## Uvod v strojno učenje in podatkovno rudarjenje

Ljupčo Todorovski Univerza v Ljubljani, Fakulteta za upravo

Februar 2018

## John Snow, London 1854





Todorovski, UL-FU Uvod Februar 2018 2 / 36

## Vzorci



## Skupine okužb

Smrtni primeri porazdeljeni neenakomerno

## Hipoteze in modeli



#### Bližina vodnih virov

Skupine smrtnih primerov so v bližini vodne črpalke na ulici Broad (rdeči krog)

40149141111 1 000

# Terminologija strojnega učenja in podatkovnega rudarjenja

#### Podatki

- Seznam smrtnih primerov (pacientov dr. Snowa) in njihove lokacije
- Lokacije vodnih črpalk

#### Vzorci

Skupine smrtnih primerov v nekaj delih mesta

#### Hipoteza

Skupine primerov lokacijsko povezane z vodnimi črpalkami

# Terminologija strojnega učenja in podatkovnega rudarjenja

### Napovedni model

- Smrtni primeri najbolj pogosti v bližini vodne črpalke na ulici Broad
- Vhodni podatek je lokacija bivališča, napoved verjetnost preživetja

#### Odločitev

Zapreti vodno črpalko na ulici Broad



# Cilji strojnega učenja in podatkovnega rudarjenja

### Strojna analiza podatkov usmerjena v

- 1 Iskanje zanimivih vzorcev v podatkih
- Gradnjo točnih napovednih modelov

### Zanimivost in točnost pomembni lastnosti modelov in vzorcev

Med semestrom bomo spoznali različne metode za vrednotenje oziroma računanje zanimivosti vzorcev in točnosti modelov.



## Uporabnost vzorcev in modelov

#### Boljše razumevanje podatkov

- Kratka in nazorna predstavitev podatkov
- Vzpostavitev lokacijske povezave med okužbami in vodnimi črpalkami

### Pojasnjevanje in napovedovanje

- Voda kot vir oziroma medij za prenašanje bolezni
- Uporabniki vode iz črpalke na ulici Broad bodo zboleli

### Odločanje in ukrepanje

- Zapiranje vodne črpalke na ulici Broad za zajezitev epidemije
- Pasterizacija vode za preprečevanje izbruha novih epidemij

## Pregled vsebine

### Formalne definicije

- Podatki, modeli in vzorci (patterns)
- Naloge strojnega učenja

### Problemi strojnega učenja

- Prekletstvo dimenzionalnosti (curse of dimensionality)
- Pretirano in nezadostno prileganje (overfitting in underfitting)

### Pravila igre

Izvedba semestra, obveznosti in ocenjevanje

## Spremenljivke

## Napovedne (vhodne, neodvisne) spremenljivke (atributi) $X_i$ , i = 1..p

- Urejena p-terica  $\boldsymbol{X} = (X_1, X_2, \dots X_p)$
- Zaloge vrednosti  $D_1, D_2, \dots D_p$ 
  - $X_i$  je numerična (<del>zvezna</del>, kvantitativna), če  $D_i \subseteq \mathbb{R}$
  - $X_i$  je diskretna (kvalitativna), če je  $D_i$  končna in običajno neurejena

## Ciljna (izhodna, <del>odvisna</del>) spremenljivka Y

Zaloga vrednosti  $D_Y$ 

### Primeri

#### Nenadzorovano učenje

$$e \in X_{i=1}^p D_i$$
 oziroma  $e = \mathbf{x} = (x_1, x_2, \dots x_p), x_i \in D_i$ 

#### Nadzorovano učenje

$$e \in X_{i=1}^p D_i \times D_Y$$
 oziroma  $e = (x, y) = (x_1, x_2, \dots x_p, y), x_i \in D_i, y \in D_Y$ 

### Podatkovna množica $S \subseteq \mathcal{E}$

 ${\mathcal E}$  označuje množico vseh možnih primerov e:  $imes_{i=1}^p D_i$  oz.  $imes_{i=1}^p D_i imes D_Y$ 

#### Opomba o notaciji

$$X_{i-1}^p D_i = D_1 \times D_2 \times \ldots \times D_p$$

- ◀ ロ ▶ ◀ @ ▶ ◀ 差 ▶ → 差 → ♡ Q (

## Ilustrativni primer: Kartica zvestobe

## Primeri (vrstice) so kupci, spremenljivke (stolpci) lastnosti kupcev

| Ime   | Prihodki | Starost | Spol | Letna poraba | Dober kupec |
|-------|----------|---------|------|--------------|-------------|
| Mojca | 1,890    | 32      | Ž    | 18,200       | da          |
| Janez | 1,200    | 48      | М    | 8,900        | ne          |
| Špela | 900      | 63      | Ž    | 9,200        | da          |

