Análise Macro I

Lista de Exercícios 2

Prazo de Entrega: 15 de Julho (Via Teams)

1. (Equação de Bellman para Poupança e Consumo). Considere o problema padrão de consumo e poupança. Um consumidor com $a_0 \ge 0$ recebe um fluxo constante de w > 0 a cada período e pode poupar a uma taxa de juros (bruta) $(1+r) \equiv R$. A restrição orçamentária é:

$$c_t + \frac{a_{t+1}}{R} \le a_t + w \quad t = 0, 1, ..., \infty,$$

e restrição de no-borrowing: $a_{t+1} \ge 0$. Suponha também que existe um limite superior exógeno dado por $\overline{a} > 0$. A utilidade do consumidor é

$$\sum_{t=0}^{\infty} \beta^t u(c_t),$$

onde u(.) é uma função contínua, diferenciável, estritamente crescente, estritamente côncava com u(0) = 0. Utilize os teoremas vistos em classe para responder as questões.

- (a) Enuncie este problema como um problema de programação dinâmica: descreva o estado, a variável controle, a função retorno e o conjunto fáctivel do controle (conjunto restrição).
- (b) Escreva a equação de Bellman.
- (c) Existe uma única função V satisfazendo a equação de Bellman? Explique.
- (d) A solução da equação de Bellman V também é a solução do problema de sequencial subjacente? Explique.
- (e) Mostre que a função valor é crescente.
- (f) Mostre que a função valor é côncava e que a função política ótima é contínua.
- (g) Como você construiria a sequência $\{a_{t+1}\}_{t=0}^{\infty}$ para o plano de poupança ótimo dado a_0 ?
- (h) Utilize o Teorema do Envelope e derive a equação de Euler utilizando a equação de Bellman.
- 2. (Consumo e Poupança com *Habit Formation*). Considere um agente cuja utilidade depende não apenas do consumo atual c_t , mas também do consumo passado c_{t-1} :¹

$$\sum_{t=0}^{\infty} \beta^t u(c_t, c_{t-1}),$$

¹Preferências com *habit formation* são utilizadas em modelos de finanças (e.g. Campbell and Cochrane (1999)), e em modelos DSGE (e.g. Christiano, Eichenbaum and Evans (2005)).

onde u é diferenciável e côncava em ambos os argumentos, e é crescente em c_t . Além de $\beta \in (0,1)$ e $c_{-1} > 0$ dado. O agente é dotado de ativos $a_0 > 0$ e a cada período recebe uma renda y > 0. Suponha que o agente pode poupar a uma taxa de juros bruta (1+r) = R > 1 e que existe um limite de empréstimo dado $a > -\overline{A}$.

- (a) Escreva este problema em forma de Programação Dinâmica: Descreva as variáveis estado, controle, a função retorno, e o conjunto de restrição.
- (b) Escreva a equação de Bellman.
- (c) Encontre e interprete a equação de Euler.
- 3. (Busca de Dois Maridos com Dona Flor). Dona Flor vive em um mundo que dura dois períodos: t = 0, 1. Ela está procurando um marido e tem dois encontros marcados: um com Vadinho em t = 0, e outro com Teodoro em $t = 1.^2$ Ao encontrar Vadinho, ela observa a match quality, que é uma variável aleatória x distribuída uniformemente em [0, 1]; 1 significa que Vadinho é o marido perfeito para ela, enquanto 0 significa que ele é bastante regular. Se ficar com ele, Dona Flor recebe utilidade x em ambos os períodos (e desmarca o encontro com Teodoro).

Se ela decidir deixar Vadinho, ela recebe utilidade σ no período 0 e encontra Teodoro em t=1, onde $\sigma \in (0,1)$ é dado exogenamente. No encontro com Teodoro, Dona Flor observa seu match quality com Teodoro, dado por y. Suponha que y é uniformemente distribuído em [0,1] e é independente de x. Novamente, Dona Flor pode decidir se fica com Teodoro e recebe utilidade y, ou se fica solteira, caso em que recebe $\sigma \in (0,1)$. Dona Flor maximiza a utilidade esperada e desconta o período com $\beta \in (0,1)$.

