ゼミ用ノート

会田先生の資料 "Rough path analysis:An Introduction"

基礎工学研究科システム創成専攻 学籍番号 29C17095 百合川尚学

2018年7月5日

目次

第 1 章		1
1.1	Introduction	1
1.2	A continuity theorem of line integrals as a functional of paths	5
1.3	Proof of continuity theorem	13
1.4	The notion of rough path	20
1.5	2018/06/15 課題	32
付録 A	テンソル積・クロスノルム	40
A.1	ノルム空間上の有界多重線型写像	40
A.2	ノルム空間の完備拡大	44
A.3	テンソル積	47
A.4	クロスノルム	55
A.5	テンソル積の内積	61
参考文献		65

1.1 Introduction

以下,d次元ベクトル $x \in \mathbb{R}^d$ と (m,d) 行列 $a \in \mathbb{R}^m \otimes \mathbb{R}^d$ について,成分を込めて表現する場合は $x = (x^1, \cdots, x^d)$, $a = (a^i_{j})_{1 \le i \le m, 1 \le j \le d}$ と書く.また T > 0 を固定し $C^1 = C^1([0,T] \to \mathbb{R}^d)$ とおく.(端点においては片側微分を考える.) $[s,t] \subset [0,T]$ の有限分割を $D = \{s = t_0 < t_1 < \cdots < t_N = t\}$ で表現し,有限分割の全体を $\delta[s,t]$ とおく. $|D| := \max_{1 \le i \le N} |t_i - t_{i-1}|$ とし,

$$\sum_{D} = \sum_{i=1}^{N}$$

と略記する. また線型空間を扱うときは零元のみの空間は考えない.

定理 1.1.1 (Riemann-Stieltjes 積分). $[s,t] \subset [0,T]$ とし, $D \in \delta[s,t]$ についてのみ考えるとき,任意の $x \in C^1$, $f \in C(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ に対して次の極限が存在する:*1

$$\lim_{|D|\to 0} \sum_{D} f(x_{s_{i-1}})(x_{t_i} - x_{t_{i-1}}) \in \mathbb{R}^m.$$

 s_{i-1} は区間 $[t_{i-1},t_i]$ に属する任意の点であり、極限は s_{i-1} の取り方に依らない.

証明. 各 x^j は C^1 -級であるから、平均値の定理より $\sum_D f(x_{s_{i-1}})(x_{t_i}-x_{t_{i-1}})$ の第k成分を

$$\sum_{j=1}^{d} \sum_{D} f_{j}^{k}(x_{s_{i-1}})(x_{t_{i}}^{j} - x_{t_{i-1}}^{j})$$

$$= \sum_{j=1}^{d} \sum_{D} f_{j}^{k}(x_{s_{i-1}})\dot{x}_{\xi_{i}}^{j}(t_{i} - t_{i-1}), \quad (^{\exists}\xi_{i} \in [t_{i-1}, t_{i}])$$

と表現できる. 各 j,k について

$$\lim_{|D| \to 0} \sum_{D} f_j^k(x_{s_{i-1}}) \dot{x}_{\xi_i}^j(t_i - t_{i-1})$$

は通常の連続関数の Riemann 積分

$$\int_{t}^{t} f_{j}^{k}(x_{u}) \dot{x}_{u}^{j} du$$

 $^{^{*1}}$ 極限の存在を保証する条件としては、f の有界性と微分可能性は必要ない.

に収束する.

定義 1.1.2 (C^1 -級のパスに対する汎関数). $x \in C^1$ と $f \in C(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ に対して, $[s,t] \subset [0,T]$ における Riemann-Stieltjes 積分を I で表現する:

$$I_{s,t}(x) = \int_{s}^{t} f(x_u) dx_u := \lim_{|D| \to 0} \sum_{D} f(x_{t_{i-1}})(x_{t_i} - x_{t_{i-1}}),$$

$$\left[\int_{s}^{t} f(x_u) dx_u \right]^{k} = \sum_{i=1}^{d} \int_{s}^{t} f_j^{k}(x_u) dx_u^{j}, \quad (k = 1, \dots, m).$$

ただし $D \in \delta[s,t]$ のみを考える.

 C^1 は次で定めるノルム $\|\cdot\|_{C^1}$ により Banach 空間となる:

$$||x||_{C^1} := \sup_{t \in [0,T]} |x(t)| + \sup_{t \in [0,T]} |\dot{x}(t)|.$$

定理 1.1.3 ($\|\cdot\|_{C^1}$ に関する連続性). $[s,t] \subset [0,T]$ とし, C^1 には $\|\cdot\|_{C^1}$ でノルム位相を入れる.このとき, $C^1\ni x\longmapsto I_{s,t}(x)\in\mathbb{R}^m$ は連続である.

証明. C^1 の第一可算性により点列連続性と連続性は一致するから, $x^n \longrightarrow x$ のとき $I_{s,t}(x^n) \longrightarrow I_{s,t}(x)$ が従うことを示せばよい. いま, $M \coloneqq \sup_{u \in [s,t]} |f(x_u)| < \infty$ とおけば

$$\left| \int_{s}^{t} f(x_{u}^{n}) dx_{u}^{n} - \int_{s}^{t} f(x_{u}) dx_{u} \right| = \left| \int_{s}^{t} f(x_{u}^{n}) \dot{x}_{u}^{n} du - \int_{s}^{t} f(x_{u}) \dot{x}_{u} du \right|$$

$$\leq \int_{s}^{t} \left| f(x_{u}^{n}) \dot{x}_{u}^{n} - f(x_{u}^{n}) \dot{x}_{u} \right| du + \int_{s}^{t} \left| f(x_{u}^{n}) \dot{x}_{u} - f(x_{u}) \dot{x}_{u} \right| du$$

$$\leq M \| x^{n} - x \|_{C^{1}} (t - s) + \sup_{u \in [s,t]} \left| f(x_{u}^{n}) - f(x_{u}) \right| \| x \|_{C^{1}} (t - s)$$

$$(1.1)$$

が成り立つ. $\|x^n-x\|_{C^1} \longrightarrow 0$ の仮定より $(x^n)_{n=1}^\infty$ 及び x の値域は或るコンパクト集合 K に含まれるから,K 上での f の一様連続性より任意の $\epsilon>0$ に対し或る $\epsilon>\delta>0$ が存在して $v,w\in K$, $|v-w|<\delta$ なら $|f(v)-f(w)|<\epsilon$ が満たされる. すなわち $\|x^n-x\|_{C^1}<\delta$ なら

$$\sup_{u \in [s,t]} \left| f(x_u^n) - f(x_u) \right| < \epsilon$$

が成立する. $\|x^n - x\|_{C^1} \longrightarrow 0$ より,或る自然数 N が存在して $\|x^n - x\|_{C^1} < \delta (n > N)$ が満たされるから, $(1.1) < \epsilon [M(t-s) + \|x\|_{C^1} (t-s)]$ (n > N) が成り立ち $I_{s,t}(x^n) \longrightarrow I_{s,t}(x)$ が従う.

定義 1.1.4 (p-variation). $(V, \|\cdot\|)$ をノルム空間とし,[0, T] 上の V 値写像 x と [s, t] \subset [0, T] に対して p-variation (p > 0) を次で定める:

$$||x||_{p,[s,t]} := \left\{ \sup_{D \in \delta[s,t]} \sum_{D} ||x_{t_i} - x_{t_{i-1}}||^p \right\}^{1/p}.$$

特に, $\|\cdot\|_{p,[0,T]}$ を $\|\cdot\|_p$ と表記する.また $p\geq 1$ として,線型空間 $B_{p,T}(V)$ を

$$B_{p,T}(V) := \left\{ x : [0,T] \longrightarrow V ; \quad x_0 = 0, \ x : \text{continuous}, \|x\|_p < \infty \right\}$$

により定める.

次の結果によれば、 $0 に対し <math>B_{p,T}(V)$ を定めても零写像のみの空間でしかない.

定理 1.1.5 (0 に対して有界 <math>p-variation なら定数). $x : [0,T] \longrightarrow V$ を連続写像とする. このとき, $p \in (0,1)$ に対し $||x||_p < \infty$ が成り立つなら x は定数写像である.

証明. $t \in [0,T]$ を任意に取り固定する. このとき全ての $D \in \delta[0,t]$ に対して,

$$||x_{t} - x_{0}|| \leq \sum_{D} ||x_{t_{i}} - x_{t_{i-1}}|| \leq \max_{D} ||x_{t_{i}} - x_{t_{i-1}}||^{1-p} \sum_{D} ||x_{t_{i}} - x_{t_{i-1}}||^{p}$$

$$\leq \max_{D} ||x_{t_{i}} - x_{t_{i-1}}||^{1-p} ||x||_{p}$$

が成り立ち, x の一様連続性から右辺は $|D| \longrightarrow 0$ で 0 に収束し, $x_t = x_0$ が従う.

定理 1.1.6 (p-variation \mathcal{O} p に関する単調減少性). V をノルム空間とするとき, x: $[0,T] \longrightarrow V$ に対して $1 \le p \le q$ なら $\|x\|_p \ge \|x\|_q$ が成立する. 特に $B_{p,T}(V) \subset B_{q,T}(V)$ である.

証明. $a,b \ge 0$, $r \ge 1$ に対し $a^r + b^r \le (a+b)^r$ が成り立つから

$$\left[\sum_{i=1}^{n} a_i^r\right]^{1/r} \le \sum_{i=1}^{n} a_i, \quad (a_i \ge 0, \ n \ge 1, \ r \ge 1)$$

を得る. 従って任意の $x:[0,T] \longrightarrow V$ と $D \in \delta[0,T]$ に対し

$$\left[\sum_{D} \left(\|x_{t_{i}} - x_{t_{i-1}}\|^{p} \right)^{q/p} \right]^{p/q} \leq \sum_{D} \|x_{t_{i}} - x_{t_{i-1}}\|^{p}$$

が満たされ $||x||_q \le ||x||_p$ が成立する.

 $p \ge 1$ の場合, Minkowski の不等式によれば, 任意の $D \in \delta[s,t]$ に対し

$$\left\{ \sum_{D} \left\| (x_{t_{i}} + y_{t_{i}}) - (x_{t_{i-1}} + y_{t_{i-1}}) \right\|^{p} \right\}^{1/p} \leq \left\{ \sum_{D} \left\| x_{t_{i}} - x_{t_{i-1}} \right\|^{p} \right\}^{1/p} + \left\{ \sum_{D} \left\| y_{t_{i}} - y_{t_{i-1}} \right\|^{p} \right\}^{1/p} \\
\leq \left\| x \right\|_{p,[s,t]} + \left\| y \right\|_{p,[s,t]}$$

が成り立ち $\|x+y\|_{p,[s,t]} \le \|x\|_{p,[s,t]} + \|y\|_{p,[s,t]}$ を得る.

定理 1.1.7. V が Banach 空間のとき、 $B_{p,T}(V)$ は $\|\cdot\|_p$ をノルムとする Banach 空間である.

証明. 完備性を示す.

第一段 $(x^n)_{n=1}^{\infty} \subset B_{p,T}(V)$ を Cauchy 列とすれば、任意の $\epsilon>0$ に対して或る $n_{\epsilon}\in\mathbb{N}$ が存在し

$$\|x^{n}-x^{m}\|_{p} = \left\{ \sup_{D \in \delta[0,T]} \sum_{D} \left\| \left(x_{t_{i}}^{n}-x_{t_{i}}^{m}\right) - \left(x_{t_{i-1}}^{n}-x_{t_{i-1}}^{m}\right) \right\|^{p} \right\}^{1/p} < \epsilon, \quad (n, m > n_{\epsilon})$$

を満たす. いま, 任意の $t \in [0,T]$ に対して [0,T] の分割 $D = \{0 \le t \le T\}$ を考えれば

$$\|x_t^n - x_t^m\| < \epsilon, \quad (n, m > n_{\epsilon})$$

が得られ、Vの完備性より或る $x_t \in \mathbb{R}^d$ が存在して

$$\|x_t^n - x_t\| < \epsilon \quad (n > n_\epsilon)$$

を満たす. この収束はtに関して一様であるから, $t \mapsto x_t$ は0出発かつ連続である.

第二段 $\|x^n-x\|_p\longrightarrow 0 (n\longrightarrow \infty)$ を示す. 前段によれば、任意の $D\in \delta[0,T]$ に対し

$$\sum_{D} \left\| \left(x_{t_{i}}^{m} - x_{t_{i}}^{n} \right) - \left(x_{t_{i-1}}^{m} - x_{t_{i-1}}^{n} \right) \right\|^{p} < \epsilon^{p}, \quad (n, m > n_{\epsilon})$$

が成り立っている. D は有限分割であるから, $m \longrightarrow \infty$ として

$$\sum_{D} \left\| (x_{t_i} - x_{t_i}^n) - (x_{t_{i-1}} - x_{t_{i-1}}^n) \right\|^p < \epsilon^p, \quad (n > n_{\epsilon})$$

が従い、D の任意性より $\|x^n - x\|_p < \epsilon (n > n_\epsilon)$ を得る.

定理 1.1.8. $p \ge 1$ とする. また $x_0 = 0$ を満たす $x \in C^1$ の全体が作る線形空間を \tilde{C}^1 とおく.

- (1) $x \in C^1$ ならば $\|x\|_p < \infty$ が成り立つ. ただちに、 $\|\cdot\|_p$ は \tilde{C}^1 においてノルムとなる.
- (2) $ilde{C}^1$ において, $\|\cdot\|_{C^1}$ で導入する位相は $\|\cdot\|_p$ で導入する位相より強い.

証明.

p=1 の場合 平均値の定理より、任意の $D \in \delta[0,T]$ に対し

$$\sum_{D} \left| x_{t_{i}} - x_{t_{i-1}} \right| \leq \sum_{D} \| x \|_{C^{1}} \left(t_{i} - t_{i-1} \right) = \| x \|_{C^{1}} T < \infty$$

が成り立ち $||x||_1 < \infty$ が従う.

p>1 の場合 q を p の共役指数とする. 任意の $D \in \delta[0,T]$ に対し、Hölder の不等式より

$$\sum_{D} |x_{t_{i}} - x_{t_{i-1}}|^{p} = \sum_{D} \left| \int_{t_{i-1}}^{t_{i}} \dot{x}_{u} du \right|^{p} \leq \sum_{D} (t_{i} - t_{i-1}) \left(\int_{t_{i-1}}^{t_{i}} |\dot{x}_{u}|^{q} du \right)^{p/q}$$

$$\leq \sum_{D} (t_{i} - t_{i-1}) \left(\int_{0}^{T} ||x||_{C^{1}}^{q} du \right)^{p/q} = ||x||_{C^{1}}^{p} T^{p}$$

が成立し、 $||x||_p < \infty$ が従う.

以上より、 $p \ge 1$ ならば $||x||_p \le T ||x||_{C^1}$ $(x \in C^1)$ が成り立ち (2) の主張を得る.

次節の考察対象は主に定理 1.1.3 と定理 1.1.8 に関係する.定理 1.1.3 によれば, C^1 に $\|\cdot\|_{C^1}$ でノルム位相を導入した場合, $f\in C(\mathbb{R}^d,L(\mathbb{R}^d\to\mathbb{R}^m))$ に対して $C^1\ni x\longmapsto I_{s,t}(x)$ は連続である.一方で定理 1.1.3 によれば,0 出発 C^1 -パス空間 \tilde{C}^1 に $\|\cdot\|_p$ でノルム位相を導入した場合, $\tilde{C}^1\ni x\longmapsto I_{s,t}(x)$ が連続であるという保証はない.しかし,次節以後の結果により, $1\le p<3$ かつ $f\in C^2(\mathbb{R}^d,L(\mathbb{R}^d\to\mathbb{R}^m))$ が満たされているなら $\tilde{C}^1\ni x\longmapsto I_{s,t}(x)$ は或る意味での連続性を持つ.

1.2 A continuity theorem of line integrals as a functional of paths

$$\Delta_{T} := \{ (s,t) ; \quad 0 \le s \le t \le T \},$$

$$X^{1} : \Delta_{T} \longrightarrow \mathbb{R}^{d} \left((s,t) \longmapsto X_{s,t}^{1} = x_{t} - x_{s} \right),$$

$$X^{2} : \Delta_{T} \longrightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d} \left((s,t) \longmapsto X_{s,t}^{2} = \int_{s}^{t} (x_{u} - x_{s}) \otimes dx_{u} \right),$$

$$\tilde{I}_{s,t}(x) := f(x_{s})X_{s,t}^{1} = f(x_{s})(x_{t} - x_{s}),$$

 $J_{s,t}(x) := f(x_s)X_{s,t}^1 + (\nabla f)(x_s)X_{s,t}^2$

定義 1.2.1 (記号の定義). $x \in C^1$, $f \in C^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ に対し次を定める.

以降, $a,b,c,d \in \mathbb{R}^d$ に対して次の表現を使う:

$$[a \otimes b]_{j}^{i} = a^{i}b^{j},$$

$$\left[(\nabla f)(x_{s})X_{s,t}^{2} \right]^{i} = \sum_{j,k=1}^{d} \partial_{k} f_{j}^{i}(x_{s}) \int_{s}^{t} \left(x_{u}^{k} - x_{s}^{k} \right) dx_{u}^{j},$$

$$\left[(\nabla f)(x_{s})(a \otimes b) \right]^{i} = \sum_{j,k=1}^{d} \partial_{k} f_{j}^{i}(x_{s}) a^{k} b^{j},$$

$$\left[(\nabla^{2} f)(x_{s})(a \otimes b \otimes c) \right]^{i} = \sum_{j,k,\nu=1}^{d} \partial_{\nu} \partial_{k} f_{j}^{i}(x_{s}) a^{\nu} b^{k} c^{j},$$

$$\left[(\nabla^{3} f)(x_{s})(a \otimes b \otimes c \otimes d) \right]^{i} = \sum_{j,k,\nu,w=1}^{d} \partial_{w} \partial_{\nu} \partial_{k} f_{j}^{i}(x_{s}) a^{w} b^{\nu} c^{k} d^{j}.$$

定理 1.2.2. $[s,t] \subset [0,T], x \in C^1, f \in C^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ とする. $D \in \delta[s,t]$ に対し

$$\tilde{I}_{s,t}(x,D)\coloneqq \sum_{D}\tilde{I}_{t_{i-1},t_i}(x),\quad J_{s,t}(x,D)\coloneqq \sum_{D}J_{t_{i-1},t_i}(x)$$

を定めるとき,次が成立する:

$$I_{s,t}(x) = \lim_{|D| \to 0} \tilde{I}_{s,t}(x,D) = \lim_{|D| \to 0} J_{s,t}(x,D).$$

証明. 第一の等号は $I_{s,t}(x)$ の定義によるから、第二の等号を証明する. まず、

$$I_{s,t}(x) = \int_{s}^{t} f(x_{u}) dx_{u}$$

$$= \int_{s}^{t} f(x_{s}) + f(x_{u}) - f(x_{s}) dx_{u}$$

$$= \int_{s}^{t} f(x_{s}) dx_{u} + \int_{s}^{t} \int_{0}^{1} (\nabla f)(x_{s} + \theta(x_{u} - x_{s})) \left(X_{s,u}^{1} \otimes \dot{x}_{u}\right) d\theta du$$

$$= f(x_{s})X_{s,t}^{1} + (\nabla f)(x_{s})X_{s,t}^{2}$$

$$+ \int_{s}^{t} \int_{0}^{1} \{(\nabla f)(x_{s} + \theta(x_{u} - x_{s})) - (\nabla f)(x_{s})\} \left(X_{s,u}^{1} \otimes \dot{x}_{u}\right) d\theta du$$

$$= J_{s,t}(x) + \int_{s}^{t} \int_{0}^{1} \int_{0}^{\theta} (\nabla^{2} f)(x_{s} + r(x_{u} - x_{s})) \left(X_{s,u}^{1} \otimes X_{s,u}^{1} \otimes \dot{x}_{u}\right) dr d\theta du$$

が成り立つ. $[0,T]\ni t\longmapsto x_t$ の連続性より,最下段式中の $x_s+r(x_u-x_s)$ $(0\le r\le 1,\ s\le u\le t)$ は或るコンパクト集合 K に含まれ,f が C^2 -級関数であるから $M:=\sum_{i,j,k,\nu}\sup_{x\in K}\left|\partial_{\nu}\partial_{k}f_{j}^{i}(x)\right|$ として $M<\infty$ を定めれば

$$\left| \int_{s}^{t} \int_{0}^{1} \int_{0}^{\theta} (\nabla^{2} f)(x_{s} + r(x_{u} - x_{s})) \left(X_{s,u}^{1} \otimes X_{s,u}^{1} \otimes \dot{x}_{u} \right) dr d\theta du \right|$$

$$\leq \int_{s}^{t} \int_{0}^{1} \int_{0}^{\theta} \left| (\nabla^{2} f)(x_{s} + r(x_{u} - x_{s})) \left(X_{s,u}^{1} \otimes X_{s,u}^{1} \otimes \dot{x}_{u} \right) \right| dr d\theta du$$

$$\leq M \int_{s}^{t} |X_{s,u}^{1}|^{2} |\dot{x}_{u}| du$$

$$\leq M \|x\|_{C^{1}}^{3} \int_{s}^{t} (u - s)^{2} du$$

となる. 特に $D \in \delta[s,t]$ に対して

$$\sum_{D} \int_{t_{i-1}}^{t_i} (u - t_{i-1})^2 du \le \sum_{D} |D| \int_{t_{i-1}}^{t_i} (u - t_{i-1}) du$$

$$\le \sum_{D} |D| \int_{t_{i-1}}^{t_i} (u - s) du \le \frac{1}{2} (t - s)^2 |D| \longrightarrow 0 \quad (|D| \longrightarrow 0)$$

が成立するから,

$$\left|I_{s,t}(x)-J_{s,t}(x,D)\right|\leq \sum_{D}\left|I_{t_{i-1},t_{i}}(x)-J_{t_{i-1},t_{i}}(x)\right|\longrightarrow 0\quad (|D|\longrightarrow 0)$$

が従い定理の主張を得る.

定義 1.2.3 (コントロール関数). 関数 $\omega: \Delta_T \longrightarrow [0,\infty)$ が連続かつ任意の $s \le u \le t$ に対して

$$\omega(s, u) + \omega(u, t) \le \omega(s, t) \tag{1.2}$$

を満たすとき, ω をコントロール関数 (control function) と呼ぶ.

式 (1.2) から $\omega(t,t)=0$ $(\forall t\in[0,T])$ が従う. つまりコントロール関数は対角線上で 0 になる.

定義 1.2.4 (ノルム空間値写像の p-variation). $(V,\|\cdot\|)$ をノルム空間, p>0 とする. このとき連続写像 $\psi:\Delta_T \longrightarrow V$ に対する p-variation を

$$\|\psi\|_{p,[s,t]} := \left\{ \sup_{D \in \delta[s,t]} \sum_{D} \|\psi_{t_{i-1},t_i}\|^p \right\}^{1/p}, \quad ((s,t) \subset [0,T])$$

で定める. 特に $\|\cdot\|_{p,[0,T]}$ を $\|\cdot\|_p$ と書く.

再定義した *p*-variation に対しても定理 1.1.5, 1.1.6, 1.1.7 が成立する.

定理 1.2.5 (定理 1.1.5 のアナロジー). V をノルム空間, $X:\Delta_T \longrightarrow V$ を連続写像とする. このとき, $X_{t,t}=0$ ($\forall t \in [0,T]$) かつ $p \in (0,1)$ に対し $\|X\|_p < \infty$ が満たされれば $X\equiv 0$ である.

証明. $(s,t) \in \Delta_T$ を任意に取り固定する. このとき全ての $D \in \delta[s,t]$ に対して,

$$||X_{s,t}|| \le \sum_{D} ||X_{t_{i-1},t_i}|| \le \max_{D} ||X_{t_{i-1},t_i}||^{1-p} \sum_{D} ||X_{t_{i-1},t_i}||^{p}$$

$$\le \max_{D} ||X_{t_{i-1},t_i}||^{1-p} ||X||_{p}$$

が成り立ち、X の一様連続性から右辺は $|D| \longrightarrow 0$ で 0 に収束し、 $X_{s,t} = 0$ が従う.

定理 1.2.6 (定理 1.1.6 のアナロジー). V をノルム空間とするとき, $x:[0,T] \longrightarrow V$ に対して $1 \le p \le q$ なら $\|X\|_p \ge \|X\|_q$ が成立する.

ノルム空間 (V,||·||) に対し

$$B_{p,T}(V) := \left\{ X : \Delta_T \longrightarrow V ; \text{ continuous, } ||X||_p < \infty \right\}$$
 (1.3)

として線型空間 $B_{p,T}(V)$ を定めれば、定理 1.1.7 のアナロジーを得る.

定理 1.2.7. V が Banach 空間のとき、 $B_{p,T}(V)$ は $\|\cdot\|_p$ をノルムとする Banach 空間である.

証明. 完備性を示す.

第一段 $(X^n)_{n=1}^{\infty}$ を $B_{p,T}(V)$ の Cauchy 列とすれば、任意の $\epsilon>0$ に対して或る $n_{\epsilon}\in\mathbb{N}$ が存在し

$$\|X^{n} - X^{m}\|_{p} = \left\{ \sup_{D \in \delta[0,T]} \sum_{D} \|X^{n}_{t_{i-1},t_{i}} - X^{m}_{t_{i-1},t_{i}}\|^{p} \right\}^{1/p} < \epsilon, \quad (n, m > n_{\epsilon})$$

を満たす. 任意の $(s,t) \in \Delta_T$ に対して分割 $D = \{0 \le s \le t \le T\}$ を取れば

$$||X_{s,t}^n - X_{s,t}^m|| < \epsilon, \quad (n, m > n_{\epsilon})$$

が成り立ち、Vの完備性より或る $X_{s,t} \in \mathbb{R}^d$ が存在して

$$\|X_{s,t}^n - X_{s,t}\| < \epsilon \quad (n > n_{\epsilon})$$

となる. この収束は (s,t) に関して一様であるから X は連続である.

第二段 $\|X^n-X\|_p\longrightarrow 0\ (n\longrightarrow\infty)$ を示す. 前段より、任意の $D\in\delta[0,T]$ に対し

$$\sum_{p} \left\| X_{t_{i-1},t_i}^n - X_{t_{i-1},t_i}^m \right\|^p < \epsilon^p, \quad (n,m > n_{\epsilon})$$

が満たされる. D は有限分割であるから, $m \longrightarrow \infty$ として

$$\sum_{D} \left\| X_{t_{i-1},t_i}^n - X_{t_{i-1},t_i} \right\|^p < \epsilon^p, \quad (n > n_{\epsilon})$$

が従い,D の任意性より $\|X^n - X\|_p < \epsilon (n > n_\epsilon)$ を得る.

定理 1.2.8 (p-変動が定めるコントロール関数). $(V,\|\cdot\|)$ をノルム空間, p>0 とする. このとき, $\|\psi\|_p<\infty$ かつ $\psi_{t,t}=0$ $(\forall t\in[0,T])$ を満たす連続写像 $\psi:\Delta_T\longrightarrow V$ に対して,

$$\omega: \Delta_T \ni (s,t) \longmapsto \|\psi\|_{p,[s,t]}^p$$

により定める ω はコントロール関数である.

証明 (参考:[3](pp. 96-98)). $\|\psi\|_p < \infty$ の仮定より ω は $[0,\infty)$ 値であるから,以下では式 (1.2) と連続性を示す.

第一段 ω が式 (1.2) を満たすことを示す. 実際, 任意に $D_1 \in \delta[s,u], D_2 \in \delta[u,t]$ を取れば

$$\sum_{D_1} \left\| \psi_{t_{i-1},t_i} \right\|^p + \sum_{D_2} \left\| \psi_{t_{i-1},t_i} \right\|^p = \sum_{D_1 \cup D_2} \left\| \psi_{t_{i-1},t_i} \right\|^p \le \left\| \psi \right\|_{p:[s,t]}^p$$

が成り立つ. 左辺の D_1, D_2 の取り方は独立であるから, それぞれに対し上限を取れば

$$\|\psi\|_{p:[s,u]}^p + \|\psi\|_{p:[u,t]}^p \le \|\psi\|_{p:[s,t]}^p$$

が従う.

第二段 任意の $[s,t] \subset [0,T]$ について *2 ,

$$\lim_{h \to +0} \omega(s, t+h) = \inf_{h > 0} \omega(s, t+h), \qquad \lim_{h \to +0} \omega(s-h, t) = \inf_{h > 0} \omega(s-h, t),$$

$$\lim_{h \to +0} \omega(s, t-h) = \sup_{h > 0} \omega(s, t-h), \qquad \lim_{h \to +0} \omega(s+h, t) = \sup_{h > 0} \omega(s+h, t)$$

^{*2} 下段の二式については s < t と仮定する. また上段についても, t = T 或は s = 0 の場合を除く必要がある.

が成立する. 実際 $\omega(s,t+h)$ について見れば、これは下に有界かつ $h\to +0$ に対し単調減少であるから極限が確定し下限に一致する. 残りの三つも同様の理由で成立する.

第三段 任意の $s \in [0,T)$ に対し、 $(s,T] \ni t \mapsto \omega(s,t)$ の左連続性を示す.ここでは

$$\tilde{\omega}(s,t) := \begin{cases} \lim_{h \to +0} \omega(s,t-h), & (s < t), \\ 0, & (s = t), \end{cases} \quad (\forall (s,t) \in \Delta_T)$$

で定める \tilde{a} が優加法性を持ち、かつ

$$\|\psi_{s,t}\|^p \le \tilde{\omega}(s,t), \quad (\forall (s,t) \in \Delta_T)$$

を満たすことを示す.実際これが示されれば、任意の $D \in \delta[s,t]$ に対し

$$\sum_{D} \left\| \psi_{t_{i-1},t_{i}} \right\|^{p} \leq \sum_{D} \tilde{\omega}(t_{i-1},t_{i}) \leq \tilde{\omega}(s,t)$$

が成立し $\omega(s,t) \leq \tilde{\omega}(s,t)$ が従い、 $\omega(s,t) \geq \omega(s,t-h)$ ($\forall h > 0$) と併せて

$$\omega(s,t) = \tilde{\omega}(s,t) = \lim_{h \to +0} \omega(s,t-h)$$

を得る. いま, 任意に s < u < t を取れば, 十分小さい $h_1, h_2 > 0$ に対して

$$\omega(s, u - h_1) + \omega(u, t - h_2) \le \omega(s, t - h_2)$$

が満たされ, $h_1 \longrightarrow +0$, $h_2 \longrightarrow +0$ として

$$\tilde{\omega}(s, u) + \tilde{\omega}(u, t) \le \tilde{\omega}(s, t)$$

が成り立つから $\tilde{\omega}$ は優加法性を持つ. また, もし或る $(u,v) \in \Delta_T$ に対して

$$\|\psi_{uv}\|^p > \tilde{\omega}(u,v)$$

が成り立つと仮定すると (u = v なら両辺 0 になるから u < v である)

$$\|\psi_{u,v}\|^p > \tilde{\omega}(u,v) \ge \omega(u,v-h) \ge \|\psi_{u,v-h}\|^p$$
, $(\forall h > 0)$

となる. 一方 ψ の連続性より $\|\psi_{u,v-h}\|^p \longrightarrow \|\psi_{u,v}\|^p$ $(h \longrightarrow +0)$ が従い矛盾が生じる. 同様にして, 任意の $t \in (0,T]$ に対し $[0,t) \ni s \longmapsto \omega(s,t)$ の右連続性も出る.

第四段 任意の $t \in [0,T)$ に対して次を示す:

$$\lim_{h\to+0}\omega(t,t+h)=\inf_{h>0}\omega(t,t+h)=0.$$

第一の等号は前段より従うから, 第二の等号を背理法により証明する. いま

$$\inf_{h>0} \omega(t, t+h) =: \delta > 0$$

と仮定すれば、 ψ の連続性より或る h_1 が存在して

$$\|\psi_{t,t+h}\|^p = \|\psi_{t,t+h} - \psi_{t,t}\|^p < \frac{\delta}{8}, \quad (\forall h < h_1)$$
 (1.4)

が成立する. ここで任意に $h_0 < h_1$ を取り固定する. 一方で $\omega(t, t + h_0) \ge \delta$ より

$$\sum_{i=1}^{N} \left\| \psi_{\tau_{i-1},\tau_i} \right\|^p > \frac{7\delta}{8}$$

を満たす $D = \{t = \tau_0 < \tau_1 < \cdots, \tau_N = t + h_0\} \in \delta[t, t + h_0]$ が存在し、(1.4) と併せて

$$\sum_{i=2}^{N}\left\|\psi_{\tau_{i-1},\tau_{i}}\right\|^{p}>\frac{7\delta}{8}-\left\|\psi_{t,\tau_{1}}\right\|^{p}>\frac{7\delta}{8}-\frac{\delta}{8}=\frac{3\delta}{4}$$

を得る. また, $\omega(t,\tau_1) \ge \delta$ より或る $D' \in \delta[t,\tau_1]$ が存在して

$$\sum_{D'} \left\| \psi_{t_{i-1},t_i} \right\|^p > \frac{3\delta}{4}$$

を満たすから、 $D' \cup \{\tau_1 < \cdots, \tau_N = t + h_0\} \in \delta[t, t + h_0]$ に対して

$$\omega(t, t + h_0) > \sum_{D'} \|\psi_{t_{i-1}, t_i}\|^p + \sum_{i=2}^N \|\psi_{\tau_{i-1}, \tau_i}\|^p > \frac{3\delta}{2}$$

が従うが、 $h_0 < h_1$ の任意性と単調減少性により

$$\delta = \inf_{h>0} \omega(t, t+h) = \inf_{h_1 > h > 0} \omega(t, t+h) \ge \frac{3\delta}{2}$$

となり矛盾が生じる. 同様にして

$$\lim_{h \to +0} \omega(t - h, t) = 0, \quad (\forall t \in (0, T])$$

も成立する.

