# Modular abstract syntax trees (MAST): substitution tensors with second-class sorts

Marcelo Fiore, Ohad Kammar, Georg Moser, and Sam Staton



Scottish Programming Languages Seminar Heriot-Watt University 4 June 2025























# Call-by-Value $\lambda$ -calculus

```
A, B, C :=
                                                V, W :=
                                                                     value
                     type
                                                                         variable
                          base
                                                      \boldsymbol{x}
    A \rightarrow B function
                                                    \lambda x : A.M function abst.
    | (C_i : A_i | i \in I) \text{ record } (I \text{ finite})  | (C_i : V_i | i \in I) \text{ record c'tor}
      \{C_i : A_i | i \in I\} variant (I finite) | A.C_i V variant c'tor
       M.N, K, L :=
                                                         term
               \mathsf{val}\,V
                                                            value
               \det x_1 = M_1; ...; x_n = M_n \text{ in } N
                                                             sequencing
               M @ N
                                                             function application
             (C_1: M_1, \ldots, C_n: M_n)
                                                             record constructor
              case M of (C_1x_1, \dots, C_nx_n) \Rightarrow N
                                                             record pattern match
               A.C_iM
                                                             variant constructor
               case M of \{C_i x_i \Rightarrow M_i | i \in I\} N
                                                             variant pattern match
```

# Semantic perspective

# Initial Algebra Semantics Programme

[Goguen and Thatcher'74]

Denotational semantics á la carte

homage to [Swierstra'08, Forster and Stark'20]

#### **CBV** customisation menu

| fragment   | syntactic constructs                                    | types                        | semantics             |
|------------|---------------------------------------------------------|------------------------------|-----------------------|
| base       | returning a value: val                                  |                              | strong monad over a   |
|            |                                                         |                              | Cartesian category    |
| sequential | sequencing: let                                         |                              |                       |
| functions  | abst., app.                                             | function                     | Kleisli exponentials  |
|            | $(\lambda x. : A), (@)$                                 | $(\rightarrow)$              |                       |
| variants   | c'tors, pattern match                                   | variant                      | distributive category |
|            | $A.C_i$ -, case - of                                    | $\{\![C_i:-\big i\in I]\!\}$ |                       |
|            | $\left\{C_i x_i \Rightarrow - \middle  i \in I\right\}$ |                              |                       |
|            |                                                         |                              |                       |

## Dream

### Iterative semantic development

- ▶ Add syntax
- Add semantics



Profit!

## Iterative semantic development

- ► Add syntax
- Add semantics
- Develop meta-theory:
  - Substitution lemma
  - Compositionality
  - Soundness
  - Adequacy
- Profit!



# Dream vs. Bleak Reality

## Iterative semantic development

- ► Add syntax
- Add semantics
- ▶ Develop meta-theory:
  - Substitution lemma Tedious and boring
  - Compositionality Tedious and boring
  - Soundness
  - Adequacy
- Profit!



# Meta-theory: the tedious parts

## Lemma (substitution)

Syntactic substitution corresponds to semantic composition:

$$[\![M\,[\theta]]\!]=[\![M]\!]\circ[\![\theta]\!]$$

## Lemma (compositionality)

$$[\![C[M]]\!] = \operatorname{plug}([\![C[-]]\!], [\![M]\!])$$

# Meta-theory: the tedious parts

### Lemma (substitution)

Syntactic substitution corresponds to semantic composition:

#### Proof.

$$\llbracket M \left[\theta\right] \rrbracket = \llbracket M \rrbracket \circ \llbracket \theta \rrbracket$$

Presupposes a syntactic substitution lemma. Typically several inductions over all constructs.

## Lemma (compositionality)

Composite semantics is independent of component syntax:

### Proof.

$$[C[M]] = plug([C[-]], [M])$$

Tediously define terms with holes, plugging holes syntactically, carefully capturing some variables but not others. Then induction over semantics.

