Reports of

Experiments Referred to at Hearings on Ice Cream,

Before Dr. C. L. Alsberg
Chief of the Bureau of Chemistry
United States Department
of Agriculture

Subject:

The Bacteriology of Ice Cream

Published by

THE NATIONAL ASSOCIATION OF ICE CREAM MANUFACTURERS

October, 1914

WA 715 N277r 1914

NATIONAL LIBRARY OF MEDICINE

ARMY MEDICAL LIBRARY FOUNDED 1836

WASHINGTON, D.C.

Reports of

Experiments Referred to at Hearings on Ice Cream

Before Dr. C. L. Alsberg
Chief of the Bureau of Chemistry
United States Department
of Agriculture

Subject:

The Bacteriology of Ice Cream

Published by

THE NATIONAL ASSOCIATION OF
ICE CREAM MANUFACTURERS
October, 1914

FOREWORD

In June, 1914, the National Association of Ice Cream Manufacturers published the Report of the hearings held before Dr. C. L. Alsberg on the use of colloids as stabilizers in ice cream, the butter fat standard for ice cream and the bacteriology of ice cream, and in that part of the report which relates to the bacteriology of ice cream it appears that at the hearing Professor Gordon, Professor Prescott, Dr. Heinemann and Dr. Pease repeatedly referred to experiments which they had made and upon which they based their testimony. The National Association of Ice Cream Manufacturers now makes public the reports of these experiments for the benefit of those engaged in the ice cream industry and others interested in the subject.

These reports should be read in connection with the testimony above referred to.

WALTER JEFFREYS CARLIN.

JOHN GORDON, graduate of the University of Missouri, formerly assistant Professor of Bacteriology, Iowa State College. Worked on dairy farms in Missouri, Iowa, Illinois and New York. Operated bottling plant-for the Walker-Gordon Milk Co. Since 1911 in charge of the sanitation work of a number of plants in New York State, purchasing several million pounds of milk yearly. Author of a number of papers on the subect of sanitation of dairy plants, etc.

SAMUEL C. PRESCOTT, Professor of Industrial Micro-biology, Massachusetts Institute of Technology. Graduate of the Massachusetts Institute of Technology, class of 1904. Formerly Assistant Chemist and Bacteriologist of the Worcester Sewerage Works. Studied in Denmark and Germany, devoting time especially to bacteriology and fermentation in food. Since 1905 director of the Boston Bio-Chemical Laboratory. Joint author of work on bacteriology and also a book dealing with canning. Connected with the Journal of Bacteriology and author of numerous papers dealing with scientific subjects. Member of the Society of American Bacteriologists and Fellow of the American Society for the Advancement of Science and member of the American Chemical Society, the British Society of Chemical Industry, American Public Health Association and the Boston Society of Medical Sciences.

P. G. HEINEMANN, Bachelor of Science. Doctor of Philosophy, University of Chicago. Instructor in Bacteriology, University of Chicago, and Serum Expert of the Memorial Institute for Infectious Diseases, Chicago. Publisher of many pamphlets dealing with different phases of the milk question, also a book on bacteriology. Reviewer of important scientific papers for the German publications on bacteriology. Editorial writer for the Journal of the American Medical Association. For two years examiner and inspector for the Chicago Medical Milk Commission.

HERBERT D. PEASE, Doctor of Medicine, University of Toronto. Post-graduate student and fellow-in pathology, Johns Hopkins University. For one year resident bacteriologist and pathologist of the Thomas Wilson Sanitarium for Sick Children. For four years First Assistant Bacteriologist of the Bureau of Health of the City of Philadelphia. For two years bacteriologist of the New York State Pathological Laboratory. For one year instructor in bacteriology in the Sheffield Scientific School, Yale University. For nine years director of the Hygienic and Antitoxin Laboratory of the New York State Department of Health. At present and for four years past director of the Department of Bacteriology of the Lederle Laboratories of New York City. At present and for three years past sanitary expert of the Board of Water Supply of the City of New York.

Report on Ice Cream Examinations Outlined in Washington Hearing of Ice Cream Manufacturers

JOHN GORDON

REPORT ON ICE CREAM EXAMINATIONS OUT-LINED IN WASHINGTON HEARING OF ICE CREAM MANUFACTURERS.

JOHN GORDON.

The experimental work as set forth herein was carried on with a view of obtaining exact information as to the factors which influence the bacteria content of ice cream as manufactured in commercial plants. The raw materials for ice cream manufacture were followed from the place of origin, the farm, through the creamery and condensory into the ice cream factory. In the creamery and condensory the effect of the handling consequent to the ordinary factory routine involved in the receiving, separating, pasteurizing, condensing, etc., of milk upon the bacteria content of the raw materials was considered. In the ice cream factory the effect of all routine operations upon the bacteria content of the ice cream up until the time of delivery to the retailer were considered.

Methods.

The agar employed in all experiments reported herein was prepared after the method recommended by the American Public Health Associations' Committee on Standard Milk Analysis. All plates were incubated at 37° C. for a period of 48 hours.

Since most of the ice cream experiments were made on semi-hard ice cream, samples were taken directly from the freezers in sterile bottles holding seventy cubic centimeters, which were stoppered and carried immediately to the laboratory of the Wheat's Ice Cream Company, wherein most of the work was done.

When it was necessary to sample hard ice cream in the containers, this was done by forcing a sterile butter trier down through the ice cream in the can. After the core thus obtained was withdrawn, it was broken with a sterile spatula and except for a thin section on the top was

placed in a sterile wide-mouthed sample bottle, holding seventy cubic centimeters.

After the samples had reached the laboratory, they were in all cases melted by placing the bottles in a dish containing warm water. After melting, the routine procedure of an ordinary milk analysis was followed.

Many of the tables given are a fractional part of the data on that particular subject, being the results of the routine tests of a large commercial ice cream manufactory. Naturally, nothing would be gained by printing the results of a great many routine tests where a few will depict average conditions satisfactorily.

Tests on Farm Milks Received At a Creamery Supplying Several Ice Cream Factories.

THE BACTERIAL CONTENTS OF FARMERS' MILKS AT TIME OF DELIVERY TO CREAMERY ON SUCCESSIVE DAYS.

Sample	Patron	Bacteria Content Per C.C.
-	No. 170	1,700,000
1	" 61	6,100,000
ő	" 154	15,400,000
0	" $\frac{134}{285}$	
2		90,000
1 23 4 5 6 7 8 9	20€	55,000
6	4 4	32,500
7	1.1	2,500,000
8	" 265	2,850,000
	" 265	280,000
10	" 15	950,000
$\frac{11}{12}$	" 15	155,000
12	" 15	1,250,000
13	" 266	7,000,000
14	" 266	28,000
15	" 215	2,000,000
16	" 281	960,000
17	" 281	3,000,000
18	" 224	700,000
19	" 224	110,000
$\tilde{20}$	" $5\overline{24}$	450,000
21	" 252	480,000
21 22 23 24 25	" $\bar{292}$	10,000,000
99		
04	" 292 " ee	1,800,000
25	00	820,000
20	101	95,000
26	101	120,000
$\frac{27}{28}$	200	360,000
28	200	1,750,000
29	" 288	200,000

The above table is used merely to show the general run of bacteria contents of farmers' milk as received at an ice cream creamery. It represents only a few of the tests made, but the printing of more would be needless, as it shows that one farmer may bring milk of high bacteria content one day and milk of low bacteria content the next.

The Bacteria Content of Milk, Cream, and Condensed Milk, Used
For Ice Cream Manufacture As Received At
Several Ice Cream Plants.

The following two tables depict the condition in which cream arrives at the average ice cream factory from the average country creamery:

BACTERIA CONTENTS OF PASTEURIZED CREAM FROM CREAMERY A AT TIME OF DELIVERY TO ICE CREAM PLANT IN ROCHESTER, NEW YORK.

Date		Bacteria Content Per C.C.
Aug. 21st	Can 1	26,100,000
	" 2 " 3	9,500,000
		51,600,000
	" 4	52,500,000
	" 5	27,400,000
Ana 09nd	" ĭ	11,500,000
Aug. 23rd	" 2	11,000,000
0.417	" Ī	22,500,000
Aug. 24th		19,600,000
	<u> </u>	
Aug. 29th	1	29,000,000
	• " 2	31,100,000
	. " 2	20,000,000
	" 4	22,800,000
0 1 J-1	" ī	1,300,000
Sept. 1st	" ½	1,450,000
	" 2	1,400,000

BACTERIA CONTENTS OF PASTEURIZED CREAM FROM CREAMERY B SHIPPING TO THE ROCHESTER PLANT.

70 - 4 -		Bacteria Content Per C.C.
Date		
Aug. 9th	Can 1	5,000,000
Aug. om	" 2	10,000,000
	44 <u>3</u>	4,300,000
Aug. 24th	" 1	5,100,000
Aug. 24th	" <u>2</u>	15,200,000
	" 3	15,000,000
	" 4	1,500,000
Sept. 2nd	" Ī	1,060,000
ocpt. Luc	\ddot{z}	1,760,000

Since I was convinced that the high counts obtained on the pasteurized cream from the creameries A and B were due not to faulty methods of pasteurization but to poor storage facilities since they, like the great bulk of creameries, relied upon the ice tank method of storage, I had one of the creameries ship cream to the ice cream factory directly after pasteurization and cooling and not hold it in the ice tank until the next day as was the usual custom. The ordinary method of pasteurization was followed, no unusual precautions being taken.

BACTERIA CONTENTS OF PASTEURIZED CREAM PROPERLY COOLED AFTER PASTEURIZATION AND SHIPPED IMMEDIATELY.

Date		Bacteria Per C.C.
Sept. 2nd	Can 1	39,000
	" 2	21,000
	44 3	71,000
	" 4	39,000
	" 5	33,000
	" 6	70,000
	" 7	35,000
	" 8	64,000
	" 9	26,000

The following table shows that the ice cream manufacturer may when he purchases pasteurized milk be obtaining milk of much higher bacteria content than raw milk. The milk in this case was sweet and apparently good but it required a bacteriological analysis before the enormous bacteria content was revealed:

BACTERIA CONTENTS OF PASTEURIZED MILK SOLD TO AN ICE CREAM COMPANY BY A DAIRY CONCERN.

Can	1	60,000,000	Bacteria	per	c.c.
6.6	2	420,000,000	- 66	166	66
66	3	21,000,000		4.6	6.4
6.6	4	100,000,000	6.4	6.6	6.6

THE BACTERIA CONTENTS OF HOMOGENISED CREAM FROM CREAMERY C AS RECEIVED AT AN ICE CREAM FACTORY ON DIFFERENT DAYS.

Date	Sample	Bacteria Per C.C.
Aug. 3	1	4,800
" <u>4</u>	$\frac{2}{2}$	6,500
" 5 " 6	3	8,000
" " 5	$\frac{4}{5}$	15,500
" 8	9 6	$\frac{5,000}{3,400}$
" ğ	7	80,000
" 10	. Š	250,000
" 11	9	125,000
" 1 2	10	30,000

Since the process of homogenization as followed at this creamery required a temperature of 180° F., it followed that the bacteria content would be low. Only a very small percentage of ice cream manufacturers have homogenizers, however, therefore homogenizers cannot be a factor in reducing the bacteria content of ice cream.

BACTERIA CONTENT OF CONDENSED MILK FROM TWO CREAMERY AND CONDENSERIES.

Date	Condensery	Bacteria Per C.C.
July	Ą	2,940,000
4.6	A A	$50,000 \\ 53,000$
Aug.	A A	10,000
44	A	35,000 80,000
**	B B	$5,000,000 \\ 180,000$
6.6	$ar{ ext{B}}$	2,000,000

The foregoing shows that the bacteria content of the type of condensed (unsweetened whole milk) used in ice cream manufacture fluctuates after the fashion of normal milk or cream. The condensing temperature (120° F.) kills only a portion of the bacteria, nor is the superheating temperature (180° F.) sufficient to dispose of the entire number. Numerous factors can increase the bacteria content of condensed milk, temperature being the chief one. If the condensed milk is not cooled to a low enough temperature after being drawn from the condensing pan, the bacteria content will increase to enormous proportions. Unsweetened condensed milk must be cared for with the ordinary care awarded normal milk. The best possible storage conditions must obtain for its successful storage.

The Increase In Bacteria Contents of Raw Materials During Shipment By Rail.

It is not customary for railroads to provide ice for the preservation of milk in transit. In the hot summer weather enormous increases of the bacteria content of milk and much actual souring of milk results from the faulty methods of transportation in use.

The following table does not depict average conditions, because the creamery mentioned in the experiment is equipped with artificial refrigeration and consequently secures much lower temperatures prior to shipment than the average creamery can secure:

TABLE SHOWING INCREASE OF TEMPERATURES AND BACTÉRIA IN FIVE-HOUR SHIPMENT PERIOD OF MILK FROM AKRON, N. Y., TO ROCHESTER, N. Y., ON A COOL DAY IN AUGUST, MAXIMUM TEMPERATURE 76° F.

		Temperature Akron, N. Y.	Temperature Rochester, N. Y.	Increase in Temperature
Can	1	43° F.	55° F.	12° F.
66	$\bar{2}$	440 "	55° "	11° "
66	3	440 "	52° "	80. 11
6.6	4	420 "	53° "	11° "
6.6	5	440 "	55° "	110 "
6.6	6	43° "	53° "	10° "
6.6	7	45° "	55° "	100 "
6.6	8`	46° "	54° "	- 9° "
4.6	9	45° "	54° "	00 "
6.6	10	45° "	55° "	10° "

BACTERIA CONTENTS OF FOREGOING CANS OF MILK AT STARTING AND FINISHING POINTS OF SHIPMENT.

	At Akron, N. Y. Bacteria Per C.C.	At Rochester, N. Y. Bacteria Per C.C.	Increase
Can 1	140,000	230,000	90,000
" 2	$117,000 \\ 96,000$	$250,000 \\ 300,000$	$133,000 \\ 204,000$
" 4	107.000	210.000	103,000
" 5	97,000	225,000	128,000
" 6 " 7	$85,000 \\ 170,000$	$\frac{330,000}{265,000}$	$265,000 \\ 95,000$
" 8	225,000	320,000	95,000
9	130,000	420,000	290,000
" 10	120,000	850,000	730,000
Av	erage Bact. Aver. I Content 127.000 Cont		se 210,000

The above demonstrates that even on a cool day milk shipped at a low initial temperature will very materially increase, in fact almost double in bacteria content.

Storage of Ice Cream Materials.

A SIX DAY TEST ON THE BACTERIAL GROWTH IN UNPASTEURIZED CREAM STORED AT 32°F. IN THE COLD ROOM OF AN ICE CREAM PLANT.

First day	Can 1 2 3	Bacteria Per C.C. 12,000,000 10,500,000 12,500,000
Third day	" 1 " 2 " 3	$\substack{12,800,000\\10,800,000\\13,000,000}$
Fourth day	" 1 " 2 " 3	$\substack{12,000,000\\9,000,000\\10,000,000}$
Fifth day	" 1 " 2 " 3	$\substack{14,800,000\\10,000,000\\14,500.000}$
Sixth day	" 1 " 2 " 3	$\substack{17,800,000\\12,200,000\\13,500,000}$

The above table shows a material increase in bacteria in unpasteurized cream in storage at 32° F. starting on the sixth day. This is a longer period than cream is commonly stored in the ice cream factory.

It'should be borne in mind that only a small percentage of ice cream manufacturers have artificial refrigeration, therefore, the best temperature of storage obtainable by many ice cream factories is 40° F. to 50° F. and their

milk and cream storage facilities are confined to ice tanks or ice boxes.

The Bacteria Contents of Other Ice Cream Materials.

The following gelatine analyses were made by weighing out one gram of gelatine on a sterile filter paper, which was afterwards used funnel fashion to pour the gelatine into a 99 cubic centimeter water blank which had been warmed up slightly. After the warm water had taken the gelatine into solution the bottle was considered to contain a 1-100 dilution and the test proceeded with accordingly:

BACTERIA CONTENTS OF RAW GELATINE AS RECEIVED FROM MANUFACTURER OR JOBBER.

Sample	Bacteria Content Per Gram	Sample	Bacteria Content Per Gram
1	1,150,000	14	29,000,000
$\frac{1}{2}$	$2,050,000 \\ 2.850,000$	$\begin{array}{c} 15 \\ 16 \end{array}$	$1,600,000 \\ 20,000,000$
4 5	45,000	17	28,500,000
5 6	2,370,000 200	$^{18}_{19}$	$25,000,000 \\ 11,000,000$
6	3,500	20	16,000,000
8 9	4,000	21	600
10	$20,000,000 \\ 30,000,000$	22 23	$^{1,200}_{14,000}$
11	75,000	24	200
$^{12}_{13}$	$30,000 \\ 200,000$	$\begin{array}{c} 25 \\ 26 \end{array}$	$\frac{200}{100}$

The last six samples are table gelatines. The preceding samples are ice cream gelatines.

The Preparation of Raw Gelatine For Use In Ice Cream.

This is properly done by bringing the desired amount of water to the point where it boils vigorously and then shutting the steam off. The gelatine should then be poured into the cooker. A large part of it will immediately dissolve and a slight stirring will cause the rest to do the same. The gelatine is immediately poured into the ice cream. This process, which is followed in the modern plants, secures very satisfactory results and renders certain the almost complete destruction of the bacteria in the raw gelatine. The bacteria content of gelatine prepared in this fashion is rarely over 2,000 bacteria per cubic centimeter.

Bacteria Content of Sugar.

Analyses of sugar secured from several ice cream

plants were practically negative in that they contained practically no bacteria. Molds, however, were occasionally present.

BACTERIA CONTENT OF VANILLA.

Effect of Mixing And Freezing Processes on the Bacteria Content of Ice Cream.

It is a generally recognized fact that agitation of a milk sample produces an apparent increase of bacteria in the same, due to the breaking up of clumps, which, had they remained intact, would have produced only one colony when plated. In cream there is an added incentive toward the clumping of bacteria and a consequent uneven distribution, owing to its heavy, viscid nature.

Experiments made at the Iowa Experiment Station while the writer was working on the effect of freezing on Lactic Acid bacteria in "Lacto," a frozen product made of clabbered milk, and originated at that Station, revealed an enormous apparent increase in these bacteria in the frozen lacto as compared with the unfrozen material. Much of the increase I ascribed to the breaking up of clumps of coagulated milk, although prior to freezing, the mixed material was carefully strained through a very fine meshed strainer. How much of the increase was due to the breaking up of aggregates of bacteria, I would not attempt to say.

After noticing on many occasions a marked increase in the bacterial content of the frozen ice cream as made in commercial plants over the mixed materials, I concluded that the increase was due to the agitation received in the mixer or in the freezers.

INFLUENCE OF MIXING PROCESS ON BACTERIAL CONTENT OF ONE HUNDRED AND SEVENTY-FIVE GALLONS OF ICE CREAM MIXTURE

	CHILLIAN CHILIONS OF	ICE CREAM MIXTURE.
Experiment	Average Number of Bacteria before Mixing	Average Number of Bacteria after Freezing
1 2 3 4 5	22,500,000 19,000,000 25,500,000 30,000,000 39,000,000	14,500,000 20,000,000 26,500,000 28,000,000 38,000,000

From these tests it can be concluded that the agitation of the paddles in the mixer is not sufficient to create an apparent bacterial increase in the materials being mixed. This condition, however, can be brought about by holding the materials in the mixer for a much longer period of time than is usually the custom.

Effect of Agitation In Freezer on Bacteria Content of Ice Cream.

All the experiments following were made under practical conditions except that the hopper from which the unfrozen sample was taken and the freezer through which the cream passed were made practically sterile by the use of boiling hot water. The time of freezing (six to eight minutes) and the freezing temperature (10° F.) were not changed from the daily routine. All results are the averages of the results on two or more samples.

	Bacteria Per C.C.	Bacteria Per C.C.	Increase of	Decrease of
	in Unfrozen Mix.	in Ice Cream	Bact. Per C.C.	Bact. Per C.C.
Test 1	13,725,000	22,900,000	9,175,000	
Test I	16,450,000	25,400,000	8,950,000	
9	2,925,000	2,255,000	8,000,000	670,000
ى ك	2,125,000	1,950,000		175,000
4		7,330,000	330,000	110,000
9	7,000,000	7,230,000	4,230,000	
0	3,000,000			
2 3 4 5 6 7 8 9	3,500,000	5,500,000	2,000,000	
0	860,000	1,160,000	300,000	
	725,000	1,630,000	900,000	
10	720,000	2,310,000	1,590,000	
11	5,000,000	6,600,000	1,600,000	
12	5,400,000	5,870,000	470,000	400.000
13	1,800,000	1,413,000		400,000
14	1,675,000	1,750,000	75,000	
15	1,950,000	2,120,000	170,000	
16	4,900,000	7,500,000	2,600,000	
17	3,650,000	6,200,000	2,550,000	
18	7,500,000	15,000,000	7,500,000	
19	5,700,000	10,500,000	5,000,000	
20	1,200,000	1,700,000	500,000	
21	6,500,000	15,000,000	8,500,000	
22	8,500,000	12,000,000	3,500,000	
23	13,200,000	13,000,000		200,000
24	9,500,000	17,800,000	8,300,000	
25	11,200,000	12,500,000	1,300,000	
26	530,000	650,000	130,000	
27	200,000	240,000	40,000	
28	600,000	700,000	100,000	
29	370,000	570,000	270,000	
30	150,000	650,000	500,000	
31	170,000	520,000	350,000	

The above results readily prove that the rapidly revolving dashers in the ice cream freezer, by their action upon clumps of bacteria produce an apparent increase in the total number of bacteria in the frozen ice cream.

Increase Experiment In Which All the Materials of a Batch of Ice Cream Were Tested Prior to Mixing.

	MIL	K.	
Can 1 " 2 " 3	Bacteria Per C.C. 10,000,000 6,000,000 9,000,000	Can 4 " 5	Bacteria Per C.C. 10,000,000 140,000,000
	CRE	AM.	
Can 1 " 2 " 3	Bacteria Per C.C. 40,000,000 2,000,000 2,700,000	Can 4 " 5 " 6	Bacteria Per C.C. 6,000,000 1,500,000
	CONDENSI	ED MILK.	
Can 1	Bacteria Per C.C. 40,000,000 7,000,000	Can 3	Bacteria Per C.C. 10,000,000

OTHER MATERIALS.

Gelatine—1,000 bacteria per cubic centimeter. Sugar—No bacteria; a few molds. Vanilla—100 bacteria per cubic centimeter.

BACTERIAL CONTENT OF MIXED MATERIALS IN MIXER. Average of two samples—25,500,000 bacteria per cubic centimeter.

BACTERIAL CONTENT OF MIXED MATERIALS TAKEN FROM HOPPER
ON TOP FREEZER.

Freezer No. 14 Freezer No. 15 26,500,000 26,000,000

BACTERIAL CONTENT OF THE FROZEN ICE CREAM. Freezer No. 14 Freezer No. 15 40,500,000 46,500,000

EFFECT OF STORAGE TEMPERATURES ON BACTERIAL CONTENT OF ICE CREAM MADE IN ABOVE EXPERIMENT IN FREEZERS 14 AND 15 FROM TESTED MATERIALS. AVERAGE STORAGE TEMPERATURE, ZERO FAHRENHEIT.

	Freezer 14	T-	reezer 15
Storage	Bacteria Per C.C.	Storage	Bacteria Per C.C.
1st day	40,500,000	1st day	46,500,000
3rd "	42,000,000	3rd " 4th "	39,500,000 19,000,000
4th "	$18,500,000 \\ 21,500,000$	5th "	26,000,000
6th "	35,000,000	6th "	28,000,000
8th " 10th "	36,000,000 37,000,000	10th "	33,000,000
14th "	21,800,000	14th "	14,700,000
20th "	16,500,000		

Disregarding the rise and fall of the number of bacteria from day to day due to unequal distribution, it can be seen that there is a gradual decline of the number of bacteria in the stored ice cream beginning with the first day of storage.

EXPERIMENT SHOWING EFFECT OF ZERO FAHRENHEIT STORAGE TEMPERATURES ON ICE CREAM OF LOW BACTERIA CONTENT.

	1st Day	8th Day
Can 1	55,000	52,000
" 2	49,000	42,000
" 3	55,000	48.000

A slight steady decline in the numbers of bacteria is apparent in the above results.

