

Proposta de teste de avaliação	
Matemática A	
11.º ANO DE ESCOLARIDADE	
Duração: 90 minutos Data:	

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identificam a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

- O ângulo generalizado de amplitude $-\frac{117\pi}{5}$ rad é, em graus, igual a: 1.

- (A) $(-72^{\circ}, -12)$ (B) $(-72^{\circ}, -11)$ (C) $(-252^{\circ}, -10)$ (D) $(-252^{\circ}, -11)$
- Em $\left[\frac{301\pi}{3}, \frac{201\pi}{2}\right]$, a solução da equação $\tan\left(x + \frac{\pi}{3}\right) = -1$ é:
- (B) $\frac{\pi}{12}$ (C) $\frac{121\pi}{6}$
- 3. Na figura, pode observar-se, num referencial ortonormado xOy, parte do gráfico da função fdefinida em \mathbb{R} por $f(x) = \sin(2x)$ bem como parte do gráfico da função afim g, definida por $g(x) = \frac{4}{5\pi}x - \frac{4}{5}$.

Os gráficos de f e g intersetam-se em vários pontos, incluindo o ponto P, cuja abcissa pertence ao

intervalo $\frac{\pi}{2}$, π .

Recorrendo às capacidades gráficas da sua calculadora, determine as coordenadas do ponto P e o número de pontos de interseção dos gráficos de f e g no intervalo $\left| -\frac{\pi}{4}, \frac{9\pi}{4} \right|$.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação;
- apresente os valores das coordenadas do ponto P com arredondamento às décimas.

- **4.** Considere a sucessão (u_n) definida por $u_n = \frac{1-2n}{3n+1}$.
 - **4.1.** Mostre, usando a definição de limite de uma sucessão, que $\lim u_n = -\frac{2}{3}$.
 - **4.2.** Estude a monotonia da sucessão.
- 5. Considere a sucessão (u_n) definida por $\begin{cases} u_1 = 2 \\ u_{n+1} = \frac{1}{2}u_n, \ \forall n \in \mathbb{N} \end{cases}$

Justifique que (u_n) é uma progressão geométrica de razão $\frac{1}{2}$.

- 6. Qual das opções seguintes é igual a $\lim \frac{\sqrt{n^2 + 2n} n}{n}$?
 - **(A)** −1
- **(B)** 1
- **(C)** 2
- **(D)** 0
- 7. Considere, num plano ortonormado xOy, a circunferência de centro C que passa nos pontos A e B.

O ponto A pertence ao eixo O_Y e tem a mesma ordenada que o ponto C e a reta AB tem 135° de inclinação.

- **7.1.** Mostre que o ponto B tem coordenadas (2, 1).
- **7.2.** Determine o ponto de interseção da mediatriz de [AB] com o eixo Oy.

8. Na figura está representado um referencial ortonormado *xOy* e a circunferência trigonométrica. Sabe-se:

• os pontos A(1, 0) e B pertencem à circunferência;

- o ponto C tem abcissa 1;
- as retas AC e OB intersetam-se no ponto C;
- α é a amplitude do ângulo AOB.

Para cada $\alpha \in \left]0, \frac{\pi}{2}\right[$, seja $A(\alpha)$ a área do triângulo ABC

8.2. Sabendo que a ordenada do ponto $C \neq \frac{\sqrt{7}}{3}$, determine a área do triângulo ABC.

9. Considere, num referencial xOy, os vetores $\vec{u}(7,-1)$, $\vec{v}(1,-1)$ e $\vec{w}(1,1)$.

9.1. Escreva \vec{u} como a soma de dois vetores, um colinear ao vetor \vec{v} e outro colinear ao vetor \vec{w} .

9.2. Determine as coordenadas dos vetores de norma 1 perpendiculares ao vetor \vec{v} .

10. Considere, num referencial Oxyz, os pontos A(1, 0, 2), B(0, 0, 2) e C(a+1, 0, -1), com $a \in \mathbb{R}^+$.

10.1. Qual é o valor de a, de modo que a amplitude do ângulo BAC seja igual a 60° ?

(A)
$$\sqrt{3}$$

(B)
$$-\sqrt{3}$$

(C)
$$\frac{1}{3}$$

(D)
$$-\frac{1}{3}$$

10.2. Determine uma equação cartesiana do plano ABD, sendo D o ponto de coordenadas (1, 1, 1).

FIM

Cotações:

