

Keskeinen raja-arvolause ja sen sovellukset liiketoiminnassa

https://github.com/perej1/clt-teaching

Jaakko Pere

25. maaliskuuta 2025

Kohdeyleisö

 Ensimmäisen ja toisen vuoden kandiopiskelijat (lukion matematiikka).

Kohdeyleisö

- Ensimmäisen ja toisen vuoden kandiopiskelijat (lukion matematiikka).
- Kurssilla on jo käsitelty seuraavat käsitteet:
 - Satunnaismuuttuja
 - Odotusarvo
 - Varianssi
 - Estimaattori

Luennon sisältö

Moraali

Normaalijakauma

Keskeinen raja-arvolause

Sovellukset

Table of Contents

Moraali

Normaalijakauma

Keskeinen raja-arvolause

Sovellukset

Olkoon X_1, \ldots, X_n riippumattomia ja samoin jakautuneita satunnaismuuttujia niin, että $\mu = \mathbb{E}(X_1) \in (-\infty, \infty)$.

Olkoon X_1, \ldots, X_n riippumattomia ja samoin jakautuneita satunnaismuuttujia niin, että $\mu = \mathbb{E}(X_1) \in (-\infty, \infty)$. Tällöin suurten lukujen laki kertoo, että suurilla n

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \approx \mathbb{E}(X_1)$$

Olkoon X_1, \ldots, X_n riippumattomia ja samoin jakautuneita satunnaismuuttujia niin, että $\mu = \mathbb{E}(X_1) \in (-\infty, \infty)$. Tällöin suurten lukujen laki kertoo, että suurilla n

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \approx \mathbb{E}(X_1)$$

Toisin sanoen keskiarvo estimoi odotusarvoa.

Olkoon X_1, \ldots, X_n riippumattomia ja samoin jakautuneita satunnaismuuttujia niin, että $\mu = \mathbb{E}(X_1) \in (-\infty, \infty)$. Tällöin suurten lukujen laki kertoo, että suurilla n

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \approx \mathbb{E}(X_1)$$

Toisin sanoen keskiarvo estimoi odotusarvoa.

Tarkemmin ilmaistuna $\lim_{n o \infty} \mathbb{P}\left(\left| ar{X} - \mu \right| > arepsilon
ight) = 0$ kaikilla arepsilon > 0

Ongelma

■ Suurten lukujen laki ei kerro mitään siitä kuinka hyvin keskiarvo estimoi odotusarvoa.

Ongelma

- Suurten lukujen laki ei kerro mitään siitä kuinka hyvin keskiarvo estimoi odotusarvoa.
- Voidaanko keskiarvon jakaumasta sanoa jotain edes suurilla otoskoolla n?

■ Otos sisältää luottokorttitapahtumia Euroopasta syyskuulta 2013. Tapahtumia kirjattiin kahdelta päivältä (Lähde: Kaggle).

- Otos sisältää luottokorttitapahtumia Euroopasta syyskuulta 2013.
 Tapahtumia kirjattiin kahdelta päivältä (Lähde: Kaggle).
- Luottokorttitapahtumia on yhteensä 284 807, joista 492 luokiteltiin petoksiksi.

- Otos sisältää luottokorttitapahtumia Euroopasta syyskuulta 2013.
 Tapahtumia kirjattiin kahdelta päivältä (Lähde: Kaggle).
- Luottokorttitapahtumia on yhteensä 284 807, joista 492 luokiteltiin petoksiksi.
- Estimaatti luottokorttipetoksen todennäköisyydelle on $492/284807 \approx 0.0017$.

- Otos sisältää luottokorttitapahtumia Euroopasta syyskuulta 2013.
 Tapahtumia kirjattiin kahdelta päivältä (Lähde: Kaggle).
- Luottokorttitapahtumia on yhteensä 284 807, joista 492 luokiteltiin petoksiksi.
- Estimaatti luottokorttipetoksen todennäköisyydelle on $492/284807 \approx 0.0017$.
- Kuinka varma voin olla siitä, että saatu piste-estimaatti on lähellä populaatisuuretta?

