UFMG/ICEx/DCC

DCC111 - MATEMÁTICA DISCRETA

LISTA DE EXERCÍCIOS 5 TEORIA DOS CONJUNTOS

CIÊNCIAS EXATAS & ENGENHARIAS

 1° Semestre de 2014

- 1. Escreva uma negação para a seguinte afirmação: \forall conjuntos A, se $A \subseteq \mathbb{R}$ então $A \subseteq \mathbb{Z}$. O que é verdadeira: a afirmação ou sua negação? Justifique a sua resposta.
- 2. Sejam os seguintes conjuntos:

$$A = \{m \in \mathbb{Z} | m = 2i - 1, \text{ para algum inteiro } i\}$$

 $B = \{n \in \mathbb{Z} | n = 3j + 2, \text{ para algum inteiro } j\}$

Prove se A = B.

- 3. Seja $A = \{1, 2, 3\}, B = \{u, v\}$ e $C = \{m, n\}$. Liste os elementos do conjunto $A \times (B \times C)$.
- 4. Prove que para todos os conjuntos $A \in B$, $B A = B \cap A^c$.
- 5. Prove por indução matemática que para todo inteiro $n \ge 1$ e todos os conjuntos A_1, A_2, \ldots, A_n e B,

$$(A_1 - B) \cup (A_2 - B) \cup \ldots \cup (A_n - B) = (A_1 \cup A_2 \cup \ldots A_n) - B$$

- 6. Prove que para todos os conjuntos A, B e C, (A B) (B C) = A B.
- 7. Dados dois conjuntos $A \in B$, defina a "diferença simétrica" de $A \in B$, representada por $A \oplus B$, como

$$A \oplus B = (A - B) \cup (B - A)$$

Prove se $A \oplus B = B \oplus A$.

- 8. Prove se para todos os conjuntos $A, B \in C, (A B) \in (C B)$ são necessariamente disjuntos.
- 9. Sejam os conjuntos $A = \{1\}$ e $B = \{u, v\}$. Determine o conjunto potência de $A \times B$, i.e., $\mathcal{P}(A \times B)$.
- 10. Determine $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.
- 11. Seja $A = \{x, y\}$. Determine:
 - (a) $A \cap \mathcal{P}(A)$
 - (b) $(\mathcal{P}(A) A) \cap A$
 - (c) $\mathcal{P}(\{\mathcal{P}(A) \{x\}\}\} \emptyset)$
- 12. Prove que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ usando apenas as propriedades de conjuntos (sem usar diagrama de Venn). (Lembre-se que dados dois conjuntos A e B, A = B sse $A \subseteq B$ e $B \subseteq A$, ou seja, a prova deve ser feita em duas partes.)
- 13. Simplifique as seguintes expressões usando apenas as propriedades de conjuntos:
 - (a) $(((A \cap (B \cup C)) \cap (A B)) \cap (B \cup C^c)$
 - (b) $(A (A \cap B)) \cap (B (A \cap B))$
- 14. Sejam os conjuntos A, B e C. Sabe-se que $A \subseteq B$ e os conjuntos B e C são disjuntos, mas A e C têm elementos em comum. Esboce, se for possível, o diagrama de Venn desses conjuntos.