第五段 任意に $s \in [0,T)$ を取り固定し, $[s,T) \ni t \mapsto \omega(s,t)$ が右連続であることを示す.

$$\lim_{h \to +0} \omega(s, t+h) \le \omega(s, t) \tag{1.5}$$

を示せば、第二段より逆向きの不等号も従い右連続性を得る。任意に $h,\epsilon>0$ を取れば、

$$\omega(s, t+h) - \epsilon \le \sum_{D} \|\psi_{t_{i-1}, t_i}\|^p$$

を満たす $D \in \delta[s, t+h]$ が存在し,

$$D_1 := \{t_0 < \dots < t_k\} = [s, t] \cap D, \quad D_2 := D \setminus (D_1 \cup \{t_{k+1}\})$$

とおくと

$$\omega(s, t + h) - \epsilon \leq \sum_{i=1}^{k} \|\psi_{t_{i-1}, t_i}\|^p + \|\psi_{t_k, t_{k+1}}\|^p + \sum_{D_2} \|\psi_{t_{i-1}, t_i}\|^p$$

$$= \sum_{i=1}^{k} \|\psi_{t_{i-1}, t_i}\|^p + \|\psi_{t_k, t}\|^p + \|\psi_{t_k, t_{k+1}}\|^p - \|\psi_{t_k, t}\|^p + \sum_{D_2} \|\psi_{t_{i-1}, t_i}\|^p$$

$$\leq \omega(s, t) + \omega(t, t + h) + \|\psi_{t_k, t_{k+1}}\|^p - \|\psi_{t_k, t}\|^p$$

が成り立つ. ψ の一様連続性より $\|\psi_{t_k,t_{k+1}}\|^p \longrightarrow \|\psi_{t_k,t}\|^p$ $(h \longrightarrow +0)$ が成り立つから

$$\lim_{h \to +0} \omega(s, t+h) - \epsilon \le \omega(s, t), \quad (\forall \epsilon > 0)$$

が従い (1.5) が出る.同様に $(0,t] \ni s \mapsto \omega(s,t)$ $(\forall t \in (0,T])$ の左連続性も成立する. 第六段 ω の $(s,t) \in \Delta_T$ における連続性を示す. $h,k \geq 0$ とする.

(A) (s,t) を基準に第一象限の点について

$$\begin{aligned} |\omega(s,t) - \omega(s+h,t+k)| \\ &\leq |\omega(s,t) - \omega(s+h,t)| + |\omega(s+h,t) - \omega(s+h,t+k)| \\ &= |\omega(s,t) - \omega(s+h,t)| + \omega(s+h,t+k) - \omega(s+h,t) \\ &\leq |\omega(s,t) - \omega(s+h,t)| + \omega(s,t+k) - \omega(s+h,t) \\ &\leq |\omega(s,t) - \omega(s+h,t)| + |\omega(s,t+k) - \omega(s,t)| + |\omega(s,t) - \omega(s+h,t)| \end{aligned}$$

11

が成り立つ. 前段までに示した左右の連続性より,近づけ方に依らず $h,k \longrightarrow +0$ とすれば,左辺をいくらでも 0 に近づけることができる.

(B) (s,t) を基準に第三象限の点について

$$\begin{split} |\omega(s,t) - \omega(s-h,t-k)| \\ &\leq |\omega(s,t) - \omega(s-h,t)| + |\omega(s-h,t) - \omega(s-h,t-k)| \\ &= |\omega(s,t) - \omega(s-h,t)| + \omega(s-h,t) - \omega(s-h,t-k) \\ &\leq |\omega(s,t) - \omega(s-h,t)| + \omega(s-h,t) - \omega(s,t-k) \\ &\leq |\omega(s,t) - \omega(s-h,t)| + |\omega(s-h,t) - \omega(s,t)| + |\omega(s,t) - \omega(s,t-k)|, \end{split}$$

が成り立つ. (A) と同じく $h,k \longrightarrow +0$ として左辺は 0 に収束する.

(C) $((h_n, k_n))_{n=1}^{\infty}$ を第一象限から (0,0) に近づく任意の点列とするとき,

$$\lim_{n \to \infty} \omega(s - h_n, t + k_n) = \omega(s, t), \quad \lim_{n \to \infty} \omega(s + h_n, t - k_n) = \omega(s, t)$$

が成り立つことを示す. これが示されれば

$$\lim_{h,k\to+0}\omega(s-h,t+k)=\omega(s,t),\quad \lim_{h,k\to+0}\omega(s+h,t-k)=\omega(s,t)$$

が従い, (A)(B) と併せて ω の連続性が出る. 背理法で証明する. いま,

$$\alpha := \lim_{n \to \infty} \omega(s - h_n, t + k_n) > \omega(s, t)$$

と仮定して $\epsilon \coloneqq \alpha - \omega(s,t)$ とおく. $\lim_{t' \downarrow t} \omega(s,t') = \omega(s,t)$ より

$$0 \le \omega(s, t') - \omega(s, t) < \frac{\epsilon}{3}$$

を満たす t' > t が存在し、また $\lim_{s' \uparrow s} \omega(s', t') = \omega(s, t')$ より

$$0 \le \omega(s', t') - \omega(s, t') < \frac{\epsilon}{3}$$

を満たす s' < s も存在する. このとき或る n で $s' \le s - h_n$, $t + k_n \le t'$ かつ

$$|\omega(s-h_n,t+k_n)-\alpha|<\frac{\epsilon}{3}$$

が成立し、特に $(s - h_n, t + k_n) \subset (s', t')$ より

$$\omega(s - h_n, t + k_n) \le \omega(s', t')$$

となるはずであるが、一方で

$$\omega(s',t') < \frac{2}{3}\epsilon + \omega(s,t) = \alpha - \frac{\epsilon}{3} < \omega(s-h_n,t+k_n)$$

が従い矛盾が生じる. よって

$$\lim_{n\to\infty}\omega(s-h_n,t+k_n)=\omega(s,t)$$

でなくてはならず、同様にして $\lim_{n\to\infty}\omega(s+h_n,t-k_n)=\omega(s,t)$ も得られる.

定理 1.2.9 (control function の例). 以下の関数 $\omega: \Delta_T \longrightarrow [0,\infty)$ は control function である.

(1) $\omega: (s,t) \longmapsto \|X^1\|_{p:[s,t]}^p, \quad (p \ge 1, \ x \in B_{p,T}(\mathbb{R}^d)).$ (2) $\omega: (s,t) \longmapsto \|X^2\|_{p:[s,t]}^p, \quad (p \ge 1, \ x \in C^1).$

(2)
$$\omega: (s,t) \longmapsto \|X^2\|_{p^r[s,t]}^p, \quad (p \ge 1, x \in C^1).$$

行列 $a = (a_i^i)$ のノルムは $|a| = \sqrt{\sum_{i,j} |a_i^i|^2}$ として考える.

定理 1.2.10.

- $\omega:(s,t) \mapsto X_{s,t}^1 = x_t x_s$ は連続であるから、前定理より ω は control function である.
- 任意の $[s,t] \subset [0,T]$ に対して $\|X^2\|_{p:[s,t]}^p < \infty$ を示せば、あとは上と同じ理由により定理の主張が得られる.実 際,任意の分割 $D = \{s = t_0 < \cdots < t_N = t\}$ に対し

$$\begin{aligned} \left\| X_{t_{i-1},t_{i}}^{2} \right\| &\leq \left| \int_{t_{i-1}}^{t_{i}} (x_{u} - x_{t_{i-1}}) \otimes \dot{x}_{u} \, du \right| \\ &\leq \int_{t_{i-1}}^{t_{i}} \left| (x_{u} - x_{t_{i-1}}) \otimes \dot{x}_{u} \right| \, du \\ &\leq \left\| x \right\|_{C^{1}}^{2} \left\{ \int_{t_{i-1}}^{t_{i}} (u - s) \, du \right\}^{1/p} \left\{ \int_{t_{i-1}}^{t_{i}} (u - s) \, du \right\}^{1-1/p} \\ &\leq \left\| x \right\|_{C^{1}}^{2} \left\{ \int_{t_{i-1}}^{t_{i}} (u - s) \, du \right\}^{1/p} \left\{ \int_{s}^{t} (u - s) \, du \right\}^{1-1/p} \end{aligned}$$

が成り立つから,

$$\sum_{D} \|X_{t_{i-1},t_{i}}^{2}\|^{p} \leq \sum_{D} \|x\|_{C^{1}}^{2p} \left\{ \frac{1}{2} (t-s)^{2} \right\}^{p-1} \int_{t_{i-1}}^{t_{i}} (u-s) du$$

$$= \|x\|_{C^{1}}^{2p} \left\{ \frac{1}{2} (t-s)^{2} \right\}^{p-1} \int_{s}^{t} (u-s) du = \|x\|_{C^{1}}^{2p} \left\{ \frac{1}{2} (t-s)^{2} \right\}^{p}$$

により $\|X^2\|_{p:[s,t]}^p < \infty$ が従う.

補題 1.2.11. $\omega:\Delta_T\longrightarrow [0,\infty)$ を優加法的関数とする (証明に連続性は使わないからコントロール関数である必要 はない). $D = \{s = t_0 < t_1 < \dots < t_N = t\}$ について, $N \ge 2$ の場合或る $1 \le i \le N-1$ が存在して次を満たす:

$$\omega(t_{i-1}, t_{i+1}) \le \frac{2\omega(s, t)}{N - 1}.$$
(1.6)

証明. $\omega(t_{i-1},t_{i+1}) = \min_{1 \leq j \leq N-1} \omega(t_{j-1},t_{j+1})$ を満たす i に対し

$$(N-1)\omega(t_{i-1},t_{i+1}) \leq \sum_{j=1}^{N-1} \omega(t_{j-1},t_{j+1}) = \sum_{\substack{0 \leq 2j-1, \\ 2j+1 \leq N-1}} \omega(t_{2j-1},t_{2j+1}) + \sum_{\substack{0 \leq 2j, \\ 2j+2 \leq N-1}} \omega(t_{2j},t_{2j+2}) \leq 2\omega(s,t)$$

が成立する.

1.3 Proof of continuity theorem

定理 $1.3.1~(1 \le p < 2$ の場合の連続性定理). $1 \le p < 2$ とし, $x_0 = y_0$ を満たす $x,y \in C^1$ と $f \in C_b^2(\mathbb{R}^d,L(\mathbb{R}^d \to \mathbb{R}^m)), 0 < \epsilon, R < \infty$ を任意に取る.このとき,

$$\|X^1\|_p$$
, $\|Y^1\|_p \le R$, $\|X^1 - Y^1\|_p \le \epsilon$

なら、或る定数 C = C(p,R,f) が存在し、任意の $0 \le s \le t \le T$ に対して次が成立する:

$$\left|I_{s,t}(x)-I_{s,t}(y)\right|\leq \epsilon C.$$

系 1.3.2 (p-variation による閉球上の Lipschitz 連続性). $1 \le p < 2$ とし, $x_0 = y_0$ を満たす $x,y \in C^1$ と $f \in C_b^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$, $0 < R < \infty$ を任意に取る.このとき,

$$||X^1||_p$$
, $||Y^1||_p \leq R$

なら、或る定数 C = C(p, R, f) が存在して次を満たす:

$$|I_{0,T}(x) - I_{0,T}(y)| \le C ||X^1 - Y^1||_p$$
.

証明 (系 1.3.2). 定理 1.3.1 において, $\epsilon = \left\|X^1 - Y^1\right\|_p (x \neq y)^{*3}$ として証明が通る.

証明 (定理 1.3.1). $[s,t] \subset [0,T]$ とする.

第一段 $\omega: \Delta_T \longrightarrow [0, \infty)$ を

$$\omega(\alpha,\beta) = \left\| \left. X^1 \right\|_{p,[\alpha,\beta]}^p + \left\| \left. Y^1 \right\|_{p,[\alpha,\beta]}^p + \epsilon^{-p} \left\| \left. X^1 - Y^1 \right\|_{p,[\alpha,\beta]}^p \right., \quad ((\alpha,\beta) \in \Delta_T)$$

で定めれば、定理 1.2.9 により $1 \le p$ の下で ω は control function である.

第二段 任意に [s,t] の分割 $D=\{s=t_0<\cdots< t_N=t\}$ $(N\geq 2)$ を取れば、補題 1.2.11 より (1.6) を満たす $t_{(0)}$ が存在する。ここで、 $D_{-0}\coloneqq D,\ D_{-1}\coloneqq D\backslash\{t_{(0)}\}$ と定める。 $N\geq 3$ ならば D_{-1} についても (1.6) を満たす $t_{(1)}$ が存在するから、 $D_{-2}\coloneqq D_{-1}\backslash\{t_{(1)}\}$ と定める。この操作を繰り返せば $t_{(k)},D_{-k}$ $(k=0,1,\cdots,N-1)$ が得られ、

$$\tilde{I}_{s,t}(x,D) - \tilde{I}_{s,t}(y,D)
= \sum_{k=0}^{N-2} \left[\left\{ \tilde{I}_{s,t}(x,D_{-k}) - \tilde{I}_{s,t}(x,D_{-k-1}) \right\} - \left\{ \tilde{I}_{s,t}(y,D_{-k}) - \tilde{I}_{s,t}(y,D_{-k-1}) \right\} \right]
+ \left\{ \tilde{I}_{s,t}(x) - \tilde{I}_{s,t}(y) \right\}$$
(1.7)

と表現できる.

第三段 式 (1.7) について、次を満たす定数 C_1 が存在することを示す:

$$|(1.7)| \le \epsilon C_1 \tag{1.8}$$

^{*3} x=y なら $\left\|X^1-Y^1\right\|_p=0$ かつ $I_{s,t}(x)=I_{s,t}(y)$ が成り立つ.

見やすくするために $t_k = t_{(k)}$ と書き直せば,

$$\begin{split} & \left\{ \tilde{l}_{s,t}(x,D_{-k}) - \tilde{l}_{s,t}(x,D_{-k-1}) \right\} - \left\{ \tilde{l}_{s,t}(y,D_{-k}) - \tilde{l}_{s,t}(y,D_{-k-1}) \right\} \\ & = \left\{ f(x_{l_k}) - f(x_{l_{k-1}}) \right\} X_{l_k,l_{k+1}}^1 - \left\{ f(y_{l_k}) - f(y_{l_{k-1}}) \right\} Y_{l_k,l_{k+1}}^1 \\ & = \left\{ f(x_{l_k}) - f(x_{l_{k-1}}) \right\} X_{l_k,l_{k+1}}^1 - \left\{ f(y_{l_k}) - f(y_{l_{k-1}}) \right\} Y_{l_k,l_{k+1}}^1 \\ & + \left\{ f(x_{l_k}) - f(x_{l_{k-1}}) \right\} Y_{l_k,l_{k+1}}^1 - \left\{ f(y_{l_k}) - f(y_{l_{k-1}}) \right\} Y_{l_k,l_{k+1}}^1 \\ & = \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) X_{l_{k-1},l_k}^1 \otimes \left(X_{l_k,l_{k+1}}^1 - Y_{l_k,l_{k+1}}^1 \right) d\theta \\ & + \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) X_{l_{k-1},l_k}^1 \otimes Y_{l_k,l_{k+1}}^1 d\theta \\ & - \int_0^1 (\nabla f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}})) Y_{l_{k-1},l_k}^1 \otimes Y_{l_k,l_{k+1}}^1 - Y_{l_k,l_{k+1}}^1 \right) d\theta \\ & + \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_k,l_{k+1}}^1 d\theta \\ & + \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) Y_{l_{k-1},l_k}^1 \otimes Y_{l_k,l_{k+1}}^1 d\theta \\ & - \int_0^1 (\nabla f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}})) Y_{l_{k-1},l_k}^1 \otimes Y_{l_k,l_{k+1}}^1 d\theta \\ & = \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) X_{l_{k-1},l_k}^1 \otimes \left(X_{l_k,l_{k+1}}^1 - Y_{l_k,l_{k+1}}^1 \right) d\theta \\ & + \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_k,l_{k+1}}^1 d\theta \\ & + \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_k,l_{k+1}}^1 d\theta \\ & + \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}}) + r(x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}}) - y_{l_{k-1}} - \theta(y_{l_k} - y_{l_{k-1}})) \right) \\ & \left(X_{0,l_{k-1}}^1 - Y_{0,l_{k-1}}^1 \right) \otimes Y_{l_{k-1},l_k}^1 \otimes Y_{l_k,l_{k+1}}^1 dr d\theta \right)^{44} \\ & + \int_0^1 \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}}) \otimes Y_{l_k,l_{k-1}}^1 dr d\theta \right)^{44} \\ & + \int_0^1 \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}}) \otimes Y_{l_k,l_{k-1}}^1 dr d\theta \right)^{44} \\ & + \int_0^1 \int_0^1 (\nabla^2 f) (y_{l_{k-1}}^1 + y_{l_{k-1},l_k}^1) \otimes Y_{l_k,l_{k-1}}^1 dr d\theta \right)^{44} \\ &$$

が成り立つ. 補題 1.2.11 より

$$\begin{aligned} \left| X_{t_{k-1},t_{k}}^{1} \right|, \left| Y_{t_{k-1},t_{k}}^{1} \right|, \left| X_{t_{k},t_{k+1}}^{1} \right|, \left| Y_{t_{k},t_{k+1}}^{1} \right| \leq \omega(t_{k-1},t_{k+1})^{1/p} \leq \left(\frac{2\omega(s,t)}{N-k-1} \right)^{1/p}, \\ \left| X_{t_{k-1},t_{k}}^{1} - Y_{t_{k-1},t_{k}}^{1} \right|, \left| X_{t_{k},t_{k+1}}^{1} - Y_{t_{k},t_{k+1}}^{1} \right| \leq \epsilon \omega(t_{k-1},t_{k+1})^{1/p} \leq \epsilon \left(\frac{2\omega(s,t)}{N-k-1} \right)^{1/p} \end{aligned}$$

が満たされ,また

$$\left|X_{0,t_{k-1}}^{1}-Y_{0,t_{k-1}}^{1}\right|\leq\epsilon\omega(0,t_{k-1})^{1/p}\leq\epsilon\omega(0,T)^{1/p}\leq\epsilon(2R^{p}+1)^{1/p}$$

でもあるから,

$$M := \sum_{i,j} \sup_{x \in \mathbb{R}^d} |f_j^i(x)| + \sum_{i,j,k} \sup_{x \in \mathbb{R}^d} |\partial_k f_j^i(x)| + \sum_{i,j,k,\nu} \sup_{x \in \mathbb{R}^d} |\partial_\nu \partial_k f_j^i(x)|$$
(1.9)

 $^{^{*4}}$ $x_0=y_0$ の仮定より $x_{t_{k-1}}-y_{t_{k-1}}=X_{0,t_{k-1}}^1-Y_{0,t_{k-1}}^1$ が成り立つ.

と定めて

$$\begin{split} & \left| \left\{ \tilde{I}_{s,t}(x, D_{-k}) - \tilde{I}_{s,t}(x, D_{-k-1}) \right\} - \left\{ \tilde{I}_{s,t}(y, D_{-k}) - \tilde{I}_{s,t}(y, D_{-k-1}) \right\} \right| \\ & \leq M \left| X_{t_{k-1},t_{k}}^{1} \right| \left| X_{t_{k},t_{k+1}}^{1} - Y_{t_{k},t_{k+1}}^{1} \right| \\ & + M \left| X_{t_{k-1},t_{k}}^{1} - Y_{t_{k-1},t_{k}}^{1} \right| \left| Y_{t_{k},t_{k+1}}^{1} \right| \\ & + M \left| X_{0,t_{k-1}}^{1} - Y_{0,t_{k-1}}^{1} \right| \left| Y_{t_{k-1},t_{k}}^{1} \right| \left| Y_{t_{k},t_{k+1}}^{1} \right| \\ & + M \left| X_{t_{k-1},t_{k}}^{1} - Y_{t_{k-1},t_{k}}^{1} \right| \left| Y_{t_{k-1},t_{k}}^{1} \right| \left| Y_{t_{k},t_{k+1}}^{1} \right| \\ & \leq \epsilon M \left[2 + 2 \left(2R^{p} + 1 \right)^{1/p} \right] \left(\frac{2\omega(s,t)}{N - k - 1} \right)^{2/p} \\ & \leq \epsilon M \left[2 + 2 \left(2R^{p} + 1 \right)^{1/p} \right] 2^{2/p} \left(2R^{p} + 1 \right)^{2/p} \left(\frac{1}{N - k - 1} \right)^{2/p} \end{split}$$

を得る.

$$C'_1 := M \left[2 + 2 (2R^p + 1)^{1/p} \right] 2^{2/p} (2R^p + 1)^{2/p}$$

とおけば

$$|(1.7)| \le \sum_{k=0}^{N-2} \epsilon C_1' \left(\frac{1}{N-k-1} \right)^{2/p} < \epsilon C_1' \zeta \left(\frac{2}{p} \right)$$

が成立し,p < 2 より $\zeta(2/p) < \infty$ であるから $C_1 \coloneqq C_1'\zeta(2/p)$ とおいて (1.8) が従う.

第四段 $x_0 = y_0$ の仮定により $x_s - y_s = X_{0,s}^1 - Y_{0,s}^1$ が成り立ち

$$\begin{aligned} \left| \tilde{I}_{s,t}(x) - \tilde{I}_{s,t}(y) \right| &= \left| f(x_s) X_{s,t}^1 - f(y_s) Y_{s,t}^1 \right| \\ &\leq \left| f(x_s) X_{s,t}^1 - f(x_s) Y_{s,t}^1 \right| + \left| f(x_s) Y_{s,t}^1 - f(y_s) Y_{s,t}^1 \right| \\ &\leq M \left| X_{s,t}^1 - Y_{s,t}^1 \right| + \left| \int_0^1 (\nabla f) (y_s + \theta(x_s - y_s)) \left[\left(X_{0,s}^1 - Y_{0,s}^1 \right) \otimes Y_{s,t}^1 \right] d\theta \right| \\ &\leq M \left| X_{s,t}^1 - Y_{s,t}^1 \right| + M \left| X_{0,s}^1 - Y_{0,s}^1 \right| \left| Y_{s,t}^1 \right| \\ &\leq M \epsilon \omega(s,t)^{1/p} + M \epsilon \omega(0,s)^{1/p} \omega(s,t)^{1/p} \\ &\leq \epsilon M \left[(2R^p + 1)^{1/p} + (2R^p + 1)^{2/p} \right] \end{aligned}$$

が従う. ここで $C_2 := M \left[(2R^p + 1)^{1/p} + (2R^p + 1)^{2/p} \right]$ とおく.

第五段 第二段と第三段より、任意の $D \in \delta[s,t]$ に対し

$$\left| \tilde{I}_{s,t}(x,D) - \tilde{I}_{s,t}(y,D) \right| \le \epsilon (C_1 + C_2)$$

が成立し、定理 1.2.2 により $|D| \longrightarrow 0$ として

$$\left|I_{s,t}(x) - I_{s,t}(y)\right| \le \epsilon (C_1 + C_2)$$

が出る.

第 1 章 16

定理 $1.3.3~(2 \le p < 3$ の場合の連続性定理). $2 \le p < 3$ とし, $x_0 = y_0$ を満たす $x,y \in C^1$ と $f \in C_b^2(\mathbb{R}^d,L(\mathbb{R}^d \to \mathbb{R}^m)), 0 < \epsilon, R < \infty$ を任意に取る.このとき,

$$\begin{aligned} & \left\| X^{1} \right\|_{p}, \left\| Y^{1} \right\|_{p}, \left\| X^{2} \right\|_{p/2}, \left\| Y^{2} \right\|_{p/2} \leq R < \infty, \\ & \left\| X^{1} - Y^{1} \right\|_{p}, \left\| X^{2} - Y^{2} \right\|_{p/2} \leq \epsilon \end{aligned}$$

なら、或る定数 C = C(p,R,f) が存在し、任意の $0 \le s \le t \le T$ に対して次が成立する:

$$\left|I_{s,t}(x)-I_{s,t}(y)\right|\leq \epsilon C.$$

系 1.3.4. $1 \le p < 2$ とし, $x_0 = y_0$ を満たす $x, y \in C^1$ と $f \in C_b^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m)), 0 < R < \infty$ を任意に取る.このとき,

$$||X^1||_p, ||Y^1||_p, ||X^2||_{p/2}, ||Y^2||_{p/2} \le R$$

なら, 或る定数 C = C(p, R, f) が存在して次を満たす:

$$|I_{0,T}(x) - I_{0,T}(y)| \le C(||X^1 - Y^1||_p + ||X^2 - Y^2||_{p/2}).$$

証明 (系 1.3.4). 定理 1.3.3 において, $\epsilon = \left\|X^1 - Y^1\right\|_p + \left\|X^2 - Y^2\right\|_{p/2} (x \neq y)$ として証明が通る.

証明 (定理 1.3.4). $[s,t] \subset [0,T]$ とする.

第一段 $\omega: \Delta_T \longrightarrow [0, \infty)$ を

$$\begin{split} \omega(\alpha,\beta) &= \left\| \left\| X^1 \right\|_{p,[\alpha,\beta]}^p + \left\| \left\| Y^1 \right\|_{p,[\alpha,\beta]}^p + \left\| \left\| X^2 \right\|_{p/2,[\alpha,\beta]}^{p/2} + \left\| \left| Y^2 \right\|_{p/2,[\alpha,\beta]}^{p/2} \\ &+ \epsilon^{-p} \left\| X^1 - Y^1 \right\|_{p,[\alpha,\beta]}^p + \epsilon^{-p/2} \left\| X^2 - Y^2 \right\|_{p/2,[\alpha,\beta]}^{p/2}, \quad ((\alpha,\beta) \in \Delta_T) \end{split}$$

で定めれば、定理 1.2.9 により $2 \le p$ の下で ω は control function である.

第二段 $D \in \delta[s,t]$ に対し、定理 1.3.1 の証明と同様にして $t_{(k)}, D_{-k}$ を構成すれば

$$J_{s,t}(x,D) - J_{s,t}(y,D)$$

$$= \sum_{k=0}^{N-2} \left[\left\{ J_{s,t}(x,D_{-k}) - J_{s,t}(x,D_{-k-1}) \right\} - \left\{ J_{s,t}(y,D_{-k}) - J_{s,t}(y,D_{-k-1}) \right\} \right]$$

$$+ \left\{ J_{s,t}(x) - J_{s,t}(y) \right\}$$
(1.10)

と表現できる.

第三段 $J_{s,t}(x,D_{-k})-J_{s,t}(x,D_{-k-1})$ を変形する. 以降 $t_k=t_{(k)}$ と書き直せば

$$\begin{split} J_{s,t}(x,D_{-k}) - J_{s,t}(x,D_{-k-1}) \\ &= J_{t_{k-1},t_k}(x) + J_{t_k,t_{k+1}}(x) - J_{t_{k-1},t_{k+1}}(x) \\ &= f(x_{t_{k-1}})X^1_{t_{k-1},t_k} + f(x_{t_k})X^1_{t_k,t_{k+1}} - f(x_{t_{k-1}})X^1_{t_{k-1},t_{k+1}} \\ &\quad + (\nabla f)(x_{t_{k-1}})X^2_{t_{k-1},t_k} + (\nabla f)(x_{t_k})X^2_{t_k,t_{k+1}} - (\nabla f)(x_{t_{k-1}})X^2_{t_{k-1},t_{k+1}} \\ &= \{f(x_{t_k}) - f(x_{t_{k-1}})\}X^1_{t_k,t_{k+1}} \end{split}$$

$$+ (\nabla f)(x_{t_{k-1}})X_{t_{k-1},t_k}^2 + (\nabla f)(x_{t_k})X_{t_k,t_{k+1}}^2 - (\nabla f)(x_{t_{k-1}})X_{t_{k-1},t_{k+1}}^2$$

$$= \int_0^1 \left\{ (\nabla f)(x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}})) - (\nabla f)(x_{t_{k-1}}) \right\} X_{t_{k-1},t_k}^1 \otimes X_{t_k,t_{k+1}}^1 d\theta$$

$$+ (\nabla f)(x_{t_{k-1}})X_{t_{k-1},t_k}^1 \otimes X_{t_k,t_{k+1}}^1$$

$$+ (\nabla f)(x_{t_{k-1}})X_{t_{k-1},t_k}^2 + (\nabla f)(x_{t_k})X_{t_k,t_{k+1}}^2 - (\nabla f)(x_{t_{k-1}})X_{t_{k-1},t_{k+1}}^2$$

$$= \int_0^1 \int_0^\theta (\nabla f)(x_{t_{k-1}} + r(x_{t_k} - x_{t_{k-1}}))X_{t_{k-1},t_k}^1 \otimes X_{t_{k-1},t_k}^1 \otimes X_{t_k,t_{k+1}}^1 dr d\theta$$

$$+ (\nabla f)(x_{t_k})X_{t_k,t_{k+1}}^2$$

$$= \int_0^1 \int_0^\theta (\nabla f)(x_{t_{k-1}} + r(x_{t_k} - x_{t_{k-1}}))X_{t_{k-1},t_k}^1 \otimes X_{t_{k-1},t_k}^1 \otimes X_{t_k,t_{k+1}}^1 dr d\theta$$

$$+ \left\{ (\nabla f)(x_{t_k}) - (\nabla f)(x_{t_{k-1}}) \right\} X_{t_k,t_{k+1}}^2$$

$$= \int_0^1 \int_0^\theta (\nabla f)(x_{t_{k-1}} + r(x_{t_k} - x_{t_{k-1}}))X_{t_{k-1},t_k}^1 \otimes X_{t_{k-1},t_k}^1 \otimes X_{t_k,t_{k+1}}^1 dr d\theta$$

$$+ \int_0^1 (\nabla^2 f)(x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}}))X_{t_{k-1},t_k}^1 \otimes X_{t_k,t_{k+1}}^1 d\theta d\theta$$

$$+ \int_0^1 (\nabla^2 f)(x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}}))X_{t_{k-1},t_k}^1 \otimes X_{t_k,t_{k+1}}^1 d\theta d\theta$$

を得る.

