数据库选型关键指标

digoal

指标对比

- SQL兼容性
- 功能
- 性能
- 稳定性(都久经考验)
- 可靠性
- 代码成熟度
- 平台兼容性
- 服务端编程语言
- 内核扩展能力
- scale up 能力
- scale out 能力

- 应用场景
- 社区状态
- 社区活跃度
- 生态
- 未来发展潜力
- 应用案例
- 学习成本
- 开发成本
- 开源许可

SQL 兼容性

- PostgreSQL 9.5
 - 兼容 SQL:2011 子集
 - http://www.postgresql.org/docs/9.5/static/featur es-sql-standard.html

- MySQL 5.7
 - 兼容 SQL:1999 子集

功能差异 - 高级SQL

- 递归查询, connect by, 树形查询
 - PostgreSQL 通过(with 或 tablefunc支持)支持,MySQL 不支持
 - 例子
 - https://yq.aliyun.com/articles/240
 - http://www.postgresql.org/docs/9.5/static/tablefunc.html
- 窗口查询, window over
 - PostgreSQL 支持,MySQL 不支持
 - 例子
 - http://blog.163.com/digoal@126/blog/static/16387704020137154137930
 - http://blog.163.com/digoal@126/blog/static/16387704020121024102312302/
 - http://blog.163.com/digoal@126/blog/static/16387704020124239390354/
 - http://www.postgresql.org/docs/9.5/static/functions-window.html
- rollup, grouping sets, cube
 - PostgreSQL 支持,MySQL 不支持
 - 例子
 - http://www.postgresgl.org/docs/9.5/static/queries-table-expressions.html#QUERIES-GROUPING-SETS
 - http://blog.163.com/digoal@126/blog/static/16387704020154269591874/
- 高级聚合(json,数组,相关性,标准差(采样,全局),截距,斜率,方差(采样,全局),mode,percentile_cont,distc,rank,dense_rank,percent_rank,cume_dist,grouping)
 - PostgreSQL 支持,MySQL 不支持
 - 例子
 - http://www.postgresql.org/docs/9.5/static/functions-aggregate.html
 - http://blog.163.com/digoal@126/blog/static/1638770402015224124337/
 - http://blog.163.com/digoal@126/blog/static/1638770402015379286873/
 - http://blog.163.com/digoal@126/blog/static/16387704020153713222764

功能差异 - 高级SQL

- hash join
 - PostgreSQL 支持,MySQL 不支持
- merge join
 - PostgreSQL 支持,MySQL 不支持
- nestloop join
 - 都支持
- 例子
- http://www.postgresql.org/docs/9.5/static/xoper-optimization.html
- http://www.postgresql.org/docs/9.5/static/planner-optimizer.html
- 哈希聚合
 - PostgreSQL 支持, MySQL 不支持
 - 例子
 - http://www.postgresql.org/docs/9.5/static/runtime-config-query.html#RUNTIME-CONFIG-QUERY-ENABLE
- 事务间共享事务快照
 - PostgreSQL 支持,MySQL 不支持
 - 例子
 - http://www.postgresql.org/docs/9.5/static/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION
 - http://www.postgresql.org/docs/9.5/static/sql-set-transaction.html
 - http://www.postgresql.org/docs/9.5/static/app-pgdump.html
 - http://blog.163.com/digoal@126/blog/static/163877040201326829943/
 - http://blog.163.com/digoal@126/blog/static/163877040201241134721101/

功能差异-约束

- foreign key
 - PostgreSQL 支持, MySQL 仅 innodb 引擎支持FK
 - 例子
 - http://www.postgresql.org/docs/9.5/static/ddl-constraints.html
- for no key update, for key share 粒度锁
 - PostgreSQL 支持, MySQL 不支持
 - 例子
 - http://www.postgresql.org/docs/9.5/static/explicit-locking.html#LOCKING-ROWS
 - http://blog.163.com/digoal@126/blog/static/16387704020130249109133/
 - http://blog.163.com/digoal@126/blog/static/16387704020130305109687/
- check 约束
 - PostgreSQL 支持, MySQL不支持(仅支持语法,实际不生效,不严谨)
 - 例子
 - http://www.postgresql.org/docs/9.5/static/ddl-constraints.html
- exclusion 约束
 - PostgreSQL 支持, MySQL不支持
 - 例子
 - http://www.postgresql.org/docs/9.5/static/ddl-constraints.html

