INTERFACE CONTROL DOCUMENT FOR THE RDA/RPG

Prepared by: WSR-88D Radar Operations Center 1313 Halley Circle Norman, OK 73069

Cheryl A. Stephenson	DATE
SUBMITTED BY:	DATE:
BASELINE BY &	
USE AS PRODUCT	
APPROVED FOR	

Team Leader, Configuration Management WSR-88D Radar Operations Center

 $\underline{\textbf{DISTRIBUTION STATEMENT A:}} \ \ \textbf{Approved for public release; distribution unlimited.}$

INTERFACE CONTROL DOCUMENT FOR THE RDA/RPG 2620002

DOCUMENT REVISION RECORD FORM

						DOCUM	TENT KEVIS	SION RECU	KD FUKWI					
REVISION	-	A	В	C	D	E	F	G	Н	J	K	M	N	P
RELEASED BY	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC	ROC
RELEASE	03/01/96	06/26/98	09/11/01	04/13/05	02/08/06	5/25/07	03/25/08	03/03/09	11/04/09	06/07/10	7/29/11	3/7/2012	1/06/2014	TBD
DATE														
EFFECTIVITY	03/01/96	06/26/98	09/11/01	04/13/05	02/08/06	5/25/07	03/25/08	03/03/09	11/04/09	06/07/10	7/29/11	3/7/2012	1/06/2014	TBD
AUTHORITY	F0048	F0095	F0103	0126/0209	0126/021 0	0250	0286	0349	0445	0465/0476	0274	0420	0599	0437F
FAST TRACK	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
REV HISTORY	BLD 9.0	BLD 10.0	OPEN BLD	RPG BLD	RPG	RPG	RPG BLD	RPG BLD	RPG BLD	RDA BLD	RDA BLD	RDA	RDA	RDA
			1.0	7.0	BLD 8.0	BLD 9.0	10.0	11.0	11.2	11.5/RPG BLD 12.1	12.0	BLD 13.0	BLD 14.0	BLD 17.0
Section 1	-	A	В	С								M		
Section 2	-	A	В	С			F							
Section 3	-	A	В	С	D	Е	F	G	Н	J	K	M	N	
Section 4	-	A	В	Deleted										
Section 5	-	A	В	Deleted										
Section 6	-	A	В	Deleted										
Section 7	-	A	В	Deleted										
Section 8	-	A	В	Deleted										
Section 9	-	A	В	Deleted										
Section 10	-	A	В	Deleted										
Appendix A	-	A	В	C										
Appendix B						Е								
Appendix C							F							

REVISION RECORD

Document Originally Released as 1208321H and then converted to ROC Document 2620002

Revision	Description	Date
Revision A	Updated for Build 10.0	26 June 1998
Revision B	Updated for ORPG Build 1.0.	11 September 2001
Revision C	Define new client/server interface between ORDA and	13 April 2005
	RPG. Update message formats for ORDA. Divided this	
	document into two documents, communication protocol and	
	application layer. The communications protocol will be	
	documented in 2620060, RDA/RPG TCP/IP ICD.	
D : : D	II. 1 . 16	00 E 1 2000
Revision D	Updated for RPG Build 8.0	08 February 2006
Revision E	Updated for RPG Build 9.0. Added Appendix B.	25 May 2007
Revision F	Updated for RPG Build 10.0.	25 March 2008
	a. Added new Table XVII for Message 31 for Build 10.	
	b. Made correction to Table XVII-B for SNR threshold	
	precision from 0.1 to 0.125 dB and range of -12.0 to +	
	20.0 dB to match usage in Message 5.	
	c. Updated Message 5 for super resolution selection	
	parameters.	
	d. Made corrections to Message 1 for velocity ranges.	
	e. Made segmentation changes to Table II Message	
	Header Data.	
	f. Updated Table I Data Message Types for Message	
	31.	
	g. Changes to increase number to 25 clutter regions.	
	h. Removed unused alarms.	
	i. Updated Source address in Section 2.	
Revision G	Updated for Build 11.0.	03 March 2009
Revision	Updated for RPG Build 11.2. Changed the valid range of	04 November 2009
H	"RDA BUILD NUMBER" in the summary status message	
	(halfword 10), from "0 to 999", to "0 to 9999", to allow for	
	the new scaling factor of 100 that the build number will be	
	using.	
Revision J	Updated Table IV-A RDA Alarm Messages for RDA Build	07 June 2010
	11.5. Updated Figure C-6 VCP 121 for RPG Build 12.1.	
Revision K	RDA Build 12.0 changes for Dual Polarization.	29 July 2011
Revision	Updated for RDA Build 13.0.	7 March 2012
M		
Revision	Updated for RDA/RPG Build 14.0	06 January 2014
N	CCRs Affected: NA12-00299, NA12-00018, NA12-00019,	
	NA12-00378, NA12-00233, NA12-00046, NA12-00023,	
	NA12-00022, NA12-00373, NA12-00046, NA13-00044,	
	NA12-00022, NA12-00023, NA12-00256, NA12-00421,	
	NA11-00198,	
	NA12-00234, NA12-00338, NA13-00111	

1 Scope

1.1 Identification

This document defines the interface between the Radar Data Acquisition (RDA) and Radar Product Generation (RPG) functional areas of the WSR-88D system. This document revision is applicable to the RDA design employing client/server technology and to the RPG design employing client/server technology. This new RDA design is more commonly called the Open RDA (ORDA). This new RPG design is more commonly called the Open RPG (ORPG).

1.2 Security

The RDA and RPG subnets are mission critical networks. No firewall will be used between these trusted systems; however, access control will be employed. The services allowed would include Network Time Protocol (NTP), radar data, Internet Control Message Protocol (ICMP), and Master System Control Function (MSCF) display data, all other services shall be denied.

1.3 System Overview

The WSR-88D acquires, generates, and distributes Doppler radar products for meteorological and hydrological applications. Specifically, the RDA functional area acquires radar data; controls antenna, transmitter, and receiver electronics; prepares radar data in a digital format; transmits radar data and status to the RPG; and processes control information from the RPG. The RPG functional area receives radar data and status information from the RDA, formats and sends control commands to the RDA, generates radar products, and distributes radar products for graphical and alphanumeric display systems.

The WSR-88D system was developed in the mid to late 1980s. Full scale deployment began in 1992 and was completed in 1995. DoD, DoC, and DoT jointly sponsored the development, acquisition, and deployment of the WSR-88D. There are 159 operating sites which include the RDA and RPG functional areas.

1.4 Documentation Overview

This document provides information needed to interface either the RDA or the RPG functional areas of the WSR-88D. Contents include detailed description of the interface components including hardware and software parameters. The document is structured to address applicable layers of the Open System Interconnect (OSI) model and Transmission Control Protocol/Internet Protocol (TCP/IP) communications reference models.

Section 1 provides information regarding the identification, scope, purpose, and organization of this document.

Section 2 provides information about documentation relevant to this ICD, including applicable and informative documents.

Section 3 provides a description of the Application Layer.

Appendix A provides a list of acronyms included in this document.

Appendix B provides a definition of the units and symbology used in this document.

Appendix C provides Volume Coverage Patterns.

2 Reference Documents

This section lists the number, title, revision, and date of all documents referenced in this specification. This section shall also identify the source for all documents not available through normal Government stocking activities.

2.1 Government Documents

2.1.1 Specifications

2.1.1 Specifications	T
<u>Reference Number</u>	<u>Title</u>
2810000F	WSR-88D System Specification
2830013	WSR-88D System/Subsystem Design Document
2820001, Pt 1	Computer Program Development Specification for RDA
	Status and Control Program (CPCI-01)
2820003K, Pt1	Computer Program Development Specification for Radar
	Product Generation Program (SRS, CPCI-03)
2830006, Pt 1	Critical Item Development Specification for Wideband
	Communications Link (CI-06)
2620015A	Microwave Line of Sight (MLOS) Fault Alarm System
9,000,00	DDC to Dogo Data Distribution Common (DDDC) ICD
2620036	RPG to Base Data Distribution Server (BDDS) ICD
2830007 Pt. 1	RPG Equipment B1 and update (CI-07)

2830009 Pt.1	RDA Equipment B1 (CI-09)
2620060	RDA/RPG TCP/IP ICD
Source:	WSR-88D Radar Operations Center 1313 Halley Circle Norman, OK 73069

2.2 Non-Government Documents

2.2.1 Industry Standards

Reference Number	<u>Title</u>
IEEE 754-1985	IEEE Standard for Binary Floating-Point Arithmetic

Source:	IEEE Customer Service
	445 Hoes Lane
	PO Box.1331
	Piscataway NJ 08855-1331
	http://www.standards.ieee.org/
NIST Special Publication	The International System of Units (SI)
330, 2001 Edition	
Source:	United States Department of Commerce
	National Institute of Standards and Technology
	http://physics.nist.gov

3 RDA to RPG Application Layer

The applications messages associated with TCP/IP for the RPG to RDA interface are specified herein. The specific WSR-88D operating procedures and product message formats are defined also.

3.1 Session Specific

3.1.1 TCP Client/Server Relationship

The TCP connection on the RPG side will be the client. The RDA connection will be the server.

3.1.2 TCP Port Mapping

One TCP connection to the host is established and as a Permanent Virtual Channel (PVC).

3.1.3 General Message Descriptions

All session messages have a three word integer header. All fields in the header are four octets in network (big endian) byte order. The first field (first four octets) of the header is the message type. The second field's function is message type dependent. The third field is the message size (number of octets of data following the header) excluding the message header.

TCM Message Header

Message Type	Message Type Dependent	Server/Client
		Data Size
¬¾¾¼¼ 4 ¾¾¼ ®	¬¾¾¼ 4 ¾¾¼ ®	¬¾¾¼¼ 4 ¾¾¼®
octets	octets	octets

The following table contains the message types and message codes.

Session Message Type	Message Code
LOGIN	0
LOGIN ACKNOWLEDGEMENT	1
DATA	2
DATA ACKNOWLEDGEMENT	3
KEEP ALIVE	4

3.1.4 Error Handling

Either side of a session link will close and disconnect TCP connections for all PVCs on the detection of an error on any PVC. A disconnected client may attempt to reconnect at any time.

3.1.5 Disconnect

To disconnect the RPG session, simply close TCP connections for all PVCs. The session layer is not established unless all PVCs for the link have valid TCP connections.

3.2 Application Specific

3.2.1 Data Formats

The following data formats are referenced in this document:

Code*1	One byte (8 bits) of integer data representing a bit field.		
Code*2	Two bytes (16 bits) of integer data representing a bit field.		
Integer*1	One byte (8 bits) of unsigned integer data.		
Integer*2	Two bytes (16 bits) of unsigned integer data.		
Integer*4	Four bytes (32 bits) of unsigned integer data.		
Real*4	Four bytes (32 bits) of single precision floating point data in		
	IEEE 754 format.		
Real*8	Eight bytes (64 bits) of double precision floating point data in		
	IEEE 754 format.		
Scaled Integer*1	Floating point data represented by a 1-byte unsigned integer		
_	with an assumed decimal point whose position is defined by the		
	precision of the item.		

Scaled Integer*2	Floating point data represented by a 2-byte unsigned integer with an assumed decimal point whose position is defined by the precision of the item.
Scaled Integer*4	Floating point data represented by a 4-byte unsigned integer with an assumed decimal point whose position is defined by the precision of the item.
Scaled SInteger*2	Floating point data represented by a 2-byte signed integer with an assumed decimal point whose position is defined by the precision of the item.
Scaled SInteger*4	Floating point data represented by a 4-byte signed integer with an assumed decimal point whose position is defined by the precision of the item.
SInteger*1	One byte (8 bits) of integer data in standard 2's complement format.
SInteger*2	Two bytes (16 bits) of integer data in standard 2's complement format.
SInteger*4	Four bytes (32 bits) of integer data in standard 2's complement format.
String	One or more 8-bit data items, each representing one ASCII character. Values that do not take up the entire field size will be padded with NULL characters.

3.2.2 Operating Procedures

The data messages to be transferred between the RDA and the RPG are listed in Table I. The data messages will be exchanged after a successful session is established. A message header of format specified in Table II is attached to each message transmitted across the link.

${\it 3.2.2.1}\ Table\ I\ Data\ Message\ Types$

Type	Description	Source	Recipient	Format
1	Digital Radar Data	RDA	RPG	Table III
2*	RDA Status Data	RDA	RPG/RMS	Table IV
3*	Performance/Maintenance Data	RDA	RPG/RMS	Table V
4	Console Message	RDA	RPG/RMS	Table VI
5*	Volume Coverage Pattern	RDA	RPG	Table XI
6	RDA Control Commands	RPG	RDA	Table X
7	Volume Coverage Pattern	RPG	RDA	Table XI
8	Clutter Censor Zones	RPG	RDA	Table XII
9	Request for Data	RPG	RDA	Table XIII
10	Console Message	RPG	RDA/RMS	Table VI
11	Loop Back Test	RDA	RPG	Table VIII
12	Loop Back Test	RPG	RDA	Table VIII
13*	Clutter Filter Bypass Map	RDA	RPG	Table IX
14	Spare	N/A	N/A	N/A
15 *	Clutter Filter Map	RDA	RPG	Table XIV
16	Reserved/FAA RMS Only	N/A	N/A	N/A
17	Reserved/FAA RMS Only	N/A	N/A	N/A
18*	RDA Adaptation Data	RDA	RPG/RMS	Table XV
20	Reserved	N/A	N/A	N/A
21	Reserved	N/A	N/A	N/A
22	Reserved	N/A	N/A	N/A

23	Reserved	N/A	N/A	N/A
24	Reserved/FAA RMS only	N/A	N/A	N/A
25	Reserved/FAA RMS only	N/A	N/A	N/A
26	Reserved/FAA RMS only	N/A	N/A	N/A
29	Reserved	N/A	N/A	N/A
31	Digital Radar Data Generic Format	RDA	RPG	Table XVII

^{* =} metadata

3.2.2.2 Messages from RDA

Per Table I, data transmitted from the RDA to the RPG consists of Digital Radar Data (Message 1) or Digital Radar Data Generic Format (Message 31) plus RDA Status Data (Message 2), RDA Performance/Maintenance Data (Message 3), Console Messages (Message 4), Volume Coverage Pattern Data (Message 5), Loop Back Test (Message 11), Clutter Filter Bypass Map (Message 13), Clutter Filter Map (Message 15) and RDA Adaptation Data (Message 18).

Digital Radar Data format is given in Table III, RDA Status Data format is given in Table IV, RDA Performance/Maintenance Data format is given in Table V, Console Message format is given in Table VI, Volume Coverage Pattern Data is given in Table XI, Loop Back Test format is given in Table VIII, Clutter Filter Bypass Map format is given in Table IX, Clutter Filter Map Data is given in table XIV, RDA Adaptation Data is given in Table XV, and Digital Radar Data Generic Format is given in Table XVII.

The RDA sends the ICD formatted message to the RPG. At the RPG end, the communications manager (RPG software task) inserts an additional 12 bytes to the ICD format message. The communications manager also inserts a communications manager header to the message, and then the message is sent to the RPG ingest application. This is also the same information, which is sent to the Base Data Distribution System (BDDS) processor.

3.2.2.2.1 Metadata Message Types and Purpose

The capability to perform Level II recording has been moved from the RDA to the RPG. In order to continue to provide Metadata for Level II, the following Message Types need to be sent from the RDA to the RPG (see Table I) along with Message Type 1, Digital Radar Data or Message Type 31, Digital Radar Data Generic Format:

- 2 RDA Status Data
- 3 Performance/Maintenance Data
- 5 Volume Coverage Pattern Data
- 13 Clutter Filter Bypass Map Data
- 15 Clutter Filter Map Data
- 18 RDA Adaptation Data

The RDA will send messages 2, 3, 5, 13, 15 and 18 upon wideband connection and prior to going to "OPERATE" state

The RDA will send messages 2, 3 and 5 prior to sending message 1 at the beginning of each VCP.

The RDA will send message 13 whenever there is a change to the Clutter Filter Bypass Map Data.

The RDA will send message 15 whenever there is a change to Clutter Filter Map Data.

The RDA will send message 18 whenever there is a change to RDA Adaptation Data.

3.2.2.3 Messages from RPG

Per Table I, data to be transmitted from the RPG to the RDA consists of:

RDA Control Commands (Message 6), Volume Coverage Patterns data (Message 7), Clutter Censor Zones data (Message 8), Requests for Data (Message 9), Console Messages (Message 10) and Loop Back Test (Message 12).

RDA Control Command format is given in Table X, Volume Coverage Pattern format is given in Table XI, Clutter Censor Zones format is given in Table XII, Requests for Data format is given in Table XIII, Console Messages format is given in Table VI and Loop Back Test messages format in Table VIII.

The transmitted message to the RDA will then consist of the RDA/RPG ICD format message (i.e., message header followed by message data).

3.2.3 Message Descriptions

The following sections define the message formats exchanged via this interface.

The Message Header, as defined in Table II, is appended to the beginning of all messages transmitted between the RDA and the RPG. The Message Header identifies system configuration, message number of information following the header, date, time and number of segments to be transmitted for messages exceeding 1208 halfwords, including the Message Header. Messages with lengths greater than 1208 halfwords (2416 bytes) are divided into multiple segments, each with a maximum length of 1208 halfwords. For messages with length less than 1208 halfwords, the number of message segments is one and the individual segment number in the Message Header is not applicable. The exception in Message Type 31 which is not segmented. For messages larger than 35534 halfwords, an alternate form of message size definition is specified.

3.2.3.1 Digital Radar Data

3.2.3.1.1 Message Type 1

Digital Radar Data message format is provided in Table III. The message consists of base data information, that is, reflectivity, mean radial velocity and spectrum width, azimuth angle, elevation angle, cut type, scanning strategy and calibration parameters. The frequency and volume of the message will be dependent on the scanning strategy and the type of data associated with that scanning strategy.

3.2.3.1.2 Message Type 31

Digital Radar Data message format is provided in Table XVII. The message consists of base data information, that is, reflectivity, mean radial velocity, spectrum width, differential reflectivity, differential phase, correlation coefficient, azimuth angle, elevation angle, cut type, scanning strategy and calibration parameters. The frequency and volume of the message will be dependent on the scanning strategy and the type of data associated with that scanning strategy.

3.2.3.2 RDA Status Data

RDA Status Data message format is provided in Table IV. The message contains information about the current RDA state, system control, operating status, scanning strategy selected, performance parameters such as transmitter power and calibration and alarms. Alarms contained in this message are summarized in Table IV-A. The RDA Status Data message is sent upon wideband connection, following state or control changes, at the beginning of each volume scan and after an RPG request.

3.2.3.3 Performance/Maintenance Data

The Performance/Maintenance Data message format is provided in Table V. The Performance/Maintenance Data message contains status of RDA sub-functions such as the receiver, transmitter and antenna/pedestal. The RDA sends this message upon wideband connection, at the beginning of each volume scan and after an RPG request.

3.2.3.4 Console Message

The Console Message format is provided in Table VI. When the RDA sends this message to the RPG, the Message Type indicated in the Message Header is 4. When the RPG sends this message to the RDA, the Message Type indicated in the Message Header is 10. The Console Message consists of an ASCII text string composed by the system user to communicate with other RDA, RPG or RMS users. The RDA sends the Console Message upon selection by the system user.

NOTE: In Build 13 message types 4 will be NULL terminated strings

3.2.3.5 Volume Coverage Pattern

The Volume Coverage Pattern message format is provided in Table XI. When the RDA sends this message to the RPG, the Message Type indicated in the Message Header is 5. When the RPG sends this message to the RDA, the Message Type indicated in the Message Header is 7. The RDA sends the Volume Coverage Pattern message upon wideband connection and at the beginning of each volume scan.

3.2.3.6 RDA Control Commands

The RDA Control Commands message format is provided in Table X. The message contains commands to select RDA state, control, channel and volume scan strategies. The control commands can also enable/disable Super Resolution, CMD and AVSET. The RPG can also command the RDA to perform a full performance check at the end of the current VCP, in-lieu of the typical re-trace calibration. The RDA site can be commanded to run on generator power, or switch to utility. Spot Blanking can be enabled, or disabled at site where spot blanking capability has been installed at the RDA.

3.2.3.7 Clutter Censor Zone

The Clutter Censor Zone message format is provided in Table XII. The message contains range, azimuth and elevation information for operator defined clutter censor zones. When the RDA receives a Clutter Censor Zone message, the Clutter Filter Map message is recomputed and transmitted to the RPG.

3.2.3.8 Request for Data

The Request for Data message format is provided in Table XIII. The message allows an RPG operator to request RDA Status Data, Performance/Maintenance Data, Clutter Filter Bypass Map, Clutter Filter Map, RDA Adaptation Data and Volume Coverage Pattern Data.

3.2.3.9 Loop Back Test

The Loop Back Test message format is provided in Table VIII. When the RDA sends this message to the RPG, the Message Type indicated in the Message Header is 11. When the RPG sends this message to the RDA, the Message Type indicated in the Message Header is 12. The Loop Back Test message transmits a sequence of bit data to verify RDA to RPG communication. The RDA sends Message Type 11 to the RPG upon wideband connection. After receipt, the RPG re-sends Message Type 11 to the RDA without any modifications. The RPG sends Message Type 12 to the RDA upon wideband connection. After receipt, the RDA re-sends Message Type 12 to the RPG without any modifications.

3.2.3.10 Clutter Filter Bypass Map

The Clutter Filter Bypass Map message format is provided in Table IX. The Clutter Filter Bypass Map contains information about which range bins are designated as clutter for the designated elevation segment and azimuth angle. When the RDA generates a new Clutter Filter Bypass Map, the Clutter Filter Bypass Map message is recomputed and transmitted to the RPG. When the Clutter Mitigation Decision system is enabled the Clutter Filter Bypass Map is updated every volume scan and transmitted during operational data collection.

3.2.3.11 Clutter Filter Map

The Clutter Filter Map message format is provided in Table XIV. The Clutter Filter Map contains the clutter censor zone information formatted as in Table XIV. The RDA sends the Clutter Filter Map message upon wideband connection and whenever there is a change to the Clutter Filter Map.

3.2.3.12 Adaptation Data

The Adaptation Data message format is provided in Table XV. The Adaptation Data message contains system parameters used by the RDA to determine alarm thresholds, signal processing parameters, and system configuration. The RDA sends the Adaptation Data message upon wideband connection and whenever there is a change to the data.

3.2.4 Message Tables

3.2.4.1 Table II Message Header Data

NAME	DESCRIPTION (3)	FORMAT	UNITS (4)	RANGE	ACCUR ACY/ PRECIS	BYTE LOCATI ON
Magaga Ciga	Massage size in halfwards (1) (6)	Intomov*0	halfword	9 to	ION	0 and 1
Message Size	Message size in halfwords (1) (6)	Integer*2	nanword	65535	1	0 and 1
RDA	Channel Numbers for:	Integer*1	N/A	0 to 10	1	2

Redundant	Legacy					
Channel	0 = Single Channel (no bits set)					
	1 = Redundant Channel 1 (bit 0					
	set)					
	2 = Redundant Channel 2 (bit 1					
	set)					
	ORDA					
	8 = Single Channel (bit 3 set)					
	9 = Redundant Channel 1 (bits 3					
	& 0 set)					
	10 = Redundant Channel 2 (bits 3					
	& 1 set)					
Message Type	Integer code from Table I	Integer*1	N/A	1 to 31	N/A	3
I.D. Sequence	Message Sequence Number	Integer*2	N/A	0 to	1	4 and 5
Number				65535		
				then roll		
				over to 0		
Julian Date	Julian Date - 2440586.5 (2)	Integer*2	d	1 to	1	6 and 7
				65,535		
Milliseconds of	Number of milliseconds	Integer*4	msec	0 to	± 2000/	8 to 11
Day	from Midnight, Greenwich Mean			86,399,9	± 1	
	Time			99		
Number of	Message larger than 1208	Integer*2	N/A	1 to	1	12 and 13
Message	halfwords are segmented and			65535		
Segments	transmitted separately except for					
	Message 31 that has a segment					
	size of 65534 halfwords (5) (7)					
Message	Segment number of this message (7)	Integer*2	N/A	1 to	1	14 and 15
Segment				65535		
Number						

Notes

- 1. This is the message size for this message segment, not for the total of all segments in the message.
- 2. 1 January 1970 00.00 Greenwich Mean Time = 1 Modified Julian Date.
- 3. All bit locations are referenced to location 0 (LSB).
- 4. See Appendix B for unit definitions and standard symbology.
- 5. For all message numbers as described in Table I, Data Message Types, the maximum segment size is 1208 halfwords except for Message Type 31, Digital Radar Data Generic Format, which can have a segment as large as 65534 halfwords.
- $6. \, \mathrm{A}$ size value 65535 indicates that byte locations 12-15 are used to specify the message size, in bytes. This accommodates messages larger than 65534 halfwords. This method of specifying size assumes the message is one segment. See note 7.
- 7. When the size field (byte location 0 and 1) value is 65535, bytes 12 and 13 denote the Most Significant Halfword of the message size while bytes 14 and 15 denote the Least Significant Halfword of the message size. The message is assumed one (1) segment with size expressed in bytes.

3.2.4.2 Table III Digital Radar Data (Message Type 1)

NAME	DESCRIPTION	FORMA T	UNIT S (18)	RANGE (1)	ACCURACY / PRECISION	BYTE LOCATION
Collection	Zulu reference time at which	Integer*4	msec	0 to	± 2000/	0 to 3
Time	radial data was collected			86,399,999	± 1	
Modified	Current Julian date -	Integer*2	d	1 to 65,535	1	4 and 5

Julian Date	$2440586.5^{(2)}$					
Unambigu ous	Unambiguous range, Interval Size	Scaled Integer*2	km	115 to 511	± 0.1/ ± 0.1	6 and 7
Range Azimuth	Azimuth angle at which radial data was collected	Code*2 (4)	deg	0 to 359.956055	± 0.1°/ ± 0.043945°	8 and 9
Angle Azimuth Number	Radial number within elevation cut	Integer*2	N/A	1 to 400	1	10 and 11
Radial Status	Radial Status (e.g. first, last)	Code*2 (5)	N/A	0 to 133	N/A	12 and 13
Elevation Angle	Elevation angle at which radial radar data was collected	Code*2 (4)	deg	353 to 70	± 0.1°/ ± 0.043945°	14 and 15
Elevation Number	Elevation number within volume scan	Integer*2	N/A	1 to 25	1	16 and 17
Surveillanc e Range	Range to center of first surveillance gate (BIN)	Code*2 (7)	km	-32.768 to +32.767	± 0.05/ ± 0.001	18 and 19
Doppler Range	Range to center of first Doppler gate (BIN)	Code*2 (7)	km	-32.768 to +32.767	± 0.05/ ± 0.001	20 and 21
Surveillanc e Range Sample Interval	Size of surveillance sample interval	Code*2 (7)	km	0.25 to 4	± 0.05/ ± 0.001	22 and 23
Doppler Range Sample Interval	Size of Doppler Sample Interval	Code*2 (7)	km	0.25 to 4	± 0.05/ ± 0.001	24 and 25
Number of Surveillanc e Bins	Number of surveillance bins for current radial	Integer*2	N/A	0 to 460	1	26 and 27
Number of Doppler Bins	Number of Doppler bins for current radial	Integer*2	N/A	0 to 920	1	28 and 29
Cut Sector Number	Sector Number within cut	Integer*2	N/A	0 to 3 ⁽¹⁴⁾	1	30 and 31
Calibration Constant (dBZ0)	Scaling constant used by Signal Processor to calculate reflectivity	Real*4	dB	-99.0 to +99.0	± 1/ N/A	32 to 35
Surveillanc e Pointer	Byte offset to surveillance data (15)	Integer*2	byte	100 (8)	1	36 and 37
Velocity Pointer	Byte offset to velocity data (15)	Integer*2	byte	100 to 560 ⁽⁸⁾	1	38 and 39
Spectral Width Pointer	Byte offset to spectral width data (15)	Integer*2	byte	100 to 1480 ⁽⁸⁾	1	40 and 41
Doppler Velocity Resolution	Indicates scaling used for the Doppler Velocity	Code*2	N/A	2 = 0.5 m/s 4 = 1.0 m/s	N/A	42 and 43
Volume Coverage Pattern	Identifies Volume Coverage Pattern being used	Integer*2	N/A	1 to 767	1	44 and 45

Number						
Spare	Reserved for use by V + V Simulator (CPCI 24)	N/A	N/A	N/A	N/A	46 to 53
Spare	N/A	N/A	N/A	N/A	N/A	54 and 55
Spare	N/A	N/A	N/A	N/A	N/A	56 and 57
Spare	N/A	N/A	N/A	N/A	N/A	58 and 59
Nyquist	Nyquist Velocity	Scaled	m/s	8 to 35.61 ⁽¹⁷⁾	± .003/	60 and 61
Velocity		Integer*2			± .01	
ATMOS	Atmospheric Attenuation	Scaled	dB/km	-0.02 to	± .004/	62 and 63
	Factor	Integer*2		-0.002	± .001	
TOVER	Threshold parameter which specifies the minimum difference in echo power between two resolution cells for them not to be labeled "overlayed"	Scaled Integer*2	dB	0.0 to 20.0	± .1/ ± .1	64 and 65
Radial	Spot blanking status for	Integer*2	N/A	1=radial	N/A	66 and 67
Spot	current radial, elevation cut	(9)		2=elevation		
Blanking	and volume scan.			4=volume		
Status	N/A	N/A	N/A	N/A	NT/A	68 to 99
Spare	Weather radar surveillance	Code*1	dBZ	-32 to +94.5	N/A ± 1/	
Reflectivity	data (0 to 460 Cells)	(10)(11)	abz	-32 to +94.5	± 17 ± 0.5	100 to 559
Doppler	Weather radar velocity data	Code*1	m/s	-63.5 to +63	± 1/0.5	100 to
Velocity	(0 to 920 Cells)	(10)(11)		-127 to +126	± 1/1	1479 (12)
Doppler	Weather radar spectral width	Code*1	m/s	-63.5 to +63	± 1/0.5	100 to
Spectrum	data (0 to 920 Cells)	(10)(11)				2399 (13)
Width						

Notes:

- 1. This field represents the range of the item after any applicable scaling and conversion is done.
- 2. 1 January 1970 00.00 GMT = 1 Modified Julian Date
- 4. Format Defined in Table III-A
- 5. Format Defined in Table III-C
- 7. Format Defined in Table III-B
- 8. A 0 indicates No Data.
- 9. Equals 0 when spot blanking disabled; equals 4 when spot blanking enabled and no spot blanking radials in current elevation cut; equals 6 when there are spot blanked radials in current elevation cut and current radial not spot blanked; equals 7 when current radial is spot blanked.
- 10. Value of 00 (prior to scaling) is Signal Below Threshold, value of 01 (prior to scaling) is Signal Overlaid
- 11. See Table III-E for Scaling Range of Doppler Velocity set in accordance with Doppler Velocity Resolution
- 12. Byte Start Location depends on length of Reflectivity Field, Byte Stop Location depends on Length of Velocity Field.
- 13. Byte Start Location depends on length of Reflectivity and Velocity Fields, Byte Stop Location depends on Length of Spectral Width Field.
- 14. 0 is valid only for continuous surveillance cuts.
- 15. Offset from the start of the Digital Radar Data message.
- 17. Values shown exceed practical range used by NEXRAD radar that is larger than typical minimum and maximum values.
- 18. See Appendix B for unit definitions and standard symbology.

3.2.4.3 Table III-A Angle Data Format

	Angle Data Format
	(Degrees)
BIT#	MEANING
15	180 deg
14	90 deg
13	45 deg
12	22.5 deg
11	11.25 deg
10	5.625 deg
9	2.8125 deg
8	1.40625 deg
7	0.70313 deg
6	0.35156 deg
5	0.17578 deg
4	0.08789 deg
3 (LSB)	$0.043945 \deg$
2	X
1	X
0	X

X = NOT APPLICABLE

NOTE: A positive elevation angle is defined as being up from the horizontal plane, and a positive azimuth angle is defined as being clockwise from true north, when looking down at the radar.

NOTE: Elevation angles greater than 90 degrees will be interpreted as a negative angle and the actual elevation angle will be computed as the angle value minus 360 degrees.

