Credit Card Fraud Detection Done by:Samyuktha Rajkumaran 190701182 CSE-D

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import gridspec
```

In [2]:

data=pd.read_csv(r"C:\Users\Rajkumar\Downloads\archive (2)\creditcard.csv")

In [3]:

data.head()

Out[3]:

	Time	V 1	V2	V 3	V 4	V 5	V 6	V 7	V 8	V 9	 V21	V22	
(0.0	- 1.359807	- 0.072781	2.536347	1.378155	0.338321	0.462388	0.239599	0.098698	0.363787	 - 0.018307	0.277838	0.
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	- 0.082361	0.078803	0.085102	- 0.255425	 - 0.225775	0.638672	0.
2	2 1.0	- 1.358354	- 1.340163	1.773209	0.379780	- 0.503198	1.800499	0.791461	0.247676	- 1.514654	 0.247998	0.771679	0.9
3	3 1.0	- 0.966272	- 0.185226	1.792993	- 0.863291	0.010309	1.247203	0.237609	0.377436	- 1.387024	 0.108300	0.005274	0. ·
4	2.0	- 1.158233	0.877737	1.548718	0.403034	- 0.407193	0.095921	0.592941	- 0.270533	0.817739	 0.009431	0.798278	0.

5 rows × 31 columns

We'll clean the data. Here the only column which doesn't have an impact on our analysis is Time. Therefore, we can drop that column.

In [4]:

```
data = data.drop(['Time'],axis=1)
data.head()
```

Out[4]:

	V1	V2	V 3	V 4	V 5	V 6	V 7	V 8	V 9	V 10	 V21	V22
0	1.359807	- 0.072781	2.536347	1.378155	0.338321	0.462388	0.239599	0.098698	0.363787	0.090794	 0.018307	0.277838
1	1.191857	0.266151	0.166480	0.448154	0.060018	0.082361	0.078803	0.085102	- 0.255425	- 0.166974	 - 0.225775	0.638672
2	- 1.358354	1.340163	1.773209	0.379780	- 0.503198	1.800499	0.791461	0.247676	- 1.514654	0.207643	 0.247998	0.771679
3	- 0.966272	- 0.185226	1.792993	- 0.863291	0.010309	1.247203	0.237609	0.377436	- 1.387024	- 0.054952	 0.108300	0.005274
4	- 1.158233	0.877737	1.548718	0.403034	- 0.407193	0.095921	0.592941	- 0.270533	0.817739	0.753074	 0.009431	0.798278

5 rows × 30 columns

In [5]: fraud = data[data['Class'] == 1] valid = data[data['Class'] == 0] outlierFraction = len(fraud)/float(len(valid)) print(outlierFraction) print('Fraud Cases: {}'.format(len(data[data['Class'] == 1]))) print('Valid Transactions: {}'.format(len(data[data['Class'] == 0]))) 0.0017304750013189597 Fraud Cases: 492 Valid Transactions: 284315 It's evident that the data is quite unbalanced since only 0.17% of the cases are fraudulent. However we'll apply our models without balancing it and if we don't get a good accuracy we can find a way to balance the dataset. In [6]: print('Amount details of the fraudulent transaction') fraud.Amount.describe() Amount details of the fraudulent transaction Out[6]: count 492.000000 mean 122.211321 std 256.683288 0.000000 min 25% 1.000000 50% 9.250000 75% 105.890000 2125.870000 Name: Amount, dtype: float64 In [7]: print('Amount details of valid transaction') valid.Amount.describe() Amount details of valid transaction Out[7]: count 284315.000000 mean 88.291022 std 250.105092 min 0.000000 25% 5.650000 50% 22,000000 75% 77.050000 25691.160000 max Name: Amount, dtype: float64 In [8]: corrmat = data.corr() fig = plt.figure(figsize = (12, 9)) sns.heatmap(corrmat, vmax = .8, square = True) plt.show() 0.8 V1 V2 V3 V4 V5 - 0.6 ۷6 ٧7 V8 ۷9 - 0.4

V10 V11

In [9]:

```
X = data.drop(['Class'], axis = 1)
Y = data["Class"]
print(X.shape)
print(Y.shape)
xData = X.values
yData = Y.values
```

(284807, 29) (284807,)

In [10]:

```
from sklearn.model selection import train test split
xTrain, xTest, yTrain, yTest = train_test_split(
       xData, yData, test_size = 0.2, random_state = 42)
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(xTrain, yTrain)
yPred = rfc.predict(xTest)
from sklearn.metrics import classification report, accuracy score
from sklearn.metrics import precision score, recall score
from sklearn.metrics import fl score, matthews corrcoef
from sklearn.metrics import confusion matrix
n outliers = len(fraud)
n errors = (yPred != yTest).sum()
print("The model used is Random Forest classifier")
acc = accuracy score(yTest, yPred)
print("The accuracy is {}".format(acc))
prec = precision score(yTest, yPred)
print("The precision is {}".format(prec))
rec = recall_score(yTest, yPred)
print("The recall is {}".format(rec))
f1 = f1 score(yTest, yPred)
print("The F1-Score is {}".format(f1))
MCC = matthews corrcoef(yTest, yPred)
print("The Matthews correlation coefficient is{}".format(MCC))
```

The model used is Random Forest classifier
The accuracy is 0.9995962220427653
The precision is 0.9746835443037974
The recall is 0.7857142857142857

The F1-Score is 0.8/005649/1751412
The Matthews correlation coefficient is 0.8749276812909632

As the accuracy is high we don't need to balance our dataset.

In [11]:

In []: