Федеральное государственное бюджетное образовательное учреждение высшего образования

«Уфимский государственный авиационный технический университет»

Информатики

Кафедра

100	1		2	4	_		7	0		10	1.1	10
100	1	2	3	4	5	6	/	8	9	10	11	12
90												
80												
70												
60												
50												
40												
30												
20												
10												
0												

по дисциплине Основы конструкции объектов ОТС

ОТЧЕТ по лабораторной работе №9

«Расчет фюзеляжа на статическую прочность и жесткость»

1306.558908.000 ПЗ

(обозначение документа)

Группа СТС-407	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Гараев Д.Н.			
Консультант	Минасов Ш. М.			
Принял				

Содержание

Вве	дение	3
1	Основные расчётные случаи нагружения фюзеляжа	4
2	Инерционные нагрузки, действующие на фюзеляж	7
3	Построение эпюр сил и моментов по длине фюзеляжа	11
4	Расчет поперечных сечений фюзеляжа	13
5	Расчет нормальных шпангоутов	16
6	Нагружение фонаря кабины и носовой части фюзеляжа	19
7	Расчет деформаций фюзеляжа при кручении и изгибе	21
8	Расчет фюзеляжей на прочность в зоне больших вырезов	23
Закл	тючение	24
Спи	сок литературы	25

	_		_							
					1306.558908.000 ПЗ					
Изм	Лист	№ докум	Подп	Дата						
Раз	раб	Гараев Д.Н				Лит	Лист	Листов		
Про	вер.	Минасов Ш. М.			Лабораторная работа №9		2	25		
Н. контр					«Расчет фюзеляжа на					
					статическую прочность и жесткость»	УГАТУ, СТС-407				
Ут	в		Ī		MOOITMOOITID"		•			

Введение

В данной лабораторной работе необходимо ознакомиться с методом расчета фюзеляжа на статическую прочность и жесткость.

Сначала перечислим основные виды нагрузок, действующих на фюзеляж:

- Усилия от агрегатов, крепящихся к фюзеляжу (крыло, оперение, шасси, двигатели);
- Инерционные силы от масс грузов, размещенных внутри фюзеляжа (топливо, экипаж, пассажиры, оборудование) и от собственной массы конструкции фюзеляжа;
- Локальные нагрузки от аэродинамического воздействия набегающего потока от столкновения с птицами (район носовой части фюзеляжа и кабины);
- Избыточное внутреннее давление (для герметичных отсеков фюзеляжа).

Расчётной схемой фюзеляжа является балка переменной жёсткости, лежащая на двух или более опорах. В полёте опорами фюзеляжа являются лонжероны крыла. При посадке фюзеляж также может опираться на стойки шасси.

И	зм.	Лист	№ докум	Подп	Дата

1 Основные расчётные случаи нагружения фюзеляжа

Поскольку к фюзеляжу крепятся основные агрегаты самолёта, то его расчёт на прочность следует проводить на все расчётные случаи нагружения этих агрегатов.

Существуют также дополнительные случаи нагружения фюзеляжа.

Случай H_{ϕ} — нагружение вбок передней части фюзеляжа (от носа до переднего лонжерона крыла). В расчетной схеме принимается, что носовая часть фюзеляжа жестко заделана на переднем лонжероне.

Равнодействующая инерционных сил прикладывается в центре масс передней части фюзеляжа. Эксплуатационная вертикальная перегрузка $n_{\text{уцм}}^{\text{3}} = 1$. Эксплуатационная боковая перегрузка принимается равной $n_{\text{уцм}}^{\text{3}} = \pm 1,5\,$ для самолётов с поршневыми двигателями с площадью крыла $S \leq 80~\text{M}^2$ и равной $n_{\text{уцм}}^{\text{3}} = \pm 1,0\,$ для самолётов с турбовинтовыми и реактивными двигателями с площадью крыла $S \geq 100~\text{M}^2$.

Для самолётов с турбовинтовыми и реактивными двигателями при значении S в промежутке между 80 м^2 и 100 м^2 значение $n_{\text{уцм}}$ определяется линейной интерполяцией. Коэффициент безопасности f=2.

