GATE 2023 EC

EE23BTECH11023-ABHIGNYA GOGULA

Question28:

The Fourier transform $X(\omega)$ of $x(t) = e^{-t^2}$ is Note: $\int_{-\infty}^{\infty} e^{-y^2} dy = \sqrt{\pi}$

Note:
$$\int_{-\infty}^{\infty} e^{-y^2} dy = \sqrt{\pi}$$

A)
$$\sqrt{\pi}e^{\frac{\omega^2}{2}}$$

A)
$$\sqrt{\pi}e^{\frac{\omega^2}{2}}$$

B) $\frac{e^{\frac{-\omega^2}{4}}}{2\sqrt{\pi}}$

C)
$$\sqrt{\pi}e^{\frac{-\omega^2}{4}}$$

D)
$$\sqrt{\pi}e^{\frac{-\omega^2}{2}}$$

Gate 2023 EC Question 28

Solution

$$x'(t) = -2te^{-t^2} (1)$$

$$x'(t) = -2tx(t) \tag{2}$$

doing laplace transform

$$sX(s) = 2\frac{dX(s)}{ds} \tag{3}$$

$$\int_0^s \frac{dX(s)}{X(s)} = \int_0^s \frac{sds}{2} \tag{4}$$

$$\frac{X(s)}{X(0)} = e^{\frac{s^2}{4}} \tag{5}$$

$$x(0) = \int_{-\infty}^{\infty} x(t) \, dy = \sqrt{\pi} \tag{6}$$

$$X(s) = \sqrt{\pi}e^{\frac{s^2}{4}} \tag{7}$$

$$s = j\omega \tag{8}$$

$$X(\omega) = \sqrt{\pi}e^{\frac{-\omega^2}{4}} \tag{9}$$