Chapter 4 Network Layer: Data Plane

Ren Ping Liu

renping.liu@uts.edu.au

adapted from textbook slides by JFK/KWR

1 April 2024

Computer Networking: A Top-Down Approach

8th Edition, Global Edition Jim Kurose, Keith Ross Copyright © 2022 Pearson Education Ltd

Network layer: "data plane" roadmap

- 4.1 Network layer: overview
 - data plane
 - control plane
- 4.2 What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- 4.3 IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

- 4.4 Generalized Forwarding, SDN
 - Match+action
 - OpenFlow: match+action in action
- 4.5 Middleboxes

Network-layer services and protocols

- transport segment from sending to receiving host
 - sender: encapsulates segments into datagrams, passes to link layer
 - receiver: delivers segments to transport layer protocol
- network layer protocols in every Internet device: hosts, routers
- routers:
 - examines header fields in all IP datagrams passing through it
 - moves datagrams from input ports to output ports to transfer datagrams along end-end path

Two key network-layer functions

Trip: Forster → Orange

network-layer functions:

- •routing: determine route taken by packets from source to destination
 - routing algorithms
- •forwarding: move packets from router's input to appropriate router output

Network layer: data plane, control plane

Control plane

- determines how datagram is routed among routers along end-end path from source host to destination host
- network-wide logic
- Based on network topology

values in arriving packet header 0111 3 2

Data plane

- determines how datagram arriving on router input port is forwarded to router output port
- local, per-router function
- Based on pre-determined forwarding

Network layer: data plane, control plane

Control plane

- determines how datagram is routed among routers along end-end path from source host to destination host
- network-wide logic
- Based on network topology

Two control-plane approaches:

- traditional routing algorithms: implemented in routers
- software-defined networking (SDN): implemented in (remote) servers

Per-router control plane

Individual routing algorithm components in each and every router interact in the control plane

Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers

Network service model

think of services by Aust Post: letter, registered, express, parcel,

Q: What service model do we need for "network" to pass datagrams from sender to receiver?

example services for *individual* datagrams:

- guaranteed delivery
- guaranteed timing, e.g., delivery within 40 msec delay

example services for a *flow* of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network-layer service model

Network Architecture	Service Model	Quality of Service (QoS) Guarantees?				
		Bandwidth	Loss	Order	Timing	
Internet	best effort	none	no	no	no	

Internet "best effort" service model

No guarantees on:

- × successful datagram delivery to destination
- X timing or order of delivery
- X bandwidth available to end-end flow

Network-layer service model

Network Architecture	Service Model	Quality of Service (QoS) Guarantees?				
		Bandwidth	Loss	Order	Timing	
	Internet	best effort	none	no	no	no

QoS: too hard, too expensive!

Reflections on best-effort service:

- simplicity of mechanism has allowed Internet to be widely deployed adopted
- sufficient provisioning of bandwidth allows performance of real-time applications (e.g., interactive voice, video) to be "good enough" for "most of the time"
- replicated, application-layer distributed services (datacenters, content distribution networks) connecting close to clients' networks, allow services to be provided from multiple locations
- congestion control of "elastic" services helps

It's hard to argue with success of best-effort service model

Network layer: "data plane" roadmap

- 4.1 Network layer: overview
 - data plane
 - control plane
- 4.2 What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- 4.3 IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

- 4.4 Generalized Forwarding, SDN
 - Match+action
 - OpenFlow: match+action in action
- 4.5 Middleboxes

Input port functions

Routing Algorithm Local forwarding header output 0100

link layer:

e.g., Ethernet (chapter 6)

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- input port queuing: if datagrams arrive faster than forwarding rate into switch fabric

Input port functions

Routing Algorithm Local forwarding header output 0100

link layer:

e.g., Ethernet (chapter 6)

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- destination-based forwarding: forward based only on destination IP address (traditional)
- generalized forwarding: forward based on any set of header field values

