Tarea 1 EDA

165473 Francisco Velasco Medina Febrero 2020

1 Tabla

	_								
1 Día	$n = 10^6 * 60^2 * 24$	Demasiado grande	OM: 21	OM: 10	OM: 9	29393	4420	36	13
1 Hora	$n = 10^6 * 60^2$	OM: 1083707984	OM: 19	OM: 9	OM: 9	00009	1532	31	12
1 Minuto	$n = 10^6 * 60$	OM: 18061799	OM: 15	00000009	10000	7745	391	25	11
1 Segundo	$n = 10^6$	OM: 301029	OM: 12	1000000	1000	1000	100	19	6
Tiempo	\parallel Microsegundos (μ s)	$f_1(n) = log_2(n)$	$f_2(n) = \sqrt[2]{n}$	$f_3(n) = n$	$f_4(n) = n * log_2(n)$	$f_5(n) = n^2$	$f_6(n) = n^3$	$f_7(n) = 2^n$	$f_6(n) = n!$

	_								
1 Siglo	$n = 10^8 * 60^2 * 24 * 365$	Demasiado grande	OM: 28	OM: 15	OM: 13	OM: 8	146645	51	17
1 Año	$n = 10^6 * 60^2 * 24 * 30 n = 10^6 * 60^2 * 24 * 365 n = 10^8 * 60^2 * 24 * 365$	Demasiado grande	OM:26	OM: 13	OM: 11	OM: 6	31593	44	16
1 Mes	$n = 10^6 * 60^2 * 24 * 30$	Demasiado grande	OM: 24	OM: 12	OM: 10	OM: 6	13736	41	15
Tiempo	\parallel Microsegundos (μ s)	$f_1(n) = log_2(n)$	$f_2(n) = \sqrt[2]{n}$	$f_3(n) = n$	$f_4(n) = n * log_2(n)$	$f_5(n) = n^2$	$f_6(n) = n^3$	$f_7(n) = 2^n$	$ f_6(n) = n!$

OM representa la 'n' en el orden de magnitud: 10^n .

2

El intervalo para el cual el algoritmo A es mejor es $n \in \{1, 43\}$.

3

En el intervalo $n \in (-0,0967; 0,1036), 100n^2$ es más rápido que 2^n .

4

Al revés: n^2 es de orden $\mathcal{O}(2^n)$.

Se demostrará por inducción que $n^2 \leq 2^n$ para $n \geq 4$.

Primer paso: $4^2 = 2^4$.

Hipótesis de inducción: $k^2 \leq 2^k$.

Por demostrar: $(k+1)^2 \le 2^{k+1}$.

Demostración:

$$(n+1)^2 = n^2 + 2n + 1 \le 2^n + 2^n = 2^{n+1}$$

 $\iff 2n+1 \le 2^n$

Se demostrará por inducción que: $2n + 1 \le 2^n$.

Primer paso: 9 < 16.

Hipótesis de inducción: $2k + 1 \le 2^k$.

Por demostrar: $2k + 2 \le 2^{k+1}$.

Demostración:

$$2k+2 \leq 2^k+2^k \\ = 2^{k+1}$$
 (Por hipótesis de inducción.)