Part A: Introduction
Atom
Tiny piece of matter, made of protons, neutrons, and electrons.
Element
A substance made of atoms that are all the same type.
Period Table of Elements
A systematic table listing all discovered elements.
A.1 Gold, silver, and carbon are all examples of They are listed on
Gold, silver, and carbon are an examples of They are fisted on
the If you had a golden ring and an
amazing machine, you could break it down into tiny pieces called
Atomic Number
The number of protons in a nucleus of an atom.
All nuclei of a particular atom have <i>the same</i> number of protons. Mass number
Wass number
The number of protons + the number of neutrons
All nuclei DO NOT have the same number of neutrons and DO NOT have the same mass number.
Isotope
All atoms of one element have the <i>same number</i> of protons, but they do not have the same mass. Different <i>isotopes</i> of one element are the different atoms of one element.
While in chemical reactions, different isotopes don't really matter, in nuclear reactions, different isotopes are the most important thing.
When you add the number of protons and the number of neutrons, you get the of an atom.
The number of protons in an atom is called the

When we write down a particular isotope, we write the NAME OF THE ELEMENT followed by the MASS number. Note that the mass number of the isotope in question may not be the atomic mass of that element.

Isotope	Atomic Symbol	Number of Protons	Number of Neutrons
		11010118	Neutrons
Uranium-238			
Radium-226			
Lead-206			
Hydrogen-3			
Sodium-22			
Argon-39			
Radon-222			
Carbon-12			
Carbon-13			
Carbon-14			

Carbon-12, Carbon-13, and Carbon-14 are all different	of
carbon.	

Part B: Representing a Nucleus

This is how we represent the nucleus of Carbon-14. When we draw it this way, we call it a **nuclide**.

$$^{14}_{6}C$$

Atomic Symbol

Tells which element the nucleus is.

In the above example, it is C, representing the element carbon

Atomic Number (Charge)

The number of protons in a nucleus, also tells which element the nucleus is. In the above example, it is 6, representing 6 protons.

Mass Number

Number of protons + number of neutrons.

In the above example, it is 14, representing a mass of 14 atomic mass units.

Isotope

One *version* of the nucleus of a particular element.

All nuclei of one element have the same number of protons, but different isotopes have different mass numbers.

For example, ${}^{12}_{6}$ C, ${}^{13}_{6}$ C, ${}^{14}_{6}$ C

Are three isotopes of carbon.

Nuclide Notation:

Start by drawing the atomic symbol

On the lower left put the atomic number.

On the upper left put the mass number.

For each nuclide, use the periodic table of elements to fill in the missing information:

B.1. ²³₇₇Na

B.2. ¹⁶_{??}O

B.3. ¹₁??

B.4. ¹²⁴₅₂??

B.5. ⁴⁰_{??}A₁

How many *neutrons* and *protons* does each nucleus have?

Nucleus	Element	Number of Protons	Number of Neutrons
¹⁴ ₇ N			
¹ ₁ H			
²²² ₈₆ Rn			
²³⁸ ₉₂ U			
¹⁴ ₆ C			

For each isotope, draw the *nuclide notation*.

Isotope	Nuclide Notation
Lithium-7	
Iron-56	
Magnesium-24	
Gold-197	
Antimony-123	