MUST se confirmates (16/2/85) Mag & CC Orbital & April L Momentum. Dobited & motion of & around the unelecte known. ai ortital 1 momentum. l-10 ortatal Lummentum quantum not me -> orfotal. maquete moment quantum mo. ましてる大子、 = it(でメワ)、A to こうない。 to to pro-it of the count of a must some -11-12, mg) = t2/(/+1)//, m/ ly = hatily. = {t [///)}//, m,, lilk, mx} th 12/1, m/ = m/th/1, m/ 1/(2+1)-m2 (m2+1) 8 m3 tisters to

(41)

Fra PireAGO. To= A 1 to unperturbed RE = 72 = (In the presence of Magnette field A = 2 Streamy + vi } = Mor Attperturbed. (PiteA)= Pite2A1 OpiA)ent (A.pi)ei 2 Pi P 2 1 1 2 (Pi) 2 11 > cotoosé a gauge men that. BZ JX A STI A SY Prz 34 Ed = Jointense Bt = SYBX + SYBY, ECB

The everyy shift produced by the alway to quite mall Enz En + DEn.

DENZ (M | AHB | M) & H | KM | AHB | M | P | M | AHB | M | M | EN - EX! "

= KB (M | L + g() M) - - D PM

+ e2B2 (M | E (xi2+4i) | M) - - D DM.

+ KB B2 | (M | C + 94) | M/ | 2

En - En'

$$\begin{array}{c} \text{Larger indices} \\ \text{Larger indices}$$

very small

Diamagnetic Tenm -> $\frac{e^{2}B^{2}}{2mc} \left\langle n \left| \sum \left(x_{i}^{2} + y_{i}^{2} \right) n \right\rangle$ $\sim \frac{e^{2}B^{2}}{2mc} \left(\frac{eB}{me} \right)^{2} \cdot me^{2} \cdot a_{e}^{2}$ $\approx a_{e}^{2} = atomic nadius$ = 5 fill

This term is smaller than the linear in B term, by a factor of 10^{-5} (smaller than the linear term) even for B = 1 tesla.

He \(\times \ti

Na+ - no unfilled shell -> Fully filled shell

· Pure Diamognetic Tenm -

坎

щ

due to diamognetic term -

where. 10> - ground state wave function.

A electronic orbit

I precisal (Additional nution in apposite direction)

origin of diamagnetism.

-

II we assume spherically symmetric atom —
$$\langle x_i^2 \rangle = \langle x_i^2 \rangle = \langle x_i^2 \rangle = \frac{1}{3} \langle n_i^2 \rangle$$

$$\Delta E_0 = \frac{e^2 B^2}{8me^2} \sum_{i=1}^{\frac{1}{3}} \frac{2}{3} \langle 0 | ni^2 | 0 \rangle$$

I nom the Thermodynamics -

Diangenetic magnetization

$$M = -\left(\frac{\partial F}{\partial B}\right)_{T,V}$$
 $F = \text{Helmbull 2 fraction}$
 $e_{T,V}$

$$S = -\left(\frac{\partial F}{\partial T}\right)_{V,8}$$

$$\frac{\partial M}{\partial H} = -40 \cdot \frac{\partial^2 F}{\partial R^2}$$

electron of mass me) in volume V with all shell filled —

$$M = -\frac{\partial E}{\partial B} = -\frac{N}{V} \cdot \frac{\partial}{\partial B} (AED)$$

$$= -\frac{N}{V} \cdot \frac{e^{L}B}{6me} \sum_{i=1}^{R} \langle n_{i}^{2} \rangle$$
all ground state

$$\frac{\partial u_{0}}{\partial u_{0}} = \frac{M}{H} = \frac{u_{0}M}{B} \left[\begin{array}{c} u_{0}M \\ H = B/u_{0} \end{array} \right]$$

$$= -\frac{u_{0}N}{V} \cdot \frac{e^{2}}{Gme} \cdot \sum_{i=1}^{N} \langle p_{i}^{2} \rangle$$

$$= \frac{1}{V} \cdot \frac{u_{0}M}{Gme} \cdot \frac{e^{2}}{I} \cdot \frac{v_{0}}{I} = \frac{1}{V} \langle p_{i}^{2} \rangle$$

$$= \frac{1}{V} \cdot \frac{u_{0}M}{Gme} \cdot \frac{e^{2}}{I} \cdot \frac{v_{0}}{I} = \frac{1}{V} \langle p_{i}^{2} \rangle$$

In c.cr.s
$$\chi_{dia} = -\frac{2Ne^2}{c^2 6 \text{ me V}} \sum_{i=1}^{2} \langle p_i^2 \rangle$$

< 7,2> - mean square of electron distance from renclan

II set = no. of electron in the outer shell of an atom ion and n = measured in madius,

have roughly, same value of <n;2>

Lamour diamagnetic Calculation.

Wer (

()

· Not all electrons in on atom ion have some <n2> but the agreement is quit impranise.

Measured diamognetic susceptibility.

2 m ∞ Xest.m2 [plot shows linearity]

For . Ne,

$$\langle \tau;^2 \rangle \approx (10^{-8})^2 \text{ cm}^2 = 10^{-16} \text{ cm}^2$$

ESA

· Larmowz Dianggnets

T Solid composed of

atoms with all electron. shell tilled.

Negative.
Tors

Elements

Superphibility (molar susceptibility)

Holy Shell)

aking

0

Positive Li + .. -6.7×10^{-6} cm³/nul

That -6.1×10^{-6} -6.1×10^{-6}

Therefore $\frac{1.9 \times 10^{-6}}{900}$ He $\frac{-1.9 \times 10^{-6}}{-7.2 \times 10^{-6}}$ An $\frac{-19.4 \times 10^{-6}}{-28.0 \times 10^{-6}}$ Ke $\frac{-43.0 \times 10^{-6}}{-43.0 \times 10^{-6}}$

Stanford in the

· density: 2220 kg/m3

 $\sqrt{(n^2)_{mi}}$