

Univerza na Primorskem UP FAMNIT Študijsko leto 2024/2025

Algoritmi v bioinformatiki - 3. DOMAČA NALOGA

Maksimalno število točk: 30. Rok za oddajo: 6.6.2025

1. Poiščite globalno poravnavo več zaporedij za zaporedij s_1 : CACATAGA s_2 : TGATTAAG, s_3 : GCTTCACGT in s_4 : CGGTACA z uporabo algoritma za progresivno poravnavo in naslednjimi optimalnimi poravnavami posameznih parov:

naslednjimi optimalnimi poravnavami posameznih parov:																						
s_1	C	_	A	_	C	A	T	A	G	A		s_1	-	C	A	_	C	A	T	A	G	A
s_2	T	G	A	T	T	A	_	A	G	_		s_3	G	C	T	T	C	\overline{A}	ı	C	G	T
s_1	C	A	C	A	T	A	G	A				s_2	T	G	_	A	T	T	A	_	A	G
s_4	C	G	G	_	T	A	C	A				s_3	_	G	C	T	T	C	A	C	G	T
s_2	T	G	A	T	T	A	_	A	G			s_3	G	C	T	T	C	A	C	G	T	
s_4	C	G	_	G	T	A	C	A	_			s_4	_	C	G	G	T	A	C	_	A	
1 1 1.	chlicaile a consistenciam anno de O an contra cionencia in legaci 1 an contra contralicaia																					

dobljenih z upoštevanjem nagrade 0 za vsako ujemanje in kazni 1 za vsako vstavljanje, brisanje in zamenjavo. Za razdaljo med dvema zaporedjema upoštevajte Levenshteinovo razdaljo. (8 točk)

- 2. Dani so naslednji podatki za problem rekonstrukcije zaporedij: $\ell=3$, multimnožica zaporedij: $S=\{\texttt{ATG},\texttt{CGT},\texttt{GCA},\texttt{GCG},\texttt{GGC},\texttt{TGG},\texttt{GTG},\texttt{TGC},\texttt{GGG}\}.$
 - (a) Problem rešite z uporabo hamiltonskih poti, tako da konstruirate ustrezni digraf in v njem poiščete hamiltonsko pot. Zapišite vse rešitve. (4 točke)
 - (b) Problem rešite z uporabo Eulerjevih sledi, tako da konstruirate ustrezni digraf in v njem poiščete sklenjeno ali nesklenjeno Eulerjevo sled. Zapišite vse rešitve. (4 točke)
- 3. Obravnavajte naslednje tri matrike

M_1	A	B	C	D	M_2	A	B	C	D	M_3	A	B	C	D
\overline{A}	0	2	6	8	A	0	2	6	8	A	0	5	6	8
\overline{B}	2	0	6	9	В	2	0	7	9	В	5	0	10	6
C	6	6	0	8	C	6	7	0	8	C	6	10	0	7
D	8	10	8	0	D	8	9	8	0	D	8	6	7	0

- (a) Za vsako od njih določite, ali je aditivna ali ne z uporabo pogoja štirih točk. (3 točke)
- (b) Uporabite algoritem ADITIVNA FILOGENIJA na matriki M_2 . Zapišite vse korake algoritma. (5 točk)

4. Rešite mali problem varčnosti za naslednje vhodne podatke:

Cene mutacij:

		,		
δ	A	C	G	T
A C	0	1	2	3
C	1	0	4	3
G	2	4	0	5
T	3	3	5	0

(6 točk)