Distribution of Bacteria In Ice Cream.

BACTERIAL CONTENTS OF VARIOUS SAMPLES FROM THE CONTENTS OF TEN-GALLON ICE CREAM FREEZERS.

	Freezer 1		Freezer 2
Sample	Bacteria Per C.C.	Sample	. Bacteria Per C.C.
123456789	20,000,000 24,000,000 14,000,000 23,000,000 16,500,000 20,000,000 31,000,000 23,700,000 29,500,000	1 2 3 4 5 6	21,400,000 25,500,000 29,600,000 27,000,000 25,000,000 24,000,000
10	27,600,000		

BACTERIA CONTENTS OF SAMPLES FROM VARIOUS PORTIONS OF A CAN OF ICE CREAM.

Sample	Can 1 Bacteria Per C.C.	Sample	Can 2 Bacteria Per C.C.
1	7.600,000	1	14.500.000
$\frac{1}{2}$	9,500,000	$\frac{1}{2}$	21,000,000
	13,500,000	3	16,000,000
4	17,500,000	4	18,500,000
5	9,000,000	5	14,000,000
7	Widest Variation	W	idest Variation
9,900,0	000 Bacteria Per C.C.	7,000,00	0 Bacteria Per C.C.

The results in this and the preceding table show that the distribution of bacteria in ice cream is markedly uneven.

The following bacteriological analyses of the product of a large commercial ice cream plant operated in a most cleanly fashion, show that such plants turn out ice cream of high bacteria content despite their many precautions. It can also be seen that the bacteria content of the ice cream varies greatly, both on the same day and succeeding days:

It can safely be said that of the numbers of bacteria recorded in the following table that only an infinitesimal percentage were due to the utensils in the ice cream plant. The ice cream was positively manufactured under the best conditions obtainable in the ice cream industry to-day:

BACTERIA CONTENTS OF ICE CREAM MADE ON SUCCESSIVE DAYS IN A SANITARY ICE CREAM PLANT.

	2	SANITARI ICE CREAM FIJANI	•
Dat	te	Sample	Bacteria Per C.C.
August		1	11,000,000
zi ugust	1.1. 011	$\tilde{2}$	10,000,000
		3	14,000,000
		$\bar{4}$	16,000,000
		5	15,000,000
		6	20,000,000
4.4	12th	1	5,000,000
		2	20,000,000
		3	15,000,000
		4	19,000,000
4.6	13th	1	1,600,000
		$\frac{2}{2}$	2,500,000
		3	1,500,000
		4	3,000,000 $10,000,000$
4.6	14th	1	
		$\frac{2}{2}$	$12,000,000 \\ 11,000,000$
		3	16,000,000
		4	2,500,000
		3 0	1,500,000
		<u>0</u>	3,000,000
46	15th		1,200,000
**	Totu	1	1,000,000
		4 6	3,000,000
64	16th	1	5,000,000
	10111	$\tilde{2}$	10,000,000
		4	8,000,000
		ริ้	5,000,000
		7	11,000,000
6.6	18th	i	20,000,000
	2000	2	17,000,000
		4	16,000,000
		6	13,500.000
		7	14,000,000
		8	15,500,000
4.6	19th	$\frac{2}{2}$	10,000,000
		3	20,000,000
		4	18,000.000
4.6		<u>'</u>	$14,000,000 \\ 12,500,000$
* *	20th		25,000,000
		2	18,000,000
		4	20,000,000
		9 e	22,000,000
		7	17,000,000
		ģ	15,000,000
66	22n	3	4.000,000
	2211	4	5,000,000
		ŝ	5,500,000
		6	6.000,000
		123345612334123341234567146124571246782347124567834567	4,000,000
		•	

Given raw materials of low bacteria content it can be said in absolute assurance that the ice cream manufacturer can produce with great ease ice cream of low bacteria content.

Report on Ice Cream Examinations

S. C. PRESCOTT

PROF. S. C. PRESCOTT'S REPORT.

Boston, March 4, 1914.

Walter J. Carlin, Esq., 2 Rector St., New York City.

Dear Sir.—Attached hereto are the figures for the examination of two lots of ice cream—one a very high grade product, obtained from one of our best caterers, the other a commercial sample manufactured by one of the largest ice cream dealers in the city. These have been examined with reference to the number of bacteria developing at room temperature and body temperature upon several different media as indicated, and we have used in this investigation two different lots of media, made in exactly the same way and differing only in that one of them has been kept in storage in our ice-chest for a period of a week longer than the other. The age at the time of use was for the media marked "old" ten days, and for the media marked "new." three days. The examinations have been carried out in three different dilutions in order to observe what variations, if any, may be traced merely to difference in dilution of the sample.

The plots following the tables are in each case, I believe, self-explanatory, and have been made using the figures in each case which judgment would dictate to be the most reliable—namely—those dilutions which give from 25 to 200 or 300 bacteria per plate. The samples marked A_1 , A_2 , A_3 were all taken from the same general

location, and might be regarded as each forming a fraction of the top portion of the freezer. The sample marked B was taken from a point lower down in the freezer; C from a still lower layer, and D from the bottom. In this way we can determine differences, if any exist, in the portion of the freezer used. I think you will note both from the tables and the plots that it would be practically impossible to select any particular spoonful which could be taken as representing the whole mass, and you will also find that the age of the medium sometimes reacts one way and sometimes the other, but that in general the age is largely in favor of the newer or fresher medium.

Very truly yours,

Samuel C. Prescott.

EXAMINATION OF VANILLA ICE CREAM. LOT 1, CATERER.

Determination of Effect of Different Media, Different Dilutions and Different Temperatures of Incubation on Numbers of Bacteria.

SAMPLE A1.

		Bacteria per	c.c.
	Dilution		Dilution
Medium Temp.	1:10,000	1:100,000	1:1,000,000
New Meat agar37°	51	4	0
_	78	spr.	
20°	192	21	6
Old Meat agar37°	$\begin{array}{c} 121 \\ 52 \end{array}$	19	2 6 1 0
Old Meat agai	61	$\frac{2}{4}$	9
20°	184	$2\hat{9}$	spr.
	240	19	3
New Extract agar37°	46	3 2	0
20°	$\frac{53}{136}$	2	2
20	164	$\begin{array}{c} 24 \\ 25 \end{array}$	Z 2
Old Extract agar37°	32	• 1	2 3 0 3 3 2 0
		0	3
20°	138	16	3
New Casein agar37°	$\frac{128}{19}$	23 2 2 6	2
21011 Outsour again	23 22 19	5	16
Old Casein agar37°	<u>5</u> 2	$\bar{6}$	17
	19	5	5
New Dextrose37°	40	Acid 40 1	Acid Acid
Litmus agar	spr.	40 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Old Dextrose37°	11	11 4	4 spr
New Lactose37°	3	3 1	o spr
New Lactose37°	$\frac{12}{2}$	11 0	0 0
Litmus agar37°		2 spr.	0 spr
Litmus agar	spr.	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Litmus agar	5 neg.	5 neg.	5 neg.
Old Bile37°	5 neg.	5 neg.	5 neg.

SAMPLE A2.

		Bacteria per	: c.c.	
	Dilution	n Dilution	Dilution	
Medium Ter	mp. 1:10.000	1:100,000		
New Meat agar3	7° spr.	6	spr.	
	72	10	0	
20	0° 360	spr.	4	
012 15004 0 000	199	20	8	
Old Meat agar37	7° spr. 71	9	$\frac{2}{2}$	
9()° 224	$\begin{array}{c} 108 \\ 32 \end{array}$	4 8 2 2 3 3	
-	145	$\frac{32}{26}$	8 3	
New Extract agar37	° 63	6	0	
	40	7	1	
20		29	<u>6</u>	
Old Extract agar37	$^{237}_{52}$	spr.	1 6 7 1 2 6 2 5 1 0	
Old Dattact agai	$1\overline{5}\overline{6}$	3	1	
20)° 171	18	6	
	169	22	ž	
New Casein agar37	7° 29 25 7° 62	10	5	
Old Casein agar37	20 20	$\frac{0}{2}$	1	
Old Caselli agai	30	2 9	0	
		Acid	Acid	Acid
New Dextrose37	7° 25 32 55	25 spr. 32 9	0	
Litmus agar	32	32 9	9 1	i
Old Dextrose37	° 55	55 4	4 0	0
New Litmus37	spr.	20 3	3 I	1
Lactose agar	19	19 3	$egin{array}{cccccccccccccccccccccccccccccccccccc$	0
Lactose agar37		$\begin{array}{ccc} 19 & 3 \\ 22 & 3 \end{array}$	$\tilde{1}$ $\tilde{2}$	ő
Lactose agar	35	23 8	$\bar{7}$ $\bar{1}$	ĭ
New Bile3	7° 5 neg.	5 neg.	5 neg.	
Old Bile37	7° 5 neg.	5 neg.	5 neg.	

SAMPLE A3.

		Bacteria per o		
	Dilution	Dilution	Dilution	
Medium Temp.	1:10,000	1:100,000	1:1,000,000	
37 35 200- 200	63	8	spr.	
New Meat agar37°	spr.	š	4 5	
20°	151	spr.	5	
	284	40	spr.	
Old Meat agar37°	spr.	27	4	
	39	$\frac{16}{30}$	4 8 6 5	
20°	315	34	š	
Name Entugat agay 37°	spr. 27	3	ŏ	
New Extract agar37°	46	ő	Ó	
20°	$13\overset{\circ}{2}$	$\begin{array}{c} 27 \\ 28 \end{array}$. 3	
	165	28	6	
Old Extract agar37°	30	4	0 0 .3 6 3	
	12	4 8 27	7	
20°	$\begin{array}{c} 156 \\ 130 \end{array}$	spr.	spr.	
New Casein agar37°	74	11	2	
New Cascin agai	$\dot{5}\ddot{6}$		0	
Old Casein agar37°	43	9	44	
	55	5	Acid 8 Acid	
		Acid 2	Acid · Acid 2 1	
New Litmus37°	spr. 36	35 3	3 5 5	
Dextrose agar37°	spr.	spr.		
Dortrose agar	73	73 5	5 spr	
Dextrose agar 37°	79	78 9	5 spr 5	
Lactose agar	69	68 3	1 0 1	
Lactose agar37°	63	60. 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Lactose agar	49	49 14	14 2 2 4 neg.	
New Bile	4 neg.	4 neg. 1 pos. 5 p. c.	1 pos. 5 p. c.	
Old Bile	. 15 p. c. 5 neg.	5 neg.	5 neg.	
Old Dile	o neg.	J Hog.		

SAMPLE B.

			Ва	cteria per	c.c.		
		Dilution		Dilution		Dilution	
Medium	Temp.			1:100,000	1	:1,000,00	00
	-	,		,		, ,	
New Meat agar	37°	61		8 7		5 4	
		60		95		spr.	
	20°	215		$\frac{25}{30}$		spr.	
Old Meat ogen	970	spr. spr.		spr.		1	
Old Meat agar	01	39		spr.		1	
	20°	spr.		spr.		7 5	
		216		spr.		5	
New Extract agar	37°	5		10		11	
		8		6		10	
	20°	140		23 16		$\frac{1}{6}$	
	0.50	156		5			
Old Extract agar	37	35 19		44		3	
	20°	141		$\frac{5}{24}$		7	
	,,	135		$\overline{26}$		6 3 7 7 5	
New Casein agar	37°	60		. 10		5	
Tion Cancer again	-	80		$1\underline{6}$		11	
Old Casein agar	37°	37		7		$\frac{1}{2}$	
		34		4	4	2	Acid
	0.77	4 =	Acid 47	7	Acid 7	9	0
New Litmus	3(*	47	56	4	4	$\frac{2}{1}$	ĭ
Dextrose agar Old Litmus	970	$\frac{56}{32}$	31	6	$\hat{6}$	î	Õ
Doytrosa agar	•) 4	54	54	6 5	$\check{5}$	$\bar{0}$	0
Dextrose agar New Litmus	37°	~ *		1	0	0	0
Lactose agar				2	0	4	0
Lactose agar Old Litmus	37°	23	20	1	1	0	0
Lactose agar		29	28	0	0	0	0
New Bile	37°	5 neg.		5 neg.		5 neg.	
Old Bile	37	5 neg.		5 neg.		5 neg.	

SAMPLE C.

			Bacteria per	c.c.		
		Dilution	Dilution		Dilutio	n
Medium	Temp.	1:10,000			1:1,000,0	
New Meat agar	37°	51	spr.		1	
	20°	$\begin{array}{c} 66 \\ 175 \end{array}$	spr. 19		0	
017.761		169	$\overline{19}$		$\frac{1}{2}$	
Old Meat agar	37°	73 71	$\frac{2}{6}$		0	
	20°	74	10		$\begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 3 \\ 0 \end{array}$	
New Extract agar	37°	$\begin{array}{c} 66 \\ 20 \end{array}$	$\frac{7}{6}$		0	
and a second a second		17	4			
	20°	$134 \\ 149$	16 17		$egin{pmatrix} 0 \ 2 \ 2 \end{bmatrix}$	
Old Extract agar	37°	12	0		spr.	
	20°	$\begin{array}{c} 9 \\ 112 \end{array}$	3 16		2	
N. O		spr.	10		1	
New Casein agar	37°	5 7	4		$\frac{\bar{3}}{1}$	
Old Casein agar	37°	10	-4 1		4	
		5	Acid 6	Acid	2	A -2.3
New Litmus	37°	spr.	1	1	1	A cid
Dextrose agar Old Litmus	37°	$\begin{array}{c} 22 \\ 23 \end{array}$	$\begin{array}{ccc} & & & 1 \\ 22 & & 1 \\ 23 & & 1 \end{array}$	0	0	0
Dextrose agar New Litmus		20	20 0	ő	spr.	
Lactose agar	37°	6 8	$\begin{array}{ccc} 6 & 1 \\ 4 & 0 \end{array}$	0	0	0
Cold Litmus	37°	12	10 0	0	0	0
Lactose agar New Bile	370	12 5 neg.	11 1 5 neg.	1	5 700	0
Old Bile	37°	5 neg.	5 neg.		5 neg. 5 neg.	

SAMPLE D.

			В	acteria per	c.c.		
		Dilution		Dilution		Dilutio	n
Medium	Temp.	1:10,000		1:100,000		1:1,000,0	
New Meat agar	37°	59		2		0	
	20°	spr. 199 172		$\frac{2}{2}$ $\frac{19}{27}$		1 1	
Old Meat agar	37°	spr.		6		$\frac{1}{1}$	
	20°	82 spr.		spr.		$\begin{smallmatrix}2\\1\\2\\3\end{smallmatrix}$	
New Extract agar	37°	spr. 19		$\frac{22}{1}$		spr. 4	
	20°	$\begin{array}{c} 20 \\ 161 \\ 126 \end{array}$		$\begin{array}{c} 7 \\ 24 \\ 44 \end{array}$		0	
Old Extract agar	37°	5 12		spr.		$\frac{1}{3}$	
	20°	99		10		$\frac{1}{2}$	
New Casein agar	37°	$^{122}_{11}$		11 5		$\begin{array}{c} 2 \\ 1 \\ 5 \\ 2 \\ 6 \end{array}$	
Old Casein agar	37°	5 9		5 8 1		$\frac{2}{6}$	
		11	Acid	1	Acid	5	Acid
New Litmus	37°	$\frac{16}{12}$	16 12	1	0	2	. 2
Dextrose agar Old Litmus	37°	spr.	22 22	spr.	0 2	0	0
Dextrose agar New Litmus	37°	22 spr.		0 3	$\frac{0}{2}$		• •
Old Litmus		27 4	· · 7 3	Ö 0	$\frac{\bar{0}}{0}$	0	
Lactose agar New Bile	37°	13	9	1 spr.	0	spr.	Ö
Old Bile	37°	5 neg. 5 neg.		5 neg. 5 neg.		5 neg. 5 neg.	

EXAMINATION OF VANILLA ICE CREAM. LOT 2, COMMERCIAL.

Determination of Effect of Different Media, Different Dilutions and Different Temperatures of Incubation on Numbers of Bacteria Found.

SAMPLE A1.

			Bacteria per	c.c.		
	Dilution		Dilution		Dilution	า
Medium Temp.	1:10,000		1:100,000		1:1,000.0	
New Meat agar37°	1,360		233		13	
_	2.148		$\frac{253}{253}$		spr.	
20°	2,148 $2,232$		217 -		35	
017.75	2,052		231		spr.	
Old Meat agar37°	1,170		spr.		23	
20°	$1,800 \\ 1,500$		199		19	
20	1,560		$\frac{231}{219}$		$\begin{array}{c} 32 \\ 28 \end{array}$	
New Extract agar37°	1.125		$\tilde{1}\tilde{0}\tilde{2}$		15	
	1,060		34		17	
20°	1,058		191		27	
Old Eleterations of the	1,416		132		33	
Old Extract agar37°	$\frac{1,788}{900}$		$\frac{90}{108}$		18	
20°	1,050		190		19 33	
20	1,725		198		27	
New Casein agar37°	890		91		$\tilde{1}\dot{6}$	
011 0 1	1,530		70		14	
Old Casein agar37°	1,530		130		16	
	1,524	Acid	126	A =2.3	spr.	4 -2 3
New Dextrose37°	1.210	1,200	982	Acid 48	0	Acid 0
Lactose agar	960	957	90	85	ŏ	ő
Lactose agar37°	890	887	120	115	ĭ	ŏ
Lactose agar	460	457	106	96	spr.	0
New Latmus37°	685	680	spr.	• •	1	0
Lactose agar37°	$\frac{760}{930}$	$757 \\ 925$	92 89	88 83	spr.	* *
Lactose agar	spr.	920	107	95	0 3	0 3
Lactose agar	0		0	00	ő	U
	Ō		Ō		ŏ	
011 711	0		0		0	
Old Bile37°	0		0		0	
	0		0		0	
	0		U		, 0	

SAMPLE A2.

	SAM	PLE A	2.			
		1	Bacteria per	c.c.		
	Dilution		Dilution		Dilution	1
Medium Ten	np. 1:10,000		1:100,000]	1:1,000,0	00
New Meat agar37	° 2.004		285		43	
	2,115		285		28	
20			249		38	
Old Meat agar37	1,764		$\frac{258}{265}$		$\frac{29}{30}$	
Old Meat agai	$^{\circ}$ 1,890 2,240		261		30 31	
20	° 2,088		223		30	
	1.266		196		31	
New Extract agar37					::	
20	1,308		$151 \\ 214$		17	
20	$^{\circ}$ 1,550 1,323		$\frac{214}{172}$		$\begin{array}{c} 28 \\ 25 \end{array}$	
Old Extract agar37	° 1,590		$2\dot{1}\dot{2}$		29	
	1,174				30	
20			$2\dot{3}\dot{5}$		44	
New Casein agar37	° 1,968 1,164		$\begin{array}{c} 225 \\ 181 \end{array}$		34 47	
new casem agai	988		170		$\frac{1}{22}$	
Old Casein agar37	° 1,468		172		$1\overline{0}$	
	912		211		13	
North Tidentina 07	0 540	Acid	00	Acid	4.4	Acid
New Litmus37	° 740 530	$\frac{612}{418}$	$\frac{82}{59}$	69 53	14 spr.	7
Dextrose agar37	° 1,140	1,123	111	93	spr.	• •
Dextrose agar	spr.		76	64	spr.	
Dextrose agar	° 1,000	988	107	102	24	24
Lactose agar37	° 684	674 773	$\frac{112}{106}$	109 86	24	20
Lactore sour	800	780	121	118	7	20
Lactose agar	• 000	100	0	110	ó	-
	0		0		ŏ	
013 Dil.	0		0		0	
Old Bile37	° 0		0		0	
	0		ŏ		0	
	U				U	

SAMPLE A3.

