Отчет по лабораторной работе №8

Модель конкуренции двух фирм - вариант 44

Пономарева Лилия НПИбд-02-19

Содержание

Цель работы	4
Объект исследования	4
Предмет исследования	4
Теоретические сведения	5
Модель одной фирмы	5
Конкуренция двух фирм	8
Выполнение лабораторной работы	10
Задание	10
	11
	13
Выводы	15
Список литературы	16

Список иллюстраций

1	Изменение объемов продаж фирм, конкурентная борьба которых	
	ведется только рыночными методами	13
2	Изменение объемов продаж фирм, среди которых первая обладает	
	лучшей репутацией	14

Цель работы

Рассмотреть модель конкуренции двух фирм.

Объект исследования

Модель конкуренции двух фирм.

Предмет исследования

Уравнение динамики оборотных средств двух конкурирующих фирм.

Теоретические сведения

Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.[1]

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
 - M оборотные средства предприятия
 - au длительность производственного цикла
 - p рыночная цена товара
- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции.
 - δ доля оборотных средств, идущая на покрытие переменных издержек.
- κ постоянные издержки, которые не зависят от количества выпускаемой продукции.
- Q(S/p) функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу вре-

мени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q=q-k\frac{P}{S}=q(1-\frac{p}{p_{cr}}) \tag{1}$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде

$$\frac{\partial M}{\partial t} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{cr}})p - \kappa \tag{2}$$

Уравнение для рыночной цены р представим в виде

$$\frac{\partial p}{\partial t} = \gamma \left(-\frac{M\delta}{\tau \tilde{p}} + Nq(1 - \frac{p}{p_{or}}) \right) \tag{3}$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу.

Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном M уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение (3) можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}) = 0 \tag{4}$$

Из (4) следует, что равновесное значение цены р равно

$$p = p_{cr}(1 - \frac{M\delta}{\tau \tilde{p} N q}) \tag{5}$$

Уравнение (2) с учетом (5) приобретает вид

$$\frac{\partial M}{\partial t} = M \frac{\delta}{\tau} (\frac{p_{cr}}{\tilde{p}} - 1) - M^2 (\frac{\delta}{\tau \delta p})^2 \frac{p_{cr}}{Nq} - \kappa \tag{6}$$

Уравнение (6) имеет два стационарных решения, соответствующих условию $\partial M/\partial t$ = 0:

$$\tilde{M}_{1,2} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b} \tag{7}$$

где

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}})\tilde{p}\frac{\tau}{\delta}, b = \kappa Nq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2} \tag{8}$$

Из (7) следует, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b \ll a^2$) и играют роль, только в случае, когда оборотные средства малы. При $b \ll a$ стационарные значения М равны

$$\tilde{M}_{+}=Nq\frac{\tau}{\delta}(1-\frac{\tilde{p}}{p_{cr}})\tilde{p}, \tilde{M}_{-}=\kappa\tilde{p}\frac{\tau}{\delta(p_{cr}-\tilde{p})} \tag{9}$$

Первое состояние \tilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \tilde{M}_- неустойчиво, так что при $M<\tilde{M}_-$ оборотные средства падают ($\partial M/\partial t<0$), то есть, фирма идет к банкротству. По смыслу \tilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит,

что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла, с учётом сказанного.

Конкуренция двух фирм

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы.

В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.)

Уравнения динамики оборотных средств запишем по аналогии с (2) в виде

$$\begin{cases} \frac{\partial M_1}{\partial t} = -\frac{M_1}{\tau_1} + N_1 q (1 - \frac{p}{p_{cr}}) p - \kappa_1 \\ \frac{\partial M_2}{\partial t} = -\frac{M_2}{\tau_2} + N_2 q (1 - \frac{p}{p_{cr}}) p - \kappa_2 \end{cases} \tag{10}$$

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме, соответственно. Величины N_1 и N_2 – числа потребителей, приобретших товар первой и второй фирмы.

Учтем, что товарный баланс устанавливается быстро, то есть, произведенный каждой фирмой товар не накапливается, а реализуется по цене p. Тогда

$$\begin{cases} \frac{M_1}{\tau_1 \tilde{p}_1} = -N_1 q (1 - \frac{p}{p_{cr}}) \\ \frac{M_2}{\tau_2 \tilde{p}_2} = -N_2 q (1 - \frac{p}{p_{cr}}) \end{cases} \tag{11}$$

где \tilde{p}_1 и \tilde{p}_2 – себестоимости товаров в первой и второй фирме.

С учетом (10) представим (11) в виде

$$\begin{cases} \frac{\partial M_1}{\partial t} = -\frac{M_1}{\tau_1} (1 - \frac{p}{\tilde{p}_1}) - \kappa_1 \\ \frac{\partial M_2}{\partial t} = -\frac{M_2}{\tau_2} (1 - \frac{p}{\tilde{p}_2}) - \kappa_2 \end{cases}$$
 (12)

Уравнение для цены, по аналогии с (3),

$$\frac{\partial p}{\partial t} = -\gamma (\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2} - Nq(1 - \frac{p}{p_{cr}}) \tag{13}$$

Считая, как и выше, что ценовое равновесие устанавливается быстро, получим:

$$p = p_{cr}(1 - \frac{1}{Nq}(\frac{M_1}{\tau_1\tilde{p}_1} + \frac{M_2}{\tau_2\tilde{p}_2})) \tag{14} \label{eq:14}$$

