Траектории этой системы удовлетворяют уравнению $\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} = -\frac{\sin x}{y\cos x}$. $2yy_x'(x) = -2\frac{\sin x}{\cos x}$. $y^2(x) = 2\ln|\cos x| + C$. Итак, траектории задаются $y(x) = \pm \sqrt{C + \ln(\cos^2 x)}$. Они определены только при C > 0 и представля-

Они определены только при C>0 и представляют собой замкнутые кривые при всех таких C. Эти траектории вместе с направляющими векторами показаны на графике. Оценив рисунок, можно утверждать, что замкнутую траекторию можно подобрать настолько, насколько необходимо, близкой к началу координат фазовой плоскости, то есть к нулевому решению $\Phi(t) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Вывод: решение устойчиво, хотя и не асимптотически.

Докажем это по определению. Для всякой начальной точки $A_0 = (x(t_0); y(t_0))$ при условии $x(t_0) \in \left(-\frac{\pi}{2}; -\frac{\pi}{2}\right)$ можно однозначно отыскать $C = y^2(t_0) - \ln\left(\cos^2 x(t_0)\right)$, и это означает, что через A_0 проходит единственная траектория. При $t \geqslant t_0$ точка будет оставаться на этой же траектории с неизменным C. Для удобства положим $t_0 = 0$.

Траектория $y^2(x) = 2 \ln|\cos x| + C$ определена для $|x| \le \arccos\left(e^{-\frac{C}{2}}\right) < \frac{\pi}{2}$. Обозначим за $\rho = \rho(t)$ расстояние от точки на траектории $X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ до начала координат.

$$\rho(t) = \rho\big(x(t)\big) = \sqrt{x^2(t) + y^2(t)} = \sqrt{x^2(t) + \ln\big(\cos^2 x(t)\big) + C} = \sqrt{f\big(x(t)\big) + C},$$

где за f(x) обозначено выражение $f(x) = x^2 + \ln(\cos^2 x)$. Эта функция чётная и убывает для $0 \le x < \frac{\pi}{2}$, потому что для таких x имеем $f'(x) = 2(x - \lg x) < 0$. Это значит, что $x^2 + \ln(\cos^2 x) = f(x) \le f(0) = 0$.

Следовательно, в x=0 расстояние наибольшее и равно $\rho_{\max}(C)=\sqrt{C}$; наименьшее достигается в концах отрезка $x=\pm\arccos\left(e^{-\frac{C}{2}}\right)$ и равно $\rho_{\min}(C)=\arccos\left(e^{-\frac{C}{2}}\right)$.

$$|X(t) - \Phi(t)| = \sqrt{x^2(t) + y^2(t)}$$
 $|X(t_0) - \Phi(t_0)| = \sqrt{x^2(0) + y^2(0)}$

Пусть теперь $\varepsilon > 0$ — произвольное и $\delta(\varepsilon) = \arctan(\varepsilon)$. Потребуем также, чтобы для начальной точки A_0 выполнялось $\sqrt{x^2(0) + y^2(0)} < \delta$. Из этого следует

$$\delta > \sqrt{x^2(0) + y^2(0)} \ge \rho_{\min} = \arccos\left(e^{-\frac{C}{2}}\right).$$

Функция $g(s) = \arccos\left(e^{-\frac{S}{2}}\right)$ возрастает, что позволяет решить относительно C неравенство $\arccos\left(e^{-\frac{C}{2}}\right) < \delta$ и получить $C < \ln\left(\frac{1}{\cos^2\delta}\right)$.

Наконец, учитывая неравенство $\ln a \leqslant a-1$ для всех a, основное тригонометрическое тождество и решение неравенства сверху, получаем при $t \geqslant t_0 = 0$

$$\sqrt{x^2(t) + y^2(t)} \leqslant \rho_{\max}(C) = \sqrt{C} < \sqrt{\ln\left(\frac{1}{\cos^2 \delta}\right)} \leqslant \sqrt{\frac{1}{\cos^2 \delta} - 1} = \sqrt{\operatorname{tg}^2 \delta} = \varepsilon.$$

Устойчивость доказана.