Solution for Midterm for STA 312

October 2, 2017

1. (0.5 marks each) Assume that D is a data frame that contains 4 columns with names Y, X, V, Z. For each of the following specifications, write down the regression function that corresponds to the 1m call in R. Example:

$$lm(Y \sim V, data = D)$$

corresponds to $f(x, v, z) = b_1 + b_2 v$.

(a) $lm(Y^{-}., data = D)$

Solution: $f(x, v, z) = b_1 + b_2 x + b_3 v + b_4 z$

(b) $lm(Y \sim V + Z + X + V:Z, data = D)$

Solution: $f(x, v, z) = b_1 + b_2 x + b_3 v + b_4 z + b_5 v z$

(c) $lm(Y \sim I(X^3) + I(V^2), data = D)$

Solution: $f(x, v, z) = b_1 + b_2 x^3 + b_3 v^2$

2. (0.5 marks each) Assume that D is a data frame that contains 4 columns with names Y, X, V, Z. For each of the following regression functions, decide if they can be formulated as a linear regression in \mathbf{R} (here, $b_1, ..., b_3$ are unknown). If yes, write the \mathbf{R} call you would use.

(a)
$$f(x, v, z) = b_1 + b_2 z + b_3 x^2$$

Solution:

$$lm(Y \sim Z + I(X^2), data = D)$$

(b) $f(x, v, z) = b_1 + b_2 x^{b_3}$

Solution: Not possible, this is not linear in the coefficient b_3 .

(c) $f(x, v, z) = b_1 + b_2 x + b_3 x v$

Solution:

