " << n << " executed \n" ;
errormax = 0;
}
//
         Terminate.
//
cout << "\n";
cout << "NAVIERSTOKES:\n";</pre>
cout << "Normal end of execution.\n";
```