Московский физико-технический институт Физтех-школа прикладной математики и информатики

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

IV CEMECTP

Лектор: Жуковский Сергей Евгеньевич

Авторы: Дмитрий Лизюра,

Яков Даниличев

Содержание

1	Автономные системы		2
	1.1	Основные понятия	2
	1.2	Свойства автономных систем	3
2	Автономные системы на плоскости		5
	2.1	Линейные автономные системы	5
		2.1.1 $\lambda_1, \lambda_2 \in \mathbb{R} \setminus \{0\}, \lambda_1 \neq \lambda_2 \dots \dots \dots \dots \dots \dots \dots \dots$	5
		$2.1.2 \lambda_1 = \lambda_2 = \lambda \in \mathbb{R} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7
		2.1.3 $\lambda_{1,2} = \alpha \pm \beta i \in \mathbb{C}, \ \beta \neq 0 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	8
	2.2	Нелинейные автономные системы	10
3	Teo	рема о выпрямлении траекторий	11
4	Устойчивость по Ляпунову и асимптотическая устойчивость		16
	4.1	Определение и примеры	16
	4.2	Достаточные условия устойчивости	17
		4.2.1 Устойчивость линейных систем	17
5	Первые интегралы		
	5.1	Первые интегралы автономных систем	18
	5.2	Множество всех первых интегралов автономной системы	20
6	Линейные однородные уравнения в частных производных		22
	6.1	Основные понятия	22
	6.2	Задача Коши для ЛДУ в частных производных	23
7	Вариационное исчисление		26
	7.1	Простейшая задача вариационного исчисления	26
	7.2	Задача о брахистохроне	28
	7.3	Задача со свободным концом	29
	7.4	Задача для функционалов, зависящих от нескольких функций	31
	7.5	Функционалы, содержащие производные высших порядков	32

1 Автономные системы

1.1 Основные понятия

Пусть $\Omega\subset\mathbb{R}^n$ открыто, а функция $f\colon\Omega\to\mathbb{R}^n$ непрерывно дифференцируема. Рассмотрим систему

$$x' = f(x). (1)$$

Определение. Такая система называется *автономной*, а Ω — это её *фазовое пространство*.

Основная идея такой системы в том, что в правой части нет зависимости от t.

Определение. Пусть $x: I \to \mathbb{R}^n$ — непродолжаемое решение системы (1). Множество $\{x(t): t \in I\}$ называется фазовой траекторией.

Определение. Пусть есть $\hat{x} \in \Omega$ такой, что $x(t) \equiv \hat{x}$ является решением $(1) \Leftrightarrow f(\hat{x}) = 0$. Тогда вектор \hat{x} называется положением равновесия.

Рассмотрим несколько примеров.

1. Пусть $f: \mathbb{R} \to \mathbb{R}$, а также существует единственная точка $\widehat{x} \in \mathbb{R}: f(\widehat{x}) = 0$. Тогда решение \widehat{x} даёт нам одну фазовую траекторию — это будет просто одна точка в фазовом пространстве. Кроме того, будут ещё два решения: одно будет лежать выше \widehat{x} , а другое — ниже. Можно показать, что их фазовых траектории: это два открытых луча, расходящихся из положения равновесия в разные стороны.

Рис. 1: Фазовые траектории

2. Рассмотрим теперь двумерный случай: $x_1' = x_2$ и $x_2' = -x_1$. Это линейная система, её общее решение: $x_1 = r\cos(t + \alpha)$, $x_2 = r\sin(t + \alpha)$, где $r \geqslant 0$, $\alpha \in [0, 2\pi)$. В этом случае фазовыми траекториями будут начало координат (положение равновесия) и всевозможные концентрические окружности с центром в начале координат.

1.2 Свойства автономных систем

1. Если $x:(a,b)\to \mathbb{R}^n$ является непродолжаемым решением системы (1), то для любого $c\in \mathbb{R}$ функция $y(t)\coloneqq x(t+c)$, где $t\in (a-c,b-c)$ тоже является непродолжаемым решением.

Доказательство. Для начала покажем, что y(t) является решением (1). Действительно, для $t \in t \in (a-c,b-c)$ имеем:

$$y'(t) \equiv \frac{d}{dt}x(t+c) \equiv f(x(t+c)) \equiv f(y(t)).$$

Теперь докажем, что оно непродолжаемое. Предположим противное: пусть $z:(d,e)\to\mathbb{R}^n$ является решением (1), причём $(a-c,b-c)\subsetneq (d,e)$, при этом $z(t)\equiv y(t)$ для $t\in (a-c,b-c)$. Тогда функция z(t-c), где $t\in (d+c,e+c)$, является решением (1), $(a,b)\subsetneq (d+c,e+c)$, а также $z(t-c)\equiv y(t-c)\equiv x(t)\Rightarrow x$ не является непродолжаемым решением, противоречие.

2. Любые две фазовые траектории $X,Y\in\Omega$ либо не пересекаются, либо совпадают.

Доказательство. Пусть $X \cap Y \neq \emptyset$. Пусть $x_0 \in X \cap Y$. Переведём на язык решений: для X и Y соответственно существуют непродолжаемые решения $x \colon (a,b) \to \mathbb{R}^n, y \colon (c,d) \to \mathbb{R}^n$, а также точки $t_1 \in (a,b)$ и $t_2 \in (c,d) \colon x(t_1) = x_0 = y(t_2)$. Возьмём функцию $z(t) \coloneqq y(t+t_2-t_1), t \in (c-t_2+t_1,d-t_2+t_1)$, тогда по первому свойству она является непродолжаемым решением (1). При $t=t_1$ получаем $y(t+t_2-t_1) = x_0$. Значит, z(t) является решением задачи Коши

$$\begin{cases} x' = f(x) \\ x(t_1) = x_0 \end{cases} .$$

Заметим, что x тоже является непродолжаемым решением этой задачи, а тогда по теореме о существовании и единственности

$$x(t) \equiv z(t) \Rightarrow X = \{z(t) : t \in (c - t_2 + t_1, d - t_2 + t_1)\} = Y.$$

Следствие. Решение автономной системы не достигает положения равновесия за конечное время.

Понимать это можно следующим образом. Вспомним картинку из примера 1. Возьмём один из получившихся лучей в фазовом пространстве. Ему соответствует какое-то решение x(t). Начнём подставлять в x(t) разные t. Если для какого-то t_0 мы попадём в положение равновесия, то у нас пересекутся две фазовые траектории: выбранный луч и сама точка положения равновесия. Тогда они должны совпадать, но это невозможно. Поэтому ни для какого конечного t мы не попадём в положение равновесия.

3. Пусть $x \colon \mathbb{R} \to \mathbb{R}^n$ — непродолжаемое решение (1). Предположим, что нашлись $t_1 < t_2 : x(t_1) = x(t_2)$, причём $x(t) \not\equiv \text{const.}$ Тогда функция x — это периодическая функция с

положительным наименьшим периодом, а её фазовая траектория является замкнутой кривой без самопересечений.

Доказательство. Возьмём функцию $y(t) := x(t+t_2-t_1), t \in \mathbb{R}$, она является непродолжаемым решением (1). Более того, $y(t_1) = x(t_2) = x(t_1)$, а тогда функции x и y являются решениями одной и той же задачи Коши \Rightarrow по теореме о существовании и единственности $y(t) \equiv x(t)$. Положим $d = t_2 - t_1$, тогда это тождество переписывается в виде $x(t) \equiv x(t+d)$. Пусть P — это множество всех периодов функции x. Мы знаем, что оно непусто, так как $d \in P$.

Так как $x(t) \not\equiv \text{const}$, то существует $\tau \in \mathbb{R} : x(\tau) \not= x(t_1)$. Пусть $\varepsilon = \frac{1}{2}|x(\tau) - x(t_1)|$. В силу непрерывности функции x существует $\delta > 0 : x(t) \in (x(\tau) - \varepsilon, x(\tau) + \varepsilon)$ для любого $t \in (\tau - \delta, \tau + \delta)$. В силу выбора ε получаем, что $x(t) \not= x(t_1)$ для любого $t \in (\tau - \delta, \tau + \delta) \Rightarrow$ для любого $p \in P$ имеем $p > \delta$, а тогда $\widehat{p} := \inf P \geqslant \delta > 0$. Докажем теперь, что $\widehat{p} \in P$. Для этого рассмотрим последовательность $\{p_j\} \subset P$ такую, что $p_j \to \widehat{p}$ при $j \to \infty$. Тогда для любого j имеем $x(t+p_j) \equiv x(t)$. Переходя к пределу по j и пользуясь непрерывностью функции x, получаем, что $x(t+\widehat{p}) \equiv x(t)$, то есть $\widehat{p} \in P$. Таким образом, мы показали, что существует положительный наименьший период.

Осталось доказать, что фазовая траектория X функции x не имеет самопересечений, то есть для любых $\hat{t}_1,\hat{t}_2\in\mathbb{R}:|\hat{t}_1-\hat{t}_2|<\hat{p}$ выполняется $x(\hat{t}_1)\neq x(\hat{t}_2)$. Предположим противное: пусть существуют $\hat{t}_1,\hat{t}_2\in\mathbb{R}:\hat{t}_1<\hat{t}_2,\hat{t}_2-\hat{t}_1<\hat{p}$, при этом $x(\hat{t}_1)=x(\hat{t}_2)$. Тогда из начала доказательства получаем, что $\hat{t}_2-\hat{t}_1\in P$. Но тогда получаем противоречие с минимальностью \hat{p} .

- 4. Вывод: траектория это либо точка, либо замкнутая кривая без самопересечений, либо незамкнутая кривая без самопересечений.
- 5. (групповое свойство автономной системы) Рассмотрим задачу Коши

$$\begin{cases} x' = f(x) \\ x(0) = x_0 \end{cases}$$
 (2)

Обозначим через $\varphi(t, x_0)$ непродолжаемое решение (2), $x_0 \in \Omega$, $t \in \mathbb{R}$. Тогда справедливо тождество $\varphi(t, \varphi(\tau, x_0)) \equiv \varphi(t + \tau, x_0)$.

Доказательство. Зафиксируем τ . Тогда по свойству 1 функция $\varphi(t+\tau,x_0)$ является решением системы (1). В то же время по определению $\varphi(t,\varphi(\tau,\xi))$ тоже является решением (1). Рассмотрим t=0: тогда в левой части имеем $\varphi(0,\varphi(\tau,x_0))=\varphi(\tau,x_0)$, в правой — $\varphi(0+\tau,x_0)=\varphi(\tau,x_0)$. То есть в t=0 решения совпадают, а тогда по теореме о существовании и единственности для любого τ выполняется $\varphi(t+\tau,x_0)\equiv \varphi(t,\varphi(\tau,x_0))$.

6. Функция φ непрерывна.

