# Optimization

Màster de Fonaments de Ciència de Dades

Lecture 1. Optimization

#### Introduction

- What is Optimization? Given a system or process, find the best solution to this process within (or not) constraints.
- ▶ Objective Function: Indicator of "goodness" of the solution of the optimization problem, e.g., cost, profit, time, etc.
- Decision Variables: Variables that influence process behavior and can be adjusted for optimization.
- We are interested in a systematic approach to the optimization process, and to make it as efficient as possible.
- Optimization is also called: Mathematical Programming, or Operations Research.

#### Current applications

- In modern times, (linear and nonlinear) optimization is used in optimal engineering design, finance, statistics and many other fields.
- ► Think of:
  - designing a car with minimal air resistance,
  - designing a bridge of minimal weight that still meets essential specifications,
  - defining a stock portfolio where the risk is minimal and the expected return high,...
- ▶ Rule of thumb: If you can make a mathematical model of your decision problem, then you can *try to optimize* it!

#### First introductory examples

Problem. Find the solution of

minimize 
$$f(x, y) = (e^x - 1)^2 + (y - 1)^2$$
.

This is an example of an unconstrained optimization problem.

The set where we must look for the solution, the feasible set, is the entire two-dimensional space  $\mathbb{R}^2$ .

The solution is  $(x, y)^T = (0, 1)^T$ , since the function value is zero only at this point and is positive elsewhere.

In this problem, the objective function is f and the decision variables are x, y.

## First introductory examples

**Problem.** Find the point on the line x + y = 2 that is closest to the point  $(2,2)^T$ .



The mathematical model can be written as

minimize 
$$f(x, y) = (x - 2)^2 + (y - 2)^2$$
, subject to  $x + y = 2$ .

The solution is  $(x, y)^T = (1, 1)^T$ .

In this example, the objective function is f, the decision variables are x, y, and the (feasible) set is defined by an equality.



#### First introductory examples

**Problem.** Find the point such that:

minimize 
$$f(x, y) = x$$
,  
subject to  $x^2 \le y$ ,  
 $x^2 + y^2 \le 2$ .

In this example, the (feasible) set where we must look for the solution is given by two constraints defined by inequalities.



The solution (optimal point) is  $(x, y)^T = (-1, 1)^T$ .

### Optimization viewpoints

- Mathematician characterization of theoretical properties of optimization, convergence, existence, local convergence rates.
- Numerical Analyst implementation of optimization method for efficient and "practical" use. Concerned with fast computations, numerical stability, performance.
- User applies optimization method to real problems. Concerned with reliability, robustness, efficiency, diagnosis, and recovery from failure.
- Optimization is a fast moving research field. Currently, there are over 30 journals devoted to optimization with roughly 200 published papers/month.
- In this course, we will see only the most basic concepts, results, and procedures.

#### Some classical optimization problems - I

- 1. Dido's (or isoperimetric) problem. Among all closed plain curves of a given length, find the one that encloses the largest area.
- Heron's problem. Given two points A and B on the same side of a line L, find a point D on L such that the sum of the distances form A to D and from D to B is a minimum.
- 3. Snell's law of refraction. Given two points A and B on either side of a horizontal line L separating two (homogeneous) different media, find a point D on L such that the time it takes for a light ray to traverse the path ADB is a minimum.
  - *Note:* In an inhomogeneous medium, light travels from one point to another along the path requiring the shortest time  $(v_i = c/n_i)$ .
- 4. Euclid (Elements, 4th cent. B.C.). In a given triangle ABC inscribe a parallelogram ADEF (EF||AB,DE||AC) of maximal area.
- 5. Steiner. In the plane of a triangle, find a point (Fermat point) such that the sum of its distances to the vertices of the triangle is minimal

### Some classical optimization problems - II

- 6. Find the maximum of the product of two numbers whose sum is given.
- Find the maximal area of a right triangle whose small sides have constant sum.
- 8. In a given circle find a rectangle of maximal area.
- 9. In a given sphere find a cylinder of maximal volume.
- Of all rectangular parallelepipeds inscribed in a sphere find the one of maximal volume.
- Of all rectangular parallelepipeds with square base inscribed in a sphere find the one of maximal volume.
- 12. The Brachistochrone. Let two points A and B be given in a vertical plane. Find the curve that a point M, moving on a path AMB must follow such that, starting from A with zero velocity, it reaches B in the shortest time under its own gravity.

#### Some classical optimization problems - III

13. Exercise 0. (The Fermat point of a set of points) To be delivered before the end of the course as: Ex00-YourSurname.pdf.

