

Vectorisation and parallelisation of the neutron transport sweep algorithm on cartesian and hexagonal meshes using Kokkos

Café CExA, 3 Juin 2024

G. Suau ¹ (gabriel.suau@cea.fr) R. Baron ² A. Calloo ² T. Gautier ³ R. Le Tellier ⁴

¹CEA DES/ISAS/DM2S/SERMA/LLPR

²CEA DES/ISAS/DM2S/SGLS/LCAN

³INRIA / AVALON / LIP - ENS DE LYON

⁴CEA DES/IRESNE/DTN/STMA/LMAG

Numerical context

Sweep algorithm and parallelisation opportunities

Explicit vectorisation using Kokkos SIMD types Method and implementation Performance results

Parallelisation for multicore CPUs

Sychronous parallel sweep using RangePolicy
Adding angleset parallelism
Adding asynchronicity with Tasks and WorkGraphPolicy
Adding local work queues and work-stealing in WorkGraphPolicy

Conclusion and perspectives

Numerical context

Stationnary neutron transport equation

$$\begin{split} \left(\vec{\Omega} \cdot \vec{\nabla} + \Sigma_{t}(\vec{r}, E)\right) \psi(\vec{r}, E, \vec{\Omega}) &= \int_{\mathcal{E}} \int_{\mathbb{S}^{2}} \Sigma_{s}(\vec{r}, E' \leftarrow E, \vec{\Omega}' \leftarrow \vec{\Omega}) \psi(\vec{r}, E', \vec{\Omega}') d\vec{\Omega}' dE' \\ &+ \frac{\chi(E)}{4\pi k_{\text{eff}}} \int_{\mathcal{E}} \nu \Sigma_{f}(\vec{r}, E') \phi(\vec{r}, E') dE', \\ \phi(\vec{r}, E) &= \int_{\mathbb{S}^{2}} \psi(\vec{r}, E, \vec{\Omega}) d\vec{\Omega}. \end{split} \tag{1}$$

Energy and angular discretisations

- Multigroup formulation : n_g energy groups, $\mathcal{E} \to E_{n_g} < \cdots < E_1 < E_0$;
- Discrete ordinates method (S_N) : n_d discrete directions on \mathbb{S}^2 , quadrature formula $(\omega_d, \vec{\Omega}_d)$;
- Nested iterative algorithms: power iteration, Gauss-Seidel/Jacobi, Richardson;
- For each innermost iteration, solve

$$\forall g \in [1, n_g] \begin{cases} \left(\vec{\Omega}_d \cdot \vec{\nabla} + \Sigma_t^g(\vec{r}) \right) \psi_d^g(\vec{r}) = q_d^g(\vec{r}) & \forall d \in [1, n_d] \\ \\ \phi^g(\vec{r}) = \sum_{d=1}^{n_d} \omega_d \psi_d^g(\vec{r}). \end{cases}$$
(2)

Numerical context

Spatial discretisation

For each innermost iteration, solve $\forall (q, d)$

$$\vec{\Omega}_{d} \cdot \vec{\nabla} \psi_{d}^{g}(\vec{r}) + \Sigma_{t}^{g}(\vec{r}) \psi_{d}^{g}(\vec{r}) = q_{d}^{g}(\vec{r}) \quad \forall \vec{r} \in \mathcal{D}.$$
 (3)

■ Upwind Discontinuous Galerkin \rightarrow meshing of the spatial domain, polynomial basis of order p in each cell K

$$\psi_{d|K}^{g}(\vec{r}) = \sum_{i=1}^{n(p)} \psi_{d,i}^{g} v_{K}^{i}(\vec{r}) = \underline{\psi}_{d,K}^{g} \cdot \underline{v}_{K}$$
 (4)