NOTE: For Elevation and Azimuth Position Correction factors, angles greater than 1 degree will be interpreted as a negative angle and the actual correction factor will be computed as the angle value minus 360 degrees.

Table III-B Range Format

	Range Format
	(Km)
BIT#	MEANING
15	Sign
14	16.384
13	8.192
12	4.096
11	2.048
10	1.024
9	0.512
8	0.256
7	0.128
6	0.064
5	0.032
4	0.016
3	0.008
2	0.004
1	0.002
0 (LSB)	0.001

3.2.4.4 Table III-C Radial Status Data Format

Radial Status	Setting (Hex)	Bad Data (Hex)
---------------	---------------	----------------

Indicator (Hex)		
Start of new Elevation	00	80
Intermediate Radial Data	01	81
End of Elevation	02	82
Beginning of Volume Scan	03	83
End of Volume Scan	04	84
Start of new Elevation - Last	05	85
Elevation in VCP		

3.2.4.5 Table III-E Base Data Scaling

LSB = 0.5	$R = NINT [2.*(R_{num} + 32.)] + 2$
LSB = 0.5	$V = NINT [2.*(V_{num} + 63.5)] + 2$
LSB = 1.0	$V = NINT [V_{num} + 127.] + 2$
LSB = 0.5	$SW = NINT [2.*(SW_{num} + 63.5)] + 2$

Where:

NINT is a rounding function (i.e., NINT[1.5] returns 2) R_{num} , V_{num} , SW_{num} are values before scaling. The inverse relationships are:

 $R_{num} = (R \ , \ 2) \ - \ 33.0$ $V_{num} = (V \ , \ 2) \ - \ 64.5 \ or \ V \ - \ 129.0$

 $SW_{num} = (SW, 2) - 64.5$

3.2.4.6 Table IV RDA Status Data (Message Type 2)

NAME	DESCRIPTION	FORMAT (3), (4)	UNITS (8)	RANGE (OR VALUE)	ACCURACY/ PRECISION	HALFWORD LOCATION
RDA STATUS	•Start-Up •Standby •Restart •Operate •Spare •Off-line Operate	Code*2 (7)	N/A	As Listed •2 (bit 1 set) •4 (bit 2 set) •8 (bit 3 set) •16 (bit 4 set) •32 (bit 5 set) •64 (bit 6 set)	N/A	1
OPERABILIT Y STATUS	•RDA - On-line •RDA - Maintenance Action Required •RDA - Maintenance Action Mandatory •RDA - Commanded Shut Down •RDA - Inoperable	Code*2	N/A	As Listed •2 (bit 1 set) •4 (bit 2 set) •8 (bit 3 set) •16 (bit 4 set) •32 (bit 5 set)	N/A	2
CONTROL STATUS	•Local Only •RPG (Remote) Only •Either	Code*2 (7)	N/A	As Listed •2 (bit 1 set) •4 (bit 2 set) •8 (bit 3 set)	N/A	3
AUXILIARY POWER GENERATOR	•Switched to Auxiliary Power	Code*2	N/A	As Listed •1 (bit 0 set) •2 (bit 1 set)	N/A	4

STATE	allatita DWD Assailable			-4 (h:4 0 ~~4)		
SIAIE	•Utility PWR Available •Generator On			•4 (bit 2 set)		
	•Generator On •Transfer Switch -			•8 (bit 3 set)		
				•16 (bit 4		
	Manual			set)		
	•Commanded Switchover					
AVERAGE	Calculated over a	Integer*2	W	0 to 9999	± 1/	5
TRANSMITT	range of samples	integer 2			± 1	0
ER	range of samples					
POWER						
HORIZONTA	Difference from	Scaled	dB	-198.00 to	1/0.01	6
L	Adaptation Data	Integer*2		+198.00 (5)	1.0.01	
REFLECTIVI	Transportion Data	integer 2		100.00		
TY						
CALIBRATIO						
N						
CORRECTIO						
N (delta						
dBZ0)						
DATA	(Any combination of	Code*2	N/A	As Listed	N/A	7
TRANSMISSI	Data Enabled)			•2 (bit 1 set)		
ON	•None			•4 (bit 2 set)		
ENABLED	•Reflectivity			•8 (bit 3 set)		
	•Velocity			•16 (bit 4		
	•Width			set)		
VOLUME	(Magnitude defines	SInteger*	N/A	As Listed	1	8
COVERAGE	Pattern, Sign defines	2				
PATTERN	selection)			•0 (no bits		
NUMBER	•No Pattern			set)		
				,		
	•RDA Local Pattern			 Negative 		
	Selected			•Positive		
	•RDA Remote Pattern					
	Selected					
RDA		Code*2 (7)	N/A	As Listed	N/A	9
CONTROL	No Action			•0 (no bits		
AUTHORIZA	•Local Control			set)		
TION	Requested			•2 (bit 1 set)		
	•Remote Control			•4 (bit 2 set)		
	Requested (a.k.a. Local					
	Control Released)					
RDA BUILD	RDA major & minor	Scaled	N/A	0 to 9999 ⁽⁶⁾	N/A	10
NUMBER	build version	Integer*2				
	information					
OPERATION	•Operational	Code*2 (7)	N/A	As Listed	N/A	11
AL	Maintenance			•4 (bit 2 set)		
MODE				•8 (bit 3 set)		
SUPER		Code*2 (7)	N/A	As Listed	N/A	12
RESOLUTIO	•Enabled			•2 (bit 1 set)		
N STATUS	•Disabled			•4 (bit 2 set)		
CLUTTER	•Disabled	Code*2	N/A	As Listed	N/A	13
MITIGATION	•Enabled			•0 (no bits		
DECISION	•Bypass Map			set)		

STATUS	Segments where			•1 (bit 0 set)		
	Clutter Mitigation			•Bits 1-5 (9)		
ATTORIN	Decision Applied	G 1 to (r)	37/4	A T 1	27/4	
AVSET STATUS	•Enabled	Code*2 (7)	N/A	As Listed	N/A	14
SIAIUS	•Disabled			•2 (bit 1 set) •4 (bit 2 set)		
RDA ALARM		Code*2	N/A	As Listed	N/A	15
SUMMARY	•No Alarms	Couc 2	1071	•0 (no bits	11/11	
	•Tower/Utilities			set)		
	•Pedestal			•2 (bit 1 set)		
	•Transmitter			•4 (bit 2 set)		
	•Receiver			•8 (bit 3 set)		
	•RDA Control			•16 (bit 4		
	•Communication			set)		
	•Signal Processor			•32 (bit 5 set)		
				•64 (bit 6		
				set)		
				•128 (bit 7		
				set)		
COMMAND		Code*2	N/A	As listed	N/A	16
ACKNOWLE	No Acknowledgment			•0 (no bits		
DGMENT	•Remote VCP Received			set)		
	•Clutter Bypass map Received			•1 (bit 0 set) •2 (bit 1 set)		
	•Clutter Censor Zones			•3 (bits 0		
	Received			and 1 set)		
	•Redundant Chan Ctrl			•4 (bit 2 set)		
	Cmd Accepted			, ,		
CHANNEL	Identifies whether	Code*2	N/A	As Listed	N/A	17
CONTROL	channel is the					
STATUS	controlling channel:			•0 (no bits set)		
	ControllingNon-controlling			•1 (bit 0 set)		
SPOT	Status of Spot	Code*2 (7)	N/A	As Listed	N/A	18
BLANKING	Blanking:	2000 2	11/11	•0 (no bits	1,111	
STATUS	•Not Installed			set)		
	•Enabled			•2 (bit 1 set)		
	•Disabled		_	•4 (bit 2 set)		
BYPASS	Julian Date -	Integer*2	d	1 to 65535	1	19
MAP GENERATIO	2440586.5 Note (1)					
N DATE						
BYPASS	Number of minutes	Integer*2	min	0 to 1440	1	20
MAP	since midnight,					
GENERATIO	Greenwich Mean Time					
N TIME		_				
CLUTTER	Julian date - 2440586.5	Integer*2	d	1 to 65535	1	21
FILTER MAP	Note (1)					
GENERATIO N DATE						
CLUTTER	Number of minutes	Integer*2	min	0 to 1440	1	22
FILTER MAP	since Midnight,	11100501 2	111111		_	

GENERATIO N TIME	Greenwich Mean Time					
VERTICAL REFLECTIVI TY CALIBRATIO N CORRECTIO N	Difference from Adaptation Data	Scaled Integer*2	dB	-198.00 to +198.00 ⁽⁵⁾	1/0.01	23
TRANSITION POWER SOURCE STATUS	Status of TPS: •Not Installed •OFF •OK	Integer*2	NA	As Listed •0 (no bits set) •1 (bit 0 set) •3 (bits 0 and 1 set)	N/A	24
RMS CONTROL STATUS	Status of RMS Control: •NON-RMS SYSTEM •RMS IN CONTROL •RDA IN CONTROL	Code*2 (7)	N/A	As Listed •0 (no bits set) •2 (bit 1 set) •4 (bit 2 set)	N/A	25
PERFORMA NCE CHECK STATUS	Status of Performance Check: NO COMMAND PENDING FORCE PERFORMANCE CHECK PENDING	Code*2	N/A	As Listed •0 (no bits set) •1 (bit 0 set)	N/A	26
ALARM CODES	One condition per halfword (Maximum of 14 alarms sent at a time). See Alarm Message Table IV-A for individual alarm codes. MSB set indicates alarm has been cleared.	Integer*2	N/A	0 to 800	N/A	27 to 40

- (1) January 1970 00.00 Greenwich Mean Time = 1 Modified Julian Date
- (3) All bit references start from 0 (LSB).
- (4) Unless otherwise indicated as mutually exclusive, Integer Code Formats can set multiple bits in the same message. For example, in case bits 1 and 2 are set, then the integer value passed would be 2 + 4 = 6.
- (5) The data in this field is stored as a scaled integer. The format is XXX.YY. For example, -198.00 equals a value of -19800. A value of +0.25 would equal a value of 25.
- (6) If value divided by 100 is greater than 2, then the Build Version is the value divided by 100. Otherwise, the Build Version is value divided by 10.
- (7) Values listed are mutually exclusive.
- (8) See Appendix B for unit definitions and standard symbology.
- (9) Bits 1 through 5 represent elevation segments of the Bypass Map. Bit is set if the corresponding elevation segment has CMD applied.

3.2.4.6.1 RDA Alarm Message Summary

This following table summarizes alarms generated by the CPCI-01 Program. Alarms are grouped by functional areas. Each alarm is described as it is seen displayed in the alarm message on the RDA HCI and at the RPG.

The "CODE" column is the unique alarm number given for identification purposes. The "STATE" column indicates the state of the RDA as a result of the alarm indicated:

- •MM = Maintenance Mandatory
- •MR = Maintenance Required
- •IN = Inoperative
- •SEC = Secondary (secondary alarms are not specifically tied to a "STATE" change).
- \bullet N/A = Not applicable

The "ALARM TYPE" column indicates that alarms are classified as three different alarm types based on how alarms are reported to the RDA.

- •ED Alarms identified in the table as ED (Edge Detected) are reported every time the test associated with the alarm fails consecutively for a number of times equal to the alarm reporting count (see "Sample" column). Such alarms will be cleared (MSB set) when the test outcome first passes after the alarm is reported.
- •OC Alarms identified in the table as OC (Occurrence) are reported each time the outcome of the associated test is FAILED.
- •FO Alarms identified in the table as FO (Filtered Occurrence) are reported each time the outcome of the associated test is failed, but are not reported within 15 minutes of the last reporting.

The "DEVICE" column indicates the hardware device area where the alarm has occurred (if applicable); acronyms under the DEVICE column are as follows:

- \bullet CTR = Control
- \bullet PED = Pedestal
- \bullet RCV = Receiver
- •SIG = Signal Processor
- •COM = RDA Communications
- \bullet UTL = Tower/Utilities
- •XMT= Transmitter

The "SAMPLE" column indicates the number of samples (failures) that must occur before this alarm is displayed. The "ALARM MESSAGE" column is an abbreviated description of the alarm message that is displayed at both the RDA and RPG.

3.2.4.6.2 Table IV-A RDA Alarm Messages

CODE	STATE	ALARM	DEVICE	SAMPLE	ALARM MESSAGE
		TYPE			
0	N/A	N/A	N/A	N/A	NO ALARMS
1	N/A	N/A	N/A	N/A	RESERVED
2	N/A	N/A	N/A	N/A	RESERVED
3 - 15	N/A	N/A	N/A	N/A	SPARE
16	SEC	FO	COM	N/A	SEND WIDEBAND STATUS TIMED OUT
17	MR	ED	COM	1	NTP FAILURE
18	MR	ED	COM	1	GPS FAILURE
19	MR	ED	COM	1	GPS ANTENNA FAILURE
20	MM	ED	COM	1	RPG LINK - RED ALARM (NO RX)
21	MM	ED	COM	1	RPG LINK - YELLOW ALARM
22	MM	ED	COM	1	RPG LINK - BLUE ALARM
23	MM	ED	COM	1	RDA CSU FAILURE
24	MR	ED	COM	2	SNMP TIME OUT: LAN SWITCH
25	MR	ED	COM	2	SNMP TIME OUT: ROUTER

26	N/A	N/A	N/A	N/A	SPARE
27	MR	ED	COM	2	SNMP TIME OUT: POWER ADMINISTRATOR
28	MR	ED	COM	2	SNMP TIME OUT: GPS
29	N/A	N/A	N/A	N/A	SPARE
30	MR	ED	COM	2	SNMP TIME OUT: CONSOLE SERVER
31	MR	ED	COM	1	LAN SWITCH PORT 1 FAIL
32	N/A	N/A	N/A	N/A	SPARE
33	MR	ED	COM	1	LAN SWITCH PORT 3 FAIL
34	N/A	N/A	N/A	N/A	SPARE
35	MR	ED	COM	1	LAN SWITCH PORT 5 FAIL
36	MR	ED	COM	1	LAN SWITCH PORT 7 FAIL
37	MR	ED	COM	1	LAN SWITCH PORT 12 FAIL
38-39	N/A	N/A	N/A	N/A	SPARE
40	IN	ED	XMT	2	FILAMENT POWER SUPPLY OFF
41-42	N/A	N/A	N/A	N/A	SPARE
43	IN	ED	XMT	3	WAVEGUIDE SWITCH FAILURE
44	IN	ED	XMT	2	WAVEGUIDE/PFN TRANSFER INTERLOCK
45	IN	ED	XMT	2	XMTR IN MAINTENANCE MODE
46	IN	ED	XMT	2	XMTR UNAVAILABLE
47	IN	ED	XMT	3	PFN/PW SWITCH FAILURE
48	MM	ED	XMT	2	XMTR +5VDC POWER SUPPLY 6 FAIL
49	MM	ED	XMT	2	XMTR +15VDC POWER SUPPLY 4 FAIL
50	MM	ED	XMT	2	XMTR +28VDC POWER SUPPLY 3 FAIL
51	MM	ED	XMT	2	XMTR -15VDC POWER SUPPLY 5 FAIL
52	MM	ED	XMT	2	XMTR +45VDC POWER SUPPLY 7 FAIL
53	MM	ED	XMT	1	FILAMENT POWER SUPPLY VOLTAGE FAIL
54	MM	ED	XMT	1	VACUUM PUMP POWER SUPPLY VOLTAGE FAIL
55	MM	ED	XMT	1	FOCUS COIL POWER SUPPLY VOLTAGE FAIL
56	MM	ED	XMT	2	CIRCULATOR OVERTEMP
57	MM	ED	XMT	2	SPECTRUM FILTER LOW PRESSURE
58	MM	ED	XMT	2	WAVEGUIDE ARC/VSWR
59	MM	ED	XMT	1	XMTR CABINET INTERLOCK OPEN
60	MM	ED	XMT	2	XMTR CABINET OVER TEMP
61	MM	ED	XMT	2	XMTR CABINET AIR FLOW FAIL
62	MR	ED	XMT	1	XMTR MAINTENANCE REQUIRED
63	N/A	N/A	N/A	N/A	SPARE
64	MM	ED	XMT	1	MODULATOR OVERLOAD
65	MM	ED	XMT	1	MODULATOR INVERSE CURRENT FAIL
66	MM	ED	XMT	1	MODULATOR SWITCH FAILURE
67	MM	ED	XMT	1	XMTR MAIN POWER OVER VOLTAGE
68	MM	ED	XMT	1	CHARGING SYSTEM FAILURE
69	MM	ED	XMT	1	CHARGING SYSTEM INVERSE CURRENT FAILURE
70	MM	ED	XMT	1	TRIGGER AMPLIFIER FAILURE
71	N/A	N/A	N/A	N/A	SPARE
72	MM	ED	XMT	1	XMTR OVER VOLTAGE
73	MM	ED	XMT	1	XMTR OVER CURRENT
74	MM	ED	XMT	1	FOCUS COIL CURRENT FAILURE
75	MM	ED	XMT	1	FOCUS COIL AIRFLOW FAILURE
76	MM	ED	XMT	2	XMTR OIL OVER TEMP

77	MM	ED	XMT	1	PRF LIMIT
78	MM	ED	XMT	2	XMTR OIL LEVEL LOW
79	N/A	N/A	N/A	N/A	SPARE
80	MM	ED	XMT	1	KLYSTRON OVER CURRENT
81	MM	ED	XMT	1	KLYSTRON FILAMENT CURRENT FAIL
82	MM	ED	XMT	1	KLYSTRON VACION CURRENT FAIL
83	MM	ED	XMT	2	KLYSTRON VACION CORRENT FAIL KLYSTRON AIR OVER TEMP
84	MM	ED	XMT	2	KLYSTRON AIR FLOW FAILURE
85	MM	ED	XMT	1	XMTR PEAK POWER LOW
86	MM	ED	XMT	1	XMTR PEAK POWER HIGH
87	MM	ED	XMT	1	XMTR POWER METER ZERO OUT OF LIMIT
88	MM	ED	XMT	1	XMTR POWER BITE FAIL
89 - 92	N/A	N/A	N/A	N/A	SPARE
93	MR	ED	XMT	2	XMTR MODULATOR SWITCH REQUIRES MAINT
94	MR	ED	XMT	2	XMTR POST CHARGE REG REQUIRES MAINT
95	MM	ED	XMT	2	WAVEGUIDE HUMIDITY/PRESSURE FAULT
96	IN	ED	XMT	3	XMTR HV SWITCH FAILURE
97	MM	ED	XMT	1	XMTR RECYCLING
98	IN	ED	XMT	2	XMTR INOPERATIVE
99	MM	ED	XMT	1	XMTR/SPIP INTERFACE FAILURE
100 - 117	N/A	N/A	N/A	N/A	SPARE
118	MM	ED	UTL	1	POWER ADMINISTRATOR OVERLOAD
119	N/A	N/A	N/A	N/A	SPARE
120	MM	ED	UTL	2	AC UNIT#1 COMPRESSOR SHUTOFF
121	MM	ED	UTL	2	AC UNIT#2 COMPRESSOR SHUTOFF
122	MR	ED	UTL	2	GENERATOR MAINTENANCE REQUIRED
123	N/A	N/A	N/A	N/A	SPARE
124	MM	ED	UTL	2	GEN STARTING BATTERY VOLTAGE LOW
125	MM	ED	UTL	2	GENERATOR ENGINE MALFUNCTION
126	MM	ED	UTL	2	TPS IS OFF-LINE
127	N/A	N/A	N/A	N/A	SPARE
128	MM	ED	UTL	2	GENERATOR AUTO/RUN/OFF SWITCH NOT AUTO
129	MM	ED	UTL	1	GENERATOR EXERCISE FAILURE
130	MM	ED	UTL	2	AIRCRAFT HAZARD LIGHTING FAILURE
131	MR	ED	UTL	2	EQUIP SHELTER FIRE DETECTION SYSTEM FAULT
132	N/A	N/A	N/A	N/A	SPARE
133	MM	ED	UTL	2	FIRE/SMOKE IN EQUIP SHELTER
134 - 135	N/A	N/A	N/A	N/A	SPARE
136	MR	ED	UTL	2	FIRE/SMOKE IN GENERATOR SHELTER
137	MR	ED	UTL	1	POWER SYSTEM MISMATCH
138 - 143	N/A	N/A	N/A	N/A	SPARE
144	MR	ED	UTL	2	UNAUTHORIZED SITE ENTRY
145	MR	ED	UTL	2	SECURITY SYSTEM EQUIPMENT FAILURE
146	MR	ED	UTL	2	SECURITY SYSTEM DISABLED
147 - 150	N/A	N/A	N/A	N/A	SPARE
151	IN	ED	UTL	1	RADOME ACCESS HATCH OPEN
152	MR	ED	UTL	2	AC UNIT#1 FILTER DIRTY
153	MR	ED	UTL	2	AC UNIT#2 FILTER DIRTY

154	MR	ED	UTL	2	XMTR FILTER DIRTY
155	IN	ED	CTR	1	PMDC BOUNCING - RSP REBOOT INITIATED
156	IN	ED	CTR	1	RPGC BOUNCING - RSP REBOOT INITIATED
157	IN	ED	CTR	1	VCPC BOUNCING - RSP REBOOT INITIATED
158	IN	ED	CTR	1	AMEC BOUNCING - RSP REBOOT INITIATED
159	IN	ED	CTR	1	AMEC BOUNCING - RSP REBOOT INITIATED
160 - 169	N/A	N/A	N/A	N/A	SPARE
170	SEC	FO	UTL	1	EQUIPMENT SHELTER TEMP LOW
171	MM	ED	UTL	2	EQUIPMENT SHELTER TEMP EXTREME
172	MM	ED	UTL	2	AC UNIT#1 DISCHARGE TEMP EXTREME
173	MM	ED	UTL	2	XMTR EXHAUST AIR TEMP EXTREME
174	SEC	FO	UTL	1	RADOME AIR TEMP EXTREME
175	MM	ED	UTL	2	GENERATOR SHELTER TEMP EXTREME
176	MR	ED	UTL	2	GENERATOR FUEL STORAGE TANK LEVEL LOW
177	MR	ED	UTL	1	COMMANDED POWER SWITCH FAILED
178	SEC	OC	UTL	N/A	RECOMMEND SWITCH TO UTILITY POWER
179 - 180	N/A	N/A	N/A	N/A	SPARE
181	MM	ED	CTR	1	PMDC FAILED - PMDC RESTART INITIATED
182	IN	ED	CTR	1	RDAC FAILED - RSP REBOOT INITIATED
183	IN	ED	CTR	1	WDOG FAILED - RSP REBOOT INITIATED
184	MM	ED	UTL	2	AC UNIT#2 DISCHARGE TEMP EXTREME
185-187	N/A	N/A	N/A	N/A	SPARE
188	MR	ED	CTR	1	NMSC FAILED - NMSC RESTART INITIATED
189	MM	ED	CTR	1	RPGC FAILED - RPGC RESTART INITIATED
190	MR	ED	CTR	1	HCIS FAILED - HCIS RESTART INITIATED
191	MR	ED	CTR	1	RMSS FAILED - RMSS RESTART INITIATED
192	N/A	N/A	N/A	N/A	SPARE
193	MM	ED	CTR	1	NMPC FAILED - NMPC RESTART INITIATED
194	MM	ED	CTR	1	VCPC FAILED - VCPC RESTART INITIATED
195	MM	ED	CTR	1	DSPC FAILED - DSPC RESTART INITIATED
196	MR	ED	CTR	1	CHNS FAILED - CHNS RESTART INITIATED
197	MR	ED	CTR	1	RSTS FAILED - RSTS RESTART INITIATED
198 - 201	N/A	N/A	N/A	N/A	SPARE
202	MM	ED	CTR	1	AMEC FAILED - AMEC RESTART INITIATED
203	N/A	N/A	N/A	N/A	SPARE
204	MM	ED	CTR	1	AME COMMUNICATIONS ERROR
205	INOP	ED	CTR	1	MULTIPLE AME COMM ERROR - RDA FORCED TO
					STBY
206	MR	ED	XMT	5	TX DETECT ERROR AT AME
207	MM	ED	PED	1	AME INTERNAL TEMPERATURE HIGH
208	MM	ED	PED	1	AME INTERNAL TEMPERATURE LOW
209	MM	ED	PED	1	AME RECEIVER MODULE TEMPERATURE HIGH
210	MM	ED	PED	1	AME RECEIVER MODULE TEMPERATURE LOW
211	MM	ED	PED	1	AME BITE/CAL MODULE TEMPERATURE HIGH
212	MM	ED	PED	1	AME BITE/CAL MODULE TEMPERATURE LOW
213	MM	ED	PED	1	AME +3.3V PS VOLTAGE OUT OF TOLERANCE
214	MM	ED	PED	1	AME +5V PS VOLTAGE OUT OF TOLERANCE
215	MM	ED	PED	1	AME +6.5V PS VOLTAGE OUT OF TOLERANCE
216	MM	ED	PED	1	AME +15V PS VOLTAGE OUT OF TOLERANCE
217	MM	ED	PED	1	AME +48V PS VOLTAGE OUT OF TOLERANCE
218	MM	ED	XMT	2	RF PALLET PHASE SHIFTER MOTOR TIMEOUT

910	1 1 1 1 1 1 1 1 1 1	ED	DED	1	AME COALO DOMED DECDADED
219	MM	ED	PED	1	AME STALO POWER DEGRADED
220	MR	ED	PED	1	AME STALO POWER MAINTENANCE REQUIRED
221	MM	ED	PED	1	HORIZONTAL TR LIMITER DEGRADED
222	MR	ED	PED	1	HORIZONTAL TR LIMITER FAILED
223	MM	ED	PED	1	VERTICAL TR LIMITER DEGRADED
224	MR	ED	PED	1	VERTICAL TR LIMITER FAILED
225	MM	ED	PED	1	AME POWER SUPPLY TEMPERATURE DEGRADED
226	MR	ED	PED	1	AME POWER SUPPLY TEMPERATURE MAINT
225	3.63.6	IDD	DED		REQUIRED
227	MM	ED	PED	1	AME ADC CALIBRATION FAULT
228-231	N/A	N/A	N/A	N/A	SPARE
232	MM	ED	RCV	1	HORIZONTAL INPUT WAVEGUIDE SWITCH POSITION ERROR
233	MM	ED	RCV	1	HORIZONTAL OUTPUT WAVEGUIDE SWITCH POSITION ERROR
234	MM	ED	RCV	1	VERTICAL INPUT WAVEGUIDE SWITCH POSITION ERROR
235	MM	ED	RCV	1	VERTICAL OUTPUT WAVEGUIDE SWITCH POSITION ERROR
236	MR	ED	PED	1	AME PELTIER CURRENT FAULT
237	MR	ED	PED	1	AME PELTIER CONTENT FAULT AME PELTIER INSIDE FAN CURRENT FAULT
238	MR	ED	PED	1	AME PELTIER OUTSIDE FAN CURRENT FAULT
239-252	N/A	N/A	N/A	N/A	SPARE
253	MM	ED	CTR	2	SPIP +28V POWER SUPPLY FAIL
254	MM	ED	CTR	2	SPIP +15V POWER SUPPLY FAIL
$\frac{254}{255}$	MM	ED	CTR	2	SPIP +5V POWER SUPPLY FAIL
256	MM	ED	CTR	2	SPIP -15V POWER SUPPLY FAIL
257	INOP	ED	PED	1	SPIP DAQ POWER BUTTON OFF
258	INOP	ED	PED	1	SPIP PED POWER BUTTON OFF
259	INOP	ED	PED	1	SPIP CH2 DAQ POWER BUTTON OFF
260	INOP	ED	PED	1	SPIP CH2 PED POWER BUTTON OFF
261	MM	ED	PED	2	ELEVATION IN -DEAD LIMIT
262	MM	ED	PED	2	ELEVATION IN +DEAD LIMIT
263 - 299	N/A	N/A	N/A	N/A	SPARE
300	IN	ED	PED	2	ELEVATION AMPLIFIER INHIBIT
301	MM	ED	PED	2	ELEVATION AMPLIFIER CURRENT LIMIT
302	MM	ED	PED	2	ELEVATION AMPLIFIER OVERTEMP
303	MM	ED	PED	2	PEDESTAL +150V OVER VOLTAGE
304	MM	ED	PED	2	PEDESTAL +150V UNDER VOLTAGE
305	MM	ED	PED	2	ELEVATION MOTOR OVERTEMP
306	IN	ED	PED	2	ELEVATION STOW PIN ENGAGED
307 - 309	N/A	N/A	N/A	N/A	SPARE
310	MM	ED	PED	2	ELEVATION + NORMAL LIMIT
311	MM	ED	PED	2	ELEVATION - NORMAL LIMIT
312	N/A	N/A	N/A	N/A	SPARE
313	MM	ED	PED	2	ELEVATION ENCODER LIGHT FAILURE
314	MM	ED	PED	2	ELEVATION GEARBOX OIL LEVEL LOW
315	IN	ED	PED	2	AZIMUTH AMPLIFIER INHIBIT
316	MM	ED	PED	2	AZIMUTH AMPLIFIER CURRENT LIMIT
317	MM	ED	PED	2	AZIMUTH AMPLIFIER OVERTEMP
318 - 319	N/A	N/A	N/A	N/A	SPARE
J_U J_U		1	1	1	

320	MM	ED	PED	2	AZIMUTH MOTOR OVERTEMP
321	IN	ED	PED	2	AZIMUTH MOTOR OVERTEMP AZIMUTH STOW PIN ENGAGED
322 - 323	N/A MM	N/A ED	N/A PED	N/A	SPARE
324				2	AZIMUTH ENCODER LIGHT FAILURE AZIMUTH GEARBOX OIL LEVEL LOW
325	MM	ED	PED	2	
326	MM	ED	PED	2	BULL GEAR OIL LEVEL LOW
327	N/A	N/A	N/A	N/A	SPARE
328	IN	ED	PED	2	ELEVATION HANDWHEEL ENGAGED
329	IN	ED	PED	2	AZIMUTH HANDWHEEL ENGAGED
330 - 333	N/A	N/A	N/A	N/A	SPARE
333	MM	ED	PED	2	PEDESTAL +28V POWER SUPPLY FAIL
334	MM	ED	PED	2	AZIMUTH AMP POWER SUPPLY FAIL
335	MM	ED	PED	2	ELEVATION AMP POWER SUPPLY FAIL
336	N/A	N/A	N/A	N/A	SPARE
337	IN	ED	PED	1	PEDESTAL SAFE SWITCH OPEN
338	N/A	N/A	N/A	N/A	SPARE
339	IN	ED	PED	1	PEDESTAL UNABLE TO PARK
340 - 353	N/A	N/A	N/A	N/A	SPARE
354	IN	ED	PED	1	RCP SOFT ELEVATION +LIMIT
355	IN	ED	PED	1	RCP SOFT ELEVATION -LIMIT
356	IN	ED	PED	1	RCP IN CONTROL SHUTDOWN STATE
357	IN	ED	PED	1	RCP AZ CONTROL UNRESPONSIVE
358	IN	ED	PED	1	RCP EL CONTROL UNRESPONSIVE
359	N/A	N/A	N/A	N/A	SPARE
360	MM	ED	RCV	1	RF GEN FREQ SELECT OSCILLATOR FAIL
361	MM	ED	RCV	1	RF GEN RF/STALO FAIL
362	MM	ED	RCV	2	RF GEN PHASE SHIFTED COHO FAIL
363	MM	ED	RCV	1	RF IFDR COHO INPUT MISSING
364	MM	ED	RCV	2	RCVR +5V POWER SUPPLY 5 FAIL
365	MM	ED	RCV	2	RCVR +/-18V POWER SUPPLY 1 FAIL
366	MM	ED	RCV	2	RCVR -9V POWER SUPPLY 4 FAIL
367	MM	ED	RCV	2	RCVR +9V POWER SUPPLY 6 FAIL
368	MM	ED	RCV	2	SINGLE CHANNEL RDAIU +5V POWER SUPPLY 9
					FAIL
369	MM	ED	RCV	2	COHO/CLOCK FAILURE
370	IN	ED	RCV	1	SIGNAL PROCESSOR TO IFDR COMMUNICATION
					FAILURE
371	MM	ED	RCV	4	MISSING BURST PULSE SIGNAL
372 - 380	N/A	N/A	N/A	N/A	SPARE
381	MR	ED	SIG	1	SIGNAL PROCESSOR TRIGGER SEQUENCE
					TRUNCATED
382	MR	ED	SIG	1	SIGNAL PROCESSOR TRIGGER PATTERN ALTERED
383	MR	ED	SIG	1	SIGNAL PROCESSOR TRIGGER PERIOD ALTERED
384 - 386	N/A	N/A	N/A	N/A	SPARE
387	MR	ED	SIG	1	SIGNAL PROCESSOR TRIGGER ERROR
388	SEC	FO	SIG	N/A	SIGNAL PROCESSOR SELF CHECK FAILED
389	MR	ED	SIG	1	IFDR TEST SWITCH POSITION ERROR
390	N/A	N/A	N/A	N/A	SPARE
391	SEC	OC	COM	N/A	RPG LOOP TEST TIMED OUT
392	SEC	OC	COM	N/A	RPG LOOP TEST VERIFICATION ERROR
393	SEC	OC	CTR	N/A	INVALID REMOTE VCP RECEIVED