## Primeri so nakupi, spremenljivke kupec in produkti

| Kupec | Spol | Pivo | Plenice | Voda | Kruh | Čokolada |
|-------|------|------|---------|------|------|----------|
| Mojca | Ž    | 0    | 0       | 0    | 2    | 3        |
| Janez | M    | 2    | 2       | 0    | 1    | 0        |

### Modeli in vzorci

#### Modeli so funkcije

$$m: \underset{i=1}{\overset{p}{\times}} D_i \to D_Y$$

Za podane vrednosti neodvisnih spremenljivk  $\mathbf{x} = (x_1, x_2, \dots x_p)$  vrne model m ocenjeno (napovedano) vrednost ciljne spremenljivke  $\hat{y} = m(x_1, x_2, \dots x_p) = m(\mathbf{x})$ 

#### Vzorci so običajno množice

- primerov, ki so si **podobni**
- vrednosti spremenljivk, ki se pogosto pojavljajo skupaj

→ロト → □ ト → 重 ト → 重 ・ の Q (\*)

## Ilustrativni primer: Kartica zvestobe

#### Modeli

- Dober kupec = m(Starost, Prihdoki, Spol)
- Letna poroaba = m(Starost, Spol)

#### Vzorci

- Skupine kupcev s podobnimi nakupi
- Moški ki kupujejo plenice, kupujejo tudi pivo

# Nadzorovano strojno učenje

## Definicija naloge

- ullet Na osnovi podane učne podatkovne množice  $S_{train}$
- Najdi model m, ki je točen in splošno veljaven

### Točen in splošno veljaven model

Točen model doseže **minimalno napako** (maksimalno točnost) na učni množici  $S_{train}$ , splošno veljaven pa doseže **majhne napake** na poljubni podatkovni množici S.



## Vrednotenje točnosti modela

Napaka na enem primeru, funkcija izgube  $L:D_Y imes D_Y o \mathbb{R}_0^+$ 

Vrne razliko  $L(y, \hat{y})$  med opazovano (y) in napovedano  $(\hat{y})$  vrednostjo ciljne spremenljivke Y na enem primeru.

Napaka na podatkovni množici  $\mathit{Err}: ( imes_{i=1}^p D_i o D_Y) imes \mathcal{P}(\mathcal{E}) o \mathbb{R}_0^+$ 

$$Err(m,S) = \frac{1}{|S|} \sum_{(\mathbf{x},y) \in S} L(y,m(\mathbf{x}))$$

Vrne povprečno vrednost funkcije izgube podanega modela m na primerih iz podatkovne množice S.

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Februar 2018

16 / 36

# Regresija: $D_Y \subseteq \mathbb{R}$

## Običajna funkcija izgube je kvadratna napaka

$$L_{SE}(y,\hat{y}) = (y - \hat{y})^2$$

#### Napaka modela

S to funkcijo izgube vrednotimo srednjo kvadratno napako (MSE = Err) modela. Pogosto računamo tudi celotno napako  $RMSE = \sqrt{MSE}$ .

Todorovski, UL-FU Uvod

17 / 36

# Razvrščanje: $D_Y$ je končna, običajno neurejena množica

## Običajna funkcija izgube

$$L_{01}(y,\hat{y}) = \begin{cases} 1; & y \neq \hat{y} \\ 0; & y = \hat{y} \end{cases}$$

#### Napaka modela

S to funkcijo izgube vrednotimo klasifikacijsko napako ( $Err \in [0,1]$ ) modela, običajno izraženo v odstotkih. Pogosto računamo tudi klasifikacijsko točnost Acc, ki je 1-Err.

Poseben primer: dvojiško razvrščanje ali binarna klasifikacija

V primeru, ko je  $|D_Y| = 2$ .

4D > 4A > 4B > 4B > B 990

Todorovski, UL-FU Uvod Februar 2018 18 / 36

## Algoritem za strojno učenje ali metoda strojnega učenja

Nadzorovano učenje (napovedno modeliranje)

$$A: \mathcal{P}(\mathcal{E}) \to (\bigotimes_{i=1}^p D_i \to D_Y)$$

Na osnovi podane učne množice  $S_{train}$ , algoritem vrne model m za ocenjevanje (napovedovanje) vrednosti ciljne spremenljivke Y iz podanih vrednosti napovednih spremenljivk  $X_1, X_2, \ldots X_p$ , t.j.,  $\mathcal{A}(S_{train}) = m$ .

