19 Friday, March 18, 2011

GK-dimension A (finite-type algebra, domain) Choose V a one-dimensional subspace which

- \bullet generates A
- contains 1 (that is, $1 \in V$)

 V^n is the span of products of length n of elements of V.

 $V \subset V^2 \subset \cdots$

$$\bigcup V^n = A$$

The generating function g is $g(n) = \dim V^n$ GK-dim V = d means that $g(n) \le cn^d$ and $\le cn^{d-\epsilon}$

Lemma.

- This is independent of the choice of V.
- $gk(k[x_1,...,x_n]) = d$ (?)

Take $V = \text{polynomials of degree} \leq 1$. Then dim $V^n = \binom{n+d}{d}$.

Trivial fact: If $\bar{A} = A/I$ then $gk(\bar{A}) \leq gk(A)$.

Lemma. Suppose $A \subset B$, B a finite A-module. Then gk(B) = gk(A).

Proof. Choose a finite dimensional subspace U of B that generates B as an A-module. Then $U^2 \subset B = AU$. Now choose a (one-dimensional) generating space V for A large enough so that $U^2 \subset VU$. Take W = V + U to generate B as an algebra. Then we have

$$W^n = V^n + V^{n-1}U + V^{n-2}U^2 + \dots + U^n.$$

Since $V^{n-2}U^2 \subset V^{n-1}U$, by induction, $U^n \subset V^{n-1}U$. Then $W^n \subset V^n + V^{n-1}U$. Since W = V + U, we also have that $V^n \subset W^n$.

Let $h(n) = \dim W^n$. Then

$$q(n) < h(n) < q(n) + rq(n-1) < (r+1)q(n)$$

with $r = \dim U$.

Let K be the fraction field of A. Define $\operatorname{tr} \operatorname{deg} A = \operatorname{tr} \operatorname{deg} K/\mathbb{C}^{1}$

Corollary. $gk(A) = \operatorname{tr} \operatorname{deg} K/\mathbb{C}$.

Proof. Noether Normalization says that A is a finite module over $k[x_1,\ldots,x_k],\ k[x]\subset A$. Then $k = \operatorname{tr} \operatorname{deg} K/\mathbb{C}$.

Corollaries:

- $gk(A) \in \mathbb{N}$
- $s \neq 0, s \in A \implies gk(A_s) = gk(A)$ (same field of fractions, therefore same degree)

¹tr deg is the transcendence degree.

Let A be a finite type domain, P a prime ideal of codimension 1 ((0) < P and no primes in between).

Proposition. gk(A/P) = gk(A) - 1 or tr deg A/P = tr deg A - 1

Proof. Replace A by its normalization A', a finite A-module.

$$A \xrightarrow{} B$$
 $P \qquad Q \quad \text{also codim 1 } (P = A \cap Q)$
 $(0) \qquad \qquad (0)$
 $\operatorname{tr} \operatorname{deg} A = \operatorname{tr} \operatorname{deg} B$

B/Q is a finite A/P-module, $\operatorname{tr} \operatorname{deg} B/Q = \operatorname{tr} \operatorname{deg} A/P$.

Assume A is normal. Then the local ring A_P is a DVR (discrete valuation ring). The maximal ideal $P_P = tA_P$ for some $t \in A_P$. It's a principal ideal. t is a fraction $s^{-1}a, s \notin P$.

Localize: Replace A by A_s , P by P_s . (It still has codimension 1 because the prime ideals in the localized ring are subsets of the original prime ideals.(?)) Now $t \in A$, but it might not generate P. Say $P = (u_1, \ldots, u_r)$. In the local ring, $t \mid u_i$. Then, we can get a common denominator, so $u_i = t(s_1^{-1}b_i)$, $b_i \in A$, $s \notin P$. Now replace A by A_{s_1} . Now t generates P.

We've reduced to the case that P = tA (A normal). Extend t to a transcendence basis² for the fraction field of A, (t, x_1, \ldots, x_k) , $x_i \in A$.

Now $k[t, x_1, \ldots, x_k] \subset A$ and the elements of A are algebraic over k[t, x]. Look at $k[x_1, \ldots, x_k] \to \bar{A} = A/P = A/tA$. What's the kernel? $f(x) \leadsto 0$ means that $f(x) = t\alpha$, $\alpha \in A$.

 \dots We seem to not have a proof. (To be posted online. We'll assume the proposition is true.)

Theorem. $gk(A) = tr \deg A = Krull \dim A$. More precisely, every maximal chin of prime ideals $(0) < P_1 < P_2 < \cdots < P_d$ has length $d = gk(A) = tr \deg A$.

Proof. We have already done $gk(A) = tr \deg A$.

We induct on d. We prove the statement: If a maximal chain has length d, then d = gk(A). Look at $\bar{A} = A/P_1$. A maximal chain in \bar{A} is $(0) = \bar{P}_1 < \bar{P}_2 < \cdots < \bar{P}_d$ (by the correspondence theorem) has length d-1. Then the Krull dimension of \bar{A} is gk(A) = d-1. Therefore, gk(A) = d. (Where is Krull's Theorem?!)

² Transcendence basis: Maximally algebraically independent set in the fraction field.