Option Informatique en MPSI

Lycée Thiers 2015

En 1984 ...

Vous auriez certainement eu à votre disposition des ...

En 1984 ...

ou bien des ...

... En 2014

Aujourd'hui, votre ordinateur est plusieurs millions de fois plus puissant que celui dont disposait la NASA en 1969 pour expédier 3 hommes sur la lune et les ramener vivants!...

De la puissance ... pour quoi faire?

Ce cours n'a pas pour but de ...

1 ... faire de vous des experts du web

2 ... faire de vous des experts de Linux

3 ... réaliser des dessins animés en 3D

... vous aider à pirater votre ennemi(e) juré(e)

Les objectifs de ce cours

- S'initier au langage de programmation CaML
- Etudier un petit nombre d'algorithmes simples
- Découvrir quelques thèmes de l'algorithmique :
 - itération et récursivité
 - structures de données
 - complexité
 - ...

Qu'est-ce qu'un "algorithme"?

- "Description non-ambigüe, en un nombre fini d'étapes, d'un calcul ou de la résolution d'un problème."
- Etymologie :

```
Al-Khawarizmi \rightarrow Algorisme \rightarrow Algorithme Arithmos
```

Trois questions fondamentales

- Terminaison
- 2 Correction
- 6 Complexité
 - temporelle
 - spatiale

Le plus vieil algorithme?

Euclide ~ -300 BC

Eléments - Livre VII - Propositions 1 et 2

Calcul du PGCD de deux entiers a, b $\geqslant 1$

Le plus vieil algorithme?

$$a = bq_0 + r_0$$

$$b = r_0q_1 + r_1$$

$$\vdots$$

$$r_{n-1} = r_nq_{n+1} + \underbrace{r_{n+1}}_{=0}$$

$$\boxed{r_n = \mathsf{PGCD}(a, b)}$$

Terminaison de l'algorithme d'Euclide

Et si l'algorithme ne se terminait pas?

$$a = bq_0 + r_0$$

$$b = r_0q_1 + r_1$$

$$\cdots$$

$$r_{n-1} = r_nq_{n+1} + r_{n+1}$$

 $(r_k)_{k\in\mathbb{N}}$ = suite strictement décroissante d'entiers naturels ...

→ un tel objet mathématique n'existe pas!

Correction de l'algorithme d'Euclide

• Lorsque a = bq + r:

$$PGCD(a, b) = PGCD(b, r)$$

donc :

$$PGCD(a, b) = PGCD(b, r_0) = PGCD(r_0, r_1) = \cdots$$
$$= PGCD(r_n, \underbrace{r_{n+1}}_{=0}) = r_n$$

Interlude

La suite de FIBONACCI :

$$F_0 = 0, \qquad F_1 = 1$$

$$\forall n \in \mathbb{N}^*, \ F_{n+1} = F_n + F_{n-1}$$
 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Lien avec l'algorithme d'Euclide?

$$\mathsf{F}_{\mathsf{n}+\mathsf{1}} = \mathsf{F}_{\mathsf{n}} \times \mathsf{1} + \mathsf{F}_{\mathsf{n}-\mathsf{1}}$$

Interlude

$$21 = 1 \times 13 + 8
13 = 8 \times 1 + 5
8 = 5 \times 1 + 3
5 = 3 \times 1 + 2
3 = 2 \times 1 + 1
2 = 1 \times 1 + 1
1 = 1 \times 1 + 0$$

Interlude

avec:

$$orall n \in \mathbb{N}, \ F_n = rac{1}{\sqrt{5}} \left(\phi^n - \left(-rac{1}{\phi}
ight)^n
ight)$$
 $\phi = rac{1+\sqrt{5}}{2}$ Lorsque $n o +\infty, \ F_n \sim rac{\phi^n}{\sqrt{5}}$

Efficacité de l'algorithme d'Euclide

Théorème

(Gabriel LAME, 1795 - 1870)

Si

$$\begin{cases} a \geqslant b \\ d = PGCD(a, b) \\ n = nombre \ d'étapes \end{cases}$$

Alors

$$a \geqslant d F_{n+2}$$
 $b \geqslant d F_{n+1}$

et donc

$$n \leqslant \frac{\ln\left(b\right)}{\ln\left(\phi\right)} + 1$$

Paradigme

Construction à la règle et au compas

- Donnée : deux points initiaux.
- Règles du jeu : étant donnés des points A, B, C déjà construits, on peut tracer ...
 - la droite (AB)
 - le cercle de centre A et de rayon BC
- 3 Les intersections produisent de nouveaux points ...

Questions ...

- Tous les points du plan sont-ils constructibles?
- 2 Pour atteindre un point constructible ...
 - Combien d'étapes?
 - Quelle portion de plan au minimum?

Construction du milieu

Construction du milieu

Construction du milieu

Et avec moins d'espace?

Et avec moins d'espace?

Retour aux algorithmes

Construction possible ↔ Existence d'un algorithme

Validité de la contruction ↔ Correction de l'algorithme

Nombres d'étapes ↔ Complexité temporelle

Portion de plan utilisée ↔ Complexité spatiale

The End!