Uvod v diferencialno geometrijo

Jaša Knap

Uvod 1

Definicija 1.1. Topološki prostor M je n-dimenzionalna mnogoterost, če za vsak $m \in M$ obstaja okolica $m \in U \subseteq M$ in homeomorfizem $\varphi : U \to V^{\text{odp}} \subseteq \mathbb{R}^n$ (pri tem je $V \approx B^n$).

Primer 1.2. Naslednje množice so primeri mnogoterosti.

- 1. $M = \mathbb{R}^n$ je n-dimenzionalna mnogoterost,
- 2. S^1 je 1-dimenzionalna mnogoterost, 3. $S^n = \left\{ (x_1, x_2, \dots, x_n, x_{n+1}) \middle| \sum_{j=1}^{n+1} x_i^2 = 1 \right\} \subseteq \mathbb{R}^{n+1}$ je n-dimenzionalna mnogoterost, 4. Projektivni prostori $\mathbb{R}P^n = B^n /_{\sim}$, kjer je $\vec{x} \sim \vec{y} \iff \vec{y} = -\vec{x}$

$$\mathrm{SU}\left(2\right) = \left\{g = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \middle| \alpha, \beta \in \mathbb{C}, \det g = 1\right\}.$$

Topološko in geometrijsko je namreč $SU(2) = S^3$. To je primer Lijeve grupe.

6. Grupa

SO (3) =
$$\left\{ g = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \middle| g^T = g^{-1}, \det g = 1 \right\}.$$

Izkaže se, da je SO(3) = $B^3/_{\sim} = \mathbb{R}P^3$. To velja, ker vsaka preslikava iz SO(3) predstavlja rotacijo prostora, vsako rotacijo pa lahko predstavimo z osjo in velikostjo kota vrtenja. Pri tem kota π in $-\pi$ predstavljata vrtenje za isti kot. Če točki v $B(0,\pi)^3 \approx B^3$ priredimo os in razdaljo od izhodišča ter enačimo iste rotacije, dobimo natanko projektivni prostor $\mathbb{R}P^3$.

1.1 Gladke mnogoterosti

Na topoloških mnogoterostih bi radi znali odvajati različne objekte, kot so na primer funkcije, krivulje, tenzorji itd. Zato moramo mnogoterosti opremiti z dodatno strukturo. Za začetek se spomnimo definicije odvedljivosti preslikav v evklidskih prostorih.

Definicija 1.3. Preslikava $F: W \to \mathbb{R}^n$ odvedljiva, če za vsak $w \in W$ obstaja linearna preslikava $A: \mathbb{R}^n \to \mathbb{R}^n$, da velja

$$F(w+h) = F(w) + Ah + \mathcal{O}(h)$$

in $\lim_{h\to 0} \frac{|\mathcal{O}(h)|}{||h||} = 0$. Odvod preslikave F v točki w je preslikava $A = D_w F$.

Definicija 1.4. Preslikava F je odvedljiva na množici W, če je odvedljiva v vsaki točki $w \in W$.

Definicija 1.5. Difeomorfizem je bijektivna odvedljiva preslikava, ki ima odvedljiv inverz.

Definicija 1.6. Naj bo M n-mnt. Gladek atlas \mathcal{U} na M je družina parov $(U_{\alpha}, \varphi_{\alpha})$, kjer je $U_{\alpha}^{\text{odp}} \subseteq M$, $\varphi_{\alpha} : U_{\alpha} \subseteq M \to V_{\alpha} \subseteq \mathbb{R}^{n}$.

Natančneje, družina $\mathcal{U}=\{(U_\alpha,\varphi_\alpha)\mid \alpha\in A\}$ je \mathcal{C}^1 -atlas, če velja:

- 1. $U_{\alpha}^{\text{odp}} \subseteq M$
- 2. $\varphi_\alpha:U_\alpha\to V_\alpha\subseteq\mathbb{R}^n$ je homeomorfizem za nek $V_\alpha\subseteq\mathbb{R}^n$
- 3. $\{U_\alpha|\,\alpha\in A\}$ je pokritje M
- 4. $g_{\alpha\beta} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ mora biti difeomorfizem

Dodatek: Če so vse predhodne preslikave $g_{\alpha\beta}$ k-difeomorfizmi, imamo \mathcal{C}^k -atlas. Če so vse preslikave gladke, imamo \mathcal{C}^{∞} -atlas, če so vse analitične, pa \mathcal{C}^{ω} -atlas.