Discrete local formulation on a single (K, d, g)

$$\begin{split} \left(\Omega_{d}^{\mathsf{X}}\mathbf{A}_{K}^{\mathsf{X}} + \Omega_{d}^{\mathsf{Y}}\mathbf{A}_{K}^{\mathsf{Y}} + \Omega_{d}^{\mathsf{Z}}\mathbf{A}_{K}^{\mathsf{Z}} + \Sigma_{l}^{g}\mathbf{M}_{K} - \sum_{F \in \partial K_{d}^{-}} \left(\vec{\Omega}_{d} \cdot \vec{n}_{F}\right)\mathbf{M}_{K,F}^{+}\right) \underline{\psi}_{d,K}^{g} \\ &= \mathbf{M}_{K}\underline{q}_{K,d}^{g} - \sum_{F \in \partial K_{d}^{-}} \left(\vec{\Omega}_{d} \cdot \vec{n}_{F}\right)\mathbf{M}_{K,F}^{-}\underline{\psi}_{d,KF,-}^{g} \end{split} \tag{5}$$

Elem. matrices

$$\begin{split} \left(\mathbf{M}_{K}\right)_{i,j} &= \int_{K} v_{K}^{i} v_{K}^{j} dV, \\ \left(\mathbf{A}_{K}^{*}\right)_{i,j} &= \int_{K} v_{K}^{j} \frac{\partial v_{K}^{j}}{\partial *} dV, \end{split}$$

$$\left(\mathbf{M}_{K,F}^{+}\right)_{i,j} = \int_{F} v_{K}^{i} v_{K}^{j} dS,$$

$$\left(\mathbf{M}_{K,F}^{-}\right)_{i,j} = \int_{F} v_{K}^{i} v_{KF,-}^{j} dS.$$