第四段 式 (1.10) について,次を満たす定数 C_1 が存在することを示す:

$$|(1.10)| \le \epsilon C_1. \tag{1.11}$$

実際, 前段の結果より

$$\begin{split} &\{J_{s,t}(x,D_{-k})-J_{s,t}(x,D_{-k-1})\}-\{J_{s,t}(y,D_{-k})-J_{s,t}(y,D_{-k-1})\}\\ &=\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(x_{t_{k-1}}+r(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes X_{t_{k-1},t_{k}}^{1}\otimes X_{t_{k},t_{k+1}}^{1}\ dr\ d\theta\\ &+\int_{0}^{1}(\nabla^{2}f)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes X_{t_{k},t_{k+1}}^{2}\ d\theta\\ &-\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(y_{t_{k-1}}+r(y_{t_{k}}-y_{t_{k-1}}))Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k-1},t_{k}}^{2}\otimes Y_{t_{k},t_{k+1}}^{1}\ dr\ d\theta\\ &-\int_{0}^{1}(\nabla^{2}f)(y_{t_{k-1}}+\theta(y_{t_{k}}-y_{t_{k-1}}))Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k},t_{k+1}}^{2}\ d\theta\\ &=\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(x_{t_{k-1}}+r(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k},t_{k+1}}^{1}-Y_{t_{k},t_{k+1}}^{1}\right)\ dr\ d\theta\\ &+\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(x_{t_{k-1}}+r(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k-1},t_{k}}^{1}-Y_{t_{k-1},t_{k}}^{1}\right)\otimes Y_{t_{k},t_{k+1}}^{1}\ dr\ d\theta\\ &+\int_{0}^{1}\int_{0}^{\theta}\left(\nabla^{2}f)(x_{t_{k-1}}+r(x_{t_{k}}-x_{t_{k-1}}))\cdot\left(X_{t_{k-1},t_{k}}^{1}-Y_{t_{k-1},t_{k}}^{1}\right)\otimes Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k},t_{k+1}}^{1}\ dr\ d\theta\\ &+\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(y_{t_{k-1}}+r(y_{t_{k}}-y_{t_{k-1}}))\left(X_{t_{k-1},t_{k}}^{1}-Y_{t_{k-1},t_{k}}^{1}\right)\otimes Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k},t_{k+1}}^{1}\ dr\ d\theta\\ &+\int_{0}^{1}\left(\nabla^{2}f)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k},t_{k+1}}^{2}-Y_{t_{k},t_{k+1}}^{1}\right)\ d\theta\\ &+\int_{0}^{1}\left(\nabla^{2}f)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k},t_{k+1}}^{2}-Y_{t_{k},t_{k+1}}^{2}\right)\ d\theta\\ &+\int_{0}^{1}\left(\nabla^{2}f)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k},t_{k+1}}^{2}-Y_{t_{k},t_{k+1}}^{2}\right)\ d\theta\\ &+\int_{0}^{1}\left(\nabla^{2}f)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k},t_{k+1}}^{2}-Y_{t_{k},t_{k+1}}^{2}\right)\ d\theta\\ &+\int_{0}^{1}\left(\nabla^{2}f\right)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k},t_{k+1}}^{2}-Y_{t_{k},t_{k+1}}^{2}\right)\ d\theta\\ &+\int_{0}^{1}\left(\nabla^{2}f\right)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k},t_{k+1}}^{2}-Y_{t_$$

$$\begin{split} X_{l_{k-1},l_k}^1 \otimes Y_{l_k,l_{k+1}}^2 \, d\theta \\ + \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_k,l_{k+1}}^2 \, d\theta \\ = \int_0^1 \int_0^\theta (\nabla^2 f) (x_{l_{k-1}} + r(x_{l_k} - x_{l_{k-1}})) X_{l_{k-1},l_k}^1 \otimes X_{l_{k-1},l_k}^1 \otimes \left(X_{l_k,l_{k+1}}^1 - Y_{l_k,l_{k+1}}^1 \right) \, dr \, d\theta \\ + \int_0^1 \int_0^\theta (\nabla^2 f) (x_{l_{k-1}} + r(x_{l_k} - x_{l_{k-1}})) X_{l_{k-1},l_k}^1 \otimes \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_k,l_{k+1}}^1 \, dr \, d\theta \\ + \int_0^1 \int_0^\theta \int_0^1 (\nabla^3 f) (y_{l_{k-1}} + r(y_{l_k} - y_{l_{k-1}}) + u(x_{l_{k-1}} + r(x_{l_k} - x_{l_{k-1}}) - y_{l_{k-1}} - r(y_{l_k} - y_{l_{k-1}}))) \\ \left\{ \left(X_{0,l_{k-1}}^1 - Y_{0,l_{k-1}}^1 \right) + r \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \right\} \otimes X_{l_{k-1},l_k}^1 \otimes Y_{l_{k-1},l_k}^1 \otimes Y_{l_{k,l_{k+1}}}^1 \, du \, dr \, d\theta \\ + \int_0^1 \int_0^\theta (\nabla^2 f) (y_{l_{k-1}} + r(y_{l_k} - y_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_{k-1},l_k}^1 \otimes Y_{l_{k,l_{k+1}}}^1 \, dr \, d\theta \\ + \int_0^1 (\nabla^2 f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) X_{l_{k-1},l_k}^1 \otimes \left(X_{l_k,l_{k+1}}^2 - Y_{l_k,l_{k+1}}^1 \right) \, d\theta \\ + \int_0^1 (\nabla^3 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}}) + r(x_{l_{k-1},l_k} - Y_{l_{k-1},l_k}^1) \right\} \otimes X_{l_{k-1},l_k}^1 \otimes Y_{l_k,l_{k+1}}^2 \, dr \, d\theta \\ + \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_{k-1},l_k}^1 \, dr \, d\theta \\ + \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_{k-1},l_k}^1 \, dr \, d\theta \\ + \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_{k-1},l_k}^1 \, dr \, d\theta \\ + \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_{k-1},l_k}^1 \, d\theta \\ + \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_{k-1},l_k}^1 \, d\theta \\ + \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_{k-1},l_k}^1 \, d\theta$$

が成り立つから,

$$M := \sum_{i,j} \sup_{x \in \mathbb{R}^d} |f_j^i(x)| + \sum_{i,j,k} \sup_{x \in \mathbb{R}^d} |\partial_k f_j^i(x)|$$

$$+ \sum_{i,j,k,\nu} \sup_{x \in \mathbb{R}^d} |\partial_\nu \partial_k f_j^i(x)| + \sum_{i,j,k,\nu,w} \sup_{x \in \mathbb{R}^d} |\partial_w \partial_\nu \partial_k f_j^i(x)|$$

$$(1.12)$$

とおいて

$$\begin{split} & \left| \left\{ J_{s,t}(x,D_{-k}) - J_{s,t}(x,D_{-k-1}) \right\} - \left\{ J_{s,t}(y,D_{-k}) - J_{s,t}(y,D_{-k-1}) \right\} \right| \\ & \leq M \left| X_{t_{k-1},t_{k}}^{1} \right| \left| X_{t_{k-1},t_{k}}^{1} \right| \left| X_{t_{k-1},t_{k}}^{1} - Y_{t_{k},t_{k+1}}^{1} \right| \\ & + M \left| X_{t_{k-1},t_{k}}^{1} \right| \left| X_{t_{k-1},t_{k}}^{1} - Y_{t_{k-1},t_{k}}^{1} \right| \left| Y_{t_{k},t_{k+1}}^{1} \right| \\ & + M \left| X_{t_{k-1},t_{k}}^{1} - Y_{0,t_{k-1}}^{1} \right| \left| X_{t_{k-1},t_{k}}^{1} \right| \left| Y_{t_{k-1},t_{k}}^{1} \right| \left| Y_{t_{k},t_{k+1}}^{1} \right| \\ & + M \left| X_{t_{k-1},t_{k}}^{1} - Y_{t_{k-1},t_{k}}^{1} \right| \left| X_{t_{k-1},t_{k}}^{1} \right| \left| Y_{t_{k},t_{k+1}}^{1} \right| \\ & + M \left| X_{t_{k-1},t_{k}}^{1} - Y_{t_{k-1},t_{k}}^{1} \right| \left| Y_{t_{k-1},t_{k}}^{1} \right| \left| Y_{t_{k},t_{k+1}}^{1} \right| \\ & + M \left| X_{t_{k-1},t_{k}}^{1} \right| \left| X_{t_{k-1},t_{k}}^{2} \right| \left| Y_{t_{k},t_{k+1}}^{2} \right| \\ & + M \left| X_{t_{k-1},t_{k}}^{1} - Y_{t_{k-1},t_{k}}^{1} \right| \left| X_{t_{k-1},t_{k}}^{2} \right| \left| Y_{t_{k},t_{k+1}}^{2} \right| \\ & + M \left| X_{t_{k-1},t_{k}}^{1} - Y_{t_{k-1},t_{k}}^{1} \right| \left| X_{t_{k-1},t_{k}}^{2} \right| \left| Y_{t_{k},t_{k+1}}^{2} \right| \\ & + M \left| X_{t_{k-1},t_{k}}^{1} - Y_{t_{k-1},t_{k}}^{1} \right| \left| X_{t_{k-1},t_{k}}^{2} \right| \left| Y_{t_{k},t_{k+1}}^{2} \right| \\ & \leq \epsilon M \left[5 + 2\omega(0,t_{k-1})^{1/p} + 2\omega(t_{k-1},t_{k})^{1/p} \right] \left(\frac{2\omega(s,t)}{N-k-1} \right)^{3/p} \\ & \leq \epsilon M \left[2 + 4 \left(2R^{p} + 2R^{p/2} + 2 \right)^{1/p} \right] 2^{3/p} \left(2R^{p} + 2R^{p/2} + 2 \right)^{3/p} \left(\frac{1}{N-k-1} \right)^{3/p} \end{split}$$

を得る. ここで

$$C_1' \coloneqq M \left[2 + 4 \left(2R^p + 2R^{p/2} + 2 \right)^{1/p} \right] 2^{3/p} \left(2R^p + 2R^{p/2} + 2 \right)^{3/p}$$

第 1 章 **19**

と定めれば

$$|(1.10)| \le \sum_{k=0}^{N-2} \epsilon C_1' \left(\frac{1}{N-k-1} \right)^{3/p} < \epsilon C_1' \zeta \left(\frac{3}{p} \right)$$

が成立し、p < 3 より $\zeta(3/p) < \infty$ であるから $C_1 \coloneqq C_1'\zeta(3/p)$ とおいて (1.11) が出る. 第五段 $x_0 = y_0$ の仮定により

$$\begin{aligned} & \left| J_{s,t}(x) - J_{s,t}(y) \right| \\ & \leq \left| f(x_s) X_{s,t}^1 - f(y_s) Y_{s,t}^1 \right| + \left| (\nabla f)(x_s) X_{s,t}^2 - (\nabla f)(y_s) Y_{s,t}^2 \right| \\ & \leq \left| f(x_s) X_{s,t}^1 - f(x_s) Y_{s,t}^1 \right| + \left| f(x_s) Y_{s,t}^1 - f(y_s) Y_{s,t}^1 \right| \\ & \quad + \left| (\nabla f)(x_s) X_{s,t}^2 - (\nabla f)(x_s) Y_{s,t}^2 \right| + \left| (\nabla f)(x_s) Y_{s,t}^2 - (\nabla f)(y_s) Y_{s,t}^2 \right| \\ & \leq M \left| X_{s,t}^1 - Y_{s,t}^1 \right| + \left| \int_0^1 (\nabla f)(y_s + \theta(x_s - y_s))(x_s - y_s) \otimes Y_{s,t}^1 d\theta \right| \\ & \quad + M \left| X_{s,t}^2 - Y_{s,t}^2 \right| + \left| \int_0^1 (\nabla^2 f)(y_s + \theta(x_s - y_s))(x_s - y_s) \otimes Y_{s,t}^2 d\theta \right| \\ & \leq M \left| X_{s,t}^1 - Y_{s,t}^1 \right| + M \left| X_{0,s}^1 - Y_{0,s}^1 \right| \left| Y_{s,t}^1 \right| \\ & \quad + M \left| X_{s,t}^2 - Y_{s,t}^2 \right| + M \left| X_{0,s}^1 - Y_{0,s}^1 \right| \left| Y_{s,t}^2 \right| \\ & \leq \epsilon M \omega(s,t)^{1/p} + \epsilon M \omega(0,s)^{1/p} \omega(s,t)^{1/p} \\ & \quad + \epsilon M \omega(s,t)^{2/p} + \epsilon M \omega(0,s)^{1/p} \omega(s,t)^{2/p} \\ & \leq \epsilon M \left[\omega(0,T)^{1/p} + 2 \omega(0,T)^{2/p} + \omega(0,T)^{3/p} \right] \\ & \leq \epsilon M \left[\left(2R^p + 2R^{p/2} + 2 \right)^{1/p} + 2 \left(2R^p + 2R^{p/2} + 2 \right)^{2/p} + \left(2R^p + 2R^{p/2} + 2 \right)^{3/p} \right] \end{aligned}$$

が従う. ここで最下段の ϵ の係数を C_2 とおく.

第六段 以上より、任意の $D \in \delta[s,t]$ に対し

$$\left|J_{s,t}(x,D)-J_{s,t}(y,D)\right|\leq \epsilon(C_1+C_2)$$

が成り立ち、定理 1.2.2 により $|D| \longrightarrow 0$ として

$$\left|I_{s,t}(x) - I_{s,t}(y)\right| \le \epsilon (C_1 + C_2)$$

が出る.

系 1.3.5 (パスが 0 出発なら f の有界性は要らない). 定理 1.3.1 と定理 1.3.3 について, $x,y \in \tilde{C}^1$ ならば $f \in C^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ として主張が成り立つ.

証明. $x_0 = 0$ なら

$$||X^1||_p \le R \quad \Rightarrow \quad |x_t| \le R \quad (\forall t \in [0, T])$$

が成り立つから、式 (1.9) と (1.12) において $\sup_{x \in \mathbb{R}^d}$ を $\sup_{|x| \le 9R}$ に替えればよい.

第 1 章 20

1.4 The notion of rough path

 $(V, \|\cdot\|)$ を \mathbb{R} 上の Banach 空間とする $(V \neq \{0\})$. また \otimes_a により代数的テンソル積,或はその標準写像を表す. $k \geq 2$ の場合,k 重テンソル積 $V^{\otimes_a k} = V \otimes_a \cdots \otimes_a V$ にプロジェクティブノルム $\pi_k(\cdot)$ を導入し,その完備拡大を $(V^{\otimes k}, |\cdot|_k)$ と 書く*5. k = 0, 1 に対しては $V^{\otimes 0} := \mathbb{R}$, $V^{\otimes 1} := V$ とし, $|\cdot|_0 = \pi_0(\cdot) := \mathbb{R}$ の絶対値,及び $|\cdot|_1 = \pi_1(\cdot) := \|\cdot\|$ と定める.定理 A.3.4 と定理 A.3.9 により,任意の $0 \leq j \leq k$ に対し $V^{\otimes_a k}$ と $V^{\otimes_a j} \otimes_a V^{\otimes_a k-j}$ は線型同型となる.この同型写像を

$$F_{j,k}: V^{\otimes_a k} \longrightarrow V^{\otimes_a j} \otimes_a V^{\otimes_a k - j}, \quad 0 \le j \le k$$

書けば、 $F_{i,k}$ は

$$F_{0,k}(v) = 1 \otimes_a v, \qquad (\forall v \in V^{\otimes_a k}),$$

$$F_{j,k}(v_1 \otimes_a \cdots \otimes_a v_k) = (v_1 \otimes_a \cdots \otimes_a v_j) \otimes_a (v_{j+1} \otimes_a \cdots \otimes_a v_k), \qquad (\forall v_1 \otimes_a \cdots \otimes_a v_k \in V^{\otimes_a k}, \ 1 \leq j \leq k-1),$$

$$F_{k,k}(v) = v \otimes_a 1, \qquad (\forall v \in V^{\otimes_a k})$$

を満たす. また $V^{\otimes_a j} \otimes_a V^{\otimes_a k-j}$ 上にもプロジェクティブノルムを導入し, これを $\pi_{i,k}$ と書く.

定理 1.4.1. このとき次式が成立する. 特に, $F_{i,k}$, $(0 \le j \le k)$ は等長同型である.

$$\pi_k \circ F_{i,k}^{-1} = \pi_{j,k}, \quad 0 \le j \le k.$$

証明.

第一段 j=0 のとき、任意の $v \in V^{\otimes_a k}$ に対し

$$\pi_{0,k}\left(F_{0,k}(v)\right) = \pi_{0,k}\left(1 \otimes_a v\right) = \pi_0\left(1\right)\pi_k\left(v\right) = \pi_k\left(v\right)$$

が成り立ち $\pi_k \circ F_{0,k}^{-1} = \pi_{0,k}$ を得る.同様にして $\pi_k \circ F_{k,k}^{-1} = \pi_{k,k}$ も出る.

第二段 $\pi_k\circ F_{j,k}^{-1}\leq \pi_{j,k},\ (1\leq j\leq k-1)$ が成り立つことを示す. $v\in V^{\otimes_a j}\otimes_a V^{\otimes_a k-j}$ の分割

$$v = \sum_{r} u^r \otimes_a v^r$$
, $(u^r \in V^{\otimes_a j}, v^r \in V^{\otimes_a k - j})$

を任意に取り、一旦固定する. このとき u',v' の任意の分割

$$u^r = \sum_{n(r)} u_1^{n(r)} \otimes_a \cdots \otimes_a u_j^{n(r)}, \quad v^r = \sum_{m(r)} v_{j+1}^{m(r)} \otimes_a \cdots \otimes_a v_k^{m(r)}, \quad (v_i^{n(r)}, v_i^{m(r)} \in V)$$

に対して

$$\pi_{k}\left(F_{j,k}^{-1}(v)\right) \leq \sum_{r} \sum_{n(r),m(r)} \pi_{k}\left(u_{1}^{n(r)} \otimes_{a} \cdots \otimes_{a} u_{j}^{n(r)} \otimes_{a} v_{j+1}^{m(r)} \otimes_{a} \cdots \otimes_{a} v_{k}^{m(r)}\right)$$

$$= \sum_{r} \sum_{n(r),m(r)} \left\|u_{1}^{n(r)}\right\| \cdots \left\|u_{j}^{n(r)}\right\| \left\|v_{j+1}^{m(r)}\right\| \cdots \left\|v_{k}^{m(r)}\right\|$$

$$= \sum_{r} \left\{\sum_{n(r)} \left\|u_{1}^{n(r)}\right\| \cdots \left\|u_{j}^{n(r)}\right\|\right\} \left\{\sum_{m(r)} \left\|v_{j+1}^{m(r)}\right\| \cdots \left\|v_{k}^{m(r)}\right\|\right\}$$

^{**} V が有限次元なら $V^{\otimes_a k}$ も有限次元であるから $V^{\otimes k} = V^{\otimes_a k}, |\cdot|_k = \pi_k(\cdot)$ でよい.しかし一般に $\left(V^{\otimes_a k}, \pi_k(\cdot)\right)$ は完備ではない ([6] (p. 17), [7]).

が成り立つから、分割の任意性と定理 A.4.7 より

$$\pi_k\left(F_{j,k}^{-1}(v)\right) \leq \sum_r \pi_j\left(u^r\right) \pi_{k-j}\left(v^r\right)$$

を得る. vの分割について下限を取れば、再び定理 A.4.7 により

$$\pi_k\left(F_{i,k}^{-1}(v)\right) \le \pi_{j,k}\left(v\right)$$

が出る.

第三段 $\pi_k\circ F_{i,k}^{-1}\geq \pi_{j,k},\ (1\leq j\leq k-1)$ が成り立つことを示す. $v\in V^{\otimes_a k}$ の任意の分割

$$v = \sum_{n} v_1^n \otimes_a \cdots \otimes_a v_k^n, \quad (v_i^n \in V, \ i = 1, \cdots, k)$$

を取れば,

$$\pi_{j,k}\left(F_{j,k}(v)\right) \leq \sum_{n} \pi_{j,k}\left(\left(v_{1}^{n} \otimes_{a} \cdots \otimes_{a} v_{j}^{n}\right) \otimes_{a} \left(v_{j}^{n} \otimes_{a} \cdots \otimes_{a} v_{k}^{n}\right)\right)$$

$$= \sum_{n} \pi_{j}\left(v_{1}^{n} \otimes_{a} \cdots \otimes_{a} v_{j}^{n}\right) \pi_{k-j}\left(v_{j}^{n} \otimes_{a} \cdots \otimes_{a} v_{k}^{n}\right)$$

$$= \sum_{n} \|v_{1}^{n}\| \cdots \|v_{k}^{n}\|$$

が成立する. 従って定理 A.4.7 より

$$\pi_{j,k}\left(F_{j,k}(v)\right) \leq \pi_k\left(v\right)$$

が得られる.

 $V^{\otimes_a i}$ の $V^{\otimes i}$ への等長埋め込みを J_i で表し (J_i の終集合を $J_i V^{\otimes_a i}$ と考える*6. i=0,1 の場合 J_i は恒等写像),

$$J_{j}V^{\otimes_{a}j} \times J_{k-j}V^{\otimes_{a}k-j} \ni (u,v) \longmapsto (J_{j}^{-1}u, J_{k-j}^{-1}v) \qquad \qquad \in V^{\otimes_{a}j} \times V^{\otimes_{a}k-j}$$

$$\longmapsto F_{j,k}^{-1}(J_{j}^{-1}u \otimes_{a} J_{k-j}^{-1}v) \qquad \qquad \in V^{\otimes_{a}k}$$

$$\longmapsto J_{k}F_{i,k}^{-1}(J_{i}^{-1}u \otimes_{a} J_{k-j}^{-1}v) \qquad \qquad \in V^{\otimes k} \qquad (1.13)$$

の対応関係により定まる写像 : $J_j V^{\otimes_a j} \times J_{k-j} V^{\otimes_a k-j} \longrightarrow V^{\otimes k}$ を $\varphi_{j,k}$ と書けば, $\varphi_{j,k}$ は有界双線型写像である.実際, \otimes_a の双線型性と埋め込み及び $F_{i,k}^{-1}$ の線型性より $\varphi_{j,k}$ の双線型性が従い,また

$$\begin{aligned} \left| \varphi_{j,k}(u,v) \right|_{k} &= \pi_{k} \left(F_{j,k}^{-1} (J_{j}^{-1} u \otimes_{a} J_{k-j}^{-1} v) \right) \\ &= \pi_{j,k} \left(J_{j}^{-1} u \otimes_{a} J_{k-j}^{-1} v \right) \\ &= \pi_{j} \left(J_{j}^{-1} u \right) \pi_{k-j} \left(J_{k-j}^{-1} v \right) \\ &= \left| u \right|_{j} \left| v \right|_{k-j} \end{aligned}$$

が任意の $(u,v) \in J_j V^{\otimes_a j} \times J_{k-j} V^{\otimes_a k-j}$ に対して成り立つから $\|\varphi_{j,k}\|_{L^{(2)}(J_j V^{\otimes_a j} \times J_{k-j} V^{\otimes_a k-j}, V^{\otimes_k k})} = 1$ を得る.従って,定理 A.1.4 より $\varphi_{j,k}$ は $V^{\otimes j} \times V^{\otimes k-j}$ 上の或るただ一つの双線型写像 $\psi_{j,k}$ にノルム保存拡張される.

定理 1.4.2. $0 \le j \le k$ とする. このとき, $\psi_{i,k}: V^{\otimes j} \times V^{\otimes k-j} \longrightarrow V^{\otimes k}$ は次を満たす:

$$\left|\psi_{j,k}(u,v)\right|_k = |\,u\,|_j\,|\,v\,|_{k-j}\,,\quad (\forall (u,v)\in V^{\otimes j}\times V^{\otimes k-j}).$$

 $^{^{*6}}$ J_i の終集合を $J_iV^{\otimes_a i}$ と考えれば全単射であるから逆写像 J_i^{-1} が存在する.

証明. (u,v) に直積ノルムで収束する点列 $(u_n,v_n)\in J_iV^{\otimes_a j}\times J_{k-j}V^{\otimes_a k-j}$ $(n=1,2,\cdots)$ を取れば

$$\left| \varphi_{j,k}(u_n, v_n) - \psi_{j,k}(u, v) \right|_{\iota} \longrightarrow 0, \quad (n \longrightarrow \infty)$$

が成り立つ. また

$$\begin{aligned} \| u_{n} \|_{j} \| v_{n} \|_{k-j} - \| u \|_{j} \| v \|_{k-j} \| & \leq \| u_{n} \|_{j} \| v_{n} \|_{k-j} - \| u_{n} \|_{j} \| v \|_{k-j} \| + \| u_{n} \|_{j} \| v \|_{k-j} - \| u \|_{j} \| v \|_{k-j} \| \\ & \leq \| u_{n} \|_{j} \| v_{n} - v \|_{k-j} + \| u_{n} - u \|_{j} \| v \|_{k-j} \\ & \longrightarrow 0, \quad (n \longrightarrow \infty) \end{aligned}$$

も成立するから

$$\left| \left| \psi_{j,k}(u,v) \right|_{k} - |u|_{j} |v|_{k-j} \right| \leq \left| \varphi_{j,k}(u_{n},v_{n}) - \psi_{j,k}(u,v) \right|_{k} + \left| |u_{n}|_{j} |v_{n}|_{k-j} - |u|_{j} |v|_{k-j} \right| \\ \longrightarrow 0, \quad (n \longrightarrow \infty)$$

が従い $\left|\psi_{j,k}(u,v)\right|_k = |u|_j |v|_{k-j}$ が得られる.

 $T(V) := \bigoplus_{k=0}^{\infty} V^{\otimes k}$ とおく、また上で定めた双線型写像 $\psi_{j,k}$ を $\otimes_{j,k}$ と書き直す:

$$u \otimes_{i,k} v = \psi_{i,k}(u,v), \quad (\forall (u,v) \in V^{\otimes j} \times V^{\otimes k-j}, \ 0 \le j \le k, \ k \ge 0).$$

このとき、任意の $a=(a_k)_{k=0}^{\infty},\;b=(b_k)_{k=0}^{\infty}\in T(V)$ に対し

$$c_k := \sum_{j=0}^k a_j \otimes_{j,k} b_{k-j}, \quad (k = 0, 1, 2, \cdots)$$

で $c_k \in V^{\otimes k}$ を定めれば、有限個の k を除いて $c_k = 0$ となり $c = (c_k)_{k=0}^\infty \in T(V)$ が満たされる.これで定まる二項算法を $c = a \otimes b$

と書けば、以下の主張により T(V) は \otimes を乗法として代数となる.

補題 1.4.3. 任意の $0 \le r \le j \le k$, $(r,j,k \in \mathbb{N})$ と任意の $a_r \in V^{\otimes r}, b_{j-r} \in V^{\otimes j-r}, c_{k-j} \in V^{\otimes k-j}$ に対して

$$\left(a_r \otimes_{r,j} b_{j-r}\right) \otimes_{j,k} c_{k-j} = a_r \otimes_{r,k} \left(b_{j-r} \otimes_{j-r,k-r} c_{k-j}\right) \tag{1.14}$$

が成立する.

証明.

第一段 $a_r \in J_r V^{\otimes_a r}, \ b_{j-r} \in J_{j-r} V^{\otimes_a j-r}, \ c_{k-j} \in J_{k-j} V^{\otimes_a k-j}$ として (1.14) を示す.この場合,(1.13) の対応関係により

$$(a_r \otimes_{r,j} b_{j-r}) \otimes_{j,k} c_{k-j} = J_k F_{j,k}^{-1} \left[\left\{ F_{r,j}^{-1} \left(J_r^{-1} a_r \otimes_a J_{j-r}^{-1} b_{j-r} \right) \right\} \otimes_a J_{k-j}^{-1} c_{k-j} \right],$$

$$a_r \otimes_{r,k} \left(b_{j-r} \otimes_{j-r,k-r} c_{k-j} \right) = J_k F_{r,k}^{-1} \left[J_r^{-1} a_r \otimes_a \left\{ F_{j-r,k-r}^{-1} \left(J_{j-r}^{-1} b_{j-r} \otimes_a J_{k-j}^{-1} c_{k-j} \right) \right\} \right]$$

となる. ここで

$$J_r^{-1}a_r = \sum_{i_1=1}^{I_1} v_1^{i_1} \otimes_a \cdots \otimes_a v_r^{i_1}, \quad J_{j-r}^{-1}b_{j-r} = \sum_{i_2=1}^{I_2} v_{r+1}^{i_2} \otimes_a \cdots \otimes_a v_j^{i_2}, \quad J_{k-j}^{-1}c_{k-j} = \sum_{i_2=1}^{I_3} v_{j+1}^{i_3} \otimes_a \cdots \otimes_a v_k^{i_3}$$

と表現できるから

$$\begin{split} F_{j,k}^{-1}\left[\left\{F_{r,j}^{-1}\left(J_{r}^{-1}a_{r}\otimes_{a}J_{j-r}^{-1}b_{j-r}\right)\right\}\otimes_{a}J_{k-j}^{-1}c_{k-j}\right]\\ &=\sum_{i_{1}=1}^{I_{1}}\sum_{i_{2}=1}^{I_{2}}\sum_{i_{3}=1}^{I_{3}}v_{1}^{i_{1}}\otimes_{a}\cdots\otimes_{a}v_{r}^{i_{1}}\otimes_{a}v_{r+1}^{i_{2}}\otimes_{a}\cdots\otimes_{a}v_{j}^{i_{2}}\otimes_{a}v_{j+1}^{i_{3}}\otimes_{a}\cdots\otimes_{a}v_{k}^{i_{3}}\\ &=F_{r,k}^{-1}\left[J_{r}^{-1}a_{r}\otimes_{a}\left\{F_{j-r,k-r}^{-1}\left(J_{j-r}^{-1}b_{j-r}\otimes_{a}J_{k-j}^{-1}c_{k-j}\right)\right\}\right] \end{split}$$

が成立し(1.14)が得られる.

第二段 一般に $a_r \in V^{\otimes r}, \ b_{j-r} \in V^{\otimes j-r}, \ c_{k-j} \in V^{\otimes k-j}$ の場合,

$$\left|a_r^n - a_r\right|_r \longrightarrow 0, \quad \left|b_{j-r}^n - b_{j-r}\right|_{j-r} \longrightarrow 0, \quad \left|c_{k-j}^n - c_{k-j}\right|_{k-j} \longrightarrow 0, \quad (n \longrightarrow \infty)$$

を満たす点列 $\{a_r^n\}_{n=1}^{\infty}\subset J_rV^{\otimes_a r},\ \left\{b_{j-r}^n\right\}_{n=1}^{\infty}\subset J_{j-r}V^{\otimes_a j-r},\ \left\{c_{k-j}^n\right\}_{n=1}^{\infty}\subset J_{k-j}V^{\otimes_a k-j}$ を取れば、前段の結果より

$$\begin{split} \left| \left(a_{r} \otimes_{r,j} b_{j-r} \right) \otimes_{j,k} c_{k-j} - a_{r} \otimes_{r,k} \left(b_{j-r} \otimes_{j-r,k-r} c_{k-j} \right) \right|_{k} \\ &\leq \left| \left(a_{r} \otimes_{r,j} b_{j-r} \right) \otimes_{j,k} c_{k-j} - \left(a_{r}^{n} \otimes_{r,j} b_{j-r}^{n} \right) \otimes_{j,k} c_{k-j}^{n} \right|_{k} \\ &+ \left| a_{r} \otimes_{r,k} \left(b_{j-r} \otimes_{j-r,k-r} c_{k-j} \right) - a_{r}^{n} \otimes_{r,k} \left(b_{j-r}^{n} \otimes_{j-r,k-r} c_{k-j}^{n} \right) \right|_{k} \\ &\leq \left| a_{r} \otimes_{r,j} b_{j-r} \right|_{j} \left| c_{k-j} - c_{k-j}^{n} \right|_{k-j} + \left| a_{r} \otimes_{r,j} b_{j-r} - a_{r}^{n} \otimes_{r,j} b_{j-r}^{n} \right|_{j} \left| c_{k-j}^{n} \right|_{k-j} \\ &+ \left| a_{r} \right|_{r} \left| b_{j-r} \otimes_{j-r,k-r} c_{k-j} - b_{j-r}^{n} \otimes_{j-r,k-r} c_{k-j}^{n} \right|_{k-r} + \left| a_{r} - a_{r}^{n} \right|_{r} \left| b_{j-r}^{n} \otimes_{j-r,k-r} c_{k-j}^{n} \right|_{k-r} \\ &\leq \left| a_{r} \right|_{r} \left| b_{j-r} \right|_{j-r} \left| c_{k-j} - c_{k-j}^{n} \right|_{k-j} + \left\{ \left| a_{r} - a_{r}^{n} \right|_{r} \left| b_{j-r} \right|_{j-r} + \left| a_{r}^{n} \right|_{r} \left| b_{j-r} - b_{j-r}^{n} \right|_{j-r} \right\} \left| c_{k-j}^{n} \right|_{k-j} \\ &+ \left| a_{r} \right|_{r} \left\{ \left| b_{j-r} - b_{j-r}^{n} \right|_{j-r} \left| c_{k-j} \right|_{k-j} + \left| b_{j-r}^{n} \right|_{j-r} \left| c_{k-j} - c_{k-j}^{n} \right|_{k-j} \right\} + \left| a_{r} - a_{r}^{n} \right|_{r} \left| b_{j-r}^{n} \right|_{j-r} \left| c_{k-j}^{n} \right|_{k-j} \\ &\rightarrow 0 \quad (n \to \infty) \end{split}$$

が従い (1.14) が出る.

定理 1.4.4 (\otimes は T(V) の乗法となる). \otimes は T(V) において結合則を満たす双線型写像である.

証明. \otimes の双線型性は各 $\otimes_{j,k}$ の双線型性より従う.また任意の $a,b,c\in T(V)$ に対し,補題 1.4.3 より

$$((a \otimes b) \otimes c)_{k} = \sum_{j=0}^{k} (a \otimes b)_{j} \otimes_{j,k} c_{k-j}$$

$$= \sum_{j=0}^{k} \sum_{r=0}^{j} \left(a_{r} \otimes_{r,j} b_{j-r} \right) \otimes_{j,k} c_{k-j} = \sum_{j=0}^{k} \sum_{r=0}^{j} a_{r} \otimes_{r,k} \left(b_{j-r} \otimes_{j-r,k-r} c_{k-j} \right) = \sum_{r=0}^{k} \sum_{j=r}^{k} a_{r} \otimes_{r,k} \left(b_{j-r} \otimes_{j-r,k-r} c_{k-j} \right)$$

$$= \sum_{r=0}^{k} a_{r} \otimes_{r,k} (b \otimes c)_{k-r}$$

$$= (a \otimes (b \otimes c))_{k}, \quad (\forall k = 0, 1, 2, \cdots).$$

が成立する.

定理 1.4.5 (T(V) の単位元). 任意の $k \ge 0$, および任意の $\alpha \in \mathbb{R}$ と $v \in V^{\otimes k}$ に対し

$$\alpha \otimes_{0,k} v = v \otimes_{k,k} \alpha = \alpha v \tag{1.15}$$

が成立する. 特に, $e_0\coloneqq 1,\ e_k\coloneqq 0\ (k\ge 0)$ として定める $e=(e_k)_{k=1}^\infty\in T(V)$ は \otimes に関する単位元である:

i.e.
$$e \otimes a = a \otimes e = a$$
, $(\forall a \in T(V))$

証明. $v \in J_k V^{\otimes_a k}$ の場合は (1.13) の対応関係により

$$\alpha \otimes_{0,k} v = J_k F_{0,k}^{-1} \left(\alpha \otimes_a J_k^{-1} v \right) = J_k \left(\alpha J_k^{-1} v \right) = J_k J_k^{-1} \alpha v = \alpha v$$

が成立する.一般の $v\in V^{\otimes k}$ に対しては, $\lim_{n\to\infty}|v-v_n|_k=0$ を満たす $\{v_n\}_{n=1}^\infty\subset J_kV^{\otimes_a k}$ を取れば

$$\left| \alpha v - \alpha \otimes_{0,k} v \right|_{k} \leq \left| \alpha v - \alpha v_{n} \right|_{k} + \left| \alpha \otimes_{0,k} v_{n} - \alpha \otimes_{0,k} v \right|_{k} = 2|\alpha| \left| v - v_{n} \right|_{k} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成立し $\alpha v = \alpha \otimes_{0,k} v$ が得られる. 同様にして $\alpha v = v \otimes_{k,k} \alpha$ も成り立つ. 従って, 任意の $a \in T(V)$ に対し

$$(e \otimes a)_k = \sum_{j=0}^k e_j \otimes_{j,k} a_{k-j} = 1 \otimes_{0,k} a_k$$

= $a_k = a_k \otimes_{k,k} 1 = \sum_{j=0}^k a_j \otimes_{j,k} e_{k-j} = (a \otimes e)_k, \quad (k = 0, 1, 2, \cdots)$

が満たされ $e \otimes a = a \otimes e = a$ が出る.

 $n \ge 0$ に対して

$$T^{(n)}(V) := \bigoplus_{k=0}^{n} V^{\otimes k}$$

とおき、T(V) の場合と同様に乗法⊗を

$$a \otimes b := \left(\sum_{j=0}^k a_j \otimes_{j,k} b_{k-j}\right)_{k=0}^n, \quad a,b \in T^{(n)}(V)$$

により定め、次の直積ノルムでノルム位相を導入する:

$$|a| := \sum_{k=0}^{n} |a_k|_k$$
, $(a = (a_k)_{k=0}^n \in T^{(n)}(V))$.

また、写像 $X:\Delta_T \longrightarrow T^{(n)}(V)$ に対して $X_{s,t}=(X^0_{s,t},\cdots,X^n_{s,t}),\;((s,t)\in\Delta_T)$ と表記し

$$C_0(\Delta_T, T^{(n)}(V)) := \{ X : \Delta_T \longrightarrow T^{(n)}(V) ; \text{ continuous, } X^0 \equiv 1 \}$$

を定める.

