

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190304503

FCC REPORT (BLE)

Applicant: ShenZhen Aratek Biometrics Technology Co., Ltd.

Address of Applicant: 2F, T2-A Building, ShenZhen Software Park, South Area, Hi-

Tech Park, Shenzhen, Guangdong, China

Equipment Under Test (EUT)

Product Name: Mobile ID Terminal

Model No.: Marshall, Marshall L, Marshall U, Marshall M, Marshall C,

Marshall S, Marshall 8, BM5510, BM5520

FCC ID: 2AGUJMARSHALL

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 14 Mar., 2019

Date of Test: 14 Mar., to 16 May, 2019

Date of report issued: 16 May, 2019

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	16 May, 2019	Original

Tested by: (Men Date: 16 May, 2019

Test Engineer

Reviewed by: Date: 16 May, 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5	_	IERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	14
	6.5	POWER SPECTRAL DENSITY	16
	6.6	BAND EDGE	18
	6.6.1	00.00000 =00000	
	6.6.2	Radiated Emission Method	20
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	Radiated Emission Method	27
7	TES	T SETUP PHOTO	32
0	CUT	CONSTRUCTIONAL DETAILS	22

4 Test Summary

Section in CFR 47	Result
15.203 & 15.247 (c)	Pass
15.207	Pass
15.247 (b)(3)	Pass
15.247 (a)(2)	Pass
15.247 (e)	Pass
15.247 (d)	Pass
15.205 & 15.209	Pass
	15.203 & 15.247 (c) 15.207 15.247 (b)(3) 15.247 (a)(2) 15.247 (e) 15.247 (d)

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	ShenZhen Aratek Biometrics Technology Co., Ltd.
Address:	2F, T2-A Building, ShenZhen Software Park, South Area, Hi-Tech Park, Shenzhen, Guangdong, China
Manufacturer:	ShenZhen Aratek Biometrics Technology Co., Ltd.
Address:	2F,T2-A Building, ShenZhen Software Park, South Area, Hi-Tech Park, Shenzhen, Guangdong, China

5.2 General Description of E.U.T.

•	
Product Name:	Mobile ID Terminal
Model No.:	Marshall, Marshall L, Marshall U, Marshall M, Marshall C, Marshall S, Marshall 8, BM5510, BM5520
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.4 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-10000mAh
AC adapter:	Model: RH-050250US Input: AC100-240V, 50/60Hz, 0.6A Output: DC 5.0V, 2500mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	Item No.: Marshall, Marshall L, Marshall U, Marshall M, Marshall C, Marshall S, Marshall 8, BM5510, BM5520 were identical inside, the electrical circuit design, layout, components used and internal wiring, with difference being model name and shell color.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
N							

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Report No: CCISE190304503

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.54 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.84 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antonno	COLIMA DZDECK	EMZD4540D	00044	03-18-2018	03-17-2019	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020	
DiCanil on Antonna	COLIMA DZDECK	\/III D0402	407	03-18-2018	03-17-2019	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020	
11	001114/4 DZDEOK	DDLLAGAGOD	040	03-18-2018	03-17-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919k)	
D 110				03-18-2018	03-17-2019	
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020	
Dro oppolition	CD	PAP-1G18	11804	03-18-2018	03-17-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2018	03-17-2019	
Spectrum analyzer	Ronde & Schwarz	F3F3U	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMIT (D)	D 1 1 0 0 1	50007	101070	03-18-2018	03-17-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
0.11	7050	7400 NUNU 04	4000450	03-18-2018	03-17-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
0-61-	MIODO COAV	MED 0 4000	1/40740 5	03-18-2018	03-17-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020	
Cable	CHUNED	CLICOFI EVACO	E0102/4DF	03-18-2018	03-17-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0		