Opomba. Preslikava $g_{\alpha\beta}$ iz prejšnje definicije je preslikava iz $\mathbb{R}^n \to \mathbb{R}^n$. Torej jo znamo odvajati in vemo, da je v izbranih koordinatah na \mathbb{R}^n je matrika odvoda Jacobijeva matrika

$$F(x_1, \dots, x_n) = \begin{pmatrix} F_1(x_1, \dots, x_n) \\ \vdots \\ F_n(x_1, \dots, x_n) \end{pmatrix} \implies D_w F = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \dots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \vdots & \ddots \\ \frac{\partial F_n}{\partial x_1} & \dots & \frac{\partial F_n}{\partial x_n} \end{pmatrix}_w.$$

Definicija 1.7. Topološka mnogoterost M, ki premore kakšen gladek atlas, je gladka mnogoterost.

Za motivacijo naslednje definicije se spomnimo dejstva, da vemo, kakšne so gladke preslikave iz \mathbb{R}^n . Nismo pa še definirali gladkih preslikav iz mnogoterosti $M \to \mathbb{R}$.

Definicija 1.8. Funkcija $f: M \to R$ je gladka, če je gladka vsaka preslikava $f \circ \varphi_{\alpha}^{-1}: V_{\alpha} \subseteq \mathbb{R}^{n} \to \mathbb{R}^{n}$.

Definicija 1.9. Naj bo (M, \mathcal{U}) gladka mnogoterost. Krivulja $\gamma:(a,b)\to M$ je gladka krivulja, v M, če za $\forall \alpha\in A$ velja, da je $\varphi_{\alpha}\circ\gamma:(a,b)\to V_{\alpha}\subseteq\mathbb{R}^n$ gladka krivulja v $V_{\alpha}\subseteq\mathbb{R}^n$.

Definicija 1.10. Atlasa $\mathcal{U} = \{(U_{\alpha}, \varphi_{\alpha}) | \alpha \in A\}$ in $\mathcal{V} = \{(W_{\beta}, \varphi_{\beta}) | \beta \in B\}$ na mnogoterosti M sta ekvivalentna, če za vsak par $(\alpha, \beta) \in A \times B$ iz $U_{\alpha} \cap W_{\beta} \neq \emptyset$ sledi, da je

$$\psi_{\beta} \circ \varphi_{\alpha}^{-1} : (\varphi_{\alpha})_{*} (U_{\alpha} \cap W_{\beta}) \subseteq \mathbb{R}^{n} \to (\psi_{\beta})_{*} (U_{\alpha} \cap W_{\beta}) \subseteq \mathbb{R}^{n}$$

difeomorfizem.

Opomba. Ekvivalentnost atlasov je ekvivalenčna relacija, ekvivalenčni razred atlasa \mathcal{U} označimo z $[\mathcal{U}]$.

Definicija 1.11. Naj bo M topološka mnogoterost in \mathcal{U} gladek atlas na M. Potem je $[\mathcal{U}]$ gladka struktura na M.

Opomba. Dejstvo, da lahko obstajajo kakšne netrivialne (eksotične strukture) na mnogoterostih, je zelo netrivialno. Iz Donaldsonovega in Freedmanovega izreka sledi, da ima \mathbb{R}^4 neštevno neskončno eksotičnih gladkih struktur. Vsi ostali \mathbb{R}^n imajo zgolj svojo trivialno in nobene eksotične.

2 Gladke vložene ploskve

V splošnem bi lahko mnogoterosti obravnavali kot abstraktne matematične strukture, ki ne prebivajo nujno v evklidskih prostorih. Pri uvodu v diferencialno geometrijo pa se bomo v glavnem ukvarjali z eno in dvodimenzionalnimi mnogoterostmi, vloženimi v prostor \mathbb{R}^3 .

