IE1204 Exam 20191021 Answers version 2

Part 1

1

$$\begin{split} A &= 93_{10} = 01011101_2 = 5D_{16} \\ B &= -42_{10} = 11010110_2 = D6_{16} \\ A + B &= 00110011_2 = 51_{10} \end{split}$$

2

$$\begin{split} C &= 01011010_2 = 90_{10} = 5A_{16} \\ D &= 00110011_2 = 51_{10} = 33_{16} \\ \text{-D} &= 11001101_2 = \text{-}51_{10} = CD_{16} \\ C \text{-D} &= 00100111_2 = 39_{10} \end{split}$$

3

A	В	C	D	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Can't be further simplified!

4

$$Z = \overline{A} \cdot \overline{B} \cdot \overline{C} = \overline{A + B + C}$$
 Three input NOR \rightarrow

 $Z = \overline{A} \cdot \overline{B} \cdot \overline{C} = \overline{\overline{\overline{A} \cdot \overline{B} \cdot \overline{C}}}$ (three input NAND also ok)

Part 2

5

$$Y = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot \overline{B} \cdot \overline{D} + A \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot \overline{D}$$

6

$$Y = \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot B \cdot D = \overline{\overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot B \cdot D} = \overline{\overline{B} \cdot \overline{C} \cdot \overline{A} \cdot B \cdot C \cdot \overline{A} \cdot B \cdot C}$$

$$Y = (B + \overline{C})(A + \overline{B} + C)(\overline{A} + \overline{B} + D) = \overline{\overline{\overline{B} \cdot C} \cdot \overline{\overline{A} \cdot B \cdot \overline{C}} \cdot \overline{A \cdot B \cdot \overline{C}}}$$

One point was deducted if the expression was not simplest possible. $\overline{A} \cdot \overline{D}$ should not be included.

q3	q2	q1	q0	B4	В3	B2	B1	В0
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1
0	0	1	0	0	0	0	1	0
0	0	1	1	0	0	0	1	1
0	1	0	0	0	0	1	0	0
0	1	0	1	0	0	1	0	1
0	1	1	0	0	0	1	1	0
0	1	1	1	0	0	1	1	1
1	0	0	0	0	1	0	0	0
1	0	0	1	0	1	0	0	1
1	0	1	0	1	0	0	0	0
1	0	1	1	1	0	0	0	1
1	1	0	0	1	0	0	1	0
1	1	0	1	1	0	0	1	1
1	1	1	0	1	0	1	0	0
1	1	1	1	1	0	1	0	1

$$B4 = q3 \cdot \underline{q2} + q3 \cdot q1 = q3(q2 + q1)$$

$$B3 = q3 \cdot \overline{B4} \text{ or } B3 = q3 \cdot \overline{q2} \cdot \overline{q1}$$

$$B2 = q2 \cdot \overline{B4} + q3 \cdot q2 \cdot \underline{q1} \text{ or } B2 = \overline{q3} \cdot q2 + q2 \cdot q1$$

$$B1 = q1 \oplus B4 \text{ or } B1 = \overline{q3} \cdot q1 + q3 \cdot q2 \cdot \overline{q1}$$

$$B0 = q0$$

The expressions can be derived from examination, or K-maps (next page). Variations with MUX (5 x 16:1 or 3 x 2:1 and others are also possible) Or use the first expression (B4) plus an ADDER: add 6 if the value is 10 or higher. (has the same effect as subtracting 10 when the carry is not used, see above)

Part 3

$$q_1^+ = D \cdot q_0 + \overline{D} \cdot q_1$$

$$q_0^+ = D \cdot \overline{q_1} + \overline{D} \cdot q_0$$

$$B = \overline{q_1 + q_0} = \overline{q_1} \cdot \overline{q_0}$$

$$H = q_1 \cdot q_0$$

Present st	ate	Next state				Out	
		D=0		D=1			
q1	q0	q1+	q0+	q1+	q0+	В	Н
0	0	0	0	0	1	1	0
0	1	0	1	1	1	0	0
1	1	1	1	1	0	0	1
1	0	1	0	0	0	0	0

The FSM can be used as a drum machine: B = Base, H = Hi-hat, clk = Snare, D=1 drum, D=0 pause

Prese	Present state			state	
С	b	a	C+	b+	a+
0	0	0			
0	0	1			
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0			
1	0	1	1	1	1
1	1	0			
1	1	1	0	1	0

c+	ba = 00	01	11	10
c = 0	х	×	1	0
1	х	1	0	х

b+	ba = 00	01	11	10	
c = 0	х	х	0	1	
1	×	1	1	×	

$$c^{+} = \overline{b} + \overline{c} \cdot a$$
$$b^{+} = c + \overline{a}$$

$$b^+ = c + \overline{a}$$

$$a^+ = \overline{c} + \overline{b}$$

Prese	Present state			state	
С	b	a	C+	b+	a+
0	0	0	1	1	1
0	0	1	1	0	1
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	1	0
1	1	1	0	1	0

				Next s	tate				
Preser	nt state	a b = 0	0	a b = 0	1	a b = 1	1	a b = 1	0
q2	q1	q2+	q1+	q2+	q1+	q2+	q1+	q2+	q1+
0	0	0	0	1	0			0	1
0	1	0	0	0	1	1	1	0	1
1	1			0	1	1	1	0	1
1	0	0	0	$\overline{1}$	0	1	1		

q2+	a b =	01	11	10
q2q1 = 00	0	1	X	0
01	0	0	1	0
11	X	0	1	0
10	0	1	1	Х

$$q_2^+ = a \cdot b + \overline{q_1} \cdot b$$

q1+	a b =	01	11	10
q2q1 = 00	0	0	Х	1
01	0	1	1	1
11	Х	1	1	1
10	0	0	1	х

$$q_1^+ = q_1 \cdot b + a$$

Part 4

13

Ripple carry critical path is 2 x 4 = 8 gates. t_{pd} = 8 x 40 = 320 ps 74hc283 critical path is 6 gates. t_{pd} = 6 x 40 = 240 ps (even though the carry-chain has 5) $T_c \ge t_{pcq} + t_{pd} + t_{setup} = 40 + 320 + 50 = 410$ ps. $f_{clock} = 1 / T_c = 2,5$ GHz $T_c \ge t_{pcq} + t_{pd} + t_{setup} = 40 + 240 + 50 = 330$ ps. $f_{clock} = 1 / T_c = 3,0$ GHz Hold time does not affect max clock speed.

14

$$\begin{split} E &= 01010101_2 = 85_{10} \\ F &= 00101010_2 = 42_{10} \\ G &= 00010001_2 = 17_{10} \\ P &= E \ x \ F = 0000 \ 1101 \ 1111 \ 0010_2 = 3570_{10} = 85 \ x \ 42 \\ K &= E \ / \ G = 000000101_2 = 5_{10} = 85 \ / \ 17 \end{split}$$

15

The opcodes for the ALU is as below (did not need to be shown). First case A = 1010, B = 0011, S2 = 0, S1 = 1, S0 = 1: Y = A NOR B = 0100 Second case if S2 = 1: Y = A - B = 0111 (10 - 3 = 7, calculate decimal or binary with 2 complement)

S2	S1	S0	Operation
0	0	0	A AND B
0	0	1	A NAND B
0	1	0	A OR B
0	1	1	A NOR B
1	0	0	A + A = 2A
1	0	1	A - A = 0
1	1	0	A + B
1	1	1	A - B

16

 $A_4A_3A_2A_1A_0 = o_{1001}$

 $D_3D_2D_1D_0 = 0.101$ (diodes are zero, no inverters on this ROM)

