Organs on chips II

Lung on chip part of permanent exhibition on Museum of Modern Art (2015)

In the case of some of the new acquisitions included in this exhibition, the answer to that question—Is this for everyone?—is: yes, hopefully, if not now, then in the future. Before design objects, whether physical or digital, debut in the world, they undergo intensive prototyping. Even when they are conceptual, speculative, and not immediately viable, most design experiments are created to prompt dialogue and to anticipate concrete needs, problems, or conditions—in other words, to actively support a greater good to come.

Esoteric or specialized, perhaps, but universally remarkable in their balance of form, function, and vision, investigations like the Wyss Institute's Human Organs—or-Chips demonstrate new, radical intersections of synthetic biology and design. The Wyss Institute at

Donald Elliot Ingber, Dan Dongeun Huh, Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston Children's Hospital. Human Organs-on-Chips (Lung-on-Chip). 2008. Silicon rubber. The Museum of Modern Art, New York. Gift of the designers, 2015

Understanding physiology in a historic POV

Small approaches to biomedicine

Organs that have been partially recreated in vitro using human cells

Liver

Lung

Intestines

Lymphoid system

Blood Brain Barrier

Heart

Tumors

Uterus

Kidney

Bone marrow

Skin

Glands

Brain

The Liver

Fig. 1 Overview of the microtechnologies for liver study and their applications.

DOI: 10.1039/C5LC00611B

The Liver

Why create liver?

Impossible to predict MoA and AOP from mono cell cultures.

The Liver

The liver microachitecture

Fig. 1 the zonation at blobule level — architecture defines functionality, respondiand perivenous zonal specialisation of hepatocyte activity is enabled by a opphistizated architecture of the level to blobe. He smallest functional unit of the level. A stable ongoing gradient is ensured by a dynamic arrangement of blood flow from the outer surface to the centre of the lobule (red arrow), whilst a reverse let flow to take space in segregated ble canalized (green arrow and drameds). The space of Disse, generated by tight interactions between level cells (brownish) and endothelial sinusoids (blue), accounts for efficient substance uptake, its cells (yellow) an responsible for markin formation and remodelling in the space of Disse.

The Liver

Creating patterned cocultures

Colcultures keep hepatocytes happy

Model for Hepatitis C virus (HCV) Drug metabolism Toxicity screening

Bhatia N et al

The Liver

Mimicking the sinusiodal architecture

Dielectrophoresis-based patterning of a heterogeneous, lobule-mimetic, radial pattern model of hepatocytes and endothelial cells.

The Liver

3D solutions

Examples The lung

A breathing lung on a chip

Reconstituting Organ-Level Lung Functions on a Chip Huh D et al. Science 25 June 2010: Vol. 328 no. 5986 pp. 1662-1668 DOI: 10.1126/science.1188302

Examples The lung

The model one step closer to reality

Stretching increased

DOI: 10.1126/science.1188302

Examples

Stretching increases nanoparticle translocation

https://www.youtube.com/watch?v=UDX7aG mYYRQ

Examples The lymph node

Own research: Lymph node-on-a-chip

Recreating lymph-node functionalities in the lab

- Shaping immunological memory
- Test vaccine efficiencies
- *In vitro* vaccination

APC: T cell interaction process in lymph node

The lymph node

Lymphnodes

(immunotherapy of infectious diseases and cancer)

T cell priming in lymphnode: Naïve T cells serially interact with dendritic cells and stromal cells. Cell:cell contact is the key!