Это верно в силу теоремы о непрерывной зависимости непродолжаемого решения задачи Коши от начального условия и параметра, которая доказывалась в прошлом семестре.

7. Рассмотрим множество отображений $\Phi := \{ \varphi(t, \cdot) \colon \Omega \to \Omega \mid t \in \mathbb{R} \}$. Зададим операцию композиции: $\varphi(t, \cdot) \circ \varphi(s, \cdot) = \varphi(t, \varphi(s, \cdot))$. Тогда (Φ, \circ) — это абелева группа.

Доказательство. Здесь нам помогает групповое свойство, которое мы только что доказали. Запишем следующее равенство:

$$\varphi(t, \varphi(s, \cdot)) \equiv \varphi(t + s, \cdot) \equiv \varphi(s, \varphi(t, \cdot)).$$

Из него получаем, что Φ замкнуто относительно композиции и операция коммутативна. Это же равенство показывает, что нейтральным элементом будет $\varphi(0,\cdot)$, а обратным к $\varphi(t,\cdot)$ будет $\varphi(-t,\cdot)$.

2 Автономные системы на плоскости

2.1 Линейные автономные системы

Нам дана невырожденная матрица $A \in \mathbb{R}^{2 \times 2}$. Рассмотрим автономную систему x' = Ax:

$$\begin{cases} x_1' = a_{11}x_1 + a_{12}x_2 \\ x_2' = a_{21}x_1 + a_{22}x_2 \end{cases}$$
 (1)

У неё гарантированно есть положение равновесия x=0. Чтобы понять, как система ведёт себя в окрестности нулевого положения равновесия, посмотрим на собственные значения λ_1, λ_2 матрицы A.

Примечание. Для удобства все фазовые портреты будем строить в системе координат для базиса (h_1, h_2) . Направление движения можно определить, устремив $t \to +\infty$. Кроме того, помним, что фазовые траектории не пересекаются.

2.1.1 $\lambda_1, \lambda_2 \in \mathbb{R} \setminus \{0\}, \ \lambda_1 \neq \lambda_2$

Пусть h_1 и h_2 — соответствующие собственные векторы. Тогда в базисе (h_1, h_2) система будет иметь вид

$$\begin{cases} y_1' = \lambda_1 y_1 \\ y_2' = \lambda_2 y_2 \end{cases}$$

и её решением будет

$$\begin{cases} y_1 = c_1 e^{\lambda_1 t} \\ y_2 = c_2 e^{\lambda_2 t} \end{cases}.$$

Напишем уравнение её траектории, исключив параметр t:

$$e^{\lambda_1 t} = \frac{y_1}{c_1} \Rightarrow y_2 = c_2 (e^{\lambda_1 t})^{\frac{\lambda_2}{\lambda_1}} = c_2 \left(\frac{y_1}{c_1}\right)^{\frac{\lambda_2}{\lambda_1}}$$

при $c_1 \neq 0$, а при $c_1 = 0$ получится уравнение $y_1 = 0$.

ightharpoonup Первый случай: $\lambda_1 \cdot \lambda_2 > 0$. На рисунке 2 слева изображён портрет для случая $\lambda_2 > \lambda_1 > 0$, а справа для случая $\lambda_1 > \lambda_2 > 0$.

Рис. 2: Неустойчивый узел

Определение. Полученный портрет называется неустойчивым узлом.

Если $\lambda_2 < \lambda_1 < 0$ или $\lambda_1 < \lambda_2 < 0$, то получатся аналогичные портреты, но с направлением к началу координат.

Определение. Тогда портрет называется устойчивым узлом.

Устойчивость означает, что при $t \to +\infty$ точка движется к положению равновесия.

 \triangleright Второй случай: $\lambda_1 \cdot \lambda_2 < 0$. На рисунке 3 слева изображён портрет для случая $\lambda_1 < 0, \lambda_2 > 0$, а справа для случая $\lambda_1 > 0, \lambda_2 < 0$.

Рис. 3: Седло

Определение. Полученный портрет называется седлом.

2.1.2 $\lambda_1 = \lambda_2 = \lambda \in \mathbb{R}$

 \triangleright Первый случай: A имеет два линейно независимых собственных вектора h_1 и h_2 . Тогда аналогично прошлым рассуждениям получаем, что кривая имеет вид

$$\begin{cases} y_2 = \frac{c_2}{c_1} y_1, & c_1 \neq 0 \\ y_1 = 0, & c_1 = 0 \end{cases}.$$

На рисунке 4 слева изображён портрет для случая $\lambda > 0$, а справа для случая $\lambda < 0$.

Рис. 4: Дикритический узел

Определение. Полученный портрет называется дикритическим узлом. При $\lambda > 0$ он называется неустойчивым, а при $\lambda < 0$ — устойчивым.

 \triangleright Второй случай: h_1 — собственный вектор, h_2 — присоединённый к нему. Тогда в базисе (h_1,h_2) система будет иметь вид

$$\begin{cases} y_1' = \lambda y_1 + y_2 \\ y_2' = \lambda y_2 \end{cases}$$

Найдём решение:

$$\begin{cases} y_1 = c_1 e^{\lambda t} + c_2 t e^{\lambda t} \\ y_2 = c_1 e^{\lambda t} \end{cases}$$

Выразим t (считаем, что $c_2 \neq 0$):

$$e^{\lambda t} = \frac{y_2}{c_2} \Rightarrow t = \frac{1}{\lambda} \ln \left(\frac{y_2}{c_2} \right).$$

Подставим в первое уравнение:

$$y_1 = c_1 \frac{y_2}{c_2} + \frac{c_2}{\lambda} \ln\left(\frac{y_2}{c_2}\right) \frac{y_2}{c_2}.$$

На рисунке 5 слева изображён портрет для случая $\lambda>0$, а справа для случая $\lambda<0$.

Рис. 5: Вырожденный узел

Определение. Этот портрет называется вырожденным узлом. При $\lambda > 0$ он называется неустойчивым, а при $\lambda < 0$ — устойчивым.

2.1.3 $\lambda_{1,2} = \alpha \pm \beta i \in \mathbb{C}, \ \beta \neq 0$

Тогда собственные векторы имеют вид $h_{1,2}=a\pm bi$, где a и b — линейно независимые векторы. Как известно, фундаментальной системой решений здесь будет

$$\begin{cases} v_1 = e^{\alpha t} (a\cos(\beta t) - b\sin(\beta t)) \\ v_2 = e^{\alpha t} (a\sin(\beta t) + b\cos(\beta t)) \end{cases}$$

B базисе (a, b) она имеет вид

$$\begin{cases} y_1 = e^{\alpha t} \begin{pmatrix} \cos(\beta t) \\ -\sin(\beta t) \end{pmatrix} \\ y_2 = e^{\alpha t} \begin{pmatrix} \sin(\beta t) \\ \cos(\beta t) \end{pmatrix} \end{cases}$$

Тогда общее решение имеет вид

$$y(t) = re^{\alpha t} \begin{pmatrix} \cos(\beta(t-\theta)) \\ \sin(\beta(t-\theta)) \end{pmatrix}.$$

для всех r и θ . Чтобы получить его, нужно просто расписать $c_1y_1+c_2y_2$ с помощью формул косинуса суммы, синуса суммы и дополнительного угла.

 \triangleright При $\alpha = 0$ получается уравнение окружности. На рисунке 6 слева изображён портрет для случая $\beta > 0$, а справа для случая $\beta < 0$.

Рис. 6: Центр

Определение. Такой портрет называется центром.

ightharpoonup При $\alpha>0$ расстояние от начала координат увеличивается при $t\to +\infty$, а ещё меняется угол, поэтому получается спираль, как на рисунке 7, вращающаяся против часовой стрелки при $\beta>0$ (изображена слева) и по часовой при $\beta<0$ (изображена справа). В окрестности нуля (при $t\to -\infty$) происходит бесконечное число витков, поэтому там обычно график не рисуют.

Рис. 7: Неустойчивый фокус

Определение. Полученный портрет называется неустойчивым фокусом.

ightharpoonup При $\alpha < 0$ получается всё то же самое, но теперь всё наоборот: направление к началу координат, при $\beta > 0$ спираль вращается по часовой стрелке (изображена справа), а при $\beta < 0$ — против часовой (изображена слева).

Рис. 8: Устойчивый фокус

Определение. Полученный портрет называется устойчивым фокусом.

Вообще говоря, есть ещё один случай: когда матрица A вырождена, но он нас интересовать не будет, так как при исследовании нелинейных систем нам будет нужна невырожденность.

2.2 Нелинейные автономные системы

Пусть нам даны открытое множество $\Omega \subset \mathbb{R}^2$, отображение $f \in C^2(\Omega, \mathbb{R}^2)$ и положение равновесия \widehat{x} , то есть $f(\widehat{x}) = 0$. Обозначим $A = \frac{\partial f}{\partial x}(\widehat{x})$, $\lambda_{1,2}$ — её собственные числа. Рассмотрим систему

$$x' = f(x). (2)$$

Тогда, раскладывая по формуле Тейлора в окрестности \hat{x} , получаем

$$f(x) = A(x - x_*) + o(x - \widehat{x}).$$

Оказывается, что при некоторых условиях остаток $o(x-\widehat{x})$ можно отбросить и рассматривать линейную систему. Этот процесс называется $nuneapusauue\check{u}$.

Теорема. (б/д) Пусть $\operatorname{Re}(\lambda_{1,2}) \neq 0$. Тогда существуют окрестности $U(\widehat{x})$, V(0) и существует диффеоморфизм $\Phi \colon U(\widehat{x}) \to V(0)$ такой, что он переводит траектории системы (2) в траектории системы (1), а Φ^{-1} переводит траектории системы (1) в траектории системы (2) с сохранением ориентации.

Покажем, что условие $\mathrm{Re}(\lambda_{1,2}) \neq 0$ существенно. Для этого рассмотрим следующую систему

$$\begin{cases} x_1' = -x_2 - x_1 |x|^2 \\ x_2' = x_1 - x_2 |x|^2 \end{cases}$$

Сделаем замену

$$\begin{cases} x_1(t) = r(t)\cos(\varphi(t)) \\ x_2(t) = r(t)\sin(\varphi(t)) \end{cases}.$$

Подставляя в исходное уравнение, получаем

$$\begin{cases} r'\cos(\varphi) - r\sin(\varphi)\varphi' = -r\sin(\varphi) - r^3\cos(\varphi) \\ r'\sin(\varphi) + r\cos(\varphi)\varphi' = r\cos(\varphi) - r^3\sin(\varphi) \end{cases}.$$

Умножив первое уравнение на $\cos(\varphi)$, второе — на $\sin(\varphi)$ и сложив, получим $r' = -r^3$. Теперь умножим первое на $-\sin(\varphi)$, второе — на $\cos(\varphi)$ и сложим, получим $\varphi' = 1$. Тогда имеем систему

$$\begin{cases} r' = -r^3 \\ \varphi' = 1 \end{cases}.$$

У неё решением будет спираль, вращающаяся по часовой стрелке, направление к началу координат.

