Week 8 --- Kou Yu

Task 1 Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickenss to be 13 mm)

Double-pane glazing

When ε =0.84 and gap=13, from the chart we can see

Gas:air $U_{
m factor} = 2.8W \, / \, {
m m}^2 K$ and the percentage is 100%

Gas: krypton $U_{\text{factor}} = 2.6 \text{W/m}^2 K$ and the percentage is 93%

When ε =0.10and gap=13,from the chart we can see

Gas:air $U_{\text{factor}} = 1.8 \text{W/m}^2 K$ and the percentage is 64%

Triple-pane glazing

When ε =0.84 and gap=13, from the chart we can see

Gas:air $U_{\text{factor}} = 1.8 \text{W/m}^2 K$ and the percentage is 64%

So,we can conclusion that the same with ε =0.84 and gap=13,when the gas krypton instead of air , the $U_{\rm factor}$ will reduce 0.2 W/m^2K ,TUFACTOR value Reduced by 7%,he thermal conductivity of the window has not improved significantly.

When change the $\,\mathcal{E}$,the same gas with air, the $\,U_{\mathrm{factor}}\,$ will reduce 1 W / $\mathrm{m}^2 K$,he UFACTOR value Reduced by 36% ,The thermal conductivity of the window is significantly improved.

When add one pane glazing , the same ε with Double-pane glazing , he UFACTOR value Reduced by 36% ,The thermal conductivity of the window is significantly improved.

Task 2 Consider the house that we analysed in the alst two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m2 on the west, fixed 3.6 m2 on the south and an operable 3.6 m2 on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminium?

						P	IACENZ	A, Italy						WMO#:	160840
Lat	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	W)	Period	89-10	WBAN:	99999
nnual He	ating and H	umidificati	on Design C	onditions											
Coldon	Heatle	- 00		Humi	dification DF	/MCDB and	HR			coldest mon	th WS/MCDI	В	MCWS	/PCWD	
Coldest Month	Heating	J DB		99.6%			99%		0.4	4%	15	%	to 99.6	5% DB	
MOHIII	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	
(0)	(b)	(0)	(d)	(0)	(1)	(9)	(h)	(1)	())	(k)	(1)	(m)	(n)	(0)	
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250	
nnual Co	ooling, Dehu	midificatio	n, and Entha	alpy Design	Conditions										
Hottest	Hottest			Cooling D	B/MCWB					Evaporation	WB/MCDB			MCWS	PCWD
Month	Month	0.4	4%	19	6	2%	1	0	.4%	1	%	- 2	2%	to 0.4	% DB
WICK AUT	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
(a)	(b)	(c)	(d)	(e)	(1)	(9)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)
8	11.9	33.1	22.7	31.9	22.4	30.3	21.8	24.6	30.2	23.7	29.2	22.9	28.3	2.4	90

Table 10 Peak Irradiance, W/m2

	Latitude									
Exposure	20°	25°	30°	35°	40°	45°	50°	55°	60°	
North	E_D	125	106	92	84	81	85	96	112	136
	E_d	128	115	103	93	84	76	69	62	55
	E_t	253	221	195	177	166	162	164	174	191
Northeast/Northwest	E_D	460	449	437	425	412	399	386	374	361
	E_d	177	169	162	156	151	147	143	140	137
	E_t	637	618	599	581	563	546	529	513	498
East/West	E_D	530	543	552	558	560	559	555	547	537
	E_d	200	196	193	190	189	188	187	187	187
	E_t	730	739	745	748	749	747	742	734	724
Southeast/Southwest	E_D	282	328	369	405	436	463	485	503	517
	E_d	204	203	203	204	205	207	210	212	215
	E_t	485	531	572	609	641	670	695	715	732
South	E_D	0	60	139	214	283	348	408	464	515
	E_d	166	193	196	200	204	209	214	219	225
	E_t	166	253	335	414	487	557	622	683	740
Horizontal	E_D	845	840	827	806	776	738	691	637	574
	E_d	170	170	170	170	170	170	170	170	170
	E_t	1015	1010	997	976	946	908	861	807	744

Table 13	Fenestration Solar Load Factors FF _s							
Exposure	Single Family Detached	Multifamily						
North	0.44	0.27						
Northeast	0.21	0.43						
East	0.31	0.56						
Southeast	0.37	0.54						
South	0.47	0.53						
Southwest	0.58	0.61						
West	0.56	0.65						
Northwest	0.46	0.57						
Horizontal	0.58	0.73						

We can see that:

Latitude ≈ 45

 $T_{cooling} = 24$ °C

 $T_{heating} = 20^{\circ} c$

 Δ = 31.9°c - 24°c = 7.9 °c

 $\Delta h = 20$ °c – (-4.8)°c = 24.8 °c

Calculating the cooling load of the fixed window on the west:

