## Date - 17/10/2023

## **Team ID - 3933**

# **Project Title - Water Quality Analysis**

## IMPORTING THE PACKAGES

```
In [1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn import preprocessing import scipy import plotly.express as px
```

# **READING THE DATASET**

```
In [2]: df=pd.read_csv("D:\\IBM_water_quality\\water_potability.csv")
df_copy=pd.read_csv("D:\\IBM_water_quality\\water_potability.csv")
```

# **Data Exploration**

In [3]: df

Out[3]:

|                        | ph       | Hardness   | Solids       | Chloramines | Sulfate    | Conductivity | Organic_carbon | Trihalomethanes | Turbidity | Potability |
|------------------------|----------|------------|--------------|-------------|------------|--------------|----------------|-----------------|-----------|------------|
| 0                      | NaN      | 204.890455 | 20791.318981 | 7.300212    | 368.516441 | 564.308654   | 10.379783      | 86.990970       | 2.963135  | 0          |
| 1                      | 3.716080 | 129.422921 | 18630.057858 | 6.635246    | NaN        | 592.885359   | 15.180013      | 56.329076       | 4.500656  | 0          |
| 2                      | 8.099124 | 224.236259 | 19909.541732 | 9.275884    | NaN        | 418.606213   | 16.868637      | 66.420093       | 3.055934  | 0          |
| 3                      | 8.316766 | 214.373394 | 22018.417441 | 8.059332    | 356.886136 | 363.266516   | 18.436524      | 100.341674      | 4.628771  | 0          |
| 4                      | 9.092223 | 181.101509 | 17978.986339 | 6.546600    | 310.135738 | 398.410813   | 11.558279      | 31.997993       | 4.075075  | 0          |
|                        |          |            |              |             |            |              |                |                 |           |            |
| 3271                   | 4.668102 | 193.681735 | 47580.991603 | 7.166639    | 359.948574 | 526.424171   | 13.894419      | 66.687695       | 4.435821  | 1          |
| 3272                   | 7.808856 | 193.553212 | 17329.802160 | 8.061362    | NaN        | 392.449580   | 19.903225      | NaN             | 2.798243  | 1          |
| 3273                   | 9.419510 | 175.762646 | 33155.578218 | 7.350233    | NaN        | 432.044783   | 11.039070      | 69.845400       | 3.298875  | 1          |
| 3274                   | 5.126763 | 230.603758 | 11983.869376 | 6.303357    | NaN        | 402.883113   | 11.168946      | 77.488213       | 4.708658  | 1          |
| 3275                   | 7.874671 | 195.102299 | 17404.177061 | 7.509306    | NaN        | 327.459760   | 16.140368      | 78.698446       | 2.309149  | 1          |
| 3276 rows × 10 columns |          |            |              |             |            |              |                |                 |           |            |

In [4]: df\_copy

Out[4]:

|      | ph       | Hardness   | Solids       | Chloramines | Sulfate    | Conductivity | Organic_carbon | Trihalomethanes | Turbidity | Potability |
|------|----------|------------|--------------|-------------|------------|--------------|----------------|-----------------|-----------|------------|
| 0    | NaN      | 204.890455 | 20791.318981 | 7.300212    | 368.516441 | 564.308654   | 10.379783      | 86.990970       | 2.963135  | 0          |
| 1    | 3.716080 | 129.422921 | 18630.057858 | 6.635246    | NaN        | 592.885359   | 15.180013      | 56.329076       | 4.500656  | 0          |
| 2    | 8.099124 | 224.236259 | 19909.541732 | 9.275884    | NaN        | 418.606213   | 16.868637      | 66.420093       | 3.055934  | 0          |
| 3    | 8.316766 | 214.373394 | 22018.417441 | 8.059332    | 356.886136 | 363.266516   | 18.436524      | 100.341674      | 4.628771  | 0          |
| 4    | 9.092223 | 181.101509 | 17978.986339 | 6.546600    | 310.135738 | 398.410813   | 11.558279      | 31.997993       | 4.075075  | 0          |
|      |          |            |              |             |            |              |                |                 |           |            |
| 3271 | 4.668102 | 193.681735 | 47580.991603 | 7.166639    | 359.948574 | 526.424171   | 13.894419      | 66.687695       | 4.435821  | 1          |
| 3272 | 7.808856 | 193.553212 | 17329.802160 | 8.061362    | NaN        | 392.449580   | 19.903225      | NaN             | 2.798243  | 1          |
| 3273 | 9.419510 | 175.762646 | 33155.578218 | 7.350233    | NaN        | 432.044783   | 11.039070      | 69.845400       | 3.298875  | 1          |
| 3274 | 5.126763 | 230.603758 | 11983.869376 | 6.303357    | NaN        | 402.883113   | 11.168946      | 77.488213       | 4.708658  | 1          |
| 3275 | 7.874671 | 195.102299 | 17404.177061 | 7.509306    | NaN        | 327.459760   | 16.140368      | 78.698446       | 2.309149  | 1          |