Теперь рассмотрим очень похожую систему:

$$\begin{cases} x_1' = -x_2 + x_1 |x|^2 \\ x_2' = x_1 + x_2 |x|^2 \end{cases}.$$

Проделав те же самые преобразования, получим систему

$$\begin{cases} r' = r^3 \\ \varphi' = 1 \end{cases}.$$

Здесь решением снова будет спираль, но теперь она вращается против часовой стрелки и направление от начала координат.

В каждой системе положение равновесия — это начало координат, у обоих систем матрица Якоби (о-малое отбрасываем) выглядит так:

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Почему же решения качественно отличаются? Дело в том, что собственные числа A — это $\lambda_{1,2}=\pm i$, то есть $\mathrm{Re}(\lambda_{1,2})=0$. Значит, это условие действительно важно.

3 Теорема о выпрямлении траекторий

Заданы открытое множество $\Omega \subset \mathbb{R}^n$ (будем считать, что $n \geqslant 2$), отображение $f \in C^1(\Omega, \mathbb{R}^n)$, точка $x_0 \in \Omega$ и автономная система

$$x' = f(x). (1)$$

Напоминание. Открытый шар в \mathbb{R}^n с центром в точке x и радиусом r мы обозначаем $O^n(x,r)$.

Теорема. Если $f(x_0) \neq 0$ (то есть x_0 не является положением равновесия), то существуют окрестности $X(x_0) \subset \Omega, Y(0) := (-\varepsilon, \varepsilon) \times O^{n-1}(0, \varepsilon) \subset \mathbb{R}^n$ для некоторого $\varepsilon > 0$ и существует

диффеоморфизм $\Psi: Y(0) \to X(x_0)$ такой, что:

1. для любого решения $y \colon I \to Y(0)$ системы

$$\begin{cases} y'_1 = 1 \\ \vdots \\ y'_{n-1} = 0 \\ y'_n = 0 \end{cases}$$
 (2)

функция $\Psi(y(t))$ является решением системы (1)

2. для любого решения $x: I \to X(x_0)$ системы (1) функция $\Psi^{-1}(x(t))$ является решением системы (2).

Заметим, что траектории системы (2) — это просто прямые. Тогда смысл теоремы в следующем: в окрестности точки x_0 траектории с точностью до диффеоморфизма являются кусочками прямых линий. Прежде чем перейти к доказательству, обсудим пару моментов касательно теоремы.

Рис. 9: Выпрямление траекторий

 \triangleright Говорят, что Ψ выпрямляет поле направлений f, то есть выпрямляются не только траектории, но и касательные векторы к ним. Докажем следующую связь между Ψ и f, которая верна в $X(x_0)$:

$$\frac{\partial \Psi^{-1}}{\partial x}(x)f(x) \equiv \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}.$$

Возьмём какое-нибудь решение x(t), тогда с одной стороны

$$\frac{d\Psi^{-1}}{dt}(x(t)) \equiv \frac{\partial \Psi^{-1}}{\partial x}(x(t))x'(t) \equiv \frac{\partial \Psi^{-1}}{\partial x}(x(t))f(x(t)),$$

а с другой стороны верно следующее:

$$\frac{d\Psi^{-1}}{dt}(x(t)) \equiv \frac{d}{dt} \begin{pmatrix} t + C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Ну и поскольку для любой точки $x \in X(x_0)$ можно найти решение, траектория которого проходит через x, то можно в равенствах везде заменить x(t) на x.

- \triangleright Условие $f(x_0) \neq 0$ существенно, а именно, верно следующее: если $f(x_0) = 0$, то траектории нельзя выпрямить, то есть не существует подходящих $X(x_0), \varepsilon, \Psi$ из теоремы. Действительно, точка x_0 является траекторией. Если бы выполнялась теорема, то в Y(0) существовала бы прямая траектория, которую Ψ переводил бы в x_0 . Но тогда Ψ не инъективен \Rightarrow не диффеоморфизм, противоречие.
- ightharpoonup Теорема носит локальный характер и обобщить её, к сожалению, нельзя. Именно, если для всех $x \in \Omega$ верно $f(x) \neq 0$, то траектории на Ω не всегда можно выпрямить. На конкретном примере примерно поймём, почему это может быть так.

Возьмём систему

$$\begin{cases} x_1' = -\cos(x_2) \\ x_2' = \sin(x_2) \end{cases}.$$

Её траектории выглядят как-то так:

Рис. 10: Пример Арнольда

Интуитивно, если бы Ψ переводил прямые траектории в эти траектории, то он и отрезок между прямыми переводил бы в отрезок кривой между траекториями. Но этот отрезок между прямыми пересекает все прямые траектории, лежащие между его концами, которых бесконечно много, а отрезок кривой между траекториями на картинке будет пересекать лишь конечное число траекторий.

Доказательство. Разобьём доказательство теоремы на три этапа.

1. Сначала построим отображение Ψ . Так как вектор $f(x_0) \neq 0$, то мы можем дополнить его n-1 вектором так, чтобы получился базис $(f(x_0), e_2, \ldots, e_n)$ в \mathbb{R}^n . Пусть $\varphi(\cdot, \xi)$ — это непродолжаемое решение задачи Коши

$$\begin{cases} x' = f(x) \\ x(0) = \xi \in \Omega \end{cases}.$$

Область определения функции φ открыта в \mathbb{R}^{n+1} (это мы доказывали в прошлом семестре) и содержит точку $(0,x_0)$. Тогда зададим отображение Ψ следующим образом: $\Psi(y) \coloneqq \varphi(y_1,x_0+\sum_{i=2}^n y_i e_i)$. Область определения Ψ — это окрестность точки 0 в \mathbb{R}^n (так как мы можем взять близкие к нулю числа y_1,\ldots,y_n так, чтобы вектор $(y_1,x_0+\sum_{i=2}^n y_i e_i)$ попал в окрестность точки $(0,x_0)$). Кроме того, φ непрерывно дифференцируема $\Rightarrow \Psi$ тоже непрерывно дифференцируема.

2. Теперь построим окрестности $X(x_0)$ и Y(0) так, чтобы отображение Ψ стало диффеоморфизмом. Для начала укажем некоторые свойства, которые нам потребуются:

 \triangleright так как $\varphi(\cdot,x_0)$ является решением задачи Коши, то

$$\left. \frac{\partial \varphi}{\partial t}(t, x_0) \right|_{t=0} = f(\varphi(t, x_0))|_{t=0} = f(x_0);$$

 \triangleright для всех $\xi \in \Omega$ верно $\varphi(0,\xi) \equiv \xi$.

Теперь посчитаем частные производные Ψ . По y_1 она выглядит так:

$$\frac{\partial \Psi}{\partial y_1}(0) = \frac{\partial \varphi}{\partial y_1}(y_1, x_0) \Big|_{y_1=0} = f(x_0).$$

При $j \ge 2$ они выглядят следующим образом:

$$\frac{\partial \Psi}{\partial y_j}(0) = \left. \frac{\partial \varphi}{\partial y_j}(0, x_0 + y_j e_j) \right|_{y_j = 0} = \left. \frac{\partial}{\partial y_j}(x_0 + y_j e_j) \right|_{y_j = 0} = e_j.$$

Собираем всё вместе, и получаем следующую матрицу Якоби:

$$\frac{\partial \Psi}{\partial u}(0) = (f(x_0) \mid e_2 \mid \dots \mid e_n).$$

Теперь вспомним, что мы специально выбирали столбцы этой матрицы, чтобы они были базисом, поэтому $\operatorname{rk} \frac{\partial \Psi}{\partial y}(0) = n \Rightarrow$ можем в нуле применить теорему об обратной функции. Из неё получаем, что существуют окрестности $X(x_0)$ и $Y(0) = (-\varepsilon, \varepsilon) \times O^{n-1}(0,\varepsilon)$ для некоторого $\varepsilon > 0$ такие, что отображение $\Psi \colon Y(0) \to X(x_0)$ является диффеоморфизмом.

3. Теперь осталось показать, что выполняются пункты 1 и 2 из теоремы. Берём решение

 $y: I \to Y(0)$ системы (2), тогда

$$y(t) \equiv \begin{pmatrix} t + C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix}.$$

Применим к нему отображение Ψ :

$$x(t) := \Psi(y(t)) \equiv \varphi(t + C_1, x_0 + \sum_{j=2}^{n} C_j e_j).$$

Так как в автономных системах сдвиг по t не влияет на свойство «быть решением», то x(t) является решением системы $(1) \Rightarrow$ первый пункт выполняется.

Теперь покажем, что второй пункт тоже верен. К сожалению, технически это будет довольно неприятно. Берём решение $x\colon I\to X(x_0)$ системы (1). Хотим показать, что функция $\Psi^{-1}(x(t))$ является решением системы (2). Пусть $t^*\in I$ и

$$y^* := \Psi^{-1}(x(t^*)) = \begin{pmatrix} y_1^* \\ \vdots \\ y_n^* \end{pmatrix}.$$

Через точку y^* проходит траектория какого-то решения y(t), тогда оно должно выглядеть как-то так:

$$y(t) \coloneqq \begin{pmatrix} t + y_1^* - t^* \\ y_2^* \\ \vdots \\ y_n^* \end{pmatrix}.$$

Первая координата так странно выглядит, так как мы хотим, чтобы она попадала в ε -окрестность нуля. Это будет так, если $t \in I^* := (-\varepsilon + t^* - y_1^*, \varepsilon + t^* - y_1^*)$. Подействуем теперь на эту траекторию отображением Ψ , тогда по уже доказанному первому пункту она перейдёт в какую-то траекторию решения системы (1). Нам нужно, чтобы эта траектория совпала с траекторией решения x(t).

Распишем, куда переходит при действии Ψ точка $y(t^*)$:

$$\Psi(y(t^*)) = \Psi(y^*) = \Psi(\Psi^{-1}(x(t^*))) = x(t^*).$$

Получили, что в точке t^* решения x(t) и $\Psi(y(t))$ совпадают, но тогда по теореме о существовании и единственности решения получаем, что $\Psi(y(t)) \equiv x(t) \Leftrightarrow y(t) \equiv \Psi^{-1}(x(t))$ при $t \in I \cap I^*$. Это почти то, что нам нужно, только мы хотим, чтобы это тождество выполнялось на всём I. Докажем, что на самом деле $I \subset I^*$.

