- > Study Material for the classes on S_N1 and S_N2 : Chapter-Nucleophilic Substitution at Saturated Carbon (Clayden Warren)
- > I will also provide a classnote

- \checkmark The lower the value of E_a , the faster the reaction: Kinetically favourable
- \checkmark Higher negative value of $\triangle G$: Thermodynamically favourable

- ✓ Chymotrypsin is a digestive enzyme present in pancreatic juice
- ✓ It helps in hydrolysing peptide bonds
- ✓ These reactions are thermodynamically favorable, but occurs extremely slowly in the absence of a catalyst

Chymotrypsin

$$H_2O + (CH_3)_3C-Br \longrightarrow HBr + (CH_3)_3C-OH$$

$$Rate = k [RX]$$

- ✓ It is true that a t-butyl carbocation is more stable than methyl or primary carbocations
- ✓ At the same time, the activation energy of its formation (E_a) is smaller than methyl/primary; Important for $S_N 1$ reactions

Important: It is the lower activation energy of the formation of t-butyl cation that drives its S_N 1 reaction, not its higher thermodynamic stability compared to methyl or primary carbocations

Relative Stability of Carbocations

> The stability of the tertiary, secondary, primary and methyl carbocations follows the order:

✓ This is generally explained by the +I effect of the -CH₃ groups

➤ However, there is another effect called *Hyperconjugative Effect* by which the alkyl groups release electrons

✓ Can we understand this based on MO considerations?

Stabilization of Tertiary Carbocations by C-H (σ-Conjugation)

σ orbital empty p orbital CH₃ extra stabilization from σ donation into empty p orbital of planar carbocation

- \triangleright Interaction between the C-H σ -bonding MOs with the vacant 2p orbital of the carbon
- > This interaction lowers the energy of the electrons in the C-H bonding orbitals

No σ-conjugation for CH_3^+

no stabilization: no electrons to donate into empty p orbital note: The C-H bonds are at 90° to the empty p orbital and cannot interact with it