3276 rows × 10 columns

## **ANALYSIS OF THE DATA**

```
In [5]: print(df.columns)
        dtype='object')
 In [6]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 3276 entries, 0 to 3275
         Data columns (total 10 columns):
                             Non-Null Count Dtype
         # Column
         0
                             2785 non-null
                                            float64
             ph
                             3276 non-null
             .
Hardness
         1
                                            float64
                                            float64
         2
             Solids
                             3276 non-null
             Chloramines
                             3276 non-null
         3
                                            float64
                             2495 non-null
         4
             Sulfate
                                            float64
             Conductivity
                             3276 non-null
                                            float64
         5
         6
            Organic_carbon
                             3276 non-null
                                            float64
             Trihalomethanes 3114 non-null
                                            float64
         8
            Turbidity
                             3276 non-null
                                            float64
         9 Potability
                             3276 non-null
                                            int64
         dtypes: float64(9), int64(1)
         memory usage: 256.1 KB
 In [7]: df.shape
 Out[7]: (3276, 10)
 In [8]: df[df["Potability"]==0].count()
                          1684
Out[8]: ph
         Hardness
                          1998
        Solids
                          1998
        Chloramines
                          1998
         Sulfate
                          1510
         Conductivity
                          1998
         Organic_carbon
                          1998
         Trihalomethanes
                          1891
         Turbidity
                          1998
        Potability
                          1998
         dtype: int64
 In [9]: |df[df["Potability"]==1].count()
Out[9]: ph
                          1101
         Hardness
                          1278
         Solids
                          1278
         Chloramines
                          1278
         Sulfate
                           985
         Conductivity
                          1278
         Organic_carbon
                          1278
         Trihalomethanes
                          1223
         Turbidity
                          1278
         Potability
                          1278
         dtype: int64
In [10]: df.describe()
Out[10]:
```

|       | ph          | Hardness    | Solids       | Chloramines | Sulfate     | Conductivity | Organic_carbon | Trihalomethanes | Turbidity   | Potability  |
|-------|-------------|-------------|--------------|-------------|-------------|--------------|----------------|-----------------|-------------|-------------|
| count | 2785.000000 | 3276.000000 | 3276.000000  | 3276.000000 | 2495.000000 | 3276.000000  | 3276.000000    | 3114.000000     | 3276.000000 | 3276.000000 |
| mean  | 7.080795    | 196.369496  | 22014.092526 | 7.122277    | 333.775777  | 426.205111   | 14.284970      | 66.396293       | 3.966786    | 0.390110    |
| std   | 1.594320    | 32.879761   | 8768.570828  | 1.583085    | 41.416840   | 80.824064    | 3.308162       | 16.175008       | 0.780382    | 0.487849    |
| min   | 0.000000    | 47.432000   | 320.942611   | 0.352000    | 129.000000  | 181.483754   | 2.200000       | 0.738000        | 1.450000    | 0.000000    |
| 25%   | 6.093092    | 176.850538  | 15666.690297 | 6.127421    | 307.699498  | 365.734414   | 12.065801      | 55.844536       | 3.439711    | 0.000000    |
| 50%   | 7.036752    | 196.967627  | 20927.833607 | 7.130299    | 333.073546  | 421.884968   | 14.218338      | 66.622485       | 3.955028    | 0.000000    |
| 75%   | 8.062066    | 216.667456  | 27332.762127 | 8.114887    | 359.950170  | 481.792304   | 16.557652      | 77.337473       | 4.500320    | 1.000000    |
| max   | 14.000000   | 323.124000  | 61227.196008 | 13.127000   | 481.030642  | 753.342620   | 28.300000      | 124.000000      | 6.739000    | 1.000000    |

```
In [11]: df.dtypes
Out[11]: ph
                           float64
         Hardness
                           float64
                           float64
         Solids
         Chloramines
                           float64
         Sulfate
                           float64
         Conductivity
                           float64
         Organic_carbon
                           float64
         Trihalomethanes
                           float64
         Turbidity
                           float64
         Potability
                             int64
         dtype: object
         Data Pre-Processing
In [12]: print(df.isnull().sum())
         Hardness
                             0
         Solids
                             0
         Chloramines
                             0
                           781
         Sulfate
         Conductivity
                             0
         Organic_carbon
                             0
         Trihalomethanes
                           162
         Turbidity
                             0
         Potability
                             0
         dtype: int64
         Check for Duplicates:
In [13]: duplicates = df.duplicated()
In [14]: | df = df.drop_duplicates()
         CLEARING THE NULL VALUES
In [15]: df.dropna(axis=0, how='any', inplace=True)
In [16]: df.isnull().sum()
Out[16]: ph
         Hardness
         Solids
                           0
         Chloramines
         Sulfate
                           0
         Conductivity
         Organic_carbon
         Trihalomethanes
         Turbidity
                           0
         Potability
         dtype: int64
In [17]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 2011 entries, 3 to 3271
         Data columns (total 10 columns):
          # Column
                             Non-Null Count Dtype
                              2011 non-null
                                              float64
             .
Hardness
                              2011 non-null
                                              float64
             Solids
                              2011 non-null
                                              float64
             Chloramines
                              2011 non-null
                                              float64
             Sulfate
                              2011 non-null
                                              float64
             Conductivity
                              2011 non-null
                                              float64
             Organic_carbon
                              2011 non-null
                                             float64
          6
             Trihalomethanes 2011 non-null
                                              float64
                              2011 non-null
                                             float64
          8
             Turbidity
                              2011 non-null
             Potability
                                             int64
         dtypes: float64(9), int64(1)
         memory usage: 172.8 KB
```