功能差异-易用性

- 表空间
 - 都支持
- alter 列值转表达式(alter table alter column c1 type newtype using (expression(...)))
 - PostgreSQL 支持, MySQL 不支持
 - 例子
 - http://www.postgresql.org/docs/9.5/static/sql-altertable.html
 - https://yq.aliyun.com/articles/30470
- alter table 需要重组表的操作
 - MySQL (innodb)
 - optimize table, 添加列,删除列, 重排, 修改row_format, key_block_size, mark column null, not null, 修改字段长度, 修改字段数据类型, 添加主键, 删除主键, 转换字符集, 指定字符集, rebuild table
 - http://dev.mysql.com/doc/refman/5.7/en/innodb-create-index-overview.html
 - PostgreSQL
 - vacuum full, cluster, 修改字段数据类型, (修改长度不需要重组表)
 - http://www.postgresql.org/docs/9.5/static/sql-altertable.html
- 分区表
 - 都支持
 - PostgreSQL 通过继承支持分区表, 阿里RDS PostgreSQL支持分区表语法
 - 例子
 - http://www.postgresql.org/docs/9.5/static/ddl-partitioning.html
 - https://yq.aliyun.com/articles/113

功能差异-易用性

- 物化视图
 - PostgreSQL 支持, MySQL 暂不支持
 - 例子
 - http://www.postgresql.org/docs/9.5/static/sql-creatematerializedview.html
- 物化视图增量刷新
 - PostgreSQL 支持, MySQL 暂不支持
 - 例子
 - http://www.postgresql.org/docs/9.5/static/sql-refreshmaterializedview.html
- 表继承关系
 - PostgreSQL 支持, MySQL 暂不支持
 - 例子
 - http://www.postgresql.org/docs/9.5/static/tutorial-inheritance.html
- 使用 like 建结构类似的表
 - PostgreSQL 支持, MySQL 暂不支持
 - 例子
 - http://www.postgresql.org/docs/9.5/static/sql-createtable.html

功能差异-开发功能

- 客户端开发语言支持
 - C, java, python, ...
- 函数
 - void, 单行, SRF, 事件触发器(MySQL 不支持), 触发器
 - 例子
 - http://blog.163.com/digoal@126/blog/static/16387704020132131361949/
 - http://www.postgresql.org/docs/9.5/static/event-triggers.html
- 2PC
 - PostgreSQL 支持, MySQL 仅innodb支持
- 服务端绑定变量
 - PostgreSQL 支持, MySQL 不支持
 - 例子
 - http://www.postgresql.org/docs/9.5/static/sql-prepare.html
- savepoint
 - PostgreSQL 支持, MySQL 仅innodb支持

功能差异-开发功能

- 异步消息
 - PostgreSQL 支持, MySQL 不支持
 - 例子
 - http://www.postgresql.org/docs/9.5/static/sql-notify.html
 - http://www.postgresql.org/docs/9.5/static/sql-listen.html
- 游标
 - 都支持
- 数组FOR循环,query FOR循环,游标FOR循环
 - PostgreSQL 全支持
 - 例子
 - http://www.postgresql.org/docs/9.5/static/plpgsql-control-structures.html
 - http://www.postgresql.org/docs/9.5/static/plpgsql-cursors.html
 - MySQL 不支持数组

