Generalize: Class size N (and N-sided die) sample of $n \leq N$ students

$$\mathbb{E}[T_n] = \sum_{i=1}^n \mathbb{E}[T_i] = \sum_{i=1}^n \frac{1}{iN} = N\sum_{i=1}^n \frac{1}{i}$$

Each interval is geometrically distributed
$$IP(T_i = \frac{i}{N}(1 - \frac{i}{N})^{t_i-1})$$

Continuous

p(ti) rate ?

 $P(t_3) \simeq \frac{i}{N} e^{-\frac{2}{N}t_3}$

Memoryless:
$$P(t_i | t_{i+1}) = P(t_i)$$

Cole-escent theory

Cole-escent theory

Generalize: Class size N (and N-sided die) sample of $n \leq N$ students

$$\mathbb{E}[T_n] = \sum_{i=1}^{n} \mathbb{E}[T_i] = \sum_{i=1}^{n} \frac{1}{iN} = N \sum_{i=1}^{n} \frac{1}{i}$$

Each interval is geometrically distributed $P(T_i = t_i) = \frac{i}{N} \left(1 - \frac{i}{N}\right)^{t_i-1}$ for large N: $P(t_i) \simeq \frac{i}{N} e^{-\frac{i}{N}t_i} \Rightarrow approx. expansional dist.$ Memoryluss: $P(t_i) \simeq \frac{i}{N} e^{-\frac{i}{N}t_i} \Rightarrow approx. expansional dist.$ Memoryluss:

Memoryluss:
$$P(t; | t_{i+1}) = P(t_i)$$

Coalescent theory

Only slightly fancier

		Cole-escent	coalescent	
,	time	classes into the future	generations into the past	
	events	dice rolls, one student	coalescences, pairs of individuals	
V	rate of events v/; individuals	i Students uncalled N Class size		#pairs