PCA and CCA based cell type annotation

Ming Tommy Tang

Divingintogeneticsandgenomics.com

Youtube: Chatomics

04/24/2025

Cell type annotation (your method is as good as your reference)

- Marker gene based: manual, requires expert biology knowledge, scGate
- correlation-based: singleR, scmap
- Build a multi-class classifier with random forest/XGBoost (or transformers) etc using the reference and predict in test dataset
- Statistical methods: use PCA or CCA (canonical correlation analysis)

Some fundamentals of eigenvalues and eigenvectors

Watch https://www.3blue1brown.com/lessons/eigenvalues

Calculate eigenvalues and eigenvectors

Finding Eigenvalues and Eigenvectors

To find the eigenvalues of A, we rearrange the equation:

$$A\vec{v} - \lambda \vec{v} = 0$$

$$(A - \lambda I)\vec{v} = 0$$

Where I is the identity matrix. For this equation to have non-trivial solutions (where $ec{v} \neq 0$), the determinant of $(A-\lambda I)$ must equal zero:

$$\det(A - \lambda I) = 0$$

This is called the characteristic equation. Solving for λ gives us the eigenvalues.

For each eigenvalue λ_i , we can find the corresponding eigenvector \vec{v}_i by solving:

$$(A-\lambda_i I) \vec{v}_i = 0$$

Suddenly, I understand why I was calculating this in college...

Example with a 2×2 Matrix

Let's look at a simple example. Consider the matrix:

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

To find eigenvalues, we solve:

$$\det\begin{pmatrix} 3-\lambda & 1\\ 1 & 3-\lambda \end{pmatrix} = 0$$

$$(3-\lambda)^2 - 1 = 0$$

$$(3-\lambda)^2=1$$

$$3 - \lambda = \pm 1$$

$$\lambda = 2 \text{ or } \lambda = 4$$

So our eigenvalues are 2 and 4.

For $\lambda=2$, we find eigenvector by solving:

$$(A-2I)\vec{v}=0$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This gives us $v_1=-v_2$, so an eigenvector is $\vec{v}_1=\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ (or any scalar multiple).

For $\lambda=4$, we get eigenvector $ec{v}_2=egin{pmatrix}1\\1\end{pmatrix}$ (or any scalar multiple).

Eigen-decomposition: how eigen vectors are useful

Using Eigenvalues and Eigenvectors

Once we have the eigenvalues and eigenvectors of A, we can perform the eigendecomposition:

$$A = V\Lambda V^{-1}$$

Where:

- ullet V is the matrix whose columns are the eigenvectors of A
- Λ is the diagonal matrix of eigenvalues
- V^{-1} is the inverse of V

For our example:

$$V=egin{pmatrix} -1 & 1 \ 1 & 1 \end{pmatrix}, \Lambda=egin{pmatrix} 2 & 0 \ 0 & 4 \end{pmatrix}$$

Eigendecomposition Explained

Eigendecomposition is the factorization of a square matrix into a set of eigenvectors and eigenvalues. For a square matrix A, the eigendecomposition is:

$$A = V\Lambda V^{-1}$$

Where:

- ullet V is a matrix whose columns are the eigenvectors of A
- Λ is a diagonal matrix of eigenvalues
- V^{-1} is the inverse of V

If A is symmetric (like a covariance matrix), then V is orthogonal, so $V^{-1} = V^T$, giving us:

$$A = V \Lambda V^T$$

What does it mean geometrically timing a vector with a matrix A?

A %*% B
Linear combination of the columns
of matrix A from columns of B

What is PCA?

Connection to PCA

Principal Component Analysis (PCA) is fundamentally an eigenvalue problem. Here's the connection:

- 1. In PCA, we start with a data matrix \boldsymbol{X} (with rows as observations and columns as features)
- 2. We compute the covariance matrix $\Sigma = \frac{1}{n-1} X^T X$ (assuming X is centered)
- 3. The eigenvectors of this covariance matrix are the principal components (directions of maximum variance)
- 4. The corresponding eigenvalues tell us how much variance is explained by each principal component

Singular value decomposition (SVD) and eigendecomposition

PCA can be computed using either eigendecomposition or Singular Value Decomposition (SVD):

Eigendecomposition approach:

We decompose the covariance matrix Σ as:

$$\Sigma = V\Lambda V^T$$

Where:

- V is the matrix of eigenvectors (principal components)
- Λ is a diagonal matrix of eigenvalues (variances along principal components)

Connection to PCA

Principal Component Analysis (PCA) is fundamentally an eigenvalue problem. Here's the connection:

- 1. In PCA, we start with a data matrix \boldsymbol{X} (with rows as observations and columns as features)
- 2. We compute the covariance matrix $\Sigma = \frac{1}{n-1}X^TX$ (assuming X is centered)
- 3. The eigenvectors of this covariance matrix are the principal components (directions of maximum variance)
- 4. The corresponding eigenvalues tell us how much variance is explained by each principal component

SVD approach:

We decompose the centered data matrix X directly:

$$X = UDV^T$$

Where:

- ullet U contains the left singular vectors
- D is a diagonal matrix of singular values
- V contains the right singular vectors (same as eigenvectors of X^TX)

The connection:

- ullet The right singular vectors in V from SVD are identical to the eigenvectors of the covariance matrix
- The singular values in D relate to the eigenvalues by: $\lambda_i = rac{d_i^2}{n-1}$
- **UD**gives us the principal components scores (data projected onto principal components)

This means when we use SVD for PCA, the V matrix gives us the principal directions (eigenvectors of the covariance matrix), the squares of the singular values (divided by n-1) give us the eigenvalues (variances), and UD gives us the data projected onto those directions.

