Appunti di Analisi Matematica II corso della prof.ssa B.Noris Politecnico di Milano

F. Piazza G. Michieletto September 29, 2022

Chapter 1

Equazioni differenziali

1.1 Equazioni differenziali del 1° ordine

Definizione 1. Una equazione differenziale o EDO del 1° ordine è una relazione tra una funzione y e la sua derivata y' che può essere scritta come

$$y' = f(y) \tag{1.1}$$

dove f è una funzione continua su un intervallo $I \subseteq \mathbb{R}$.

Esempi:

- Tema d'esame gennaio 2021 $y' = t\sqrt{y_{(t^2)} + 1}$ è in forma normale con $f(t, s) = t\sqrt{s^2 + 1}$. Il dominio di f è $I = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.
- $y'_{(t)} = \frac{1}{t}$ con t > 0 diventa $f(t, s) = \frac{1}{t}$. Oss: f non dipende esplicitamente da s.

Il dominio di f è $\{(t,s) \in \mathbb{R}^2 : s \in \mathbb{R}, t \in \mathbb{R}^*\}$, dunque è diviso in due parti. Dovrò quindi risolvere la EDO separatamente nelle due regioni.

$$\left\{ \begin{array}{l} y'(0) = \frac{1}{t}, t > 0 \Rightarrow y(t) = \ln(t) + c \\ y'(0) = \frac{1}{t}, t < 0 \Rightarrow y(t) = \ln(-t) + c \end{array} \right.$$

Definizione 2. Si chiama integrale generale l'insieme delle soluzioni.

Definizione 3. Si chiama soluzione particolare una specifica soluzione.

Una EDO del 1° ordine ha ∞^1 , soluzioni, cioè avrà una costante arbitraria. In modo analogo, una EDO del 2° ordine avrà ∞^2 soluzioni, cioè avrà due costanti arbitrarie. Esempi:

- integrale generale ce^t con c costante arbitraria. Esempi di soluzioni particolari: e^t , $2e^t$, $-e^t$.
- $z_{(t)} = -1 + arctan(t)$ con $t \in \mathbb{R}^*$. Esempio di soluzione: $z' = 0 + \frac{1}{1+t^2}$.

Oss: La EDO $y'_{(t)} = f(t,y_{(t)})$ è definita per $(t,y) \in dom(f)$

Soluzioni costanti di EDO del 1° ordine

Definizione 4. Una soluzione costante di una EDO del 1° ordine è una funzione y(t) che sia soluzione.

Quando y(t) = c è soluzione? Sostituisco c a y:

$$y'(t) = f(t, y(t)) \forall t \tag{1.2}$$

Quindi <u>le soluzioni costanti sono</u> $y(t) = c \underline{\text{con } c \text{ tale che }} f(t, c) = 0 \forall t.$

Esempi:

- Eq. Logistica: $y'(t) = ky(t) hy^2(t)$ $f(t,y) = ky - hy^2$ $f(t,c) = 0 \forall t \quad ky - hy^2 = 0 = y(k - hy)$ Soluzioni costanti: y = 0 o $y = \frac{k}{h}$
- $y'(t) = te^{y(t)}$ $te^{y(t)} = 0$ non ha soluzione.

EDO a variabili separabili

Definizione 5. Una EDO del 1° ordine è detta a variabili se
parabili se è del tipo

$$y' = f(t) \cdot g(y(t)) \tag{1.3}$$

dove f e g sono funzioni continue su intervalli $J_1, J_2 \subseteq \mathbb{R}$.

Da integrare con gli appunti della professoressa. Lezione del 14/09/2022

5

Problema di Cauchy

Definizione 6. Data una EDO del 1° ordine $y'_{(t)} = f(t, y_{(t)})$ sia (t_0, y_0) dove la EDO è definita. Cioè $(t_0, y_0) \in dom(f)$

 $Si\ chiama$ problema di Cauchy il problema di determinare $y:I\subseteq\mathbb{R}\to\mathbb{R}$ che soddisfa:

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

Nota: il sistema ha una condizione perché è del 1° ordine. La condizione trova la soluzione particolare che passa per (t_0, y_0) .

