Отчёт по лабораторной работе №17

Задания для самостоятельной работы

Надежда Александровна Рогожина

Содержание

1	Задание	5
2	Выполнение лабораторной работы	7
	2.1 Моделирование работы вычислительного центра	7
	2.2 Модель работы аэропорта	9
	2.3 Моделирование работы морского порта	10
3	Выводы	13
Сг	писок литературы	14

Список иллюстраций

2.1	Код, 1 часть	7
2.2	Код, 2 часть	8
2.3	Отчет	8
2.4	Код, 1 часть	9
2.5	Код, 2 часть	9
2.6	Отчет 1	LO
2.7	1 случай, 10 причалов	LO
2.8	Отчет 1	١1
2.9	Отчет, 3 причала	١1
2.10	1 случай, 6 причалов	L1
2.11	Отчет 1	١1
2 1 2	Отчет 2 причапа	า

Список таблиц

1 Задание

1. Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задания класса A поступают через 20 ± 5 мин, класса B — через 20 ± 10 мин, класса C — через 28 ± 5 мин и требуют для выполнения: класс A — 20 ± 5 мин, класс B — 21 ± 3 мин, класс C — 28 ± 5 мин. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающей задаче.

Смоделировать работу ЭВМ за 80 ч. Определить её загрузку.

2. Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно-посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой — для взлёта, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.
- 3. Моделирование работы морского порта

Морские суда прибывают в порт каждые $[a\pm\delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b\pm\epsilon]$ часов.

Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Исходные данные: 1. a = 20 ч, $\Box = 5$ ч, b = 10 ч, $\Box = 3$ ч, N = 10, M = 3;

2.
$$a = 30 \text{ y}, \square = 10 \text{ y}, b = 8 \text{ y}, \square = 4 \text{ y}, N = 6, M = 2. [1]$$

2 Выполнение лабораторной работы

2.1 Моделирование работы вычислительного центра

Для выполнения задания за основу взялась работа накопителя с емкостью = 2. Далее мы генерировали заявки разного типа, две из которых могли сосуществовать и сообслуживаться в системе, в то время как третья требовала памятной монополии (рис. 2.1, рис. 2.2, рис. 2.3).

ram STORAGE 2; накопитель емкостью 2

; type A
GENERATE 20,5; поступление задания типа A
QUEUE typeA; добавление в очередь типа A
ENTER ram, 1; занятие 1 позиции накопителя
DEPART typeA; выход из очереди
ADVANCE 20,5; выполнение задания
LEAVE ram, 1; освобождение накопителя
TERMINATE; выход из блока

Рис. 2.1: Код, 1 часть

```
;type B
GENERATE 20,10
QUEUE typeB
ENTER ram, 1
DEPART typeB
ADVANCE 21,3
LEAVE ram, 1
TERMINATE
;type C
GENERATE 28,5
QUEUE typeC
ENTER ram, 2
DEPART typeC
ADVANCE 28,5
LEAVE ram, 2
TERMINATE
;timer
GENERATE 4800
TERMINATE 1
START 1
```

Рис. 2.2: Код, 2 часть

Рис. 2.3: Отчет

Здесь мы видим, что все заявки типа С на конец моделирования находились в очереди, т.к. у них нет приоритета обслуживания, но при этом для обслуживания заявок данного типа нужна вся оперативная память, а в условиях более часто поступающих в систему заявок типа А и В - время простоя обоих приборов представить сложно (такая вероятность крайне мала). Утилизация памят - 99.4%. В среднем в очередях А и В по 3 заявки, время ожидания обслуживания - около часа.

2.2 Модель работы аэропорта

Для этой модели было реализовано несколько полос и несколько типов поведения, счетчик кругов lap, проверка занятости полосы GATE NU[2] и приоритетность самолетов (рис. 2.4, рис. 2.5, рис. 2.6).

```
;down
GENERATE 10,5,,,1 ;приоритет у взлетающей
ASSIGN lap,0
QUEUE down
land GATE NU runway,wait
SEIZE runway
DEPART down
ADVANCE 2,0
RELEASE runway
TERMINATE
;laps
wait TEST LE lap,5,away
;eсли счетчик >5 идем в резерв
ADVANCE 5,0
ASSIGN lap+,1
TRANSFER ,land
```

Рис. 2.4: Код, 1 часть

```
;reserve
away SEIZE reserve
DEPART down
RELEASE reserve
TERMINATE 0

;up
GENERATE 10,2,,2;приоритет тут
QUEUE up
SEIZE runway
DEPART up
ADVANCE 2,0
RELEASE runway
TERMINATE

;timer
GENERATE 1440
TERMINATE 1
START 1
```