## Dream

It would be nice if tedious bits were... ... free

# Dream vs. Reality

#### It would be nice if tedious bits were...

... free

... syntactically scaleable: additive syntactic work per new feature



# SOAS: Second-Order Abstract Syntax

[Fiore, Plotkin, and Turi '99]

- ► CBN works smoothly.
- Robust to extensions:

polymorphism [Fiore and Hamana'13] mechanisation [Crole'11, Allais et al.'18, Fiore and Szamoszvancev'22] substructurality [Fiore and Ranchod'25]

▶ Doesn't cover CBV.

Technical reasons later:

- Substitute in: values and terms
- Substitute for variables: values only

Slogan [cf. Levy's CBPV, '04]:

values are 1st-class

but

terms are 2<sup>nd</sup>-class

### Contribution

# Modular Abstract Syntax Trees (MAST)

- ► SOAS → 2<sup>nd</sup>-class sorts
  Using **skew** bicategories/monoidal categories, and:
  - ▶ Kleisli bicategories [Gambino, Fiore, Hyland, and Winskel'19]
  - ▶ Familial theory of SOAS [Fiore and Szamoszvancev'25]
- MAST tutorial
- Case-study: CBV semantics á la carte (128 substitution lemmata)

#### **WIP**

- ▶ Idris 2 implementation of computational fragment [cf. Fiore and Szamoszvancev'22]
- Replace skew monoidal structure and monoids with monoidal structure and actions

[cf. Fiore and Turi'01]

# Capstone: abstract syntax and substitution universality

# Thm (representation)

abstract syntax with operators in **O** and holes in **H**amounts to
free substitution **O**-monoid over **H**:

$$\begin{array}{c} \mathbf{H} \\ \downarrow ?-[\mathsf{id}] \\ \mathbb{S}\mathbf{H} \otimes \mathbb{S}\mathbf{H} \xrightarrow{-[-]} \mathbb{S}\mathbf{H} & \stackrel{\mathsf{var}}{\longleftarrow} \mathbb{I} \\ \mathbb{[-]} \uparrow \\ \mathbf{O}(\mathbb{S}\mathbf{H}) \end{array}$$

# Capstone: semantics

## Key propaganda

compositional, binding-respecting denotational semantics amounts to substitution  $\mathbf{O}$ -monoid:

$$\begin{array}{ccc} \mathbf{M} \otimes \mathbf{M} \xrightarrow{-[-]} & \mathbf{M} & \xleftarrow{\mathsf{var}} \mathbb{I} \\ & & & & \\ & & & & \\ \mathbf{OM} & & & \end{array}$$

The denotational semantics for terms with holes in  $\mathbf{H}$  is the unique substitution  $\mathbf{O}$ -monoid homomorphism over  $\mathbf{H}$ :

$$\left( \mathbb{S}\mathbf{H}, -[-], \mathsf{var}, \llbracket - \rrbracket \;, ? -[\mathsf{id}] \right) \xrightarrow{ \llbracket - \rrbracket } \left( \mathbf{M}, -[-], \mathsf{var}, \llbracket - \rrbracket \;, \mathsf{menv} \right)$$
 
$$\left( \mathbf{H} \xrightarrow{\mathsf{menv}} \mathbf{M} \right)$$

# Meta-theory in one line

### Lemma (substitution)

Syntactic substitution corresponds to semantic composition:

$$\llbracket M \left[\theta\right] \rrbracket = \llbracket M \rrbracket \circ \llbracket \theta \rrbracket$$

## Lemma (compositionality)

$$\label{eq:continuous} \begin{split} \llbracket C[M] \rrbracket = \\ & \text{plug}(\llbracket C[-] \rrbracket \,, \llbracket M \rrbracket) \end{split}$$

# Meta-theory in one line

#### Lemma (substitution)

Syntactic substitution corresponds to semantic composition:

substitution monoid homomorphism

$$\llbracket M \left[\theta\right] \rrbracket = \llbracket -[-] \left[M, \theta\right] \rrbracket = -[-] \left[\llbracket M \rrbracket, \llbracket \theta \rrbracket \right] \coloneqq \llbracket M \rrbracket \circ \llbracket \theta \rrbracket$$