定義 1.4.6 (有限 p-変動). $p \ge 1$ とする. $X: \Delta_T \longrightarrow T^{(n)}(V)$ に対して或るコントロール関数 ω が存在して

$$\left|X_{s,t}^{i}\right|_{i} \le \omega(s,t)^{i/p}, \quad (\forall i=1,\cdots,n,\ \forall (s,t)\in\Delta_{T})$$

$$\tag{1.16}$$

を満たすとき, X は有限 p-変動 (finite p-variation) であるという. *7

定義 1.4.7 (有限総 p-変動). $p \ge 1$ とする. $X \in C_0\left(\Delta_T, T^{(n)}(V)\right)$ が有限総 p-変動 (finite total p-variation) とは

$$\|X^i\|_{p/i} < \infty, \quad \forall i = 1, \cdots, n$$

が満たされることをいう. また次の線型空間を定める:

$$C_{0,p}\left(\Delta_T, T^{(n)}(V)\right) := \left\{X \in C_0\left(\Delta_T, T^{(n)}(V)\right) : X \text{ has finite total } p\text{-variation}\right\}.$$

定義 1.4.8 (乗法的汎関数). 次の関係式 (Chen's identity) を満たす $X \in C_0\left(\Delta_T, T^{(n)}(V)\right)$ を n 次の乗法的汎関数 (multiplicative functional of degree n) と呼ぶ:

$$X_{s,u} \otimes X_{u,t} = X_{s,t}, \quad (\forall 0 \le s \le u \le t \le T).$$

補題 1.4.9. $X:\Delta_T\longrightarrow T^{(n)}(V)$ が $X^0\equiv 1$ かつ Chen's identity を満たせば $X^k_{t,t}=0,\ (0\leq \forall t\leq T,\ 1\leq \forall k\leq n).$

証明. 任意に $t\in[0,T]$ を取る. $X^k_{t,t}=\sum_{j=0}^k X^j_{t,t}\otimes_{j,k} X^{k-j}_{t,t}$ と式 (1.15) より,先ず

$$X_{t,t}^1 = X_{t,t}^0 \otimes_{0,1} X_{t,t}^1 + X_{t,t}^1 \otimes_{1,1} X_{t,t}^0 = X_{t,t}^1 + X_{t,t}^1$$

が成り立ち $X_{t,t}^1 = 0$ が従う. 同様に

$$X_{tt}^2 = X_{tt}^0 \otimes_{0.2} X_{tt}^2 + X_{tt}^1 \otimes_{1.2} X_{tt}^1 + X_{tt}^2 \otimes_{2.2} X_{tt}^0 = X_{tt}^2 + X_{tt}^2$$

より $X_{t,t}^2=0$ が成立し、帰納的に $X_{t,t}^k=0$ $(1 \le k \le n)$ が出る.

定理 1.4.10. n 次乗法的汎関数については有限 p-変動であることと有限総 p-変動であることは同値である.

$$D$$
 の分割小区間の数 = $\sum_{D}\left|X_{t_{i-1},t_{i}}^{0}\right|_{0}^{p} \leq \sum_{D}\left|X_{t_{i-1},t_{i}}\right|^{p} \leq \|X\|_{p}^{p}$, $(\forall D \in \delta[0,T])$

が成り立ち $\|X\|_p = \infty$ となる.

 $^{^{*7}}$ $X:\Delta_T \longrightarrow T^{(n)}(V)$ が有限 p-変動であることと $\|X\|_p$ が有限であることは一致しない.実際,後述のシグネチャー $X=(X^0,\cdots,X^n)$ は有限 p-変動であるが,その定義より $X^0\equiv 1$ が満たされているから

証明. $X \in C_0\left(\Delta_T, T^{(n)}(V)\right)$ を n 次乗法的とする. X が有限総 p-変動ならば、補題 1.4.9 と定理 1.2.8 により

$$\omega(s,t) \coloneqq \sum_{i=1}^n \left\| X^i \right\|_{p/i,[s,t]}^{p/i}, \quad ((s,t) \in \Delta_T)$$

で定める ω はコントロール関数となる。このとき

$$\left|X_{s,t}^{i}\right|_{i} \leq \left\|X^{i}\right\|_{p/i \lceil s,t \rceil} \leq \omega(s,t)^{i/p}, \quad (\forall i=1,\cdots,n,\ \forall (s,t) \in \Delta_{T})$$

が成り立つから X は有限 p-変動である. 逆に X が有限 p-変動なら, (1.16) を満たす ω に対し

$$\sum_{D} \left| X_{t_{i-1},t_i}^i \right|_i^{p/i} \leq \sum_{D} \omega(t_{i-1},t_i) \leq \omega(0,T), \quad (\forall D \in \delta[0,T], \ \forall i=1,\cdots,n)$$

が満たされ $\left\|X^{i}\right\|_{p/i}<\infty,\ i=1,\cdots,n$ が従うので X は有限総 p-変動である.

実際に乗法的汎関数を構成する. 有界変動な連続写像 $x:[0,T]\longrightarrow V$ に対して

$$X_{s,t}^1 := x_t - x_s, \quad (\forall (s,t) \in \Delta_T)$$

とおけば、 $X^1:\Delta_T\longrightarrow V$ は連続かつ $\left\|X^1\right\|_1<\infty$ を満たす. このとき、

補題 1.4.11. 任意の $(s,t)\in\Delta_T$ と連続写像 $Y:\Delta_T\longrightarrow V^{\otimes k},\ (k\geq 1)$ に対して次の積分が $V^{\otimes k+1}$ で確定する:

$$\int_{s}^{t} Y_{s,u} \otimes dx_{u} := \lim_{|D| \to 0} \sum_{D} Y_{s,u_{i-1}} \otimes_{k,k+1} X_{u_{i-1},u_{i}}^{1}, \quad (D \in \delta[s,t]).$$
 (1.17)

証明. $D=\{s=u_0<\dots< u_n=t\},\ D'=\{s=v_0<\dots< v_m=t\}\in \delta[s,t]$ を任意に取り、共通細分を $D''=\{s=w_0<\dots< w_r=t\}$ と表して

$$\begin{cases} \tilde{Y}_{s,w_{\ell}} := Y_{s,u_{i}}, & (u_{i} \leq w_{\ell} < u_{i+1}), \\ \hat{Y}_{s,w_{\ell}} := Y_{s,v_{j}}, & (v_{j} \leq w_{\ell} < v_{j+1}), \end{cases} \quad (\ell = 0, 1, \dots, r)$$

で \tilde{Y} , \hat{Y} を定めれば、定理 1.4.2 より

$$\begin{split} & \left| \sum_{D} Y_{s,u_{i-1}} \otimes_{k,k+1} X_{u_{i-1},u_{i}}^{1} - \sum_{D'} Y_{s,v_{j-1}} \otimes_{k,k+1} X_{v_{j-1},v_{j}}^{1} \right|_{k+1} \\ & \leq \left| \sum_{D} Y_{s,u_{i-1}} \otimes_{k,k+1} X_{u_{i-1},u_{i}}^{1} - \sum_{D''} Y_{s,w_{\ell-1}} \otimes_{k,k+1} X_{w_{\ell-1},w_{\ell}}^{1} \right|_{k+1} + \left| \sum_{D'} Y_{s,v_{j-1}} \otimes_{k,k+1} X_{v_{j-1},v_{j}}^{1} - \sum_{D''} Y_{s,w_{\ell-1}} \otimes_{k,k+1} X_{w_{\ell-1},w_{\ell}}^{1} \right|_{k+1} \\ & = \left| \sum_{D''} \tilde{Y}_{s,w_{\ell-1}} \otimes_{k,k+1} X_{w_{\ell-1},w_{\ell}}^{1} - \sum_{D''} Y_{s,w_{\ell-1}} \otimes_{k,k+1} X_{w_{\ell-1},w_{\ell}}^{1} \right|_{k+1} + \left| \sum_{D''} \hat{Y}_{s,w_{\ell-1}} \otimes_{k,k+1} X_{w_{\ell-1},w_{\ell}}^{1} - \sum_{D''} Y_{s,w_{\ell-1}} \otimes_{k,k+1} X_{w_{\ell-1},w_{\ell}}^{1} \right|_{k+1} \\ & = \left| \sum_{D''} \left(\tilde{Y}_{s,w_{\ell-1}} - Y_{s,w_{\ell-1}} \right) \otimes_{k,k+1} X_{w_{\ell-1},w_{\ell}}^{1} \right|_{k+1} + \left| \sum_{D''} \left(\hat{Y}_{s,w_{\ell-1}} - Y_{s,w_{\ell-1}} \right) \otimes_{k,k+1} X_{w_{\ell-1},w_{\ell}}^{1} \right|_{k+1} \\ & \leq \sum_{D''} \left| \tilde{Y}_{s,w_{\ell-1}} - Y_{s,w_{\ell-1}} \right|_{k} \left| X_{w_{\ell-1},w_{\ell}}^{1} \right|_{1} + \sum_{D''} \left| \hat{Y}_{s,w_{\ell-1}} - Y_{s,w_{\ell-1}} \right|_{k} \left| X_{w_{\ell-1},w_{\ell}}^{1} \right|_{1} \\ & \leq \max_{k} \left| \tilde{Y}_{s,w_{\ell-1}} - Y_{s,w_{\ell-1}} \right|_{k} \left| X_{w_{\ell-1},w_{\ell}}^{1} \right|_{1,[s,t]} + \max_{k} \left| \hat{Y}_{s,w_{\ell-1}} - Y_{s,w_{\ell-1}} \right|_{k} \left| X_{w_{\ell-1},w_{\ell}}^{1} \right|_{1,[s,t]} \end{split}$$

が成立する.いま, $[s,t] \ni u \longmapsto Y_{s,u}$ は一様連続であるから, $|D|,|D'| \longrightarrow 0$ として右辺は 0 に収束する.従って $|D_n| \longrightarrow 0$ $(n \longrightarrow \infty)$ を満たす細分列 $D_n \in \delta[s,t]$ を取れば, $\left(\sum_{D_n} Y_{s,u_{i-1}} \otimes_{k,k+1} X^1_{u_{i-1},u_i}\right)_{n=1}^{\infty}$ は $V^{\otimes k+1}$ の Cauchy 列となり $V^{\otimes k+1}$ で収束する.別の細分列 $\tilde{D}_m \in \delta[s,t]$, $(|\tilde{D}_m| \longrightarrow 0)$ を取っても

$$\left| \sum_{D_n} Y_{s,u_{i-1}} \otimes_{k,k+1} X_{u_{i-1},u_i}^1 - \sum_{\tilde{D}_m} Y_{s,v_{j-1}} \otimes_{k,k+1} X_{v_{j-1},v_j}^1 \right|_{k+1} \longrightarrow 0, \quad (n,m \longrightarrow \infty)$$

が成り立つから、極限は細分列に依らず確定する.従って補題の主張が得られる.

補題 1.4.12. (1.17) の積分を

$$Z_{s,t} := \int_{s}^{t} Y_{s,u} \otimes dx_{u}, \quad (\forall (s,t) \in \Delta_{T})$$

とおけば、 $Z: \Delta_T \longrightarrow V^{\otimes k+1}$ は連続かつ有界変動である.

証明.

第一段 Z が有界変動であることを示す. いま, 任意に $(s,t) \in \Delta_T (s < t)^{*8}$ を取る.

$$M := \sup_{(x,y)\in\Delta_T} |Y_{x,y}|_{k}$$

とおけば Y の連続性より $M<\infty$ となり、任意の $\epsilon>0$ に対し或る $D\in\delta[s,t]$ が存在して

$$\left| Z_{s,t} \right|_{k+1} \leq \epsilon + \left| \sum_{D} Y_{s,u_{i-1}} \otimes_{k,k+1} X_{u_{i-1},u_{i}}^{1} \right|_{k+1} \leq \epsilon + \sum_{D} \left| Y_{s,u_{i-1}} \right|_{k} \left| X_{t_{i-1},t_{i}}^{1} \right|_{1} \leq \epsilon + M \left\| X^{1} \right\|_{1,[s,t]}$$

が成立する. $\epsilon > 0$ と (s,t) の任意性より

$$\left\| Z_{s,t} \right\|_{k+1} \le M \left\| X^1 \right\|_{1,[s,t]}, \quad (\forall (s,t) \in \Delta_T)$$

が従い $\|Z\|_1 \le M \|X^1\|_1$ (1-変動ノルム) を得る.

第二段 点 (s,s) ($\forall s \in [0,T]$) において Z が連続であること示す。 実際,定理 1.2.8 より

$$\Delta_T \ni (s,t) \longmapsto \left\| X^1 \right\|_{1,\{s,t\}} \tag{1.18}$$

はコントロール関数であるから,

$$\left|\left.Z_{t,u}-Z_{s,s}\right|_{k+1}=\left|\left.Z_{t,u}\right|_{k+1}\leq M\left\|X^{1}\right\|_{1,[t,u]}\longrightarrow0\quad\left((t,u)\longrightarrow(s,s)\right)\right.$$

が成立しZの(s,s)における連続性を得る.

第三段 s < t を満たす点 $(s,t) \in \Delta_T$ において Z が連続であること示す. いま, 任意に $\epsilon > 0$ を取れば,

(i) (1.18) がコントロール関数であるから、或る $\eta_1 > 0$ が存在して $|s-a|, |t-b| < \eta_1$ ならば

$$\|X^1\|_{1,[s \wedge a, s \vee a]} < \epsilon, \quad \|X^1\|_{1,[t \wedge b, t \vee b]} < \epsilon$$

が満たされる.

^{*8} s = t なら、 $X_{s,t}^1 = 0$ より $Z_{s,t} = 0$ が成り立つ.

- (ii) 或る $\eta_2 > 0$ が存在して $|s-a|, |t-b| < \eta_2$ ならば $[s,t] \cap [a,b] \neq \emptyset$ が満たされる.
- (iii) Y は Δ_T 上一様連続であるから、或る $\eta_3>0$ が存在して $|s-a|<\eta_3$ なら

$$\sup \left\{ \left| Y_{s,u} - Y_{a,u} \right|_{L} ; \quad (s \vee a) \leq u \leq T \right\} < \epsilon$$

が満たされる.

(iv) 補題 1.4.11 より或る $\eta_4>0$ が存在して $|D_1|, |D_2|<\eta_4, \ (D_1\in\delta[s,t],\ D_2\in\delta[a,b])$ なら

$$\left| Z_{s,t} - \sum_{D_1} Y_{s,u_{i-1}} \otimes_{k,k+1} X^1_{u_{i-1},u_i} \right|_{k+1} < \epsilon, \quad \left| Z_{a,b} - \sum_{D_2} Y_{a,v_{j-1}} \otimes_{k,k+1} X^1_{v_{j-1},v_j} \right|_{k+1} < \epsilon$$

が満たされる.

ここで $\eta := \eta_1 \wedge \eta_2 \wedge \eta_3$ として、 $|s-a|, |t-b| < \eta$, $|D_1|, |D_2| < \eta_4$ を満たす $(a,b), D_1, D_2$ を取り

$$\begin{split} &\Omega_3 \coloneqq (D_1 \cup D_2) \cap [s,t] \cap [a,b], \\ &\Omega_1 \coloneqq D_1 \cup \Omega_3, \quad \Omega_1^{<} \coloneqq \Omega_1 \cap [0,a], \quad \Omega_1^{>} \coloneqq \Omega_1 \cap [b,T], \\ &\Omega_2 \coloneqq D_2 \cup \Omega_3, \quad \Omega_2^{<} \coloneqq \Omega_2 \cap [0,s], \quad \Omega_2^{>} \coloneqq \Omega_2 \cap [t,T] \end{split}$$

とおけば、 $\Omega_1=\Omega_1^<\cup\Omega_3\cup\Omega_1^>$ 、 $\Omega_2=\Omega_2^<\cup\Omega_3\cup\Omega_2^>$ と分割できる.このとき (i)(ii)(iii) が満たされるから

$$\begin{split} & \left| \sum_{\Omega_{1}} Y_{s,u_{i-1}} \otimes_{k,k+1} X_{u_{i-1},u_{i}}^{1} - \sum_{\Omega_{2}} Y_{a,v_{j-1}} \otimes_{k,k+1} X_{v_{j-1},v_{j}}^{1} \right|_{k+1} \\ & \leq \left| \sum_{\Omega_{3}} Y_{s,u_{i-1}} \otimes_{k,k+1} X_{u_{i-1},u_{i}}^{1} - \sum_{\Omega_{3}} Y_{a,u_{i-1}} \otimes_{k,k+1} X_{u_{i-1},u_{i}}^{1} \right|_{k+1} \\ & + \left| \sum_{\Omega_{1}^{<}} Y_{s,u_{i-1}} \otimes_{k,k+1} X_{u_{i-1},u_{i}}^{1} \right|_{k+1} + \left| \sum_{\Omega_{1}^{>}} Y_{s,u_{i-1}} \otimes_{k,k+1} X_{u_{i-1},u_{i}}^{1} \right|_{k+1} \\ & + \left| \sum_{\Omega_{2}^{<}} Y_{a,u_{i-1}} \otimes_{k,k+1} X_{u_{i-1},u_{i}}^{1} \right|_{k+1} + \left| \sum_{\Omega_{2}^{>}} Y_{a,v_{j-1}} \otimes_{k,k+1} X_{v_{j-1},v_{j}}^{1} \right|_{k+1} \\ & \leq \sum_{\Omega_{3}} \left| Y_{s,u_{i-1}} - Y_{a,u_{i-1}} \right|_{k} \left| X_{u_{i-1},u_{i}}^{1} \right|_{1} + \sum_{\Omega_{1}^{<}} \left| Y_{s,u_{i-1}} \right|_{k} \left| X_{u_{i-1},u_{i}}^{1} \right|_{1} + \sum_{\Omega_{2}^{>}} \left| Y_{a,v_{j-1}} \right|_{k} \left| X_{u_{i-1},v_{i}}^{1} \right|_{1} \\ & + \sum_{\Omega_{2}^{<}} \left| Y_{a,v_{j-1}} \right|_{k} \left| X_{v_{j-1},v_{i}}^{1} \right|_{1} + \sum_{\Omega_{2}^{>}} \left| Y_{a,v_{j-1}} \right|_{k} \left| X_{v_{j-1},v_{i}}^{1} \right|_{1} \\ & \leq \sup_{u \in [s \vee a,T]} \left| Y_{s,u} - Y_{a,u} \right|_{k} \left\| X^{1} \right\|_{1} + M \left(\left\| X^{1} \right\|_{1,[s,s \vee a]} + \left\| X^{1} \right\|_{1,[a,s \vee a]} + \left\| X^{1} \right\|_{1,[t,t \vee b]} + \left\| X^{1} \right\|_{1,[t,t \vee b]} \right) \\ & < \left(\left\| X^{1} \right\|_{1} + 4M \right) \epsilon \end{split}$$

が成立し, (iv) と併せれば

$$\left| Z_{s,t} - Z_{a,b} \right|_{k+1} < \left(\left\| X^1 \right\|_1 + 4M + 2 \right) \epsilon, \quad (|s-a|, |t-b| < \eta)$$

が従いZの(s,t)における連続性が得られる.

第 1 章 **29**

定義 1.4.13 (パスのシグネチャー). 有界変動な連続写像 $x:[0,T] \longrightarrow V$ に対して $X^1_{s,t} := x_t - x_s$, $(\forall (s,t) \in \Delta_T)$ とおけば、補題 1.4.11 と補題 1.4.12 により逐次的に次を構成することができる:

$$V^{\otimes i+1} \ni X_{s,t}^{i+1} := \int_s^t X_{s,u}^i \otimes dx_u, \quad (\forall (s,t) \in \Delta_T, \ i=1,2,\cdots)$$

ここで S(x): $\Delta_T \ni (s,t) \mapsto (1,X_{s,t}^1,X_{s,t}^2,\cdots) =: S(x)_{[s,t]}$ とおき、特に $S(x)_{[0,T]}$ をパス x のシグネチャー (signature of path x) と呼ぶ.

定理 1.4.14 (逐次積分により定まる乗法的汎関数). 任意の $n \ge 1$ に対し, $S(x)_{[s,t]}$ の最初の n+1 個*9の元の族を $S_n(x)_{[s,t]} = (X^0_{s,t}, X^1_{s,t}, \cdots, X^n_{s,t})$, $(\forall (s,t) \in \Delta_T)$ と書けば, $S_n(x)$ は n 次乗法的である.

証明. 補題 1.4.12 より $S_n(x) \in C_0\left(\Delta_T, T^{(n)}(V)\right)$ であるから,以下では任意の $k \geq 0$ と $0 \leq s \leq u \leq t \leq T$ に対して

$$X_{s,t}^{k} = \sum_{i=0}^{k} X_{s,u}^{j} \otimes_{j,k} X_{u,t}^{k-j}.$$
 (1.19)

が成り立つことを数学的帰納法で示す. k=0 ならシグネチャーの定義より両辺 1 であるから (1.19) は満たされる.

第一段 k=1 の場合, $X_{s,t}^1=x_t-x_s, (\forall (s,t)\in\Delta_T)$ より

$$\sum_{i=0}^{1} X_{s,u}^{i} \otimes_{j,k} X_{u,t}^{k-j} = X_{s,u}^{0} \otimes_{0,1} X_{u,t}^{1} + X_{s,u}^{1} \otimes_{1,1} X_{u,t}^{0} = X_{u,t}^{1} + X_{s,u}^{1} = X_{s,t}^{1}$$

となる.

第二段 k=m-1 $(m \ge 2)$ まで式 (1.19) が満たされていると仮定するとき、任意の $D ∈ \delta[u,t]$ に対して

$$\sum_{D} \left\{ X_{s,u_{i-1}}^{m-1} - X_{u,u_{i-1}}^{m-1} \right\} \otimes_{m-1,m} X_{u_{i-1},u_i}^1 = \sum_{i=1}^{m-1} X_{s,u}^j \otimes_{j,m} \left\{ \sum_{D} X_{u,u_{i-1}}^{m-1-j} \otimes_{m-1-j,m-j} X_{u_{i-1},u_i}^1 \right\}$$
(1.20)

となることを次段で示す. 実際これが示されれば, $D' \in \delta[s,u]$ に対し

$$\left| X_{s,t}^{m} - \sum_{j=0}^{m} X_{s,u}^{j} \otimes_{j,m} X_{u,t}^{m-j} \right|_{m} \leq \left| X_{s,t}^{m} - \sum_{D'} X_{s,u_{i-1}}^{m-1} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} - \sum_{D} X_{s,u_{i-1}}^{m-1} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} - \sum_{j=1}^{m-1} X_{s,u}^{j} \otimes_{j,m} X_{u,t}^{m-j} \right|_{m}$$

$$= \left| X_{s,t}^{m} - \sum_{D'} X_{s,u_{i-1}}^{m-1} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} - \sum_{D} X_{s,u_{i-1}}^{m-1} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} \right|_{m}$$

$$+ \left| \sum_{D'} X_{s,u_{i-1}}^{m-1} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} - X_{s,u}^{m} \right|_{m} + \left| \sum_{D} X_{u,u_{i-1}}^{m-1} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} - X_{u,t}^{m} \right|_{m}$$

$$+ \left| \sum_{j=1}^{m-1} X_{s,u}^{j} \otimes_{j,m} \left\{ \sum_{D} X_{u,u_{i-1}}^{m-1-j} \otimes_{m-1-j,m-j} X_{u_{i-1},u_{i}}^{1} \right\} - \sum_{j=1}^{m-1} X_{s,u}^{j} \otimes_{j,m} X_{u,t}^{m-j} \right|_{m}$$

第 1 章 30

$$\leq \left| X_{s,t}^{m} - \sum_{D'} X_{s,u_{i-1}}^{m-1} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} - \sum_{D} X_{s,u_{i-1}}^{m-1} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} \right|_{m}$$

$$+ \left| \sum_{D'} X_{s,u_{i-1}}^{m-1} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} - X_{s,u}^{m} \right|_{m} + \left| \sum_{D} X_{u,u_{i-1}}^{m-1} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} - X_{u,t}^{m} \right|_{m}$$

$$+ \sum_{j=1}^{m-1} \left| X_{s,u}^{j} \right|_{j} \left| \left\{ \sum_{D} X_{u,u_{i-1}}^{m-1-j} \otimes_{m-1-j,m-j} X_{u_{i-1},u_{i}}^{1} \right\} - X_{u,t}^{m-j} \right|_{m-j}$$

$$\longrightarrow 0 \quad (|D'|, |D| \longrightarrow 0)$$

が従い, k = m の場合も (1.19) が成り立つ.

第三段 式 (1.20) を示す. 仮定より k=m-1 のとき (1.19) は満たされているから、補題 1.4.3 と併せれば

$$\begin{split} \sum_{D} \left\{ X_{s,u_{i-1}}^{m-1} - X_{u,u_{i-1}}^{m-1} \right\} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} &= \sum_{D} \left\{ \sum_{j=0}^{m-1} X_{s,u}^{j} \otimes_{j,m-1} X_{u,u_{i-1}}^{m-1-j} - X_{u,u_{i-1}}^{m-1} \right\} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} \\ &= \sum_{D} \left\{ \sum_{j=1}^{m-1} X_{s,u}^{j} \otimes_{j,m-1} X_{u,u_{i-1}}^{m-1-j} \right\} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} \\ &= \sum_{D} \sum_{j=1}^{m-1} \left\{ X_{s,u}^{j} \otimes_{j,m-1} X_{u,u_{i-1}}^{m-1-j} \right\} \otimes_{m-1,m} X_{u_{i-1},u_{i}}^{1} \\ &= \sum_{j=1}^{m-1} \sum_{D} X_{s,u}^{j} \otimes_{j,m-j} \left\{ X_{u,u_{i-1}}^{m-1-j} \otimes_{m-1-j,m-j} X_{u_{i-1},u_{i}}^{1} \right\} \\ &= \sum_{j=1}^{m-1} X_{s,u}^{j} \otimes_{j,m} \left\{ \sum_{D} X_{u,u_{i-1}}^{m-1-j} \otimes_{m-1-j,m-j} X_{u_{i-1},u_{i}}^{1} \right\} \end{split}$$

が成立する.

定義 1.4.15 (p-ラフパス). $p \ge 1$ とし、p を超えない最大の整数を [p] で表す。有限 p-変動を持つ [p] 次乗法的汎関数を p-ラフパス (p-rough path) と呼び,その全体を $\Omega_p(V)$ と書く:

$$\Omega_p(V) = \left\{ X \in C_0\left(\Delta_T, T^{([p])}(V)\right) ; [p] 次乗法的,有限 p-変動. \right\}.$$

定理 1.4.16. $\Omega_p(V)$ は次で定める距離により完備距離空間となる:

$$d_p(X, Y) := \max_{1 \le i \le |p|} \|X^i - Y^i\|_{p/i}, \quad (X, Y \in \Omega_p(V)).$$

ただし $X_{s,t}=(X_{s,t}^0,X_{s,t}^1,\cdots,X_{s,t}^{[p]}),\;((s,t)\in\Delta_T)$ に対して $X^i:\Delta_T\ni(s,t)\longmapsto X_{s,t}^i\in V^{\otimes i},\;(1\leq i\leq [p])$ である.

 $X \in \Omega_p(V)$ は $X^0 \equiv 1$ を満たすから、 $\max_{1 \le i \le [p]} \|\cdot\|_{p/i}$ は $\Omega_p(V)$ においてノルムとはならない.

証明. 完備性を示す.

第一段 極限を構成する. 任意の $Y \in \Omega_p(V)$ に対して, 定理 1.4.10 より Y は有限総 p-変動であり

$$Y^i \in B_{p/i,T}\left(V^{\otimes i}\right), *^{10} \quad (\forall i = 1, \dots, [p])$$

となるから、任意の Cauchy 列 $\left\{X^{(k)}\right\}_{k=1}^{\infty}\subset\Omega_p(V)$ に対して

$$||X^{(k),i} - X^i||_{n/i} \longrightarrow 0 \quad (k \longrightarrow \infty, \ \forall i = 1, \cdots, [p])$$

$$\tag{1.21}$$

を満たす $X^i \in B_{p/i,T}\left(V^{\otimes i}\right)$ が存在する (定理 1.2.7). ここで $X:\Delta_T \longrightarrow T^{([p])}(V)$ を

$$X_{s,t} := (1, X_{s,t}^1, \cdots, X_{s,t}^n), \quad (\forall (s,t) \in \Delta_T)$$

により定めれば、 X^i 、 $i=1,\cdots,n$ の連続性より $X \in C_0\left(\Delta_T, T^{([p])}(V)\right)$ が従う.

第二段 X が Chen's identity を満たすことを示す. これが示されれば、前段の結果と定理 1.4.10 より X は有限 p-変動となり $X \in \Omega_p(V)$ が従う. 任意の $0 \le i \le [p]$ と $0 \le s \le u \le t \le T$ に対して次が成立すればよい:

$$X_{s,t}^{i} = \sum_{j=0}^{i} X_{s,u}^{j} \otimes_{j,i} X_{u,t}^{i-j}.$$
 (1.22)

実際, (1.21) より

$$\left|X_{s,t}^{(k),i}-X_{s,t}^{i}\right|_{i}\leq\left\|X^{(k),i}-X^{i}\right\|_{n/i}\longrightarrow0,\quad(k\longrightarrow\infty,\;\forall(s,t)\in\Delta_{T},\;\forall i=1,\cdots,[p])$$

が成り立つから、任意の $0 \le s \le u \le t \le T$ に対して

$$\begin{split} \left| X_{s,t}^{i} - \sum_{j=0}^{i} X_{s,u}^{j} \otimes_{j,i} X_{u,t}^{i-j} \right|_{i} &\leq \left| X_{s,t}^{i} - X_{s,t}^{(k),i} \right|_{i} + \left| \sum_{j=0}^{i} X_{s,u}^{j} \otimes_{j,i} X_{u,t}^{i-j} - \sum_{j=0}^{i} X_{s,u}^{(k),j} \otimes_{j,i} X_{u,t}^{(k),i-j} \right|_{i} \\ &\leq \left| X_{s,t}^{i} - X_{s,t}^{(k),i} \right|_{i} + \sum_{j=0}^{i} \left| X_{s,u}^{j} - X_{s,u}^{(k),j} \right|_{j} \left| X_{u,t}^{i-j} \right|_{i-j} \\ &+ \sum_{j=0}^{i} \left| X_{s,u}^{(k),j} \right|_{j} \left| X_{u,t}^{i-j} - X_{u,t}^{(k),i-j} \right|_{i-j} \\ &\longrightarrow 0, \quad (k \longrightarrow \infty) \end{split}$$

が従い (1.22) を得る. (1.21) より $d_p(X^{(k)},X)\longrightarrow 0$ $(k\longrightarrow\infty)$ が成り立ち定理の主張が得られる.

有界変動かつ連続な $x:[0,T]\longrightarrow V$ で定める S(x) は,任意の $p\geq 1$ に対して $S_{[p]}(x)\in\Omega_p(V)$ を満たす.実際,定理 1.4.14 より $S_{[p]}(x)$ は [p] 次乗法的であり,また定理 1.4.12 と定理 1.2.6 より

$$\|X^i\|_{p/i} \le \|X^i\|_1 < \infty, \quad (\forall i = 1, \dots, [p])$$

が満たされる. 乗法的汎関数に対して有限総 p-変動と有限 p-変動は同値になるから $S_{[p]}(x) \in \Omega_p(V)$ が従う.

定義 1.4.17 (スムースラフパス). $p \ge 1$ とする.このとき有界変動かつ連続な $x:[0,T] \longrightarrow V$ で定める S(x) は $S_{[p]}(x) \in \Omega_p(V)$ を満たす.この $S_{[p]}(x)$ をスムースラフパス (smooth rough path) と呼び,スムースラフパス全体の d_p による位相での閉包を $G\Omega_p(V)$ と書き,その元を p-ジオメトリックラフパス (p-geometric rough path) と呼ぶ.

^{*10} $B_{p/i,T}(V^{\otimes i})$ の定義は (p. 7) の (1.3).

