ANALIZA MATEMATYCZNA

LISTA ZADAŃ 13

16.01.2023

-1	\bigcirc 11.	1	C	•	• 1	
	1 16 107	$\mathbf{n} \circ \mathbf{n}$	ti cui ra	OCTODICZODO	1 1/2 12/72	3733737373731 *
1.	COULCE	DOTE	ngurv	ograniczone	I KIZ	v vv v IIII.

- (a) $y = x^2$ i y = 2x + 5, (b) $y = e^x$ i prostą przechodzącą przez punkty (0,1) i (1,e),
- (c) $y = \sin(x)$ i $y = \frac{2x}{\pi}$, (d) $y = x^4$ i $y = x^3$, (e) $y = \frac{1}{x}$ i $y = \frac{5}{2} x$, (f) $y = \frac{1}{x^2}$, $y = \frac{1}{x^3}$ i x = 2.

2. Oblicz długość łuku krzywej $y=f(x),\,a\leq x\leq b$ dla podanych f(x) i [a,b]:

(a) x, [1,2], (b) 2x-3, [-7,12], (c) e^x , [1,2], (d) $\sqrt{x^3}$, [6,10], (e) $\frac{e^x+e^{-x}}{2}$, [0,1].

3. Dla danych f(x) i [a,b] oblicz pole powierzchni bocznej bryły powstałej przez obrót krzywej $y = f(x), a \le x \le b$ wokół osi OX:

(a) x^3 , [0, 5], (b) e^{-x} , [0, 10], (c) \sqrt{x} , [0, 4], (d) $\sin(x)$, $[0, \pi]$, (e) $\cos(7x)$, $[0, 2\pi]$.

4. Dla danych f(x) i [a,b] oblicz objętość bryły powstałej przez obrót obszaru $0 \le y \le$ f(x), $a \le x \le b$ wokół osi OX:

- (a) \sqrt{x} , [0,1], (b) x, [1,5], (c) x^7 , [0,10], (d) e^x , [-3,0], (e) $\sin(x)$, $[0,\frac{3\pi}{2}]$.
- 5. Oblicz długość łuku krzywej $y = \sqrt{(x+5)^3}, \ 0 \le x \le 8.$

6. Oblicz objętość bryły powstałej przez obrót obszaru $0 \le y \le xe^x$, $0 \le x \le 1$ wokół osi OX.

7. Oblicz długość łuku krzywej $y = \log(x)$, $1 \le x \le \sqrt{3}$.

8. Oblicz objętość bryły powstałej przez obrót obszaru $\arctan(x) \le y \le \sqrt{\arctan^2(x) + 1 + \sin(x)}, \ 0 \le x \le 2\pi \text{ wokół osi } OX.$

9. Od pomarańczy o grubej skórce odcięto końce, tak, że ukazał się miąższ. Pomarańczę następnie pokrojono w równe plastry. Pokaż, że każdy plaster zawiera tyle samo skórki.

10. Zbadaj zbieżność całek niewłaściwych i oblicz te, które są zbieżne:

(a)
$$\int_0^\infty \frac{dx}{x^2 + 1},$$

(b)
$$\int_0^4 \frac{dx}{\sqrt{x}},$$

(c)
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x}},$$

(a)
$$\int_{0}^{\infty} \frac{dx}{x^{2} + 1},$$
 (b)
$$\int_{0}^{4} \frac{dx}{\sqrt{x}},$$
 (c)
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x}},$$
 (d)
$$\int_{-1}^{1} \frac{x - 1}{x^{2} - 1} dx,$$
 (e)
$$\int_{2}^{\infty} \frac{dx}{x \log(x)},$$
 (f)
$$\int_{0}^{\infty} \frac{dx}{e^{\sqrt[3]{x}}},$$
 (g)
$$\int_{0}^{\infty} \cos(x) dx,$$
 (h)
$$\int_{1}^{\infty} x^{\frac{1}{x}} dx,$$
 (i)
$$\int_{-\infty}^{\infty} e^{x} dx,$$

(e)
$$\int_{2}^{\infty} \frac{dx}{x \log(x)},$$

(f)
$$\int_0^\infty \frac{dx}{e^{\sqrt[3]{x}}},$$

(g)
$$\int_0^\infty \cos(x) \, dx,$$

(h)
$$\int_{1}^{\infty} x^{\frac{1}{x}} dx,$$

(i)
$$\int_{-\infty}^{\infty} e^x dx$$

$$(j) \quad \int_0^1 e^{\frac{1}{x}} \, dx,$$

(k)
$$\int_{1}^{\infty} \frac{e^{-\frac{1}{x}}}{x^3} dx$$

(j)
$$\int_0^1 e^{\frac{1}{x}} dx$$
, (k) $\int_1^\infty \frac{e^{-\frac{1}{x}}}{x^3} dx$, (l) $\int_2^\infty \frac{dx}{x \log^2(x)}$,

(m)
$$\int_0^\infty x^3 \sin(x^4) \, dx.$$