Пусть $I \nsubseteq I^*$. Тогда либо $\sup I^* \in I$, либо $\inf I^* \in I$. Без ограничения общности рассмотрим первый случай. Возьмём последовательность $\{t_n\} \subset I^*$, сходящуюся к $\sup I^*$. Поймём, куда сходится $y(t_n)$. Первая координата этого вектора, согласно тому, как мы задавали функцию y, равна $t_n + y_1^* - t^* \to \sup I^* + y_1^* - t^*$. По построению интервала I^* следует, что $\sup I^* = \varepsilon + t^* - y_1^*$. Тогда первая координата сходится к $\varepsilon \Rightarrow$

 $\lim_{n\to\infty} y(t_n) \notin Y(0)$, так первая координата попала на границу окрестности $(-\varepsilon,\varepsilon)$. С другой стороны $y(t_n) = \Psi^{-1}(x(t_n))$. Так как композиция непрерывных функций непрерывна, получаем, что $y(t_n) \to \Psi^{-1}(x(\sup I^*)) \in Y(0)$. Получили противоречие.

4 Устойчивость по Ляпунову и асимптотическая устойчивость чивость

4.1 Определение и примеры

Снова заданы открытое множество $\Omega \subset \mathbb{R}^n$, отображение $f \in C^1(\Omega, \mathbb{R}^n)$, положение равновесия $\widehat{x} \in \Omega$ и автономная система

$$x' = f(x). (1)$$

Пусть $\varphi(\cdot,\xi)$ — непродолжаемое решение задачи Коши

$$\begin{cases} x' = f(x) \\ x(0) = \xi \end{cases} .$$

Определение. Положение равновесия \hat{x} называется устойчивым по Ляпунову, если:

- 1. существует r>0 такое, что для любого $\xi\in O(\widehat{x},r)$ отображение $\varphi(\cdot,\xi)$ определено на $[0,+\infty);$
- 2. для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для всех $\xi \in O(\widehat{x}, \delta)$ и для всех $t \in [0, +\infty)$ верно $\varphi(t, \xi) \in O(\widehat{x}, \varepsilon)$.

Определение. Положение равновесия \hat{x} называется асимптотически устойчивым, если:

- 1. оно устойчиво по Ляпунову;
- 2. существует d>0 такое, что для всех $\xi\in O(\widehat{x},d)$ функция $\varphi(t,\xi)\to \widehat{x}$ при $t\to +\infty$.

Примеры.

ightharpoonup Пусть $\Omega \subset \mathbb{R}$ и \widehat{x} — изолированное положение равновесия, то есть существует окрестность \widehat{x} такая, что в ней нет других положений равновесия. Тогда один из возможных случаев: это когда в этой окрестности функция $f \geqslant 0$ и равна нулю только в точке \widehat{x} . Посмотрим на интегральные кривые. Есть горизонтальная прямая, соответствующая решению $x(t) \equiv \widehat{x}$. Если берём начальное условие $\xi < \widehat{x}$, то соответствующее решение будет монотонно возрастать в силу положительности производной, тогда из теоремы о существовании и единственности следует, что горизонтальная прямая будет его асимптотой. Если же берём начальное условие выше \widehat{x} , то решение снова будет возрастать. Тогда здесь нет даже устойчивости по Ляпунову. А вот если рассмотреть

случай, когда функция f(x) > 0 при $x < \hat{x}$ и f(x) < 0 при $x > \hat{x}$, то аналогичным образом можно показать, что там будет асимптотическая устойчивость, а тогда и устойчивость по Ляпунову.

ightharpoonup Пусть теперь $\Omega \subset \mathbb{R}^2$, f(x) = Ax и $\widehat{x} = 0$. Возвращаясь к случаям из предыдущего параграфа, устойчивость по Ляпунову будет на всех устойчивых портретах, а ещё для центра. Они же, но уже за исключением центра, будут и асимптотически устойчивы.

4.2 Достаточные условия устойчивости

4.2.1 Устойчивость линейных систем

Пусть даны матрица $A \in \mathbb{R}^{n \times n}$ и система

$$x' = Ax. (2)$$

Пусть в ЖНФ матрицы A есть жордановы клетки K_1, \ldots, K_m , причём для каждой клетки K_j её размер равен k_j и ей соответствует собственное число $\lambda_j = \alpha_j + i\beta_j$. Без ограничения общности будем считать, что $\lambda_1, \ldots, \lambda_s \in \mathbb{C}$, при этом им соответствуют сопряжённые числа $\lambda_{s+1} = \overline{\lambda_1}, \ldots, \lambda_{2s} = \overline{\lambda_s}$, а $\lambda_{2s+1}, \ldots, \lambda_m \in \mathbb{R}$.

Теорема.

- 1. Если все $\text{Re}(\lambda_i) < 0$, то $\hat{x} = 0$ асимптотически устойчивое положение равновесия.
- 2. Если все $\text{Re}(\lambda_j) \leq 0$, а для j таких, что $\text{Re}(\lambda_j) = 0$, выполнено $k_j = 1$, то $\widehat{x} = 0$ устойчиво по Ляпунову, но не асимптотически устойчиво.
- 3. В остальных случаях $\hat{x} = 0$ не устойчиво по Ляпунову.

Доказательство. Из прошлого семестра мы знаем, что любое решение x(t) системы (2) представимо в виде

$$x(t) = \sum_{j=1}^{s} P_j(t)e^{\alpha_j t} \cos(\beta_j t) + \sum_{j=s+1}^{2s} P_j(t)e^{\alpha_{j-s} t} \sin(\beta_{j-s} t) + \sum_{j=2s+1}^{m} P_j(t)e^{\lambda_j t},$$

причём $\deg P_j \leqslant k_j - 1$.

1. Из условия $\operatorname{Re} \lambda_j < 0$ следует, что $|x(t)| \to 0$ при $t \to +\infty$. Пусть $X(t) - \Phi$ MP. Так как столбцы X(t) являются решениями, $||X(t)|| \to 0$ при $t \to +\infty$. Тогда ||X(t)|| равномерно ограничена некоторым числом c > 0. Кроме того, имеем следующее неравенство:

$$|\varphi(t,\xi)| = |X(t)\xi| \leqslant ||X(t)|| \cdot |\xi|.$$

Заметим, что $\varphi(\cdot,\xi)$ при любом ξ определено на $[0,+\infty)$, так как (2) является линейной системой с постоянными коэффициентами. Зафиксируем $\varepsilon>0$. Чтобы выполнялся второй пункт из определения устойчивости по Ляпунову, можно взять $\delta=\frac{\varepsilon}{2c}$, тогда при $\xi\in O(0,\delta)$ из неравенства выше получаем, что

$$|\varphi(t,\xi)| \leqslant c \cdot \frac{\varepsilon}{2c} = \frac{\varepsilon}{2} < \varepsilon.$$

Асимптотическая устойчивость следует из того, что $||X(t)|| \to 0$, а $|\xi|$ ограничен.

2. Если $\text{Re}(\lambda_j) < 0$, то соответствующее слагаемое стремится к нулю \Rightarrow ограничено на $[0,+\infty)$. Остаётся случай $\text{Re}(\lambda_j) = 0 \Rightarrow k_j = 1$. Тут мы пользуемся тем, что $\deg P_j(t) \leqslant 1-1=0 \Rightarrow$ многочлен P_j — это просто константа. Тогда и всё соответствующее слагаемое будет ограничено. Значит, каждое решение x(t) на $[0,+\infty)$ ограничено, тогда существует такое число c>0, что $\|X(t)\| \leqslant c$ для всех $t \in [0,+\infty)$. Далее работает такое же рассуждение, как в первой части, поэтому получаем устойчивость по Ляпунову. Вывод об асимптотической устойчивости мы так сразу сделать не можем, так как не все решения стремятся к нулю. Покажем, что здесь её просто не может быть, предъявив явное решение.

Пусть j таково, что $\text{Re }\lambda_j=0, k_j=1$. Тогда если $\lambda_j\in\mathbb{C}$, то берём решение $x(t)\coloneqq r(v_j\cos(\beta_jt)+u_j\sin(\beta_jt))$, где $r>0,\ u_j,v_j\in\mathbb{R}^n$. Уменьшая r, мы можем попасть в сколь угодно малую окрестность нуля, но при этом $x(t)\nrightarrow 0$. Если же $\lambda_j\in\mathbb{R}$, то возьмём решение $x(t)\coloneqq rv_j$. Оно опять же не стремится к нулю.

3. Пусть существует j такое, что $Re(\lambda_j) > 0$. Если $\lambda_j \in \mathbb{C}$, то берём решение $x(t) \coloneqq re^{\alpha_j t}(P_j(t)\cos(\beta_j t) + P_{j+s}(t)\sin(\beta_j t))$. Для любого r > 0 оно не ограничено \Rightarrow нет устойчивости по Ляпунову. Если же $\lambda_j \in \mathbb{R}$, то подойдёт решение $x(t) \coloneqq re^{\lambda_j t}v_j$, r > 0, $v_j \in \mathbb{R}^n$.

Остался случай, когда все $\operatorname{Re} \lambda_j \leqslant 0$ и существует j такое, что $\operatorname{Re} \lambda_j = 0$, но при этом $k_j \geqslant 2$. Тогда если $\lambda_j \in \mathbb{C}$, то есть неограниченное комплексное решение $x(t) \coloneqq r(a+bt)e^{\lambda_j t}, \ r>0, \ b\neq 0$. Тогда либо $\operatorname{Re} x(t)$, либо $\operatorname{Im} x(t)$ не ограничено \Rightarrow нет устойчивости по Ляпунову. Если же $\lambda_j \in \mathbb{R}$, то возьмём решение $x(t) \coloneqq r(at+b), \ a,b \in \mathbb{R}^n, \ a\neq 0, \ r>0$. Снова x(t) не ограничено \Rightarrow нулевое положение равновесия не устойчиво по Ляпунову.

5 Первые интегралы

5.1 Первые интегралы автономных систем

Пусть $\Omega \subset \mathbb{R}^n$ открыто и $f \in C^1(\Omega, \mathbb{R}^n)$. Снова рассматриваем автономную систему

$$x' = f(x). (1)$$

Определение. Если $D \subset \Omega$ открыто, то *первым интегралом* системы (1) называется непрерывно дифференцируемая функция $u \colon D \to \mathbb{R}$ такая, что $u(x(t)) \equiv \text{const}$ для любого такого решения $x \colon I \to \mathbb{R}$ системы (1), что $x(I) \subset D$.

Замечание. Первый интеграл всегда существует, например, $u \equiv \text{const.}$

Утверждение. (критерий первого интеграла) Пусть $D \subset \Omega$ открыто и функция $u \colon D \to \mathbb{R}$ непрерывно дифференцируема. Тогда $u(\cdot)$ — первый интеграл системы $(1) \Leftrightarrow \frac{du}{dt}|_{(1)}(x) \equiv 0$.