394	SEC	OC	CTR	N/A	REMOTE VCP NOT DOWNLOADED
395	SEC	OC	CTR	N/A	INVALID RPG COMMAND RECEIVED
396	SEC	FO	SIG	N/A	RADIAL DATA LOST
397	N/A	N/A	N/A	N/A	SPARE
398	SEC	OC	CTR	N/A	STANDBY FORCED BY INOP ALARM
399 - 400	N/A	N/A	N/A	N/A	SPARE
401 - 420	N/A	N/A	N/A	N/A	RESERVED FOR INTERNAL RDA USE
421 - 429	N/A	N/A	N/A	N/A	SPARE
430	MR	ED	CTR	1	BYPASS MAP FILE READ FAILED
431	MR	ED	CTR	1	BYPASS MAP FILE WRITE FAILED
432 - 433	N/A	N/A	N/A	N/A	SPARE
434	MR	ED	CTR	1	CLUTTER MAP FILE READ FAILED
435	MR	ED	CTR	1	CLUTTER MAP FILE WRITE FAILED
436	MR	ED	CTR	1	CLUTTER CENSOR FILE READ FAILED
437	MR	ED	CTR	1	CLUTTER CENSOR FILE WRITE FAILED
438	MR	ED	CTR	1	STATE FILE READ FAILED
439	MR	ED	CTR	1	STATE FILE WRITE FAILED
440	MR	ED	CTR	1	CURRENT ADAPTATION FILE READ FAILED
441	MR	ED	CTR	1	CURRENT ADAPTATION FILE WRITE FAILED
442	MR	ED	CTR	1	BASELINE FILE READ FAILED
443	N/A	N/A	N/A	N/A	SPARE
444	SEC	OC	CTR	N/A	CLUTTER MAP FILE GENERATION ERROR
445	N/A	N/A	N/A	N/A	SPARE
446	MR	ED	CTR	1	TOO MANY LOG FILES - PLEASE REMOVE SOME
447	MR	ED	CTR	1	DISK I/O ERROR
448	N/A	N/A	N/A	N/A	SPARE
449	MR	ED	CTR	1	REMOTE VCP FILE WRITE FAILED
450	MR	ED	CTR	1	REMOTE VCF FILE READ FAILED
451	N/A	N/A	N/A	1	SPARE
452	MM	ED	COM	1	RPG LINK INITIALIZATION ERROR
453	IN	ED	CTR	1	SPIP COMM ERROR
454	IN	ED	SIG	1	MULTIPLE SIGNAL PROCESSOR COMMAND ERROR
404	111		l bid	1	- RDA FORCED TO STBY
455	MM	ED	SIG	1	SIGNAL PROCESSOR COMMAND ERROR
456 - 459	N/A	N/A	N/A	N/A	SPARE
460	SEC	FO	CTR	N/A	HCI COMMUNICATION ERROR
461 - 463	N/A	N/A	N/A	N/A	SPARE
464	MM	ED	CTR	1	REDUNDANT CHANNEL COMM ERROR
465 - 468	N/A	N/A	N/A	N/A	SPARE
469	MM	ED	CTR	1	INTERPANEL LINK FAILED
470	MM	ED	RCV	1	HORIZONTAL NOISE LEVEL DEGRADED
471	MM	ED	RCV	1	HORIZONTAL NOISE TEMPERATURE DEGRADED
472	MM	ED	RCV	1	VERTICAL NOISE LEVEL DEGRADED
473	MM	ED	RCV	1	VERTICAL NOISE LEVEL DEGRADED VERTICAL NOISE TEMPERATURE DEGRADED
474 - 476	N/A	N/A	N/A	N/A	SPARE
477	MM	ED	RCV	1	HORIZONTAL POWER SENSE LOW
478	MM	ED	RCV	1	VERITCAL POWER SENSE LOW
479	MM	ED	RCV	1	SYSTEM DIFFERENTIAL REFLECTIVITY BIAS
410	IATIAI	עפו	11.C V	1	DEGRADED
		TID	D.CIT		
480	MM	ED	RCV	1	VERTICAL GAIN CALIBRATION CONSTANT

481	MM	ED	RCV	1	HORIZONTAL GAIN CALIBRATION CONSTANT DEGRADED
482	N/A	N/A	N/A	N/A	SPARE
483	MM	ED	RCV	1	VELOCITY/WIDTH CHECK DEGRADED
484	N/A	N/A	N/A	N/A	SPARE
485	MM	ED	RCV	1	HORIZONTAL DYNAMIC RANGE DEGRADED
486	MM	ED	RCV	1	HORIZONTAL CLUTTER REJECTION DEGRADED
487 - 489	N/A	N/A	N/A	N/A	SPARE
490	MM	ED	RCV	1	VERTICAL DYNAMIC RANGE DEGRADED
491-521	N/A	N/A	N/A	N/A	SPARE
522	MM	ED	RCV	1	HORIZONTAL LINEARITY SLOPE DEGRADED
523	MM	ED	RCV	1	HORIZONTAL LINEARITY TEST SIGNAL DEGRADED
524	MR	ED	RCV	1	HORIZONTAL LINEARITY TEST SIGNAL - MAINT REQUIRED
FOF	NINI	ED	RCV	1	VERITCAL LINEARITY TEST SIGNAL DEGRADED
525 526	MM MR	ED	RCV	1	VERTICAL LINEARITY TEST SIGNAL DEGRADED VERTICAL LINEARITY TEST SIGNAL - MAINT
	-				REQUIRED
527	MM	ED	RCV	1	VERITCAL LINEARITY SLOPE DEGRADED
528 - 532	N/A	N/A	N/A	N/A	SPARE
533	MM	ED	RCV	1	KLYSTRON OUT TEST SIGNAL DEGRADED
534 - 542	N/A	N/A	N/A	N/A	SPARE
543	SEC	OC	CTR	N/A	RPG COMMAND REJECTED
544	SEC	OC	CTR	N/A	RMS COMMAND REJECTED
545	SEC	OC	CTR	N/A	RDA COMMAND REJECTED
546 - 547	N/A	N/A	N/A	N/A	SPARE
548	SEC	OC	CTR	N/A	RMS CONTROL COMMAND REJECTED INVALID COMMAND
549	SEC	OC	CTR	N/A	RMS CONTROL COMMAND REJECTED INVALID PARAMETER
550 - 552	N/A	N/A	N/A	N/A	SPARE
553	SEC	OC	CTR	N/A	CHANNEL ALREADY CONTROLLING - CMD REJECTED
554	SEC	OC	CTR	N/A	CHANNEL ALREADY NON-CONTROLLING - CMD REJECTED
555	SEC	OC	CTR	N/A	CHANNEL CONTROL FAILURE - RDAIU SWITCH MISMATCH
556	SEC	OC	CTR	N/A	CHANNEL SWITCH TIMEOUT
557	SEC	OC	CTR	N/A	CHANNEL SWITCH FAILED
558 - 560	N/A	N/A	N/A	N/A	SPARE
561	SEC	OC	CTR	N/A	INVALID CONTROL FOR CHANNEL SWITCH
562	SEC	OC	CTR	N/A	INVALID CONTROL FOR CHANNEL SWITCH
563	SEC	OC	CTR	N/A	INVALID STATES FOR CHANNEL SWITCH INVALID CHANNEL SWITCH - OTHER CHANNEL IN MAINTENANCE MODE
564	SEC	OC	CTR	1	INVALID CHANNEL SWITCH - CALIBRATION IN PROGRESS
565	IN	ED	CTR	1	ELEVATION HOUSING PS FAIL
566	IN	ED	CTR	1	AZIMUTH HOUSING PS PAIL
567 - 590	N/A	N/A	N/A	N/A	SPARE
591	IN	ED	CTR	1	MULTIPLE PROCESS FAILURE - FORCED TO STANDBY INOP
592	SEC	OC	CTR	N/A	SYSTEM STATUS MONITOR INITIALIZATION ERROR - REBOOT INITIATED

593	SEC	OC	CTR	N/A	SYSTEM STATE TRANSITION TIMEOUT
594 - 678	N/A	N/A	N/A	N/A	SPARE
679	SEC	OC	CTR	N/A	INVALID CENSOR ZONE MESSAGE RECEIVED
680 - 697	N/A	N/A	N/A	N/A	SPARE
698	IN	ED	PED	1	CUT TRANSITION TIMEOUT
699	SEC	OC	CTR	N/A	CUT TIMEOUT-RESTART VCP INITIATED
700	SEC	OC	CTR	N/A	INIT SEQ TIMEOUT-REBOOT INITIATED
701	SEC	OC	CTR	N/A	PERF CHECK TIMEOUT-REBOOT INITIATED
702-800	N/A	N/A	N/A	N/A	SPARE

3.2.4.7 Table V Performance/Maintenance Data (Message Type 3)

NAME	DESCRIPTION	FORMAT	UNITS(5)	RANGE	LSB	REMARKS	HALFWORD LOCATION
Communicati	ons		1	l.	I	4	
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	1
Loop Back Test Status		Integer*2	N/A	0 to 3	1	0=Pass, 1=Fail, 2=Timeout, 3=Not Tested (1)	2
T1 Output Frames	The number of octets received on interface, including frame octets	Integer*4	octet	0 to 2 ³² -	1	N/A	3 - 4
T1 Input Frames	The number of octets sent on interface, including frame octets	Integer*4	octet	0 to 2 ³² -1	1	N/A	5 - 6
Router Memory Used	Bytes currently in use by applications on managed device	Integer*4	byte	0 to 2 ³² -	1	N/A	7 - 8
Router Memory Free	Bytes currently free on managed device	Integer*4	byte	0 to 2 ³² -	1	N/A	9 - 10
Router Memory Utilization		Integer*2	%	0 to 100	1	N/A	11
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	12
CSU Loss of Signal	Number of times Loss of Signal event detected	Integer*4	N/A	0 to 2 ³² -	1	N/A	13 - 14
CSU Loss of Frames	Number of times Loss of Frames event detected	Integer*4	N/A	0 to 2 ³² -	1	N/A	15 - 16
CSU Yellow Alarms	Number of times Resource Availability Indication (RAI) (yellow) alarm received.	Integer*4	N/A	0 to 2 ³² -1	1	N/A	17 - 18

CSU Blue Alarms	Number of times Alarm Indication	Integer*4	N/A	0 to 2 ³² -	1	N/A	19 - 20
Alarins	Signal (AIS) (blue) alarm			1			
	received.						
CSU 24hr	Number of	Integer*4	s	0 to 2 ³² -	1	N/A	21 - 22
Errored	errored seconds			1			
Seconds (6)	in previous 24						
	hours.						
CSU 24hr	Number of	Integer*4	s	$0 ext{ to } 2^{32}$ -	1	N/A	23 - 24
Severely	severely errored			1			
Errored	seconds in						
Seconds (6)	previous 24						
COTT O 11	hours.	T		0 . 000		27/4	25 22
CSU 24hr	Number of	Integer*4	S	0 to 2 ³² -	1	N/A	25 - 26
Severely	severely errored			1			
Errored	framing seconds						
Framing Seconds (6)	in previous 24 hours.						
CSU 24hr	Number of	Integer*4	s	0 to 2 ³² -	1	N/A	27 - 28
Unavailable	unavailable	integer 4	8	1	1	IN/A	21 - 20
Seconds (6)	seconds in			1			
Deconds	previous 24						
	hours.						
CSU 24hr	Number of	Integer*4	s	0 to 2 ³² -	1	N/A	29 - 30
Controlled	controlled slip	, o		1			
Slip Seconds	seconds in						
(6)	previous 24						
	hours.						
$\mathrm{CSU}\ 24\mathrm{hr}$	Number of path	Integer*4	N/A	0 to 2 ³² -	1	N/A	31 - 32
Path Coding	coding violations			1			
Violations (6)	in previous 24						
	hours.						
CSU 24hr	Number of line	Integer*4	s	$0 ext{ to } 2^{32}$ -	1	N/A	33 - 34
Line Errored	errored seconds			1			
Seconds (6)	in previous 24						
CSU 24hr	Nours.	Integer*4	1_	0 to 2 ³² -	1	N/A	35 - 36
Bursty	Number of bursty errored seconds	Integer"4	s		1	N/A	30 - 30
Errored	in previous 24			1			
Seconds (6)	hours.						
CSU 24hr	Number of	Integer*4	min	0 to 2 ³² -	1	N/A	37 - 38
Degraded	degraded minutes	11100801 4	111111	1	1	11/11	0. 00
Minutes (6)	in previous 24						
	hours.						
SPARE	N/A	N/A	N/A	N/A	N/A	N/A	39 - 40
LAN Switch		Integer*4	%	0 to 100	1	N/A	41 - 42
CPU		_					
Utilization							
LAN Switch		Integer*2	%	0 to 100	1	N/A	43
Memory							
Utilization							
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	44

NTP Rejected Packets	Number of packets rejected by NTP application layer	Integer*4	N/A	0 to 2 ³² -	1	N/A	45 - 46
NTP Estimated Time Error	Current estimated time error of the time server	SInteger*4	usec	-(2 ³¹) to +(2 ³¹ -1)	1	N/A	47 - 48
GPS Satellites	Current number of GPS satellites used in position and time fix calculation	SInteger*4	N/A	-(2 ³¹) to +(2 ³¹ -1)	1	N/A	49 - 50
GPS Max Signal Strength	Strongest signal strength of all tracking satellites as seen by receiver	SInteger*4	dB	-(2 ³¹) to +(2 ³¹ -1)	1	N/A	51 - 52
IPC Status	Status of the communications between channels on a redundant system. N/A on a Single channel system.	Integer*2	N/A	0 to 2	1	0=OK, 1=Fail, 2=N/A	53
Commanded Channel Control	Indicates which channel the RDA has commanded to be the controlling channel. This is not necessarily the channel which is in control.	Integer*2	N/A	0 to 2	1	0=N/A, 1=Channel 1, 2=Channel 2	54
SPARE	N/A	N/A	N/A	N/A	N/A	N/A	55-57
AME Polarization		Integer*2	N/A	0 to 2	1	0 = H Only 1 = H + V 2 = V Only	58
AME Internal Temperature		Real*4	deg C	-40.0 to +125.0	0.1	N/A	59-60
AME Receiver Module Temperature		Real*4	deg C	-40.0 to +125.0	0.1	N/A	61-62
AME BITE/CAL Module Temperature		Real*4	deg C	-40.0 to +125.0	0.1	N/A	63-64
AME Peltier Pulse Width Modulation		Integer*2	%	0 to 100	1	N/A	65

AME Dale	T.4*0	DT/A	0 4 - 1	1	0 = OFF	CC
AME Peltier Status	Integer*2	N/A	0 to 1	1	0 = OFF 1 = ON	66
AME A/D	Integer*2	N/A	0 to 1	1	0 = OK	67
Converter	integer 2	14/21	0 10 1	1	1 = FAIL	
Status					1 111112	
AME State	Integer*2	N/A	0 to 3	1	0 = START	68
THILL State	integer 2	11/11	0 00 0	*	1 =	
					RUNNING	
					2 = FLASH	
					3 = ERROR	
AME +3.3V	Real*4	V	0.00 to	0.01	N/A	69-70
PS Voltage			4.09			
AME +5V PS	Real*4	V	0.00 to	0.01	N/A	71-72
Voltage			6.10			
AME +6.5V	Real*4	V	0.00 to	0.01	N/A	73-74
PS Voltage			7.50			
AME +6.5V	Real*4	V	0.00 to	0.01	N/A	75-76
PS Voltage			19.00			
AME +48V	Real*4	V	0.00 to	0.01	N/A	77-78
PS Voltage			60.00			
AME STALO	Real*4	V	0.00 to	0.01	N/A	79-80
Power			4.09			
Peltier	Real*4	A	0.00 to	0.01	N/A	81-82
Current			16.00			
ADC	Real*4	V	0.000 to	0.001	N/A	83-84
Calibration			2.048			
Reference						
Voltage						
AME Mode	Integer*2	N/A	0 to 1	1	0 = READY	85
					1 =	
					MAINTEN	
					ANCE	
AME Peltier	Integer*2	N/A	0 to 1	1	0 = COOL	86
Mode					1 = HEAT	
AME Peltier	Real*4	A	0.00 to	0.01	N/A	87-88
Inside Fan			4.00			
Current						
AME Peltier	Real*4	A	0.00 to	0.01	N/A	89-90
Outside Fan			4.00			
Current	7. 11.				27/4	
Horizontal	Real*4	V	0.00 to	0.01	N/A	91-92
TR Limiter			5.00			
Voltage	T) Isk (7.7	0.00	0.01	27/4	00.04
Vertical TR	Real*4	V	0.00 to	0.01	N/A	93-94
Limiter			5.00			
Voltage	D = =1* 4	\77	FO 000	0.01	NT/A	05.00
ADC Calibration	Real*4	mV	-50.000	0.01	N/A	95-96
Calibration			to	1		
Offset Voltage	D1* 4	NT/A	+50.000	0.001	NT/A	07.00
ADC	Real*4	N/A	0.990 to	0.001	N/A	97-98
Calibration			1.010			
Gain						
Correction	1			1		

RCP/SPIP Pov	ver Button Status						
RCP STATUS	Integer Code for third party radar control program's status	Integer*2	N/A	0 to 1	N/A	0 - RCP OK 1 - NOT OK	99
RCP STRING	Descriptive string for the radar control programs state	String	N/A	N/A	N/A	N/A	100 - 107
SPIP Power Buttons	State of SPIP power buttons	Integer*2	N/A	N/A	N/A	Bit 0 Set – This channel's DAQ power button is off Bit 1 Set – This channel's DAQ PED power button is off. Bit 2 Set – Channel 2 DAQ power button is off (Channel 1 only) Bit 3 Set – Channel 2 DAQ PED power button is off (Channel 1 only) Bit 3 Set – Channel 2 DAQ PED power button is off. (Channel 1 only)	108
SPARE	N/A	N/A	N/A	N/A	N/A	N/A	109 - 110
Power							
Master Power Administrato r Load		Real*4	A	0.00 to 12.00	0.01	N/A	111 - 112
Expansion Power Administrato r Load		Real*4	A	0.00 to 12.00	0.01	N/A	113 - 114
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	115 - 136
<u>Transmitter</u>							
+5 VDC PS		Integer*2	N/A	0 to 1	1	0=OK,1=Fai 1	137
+15 VDC PS		Integer*2	N/A	0 to 1	1	0=OK,1=Fai 1	138
+28 VDC PS		Integer*2	N/A	0 to 1	1	0=OK,1=Fai 1	139

-15 VDC PS	Integer*2	N/A	0 to 1	1	0=OK,1=Fai	140
+45 VDC PS	Integer*2	N/A	0 to 1	1	0=OK,1=Fai	141
Filament PS Voltage	Integer*2	N/A	0 to 1	1	0=OK,1=Fai	142
Vacuum Pump PS Voltage	Integer*2	N/A	0 to 1	1	0=OK,1=Fai	143
Focus Coil PS Voltage	Integer*2	N/A	0 to 1	1	0=OK,1=Fai	144
Filament PS	Integer*2	N/A	0 to 1	1	0=On, 1=Off	145
Klystron Warmup	Integer*2	N/A	0 to 1	1	0=Normal, 1=Preheat	146
Transmitter Available	Integer*2	N/A	0 to 1	1	0=Yes, 1=No	147
WG Switch Position	Integer*2	N/A	0 to 1	1	0=Antenna, 1=Dummy Load	148
WG/PFN Transfer Interlock	Integer*2	N/A	0 to 1	1	0=OK, 1=Open	149
Maintenance Mode	Integer*2	N/A	0 to 1	1	0= No, 1=Yes	150
Maintenance Required	Integer*2	N/A	0 to 1	1	0=No, 1=Required	151
PFN Switch Position	Integer*2	N/A	0 to 1	1	0=Short Pulse, 1=Long Pulse	152
Modulator Overload	Integer*2	N/A	0 to 1	1	0=OK, 1=Fail	153
Modulator Inv Current	Integer*2	N/A	0 to 1	1	0=OK, 1=Fail	154
Modulator Switch Fail	Integer*2	N/A	0 to 1	1	0=OK, 1=Fail	155
Main Power Voltage	Integer*2	N/A	0 to 1	1	0=OK, 1=Over	156
Charging System Fail	Integer*2	N/A	0 to 1	1	0=OK, 1=Fail	157
Inverse Diode Current	Integer*2	N/A	0 to 1	1	0=OK, 1=Fail	158
Trigger Amplifier	Integer*2	N/A	0 to 1	1	0=OK, 1=Fail	159
Circulator Temperature	Integer*2	N/A	0 to 1	1	0=OK, 1=Fail	160
Spectrum Filter Pressure	Integer*2	N/A	0 to 1	1	0=OK, 1=Fail	161
WG ARC/VSWR	Integer*2	N/A	0 to 1	1	0=OK, 1=Fail	162

Cabinet	Integer*2	N/A	0 to 1	1	0=OK,	163
Interlock					1=Open	
Cabinet Air	Integer*2	N/A	0 to 1	1	0=OK,	164
Temperature					1=Fail	
Cabinet	Integer*2	N/A	0 to 1	1	0=OK,	165
Airflow					1=Fail	
Klystron	Integer*2	N/A	0 to 1	1	N/A	166
Current						
Klystron	Integer*2	N/A	0 to 1	1	0=OK,	167
Filament					1=Fail	
Current						
Klystron	Integer*2	N/A	0 to 1	1	0=OK,	168
Vacion					1=Fail	
Current						
Klystron Air	Integer*2	N/A	0 to 1	1	0=OK,	169
Temperature					1=Fail	
Klystron	Integer*2	N/A	0 to 1	1	0=OK,	170
Airflow					1=Fail	
Modulator	Integer*2	N/A	0 to 1	1	0=OK,	171
Switch					1=Required	
Maintenance						
Post Charge	Integer*2	N/A	0 to 1	1	0=OK,	172
Regulator					1=Maintena	
Maintenance					nce	
WG	Integer*2	N/A	0 to 1	1	0=OK,	173
Pressure/Hu					1=Fail	
midity						
Transmitter	Integer*2	N/A	0 to 1	1	0=OK,	174
Overvoltage					1=Over	
Transmitter	Integer*2	N/A	0 to 1	1	0=OK,	175
Overcurrent					1=Over	
Focus Coil	Integer*2	N/A	0 to 1	1	0=OK,	176
Current					1=Fail	
Focus Coil	Integer*2	N/A	0 to 1	1	0=OK,	177
Airflow					1=Fail	
Oil	Integer*2	N/A	0 to 1	1	0=OK,	178
Temperature					1=Fail	
PRF Limit	Integer*2	N/A	0 to 1	1	0=OK,	179
					1=Fail	
Transmitter	Integer*2	N/A	0 to 1	1	0=OK,	180
Oil Level					1=Fail	
Transmitter	Integer*2	N/A	0 to 1	1	0=Yes,	181
Battery					1=No	
Charging						
High Voltage	Integer*2	N/A	0 to 1	1	0=On, 1=Off	182
(HV) Status						
Transmitter	Integer*2	N/A	0 to 1	1	0=Normal,	183
Recycling					1=Recycling	
Summary						
Transmitter	Integer*2	N/A	0 to 1	1	0=OK,	184
Inoperable					1=INOP	
Transmitter	Integer*2	N/A	0 to 1	1	0=Dirty,	185

Air Filter						1=OK	
Zero Test Bit		Integer*2	N/A	0 to 1	1	0=OK,	186
0		integer 2	IV/A	0 10 1	1	1=Fail	100
Zero Test Bit		Integer*2	N/A	0 to 1	1	0=OK,	187
1		integer 2	IV/A	0 10 1	1	1=Fail	107
Zero Test Bit		Integer*2	N/A	0 to 1	1	0=OK,	188
2		integer 2	11/11	0 10 1	1	1=Fail	100
Zero Test Bit		Integer*2	N/A	0 to 1	1	0=OK,	189
3		integer 2	1771	0 00 1	1	1=Fail	
Zero Test Bit		Integer*2	N/A	0 to 1	1	0=OK,	190
4		integer 2	14/11	0 10 1	1	1=Fail	100
Zero Test Bit		Integer*2	N/A	0 to 1	1	0=OK,	191
5		integer 2	1771	0 00 1	1	1=Fail	101
Zero Test Bit		Integer*2	N/A	0 to 1	1	0=OK,	192
6		integer 2	1771	0 00 1	1	1=Fail	102
Zero Test Bit		Integer*2	N/A	0 to 1	1	0=OK,	193
7		integer -	1	0 00 1	_	1=Fail	100
One Test Bit		Integer*2	N/A	0 to 1	1	0=Fail,	194
0						1=OK	
One Test Bit		Integer*2	N/A	0 to 1	1	0=Fail,	195
1						1=OK	
One Test Bit		Integer*2	N/A	0 to 1	1	0=Fail,	196
2						1=OK	
One Test Bit		Integer*2	N/A	0 to 1	1	0=Fail,	197
3						1=OK	
One Test Bit		Integer*2	N/A	0 to 1	1	0=Fail,	198
4						1=OK	
One Test Bit		Integer*2	N/A	0 to 1	1	0=Fail,	199
5						1=OK	
One Test Bit		Integer*2	N/A	0 to 1	1	0=Fail,	200
6						1=OK	
One Test Bit		Integer*2	N/A	0 to 1	1	0=Fail,	201
7						1=OK	
XMTR/DAU		Integer*2	N/A	0 to 1	1	0=Fail,	202
Interface						1=OK	
Transmitter		Integer*2	N/A	0 to 4	1	0=Ready,	203
Summary						1=Alarm,	
Status						2=Maintena	
						nce,	
						3=Recycle,	
~	27/1	27/1	27/4	77/1	27/:	4=Preheat	
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	204
Transmitter		Real*4	mW	0.0000	.0001	N/A	205 - 206
RF Power				to			
(Sensor)		D 15.4	1 777	10.0000	0.1	27/4	205 200
Horizontal		Real*4	kW	0 to	0.1	N/A	207 - 208
XMTR Peak				999.9			
Power		D 144	1 337		0.1	NT/A	200 210
XMTR Peak		Real*4	kW	0 to	0.1	N/A	209 - 210
Power		D1*4	1_337	999.9	0.1	NT/A	011 010
Vertical		Real*4	kW	0 to	0.1	N/A	211 - 212
XMTR Peak				999.9		<u> </u>	

Power							
XMTR RF		Real*4	W	0 to	0.1	N/A	213 - 214
Avg Power		near 4	l vv	9999.9	0.1	IN/A	215 - 214
Spare		N/A	N/A	N/A	N/A	See Note (3)	216
Браге		IVA	IN/A	IVIA	IVIA	Dee Note (5)	210
XMTR		Integer*4	N/A	0 to	1	N/A	217 - 218
Recycle Count		Integer 1	1,111	999,999		1,111	
Receiver Bias		Real*4	dB	0 to	0.000	N/A	219 - 220
				999.999	1		
				9			
Transmit		Real*4	dB	0 to	0.01	N/A	221 - 222
Imbalance				999.99			
XMTR Power		Real*4	V	0.01 to	0.01	N/A	223 - 224
Meter Zero				8.00			
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	225 - 228
Tower/Utilitie	<u>es</u>						
AC Unit #1		Integer*2	N/A	0 to 1	1	0=OK,	229
Compressor						1=Shutoff	
Shut off							
AC Unit #2		Integer*2	N/A	0 to 1	1	0=OK,	230
Compressor						1=Shutoff	
Shut off							
Generator		Integer*2	N/A	0 to 1	1	0=Yes,	231
Maintenance						1=No	
Required			27/4				
Generator		Integer*2	N/A	0 to 1	1	0=Low, 1=	232
Battery						OK	
Voltage		T - + *0	N/A	0 + - 1	1	0=Fail,	000
Generator Engine		Integer*2	N/A	0 to 1	1	0=ran, 1=0K	233
Generator		Integer*2	N/A	0 to 1	1	0=Not	234
Volt/Frequenc		Integer 2	IN/A	0 10 1	1	available,	204
voinFrequenc						1=Available	
Power Source		Integer*2	N/A	0 to 1	1	0=Utility	235
1 ower bource		integer 2	IVIA	0 10 1	1	Power,	255
						1=Generato	
						r Power	
Transitional		Integer*2	N/A	0 to 1	1	0=OK,	236
Power Source						1=Off	
(TPS)							
Generator		Integer*2	N/A	0 to 1	1	0=Manual,	237
Auto/Run/Off						1=Auto	
Switch							
Aircraft		Integer*2	N/A	0 to 1	1	0=Fail,	238
Hazard						1=OK	
Lighting							
Spare	N/A	N/A	N/A	N/A	1	See Note (3)	239 - 249
Equipment Sl	<u>nelter</u>		,	1	1	T	T
Equipment	N/A	Integer*2	N/A	0 to 1	1	0 = OK, 1 =	250
Shelter Fire						Fail	
Detection							
System							

	T = .	T	Γ	ı		
Equipment	Integer*2	N/A	0 to 1	1	0=OK,	251
Shelter					1=Fire	
Fire/Smoke						
Generator	Integer*2	N/A	0 to 1	1	0=Fire,	252
Shelter	S				1=OK	
Fire/Smoke					1 011	
Utility	Integer*2	N/A	0 to 1	1	0=Not	253
	integer 2	IV/A	0 10 1	1		200
Voltage/Frequ					available,	
ency					1=Available	
Site Security	Integer*2	N/A	0 to 1	1	0=Alarm,	254
Alarm					1=OK	
Security	Integer*2	N/A	0 to 1	1	0=Fail,	255
Equipment					1=OK	
Security	Integer*2	N/A	0 to 1	1	0=Disabled,	256
System	integer 2	1 1111	0 00 1	_	1=OK	200
Receiver	Integer*2	N/A	0 to 2	1	N/A on a	257
	integer 2	IN/A	0 to 2	1		257
Connected to					single	
Antenna					channel	
					system.	
					0=Connecte	
					d,	
					1=Not	
					Connected,	
					2=N/A	
Radome	Integer*2	N/A	0 to 1	1	0=Open,	258
	integer 2	IV/A	0 10 1	1		200
Hatch	T , 40	27/4	0 . 1	-	1=Closed	250
AC Unit #1	Integer*2	N/A	0 to 1	1	0=Dirty,	259
Filter Dirty					1=OK	
AC Unit #2	Integer*2	N/A	0 to 1	N/A	0=Dirty,	260
Filter Dirty					1=OK	
Equipment	Real*4	deg C	0.00 to	0.01	N/A	261 - 262
Shelter			+50.00			
Temperature						
Outside	Real*4	deg C	-50.00 to	0.01	N/A	263 - 264
Ambient	iteal 4	ueg C	+50.00	0.01	IN/A	203 - 204
			+50.00			
Temperature	75 11 /	1 0			27/4	
Transmitter	Real*4	deg C	-10.00 to	0.01	N/A	265 - 266
Leaving Air			+60.00			
Temp						
AC Unit #1	Real*4	deg C	0.00 to	0.01	N/A	267 - 268
Discharge Air			+50.00			
Temp						
Generator	Real*4	deg C	0.00 to	0.01	N/A	269 - 270
Shelter	iteal 4	ueg C	+50.00	0.01	IN/A	203 - 210
			+50.00			
Temperature	D 155.4	1 ~	F 0.00	0.01	27/4	051 050
Radome Air	Real*4	deg C	-50.00 to	0.01	N/A	271 - 272
Temperature			+50.00			
AC Unit #2	Real*4	deg C	0.00 to	0.01	N/A	273 - 274
Discharge Air			+50.00			
Temp						
SPIP +15v PS	Real*4	V	N/A	0.01	N/A	275 - 276
SPIP -15v PS	Real*4	V	N/A			277 - 278
DL1L -19A LQ	near 4	V	IN/A	0.01	N/A	411-410

