Examenul de bacalaureat național 2016

Proba E. c)

Matematică M șt-nat

BAREM DE EVALUARE ŞI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

Γ		
1.	$b_1 \cdot q^4 = 48 \text{ si } b_1 \cdot q^7 = 384 \Rightarrow q = 2$	3p
	$b_1 = 3$	2p
2.	1 , 2 , 3	3 p
	Ox în punctele $(1,0)$ și $(6,0)$	
	Distanța dintre punctele de intersecție a graficului funcției f cu axa Ox este egală cu 5	2p
3.	$\left(2^5\right)^x = 2^4 \cdot 2^x \Leftrightarrow 5x = 4 + x$	3p
	x = 1	2p
4.	Mulțimea {1, 2, 3, 4, 5} are 5 elemente, deci sunt 5 cazuri posibile	1p
	În mulțimea $\{1, 2, 3, 4, 5\}$ sunt 2 numere care verifică egalitatea, deci sunt 2 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{5}$	2p
5.	$\frac{a+1}{6} = \frac{a-1}{2} \Leftrightarrow 2a+2 = 6a-6$	3 p
	a = 2	2p
6.	$(2\sin x + \cos x)^2 = 4\sin^2 x + 4\sin x \cos x + \cos^2 x$	2p
	$(\sin x + 2\cos x)^{2} = \sin^{2} x + 4\sin x \cos x + 4\cos^{2} x \Rightarrow (2\sin x + \cos x)^{2} + (\sin x + 2\cos x)^{2} - 4\sin 2x = 5(\sin^{2} x + \cos^{2} x) + 8\sin x \cos x - 4 \cdot 2\sin x \cos x = 5, \text{ pentru orice număr real } x$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$2A = \begin{pmatrix} 2 & 4 \\ 8 & 2 \end{pmatrix}$, $\det(2A) = \begin{vmatrix} 2 & 4 \\ 8 & 2 \end{vmatrix} =$	3р
	$=2\cdot 2-4\cdot 8=4-32=-28$	2p
b)	$A + 2B = \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 2x \\ 2y & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 + 2x \\ 4 + 2y & 1 \end{pmatrix}$	2p
	$ \begin{pmatrix} 1 & 2+2x \\ 4+2y & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow x = -1 \text{ si } y = -2 $	3р
c)	$AB = \begin{pmatrix} 2y & x \\ y & 4x \end{pmatrix}, BA = \begin{pmatrix} 4x & x \\ y & 2y \end{pmatrix}$	2p
	$AB = BA \Leftrightarrow y = 2x$, deci det $B = \begin{vmatrix} 0 & x \\ 2x & 0 \end{vmatrix} = -2x^2 \le 0$, pentru orice număr real x	3р

2.a)	$(-1) \circ 1 = 3 \cdot (-1) \cdot 1 + 3 \cdot (-1) + 3 \cdot 1 + 2 =$	3p
	=-3-3+3+2=-1	2p
b)	$3x^2 + 3x + 3x + 2 = x \Leftrightarrow 3x^2 + 5x + 2 = 0$	3 p
	$x_1 = -\frac{2}{3}$ și $x_2 = -1$	2p
c)	$3ab+3a+3b+3-1=8 \Leftrightarrow (a+1)(b+1)=3$	3 p
	Cum a și b sunt numere întregi, obținem $(-4,-2)$, $(-2,-4)$, $(0,2)$ și $(2,0)$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = (x-2)'e^x + (x-2)(e^x)' =$	2p
	$=e^{x}+(x-2)e^{x}=(x-1)e^{x}, x \in \mathbb{R}$	3 p
b)	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x - 2)e^x = \lim_{x \to -\infty} \frac{x - 2}{e^{-x}} = 0$	3p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $-\infty$ la graficul funcției f	2p
c)	$f''(x) = xe^x$, $f''(x) = 0 \Leftrightarrow x = 0$	2p
	$f''(x) \le 0$, pentru orice $x \in (-\infty, 0] \Rightarrow f'$ este descrescătoare pe $(-\infty, 0]$	1p
	$f''(x) \ge 0$, pentru orice $x \in [0, +\infty) \Rightarrow f'$ este crescătoare pe $[0, +\infty) \Rightarrow f'(x) \ge f'(0) = -1$, pentru orice număr real x	2p
2.a)	$\int_{1}^{2} \left(f(x) - \frac{1}{x} \right) dx = \int_{1}^{2} 2x dx = x^{2} \Big _{1}^{2} =$	3р
	=4-1=3	2p
b)	$F'(x) = (x^2 + \ln x + 2016)' = 2x + \frac{1}{x} =$	2p
	$=\frac{2x^2+1}{x}=f(x)$, pentru orice $x \in (0,+\infty)$, deci F este o primitivă a funcției f	3 p
c)	$V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} \left(\frac{2x^{2} + 1}{x}\right)^{2} dx = \pi \int_{1}^{2} \left(4x^{2} + 4 + \frac{1}{x^{2}}\right) dx =$	2p
	$=\pi \left(\frac{4x^3}{3} + 4x - \frac{1}{x}\right) \Big _{1}^{2} = \frac{83\pi}{6} < 14\pi$	3 p