Mutation ratios of proteoglycan synthesis genes in organisms with different bone classifications

Flaviu Vadan, Ian McQuillan, Brian Eames

Proteoglycans (PGs)

- A class of macromolecules
 - Two components: core protein, glycosaminoglycans (GAGs)
- Specific function dictated by type of attached carbohydrate
- PGs are found in connective tissue
- Serve important functions extracellularly
 - Bind other PGs or collagen

Proteoglycans

Proteoglycans

- Known to bind collagen to facilitate cartilage synthesis
 - Collagen type I, II, and III
- Loss of extracellular PGs associated with osteoarthritis
 - Wreak havoc in the ECM!
- Loss of specific PGs, such as B4GALT7, associated with Ehlers-Danlos syndrome
 - Loss of ability to find and replace different disaccharides on core proteins

Proteoglycans

- Current problem in skeletal evolution is the lack of understanding of evolution of PG genes
- Understanding may guide efforts towards studying genes in relation to their contribution towards osteoarthritis
- Can be studied using comparative genomics approaches

Approaches

- Sequence alignments
 - Essential for analyzing homology between sequences
- Phylogenetic profiling
 - Tree topologies suggestive of coevolution

Sequence alignment

Phylogenetic tree

Approaches

- Quantifying changes in codon changes
 - Non-synonymous (dN) vs. synonymous mutations (dS)
 - Non-synonymous mutations change the amino acid sequence, synonymous mutations do not
- Statistical methods to quantify mutation ratios
 - dN/dS < 1 = conservation, $dN/dS \sim 1 = neutral$, 1 < dN/dS = mutation
 - Helps infer direction and magnitude of natural selection acting on proteincoding genes

Objectives

- Hypothesis: genes of the PG pathway showcase higher dN/dS in organisms that synthesize bone/cartilage
 - Transition from water to land = gravity vs. drag
- Study homology of PG genes
- Understand gene distribution across organisms
- Quantify mutation ratios

Data collection

- Collected 51 gene orthologs' sequences from Ensemble
 - Ensembl genomes are annotated and curated
- Organisms with automatically annotated genomes were removed
 - Projection builds are not manually curated

Taxa information

- 199 organisms collected, 188 used
- 12 organisms' genomes were projection builds
- Verified using NCBI's BLAST
 - Identified some organisms' genomes to include "missing" genes
- Bias towards vertebrates
- Selected a set of 21 representatives

Organism representatives

Class	Organism	Cartilage	Bone	Reason
Mammalia	Homo sapiens	√	√	All 51 genes
	$Mus\ musculus$	\checkmark	\checkmark	Close to <i>Homo sapiens</i>
	$Ornithorhynchus\ anatinus$	\checkmark	\checkmark	Egg-laying mammal
Actinopterygii	$Danio\ rerio$	\checkmark	\checkmark	Model organism in Eames Lab
	$Oryzias\ latipes$	\checkmark	\checkmark	Cartilage only
	$Takifugu\ rubripes$	\checkmark	\checkmark	Cartilage only
	$Lepisosteus\ oculatus$	\checkmark	\checkmark	Cartilage only
Archelosauria	$An as \ platyrhynchos$	\checkmark	\checkmark	Lives on land, flies
	$Gallus \ gallus$	\checkmark	\checkmark	Good genome, economic interest
	Chrysemys picta bellii	\checkmark	\checkmark	Lives on land and water
	$Crocodylus\ porosus$	\checkmark	\checkmark	Lives on land and water
Lepidosauria	$Note chis\ scutatus$	\checkmark	\checkmark	Smaller in size but still have bone
	$Anolis\ carolinensis$	\checkmark	\checkmark	Smaller in size but still have bone
Amphibia	$Xenopus\ tropicalis$	\checkmark	\checkmark	Xenopus with diploid genome
Holocephali	Callorhinchus milii	√		Cannot turn cartilage into bone
Coelacanthiformes	$Latimeria\ chalumnae$	\checkmark		Closely related to amphibians
Hyperoartia	$Petromyzon\ marinus$	\checkmark		Jawless fish
Hyperotreti	$Eptatretus\ burgeri$	\checkmark		Jawless fish
Phlebobranchia	Ciona intestinalis			Single org. available
Pterygota	$Drosophila\ melanogaster$			Important model org.
Rhabditina	$Cae nor hab ditis\ elegans$			Important model org.

