COMPOSITIO MATHEMATICA, Vol. 38, Fasc. 1, 1979, pag. 37-43 Sijthoff & Noordhoff International Publishers - Alphen aan den Rijn Printed in the Netherlands

DOUBLE POINT RESOLUTIONS OF DEFORMATIONS OF RATIONAL SINGULARITIES

Joseph Lipman¹

1

Let Y_0 be a normal algebraic surface over an algebraically closed field k, and let $f_0: Z_0 \to Y_0$ be the minimal resolution of singularities. There is a unique way to factor f_0 as $Z_0 \xrightarrow{g_0} X_0 \longrightarrow Y_0$ with a proper birational g_0 and a normal surface X_0 , such that a reduced irreducible curve C on Z_0 which blows down to a point on Y_0 already blows down on X_0 iff C is non-singular and rational with self-intersection $C^2 = -2$ (cf. [1, p. 493, (2.7)]; or, for greater generality, [7, p. 275, (27.1)]). The singularities of X_0 are all Rational Double Points. X_0 , which is uniquely determined by Y_0 , will be called the RDP-resolution of Y_0 .

Suppose now that Y_0 is affine and has just one singularity y, y being rational. There is a conjecture of Wahl [9], and Burns-Rapoport [2, 7.4] to the effect that the Artin component in the (formal or henselian) versal deformation space of y is obtained from the deformation space of Z_0 by factoring out a certain Coxeter group. According to Wahl [10], this would imply that the Artin component is smooth, and is in fact formally identical with the deformation space of X_0 (at least after things are suitably localised). Wahl also shows how the conjecture reduces to the statement that under "blowing down", the set of first order infinitesimal deformations of X_0 maps injectively into that of Y_0 . Our purpose here is to outline a proof that this injectivity (and so the conjecture) does indeed hold.

Wahl has previously established some special cases of the conjecture by showing that a certain cohomology group vanishes [10]. I am grateful to him for all the information and motivation he has provided.

¹AMS(MOS) subject classifications (1970). Primary 14J15, 32C45. Research supported by the National Science Foundation.

THEOREM: Given $Y \rightarrow S$ as above, there exists at most one (up to Y-isomorphism) RDP-resolution.

(For $S = \operatorname{Spec}(k[t]/t^2)$ we get the above-indicated injectivity statement.)

In fact we show the following:

Let $U \subseteq Y$ be the open set where g is smooth and let $i: U \to Y$ be the inclusion map. Set

$$\omega = i_* \Omega_{U/S}^2$$
 (Ω^2 = relative 2-differentials)

and for all $n \ge 0$, let ω^n be the image of the natural map $\omega^{\otimes n} \to i_*((\Omega^2_{U|S})^{\otimes n})$. Then, if an RDP-resolution $f: X \to Y$ exists, we must have

$$X = \operatorname{Proj}(\bigoplus_{n \geq 0} \omega^n)$$

(with f the canonical map). In other words X is the scheme-theoretic closure of U in the projective bundle $P(\omega)$ [4, II, (4.1.1)].

Example (Suggested by Riemenschneider). Let Y_0 be the cone over a non-singular rational curve of degree 4 in P^4 (say over the complex numbers C). The versal deformation of the vertex has a one-dimensional non-Artin component, found by Pinkham: the corresponding deformation is $Y \to S = \operatorname{Spec}(C[t])$, where $Y \subseteq C^5 \times S$ is the zero-set of the 2×2 minors of

$$\begin{pmatrix} x_1 & x_2 & x_3 + t \\ x_2 & x_3 & x_4 \\ x_3 + t & x_4 & x_5 \end{pmatrix}$$

Here, of course, no RDP-resolution can exist. One computes that ω^n is isomorphic to J^n , where J is the fractionary ideal generated by

 $(1/x_2, 1/(x_3+t), 1/x_4)$; and $Proj(\bigoplus \omega^n)$ (\cong blow-up of J) is non-singular, but *not* an RDP-resolution of Y. (The fibre over t=0 has two components!)