#### Nenadzorovano učenje

Na osnovi podane učne množice vrne vzorce t.j. množice

- podobnih primerov
- vrednosti spremenljivk, ki se pogosto pojavljajo skupaj

← □ ▶ ← 클 ▶ ← 클 ▶ ← 클 ▶ ← 클 ▶ ← 클 ★ ○ 클 ★ ○ 오

## Optimalen napovedni model

$$m^*(\mathbf{x}) = E[Y|\mathbf{X} = \mathbf{x}]$$
 minimizira srednjo kv. napako  $E[(Y - m(\mathbf{X}))^2]$ 

Ocena (približek) na učni množici  $S_{train}$ 

$$m^*(\mathbf{x_0}) = \frac{1}{|S_0|} \sum_{(\mathbf{x}, y) \in S_0} y, \quad S_0 = \{(\mathbf{x}, y) \in S_{train} : \mathbf{x} = \mathbf{x_0}\}$$

#### Problem točnosti ocene

V učni množici  $S_{train}$  je običajno premalo število primerov za katere velja  $x = x_0$ , t.j., je množica  $S_0$  premajhna za dobro oceno y.

<ロ > → □ > → □ > → □ > → □ ● → の へ ○

Februar 2018

## Rešitev: metoda najbližjih sosedov

## Spremenimo definicijo množice $S_0$

Tako, da vsebuje k primerov, ki so najbližji (imajo najmanjše Evklidske razdalje) primeru  $x_0$ .

#### Koliko blizu so najbližji sosedi?

Če izberemo k najbližjih sosedov v  $S_0$ , nas potem zanima kako blizu so izbrani primeri izhodiščnemu primeru  $\mathbf{x_0}$  oziroma kakšen je polmer in prostornina množice  $S_0$ .

<ロ > < 回 > < 回 > < 巨 > くき > しき > しき の < ○

# Polmer za k = 10 pri eni in dveh spremenljivkah



 $(1+\lambda(1+\lambda(1)\lambda(2))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3))+\lambda(1+\lambda(1)\lambda(3$ 

Todorovski, UL-FU Uvod Februar 2018 22 / 36

# Odvisnost polmera od števila spremenljivk (k=10)



 $Y = (1 + X_1 + X_1 X_2)/3 + \mathcal{N}(0, 0.05)$ 

Todorovski, UL-FU Uvod Februar 2018 23 / 36

# Polinomska regresija z eno spremenljivko



## Učna in testna napaka



Todorovski, UL-FU Uvod Februar 2018 25 / 36

## Učna in testna napaka: število primerov



Todorovski, UL-FU Uvod Februar 2018 26 / 36

# Ključna vprašanja in problemi

## Model z majhno napako ali enostaven model?

- Skrajnosti: enostaven linearen model ALI globoka nevronska mreža
- Kateri model izbrati?

## Pretirano ali nezadostno prileganje?

- Skrajnosti: preveč enostaven model z veliko učno/testno napako ALI prezapleten model z majhno učno napako
- Dober model je nekje vmes: kako ga najti?

### Model prozorne ali črne škatle?

- Skrajnosti: enostaven model z nekaj spremenljivkami ALI zapleten model z veliko dimenzijami
- Kako se izogniti prekletstvu večdimenzionalnosti?

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C

## Cilji in pridobljene kompetence

#### Razumevanje strojnega učenja in podatkovnega rudarjenja

- Razumevanje delovanja metod za strojno učenje
- Prepoznavanje prednosti in slabosti posamezne metode
- Nastavljanje parametrov metode za strojno učenje

#### Reševanje problemov s podatkovnim rudarjenjem

- Zanašati se le na napovedno napako ali izbrati bolj enostaven model?
- Kako se izogniti pretiranemu in nezadostnemu prilagajanju?
- Kako se izogniti prekletstvu večdimenzionalnosti?

