Statistics for Data Science -1

Lecture 7.2: Conditional Probability: Definition

Usha Mohan

Indian Institute of Technology Madras

Learning objectives

1. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.

Learning objectives

- 1. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.
- 2. Distinguish between independent and dependent events.

Learning objectives

- 1. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.
- 2. Distinguish between independent and dependent events.
- 3. Solve applications of probability.

Conditional Probability

Multiplication rule

Independent events

Bayes' rule

Introduction

We are often interested in determining probabilities when some partial information concerning the outcome of the experiment is available. In such situations, the probabilities are called conditional probabilities.

Example: Roll a dice twice

Example: Roll a dice twice

Experiment: Roll a dice twice

Example: Roll a dice twice

- Experiment: Roll a dice twice
- Sample space:

$$S = \left\{ \begin{array}{l} (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), \\ (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), \\ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), \\ (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), \\ (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), \\ (6,1), (6,2), (6,3), (6,4), (6,5), (6,6), \end{array} \right\}$$

► Each outcome is equally likely to occur with a probability of $\frac{1}{36}$

Suppose further that the first roll of the dice lands on 4.

- Suppose further that the first roll of the dice lands on 4.
- ► Given this information, what is the resulting probability that the sum of the dice is 10?

- Suppose further that the first roll of the dice lands on 4.
- ► Given this information, what is the resulting probability that the sum of the dice is 10?
- In other words, the restricted sample space if the first dice lands of a four $F = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$
- ▶ If each outcome of a finite sample space S is equally

- Suppose further that the first roll of the dice lands on 4.
- ► Given this information, what is the resulting probability that the sum of the dice is 10?
- In other words, the restricted sample space if the first dice lands of a four $F = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$
- ▶ If each outcome of a finite sample space *S* is equally likely, then, conditional on the event that the outcome lies in a subset *F*, all outcomes in F become equally likely.

- Suppose further that the first roll of the dice lands on 4.
- ► Given this information, what is the resulting probability that the sum of the dice is 10?
- In other words, the restricted sample space if the first dice lands of a four $F = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$
- If each outcome of a finite sample space S is equally likely, then, conditional on the event that the outcome lies in a subset F, all outcomes in F become equally likely. In such cases, it is often convenient to compute conditional probabilities of the form P(E|F) by using F as the sample space.

- Suppose further that the first roll of the dice lands on 4.
- ▶ Given this information, what is the resulting probability that the sum of the dice is 10?
- In other words, the restricted sample space if the first dice lands of a four $F = \{(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)\}$
- If each outcome of a finite sample space S is equally likely, then, conditional on the event that the outcome lies in a subset F, all outcomes in F become equally likely. In such cases, it is often convenient to compute conditional probabilities of the form P(E|F) by using F as the sample space.
- Among outcomes in the restricted sample space, the outcome that satisfies the sum of dice is 10 is outcome (4,6). And this happens with Probability $\frac{1}{6}$

▶ Let E denote the event that the sum of the dice is 10 and let F denote the event that the first die lands on 4, then the probability obtained is called the conditional probability of E given that F has occurred. It is denoted by

▶ Let E denote the event that the sum of the dice is 10 and let F denote the event that the first die lands on 4, then the probability obtained is called the conditional probability of E given that F has occurred. It is denoted by

► The probability that event *E* occurs given that event *F* occurs (or conditional on event *F* occurring) is given by

▶ Let E denote the event that the sum of the dice is 10 and let F denote the event that the first die lands on 4, then the probability obtained is called the conditional probability of E given that F has occurred. It is denoted by

► The probability that event *E* occurs given that event *F* occurs (or conditional on event *F* occurring) is given by

$$P(E|F) = \frac{P(E \cap F)}{P(F)}; \ P(F) > 0$$

Conditional probability: Venn diagram illustration

As a further check of the preceding formula for the conditional probability, use it to compute the conditional probability that the sum of a pair of rolled dice is 10, given that the first die lands on 4.

- As a further check of the preceding formula for the conditional probability, use it to compute the conditional probability that the sum of a pair of rolled dice is 10, given that the first die lands on 4.
- $P(E|F) = \frac{P(E \cap F)}{P(F)}$

- As a further check of the preceding formula for the conditional probability, use it to compute the conditional probability that the sum of a pair of rolled dice is 10, given that the first die lands on 4.
- $P(E|F) = \frac{P(E \cap F)}{P(F)}$

Section summary

- 1. Introduced notion of conditional probability
- 2. Formula: $P(E|F) = \frac{P(E \cap F)}{P(F)}$