## Lemma (compositionality)

$$\label{eq:continuous} \begin{split} \llbracket C[M] \rrbracket &= \\ & \text{plug}(\llbracket C[-] \rrbracket \,, \llbracket M \rrbracket) \end{split}$$

# Meta-theory in one line

#### Lemma (substitution)

Syntactic substitution corresponds to semantic composition:

substitution monoid homomorphism

$$\llbracket M \left[\theta\right] \rrbracket = \llbracket -[-] \left[M, \theta\right] \rrbracket \stackrel{\downarrow}{=} -[-] \left[\llbracket M \rrbracket, \llbracket \theta \rrbracket \right] \coloneqq \llbracket M \rrbracket \circ \llbracket \theta \rrbracket$$

## Lemma (compositionality)

# MAST taster: heterogeneous sorting

## Sorting signature R

set sort

partitioned into

- ▶ bindable/ $1^{st}$ -class sorts  $s \in Bind$
- ▶ non-bindable/2<sup>st</sup>-class sorts

### Example

**CBV** sorting signature

- ▶ sort  $:= \{A, \text{comp } A | A \in \mathsf{Type}\}$
- ▶ Bind := Type

# MAST taster: semantic domain for syntax and semantics

## MAST provides ( $\mathbf{R} = (\text{sort}, \text{Bind}) \text{ sorting system}$ )

- ► Contexts  $\operatorname{sort}_{\vdash} \ni \Gamma \coloneqq [x_1 : s_1, \dots, x_n : s_n]$ ► Renamings  $\operatorname{sort}_{\vdash}(\Gamma, \Delta) \ni \Gamma \vdash \rho : \Delta$
- ► R-structures:  $\mathbf{PSh}(\mathsf{sort} \times \mathsf{sort}_{\vdash}) \ni P : \mathsf{sort} \times \mathsf{sort}_{\vdash}^\mathsf{op} \to \mathbf{Set}$  $P_s\Gamma \ni p$ : sort s element with variables in  $\Gamma$
- Variables structure:
- ▶ substitution tensors:  $(P \otimes Q)_{s}\Gamma \ni [p, \theta]_{\Lambda}$ :

R-Struct 
$$\ni \mathbb{I}_s\Gamma \coloneqq \{x | (x : s) \in \Gamma\}$$
  
R-Struct  $\ni P \otimes Q, P \otimes_{\bullet} \left( \text{var} \downarrow_A \right)$   
 $P$ -element:  $p \in P_s\Gamma$   
 $Q$ -closure :  $\theta \in \prod_{(y : r) \in A} Q_r\Gamma$ 

 $\begin{aligned} & \text{identifying, e.g.:} \\ [p[\text{weaken}], \theta]_{\Delta_1 +\!\!\!+ \Delta_2} = [p, \theta \! \circ \! \rho]_{\Delta_1} \end{aligned}$ 

$$\left[p[x', x'' \mapsto x]_{x \in \Delta}, \theta\right]_{\Delta} = [p, \theta + \theta]_{\Delta + \Delta}$$

Allow us to define:

# MAST taster: semantic domain for syntax and semantics

## MAST provides ( $\mathbf{R} = (\text{sort}, \text{Bind}) \text{ sorting system}$ )

$$\text{Contexts} \qquad \text{sort}_{\vdash} \ni \Gamma := [x_1 : s_1, \dots, x_n : s_n]$$

► Renamings 
$$\operatorname{sort}_{\vdash}(\Gamma, \Delta) \ni \Gamma \vdash \rho : \Delta$$

► **R**-structures: 
$$\mathbf{PSh}(\mathsf{sort} \times \mathsf{sort}_{\vdash}) \ni P : \mathsf{sort} \times \mathsf{sort}_{\vdash}^{\mathsf{op}} \to \mathbf{Set}$$
  