Resolution via an ordered sweep of the mesh cells

- For each direction $(\mathcal{O}(10^{1-2}))$ and energy group $(\mathcal{O}(10^{1-3}))$, sweep mesh $(\mathcal{O}(10^{3-5}))$,
- Can be seen as the traversal of a Directed Acyclic Graph (DAG), where each node is a cell,
- For each (K, d, g), assembly and resolution of a small linear system $(\mathcal{O}(10^{0-2}))$ to compute spatial dofs,
- Directions and energy groups are independent → embarassingly parallel,
- Parallelism on cells is also available, although harder to tackle,
- Assembly and resolution of the local system can be parallelised.


```
 \begin{array}{c|c} \text{parallel for } s \in \llbracket 1, n_s \rrbracket \text{ do} \\ & \text{parallel for } g \in \llbracket 1, n_g \rrbracket \text{ do} \\ & \text{parallel for } d \in \llbracket 1, n_d (s) \rrbracket \text{ do} \\ & \text{parallel graph } K \in \mathcal{G} \text{ do} \\ & & \text{C}_{d,K}^g = \vec{\Omega}_d \cdot \vec{\mathbf{A}}_K + \Sigma_{t,K}^g \mathbf{M}_K - \sum_{F \in \partial K_d} - \left(\vec{\Omega}_d \cdot \vec{n}_F\right) \mathbf{M}_{K,F}^+ // \text{ Local Matrix} \\ & & \underline{b}_{d,K}^g = \mathbf{M}_K \underline{q}_{d,K}^g - \sum_{F \in \partial K_d} - \left(\vec{\Omega}_d \cdot \vec{n}_F\right) \mathbf{M}_{K,F}^- \underline{\psi}_{d,KF,-}^g \\ & & \text{// Gaussian elimination} \\ & \text{end} \\ \end{array}
```

```
 \begin{array}{c|c} \text{parallel for } s \in \llbracket 1, n_s \rrbracket \text{ do} \\ & \text{parallel for } d \in \llbracket 1, n_d(s) \rrbracket \text{ do} \\ & \text{parallel for } g \in \llbracket 1, n_g \rrbracket \text{ do} \\ & \text{parallel graph } K \in \mathcal{G} \text{ do} \\ & & \text{C}_{d,K}^g = \vec{\Omega}_d \cdot \vec{\mathbf{A}}_K + \Sigma_{t,K}^g \mathbf{M}_K - \sum_{F \in \partial K_d} - \left(\vec{\Omega}_d \cdot \vec{n}_F\right) \mathbf{M}_{K,F}^+ // \text{ Local Matrix} \\ & & \underline{b}_{d,K}^g = \mathbf{M}_K \underline{q}_{d,K}^g - \sum_{F \in \partial K_d} - \left(\vec{\Omega}_d \cdot \vec{n}_F\right) \mathbf{M}_{K,F}^- \underline{\psi}_{d,KF,-}^g \\ & & \text{// Gaussian elimination} \\ & & \text{end} \\ \end{array}
```

```
 \begin{array}{c|c} \text{parallel for } s \in \llbracket 1, n_s \rrbracket \text{ do} \\ & \text{parallel graph } K \in \mathcal{G} \text{ do} \\ & \text{parallel for } g \in \llbracket 1, n_g \rrbracket \text{ do} \\ & \text{parallel for } d \in \llbracket 1, n_d(s) \rrbracket \text{ do} \\ & \begin{bmatrix} \mathbf{C}_{d,K}^g = \vec{\Omega}_d \cdot \vec{\mathbf{A}}_K + \boldsymbol{\Sigma}_{t,K}^g \mathbf{M}_K - \sum_{F \in \partial K_d} - (\vec{\Omega}_d \cdot \vec{n}_F) \mathbf{M}_{K,F}^+ // \text{ Local Matrix} \\ & \underline{b}_{d,K}^g = \mathbf{M}_K \underline{q}_{d,K}^g - \sum_{F \in \partial K_d} - (\vec{\Omega}_d \cdot \vec{n}_F) \mathbf{M}_{K,F}^- \underline{\psi}_{d,KF,-}^g & \text{// Local RHS} \\ & \underline{\psi}_{d,K}^g = \left(\mathbf{C}_{d,K}^g\right)^{-1} \underline{b}_{d,K}^g & \text{// Gaussian elimination} \\ & \text{end} \\ & \text{end} \\ & \text{end} \\ & \text{end} \\ \end{array}
```

```
 \begin{array}{c|c} \text{parallel for } s \in \llbracket 1, n_s \rrbracket \text{ do} \\ \text{parallel graph } K \in \mathcal{G} \text{ do} \\ \text{parallel for } d \in \llbracket 1, n_d(s) \rrbracket \text{ do} \\ \text{parallel for } g \in \llbracket 1, n_g \rrbracket \text{ do} \\ \text{C}_{d,K}^g = \vec{\Omega}_d \cdot \vec{\mathbf{A}}_K + \Sigma_{t,K}^g \mathbf{M}_K - \sum_{F \in \partial K_d^-} (\vec{\Omega}_d \cdot \vec{n}_F) \mathbf{M}_{K,F}^+ // \text{ Local Matrix} \\ \underline{b}_{d,K}^g = \mathbf{M}_K \underline{q}_{d,K}^g - \sum_{F \in \partial K_d^-} (\vec{\Omega}_d \cdot \vec{n}_F) \mathbf{M}_{K,F}^- \underline{\psi}_{d,KF,-}^g // \text{ Local RHS} \\ \underline{\psi}_{d,K}^g = (\mathbf{C}_{d,K}^g)^{-1} \underline{b}_{d,K}^g // \mathbf{Gaussian elimination} \\ \text{end} \\ \text{end} \\ \text{end} \\ \text{end} \\ \text{end} \\ \end{array}
```

```
 \begin{array}{c|c} \textbf{parallel for } s \in \llbracket 1, n_s \rrbracket \ \textbf{do} \\ \textbf{parallel graph } K \in \mathcal{G} \ \textbf{do} \\ \textbf{parallel for } d \in \llbracket 1, n_d(s) \rrbracket \ \textbf{do} \\ \hline & T_{d,K} = \vec{\Omega}_d \cdot \vec{\textbf{A}}_K - \sum_{F \in \partial K_d^-} \left( \vec{\Omega}_d \cdot \vec{n}_F \right) \textbf{M}_{K,F}^+ \\ \textbf{parallel for } g \in \llbracket 1, n_g \rrbracket \ \textbf{do} \\ \hline & \textbf{C}_{d,K}^g = \textbf{T}_{d,K} + \boldsymbol{\Sigma}_{t,K}^g \textbf{M}_K \\ \hline & \underline{b}_{d,K}^g = \textbf{M}_K \underline{q}_{d,K}^g - \sum_{F \in \partial K_d^-} \left( \vec{\Omega}_d \cdot \vec{n}_F \right) \textbf{M}_{K,F}^- \underline{\psi}_{d,KF,-}^g \\ \hline & \underline{\psi}_{d,K}^g = \left( \textbf{C}_{d,K}^g \right)^{-1} \underline{b}_{d,K}^g \\ \hline & \textbf{end} \\ \hline & \textbf{end} \\ \hline \\ \textbf{end} \\ \textbf{end} \\ \end{array}
```


