General Remarks

$$\begin{aligned} \operatorname{d}(x,y) &= ||x-y||, & \operatorname{dist}(x,y) &= 1 - \operatorname{sim}(x,y) \\ l_2\text{-euclidean distance} & \sqrt{\sum_{i=1}^d |x_i - y_i|^2} \\ l_1\text{-manhatten distance} & \sum_{i=1}^d |x_i - y_i| \\ l_{\infty}\text{-distance} & (\sum_{i=1}^d |x_i - y_i|^p)^{1/p} \\ \operatorname{Mahalanobis norm} & (\operatorname{max}_i |x_i - y_i| \\ \operatorname{Mahalanobis norm} & ||w||_G^2 &= ||Gw||_2^2 \\ \operatorname{Cosine-Similarity} & \cos\frac{x^T y}{||x||_2||y||_2} \\ \operatorname{Jaccard-Distance} & 1 - \sin(A,B) &= 1 - \frac{|A \cap B|}{|A \cup B|} \end{aligned}$$

Function Properties

Concave function

$$f(a+s) - f(a) \ge f(b+s) - f(b) \ \forall a \le b, s > 0$$

Convex functions A function $f: S \to \mathbb{R}, S \subseteq \mathbb{R}^d$, is called convex if $\forall x, x' \in S, \lambda \in [0, 1]$ it holds that $\lambda f(x) + (1 - \lambda)f(x') \ge f(\lambda x + (1 - \lambda)x')$

H-strongly convex

$$f(x') \geq f(x) + \nabla f(x)^T (x'-x) + \frac{H}{2} ||x'-x||^2, H > 0$$
1-D: f is H-sc $\Leftarrow f''(x) \geq H, \forall x$.
 d -D: f is H-sc $\Leftarrow \lambda_{\min}(\nabla^2 f(x)) \geq H, \forall x$.

Subgradients Given a convex not necessarily differentiable function f, a subgradient $q_x \in \nabla f(x)$ is the slope of a linear lower bound of f, tight at x, that is $\forall x' \in S : f(x') > f(x) + q_x^T(x'-x)$

Locality Sensitive Hashing

Near-duplicate detection

$$\{(x,y) \in X \times X : x \neq y, d(x,y) \leq \epsilon\}$$

 (r,ϵ) -neighbour search Find all points with distance $\leq r$ and no points with distance $> (1+\epsilon)r$ from query q. Pick $(r, (1+\epsilon) \cdot r, p, q)$ -sensitive family and boost.

Min-hashing
$$h(C) = h_{\pi}(C) = \min_{i:C(i)=1} \pi(i)$$

 $\pi(i) = h_{a,b}(i) = ((a \cdot i + b) \mod p) \mod N),$
 $p \text{ prime (fixed) } > N, N \text{ number of documents}$

1: **for** each column c **do** for each row r do 2: 3: if c has 1 in row r then for each hash fn h_i do 4: $M_{i,c} \leftarrow \min\{h_i(r), M_{i,c}\}$ 5:

Band-hashing Signature matrix into b bands of r hash fns, per-column into b hash tables. If any h-table has a collision, report candidate pair. s^r prob of col on band j: $P(\text{col in } > 1 \text{ band}) = 1 - (1 - s^r)^b$

$$(d1, d2, p1, p2)$$
-sensitivity Assume $d_1 < d_2, p_1 > p_2$.
 $\forall x, y \in S : d(x, y) \leq d_1 \Rightarrow Pr[h(x) = h(y)] \geq p_1$
 $\forall x, y \in S : d(x, y) \geq d_2 \Rightarrow Pr[h(x) = h(y)] \leq p_2$

r-way AND
$$h(x) = h(y) \iff \forall i : h_i(x) = h_i(y)$$

 $(d_1, d_2, p_1^r, p_2^r) - \text{big r, more FN}$
b-way OR $h(x) = h(y) \iff \exists i : h_i(x) = h_i(y)$
 $(d_1, d_2, 1 - (1 - p_1)^b, 1 - (1 - p_2)^b) - \text{big b, more FP}$
AND-OR cascade $(d_1, d_2, 1 - (1 - p_1^r)^b, 1 - (1 - p_2^r)^b)$