 $P_s\Gamma \ni p$ : sort  $s$  element with variables in  $\Gamma$ 

R-Struct 
$$\ni \mathbb{I}_s \Gamma := \{x | (x : s) \in \Gamma\}$$
  
R-Struct  $\ni P \otimes Q, P \otimes_{\bullet} (\text{var} \downarrow_A)$   
 $P$ -element:  $p \in P_s \Gamma$ 

Q-closure:  $\theta \in \prod_{(v,r) \in \Lambda} Q_r \Gamma$ 

▶ substitution tensors:  

$$(P \otimes Q)_s \Gamma \ni [p, \theta]_{\Delta}$$
:

identifying, e.g.:

$$[p[\text{weaken}],\theta]_{\Delta_1+\Delta_2} = [p,\theta\circ\rho]_{\Delta_1} \quad \left[p[x',x''\mapsto x\right]_{x\in\Delta},\theta]_{\Delta} = [p,\theta+\theta]_{\Delta+\Delta}$$

Allow us to define:

Scope-change as tensorial strength

$$\operatorname{str}^{\mathbf{O}}: (\mathbf{O}P) \otimes_{\bullet} \left(\operatorname{var} \downarrow_{A}^{\mathbb{I}}\right) \to \mathbf{O}\left(P \otimes_{\bullet} \left(\operatorname{var} \downarrow_{A}^{\mathbb{I}}\right)\right)$$

# MAST taster: semantic domain for syntax and semantics

MAST provides ( $\mathbf{R} = (\text{sort}, \text{Bind}) \text{ sorting system}$ )

► Contexts 
$$\operatorname{sort}_{\vdash} \ni \Gamma := [x_1 : s_1, \dots, x_n : s_n]$$
► Renamings  $\operatorname{sort}_{\vdash}(\Gamma, \Delta) \ni \Gamma \vdash \rho : \Delta$ 

► **R**-structures:  $\mathbf{PSh}(\mathsf{sort} \times \mathsf{sort}_{\vdash}) \ni P : \mathsf{sort} \times \mathsf{sort}_{\vdash}^{\mathsf{op}} \to \mathbf{Set}$  $P_s\Gamma \ni p$ : sort s element with variables in  $\Gamma$ 

▶ Variables structure: 
$$\mathbf{R}\text{-}\mathbf{Struct} \ni \mathbb{I}_s\Gamma \coloneqq \{x | (x : s) \in \Gamma\}$$

▶ substitution tensors:   

$$(P \otimes Q)_s \Gamma \ni [p, \theta]_{\Delta}$$
:   
 $P$ -element:  $p \in P_s \Gamma$   
 $Q$ -closure :  $\theta \in \prod_{(v:r) \in \Delta} Q_r \Gamma$ 

identifying, e.g.:

$$[p[\mathsf{weaken}],\theta]_{\Delta_1+\!\!\!-\Delta_2}=[p,\theta\circ\rho]_{\Delta_1}\quad \left[p[x',x''\mapsto x\right]_{x\in\Delta},\theta]_{\Delta}=[p,\theta+\theta]_{\Delta+\Delta}$$

Allow us to define:

Scope-change as tensorial strength Substitution monoids 
$$\mathsf{str}^{\mathbf{O}} : (\mathbf{O}P) \otimes_{\bullet} \left( \mathsf{var} \downarrow^{\mathbb{I}}_{A} \right) \to \mathbf{O} \left( P \otimes_{\bullet} \left( \mathsf{var} \downarrow^{\mathbb{I}}_{A} \right) \right) \quad \mathbf{M} \otimes \mathbf{M} \xrightarrow{-[-]} \mathbf{M} \overset{\mathsf{var}}{\longleftrightarrow} \mathbb{I}$$

# MAST taster: semantic domain for syntax

Signature functors Scope-change as tensorial strength

$$\begin{array}{ccc}
\bullet & & & & & \\
\bullet & & \\
\bullet & & & \\
\bullet &$$

