LITERATURE SURVEY AND INFORMATION GATHERING

SI . NO	AUTHORS	METHODOLOGY	OUTCOMES	DRAWBACKS
1	J.Amezquita- Sanchez, M. Valtierra- Rodriguez, H.Adeli	Signal processing, image processing and statistical technique	More accurate prediction of natural disasters	Limited statistical parameters for prediction
2	H.Adeli, A. Panakkat	Neural network	Predict magnitude of earthquake	Limited parameters used for prediction
3	U.Kradolfer	Text mining, regular log mining technique	Detect earthquake with speed and accuracy on seismological data	Depends on public feedback to detect earthquake
4	B. Merz, H.Kreibich, U.Lall	Decision tree	Utilize some parameters to access the model for flood damage area detection	Parametric limitation for the detection of flood damaging regions
5	R.R. Sahay, A. Srivastava	Artificial neural network, genetic algorithm and wavelet transfer technique	Sum-up good results as compared to the already existing techniques in the southeast Asia	Work for monsoon floods in June and September for specific regions in India for time series data

6	M.Venkatesan, A.Thangavelu, P. Prabhavathy	Support vector machine, naive Bayes	Classify the natural disasters on various parameters	Limited for only early stages of natural disasters
7	O. Korup, A. Stolle	Machine learning technique	Predict the land slidding with the accuracy rate of 75 to 95	More guidlines for model selection for predition large scale landslide
8	R.Di Salvo, P.Montalto, G.Nunnari, M.Neri, G.Puglisi	Neural network and back propagation	Prediction occur on past dataset	Dyanamic prediction is very much crucial for this system
9	H.S.Das, H.Jung	Clustering for multivariable time series	Proposed a dynamic clustering approch for time series analysis and self-optimize organizing mapping technique	Dynamic time series data required for clustering process
10	A.T.Chatfield, U.Brajawidagda	Data mining technique	A real time desktop-based GUI system is designed to predict local storm	Use parallel computing process that takes various amounts of time to predict storm

	A.K.Nisa,	Artificial neural	A fully	It works on
	M.I.Irawan,	network	connected	multivariable
	D.G.Pratomo		neural	parameters
			network for	rather than the
			segmentation	pixel by pixel
			which is used	parameters
11			for	
			multivariable	
			pattern	
			recognition at	
			different	
			levels	
	M.Meadows,	Machine learning	The prediction	Still lack
	M.Wilson	technique with	method is	symmetric
		numerical weather	used in China	parameters for
		prediction	that shows	numerical
12			significant	computations
			improvement	
			as compared	
			to the	
			traditional	
			methods	