CBO Applied to RL

V -evaluation, continuous state space (5.1.)

Outline

- Markov decision process with a continuous state space $\mathbb{S}=\{s\in(0,2\pi]\}.$
- · Dynamics described by

$$s_{m+1} = s_m + \alpha(s_m)\epsilon + \sigma(s_m)\sqrt{\epsilon}Z_m$$

$$\alpha(s) = 2\sin(s)\cos(s), \quad \sigma(s) = 1 + \cos(s)^2, \quad \epsilon = 0.1$$

- Immediate reward function, $R(s) = (\cos(2s) + 1)$.
- Discount factor $\gamma = 0.9$.
- 3 layer FCNN, $V(s;\theta)$. Two hidden layers with \cos activation function, and each hidden layer contains 50 neurons.

$$egin{aligned} V(s; heta) &= V\left(x;\{w_i,b_i\}_{i=1}^3
ight) = L_{w_3,b_3}\circ\cos\circ L_{w_2,b_2}\circ\cos\circ L_{w_1,b_1}((\cos s,\sin s)) \ L_{w_i,b_i}(x) &= w_ix+b_i, \quad w_i \in \mathbb{R}^{n_{i-1} imes n_i}, \quad b_i \in \mathbb{R}^{n_i}, \quad n_0 = 2, n_1 = n_2 = 50, n_3 = 1 \end{aligned}$$

- $heta^*$ is computed with Algorithms 1-4 based on trajectory $\{s_m\}_{m=1}^{10^6}$ with

$$f\left(s_{m},s_{m+1}, heta
ight)=R\left(s_{m}
ight)+\gamma V\left(s_{m+1}; heta
ight)-V\left(s_{m}; heta
ight),\quad au=0.1,\quad M=1000$$

- The SGD algorithm runs for a single epoch with the same initialization θ_0 .
- Error at step k, e_k is defined as $e_k = \|V(\cdot, \theta_k) V^*\|_{L^2}$.
- Reference $V^*(s)$ is computed by running Algorithm 1 for 10 epochs based on longer trajectory $\{s_m\}_{m=1}^{10^7}$, with $\tau=0.01, M=1000$.
- We visualize relative error, $\log_{10}(e_k/e_0)$.
- NB, I made one modification from the paper:
 - Since $V(s,\theta)\mapsto V(s,\theta)+\delta$ is a symmetry in f, then a better way of measuring error, e_k , is

$$e_k = \|V(\cdot, heta_k) - V^* - \mu_k\|_2, \quad \mu_k = \int V(\cdot, heta_k) - V^*$$

SGD vs CBO

SGD Parameters:

$$M = 1000$$
, epochs = 1, $\gamma = 0.9$, $\tau = 0.1$

CBO Paramaters:

```
\begin{array}{ll} N=30\\ m=1000\\ \text{epochs}=1\\ \delta=1\times 10^{-5}\\ \eta_k=\max(0.5\cdot 0.998^k,0.01)\\ \tau_k=\max(0.1\cdot 0.998^k,0.01)\\ \beta_k=\max(30\cdot 1.002^k,80) \end{array} Threshold of difference below which particles take a brownian motion step that the state of the stat
```


Q-evaluation and control, continuous state space (4.1.)

Outline

- MDP with a continuous state space $\mathbb{S} = \{s \in (0, 2\pi]\}.$
- Dynamics described by

$$egin{aligned} \Delta s_m &= a_m \epsilon + \sigma \sqrt{\epsilon} Z_m \ a_m \in \mathbb{A} = \{\pm 1\} \ a_m &\sim \pi(\cdot|s_{m-1}) \ arepsilon &= rac{2\pi}{32} \ \sigma &= 0.2 \ r(s_{m+1}, s_m, a_m) = \sin(s_{m+1}) + 1 \end{aligned}$$

- 3 layer FCNN, $Q^{\pi}(s, a; \theta)$. Two hidden layers with \cos activation function, and each hidden layer contains 50 neurons. Output layer of size $|\mathbb{A}|$.
- Reference Q^* is computed by running UR for 10 epochs based on longer trajectory $\{s_m\}_{m=1}^{10^7}$, with au=0.01, M=1000.

Q-evaluation

Estimating Q^{π} for fixed policy $\pi(a|s) = 1/2 + a\sin(s)/5$.

$$j^{eval}(s_m, a_m, s_{m+1}; heta) = r(s_{m+1}, s_m, a_m) + \gamma \int Q^{\pi}(s_{m+1}, a; heta) \pi(a|s_{m+1}) da - Q^{\pi}(s_m, a_m; heta)$$

Q-control

Fixed behavior policy to generate training trajectory, $\pi(a|s)=1/|\mathbb{A}|$.

$$j^{ctrl}(s_m, a_m, s_m + 1; heta) = r(s_{m+1}, s_m, a_m) + \gamma \max_{a'} Q^{\pi}(s_{m+1}, a'; heta) - Q^{\pi}(s_m, a_m; heta)$$

SGD vs CBO

SGD Parameters:

CBO Parameters:

$$\begin{split} N &= 90 \\ m &= 1000 \\ \text{epochs} &= 1 \end{split}$$

 $\delta = 1 \times 10^{-5}$ Threshold of difference below which particles take a brownian motion step

 $egin{aligned} \eta_k &= \max(0.6 \cdot 0.9992^k, 0.075) \ au_k &= \max(0.8 \cdot 0.9992^k, 0.3) \ eta_k &= \max(8 \cdot 1.002^k, 20) \end{aligned}$

Learning rate
Exploration rate

1/Characteristic energy

To visualize the stability of the algorithms, we can show statistics (mean and sd) on 10 runs:

Future Work

- Applying rigorous approaches to hyper-parameter tuning
- Testing the CBO + BFF on more complex problems
 - Higher dimensional
 - Deeper neural networks
 - Open Al Gyms examples
 - Less smooth dynamics
- Visualizing behavior of particles in CBO

Summary and Conclusion

From the experiments on the simple environments, we note that

- ullet BFF and UR have similar performance using SGD and CBO, which are superior to DS, for V-evaluation and Q-control.
- ullet CBO and SGD have similar performances with BFF, UR, and DS in V-evaluation, however CBO performs worse than SGD in Q-control.

Thus, we don't experience a notable advantage in the combination of BFF and CBO, for V-evaluation and Q-control, however we reaffirm the validity of BFF over DS.