1 - Preliminaries on convex sets and convex functions

Mauro Passacantando

Department of Computer Science, University of Pisa mauro.passacantando@unipi.it

Optimization Methods and Game Theory Master of Science in Artificial Intelligence and Data Engineering University of Pisa – A.Y. 2020/21

Subspaces

Given $x, y \in \mathbb{R}^n$.

A linear combination of x and y is a point $\alpha x + \beta y$, where $\alpha, \beta \in \mathbb{R}$.

A set $C \subseteq \mathbb{R}^n$ is a subspace if it contains all the linear combinations of any two points in C.

Examples:

- **▶** {0}
- any line which passes through zero
- the solution set of a homogeneous system of linear equations

$$C = \{x \in \mathbb{R}^n : Ax = 0\},\$$

where A is a $m \times n$ matrix.

Affine sets

An affine combination of x and y is a point $\alpha x + \beta y$, where $\alpha + \beta = 1$.

A set $C \subseteq \mathbb{R}^n$ is an affine set if it contains all the affine combinations of any two points in C.

Examples:

- any single point {x}
- ▶ any line
- ▶ the solution set of a system of linear equations

$$C = \{x \in \mathbb{R}^n : Ax = b\},\$$

where A is a $m \times n$ matrix and $b \in \mathbb{R}^m$

any subspace

Convex sets

A convex combination of two given points x and y is a point $\alpha x + \beta y$, where $\alpha + \beta = 1$, $\alpha \ge 0$, $\beta \ge 0$.

A set $C \subseteq \mathbb{R}^n$ is convex if it contains all the convex combinations of any two points in C.

Exercise 1.1. Prove that if C is convex, then for any $x^1, \ldots, x^k \in C$ and $\alpha_1, \ldots, \alpha_k \in (0,1)$ s.t. $\sum_{i=1}^k \alpha_i = 1$, one has $\sum_{i=1}^k \alpha_i x^i \in C$.

Convex hull

The convex hull conv(C) of a set C is the smallest convex set containing C.

Exercise 1.2. Prove that $conv(C) = \{all convex combinations of points in <math>C\}$.

Exercise 1.3. Prove that C is convex if and only if C = conv(C).

Convex sets - Examples

Examples:

- subspace
- affine set
- ▶ line segment
- ▶ halfspace $\{x \in \mathbb{R}^n : a^\mathsf{T} x \leq b\}$
- ▶ polyhedron $P = \{x \in \mathbb{R}^n : Ax \le b\}$ solution set of a system of linear inequalities

Convex sets - Examples

▶ ball $B(x,r) = \{y \in \mathbb{R}^n : ||y-x|| \le r\}$, where $||\cdot||$ is any norm, e.g.

$$\begin{split} \|x\|_2 &= \sqrt{\sum_{i=1}^n x_i^2} \text{ (Euclidean norm)} \\ \|x\|_1 &= \sum_{i=1}^n |x_i| \text{ (Manhattan distance)} \\ \|x\|_\infty &= \max_{i=1,\dots,n} |x_i| \text{ (Chebyshev norm)} \\ \|x\|_p &= \sqrt[p]{\sum_{i=1}^n |x_i|^p}, \text{ with } 1 \leq p < +\infty \\ \|x\|_A &= \sqrt{x^T A x}, \text{ where } A \text{ is a symmetric and positive definite matrix, i.e.,} \end{split}$$

$$x^{\mathsf{T}}Ax > 0 \qquad \forall \ x \neq 0.$$

Exercise 1.4. Find the unit ball B(0,1) w.r.t. $\|\cdot\|_1$, $\|\cdot\|_\infty$ and $\|\cdot\|_A$, where $A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.

Operations that preserve convexity

Sum and difference

If C_1 and C_2 are convex, then $C_1+C_2:=\{x+y:\ x\in C_1,\ y\in C_2\}$ is convex. If C_1 and C_2 are convex, then $C_1-C_2:=\{x-y:\ x\in C_1,\ y\in C_2\}$ is convex.

Intersection

If C_1 and C_2 are convex, then $C_1 \cap C_2$ is convex.

Exercise 1.5. If $\{C_i\}_{i\in I}$ is any family of convex sets, then $\bigcap_{i\in I} C_i$ is convex.

Union

If C_1 and C_2 are convex, then $C_1 \cup C_2$ is convex?

Closure and interior

If C is convex, then cl(C) is convex.