Доказательство. \Rightarrow : Берём $x_0 \in D$. Тогда существует решение $x \colon I \to \mathbb{R}^n$ задачи Коши

$$\begin{cases} x' = f(x) \\ x(t_0) = x_0 \end{cases}$$

для некоторого $t_0 \in I$. При этом при необходимости можно сузить область определения I так, чтобы $x(I) \subset D$. Так как функция $u(x(t)) \equiv \text{const}$, то по свойству производной в силу системы

$$\frac{du}{dt}\Big|_{(1)}(x(t)) \equiv \frac{du}{dt}(x(t)) \equiv 0.$$

Подставляем $t=t_0$, получаем: $\frac{du}{dt}|_{(1)}(x_0)=0$. В силу произвольности выбора x_0 получили требуемое.

 \Leftarrow : Берём произвольное решение $x\colon I\to\mathbb{R}$ системы (1) такое, что $x(I)\subset D$. Тогда

$$\frac{du}{dt}(x(t)) \equiv \frac{du}{dt}\Big|_{(1)}(x(t)) \equiv 0,$$

отсюда получаем, что $u(x(t)) \equiv \text{const} \Rightarrow$ по определению $u(\cdot)$ — первый интеграл системы (1).

Примеры.

- \square Пусть $\Omega = \mathbb{R}^2$, $D = \mathbb{R}^2$. Рассмотрим систему x' = x. Её решение это $x_1 = c_1 e^t$, $x_2 = c_2 e^t$. На фазовом портрете траекториями будут все открытые лучи, выходящие из начала координат. Пусть $u(\cdot)$ первый интеграл. Возьмём конкретный луч, на нём $u \equiv c$ для какой-то константы c. По непрерывности $u(0) \equiv c$. Но тогда на всех лучах $u \equiv c$, значит, $u \equiv c$ на всём D и других первых интегралов быть не может.
- ightharpoonup Рассмотрим ту же самую систему, только теперь $D=\{(x_1,x_2)^T:x_1>0\}$. Покажем, что функция $u(x)=\frac{x_2}{x_1}$ является первым интегралом. Действительно,

$$u(x(t)) \equiv \frac{c_2 e^t}{c_1 e^t} \equiv \frac{c_2}{c_1}.$$

⊳ Рассмотрим систему

$$\begin{cases} x_1' = -x_2 \\ x_2' = x_1 \end{cases}.$$

Её решение выглядит так:

$$\begin{cases} x_1 = r\cos(\varphi + t) \\ x_2 = r\sin(\varphi + t) \end{cases}.$$

Тогда на фазовом портрете траекториями будут концентрические окружности. Так как при движении точки по окружности радиус не зависит от t, то в качестве первого интеграла можно взять $u(x) = x_1^2 + x_2^2$.

Замечание. Зачем нужны первые интегралы? Оказывается, с помощью них можно сво-

дить автономные системы к алгебраическим уравнениям. Нестрого поясним, как это можно делать. Пусть $\Omega \subset \mathbb{R}^3$. Возьмём два первых интеграла u_1, u_2 , константы c_1, c_2 и рассмотрим следующую систему:

$$\begin{cases} u_1(x) = c_1 \\ u_2(x) = c_2 \end{cases}.$$

Оба уравнения задают поверхности, а решения системы составляют кривую, по которой пересекаются эти поверхности. Можно показать, что кусочки этой кривой будут являться траекториями автономной системы.

Определение. Пусть $D \subset \Omega$ открыто и функции $v_1, \ldots, v_k \in C^1(D, \mathbb{R}), k < n$. Тогда они называются функционально независимыми на D, если ранг матрицы Якоби $\operatorname{rk} \frac{\partial (v_1, \ldots, v_k)}{\partial (x_1, \ldots, x_n)} \equiv k$.

Замечание. Из функциональной независимости следует линейная независимость, а вот обратное следствие неверно. Например, пусть $D = \mathbb{R}^2$. Возьмём $u(x_1, x_2) = x_1^2$. Заметим, что при $x_1 = 0$ ранг матрицы Якоби равен 0 < 1, значит, нет функциональной независимости.

5.2 Множество всех первых интегралов автономной системы

Утверждение. Если у нас есть k первых интегралов $u_1(x), \ldots, u_k(x)$ системы (1), то функция $F(u_1(x), \ldots, u_k(x))$, где F непрерывно дифференцируема, также является первым интегралом системы (1).

Доказательство. Действительно, пусть x(t) — это решение системы (1), тогда

$$F(u_1(x(t)), \dots, u_k(x(t))) \equiv F(\text{const}, \dots, \text{const}) \equiv \text{const}.$$

Поскольку первых интегралов бесконечное количество (хотя бы потому, что все константы ими являются), то возникает вопрос: можно ли взять несколько первых интегралов и, используя утверждение выше, получить все возможные первые интегралы? Оказывается, что при определённых условиях так правда можно сделать.

Теорема. Пусть $x_0 \in \Omega$ и $f(x_0) \neq 0$. Тогда существуют окрестность $X(x_0)$ и n-1 функционально независимых первых интегралов $u_2, \ldots, u_n \colon X(x_0) \to \mathbb{R}$ системы (1).

Доказательство. Докажем теорему для случая, когда у нас фазовые траектории являются прямыми, а потом сведём общий случай к этому с помощью теоремы о выпрямлении траекторий. Давайте всё формализуем.

1. Так как $f(x_0) \neq 0$, то мы можем использовать теорему о выпрямлении траекторий. Значит, существует окрестности $X(x_0)$, Y(0) и диффеоморфизм $\Psi \colon Y(0) \to X(x_0)$. Зададим для $i = \overline{2,n}$ функции $v_i \colon Y(0) \to \mathbb{R}$ по формуле $v_i(y) \coloneqq y_i$. Тогда все v_i

это первые интегралы системы

$$\begin{cases} y'_1 = 1 \\ y'_2 = 0 \\ \vdots \\ y'_n = 0 \end{cases}$$
(2)

так как любое решение этой системы имеет вид

$$y(t) = \begin{pmatrix} t + C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix},$$

а тогда $v_i(y(t)) \equiv c_i$. При этом все v_i функционально независимы в окрестности Y(0), так как grad $v_i(y(t)) = (0, \dots, 1, \dots, 0)^T$, где 1 стоит на месте i, тогда у матрицы Якоби как раз будет ранг n-1.

2. Теперь введём функции $u_2, \ldots, u_n \colon X(x_0) \to \mathbb{R}$ по формуле $u_i(x) \coloneqq v_i(\Psi^{-1}(x))$. Тогда все u_i — это первые интегралы системы (1), так как для любого решения x(t) системы (1) $\Psi^{-1}(x(t))$ будет решением системы (2), а тогда

$$u_i(x(t)) \equiv v_i(\Psi^{-1}(x(t))) \equiv \text{const.}$$

Ну и все u_i функционально независимы на $X(x_0)$, так как v_i функционально независимы, а Ψ — это диффеоморфизм \Rightarrow его матрица Якоби невырожденная и при домножении на невырожденную матрицу ранг не меняется.

Теорема. Пусть $x_0 \in \Omega$ и $f(x_0) \neq 0$. Тогда для любых функционально независимых первых интегралов $u_1, \ldots, u_{n-1} \colon X(x_0) \to \mathbb{R}$ системы (1) существуют окрестности $X'(x_0) \subset X(x_0)$ и $W((u_1(x_0), \ldots, u_{n-1}(x_0)))$ такие, что для любого первого интеграла $u \colon X'(x_0) \to \mathbb{R}$ системы (1) существует функция $F \in C^1(W, \mathbb{R}) \colon u(x) \equiv F(u_1(x), \ldots, u_{n-1}(x))$.

Доказательство. Здесь мы снова докажем теорему сначала для системы (2), а потом перенесём всё на систему (1) с помощью теоремы о выпрямлении траектории (обозначения из её формулировки снова в силе).

1. Сначала поймём, что любой первый интеграл $v: Y(0) \to \mathbb{R}$ системы (2) не зависят от y_1 , так как для любого решения y(t) получаем, что $v(t, y_2, \dots, y_n) \equiv \text{const}$ для любого $t \in (-\varepsilon, \varepsilon)$, при этом $y_2, \dots, y_n \in O^{n-1}(0, \varepsilon)$.

Пусть $v_1, \ldots, v_{n-1} \colon Y(0) \to \mathbb{R}$ — функционально независимые первые интегралы системы (2). Определим отображение $\Phi \colon O^{n-1}(0,\varepsilon) \to \mathbb{R}^{n-1}$ следующим образом:

$$\Phi(y_2,\ldots,y_n) := \begin{pmatrix} v_1(y_1,\ldots,y_n) \\ \vdots \\ v_{n-1}(y_1,\ldots,y_n) \end{pmatrix}.$$

Тогда в силу независимости v_i на Y(0) матрица Якоби отображения Φ имеет максимальный ранг $n-1 \Rightarrow$ по теореме об обратной функции существуют окрестности $V(0) \subset O^{n-1}(0,\varepsilon)$ и $W((v_1(0),\ldots,v_{n-1}(0)))$ такие, что Φ — диффеоморфизм между V и W.

Пусть $v\colon (-\varepsilon,\varepsilon)\times V\to \mathbb{R}$ — первый интеграл системы (2). Тогда определим отображение

$$g(y) := v(y_1, \Phi^{-1}(\Phi(y_2, \dots, y_n))) \equiv v(y_1, \Phi^{-1}(v_1(y), \dots, v_{n-1}(y))).$$

Теперь, если $z_2, \ldots, z_n \in W$, то можем построить искомую функцию F:

$$F(z_2,\ldots,z_n) := v(y_1,\Phi^{-1}(z_2,\ldots,z_n)).$$

Тогда как раз получаем, что $v(y) \equiv F(v_1(y), \dots, v_{n-1}(y))$, значит, для системы (2) мы теорему доказали.

2. Докажем для общего случая. Пусть у нас есть функционально независимые первые интегралы $u_1, \ldots, u_{n-1} \colon X(x_0) \to \mathbb{R}$. Тогда функции v_1, \ldots, v_{n-1} , определённые как $v_i(y) \coloneqq u_i(\Psi(y))$, где $y \in (-\varepsilon, \varepsilon) \times V$, — это функционально независимые первые интегралы системы (2). Положим $X'(x_0) \coloneqq \Psi((-\varepsilon, \varepsilon) \times V)$. Возьмём какой-нибудь первый интеграл $u \colon X'(x_0) \to \mathbb{R}$ и определим первый интеграл $v(y) \coloneqq u(\Psi(y))$. Тогда из первого пункта доказательства существуют окрестность $W((v_1(0), \ldots, v_{n-1}(0)))$ и $F \in C^1(W, \mathbb{R}) \colon v(y) \equiv F(v_1(y), \ldots, v_{n-1}(y))$. Перепишем согласно определению v и v_i :

$$u(\Psi(y)) \equiv F(u_1(\Psi(y)), \dots, u_{n-1}(\Psi(y))).$$

Тогда $u(x) \equiv F(u_1(x), \dots, u_{n-1}(x))$, где $x = \Psi(y), y \in (-\varepsilon, \varepsilon) \times V$, что и требовалось.