Случай К $_{\phi}$ — капотирование самолёта, имеющего шасси с хвостовым колесом (Рисунок 1).

Самолет рассматривается в положении на главных ногах и на передней своей части. Посадочный вес самолета приложен в его центре масс в направлении, нормальном к поверхности земли. Эксплуатационная перегрузка равна перегрузке случая $E_{\rm m}$. Коэффициент безопасности f=1,5

Рисунок 1 – Капотирование самолета.

Изм.	Лист	№ докум	Подп	Дата

Рисунок 2 – Переворот самолета на спину

Случай Р $_{\phi}$ – переворот самолёта с полётным весом не более 10 000 кг на спину (Рисунок 2).

На этот случай проверяются элементы конструкции самолета, пред назначенные для защиты экипажа и пассажиров от повреждений при аварийной посадке. Точки приложения реакций земли выбираются в соответствии с конструктивной схемой самолета. Посадочный вес самолета считается приложенным в его центре масс в направлении, нормальном к поверхности земли. Эксплуатационная перегрузка равна 3. Коэффициент безопасности f = 1,5.

Случай Π_{ϕ} — аварийная посадка самолёта на «брюхо» с убранным шасси (Рисунок 3). Этот случай используют для оценки прочности фюзеляжей среднепланов и высокопланов.

Рисунок 3 – Аварийная посадка самолета на фюзеляж

Прочность частей фюзеляжа, где располагается экипаж и пассажиры, а так же прочность элементов конструкции, предназначенных для восприятия реакции земли, должна быть проверена на расчетную нагрузку со следующими компонентами равнодействующей удара: вертикальной P_y от $4G_{\text{пос}}$ вверх до $2G_{\text{пос}}$ вниз, горизонтальной P_x от нуля вперёд до $9G_{\text{пос}}$ назад и боковой P_z от $-1,5G_{\text{пос}}$ до $+1,5G_{\text{пос}}$.

Изм.	Лист	№ докум	Подп	Дата

Реакция земли принимается равномерно распределенной причем соприкосновение с землей может рассматриваться на любом участке сектора, ограниченного линиями; составляющими с вертикальной осью самолета углы 30° и 60°. Площадь, по которой распределяется реакция земли, выбирается такой, чтобы расчетное давление на этой площади не превышало 0,2 Мпа.

Случай Б $_{\phi}$ – буксировка планеров. Прочность хвостовой части фюзеляжа самолетов, предназначенных для буксировки планеров, должна проверяться на воздействие нескольких комбинаций расчетных нагрузок.

Изм.	Лист	№ докум	Подп	Дата

2 Инерционные нагрузки, действующие на фюзеляж

Расчёт на прочность деталей должен проводиться как от внешних сил, действующих в плоскости симметрии самолёта, так и от внешних сил, действующих перпендикулярно плоскости симметрии.

Сначала запишем уравнения движения самолёта в плоскости его симметрии (Рисунок 4 – K расчёту нормальной перегрузки в i-й точке фюзеляжа)

$$m \cdot j_n = Y_{\kappa p}^{\mathcal{I}} \pm Y_{yp.co}^{\mathcal{I}} \pm Y_{MaH1.co}^{\mathcal{I}} - G;$$

$$\boldsymbol{J}_z \cdot \frac{d\,\omega_z}{dt} = \boldsymbol{J}_z \cdot \boldsymbol{\varepsilon}_z = \boldsymbol{Y}_{\text{\tiny MAH1.20}}^{\ni} \cdot \boldsymbol{L}_{\text{\tiny 20}},$$

где jn — поступательное ускорение ц.м. самолёта в направлении оси Y. Первое уравнение описывает поступательное движение ц.м. самолёта под действием подъёмных сил на крыле и г.о., а второе — вращение самолёта вокруг ц.м. под действием этих сил.