OR-AND cascade $(d_1, d_2, (1 - (1 - p_1)^b)^r, (1 - (1 - p_2)^b)^r)$

Hash Functions

Euclidean distance $h_{w,b}(x) = \lfloor (\frac{w^T x - b}{a}) \rfloor$ where $w \leftarrow \frac{w}{||w||_2}, w \sim \mathcal{N}(0, I), w_i \sim \mathcal{N}(0, 1),$ $b \sim Unif([0,a])$, yields (a/2,2a,1/2,1/3)-sensitive Cosine distance $\mathcal{H} = \{h(v) = \operatorname{sgn}(w^T v)\}$ where $w \sim \text{Unif}\{x \in \mathbb{R}^n : ||x||_2 = 1\}$ $Pr(h_u(x) = h_v(y)) = 1 - \Theta_{x,y}/\pi$

Support Vector Machines

SVM SVM = Max margin linear classifier $\min_{w,\xi \ge 0} \frac{1}{2} w^T w + C \sum_{i=1}^n \xi_i \text{ s. t. } y_i w^T x_i \ge 1 - \xi_i \ \forall i$ Support vectors (SV) are all data points on the margin and data points with non-zero slack

Regularized hinge loss formulation $C = 1/\lambda$ $\min_{w} \lambda w^T w + C \sum_{i} \max(0, 1 - y_i w^T x_i)$

Norm-constrained hinge loss minimization $\min_{w} \sum_{i} \max(0, 1 - y_i w^T x_i) \text{ s.t. } ||w||_2 \leq \frac{1}{\sqrt{N}}$

Strongly convex formulation
$$\min_{w} \frac{1}{T} \sum_{t=1}^{T} \left(\frac{\lambda}{2} ||w||_{2}^{2} + \max(0, 1 - y_{t}w^{T}x_{t})\right)$$
s.t. $||w||_{2} \leq \frac{1}{\sqrt{\lambda}}$

$$\operatorname{Proj}_{S}(w) = w \cdot \min\left(1, \frac{1/\sqrt{\lambda}}{||w||}\right)$$

Small C, **Big** λ : Greater margin, more misclassification

Kernels

Dual SVM Formulation

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$$
s.t. $0 \le \alpha_{i} \le C$

$$\Rightarrow \text{ optimal w: } w^{*} = \sum_{i} \alpha_{i}^{*} y_{i} x_{i} = \sum_{i \in \text{SV}} \alpha_{i}^{*} y_{i} x_{i}$$

Kernel trick Substitute inner product $x_i^T x_i$ in dual formulation and in classification function with $k(x_i, x_i) = \phi(x_i)^T \phi(x_i)$, where $\phi(\cdot) : \mathbb{R}^d \to \mathbb{R}^{>d}$

Kernel functions A kernel is function $k: X \times X \to \mathbb{R}$:

- 1. Symmetry: $\forall x, x' \in X : k(x, x') = k(x', x)$
- 2. PSD: $\forall n \in \mathbb{N}$, any set $S = \{x_1, ..., x_n\} \subseteq X$, the Gram matrix is PSD.

Random Features (Inverse Kernel Trick)

Shift-invariant kernel k(x,y) = k'(x-y). Then the kernel has Fourier transform, such that:

$$k(x - y) = \int_{\mathbb{R}^d} p(w) \cdot e^{iw^T(x - y)} dw$$

where p(w) is the Fourier transformation, i.e. we map k(s) to another function p(w).