Simplified C++/Kokkos sequential implementation

```
LayoutRight lay(nas, nc, nd, ng, nm);
View<float*****, LayoutRight> psi("psi", lay), src("src", lay);
View<float** , LayoutRight> T('T', nm, nm), C('C', nm, nm);
View<float* , LayoutRight> b('b', nm);
for (int as = 0; as < nas; ++as) {
 for (int K = cells.begin(); K != cells.end(); cells.next()) {
   for (int d = 0; d < nd; ++d) {
     build_Tmat(T, ...); // Begin matrix assembly
     for (int g = 0; g < ng; ++g) {
       auto loc_psi = subview(psi, as, K, d, g, ALL);
       build Cmat(C, T, ...); // Finish matrix assembly
       build_brhs(b, ...); // Do RHS assembly
       solve(C, loc_psi, b); // Solve
```


Method and implementation

Why?

Maximise single-core performance on CPU

Where?

- Linear system assembly/solve
 - ⇒ auto-vectorisation, compiler-dependent
- ⇒ might not be efficient for small system sizes
- Loop on groups
 - $\implies n_a$ is HIGHLY problem-dependent
 - \implies small n_q leads to poor vectorisation performance
- Loop on directions
 - ⇒ a few dozens directions per angleset
 - ⇒ completely independent
 - ⇒ chosen strategy

How?

- Auto-vectorisation

 requires adjusting memory layout to be contiguous in directions + compiler-dependent,
- Intrinsics \iff complex and not portable code,
- SIMD types ⇒ easy to read AND portable code!

w W

Method and implementation

Maximum speedup

 \blacksquare n_d = num. directions per angleset, n_{pad} = num. dummy directions, V = SIMD size,

$$S_{max} = V \times n_d / (n_d + n_{pad}) \tag{6}$$

Figure 2: Illustration of the padding strategy with 10 directions per angleset for SSE, AVX and AVX512 in single precision.

Method and implementation

Simplified C++/Kokkos SIMD implementation

```
using simd t = simd<float, simd abi::native>;
int ndv = (nd + simd_t::size() - 1) / simd_t::size();
LayoutRight lay(nas, nc, ndv, ng, nm);
View<simd_t*****, LayoutRight> psi("psi", lay), src("src", lay);
View<simd_t** , LayoutRight> T('T', nm, nm), C('C', nm, nm);
View<simd t* , LayoutRight> b('b', nm);
for (int as = 0; as < nas; ++as) {
  for (int K = cells.begin(); K != cells.end(); cells.next()) {
    for (int d = 0; d < ndv; ++d) {
      build_Tmat(T, ...); // Begin matrix assembly
     for (int g = 0; g < ng; ++g) {
        auto loc_psi = subview(psi, as, K, d, g, ALL);
        build_Cmat(C, T, ...); // Finish matrix assembly
        build brhs(b, ...); // Do RHS assembly
        solve(C, loc psi, b); // Solve
```

Performance results

Machine used for all performance tests

- One node composed of two 24-cores AVX-enabled AMD EPYC 7352 processors,
- 256 GB of memory, 8 NUMA node in total

Software configuration

- GCC 11.2.0, Kokkos 4.3.1,
- Enable OpenMP backend,
- Compiler options -02 -march=native, -mtune=native

Description of the experiments

- (8, 8, 8) 3D cartesian mesh, 12 directions per angleset, 4 energy groups,
- Varying number of spatial dofs in {1, ..., 32},
- Test with float and simd<float, simd_abi::native>.