Рисунок 4 – К расчёту нормальной перегрузки в і-й точке фюзеляжа

На начальном этапе проектирования осевой момент инерции самолёта j_z можно приближённо рассчитать по статической формуле:

$$J_z = \varphi \cdot m \cdot \frac{L_{\phi}^2}{12},$$

где L_{Φ} – длина фюзеляжа; $\phi = 0,2...0,7$ – статический коэффициент, причём меньшие значения ϕ соответствуют самолётам с малой взлётной массой ($m_0 < 10$ т).

Поступательную составляющую нормальной перегрузки получим из уравнения, приведенного выше.

	·			
Изм.	Лист	№ докум	Подп	Дата

$$n_n^{\ni} = n_{\kappa p}^{\ni} \pm \frac{Y_{yp.oo}^{\ni} + Y_{MaH1.oo}^{\ni}}{mg}.$$

Используя допущение об абсолютной жёсткости конструкции фюзеляжа, получим вращательную составляющую нормальной перегрузки в i-й точке:

$$n_{epi}^{\mathcal{G}} = \pm \frac{\mathcal{E}_z \cdot x_i}{g} = \pm \left(\frac{Y_{\text{ман1.20}}^{\mathcal{G}} \cdot L_{\text{20}}}{J_z} \right) \cdot \frac{x_i}{g},$$

где, x_i – расстояние от ц.м. самолёта до і-й точки фюзеляжа.

Суммарная нормальная перегрузка, действующая в і-й точке фюзеляжа:

$$n_{\phi i}^{\mathfrak{I}} = n_{n}^{\mathfrak{I}} + n_{\mathit{spi}}^{\mathfrak{I}} = n_{\mathit{\kappa p}}^{\mathfrak{I}} \pm \left(\frac{Y_{\mathit{yp.zo}}^{\mathfrak{I}} + Y_{\mathit{MaH1.zo}}^{\mathfrak{I}}}{mg}\right) \pm \left(\frac{Y_{\mathit{MaH1.zo}}^{\mathfrak{I}} \cdot L_{\mathit{zo}}}{J_{z}}\right) \cdot \frac{x_{i}}{g}.$$

Инерционная сила от сосредоточенного груза в і-й точке фюзеляжа:

$$G_{\kappa pi}^{\mathfrak{I}} = G_{\mathfrak{I}pi} \cdot n_{\phi i}^{\mathfrak{I}}.$$

Найдём распределённую инерционную нагрузку от массы фюзеляжа. Сначала мысленно разобьём фюзеляж на п отсеков единичной длины и рассмотрим і-й отсек. Затем «размажем» стрингеры этого отсека равномерным слоем по контуру и получим приведенную обшивку толщиной:

$$\delta_{npi} = \delta_{obi} + \frac{n_{cmp} \cdot F_{cmp}}{s_i},$$

где $n_{\text{стр}}$ – количество стрингеров в отсеке; $F_{\text{стр}}$ – площадь стрингера; S_i – средняя длина контура в отсеке (Рисунок 5).

Рисунок 5 – Приведенный отсек фюзеляжа Тогда вес i-го отсека

Изм.	Лист	№ докум	Подп	Дата

$$q_{\phi i} = \rho g \delta_{npi} s_i,$$

где р – плотность материала конструкции отсека.

Полный вес конструкции фюзеляжа:

$$G_{\phi} = \int_0^{l_{\phi}} q_{\phi} dx \approx \sum_{i=1}^n q_{\phi i}.$$

Подставим и получим:

$$G_{\phi} = \int_{0}^{l_{\phi}} \rho \cdot g \cdot \delta_{np} \cdot s \cdot dx \approx \sum_{i=1}^{n} \rho \cdot g \cdot \delta_{npi} \cdot s_{i} \cdot 1 = \rho \cdot g \cdot \delta_{npcp} \cdot s_{\phi},$$

где S_{ϕ} – площадь поверхности фюзеляжа.