SPIP +28V	Power supply	Integer *2	N/A	0 to 1	1	0 = OK, 1 =	279
PS status	that powers the	integer 2	14/21	0 00 1	1	Fail	210
1 D Status	SPIP					1 411	
SPARE	N/A	N/A	N/A	N/A	N/A	N/A	280
SPIP +5v PS	1071	Real*4	V	0.00 to	0.01	N/A	281 - 282
			,	6.64			
Converted		Integer*2	%	0 to 100	1	N/A	283
Generator							
Fuel Level							
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	284 - 299
Antenna/Pede					1	1	T
Elevation +	Antenna is in the	Integer*2	N/A	0 to 1	1	0=OK,	300
Dead Limit	upper dead limit					1=In Limit	
+150V		Integer*2	N/A	0 to 1	1	0=OK,	301
Overvoltage						1=Overvolta	
						ge	
+150V		Integer*2	N/A	0 to 1	1	0=OK,	302
Undervoltage						1=Overvolta	
						ge	
Elevation		Integer*2	N/A	0 to 1	1	0=Normal,	303
Servo Amp						1=Inhibit	
Inhibit							
Elevation		Integer*2	N/A	0 to 1	1	0=Normal,	304
Servo Amp						1=Short	
Short Circuit						Circuit	
Elevation		Integer*2	N/A	0 to 1	1	0=Normal,	305
Servo Amp		integer 2	14/11	0 00 1	1	1=Overtem	
Overtemp						p	
Elevation		Integer*2	N/A	0 to 1	1	0=OK,	306
Motor		integer 2	11/21	0 10 1	1	1=Overtem	300
Overtemp						p	
Elevation		Integer*2	N/A	0 to 1	1	0=Operatio	307
Stow Pin		integer 2	11/21	0 10 1	1	nal,	307
Stow 1 III						1=Engaged	
Elevation	The elevation	Integer*2	N/A	0 to 1	1	0=OK,	308
Housing 5V	house DC to DC	integer 2	IVA	0 10 1	1	1=Fail	300
PS	converter/power					1-r an	
10	supply						
Elevation -	Antenna is in the	Integer*2	N/A	0 to 1	1	0=OK,	309
Dead Limit	lower dead limit	integer 2	IN/A	0 10 1	1	1=In Limit	909
Elevation	10WEI UEAU IIIIII	Integer*2	N/A	0 to 1	1	0=OK,	310
+Normal		integer 2	IVIA	0.001	1	1=In Limit	010
Limit						1-111 12111111	
Elevation -		Integer*2	N/A	0 to 1	1	0=OK,	311
Normal Limit		Integer 2	IN/A	0 10 1	1	1=In Limit	911
Elevation		Integer*2	N/A	0 to 1	1		312
		mteger"2	IN/A	0 to 1	1	1=Fail,	014
Encoder Light		T. 4 40	NT/A	0 + 1	1	0=OK	010
Elevation		Integer*2	N/A	0 to 1	1	0=OK,	313
Gearbox Oil						1=Oil Level	
T21 4:		T / 40	NT/A	0.4.1	-	Low	01.4
Elevation		Integer*2	N/A	0 to 1	1	0=Operatio	314
Handwheel						nal,	

						1=Engaged	
Elevation		Integer*2	N/A	0 to 1	1	0=OK,	315
Amp PS		integer 2	IVA	0 10 1	1	1=Fail	313
Azimuth		Integer*2	N/A	0 to 1	1	0=OK,	316
Servo Amp		J				1=Inhibit	
Inhibit							
Azimuth		Integer*2	N/A	0 to 1	1	1=Short	317
Servo Amp						Circuit,	
Short Circuit						0=OK	
Azimuth		Integer*2	N/A	0 to 1	1	0=OK,	318
Servo Amp						1=Overtem	
Overtemp		T	27/4			р	210
Azimuth		Integer*2	N/A	0 to 1	1	0=OK,	319
Motor						1=Overtem	
Overtemp		T 4 *0	NT/A	0.4.1	1	b	000
Azimuth Stow Pin		Integer*2	N/A	0 to 1	1	0=Operatio	320
Pin						nal, 1=Engaged	
Azimuth	The azimuth	Integer*2	N/A	0 to 1	1	0=OK,	321
Housing 5V	housing DC to DC	integer 2	IVA	0 10 1	1	1=Fail	021
PS	converter/power					1-ran	
1.0	supply						
Azimuth	барріј	Integer*2	N/A	0 to 1	1	0=OK,	322
Encoder Light		integer 2	1,771	0 00 1	_	1=Fail	022
Azimuth		Integer*2	N/A	0 to 1	1	0=OK,	323
Gearbox Oil						1=Oil Level	
						Low	
Azimuth Bull		Integer*2	N/A	0 to 1	1	0=OK,	324
Gear Oil						1=Oil Level	
						Low	
Azimuth		Integer*2	N/A	0 to 1	1	0=Operatio	325
Handwheel						nal,	
						1=Engaged	
Azimuth		Integer*2	N/A	0 to 1	1	0=OK,	326
Servo Amp						1=Fail	
PS		T	27/4			0.00.1.000	
Servo		Integer*2	N/A	0 to 1	1	0=On, 1=Off	327
Pedestal		Integer*2	N/A	0 to 1	1	0=Operatio	328
Interlock						nal, 1=Safe	
Switch	N/A	N/A	N/A	N/A	N/A	See Note	329 - 340
Spare	IN/A	IN/A	N/A	N/A	IN/A	(3).	329 - 340
RF Generator	/Receiver	<u>I</u>				(9).	l
COHO/Clock	/ IVC C C I V C I	Integer*2	N/A	0 to 1	1	0=OK,	341
COTTO/CIUCK		III00gei 2	14/11	0.001	1	1=Fail	911
Rf Generator		Integer*2	N/A	0 to 1	1	0=OK,	342
Frequency		11100901 2	11/11	0.001	1	1=Fail	
Select							
Oscillator							
Rf Generator		Integer*2	N/A	0 to 1	1	0=OK,	343
RF/STALO		J -				1=Fail	

52
14
54
56
58
00
)
2
34
74
86
88
70
70
$^{\prime}2$
74
74
74 76
76
76

	1			0	1	1	
Velocity		Integer*2	N/A	0 to 1	1	0=Good,	379
•		Integer"2	N/A	0 to 1	1	0=Gooα, 1=Fail	319
(Processed) Width		Integer*2	N/A	0 to 1	1	0=Good,	380
		Integer"2	IN/A	0 to 1	1	0-Good, 1=Fail	380
(Processed)		Integer*2	N/A	0 to 1	1		381
Velocity (RF		Integer"2	IN/A	0 to 1	1	0=Good,	381
Gen)		T / *0	NT/A	0 + 1	1	1=Fail	000
Width (RF		Integer*2	N/A	0 to 1	1	0=Good,	382
Gen)		D. lik t	100		0.000	1=Fail	202 204
Horizontal I0		Real*4	dBm	-	0.000	N/A	383 - 384
				999.900	1		
				0 to			
				+999.90			
			 	00			
Vertical I0		Real*4	dBm	-	0.000	N/A	385 - 386
				999.900	1		
				0 to			
				+999.90			
				00			
Vertical		Real*4	dB	0.000 to	0.001	N/A	387 - 388
Dynamic				120.000			
Range							
Short Pulse,		Real*4	dBZ	-99.9000	0.000	N/A	389 - 390
Vertical dBZ0				to	1		
				+99.900			
				0			
Long Pulse,		Real*4	dBZ	-99.9000	0.000	N/A	391 - 392
Vertical dBZ0				to	1		
				+99.900			
				0			
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	393 - 394
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	395 - 396
Horizontal		Real*4	dBm	-	0.000	N/A	397 - 398
Power Sense				999.900	1		
				0 to			
				+999.90			
				00			
Vertical		Real*4	dBm	-	0.000	N/A	399 - 400
Power Sense		1,001		999.900	1		
1 ower sense				0 to	1		
				+999.90			
				00			
ZDR Bias		Real*4	dB	-	0.000	N/A	401 - 402
		1		999.900	1		
				0 to	1 -		
				+999.90	1		
				00	1		
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	403 - 408
Clutter		Real*4	dB	-99.90 to	0.01	N/A	409-410
Suppression		Ivoar 4	u.D	+99.90	0.01	11111	100 110
Delta				. 55.50			
Clutter		Real*4	dBZ	-99.90	0.01	N/A	411 - 412
Suppression		Iveal 4	uDL		0.01	11/17	711 - 414
Duppression	I .			to	I	I.	l

Unfiltered				+99.90			
Power				. 55.50			
Clutter	-	Real*4	dBZ	-99.90	0.01	N/A	413 - 414
Suppression		Treat 1	db2	to	0.01	11/21	110 111
Filtered				+99.90			
Power							
Transmit		Real*4	dBm	-99.90 to	0.01	N/A	415 - 416
Burst Power		Treat 1	d Biii	+99.90	0.01	11/21	110 110
Transmit		Real*4	deg	-99.00 to	0.01	N/A	417 - 418
Burst Phase		10001	dog	+99.90	0.01	11/11	111 110
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	419 - 422
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	423 - 424
Vertical	11/11	Real*4	N/A	0.5000	0.000	N/A	425 - 426
Linearity		iteal 4	IVA	to	1	IVA	420 - 420
Linearity				1.5000	1		
Cnana	N/A	N/A	N/A		N/A	See Note (3)	427 - 430
Spare File Status	IN/A	IN/A	IN/A	N/A	IN/A	Bee Note (3)	441 - 450
State File		Integer*2	N/A	0 to 1	1	0=OK,	431
Read Status		mteger"2	IN/A	0 10 1	1	0=0K, 1=Fail	491
		T / *0	NT/A	0 / 1	1		400
State File		Integer*2	N/A	0 to 1	1	0=OK,	432
Write Status		T	27/4	0 . 1		1=Fail	100
Bypass Map		Integer*2	N/A	0 to 1	1	0=OK,	433
File Read						1=Fail	
Status							
Bypass Map		Integer*2	N/A	0 to 1	1	0=OK,	434
File Write						1=Fail	
Status							
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	435
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	436
Current		Integer*2	N/A	0 to 1	1	0=OK,	437
Adaptation						1=Fail	
File Read							
Status							
Current		Integer*2	N/A	0 to 1	1	0=OK,	438
Adaptation						1=Fail	
File Write							
Status							
Censor Zone		Integer*2	N/A	0 to 1	1	0=OK,	439
File Read						1=Fail	
Status					1		
Censor Zone		Integer*2	N/A	0 to 1	1	0=OK,	440
File Write		3			1	1=Fail	
Status					1		
Remote VCP		Integer*2	N/A	0 to 1	1	0=OK,	441
File Read					-	1=Fail	
Status					1	1 1 1111	
Remote VCP		Integer*2	N/A	0 to 1	1	0=OK,	442
File Write		Integer 2	IN/A	0 10 1	1	1=Fail	114
Status						1-1 an	
	+	T4-0*0	NT/A	0.40.1	1	0-0V	449
Baseline		Integer*2	N/A	0 to 1	1	0=OK,	443
Adaptation					1	1=Fail	
File Read	1						

Status							
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	444
Clutter Filter		Integer*2	N/A	0 to 1	1	0=OK,	445
Map File						1=Fail	
Read Status							
Clutter Filter		Integer*2	N/A	0 to 1	1	0=OK,	446
Map File						1=Fail	
Write Status							
General Disk		Integer*2	N/A	0 to 1	1	0=OK,	447
I/O Error						1=Fail	
Spare	N/A	N/A	N/A	N/A	N/A	See Note (3)	448 - 460
Device Status							
SPIP Comm		Integer*2	N/A	0 to 1	1	0=OK,	461
Status						1=Fail	
HCI Comm		Integer*2	N/A	0 to 1	1	0=OK,	462
Status						1=Fail	
SPARE	N/A	N/A	N/A	N/A	N/A	See Note (3)	463
Signal		Integer*2	N/A	0 to 1	1	0=OK,	464
Processor						1=Fail	
Command							
Status							
AME		Integer*2	N/A	0 to 1	1	0 = OK	465
Communicati						1 = FAIL	
on Status							
RMS Link		Integer*2	N/A	0 to 1	1	0 =	466
Status						Connected,	
						1 = Not	
						Connected	
RPG Link		Integer*2	N/A	0 to 1	1	0 =	467
Status						Connected,	
						1 = Not	
						Connected	
Interpanel	The link between	Integer*2	N/A	0 to 2	1	0 = OK	468
Link Status	channel 1 SPIP to					1 = FAIL	
	channel 2 SPIP					2 = N/A	
	for power, and					(Single	
	communications					Channel	
Performance		4:	N/A	N/A	1	System)	469 - 470
Check Time		time_t	IN/A	IN/A	1		409 - 470
	N/A	N/A	N/A	N/A	N/A	Coo Note (9)	471 490
Spare	IN/A	IN/A	IN/A	IN/A	IN/A	See Note (3)	471 - 480

Notes:

- (1) No = Not connected or not configured.
- (3) Value of field will be zero.
- (4) Display precision should be three decimal places.
- (5) See Appendix B for unit definitions and standard symbology.
- (6) 24 hour statistics are updated at 15 minute intervals.

3.2.4.8 Table VI Console Message (Message Types 4, 10)

NAME	DESCRIPTION	FORM	UNITS	RANG	ACCUR	HAL
		\mathbf{AT}		\mathbf{E}	ACY/	\mathbf{F}
					PRECIS	WO

					ION	RD
Console	Number of	Integer	N/A	2 to	N/A	1
Message	bytes/characters in	*2		404		
Size	message.					
Message	Console message text including imbedded carriage returns, line feeds, etc.	String	N/A	N/A	N/A	2 to 203

3.2.4.9 Table VIII Loopback Test (Message Type 11 and Message Type 12)

Loopback message 11 is sent by the RDA to the RPG upon initial connection. The RPG will resend message 11, without any changes to the RDA. In addition, loopback message 12 will be sent from the RPG to the RDA upon initial connection. The RDA will simply retransmit message 12 to the RPG without any modifications.

NAME	DESCRIPTION	FOR	UNITS	RANG	ACCUR	HAL
		MAT		\mathbf{E}	ACY/	\mathbf{F}
					PRECIS	WO
					ION	RD
Loopback	Number of halfwords in	Intege	N/A	2 to	N/A	1
Message	message (does not include	r*2		1200		
Size	message header)					
Bit Pattern	Bit Pattern of 0's and 1's	N/A	N/A	N/A	N/A	2 to
	used to test interface.					1200

3.2.4.10 Table IX Clutter Filter Bypass Map (Message Type 13)

NAME	DESCRIPTION	FOR MAT	UNI TS ⁽⁵⁾	RANGE	ACCURA CY/ PRECISI ON	HALF WORD LOCAT ION
Bypass Map Generatio n Date	Julian Date - 2440586.5 ⁽³⁾	Integ er*2	d	1 to 65535	1	1
Bypass Map Generatio n Time	Number of Minutes since Midnight Greenwich Mean Time	Integ er*2	min	0 to 1440	1	2
Number of Segments	Number of Elevation Segments	Integ er*2	N/A	1 to 5	1	3
For Each Se	ĭ	Τ.,	NT/A	1 , =	I -	17.1
Segment Number	Segment Number	Integ er*2	N/A	1 to 5	1	E1
Range Bins	Radial 1, Range Bins 0 to 15	Code*	N/A	$0 \text{ or } 1^{(2)}$	1 (4)	E2
Range Bins	Radial 1, Range Bins 16 to 31	Code*	N/A	0 or 1 ⁽²⁾	1 (4)	E3
•••		•••	•••			•••
Range Bins	Radial 1, Range Bins 496 to 511	Code*	N/A	0 or 1 ⁽²⁾	1 (4)	E33
Range Bins	Radial 2, Range Bins 0 to 15	Code*	N/A	0 or 1 ⁽²⁾	1 (4)	E34
Range Bins	Radial 2, Range Bins 16 to 31	Code*	N/A	0 or 1 ⁽²⁾	1 (4)	E35

Range	Radial 2 Range Bins	Code*	N/A	0 or 1 (2)	1 (4)	E65
Bins	496 to 511	2				
Range	Radial 360 Range	Code*	N/A	0 or 1 (2)	1 (4)	E11490
Bins	Bins 0 to 15	2				
Range	Radial 360 Range	Code*	N/A	0 or 1 (2)	1 (4)	E11491
Bins	Bins 16 to 31	2				
		•••				
Range	Radial 360 Range	Code*	N/A	0 or 1 (2)	1 (4)	E11521
Bins	Bins 496 to 511	2				

- (1) Each elevation segment includes 360 azimuth radials. Each azimuth radial consists of 512 range cells. Each range cell has 1 kilometer resolution starting at 0 to 1 kilometer. The first azimuth radial, R0, subtends the angle $0.0 \pm R0 < 1.0$ degrees, with the next azimuth radial, R1, subtending the angle $1.0 \pm R1 < 2.0$ degrees, etc. Increasing angles are taken to be clockwise relative to true north. Elevation segment number 1 is closest to the ground, increasing segment numbers denote increasing elevation.
- (2) Each bit represents a range bin. Range Bins: 0 = perform clutter filtering; 1 = bypass the clutter filters
- (3) 1 January 1970 00.00 Greenwich Mean Time = 1 Modified Julian Date
- (4) MSB equals the lowest numbered bin (i.e., for HW E2, MSB = Bin 0)
- (5) See Appendix B for unit definitions and standard symbology.

3.2.4.11 Table X RDA Control Commands (Message Type 6)

NAME	DESCRIPTION	FORMAT ⁽²⁾	UNITS(6)	RANGE (OR	ACCURACY/ PRECISION	HALFWORD LOCATION
RDA STATE COMMAND (1)	RDA State Command Values: •No Change •Stand-By •Offline Operate •Operate •Restart	Code*2	N/A	VALUE) As Listed •0 (no bits set) •32769 (bit 0 & 15 = 1) •32770 (bit 1 & 15 = 1) •32772 (bit 2 & 15 = 1) •32776 (bit 3 & 15 = 1)	N/A	1
SPARE Note (3)			N/A	(CCR 08- 00035)	N/A	2
AUXILIARY POWER GENERATOR CONTROL Note ⁽⁴⁾	Aux. Power Generator Control Values: •No Change •Switch to Auxiliary Power •Switch to Utility Power	Code*2	N/A	As Listed •0 (no bits set) •32772 (bit 2 & 15 = 1) •32770 (bit 1 & 15 = 1)	N/A	3
RDA CONTROL	•No Change •Control	Code*2	N/A	As listed •0 (no bits set)	N/A	4

COMPANDO	0 101	1	1	0.4 ** **	1	
COMMANDS	Command Clear			•2 (bit 1 set)		
AND	•Local Control			•4 (bit 2 set)		
AUTHORIZATI	Enabled			•8 (bit 3 set)		
ON	•Remote Control			•16 (bit 4		
	Accepted			set)		
	•Remote Control					
RESTART VCP	Requested Restart VCP or	Code*2	N/A	As Listed	N/A	5
OR	Elevation Cut	Code 2	IVA	•0 (no bits	IN/A	0
ELEVATION	Values:			set)		
CUT	•None			•32768 (bit		
	•Restart Volume			15 = 1)		
	Coverage Pattern			•32768 + cut		
	•Restart Elevation			number (bit		
	Cut			15 = 1; set		
				binary		
				number of		
				cut in bits 0		
				to 7)		
SELECT		Integer*2	N/A	As Listed	1	6
LOCAL VCP	•Use Remote			•0 (no bits		
NUMBER FOR	Pattern			set)		
NEXT	•Pattern Number			•1 to 767		
VOLUME	•No Change			•32767		
SCAN						
SPARE						7
SUPER	Values:	Code*2 (4)	N/A	As Listed	N/A	8
RESOLUTION	•No change			•0 (no bits		
CONTROL	•Enable			set)		
	•Disable			•2 (bit 1 set)		
				•4 (bit 2 set)		
CLUTTER	Values:	Code*2 (4)	N/A	As Listed	N/A	9
MITIGATION	•No change			•0 (no bits		
DECISION	•Enable			set)		
CONTROL	•Disable			•2 (bit 1 set)		
				•4 (bit 2 set)		
AVSET	Values:	Code*2 (4)	N/A	As Listed	N/A	10
CONTROL	•No change			•0 (no bits		
	•Enable			set)		
	•Disable			•2 (bit 1 set)		
CDARE			DT/ 4	•4 (bit 2 set)	27/4	11
SPARE		0.1.40	N/A	A . T 1	N/A	11
CHANNEL CONTROL	N. Ol.	Code*2	N/A	As Listed	N/A	12
CONTROL	•No Change			•0 (no bits		
COMMAND	•Set to Controlling Channel			set) •1 (bit 0 set)		
	•Set to Non-			•1 (bit 0 set) •2 (bit 1 set)		
	controlling			•2 (bit i set)		
	Channel					
PERFORMANC	No Change	Code*2	N/A	As Listed	N/A	13
E CHECK	Force Performance	5000 2	1771	•0 (no bits		10
CONTROL	Check			set)		
CO1,1100H	1 2 11 0 0 11	1	1	550)		1

				1 (bit 0 set)		
SPARE	N/A	N/A	N/A	N/A	N/A	14 to 20
SPOT		Code*2	N/A	As Listed	N/A	21
BLANKING	•No Change			•0 (no bits		
	•Enable Spot			set)		
	Blanking			•2 (bit 1 set)		
	•Disable Spot			•4 (bit 2 set)		
	Blanking					
SPARE	N/A	N/A	N/A	N/A	N/A	22 to 26

- (1) Only one command is allowed at a time; except Restart, which is allowed with operational commands.
- (2) A halfword is defined to be 16 bits. All specified bit locations are referenced from 0 (the LSB) to 15 (the MSB).
- (3) As of RDA Build 14.0, the RDA will ignore any base data selection control commands.
- (4) The states are mutually exclusive.
- (5) The data in this field is stored as a scaled integer. The format is XX.YY. For example, -10.00 equals a value of -1000. A value of +0.25 would equal a value of 25.
- (6) See Appendix B for unit definitions and standard symbology.

3.2.4.12 Table XI Volume Coverage Pattern Data (Message Types 5 & 7)

NAME	DESCRIPTION	FORMAT ⁽⁴⁾	UNITS (10)	RANGE (OR VALUE) ⁽⁷⁾	ACCURACY/ PRECISION	HALFWORD LOCATION
MESSAGE SIZE	Number of Halfwords in Message	Integer*2	halfword	23 to 594	1	1
PATTERN TYPE	Constant Elevation Cut	Code*2	N/A	As listed 2	N/A	2
PATTERN NUMBER	Pattern Number Values: •Operational •Constant Elevation Types	Integer*2	N/A	See Appendix C for available VCPs	1	3
NUMBER OF ELEVATION CUTS	Number of elevation cuts in one complete volume scan	Integer*2	N/A	1 to 25	1	4
CLUTTER MAP GROUP NUMBER	Clutter map groups are not currently implemented.	Integer*2	N/A	1 to 2 (12)	1	5
DOPPLER VELOCITY RESOLUTION	Doppler Velocity Resolution Values: •0.5 •1.0	Code*1	m/s	As Listed •2 (set bit 9) •4 (set bit 10)	N/A	6 (1)
PULSE WIDTH	Pulse Width Values: •Short •Long	Code*1	N/A	As listed •2 (set bit 1) •4 (set bit 2)	N/A	6 (2)

SPARE	N/A	N/A	N/A	N/A	N/A	7 to 11
Repeat for each e	levation angle					
ELEVATION	The elevation	Code*2 (6)	deg	0.000000 to	0.043945	E1
ANGLE (3)	angle for this cut			359.956055		
CHANNEL	Channel	Code*1	N/A	As Listed	N/A	E2 (1)
CONFIGURATI	Configuration			•0		
ON	Values:			•1		
	•Constant Phase			•2		
	•Random Phase			_		
	•SZ2 Phase					
WAVEFORM	Waveform Type	Code*1	N/A	As Listed (8)	N/A	E2 (2)
TYPE	Values:	Couc 1	11/11	•1	14/11	112
111111	•Contiguous			•2		
	Surveillance					
	•Contiguous			•3		
	Doppler w/			•5		
	Ambiguity			•4		
	Resolution			•4 •5		
	•Contiguous			•0		
	Doppler w/o Ambiguity					
	Resolution					
	•Batch					
	•Staggered Pulse					
CLIDED	Pair	C-1 +1	NT/A	A . T 1	N/A	F(0, (1)
SUPER	Super Resolution	Code*1	N/A	As Listed	N/A	E3 (1)
RESOLUTION	Control Values:			` ′		
CONTROL	· 0.5 degree			· Bit		
	azimuth · 1/4 km			0 set		
	1/7 KIII			Dit		
	reflectivity			1 set		
	· Doppler to			· Bit 2		
	300 km			set		
	D 1D1 : .:					
	Dual Polarization			D:4 0		
	Control			· Bit 3		
	· Dual			set		
	Polarization to					
SURVEILLAN	300 km	Integer*1	N/A	0 to 8	1	E3 ⁽²⁾
	The pulse	integer"1	IN/A	0 10 8	1	上3 (²⁾
CE PRF	repetition					
NUMBER ⁽⁵⁾	frequency number					
	for surveillance					
CLIDATELLAND	cuts	T. 4 40	NT/A	0.4000	1	T7.4
SURVEILLAN	The pulse count	Integer*2	N/A	0 to 999	1	E4
CE PRF PULSE	per radial for					
COUNT/RADIA	surveillance cuts					
$L^{(5)}$						
AZIMITIMIT	The enimerals and a	Code*2 (9)	dom/o	11 000 +-	0.0100000001	DE
AZIMUTH	The azimuth rate	Code"Z (9)	deg/s	-44.989 to	0.0109863281	E5
RATE	of the cut	C11	1D	+44.989	25	Ti C
REFLECTIVIT	Signal to noise	Scaled	dB	-12.0 to	.125	E6
Y	ratio (SNR)	SInteger*2		+20.0		

THRESHOLD	threshold for reflectivity					
VELOCITY THRESHOLD	Signal to noise ratio (SNR) threshold for velocity	Scaled SInteger*2	dB	-12.0 to +20.0	.125	E7
SPECTRUM WIDTH THRESHOLD	Signal to noise ratio (SNR) threshold for spectrum width	Scaled SInteger*2	Db	-12.0 to +20.0	.125	E8
DIFFERENTIA L REFLECTIVIT Y THRESHOLD	Signal to noise ratio (SNR) threshold for differential reflectivity	Scaled SInteger*2	dB	-12.0 to +20.0	.125	E9
DIFFERENTIA L PHASE THRESHOLD	Signal to noise ratio (SNR) threshold for differential phase	Scaled SInteger*2	dB	-12.0 to +20.0	.125	E10
CORRELATIO N COEFFICIENT THRESHOLD	Signal to noise ratio (SNR) threshold for correlation coefficient	Scaled SInteger*2	dB	-12.0 to +20.0	.125	E11
EDGE ANGLE	Sector 1 Azimuth Clockwise Edge Angle (denotes start angle)	Code*2 (6)	deg	0.000000 to 359.956055	0.043945	E12
DOPPLER PRF NUMBER ⁽⁵⁾	Sector 1 Doppler PRF Number	Integer*2	N/A	0 to 8	1	E13
DOPPLER PRF PULSE COUNT/RADIA L ⁽⁵⁾	Sector 1 Doppler Pulse Count/Radial	Integer*2	N/A	0 to 999	1	E14
SPARE	N/A	N/A	N/A	N/A	N/A	E15
SAME AS E12 to E15 FOR SECTOR 2						E16 to E19
SAME AS E12 to E15 FOR SECTOR 3						E20 to E23

- (1) Upper byte.
- (2) Lower byte.
- (3) For Each Elevation Cut, repeat E1-E23
- (4) A halfword is defined to be 16 bits. All specified bit locations are referenced from 0 (the LSB) to 15 (the MSB).
- (5) Zero values are only to be used when the field is non-applicable. For example ... for VCP 21, cut 1 is a contiguous surveillance cut. The Doppler fields will all have "0" for their value. Cut 2 is a contiguous doppler cut, thus the surveillance fields will have "0" for their value.
- (6) Format defined in Table III-A.
- (7) Values shown are after applicable scaling and conversion is done.
- (8) Values are mutually exclusive.
- (9) Format defined in Table XI-D.
- (10) See Appendix B for unit definitions and standard symbology.

- (11) Currently all operational VCP patterns are constant elevation types.
- (12) Clutter map groups are not currently used. The currently used value for this field is 1.
- (13) Values can be independently set and are not exclusive.

3.2.4.12.1 Table XI-D Azimuth and Elevation Rate Data

BIT	WEIGHT (1) (2)
0	X
1	X
2	X
3	0.010986328125
4	0.02197265625
5	0.0439453125
6	0.087890625
7	0.17578125
8	0.3515625
9	0.703125
10	1.40625
11	2.8125
12	5.625
13	11.25
14	22.5
15	Sign Bit (1 indicates negative) (3)

Notes:

- 1. X indicates not applicable
- 2. Units are degrees per second.
- 3. Format is 2's complement binary scaled integer (i.e., SInteger *2)

3.2.4.13 Table XII Clutter Censor Zones (Message Type 8)

NAME	DESCRIPTION	FORMAT	UNITS(3)	RANGE (OR VALUE)	ACCURACY/ PRECISION	HALFWORD LOCATION (2)
OVERRIDE REGIONS	Number of Clutter Map Override Regions	Integer*2	N/A	0 to 25	1	1
START RANGE (1)	The start range for this clutter map override region.	Integer*2	km	0 to 511	1	R1 [2 + (i*6)]
STOP RANGE	The stop range for this clutter map override region.	Integer*2	km	0 to 511	1	R2 [3 + (i*6)]
START AZIMUTH	The start azimuth for this clutter map override region.	Integer*2	deg	0 to 360	1	R3 [4 + (i*6)]
STOP AZIMUTH	The stop azimuth for this clutter map override region.	Integer*2	deg	0 to 360	1	R4 [5 + (i*6)]
ELEVATIO N SEGMENT NUMBER	Elevation segment 1 is closest to the ground, increasing segment number denotes increasing elevation.	Integer*2	N/A	1 to 5	1	R5 [6 + (i*6)]
OPERATO R SELECT CODE	•Bypass Filter Forced (no filtering)	Code*2	N/A	As Listed •0 •1	N/A	R6 [7 + (i*6)]

Document Number 2620002P Code Identification 0WY55 WSR-88D ROC Build Date TBD RDA Build 17.0 Draft

•Bypass Map in Control		•2	
•Clutter Filtering			
Forced			

Notes:

- 1. For each subsequent region, halfwords R1 through R6 shall be repeated. For example, region 0 will use halfwords 2 through 7, region 1 will use halfwords 8 through 13, region 2 will use halfwords 14 through 19, etc.
- 2. Where "i" is used, i = override region number (0-based).
- 3. See Appendix B for unit definitions and standard symbology.