## Example

Sequential fragment signature functor:

$$(\operatorname{Seq} X)_{\operatorname{comp} B} \Gamma \coloneqq \coprod_{A \in \operatorname{\mathsf{Type}}} \begin{pmatrix} (\operatorname{\mathbf{let}} x : A = \_\operatorname{\mathbf{in}} \_) : \\ \left( X_{\operatorname{\mathsf{comp}} A} \Gamma \times X_{\operatorname{\mathsf{comp}} B} \left( \Gamma, x : A \right) \right) \end{pmatrix}$$
 
$$(\operatorname{\mathsf{Seq}} X)_A \Gamma \coloneqq \emptyset$$

$$\begin{split} \operatorname{str}^{\operatorname{Seq}} \left[ \operatorname{let} x \, : \, A &= (p \in P_{\operatorname{comp} A} \Delta) \text{ in } (q \in P_{\operatorname{comp} B} (\Delta, x \, : \, A)), \theta \right]_{\Delta} \\ &\coloneqq \left( \operatorname{let} x \, : \, A &= [p, \theta]_{\Delta} \text{ in } [q, (\theta, x \, : \, \operatorname{var} x)]_{\Delta, x \, : \, A} \right) \end{split}$$

Modular spec. for binding, renaming, and substitution structure

# MAST taster: semantic domain for syntax

Abstract syntax: inductive representation Every initial algebra:

$$\mathbb{S}^{\mathbf{O}}\mathbf{H} \coloneqq \mu X.(\mathbf{O}X) \amalg \mathbb{I} \amalg \mathbf{H} \otimes X$$

Supports standard definitions:

$$\begin{array}{c} H \\ \downarrow ?-[-] \\ \$H \otimes \$H \xrightarrow{-[-]} \$H \xleftarrow{\mathsf{var}} \mathbb{I} \\ \hline [-]] \uparrow \\ O(\$H) \end{array}$$

Independently of concrete representation, e.g.,:

- ▶ De-Bruijn
- Nominal

Locally nameless

- Co-de Bruijn
- Graphical

### Example

$$\mathbf{M} = (C, T, return, \gg, [-])$$
:

- ▶ C: Cartesian category with chosen finite products
- ▶  $(T, return, \gg)$  strong monad over C
- ▶ [-]: Type  $\rightarrow C$  type interpretation

#### induces:

- ► A CBV-structure: CBV-Struct  $\ni \mathbf{M}_s\Gamma \coloneqq \mathcal{C}(\llbracket \Gamma \rrbracket, \llbracket s \rrbracket)$
- ▶ Standard interpretation of contexts, computations, renaming:

$$C \ni \llbracket \Gamma \rrbracket := \prod_{(x:A) \in \Gamma} \llbracket A \rrbracket \qquad C \ni \llbracket \operatorname{comp} A \rrbracket := \operatorname{T} \llbracket A \rrbracket$$
$$\llbracket \rho \rrbracket : \llbracket \Gamma \rrbracket \xrightarrow{(\pi_{x[\rho]}: \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket)_{(x:A) \in \Delta}} \prod_{(x:A) \in \Delta} \llbracket A \rrbracket = \llbracket \Delta \rrbracket$$

#### MAST taster: common structure for substitution

## Syntactic substitution monoid

$$\mathbb{S}^{O}H \otimes \mathbb{S}^{O}H \xrightarrow{-[-]} \mathbb{S}^{O}H \xleftarrow{\mathsf{var}} \mathbb{I}$$

Monoid axioms amounts to syntactic substitution lemma

#### Example

Semantic substitution monoid:

$$M \otimes M \xrightarrow{-[-]} M \xleftarrow{\text{var}} \mathbb{I}$$

▶ Substitution via composition:

$$\left( \left[ \! \left[ \Delta \right] \right] \xrightarrow{f} \left[ \! \left[ s \right] \right] \right) \left[ \left[ \! \left[ \Gamma \right] \right] \xrightarrow{\theta} \left[ \! \left[ \Delta \right] \right] \xrightarrow{f} \left[ \! \left[ s \right] \right]$$

