Theoretical Computer Science: Exercise 2

David Bulovic 11819382

Using the Pumping Lemma, show that: the language $L=0^i1^j0^{ij}|i,j\in\mathbb{N}$ for $\sum=0,1$ is not regular.

To solve this problem I will use the proof by contradiction. First, we assume that L is regular and let p be the pumping length of L given by the Pumping Lemma. Now we can set a string:

$$x = 0^p 10^p$$

It is clear that x is a member of L, where i=p, j=1. Since x is longer than pumping length p, according to the Pumping Lemma we can split x into three parts x=uvw where:

$$|v| \ge 1 \tag{1}$$

$$|uv| \le p \tag{2}$$

$$uv^n w \in L, \forall n \in \mathbb{N} \tag{3}$$

From (1) and (2) we can conclude that $1 \leq |v| \leq p$. Since $x = 0^p 10^p$ the first p symbols of x are 0s. Therefore, u and v must consist entirely of 0s. First possibility is that u is an empty string, $v = 0^p$ and $w = 10^p$. However this case does not satisy (3). For example, if n = 2, then we can see that the string: $uv^2w = 0^p 0^p 10^p$ clearly is not a member of L.

Second possibility is that $|u| \ge 1$ and |v| < p. Similarly, this case also does not satisy (3). If n = p, then the string: $uv^p w$ would have a far greater number of 0s in the first part before the 1, regardless of the distribution of 0s between u and v, therefore it also cannot be a member of L.

Since for all possible segmentations $x = uvw, \exists n$ so that uv^nw is not a member of L. Therefore, we can conclude that L is not regular, as per the Pumping Lemma.