第 1 章 32

1.5 2018/06/15 課題

 $x \in C^1([0,T] \longrightarrow \mathbb{R}), f \in C^\infty(\mathbb{R} \longrightarrow \mathbb{R})$ 及び連続なパス $\bar{x}:[0,T] \longrightarrow \mathbb{R}$ に対し、Riemann-Stieltjes 積分を

$$I_{s,t}(x,\bar{x}) := \int_s^t f(\bar{x}_u) \, dx_u, \quad (\forall [s,t] \subset [0,T])$$

とおく. また, 任意の $[s,t] \subset [0,T]$ に対して次の積分を定める:

$$X_{s,t}^k := \int_s^t (\bar{x}_u - \bar{x}_s)^{k-1} dx_u, \quad (k = 1, 2, 3, \cdots).$$

このとき任意の $n \ge 1$ に対して

$$I_{s,t}(x,\bar{x}) = \int_{s}^{t} f(\bar{x}_{u}) - f(\bar{x}_{s}) + f(\bar{x}_{s}) dx_{u}$$

$$= f(\bar{x}_{s})X_{s,t}^{1} + \int_{s}^{t} \int_{0}^{1} f^{(1)}(\bar{x}_{s} + \theta_{1}(\bar{x}_{u} - \bar{x}_{s}))(\bar{x}_{u} - \bar{x}_{s}) d\theta_{1} dx_{u}$$

$$= f(\bar{x}_{s})X_{s,t}^{1} + f^{(1)}(\bar{x}_{s})X_{s,t}^{2} + \int_{s}^{t} \int_{0}^{1} \left\{ f^{(1)}(\bar{x}_{s} + \theta_{1}(\bar{x}_{u} - \bar{x}_{s})) - f^{(1)}(\bar{x}_{s}) \right\} (\bar{x}_{u} - \bar{x}_{s}) d\theta_{1} dx_{u}$$

$$= f(\bar{x}_{s})X_{s,t}^{1} + f^{(1)}(\bar{x}_{s})X_{s,t}^{2} + \int_{s}^{t} \int_{0}^{1} \int_{0}^{\theta_{1}} f^{(2)}(\bar{x}_{s} + \theta_{2}(\bar{x}_{u} - \bar{x}_{s}))(\bar{x}_{u} - \bar{x}_{s})^{2} d\theta_{2} d\theta_{1} dx_{u}$$

$$= f(\bar{x}_{s})X_{s,t}^{1} + f^{(1)}(\bar{x}_{s})X_{s,t}^{2} + \frac{1}{2}f^{(2)}(\bar{x}_{s})X_{s,t}^{3}$$

$$+ \int_{s}^{t} \int_{0}^{1} \int_{0}^{\theta_{1}} \left\{ f^{(2)}(\bar{x}_{s} + \theta_{2}(\bar{x}_{u} - \bar{x}_{s})) - f^{(2)}(\bar{x}_{s}) \right\} (\bar{x}_{u} - \bar{x}_{s})^{2} d\theta_{2} d\theta_{1} dx_{u}$$

$$= \cdots$$

$$= f(\bar{x}_{s})X_{s,t}^{1} + f^{(1)}(\bar{x}_{s})X_{s,t}^{2} + \frac{1}{2}f^{(2)}(\bar{x}_{s})X_{s,t}^{3} + \cdots + \frac{1}{(n-1)!}f^{(n-1)}(\bar{x}_{s})X_{s,t}^{n}$$

$$+ \int_{s}^{t} \int_{0}^{1} \int_{0}^{\theta_{1}} \cdots \int_{0}^{\theta_{n-1}} f^{(n)}(\bar{x}_{s} + \theta_{n}(\bar{x}_{u} - \bar{x}_{s}))(\bar{x}_{u} - \bar{x}_{s})^{n} d\theta_{n} \cdots d\theta_{2} d\theta_{1} dx_{u}$$

が成立する. ここで

$$J_{s,t}^{n}(x,\bar{x}) := f(\bar{x}_{s})X_{s,t}^{1} + f^{(1)}(\bar{x}_{s})X_{s,t}^{2} + \frac{1}{2}f^{(2)}(\bar{x}_{s})X_{s,t}^{3} + \dots + \frac{1}{(n-1)!}f^{(n-1)}(\bar{x}_{s})X_{s,t}^{n}$$

$$= \sum_{j=1}^{n} \frac{1}{(j-1)!}f^{(j-1)}(\bar{x}_{s})X_{s,t}^{j}$$

とおけば次の主張を得る.

定理 1.5.1. $[s,t] \subset [0,T], \ x \in C^1([0,T] \longrightarrow \mathbb{R}), \ f \in C^\infty(\mathbb{R} \longrightarrow \mathbb{R}), \ n \geq 1$ と連続なパス $\bar{x}:[0,T] \longrightarrow \mathbb{R}$ に対し

$$J^n_{s,t}(x,\bar{x},D)\coloneqq \sum_D J^n_{t_{i-1},t_i}(x,\bar{x}),\quad (D\in\delta[s,t])$$

とおけば次が成立する:

$$I_{s,t}(x,\bar{x}) = \lim_{|D| \to 0} J_{s,t}^n(x,\bar{x},D). \tag{1.23}$$

証明. 任意の $D \in \delta[s,t]$ に対して $I_{s,t}(x,ar{x}) = \sum_D I_{t_{i-1},t_i}(x,ar{x})$ であるから,

$$\sum_{D} \int_{t_{i-1}}^{t_{i}} \int_{0}^{1} \int_{0}^{\theta_{1}} \cdots \int_{0}^{\theta_{n-1}} f^{(n)}(\bar{x}_{t_{i-1}} + \theta_{n}(\bar{x}_{u} - \bar{x}_{t_{i-1}}))(\bar{x}_{u} - \bar{x}_{t_{i-1}})^{n} d\theta_{n} \cdots d\theta_{2} d\theta_{1} dx_{u}$$

$$\longrightarrow 0, \quad (|D| \longrightarrow 0)$$
(1.24)

となることを示せば (1.23) が従う. 実際これが示されれば

$$\begin{aligned} \left| I_{s,t}(x,\bar{x}) - J_{s,t}^{n}(x,\bar{x},D) \right| &\leq \left| I_{s,t}(x,\bar{x}) - \sum_{D} I_{t_{i-1},t_{i}}(x,\bar{x}) \right| + \left| \sum_{D} I_{t_{i-1},t_{i}}(x,\bar{x}) - \sum_{D} J_{t_{i-1},t_{i}}^{n}(x,\bar{x}) \right| \\ &= \left| \sum_{D} \int_{t_{i-1}}^{t_{i}} \int_{0}^{1} \int_{0}^{\theta_{1}} \cdots \int_{0}^{\theta_{n-1}} f^{(n)}(\bar{x}_{t_{i-1}} + \theta_{n}(\bar{x}_{u} - \bar{x}_{t_{i-1}}))(\bar{x}_{u} - \bar{x}_{t_{i-1}})^{n} d\theta_{n} \cdots d\theta_{2} d\theta_{1} dx_{u} \right| \\ &\longrightarrow 0 \quad (|D| \longrightarrow 0) \end{aligned}$$

が従う. (1.24) を示す. $K\coloneqq\sup_{u\in[s,t]}|\bar{x}_u|$ として

$$M := \sup_{x \in [-3K, 3K]} \left| f^{(n)}(x) \right| < \infty$$

とおけば

$$\left| \int_{t_{i-1}}^{t_{i}} \int_{0}^{1} \int_{0}^{\theta_{1}} \cdots \int_{0}^{\theta_{n-1}} f^{(n)}(\bar{x}_{t_{i-1}} + \theta_{n}(\bar{x}_{u} - \bar{x}_{t_{i-1}}))(\bar{x}_{u} - \bar{x}_{t_{i-1}})^{n} d\theta_{n} \cdots d\theta_{2} d\theta_{1} dx_{u} \right|$$

$$\leq \frac{1}{n!} M \int_{t_{i-1}}^{t_{i}} \left| \bar{x}_{u} - \bar{x}_{t_{i-1}} \right|^{n} |\dot{x}_{u}| du$$

$$\leq \frac{1}{n!} M ||x||_{C^{1}} \int_{t_{i-1}}^{t_{i}} \left| \bar{x}_{u} - \bar{x}_{t_{i-1}} \right|^{n} du$$

$$\leq \frac{1}{n!} M ||x||_{C^{1}} \sup_{\substack{t_{i-1} \leq u \leq t_{i} \\ t_{i-1}, t_{i} \in D}} \left| \bar{x}_{u} - \bar{x}_{t_{i-1}} \right|^{n} (t_{i} - t_{i-1})$$

が成立し、 \bar{x} の一様連続性より

$$\left| \sum_{D} \int_{t_{i-1}}^{t_{i}} \int_{0}^{1} \int_{0}^{\theta_{1}} \cdots \int_{0}^{\theta_{n-1}} f^{(n)}(\bar{x}_{t_{i-1}} + \theta_{n}(\bar{x}_{u} - \bar{x}_{t_{i-1}}))(\bar{x}_{u} - \bar{x}_{t_{i-1}})^{n} d\theta_{n} \cdots d\theta_{2} d\theta_{1} dx_{u} \right| \\ \leq \frac{1}{n!} M \|x\|_{C^{1}} (t - s) \sup_{\substack{t_{i-1} \leq u \leq t_{i} \\ t_{i-1}, t_{i} \in D}} \left| \bar{x}_{u} - \bar{x}_{t_{i-1}} \right|^{n} \longrightarrow 0 \quad (|D| \longrightarrow 0)$$

となる.

定理 1.5.2 (連続性定理). $n \ge 1$, $n \le p < n+1$, $f \in C_b^\infty(\mathbb{R} \longrightarrow \mathbb{R})^{*11}$ とする. また連続なパス $\bar{x}, \bar{y}: [0,T] \longrightarrow \mathbb{R}$ と $x,y \in C^1([0,T] \longrightarrow \mathbb{R})$ に対し

$$X_{s,t}^{k} := \int_{s}^{t} (\bar{x}_{u} - \bar{x}_{s})^{k-1} dx_{u}, \quad Y_{s,t}^{k} := \int_{s}^{t} (\bar{y}_{u} - \bar{y}_{s})^{k-1} dy_{u}, \quad k = 1, 2, \dots, n,$$

$$\bar{X}_{s,t}^{1} := \bar{x}_{t} - \bar{x}_{s}, \quad \bar{Y}_{s,t}^{1} := \bar{y}_{t} - \bar{y}_{s}, \quad (0 \le s \le t \le T)$$

とおく、任意に $0 < \epsilon, R < \infty$ を取るとき、 $\bar{x}_0 = \bar{y}_0$ かつ

$$\left\|\bar{X}^{1}\right\|_{p}, \left\|\bar{Y}^{1}\right\|_{p}, \left\|Y^{j}\right\|_{p/j} \leq R, \quad j = 1, 2, \cdots, n,$$

ならば或る定数 C = C(n, p, R, f) が存在して次を満たす:

$$\begin{split} \left\| \bar{X}^1 - \bar{Y}^1 \right\|_p, \ \left\| X^j - Y^j \right\|_{p/j} &\leq \epsilon, \quad j = 1, 2, \cdots, n, \\ \Rightarrow \quad \left| I_{s,t}(x, \bar{x}) - I_{s,t}(y, \bar{y}) \right| &\leq \epsilon C, \quad (\forall [s, t] \subset [0, T]). \end{split}$$

証明.

第一段 写像 $\omega: \Delta_T \longrightarrow [0,\infty)$ を

$$\begin{split} \omega(\alpha,\beta) &\coloneqq \left\| \left. \bar{X}^1 \right\|_{p,[\alpha,\beta]}^p + \left\| \left. \bar{Y}^1 \right\|_{p,[\alpha,\beta]}^p + \sum_{j=1}^n \left\| \left. Y^j \right\|_{p/j,[\alpha,\beta]}^{p/j} \right. \\ &+ \epsilon^{-p} \left\| \left. \bar{X}^1 - \bar{Y}^1 \right\|_{p,[\alpha,\beta]}^p + \sum_{i=1}^n \epsilon^{-p/j} \left\| \left. X^j - Y^j \right\|_{p/j,[\alpha,\beta]}^{p/j} \end{split}$$

により定めれば、補題 1.4.12 より X^j,Y^j $(j=1,\cdots,n)$ は連続かつ有界変動であるから p/j 変動は有限である. そして定理 1.2.8 により ω はコントロール関数となる. また仮定より

$$\omega(0,T) \le 2R^p + \sum_{j=1}^n R^{p/j} + n + 1$$

=: C_R

が満たされる.

第二段 任意に分割 $D = \{s = t_0 < \dots < t_N = t\} \in \delta[s,t] \ (N \ge 2)$ を取れば、

$$\omega(t_{i_0-1}, t_{i_0+1}) \le \frac{2\omega(s, t)}{N-1}$$

を満たす t_{i_0} が存在する (補題 1.2.11). $D_{-0}\coloneqq D,\, D_{-1}\coloneqq D\backslash\{t_{i_0}\}$ と定めれば, $N\geq 3$ ならば D_{-1} についても

$$\omega\left(t_{i_1-1},t_{i_1+1}\right) \leq \frac{2\omega(s,t)}{N-2}$$

を満たす t_{i_1} が存在するから, $D_{-2}\coloneqq D_{-1}\setminus\{t_{i_1}\}$ と定める.この操作を繰り返せば

$$\omega\left(t_{i_{k}-1},t_{i_{k}+1}\right) \leq \frac{2\omega(s,t)}{N-k-1} \leq \frac{2\omega(0,T)}{N-k-1}$$

 $^{*^{11}}$ f の任意の階数の導関数 $f^{(j)}$ が有界である.

を満たすような t_{i_k} , D_{-k} $(k = 0, 1, \dots, N-1)$ が得られ,

$$J_{s,t}^{n}(x,\bar{x},D) - J_{s,t}^{n}(y,\bar{y},D) = \sum_{k=0}^{N-2} \left[\left\{ J_{s,t}^{n}(x,\bar{x},D_{-k}) - J_{s,t}^{n}(x,\bar{x},D_{-k-1}) \right\} - \left\{ J_{s,t}^{n}(y,\bar{y},D_{-k}) - J_{s,t}^{n}(y,\bar{y},D_{-k-1}) \right\} \right] + \left\{ J_{s,t}^{n}(x,\bar{x}) - J_{s,t}^{n}(y,\bar{y}) \right\}$$

$$(1.25)$$

とできる. 定理 1.5.1 より (1.25) 左辺は $|D| \longrightarrow 0$ として $I_{s,t}(x,\bar{x}) - I_{s,t}(y,\bar{y})$ に収束するから,

$$|(1.25)$$
 右辺 $| \le \epsilon C$

を満たす或る定数 C = C(n, p, R, f) が存在することを示せば定理の主張を得る.

第三段 (1.25) の級数項について, t_{i_k} を t_k と書き直せば

$$J_{s,t}^{n}(x,\bar{x},D_{-k}) - J_{s,t}^{n}(x,\bar{x},D_{-k-1}) = \sum_{j=0}^{n-2} \left\{ \frac{1}{j!} \int_{0}^{1} \int_{0}^{\theta} f^{(j+2)}(\bar{x}_{t_{k-1}} + r(\bar{x}_{t_{k}} - \bar{x}_{t_{k-1}})) dr d\theta \left(\bar{X}_{t_{k-1},t_{k}}^{1}\right)^{2} X_{t_{k},t_{k+1}}^{j+1} \right\}$$

$$- \sum_{j=0}^{n-1} \left\{ \frac{1}{j!} f^{(j)}(\bar{x}_{t_{k-1}}) \sum_{i=0}^{j-2} {j \choose i} (\bar{X}_{t_{k-1},t_{k}}^{1})^{j-i} X_{t_{k},t_{k+1}}^{i+1} \right\}$$

$$+ \frac{1}{(n-1)!} \int_{0}^{1} f^{(n)}(\bar{x}_{t_{k-1}} + \theta(\bar{x}_{t_{k}} - \bar{x}_{t_{k-1}})) d\theta \bar{X}_{t_{k-1},t_{k}}^{1} X_{t_{k},t_{k+1}}^{n}$$

$$(1.26)$$

が成り立ち(後述)

$$\begin{split} &\left\{J_{s,t}^{n}(x,\bar{x},D_{-k})-J_{s,t}^{n}(x,\bar{x},D_{-k-1})\right\} - \left\{J_{s,t}^{n}(y,\bar{y},D_{-k})-J_{s,t}^{n}(y,\bar{y},D_{-k-1})\right\} \\ &= \sum_{j=0}^{n-2} \frac{1}{j!} \left\{ \int_{0}^{1} \int_{0}^{\theta} f^{(j+2)}(\bar{x}_{l_{k-1}} + r(\bar{x}_{l_{k}} - \bar{x}_{l_{k-1}})) \, dr \, d\theta \, \left(\bar{X}_{l_{k-1},l_{k}}^{1}\right)^{2} \left(X_{l_{k},l_{k+1}}^{j+1} - Y_{l_{k},l_{k+1}}^{j+1}\right) \\ &+ \int_{0}^{1} \int_{0}^{\theta} f^{(j+2)}(\bar{x}_{l_{k-1}} + r(\bar{x}_{l_{k}} - \bar{x}_{l_{k-1}})) \, dr \, d\theta \, \bar{X}_{l_{k-1},l_{k}}^{1} \left(\bar{X}_{l_{k-1},l_{k}}^{1} - \bar{Y}_{l_{k-1},l_{k}}^{1}\right) Y_{l_{k},l_{k+1}}^{j+1} \\ &+ \int_{0}^{1} \int_{0}^{\theta} \left\{f^{(j+2)}(\bar{x}_{l_{k-1}} + r(\bar{x}_{l_{k}} - \bar{x}_{l_{k-1}})) - f^{(j+2)}(\bar{y}_{l_{k-1}} + r(\bar{y}_{l_{k}} - \bar{y}_{l_{k-1}}))\right\} \, dr \, d\theta \, \bar{X}_{l_{k-1},l_{k}}^{1} - \bar{Y}_{l_{k-1},l_{k}}^{1}\right\} Y_{l_{k-1},l_{k}}^{j+1} \\ &+ \int_{0}^{1} \int_{0}^{\theta} f^{(j+2)}(\bar{y}_{l_{k-1}} + r(\bar{y}_{l_{k}} - \bar{y}_{l_{k-1}})) \, dr \, d\theta \, \left(\bar{X}_{l_{k-1},l_{k}}^{1} - \bar{Y}_{l_{k-1},l_{k}}^{1}\right) \bar{Y}_{l_{k-1},l_{k}}^{1+1} Y_{l_{k},l_{k+1}}^{j+1} \\ &+ \int_{0}^{1} \int_{0}^{\theta} f^{(j+2)}(\bar{x}_{l_{k-1}}) \sum_{i=0}^{j-2} \left(\dot{j}\right) \left(\bar{X}_{l_{k-1},l_{k}}^{1}\right)^{j-i} \left(\bar{X}_{l_{k-1},l_{k}}^{j+1} - Y_{l_{k-1},l_{k}}^{j+1}\right) \\ &- \sum_{j=0}^{n-1} \frac{1}{j!} \left\{f^{(j)}(\bar{x}_{l_{k-1}}) \sum_{i=0}^{j-2} \left(\dot{j}\right) \left(\bar{X}_{l_{k-1},l_{k}}^{1}\right)^{j-i} \left(\bar{X}_{l_{k-1},l_{k}}^{1} - Y_{l_{k},l_{k+1}}^{j+1}\right) \\ &+ f^{(j)}(\bar{x}_{l_{k-1}}) \sum_{i=0}^{j-2} \left(\dot{j}\right) \left(\bar{X}_{l_{k-1},l_{k}}^{1}\right)^{j-i-1} \left(\bar{X}_{l_{k-1},l_{k}}^{1} - \bar{Y}_{l_{k-1},l_{k}}^{1}\right) Y_{l_{k-1},l_{k}}^{j+1} Y_{l_{k},l_{k+1}}^{j+1} \\ &+ \left\{f^{(j)}(\bar{x}_{l_{k-1}}) - f^{(j)}(\bar{y}_{l_{k-1}})\right\} \sum_{i=0}^{j-2} \left(\dot{j}\right) \bar{X}_{l_{k-1},l_{k}}^{1} \left(\bar{Y}_{l_{k-1},l_{k}}^{1}\right)^{j-i-1} Y_{l_{k},l_{k+1}}^{j+1} \\ &+ f^{(j)}(\bar{y}_{l_{k-1}}) \sum_{i=0}^{j-2} \left(\dot{j}\right) \left(\bar{X}_{l_{k-1},l_{k}}^{1} - \bar{Y}_{l_{k-1},l_{k}}^{1}\right) \left(\bar{Y}_{l_{k-1},l_{k}}^{1}\right)^{j-i-1} Y_{l_{k},l_{k+1}}^{j+1} \\ &+ f^{(j)}(\bar{y}_{l_{k-1}}) \sum_{i=0}^{j-2} \left(\dot{j}\right) \left(\bar{X}_{l_{k-1},l_{k}}^{1} - \bar{Y}_{l_{k-1},l_{k}}^{1}\right) \left(\bar{Y}_{l_{k-1},l_{k}}^{1}\right)^{j-i-1} Y_{l_{k},l_{k+1}}^{j+1} \right\} \\ &+ f^{(j)}(\bar{y}_{l_{$$

$$\begin{split} &+ \frac{1}{(n-1)!} \left\{ \int_{0}^{1} f^{(n)}(\bar{x}_{t_{k-1}} + \theta(\bar{x}_{t_{k}} - \bar{x}_{t_{k-1}})) \, d\theta \, \bar{X}^{1}_{t_{k-1},t_{k}} \left(X^{n}_{t_{k},t_{k+1}} - Y^{n}_{t_{k},t_{k+1}} \right) \right. \\ &+ \int_{0}^{1} \left\{ f^{(n)}(\bar{x}_{t_{k-1}} + \theta(\bar{x}_{t_{k}} - \bar{x}_{t_{k-1}})) - f^{(n)}(\bar{y}_{t_{k-1}} + \theta(\bar{y}_{t_{k}} - \bar{y}_{t_{k-1}})) \right\} d\theta \, \bar{X}^{1}_{t_{k-1},t_{k}} Y^{n}_{t_{k},t_{k+1}} \\ &+ \int_{0}^{1} f^{(n)}(\bar{y}_{t_{k-1}} + \theta(\bar{y}_{t_{k}} - \bar{y}_{t_{k-1}})) \, d\theta \, \left(\bar{X}^{1}_{t_{k-1},t_{k}} - \bar{Y}^{1}_{t_{k-1},t_{k}} \right) Y^{n}_{t_{k},t_{k+1}} \right\} \end{split}$$

とできる. 従って, いま

$$M := \sum_{i=0}^{n+1} \sup_{x \in \mathbb{R}} \left| f^{(j)}(x) \right|$$

とおけば

$$\begin{split} &\left|\left|J_{i,j}^{n}(x,\bar{x},D_{-k}) - J_{i,j}^{n}(x,\bar{x},D_{-k-1})\right| - \left\{J_{i,j}^{n}(y,\bar{y},D_{-k}) - J_{i,j}^{n}(y,\bar{y},D_{-k-1})\right|\right| \\ &\leq \sum_{j=0}^{n-2} \frac{1}{j!} M\left(\left|\bar{X}_{l_{k-1},l_{k}}^{1}\right|^{2}\left|\bar{X}_{l_{k-1},k_{k}}^{j+1} - Y_{l_{k-1},l_{k}}^{j+1}\right| + \left|\bar{X}_{l_{k-1},l_{k}}^{1} - Y_{l_{k-1},l_{k}}^{j+1}\right| + \left|\bar{X}_{l_{k-1},l_{k}}^{1} - Y_{l_{k-1},l_{k}}^{j+1}\right| + \left|\bar{X}_{l_{k-1},l_{k}}^{1} - Y_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k},l_{k+1}}^{j+1}\right| \\ &+ \left|\bar{X}_{l_{k-1},l_{k}}^{1} - \bar{Y}_{l_{k-1},l_{k}}^{1}\right| \left|\bar{X}_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k},l_{k+1}}^{j+1}\right| + \left|\bar{X}_{l_{k-1},l_{k}}^{1} - \bar{Y}_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k},l_{k+1}}^{j+1}\right| \right| \\ &+ \sum_{j=0}^{n-1} \frac{1}{j!} M \sum_{i=0}^{j} \left(\frac{j}{i}\right) \left(\left|\bar{X}_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k},l_{k+1}}^{1}\right| - Y_{l_{k},l_{k+1}}^{1}\right| + \left|\bar{X}_{l_{k-1},l_{k}}^{1} - \bar{Y}_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k},l_{k+1}}^{j+1}\right| \right| \\ &+ \sum_{j=0}^{n-1} \frac{1}{j!} M \sum_{i=0}^{j} \left|V_{l_{k},l_{k+1}}^{1}\right| \left|Y_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k-1},l_{k}}^{1}\right| + \left|\bar{X}_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k-1},l_{k}}^{1}\right| \right| \\ &+ \frac{1}{(n-1)!} M \left(\left|\bar{X}_{l_{k-1},l_{k}}^{1}\right| \left|X_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k-1},l_{k}}^{1}\right| + \left|\bar{X}_{l_{k-1},l_{k}}^{1} - Y_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k-1},l_{k}}^{1}\right| \right) \\ &+ \frac{1}{(n-1)!} M \left(\left|\bar{X}_{l_{k-1},l_{k}}^{1}\right| \left|X_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k-1},l_{k}}^{1}\right| + \left|\bar{X}_{l_{k-1},l_{k}}^{1} - Y_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k-1},l_{k}}^{1}\right| \right|Y_{l_{k-1},l_{k}}^{1}\right| \\ &+ \left|X_{l_{k-1},l_{k}}^{1}\right| \left|X_{l_{k-1},l_{k}}^{1}\right| \left|X_{l_{k-1},l_{k}}^{1}\right| + \left|X_{l_{k-1},l_{k}}^{1}\right| \left|X_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k-1},l_{k}}^{1}\right| \left|Y_{l_{k-1},l_{k}}^{1}\right| \right|Y_{l_{k-1},l_{k}}^{1}\right| \\ &+ \left|X_{l_{k-1},l_{k}}^{1}\right| \left|X_{l_{k-1},l_{k}}^{1}\right|$$

$$\begin{split} &+\epsilon M2\omega(0,T)^{2/(n+1)}\left\{\sum_{j=1}^{n-1}\frac{1}{(j-1)!}2^{j-1}\left[\omega(0,T)^{1/(n+1)}\right]^{j-1}\right\}\left(\frac{2\omega(0,T)}{N-k-1}\right)^{(n+1)/p}\\ &+\epsilon M\left\{1+\omega(0,T)^{1/p}\right\}\omega(0,T)^{1/(n+1)}\left\{\sum_{j=0}^{n-1}\frac{1}{j!}2^{j}\left[\omega(0,T)^{1/(n+1)}\right]^{j}\right\}\left(\frac{2\omega(0,T)}{N-k-1}\right)^{(n+1)/p}\\ &\leq \epsilon M\left[\left\{3+2\omega(0,T)^{1/p}\right\}\omega(0,T)^{3/(n+1)}e^{\omega(0,T)^{1/(n+1)}}+2\omega(0,T)^{2/(n+1)}e^{2\omega(0,T)^{1/(n+1)}}\\ &+\left\{1+\omega(0,T)^{1/p}\right\}\omega(0,T)^{1/(n+1)}e^{2\omega(0,T)^{1/(n+1)}}\right]\left(\frac{2\omega(0,T)}{N-k-1}\right)^{(n+1)/p} \end{split}$$

となる. ここで $\omega(0,T) \leq C_R$ を用いて

$$\begin{split} C_1 &:= M \left[\left\{ 3 + 2 C_R^{1/p} \right\} C_R^{3/(n+1)} e^{C_R^{1/(n+1)}} \right. \\ &+ 2 C_R^{2/(n+1)} e^{2 C_R^{1/(n+1)}} \\ &+ \left\{ 1 + C_R^{1/p} \right\} C_R^{1/(n+1)} e^{2 C_R^{1/(n+1)}} \left[(2C_R)^{(n+1)/p} \right. \end{split}$$

とおけば

$$\begin{split} \sum_{k=0}^{N-2} \left| \left\{ J_{s,t}^{n}(x,\bar{x},D_{-k}) - J_{s,t}^{n}(x,\bar{x},D_{-k-1}) \right\} - \left\{ J_{s,t}^{n}(y,\bar{y},D_{-k}) - J_{s,t}^{n}(y,\bar{y},D_{-k-1}) \right\} \right| \\ \leq \epsilon C_{1} \sum_{k=0}^{N-2} \left(\frac{1}{N-k-1} \right)^{(n+1)/p} \leq \epsilon C_{1} \zeta \left(\frac{n+1}{p} \right) \end{split}$$

が成立する. いま p < n+1 より $\zeta((n+1)/p) < \infty$ が満たされている.

第四段 (1.25) の最終項について,

$$\begin{split} \left\{J^n_{s,t}(x,\bar{x}) - J^n_{s,t}(y,\bar{y})\right\} &= \sum_{j=1}^n \frac{1}{(j-1)!} f^{(j-1)}(\bar{x}_s) X^j_{s,t} - \sum_{j=1}^n \frac{1}{(j-1)!} f^{(j-1)}(\bar{y}_s) Y^j_{s,t} \\ &= \sum_{j=1}^n \frac{1}{(j-1)!} \left\{f^{(j-1)}(\bar{x}_s) \left(X^j_{s,t} - Y^j_{s,t}\right) + \left(f^{(j-1)}(\bar{x}_s) - f^{(j-1)}(\bar{y}_s)\right) Y^j_{s,t}\right\} \\ &= \sum_{j=1}^n \frac{1}{(j-1)!} \left\{f^{(j-1)}(\bar{x}_s) \left(X^j_{s,t} - Y^j_{s,t}\right) + \int_0^1 f^{(j-1)}(\bar{y}_s + \theta(\bar{x}_s - \bar{y}_s)) \, d\theta \left(\bar{X}^1_{0,s} - \bar{Y}^1_{0,s}\right) Y^j_{s,t}\right\} \end{split}$$

が成り立つから

$$\begin{split} \left| J_{s,t}^{n}(x,\bar{x}) - J_{s,t}^{n}(y,\bar{y}) \right| &\leq \sum_{j=1}^{n} \frac{1}{(j-1)!} \epsilon M \left\{ \omega(s,t)^{j/p} + \omega(0,s)^{1/p} \omega(s,t)^{j/p} \right\} \\ &\leq \epsilon M \left(e^{\omega(s,t)^{1/p}} + \omega(0,s)^{1/p} e^{\omega(s,t)^{1/p}} \right) \\ &\leq \epsilon M \left(e^{C_{R}^{1/p}} + C_{R}^{1/p} e^{C_{R}^{1/p}} \right) \end{split}$$

となる. ここで

$$C := C_1 \zeta \left(\frac{n+1}{p} \right) + M \left(e^{C_R^{1/p}} + C_R^{1/p} e^{C_R^{1/p}} \right)$$

と定めれば

$$\left|J_{s,t}^n(x,\bar{x},D) - J_{s,t}^n(y,\bar{y},D)\right| \le \epsilon C$$

が従い, $|D| \longrightarrow 0$ として

$$\left|I_{s,t}(x,\bar{x}) - I_{s,t}(y,\bar{y})\right| \le \epsilon C$$

得られる.

(1.26) の証明.