Conducted Emission:							
Test Equipment	t Manufacturer Model No. Serial No.	Cal. Date	Cal. Due date				
rest Equipment	Manuacturer	Wiodel No.	Serial No.	(mm-dd-yy)	(mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	404400	03-18-2018	03-17-2019		
EIVII Test Receiver	Ronde & Schwarz	ESCI	101189	03-18-2019	03-17-2020		
Dulas Limitar	CCHWADZDECK	OSRAM 2306	9731	03-18-2018	03-17-2019		
Pulse Limiter	SCHWARZBECK	USKAW 2306		03-18-2019	03-17-2020		
LICN	CHACE	MNIOOFOD	4.447	03-18-2018	03-17-2019		
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019		
Cable	11D 40500A N/A	03-18-2018	03-17-2019				
Cable	Cable HP 10503A N		N/A	03-18-2019	03-17-2020		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 2.4 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Francisco (MIII-)	Limit ((dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	 The E.U.T and simulatine impedance stability 50ohm/50uH coupling The peripheral devices a LISN that provides a termination. (Please rephotographs). Both sides of A.C. line interference. In order positions of equipmer 	 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted 			
Test setup:	LISN 40cm		AC power		
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Product name:	Mobile ID Terminal	Product model:	Marshall
Test by:	Carey	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
123	MHz	dBu∇	₫B	₫B	dBu∀	dBu∀	<u>dB</u>	
1	0.170	31.24	0.17	10.77	42.18	64.94	-22.76	QP
2	0.170	21.32	0.17	10.77	32.26	54.94	-22.68	Average
2 3 4 5 6 7 8 9	0.230	27.95	0.14	10.75	38.84	62.44	-23.60	QP
4	0.614	28.31	0.13	10.77	39.21	56.00	-16.79	QP
5	0.614	20.59	0.13	10.77	31.49	46.00	-14.51	Average
6	0.675	28.44	0.13	10.77	39.34	56.00	-16.66	QP
7	1.016	15.94	0.13	10.87	26.94	46.00	-19.06	Average
8	2.581	15.51	0.15	10.93	26.59	46.00	-19.41	Average
9	6.805	25.43	0.25	10.80	36.48	60.00	-23.52	QP
10	6.841	14.68	0.25	10.80	25.73	50.00	-24.27	Average
11	17.199	15.24	0.30	10.91	26.45	50.00	-23.55	Average
12	18.328	25.48	0.29	10.92	36.69	60.00	-23.31	QP

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Mobile ID Terminal	Product model:	Marshall
Test by:	Carey	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Kead Level	Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
-	MHz	₫₿uѶ	<u>dB</u>		dBu₹	dBu∜	<u>ab</u>		_
1	0.170	31.57	0.96	10.77	43.30	64.94	-21.64	QP	
2	0.170	21.41	0.96	10.77	33.14	54.94	-21.80	Average	
3	0.489	29.40	0.97	10.76	41.13	56.19	-15.06	QP	
4	0.502	19.37	0.97	10.76	31.10	46.00	-14.90	Average	
1 2 3 4 5 6 7 8 9	0.595	21.16	0.97	10.77	32.90	46.00	-13.10	Average	
6	0.686	29.09	0.97	10.77	40.83	56.00	-15.17	QP	
7	2.581	27.32	0.99	10.93	39.24	56.00	-16.76	QP	
8	2.581	16.36	0.99	10.93	28.28	46.00	-17.72	Average	
	5.305	29.21	1.01	10.84	41.06	60.00	-18.94	QP	
10	6.769	28.54	1.02	10.81	40.37	60.00	-19.63	QP	
11	6.769	14.06	1.02	10.81	25.89	50.00	-24.11	Average	
12	21.373	14.15	0.68	10.91	25.74	50.00	-24.26	Average	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.73		
Middle	1.29	30.00	Pass
Highest	1.15		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.732		
Middle	0.720	>500	Pass
Highest	0.738		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.050		
Middle	1.050	N/A	N/A
Highest	1.050		

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	8 dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-1.13		
Middle	1.22	8.00	Pass
Highest	0.59		

Test plots as follow:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB 558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	E.U.T						
	Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plots as follow:

6.6.2 Radiated Emission Method

0.0.2 Radiated Ellission	Metrioa					
Test Requirement:	FCC Part 15 C	C Section 15	5.205 and 15.209			
Test Method:	ANSI C63.10:	2013 and	KDB 558074			
Test Frequency Range:	2.3GHz to 2.5	GHz				
Test Distance:	3m					
Receiver setup:	Frequency	Detecto			3W	Remark
	Above 1GHz	Peak	1MHz	_	1Hz	Peak Value
		RMS	1MHz		1Hz	Average Value
Limit:	Frequer	ncy	Limit (dBuV/m @	3m)	Λ,	Remark
	Above 10	GHz -	54.00 74.00			verage Value Peak Value
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horizemake the 4. For each case and meters are to find the 5. The test-I Specified 6. If the emit the limit is of the EU have 10 ce	and at a 3 mentione the positive was set 3 mentione was set 3 mentione was set 3 mentione was a measurement of the maximum receiver systems. Bandwidth assign level of the maximum receiver systems are suppossed to the second with the systems of the was a maximum receiver systems. Bandwidth assign level of the would be designed to the systems of the would be designed to the systems of the work of the	emission, the EUT Itenna was tuned t able was turned fr	meter to value on the one of the conditions one	s rotate on. rference variable o four r of the file e anten rrangeo nts from egrees ect Fun le. was 10 ed and emissio one us	ed 360 degrees de-receiving de-height antenna meters above eld strength. de are set to de to its worst de to 360 degrees detion and del degrees designed by the degrees designed by the degrees designed by the degrees designed by the degree b
τ εδί δείμμ.	AE (T	Test Rece	Horn Antenna 3m Ground Reference Plane Pre- Amplifier Cor	Antenna Tow	wer	
Test Instruments:	Refer to section	on 5.8 for de	etails			
Test mode:	Refer to section	on 5.3 for de	etails			
Test results:	Passed					
		_		_		