If C is convex, then int(C) is convex.

Operations that preserve convexity

Affine functions

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be affine, i.e. f(x) = Ax + b, with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

- ▶ If $C \subseteq \mathbb{R}^n$ is convex, then $f(C) = \{f(x) : x \in C\}$ is convex
- ▶ If $C \subseteq \mathbb{R}^m$ is convex, then $f^{-1}(C) = \{x \in \mathbb{R}^n : f(x) \in C\}$ is convex

Examples:

- scaling, e.g. $f(x) = \alpha x$, with $\alpha > 0$
- ▶ translation, e.g. f(x) = x + b, with $b \in \mathbb{R}^n$
- ▶ rotation, e.g. $f(x) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} x$, with $\theta \in (0, 2\pi)$

Cones

A set $C \subseteq \mathbb{R}^n$ is a cone if $\alpha x \in C$ for any $x \in C$ and $\alpha \ge 0$.

Examples:

- $ightharpoonup \mathbb{R}^n_+$ is a convex cone
- $\{x \in \mathbb{R}^2 : x_1 x_2 = 0\}$ is a non-convex cone
- ▶ Given a polyhedron $P = \{x : Ax \le b\}$, the recession cone of P is defined as

$$rec(P) := \{d : x + \alpha d \in P \text{ for any } x \in P, \alpha \geq 0\}.$$

It is easy to prove $rec(P) = \{x : Ax \le 0\}$, thus it is a polyhedral cone.

• $\{x \in \mathbb{R}^3 : x_3 \ge \sqrt{x_1^2 + x_2^2}\}$ is a non-polyhedral cone.

Exercises

1.6. Write the vector (1,1) as the convex combination of the vectors (0,0),(3,0),(0,2),(3,2).

1.7. When does one halfspace contain another? Give conditions under which

$$\{x \in \mathbb{R}^n : a_1^\mathsf{T} x \le b_1\} \subseteq \{x \in \mathbb{R}^n : a_2^\mathsf{T} x \le b_2\},$$

where $||a_1||_2 = ||a_2||_2 = 1$. Also find the conditions under which the two halfspaces are equal.

- 1.8. Which of the following sets are polyhedra?
 - a) $\{y_1a_1 + y_2a_2 : -1 \le y_1 \le 1, -1 \le y_2 \le 1\}$, where $a_1, a_2 \in \mathbb{R}^n$.
 - **b)** $\left\{ x \in \mathbb{R}^n : x \ge 0, \sum_{i=1}^n x_i = 1, \sum_{i=1}^n a_i x_i = b_1, \sum_{i=1}^n a_i^2 x_i = b_2 \right\}$, where $b_1, b_2, a_1, \dots, a_n \in \mathbb{R}$.
 - c) $\{x \in \mathbb{R}^n : x \ge 0, \ a^T x \le 1 \text{ for all } a \text{ with } ||a||_2 = 1\}.$
 - **d)** $\{x \in \mathbb{R}^n : x \ge 0, \ a^T x \le 1 \text{ for all } a \text{ with } ||a||_1 = 1\}.$

Convex functions

Given a convex set $C \subseteq \mathbb{R}^n$, a function $f: C \to \mathbb{R}$ is convex if

$$f(\alpha y + (1 - \alpha)x) \le \alpha f(y) + (1 - \alpha)f(x)$$
 $\forall x, y \in C, x \neq y, \forall \alpha \in (0, 1)$

f is said concave if -f is convex.

Exercise 1.9. Prove that if f is convex, then for any $x^1, \ldots, x^k \in C$ and $\alpha_1, \ldots, \alpha_k \in (0,1)$ s.t. $\sum_{i=1}^k \alpha_i = 1$, one has $f\left(\sum_{i=1}^k \alpha_i x^i\right) \leq \sum_{i=1}^k \alpha_i f(x^i)$.