Come si risolve?

Step:

- 1. Trova l'integrale generale. (∞^1 soluzioni dipendenti da 1 parametro)
- 2. Impongo la condizione $y(t_0) = y_0$ e la costante c
- 3. Sostituisco c in 1.

Esempi

Aggiungi Esempi

EDO 1° ordine lineari

Definizione 7. Una EDO del 1° ordine lineare in forma normale è:

$$y'_{(t)} = a(t)y_{(t)} + b(t)$$
(1.4)

dove a e b sono funzioni continue su un intervallo J di \mathbb{R} .

N.B. J è il più grande intervallo di \mathbb{R} tale che $a, b \in J$.

Definizione 8. Si chiama EDO omogenea associata

$$y'_{(t)} = a(t)y_{(t)} (1.5)$$

Esempio:

Aggiungi esempi

Principio di sovrapposizione

Sia $a: J \subseteq \mathbb{R} \to \mathbb{R}$ una funzione continua su J. L'applicazione $\mathcal{L}(y) = y' - a(t) \cdot y$ è lineare.

Più esplicitamente, dati $c_1, c_2 \in \mathbb{R}$:

 $\mathcal{L}(c_1y_1 + c_2y_2) = c_1\mathcal{L}(y_1) + c_2\mathcal{L}(y_2) \forall y_1, y_2$ funzioni derivabili.

Ancora più esplicitamente: se $\mathcal{L}(y_1) = b_1$ cioè $y_1' = a(t)y_1 + b_1$ se $\mathcal{L}(y_2) = b_2$ cioè $y_2' = a(t)y_2 + b_2$ allora $\mathcal{L}(c_1y_1 + c_2y_2) = c_1b_1 + c_2b_2$ cioè $y_{(t)}' = a(t)(c_1y_1 + c_2y_2) + c_1b_1 + c_2b_2$ cioè $(c_1y_1 + c_2y_2)' = a(t)(c_1y_1 + c_2y_2) + c_1b_1 + c_2b_2$ Oss:

- Prendo due soluzioni distinde della EDO
- y' = a(t)y + b(t)

Esistenza e unicità globale di Cauchy

Siano $J \subseteq \mathbb{R}$ intervallo e $a, b : J \to \mathbb{R}$ continue. Per ogni $t_0 \in J, y_0 \in \mathbb{R}$ il problema di Cauchy:

$$\begin{cases}
y'(t) = a(t)y(t) + b(t) \\
y(t_0) = y_0
\end{cases}$$
(1.6)

ha una soluzione unica $y: J \to \mathbb{R}$ definita su J. Aggiungi parte in blu lezione 16/09/2022

Teorema Formula risolutiva per EDO lineari 1° ordine

 $a,b:J\subseteq\mathbb{R}\to\mathbb{R}$ y'(t)=a(t)y(t)+b(t)L'integrale generale è dato dalla formula:

$$y(t) = e^{A(t)} + \left(\int e^{-A(x)}b(x)dx + c \right) \quad \forall c \in \mathbb{R}$$
 (1.7)

dove A(t) è una primitiva di a.

Dimostrazione 1. da sapere all'esame

- Porto ay sulla sinistra y' ay = b
- Moltiplico l'equazione per e^{-A} $e^{-A}y' - e^{-A}ay = e^{-A}b$

- Riconosco $y'(t)e^{-A(t)} a(t)y(t)e^{-A(t)} = (y(t)e^{-A(t)})$ Quindi la EDO iniziale si riscrive equivalentemente: $(ye^{-A})' = be^{-A}$
- Integro $y(t)e^{-A(t)} = \int be^{-A(t)}dt + c$
- Moltiplico tutto per $e^{A(t)}$ $y(t) = e^{A(t)} \left(\int be^{-A(t)} dt + c \right)$

Equazione di Bernoulli

Definizione 9. Si chiamano equazione di Bernoulli le EDO del 1° ordine lineari di forma:

$$y'_{(t)} = k(t)y_{(t)} + h(t)y^{\alpha}_{(t)} \quad \forall \alpha \in \mathbb{R} \setminus \{0, 1\}$$

$$\tag{1.8}$$

 $con \ k, y : J \subseteq \mathbb{R} \to \mathbb{R} \ continue.$

Premesse:

- 1. Per semplificare ci occupiamo solo di soluzioni $y \geq 0$
- 2. nel caso $\alpha < 1$ accadono fenomeni strani, però la tecnica risolutiva è comunque valida

Procedimento di risoluzione:

- 1. Cerchiamo le soluzioni costanti (c'è sempre almeno quella nulla)
- 2. divido per y^{α} y'(t) = k(t)y(t) + h(t) $y'(t) = k(t)y(t)^{1-\alpha} + h(t)$
- 3. Pongo $z(t)=y(t)^{1-\alpha}$ Quale è l'equazione soddisfatta da z? $z'(t)=(1-\alpha)\left[k(t)y(t)^{1-\alpha}+h(t)\right]$ $z'(t)=(1-\alpha)\,k(t)z(t)+(1-\alpha)\,h(t)$
- 4. Risolvo l'equazione lineare in z
- 5. Torno alla variabile $y = z(t)^{\frac{1}{1-\alpha}}$

Equazione Logistica

y(t)=numero di individui infetti al tempo t $y:J\subseteq\mathbb{R}^+\to\mathbb{R}^+$

1° Modello: Malthus (inizio '800)

Il tasso di crescita della popolazione è proporzionale alla popolazione stessa.

$$y'(t) = ky(t) \tag{1.9}$$

dove $k \in \mathbb{R}^+$ è la tasso di crescita e k è il coefficiente di proporzionalità, dato dalla differenza tra tasso di natalità e tasso di mortalità. integrale generale: $y(t) = y(0)e^{kt} \operatorname{con} c > 0$

2° Modello: Verhulst (metà '800)

$$y'(t) = ky(t) - hy(t)^2 \quad \text{con } k, h > 0$$
 (1.10)

Il modello prende anche in considerazione la competizione per le risorse al crescere della popolazione.

Simulazione numerica per k = h = 1

Integrale generale dell'Equazione Logistica

Trovo l'integrale generale risolvendo come Bernoulli

1. Soluzioni costanti
$$y(t)=0, \quad y(t)=\tfrac{k}{h}$$

2. Divido per
$$y^2$$
:
$$\frac{y'(t)}{y^2(t)} = \frac{k}{y(t)} - h$$

3. Pongo
$$z'(t)=\frac{1}{y(t)}=-\frac{k}{y(t)}+h=-kz(t)+h$$
ricavo che $z'(t)+kz(t)=h$

4.
$$z(t) = e^{-\int k} \left[\int e^{\int k} h dx + c \right]$$
$$= e^{-kt} \left[h \int e^{kx} dx + c \right]$$
$$= e^{-kt} \left[\frac{h}{k} e^{kt} + c \right]$$
$$= \frac{\frac{h}{k} e^{kt} + c}{e^{kt}}$$

5.
$$y(t) = \frac{1}{z(t)} = \frac{e^{kt}}{\frac{h}{k}e^{kt} + c} = \frac{ke^{kt}}{he^{kt} + kc}$$
 possiamo scrivere $kc = c'$ in quanto costante arbitraria

1.2 Equazioni differenziali ordinarie del 2° ordine lineari

Teorema di struttura dell'integrale generale di EDO del 2° ordine lineari omogenee

Siano $a, b, c: I \subseteq \mathbb{R} \to \mathbb{R}$ funzioni continue e $a \neq 0$ in I. L'integrale generale dell'eq. omogenea

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0 (1.11)$$

è uno spazio vettoriale di dimensione 2, cioè le soluzioni sono tutte e sole della forma:

$$y_0(t) = c_1 y_{0_1} + c_2 y_{0_2} \quad \text{con } c_1, c_2 \in \mathbb{R}^n$$
 (1.12)

dove y_{0_1}, y_{0_2} sono due soluzioni linearmente indipendenti.