Random fourier features (prerequisites) Interpret kernel as expectation k(x-y) =

$$\int_{\mathbb{R}^d} p(w) \cdot \underbrace{e^{iw^T(x-y)}}_{g(w)} dw = \mathbb{E}_{w,b} \left[z_{w,b}(x) z_{w,b}(y) \right]$$

where
$$z_{w,b}(x) = \sqrt{2}\cos\left(w^T x + b\right)$$
, $b \sim U([0, 2\pi]), w \sim p(w)$

Random fourier features (kernel approximation)

- 1. $w_i \sim p, b_i \sim U([0, 2\pi])$ for i = 1, ..., m; iid
- 2. $z(x) = [z_{w_1,b_1}(x),...,z_{w_m,b_m}(x)]/\sqrt{m}$
- 3. $z(x)^T z(y) = \frac{1}{m} \sum_{i=1}^m z_{w_i,b_i}(x) \cdot z_{w_i,b_i}(y)$ 4. If $m \to \infty$, then (almost surely)
- $z(x)^T z(y) \to \mathbb{E}_{w,b}(z_{w,b}(x) \cdot z_{w,b}(y)) = k(x-y)$

Online Convex Programming

Regret $R_T = (\sum_{t=1}^T f_t(w_t)) - \min_{w \in S} \sum_{t=1}^T f_t(w)$ No-regret $\lim_{T\to\infty} \frac{R_T}{T} \to 0$

Online convex programming (OCP) If $y_t w_t^T x_t < 1$:

 $w_{t+1} = \operatorname{Proj}_{S}(w_{t} - \eta_{t} \nabla f_{t}(w_{t}))$

 $\operatorname{Proj}_{S}(w) = \operatorname{arg\,min}_{w' \in S} ||w' - w||_{2} = \operatorname{min}\left(w, \frac{w}{\lambda ||w||_{2}}\right)$

Regret for OCP

$$\frac{R_T}{T} \le \frac{1}{\sqrt{T}} [||w_0 - w^*||_2^2 + ||\nabla f||_2^2]$$

where $||\nabla f||_2^2 = \sup_{w \in S, t \in \{1, ..., T\}} ||\nabla f(w)||_2^2$

Parallel stochastic gradient descent 1. Split data into k subsets, k = number of machines, want $k = O(1/\lambda)$

- 2. Each machine produces w_i on its subset
- 3. After T iterations, compute $w = \frac{1}{k} \sum_{i=1}^{k} w_i$

PEGASOS Online SVM: H-sc. lossfn. Minibatch + reg

Active Learning

Uncertainty sampling Repeat until we can infer all remaining labels:

- 1. Assign uncertainty score $U_t(x)$ to each unlabeled data point: $U_t(x) = U(x|x_{1:t-1}, y_{1:t-1})$
- 2. Greedily pick the most uncertain point and request label $x_t = \arg \max_x U_t(x)$ and retrain classifier

For SVM: $U_t(x) = \frac{1}{|w^T| \cdot |x|}$

Cost to pick m labels: $m \cdot n \cdot d + m \cdot C(m)$ n = number of data points, d = dimensions, $C(m) = \cos t$ to train classifier

Hashing a hyperplane query Draw $u, v \sim \mathcal{N}(0, I)$.

Then resulting two-bit hash is:

$$h_{u,v}(a,b) = \left[\text{ sign } (u^T a), \text{ sign } (v^T b) \right]$$

Define the hash family:

$$h_{\mathcal{H}}(z) = \begin{cases} h_{u,v}(z,z) & \text{if } z \text{ is a database point vector} \\ h_{u,v}(z,-z) & \text{if } z \text{ is a query hyperplane vector} \end{cases}$$

Version space Set of all classifiers consistent with the data: $V(D) = \{w : \forall (x, y) \in D : sign(w^T x) = y\}$

Relevant version space $\hat{V}(D;U)$ describes all possible labelings h of all unlabeled data U that are still possible under some model w, or,

$$\hat{V}(D; U) = \{h : U \to \{+1, -1\} : \exists w \in V(D)$$
$$\forall x \in U : \operatorname{sign}(w^{T} x) = h(x)\}$$