	SAME	DE A),			
		В	acteria per	c.c.		
	Dilution		Dilution		Dilution	
Medium Temp.	1:10,000		1:100,000		1:1,000,000	
New Meat agar37°	880		180		15	
	940		spr.		19	
20°	$\frac{1,827}{1,974}$		247		45	
Old Meat agar37°	1,974		$\begin{array}{c} 248 \\ 192 \end{array}$		38 8	
Old Meat agail	1,020		190		6	
20°	2,418		$\frac{242}{247}$		42	
	2,418 2,289				spr.	
New Extract agar37°	820 960		63			
20°	1,386		$\begin{array}{c} 72 \\ 166 \end{array}$		$\frac{10}{6}$	
20	1,197		166		29	
Old Extract agar37°	588 553		196		10	
· · · · · · · · · · · · · · · · · · ·	553		150		9 19	
20°	990 1,056		$\begin{array}{c} 168 \\ 208 \end{array}$		$\frac{19}{26}$	
New Casein agar37°	780		260		$\frac{20}{21}$	
	870		300		14	
Old Casein agar37°	900		120		12	
	840	A =2.0	110	A of d	13	A of a
New Dextrose37°	ens	A cid 839	155	A cid 115	6	Acid
Litmus agar	spr. 850	000	0.4	76	11	9
Old Dextrose37°	1380	1336	4.00	114		
Litmus agar	spr. 910	896	128 75 146 spr.*	$\frac{114}{70}$	13	ii
New Litmus37°	$\frac{910}{1210}$	1206	146	129	18	16
Old Litmus	900	$\frac{1206}{890}$	spr.*	104	spr. 18	i 8
New Litmus agar Old Dextrose 37° Litmus agar New Litmus 37° Lactose agar Old Litmus 37° Lactose agar New Bile 37°	660	636	85	81	8 0	1
New Bile37°	0		0		0	
	0		. 0		0	
Old Bile37°	0		0		0	
Old Blie	ő		ő		Ŏ.	
	0		0		0	
* = alkaline.	0.4357	3T TI T				
* = alkaline.	SAMJ	PLE B		0.0		
* = alkaline.			acteria per		Till41	
	Dilution		acteria per Dilution		Dilution	
Medium Temp.	Dilution 1:10,000		acteria per Dilution 1:100,000		1:1,000,000	
	Dilution 1:10,000 975		acteria per Dilution 1:100,000 114		1:1,000,000	
Medium Temp.	Dilution 1:10,000 975		acteria per Dilution 1:100,000 114 115		1:1,000,000 11 18	
Medium Temp. New Meat agar37° 20°	Dilution 1:10,000 975 1,008 1,890	В	acteria per Dilution 1:100,000 114 115 205 205		1:1,000,000 11 18 22 30	
Medium Temp. New Meat agar37°	Dilution 1:10,000 975 1,008 1,890	В	acteria per Dilution 1:100,000 114 115 205 205 134		1:1,000,000 11 18 22 30 18	
Medium Temp. New Meat agar37° 20° Old Meat agar37°	Dilution 1:10,000 975 1,008 1,890	В	acteria per Dilution 1:100,000 114 115 205 205 134 128		1:1,000,000 11 18 22 30 18 spr.	
Medium Temp. New Meat agar37° 20°	Dilution 1:10,000 975 1,008 1,890	В	acteria per Dilution 1:100,000 114 115 205 205 134 128 233		1:1,000,000 11 18 22 30 18 spr. 30	
Medium Temp. New Meat agar37° 20° Old Meat agar37° 20°	Dilution 1:10,000 975 1,008 1,890	В	acteria per Dilution 1:100,000 114 115 205 205 134 128 233 202 122		1:1,000,000 11 18 22 30 18 spr.	
Medium Temp. New Meat agar37° 20° Old Meat agar37° 20° New Extract agar37°	Dilution 1:10,000 975 1,008 1,890	В	acteria per Dilution 1:100,000 114 115 205 205 134 128 233 202 122 133		1:1,000,000 11 18 22 30 18 spr. 30 39 15 24	
Medium Temp. New Meat agar37° 20° Old Meat agar37° 20°	Dilution 1:10,000 975 1,008 1,890	В	acteria per Dilution 1:100,000 114 115 205 134 128 233 202 122 133 155		1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26	
Medium Temp. New Meat agar37° 20° Old Meat agar37° 20° New Extract agar37° 20°	Dilution 1:10,000 975 1,008 1,890	В	acteria per Dilution 1:100,000 1:15 205 205 134 128 233 202 122 133 155 204		1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19	
Medium Temp. New Meat agar37° 20° Old Meat agar37° 20° New Extract agar37° 20° Old Extract agar37°	Dilution 1:10,000 975 1,008 1,890 1,915 spr. 1,400 1,575 1,512 888 888 1,659 1,228 690	В	acteria per Dilution 1:100,000 114 115 205 134 128 233 202 122 133 155		1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26	
Medium Temp. New Meat agar37° 20° Old Meat agar37° 20° New Extract agar37° 20°	Dilution 1:10,000 975 1,008 1,890 1,915 spr. 1,400 1,572 1,512 828 1,659 1,228 690 740 693	В	acteria per Dilution 1:100,000 114 115 205 205 134 128 233 202 122 133 155 204 116 104 174		1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23	
Medium Temp. New Meat agar37° 20° Old Meat agar37° 20° New Extract agar37° 20° Old Extract agar37° 20°	Dilution 1:10,000 975 1,008 1:890 1:915 spr. 1,400 1:575 1,512 888 828 1,659 1,228 690 740 693 1,449	В	acteria per Dilution 1:100,000 1:14 115 205 205 134 128 233 202 122 133 155 204 116 104 174 186		1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16	
Medium Temp. New Meat agar37° 20° Old Meat agar37° 20° New Extract agar37° 20° Old Extract agar37°	Dilution 1:10,000 975 1,008 1,890 1,915 spr. 1,400 1,575 1,512 1,818 828 1,659 1,228 690 693 1,449 1,080	В	acteria per Dilution 1:100,000 1:144 115 205 134 128 233 202 133 155 204 116 104 174 186 146		1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 43	
Medium Temp. New Meat agar37° 20° Old Meat agar37° 20° New Extract agar37° 20° Old Extract agar37° 20° Ncw Casein agar37°	Dilution 1:10,000 975 1,008 1,890 1,915 spr. 1,400 1,575 1,512 888 8,659 1,628 690 740 693 1,449 1,080	В	acteria per Dilution 1:100,000 1:14 115 205 205 134 128 233 202 122 133 155 204 116 104 174 186		1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16	
Medium Temp. New Meat agar37° 20° Old Meat agar37° 20° New Extract agar37° 20° Old Extract agar37° 20°	Dilution 1:10,000 975 1,008 1,890 1,915 spr. 1,400 1,575 1,512 1,818 828 1,659 1,228 690 693 1,449 1,080		acteria per Dilution 1:100,000 1:14 115 205 205 134 128 233 202 122 133 155 204 116 104 174 186 146 133		1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 43 15 16 36	
Medium Temp. New Meat agar37° 20° Old Meat agar37° 20° New Extract agar37° 20° Old Extract agar37° 20° New Casein agar37° Old Casein agar37°	Dilution 1:10,000 975 1,008 1.890 1.915 spr. 1,400 1.575 1,512 888 828 1,659 1,228 690 740 693 1,449 1,080 1,080 1,170 1,635	В	acteria per Dilution 1:100,000 1:14 115 205 205 134 128 233 202 122 133 155 204 116 104 174 186 146 133 92 125	Acid	1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 43 15 16 36	Acid
Medium Temp. New Meat agar37° 20° Old Meat agar37° 20° New Extract agar37° 20° Old Extract agar37° 20° New Casein agar37° Old Casein agar37°	Dilution 1:10,000 975 1,008 1.890 1.915 spr. 1,400 1.575 1,512 888 828 1,659 1,228 690 740 693 1,449 1,080 1,080 1,170 1,635	Acid	acteria per Dilution 1:100,000 1:14 115 205 205 134 128 233 202 122 133 155 204 116 104 174 186 146 133 92 125	Acid 48	1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 43 15 6	Acid 4
Medium Temp. New Meat agar	Dilution 1:10,000 975 1,008 1,890 1,915 spr. 1,400 1,575 1,512 888 828 1,659 1,228 690 740 693 1,449 1,080 1,170 1,635 spr. 360 240	Acid 355	acteria per Dilution 1:100,000 1:14 115 205 205 134 128 233 202 122 133 155 204 116 104 174 186 146 133 92 125 49 36	Acid 48 33 64	1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 43 15 6 spr. 1	Acid 4
Medium Temp. New Meat agar	Dilution 1:10,000 975 1,008 1,890 1,915 spr. 1,400 1,575 1,512 888 828 1,659 1,228 1,659 1,280 740 693 1,449 1,080 1,040 1,170 1,635 spr. 360 240 610	A cid 355 205 600	acteria per Dilution 1:100,000 1:14 115 205 205 134 128 233 202 122 133 155 204 116 104 174 186 146 133 92 125 49 36 64 66	Acid 48 33 64	1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 43 15 6 spr. 1	Acid 4
Medium Temp. New Meat agar	Dilution 1:10,000 975 1,008 1,890 1,915 spr. 1,400 1,575 1,512 888 828 1,659 1,228 690 740 693 1,449 1,080 1,040 1,170 1,635 spr. 360 240 610 700	Acid 355 600 690	acteria per Dilution 1:100,000 1:140,115 205 205 134 128 233 202 122 133 155 204 116 104 174 186 146 133 92 125 49 36 64 66 63	Acid 48 33 64	1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 43 15 6 spr. 1	Acid 4
Medium Temp. New Meat agar	Dilution 1:10,000 975 1,008 1,890 1,915 spr. 1,400 1,575 1,512 888 828 1,659 1,228 690 740 693 1,449 1,040 1,170 1,635 spr. 360 240 610 700 760	A cid 355 205 600	acteria per Dilution 1:100,000 1:14 115 205 205 134 128 233 202 122 133 155 204 116 104 174 186 146 133 92 125 49 36 64 66 63 76	Acid 48 33 64 58 70	1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 43 15 16 36 6 spr. 1 4 11	Acid 4
Medium Temp. New Meat agar 37° 20° Old Meat agar 37° 20° New Extract agar 37° 20° Old Extract agar 37° 20° Ncw Casein agar 37° Old Casein agar 37° New Litmus 37° Dextrose agar 37° New Litmus 37° Dextrose agar 37° New Litmus 37° Old Litmus 37° Lactose agar 37° Lactose agar 37° Lactose agar 37° Old Litmus 37° Lactose agar 37° Old Litmus 37°	Dilution 1:10,000 975 1,008 1,890 1,915 spr. 1,400 1,575 1,512 888 8,659 1,228 690 740 693 1,449 1,080 1,170 1,635 spr. 360 240 610 700 760 spr.	Acid 355 205 600 755	acteria per Dilution 1:100,000 1:14 115 205 205 134 128 233 202 122 133 155 204 116 104 174 186 146 133 92 125 49 36 64 66 63 76 67 5	Acid 48 33 64 58 70	1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 43 15 16 36 6 spr. 1 4 11	Acid 4
Medium Temp. New Meat agar 37° 20° Old Meat agar 37° 20° New Extract agar 37° 20° Old Extract agar 37° 20° Ncw Casein agar 37° Old Casein agar 37° New Litmus 37° Dextrose agar 37° New Litmus 37° Dextrose agar 37° New Litmus 37° Old Litmus 37° Lactose agar 37° Lactose agar 37° Lactose agar 37° Old Litmus 37° Lactose agar 37° Old Litmus 37°	Dilution 1:10,000 975 1,008 1,890 1,915 spr. 1,400 1,575 1,512 888 828 1,659 1,228 690 740 693 1,449 1,040 1,170 1,635 spr. 360 240 610 700 760	Acid 355 600 690	acteria per Dilution 1:100,000 1:140,115 205 205 134 128 233 202 122 133 155 204 116 104 174 186 146 133 92 125 49 36 64 66 63 76 65 62	Acid 48 33 64	1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 43 15 16 36 6 spr. 1 4 11 9 5	Acid 4
Medium Temp. New Meat agar	Dilution 1:10,000 975 1,008 1:890 1:915 spr. 1,400 1:575 1,512 888 828 1,659 1,228 690 740 693 1,449 1,080 1,170 1,635 spr. 360 240 610 760 spr. 490 0	Acid 355 205 600 755	acteria per Dilution 1:100,000 1:140,000 114 115 205 134 128 233 202 122 133 155 204 116 104 174 186 146 133 92 125 49 36 64 66 63 76 5 62 0 0	Acid 48 33 64 58 70	1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 43 15 16 36 6 spr. 1 4 11 9 5 10 0 0	Acid 4 13 10 11 3
Medium Temp. New Meat agar .37° 20° Old Meat agar .37° 20° New Extract agar .37° 20° Old Extract agar .37° 20° New Casein agar .37° Old Casein agar .37° New Litmus .37° Dextrose agar .37° New Litmus .37° Lactose agar .37° Old Litmus .37° Lactose agar .37° Lactose agar .37° New Bile .37°	Dilution 1:10,000 975 1,008 1,890 1,915 spr. 1,400 1,575 1,512 888 828 1,659 1,228 1,659 1,040 1,170 1,635 spr. 360 240 610 700 760 spr. 490 0 0	Acid 355 205 600 755	acteria per Dilution 1:100,000 1:140,000 114 115 205 134 128 233 202 122 133 155 204 116 104 174 186 146 133 92 125 49 36 64 66 63 76 65 62 0 0 0	Acid 48 33 64 58 70	1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 6 spr. 1 4 11 9 5 10 0 0 0	Acid 4
Medium Temp. New Meat agar 37° 20° Old Meat agar 37° 20° New Extract agar 37° 20° Old Extract agar 37° 20° Ncw Casein agar 37° Old Casein agar 37° New Litmus 37° Dextrose agar 37° New Litmus 37° Dextrose agar 37° New Litmus 37° Old Litmus 37° Lactose agar 37° Lactose agar 37° Lactose agar 37° Old Litmus 37° Lactose agar 37° Old Litmus 37°	Dilution 1:10,000 975 1,008 1.890 1.915 spr. 1,400 1.575 1,512 888 8,659 1,228 690 740 693 1,449 1,080 1,170 1,635 spr. 360 240 610 700 760 spr. 490 0 0	Acid 355 205 600 755	acteria per Dilution 1:100,000 1:140,000 114 115 205 134 128 233 202 122 133 155 204 116 104 174 186 146 133 92 125 49 36 64 66 63 76 65 62 0 0 0	Acid 48 33 64 58 70	1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 6 spr. 1 4 11 9 5 10 0 0 0	Acid 4
Medium Temp. New Meat agar .37° 20° Old Meat agar .37° 20° New Extract agar .37° 20° Old Extract agar .37° 20° New Casein agar .37° Old Casein agar .37° New Litmus .37° Dextrose agar .37° New Litmus .37° Lactose agar .37° Old Litmus .37° Lactose agar .37° Lactose agar .37° New Bile .37°	Dilution 1:10,000 975 1,008 1,890 1,915 spr. 1,400 1,575 1,512 888 828 1,659 1,228 1,659 1,040 1,170 1,635 spr. 360 240 610 700 760 spr. 490 0 0	Acid 355 205 600 755	acteria per Dilution 1:100,000 1:140,000 114 115 205 134 128 233 202 122 133 155 204 116 104 174 186 146 133 92 125 49 36 64 66 63 76 5 62 0 0	Acid 48 33 64 58 70	1:1,000,000 11 18 22 30 18 spr. 30 39 15 24 26 19 13 10 23 16 43 15 16 36 6 spr. 1 4 11 9 5 10 0 0	Acid 4

SAMPLE C.

		Bac	eteria per	c.c.		
	Dilution		Dilution		Dilutio	n
Medium Temp.	1:10,000	1	1:100,000		1:1,000,0	
New Meat agar37°	500	-	75		3	0.9
new meat agai	spr.		spr.		11	
20°	870		136		19	
	900		141		30	
Old Meat agar37°	spr.		spr.		spr.	
	spr.		125		19	
20°	1,150		150		$\overline{23}$	
	660		spr.		23	
New Extract agar37°	spr.		34		13	
200	500		22		33	
20°	1,032		156		20	
Old Extract cons. 979	1,134		132		19	
Old Extract agar37°	202 480		32 22 87		213	
90°	1,092		27		$\frac{7}{17}$	
20	1,092		118		10	
New Casein agar37°	220		54		28	
aren Constant agaz (1111110)	$\bar{5}\bar{6}\bar{0}$		61		$\frac{28}{21}$	
Old Casein agar37°	340		49		~6	
	400		$\hat{34}$		š	
		Acid		Acid		Acid
New Litmus37°	427	417	spr.		4	1
Dextrose agar37°	160	5	40	21	1	1
Old Litmus37°	spr.		34	28	alk.	spr.
Dextrose agar	340	330	68	23	$\frac{2}{2}$	1
New Litmus31	378	338	76	54	$\frac{2}{2}$	1
Lactose agar37°	spr. 452	010	56	30	1	0
Leatose poer	850	$\frac{240}{845}$	$\frac{271}{148}$	6	15	11
Lactose agar	0	049	0	1	7	1
New Dife	ő		ŏ		ő	
	ŏ		ŏ		0	
Old Bile37°	ŏ		ŏ		ő	
	Ŏ		ŏ		ŏ	
	Ö		Ŏ		ŏ	

SAMPLE D.

	SAMPI	LE D.			
		Bacteria per	c.c.		
	Dilution	Dilution		Dilutio	n
Medium Temp	0. 1:10,000	1:100,000		1:1,000.0	000
New Meat agar37°	spr.	144		spr.	
_	670	126		29	
20°	1.530	182		41	
Old Meat agar37°	1,920 spr.	$\frac{231}{142}$		46	
Old Meat agai	824	133		spr.	
20°	$1,35\hat{6}$	215		29	
37 77	1,692	spr.		31	
New Extract agar37°	780	73		12	
20°	spr. 1,092	87 160		15	
-0	1.548	146		$\frac{34}{38}$	Ì
Old Extract agar37°	209 spr.	47		17	'
201	240 spr.	48		10	
20°	$\frac{1,596}{1,392}$	$\frac{165}{215}$		39	
New Casein agar37°	not plated	210		47	
Old Casein agar37°	1,392	103		26	
	696	139		21	
New Litmus37°		Acid ,293 34	Acid		Acid
Dextrose agar		,295 54 ,073 spr.	14	$\frac{4}{6}$	0
Dextrose agar37°	1,180 1	,170 35	$\dot{3}\dot{4}$	spr.	**
Dextrose agar37°	970	47	42	5	.1
New Litmus37	520	511 12	10	33	11
Lactose agar37°	$\begin{array}{c} 1,270 \\ 650 \end{array}$,265 23 640 spr.	22	8	1
Lactose agar	spr.	640 spr.	103	spr.	6
Lactose agar37°	` 0	0	100	ő	*,*
	0	0		0	
Old Bile37°	0	0		0	
Old Diff	ő	0		0	
	Ö	ŏ		ő	

Report on Ice Cream Examinations

P. G. HEINEMANN

REPORT ON ICE CREAM EXAMINATIONS MADE OCTOBER AND NOVEMBER, 1913.

P. G. HEINEMANN.

Methods.

The ice cream was bought in gallon cans. The samples were taken as follows:-The paper covering the ice cream was removed and a small layer of ice cream removed from the surface with a sterilized spoon. Four samples were then taken with sterile spoons and the ice cream transferred to sterile petri dishes and allowed to melt at room temperature. A sample was then taken by boring with a sterile glass tube one inch below the surface. The glass tubes used for this purpose were sterilized in test tubes, and after the sample had been taken were replacd in the tubes and the ice cream melted. The test tubes were stoppered with cotton. By using glass tubes as before one sample was taken two inches from surface, one three inches from surface. After these samples were taken the whole column of ice cream was dumped on a piece of sterilized filter paper. Hot water was run on the outside of the can until the ice cream would slip out. After this one sample was taken about three-quarters towards the bottom and two near the bottom. All these were melted in the respective test tubes. Finally two lots of about one half pint each were placed in sterilized beakers and allowed to melt. All samples excepting the two samples in the beakers were liquefied completely before samples were placed in dilution flasks. The two lots in the beakers were allowed to stand long enough to melt the ice cream so that one cubic centimeter could be removed.

The samples were designated as follows:

A1—Sample from beaker.

A2—Sample from beaker.

B1—Teaspoonful from surface.

B2—Teaspoonful from surface.

B3—Teaspoonful from surface.

B4—Teaspoonful from surface.

C1—Bored from two inches below surface.

C2—Bored from three inches below surface.

C3—Bored three-quarters way down.

C4—Bored from surface, about one inch down.

C5—Bored from bottom.

C6—Bored from bottom.

· One cubic centimeter of each sample respectively was transferred to a flask containing 99 cc. sterile water. From this dilution one cubic centimeter was transferred to another flask containing 99 cc. sterile water. makes a dilution of 1:10,000. From this dilution 10 cc. were transferred to a flask containing 90 cc. sterile water. All flasks were of course thoroughly shaken and all usual bacteriological manipulations carried on in proper shape. From the two dilutions 1:10,000 and 1:100,000 each one cc. was transferred to each of four petri dishes. To two of each set of four petri dishes one cc. of 1% litmus solution was added. This litmus was added with as much care as possible to avoid the mixing of the bacterial dilution with the litmus solution, the latter having some restraining effect upon bacteria. Mixing was effected after addition of the liquified agar. Two of each set of four petri dishes were used for plain agar, the other two for dextrose-litmus-agar. Plain agar is the

method used by the Committee on Standard Milk Analysis of the American Public Health Association and by the Government experts. Dextrose-litmus-agar favors the multiplication of lactic streptococci, the dextrose being an almost needed pabulum and the litmus facilitating the counting, since lactic streptococci form red colonies in litmus. After the agar had hardened the plates were incubated at 37 degrees C. for two days, and then the colonies counted. A separate count was made on all dextrose-litmus-agar plates to be able to get a relation of the acid forming bacteria to the others. This is especially important, since ice cream manufacturers often allow the cream to stand, which permits the multiplication of these acid organisms, which are entirely harmless. Colon bacilli would also multiply to some extent this way.

Tables 1 to 6 give the detailed counts. All plates of 1:10,000 and of 1:100,000 were counted, the dextrose-litmus-agar plates were counted twice in order to get the acid colony count. The dilution of 1:100,000 was not satisfactory, being too high and consequently giving high counts. The dilution 1:10,000 was satisfactory throughout. In the tables all these counts are given for the sake of completeness, but only the six counts of each sample were considered being of value. These six counts then were:-Two duplicate agar plates, which were averaged in a separate column. Two duplicate dextrose-litmusagar plates, which were averaged in a separate column. The acid colonies on the two dextrose-litmus-agar plates, which were averaged in a separate column and then the percentage of acid colonies to the total estimated. first six tables are too voluminous to give a definite idea of the results. In table 7 the results are condensed and show the total numbers of the bacteria found in a clear fashion.

EXAMINATION OF ICE CREAM, LOT 1, CATERER, OCTOBER 26. PRICE \$3.00. TABLE 1

EXPLANATION—A stands for plain agar, DLA for dextrose-litmus-agar. All figures should be multiplied by 1000.

Per cent. acid col. count	54	44	68	60		42		44		23	39		11		25		44		40
Average acid	175	750	450	650		200		350		350	650		45		200		150		1300
Acid col.	200 150	1,000	500 400	500 800		200		400 300		000 004 000	700	i i	50 40		200 200 200	-	150 150	6	000000000000000000000000000000000000000
Average	210 395	500	725	1,050	410	480	009	800	750	1,500	1,650	195	415	750	900	105	340	450	750
Colony	2550 170 2450 250 250	400 600 1,800 1,600	800 1,200 1,100	900 1,200 1,900 2,300	400 420	480 spreader	200	000 1000 1000	800	1,500	1,500	210 210 210 210	080	700	spreader	0000	000 000 000	0000	008
Plate No.	ಗಣಗಣಕ	-ସ=ସ	-a-a-	⊣ଉ⊣ଉ	H01	-01-	⊣≎ा न	⊣¢1=	H 01 m	-01-	H 01 F	- C1	- 61 -	H GN 7	H 671 F	H 601 T	101-	H 04 H	401
Kind Med.	DLA	A DLA	A	A DLA	A	DLA	A	DLA	A	DLA	DIA	A	DLA	A	DLA	A	DLA	A	DLA
Dilution	10,000	100,000	10,000	100,000	10,000		100,000		10,000		100,000	10,000		100,000		10,000		100,000	
No.	T ====================================	,	63			Т				ପ ଅ	J		ಞ				4		
Kind of Sample	Each sample = $\frac{1}{2}$ pint melted in sterile	beaker.								Each sample = one tea- spoonful taken from	same place at surface.								

Ħ

Ì	ε	98		50		17		24		22		28		62				26				49		45
		300		400		950		200		350		750		1,200				200				069		1,000
	900	0000	400	400	000	2008	900	00 N N	700	90:	1 900	300	3	1,400			006	000			000	1,100	000	1,200
	300	790	009	800	745	1,450	750	850	870	1,650	2,200	2,650	800	1,850			370	770	700		870	1,430	1,550	2.200
	270 030 000 000	1870 1800 1900	-10 c	0000	, 840 000 000	 	800 800 800 800	0000	, 1200 1200 1200 1200 1200 1200 1200 120	,	191: 97:00:00:00:00:00:00:00:00:00:00:00:00:00	000 100 100 100 100 100 100 100 100 100	, 100 100 100	1,900	spreaders	spreaders spreaders	000 000 000 000 000 000 000	0000 11000	200	spreaders spreaders	1,040 900 1,000	1,700	1,1,0 0,0,0 0,0,0 0,0,0	1,200
	⊣ 01 <i>7</i>	⊣ ≎1 +	⊣ \$1 F	H 631 F	- €17	⊣≎া⊤	-1 01 t	 ≎1 +	⊣ ≎17	⊣ ≎1 ,	H 21 F	H Q1 7	- 011	— ¢1 ,	⊣≎1÷	-01-	-01+	-01+	H 01+	≓≎ा र	-c1+	-01-	H 61 F	⊣ 01
	- A	DLA	V	DLA	V	DLA	V	DLA	A	V"JG	V	DLA	1.	DLA	V	DEA	7.	DLA	V	DLA	A	DLA	A	DLA
	10,000		100,000		10,000		100,000		10,000		100,000		10,000		100,000		10,000		100,000		10,000		100,000	
		1				©1				çç				4				5				9		
	٥	2 inches below surface.				3 inches below surface.				About % ways down.				Just below surface.		LVI.		From bottom.				From bottom.		

TABLE 2

EXAMINATION OF LOT 2, COMMERCIAL ICE CREAM, OCTOBER 25, 1913. PRICE \$1.25.

EXPLANATION -A stands for plain agar, DLA for dextrose-litmus-agar. All figures should be multiplied by 1000.

Per cent. acid col. count		100		74		100		35		100		55		22		80		100		20		42		20
Average acid		a11		6,500		a11		1,100		all		4,750			-									
Acid col.	all	all	8.000	2,000	10	all	1 000	1,200		all all	. 2000	4,500	-	1,500	110	3,800	По	all		800	700	all		8,500
Average	2,150	7,000	3,100	8,800	1,900	6,650	1,250	3,150	2.150	9,000	3,200	8,900	2,800	3,100	2,850	4,950	2,700	8,850	1,100	1,750	2,650	8,050	7,350	19,000
Colony	1,800 2,800 2,000	0000 00000 00000	2,400 2,400	(%)- 004,0 000	4616 000 000 000	6,400 1,400	1,100 1,400 1,400	3,400	1,900	9,500 8,500 000	000 000 1000 1000	9,100 9,100	3,000 3,600 1,000	,23° ,00° ,00° ,00° ,00° ,00° ,00° ,00° ,0	7,27,7 9,000 0,000	4,300 4,300 000 000	иете фте 0000	8,500	1,100	1,750	707 700 700 700 700 700 700 700 700 700	- 86 - 86 - 86 - 86 - 86 - 86 - 86 - 86	8,600	19,000
Plate No.	⊣01 	101-	(C) -	+c1+	⊣೯1 ಕ	H ©1 F	⊣01 - -	- 01	- ≎1	- ≎1-	⊢ 01 τ	⊣ ≎1 т	⊣ ¢1 7	⊣¢1∓	⊣೧1 ಕ	⊣જા∓	CV 7	⊣¢1∓	⊣¢1∓	H 671 F	-01 <i>F</i>	1017	H 63 F	H01
Kind Med.	A	DLA	₹.	DLA	A	DLA	V	DLA		DLA	7:	DLA	A	DLA	A	DLA	A	DLA	A	DLA	A	DLA	A	DLA
Dilution	10,000		100,000		10,000		100,000		10.000		100,000		10,000		100,000		10,000		100,000		10,000		100,000	
No.		it 1	ע			ତୀ				a-	田士			ខា				ಕರ				4		
Kind of Sample		Each sample = 1/2 pint	beaker.							Each sample = one tea-	spoonful taken from	face.												

