10

15

20

35

WHAT IS CLAIMED IS:

An alkaline storage battery comprising:

a case; and

a positive electrode, a negative electrode, a separator and an electrolyte that are provided in the case;

wherein an amount of the electrolyte retained in the separator is at least 15 mg/cm² in a period, after assembling the battery, from a time the separator is impregnated with the electrolyte to the time the battery is activated.

2. The alkaline storage battery according to claim 1, wherein the separator is formed of sulfonated polypropylene, and sulfur atoms and carbon atoms in the separator satisfy a relationship of (the number of the sulfur atoms)/ (the number of the carbon atoms) = A, where $2.0 \times 10^{-3} \le A \le 5.5 \times 10^{-3}$.

3. The alkaline storage battery according to claim 1, wherein the electrolyte is poured into the case in a vacuum atmosphere.

4. The alkaline storage battery according to claim 1, wherein the separator has a specific surface area ranging from 0.6 m²/g to 0.9 m²/g.

5. The alkaline storage battery according to claim 1, wherein the separator has a median pore diameter of not larger than 30 μm on a volume basis when pores are measured in a range of 0.1 μm to 360 μm with a mercury porosimeter.

6. The alkaline storage battery according to claim 1, wherein the separator has a weight per unit area ranging from 60 g/m² to 85 g/m².

An alkaline storage battery comprising:

a case; and

(a positive electrode, a negative electrode, a separator and an electrolyte that are provided in the case;

wherein a total area X (cm²) of the separator and an amount Y (mg)

of the electrolyte satisfy a relationship of Y/ $X \ge 20$ in a period, after assembling the battery, from a time the separator is impregnated with the electrolyte to the time the battery is activated.

5

8. The alkaline storage battery according to claim 7, wherein the separator is formed of sulfonated polypropylene, and sulfur atoms and carbon atoms in the separator satisfy a relationship of (the number of the sulfur atoms)/ (the number of the carbon atoms) = A, where $2.0 \times 10^{-3} \le A \le 5.5 \times 10^{-3}$.

10

20

35

- 9. The alkaline storage battery according to claim 7, wherein the electrolyte is poured into the case in a vacuum atmosphere.
- 10. The alkaline storage battery according to claim 7, wherein the separator has a specific surface area ranging from 0.6 m²/g to 0.9 m²/g.
 - 11. The alkaline storage battery according to claim 7, wherein the separator has a median pore diameter of not larger than 30 μ m on a volume basis when pores are measured in a range of 0.1 μ m to 360 μ m with a mercury porosimeter.
 - 12. The alkaline storage battery according to claim 7, wherein the separator has a weight per unit area ranging from 60 g/m² to 85 g/m².
- 25 18. An alkaline storage attery comprising:

a case; and

a positive electrode, a negative electrode, a separator and an electrolyte that are provided in the case;

wherein a chemical compound containing manganese is deposited on a surface of the separator.

- 14. The alkaline storage battery according to claim 13, wherein the negative electrode contains a hydrogen absorbing alloy, the hydrogen absorbing alloy containing misch metal and manganese in a composition ratio of 1: B, where $0.2 \le B \le 0.5$.
- 15. The alkaline storage battery according to claim 13, wherein the

electrolyte contains a manganese ion.