3

After outlining the proof of some preliminary facts from duality theory (Lemma 1), we prove the Theorem in Lemmas 2 and 3 below. Let $f: X \to Y$ be an RDP-resolution of $g: Y \to S$.

LEMMA 1: (cf. [5, p. 298] or 5', Prop. 9) (i) Since $g: Y \to S$ is flat, with Cohen-Macaulay fibres, the relative dualizing complex $g^!\mathcal{O}_S$ has just one non-zero cohomology sheaf $\omega_{Y|S}$, and $\omega_{Y|S}$ is flat over S. Since $g \circ f$ is flat, with Gorenstein fibres, the similarly defined \mathcal{O}_X -module $\omega_{X|S}$ is invertible.

(ii) For any map $S' \to S$, with S' noetherian, if $Y' = Y \times_S S'$ and $\pi: Y' \to Y$ is the projection, then $\omega_{Y'|S'} = \pi^*(\omega_{Y/S})$.

PROOF: We may assume $S = \operatorname{Spec}(A)$, $Y = \operatorname{Spec}(B)$, with B a homomorphic image of a polynomial ring $R = A[\xi_1, \ldots, \xi_n]$ (cf. [5, p. 383, p. 388]). Then the first part of (i) states that

(i*): Ext_R(B, R) = 0 for
$$i \neq n - 2$$
, and Ext_Rⁿ⁻²(B, R) is A-flat;

and (ii) says that

(ii*): for any noetherian A-algebra A', if $R' = R \bigotimes_A A'$ and $B' = B \bigotimes_A A'$, then the natural map

$$\operatorname{Ext}_{R}^{n-2}(B,R) \bigotimes_{A} A' \to \operatorname{Ext}_{R'}^{n-2}(B',R')$$

is an isomorphism.

(i*) and (ii*), together with Nakayama's lemma, reduce the proof of the last assertion in (i) to the well-known case where S is the spectrum of a field [5, p. 296, Prop. 9.3].

We first show that B has homological dimension n-2 over R. For this we may replace R by its localization at an arbitrary maximal ideal \mathfrak{M} , and A by its localization at $\mathfrak{M} \cap A$ [8, p. 188, Thm. 11]. Let \mathfrak{m} be the maximal ideal of A, let $\overline{R} = R \bigotimes_A (A/\mathfrak{m})$ and $\overline{B} = B \bigotimes_A (A/\mathfrak{m})$, so that \overline{B} is a normal two-dimensional homomorphic image of the regular n-dimensional local ring \overline{R} , and so \overline{B} has homological dimensional

sion n-2 over \bar{R} . (What matters here and subsequently is that \bar{B} is Cohen-Macaulay.) Let K be the residue field of R. Since R and B are A-flat, we have for any R-projective (hence A-flat) resolution P. of B that the homology $H_j(P, \bigotimes_A (A/\mathfrak{m})) = \operatorname{Tor}_j^A(B, A/\mathfrak{m}) = 0$ for j > 0, i.e. $P \cdot \bigotimes_A (A/\mathfrak{m})$ is an \bar{R} -projective resolution of \bar{B} , whence, for all i,

(#)
$$\operatorname{Tor}_{i}^{R}(B,K) = \operatorname{Tor}_{i}^{\bar{R}}(\bar{B},K);$$

and our assertion follows from [8, p. 193, Thm. 14].

Thus B has a finitely generated R-projective (hence A-flat) resolution

$$P: 0 \to P_{n-2} \to P_{n-3} \to \cdots \to P_0 \to 0.$$

Let Q. be the complex with

$$Q_i = \operatorname{Hom}_R(P_{n-2-i}, R) \quad (i \in \mathbb{Z}).$$

For any A-algebra A' and any i we have

$$(\#\#) H_{n-2-i}(Q. \bigotimes_A A') = \operatorname{Ext}_R^i(B, R') = \operatorname{Ext}_R^i(B', R').$$

(For the second equality cf. the proof of (#) above.)

Now (i*) results from the following Lemma. (We assume again, as we may, that A and R are local, and let m be the maximal ideal of A.)

