TRANSIMS Version 5 File Reference

Table of Contents - Yellow shading indicates files that have not yet been defined

List of Figures	
List of Tables	5
ACCESS_FILE	7
ACTIVITY_FILE	8
ARCFILE	8
ARC_ACCESS_FILE	g
ARC_ACCESSIBILITY_FILE	g
ARC_ BANDWIDTH_FILE	10
ARC_CENTERLINE _FILE	12
ARC_CONNECTION_FILE	12
ARC_ DETECTOR_FILE	12
ARC_DISTANCE_CONTOUR _FILE	13
ARC_ LANE_USE _FILE	13
ARC_ LINK_FILE	13
ARC_LOCATION _FILE	13
ARC_ NODE_FILE	13
ARC_ PARKING_DEMAND_FILE	14
ARC_ PARKING_FILE	14
ARC_ PHASING_PLAN _FILE	14
ARC_ PLAN_FILE	15
ARC_ POCKET_FILE	16
ARC_PROBLEM _FILE	16
ARC_RIDERSHIP _FILE	16
ARC_ ROUTE_NODES _FILE	17
ARC_ SIGN_FILE	17
ARC_ SIGNAL _FILE	17
ARC_ SNAPSHOT _FILE	17
ARC_STOP_DEMAND_FILE	17
ARC_STOP_GROUP_FILE	17
ARC_ SUBZONE_DATA _FILE	18
ARC_ TIME_CONTOUR _FILE	18
ARC_ TIMING_PLAN _FILE	18
ARC_ TRANSIT_DRIVER _FILE	18
ARC_ TRANSIT_ROUTE _FILE	18

ARC_TRANSIT_STOP _FILE	19
ARC_TURN_PENALTY_FILE	19
ARC_ ZONE _FILE	19
COMPARE_PERFORMANCE_FILE	19
COMPARE_PLAN_FILE	19
Configuration File	19
CONNECTION_FILE	20
Control Files/Printout Files (.CTL, .PRN)	24
CONVERSION_SCRIPT	25
COST_DISTRIBUTION_FILE	27
NEW_COST_DISTRIBUTION_FILE	27
DATA_FILE OR DATA_FILE_#	27
Definition Files (*.DEF)	27
DELETE_LINK_FILE	29
DELETE_NODE_CONTROL_FILE	30
DELETE_NODE_FILE	32
DESTINATION_LOCATION_FILE	32
DESTINATION_ZONE_FILE	33
DETECTOR_FILE	33
DIRECTIONAL_DATA_FILE	35
EVENT_FILE	36
GROUP_TRAVEL_FILE	37
HOUSEHOLD_FILE	38
INPUT_LINK_FILE	39
INPUT_NODE_FILE	40
INPUT_SIGN_FILE	40
INPUT_SIGNAL_FILE	41
INPUT_SPDCAP_FILE	42
INPUT_ZONE_FILE	
KEEP_LINK_FILE	43
KEEP_NODE_FILE	43
LANE_USE_FILE	44
LINK_ACTIVITY_FILE	46
LINK_DATA_FILE	46
LINK_DELAY_FILE	47
LINK_DETAIL_FILE	48
LINK_EQUIVALENCE_FILE	48
LINK_NODE_EQUIVALENCE	
LINK_FILE	
LINK_NODE_LIST_FILE	
LINK_SUMMARY_FILE	
LINK_VOLUME_FILE	52

LOCATION_FILE	53
MERGE_LINK_DELAY_FILE	55
MERGE_PLAN_FILE	55
MERGE_TRIP_FILE	55
Nested Data Files	55
NEW_ARCFILE	55
NEW_ZONE_LOCATION_MAP_FILE	56
NODE_FILE	57
OCCUPANCY_FILE	58
ORIGIN_LOCATION_FILE	59
ORIGIN_ZONE_FILE	60
PARKING_FILE	60
PARKING_PENALTY_FILE	62
PERFORMANCE_DATA_FILE	62
PERFORMANCE_FILE	62
PERSON_FILE	64
PHASING_PLAN_FILE	65
PLAN_FILE	67
POCKET_FILE	70
PROBLEM_FILE	72
REPORT_FILE	76
RIDERSHIP_FILE	76
ROUTE_NODES_FILE	78
SELECTION_FILE	78
SHAPE_FILE	79
SIGN_FILE	81
SIGNAL_FILE	82
SKIM_FILE	85
SNAPSHOT_FILE	
STOP_EQUIVALENCE_FILE	89
SUBZONE_DATA_FILE	89
SUBZONE_ZONE_FACTOR_FILE	89
TIME_DISTRIBUTION_FILE_*	90
TIMING_PLAN_FILE	90
TOLL_FILE	94
TRANSIT_DRIVER_FILE	94
TRANSIT_FARE_FILE	95
TRANSIT_PENALTY_FILE	97
TRANSIT_ROUTE_FILE	97
TRANSIT_SCHEDULE_FILE	99
TRANSIT_STOP_FILE	101
TRAVELER_FILE	102

TRIP_COST_GAP_FILE	103
TRIP_FILE	103
TRIP_TABLE_FILE_1	104
TRIP_TIME_FILE	105
TRIP_TIME_GAP_FILE	105
TURN_PENALTY_FILE	105
TURN_VOLUME_FILE	106
UPDATE_LINK_FILE	107
UPDATE_NODE_FILE	107
VEHICLE_FILE	107
VEHICLE_TYPE_FILE	108
VERSION4_PLAN_FILE	109
ZONE_BOUNDARY_FILE	109
ZONE_EQUIVALENCE_FILE	109
ZONE_FILE	110
ZONE_LOCATION_MAP_FILE	111
ZONE_TRAVEL_FILE	111
Figure 1 Process and Access links: Version 4 and Version 5	7
Figure 2 ARC_ACCESSIBILITY_FILE Example	
Figure 3 ARC_BANDWIDTH File Example 1	
Figure 5 ARC_PARKING_DEMAND_FILE Example	
Figure 6 ARC PLAN FILE Example	
Figure 7 CONNECTION_FILE Illustration	
Figure 8 Lane Number Difference Between V4 and V5	
Figure 9 Version 4 Lane Connectivity Edits	
Figure 10 Version 5 Connection Edits	
Figure 11 LINK_EQUIVALENCE_FILE Example Network	
Figure 12 Example of Links	
Figure 13 Example of Locations	
Figure 14 Hierarchical Relationships Among the Signalized Intersection Files	
Figure 15 Pocket Lanes	
Figure 16 Links, Nodes and Shape Points	81
Figure 17 Entity-Relationship Diagram - Signal File Dependencies	85

List of Tables

Table 1 CONNECTION_FILE Field Definitions	21
Table 2 CONNECTION_FILE Example	22
Table 3 Example of a Nested File Structure	29
Table 4: DETECTOR_FILE Field Definitions	34
Table 5 DETECTOR_FILE Example	35
Table 6 EVENT_FILE Field Definitions	36
Table 7 EVENT_FILE	37
Table 8 HOUSEHOLD_FILE Field Definitions	39
Table 9 HOUSEHOLD_FILE Example	39
Table 10 LANE_USE File Field Definitions	44
Table 11 LANE_USE File Example	46
Table 12 LINK_DELAY_FILE Field Definitions	47
Table 13 LINK_DELAY_FILE Example	48
Table 14 LINK_FILE Field Definitions	50
Table 15 LINK_FILE Fields Example	51
Table 16 LOCATION_FILE Fields Example	54
Table 17 NODE_FILE Example	58
Table 18 OCCUPANCY_FILE Field Definitions	58
Table 19 OCCUPANCY_FILE Example	59
Table 20 PARKING_FILE - Simple Example	61
Table 21 PARKING_FILE Example with Nested Records	61
Table 22 PERFORMANCE_FILE Field Definitions	63
Table 23 PERFORMANCE_FILE Example	64
Table 24 PHASING_PLAN_FILE Example	65
Table 25 PHASING_PLAN_FILE Field Definitions	67
Table 26 PLAN_FILE Field Definitions	69
Table 27 PLAN_FILE Example: Primary Trip Record	70
Table 28 PLAN_FILE Example: Path Records	70
Table 29 POCKET_FILE Field Definitions	71
Table 30 POCKET_FILE Example	72
Table 31 Problem Codes	72
Table 32 PROBLEM_FILE Example	76
Table 33 RIDERSHIP_FILE Field Definitions	77
Table 34 RIDERSHIP_FILE Example	77
Table 35 SELECTION_FILE Example	78
Table 36 SHAPE_FILE Example	80
Table 37 Information for Links 62 and 63	80
Table 38 Information for Nodes 123, 132, 133	80
Table 39 SIGNAL_FILE Field Definitions	84

Table 40 SIGNAL_FILE Example	85
Table 41 SKIM_FILE Example	87
Table 42 SNAPSHOT_FILE Field Definitions	88
Table 43 SNAPSHOT_FILE Example	88
Table 44 TIME_DISTRIBUTION_FILE Example	90
Table 45 TIMING_PLAN_FILE First Example	91
Table 46 TIMING_PLAN_FILE Field Definitions	92
Table 47 TIMING_PLAN_FILE Second Example	93
Table 48 TRANSIT_DRIVER_FILE Field Definitions	95
Table 49 TRANSIT_DRIVER_FILE Example	95
Table 50 TRANSIT_FARE_FILE Field Definitions	96
Table 51 TRANSIT_FARE_FILE Example (Taken from Version 4)	96
Table 52 Unbundled TRANSIT_FARE_FILE Example (after NewFormat)	97
Table 53 TRANSIT_ROUTE_FILE Field Definitions	98
Table 54 TRANSIT_ROUTE_FILE Example	98
Table 55 TRANSIT_SCHEDULE_FILE Field Definitions	100
Table 56 TRANSIT_SCHEDULE_FILE Example	100
Table 57 TRANSIT_STOP_FILE Field Definitions	101
Table 58 TRANSIT_STOP_FILE Example	102
Table 59 NEW_TRAVELER_FILE Field Definitions	103
Table 60 NEW_TRAVELER_FILE Example	103
Table 61 TRIP_FILE Example	104
Table 62 TRIP_TABLE_FILE Example	105
Table 63 TURN_PENALTY_FILE Field Definitions	106
Table 64 TURN_PENALTY_FILE Example	106
Table 65 VEHICLE_FILE Example	108
Table 66 VEHICLE_TYPE_FILE Example	108
Table 67 ZONE FILE Example	111

ACCESS FILE

Names: ACCESS_FILE and NEW_ACCESS_FILE

Used In:

ArcNet

ConvertTrips Default Control Key

LocationData Microsimulator NewFormat PathSkim

Router

TransimsNet

In TRANSIMS Version 5 (TRANSIMS 5), Process Links (Version 4) are replaced by Access Links. Some important functional differences exist between the two link types as well. In Version 4, process links are required to connect activity locations to parking lots, and to connect activity locations to transit stops. For vehicles to be loaded onto the network they must move from parking lots to activity locations to the actual link/road via process links which are located on the network as paired, one-way links on either side of the actual network link (see Figure 1). In TRANSIMS 5, process links are no longer needed. Instead, link-offsets are used to build direct, two-way connections for loading and unloading of vehicles from the network. Walk links now have travel time, distance, and cost associated with them in Version 5. In addition, transit stops no longer need activity locations, and activity locations with a zone number equal to zero are deleted. In contrast with process links, access links are only used for special connections (as two-way or one-way links), between nodes, locations, parking lots and transit stops.

Figure 1 Process and Access links: Version 4 and Version 5

ACTIVITY_FILE

Used in NewFormat

The name of the Version 4 ACTIVITY_FILE that is optionally used by NewFormat.

ARC_...FILE

Used in ArcNet

```
Names:
```

```
NEW_ARC_ACCESS_FILE
NEW ARC ACCESSIBILITY FILE
NEW_ARC_ BANDWIDTH_FILE
NEW_ARC_ CENTERLINE _FILE
NEW ARC CONNECTION FILE
NEW ARC DETECTOR FILE
NEW_ARC_ DISTANCE_CONTOUR _FILE
NEW ARC LANE USE FILE
NEW_ARC_ LINK _FILE
NEW_ARC_LOCATION_FILE
NEW ARC NODE FILE
NEW_ARC_ PARKING_DEMAND _FILE
NEW_ARC_ PARKING _FILE
NEW_ARC_ PHASING_PLAN _FILE
NEW_ARC_POCKET_FILE
NEW ARC RIDERSHIP FILE
NEW_ARC_ ROUTE_NODES _FILE
NEW ARC SIGN FILE
NEW_ARC_ SIGNAL _FILE
NEW_ARC_ SNAPSHOT _FILE
NEW_ARC_ STOP_DEMAND _FILE
NEW ARC STOP GROUP FILE
NEW ARC SUBZONE DATA FILE
NEW_ARC_ TIME_CONTOUR _FILE
NEW_ARC_ TIMING_PLAN _FILE
NEW_ARC_ TRANSIT_DRIVER _FILE
NEW_ARC_TRANSIT_ROUTE_FILE
NEW_ARC_ TRANSIT_STOP _FILE
NEW_ARC_TURN_PENALTY_FILE
NEW_ARC_ ZONE _FILE
```

These are shape files produced by ArcNet, ArcPlan and ArcSnapshot. The file name in the control file should end with ".shp". The program automatically creates three files in the output directory. These are the ArcView shape file with the ".shp" extension, the ArcView index file with a ".shx" extension, and the ArcView data file with a ".dbf" extension. All three files are required for a Geographic Information System such as ArcView or QGIS to read and display the path.

ARC ACCESS FILE

Names: ARC_ACCESS_FILE, NEW_ARC_ACCESS_FILE

This NEW_ARC_ACCESS_FILE is output by ArcNet, and is a shape file of access (formerly, process) links. See ACCESS_FILE, on page 7, for further information on the underlying file.

ARC_ACCESSIBILITY_FILE

 $Names: ARC_ACCESSIBILITY_FILE, NEW_ARC_ACCESSIBILITY_FILE$

Used in ArcPlan

The NEW_ARC_ACCESSIBILITY_FILE is output by ArcPlan. It is a shapefile of points showing the travel time and trip distance from a given origin to other activity locations on the network.

Fields in this file include the following: ORIGIN, INTEGER, 1, 10 START, STRING, 11, 20 LOCATION, INTEGER, 31, 10 TTIME, INTEGER, 41, 10 DISTANCE, INTEGER, 51, 10

Figure 2 shows an example of the shapefile. Here distances are calculated from location 27, which is at the upper right corner of the figure. They are plotted by color: red is closer to the origin, green further away.

Figure 2 ARC_ACCESSIBILITY_FILE Example

ARC_BANDWIDTH_FILE

Names: ARC_ BANDWIDTH_FILE, NEW_ARC_ BANDWIDTH_FILE Used in ArcPlan

The NEW_ARC_ BANDWIDTH_FILE is output by ArcPlan. It is a shapefile of polygons showing the number of trips on particular links of the network.

Fields in this file include the following: LINK, INTEGER, 1, 10 DIR, INTEGER, 11, 1 VOLUME, INTEGER, 12, 10

In the first example (Figure 3), bandwidths are shown for trips from a single origin (at the upper right corner of the screen).

Figure 3 ARC_BANDWIDTH File Example 1

The second example (Figure 4) shows all trips. In this example, the BANDWIDTH_SCALING_FACTOR was set to 10 units / meter (rather than the default of 1) so that the bands would be of reasonable size. When using ArcPlan to produce bandwidth files, it is often necessary to experiment with the scaling factor. If the bands cover your map, the BANDWIDTH_SCALING_FACTOR should be increased.

Figure 4 ARC_BANDWIDTH_FILE Example 2

ARC_CENTERLINE_FILE

Names: ARC_ CENTERLINE _FILE, NEW_ARC_ CENTERLINE _FILE

Used in ArcNet

ARC_CONNECTION_FILE

Names: ARC_ CONNECTION _FILE, NEW_ARC_ CONNECTION _FILE

Used in ArcNet

The NEW_ARC_CONNECTION_FILE is output by ArcNet, and is a shape file of connections between inbound and outbound lanes at an intersection. For example, the connection file might show that pocket lane 1 on link 24 connects to lanes 1 and 2 on link 25. See CONNECTION_FILE, on page 20, for further information on the underlying file.

ARC_DETECTOR_FILE

Names: ARC_ DETECTOR _FILE, NEW_ARC_ DETECTOR _FILE

Used in ArcNet

The NEW_ARC_DETECTOR_FILE is output by ArcNet, and is a shape file of traffic signal detectors. See DETECTOR_FILE, on page 33, for further information on the underlying file.

ARC_DISTANCE_CONTOUR_FILE

Names: ARC_ DISTANCE_CONTOUR _FILE, NEW_ARC_ DISTANCE_CONTOUR _FILE Used in ArcPlan

A shapefile showing trip length contours from a given origin to all destinations. It does not appear to have been implemented yet.

ARC_LANE_USE_FILE

Names: ARC_ LANE_USE _FILE, NEW_ARC_ LANE_USE _FILE Used in ArcNet

The NEW_ARC_LANE_USE_FILE is output by ArcNet, and is a shape file of lane use restrictions. See LANE USE FILE, on page 44, for further information on the underlying file.

ARC_LINK_FILE

Names: ARC_ LINK _FILE, NEW_ARC_ LINK _FILE Used in ArcNet

The NEW_ARC_LINK_FILE is output by ArcNet, and is a shape file of links. It combines information from the link file, along with shape point information from the TRANSIMS node and shape files. See LINK_FILE on page 49 and SHAPE_FILE on page 79 for further information on the underlying files.

ARC_LOCATION_FILE

Names: ARC_LOCATION_FILE, NEW_ARC_LOCATION_FILE Used in ArcNet

The NEW_ARC_LOCATION_FILE is output by ArcNet, and is a shape file of locations (formerly, activity locations). See LOCATION_FILE on page 53 for further information on the underlying file.

ARC_NODE_FILE

Names: ARC_NODE _FILE, NEW_ARC_NODE _FILE Used in ArcNet

The NEW_ARC_NODE_FILE is output by ArcNet, and is a shape file of nodes.

ARC_PARKING_DEMAND_FILE

Names: ARC_ PARKING_DEMAND _FILE, NEW_ARC_ PARKING_DEMAND _FILE Used in ArcPlan

The NEW_ARC_ PARKING_DEMAND _FILE is output by ArcPlan, and shows arrival and departure demand at the parking lots associated with activity locations. Fields in the file include:

```
PARKING, INTEGER, 1, 10
DEPART, INTEGER, 11, 10
ARRIVE, INTEGER, 21, 10
TOTAL, INTEGER, 31, 10
```

Figure 5 shows an example of a arc_parking_demand file. The pie charts were created by the GIS, using the arrive, depart and total demand data from TRANSIMS. To create them, the yellow part (on the bottom) was set to indicate arrivals, the blue part departures and the overall size of the pie is proportional to total demand.

Figure 5 ARC_PARKING_DEMAND_FILE Example

ARC_PARKING_FILE

Names: ARC_ PARKING _FILE, NEW_ARC_ PARKING _FILE Used in ArcNet

The NEW_ARC_PARKING_FILE is output by ArcNet, and is a shape file of parking locations. See PARKING_FILE, on page 60 for further information on the underlying file.

ARC_PHASING_PLAN_FILE

Names: ARC_ PHASING_PLAN _FILE, NEW_ARC_ PHASING_PLAN _FILE

Used in ArcNet

The NEW_ARC_PHASING_PLAN_FILE is output by ArcNet, and is a shape file of traffic signal phasing plans. See PHASING_PLAN_FILE, on page 65, for further information on the underlying file.

ARC_ PLAN_FILE

Names: ARC_ PLAN_FILE, NEW_ARC_PLAN _FILE Used in ArcPlan

The NEW_ARC_PLAN_FILE is output by ArcPlan, and is a shape file of travel plans. See PLAN_FILE, on page 67, for further information on the underlying file. Fields in the ARC_PLAN_FILE include the following:

```
HHOLD, INTEGER, 1, 10
PERSON, INTEGER, 11, 5
TOUR, INTEGER, 16, 3
TRIP, INTEGER, 19, 3
START, TIME, 22, 16, HOUR CLOCK
END, TIME, 38, 16, HOUR CLOCK
DURATION, TIME, 54, 16, HOUR CLOCK
ORIGIN, INTEGER, 70, 10
DESTINATION, INTEGER, 80, 10
PURPOSE, INTEGER, 90, 2
MODE, STRING, 92, 12, MODE_TYPE
CONSTRAINT, STRING, 104, 14, CONSTRAINT TYPE
PRIORITY, STRING, 118, 10, PRIORITY_TYPE
VEHICLE, INTEGER, 128, 4
PASSENGERS, INTEGER, 132, 2
TYPE, INTEGER, 134, 4
DEPART, TIME, 138, 16, HOUR_CLOCK
ARRIVE, TIME, 154, 16, HOUR_CLOCK
ACTIVITY, TIME, 170, 16, HOUR_CLOCK
WALK, TIME, 186, 12, SECONDS
DRIVE, TIME, 198, 12, SECONDS
TRANSIT, TIME, 210, 12, SECONDS
WAIT, TIME, 222, 12, SECONDS
OTHER, TIME, 234, 12, SECONDS
LENGTH, INTEGER, 246, 10, FEET
COST, FIXED, 256, 6.1, CENTS
IMPEDANCE, UNSIGNED, 262, 10, IMPEDANCE
NUM_LEGS, INTEGER, 272, 5, NEST_COUNT
LEG_MODE, STRING, 277, 12, MODE_TYPE
LEG_ID, INTEGER, 289, 10
LEG_TIME, TIME, 299, 10, SECONDS
LEG LENGTH, INTEGER, 309, 10, FEET
LEG_COST, DOUBLE, 319, 6.1, CENTS
LEG_IMPED, INTEGER, 325, 10, IMPEDANCE
```

Figure 5 is an example of an ARC_PLAN_FILE, for the following plans:

SELECT_ORIGINS 27 // Upper right corner of the figure

SELECT_DESTINATIONS 53..58, 80..84 // As shown in Figure 5.

Figure 6 ARC PLAN FILE Example

ARC_POCKET_FILE

Names: ARC_POCKET_FILE, NEW_ARC_POCKET_FILE

Used in ArcNet

The NEW_ARC_POCKET_FILE is output by ArcNet, and is a shape file of pocket lanes. See POCKET_FILE, on page 70, for further information on the underlying file.

ARC_PROBLEM _FILE

Names: ARC_ PROBLEM_FILE, NEW_ARC_PROBLEM _FILE

Used in ArcPlan

ARC_RIDERSHIP_FILE

Names: ARC_ RIDERSHIP _FILE, NEW_ARC_ RIDERSHIP _FILE Used in ArcPlan

The ArcView transit ridership file key is optional.

ARC ROUTE NODES FILE

Names: ARC ROUTE NODES FILE, NEW ARC ROUTE NODES FILE

Used in ArcNet

ARC_SIGN_FILE

Names: ARC_SIGN_FILE, NEW_ARC_SIGN_FILE

Used in ArcNet

The NEW_ARC_SIGN_FILE is output by ArcNet, and is a shape file of traffic control signs (typically, stop and yield signs)..

ARC SIGNAL FILE

Names: ARC_ SIGNAL _FILE, NEW_ARC_ SIGNAL _FILE

Used in ArcNet

The NEW_ARC_SIGNAL_FILE is output by ArcNet, and is a shape file of traffic control signals. See SIGNAL_FILE, on page 82, for further information on the underlying file.

ARC_ SNAPSHOT _FILE

 ${\tt Names: ARC_SNAPSHOT_FILE, NEW_ARC_SNAPSHOT_FILE}$

Used in ArcSnapshot

The NEW_ARC_ SNAPSHOT_FILE is output by ArcSnapshot, and is a shape file of vehicle positions (snapshots) on the network. See SNAPSHOT_FILE, on page 87, for further information on the underlying file.

