

Ayudantía 12 Análisis Funcional

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

17 de noviembre de 2022

Problema 1. Sea H espacio de Hilbert y (e_n) base ortonormal. Decimos que un operador $T \in \mathcal{L}(H)$ es un **operador** de Hilbert-Schmidt si

$$\sum_{n\in\mathbb{N}} \|T(e_n)\|_H^2 < +\infty$$

- 1. Demuestre que la definición anterior no depende de la base ortonormal. Muestre también que T es Hilbert-Schmidt si y solo si T' es Hilbert-Schmidt.
- 2. Demuestre que el conjunto de operadores Hilbert-Schmidt es un subespacio vectorial de $\mathcal{L}(H)$.

Sobre el espacio vectorial de operadores Hilbert-Schmidt, denotado HS(H), podemos definir la norma:

$$||T||_{HS} = \left(\sum_{n \in \mathbb{N}} ||T(e_n)||_H^2\right)^{1/2}$$

- 3. Muestre que $||T|| \leq ||T||_{HS}$.
- 4. Demuestre que el espacio de operadores Hilbert-Schmidt sobre H es Banach. Más aún, pruebe que es Hilbert.

En lo que sigue considere $H = L^2(\Omega)$ con $\Omega \subseteq \mathbb{R}^n$ abierto. Sea $K \in L^2(\Omega \times \Omega)$ y defina el operador

$$T: H \to H, \quad (Tu)(x) = \int_{\Omega} K(x, y)u(y)dy$$

5. Muestre que el operador $T \in HS(H)$ y que $||T||_{HS(H)} = ||K||_{L^2(\Omega \times \Omega)}$.

Indicación: Si (e_n) es una base ortonormal de $L^2(\Omega)$ demuestre que $(e_n e_m)$ es base ortonormal de $L^2(\Omega \times \Omega)$.

6. Demuestre que todo operador $T \in HS(H)$ es de la forma anterior y que $||T||_{HS} = ||K||_{L^2(\Omega \times \Omega)}$.

Problema 2. Sea $(X, \|\cdot\|_X)$ espacio Banach y $T \in \mathcal{L}(X)$. Para $\lambda \in \mathbb{R}$ dado, el operador resolvente $R_{\lambda}: X \to X$ se define como el único operador tal que

$$R_{\lambda} \circ (\lambda I - T)(x) = (\lambda I - T) \circ R_{\lambda}(x) = x \quad \forall x \in X$$

es decir, el operador inverso de $\lambda I - T$ de existir.

1. Demuestre que si $|\lambda| > ||T||_{\mathcal{L}(X)}$ entonces R_{λ} está bien definido, $R_{\lambda} \in \mathcal{L}(X)$ y

$$||R_{\lambda}||_{\mathcal{L}(X)} \le \frac{1}{|\lambda| - ||T||_{\mathcal{L}(X)}}$$

2. Sea $(\lambda_k)_{k\in\mathbb{N}}\subseteq\rho(T)$ convergente a $\lambda\in R$. Demuestre que si (R_{λ_k}) es acotada en $\mathcal{L}(X)$ entonces $\lambda\in\rho(T)$ y $R_{\lambda_k} \to R_{\lambda} \text{ en } \mathcal{L}(X).$