証明. 先ず

$$\begin{split} J^n_{s,t}(x,\bar{x},D_{-k}) - J^n_{s,t}(x,\bar{x},D_{-k-1}) &= J^n_{t_{k-1},t_k}(x,\bar{x}) + J^n_{t_k,t_{k+1}}(x,\bar{x}) - J^n_{t_{k-1},t_{k+1}}(x,\bar{x}) \\ &= \sum_{i=1}^n \frac{1}{(j-1)!} \left\{ f^{(j-1)}(\bar{x}_{t_{k-1}}) X^j_{t_{k-1},t_k} + f^{(j-1)}(\bar{x}_{t_k}) X^j_{t_k,t_{k+1}} - f^{(j-1)}(\bar{x}_{t_{k-1}}) X^j_{t_{k-1},t_{k+1}} \right\} \end{split}$$

となる.ここで $X^j_{t_{k-1},t_k},X^j_{t_{k-1},t_{k+1}}$ の被積分関数 $(\bar{x}_u-\bar{x}_{t_{k-1}})^{j-1}$ は

$$(\bar{x}_u - \bar{x}_{t_{k-1}})^{j-1} = \sum_{i=0}^{j-1} {j-1 \choose i} (\bar{x}_u - \bar{x}_{t_k})^i (\bar{X}_{t_{k-1},t_k})^{j-1-i}$$

とできるから

$$f^{(j-1)}(\bar{x}_{t_{k-1}})X^j_{t_{k-1},t_k} - f^{(j-1)}(\bar{x}_{t_{k-1}})X^j_{t_{k-1},t_{k+1}} = \sum_{i=0}^{j-1} \binom{j-1}{i} f^{(j-1)}(\bar{x}_{t_{k-1}})X^{i+1}_{t_k,t_{k+1}}\left(\bar{X}_{t_{k-1},t_k}\right)^{j-1-i}$$

が成り立ち

$$\begin{split} &\sum_{j=1}^{n} \frac{1}{(j-1)!} \left\{ f^{(j-1)}(\bar{x}_{l_{k-1}}) X_{l_{k-1},l_{k}}^{j} + f^{(j-1)}(\bar{x}_{l_{k}}) X_{l_{k},l_{k+1}}^{j} - f^{(j-1)}(\bar{x}_{l_{k-1}}) X_{l_{k-1},l_{k+1}}^{j} \right\} \\ &= \sum_{j=1}^{n} \frac{1}{(j-1)!} f^{(j-1)}(\bar{x}_{l_{k}}) X_{l_{k},l_{k+1}}^{j} - \sum_{j=1}^{n} \frac{1}{(j-1)!} \sum_{i=0}^{j-1} \binom{j-1}{i} f^{(j-1)}(\bar{x}_{l_{k-1}}) X_{l_{k},l_{k+1}}^{j+1} \left(\bar{X}_{l_{k-1},l_{k}} \right)^{j-1-i} \\ &= \sum_{j=1}^{n} \frac{1}{(j-1)!} \left\{ f^{(j-1)}(\bar{x}_{l_{k}}) - f^{(j-1)}(\bar{x}_{l_{k-1}}) \right\} X_{l_{k},l_{k+1}}^{j} - \sum_{j=2}^{n} \frac{1}{(j-1)!} \sum_{i=0}^{j-2} \binom{j-1}{i} f^{(j-1)}(\bar{x}_{l_{k-1},l_{k}}) X_{l_{k},l_{k+1}}^{j+1-i} \\ &= \sum_{j=1}^{n-1} \frac{1}{(j-1)!} \int_{0}^{1} f^{(j)}(\bar{x}_{l_{k-1}} + \theta(\bar{x}_{l_{k}} - \bar{x}_{l_{k-1}})) \ d\theta \ \bar{X}_{l_{k-1},l_{k}}^{1} X_{l_{k},l_{k+1}}^{j} - \sum_{j=2}^{n} \frac{1}{(j-1)!} \sum_{i=0}^{j-2} \binom{j-1}{i} f^{(j-1)}(\bar{x}_{l_{k-1}}) X_{l_{k},l_{k+1}}^{j+1} \left(\bar{X}_{l_{k-1},l_{k}} \right)^{j-1-i} \\ &= \sum_{j=1}^{n-1} \frac{1}{(j-1)!} \int_{0}^{1} f^{(j)}(\bar{x}_{l_{k-1}} + \theta(\bar{x}_{l_{k}} - \bar{x}_{l_{k-1}})) - f^{(j)}(\bar{x}_{l_{k-1}}) \ d\theta \ \bar{X}_{l_{k-1},l_{k}}^{1} X_{l_{k},l_{k+1}}^{j} \\ &+ \sum_{j=1}^{n-1} \frac{1}{(j-1)!} f^{(j)}(\bar{x}_{l_{k-1}}) \bar{X}_{l_{k-1},l_{k}}^{j} X_{l_{k},l_{k+1}}^{j} - \sum_{j=2}^{n} \frac{1}{(j-1)!} \sum_{i=0}^{j-2} \binom{j-1}{i} f^{(j-1)}(\bar{x}_{l_{k-1},l_{k}})^{j-1-i} \\ &+ \frac{1}{(n-1)!} \int_{0}^{1} f^{(n)}(\bar{x}_{l_{k-1}}) \bar{X}_{l_{k-1},l_{k}}^{1} X_{l_{k},l_{k+1}}^{j} - \sum_{j=2}^{n} \frac{1}{(j-1)!} \sum_{i=0}^{j-2} \binom{j-1}{i} f^{(j-1)}(\bar{x}_{l_{k-1},l_{k}})^{j-1-i} \\ &+ \frac{1}{(n-1)!} \int_{0}^{1} f^{(n)}(\bar{x}_{l_{k-1}} + \theta(\bar{x}_{l_{k}} - \bar{x}_{l_{k-1}})) \ d\theta \ \bar{X}_{l_{k-1},l_{k}}^{1} X_{l_{k},l_{k+1}}^{n} \\ &+ \frac{1}{(n-1)!} \int_{0}^{1} f^{(n)}(\bar{x}_{l_{k-1}} + \theta(\bar{x}_{l_{k}} - \bar{x}_{l_{k-1}})) \ d\theta \ \bar{X}_{l_{k-1},l_{k}}^{1} X_{l_{k},l_{k+1}}^{n} \\ &+ \frac{1}{(n-1)!} \int_{0}^{1} f^{(n)}(\bar{x}_{l_{k-1}} + \theta(\bar{x}_{l_{k}} - \bar{x}_{l_{k-1}})) \ d\theta \ \bar{X}_{l_{k-1},l_{k}}^{1} X_{l_{k-1},l_{k-1}}^{n} \\ &+ \frac{1}{(n-1)!} \int_{0}^{1} f^{(n)}(\bar{x}_{l_{k-1}} + \theta(\bar{x}_{l_{k}} - \bar{x}_{l_{k-1}})) \ d\theta \ \bar{X}_{l_{k-1},l_{k}}^{1} X_{l_{k-1},l_{k-1}}^{n} \\ &+ \frac{$$

$$\begin{split} &= \sum_{j=1}^{n-1} \frac{1}{(j-1)!} \int_{0}^{1} \int_{0}^{\theta} f^{(j+1)} \left(\bar{x}_{t_{k-1}} + r(\bar{x}_{t_{k}} - \bar{x}_{t_{k-1}}) \right) \ dr \ d\theta \ \left(\bar{X}_{t_{k-1},t_{k}}^{1} \right)^{2} X_{t_{k},t_{k+1}}^{j} \\ &+ \sum_{j=2}^{n} \frac{1}{(j-2)!} f^{(j-1)} \left(\bar{x}_{t_{k-1}} \right) \bar{X}_{t_{k-1},t_{k}}^{1} X_{t_{k},t_{k+1}}^{j-1} - \sum_{j=2}^{n} \frac{1}{(j-1)!} \sum_{i=0}^{j-2} \binom{j-1}{i} f^{(j-1)} (\bar{x}_{t_{k-1}}) X_{t_{k},t_{k+1}}^{i+1} \left(\bar{X}_{t_{k-1},t_{k}} \right)^{j-1-i} \\ &+ \frac{1}{(n-1)!} \int_{0}^{1} f^{(n)} \left(\bar{x}_{t_{k-1}} + \theta(\bar{x}_{t_{k}} - \bar{x}_{t_{k-1}}) \right) \ d\theta \ \bar{X}_{t_{k-1},t_{k}}^{1} X_{t_{k},t_{k+1}}^{n} \\ &= \sum_{j=1}^{n-1} \frac{1}{(j-1)!} \int_{0}^{1} \int_{0}^{\theta} f^{(j+1)} \left(\bar{x}_{t_{k-1}} + r(\bar{x}_{t_{k}} - \bar{x}_{t_{k-1}}) \right) \ dr \ d\theta \ \left(\bar{X}_{t_{k-1},t_{k}}^{1} \right)^{2} X_{t_{k},t_{k+1}}^{j} \\ &- \sum_{j=3}^{n} \frac{1}{(j-1)!} \sum_{i=0}^{j-3} \binom{j-1}{i} f^{(j-1)} (\bar{x}_{t_{k-1}}) X_{t_{k},t_{k+1}}^{i+1} \left(\bar{X}_{t_{k-1},t_{k}} \right)^{j-1-i} \\ &+ \frac{1}{(n-1)!} \int_{0}^{1} f^{(n)} \left(\bar{x}_{t_{k-1}} + \theta(\bar{x}_{t_{k}} - \bar{x}_{t_{k-1}}) \right) \ d\theta \ \bar{X}_{t_{k-1},t_{k}}^{1} X_{t_{k},t_{k+1}}^{n} \end{split}$$

が得られる.

付録A

テンソル積・クロスノルム

以下,零元のみの線型空間は考えない.すなわち以下で扱う全ての線型空間には基底が存在する. E, E_i, F を体 \mathbb{K} 上の線形空間とするとき, $\operatorname{Hom}(E,F)$ で E から F への \mathbb{K} -線型写像の全体を表す.また $\operatorname{Hom}^{(n)}(E_1 \times \cdots \times E_n, F)$ で $E_1 \times \cdots \times E_n$ から F への \mathbb{K} -n 重線型写像の全体を表す.X をノルム空間と考えるときは,特に指定しなければノルムを $\|\cdot\|_X$ と書いてノルム位相を導入する.X に何らかのノルム $\|\cdot\|$ が定まっているとき, $(X,\|\cdot\|)$ の位相的双対空間を $(X,\|\cdot\|)$ と書く.ノルム空間の族 $(X_i)_{i=1}^n$ の直和 $\bigoplus_{i=1}^n X_i$ には直積ノルム $\|\cdot\|_{X_1} + \cdots + \|\cdot\|_{X_n}$ により位相を導入する.

A.1 ノルム空間上の有界多重線型写像

[参考:[9]] \mathbb{K} を \mathbb{R} または \mathbb{C} と考える. また $n \ge 1$ とする.

定義 A.1.1 (有界な多重線型写像). $(X_i)_{i=1}^n$ 及び Y を全て \mathbb{K} 上のノルム空間とするとき,有界な n 重線型写像の全体を $L^{(n)}\left(\bigoplus_{i=1}^n X_i,Y\right)$ で表す. つまり任意の $f\in L^{(n)}\left(\bigoplus_{i=1}^n X_i,Y\right)$ に対して次を満たす定数 $C\geq 0$ が存在する:

$$||f(x_1, \dots, x_n)||_Y \le C ||x_1||_{X_1} \dots ||x_n||_{X_n}, \quad (\forall x_i \in X_i, i = 1, \dots, n).$$
 (A.1)

定理 A.1.2 (有界 \Leftrightarrow 連続). $(X_i)_{i=1}^n$ 及び Y を全て \mathbb{K} 上のノルム空間とする. 任意の $f \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n X_i, Y\right)$ に対して,f が連続であることと f が有界であることは一致する.

証明.

第一段 $f \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n X_i, Y\right)$ が連続であるとする.このとき f は $0 \in \bigoplus_{i=1}^n X_i$ で連続であるから,或る $\delta_1, \cdots, \delta_n > 0$ が存在して $\|x_1\|_{X_1} \leq \delta_1, \cdots, \|x_n\|_{X_n} \leq \delta_n$ が満たされている限り

$$||f(x_1,\cdots,x_n)||_Y\leq 1$$

が成立する. よって任意の $x_i \in X_i$ $(x_i \neq 0, i = 1, \dots, n)$ に対して

$$\frac{\delta_{1}\cdots\delta_{n}}{\|x_{1}\|_{X_{1}}\cdots\|x_{n}\|_{X_{n}}}\|f(x_{1},\cdots,x_{n})\|_{Y} = \left\|f\left(\delta_{1}\frac{x_{1}}{\|x_{1}\|_{X_{1}}},\cdots,\delta_{n}\frac{x_{n}}{\|x_{n}\|_{X_{n}}}\right)\right\|_{Y} \leq 1$$

が従い

$$|| f(x_1, \dots, x_n) ||_Y \le \frac{1}{\delta_1 \dots \delta_n} || x_1 ||_{X_1} \dots || x_n ||_{X_n}$$

を得る. 或る i で $x_i=0$ であっても上の不等式は満たされるから f は有界である. 第二段 f が有界であるとする. このとき或る定数 $C\geq 0$ が存在して (A.1) を満たし、

$$|| f(x_{1}, \dots, x_{n}) - f(y_{1}, \dots, y_{n}) ||_{Y} \leq || f(x_{1}, x_{2}, \dots, x_{n}) - f(y_{1}, x_{2}, \dots, x_{n}) + f(y_{1}, x_{2}, \dots, x_{n}) - f(y_{1}, y_{2}, \dots, x_{n}) + f(y_{1}, x_{2}, \dots, x_{n}) - f(y_{1}, y_{2}, \dots, x_{n}) + f(y_{1}, \dots, y_{n-1}, x_{n}) - f(y_{1}, y_{2}, \dots, y_{n}) ||_{Y}$$

$$\leq C || x_{1} - y_{1} ||_{X_{1}} || x_{2} ||_{X_{2}} \dots || x_{n} ||_{X_{n}} + C ||y_{1} ||_{X_{1}} || x_{2} - y_{2} ||_{X_{2}} \dots ||x_{n} ||_{X_{n}} + C ||y_{1} ||_{X_{1}} \dots ||y_{n-1} ||_{X_{n-1}} ||x_{n} - y_{n} ||_{X_{n}} + C ||y_{1} ||_{X_{1}} \dots ||y_{n-1} ||_{X_{n-1}} ||x_{n} - y_{n} ||_{X_{n}} \longrightarrow 0$$

$$\left(||(x_{1}, \dots, x_{n}) - (y_{1}, \dots, y_{n})||_{\bigoplus_{i=1}^{n} X_{i}} \longrightarrow 0 \right)$$

が成り立つから f の連続性が出る.

 $(X_i)_{i=1}^n$ 及び Y を全て \mathbb{K} 上のノルム空間とする. このとき $f \in L^{(n)}\left(\bigoplus_{i=1}^n X_i, Y\right)$ の作用素ノルムは次で定まる:

$$||f||_{L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, Y)} := \inf \left\{ C \geq 0 \; ; \quad ||f(x_{1}, \dots, x_{n})||_{Y} \leq C ||x_{1}||_{X_{1}} \dots ||x_{n}||_{X_{n}} , \; (\forall x_{i} \in X_{i}, \; i = 1, \dots, n) \right\}.$$

下限の定義より次が成立する:

$$||f(x_1,\dots,x_n)||_Y \le ||f||_{L^{(n)}(\bigoplus_{i=1}^n X_i,Y)} ||x_1||_{X_1} \dots ||x_n||_{X_n}, \quad (\forall x_i \in X_i, \ i=1,\dots,n).$$
(A.2)

実際, (A.2) が満たされない場合, 或る $(u_1,\cdots,u_n)\in\bigoplus_{i=1}^n X_i\ (u_i\neq 0,\ i=1,\cdots,n)$ が存在して

$$\frac{\|f(u_1,\cdots,u_n)\|_Y}{\|u_1\|_{X_1}\cdots\|u_n\|_{X_n}} > \|f\|_{L^{(n)}\left(\bigoplus_{i=1}^n X_i,Y\right)}$$

が成立するが, 実数の連続性より

$$\frac{\|f(u_1,\cdots,u_n)\|_Y}{\|u_1\|_{X_1}\cdots\|u_n\|_{X_n}} > \delta > \|f\|_{L^{(n)}(\bigoplus_{i=1}^n X_i,Y)}$$

を満たす δ が存在し、

$$|| f ||_{L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, Y)} < \delta$$

$$\leq \inf \Big\{ C \geq 0 \; ; \quad || f(x_{1}, \dots, x_{n}) ||_{Y} \leq C || x_{1} ||_{X_{1}} \dots || x_{n} ||_{X_{n}} \; , \; (\forall x_{i} \in X_{i}, \; i = 1, \dots, n) \Big\}$$

$$= || f ||_{L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, Y)}$$

が従い矛盾が生じる.

定理 A.1.3 (多重線型写像の作用素ノルム). $(X_i)_{i=1}^n$ 及び Y を全て \mathbb{K} 上のノルム空間とする. このとき,任意の $f \in L^{(n)}\left(\bigoplus_{i=1}^n X_i, Y\right)$ に対して次が成立する:

$$||f||_{L^{(n)}(\bigoplus_{i=1}^{n}X_{i},Y)} = \sup_{\substack{||x_{i}||_{X_{i}}=1\\i=1,\dots,n}} ||f(x_{1},\dots,x_{n})||_{Y} = \sup_{\substack{||x_{i}||_{X_{i}}\leq1\\i=1,\dots,n}} ||f(x_{1},\dots,x_{n})||_{Y} = \sup_{\substack{||x_{i}||_{X_{i}}\neq0\\i=1,\dots,n}} \frac{||f(x_{1},\dots,x_{n})||_{Y}}{||x_{1}||_{X_{1}}\dots||x_{n}||_{X_{n}}}.$$

証明. (第四式) ≤ (第一式) ≤ (第二式) ≤ (第三式) ≤ (第四式) を示す.

第一段 式(A.2)より次を得る:

$$\sup_{\substack{\|x_i\|_{X_i} \neq 0 \\ i=1,\cdots,n}} \frac{\|f(x_1,\cdots,x_n)\|_Y}{\|x_1\|_{X_1}\cdots\|x_n\|_{X_n}} \leq \|f\|_{L^{(n)}\left(\bigoplus_{i=1}^n X_i,Y\right)}.$$

第二段 任意の $0 \neq x_i \in X_i$ $(i = 1, \dots, n)$ に対して

$$|| f(x_1, \dots, x_n) ||_Y = || x_1 ||_{X_1} \dots || x_n ||_{X_n} || f\left(\frac{x_1}{|| x_1 ||_{X_1}}, \dots, \frac{x_n}{|| x_n ||_{X_n}}\right) ||_Y$$

$$\leq || x_1 ||_{X_1} \dots || x_n ||_{X_n} \sup_{\substack{|| x_i ||_{X_i} = 1 \\ i = 1, \dots, n}} || f(x_1, \dots, x_n) ||_Y$$

が成立するから

$$||f||_{L^{(n)}\left(\bigoplus_{i=1}^{n} X_{i}, Y\right)} \le \sup_{\substack{||x_{i}||_{X_{i}}=1\\i=1,\dots,n}} ||f(x_{1}, \dots, x_{n})||_{Y}$$

が従う.

第三段 上限を取る範囲の大小より

$$\sup_{\substack{\|x_i\|_{X_i}=1\\i=1,\cdots,n}} \|f(x_1,\cdots,x_n)\|_Y \le \sup_{\substack{\|x_i\|_{X_i}\le 1\\i=1,\cdots,n}} \|f(x_1,\cdots,x_n)\|_Y$$

が出る.

第四段 $0 < ||x_i||_{X_i} \le 1 (i = 1, \dots, n)$ ならば

$$|| f(x_1, \dots, x_n) ||_Y = || x_1 ||_{X_1} \dots || x_n ||_{X_n} \frac{|| f(x_1, \dots, x_n) ||_Y}{|| x_1 ||_{X_1} \dots || x_n ||_{X_n}}$$

$$\leq \frac{|| f(x_1, \dots, x_n) ||_Y}{|| x_1 ||_{X_1} \dots || x_n ||_{X_n}}$$

$$\leq \sup_{\substack{|| x_i ||_{X_i} \neq 0 \\ i=1,\dots,n}} \frac{|| f(x_1, \dots, x_n) ||_Y}{|| x_1 ||_{X_1} \dots || x_n ||_{X_n}}$$

が成立するから

$$\sup_{\substack{\|x_i\|_{X_i} \leq 1 \\ i=1,\cdots,n}} \|f(x_1,\cdots,x_n)\|_Y \leq \sup_{\substack{\|x_i\|_{X_i} \neq 0 \\ i=1,\cdots,n}} \frac{\|f(x_1,\cdots,x_n)\|_Y}{\|x_1\|_{X_1}\cdots\|x_n\|_{X_n}}$$

が得られる.

定理 A.1.4 (有界な多重線型写像の一意拡張). $n \ge 1$ とする. $(X_i)_{i=1}^n$ をノルム空間, Z を Banach 空間, Y_i を X_i の 稠密な部分空間とする $(i=1,\cdots,n)$. このとき,有界 n 重線型写像 $b:\bigoplus_{i=1}^n Y_i \longrightarrow Z$ は $(X_i)_{i=1}^n$ 上の Z 値 n 重線型写像 \tilde{b} に一意に拡張され,b と \tilde{b} の作用素ノルムは一致する.

証明. $\bigoplus_{i=1}^n Y_i$ は $\bigoplus_{i=1}^n X_i$ で稠密であるから、任意の $x=(x_1,\cdots,x_n)\in\bigoplus_{i=1}^n X_i$ に対して

$$\left\|x-x^k\right\|_{\bigoplus_{i=1}^n X_i} = \sum_{i=1}^n \left\|x_i-x_i^k\right\|_{X_i} \longrightarrow 0, \quad (k \longrightarrow \infty)$$

を満たす点列 $x^k = (x_1^k, \dots, x_n^k) \in \bigoplus_{i=1}^n Y_i (k = 1, 2, \dots)$ が存在する.

$$M_i := \sup_{k>1} \left\| x_i^k \right\|_{X_i}, \quad (i=1,\cdots,n)$$

とおけば、 $M_i < \infty (i = 1, \dots, n)$ より

$$\begin{aligned} \|b(x^{k}) - b(x^{\ell})\|_{Z} &= \|b(x_{1}^{k}, x_{2}^{k}, \cdots, x_{n}^{k}) - b(x_{1}^{\ell}, x_{2}^{k}, \cdots, x_{n}^{k}) \\ &+ b(x_{1}^{\ell}, x_{2}^{k}, \cdots, x_{n}^{k}) - b(x_{1}^{\ell}, x_{2}^{\ell}, \cdots, x_{n}^{k}) \\ &\cdots \\ &+ b(x_{1}^{\ell}, \cdots, x_{n-1}^{\ell}, x_{n}^{k}) - b(x_{1}^{\ell}, \cdots, x_{n}^{\ell})\|_{Z} \\ &\leq \|b\|_{L^{(n)}(\bigoplus_{i=1}^{n} Y_{i}, Z)} \|x_{1}^{k} - x_{1}^{\ell}\|_{X_{1}} M_{2} \cdots M_{n} \\ &+ \|b\|_{L^{(n)}(\bigoplus_{i=1}^{n} Y_{i}, Z)} M_{1} \|x_{2}^{k} - x_{2}^{\ell}\|_{X_{2}} M_{3} \cdots M_{n} \\ &\cdots \\ &+ \|b\|_{L^{(n)}(\bigoplus_{i=1}^{n} Y_{i}, Z)} M_{1} \cdots M_{n-1} \|x_{n}^{k} - x_{n}^{\ell}\|_{X_{n}} \\ &\longrightarrow 0, \quad (k, \ell \longrightarrow \infty) \end{aligned}$$

が成り立ち、Z の完備性より $\lim_{k\to\infty}b(x^k)$ が存在する. 別の収束列 $\bigoplus_{i=1}^nY_i\ni y^m\longrightarrow x$ を取れば

$$\left\| \left\| x_i^k - y_i^m \right\|_{X_i} \le \left\| \left\| x_i^k - x_i \right\|_{X_i} + \left\| \left\| x_i - y_i^m \right\|_{X_i} \longrightarrow 0, \quad (k, m \longrightarrow \infty, \ i = 1, \cdots, n) \right\|_{X_i}$$

より $\|b(x^k) - b(y^m)\|_Z \longrightarrow 0 (k, m \longrightarrow \infty)$ が従い

$$\lim_{k \to \infty} b(x^k) = \lim_{m \to \infty} b(y^m)$$

が得られ、これにより写像 $\tilde{b}: x \mapsto \lim_{k\to\infty} b(x^k)$ が定まる. この \tilde{b} は b の拡張であり、有界かつ n 重線型性を持つ. 先ず n 重線型性を示す. $x=(x_1,x_2,\cdots,x_n)$ と $y=(y_1,x_2,\cdots,x_n)$ に対し

$$||x-x^k||_{\bigoplus_{i=1}^n X_i} \longrightarrow 0, \quad ||y-y^k||_{\bigoplus_{i=1}^n X_i} \longrightarrow 0$$

を満たす点列 $(x^k)_{k=1}^{\infty}, (y^k)_{m=1}^{\infty} \subset \bigoplus_{i=1}^{n} Y_i$ を取れば

$$\begin{split} & \left\| \tilde{b}(\alpha x_{1} + \beta y_{1}, x_{2}, \cdots, x_{n}) - \alpha \tilde{b}(x_{1}, \cdots, x_{n}) - \beta \tilde{b}(y_{1}, \cdots, x_{n}) \right\|_{Z} \\ & \leq \left\| \tilde{b}(\alpha x_{1} + \beta y_{1}, x_{2}, \cdots, x_{n}) - b(\alpha x_{1}^{k} + \beta y_{1}^{k}, x_{2}^{k}, \cdots, x_{n}^{k}) \right\|_{Z} \\ & + |\alpha| \left\| \tilde{b}(x_{1}, \cdots, x_{n}) - b(x_{1}^{k}, \cdots, x_{n}^{k}) \right\|_{Z} \\ & + |\beta| \left\| \tilde{b}(y_{1}, \cdots, x_{n}) - b(y_{1}^{k}, \cdots, x_{n}^{k}) \right\|_{Z} \\ & \longrightarrow 0, \quad (k \longrightarrow \infty) \end{split}$$

が成り立ち、 \tilde{b} の第一成分に関する線型性を得る。他の成分も同じである。また任意の $x\in \bigoplus_{i=1}^\infty X_i$ に対して収束列 $(x^k)_{k=1}^\infty\subset \bigoplus_{i=1}^n Y_i$ を取れば、任意の $\epsilon>0$ に対し或る k が存在して

$$\left\| \left\| \tilde{b}(x) \right\|_Z \le \left\| \left| b(x^k) \right| \right\|_Z + \epsilon$$

かつ

$$\left\| x_i^k \right\|_{X_i} \le \left\| x_i \right\|_{X_i} + \epsilon, \quad (i = 1, \dots, n)$$

が満たされ

$$\left\| \tilde{b}(x) \right\|_{Z} \leq \left\| b(x^{k}) \right\|_{Z} + \epsilon \leq \left\| b \right\|_{L^{(n)}\left(\bigoplus_{i=1}^{n} Y_{i}, Z\right)} \prod_{i=1}^{n} \left(\left\| x_{i} \right\|_{X_{i}} + \epsilon \right) + \epsilon$$

が従う. x 及び ϵ の任意性より $\|\tilde{b}\|_{L^{(n)}\left(\bigoplus_{i=1}^n X_i, Z\right)} \leq \|b\|_{L^{(n)}\left(\bigoplus_{i=1}^n Y_i, Z\right)}$ が成り立ち, \tilde{b} はb の拡張だから

$$\left\| \tilde{b} \right\|_{L^{(n)}\left(\bigoplus_{i=1}^{n} X_{i}, Z\right)} = \left\| b \right\|_{L^{(n)}\left(\bigoplus_{i=1}^{n} Y_{i}, Z\right)}$$

が出る. 拡張の一意性は $\bigoplus_{i=1}^n Y_i$ の稠密性と \tilde{b} の連続性による.

A.2 ノルム空間の完備拡大

[参考:[10](pp. 268-273)] 账 を ℝ 或は ℂ と考える.

定理 A.2.1 (ノルム空間の完備化). $(X, \|\cdot\|_X)$ を \mathbb{K} 上のノルム空間とするとき, 次の (e1) と (e2) を満たす \mathbb{K} -Banach 空間 $(Y, \|\cdot\|_Y)$ と線型等長写像 $J: X \longrightarrow Y (\|x\|_X = \|Jx\|_Y)$ が存在する:

- (e1) JX は Y において稠密である.
- (e2) 別の \mathbb{K} -Banach 空間 $(Z, \|\cdot\|_Z)$ と線型等長 $K: X \longrightarrow Z$ が存在して (e1) を満たすとき, $F \circ J = K$ を満たす等 長同型 $F: Y \longrightarrow Z$ が存在する.

(e3) X が内積空間なら Y は Hilbert 空間であり、それぞれ内積を $\langle\cdot,\cdot\rangle_X$, $\langle\cdot,\cdot\rangle_Y$ と書けば次が成り立つ:

$$\left\langle Jx,Jx'\right\rangle _{Y}=\left\langle x,x'\right\rangle _{X},\quad (\forall x,x'\in X).$$

証明.

第一段 X の Cauchy 列の全体を Cauchy(X) で表す。任意の $(x_n), (x'_n) \in Cauchy(X)$ に対し

$$\left| \left\| x_n - x'_n \right\|_X - \left\| x_m - x'_m \right\|_X \right| \le \left\| x_n - x_m \right\|_X + \left\| x'_n - x'_m \right\|_X$$

が成り立つから, $\left(\left\|x_n-x_n'\right\|_X\right)_{n=1}^\infty$ は $\mathbb R$ の Cauchy 列をなして収束し,

$$(x_n) R(x'_n) \stackrel{\text{def}}{\Leftrightarrow} \lim_{n \to \infty} ||x_n - x'_n||_X = 0$$

により Cauchy(X) に同値関係 R が定まる. Cauchy(X) は、 $0 \in X$ の列を零元と定め、

$$(x_n) + (x'_n) := (x_n + x'_n), \quad \alpha(x_n) := (\alpha x_n)$$

を線型演算とすれば線型空間となり,

$$N := \{ (x_n) \in Cauchy(X) ; (x_n) R(0) \}$$

は部分空間となるから,次の商

$$Y := Cauchy(X)/N$$

は適当な線型演算により線型空間となる. (x_n) の R に関する同値類を $[(x_n)]$ と表すとき

$$\|[(x_n)]\|_Y := \lim_{n \to \infty} \|x_n\|_X$$
 (A.3)

は well-defined であり、 $\|\cdot\|_Y$ は Y においてノルムとなる.

第二段 任意の $x \in X$ に対し $x_n = x$ ($\forall n \ge 1$) を満たす (x_n) を ζ_x と書けば、

$$J: X \ni x \longmapsto [\zeta_x] \in Y \tag{A.4}$$

により等長線型が定まる. 実際, 任意の $\alpha, \beta \in \mathbb{K}$, $u, v \in X$ に対して

$$\left\|J(\alpha u+\beta v)-\alpha Ju-\beta Jv\right\|_{Y}=\left\|\left[\zeta_{\alpha u+\beta v}\right]-\alpha \left[\zeta_{u}\right]-\beta \left[\zeta_{v}\right]\right\|_{Y}=\left\|\left[\zeta_{\alpha u+\beta v}-\alpha \zeta_{u}-\beta \zeta_{v}\right]\right\|_{Y}=0$$

が成り立つからJは線型であり、

$$||Jx||_Y = \lim_{n \to \infty} ||x_n||_X = ||x||_X, \quad (\forall x \in X)$$

より等長性も得られる.

第三段 (e1) を示す. いま, 任意に $y = [(x_n)] \in Y$ と $\epsilon > 0$ を取る. このとき或る $N \in \mathbb{N}$ が存在して

$$||x_n - x_m||_X < \frac{\epsilon}{2}, \quad (\forall n, m > N)$$

を満たす. m > N を満たす m を任意に一つ選んで

$$\epsilon_m := \lim_{n \to \infty} ||x_n - x_m||_X$$

とおけば、また或る $N' \in \mathbb{N}$ (N' > N) が存在して

$$|\epsilon_m - || x_n - x_m ||_X| < \frac{\epsilon}{2}, \quad (\forall n > N')$$

が成立し

$$\epsilon_m < \frac{\epsilon}{2} + ||x_n - x_m||_X < \epsilon, \quad (\forall m > N)$$

が従う. すなわち, JX の点列 $[\zeta_{x_1}], [\zeta_{x_2}], \cdots$ はy にノルム収束する:

$$\|y - [\zeta_{x_m}]\|_Y = \lim_{n \to \infty} \|x_n - x_m\|_X \longrightarrow 0 \quad (m \longrightarrow \infty).$$

第四段 $(Y, \|\cdot\|_Y)$ の完備性を示す. (y_n) を Y の Cauchy 列とすれば,

$$||y_n - Jx_n||_Y < \frac{1}{n}, \quad (\forall n = 1, 2, \cdots)$$

を満たす $\{x_1, x_2, \dots\} \subset X$ が存在する. このとき

$$||x_n - x_m||_X = ||Jx_n - Jx_m||_Y < \frac{1}{n} + ||y_n - y_m||_Y + \frac{1}{m} \longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

より $(x_n) \in Cauchy(X)$ が従い、 $y := [(x_n)]$ とおけば

$$||y - y_m||_Y \le ||y - Jx_m||_Y + ||Jx_m - y_m||_Y < \lim_{n \to \infty} ||x_n - x_m||_X + \frac{1}{m} \longrightarrow 0 \quad (m \longrightarrow \infty)$$

が成り立ち Y の完備性が出る.

第五段 $(Y, \|\cdot\|_Y)$ とは別の Banach 空間 $(Z, \|\cdot\|_Z)$ と線型等長 $K: X \longrightarrow Z$ が存在して (e1) を満たすとき,

$$\tilde{F}: JX \ni y \longmapsto K \circ J^{-1}(y), \quad \tilde{G}: KX \ni z \longmapsto J \circ K^{-1}(z)$$

により定める等長線型 \tilde{F} . \tilde{G} は

$$\tilde{F} \circ \tilde{G}(z) = z, \quad (\forall z \in KX),$$

 $\tilde{G} \circ \tilde{F}(y) = y, \quad (\forall y \in JX)$

を満たす.定理 A.1.4 より \tilde{F} , \tilde{G} は Y, Z 上の線型写像 F, G に一意的にノルム保存拡張され,このとき,任意の $y \in Y$ 及び $z \in Z$ それぞれ対しノルム収束する JX の点列 (y_n) , KX の点列 (z_n) を取れば,

$$\begin{split} & \| F \circ G(z) - z \|_Z \leq \left\| F \circ G(z) - \tilde{F} \circ \tilde{G}(z_n) \right\|_Z + \| z_n - z \|_Z \longrightarrow 0 \quad (n \longrightarrow \infty), \\ & \| G \circ F(y) - y \|_Y \leq \left\| G \circ F(y) - \tilde{G} \circ \tilde{F}(y_n) \right\|_Y + \| y_n - y \|_Y \longrightarrow 0 \quad (n \longrightarrow \infty) \end{split}$$

が成り立ち $F = G^{-1}$ が従う. よって $F: Y \longrightarrow Z$ は等長同型であり

$$F \circ J = \tilde{F} \circ J = (K \circ J^{-1}) \circ J = K \circ (J^{-1} \circ J) = K$$

を満たす.

第六段 X が内積空間の場合、X の内積を $\langle \cdot, \cdot \rangle_X$ と書く、いま、任意の $(x_n), (x'_n) \in Cauchy(X)$ に対して

$$\left| \left\langle x_n, x_n' \right\rangle_X - \left\langle x_m, x_m' \right\rangle_X \right| \le \left\| \left\| x_n - x_m \right\|_X \left\| \left\| x_n' \right\|_Y + \left\| \left\| x_m \right\|_X \left\| \left\| x_n' - x_m' \right\|_X \longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

が成り立つから $\lim_{n\to\infty}\langle x_n,x_n'\rangle_X$ は $\mathbb K$ で収束する. ここで

$$b(y, y') := \lim \langle x_n, x'_n \rangle_X, \quad (\forall y = [(x_n)], \ y' = [(x'_n)] \in Y)$$

と定めれば、b は well-defined であり $Y \times Y$ 上の半双線型となる。実際、 $[(x_n)] = [(\tilde{x}_n)], [(x_n')] = [(\tilde{x}_n')]$ に対して

$$\left| \left\langle x_n, x_n' \right\rangle_X - \left\langle \tilde{x}_n, \tilde{x}_n' \right\rangle_X \right| \le \left\| \left\| x_n - \tilde{x}_n \right\|_X \left\| \left\| x_n' \right\|_Y + \left\| \tilde{x}_n \right\|_X \left\| \left\| x_n' - \tilde{x}_n' \right\|_Y \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つから b は well-defined であり、また任意の $\alpha,\beta \in \mathbb{K}$ と $y,y',y_1=[(x_n^1)],\ y_2=[(x_n^2)] \in Y$ に対し

$$\begin{aligned} \left| b(\alpha y_1 + \beta y_2, y') - \alpha b(y_1, y') - \beta b(y_2, y') \right| &\leq \left| b(\alpha y_1 + \beta y_2, y') - \left\langle \alpha x_n^1 + \beta x_n^2, x_n' \right\rangle_X \right| \\ &+ \left| \alpha b(y_1, y') - \alpha \left\langle x_n^1, x_n' \right\rangle_X \right| + \left| \beta b(y_2, y') - \beta \left\langle x_n^2, x_n' \right\rangle_X \right| \\ &\longrightarrow 0 \quad (n \longrightarrow \infty) \end{aligned}$$

かつ $b(y,y') = \overline{b(y',y)}$ (共役対称性) が満たされ b の半双線型性が出る. また

$$b(y, y) = \lim_{n \to \infty} ||x_n||_X^2 = 0 \quad \Leftrightarrow \quad y = [(x_n)] = 0, \quad (\forall y = [(x_n)] \in Y)$$

も得られる. 従って

$$\langle y, y' \rangle_Y \coloneqq b(y, y'), \quad (\forall y, y' \in Y)$$

とおけば $\langle\cdot,\cdot\rangle_Y$ は Y の内積となる. (A.3) で定めるノルムと $\langle\cdot,\cdot\rangle_Y$ により導入するノルムは一致するから、前段の結果により Y は $\langle\cdot,\cdot\rangle_Y$ を内積とする Hilbert 空間である. また (A.4) で定める等長線型 J について

$$\langle Jx, Jx' \rangle_Y = \lim_{n \to \infty} \langle x, x' \rangle_X = \langle x, x' \rangle_X, \quad (\forall x, x' \in X)$$

が成立する.