Definicija 2.1. Množica $X\subseteq\mathbb{R}^3$ je gladka vložena ploskev, če za vsak $m\in X$ obstaja krogla za m $W\subseteq\mathbb{R}^n$ in gladka funkcija $f:W\to\mathbb{R}$, za katero velja

- 1. $X \cap W = f^*(\{0\})$ 2. $(Df)_w \neq 0$ za vsak $w \in X \cap W$

Vložena ploskev $X\subseteq\mathbb{R}^n$ je tudi abstraktna mnogoterost. Poglejmo si, kako bi konstruirali atlas na X. Vzemimo točko $m \in X$. Po definiciji vložene ploskve obstaja nivojnica $f: W \ni m \to \mathbb{R}$ in vemo, da $D_m f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)(m) \neq 0$. Zdaj se spomnimo izreka o implicitni funkciji. Naj bo $m = (x_0, y_0, z_0)$ in BŠS naj bo $\frac{\partial f}{\partial z}(m) \neq 0$. Torej obstaja gladka okolica $V \ni (x_0, y_0) \subseteq \mathbb{R}^2$ in gladka funkcija $g : V \to \mathbb{R}$, da velja f(x, y, g(x, y)) = 0 za vsak $(x, y) \in V$. Po potrebi lahko množico W zmanjšamo na $W_0 \subseteq W$, da dobimo difeomorfizem

$$r: V \longrightarrow W_0 \cap X$$

 $(x,y) \longmapsto (x,y,g(x,y))$

z inverzom

$$\varphi: W_0 \cap X \longrightarrow V$$

 $(x, y, z) \longmapsto (x, y).$

Ta inverz je v bistvu projekcija na prvi dve koordinati. Če definiramo $U = W_0 \cap X$, postane par (U, φ) karta na X.

Metrika na ploskvi 2.1

Če hočemo meriti razdalje med pari točk na gladki mnogoterosti, potrebujemo še dodatno strukturo - metriko. Ta nam omogoča merjenje dolžin krivulj. Če si predstavljamo krivuljo $\gamma:(a,b)\to M$, je najbolj naravna definicija njene dolžine

$$\mathcal{L}\left(\gamma\right) = \int_{a}^{b} ||\dot{\gamma}|| \, dt.$$

Znati moramo torej izračunati dolžino oziroma normo tangentnega vektorja. Najbolje je, če je ta norma porojena s skalarnim produktom, torej $||x|| = \sqrt{\langle x, x \rangle}$.

Naj bo $\langle \cdot, \cdot \rangle$ neki skalarni produkt na $\mathcal{V} = \mathbb{R}^n$ in naj bo $\{v_1, \dots, v_n\}$ baza za \mathcal{V} , ki ni nujno ortonormirana. Vzemimo vektorja $\vec{x} = \sum_{i=1}^n a_i v_i$ in $\vec{y} = \sum_{i=1}^n b_i v_i$. Potem velja, da je skalarni produkt enak

$$\langle \vec{x}, \vec{y} \rangle = \sum_{i,j=1}^{n} a_i b_j \langle v_i, v_j \rangle = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \begin{pmatrix} \langle a_1, a_1 \rangle & \dots & \langle a_1, a_n \rangle \\ \vdots & \ddots & \vdots \\ \langle a_n, a_1 \rangle & \dots & \langle a_1, a_n \rangle \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Iz simetričnosti skalarnega produkta $\langle v_i, v_j \rangle = \langle v_j, v_i \rangle$ sledi, da je zgornja matrika simetrična. Iz pozitivne definitnosti skalarnega produkta $(\langle v_i, v_i \rangle \geq 0)$ pa sledi še pozitivna definitnost te matrike.

Opomba. Kvadratne matrike so lahko koordinatni zapisi linearnih preslikav iz $\mathbb{R}^n \to \mathbb{R}^n$, lahko pa so tudi koordinatni zapisi skalarnih produktov. To je odvisno od tega, kako se matrike transformirajo pri prehodu v različno bazo.

Naj bo P poljubna preslikava med bazama, L_e linearna preslikava glede na bazo $\{e_1,\ldots,e_n\}$, L_f pa glede na bazo $\{f_1,\ldots,f_n\}$. Potem iz algebre 1 vemo, da je

$$L_f = PL_e P^{-1}.$$

Zdaj pa izpeljimo, kako se transformira matrika skalarnega produkta. Naj bosta $a_f=Pa_e$ in $b_f=Pb_e$. Potem dobimo

$$\langle a_f, b_f \rangle = \langle a_e, b_e \rangle$$

$$a_f^T A_f b_f = a_e^T A_e b_e$$

$$a_e^T P^T A_f P b_e = a_e^T A_e b_e, \forall a_e, b_e.$$

Od tod sledi, da je $P^T {\cal A}_f P = {\cal A}_e$ oziroma zaradi ortogonalnosti Pekvivalentno

$$A_f = PA_eP^T.$$

Torej transformacijska pravila določajo vrsto preslikave, podobno kot pri fiziki.