Item															
Cotação (em pontos)															
1.	2.	3.	4.1.	4.2.	5.	6.	7.1.	7.2.	8.1.	8.2.	9.1.	9.2.	10.1.	10.2.	
10	10	15	15	15	10	10	15	15	15	15	15	15	10	15	200

Proposta de resolução

1.
$$-\frac{117\pi}{5} \text{ rad} = -\frac{117 \times 180^{\circ}}{5} = -4212^{\circ}$$

$$4212 = 252 + 11 \times 360$$

$$\text{Logo, } -\frac{117\pi}{5} \text{ rad} = -4212^{\circ} = (-252^{\circ}, -11)$$

Resposta: (D)

2.
$$\tan\left(x + \frac{\pi}{3}\right) = -1 \Leftrightarrow x + \frac{\pi}{3} = -\frac{\pi}{4} + k\pi, \ k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow x = -\frac{\pi}{4} - \frac{\pi}{3} + k\pi, \ k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow x = -\frac{7\pi}{12} + k\pi, \ k \in \mathbb{Z}$$

$$\operatorname{Como} \ x \in \left[\frac{301\pi}{3}, \frac{201\pi}{2}\right], \text{ tem-se:}$$

$$\frac{301\pi}{3} \le -\frac{7\pi}{12} + k\pi \le \frac{201\pi}{2}, \ k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow \frac{301}{3} + \frac{7}{12} \le k \le \frac{201}{2} + \frac{7}{12}, \ k \in \mathbb{Z} \Leftrightarrow k = 101$$

$$\operatorname{Para} \ k = 101, \ x = -\frac{7\pi}{12} + 101\pi = \frac{1205\pi}{12}$$

Resposta: (A)

3. Pretende-se resolver graficamente a equação $\sin x = \frac{4}{5\pi}x - \frac{4}{5} \land x \in \left[-\frac{\pi}{4}, \frac{9\pi}{4} \right].$

Determinando na calculadora gráfica as abcissas dos pontos de interseção dos dois gráficos, verfica-se que os gráficos de f e g se intersetam em sete pontos e que as cordenadas do ponto P, com arredondamento às décimas, são (1,8;-0,4).

4.1. Pretende-se mostrar que, para todo o número real $\varepsilon > 0$, existe uma ordem $p \in \mathbb{N}$, tal que:

$$\forall n \in \mathbb{N}, n \ge p \Rightarrow \left| u_n - \left(-\frac{2}{3} \right) \right| < \varepsilon$$

$$\left| u_n - \left(-\frac{2}{3} \right) \right| < \varepsilon \Leftrightarrow \left| \frac{1 - 2n}{3n + 1} - \left(-\frac{2}{3} \right) \right| < \varepsilon \Leftrightarrow \left| \frac{1 - 2n}{3n + 1} + \frac{2}{3} \right| < \varepsilon \Leftrightarrow$$

$$\Leftrightarrow \left| \frac{5}{9n + 3} \right| < \varepsilon \Leftrightarrow \frac{5}{9n + 3} < \varepsilon \Leftrightarrow \frac{9n + 3}{5} > \frac{1}{\varepsilon} \Leftrightarrow n > \frac{5 - 3\varepsilon}{9\varepsilon}$$

Sendo p um número natural maior ou igual a $\frac{5-3\varepsilon}{9\varepsilon}$, temos que

$$\forall n \in \mathbb{N}, n \ge p \Longrightarrow \left| u_n - \left(-\frac{2}{3} \right) \right| < \varepsilon$$
, ou seja, $\lim u_n = -\frac{2}{3}$.

4.2.
$$u_{n+1} - u_n = \frac{1 - 2(n+1)}{3(n+1) + 1} - \frac{1 - 2n}{3n+1} = \frac{-2n-1}{3n+4} - \frac{1 - 2n}{3n+1} =$$
$$= \frac{-6n^2 - 3n - 2n - 1 - 3n + 6n^2 - 4 + 8n}{(3n+4)(3n+1)} = \frac{-5}{(3n+4)(3n+1)}$$

Para todo o $n \in \mathbb{N}$, -5 < 0 e (3n+4)(3n+1) > 0

Logo, $u_{{\scriptscriptstyle n+1}}-u_{{\scriptscriptstyle n}}<0$ e, portanto, a sucessão $\left(u_{{\scriptscriptstyle n}}\right)$ é monótona decrescente.

