Institute of Medical Virology

Laborkurs Virologie 2024

Team Laborkurs Virologie

- PD Dr. Michael Huber
- PD Dr. Guido Bloemberg
- Prof. Silke Stertz
- Dr. Amapola Manrique
- Daniel Frei
- Dr. Merle Schanz
- Wissenschaftliche Mitarbeiter und Doktoranden Institut für Medizinische Virologe (UZH) und Klinik für Infektionskrankheiten und Spitalhygiene (USZ)

House Keeping

- Arbeit mit inaktiviertem SARS-CoV-2 Zellkulturüberstand
- Für die Versuchsdurchführung Labormantel und Handschuhe tragen
- Während der Versuchsdurchführung keine Getränke, Esswaren, Mobiltelefone und Tablets am Laborplatz
- Durchführung 2er-Gruppen, gleiche Gruppen am Kurstag 2
- Versuchsanleitung bitte am Laborplatz liegen lassen
- Anwesenheitskontrolle Tag 1, Testat am Tag 2

Methoden zum Nachweis von Viren und Virusinfektionen

Direkte Methoden

- Nachweis des viralen Genoms (PCR und Sequenzierung)
- Nachweis von viralen Proteinen/Antigenen
- Mikroskopie (Elektronenmikroskopie)

Indirekte Methoden

- Nachweis der Antikörperreaktion
- Zytopathischer Effekt (CPE) in Zellkulturen

Auswahl von Nachweismethoden auf Auftragsformular IMV

Überblick Laborkurs Virologie 2024

Tag 1: Direkter Nachweis des SARS-CoV-2 Virus

- Einführung Direkter Virusnachweis
- Durchführung Polymerase Chain Reaction (PCR)
- Durchführung Antigen-Schnelltest
- Arbeitsblatt Negative Predictive Value

Tag 2: Antikörperantwort auf eine Cytomegalovirus (CMV) Infektion

- Auswertung Tag 1
- Einführung Indirekter Virusnachweis/Serologie
- Durchführung und Auswertung ELISA-Antikörpertest

Lernziele

- Sie kennen die im Kurs behandelten Analyseverfahren der modernen virologischen Diagnostik.
- Sie verstehen die Vor- und Nachteile und die richtige Anwendung der unterschiedlichen Diagnostikmethoden.
- Sie lernen am Beispiel von SARS-CoV-2 und CMV den Ablauf der Diagnostik kennen.
- Sie führen selber einen Virusnachweis mittels Polymerase Chain Reaction (PCR) und einen Antigentest durch.
- Sie führen selber einen ELISA-Antikörpertest durch.

Das Prinzip der Polymerase Chain Reaction (PCR)

- Denaturierung (Schmelzen) bei ca. 96°C
- Primerhybridisierung (Anlagerung) bei ca. 68°C
- 3 Elongation (Verlängerung) bei ca. 72 °C

Detektion der Amplifikate mittels real-time PCR

Profil einer real-time PCR

Quantifizierung mittels real-time PCR

SARS-CoV-2 Tests am IMV während der Pandemie

Vor- und Nachteile der PCR im Vergleich zu Antigen Schnelltests

PCR

- hohe Sensitivität dank Amplifikation
- Nasenrachenabstrich, Saliva/Sputum, BAL, Plasma, Stuhl
- 2-3 Stunden für 96 Proben (inkl. Aufreinigung, Reverse Transkription, Amplifikation)
- hoher Durchsatz
- Labor, Thermocycler

Antigen Schnelltests

- weniger sensitiv als PCR
- Nasenrachenabstrich
- schnell, z.T. nur 15 Minuten
- Point-of-Care Test (POCT)

SARS-CoV-2 Varianten unterscheiden sich im Spike-Protein

PCR-Test detektieren sicherheitshalber mehrere Amplifikate

PCR-Test	ORF1	Spike	Е	N
Cobas	✓		✓	
GeneXpert			✓	✓
TapPath	✓	✓		✓

Syndromische Multiplex-PCR-Panels werden häufig genutzt

FTD Respiratory pathogens 21

Overview

Five tube multiplex for detection of influenza A virus, influenza A(H1N1) swl virus, influenza B virus, uman rhinovirus, human coronavirus NL63, 229E, OC43 and HKU1; human parainfluenza 1, 2, 3 and 4; human metapneumoviruses A/B, human bocavirus, human respiratory syncytial viruses A/B, human adenovirus, enterovirus, human parechovirus, Mycoplasma pneumoniae and internal control

Principle

Multiplex real-time PCR for detection of pathogen genes by TaqMan® technology

Targets

First tube multiplex PCR:

- influenza A virus
- influenza B virus
- influenza A(H1N1) swl virus
- human rhinovirus

Second tube multiplex PCR:

- human coronavirus NL63
- human coronavirus 229E
- human coronavirus OC43
- human coronavirus HKU1

Third tube multiplex PCR:

- human parainfluenza 2
- human parainfluenza 3
- human parainfluenza 4
- internal Control

Fourth tube multiplex PCR:

- human parainfluenza 1
- human metapneumoviruses A/B
- human bocavirus
- Mycoplasma pneumoniae

Fifth tube multiplex PCR:

- human respiratory syncytial viruses A/B
- human adenovirus
- human parechovirus

