PW/TP 15-16 Characteristics of second-order Linear PDE's

The general linear partial differential equation of order two in two independent variables has the form

$$A(x,y)\frac{\partial^2 u}{\partial x^2} + 2B(x,y)\frac{\partial^2 u}{\partial x \partial y} + C(x,y)\frac{\partial^2 u}{\partial y^2} + D(x,y)\frac{\partial u}{\partial x} + E(x,y)\frac{\partial u}{\partial y} + F(x,y)u = G(x,y)$$

where A, B, ..., G may depend on x and y but not on u.

Characteristics and normal form of second-order linear PDE's

Calculate $B^2 - AC$.

1. $B^2 - AC > 0$: hyperbolic curve

The PDE can be reduced to $\frac{\partial^2 u}{\partial \xi \partial \eta}$ + (lower order terms) = 0.

The characteristics $\xi(x, y) = \text{constant}$, and $\eta(x, y) = \text{constant}$ satisfy $\frac{dy}{dx} = \frac{b \pm \sqrt{b^2 - ac}}{a}$.

2. $B^2 - AC = 0$: parabolic curve

The PDE can be reduced to $\frac{\partial^2 u}{\partial n^2}$ + (lower order terms) = 0.

The characteristics $\xi(x, y) = \text{constant satisfy } \frac{dy}{dx} = \frac{b}{a}$.

 $\eta(x,y)$ can be choosen arbitrarily, provided that ξ and η are independent (thus $\xi_x \eta_y - \xi_y \eta_x \neq 0$).

3.
$$B^2 - AC < 0$$
: elliptic curve

The PDE can be reduced to $\frac{\partial^2 u}{\partial \alpha^2} + \frac{\partial^2 u}{\partial \beta^2} + (\text{lower order terms}) = 0$.

We known $\xi(x, y) = \text{constant}$, and $\eta(x, y) = \text{constant}$ satisfy $\frac{dy}{dx} = \frac{b \pm \sqrt{b^2 - ac}}{a}$.

Apply a further change of variables $(\xi,\eta) \to (\alpha=\xi+\eta,\beta=i(\xi-\eta))$ to find the canonical form We have now real characteristics.

1

Exercise 1.

Investigate the following PDE's:

1.
$$y^2 \frac{\partial^2 u}{\partial x^2} - 2xy \frac{\partial^2 u}{\partial x \partial y} + x^2 \frac{\partial^2 u}{\partial y^2} = \frac{1}{xy} \left(y^3 \frac{\partial u}{\partial x} + x^3 \frac{\partial u}{\partial y} \right)$$

2.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} - 2\frac{\partial^2 u}{\partial y^2} + 1 = 0$$
 in $0 \le x \le 1$, $y > 0$ with $u = \frac{\partial u}{\partial y} = x$ on $y = 0$

3.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$$

- 4. $u_{xx} + 4u_{xy} + u_x = 0$
- 5. $x^2u_{xx} 2xyu_xy + y^2u_{yy} + xu_x + yu_y = 0$, $\forall x > 0$
- 6. $u_{xx} + xu_{yy} = 0$, $\forall x > 0$