5. Para $n \in \mathbb{N}$, tem-se:

$$u_{n+1} = \frac{1}{2}u_n \iff \frac{u_{n+1}}{u_n} = \frac{1}{2} \qquad | u_n \neq 0, \forall n \in \mathbb{N}$$

Logo, (u_n) é uma progressão geométrica de razão $\frac{1}{2}$.

6.
$$\lim \frac{\sqrt{n^2 + 2n} - n}{n} = \lim \frac{\sqrt{n^2 \left(1 + \frac{2}{n}\right)} - n}{n} = \lim \frac{n\sqrt{1 + \frac{2}{n}} - n}{n} = \lim \frac{n\left(\sqrt{1 + \frac{2}{n}} - 1\right)}{n} = \lim \left(\sqrt{1 + \frac{2}{n}} - 1\right) = \sqrt{1 + 0} - 1 = 1 - 1 = 0$$

Resposta: (D)

7.1. Os pontos A e B são pontos de interseção da reta AB com a circunferência.

Equação da reta AB

$$y = mx + b$$

$$m = \tan(135^{\circ}) = \tan(180^{\circ} - 45^{\circ}) = -\tan(45^{\circ}) = -1;$$

$$b = 3$$

$$y = -x + 3$$

Equação da circunferência

$$r = \overline{AC} = |0 - 2| = 2$$

$$(x-2)^2 + (y-3)^2 = 4$$

$$\begin{cases} (x-2)^2 + (y-3)^2 = 4 \\ y = -x+3 \end{cases} \Leftrightarrow \begin{cases} (x-2)^2 + (-x+3-3)^2 = 4 \\ y = -x+3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 - 4x + 4 + x^2 = 4 \\ y = -x + 3 \end{cases} \Leftrightarrow \begin{cases} 2x^2 - 4x = 0 \\ y = -x + 3 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} 2x(x-2) = 0 \\ y = -x + 3 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 3 \end{cases} \begin{cases} x = 2 \\ y = 1 \end{cases}$$

Como A(0,3), então o ponto B tem coordenadas (2,1).

7.2.
$$A(0,3)$$
; $B(2,1)$

$$(x-0)^{2} + (y-3)^{2} = (x-2)^{2} + (y-1)^{2} \Leftrightarrow x^{2} + y^{2} - 6y + 9 = x^{2} - 4x + 4 + y^{2} - 2y + 1 \Leftrightarrow -4y = -4x - 4 \Leftrightarrow y = x + 1$$

A mediatriz de AB, cuja equação é y = x + 1, interseta o eixo Oy no ponto de coordenadas (0,1).

8.1.
$$A_{[ABC]} = A_{[OAC]} - A_{[OAB]}$$

$$A_{[OAB]} = \frac{1 \times \tan \alpha}{2} = \frac{\tan \alpha}{2} = \frac{1}{2} \times \frac{\sin \alpha}{\cos \alpha} = \frac{\sin \alpha}{2 \cos \alpha}$$

$$A_{[OAB]} = \frac{1 \times \sin \alpha}{2} = \frac{\sin \alpha}{2}$$

$$A_{[ABC]} = \frac{\sin \alpha}{2\cos \alpha} - \frac{\sin \alpha}{2} = \frac{\sin \alpha - \sin \alpha \cos \alpha}{2\cos \alpha}$$

Logo, a área do triângulo [ABC] é $A(\alpha) = \frac{\sin \alpha - \sin \alpha \cos \alpha}{2 \cos \alpha}$.

8.2.
$$\tan \alpha = \frac{\sqrt{7}}{3}$$

$$\tan^2 \alpha + 1 = \frac{1}{\cos^2 \alpha}$$

$$\frac{7}{9} + 1 = \frac{1}{\cos^2 \alpha} \Leftrightarrow \frac{16}{9} = \frac{1}{\cos^2 \alpha} \Leftrightarrow \cos^2 \alpha = \frac{9}{16}$$

Como α é um ângulo agudo, $\cos \alpha = \frac{3}{4}$.