- (a) Escreva as equações de Bellman que caracterizam o problema de Dona Flor: Quais são as variáveis estado, controle, a função retorno, e o conjunto de possibilidades do controle.
- (b) Encontre as regras de decisão de Dona Flor.
- (c) Como a regra de decisão no tempo 0 muda quando σ aumenta? Explique brevemente a intuição por detrás do resultado.
- (d) Como a regra de decisão no tempo 0 muda quando β aumenta? Explique brevemente a intuição por detrás do resultado.
- (e) Suponha as seguintes alterações: $\sigma = 0$ e $\beta = 1$; x é distribuído como antes, mas $y = \rho x + u$, $\rho \in (0,1)$ e onde u é uma variável aleatória uniformemente distribuída em [-1,1] (e independente de x).
 - i. Mostre que o Valor de rejeitar a Vadinho é

$$V_0^R(x) = \frac{\rho^2}{4}x^2 + \frac{\rho}{2}x + \frac{1}{4}.$$

- ii. Explique intuitivamente por que agora V^R é crescente em x (mas não era antes).
- iii. Mostre que a probabilidade de que Dona Flor rejeite Vadinho é crescente em $\rho.$
- iv. Para $\rho = 0.5$, encontre a regra de decisão no período t = 0.

²No romance original de Jorge Amado (1966), Vadinho está morto e Dona Flor tem que decidir entre Teodoro e o espiríto (!) de Vadinho.

4. (Investimento com Custo de Ajuste). Considere uma firma que produz um bem y de acordo com a tecnologia $y_t = k_t$ para t = 0, 1, ..., T, onde k é o capital. Em cada período, a firma aluga o capital em mercados competitivos a um aluguel constante q > 0.

A firma está sujeita a uma função demanda decrescente: o preço do bem y é determinado pela função $p_t = p(y_t)$ em todos os períodos, onde p(y) > 0 e p'(y) < 0 para todo y > 0. A empresa desconta os seus lucros futuros a uma taxa de juros de mercado 1 + r = R > 1.

A firma está sujeita a um custo de ajuste quadráticos caso deseje alterar o seu estoque de capital:

$$\frac{c}{2}(k_{t+1}-k_t)^2, \quad t=1,2,...,T-1,$$

onde c>0 é uma constante. A firma começa com capital inicial dado por $k_0=0$.

- (a) Escreva esse problema em forma de Programação Dinâmica: Descreva as variáveis estado, controle, função de retorno, e o conjunto viável (restrição) para o(s) controle(s).
- (b) Escreva a função valor em T e para um período genérico t=0,1,...,T-1.
- (c) Suponha que o Teorema do Envelope é válido. Encontre a condição otimalidade para o investimento (ou seja, a equação de Euler) e interprete-a brevemente.
- (d) Encontre o estoque de capital no estado estacionário, ou seja, \overline{k} para o qual a firma não gostaria de alterar mesmo se começasse com $k_0 = \overline{k}$.
- 5. ("Codando" o Modelo de Crescimento em Tempo Finito). [Não é obrigatório entregar]. Considere o modelo de crescimento neoclássico "padrão" em horizonte finito. A função de produção k_t^{α} , a lei de movimento do capital é dado por:

$$k_{t+1} = k_t(1 - \delta) + k_t^{\alpha} - c_t,$$

e a famíia representativa escolhe a sequência de consumo para maximizar a seguinte função utilidade:

$$\sum_{t=0}^{T} \beta^t \log(c_t).$$

A equação de Bellman do problema é:

$$V_t(k) = \max_{k'} \{ \log(k^{\alpha} + k(1 - \delta) - k') + \beta V_{t+1}(k') \} \quad t = 0, ..., T - 1$$

e

$$V_T(k') = \max_{k'} \{ \log(k^{\alpha} + k(1 - \delta) - k') \},$$

com a fução política associada: $k' = g_t(k)$.

(a) Descreva cuidadosamente o algoritmo para encontrar a função valor e a função política.

- (b) Considere T=50, $\alpha=0.3$, $\beta=0.96$ e $\delta=0.1$. Discretize o espaço do capital em $n_k=200$ pontos equidistantes, com $k_{min}=2k_{ss}/n_k$ e $k_{max}=2k_{ss}$ (k_{ss} é o capital do estado estacionário em um problema horizonte infinito). Implemente o algoritmo em uma linguagem de sua escolha.
- (c) Defina $k_0 = k_{min}$. Utilize a função política para simular a sequência ótima de capital $\{k_{t+1}^*\}_{t=0}^T$. Represente a solução em uma figura. Quantos tempo leva para a sequência ótima atingir o estado estacionário (se ela atingir)? Altere os parâmetros $\beta = 0.8$ e $\beta = 0.99$ e responda a pergunta novamente.
- (d) Aumente o número de períodos para T=500. Represente a solução em uma figura. A sequência ótima atinge o estado estacionário em quantos períodos? Em quantos períodos a sequência ótima começa a desacumular capital?