Table 1 Topology cheet sheet 1

	topological space (X, \mathfrak{O})	metric space (X, d)			
内部 (内点)	$M^i (M \subset X)$	$\{x \mid \exists \epsilon > 0, \ N(x; \epsilon) \subset M\}$			
中心 c の開球	-	$N(c;\epsilon) = \{x \mid d(x, c) < \epsilon\}$			
閉包 (触点)	\overline{M} $(M\subset X)$	$ \{x \mid \forall \epsilon > 0, \ N(x; \epsilon) \cap M \neq \phi \} $ $\Leftrightarrow \{x \mid \exists (x_n)_{n \in \mathbb{N}} \in M \ s.t. \ \lim_{n \to \infty} x_n = x \} $			
境界 (境界点)	$M^iackslash\overline{M}$	$\{x \mid \forall \epsilon > 0, \ (N(x;\epsilon) \cap M \neq \phi) \land (N(x;\epsilon) \cap M^c \neq \phi)\}$			
導集合 (集積点)	$M^a = \{x \mid x \in \overline{M - \{x\}}\}$	$\{x \mid \forall \epsilon > 0, \ N(x; \epsilon) \cap (M - \{x\}) \neq \emptyset\}$			
孤立点集合 (孤立点)	$M \backslash M^a$	$\{x \mid \exists \epsilon > 0, \ N(x;\epsilon) \cap M = \{x\}\}$			
基底 🏵 : open sets	$\forall O \in \mathfrak{O}, \ O = \cup_{\lambda \in \Lambda} B_{\lambda}, \ B_{\lambda} \in \mathfrak{B}$				
近傍系 $V(x)$	$V(x) = \{ V \mid x \in V^i \}$				
基本近傍系 $V^*(x)$	$\exists V \in V^*(x) \ s.t. \ V^* \subset V, \ \forall V \in V(x)$				
第二可算公理	$ \mathfrak{B} \leq \aleph_0$				
可分空間	$\exists M \subset X \ s.t. \ M \le \aleph_0 \land \overline{M} = X$				
第一可算公理	$ V^*(x) \le \aleph_0$				
連続写像 $f: X \mapsto Y$	$\forall O \in \mathfrak{O}, \ f^{-1}(O) \in \mathfrak{O}$	$\forall \epsilon > 0, \ \exists \delta > 0 \ s.t. \ \forall a \in X, \ d_X(x,a) < \delta \Rightarrow d_Y(f(x),f(a)) < \epsilon$			
同相写像 $f: X \mapsto Y$	f is bijection. f , f^{-1} is a continuous function.				

Table 2 Topology cheet sheet 2

	topological space (X, \mathfrak{O})	metric space (X, d)	euclid space $(\mathbb{R}^n, d^{(n)})$
連結	There is no open set U, V satisfying:		Let Y be subset of \mathbb{R}^n
	1. $S \subset U \cup V$		Y is connected.
	$2. \ U \cap V = \phi$		\Leftrightarrow
	3. $U \cap S \neq \phi, \ V \cap S \neq \phi$		Y is path-connected.
弧状連結	$f: [0,1] \mapsto X, \ f(0) = x, \ f(1) = y$		
	f is continuous function.		
コンパクト	Every open cover C of X has a finite subcover.		
点列コンパクト	Every sequence of points in X has	Complete and Totally bounded	Bounded closed set (Heine-Borel)
	a convergent subsequence converging to a point in X.	Complete and Totany bounded	
可算コンパクト	Every countable open cover C of X has a finite subcover.		
Lindelöf の性質	Every open cover C of X has at most countable subcover.		
局所連結	$\forall x \in X, \ \forall V \in \mathfrak{O}(x \in V), \ \exists U \subset V \ s.t. \ U \ \text{is connected}.$		
局所コンパクト	$\forall x \in X, \exists V \in V(x) \ s.t. \ V \text{ is compact.}$		
有界	-	$\forall m \in M, \ \forall x \in X, \ \exists r > 0 \ s.t. \ r < \infty, \ d(x, m) < r$	$\forall k \in \{1, 2, \dots, n\}, \exists L_k \in \mathbb{R}, R_k \in \mathbb{R}$ $X \subset [L_1, R_1] \times [L_2, R_2] \times \dots \times [L_n, R_n]$
全有界	-	$\forall \epsilon > 0, \ \exists C \ s.t. \ \forall U \in C, \ diam(U) < \epsilon, \ C \ is finite cover.$	
完備	-	Every cauchy sequence of points in X is a convergent sequence.	$(e.g.) \mathbb{R}^n, []$
$-$ 様連続写像 $f:X\mapsto Y$		$\forall \epsilon > 0, \ \exists \delta > 0 \ s.t.$	
	-	$\forall x, \ a \in Xd_X(x, \ a) < \delta \Rightarrow d_Y(f(x), \ f(a)) < \epsilon$	
一様同相写像 $f: X \mapsto Y$		f is bijection.	
	-	f, f^{-1} is a uniformly continuous function.	