功能差异-类型支持

• 数据类型

- PostgreSQL
 - 高精度numeric, 浮点, 自增序列, 货币, 字节流, 时间, 日期, 时间戳, 布尔, 枚举, 平面几何, 立体几何, 多维几何, 地球, PostGIS, 网络, 比特流, 全文检索, UUID, XML, JSON, 数组, 复合类型, 域类型, 范围, 树类型, 化学类型, 基因序列, FDW, 大对象, 图像
- MySQL
 - 数字,时间,字符串,简单的GIS,JSON
- 支持索引的数据类型
 - PostgreSQL
 - 高精度numeric, 浮点, 自增序列, 货币, 字节流, 时间, 日期, 时间戳, 布尔, 枚举, 平面几何, 立体几何, 多维几何, 地球, PostGIS, 网络, 比特流, 全文检索, UUID, XML, JSON, 数组, 复合类型, 域类型, 范围, 树类型, 化学, 基因序列
 - MySQL
 - 数字,字符串,比特流,时间,全文检索,GIS

功能差异-索引支持

- 索引方法
 - PostgreSQL 支持 btree, hash, gist, sp-gist, gin, brin, bloom, rum 索引
 - MySQL 支持 btree, gis类型索引
- 规则表达式、前后模糊查询,支持索引检索
 - PostgreSQL 支持
 - MySQL 不支持
- 数组支持索引
 - PostgreSQL 支持,MySQL不支持数组
- 全文检索支持索引
 - 都支持
- 索引扩展功能
 - PostgreSQL 支持 表达式索引,部分索引,联合索引
 - MySQL 支持 联合索引
- 图像相似度、文本相似度搜索
 - PostgreSQL 支持索引加速
 - MySQL不支持
- 自定义索引方法
 - PostgreSQL支持
 - MySQL不支持

功能差异-并发能力

- 隔离级别
 - PostgreSQL 支持 RC, RR, 以及高于SQL 92标准的串行隔离级别
 - MySQL 支持 RU, RC, RR, 以及SQL 92标准的串行隔离级别
- slave库支持RR隔离级别查询
 - 都支持
- 锁粒度
 - PostgreSQL 支持 行锁,对象锁,页锁,预锁,应用锁,自旋锁,共享锁,排它锁
 - MySQL 不支持 应用锁,预锁
- 死锁检测
 - 都支持
- skip locked, nowait
 - PostgreSQL 都支持
 - MySQL 不支持, 阿里云RDS MySQL 支持nowait

功能差异-多引擎和外部源支持

- 多引擎支持
 - PostgreSQL
 - 内置heap, 通过插件实现内存表, 列存储, 压缩存储, 流式存储, 非关系存储等。
 - MySQL
 - MyISAM, innodb, ...
- 外部表
 - PostgreSQL支持任意外部数据源, (例如jdbc, file, odbc, oracle, mysql, db2, redis, mongo, ES, hadoop.....)
 - https://wiki.postgresql.org/wiki/Fdw
 - MySQL 仅支持csv文件外部表
- dblink
 - PostgreSQL 支持, MySQL 暂不支持
- 内存表
 - 都支持, (PostgreSQL 通过外部表支持)
- ES 引擎
 - PostgreSQL 支持
 - MySQL 不支持

功能差异-安全

- 数据加密
 - PostgreSQL 支持加密数据类型,可选GPG加密算法
 - MySQL 需要通过其他手段达到目的
- 认证方法
 - PostgreSQL 支持 密码、LDAP、AD、GSSAPI、SSPI、Ident、Peer、RADIUS、PAM、签名认证
 - MySQL 支持密码认证
- 数据传输加密
 - 都支持
- 行安全策略
 - PostgreSQL 支持, MySQL 暂不支持
- 数据库内部支持libselinux接口, (美国国家安全局制定的安全加强标准)
 - PostgreSQL 支持, MySQL 暂不支持

功能差异-优化器

- http://www.postgresql.org/docs/9.5/static/runtime-config-query.html
- GPU 并行计算支持
 - PostgreSQL 支持
 - MySQL 不支持
- 遗传优化器算法
 - PostgreSQL 支持CBO、CRO、遗传算法
 - MySQL 支持CBO、CRO
- HINT PLAN
 - 都支持
- CPU 并行计算
 - PostgreSQL 9.6支持 (线性性能提升)
 - MySQL 不支持
- 自定义成本因子
 - PostgreSQL 支持
 - MySQL 不支持

