

Final Year Project

Deployment Of Deep Neural Networks on FPGAs

Syed Tihaam Ahmad, Abdullah Ashfaq

Advisor: Dr. Faisal Shafait

Co Advisor: Dr. Muhammad Shahzad

Formalities

	Status
FYP report reviewed by the Advisor	Yes
FYP Report uploaded on PMS/ LMS	Yes
FYP Demo reviewed by the advisor	Yes
FYP Demo uploaded on PMS/LMS	Yes
Course feedback of all courses submitted on CMS	Yes

Motivation

- Deep Neural Networks (e.g. CNNs) are the state-of-the-art algorithms for
 - Image Classification
 - Object Detection
 - Image Segmentation

Motivation

- DNNs have a very high computational cost
- Require power hungry GPUs (250W)
- Billions of MAC (multiply-accumulate) operations for single inference
- Not feasible for battery dependent applications

Motivation

- Recent trend towards Edge Computing
 - High data volumes and low bandwidth
 - Cloud insufficient on its own

- Machine learning at edge
 - Research towards efficient inference techniques

Overview of Techniques in Literature

Our Choice

- Using FPGAs
 - Flexible
 - Power efficient (< 5W)
 - High throughput
 - Portable

- Xilinx ZC706
 - System on chip: Microprocessor plus FPGA
 - Supports Xilinx HLS Toolchain

Shortcomings

We explored Xilinx's BNN and QNN and deduced the following shortcomings:

- Time-consuming training
- Failure of BNN when deployed for larger models
- Loss of accuracy
- QNN decreases FPS

Our Aim

- To provide generic and versatile building blocks in HLS
 - For variety of networks
 - Complete workflow from training to inference
 - Target Xilinx Zynq FPGAs

Methodology

Algorithm

Hardware Architectures

Multi-layer offload

Dataflow architecture

Our Preference: Dataflow

- Avoid "one-size-fits-all" penalties
- Streaming: Maximize throughput, minimize latency

Novelty

- Quantized 8 bits
 - Accuracy & Throughput trade-off
- Winograd Convolution
 - 2.25x speed up
 - 16 macs instead of 36 macs (4x4 I,3x3 K)

Winograd Convolution

- 2.25x speedup
- Less no of macs used
- Pre-trained weights are transformed

Software Implementation

Quantization-Aware Training

- Use of Brevitas framework
- Pytorch based
- Allows flexible no. of bits
- 8-bit training

Customization of Algorithm

Pytorch Implementation

- Cross checking
- Layer by Layer confirmation
- Understand 'quantization' in brevitas
- Makes easier to write HLS C code
- Uses Conventional conv2d

Intel Nervana Neon Testing

- Python based framework
- Final Software Testing of Brevitas weights
- Inference
- Uses Winograd Convolution

Hardware Implementation

Stage 1: C++ design with Float Ops

```
//CONVOLUTION LAYER
convolution layer<data,data,data,C1 IFM ch, C1 IFM dim, C1 OFM dim, K dim, C1 num filters> C1 (conv1 w wino);
C1.forward multi(input,1); //conv forward run
//RELU
Relu<data,C1 OFM dim*C1 OFM dim*C1 num filters> (C1.act,C1.act);
//MAX POOL
pooling layer<data,data,28,2,6> ml;
ml.maxpool multi(Cl.act, max output);
//ZERO PAD
zero pad stream<data, 14,14,1,6> pd2;
pd2.zero pad multi(max output, paddedinput2);
//FULLY CONNECTED LAYER
fullyconnected<data,data,data,784,120>(max output,fcl w,fcl b,fcloutput);
Relu<data, 120> (fcloutput, fcloutput):
```

