TD 5: Suites (suite)

Exercice 1 Dans quel cas la somme de deux suites géométriques est-elle géométrique? **Exercice 2** On dit qu'une suite $u = (u_n)_{n \in \mathbb{N}}$ est périodique de période T (T est un entier non nul) si $u_{n+T} = u_n$ pour tout entier $n \geq 0$. On dit que u est périodique s'il existe un entier T tel que u est T-périodique.

- 1. Montrer que l'ensemble des suites périodiques de période 5 forme un sous-espace vectoriel de l'espace vectoriel des suites.
- 2. Montrer que l'ensemble des suites périodiques forme un sous-espace vectoriel de l'espace vectoriel des suites.
- 3. On dit qu'une suite $u = (u_n)_{n \in N}$ est ultimement T-périodique s'il existe un entier $M \geq 0$ tel que $u_{n+T} = u_n$ pour tout entier $n \geq M$. On dit que u est ultimement périodique s'il existe un entier T tel que u est ultimement T-périodique. Écrire formellement la définition (avec des quantificateurs). Montrer que l'ensemble des suites ultimement périodiques forme un sous-espace vectoriel de l'espace vectoriel des suites.
- 4. Quelles sont les suites arithmétiques périodiques? Quelles sont les suites géométriques périodiques?

Exercice 3 Soit T_n le nombre d'entiers naturels de n chiffres exactement ne comportant pas la séquence 13 dans leur écriture en base 10.

- 1. Montrer que $T_{n+2} = 10T_{n+1} T_n$
- 2. Calculer T_n en fonction de n.

Exercice 4 Soit $\{u_n\}_n$ une suite telle que, pour tout n>2

$$(n+1)^2 u_{n+1} - (n-1)^2 u_n + n = 0$$

1. Montrer qu'il existe k tel que, en posant $v_n = u_n - k$, on a

$$(n+1)^2 v_{n+1} = (n-1)^2 v_n \quad \forall n > 2$$

- 2. En déduire le terme général de v_n puis celui de u_n .
- 3. Que se passe-t-il si la relation est vraie pour n=1?

Exercice 5 On considère la suite définie par $u_1 = 1$ et $\forall n \geq 2, u_n = \sqrt{n + u_{n-1}}$.

- 1. Montrer qu'on a $u_n \leq 2\sqrt{n}$ pour tout $n \geq 1$.
- 2. En déduire que $\frac{u_n}{\sqrt{n}} \to 1$ quand $n \to \infty$, autrement dit que $u_n = \sqrt{n}(1 + o(1))$.
- 3. En injectant l'expression $u_n = \sqrt{n}(1+o(1))$ dans la relation de récurrence, montrer qu'on a

$$u_n = \sqrt{n} + \frac{1}{2} + o(1).$$

Exercice 6 Déterminer la limite des suites

$$u_n = \left(1 + \frac{1}{n}\right)^{2n}, \quad v_n = \frac{n + \sqrt{n^2 + 1}}{n - \sqrt{n^2 + 1}}, \quad w_n = \left(\sin\frac{1}{n}\right)^{\frac{1}{n}}.$$

Le nombre d'or On considère la suite $\{\varphi_n\}_n$ définie par $\varphi_0 = 1$ et $\varphi_{n+1} = \sqrt{\varphi_n + 1}$.

- 1. Soit φ la seule racine positive de $x^2 x 1 = 0$. Montrer que $\varphi > 3/2$ et que pour tout entier n on a $1 \le \varphi_n \le \varphi$.
- 2. Montrer que $|\varphi_{n+1} \varphi| \le \frac{1}{\varphi} |\varphi_{n-1} \varphi|$ pour tout $n \ge 0$.
- 3. Conclure sur la convergence de $\{\varphi_n\}_n$.
- 4. Donner une deuxième preuve de ce résultat en utilisant le théorème des accroissements finis.

Exercice 7 Soit f définie sur $\mathbb{R}\setminus\{-1\}$ par $f(x)=\frac{2}{1+x}$. On étudie la suite définie par $u_0=2$ et $u_{n+1}=f(u_n)$.

- 1. Montrer que l'intervalle [1/2, 2] est stable par f.
- 2. Montrer que pour tout n on a $|u_{n+1}-1| \leq \frac{8}{9}|u_n-1|$.
- 3. Conclure sur la convergence de $\{u_n\}_n$.

Césaro Soit $\{u_n\}_n$ une suite réelle convergente de limite l. On pose $v_n := \frac{1}{n} \sum_{k=1}^n v_k$ pour tout $n \ge 1$. Montrer que $\{v_n\}_n$ converge vers l. Étudier la réciproque.