ARC_STOP_DEMAND_FILE

Names: ARC STOP DEMAND FILE, NEW ARC STOP DEMAND FILE

Used in ArcPlan

The ArcView transit stop demand file key is optional. If provided, the key value is appended to the PROJECT_DIRECTORY key to specify the file name for the output Arcview shape file. The file name should end with ".shp". The program automatically creates three files in the output directory. These are the ArcView shape file with the ".shp" extension, the ArcView index file with a ".shx" extension, and the ArcView data file with a ".dbf" extension. All three files are required for ArcView or ArcMap to read and display the path.

ARC_STOP_GROUP_FILE

Names: ARC_STOP_GROUP_FILE, NEW_ARC_STOP_GROUP_FILE

Used in ArcPlan

The ARC_TRANSIT_STOP_GROUP_FILE key is optional. If provided, the key value is appended to the PROJECT_DIRECTORY key to specify the file name for the output Arcview shape file. The file name should end with ".shp". The program automatically creates three files in the output directory. These are the ArcView shape file with the ".shp" extension, the ArcView index file with a ".shx" extension, and the ArcView data file with a ".dbf" extension. All three files are required for ArcView or ArcMap to read and display the path.

ARC_SUBZONE_DATA_FILE

Names: ARC_ SUBZONE_DATA _FILE, NEW_ARC_ SUBZONE_DATA _FILE Used in ArcNet

ARC_TIME_CONTOUR_FILE

Names: ARC_ TIME_CONTOUR _FILE, NEW_ARC_ TIME_CONTOUR _FILE Used in ArcPlan

An optional shapefile showing trip time contours from a given origin to all destinations. It does not appear to have been implemented yet.

ARC_TIMING_PLAN_FILE

Names: ARC_TIMING_PLAN_FILE, NEW_ARC_TIMING_PLAN_FILE Used in ArcNet

The NEW ARC TIMING PLAN FILE is output by ArcNet, and is a shape file of traffic signal timing plans.

ARC_TRANSIT_DRIVER_FILE

Names: ARC_ TRANSIT_DRIVER _FILE, NEW_ARC_ TRANSIT_DRIVER _FILE Used in ArcNet

The NEW_ARC_ TRANSIT_DRIVER _FILE is output by ArcNet. See TRANSIT_DRIVER_FILE, on page 94, for further information on the underlying file.

ARC_TRANSIT_ROUTE_FILE

Names: ARC_ TRANSIT_ROUTE _FILE, NEW_ARC_ TRANSIT_ROUTE _FILE Used in ArcNet

The NEW_ARC_TRANSIT_ROUTE_FILE is a set of transit routes output by ArcNet. See TRANSIT_ROUTE_FILE, on page 97, for further information on the underlying file.

ARC_TRANSIT_STOP_FILE

Names: ARC_TRANSIT_STOP_FILE, NEW_ARC_TRANSIT_STOP_FILE

Used in ArcNet

The NEW_ARC_TRANSIT_STOP_FILE is a set of transit stops output be ArcNet. See TRANSIT_STOP_FILE, on page 101, for further information on the underlying file.

ARC_TURN_PENALTY_FILE

Names: ARC_TURN_PENALTY_FILE, NEW_ARC_TURN_PENALTY_FILE

Used in ArcNet

The NEW_ARC_TURN_PENALTY_FILE is output by ArcNet, and is a shape file of turn penalties and restrictions. See TURN_PENALTY_FILE, on page 105, for further information on the underlying file

ARC_ZONE_FILE

Names: ARC_ZONE_FILE, NEW_ARC_ZONE_FILE

Used in ArcNet

The NEW_ARC_ZONE_FILE is output by ArcNet, and is a shape file of transportation analysis zones. See ZONE_FILE, on page 110, for further information on the underlying file.

COMPARE PERFORMANCE FILE

This file is an input to LinkSum. It is the second performance file, used in a comparison of two performance files. See the LinkSum Program reference for further information. See PERFORMANCE_FILE, on page 62, for a definition of this file's format.

COMPARE PLAN FILE

This file is an input to PlanCompare. It is the second plan file, used in a comparison of two sets of travel plans. See the PlanCompare Program reference for further information. See PLAN_FILE, on page 67, for a definition of this file's format.

Configuration File

Used by all programs (global settings; can be overridden by local settings)

In most TRANSIMS applications there are a significant number of keys that are common to all programs. Many of the Execution Service keys fall into this category. They tend to be global keys that define the default behavior of the model. If the modeler wishes to set these keys once and use them in all model applications, a TRANSIMS configuration file can be created. A configuration file is exactly like any other control file and can include any number of control keys and key values. Each TRANSIMS program looks

for a configuration file using the operating system environment variable TRANSIMS_CONFIG_FILE. The variable points to a file name that stores the configuration keys. The program reads the configuration keys into memory before it reads the control file keys. If a control key is defined in both files, the value from the control file will override the value in the configuration file.

The path to a configuration file can be set dynamically for a particular application using the SET command within a batch file or at the command prompt. For example:

SET_TRANSIMS_CONFIG_FILE=c:\myproject\config.txt

CONNECTION_FILE

Names: CONNECTION FILE, NEW CONNECTION FILE

Used In:

ArcNet ArcPlan

ArcSnapshot

IntControl (Required)

LinkDelay

LinkSum

Microsimulator

NewFormat

PathSkim

PlanSelect

PlanSum

Router

TransimsNet

Formerly known as LANE_CONNECTIVITY, this is a list of intersection connections in the network. A typical field definition (.def or .DEF) file is listed below:

TRANSIMS50, TAB_DELIMITED, 1
LINK, INTEGER, 1, 10
DIR, INTEGER, 2, 1
TO_LINK, INTEGER, 3, 10
LANES, STRING, 4, 8, LANE_RANGE_TYPE
TO_LANES, STRING, 5, 8, LANE_RANGE_TYPE
TYPE, STRING, 6, 8, CONNECTION_TYPE
PENALTY, UNSIGNED, 7, 5, IMPEDANCE
SPEED, DOUBLE, 8, 5.1, KPH
CAPACITY, UNSIGNED, 9, 8, VPH
NOTES, STRING, 10, 128

Table 1 defines the fields.

Table 1 CONNECTION_FILE Field Definitions

Field(s)	Description	Use	Default Units
LINK	The link number (an integer)	Key	
DIR	Direction on the link AB=0, BA=1	Req.	
TO_LINK	Outbound Link	Req.	
LANES	Range of inbound lanes, numbered from right to left	Req.	Note 1
TO_LANES	Range of outbound lanes, numbered from right to left	Req.	Note 1
TYPE	Connection Type	Req.	Note 2
PENALTY	Penalty for the movement	Opt.	Seconds
SPEED	Maximum turning speed	Opt.	m/s
CAPACITY	Hourly vehicle capacity for the turn	Opt.	veh/hr
NOTES	Character string for user notes	Opt.	

Note 1: Could either be a single lane number, or a range, e.g., 1..2

Note 2: Connection types include NO_TYPE, THRU, R_SPLIT, L_SPLIT, R_MERGE, L_MERGE, RIGHT, LEFT, and UTURN

Figure 7 and Table 2 provide examples of intersection connections.

Figure 7 CONNECTION_FILE Illustration

Table 2 CONNECTION_FILE Example

LINK	DIR	TO_LINK	LANES	TO_LANES	ТҮРЕ	PENALTY	SPEED	CAPACITY	NOTES
16	0	13	R1	1	R_SPLIT	0	0	0	Off Ramp
16	0	9	12	12	THRU	0	0	0	Thru lanes at off ramp
8	0	17	12	13	THRU	0	0	0	Thru lanes at on ramp
12	0	17	1	12	R_MERGE	0	0	0	On ramp
7	0	19	12	12	THRU	0	0	0	Eastbound thru lanes
7	0	22	L1	1	LEFT	0	0	0	Eastbound left turn
19	1	22	1	1	RIGHT	0	0	0	Westbound right turn
19	1	7	12	12	THRU	0	0	0	Westbound thru lanes
22	1	7	1	12	RIGHT	0	0	0	Southbound right turn
22	1	19	1	12	LEFT	0	0	0	Southbound left turn

Differences from Version 4

Lane numbering has changed significantly from Version 4. In Version 5, lanes are numbered from right to left, and pocket lanes are treated separately (Figure 8).

Figure 8 Lane Number Difference Between V4 and V5

This simplifies the lane connectivity edits. In Version 4, the edits would often cascade from one intersection to another (Figure 9).

Figure 9 Version 4 Lane Connectivity Edits

In Version 5, the edits are simpler (Figure 10):

Figure 10 Version 5 Connection Edits

Control Files/Printout Files (.CTL, .PRN)

Used with all TRANSIMS programs

The CONTROL_FILE field on the command line is the directory path and file name of a text file that contains the control strings expected by the program. If a file name is not provided, the program will prompt the user to enter a file name. The program automatically creates a printout file based on the control file name. If the file name includes an extension (e.g., ".ctl") the extension is removed, and the ".prn" suffix is added. The printout file will be created in the current working directory and will overwrite an existing file with the same name.

If the program command syntax includes the partition option, the program can be instructed to process a subset of file partitions by specifying a partition number or partition range after the control file name. For example, the Router can execute a subset of partitions using a command line like:

Router.exe Router.ctl 10 Router.exe Router.ctl 0..4

The first command generates plans for the households assigned to partition 10. The second command generates plans for households assigned to partitions 0 through 4. In these cases, the printout file generated by the program includes the partition number or range in the file name:

Router_10.prn Router_0-4.prn If the program command syntax includes the parameter option, the printout file will include the parameter information. For example, the command

RunSetup.exe TripModel.ctl 2010

...will create the printout file:

TripModel 2010.prn

CONVERSION_SCRIPT

Used In:

UserPrograms LocationData NetPrep

This is an optional key though it may be required for specific applications. The CONVERSION_SCRIPT key value is a directory with the conversion script filename appended to it. NetPrep is the primary program in TRANSIMS 5 which uses a TRANSIMS UserProgram-type conversion script for input. However, LocationData also makes extensive use of conversion scripts. The programming / scripting language syntax and features are described in the UserPrograms documentation. By default, the data field names found in the GIS link file are copied to their corresponding field names in the TRANSIMS link file. If the GIS link file was created using ArcNet, this means the data from the GIS file will automatically be copied to the TRANSIMS fields (provided the input and output files are in the same general file structure (i.e., Version4 vs. Version5)). If the GIS link file includes different field names or different units of measure, a conversion script is typically used to manipulate the data or map the input field names to the output field names. The input link shape file fields are referenced as "Link.field" and the TRANSIMS link fields are referenced as NewLink.field".

An example of a conversion script is shown below:

NewLink.USE = "ANY" NewLink.LINK = Link.ID

NewLink.LENGTH = 1609 * Link.LENGTH

NewLink.LANES_AB = Link.AB_LANE NewLink.LANES_BA = Link.BA_LANE

NewLink.SPEED_AB = Link.AB_PKSPD NewLink.SPEED_BA = Link.BA_PKSPD

NewLink.FSPD_AB = Link.SPDLIM NewLink.FSPD_BA = Link.SPDLIM

NewLink.CAP_AB = Link.AB_CAP

```
NewLink.CAP_BA = Link.BA_CAP
IF (Link.FT == 1) THEN
  NewLink.TYPE = "FREEWAY"
ELSE IF (Link.FT == 2) THEN
  NewLink.TYPE = "Expressway"
ELSE IF (Link.FT == 3) THEN
  NewLink.TYPE = "Principal"
ELSE IF (Link.FT == 4) THEN
  NewLink.TYPE = "Major"
ELSE IF (Link.FT == 5) THEN
  NewLink.TYPE = "Minor"
ELSE IF (Link.FT == 6) THEN
  NewLink.TYPE = "Collector"
ELSE IF (Link.FT == 7) THEN
  NewLink.TYPE = "Local"
ELSE IF (Link.FT == 8) THEN
  NewLink.TYPE = "Local"
ELSE IF (Link.FT == 9) THEN
  NewLink.TYPE = "Frontage"
ELSE IF (Link.FT == 20) THEN
  NewLink.TYPE = "External"
ENDIF
RETURN (1)
END
```

LocationData

The CONVERSION_SCRIPT key is a file name that includes a TRANSIMS User Program script. Any field in the input activity location file can be referenced using the file label IN (e.g., IN.field). Any field in the output activity location file (including all newly created fields) can be referenced using the field label OUT (e.g., OUT.field). All fields in each Data File are referenced using DATA and the key group number. For example, a field in DATA_FILE_2 is accessed as DATA2.field. An additional field called "AL_COUNT" is added to each data file and is set to the number of activity locations with the same join field. Note that "Location" can be used in the place of "IN" and "NewLocation" can be used instead of "OUT" if desired.

An example of a script that sets up external stations fields (ORIG_COEF and DEST_COEF) is shown below:

```
#---- check for external stations ----
OUT.ORIG_COEF = 1
OUT.DEST_COEF = 1
IF (IN.NOTES == "External Destination") THEN
OUT.ORIG_COEF = 0
OUT.DEST_COEF = 1
ENDIF
IF (IN.NOTES == "External Origin") THEN
OUT.ORIG_COEF = 1
```

OUT.DEST_COEF = 0 ENDIF RETURN (1)

COST_DISTRIBUTION_FILE

NEW COST DISTRIBUTION FILE

Used in PlanCompare

DATA FILE OR DATA FILE

Used in Location_Data

This key points to a filename. Each data file group consists of up to four keys. The two join fields must exist in their respective files. The appropriate data record from each data file is passed to the conversion script (see CONVERSION_SCRIPT, on page 25) for each location. The program counts the number of locations with the same join field value and saves this value to the AL_COUNT field added to each data file. This field can be used to proportionally distribute data items to locations based on the number of locations associated with the data record. For example, population and employment data from traffic analysis zones can be distributed equally to each location within the zone by dividing the data by the value in the AL_COUNT field. Note that "locations" in TRANSIMS 5.0 are the equivalent of activity locations in TRANSIMS 4.0.

Definition Files (*.DEF)

Used by all TRANSIMS programs

TRANSIMS uses definition files to interpret and define data fields within most input and output files generated by the modeling process. A definition file is automatically created when the associated data file is created the majority of the time; however, a few exceptions exist that require the user to manually create a *.DEF file. It has the same path and file name as the data file with a ".def" extension added at the end. For example, the program control keys below...

NEW_LINK_FILE network\link.txt
NEW_LINK_FORMAT TAB_DELIMITED

...create a new link file in the network directory called "link.txt". The format key indicates that the link file will be created in tab delimited format. A definition file called "link.txt.def" will also be created in the network directory. The Definition File is a standard text file containing the following information:

TRANSIMS50, TAB_DELIMITED, 1 LINK, INTEGER, 1, 10

NAME, STRING, 2, 40

NODE_A, INTEGER, 3, 10

NODE_B, INTEGER, 4, 10

LENGTH, DOUBLE, 5, 8.1, FEET

TYPE, STRING, 10, 12, FACILITY_TYPE

AREA_TYPE, UNSIGNED, 12, 3

LANES_AB, UNSIGNED, 14, 2

SPEED_AB, DOUBLE, 15, 5.1, MPH

FSPD_AB, DOUBLE, 16, 5.1, MPH

CAP_AB, UNSIGNED, 17, 8, VPH

USE, STRING, 22, 128, USE_TYPE

The first record in the *.def file specifies the software version that created the file (TRANSIMS 5.0), the data file format (tab delimited), and the number of header records in the data file (1). The header record is followed by one record for each data field. These records include the field name, the data type, the field offset within the data record, the maximum field length and number of decimal places, and, if appropriate, the units or enumeration type of the field. The units field facilitates conversions between English and metric systems. It also automates the process of converting text strings to internal type codes (i.e., enumerations) and back again. Binary files, for example, store the type codes as numbers rather than strings to reduce file size and improve performance.

When an existing file is read by a program, the program looks for the definition file to automatically determine how to read the file and process the data fields. If a definition file is not found, the program will look for a *.FORMAT control key where the user identifies the file format. In many cases, the program can used the file format information to read header records from the data file and construct a definition file. If the file is delimited, the program will read the first 100 records of the file to estimate the data types and field widths. This information is written to a new definition file constructed for the data file. If the estimation process is inaccurate, the user can edit the definition file to correct any inaccuracies.

Binary and fixed column file format definition files cannot be constructed automatically. These file formats do not store field header information in the data file. All information about how to read and interpret the file must be provided in the definition file. The user must manually create a definition file for these file types if they are to be read into a TRANSIMS program. This is also true for delimited files that do not include field names as the first record in the file.

TRANSIMS also supports nested files that include two record types. The first record is the master record that includes a field that identifies the number of nested records that follow. A link delay file is a typical example of a nested data file. The master records define the link, time period, flow and travel time on the link while the nested records define the turning movement links, flows, and travel times. Table 3 shows an example of a nested file structure. In Table 3, the master records are shaded in dark blue, while the nested records are shaded in light blue. (In reality, the file is typically a tab-delimited text file, with no formatting.)

Table 3 Example of a Nested File Structure

LINK	DIR	TYPE	START	END	FLOW	TIME	NCONNECT
OUT_LINK	OUT_FLOW	OUT_TIME					
37	0	0	2:00	2:15	2.0	19.4	2
44	1.0	19.4					
41	1.0	19.4					
37	1	0	2:00	2:15	0.5	19.4	0
39	0	0	2:00	2:15	8.0	63.8	3
42	4.0	63.8					
46	11.0	63.8					
43	1.0	63.8					
40	1	0	2:00	2:15	2.0	63.8	1
10	2.0	63.8					

The definition file for the LINK DELAY FILE shown in Table 3 is listed below:

TRANSIMS50, TAB_DELIMITED, 2, NESTED LINK, INTEGER, 1, 10 DIR, INTEGER, 2, 1 TYPE, INTEGER, 3, 1 START, TIME, 4, 16, HOUR_CLOCK END, TIME, 5, 16, HOUR_CLOCK FLOW, DOUBLE, 6, 8.1, VEHICLES TIME, TIME, 7, 8.1, SECONDS NCONNECT, INTEGER, 8, 2, NEST_COUNT OUT_LINK, INTEGER, 1, 10, NO, NESTED OUT_FLOW, DOUBLE, 2, 8.1, VEHICLES, NESTED OUT_TIME, TIME, 3, 8.1, SECONDS, NESTED

The first record indicates that the data file has two header records and includes the NESTED key word. The field specifications for the master record are exactly like any other definition file. The nested fields add the NESTED key word after the unit field. Note that the record offsets restarts from 1 as well. The field with the NEST_COUNT identifier is used to determine how many nested records follow each master record.

DELETE LINK FILE

DELETE_LINK_FILENetPrep

The DELETE_LINK_FILE is optional and if specified defines a series of link numbers where the pocket lanes, activity locations, parking lots, processing links and link are deleted. The lane connectivity at both ends of the link is also updated. Each record in the file is interpreted as a comma separated list of link

ranges. A link range is specified using two period (e.g., 100..200). The file could also be a simple list of link numbers. The values in the link range and the link file are combined if both keys are provided.

DELETE_NODE_CONTROL_FILE

DELETE_NODE_CONTROL_FILEIntControl Default Control Key

The DELETE_NODE_CONTROL_FILE key is optional and if provided, specifies the location of a file containing a list of nodes for which deletion of the associated signal control files is desired. A delete node control definition (*.DEF) file must also be present in order for IntControl to process this key without returning an error. Refer to the Definition Files (*.DEF) entry in this document for additional information. In contrast to most files used in or produced by TRANSIMS, an associated definition file for this key and referenced input/data file will **not** be automatically created if one is not present. Consequently, the user must manually create this definition file. An existing *.DEF.txt file (e.g., Signal.txt) can be copied, renamed, and the file contents replaced with the proper field names and metadata for this file.

A sample DELETE_NODE_CONTROL_FILE and its associated definition file (manually created) are shown below:

Delete Node Control.txt (Input File):

NODE

22

Delete Node Control.txt.def (Definition File):

TRANSIMS50, TAB_DELIMITED, 1 NODE, INTEGER, 1, 10

Note that this key requires IntControl to be run at least twice. The first run of IntControl cannot use this key unless the typical IntControl-produced output network files already exist. Including it prematurely or forgetting to comment the key out of the control file will typically return a run-time error. The synthetic intersection control files produced by running IntControl (signal file, phasing plan file, timing plan file, detector file, etc.) must be present (synthetic and/or edited) in order for this operation to successfully execute.

The IntControl control (CTL) files for a typical two-iteration execution of IntControl using this key are shown below:

First	Run:
-------	------

TITLE

IntControl Example - Part 1 of 2

```
../network/sign warrant.txt
INPUT SIGN FILE
INPUT_SIGNAL_FILE
                                          ../network/signal warrant.txt
NODE FILE
                                          ../network/node.txt
LINK FILE
                                          ../network/link.txt
SHAPE_FILE
                                          ../network/shape.txt
                                          ../network/pocket.txt
POCKET_FILE
CONNECTION FILE
                                          ../network/connection.txt
##DELETE_NODE_CONTROL_FILE
                                          ../network/Delete_Node_Control.txt
NEW SIGN FILE
                                          ../network/sign.txt
NEW SIGNAL FILE
                                          ../network/signal.txt
NEW TIMING PLAN FILE
                                          ../network/timing plan.txt
NEW PHASING PLAN FILE
                                          ../network/phasing plan.txt
                                          ../network/detector.txt
NEW DETECTOR FILE
SIGNAL_TYPE_CODE_1
                                   ACTUATED
NUMBER_OF_RINGS_1
SIGNAL TIME BREAKS 1
                                          7:00, 10:00
SIGNAL_CYCLE_LENGTH_1
                                          90 seconds
MINIMUM PHASE TIME 1
                                          5 seconds
YELLOW PHASE TIME 1
                                          3 seconds
RED CLEAR PHASE TIME 1
                                          1 seconds
SIGNAL SPLIT METHOD 1
                                          CAPACITY
MINIMUM LANE CAPACITY 1
                                   500
MAXIMUM LANE CAPACITY 1
                                   1500
POCKET_LANE_FACTOR_1
                                          0.5
SHARED_LANE_FACTOR_1
                                          0.5
TURN_MOVEMENT_FACTOR_1
                                   0.9
PERMITTED LEFT FACTOR 1
                                          0.5
GENERAL GREEN FACTOR 1
                                          1.0
EXTENDED_GREEN_FACTOR_1
                                   0.5
MAXIMUM GREEN FACTOR 1
                                   2.0
SIGNAL DETECTOR LENGTH 1
                                   30 feet
Second Run:
TITLE
                                   IntControl Example – Part 2 of 2
                                   ../network/sign.txt
SIGN FILE
SIGNAL FILE
                                   ../network/signal.txt
TIMING PLAN FILE
                                   ../network/timing plan.txt
PHASING PLAN FILE
                                   ../network/phasing plan.txt
                            ../network/detector.txt
DETECTOR_FILE
NODE FILE
                                   ../network/node.txt
                                   ../network/link.txt
LINK FILE
SHAPE_FILE
                                   ../network/shape.txt
```

```
POCKET FILE
                                 ../network/pocket.txt
CONNECTION FILE
                                 ../network/connection.txt
DELETE NODE CONTROL FILE ../network/Delete Node Control.txt
NEW SIGN FILE
                                 ../network/sign2.txt
NEW_SIGNAL_FILE
                                 ../network/signal2.txt
NEW_TIMING_PLAN_FILE
                                 ../network/timing_plan2.txt
NEW PHASING PLAN FILE
                                 ../network/phasing plan2.txt
                                 ../network/detector2.txt
NEW_DETECTOR_FILE
SIGNAL TYPE CODE 1
                          ACTUATED
NUMBER OF RINGS 1
SIGNAL TIME BREAKS 1
                                 7:00, 10:00
SIGNAL CYCLE LENGTH 1
                                 90 seconds
MINIMUM PHASE TIME 1
                                 5 seconds
YELLOW_PHASE_TIME_1
                                        3 seconds
RED_CLEAR_PHASE_TIME_1
                                        1 seconds
SIGNAL_SPLIT_METHOD_1
                                        CAPACITY
MINIMUM LANE CAPACITY 1
                                 500
MAXIMUM_LANE_CAPACITY_1
                                 1500
POCKET LANE FACTOR 1
                                        0.5
SHARED LANE FACTOR 1
                                        0.5
                                 0.9
TURN MOVEMENT FACTOR 1
PERMITTED LEFT FACTOR 1
                                        0.5
GENERAL GREEN FACTOR 1
                                        1.0
EXTENDED GREEN FACTOR 1
                                 0.5
MAXIMUM_GREEN_FACTOR_1
                                 2.0
SIGNAL DETECTOR LENGTH 1
                                 30 feet
```

DELETE_NODE_FILE

DELETE_NODE_FILENetPrep

The DELETE_NODE_FILE is optional and if specified defines a series of node numbers where the lane connectivity, traffic control warrants, and node are deleted. Each record in the file is interpreted as a comma separated list of node ranges. A node range is specified using two period (e.g., 100..200). The file could also be a simple list of node numbers. The values in the node range and the node file are combined if both keys are provided.