A.3 テンソル積

[参考:[4], [8]] $n \geq 2$ として,体 \mathbb{K} 上の線形空間の族 $(E_i)_{i=1}^n$ に対してテンソル積を定義する.

$$\Lambda\Bigl(\bigoplus_{i=1}^n E_i\Bigr) = \left\{\,b: \bigoplus_{i=1}^n E_i \longrightarrow \mathbb{K} \,\,; \quad 有限個の \,\, e \in \bigoplus_{i=1}^n E_i \,\, を除いて \,\, b(e) = 0. \,\,\right\}$$

により \mathbb{K} -線形空間 $\Lambda\left(\bigoplus_{i=1}^n E_i\right)$ を定める. また $e=(e_1,\cdots,e_n)\in\bigoplus_{i=1}^n E_i$ に対する定義関数を

$$\mathbb{1}_{e_1,\dots,e_n}(x) = \begin{cases} 1, & x = e, \\ 0, & x \neq e \end{cases}$$

で表す、 $\Lambda\left(\bigoplus_{i=1}^n E_i\right)$ の線型部分空間を

$$\begin{split} & \Lambda_0 \bigg(\bigoplus_{i=1}^n E_i \bigg) \\ & \coloneqq \operatorname{Span} \left[\left\{ \begin{array}{c} \mathbb{1}_{e_1, \cdots, e_i + e_i', \cdots, e_n} - \mathbb{1}_{e_1, \cdots, e_i, \cdots, e_n} - \mathbb{1}_{e_1, \cdots, e_i', \cdots, e_n}, \\ \mathbb{1}_{e_1, \cdots, \lambda e_i, \cdots, e_n} - \lambda \mathbb{1}_{e_1, \cdots, e_i, \cdots, e_n}, \end{array}; \quad e_i, e_i' \in E_i, \lambda \in \mathbb{K}, 1 \leq i \leq n \right. \right\} \right] \end{split}$$

により定め, $b \in \Lambda \Big(\bigoplus_{i=1}^n E_i \Big)$ の $\Lambda_0 \Big(\bigoplus_{i=1}^n E_i \Big)$ に関する同値類を [b] と書く.そして

$$E_1 \otimes \cdots \otimes E_n = \bigotimes_{i=1}^n E_i := \Lambda \left(\bigoplus_{i=1}^n E_i \right) / \Lambda_0 \left(\bigoplus_{i=1}^n E_i \right)$$

で定める商空間を $(E_i)_{i=1}^n$ のテンソル積と定義する.また $(e_1,\cdots,e_n)\in igoplus_{i=1}^n E_i$ に対し

$$e_1 \otimes \cdots \otimes e_n := [\mathbb{1}_{e_1,\cdots,e_n}]$$

により定める \otimes : $\bigoplus_{i=1}^{n} E_{i} \longrightarrow \bigotimes_{i=1}^{n} E_{i}$ をテンソル積の標準写像と呼ぶ.

定理 A.3.1 (標準写像の多重線型性). $(E_i)_{i=1}^n$ を \mathbb{K} -線形空間の族とするとき,

$$\otimes: \bigoplus_{i=1}^n E_i \ni (e_1, \cdots, e_n) \longmapsto e_1 \otimes \cdots \otimes e_n \in \bigotimes_{i=1}^n E_i$$

はn 重線型写像である. また次が成り立つ:

$$\bigotimes_{i=1}^{n} E_{i} = \operatorname{Span}\left[\left\{e_{1} \otimes \cdots \otimes e_{n} ; (e_{1}, \cdots, e_{n}) \in \bigoplus_{i=1}^{n} E_{i}\right\}\right]. \tag{A.5}$$

証明. 任意の $1 \le i \le n$, $e_1 \in E_1, \dots, e_n \in E_n$, $e_i, e_i' \in E_i$, $\lambda \in \mathbb{K}$ に対して

$$e_{1} \otimes \cdots \otimes (e_{i} + e'_{i}) \otimes \cdots \otimes e_{n} = \begin{bmatrix} \mathbb{1}_{e_{1}, \cdots, e_{i} + e'_{i}, \cdots, e_{n}} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbb{1}_{e_{1}, \cdots, e_{i}, \cdots, e_{n}} + \mathbb{1}_{e_{1}, \cdots, e'_{i}, \cdots, e_{n}} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbb{1}_{e_{1}, \cdots, e_{i}, \cdots, e_{n}} \end{bmatrix} + \begin{bmatrix} \mathbb{1}_{e_{1}, \cdots, e'_{i}, \cdots, e_{n}} \end{bmatrix}$$

$$= e_{1} \otimes \cdots \otimes e_{i} \otimes \cdots \otimes e_{n} + e_{1} \otimes \cdots \otimes e'_{i} \otimes \cdots \otimes e_{n},$$

$$e_{1} \otimes \cdots \otimes (\lambda e_{i}) \otimes \cdots \otimes e_{n} = \begin{bmatrix} \mathbb{1}_{e_{1}, \cdots, \lambda e_{i}, \cdots, e_{n}} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda \mathbb{1}_{e_{1}, \cdots, e_{i}, \cdots, e_{n}} \end{bmatrix}$$

$$= \lambda \left[\mathbb{1}_{e_{1}, \cdots, e_{i}, \cdots, e_{n}} \right]$$

$$= \lambda \left[e_{1} \otimes \cdots \otimes e_{i} \otimes \cdots \otimes e_{n} \right]$$

が成立するから \otimes はn 重線型である. また任意に $u = [b] \in E \otimes F$ を取れば

$$b = \sum_{i=1}^{m} k_{j} \mathbb{1}_{e_{i}^{j}, \dots, e_{n}^{j}}, \quad (k_{j} = b(e_{i}^{j}, \dots, e_{n}^{j}), \ j = 1, \dots, m)$$

と表せるから,

$$u = \left[\sum_{i=1}^{m} k_{j} \mathbb{1}_{e_{i}^{j}, \dots, e_{n}^{j}} \right] = \left[\sum_{i=1}^{m} \mathbb{1}_{k_{j} e_{i}^{j}, \dots, e_{n}^{j}} \right] = \sum_{i=1}^{m} (k_{j} e_{1}^{j}) \otimes \dots \otimes e_{n}^{j}$$

が従い (A.5) を得る.

定理 A.3.2 $(\cdots \otimes 0 \otimes \cdots$ は零ベクトル). $(E_i)_{i=1}^n$ を \mathbb{K} -線形空間の族とし,テンソル積 $\bigotimes_{i=1}^n E_i$ を定める.このとき,或る i で $e_i=0$ なら $e_1 \otimes \cdots \otimes e_n=0$ が成り立つ.

証明. $e_i = 0$ のとき, $\lambda = 0$ とすれば

$$e_1 \otimes \cdots \otimes e_n = [\mathbb{1}_{e_1,\cdots,0,\cdots,e_n}] = [\mathbb{1}_{e_1,\cdots,\lambda e_i,\cdots,e_n} - \lambda \mathbb{1}_{e_1,\cdots,e_i,\cdots,e_n}] = 0$$

が成立する.

定理 A.3.3 (普遍性 (universality of tensor products)). $(E_i)_{i=1}^n$ を \mathbb{K} -線形空間の族とする. このとき任意の \mathbb{K} -線型空間 V に対して, $T \in \operatorname{Hom}\left(\bigotimes_{i=1}^n E_i, V\right)$ ならば $T \circ \otimes \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n E_i, V\right)$ が満たされ,これで定める次の対応 Φ_V は線型同型である:

$$\bigoplus_{i=1}^{n} E_{i}$$

$$\bigotimes_{i=1}^{n} E_{i} \xrightarrow{\Phi(T)} V$$

また \mathbb{K} -線型空間 U_0 と n 重線型写像 $\iota: \bigoplus_{i=1}^n E_i \longrightarrow U_0$ が,任意の \mathbb{K} -線型空間 V に対し

- $(\otimes)_1$ U_0 は ι の像で生成される.
- $(\otimes)_2$ 任意の $\delta \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n E_i, V\right)$ に対して $\delta = \tau \circ \iota$ を満たす $\tau \in \operatorname{Hom}\left(U_0, V\right)$ が存在する.

を満たすなら、(A.6) において $V=U_0$ とするとき $T=\Phi_{U_0}^{-1}(\iota): \bigotimes_{i=1}^n E_i \longrightarrow U_0$ は線型同型である.

後半の主張により, $(E_i)_i$ のテンソル積を別の方法で導入しても,商空間を用いて導入した $\bigotimes_i E_i$ と線型同型に結ばれる.このとき,別の方法で導入したテンソル積及び標準写像を $\bigotimes_i E_i$ 、 $\tilde{\otimes}$ と表せば,或る線型同型 $T:\bigotimes_i E_i \longrightarrow \bigotimes_i E_i$ がただ一つ存在して

$$T(e_1 \otimes \cdots \otimes e_n) = e_1 \tilde{\otimes} \cdots \tilde{\otimes} e_n$$

を満たす. 特に任意の並べ替え $\varphi: \{1, \cdots, n\} \longrightarrow \{1, \cdots, n\}$ に対し

$$\bigotimes_{i=1}^{n} E_{i} \cong \bigotimes_{i=1}^{n} E_{\varphi(i)}$$

$$e_{1} \otimes \cdots \otimes e_{n} \longleftrightarrow e_{\varphi(1)} \otimes \cdots \otimes e_{\varphi(n)}$$

が成立する.

証明.

第一段 $T \in \operatorname{Hom}\left(\bigotimes_{i=1}^n E_i, V\right)$ の線型性と \otimes のn 重線型性より $T \circ \otimes$ はn 重線型である.

第二段 $\Phi_V(T_1) = \Phi_V(T_2)$ ならば $T_1 \geq T_2$ は $\left\{e_1 \otimes \cdots \otimes e_n \; ; \; (e_1, \cdots, e_n) \in \bigoplus_{i=1}^n E_i \right\}$ の上で一致する. (A.5) より $T_1 = T_2$ が成立し Φ_V の単射性が従う.

第三段 次の二段で Φ_V の全射性を示す.まず, $\varphi \in \operatorname{Hom}\left(\Lambda(\bigoplus_{i=1}^n E_i), V\right)$ に対し

$$g: \bigoplus_{i=1}^n E_i \ni (e_1, \cdots, e_n) \longmapsto \varphi(\mathbb{1}_{e_1, \cdots, e_n}) \in V$$

を対応させる次の写像が全単射であることを示す:

$$F: \operatorname{Hom}\left(\Lambda(\bigoplus_{i=1}^{n} E_{i}), V\right) \longrightarrow \operatorname{Map}\left(\bigoplus_{i=1}^{n} E_{i}, V\right)$$

$$\varphi \longmapsto g$$

 $F(\varphi_1) = F(\varphi_2)$ のとき,任意の $e \in \bigoplus_{i=1}^n E_i$ に対して $\varphi_1(\mathbb{1}_{e_1,\cdots,e_n}) = \varphi_2(\mathbb{1}_{e_1,\cdots,e_n})$ が成り立ち,

$$\Lambda\left(\bigoplus_{i=1}^{n} E_{i}\right) = \operatorname{Span}\left[\left\{ \mathbb{1}_{e_{1},\cdots,e_{n}} ; \quad (e_{1},\cdots,e_{n}) \in \bigoplus_{i=1}^{n} E_{i} \right\}\right]$$

より $\varphi_1 = \varphi_2$ が従い F の単射性が得られる. また $g \in \operatorname{Map}\left(\bigoplus_{i=1}^n E_i, V\right)$ に対して

$$\varphi(0) := 0$$
,

$$\varphi(a) := \sum_{\substack{e \in \bigoplus_{i=1}^{n} E_i \\ a(e) \neq 0}} a(e)g(e), \quad \left(\forall a \in \Lambda \left(\bigoplus_{i=1}^{n} E_i \right), \ a \neq 0 \right)$$

により φ を定めれば、 $\varphi \in \text{Hom}\left(\Lambda(\bigoplus_{i=1}^n E_i), V\right)$ より *1 F の全射性が出る.

第四段 任意に $b \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n E_i, V\right)$ を取り $h \coloneqq F^{-1}(b)$ とおけば、h の線型性より

$$b(e_{1}, \dots, e_{i} + e'_{i}, \dots, e_{n}) - b(e_{1}, \dots, e_{i}, \dots, e_{n}) - b(e_{1}, \dots, e'_{i}, \dots, e_{n})$$

$$= h(\mathbb{1}_{e_{1}, \dots, e_{i} + e'_{i}, \dots, e_{n}} - \mathbb{1}_{e_{1}, \dots, e_{i}, \dots, e_{n}} - \mathbb{1}_{e_{1}, \dots, e'_{i}, \dots, e_{n}}),$$

$$b(e_{1}, \dots, \lambda e_{i}, \dots, e_{n}) - \lambda b(e_{1}, \dots, e_{i}, \dots, e_{n})$$

$$= h(\mathbb{1}_{e_{1}, \dots, \lambda e_{i}, \dots, e_{n}} - \lambda \mathbb{1}_{e_{1}, \dots, e_{i}, \dots, e_{n}})$$

が成り立ち,bのn 重線型性によりhは $\Lambda_0(\bigoplus_{i=1}^n E_i)$ 上で0である.従って

$$T([b]) := h(b), \quad (b \in \Lambda(\bigoplus_{i=1}^{n} E_i))$$

で定める T は well-defined であり、 $T \in \text{Hom}\left(\bigotimes_{i=1}^{n} E_{i}, V\right)$ かつ

$$b(e_1, \dots, e_n) = h(\mathbb{1}_{e_1, \dots, e_n}) = (T \circ \otimes)(e_1, \dots, e_n), \quad (\forall (e_1, \dots, e_n) \in \bigoplus_{i=1}^n E_i)$$

が満たされ Φ_V の全射性が得られる.

第五段 $(\otimes)_1, (\otimes)_2$ の下で $\operatorname{Hom}\left(U_0, \bigotimes_{i=1}^n E_i\right) \ni \tau \longmapsto \tau \circ \iota \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n E_i, \bigotimes_{i=1}^n E_i\right)$ は全単射であるから, $\tau \circ \iota = \otimes$ を満たす $\tau \in \operatorname{Hom}\left(U_0, \bigotimes_{i=1}^n E_i\right)$ がただ一つ存在する.同様にして $\iota = T \circ \otimes$ を満たす $T \in \operatorname{Hom}\left(\bigotimes_{i=1}^n E_i, U_0\right)$ がただ一つ存在し,併せれば

$$\otimes = \tau \circ \iota = (\tau \circ T) \circ \otimes, \quad \iota = T \circ \otimes = (T \circ \tau) \circ \iota$$

が成り立つ. $T \mapsto T \circ \otimes$, $\tau \mapsto \tau \circ \iota$ が一対一であるから, $\tau \circ T$, $T \circ \tau$ はそれぞれ恒等写像に一致して $T^{-1} = \tau$ が従う. すなわち T は $\bigotimes_{i=1}^n E_i$ から U_0 への線型同型である.

 φ の加法性を得る.スカラ倍は $\varphi(\beta a) = \sum_{(\beta a)(e) \neq 0} (\beta a)(e)g(e) = \beta \sum_{a(e) \neq 0} a(e)g(e) = \beta \varphi(a) \ (\beta \neq 0)$ 及び $\varphi(0) = 0$ より従う.

定理 A.3.4 (スカラーとのテンソル積). E を \mathbb{K} -線型空間とするとき, $\mathbb{K} \otimes E$ と E は線型写像 $f: \mathbb{K} \otimes E \ni 1 \otimes e \mapsto e \in E^{*2}$ により同型となる. 同様に $E \otimes \mathbb{K}$ と E は線型写像 $g: E \otimes \mathbb{K} \ni e \otimes 1 \mapsto e \in E$ により同型となる.

証明. $\mathbb{K} \otimes E = \operatorname{Span}\left[\left\{\alpha \otimes e\right\}\right] = \left\{1 \otimes e\right\}$ $\left\{e \in E\right\}$ が成り立つから f は全単射となる.

定義 A.3.5 (線型写像のテンソル積). $(E_i)_{i=1}^n$ と $(F_i)_{i=1}^n$ を \mathbb{K} -線型空間の族とするとき, $f_i \in \operatorname{Hom}(E_i, F_i)$ に対し

$$b: \bigoplus_{i=1}^n E_i \ni (e_1, \cdots, e_n) \longmapsto f_1(e_1) \otimes \cdots \otimes f_n(e_n) \in \bigotimes_{i=1}^n F_i$$

により定める b は n 重線型であり、定理 A.3.3 より $b=g\circ \otimes$ を満たす $g\in \mathrm{Hom}\left(\bigotimes_{i=1}^n E_i,\bigotimes_{i=1}^n F_i\right)$ がただ一つ存在する.この g を $f_1\otimes \cdots \otimes f_n$ と表記して線型写像のテンソル積と定義する.特に次が成り立つ:

$$f_1 \otimes \cdots \otimes f_n(e_1 \otimes \cdots \otimes e_n) = f_1(e_1) \otimes \cdots \otimes f_n(e_n), \quad (\forall (e_1, \cdots, e_n) \in \bigoplus_{i=1}^n E_i).$$

 $n \ge 2$ とする. 係数体 \mathbb{K} の n 個の直和 $\mathbb{K} \oplus \cdots \oplus \mathbb{K}$ において,

$$\phi: \mathbb{K} \oplus \cdots \oplus \mathbb{K} \ni (x_1, \cdots, x_n) \longmapsto x_1 \cdots x_n \in \mathbb{K}^{*3}$$

で定める ϕ は n 重線型であるから、或る線型写像 $F: \mathbb{K} \otimes \cdots \otimes \mathbb{K}$ (n copies) $\longrightarrow \mathbb{K}$ が存在して

$$F(x_1 \otimes \cdots \otimes x_n) = x_1 \cdots x_n, \quad (\forall x_1 \otimes \cdots \otimes x_n \in \mathbb{K} \otimes \cdots \otimes \mathbb{K})$$
(A.7)

を満たす. またこの F に対して

$$\psi : \mathbb{K} \ni x \longmapsto x \otimes 1 \otimes \cdots \otimes 1 \in \mathbb{K} \otimes \cdots \otimes \mathbb{K}$$
 (*n* copies)

が逆写像となるから F は線型同型である.

定義 A.3.6 (線型形式のテンソル積). $(E_i)_{i=1}^n$ を \mathbb{K} -線型空間の族とするとき,線型形式 $f_i \in \operatorname{Hom}(E_i,\mathbb{K})$ のテンソル積 $f_1 \otimes \cdots \otimes f_n$ は,前定義 A.3.5 に従えば次の対応

$$\bigotimes_{i=1}^{n} E_{i} \ni e_{1} \otimes \cdots \otimes e_{n} \longmapsto f_{1}(e_{1}) \otimes \cdots \otimes f_{n}(e_{n}) \in \mathbb{K} \otimes \cdots \otimes \mathbb{K} (n \text{ copies})$$

を満たす線型写像であるが、以後便宜上、線型形式については、式 (A.7) の線型同型 F との合成 $F \circ (f_1 \otimes \cdots \otimes f_n)$ を線型形式のテンソル積 $f_1 \otimes \cdots \otimes f_n$ として再定義する. i.e.

$$f_1 \otimes \cdots \otimes f_n(e_1 \otimes \cdots \otimes e_n) = f_1(e_1) \cdots f_n(e_n), \quad (\forall e_1 \otimes \cdots \otimes e_n \in \bigotimes_{i=1}^n E_i).$$

特に, $f_1 \otimes \cdots \otimes f_n$ もまた $\bigotimes_{i=1}^n E_i$ 上の線型形式となっている.

^{*&}lt;sup>2</sup> 1は K の単位元を表す.

 $^{^{*3}}$ $x_1 \cdots x_n$ は \mathbb{K} の乗法により x_1, \cdots, x_n を掛け合わせたものである.

定理 A.3.7 (零写像のテンソル積は零写像). \mathbb{K} -線型空間の族 $(E_i)_{i=1}^n$ と $(F_i)_{i=1}^n$ と線型写像 $f_i: E_i \longrightarrow F_i$ $(i=1,\cdots,n)$ について, 或る f_i が零写像なら $f_1 \otimes \cdots \otimes f_n = 0$ となる.

証明. $f_i=0$ とすると、定理 A.3.2 より $f_1\otimes\cdots\otimes f_n$ は $\{e_1\otimes\cdots\otimes e_n\ ;\ e_i\in E_i\}$ 上で 0 となる.この空間は $\bigotimes_{i=1}^n E_i$ を生成するから $f_1\otimes\cdots\otimes f_n=0$ が従う.

定理 A.3.8 (テンソル積の基底). $(E_i)_{i=1}^n$ を \mathbb{K} -線型空間の族とし, E_i の基底を $\left\{u_{\lambda_i}^i\right\}_{\lambda_i\in\Lambda_i}$ とする $(i=1,\cdots,n)$. このとき $\left\{u_{\lambda_1}^1\otimes\cdots\otimes u_{\lambda_n}^n\right\}_{\lambda_1,\cdots,\lambda_n}$ は $\bigotimes_{i=1}^n E_i$ の基底となる.

証明.

第一段 任意の $e_1 \otimes \cdots \otimes e_n \in \bigotimes_{i=1}^n E_i$ は $\left\{u^1_{\lambda_1} \otimes \cdots \otimes u^n_{\lambda_n}\right\}_{\lambda_1,\cdots,\lambda_n}$ の線型結合で表現されるから、式 (A.5) より

$$\bigotimes_{i=1}^{n} E_{i} = \operatorname{Span}\left[\left\{u_{\lambda_{1}}^{1} \otimes \cdots \otimes u_{\lambda_{n}}^{n} ; \lambda_{i} \in \Lambda_{i}, i = 1, \cdots, n\right\}\right]$$

が成立する.

第二段 $\left\{u_{\lambda_1}^1\otimes\cdots\otimes u_{\lambda_n}^n
ight\}_{\lambda_1,\cdots,\lambda_n}$ の一次独立性を示す。 $\left\{u_{\lambda_i}^i
ight\}_{\lambda_i\in\Lambda_i}$ に対する双対集合を $\left\{f_{\lambda_i}^i
ight\}_{\lambda_i\in\Lambda_i}$ と書けば,各 $f_{\lambda_i}^i$ は

$$f_{\lambda_i}^i(u_{\lambda}^i) = \begin{cases} 1, & (\lambda = \lambda_i), \\ 0, & (\lambda \neq \lambda_i), \end{cases} \forall \lambda \in \Lambda_i$$

を満たし、線型形式のテンソル積 $f_{\lambda_1}^1 \otimes \cdots \otimes f_{\lambda_n}^n$ について

$$f_{\lambda_1}^1 \otimes \cdots \otimes f_{\lambda_n}^n(u_{\nu_1}^1 \otimes \cdots \otimes u_{\nu_n}^n) = \begin{cases} 1, & (\nu_1, \cdots, \nu_n) = (\lambda_1, \cdots, \lambda_n), \\ 0, & (\nu_1, \cdots, \nu_n) \neq (\lambda_1, \cdots, \lambda_n), \end{cases} \quad \forall (\nu_1, \cdots, \nu_n) \in \prod_{i=1}^n \Lambda_i$$

が成立する. 従って $\left\{u^1_{\lambda_1}\otimes\cdots\otimes u^n_{\lambda_n}
ight\}_{\lambda_1,\cdots,\lambda_n}$ は全て零ではなく、かつ

$$0 = \sum_{i=1}^k \alpha_j \left(u^1_{\lambda_1^{(j)}} \otimes \cdots \otimes u^n_{\lambda_n^{(j)}} \right), \quad (\alpha_j \in \mathbb{K}, \ j = 1, \cdots, k)$$

を満たすような任意の線型結合に対し (ただし $i\neq j$ なら $(\lambda_1^{(i)},\cdots,\lambda_n^{(i)})\neq (\lambda_1^{(j)},\cdots,\lambda_n^{(j)})$)

$$\alpha_j = f_{\lambda_1^{(j)}}^1 \otimes \cdots \otimes f_{\lambda_n^{(j)}}^n \left(\sum_{j=1}^k \alpha_j \left(u_{\lambda_1^{(j)}}^1 \otimes \cdots \otimes u_{\lambda_n^{(j)}}^n \right) \right) = 0, \quad (j = 1, \dots, k)$$

が従い $\left\{u^1_{\lambda_1}\otimes\cdots\otimes u^n_{\lambda_n}\right\}_{\lambda_1,\cdots,\lambda_n}$ の一次独立性を得る.

定理 A.3.9 (結合律). $(E_i)_{i=1}^n$ を \mathbb{K} -線型空間の族とし, $k \in \{1,\cdots,n-1\}$ を任意に取る.このとき,次の対応関係を満たす F は線型同型である:

証明.

第一段 n 重線型写像 $f: \bigoplus_{i=1}^n E_i \longrightarrow \left(\bigotimes_{i=1}^k E_i\right) \bigotimes \left(\bigotimes_{i=k+1}^n E_i\right)$ を

$$f(e_1, \dots, e_n) = (e_1 \otimes \dots \otimes e_k) \otimes (e_{k+1} \otimes \dots \otimes e_n), \quad (\forall (e_1, \dots, e_n) \in \bigoplus_{i=1}^n E_i)$$

により定めれば, 定理 A.3.3 より

$$F(e_1 \otimes \cdots \otimes e_n) = (e_1 \otimes \cdots \otimes e_k) \otimes (e_{k+1} \otimes \cdots \otimes e_n), \quad (\forall (e_1, \cdots, e_n) \in \bigoplus_{i=1}^n E_i)$$

を満たす線型写像 $F: \bigotimes_{i=1}^n E_i \longrightarrow \left(\bigotimes_{i=1}^k E_i\right) \bigotimes \left(\bigotimes_{i=k+1}^n E_i\right)$ が存在する:

$$\bigoplus_{i=1}^{n} E_{i}$$

$$\bigotimes_{i=1}^{n} E_{i} \xrightarrow{F} \left(\bigotimes_{i=1}^{k} E_{i}\right) \bigotimes \left(\bigotimes_{i=k+1}^{n} E_{i}\right)$$

以降はFの逆写像を構成しFが全単射であることを示す.

第二段 $u_{k+1} \in E_{k+1}, \dots, u_n \in E_n$ を固定し

$$\Phi_{u_{k+1},\cdots,u_n}(e_1,\cdots,e_n) := e_1 \otimes \cdots \otimes e_k \otimes u_{k+1} \otimes \cdots \otimes u_n$$

によって k 重線型 $\Phi_{u_{k+1},\cdots,u_n}: \bigoplus_{i=1}^k E_i \longrightarrow \bigotimes_{i=1}^n E_i$ を定めれば,定理 A.3.3 より

$$G_{u_{k+1},\dots,u_n}(e_1\otimes\dots\otimes e_k)=e_1\otimes\dots\otimes e_k\otimes u_{k+1}\otimes\dots\otimes u_n$$

を満たす線型写像 G_{u_{k+1},\cdots,u_n} : $\bigotimes_{i=1}^k E_i \longrightarrow \bigotimes_{i=1}^n E_i$ が存在する.

$$\bigoplus_{i=1}^{k} E_{i}$$

$$\bigotimes_{i=1}^{k} E_{i}$$

$$\bigotimes_{i=1}^{k} E_{i} \xrightarrow{G_{u_{k+1}, \dots, u_{n}}} \bigotimes_{i=1}^{n} E_{i}$$

第三段 任意の $v \in \bigotimes_{i=1}^k E_i$ に対して

$$\Psi_v: \bigoplus_{i=k+1}^n E_i \ni (u_{k+1}, \cdots, u_n) \longmapsto G_{u_{k+1}, \cdots, u_n}(v)$$

を定めれば、 Ψ_{ν} は n-k 重線型であるから、定理 A.3.3 より

$$H_{\nu}(u_{k+1} \otimes \cdots \otimes u_n) = \Psi_{\nu}(u_{k+1}, \cdots, u_n)$$

を満たす線型写像 $H_{\nu}: \bigotimes_{i=k+1}^{n} E_{i} \longrightarrow \bigotimes_{i=1}^{n} E_{i}$ が存在する.

$$\bigoplus_{i=k+1}^{n} E_{i}$$

$$\bigotimes_{i=k+1}^{n} E_{i}$$

$$\bigotimes_{i=k+1}^{n} E_{i} \xrightarrow{H_{v}} \bigotimes_{i=1}^{n} E_{i}$$

いま、 $v \mapsto \Psi_v$ は線型であり、かつ Ψ_v と H_v は一対一対応であるから $v \mapsto H_v$ の線型性が従う. 第四段 H_v の線型性と $v \mapsto H_v$ の線型性より

$$\Gamma: \left(\bigotimes_{i=1}^k E_i\right) \times \left(\bigotimes_{i=k+1}^n E_i\right) \ni (v,w) \longmapsto H_v(w)$$

により定める Γ は

$$\Gamma(e_{1} \otimes \cdots \otimes e_{k}, e_{k+1} \otimes \cdots \otimes e_{n}) = H_{e_{1} \otimes \cdots \otimes e_{k}} (e_{k+1} \otimes \cdots \otimes e_{n})$$

$$= \Psi_{e_{1} \otimes \cdots \otimes e_{k}} (e_{k+1}, \cdots, e_{n})$$

$$= G_{e_{k+1}, \cdots, e_{n}} (e_{1} \otimes \cdots \otimes e_{k})$$

$$= \Phi_{e_{k+1}, \cdots, e_{n}} (e_{1}, \cdots, e_{k})$$

$$= e_{1} \otimes \cdots \otimes e_{n}$$
(A.8)

を満たす双線型であり、定理 A.3.3 より

$$\left(\bigotimes_{i=1}^{k} E_{i}\right) \times \left(\bigotimes_{i=k+1}^{n} E_{i}\right)$$

$$\otimes \bigvee \qquad \qquad \Gamma$$

$$\left(\bigotimes_{i=1}^{k} E_{i}\right) \bigotimes \left(\bigotimes_{i=k+1}^{n} E_{i}\right) \xrightarrow{G} \bigotimes_{i=1}^{n} E_{i}$$

を可換にする線型写像 G が存在する. この G は F の逆写像である. 実際, (A.8) より

$$F \circ G ((e_1 \otimes \cdots \otimes e_k) \otimes (e_{k+1} \otimes \cdots \otimes e_n)) = F (\Gamma(e_1 \otimes \cdots \otimes e_k, e_{k+1} \otimes \cdots \otimes e_n))$$

$$= F(e_1 \otimes \cdots \otimes e_n)$$

$$= (e_1 \otimes \cdots \otimes e_k) \otimes (e_{k+1} \otimes \cdots \otimes e_n)$$

かつ

$$G \circ F (e_1 \otimes \cdots \otimes e_n) = G ((e_1 \otimes \cdots \otimes e_k) \otimes (e_{k+1} \otimes \cdots \otimes e_n))$$
$$= \Gamma (e_1 \otimes \cdots \otimes e_k, e_{k+1} \otimes \cdots \otimes e_n)$$
$$= e_1 \otimes \cdots \otimes e_n$$

が満たされ $F^{-1} = G$ が従う.

A.4 クロスノルム

 $\mathbb{K} = \mathbb{R}$ 或は $\mathbb{K} = \mathbb{C}$ とし, $n \ge 2$ 個の Banach 空間で構成するテンソル積を考察対象とする.

定義 A.4.1 (クロスノルム). \mathbb{K} -Banach 空間の族 $(X_i)_{i=1}^n$ のテンソル積 $\bigotimes_{i=1}^n X_i$ において

$$\alpha(x_{1} \otimes \cdots \otimes x_{n}) \leq \|x_{1}\|_{X_{1}} \|x_{2}\|_{X_{2}} \cdots \|x_{n}\|_{X_{n}}, \qquad (\forall x_{i} \in X_{i}, i = 1, \cdots, n), \qquad (A.9)$$

$$\sup_{\substack{v \in \bigotimes_{i=1}^{n} X_{i} \\ v \neq 0}} \left|x_{1}^{*} \otimes \cdots \otimes x_{n}^{*}(v)\right| \leq \|x_{1}^{*}\|_{X_{1}^{*}} \|x_{2}^{*}\|_{X_{2}^{*}} \cdots \|x_{n}^{*}\|_{X_{n}^{*}} \alpha(v), \qquad (\forall x_{i}^{*} \in X_{i}^{*}, i = 1, \cdots, n) \qquad (A.10)$$

を満たすようなノルム $\alpha: \bigotimes_{i=1}^n X_i \longrightarrow [0,\infty)$ をクロスノルム (cross norm) と呼ぶ*4.