功能差异-可用性和可靠性

- 多master
 - 都支持
- 逻辑复制
 - 都支持
- 物理复制
 - PostgreSQL 支持, MySQL 不支持
- 级联复制
 - 都支持
- 同步复制
 - 都支持
- pasox,设置保护级别(副本数)
 - PostgreSQL 9.6 支持
 - MySQL 不支持
- 主备延迟
 - PostgreSQL 不受事务大小限制, 几乎没有延迟(ms以内)
 - MySQL延迟和事务大小相关,长事务会导致巨大主备延迟
- 在线备份,增量备份
 - 都支持
- 基于REDO的数据库回滚,修复主备时间线错乱
 - PostgreSQL 支持, MySQL不支持
- 任意时间点恢复(事务粒度)
 - 都支持, MySQL 需要用户自己写程序来支持

功能差异-编程扩展能力

- 是否支持采样查询
 - PostgreSQL 支持, MySQL不支持
- 是否支持扩展采样算法
 - PostgreSQL 支持, MySQL不支持
- 自定义数据类型
 - PostgreSQL 支持, MySQL 不支持
- 自定义索引方法
 - PostgreSQL 支持, MySQL 不支持
- 字符集自动转换, C扩展接口
 - PostgreSQL 支持, MySQL 不支持
- 自定义聚合
 - PostgreSQL 支持, MySQL 不支持
- 自定义窗口
 - PostgreSQL 支持, MySQL 不支持

功能差异-管理特性

- JOB 支持
 - 都支持
- 支持数据缓存快照和预热
 - PostgreSQL 支持, MySQL不支持
- 支持数据文件块级别fadvise flag设置
 - PostgreSQL 支持, MySQL不支持
- 性能诊断方法
 - PostgreSQL
 - explain (analyze, verbose, costs, timing, buffers)
 - IO Time
 - profile
 - probe
 - auto_explain
 - MySQL
 - explain
- 角色权限继承
 - PostgreSQL 支持, MySQL 暂不支持

功能差异

- MySQL支持,但是PostgreSQL不支持的功能
 - 暂未发现,待补充

性能

- 性能
 - TPC-H(OLAP), 复杂查询 PostgreSQL 优势非常明显
 - PostgreSQL 支持GPU加速
 - PostgreSQL rewrite能力更强
 - PostgreSQL 支持hash join, hash agg, merge join
 - PostgreSQL btree, hash, gin, gist, sp-gist, brin 索引方法
 - TPC-C(OLTP) PostgreSQL 优势非常明显
 - TPS比 PgSQL: MySQL~= 2:1
 - TPC-B PostgreSQL 略优于 MySQL
 - 秒杀,模糊查询,地理位置信息查询,范围查询,实时流式计算,批量入库等场景 PostgreSQL 优势非常明显

平台兼容性

• 不相上下

服务端编程语言

- 函数(过程)语言
 - PostgreSQL
 - plpgsql, sql, c, c++, java, javascript, R, python, perl, php, tcl, ruby, lua, julia, ...
 - MySQL
 - sql, 不支持其他扩展编程语言

扩展能力

- 扩展能力
 - 类型扩展,操作符扩展,函数扩展,索引方法扩展,索引扩展,
 - PostgreSQL 支持, MySQL不支持
 - C触发器函数, C事件触发器函数
 - PostgreSQL 支持, MySQL不支持
 - 函数语言扩展
 - PostgreSQL 支持扩展函数支持接口, erlang,
 - MySQL 不支持
 - 机器学习库
 - PostgreSQL 支持, MySQL 不支持
 - 流式计算
 - PostgreSQL 支持, MySQL 不支持

scale up 能力

- PostgreSQL
 - 资源管控能力强。
 - 单实例可以充分发挥HPC的性能,有多少资源就能使用多少资源。

MySQL

- CPU,内存管理能力较弱,单实例不能充分发挥HPC的性能。

scale out 能力

- 都支持sharding
- PostgreSQL完全支持以下下推功能
 - 是否支持聚合算子下推
 - 是否支持WHERE条件下推
 - 是否支持JOIN下推
 - 是否支持SORT下推
 - 是否支持SELECT 子句下推
 - 是否支持跨数据源JOIN

