

CHỦ ĐỀ 2: PHƯƠNG PHÁP CHIA ĐỐI

Nguyễn Công Hiếu 20195016

Nguyễn Văn Triển 20195934

3 Phạm Văn Thành 20195918

4 Mai Xuân Tuấn 20195938

5 Trịnh Văn Hưng 20195883

6 Nguyễn Hoàng Lương 20195899

PHƯƠNG TRÌNH PHI TUYẾN

Một số phương trình phi tuyến

$$e^{x} - 10x + 7 = 0$$

$$x^{3} + x - 5 = 0$$

$$\cos 2x + x - 5 = 0$$

$$x \sin x - 3 = 0$$

$$x^{5} - 3x^{2} + x - 2 = 0$$

$$\ln x - x + 6 = 0$$

$$3 \tan x - 2x - 3 = 0$$

GIẢI PHƯƠNG TRÌNH PHI TUYẾN

BẰNG PHƯƠNG PHÁP CHIA ĐỘI

Khoảng cách ly nghiệm (k.c.l):

(a,b) là k.c.l nghiệm của phương trình f(x) = 0 nếu trong khoảng đó phương trình cố duy nhất 1 nghiệm.

Cho phương trình f(x) = 0

Định lý về sự liên tục

- f(a).f(b) < 0
- f(x) liên tục trong [a,b]

Định lý: (a,b) là k.c.l nếu

- f(a).f(b) < 0
- f'(x) liên tục trong [a,b]
- f'(x) giữ nguyên dấu trong [a,b]

f(a).f(b) > 0 nhưng có nghiệm

Làm thế nào để tìm khoảng cách ly nghiệm???

Phương pháp tìm k.c.l

Khảo sát hàm số

Vẽ đồ thị hàm số

KHOẢNG CÁCH LY NGHIỆM

Ví dụ về phương pháp:

Khảo sát hàm số: Vẽ đồ thị Xét hàm số $f(x) = x^3 - 3x + 1$ Xét hàm $f(x) = x^3 - 3x + 1$ Ta có: $f'(x) = 3x^2 - 3 = 0$ \Leftrightarrow x = -1 hoăc x = 1 Bảng xét dấu: Χ -∞ $+\infty$ f'(x)f'(x) > 0, $\forall x \in (-2,-1)$ hơn nữa f(-2).f(-1) = -3 < 0.Vậy (-2,-1) là 1 k.c.l nghiệm.

GIẢI THUẬT PHƯƠNG PHÁP CHIA ĐÔI

GIẢI THUẬT PHƯƠNG PHÁP CHIA ĐỐI

Bước 1

Chọn (a,b) là khoảng cách ly nghiệm.

Đặt
$$a_0 = a$$
, $b_0 = b$

GIẢI THUẬT PHƯƠNG PHÁP CHIA ĐÔI

Bước 2

Đặt
$$x_0 = c$$
 và tính $c = \frac{a+b}{2}$

GIẢI THUẬT PHƯƠNG PHÁP CHIA ĐÔI

Bước 3

Tính z = f(c)

Kiểm tra các điều kiện sau:

- ✓ Nếu f(a).z < 0 Khi đó, ta gán $a_1 = a_0$, $b_1 = c$.
- ✓ Nếu f(a).z > 0 Khi đó ta gán $a_1 = c$, $b_1 = b_0$.
- ✓ Nếu f(a).z = 0 thì c chính là nghiệm của f(x) = 0 Tại đây ta dừng thuật toán.

GIẢI THUẬT PHƯƠNG PHÁP CHIA ĐỐI

Bước 4

ĐÁNH GIÁ SAI SỐ

Gọi x* là nghiệm đúng. Ta có:

Bước 0:
$$\Delta_0 = |\mathbf{x}^* - \mathbf{c}_0| \le \frac{b-a}{2^1}$$
, $\Delta_{x_0} = \frac{b-a}{2^1}$

Bước 1:
$$\Delta_1 = |\mathbf{x}^* - \mathbf{c}_1| \le \frac{b-a}{2^2}$$
, $\Delta_{x_1} = \frac{b-a}{2^2}$

...