LEMMA 1a: Let Q. be an A-flat complex of finitely-generated R-modules, with $Q_i = 0$ for i < 0, and such that the homology $H_j(Q, \bigotimes_A (A/\mathfrak{m})) = 0$ for all j > 0. Then $H_0(Q_i)$ is A-flat, and $H_j(Q_i) = 0$ for all j > 0.

The proof is left to the reader.

Finally, applying [4, III', (7.3.1)(c) and (7.3.7)] to the homological functor T. of A-modules M given by

$$T_p(M) = H_p(Q, \bigotimes_A M) = \operatorname{Ext}_R^{n-2-p}(B, R \bigotimes_A M) \quad (p \in \mathbb{Z})$$

(Q. as above) we see that for every A-module M and every i, there is a natural isomorphism

$$\operatorname{Ext}_{R}^{i}(B,R) \otimes_{A} M \cong \operatorname{Ext}_{R}^{i}(B,R \otimes_{A} M).$$

In view of (##), taking M = A' we get (ii*). Q.E.D.

LEMMA 2: Let \mathcal{L} be the invertible \mathcal{O}_X -module $\omega_{X/S}$. Then:

- (i) L is very ample for f.
- (ii) For every n > 0, the canonical map $(f_* \mathcal{L})^{\otimes n} \to f_* (\mathcal{L}^{\otimes n})$ is surjective.

PROOF: We first show that $R^1f_*(\mathcal{O}_X) = 0$: for any closed point y of Y, let \mathfrak{m}_y be the maximal ideal of $\mathcal{O}_{Y,y}$; then for all $r \ge 0$, $\mathfrak{m}_y^r \mathcal{O}_X/\mathfrak{m}_y^{r+1} \mathcal{O}_X$ is an $\mathcal{O}_{f^{-1}(y)}$ -module generated by its global sections; since Y_s (s = g(y)) has rational singularities, therefore $H^1(\mathcal{O}_{f^{-1}(y)}) = 0$, and since $f^{-1}(y)$ has dimension ≤ 1 , we get $H^1(\mathfrak{m}_y^r \mathcal{O}_X/\mathfrak{m}_y^{r+1}) = 0$; conclude with [4, III, (4.2.1)].

Now by [7, p. 220, (12.1) and p. 211, proof of (7.4)] it will be enough to show for any reduced irreducible curve $C \subseteq f^{-1}(y)$ that $(\mathcal{L}.C)$ (the degree of \mathcal{L} pulled back to C) is >0. Lemma 1 (ii) reduces us to the case $S = \operatorname{Spec}(k)$, k an algebraically closed field. Let $p: Z \to X$ be a minimal resolution of singularities, and let \overline{C} be the component of $p^{-1}(C)$ which maps onto C. Then $(\mathcal{L}.C) = (p^{-1}\mathcal{L}.\overline{C})$. But $p^{-1}\mathcal{L}$ is a dualizing sheaf on Z [1, p. 493, (2.7)]; since (by definitior of RDP-resolution) \overline{C} is not a nonsingular rational curve with $C^2 \ge -2$, therefore $(p^{-1}\mathcal{L}.\overline{C}) > 0$. Q.E.D.

Lemma 2(i) implies that $X = \text{Proj}(\bigoplus_{n\geq 0} f_*(\mathcal{L}^{\otimes n}))$, cf. [4, II, (4.6.2), (4.6.3), (5.4.4)] or [4, III, (2.3.4.1)]; so we need only show that $f_*(\mathcal{L}^{\otimes n}) = \omega^n$ (n > 0). This is given by (ii) of Lemma 2 and by:

LEMMA 3: Let $\mathcal{L} = \omega_{X|S}$. Then for all n > 0 there is a natural injective map

$$\theta_n: f_*(\mathcal{L}^{\otimes n}) \hookrightarrow i_*((\Omega^2_{U/S})^{\otimes n});$$

and θ_1 is even bijective (i.e. $f_*\mathcal{L} = \omega$).

