Software

Engineering

Specifying Systems - Intro

何明昕 HE Mingxin, Max

Send your email to c.max@yeah.net with a subject like: SE345-Andy: On What ...

Download from c.program@yeah.net /文件中心/网盘/SoftwareEngineering24S

Topics

- · Domains, Phenomena
- States, Events
- Context Diagrams
- Systems and System Descriptions
- Basic Formalisms for Specifications
 - Boolean Logic
 - Finite State Machines

World, Parts, Phenomena

Example of a Problem Domains

Example of Problem Domains

Example of Problem Domains

Definitions ...

- A phenomenon is a fact, or object, or occurrence that appears or is perceived to exist
- An event is an individual happening, occurring at a particular point in time
 - Events are indivisible and instantaneous
- A state is a relation among individual entities and values, which can change over time
- Individuals are in relation if they share a certain characteristic
 - RelationName(Individual₁, ..., Individual_n)

Events

Events take place at transitions between the states

Relations: Examples

Relation: *Neighbors* (Person_i, Person_j)

Relation:

Sandwich (Bread-slice, Ham-slice, Bread-slice)

Example: States of a DVD Player

State 1: NotPowered (the player is not powered up)

State 2: Powered (the player is powered up)

State 3: Loaded (a disc is in the tray)

State 4: Playing

State 1: NotPoweredEmpty (the player is not powered up and contains no disc)

State 2: NotPoweredLoaded (the player is not powered up and a disc is in the tray)

State 3: PoweredEmpty (the player is powered up and contains no disc)

State 4: PoweredLoaded (the player is powered up and a disc is in the tray)

State 5: Playing

Different Abstractions

(Level of detail)

DVD player

Atomic object

Object composed of parts

Example: States of a DVD Player

System Part (Object)	State Relations
Power button	{Off, On}
Disc tray	{Empty, Loaded}
Play button	{Off, On}
	•••

State Variables

State variable = a physical part or an attribute of an object

State Variable	State Relations
Door lock	{Disarmed, Armed}
Light bulb	{Unlit, Lit}
Counter of failed attempts	{0, 1,, maxNumOfAttempts}
Auto-lock timer	{0, 1,, autoLockInterval}

Hidden States

Observable state: apple's appearance

Hidden state: contains a worm

Goal:

Find the likelihood of different hidden states, for given observable states

States Example: Stock Market

Defining States

- CountingDown(Timer) $\stackrel{\triangle}{=}$ The relation Equals(Timer, τ) holds true for τ decreasing with time
- *Idle*(Timer) $\stackrel{\triangle}{=}$ The relation *Equals*(Timer, τ) holds true for τ remaining constant with time

Microstates and Macrostates

Microstates representing the number of offered shares are aggregated:

Events

Events marking transitions between the states of a trading order:

Event	Description
trade	Causes transition between stock states Buy, Sell, or Hold
submit	Causes transition between trading-order states $InPreparation \rightarrow OrderPending$
matched	Causes transition between trading-order states $OrderPending \rightarrow OrderExecuted$

Context Diagram: DVD Player

Context Diagram: Stock Trading

Problem Decomposition

Machine and Problem Domain

a: specification interface phenomena

b: requirement interface phenomena

Boolean Logic

Propositional Logic			
^	conjunction $(p \text{ and } q)$	\Rightarrow	implication (if p then q)
\	disjunction $(p \text{ or } q)$	\Leftrightarrow	biconditional (p if and only if q)
	negation (not p)	: :=	equivalence (p is equivalent to q)
Predicate Logic (extends propositional logic with two quantifiers)			
A	universal quantification (for all x , $P(x)$))
3	existential quantification	(there exists	x, P(x)

Example: From Req't to Propositions

Label	Declarative sentence (not necessarily a proposition!)
а	The investor can register with the system
b	The email address entered by the investor exists in real world
c	The email address entered by the investor is external to our website
d	The login ID entered by the investor is unique
e	The password entered by the investor conforms to the guidelines
f	The investor enters his/her first and last name, and other demographic info
g	Registration is successful
h	Account with zero balance is set up for the investor

REQ1 represented as a set of propositions

```
a
(∀ email)(∀ id)(∀ pwd) [B(email) ∧ C(email) ∧ D(id) ∧ E(pwd) ⇒ g]
f
g ⇒ h
```

Example: From Req't to Propositions

Label	Propositions (partial list)
m	The action specified by the investor is "buy"
n	The investor specified the upper bound of the "buy" price
0	The investor specified the lower bound of the "sell" price

Label	Propositions (they complete the above list)
p	The investor requests to place a market order
q	The investor is shown a blank ticket where the trade can be specified (action, symbol, etc.)
r	The most recently retrieved indicative price is shown in the currently open order ticket
S	The symbol SYM specified by the investor is a valid ticker symbol
t	The current indicative price that is obtained from the exchange
и	The system executes the trade
v	The system calculates the player's account new balance
w	The system issues a confirmation about the outcome of the transaction
x	The system archives the transaction
	PEO2 represented as a set of pr

REQ2 represented as a set of propositions

```
p \Rightarrow q \land r
s
y = v \land \{ \neg (n \lor o) \lor [(o \land p \lor \neg o \land q) \land (\exists IP)(LB \le IP \le UB)] \}
z = \neg m \lor \{ [\neg n \land (VOL \times IP \le BAL)] \lor [n \land (VOL \times UB \le BAL)] \}
y \land z \Rightarrow u
u \Rightarrow v \land w \land x
```

FSM State Transition Diagram

FSMs with Outputs

