Квантовые вычисления КЛШ-2018

Содержание

1	Посади дерево!	2
2	К чёрту условности!	2
3	Не комплексуй без комплексных чисел	2
4	У нас много комплексов	2
5	Ноль без палочки	2
6	Сферическая блоха. Ой, сфера Блоха	2
7	Вентиль Адамара	2
8	Возможные действия	2
9	Алгоритм Дойча	2
10	Два кубита — два весёлых друга	2
11	Действия на паре кубитов	3
12	Алгоритм Гровера: 2 кубита	3
13	Алгоритм Гровера: 3 кубита	3
14	Алгоритм Саймона: 2 кубита	3
15	Решения	3

Квантовые вычисления КЛШ-2018

- 1. Посади дерево!
- 2. К чёрту условности!
- 3. Не комплексуй без комплексных чисел
 - 4. У нас много комплексов
 - 5. Ноль без палочки

6. Сферическая блоха. Ой, сфера Блоха

7. Вентиль Адамара

Вентиль Адамара.

$$H = \frac{1}{\sqrt{2}} \left(|0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| - |1\rangle\langle 1| \right)$$

- 8. Возможные действия
 - 9. Алгоритм Дойча

$$|0\rangle - H - D - H - \nearrow$$

10. Два кубита — два весёлых друга

10.1 Алиса посылает Бобу пару кубитов в состоянии 1

$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$$

¹Конечно, это состояние кубитов, а не Алисы!

Квантовые вычисления КЛШ-2018

- 1. Если Боб измерит сразу оба кубита, то каковы будут вероятности каждого состояния?
- 2. Боб решил измерить только первый кубит. Каковы вероятности измерить $|0\rangle$ и $|1\rangle$? В каких состояниях при этом окажется второй кубит?
- 3. Боб решил измерить только второй кубит. Каковы вероятности измерить $|0\rangle$ и $|1\rangle$? В каких состояниях при этом окажется первый кубит?

11. Действия на паре кубитов

11.1 Что получит Алиса, если применит действие $H^{\otimes 2}$ к паре кубит

$$\frac{1}{\sqrt{2}}\left|00\right\rangle + \frac{1}{\sqrt{2}}\left|11\right\rangle$$

11.2 Приведи пример действия A на паре кубит, которое невозможно представить в виде тензорного произведения действий. То есть невозможно придумать такие однокубитные действия B и C, что $A=B\otimes C$.

12. Алгоритм Гровера: 2 кубита

$$|00\rangle$$
 $H^{\otimes 2}$ G 2 $|++\rangle\langle++|-I|$ \Rightarrow

13. Алгоритм Гровера: 3 кубита

$$|000\rangle - H^{\otimes 3} + G - 2|+++ + + - I + - I \rightarrow 0$$

14. Алгоритм Саймона: 2 кубита

15. Решения

10.1.

11.1.

11.2. Например, $CNOT = |00\rangle\langle 00| + |01\rangle\langle 01| + |10\rangle\langle 11| + |11\rangle\langle 10|$.