Input port queuing

- If switch fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention: only one red datagram can be transferred. lower red packet is *blocked*

one packet time later: green packet experiences HOL blocking

Switching fabrics

- transfer packet from input link to appropriate output link
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable

Switching fabrics

- transfer packet from input link to appropriate output link
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three major types of switching fabrics:

Switching via memory

first generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via a bus

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access routers

Switching via interconnection network

- Crossbar, Clos networks, other interconnection nets initially developed to connect processors in multiprocessor
- multistage switch: nxn switch from multiple stages of smaller switches
- exploiting parallelism:
 - fragment datagram into fixed length cells on entry
 - switch cells through the fabric, reassemble datagram at exit

Output port queuing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

Output port queuing

- Buffering required when datagrams arrive from fabric faster than link transmission rate.
- Scheduling discipline chooses among queued datagrams for transmission
- Drop policy: which datagrams to drop if no free buffers?

Priority scheduling – who gets best performance, network neutrality

Datagrams can be lost due to congestion, lack of buffers

Packet Scheduling: FCFS

packet scheduling: deciding which packet to send next on link

- first come, first served
- priority
- round robin
- weighted fair queueing

Abstraction: queue

FCFS: packets transmitted in order of arrival to output port

- also known as: First-in-firstout (FIFO)
- real world examples?

Scheduling policies: priority

Priority scheduling:

- arriving traffic classified, queued by class
 - any header fields can be used for classification
- send packet from highest priority queue that has buffered packets
 - FCFS within priority class

Real life example:

Scheduling policies: round robin

Round Robin (RR) scheduling:

- arriving traffic classified, queued by class
 - any header fields can be used for classification
- server cyclically, repeatedly scans class queues, sending one complete packet from each class (if available) in turn

Scheduling policies: weighted fair queueing

Weighted Fair Queuing (WFQ):

- generalized Round Robin
- each class, i, has weight, w_i, and gets weighted amount of service in each cycle:

$$\frac{w_i}{\sum_j w_j}$$

 minimum bandwidth guarantee (per-traffic-class)

Buffer Management

Abstraction: queue

buffer management:

- drop: which packet to add, drop when buffers are full
 - tail drop: drop arriving packet
 - priority: drop/remove on priority basis
- marking: which packets to mark to signal congestion (ECN, RED)

Sidebar: Network Neutrality

What is network neutrality?

- technical: how an ISP should share/allocation its resources
 - packet scheduling, buffer management are the mechanisms
- social, economic principles
 - protecting free speech
 - encouraging innovation, competition
- enforced *legal* rules and policies

Optional -nortested Different countries have different "takes" on network neutrality

Sidebar: Network Neutrality

2015 US FCC Order on Protecting and Promoting an Open Internet: three "clear, bright line" rules:

- no blocking ... "shall not block lawful content, applications, services, or non-harmful devices, subject to reasonable network management."
- no throttling ... "shall not impair or degrade lawful Internet traffic on the basis of Internet content, application, or service, or use of a non-harmful device, subject to reasonable network management."
- no paid prioritization. ... "shall not engage it paid prioritization"

ISP: telecommunications or information service?

Is an ISP a "telecommunications service" or an "information service" provider?

the answer really matters from a regulatory standpoint!

US Telecommunication Act of 1934 and 1996:

- Title II: imposes "common carrier duties" on telecommunications services: reasonable rates, non-discrimination and requires regulation
- Title I: applies to information services:
 - no common carrier duties (not regulated)
 - but grants FCC authority "... as may be necessary in the execution of its functions".

