A gigaparsec-scale void and cosmological principle

Qianhang Ding IBS CTPU-CGA

Based on 1912.12600, Qianhang Ding, Tomohiro Nakama, Yi Wang 2211.06857, Tingqi Cai, Qianhang Ding, Yi Wang

KEK@June 6

Image Credit: NASA

Riess, Adam G. "The expansion of the universe is faster than expected." *Nature Reviews Physics* 2.1 (2020): 10-12.

Cosmological Principle

The Universe is <u>homogeneous</u> and <u>isotropic</u> on large scale, independent of location.

The law of physics should be the same at different positions of the Universe

Cosmic microwave background

Large scale structure

Cosmic Inhomogeneity

The List of Voids

KBC Void 308 Mpc

Keenan, R. C., Barger, A. J., & Cowie, L. L. (2013). Evidence for a ~ 300 megaparsec scale under-density in the local galaxy distribution. *The Astrophysical Journal*, 775(1), 62.

Cosmic Anisotropy

79.4

Quasar Number Dipole $\mathcal{D} \sim 10^{-2}$ (233°, 34°)

Potential Explanation

Doppler effect in CMB temperature

$$T' = \gamma(1 + \beta \cos \theta) T$$

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}} \quad \beta = \frac{v}{c}$$

$$\mathcal{D} \cong \frac{v}{c}$$

Potential Explanation

Doppler effect and aberration in quasar number counting

$$v_o = v_r \delta(v)$$

$$dN$$

$$S \propto v^{-\alpha} \qquad \frac{dN}{d\Omega} \propto S^{-x}$$

$$\mathcal{D} \cong [2 + x(1 + \alpha)] \frac{v}{c}$$

Dipolar Tension

Secrest, Nathan J., et al. "A test of the cosmological principle with quasars." *The Astrophysical journal letters* 908.2 (2021): L51.

Global Anisotropy

Constraints on Bianchi cosmology $\frac{\sigma_V}{H} < 4.7 \times 10^{-11}$

"How Isotropic is the Universe?", D. Saadeh, S. M. Feeney, A. Pontzen, H. V. Peiris, and J. D. McEwen, PRL

Rotating Universe

Angular velocity $\omega < 10^{-9} rad/yr$

"Is the Universe rotating?", S.-C. Su and M.-C. Chu, APJ

A Local Void

A Local Void & H_0

A Local Void & H_0

A Local Void & Dipole

Multi-Stream Inflation

We parameterize the void profile by introducing δ_V , r_V and Δ_r

$$\delta(r) = \delta_V \frac{1 - \tanh((r - r_V)/2\Delta_r)}{1 + \tanh(r_V/2\Delta_r)}$$

Here, the void shape is decided by the multi-stream inflation potential

$$\delta_V \sim \delta N$$
, $r_V \sim \frac{1}{k_1}$, $\Delta_r \sim \frac{1}{k_1} - \frac{1}{k_2}$

 S_8 tension in a Gpc-scale local void

Jounghun Lee 1308.3869

$$\frac{dN}{dM} = 2\frac{\bar{\rho}}{M} \left| \frac{dF(\delta_c, M)}{dM} \right|$$

Kiyotomo Ichiki, Chul-Moon Yoo, Masamune Oguri, 1509.04342

$$\frac{dN}{dM} = 2\frac{\bar{\rho}}{M} \left| \frac{dF(\delta_c, M)}{dM} \right| \qquad \frac{dN}{dz}(z) = f_{\text{sky}} \int_0^\infty dM \chi(M) \frac{dN}{dM}(M, z) \frac{dV(z)}{dz}$$

Hubble tension in a Gpc-scale local void

LTB Metric & H_0

In order to describe spacetime in void model, we use the Lemaitre-Tolman-Bondi (LTB) metric:

$$ds^{2} = c^{2}dt^{2} - \frac{R'(r,t)^{2}}{1 - k(r)}dr^{2} - R^{2}(r,t)d\Omega^{2}$$

The Friedmann equation in LTB metric is

$$H(r,t)^{2} = H_{0}(r)^{2} \left(\Omega_{M}(r) \frac{R_{0}(r)^{3}}{R(r,t)^{3}} + \Omega_{k}(r) \frac{R_{0}(r)^{2}}{R(r,t)^{2}} + \Omega_{\Lambda}(r) \right)$$

Which can introduce different Hubble parameters in a local void

Hubble Tension

Riess, Adam G. "The expansion of the universe is faster than expected." *Nature Reviews Physics* 2.1 (2020): 10-12.