Strictly convex and strongly convex functions

Given a convex set $C \subseteq \mathbb{R}^n$, a function $f: C \to \mathbb{R}$ is strictly convex if

$$f(\alpha y + (1 - \alpha)x) < \alpha f(y) + (1 - \alpha)f(x)$$
 $\forall x, y \in C, x \neq y, \forall \alpha \in (0, 1)$

Given a convex set $C \subseteq \mathbb{R}^n$, a function $f : C \to \mathbb{R}$ is strongly convex if there exists $\tau > 0$ s.t.

$$f(\alpha y + (1 - \alpha)x) \le \alpha f(y) + (1 - \alpha)f(x) - \frac{\tau}{2}\alpha(1 - \alpha)\|y - x\|_2^2$$
$$\forall x, y \in C, x \neq y, \forall \alpha \in (0, 1)$$

Thm. f is strongly convex if and only if $\exists \tau > 0$ s.t. $f(x) - \frac{\tau}{2} ||x||_2^2$ is convex

Exercise 1.10.

- ▶ Prove that: strongly convex ⇒ strictly convex ⇒ convex
- ▶ convex ⇒ strictly convex ?
- ▶ strictly convex ⇒ strongly convex ?

First order conditions

Assume that $C \subseteq \mathbb{R}^n$ is open and convex, $f: C \to \mathbb{R}$ is continuously differentiable.

Theorem

f is convex if and only if

$$f(y) \ge f(x) + (y - x)^{\mathsf{T}} \nabla f(x) \qquad \forall \ x, y \in C.$$

First-order approximation of f is a global understimator

First order conditions

Theorem

• f is strictly convex if and only if

$$f(y) > f(x) + (y - x)^{\mathsf{T}} \nabla f(x)$$
 $\forall x, y \in C$, with $x \neq y$.

• f is strongly convex if and only if there exists $\tau > 0$ such that

$$f(y) \ge f(x) + (y-x)^{\mathsf{T}} \nabla f(x) + \frac{\tau}{2} ||y-x||_2^2 \quad \forall x,y \in C.$$

Second order conditions

Assume that $C \subseteq \mathbb{R}^n$ is open and convex, $f: C \to \mathbb{R}$ is twice continuously differentiable.

Theorem

▶ f is convex if and only if for all $x \in C$ the Hessian matrix $\nabla^2 f(x)$ is positive semidefinite, i.e.

$$v^{\mathsf{T}} \nabla^2 f(x) v \geq 0 \qquad \forall \ v \neq 0,$$

or, equivalently, the eigenvalues of $\nabla^2 f(x)$ are ≥ 0 .

- ▶ If $\nabla^2 f(x)$ is positive definite for all $x \in C$, then f is strictly convex.
- ▶ f is strongly convex if and only if there exists $\tau > 0$ such that $\nabla^2 f(x) \tau I$ is positive semidefinite for all $x \in C$, i.e.

$$v^{\mathsf{T}} \nabla^2 f(x) v \ge \tau \|v\|_2^2 \qquad \forall \ v \ne 0,$$

or, equivalently, the eigenvalues of $\nabla^2 f(x)$ are $\geq \tau$.

Examples

$$f(x) = c^{\mathsf{T}}x$$
 is both convex and concave $f(x) = \frac{1}{2}x^{\mathsf{T}}Qx + c^{\mathsf{T}}x$ is

- convex iff Q is positive semidefinite
- strongly convex iff Q is positive definite
- ► concave iff Q is negative semidefinite
- strongly concave iff Q is negative definite
- $f(x) = e^{ax}$ for any $a \in \mathbb{R}$ is strictly convex, but not strongly convex
- $f(x) = \log(x)$ is strictly concave, but not strongly concave
- $f(x) = x^a$ with x > 0 is strictly convex if a > 1 or a < 0. Is it strongly convex?
- $f(x) = x^a$ with x > 0 is strictly concave if 0 < a < 1
- f(x) = ||x|| is convex, but not strictly convex
- $f(x) = \max\{x_1, \dots, x_n\}$ is convex, but not strictly convex

Exercises

1.11. Prove that the function

$$f(x_1, x_2) = \frac{x_1 x_2}{x_1 - x_2}$$

is convex on the set $\{x \in \mathbb{R}^2 : x_1 - x_2 > 0\}$.

- **1.12.** Prove that $f(x_1, x_2) = \frac{1}{x_1, x_2}$ is convex on the set $\{x \in \mathbb{R}^2 : x_1, x_2 > 0\}$.
- **1.13.** Given a convex set $C \subseteq \mathbb{R}^n$, the distance function is defined as follows:

$$d_C(x) = \inf_{y \in C} \|y - x\|.$$

Prove that d_C is a convex function.

