# Color Signal and Spectrometry

#### **Light Source**

Spectral Exitance M<sub>e,\lambda</sub> in W-m<sup>-2</sup>-nm<sup>-1</sup> ("Emittance")

# **Color Signal or Spectral Radiosity**

$$J_{e,\lambda} = M_{e,\lambda} R_{\lambda}$$

Also in W-m<sup>-2</sup>-nm<sup>-1</sup>



#### **Object**

Spectral Reflectance  $R_{\lambda}$  in % or (0 to 1)

#### Thus, to get Reflectance

$$R_{\lambda} = \frac{J_{e,\lambda}}{M_{e,\lambda}}$$

Spectrometers can automatically do this calculation. But first you have to measure emittance and dark current. Pointing the spectrometer straight to the light source can saturate its sensor. Instead a white reference is used.





#### Lambertian Surface - Ideal matte surface





#### To get reflectance using a white reference standard



NOTE: Spectral Radiance is a DIRECTIONAL quantity.

## To get reflectance of object

$$R_{\lambda} = \frac{L(object)_{e,\Omega,\lambda}}{L(white)_{e,\Omega,\lambda}}$$

### Use of Integrating Sphere for Spectrometry



- Instead of integrating sphere you will use your lightbox.
- Instead of a spectralon reference you will use several layers of white matte paper.
- To remove directional dependence, fix the optical fiber on a holder.