Trigonometría

Departamento de Matemáticas

Objetivos

Al término de la clase, el estudiante deberá ser capaz de:

- Representar un ángulo utilizando el sistema sexagesimal o radial.
- Convertir ángulos del sistema radial al sexagesimal y viceversa.
- Conocer los conceptos de velocidad angular y velocidad lineal.
- Resolver problemas de velocidad angular y lineal.

Miguel Ángel Muñoz Jara miguel.munoz.j@unab.cl

Coneptualización previa.

Considerando los temas tratados en las lecturas previas, responda las siguientes interrogantes:

- ¿Qué es un Ángulo?
- ¿Como se miden los ángulos?
- 3 ¿Cuándo un ángulo se denomina negativo.?
- ¿Cuales son los sistemas de medida de los ángulos?
- 6 ¿Cuando un ángulo mide un grado?
- 6 ¿Cuando un ángulo mide un radian?

Miguel Ángel Muñoz Jara miguel.munoz.j@unab.cl

Ángulo

Uno de los conceptos bases de la trigonometría es el concepto de ángulo, el cual se define a continuación:

Definición. Un ángulo se forma mediante la rotación en un plano de un rayo \overrightarrow{r} .

El rayo \overrightarrow{r} se denomina lado inicial del ángulo, mientras que el rayo \overrightarrow{s} se denomina lado terminal del ángulo. Es importante mencionar que una

rotación en sentido antihorario da origen a un ángulo positivo, mientras que una rotación en sentido horario da origen a un ángulo negativo.

Miguel Ángel Muñoz Jara miguel.munoz,j@unab.cl

Ángulos y cuadrantes

Un ángulo inserto en un sistema de coordenadas rectangular se dice que está en la posición estándar si su vértice coincide con el origen y el lado inicial está a lo largo del semi eje positivo de las abscisas. Si el lado del terminal no se encuentra a lo largo de un eje de coordenadas, entonces el ángulo se referencia en términos del cuadrante en el que se encuentra el lado del terminal

Miguel Ángel Muñoz Jara miguel.munoz,j@unab.cl

5/1

Sistema Sexagesimal

Los sistemas de medida de ángulos más utilizados son el sistema sexagesimal y el sistema radial, cuyas unidades de medida son el grado y el radian respectivamente.

Definición. Sistema Sexagesimal. En este sistema la unidad de medida es el grado (1°) , el cual corresponde que corresponde a la trescienta sesentava parte de un ángulo positivo formado por una rotación completa.

Observación. En diversas aplicaciones es necesario subdividir de manera mas fina la medición de un determinado ángulo. En esos casos se utilizan los conceptos de minutos y segundo. Donde un grado es equivalente a 60 minutos y un minuto a 60 segundos.

Ejemplo. Si el ángulo α mide 24 grados con 30 minutos y 36 segundos, entonces este ángulo se denota por:

$$\alpha = 24^{\circ}30'36''$$

La medida decimal de α está dada por:

$$\alpha = \left(24 + \frac{30}{60} + \frac{36}{3600}\right)^{\circ} = 24.51^{\circ}$$

Taller individual.

- Realice la conversión a grado decimal de cada uno de los siguientes ángulos:
 - $\alpha = 33^{\circ}15'18''$
 - $\alpha = -15^{\circ}36'54''$
 - $\alpha = 1^{\circ}12'6''$
- Realice la conversión al formato grados-minutos-segundos de cada uno de los siguientes ángulos:
 - $\alpha = 33.128^{\circ}$
 - $\alpha = 105.182^{\circ}$
 - $\alpha = 237.615^{\circ}$

Sistema Radial

Definición. Sistema Radial. En el sistema Radial la unidad de medida es el radian. El cual corresponde a la medida de un ángulo central de una circunferencia de radio r que suscribe un arco de medida r.

8 / 1

En general si α es un ángulo central positivo de una circunferencia entonces la mediad del ángulo en el sistema radial está dado por:

$$\frac{s}{r}$$
radianes

Donde s es la longitud del arco subtendido por el ángulo central y r es la medida del radio de la circunferencia.