Подставив (14) в (12) имеем:

$$\begin{cases} \frac{\partial M_{1}}{\partial t} = c_{1}M_{1} - bM_{1}M_{2} - a_{1}M_{1}^{2} - \kappa_{1} \\ \frac{\partial M_{2}}{\partial t} = c_{2}M_{2} - bM_{1}M_{2} - a_{2}M_{2}^{2} - \kappa_{2} \end{cases}$$
 (15)

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1^2 \tilde{p}_1^2}, c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2^2 \tilde{p}_2^2}$$
 (16)

Исследуем систему (15) в случае, когда постоянные издержки (κ_1,κ_2) пренебрежимо малы. И введем нормировку $t=c_1\theta$. Получим следующую систему:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$
(17)

Выполнение лабораторной работы

Задание

Вариант 44

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases},$$

где
$$a_1=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 Nq}, a_2=rac{p_{cr}}{ au_2^2 ilde{p}_2^2 Nq}, b=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 au_2^2 ilde{p}_2^2 Nq}, c_1=rac{p_{cr}- ilde{p}_1}{ au_1 ilde{p}_1}, c_2=rac{p_{cr}- ilde{p}_2}{ au_2 ilde{p}_2}.$$
 Также введена нормировка $t=c_1 \theta.$

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – фор-

мирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - (\frac{b}{c_1} + 0.00025) M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

$$\begin{split} M_0^1 &= 9.1, M_0^2 = 7.7, \\ p_{cr} &= 35, N = 44, q = 1, \\ \tau_1 &= 21, \tau_2 = 20, \\ \tilde{p}_1 &= 13, \tilde{p}_2 = 10. \end{split}$$

- 1. Построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

Случай первый

Написали программу, моделирующую динамику изменения объемов продаж фирмы 1 и 2 (конкурентная борьба ведётся только рыночными методами) на языке Modelica.[2]

```
model lab08
parameter Real a1 = p_cr/(t1^2 * p1^2*N*q);
```

```
parameter Real a2 = p_cr/(t2^2 * p2^2 * N*q);
 parameter Real b = p_{cr}/(t1^2*p1^2 * t2^2*p2^2 * N*q);
 parameter Real c1 = (p_cr - p1)/(t1 * p1);
 parameter Real c2 = (p_cr - p2)/(t2 * p2);
 parameter Real p cr = 35;
 parameter Real N = 44;
 parameter Real q = 1;
 parameter Real t1 = 21;
 parameter Real t2 = 20;
 parameter Real p1 = 13;
  parameter Real p2 = 10;
  Real M1(start = 9.1);
  Real M2(start = 7.7);
  equation
   der(M1) = M1 - b/c1 * M1 * M2 - a1/c1 * M1^2;
   der(M2) = c2/c1 * M2 - b/c1 * M1 * M2 - a2/c1 * M2^2;
end lab08;
```

Получили график изменения объемов продаж фирм (см. [@fig:fig1]).

Рис. 1: Изменение объемов продаж фирм, конкурентная борьба которых ведется только рыночными методами

Случай второй

Написали программу, моделирующую динамику изменения объемов продаж фирмы 1 и 2 (с учетом социально-психологических факторов) на языке Modelica.[2]

```
model lab08_2
  parameter Real a1 = p_cr/(t1^2 * p1^2*N*q);
  parameter Real a2 = p_cr/(t2^2 * p2^2 * N*q);
  parameter Real b = p_cr/(t1^2*p1^2 * t2^2*p2^2 * N*q);
  parameter Real c1 = (p_cr - p1)/(t1 * p1);
  parameter Real c2 = (p_cr - p2)/(t2 * p2);

parameter Real p_cr = 35;
  parameter Real N = 44;
  parameter Real q = 1;
  parameter Real t1 = 21;
  parameter Real t2 = 20;
  parameter Real p1 = 13;
  parameter Real p2 = 10;
```

```
Real M1(start = 9.1);
Real M2(start = 7.7);

equation
   der(M1) = M1 - b/c1 * M1 * M2 - a1/c1 * M1^2;
   der(M2) = c2/c1 * M2 - (b/c1 + 0.00025) * M1 * M2 - a2/c1 * M2^2;

end lab08_2;
```

Получили график изменения объемов продаж фирм (см. [@fig:fig2]).

Рис. 2: Изменение объемов продаж фирм, среди которых первая обладает лучшей репутацией

Выводы

Рассмотрели модель конкуренции двух фирм в двух случаях: без учета социально-психологического фактора и с ним.

В первом случае (см. [@fig:fig1]) можем заметить, что рост оборотных средств предприятий идет независимо друг от друга. Каждая фирма достигает свое максимальное значение объема продаж и остается на рынке с этим значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая не изменяется. Для первой фирмы это значение состовляет 7550.24 млн. единиц, для второй - 6285.61 млн. единиц.

Во втором случае (см. [@fig:fig2]) можем заметить, что вторая фирма, несмотря на начальный рост, начитает нести убытки и, в итоге, терпит банкротство. Динамика роста объёмов оборотных средств второй фирмы остается без изменения: достигнув максимального значения, остаётся на этом уровне.

Список литературы

- 1. Родионов, Ю.В. Основы математического моделирования: учебное электронное издание / Ю.В. Родионов, А.Д. Нахман; Тамбовский государственный технический университет. Тамбов: Тамбовский государственный технический университет (ТГТУ), 2018. 111 с..
- 2. Документация по системе Modelica.