Vorlesung 4

Alexander Mattick Kennung: qi69dube

Kapitel 1

25. Juni 2020

a)

$$f_X(\alpha) = C \cdot 1_{(\frac{\pi}{9}, \frac{5\pi}{18})}(\alpha)$$

für eine Wahrscheinlichkeitsdichte
funktion muss $F(x)|_{-\infty}^{\infty}=1$ sein.

$$\int_{-\infty}^{\infty} f_X(\alpha) d\alpha = 1$$

$$\int_{-\infty}^{\infty} C \cdot 1_{\left(\frac{\pi}{9}, \frac{5\pi}{18}\right)}(\alpha) d\alpha = 1$$

$$\int_{\frac{\pi}{9}}^{\frac{5\pi}{18}} C d\alpha = 1$$

$$C \cdot \frac{5\pi}{18} - C \cdot \frac{\pi}{9} = 1$$

$$C = \frac{6}{\pi}$$

b)

zuerst müssen die dazugehörigen α Werte bestimmt werden:

$$35m = \frac{(20\frac{m}{s})^2}{10\frac{m}{s^2}}\sin(2\alpha)$$
$$35m = \frac{(20\frac{m}{s})^2}{10\frac{m}{s^2}}\sin(2\alpha)$$
$$35m\frac{10\frac{m}{s^2}}{(20\frac{m}{s})^2} = \sin(2\alpha)$$
$$\frac{7}{8} = \sin(2\alpha)$$

Dazu $\sin^{-1}(\frac{7}{8})/2 = \alpha \implies \alpha \approx 0.5327$

Wir betrachten hier nur Lösungen im bereich $\Omega = [0,\frac{\pi}{2}]$

also

$$\alpha_1 = \sin^{-1}(\frac{7}{8})/2 \approx 0.5327$$

$$\alpha_1 = \frac{\pi}{2} - \frac{\sin^{-1}(\frac{7}{8})}{2} \approx 1.0380$$

in diesem intervall ist nun $W(\alpha) \geq 35[m]$.

Dies jetzt in die Wahrscheinlichkeitsdichtefunktion eingesetzt:

$$P(\sin^{-1}(\frac{7}{8})/2 \le \alpha \le \frac{\pi}{2} - \frac{\sin^{-1}(\frac{7}{8})}{2}) =$$

$$\int_{\sin^{-1}(\frac{7}{8})/2}^{\frac{\pi}{2} - \frac{\sin^{-1}(\frac{7}{8})}{2}} f_X(\alpha)$$

$$\int_{\sin^{-1}(\frac{7}{8})/2}^{\frac{\pi}{2} - \frac{\sin^{-1}(\frac{7}{8})}{2}} \frac{6}{\pi} 1_{(\frac{\pi}{9}, \frac{5\pi}{18})}(\alpha) d\alpha$$

$$\int_{\sin^{-1}(\frac{7}{8})/2}^{\frac{5\pi}{18}} \frac{6}{\pi} d\alpha$$

$$(\frac{5\pi}{18}) * \frac{6}{\pi} - \sin^{-1}(\frac{7}{8})/2 * \frac{6}{\pi}$$

$$(\frac{5*6}{18}) - \sin^{-1}(\frac{7}{8})/2 * \frac{6}{\pi}$$

mit exakten werten erhält man ≈ 0.6492504

c)

Wie in der Zeichnung zu b) gesehen, gibt es eine Maximalstelle, nach der es wieder nach unten geht (also bereits erzielte Wurfweiten erneut erzielt werden).

Dieser Punkt ist bei:

$$\frac{v_0^2}{g}\sin(2\alpha)d/d\alpha \stackrel{!}{=} 0$$
$$2\frac{v_0^2}{g}\cos(2\alpha) \stackrel{!}{=} 0$$
$$\cos(2\alpha) \stackrel{!}{=} 0$$
$$\alpha = \frac{n\pi}{2} - \frac{\pi}{4}, n \in \mathbb{Z}$$

Der einzige Hochpunkt mit $\alpha \in [0, \frac{\pi}{2}]$ ist $n = 1 \implies \frac{\pi}{4}$

Ab diese haben wir die doppelte wahrscheinlichkeit im Interval $(\frac{\pi}{9},\frac{5\pi}{18})$

$$f^{W}(w) = \begin{cases} \frac{6}{\pi} & W(\frac{\pi}{9}) < w < W(\frac{5\pi}{18}) \\ \frac{2*6}{\pi} & W(\frac{\pi}{4}) \ge w \ge W(\frac{5\pi}{18}) \\ 0 & sonst \end{cases}$$

 $\min W(\alpha) = \frac{15^2}{10} \sin(2\alpha)$