Simulaatio

1. Simuloi otos riippumattomia ja samoin jakauneita havaintoja x_1, \ldots, x_n (otoskoko on n). Laske keskiarvo

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Simulaatio

1. Simuloi otos riippumattomia ja samoin jakauneita havaintoja x_1, \ldots, x_n (otoskoko on n). Laske keskiarvo

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

2. Toista yllä oleva toimenpide m = 1000 kertaa. Näin meillä on m keskiarvoa.

Simulaatio

1. Simuloi otos riippumattomia ja samoin jakauneita havaintoja x_1, \ldots, x_n (otoskoko on n). Laske keskiarvo

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- **2.** Toista yllä oleva toimenpide m = 1000 kertaa. Näin meillä on m keskiarvoa.
- 3. Piirrä histogrammi keskiarvoista.

 Ensin simuloimme otoksia tasajakaumasta U[0, 1] välillä 0-1 (jakauman odotusarvo on 0.5). Kyseisen tasajakauman tiheysfunktio on

$$f(x) = \begin{cases} 1, & \text{kun } x \in [a, b], \\ 0, & \text{muulloin.} \end{cases}$$

Kuva: Tasajakauma U[0, 1], n = 1 ja m = 1000.

Kuva: Tasajakauma U[0, 1], n = 5 ja m = 1000.

Kuva: Tasajakauma U[0, 1], n = 100 ja m = 1000.

■ Seuraavaksi simuloimme otoksia eksponenttijakaumasta Exp(1) skaalaparametrilla $\lambda = 1$ (jakauman odotusarvo on 1). Kyseisen eksponentijakauman tiheysfunktio on

$$f(x) = egin{cases} e^{-x}, & ext{kun} & x \in [0, \infty), \\ 0, & ext{muulloin.} \end{cases}$$

Kuva: Eksponenttijakauma $\operatorname{Exp}(1)$, n=1 ja m=1000.

Kuva: Eksponenttijakauma Exp(1), n = 5 ja m = 1000.

Kuva: Eksponenttijakauma $\operatorname{Exp}(1)$, n = 100 ja m = 1000.

Opetustavoitteet

Luennon jälkeen osaamme

1. approksimoida todennäköisyyksiä klassisen keskeisen raja-arvolauseen avulla ja

Opetustavoitteet

Luennon jälkeen osaamme

- 1. approksimoida todennäköisyyksiä klassisen keskeisen raja-arvolauseen avulla ja
- **2.** muodostaa likiarvoisen luottamusvälin odotusarvolle perustuen keskeiseen raja-arvolauseeseen.

Table of Contents

Moraali

Normaalijakauma

Keskeinen raja-arvolause

Sovellukset

Normaalijakauma on absoluuttisesti jatkuva jakauma.

Merkitsemme normaalijakaumaa parametrein $\mu\in(-\infty,\infty)$ ja $\sigma^2\in(0,\infty)$ notaatiolla $\mathbf{N}\left(\mu,\sigma^2\right)$. Jakauman $\mathbf{N}\left(\mu,\sigma^2\right)$ tiheysfunktio on

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Normaalijakauma on absoluuttisesti jatkuva jakauma. Merkitsemme normaalijakaumaa parametrein $\mu \in (-\infty, \infty)$ ja $\sigma^2 \in (0, \infty)$ notaatiolla $N(\mu, \sigma^2)$. Jakauman $N(\mu, \sigma^2)$

tiheysfunktio on

 $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$

Tällöin normaalijakauman kertymäfunktio voidaan esittää tiheysfunktion avulla

$$F(x) = \int_{-\infty}^{x} f(t) \, \mathrm{d}t$$

 $\textbf{Kuva:} \ \text{Normaalijakaumat} \ N\left(0,1\right) \text{ (katkoviiva) ja } N\left(1,9\right) \text{ (jatkuva viiva)}.$

Table of Contents

Moraali

Normaalijakauma

Keskeinen raja-arvolause

Sovellukset

Lause

Olkoon X_1, X_2, \ldots, X_n riippumattomia ja samoin jakautuneita satunnaismuuttujia niin, että $0 < \text{Var}(X_1) < \infty$. Merkitsemme $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, \ \mu = \mathbb{E}(X_1)$ ja $\sigma = \sqrt{\text{Var}(X_1)}$. Tällöin, kun otoskoko n on suuri, niin