 $qwindowwest = A \times CFwindowwest \\$

A=14.4m2,

CFwindowwest(Heat Trasnfer Part)=Uwindowwest(ΔTcooling -0.46 DR)

The window has a fixed heat absorbing double layer glass with a wooden frame,

Uwindowwest= 2.84 W/m^2K

CFwindowwest(Heat Trasnfer Part)= $2.84 W / m^2 K \times (7.9 \text{ K} - 0.46 \times 11.9 \text{ K}) \approx 6.89 \text{ W/m}^2$

PXIwindowwest=ED+Ed=559+188=747

SHGC= 0.54 No internal shading, so IAC = 1 FFs=0.56

CFwindowwest(Irradiation Part)=PXI×SHGC×IAC×FFs

qwindowwest=A×CFwindowwest=A×(CFwindowwest(Heat Trasnfer Part)+CFwindowwest(IrradiationPart))≈14.4 m2×(6.89+747×0.54×1×0.56)Wm2≈3352.07 W

Calculating the heating load of the fixed window on the west:

qwindowwest=A×HFwindowwest=A×Uwindowwest Δ Theating=14.4 m2 ×2.84 W/m^2K × 24.8K≈1014.22 W

When the frame were to be aluminium, Uwindowwest=3.61 W/m^2K HSGC=0.56

CF'windowwest(Heat Trasnfer Part)=U'windowwest (ΔTcooling –0.46 DR)

=3.61 $W/m^2K \times (7.9 \text{ K} - 0.46 \times 11.9 \text{K}) \approx 8.76 \text{ Wm}^2$

Cooling load

 $q'windowwest = A \times CF'windowwest = A \times (CF'windowwest (Heat Trasnfer Part) + CF'windowwest (Irradiation Part)) \approx 14.4 \\ m2 \times (8.76 + 747 \times 0.56 \times 1 \times 0.56) \\ Wm2 \approx 3499.48 \ W$

Heating load

q'windowwest=A×HF'windowwest=A×U'windowwest ΔTheating=14.4 m2 ×3.61 W/m^2K ×24.8 K≈1289.20 W

Calculating the cooling load of the fixed window on the south:

qwindowsouth=A×CFwindowsouth

A=3.6 m2,

CFwindowsouth(Heat Trasnfer Part)=Uwindowsouth (ΔTcooling –0.46 DR)

The window has a fixed heat absorbing double layer glass with a wooden frame,

Uwindowsouth= 2.84 W/m^2K

CFwindowsouth(Heat Trasnfer Part)= $2.84 W / m^2 K \times (7.9 \text{ K} - 0.46 \times 11.9 \text{ K}) \approx 6.89 \text{ W/m}^2$

PXIwindowsouth=ED+Ed=348 +209 = 557

SHGC =0.54

No internal shading, so IAC =1 FFs=0.47

CFwindowsouth(Irradiation Part)=PXI×SHGC×IAC×FFs

 $qwindows outh = A \times CFwindows outh (A \times CFwindows outh (HeatTrasnferPart) + CFwindows outh (IrradiationPart)) \approx 3.6 \\ m2 \times (6.89 + 557 \times 0.54 \times 1 \times 0.47) \\ Wm2 \approx 553.72 \\ Wm2 \times 1.04 \times 1.04 \\ Wm2 \times 1.04 \times$

Calculating the heating load of the fixed window on the south:

qwindowsouth=A×HFwindowsouth=A×Uwindowsouth Δ Theating=3.6 m2×2.84 W/m^2K ×24.8K≈253.56 W

When the frame were to be aluminium,

Uwindowsouth= $4.62W/m^2K$, HSGC=0.55

CF'windowsouth(Heat Trasnfer Part)=U'windowsouth (Δ Tcooling -0.46 DR)=4.62 $W/m^2K \times (7.9 \text{ K} -0.46 \times 11.9 \text{K}) \approx 11.21 \text{Wm} 2$

Cooling load

q'windowsouth=A×CF'windowsouth=A×(CF'windowsouth(Heat Trasnfer Part)+CF'windowsouth(Irradiation Part)) $\approx 3.6 \text{ m2} \times (11.21 + 557 \times 0.55 \times 1 \times 0.47) \text{Wm2} \approx 558.70 \text{ W}$ Heating load

 $\text{q'windowsouth=A} \times \text{HF'windowsouth=A} \times \text{U'windowsouth} \ \Delta \text{Theating=3.6 m2} \ \times \text{4.62} \ \ \textit{W} \ / \ \text{m}^2 \textit{K} \ \ \times \text{24.8 K} \approx \text{412.47 W}$