Fig

Lymphnode-on-a-chip

612

Patricia Rosa, IKM/NanoLab

Øyvind Halaas, IKM

The lymph node

The lymph node

The principle

The data

There is an antigen-specific shear-stress- and time-dependent adhesion of T cells to dendritic cells

The GI tract

The gastrointestinal tract

Muscle layers Circular folds Nutrient absorption Nutrient absorption

9m long, 30m^2 area, persitaltic movement Barrier for microbes, sites of nutrition Diseases (inflammatory bowel diseases, cancer, obesity, drug absorption)

Examples The GI tract

Gut in a dish (today's state of the art)

Adsorption through intestinal epithelium in Transwell® assay

ADME (Adsorption, Distribution, Metabolization, Excretion for drug development)

The GI tract

Table 2. In vitro culture models of the small intestine: cellular composition and relevant applications

Cells	Application	Unique characteristics	Significant results	Refs
Caco-2 and HT29-MTX	Predicting iron bioavailability	Incorporated goblet cells that secrete mucus	Co-cultures of Caco-2 and HT29-MTX cells exhibited lower ferritin than Caco-2 monolayers	[62]
Caco-2 and HT29-MTX	Mercury transport	Incorporated goblet cells that secrete mucus	Introduction of HT29-MTX cells increased the permeability of the transport marker Lucifer Yellow	[63]
Caco-2	Drug permeability	Used collagen hydrogel with authentic size and shape of intestinal villi	3D models utilizing collagen hydrogels had similar TEER values to rat ileum (\sim 50 Ω /cm ²)	[64]
Caco-2, HT-29, and T84	Inflamed intestinal mucosa model	Addition of proinflammatory stimuli and incorporation of macrophages and dendritic cells	Caco-2 cells exhibited increased expression and release of IL-8, whereas HT-29 and T84 showed no response to the stimuli	[16]
Caco-2	Body-on-a-chip device	Microfabrication of villi using photoresist on silicon substrates	Complete Caco-2 cell coverage on SU-8 membranes and tight junction proteins expression throughout the cell layer	[67]
Caco-2	Drug permeability	Microfluidic device with suspended Caco-2 cells	Ten drugs with a wide range of permeabilities were tested. Close correlation to <i>in vivo</i> data was observed	[74]
Caco-2	Gut-on-a-chip	Microfluidic device with peristalsis-like motions	Physiological fluid flow and shear stress across apical surface accelerated cell differentiation compared to static cultures. TEER values of the organ on a chip were threefold to fourfold higher than static cultures	[17]
Caco-2 and hMVECs	Nutrition and drug absorption	Co-culture environment in a dynamic bioreactor system	Cells in 3D perfusion system differentiated and proliferated faster than static cultures	[13]
Caco-2, MEFs and HT29-MTX	Drug absorption	3D co-culture system with MEF- embedded collagen extracellular matrix	Immunostaining of ZO-1 and P- glycoprotein tight junction proteins showed lower expression in 3D co-cultures than 2D Caco-2 monocultures	[82]

http://dx.doi.org/10.1016/j.tibtech.2014.04.006

Capture and 3D culturing of individual villi

The GI tract

DOI: 10.1039/c3lc51353

Examples The GI tract

Human intenstinal villi tissue model

Fabrication strategy

Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model Jong Hwan Sung et al Lab Chip, 2011,11, 389-392 DOI: 10.1039/C0LC00273A

The GI tract Differential adhesion of probiotic/pathogenic bacteria to crypt/villi

The GI tract

Figure 1. Overview of the insert ki (a) schematic of the insert design fill (by text result of the insert, an O-ring vest used to completely seal the vision insert which the column and any other control of the insert of the insert. In O-ring vest used to completely seal the vision insert which the column and any other completes and the byte will not be completely in the column and the complete and the byte will not be completely in the column and the complete and the byte will not be completely into the column and the column

DOI 10.1002/bit.24518

The microenvironment in the gut

The GI tract

The GI tract

Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow

DOI: 10.1039/C2LC40074J

The GI tract

Adding mechanical stress improves model

Examples The GI tract

Fabrication strategy, gut-on-a-chip

(see example from lung-on-a-chip)

Next challenges: add 2D stretching behaviour (how about true peristalsis?)