3.2.4.14 Table XIII Request for Data (Message Type 9)

NAME	DESCRIPTION	FORMAT (1)	UNITS	RANGE (OR	ACCURACY/ PRECISION	HALFWORD LOCATION
				VALUE)	1 RECISION	Location
Data		Code*2	N/A	As Listed	N/A	1
Request	•Request Summary RDA			•129 (bits		
Type	Status			0&7=1)		
	•Request RDA			•130 (bits		
	Performance/Maintenance			1&7=1)		
	Data			•132 (bits		
	•Request Clutter Filter			2&7=1)		
	Bypass Map			•136 (bits		
	•Request Clutter Filter Map			3&7=1)		
	•Request RDA Adaptation			•144 (bits		
	Data			4&7=1)		
	•Request Volume Coverage			•160 (bits		
	Pattern Data			5&7=1)		

Notes:

1. LSB = bit 0

3.2.4.15 Table XIV Clutter Filter Map (Message Type 15)

NAME	DESCRIPTION	FORMAT	UNITS(5)	RANGE (OR VALUE)	ACCURACY/P RECISION	HALFWORD LOCATION
Map Generation Date	Julian Date - 2440586.5 ⁽¹⁾	Integer*2	d	1 to 65535	1	1
Map Generation Time	Number of Minutes since Midnight Greenwich Mean Time	Integer*2	min	0 to 1440	1	2
Number of Elevation Segments	Number of elevation segments in map.	Integer*2	N/A	1 to 5	1	3
Repeat for each l	Elevation Segment (2)		•	•	•	
Repeat for each	Azimuth Segment (3)					
Number of Range Zones	Number of defined range zones for this azimuth.	Integer*2	N/A	1 to 20	1	A1
Range Zone (4)			·			
Op Code	Bypass Filter Bypass map in Control	Code*2	N/A	As Listed 0 1 2	N/A	R1

	Force Filter					
End Range (4)	Stop Range per	Integer*2	km	0 to 511	1	R2
	Zone					
Same as R1 &						
R2 for Range						
Zone 1						
Same as R1 &						
R2 for # of						
Range Zones						
specified						

Notes:

- 1. 1 January 1970 00.00 Greenwich Mean Time = 1 Modified Julian Date
- 2. There can be up to 5 elevation segments. Typically, only 2 elevation segments are used. The first elevation segment is closest to the ground, increasing segment numbers denote increasing elevation.
- 3. There are 360 azimuth segments (segment 0 through segment 359). The first azimuth radial, R0, subtends the angle (0.0 £ R0 < 1.0) degrees, with the next azimuth radial, R1, subtending the angle (1.0 £ R1 < 2.0) degrees, etc. Increasing angles are taken to be clockwise relative to true north.
- 4. There are 20 possible range zones. Not all range zones need to be defined. The last range zone must have end range of 511.
- 5. See Appendix B for unit definitions and standard symbology.

3.2.4.16 Table XV. RDA Adaptation Data (Message Type 18)

NAME	DESCRIPTION	FORMAT	UNITS(6)	RANGE (OR VALUE)(8)	ACCURACY/ PRECISION	BYTE LOCATION
ADAP_FILE_N AME	NAME OF ADAPTATION DATA FILE	String (12)	N/A	N/A	N/A	0 - 11
ADAP_FORMA T	FORMAT OF ADAPTATION DATA FILE	String (13)	N/A	N/A	N/A	12 - 15
ADAP_REVISIO N	REVISION NUMBER OF ADAPTATION DATA FILE	String (14)	N/A	N/A	N/A	16 - 19
ADAP_DATE	LAST MODIFIED DATE ADAPTATION DATA FILE	String (1)	N/A	N/A	N/A	20 - 31
ADAP_TIME	LAST MODIFIED TIME OF ADAPTATION DATA FILE	String (2)	N/A	N/A	N/A	32 - 43
LOWER_PRE_L IMIT	ANGLE OF THE LOWER PRE- LIMIT SWITCH	Real*4	deg	3.000 to 1.100	0.001	44 - 47
AZ_LAT	LATENCY OF AZIMUTH ENCODERMEAS UREMENT	Real*4	s	0.0000 to 2.0000	.0001	48 - 51

UPPER_PRE_LI MIT	ANGLE OF THE UPPER PRE- LIMIT SWITCH	Real*4	deg	55.000 to 66.000	0.001	52 - 55
EL_LAT	LATENCY OF ELEVATION ENCODER MEASUREMENT	Real*4	s	0.0000 to 2.0000	.0001	56 - 59
PARKAZ	PEDESTAL PARK POSITION IN AZIMUTH	Real*4	deg	0.00 to 359.99	0.01	60 - 63
PARKEL	PEDESTAL PARK POSITION IN ELEVATION	Real*4	deg	-1.00 to 55.00	0.01	64 - 67
A_FUEL_CONV (0)	GENERATOR FUEL LEVEL HEIGHT/CAPACI TY CONVERSION (0% HGT)	Real*4	%	0.0 to 100.0	0.1	68 - 71
A_FUEL_CONV (1)	GENERATOR FUEL LEVEL HEIGHT/CAPACI TY CONVERSION (10% HGT)	Real*4	%	0.0 to 100.0	0.1	72 - 75
A_FUEL_CONV (2)	GENERATOR FUEL LEVEL HEIGHT/CAPACI TY CONVERSION (20% HGT)	Real*4	%	0.0 to 100.0	0.1	76 - 79
A_FUEL_CONV (3)	GENERATOR FUEL LEVEL HEIGHT/CAPACI TY CONVERSION (30% HGT)	Real*4	%	0.0 to 100.0	0.1	80 - 83
A_FUEL_CONV (4)	GENERATOR FUEL LEVEL HEIGHT/CAPACI TY CONVERSION (40% HGT)	Real*4	%	0.0 to 100.0	0.1	84 - 87
A_FUEL_CONV (5)	GENERATOR FUEL LEVEL HEIGHT/CAPACI TY CONVERSION (50% HGT)	Real*4	%	0.0 to 100.0	0.1	88 - 91
A_FUEL_CONV (6)	GENERATOR FUEL LEVEL HEIGHT/CAPACI TY CONVERSION (60% HGT)	Real*4	%	0.0 to 100.0	0.1	92 - 95
A_FUEL_CONV (7)	GENERATOR FUEL LEVEL HEIGHT/CAPACI TY CONVERSION (70% HGT)	Real*4	%	0.0 to 100.0	0.1	96 - 99

					1	
A_FUEL_CONV (8)	GENERATOR FUEL LEVEL HEIGHT/CAPACI TY CONVERSION (80% HGT)	Real*4	%	0.0 to 100.0	0.1	100 - 103
A_FUEL_CONV (9)	GENERATOR FUEL LEVEL HEIGHT/CAPACI TY CONVERSION (90% HGT)	Real*4	%	0.0 to 100.0	0.1	104 - 107
A_FUEL_CONV (10)	GENERATOR FUEL LEVEL HEIGHT/CAPACI TY CONVERSION (100% HGT)	Real*4	%	0.0 to 100.0	0.1	108 - 111
A_MIN_SHELT ER_TEMP	MINIMUM EQUIPMENT SHELTER ALARM TEMPERATURE	Real*4	deg C	0.0 to 50.0	0.1	112 - 115
A_MAX_SHELT ER_TEMP	MAXIMUM EQUIPMENT SHELTER ALARM TEMPERATURE	Real*4	deg C	0.0 to 50.0	0.1	116 - 119
A_MIN_SHELT ER_AC_TEMP_ DIFF	MINIMUM A/C DISCHARGE AIR TEMPERATURE DIFFERENTIAL	Real*4	deg C	0.0 to 10.0	0.1	120 - 123
A_MAX_XMTR_ AIR_TEMP	MAXIMUM TRANSMITTER LEAVING AIR ALARM TEMPERATURE	Real*4	deg C	0.0 to 55.0	0.1	124 - 127
A_MAX_RAD_T EMP	MAXIMUM RADOME ALARM TEMPERATURE	Real*4	deg C	0.0 to 50.0	0.1	128 - 131
A_MAX_RAD_T EMP_RISE	MAXIMUM RADOME MINUS AMBIENT TEMPERATURE DIFFERENCE	Real*4	deg C	0.0 to 10.0	0.1	132 - 135
LOWER_DEAD _LIMIT	ANGLE OF LOWER DEAD LIMIT SWITCH	Real*4	deg	4.000 to 0.000	0.001	136 - 139
UPPER_DEAD_ LIMIT	ANGLE OF THE UPPER DEAD LIMIT SWITCH	Real*4	deg	60.000 to 66.000	0.1	140 - 143
SPARE	N/A	N/A	N/A	N/A	N/A	144 - 147
A_MIN_GEN_R OOM_TEMP	MINIMUM GENERATOR SHELTER ALARM TEMPERATURE	Real*4	deg C	0.0 to 50.0	0.1	148 - 151
A_MAX_GEN_R OOM_TEMP	MAXIMUM GENERATOR	Real*4	deg C	0.0 to 50.0	0.1	152 - 155

	CHIEF MED AT A DAG	ı				
	SHELTER ALARM					
SPIP 5V REG	TEMPERATURE SPIP +5 VOLT	Real*4	%	0.04-00.0	0.1	156 - 159
LIM	POWER SUPPLY	Kear 4	70	0.0 to 20.0	0.1	190 - 199
TIM	TOLERANCE					
SPIP_15V_REG	SPIP +/- 15 VOLT	Real*4	%	0.0 to 20.0	0.1	160 - 163
_LIM	POWER SUPPLY	iteal 4	70	0.0 to 20.0	0.1	100 - 100
_1211/1	TOLERANCE					
SPARE	N/A	N/A	N/A	N/A	N/A	164 - 175
RPG_CO_LOCA	RPG CO-	String (15)	N/A	T or F	N/A	176 - 179
TED	LOCATED	Zung	1,111	1 01 1	1,111	1.0 1.0
SPEC_FILTER_	TRANSMITTER	String (15)	N/A	T or F	N/A	180 - 183
INSTALLED	SPECTRUM					
	FILTER					
	INSTALLED					
TPS_INSTALLE	TRANSITION	String (15)	N/A	T or F	N/A	184 - 187
D	POWER SOURCE					
	INSTALLED					
RMS_INSTALL	FAA RMS	String (15)	N/A	T or F	N/A	188 - 191
ED	INSTALLED					
A_HVDL_TST_I	PERFORMANCE	Integer*4	h	2 to 72	1	192 - 195
NT	TEST INTERVAL					
A_RPG_LT_INT	RPG LOOP TEST	Integer*4	min	1 to 20	1	196 - 199
A MINI CONAD	INTERVAL	T , 44	•	1 + 00	-	200 200
A_MIN_STAB_	REQUIRED	Integer*4	min	1 to 20	1	200 - 203
UTIL_PWR_TI	INTERVAL TIME					
ME	FOR STABLE UTILITY POWER					
A_GEN_AUTO_	MAXIMUM	Integer*4	h	5 to 500	1	204 - 207
EXER_INTERV	GENERATOR	integer 4	11	3 10 300	1	204 - 201
AL	AUTOMATIC					
	EXERCISE					
	INTERVAL					
A_UTIL_PWR_S	RECOMMENDED	Integer*4	min	5 to 30	1	208 - 211
W_REQ_INTER	SWITCH TO					
VAL	UTILITY POWER					
	TIME INTERVAL					
A_LOW_FUEL_	LOW FUEL TANK	Real*4	%	0.0 to	0.1	212 - 215
LEVEL	WARNING LEVEL			100.0		
CONFIG_CHAN	CONFIGURATIO	Integer*4	N/A	1 or 2	1	216 - 219
_NUMBER	N CHANNEL					
A DDG LDW M	NUMBER	T . da 4	27/4	0.1.0		222 222
A_RPG_LINK_T	RPG WIDEBAND	Integer*4	N/A	0 to 2	1	220 - 223
YPE	LINK TYPE (0 = DIRECT, 1 =					
	MICROWAVE, 2 =					
	FIBER OPTIC)					
REDUNDANT_	REDUNDANT	Integer*4	N/A	1 to 3	1	224 - 227
CHAN_CONFIG	CHANNEL	integer 4	11/13	1 10 0	1	22T - 221
	CONFIGURATIO					
	N (1 = SINGLE					
	CHAN, $2 = FAA$, 3					
	= NWS					

	REDUNDANT)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-1.00 to	0.01	228 - 231
(0)	ATTENUATOR			1.00	3.01	
(0)	INSERTION			1.00		
	LOSSES (0dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-2.00 to	0.01	232 - 235
(1)	ATTENUATOR	iteal 4	uD	0.00	0.01	202 - 200
	INSERTION			0.00		
	LOSSES (1dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-3.00 to -	0.01	236 - 239
_	ATTENUATOR	Real 4	uБ	1.00	0.01	230 - 239
(2)	INSERTION			1.00		
	LOSSES (2dB)					
ATTENI TADI E	` ′	Real*4	dB	1.00 +-	0.01	940 949
ATTEN_TABLE	TEST SIGNAL	Rear"4	αВ	-4.00 to -	0.01	240 - 243
(3)	ATTENUATOR			2.00		
	INSERTION					
ADDENI MADI D	LOSSES (3dB)	D = =1* 4	JD	E 00 t-	0.01	044 047
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-5.00 to -	0.01	244 - 247
(4)	ATTENUATOR			3.00		
	INSERTION					
AMMENT WARTER	LOSSES (4dB)	D 15 4	1D	0.00	0.01	040 071
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-6.00 to -	0.01	248 - 251
(5)	ATTENUATOR			4.00		
	INSERTION					
A mmrs x m · = = =	LOSSES (5dB)		15			0.00
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-7.00 to -	0.01	252 - 255
(6)	ATTENUATOR			5.00		
	INSERTION					
	LOSSES (6dB)	-	1.5			
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-8.00 to -	0.01	256 - 259
(7)	ATTENUATOR			6.00		
	INSERTION					
	LOSSES (7dB)	1				
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-9.00 to -	0.01	260 - 263
(8)	ATTENUATOR			7.00		
	INSERTION					
	LOSSES (8dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-10.00 to -	0.01	264 - 267
(9)	ATTENUATOR			8.00		
	INSERTION					
	LOSSES (9dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-11.00 to -	0.01	268 - 271
(10)	ATTENUATOR			9.00		
	INSERTION					
	LOSSES (10dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-12.00 to -	0.01	272 - 275
(11)	ATTENUATOR			10.00		
	INSERTION					
	LOSSES (11dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-13.00 to -	0.01	276 - 279
(12)	ATTENUATOR			11.00		
	INSERTION					
	LOSSES (12dB)					

	T	T =				
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-14.00 to -	0.01	280 - 283
(13)	ATTENUATOR			12.00		
	INSERTION					
	LOSSES (13dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-15.00 to -	0.01	284 - 287
(14)	ATTENUATOR			13.00		
	INSERTION					
	LOSSES (14dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-16.00 to -	0.01	288 - 291
(15)	ATTENUATOR			14.00		
()	INSERTION					
	LOSSES (15dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-17.00 to -	0.01	292 - 295
(16)	ATTENUATOR	Tical 4	uD	15.00	0.01	202 200
(10)	INSERTION			10.00		
	LOSSES (16dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-18.00 to -	0.01	296 - 299
	ATTENUATOR	near 4	uD	16.00	0.01	290 - 299
(17)				10.00		
	INSERTION					
ADDING DARK	LOSSES (17dB)	D . 14 4	JD.	10.00	0.01	000 000
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-19.00 to -	0.01	300 - 303
(18)	ATTENUATOR			17.00		
	INSERTION					
	LOSSES (18dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-20.00 to -	0.01	304 - 307
(19)	ATTENUATOR			18.00		
	INSERTION					
	LOSSES (19dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-21.00 to -	0.01	308 - 311
(20)	ATTENUATOR			19.00		
	INSERTION					
	LOSSES (20dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-22.00 to -	0.01	312 - 315
(21)	ATTENUATOR			20.00		
	INSERTION					
	LOSSES (21dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-23.00 to -	0.01	316 - 319
(22)	ATTENUATOR			21.00		
	INSERTION					
	LOSSES (22dB)					
ATTEN TABLE	TEST SIGNAL	Real*4	dB	-24.00 to -	0.01	320 - 323
(23)	ATTENUATOR			22.00		
-/	INSERTION					
	LOSSES (23dB)					
ATTEN TABLE	TEST SIGNAL	Real*4	dB	-25.00 to -	0.01	324 - 327
(24)	ATTENUATOR	10001 4	(1)	23.00	0.01	021 021
(= 1)	INSERTION			20.00		
	LOSSES (24dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-26.00 to -	0.01	328 - 331
_	ATTENUATOR	near 4	uD	24.00	0.01	020 - 001
(25)	INSERTION			24.00		
ADDENI MADI D	LOSSES (25dB)	D = = 1 * 4	JD.	07.00.4-	0.01	222 225
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-27.00 to -	0.01	332 - 335

(0.0)	A TOTAL DATE OF THE STATE OF TH			05.00	1	
(26)	ATTENUATOR			25.00		
	INSERTION					
AMMENT WATER	LOSSES (26dB)	D 144	1D	20.00.4	0.01	222 222
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-28.00 to -	0.01	336 - 339
(27)	ATTENUATOR			26.00		
	INSERTION					
	LOSSES (27dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-29.00 to -	0.01	340 - 343
(28)	ATTENUATOR			27.00		
	INSERTION					
	LOSSES (28dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-30.00 to -	0.01	344 - 347
(29)	ATTENUATOR			28.00		
	INSERTION					
	LOSSES (29dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-31.00 to -	0.01	348 - 351
(30)	ATTENUATOR			29.00		
	INSERTION					
	LOSSES (30dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-32.00 to -	0.01	352 - 355
(31)	ATTENUATOR			30.00		
	INSERTION					
	LOSSES (31dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-33.00 to -	0.01	356 - 359
(32)	ATTENUATOR			31.00		
	INSERTION					
	LOSSES (32dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-34.00 to -	0.01	360 - 363
(33)	ATTENUATOR			32.00		
	INSERTION					
	LOSSES (33dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-35.00 to -	0.01	364 - 367
(34)	ATTENUATOR			33.00		
(- /	INSERTION					
	LOSSES (34dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-36.00 to -	0.01	368 - 371
(35)	ATTENUATOR	10001	u B	34.00	0.01	000 011
(33)	INSERTION			01.00		
	LOSSES (35dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-37.00 to -	0.01	372 - 375
(36)	ATTENUATOR	10001 4		35.00	0.01	012 010
(80)	INSERTION			50.00		
	LOSSES (36dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-38.00 to -	0.01	376 - 379
(37)	ATTENUATOR	iveal 4	uD	36.00	0.01	910 - 918
(01)	INSERTION			50.00		
	LOSSES (37dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-39.00 to -	0.01	380 - 383
_		near 4	uD	37.00	0.01	900 - 909
(38)	ATTENUATOR			37.00		
	INSERTION					
ADDENI MADI D	LOSSES (38dB)	D = = 1* 4	JD.	40.00 +-	0.01	204 207
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-40.00 to -	0.01	384 - 387
(39)	ATTENUATOR			38.00		

	INSERTION					
	LOSSES (39dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-41.00 to -	0.01	388 - 391
(40)	ATTENUATOR			39.00		
	INSERTION					
	LOSSES (40dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-42.00 to -	0.01	392 - 395
(41)	ATTENUATOR			40.00		
	INSERTION					
	LOSSES (41dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-43.00 to -	0.01	396 - 399
(42)	ATTENUATOR			41.00		
	INSERTION					
	LOSSES (42dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-44.00 to -	0.01	400 - 403
(43)	ATTENUATOR			42.00		
	INSERTION					
A MINITED A TO A T	LOSSES (43dB)	D. Hist	10	45.00	0.01	40.4 40.7
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-45.00 to -	0.01	404 - 407
(44)	ATTENUATOR			43.00		
	INSERTION					
AMMENT MADE E	LOSSES (44dB)	D 144	1D	40.004	0.01	400 411
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-46.00 to -	0.01	408 - 411
(45)	ATTENUATOR			44.00		
	INSERTION LOSSES (45dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-47.00 to -	0.01	412 - 415
(46)	ATTENUATOR	Real"4	аь	45.00	0.01	412 - 415
(40)	INSERTION			40.00		
	LOSSES (46dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-48.00 to -	0.01	416 - 419
(47)	ATTENUATOR	Iteal 4	uD	46.00	0.01	410 - 413
(11)	INSERTION			40.00		
	LOSSES (47dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-49.00 to -	0.01	420 - 423
(48)	ATTENUATOR	10001	a D	47.00	0.01	120 120
(10)	INSERTION			11100		
	LOSSES (48dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-50.00 to -	0.01	424 - 427
(49)	ATTENUATOR			48.00		
	INSERTION					
	LOSSES (49dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-51.00 to -	0.01	428 - 431
(50)	ATTENUATOR			49.00		
	INSERTION					
	LOSSES (50dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-52.00 to -	0.01	432 - 435
(51)	ATTENUATOR			50.00		
	INSERTION					
	LOSSES (51dB)	-	15			100 100
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-53.00 to -	0.01	436 - 439
(52)	ATTENUATOR			51.00		
	INSERTION					

	LOSSES (52dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-54.00 to -	0.01	440 - 443
(53)	ATTENUATOR	10001		52.00	0.01	110 110
(00)	INSERTION			02.00		
	LOSSES (53dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-55.00 to -	0.01	444 - 447
(54)	ATTENUATOR	Iteal 4	ub	53.00	0.01	111 - 111
(04)	INSERTION			00.00		
	LOSSES (54dB)					
ATTEN TABLE	TEST SIGNAL	Real*4	dB	-56.00 to -	0.01	448 - 451
(55)	ATTENUATOR	Real 4	ub	54.00	0.01	440 - 401
(99)	INSERTION			34.00		
ADDENI DADI D	LOSSES (55dB)	D1* 4	JD.	57.00.	0.01	450 455
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-57.00 to -	0.01	452 - 455
(56)	ATTENUATOR			55.00		
	INSERTION					
AMMENT WARTE	LOSSES (56dB)	D 14.4	ID.	* 0.00:	0.01	170 170
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-58.00 to -	0.01	456 - 459
(57)	ATTENUATOR			56.00		
	INSERTION					
	LOSSES (57dB)	-	15			
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-59.00 to -	0.01	460 - 463
(58)	ATTENUATOR			57.00		
	INSERTION					
	LOSSES (58dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-60.00 to -	0.01	464 - 467
(59)	ATTENUATOR			58.00		
	INSERTION					
	LOSSES (59dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-61.00 to -	0.01	468 - 471
(60)	ATTENUATOR			59.00		
	INSERTION					
	LOSSES (60dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-62.00 to -	0.01	472 - 475
(61)	ATTENUATOR			60.00		
	INSERTION					
	LOSSES (61dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-63.00 to -	0.01	476 - 479
(62)	ATTENUATOR			61.00		
	INSERTION					
	LOSSES (62dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-64.00 to -	0.01	480 - 483
(63)	ATTENUATOR	1		62.00		
-/	INSERTION					
	LOSSES (63dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-65.00 to -	0.01	484 - 487
(64)	ATTENUATOR			63.00		
(~ -/	INSERTION			23.00		
	LOSSES (64dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-66.00 to -	0.01	488 - 491
(65)	ATTENUATOR	Itoai 4	u.b	64.00	0.01	400 401
(30)	INSERTION			04.00		
	LOSSES (65dB)					
	TOPPED (090D)					

	T or- or- or-	1	1	1	T	
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-67.00 to -	0.01	492 - 495
(66)	ATTENUATOR			65.00		
	INSERTION					
	LOSSES (66dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-68.00 to -	0.01	496 - 499
(67)	ATTENUATOR			66.00		
	INSERTION					
	LOSSES (67dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-69.00 to -	0.01	500 - 503
(68)	ATTENUATOR			67.00		
()	INSERTION					
	LOSSES (68dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-70.00 to -	0.01	504 - 507
(69)	ATTENUATOR	100ar 1	u.b	68.00	0.01	301 301
(00)	INSERTION			00.00		
	LOSSES (69dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-71.00 to -	0.01	508 - 511
(70)	ATTENUATOR	Iveal 4	uD	69.00	0.01	900 - 911
(10)	INSERTION			09.00		
	LOSSES (70dB)					
ATTEN TABLE	TEST SIGNAL	Real*4	dB	-72.00 to -	0.01	512 - 515
_		Real"4	αБ		0.01	912 - 919
(71)	ATTENUATOR			70.00		
	INSERTION					
AMMENT WARTER	LOSSES (71dB)	D. Ish 4	ID.	5 0.00 /	0.01	¥10 ¥10
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-73.00 to -	0.01	516 - 519
(72)	ATTENUATOR			71.00		
	INSERTION					
	LOSSES (72dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-74.00 to -	0.01	520 - 523
(73)	ATTENUATOR			72.00		
	INSERTION					
	LOSSES (73dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-75.00 to -	0.01	524 - 527
(74)	ATTENUATOR			73.00		
	INSERTION					
	LOSSES (74dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-76.00 to -	0.01	528 - 531
(75)	ATTENUATOR			74.00		
	INSERTION					
	LOSSES (75dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-77.00 to -	0.01	532 - 535
(76)	ATTENUATOR			75.00		
	INSERTION					
	LOSSES (76dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-78.00 to -	0.01	536 - 539
(77)	ATTENUATOR			76.00		
	INSERTION					
	LOSSES (77dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-79.00 to -	0.01	540 - 543
(78)	ATTENUATOR			77.00		
\ : =/	INSERTION			1		
	LOSSES (78dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-80.00 to -	0.01	544 - 547
TITION INDUE	THE STORM	TICAL T	uD	55.00 10 -	0.01	033 - 031

(7 0)	A MMTD TT A MOD	1			T	1
(79)	ATTENUATOR			78.00		
	INSERTION					
	LOSSES (79dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-81.00 to -	0.01	548 - 551
(80)	ATTENUATOR			79.00		
	INSERTION					
	LOSSES (80dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-82.00 to -	0.01	552 - 555
(81)	ATTENUATOR			80.00		
	INSERTION					
	LOSSES (81dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-83.00 to -	0.01	556 - 559
(82)	ATTENUATOR			81.00		
	INSERTION					
	LOSSES (82dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-84.00 to -	0.01	560 - 563
(83)	ATTENUATOR			82.00	3112	
(/	INSERTION					
	LOSSES (83dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-85.00 to -	0.01	564 - 567
(84)	ATTENUATOR	Tical 4	uB	83.00	0.01	904 901
(04)	INSERTION			00.00		
	LOSSES (84dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-86.00 to -	0.01	568 - 571
	ATTENUATOR	near 4	ub	84.00	0.01	900 - 971
(85)				84.00		
	INSERTION					
ADDING TO A DI D	LOSSES (85dB)	D 194	1D	07.00.4	0.01	
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-87.00 to -	0.01	572 - 575
(86)	ATTENUATOR			85.00		
	INSERTION					
A MORENT MADE D	LOSSES (86dB)	D. Idea	ID.	22.22	0.01	
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-88.00 to -	0.01	576 - 579
(87)	ATTENUATOR			86.00		
	INSERTION					
	LOSSES (87dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-89.00 to -	0.01	580 - 583
(88)	ATTENUATOR			87.00		
	INSERTION					
	LOSSES (88dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-90.00 to -	0.01	584 - 587
(89)	ATTENUATOR			88.00		
	INSERTION					
	LOSSES (89dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-91.00 to -	0.01	588 - 591
(90)	ATTENUATOR			89.00		
	INSERTION					
	LOSSES (90dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-92.00 to -	0.01	592 - 595
(91)	ATTENUATOR	1		90.00		332 333
(01)	INSERTION			00.00		
	LOSSES (91dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-93.00 to -	0.01	596 - 599
(92)	ATTENUATOR	near 4	uD	91.00	0.01	- 060 - 088
(34)	ALLENUATUR			91.00	<u> </u>	

	INCEDION	T				
	INSERTION					
AMMENT MADEE	LOSSES (92dB)	D 14:4	10	0.1.00	0.04	200
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-94.00 to -	0.01	600 - 603
(93)	ATTENUATOR			92.00		
	INSERTION					
	LOSSES (93dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-95.00 to -	0.01	604 - 607
(94)	ATTENUATOR			93.00		
	INSERTION					
	LOSSES (94dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-96.00 to -	0.01	608 - 611
(95)	ATTENUATOR			94.00		
	INSERTION					
	LOSSES (95dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-97.00 to -	0.01	612 - 615
(96)	ATTENUATOR			95.00		
	INSERTION					
	LOSSES (96dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-98.00 to -	0.01	616 - 619
(97)	ATTENUATOR			96.00		
	INSERTION					
	LOSSES (97dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-99.00 to -	0.01	620 - 623
(98)	ATTENUATOR			97.00		
(00)	INSERTION					
	LOSSES (98dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-100.00 to -	0.01	624 - 627
(99)	ATTENUATOR	ltear 1	uB	98.00	0.01	021 021
(00)	INSERTION			00.00		
	LOSSES (99dB)					
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-101.00 to -	0.01	628 - 631
(100)	ATTENUATOR	Itear 4	ub	99.00	0.01	020 001
(100)	INSERTION			33.00		
	LOSSES (100dB)					
ATTEN TABLE	TEST SIGNAL	Real*4	dB	-102.00 to -	0.01	632 - 635
(101)	ATTENUATOR	Iteal 4	uD	100.00	0.01	004 - 000
(101)				100.00		
	INSERTION LOSSES (101dB)					
ATTEN TABLE	TEST SIGNAL	Real*4	dB	-103.00 to -	0.01	636 - 639
-		near 4	uБ		0.01	090 - 098
(102)	ATTENUATOR			101.00		
	INSERTION					
AMMENT MADE E	LOSSES (102dB)	D144	JD.	104.004	0.01	040 040
ATTEN_TABLE	TEST SIGNAL	Real*4	dB	-104.00 to -	0.01	640 - 643
(103)	ATTENUATOR			102.00		
	INSERTION					
CDADE	LOSSES (103dB)					044 005
SPARE	SPARE	D 155.4	ID.	Z 00 :	0.01	644 - 667
PATH_LOSSES(PATH LOSS -	Real*4	dB	-5.00 to -	0.01	668 - 671
7)	VERTICAL IF			0.00		
	HELIAX TO					
~	4AT16					
SPARE	SPARE					672 - 683
SPARE	SPARE					684 - 687

SPARE	SPARE					688 - 691
PATH_LOSSES(PATH LOSS -	Real*4	dB	-60.00 to -	0.01	692 - 695
13)	2A9A9 RF DELAY	11001 4	uD	40.00	0.01	094 - 099
10)	LINE			40.00		
SPARE	SPARE	1				696 - 699
SPARE	SPARE					700 - 715
SPARE	SPARE					716 - 719
SPARE						720 - 751
PATH_LOSSES(PATH LOSS -	Real*4	dB	-5.20 to -	0.01	752 - 755
28)	HORIZONTAL IF			0.20		
	HELIAX TO					
	4AT17					
PATH_LOSSES(SPARE IN PATH_	N/A	N/A	N/A	N/A	756 - 759
29)	LOSS ARRAY					
PATH_LOSSES(PATH LOSS - A5	Real*4	dB	-0.50 to -	0.01	760 - 763
30)	ELEVATION			0.05		
	ROTARY JOINT					
PATH_LOSSES(PATH LOSS -	Real*4	dB	-1.00 to -	0.01	764 - 767
31)	ELEVATION			0.10		
	ROTARY JOINT					
DAMIL LOGGEGA	TO ANTENNA	D. Ish 4	1D	0.70	0.01	500 551
PATH_LOSSES(PATH LOSS -	Real*4	dB	-0.50 to -	0.01	768 - 771
32)	WG02 HARMONIC			0.05		
	FILTER					
PATH_LOSSES(PATH LOSS -	Real*4	dB	-1.00 to -	0.01	772 - 775
33)	WAVEGUIDE	iteal 4	ub	0.01	0.01	112 - 110
00)	KLYSTRON TO			0.01		
	SWITCH					
PATH_LOSSES(PATH LOSS -	Real*4	dB	-0.50 to -	0.01	776 - 779
34)	2A1A4			0.05		
	WAVEGUIDE					
	CHANNEL					
	AZIMUTH					
	ROTARY JOINT					
PATH_LOSSES(PATH LOSS -	Real*4	dB	-0.50 to	0.01	780 - 783
35)	WG06			0.00		
	SPECTRUM					
CDADE	FILTER					F04 F0F
SPARE LOGGES	SPARE	Doc1* 4	dB	1.00 +-	0.01	784 - 787
PATH_LOSSES(PATH LOSS - WAVEGUIDE	Real*4	αв	-1.80 to -	0.01	788 - 791
37)	SWITCH TO			0.05		
	AZIMUTH					
	ROTARY JOINT					
PATH_LOSSES(PATH LOSS -	Real*4	dB	-1.00 to -	0.01	792 - 795
38)	WAVEGUIDE			0.05		
-/	SWITCH					
PATH_LOSSES(PATH LOSS -	Real*4	dB	-0.50 to -	0.01	796 - 799
39)	WG04			0.05		
	CIRCULATOR					
PATH_LOSSES	PATH LOSS - A6	Real*4	dB	-0.50 to -	0.01	800 - 803
(40)	ARC DETECTOR			0.01		