Mathematically demonstrate SVD on the matrix of X and eigendecomposition on covariance matrix of X are the same

The Proof of Equivalence

Let's show these approaches are mathematically equivalent:

Starting with the SVD: $X = UDV^T$

The covariance matrix Σ can be written as:

$$\Sigma = rac{1}{n-1}X^TX = rac{1}{n-1}(UDV^T)^T(UDV^T)$$

Simplifying:

$$\Sigma = rac{1}{n-1} V D U^T U D V^T$$

Since U has orthonormal columns, $U^TU=I$:

$$\Sigma = rac{1}{n-1} V D^2 V^T$$

This is an eigendecomposition of Σ where:

- ullet V is the matrix of eigenvectors
- $\frac{1}{n-1}D^2$ is the diagonal matrix of eigenvalues Λ

Therefore:

$$\Sigma = V \left(rac{1}{n-1}D^2
ight)V^T = V\Lambda V^T$$

This shows that the eigenvectors of Σ (used in PCA via eigendecomposition) are exactly the right singular vectors from SVD, and the eigenvalues are related to the singular values by:

$$\lambda_i = rac{d_i^2}{n-1}$$

Equivalence of Scores

For the principal component scores:

Using eigendecomposition: Scores = XV

Using SVD: Scores = UD

Let's show these are equivalent:

Rows are samples,
Columns are PC1..PC2...PCn

$$XV = UDV^TV = UD$$

The last step follows because $V^TV = I$ since V has orthonormal columns.

Therefore, the principal component scores are identical whether calculated through eigendecomposition or SVD.

When we say project Y to the PCA space of X: we do SVD of X to get the Vx And then Y %*% Vx

In R, the prcomp() function uses svd() internally

```
r-source / src / library / stats / R / prcomp.R
          Blame 148 lines (139 loc) · 4.84 KB
Code
    19
           prcomp <- function (x, ...) UseMethod("prcomp")</pre>
    20
    21 🗸
           prcomp.default <-
                function(x, retx = TRUE, center = TRUE, scale. = FALSE, tol = NULL, ...)
    22
    23
    24
                chkDots(...)
               x \leftarrow as.matrix(x)
               x <- scale(x, center = center, scale = scale.)</pre>
    26
    27
               cen <- attr(x, "scaled:center")</pre>
    28
               sc <- attr(x, "scaled:scale")</pre>
    29
               if(any(sc == 0))
                    stop("cannot rescale a constant/zero column to unit variance")
*** 31
                s \leftarrow svd(x, nu = 0)
               s$d \leftarrow s$d / sqrt(max(1, nrow(x) - 1))
    32
    33
               if (!is.null(tol)) {
    34
                    ## we get rank at least one even for a 0 matrix.
    35
                    rank \leftarrow sum(s$d > (s$d[1L]*tol))
                    if (rank < ncol(x)) {</pre>
    37
                        s$v <- s$v[, 1L:rank, drop = FALSE]
    38
                        s$d <- s$d[1L:rank]
    39
    40
```

Canonical Correlation Analysis (CCA) and

Formulas for CCA

Input Data:

a matrix $X \in \mathbb{R}^{p \times n_1}$ is the matrix of gene expression from the first dataset (3k cells), and $Y \in \mathbb{R}^{p \times n_2}$ is the matrix of gene expression from the second dataset (10k cells).

Canonical Variates: We aim to find vectors $a \in \mathbb{R}^p$ and $b \in \mathbb{R}^p$ such that:

$$u = X^T a \quad ext{(canonical variate for cells in } X ext{)}$$

 $v = Y^T b$ (canonical variate for cells in Y)

Where \boldsymbol{u} and \boldsymbol{v} are the canonical variates, and the goal is to maximize the correlation:

$$ext{corr}(u,v) = rac{ ext{cov}(u,v)}{\sqrt{ ext{var}(u)} \cdot \sqrt{ ext{var}(v)}}$$

Covariance Matrices:

$$\Sigma_{XX} = rac{1}{n_1-1} X X^T \quad ext{(covariance matrix of dataset X)}$$

$$\Sigma_{YY} = rac{1}{n_2-1} Y Y^T \quad ext{(covariance matrix of dataset } Y)$$

$$\Sigma_{XY} = rac{1}{\min(n_1,n_2)-1} X^T Y \quad ext{(cross-covariance matrix between } X ext{ and } Y)$$

Generalized Eigenvalue Problem (GEP):

To find the canonical weights a and b, we solve the generalized eigenvalue problem:

$$\Sigma_{XX}^{-1}\Sigma_{XY}\Sigma_{YY}^{-1}\Sigma_{YX}a=\lambda a$$

Similarly for b:

$$\Sigma_{YY}^{-1}\Sigma_{YX}\Sigma_{XX}^{-1}\Sigma_{XY}b=\lambda b$$

The eigenvalue λ corresponds to the canonical correlation. a is the canonical weight vector for dataset X b is the canonical weight vector for dataset Y

Solving the eigenvalue problem involves finding the eigenvalues and eigenvectors that maximize the correlation between the datasets, but it effectively solves the same problem as the $\overline{\text{SVD}}$ for the covariance matrix ΣXY . One can

How SVD is used and how it relates to the GEP.

Perform SVD on the Cross-Covariance Matrix:

The SVD of the cross-covariance matrix Σ_{XY} can be expressed as:

$$\Sigma_{XY} = UDV^T$$
 For U: rows are cells from X, columns are CCA1,CCA2.. For V: rows are cells from Y, columns are CCA1, CCA2..

where:

- U is a matrix of left singular vectors (canonical directions for dataset X,
- V is a matrix of right singular vectors (canonical directions for dataset Y,
- D is a diagonal matrix containing singular values, which represent the strength of correlations.

The matrix U contains the left singular vectors of Σ_{XY} , which correspond to the canonical directions for dataset X. These directions are the axes along which the data in X is maximally correlated with the data in Y, as measured by the singular values in D. Thus, U represents the canonical variates (directions) for X, just as V represents the canonical variates for Y.

In summary

PCA: SVD on the matrix X

CCA: SVD on the cross-covariance matrix XY

Mathematically demonstrate SVD on the matrix of X and eigendecomposition on covariance matrix of X are the same

The Proof of Equivalence

Let's show these approaches are mathematically equivalent:

Starting with the SVD: $X = UDV^T$

The covariance matrix Σ can be written as:

$$\Sigma = rac{1}{n-1}X^TX = rac{1}{n-1}(UDV^T)^T(UDV^T)$$

Simplifying:

$$\Sigma = rac{1}{n-1} V D U^T U D V^T$$

Since U has orthonormal columns, $U^TU = I$:

$$\Sigma = \frac{1}{n-1} V D^2 V^T$$

This is an eigendecomposition of Σ where:

- ullet V is the matrix of eigenvectors
- $\frac{1}{n-1}D^2$ is the diagonal matrix of eigenvalues Λ

Therefore:

$$\Sigma = V \left(rac{1}{n-1}D^2
ight)V^T = V\Lambda V^T$$

The solution V can be calculated from the singular value decomposition (SVD) of X:

$$X = U\Sigma V^T, X^TX = V\Sigma^2 V^T.$$

 $X \in R^{n \times g}$ is the gene-gene expression matrix. $X^TX \in R^{g \times g}$ are the gene co-variance matrix. Equivalently put, the SVD provides the best low rank approximation of gene-gene co-variance matrix as the multiplication of top K singular values and vectors of X shown below:

https://xinmingtu.cn/blog/2022/CCA_dual_PCA/

And the embedding we are looking for in PCA will be

$$Z = X V_{1:g,1:k} = U \Sigma V^T V_{1:g,1:k} = U_{1:n,1:k} \Sigma_{1:k}.$$

 $Z_X\in R^{n imes k}$ is the low dimensional embeddings. } $TheV^{'T}\in R^{g imes k}$ is the project matrix. Then based on the SVD, $Z=U_{1:n,1:k}\Sigma_{1:k}$

Equivalence of Scores

For the principal component scores:

Using eigendecomposition: Scores = XV

Using SVD: Scores = UD

Let's show these are equivalent:

$$XV = UDV^TV = UD$$

The last step follows because $V^TV=I$ since V has orthonormal columns.

Therefore, the principal component scores are identical whether calculated through eigendecomposition or SVD.

SVD on the cross-covariance matrix XY^T

$$XY^T = U\Sigma V^T$$

 $XY^T = UD * DV^T$

Zx=UD

Zy=VD

The best embeddings will be

$$Z_X = U_{1:n,1:k}(\Sigma_{1:k})^{rac{1}{2}}, Z_Y = V_{1:n,1:k}(\Sigma_{1:k})^{rac{1}{2}}$$

 $Z_X \in R^{n imes k}, Z_Y \in R^{m imes k}$ are the best low dimensional embeddings(projection) of two batch data X,Y.

Matrix Factorization for biological data

PCA: X=UDV^T

The Amplitude matrix: is V gene loading matrix
The Pattern matrix: is the UD or XV: cell/sample loading

NMF (non-negative matrix factorization: X = W %*% H ICA (independent component analysis): X= S %*% A

https://www.sciencedirect.com/science/article/pii/S0168952518301240

https://divingintogeneticsandgenomics.com/post/matrix-factorization-for-single-cell-rnaseq-data/