OPTIMIZATION. HOMEWORK 1

OSCAR DALMAU

- (1) Let $f_1(x_1, x_2) = x_1^2 x_2^2$, $f_2(x_1, x_2) = 2x_1x_2$. Represent the level sets associated with $f_1(x_1, x_2) = 12$ and $f_2(x_1, x_2) = 16$ on the same figure using Python. Indicate on the figure, the points $\boldsymbol{x} = [x_1, x_2]^T$ for which $f(\boldsymbol{x}) = [f_1(x_1, x_2), f_2(x_1, x_2)]^T = [12, 16]^T$.
- (2) Consider the function $f(\mathbf{x}) = (\mathbf{a}^T \mathbf{x})(\mathbf{b}^T \mathbf{x})$, where \mathbf{a} , \mathbf{b} , and \mathbf{x} are n-dimensional vectors. Compute the gradient $\nabla f(\mathbf{x})$ and the Hessian $\nabla^2 f(\mathbf{x})$.
- (3) Let $f(x) = \frac{1}{1+e^{-x}}$ and $g(z) = f(\boldsymbol{a}^T z + b)$ with $\|\boldsymbol{a}\|_2 = 1$. Show that $D_{\boldsymbol{a}}g(z) = g(z)(1-g(z))$.
- (4) Compute the gradient of

$$f(\theta) \stackrel{def}{=} \frac{1}{2} \sum_{i=1}^{n} [g(\boldsymbol{x}_i) - g(\mathbf{A}\boldsymbol{x}_i + \boldsymbol{b})]^2$$

with respect to θ , where $\theta = [a_{11}, a_{12}, a_{21}, a_{22}, b_1, b_2]^T$, $\boldsymbol{x}_i \in \mathbb{R}^2$, $\boldsymbol{A} \in \mathbb{R}^{2 \times 2}$, $\boldsymbol{b} \in \mathbb{R}^2$ are defined as follows

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
$$b = [b_1, b_2]^T$$

and $g: \mathbb{R}^2 \to \mathbb{R} \in \mathcal{C}^1$.

- (5) Show that $\kappa(\mathbf{A}) \ge 1$ where $\|\mathbf{A}\| = \max_{\boldsymbol{x}} \frac{\|\mathbf{A}\boldsymbol{x}\|}{\|\boldsymbol{x}\|}$. (Hint: show that $\|\mathbf{A}\mathbf{B}\| \le \|\mathbf{A}\| \|\mathbf{B}\|$)
- (6) Show that $x \sin x = o(x^2)$, as $x \to 0$
- (7) Suppose that $f(\mathbf{x}) = o(g(\mathbf{x}))$. Show that for any given $\epsilon > 0$, there exists $\delta > 0$ such that if $0 < ||\mathbf{x}|| < \delta$, then $|f(\mathbf{x})| < \epsilon |g(\mathbf{x})|$, i.e, $f(\mathbf{x}) = O(g(\mathbf{x}))$ for $0 < ||\mathbf{x}|| < \delta$.
- (8) Show that if functions $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ satisfy $f(\boldsymbol{x}) = -g(\boldsymbol{x}) + o(g(\boldsymbol{x}))$ and $g(\boldsymbol{x}) > 0$ for all $\boldsymbol{x} \neq \boldsymbol{0}$, then for all $\boldsymbol{x} \neq \boldsymbol{0}$ sufficiently small, we have $f(\boldsymbol{x}) < 0$.