	52		100		100		89		100		100		75		100		100		69		100		100
	1,300						5,400												10,000				
001	1,500		all		all	100	5,800	ilo	all	, 15	a11 a11	F. C.	4,500 all	110	all		all	000	8,000		a11 a11	ş	all
1,800	2,500	3,300	8,700	1,250	6,950	2,450	8,050	2,700	8,100	3,900	9,650	2,850	8,950	4,350	9,650	4,550	10,200	10,500	14,500	2,500	5,500	2,900	8,200
1,700 1,900	2,100 2,900 8,000	000 000 000 000	8,100 2,100	11,000 1,000 1,000 1,000	7,800 9,800	, v, c, v, c, r, v, c, r, v, c, r, v, c,	7,600	,27,4 ,800 ,800 ,800 ,800	9,800 900 900	, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	8,300 8,300	33,400 400 400	9,500 9,500 100 100 100 100 100 100 100 100 100	000 000 000 000	0,800 0,800 0,000	, m c	11,200	13,000	15,000 15,000	2,400 4,000 000 000 000	6,200 4,200 5,000	13,400 1900 1900 1900	8,900
# 67+	HC17	⊣07∓	H 671 F	H 61,	C1	- CV F	⊣¢1 =	- C1 -	467+	+c1+	⊣©1+	- Cl r	⊣c1+	⊣ ¢1 =	H 67 F	-01-	⊣¢1∓	- c1 -	⊣¢1+	-61-	1617	⊣o1+	⊣aı
A	DLA	A	DLA	4	DLA	A .	DLA	A	DLA	¥.	DLA	A	DLA	A	DLA	₩.	DLA	A	DLA	A	DLA	A	DLA
10,000		100,000		10,000		100,000		10,000		100,000		10,000		100,000		10,000		100,000		10,000		100,000	
	-		,		67				60		_		4				10				9		
	2 inches below surface.				3 inches below surface.				About % ways down.				Just below surface.				From bottom.				From bottom.		

TABLE 3

EXAMINATIONS OF LOT 3, COMMERCIAL ICE CREAM, OCTOBER 24, 1913. PRICE \$1.70.

EXPLANATION—A stands for plain agar, DLA for dextrose-litmus-agar. All figures should be multiplied by 1000.

								-	Don cont
A Kind of Sample	No.	Dilution	Kind Med.	Plate No.	Colony	Average	Acid col.	Average acid	acid col.
		10.000	Ą	61	240 300	270			
Each sample = 1% pint	-		DLA	oi	700 650	675	100	100	15
melted in sterile beaker.		100,000	A	H 01 1	000	250	i i		
			DLA	-01-	4.70 000 000 000	450	none	none	0
		10,000	¥	⊣¢≀+	200 200 200 200	285	810		
	21		DLA	-01-	4480 480	450	360	335	75
		100,000	A	⊣61 ∓	200	150	006		
			DLA	161	200	200	200	200	100
В		10,000	Ą	H61	190	175			
Each sample = one tea-	Т		DLA	H 6317	. arc	550	250 250	275	20
spoonful taken from		100,000	A	⊣ ¢1 =	4.21.4 000 000	300	006		
face,			DLA	⊣ દા ∓	400 400 410	400	2000	200	50
		10,000	Ą			390	1 600		
	51		DLA	- - 01 -		2,700	2,650	2,220	82
		100,000	A	-01-	2000	650	10		
			DLA	-01-	121,300 1,300 1,300	1,740	all	a11	100
		10,000	A	H 01 F	101	270	006		
	တ		DLA	H 671 P	0000	415	120	160	39
		100,000	A	-01-	000 000 000 000	550	10		
			DLA	H 671 F	1,800	1,450	400	475	933
		10,000	A	H 63 F	0000	850	006 6		
	4		DLA	-01-	99,100 9,100 9,000	3,500	1,900	2,050	59
		100,000	Α.	∃¢1∓	000 000 000	250	008		
			DLA	H 67	200	550	400	350	64

11 650 140 500 475 93 12 510 580 450 475 93 100 150 200 450 475 93 100 150 200 475 93 100 450 450 475 93 11,00 425 1,900 2,200 81 1,100 425 1,900 2,200 81 1,100 1,500 1,400 600 700 60 1,100 80 400 700 60 60 60 1,100 850 400 500 60	
510 580 450 475 200 150 200 150 400 150 200 150 450 425 100 150 2,500 2,700 2,500 2,200 1,1900 1,500 800 700 1,200 1,400 800 700 1,000 1,400 800 700 1,000 1,400 850 400 500 1,000 850 400 550 800 850 400 550 800 850 400 550 800 850 400 550 800 2,000 2,100 1,000 800 7,000 2,200 2,150 800 7,000 2,200 2,150 800 7,000 2,200 2,150 800 7,000 2,200 2,150 800 7,000 2,200 2,150	10,000 A
100 150 400 350 200 400 350 100 150 2,500 2,700 2,500 2,200 1,1900 1,500 800 700 1,200 1,400 800 700 1,600 1,400 800 700 1,600 1,400 800 700 1,000 800 400 500 800 850 400 550 800 850 700 1,000 2,000 2,000 2,200 1,000 2,000 2,000 2,200 1,000 2,000 2,000 2,200 2,150 800 750 620 660 800 700 800 800 800 700 800 800 800 700 800 800 1,200 1,050 400 350 800 775 750 620 660 800 775 750 800 850 1,400 1,500 1,200 1,250 8 800 870 1,250 8 800 870 1,250 8 <td>DLA</td>	DLA
2.500 2.500 2.500 2.500 2.500 1.100 1.100 1.500 1.500 1.500 1.600 1.400 2.700 2.500 1.400 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.	100,000 A
2,500 1,100 1,100 1,100 1,200 1,200 1,200 1,500 1,500 1,600 1,400 1,400 1,400 1,400 1,400 1,400 1,000 1,000 1,000 1,000 1,000 1,000 1,200 1,000 1,200 1,000 1,000 2,100 2,100 2,100 2,100 2,100 2,100 1,000 1,000 1,200 1,000 1,200 1,000 1,200 1,000 1,200 1,000 1,200 1,000 1,000 1,200 1,000 1,200 1,000 1,200 1,000 1,200 1,000 1,200 1,000 1,200 1,000 1,200 1,000 1,200 1,000 1,200 1,000 1,200 1,000 1,200 1,000 1,000 1,200 1,000 1,	DLA
2,500 2,700 2,500 2,200 1,100 1,500 800 700 1,200 1,400 600 700 1,200 1,400 600 700 1,80 170 600 500 1,000 800 400 550 800 850 400 550 800 850 400 550 800 850 400 550 800 850 400 550 800 8,00 1,200 1,000 2,000 2,000 1,200 1,000 4,500 2,200 2,150 850 700 2,200 660 850 70 60 660 850 70 60 660 800 70 2,200 2,150 800 70 2,200 2,150 800 70 300 350 800 750	10,000 A
1,500 1,500 1,500 1,600 1,400 500 800 1,400 800 1,400 1,400 1,400 1,800 1,200 1	DLA
1,000 1,	100,000 A
150 160 170 170 170 170 170 170 170 17	DLA
900 900 1,100 800 800 800 800 800 800 1,100 800 800 1,100 1,100 800 1,100 1,2	10,000 A
1,100 850 850 850 850 850 850 850 850 850 8	DLA
1,000 850 800 850 1,200 1,200 1,200 2,000 2,000 2,000 2,000 2,000 2,000 1,200 1,200 1,000 1	100,000 A
2,200 1,800 1,200 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,100 4,200 2,100 2,100 5,200 600 600 600 700 600 600 1,200 2,100 2,150 600 600 600 700 800 1,0	DLA
1,500 2,000 2,000 2,000 3,900 3,900 4,200 5,200 5,200 5,200 600 600 600 600 600 600 600	10,000 A
2,000 2,000 3,000 3,000 4,200 5,200 5,200 600 600 600 600 700 600 600 700 800 700 800 1,200 1,200 1,5	DLA
3,000 4,200 2,100 700 600 2,200 500 600 700 650 750 620 660 600 700 300 350 1,200 1,050 400 350 380 370 700 350 750 775 775 750 1,100 1,500 1,500 1,350	100,000 A
500 850 650 650 650 600 1,200 1,200 1,050 1,050 1,500	DLA 2
\$50 \$60 \$60 \$60 \$60 \$60 \$60 \$60 \$6	10,000 A
800 800 1,200 1,200 1,050 300 370 770 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,350	DLA
1,200 1,200 390 360 1,500 1,600 1,500 1,500 1,500 1,500 1,500 1,500 1,350	100,000 A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DLA
1,100 800 1,600 1,400 1,500 1,200 1,250 1,200 1,350	10,000 A 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DLA
1,500 $1,200$ $1,350$	100,000 A
	DLA

EXAMINATIONS OF LOT 4, COMMERCIAL VANILLA ICE CREAM, OCTOBER 23, 1913. PRICE \$1.25.

EXPLANATION—A stands for plain agar, DLA for dextrose-litmus-agar. All figures should be multiplied by 1000.

Per cent.	acid col.		100		100		100	Ċ.	2		100	1	100	100			100	100			100		100		100
	Average acid count	٠	all		all		all	9	21,000		all		all	He	}		all ,	118			all		a11		all
	Acid col.		all	ll e	all	118	all	17,000	25,000	16	all	all	a11	II.	alla alla	ll g	all	II e	all	Πe	all	lle	all	He	all
	Average	8,850	20,000	10,000	19,500	6,480	19,500	7,000	26,500	11,500	33,300	11,000	44,500	11,000	25,000	12,000	42,500	44,700	47,000	46,500	27,000	41,500	55,000	55,000	000'09
	Colony	9,920	122,000 18,000	15,000 (18,000 (000 (000 (000 (000 (000 (000 (000	18,000	7,120	23,000 23,000	8,000 8,000 15,000	28,500	10,900	33,000 33,000	11,000 11,000 39,000	50,000	13,000 13,000	26,000 26,000	10,000	45,000 45,000	46,400	46,000 46,000 74,000	445,000 48,000 000	26,000	441,000 42,000 000	29,000 20,000 0000	1000 1000 1000 1000	65,000
-	Plate	He	ı—cı	⊣ 011	ا ده	⊣ಾ ಾ	⊣¢1∓	⊣જા	101	H011	H 01	स≎ान	401	୷ଊ୕୕୕	1677	⊣≎1+	- c11	⊣≎ 17	H CN 7	⊣ © l 7	⊣ol⊤	⊣ © ₹ 7		ا داء	⊣ 01
	Kind	wear.	DLA	Ą	DLA	A	DLA	A		A	DLA	A		A	DLA	Α,	DLA	A	DLA	A	DLA	A. A.	DLA	A	DLA
-	Dilution	10 000		100,000		10,000		100,000		10,000		100,000		10,000		100,000		10,000		100,000		10,000		100,000	
	Š	Kind of Sample	-	Each sample = 1/2 pint	melted in sterile beaker.	Sample taken when enough melted.	ei -				Each sample = one tea- 1	spoonful taken from same place at sur-	race.		ଚା				ಣ				44		

m

100	100	100	100	100	100	100	100	100	100	100	100
all	a11	all	a11	a11	all	a11	all	a11	all	110	all
all	all all	a11 a11	all all	all all	all all	all all	all all	a11 a11	a11 a11	a11 a11	all all
6,500	16,200 37,000 7,000	30,000	15,500	9,100	10,000	9,200	18,000	8,600	10,500	6,600	7,000
6,880 6,880 6,280 0,000 0,000 0,000	2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25,000 22,000 129,000	448,000 48,000 7,000	8,000 0,000 0,000 0,000 0,000 0,000	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28,80 20,00 20,00 20,00 20,00 20,00 20,00	55.50 55.50	8,500 24,000 10,500 11,000	2000 600 600 600 600 600 600 600 600 600	18,400 17,500 17,500	6,500 19,000 16,000
-0-01 -0-01	nanan:	ाल ान	⊣ରୀ ୷ରୀ	⊣ಯ⊣ಯ,	⊣ 01 , 	-01-01 r	-0 -0:	, HMHMF	หณะเละ	- ମ – ମ	-01-01
A DLA	$_{ m DLA}^{ m A}$	A	A DLA	A DLA	A DLA	A DLA	A DLA	A DLA	A DLA	A DLA	A DLA
10,000	100,000	10,000	100,000	10,000	100,000	10,000	100,000	10,000	100,000	10,000	100,000
-		୍ଦୀ		ಣ		4		la Ia		9	
C 2 inches below surface.		3 inches below surface.	LVP.	About % way down.	!	H. Just below surface.		TES TEST TEST TEST TEST TEST TEST TEST		From bottom.	

TABLE 5

EXAMINATION OF LOT 5, COMMERCIAL STRAWBERRY ICE CREAM, NOVEMBER 7, 1913. PRICE \$1.25.

EXPLANATION -A stands for plain agar, DLA for dextrose-litmus-agar. All figures should be multiplied by 1,000.

Per cent. acid col. count		80		09		06		80		89		88		54		100		91		80		75		85
Average acid		006		009		725		800		625		100		550		1,300		1,000		1,500		750		1,350
Acid col.	000	000	000	000	in C	008	000	000		750 500	001	100	400	100	1 200	1,000	000	T,000	- COM	T,600	000	100	000	1,500
Average	850	086	750	1,000	685	875	009	1,000	725	006	850	800	815	1,050	950		1,200	1,100	1,300		875	925	1,200	1,650
Colony	790 700 700 700	spreaders	0000	1,100	720 720 720	000 000 000 000	0000	r,000 spreaders	800 650	850 950	000 800 000	006	2000	7 000 000 000	1,100 001,1	spreaders	, H, r	spreaders	000;1	spreaders	000	0000	1,100 1,300 1,000	1,800
Plate No.	⊣c1+	⊣ ≎१ न	H 67 F	⊣દા-	- OI T	⊣≎1∓	-01+	⊣ 61	H 63	H01	HOIT	⊣≎ 17	⊣ 01+	-c1-	C1	401 -	-01-	- ca -	-01F	-c17	ન c1 +	- co +	⊣ ೧1+	101
Kind Med.	A	DLA	V	DLA	A	DLA	A	DLA		DLA	A	DLA	A	DLA	A	DLA	A	DLA	A	DLA	A	DLA	A	DLA
Dilution	10,000		100,000		10,000		100,000		10.000		100,000		10,000		100,000		10,000		100,000		10,000		100,000	
Kind of Sample No.		1	The state of the s	Each sample == 72 pint	реакег.	ବା				-				61	Dook gammly - one too	Spoonful from same	place at surface.	co				. 4		

m

700	100	95	62	90	74	86	2.2	80 10	100	90	92
1,100	1,600	950	1,500	1,050	1,000	1,250	1,150	700	1,500	1,200	1,200
1,200	1,600	1,000	1,500	1,100	800 1,200	1,300 1,200	1,200	700	1,500	1,500	1,400
1,025	1,100	1,050	1,500	875 1,150	800	1,125	1,250	575	1,300	1,325	1,350
1,100	1,900 spreaders 1,600	1,200 1,200 1,100 1,000	60000000000000000000000000000000000000	1,100 1,200 1,200	11,200 2,200 2,000 0000	00000 0000 00000 00000	1,4,4,4,600,000,000,000,000,000,000,000,0	- - - - - - - - - - - - - - - - - - -	1,400 spreaders 1,500	7,000 1,000 1,000 1,000	1,500 1,400 1,200
H0H0+	-೧-೧		-೧-೧+	-0-0-	-0-0 ₁	-ಬ-ಬ-	-01-01	-0-0-	101 H 101	-ಬಬ-	1010
A	A DLA	A DLA	A DLA	A DLA	A DLA	A DLA	A DLA	A DLA	A DLA	A DLA	A DLA
10,000	100,000	10,000	100,000	10,000	100,000	10,000	100,000	10,000	100,000	10,000	100,000
-		63		ရာ		4		ro		9	
C 2 inches below surface.		n. Fr Fr S inches below surface.		ee ee About % way down.		Just below surface.		From bottom.		From bottom.	

EXAMINATION OF VANILLA ICE CREAM, LOT 6, COMMERCIAL, NOVEMBER 9, 1913. PRICE \$1.25. TABLE 6

EXPLANATION—A stands for plain agar, DLA for dextrose-litmus-agar. All figures should be multiplied by 1,000.

Per cent.	count		100		45		95		80		100		93		100		100		80		09		16		29
Average acid	count		089		550		3,600		8,000		940		1,250		1,210		1,500		650		450		1,050		200
Acid col.	count	002	099	400	400	000	3,000	000	8,000	000	096 096	000	1,700	4 400	1,020	00++	1,900	000	200	001	400	000	006	400	009
Average	count	470	089	800	950	1,700	3,900	0,000	10,000	840	940	750	1,350	069	1,210	550	1,500	750	820	650	750	210	1,150	550	750
Plate Colony	count 460	480 002 002	000	000 1,100	1,200	2,400 2,400	4.2.7 2.00 2.00 0.00 0.00 0.00	7,000 2,000 2,000	spreaders	780 900	0000	0000	1,700	840 4 400	1,020	000 140 1	1,100	000	740 000 000	0000	000 000 000	540	1,100	000	800
Plate	No. →	101-	101+	⊣ 01∓	⊣⊘ ∓	⊣¢1∓	⊣ €2 †	H61+	121	H011	H 67 T		⊣6 1∓	, H 63 H	⊣ ¢4 ⊱	⊣≎ 1∓	⊣c4+	⊣c 4∓	-1 CV T	⊣6 1∓	C-1 +-	101+	⊣ 04+	101+	-61
Kind	Med.	A	DLA	V	DLA	A	DIA	A	DLA	A	DLA	A	DLA	A	DLA	A	DLA	A	DLA	A	DLA	A	DLA	A	DLA
	Dilution	10,000		100,000		10,000		100,000		10,000		100,000		10,000		100,000		10,000		100,000		10,000		100,000	
;	No.		Н	+	- ep		67		\		Ţ				67		1.0		ಣ				4		
	Kind of Sample			Rach Samula — 12 min	melted in sterile	DOMACL,											Each sample = one tea-	place at surface.							

A

	00 00	0.2		100		88		100		100		100		60		95		65		100		100
																			•			
	350 350	450		540		400		390		800		315		400		620		650		850		1,000
350		500 400	K90	560	000	200	9	370	900	800	0	086		009 209		740 500	000	200	900	800	000	800
370	420	650	375	540	150	450	290	390	650	800	190	315	200	650	415	650	650	1,000	350	850	700	1,000
350 390 420	spreaders 300	000 000 000 000	350 400 000	220 2000 2000	2000 2000 2000	4 72 0 0 0 0 0 0 0	000 000 000 000	461 015 000	0000	spreaders	170 170 170	00000	2000 0000 0000	000 000	450 380	740 560	000 1000 1000	1,200 800 800	300 400	000 800 800 800	000	1.200 800
HOH	01 – 1 °	v⊣o.	⊣ 01∓	H 071 T	⊣01÷	H 03 T	⊣ 017	⊣ 04+	⊣ ≎3 +	⊣ 01 ғ	⊣ 03 ਜ	-01+	-01-	-c1	H 6N	mos:	O1 +	⊣ 01+	⊣01 †	⊣ 01+	⊣೧1+	C1
V	DLA	DLA	V.	DLA	A	DI.A	A.	DLA	T:	DLA	A	DLA	A	DLA	A	DI.A	A	DLA	V	DLA	1.	DLA
10,000	100 000	100,000	10,000		100,000		10,000		100,000		10,000		100,000		10,000		100,000		10,000		100,000	
	-			ে য				ගෙ				4				10				9		
0	2 inches below surface.			3 inches below surface.	HV		NI/FI	About % way down.	IEF	a T	TO Y	a Just below surface.	NEGOT	V V	T. S	From bottom.	W.	#7C4		From bottom.		

CONDENSED TABLE OF RESULTS. TABLE 7

⋖

EXPLANATION—A stands for plain agar, DLA for dextrose-litmus-agar. All figures should be multiplied by 1,000.

		% acid	100	95		100	100	00	90	91		83	100	тоо	100	100)	95	1	TOO	taken
	_		680	1,700 3,900	840	940	1,210	750	0250	1,150	370	420	23.70 10.00	0.000	300	3120 3150	415	650	350	890	One cc was
	10	% acid	88	90		89	54	Ţ	Ta	22		85	10	9.0	96	ž		85	0	90	
		Count	086	685 875 575	725	000	$\frac{815}{1,050}$	1,200	T.000	925	1 0.95	1,300	1.050	1,020	1,150	1,125	100	822	2775	1,325	sterile beaker.
		% acid	100	100		100	100	3	100	100		100	100	100	100	100	7	100	1	100	pint in a
	4	Count	20,000	6,480 $19,500$	11,500	33,300	11,000 25,000	44,700	47,000	41,500 55,000	6 500	25.500	7,000	50,000 0,100	23,800	9,200 27,500	8,600	22,500	6,600	17,900	one-half
	ZEE:	% acid	15	75		50	85	1 0	39	57.9		93		81	62	0,12	00	88		93	eam from
1	AM SAMI	Count	675	285 450	175	550	390 2.700	270	415	3.500 3.500	140	580	425	2,700	008 800	850	000,7	750	370	775	ed ice cr
1	ICE CREAM SAMPLE:	% acid	100	100		100	75		100	100		52	1 0	100	100	li L	9	100		100	2 represent the amount liquefied ice cream from one-half
	G		7,150 7,000	1,900 6,650	9.150	9,000	2,800 3,100	2,700	8,850	2,800 800 800	0000	2.800 500 500	1.250	6,950	%; 100 100	2,850	8,850	4,550 [0.200	2.500	5,500	the amo
		% acid (45	68		42	93	2	11	44	11	00		17	22		29	26 1		49	represent
	-	7	210 295	1725	410	480	750	1,200	415	105 940	010	300 100 100 100 100 100 100 100 100 100	745	1,450	870 1 650	800	1,850	077	870	1,430	mnle A 2
1		ledium	PI A	DLA	-	DLA	ATU	A	DLA	A	DIN	A V	A	DLA	A DI.A	V	DLA	A. I.I.A	A	DLÄ	Sample A 1 and sample A
		Sample M	-	н' с	1	-		N	00	, ,	4	T	-	21	G	3	4	10	•	9	Somulo A
		San		V	1		0	Д			-				2)					

Sample A.1 and sample A.2 represent the amount injuries a soon as a sufficient amount was method.

Sample B—All four samples were taken with sterile teaspoons from the same place at the surface, after scraping a thin layer. off.

Sample C—All "C" samples were taken with sterile glass tubes by boring into the ice cream.

1 was taken 2 inches below surface.

2 was taken 3 inches below surface.

3 was taken about three-quarters dwn from surface.

4 was the first boring from surface.

5 and 6 were taken from the bottom.

	• Fer cent, acid colonics 35 92 66 100 83 83 95
ERAGES:	Dextrosc-litmus-agar 1,020,000 7,140,000 1,325,000 29,810,000 1,106,000 989,000
AV	Plain agar 530,000 2,510,000 4,000 14,250,000 881,000 575,000
	Sample 1 1 2 2 2 2 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

		>	cociono		o o o fo o o				
D		AVERAGES A	CCORDING TO PART OF GALLON SALI figures to be multiplied by 1	PART OF G	ALLON SAMP lied by 1,000.	SAMPLE WAS TAKEN. 1,000.	KEN.	,	
			ICE CR	EAM SAMPLE	S NUMBER:				:
Sample	Med.	1	2	က	4	ည	9	Average	Ratio
Melted in beaker.	DI'A	468	2,025 6.825	277		767 927	2,170 2,290	2.227 5.188	11 26
From surface,	DIA	365	2,575	421		904	697 1,030	5,356 8,750	27
2 in. below surface.	DLA	300	1,800	140 580	6,500	1,025	370 420	1.689 5,682	288
3 in. below surface.		1.450	1,250 6,950	425 2,700		1,050 1.020	375 540	$\frac{1.807}{7,110}$	35.0
%th ways down.	DLA	1,650	2,700 8,100	170 800		875 1,150	290 390	2,334 5,982	12 30
Just below surface.	DLA	800 1,850	2,850 8,950	850 2,000		1,125 1,450	190 315	2.502 8,677	115 24 23 23
From bottom.	DI.A	$\frac{620}{1,100}$	3.525 7,750	485 762		675 1,100	500 675	2.234 5,277	111 26
	Particular de la constante de								

RELATION OF NUMBERS OF LACTIC ACID STREPTOCOCCI TO AMOUNT OF ACID PRODUCED UNDER DIFFERENT TEMPERATURE CONDITIONS. TABLE TA

Per cent, acid is expressed in lactic acid. All numbers should be multiplied by 1,000.