应用场景

- PostgreSQL
 - 几乎适合任何场景
- MySQL
 - 适合相对简单的应用场景,大多数需要应用层代码实现

社区

- 社区状态
 - PostgreSQL
 - 单一开源分支,社区力量较集中。全球有1000名以上的内核研发人员。
 - 社区研发由核心组员和committer组成,持续5年以上对社区版本有贡献内核研发人员超过50位。
 - 社区核心人员分别来自数据库厂商,数据库支持和服务公司,数据库最终用户的公司,形成了一个非常好的力量均衡。
 - MySQL
 - 分支非常多, 引擎非常多。社区力量分散, 各自为政, 兼容性很难统一。
- 社区活跃度
 - PostgreSQL
 - 非常活跃
 - MySQL
 - 非常活跃

生态

- DBA
 - PostgreSQL,国内供不应求
 - MySQL
- 内核研发
 - PostgreSQL,国内超过100名内核研发,依旧供不应求
 - MySQL
- 应用开发
 - PostgreSQL,SQL兼容性强,开发人员通用
 - MySQL,SQL兼容性较弱,企业应用开发人员难接受
- 客户端驱动
 - PostgreSQL,兼容性强
 - MySQL,兼容性强
- 开发框架
 - PostgreSQL,兼容性非常好,有一些非常特殊的开发框架(如IOT,化学,医疗,基因库,GIS...)
 - MySQL,兼容性好
- 服务端编程语言
 - PostgreSQL,扩展能力极强,支持各种服务端编程语言
 - MySQL,不支持扩展

生态

- 软件开发商数量,不相上下
 - PostgreSQL
 - MySQL
- 软件厂商覆盖面,不相上下
 - PostgreSQL
 - MySQL
- 培训公司
 - PostgreSQL,国内较少,国外较多
 - MySQL
- 软件外包公司
 - PostgreSQL
 - MySQL
- 技术支持公司
 - PostgreSQL,国内较少,国外较多
 - MySQL

生态

- 数据库厂商
 - PostgreSQL,国内外都非常多
 - MySQL,非常少
- 用户量
 - PostgreSQL,国内企业用户偏多,互联网行业偏少,国外都较多
 - MySQL
- 用户覆盖面,
 - PostgreSQL,覆盖几乎各个行业的核心系统
 - MySQL, 互联网较多,企业周边系统较多
- 高校
 - PostgreSQL,教育资源丰富
 - MySQL

应用案例

PostgreSQL

- 生物制药 {Affymetrix(基因芯片), 美国化学协会, gene(结构生物学应用案例), ...}
- 电子商务 { CD BABY, etsy(与淘宝类似), whitepages, flightstats, Endpoint Corporation, 阿里巴巴 ...}
- 学校 {加州大学伯克利分校,哈佛大学互联网与社会中心,.LRN,莫斯科国立大学,悉尼大学,武汉大学,人民大学,上海交大,华东师范 ...}
- 金融 {Journyx, LLC, trusecommerce(类似支付宝), 日本证券交易交所, 邮储银行, 同花顺, 平安银行...}
- 游戏 {MobyGames, 斯凯网络 ...}
- 政府 {美国国家气象局, 印度国家物理实验室, 联合国儿童基金, 美国疾病控制和预防中心, 美国国务院, 俄罗斯杜马, 国家电网, 12306...}
- 医疗 {calorieking, 开源电子病历项目, shannon医学中心, ...}
- 制造业 {Exoteric Networks, 丰田, 捷豹路虎}
- 媒体 {IMDB.com, 美国华盛顿邮报国会投票数据库, MacWorld, 绿色和平组织, ...}
- 开源项目 {Bricolage, Debian, FreshPorts, FLPR, PostGIS, SourceForge, OpenACS, Gforge, ...}
- 零售 {ADP, CTC, Safeway, Tsutaya, Rockport, ...}
- 科技 {Sony, MySpace, Yahoo, Afilias, APPLE, 富士通, Omniti, Red Hat, Sirius IT, SUN, 国际空间站, Instagram, Disqus, 去哪儿, 腾讯, 华为, 中兴, 云游, 智联招聘, 高德地图 ...}
- 通信 {Cisco, Juniper, NTT(日本电信), 德国电信, Optus, Skype, Tlestra(澳洲电讯), 中国移动...}
- 物流 {SF}