Mid-break

Network layer: "data plane" roadmap

- 4.1 Network layer: overview
 - data plane
 - control plane
- 4.2 What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling

4.3 IP: the Internet Protocol

- datagram format
- addressing
- network address translation
- IPv6

- 4.4 Generalized Forwarding, SDN
 - Match+action
 - OpenFlow: match+action in action
- 4.5 Middleboxes

Network Layer: Internet

host, router network layer functions:

IP Datagram format

IP Datagram format

20 bytes

overhead

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead for TCP+IP

IP Datagram format - TTL

TTL: remaining max hops / (decremented at each router)

TTL

- Purpose: get rid of looping datagram
- Router process:

```
TTL -= 1
if TTL == 0:
    drop(datagram)
```

				ŕ		
ver	head. Ien	type of service		length		
16	16-bit identifier			fragment offset		
tim	e to	upper		header		
/ li	ve	layer	checksum			
source IP address						
destination IP address						
options (if any)						
payload data (variable length, typically a TCP or UDP segment)						

32 bits

TTL and Traceroute

- source sends series of UDP segments to destination
 - 1st set has TTL =1, discarded at 1st router \rightarrow notify source, source record router and round-trip time.
 - 2^{nd} set has TTL=2, discarded at 2^{nd} router \rightarrow notify source, source record router and round-trip time.
 - •
 - reach destination with unlikely port number: destination host notify source with "port unreachable", source record destination and round-trip time.
- Source now has
 - A list of all routers and their round-trip time along the path
 - the destination and destination roundet of time.

Network layer: "data plane" roadmap

- 4.1 Network layer: overview
 - data plane
 - control plane
- 4.2 What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling

4.3 IP: the Internet Protocol

- datagram format
- addressing
- network address translation
- IPv6

- 4.4 Generalized Forwarding, SDN
 - Match+action
 - OpenFlow: match+action in action
- 4.5 Middleboxes

IP address: introduction

- IP address: 32-bit identifier associated with each host or router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
 - only one interface is active at a time

IP address: decimal binary

223.1.10.5 = 11011111.01100100.00001010.00000101

1. Write down binary table:

_	7	6	5	4	3	2	I	0	_	i
	128	64	32	16	8	4	2			2 ⁱ

2. convert 10 to binary: 10(8)=2; 2(2)=0. (deduct numbers: high to low)

2. converting 100 to binary: deduct numbers: high to low

$$100 - 64 = 36; 36 - 32 = 4; 4 - 4 = 0$$

3. 0 1 1 0 0 1 0 0

Try 223?

IP address: binary decimal

IP addressing: introduction

Q: how are interfaces actually connected?

A: we'll learn about that in chapters 6, 7

A: wireless WiFi interfaces connected by WiFi base station

subnet

Subnets

- What's a subnet?
 - device interfaces that can physically reach each other without passing through an intervening router
 - Analogy: Houses in a Street
- IP addresses have structure:
 - subnet part: common high order bits
 - host part: low order bits
- IP address: subnet.host#

223.1.1.3

Street addr: street.house#

Smith St.3

3 Smith St

network consisting of 3 subnets

Subnets

Recipe for defining subnets:

- group IP addresses with the same high order part
- creating "islands" of isolated networks
- each isolated network is called a subnet
- Write IP address
 - IP address: 223.1.1.3 subnet mask: 255.255.255.0
 - shorthand: 223.1.1.3/24

subnet mask: /24

(high-order 24 bits: subnet part of IP address)

Subnets

- where are the subnets?
 - how many subnets?
- what are the subnet addresses?
 - **223.1.1.0/24**
 - • •
 - **223.1.9.0/24**
- host IP address?
- router IP address?
 - router: gateway to outside

IP Address - Classful

Class	Start Address	End Address	Subnet Mask	shorthand
Α	0.0.0.0	127.255.255.255	255.0.0.0	/8
В	128.0.0.0	191.255.255.255	255.255.0.0	/16
С	192.0.0.0	223.255.255.255	255.255.255.0	/24

IP addressing: CIDR

CIDR: Classless InterDomain Routing (pronounced "cider")

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

Chapter 4 – part1: Summary

- Network layer: overview
- What's inside a router
- IP addressing, subnet
- Forwarding/routing
- Middleboxes

Question: how are forwarding tables (destination-based forwarding) or flow tables (generalized forwarding) computed?

Answer: by the control plane (next chapter)

Lecture done **♥**

Q & A

