Estimating Client Needs Business Case 2

T. Bucci, F. Cipriani, G. Corbo, D. Fabroni, M. Lucchini

Politecnico di Milano

March 31, 2022

Table of Contents

1 Data and model exploration

2 Recommending products

Goal: Recommendation System

We intend to estimate some investments needs for these customers using Data Science techniques.

Data:

Needs:

```
ID Age Gender FamilyMembers FinancialEducation RiskPropensity Income Wealth IncomeInvestment AccumulationInvestment
```

Products:

IDProduct Type Risk

No significant sex difference

Data Transformation

Figure: Comparison of transformations, we'll go with the second.

Data Transformation

Using a boxcox transformation, $NewAge = (OldAge^{0.9} - 1)/0.9$.

Data Transformation

 $\label{eq:NewFinancialEducation} NewFinancialEducation = OldFinancialEducation \\ NewRiskPropensity = OldRiskPropensity \\ \\ NewIncome = OldIncome \\ \\ \\ ^{0.3}$

Cross validation

```
nObs = size(Data, 1);
rng(10)
idxPermutation = randperm(nObs);
X = X(idxPermutation,:); % random permutation
train = 0.75 ;
cross = 0 ;

nObsTrain = round(train*nObs);
nObsCross = round(cross*nObs);

XTrain = X(1:nObsTrain,:);
XCross = X((nObsTrain+1):(nObsTrain+nObsCross), :);
XTest = X(nObsTrain+1+nObsCross:end,:);
```

Added Y permutation equal to X

```
YInc = Data.IncomeInvestment;
YInc = YInc(idxPermutation);
yInvIncTrain = YInc(1:n0bsTrain);
yInvIncCross = YInc((n0bsTrain+1):(n0bsTrain+n0bsCross));
yInvIncTest = YInc(n0bsTrain+n0bsCross+1:end);

YAcc = Data.AccumulationInvestment;
YAcc = YAcc(idxPermutation);
yInvAccTrain = YAcc(1:n0bsTrain);
yInvAccTrain = YAcc((n0bsTrain+1):(n0bsTrain+n0bsCross));
yInvAccTest = YAcc(n0bsTrain+n0bsCross+1:end);
varNames = {'Age', 'Gender', 'Family', 'FinEdu', 'Risk', 'Income', 'Wealth');
XITrainTable=table(XTrain(:,1), XTrain(:,2), XTrain(:,3), XTrain(:,4),
XTrain(:,5), XTrain(:,6), XTrain(:,7), 'VariableNames', varNames);
XTestTable=table(XTest(:,1), XTest(:,2), XTest(:,3), XTest(:,4),
XTest(:,5), XTest(:,6), XTest(:,7), 'VariableNames', varNames);
```

Classification Learner: model training

1.4 🔅 KNN Last change: Fine KNN	Accuracy: 65.7% 7/7 features
1.5 KNN Last change: Medium KNN	Accuracy: 69.8% 7/7 features
1.6 KNN Last change: Coarse KNN	Accuracy: 68.9% 7/7 features
1.7 KNN Last change: Cosine KNN	Accuracy: 69.8% 7/7 features
1.8 KNN Last change: Cubic KNN	Accuracy: 69.1% 7/7 features
1.9 KNN Last change: Weighted KNN	Accuracy: 69.7% 7/7 features
2 😭 Ensemble Last change: Boosted Trees	Accuracy: 79.4% 7/7 features
3.1	Accuracy: 79.4% 7/7 features
3.2 A Ensemble Last change: Bagged Trees	Accuracy: 76.6% 7/7 features
3.3 A Ensemble Last change: Subspace Discrim	Accuracy: 62.9% nin 7/7 features
3.4 A Ensemble Last change: Subspace KNN	Accuracy: 70.0% 7/7 features
3.5 A Ensemble Last change: RUSBoosted Trees	Accuracy: 75.0% 7/7 features

Classification Learner: Boosted Tree ROC

Classification Learner: Boosted Tree confusion matrix

Reducing data

```
Xsmall = [rescale(IncomeWealthRatio) rescale(pAge) rescale(pFin) rescale(pIncome) rescale(pWealth)];
Xsmall = Xsmall(idxPermutation;:);
XsmallTrain = Xsmall(1:nObsTrain,:);
XsmallTest = Xsmall(nObsTrain+1:end,:);
XsmallTrainTable=table(XsmallTrain(:,1), XsmallTrain(:,2), XsmallTrain(:,3),
XsmallTrain(:,4), XsmallTrain(:,5), 'VariableNames',xnames);
```

Classification Learner: model training

1.1 🏠 Ensemble Last change: Boosted Trees	Accuracy: 78.3% 5/5 features
1.2 A Ensemble Last change: Bagged Trees	Accuracy: 78.5% 5/5 features
1.3 A Ensemble Last change: Subspace Discrim	Accuracy: 65.9% nin 5/5 features
1.4 A Ensemble Last change: Subspace KNN	Accuracy: 73.4% 5/5 features
1.5 A Ensemble Last change: RUSBoosted Trees	Accuracy: 76.3% 5/5 features
2.1 ☆ Tree Last change: Fine Tree	Accuracy: 78.0% 5/5 features
2.2 Tree Last change: Medium Tree	Accuracy: 76.1% 5/5 features
2.3 Tree Last change: Coarse Tree	Accuracy: 68.0% 5/5 features
2.4 KNN Last change: Fine KNN	Accuracy: 70.5% 5/5 features

Classification Learner: Bagged Tree ROC

Classification Learner: Bagged Tree confusion matrix

Recommending products

Using Bayesian optimization we decide to use the Bagged Tree model after evaluating 30 alternatives.

Product recommendation based on Risk Propensity