Имеем $\rho \cdot g \cdot \delta_{npi} = \frac{q_{\phi i}}{s_i}$. Подставляя последнее выражение, придём к формуле:

$$G_{\phi} = \frac{q_{\phi i}}{s_i} \cdot S_{\phi} \Rightarrow q_{\phi i} = \frac{G_{\phi}}{S_{\phi}} s_i.$$

Погонная инерционная нагрузка от массы конструкции фюзеляжа:

$$q_{\phi i}^{\mathfrak{I}} = q_{\phi i} \cdot n_{\phi i}^{\mathfrak{I}} = \frac{G_{\phi}}{S_{\phi}} \cdot s_{i} \cdot \left[n_{\kappa p}^{\mathfrak{I}} \pm \left(\frac{Y_{yp.zo}^{\mathfrak{I}} + Y_{\text{Mah1.zo}}^{\mathfrak{I}}}{mg} \right) \pm \left(\frac{Y_{\text{Mah1.zo}}^{\mathfrak{I}} \cdot L_{zo}}{J_{z}} \right) \cdot \frac{x_{i}}{g} \right].$$

Рисунок 6 – Построение эпюр поперечных сил и изгибающих моментов по длине фюзеляжа при нагружении вертикального оперения

Теперь рассмотрим случай нагружения вертикального оперения. На фюзеляж будет действовать маневренная нагрузка от оперения $Z_{\mbox{\tiny BO}}$ и

Изм.	Лист	№ докум	Подп	Дата

демпфирующая аэродинамическая нагрузка $Z_{\text{нос}}$, возникающая при полёте самолёта со скольжением и приложения в носу (Рисунок 6).

Поступательная составляющая боковой перегрузки:

$$n_{zn}^{\vartheta} = \frac{Z^{\vartheta}}{mg} = \frac{Z_{6o}^{\vartheta} + Z_{noc}^{\vartheta}}{mg}.$$

Вращательная составляющая боковой перегрузки в і-й точке:

$$n_{z \, \textit{spi}}^{\ni} = \frac{\mathcal{E}_{y} \cdot x_{i}}{g} = \left(\frac{Z_{\textit{so}}^{\ni} \cdot L_{\textit{so}} - Z_{\textit{hoc}}^{\ni} \cdot L_{\textit{hoc}}}{J_{y}}\right) \cdot \frac{x_{i}}{g}.$$

На начальном этапе проектирования осевой момент инерции самолёта *ју* можно приближённо рассчитать по статической формуле:

$$J_{y} = \varphi \cdot m \cdot \frac{L_{\phi}^{2} + l^{2}}{12},$$

где l – размах крыла.

Суммарная боковая перегрузка, действующая в і-й точке фюзеляжа

$$n_{zi}^{9} = n_{zn}^{9} + n_{z \, epi}^{9} = \left(\frac{Z_{eo}^{9} + Z_{hoc}^{9}}{mg}\right) \pm \left(\frac{Z_{eo}^{9} \cdot L_{eo} - Z_{hoc}^{9} \cdot L_{hoc}}{J_{v}}\right) \cdot \frac{x_{i}}{g}.$$

Коэффициенты безопасности для фюзеляжа берут в соответствии с расчётным случаем нагружения крыла, оперения, силовой установки. В посадочных случаях нагружения для фюзеляжа принимают f = 1,8.

Изм	Лист	№ докум	Подп	Дата

3 Построение эпюр сил и моментов по длине фюзеляжа

Эпюры поперечных сил, изгибающих и крутящих моментов строятся по длине фюзеляжа для всех возможных комбинации расчётных случаев, и из них выбирают наиболее тяжёлые.

Кроме приведенных внешних и инерционных нагрузок на герметические фюзеляжи дополнительно будет действовать избыточное давление или разрежение внутри фюзеляжа.

При изгибе фюзеляжа в плоскости, перпендикулярной плоскости симметрии самолёта, наиболее тяжёлым обычно является случай действия маневренной нагрузки на вертикальное оперение (в. о.) в комбинации с максимальным разнотягом двигателей.

Как правило, при изгибе фюзеляжа в плоскости симметрии самолёта (Рисунок 7) наиболее тяжёлым является случай А' без учета маневренной нагрузки на г. о.