PATH_LOSSES(PATH LOSS -	Real*4	dB	-0.10 to -	0.01	804 - 807
41)	1DC1	Iveal 4	uD	0.01	0.01	004 - 007
T1)	TRANSMITTER			0.01		
	COUPLER					
	STRAIGHT THRU					
PATH_LOSSES(PATH LOSS -	Real*4	dB	-40.00 to	0.01	808 - 811
42)	1DC1	1		-20.00		
/	TRANSMITTER					
	COUPLER					
	COUPLING					
PATH_LOSSES(PATH LOSS - A33	Real*4	dB	-10.00 to	0.01	812 - 815
43)	PAD			0.00		
PATH_LOSSES(PATH LOSS -	Real*4	dB	-3.00 to	0.01	816 - 819
44)	COAX			0.40		
	TRANSMITTER					
	RF SAMPLE TO					
DAMIT TO SECOND	A33 PAD	D 11:	10		0.01	000 555
PATH_LOSSES(PATH LOSS -	Real*4	dB	-8.00 to -	0.01	820 - 823
45)	A20J1_4 POWER			4.00		
PATH_LOSSES(SPLITTER PATH LOSS -	Real*4	dB	-8.00 to -	0.01	824 - 827
		Real"4	ав	-8.00 to - 4.00	0.01	824 - 827
46)	A20J1_3 POWER SPLITTER			4.00		
PATH_LOSSES(PATH LOSS -	Real*4	dB	-8.00 to -	0.01	828 - 831
47)	A20J1_2 POWER	iteal 4	uD	4.00	0.01	020 - 001
	SPLITTER			4.00		
H_COUPLER_C	RF PALLET	Real*4	dB	-40.00 to -	0.01	832 - 835
W_LOSS	HORIZONTAL	Ivour 1	u.B	20.00	0.01	002 000
	COUPLER TEST					
	SIGNAL LOSS					
V_COUPLER_X	RF PALLET	Real*4	dB	-40.00 to -	0.01	836 - 839
MT_LOSS	VERTICAL			20.00		
	COUPLER					
	TRANSMITTER					
	LOSS					
PATH_LOSSES(PATH LOSS -	Real*4	dB	-0.50 to -	0.01	840 - 843
50)	WAVEGUIDE			0.05		
	AZIMUTH JOINT					
	TO ELEVATION JOINT					
SPARE	N/A	N/A	N/A	N/A	N/A	844 - 847
PATH_LOSSES(PATH LOSS -	Real*4	dB	-6.00 to	0.01	848 - 851
52)	1AT4	iveal 4	uD	0.00	0.01	040 - 001
(32)	TRANSMITTER			0.00		
	COUPLER PAD					
H_COUPLER_C	RF PALLET	Real*4	dB	-40.00 to -	0.01	852 - 855
W_LOSS	VERTICAL			20.00		
_	COUPLER TEST					
	SIGNAL LOSS					
SPARE	SPARE	N/A	N/A	N/A	N/A	856 - 859
SPARE	SPARE	N/A	N/A	N/A	N/A	860 - 863
SPARE	N/A	N/A	N/A	N/A	N/A	864 - 867
SPARE	N/A	N/A	N/A	N/A	N/A	868 - 871

	T	r	T	1	1	1
PATH_LOSSES(PATH LOSS -	Real*4	dB	-7.00 to	0.01	872 - 875
58)	4AT17			0.00		
	ATTENUATOR					
PATH_LOSSES(PATH LOSS -	Real*4	dB	-4.00 to	0.01	876 - 879
59)	IFDR IF ANTI-			0.00		
	ALIAS FILTER					
PATH_LOSSES(PATH LOSS -	Real*4	dB	-8.00 to -	0.01	880 - 883
60)	A20J1_5 POWER	licai i	ub	4.00	0.01	000 000
00)	SPLITTER			4.00		
PATH_LOSSES(PATH LOSS - AT5	Real*4	dB	-53.00 to -	0.01	884 - 887
61)	50dB	iteal 4	ub	47.00	0.01	004 - 001
01)				47.00		
CDADE	ATTENUATOR	27/4	3.7/4	27/4	27/4	000 001
SPARE BATTH LOGGERG	SPARE	N/A	N/A	N/A	N/A	888 - 891
PATH_LOSSES(PATH LOSS - A39	Real*4	dB	-11.00 to -	0.01	892 - 995
63)	RF_IF BURST			6.00		
	MIXER					
PATH_LOSSES(PATH LOSS - AR1	Real*4	dB	23.00 to	0.01	896 - 899
64)	BURST IF			33.00		
	AMPLIFIER					
PATH_LOSSES(PATH LOSS -	Real*4	dB	-4.00 to	0.01	900 - 903
65)	IFDR BURST			0.00		
	ANTI-ALIAS					
	FILTER					
PATH_LOSSES(PATH LOSS - DC3	Real*4	dB	-3.00 to	0.01	904 - 907
66)	J1_3 6dB			0.00		
	COUPLER,					
	THROUGH					
PATH_LOSSES(PATH LOSS - DC3	Real*4	dB	-15.00 to -	0.01	908 - 911
67)	J1_2 6DB			5.00		
	COUPLER,					
	COUPLED					
PATH_LOSSES(PATH LOSS -	Real*4	dB	-29.00 to -	0.01	912 - 915
68)	AT2+AT3 26dB	10001	0.25	23.00	0.01	012 010
	СОНО					
	ATTENUATOR					
SPARE	SPARE	N/A	N/A	N/A	N/A	916 - 919
CHAN_CAL_DI	NONCONTROLLI	Real*4	dB	0.00 to	0.01	920-923
FF	NG CHANNEL	iveal 4	uD	4.00	0.01	020-020
T. I.	CALIBRATION			4.00		
	DIFFERENCE					
PATH LOSSES(SPARE	N/A	N/A	N/A	N/A	924 - 927
70 - 71)	LOCATIONS IN	IN/A	IN/A	IN/A	11/17	324 - 321
10 - 11)	THE					
	PATH_LOSSES					
CDADE	ARRAY	NI/A	N/A	N/A	N/A	000 001
SPARE SPARE	SPARE	N/A	SPARE			928 - 931
	SPARE	SPARE		SPARE	SPARE	932 - 935
V_TS_CW	AME VERTICAL	Real*4	dBm	0.00 to	0.01	936 - 939
	TEST SIGNAL			30.00		
	POWER		1			<u> </u>
RNSCALE(0)	RECEIVER	Real*4	N/A	1.000 to	0.001	940 - 943
	NOISE			1.800		
	NORMALIZATIO					

	N (-1.0 deg to -0.5					
	deg)					
RNSCALE(1)	RECEIVER NOISE NORMALIZATIO N (-0.5 deg to 0.0 deg)	Real*4	N/A	1.000 to 1.800	0.001	944 - 947
RNSCALE(2)	RECEIVER NOISE NORMALIZATIO N (0.0 deg to 0.5 deg)	Real*4	N/A	1.000 to 1.800	0.001	948 - 951
RNSCALE(3)	RECEIVER NOISE NORMALIZATIO N (0.5 deg to 1.0 deg)	Real*4	N/A	1.000 to 1.800	0.001	952 - 955
RNSCALE(4)	RECEIVER NOISE NORMALIZATIO N (1.0 deg to 1.5 deg)	Real*4	N/A	1.000 to 1.800	0.001	956 - 959
RNSCALE(5)	RECEIVER NOISE NORMALIZATIO N (1.5 deg to 2.0 deg)	Real*4	N/A	1.000 to 1.800	0.001	960 - 963
RNSCALE(6)	RECEIVER NOISE NORMALIZATIO N (2.0 deg to 2.5 deg)	Real*4	N/A	1.000 to 1.800	0.001	964 - 967
RNSCALE(7)	RECEIVER NOISE NORMALIZATIO N (2.5 deg to 3.0 deg)	Real*4	N/A	1.000 to 1.800	0.001	968 - 971
RNSCALE(8)	RECEIVER NOISE NORMALIZATIO N (3.0 deg to 3.5 deg)	Real*4	N/A	1.000 to 1.800	0.001	972 - 975
RNSCALE(9)	RECEIVER NOISE NORMALIZATIO N (3.5 deg to 4.0 deg)	Real*4	N/A	1.000 to 1.800	0.001	976 - 979
RNSCALE(10)	RECEIVER NOISE NORMALIZATIO N (4.0 deg to 4.5 deg)	Real*4	N/A	1.000 to 1.800	0.001	980 - 983
RNSCALE(11)	RECEIVER	Real*4	N/A	1.000 to	0.001	984 - 987

	NOISE	1		1 000	1	
	NORMALIZATIO			1.800		
	N (4.5 deg to 5.0					
DNICCALE(10)	deg) RECEIVER	Real*4	N/A	1 000 +-	0.001	000 001
RNSCALE(12)	NOISE	Kear 4	N/A	1.000 to 1.800	0.001	988 - 991
				1.800		
	NORMALIZATIO					
A #73 # O C (o)	N (> 5.0 deg)	D. Dist	170.4	0.0000	0.0004	000 007
ATMOS(0)	TWO WAY	Real*4	dB/km	-0.0200 to -	0.0001	992 - 995
	ATMOSPHERIC			$0.0020^{(3)}$		
	LOSS/KM (-1.0 deg					
	to -0.5 deg)					
ATMOS(1)	TWO WAY	Real*4	dB/km	-0.0200 to -	0.0001	996 - 999
	ATMOSPHERIC			$0.0020^{(3)}$		
	LOSS/KM (-0.5 deg					
	to 0.0 deg)					
ATMOS(2)	TWO WAY	Real*4	dB/km	-0.0200 to -	0.0001	1000 - 1003
	ATMOSPHERIC			$0.0020^{(3)}$		
	LOSS/KM (0.0 deg					
	to 0.5 deg)					
ATMOS(3)	TWO WAY	Real*4	dB/km	-0.0200 to -	0.0001	1004 - 1007
	ATMOSPHERIC			$0.0020^{(3)}$		
	LOSS/KM (0.5 deg					
	to 1.0 deg)					
ATMOS(4)	TWO WAY	Real*4	dB/km	-0.0200 to -	0.0001	1008 - 1011
. ,	ATMOSPHERIC			$0.0020^{(3)}$		
	LOSS/KM (1.0 deg					
	to 1.5 deg)					
ATMOS(5)	TWO WAY	Real*4	dB/km	-0.0200 to -	0.0001	1012 - 1015
` '	ATMOSPHERIC			$0.0020^{(3)}$		
	LOSS/KM (1.5 deg					
	to 2.0 deg)					
ATMOS(6)	TWO WAY	Real*4	dB/km	-0.0200 to -	0.0001	1016 - 1019
	ATMOSPHERIC			0.0020 (3)		
	LOSS/KM (2.0 deg			****		
	to 2.5 deg)					
ATMOS(7)	TWO WAY	Real*4	dB/km	-0.0200 to -	0.0001	1020 - 1023
1111100(1)	ATMOSPHERIC	recar 1	ab/mii	0.0020 (3)	0.0001	1020 1029
	LOSS/KM (2.5 deg			0.0020		
	to 3.0 deg)					
ATMOS(8)	TWO WAY	Real*4	dB/km	-0.0200 to -	0.0001	1024 - 1027
111110D(0)	ATMOSPHERIC	Ticar 4	dD/RIII	0.0020 (3)	0.0001	1024 1027
	LOSS/KM (3.0 deg			0.0020		
	to 3.5 deg)					
ATMOS(9)	TWO WAY	Real*4	dB/km	-0.0200 to -	0.0001	1028 - 1031
VIMOR(9)	ATMOSPHERIC	near 4	uD/KIII	0.0020 (3)	0.0001	1020 - 1001
	LOSS/KM (3.5 deg			0.0020 (9)		
	` 0					
ATTMOC(10)	to 4.0 deg)	D a = 1* 4	JD/L	0.00004	0.0001	1000 100
ATMOS(10)	TWO WAY	Real*4	dB/km	-0.0200 to -	0.0001	1032 - 1035
	ATMOSPHERIC			$0.0020^{(3)}$		
	LOSS/KM (4.0 deg					
ATTIMEO C (1.1)	to 4.5 deg)	D . 144	10/1	0.0000 /	0.0001	1000 1000
ATMOS(11)	TWO WAY	Real*4	dB/km	-0.0200 to -	0.0001	1036 - 1039

	AMMACCRITTOTC			0.0000(8)		1
	ATMOSPHERIC			$0.0020^{(3)}$		
	LOSS/KM (4.5 deg					
	to 5.0 deg)					
ATMOS(12)	TWO WAY	Real*4	dB/km	-0.0200 to -	0.0001	1040 - 1043
	ATMOSPHERIC			$0.0020^{(3)}$		
	LOSS/KM (> 5.0					
	deg)					
EL_INDEX(0)	BYPASS MAP	Real*4	deg	-1.000 to	0.001	1044 - 1047
	GENERATION	10001		45.000	0.001	1011 1011
	ELEVATION			40.000		
	ANGLE (0)					
EL_INDEX(1)	BYPASS MAP	Real*4	J	-1.000 to	0.001	1048 - 1051
EL_INDEA(1)		Keai"4	deg		0.001	1048 - 1051
	GENERATION			45.000		
	ELEVATION					
	ANGLE (1)					
EL_INDEX(2)	BYPASS MAP	Real*4	deg	-1.000 to	0.001	1052 - 1055
	GENERATION			45.000		
	ELEVATION					
	ANGLE (2)					
EL_INDEX(3)	BYPASS MAP	Real*4	deg	-1.000 to	0.001	1056 - 1059
	GENERATION			45.000		
	ELEVATION					
	ANGLE (3)					
EL_INDEX(4)	BYPASS MAP	Real*4	deg	-1.000 to	0.001	1060 - 1063
EL_INDEX(4)	GENERATION	iteal 4	ueg	45.000	0.001	1000 - 1003
	ELEVATION			45.000		
EL INDEX(*)	ANGLE (4)	D 144	1	1.000.4	0.001	1004 1005
EL_INDEX(5)	BYPASS MAP	Real*4	deg	-1.000 to	0.001	1064 - 1067
	GENERATION			45.000		
	ELEVATION					
	ANGLE (5)					
EL_INDEX(6)	BYPASS MAP	Real*4	deg	-1.000 to	0.001	1068 - 1071
	GENERATION			45.000		
	ELEVATION					
	ANGLE (6)					
EL_INDEX(7)	BYPASS MAP	Real*4	deg	-1.000 to	0.001	1072 - 1075
	GENERATION			45.000		
	ELEVATION					
	ANGLE (7)					
EL_INDEX(8)	BYPASS MAP	Real*4	deg	-1.000 to	0.001	1076 - 1079
	GENERATION	10001		45.000	0.001	10.00 10.0
	ELEVATION			19.000		
	ANGLE (8)					
EL INDEX(9)	BYPASS MAP	Real*4	dea	-1.000 to	0.001	1080 - 1083
ET_INDEV(3)		near"4	deg		0.001	1000 - 1003
	GENERATION			45.000		
	ELEVATION					
DI DID TITLE	ANGLE (9)	D 11 :	1	1.000		400: :::=
EL_INDEX(10)	BYPASS MAP	Real*4	deg	-1.000 to	0.001	1084 - 1087
	GENERATION			45.000		
	ELEVATION					
	ANGLE (10)					
		1				1000 1001
EL_INDEX(11)	BYPASS MAP	Real*4	\deg	-1.000 to	0.001	1088 - 1091

	ELEVATION	1			1	1
	ANGLE (11)					
TFREQ MHZ	TRANSMITTER	Integer*4	MHz	2700 to	1	1092 - 1095
11102Q_W112	FREQUENCY	Integer 4	WIIIZ	3000		1032 - 1030
BASE_DATA_T CN	POINT CLUTTER SUPPRESSION THRESHOLD (TCN)	Real*4	dB	0.0 to 30.0	0.1	1096 - 1099
REFL_DATA_T OVER	RANGE UNFOLDING OVERLAY THRESHOLD (TOVER)	Real*4	dB	0.0 to 20.0	0.1	1100 - 1103
TAR_H_DBZ0_L P	HORIZONTAL TARGET SYSTEM CALIBRATION (dBZ0) FOR LONG PULSE	Real*4	dBZ	-65.00 to - 45.00	0.01	1104 - 1107
TAR_V_DBZ0_L P	VERTICAL TARGET SYSTEM CALIBRATION (DBZ0) FOR LONG PULSE	Real*4	dBZ	-65.00 to - 45.00	0.01	1108 - 1111
INIT_PHI_DP	INITIAL SYSTEM DIFFERENTIAL PHASE	Integer*4	deg	-65.00 to - 45.00	1	1112 - 1115
NORM_INIT_P HI_DP	NORMALIZED INITIAL SYSTEM DIFFERENTIAL PHASE	Integer*4	deg	0 to 359	1	1116 - 1119
LX_LP	MATCHED FILTER LOSS FOR LONG PULSE	Real*4	dB	-3.00 to 0.00	0.01	1120 - 1123
LX_SP	MATCHED FILTER LOSS FOR SHORT PULSE	Real*4	dB	-3.00 to 0.00	0.01	1124 - 1127
METEOR_PAR AM	/K/**2 HYDROMETEOR REFRACTIVITY FACTOR	Real*4	N/A	0.10 to 1.10	0.01	1128 - 1131
BEAMWIDTH	ANTENNA BEAMWIDTH	Real*4	deg	0.80 to 1.00	0.01	1132 - 1135
ANTENNA_GAI N	ANTENNA GAIN INCLUDING RADOME	Real*4	dB	43.00 to 47.00	0.01	1136 - 1139
SPARE	N/A	N/A	N/A	N/A	N/A	1140 - 1143
VEL_MAINT_LI MIT	VELOCITY CHECK DELTA MAINTENANCE LIMIT	Real*4	m/s	0.5 to 2.0	0.1	1144 - 1147
SPARE	SPARE	N/A	N/A	N/A	N/A	1148 - 1151

	T	1	T .		T	T
VEL_DEGRAD_	VELOCITY	Real*4	m/s	0.5 to 2.0	0.1	1152 - 1155
LIMIT	CHECK DELTA					
	DEGRADE LIMIT					
WTH_DEGRAD	SPECTRUM	Real*4	m/s	0.5 to 2.0	0.1	1156 - 1159
_LIMIT	WIDTH CHECK					
	DELTA					
	DEGRADE LIMIT					
H_NOISETEMP	HORIZONTAL	Real*4	K	350.0 to	0.1	1160 - 1163
_DGRAD_LIMI	SYSTEM NOISE			1200.0		
$\overline{\mathrm{T}}$	TEMP DEGRADE					
	LIMIT					
SPARE	SPARE	N/A	N/A	N/A	N/A	1164 - 1167
V_NOISETEMP	VERTICAL	Real*4	K	350.0 to	0.1	1168 - 1171
_DGRAD_LIMI	SYSTEM NOISE	1,001		1200.0	3.2	1100 1111
T T	TEMP DEGRADE			1200.0		
_	LIMIT					
SPARE	SPARE	N/A	N/A	N/A	N/A	1172 - 1175
KLY DEGRAD	KLYSTRON	Real*4	dB	1.0 to 10.0	0.1	1176 - 1179
E_LIMIT	OUTPUT TARGET	iteal 4	uD	1.0 10 10.0	0.1	1110 - 1119
17_T11A11 1	CONSISTENCY					
TC COULO	DEGRADE LIMIT	Dool* 4	dD	92.00 +-	0.01	1100 1100
TS_COHO	COHO POWER AT	Real*4	dBm	23.00 to	0.01	1180 - 1183
II ma aw	A1J4	D 144	ID.	29.00	0.01	1104 1105
H_TS_CW	AME	Real*4	dBm	0.00 to	0.01	1184 - 1187
	HORIZONTAL			30.00		
	TEST SIGNAL					
CDADE	POWER	NT/A	NT/A	NT/A	NT/A	1100 1101
SPARE	SPARE	N/A	N/A	N/A	N/A	1188 - 1191
SPARE	SPARE	N/A	N/A	N/A	N/A	1192 - 1195
TS_STALO	STALO POWER	Real*4	dBm	12.00 to	0.01	1196 - 1199
	AT A1J2			18.00		
AME_H_NOISE	AME NOISE	Real*4	dB	10.00 to	0.01	1200 - 1203
_ENR	SOURCE			35.00		
	HORIZONTAL					
	EXCESS NOISE					
	RATIO					
XMTR_PEAK_P	MAXIMUM	Real*4	kW	500.00 to	0.01	1204 - 1207
WR_HIGH_LIM	TRANSMITTER			950.00		
IT	PEAK POWER					
	ALARM LEVEL					
XMTR_PEAK_P	MINIMUM	Real*4	kW	200.00 to	0.01	1208 - 1211
WR_LOW_LIMI	TRANSMITTER	_		700.00		
T	PEAK POWER					
	ALARM LEVEL					
H_DBZ0_DELT	DIFFERENCE	Real*4	dB	1.0 to 10.0	0.1	1212 - 1215
A LIMIT	BETWEEN	IVOUI I	(L)	1.0 00 10.0	J.1	1212 1210
11_1111111	COMPUTED AND					
	TARGET					
	HORIZONTAL					
WIIDEGIIOI D1	DBZ0 LIMIT	D = =1* 4	ID.	0.0 +- 10.0	0.1	1010 1010
THRESHOLD1	BYPASS MAP	Real*4	dB	-6.0 to 10.0	0.1	1216 - 1219
	GENERATOR					
	NOISE					

	THRESHOLD					
THRESHOLD2	BYPASS MAP GENERATOR REJECTION RATIO THRESHOLD	Real*4	dB	0.0 to 10.0	0.1	1220 - 1223
CLUT_SUPP_D GRAD_LIM	CLUTTER SUPPRESSION DEGRADE LIMIT	Real*4	dB	35.0 to 50.0	0.1	1224 - 1227
SPARE	SPARE	N/A	N/A	N/A	N/A	1228 - 1231
RANGE0_VALU E	TRUE RANGE AT START OF FIRST RANGE BIN	Real*4	km	0.000 to 3.000	0.001	1232 - 1235
XMTR_PWR_M TR_SCALE	SCALE FACTOR USED TO CONVERT TRANSMITTER POWER BYTE DATA TO WATTS	Real*4	W (4)	0.0000100 to 0.0015000	0.0000001	1236 - 1239
V_DBZ0_DELT A_LIMIT	DIFFERENCE BETWEEN COMPUTED AND TARGET VERTICAL DBZ0 LIMIT	Real*4	dB	1.0 to 10.0	0.1	1240 - 1243
TAR_H_DBZ0_S P	HORIZONTAL TARGET SYSTEM CALIBRATION (dBZ0) FOR SHORT PULSE	Real*4	dBZ	-58.00 to - 38.00	0.01	1244 - 1247
TAR_V_DBZ0_S P	VERTICAL TARGET SYSTEM CALIBRATION (DBZ0) FOR SHORT PULSE	Real*4	dBZ	-58.00 to - 38.00	0.01	1248 - 1251
DELTAPRF	SITE PRF SET (A=1, B=2, C=3, D=4, E=5)	Integer*4	N/A	1 to 5	1	1252 - 1255
SPARE	N/A	N/A	N/A	N/A	N/A	1256 - 1259
SPARE	N/A	N/A	N/A	N/A	N/A	1260 - 1263
TAU_SP	PULSE WIDTH OF TRANSMITTER OUTPUT IN SHORT PULSE	Integer*4	nsec	1000 to 2000	1	1264 - 1267
TAU_LP	PULSE WIDTH OF TRANSMITTER OUTPUT IN LONG PULSE	Integer*4	nsec	3000 to 6000	1	1268 - 1271
NC_DEAD_VAL UE	NUMBER OF 1/4 KM BINS OF CORRUPTED	Integer*4	N/A	1 to 10	1	1272 - 1275

	DAMA AMENID OF				T	1
	DATA AT END OF					
MAIL DE CD	SWEEP	T , \$4		* 00.1	1	1050 1050
TAU_RF_SP	RF DRIVE PULSE	Integer*4	nsec	500 to	1	1276 - 1279
	WIDTH IN			2000		
MAIL DE LD	SHORT PULSE	T , +4		00004	1	1000 1000
TAU_RF_LP	RF DRIVE PULSE	Integer*4	nsec	3000 to	1	1280 - 1283
	WIDTH IN LONG			6000		
SEG1LIM	PULSE MODE CLUTTER MAP	Real*4	J	0.50 - 3.00	0.01	1284 - 1287
SEGILIM	BOUNDARY	Rear"4	deg	0.50 - 5.00	0.01	1284 - 1287
	ELEVATION					
	BETWEEN					
	SEGMENTS 1 & 2					
SLATSEC	SITE LATITUDE -	Real*4	s	0.0000 to	0.0001	1288 - 1291
SLAISEC	SECONDS	iteal 4	ъ	59.9999	0.0001	1200 - 1291
SLONSEC	SITE	Real*4	s	0.0000 to	0.0001	1292 - 1295
BEOTIBLE	LONGITUDE -	Ticar 4	B	59.9999	0.0001	1202 1200
	SECONDS			00.000		
SPARE	N/A	N/A	N/A	N/A	N/A	1296 - 1299
SLATDEG	SITE LATITUDE -	Integer*4	deg	0 to 89	1	1300 - 1303
	DEGREES					
SLATMIN	SITE LATITUDE -	Integer*4	min	0 to 59	1	1304 - 1307
	MINUTES					
SLONDEG	SITE	Integer*4	deg	0 to 179	1	1308 - 1311
	LONGITUDE -					
	DEGREES					
SLONMIN	SITE	Integer*4	min	0 to 59	1	1312 - 1315
	LONGITUDE -					
	MINUTES					
SLATDIR	SITE LATITUDE -	String	N/A	N or S	N/A	1316 - 1319
	DIRECTION					
SLONDIR	SITE	String	N/A	E or W	N/A	1320 - 1323
	LONGITUDE -					
GD L D E	DIRECTION	27/1	27/1	27//	27/4	
SPARE	N/A	N/A	N/A	N/A	N/A	1324 - 1327
VCPAT11	VOLUME	See Note (5)	N/A	N/A	N/A	1328 - 2499
	COVERAGE					
	PATTERN					
	NUMBER 11					
VODATIO1	DEFINITION	C - N - t - (F)	NT/A	NT/A	NT/A	2500 - 3671
VCPAT21	VOLUME	See Note (5)	N/A	N/A	N/A	2500 - 3671
	COVERAGE PATTERN					
	NUMBER 21 DEFINITION					
VCPAT31	VOLUME	See Note (5)	N/A	N/A	N/A	3672 - 4843
VOIAIDI	COVERAGE	bee more (a)	IN/A	IN/A	IN/A	0012 - 4040
	PATTERN					
	NUMBER 31					
	DEFINITION					
VCPAT32	VOLUME	See Note (5)	N/A	N/A	N/A	4844 - 6015
, 0111102	COVERAGE	200 11000 (9)		1 1/11	- 1111	1011 0010
	PATTERN					
		1	L		1	1

	MIMDED 00	T				
	NUMBER 32					
SPARE	DEFINITION		N/A	N/A	N/A	6016 - 7187
SPARE	SPARE		N/A	N/A	N/A	6016 - 7187
SPARE	SPARE		N/A	N/A	N/A	7188 - 8359
AZ_CORRECTI ON_FACTOR	AZIMUTH BORESIGHT CORRECTION FACTOR	Real*4	deg	-1.000 to 1.000	0.001	8360 - 8363
EL_CORRECTI ON_FACTOR	ELEVATION BORESIGHT CORRECTION FACTOR	Real*4	deg	-1.000 to 1.000	0.001	8364 - 8367
SITE_NAME	SITE NAME DESIGNATION	String	N/A	N/A	N/A	8368 - 8371
ANT_MANUAL _SETUP.IELMI N	MINIMUM ELEVATION ANGLE	SInteger*4 ⁽⁷	deg	-39.99573 to 39.99573 (9)(10)	360/216	8372 - 8375
ANT_MANUAL _SETUP.IELMA X	MAXIMUM ELEVATION ANGLE	Integer*4	deg	0.00000 to 219.99573 (9)(11)	360/216	8376 - 8379
ANT_MANUAL _SETUP.FAZVE LMAX	MAXIMUM AZIMUTH VELOCITY	Integer*4	deg/s	0 to 100	1	8380 - 8383
ANT_MANUAL _SETUP.FELVE LMAX	MAXIMUM ELEVATION VELOCITY	Integer*4	deg/s	0 to 48	1	8384 - 8387
ANT_MANUAL _SETUP.IGND_ HGT	SITE GROUND HEIGHT (ABOVE SEA LEVEL)	Integer*4	m	-100 to 12000	1	8388 - 8391
ANT_MANUAL _SETUP.IRAD_ HGT	SITE RADAR HEIGHT (ABOVE GROUND)	Integer*4	m	0 to 1000	1	8392 - 8395
AZ_POS_SUST AIN_DRIVE	AZIMUTH MOTOR POSITIVE SUSTAINING DRIVE	Real*4	N/A	0.00 to 60.00	0.01	8396 - 8399
AZ_NEG_SUST AIN_DRIVE	AZIMUTH MOTOR NEGATIVE SUSTAINING DRIVE	Real*4	N/A	-60.00 to 0.00	0.01	8400 - 8403
AZ_NOM_POS_ DRIVE_SLOPE	INITIAL ESTIMATE FOR AZIMUTH POSITIVE DRIVE SLOPE	Real*4	N/A	0.00 to 5.00	0.01	8404 - 8407
AZ_NOM_NEG_ DRIVE_SLOPE	INITIAL ESTIMATE FOR AZIMUTH	Real*4	N/A	0.00 to 5.00	0.01	8408 - 8411

	NEGATIVE					
18 PPPPP 1 675	DRIVE SLOPE	D 1/ :	27/4	0.005	0.001	0.110
AZ_FEEDBACK _SLOPE	AZIMUTH VELOCITY FEEDBACK SLOPE	Real*4	N/A	0.000 to 500.000	0.001	8412 - 8415
EL_POS_SUST AIN_DRIVE	ELEVATION MOTOR POSITIVE SUSTAINING DRIVE	Real*4	N/A	0.00 to 60.00	0.01	8416 - 8419
EL_NEG_SUST AIN_DRIVE	ELEVATION MOTOR NEGATIVE SUSTAINING DRIVE	Real*4	N/A	-60.00 to 0.00	0.01	8420 - 8423
EL_NOM_POS_ DRIVE_SLOPE	INITIAL ESTIMATE FOR ELEVATION POSITIVE DRIVE SLOPE	Real*4	N/A	0.00 to 5.00	0.01	8424 - 8427
EL_NOM_NEG_ DRIVE_SLOPE	INITIAL ESTIMATE FOR ELEVATION NEGATIVE DRIVE SLOPE	Real*4	N/A	0.00 to 5.00	0.01	8428 - 8431
EL_FEEDBACK _SLOPE	ELEVATION VELOCITY FEEDBACK SLOPE	Real*4	N/A	0.000 to 500.00	0.001	8432 - 8435
EL_FIRST_SLO PE	SLOPE FOR FIRST INTERVAL OF ELEVATION POSITION FEEDBACK CURVE	Real*4	N/A	0.50 to 100.00	0.01	8436 - 8439
EL_SECOND_S LOPE	SLOPE FOR SECOND INTERVAL OF ELEVATION POSITION FEEDBACK CURVE	Real*4	N/A	0.10 to 100.00	0.01	8440 - 8443
EL_THIRD_SL OPE	SLOPE FOR THIRD INTERVAL OF ELEVATION POSITION FEEDBACK CURVE	Real*4	N/A	0.00 to 100.00	0.01	8444 - 8447
EL_DROOP_PO S	NEUTRAL DROOP ANGLE	Real*4	deg	-180.00 to 180.00	0.01	8448 - 8451
EL_OFF_NEUT	90 DEGREE OFF	Real*4	N/A	-100.00 to	0.01	8452 - 8455