Tumor-on-a-chip

Tumor

Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment Edmond W. K. Young*a Integr. Biol., 2013,5, 1096-1109 DOI: 10.1039/C3IB40076J

Table 1. Examples of 3D Tumor Models

Tumor Model	Description	Advantages	Disadvantages
Multicellular spheroid ^{91,159,163} –171,188,189	Somewhat spherical cell aggregate are formed spontaneously in dishes or by culturing on treated substrates	Works for a variety of normal and tumor cell lines Mimics tumor heterogeneity Can be supplemented with sandwich cultures for additional analyses	Difficult to control growth Does not account for blood-vessel barrier to nutrients
Hollow fiber ^{158,193}	Cells are seeded into hollow fibers (often made of polyvinylidine fluoride (PVDF)) to form solid masses	Works for a variety of cell lines Mimics tumor heterogeneity Cells cultured in biocompatible fibers can be implanted into mice for in vivo studies as well	Fiber wall constrains culture growth Fiber wall presents artificial barrier that excludes application to gene therapy studies
Multicellular layer (MCL) ^{194–200}	Cells are seeded onto semi-permeable support membrane often coated with collagen and multiple layers (often as much as 20) accumulate in culture	Planar geometry enables direct flux measurements Mimics tumor heterogeneity Growth can be reasonably controlled Can be used for some cells incapable of growing spheroids	Does not account for blood-vessel barrier to nutrients

Tumor on a chip – interaction with immune system and liver

The Blood Brain Barrier

BBB

Understanding:

- Drug delivery

 The BBB stops

 98-100% of drugs
- Brain tumors
- Degenerative diseases

 $https://www.youtube.com/watch?v=v_mBLzYf\\91U\#t=109$

BBB

The original setup Transwell assays

Cells seeded in monolayer on a permaebale membrane

Transport of drug molecules and electrophysiology through the monolayer

Multicellular setups

BBB-on-a-chip

BBB

Fig. 2 Structure and design of the developed μBBB. (A) The μBBB system comprises two perpendicular flow channels. (B) The fully fabricated μBBB chip. (C) Close-up view. Channels model the lumenal (blue) and ablumenal (red) sides of the neurovascular unit. Endothelial cells and astrocytes are respectively cultured on the lumenal and ablumenal sides of the enclosed porous membrane. Channel heights are 200 μm, and channel widths are 2mm (tumen) and 5mm (albumen).

DOI: 10.1039/c2lc40094d

BBB

A comparison reveal that dynamic co-cultures are better

Fig. 7 Steady-state TEER levels of each base condition. Dynamic cultures reached significantly higher TEER levels than static cultures. For both systems, co-cultures developed higher TEER levels than endothelial monolayers alone.

Examples The heart

Heart on a chip

Standardization of myocytes on chip

- Contractility
- Action potential propagation
- Cytoskeletal architecture
- Real time monitoring

Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Grosberg A et al, Lab Chip. 2011 Dec 21;11(24):4165-73. Epub 2011 Nov 10.

Examples The heart

Application of the heart on chip

Epinephrine response is in accordance with expectations

Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Grosberg A et al, Lab Chip. 2011 Dec 21;11(24):4165-73. Epub 2011 Nov 10.

Beyond state of the art

Human-on-a-chip

Huh et al. 2011. From 3D cell culture to organs-onchips. *Trends in Cell Biology*, 21, 745-754.

Integration

Scaling and systems biology for integrating multiple organs-on-a-chip John P. Wikswo, Erica L. Curtis, Zachary E. Eagleton, Brian C. Evans, Ayeeshik Kole, Lucas H. Hofmeister and William J. Matloff

Lab Chip, 2013, 13, 3496-3511 DOI: 10.1039/C3LC50243K From themed collection Lab-on-a-Chip: 2013

Fig. 2 The mHu Advanced Tissue-engineered Human Ectypal Network Analyzer (ATHENA), a milliHuman (Homo chippus) being developed by Los Alamos National Lab, Vanderbilt University, Charité Universitatsmedizin Berlin, University of California-San Francisco, Harvard University, and CFD Research Corporation with the support of the Defense Threat Reduction Agency (DTRA).²³ Figure from Wikswo et al., 2013, with permission.¹