Рисунок 7 — Построение эпюр поперечных сил и изгибающих моментов при изгибе фюзеляжа в плоскости его симметрии

	·			
Изм	Лист	№ докум	Подп	Дата

Если фюзеляж имеет силовой пол, то сосредоточенные инерционные силы прикладывают к фюзеляжу в местах установки грузов. При отсутствии силового пола грузы обычно крепят к силовым шпангоутам (на рисунке 7 они обозначены буквами С, D, ..., M, T). В этом случае сосредоточенные инерционные силы разносят по силовым шпангоутам согласно правилу рычага.

При расчёте на кручение наиболее тяжёлым обычно является одновременное действие маневренной нагрузки на в. о. и неуравновешенной нагрузки на г. о. при полёте со скольжением (Рисунок 8).

Рисунок 8 – Построение эпюры крутящих моментов

Как видно из эпюр, наиболее нагружены сечения фюзеляжа в районе крепления к нему крыла.

Изм	Лист	№ докум	Подп	Дата

4 Расчет поперечных сечений фюзеляжа

Рассмотрим расчёт поперечных сечений фюзеляжа типа «полумонокок» (Рисунок 9) от нагрузок, представленных на рисунке 7 и рисунке 8.

Нормальные напряжения в элементе продольного набора от изгиба

$$\sigma_i = \frac{M_z}{J_{znp}} \cdot y_i,$$

где $J_{\text{zпр}}$ — приведенный момент инерции редуцированного сечения; y_i — обобщённая координата і-го элемента.

Рисунок 9 – Нагружение отсека фюзеляжа

Если обшивка теряет устойчивость от сдвига ($\tau_{o6} > \tau_{kp}$), то она своим натяжением будет догружать сжатием стрингеры и шпангоуты. Каркас фюзеляжа начнет деформироваться к центру (вовнутрь). В этом случае:

$$\sigma_i = \frac{M_z}{J_{znp}} \cdot y_i - \frac{N_{cmp}}{F_{cmp}},$$

где $N_{\rm crp} = (\tau_{\rm o6} - \tau_{\rm kp}) \cdot t_{\rm crp} \cdot \delta_{\rm o6} \cdot ctg\alpha$ — дополнительное осевое усилие в стрингере; $\alpha = 35^0 \dots 45^0$ — угол наклона образующих волн обшивки к оси х в клетке размерами $t_{\rm min} \times t_{\rm crp}$.

Обшивка «провисает» на каркасе и фюзеляж становится гранёным (Рисунок 10).

При этом стрингеры дополнительно догружаются поперечной погенной нагрузкой $q_{\text{стр}}$

Изм	Лист	№ докум	Подп	Дата

$$q_{cmp} = (au_{oo} - au_{\kappa p}) \cdot \frac{\delta_{oo} t_{cmp}}{R} \cdot tg\alpha.$$

Рисунок 10 – Дополнительная поперечная нагрузка на стрингер

Если сечение фюзеляжа расположено в пределах герметического отсека, то необходимо также учитывать действие внутреннего избыточного давления. При этом в стрингерах возникают дополнительные нормальные напряжения. Так, для круговой цилиндрической оболочки

$$\Delta \sigma = \pm \frac{p_{us\delta}R}{2\delta_{np}},$$

где $p_{\text{изб}}$ — расчётное избыточное давление в гермоотсеке. Знак «+» берётся для растянутого свода фюзеляжа, знак «-» — для сжатого свода.

ПКС от силы Q_у, для фюзеляжа с однозамкнутым контуром

$$q = q_Q + q_0.$$

Рисунок 11 — Восприятие силы Qy в поперечном сечении фюзеляжа ПКС q_Q при размыкании контура оболочки по оси у (Рисунок 11)

$$q_Q = \frac{Q_y}{J_{znp}} S_z^{omc},$$

Изм.	Лист	№ докум	Подп	Дата

где $Q_y = Q_y - 2\frac{M_z}{H_z} \cdot tg\beta$ – приведенная сила; $H_x \approx \sqrt{2R}$ – высота боковой

панели; β – угол конусности рассчитываемого отсека фюзеляжа.

