FMI, Info, Anul I

Logică matematică și computațională

Seminar 3

(S3.1) Fie următoarele propoziții exprimate în limbaj natural:

- (i) Merg în parc dacă îmi termin treaba și nu apare altceva.
- (ii) Este necesar să nu plouă ca să putem observa stelele.
- (iii) Treci examenul la logică numai dacă înțelegi subiectul.
- (iv) Treci examenul la logică dacă faci o prezentare de calitate.

Transpuneți-le în formule ale limbajului formal al logicii propoziționale.

Demonstrație:

(i) Fie $\varphi=$ Merg în parc dacă îmi termin treaba și nu apare altceva. Considerăm propozițiile atomice:

p = Merg în parc. $q = \hat{I}\text{mi termin treaba.}$ r = Apare altceva.

Atunci $\varphi = (q \wedge (\neg r)) \to p$.

(ii) Fie ψ = Este necesar să nu plouă ca să putem observa stelele. Considerăm propozițiile atomice:

s = Ploua. t = Putem observa stelele.

Atunci $\psi = t \to \neg s$.

(iii) Fie θ = Treci examenul la logică numai dacă înțelegi subiectul. Considerăm propozițiile atomice:

w = Treci examenul la logică. $z = \hat{I}$ nțelegi subiectul.

Atunci $\theta = w \to z$.

(iv) Fie $\chi=$ Treci examenul la logică dacă faci o prezentare de calitate. Considerăm propozițiile atomice:

u = Treci examenul la logică. v = Faci o prezentare de calitate.

Atunci $\chi = v \to u$.

(S3.2) Să se arate că dacă A este finită şi B este numărabilă, atunci $A \cup B$ este numărabilă. **Demonstrație:** Fie $n \in \mathbb{N}$ numărul elementelor lui A. Demonstrăm că $A \cup B$ este numărabilă prin inducție după n.

Dacă n = 0, atunci $A = \emptyset$ și $A \cup B = B$ este numărabilă.

Presupunem acum adevărată pentru un n şi demonstrăm pentru n+1. Putem deci scrie $A=\{a\}\cup A'$ unde |A'|=n şi $a\notin A'$. Atunci $A'\cup B$ e numărabilă, din ipoteza de inducție – în particular, $A'\cup B\sim \mathbb{N}^*$. Avem că $A\cup B=\{a\}\cup A'\cup B$. Dacă $a\in B$, atunci $A\cup B=\{a\}\cup A'\cup B=A'\cup B$. Dacă $a\notin B$, atunci $A\cup B=\{a\}\cup A'\cup B\sim \{0\}\cup \mathbb{N}^*=\mathbb{N}$. În ambele cazuri obținem că $A\cup B$ este numărabilă.

(S3.3) Fie A, B mulţimi astfel încât există $f: B \to A$ injectivă. Arătaţi următoarele:

- (i) Dacă B este infinită, atunci și A este infinită.
- (ii) Dacă B este infinită și A este numărabilă, atunci B este numărabilă.

Demonstrație:

(i) Presupunem prin absurd că A este finită. Atunci există $n \in \mathbb{N}$ astfel încât A are n elemente. Vom demonstra că există m astfel încât B are m elemente, ceea ce contrazice faptul că B este infinită.

Demonstrăm prin inducție după n.

Pentru n = 0, avem $A = \emptyset$. Dacă am avea un $x \in B$, atunci $f(x) \in A = \emptyset$, contradicție. Rămâne că $B = \emptyset$. Prin urmare B are 0 elemente, deci putem lua m := 0.

Presupunem că am arătat propoziția pentru mulțimi cu n elemente și considerăm acum că A are n+1 elemente. Luăm $g:\{1,...,n+1\} \to A$ bijecție. Notăm $C:=g(\{1,...,n\})$ și $D:=\{x\in B\mid f(x)\in C\}$.

Cum $f(D) \subseteq C$, putem atât restricționa cât și corestricționa pe f la o funcție f': $D \to C$ ce ia aceleași valori ca f și este deci tot injectivă. Facem același lucru pornind

de la $g(\{1,...,n\}) = C$ și obținem o bijecție $g': \{1,...,n\} \to C$. Rezultă că C are n elemente. Aplicând ipoteza de inducție pentru f', obținem că există p astfel încât D are p elemente și deci există o bijecție $h: \{1,...,p\} \to D$.

Distingem două cazuri. Dacă nu există $a \in B$ cu f(a) = g(n+1), atunci B = D şi deci B are p elemente. Luăm așadar m := p. În celălalt caz, dacă există $a \in B$ cu f(a) = g(n+1), avem că $B = D \cup \{a\}$, iar reuniunea este disjunctă. Luăm acum funcția $h': \{1, 2, ..., p+1\} \to B$, definită, pentru orice j, prin:

$$h'(j) := \begin{cases} h(j), & \text{dacă } j \leq p \\ a, & \text{dacă } j = p + 1. \end{cases}$$

Cum h' este bijectivă, B are p+1 elemente. Luăm, aşadar, în acest caz, m:=p+1.