PROOF: Let $U \subseteq Y$ be as before, and let $j: f^{-1}(U) \to X$ be the inclusion map. f induces a proper map $f^{-1}(U) \to U$ which is fibrewise (over S) an isomorphism; hence $f^{-1}(U) \to U$ is an isomorphism. Now

$$\Omega_{IIIS}^2 = \omega_{IIIS} = j^* \mathcal{L},$$

and θ_n is obtained by applying f_* to the natural map $\mathcal{L}^{\otimes n} \to j_* j^* \mathcal{L}^{\otimes n}$. For the injectivity, it suffices that the $(X - f^{-1}(U))$ depth of \mathcal{L} be ≥ 1 [3, 1.9 and 3.8]. [4, IV, (11.3.8)] and (ii) of Lemma 1 above enable us to verify this fibrewise (over S); in other words, we need only check

the simple case where $S = \operatorname{Spec}(k)$, k a field.

Similarly we see that the (Y - U)-depth of $\omega_{Y/S}$ is ≥ 2 , and conclude that

$$\omega_{Y/S} = i_* i^* \omega_{Y/S} = \omega.$$

For the surjectivity of θ_1 , it suffices (by Nakayama's Lemma) that $f_*\mathcal{L} \to \omega_s = \omega_{Y/S} \otimes_{\mathcal{C}_Y} \mathcal{O}_{Y_s}$ be surjective for all $s \in S$. Since $f^*f_*\mathcal{L} \to \mathcal{L}$ is surjective (Lemma 2), so is $f^*f_*\mathcal{K} \to \mathcal{K}$, where \mathcal{K} is the kernel of $\mathcal{L} \to \mathcal{L}_s = \mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{O}_{X_s}$; since $R^1f_*\mathcal{O}_X = 0$ and f has fibres of dimension ≤ 1 , therefore $R^1f_*\mathcal{K} = 0$, and $f_*(\mathcal{L}) \to f_*(\mathcal{L}_s)$ is surjective. But \mathcal{L}_s (resp. ω_s) is a dualizing sheaf on X_s (resp. Y_s), and since Y_s has rational singularities, therefore $f_*(\mathcal{L}_s) = \omega_s$ ([6, p. 606, 3.5] or, for greater generality, [7', §2]). Q.E.D.

REMARK: For $S = \text{Spec}(k[t]/t^2)$, Wahl has a proof of Lemma 3 which avoids duality theory [10, §2].

REFERENCES

- [1] M. ARTIN: Some numerical criteria for contractibility of curves on algebraic surfaces. Amer. J. Math. 84 (1962) 485-496.
- [2] D. BURNS, M. RAPOPORT: On the Torelli problem for Kählerian K-3 surfaces. Ann. Sci. Ecole Norm. Sup. 8 (1975) 235-274.
- [3] A. GROTHENDIECK: Local Cohomology. Lecture Notes in Math. no. 41, Springer-Verlag, 1967.
- [4] A. GROTHENDIECK, J. DIEUDONNÉ: Éléments de Géometrie Algébrique II, III, III', IV; Publ. Math. IHES nos. 8, 11, 17, 28 (1961-1966).
- [5] R. HARTSHORNE: Residues and Duality: Lecture Notes in Math. no. 20, Springer-Verlag, 1966.
- [5'] S. KLEIMAN: Relative duality for quasi-coherent sheaves (Preprint).
- [6] H. LAUFER: On rational singularities. Amer. J. Math. 94 (1972) 597-608.
- [7] J. LIPMAN: Rational singularities. Publ. Math. IHES no. 36 (1969) 195-279.
- [7'] J. LIPMAN: Desingularization of two-dimensional schemes. Annals of Math. 107 (1978) 151-207.
- [8] D.G. NORTHCOTT: An introduction to homological algebra, Cambridge University Press, London, 1960.
- [9] J. WAHL: Local cohomology groups for resolutions of singularities. Symposia in Pure Math. vol. 30 (1977) 91-94.
- [10] J. WAHL: Simultaneous resolution of rational singularities. Comp. Math. 38 (1979) 43-54.

(Oblatum 6-VI-1977 & 1-IX-1977)

Joseph Lipman
Department of Mathematics
Purdue University
W. Lafayette, Indiana 47907