$ au_{1}^{\#2}$	0	0	0	0	0	0	0
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha} \ \tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	0	0	0
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
	$\sigma_1^{\#1} + ^{\alpha\beta}$	$\sigma_1^{#2} + \alpha \beta$	$t_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} \dagger^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2^{+}\alpha\beta}^{\#1}$	$\sigma_{2}^{\sharp 1}{}_{\alpha\beta}$
$\sigma_{2}^{\#1}\dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{#1}$ †	0	0	0	$\frac{1}{t_2}$

	#	1	1	1	3	3	3	3	2	2	25
Source constraints	SO(3) irreps	$\sigma_{0+}^{#1} == 0$	$\tau_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	$\tau_1^{\#^2\alpha} == 0$	$\tau_{1}^{\#_{1}\alpha} == 0$	0 ==	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\sigma_{2^{-1}}^{\#1}\alpha\beta\chi==0$	$\tau_{2+}^{\#1}\alpha\beta==0$	Total #:

$\omega_{2}^{\#1}{}_{+}\alpha_{\beta}\ f_{2}^{\#1}{}_{+}\alpha_{\beta}\ \omega_{2}^{\#1}{}_{\alpha\beta\chi}$	0	0	0
$f_2^{\#1}_{+}\alpha\beta$	0	0	0
$\omega_2^{\#1}{}_+\alpha\beta$	$-\frac{3k^2r_3}{2}$	0	0
	$\omega_2^{\#1} + ^{lphaeta}$	$f_2^{\#1} + ^{\alpha\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

	?		
?		Quadratic pole	9
	<u> </u>	Pole residue:	- <u>1</u> > (
	\prec		$r_3 (2r_3+r_5) (r_3+2r_5) p^2$
7		Polarisations:	2
·	?		

Į	J١	ni	ta	rit	У	СО	nd	iti	or	าร

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$

(No massive particles)