Exercice 8 Étudier la convergence des suites de terme général $v_n = \frac{\sin n}{n}, \ w_n = (n^2)^{1/n}, \ u_n = \frac{1}{n^2} \sum_{k=1}^n E(kx)$ pour x réel, $t_n = \frac{n^4 + 3n + 2}{\sin(3n) + 7n^4 + 2}, \ s_n = \sum_{k=1}^n \frac{1}{(k-1)(k-2)(k-3)}, \ W_n = \frac{1}{n^2} \sum_{k=0}^n k!, \ U_n = \sum_{k=1}^n \frac{n}{n^2 + k}.$

Exercice 9 Les assertions suivantes sont-elles vraies ou fausses?

- Toute suite positive non majorée tend vers $+\infty$.
- Toute suite positive qui tend vers 0 est décroissante à partir d'un certain rang.
- Si une suite admet une limite l > 0 alors tous ses termes sont positifs à partir d'un certain rang.
- Si une suite ne prend qu'un nombre fini de valeurs, alors elle converge si et seulement si elle est stationnaire.

Exercice 10 Soit $u = (u_n)_{n \ge 0}$ une suite bornée et $v = (v_n)_{n \ge 0}$ une suite convergeant vers 0. Que dire de la suite uv?

Exercice 11 Soit $u = (u_n)_{n \ge 0}$ une suite telle que la suite $v = \left(\frac{u_n}{1+u_n}\right)_{n \ge 0}$ tende vers 0. Montrer que u tend vers 0.

Exercice 12 On note $\mathbb{R}^{\mathbb{N}}$ l'espace vectoriel des suites réelles. Montrer que l'application

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{R}^{\mathbb{N}} & \longrightarrow & \mathbb{R}^{\mathbb{N}} \\ u = (u_n)_{n \in \mathbb{N}} & \mapsto & \varphi_2(u) = (u_{n+1} - u_n)_{n \in \mathbb{N}} \end{array} \right.$$

est une application linéaire. Déterminer $\ker \varphi$ et $\operatorname{Im} \varphi$.

Exercice 13

1. Montrer qu'une suite périodique est bornée.

- 2. Quelles sont les suites périodiques convergentes?
- 3. Quelles sont les suites d'entiers relatifs convergentes?
- 4. Si u est une suite convergente, est-ce que |u| converge?
- 5. Et réciproquement, si |u| converge, est-ce que u converge?
- 6. Soit u une suite réelle. Si $(u_{2n})_{n\geq 1}$ et $(u_{2n+1})_{n\geq 1}$ convergent vers la même limite $l\in\mathbb{R}$, montrer que u converge vers l. Comment peut-on généraliser?
- 7. Comment nier (avec des quantificateurs) l'assertion suivante : "La suite u est convergente"?

Exercice 14 Étudier la suite de terme général $u_n = \sum_{k=1}^n \left(\frac{k}{n}\right)^n$.

Exercice 15 Soit u_n définie par $u_0 = 1$ et $u_{n+1} = u_n + \frac{1}{u_n}$. Donner un équivalent de u_n quand $n \to \infty$.

Exercice 16 Soit u_n définie par $u_0 = 1$ et $u_{n+1} = 1 + \frac{n}{u_n}$. Donner un développement asymptotique à deux termes de u_n .

Exercice 17 Donner les trois premiers termes du développement asymptotique de la n-ième racine strictement positive de l'équation $\tan x = x$.

Exercice 18 Montrer que pour tout entier n il existe un unique $u_n \in \mathbb{R}$ tel que $u_n^5 + nu_n - 1 = 0$. Donner un développement asymptotique à deux termes de u_n .

Exercice 19 Soit $a = (a_n)_{n \in \mathbb{N}}$ et $f = (f_n)_{n \in \mathbb{N}}$ deux suites réelles. On cherche à déterminer l'ensemble U des suites $u = (u_n)_{n \in \mathbb{N}}$ vérifiant

(1)
$$u_{n+1} = a_n \times u_n + f_n \text{ pour tout entier } n \ge 0.$$

- 1. Montrer qu'il existe au moins une solution \tilde{u} de l'équation (1).
- 2. On commence par traiter le cas dit "homogène", quand la suite f est nulle. Soit V l'ensemble des suites $v=(v_n)_{n\in\mathbb{N}}$ telles que
 - (2) $v_{n+1} = a_n \times v_n \text{ pour tout entire } n \ge 0.$
 - (a) Montrer que V est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$, et que V n'est pas réduit à $\{0\}$.
 - (b) Soit \tilde{v} un élement non nul de V. Montrer que pour tout $v \in V$, il existe un réel c tel que $v = c\tilde{v}$. En déduire l'ensemble V des solutions.
- 3. On traite maintenant le cas "avec second membre", quand la suite f est non nulle.
 - (a) Montrer que pour tout $v \in V$, $\tilde{u} + v$ est solution de l'équation (1).
 - (b) Montrer qu'en fait toute solution de (1) s'écrit $\tilde{u} + v$ pour une certaine suite $v \in V$.
 - (c) En déduire l'ensemble U des solutions de (1).