DESTINATION_LOCATION_FILE

PathSkim

NEW_DESTINATION_LOCATION_FILE
PathSkim

When PathSkim calculates zone-to-zone skims, it is actually calculating multiple location-to-location travel times, distances, and costs. The DESTINATION_LOCATION_FILE is an input file, indicating which locations should be used in the destination zone. The NEW_DESTINATION_LOCATION_FILE is the output file, indicating which locations were used by PathSkim's calculations.

An example of this output file is shown below:

ZONE	LOCATIONS
1	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
3	36,37,38,39,40,41,42,43,44,45,46,47,48,49,50
10	51, 52
11	53, 54
12	55, 56
13	57, 58
14	59, 60

DESTINATION_ZONE_FILE

DESTINATION_ZONE_FILE PathSkim

DETECTOR_FILE

DETECTOR_FILE

ArcNet
IntControl Default Control Key
Microsimulator
NewFormat

A Detector file is required when **actuated** traffic signals are specified as part of the highway network. The DETECTOR_FILE contains a unique record for each detector associated with a signalized node. This file is unnecessary when signals (fixed-time or actuated) are not used in the network construction process (e.g., sign controls at intersections or no controls). For completely fixed-time signals (e.g., not just fixed time at night), a DETECTOR_FILE is not required.

In addition, the Signal Coordinator file and any associated field instances have been removed from TRANSIMS starting with Version 5. The SIGNAL_FILE now serves as a consolidated replacement for the Version 4 Signal COORDINATOR_FILE.

Nested data fields are not used in the DETECTOR_FILE, but they are used in the three other required and interdependent files that define traffic signals (Signal, Phasing_Plan, Timing_Plan). Also note that a detector file record may be specified at a given location (e.g., a signalized intersection node), but is not necessarily active all the time. Specifically, time periods can be used to define both timed signal operation time periods and actuated signal operation time periods.

The definition file listing the data fields for the DETECTOR_FILE is shown below:

TRANSIMS50, TAB_DELIMITED, 1
DETECTOR, INTEGER, 1, 10
LINK, INTEGER, 2, 10
DIR, INTEGER, 3, 1
OFFSET, DOUBLE, 4, 8.1, METERS
LENGTH, DOUBLE, 5, 8.1, METERS
LANES, STRING, 6, 8, LANE_RANGE_TYPE
TYPE, STRING, 7, 10, DETECTOR_TYPE
USE, STRING, 8, 128, USE_TYPE
NOTES, STRING, 9, 128

Table 4 lists the field definitions for the DETECTOR_FILE:

Table 4: DETECTOR_FILE Field Definitions

Field(s)	Descriptions	Default Units
DETECTOR	Detector ID number	Integer (Starts at 1 and increments by 1 for each additional record number)
LINK	Link ID on which the detector is located	Integer
DIR	The Direction Code, now used instead of Node, to indicate the direction of the link	Integer (0 or 1 only)
OFFSET	Offset from the beginning of the link (meters/feet) – helps define the starting location of the detector	Decimal (Meters/Feet)
LENGTH	The length of the detector in meters	Decimal
LANES	Defines lane ranges with pocket lane codes	String (R12, 1L1, 1, etc.)
TYPE	The type of detector as concerns its activation or lack thereof at an actuated, signalized intersection	String (keyword values) PRESENCE = sense vehicles on detector PASSAGE = sense vehicles crossing detector
USE	Specifies the vehicle use type	String (e.g., Any, Buses, Trains)
NOTES	Optional field; can specify type of movement through an intersection	String (Left_Turn, Thru_Right, Approach, etc.)

Table 5 is an example of a DETECTOR_FILE populated with data:

Table 5 DETECTOR_FILE Example

DETECTOR	LINK	DIR	OFFSET	LENGTH	LANES	TYPE	USE	NOTES
1	23	0	129.6	9.1	1	PRESENCE	ANY	Left Turn
2	17	1	71.1	9.1	1	PRESENCE	ANY	Left Turn
3	7	0	280.4	9.1	1	PRESENCE	ANY	Left Turn
4	1	1	94.6	9.1	1	PRESENCE	ANY	Left Turn
5	1	1	94.6	9.1	R11	PRESENCE	ANY	Thru Right
6	21	0	34.0	9.1	1L1	PRESENCE	ANY	Approach
7	15	1	192.6	9.1	L1	PRESENCE	ANY	Left Turn
8	15	1	192.6	9.1	12	PRESENCE	ANY	Thru Right
9	2	0	161.6	9.1	12	PRESENCE	ANY	Thru Right
10	26	0	63.0	9.1	L1	PRESENCE	ANY	Left Turn
11	26	0	63.0	9.1	12	PRESENCE	ANY	Thru Right
12	22	1	64.2	9.1	R11	PRESENCE	ANY	Approach
13	10	0	180.9	9.1	12	PRESENCE	ANY	Thru Right

NEW_DETECTOR_FILE

IntControl Default Control Key NewFormat

The NEW_DETECTOR_FILE control key specifies the location of the newly created DETECTOR_FILE that is output from IntControl. IntControl can be run and re-run iteratively for various purposes, and in fact will likely need to be re-run in most TRANSIMS implementations. This is necessary to ensure that the resultant highway network is free of any significant coding errors or otherwise unanticipated system behavior.

DIRECTIONAL_DATA_FILE

DIRECTIONAL_DATA_FILE
LinkData
NEW_DIRECTIONAL_DATA_FILE
LinkData

EVENT_FILE

The NEW_EVENT_FILE is an output from the Simulator. It lists the scheduled and actual time and link direction and offset for each traveler and trip event (i.e., start time and end time).

An example of a typical definition file is listed below:

TRANSIMS50, TAB_DELIMITED, 1
HHOLD, INTEGER, 1, 10
PERSON, INTEGER, 2, 5
TOUR, INTEGER, 3, 3
TRIP, INTEGER, 4, 3
MODE, STRING, 5, 12, MODE_TYPE
EVENT, STRING, 6, 20, EVENT_TYPE
SCHEDULE, TIME, 7, 16, HOUR_CLOCK
ACTUAL, TIME, 8, 16, HOUR_CLOCK
LINK, INTEGER, 9, 10
DIR, INTEGER, 10, 1
LANE, STRING, 11, 3, LANE_ID_TYPE
OFFSET, DOUBLE, 12, 8.1, METERS
ROUTE, INTEGER, 13, 10

Table 6 lists the field definitions for the EVENT_FILE.

Table 6 EVENT_FILE Field Definitions

Field(s)	Description	Data Type
HHOLD	Household identifier	Integer
PERSON	Person identifier	Integer
TOUR	Tour identifier	Integer
TRIP	Trip identifier	Integer
MODE	Traveler's mode code (MODE_TYPE)	String
EVENT	Event (EVENT_TYPE)	String
SCHEDULE	The time of day when the event was scheduled to take place.	Hour_Clock
ACTUAL	The time of day when the event actually took place.	Hour_Clock
LINK	Link identifier	Integer

Field(s)	Description	Data Type
DIR	Direction on the link	Integer
LANE	Lane identifier	String
OFFSET	Offset of the front of the vehicle from the beginning of the link (defaults to METERS)	Decimal
ROUTE	For transit, the route number	Integer

Event types include the following:

- TRIP_START_EVENT, also called TRIP_START_TIME, START_TIME
- TRIP_END_EVENT, also called TRIP_END_TIME, END_TIME
- DURATION_EVENT, also called TRIP_DURATION, RUN_TIME
- VEH_START_EVENT, also called VEH_START_TIME, DEPARTURE_TIME, VEHICLE_START
- VEH_END_EVENT, also called VEH_END_TIME, ARRIVAL_TIME, VEHICLE_END
- VEH_LOST_EVENT, also called VEH_LOST_TIME, LOST_TIME, VEHICLE_LOST, LOST_VEHICLE
- TRANSIT_WAIT_EVENT, also called TRANSIT_WAIT, START_WAITING, WAITING
- TRANSIT_ON_EVENT, also called TRANSIT_BOARDING, TRANSIT_ON, BOARDING
- TRANSIT_OFF_EVENT, also called TRANSIT_ALIGHTING, TRANSIT_OFF, ALIGHTING

Table 7 shows an excerpt from an EVENT_FILE.

Table 7 EVENT FILE

нногр	PERSON	TOUR	TRIP	MODE	EVENT	SCHEDULE	TINK	DIR	LANE	OFFSET	ROUTE	
353434	1	1	1	DRIVE	TRIP_END_TIME	5:15:27 PM	5:14:43 PM	0	0	0	0	0
353434	1	1	1	DRIVE	VEH_END_TIME	5:15:27 PM	5:14:41 PM	6233	0	0	1638.7	0
353434	1	1	1	DRIVE	VEH_START_TIME	5:12:13 PM	5:12:14 PM	6229	0	3	18.7	0
353434	1	1	1	DRIVE	TRIP_START_TIME	5:12:13 PM	5:12:13 PM	0	0	0	0	0

GROUP_TRAVEL_FILE

NEW_GROUP_TRAVEL_FILE
LinkSum

HOUSEHOLD_FILE

Names: HOUSEHOLD_FILE, NEW_HOUSEHOLD_FILE

Both HOUSEHOLD_FILE and NEW_HOUSEHOLD_FILE are used in

ConvertTrips NewFormat

Additionally, HOUSEHOLD FILE is used in

Simulator PathSkim RandomSelect

Router

The HOUSEHOLD_FILE key is appended to the PROJECT_DIRECTORY key to specify the file name for the input household file copied to the output household file by the program. One household is generated for each trip in the input trip tables.

The Version 5 HOUSEHOLD_FILE replaces the household and population files in version 4. The Version 5 definition file is listed below:

TRANSIMS50, TAB_DELIMITED, 2, NESTED HHOLD, INTEGER, 1, 10 LOCATION, INTEGER, 2, 10 PERSONS, INTEGER, 3, 2, NEST_COUNT WORKERS, INTEGER, 4, 2 VEHICLES, INTEGER, 5, 2 PERSON, INTEGER, 1, 5, NO, NESTED AGE, INTEGER, 2, 3, YEARS, NESTED RELATE, STRING, 3, 12, RELATE_TYPE, NESTED GENDER, STRING, 4, 8, GENDER_TYPE, NESTED WORK, STRING, 5, 6, TRUE/FALSE, NESTED DRIVE, STRING, 6, 6, TRUE/FALSE, NESTED

Table 8 lists the field definitions for the HOUSEHOLD_FILE.

Table 8 HOUSEHOLD_FILE Field Definitions

Field(s)	Description	Default Units
HHOLD	Household number	
LOCATION	Location (activity location) for the household	
PERSONS	Number of persons in the household	
WORKERS	Number of workers	
VEHICLES	Number of vehicles	
PERSON	(nested field) Person number	
AGE	(nested field) Age of that person	Years
RELATE	(nested field) Relationship of that person. Options include	
	blank, NO_RELATE, HEAD_HHOLD, SPOUSE, CHILD, FAMILY	
GENDER	(nested field) Gender of that person. Options include	MALE
	NO_SEX, MALE, FEMALE	
WORK	(nested field) Is that person a worker (TRUE, FALSE)	TRUE
DRIVE	(nested field) Does that person drive (TRUE, FALSE)	TRUE

Table 9 is an example of a HOUSEHOLD_FILE with one person:

Table 9 HOUSEHOLD_FILE Example

HHOLD	LOCATION	PERSONS	WORKERS	VEHICLES	
PERSON	AGE	RELATE	GENDER	WORK	DRIVE
1	41	1	1	1	
1	25		MALE	TRUE	TRUE

INPUT_LINK_FILE

INPUT_LINK_FILE
NetPrep

The LINK_FILE key is optional (depending on the purpose of using NetPrep). It specifies the name of a shapefile containing the links in the network. If an input node shapefile is provided, the node coordinates will be extracted from the shapefile point location. If an input node shapefile is not provided, the node coordinates will be extracted from the first and last points in the input link shapefile. The value for this key specifies the relative path of the directory and the filename of the input link shape file. Note that this file MUST have a ".shp" extension. Use of a ".txt" extension file for the value of this key will result in processing error(s). When this key is included, a <u>conversion script</u> is likely to be needed as well.

INPUT_NODE_FILE

INPUT_NODE_FILE
NetPrep

The INPUT_NODE file key is optional. It specifies the name of a shapefile containing the nodes in the network. If a node shapefile is provided, the node coordinates will be extracted from the point locations in this shapefile. If a node shapefile is not provided, the node coordinates will be extracted from the first and last points in the input link shapefile.

INPUT_SIGN_FILE

INPUT_SIGN_FILE
IntControl

The INPUT_SIGN_FILE key is optional unless the SIGN_FILE key is not provided in the control file for IntControl. The value for this key specifies the relative path of the directory and the filename of the input sign file. This key is used to manipulate or add to existing sign files using IntControl. The SIGN_FILE key file reference is either omitted or used to read in the existing TRANSIMS network sign file. However, either the INPUT_SIGNAL_FILE or the SIGNAL_FILE control key and referenced file must be specified and included in order for IntControl to execute successfully. The updated sign file is specified using the NEW_SIGN_FILE control key. Note that changes to the sign file, directly or indirectly (via warrants), generally result in changes to related records in output, interdependent intersection files.

An example of an IntControl control file is shown below, with the relevant key highlighted in bold:

TITLE IntControl Example

INPUT_SIGN_FILE .../network/sign_warrant.txt
INPUT_SIGNAL_FILE .../network/signal_warrant.txt

NODE_FILE .../network/node.txt
LINK_FILE .../network/link.txt

SHAPE_FILE .../network/shape.txt

POCKET_FILE .../network/pocket.txt

CONNECTION FILE .../network/connection.txt

##DELETE_NODE_CONTROL_FILE .../network/Delete_Node_Control.txt

NEW_SIGN_FILE .../network/sign.txt
NEW_SIGNAL_FILE .../network/signal.txt
NEW_TIMING_PLAN_FILE .../network/timing_plan.txt
NEW_PHASING_PLAN_FILE .../network/phasing_plan.txt
NEW_DETECTOR_FILE .../network/detector.txt

SIGNAL_TYPE_CODE_1 ACTUATED

NUMBER OF RINGS 1 SIGNAL TIME BREAKS 1 7:00, 10:00 SIGNAL_CYCLE_LENGTH 1 90 seconds MINIMUM PHASE TIME 1 5 seconds YELLOW PHASE TIME 1 3 seconds RED_CLEAR_PHASE_TIME_1 1 seconds SIGNAL_SPLIT_METHOD_1 **CAPACITY** MINIMUM LANE CAPACITY 1 500 MAXIMUM_LANE_CAPACITY_1 1500 POCKET LANE FACTOR 1 0.5 SHARED LANE FACTOR 1 0.5 TURN MOVEMENT FACTOR 1 0.9 PERMITTED LEFT FACTOR 1 0.5 GENERAL GREEN FACTOR 1 1.0 EXTENDED GREEN FACTOR 1 0.5 MAXIMUM_GREEN_FACTOR_1 2.0 SIGNAL DETECTOR LENGTH 1 30 feet

INPUT_SIGNAL_FILE

INPUT_SIGNAL_FILE

IntControl Default Control Key

The input sign file key is optional unless the SIGNAL_FILE key is not provided in the control file for IntControl. The value for this key specifies the relative path of the directory and the filename of the input signal file. This key is used to manipulate or add to existing signal files using IntControl. The SIGNAL_FILE key file reference is either omitted or used to read in the existing TRANSIMS network signal file. However, either the INPUT_SIGNAL_FILE or the SIGNAL_FILE control key and referenced file must be specified and included in order for IntControl to execute successfully. The updated signal file is specified using the NEW_SIGNAL_FILE control key. Note that changes to the signal file, directly or indirectly (via warrants), generally result in changes to related records in the output intersection files.

An example of IntControl control file is shown below:

TITLE	IntControl Example
INPUT_SIGN_FILE INPUT_SIGNAL_FILE	/network/sign_warrant.txt/network/signal_warrant.txt
NODE_FILE LINK_FILE SHAPE_FILE POCKET_FILE CONNECTION_FILE ##DELETE NODE CONTROL FILE	/network/node.txt/network/link.txt/network/shape.txt/network/pocket.txt/network/connection.txt/network/Delete Node Control.txt

NEW_SIGN_FILE .../network/sign.txt
NEW_SIGNAL_FILE .../network/signal.txt
NEW_TIMING_PLAN_FILE .../network/timing_plan.txt
NEW_PHASING_PLAN_FILE .../network/phasing_plan.txt
NEW_DETECTOR_FILE .../network/detector.txt

ACTUATED SIGNAL_TYPE_CODE_1 NUMBER_OF_RINGS_1 1 SIGNAL_TIME_BREAKS_1 7:00, 10:00 SIGNAL CYCLE LENGTH 1 90 seconds MINIMUM PHASE TIME 1 5 seconds YELLOW PHASE TIME 1 3 seconds RED CLEAR PHASE TIME 1 1 seconds SIGNAL SPLIT METHOD 1 **CAPACITY** MINIMUM LANE CAPACITY 1 500 MAXIMUM_LANE_CAPACITY_1 1500 POCKET_LANE_FACTOR_1 0.5 SHARED_LANE_FACTOR_1 0.5 TURN MOVEMENT FACTOR 1 0.9 PERMITTED_LEFT_FACTOR_1 0.5 GENERAL GREEN FACTOR 1 1.0 EXTENDED GREEN FACTOR 1 0.5 MAXIMUM GREEN FACTOR 1 2.0 SIGNAL DETECTOR LENGTH 1 30 feet

INPUT SPDCAP FILE

INPUT_SPDCAP_FILE
NetPrep

INPUT_ZONE_FILE

INPUT_ZONE_FILE
NetPrep

The network zone table key is optional. If provided, it specifies the filename and relative path of the input zone file. For example, the value "network/Input_Zone.txt" could be used, given that the Project Directory key has been set to a value of "../" (quotation marks should not be included). If a Project Directory key is not specified, the full path of the input zone file should be used instead. The ZONE_FILE contains: the zone number (ZONE), X and Y coordinates in UTM meters (X_COORD, Y_COORD), and an area type (AREATYPE) code between 1 and 8. If a zone file is not provided, the zone centroids are extracted from the node file. In this case, all area types will be equal to 2. The INPUT_ZONE_FILE, if produced by NetPrep, can be used subsequently as one of the network files.

KEEP LINK FILE

KEEP_LINK_FILENetPrep

The KEEP_LINK_FILE key is optional and specifies the full path and file name of the file that lists the link IDs that need to be retained in the highway network. The NetPrep 5 program deletes and/or replaces certain links that are not required for the highway simulation. If transit routes will be included in the network, the links associated with transit stations and stops should not be removed from the network. The TransimsNet program retains all the links specified in the keep link file even when they are not required for the highway simulation. This functionality is sometimes necessary for highway networks to prevent programmatic deletion of important links by TRANSIMS.

An example of a KEEP _LINK_FILE is listed below:

LINK

72

612

4050

4088

5988

6201

12006

12009

20133

KEEP_NODE_FILE

KEEP_NODE_FILE

NetPrep

The KEEP_NODE_FILE key is optional and specifies the full path and file name of the file that lists the node IDs that need to be retained in the highway network. In TRANSIMS 5, this functionality is located in NetPrep V5; previously, it was incorporated into TransimsNet V4. The NetPrep 5 program removes node that are not required for the highway simulation. If transit routes will be included in the network, the nodes associated with transit stations and stops should not be removed from the network. The TransimsNet program retains all the nodes specified in the keep node file even when they are not required for the highway simulation. This functionality is sometimes necessary for highway networks to prevent programmatic deletion of important nodes by TRANSIMS. Typically, few nodes are adversely affected by the TRANSIMS network pruning algorithm, but when this issue is present, subsequent network synthesis and trip assignment, routing, and simulation can result.

An example of a KEEP_NODE_FILE is shown below:

3934

3935

3936

LANE_USE_FILE

LANE_USE_FILE

ArcNet

IntControl Default Control Key

LinkSum

Microsimulator

NewFormat

PathSkim

PlanSelect

PlanSum

Router

NEW_LANE_USE_FILE

NewFormat

In TRANSIMS 5, the LANE_USE_FILE takes the place of both the LANE_USE_FILE and the TOLL_FILE from Version 4. It includes lane ranges, lengths and offsets. Tolls are enabled by lane (e.g., HOT lanes). A minimum and maximum delay is added that enables the modeling of toll plaza delay, ramp metering and other flow interruptions.

Table 10 lists the field definitions for the LANE_USE_FILE.

Table 10 LANE_USE File Field Definitions

Field(s)	Description	Default Units
LINK	Link number (an integer)	
DIR	Direction (0 = A->B, 1 = B->A)	
LANES	Range of lanes. This is either a single lane number, or a range of lanes.	LANE_RANGE_TYPE
ТҮРЕ	Type of lane_use restriction. Values include APPLY, A or blank; LIMIT, L or O; PROHIBIT, P or N; REQUIRE or R.	RESTRICTION_TYPE
USE	Type of USE. Values include ANY, WALK, BIKE, BICYCLE, CAR, AUTO, TRUCK, BUS, SOV, HOV2, HOV3, HOV4, LIGHTTRUCK, HEAVYTRUCK, RESTRICTED, NONE, TAXI, RAIL, TROLLEY,	USE_TYPE

Field(s)	Description	Default Units
	STREETCAR, LIGHTRAIL, RAPIDRAIL, REGIONRAIL	
MIN_TYPE	UNSIGNED	VEHICLE_TYPE
MAX_TYPE	UNSIGNED	VEHICLE_TYPE
MIN_TRAV	UNSIGNED	UNSIGNED
MAX_TRAV		
START	TIME	HOUR_CLOCK
END	TIME	HOUR_CLOCK
LENGTH	DOUBLE	FEET
OFFSET	DOUBLE	FEET
TOLL	UNSIGNED	CENTS
TOLL_RATE	DOUBLE	CENTS/MILE
MIN_DELAY	DOUBLE	SECONDS
MAX_DELAY	DOUBLE	SECONDS
NOTES	STRING	

LANES is a range of lanes. Zero implies all lanes.

The TYPE field corresponds to the RESTRICT field in version 4. LIMIT ("O" in version 4) means that only a particular vehicle type may use the lane. PROHIBIT ("N" in version 4) means that the lane is not allowed to be used by the vehicle type. REQUIRE ("R" in version 4) means that the lane is required to be used by this vehicle type.

MIN_TYPE and MAX_TYPE refer to vehicle type numbers, which appear to be indexed as follows: ANY, CAR, TRUCK, CAR, BUS, BUS, RAIL, RAIL, RAIL, RAIL, HOV2, HOV3, HOV4, LIGHTTRUCK, HEAVYTRUCK, RESTRICTED, NONE

The LENGTH is the length of the use restriction, measured from the offset. Zero implies the whole link.

The OFFSET is the starting position of the use restriction, measured from the beginning of the link.

The amount of delay is selected as a random number between MIN_DELAY and MAX_DELAY.

A typical field definition (.def file or .DEF) file is listed below:

TRANSIMS50, TAB_DELIMITED, 1
LINK, INTEGER, 1, 10
DIR, INTEGER, 2, 1
LANES, STRING, 3, 8, LANE_RANGE_TYPE
TYPE, STRING, 4, 10, RESTRICTION_TYPE
USE, STRING, 5, 128, USE_TYPE
MIN_TYPE, UNSIGNED, 6, 3, VEHICLE_TYPE
MAX_TYPE, UNSIGNED, 7, 3, VEHICLE_TYPE
MIN_TRAV, UNSIGNED, 8, 3
MAX_TRAV, UNSIGNED, 9, 3

START, TIME, 10, 16, HOUR_CLOCK END, TIME, 11, 16, HOUR_CLOCK LENGTH, DOUBLE, 12, 8.1, FEET OFFSET, DOUBLE, 13, 8.1, FEET TOLL, UNSIGNED, 14, 5, CENTS TOLL_RATE, DOUBLE, 15, 8.1, CENTS/MILE MIN_DELAY, DOUBLE, 16, 8.1, SECONDS MAX_DELAY, DOUBLE, 17, 8.1, SECONDS NOTES, STRING, 18, 128

Table 11 is an example of a LANE_USE_FILE populated with data.

Table 11 LANE_USE File Example

TINK	DIR	LANES	ТҮРЕ	USE	MIN_TYPE	MAX_TYPE	MIN_TRAV	MAX_TRAV	START	END	LENGTH	OFFSET	TOLL	TOLL_RATE	MIN_DELAY	MAX_DELAY	NOTES
17	0	L1	LIMIT	TRUCK SOV HOV2	0	0	0	0	15:30	18:00	0	0	0	0	0	0	1395 Exp Lane Restriction
17	0	2	LIMIT	TRUCK SOV HOV2	0	0	0	0	15:30	18:00	0	0	0	0	0	0	1395 Exp Lane Restriction
17	0	1	LIMIT	TRUCK SOV HOV2	0	0	0	0	15:30	18:00	0	0	0	0	0	0	1395 Exp Lane Restriction
17	0	R1L1	LIMIT	TRUCK SOV HOV2	0	0	0	0	15:30	18:00	0	0	0	0	0	0	1395 Exp Lane Restriction
53	0	1	PROHIBIT	AUTO TRUCK BUS	0	0	0	0	0:00	7:00	0	0	0	0	0	0	Park on 1st St: Right Lane
42	0	L1	PROHIBIT	AUTO TRUCK BUS	0	0	0	0	0:00	7:00	0	0	0	0	0	IU	Park on 3rd St: Right Lane
42	0	2	PROHIBIT	AUTO TRUCK BUS	0	0	0	0	9:30	24:00	0	0	0	0	0	IU .	Park on 3rd St: Right Lane
42	0	2	PROHIBIT	AUTO TRUCK BUS	0	0	0	0	0:00	7:00	0	0	0	0	0	()	Park on 3rd St: Right Lane
42	0	1	PROHIBIT	AUTO TRUCK BUS	0	0	0	0	9:30	24:00	0	0	0	0	0	10	Park on 3rd St: Right Lane
39	0	R1L1	APPLY	SOV HOV3	0	0	0	0	6:00	9:00	0	0	26	0	0	0	
39	0	R1L1	APPLY	SOV HOV3	0	0	0	0	9:00	16:00	0	0	15	0	0	0	
39	0	R1L1	APPLY	SOV HOV3	0	0	0	0	16:00	19:00	0	0	26	0	0	0	
39	0	R1L1	APPLY	SOV HOV3	0	0	0	0	19:00	24:00	0	0	10	0	0	0	

LinkData

LINK_DELAY_FILE

LINK_DELAY_FILE is an input to ArcPlan, IntControl, LinkDelay, NewFormat, PathSkim, PlanSelect, PlanSum, and Router

NEW_LINK_DELAY_FILE is an output from LinkDelay, NewFormat, PathSkim, PlanSum, and Router

If the input LINK_DELAY_FILE key is provided to the router, the program uses the information in the file to initialize the link flows and travel times for each time period. The header record in is used to determine the size of each time period. The time periods are typically 15 minutes long. If a LINK_DELAY_FILE is not provided (or the key is "NULL"), free flow speeds are used for all times of day. Free flow speeds are also used for all links and time periods not included in the file.

The NEW_LINK_DELAY_FILE is the output file of link delays. By default, it produces flows and travel times at 15-minute increments. The Version 4 LINK_DELAY file had volume, an integer number of vehicles entering or exiting the link during a time period. The Version 5 LINK_DELAY file has flow, which is not necessarily integer (for example, a vehicle traversing half of the link would add 0.5 to the flow).

The definition file is listed below:

TRANSIMS50, TAB_DELIMITED, 1 LINK, INTEGER, 1, 10 DIR, INTEGER, 2, 1 START, TIME, 3, 16, HOUR_CLOCK END, TIME, 4, 16, HOUR_CLOCK FLOW, DOUBLE, 5, 8.1, VEHICLES TIME, TIME, 6, 8.1, SECONDS

Table 12 lists the field definitions for the LINK_DELAY_FILE.

Table 12 LINK_DELAY_FILE Field Definitions

Field(s)	Description	Default Units
LINK	Link Number	
DIR	Direction (0 = A->B, 1 = B->A)	
START	Starting time of day	HOUR_CLOCK
END	Ending time of day	HOUR_CLOCK
FLOW	Distance traveled by vehicles on the link during the START-	VEHICLES
	END interval divided by the link length. Travel units could	
	be VEHICLES, PERSONS, or Passenger Car Equivalents	
TIME	Travel time: link length x VHT / VMT	SECONDS

Table 13 is an example of a LINK_DELAY_FILE populated with data:

Table 13 LINK_DELAY_FILE Example

LINK	DIR	START	END	FLOW	TIME
11	0	0:00	0:15	2.7	83.4
11	1	0:00	0:15	0.7	83.4
11	0	7:00	7:15	147	114.9
11	1	7:00	7:15	83.5	85.9
11	0	7:15	7:30	159.2	128.4
11	1	7:15	7:30	95	87.8
11	0	7:30	7:45	190.5	184.5
11	1	7:30	7:45	97.2	88.3
11	0	7:45	8:00	191.5	186.9
11	1	7:45	8:00	98.2	88.6
11	0	8:00	8:15	208.7	235.7
11	1	8:00	8:15	121.8	97
11	0	8:15	8:30	227.5	308.1
11	1	8:15	8:30	115	93.8
11	0	8:30	8:45	229.7	317.8
11	1	8:30	8:45	122.7	97.4
11	1	23:45	24:00:00	18.3	83.4

LINK_EQUIVALENCE_FILE

LINK_EQUIVALENCE_FILE

LinkSum

PlanSum

The LINK_EQUIVALENCE_FILE key is used to set up groups of links (e.g., progression groups). Figure 11 illustrates a sample file, along with a sketch of the network. There are two groups: Group 1 represents eastbound flow, while Group 2 represents westbound flow.

Figure 11 LINK_EQUIVALENCE_FILE Example Network

1 0 Eastbound 1 1 2, 3, 4 2 0 Westbound 2 1 -4, -3, -2

LINK_NODE_EQUIVALENCE

LINK_NODE_EQUIVALENCE_FILE

TransimsNet

The LINK_NODE_EQUIVALENCE file control key has not yet been implemented in TransimsNet 5.0.

LINK_FILE

Names: LINK_FILE, NEW_LINK_FILE

Used In:

ArcNet

ArcPlan

ArcSnapshot

ConvertTrips

IntControl

LinkDelay

LinkSum

LocationData

Microsimulator

NetPrep

NewFormat

PathSkim

PlanSelect

PlanSum

ProblemSelect

Router

TransimsNet

The LINK_FILE and NEW_LINK_FILE both refer to a list of links in the network. A typical field definition (.def) file is listed below. Note that the NEW_LINK_FILE key is a required control key in NetPrep 5 and specifies the relative location and the name of the output link file. This key may not be a required value in the other TRANSIMS program modules in which it is used. Also note that the definition (.def) file associated with the NEW_LINK_FILE produced by NetPrep does not contain a "NAME" field.

Consequently, including a reference to a "NAME" field in a NetPrep conversion script (if one is used) will result in a run-time error that prevents the program from executing to completion. Refer to the Quick Reference and/or the Program Reference associated with each TRANSIMS module which uses link and new link files for additional details. The NetPrep conversion script is described in this document as well.

TRANSIMS50, TAB_DELIMITED, 1 LINK, INTEGER, 1, 10 NAME, STRING, 2, 40 NODE_A, INTEGER, 3, 10 NODE B, INTEGER, 4, 10 LENGTH, DOUBLE, 5, 8.1, METERS SETBACK_A, DOUBLE, 6, 5.1, METERS SETBACK_B, DOUBLE, 7, 5.1, METERS BEARING_A, INTEGER, 8, 4, DEGREES BEARING_B, INTEGER, 9, 4, DEGREES TYPE, STRING, 10, 12, FACILITY_TYPE DIVIDED, UNSIGNED, 11, 1 AREA_TYPE, UNSIGNED, 12, 3 GRADE, DOUBLE, 13, 5.1, PERCENT LANES_AB, UNSIGNED, 14, 2 SPEED_AB, DOUBLE, 15, 5.1, KPH FSPD_AB, DOUBLE, 16, 5.1, KPH CAP_AB, UNSIGNED, 17, 8, VPH LANES_BA, UNSIGNED, 18, 2 SPEED_BA, DOUBLE, 19, 5.1, KPH FSPD BA, DOUBLE, 20, 5.1, KPH CAP_BA, UNSIGNED, 21, 8, VPH USE, STRING, 22, 128, USE_TYPE NOTES, STRING, 23, 128

Table 14 lists the field definitions for the LINK_FILE:

Table 14 LINK_FILE Field Definitions

Field(s)	Description	Use	Default
			Units
LINK	The link number (an integer)	Key	
NAME	Typically, the name of the street	Opt.	
NODE_A	The node at one end of the link (an integer)	Req.	
NODE_B	The node at the other end of the link (an integer)	Req.	
LENGTH	Length of the link	Req.	M
SETBACK_A,	When the link is drawn, the setback from each end to its	Opt.	M
SETBACK_B	corresponding node		
BEARING_A	Compass direction entering the link at the A end	Opt.	Degrees
BEARING_B	Compass direction exiting the link at the B end	Opt.	Degrees
TYPE	Facility type (functional classification) of the link	Req.	Note 1
DIVIDED	Is it a divided highway?	Opt.	
AREA_TYPE			
GRADE	Percent grade from A to B	Opt.	Pct.
LANES_AB,	Number of thru lanes in the indicated direction. For a one-way link	Req.	
LANES_BA	going from A to B, LANES_BA = 0		
SPEED_AB,	Speed limit in the indicated direction	Opt.	m/s
SPEED_BA			

Field(s)	Description	Use	Default Units
FSPD_AB,	Free flow speed in the indicated direction	Opt.	m/s
FSPD_BA			
CAP_AB,	Hourly vehicle capacity in the indicated direction (used for Volume	Opt.	veh/hr
CAP_BA	/ Capacity functions)		
USE	Vehicle types, modes, or use types permitted on the link	Req.	Note 2
NOTES	Character string for user notes	Opt.	

Note 1: Facility types include FREEWAY, EXPRESSWAY, PRINCIPAL, MAJOR, MINOR, COLLECTOR, LOCAL_THRU, LOCAL, FRONTAGE, RAMP, BRIDGE, TUNNEL, OTHER, WALKWAY, BIKEWAY, BUSWAY, LIGHTRAIL, HEAVYRAIL, FERRY, and EXTERNAL

Note 2: Uses include ANY, WALK, BIKE, CAR, TRUCK, BUS, RAIL, SOV, HOV2, HOV3, HOV4, LIGHTTRUCK, HEAVYTRUCK, TAXI, and RESTRICTED

Figure 12 illustrates a small example of using links. Here, links 8 and 9 are freeway links, link 11 is a minor arterial, and links 12 and 13 are ramps. Typically, limited access roads are represented with separate links for each direction of travel, while other roads have a single link for both directions of travel (even if the road is divided).

Figure 12 Example of Links

Table 15 lists the LINK_FILE fields used in this example.

Table 15 LINK_FILE Fields Example

LINK	NAME	NODE_A	NODE_B	LENGTH	SETBACK_A	SETBACK_B	BEARING_A	BEARING_B	ТУРЕ	DIVIDED	AREA_TYPE	GRADE
8	0	24	28	1650	9.1	9.1	90	90	FREEWAY	0	2	0
9	0	29	21	1650	7.5	7.5	270	270	FREEWAY	0	2	
11	0	16	27	1000	9.1	7.5	0	0	MINOR	0	2	
12	0	27	28	110	7.5	9.1	84	84	RAMP	0	2	
13	0	29	27	300	7.5	7.5	282	207	RAMP	0	2	

Table 15 (continued) LINK_FILE Fields Example

LINK	LANES_AB	SPEED_AB	FSPD_AB	CAP_AB	LANES_BA	SPEED_BA	FSPD_BA	CAP_BA	USE	NOTES
8	2	97	96	4000	0	0	0	0	AUTO TRUCK BUS	
9	2	97	96	4000	0	0	0	0	AUTO TRUCK BUS	
11	1	43	43	800	1	43	43	800	ANY	
12	1	72	71	1000	0	0	0	0	AUTO TRUCK BUS	
13	1	72	72	1000	0	0	0	0	AUTO TRUCK BUS	

LINK_NODE_LIST_FILE

LINK_NODE_LIST_FILE
LinkData
NEW_LINK_NODE_LIST_FILE
NetPrep

LINK_SUMMARY_FILE

NEW_LINK_SUMMARY_FILE
ArcSnapshot Default Control Key

LINK_VOLUME_FILE NEW_LINK_VOLUME_FILE PlanSum

LOCATION_FILE

Used In

ArcNet

ArcPlan

ConvertTrips Default Control Key

LinkSum

LocationData

Microsimulator

NewFormat

PathSkim

PlanSelect

ProblemSelect Default Control

Router

TransimsNet Default Control Key

NEW_LOCATION_FILE is used in:

LocationData

NewFormat

TransimsNet

The LOCATION_ FILE lists the locations (formerly, activity_locations) in the network. The locations are created by TransimsNet, and represent places where traffic can enter or leave the network. In TRANSIMS they take the place of the zone centroids in an older four-step model.

The definition file is listed below:

TRANSIMS50, TAB_DELIMITED, 1 LOCATION, INTEGER, 1, 10 LINK, INTEGER, 2, 10 DIR, INTEGER, 3, 1 OFFSET, DOUBLE, 4, 8.1, METERS SETBACK, DOUBLE, 5, 8.1, METERS ZONE, INTEGER, 6, 10 ORIG_WGT, INTEGER, 7, 2 DEST_WGT, INTEGER, 8, 2 NOTES, STRING, 9, 128

The LOCATION _FILE includes the following predefined fields:

LOCATION – the index number of the location LINK – the link to which the location connects DIR – direction of the link OFFSET – offset along the link SETBACK – setback ZONE – associated zone NOTES – optional notes It may also include user defined fields. A commonly used pair of fields is ORIG_WGT, DEST_WGT, which is used in ConvertTrips to determine whether trips should be assigned to a particular location.

Figure 13 show some locations. The circled numbers are activity locations. The green triangles are zone centroids, and the links are numbered in red.

Figure 13 Example of Locations

Table 16 lists the LOCATION_FILE fields used in this example.

Table 16 LOCATION_FILE Fields Example

LOCATION	LINK	DIR	OFFSET	SETBACK	ZONE	ORIG WGT	DEST WGT	NOTES
9	4	0	500.0	15.2	1	1	1	Activity
								Location
10	4	1	500.0	15.2	1	1	1	Activity
								Location
11	4	0	750.0	15.2	1	1	1	Activity
								Location
12	4	1	250.0	15.2	1	1	1	Activity
								Location
13	6	0	30.0	15.2	1	1	1	Activity
								Location
14	6	1	30.0	15.2	1	1	1	Activity
								Location
51	25	0	30.0	30.0	10	1	0	External
								Origin
52	25	1	70.0	30.0	10	0	1	External
								Destination

Link 4 is oriented south to north. It has activity locations 9 and 11 on the A->B side (direction 0) and locations 12 and 10 on the B->A side. The very short link 6 has two locations associated with it. Links 2, 3, 5, 8, 9 and 18 have no locations, as they are freeways or ramps. Locations 51 and 52 are external locations, associated with external zone 10.

MERGE_LINK_DELAY_FILE

The MERGE_LINK_DELAY_FILE is an input to LinkDelay. It is the name of the second link delay file when two link delay files are being combined. This file name replaces PREVIOUS_LINK_DELAY_FILE in Version 4 LinkDelay.

MERGE_PLAN_FILE

Used in PlanPrep

When plans are combined, the output plan file consists of records from the INPUT and MERGE_PLAN_FILES, as shown below:

- -If a particular plan exists in the input file it is used, superseding the plan in the merge file.
- -If a particular plan exists in the merge file, but not the input file, it is used.

MERGE TRIP FILE

MERGE_TRIP_FILE
TripPrep

Nested Data Files

Nested data files are used extensively in TRANSIMS 5; however, their use is optional in some cases. Refer to the entry for Definition Files (*.DEF) on page 27 in this document for additional information concerning their use and significance.

NEW_ARC_...FILE

Names:

NEW_ARC_ACCESS_FILE

NEW_ARC_ACCESSIBILITY_FILE

NEW_ARC_ BANDWIDTH_FILE

NEW_ARC_ CENTERLINE _FILE

NEW_ARC_ CONNECTION _FILE

NEW_ARC_ DETECTOR _FILE

NEW_ARC_ DISTANCE_CONTOUR _FILE

```
NEW_ARC_ LANE_USE _FILE
NEW ARC LINK FILE
NEW_ARC_LOCATION_FILE
NEW_ARC_NODE_FILE
NEW_ARC_ PARKING_DEMAND _FILE
NEW_ARC_ PARKING _FILE
NEW ARC PHASING PLAN FILE
NEW_ARC_POCKET_FILE
NEW ARC RIDERSHIP FILE
NEW_ARC_ ROUTE_NODES _FILE
NEW ARC SIGN FILE
NEW ARC SIGNAL FILE
NEW_ARC_ SNAPSHOT _FILE
NEW_ARC_ STOP_DEMAND _FILE
NEW_ARC_ STOP_GROUP _FILE
NEW ARC SUBZONE DATA FILE
NEW_ARC_ TIME_CONTOUR _FILE
NEW_ARC_TIMING_PLAN_FILE
NEW_ARC_ TRANSIT_DRIVER _FILE
NEW_ARC_ TRANSIT_ROUTE _FILE
NEW ARC TRANSIT STOP FILE
NEW ARC TURN PENALTY FILE
NEW ARC ZONE FILE
```

These are shape files produced by ArcNet, ArcPlan and ArcSnapshot. The file name in the control file should end with ".shp". The program automatically creates three files in the output directory. These are the ArcView shape file with the ".shp" extension, the ArcView index file with a ".shx" extension, and the ArcView data file with a ".dbf" extension. All three files are required for a Geographic Information System such as ArcView, ArcMap or QGIS to read and display the object.

NEW_ZONE_LOCATION_MAP_FILE

Used in LocationData

This is the name of a file that contains a list of zones along with nearby activity locations that are not currently assigned to the zones. The zones that are listed include those zones that are currently assigned to fewer activity locations than the number specified in MINIMUM_ZONE_LOCATIONS. For each such zone, one or more locations, near to but not currently assigned to the zone, are listed.

An example of this output file is listed below:

ZONE LOCATIONS 2 48, 9

```
5 46
10 13, 56
11 57, 14
12 51, 1
13 29, 37
14 58, 41
```

NODE_FILE

Names: NODE_FILE, NEW_NODE_FILE Used In: ArcNet ArcPlan ArcSnapshot ConvertTrips IntControl LinkDelay LinkSum LocationData Microsimulator NetPrep NewFormat **PathSkim** PlanSelect **PlanSum** ProblemSelect Router

Network nodes are listed below:

TransimsNet

```
TRANSIMS50, TAB_DELIMITED, 1
NODE, INTEGER, 1, 10
X_COORD, DOUBLE, 2, 14.1, METERS
Y_COORD, DOUBLE, 3, 14.1, METERS
Z_COORD, DOUBLE, 4, 14.1, METERS
SUBAREA, INTEGER, 5, 4
NOTES, STRING, 6, 128
```

Essential information includes the node number (an integer) and the X and Y coordinates. These are typically UTM coordinates.

A new field, not in version 4, is the subarea.

Node numbers do not have to be consecutive. However, for external links (zone connectors), the TransimsNet program assumes that the lower node number attached to a zone connector represents the external station zone number. The simplest way to meet this requirement is to assign numbers

higher than the highest external zone number all nodes that are NOT associated with zone centroids (internal or external). For example, if the internal zones are in the range 1 - 500, and external zone numbers are in 600 - 620, the non-centroid nodes might be given node numbers of 700 or higher.

Table 17 is an example of a NODE_FILE populated with data:

Table 17 NODE_FILE Example

NODE	X_COORD	Y_COORD	Z_COORD	SUBAREA	NOTES
600	180054.9	4768512.4	0.0	0	External
					Node
601	179481.0	4767920.0	0.0	0	External
					Node
602	179397.8	4767815.8	0.0	0	External
					Node
3802	179740.0	4767650.0	0.0	0	Subarea Node
3803	180724.8	4766966.0	0.0	0	Subarea Node
3808	178366.1	4768820.6	0.0	0	Subarea Node
4660	179865.9	4767545.0	0.0	0	Subarea Node
4665	179620.0	4767750.0	0.0	0	Subarea Node
8819	179705.0	4767730.0	0.0	0	Subarea Node
9511	179685.0	4767705.0	0.0	0	Subarea Node

OCCUPANCY_FILE

The OCCUPANCY_FILE is an input to ArcSnapshot, and the NEW_OCCUPANCY_FILE is an output from the Simulator. It lists the link direction, offset, lane, and number of seconds that the cell is occupied by time increment (e.g., 15 minutes).

A typical field definition (.def or .DEF) file is listed below:

```
TRANSIMS50, TAB_DELIMITED, 1
LINK, INTEGER, 1, 10
DIR, INTEGER, 2, 1
START, TIME, 3, 16, HOUR_CLOCK
END, TIME, 4, 16, HOUR_CLOCK
LANE, STRING, 5, 4, LANE_ID_TYPE
OFFSET, DOUBLE, 6, 8.1, METERS
OCCUPANCY, INTEGER, 7, 10
```

Table 18 lists the field definitions for the OCCUPANCY_FILE.

Table 18 OCCUPANCY_FILE Field Definitions

Field(s)	Description	Data Type
LINK	Link identifier	Integer
DIR	Direction on the link	Integer
START	Start time	Hour_Clock
END	End time	Hour_Clock

Field(s)	Description	Data Type
LANE	Lane number on which the cell is located	String
OFFSET	Offset in meters of the cell along the link	Decimal
OCCUPANCY	Number of seconds vehicles occupy the cell	Integer

Table 19 shows a partial example of an OCCUPANCY_FILE. It was produced by the Simulator using the following parameters:

```
NEW_OCCUPANCY_FILE_1 results/Occupancy.txt
NEW_OCCUPANCY_INCREMENT_1 900 seconds
NEW_OCCUPANCY_TIME_RANGE_1 17:00..17:30
```

Table 19 OCCUPANCY_FILE Example

LINK	DIR	START	END	LANE	OFFSET	OCCUPANCY
4206	0	17:00	17:15	L1	810.0	8
4206	0	17:00	17:15	L1	817.5	12
4206	0	17:00	17:15	L1	825.0	12
4206	0	17:00	17:15	2	7.5	7
4206	0	17:00	17:15	2	15.0	7
4206	0	17:00	17:15	2	22.5	7
4213	0	17:01	17:01:20	1	315	11
4213	0	17:01	17:01:20	1	321.9	20

In Version 5, the effect of setting NEW_OCCUPANCY_MAX_FLAG to TRUE is unclear.

ORIGIN_LOCATION_FILE

NEW_ORIGIN_LOCATION_FILE
PathSkim
ORIGIN_LOCATION_FILE
PathSkim

When PathSkim calculates zone-to-zone skims, it is actually calculating multiple location-to-location travel times, distances and costs. The ORIGIN_LOCATION_FILE is an input, indicating which locations should be used to represent the origin zone. The NEW_ORIGIN_LOCATION_FILE is an output, indicating which locations were used by PathSkim's calculations.

An example of this output file is listed below:

```
12 55, 56
13 57, 58
14 59, 60
```

ORIGIN_ZONE_FILE

ORIGIN_ZONE_FILE
PathSkim

PARKING_FILE

NEW PARKING FILE

NewFormat

TransimsNet

PARKING_FILE

ArcNet

ArcPlan

ConvertTrips

Microsimulator

NewFormat

PathSkim

Router

TransimsNet

The PARKING_FILE contains parking lot information. It is a nested file that optionally includes cost, delay and the hours that a parking lot is open.

An example of a typical definition file is listed below:

```
TRANSIMS50, TAB_DELIMITED, 2, NESTED
PARKING, INTEGER, 1, 10
LINK, INTEGER, 2, 10
DIR, INTEGER, 3, 1
OFFSET, DOUBLE, 4, 8.1, METERS
TYPE, STRING, 5, 10, PARKING_TYPE
NUM_NEST, INTEGER, 6, 2, NEST_COUNT
NOTES, STRING, 7, 128
USE, STRING, 1, 128, USE_TYPE, NESTED
START, TIME, 2, 16, HOUR_CLOCK, NESTED
END, TIME, 3, 16, HOUR CLOCK, NESTED
SPACE, UNSIGNED, 4, 5, NO, NESTED
TIME_IN, TIME, 5, 12, SECONDS, NESTED
TIME_OUT, TIME, 6, 12, SECONDS, NESTED
HOURLY, UNSIGNED, 7, 5, CENTS, NESTED
DAILY, UNSIGNED, 8, 5, CENTS, NESTED
```

The location of the parking facility is given by the link, dir (0, 1 direction on the link) and the offset (distance along the link)

Possible values for the TYPE of parking facility include STREET, LOT, BOUNDARY, and PARKRIDE. Aliases for STREET include PRSTR, HISTR. Aliases for LOT include DRVWY. An alias for BOUNDARY is BNDRY and for PARKRIDE is PARKR.

The NUM_NEST is the number of records in the nest. For a PARKING_FILE generated by TransimsNet, this number is 0; there are no nested records. The Notes are open for user annotations, by default they contain a longer version of the type of parking facility.

Table 16 is a simple example of a PARKING_FILE that could be generated by TransimsNet.

Table 20 PARKING_FILE - Simple Example

PARKING	LINK	DIR	OFFSET	TYPE	NUM_NEST	NOTES	
USE	START	END	SPACE	TIME_IN	TIME_OUT	HOURLY	DAILY
1	1	0	558.2	BOUNDARY	0	External Station	
2	1	1	98.0	BOUNDARY	0	External Station	
44	19	1	1640.4	LOT	0	Parking Lot	
45	19	0	2460.6	LOT	0	Parking Lot	
46	19	1	820.2	LOT	0	Parking Lot	
47	20	0	820.2	LOT	0	Parking Lot	
48	20	1	2460.6	LOT	0	Parking Lot	
49	20	0	1640.4	LOT	0	Parking Lot	

Table 21 is an example of a PARKING_FILE with nested records. The nest includes number of spaces, time (in seconds) to enter or exit the facility, and the hourly and daily costs in cents.

Table 21 PARKING_FILE Example with Nested Records

PARKING	LINK	DIR	OFFSET	TYPE	NUM_NEST	NOTES	
USE	START	END	SPACE	TIME_IN	TIME_OUT	HOURLY	DAILY
1	1	0	558.2	BOUNDARY	0	External	
						Station	
2	1	1	98.0	BOUNDARY	0	External	
						Station	
44	19	1	1640.4	LOT	0	Parking Lot	
45	19	0	2460.6	LOT	1	Parking Lot	
ANY	0:00	27:00	100	20	40	50	200
46	19	1	820.2	LOT	3	Parking Lot	
AUTO	0:00	7:00	100	10	20	50	100
AUTO	7:00	17:00	100	20	40	100	400
AUTO	17:00	27:00	100	10	30	50	200
47	20	0	820.2	LOT	1	Parking Lot	
AUTO	0:00	27:00	50	20	20	50	300
48	20	1	2460.6	LOT	0	Parking Lot	
49	20	0	1640.4	LOT	0	Parking Lot	

PARKING_PENALTY_FILE

PARKING_PENALTY_FILE
Microsimulator
PathSkim
Router

The optional PARKING_PENALTY_FILE penalizes parking at certain facilities. It is a file with two columns: the parking lot ID, and the penalty.

PERFORMANCE DATA FILE

NEW_PERFORMANCE_DATA_FILE LinkSum

PERFORMANCE FILE

The PERFORMANCE FILE is an input to ArcPlan, LinkSum, and NewFormat

The NEW_PERFORMANCE_FILE is an output from NewFormat and the Simulator. The simulator may output multiple performance files, indexed by number (e.g., NEW_PERFORMANCE_FILE_1).

The PERFORMANCE_FILE is similar to the LINK_DELAY_FILE in that it reports link-based performance. Note that the first 6 fields in the PERFORMANCE_FILE are identical to those in the LINK_DELAY_FILE. This means that if a program such as LinkSum is looking for a performance file, it will accept a link delay file in its place.

A significant difference between the version 4 and version 5 LINK_DELAY_FILE / PEFORMANCE_FILE is that the Version 4 file had volume, an integer number of vehicles entering or exiting the link during a time period. The Version 5 file has flow, which is not necessarily integer (for example, a vehicle traversing half of the link would add 0.5 to the flow). The flow is defined as the distance traveled / link length, where travel units could be vehicles, persons, or passenger car equivalents.

The difference is that the link_based performance that comes from the Router is placed in a LINK_DELAY_FILE, while the link_based performance that comes from the Simulator is placed in a PERFORMANCE_FILE. The PERFORMANCE_FILE includes delay, density and queuing information. It is typically a nested file that also includes turning movement information.

A typical field definition (.def or .DEF) file is listed below:

TRANSIMS50, TAB_DELIMITED, 2, NESTED LINK, INTEGER, 1, 10 DIR, INTEGER, 2, 1 START, TIME, 3, 16, HOUR_CLOCK END, TIME, 4, 16, HOUR_CLOCK FLOW, DOUBLE, 5, 9.2, VEHICLES TIME, TIME, 6, 8.1, SECONDS

NCONNECT, INTEGER, 7, 2, NEST_COUNT
AVG_SPEED, DOUBLE, 8, 8.1, KPH
AVG_DELAY, TIME, 9, 8.1, SECONDS
AVG_DENSITY, DOUBLE, 10, 8.1, FLOW/LANE-KM
MAX_DENSITY, DOUBLE, 11, 8.1, FLOW/LANE-KM
TIME_RATIO, DOUBLE, 12, 8.3, RATIO
AVG_QUEUE, DOUBLE, 13, 8.1, STOPPED_FLOW
MAX_QUEUE, INTEGER, 14, 10, STOPPED_FLOW
NUM_FAIL, INTEGER, 15, 10, VEHICLES
OUT_LINK, INTEGER, 1, 10, NO, NESTED
OUT_FLOW, DOUBLE, 2, 9.2, VEHICLES, NESTED
OUT_TIME, TIME, 3, 8.1, SECONDS, NESTED

Table 18 lists the field definitions for the PERFORMANCE_FILE.

Table 22 PERFORMANCE_FILE Field Definitions

Field(s)	Description	Data Type
LINK	Link Number	Integer
DIR	Direction (0 = A->B, 1 = B->A)	Integer
START	Starting time of day	HOUR_CLOCK
END	Ending time of day	HOUR_CLOCK
FLOW	Distance traveled by vehicles on the link during the START-	Decimal
	END interval divided by the link length. Travel units could be	
	VEHICLES, PERSONS, or Passenger Car Equivalents. Default	
	is VEHICLES	
TIME	Travel time: link length x VHT / VMT. Default units are	Decimal
	seconds	
NCONNECT	The number of nested records	Integer
AVG_SPEED	Average speed of the vehicles using the link during the time	Decimal
	increment. Default units are meters/second	
AVG_DELAY	Average travel time minus free flow travel time. Default	Decimal
	units are seconds. Note that in uncongested conditions,	
	simulated speeds are often faster than free-flow, leading to	
	negative values for AVG_DELAY	
AVG_DENSITY	The average number of vehicles occupying the link during	Decimal
	each second of the time increment divided by the number of	
	lane meters (i.e., vehicles / (length * lanes))	
MAX_DENSITY	The maximum number of vehicles that occupied the link	Decimal
	during the time increment divided by the number of lane	
	meters (i.e., max vehicles / (length * lanes))	
TIME_RATIO	Average travel time during the time increment divided by	Decimal
	the free flow time	
AVG_QUEUE	Average number of stopped vehicles (Sum of the number of	Decimal
	seconds each vehicle is stopped on the link during the time	
	increment divided by the length of the time increment)	
MAX_QUEUE	The maximum number of stopped vehicles on	Integer
	the link during the time increment	

Field(s)	Description	Data Type
NUM_FAIL	Number of vehicles experiencing a cycle failure, i.e., number of vehicles that occupied the link when the signal phase turned green and were still on the link when the signal phase turned red	Integer
OUT_LINK	Link ID of the link leaving the end of LINK	Integer
OUT_FLOW	Number of vehicles turning onto OUT_LINK	Decimal
OUT_TIME	The average travel time on the link for vehicles making the turning movement (i.e., link length / (turn meters / turn seconds)) Default units are SECONDS	Decimal

Table 19 is an example of a PERFORMANCE_FILE populated with data:

Table 23 PERFORMANCE_FILE Example

				•										
LINK	DIR	START	END	FLOW	TIME	NCONNECT	AVG_SPEED	AVG_DELAY	AVG_DENSITY	MAX_DENSITY	TIME_RATIO	AVG_QUEUE	MAX_QUEUE	NUM_FAIL
OUT_LINK	OUT_FLOW	OUT_TIME												
4206	0	15:00	15:15	23.4	39.4	2	75.3	-11.9	0.6	2.4	0.769	0	2	0
11465	6.86	37.4												
4209	16.14	40.5												
4206	1	15:00	15:15	37.55	38.6	1	76.9	-12.7	1	3.6	0.753	0	0	0
4207	34.94	38.3												
4207	0	15:00	15:15	35.06	50	0	77.6	-17.1	0.9	2.8	0.745	0	0	0
4207	1	15:00	15:15	23.29	49.8	1	77.9	-17.3	0.6	1.9	0.742	0	0	0
4206	23.02	49.8												
4209	0	15:00	15:15	29.37	7.6	2	70.6	- 1 . 8	0.9	13.5	0.806	0	1	0
4213	20.39	7.3												
4212	5.05	8.5												
4209	1	15:00	15:15	34.32	9.8	2	54.8	0 . 4	1.3	10.1	1.039	0	1	0
4206	18.17	10.5												
11465	14.79	9.2												

PERSON_FILE

PERSON_FILE

NewFormat

This is the name of the Version 4 person file that is optionally used by NewFormat.

PHASING_PLAN_FILE

NEW_PHASING_PLAN_FILE
IntControl Default Control Key
NewFormat
PHASING_PLAN_FILE
ArcNet
IntControl Default Control Key
Microsimulator
NewFormat

The PHASING_PLAN_FILE is produced by IntControl and contains the link connections, link direction, detectors, movement, movements, and protections associated with a traffic signal phase. It uses nested movements records in order to improve record management and minimize coding mistakes. Each signal phase has multiple movements. Similarly, each timing plan has multiple phases. In Version 5, user help and improved linkages to traffic signal software (e.g., Synchro®) have been incorporated. In addition, the Node now corresponds to the controller number and direction code. Multi-node signals and cross-referencing are also new additions in Version 5 of TRANSIMS.

Table 24 is an example of a PHASING_PLAN_FILE populated with data:

Table 24 PHASING_PLAN_FILE Example

SIGNAL	PHASING	PHASE	MOVEMENTS	DETECTORS
Movement	Link	Dir	To_Link	Protection
1	1	1	4	1 3
EB_Left	4892	1	3164	Protected
WB_Left	4202	0	439	Protected
NB_Right	439	0	4202	Stop_Permit
SB_Right	3164	1	4892	Stop_Permit

Both the timing plan and the phasing plan are tightly integrated with the signal plan. What the phasing plan describes is analogous to answering the question of "where are we going?" while the timing plan focuses more on answering "how long until we get there?" Figure 14 illustrates this hierarchical relationship:

Figure 14 Hierarchical Relationships Among the Signalized Intersection Files

The definition file is listed below:

TRANSIMS50, TAB_DELIMITED, 2, NESTED
SIGNAL, INTEGER, 1, 10
PHASING, INTEGER, 2, 3
PHASE, INTEGER, 3, 3
MOVEMENTS, INTEGER, 4, 2, NEST_COUNT
DETECTORS, STRING, 5, 128
MOVEMENT, STRING, 1, 10, MOVEMENT_TYPE, NESTED
LINK, INTEGER, 2, 10, NO, NESTED
DIR, INTEGER, 3, 1, NO, NESTED
TO_LINK, INTEGER, 4, 10, NO, NESTED
PROTECTION, STRING, 5, 12, PROTECTION_TYPE, NESTED

Table 25 lists the field definitions for the PHASING_PLAN_FILE.

Table 25 PHASING_PLAN_FILE Field Definitions

Field(s)	Description	Default Units
SIGNAL	The signal field indicates the signal number and	INTEGER
	replaces the signal controller's functions	
PHASING	Where multiple phasing plans exist over the course	INTEGER
	of a day, this is the phasing plan number	
PHASE	The phase number; each phase has multiple	INTEGER
	movements associated with it	
MOVEMENTS	Number of associated movement with this phase	INTEGER
DETECTORS	The ID number of detectors related to this movement	STRING
	and separated by slashes (e.g., 1 2); this is required	
	only for actuated controls	
MOVEMENT	Part of the inner nest of fields, this field refers to the	STRING
	movement made at an intersection	
LINK	Incoming link	INTEGER
DIR	Direction on the incoming link	INTEGER
TO_LINK	Link ID number of the link that comes out of the	INTEGER
	intersection	
PROTECTION	Movement protection indicator	STRING

PLAN_FILE

NEW_PLAN_FILE is an output file, used in NewFormat, PathSkim, PlanCompare, PlanPrep, PlanSelect, and Router.

PLAN_FILE is an input file, used in ArcPlan, Simulator, NewFormat, PlanCompare, PlanPrep, PlanSelect, PlanSum and Router.

This is the name of the file of travel plans. Travel plans may be partitioned, in which case the file will have a numeric suffix, e.g., TripPlan.0, TripPlan.1.

The Version 5 plan file is significantly different from plan files in previous versions of TRANSIMS. Version 4 plan files must be converted, using NewFormat, for use in version 5.

All trip data and path legs are stored in a single nested record. This eliminates problems created by incomplete trips, and simplifies comparisons, update processing and sorting. The file stores detailed information about each component of the path. This provides greater accuracy and fidelity, eliminates data estimates and approximations, and facilitates more detailed analysis of congested locations. The result is a significantly larger plan file with more information. Binary format should be used in most production runs of TRANSIMS.

The Version 5 plan file is a nested file that includes a primary trip record and several nested path records for each leg on the path. The primary trip record includes:

- A full copy of the input trip file record
- Path departure and arrival times

- Trip travel time by mode (walk, drive, transit, wait, other)
- Total trip length, cost, and impedance

The nested path records include:

 Mode, ID type, facility ID, travel time, distance, cost and impedance for each leg / link on the path

The definition file is listed below:

TRANSIMS50, TAB_DELIMITED, 2, NESTED HHOLD, INTEGER, 1, 10 PERSON, INTEGER, 2, 5 TOUR, INTEGER, 3, 3 TRIP, INTEGER, 4, 3 START, TIME, 5, 16, HOUR CLOCK END, TIME, 6, 16, HOUR CLOCK DURATION, TIME, 7, 16, HOUR CLOCK ORIGIN, INTEGER, 8, 10 DESTINATION, INTEGER, 9, 10 PURPOSE, INTEGER, 10, 2 MODE, STRING, 11, 12, MODE TYPE CONSTRAINT, STRING, 12, 14, CONSTRAINT TYPE PRIORITY, STRING, 13, 10, PRIORITY TYPE VEHICLE, INTEGER, 14, 4 PASSENGERS, INTEGER, 15, 2 TYPE, INTEGER, 16, 4 DEPART, TIME, 17, 16, HOUR CLOCK ARRIVE, TIME, 18, 16, HOUR_CLOCK ACTIVITY, TIME, 19, 16, HOUR CLOCK WALK, TIME, 20, 12, SECONDS DRIVE, TIME, 21, 12, SECONDS TRANSIT, TIME, 22, 12, SECONDS WAIT, TIME, 23, 12, SECONDS OTHER, TIME, 24, 12, SECONDS LENGTH, INTEGER, 25, 10, METERS COST, FIXED, 26, 6.1, CENTS IMPEDANCE, UNSIGNED, 27, 10, IMPEDANCE NUM_LEGS, INTEGER, 28, 5, NEST_COUNT LEG_MODE, STRING, 1, 12, MODE_TYPE, NESTED LEG_TYPE, STRING, 2, 8, ID_TYPE, NESTED LEG_ID, INTEGER, 3, 10, NO, NESTED LEG_TIME, TIME, 4, 12, SECONDS, NESTED LEG LENGTH, UNSIGNED, 5, 5, METERS, NESTED LEG COST, FIXED, 6, 6.1, CENTS, NESTED LEG IMPED, INTEGER, 7, 10, IMPEDANCE, NESTED

Table 26 lists the field definitions for the PLAN_FILE:

Table 26 PLAN_FILE Field Definitions

Field(s)	Description	Default Units		
HHOLD	Household Number (from the trip file)			
PERSON	Person Number (from the trip file)			
TOUR	Tour Number (from the trip file)			
TRIP	Trip Number (from the trip file)			
START	Trip start time (from the trip file)	HOUR_CLOCK		
END	Trip end time (from the trip file)	HOUR CLOCK		
DURATION	Activity duration at the end of this trip (used in tours,	HOUR CLOCK		
	otherwise 0) (from the trip file)			
ORIGIN	Origin location (from the trip file)			
DESTINATION	Destination location (from the trip file)			
PURPOSE	Trip purpose (from the trip file)			
MODE	Mode (from the trip file). Options include WALK, BIKE, DRIVE, RIDE, TRANSIT, PNR_OUT, PNR_IN, KNR_OUT, KNR_IN, TAXI, OTHER, HOV2, HOV3, HOV4			
CONSTRAINT	Timing constraint (from the trip file) NONE, START,	CONSTRAINT_TY		
	ARRIVE, FIXED, DURATION, PASSENGER	PE		
PRIORITY	Priority for the activity (from the trip file) LOW, MEDIUM, HIGH, CRITICAL	PRIORITY_TYPE		
VEHICLE	Vehicle number (from the trip file) (generally 1)			
PASSENGERS	Passengers in the vehicle (from the trip file)			
TYPE	Vehicle type (from the trip file)			
DEPART	Departure time (from the router)	HOUR_CLOCK		
ARRIVE	Arrival time	HOUR CLOCK		
ACTIVITY	Duration of the activity	HOUR CLOCK		
WALK	Time spent walking	SECONDS		
DRIVE	Time spent driving	SECONDS		
TRANSIT	Time spent in public transit	SECONDS		
WAIT	Time spent waiting	SECONDS		
OTHER	Time spent in other activities	SECONDS		
LENGTH	Distance traveled	METERS		
COST	Out of pocket cost	CENTS		
IMPEDANCE	Total impedance	IMPEDANCE		
NUM LEGS	Number of legs in the trip	NEST_COUNT		
LEG MODE	(nested field) Mode for the leg	MODE TYPE		
LEG TYPE	(nested field) Type of leg. LOCATION, PARKING, LINK	ID TYPE		
LEG_ID	(nested field) Identifier for the leg, a location or link	NO		
	id (Similar to version 4, if a link is traversed in the B-			
	>A direction, it is given a minus sign)			
LEG TIME	(nested field) Time to traverse the leg	SECONDS		
LEG_LENGTH	(nested field) Distance	METERS		
LEG COST	(nested field) Out of pocket cost CENTS			
LEG IMPED	(nested field) Total Impedance	IMPEDANCE		

The Primary Trip record (Table 27) contains two types of data. The first 16 columns are a copy of the input trip record; the last 12 columns are generated by the router, including trip departure and arrival time, length, cost and impedance.

Table 27 PLAN_FILE Example: Primary Trip Record

1	пногр
1	PERSON
	TOUR
1	TRIP
7:18:02	START
7:33:15	END
4:58:07	DURATION
46	ORIGIN
54	DESTINATION
1	PURPOSE
DRIVE	MODE
NONE	CONSTRAINT
MEDIUM	PRIORITY
1	VEHICLE
0	PASSENGERS
1	TYPE
7:18:02	DEPART
7:21:27	ARRIVE
4:58:07	ACTIVITY
45.2	WALK
160	DRIVE
0	TRANSIT
0	WAIT
0	OTHER
2320	LENGTH
0.0	COST
2504	IMPEDANCE
10	NUM LEGS

The path records (Table 28) contain one record for each leg of the path. Each record contains the following information:

- Mode for the leg
- Type of leg, typically a link in the network, a parking location, or an activity location
- Leg identifier. Similar to version 4, if a link is traversed in the B->A direction, it is given a minus sign.
- Time to traverse the leg, in seconds
- Length of the leg, in meters
- Cost of the leg in cents (for example, a parking fee or toll would be placed here)
- Total leg impedance

Table 28 PLAN_FILE Example: Path Records

LEG_MODE	LEG_TYPE	LEG_ID	LEG_TIME	LEG_LENGTH	LEG_COST	LEG_IMPED
WALK	LOCATION	46	15.2	15	0.0	304
OTHER	PARKING	46	0	0	0.0	0
DRIVE	LINK	-22	15.5	185	0.0	155
DRIVE	LINK	19	37.6	525	0.0	376
DRIVE	LINK	11	83.4	1000	0.0	834
DRIVE	LINK	12	5.7	110	0.0	57
DRIVE	LINK	17	15.1	400	0.0	151
DRIVE	LINK	-26	2.7	70	0.0	27
OTHER	PARKING	54	0	0	0.0	0
WALK	LOCATION	54	30	30	0.0	600

POCKET_FILE

Names: POCKET_FILE, NEW_ POCKET_FILE

Used In:

ArcNet
ArcPlan
ArcSnapshot
IntControl (Required)
Microsimulator
NewFormat
PathSkim
Router
TransimsNet

This is the list of pocket lanes in the network.

A typical field definition (.def or .DEF) file is listed below:

TRANSIMS50, TAB_DELIMITED, 1 LINK, INTEGER, 1, 10 DIR, INTEGER, 2, 1 TYPE, STRING, 3, 12, POCKET_TYPE LANES, UNSIGNED, 4, 2 LENGTH, DOUBLE, 5, 8.1, METERS OFFSET, DOUBLE, 6, 8.1, METERS NOTES, STRING, 7, 128

A pocket lane is an auxiliary lane that approaches or leaves an intersection. It is associated with a link, direction, node and movement. If a pocket is only available part-time (for example, if parking is permitted at off-peak times), that can be handled via a lane use restriction. Table 29 lists the field definitions for the POCKET_FILE.

Table 29 POCKET_FILE Field Definitions

Field(s)	Description	Use	Default Units	
LINK	The link number (an integer)	Req.		
DIR	Direction of the link AB=0, BA=1 Req.			
TYPE	Specifies the pocket type (e.g., Left_Turn, Left_Merge, Right_Turn, Right_Merge). Turn pockets are those approaching an intersection; merge pockets are those leaving an intersection.		Note 1	
LANES	The number of pockets associated with the above LINK & DIR	Req.		
LENGTH	Length of the pocket		m	
OFFSET	Specifies the length of the pocket offset Req		m	
NOTES	Character string for user notes Opt.			

Note 1: Pocket types include LEFT_TURN, RIGHT_TURN, LEFT_MERGE, RIGHT_MERGE, POCKET_LANE, and AUX_LANE

Figure 15 illustrates a small example of using pocket lanes.

Figure 15 Pocket Lanes

Table 30 lists the POCKET_FILE fields used in this example

Table 30 POCKET_FILE Example

LINK	DIR	TYPE	LANES	LENGTH	OFFSET	NOTES
7	0	LEFT_TURN	1	50.0	0.0	Left Turn Lane
13	0	LEFT_TURN	1	100.0	0.0	Left Turn Lane
16	0	RIGHT_TURN	1	200.0	0.0	Pocket Lane for Right off-ramp

PROBLEM_FILE

The NEW_PROBLEM_FILE is output by the Router or Simulator to indicate trips that could not be routed or simulated. Other programs that use NEW_PROBLEM_FILE as output include NewFormat and PathSkim.

Programs that use PROBLEM_FILE as input include ArcPlan, NewFormat, and ProblemSelect

Problem codes output by the router and simulator are listed in Table 25. The first column is the problem number, the second is the code that is used in the TRANSIMS source code; the third is the problem name as shown in the problem file; the fourth is the most typical meaning.

Table 31 Problem Codes

No.	Code	Name	Most Typical Meaning
0	TOTAL_PROBLEM	Total	
1	PATH_PROBLEM	Path Building	No feasible path between the origin and destination. It could be caused by lane connectivity or one-way street conditions or by a network coding error.
2	TIME_PROBLEM	Time Schedule	This message indicates that the trip travel time exceeded the upper bound of the activity start time. It could be caused by excessive congestion or no path options.
3	ZERO_PROBLEM	Zero Length	The zero-node error occurs when the origin and the destination activity locations lie on the same link, at zero distance
4	TYPE_PROBLEM	Vehicle Type	The origin parking lot is located on a link that does not permit the corresponding vehicle type.

No.	Code	Name	Most Typical Meaning
			This most often occurs when autos are loaded to
			transit only links or trucks to auto only links.
5	DIST_PROBLEM	Path Circuity	A circuity error indicates that the path building
			process was limited by one or more of the circuity
			parameters. It either means that a path does not
			exist or the path is highly circuitous. The user can
			set the maximum circuity ratio parameter to zero
			to eliminate these messages. If a path does not
			exist, a path building or time schedule message will be generated.
6	MODE_PROBLEM	Travel Mode	The Router records a travel mode error when the
0	IVIODE_PROBLEIVI	Travel Mode	mode on the activity file cannot be built. This
			generally means that the transit, walk, or bike
			networks have not been enabled.
7	ACCESS_PROBLEM	Vehicle Access	An access error is generated when the vehicle
-			listed in the activity file is not found in the vehicle
			file or when the vehicle is located at a parking lot
			that is not attached to the activity location with a
			process link.
8	WALK_PROBLEM	Walk Distance	This message is generated when the cumulative
			walk distance required by the path exceeds the
			MAX_WALK_DISTANCE parameter.
9	WAIT_PROBLEM	Wait Time	This message indicates that potential transit
			routes exist, but the wait time required to board
			the routes exceed the MAX_WAIT_TIME
			parameter. In the Simulator, a wait time problem
			is generated when a vehicle remains in the same cell unable to advance for an amount of time
			greater than the MAX_WAIT_TIME key. The most
			frequent cause of this problem is excessive
			congestion. It can also be caused by incorrect
			signal coding that does not provide a phase for all
			the eligible movements.
10	LINK_PROBLEM	Walk Access	This message is generated when the link
			associated with the origin or destination activity
			location does permit travel by the chosen mode.
			It most often indicated a walk or bike access
			restriction at one of the trip ends.
11	LOAD_PROBLEM	Load Time	
12	PARK_PROBLEM	Park-&-Ride Lot	In order to building a park-&-ride trip (mode 5),
			the must be a parking lot designated with the
			PARKRIDE style in the general proximity of the
			trip origin. The MAX_PARK_RIDE_PERCENTAGE parameter determines how far away from the
			origin the software can search for possible park-
			&-ride lots. If no lots are found within the search
			&-nue iots, il no iots are iouna within the sealth

No.	Code	Name	Most Typical Meaning
			area, the park-&-ride lot error message is
			recorded.
13	BIKE_PROBLEM	Bike Distance	This message is generated when the bicycling
			distance exceeds the MAX_BICYCLE_DISTANCE
			parameter.
14	DEPARTURE_PROBLEM	Departure Time	When a vehicle cannot start its trip at the time
			specified in the trip file plus the
			amount of slack time defined by the
			MAX_DEPARTURE_TIME_VARIANCE, a departure
			time problem is generated. The most frequent
			cause of this problem is excessive congestion
			close to the starting parking lot, which prevents
15	ADDIVAL DDODLEM	Arrival Time	the vehicle from being loaded onto the first link. If a vehicle is still traveling at the time it is
13	ARRIVAL_PROBLEM	Affival fillie	scheduled to arrive at its destination
			plus the slack time defined by the
			MAX_ARRIVAL_TIME_VARIANCE key, it will be
			removed from the network, and an arrival time
			problem error will be generated.
			The most frequent cause of this type of problem
			is congestion. You can allocate
			more time for the vehicle to finish its trip by
			adjusting the value for the
			END_TIME_CONSTRAINT key in the Router.
16	LINK_ACCESS_PROBLEM	Link Access	
17	CONNECT_PROBLEM	Link Connection	This message is generated when no lane
			connectivity exists between two successive links
			of the vehicle's path. This most often occurs
			when the network has been changed, but the
			travel plans have not been rebuilt. You should
			inspect the location generating the problem and
			restore the lane connectivity or re-route the
18	PARKING_PROBLEM	Parking Access	traveler. This problem message is generated when a
10	I AINNINO_FRODLEIN	r al Killig Access	vehicle is not able to move from the parking lot to
			the first link in its journey. You should check that
			the link does not restrict vehicles of the particular
			vehicle type from using the link.
19	MERGE_PROBLEM	Lane Merging	5
20	LANE_PROBLEM	Lane Changing	
21	TURN_PROBLEM	Turning Speed	
22	POCKET_PROBLEM	Pocket Merge	
23	SPACING_PROBLEM	Vehicle Spacing	
24	CONTROL_PROBLEM	Traffic Control	
25	USE_PROBLEM	Access	
		Restriction	

No.	Code	Name	Most Typical Meaning
26	STOP_PROBLEM	Transit Stop	
27	LOCATION_PROBLEM	Activity Location	
28	PASSENGER_PROBLEM	Vehicle	
		Passenger	
29	DURATION_PROBLEM	Activity Duration	
30	KISS_PROBLEM	Kiss-&-Ride Lot	
31	VEHICLE_PROBLEM	Vehicle ID	
32	SORT_PROBLEM	Data Sort	
33	WALK_LOC_PROBLEM	Walk Location	
34	BIKE_LOC_PROBLEM	Bike Location	
35		Transit Location	
	TRANSIT_LOC_PROBLEM		
36	MATCH_PROBLEM	Person Match	
37	CONSTRAINT_PROBLEM	Schedule	
		Constraint	
38	BOARDING_PROBLEM	Transit Capacity	
39	DWELL_PROBLEM	Transit Dwell	
40	TRANSFER_PROBLEM	Number of	
		Transfers	
41	LOCAL_PROBLEM	Local Facility	

A router PROBLEM_FILE includes one line for each problem trip. This line includes the following columns:

- Problem number
- Columns to identify the trip, including HHOLD, PERSON, TOUR, TRIP, START, END, DURATION, ORIGIN, DESTINATION, PURPOSE, MODE, CONSTRAINT, PRIORITY, VEHICLE, PASSENGERS, TYPE
- A notes column that contains the problem name (e.g., Path Building)

A simulator PROBLEM_FILE is similar, with one line per problem trip (Table 32). This line includes the following columns:

- Problem number
- Columns to identify the trip, including HHOLD, PERSON, TOUR, TRIP, START, END, DURATION, ORIGIN, DESTINATION, PURPOSE, MODE, CONSTRAINT, PRIORITY, VEHICLE, PASSENGERS, TYPE
- Time of day
- Link
- Direction for the link
- Lane
- Offset (within the link)
- Route (for transit)
- A notes column that contains the problem name (e.g., Traffic Control)

Table 32 PROBLEM_FILE Example

PROBLEM	TRIP	TIME	LINK	DIR	LANE	OFFSET	ROUTE	NOTES
	INFORM							
	ATION							
24	HHOLD,	0:04:12	7	1	2	1113.7	0	Traffic Control
	etc.							
23		4:38:20	1	0	L1	183.7	0	Vehicle Spacing
24		4:39:26	1	0	L1	191.2	0	Traffic Control
23		4:42:25	11	1	1	978.7	0	Vehicle Spacing

REPORT_FILE

Execution Service Keys

Used in nearly every TRANSIMS program

The REPORT_FILE name is optional. If a file name is not provided, the program automatically creates a report file name based on the input control file name. The REPORT_FILE will overwrite an existing file with the same name if the Report Flag key is False or not specified.

RIDERSHIP_FILE

The NEW_RIDERSHIP_FILE is an output from NewFormat and the Simulator. The RIDERSHIP_FILE is an input to NewFormat and Validate. The RIDERSHIP_FILE summarizes the boardings and alightings at each stop on each route based on the scheduled and actual departure time for each run.

A typical field definition (.def or .DEF) file is listed below:

```
TRANSIMS50, TAB_DELIMITED, 1
MODE, STRING, 1, 16, TRANSIT_TYPE
ROUTE, INTEGER, 2, 10
RUN, INTEGER, 3, 5
STOP, INTEGER, 4, 10
SCHEDULE, TIME, 5, 16, HOUR_CLOCK
TIME, TIME, 6, 16, HOUR_CLOCK
BOARD, UNSIGNED, 7, 5
ALIGHT, UNSIGNED, 8, 5
LOAD, UNSIGNED, 9, 5
FACTOR, DOUBLE, 10, 5.2, RATIO
```

Table 33 lists the field definitions for the RIDERSHIP FILE.

Table 33 RIDERSHIP_FILE Field Definitions

Field(s)	Description	Data Type
MODE	An optional mode string indicating the type of transit, e.g.,	String
	BUS	
ROUTE	Route number (a required field)	Integer
RUN	Run (or trip) number (a required field)	Integer
STOP	Stop number (a required field)	Integer
SCHEDULE	Scheduled departure time	Hour_Clock
TIME	Actual departure time	Hour_Clock
BOARD	Number of persons boarding at this stop (a required field)	Integer
ALIGHT	Number of persons alighting at this stop (a required field)	Integer
LOAD	Number of persons on-board the vehicle as it leaves this	Integer
	stop (an optional field)	
FACTOR	Ratio of LOAD to vehicle capacity (Load Factor) (an optional	Decimal
	field)	

Table 34 is an example of a RIDERSHIP_FILE populated with data: [There appears to be a bug in the factor calculation coming out of NewFormat. A bus should have a capacity of 52, but this calculation is behaving as though it is 5.2]

Table 34 RIDERSHIP_FILE Example

MODE	ROUTE	RUN	STOP	SCHEDULE	TIME	BOARD	ALIGHT	LOAD	FACTOR
BUS	100	3	2	0:20:12	0:20:15	2	0	2	0.40
BUS	100	3	3	0:20:23	0:20:23	0	0	2	0.40
BUS	100	3	4	0:20:34	0:20:38	2	0	4	0.80
BUS	100	3	5	0:20:45	0:20:53	2	0	6	1.20
BUS	100	3	6	0:20:56	0:21:09	2	0	8	1.50
BUS	100	3	7	0:21:11	0:22	1	0	9	1.70
BUS	100	3	8	0:21:22	0:22:08	0	0	9	1.70
BUS	100	3	9	0:21:33	0:22:23	2	0	11	2.10
BUS	100	3	10	0:21:44	0:22:38	2	0	13	2.50
BUS	100	3	11	0:21:55	0:22:51	1	0	14	2.70
BUS	100	3	12	0:22:06	0:23:09	3	0	17	3.30
BUS	100	3	13	0:22:20	0:23:40	3	1	19	3.70
BUS	100	3	14	0:22:31	0:23:55	2	0	21	4.00
BUS	100	3	15	0:22:42	0:24:08	1	0	22	4.20
BUS	100	3	16	0:22:53	0:24:30	2	3	21	4.00
BUS	100	3	17	0:23:04	0:24:38	0	0	21	4.00
BUS	100	3	18	0:23:15	0:24:55	0	2	19	3.70
BUS	100	3	19	0:23:29	0:25:25	1	7	13	2.50
BUS	100	3	20	0:23:51	0:25:44	0	1	12	2.30

MODE	ROUTE	RUN	STOP	SCHEDULE	TIME	BOARD	ALIGHT	LOAD	FACTOR
BUS	100	3	21	0:24:13	0:26:06	2	0	14	2.70
BUS	100	3	22	0:24:38	0:26:40	1	6	9	1.70

ROUTE_NODES_FILE

NEW_ROUTE_NODES_FILE
NewFormat
ROUTE_NODES_FILE
ArcNet

The network route nodes key is optional. It specifies the name of the input route nodes file used by the TransitNet program to synthetically generate the TRANSIMS transit network. This file is created by the user or generated by the Emme2Route or TPPlusRoute programs. The full path and file name for the ROUTE_NODES_ILE is constructed by appending the value of this key to the value of the DIRECTORY/NEW_DIRECTORY key(s). This key is only read if the route header is also provided and read.

SELECTION_FILE

NEW_SELECTION_FILE is an output from NewFormat, PlanCompare, PlanSelect, ProblemSelect, and RandomSelect

SELECTION_FILE is an input to ArcPlan, NewFormat, PathSkim, PlanCompare, PlanPrep, PlanSum, ProblemSelect, Router, and TripPrep

The SELECTION_FILE key is appended to the value of the PROJECT_DIRECTORY key to identify the full path to a list of households and trips that will be processed by the router. A sample SELECTION_FILE is shown below (Table 35). It indicates the household, person, tour, trip and, for parallel processing applications, the partition of the router that will be used.

Table 35 SELECTION FILE Example

	table of delication of the state of the stat						
HHOLD	PERSON	TOUR	TRIP	PARTITION			
1	1	1	1	0			
1	1	1	2	0			
1	1	1	3	0			
1	1	1	4	0			
1	1	1	5	0			
1	1	2	1	0			
1	1	2	2	0			
1	1	2	3	0			
100	1	1	1	0			
101	1	1	1	0			
102	1	1	1	1			

HHOLD	PERSON	TOUR	TRIP	PARTITION
103	1	1	1	1
104	1	1	1	1
105	1	1	1	0
106	1	1	1	1
107	1	1	1	1
108	1	1	1	0
109	1	1	1	0

SHAPE_FILE

Names: SHAPE_FILE, NEW_SHAPE_FILE

Used In:

ArcNet

ArcPlan

Arc Snap shot

ConvertTrips

IntControl

LocationData

NetPrep

NewFormat

TransimsNet

This is the name of the TRANSIMS shape file within the network directory, which provides plain text lists of shape points for links in the network. The full path and name for the SHAPE_FILE is constructed by appending the value of this key to the value of the PROJECT_DIRECTORY key.

A typical field definition (.def or .DEF) file is listed below:

TRANSIMS50, TAB_DELIMITED, 2, NESTED LINK, INTEGER, 1, 10
POINTS, INTEGER, 2, 4, NEST_COUNT NOTES, STRING, 3, 128
X_COORD, DOUBLE, 1, 14.1, FEET, NESTED Y_COORD, DOUBLE, 2, 14.1, FEET, NESTED

Table 36 is an example of a SHAPE_FILE populated with data. After the two-line header, the third line contains the link number and the number of shape points (n) for that link. The next n lines contain the X and Y coordinates of the shape points. The process is then repeated for the next link:

Table 36 SHAPE_FILE Example

LINK	POINTS
X_COORD	Y_COORD
62	10
6532.8	7935.0
6497.4	7870.7
6439.3	7832.0
6361.9	7822.2
6287.7	7838.2
6226.4	7883.5
6197.5	7938.3
6200.4	7996.4
6235.9	8070.5
6310.4	8109.2
63	11
6816.6	8115.8
6880.9	8093.2
6922.9	8044.6
6948.8	7977.0
6942.2	7912.7
6903.5	7854.6
6842.2	7815.9
6768.0	7802.8
6684.4	7822.2
6632.5	7870.7
6590.0	7934.0

Table 37 and Table 38 provide information on the links and nodes corresponding to the above SHAPE_FILE.

Table 37 Information for Links 62 and 63

Link	Node A	Node B	Length	Bearing A	Bearing B	Туре
62	123	132	656.2	196	73	RAMP
63	133	123	656.2	103	346	RAMP

Table 38 Information for Nodes 123, 132, 133

Node	X_Coord	Y_Coord
123	6561.7	8038
132	6397.6	8136.5
133	6725.7	8136.5

This file indicates that link 62 and link 63 should be drawn as follows: Start at Node A for the link, go through the points in the shape file, end at Node B.

The LINK_FILE indicates that link 62 runs from node 123 to 132, and that link 63 runs from node 133 to 123. The node file gives the location of these nodes. Figure 16 illustrates the end result of part of a cloverleaf freeway interchange:

Figure 16 Links, Nodes and Shape Points

Normally, TRANSIMS shape files are not created by hand, but are generated from ArcView shapefiles by programs such as NetPrep. However, it might be necessary to clean-up a TRANSIMS shapefile by hand. In this case shape points are added, deleted or corrected. The total number of shapepoints for the link must then also be checked and updated.

Although shapefiles are not absolutely necessary to run TRANSIMS, they are helpful for two reasons:

- They enable a more realistic depiction of the network in a GIS.
- They ensure that TransimsNet has the correct connection angles between links when generating connections within a network.

SIGN_FILE

NEW_SIGN_FILE

IntControl Default Control Key NewFormat TransimsNet Default Control Key

SIGN_FILE

ArcNet
IntControl Default Control Key
Microsimulator
NewFormat
TransimsNet Default Control Key

The SIGN_FILE specifies the location and type of all unsignalized intersection controls (e.g., Stop, Yield, None).

SIGNAL_FILE

NEW SIGNAL FILE

IntControl Default Control Key NewFormat TransimsNet Default Control Key

SIGNAL FILE

ArcNet
IntControl Default Control Key
Microsimulator
NewFormat
TransimsNet Default Control Key

The SIGNAL_FILE is among the most important network/supply-side files for the majority of TRANSIMS implementations (e.g., a transit-only model and simulation, or a highway network with only signs and no signals are the only exceptions). This file plays an integral part in defining signalized nodes at synthetically generated and/or manually indicated highway network signalized intersections. More importantly, it is used directly in combination with three other interdependent/relational network files also created by IntControl (specifically, the Phasing Plan, Timing Plan, and Detector files) to describe signalized intersections at the fine level of detail required for microsimulation.

Starting with Version 5 of TRANSIMS, the Signalized node field (Signal) represents the controller number as well, and consequently replaces the functions of the Version 4 Signal Coordinator file. Consequently, the SIGNAL_CONTROLLER_FILE is not used in TRANSIMS 5, and each node in the SIGNAL_FILE controls a list of nodes. The records are nested time period records with end times. The purpose in using nested fields is to improve record management and minimize network coding mistakes. Also, the Timing and Phasing ID numbers are now re-useable, as are the PHASING_PLAN_FILE and TIMING_PLAN_FILE.

Any time a new SIGNAL_FILE is generated, it is imperative to review the IntControl output files for network coding errors (preferably via both graphical/GIS software and text file review). This is strongly recommended because IntControl typically requires several re-iterations to achieve accurate and desired sign and signal placement on the network. A KEEP_NODE_FILE or DELETE_NODE_FILE may be necessary to prevent pruning/collapsing of important nodes by the TRANSIMS synthetic network generation algorithm. Edits to the Sign and Signal Warrants generated by TransimsNet may also be necessary, followed by re-running IntControl using the updated warrant files. Directly editing the

SIGNAL_FILE (or SIGN_FILE) to correct network coding errors is not recommended due to the associated file interdependencies. Manual review and sanity checks of intermediate outputs are both important for many TRANSIMS 5 files, particularly the SIGNAL_FILE and its dependencies (PHASING _PLAN _FILE, TIMING_PLAN_FILE, and DETECTOR_FILE).

Common coding issues may relate to incorrect network coding (file content and/or parameter value aberrations or inconsistencies). Other potential issues include unexpected placement of signals by TRANSIMS. In addition, residual artifacts may be present on the network following an update or delete signalized intersection-type operation (or delete node or link operation, etc.). For instance, a DETECTOR_FILE record may be found at a previously signalized node, but not an associated Signal, Phasing Plan, or Timing Plan entry associated with the node prior to the update or delete operation. If it is later decided to place a Sign file entry (via the SIGN_WARRANT_FILE) at that intersection/node, a sign-signal conflict error may result.

Since most MPOs do not have the highly detailed intersection-level data required by TRANSIMS in their regional planning models, the network coder will have to perform some sanity checks on the results, at intermediate and final breakpoints in the overall network generation process.

Multi-node signal coordination is another feature new to TRANSIMS 5. Additionally, changes in barrier, ring, and position codes are employed to enhance compatibility with traffic signal software. Also, Detectors now include use types (e.g., buses or trains).

The SIGNAL_FILE consists of several fields, and uses nested file structure. A typical field definition (.def or .DEF) file for the Version 5 SIGNAL_FILE is listed below:

TRANSIMS50, TAB_DELIMITED, 2, NESTED SIGNAL, INTEGER, 1, 10 GROUP, INTEGER, 2, 4 TIMES, INTEGER, 3, 2, NEST_COUNT NODES, STRING, 4, 128 START, TIME, 1, 16, HOUR_CLOCK, NESTED END, TIME, 2, 16, HOUR_CLOCK, NESTED TIMING, INTEGER, 3, 3, NO, NESTED PHASING, INTEGER, 4, 3, NO, NESTED NOTES, STRING, 5, 128, NO, NESTED

Table 39 lists the field definitions for the SIGNAL FILE:

Table 39 SIGNAL_FILE Field Definitions

Field(s)	Description	Default Units
SIGNAL	The signal field indicates the signal number and	INTEGER
	replaces the signal controller's functions	
GROUP	The signal group number	INTEGER
TIMES	The total number of timing plans associated with a	INTEGER
	signal group	
NODES	A list of nodes separated using ' '	STRING
START	Start time for a signal period; multiple time periods,	TIME
	each with a unique set of associated, grouped	
	parameters may be defined in the control file	
END	End time for a signal period; multiple time periods,	TIME
	each with a unique set of associated, grouped	
	parameters may be defined in the control file	
TIMING	The timing plan associated with a signal group	INTEGER
PHASING	Where multiple phasing plans exist over the course	INTEGER
	of a day, this is the phasing plan number	
NOTES	A character string for user annotations	STRING

Of particular note is that the Timing field above corresponds and links to the Timing Plan. Also, the Phasing field noted above similarly interconnects with the Phasing Plan.

The entity-relationship diagram in Figure 17 illustrates the rather complex nested file structure that interconnects the Signal, Phasing Plan, and Timing Plan file records. TRANSIMS 5 uses flat files; however, these Signal-centric files are related to each other to varying extents by means of a unique field or combination of fields that can be considered a primary key. Note that this is not an official version, but rather, abstracted:

Figure 17 Entity-Relationship Diagram - Signal File Dependencies

Table 40 is an example of a SIGNAL_FILE populated with data:

Table 40 SIGNAL_FILE Example

SIGNAL	GROUP	TIMES	NODES
Start	End	Timing	Phasing
1	2	5	101 102 103
0:00	6:00	1	1
6:00	9:30	2	1
9:30	16:00	1	1
16:00	19:00	3	1
19:00	27:00	1	1

SKIM_FILE

NEW_SKIM_FILE is written by NewFormat PathSkim SKIM_FILE is read by ConvertTrips NewFormat A SKIM_FILE contains the skimmed travel times and impedances for various origin-destination pairs and time periods. It is used by ConvertTrips to provide initial travel times for a set of newly generated trips.

Features include the following:

- Skim files include OD size and time period meta-data
- Partitioned time periods or merged time periods
- Location or zone-based origins and destinations
- Total travel time or time components (walk, drive, transit, wait, other)
- Trip length, cost, and impedance
- User-specified output units (e.g., minutes, miles)

Definitions for the SKIM_FILE columns are listed below:

ORIGIN - The origin location index (zone, location or district)

DESTINATION - The destination location index (zone, location or district)

PERIOD - Time period for this skim¹

COUNT - Number of location/time period pairs considered for this origin-destination pair

WALK - Walking time, typically in seconds

DRIVE - Driving time, typically in seconds

OTHER - Other time, typically in seconds

LENGTH - Length of the trip, typically in meters

COST - Out of pocket cost of the trip in cents

IMPEDANCE – Total impedance for the trip

A typical field definition (.def or .DEF) file is listed below:

ORIGIN, UNSIGNED, 1, 5, ZONES
DESTINATION, UNSIGNED, 2, 5, ZONES
PERIOD, UNSIGNED, 3, 3
COUNT, INTEGER, 4, 5
WALK, TIME, 5, 12, SECONDS
DRIVE, TIME, 6, 12, SECONDS
OTHER, TIME, 7, 12, SECONDS
LENGTH, INTEGER, 8, 10, METERS
COST, INTEGER, 9, 5, CENTS
IMPEDANCE, INTEGER, 10, 10, IMPEDANCE

Table 41 is an example of a SKIM_FILE (tab-delimited) populated with data. The first line gives the number of origins, destinations and the time period span, e.g., NUM_ORG=2; NUM_DES=1; PERIODS=6:00..6:15, 8:00..8:15, 8:15..8:30, 8:30..9:00

¹ an integer that corresponds to SKIM_TIME_PERIODS or SKIM_TIME_INCREMENT

Table 41 SKIM_FILE Example

ORIGIN	DESTINATION	PERIOD	COUNT	WALK	DRIVE	OTHER	LENGTH	COST	IMPEDANCE
3	54	0	1	45	167	0	3360	0	2578
4	54	0	1	45	167	0	3360	0	2578
3	54	1	1	45	176	0	3360	0	2666
4	54	1	1	45	176	0	3360	0	2666
3	54	2	1	45	181	0	3360	0	2710
4	54	2	1	45	181	0	3360	0	2710
3	54	3	2	45	180	0	3360	0	2701
4	54	3	2	45	180	0	3360	0	2701

SNAPSHOT_FILE

NEW_SNAPSHOT_FILE

ArcSnapshot NewFormat

Simulator

SNAPSHOT_FILE

ArcSnapshot

NewFormat

The SNAPSHOT_FILE, output by the simulator, lists the link direction, offset, lane, and speed of each vehicle at specified time points (e.g., every 5 minutes).

A typical field definition (.def or .DEF) file is listed below:

```
TRANSIMS50, TAB_DELIMITED, 1
HHOLD, INTEGER, 1, 10
VEHICLE, INTEGER, 2, 4
TIME, TIME, 3, 16, HOUR_CLOCK
LINK, INTEGER, 4, 10
DIR, INTEGER, 5, 1
LANE, STRING, 6, 4, LANE_ID_TYPE
OFFSET, DOUBLE, 7, 8.1, METERS
SPEED, DOUBLE, 8, 8.1, KPH
PASSENGERS, INTEGER, 9, 4
TYPE, INTEGER, 10, 4, VEHICLE_TYPE
```

Table 42 lists the field definitions for the SNAPSHOT FILE.

Table 42 SNAPSHOT_FILE Field Definitions

Field(s)	Description	Data Type
HHOLD	Household identifier	Integer
VEHICLE	Vehicle identifier	Integer
TIME	Time of day	Hour_Clock
LINK	Link identifier	Integer
DIR	Direction on the link	Integer
LANE	Lane identifier (LANE_ID_TYPE)	String
OFFSET	Offset along the link (default units are meters)	Decimal
SPEED	Speed of the vehicle (default units are km / hr)	Decimal
PASSENGERS	Passengers in the vehicle	Integer
TYPE	Vehicle type code	Integer

Table 42 shows an excerpt from a SNAPSHOT_FILE of vehicles over 15 minutes, in a 3-cell left turn lane.

Table 43 SNAPSHOT_FILE Example

ПНОГР	VEHICLE	TIME	LINK	DIR	LANE	OFFSET	SPEED	PASSENGERS	ТҮРЕ
1889808	9	17:00:08	4206	0	L1	810	81	0	11
1889808	9	17:00:09	4206	0	L1	817.5	0	0	11
1889808	9	17:00:10	4206	0	L1	825	27	0	11
1892449	10	17:00:48	4206	0	L1	810	81	0	11
564315	6	17:02:03	4206	0	L1	810	81	0	1
699721	2	17:02:36	4206	0	L1	810	81	0	1
563810	1	17:02:47	4206	0	L1	810	81	0	1
568164	5	17:02:51	4206	0	L1	810	81	0	1
831495	6	17:03:01	4206	0	L1	810	81	0	2
1889620	1	17:03:58	4206	0	L1	810	81	0	11
1889620	1	17:03:59	4206	0	L1	817.5	0	0	11
1889620	1	17:04	4206	0	L1	825	27	0	11
570781	2	17:04:13	4206	0	L1	810	81	0	1
1889438	9	17:05:29	4206	0	L1	810	81	0	11
1889438	9	17:05:30	4206	0	L1	817.5	0	0	11
1889438	9	17:05:31	4206	0	L1	825	27	0	11
467149	10	17:05:55	4206	0	L1	810	81	0	1
467149	10	17:05:56	4206	0	L1	817.5	0	0	1
467149	10	17:05:57	4206	0	L1	825	27	0	1
564932	3	17:07:40	4206	0	L1	810	81	0	1
1853617	8	17:07:47	4206	0	L1	810	81	0	11

ННОГР	VEHICLE	TIME	LINK	DIR	LANE	OFFSET	SPEED	PASSENGERS	ТҮРЕ
570784	5	17:08:25	4206	0	L1	810	81	0	1
1892301	2	17:09	4206	0	L1	810	81	0	11
1892301	2	17:09:01	4206	0	L1	817.5	0	0	11
1892301	2	17:09:02	4206	0	L1	825	27	0	11
569431	2	17:09:13	4206	0	L1	810	81	0	1
569442	3	17:11:12	4206	0	L1	810	81	0	1
565004	5	17:11:37	4206	0	L1	810	81	0	1
1889437	8	17:11:39	4206	0	L1	810	81	0	11
1889622	3	17:12:11	4206	0	L1	810	81	0	11
1889622	3	17:12:12	4206	0	L1	817.5	0	0	11
1889622	3	17:12:13	4206	0	L1	825	27	0	11
564805	6	17:12:51	4206	0	L1	810	81	0	1
1891937	8	17:12:53	4206	0	L1	810	81	0	11
563843	4	17:12:58	4206	0	L1	810	81	0	1
563849	10	17:13:48	4206	0	L1	810	81	0	1
563840	1	17:14:10	4206	0	L1	810	81	0	1

STOP_EQUIVALENCE_FILE

STOP_EQUIVALENCE_FILE

ArcPlan

The STOP_EQUIVALENCE_FILE is required if the ARCVIEW_STOP_GROUP_FILE is requested. This file provides the list of transit stops included in each stop group. The total boardings and alightings for all selected transit routes that use one or more stops in the stop group are output to the shapefile. The location of the shape point is the simple average X and Y coordinates associated with each stop in the group.

SUBZONE_DATA_FILE

SUBZONE_DATA_FILE
ArcNet

SUBZONE_ZONE_FACTOR_FILE

SUBZONE_ZONE_FACTOR_FILE LocationData

TIME_DISTRIBUTION_FILE_*

Required in ConvertTrips. NEW_TIME_DISTRIBUTION_FILE is used in PlanCompare.

The TIME_DISTRIBUTION_FILE key is appended to the PROJECT_DIRECTORY key to specify the file name for the input trip time file for the trip group. If the trip time format is not specified and a Definition file is not found, the program assumes the file is in Version 3 format. The default Version 3 format is a tab-delimited text file with three floating point data fields and no header record. The first field is the start time in hours, the second field is the end time in hours, and the third field is the relative share of trips assigned to the period between the start time and end time. The shares are automatically normalized to 1.0, and are therefore NOT required to add up to 1.0.

Table 44 is an example of a TIME_DISTRIBUTION_FILE populated with data:

Table 44 TIME_DISTRIBUTION_FILE Example

Start	End	Share
0	5	0.005
5	6	0.02
6	7	0.04
7	8	0.075
8	9	0.1
9	10	0.06
10	14	0.16
14	15	0.06
15	16	0.07
16	17	0.08
17	18	0.09
18	19	0.08
19	20	0.06
20	21	0.04
21	22	0.03
22	23	0.02
23	24	0.01

TIMING_PLAN_FILE

NEW_TIMING_PLAN_FILE
IntControl Default Control Key
NewFormat
TIMING_PLAN_FILE
ArcNet
IntControl Default Control Key
Microsimulator
NewFormat

The TIMING_PLAN_FILE has been significantly expanded in TRANSIMS 5 compared to previous releases. The new Timing Plan file makes extensive use of data field nesting. In particular, nested phase records are used to improve record management and minimize coding mistakes compared with prior versions. Also, the new timing plan file utilizes barrier, ring, and position codes in order to provide clear sequencing and improved linkages to traffic signal software (e.g., Synchro®). Lastly, the timing plan uses the signal control number and the timing ID together for record indexing. Signal type, offset, and cycle length are also included in the Version 5 timing plan file. Table 45 is the first example of a TIMING PLAN FILE populated with data:

Table 45 TIMING_PLAN_FILE First Example

Signal	Timing	Туре	Cycle	Offset	Phases	Notes		
Phase	Barrier	Ring	Position	Min_Green	Max_Green	Extension	Yellow	All_Red
1	1	Actuated	100	0	4	0:006:00		
1	1	1	1	5	5	0	0	0
2	1	1	2	20	39	12	3	1
3	1	1	3	5	9	3	0	0
4	1	1	4	20	39	12	3	1

The definition file listing the data fields for a TIMING PLAN FILE is shown below:

TRANSIMS50, TAB DELIMITED, 2, NESTED SIGNAL, INTEGER, 1, 10 TIMING, INTEGER, 2, 10 TYPE, STRING, 3, 10, SIGNAL TYPE CYCLE, INTEGER, 4, 5, SECONDS OFFSET, INTEGER, 5, 5, SECONDS PHASES, INTEGER, 6, 3, NEST COUNT NOTES, STRING, 7, 128 PHASE, INTEGER, 1, 3, NO, NESTED BARRIER, INTEGER, 2, 3, NO, NESTED RING, INTEGER, 3, 3, NO, NESTED POSITION, INTEGER, 4, 3, NO, NESTED MIN_GREEN, INTEGER, 5, 5, SECONDS, NESTED MAX_GREEN, INTEGER, 6, 5, SECONDS, NESTED EXTENSION, INTEGER, 7, 5, SECONDS, NESTED YELLOW, INTEGER, 8, 3, SECONDS, NESTED ALL RED, INTEGER, 9, 3, SECONDS, NESTED

Table 46 lists the field definitions for the TIMING PLAN FILE.

Table 46 TIMING_PLAN_FILE Field Definitions

Field(s)	Description	Default Units
SIGNAL	The signal field indicates the signal number and	INTEGER
	replaces the signal controller's functions	
TIMING	The ID number of the timing plan	INTEGER
TYPE	The signal type (e.g., Actuated, Timed)	STRING
CYCLE	The time required to complete one sequence of	INTEGER
	intervals (i.e., a cycle), measured in seconds	
OFFSET	Relative offset in seconds for timed signals	INTEGER
PHASES	Where multiple phasing plans exist over the course	INTEGER
	of a day, this is the phasing plan number	
NOTES	A character string for user annotations	STRING
PHASE	The phase number	INTEGER
BARRIER	The barrier number associated with a given phase	INTEGER
RING	Number of actuated signal rings	INTEGER
POSITION	The movement number associated with a given	INTEGER
	phase	
MIN_GREEN	The minimum green time in seconds for an actuated signal	INTEGER
MAX_GREEN	The maximum green time in seconds for an actuated	INTEGER
	signal; the default is minimum green plus one	
	extension	
EXTENSION	The number of seconds the green time is extended	INTEGER
	each time vehicles are detected	
YELLOW	The yellow interval in seconds	INTEGER
ALL_RED	The all red interval in seconds	INTEGER

Table 47 is the second example of a TIMING_PLAN_FILE populated with real data. Of particular note are the nested groupings. The master records are shaded in blue; the inner nest has a lighter shade:

Table 47 TIMING_PLAN_FILE Second Example

SIGNAL	TIMING	TYPE	CYCLE	OFFSET	PHASES	NOTES		
PHASE	BARRIER	RING	POSITIO N	MIN_ GREEN	MAX_ GREEN	EXTENS ION	YELLOW	ALL_RED
1	1	ACTUAT ED	90	0	4	0:00 7:00		
1	1	1	1	5	5	0	0	0
2	1	1	2	13	25	7	3	1
3	1	1	3	14	27	7	0	0
4	1	1	4	13	25	7	3	1
1	2	ACTUAT ED	90	0	4	7:00 10:00		
1	1	1	1	5	5	0	0	0
2	1	1	2	13	25	7	3	1
3	1	1	3	14	27	7	0	0
4	1	1	4	13	25	7	3	1
1	3	ACTUAT ED	90	0	4	10:00 27:00		
1	1	1	1	5	5	0	0	0
2	1	1	2	13	25	7	3	1
3	1	1	3	14	27	7	0	0
4	1	1	4	13	25	7	3	1
2	1	ACTUAT ED	90	0	3	0:00 7:00		
1	1	1	1	5	5	0	3	1
2	1	1	2	17	33	9	0	0
3	1	1	3	22	44	11	3	1
2	2	ACTUAT ED	90	0	3	7:00 10:00		
1	1	1	1	5	5	0	3	1
2	1	1	2	17	33	9	0	0
3	1	1	3	22	44	11	3	1
2	3	ACTUAT ED	90	0	3	10:00 27:00		
1	1	1	1	5	5	0	3	1
2	1	1	2	17	33	9	0	0
3	1	1	3	22	44	11	3	1
3	1	ACTUAT ED	90	0	3	0:00 7:00		
1	1	1	1	5	5	0	0	0
2	1	1	2	23	46	12	3	1
3	1	1	3	16	31	8	3	1

SIGNAL	TIMING	TYPE	CYCLE	OFFSET	PHASES	NOTES		
PHASE	BARRIER	RING	POSITIO N	MIN_ GREEN	MAX_ GREEN	EXTENS ION	YELLOW	ALL_RED
3	2	ACTUAT ED	90	0	3	7:00 10:00		
1	1	1	1	5	5	0	0	0
2	1	1	2	23	46	12	3	1
3	1	1	3	16	31	8	3	1
3	3	ACTUAT ED	90	0	3	10:00 27:00		
1	1	1	1	5	5	0	0	0
2	1	1	2	23	46	12	3	1
3	1	1	3	16	31	8	3	1

TOLL_FILE

TOLL_FILE

NewFormat

TOLL_FILE is the filename for the version 4 toll file, used by NewFormat for toll to version 5 lane use conversion

TRANSIT_DRIVER_FILE

NEW_TRANSIT_DRIVER_FILE

NewFormat

TRANSIT_DRIVER_FILE

ArcNet

ArcPlan

Microsimulator

NewFormat

The TRANSIT_DRIVER_FILE is similar to its version 4 counterpart. It is a nested table of transit driver paths. A typical field definition (.def or .DEF) file is listed below:

TRANSIMS50, TAB_DELIMITED, 2, NESTED ROUTE, INTEGER, 1, 10 NLINKS, INTEGER, 2, 4, NEST_COUNT TYPE, INTEGER, 3, 4, VEHICLE_TYPE NOTES, STRING, 4, 128 LINK, INTEGER, 1, 10, NO, NESTED DIR, INTEGER, 2, 1, NO, NESTED

Table 48 lists the field definitions for the TRANSIT_DRIVER_FILE.

Table 48 TRANSIT_DRIVER_FILE Field Definitions

Field(s)	Description	Use	Values
ROUTE	Route ID Number	Key	Integer
NLINKS	Number of nested records	Req	Integer
TYPE	Vehicle type for the route	Opt	Integer (Vehicle type code)
NOTES	User annotations	Opt	,
Nested F	ields		
LINK	Link ID number on the driver's path	Req	Integer
DIR	Direction on the link	Opt	Integer

Table 49 is an example of the TRANSIT_DRIVER_FILE.

Table 49 TRANSIT_DRIVER_FILE Example

ROUTE	NLINKS	TYPE	NOTES
LINK	DIR		
100	6	7	Bus Route
20	0		
21	0		
22	0		
28	0		
39	0		
46	0		
101	6	7	Bus Route
46	1		
39	1		
28	1		
22	1		
21	1		
20	1		

TRANSIT_FARE_FILE

NEW_TRANSIT_FARE_FILE

NewFormat

TRANSIT_FARE_FILE

Microsimulator

NewFormat

PathSkim

Router

The TRANSIT_FARE_FILE lists zone to zone transit fares.

A typical field definition file (.def or .DEF) is listed below:

TRANSIMS50, TAB_DELIMITED, 2

0:00 10:00

FROM_ZONE, STRING, 1, 128, FARE_ZONE_RANGE

TO_ZONE, STRING, 2, 128, FARE_ZONE_RANGE FROM_MODE, STRING, 3, 128, TRANSIT_TYPE_RANGE TO_MODE, STRING, 4, 128, TRANSIT_TYPE_RANGE PERIOD, STRING, 5, 128, TIME_PERIOD_RANGE CLASS, STRING, 6, 128, FARE_CLASS_RANGE FARE, INTEGER, 7, 5, CENTS NOTES, STRING, 8, 128

Table 50 lists the field definitions for the TRANSIT_FARE_FILE, which are the same as TRANSIMS 4.

Table 50 TRANSIT_FARE_FILE Field Definitions

Field(s)	Description	Use	Values
FROM_ZONE	Zone range for the applicable boarding stops	Req	String
			(FARE_ZONE_RANGE)
TO_ZONE	Zone range for the applicable alighting stops	Req	String
			(FARE_ZONE_RANGE)
FROM_MODE	Transit mode ranges from which the trip came	Opt.	String
			(TRANSIT_CODE_RANGE)
TO_MODE	Transit mode ranges to which the cost applies	Req	String
			(TRANSIT_CODE_RANGE)
PERIOD	Start and end time range at the boarding stop	Opt	Range of time codes
	(defaults to all)		
CLASS	Traveler or payment classification ranges	Opt	Range of class codes
			(CASH, CARD, SPECIAL)
FARE	Boarding cost in cents	Req	Integer
NOTES	User annotations	Opt	String

Table 51 is an example of a TRANSIT_FARE_FILE populated with data.

Table 51 TRANSIT_FARE_FILE Example (Taken from Version 4)

FROM_ZONE	TO_ZONE	FROM_MODE	TO_MODE	PERIOD	CLASS	FARE	NOTES
9, 10, 11	9, 10, 11	NONE,	BUS,	0:0024:00	CASH,	135	Base BUS Fare
		RAPIDRAIL,	EXPRESS,		CARD		
		REGIONRAIL	REGIONRAIL				
937	937	RAPIDRAIL	EXPRESS	0:0024:00	CASH	220	Metro-Rail to
							Express Bus
							Transfer
937	937	RAPIDRAIL	EXPRESS	0:0024:00	CARD	210	Metro-Rail to
							Express Bus
							Transfer

Table 52 is an example of a TRANSIT_FARE_FILE after NewFormat was run on the previous file (MODEL_END_TIME = 10:00)

Table 52 Unbundled TRANSIT_FARE_FILE Example (after NewFormat)

0:00 10:00							
FROM_ZONE	TO_ZONE	FROM_MODE	TO_MODE	PERIOD	CLASS	FARE	NOTES
9	9	0	1	0	0	135	
9	9	0	1	0	1	135	
9	9	0	2	0	0	135	
9	9	0	2	0	1	135	
9	9	0	7	0	0	135	
9	9	0	7	0	1	135	
9	9	6	1	0	0	135	
9	9	6	1	0	1	135	
9	9	6	2	0	0	220	
9	9	6	2	0	1	210	
9	9	6	7	0	0	135	
9	9	6	7	0	1	135	
9	9	7	1	0	0	135	
9	9	7	1	0	1	135	
9	9	7	2	0	0	135	
9	9	7	2	0	1	135	

TRANSIT_PENALTY_FILE

TRANSIT_PENALTY_FILE

Microsimulator PathSkim

Router

TRANSIT_ROUTE_FILE

NEW_TRANSIT_ROUTE_FILE

NewFormat

TRANSIT_ROUTE_FILE

ArcNet

ArcPlan

LocationData

Microsimulator

NewFormat

PathSkim

Router

The TRANSIT_ROUTE_FILE is similar to its version 4 counterpart. It is a nested table of transit routes.

A typical field definition file (.def or .DEF) is listed below:

TRANSIMS50, TAB_DELIMITED, 2, NESTED ROUTE, INTEGER, 1, 10
STOPS, INTEGER, 2, 10, NEST_COUNT MODE, STRING, 3, 16, TRANSIT_TYPE TYPE, INTEGER, 4, 4, VEHICLE_TYPE NAME, STRING, 5, 40
NOTES, STRING, 6, 128
STOP, INTEGER, 1, 10, NO, NESTED ZONE, INTEGER, 2, 5, FARE_ZONE, NESTED TIMEPT, INTEGER, 3, 3, NO, NESTED

Table 53 lists the field definitions for the TRANSIT ROUTE FILE.

Table 53 TRANSIT_ROUTE_FILE Field Definitions

Field(s)	Description	Use	Values
ROUTE	Route ID Number	Key	Integer
STOPS	Number of nested stop records	Req	Integer
MODE	Transit Mode for the routes	Req	String (transit mode
			code, e.g., BUS)
TYPE	Vehicle type for the route	Opt	Integer (Vehicle type
			code)
NAME	Name of the transit route	Opt	String
NOTES	User annotations	Opt	
Nested F	ields		
STOP	Stop ID number	Req	Integer
ZONE	ID of the fare zone	Opt	Integer
TIMEPT	Non-zero indicates a timepoint	Opt	Integer

Transit mode codes include:

NO_TRANSIT (aliases include NONE, NO_MODE, N/A or blank)
LOCAL_BUS (alias includes BUS)
EXPRESS_BUS (alias includes EXPRESS)
TROLLEY
STREETCAR
LRT (alias includes LIGHTRAIL)
RAPIDRAIL
REGIONRAIL
ANY TRANSIT (aliases include ANY MODE or ANY)

Table 54 is an example of a TRANSIT ROUTE FILE populated with data.

Table 54 TRANSIT_ROUTE_FILE Example

ROUTE	STOPS	MODE	TYPE	NAME	NOTES
STOP	ZONE	TIMEPT			
100	32	BUS	7	Route 100	Bus Route
1	1	0			_

ROUTE	STOPS	MODE	TYPE	NAME	NOTES
2	1	0			
3	1	0			
4	1	0			
•••	•••	•••			
22	2	0			
32	3	0			
101	32	BUS	7	Route 100	Bus Route
33	2	0			
	•••	•••			
37	1	0			
38	1	0			

TRANSIT_SCHEDULE_FILE

NEW_TRANSIT_SCHEDULE_FILE

NewFormat

TRANSIT_SCHEDULE_FILE

ArcNet

LocationData

Microsimulator

NewFormat

PathSkim

Router

The TRANSIT_SCHEDULE_FILE is now formatted as a time table. It is a nested table of transit schedules, with up to 8 runs per group.

A typical field definition (.def or .DEF) file is listed below:

TRANSIMS50, TAB_DELIMITED, 2, NESTED

ROUTE, INTEGER, 1, 10

STOPS, INTEGER, 2, 4, NEST_COUNT

RUN1, INTEGER, 3, 4

RUN2, INTEGER, 4, 4

RUN3, INTEGER, 5, 4

RUN4, INTEGER, 6, 4

RUN5, INTEGER, 7, 4

RUN6, INTEGER, 8, 4

RUN7, INTEGER, 9, 4

RUN8, INTEGER, 10, 4

NOTES, STRING, 11, 128

STOP, INTEGER, 1, 10, NO, NESTED

TIME1, TIME, 2, 16, HOUR_CLOCK, NESTED

TIME2, TIME, 3, 16, HOUR_CLOCK, NESTED

TIME3, TIME, 4, 16, HOUR_CLOCK, NESTED

TIME4, TIME, 5, 16, HOUR_CLOCK, NESTED TIME5, TIME, 6, 16, HOUR_CLOCK, NESTED TIME6, TIME, 7, 16, HOUR_CLOCK, NESTED TIME7, TIME, 8, 16, HOUR_CLOCK, NESTED TIME8, TIME, 9, 16, HOUR_CLOCK, NESTED

Table 55 lists the field definitions for the TRANSIT_SCHEDULE_FILE.

Table 55 TRANSIT_SCHEDULE_FILE Field Definitions

Field(s)	Description	Use	Values
ROUTE	Route ID Number	Req	Integer
RUN1	Number of the first run in this set	Opt	Integer
RUN2	Number of the second run in this set	Opt	Integer
RUN3	Number of the third run in this set	Opt	Integer
RUN4	Number of the fourth run in this set	Opt	Integer
RUN5	Number of the fifth run in this set	Opt	Integer
RUN6	Number of the sixth run in this set	Opt	Integer
RUN7	Number of the seventh run in this set	Opt	Integer
RUN8	Number of the eighth run in this set	Opt	Integer
NOTES	User annotations	Opt	String
Nested F	ields		
STOP	Stop ID number	Req	Integer
TIME1	Scheduled time at the stop for Run 1	Opt	Time of Day
TIME2	Scheduled time at the stop for Run 2	Opt	Time of Day
TIME3	Scheduled time at the stop for Run 3	Opt	Time of Day
TIME4	Scheduled time at the stop for Run 4	Opt	Time of Day
TIME5	Scheduled time at the stop for Run 5	Opt	Time of Day
TIME6	Scheduled time at the stop for Run 6	Opt	Time of Day
TIME7	Scheduled time at the stop for Run 7	Opt	Time of Day
TIME8	Scheduled time at the stop for Run 8	Opt	Time of Day

Table 56 is an example of a TRANSIT_SCHEDULE_FILE populated with data. The route in this example has a headway of 10 minutes.

Table 56 TRANSIT_SCHEDULE_FILE Example

ROUTE	STOPS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	NOTES
STOP	TIME1	TIME2	TIME3	TIME4	TIME5	TIME6	TIME7	TIME8		
100	32	1	2	3	4	5	6	7	8	
1	0:00:01	0:10:01	0:20:01	0:30:01	0:40:01	0:50:01	1:00:01	1:10:01		
2	0:00:12	0:10:12	0:20:12	0:30:12	0:40:12	0:50:12	1:00:12	1:10:12		
3	0:00:23	0:10:23	0:20:23	0:30:23	0:40:23	0:50:23	1:00:23	1:10:23		
4	0:00:34	0:10:34	0:20:34	0:30:34	0:40:34	0:50:34	1:00:34	1:10:34		
22	0:04:38	0:14:38	0:24:38	0:34:38	0:44:38	0:54:38	1:04:38	1:14:38		
32	0:06:52	0:16:52	0:26:52	0:36:52	0:46:52	0:56:52	1:06:52	1:16:52		

ROUTE	STOPS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	NOTES
100	32	9	10	11	12					
1	1:20:01	1:30:01	1:40:01	1:50:01						
2	1:20:12	1:30:12	1:40:12	1:50:12						
3	1:20:23	1:30:23	1:40:23	1:50:23						
4	1:20:34	1:30:34	1:40:34	1:50:34						
•••		•••								

TRANSIT_STOP_FILE

NEW_TRANSIT_STOP_FILE

NewFormat

TRANSIT_STOP_FILE

ArcNet

ArcPlan

LocationData

Microsimulator

NewFormat

PathSkim

Router

The TRANSIT_STOP_FILE lists transit stops and is similar to its version 4 counterpart.

A typical field definition (.def or .DEF) file is listed below:

TRANSIMS50, TAB_DELIMITED, 1 STOP, INTEGER, 1, 10 NAME, STRING, 2, 50 LINK, INTEGER, 3, 10 DIR, INTEGER, 4, 1 OFFSET, DOUBLE, 5, 8.1, FEET USE, STRING, 6, 128, USE_TYPE TYPE, STRING, 7, 16, STOP_TYPE SPACE, UNSIGNED, 8, 3 NOTES, STRING, 9, 128

Table 57 lists the field definitions for the TRANSIT_STOP_FILE.

Table 57 TRANSIT_STOP_FILE Field Definitions

Field(s)	Description	Use	Values
STOP	Transit Stop ID number	Key	Integer
NAME	Name of the stop	Opt	String
LINK	Link ID where the stop is located	Req	Integer
DIR	Direction on the link	Opt	Integer
OFFSET	Location of the transit stop along the link	Req	Decimal distance
			(default is METERS)
USE	Vehicle types that may stop at the transit stop	Opt	String: Vehicle types

Field(s)	Description	Use	Values
	(USE_CODE)		that may stop (default
			of ANY)
TYPE	Type of transit stop (STOP_CODE)	Opt	String: STOP or
			STATION
SPACE	Number of vehicles that the stop can	Opt	Integer
	accommodate (0 for unlimited)		
NOTES	User annotations	Opt	String

Table 58 is an example of a TRANSIT_STOP_FILE populated with data.

Table 58 TRANSIT_STOP_FILE Example

STOP	NAME	LINK	DIR	OFFSET	USE	TYPE	SPACE	NOTES
1	Stop	20	0	32.8	BUS	STOP	2	Transit Stop
	Name							
2		20	0	560.3	BUS	STOP	2	Transit Stop
3		20	0	1087.9	BUS	STOP	2	Transit Stop
4		20	0	1615.4	BUS	STOP	2	Transit Stop
5		20	0	2143.0	BUS	STOP	2	Transit Stop
6		20	0	2670.6	BUS	STOP	2	Transit Stop
7		21	0	213.3	BUS	STOP	2	Transit Stop
8		21	0	732.6	BUS	STOP	2	Transit Stop
9		21	0	1252.0	BUS	STOP	2	Transit Stop
10		21	0	1771.4	BUS	STOP	2	Transit Stop
11		21	0	2290.7	BUS	STOP	2	Transit Stop
12		21	0	2810.1	BUS	STOP	2	Transit Stop

TRAVELER_FILE

The NEW_TRAVELER_FILE is an output from the Simulator. It lists the link direction, offset, lane, and speed for each selected traveler by time step (e.g., second). A typical field definition (.def) file is listed below:

```
TRANSIMS50, TAB_DELIMITED, 1
HHOLD, INTEGER, 1, 10
PERSON, INTEGER, 2, 5
TOUR, INTEGER, 3, 3
TRIP, INTEGER, 4, 3
MODE, STRING, 5, 12, MODE_TYPE
TIME, TIME, 6, 16, HOUR_CLOCK
DISTANCE, DOUBLE, 7, 8.1, METERS
SPEED, DOUBLE, 8, 5.1, KPH
LINK, INTEGER, 9, 10
DIR, INTEGER, 10, 1
LANE, STRING, 11, 3, LANE_ID_TYPE
OFFSET, DOUBLE, 12, 8.1, METERS
ROUTE, INTEGER, 13, 10
```

Table 59 lists the field definitions for the NEW_TRAVELER_FILE.

Table 59 NEW_TRAVELER_FILE Field Definitions

Field(s)	Description	Data Type
HHOLD	Household identifier	Integer
PERSON	Person in the household	Integer
TOUR	Tour number	Integer
TRIP	Trip Number	Integer
MODE	Mode of travel (MODE_TYPE)	Integer
TIME	Time of day	Hour_Clock
DISTANCE	Distance traveled by the person	Decimal
SPEED	Speed of the person (default units are km / hr)	Decimal
LINK	Link identifier	Integer
DIR	Direction on the link	Integer
LANE	Lane identifier (LANE_ID_TYPE)	String
OFFSET	Offset along the link (default units are meters)	Decimal
ROUTE	Route taken	Integer

Table 60 is an example of a NEW_TRAVELER_FILE populated with data.

Table 60 NEW_TRAVELER_FILE Example

HHOLD	PERSON	TOUR	TRIP	MODE	TIME	DISTANCE	SPEED	LINK	DIR	LANE	OFFSET	ROUTE
1889435	1	1	1	DRIVE	17:00	30.0	108.0	6233	0	1	1635.0	0
1930992	1	1	1	DRIVE	17:00	22.5	81.0	4207	0	1	945.0	0

TRIP_COST_GAP_FILE

NEW_TRIP_COST_GAP_FILE

PlanCompare

TRIP_FILE

NEW_TRIP_FILE is used by the following programs:

ConvertTrips

NewFormat

TripPrep

TRIP_FILE is used by the following programs:

ConvertTrips

NewFormat

RandomSelect

Router

TripPrep

The TRIP_FILE key is appended to the PROJECT_DIRECTORY key to specify the file name for the input trip file copied to the output trip file by the program. The NEW_TRIP_FILE key is appended to the PROJECT_DIRECTORY key to specify the file name for the output trip file created by the program. The program generates one trip record for each trip in the input trip tables.

In TRANSIMS 5, the TRIP_FILE includes both trip and activity-related data. Table 61 is an example of a TRIP_FILE populated with data:

Table 61 TRIP_FILE Example

ННОГР	PERSON	TOUR	TRIP	START	END	DURATION	ORIGIN	DESTINATION	PURPOSE	МОБЕ	CONSTRAINT	PRIORITY	VEHICLE	PASSENGERS	ТУРЕ
1	1	1	1	7:33:28	7:48:30	9:43:4 8	41	54	1	DRIV E		MEDIU M	1	0	
1	1	1	2	17:32:1 7	17:45:1 6	0:05	54	26	1	DRIV E		MEDIU M	1	0	
1	1	1	3	17:50:1 6	17:53:0 7	1:08:5 9	26	41	1	DRIV E		MEDIU M	1	0	
1	1	2	1	19:02:0 6	19:07:3 3	0:05	41	19	1	DRIV E		MEDIU M	1	0	
1	1	2	2	19:12:3 3	19:23:4 6	1:49:1 7	19	56	1	DRIV E		MEDIU M	1	0	
1	1	2	3	21:13:0 3	21:29:4 3	0:00	56	41	1	DRIV E		MEDIU M	1	0	

Activity-related data include the household (HHOLD), person number (PERSON), tour number (TOUR), activity duration (DURATION), activity purpose (PURPOSE), activity constraint (CONSTRAINT), activity priority (PRIORITY), and traveler type (TYPE). Trip-related data include the trip number (TRIP), start time (START), end time (END), origin location (ORIGIN), destination location (DESTINATION), travel mode (MODE), vehicle number (VEHICLE) and number of passengers.

TRIP_TABLE_FILE_1

Used by ConvertTrips

The TRIP_TABLE_FILE_1 key is appended to the PROJECT_DIRECTORY key to specify the file name for the input TRIP_TABLE_FILE_1 for the trip group. If the trip table format is not specified and a Definition file is not found, the program assumes the file is in the TRANSIMS 3 format. The default TRANSIMS 3 format is a tab-delimited text file with three integer data fields and no header record. The first field is the origin zone number, the second field is the destination zone number, and the third field is the number of trips.

Table 62 is an example of a TRIP_TABLE_FILE_1 populated with data.

Table 62 TRIP_TABLE_FILE Example

ORG	DES	TRIPS
1	2	500
1	3	500
2	1	500
2	3	500
3	1	500
3	2	500
1	11	10000

TRIP_TIME_FILE

NEW_TRIP_TIME_FILE

PlanSum

TRIP_TIME_GAP_FILE

NEW_TRIP_TIME_GAP_FILE

PlanCompare

TURN_PENALTY_FILE

NEW_TURN_PENALTY_FILE

NewFormat

TransimsNet Default Control Key

TURN_PENALTY_FILE

ArcNet

Microsimulator

NewFormat

PathSkim

Router

TransimsNet

The optional TURN_PENALTY_FILE lists turn penalties and prohibitions. A typical field definition (.def or .DEF) file is listed below:

TRANSIMS50, TAB_DELIMITED, 1
LINK, INTEGER, 1, 10
DIR, INTEGER, 2, 1
TO_LINK, INTEGER, 3, 10
START, TIME, 4, 16, HOUR_CLOCK
END, TIME, 5, 16, HOUR_CLOCK
USE, STRING, 6, 128, USE_TYPE
MIN_TYPE, UNSIGNED, 7, 3, VEHICLE_TYPE
MAX_TYPE, UNSIGNED, 8, 3, VEHICLE_TYPE

PENALTY, UNSIGNED, 9, 5, IMPEDANCE NOTES, STRING, 10, 128

Table 63 lists the field definitions for the TURN_PENALTY_FILE.

Table 63 TURN PENALTY FILE Field Definitions

Field(s)	Description	Use	Values
LINK	Inbound link	Req ²	Integer
DIR	Direction on the link	Req	Integer
TO_LINK	Outbound link	Req	Integer
START	Start time (defaults to 0)	Opt	Time of Day
END	End time (defaults to 24:00)	Opt	Time of Day
USE	USE_CODE ³	Opt	
MIN_TYPE	VEH_TYPE	Opt	
MAX_TYPE	VEH_TYPE	Opt	
PENALTY	IMPEDANCE in seconds. 0 denotes a turn	Opt	Integer
	prohibition		
NOTES	User annotations	Opt	String

Table 64 is an example of a TURN_PENALTY_FILE populated with data.

Table 64 TURN_PENALTY_FILE Example

LINK	DIR	TO_LINK	START	END	USE	MIN_TYPE	MAX_TYPE	PENALTY	NOTES
26	0	29	0:00	24:00	ANY	0	0	120	Left Turn From M Street to Key Bridge
26	1	20	0:00	24:00	ANY	0	0	0	No turn from N Capitol St NE to Florida Ave for ALLDAY
27	0	31	7:00	19:00	ANY	0	0	120	Right Turn Penalty from M Street to Key Bridge
44	1	40	0:00	24:00	ANY	0	0	0	No turn from Ramp to Ramp for ALLDAY

TURN_VOLUME_FILE

NEW_TURN_VOLUME_FILE

LinkSum

TURN_VOLUME_FILE

IntControl Default Control Key

² Links are required unless nodes (FROMNODE, TONODE, NODE) are used. The node option is provided for backwards compatibility.

³ Use codes include ANY, WALK, BICYCLE, AUTO, TRUCK, BUS, RAIL, SOV, HOV2, HOV3, HOV4, LIGHTTRUCK, HEAVYTRUCK, RESTRICTED, CAR, BIKE, TAXI, TROLLEY, STREETCAR, LIGHTRAIL, RAPIDRAIL, REGIONRAIL

UPDATE LINK FILE

UPDATE_LINK_FILE

TransimsNet Default Control Key

The UPDATE_LINK_FILE is optional and if specified defines a series of link numbers where the pocket lanes, activity locations, parking lots, and processing links are recalculated. The lane connectivity at both ends of the link is also updated. Each record in the file is interpreted as a comma separated list of link ranges. A link range is specified using two period (e.g., 100..200). The file could also be a simple list of link numbers. The values in the link range and the LINK_FILE are combined if both keys are provided. In update mode, the program reads existing network files and deletes the existing records for the link and adds new records at the end of the file.

UPDATE_NODE_FILE

UPDATE NODE FILE

TransimsNet Default Control Key

The UPDATE_NODE_FILE is optional and if specified defines a series of node numbers where the lane connectivity and traffic control warrants are recalculated. Each record in the file is interpreted as a comma separated list of node ranges. A node range is specified using two period (e.g., 100..200). The file could also be a simple list of node numbers. The values in the node range and the NODE_FILE are combined if both keys are provided. In update mode, the program reads existing network files and deletes the existing records for the node and adds new records at the end of the file.

VEHICLE_FILE

NEW_VEHICLE_FILE is used by the following programs:

Convert Trips

NewFormat

VEHICLE_FILE is used by the following programs:

ConvertTrips

Simulator

NewFormat

PathSkim

Router

The VEHICLE_FILE lists the vehicles in the network. Each vehicle is uniquely identified by a household number and a household vehicle number. The TRANSIMS 4 "Location" field becomes a "Parking" field. Finally, the Version 4 vehicle type and subtype are combined into a Version 5 vehicle type.

Table 66 is an example of a VEHICLE_FILE populated with data.

Table 65 VEHICLE_FILE Example

HHOLD	VEHICLE	PARKING	TYPE
1	1	41	1

VEHICLE_TYPE_FILE

NEW_VEHICLE_TYPE_FILE is used by the following programs: NewFormat

VEHICLE_TYPE_FILE is used by the following programs:

ArcNet

ArcSnapshot

ConvertTrips

Microsimulator

NewFormat

PathSkim

Router

The TRANSIMS 4 vehicle subtype no longer exists. Rather, there is a simple type index with valid values ranging from 1 to 99. Operating cost and vertical grade impacts have been added.

The default TRANSIMS 4 conversion is V5_Vehicle_Type = 10 * V4_Vehicle_Type + V4_Subtype.

Table 66 is an example of a VEHICLE_TYPE_FILE populated with data.

Table 66 VEHICLE_TYPE_FILE Example

TYPE	LENGTH	MAX_SPEED	MAX_ACCEL	MAX_DECEL	OP_COST	USE	CAPACITY	LOADING	UNLOADING	МЕТНОБ	MIN DWELL		GRADE 1	GRADE 2	GRADE 3	GRADE 4	GRADE 5		GRADE 7	GRADE 8		GRADE 10
1	5.5	16 2	6	12	20	SOV	5	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1
2	11.5	16 2	3	9	25	TRU CK	2	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1
3	5.5	16 2	6	12	20	SOV	5	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1
4	17.5	16 2	2	6	0	BUS	25 0	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1
5	17.5	16 2	2	6	0	BUS	25 0	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1
11	5.5	16 2	6	12	20	SOV	5	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1
12	5.5	16 2	6	12	20	SOV	5	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1
13	5.5	16	6	12	20	SOV	5	3	2	SERIA	0	0	1	1	1	1	1	1	1	1	1	1

TYPE	LENGTH	MAX_SPEED	MAX_ACCEL	MAX_DECEL	OP_COST	USE	CAPACITY	LOADING	UNLOADING	МЕТНОБ	MIN DWELL		GRADE 1	GRADE 2	GRADE 3	-	GRADE 5		GRADE 7	GRADE 8		GRADE 10
		2								L												
14	5.5	16 2	6	12	20	SOV	5	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1
15	5.5	16 2	6	12	20	SOV	5	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1
16	5.5	16 2	6	12	20	SOV	5	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1
21	11.5	16 2	3	9	25	TRU CK	2	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1
22	11.5	16 2	3	9	25	TRU CK	2	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1
23	17.5	16 2	2	6	50	TRU CK	2	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1
24	17.5	16 2	2	6	50	TRU CK	2	3	2	SERIA L	0	0	1	1	1	1	1	1	1	1	1	1

VERSION4_PLAN_FILE

VERSION4_PLAN_FILE

NewFormat

The input plan file, used by NewFormat, for version 4 to version 5 plan file conversions.

ZONE_BOUNDARY_FILE

ZONE_BOUNDARY_FILE

LocationData

TransimsNet Default Control Key

ZONE_FIELD_NAME, "ZONE_FIELD_NAME", LEVELO, OPT_KEY, TEXT_KEY, "", "ZONE, TAZ, Z, ID", NO_HELP

ZONE_EQUIVALENCE_FILE

Used in:

ConvertTrips

LinkSum

PathSkim

PlanSum

The ZONE_EQUIVALENCE_FILE is required for the trip adjustment factors. The key specifies the name of the file that defines a group of zones. Zone Groups typically represent large geographic areas or governmental entities (i.e., cities and counties). Each zone may only be associated with one Zone Group. The software generates warning messages if a zone is used more than once or appears to be missing from the sequence of zone numbers.

The ZONE_EQUIVALENCE_FILE is a tab, space, or comma-delimited ASCII file with special format rules. An example of this output file is listed below:

```
1 0 Portland CBD - 1
1 1 1..16
2 0 West Suburbs - 2
2 1 79..307, 1248..1253
3 0 Southwest Suburbs - 3
3 1 308..403, 931..933
4 0 Southeast Suburbs - 4
4 1 404..557, 934..943, 1254..1258
5 0 East Portland - 55 1 561..563, 714..721, 731..738, 763..929, 949..961
6 0 East Suburbs - 6
6 1 558..560, 564..713, 722..730, 739..762, 1259..1260
7 0 West Portland - 7
7 1 17..78, 930, 944..948, 962, 1247
8 0 Clark County - 8
8 1 970..1246
```

If the file contains a header record, it is ignored by the software. The first integer on each subsequent record is the district or zone group number. This number is followed by an index number that is used to associate multiple records with a given district. If the index number is zero, the software interprets everything that follows the index number as the district label. The first 25 characters of the label are printed in reports.

If the index number is not zero, the values that follow are interpreted as a range of zone numbers.

Individual zone numbers and ranges of zone numbers can be specified on a given record. A range of zone numbers is specified using the first and last number in the sequence connected by two or more periods. For example, "79..307" represents all of the zone numbers between 79 and 307.

ZONE FILE

NewFormat

Names: ZONE_FILE, NEW_ZONE_FILE
Used In:
 ArcNet
 ConvertTrips
 LocationData
 NetPrep

PathSkim TransimsNet

The TRANSIMS ZONE_FILE provides a list of zones in the network. The full path and file name for the zone table is constructed by appending the value of this key to the value of the PROJECT_DIRECTORY key.

A typical field definition (.def or .DEF) file is listed below:

TRANSIMS50, TAB_DELIMITED, 1 ZONE, INTEGER, 1, 10 X_COORD, DOUBLE, 2, 14.1, FEET Y_COORD, DOUBLE, 3, 14.1, FEET Z_COORD, DOUBLE, 4, 14.1, FEET AREA_TYPE, INTEGER, 5, 3 NOTES, STRING, 6, 128

Essential information includes the zone number (an integer) and the X and Y coordinates. These are typically UTM coordinates.

Zone numbers do not have to be consecutive. However, external zones are typically assigned higher numbers than internal zones.

Table 67 is an example of a ZONE_FILE populated with data.

Table 67 ZONE_FILE Example

ZONE	X_COORD	Y_COORD	Z_COORD	AREA_TYPE	NOTES
1	4921.3	14763.8	0.0	2	Internal Zone
2	8202.1	14763.8	0.0	2	Internal Zone
20	6561.7	17060.3	0.0	0	External Zone
21	9842.5	17060.3	0.0	0	External Zone

ZONE LOCATION MAP FILE

NEW_ZONE_LOCATION_MAP_FILE
LocationData
ZONE_LOCATION_MAP_FILE
ConvertTrips
PathSkim

ZONE_TRAVEL_FILE

NEW_ZONE_TRAVEL_FILE LinkSum