Для определения замыкающего ПКС q_0 составим уравнение моментов относительно полюса, лежащего на линии действия силы Q_y :

$$\oint q_{Q} \rho \cdot ds + q_{0} \cdot \Omega = 0 \Rightarrow q_{0} = -\frac{\oint q_{Q} \rho \cdot ds}{\Omega},$$

где $\Omega = 2\pi \cdot R^2$ — удвоенная площадь контура, работающего на кручение. Для симметричного сечения $\oint q_Q \rho \cdot ds = 0$ и тогда $q_0 = 0$.

ПКС от кручения рассчитывают по формуле Бредта $q_{\mathrm{kp}} = \mathrm{M}_{\mathrm{kp}}/\Omega$.

Результирующий ПКС $q_{\Sigma} = q_Q + q_{\kappa p}$.

Изм.	Лист	№ докум	Подп	Дата

5 Расчет нормальных шпангоутов

Обычно шпангоут представляет собой криволинейную раму, опирающуюся на стрингеры и обшивку. Нормальные шпангоуты при проверке рассчитывают на ряд нагрузок.

Сжимающие нагрузки $q_{\text{шп}}$ в случае потери обшивкой устойчивости из-за сдвига (Рисунок 12) определяют по формуле

$$q_{uun} = (\tau_{o\delta} - \tau_{\kappa p}) \cdot \frac{\delta_{o\delta} t_{uun}}{R} tg \alpha.$$

Условие устойчивости $q_{um} \leq q_{\kappa p} = \frac{3EJ}{R^3}$. . Здесь J – осевой момент инерции шпангоута с присоединённой обшивкой.

Рисунок 12 – Дополнительная сжимающая нагрузка на шпангоут

Сплющивающие нагрузки q_y от изгиба фюзеляжа (Рисунок 13) аналогичны сплющивающим нагрузкам, действующим на нормальные нервюры при изгибе крыла.

Рисунок 13 – Сплющивание шпангоута при изгибе фюзеляжа

	·			
Изм	Лист	№ докум	Подп	Дата

От изгиба обшивки имеем погонные нагрузки в растянутой и сжатой зонах:

$$\begin{cases} q_{yp} = q_p \cdot \xi = \sigma_p \delta_{o\delta} \cdot \frac{t_{um}}{\rho}; \\ q_{ycm} = q_{cm} \cdot \xi = \sigma_{cm} \delta_{o\delta} \cdot \frac{t_{um}}{\rho}. \end{cases}$$

учитывая, что $\sigma = \frac{M_z}{J_{znp}} \cdot y$ и $\frac{1}{\rho} = \frac{M_z}{EJ_{znp}}$, получим:

$$q_{y} = \left(\frac{M_{z}}{J_{znp}}\right)^{2} \cdot \frac{\delta_{oo}t_{uum}}{E} \cdot y.$$

Аналогично от изгиба стрингеров имеем сосредоточенные вертикальные нагрузки, действующие на шпангоут:

$$N_{y} = \left(\frac{M_{z}}{J_{z np}}\right)^{2} \cdot \frac{F_{cmp}t_{un}}{E} \cdot y_{cmp}.$$

Поскольку конструкция фюзеляжа современного транспортного самолёта включает 50 стрингеров и более, то для упрощения расчётной схемы стрингеры размазывают по контуру равномерным слоем и получают обшивку толщиной δ_{np} . Тогда

$$q_{y} = \left(\frac{M_{z}}{J_{z np}}\right)^{2} \cdot \frac{\delta_{np} t_{uun}}{E} \cdot y.$$

Расчетная схема сплющивания кольцевого шпангоута представлена на рисунке (Рисунок 14).