Hubble Tension

BAO observation

Kinematic SZ Effect

$$\Delta T_{kSZ}(\hat{n}) = T_{CMB} \int_{0}^{z_{e}} \delta_{e}(\hat{n}, z) \frac{V_{H}(\hat{n}, z) \cdot \hat{n}}{c} d\tau_{e}$$
$$T_{CMB}^{2} D_{3000} < 2.9 \mu K^{2} \quad D_{\ell} \equiv \frac{\ell(\ell+1)}{2\pi} C_{\ell}$$

Kinematic SZ Effect

$$\Delta T_{kSZ}(\hat{n}) = T_{CMB} \int_{0}^{z_{e}} \delta_{e}(\hat{n}, z) \frac{V_{H}(\hat{n}, z) \cdot \hat{n}}{c} d\tau_{e}$$
$$T_{CMB}^{2} D_{3000} < 2.9 \mu K^{2} \quad D_{\ell} \equiv \frac{\ell(\ell+1)}{2\pi} C_{\ell}$$

Dipolar tension in a Gpc-scale local void

Geodesic Equations

LTB Metric

$$ds^{2} = c^{2}dt^{2} - \frac{R'(r,t)^{2}}{1 - k(r)}dr^{2} - R^{2}(r,t)d\Omega^{2}$$

Geodesic Equations

$$\frac{d^2x^{\mu}}{d\lambda^2} + \Gamma^{\mu}_{\alpha\nu} \frac{dx^{\alpha}}{d\lambda} \frac{dx^{\nu}}{d\lambda} = 0$$

$$1 + z(\lambda_e) = \frac{\tau(\lambda_r)}{\tau(\lambda_e)}$$

Initial Conditions

The location of observers r and the observational angle θ

CMB Dipole

Temperature anisotropy

$$T(\hat{n}) = \frac{T^*}{1+z(\hat{n})} \qquad \frac{\Delta T}{\overline{T}} = \frac{T(\hat{n}) - \overline{T}}{\overline{T}} = \frac{\overline{z} - z(\hat{n})}{1+z(\hat{n})}$$

$$\overline{T} = \frac{1}{4\pi} \int T(\hat{n}) d\Omega \qquad 1 + \overline{z} = \frac{T^*}{\overline{T}} \qquad \mathcal{D} = \frac{2}{\pi} \int_0^{\pi} \frac{\Delta T}{\overline{T}} (\theta) \cos \theta d\theta$$

CMB Dipole

Temperature anisotropy

$$T(\hat{n}) = \frac{T^*}{1+z(\hat{n})} \qquad \frac{\Delta T}{\overline{T}} = \frac{T(\hat{n}) - \overline{T}}{\overline{T}} = \frac{\overline{z} - z(\hat{n})}{1+z(\hat{n})}$$

$$\overline{T} = \frac{1}{4\pi} \int T(\hat{n}) d\Omega \qquad 1 + \overline{z} = \frac{T^*}{\overline{T}} \qquad \mathcal{D} = \frac{2}{\pi} \int_0^{\pi} \frac{\Delta T}{\overline{T}} (\theta) \cos \theta d\theta$$

Allowed Void

Redshift Dipole

$$\frac{\Delta T}{\overline{T}} = \frac{T(\hat{n}) - \overline{T}}{\overline{T}} = \frac{\overline{z} - z(\hat{n})}{1 + z(\hat{n})}$$

Quasar Dipole

Cosmic redshift in quasar number counting

$$v_o = v_r \delta$$
 $\delta = \frac{1 + \bar{z}}{1 + z(\hat{n})}$ $S \propto v^{-\alpha}$ $\frac{dN}{d\Omega} \propto S^{-x}$
$$\mathcal{D} \cong [2 + x(1 + \alpha)] \frac{\bar{z} - z(\hat{n})}{1 + z(\hat{n})}$$

Assumption: quasar number density ∝ matter density

$$\mathcal{D}_{Q} \sim \mathcal{D}_{M}$$

$$\frac{\rho dV}{d\Omega}(\hat{n}) \cong \frac{\rho a^{3} r^{2} dr d\Omega}{d\Omega} = \frac{\rho(\hat{n}) r(\hat{n})^{2} dr}{(1 + z(\hat{n}))^{3}}$$

Allowed Void Profile

Cosmic Dipole

Cosmic dipoles in global signals indicate the profile of the local structure.