Oss: Dire che due soluzioni sono linearmente indipendenti significa che non esiste un coefficiente c tale che $c \cdot y_1 = y_2$, ovvero che non sono una multipla dell'altra.

Premesse:

- 1. Spazio vettoriale $V = C^2(I)$
- 2. $I \subseteq \mathbb{R}$ funzione di 1 variabile y(t)
- 3. $C^2(I) = \{y : I \to \mathbb{R}, \text{ derivabili in } I \in y' \text{ continua in } I\}$
- 4. $C^2(I) = \{ y \in C^1(I), \text{ derivabili due volte in } I \text{ con } y'' \text{ continua in } I \}$
- 5. $C^2(I)$ è uno spazio vettoriale con le operazioni usuali di somma di funzioni e prodotto di funzione per uno scalare.

Dimostrazione 2. da sapere all'esame

- L'integrale generale dell'omogenea è: $W = \{y \in V : ay''(t) + by'(t) + cy(t) = 0\}$
- W è un sottospazio vettoriale di V ⇔ è chiuso rispetto alla somma e rispetto al prodotto per uno scalare. Questo è vero grazie al principio di sovrapposizione (caso particolare dell'omogenea).
- Devo dimostrare che W ha dimensione 2.
 - i) Determinare 2 soluzioni lineari indipendenti dell'equazione y_{0_1}, y_{0_2}
 - ii) Dimostrare che ogni soluzione y della EDO si scrive come combinazione lineare di y_{01}, y_{02}
 - i) Scelgo y_{0_1} soluzione del problema di Cauchy.

$$\left\{ \begin{array}{l} ay_{0_1}^{\prime\prime}(t)+by_{0_1}^{\prime}(t)+cy_{0_1}(t)=0\\ y_{0_1}(0)=1\\ y_{0_1}^{\prime}(0)=0 \end{array} \right.$$

Verifico che y_{0_1}, y_{0_2} sono soluzioni lineari indipendenti. Se per assurdo fossero una multiplo dell'altra

 $y_{0_1}(t) = \lambda y_{0_2}(t) \quad \forall t$

In particolare, per t=0 avrei $y_{0_1}(0)=\lambda y_{0_2}(0)$ avrei trovato $1=\lambda\cdot 0$ assurdo.

ii) Sia $y_0(t)$ soluzione dell'EDO, cerco $c_1,c_2\in\mathbb{R}$ tali che $y_0(t)=c_1y_{0_1}(t)+c_2y_{0_2}(t)$

 $y_0(t) = c_1 y_{0_1}(t) + c_2 y_{0_2}(t) = c_1$

$$y_0'(t) = c_1 y_{0_1}'(t) + c_2 y_{0_2}'(t) = c_2$$

In conclusione la funzione:

 $z(t) = y_0(0) \cdot y_{0_1}(t) + y_0'(0) \cdot y_{0_2}(t)$

risolve lo stesso problema di Cauchy di $y_0(t)$ e quindi, grazie al teorema di esistenza e unicità di Cauchy, coincidono:

 $y_0(t) = z(t) \quad \forall t,$

cioè $y_0(t)$ si scrive come combinazione lineare di y_{0_1}, y_{0_2} con coefficienti $c_1 = y_0(0)$ e $c_2 = y'_0(0)$.

Struttura dell'integrale generale di EDO del 2° ordine lineari non omogenee

Siano $a,b,c:\mathbb{R}\to\mathbb{R}$ con $a\neq 0$ in IL'integrale generale dell'eq. completa

$$ay''(t) + by'(t) + cy(t) = f(t)$$
(1.13)

è:

$$y(t) = y_0(t) + y_p(t) \tag{1.14}$$

dove la $y_0(t)$ è l'integrale dell'eq. omogenea, come nel teorema precedente, e la $y_p(t)$ è una soluzione particolare dell'eq. compleata.

Oss: L'integrale generale di una EDO del secondo ordine lineare non omogenea è quindi uno spazio affine (cioè il translato di uno spazio vettoriale) di dimensione 2.

Fine lezione 21/09 c'è una scritta in fondo in rosso che non so cosa sia.

1.3 Sistemi differenziali lineari