Given set of points y<sub>1</sub>,...,y<sub>m</sub> in the plane, find a point x\* whose sum of weighted distances to the given set of points is minimized.

Mathematically, the problem is

$$\min \sum_{i=1}^m w_i \|x^* - y_i\|, \quad \text{subject to } x^* \in \mathbb{R}^2,$$

where  $w_1, ..., w_m$  are given positive real numbers.



#### Exercise 0 cont.

1. Show that there exists a global minimum for this problem (that it can be realized by means of the mechanical model shown in the figure).



- 2. Is the optimal solution always unique?
- 3. Show that an optimal solution minimizes the potential energy of the mechanical model defined as  $\sum_{i=1}^{m} w_i h_i$ , where  $h_i$  is the height of the ith weight measureed from some reference level.

#### Some classical optimization problems - IV

**Exercise 1. (Smallest area problem)** To be delivered before 27-IX-2021 as: Ex01-YourSurname.pdf.

14. Given an angle with vertex A and a point O in its interior. Pass a line BC through the point O that cuts off from the angle a triangle of minimal area



*Hint:* proof that for a triangle of minimal area the segments *OB* and *OC* should be equal.

#### The general optimization problem

#### **Definition:**

The general nonlinear optimization (NLO) problem can be written as follows:

$$\begin{array}{ll} \text{min} & f(x), \\ \text{subject to} & g_i(x) = 0, \quad i \in I = \{1,...,m\}, \\ & h_j(x) \leq 0, \quad j \in J = \{1,...,p\}, \\ & x \in \mathcal{C}, \end{array}$$

where  $x \in \mathbb{R}^n$ ,  $C \subset \mathbb{R}^n$  is a certain set, and  $f, g_1, ..., g_m, h_1, ..., h_p$  are real-valued functions defined on C.

#### Terminology:

- ► The function *f* is called the objective function of the NLO.
- ► The set *F* defined by:

$$\mathcal{F} = \{x \in \mathcal{C} \ : \ g_i(x) = 0, i = 1, ..., m, \ h_j(x) \leq 0, j = 1, ..., p\},\$$

is called the feasible set (or feasible region).

- ▶ If  $\mathcal{F} = \emptyset$  then we say that the optimization problem is infeasible.
- ▶ If the infimum of f over  $\mathcal{F}$  is attained at  $x^* \in \mathcal{F}$ , then we call  $x^*$  an optimal solution of the NLO, and  $f(x^*)$  the the optimal (objective) value of the NLO.

## Classification of optimization problems

▶ Unconstrained Optimization: The index sets *I* and *J* are empty:

$$g_1 = ... = g_m = h_1 = ... = h_p = 0,$$

and  $C = \mathbb{R}^n$ .

- Linear Optimization (LO) (Linear programming): The functions  $f, g_1, ..., g_m, h_1, ..., h_p$  are linear (affine: F(x) = Ax + b) and the set  $\mathcal{C}$  either equals to  $\mathbb{R}^n$ , the positive (negative) orthant  $\mathbb{R}^n_+$ , or is polyhedral.
- **Quadratic Optimization (QO):** The objective function f is quadratic:

$$f(x) = x^T Q x + c^T x + d,$$

all the constraint functions  $g_1, ..., g_m, h_1, ..., h_p$  are linear and the set  $\mathcal{C}$  is  $\mathbb{R}^n$  or the positive (negative) orthant  $\mathbb{R}^n_+$ , Q is a  $n \times n$  real matrix  $(Q \in \mathbb{R}^{n \times n})$ ,  $\mathbf{c} \in \mathbb{R}^n$ , and  $d \in \mathbb{R}$ .

- Quadratically Constrained Quadratic Optimization: Same as QO, except that the constraint functions are quadratic.
- ► Convex Quadratic Optimization (CQO).
- ► Convex Quadratically Constrained Quadratic Optimization:

# A well known application of Quadratic Optimization: Regression problems

▶ If a system

$$A\mathbf{x} = \mathbf{b}, \quad A \in \mathbb{R}^{m \times n}, \quad \mathbf{x} \in \mathbb{R}^{n}, \quad \mathbf{b} \in \mathbb{R}^{m},$$

has more equations than unknowns (m > n), then, in general, it has no solution, but we can compute the least squares solution

$$x^* = \min_{x \in \mathbb{R}^n} \|Ax - \boldsymbol{b}\|,$$

for the Euclidean norm  $||x|| = \sqrt{\sum_{i=1}^{n} x_i^2} = \sqrt{x^T x} \ge 0$ .