RAL DRIVE	NEUTRAL DRIVE			100.00		
SPARE	N/A	N/A	N/A	N/A	N/A	8456 - 8695
RVP8NV.IWAV	WAVEGUIDE	Integer*4	m	0 to 1000	1	8696 - 8699
EGUIDE_LENG	LENGTH					
TH						
SPARE	N/A	N/A	N/A	N/A	N/A	8700 - 8743
VEL_DATA_TO	VELOCITY	Real*4	dB	0.0 to 20.0	0.1	8744 - 8747
VER	UNFOLDING					
	OVERLAY					
WIDMII DAMA	THRESHOLD	Real*4	dB	0.0 to 20.0	0.1	8748 - 8751
WIDTH_DATA_ TOVER	WIDTH UNFOLDING	Keai"4	аь	0.0 to 20.0	0.1	8748 - 8791
TOVER	OVERLAY					
	THRESHOLD					
SPARE	N/A	N/A	N/A	N/A	N/A	8752 - 8763
DOPPLER_RAN	START RANGE	Real*4	km	-32.768 to	0.001	8764 - 8767
GE_START	FOR FIRST	1001	11111	32.768	0.001	0.01
	DOPPLER					
	RADIAL					
MAX_EL_INDE	THE MAXIMUM	Integer*4	N/A	0 to 11	1	8768 - 8771
X	INDEX FOR THE					
	EL_INDEX					
CECOL IM	PARAMETERS	D 14:4	1	0.00 4.70	0.01	2552 2552
SEG2LIM	CLUTTER MAP	Real*4	deg	0.80 - 4.50	0.01	8772 - 8775
	BOUNDARY ELEVATION					
	BETWEEN					
	SEGMENTS 2 & 3.					
SEG3LIM	CLUTTER MAP	Real*4	deg	1.00 - 6.00	0.01	8776 - 8779
	BOUNDARY					
	ELEVATION					
	BETWEEN					
	SEGMENTS 3 & 4.					
CECALIM	OLIMAND MAD	Real*4	1	1.00 0.00	0.01	0700 0700
SEG4LIM	CLUTTER MAP BOUNDARY	Real"4	deg	1.00 - 8.00	0.01	8780 - 8783
	ELEVATION					
	BETWEEN					
	SEGMENTS 4 & 5.					
NBR_EL_SEGM	NUMBER OF	Integer*4	N/A	1 - 5	1	8784 - 8787
ENTS	ELEVATION					
	SEGMENTS IN					
	ORDA CLUTTER					
H MOIGE LON	MAP. HORIZONTAL	Real*4	dBm	-95.0 to	0.1	0700 0701
H_NOISE_LON G	RECEIVER	near 4	upm	-95.0 to -80.0	0.1	8788 - 8791
G G	NOISE FOR			-00.0		
	LONG PULSE					
ANT_NOISE_T	ANTENNA NOISE	Real*4	K	30.0 to	0.1	8792 - 8795
EMP	TEMPERATURE			200.0		

H_NOISE_SHO RT	HORIZONTAL RECEIVER NOISE FOR SHORT PULSE	Real*4	dBm	-90.0 to -75.0	0.1	8796 - 8799
H_NOISE_TOL ERANCE	HORIZONTAL RECEIVER NOISE TOLERANCE	Real*4	dB	0.0 to 6.0	0.1	8800 - 8803
MIN_H_DYN_R ANGE	MINIMUM HORIZONTAL DYNAMIC RANGE	Real*4	dB	85.0 to 95.0	0.1	8804 - 8807
GEN_INSTALL ED	AUXILIARY GENERATOR INSTALLED (FAA ONLY)	String	N/A	T or F	N/A	8808 - 8811
GEN_EXERCIS E	AUXILIARY GENERATOR AUTOMATIC EXERCISE ENABLED (FAA ONLY)	String	N/A	T or F	N/A	8812 - 8815
V_NOISE_TOL ERANCE	VERTICAL RECEIVER NOISE TOLERANCE	Real*4	dB	0.0 to 6.0	0.1	8816 - 8819
MIN_V_DYN_R ANGE	MINIMUM VERTICAL DYNAMIC RANGE	Real*4	dB	85.0 to 95.0	0.1	8820 - 8823
ZDR_BIAS_DG RAD_LIM	SYSTEM DIFFERENTIAL REFLECTIVITY BIAS DEGRADE LIMIT	Real*4	dB	0.0 to 10.0	0.1	8824 - 8827
SPARE	SPARE					8828 - 8843
V_NOISE_LON G	VERTICAL RECEIVER NOISE FOR LONG PULSE	Real*4	dBm	-95.0 to - 80.0	0.1	8844 - 8847
V_NOISE_SHO RT	VERTICAL RECEIVER NOISE FOR SHORT PULSE	Real*4	dBm	-90.0 to - 75.0	0.1	8848 - 8851
ZDR_DATA_TO VER	ZDR UNFOLDING OVERLAY THRESHOLD	Real*4	dB	-10.00 to 10.00	0.1	8852 - 8855
PHI_DATA_TO VER	PHI UNFOLDING OVERLAY THRESHOLD	Real*4	dB	-10.00 to 10.00	0.1	8856 - 8859
RHO_DATA_TO VER	RHO UNFOLDING OVERLAY	Real*4	dB	-10.00 to 10.00	0.1	8860 - 8863

	THRESHOLD				1	
STALO_POWE	STALO POWER	Real*4	V	0.00 to	0.01	8864 - 8867
R_DGRAD_LIM IT	DEGRADE LIMIT	iteal 4	ľ	1.00	0.01	0004 - 0007
STALO_POWE R_MAINT_LIMI T	STALO POWER MAINTENANCE LIMIT	Real*4	V	0.00 to 1.00	0.01	8868 - 8871
MIN_H_PWR_S ENSE	MINIMUM HORIZONTAL POWER SENSE	Real*4	dBm	70.00 to 90.00	0.01	8872 - 8875
MIN_V_PWR_S ENSE	MINIMUM VERTICAL POWER SENSE	Real*4	dBm	70.00 to 90.00	0.01	8876 - 8879
H_PWR_SENSE _OFFSET	HORIZONTAL POWER SENSE CALIBRATION OFFSET	Real*4	dB	-100.00 to - 50.00	0.01	8880 - 8883
V_PWR_SENSE _OFFSET	VERTICAL POWER SENSE CALIBRATION OFFSET	Real*4	dB	-100.00 to - 50.00	0.01	8884 - 8887
PS_GAIN_REF	RF PALLET BIAS ERROR	Real*4	dB	-40.00 to - 20.00	0.01	8888 - 8891
RF_PALLET_B ROAD_LOSS	RF PALLET BROADBAND LOSS	Real*4	dB	-10.00 to 0.00	0.01	8892 - 8895
ZDR_CHECK_T HRESHOLD	ZDR CHECK FAILURE THRESHOLD	Real*4	dB	0.00 to 10.00	0.01	8896 - 8899
PHI_CHECK_T HRESHOLD	PHI CHECK FAILURE THRESHOLD	Real*4	deg	0.00 to 20.00	0.01	8900 - 8903
RHO_CHECK_T HRESHOLD	RHO CHECK FAILURE THRESHOLD	Real*4	ratio	0.00 to 1.00	0.01	8904 - 8907
SPARE	SPARE					8908 - 8959
AME_PS_TOLE RANCE	AME POWER SUPPLY TOLERANCE	Real*4	%	0.0 to 20.0	0.1	8960 - 8963
AME_MAX_TE MP	MAXIMUM AME INTERNAL ALARM TEMPERATURE	Real*4	deg C	0.0 to 50.0	0.1	8964 - 8967
AME_MIN_TE MP	MINIMUM AME INTERNAL ALARM TEMPERATURE	Real*4	deg C	0.0 to 50.0	0.1	8968 - 8971
RCVR_MOD_M AX_TEMP	MAXIMUM AME RECEIVER MODULE ALARM TEMPERATURE	Real*4	deg C	0.0 to 65.0	0.1	8972 - 8975
RCVR_MOD_MI N_TEMP	MINIMUM AME RECEIVER	Real*4	deg C	0.0 to 50.0	0.1	8976 - 8979

	MODINE	1		1		
	MODULE					
	ALARM					
DIME MOD MA	TEMPERATURE	D. Idia	1 0	0.0.		
BITE_MOD_MA	MAXIMUM AME	Real*4	deg C	0.0 to 50.0	0.1	8980 - 8983
X_TEMP	BITE MODULE					
	ALARM					
	TEMPERATURE					
BITE_MOD_MI	MINIMUM AME	Real*4	deg C	0.0 to 50.0	0.1	8984 - 8987
N_TEMP	BITE MODULE					
	ALARM					
	TEMPERATURE					
DEFAULT_POL	DEFAULT (H+V)	Integer*4	N/A		1	8988 - 8991
ARIZATION	MICROWAVE					
	ASSEMBLY					
	PHASE SHIFTER					
	POSITION					
TR_LIMIT_DGR	TR LIMITER	Real*4	V		0.01	8992 - 8995
AD_LIMIT	DEGRADE LIMIT					
TR_LIMIT_FAI	TR LIMITER	Real*4	V		0.01	8996 - 8999
L_LIMIT	FAILURE LIMIT					
SPARE	SPARE					9000 - 9003
SPARE	SPARE					9004 - 9007
AME_CURREN	AME PELTIER	Real*4	%		0.1	9008 - 9011
T_TOLERANCE	CURRENT					
	TOLERANCE					
H_ONLY_POLA	HORIZONTAL (H	Integer*4	N/A		1	9012 - 9015
RIZATION	ONLY)	_				
	MICROWAVE					
	ASSEMBLY					
	PHASE SHIFTER					
	POSITION					
V_ONLY_POLA	VERTICAL (V	Integer*4	N/A		1	9016 - 9019
RIZATION	ONLY)					
	MICROWAVE					
	ASSEMBLY					
	PHASE SHIFTER					
	POSITION					
SPARE	SPARE					9020 - 9027
REFLECTOR_B	ANTENNA	Real*4	dB		0.01	9028 - 9031
IAS	REFLECTOR					
	BIAS					
A_MIN_SHELT	LOW	Real*4	deg C		0.1	9032 - 9035
ER_TEMP_WA	EQUIPMENT					
RN	SHELTER					
	TEMPERATURE					
	WARNING LIMIT					
POWER_METE	POWER METER 0	Real*4	v	-10.00 to	.02	9036 - 9039
R_ZERO	BIAS VOLTAGE	_		10.00		
SPARE	N/A	N/A	N/A	N/A	N/A	9040 - 9467
~		1 ~ 1/ + 4	4 1/4 4	1 2 1/2 2	- 1/4.4	10010 0101

Notes:

- Format is "mm/dd/yy", where mm = month, dd = day, and yy = year.
 Format is "hh-mm-ss", where hh = hour, mm = minutes, and ss = seconds.
- 3. See Table XVI for default value.

- 4. Value of the LSB of the power measurement.
- 5. See Table XI for format.
- 6. See Appendix B for unit definitions and standard symbology.
- 7. Two's complement integer value should be multiplied by 360/2¹⁶ to get the actual value in degrees.
- 8. Range shown is after applicable scaling and conversion has been applied.
- 9. Precision is shown to 5 decimal places. Actual precision is 13 digits.
- 10. Integer range is -7281 to 7281.
- 11. Integer range is 0 to 40049.
- 12. Format is "baseline" or "current".
- 13. Format is "11", null terminated string. This is always "11", for all builds.
- 14. Format is "10", null terminated string. This number is the build number and changes with each build.
- 15. "T" or "F", null terminated string.

3.2.4.16.1 Table XVI. Two Way Atmospheric Loss

Elevation	Sector	Atmospheric Attenuation (dB/	km)
Angles		Range	Defaults
1	-1.0 deg to -0.5 deg	-0.0200 to -0.0020	-0.0150
2	-0.5 deg to 0.0 deg	-0.0200 to -0.0020	-0.0150
3	0.0 deg to 0.5 deg	-0.0200 to -0.0020	-0.0120
4	0.5 deg to 1.0 deg	-0.0200 to -0.0020	-0.0110
5	1.0 deg to 1.5 deg	-0.0200 to -0.0020	-0.0100
6	1.5 deg to 2.0 deg	-0.0200 to -0.0020	-0.0090
7	2.0 deg to 2.5 deg	-0.0200 to -0.0020	-0.0080
8	2.5 deg to 3.0 deg	-0.0200 to -0.0020	-0.0070
9	3.0 deg to 3.5 deg	-0.0200 to -0.0020	-0.0060
10	3.5 deg to 4.0 deg	-0.0200 to -0.0020	-0.0060
11	4.0 deg to 4.5 deg	-0.0200 to -0.0020	-0.0050
12	4.5 deg to 5.0 deg	-0.0200 to -0.0020	-0.0050
13	>5.0 deg	-0.0200 to -0.0020	-0.0050

3.2.4.16.2 Table XVII Digital Radar Data Generic Format Blocks (Message Type 31)

3.2.4.16.2.1 Table XVII-A Data Header Block

NAME	DESCRIPTION	FORMAT	UNITS (1)	RANGE (2)	ACCURACY/ PRECISION	BYTE LOCATION ⁽³⁾
Radar Identifier	ICAO Radar Identifier	String	N/A	(e.g., "KTLX")	N/A	0 to 3
Collection Time	Radial data collection time in milliseconds past midnight GMT	Integer*4	msec	0 to 86,399,999	± 2000/ 1	4 to 7
Modified Julian Date	Current Julian date - 2440586.5	Integer*2	d	1 to 65,535	1	8 and 9
Azimuth Number	Radial number within elevation scan	Integer*2	N/A	1 to 720	1	10 and 11
Azimuth Angle	Azimuth angle at which radial data was collected	Real*4	deg	0 to 359.95605 5	± 0.1°/ NA	12 to 15
Compression Indicator	Indicates if message type 31 is compressed and	Code*1	N/A	0 = uncompres sed	N/A	16

	what method of compression is used. The Data Header Block is not compressed.			1 = compresse d using BZIP2 2 = compresse d using zlib 3 = future use		
Spare	Spare and forces halfword alignment	N/A	N/A	N/A	N/A	17
Radial Length	Uncompressed length of the radial in bytes including the Data Header block length	Integer*2	N/A	9352 to 14288 bytes	1	18 and 19
Azimuth Resolution Spacing	Azimuthal spacing between adjacent radials	Code*1	N/A	$1 = 0.5^{\circ} {}^{(5)}$ $2 = 1.0^{\circ}$	N/A	20
Radial Status	Radial Status (e.g. first, last)	Code*1	N/A	0 to 132 ⁽⁶⁾	N/A	21
Elevation Number	Elevation number within volume scan	Integer*1	N/A	1 to 25	1	22
Cut Sector Number	Sector Number within cut	Integer*1	N/A	0 to 3 (7)	1	23
Elevation Angle	Elevation angle at which radial radar data was collected	Real*4	deg	-7.0° to 70.0°	± 0.1°/ NA	24 to 27
Radial Spot Blanking Status	Spot blanking status for current radial, elevation scan and volume scan	Code*1	N/A	0=none (8) 1=radial 2=elevatio n 4=volume	N/A	28
Azimuth Indexing Mode	Azimuth indexing value (Set if azimuth angle is keyed to constant angles)	Scaled Integer*1	N/A	0=no indexing 1 to 100 means indexing angle of 0.01° to 1.00°	± 0.1°/ 0.01	29
Data Block Count	Number of data blocks (N)	Integer*2	N/A	4 to 9 (9)	1	30 and 31
Data Block pointer	Pointer to Data Block for Volume Data Constant Type (see Table XVII-E) (10)	Integer*4	N/A	44 to 64	1	32 to 35

Data Block pointer	Pointer to Data Block for Elevation Data Constant Type (see Table XVII- F) (10)	Integer*4	N/A	84 or greater	1	36 to 39
Data Block pointer	Pointer to Data Block for Radial Data Constant Type (see Table XVII- H) (10)	Integer*4	N/A	92 or greater	1	40 to 43
Data Block pointer	Pointer to Data Block for Moment "REF" (see Tables XVII-B and XVII-I) (11)(12)	Integer*4	N/A	112 or greater	1	44 to 47
Data Block pointer	Pointer to Data Block for Moment "VEL" (see Tables XVII-B and XVII-I) (11)(12)	Integer*4	N/A	112 or greater	1	48 to 51
Data Block pointer	Pointer to Data Block for Moment "SW" (see Tables XVII-B and XVII- I) (11)(12)	Integer*4	N/A	112 or greater	1	52 to 55
Data Block pointer	Pointer to Data Block for Moment "ZDR" (see Tables XVII-B and XVII-I) (11)(12)	Integer*4	N/A	112 or greater	1	56 to 59
Data Block pointer	Pointer to Data Block for Moment "PHI" (see Tables XVII-B and XVII- I) (11)(12)	Integer*4	N/A	112 or greater	1	60 to 63
Data Block pointer	Pointer to Data Block for Moment "RHO" (see Tables XVII-B and XVII-I) (11)(12)	Integer*4	N/A	112 or greater	1	64 to 67

3.2.4.16.2.2 Table XVII-B Data Block (Descriptor of Generic Data Moment Type)

NAME	DESCRIPTION	FORMAT	UNITS	RANGE	ACCURACY/ PRECISION	BYTE LOCATION
Data Block Type	Indicates Data Moment Type	String	N/A	"D"	1	0
Data Moment Name	Name of data moment	String	N/A	"VEL", "REF", "SW", "RHO", "PHI",	1	1 to 3

				"ZDR"		
Reserved (14)	Reserved (14)	Integer*4	N/A	Set to 0	1	4 to 7
Number of Data Moment Gates	Number of data moment gates for current radial (NG)	Integer*2	N/A	0 to 1840	1	8 and 9
Data Moment Range	Range to center of first range gate	Scaled Integer*2	km	0.000 to 32.768	± 0.05/ 0.001	10 and 11
Data Moment Range Sample Interval	Size of data moment sample interval	Scaled Integer*2	km	0.25 to 4.0	± 0.05/ 0.001	12 and 13
TOVER	Threshold parameter which specifies the minimum difference in echo power between two resolution gates for them not to be labeled "overlayed"	Scaled Integer*2	dB	0.0 to 20.0	± 0.1/ 0.1	14 and 15
SNR Threshold	SNR threshold for valid data	Scaled SInteger*2	dB	-12.0 to +20.0	±0.1/0.125	16 and 17
Control Flags	Indicates special control features	Code*1	N/A	0 = none 1 = recombined azimuthal radials 2 = recombined range gates 3 = recombined radials and range gates to legacy resolution	1	18
Data Word Size	Number of bits (DWS) used for storing data for each Data Moment gate	Integer*1	N/A	8 or 16	1	19
Scale	Scale value used to convert Data Moments from integer to floating point data (15)	Real*4	N/A	Greater than 0.0 to 65535.0	1	20 to 23
Offset	Offset value used to convert Data Moments from	Real*4	N/A	2.0 to 65535.0	1	24 to 27

	integer to floating point data (15)				
Data Moments	Variable length array of data	See Table XVII-I	See Table XVII-I	1	28 to 2427
	moments				

3.2.4.16.2.3 Table XVII-E Data Block (Volume Data Constant Type)

NAME	DESCRIPTION	FORMAT	UNITS	RANGE	ACCURACY/ PRECISION	BYTE LOCATION
Data Block Type	Indicates Data Constant Type	String	N/A	"R"	N/A	0
Data Name	Volume Data Constant Block	String	N/A	"VOL"	N/A	1 to 3
LRTUP (size of data block)	Size of data block in bytes	Integer*2	N/A	44	1	4 and 5
Version Number	Major Change (17)	Integer*1	N/A	1 to 255 See Note (1)	N/A	6
Version Number	Minor Change (18)	Integer*1	N/A	0 to 255 See Note (1)	N/A	7
Lat	Latitude	Real*4	deg	0.0 to 90.0	TBD/NA	8 to 11
Long	Longitude	Real*4	deg	-180.0 to +180.0	TBD/NA	12 to 15
Site Height	Height of site base above sea level	SInteger*2	m	-100 to 12000	± 1/1	16 and 17
Feedhorn Height	Height of feedhorn above ground	Integer*2	m	0 to 1000	± 1/1	18 and 19
Calibration Constant (dBZ0)	Reflectivity scaling factor without correction by the ground noise scaling factors given in the adaptation data message ⁽²⁶⁾	Real*4	dB	-99.0 to +99.0	± 1/ NA	20 to 23
Horizontal SHV Tx Power	Transmitter Power for Horizontal Channel	Real*4	kW	0 to 999.9	± 0.5/ NA	24 to 27
Vertical SHV Tx Power	Transmitter Power for Vertical Channel	Real*4	kW	0 to 999.9	± 0.5/ NA	28 to 31
System Differential Reflectivity	Calibration of system Z_{DR}	Real*4	dB	-7.8750 to +7.7500	± 0.1/ NA	32 to 35
Initial System Differential	Initial Φ_{DP} for the system	Real*4	deg	0.0 to 360.0	± 1.0°/NA	36 to 39

Phase						
Volume Coverage Pattern Number	Identifies Volume Coverage Pattern being used	Integer*2	N/A	1 to 767 See Appendix C for available VCPs	1	40 and 41
Processing Status (28)	Processing option bits	Integer*2	N/A	Bit 0 - RxR Noise Bit 1 - CBT	N/A	42 and 43

3.2.4.16.2.4 Table XVII-F Data Block (Elevation Data Constant Type)

NAME	DESCRIPTION	FORMAT	UNITS	RANGE	ACCURACY/ PRECISION	BYTE LOCATION
Data Block Type	Indicates Data Constant Type	String	N/A	"R"	N/A	0
Data Name	Elevation Data Constant Block	String	N/A	"ELV"	N/A	1 to 3
LRTUP (size of data block)	Size of data block in bytes	Integer*2	N/A	12	1	4 and 5
ATMOS	Atmospheric Attenuation Factor	Scaled SInteger*2	dB/km	-0.02 to -0.002	± 0.004/ 0.001	6 and 7
Calibration Constant (dBZ0)	Scaling constant used by the Signal Processor for this elevation to calculate reflectivity	Real*4	dB	-99.0 to + 99.0	±1/NA	8 to 11

3.2.4.16.2.5 Table XVII-H Data Block (Radial Data Constant Type)

NAME	DESCRIPTION	FORMAT	UNITS	RANGE	ACCURACY/	BYTE
					PRECISION	LOCATION(3)
Data Block	Indicates Data	String	N/A	"R"	N/A	0
Type	Constant Type					
Data Name	Radial Data	String	N/A	"RAD"	N/A	1 to 3
	Constant Block					
LRTUP (size	Size of data block	Integer*2	N/A	28	1	4 and 5
of data	in bytes					
block)						
Unambiguou	Unambiguous	Scaled	km	115 to 511	$\pm 0.1/$	6 and 7
\mathbf{s}	range, Interval	Integer*2			0.1	
Range	Size					
Noise Level	Horizontal	Real*4	dBm	-100.0 to	± 0.2 /	8 to 11
	Channel			-50.0	NA	
Noise Level	Vertical Channel	Real*4	dBm	-100.0 to	± 0.2 /	12 to 15
				-50.0	NA	
Nyquist	Nyquist Velocity	Scaled	m/s	8 to 35.61	$\pm 0.003/$	16 and 17
Velocity		Integer*2			0.01	
Spares	Needed to force 4	N/A	N/A	N/A	N/A	18 and 19
	byte boundary					
Calibration	Horizontal	Real*4	dBZ	-99.0 to +99.0	N/A	20 to 23

Constant(dB	Channel					
Z0)						
Calibration	Vertical Channel	Real*4	dBZ	-99.0 to +99.0	N/A	24 to 27
Constant(dB						
Z0)						

3.2.4.16.2.6 Table XVII-I Data Moment Characteristics and Conversion for Data Names (Production (25))

Data Name	Data Moment Descriptio n Reflectivity (Z)	Data Word Size (bits)	Data Size (bits) (19)	Format Integer *1	Off set (15)(20) 66.	Scale (15)(20)	Data Range as coded (21) 2 to 255	Data Range after conve rsion -32.0 to	Units dBZ	Acc urac y/ Prec isio n ⁽²⁷⁾ ± 1.0/	Ra ng e (k m)	LDM (16)
"VEL "	Velocity (V)	8	8	Integer *1	129	2.0 or 1.0	2 to 255	+94.5 -63.5 to +63.0 or -127.0 to +126.0	m/s	0.50 ± 1.0/0 .50 or ± 1.0/1 .00	300	1200
"SW "	Spectrum Width (o)	8	8	Integer *1	129 .0	2.0	2 to 255	-63.5 to +63.0	m/s	± 1.0/ 0.50	300	1200
"ZDR "	$\begin{array}{c} \text{Differential} \\ \text{Reflectivity} \\ \text{(Z}_{DR}) \end{array}$	8	8	Integer *1	128 .0	16.0	2 to 255	-7.8750 to +7.937 5	dB	± 0.4 (22) / 0.06	300	1200
"PHI "	Differential Phase (Φ_{DP})	16	10	Integer *2	2.0	2.836 1	2 to 1023	0.0 to 360.0	deg	±2.5° (23)/ 0.35	300	2400
"RHO "	Correlation Coefficient (ρ _{hv})	8	8	Integer *1	- 60. 5	300.0	2 to 255	0.2083 to 1.0516	N/A	±0.0 06 (24)/ 0.00 33	300	1200

3.2.4.16.2.7 Table XVII-K Generic Format Header Block and Data Block (Message Type 31) (Notional description showing pointers)

NAME	DESCRIPTION	BYTE LO		
Radar Identifier	ICAO Radar Identifier (e.g., KTLX) 4 characters	0 to 3		
Collection Time	Zulu reference time at which radial data was collected	4 to 7		
Modified Julian Date	Current Julian date - 2440586.5	8 and 9		
Azimuth Number	Radial number within elevation scan	10 and 11		
Azimuth Angle	Azimuth angle at which radial data was collected	12 to 15		
Compression Indicator	Indicates compression method	16		
Spare	Spare	17		
Radial Length	Uncompressed length of radial	18 and 19		
Azimuth Resolution Spacing Azimuthal spacing between adjacent radials				
Radial Status				
levation Number Elevation number within volume scan				
Cut Sector Number Sector Number within scan		23		
Elevation Angle	Elevation angle at which radial radar data was collected	24 to 27		
Radial Spot Blanking Status	Spot blanking status for current radial.	28		
Azimuth Indexing Mode	Specifies indexing mode and value	29		
Data Block Count	Number of data blocks (N = 9)	30 and 31		
Data Block pointer #1	Pointer to Data Constant Block "VOL"	32 to 35		
Data Block pointer #2	Pointer to Data Constant Block "ELV"	36 to 39		
Data Block pointer #3	Pointer to Data Constant Block "RAD"	40 to 43		
Data Block pointer #4	Pointer to Data Moment "REF"	44 to 47		
Data Block pointer #5	Pointer to Data Moment "VEL"	48 to 51		
Data Block pointer #6	Pointer to Data Moment "SW "	52 to 55		
Data Block pointer #7	Pointer to Data Moment "ZDR"	56 to 59		
Data Block pointer #8	Pointer to Data Moment "PHI"	60 to 63		
Data Block pointer #9	Pointer to Data Moment "RHO"	64 to 67-		

Data Block #1 (Volume Data Constant Type)					
NAME	DESCRIPTION	BYTE LOC			
Data Block Type	Alphanumeric string ("R" = Constant Data Type)	0			
Data Name	Alphanumeric string "VOL"	1 to 3			
LRTUP (size of data block)	Size of data block in bytes is 44	4 and 5			
Version Number	Major Change	6			
Version Number	Minor Change	7			
LAT	Latitude	8 to 11			
LONG	Longitude	12 to 15			
SITE HEIGHT	Height of site base above sea level (meters)	16 and 17			
FEEDHORN HEIGHT	Height of feedhorn above ground (meters)	18 and 19			
Calibration Constant (dBZ0)	Reflectivity scaling factor without correction	20 to 23			
SHV Tx Power	Transmitter Power for Horizontal Channel	24 to 27			
SHV Tx Power	Transmitter Power for Vertical Channel	28 to 31			
System Differential Reflectivity	Calibration of system z _{DR}	32 to 35			
Initial System Differential Phase	Initial Φ_{DP} for the system	36 to 39			
Volume Coverage Pattern Number (VCP)	Identifies Volume Coverage Pattern being used	40 and 41			
Spares	Needed to force 4 byte boundary	42 and 43			

ı	Data Block # 2 (Elevation Data Constant Type)							
ı	NAME	DESCRIPTION	BYTE LOC					
•	Data Block Type	Alphanumeric string ("R" = Constant Data Type)	0					
i	Data Name	Alphanumeric string "ELV"	1 to 3					
ŧ	LRTUP (size of data block)	Size of data block in bytes is 8	4 and 5					
į	ATMOS	Atmospheric Attenuation Factor	6 and 7					
ŧ	Calibration Constant (dBZ0)	Scaling constant used to calculate reflectivity for this elevation	8 to 11					

I

Data Block #3 (Radial Data Constant Type)								
NAME	DESCRIPTION	BYTE LOC						
Data Block Type	Alphanumeric string ("R" = Constant Data Type)	0						
Data Name	Alphanumeric string "RAD"	1 to 3						
LRTUP (size of constant parameter block)	Size of data block in bytes is 20	4 and 5						
Unambiguous Range	Unambiguous range, Interval Size	6 and 7						
Noise Level	Horizontal Channel	8 to 11						
Noise Level	Vertical Channel	12 to 15						
Nyquist Velocity	Nyquist Velocity	16 and 17						
Sparae	Needed to force 4 byte houndary	18 and 19						

Data Block # 4 (First Data Moment - Reflectivity)						
NAME	DESCRIPTION	BYTE LOC				
→ Data Elock Type	String ("D" = Data Moment Type)	0				
Data Moment Name	String ("REF")	1 to 3				
Reserved (14)	Reserved (14)	4 to 7				
Number of Data Moment Gates	Number of data moment gates for current radial (NG)	8 and 9				
Data Moment Range	Range to center of first range gate	10 and 11				
Data Moment Range Sample Interval	Size of data moment sample interval	12 and 13				
TOVER	Range folding threshold determination	14 and 15				
"REF" SNR Threshold	Signal to Noise Threshold for Reflectivity	16 and 17				
Control Flags	Indicates special control features	18				
Data Word Size	Number of bits used for each Data Moment gate	19				
Scale	Scale to convert from integer to floating point data	20 to 23				
Offset	Offset to convert from integer to floating point data	24 to 27				
Moment Data ("REF")	Variable length array of moment data	28 to 1867				

	Data Block # 5 (Second Data Moment - Velocity)		
	NAME	DESCRIPTION	BYTE LOC
٠	Data Block Type	String ("D" = Data Moment Type)	0
	Data Moment Name	String ("VEL")	1 to 3
	Reserved (14)	Reserved (14)	4 to 7
	Number of Data Moment Gates	Number of data moment gates for current radial (NG)	8 and 9
	Data Moment Range	Range to center of first range gate	10 and 11
	Data Moment Range Sample Interval	Size of data moment sample interval	12 and 13
	TOVER	Range folding threshold determination	14 and 15
	"VEL" SNR Threshold	Signal to Noise Threshold for Velocity	16 and 17
	Control Flags	Indicates special control features	18
	Data Word Size	Number of bits used for each Data Moment gate	19
	Scale	Scale to convert from integer to floating point data	20 to 23
	Offset	Offset to convert from integer to floating point data	24 to 27
	Moment Data ("VEL)	Variable length array of moment data	28 to 1227

	Data Block #6 (Third Data Moment - Spectrum Width)		
ı	NAME	DESCRIPTION	BYTE LOC
÷	Data Block Type	String ("D" = Data Moment Type)	0
l	Data Moment Name	String ("SW")	1 to 3
l	Reserved (14)	Reserved (14)	4 to 7
l	Number of Data Moment Gates	Number of data moment gates for current radial (NG)	8 and 9
İ	Data Moment Range	Range to center of first range gate	10 and 11
l	Data Moment Range Sample Interval	Size of data moment sample interval	12 and 13
l	TOVER	Range folding threshold determination	14 and 15
l	"SW" SNR Threshold	Signal to Noise Threshold for Spectrum Width	16 and 17
l	Control Flags	Indicates special control features	18
	Data Word Size	Number of bits used for each Data Moment gate	19
ı	Scale	Scale to convert from integer to floating point data	20 to 23
ì	Offset	Offset to convert from integer to floating point data	24 to 27
	Moment Data ("SW)	Variable length array of moment data	28 to 1227

