Combinatorics: Homework 11

Peter Kagey

November 25, 2018

Problem 1. Show that $R_2(3,4) = 9$.

Proof.

 $R_2(3,4) > 8$ because the coloring of K_8 in Figure 1 has no subgraphs K_3 which are colored blue, because the only blue edges are of neighbors around the border or opposite vertices. The coloring has no subgraphs of K_4 colored red because no edges around the border are colored red, so a choice of K_4 must include "every other" vertex around the border, and the two choices are constructed so that either choice has two blue edges.

Figure 1: A 2-coloring of K_8 which has no red K_4 subgraphs or blue K_3 subgraphs.

Therefore it is sufficient to prove that $R_2(3,4) \leq 9$. We saw in class that $R_2(3,3) = 6$, and $R_2(2,4) = 4$. Therefore take any vertex v in K_9 . Since v has degree 8, there are three cases to consider.

Case 1. Assume there are 5 red edges and 3 blue edges. Not all vertices can be in this case, because the sum of degrees over each vertex must be even, and if in the blue subgraph, all 9 vertices have degree 3, then the sum of degrees is 27, a contradiction. Thus, it is always possible to choose a vertex in one of the following two cases.

Case 2. Assume there are 6 or more edges which are colored red. In this case, take six vertices which are connected to v via a red edge, and look at the K_6 subgraph on these vertices. Because $R_2(3,3) = 6$ either K_6 has a blue K_3 (in which case K_9 does too, and we're done) or K_6 has a red K_3 , in which case $K_3 \cup v$ is a complete graph on 4 red vertices.

Case 3. Assume there are 4 or more edges which are colored blue. In this case, take four vertices which are connected to v via a blue edge, and look at the K_4 subgraph on these vertices. Because $R_2(4,2)=4$ either K_4 is all red (and thus has a red K_4 subgraph, and we're done) or K_4 has a blue K_2 subgraph, in which case $K_2 \cup v$ is a complete graph on 3 blue vertices.

Problem 2. Define M_n recursively by

$$M_1 = 3$$

$$M_m = mM_{m-1} - m + 2.$$

Show that

- (a) $M_m = |m! e| + 1$
- (b) If each edge on the complete graph K_{M_m} is colored in one of m colors, then there exists a monochromatic triangle.

Solution.

(a) By induction, the base case m=1 is clear since $M_1=\lfloor 1!\,e\rfloor+1=2+1=3$. Thus using the identity

$$\lfloor m! \, e \rfloor = \left\lfloor \frac{m!}{0!} + \frac{m!}{1!} + \dots + \frac{m!}{m!} + \frac{m!}{(m+1)!} + \dots \right\rfloor$$
$$= \frac{m!}{0!} + \frac{m!}{1!} + \dots + \frac{m!}{m!}.$$

which holds for all $m \geq 1$ since

$$\frac{m!}{(m+1)!} + \frac{m!}{(m+2)!} + \ldots = \frac{1}{(m+1)} + \frac{1}{(m+1)(m+2)} + \ldots \le e - 2 \approx 0.71828.$$

Therefore,

$$M_{m+1} = (m+1)\lfloor m! \, e \rfloor + 2$$

$$= (m+1) \left\lfloor \frac{m!}{0!} + \frac{m!}{1!} + \dots + \frac{m!}{m!} + \dots \right\rfloor + 2$$

$$= (m+1) \left(\frac{m!}{0!} + \frac{m!}{1!} + \dots + \frac{m!}{m!} \right) + 2$$

$$= \frac{(m+1)!}{0!} + \frac{(m+1)!}{1!} + \dots + \frac{(m+1)!}{m!} + 2$$

$$= \underbrace{\frac{(m+1)!}{0!} + \frac{(m+1)!}{1!} + \dots + \frac{(m+1)!}{m!} + \frac{(m+1)!}{(m+1)!}}_{\lfloor (m+1)! \, e \rfloor} + 2$$

$$= \lfloor (m+1)! \, e \rfloor + 1.$$

(b) By induction, where the base case m=1 is clear.

Problem 3. Let $r \in \mathbb{P}$. Prove that any 2-coloring of the complete graph on $(r-1)^2 + 1$ vertices has either every red tree or every green tree in r vertices.

Proof.