

Comparing Machine Learning Algorithms for Predicting ICU Patients' Mortality

Yu Zhang
Data Scientist
May 2021
zhangyu027@gmail.com

Statement of the Problems

- Efforts have been made to identify Clinically relevant statistical methods and machine learning applications that are optimal in predict the ICU patients' mortality.
- The knowledge gaps are still in utilizing machine learning to help ICU physicians make optimal clinical decisions and early and accurate identification of ICU patients with a high risk of in-hospital deaths.
- The current study applied and evaluate the performance of four different machine learning algorithms in predicting ICU in-hospital deaths. My goal was to identify the best algorithm using demographic data, vital, and laboratory data, which can, in turn, improve the prognosis and clinical outcomes.

Clinical Questions

- 1. What are the features of patients' demographic, lab visit and vital signs to predict ICU patients' in-hospital death?
- 2. Which is the best machine learning model to predict the ICU patients' mortality among XGboosting, logistic regression, decision tree and KNN?
- 3. What are the recommendation of the machine learning algorithm to the doctors and physician to best perform clinical interventions for critically ICU patients?

Methods, Metrics and Features

- Train ICU visit data: 91713 (size)
- Features: (103)
 - Patients Demographic (19)
 - Lab: min, max by day and hours (46).
 - Vital sign of min, max by day and hours (38)
- Predictors: Probability of Hospital Death('1'), Survival ('0')
- Predictive Modeling: four ML models
- Metrics: Accuracy score, Recall, F1 score, ROC AUC

Confusion Matrix

Supervised Learning Modeling (classifier)

Logistic Regression: (tradition maximum likelihood estimate and independent Input)

K Nearest Neighbor: (non-parametric)

Decision Tree: (use gini and entropy to find the best break point)

XGboosting: (optimize number of features)

Methods

Exploratory Data Analysis

- ☐ Patients' age over 90 are excluded from the data
- ☐ Imbalanced data of deaths and survival in training data

Exploratory Data Analysis

☐ Gender data are balanced.

Feature Correlation & Sig Predictors

- Heat map identifies the features of high or low correlation features.
- Solid tumor metastasis, lymphoma, day_diasbp_min, and day_mbc_max are removed from the model for high correlation with any other features.
- Cirrhosis is removed due to the none correlation to other features

Feature Importance Ranking

- The outcomes only stands out four features, Other features show no effect thus remove from the model.
- Hyperparameter tuning is applied to use only four features that have the importance to the model

Decision Tree Feature Importance

	Features	Coefficient
48	apache_icu_death_prob	0.785
49	ventilated	0.191
52	diabetes_mellitus	0.023
15	d_sysbp_min	0.001

Decision Tree for Clinical Implication

- Calibration: APACHE <= 0.12
- Clinical Critical Value:
 - Ventilated < 0
 - diabetes_mellitus: <= 0.99,
 - systolic blood pressure: <= 92.0

Hyperparameter Tuning

Models Performance Comparison

	5- Folds Cross validatio n Mean accuracy sore	F1 Score	Recall Confusi on Matrix (TPR)	AUC ROC curve	Confusion Matrix (FPR)
Decision Tree	0.79	0.36	0.73 **	0.84	0.20
KNN	0.91	0.36	0.42	0.62	0.08
Logistic Regression	0.92	0.41	0.68	0.78	0.15
XGboosting	0.93 **	0.68 **	0.55	0.88 **	0.11**

Findings & Implication

- The machine learning-based models developed in this study are compared to their prediction performance on each metric. Amongst them, XGboosting showed the best performance in predicting the risk of in-hospital death.
- The model provides the calibration of the APACHE probability and control of ventilated levels to protect the patients at risk. Other features like diabetes mellitus can be used as a reference to prioritize the patients at risk.
- It has the potential to assist physicians in the ICU to perform appropriate clinical interventions for critically ill patients and thus may help improve the pre-diagnostic of patients in the ICU.

Questions & Answers

Zhangyu027@gmail.com