	Data Block # 7 (Fourth Data Moment - Differential Reflectivity)		
	NAME	DESCRIPTION	BYTE LOC
٠	Data Block Type	String ("D" = Data Moment Type)	0
	Data Moment Name	String ("ZDR")	1 to 3
	Reserved (14)	Reserved (14)	4 to 7
	Number of Data Moment Gates	Number of data moment gates for current radial (NG)	8 and 9
	Data Moment Range	Range to center of first range gate	10 and 11
	Data Moment Range Sample Interval	Size of data moment sample interval	12 and 13
	TOVER	Range folding threshold determination	14 and 15
	"ZDR" SNR Threshold	Signal to Noise Threshold for Differential Reflectivity	16 and 17
	Control Flags	Indicates special control features	18
	Data Word Size	Number of bits used for each Data Moment gate	19
	Scale	Scale to convert from integer to floating point data	20 to 23
	Offset	Offset to convert from integer to floating point data	24 to 27
	Moment Data ("ZDR")	Variable length array of moment data	28 to 1227

Data Block # 8 (Fifth Data Moment - Differential Phase)			
l	NAME	DESCRIPTION	BYTE LOC
-	Data Block Type	String ("D" = Data Moment Type)	0
ı	Data Moment Name	String ("PHI ")	1 to 3
i	Reserved (14)	Reserved (14)	4 to 7
	Number of Data Moment Gates	Number of data moment gates for current radial (NG)	8 and 9
	Data Moment Range	Range to center of first range gate	10 and 11
	Data Moment Range Sample Interval	Size of data moment sample interval	12 and 13
ı	TOVER	Range folding threshold determination	14 and 15
ı	"PHI" SNR Threshold	Signal to Noise Threshold for Differential Phase	16 and 17
	Control Flags	Indicates special control features	18
	Data Word Size	Number of bits used for each Data Moment gate	19
	Scale	Scale to convert from integer to floating point data	20 to 23
	Offset	Offset to convert from integer to floating point data	24 to 27
	Moment Data ("PHI")	Variable length array of moment data	28 to 1227

Y	Data Block #9 (Sixth Data Moment - Correlation Coefficient)		
	NAME	DESCRIPTION	BYTE LOC
	Data Block Type	String ("D" = Data Moment Type)	0
	Data Moment Name	String ("RHO")	1 to 3
	Reserved (14)	Reserved (14)	4 to 7
	Number of Data Moment Gates	Number of data moment gates for current radial (NG)	8 and 9
	Data Moment Range	Range to center of first range gate	10 and 11
	Data Moment Range Sample Interval	Size of data moment sample interval	12 and 13
	TOVER	Range folding threshold determination	14 and 15
	"RHO" SNR Threshold	Signal to Noise Threshold for Correlation Coefficient	16 and 17
	Control Flags	Indicates special control features	18
	Data Word Size	Number of bits used for each Data Moment gate	19
	Scale	Scale to convert from integer to floating point data	20 to 23
	Offset	Offset to convert from integer to floating point data	24 to 27
	Moment Data ("RHO")	Variable length array of moment data	28 to 1227

- (1) See Appendix B for unit definitions and standard symbology.
- (2) This field represents the range of the item after any applicable scaling and conversion is done.
- (3) Byte location is relative to beginning of this message.
- (4) 1 January 1970 00.00 GMT = 1 Modified Julian Date.
- (5) Azimuthal spacing of radials is the commanded value not necessarily the actual spacing.
- (6) Format Defined in Table III-C. (Radial status definition)
- (7) A value of 0 is valid only for continuous surveillance cuts.
- (8) Equals 0 when spot blanking disabled; equals 4 when spot blanking enabled and no spot blanking radials in current elevation cut; equals 6 when there are no spot blanked radials in current elevation cut and current radial not spot blanked; equals 7 when current radial is spot blanked.
- (9) The number of data moments in each radial can vary from 1 to 6 depending on the VCP in use. There will always be 3 data blocks for "VOL", "ELV", and "RAD" plus the data moment block for "REF". Therefore, this parameter varies from 4 to 9.
- (10) Pointer is offset relative to beginning of Data Header Block (see table XVII-A). Note the Data Header Block for data blocks "VOL", "ELV", and "RAD" must always be present but the pointers are not order or location dependent but shown in this order in Table XVII-A for illustrative and clarity purposes.
- (11) Pointer is offset relative to beginning of Data Header Block (see table XVII-A) but if the pointer value is 0, there is no Data Moment Block referenced. Normally, if the Data Moment is missing, this pointer would not be present and the Data Block Count reduced. However, it is optional to set pointers to zero or simply delete the pointer to the missing Data Moment Block.
- (12) The presence of these Moment Pointers in each radial is determined by the VCP controlling the radar and can vary from none to 6 unique Moments.
- (13) Format Defined in Table III-B. (Range conversion)
- (14) "Reserved" means the field has a future use but not implemented at this time and must be set to zero. The field is not a "Spare" available for future use.
- (15) A non-zero Scale value indicates unsigned integer data that can be converted to floating point data using the Scale and Offset fields, i.e., F = (N OFFSET) / SCALE where N is the integer data value and F is the resulting floating point value. A scale value of 0 indicates floating point moment data for each range gate.
- (16) LDM is the amount of space in bytes required for a data moment array and equals ((NG * DWS) / 8) where NG is the number of gates at the gate spacing resolution specified and DWS is the number of bits stored for each gate (DWS is always a multiple of 8).
- (17) Major version number. A larger major version number indicates a structural change has occurred within the ICD description. The current version is 2 for Build 14.
- (18) Minor version number. A larger minor version number indicates that one or more data moment parameters have been added but the major structure is intact. The current version is 0 for Build 10.0.

- (19) Data Size is the number of bits for the specified data moment used to offset and scale the data for recording into the Data Word Size (DWS). As long as the Offset and Scaling parameters are applied correctly to the recorded data for conversion back to engineering units, no knowledge of the Data Size is needed.
- (20) The Scale and Offset values shown in Table XVII-I are typical values for the Moments shown. The conversion of the recorded integer values to meteorological values should always use the Scale and Offset values found in the Data Moment Block for each Data Moment since they could change from radial to radial in future implementations. (21) For all data moment integer values N = 0 indicates received signal is below threshold and N = 1 indicates range
- folded data. Actual data range is N = 2 through 255, or 1023 for data resolution size 8, and 10 bits respectively.
- (22) For Z_{DR} , the accuracy of 0.3 dB can be achieved for $SNR \ge 20$ dB, for $\rho_{hv} \ge 0.99$ (rain), for $\sigma > 2$ ms⁻¹, and the dwell time of 50 ms.
- (23) For Φ_{DP} , the accuracy of 2.0 degrees can be achieved for SNR \geq 20 dB, for σ > 2 ms⁻¹, and the dwell time of 50 ms.
- (24) For r_{hv} , the accuracy of 0.005 can be achieved for SNR \geq 20 dB, for $\rho_{hv} \geq$ 0.99 (rain), for $\sigma > 2$ ms⁻¹, and the dwell time of 50 ms.
- (25) Accuracy, precision, and range of each data moment is officially specified in the System Specification Document.
- (26) This volumetric dBZ0 value is relative to the blue sky noise level shown in performance data in the appropriate pulse width field -- "Short Pulse Noise" or "Long Pulse Noise".
- (27) The precision can be calculated exactly as 1.0/Scale but is shown here with only a selected number of significant digits.
- (28) Bits not listed in Processing Status are reserved for future use.

3.2.5 Network Time Protocol (NTP)

3.2.5.1 LAN (RDA/RPG) Clock Synchronization

Network Time Protocol (NTP) will be implemented for clock synchronization of the RPG and Master System Control Function (MSCF) processors. The RDA will serve as the master clock. The RPG A processor will serve as a secondary master clock in the event the RDA is unavailable. LAN components within the RPG and RDA (e.g. routers, LAN switches, etc.) will also use the RDA clock as the master and the RPG as a secondary. In FAA Redundant, the NTP master and secondary relationship is only specific to a given channel. Cross-channel secondary NTP sources are not implemented. For the frame relay hub routers serving DoD MSCFs, the local host NWS RDA and RPG are the primary and secondary time servers, respectively. For the frame relay hub routers service FAA MSCFs, the hub router will obtain time from only one of the FAA RDAs as primary and its respective RPG as secondary. The radar chosen for time service will correspond to the MSCF that is used to configure the frame relay hub router. Reference the TCP/IP ICD for design detail.

3.2.5.2 Applicable Standards

The Network Time Protocol Standard RFC 1305 applies to the RDA/RPG LAN interface. If the master clock sends a time adjustment packet \pm 1000 seconds, the client RPG processor(s) will reject the packet and manual intervention will be required to reset the client clocks within \pm 1000 seconds of the RDA master clock. The exception is during the boot sequence of the client RPG processor(s). During the boot sequence, NTP will allow for a one-time setting of the client clock that is > 1000 seconds from its master clock. The initial clock set during RPG software loads should be set within \pm 1000 seconds of the RDA clock.

4 Appendix A Glossary Table

Acronym /	Description
Abbreviation	
A	Antenna/Pedestal
A/D	Analog/Digital
AC	Air conditioner
AIS	Alarm Indication Signal
AMP	Ampere
ANSI	American National Standards Institute
ANT	Antenna

L D C FICTION	
ARC/VSWR	Arc/Voltage Standing Wave Ratio
ARP	Address Resolution Protocol
ASCII	American Standard Code for Information Interchange
ATTEN	Attenuator
AVSET	Automated Volume Scan Evaluation and Termination
BDDS	Base Data Distribution System
BITE	Built-in-Test-Equipment
С	Another designator for Communications
CAL	Calibration
CF	Clutter Filter
CHAN	Channel
CI	Configuration Item (hardware)
CMD	Command
СОНО	Coherent
COM	Communications
CPCI	Computer Program Configuration Item
CSU	Channel Service Unit
CTR	Control
CW	Contiguous Wave
DOC	Department of Commerce
DoD	Department of Defense
DOT	Department of Transportation
ED	Edge Detected
EQUIP	Equipment
FAA	Federal Aviation Administration
FO	Filtered Occurrence
FREQ	Frequency
GEN	Generator
GPS	Global Positioning System
HCI	Human Computer Interface
I/O	Input/Output
ICD	Interface Control Document
ICMP	Internet Control Message Protocol
ID, I.D.	Identification
IHL	Internet Header Length
IN	Inoperative
INIT	Initialization
IP	Internet Protocol
KD	Delayed Klystron
KLY	Klystron
KM	Kilometer
KW	Kilowatts
LAN	Local Area Network
LOG	Local Area Network Logarithmic
	Least Significant Bit
LSB	E
MAINT	Maintenance
MLOS	Microwave Line-Of-Sight
MM	Maintenance Mandatory
MR	Maintenance Required
MSB	Most Significant Bit
MSCF	Master Station Console Function

N/A	Not Applicable
NTP	Network Time Protocol
NWS	National Weather Service
OC	Occurrence
ORDA	Open RDA
ORPG	Open RPG
OSF	Operational Support Facility
OSI	Open System Interconnect
PED	Pedestal
PFN	Pulse Forming Network
PRF	Pulse Repetition Frequency
PVC	Permanent Virtual Channel
PWR	Power
PCU	Pedestal Control Unit
PMC	Program Management Committee
PPP	Point-to-Point Protocol
R	Another designator for the Receiver
RAI	Resource Availability Indication
RCV	Another representation for Receiver
RCVR	Receiver
RDA	Radar Data Acquisition area (hardware and software)
REG	Regulator
RF	Radiated Frequency
RMS	Remote Monitoring Subsystem
RPG	Radar Product Generation area (hardware and software)
SEC	Secondary Alarm
SEQ	Sequence
SG	Sigmet
SIG	Signal
SNMP	Simple Network Management Protocol
SP	Signal Processor
SPIP	Signal Processor Interface Panel
ST	System Test Software
STALO	Stable Local Oscillator
SW	Spectrum Width
SYS	System Information
T	Tower/Utilities
T1 TCM	Type 1 communications carrier link (1.544 megabits/second)
TCM TCP	Trellis Encoded Modulation Transmission Control Protocol
	Transmission Control Protocol Temporature
TEMP	Temperature
TOUTS	Time-outs
TR	Another designator for the Transmitter
TST	Test
UART	Universal Asynchronous Receiver/Transmitter
UDP	User Datagram
UPS	Uninterruptible Power Supply
UTL	Utilities
V	Volts
V & V	Verification & Validation
VCP	Volume Coverage Pattern

VDC	Volts Direct current
VEL	Velocity
VSWR	Voltage Standing Wave Ratio
WG	Wave Guide
WSR-88D	Weather Service Radar - 88 Doppler
XMT	Another representation for Transmitter

5 Appendix B - Unit Definitions and Symbology

Unless otherwise noted, the units and symbology contained in this document adhere to those set forth in The International System of Units (SI). In some special cases there may be system limitations that force the use of non-standard symbology. In other special cases the quantity might not be recognized by the SI but is commonly used within the meteorological and radar engineering communities.

References:

1) NIST Reference on Constants, Units, and Uncertainty (http://physics.nist.gov/cuu/index.html)

Quantity	Name	Symbol
Angular Velocity	radian per second (2)	rad/s
	degree per second (4)	deg/s ⁽⁵⁾
Area	square meter (2)	m^2 (5)
Computer Data	byte (4)	byte (5)
	octet (4)	octet (5)
	halfword (4)	halfword (5)
Electrical Current	ampere (1)	A
Electrical Potential Difference	volt (2)	V
	kilovolt	kV
	millivolt	mV
Frequency	hertz (2)	Hz
	megahertz	MHz
Height	kilometer	km
Length	meter (1)	m
	kilometer	km
	nautical mile (3)	nm ⁽⁵⁾
	statute mile (4)	mi ⁽⁵⁾
Mass	kilogram (1)	kg
Percent	percent (4)	% (5)
Plane Angle	degree (3)	deg ⁽⁵⁾
	minute (3)	min ⁽⁵⁾
	radian ⁽²⁾	rad
	second (3)	s ⁽⁵⁾
Power	decibel	dB (3)
	decibels above one milliwatt	dBm ⁽⁵⁾
	kilowatt	kW
	megawatt	MW
	milliwatt	mW
	watt (2)	W
Pressure	bar ⁽³⁾	bar
-	millibar (3)	mb ⁽⁵⁾

decibels of equivalent	dBZ
knot ⁽³⁾	$\mathrm{kt}^{(5)}$
meter per second (2)	m/s
mile per hour (4)	mph ⁽⁵⁾
degrees Celsius (2)	deg C (5)
K	kelvin (1)
second (1)	s
microsecond	usec (5)
millisecond	msec (5)
nanosecond	nsec (5)
minute (3)	min
hour (3)	h
day ⁽³⁾	d
month (4)	mo ⁽⁵⁾
year (4)	yr ⁽⁵⁾
cubic meter (2)	m^3 ⁽⁵⁾
	reflectivity knot ⁽³⁾ meter per second ⁽²⁾ mile per hour ⁽⁴⁾ degrees Celsius ⁽²⁾ K second ⁽¹⁾ microsecond millisecond nanosecond minute ⁽³⁾ hour ⁽³⁾ day ⁽³⁾ month ⁽⁴⁾ year ⁽⁴⁾

Notes:

- 1. SI base unit
- 2. SI derived unit
- 3. Non-SI unit deemed acceptable for use by the SI
- 4. Unit not recognized by SI
- 5. Non-SI unit symbology

6 Appendix C Volume Coverage Patterns

The following table indicates the VCP numbers implemented for each build. Definitions for each VCP may be redefined for each builds.

Build Number	9.0	10.0
	11	11
	12	12
	21	21
	31	31
	32	32
	121	$121^{(1)}$
	211	211
	212	212
	221	221

(1) The VCP Definition has changed for this build.

WF Type Legend

Abbreviation	WF Type
CS	Contiguous Surveillance
CD/W	Contiguous Doppler with Range Ambiguity
В	Batch
CD/WO	Contiguous Doppler without Range Ambiguity
SZCS	Contiguous Surveillance with SZ-2 Phase Coding
SZCD	Contiguous Doppler with SZ-2 Phase Coding

VOLUME COVERAGE PATTERN 11

SCAN STRATEGY 1 SHORT PULSE

Scan				Surveil	llance					
Eleva	AZ	Perio	WF	PRF	No	4 No.	5 No.	6 No.	7 No.	8 No.
tion	Rate	d	Type	No.	Pulse	Pulse	Pulse	Pulse	Pulse	Pulse
(deg)	(deg/s	(sec)			s	s	s	s	s	s
	ec)									
0.5	18.67	19.27	CS	1	17	-	-	-	-	-
	7									
0.5	19.22	18.72	CD/W	-	-	44	<u>52</u>	56	61	66
	6									
1.45	19.84	18.14	CS	1	16	-	-	-	-	-
	5									
1.45	19.22	18.72	CD/W	-	-	44	<u>52</u>	56	61	66
	6									
2.4	16.11	22.34	В	1	6	35	<u>41</u>	43	46	50
2.4	7	20.12	D.	-		0.5		10	10	
3.4	17.89	20.12	В	2	6	35	<u>41</u>	43	46	50
4.0	7	20.10	D	2		0.5	1.0	40	10	T 0
4.3	17.89	20.12	В	2	6	35	<u>41</u>	43	46	50
7 0	7	90.69	В	3	10	25	41	40	4.0	F O
5.3	$\begin{array}{c} 17.45 \\ 7 \end{array}$	20.62	В	3	10	35	41	43	46	50
6.2	17.46	20.61	В	3	10	35	41	43	46	50
0.2	8	20.01	В	J	10	55	41	40	40	50
7.5	25.17	14.30	CD/W	_	_	34	41	43	46	50
1.0	0	14.50	O	_	-	04	41	40	40	30
8.7	25.40	14.17	CD/W	_	_	33	41	43	46	50
0.7	0	14.11	0				11	10	10	00
10.0	25.42	14.16	CD/W	_	_	33	41	43	<u>46</u>	50
10.0	2	11.10	0			00	11	10	10	00
12.0	25.46	14.13	CD/W	_	-	33	41	43	46	50
	6		0						==	
14.0	25.51	14.11	CD/W	_	-	33	41	43	<u>46</u>	50
	0		0							
16.7	25.59	14.06	CD/W	-	-	33	41	43	46	50
	8		0							
19.5	25.69	14.01	CD/W	-	-	33	41	43	46	50
	7		О							

Figure C-1 Volume Coverage Pattern 11

Default Doppler PRF numbers are bolded and underlined.

VOLUME COVERAGE PATTERN 12

SCAN STRATEGY: 1 SHORT PULSE

Scan				Surveil	lance	Doppler PRF No.				
Eleva	AZ	Perio	WF	PRF	No	4 No.	5 No.	6 No.	7 No.	8 No.
tion	Rate	d	Type	No.	Pulse	Pulse	Pulse	Pulse	Pulse	Pulse
(deg)	(deg/s	(sec)			s	s	s	s	s	s
	ec)									

0.5	21.14	17.02	CS	1	15	-	-	-	-	-
0.5	24.99 4	14.40	CD/W	-	-	34	<u>40</u>	43	46	50
0.9	21.14 9	17.02	CS	1	15	-	-	-	-	-
0.9	25.99 4	14.40	CD/W	-	-	34	<u>40</u>	43	46	50
1.3	21.14 9	17.02	CS	1	15	-	-	-	-	-
1.3	25.99 4	14.40	CD/W	-	-	34	<u>40</u>	43	46	50
1.8	24.64 2	14.61	В	1	3	25	<u>29</u>	32	34	37
2.4	26.40 0	13.64	В	2	3	25	<u>30</u>	32	35	38
3.1	26.40 0	13.64	В	2	3	25	<u>30</u>	32	35	38
4.0	26.40 0	13.64	В	2	3	25	<u>30</u>	32	35	38
5.1	28.00 4	12.86	В	3	3	25	<u>30</u>	32	35	38
6.4	28.00 4	12.86	В	3	3	25	<u>30</u>	32	35	38
8.0	28.40 0	12.68	CD/W O	-	-	30	35	<u>38</u>	41	44
10.0	28.88 3	12.46	CD/W O	-	-	29	34	37	<u>40</u>	44
12.5	28.74 0	12.53	CD/W O	-	-	29	34	37	40	44
15.6	28.74 0	12.53	CD/W O	-	-	29	34	37	40	44
19.5	28.74 0	12.53	CD/W O	-	-	29	34	37	40	44

Figure C-2 Volume Coverage Pattern 12

VOLUME COVERAGE PATTERN 21

SCAN STRATEGY: 2 SHORT PULSE

	1 0202											
Scan				Surveillance		Doppler PRF No.						
Eleva	AZ	Perio	WF	PRF	No	4 No.	5 No.	6 No.	7 No.	8 No.		
tion	Rate	d	Туре	No.	Pulse	Pulse	Pulse	Pulse	Pulse	Pulse		
(deg)	(deg/s	(sec)			s	s	s	s	s	s		
	ec)											
0.5	11.33	31.63	CS	1	28	-	-	-	-	-		
	8											
0.5	11.36	31.69	CD/W	-	-	75	<u>88</u>	95	103	111		
	0											
1.45	11.33	31.63	CS	1	28	-	-	-	-	-		

	8									
1.45	11.36	31.69	CD/W	-	-	75	<u>88</u>	95	103	111
	0									
2.4	11.18	32.18	В	2	8	59	<u>70</u>	76	82	88
	4									
3.4	11.18	32.18	В	2	8	59	<u>70</u>	76	82	88
	4									
4.3	11.18	32.18	В	2	8	59	<u>70</u>	76	82	88
	4									
6.0	11.18	32.18	В	3	12	59	<u>70</u>	76	82	88
	4									
9.9	14.26	25.25	CD/W	-	-	59	70	76	<u>82</u>	88
	0		O							
14.6	14.32	25.13	CD/W	-	-	59	70	76	<u>82</u>	88
	6		O							
19.5	14.41	24.98	CD/W	-	-	59	70	76	<u>82</u>	88
	4		O							

Figure C-3 Volume Coverage Pattern 21

VOLUME COVERAGE PATTERN 31

SCAN STRATEGY 3

LONG PULSE

Scan					
Elevation	AZ Rate	Period	WF	PRF No.	No Pulses
(deg)	(deg/sec)	(sec)	Type		
0.50	5.043	71.39	CS	1	63
0.50	5.065	71.08	CD/W	2	87
1.50	5.043	71.39	CS	1	63
1.50	5.065	71.08	CD/W	2	87
2.50	5.043	71.39	CS	1	63
2.50	5.065	71.08	CD/W	2	87
3.50	5.065	71.08	CD/WO	2	87
4.50	5.065	71.08	CD/WO	2	87

Figure C-4 Volume Coverage Pattern 31

VOLUME COVERAGE PATTERN 32

SCAN STRATEGY 3 SHORT PULSE

Scan				Surveillance		Doppler PRF No.				
Eleva	AZ	Perio	WF	PRF	No	4 No.	5 No.	6 No.	7 No.	8 No.
tion	Rate	d	Type	No.	Pulse	Pulse	Pulse	Pulse	Pulse	Pulse
(deg)	(deg/s)	(sec)			s	s	s	s	s	s
	ec)									
0.50	4.966	72.49	CS	1	64	-	-	-	-	-
0.50	4.548	71.15	CD/W	-	-	188	<u>220</u>	238	256	278
1.50	4.966	72.49	CS	1	64	-	-	-	-	-
1.50	4.548	71.15	CD/W	-		188	220	238	256	278
2.50	4.065	88.56	В	2	11	188	<u>220</u>	238	256	278
3.50	4.065	88.56	В	2	11	188	<u>220</u>	238	256	278

Figure C-5 Volume Coverage Pattern 32

Default Doppler PRF numbers are bolded and underlined.

VOLUME COVERAGE PATTERN 121

SCAN STRATEGY MPDA SHORT PULSE

BOIL	OIIIAI.	EGI MI	DA	PULSE							
Scan				Surveil		Doppler PRF No.					
Eleva	AZ	Perio	WF	PRF	No	4 No.	5 No.	6 No.	7 No.	8 No.	
tion	Rate	d	Type	No.	Pulse	Pulse	Pulse	Pulse	Pulse	Pulse	
(deg)	(deg/s ec)	(sec)			s	s	s	s	s	s	
0.5	18.67 7	19.28	SZCS	1	17	-	-	-	-	-	
0.5	19.75 4	18.22	SZCD	8	-	43	51	55	59	<u>64</u>	
0.5	27.40 0	13.14	CD/W	6	-	31	37	<u>40</u>	43	46	
0.5	21.40 1	16.82	CD/W	4	-	<u>40</u>	47	51	55	59	
1.45	19.84 2	18.54	SZCS	1	16	-	-	-	-	-	
1.45	19.75 4	18.22	SZCD	8	-	43	51	55	59	<u>64</u>	
1.45	27.40 0	13.14	CD/W	6	-	31	37	<u>40</u>	43	46	
1.45	21.40 1	16.82	CD/W	4	-	<u>40</u>	47	51	55	59	
2.4	16.30 4	22.08	В	1	6	<u>35</u>	41	44	48	52	
2.4	29.04 8	12.39	CD/W O	8	-	29	34	37	40	44	
2.4	27.40 0	13.14	CD/W O	6	-	31	37	<u>40</u>	43	46	
3.35	16.30 4	22.08	В	2	6	<u>39</u>	46	50	54	59	
3.35	29.04 8	12.39	CD/W O	8	-	29	34	37	40	44	
3.35	27.40 0	13.14	CD/W O	6	-	31	37	<u>40</u>	43	46	
4.3	16.30 4	22.08	В	2	6	<u>40</u>	48	52	56	61	
4.3	29.49 8	12.20	CD/W O	7		29	34	37	<u>40</u>	44	
6.0	20.20 4	17.82	В	3	6	34	<u>40</u>	43	47	51	
9.9	29.49 8	12.20	CD/W O	7	-	28	34	37	<u>40</u>	43	
14.6	29.79	12.08	CD/W	8	-	28	33	36	39	<u>43</u>	

	5		O							
19.5	29.79	12.08	CD/W	8	-	28	33	36	39	<u>43</u>
	5		O							

Figure C-6 Volume Coverage Pattern 121

VOLUME COVERAGE PATTERN 211

SCAN STRATEGY SZ-2 SHORT PULSE

Scan				Surveil	lance	Doppler PRF No.				
Eleva	AZ	Perio	WF	PRF	No	4 No.	5 No.	6 No.	7 No.	8 No.
tion	Rate	d	Type	No.	Pulse	Pulse	Pulse	Pulse	Pulse	Pulse
(deg)	(deg/s	(sec)			s	s	s	s	s	s
	ec)									
0.5	18.67	19.28	SZCS	1	17	-	-	-	-	-
	7									
0.5	19.75	18.22	SZCD	-	-	-	-	-	-	<u>64</u>
	3									
1.45	19.84	18.14	SZCS	1	16	-	-	-	-	-
	1									
1.45	19.75	18.22	SZCD	-	-	-	-	-	-	<u>64</u>
	3									
2.4	16.11	22.34	В	1	6	35	<u>40</u>	43	47	51
	7									
3.4	17.89	20.12	В	2	6	33	<u>40</u>	43	46	51
	7									
4.3	17.89	20.12	В	2	6	33	<u>40</u>	43	46	51
	7									
5.3	17.45	20.62	В	3	10	35	<u>40</u>	43	46	51
	7									
6.2	17.46	20.61	В	3	10	35	<u>40</u>	43	46	50
	8									
7.5	25.17	14.30	CD/W	-	-	34	40	<u>43</u>	46	50
	0		O							
8.7	25.40	14.17	CD/W	-	-	33	39	43	<u>46</u>	50
	0		O							
10.0	25.42	14.16	CD/W	-	-	33	39	43	<u>46</u>	50
	2		O							
12.0	25.46	14.14	CD/W	-	-	33	39	42	<u>46</u>	50
	6		О							
14.0	25.51	14.11	CD/W	-	-	33	39	42	<u>46</u>	50
	0		О							
16.7	25.59	14.06	CD/W	-	-	33	39	42	<u>46</u>	50
	8		О							
19.5	25.69	14.01	CD/W	-	-	33	39	42	<u>45</u>	49
	7		O							

Figure C-7 Volume Coverage Pattern 211

Default Doppler PRF numbers are bolded and underlined.

VOLUME COVERAGE PATTERN 212

SCAN STRATEGY: SZ2 SHORT PULSE

Scan				Surveillance Doppler PRF No.						
Eleva AZ Perio WF				PRF	No				8 No.	
	Rate	d	Type	No.	Pulse	Pulse	Pulse	Pulse	Pulse	Pulse
	(deg/s	(sec)	Type	INU.	s	s	s	s	s	s
	ec)	(360)			ы		· ·	13		3
	21.14	17.02	SZCS	1	15	-	-	-	-	-
I I	9	11.02	DZCD	1	10					
	16.89	21.30	SZCD	-	_	_	_	64	-	_
	7	21.00	ыдор					<u> </u>		
	21.14	17.02	SZCS	1	15	-	_	_	-	_
	9	11.02	DECD	1	10					
	16.89	21.30	SZCD	-	-	-	-	64	-	-
	7		2202							
	21.14	17.02	SZCS	1	15	-	-	-	-	-
I I	9	- · · · · · ·	0~	=						
	16.89	21.30	SZCD	-	-	-	-	64	-	-
I I	7									
	24.64	14.61	В	1	3	23	28	30	32	35
I I	2									
	26.40	13.64	В	2	3	24	<u>28</u>	31	33	36
	0									
3.1 2	26.40	13.64	В	2	3	24	28	31	33	36
	0									
4.0 2	26.40	13.64	В	2	3	24	<u>28</u>	31	33	36
	0									
5.1 2	28.00	12.86	В	3	3	24	<u>29</u>	31	34	37
4	4									
6.4	28.00	12.86	В	3	3	24	<u>29</u>	31	34	37
	4									
8.0	28.40	12.68	CD/W	-	-	30	35	<u>38</u>	41	44
(0		O							
10.0	28.88	12.46	CD/W	-	-	29	35	38	<u>41</u>	44
	3		O							
12.5	28.74	12.53	CD/W	-	-	29	35	38	41	<u>44</u>
	0		O							
15.6	28.74	12.53	CD/W	-	-	29	35	38	41	44
(0		O							
19.5	28.74	12.53	CD/W	-	-	29	35	38	41	44
	0		O							ĺ

Figure C-8 Volume Coverage Pattern 212

Default Doppler PRF numbers are bolded and underlined.

VOLUME COVERAGE PATTERN 221

SCAN STRATEGY: SZ-2 SHORT PULSE

Scan			Surveillance		Doppler PRF No.					
Eleva	AZ	Perio	WF	PRF	No	4 No.	5 No.	6 No.	7 No.	8 No.

tion	Rate	d	Type	No.	Pulse	Pulse	Pulse	Pulse	Pulse	Pulse
(deg)	(deg/s	(sec)			s	s	s	s	s	s
	ec)									
0.5	11.33	31.75	SZCS	1	28	-	-	-	-	-
	8									
0.5	15.61	23.06	SZCD	-	-	54	<u>64</u>	70	75	82
	2									
1.45	11.33	31.75	SZCS	1	28	-	-	-	-	-
	8		~-~							
1.45	15.61	23.06	SZCD	-	-	54	<u>64</u>	70	75	82
	2		-							
2.4	10.74	33.50	В	2	8	<u>61</u>	73	79	85	92
0.4	5	22.72	D	2		0.4				0.0
3.4	10.74	33.50	В	2	8	<u>61</u>	73	79	85	92
	5		-							
4.3	10.74	33.50	В	2	8	<u>61</u>	73	79	85	92
	5		-							
6.0	11.18	32.19	В	3	12	<u>59</u>	69	75	81	88
	4		~							
9.9	12.12	29.68	CD/W	-	-	70	83	90	<u>97</u>	105
	9		0							
14.6	12.12	29.68	CD/W	-	-	70	83	90	<u>97</u>	105
	9		0							
19.5	12.12	29.68	CD/W	-	-	70	83	90	<u>97</u>	105
	9		О							

Figure C-9 Volume Coverage Pattern 221