THE BIOFIRE **RESPIRATORY 2.1 PANEL MENU**

Overall 97.1% sensitivity and 99.3% specificity (prospective specimens) 1 SARS-CoV-2 98.4% PPA and 98.9% NPA² Sample Type: Nasopharyngeal swab in transport media or saline

VIRUSES:

- Adenovirus
- Coronavirus 229E
- Coronavirus HKU1
- Coronavirus NL63
- Coronavirus OC43
- Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2)

- Human Metapneumovirus
- Human Rhinovirus/Enterovirus
- Influenza A virus
- Influenza A virus A/H1
- Influenza A virus A/H3
- Influenza A virus A/H1-2009
- Influenza B virus
- Parainfluenza virus 1
- Parainfluenza virus 2
- Parainfluenza virus 3
- Parainfluenza virus 4
- Respiratory syncytial virus

BACTERIA:

- Bordetella parapertussis
- Bordetella pertussis
- Chlamydia pneumoniae
- Mycoplasma pneumoniae

Herausforderungen der Diagnostik neuer Viren

Spezifische Reagenzien sind nötig, um

- das Genom eines Virus
- virale Antigene
- virus-spezifische Antikörper

zu detektieren.

→ Neue Viren können nicht detektiert werden, da die entsprechenden Reagenzien fehlen.

Indirect methods

Etablierung eines Tests zum Genomnachweis

- 1. Identifikation von konservierten Genabschnitten
- Design von spezifischen Primern für die Amplifikation und Sonden für die Quantifizierung
- Zusammenstellen von Kontrollen (Positivkontrollen, Verdünnungsreihen, Patientenproben)

Metagenomische Sequenzierung für die offene Diagnostik

Vorteile: Schnell, kostengünstig, sensitiv Nachteile: Unerwartete oder neue Erreger werden nicht erkannt; mehrere Reaktionen für mehrere Erreger erforderlich **Vorteile:** Pan-Pathogen-Nachweis in einer einzigen Reaktion

Nachteil: Teurer und langsamer

als PCR

Identifikation von SARS-CoV and SARS-CoV-2

PCR-basierte random-Amplifikation und Sequenzierung wurde verwendet, um SARS-CoV und SARS-CoV-2 zu identifizieren

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome

Christian Drosten, M.D., Stephan Günther, M.D., Wolfgang Preiser, M.D., Sylvie van der Werf, Ph.D., Hans-Reinhard Brodt, M.D., Stephan Becker, Ph.D.,

Article

A new coronavirus associated with human respiratory disease in China

Fan Wu^{1,7}, Su Zhao^{2,7}, Bin Yu^{3,7}, Yan-Mei Chen^{1,7}, Wen Wang^{4,7}, Zhi-Gang Song^{1,7}, Yi Hu^{2,7}, Zhao-Wu Tao², Jun-Hua Tian³, Yuan-Yuan Pei¹, Ming-Li Yuan², Yu-Ling Zhang¹, Fa-Hui Dai¹, Yi Liu¹, Qi-Min Wang¹, Jiao-Jiao Zheng¹, Lin Xu¹, Edward C. Holmes^{1,5} & Yong-Zhen Zhang^{1,4,6}

2003

"A volume of 2 µl of RNA solution was analyzed with a random reverse-transcriptase (RT)—PCR assay."

2019

"Metagenomic RNA sequencing of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family *Coronaviridae...*"

Sequenzierung von Viren

Sehr wichtige Methode sowohl in der Forschung als auch in der klinischen Diagnostik

- Genotypisierung
- phylogenetische Analyse
- Nachweis von Resistenzmutationen
- Nachweis und Identifizierung von neuen Viren (Metagenomische Sequenzierung)

Sequenzierung von Viren

Sehr wichtige Methode sowohl in der Forschung als auch in der klinischen Diagnostik

- Genotypisierung
- phylogenetische Analyse
- Nachweis von Resistenzmutationen
- Nachweis und Identifizierung von neuen Viren (Metagenomische Sequenzierung)

SARS-CoV-2-Sequenzierung am IMV

2021

PRAKTISCHER TEIL

Fragestellung praktischer Teil

Arbeitsblatt Negative Predictive Value Antigentest

Sensitivität = Anteil der korrekt erkannten positiven Fälle

Spezifität = Anteil der korrekt erkannten negativen Fälle

	PCR-Test	Antigen-Schnelltest
Sensitivität	99%	80%
Spezifität	99%	98%

Negative Predictive Value (NPV) = Wahrscheinlichkeit, dass ein negatives Ergebnis wirklich negativ ist.

Prävalenz = Häufigkeit einer Krankheit in einer Population zu einem bestimmten Zeitpunkt

Was ist der NPV bei einer Prävalenz von 3% bzw. 30%?

Auflösung Übung zu Spezifität/Sensitivität

Prävalenz 3%

NPV PCR-Test	NPV Antigentest
100%	99.4%

Falsch negative PCR	Falsch negative Antigentest
0	0.6

Prävalenz 30%

NPV PCR-Test	NPV Antigen-Test
99.6%	92%

Falsch negative PCR	Falsch negative Antigentest
0.4	8

- → Bei höherer Prävalenz hat der gleiche Test einen tieferen Negativen Prädiktiven Wert, bzw. produziert anteilsmässig mehr falsch negative Resultate (7.4).
- → Beim sensitiveren PCR-Test ist der Effekt viel weniger ausgeprägt.