SRN						- Sections
-----	--	--	--	--	--	------------

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE19EC204

December 2020: END SEMESTER ASSESSMENT B Tech III SEMESTER

UE19EC204 - ANALOG CIRCUIT DESIGN

		Time: 3 Hrs	Answer All Questions	Max Marks: 100							
1.	a)	With neat circuit diagram obtain an expression to avoid saturation region operation of transistor in simple biasing technique. Further, also specify any one limitation of this technique.									
	b)		at exhibits the input/output characteristic des, and other components, construct to the second secon		5						
		Figure 1									
	c)		lain emitter follower circuit as a powe		5						
	d)	In the circuit of Figure 2, determined and $I_S = 5*10$ and $I_S = 5*10$	rmine the required value of $R_{\rm E}$ Assume 0^{-15} A. $20k\Omega = R_{\rm C} = 3k\Omega$ $10k\Omega = R_{\rm E}$ Figure 2	e collector current equal to	6						
_											
. a)	a)				6						
	b)	From the fundamentals of channel charge density derive an expression for drain current in the MOSFET									
	c)	Write importance differences between NMOS and PMOS transistors									
	d)	A MOSFET is biased at a drain current of 0.5 mA. If $\mu_n C_{ex} = 100 \mu\text{A/V}^2$, $W/L = 10$, and $\lambda = 0.1 \text{V}^{-1}$, $\eta = 0.1$, calculate its small-signal parameters.									

			_		_	 	 	
SRN	10			1				

3.	a)	Derive expression for voltage gain in a source follower circuit.	7				
	b)	Explain Cascode amplifier and its voltage head room issue.					
	c)	Consider the circuit shown in Figure 3 with $(W/L)_1 = 50/0.5$ and $(W/L)_2 = 10/0.5$. Assume $V_{DD} = 3.0V$, $V_{TH} = 0.7V$ and $\lambda = \gamma = 0$. At what input voltage M_1 is at the edge of saturation region? What is the small signal gain under this condition? V_{DD} V_{DD} V_{DD} V_{Out}	7				
		$V_{\rm in} \sim \Gamma_1 M_1 $					
		5 - 0					
-		Figure 3	-				
l	a)	Derive expression for the small signal voltage gain of MOS Differential pair using half circuit analysis.					
	b)	Write a note on Differential pair with MOS loads.	6				
	c)	Write the expression for the resistor R_P in the circuit of Figure 4 such that $I_1 = 2I_{REF}$. If $V_{GS2} = 1.5V$, $V_{th} = 0.5V$ and $I_{REF} = 1.2mA$, what is the value of required R_P to meet the condition?					
		$ \begin{array}{c c} & & & & & & & & & & & & \\ & & & & & &$					
.	a)	Discuss different types amplifiers with their idealized models.	5				
	b)	Explain the non-linearity reduction feature of the feedback amplifier.	5				
		Derive the expression for input impedance and output impedance of voltage-voltage feedback topology.	5				
	d)	The CS stage of Figure 5 is designed with $(W/L)_1 = 50/0.5$, $R_S = 1k\Omega$, and $R_D = 2k\Omega$. If $I_{D1} = 1$ mA, determine the poles of the circuit. Assume $C_{gs} = 75 fF$, $C_{gd} = 0.2 fF$, $C_{db} = 27 fF$ and $\mu_n C_{ox} = 135 \mu A/V^2$.	5				
		$C_{GD} \geqslant R_{D}$ $R_{S} \times M_{1} = C_{DB}$					
		$V_{\text{In}} \stackrel{\leftarrow}{\bigcup}_{-}^{+} \stackrel{=}{\downarrow} C_{\text{GS}} \stackrel{\downarrow}{\downarrow} \stackrel{\downarrow}{\downarrow}$					