Ejemplo. ¿Cuál es la medida(en radianes) de un ángulo central que subtiende un arco de 3 centímetros en una circunferencia de radio 6cm? **Solución.** Observe que la medida del ángulo es $\frac{3}{6}$ radianes = $\frac{1}{2}$ radianes.

Miguel Ángel Muñoz Jara miguel.munoz.j@unab.cl

Relación entre Ángulos y Radianes

Observe que de las definiciones de los sistemas de medida sexagesimal y radial es posible establecer una equivalencia entre estos. A saber:

$$360^{\circ} \equiv 2\pi \, radianes$$

Así, por ejemplo:

f 0 Si lpha es un ángulo cuya medida en grados es de 45° , entonces su equivalencia en radianes es:

$$\alpha_{rad} = \frac{2\pi(45)}{360} radianes = \frac{\pi}{4} radianes$$

 ${\it \odot}$ Si α es un ángulo cuya medida en grados es de 135°, entonces su equivalencia en radianes es:

$$\alpha_{rad} = \frac{2\pi(135)}{360} radianes = \frac{3\pi}{4} radianes$$

 \odot Si α es un ángulo cuya medida en grados es de 240°, entonces su equivalencia en radianes es:

$$\alpha_{rad} = \frac{2\pi(240)}{360} radianes = \frac{4\pi}{3} radianes$$

Aplicación

Una cinta conecta una polea de radio 2 pulgadas con una polea de radio de 5 pulgadas. Si la polea mas grande gira 10 radianes, ¿cuántos radianes gira la polea más pequeña?

Solución. Considere la siguiente ilustración para comprender mejor el problema planteado.

Observe que de la relación $\alpha = \frac{s}{r}$ es posible establecer que si la polea más grande gira 10 radianes entonces el punto p recorre:

$$s = r\alpha \ in = (5)(10)in = 50 in$$

Es decir el punto P recorre 50 pulgadas, que es la misma distancia que recorre el punto Q. Por lo tanto la polea más pequeña gira:

$$\beta = \frac{50}{2}$$
 radianes = 25 radianes

Aplicaciones

Definición. Suponga que un punto P se mueve sobre una circunferencia de radio r describiendo un arco de longitud s y un ángulo θ en el tiempo t. Se define:

- (a) La velocidad lineal de P por $v = \frac{s}{t}$.
- (b) La velocidad angular de P por $\omega = \frac{\theta}{t}$.

Observe que la velocidad lineal y angular satisfacen $v = r\omega$.

Ejemplo. Una turbina de viento de diámetro de rotor de 15 metros realiza 62 revoluciones por minuto. Encuentre la la velocidad angular (en radianes por segundo) y la velocidad lineal (en metros por segundo) de la punta del rotor.

Solución. Observe que el ángulo descrito por la punta del rotor en un minuto es $\theta=2\pi(62)radianes=124\pi\ radianes$. Por lo tanto la velocidad angular está dada por

$$\omega = \frac{124\pi \, radaines}{60 \, segundos} = 6.49 \, rad/seg$$

Por otro lado la velocidad lineal está dada por:

$$v = r\omega = (7.5)(6.49)mt/seg = 48.69 mt/seg$$

Taller 2. Trabajo grupal.(3 integrantes)

- f 0 En cada caso determine la medida en radianes de un ángulo central que subtiende un arco de longitud s en un círculo de radio r.
 - a r = 4 centímetros y s = 24 centímetros.
 - **b** r = 4 centímetros y s = 16 centímetros.
 - r = 24 centímetros y s = 60 centímetros.
- Una bicicleta de pista tiene una rueda delantera con un diámetro de 40 centímetros y una rueda trasera de diámetro de 60 centímetros. A través de qué ángulo, en radianes, se desplaza la rueda delantera si la rueda trasera gira a través de 8 radianes?