Product Name:		Mobil	ile ID Terminal			Pro	Product Model: Test mode:		Marshall		
est By	:	Carey	Carey Test mode: BLE Tx mode						de		
st Ch	annel:	Lowe	st channel	ı		Po	Polarization:		Vertical		
Test Voltage:		AC 12	20/60Hz			En	vironmen	t:	Temp: 24°	Huni:	57%
110	Level (dBuV/n	n)									
100											
80									FCC	PART 15	(PK)
60				~~~~	.			and the	FCG	PART 15	(AV)
40							V		2		
20											
0	2310 2320)			2350 Frequ	iency (MH	(z)				2404
	Freq				Preamp Factor		Limit		Remark		
9	MHz	dBu₹			<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>		_	
1 2	2390.000 2390.000	20.09 8.22	27.07 27.07	4.69 4.69	0.00 0.00			-22.15 -14.02	Peak Average		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct	Name:	Mobile II	O Terminal		Prod	duct Mode	l:	Marshall	Marshall				
st By:		Carey			Test	mode:		BLE Tx i	mode	le			
st Cha	annel:	Lowest	channel	Polarization: Horizontal									
st Vol	Itage:	AC 120/60Hz Environment: Temp: 24°C					4℃ Huni:	57%					
D.O.S.V	Lovel /dPu\//m	V			•			•					
110	Level (dBuV/m												
100							-			-			
										Λ			
80									FCC PART 15	(IPIC)			
- 23									TOOTANTIO	77			
60		-							FCC PART 15	(AVA			
		~~~	~~~	~~~	V	mon		V	www.	JAV)			
40									2				
20													
-													
o													
0	2310 2320				350 Frequency	(MH2)				240			
		Read	Antenna				Limit	Over					
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark				
	MHz	dBu∀	<u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>					
1	2390.000	18.66	27.08			50.43							
2	2390.000	8.03	27.08	4.69					Average				

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile ID Terminal	Product Model:	Marshall
Test By:	Carey	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor						
	MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	dB	dBuV/m	dBuV/m	dB	
1	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile ID Terminal	Pr	oduct Mod	el:	Marsha	all	
Test By:	Carey	Те	st mode:		BLE To	c mode	
Test Channel:	Highest channel	Po	larization:		Horizo	ntal	
Test Voltage:	AC 120/60Hz	En	Environment: Temp: 24℃			<b>24</b> ℃	Huni: 57%
110 Level (dBuV/m 100 80 60 20 2478			ncy (MHz)		Тептр.	FCC PA	RT 15 (PK)  RT 15 (AV)
Freq	ReadAntenna C Level Factor	able Preamp Loss Factor	Level	Limit Line	Over Limit	Remark	
MHz	dBuVdB/m		dBuV/m	dBuV/m	<u>d</u> B		
1 2483,500 2 2483,500	21.52 27.35 8.63 27.35		53.68 40.79			Peak Average	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.7 Spurious Emission

## 6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB 558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						



#### Test plot as follows:





#### 6.7.2 Radiated Emission Method

6.7.2 Radiated Emission Method									
Test Requirement:	FCC Part 15 C		205 and 15.209	)					
Test Method:	ANSI C63.10:20	)13							
Test Frequency Range:	9kHz to 25GHz								
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VBW		Remark			
	30MHz-1GHz	Quasi-peal		300		Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3M		Peak Value			
Limite	Frequency	RMS ,	1MHz Limit (dBuV/m @	3M	HZ	Average Value Remark			
Limit:	30MHz-88M		40.0	2011)		Quasi-peak Value			
	88MHz-216M		43.5			Quasi-peak Value			
	216MHz-960N	Quasi-peak Value							
	960MHz-1G	Hz	54.0		C	Quasi-peak Value			
	Above 1GH	17	54.0			Average Value			
			74.0			Peak Value			
Test Procedure:						table 0.8m(below			
						3 meter camber.			
	highest rad		360 degrees	io dete	mme	the position of the			
	_		meters away	from th	ne inte	erference-receiving			
						ble-height antenna			
	tower.					_			
						four meters above			
						the field strength.			