$$\tilde{X} = \sqrt{n} \frac{\bar{X} - \mu}{\sigma}$$

noudattaa likimain standardinormaalijakaumaa $N\left(0,1\right)$,

Lause

Olkoon X_1, X_2, \ldots, X_n riippumattomia ja samoin jakautuneita satunnaismuuttujia niin, että $0 < \text{Var}(X_1) < \infty$. Merkitsemme $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, \ \mu = \mathbb{E}(X_1)$ ja $\sigma = \sqrt{\text{Var}(X_1)}$. Tällöin, kun otoskoko n on suuri, niin

$$\tilde{X} = \sqrt{n} \frac{\bar{X} - \mu}{\sigma}$$

noudattaa likimain standardinormaalijakaumaa $\mathrm{N}\left(0,1
ight)$,

$$\mathbb{P}\left(\tilde{X} \leq x\right) \approx \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt =: \Phi\left(x\right).$$

Table of Contents

Moraali

Normaalijakauma

Keskeinen raja-arvolause

Sovellukset

Todennäköisyyksien approksimointi

Keskeisen raja-arvolauseen oletusten pätiessä \tilde{X} noudattaa likimain normaalijakaumaa, jossa

$$\tilde{X} = \sqrt{n} \frac{\sum_{i=1}^{n} X_i - \mu}{\sigma} = \frac{S_n - n\mu}{\sqrt{n}\sigma}$$

Keskeisen raja-arvolauseen oletusten pätiessä \tilde{X} noudattaa likimain normaalijakaumaa, jossa

$$\tilde{X} = \sqrt{n} \frac{\sum_{i=1}^{n} X_i - \mu}{\sigma} = \frac{S_n - n\mu}{\sqrt{n}\sigma}.$$

Tällöin

$$\mathbb{P}\left(S_n \leq x\right) = \mathbb{P}\left(\underbrace{\frac{S_n - n\mu}{\sqrt{n}\sigma}}_{-\tilde{x}} \leq \frac{x - n\mu}{\sqrt{n}\sigma}\right) \approx \Phi\left(\frac{x - n\mu}{\sqrt{n}\sigma}\right).$$

Esimerkki

■ $X_1, ..., X_n$ ovat riippumattomia satunnaismuuttujia Bernoullin jakaumasta, $\mathbb{P}(X_1 = 1) = p$ ja $\mathbb{P}(X_1 = 0) = 1 - p$.

Esimerkki

- $X_1, ..., X_n$ ovat riippumattomia satunnaismuuttujia Bernoullin jakaumasta, $\mathbb{P}(X_1 = 1) = p$ ja $\mathbb{P}(X_1 = 0) = 1 p$.
- Voimme laskea, että $\mu = \mathbb{E}(X_1) = p$ ja $\sigma^2 = \text{Var}(X_1) = p(1 p)$.

Esimerkki

- $X_1, ..., X_n$ ovat riippumattomia satunnaismuuttujia Bernoullin jakaumasta, $\mathbb{P}(X_1 = 1) = p$ ja $\mathbb{P}(X_1 = 0) = 1 p$.
- Voimme laskea, että $\mu = \mathbb{E}(X_1) = p$ ja $\sigma^2 = \text{Var}(X_1) = p(1-p)$.

Saamme approksimaation

$$\mathbb{P}\left(\mathcal{S}_{n}\leq x\right)pprox\Phi\left(rac{x-np}{\sqrt{np(1-p)}}
ight).$$

- Oletetaan, että tiedämme petoksen todennäköisyyden olevan p = 0.0016.
- Mikä on todennäköisyys havaita vähintään x = 492 petosta, kun luottokorttitapahtumia oli kokonaisuudessaan n = 284807?
- Approksimoimme

$$\mathbb{P}\left(S_n \geq x\right) \approx 1 - \Phi\left(\frac{x - np}{\sqrt{np(1-p)}}\right).$$

Likiarvoinen luottamusväli

Luottamusvälin määritelmä odotusarvolle

■ Oletetaan, että X on satunnismuuttuja odotusarvolla $\mu = \mathbb{E}(X) \in (-\infty, \infty)$. Olkoon $X = (X_1, \dots, X_n)$ satunnaismuuttujan X havaintoja.

