Convolutional Neural Network (CNN)

Topics to be covered

- CNN Architecture and Main Operations.
- 2D Convolution
- Shapes of Feature Maps
- Pooling
- Transfer Learning
- Four Projects

CNN Architecture and Operations

CNN Main Operations

- Convolution
- Non Linearity (ReLU)
- Pooling OR Subsampling
- Classification

Typical CNN Architecture

CNN Main Operations

- Convolution
- Non Linearity (ReLU)
- Pooling OR Subsampling
- Classification

2D Convolution

Steps in 2D Convolution

- Flipping
- Shifting / Sliding
- Multiplication
- Addition

6	3	7	9	1
7	0	3	1	3
8	1	5	3	6
3	9	4	3	5
7	8	2	3	0

Kernel

Flipping the Kernel

6	3	7	9	1
7	0	3	1	3
8	1	5	3	6
3	9	4	3	5
7	8	2	3	0

Image

-1	-2	3
2	-1	2
1	3	1

Flipped Kernel

6	3	7	9	1
7	0	3	1	3
8	1	5	3	6
3	9	4	3	5
7	8	2	3	0

-1	-2	3
2	-1	2
1	3	1

Image

Convolution

Multiplication and Addition

$$(6 \times -1) + (3 \times -2) + (7 \times 3)$$

 $(7 \times 2) + (0 \times -1) + (3 \times 2)$
 $(8 \times 1) + (1 \times 3) + (5 \times 1)$
 $= -6 - 6 + 21 + 14 + 0 + 6 + 8 + 3 + 5$
 $= 45$

6	3	7	9	1
7	0	3	1	3
8	1	5	3	6
3	9	4	3	5
7	8	2	3	0

Image

-1	-2	3
2	-1	2
1	3	1

0	0	0			
0	6	3	7	9	1
0	7	0	3	1	3
	8	1	5	3	6
	3	9	4	3	5
	7	8	2	3	0

Image

21			
	45		

Convolution

-1	-2	3
2	-1	2
1	3	1

Multiplication and Addition

= 21

Convolution Results

21	33	27	16	27
15	45	28	9	9
0	61	24	41	11
31	43	35	33	0
10	1	12	6	0

Convolution

Shape of Output Feature Map After Convolution

Assume we have K filters or kernels, each of size $m \times m$, then the shape of output feature map can be calculated by using the following equations

$$W_{out} = \frac{W_{in} - m + 2 * Padding}{Stride} + 1$$

$$H_{out} = \frac{H_{in} - m + 2 * Padding}{Stride} + 1$$

$$D_{out} = K$$

Concept of Stride

6	3	7	9	1
7	0	3	1	3
8	1	5	3	6
3	9	4	3	5
7	8	2	3	0

Image

1	3	1
2	-1	2
3	-2	-1

Kernel

6	3	7	9	1
7	0	3	1	3
8	1	5	3	6
3	9	4	3	5
7	8	2	3	0

6	3	7	9	1
7	0	3	1	3
8	1	5	3	6
3	9	4	3	5
7	8	2	3	0

6	3	7	9	1
7	0	3	1	3
8	1	5	3	6
3	9	4	3	5
7	8	2	3	0

Concept of Stride

6	3	7	9	1
7	0	3	1	3
8	1	5	3	6
3	9	4	3	5
7	8	2	3	0

Kernel

Image

6	3	7	9	1
7	0	3	1	3
8	1	5	3	6
3	9	4	3	5
7	8	2	3	0

6	3	7	9	1
7	0	3	1	3
8	1	5	3	6
3	9	4	3	5
7	8	2	3	0

Stride = 2

Zero Padding

0	0	0	0	0	0	0
0	6	3	7	9	1	0
0	7	0	3	1	3	0
0	8	1	5	3	6	0
0	3	9	4	3	5	0
0	7	8	2	3	0	0
0	0	0	0	0	0	0

Zero Padding = 1

Shape of Output Feature Map After Convolution

Assume we have K filters or kernels, each of size $m \times m$, then the shape of output feature map can be calculated by using the following equations

$$W_{out} = \frac{W_{in} - m + 2 * Padding}{Stride} + 1$$

$$H_{out} = \frac{H_{in} - m + 2 * Padding}{Stride} + 1$$

$$D_{out} = K$$

Zero Padding

6	3	7	9	1
7	0	3	1	3
8	1	5	3	6
3	9	4	3	5
7	8	2	3	0

Image

Filter

-1 -2 3 2 -1 2 1 3 1

Shape of Output Feature Map

$$W_{out} = \frac{5 - 3 + 2 * 1}{1} + 1$$

$$W_{out} = 5$$

$$H_{out} = \frac{5 - 3 + 2 * 1}{1} + 1$$

$$H_{out} = 5$$

$$D_{out} = 1$$

Output Feature Map

Volume of Feature Map

Rectified Linear Unit (ReLU) Function

$$ReLU(x) = max(0, x)$$

Rectified Linear Unit (ReLU) Function

Pooling

Pooling With Filter = 2×2 and stride = 2

Feature Map

15	9
12	7

21 1218 10

Average Pooling

Maximum Pooling

Convolution to Pooling

Pooling to Classification

Transfer Learning

Transfer Learning

Transfer learning involves fine-tuning a model trained on one set of data and then applying it to another collection of data and a different task.

CNN Models for Transfer Learning

- AlexNet
- Inception
- MobileNet
- ResNet-18
- VGG-16

ResNet-18 and VGG-16

- Trained on ImageNet Dataset.
- The dataset has 1000000 samples.
- The dataset has 1000 classes.

ResNet-18 Architecture

VGG-16 Architecture

Advantages of Transfer Learning

- Less Training Time
- Large datasets are not required
- Improved Performance (in most cases).

Dataset for Transfer Learning

500 Images of each class