Bước n:
$$\Delta_n = |\mathbf{x}^* - \mathbf{c}_n| \le \frac{b-a}{2^{n+1}}$$
, $\Delta_{x_n} = \frac{b-a}{2^{n+1}}$

ĐÁNH GIÁ SAI SỐ

Như vậy, ta có sai số tuyệt đối: $err = \Delta_{x_n} = \frac{b-a}{2^{n+1}}$

Mặt khác, ta kiểm tra sự hội tụ về nghiệm:

$$|x^* - x_n| \le \frac{b-a}{2^{n+1}}$$

$$= > \lim_{n \to \infty} |x^* - x_n| \le \lim_{n \to \infty} \frac{b-a}{2^{n+1}} = 0$$

$$= > \lim_{n \to \infty} |x^* - x_n| = 0$$

Vậy dãy $\{x_n\}$ hội tụ về nghiệm của phương trình khi $n \to \infty$.

ĐÁNH GIÁ SAI SỐ

Ngoài ra, với phương pháp chia đôi, ta còn có thể đánh giá được số lần lặp cần thiết:

$$err = \Delta_{x_n} = \frac{b-a}{2^{n+1}}$$

$$= > \frac{1}{err} = \frac{2^{n+1}}{b-a}$$

$$= > 2^{n+1} = \frac{b-a}{err}$$

$$= > n = \log_2 \frac{b-a}{err} - 1$$

SƠ ĐỒ GIẢI THUẬT

True

a = x

False

F(x).F(a) > 0

b = x

 $\Delta x = abs(a-b)$

 $\Delta x < \epsilon$

False

KHOẢNG CÁCH LY NGHIỆM

Ví dụ về phương pháp:

Khảo sát hàm số: Vẽ đồ thị Xét hàm số $f(x) = x^3 - 3x + 1$ Xét hàm $f(x) = x^3 - 3x + 1$ Ta có: $f'(x) = 3x^2 - 3 = 0$ \Leftrightarrow x = -1 hoăc x = 1 Bảng xét dấu: Χ -∞ $+\infty$ f'(x)f'(x) > 0, $\forall x \in (-2,-1)$ hơn nữa f(-2).f(-1) = -3 < 0.Vậy (-2,-1) là 1 k.c.l nghiệm.

VÍ DỤ

Giải phương trình: $x^3 - 2x - 3 = 0$

- Ta có hàm $f(x) = x^3 2x 3$
- Hàm này có nghiệm trong khoảng [-2,-1]

Số lần lặp	a	b	С	f(a)	f(b)	f(c)
1	-2.0	-1.0	-1.5	-1.0	3.0	2.125
2	-2.0	-1.5	-1.75	-1.0	2.125	0.8906
3	-2.0	-1.75	-1.875	-1.0	0.8906	0.0332
4	-2.0	-1.875	-1.9375	-1.0	0.0332	-0.4606
5	-1.9375	-1.875	-1.9062	-0.4606	0.0332	-0.2081

CODE

THỜI GIAN THUẬT TOÁN

BỘ NHỚ SỬ DỤNG CỦA THUẬT TOÁN

UU ĐIỂM \ NHƯỢC ĐIỂM

Ưu điểm	Nhược điểm
 Luôn hội tụ. Rất dễ hiểu, dễ cài đặt. Đáng tin cậy. Giải được hầu hết các lớp phương trình 	 Tốc độ hội tụ chậm. Phụ thuộc vào sự trái dấu của hai đầu mút. Không thể xác định nhiều nghiệm. Để sự chính xác của đáp số cao, cần rất nhiều vòng lặp. Nếu nghiệm gần 1 trong 2 đầu mút thì sự hội tụ sẽ chậm hơn.

THANKS FOR LISTENING