Stellar Evolution - Hints to exercises - Chapter 8

8.1 Homologous contraction(1)

Discuss your answers to this question with your fellow students or with the teaching assistant. Also see the text of Chapter 8.

8.2 Homologous contraction(2)

(a) Combine the homology relation for the density, $\rho \propto M/R^3$, and for the pressure, $P \propto GM^2/R^4$, and apply them to the center of the star. See Section 7.4.

(b)

$$CG M^{2/3} \rho_c^{4/3} = \frac{\mathcal{R} \rho_c T_c}{\mu} + K_{NR} \left(\frac{\rho_c}{\mu_e}\right)^{5/3}$$

therefore

$$T_c = \frac{\mu}{\mathcal{R}} \left(CG M^{2/3} \rho_c^{1/3} - \frac{K_{\text{NR}}}{\mu_e^{5/3}} \rho_c^{2/3} \right)$$

(c) The maximum is located where $dT_c/dx = 0$, taking $x = \rho_c$. Substitute the resulting x back into the equation for T_c . This yields the same result as eq. (8.5).

8.3 Application: Minimum core mass for Helium burning

Hand-in exercise.