Semaine 7 - Développements limités

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Développements limités (1)

- 1 Justifier l'existence et calculer le développement limité en 0 à l'ordre 4 de $x\mapsto \frac{e^x}{(1+x)^3}$.
- **2** Justifier l'existence et calculer le développement limité en 0 à l'ordre 6 de $x \mapsto \sin(x^2)$
- **3** Justifier l'existence et calculer le développement limité en 0 à l'ordre 6 de $x \mapsto \ln(1+x)\sin(x)$

2 Développements limités et asymptotiques (1)

Soit $f: x \mapsto \sqrt{1+x+x^2}$.

- 1 Justifier l'existence et calculer un développement limité de f en 0 à l'ordre 2.
- 2 Le graphe de f admet-il une tangente en 0? Si oui, donner la position du graphe de f par rapport à cette tangente autour de 0.
 - **3** Déterminer une asymptote en $+\infty$ au graphe de f.

3 Développements limités et asymptotiques (2)

Soit $f \mapsto (x^2 - 1) \ln \left(\left| \frac{1+x}{1-x} \right| \right)$.

- 1 Justifier l'existence et calculer un développement limité de f en 0 à l'ordre 3.
- 2 Déterminer une asymptote en $+\infty$ au graphe de f et donner la position de la courbe par rapport à cette asymptote lorsque x est grand.

4 Développements limités (2)

- 1 Justifier l'existence et calculer un développement limité en 0 à l'ordre 5 de $x\mapsto \ln\left(\sqrt{\frac{1+x}{1-x}}\right)$.
- **2** Justifier l'existence et calculer un développement limité en 0 à l'ordre 2 de $x \mapsto \frac{\ln\left(\sqrt{\frac{1+x}{1-x}}\right)-x}{\sin(x)-x}$.

5 Développements limités et dérivabilité

- 1 Montrer que f est continue en 0 si et seulement si f admet un développement limité d'ordre 0 en 0.
- **2** Montrer que f est dérivable en 0 si et seulement si f admet un développement limité d'ordre 1 en 0.
- 3 Montrer que si f est deux fois dérivable en 0 alors f admet un développement limité d'ordre 2 en 0.

4 Montrer que $x \mapsto x^3 \sin(\frac{1}{x})$ définie sur \mathbb{R}^* et prolongée par continuité en 0 admet un développement limité à l'ordre 2 mais n'est pas 2 fois dérivable en 0.

6 Calcul de développements limités

- 1 Justifier l'existence et calculer un développement limité en $\frac{\pi}{2}$ à l'ordre 2 de $x \mapsto \ln(\sin(x))$.
- **2** Justifier l'existence et calculer un développement limité en $\frac{\pi}{2}$ à l'ordre 2 de $x \mapsto (1 + \cos(x))^{\frac{1}{x}}$.

7 Développement limité et approximation par une fraction rationnelle d'ordre 2

- 1 Déterminer $(a,b) \in \mathbb{R}^2$ telle que la partie principal de $x \mapsto \cos(x) \frac{1+ax^2}{1+bx^2}$ en 0 soit la plus petite possible.
- **2** Donner un équivalent de $x\mapsto\cos(x)-\frac{1+ax^2}{1+bx^2}$ en 0 pour les valeurs de (a,b) trouvées.

8 Suite et équivalent (1)

- 1 Montrer que $\forall n \in \mathbb{N}, \exists x_n \in]n\pi \frac{\pi}{2}, n\pi + \frac{\pi}{2}[\mid \tan(x_n) = x_n.$
- **2** Montrer $x_n \sim n\pi$.
- 3 Montrer $x_n n\pi \frac{\pi}{2} \underset{+\infty}{\rightarrow} 0$.
- 4 Montrer que $x_n = n\pi + \frac{\pi}{2} \frac{1}{n\pi} + \frac{1}{2\pi n^2} + o(\frac{1}{n^2}).$

9 Suite et équivalent (2)

- 1 Montrer que $e^x + x n = 0$ admet une unique solution sur \mathbb{R} . On la note u_n .
- **2** En posant $v_n = u_n \ln(n)$, montrer que $v_n \to 0$.
- **3** Trouver un équivalent de v_n en $+\infty$.
- 4 En déduire un développement asymptotique de u_n .

10 Réciproque et développement limité (1)

- **1** Montrer que $f: x \mapsto 2\tan(x) x$ est une bijection C^{∞} de $]-\frac{\pi}{2}, \frac{\pi}{2}[$ dans \mathbb{R} . Montrer que f^{-1} est impaire.
- **2** Donner un développement limité à l'ordre 3 de f^{-1} .

11 Réciproque et développement limité (2)

- 1 Montrer que $x \mapsto x \exp(x^2)$ est une bijection de \mathbb{R} dans \mathbb{R} .
- **2** On admet que f^{-1} est infiniment dérivable sur \mathbb{R} . Donner un développement limité à l'ordre 4 de f^{-1} .

12 Développement limité et grand ordre

 $\textbf{1} \quad \text{Donner un développement à l'ordre 1000 de } x \mapsto \ln(\sum_{k=0}^{999} \frac{x^k}{k!}).$

13 Dérivée de grand ordre

1 Donner la dérivée en 0 d'ordre 1000 de $x\mapsto \frac{x^4}{1+x^6}.$