Figure 3: 1stopo output

Performance results

Figure 4: Speedup of the Kokkos SIMD implementation versus a scalar implementation. Ideal speedup may not be equal to the SIMD size due to the padding strategy.

Sychronous parallel sweep using RangePolicy

- Anglesets or directions ⇒ limited, too few directions
- Groups ⇒ unreliable, too problem dependent
- Cells ⇒ enough parallelism, must take care of the upwind dependencies
- Front-synchronous strategy: sequential loop on fronts, parallel loop inside each front

Figure 5: Front-synchronous sweep on a 2-rings hexagonal 2D mesh with 2 threads.

Sychronous parallel sweep using RangePolicy

- Anglesets or directions ⇒ limited, too few directions
- Groups ⇒ unreliable, too problem dependent
- Cells ⇒ enough parallelism, must take care of the upwind dependencies
- Front-synchronous strategy: sequential loop on fronts, parallel loop inside each front

Figure 5: Front-synchronous sweep on a 2-rings hexagonal 2D mesh with 2 threads.

Sychronous parallel sweep using RangePolicy

- Anglesets or directions ⇒ limited, too few directions
- Groups ⇒ unreliable, too problem dependent
- Cells ⇒ enough parallelism, must take care of the upwind dependencies
- Front-synchronous strategy: sequential loop on fronts, parallel loop inside each front

Figure 5: Front-synchronous sweep on a 2-rings hexagonal 2D mesh with 2 threads.

Sychronous parallel sweep using RangePolicy

- Anglesets or directions ⇒ limited, too few directions
- Groups ⇒ unreliable, too problem dependent
- Cells ⇒ enough parallelism, must take care of the upwind dependencies
- Front-synchronous strategy: sequential loop on fronts, parallel loop inside each front

Figure 5: Front-synchronous sweep on a 2-rings hexagonal 2D mesh with 2 threads.

Sychronous parallel sweep using RangePolicy

- Anglesets or directions ⇒ limited, too few directions
- Groups ⇒ unreliable, too problem dependent
- Cells ⇒ enough parallelism, must take care of the upwind dependencies
- Front-synchronous strategy: sequential loop on fronts, parallel loop inside each front

Figure 5: Front-synchronous sweep on a 2-rings hexagonal 2D mesh with 2 threads.

Sychronous parallel sweep using RangePolicy

- Anglesets or directions ⇒ limited, too few directions
- Groups ⇒ unreliable, too problem dependent
- Cells ⇒ enough parallelism, must take care of the upwind dependencies
- Front-synchronous strategy: sequential loop on fronts, parallel loop inside each front

Figure 5: Front-synchronous sweep on a 2-rings hexagonal 2D mesh with 2 threads.

Sychronous parallel sweep using RangePolicy

Front-synchronous implementation

```
for (int as = 0: as < nas: ++as) {
 for (int f = 0; f < nf; ++f) {
   auto ready = get ready cells(as, f);
   parallel_for(ready.size(), KOKKOS_LAMBDA (int fK) {
      int const K = ready(fK);
     for (int d = 0; d < ndv; ++d) {
       build_Tmat(T, ...); // Begin matrix assembly
       for (int g = 0; g < ng; ++g) {
         auto loc_psi = subview(psi, as, K, d, g, ALL);
         build_Cmat(C, T, ...); // Finish matrix assembly
         build_brhs(b, ...); // Do RHS assembly
         solve(C, loc_psi, b); // Solve
   });
```


Hexagonal 3D test case

- TAKEDA-4 hexagonal benchmark
- 7 rings, 38 axial planes \implies 169 \times 38 = 6422 cells
- 12 anglesets, 20 directions per angleset, 4 energy groups,
- 20 spatial dofs per cell

Cartesian 3D test case

- (32, 32, 32) cartesian grid ⇒ 32768 cells
- 8 anglesets, 20 directions per angleset, 7 energy groups,
- 21 spatial dofs per cell

W KOY

Sychronous parallel sweep using RangePolicy

Figure 6: Hexagonal 3D test performance results

Sychronous parallel sweep using RangePolicy

Figure 7: Cartesian 3D test performance results

Adding angleset parallelism

- Expose more parallelism at each step
- Reduce thread idle time

Figure 8: Front-synchronous sweep with added angleset parallelism on a 2-rings hexagonal 2D mesh with 4 threads.

