Bayesian Data Analysis

Dr Niamh Cahill (she/her)

Inferring a Binomial Probability

Recall: Bayes' rule

Given a set of observed data points y and a set of parameters θ , we write Bayes' rule as

$$P(\theta|y) = \frac{P(y|\theta)P(\theta)}{\frac{\text{likelihood prior}}{P(y)}}$$
marginal likelihood

and as a proportional statement

$$P(\theta|Y) \propto P(Y|\theta)P(\theta)$$
 posterior likelihood prior

We will now consider an example that will build some intuition for how prior distributions and data interact to produce posterior distributions.

The Happiness example

Suppose females, aged 65+ in a general social survey were asked about being happy. If this is a representative sample of the population of women, what is the probability that a 65+ woman is happy?

What is our goal? To estimate the probability that a 65+ woman is happy. This is an unknown parameter which we'll call θ .

What data do we have? Data: n=20 women, y=14 women reported being happy

How do we do Bayesian inference for θ ?

- Decide on a descriptive model for the data (i.e., the likelihood) with meaningful parameter(s), θ (e.g., the probability a 65+ woman is happy)
- lacktriangle Information about heta will be summarized in a prior probability distribution
- and updated using the data, via the likelihood, to obtain the posterior distribution for the parameters using Bayes' rule.

Likelihood function - $p(y|\theta)$

Data: n = 20 women, y = 14 women reported being happy

We will assume that y is Binomial(θ , n) such that

$$p(y|\theta) = c\theta^{y}(1-\theta)^{n-y}$$
 with $c = \binom{n}{y}$

We'll refer to $y|\theta \sim Bin(\theta,n)$ as the data model (or the likelihood). It tells us how the data are related to the parameter(s) we want to estimate.

Prior distribution - $p(\theta)$

Now that we've defined the data model, the next step is to establish a prior distribution over the parameter values.

- Let's start simple and assume θ can only take on values $k = 0, 0.1, 0.2, \dots, 1$.
- ightharpoonup Suppose that we believe that θ is most likely to be 0.5 and we assign lower weight to θ values far above or below 0.5.
- A prior distribution incorporating these beliefs might look like

Likelihood & Prior

Given that y = 14 and n = 20 with $\frac{y}{n}$ = 0.7, which θ out of 0,0.1,0.2,...,1 do you expect to have the largest value of the likelihood function?

Posterior distribution - $P(\theta|Y) \propto P(Y|\theta)P(\theta)$ posterior likelihood prior

Changing prior assumptions

Instead of the "triangular" prior let's make a more uniform assumption. So for $k=0,0.1,0.2,\ldots,1,\ Pr(\theta=k)=1/11$ (i.e., all are equally likely).

Marginal likelihood - p(y)

Recall:

$$P(\theta|y) = \frac{P(y|\theta)P(\theta)}{P(y)}$$
posterior
$$\frac{P(y)}{P(y)}$$
marginal likelihood

What is P(y)?

$$P(y) = \sum_{\theta^*} P(y|\theta^*) P(\theta^*)$$

So for k = 0, 0.1, 0.2, ..., 1, $Pr(\theta = k) = 1/11$ (i.e., all are equally likely)

$$P(y) = p(y|\theta = 0)Pr(\theta = 0) + P(y|\theta = 0.1)Pr(\theta = 0.1) + \dots = 0.04$$

To do this in R:

```
n_grid = 11
theta <- seq(0,1,length = n_grid)
p_y <- (1/n_grid)*(sum(dbinom(14, 20, prob = theta)))</pre>
```