定理 A.4.2. \mathbb{K} -Banach 空間の族 $(X_i)_{i=1}^n$ のテンソル積 $\bigotimes_{i=1}^n X_i$ 上のクロスノルム α は次を満たす:

$$\alpha(x_{1} \otimes \cdots \otimes x_{n}) = \|x_{1}\|_{X_{1}} \cdots \|x_{n}\|_{X_{n}}, \qquad (x_{i} \in X_{i}, i = 1, \cdots, n),$$

$$\|x_{1}^{*} \otimes \cdots \otimes x_{n}^{*}\|_{(\bigotimes_{i=1}^{n} X_{i}, \alpha)^{*}} = \|x_{1}^{*}\|_{X_{1}^{*}} \cdots \|x_{n}^{*}\|_{X_{n}^{*}}, \qquad (x_{i}^{*} \in X_{i}^{*}, i = 1, \cdots, n).$$

証明. 先ず, Hahn-Banach の定理と式 (A.10) より

$$\| x_1 \|_{X_1} \cdots \| x_n \|_{X_n} = \sup_{\| x_1^* \|_{X_1^*} \le 1} |\langle x_1, x_1^* \rangle| \cdots \sup_{\| x_n^* \|_{X_n^*} \le 1} |\langle x_n, x_n^* \rangle|$$

$$= \sup_{\| x_1^* \|_{X_1^*} \le 1} |x_1^* \otimes \cdots \otimes x_n^* (x_1 \otimes \cdots \otimes x_n)|$$

$$\le \sup_{\| x_1^* \|_{X_1^*} \le 1} \| x_1^* \|_{X_1^*} \cdots \| x_n^* \|_{X_n^*} \alpha(x_1 \otimes \cdots \otimes x_n)$$

$$= \alpha(x_1 \otimes \cdots \otimes x_n)$$

が成り立ち定理の主張の第一式を得る. またこの結果より

$$\begin{aligned} \left\| x_1^* \right\|_{X_1^*} \cdots \left\| x_n^* \right\|_{X_n^*} &= \sup_{\left\| x_1 \right\|_{X_1} \le 1} \left| \langle x_1, x_1^* \rangle \right| \cdots \sup_{\left\| x_n \right\|_{X_n} \le 1} \left| \langle x_n, x_n^* \rangle \right| \\ &= \sup_{\left\| x_i \right\|_{X_i} \le 1} \left| x_1^* \otimes \cdots \otimes x_n^* (x_1 \otimes \cdots \otimes x_n) \right| \\ &\leq \sup_{\alpha(x_1 \otimes \cdots \otimes x_n) \le 1} \left| x_1^* \otimes \cdots \otimes x_n^* (x_1 \otimes \cdots \otimes x_n) \right| \\ &\leq \sup_{\alpha(\nu) \le 1} \left| x_1^* \otimes \cdots \otimes x_n^* (\nu) \right| \\ &= \left\| x_1^* \otimes \cdots \otimes x_n^* \right\|_{(\bigotimes_{i=1}^n X_i, \alpha)^*} \end{aligned}$$

が成立し主張の第二式も得られる.

^{*4 [5]} ではこの二性質を満たすものをリーゾナブルクロスノルムと分類するが、本稿ではクロスノルムと書くだけにする.

以下, 実際クロスノルムが存在することを示す.

$$\epsilon(v) := \sup_{\substack{\|x_i^*\|_{X_i^*} \le 1\\ i=1,\dots,n}} \left| x_1^* \otimes \dots \otimes x_n^*(v) \right|, \quad (v \in \bigotimes_{i=1}^n X_i)$$

により定める ϵ をインジェクティブノルム (injective norm) と呼ぶ.

定理 A.4.4 (インジェクティブノルムは最小のクロスノルム). \mathbb{K} -Banach 空間の族 $(X_i)_{i=1}^n$ のテンソル積 $\bigotimes_{i=1}^n X_i$ において,インジェクティブノルムは最小のクロスノルムである.

証明.

第一段 ϵ が $\bigotimes_{i=1}^n X_i$ 上のノルムであることを示す.劣加法性と同次性は $x_1^* \otimes \cdots \otimes x_n^*$ の線型性より従う.v=0 \Leftrightarrow $\epsilon(v)=0$ については,v=0 なら任意の $x_1^* \otimes \cdots \otimes x_n^*$ について $x_1^* \otimes \cdots \otimes x_n^*(v)=0$ が成り立ち $\epsilon(v)=0$ が出る.逆 に $v\neq 0$ とするとき, X_i の基底 $\left\{u_{\lambda_i}^i\right\}_{\lambda_i\in\Lambda_i}$, $(i=1,\cdots,n)$ を用いて

$$v = \sum_{i=1}^{m} c_j u_{\lambda_1^j}^1 \otimes \cdots \otimes u_{\lambda_n^j}^n, \quad (c_j \neq 0, \ j = 1, \cdots, m)$$

と表現できる. $u^1_{\lambda^1_1}$ について,もし全ての $2\leq j\leq m$ に対し $u^1_{\lambda^1_1}=u^1_{\lambda^1_1}$ が満たされているなら, $\hat{x}^*_1\in X^*_1$ を

$$\left\langle u_{\lambda_{1}^{1}}^{1}, \hat{x}_{1}^{*} \right\rangle = \left\| u_{\lambda_{1}^{1}}^{1} \right\|_{X_{1}}, \quad \left\| \hat{x}_{1}^{*} \right\|_{X_{1}^{*}} = 1$$

を満たすように選ぶ (Hahn-Banach の定理). $u^1_{\lambda^j} \neq u^1_{\lambda^l}$ を満たす j がある場合,

$$L_1 \coloneqq \operatorname{Span}\left[\left\{u_{\lambda_1^j}^1 : 2 \le j \le m, \ u_{\lambda_1^j}^1 \ne u_{\lambda_1^1}^1\right\}\right]$$

により閉部分空間を定めれば $u_{\lambda_1^1}^1$ と L_1 との距離 d_1 は正であり、Hahn-Banach の定理より

$$\langle x_1, \hat{x}_1^* \rangle = 0 \ (\forall x_1 \in L_1), \quad \left\langle u_{\lambda_1^1}^1, \hat{x}_1^* \right\rangle = d_1 > 0, \quad \left\| \hat{x}_1^* \right\|_{X_1^*} = 1$$

を満たす $\hat{x}_i^* \in X_i^*$ を取ることができる.同様に $\hat{x}_i^* \in X_i^*$ $(i=2,\cdots,n)$ を選べば

$$\hat{x}_{1}^{*} \otimes \cdots \otimes \hat{x}_{n}^{*} \left(u_{\lambda_{1}^{j}}^{1} \otimes \cdots \otimes u_{\lambda_{n}^{j}}^{n} \right) = \begin{cases} \hat{x}_{1}^{*} \otimes \cdots \otimes \hat{x}_{n}^{*} \left(u_{\lambda_{1}^{1}}^{1} \otimes \cdots \otimes u_{\lambda_{n}^{n}}^{n} \right), & \left(u_{\lambda_{i}^{j}}^{i} = u_{\lambda_{i}^{1}}^{i}, \ i = 1, \cdots, n \right), \\ 0, & (\text{o.w.}), \end{cases}$$

 $(j=2,\cdots,m)$ が満たされるから

$$0 < |c_1| \hat{x}_1^* \otimes \cdots \otimes \hat{x}_n^* \left(u_{\lambda_1^1}^1 \otimes \cdots \otimes u_{\lambda_n^1}^n \right) \le \left| \hat{x}_1^* \otimes \cdots \otimes \hat{x}_n^* (v) \right| \le \epsilon(v)$$

が成立し、対偶により $\epsilon(v) = 0 \Rightarrow v = 0$ が従う.

第二段 ϵ がクロスノルムであることを示す。 先ず Hahn-Banach の定理より

$$\epsilon(x_{1} \otimes \cdots \otimes x_{n}) = \sup_{\substack{\|x_{i}^{*}\|_{X_{i}^{*}} \leq 1 \\ i=1,\dots,n}} \left| x_{1}^{*} \otimes \cdots \otimes x_{n}^{*} (x_{1} \otimes \cdots \otimes x_{n}) \right|$$

$$= \sup_{\|x_{1}^{*}\|_{X_{i}^{*}} \leq 1} \left| \langle x_{1}, x_{1}^{*} \rangle \right| \cdots \sup_{\|x_{n}^{*}\|_{X_{n}^{*}} \leq 1} \left| \langle x_{n}, x_{n}^{*} \rangle \right|$$

$$= \|x_{1}\|_{X_{1}} \cdots \|x_{n}\|_{X_{n}}, \quad (\forall x_{i} \in X_{i}, i = 1, \dots, n)$$

が成り立つ. また 0 でない $x_i^* \in X_i^*$, $(i = 1, \dots, n)$ に対しては

$$|x_{1}^{*} \otimes \cdots \otimes x_{n}^{*}(v)| \leq ||x_{1}^{*}||_{X_{1}^{*}} \cdots ||x_{n}^{*}||_{X_{n}^{*}} \left[\frac{x_{1}^{*}}{||x_{1}^{*}||_{X_{1}^{*}}} \otimes \cdots \otimes \frac{x_{n}^{*}}{||x_{n}^{*}||_{X_{n}^{*}}} \right] (v)$$

$$\leq ||x_{1}^{*}||_{X_{*}^{*}} \cdots ||x_{n}^{*}||_{X_{*}^{*}} \epsilon(v)$$

が成立し

$$\left\| x_1^* \otimes \cdots \otimes x_n^* \right\|_{\left(\bigotimes_{i=1}^n X_i, \epsilon\right)} \le \left\| x_1^* \right\|_{X_1^*} \cdots \left\| x_n^* \right\|_{X_n^*}$$

を得る.

第三段 ϵ が最小のクロスノルムであることを示す. α を任意のクロスノルムとすれば

$$\left|x_1^* \otimes \cdots \otimes x_n^*(v)\right| \le \left\|x_1^*\right\|_{X_1^*} \cdots \left\|x_n^*\right\|_{X_n^*} \alpha(v), \quad (\forall v \in \bigotimes_{i=1}^n X_i)$$

が成り立つから、特に $\left\|x_i^*\right\|_{X_i^*} \le 1$, $(i=1,\cdots,n)$ の範囲で \sup を取れば

$$\epsilon(v) \le \alpha(v), \quad (\forall v \in \bigotimes_{i=1}^n X_i)$$

が従い ϵ の最小性が出る.

定義 A.4.5 (プロジェクティブノルム). \mathbb{K} -Banach 空間の族 $(X_i)_{i=1}^n$ に対し、定理 A.3.3 により

$$\begin{array}{cccc} \Phi: \operatorname{Hom} \left(\bigotimes_{i=1}^n X_i, \mathbb{K} \right) & \longrightarrow & \operatorname{Hom}^{(n)} \left(\bigoplus_{i=1}^n X_i, \mathbb{K} \right) \\ & & & & & & \\ T & & \longmapsto & & & T \circ \otimes \end{array}$$

により線型同型 Φ が定まる. これを用いて

$$\pi(v) := \sup_{\substack{b \in L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K}) \\ \|b\|_{L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K}) \leq 1}} \left| \Phi^{-1}(b)(v) \right|, \quad (v \in \bigotimes_{i=1}^{n} X_{i})$$

により定める π をプロジェクティブノルム (projective norm) と呼ぶ.

証明.

第一段 π がノルムであることを示す. $v \neq 0$ とすれば、定理 A.4.4 の証明と同様にして

$$0 < \left| \hat{x}_1^* \otimes \cdots \otimes \hat{x}_n^*(v) \right|, \quad \left\| \hat{x}_i^* \right\|_{X_i^*} = 1, \quad (i = 1, \dots, n)$$

を満たす $\hat{x}_i^* \in X_i^*$ $(i=1,\cdots,n)$ が存在する.

$$b(x_1, \dots, x_n) := \langle x_1, \hat{x}_1^* \rangle \cdots \langle x_n, \hat{x}_n^* \rangle, \quad (x_i \in X_i, i = 1, \dots, n)$$

により n 重線型写像 b を定めれば, $\|b\|_{L^{(n)}(\bigoplus_{i=1}^n X_i,\mathbb{K})} \leq \|x_1^*\|_{X_1^*} \cdots \|x_n^*\|_{X_n^*} = 1$ かつ

$$0 < \left| \hat{x}_1^* \otimes \cdots \otimes \hat{x}_n^*(v) \right| = |\Phi^{-1}(b)(v)| \le \pi(v)$$

が成立する. $\pi(0) = 0$ と劣加法性及び同次性は $\Phi^{-1}(b)$ の線型性より従う.

第二段 π がクロスノルムであることを示す。 先ず,任意の $x_i \in X_i$, $(i=1,\cdots,n)$ に対して

$$\pi(x_{1} \otimes \cdots \otimes x_{n}) = \sup_{\substack{b \in L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K}) \\ \|b\|_{L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K})} \leq 1}} \left| \Phi^{-1}(b)(x_{1} \otimes \cdots \otimes x_{n}) \right|$$

$$\leq \sup_{\substack{b \in L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K}) \\ \|b\|_{L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K})} \leq 1}} \|b\|_{L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K})} \|x_{1}\|_{X_{1}} \cdots \|x_{n}\|_{X_{n}}$$

$$= \|x_{1}\|_{X_{1}} \cdots \|x_{n}\|_{X_{n}}$$

が成立する. また 0 でない $x_i^* \in X_i^*$, $(i = 1, \dots, n)$ に対し

$$b(x_1,\dots,x_n) := \frac{x_1^*}{\|x_1^*\|_{X^*}}(x_1)\dots\frac{x_n^*}{\|x_n^*\|_{X^*}}(x_n), \quad (x_i \in X_i, \ i=1,\dots,n)$$

により $\|b\|_{L^{(n)}(\bigoplus_{i=1}^n X_i,\mathbb{K})} \le 1$ を満たす有界 n 重線型 b を定めれば、 π の定義より

$$\left|\Phi^{-1}(b)(v)\right| \le \pi(v), \quad (\forall v \in \bigotimes_{i=1}^{n} X_i)$$

が成り立つ. 一方で線型形式のテンソル積の定義より

$$\Phi^{-1}(b) = \frac{x_1^*}{\|x_1^*\|_{X_1^*}} \otimes \cdots \otimes \frac{x_n^*}{\|x_n^*\|_{X_n^*}} = \frac{1}{\|x_1^*\|_{X_1^*} \cdots \|x_n^*\|_{X_n^*}} x_1^* \otimes \cdots \otimes x_n^*$$

となり,

$$|x_1^* \otimes \cdots \otimes x_n^*(v)| \le ||x_1^*||_{X_1^*} \cdots ||x_n^*||_{X_n^*} \pi(v), \quad (\forall v \in \bigotimes_{i=1}^n X_i)$$

が従い

$$\|x_1^* \otimes \cdots \otimes x_n^*\|_{(\bigotimes_{i=1}^n X_i, \pi)^*} \le \|x_1^*\|_{X_1^*} \cdots \|x_n^*\|_{X_n^*}$$

が出る.

第三段 $p \in (A.9)$ を満たすセミノルムとし、 $v \in \bigotimes_{i=1}^{n} X_i$ を任意に取れば

$$p(v) = \phi_v(v), \quad |\phi_v(u)| \le p(u) \quad (\forall u \in \bigotimes_{i=1}^n X_i)$$

を満たす $\phi_{\nu} \in (\bigotimes_{i=1}^{n} X_{i}, \pi)^{*}$ が存在する (Hahn-Banach の定理).

$$\begin{aligned} |(\phi_{v} \circ \otimes)(x_{1}, \cdots, x_{n})| &= |\phi_{v}(x_{1} \otimes \cdots \otimes x_{n})| \\ &\leq p(x_{1} \otimes \cdots \otimes x_{n}) \\ &\leq ||x_{1}||_{X_{1}} \cdots ||x_{n}||_{X_{n}}, \quad (\forall x_{i} \in X_{i}, \ i = 1, \cdots, n) \end{aligned}$$

が成り立つから $\|\phi_v \circ \otimes\|_{L^{(n)}\left(\bigoplus_{i=1}^n X_i, \mathbb{K}\right)} \le 1$ が従い, π の定義より

$$p(v) = \phi_v(v) = \Phi^{-1}(\phi_v \circ \otimes)(v) \le \pi(v)$$

が得られる.

定理 A.4.7 (プロジェクティブノルムの表現). \mathbb{K} -Banach 空間の族 $(X_i)_{i=1}^n$ のテンソル積 $\bigotimes_{i=1}^n X_i$ にプロジェクトノルム π を導入する. このとき次が成り立つ:

$$\pi(v) = \inf \left\{ \sum_{j=1}^{m} \| x_1^j \|_{X_1} \cdots \| x_n^j \|_{X_n} ; \quad v = \sum_{j=1}^{m} x_1^j \otimes \cdots \otimes x_n^j \right\}.$$

証明.

第一段 $x_1 \otimes \cdots \otimes x_n$ 上のセミノルム λ を次で定める:

$$\lambda(v) := \inf \left\{ \sum_{j=1}^m \left\| x_1^j \right\|_{X_1} \cdots \left\| x_n^j \right\|_{X_n} ; \quad v = \sum_{j=1}^m x_1^j \otimes \cdots \otimes x_n^j \right\}, \quad (\forall v \in \bigotimes_{i=1}^n X_i).$$

いま, 任意に $v \in \bigotimes_{i=1}^{n} X_{i}$ を取れば, vの任意の分割

$$v = \sum_{j=1}^{m} x_1^j \otimes \cdots \otimes x_n^j.$$

に対し

$$\pi(v) \le \sum_{i=1}^{m} \pi\left(x_1^j \otimes \cdots \otimes x_n^j\right) = \sum_{i=1}^{m} \left\|x_1^j\right\|_{X_1} \cdots \left\|x_n^j\right\|_{X_n}$$

が満たされ $\pi \le \lambda$ が従う. よって λ が式 (A.9) を満たせば、定理 A.4.6 より $\lambda = \pi$ が得られる. 第二段 λ がセミノルムであることを示す. 実際、任意に $u,v \in \bigotimes_{i=1}^n X_i$ を取り、

$$u = \sum_{i=1}^{m} x_1^j \otimes \cdots \otimes x_n^j, \quad v = \sum_{k=1}^{r} a_1^k \otimes \cdots \otimes a_n^k$$

を一つの表現とすれば、λの定め方より

$$\lambda(u+v) \le \sum_{i=1}^m x_1^i \otimes \cdots \otimes x_n^i + \sum_{k=1}^r a_1^k \otimes \cdots \otimes a_n^k$$

が成り立つ. 右辺を移項して

$$\lambda(u+v) - \sum_{k=1}^{r} a_1^k \otimes \cdots \otimes a_n^k \leq \lambda(u) \leq \sum_{i=1}^{m} x_1^j \otimes \cdots \otimes x_n^j$$

かつ

$$\lambda(u+v) - \lambda(u) \le \lambda(v) \le \sum_{k=1}^r a_1^k \otimes \cdots \otimes a_n^k$$

が従い λ の劣加法性を得る. また任意の $0 \neq \alpha \in \mathbb{K}, v \in \bigotimes_{i=1}^{n} X_{i}$ に対し

$$v = \sum_{i=1}^{m} x_1^j \otimes \cdots \otimes x_n^j$$

を一つの分割とすれば

$$\alpha v = \sum_{i=1}^{m} \left(\alpha x_1^j \right) \otimes \cdots \otimes x_n^j$$

は av の一つの分割となるから

$$\lambda(\alpha v) \leq \sum_{i=1}^{m} \left\| \alpha x_{1}^{j} \right\|_{X_{1}} \cdots \left\| x_{n}^{j} \right\|_{X_{n}} = |\alpha| \sum_{i=1}^{m} \left\| x_{1}^{j} \right\|_{X_{1}} \cdots \left\| x_{n}^{j} \right\|_{X_{n}}$$

が成立し、 ν の分割について下限を取れば $\lambda(\alpha\nu) \leq |\alpha|\lambda(\nu)$ が従う. 逆に

$$\alpha v = \sum_{k=1}^{r} a_1^k \otimes \cdots \otimes a_n^k$$

に対しては

$$\lambda(v) \leq \sum_{k=1}^r \left\| \frac{1}{\alpha} a_1^k \right\|_{X_1} \cdots \left\| a_n^k \right\|_{X_n} = \frac{1}{|\alpha|} \sum_{k=1}^r \left\| a_1^k \right\|_{X_1} \cdots \left\| a_n^k \right\|_{X_n}$$

が成り立ち $|\alpha|\lambda(v) \le \lambda(\alpha v)$ が従う. v = 0 なら $v = 0 \otimes \cdots \otimes 0$ より $\lambda(v) = 0$ が満たされ

$$\lambda(\alpha v) = |\alpha|\lambda(v), \quad (\forall \alpha \in \mathbb{K}, \ v \in \bigotimes_{i=1}^{n} X_i)$$

が得られる.

第三段 λ が式 (A.9) を満たすことを示す. 実際 λ の定め方より

$$\lambda(x_1 \otimes \cdots \otimes x_n) \leq \|x_1\|_{X_1} \cdots \|x_n\|_{X_n}, \quad (\forall x_i \in X_i, i = 1, \cdots, n)$$

が成り立つ.

定理 A.4.8. $\bigotimes_{i=1}^n X_i$ を \mathbb{K} -Banach 空間の族 $(X_i)_{i=1}^n$ のテンソル積とする.このとき $\bigotimes_{i=1}^n X_i$ 上の任意のノルム α に対し次が成立する:

 α がクロスノルム \Leftrightarrow $\epsilon \leq \alpha \leq \pi$.

証明. (⇒) はすでに示したから (←) を示す. 実際, 任意の $x_i \in X_i$, $(i = 1, \dots, n)$ に対して

$$\alpha(x_1 \otimes \cdots \otimes x_n) \leq \pi(x_1 \otimes \cdots \otimes x_n) \leq ||x_1||_{X_1} \cdots ||x_n||_{X_n}$$

が成立し、また任意の $x_i^* \in X_i^*$, $(i = 1, \dots, n)$ に対して

$$\begin{aligned} \left| x_1^* \otimes \cdots \otimes x_n^*(v) \right| &\leq \left\| x_1^* \otimes \cdots \otimes x_n^* \right\|_{(\bigotimes_{i=1}^n X_i, \epsilon)^*} \epsilon(v) \\ &\leq \left\| x_1^* \right\|_{X_1^*} \cdots \left\| x_n^* \right\|_{X_n^*} \alpha(v), \quad (\forall v \in \bigotimes_{i=1}^n X_i) \end{aligned}$$

が満たされ $\|x_1^* \otimes \cdots \otimes x_n^*\|_{(\bigotimes_{i=1}^n X_i, \alpha)^*} \le \|x_1^*\|_{X_1^*} \cdots \|x_n^*\|_{X_n^*}$ が得られる.

A.5 テンソル積の内積

[参考:[5](pp. 1-24), [9]] $(H_i)_{i=1}^n$ を \mathbb{R} -Hilbert 空間の族として, $\bigotimes_{i=1}^n H_i$ に内積を導入する. H_i の内積を $\langle \cdot, \cdot \rangle_{H_i}$ と書く. 第一段 任意に $y_i \in H_i, \ i=1,\cdots,n$ を取り

$$\Phi_{y_1,\cdots,y_n}: \bigoplus_{i=1}^n H_i \ni (x_1,\cdots,x_n) \longmapsto \langle x_1,y_1 \rangle_{H_1} \cdots \langle x_n,y_n \rangle_{H_n}$$

とおけば, Φ_{y_1,\cdots,y_n} は n 重線型であるから或る $\Psi_{y_1,\cdots,y_n}\in \mathrm{Hom}\left(\bigotimes_{i=1}^n H_i,\mathbb{R}\right)$ がただ一つ存在して

$$\Psi_{y_1,\cdots,y_n}\circ \otimes = \Phi_{y_1,\cdots,y_n}$$

を満たす.

第二段 任意の $u \in \bigotimes_{i=1}^n H_i$ に対し $\bigoplus_{i=1}^n H_i \ni (y_1, \cdots, y_n) \longmapsto \Psi_{y_1, \cdots, y_n}(u)$ は n 重線型である.実際,

$$u = \sum_{i=1}^{k} x_1^j \otimes \cdots \otimes x_n^j$$

と表せるとき、任意の $\alpha, \beta \in \mathbb{R}$ と $y_i, z_i \in H_i$ に対して

$$\Psi_{y_{1},\dots,\alpha y_{i}+\beta z_{i},\dots,y_{n}}(u) = \sum_{j=1}^{k} \Psi_{y_{1},\dots,\alpha y_{i}+\beta z_{i},\dots,y_{n}}(x_{1}^{j} \otimes \dots \otimes x_{n}^{j})$$

$$= \sum_{j=1}^{k} \left\langle x_{1}^{j}, y_{1} \right\rangle_{H_{1}} \dots \left\langle x_{i}^{j}, \alpha y_{i} + \beta z_{i} \right\rangle_{H_{i}} \dots \left\langle x_{n}^{j}, y_{n} \right\rangle_{H_{n}}$$

$$= \alpha \sum_{i=1}^{k} \left\langle x_{1}^{j}, y_{1} \right\rangle_{H_{1}} \dots \left\langle x_{i}^{j}, y_{i} \right\rangle_{H_{i}} \dots \left\langle x_{n}^{j}, y_{n} \right\rangle_{H_{n}}$$

$$\begin{split} &+\beta\sum_{j=1}^{k}\left\langle x_{1}^{j},y_{1}\right\rangle_{H_{1}}\cdots\left\langle x_{i}^{j},z_{i}\right\rangle_{H_{i}}\cdots\left\langle x_{n}^{j},y_{n}\right\rangle_{H_{n}}\\ &=\alpha\sum_{j=1}^{k}\Psi_{y_{1},\cdots,y_{i},\cdots,y_{n}}(x_{1}^{j}\otimes\cdots\otimes x_{n}^{j})+\beta\sum_{j=1}^{k}\Psi_{y_{1},\cdots,z_{i},\cdots,y_{n}}(x_{1}^{j}\otimes\cdots\otimes x_{n}^{j})\\ &=\alpha\Psi_{y_{1},\cdots,y_{i},\cdots,y_{n}}(u)+\beta\Psi_{y_{1},\cdots,z_{i},\cdots,y_{n}}(u) \end{split}$$

が成立する.従って或る $F_u \in \operatorname{Hom}\left(\bigotimes_{i=1}^n H_i, \mathbb{R}\right)$ がただ一つ存在して

$$F_u(y_1 \otimes \cdots \otimes y_n) = \Psi_{y_1, \cdots, y_n}(u), \quad (\forall y_1 \otimes \cdots \otimes y_n \in \bigotimes_{i=1}^n H_i)$$

を満たす.

第三段 任意の $v \in \bigotimes_{i=1}^n H_i$ に対し $\bigotimes_{i=1}^n H_i \ni u \longmapsto F_u(v)$ は線型性を持つ. 実際,

$$v = \sum_{i=1}^{k} x_1^j \otimes \cdots \otimes x_n^j$$

と表せるとき、任意の $\alpha, \beta \in \mathbb{R}$ と $u, w \in \bigotimes_{i=1}^{n} H_i$ に対して

$$F_{\alpha u+\beta w}(v) = \sum_{j=1}^{k} F_{\alpha u+\beta w}(x_1^j \otimes \cdots \otimes x_n^j)$$

$$= \sum_{j=1}^{k} \Psi_{x_1^j, \dots, x_n^j}(\alpha u + \beta w)$$

$$= \alpha \sum_{j=1}^{k} \Psi_{x_1^j, \dots, x_n^j}(u) + \beta \sum_{j=1}^{k} \Psi_{x_1^j, \dots, x_n^j}(w)$$

$$= \alpha F_u(v) + \beta F_w(v)$$

が成立する. 従って

$$s(u,v) := F_u(v), \quad (\forall u, v \in \bigotimes_{i=1}^n H_i)$$
(A.11)

により定める $s: \bigotimes_{i=1}^n H_i \times \bigotimes_{i=1}^n H_i \longrightarrow \mathbb{R}$ は双線型形式である.

定理 A.5.1. s は $\bigotimes_{i=1}^n H_i$ の内積となり、任意の $x_1 \otimes \cdots \otimes x_n, \ y_1 \otimes \cdots \otimes y_n \in \bigotimes_{i=1}^n H_i$ に対し次を満たす:

$$s(x_1 \otimes \cdots \otimes x_n, y_1 \otimes \cdots \otimes y_n) = \langle x_1, y_1 \rangle_{H_1} \cdots \langle x_n, y_n \rangle_{H_n}. \tag{A.12}$$

証明. s は双線型性を持つように定めたから、後は対称性と正定値性及び $s(u,u)=0 \Leftrightarrow u=0$ を示せばよい.

第一段 任意の $x_1 \otimes \cdots \otimes x_n$, $y_1 \otimes \cdots \otimes y_n \in \bigotimes_{i=1}^n H_i$ に対し

$$s(x_1 \otimes \cdots \otimes x_n, y_1 \otimes \cdots \otimes y_n) = F_{x_1 \otimes \cdots \otimes x_n}(y_1 \otimes \cdots \otimes y_n) = \Psi_{y_1, \cdots, y_n}(x_1 \otimes \cdots \otimes x_n) = \Phi_{y_1, \cdots, y_n}(x_1, \cdots, x_n)$$
$$= \langle x_1, y_1 \rangle_{H_1} \cdots \langle x_n, y_n \rangle_{H_n}$$

が成り立ち (A.12) を得る.また $s(x_1 \otimes \cdots \otimes x_n, y_1 \otimes \cdots \otimes y_n) = s(y_1 \otimes \cdots \otimes y_n, x_1 \otimes \cdots \otimes x_n)$ も従う.

第二段 sの対称性を示す. 任意の $u,v \in \bigotimes_{i=1}^{n} H_i$ に対し分割を

$$u = \sum_{i=1}^{k} x_1^j \otimes \cdots \otimes x_n^j, \quad v = \sum_{r=1}^{m} y_1^r \otimes \cdots \otimes y_n^r$$

と表せば, 前段の結果より

$$s(u,v) = \sum_{j=1}^k \sum_{r=1}^m s(x_1^j \otimes \cdots \otimes x_n^j, y_1^r \otimes \cdots \otimes y_n^r) = \sum_{r=1}^m \sum_{j=1}^k s(y_1^r \otimes \cdots \otimes y_n^r, x_1^j \otimes \cdots \otimes x_n^j) = s(v,u)$$

となる.

第三段 任意の $u \in \bigotimes_{i=1}^n H_i$ に対し $s(u,u) \ge 0$ が成り立つことを示す. 実際,

第一段 $s(u,u)=0\Leftrightarrow u=0,\ (u\in\bigotimes_{i=1}^nH_i)$ が成り立つことを示す。定理 A.3.8 より、基底 $\left\{e_{\lambda_i}^i\right\}_{\lambda_i\in\Lambda_i}\subset H_i,\ (i=1,\cdots,n)$ に対し $\left\{e_{\lambda_1}^1\otimes\cdots\otimes e_{\lambda_n}^n\right\}_{\lambda_1,\cdots,\lambda_n}$ は $\bigotimes_{i=1}^nH_i$ の基底となるから、任意の $u\in\bigotimes_{i=1}^nH_i$ は

$$u = \sum_{i=1}^k \alpha_j \left(e_{\lambda_1^{(j)}}^1 \otimes \cdots \otimes e_{\lambda_n^{(j)}}^n \right) = \sum_{i=1}^k e_{\lambda_1^{(j)}}^1 \otimes \cdots \otimes \left(\alpha_j e_{\lambda_n^{(j)}}^n \right), \quad (\alpha_j \neq 0, \ j = 1, \cdots, k)$$

と表現できる.

定義 A.5.2 (テンソル積上の内積). 式 (A.11) で定めた双線型形式 s を $\langle\cdot,\cdot\rangle$ と書き直して $\bigotimes_{i=1}^n H_i$ の内積とする. また $\sigma(u) \coloneqq \sqrt{\langle u,u\rangle}, \ (u\in\bigotimes_{i=1}^n H_i)$ によりノルム σ を導入する.

定理 A.5.3 (σ はクロスノルム). σ はクロスノルムである.

証明. 定義 A.4.1 の (A.9) と (A.10) を満たすことを示せばよい.

第一段 式(A.12)より(A.9)が従う.

第二段 任意に $x_i^* \in H_i^*$ を取れば、Riesz の Hilbert 空間の表現定理より或る $a_i \in H_i$ がただ一つ存在して

$$x_i^*(\cdot) = \langle \cdot, a_i \rangle_{H_i}, \quad \|x_i^*\|_{H_i^*} = \|a_i\|_{H_i}, \quad i = 1, \dots, n$$

を満たす. Cauchy-Schwartz の不等式と併せれば、任意の

$$x = \sum_{i=1}^{k} x_1^j \otimes \cdots \otimes x_n^j \in \bigotimes_{i=1}^{n} H_i$$

に対し

$$(x_1^* \otimes \cdots \otimes x_n^*)(x) = \sum_{j=1}^k (x_1^* \otimes \cdots \otimes x_n^*)(x_1^j \otimes \cdots \otimes x_n^j) = \sum_{j=1}^k x_1^*(x_1^j) \cdots x_n^*(x_n^j)$$

$$= \sum_{j=1}^k \left\langle x_1^j, a_1 \right\rangle_{H_1} \cdots \left\langle x_n^j, a_n \right\rangle_{H_n} = \sum_{j=1}^k \left\langle x_1^j \otimes \cdots \otimes x_n^j, a_1 \otimes \cdots \otimes a_n \right\rangle = \left\langle x, a_1 \otimes \cdots \otimes a_n \right\rangle$$

$$\leq \sigma(x)\sigma(a_1 \otimes \cdots \otimes a_n) = \sigma(x) \|a_1\|_{H_1} \cdots \|a_n\|_{H_n}$$

$$= \sigma(x) \|x_1^*\|_{H_1^*} \cdots \|x_n^*\|_{H_2^*}$$

が成立し (A.10) を得る.

定理 A.5.4 (H_i が有限次元なら σ と π は同値).

参考文献

- [1] S. Aida, Rough path analysis: an introduction.
- [2] T. Lyons and Z. Qian, System control and rough paths, Oxford science publications, 2002.
- [3] K. Friz and Nicholas B. Victor, Multidimensional stochastic processes as rough path: theory and applications, 2009.
- [4] M. Sugiura and M. Yokonuma, ジョルダン標準形・テンソル代数, 岩波基礎数学選書, 1990.
- [5] E. Cheney and W. Light, Approximation theory of tensor product spaces, Springer, 1985.
- [6] R. Ryan, Introduction to tensor products of Banach spaces, Springer, 2002.
- [7] mathoverFlow, available from https://mathoverflow.net/questions/277070/tensor-product-space-with-projective-norm-is-incomplete, 2018/05/24.
- [8] Y. Hirai and K. Matsuura, 自主ゼミ: Normal approximations with Malliavin calculus: From Stein's Method to Universality 用ノート, 2015.
- [9] Y. Hirai, 関数解析ノート: ノルム空間上の有界双線形写像, 2017.
- [10] K. Matsuzaka, 集合·位相入門, 岩波書店, 2016.