Supplemental Slides for the Network Analysis with statnet Workshop

2010 Political Networks Conference

Carter T. Butts

Department of Sociology and Institute for Mathematical Behavioral Sciences University of California, Irvine

Relating NLIs to Vertex Covariates

- Common question: are NLIs related to non-structural covariates?
 - Centrality to power or influence
 - Constraint to advancement
 - Diversity to development

(Texas SAR EMON Decision Rank Score (scale) vs. Degree (color), Mutually Reported "Continuous" Communication" - ρ=0.86)

"Linear" Permutation Tests

- Simple, nonparametric test of association between vectors
 - Sometimes called "linear" or "vector" permutation test
 - Tests marginal association against exchangeability null (independence conditional on marginal distributions)
- Null interpretation: "musical chairs" model
 - If we randomly switched the positions of people in the network (leaving structure as-is), what is the chance of observing a similar degree of association?

- Monte Carlo procedure:
 - Let $\mathbf{x}_{obs} = (f(v_1, G), ..., f(v_N, G))$ be the observed NLI vector, w/covariate vector \mathbf{y}
 - Let $t_{obs} = s(\mathbf{x}_{obs}, \mathbf{y})$
 - For i in 1,...,n
 - Let x⁽ⁱ⁾ be a random permutation of x_{obs}
 - Let $t^{(i)} = S(\mathbf{x}^{(i)}, \mathbf{y})$

Estimated p-values:

- One-sided:
 - $\Pr(\mathbf{t}^{(i)} \leq t_{obs}) \approx \sum_{i} I(\mathbf{t}^{(i)} \leq t_{obs}) / n \text{ (Lower)}$
 - $\Pr(\mathbf{t}^{(i)} \geq t_{obs}) \approx \sum_{l} I(\mathbf{t}^{(i)} \geq t_{obs}) / n$ (Upper)
- Two-sided:
 - $\Pr(|\mathbf{t}^{(i)}| \ge |t_{obs}|) \approx \sum_{i} I(|\mathbf{t}^{(i)}| \ge |t_{obs}|)/n$ Carter T. Butts, 2010 PolNet statnet Workshop

Understanding the Null Model

We Observed:

We Could Have Observed:

We Ask: "Is the observed relationship extreme compared to what we would expect to see, if assignment to positions were independent of the covariate?"

Texas SAR EMON Example

- Question: do organizations in constant communication w/many alters end up more/less prominent in the decisionmaking process?
 - Measure (s): correlation of decision rank score (y) with degree in confirmed "continuous communication" network (x_{obs})
 - Null: no relationship between degree and decision making
 - Alternative: decision making has linear marginal relationship w/degree

Results:

- t_{obs} =0.86; $Pr(|\mathbf{t}^{(i)}| \ge |t_{obs}|) \approx 3e-5$
- Correlation this large very unlikely under null hypothesis
- Upper tail test similar (see figure)

NLIs as Covariates

- NLIs can also be used as covariates (e.g., in regression analyses)
 - Modeling assumption:

 position properties predict
 properties of those who
 hold them
 - Conditioning on NLI values,
 so dependence doesn't
 matter (if no error in G)
 - NLIs as dependent
 variables are much more
 problematic; often need to
 deal with autocorrelation
 (e.g., via ERGMs)

- Things to keep in mind....
 - Make sure that your theory really posits a direct relationship w/the NLI
 - NLI distributions could be quite skewed or irregular; be sure this makes sense (e.g., via analysis of residuals)
 - Multiple NLIs may be strongly correlated; may not be able to distinguish among related measures in practice

Graph Correlation

- Simple way of comparing graphs on same vertex set: graph correlation
 - Start with graph mean grand mean of adjacency matrix
 - Graph covariance:
 elementwise covariance of
 adjacency matrices
 - Graph variance: covariance of graph with itself
 - Graph correlation:
 elementwise correlation of adjacency matrices
- Easily interpretable, works with valued data, etc.

$$\mathbf{X} = \begin{bmatrix} - & 1 & 1 \\ 0 & - & 1 \\ 0 & 0 & - \end{bmatrix}, \mathbf{Y} = \begin{bmatrix} - & 1 & 0 \\ 0 & - & 1 \\ 0 & 0 & - \end{bmatrix}$$

$$\overline{\mathbf{X}} = \frac{\sum_{(i,j)} \mathbf{X}_{ij}}{N(N-1)} = \frac{1}{2}, \overline{\mathbf{Y}} = \frac{\sum_{(i,j)} \mathbf{Y}_{ij}}{N(N-1)} = \frac{1}{3}$$

$$Cov(\mathbf{X}, \mathbf{Y}) = \frac{\sum_{(i,j)} (\mathbf{X}_{ij} - \overline{\mathbf{X}}) (\mathbf{Y}_{ij} - \overline{\mathbf{Y}})}{N(N-1)-1}$$
$$= 0.2$$

$$Var(\mathbf{X}) = Cov(\mathbf{X}, \mathbf{X}) = 0.3$$

$$Var(\mathbf{Y}) = Cov(\mathbf{Y}, \mathbf{Y}) = 0.27$$

$$\rho (\mathbf{X}, \mathbf{Y}) = \frac{\text{Cov}(\mathbf{X}, \mathbf{Y})}{\sqrt{\text{Var}(\mathbf{X})\text{Var}(\mathbf{Y})}} = 0.71$$

Hubert's QAP

- How to tell if our observed correlation is "large"?
 - Due to autocorrelation, large excursions possible
- Hubert's QAP
 - Fix one matrix, repeatedly permute the other
 - Compare observed correlation w/permutation distribution
 - As usual, look to the quantiles of the observed correlation to determine p-values
 - Interpretation: CUG test w/all unlabeled properties fixed