Generalized Binary Search (GBS)

- 1: Start with $D = \emptyset$
- 2: while $|\hat{V}(D; U)| > 1$ do
- for each unlabeled example x in U do
- 4: $v^+(x) = |\hat{V}(D \cup \{(x,+)\}; U)|$
- $v^{-}(x) = |\hat{V}(D \cup \{(x, -)\}; U)|$ 5:
- 6: \triangleright number of labelings still left if x is
- Pick $x^* = \arg\min_x \max(v^-(x), v^+(x))$ 7:
- $D = D \cup \{x^*\}$

Decision rules for GBS SVM, $m \sim \text{margin}$

Max-min margin $\max_x \min (m^+(x), m^-(x))$

Ratio margin $\max_{x} \min \left(\frac{m^{+}(x)}{m^{-}(x)}, \frac{m^{-}(x)}{m^{+}(x)} \right)$

Clustering

K-Means

Cost Function
$$L(\mu) = L(\mu_1,, \mu_k) =$$

$$\sum_{i=1}^{N} \min_{\substack{j \in \{1, \dots, k\} \\ d(\mu, x_i)}} ||x_i - \mu_j||_2^2$$

Objective $\mu^* = \arg \min_{\mu} L(\mu)$

Algorithm Until convergence:

1: Assign each point x_i to closest center

$$z_i \leftarrow \arg \min_{j \in \{1, \dots, l\}} ||x_i - \mu_j^{(t-1)}||_2^2$$

2: Update center as mean of assigned data points

$$\mu_j^{(t)} \leftarrow \frac{1}{n_j} \sum_{i: z_i = j} x_i$$

Online k-means algorithm

$$\frac{\operatorname{dd}(\mu, x_t)}{\operatorname{d}\mu_j} = \begin{cases} 0 & \text{if } j \notin \operatorname{arg\,min}_i ||\mu_i - x_t||^2 \\ 2(u_j - x_t) & \text{else} \end{cases}$$
 with z_t user features. For us: $f(x_i, z_t)$ with z_t user features.

- 1. Initialize centers randomly
- 2. For t = 1: N
 - Find $c = \arg \min ||\mu_i x_t||_2$
 - $\bullet \ \mu_c = \mu_c + \eta_t (x_t \mu_c)$
- 3. For convergence: $\sum_{t} \eta_{t} = \infty$ and $\sum_{t} \eta_{t}^{2} < \infty$,

Coresets

Kev idea Replace many points by one weighted representative, thus, obtain C

$$L_k(u;C) = \sum_{(w,x)\in C} w \cdot \min_j ||u_j - x||_2^2$$

 (k,ϵ) -coreset C is called a (k,ϵ) -coreset for D, if for all $\mu: (1 - \epsilon)L_k(\mu; D) < L_k(\mu; C) < (1 + \epsilon)L_k(\mu; D)$

Operations Merge: union of two (k, ϵ) -csets is a (k,ϵ) -cset

> **Compress**: (k, δ) -cset of a (k, ϵ) -cset of D is a $(k, \epsilon + \delta + \epsilon \delta)$ -cset of D

Construction D^2 -sampling: iteratively build $B = \emptyset$ by sampling $\propto \frac{\mathrm{d}(x,B)^2}{\sum_{x' \in X} \mathrm{d}(x',B)^2}$

Importance sampling:

$$\propto \frac{\alpha d(x,B)^2}{c_{\Phi}} + \frac{2\alpha \sum_{x' \in B_x} d(x',B)^2}{|B_x|c_p hi} + \frac{4|X|}{|B_x|} \text{ where }$$

$$c_{\Phi} = \frac{1}{|X|} \sum_{x \in X} d(x,B)^2$$

$$B_x = \text{pts in } X \text{ that belong to same cluster as } x$$

Bandits

Regret $R_T = \sum_{t=1}^{T} (\mu^* - \mu_{i_t}), i_t$ chosen arm at time t ϵ -greedy The algorithm goes as follows:

- 1. Set $\epsilon_t = \mathcal{O}(\frac{1}{4})$
- 2. With probability ϵ_t : explore by picking uniformly at random
- 3. With probability $1 \epsilon_t$: exploit by picking arm with highest empirical mean

Regret: $R_T = \mathcal{O}(k \log(T))$

UCB1 & LinUCB

Hoeffding's inequality

$$\Pr(|\mu - \frac{1}{m}\sum_{t=1}^{m}X_t| \ge b) \le 2 \cdot \exp(-2b^2m)$$
 Confidence bound : Want: Hoeffding $\le \delta$

 $\Rightarrow b = \sqrt{\frac{1}{2m} \ln \frac{2}{\delta}}$

UCB/Mean update
$$UCB(i) = \hat{\mu_i} + \sqrt{\frac{2 \ln t}{\eta_i}}$$

$$j = \arg \max_{i} UCB(i)$$

$$\hat{\mu}_{j} = \hat{\mu}_{j} + \frac{1}{\eta_{j}} (y_{t} - \hat{u}_{j})$$

Contextual bandits Reward is now $y_t = f(x_t, z_t) + \epsilon_t$ with z_t user features. For us: $f(x_i, z_t) = w_{x_i}^T z_t$

$$\begin{split} \hat{w}_i &= (D_i^T D_i + I)^{-1} D_i^T y_i. \\ |\hat{w}_i^T z_t - w_i^T z_t| &\leq \alpha \sqrt{z_t^T (D_i^T D_i)^{-1} z_t} \text{ with } \\ \text{probability } 1 - \delta \text{ if } \alpha = 1 + \sqrt{\log(2/\delta)/2} \\ R_T / T &= O(d \cdot d' \cdot \text{poly} \log T / \sqrt{T}) \end{split}$$

Hybrid model Reward is now

$$y_t = w_{x_t}^T z_t + \beta^T \phi(x_t, z_t) + \epsilon_t$$

Rejection sampling First obtain data log through pure exploration, and then reiterate:

- 1. Get event $(x_t^{(1)}, ..., x_t^{(k)}, z_t, a_t, y_t)$ from $\log x_t^{(k)}$
- 2. Use algorithm that is testing to pick a'_t :
 - If $a'_t = a_t \Rightarrow$ Feed back reward y_t
 - Else ignore log line
- 3. Stop when T rewards have been fed back

Submodular Functions

Submodulatity A function $F: 2^V \to \mathbb{R}$ is called submodular iff for all $A \subseteq B, s \notin B$:

$$F(A \cup \{s\}) - F(A) \ge F(B \cup \{s\}) - F(B)$$

Closure properties F, F_i submodular on $V: S, W \subseteq V$ Linear Combinations

$$F'(S) = \sum_{i} \lambda_i F_i(S), \ \lambda_i \ge 0$$

Restriction $F'(S) = F(S \cap W)$

Conditiong $F'(S) = F(S \cup W)$

Reflection $F'(S) = F(V \setminus S)$

Min/Max For $F_{1,2}(A)$, max{ $F_1(A)$, $F_2(A)$ } or $\min\{F_1(A), F_2(A)\}\$ **not** submodular in general.

Concavity F(A) = q(|A|) where $q: \mathbb{N} \to \mathbb{R}$, then F submodular iff q concave.

Lazy Greedy Optimizing submodular monotonic functions.

- 1: $A_0 = \emptyset$. Keep ordered list of marginal benefits Δ_i from previous iterations
- 2: **for** i = 1 ... k : **do**
- $\Delta_i = F(A_{i-1} \cup \{\text{top element}\}) F(A_{i-1})$
- if i is not top element anymore then 4:
- 5: re-sort the list
- $A_i = A_{i-1} \cup \{\text{top element}\}\$