#### **DETECTING OF OUTILERS**

```
In [18]: fig, ax = plt.subplots(figsize = (15,5))
    ax.scatter(df['ph'],df['Hardness'])
    ax.set_xlabel('(PH VALUES)')
    ax.set_ylabel('(Hardness VALUES)')
    plt.show()
```



Type  $\it Markdown$  and LaTeX:  $\it \alpha^2$ 

```
In [19]: plt.figure(figsize=(12, 6))
    sns.boxplot(data=df, orient="v")
    plt.title("Box Plots for Water Quality Parameters")
    plt.show()
```



## **HANDLING OF OUTILERS**

```
In [20]:

def clear_outliers_iqr(df, columns):
    cleaned_data = df.copy()
    for column in columns:
        Q1 = df[column].quantile(0.25)
        Q3 = df[column].quantile(0.75)
        IQR = Q3 - Q1
        lower_bound = Q1 - 1.5 * IQR
             upper_bound = Q3 + 1.5 * IQR
             cleaned_data = cleaned_data[(cleaned_data[column] >= lower_bound) & (cleaned_data[column] <= upper_bound)]
        return cleaned_data

outlier_columns = ['ph', 'Hardness', 'Solids', 'Chloramines', 'Sulfate', 'Conductivity', 'Organic_carbon', 'Trihalomethanes'
        cleaned_data = clear_outliers_iqr(df, outlier_columns)</pre>
```

```
In [21]: fig, ax = plt.subplots(figsize = (15,5))
    ax.scatter(cleaned_data['ph'],cleaned_data['Hardness'])
    ax.set_xlabel('(PH VALUES)')
    ax.set_ylabel('(Hardness VALUES)')
    plt.show()
```



# visualization of parameter

```
In [22]: plt.pie(df['Potability'].value_counts(),labels = list(df['Potability'].unique()),autopct="%0.1f%%" )
plt.show()
```



```
In [23]: df.hist(bins=20, figsize=(12, 10))
plt.suptitle("Histograms of Water Quality Parameters")
plt.show()
```

Histograms of Water Quality Parameters



```
In [24]: plt.figure(figsize=(12, 6))
    sns.boxplot(data=cleaned_data, orient="v")
    plt.title("Box Plots for Water Quality Parameters")
    plt.show()
```



```
In [25]: correlation_matrix = cleaned_data.corr()
  plt.figure(figsize=(12, 8))
  sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm")
  plt.title("Correlation Matrix Heatmap")
  plt.show()
```



```
In [26]: plt.figure(figsize=(6, 6))
    sns.countplot(data=cleaned_data, x='Potability', palette='viridis')
    plt.title("Potability Count")
    plt.show()
```



In [27]: px.histogram(cleaned\_data, x="ph", color="Potability", barmode="overlay", title= "Factors Affecting Water Quality: PH")

#### Factors Affecting Water Quality: PH



#### Factors Affecting Water Quality: Hardness



In [89]: px.histogram(df, x = "Solids",color = "Potability", barmode="overlay",title= "Factors Affecting Water Quality: Solids")

#### Factors Affecting Water Quality: Solids