Luottamusvälin määritelmä odotusarvolle

- Oletetaan, että X on satunnismuuttuja odotusarvolla $\mu = \mathbb{E}(X) \in (-\infty, \infty)$. Olkoon $X = (X_1, \dots, X_n)$ satunnaismuuttujan X havaintoja.
- Luottamustason 1 $-\alpha$ luottamusväli on satunnaisväli $[\ell(\mathbf{X}), u(\mathbf{X})]$, jolle pätee

$$\mathbb{P}\left(\mu \in \left[\ell\left(\boldsymbol{X}\right), u\left(\boldsymbol{X}\right)\right]\right) \geq 1 - \alpha.$$

Luottamusvälin approksimointi (1)

Oletetaan, että satunnaismuuttujan X varianssi $0<\sigma^2<\infty$ on tiedossa. Tällöin keskeisen raja-arvolauseen mukaan

$$\mathbb{P}\left(z_{\ell} \leq \sqrt{n} \frac{\mu - \bar{X}}{\sigma} \leq z_{u}\right) \approx 1 - \alpha,$$

Luottamusvälin approksimointi (1)

Oletetaan, että satunnaismuuttujan X varianssi $0<\sigma^2<\infty$ on tiedossa. Tällöin keskeisen raja-arvolauseen mukaan

$$\mathbb{P}\left(z_{\ell} \leq \sqrt{n} \frac{\mu - \bar{X}}{\sigma} \leq z_{u}\right) \approx 1 - \alpha,$$

jossa väli $[z_\ell, z_u]$ valitaan niin, että

$$\Phi(z_u) - \Phi(z_\ell) = 1 - \alpha.$$

Yllä F on jakauman N(0,1) kertymäfunktio.

Luottamusvälin approksimointi (2)

Valitsemalla esimerkiksi $z_u = z_{1-\alpha/2}$ ja $z_\ell = -z_u$ päädymme seuravaan luottamusväliin

$$\left[\bar{X} - \frac{\sigma z_{1-\alpha/2}}{\sqrt{n}}, \bar{X} + \frac{\sigma z_{1-\alpha/2}}{\sqrt{n}}\right].$$

■ Otos sisältää luottokorttitapahtumia syyskuulta 2013. Tapahtumia kirjattiin kahdelta päivältä (Lähde: Kaggle).

- Otos sisältää luottokorttitapahtumia syyskuulta 2013. Tapahtumia kirjattiin kahdelta päivältä (Lähde: Kaggle).
- Luottokorttitapahtumia on yhteensä 284 807, joista 492 luokiteltiin petoksiksi.

- Otos sisältää luottokorttitapahtumia syyskuulta 2013. Tapahtumia kirjattiin kahdelta päivältä (Lähde: Kaggle).
- Luottokorttitapahtumia on yhteensä 284 807, joista 492 luokiteltiin petoksiksi.
- Tavoite: Estimoidaan 95% luottamusväli petoksien osuudelle luottokorttitapahtumista.

Malli

- Satunnaismuuttuja X noudattaa Bernoullijakaumaa tuntemattomalla parametrilla p, jossa p on petoksen todennäköisyys.
- $\mathbb{P}(X = 1) = p$ ja $\mathbb{P}(X = 0) = 1 p$, jossa tapahtuma $\{X = 1\}$ indikoi petosta ja $\{X = 0\}$ vastaa normaalia luottokorttitapahtumaa.
- Havainnot $x_1, \dots x_{284807}$ ovat binäärisiä (0 tai 1). Oletamme, että havainnot ovat riippumattomia ja samoin jakautuneita.

Ratkaisu

- Voimme laskea $\mathbb{E}(X) = p$ ja Var(X) = p(1 p).
- Suurten lukujen lain mukaan $p \approx \hat{p} = \frac{1}{n} \sum_{i=1}^{284807} x_i$.
- Joten voimme approksimoida 95% luottamusvälin seuraavasti

$$\left[\hat{p}-z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\hat{p}+z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$$

Ratkaisu (2)

Sijoittamalla lukuarvot

- \blacksquare $\hat{p} \approx 0.0017$, (R komento mean(data)) ja
- $z_{1-\alpha/2} \approx 1.96$ (R komento qnorm(1 0.05 / 2))

saamme luottamusväliksi

$$\approx [0.0016, 0.0019]$$
.

Tiivistelmä

Sovelsimme keskeistä raja-arvolausetta luottokorttipetoksiin

- 1. approksimoimalla petoksien määrän todennäköisyyttä ja
- **2.** laskemalla likiarvoistettuja luottamusvälejä petoksen todennäköisyydelle.