Adversarial Search (Game Search)

Murray Shanahan

Overview

- Types of games
- Mimimax
- α - β pruning
- Monte Carlo tree search

Types of Games

- Games search involves an unpredictable opponent
- Games can be classified along several dimensions
- We'll be looking at two-player deterministic games where there is perfect information, such as chess

	Deterministic	Chance
Perfect information	chess, drafts, go, othello	backgammon, monopoly
Imperfect information	battleships	bridge, poker, scrabble

Game Trees

- The task is to search a game tree like this for the best move
- The search can go all the way to the game's terminal states
- Or it can finish after a given depth (an n-ply search is a search to depth n)
- An evaluation function is needed to estimate the utility of any given state

Choosing the Best Move

- Suppose we have the following search tree
- Should we select action A₁, A₂, or A₃?

The Minimax Principle

- Assume that the opponent will always make the worst move for us
 - This is the action with the lowest estimated utility
- But we will always make the best move
- So utilities can be propagated up the tree, alternating between minimizing utility (opponent's move) and maximizing utility (our move)
- The move we make is the one with the maximum utility at the root

The Minimising Phase

The Maximising Phase

The Minimax Algorithm 1

- The algorithm is expressed as a pair of mutually recursive functions MinValue and MaxValue
- Eval(s) is the evaluation function. It yields an estimate of the utility of state s

```
function MinValue(s,d)
if s is a terminal state or d = MaxDepth
    return Eval(s)
else
    v := ∞
    for each action a possible in s
         v := Min(v,MaxValue(Result(a,s),d+1)
    return v
```

The Minimax Algorithm 2

The best move is the action a that maximises
 MinValue(Result(a,S0),1) where S0 is the current state of the game

```
function MaxValue(s,d)
if s is a terminal state or d = MaxDepth
   return Eval(s)
else
   v := -∞
   for each action a possible in s
        v := Max(v,MinValue(Result(a,s),d+1)
   return v
```

α - β Pruning

- Minimax performs a lot of redundant search
- It can be improved by keeping track of the best MAX value found so far (α) and the worst MIN value (β)
- There is no point in exploring MIN branches worse than α or MAX branches better than β
- Here, if we have $V2 < \alpha$ there is no need for MIN to explore more branches for that node

The Alpha-Beta Algorithm

- The Minimax algorithm is extended. Here's the new MinValue. MaxValue is analogous with roles of α and β reversed
- Need to maximise MinValue(Result(a,S0),-∞,∞,1)

```
function MinValue(s,α,β,d)
if s is a terminal state or d = MaxDepth
    return Eval(s)
else
    v := ∞
    for each action a possible in s
    v := Min(v,MaxValue(Result(a,s),α,β,d+1)
          if v ≤ α return v
          else β := Min(β,v)
    return v
```

Optimality

- If there is no depth limit, minimax is guaranteed to find the optimal move against an optimal opponent
- Alpha-beta will find the same move as minimax (but faster)
- If the opponent is not optimal ...
 - Consider an opponent that picks random moves. Then minimax might not be the best strategy for maximising expected reward
- If there is a depth limit, then minimax finds the optimal move for the given limit and evaluation function

Expected Utility

- If the opponent picks random moves, we should pick the move with maximum expected utility
- Here, mimimax would choose A₁, but the best move is A₃

Monte Carlo Tree Search 1

- A statistical approach is taken in Monte Carlo tree search
- Random plays build up statistical picture of value of each node
- Four steps repeated: select, expand, simulate, back propagate

Monte Carlo Tree Search 2

Monte Carlo Tree Search 3

- Choice of leaf node to expand is crucial
- There is an exploitation / exploration trade-off. Do you pick most promising nodes or those that have been least explored?
- Can use upper confidence bound (UCB) pick node *i* to maximise

$$\frac{w_i}{n_i} + C \sqrt{\frac{\ln(N)}{n_i}}$$

where w_i is number of wins, n_i is number of games with i, N is total number of games played, and C is a parameter

- Note that Monte Carlo tree search doesn't need an evaluation function
- Monte Carlo tree search is effective in games such as Go
- Useful resource here

http://mcts.ai/about/index.html