Domonto	Memarks	curd and	Sour, curd and whey.	curd and	curd and	Sour, curd and whey.		-	Sour, curd and whey.	and and	япп	Sour, curd and whey.	5	No chance	No obende	No change.	No change.	No change.	Bitter taste.	Bitter taste.	Very bitter.	Very bitter.		homog.	Sour, homog. curd.	Sour, thick.	Sour, very thick,		Sour, bitter, thick.		Sweet, homogeneous.	Sour, thick,	Sour, thick,	Sour, thick.	Sour, thick.
Don comt I and	rer cent. Lact. acid 0.19	0.00	0.62	0.69	1.24	1.92	0.12	0.20	0.04	0.00	00.0	0.70	0.10	21.0.	21.0	0.12	77.0	110	0.16	0.20	0.24	0.24	0.12	0.71	0.73	1.02	œ.	1.40	1.61	0.12	0.26	0.65	0.67	0.09	0.72
Dow gont	acid col.	100	100	100	0	TOO	90 F	007	001	001	100	49	0.4	1001	001		100	001	4	47	45	55	100	100	100	27:	21		00	100	100	100	200	Die Ci-	8.0
Colony Count	Dextlitagar	359,000	361.000	401,000	spreaders	160,000	160	000,020	270,000	320,000	000,001	spreaders 195 000	160	170	016	1,000	10 100	7,400	31,000	29,000	44,000	52,000	175	1,285,000	1,300,000	65,000	68,000	spreaders	85,000	175	156,000	350,000	390,000	320,000	460,000
	Plain agar	238,000	289,000	268,000	000 007	138,000	36	156,000	252,000	480,000	990,000	117 000	96	90 54	H MO	1.05	4 100	4,100 7,00	15,000	22,000	31,000	47,000	28	485,000	595,000	44,000	54,000		000.99	28	55,000	135,000	210.000	000,000	310.000
	Incub, period	1 day	VI 00	4	100	9	fresh	T uay	210	70°	41 F	o w	facosh.	1 dev	r day	4 cr	><	11 70	9	-10	· 00	0	fresh	1 day	ପ	ಕಾ.	4:	ಲ	9	fresh	1 day	ଷ	00 T	d 10	ඉත
	Temp. 1		37° C	,				0 0 0 0	21, C				-			700) -										37° C						0	21° C	
	Kind of Milk		Raw Milk						Kaw Milk							Don't Milk	Waw Mills									i	Raw Cream						3	Raw Cream	

				The state of the s	000	1.8.0	
		fresh	28	175	001	0.12	
		1 day	000	214	100	0.12	No change.
		5 443	000	0000	100	0.12	No change.
		4:	0007	000011	100	0.13	No change.
		ro -	#,T00	0000	H T	100	No change
		4	8,500	11,500	T60,	01.0	No change
Raw Cream	2°C	10	26.500	29.000	100	0.16	No change.
			36,000	53.000	<u>ರಾ</u>	0.18	No change.
		10	90,000	31,000	100	0.26	No change.
		- 0	000,53	45,000	000	0.30	Turning.
		00	000,28	120,000	000	0.34	Bitter.
		0	000,000	000	000	0.10	
		fresh	5	52	100	0.12	
		1 day	199.200	220.000	100	0.51	٠.
		6	950,000	240.000	100	0.63	Ĭ
		ı cı	918,000	317,000	001.	99.0	Ĭ.
	0 0 0 0 0 0	27	200,000	Saprosonas		690	Ĭ
Sterile Milk	3.75	4.1	000 100	Spicauers 990 000	001	000	
		00	224,000	499,100	001	26	Sour curd
		9	219,900	499,100	100	7.70	1
		fresh	Ç	26	100	0.12	
		1 day	169 000	202.000	100	0.39	
		9 nay	988,000	353,000	100	0.52	
		10	310,000	680,000	100	0.66	
CALLETTO WASTIL	7 0 10	•	200,000	640,000	100	0.72	
Sterile Milk	,	ны	000,000	spreaders) 	0.73	
	•	2 %	415 000	760.000	100	0.76	Sour, curd.
		Gueral	0	96	100	0.19	
		Iresii	1 700	002 6	001	0.16	
		Luay	10,100	000110	100	1-1-0	
		710	10,000	0000000	001	0.18	
		.c.	18,000	000,000	7	010	
		4	25,000	36,000	001	0.10	
Sterile Milk	7° C	ಬಾ	32,000	000,86	OOT	0.20	
		9	35,000	43,000	100	0.20	
٠		1-	72,000	117.000	100	0.23	No change.
		œ	78,000	160,000	100	0.27	

RELATION OF NUMBERS OF LACTIC ACID STREPTOCOCCI TO AMOUNT OF ACID PRODUCED UNDER DIFFERENT TEMPERATURE CONDITIONS.

The numbers in the table include all bacteria in the samples of raw milk and raw cream, excepting under the column "acid colonies." In sterlized milk the numbers are streptococci only. All flasks were inconlated with a pure culture of lactic streptococci. Counts were made immediately after incentation and after that at intervals of 24 hours. One set of flasks was kept at 7° C. another set at 21° C. and the third set at 37° C. Triprations were made daily with 1-20th N.NaOH to determine the degree of acid developed. The results are expressed in per cent. LACTIC ACID.

Table 7a shows a relation of acid colonies to total numbers. In a general way it can be stated that the higher the total count, the higher the proportion of acid The highest count in sample 4 of 29,810,000 bacteria per cc. all the colonies appeared to be acid colonies. No doubt there were some others, but the acid formation by the large number of acid forming bacteria was so great that other bacteria could not counteract the influence. No doubt, if a much larger number of samples could have been examined the figures would be smoother and clearer. This also applies to table 7. Here all samples were averaged according to the part of the original of ice cream the sample was taken from. In the last column a ratio was computed, which brings all the figures into a simple relation. This ratio indicated that samples B1 to 4 contained the largest numbers of bacteria. These samples were from the surface. Next in number are the samples taken one inch from the surface (C4). Next in line is the number taken three-quarters way down. Why this should be high I have no explanation to offer. Larger numbers of samples would, no doubt, clear up such points. There is also the fact that the most expensive ice cream had small numbers, although some of the cheaper ones were low. In fact sample 6, which cost \$1.25, was the lowest.

The counts on dextrose-litmus-agar were always much higher than on plain agar.

Report On Tests of the Relation of Lactic Acid Produced by Streptococcus Lacticus to Numbers of Bacteria and the Relation of Numbers of Bacteria to Taste and Appearance.

Nine flasks (1 liter Erlenmeyer) were sterilized. Into three flasks were placed 400 cc. certified raw milk, into three 400 cc. certified raw cream, and into the last three 400 cc. certified milk were placed and these last three sterilized in the autoclave for fifteen minutes at two atmospheres pressure. All flasks were inoculated with dextrose broth cultures of a strain of Streptococcus lacticus. This streptococcus was isolated for this work from ice cream. This fact must be borne in mind as it may have influenced the results to some extent. Immediately after inoculation plates were prepared in plain agar and in dextrose-litmus-agar in dilutions of 1:1000 to determine the number of streptococci inoculated. The incubation temperatures were 37° C., 21° C. and 7° C. One flask with raw milk, one with raw cream and one with sterilized milk placed at each of the three temperatures. Daily tests were made as follows:—

- 1. The taste and appearance.
- 2. The acidity was determined by titrating 5 cc. of the inoculated milk or cream, diluted to 50 cc. with distilled water, against one-twentieth normal sodium hydrate solution. The degree of acidity was then calculated in percent. lactic acid.
- 3. Plates in duplicates were made in plain agar, and dextrose-litmus-agar the same as with the ice cream excepting that dilutions had to be carried to 1:10.000.000. Six counts were made of these plates after forty-eight hours.

It should be stated here that the colonies formed by this particular strain of Str. lacticus were exceptionally small, so that the agar plates showed a relatively low count and undoubtedly the counts on dextrose-litmus-agar were frequently not as high as they should be. Here also the counts averaged much higher in dextrose-litmus-agar than on plain agar.

Table 7a (See pages 60-61), shows the results in detail. The figures represent the averages of the duplicate plates, the percentage of acid colonies and the percentage of acid expressed in lactic acid.

At 37° acid formed so rapidly that in twenty-four hours the cream and milk in all cases was curdled. The curd in the sterile milk was smooth and homogeneous, in the raw milk and cream there was considerable whey. The raw milk at 21° was beginning to show signs of turning after twenty-four hours and contained 185 million bacteria in DLA. The raw cream was still sweet after twenty-four hours, but had curdled after forty-eight hours. It was sweet in spite of the 156 million bacteria after twenty-four hours. The sterile milk was curdled after forty-eight hours. After twenty-four hours it was turning with indications of curd formation (small flakes), and contained 202 million of bacteria. At 7% the souring process and curdling were slow. In the raw milk there was no decided acid taste after nine days, and the bacteria numbered 52 million. A bitter taste had developed. In the raw cream after eight days it seemed to be turning, although the taste was rather bitter than sour. After nine days the taste was decidedly bitter and the bacteria numbered 120 millions. In the sterilized milk the taste was not decidedly sour, and there were no indications of curdling after eight days in spite of 160 millions acid forming bacteria.

To make the results of this more striking I have plotted the results in curves in tables 9, a, b and c, and in 10, a, and c. Here also I feel that the curves would be smoother and better if a large series of tests were made and with different strains of lactic streptococci.

Table 9a—(See page 66.) Raw milk at 37°. The numbers of bacteria are highest after two days, after which there is a falling off. The acidity, however, continues to rise. Several explanations are possible for this. Acid is produced by an enzym, and therefore, will continue even after the bacteria have been removed or decrease. Thirty-seven degrees is a temperature at which such enzyms act more powerfully and more rapidly than at lower temperatures. There is the other explanation which accounts for acid formation in the apparent absence of bacteria. Streptococcus lacticus

multiplies only to a certain point. The so-called high acid forming bacilli then produce more lactic acid, but these bacteria cannot be demonstrated on ordinary media. It is also possible that this particular strain of Str. lacticus dies sooner than some other strains. In raw milk at 21° the curves are similar to those at 37°, the numbers are higher, but the acidity is lower. High acid formers multiply but slowly at this temperature, so that the acid naturally would be less and enzyms also act slower. At 7° the curves are low and practically parallel. (See page 67.)

Table 9b—The sudden rise in numbers of bacteria in cream at 37° is enormous. The curves at 21° are even, and at 7° low. At 21° the numbers and the amount of acid are nearly parallel. (See page 67.)

Table 9c—At 7° the respective curves remain parallel. There is no great divergence at either 21° or at 37°. As we are dealing here with pure cultures of the streptococcus, no complicating factors arise through the presence of other bacteria.

Table 10a. (See page 69.)—This table shows the relative curves of the three KINDS of flasks at the same temperature. Cream has the greatest number of bacteria, milk next and sterile milk the smallest. The acid formation is highest in milk, next in cream and smallest in sterile milk.

Table 10b. (See page 70.)—The acid curves in all three kinds are very consistent. In raw milk there is a decided drop in numbers, in the cream the numbers are relatively small, but are in good accord with the acid formation in the sterile milk.

Table 10c. (See page 71.)—The curves are low and smooth.

TABLE 9A

TABLE 9B

TABLE 9c

TABLE 10A

TABLE 10B

TABLE 10c

Reports Concerning the Significance of Bacterial Counts and Bacillus Coli Tests

H. D. PEASE, M. D.

REPORTS OF BACTERIOLOGICAL INVESTIGATIONS
CONCERNING THE SIGNIFICANCE OF BACTERIAL COUNTS AND BACILLUS COLI TESTS
OF INDIVIDUAL LOTS OF MARKET ICE
CREAM, REFERRED TO AND PRESENTED IN PART AT THE HEARING.

By H. D. Pease, M. D.

Report in the matter of the examination of samples of vanilla and chocolate ice cream purchased from a Commercial Ice Cream Company, New York City, October 22, 1913, and of one sample of Commercial strawberry ice cream, purchased January 31, 1914.

Technique.

Source of Sample. A one gallon can of Vanilla Ice Cream made by a Commercial Ice Cream Company and marked October 22nd, was delivered by them to the Lederle Laboratories.

Method of Taking Samples. Sterile teaspoons were used in digging out the samples and transferring them to sterile 2-oz. and 4-oz. glass stoppered bottles.

Twenty-five to 30 gram samples were taken except in the case of Experiment No. 4. The sample bottles were chilled in ice and salt previous to the taking of the samples. Immediately after taking each sample the bottle was covered with ice and salt so that the ice cream remained frozen until the individual sample was removed from the ice and salt for examination.

Method of Melting Sample Before Examination. A water bath held at 30°C. was used for this purpose.

As soon as the sample was melted it was shaken and allowed to rest for one minute before sampling unless otherwise stated.

Media. 9 liters of Standard Beef Extract Agar were made at one time. Previous to sterilization in the autoclave for 15 minutes at 20 lbs. pressure the agar was

divided among 36 8-oz. flasks. All plates in this series of

experiments were poured from this lot of agar.

Dilution Bottles and Water. The bottles used were 4-oz. Philadelphia ovals filled by automatic burettes to contain 99 c.c. of water after sterilization, in the autoclave, 25 minutes at 20 lbs. pressure, and 1-oz. Philadelphia ovals filled in the same manner to contain 9 c.c. of water after the same process of sterilization. The dilution water used contained in all cases 0.5% commercial sodium chloride.

Pipettes. The 1 c.c. pipettes were in all cases straight sided pipettes of even bore and a uniform blunt point. The capacity pipettes were graduated by one mark to contain 1 c.c. of water. The volumetric pipettes were graduated by one mark to deliver 1 c.c. of water.

In reading the amount of liquid in the pipette, care was taken that the end of the pipette rested on the side of the bottle above the sample or dilution in order not to carry over an extra drop of the sample or dilution.

Petri Dishes. 10 x $1\frac{1}{2}$ c.m. sterilized by dry heat at 180°C. for $1\frac{1}{2}$ hours were used for all bacterial counts.

Method of Making Dilutions and Plating. In each case unless otherwise stated the sample of ice cream was measured by a 1 c.c. capacity pipette and the pipette washed out in the dilution water.

The method of dilution was as follows:

Transfers for higher dilutions were made before 1 c.c. was transferred to the petri dish.

Litmus Lactose Agar Plates. 1 c.c. of a 10% solution of lactose and $\frac{1}{2}$ c.c. of a 1% solution of azolitmin were

added to each plate before inoculation with 1 c.c. of the diluted sample.

Test for Bacteria of the B. coli Type. Durham fermentation tubes were used. The outside tube was $6" \times 7'8"$, the inside tube $3" \times 3'8"$. The lactose-peptone-bile was made by adding 1% lactose and 1% peptone to fresh ox-bile which had been previously boiled and filtered.

Twelve hundred fermentation tubes were prepared at one time from one lot of bile. Inoculated tubes were incubated 72 hours at 37°C. At the end of each 24-hour period the percentage of gas was recorded. From the two highest dilutions showing gas at the end of 48 hours, litmus-lactose-agar plates were made by transferring one 3 mm. loopful to a 9 c.c. dilution bottle and one 3 mm. loopful from this dilution to a plate containing lactose and azolitmin as described above.

After 24 hours at 37°C. isolations of characteristic colonies were made on lactose agar slants. After 24 hours at 37°C, the growth on the slants were used for the inoculation of tubes containing Durham's peptone solution and nitrate solution. A stab culture was made in the lactose agar slant and in a tube of infusion gelatine. The inoculated peptone solution, nitrate solution and lactose agar stab were incubated 4 days at 37°C.

The peptone solution was tested for the presence of indol by the addition of $\frac{1}{2}$ c.c. of a paradimethylamidobenzaldehyde solution.

The nitrate solution was tested for the presence of nitrites by the addition of $\frac{1}{2}$ c.c. of a sulphanilic acid solution and $\frac{1}{2}$ c.c. of a naphthylamene acetate solution.

The presence of gas in the lactose agar stab was also noted as a control on the isolation.

The gelatine stabs were incubated 10 days at 20°C. and the presence of liquefaction noted.

Bacterial Counts. All plates were counted as far as possible. In reporting the bacterial counts averages were

made in cases where the bacterial counts exceed 20 and less than 500 colonies to the plate. The number reported was not in accordance with the standard method of reporting bacterial milk counts.

Outline of Experiments.

Experiment No. 1. Test of same location (see results reported under A, B, C, D, E and F).

Six samples were taken from as near the same location as possible at a point about 3 inches below the top and at the middle of the can.

Experiment No. 2. Test of separate location.

Six samples reported under G, H, I, J, K, L, were taken as follows:

G—top-side.
I—center-side.

H—top-middle.

J—center-middle.

K—bottom-side.

L—bottom-middle.

Experiment No. 3. Test of triplicate dilutions made from same sample.

The samples taken under Experiment No. 1 were diluted in triplicate and are reported under A_1 A_2 A_3 — F_1 F_2 F_3 .

Experiment No. 4. Test of the evenness of melting.

Six samples of about 70 c.c. were taken in 4-oz. chemical salt mouth bottles from the side of the can from top to bottom. Each sample was allowed to melt at room temperature (74°F.) for two minutes and the melted portion sampled with a 1 c.c. capacity pipette. These results are reported under M, N, O, P, Q, R.

Experiment No. 5. Test of method of measuring sample for dilution.

Six samples were taken from the same locality at a point immediately surrounding the place where the six samples were taken for Experiment No. 1.

VANILLA ICE CREAM.—EXPERIMENT NO. 1 AND NO. 3 COMBINED.

Six samples (A, B, C, D, E, F) taken from the same location; about three inches from the top and middle of the can.

	1		ıe	ĬĬ.	1	1		1	1	1	1	
	1		Gelatir		П	II	- 11		1 11	1		11
	1		Vitrate	++	+	+-+	++	+	++	++	+	+++
			Indol Nitrate Gelatine	II	+	11	11	1	11	11		
	1	Lac. Agar	Stab.	11	+	م. اا	11	1	11	+		
		Lit. Lac. Agar	Plate	+	+	+	+	+	++	++	+	++
			72	0000 0000	282	52.00	2000	2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 555	1 20 1	20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	100 100
		Gas Production Lac. Pep. Bile	48	15 20 20	15 20 Tr.	150	4028	12888 1.	1222 1232 1333 1333 1333 1333 1333 1333	1 20 1	1555 1552	20 10 Tr.
1,000.		Gas F Lac.	24	iiii	Tr.	l iii l	63	Tr.	HH.	1441	 ##	HH.
of the control of the control		:	Dilution	1000 10,000 10,000	1,000	1,000	10,000	10,000	10,000	100000000000000000000000000000000000000	10,000 1,000 10,000 100,000	1,000 10,000 100,000
adone a		Colony Count 20°-5 da.	5.E.Agar	2,300	2,400	2,600	2,300 2,700	2,600	2,700	2,700	3,200 4,000	2,700 2,200
		% Acid	Count	86.3 75.0	79.5	61.7	96.8	87.4	90.0	66.6	79.7	63.3
			.1		30	100	20		20	30	10	10
1	-2 days	Litmus-lactose-agar	2000	200 200	270 300	720 300	130 200	170 400	100	340 400	140	300
	ount 37°.	Ā	1 000	0009	1,170 700	1,180	1,550 1,400	1,180	990	740 800	590	720 200
	Colony Count 37° -2 days	Total L.L.Agar	1 000	T,800 800	1,470	1,910	1,600	1,350	1,100	1,110	740 800	810 800 800
				3,200 3,000 3,000	2,100 2,800	2,870 2,000 2,000	2,540 6,800 4,000	2,450 2,600 3,000	spreader 1,400 4,000	6,000 6,000	2,380 2,400 1,000	2,430 5,100 0,000
		ple Dilution B.E.Agar	10 000	1,000,000	100,000 100,000 1,000,000	10,000 100,000 1,000,000	10,000 100,000 1,000,000	1,000,000 1,000,000	100,000 100,000 1,000,000	1,000,000 1,000,000	1,000,000	10,000 100,000 1,000,000
		Sample No. D	AT				B1 1,		B3 1,	C1 1,	1,0	

	1 11	1 11 1	1.11	1111	1111	11	1	ш
11 11	111			11			1	"
++	++	+++	+++	+++	+++	++	++	+++
11	+	111	111	1 11	111	11	11	11.1
+ +	+	[11	111	+11	1.0	+		11+
+ +	++	++	++	++	++	++	++	+
30	3024 3022 3022 3022	50 30 10	30 Tr.	20 20 40 10 10 10 10 10 10 10 10 10 10 10 10 10	200 30	12003	0000	755
30	70000 10000 10000	10000	228	20 30 30	350 30 30 30 30	7888 17888	1 200	200
Tr.	<u> </u>	ää	##	TF:	ĔĔ	Tr.	###	äää
1,000 1,000 10,000 100,000	1,000 10,000 100,000	1,000 10,000 10,000	1,000 10,000 100,000	1,000 1,000 10,000	100 1,000 10,000 100,000	1000 1,000 10,000 100,000	1,000 10,000 10,000 100,000	100 1,000 10,000 100,000
3,000	3,300	2,600	3,000	3,000 3,000	2,800 3,400	2,700 3,000	2,700	3,000
94.4	83.6	89.6 100.0	85.1 72.8	91.1	82.6 75.0	93.3 80.0	80.4	86.7 50.0
10	10	20	10				10	10
400	200	09	300	300	130 200	100	100	200
1,020	510 600	690 1,300	460 800	720	620 600	400	410	590 200
1,080	610 800	1,300	540 1,100	1,000	750 800	750	510	680 400
3,240 1,700 2,000	1,480	1,700	2,080 1,800 2,000	1,980 1,600 3,000	1.670	2.070	1,380 2,200 4,000	1,300 900 2,000
10,000 100,000 1,000,000	10,000 100,000 1,000,000	10,000 100,000 1,000,000	10,000 100,000 1,000,000	10,000 100,000 1,000,000	10,000 100,000 1,000,000	10,000 1,000,000 1,000,000	10,000 1,000,000 1,000,000	10,000 100,000 1,000,000
DI	D2	D3	191	E2	压3	F1	F2	F3

Each of the six samples was examined in the following way:

- 1. One gram of frozen cream weighed and 99 c.c. of water added.
- 2. One c.c. of liquid not containing air bubbles removed with 1 c.c. capacity pipette.
- 3. One c.c. of liquid not containing air bubbles removed with 1 c.c. volumetric pipette.
- 4. One c.c. of liquid containing air bubbles removed with 1 c.c. capacity pipette.
- 5. One c.c. of liquid containing air bubbles removed with 1 c.c. volumetric pipette.

These results are reported under S_1 S_2 S_3 S_4 S_5 — X_1 X_2 X_3 X_4 X_5 .