Stage 2: Non-Dataflow Design with Fixed Ops

```
//CONVOLUTION LAYER
convolution layer<data,data,data,C1 IFM ch, C1 IFM dim, C1 OFM dim, K dim, C1 num filters> C1 (conv1 w wino);
C1.forward multi(input,1); //conv forward run
//RELU
Relu<data,Cl OFM dim*Cl OFM dim*Cl num filters> (Cl.act,Cl.act);
//MAX POOL
pooling layer<data,data,28,2,6> m1;
m1.maxpool multi(C1.act, max output);
//ZERO PAD
zero pad stream<data, 14,14,1,6> pd2;
pd2.zero pad multi(max output, paddedinput2);
//FULLY CONNECTED LAYER
fullyconnected<data,data,data,784,120>(max output,fc1 w,fc1 b,fc1output);
Relu<data.120> (fcloutput.fcloutput):
```

Pros

- Added input, output and bias shifts.
- Got same result as floating-point.

Cons

- Non-parameterizable engine.
- No task level parallelism.

Stage 3: Dataflow Design with Int8 Ops

Features

- Custom DMA
- Task Level Parallelism
- Instruction Level Parallelism
- HLS Streaming Interface

```
void F (...) {
                                           default
    : for (i=0;i<=3;i++) {
                                                                                READ COMPUTE
# PRAGMA HLS PIPELINE
                                                                                                    READ COMPUTE WRITE
                                                                                                                     READ COMPUTE
       op READ;
                                                                         loop latency = 12
       op COMPUTE;
       op WRITE;
                                           PIPELINE
                                                                            READ
                                                                                COMPUTE
                                                                                      COMPUTE WRITE
                                                                     throughput = 1
                                                                                            COMPUTE
                                                                           loop latency = 6
```

Parameterizable Compute Engine

Basic Compute Engine

With 2 SIMD Lanes and Computes 4
Outputs in Parallel

Parameterizable Compute Engine: Going Deeper

Basic PE Design

Computation Engine with 2 SIMD lanes

Results: At Mid-Defense

CHaiDNN: Loopback architecture

Network	Dataset	Accuracy (Top 1%)	FPS (on ZC706)	
Googlenet-8bit	Imagenet	67.09 %	8.973396	

• Our Library: Stage 1

Network	Dataset	Dataset Accuracy (Top 1%)	
Lenet-W8A8	MNIST	98 %	400

Results: Lenet-MNIST Model

Results: Lenet-MNIST

^{*} For the same SIMD/PE configuration

^{*100} MHz clock frequency

Results: Lenet-MNIST

Results: Comparison with Other Platforms

Device	Frequency	FPS	Images/J	
Intel i7-7700HQ CPU	1093 MHz	6.6K	-	
Tesla K80 (150 W) 562 MHz		3.5M	23.3K	
PYNQ-Z1 100 MHz		22.2K	12K	

- 3.36x times faster than CPU
- Significantly less FPS than GPU but full potential untapped

Results: Cifar10-CNV Model

Accuracy = 84.1%

Results: Cifar10-CNV

Deployment on PYNQ-Z1

	LUT	LUTRAM	FF	BRAM	DSP	Power (W)	FPS
Design 4 (Xilinx reuse)	53.71%	5.03%	58.98%	85%	42.73%	1.94	573

^{*} For the minimum SIMD/PE configuration

^{*100} MHz clock frequency

Achievements

- Complete flow from training to inference on hardware
- Hardware works for both Quantized training and Post-training Quantization
- Easy to use dataflow library implementation:
 - Conv layer
 - Maxpool layer
 - Relu activation
 - Batchnorm
- Convolution models deployed using our library on PYNQ-Z1:
 - Lenet MNIST
 - o CNV CIFAR10

Timeline

Work Division

Syed Tihaam Ahmad	Abdullah Ashfaq
 Quantization-aware training Defining library structure Winograd Convolution Implementation Relu optimization Maxpool optimization FC layer optimization Batch Norm optimization Tiling Streaming sliding window design Testing and Debugging 	 Post-training quantization Explored open-source libraries e.g. ChaiDNN Ported CHaiDNN to ZC706 Conv, ReLU, Maxpool implementation FC layer implementation PS code Streaming architecture design Running on Hardware

Thank You

Thank You Any Questions?