Изм.	Лист	№ докум	Подп	Дата

Рисунок 14 — Схема нагружения нормального шпангоута при сплющивании Максимальный изгибающий момент возникает в сечении C(C'):

$$M_{u = \max} = 0,23q_{y \max} \cdot R^2.$$

В сечении A(A') момент будет с обратным знаком, а во величине почти равный $M_{\mbox{\tiny H3\ max}}.$

Для фюзеляжей больших летательных аппаратов нарушается линейная зависимость между изгибающим моментом и соответствующей ему кривизной оси фюзеляжа. Последняя растёт быстрее. Это связано со сплющиванием поперечных сечений, что ведёт к росту σ . Для каждой конструкции существует предельное значение изгибающего момента, превышение которого приводит к полному сплющиванию поперечных сечений и разрушению фюзеляжа. Предельное значение изгибающего момента и соответствующее ему σ можно назвать критическими. По величине $\sigma_{\kappa p}$ должны превышать разрушающие напряжения стрингеров. Для фюзеляжа без конечной длины:

$$\sigma_{\kappa p} = 1, 2E_{cmp} \sqrt{\frac{J}{R^2 t_{cmp} \delta_{oo}}}.$$

Для фюзеляжа конечной длины охр получается больше, чем по формуле Error! Reference source not found. Поэтому расчёт по ней идёт в запас прочности.

Изм.	Лист	№ докум	Подп	Дата

6 Нагружение фонаря кабины и носовой части фюзеляжа

Локальные аэродинамические нагрузки на фонарь кабины и носовую часть фюзеляжа определяются по результатам испытаний модели в аэродинамической трубе при числе М полёта и угле атаки случая А', а также на режиме скольжения при нулевом угле атаки, причём угол скольжения определяется по формуле

$$\beta^0 = 15^0 - \frac{V_{max \, max}}{33,3}$$
, при $V_{max \, max} < 333 \, \text{м/c}$;

$$\beta^0 = 8^0 - \frac{V_{max \, max}}{111}$$
, но не менее 3^0 при $V_{max \, max} > 333$ м/с,

где V_{maxmax} – индикаторная скорость, соответствующая q_{maxmax} .

Прочность передних стёкол фонаря также проверяется на случай С. Кроме того, прочность фонаря кабины должна быть проверена при несимметричном распределении нагрузки по поперечному сечению фонаря. Для этого с одной половины фонаря снимается, а к другой половине фонаря добавляется 10% нагрузки от симметричного нагружения.

При отсутствии данных продувок распределение аэродинамической нагрузки принимается согласно нормам прочности, в которых имеются эпюры относительных давлений на носовой части нескольких видов фюзеляжей (Рисунок 15). Выбирается наиболее близкий по форме к рассчитываемому вариант фюзеляжа. Величины относительных давлений умножаются на q_{maxmax} . Коэффициент безопасности f = 1,5.

Рисунок 15 – Эпюры относительных давлений на носовой части фюзеляжа

Нагрузка на фонари гермокабин берётся, как указано выше, плюс избыточное давление в кабине. Коэффициент безопасности f=3.

Изм.	Лист	№ докум	Подп	Дата

Кроме того, передние стёкла фонаря кабины проверяются расчётом и испытываются на ударную нагрузку (птицестойкость). При этом задаются массой птицы (для самолётов транспортной категории она составляет 1,8 кг) и скоростью соударения. Пист 1306.558908.000 ПЗ

Дата

Подп

Изм Лист № докум

20

7 Расчет деформаций фюзеляжа при кручении и изгибе

С увеличением скоростей полёта влияние деформации конструкции на управляемость оказывает всё большее значение. Эксперименты показывают, что самолёты, имеющие хорошую управляемость, имеют и относительно малые деформации.

Погонный угол закручивания фюзеляжа определяют по формуле

$$\theta = \frac{M_{\kappa p}}{\Omega^2 G} \iint \frac{ds}{\delta}.$$

Угол закручивания концевого сечения хвостовой части фюзеляжа относительно крыла равен

$$\theta = \int_{z}^{l} \theta \cdot dx = \frac{M_{\kappa p}}{G} \cdot \int_{0}^{l} \frac{1}{\Omega^{2}} \left(\iint_{z} \frac{ds}{\delta} \right) \cdot dx.$$