## Teorija: metode strojnega učenja

- Linearni modeli in metode najbližjih sosedov
- Merjenje napake in izbira napovednega modela
- Posebnosti binarne klasifikacije
- Odločitvena drevesa in pravila
- Metode podpornih vektorjev in jedrne funkcije
- Nevronske mreže
- Ansambli napovednih modelov
- Nenadzorovano učenje



## Praksa: podatkovno rudarjenje

- Proces podatkovnega rudarjenja
- Obravnava različnih tipov podatkov in vložitve
- Izbira in konstrukcija napovednih spremenljivk
- Obravnava manjkajočih podatkov
- Obravnava neenakomerne porazdelitve vrednosti ciljne spremenljivke
- Napredne teme in vabljena predavanja



# Obveznosti in ocenjevanje

#### Sprotne obveznosti na predavanjih

Pregled prosojnic (spletna učilnica) in samostojni študij literature

#### Sprotne obveznosti na vajah do 20 odstotnih točk

- Dve domači nalogi, vsaka prinese do 10 odstotnih točk
- Točke pridobite le, če nalogo oddate pravočasno

#### Seminarska naloga do 50 odstotnih točk

Od aprila do konca semestra oziroma ustnega izpita, oddaja **vsaj 5 dni pred** izpitnim rokom

### Ustni izpit do 30 odstotnih točk

Uspešno opravljene obveznosti so pogoj za pristop k ustnemu izpitu

Todorovski, UL-FU Uvod Februar 2018 31 / 36

### R in caret

### Prosto-dostopna programska oprema za statistične obdelave

- www.r-project.org
- Uporabljali ga boste na vajah
- Prednost: na voljo imate impresivni nabor orodij za statistične obdelave podatkov in vizualizacijo
- Slabost: krmiljenje skozi ukazno vrstico; potrebno poznavanje programskega jezika

## Številni dodatni paketi za strojno učenje in podatkovno rudarjenje

- caret: Classification and Regression Training, primerjava modelov
- randomForest, kernlab, neuralnet: različne metode strojnega učenja
- tm: Text Mining, obravnava besedilnih podatkov

Todorovski, UL-FU Uvod Februar 2018 32 / 36

## Weka

#### Odprto-kodna zbirka algoritmov za strojno učenje v Javi

- www.cs.waikato.ac.nz/ml/weka/
- Ne boste ga spoznali na vajah
- Prednost: impresivno število implementiranih algoritmov, neposredna povezljivost s podatkovnimi bazami (JDBC)
- Slabost: počasne implementacije, nenavaden uporabniški vmesnik

#### Idealno izhodišče za razvoj novih metod

- Zelo hitra in enostavna primerjava z (tako rekoč vsemi) obstoječimi
- Dobra podpora in velika skupnost uporabnikov
- Podprta s knjigo, ki pa ni prosto dostopna (glej naprej)

40 > 40 > 40 > 40 > 40 > 40 > 40 >

## Orange

## Odprto-kodna programska oprema za strojno učenje v Pythonu

- orange.biolab.si, razvoj orodja na UL-FRI
- Ne boste ga spoznali na vajah
- Prednost: vizualno programiranje delotokov za obdelavo podatkov od priprave do gradnje in vrednotenja ter primerjave modelov
- Slabost: relativno omejen nabor razpoložljivih metod, ni možnosti nalaganja zunanjih implementacij algoritmov

### Manjka nekaj pomembnih metod

- Odločitvena pravila
- Nevronske mreže
- Obravnava besedil

Todorovski, UL-FU Uvod Februar 2018 34 / 36

## Vodič po literaturi

#### An Introduction to Statistical Learning with Applications in R

- Prosti dostop: www-bcf.usc.edu/~gareth/ISL/
- Iz spletne strani dostop do spletnih tečajev, priporočam tistega od Hastie in Tibshirani
- Obvezno branje: večina snovi predmeta pokrita s tem učbenikom

#### The Elements of Statistical Learning

- Prosti dostop: statweb.stanford.edu/~tibs/ElemStatLearn/
- Za tiste, ki imate radi teorijo
- Kakšna snov bo pokrita le v tem učbeniku, pregled v spletni učilnici

35 / 36

Todorovski, UL-FU Uvod Februar 2018

## Vodič po literaturi

### Data Mining: Practical Machine Learning Tools and Techniques

- Za ljubitelje prakse
- Referenčni vir za izkušene rudarje: lahko na hitro preverite delovanje algoritma strojnega učenja in nastavitve parametrov

Machine Learning: The Art and Science of Algs that Make Sense of Data Odličen kompromis med teorijo in prakso

## Applied Predictive Modeling

- Za eksperte praktičnega rudarjenja podatkov
- Zahtevni primeri uporabe, koristni triki v programskem orodju R, vodič po uporabi dodatnega paketa caret

Todorovski, UL-FU Uvod Februar 2018 36 / 36