

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA

ES879 – SISTEMAS DE AQUISIÇÃO DE DADOS

AULA 1 – Introdução, Cronograma e Motivação

Prof. Tiago Henrique Machado

tiagomh@fem.unicamp.br

Bloco FE2 – Laboratório de Máquinas Rotativas (LAMAR)

Campinas, 2º semestre de 2019

Programa do Curso

Sistema de Aquisição de Dados – Parte 1

- ✓ Definições Iniciais: características dos sinais, conceito de frequência para tempo contínuo e discreto, amostragem e teorema da amostragem;
- ✓ Processamento Analógico e Digital de Sinais: conversões, números binários e quantização;
- ✓ Filtros Analógicos: transformação analógico-digital, filtros butterworth e chebyshev;
- ✓ Fundamentos dos Sinais Discretos: sinais importantes, propriedades, filtros FIR e IIR;

Programa do Curso

Sistema de Aquisição de Dados – Parte 1

- ✓ Equações a Diferenças: soluções e seus comportamentos e regiões de estabilidade;
- ✓ Análise em Frequência: série de Fourier, transformada de Fourier, função de transferência e resposta em frequência, teorema da amostragem do ponto de vista frequencial e relações entre domínio do tempo e da frequência.

Programa do Curso

Sistema de Aquisição de Dados – Parte 2

- ✓ Transformada Discreta de Fourier;
- ✓ Projeto de Filtros FIR;
- ✓ Transformada Z;
- ✓ Função de Transferência Discreta;
- ✓ Filtros Digitais IRR;
- ✓ Implementação de Filtros Digitais.

Cronograma do Curso

Semana	Dia/Mês	Conteúdo
1	01/08	Introdução à Disciplina
2	06/08	Sinais e Sistemas
3	08/08	Processamento Analógico e Digital de Sinais
4	13/08	Filtros Analógicos
5	15/08	Filtros Analógicos
6	20/08	Sinais e Sistemas Discretos
7	22/08	Equações a Diferenças
8	27/08	Equações a Diferenças
9	29/08	Exercícios
10	03/09	Exercícios
11	17/09	Análise em Frequência
12	19/09	Análise em Frequência
13	24/09	Análise em Frequência
14	26/09	Revisão da Disciplina e Exercícios
15	01/10	Primeira Avaliação
16	03/10	Transformada Discreta de Fourier
17	08/10	Projetos de Filtros FIR
18	10/10	Projetos de Filtros FIR
19	15/10	Transformada Z
20	17/10	Transformada Z
21	22/10	Exercícios
22	24/10	Função de Transferência Discreta
23	29/10	Filtros Digitais IIR
24	31/10	Filtros Digitais IIR
25	05/11	Implementação de Filtros Digitais
26	07/11	Exercícios
27	12/11	Comentários sobre a Transformada Rápida
		de Fourier
28	14/11	Exercícios
29	19/11	Revisão da Disciplina
30	21/11	Entrega Projeto Final

Bibliografia e Atendimento Extra-classe

Bibliografia Básica:

- Notas de aula e Apostila (Postadas no GoogleCass)
- Proakis J.G., Manolakis D.G.: Digital Signal Processing Algorithms and Aplications.

Bibliografia Complementar:

- Ludeman L.C.: Fundamentals of Digital Signal Processing.
- Oppenheim A.V. Digital Signal Processing.

Atendimento Extraclasse:

• Com o Professor – Agendar horário por e-mail (tiagomh@fem.unicamp.br)

Critério de Avaliação - Parte 1

Teste:

• Será realizado um teste ao longo da primeira parte da disciplina, em data a ser definida e avisada com uma aula de antecedência aos alunos.

Prova:

• Será realizada uma prova ao final da primeira parte contemplando todo o conteúdo visto nesta parte.

Média Parte 1:

 $\mathbf{M}_1 = (0.25x\text{Teste} + 0.75x\text{Prova})$

Data da Prova:

Prova 1 - 01/10/2019

Critério de Avaliação - Parte 2

Projeto:

• Será proposto um projeto final para a disciplina a ser entregue no último dia de aula. O projeto será individual e disponibilizado com 15 dias de antecedência da data de entrega.

Média Parte 2:

 $M_2 = Projeto$

Data de Entrega do Projeto:

21/11/2019

Média Final:

$$\mathbf{M} = (\mathbf{M}_1 + \mathbf{M}_2)/2$$

Outras Informações

- Em todas as aulas será passada lista de presença. Para aprovação na disciplina, o aluno deve ter frequência maior ou igual a 75%;
- Cada uma das partes em que a disciplina está dividida corresponderá a 50% da nota final da aluno;
- Para os alunos que forem para exame, o exame será composto de 50% de cada um dos conteúdos abordados em cada uma das partes.

- Ao se utilizar um sensor para aquisitar um determinado sinal, em geral, esse sinal não pode ser utilizado diretamente a partir da informação vinda do sensor;
- Estes sinais devem ser 'processados' antes de poder ser analisados de forma a se obter resultados passíveis de uma interpretação consistente;
- É este o tópico que abrange a disciplina de 'Sistema de Aquisição de Dados' que será apresentada neste semestre;
- Em linhas gerais, a disciplina aborda a teoria e as técnicas envolvidas em uma área conhecida como 'Processamento Digital de Sinais';

- ➤ Processamento digital de sinais é uma área da ciência e da engenharia que tem se desenvolvido rapidamente nos últimos 50 anos.
- Este rápido desenvolvimento é resultado dos significativos avanços na tecnologia de computadores digitais e na fabricação de sistemas integrados;
- ➤ Sendo assim, é extremamente importante para o Engenheiro do Século XXI o conhecimento e entendimento dos conceitos e técnicas envolvidos nessa área, sabendo diferenciar tipos de sinais, procedimentos de processamento de dados e posterior análise destes sinais.

Efeitos Curiosos de Aquisição de Dados:

Efeitos Curiosos de Aquisição de Dados:

Encerramento

Final da aula 1.

Próxima aula:

Sinais e Sistemas.

06/08/2019