- **1.14.** Given $C = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 1\}$, write the distance function d_C explicitly.
- **1.15.** Prove that the arithmetic mean of n positive numbers x_1, \ldots, x_n is greater or equal to their geometric mean, i.e.,

$$\frac{x_1+x_2+\cdots+x_n}{n}\geq \sqrt[n]{x_1x_2\ldots x_n}.$$

(Hint: exploit the log function.)

Operations that preserve convexity

Theorem

- ▶ If f is convex and $\alpha > 0$, then αf is convex
- ▶ If f_1 and f_2 are convex, then $f_1 + f_2$ are convex
- ▶ If f is convex, then f(Ax + b) is convex

Examples

▶ Log barrier for linear inequalities:

$$f(x) = -\sum_{i=1}^{m} log(b_i - a_i^T x)$$
 $C = \{x \in \mathbb{R}^n : b_i - a_i^T x > 0 \ \forall i = 1, ..., m\}$

Norm of affine function: f(x) = ||Ax + b||

Exercise 1.16. If f_1 and f_2 are convex, then is the product f_1 f_2 convex?

Pointwise maximum

Theorem

- ▶ If $f_1, ..., f_m$ are convex, then $f(x) = \max\{f_1(x), ..., f_m(x)\}$ is convex.
- ▶ If $\{f_i\}_{i\in I}$ is a family of convex functions, then $f(x) = \sup_{i\in I} f_i(x)$ is convex.

Example. If $L(x,\lambda): \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is convex in x and concave in λ , then

$$p(x) = \sup_{\lambda} L(x, \lambda)$$
 is convex $d(\lambda) = \inf_{\lambda} L(x, \lambda)$ is concave

Composition

 $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$.

Theorem

- ▶ If f is convex and g is convex and nondecreasing, then $g \circ f$ is convex.
- ▶ If f is concave and g is convex and nonincreasing, then $g \circ f$ is convex.
- ▶ If f is concave and g is concave and nondecreasing, then $g \circ f$ is concave.
- ▶ If f is convex and g is concave and nonincreasing, then $g \circ f$ is concave.

Examples

- ▶ If f is convex, then $e^{f(x)}$ is convex
- ▶ If f is concave and positive, then $\log f(x)$ is concave
- ▶ If f is convex, then $-\log(-f(x))$ is convex on $\{x: f(x) < 0\}$
- If f is concave and positive, then $\frac{1}{f(x)}$ is convex
- ▶ If f is convex and nonnegative, then $f(x)^p$ is convex for all $p \ge 1$

Sublevel sets

Given $f: \mathbb{R}^n \to \mathbb{R}$ and $\alpha \in \mathbb{R}$, the set

$$S_{\alpha}(f) = \{x \in \mathbb{R}^n : f(x) \le \alpha\}$$

is said the α -sublevel set of f.

Exericise 1.17. Prove that if f is convex, then $S_{\alpha}(f)$ is a convex set for any $\alpha \in \mathbb{R}$.

Is the converse true?

Quasiconvex functions

Given a convex set $C \subseteq \mathbb{R}^n$, a function $f: C \to \mathbb{R}$ is quasiconvex if the α -sublevel sets are convex for all $\alpha \in \mathbb{R}$.

f is said quasiconcave if -f is quasiconvex.

Examples

- $f(x) = \sqrt{|x|}$ is quasiconvex on \mathbb{R}
- ▶ $f(x_1, x_2) = x_1 x_2$ is quasiconcave on $\{x \in \mathbb{R}^2 : x_1 > 0, x_2 > 0\}$
- $f(x) = \log x$ is quasiconvex and quasiconcave
- ▶ $f(x) = \text{ceil}(x) = \inf\{z \in \mathbb{Z} : z \ge x\}$ is quasiconvex and quasiconcave

Exercise 1.18

Express each convex set defined below in the form $\bigcap_{i \in I} \{x : f_i(x) \leq 0\}$, where $f_i : \mathbb{R}^n \to \mathbb{R}$ are suitable convex functions:

- a) $conv\{(-1,-1),(1,0),(0,2)\}$
- **b)** $conv\{(0,0),(1,1)\}$
- c) conv $\left(\left\{x \in \mathbb{R}^2: \ x_1^2 + (x_2 1)^2 = 1\right\} \cup \left\{x \in \mathbb{R}^2: \ x_1^2 + (x_2 + 1)^2 = 1\right\}\right)$
- **d)** conv $\{x \in \mathbb{R}^2 : x_1x_2 = 1\}$