Note that

$$||A\mathbf{x} - \mathbf{b}||^2 = (A\mathbf{x} - \mathbf{b})^T (A\mathbf{x} - \mathbf{b})$$
$$= \mathbf{x}^T A^T A\mathbf{x} - 2\mathbf{b}^T A\mathbf{x} + ||\mathbf{b}||^2.$$

Note also that if  $A \in \mathbb{R}^{m \times n}$ , then  $A^T A \in \mathbb{R}^{n \times n}$ ,  $\mathbf{b}^T A \in \mathbb{R}^n$ , and introducing  $\mathbf{z} = A\mathbf{x}$ :

$$\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x} = \mathbf{z}^{T} \mathbf{z} = \|\mathbf{z}\|^{2} \geq 0, \quad \forall \mathbf{x} \in \mathbb{R}^{n}.$$

According to this last inequality,  $A^TA$  will be positive definite  $\Leftrightarrow$  for all  $x \neq 0$  then  $Ax \neq 0$ , which is equivalent to rank(A) = n.



### Example of regression problem: Concrete mixing

#### Mix concrete using n different gravel sizes $s_1, s_2, ..., s_n$ .

- ▶ The ideal mixture is given by  $c = (c_1, c_2, ..., c_n)$ , where  $c_i$  ( $0 \le c_i \le 1$ ) is the fraction of size  $s_i$  in the mix, and  $\sum_{i=1}^n c_i = 1$ .
- Gravel mixtures come from m different mines:  $M_1,...,M_m$ .
- ▶ The gravel composition at each mine  $M_j$  is given by  $C_j = (c_1^j, ..., c_n^j)$  where  $0 \le c_i^j \le 1$  for all i = 1, ..., n and  $\sum_{i=1}^n c_i^j = 1$

|       | <b>s</b> <sub>1</sub> | <br>Sn      |                                         |
|-------|-----------------------|-------------|-----------------------------------------|
| $M_1$ | $c_1^1$               | <br>$c_n^1$ | $x_1 = $ fraction from $M_1$ in the mix |
|       |                       |             |                                         |
| :     |                       |             | •                                       |
|       |                       | •           | •                                       |
| $M_m$ | $c_1^m$               | <br>$c_n^m$ | $x_m = $ fraction from $M_m$ in the mix |

▶ In the mix, the amount of grave with size k should be close to  $c_k$ .

#### Concrete mixing: mathematical formulation

Exercise 2. To be delivered before 27-IX-2021 as: Ex02-YourSurname.pdf.

Find the best possible approximation  $\mathbf{x} = (x_1, ..., x_m)$  of the ideal mixture,  $\mathbf{c} = (c_1, ..., c_n)$ , by using the material from the m mines.

Show that the optimal mixture will be the point x such that:

min 
$$(Cx - c)^T (Cx - c)$$
, 
$$s.t. \quad \sum_{i=1}^m x_i = 1, \quad \text{and} \quad x_i \ge 0,$$

where the matrix  $C = (C_1, ..., C_m)$  has  $C_j$  as columns, and  $\mathbf{c} = (c_1 \cdots c_n)^T$ .

#### The infinite-dimensional optimization problem

There is a more general nonlinear optimization infinite-dimensional problem that can be written as follows:

Find the state function x(t) and the control function u(t) such that

$$\begin{array}{ll} \textit{minimize} & \mathcal{J} = \Phi(t_0, x_0, t_f, x_f) + \int_{t_0}^{t_f} F(t, x(t), u(t)) dt, \\ \textit{subject to} & t \in [t_0, t_f], \\ & \dot{x}(t) = f(t, x(t), u(t)), & \textit{(dynamic constraints)}, \\ & b_L \leq b(t_0, x_0, t_f, x_f) \leq b_U, & \textit{(boundary conditions)}, \\ & g_L \leq g(t, x(t), u(t)) \leq g_U, & \textit{(path constraints)}, \\ & u_L \leq u(t) \leq u_U, & \textit{(control constraints)}. \end{array}$$

In the multi-objective optimization problem, the cost function  $\mathcal J$  may involve several independent quantities, this is:

$$\vec{\mathcal{J}} = (\mathcal{J}_1 \cdots \mathcal{J}_M)^T$$
.



#### The infinite-dimensional optimization problem

There are multiple solution approaches for the infinite-dimensional optimization problem. They are commonly divided into:

- Indirect methods. The initial problem is transformed into a Hamiltonian boundary-value problem that must be solved. These methods equire the derivation of the necessary conditions of optimality using calculus of variations.
- Direct methods. The original problem is first discretized and then re-written as a finite-dimensional nonlinear optimization problem (NLO).