▶ Variables:  $\operatorname{var}:\left((x:A)\in\Gamma\mapsto\left(\llbracket\Gamma\rrbracket\xrightarrow{\pi_x}\llbracket A\rrbracket\right)\right)$  (1st-class sorts only)

# MAST taster: compatibility

#### Substitution-compatible algebra

$$[-]$$
: **OM**  $\rightarrow$  **M**:

$$\begin{array}{c|c} \text{str} & \underline{O(\underline{M} \otimes \underline{M})} \\ (\underline{OM}) \otimes \cdot \text{env}^{\underline{M}} & = & \underline{O(-[-]_M)} \\ [-]] \otimes \text{id} & \times & = & \underline{M} \otimes \underline{M} \\ & \underline{\underline{M}} \otimes \underline{\underline{M}} & -[-]_{\underline{M}} & \underline{\underline{M}} \end{array}$$

## Example

$$\begin{bmatrix}
let x : A = (\llbracket\Gamma\rrbracket \xrightarrow{f} T \llbracket A\rrbracket) \\
lin (\llbracket\Gamma\rrbracket \times \llbracket A\rrbracket \xrightarrow{g} T \llbracket B\rrbracket)
\end{bmatrix} : \llbracket\Gamma\rrbracket \xrightarrow{(id,f)} \llbracket\Gamma\rrbracket \times T \llbracket A\rrbracket \xrightarrow{\not \models g} T \llbracket B\rrbracket$$



# MAST: modularity and scalability

#### Substitution O-monoid

Substitution monoid with compatible O-algebra structure



#### Core contribution

classical theory (SOAS) **PSh** (sort  $\times$  sort<sub> $\vdash$ </sub>),  $\otimes$ monoidal product

generalise →→ this work (MAST) **PSh** (sort × -Bind<sub>⊢</sub>)⊗
right-unital associative **skew** monoidal product

# Skew tensor products

$$(P\otimes Q)\otimes L\cong P\otimes (Q\otimes L)$$
 (associative) 
$$P\otimes \mathbb{I}\cong P$$
 (right-unital) 
$$\mathbb{I}\otimes Q\xrightarrow{\mathbf{r}'}Q$$
 (non-invertible!)

## What breaks the unitor?

#### Substitution tensor

$$(P \otimes Q)_s \Gamma \coloneqq \int^{\Delta} P_s \Gamma \times \prod_{(y:r) \in \Delta} Q_r \Gamma$$

for  $s \notin Bind$ , Q = 1,  $\mathbb{I}_s \Delta = \emptyset$ :

$$(\mathbb{I} \otimes Q)_s \Gamma \coloneqq \int^{\Delta} \overbrace{\emptyset}^{\mathbb{I}_s \Delta} \times \prod_{(v:r) \in \Delta} Q_r \Gamma = \int^{\Delta} \emptyset = \emptyset \neq \mathbb{1} = Q_s \Gamma$$



## Want more?

## In the paper:

- All the details
- ▶ A CBV case-study (128 substitution lemmata)



#### In the future:

- ▶ Idris 2 implementation of computational fragment [cf. Fiore and Szamoszvancev'22]
- Replace skew monoidal structure and monoids with monoidal structure and actions

### Contribution

# Modular Abstract Syntax Trees (MAST)

- ► SOAS → 2<sup>nd</sup>-class sorts
  Using **skew** bicategories/monoidal categories, and:
  - ▶ Kleisli bicategories [Gambino, Fiore, Hyland, and Winskel'19]
  - ▶ Familial theory of SOAS [Fiore and Szamoszvancev'25]
- MAST tutorial
- Case-study: CBV semantics á la carte (128 substitution lemmata)

#### **WIP**

- ▶ Idris 2 implementation of computational fragment [cf. Fiore and Szamoszvancev'22]
- Replace skew monoidal structure and monoids with monoidal structure and actions

[cf. Fiore and Turi'01]