Adding angleset parallelism

- Expose more parallelism at each step
- Reduce thread idle time

Figure 8: Front-synchronous sweep with added angleset parallelism on a 2-rings hexagonal 2D mesh with 4 threads.

Adding angleset parallelism

- Expose more parallelism at each step
- Reduce thread idle time

Figure 8: Front-synchronous sweep with added angleset parallelism on a 2-rings hexagonal 2D mesh with 4 threads.

Adding angleset parallelism

- Expose more parallelism at each step
- Reduce thread idle time

Figure 8: Front-synchronous sweep with added angleset parallelism on a 2-rings hexagonal 2D mesh with 4 threads.

Adding angleset parallelism

- Expose more parallelism at each step
- Reduce thread idle time

Figure 8: Front-synchronous sweep with added angleset parallelism on a 2-rings hexagonal 2D mesh with 4 threads.

Adding angleset parallelism

- Expose more parallelism at each step
- Reduce thread idle time

Figure 8: Front-synchronous sweep with added angleset parallelism on a 2-rings hexagonal 2D mesh with 4 threads.

Front-synchronous parallel anglesets implementation

```
for (int f = 0; f < nf; ++f) {
 auto ready = get_ready_cells(f);
 parallel_for(ready.size(), KOKKOS_LAMBDA (int asfK) {
   auto const& [as, K] = ready(asfK);
   for (int d = 0; d < ndv; ++d) {
      build_Tmat(T, ...); // Begin matrix assembly
     for (int g = 0; g < ng; ++g) {
       auto loc_psi = subview(psi, as, K, d, g, ALL);
       build_Cmat(C, T, ...); // Finish matrix assembly
       build_brhs(b, ...); // Do RHS assembly
       solve(C, loc_psi, b); // Solve
 });
```

Adding angleset parallelism

Figure 9: Hexagonal 3D test performance results

Adding angleset parallelism

Figure 10: Cartesian 3D test performance results

Task parallelism

- One task = solve all directions and groups for a single cell for a given angleset
- $n_{tasks} = n_c \times n_{as}$

WorkGraphPolicy

- Task-DAG = CSR graph, built once before the computation,
- Cost of launching task = atomic decrement of an integer ⇒ very lightweight

Dynamic Tasks

- Initially spawn nas tasks (= first cell for each angleset)
- Tasks dynamically spawn other tasks
- Manually keep count of the dependency counts

W WY

Adding asynchronicity with Tasks and WorkGraphPolicy

Figure 11: Hexagonal 3D test performance results

Adding asynchronicity with Tasks and WorkGraphPolicy

Figure 12: Cartesian 3D test performance results

w W

Adding local work queues and work-stealing in WorkGraphPolicy

Kokkos WorkGraphPolicy details

- Single work queue shared by all threads,
- FIFO structure, threads push work to the head, and pop from the tail,
- All accesses to the work queue are atomic,
- Single wating count queue shared by all threads, atomically updated at the end of each task

Figure 13: Global work-queue in WorkGraphPolicy

Adding local work queues and work-stealing in WorkGraphPolicy

Kokkos WorkGraphPolicy details

- Single work queue shared by all threads,
- FIFO structure, threads push work to the head, and pop from the tail,
- All accesses to the work queue are atomic,
- Single wating count queue shared by all threads, atomically updated at the end of each task

Figure 13: Global work-queue in WorkGraphPolicy

Adding local work queues and work-stealing in WorkGraphPolicy

Kokkos WorkGraphPolicy details

- Single work queue shared by all threads,
- FIFO structure, threads push work to the head, and pop from the tail,
- All accesses to the work queue are atomic,
- Single wating count queue shared by all threads, atomically updated at the end of each task