Carter T. Butts, 2010 PolNet statnet Workshop

Network Regression

- Simple family of models for predicting social ties
 - Special case of standard OLS regression
 - Dependent variable is a network adjacency matrix

Model form:

$$\mathbf{E} Y_{ij} = \beta_0 + \beta_1 X_{1ij} + \beta_2 X_{2ijk} + \dots + \beta_p X_{pij}$$

- where ${\bf E}$ is the expectation operator (analogous to "mean" or "average"), Y_{ij} is the value of the edge from i to j on the dependent relation with adjacency matrix ${\bf Y}$, X_{kij} is the value of the kth predictor for the (i,j) ordered pair, and $\beta_0,...,\beta_n$ are coefficients

Dependent Variable

- From previous, dependent variable is an adjacency matrix
 - Standard case: dichotomous data
 - Interpretation: model predicts tie probability (maybe not well)
 - Valued case
 - · Interpretation: model predicts tie strength
- To prepare data, just code network into adjacency matrix form
 - No special tactics required for one-mode data
 - For two-mode data, either treat as one-mode or use projection matrix

Independent Variable(s)

- For independent variables (X), may need to prepare data
 - Always take matrix form, but may be based on vector data

Several examples:

- Simple adjacency matrices
- Sender/receiver effects
- Attribute differences
- Elements held in common

Initial Concept: Baseline Models

- <u>Baseline model</u>: model which treats social structure as maximally random, given some fixed constraints
 - Constraints could include size, density, etc.
- Method of baseline models (from Mayhew)
 - Identify potentially constraining factors
 - Compare observed properties to baseline model
 - Interpret deviations from baseline
 - May repeat with additional constraints
 - Note similarity to classical null hypothesis testing
 - Baseline model acts as null hypothesis
 - Useful even when baseline model is not "realistic"
 - Emphasis on triangulation to identify nature of biases; multiple baselines may be used to "pin down" complex behavior

A Few Baseline Models

Uniform conditional on size

- Given number of individuals, all structures taken to be equally likely

Uniform conditional on number of edges

- Given number of individuals and interactions, structure is random (fixes density)
- Valued version: condition on edge values (randomize over who gets edges)

Uniform conditional on dyad census

- Given number of individuals, mutual, asymmetric, and null relationships, structure is random (fixes density and reciprocity)
- Valued version: condition on dyad pair values (randomize over who belongs to each dyad)

Uniform conditional on all unlabeled properties

- This is the permutation distribution we saw earlier!

Comparing Observations to Baselines

- To compare observations w/baseline behavior, must choose a statistic to evaluate
 - Should choose a statistic which reflects the type of property being examined
 - Obviously, cannot use a statistic on which one is conditioning
- Next, generate distribution of statistic under baseline model
 - Simulate networks from baseline model, then calculate statistic
- Finally, compare observed statistic to baseline distribution

Carter T. Butts, 2010 PolNet statnet Workshop

Looking High and Low

Primary quantities of interest: probabilities of obtaining values greater than/equal to or less than/equal to observed value under baseline model

- $\Pr(s(G) \ge s(G_{obs})) \approx 0$ implies that $s(G_{obs})$ is <u>large</u> compared to baseline

 Small chance of observing a value that large under baseline

- $\Pr(s(G) \le s(G_{obs})) \approx 0$ implies that $s(G_{obs})$ is <u>small</u> compared to baseline

 Small chance of observing a value that small under baseline

Carter T. Butts, 2010 PolNet statnet Workshop

Conditional Uniform Graph Tests

- CUG test: use of conditional uniform baseline as a null hypothesis test
 - Propose that $s(G_{obs})$ drawn from a baseline model
 - Reject at significance level p if $Pr(s(G) \ge s(G_{obs})) < p$ (upper tail) or $Pr(s(G) \le s(G_{obs})) < p$ (lower tail)
 - Conventional significance levels 0.05, 0.01, 0.001

Interpretation

- Rejection: Data shows noteworthy departure from model
- Non-rejection: Data consistent with baseline model
- Direction indicates nature of deviation

Carter T. Butts, 2010 PolNet statnet Workshop

Studying Qualitative Dynamics w/Network MDS

- MDS solution can also be used to study dynamics
 - Motion in MDS space reveals qualitative aspects of network dynamics
 - Can also get general information on pace of change
- Good for "holistic" assessments
 - Downside: doesn't tell you about <u>what</u> is changing

Seriation Curves

- Common pattern when change accumulates over time
 - Essentially a 1-dimensional pattern
 - Don't over-interpret curvature
 - Proximity of points suggests pace of change
 - Ex: equilibration in Newcomb frat after about 11 weeks
- As w/other examples, works well with valued data
 - Can detect tie strength changes, even if edges fixed

Trajectories in Context

Some Additional References

- The following recent papers provide introductory reviews to these topics, and/or to statnet:
 - Butts, Carter T. (2008). ``Social Networks: A Methodological Introduction." Asian Journal of Social Psychology, 11(1), 13-41.
 - Butts, Carter T. (2008). ``Social Network Analysis with sna."
 Journal of Statistical Software, 24(6).
 - Handcock, Mark S.; Hunter, David R.; Butts, Carter T.;
 Goodreau, Steven M.; and Morris, Martina. (2008).
 ``statnet: Software Tools for the Representation,
 Visualization, Analysis and Simulation of Network Data."
 Journal of Statistical Software, 24(1).
- We hope these tools aid you in your research!