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\frac{\sqrt{7}}{3} = \frac{\sin \alpha}{\frac{3}{4}} \Leftrightarrow \sin \alpha = \frac{\sqrt{7}}{4}$$

Logo, se $\tan \alpha = \frac{\sqrt{7}}{3}$.

$$A(\alpha) = \frac{\frac{\sqrt{7}}{4} - \frac{\sqrt{7}}{4} \times \frac{3}{4}}{2 \times \frac{3}{4}} = \frac{\frac{1}{4} \times \frac{\sqrt{7}}{4}}{\frac{6}{4}} = \frac{\sqrt{7}}{24}$$

9.1.
$$\vec{u}(7,-1), \vec{v}(1,-1) \in \vec{w}(1,1)$$

Seja $a, b \in \mathbb{R}$

$$\vec{u} = a\vec{v} + b\vec{w} \Leftrightarrow (7, -1) = a(1, -1) + b(1, 1) \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} a+b=7 \\ -a+b=-1 \end{cases} \Leftrightarrow \begin{cases} a-1+a=7 \\ b=-1+a \end{cases} \Leftrightarrow \begin{cases} a=4 \\ b=3 \end{cases}$$

Logo, $\vec{u} = 4\vec{v} + 3\vec{w}$.

9.2.
$$\vec{v}(1,-1)$$

O vetor $\vec{x}(1,1)$ é perpendicular ao vetor \vec{v}

Pretende-se determinar os vetores \vec{y} colineares com o vetor \vec{x} , isto é, $\vec{y} = k\vec{x}$, com $k \in \mathbb{R}$, tais que $\|\vec{y}\| = 1$

$$\vec{y} = k \vec{x} = k(1, 1) = (k, k)$$

$$\parallel \vec{y} \parallel = 1 \Leftrightarrow \sqrt{k^2 + k^2} = 1 \Leftrightarrow \sqrt{2k^2} = 1 \Leftrightarrow 2k^2 = 1 \Leftrightarrow k^2 = \frac{1}{2} \Leftrightarrow k = \pm \sqrt{\frac{1}{2}} \Leftrightarrow k = \pm \frac{\sqrt{2}}{2} \Leftrightarrow k = \pm \sqrt{\frac{1}{2}} \Leftrightarrow k = \pm \sqrt{\frac{1}$$

Logo, os vetores pedidos têm coordenadas $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ e $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$.

10.1.
$$A(1, 0, 2), B(0, 0, 2) \in C(a+1, 0, -1)$$

$$\alpha = B\hat{A}C$$

$$\overrightarrow{AB} = (0, 0, 2) - (1, 0, 2) = (-1, 0, 0)$$

$$\overrightarrow{AC} = (a+1, 0, -1) - (1, 0, 2) = (a, 0, -3)$$

Como
$$\cos \alpha = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\|\overrightarrow{AB}\| \|\overrightarrow{AC}\|}$$
 e $\cos 60^{\circ} = \frac{1}{2}$, tem-se:

$$\frac{(-1,0,0)\cdot(a,0,-3)}{\sqrt{(-1)^2}\sqrt{a^2+(-3)^2}} = \frac{1}{2} \Leftrightarrow \frac{-a}{\sqrt{a^2+9}} = \frac{1}{2} \Leftrightarrow$$

$$\Leftrightarrow -2a = \sqrt{a^2+9} \Leftrightarrow -2a = \sqrt{a^2+9} \Leftrightarrow 4a^2 = a^2+9 \land a < 0 \Leftrightarrow$$

$$\Leftrightarrow 3a^2 = 9 \land a < 0 \Leftrightarrow a^2 = 3 \land a < 0 \Leftrightarrow a = -\sqrt{3}$$

Resposta: (B)

10.2.
$$A(1, 0, 2)$$
; $B(0, 0, 2)$; $D(1, 1, 1)$

Seja \vec{n} um vetor normal ao plano ABC.

Assim, por exemplo, $\vec{n} \cdot \overrightarrow{AB} = 0 \wedge \vec{n} \cdot \overrightarrow{AD} = 0$.

$$\vec{n} = (a, b, c); a, b, c \in \mathbb{R}$$

$$\overrightarrow{AB} = B - A = (-1, 0, 0)$$

$$\overrightarrow{AD} = D - A = (0, 1, -1)$$

Assim, tem-se:

$$\begin{cases} (a, b, c) \cdot (-1, 0, 0) = 0 \\ (a, b, c) \cdot (0, 1, -1) = 0 \end{cases} \Leftrightarrow \begin{cases} -a = 0 \\ b - c = 0 \end{cases} \Leftrightarrow \begin{cases} a = 0 \\ b = c \end{cases}$$

$$\vec{n} = (0, b, b), b \in \mathbb{R} \setminus \{0\}$$

Por exemplo, para b=1, $\vec{n}=(0,1,1)$ e tendo em conta que o ponto B pertence ao plano ABD, vem:

$$0(x-0)+1(y-0)+1(z-2)=0 \Leftrightarrow y+z-2=0$$

Uma equação cartesiana do plano ABD é y+z-2=0.