Internal scaling of body components

Table 1 Allometric scaling coefficients and organ masses for a Hu, mHu, and μHu based upon primate data. Coefficients from Stahl, 1965¹²

Organ	A	Body mass:	Huma	Human milliHuman (mHu)		microHuman (μHu) 60 mg		Organ mass ratios		
			60 kg		60 g					
			<i>M</i> , g	Organ/Body	<i>M</i> , g	Organ/Body	M, mg	Organ/Body	M_{mHu}/M_{Hu}	$M_{\mu H u}/M_{H u}$
Liver	33.2	0.93	1496	2.5%	2.4	4.0%	3.9	6.6%	1.62E-03	2.63E-06
Brain	85	0.66^{a}	1268	2.1%	13	22%	139	232%	1.05E-02	1.10E-04
Lungs	9.7	0.94	455	0.76%	0.69	1.2%	1.0	1.7%	1.51E-03	2.29E-06
Heart	5.2	0.97	276	0.46%	0.34	0.57%	0.42	0.70%	1.23E-03	1.51E-06
Kidneys	6.3	0.87	222	0.37%	0.54	0.91%	1.3	2.2%	2.45E-03	6.03E-06
Pancreas	2.0	0.91	83	0.14%	0.15	0.26%	0.29	0.48%	1.86E-03	3.47E-06
Spleen	1.5	0.85	49	0.081%	0.14	0.23%	0.39	0.64%	2.82E-03	7.94E-06
Thyroid	0.15	1.12	15	0.025%	0.0064	0.01%	0.0028	0.0047%	4.37E-04	1.91E-07
Adrenals	0.53	0.7	9.3	0.016%	0.07	0.12%	0.59	0.98%	7.94E-03	6.31E-05
Pituitary	0.03		0.49	0.00081%	0.0044	0.0074%	0.040	0.067%	9.12E-03	8.32E-05

 $[^]a$ Coefficients for human brain scaling: 80–90. The corresponding number for monkeys is 20–30, and great apes 30–40.

Scaling and systems biology for integrating multiple organs-on-a-chip John P. Wikswo, Erica L. Curtis, Zachary E. Eagleton, Brian C. Evans, Ayeeshik Kole, Lucas H. Hofmeister and William J. Matloff

Lab Chip, 2013, 13, 3496-3511 DOI: 10.1039/C3LC50243K From themed collection Lab-on-a-Chip: 2013

Scaling of organ function is non-linear

Fig. 1 How allometric scaling might (mis)inform mHu and µHu scaling when known power laws¹² are used to extrapolate from humans. A) Organ mass in grams. B The mass of each organ relative to that for a 1.0 Hu. Note the range in allometric slopes for different organs, and that a 10° reduction in body mass leads to only a 10° and the standard organ relative to the standa

When integrating organs on a milli/micro-scale, different organs are given different weights

Beyond state of the art

Integrated microtechnologies for development of next generation nanopharmaceuticals

Microfluidic technologies for accelerating the clinical translation of nanoparticles. Pedro M. Valencia et al Nature Nanotechnology 7, 623–629 (2012) doi:10.1038/nnano.2012.168 Beyond state of the art

A 3D bioprinter /plotter

Beyond state of the art

3D cell scaffolds – on a chip

Summary and conclusions

A wide range of nanotechnologies available at NTNU NanoLab

A wide range of biotechnology know-how at NTNU

A wide range of biomedical questions and tools available at NTNU/StOlavs $\overset{-}{\ \ }$

Opportunities for integrated and excellent science for better health

Pensum papers

<u>Organs-on-chips at the frontiers of drug</u> <u>discovery</u>

Eric W. Esch, Anthony Bahinski, Dongeun Huh Nat Rev Drug Discov. . 2015 Apr; 14(4): 248– 260. .doi: 10.1038/nrd4539

Microfluidic 3D cell culture: from tools to tissue models.

van Duinen V, **Trietsch** SJ, Joore J, Vulto P, Hankemeier T. Curr Opin Biotechnol. 2015 Dec;35:118-26. doi: 10.1016/j.copbio.2015.05.002.