Рис. 2.5: Код, 2 часть

Рис. 2.6: Отчет

2.3 Моделирование работы морского порта

Работа порта с *N*-причалами была реализована, также, с помощью накопителя. Необходимо было также определить оптимальное число причалов для каждого из случаев (рис. 2.7, рис. 2.8, рис. 2.9, рис. 2.10, рис. 2.11, рис. 2.12)

prichal STORAGE 10

```
;boats
GENERATE 20,5
QUEUE qs1
ENTER prichal,3
DEPART qs1
ADVANCE 10,3
LEAVE prichal,3
```

;timer GENERATE 24 TERMINATE 1 START 181

TERMINATE

Рис. 2.7: 1 случай, 10 причалов

LABEL	LOC	BLOCK TYPE	ENTRY COUNT C	URRENT COUNT RETRY	
	1	GENERATE	216	0 0	
	2	QUEUE	216	0 0	
	3	ENTER	216	0 0	
	4	DEPART	216	0 0	
	5	ADVANCE	216	1 0	
	6	LEAVE	215	0 0	
	7	TERMINATE	215	0 0	
	8	GENERATE	181	0 0	
	9	TERMINATE	181	0 0	
				AVE.TIME AVE.(-0) RETRY	ľ
QS1	1	0 216	216 0.000	0.000 0.000 0	
STORAGE	CAP.	REM. MIN. M	AX. ENTRIES AVL.	AVE.C. UTIL. RETRY DELAY	
PRICHAL	10	7 0	3 648 1	1.486 0.149 0 0	

Рис. 2.8: Отчет

LABEL	LOC	BLOCK TYPE	ENTRY COUNT C	URRENT COUNT	RETRY
	1	GENERATE	216	0	0
	2	QUEUE	216	0	0
	3	ENTER	216	0	0
	4	DEPART	216	0	0
	5	ADVANCE	216	1	0
	6	LEAVE	215	0	0
	7	TERMINATE	215	0	0
	8	GENERATE	181	0	0
	9	TERMINATE	181	0	0
QUEUE	MAX CO	ONT. ENTRY ENT	RY(0) AVE.CONT.	AVE.TIME .	AVE.(-0) RETRY
QS1	1	0 216	216 0.000	0.000	0.000 0
STORAGE			ENTRIES AVL.		
PRICHAL	3	0 0 3	648 1	1.486 0.49	5 0 0

Рис. 2.9: Отчет, 3 причала

prichal STORAGE 6

;boats
GENERATE 30,10
QUEUE qs1
ENTER prichal,2
DEPART qs1
ADVANCE 8,4
LEAVE prichal,2
TERMINATE 0

;timer GENERATE 24 TERMINATE 1 START 181

Рис. 2.10: 1 случай, 6 причалов

LABEL	LOC 1 2 3 4 5 6	BLOCK TYPE GENERATE QUEUE ENTER DEPART ADVANCE LEAVE TERMINATE	144 144 144 144 144 143	URRENT COUNT 0 0 0 0 1 0 0	0 0 0 0 0
	9	GENERATE TERMINATE	181 181	0	0
QUEUE QS1	MAX C		TRY(0) AVE.CONT. 144 0.000		AVE.(-0) RETRY 0.000 0
STORAGE PRICHAL	CAP.	REM. MIN. MAX 4 0 2	. ENTRIES AVL. 288 1	AVE.C. UTIL 0.527 0.08	

Рис. 2.11: Отчет

LABEL	LOC	BLOCK TYPE	ENTRY COUNT C	URRENT COUNT	RETRY
	1	GENERATE	144	0	0
	2	QUEUE	144	0	0
	3	ENTER	144	0	0
	4	DEPART	144	0	0
	5	ADVANCE	144	1	0
	6	LEAVE	143	0	0
	7	TERMINATE	143	0	0
	8	GENERATE	181	0	0
	9	TERMINATE	181	0	0
DUEUE	MAX (ONT. ENTRY EN	VTRY(0) AVE.CONT.	AVE.TIME	AVE.(-0) RETRY
QS1	1	0 144			
TORAGE	CAP.	REM. MIN. MAX	C. ENTRIES AVL.	AVE.C. UTIL	. RETRY DELAY
DDTCHAT	2	0 0 1	299 1	0.527 0.26	4 0 0

Рис. 2.12: Отчет, 2 причала

В обоих случаях, емкость накопителя которая = M имела наиболее оптимальные показатели утилизации.

3 Выводы

В ходе работы было выполнено 3 задания - моделирование поведения ЭВМ, аэропорта и морского порта с N-причалами.

Список литературы

- Королькова А.В., Кулябов Д.С. Моделирование информационных процессов.
 Москва: Российский университет дружбы народов, Издательство, 2014. 191
 с.
- 2. Кудрявцев Е.М. GPSS World. Основы имитационного моделирования различных систем. ДМК Издательство, 2004. 320 с.