应用案例

MySQL

- Facebook,淘宝,网易,腾讯

发展潜力

PostgreSQL

- SQL兼容性强,功能强大,稳定性好,性能优越,扩展能力强,社区活跃,几乎覆盖全世界所有行业。
- 国外生态已形成,国内正逐渐成为数据库焦点,伴随IOT和工业4.0的发展,redis+mongo+postgresql+仓储分析系统,能覆盖几乎所有应用场景的需求,发展潜力巨大。

MySQL

- 互联网兴起的时候借助LAMP架构一举成名,带动了MySQL的发展,有非常庞大的互联网用户群体。
- 目前SQL兼容性较弱,功能单一,稳定性、性能一般。

学习成本

PostgreSQL

- 文档完备脉络清晰,代码注释完备,认真学习非常容易达到较高的水平。
- PostgreSQL功能非常强大,与Oracle旗鼓相当,初期学习成本会较高,但是学成之后,会有一种与之融为一体的感觉,使用起来得心应手。可以大大降低使用成本,管理成本和风险。

MySQL

- 分支太多,各种引擎用法不一,非常多的note和需要注意的地方,显得非常庞杂。代码注释较少,可读性不友好。

开发成本

PostgreSQL

- SQL兼容性好,功能强大,扩展能力强,服务端编程能力强。
- 数据库端可以解决非常多的程序需求,不需要 move data,开发成本低。

MySQL

- SQL兼容性较老,功能简单,几乎没有扩展能力,服务端编程能力弱。
- 复杂一点的问题需要推到应用端解决,需要 move data, 开发成本高。

开源许可

- PostgreSQL
 - BSD许可,允许任意形式分发和使用
- MySQL
 - GPL许可,商用分发必须开源

PostgrSQL 9.5 (最新稳定版) vs MySQL 5.7 (最新稳定版) 小结

外部参考链接

- https://www.wikivs.com/wiki/MySQL_vs_Post greSQL
- http://www.zhihu.com/question/20010554
- https://yq.aliyun.com/articles/58421

PostgreSQL扩展阅读

https://yq.aliyun.com/articles/59251

单节点性能指标参考数据

- 秒杀
 - 8 Core, 23万 qps
- KNN近邻查询
 - 16 Core, 100亿数据, 64并发, KNN查询平均响应时间0.848毫秒, qps 74151.
- 模糊查询、正则匹配
 - 8Host, 16Core, 1008亿数据, 前后模糊、正则匹配查询, 秒级响应
- 分词
 - 英语分词性能:~900万 words每秒 (Intel(R) Xeon(R) CPU X7460 @ 2.66GHz)
 - 中文分词性能:~400万字每秒(Intel(R) Xeon(R) CPU X7460@2.66GHz)
 - 英文分词+插入性能: ~666万 字每秒 (Intel(R) Xeon(R) CPU X7460 @ 2.66GHz)
 - 中文分词+插入性能: ~ 290万 字每秒 (Intel(R) Xeon(R) CPU X7460 @ 2.66GHz)
- 并行计算
 - CPU并行 32Core, 16亿(90GB), count (*) 7秒, bit(and, xor) 16秒, 非并行(141秒, 488秒).
 - GPU并行 (1张 1亿 table join 9张 10万 table) 21秒, 非并行520秒.