6 Линейные однородные уравнения в частных производных

6.1 Основные понятия

Пусть $\Omega \subset \mathbb{R}^n$ открыто, $a \in C^1(\Omega, \mathbb{R}^n)$. Рассмотрим уравнение

$$a_1(x)\frac{\partial u}{\partial x_1}(x) + \dots + a_n(x)\frac{\partial u}{\partial x_n}(x) = 0.$$
 (1)

Его решением является функция $u \in C^1(D, \mathbb{R})$, где $D \subset \Omega$ открыто, при подстановке которой получается тождественный ноль. В сокращённой записи:

$$\left\langle a(x), \frac{\partial u}{\partial x}(x) \right\rangle \equiv 0.$$

Определение. Такое уравнение называется линейным однородным уравнением в частных производных первого порядка.

Определение. Система

$$x' = a(x) \tag{2}$$

называется характеристической системой уравнения.

Найдём связь между решениями уравнения (1) и его характеристической системы (2).

Предложение. Функция $u: D \to \mathbb{R}$ является решением уравнения $(1) \Leftrightarrow u: D \to \mathbb{R}$ является первым интегралом системы (2).

Доказательство. Пусть $u(\cdot)$ — первый интеграл $(2) \Leftrightarrow \left\langle a(x), \frac{\partial u}{\partial x}(x) \right\rangle \equiv 0$ по критерию первого интеграла $\Leftrightarrow u(\cdot)$ — решение уравнения (1).

Поскольку мы свели задачу к первым интегралам, то для решений уравнения (1) выполняются все те же свойства, что и для первых интегралов (доказываются тривиально).

Предложение. Пусть $u_1, \ldots, u_k \colon D \to \mathbb{R}$ — решения уравнения $(1), (u_1(x), \ldots, u_k(x)) \in Y$ для всех $x \in D$, где Y открыто. Тогда для любой функции $F \in C^1(Y, \mathbb{R})$ функция $u(x) \coloneqq F(u_1(x), \ldots, u_k(x))$ тоже является решением уравнения (1).

Предложение Пусть $x_0 \in \Omega : a(x_0) \neq 0$. Тогда существуют окрестность $X(x_0)$ и n-1 функционально независимых решений $u_1, \ldots, u_{n-1} \colon X(x_0) \to \mathbb{R}$ уравнения (1).

Предложение. Пусть $x_0 \in \Omega : a(x_0) \neq 0, D \subset \Omega$ открыто, $u_1, \ldots, u_{n-1} : D \to \mathbb{R}$ — функционально независимые решения уравнения (1). Тогда существуют окрестности $X(x_0)$ и $Y((u_1(x_0), \ldots, u_{n-1}(x_0)))$ такие, что для любого решения $u : X(x_0) \to \mathbb{R}$ уравнения (1) существует функция $F \in C^1(Y, \mathbb{R}) : u(x) \equiv F(u_1(x), \ldots, u_{n-1}(x))$.

6.2 Задача Коши для ЛДУ в частных производных

Пусть заданы гладкие функции $g, \varphi \colon \Omega \to \mathbb{R}$, причём $\frac{\partial g}{\partial x}(x) \neq 0$ на Ω . Зададим множество $\gamma := \{x : g(x) = 0\}$ и будем предполагать, что оно непусто, более того, это (n-1)–мерная поверхность. Рассмотрим задачу Коши

$$\begin{cases} \left\langle a(x), \frac{\partial u}{\partial x}(x) \right\rangle = 0 \\ u(x) = \varphi(x) \text{ при } x \in \gamma \end{cases}$$
 (3)

В задаче Коши для ОДУ мы искали решение, которое только в одной точке удовлетворяло начальному условию. Здесь же мы ищем решение уравнения в частных производных, которое на поверхности γ совпадает с заданной функцией $\varphi(x)$.

Определение. Функция φ называется начальным значением функции u на γ .

Определение. Поверхность γ называется начальной поверхностью.

Определение. Точка $\widehat{x} \in \Omega$ называется $xapa\kappa mepucmuческой точкой задачи (3), если <math>\widehat{x} \in \gamma$ и $\langle a(\widehat{x}), \frac{\partial g}{\partial x}(\widehat{x}) \rangle = 0$.

Теорема. Пусть точка $\widehat{x} \in \gamma$ не является характеристической. Тогда существуют окрестность $V(\widehat{x})$ и функция $u\colon V(\widehat{x})\to \mathbb{R}$ такая, что она является единственным решением задачи (3) в этой окрестности.

Рис. 11: Визуализация характеристической точки

Доказательство. Мы знаем, что $a(\widehat{x}) \neq 0$. Тогда можно применить одно из предложений выше: существуют окрестность $X(\widehat{x})$ и функции $u_2, \ldots, u_n \colon X(\widehat{x}) \to \mathbb{R}$ такие, что $u_2, \ldots, u_n -$ функционально независимые решения задачи (1).

Зададим отображение $\Phi \colon X(\widehat{x}) \to \mathbb{R}^n$ следующим образом:

$$\Phi(x) \coloneqq \begin{pmatrix} g(x) \\ u_2(x) \\ \vdots \\ u_n(x) \end{pmatrix}.$$

Хотим применить теорему об обратной функции, проверим, что матрица Якоби

$$\begin{pmatrix} \frac{\partial g}{\partial x}(\widehat{x}) \\ \frac{\partial u_2}{\partial x}(\widehat{x}) \\ \vdots \\ \frac{\partial u_n}{\partial x}(\widehat{x}) \end{pmatrix}$$

невырождена. Докажем от противного: пусть

$$\frac{\partial g}{\partial x}(\widehat{x}) = \sum_{j=2}^{n} \lambda_j \frac{\partial u_j}{\partial x}(\widehat{x}).$$

Это рассматривать достаточно, так как первые n-1 строк точно линейно независимы. Умножим скалярно на $a(\widehat{x})$:

$$\left\langle a(\widehat{x}), \frac{\partial g}{\partial x}(\widehat{x}) \right\rangle = \sum_{j=2}^{n} \lambda_j \left\langle a(\widehat{x}), \frac{\partial u_j}{\partial x}(\widehat{x}) \right\rangle = 0,$$

так как u_j — решения уравнения (1). Противоречие с тем, что \widehat{x} не является характеристической точкой.

Теперь по теореме об обратном отображении найдутся окрестности $V(\widehat{x}) \subset X(\widehat{x})$, $W((u_2(\widehat{x}), \dots, u_n(\widehat{x}))) \subset \mathbb{R}^{n-1}$ и $\varepsilon > 0$ такие, что $\Phi \colon V \to (-\varepsilon, \varepsilon) \times W$ является диффеомор-

физмом. Построим решение задачи Коши. Возьмём функцию

$$u(x) := \varphi(\Phi^{-1}(0, u_2(x), \dots, u_n(x)))$$

для всех $x \in V(\widehat{x})$. Заметим, что u – решение уравнения (1). Покажем, что u также является решением задачи Коши. Берём $x \in \gamma \Rightarrow g(x) = 0$:

$$u(x) = \varphi(\Phi^{-1}(0, u_2(x), \dots, u_n(x))) = \varphi(\Phi^{-1}(g(x), u_2(x), \dots, u_n(x))) = \varphi(\Phi^{-1}(\Phi(x))) = \varphi(x).$$

Таким образом, мы доказали существование решения. Докажем теперь единственность.

Для этого уменьшим окрестности V, W и ε так, чтобы для любого решения $v: V \to \mathbb{R}$ уравнения (1) существовала функция $F \in C^1(W, \mathbb{R}) : v(x) \equiv F(u_2(x), \dots, u_n(x))$. Возьмём на меньшей окрестности решение $v: V \to \mathbb{R}$ задачи Коши (3) и покажем, что оно совпадает с уже найденным решением u.

Во-первых, для него выполняется $v(x) \equiv F(u_2(x), \dots u_n(x))$. Возьмём $x \in \gamma \Rightarrow v(x) = \varphi(x) = u(x)$, так как и u, v являются решениями задачи Коши. Значит, $F(u_2(x), \dots u_n(x)) \equiv \varphi(\Phi^{-1}(0, u_2(x), \dots, u_n(x)))$. Поскольку Φ — это диффеоморфизм, то для любой точки $(y_1, \dots, y_n) \in W$ верно: $F(y_2, \dots, y_n) \equiv \varphi(\Phi^{-1}(0, y_2, \dots, y_n))$. Тогда

$$v(x) \equiv F(u_2(x), \dots, u_n(x)) \equiv \varphi(\Phi^{-1}(0, u_2(x), \dots, u_n(x))) \equiv u(x).$$

Пример. Рассмотрим уравнение $u_x + u_y = 0$ и начальное условие

$$\begin{cases} u(x,y) = 1 \\ x - y = 0 \end{cases}.$$

Перейдем к характеристической системе

$$\begin{cases} x' = 1 \\ y' = 1 \end{cases}.$$

Тогда x-y=C — это первый интеграл. Рассмотрим произвольную функцию F: F(0)=1. Отсюда u(x,y)=F(x-y) является решением задачи Коши, то есть решений бесконечно много.

Рассмотрим теперь то же уравнение, но с другим начальным условием:

$$\begin{cases} u(x,y) = x^2 + y^2 \\ x - y = 0 \end{cases}$$

Знаем, что u(x,y) = F(x-y) — это общее решение. При x-y=0 получаем u(x,y)=F(0). Значит, для всех решений задачи Коши $F(0)=x^2+y^2$ на прямой x-y=0. Такого быть не может, потому что F(0) — константа. То есть у этой задачи Коши нет решений.

В этих примерах не выполняется условие теоремы, потому что все точки на кривой γ являются характеристическими.

Действительно,

$$a = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \frac{\partial g}{\partial x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix},$$

а их скалярное произведение равно нулю во всех точках.

7 Вариационное исчисление

7.1 Простейшая задача вариационного исчисления

Рассмотрим пространство функций $C^1[a,b]$, как нормированное пространство, и его подмножество M. Зададим на нём метрику $\rho(x_1,x_2) = \max_{t \in [a,b]} |x_1(t) - x_2(t)|$ и $\rho_1(x_1,x_2) = \rho(x_1,x_2) + \rho(x_1',x_2')$. Пусть у нас есть функционал $I: M \to \mathbb{R}$.

Определение. Точка $\widehat{x} \in M$ называется *слабым локальным минимумом* функционала I, если $\exists \varepsilon > 0 : \forall x \in M \ (\rho_1(x,\widehat{x}) < \varepsilon \Rightarrow I(\widehat{x}) \leqslant I(x))$ Аналогично для максимума.

Определение. Точка $\hat{x} \in M$ называется *сильным локальным минимумом*, если вместо ρ_1 используется ρ .