VANILLA ICE CREAM.—EXPERIMENT NO. 2.

	i		e		1		1	1	1	F 9.
			Nitrate Gelatine	11	1	1		111	11	1
			Vitrate	++	+	+	++	++	++	+
			Indol N	11	1	growth	+	+	٥٠	1
		Lac.		11		No gr		+	+	+
		Lit. Lac.	Plate	++	4	- +	++	++	++	+
			7.2	1002	120 100 100 100 100	25.	40 20 	520 520 520 520	15 10 10	30
		Gas Production Lac. Pep. Bile	48	1010 17.	021 04 04	Tr.	 20 -	1 20 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1550	20 30 10
ì		Gas I Lac.	24	TF: -	Tr.	-		17. 17.		##
			uc	9900	000	. 0	0000	0000	0000	0000
			Dilution	1,000 1,000 10,000 100,000	1000	100,000	1000	10,000	1,000 1,000 10,000	1,000 10,000 10,000
		Colony Count	B.E.Agar	2,600	2,700 3,400		2,400	2,500	2,800	2,600
		200°	t B.E							
		% Acid	Count	89.2 72.7	91.4		83.3	20.00 70.00 60	80 80 70 80 70 60	84.3
		-agar	Alkal.	i	20		der		10	10
	2 days	Litmus-lactose-agar	Inert	300	100		Alkaline spreader 500 100	120	100	340 400
	t 37°-	Litmus	Acid I	5280 800	640 300		Alkalin 500	000	770 500	1,890
	Coun		ы	ı	000		4165	1,0	P 103	1,4
	Colony Count 37°-2 days	Total	L.L.Aga	1,100	700 400		009	1,200	009	2,240 1,800
			B.E.Agar	1,700 1,300 2,000	1,690	2,000	1,910 1,900	2,000 1,100 4,000	1,530 700 6,000	3,280 2,600 14 con- tam.
		No.	No. Dilution B.E.Agar	10,000 100,000 1,000,000	100,000	1,000,000	10,000 100,000 1,000,000	10,000 100,000 1,000,000	10,000 1,000,000 1,000,000	100,000 100,000 1,000,000
		g Secrit	0	aoT shiz	ggje ob	IW L	Centre Side	Centre Middle	Bottom Side	Bottom Middle

VANILLA ICE CREAM.—EXPERIMENT NO. 4.

Six samples of about 70cc taken from the side of the can from top to bottom.

1		ne							1 1
		Gelati	П		111	+	11 11	1 11	пТ
		Nitrate	4-4-		++	4-4-		+++	+++
		Agar Stab. Indol Nitrate Gelatine	Н		11	11	11 11	111	11
	Lac.	Agar Stab.	+		11	4-4	++ ++	+	11.1
	Lit. Lac.	Agar Plate	+	1	++	+	+ +	+ +	++
	ion 3ile	72	15	10	30 30 30	금당당	30 40 10	2222 0000 0000	0.000
	Gas Production Lac. Pep. Bile	48	15	10	12°28 12°28	20 20 10	30 30 10	2220 1000 1000	30 0 0 0 1 1 1 1
	Gas l Lac.	24	Tr.	Ţ.	T.	ii	ere	ŢŢ.	11. 11.
		Dilution	100	1,000 10,000 100,000	1,000 10,000 100,000	$\begin{array}{c} 100\\ 1,000\\ 10,000\\ 100,000 \end{array}$	1,000 1,000 10,000 100,000	1,000 10,000 100,000	100 1,000 10,000 100,000
	Colony	20°-5 da. B.E.Agar	2,320	1,900	1,700	2,680	2,400	2,200 1,200	2,000
	% Acid	Count	81.0	90.9	82.7	7.77	92.5 92.8	85.5 100.	80.4 90.9
			10		10		10	50	
9 down	Litmus-lactose-agar	Inert	440	500	260 400	1,200 est. alkaline spreader 1,800 1,400 400	100	270	380 1,200
026 + 500	Colony Count of —z days Litmus-lactos	Ā	1,920	2,000	1,290	t, alkaline	1,360	1,720	1,560
Callana C	COIODY CO	Total L.L.Agar	2,370	2,200	1,560 2,000	1,200 es 1,800	1,470	2,010	1,940 13,200
			2,620	2,400	1,890 1,400 3,000	4,070 3,100 3,000	2,360 900 1,000	2,920 2,000 2,000	2,050 1,500 2,000
		ple Dilution B.E.Agar	10,000	1,000,000	10,000 100,000 1,000,000	10,000 1,000,000 1,000,000	10,000 100,000 1,000,000	$\substack{10,000\\1,000,000\\1,000,000}$	10,000 100,000 1,000,000
1		Sample No. D	M		Z	0	L L	0	E C

Plot of the 20°C, and 37°C, beef extract agar bacterial counts of Vanilla Ice Cream samples, made from the 1-10,000 dilutions; and of the means of these counts.

VANILLA ICE CREAM.—EXPERIMENT NO. 5.

Six samples (S. T. U, V, W, X) taken from the same locality at a point adjacent to the place where the six samples for Exp. No. 1 were taken, 3 inches from top near the middle of the can.

			Colony C	Colony Count 37°-2 days	-2 days												
0	on o		Total	Litmu	Litmus-lactose-agar		% Acid	Colony Count		Gas Lac.	Gas Production Lac. Pep. Bile		Lac.	Lac.			
No.	No. Dilution B.E.Aga	B.E.Agar	L.L.Agar	Acid	Inert	Alkal.	Count	B.E.Agar	Dilution	24	48	72		Stab.		Nitrate	Indol Nitrate Gelatine
SI	10,000 100,000 1,000,000	2,770 2,100 2,000	1,610? 2,300	1,800	730? 400	alk.spdr. 100	54.6	2,300 2,900	1,000 1,000 10,000 100,000	ĮĮ	0110	100	++	11 +	11+	**+	11 }
82	10,000 1,000,000	3,460 2,100 8,000	2.640 1,300	2,220	400	20	84.0 69.2	3,500	1000 100,000 100,000	Ĭ	10 Tr.	10 25 25	++	+	111	+++	1 11
00 00	1,000,000 1,000,000	2,130 spdr. 2,700 3,000	1,800	1,200	700 500	100	52.0 66.6	3,100 2,700	1,000 1,000 100,000	Ĭ	100	1001	++	11	11	++	11 11 1
4 N	10,000 1,000,000		2,250	1,700	540 400	10	75.5	3,000	1000 1,000 10,000 100,000	cı	40 10 Tr.	10 10 10	+	1	1	+	1
S2	10,000 100,000 1,000,000	2,280 2,200 4,000	2,400 e.	2,000 est. alkaline spreader 2,400 1,600 800	e spread 800	er	9.99	2,400 2,400	1000 1,000 10,000 100,000	10 Tr.	30 20 Tr.	20 20 20	+	1		+	1
TI	10,000 100,000 1,000,000		2,600 1,600	2,000	530 400	70	76.9	2,500	100 1,000 10,000 100,000	1 Li.	30 Tr.	200 200 1	++	+	11	++	11
T2	10,000 1,000,000 1,000,000	2,570 3,300 5,000	2,770 1,600	1,950	780 400	40	70.3 75.0	2,200 3,500	100 1,000 10,000 100,000	Tr.	30 20 10 10	40 30 10	+	į	I	+	}
L3	10,000 100,000 1,000,000	3.300 10,000	2,180 2,500	1,900	600 500	$\frac{20}{100}$	87.9 76.0	2,100 4,000	$\begin{array}{c} 100 \\ 1,000 \\ 10.000 \\ 100,000 \end{array}$	ĮĮ.	1000	20 15 15	+	1	1	+	1
T4	10,000 1,000,000	3,460 3,600 6,000	3,200 est. 2,800		. 400 est	400 est.alk.spdr. over ½ plate 600	78.5	3,100	1,000 10,000 100,000	Tr.	20 10	30 15 Tr.	+ +	+	+	+ +	+
T5	10,000 1,000,000 1,000,000	3,590 3,500 10,000	1,200 est. 2,400	1,200 est. alk spdr. 1,800 600	. alk spd 600	r.	100.7 75.0	3,000	100 1,000 10,000 100,000	Tr.	0004	8881	++	+	+	++	11

1						1			
11		1	11	1,1	11				
++	+	+	++	+++	**+		++		++
	1	1	11] 11	#		11		11
+		1	+	1 11	11		11		
++	+	+	++	+· +	++	1	++	11	++
00000	0000 1000 1000 1000 1000 1000 1000 100	H 8000	1255	4411	20 20 10 10 10	3000 1200 1200	60 20 10	2000 2000 2000	30 110 112
00000	30 10 17 17	30 20 Tr.	1 달라	1000	30 40 40	30 30 30	50 20 10	30 40 10	30 10 10
80	HH.	##	: :::	10 Tr.	HH.	##	H. H.	THE I	63
1,000 10,000 100,000	100 1,000 10,000 100,000	100 1,000 10,000 100,000	1,000 10,000 10,000	1,000 10,000 100,000	1,000 1,000 10,000 100,000	100 1,000 10,000 100,000	$\begin{array}{c} 100\\ 1,000\\ 10,000\\ 100,000 \end{array}$	1000 10,000 10,000	1,000 1,000 10,000 1,00,000
2,400	2,750	1,600 2,400	2,800 3,800	2,100	2,400	3,600	3,500 3,000	2,400 3,000	2,200
74.6	53.3	47.0	71.47	77.3	64.6	69.7	51.4	71.7	63.1
20	,		lk.spd.	10		40	10	20	
530	spreader 700	2,000 est. alk. spdr. 1,000 600	600 est.alk.spd. 200	550 600	580 600	560 1,000	460 300	480 400	660 400
1,620 2,400	800		2,200 est. 2,200	1,910	1,060	1,390	1,560	1,270	1,130
2,170 2,900	1,500	2,000 est. 1,600	2,800 est. 2,400	2,470	1,640 1,500	1,990 2,600	3,030	1,600	1,790
2,910 2,300 5,000	2,780 2,700 1,000	2,430 3,400 6,000	3,580 2,800 2,000	2,620 2,100 1,000	2,380 2,800 2,000	3,440 4,800 8,000	3,050 3,500 2,000	2,880 2,400 1,000	2,380
1,000,000 1,000,000	10,000 100,000 1,000,000	100,000 100,000 1,000,000	100,000 1,000,000	100,000 1,000,000	100,000 1,000,000	100,000 1,000,000 1,000,000	100,000 1,000,000	1,000,000 1,000,000	1,000,000
101	U2	U3	U 4	US	V1	V2	V3	V4	Λ2

VANILLA ICE CREAM.—EXPERIMENT NO. 5.—(Continued)

		Indol Nitrate Gelatine		1		11		1	11	11		11
		Nitrate	+	+	+	**+	+	**	++	++	++	++
		Indol	1	1	1	11	1	11	11	11	11	11
		Agar Stab.		1	+	11	1	н	11	+	111	+
	Lit. Lac.	Agar	+	+	+	++	+	+	++	++	++	++
-	tion Bile	72	3000	1 800	2000	0224	30220	9209	202	30 30 80	15 15 17	12230
	Gas Production Lac. Pep. Bile	48	020 000 000 000	1 222	20 20	40	2000	60240	150	200	1001	100220
	Gas Lac	24	. i.i.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 50°	1111	Li.	HI.	Hi:	### I	<u> </u>	Ţ.
		Dilution	10,000	10,000	1,000	10000	1000	10000	1,000 1,000 10,000	1,000 10,000 100,000	1,000 10,000 10,000	1,000 10,000 100,000
	Colony Count 20°-5 da	B.E.Agar	2,100	2,750 3,000	3,000	3,200 2,800	3,200	2,600	2,600	2,600	3,000	2,500
	% Acid	Count	68.4	70.7	72.8	72.8	68.8	67.3	75.8 88.3 88.3	76.5	66.8 64.5	75.0
	agar.	Alkal.		09	10	e 20	100	100	10	200	10	20
-2 days	Litmus-lactose-agar	Inert A	540 100	650 500	520	1,720 620 no litmus in plate	950	740	510	900	1,100	600 400
ount 37			1,170	1,720	1,420	1,720 no litn	2,190 2,700	1,550	1,760 3,800	2,000	2,040	1,200
Colony Count 37° 2 days	Total	L.L.Agar	1,710	2,430	1,950	2,360 3,500	3,180 3,500	2,300	2,320 4,300	2,900		1,600
		B.E.Agar	2,670	3,180 2,800	2,660 3,100 4,000	2,690 2,500 2,000	3,730 3,000 7,000	2,910 3,200 3,000	2,740 2,200 2,000	2,820 3,000 1,000	2,22,230	3,000
	le .	No. Dilution B.E.Agar L.L.Agar	10,000 100,000 1,000,000	100,000 1,000,000	100,000 100,000 1,000,000	1,000,000 1,000,000	1,000,000 1,000,000	100,000 100,000 1,000,000	100,000 100,000 1,000,000	1,000,000	1,000,000	1,000,000
	Samp	No.								X3 1	- 10	

Plot of the 20°C, and 37°C, beef extract agar bacterial counts of Vanilla Ice Cream samples, made from the 1-100,000 dilutions; and of the means of these counts.

Plot of the 37°C. litmus lactose agar total and acid forming bacterial counts of Vanilla Ice Cream samples, made from the 1-10,000 dilutions; and of the means of these counts.

Plot of the 20°C, beef extract agar bacterial counts of Vanilla Ice Cream samples, made from the 1-10,000 and 1-100,000 dilutions of same samples; and of the means of these counts.

Plot of the 37°C. beef extract agar bacterial counts of Vanilla Ice Cream samples, made from 1-10,000 and 1-100,000 dilutions of the same samples; and of the means of these counts.

Plot of the 20°C, beef extract agar counts of Vanilla Ice Cream samples made from the 1-10,000 dilutions.

Samples A to F—Tests made in triplicate by the same method.

Samples S to X, inclusive—Tests made by different methods of sampling.

Key to Plot of Samples.

Heavy solid line—Plot of Sample examined by Method No. 1.

Light solid line—Plot of Sample examined by Method

Dotted line—Plot of Sample examined by Method No. 3. Dash line—Plot of Sample examined by Method No. 4. Dash and dot line—Plot of Sample examined by Method

No. 5.

Method No. 1. One gram of frozen cream weighed out and 99 c.c. water added.

Method No. 2. One c.c. melted ice cream not containing air bubbles removed with 1 c.c. capacity pipette.

Method No. 3. One c.c. melted ice cream not containing air bubbles removed with 1 c.c. volumetric pipette.

Method No. 4. One c.c. melted ice cream containing air bubbles removed with 1 c.c. capacity pipette.

Method No. 5. One c.c. melted ice cream containing air bubbles, removed with 1 c.c. volumetric pipette.

Samples A, B, C, D, E, F, S, T, U, V, W, X all removed from same immediate location.

Vanilla Ice Cream.

Comments on Results of Tests as Shown by Charts 1 to 6 (Inclusive).

CHART NO. 1.

- 1. The results of the tests on samples A to F (inclusive), obtained from one portion of the can, as given for the 1 to 10,000 dilution at either of the two temperatures, show marked numerical differences, notwithstanding that these results are the averages of triplicate tests on each sample. The results of any individual test are not harmonious with the results of any of the others, as is shown for the 20°C. tests under A to F (inclusive) in Chart No. 6.
 - 2. The results on these six samples at 37°C. showed

much greater variations than did those obtained from the 20°C. tests.

- 3. The variations in the results on these six samples from the one location, at 20°C., as already noted, were greater than those in the results of the tests of the following six samples, G to L (inclusive), obtained from various portions of the can contents, when tested at the same temperature; but the reverse is true of the results of the tests at 37°C.
- 4. In the tests of samples M to R (inclusive), made for the purpose of determining evenness of melting, there occurred the most extreme differences to be noted in any of the comparisons of results on this chart. While a general parallelism between the 20°C. and 37°C. counts was to be noted, the results of the tests made at the latter temperature were almost invariably higher than the former. This reverses the results of the tests on samples A to L, all of which were melted in the same manner.
- 5. A greater degree of uniformity is to be noted in the results obtained in the case of samples S to X (inclusive), which samples were tested by five different methods of examination. This uniformity, however, is due, in large part, to the fact that these results are averages of those obtained by the application of the five different methods of examination. The full details of these differences are shown under samples S to X in Table 6.

There is noted a parallelism between the 20°C. and the 37°C. counts on these samples, S to X; but the counts at the latter temperature were higher, which is a reversal of the results obtained from the tests of samples A to F, which samples were taken from the same portion of the can.

CHART NO. 2.

6. The results of the counts of the 1 to 100,000 dilution plates on all the samples showed generally greater variations than those obtained from the 1 to 10,000 dilution

plates shown in Chart 1. This is clearly brought out by noting the greater difference between the means of the counts at 20°C. and those at 37°C. in Chart 2, as compared with the means in Chart 1.

- 7. There is a general resemblance between the outlines of the plottings of Chart 2 when compared with those on Chart 1, but upon studying the results in each chart for any one of several particular samples great variations are to be found. This is well illustrated by a study of sample P.
- 8. Upon attempting to compare the details of Chart 2, as has been done in comments 2, 3, 4, and 5 for Chart 1, we find that the same statements would be inappropriate for this chart. In some instances the comments would be accurately descriptive of the results, but in other instances the reverse is true.

CHART NO. 3.

- 9. A comparison of the results of the counts on separate samples, when tested upon litmus lactose agar, using the plates of the 1 to 10,000 dilution, with the counts of acid colonies on the same plates shows a marked parallelism between the two.
- 10. The plottings in this chart show a general parallelism with the 37°C. plottings in Charts 1 and 2, except for the samples K to X. Among these samples we find some of the plottings similar to those in the previous charts, but others are quite unlike them.

CHART NO. 4.

11. In this chart, comparing the results of counts of dilution plates 1 to 10,000 with those at 1 to 100,000, incubated at the one temperature (20°C.), we find an apparent parallelism between the plottings; but upon close examination we find sometimes the 1 to 10,000 plates giving

the higher results, and at other times the 1 to 100,000 plates showing the higher counts.

- 12. The average results of the triplicate samples, as shown for A to F (inclusive), together with the results of tests of samples from scattered locations in the can, C to L (inclusive), show a greater degree of uniformity than do the results of the evenness of melting samples M to R. The results in the latter group of samples greatly differ from those in the former in two general locations and are also quite at variance with the results of the averages of the samples S to X.
- 13. The averages of the results of the application of the five different methods to samples S to X (inclusive), showing variations of 1,000,000 in a maximum bacterial count of but little over 3,000,000, show clearly the unreliability even of averages of five samples when the methods are somewhat at variance. These variations are. however, but little greater than the variations to be found in the averages of three tests in which the same method was employed, as is shown by the plottings of the results of samples A to F in this table. It cannot be said, therefore, that the differences in methods were the causes of the variations in the results obtained in samples S to X. Apparently slight variations in method do not lead to differences in bacterial counts of such magnitude as are liable to be caused by the natural variations in the bacterial content of the ice cream itself.

CHART NO. 5.

14. In this chart we have the most extreme variations noted in any comparison of results from the examination of the samples of the vanilla product. This greater variation is an expression of the result that has been obtained in all of the examinations of ice cream, namely, that in comparing the 37° counts with similar counts at

20°, which are plotted in chart 4 in this case, the 37° counts are always more variable than the 20°. In comparing chart 5 to chart 4, the wide difference in the means between the 10,000 and the 100,000 dilution results in chart 5 as compared to chart 4 show clearly this point. Among the evenness of melting samples we find the very widest extremes, although there is a certain parallelism between the two dilutions in each sample. On the averages of the triplicate samples from A to F about twothirds show reasonable uniformity between the two dilutions; the other third shows a wide variation, especially for averages. The averages of the results on samples S to X, in which five different methods were employed, show smaller differences than are to be found among the evenness of melting results; none the less, they are quite wide considering that they are averages of five tests.

CHART NO. 6.

15. Continuing comments 13 and 14 concerning the lack of uniformity in the variations on samples S to X, we find in chart 6 the details of the results obtained at one dilution, 1 to 10,000, at one temperature, 20°C. We note that the results of the different methods of testing show little parallelism. While it would be conceivable that these different methods would not give uniform results on any one sample, we might expect that the difference in method would show the same for each sample, but when we compare the results on sample T with those of samples U or V, we find wide differences. The results with one method are above the fair mean in one sample, and are below on another. In fact, there appears to be no uniformity whatever. This lack of uniformity, therefore, has less to do with the difference in technique than in the composition of the indivdual portion examined by any one method. The variations in the averages in the individual results by the five methods in samples S to X are greater than the variations in the individual results of the triplicate analyses of samples A to F. In the latter group, the results are more uniform than have been noted in any of the previous charts, and bring us back to the first comment on chart 1.

CHOCOLATE ICE CREAM.—EXPERIMENT NO. 1 AND NO. 3 COMBINED.

Six samples (A, B, C, D, E, F) taken from the same location about 3 inches from the top and at the middle of the can.

	Lac. Agar	Gelatine —								
-		Nitrate +			1	++	+		+	
		Indol +					+		+	
1							+		+	
1	Lit. Lac. Agar	Plate +			ı	++	+		+	
1	tion Bile	52 25		ro	Tr.	10 Tr.	02	111	0	
1	Gas Production Lac. Pep. Bile	Tr.				10 Tr.	09		Tr.	111
	Gas Lac	461	1							
	:	Dilution 100	10,000	1,000 10,000	1.000	1.000	1,000	1,000	1.000	1,000 10,000
	Colony Count 20°-5 da.	8,200 11,800	13,000	6,800 9,000	6,300 7,600 11,000	6,300 7,900 7,000	3.000 spr. .9 9.900 12.000	8,8,8 190 000,8	8,820 5,300 5,000	5,040 8,500 spreader
	% Acid	Count		27.3	28.8	34.0	21.9	17.6		30.0
	0	AIKal.	1							400
-2 days	Litmus-lactose-agar	24.000		13,800	16,300	20,800	18,500	26,000	18,800	22,900
ount 37	Litm	7.400		5,200	6,600	6,200	5,200	5.600	6,200	10,000
Colony Count 37° 2 days	Total	31,400	1	19,000	22,900	27,000	23,700	31,600	25,000	33,300
	Lite Total Lite Total Lite Total	27,000	30,000	$\frac{19,200}{24,000}$	14,600	23,200 23,000	27,600 40,000	19,200 24,000	22,900 18,000	22,400 18,000
	ole Dilution	100,000	1000,000	1,000,000	10,000 100,000 1,000,000	10,000 100,000 1,000,000	10,000 100,000 1,000,000	10,000 1,000,000 1,000,000	10,000 100,000 1,000,000	10,000 100,000 1,000,000
	Sample		A 9.		A3		B2	B3	5	C2

1		1	1	1	1	Y			1	
1	1		1			11	1		1	
+	+				1	++	l.			
+	+					+	1			
+	+				1.	+	+			
+	+					++	+			
Tr.	50	117			: : : : : : : : : : : : : : : : : : :	ag 9	570 5	 	ng 9	211
10	30						ii		1 135	1
				-		111				Ш
000	000	99	222	222	288	288	000	200	3888	388
1000	10,000	10,000	$\begin{array}{c} 100 \\ 1,000 \\ 10,000 \end{array}$	10,000	1,000 1,000 10,000	10,000	1,000	10,000	10,000	10,000
00	0 0	000	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	202	200	900	000	000	000	0000
8,820	7,56	1 mould 8,000 10,000	6,930 8,200 9,000	8,190 8,800 5,000	7,560 10,100 7,000	11,340 7,800 6,000	6,930 13,000	6,930 6,800 15,000	1266	&F-& 2.6.0
8.75		24.7	26.7	21.9	23.1	28.3	33.5	25.0	31.3	26.1
					0	0		0	. 0	0
99 400		26,800	21,600	21,400	23,200	20,900	16,200	18,600	18,400	19,800
7 800	2005	7,200	7,900	6,000	000.7	000,2	4.700	6,200	8,400	7,000
3										
006 08	1600	34,000	29,500	27,400	30,200	27,900	20,900	24,800	26,800	26,800
98 000	200,00	22,600 22,000	23,200 22,000	18,000 13,000	23.200 31,000	23,600 24,000	19,200 31,000	23,200 26,000	28,000 30,000	27,600 34,000
V.										
10,000	000,000,	1,000,000	10,000 100,000 1,000,000	10,000 1,000,000 1,000,000	100,000 1,000,000	10,000 100,000 1,000,000	100,000 1,000,000	10,000 1,000,000 1,000,000	10,000 1,000,000 1,000,000	100,000 100,000 1,000,000
	-	-		1-4	-	E2 1	E3			F3

Chocolate Ice Cream Experiments.
Technique of Examinations Same
as Outlined for Experiments on
Vanilla Ice Cream

CHOCOLATE ICE CREAM.—EXPERIMENT NO. 2.