单节点性能指标参考数据

- 数据装载
 - 32Core, 512G, 2*Aliflash SSD
 - 连续24小时多轮数据批量导入测试(平均每条记录长度360字节,时间字段索引)
 - 每轮测试插入12TB数据
 - 非日志模式 506万行/s, 1.78 GB/s, 全天插入4372亿, 154TB数据
 - 日志模式 105万行/s
 - (为什么这么快?) (BRIN, HEAP, 动态扩展FILE, prealloc XLOG, reuse XLOG)
- TPC-B (1 Select : 3 Update : 1 Insert)
 - 32Core, 512G, 2*Aliflash SSD 10亿数据量, TPC-B 11万tps
 - Select-Only 130万+ tps (即使应用缓存失效,也无大碍)
- TPC-C (新建订单45,支付43,订单查询4,发货4,库存查询4)
 - 4000个仓库, 400GB数据, 平均每笔事务10几条SQL
 - 12Core, 256GB, intel SSD, 61万TPmC (IO瓶颈严重, 理论上可以达到200万)
- LinkBench (Facebook 社交关系应用)
 - 1亿个node, 4亿条关系, (32Core, 2 SSD, 512G)
 - (添加NODE,更新NODE,删除NODE,获取NODE信息,添加关系,删除关系,更新关系,关系总数查询,获取多个关系,获取关系列表)
 - 12万 ops (默认测试用例)

PostgreSQL适应场景

- 适应广泛的行业与业务场景
 - -GIS, 物联网, 互联网, 企业, ERP, 多媒体,
- TP + AP
- 单库 20 TB 毫无压力
- 要求主备严谨一致的场景不二之选

PostgreSQL社区版本Roadmap

- https://wiki.postgresql.org/wiki/PostgreSQL10_Roadmap
- 基于流的逻辑复制
 - ApsaraDB PG 已具备
- 多核并行继续增强
- 内置分区表语法(10.0已支持,或者使用插件支持)(支持hash\range\list分区)
- 动态编译query (JIT) (PostgreSQL已支持)、向量计算
- 内核内置sharding(已支持)
 - Postgres-XL feed back to PostgreSQL
 - FDW 分布式特性持续增强
- 热插拔存储引擎
 - in-memory 列存储引擎、in-memory 行存储引擎、undo引擎
- 块级增量备份(通过page LSN可以分辨块变化,加入block change track)
 - pg rman已实现
- 部分备份与恢复(类似Oracle的表空间恢复)
- 页级压缩
- 内置AWR

PostgreSQL 9.5 vs Oracle 12c

- SQL兼容性
 - 各有所长,有交集
- 功能
 - 各有所长,有交集
- 性能
 - 不相上下
- 稳定性
 - 不相上下
- 可靠性
 - PostgreSQL 略优
- 代码成熟度
 - PostgreSQL 很高, Oracle未知
- 平台兼容性
 - 不相上下
- 服务端编程语言
 - Oracle 支持plsql, c
 - PostgreSQL 支持 plpgsql, sql, c, c++, java, javascript, R, python, perl, php, tcl, ruby, lua, julia, ...

PostgreSQL 9.5 vs Oracle 12c

- 扩展能力
 - PostgreSQL 扩展能力强(采样接口,函数接口,索引接口,类型接口,操作符接口,外部表接口,类型接口...)
 - Oracle 不支持自定义扩展
- scale up 能力
 - 不相上下
- scale out 能力
 - 不相上下
- 应用场景
 - 不相上下
 - PostgreSQL 的扩展性强,可以支持更多的应用场景,例如基因工程,化学,GIS,IOT,流式计算
- 生态
 - 目前Oracle 企业生态较好,PostgreSQL 互联网生态更好
- 未来发展潜力
 - 开源数据库发展速度比商业数据库快,更有潜力。
- 应用案例
 - 不相上下
- 学习成本
 - 不相上下
- 开发成本
 - 不相上下

PostgrSQL 9.5 vs Oracle 12c 小结