Gene functions

- Diverse gene functions
 - Sulfatases, Kinases, Epimerases, etc.
- Multiple genes perform the same function
 - Suggests possibility of redundancy

Multiple sequence alignments

- Multiple sequence alignments (MSAs) were created using EBI's kalign
- Defined a column similarity metric
 - Ratio between the number of non-gap characters and total number of characters in an MSA column
- Similarity used to understand conservation and visualize MSAs

```
A C T C G C A A T A T G C

A C T _ _ _ _ T T A T G C

A C T T G T C T T A T G C

A C T _ G _ _ T T A _ C
```

Multiple sequence alignments

- Grouped genes showcase some similarities
- Core proteins showcase conservation across MSA
- Kinases showcase sparsity
 - Important regions are conserved (R304)

Core proteins

Phylogenetic profiling

- Phylogenetic relationships between organisms were identified using NCBIs Common Tree
 - Allowed the creation of a central phylogenetic tree
- 51 trees were generated, one for each gene
 - Organisms that do not have the gene represented by the tree were marked
- Trees were paired to reduce dimensionality
 - Used Jaccard's index (intersection/union)
 - S1 = {1, 2, 3}, S2 = {2, 3, 4}
 - $S1 \cap S2 = \{2, 3\}, S1 \cup S2 = \{1, 2, 3, 4\}$
 - Index = 2/4

Trees

- 51 phylogenetic trees
- Combined using Jaccard's index
- Gene presence and function may be related to organism complexity and habitat
 - Coevolution of genes from trees is unclear

dN/dS

- Advantages of dN/dS
 - Popular method, easy to understand
 - Compared to other population genetic methods, only assumes equal mutation rates of nucleotide loci
- Disadvantages of dN/dS
 - Potential systematic bias because of assumption
 - Many reasons for sequences to be different

$$d_N = -\frac{3}{4} \ln\left(1 - \frac{4p_N}{3}\right)$$
 $d_S = -\frac{3}{4} \ln\left(1 - \frac{4p_S}{3}\right)$ $dN/dS = \frac{d_N}{d_S}$

Independent dN/dS

- Independent gene differences consistent with organisms' complexity
 - Compare human and mouse
 - Compare human and nematode

dN/dS summary

- Hypothesis predicted higher mutation rates in organisms with bone, opposite trend identified
- Bimodal distribution caused by comparing two types of organism classes
 - Higher complexity vs. lower complexity

dN/dS summary

dN/dS grouped

- Grouped based on bone presence
- No significant overall differences between distributions
 - Loss of genes in organisms without bone/cartilage
- Range of ratios in organisms without bone/cartilage generally smaller

Summary

- Approx. 2000 lines of code*
 - Easy to replicate study or apply to other data
- 51 MSAs, 59 phylogenetic trees, 21 dN/dS plots, 3 summary plots, various visualizations to understand data

https://github.com/flaviuvadan/proteoglycan-pathway-evolution

Conclusion

- Initial hypothesis was orgs. with bone/cartilage have higher dN/dS compared to org. without; opposite trend was found
- Inconclusive evidence to suggest significant differences between dN/dS distributions
 - Some localized differences point towards independent gene loss, or gain
- Cannot use this, yet, to suggest clear directions for osteoarthritis research

Future Work

- Focus on genes independently
 - One study focused on Fam20, no other work pursued in the area
- Potentially low signal/noise ratio
 - Patterns are unclear, conclusion may be different
- Focus on genes with similar localization
 - Different groupings may yield different conclusions

Credits

- Brian Eames (supervisor)
- Ian McQuillan (supervisor)
- Jason Bernard (reviewer)
- Everyone who contributes to open-source

Code, data, and paper available:

https://github.com/flaviuvadan/proteoglycan-pathway-evolution