		Helatin		1	1	1	11	1		
		itrate G		+	+	+	+	+		
		Lac. Agar Stab. Indol Nitrate Gelatin		+	+	1	11	+		
		ac. Agar Stab. In			+	+	4-1	+		
	lit.	Lac. L Agar A Plate S	١.	+	+	+	4-4-	+		
		61	1	ا ا م	011	10 11:	112	5. 1.	<u> </u>	
	oductio	Lac. Pep. Bile		.i.	911	0	100	& &	111	
	Gas Pr	Lac. I.		1.1.1	1 , 1	£1.		10.1.1		
				111	111	T.		ro	Secretary Secret	
		Dilution		1,000 1,000 10,000	1000 1000 $10,000$	1,000 $1,000$ $10,000$	$^{1,000}_{10,000}$	1,000 1,000 10,000	1,000 10,000	
	Colony	% Acid Count Colony 20°-5 ca. Count B.E.Agar	2	8,190 10,100 6,000	6,930 7,900 12,000	$^{10,710}_{9,200}_{12,000}$	9,450 6,700 10,000	10,080 10,200 11,000	6,300 9,000 11,000	
		% Acid		26.8	21.0	32.7	25.0	22.7	26.0	
						200	300		100	
	-2 days	Lactose-Litmus-Agar		24,200	22,200	23,900	20,600	26,800	22,000	
	unt 37°.	Lacto	11010	8,900	5,900	1	7,000	7,900	7,800	
	Colony Count 37°-2 days	Total Lact	The tribut	33,100	28,100	35,800 11,700	27,900	34,700	29,900	
		R R Aggr	D.E. E. E.	31,400 32,000	24,900 26,000	38,700 33,000	32,700 18,000	27,200 32,000	29,800 28,000	
		Sample BEA	Dilution	1,000,000	1000,000 1,000,000 1,000,000	100,000	10,000 1,000,000 1,000,000	10,000 1,000,000 1,000,000	10,000 100,000 1,000,000	
U	ption ption	escrij ga ga ga ga ga ga ga ga ga ga ga ga ga	0	qoT sbig	qoT əlbbil	Side l	Centre Middle	motton Side I	Hottom Middle	I

CHOCOLATE ICE CREAM,—EXPERIMENT NO. 5.

Six samples (S, T, U, V, W, X) taken from the same locality at a point adjacent to the place where the six samples for Exp. No. 1 were taken, 3 inches from top near middle of can.

24,2 Colony 2 Colony 2 21,2 25.1 26.4 26.4 20.4 21.3 36.1 30.1			Colony C	Colony Count 37°-2 days	-2 days					1					1	
25.1 \$\frac{6.300}{3.000}\$ \$\frac{1.000}{10.000}\$ \$\frac{1}{10.000}\$ \$	e Total Lactose-Litmus-Agar Dilution B.E. Agar L.L. Agar Acid Inert Alkal.	Total L.L.Agar		se-Litmus-			% Acid	Colony Count 20°-5 da. R. E. Agar	Dilution	Gas P Lac. 24	roductio Pep. Bil	্য		ar ar ah, Indo	Nitrate	Gelatin
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28,700	28,700		22,600			2,12	6,300 3,800 0000	1,000	+	Tr. 1				+	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10,000 100,009 33,600 37,800 9,500 26,300 1,000,000 54,000	37,800 9,500		26,300			25.1	13,230 9,900 6,000	1,000 1,000 10,000		T.	ا ا صا	+	1	+	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10,000 100,000 1,000,000 36,000 31,500 7,900 28,600	31,500 7,900		23,600			25.0	8,820 8,200 8,000	1,000 1,000 10.000		10 Tr.	10			++	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10,000 100,000 37,600 31,300 8,800 22,400 1,000,000 18,000	31,300 8,800		22,400		100	28.1	10.080 9,100 14,000	1,000 1,000 10,000	111	111	Tr.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22,700 5,200		17,500			22.9	13,800 7,700 15,000	1.000 1.000 10.000		60 10	000			++	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19,300 5,200		14,100			26.4	7,500 6,500 6,000	10,000 10,000	11.	211	211				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10,009 100,000 33,500 31,900 10,000 21,900 1,000,000 38,000	31,900 10,000		21,900			31.3	10,710 8,700 13,000	1,000 1,000 10,000	111	111	1;: 1;:				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30,300 6,200		24,100			20.4	8,190 8,700 7,000	1,000 1,000 10,000	111		11				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10,000 100,000 24,700 22,300 7,500 14,800 1,000,000 36,000	22,300 7,500		14,800			21.3	6,930 8,200 10,000	1,000 1,000 10,000		111	E				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10,000 100,000 1,000,000 1,000,000 1,000,000	32,100 11,300		20,800			35.2	5,670 6,800 8,000	1,000 1,000 10,000			<u> </u>				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 10,000 \\ 100,000 \\ 25,200 \\ 24,000 \\ 24,000 \\ \end{array} \begin{array}{cccc} 28,200 \\ 3,600 \\ 24,600 \\ \end{array}$	28,200 3,600		24.600			12.0	10,080 8,000 9,000	$\begin{array}{c} 100 \\ 1,000 \\ 10,000 \end{array}$	111		11년				
7,500 1,000 Tr. Tr. + + = + + + + + + + + + + + + + + + +	10,000 100,000 1,000,000 37,000 1,000,000	45,000 11,700 33,300	33,300			200	26.0	9,450 9,200 5,000	1,000 1,000 10,000	111	20	50 Tr.			+	1
7,800 1,000 Tr.								7,500	100	Tr.	Tr.	Tr.	'			H
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23,200 7,000					30.1	7,800	1,000	11	11	H			-	

		1	1	1	1	1	1		1	- 1			Ĭ	1		1
	1			1	1	1							1			
+	+			+	+	+						+	+-			+
i	+			·	+	1						1	1			+
+	+			Market Ma	1	+							1			+
+	+			+	+	+						+	+			+
70	10	ä I I	i i	00 1	211	6월 !	111	Tr. 10	09	<u>:</u>		ا ما	1110	m 1	اام	8
	10					9			9			F.	10			020
1 1	1	1 1 1		PR []		-										
111	111	111		Ë	111	111						broken		111		111
0000	1,000 10,000	1,000 1,000 10,000	1,000 1,000 10,000	1,000 1,000 10,000	1,000 1,000 10,000	1.000 1.000 10.000	1,000 1,000 10,000	1,000 1,000 10,000	1,000 1,000 10,000	1,000 10,000	1,000 1,000 10,000	1,000 1,000 10,000	1,000 1,000 10,000	1000 1,000 10,000	1000 1.000 10,000	1,000 1,000 10,000
1,000	10,	10,	10,	10,	10,	10,	1,	10,	10,	10,	10	10	10	10	10	101
9,450 spread.	10,710 6,700 5,000	7,560 7,800 10,000	10,080 10,200 11,000	7,560 10,000 11,000	8,190 8,800 10,000	9,450 8,400 14,000	10,080 7,800 6,000	10,080 8,200 10,000	8,000 7,000	6,930 8,100 11,000	6,300 5,100 6,000	9,540 8,200 9,000	8,820 9,200 150,000	5,670 9,300 7,000	9,450 7,500 8,000	10,710 8,400 11,000
20	10									30.9		45.7	38.8	30.6		26.8
29.5		20.5	23.7	30.1	23.6	23.5	25.4	20.1	23.7	30	24.9	45	e0 00	30		26
				300									400	200	der	
00		000	000	200	000	21,400	22,900	24.600	22,000	23,000	20,100	30.700	39,400	36,400	alkaline spreader	19,100
20,300	unc.	25,600	33,000	23,200	22.000	21,	60								raline	
8,400	12,700	6,600	10,300	10.000	6.800	6,600	7.800	6,600	6,800	10,300	6,400	25.900	25,300	31,200	all	7.000
28,700		32,200	43,300	33,200	28,800	28,000	30,700	31.200	28,800	33,300	26,500	56.600	65,100	67,800		26.100
															00	
24,500 30,000	20,100 26,000	30,600	34,000 33,000	32,000	30,000	23,000	26,200	29,400	35,100 31,000	27.400 32.000	20.500	29.600 28.000	35.000 33.000	31.200	28.200 27.000	26,200 23,000
		0000	0000	0000	0000	0000	0000	0000	0000	100.000	100,000	100,000 100,000 1,000,000	10.000 100.000 1.000.000	10.000 100.000 1.000.000	10.000 100.000 1.000.000	10,000 1,000,000 1,000,000
10,000	10,000 1,000,000	1000,000 1,000,000	1000.000 1,000,000	1000,000 1,000,000	10,000 1,000,000 1,000,000	1,000,000	1,000,000	1000,000 1,000,000	10.000 100.000 1,000,000	1,000	1,000	1,000	1.000	1.000	1,000	1,000
04	US	V1	6 Λ	V3	V4	20	W1	W2	W3	W4	W5	X1	X2	X3	X4	X5

CHOCOLATE ICE CREAM.—EXPERIMENT NO. 4.

Six samples of about 70cc taken from the side of the can from top to bottom.

1			ine	Ì																	
		Gelat			11			1		1			1		1	gicama					
			Vitrate	+		++		+			+	+			+						
			ndol 1				+	-		1			+		1	1					
١		Lac. Agar Stab. Indol Nitrate Gelatine		1			1	1					+		1	1					
	Lit. Lac. L Agar A			+			++		+			+ +		+							
1	ŀ	거니~																. •	l.		
	17.	Bile	72	Tr	Tr.		10	10	Tr	20	1	1	10		J.C.	10	H	Tr	Tr.	1	1
1		Gas Froduction Lac. Pep. Bile	48	Tr.	1	-	1:	10	1	10	adapta in	1	10	1	Tr.	10	1	1	1		1
1	ζ	Lac	24	1	1	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
I			п							ľ									ľ	,	
			Dilution	100	1,000	10,000	100	1,000	10,000	100	1,000	10,000	100	1,000	10,000	100	1,000	10,000	100	1,000	10,000
1		nt?	gar.	30	000	2	30	00	00	20	9	00	50	00	00	00	00	00	30	0	00
1	04.1	2000	B.E.A	7,560	7,6(10,01	6.9	8,200	4,0(9,48	8,100	7,00	80.80	7,200	8,0	6,30	8,600	7,00	7,560	8,40	6,00
		% Acid Count	Count		23.4	N		22.8						23.1			25.9			23.2	
		e-agar	Alkal.															1			
	Colony Count 37 -2 days	Litmus-lactose-agar	L.L.Agar Acid Inert		19,600	Ì		21,000			unc.			21,200	ĺ		20,000			21,800	
-	nt 37°-	Litmu	Acid		6.000			6,200			6,400 ι			6,400 2			2,000,7			6,600	
7	ny Cou	ļa,			Ì					9									28,400 6		
7	Colo				22,600			27,200						27,600			27,000				
			Dilution B.E.Agar		2,700	0.200		2,600	2,900		2.180	2.600		2.720	3,000		2,160	2,100		2,300	2,000
			Dilution	10,000	100,000	000,000	10,000	100,000	000,000	10,000	000,00	000,000	10,000	100,000	000,000	10,000	100,000	000,000	10,000	000,000	000,000
		Somule	No. D	M	7	T,1	Z		1,(0	, <u>, , , , , , , , , , , , , , , , , , </u>	1,0	Ъ		1,0	0		1,0	23	,	1,0

Plot of the 20°C. beef extract agar bacterial counts of Chocolate Ice Cream samples, made from the 1-10,000 dilutions; and of the mean of these counts.

CHART NO. 2.

Plot of the 20°C. and 37°C. beef extract agar bacterial counts of Chocolate Ice Cream samples, made from the 1-100,000 dilutions; and of the means of these counts.

Plot of the 37°C. litmus lactose agar total and acid forming bacterial counts of Chocolate Ice Cream samples, made from the 1-100,000 dilutions; and of the means of these counts.

Plot of the 20°C. beef extract agar bacterial counts of Chocolate Ice Cream samples, made from the 1-10,000 and 1-100,000 dilutions of same samples; and of the means of these counts.

Plot of the 37°C, beef extract agar bacterial counts of Chocolate Ice Cream samples, made from 1.100,000 and 1.1,000,000 dilutions of the same samples; and of the means of these counts.

Chocolate Ice Cream.

Comments on Results of Tests as Shown by Charts 1 to 5 (Inclusive).

CHART NO. 1.

1. In comparing the results of the averages of triplicate tests on these samples from one location in the can, shown in chart 1, samples A to F, we find differences of somewhat less than 6,000,000 bacteria per c.c. to 8,500,000. For triplicate results, these differences are too great to be explained by anything but an actual difference in the bacterial content of the particular amount of ice cream examined in each test. We find still greater differences when we note the results obtained on individual samples from different portions of the can as shown on the chart on samples G to L (inclusive). Very much the same variations are found among the samples tested for evenness of melting, M to R (inclusive), and we find but little less variation in some of the averages of the five different methods applied to samples S to X.

CHART NO. 2.

2. In this chart we find a picture not previously seen of very wide variation between the means of the 20° and 37° counts. There is a considerable degree of uniformity, however, among the counts for each temperature—a greater degree of uniformity in that respect than we have previously seen. This is especially true of the 20° plottings.

CHART NO. 3.

3. In this chart there is to be noted a wide variation between the total litmus lactose agar counts and the acid forming bacterial counts on the same samples. As in the case of the vanilla ice cream, there is a considerable parallelism between the total counts and the acids counts, as would be expected. This parallelism is even extended to the inert bacteria. In this lot of ice cream the inert bac-

teria played a superior rôle over the acid-forming

organisms.

4. A remarkable picture is presented by the variations in the results of different methods of testing samples S to X. Notwithstanding the fact that these samples all came from the same general location, we find an extreme divergence in the averages of the results. This divergence was not noted in the results of the tests at any temperature or any dilution when beef extract agar was used, but appears to be incidental to the use of the litmus lactose agar. It applies in the 1 to 100,000 dilution to both types of organisms present, the inert as well as the acid. This is a good example of the unreliability of litmus lactose agar counts in attempts to determine the sanitary condition of ice cream.

CHART NO. 4.

5. The extreme variations found in the averages of the triplicate tests on samples A to F in this chart are noteworthy. The results on all the other samples in the chart show the usual mixed variability with no sort of uniformity whatever; sometimes the 100,000 plates are higher, and very frequently lower than the 10,000 plates. There is again a series of wide variations in the averages of the S to X sample results.

CHART NO. 5.

6. Again we note the great variability in the averaging of the triplicate samples from the one location in samples from A to F. The 1 to 1,000,000 plates in this chart were on the average higher than the 1 to 100,000 plates, but none the less frequently show lower results than the latter. The extremes of variations in results in this chart, which are the 37° temperature plottings, are greater than the results in the previous chart, which are the 20° tests. Again we find a wide difference in the averages of the

five different methods of testing samples S to X, although there is a certain parallelism between the two dilutions—the 1 to 1,000,000 usually giving the higher results, although in the last sample, X, it fell below.

STRAWBERRY ICE CREAM EXPERIMENTS.

Technique.

Source of Sample. A three-gallon can of Commercial Strawberry Ice Cream was purchased at a retail store and delivered by them to the Lederle Laboratories.

Method of Taking Samples. Sterile teaspoons were used for sampling. The samples were transferred from

can to 2-oz. and 4-oz. glass-stoppered bottles.

Three of the samples collected from the same immediate location, 4" from the surface of the can, in center, were one spoonful only. Three larger samples collected from top, middle and bottom, center of can, were 4 oz. each.

These samples, immediately after removing from can, were packed in ice, and placed in refrigerator until tested.

Method of Melting Sample Before Examination. The smaller samples were melted after taking from ice, by placing in water bath, and shaking thoroughly.

The large 4-oz. samples were allowed to stand at room temperature for ten minutes, and melted portion at bot-

tom of bottle tested, without shaking.

Media. Two batches of all media used were made and duplicate tests conducted, using both sets of media for each sample. One lot of media was made on January 21, 1914, the second lot made on January 28, 1914. The media was stored in refrigerator for ten and three days respectively, before starting experiments.

The following Media were used in examination:

Standard Beef Extract Agar

Standard Inf. Agar.

Lactose Bile (Durham Fermentation tubes).

Standard Casein Agar.

Standard B. E. Agar plus litmus and lactose solutions. Standard B. E. Agar plus litmus and dextrose solutions.

(All Beef Extract Agar used for making litmus lactose and litmus dextrose plates, was from same lots as that used for making Beef Extract agar plates.)

Dilution Bottles and Diluting Water. The dilution bottles used were 1-oz. and 4-oz. Philadelphia ovals, filled by automatic burettes and to contain 99 c.c. dilution water and 9 c.c. dilution water, respectively after autoclave sterilization. The dilution water contained 0.5% commercial sodium chloride.

Pipettes. The pipettes used were straight sided, single mark and blunt pointed. Capacity pipettes graduated to contain 1 c.c. water, were used for making primary dilution of sample, and volumetric pipettes graduated to deliver 1 c.c. water, for all other dilutions and inoculations.

Petri dishes. Petri dishes 10 x 1.5 cm. sterilized by dry heat at 180°C. for two hours were used for all inoculations (plating).

Method for Making Dilutions and Plating. In all cases, the sample of ice cream was measured by a 1 c.c. single mark capacity pipette, and the pipettes washed out with the dilution water.

The Method of Dilution was as follows:

1 c.c. of sample to 99 c.c. dilution bottle = 1:100 1 c.c. of 1:100 to 9 c.c. dilution bottle = 1:1000 1 c.c. of 1:100 to 99 c.c. dilution bottle = 1:10000 1 c.c. of 1:10000 to 9 c.c. dilution bottle = 1:100000 1 c.c. of 1:10000 to 99 c.c. dilution bottle = 1:1000000

Transfers for higher dilutions were made before 1 c.c. was transferred to petri dish.

Litmus Lactose and Litmus Dextrose Agar Plates. 1 c.c. of a 10% solution of lactose or dextrose, and ½ c.c. of 1% solution of azolitmin were added to each plate before inoculation with 1 c.c. of diluted sample.

Test for Bacteria of B. Coli Type. Durham fermentation tubes were used. The outside tube was 6" x ½", the inside tube 3" x ½". The lactose-peptone bile media was made by adding 1% lactose and 1% peptone to fresh oxbile, which had previously been boiled and filtered.

Two lots of bile media were prepared in accordance with the demands of the experiment and held in the re-

frigerator until used.

The inoculated tubes were incubated for 72 hours at 37°C., the percentage of gas formed at the end of each 24 hours of incubation being recorded.

From the tubes, litmus lactose agar plates were made at the end of 24, 48 or 72 hours, as gas formation was found.

These plates were made by transferring from tubes, one 3 mm. loopful of bile to a 9 c.c. dilution bottle, and one 3 mm. loopful of this dilution to a plate containing lactose and azolitmin solutions.

After incubation at 37°C. for 24 hours, characteristic colon colonies were isolated from plates to lactose agar slants. These slants were then grown at 37°C. for 24 hours and transfers made from the growths to tubes of Durham's peptone solution, and to nitrate solution.

A stab culture was made in the lactose agar slant, and in a tube of infusion gelatin.

The peptone solution was tested for the presence of indol by the addition of $\frac{1}{2}$ c.c. of paradimethylamidoben-yaldehyde solution.

The nitrate solution was tested for the presence of nitrites by the addition of $\frac{1}{2}$ c.c. of a sulphanilic acid solution and $\frac{1}{2}$ c.c. of a naphylamene acetate solution.

The presence of gas in lactose agar stab was noted as a control on the isolation.

The gelatin stabs were incubated 10 days at 20°C., and the presence of liquefaction noted.

Bacterial Counts. All plates were counted, wherever possible.

In reporting actual count per c.c., averages were made in cases where the bacterial count exceeded 20 and was less than 500 colonies to the plate. The number reported was not in accordance with the standard method of reporting bacterial counts.

Outline of Experiments.

To Determine Variations and Bacteriological Data Due to Media Differences.

Experiments were run in duplicate, using the same sample for both tests, but using two lots of media; the first lost being made on January 21st, 1914, and stored in the refrigerator until used January 31st, 1914 (10 days), the second lot being made on January 28th, 1914, and stored in refrigerator until used for test January 31st, 1914 (3 days).

Experiment No. 1. Test of same location.

Three teaspoonful samples: A, B, and C, were collected from the same immediate location, 4" below surface of cream, and at center of can. These samples were melted in water bath, well shaken, and tested in duplicate for count and coli, using 10-day-old media for one test, and 3-day-old media for other tests.

Experiment No. 2. Test of different locations.

Three samples: (4 oz.) D, E, and F, were collected from top, middle, and bottom of center of can. These samples before testing were allowed to melt 10 minutes at room temperature (70°F.) and the melted portion sampled without shaking, with a 1 c.c. capacity pipette.

STRAWBERRY ICE CREAM.

BACTERIAL COUNT PER C.C. THREE DAYS AT 37° C. ON Multiply results (except B. coli) by 1,000.

		Aga	560	1200	141	1,10	500	388	
		Infusion Aga	350 100	280 500 10 000	2000	170 700 1.000	180	260 300 1,000	,
		Albal	60	100	20	30	09	80	
		ar 3 days Inert	500 500	450 300 3.000	710 500 1,000	430 900 2.000	2000 1000	100	
		itmus Ag	410 500	370	400 200	420 400	340 100	330 300	
	c. on	Lactose Litmus Agar Alkal		190	20				
y 1,000.	BACTERIAL COUNT PER C.C. THREE DAYS AT 37° C. ON	10 days Inert	550	440 700 2,000	550 400	580 100 1,000	480	180	
Multiply results (except B. coli) by 1,000.	HREE DA	Acid	490 500 1,000	420 400 1,000	530 500 1,000	390 200	430	280 400	Authorities
s (except	R C.C. T	Alkal.	140	100	70	40	09		
y result	UNT PE	ays		440 300 1,000	1,300 1,000	500 200 1,000	570 400 1,000	340 600 2,000	
Multipl	AL CO	Dextrose Litmus Agar days 3 days art Alkal. Acid In	810 200	550 400	540	460 500 1,000	370 1,000 2,000	210 100	
	CTERI	trose Li Alkal.	09	06	02	06	06		
	BA	Dext. 10 days Inert	520 100	390 300	770 400	360 600 spreader	300	80 600 1,000	
		r . Acid	580 300 1,000	510 100	540 500 1,000	380 200	480 300 1,000	850 700 1,000	
		Extract Agar days 3 days Acid	000	790 400 2,000	970 1,000 3,000	590 800	840 700	630 400 3,000	
		Beef Extra 10 days	690 400 1,000	710 600	0066	790 500	930 900 5,000	830 700 1,000	
		dilution	100,000 1,000,000	100,000 1,000,000	$\substack{100,000\\100,000\\1,000,000}$	10,000 100,000 1,000,000	100,000 100,000 1,000,000	10,000 100,000 1,000,000	
ə _l uc	ldmi Igmi	Described Sample of No. I	from sation nches in do	e teaspo baken bol saken i saken i the te the teaspo m	each s 9dt s bou mort	Top SibbiM	ortre Middle	Hottom Edibbil⁄	

	B.Coli	++	+	+++	+++	+ +	++
	Nitrate Peptone Gelatine B.Coli	11	1		111	1 1	11
	Peptone	++	+	++	++	+ +	+
ILE	Nitrate	++	+	+++	+++ s1	+ , +	++
TEN DAY BILE	Lac. Agar Stab.	++ []	+ 🗓	+++[]	++ +	+ + () ()	++
TEN	Lit. Lac. Agar Plate	+++	+++	++++	++	++++	+++ +
	tion 3tle 72	9885 <u>;</u>	70 115 10	8555 8550	20 80 10 10	80 10 10 10 10 10 10	700 100 11.
	Gas Production Lac. Lit. Bile 24 48 7	05150 171 171 171 171 171 171 171 171 171 17	100 110	00000	5000		740 Tr.
	Gas Lac 24	<u> </u>	10	älll	10 -	<u></u>	
	B.Coli	+	·	++	+++	÷+÷ ÷	++11
	Nitr. Pep. Gela, B.Coli	11	11	11			119
	Pep.	++	.++	++	+++++++++++++++++++++++++++++++++++++++	+++	++[]
		++	++	++	+++++++++++++++++++++++++++++++++++++++		++
LE	Lac. Agar Stab.	++	++	++[][]	+++++++++++++++++++++++++++++++++++++++		+++++
X BI	Lit. Lac. Agar Plate	++++ +	++++	++++	+++	+++	++
THREE DAY BILE	tion 3ile 72	50 60 10 10	000 000 100 100	1020	925 0 1	20 20 11.	9001
THRE	Produc c. Pep. I	Tr. 40 50 — 10 10 — 10 10 — Tr. 10	55 50 50 vials	50 10 10 11:	1 1 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04 00 01 10 10 10	200
	Gas La 24	H		Ţ.	<u> </u>		111
	le Dilution	1,000 10,000 10,000 100,000 1,000,000	10,000 10,000 10,000 1,000.000	100 1000 100,000 1,000,000	100 1000 10,000 100,000 1,000,000	1000 10,000 10,000 1,000,000 1,000,000	100 10,000 10,000 1,00,000 1,00,000
e u	oitdirsse Sample Non On On On On On On On On On On On On On	ach) taken tion about top, in the D	spoonful es	set enO) edt mort sedeni & o elbbim	Top Slibbin	Ocntre SibbiM	Bottom Fe slbbild

STRAWBERRY ICE CREAM.