Figure 13: Global work-queue in WorkGraphPolicy

w WWW

Adding local work queues and work-stealing in WorkGraphPolicy

Custom WorkGraphPolicy details

- One work queue per thread,
- LIFO structure, a thread pushes to and pops from the head of its queue,
- No atomic operations needed for push and pop,
- When its queue is empty, a thread becomes a thief
 - acquire a random victim's queue lock, try to steal victim's queue tail,
 - on success, execute the task; on failure go to step 1;

Figure 14: Local work-gueues and work-stealing in WorkGraphPolicyCustom

- Better locality: the last pushed task is more likely to reuse data from previous task (in cache)
- Less contention to push and pop tasks : only between a thief and its victim

w Will

Adding local work queues and work-stealing in WorkGraphPolicy

Custom WorkGraphPolicy details

- One work queue per thread,
- LIFO structure, a thread pushes to and pops from the head of its queue,
- No atomic operations needed for push and pop,
- When its queue is empty, a thread becomes a thief
 - acquire a random victim's queue lock, try to steal victim's queue tail,
 - on success, execute the task; on failure go to step 1;

Figure 14: Local work-gueues and work-stealing in WorkGraphPolicyCustom

- Better locality: the last pushed task is more likely to reuse data from previous task (in cache)
- Less contention to push and pop tasks : only between a thief and its victim

w WWW

Adding local work queues and work-stealing in WorkGraphPolicy

Custom WorkGraphPolicy details

- One work queue per thread,
- LIFO structure, a thread pushes to and pops from the head of its queue,
- No atomic operations needed for push and pop,
- When its queue is empty, a thread becomes a thief
 - acquire a random victim's queue lock, try to steal victim's queue tail,
 - on success, execute the task; on failure go to step 1;

Figure 14: Local work-gueues and work-stealing in WorkGraphPolicyCustom

- Better locality: the last pushed task is more likely to reuse data from previous task (in cache)
- Less contention to push and pop tasks : only between a thief and its victim

w Will

Adding local work queues and work-stealing in WorkGraphPolicy

Custom WorkGraphPolicy details

- One work queue per thread,
- LIFO structure, a thread pushes to and pops from the head of its queue,
- No atomic operations needed for push and pop,
- When its queue is empty, a thread becomes a thief
 - acquire a random victim's queue lock, try to steal victim's queue tail,
 - on success, execute the task; on failure go to step 1;

Figure 14: Local work-gueues and work-stealing in WorkGraphPolicyCustom

- Better locality: the last pushed task is more likely to reuse data from previous task (in cache)
- Less contention to push and pop tasks : only between a thief and its victim

Adding local work queues and work-stealing in WorkGraphPolicy

Custom WorkGraphPolicy details

- One work queue per thread,
- LIFO structure, a thread pushes to and pops from the head of its queue,
- No atomic operations needed for push and pop,
- When its queue is empty, a thread becomes a thief
 - acquire a random victim's queue lock, try to steal victim's queue tail,
 - on success, execute the task; on failure go to step 1;

Figure 14: Local work-queues and work-stealing in WorkGraphPolicyCustom

- Better locality: the last pushed task is more likely to reuse data from previous task (in cache)
- Less contention to push and pop tasks : only between a thief and its victim

Adding local work queues and work-stealing in WorkGraphPolicy

Figure 15: Hexagonal 3D test performance results

Adding local work queues and work-stealing in WorkGraphPolicy

Figure 16: Cartesian 3D test performance results

Conclusion and perspectives

w W

What's been done

- Efficient and portable vectorised sweep implementation
- Task-based multicore implementation using modified Kokkos WorkGraphPolicy with work-stealing

Next steps

Parametric study of the implementation (task size, number of tasks, number of threads)

What about GPU performance?

- Very bad performance on GPUs,
- Preliminary results :
 - One thread per front cell gives very bad performance (uncoalesced accesses, not enough parallel work),
 - One thread per (K, d, g) front triplet is better, but still far from what we can expect (not enough parallel work, bad use of fast memory),
 - Need to parallelise the linear system assembly and resolution,
 - Use TeamPolicy with one team per linear system ⇒ 1 team per (K, d, g) triplet,
 - Need optimised batched linear albegra kernels.