Утверждение. Если \hat{x} — сильный локальный минимум, то он также является слабым. Очевидно.

Рассмотрим дважды гладко дифференцируемую (в C^2) функцию $F:\mathbb{R}^3\to\mathbb{R}$ и числа $A,B\in\mathbb{R}.$ Положим

$$M = \{x \in C^1[a, b] : x(a) = A, x(b) = B\}$$

И

$$I(x) := \int_a^b F(t, x(t), x'(t)) dt, x \in M.$$

Определение. Простейшей задачей вариационного исчисления называется задача нахождения слабых локальных экстремумов функционала I.

Положим

$$\mathring{C}^1[a,b] := \{ x \in C^1[a,b] : x(a) = x(b) = 0 \}.$$

Тогда множество M замкнуто относительно прибавления функций из $\mathring{C}^1[a,b]$.

Положим для $\widehat{x} \in M, \, \widehat{x} \in C^2, \, \eta \in \mathring{C}^1[a,b]$ функцию

$$\varphi(\mu) := I(\widehat{x} + \mu \eta) = \int_a^b F(t, \widehat{x}(t) + \mu \eta(t), \widehat{x}'(t) + \mu \eta'(t)) dt.$$

Продифференцируем её:

$$\varphi'(\mu)|_{\mu=0} = \int_a^b \left(\frac{\partial F}{\partial x}(t, \widehat{x}(t), \widehat{x}'(t))\eta(t) + \frac{\partial F}{\partial x'}(t, \widehat{x}(t), \widehat{x}'(t))\eta'(t) \right) dt =$$

Проинтегрируем по частям:

$$= \int_{a}^{b} \frac{\partial F}{\partial x}(t, \widehat{x}(t), \widehat{x}'(t)) \eta(t) dt + \frac{\partial F}{\partial x'}(\dots) \eta(t) \Big|_{a}^{b} - \int_{a}^{b} \frac{d}{dt} \frac{\partial F}{\partial x'}(\dots) \eta(t) dt =$$

Второе слагаемое рано нулю, так как $\eta(a) = \eta(b) = 0$

$$= \int_{a}^{b} \left(\frac{\partial F}{\partial x}(\dots) - \frac{d}{dt} \frac{\partial F}{\partial x'}(\dots) \right) \eta(t) dt.$$

Таким образом, если \hat{x} является слабым локальным минимумом, то 0 — стационарная точка функции φ .

Определение. $\delta I[\widehat{x},\eta] := \varphi'(0)$ — первая вариация функционала I на \widehat{x} .

Утверждение. Если $\widehat{x}\in M$ — слабый локальный экстремум, то для любого $\eta\in \mathring{C}^1[a,b]$ точка 0 является локальным экстремумом функции φ .

Доказательство. Будем считать, что мы работаем с точкой минимума. По определению существует $\varepsilon > 0$, такое что для любого $x \in M$, удовлетворяющему $\rho_1(x, \widehat{x}) < \varepsilon$ верно $I(x) \geqslant I(\widehat{x})$.

Тогда для любого $\eta \in \mathring{C}^1[a,b]$, не равного тождественному нулю, положим $\delta = \frac{\varepsilon}{\rho_1(\eta,0)}$. Возьмём произвольный $\mu \in (-\delta,\delta)$. Имеем

$$\rho_1(\widehat{x} + \mu \eta, \widehat{x}) = \max_{t \in [a,b]} |\mu \eta(t)| + \max_{t \in [a,b]} |\mu \eta'(t)| =$$

$$= |\mu| \left(\max_{t \in [a,b]} |\eta(t)| + \max_{t \in [a,b]} |\eta'(t)| \right) = |\mu| \cdot \rho_1(\eta,0) < \varepsilon.$$

Таким образом, мы попали в ε -окрестность функции \widehat{x} , то есть $\varphi(\mu) = I(\widehat{x} + \mu \eta) \geqslant I(\widehat{x}) = \varphi(0)$.

Утверждение. (Лемма Лагранжа) Пусть $v \in C[a,b]$, такая что $\forall \eta \in \mathring{C}^1[a,b]$ выполнено

$$\int_{a}^{b} v(t)\eta(t)dt = 0.$$

Тогда $v(t) \equiv 0$.

Доказательство. От противного: допустим, что существует $\tilde{\tau} \in [a,b]$, такое что $v(\tilde{\tau}) > 0$. Тогда существует $\tau \in (a,b)$, такое что $v(\tau) > 0$ из непрерывности. Отсюда существует $\varepsilon > 0$, такой что $(\tau - \varepsilon, \tau + \varepsilon) \subset [a,b]$ и $v(t) > \frac{v(\tau)}{2}$ для $t \in (\tau - \varepsilon, \tau + \varepsilon)$.

Теперь построим гладкую функцию, принимающую положительные значения на $T:=(\tau-\varepsilon,\tau+\varepsilon)$ и ноль вне этого интервала. В частности,

$$\eta(t) := \begin{cases} (t - (\tau - \varepsilon))^2 (t - (\tau + \varepsilon))^2, & t \in T \\ 0, & \text{иначе} \end{cases}.$$

Отсюда по условию

$$0 = \int_{a}^{b} v(t)\eta(t)dt = \int_{T} v(t)\eta(t)dt.$$

Противоречие, так как мы взяли интеграл по непустому интервалу произведения двух положительных функций.

Теорема. Пусть $F \in C^2$, $\widehat{x} \in M$, $\widehat{x} \in C^2$ — слабый локальный экстремум. Тогда \widehat{x} является решением уравнения Эйлера

$$\frac{\partial F}{\partial x}(t, x, x') - \frac{d}{dt}\frac{\partial F}{\partial x'}(t, x, x') = 0.$$

Доказательство. Поскольку \widehat{x} является слабым локальным экстремумом, по утверждению для любой $\eta \in \mathring{C}^1[a,b]$ точка 0 является локальным экстремумом функции φ , то есть $\varphi'(0)=0$. Выражение для $\varphi'(0)$ мы уже писали выше — теперь заметим, что по утверждению про локальный экстремум φ получаем $\varphi'(0)=0$, а по лемме Лагранжа —

$$\frac{\partial F}{\partial x}(t,\widehat{x},\widehat{x}'(t)) - \frac{d}{dt}\frac{\partial F}{\partial x'}(t,\widehat{x},\widehat{x}'(t)) \equiv 0.$$

Следовательно, \hat{x} является решением уравнения Эйлера.

Замечание. Повсюду мы говорили, что $\widehat{x} \in C^2$. Но теоретически экстремумом может являться и функция из C^1 . Пусть $F, \widehat{x} \in C^1$. Если \widehat{x} — слабый локальный экстремум, то функция

$$t \mapsto \frac{\partial F}{\partial x'}(t, \widehat{x}(t), \widehat{x}'(t))$$

непрерывно дифференцируема, и \hat{x} является решением уравнения Эйлера. Иными словами, прошлая теорема верна и в этом случае, но доказывать мы это не будем.

Определение. Решение уравнения Эйлера называется *экстремальным*. Тогда прошлую теорему можно переформулировать, как "слабый локальный экстремум является экстремальным".

7.2 Задача о брахистохроне

Людям с острой непереносимостью физики рекомендуется пропустить. Остальным: для понимания достаточно школьных знаний.

Пусть у нас есть две материальные точки A и B, причём A выше B. Мы хотим провести между ними кривую, такую что материальная точка, двигаясь по ней исключительно под силой тяжести, достигнет точку B за минимальное время. Эта кривая называется брахистрохоной.

Запишем закон сохранения энергии:

$$mg \cdot y(x) = \frac{mv^2(x)}{2}.$$

Тогда

$$v(x) = \sqrt{2q \cdot y(x)}.$$

Запишем скорость, как производную от пройденного пути s:

$$v(x) = \frac{ds}{dt} = \frac{ds}{dx} \cdot \frac{dx}{dt} = \frac{d}{dx} \int_0^x \sqrt{1 + (y'(\xi))^2} d\xi \cdot \frac{dx}{dt} = \sqrt{1 + (y'(x))^2} \cdot \frac{dx}{dt}.$$

Выразим dt:

$$dt = \frac{\sqrt{1 + (y'(x))^2}}{\sqrt{2g \cdot y(x)}} dx,$$

то есть

$$t = \int_0^b \sqrt{\frac{1 + (y'(x))^2}{2g \cdot y(x)}} \cdot dx.$$

Итак, итак, простейшая вариационная задача. Выкинем лишние константы:

$$t(y) = \int_0^b \sqrt{\frac{1 + (y')^2}{y}} dx \to \min.$$

Здесь y(0) = 0, y(b) = B. Уравнением Эйлера будем

$$\sqrt{1 + (y')^2} \left(-\frac{1}{2} \cdot \frac{1}{(\sqrt{y})^3} \right) - \frac{d}{dx} \cdot \frac{2y'}{\sqrt{y} \cdot 2 \cdot \sqrt{1 + (y')^2}} = 0.$$

Заметим, что это то же самое, что

$$\frac{d}{dx}\left(\sqrt{\frac{1+(y')^2}{y}} - \frac{(y')^2}{\sqrt{y(1+(y')^2)}}\right) = 0.$$

То есть $y(y+(y')^2)=c_1$ — константа. Сделаем замену: $y'(x(\tau))={\rm ctg}(\tau)$. Тогда

$$y(x(\tau)) = c_1 \sin^2(\tau) = \frac{1}{2}c_1(1 - \cos(2\tau)).$$

Теперь

$$dx = \frac{dy}{y'} = \frac{2c_1 \sin(\tau) \cos(\tau)}{\cot(\tau)} d\tau = c_1(1 - \cos(2\tau)) d\tau.$$

Значит,

$$x(\tau) = c_2 + \frac{c_1}{2}(2\tau - \sin(2\tau)).$$

Теперь остаётся проверить, какие из них являются экстремумами, делается напрямую.

7.3 Задача со свободным концом

Пусть $F:\mathbb{R}^3 \to \mathbb{R} \in C^2$, числа $a,b,A \in \mathbb{R}$ фиксированы. Рассмотрим функционал

$$I(x) = \int_a^b F(t, x(t), x'(t))dt \tag{1}$$

при условии x(a) = A.

Мы хотим найти экстремумы $I: M \to \mathbb{R}$, где $M = \{x \in C^1[a,b]: x(a) = A\}$.