(ii) Demonstrăm prima dată că orice submulțime infinită a lui $\mathbb N$ este numărabilă.

Fie $B \subseteq \mathbb{N}$ infinită, deci nevidă. Construim inductiv o enumerare a sa

$$B = \{b_0, b_1, b_2, \ldots\},\$$

unde pentru orice n avem $b_n < b_{n+1}$ şi $b_n \ge n$.

Fie b_0 cel mai mic element al ei. Clar, $b_0 \ge 0$. Atunci, B fiind infinită, $B \setminus \{b_0\}$ rămâne infinită şi deci nevidă. Punem b_1 ca fiind minimul acelei mulţimi. Clar, $b_1 \ne b_0$ şi cum b_0 este minimul lui B, avem că $b_0 < b_1$. Rezultă şi că $b_1 > b_0 \ge 0$, deci $b_1 \ge 1$.

Presupunem că am fixat pe b_0, \ldots, b_n (pentru un $n \ge 1$) și vrem să îl alegem pe b_{n+1} , Îl punem ca fiind minimul lui $B \setminus \{b_0, \ldots, b_n\}$ și deci $b_{n+1} \ne b_n$. Dat fiind că b_n fusese ales ca minimul lui $B \setminus \{b_0, \ldots, b_{n-1}\}$, avem că $b_n < b_{n+1}$ și deci $b_{n+1} \ge n+1$.

Luăm funcția $g: \mathbb{N} \to B$, $g(n) = b_n$, pentru orice $n \in \mathbb{N}$. Funcția fiind strict crescătoare, este injectivă. Fie acum $m \in B$. Atunci $b_{m+1} \geq m+1 > m$. Cum b_{m+1} este minimul lui $B \setminus \{b_0, \ldots, b_m\}$, rezultă că $m \in \{b_0, \ldots, b_m\}$. Deci există $i \in \mathbb{N}$, $i \leq m$ cu $m = b_i = g(i)$. Am arătat așadar că g este și surjectivă, deci este bijectivă.

Demonstrăm acum enunțul principal. Deoarece A este numărabilă, există o bijecție $h:A\to\mathbb{N}$. Atunci $B\sim f(B)\sim h(f(B))$, deci h(f(B)) e infinită și este submulțime a lui \mathbb{N} , deci numărabilă, din cele anterioare. Rezultă că și B este numărabilă.

(S3.4) Fie A, B două mulțimi astfel încât $B \subseteq A$. Să se demonstreze următoarele:

- (i) Dacă B este infinită, atunci și A este infinită.
- (ii) Dacă B este infinită și A este numărabilă, atunci B este numărabilă.

3

Demonstrație: Fie

$$\iota: B \subseteq A, \quad \iota(b) = b \text{ pentru orice } b \in B.$$

Este evident ca ι este injectivă.

- (i) Se aplică (S3.3).(i) cu $f := \iota$.
- (ii) Se aplică (S3.3).(ii) cu $f := \iota$.

Propoziția 1. Reuniunea unei familii cel mult numărabile de mulțimi numărabile este numărabilă.

Demonstrație: Exercițiu suplimentar.

(S3.5) Fie LP logica propozițională. Să se arate următoarele:

- (i) Mulţimea Expr a expresiilor lui LP este numărabilă.
- (ii) Mulțimea Form a formulelor lui LP este numărabilă.

Demonstrație:

- (i) Avem că $Expr = \bigcup_{n \in \mathbb{N}} Sim^n = \{\lambda\} \cup \bigcup_{n \in \mathbb{N}^*} Sim^n$. Deoarece $Sim = V \cup \{\neg, \rightarrow, (,)\}$ și V este numărabilă, obținem, din (S3.2), că Sim este numărabilă. Conform (S2.5).(ii), Sim^n este numărabilă pentru orice $n \geq 2$. Aplicând Propoziția 1, obținem că $\bigcup_{n \in \mathbb{N}^*} Sim^n$ este numărabilă. Aplicăm încă o dată (S3.2) pentru a conclude că Expr este numărabilă.
- (ii) Deoarece $V \subseteq Form$ şi V este infinită, putem aplica (S3.4).(i) cu B := V şi A := Form pentru a obține că Form este infinită. Cum $Form \subseteq Expr$, Form este infinită şi Expr este numărabilă (conform (i)), putem aplica (S3.4).(ii) cu B := Form şi A := Expr pentru a conclude că Form este numărabilă.