Multiply results (except B. coli) by 1,000.

BACTERIAL COUNT PER C.C.

		5	days at	t 20° on		5 days a	t 30° on	Caseir	Agar	
	В	eef Exti	act Aga	ar Infusi	ion Aga	r Total	Counts	Pepto	Peptonizers	
San	nple Dilution	10 da.	3 da.	10 da.	3 da.	10 da.	3 da.	10 da.	3 da.	
Ā	10,000 100,000 1,000,000	1,430 1,000 4,000	1,170 $1,600$ $5,000$	900 1,100 1,000	$ \begin{array}{r} 800 \\ 500 \\ 1,000 \end{array} $	$\frac{400}{400}$ $1,000$	$\frac{440}{500}$ $1,000$	320 300	400	
В	$10,000 \\ 100,000 \\ 1,000,000$	1,360 $1,200$ $1,000$	$\frac{1,460}{700}$	$\frac{600}{500}$ $1,000$	690 1,100	$ \begin{array}{r} 640 \\ 500 \\ 2,000 \end{array} $	480 1,000	400 300 2,000	260 500	
С	$10,000 \\ 100,000 \\ 1,000,000$	1,590 2,000 1,000	1,210 $2,600$ $1,000$	$650 \\ 1,000$	840 1,000 2,000	560 400	360 300	260 300	220 100	
D	$10,000 \\ 100,000 \\ 1,000,000$	$1,300 \\ 1,400 \\ 1,000$	1,050 1,500	1.100 700	1,030 400 $2,000$	490 · 500	300 300 1,000	340 500	170	
Е	$100,000 \\ 100,000 \\ 1,000,000$	1.390 1.200 $5,000$	1.350 1.100 1.000	890 800	$\begin{array}{r} 800 \\ 500 \\ 1,000 \end{array}$	240 400 1,000	440 300 1,000	190 400	260 200	
F	$10,000 \\ 100,000 \\ 1,000,000$	1,190 1,100	$540 \\ 500 \\ 1.000$	560 700	$ \begin{array}{r} 380 \\ 600 \\ 1,000 \end{array} $	$250 \\ 200 \\ 2,000$	370 100	170 100 1,000	180	

Three samples A, B, C (one teaspoonful each) taken from the same location about 3 inches from the top, in the middle of the can.

E. Center middle.

F. Bottom middle.

Comments on Results of Tests.

The object of these investigations was to determine, as far as one investigation would give results, the effect of different lots of culture media made in the same institution, and by as near as possible the same methods, upon the variability of the bacterial counts. In the investigations of the one lot of strawberry ice cream duplicate culture media were used, one of which had been prepared three days prior to use, and the other ten days. The culture media used included beef extract agar, litmus lactose agar, infusion agar, casein agar, and the usual lactose bile fermentation tube tests for Bacillus coli.

1. There exists no uniform variation between the results from the two lots of culture media. The differences that exist between the counts obtained on any one sample plated on the two media, incubated at any one dilution,

at any one temperature, are no greater, and usually are less, than the differences between different samples taken from immediately contiguous locations in the can when tested on the same culture medium. Differences, therefore, in the preparation of the culture media cannot be a factor which would, in whole or in part, explain the differences of results obtained in the examination of samples from one can of ice cream in any one particular laboratory.

It is not even necessary to chart the results of the examinations obtained on this particular lot of ice cream to show the general variability in counts, for the reason that the figures very clearly show very pronounced differences, even when comparisons are made between results of examinations made under identical conditions, as

far as possible.

General Conclusions.

- 1. The results of these investigations indicate conclusively the existence of a great variability in the bacterial counts of different portions of individual cans of ice cream.
- 2. As a general rule, the bacterial counts obtained by the use of beef extract agar, incubated for five days at 20°C., are subject to less variability than the bacterial counts obtained on the same medium incubated at 37°C. for forty-eight hours.
- 3. The wide differences noted in the results cannot be accounted for by variations in any of the following details of technique or methods of reading results:
- (a) Variations in different lots of beef extract agar, or other media, prepared in the same laboratory under routine conditions.
- (b) Slight variations in methods of measurement of the melted ice cream.
 - (c) By any irregularity in the method of melting the

sample, provided no destruction of bacteria is caused by any method pursued.

- (d) By utilizing the results obtained on plates made from dilutions of the melted ice cream yielding either too high or too low counts generally considered satisfactory for general reading.
- 4. Variations in the bacterial contents of different portions of the can follow no uniform or regular system. One is as likely to find two contiguous samples having the extreme of difference, with widely separated portions showing great uniformity, as the reverse.
- 5. The making of duplicate plates from any dilution and averaging the results is a waste of effort, for the differences between contiguous samples are far greater than those due to any possible errors in technique.
- 6. Even the averaging of as many as twenty-four samples from a single can fails to give results which are accurately comparable within narrow limits, although the results are reasonably comparable on a broad basis.
- 7. From the above conclusions applied broadly to various lots of ice cream, and especially when one considers the detailed relationships between counts at different temperatures, and the different classes of bacteria as to acid and non-acid production and digestion or non-digestion of casein, the conclusion is warranted that each lot of ice cream is a law unto itself.
- 8. Bacterial counts on ice cream have an important, but very limited, usefulness. They give information only of a general character. It is entirely inappropriate to use them for passing judgment upon a product in any definite manner. The smaller the number of samples taken from a product, the less is the interpreter warranted in utilizing the results as a basis of judgment as to the sanitary character of the product.
- 9. The conclusions arrived at concerning the value of bacterial counts and their sanitary significance have, to

a large extent, equal applicability to the results of the determination of the numbers of B. coli, as ascertained by the lactose bile fermentation tube method. The standard methods for determining the numbers of B. coli in a given sample tend to develop in the casual observer, or even the technical worker, an unwarranted opinion of the accuracy of the results obtained. The methods do not call for the determination of numbers of B. coli between 100 and 1,000, or 1,000 and 10,000, or 10,000 and 100,-000, etc. Competent bacteriologists have for years understood that any attempt to determine numbers of B. coli with greater accuracy than this method provides would tend to lead to erroneous conclusions. Therefore, reports of numbers of B. coli in samples on any other basis than the numerical system just described tend to lead to fictitious values and should be discountenanced. The results of the examinations of the three lots of ice cream for the numbers of colon bacilli show that even the lactose bile fermentation tube method results are exceedingly variable, and warrant the conclusion that the distribution of these organisms in any one sample of ice cream is far from uniform when they are present in any considerable number.

In the vanilla ice cream, one-half as many samples showed B. coli in 1—1,000 c.c. inoculations as there were in 1—10,000 c.c. inoculations. Approximately one-twelfth of all showed the presence of B. coli in 1—100,000 c.c. inoculations. Thus, a single examination of this ice cream might have given results indicating the presence of either 1,000 or 100,000 B. coli per c.c. Dependence, therefore, upon one test of a sample from a can of ice cream as to the B. coli content would be absolutely valueless. The chocolate ice cream examined contained practically no colon bacilli in 1—100 c.c. inoculations. The strawberry ice cream varied in its B. coli content from 100 B. coli per c.c. to 100,000, although 50% of the tests showed 1,000

B. coli and 33% showed 10,000. These facts show conclusively a totally unscientific basis for attempting to pass judgment upon the sanitary quality of ice cream by attributing sanitary significance to numbers of colon bacilli found in samples of this product, unless one attempted to draw the unwarranted conclusion that an ice cream containing more than a very small number, say 100 colon bacilli per c.c., was not prepared in a sanitary manner.

H. D. PEASE,

Director, Dept. of Bacteriology.

LEDERLE LABORATORIES.

To National Association of Ice Cream Manufacturers.

Bacteriological Investigations Regarding Rates of Growth in Pasteurized Milk

H. D. PEASE, M. D.

REPORTS OF BACTERIOLOGICAL INVESTIGATIONS REGARDING RATES OF GROWTH OF BACTERIA IN PASTEURIZED MILK, PASTEURIZED CREAM, CERTIFIED MILK AND CERTIFIED CREAM REFERRED TO AND PRESENTED IN PART AT THE HEARING.

H. D. Pease, M. D.

Report in the matter of the Examination of Samples of Pasteurized Milk, Pasteurized Cream, Certified Milk and Certified Cream, purchased on the Open Market from Sheffield Farms Slawson-Decker Company, October 28, 1913.

Samples: Six one-quart samples of Certified Milk, six quart samples of Grade "B" Pasteurized Milk were purchased on the open market and received at Lederle Laboratories October 28, 1913.

Method of Obtaining Samples: Without shaking the bottles, 150 c.c. of cream were removed from each of five bottles of certified milk and each of five bottles of pasteurized milk, by means of sterile pipettes. This cream was placed in sterile flasks and packed in ice.

These samples are called certified cream and pasteurized cream respectively.

METHOD OF EXAMINATIONS: The certified cream and pasteurized cream respectively were placed in 2-oz. sterile bottles, making twelve samples of certified cream and twelve samples of pasteurized cream.

The remaining quarts of certified and pasteurized milk were well shaken, and twelve 2-oz. sterile bottles were filled from each.

These 48 samples were divided into three lots of 16

samples, each lot containing 4 samples of certified cream, certified milk, pasteurized cream, pasteurized milk, one lot being placed at 12°C, one lot at 20°C and one lot at 37°C.

All samples were examined daily, the first examination being of the fresh sample, and the examinations being continued until souring took place.

These examinations were made, for bacterial count, on Beef Extract Agar at 37°C. for 2 days, and for the presence of Colon type organisms in Lactose Peptone Bile at 37°C. for 3 days.

Organoleptic tests were conducted on all samples daily until souring occurred, and finally on the sixth day of holding on all samples.

CERTIFIED CREAM.

Bacteria per c.c. on B.E.Agar, 2 days at 37°C and organoleptic tests, Held at 12°C.

4	sweet sweet sweet sweet turning		∞	sweet sweet turning turning	curd & whe		12	sweet turning curd whey
	33,000 13,000,000 10,000,000 95,000,000 300,000			21,000 160,000,000 400,000,000				40,000 440,000,000 94,000,000
ବର	sweet sweet sweet sweet turning		7	sweet sweet turning turning	curd & whey		11	sweet turning curd whey
BERS:	33.000 32.000 6.500.000 6.500.000 65.000.000	ů.	BERS:	24,000 50,000,000 405,000,000		C.		32,000 560,000,000 22,000,000
SAMPLE NUMBERS 2	sweet sweet sweet sweet turning curd whey	Held at 20°C.	SAMPLE NUMBERS 6	sweet sweet turning clabbered	curd & whey	Held at 37°C.	10	sweet turning curd whey
	31,000 26,000 5,000,000 22,000,000 490,000,000			1.800 710,000 63,000,000 12,000,000			1	35,000 140,000,000 30,000,000
	sweet sweet sweet sweet turning clabbered curd whey			sweet sweet turning turning	curd & whey			sweet turning curd whey
f on 1	24,000 4,800,000 23,000 15,500 no growth M		f on	180,000,000 305,000,000			f on 9	27.500 560,000,000 34,500,000
Period of Incubation	Fresh 1 day 2 days 3 ", 5 ", 6 ",		Period of Incubation	Fresh 1 day 2 days 3 ",	1200		Period of Incubation	Fresh 1 day 2 days 3 ".

CERTIFIED MILK.

Bacteria per c.c. on B.E.Agar, 2 days at 37°C and organoleptic tests. Held at 12°C.

	3 900	sweet 2.200 sweet	sweet 5.000.000 sweet 2,400.000 sweet 2,000.000 sweet 480.000.000 turning 480.000.000 clabbered curd whey curd whey			20	Same	clabbered				sweet 440,000,000 sweet sweet 440,000,000 clabbered 160,000,000 clabbered.	ed when
	CI	17,000 sv 20,000 sv	230,000 sv 1,100,000 sv 130,000,000 tr 9,000,000 cl	20°C.	UMBERS:	19	16,000 sv 40,000 sv 29,000,000 sv 440,000,000 tu	ė	. 37°C.	UMBERS:	23	25,000 s 505,000,000 s 215,000,000 c	•
SAMPLE NUMBERS	14	1.000 sweet 900 sweet	15,000,000 sweet 44,000,000 sweet 390,000,000 turning 3,000,000,000 clabbered curd whey	Held at 20°C.	SAMPLE NUMBERS:	. 18	420 sweet 3,000 sweet 9,000,000 sweet 3,900,000 sweet	clabbered and gas	Held at 37°C.	SAMPLE NUMBERS	22	1,300 sweet 755,000,000 sweet 390,000,000 clabbered	
		sweet	ng ered				sweet sweet turning clabbered	curd whey				sweet sweet clabbered	
Deviod of	Incubation 13	Fresh 1.200	s spread 24.50 510,00 1,200,00			Period of	105,000,000 175,000,000	4700			Period of	1,000 755,000,000 520,000,000	2 2

GRADE B PASTEURIZED CREAM.

Bacteria per c.c. on B.E.Agar, 2 days at 37°C and organoleptic tests. Held at 12°C.

	28	sweet (spr.)	sweet sweet turning clabbered curd & whey			32	sweet sweet turning turning	curd whey			36	sweet turning curd whey	
	2	54,000	28.000.000 170.000.000 260.000.000 180,000.000			ಖ	$\begin{array}{c} 42.000 \\ 15.000.000 \\ 1.120.000.000 \\ 230.000.000 \end{array}$					52,000 77,000,000 12,000,000	
	27	sweet	sweet sweet turning clabbered curd whey			31	sweet sweet turning	curd whey			35	sweet turning curd whey	
ABERS:	94	130,000	24.000.000 18.500.000 160.000.000 40.000.000	0°C.	ABERS:	0.0	90,000 7,800,000 650,000,000 265,000,000		7°C.	IBERS:		120,000 105,000,000 77,000,000	
SAMPLE NUMBERS	26	sweet	sweet sweet turning curd whey	Held at 20°C.	SAMPLE NUMBERS	30	sweet sweet turning clabbered curd whey		Held at 37°C,	SAMPLE NUMBERS	34	sweet turning curd whey	
		74.000 20.000 spreader	31,570,000 100,000,000 520,000,000 15,000,000				84,000 12,500,000 1,100,000,000 690,000,000					82.000 125.000.000 56.000.000	
	25	sweet	sweet sweet turning curd whey			29	sweet sweet turning curd whey				55	sweet turning curd whey	
P	'n,	62.000 57,000	38,000,000 310,000,000 740,000,000 50,000,000			n	94,000 14,000,000 44,000,000 40,000,000				q	82,000 97,000,000 74,000,000	
Portog of	Incubation	Fresh 1 day	2 days 3 " 4 " 5 "			Period of Incubation	Fresh 1 day 2 days 3 " 40	. 9			Period of Incubation	Fresh 1 day 2 days 3 "	4100

GRADE B PASTEURIZED MILK.

Bacteria per c.c. on B.E.Agar, 2 days at 37°C and organoleptic tests. Held at 12°C.

	40	0 sweet 0 sweet	sweet sweet sweet turning clabbered			44	r sweet sweet turning	0 clabbered	curd & whey		84	0 sweet 0 turning 0 clabbered	
		14,000	40.000.000 25.500.000 345.000.000 70.000.000				No growth TT 11,500,000 1,100,000,000	450,000,000				170.000.000 40.000.000	
	39	sweet	sweet sweet sweet turning clabbered			43	sweet sweet turning	clabbered	curd & whey		47	sweet turning clabbered	casein precipitated
MBERS:		60,000	28.500,000 32,000,000 235,000,000 20,000,000	20°C.	MBERS:		20,000 10,800,000 940,000,000	480,000,000		37°C.		170,000,000 62,000,000	
SAMPLE NUMBERS:	38	sweet	sweet sweet sweet turning clabbered and gas	Held at 20°C.	SAMPLE NUMBERS:	42	sweet sweet turning	clabbered	curd & whey	Held at 37°C.	46	sweet turning clabbered	casein precipitated
		9.800	29,000,000 175,000,000 180,000,000 14,000,000				9,500 10,000,000 820,000,000	380,000,000				8.600 170,000,000 54,000,000	
	37	sweet	sweet sweet sweet turning curd whey			41	sweet sweet turning	clabbered	curd & whey		45	sweet turning clabbered	casein precipitated
		11.800 35,000	1,500,000 315,000,000 280,000,000 80,000,000			on	31,500 7,900,000 unc H.T.	380,000,000			flon	11,000 220,000,000 40,000,000	
	reriod or Incubation	Fresh 1 day	2 days 3 % 5 % 6 %		Period of	Incubation	Fresh 1 day 2 days	00 417 2 2 2	; ; Q		Period of Incubation	Fresh 1 day 2 days 3 '',	2 2 904

CERTIFIED CREAM.

Number of Bacteria of the B.Coli type per c.c. and organoleptic tests. Held at 12°C.

-	sweet sweet sweet sweet turning turning		œ	sweet sweet turning turning	curd whey		12	sweet turning curd whey
	100.000 100.000 100.000 100.000 1,000.000			1,000,000 1,000,000 1,000,000				$\begin{array}{c} -100 \\ 100.000 \\ -10.000 \end{array}$
තෙ	sweet sweet sweet sweet turning turning turning		_	sweet sweet turning turning	curd whey		11	sweet turning curd whcy
	1000 100,000 100,000 1,000,000 1,000,000	F.3		1,000,000 1,000,000 1,000,000 +		rì		100.000
SAMPLE NUMBERS:	sweet sweet sweet sweet turning whey curd	Held at 20°C.	SAMPLE NUMBERS:	sweet sweet turning clabbered	curd whey	Held at 37°C.	SAMPLE NUMBERS: 10	sweet turning curd whey
64	$\begin{array}{c} 0\\ -10\\ 1.000\\ 100.000\\ 1.000.000\\ 1.000.000\\ \end{array}$			10,000 + 1,000,000 + 1,000,000 + 1				10.000
	sweet sweet sweet sweet turning clabbered whey curd			sweet sweet turning turning	curd whey			sweet turning curd whey
1	10000+ 10000+ 100,000+ 100,000+ 10,000		IO.	1,000,000 + 1,000,000 +			6	$\begin{array}{c} 10.000 \\ -10.000 \end{array}$
Period of Incubation	Fresh 11 day 22 days 3 " 5 "		Period of Incubation	Fresh 1 day 2 days 3 ",	::		Period of Incubation	Fresh 1 day 2 days 3 " 55 "

CERTIFIED MILK.

Number of Bacteria of the B.Coli type per c.c. and organoleptic tests. Held at 12°C.

	16	-100 sweet 1,000,000 sweet 100,000 sweet 10,000 turning 10,000 clabbered curd & whey			20	—1.000 sweet —1.000 sweet 100.000 turning 100.000 turning	clabbered		c1 4.	1,000,000 clabbered	curd & whey
	16	sweet sweet sweet sweet turning clabbered curd & whey			19	sweet sweet sweet turning	clabbered		233		curd & wher
 02		1,000,000 1,000,000 1,000,000		 202	1	-10,000 $1,000,000$				1,000,000	
SAMPLE NUMBERS:	14	sweet sweet sweet sweet turning clabbered curd & whey	Held at 20°C.	SAMPLE NUMBERS:	18	sweet sweet sweet sweet	clabbered + gas	Held at 37°C.	SAMPLE NUMBERS: 99	sweet sweet clabbered	casein precipitated
		$\begin{array}{c} 0 \\ -10 \\ 1000 \\ 10000 \\ 1,000,000 \\ 1,0000,000 \end{array}$				100.000				10.000 +	
	ec.	0,000,000 0,000,000			11	0 sweet 100 sweet 10,000 + turning 10,000 + clabbered	curd & whey		ē	0 sweet 10.000 sweet 1,000,000 clabbered	casein precipitated
	Period of	Fresh 1 day 2 days 4 " 1 5 " 1 6 " 1 6 " 1 6 " 1			Period of	Fresh 1 day 2 days 3 ".	#10 .0		Period of		4100

GRADE B PASTEURIZED CREAM.

Number of Bacteria of the B.Coli type per c.c. and organoleptic tests. Held at 12°C.

	100 sweet 10.000 sweet 10.000 sweet 10.000 sweet 10.000 sweet 10.000 turning 1.000.000 clabbered	curd & whey	32 Sweet 1,000,000 sweet 1,000,000 turning 1,000,000 turning	curd & whey	ec or	10,000,000 sweet turning 10,000,000 curd & whey
	sweet sweet sweet sweet turning clabbered curd & whev	F-6	sweet sweet turning turning	curd & whey	10	sweet turning curd & whey
	100 -1,000 10,000 100,000 -1,000,000		100,000 1,000,000 1,000,000		IRS: 35	10,000,000 1,000,000
SAMPLE NUMBERS:	sweet sweet sweet sweet turning curd & whey	Held at 20°C. SAMPLE NUMBERS:	sweet sweet turning clabbered curd & whey	Held at 37°C.	SAMPLE NUMBERS:	sweet turning curd & whey
	$\begin{array}{c} 100 + \\ 100 + \\ 100 + \\ 100 + \\ 100 + \\ 100 + \\ 100 + \\ 000 + \\ -1,000 + \\ 000 + \\ \end{array}$		10.000 1,000,000 1,000,000			1.000,000
10	sweet sweet sweet sweet turning curd & whey	29	sweet sweet turning curd & whey		33 SWeet	turning curd & whey
п 00-г	100.000 + 1,000.000 + 1,000.000 + -1,000.000 + -1,000.000 + -1,000.000 + -1,000.000	E -	10,000+ 10,000,000+ 10,000,000+		n 100	10,000,000
Period of Incubation Fresh	1 day 2 days 3 days 6 %	Period of Incubation	1 day 2 days 3 c 5 c		Period of Incubation Fresh	1 day 2 days 3 4 66 5 66

GRADE B PASTEURIZED MILK.

Number of Bacteria of the B.Coll type per c.c. and organoleptic tests. Held at 12°C,

5	10.000 sweet 10.000 sweet 10.000 sweet 10.000,000 sweet 100.000 turning clabbered		100 sweet 1,000,000 turning 1,000,000 clabbered	curd & whey		48 ——100 sweet 1,000,000 turning 1,000,000 curd & whey	casein precipitated	H. D. PEASE, Director, Dept. of Bacteriology. LEDERLE LABORATORIES. F. D. BELL, Secretary.
08	sweet sweet sweet sweet sweet turning clabbered		sweet sweet turning clabbered	curd & whey		sweet turning clabbered	casein precipitated	H. D. I.
	100.000 100.000 100.000 100.000		10,000 100,000 100,000			1,000,000		
SAMPLE NUMBERS	10 sweet 10000 sweet 10.000 sweet 10.000 sweet 100.000 turning clabbered and gas	Held at 20°C. SAMPLE NUMBERS: 42	10,000 sweet 1,000,000 turning 1,000,000 tlabbered	curd & whey	Held at 37°C. SAMPLE NUMBERS:	10.000,000 turning 10.000,000 clabbered	casein precipitated	
37	10 sweet 10.000 sweet 1.000.00 sweet 1.000.000 sweet sweet sweet sweet sweet sweet triming curd & whey	4.1	10,000,000 sweet 10,000,000 turning 1,000,000 clabbered	curd & whey	K. d	100.000 turning clabbered	casein precipitated	
Period of Incubation	Hresh 1 daay 2 days 3 4 4 4 1 6 4 1	Period of Incubation	Fresh 1 day 2 days 3 " " 10		Period of	And .	2 2	

WA 715 N277r 1914

31220380R

NLM 05144458 8

NATIONAL LIBRARY OF MEDICINE