Теорема. Пусть $\hat{x} \in M$, $\hat{x} \in C^2$ — решение (1), то есть слабый локальный экстремум I. Тогда \hat{x} является решением уравнения Эйлера

$$\frac{\partial F}{\partial x}(t, x, x') - \frac{d}{dt}\frac{\partial F}{\partial x'}(t, x, x') = 0,$$

а также

$$\frac{\partial F}{\partial x'}(b, \widehat{x}(b), \widehat{x}'(b)) = 0. \tag{2}$$

Доказательство. Зафиксируем допустимое приращение $\eta \in C^1[a,b], \eta(a) = 0$. Положим

$$\Phi(\alpha) := I(\widehat{x} + \alpha \eta) = \int_{a}^{b} F(t, \widehat{x}(t) + \alpha \eta(t), \widehat{x}'(t) + \alpha \eta'(t)) dt.$$

Найдём производную в нуле:

$$\Phi'(0) = \int_a^b \left(\frac{\partial F}{\partial x}(t, \widehat{x}(t), \widehat{x}'(t)) \eta(t) + \frac{\partial F}{\partial x'}(t, \widehat{x}(t), \widehat{x}'(t)) \eta'(t) \right) dt =$$

Проинтегрируем по частям

$$= \int_{a}^{b} \frac{\partial F}{\partial x}(\dots)\eta(t)dt + \frac{\partial F}{\partial x'}(t,\widehat{x}(t),\widehat{x}'(t))\eta(t)\Big|_{t=a}^{t=b} - \int_{a}^{b} \frac{d}{dt} \frac{\partial F}{\partial x'}(\dots)\eta(t)dt =$$

$$= \int_{a}^{b} \left(\frac{\partial F}{\partial x}(\dots) - \frac{d}{dt} \frac{\partial F}{\partial x'}(\dots)\right)\eta(t)dt + \frac{\partial F}{\partial x'}(b,\widehat{x}(b),\widehat{x}'(b))\eta(b),$$

так как $\eta(a) = 0$.

Как доказывалось в простейшей задаче вариационного исчисления, 0 является локальным экстремумом функции Φ , то есть $\Phi'(0) = 0$. Таким образом, выражение выше равно нулю.

Подставим в выражение выше функцию η с $\eta(b) = 0$, тогда останется только

$$\int_{a}^{b} \left(\frac{\partial F}{\partial x}(t, \widehat{x}(t), \widehat{x}'(t)) - \frac{d}{dt} \frac{\partial F}{\partial x'}(t, \widehat{x}(t), \widehat{x}'(t)) \right) \eta(t) dt = 0.$$

По лемме Лагранжа получаем уравнение Эйлера. Теперь остаётся только

$$\frac{\partial F}{\partial x'}(b, \widehat{x}(b), \widehat{x}'(b))\eta(b) = 0$$

для всех функций η , то есть

$$\frac{\partial F}{\partial x'}(b,\widehat{x}(b),\widehat{x}'(b)) \equiv 0.$$

Замечание. Опять же если $F, \hat{x} \in C^1$, то функция

$$\frac{\partial F}{\partial x'}(t,\widehat{x}(t),\widehat{x}'(t))$$

непрерывно дифференцируема по t, \hat{x} является решением уравнения Эйлера и выполняется (2).

Замечание 2. Можно рассматривать и задачу с другим свободным концом, тогда (2) будет иметь вид

$$\frac{\partial F}{\partial x'}(a, \widehat{x}(a), \widehat{x}'(a)) = 0.$$

А если оба конца свободны, то условие выше и условие (2) выполняются одновременно.

7.4 Задача для функционалов, зависящих от нескольких функций

Пусть у нас есть функция $F: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \in C^2$, заданы числа $a, b \in \mathbb{R}$ и $A, B \in \mathbb{R}^n$, где $A = (A_i)_{i=\overline{1,n}}$ и $B = (B_i)_{i=\overline{1,n}}$.

Рассмотрим задачу нахождения экстремумов функционала

$$I(x) = \int_{a}^{b} F(t, x(t), x'(t))dt,$$
(3)

где $I: M \to \mathbb{R}$ для $M = \{x \in C^1([a,b],\mathbb{R}^n) \mid x(a) = A, x(b) = B\}$. Мы будем искать слабый локальный минимум/максимум по метрике

$$\rho_1(x, u) = \max_{a \le t \le b} |x(t) - u(t)| + \max_{a \le t \le b} |x'(t) - u'(t)|.$$

Теорема. Пусть $\hat{x} \in M$, $\hat{x} \in C^2$ — решение (3), то есть слабый локальный экстремум I. Тогда \hat{x} является решением уравнения Эйлера

$$\frac{\partial F}{\partial x_i}(t, x, x') - \frac{d}{dt} \frac{\partial F}{\partial x'_i}(t, x, x') = 0$$

для всех $i = \overline{1, n}$.

Доказательство. Можно сделать те же самые рассуждения с леммой Лагранжа, как и в двух предыдущих случаях, но можно доказать проще с использованием уже полученных результатов.

Положим

$$M_1 := \{x_1 \in C^1[a, b] : x_a(a) = A_1, x_1(b) = B_1\}.$$

И

$$I_1(x_1) = \int_a^b F(t, x_1(t), \widehat{x}_2(t), \dots, \widehat{x}_n(t), x'_1(t), \widehat{x}'_2(t), \dots, \widehat{x}'_n(t)) dt.$$

Так как \hat{x} является решением (3), \hat{x}_1 является решением задачи нахождения экстремума $I_1(x_1)$, так как нужно внимательно посмотреть на то, что получается при подстановке.

Следовательно, по теореме для простейшей задачи вариационного исчисления

$$\frac{\partial F}{\partial x_1}(t, \widehat{x}_1(t), \dots, \widehat{x}_n(t), \widehat{x}'_1(t), \dots, \widehat{x}'_n(t)) -$$

$$-\frac{d}{dt}\frac{\partial F}{\partial x_1'}(t,\widehat{x}_1(t),\ldots,\widehat{x}_n(t),\widehat{x}_1'(t),\ldots,\widehat{x}_n'(t)) \equiv 0.$$

Теперь аналогично доказываем для x_2, \ldots, x_n .

7.5 Функционалы, содержащие производные высших порядков

Пусть у нас есть $F: \mathbb{R}^{n+2} \to \mathbb{R}$, $F \in C^{n+1}$, а также числа $a, b, A_i, B_i \in \mathbb{R}$ для $i = \overline{0, n-1}$. Рассмотрим функционал

$$I(x) = \int_{a}^{b} F(t, x(t), x'(t), \dots, x^{(n)}(t)) dt.$$
 (4)

при условиях $x^{(i)}(a) = A_i$ и $x^{(i)}(b) = B_i$ для всех i. Как обычно, положим

$$M = \{x \in C^n[a,b] : x^{(i)}(a) = A_i, x^{(i)}(b) = B_i$$
 для всех $i\}$.

Положим метрику

$$\rho_n(x, u) = \sum_{i=0}^n \rho(x^{(i)}, u^{(i)}).$$

Опять же хотим найти слабый локальный минимум.

Введём множество допустимых вариаций:

$$\mathring{C}^n[a,b] = \{ \eta \in C^n[a,b] : \eta^{(i)}(a) = \eta^{(i)}(b) = 0 \text{ для всех } i \}.$$

Возьмём произвольную допустимую вариацию $\eta \in \mathring{C}^n[a,b], \ \widehat{x} \in C^{2n}$ и положим

$$\Phi(\alpha) = I(\widehat{x} + \alpha \eta) = \int_a^b F(t, \widehat{x}(t) + \alpha \eta(t), \dots, \widehat{x}^{(n)}(t) + \alpha \eta^{(n)}(t)) dt.$$

Дифференцируем по параметру в нуле:

$$\Phi'(0) = \int_a^b \sum_{i=0}^n \frac{\partial F}{\partial x^{(i)}}(t, \widehat{x}(t), \dots, \widehat{x}^{(n)}(t)) \eta^{(i)}(t) dt =$$

Интегрируем, как обычно, по частям всё, кроме первого слагаемого, и сразу, как и раньше, сокращаем нули

$$= \int_{a}^{b} \frac{\partial F}{\partial x}(\dots)\eta(t)dt - \int_{a}^{b} \sum_{i=1}^{n} \frac{d}{dt} \frac{\partial F}{\partial x^{(i)}}(\dots)\eta^{(i-1)}(t)dt =$$

Отправим первое слагаемое суммы в первое слагаемое всего выражения, а остаток проинтегрируем по частям

$$= \int_a^b \left(\frac{\partial F}{\partial x}(\dots) - \frac{d}{dt} \frac{\partial F}{\partial x^{(1)}}(\dots) \right) \eta(t) dt + \sum_{i=2}^n \frac{d^2}{dt^2} \frac{\partial F}{\partial x^{(i)}}(\dots) \eta^{i-2}(t) dt =$$

Делаем то же самое:

$$= \int_a^b \left(\frac{\partial F}{\partial x}(\dots) - \frac{d}{dt} \frac{\partial F}{\partial x^{(1)}}(\dots) + \frac{d^2}{dt^2} \frac{\partial F}{\partial x^{(2)}}(\dots) \right) \eta(t) dt + \dots =$$

По методу неполной индукции получаем, что это всё равняется

$$\int_a^b \left(\sum_{i=0}^n (-1)^i \frac{d^i}{dt^i} \frac{\partial F}{\partial x^{(i)}} (\dots) \right) \eta(t) dt.$$

Замечание. Если посмотреть на n-ое слагаемое полученной суммы, то можно увидеть, почему условия на непрерывную дифференцируемость функций именно такие.

Лемма. (Лагранжа) Пусть $f \in C[a,b]$ и $\int_a^b f(t) \eta(t) dt = 0$ для всех $\eta \in \mathring{C}^n[a,b]$. Тогда $f(t) \equiv 0$.

Доказательство. Всё так же, как и в одномерном случае. Точная формула для функции:

$$\eta(t) = \begin{cases} (t - (\tau + \varepsilon))^{2n} (t - (\tau - (\tau - \varepsilon))^{2n}, & t \in (\tau - \varepsilon, \tau + \varepsilon) \\ 0, & \text{иначе} \end{cases}.$$

Как альтернатива, можно использовать функцию пенёк из 3 семестра.

Теорема. Пусть $F \in C^{n+1}$, $\widehat{x} \in M$ — слабый локальный экстремум, причём $\widehat{x} \in C^{2n}$. Тогда \widehat{x} является решением уравнения Эйлера, которое в этом случае имеет вид

$$\frac{\partial F}{\partial x}(t, x, x', \dots, x^{(n)}) - \frac{d}{dt} \frac{\partial F}{\partial x'}(t, x, x', \dots, x^{(n)}) + \frac{d^2}{dt^2} \frac{\partial F}{\partial x''}(\dots) + \dots +$$
$$+ (-1)^n \frac{d^n}{dt^n} \frac{\partial F}{\partial x^{(n)}}(\dots) \equiv 0.$$

Доказательство. Ничего не меняется. Если \widehat{x} — слабый локальный экстремум, то 0 — локальный экстремум функции Φ , то есть $\Phi'(0)$, откуда по равенству, полученному выше, и лемме Лагранжа получаем искомое.

Замечание. И то же самое замечание: достаточно C^n для всех функций.