		neasuremer	•	lions of	i ine a	antenna are set to			
				EUT wa	as arra	anged to its worst			
						from 1 meter to 4			
	meters and	I the rota ta	ble was turned			es to 360 degrees			
		maximum re	•						
			tem was set ith Maximum F			tect Function and			
						s 10 dB lower than			
			•			nd the peak values			
						ssions that did not			
						using peak, quasi-			
		erage meth	nod as specifie	ed and	then i	reported in a data			
Took ook in	sheet.								
Test setup:	Below 1GHz								
					Antenna	Tower			
			.   ~						
	ş	3m <			Search	1			
	EUT _	¥			Antenn	a			
	\ <u>\</u>	4m		D.F.	Tr				
		<u> </u>			Test eiver —	$\neg$			
			<u></u>			\			
	Turn Table	0.8m lm		`	\	<del>_</del>			
	Table	^		_	7				
	777777777	minin.	<i></i>	<del>////</del> ///					
	Ground Plane								
	Above 1GHz								







#### Measurement Data (worst case):

#### **Below 1GHz:**

Product Name:	Mobile ID Terminal	Product Model:	Marshall
Test By:	Carey	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∇	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	
1	40.276	46.33	12.40	1.22	29.90	30.05	40.00	-9.95	QP
1 2 3 4 5 6	45.535	48.48	12.28	1.29	29.86	32.19	40.00	-7.81	QP
3	50.586	46.89	12.05	1.25	29.82	30.37	40.00	-9.63	QP
4	86.807	48.12	9.16	1.91	29.59	29.60	40.00	-10.40	QP
5	157.007	46.85	9.17	2.57	29.16	29.43	43.50	-14.07	QP
6	349.250	41.68	14.57	3.10	28.56	30.79	46.00	-15.21	QP

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



oduct Name:	Mobi	le ID Termi	nal		Pro	duct Mod	el:	Marsha	Marshall		
est By:	Care	у			Tes	t mode:		BLE T	x mode		
st Frequency:	30 M	Hz ~ 1 GH:	Z		Pola	Polarization:			Horizontal		
est Voltage:	AC 1	20/60Hz			Env	ronment: Temp: 24°C Huni: 57			Huni: 57%		
80 Level (dBuV/	m)										
70											
60									FCC P	ART 15.247	
50											
40							6				
30			3	₆ 0	4 hophadas	5 		M _L		serverale	
12:4	2			1)1	TA.	1		The adds.	. J milita	Triviana.	
10	MANA NAM	Land VA	My My	Market R.		4-114		A walker	the good of the state of the st		
10 0 30	50 SO	Land You	100	Frequ	200 ency (MH	V-W ^d		500		1000	
10 January	50 Read	Antenna Factor	Cable	Frequ Preamp Factor	ency (MH	Limit	Over Limit		)		
0 30	50  Read 1 Level	Factor	Cable	Preamp Factor	ency (MH	Limit Line	Limit	500	)		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



#### **Above 1GHz**

Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	46.28	35.99	6.80	41.81	47.26	74.00	-26.74	Vertical		
4804.00	46.11	35.99	6.80	41.81	47.09	74.00	-26.91	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	37.29	35.99	6.80	41.81	38.27	54.00	-15.73	Vertical		
4804.00	37.88	35.99	6.80	41.81	38.86	54.00	-15.14	Horizontal		
Test channel: Middle channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	46.09	36.38	6.86	41.84	47.49	74.00	-26.51	Vertical		
4884.00	46.84	36.38	6.86	41.84	48.24	74.00	-25.76	Horizontal		
			Dete	ector: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	37.59	36.38	6.86	41.84	38.99	54.00	-15.01	Vertical		
4884.00	37.14	36.38	6.86	41.84	38.54	54.00	-15.46	Horizontal		
			Test ch	annel: High	est channel					
			De	tector: Peak	Value					
Frequency	Read	Antenna	Cable	Preamp	l evel	Limit Line	Over			

	Test channel: Highest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4960.00	46.25	36.71	6.91	41.87	48.00	74.00	-26.00	Vertical				
4960.00	46.44	36.71	6.91	41.87	48.19	74.00	-25.81	Horizontal				
			Dete	ctor: Averaç	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4960.00	36.26	36.71	6.91	41.87	38.01	54.00	-15.99	Vertical				
4960.00	36.02	36.71	6.91	41.87	37.77	54.00	-16.23	Horizontal				

#### Remark.

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.