

Кондензатори – параметри, видове

Съдържание

- Основни параметри
- 2 Кондензатори с органичен диелектрик
- Керамични кондензатори
- 4 Електролитни кондензатори

Определения и класификация

Основни свойства:

- > да не пропускат постоянен и пропускат променлив ток;
- да натрупват електрически заряди и по този начин да съхраняват енергия.

Приложения:

- > за като блокиращи и разделителни елементи;
- за изграждане на трептящи кръгове.

Определения и класификация

По изменение на капацитета – постоянни и променливи.

По вида на диелектрика:

- ✓ с газообразен диелектрик;
- ✓ с течен диелектрик;
- ✓ с твърд органичен диелектрик (полистиролни, хостафанови, полиестерни, поликарбонатни);
- ✓ с твърд неорганичен диелектрик (керамични, стъклени, слюдени);
- ✓ с оксиден диелектрик или електролитни кондензатори (алуминиеви, танталови).

В зависимост от *режима на работа*:

- √ по работно напрежение (нисковолтови и високоволтови);
- ✓ по работен честотен обхват (за постоянно напрежение, за промишлена честота, нискочестотни, високочестотни, за импулсно напрежение).

Номинален капацитет C_N

$$C_N = \varepsilon_r \varepsilon_0 \frac{S}{d}, F$$

Номинално напрежение U_N – постоянното напрежение или ефективната стойност на променливо синусоидно напрежение с номинална честота, което може да бъде приложено непрекъснато между изводите на кондензатора, при която и да е температура от температурния обхват на съответната климатична категория.

Изпитвателно напрежение – напрежението, което кондензаторът може да издържи за кратко време (от 5 s до 60 s) без пробив.

2. Основни параметри

Температурен коефициент на капацитета $lpha_{C}$

$$\alpha_C = \frac{dC}{CdT}, {}^{\circ}C^{-1}$$

При линейна зависимост C = f(T) се използва

$$\alpha_{C} = \frac{C_{2} - C_{1}}{C_{3}(T_{1} - T_{2})}$$

където C_1 е капацитета при T_1 ; C_2 – капацитета при T_2 и C_3 е капацитета при стайна температура.

При кондензатори с нелинейна зависимост C = f(T) се използва зависимостта на относителното изменение на капацитета

$$\frac{\Delta C}{C_{20}} = f(T)$$

2. Основни параметри

Изолационно съпротивление $R_{\text{из}}$ – съпротивлението между изводите на кондензатора, измерено при определено постоянното напрежение, след като процесите на поляризация в диелектрика са приключили.

Времеконстанта τ – определя времето, за което кондензаторът се саморазрежда при отворени изводи

$$\tau = R_{_{\rm M3}}C_{_{N}}$$

2. Основни параметри

Коефициент на загуби

$$tg\delta = tg\delta_{\mathsf{M}} + tg\delta_{\mathsf{N3}} + tg\delta_{\mathsf{L}}$$

където $tg\delta_{\mathrm{Д}}$ – диелектриктрични загуби

в изолационното съпротивление

$$tg\delta_{\text{\tiny M3}}=rac{1}{\omega R_{\text{\tiny M3}}C}$$

в металните електроди

$$tg\delta_{M} = \omega r_{M}C$$

 $r_{\rm M}$ — еквивалентно съпротивление на електродите

Еквивалентна схема

Пълно съпротивление Z_{C}

$$|Z_C| = \sqrt{r^2 + \left(\omega L_C - \frac{1}{\omega C_N}\right)^2}$$

където r е еквивалентно съпротивление, L_C – собствена индуктивност, която зависи от дължината на изводите и конструкцията.

Високочестотна еквивалентна схема

Кондензатори с органичен диелектрик

1 – тънка полимерна лента; 2 – метални електроди, изпълнени от метално фолио (или тънък метален слой върху полимера); 3 – диелектрична лента, предпазваща от свързването на късо на двата електрода при навиването.

Керамични кондензатори

1 – кондензаторна керамика (определяща основните параметри); 2 – метални електроди; 3 – метални изводи.

Керамични кондензатори

слоести

Електролитни кондензатори

Анодът A е от AI фолио, което е ецвано с цел увеличаване на неговата площ, като чрез оксидиране по повърхността му се създава тънък слой Al_2O_3 .

Електролитни кондензатори

Основни особености:

- 1) Много голям специфичен капацитет Al_2O_3 има голяма диелектрична якост и следователно може да бъде с много малка дебелина;
- 2) Полярни при обратно свързване оксида се разгражда.

Параметри – утечен и пулсиращ ток.