MATH703 : Martingales et Chaînes de Markov

Contrôle continu nº 2

Documents autorisés : polycopié de cours, table des lois usuelles

Vendredi 21 décembre 2018.

Exercice 1. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées suivant la loi normale centrée réduite $\mathcal{N}(0,1)$. On pose $S_0=0$, $\mathcal{F}_0=\{\emptyset,\Omega\}$ et, pour $n\geq 1$,

$$S_n = X_1 + \ldots + X_n, \qquad \mathcal{F}_n = \sigma(X_1, \ldots, X_n).$$

- 1. Soit t un réel. On note, pour $n \in \mathbb{N}$, $Z_n = \exp(tS_n)$. Montrer que $(Z_n)_{n\geq 0}$ est une sous-martingale par rapport à la filtration $(\mathcal{F}_n)_{n\geq 0}$.
- 2. Pour $n \in \mathbb{N}^*$, on considère $M_n = \sum_{k=1}^n k^{-2/3} X_k$. Montrer que $(M_n)_{n \geq 1}$ converge lorsque n tend vers $+\infty$, presque sûrement et dans L^2 , vers une variable aléatoire M_∞ de carré intégrable.

Exercice 2. Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans $E=\{1,2,3,4\}$ de matrice de transition

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 \\ 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 1/2 & 1/2 \end{pmatrix}.$$

- 1. (a) Préciser les valeurs de $\mathbb{P}_2(X_1=3)$ et de $\mathbb{E}_3[X_1]$.
- (b) On suppose dans cette question que la loi de X_0 est $\mu=(1/4\ 1/4\ 1/4\ 1/4)$. Déterminer la loi de X_1 puis $\mathbb{E}_{\mu}[X_1]$.
- 2. (a) Faire le graphe des transitions de la chaîne.
 - (b) Montrer que la chaîne est irréductible récurrente positive.
- 3. (a) Déterminer la probabilité invariante.
 - (b) Que vaut $\mathbb{E}_1[S_1]$ où $S_1 = \inf\{n \ge 1 : S_n = 1\}$?
- 4. Quelles sont les limites presque sûres de

$$\frac{1}{n} \sum_{k=0}^{n-1} X_k, \qquad \frac{1}{n} \sum_{k=0}^{n-1} X_k^2 ?$$

Exercice 3. Soit 0 . Un candidat à un jeu répond à une série de questions. Pour chaque question, la probabilité qu'il donne une réponse correcte est <math>p, celle qu'il se trompe est 1-p. Le candidat gagne la partie lorsqu'il parvient à donner 4 bonnes réponses **successives**; le jeu s'arrête alors. Lorsque le candidat donne une mauvaise réponse, le compteur de ses bonnes réponses successives retombe à zéro. Les réponses du candidat aux différentes questions sont supposées indépendantes.

On note, pour $n \in \mathbb{N}$, X_n le nombre de bonnes réponses successives données par le candidat après avoir répondu à n questions.

- 1. Montrer que $(X_n)_{n\geq 0}$ est une chaîne de Markov à valeurs dans $\{0,\ldots,4\}$ dont on précisera la matrice de transition.
- 2. Classifier les états de la chaîne.
- 3. On note, pour $k \in \{0, ..., 4\}$, $u(k) = \mathbb{E}_k[T_4]$ où $T_4 = \inf\{n \ge 0 : X_n = 4\}$.
 - (a) Préciser le système linéaire vérifié par $(u(k))_{k=0,....3}$.
 - (b) Calculer la durée moyenne de la partie $u(0) = \mathbb{E}_0[T_4]$.