Интеграл берётся численно с использованием, к примеру, формулы трапеций. Сначала мысленно разрезают хвостовую часть фюзеляжа на п отсеков одинаковой длины Δx . В каждом отсеке берут среднее сечение и для него вычисляют интеграл и далее подсчитывают $\oint ds/\delta = A_i$ и далее подсчитывают величину $B_i = A_i/\Omega_i^2$. После этого применяют формулу трапеций.

$$\varphi = \frac{M_{\kappa p} \cdot \Delta x}{G} \cdot \left(\sum_{i=0}^{n} B_i - 0.5 \cdot (B_0 + B_n) \right).$$

При расчёте прогибов фюзеляжа по аналогии с прямым крылом можно записать дифференциальные уравнения упругой линии балки в двух плоскостях

$$\frac{d^2y}{dx^2} = \frac{M_z^9}{EJ_z};$$

$$\frac{d^2z}{dx^2} = \frac{M_y^9}{EJ_y}.$$

Дважды численно интегрируя эти уравнения от узлов крепления крыла в нос и в хвост фюзеляжа, сначала получим функции углов девиации (поворота сечения), а затем функции прогибов y(x) и z(x).

Изм	Лист	№ докум	Подп	Дата

Приведём приближённые величины деформации, полученные на основе статистики, которые не следует превышать при действии максимальной эксплуатационной нагрузки для всех расчётных случаев нагружения. Угол закручивания концевого сечения фюзеляжа $\phi \leq 1,5^{\circ}$. При этом угол закручивания стабилизатора не должен превышать $2,5^{\circ}$. Угол девиации фюзеляжа в зоне крепления хвостового оперения не должен превосходить $1,0^{\circ}$ в плоскости наименьшей жёсткости.

Изм	Лист	№ докум	Подп	Дата

8 Расчет фюзеляжей на прочность в зоне больших вырезов

Если хотя бы один из линейных размеров выреза сравним с шириной (диаметром) фюзеляжа, то такой вырез является большим.

Рисунок 16 – Поперечное сечение топового бимса

К ним можно отнести вырезы под грузовые люки, бомболюки, фонари. Малые вырезы в виде смотровых лючков в расчёт не принимаются, поскольку они не влияют в целом на работу силовой конструкции. Подкрепление больших вырезов по контуру осуществляется в продольном направлении х лонжеронами (бимсами), а в поперечном направлении — усиленными шпангоутами. Бимсы выполняют в виде мощных прессованных профилей или тонкостенных балок с закрытым контуром поперечного сечения (Рисунок 16). Их продолжают в замкнутую часть фюзеляжа на некоторую дистанцию Δ1, примерно равную ширине выреза, для полноценного включения бимсов в работу.

Длина большого выреза влияет на работу сечений фюзеляжа, главным образом, при кручении, а ширина выреза - при изгибе. Кроме того, значительно влияет на работу сечений фюзеляжа форма подкрепления больших вырезов по их контуру.

Изм	Лист	№ докум	Подп	Дата

Заключение

В данной лабораторной работе было произведено ознакомление с методом расчета фюзеляжа на статическую прочность и жесткость.

Были изучены основные виды нагрузок, действующих на фюзеляж:

- Усилия от агрегатов, крепящихся к фюзеляжу (крыло, оперение, шасси, двигатели);
- Инерционные силы от масс грузов, размещенных внутри фюзеляжа (топливо, экипаж, пассажиры, оборудование) и от собственной массы конструкции фюзеляжа;
- Локальные нагрузки от аэродинамического воздействия набегающего потока от столкновения с птицами (район носовой части фюзеляжа и кабины);
- Избыточное внутреннее давление (для герметичных отсеков фюзеляжа).

Была изучена расчётная схема фюзеляжа является балка переменной жёсткости, лежащая на двух или более опорах. В полёте опорами фюзеляжа являются лонжероны крыла.

Изм	Лист	№ докум	Подп	Дата

Список литературы

1. Чепурных И.В. Прочность конструкций летательных аппаратов: учеб. пособие – Комсомольск-на-Амуре: ФГБОУ ВПО «КнАГТУ», 2013. – 137 с. (с.72 – с. 87).

Изм	Лист	№ докум	Подп	Дата