$$lm(Y \sim X + X:V, data = D)$$

3. Running a linear regression in ${f R}$ and applying the summary function you get the following output

Call:

```
lm(formula = y ~ x1 + x2 + x1:x2)
```

Residuals:

```
Min 1Q Median 3Q Max -0.29881 -0.07232 -0.01262 0.07602 0.28263
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                                 -1.048
                                            0.297
(Intercept) -0.011000
                        0.011326
             0.900000
                        0.011910
                                  83.384
                                           <2e-16 ***
x1
x2
            -0.010000
                        0.011095
                                  -0.762
                                            0.448
x1:x2
             1.000000
                        0.011635
                                 86.359
                                           <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Residual standard error: 0.111 on 96 degrees of freedom Multiple R-squared: 0.9929, Adjusted R-squared: 0.9927 F-statistic: 4487 on 3 and 96 DF, p-value: < 2.2e-16

(a) (1 mark) Given the output above, what is your prediction for a new observation with predictor values x1 = 1, x2 = 2? You don't need to simplify your answer, it is enough if you write down the correct formula.

Solution
$$-0.011 + 0.9*1 - 0.01*2 + 1*1*2$$

(b) (0.5 marks) What is the value for R^2 in the model above?

Solution 0.9929

4.	Based on the ${\bf R}$ output in the previous problem, which of the following conclusions can you draw?
	\Box There is no relationship between the predictors and the response.
	☐ The predictor x1 can be dropped from the linear model since it does not help to predict the response in the presence of the second predictor.
	\Box The regression function specified in the ${\bf R}$ input is not correct.
5.	Qualitative predictors in linear regression
	X Can be incorporated using dummy variables.
	$\hfill\Box$ Can not be incorporated since the model would become nonlinear.
	$\hfill\Box$ Can not be incorporated since qualitative predictors lead to a classification problem.
6.	Interaction effects between the predictors x_1, x_2 in linear regression
	X Can be incorporated by including a term of the form bx_1x_2 .
	\Box Can be incorporated by including a term of the form $b(x_1 + x_2)$.
	\Box Can be incorporated by including a term of the form $b(x_1/x_2)$.
	$\hfill\Box$ Can not be incorporated since the model would become nonlinear.
7.	A small value of \mathbb{R}^2 (a value close to zero) in a linear regression model
	$\hfill\Box$ Means that the regression model is incorrect.
	$\hfill\Box$ Means that the regression model is correct.
	$\hfill\Box$ Means that there is no relationship between the predictors and the response.
8.	Including additional predictors in a linear regression model
	\square Will typically increase the training error.
	X Will typically decrease the training error.
	□ Will always increase the test error.
	□ Will always increase the test error.
9.	To find out if a linear regression model is correct
	\square One should use \mathbb{R}^2 .
	X One should use a residual plot.
	\Box One should look at the F-test in R .

10.	Assume that we run two regressions: k-nn with k selected by cross-validation and a linear regression. Which statements are true
	 □ Linear regression will always give better test error. □ k-nn will always give the better test error.
	\Box If the true relationship is not linear, k-nn will always give better test error.
11.	Comparing 100-fold and 10-fold cross validation for choosing k in k-nn regression on a data set with $n=100$
	 X 100-fold cross validation will typically be computationally more expensive. □ 10-fold cross validation will typically be computationally more expensive. □ Both types of cross validation will always involve the same amount of computation.
12.	Using 5-fold cross validation with a data set of size $n=100$ to select a tuning parameter
	\Box Will always result the same tuning parameter since it does not involve any randomness.
	X Might give different answers depending on the random splitting in 5-fold cross validation.
	\square Does not make sense since $n > 5$.
13.	Assume you have a data set with $n=500$ observations. Which statements are true for k-nn regression?
	\Box Large values of k will always lead to large test error.
	\Box Large values of k will always lead to small test error.
	\square Small values of k will always lead to large training error.
14.	Assume that you observe data (x_i, y_i) with values $(1, 2), (2, 3), (3, 5)$. Compute the 1-nn estimator for $x = 5/4$.
	Solution the value is 2 since the closest value of x_i among the data is $x_1 = 1$ which corresponds to $y_1 = 2$.

15. (1.5 marks) Assume that you run k-nn regression on a data set with size n and that the data are generated from $y_i = f(x_i) + \varepsilon_i$ with one-dimensional x_i and $\varepsilon_i \sim N(0, 1)$. Does there exist a regression function f for which choosing k = n will lead to the best test error, independently of n? Justify your answer.

Solution The answer is yes. Note that choosing k = n means that the k-nn estimator will be the sample mean. If there is no relationship between predictors and outcome, i.e. if the function f is constant, the sample mean will lead to the smallest test error, no matter what n is.

16. (1.5 marks) Assume that you observe n data points (x_i, y_i) with $x_i = i/n, i = 1, ..., n$ and $y_i = f(x_i) + \varepsilon_i$ where ε_i are iid N(0, 1) independent of x_i . What is the best possible MSE for predicting a new observation $y_0 = f(x_0) + \varepsilon_0$ you can hope to achieve in this setting by any regression method (you do not need to specify the method, n can be arbitrarily large)? Justify your answer.

Solution The MSE for predicting a new observation is defined as

$$E[(\hat{f}(x_0) - y_0)^2] = E[(\hat{f}(x_0) - (f(x_0) + \varepsilon_0))^2]$$

$$= E[(\hat{f}(x_0) - f(x_0) - \varepsilon_0))^2]$$

$$= E[(\hat{f}(x_0) - f(x_0))^2] + 2E[\varepsilon_0(\hat{f}(x_0) - f(x_0))] + E[\varepsilon_0^2]$$

$$= E[(\hat{f}(x_0) - f(x_0))^2] + E[\varepsilon_0^2].$$

even if we had perfect knowledge of f, this would be bounded from below by $E[\varepsilon_0^2] = 1$. This is the best MSE we can hope to achieve by any method.

- 17. The residual plot above was generated by running a linear regression of the form $f(x) = b_1 + b_2 x$. Residuals are plotted against x. The plot indicates that
 - X The errors have non-constant variance but the regression function f is correct.
 - \Box The errors have non-constant variance and the regression function f is wrong.
 - \Box The regression function f is correct and the errors have constant variance.
 - \Box The regression function f is wrong and the residuals have constant variance.
- 18. Which output will running the following code in **R** give?

```
x = array(0,3)
for(i in 1:length(x)){
   x[i] = i^2
}
x
```

Solution 1 4 9

