Reavaluació de Matemàtiques 1 - Gener 2020 GRAFS : exercicis de complement

1. (F1-QT13) Siguin $r,s\geq 1$. Definim G(r,s) com el graf amb els conjunts de vèrtexs V i d'arestes A on

$$V = \{x_1, \dots, x_r, y_1, \dots, y_s\},\$$

$$A = \{x_i x_j : 1 \le i \le r, \ 1 \le j \le r, \ i \ne j\} \cup \{x_i y_k : 1 \le i \le r, \ 1 \le k \le s\}.$$

Responeu raonadament les preguntes següents.

- a) Doneu la distància d(u, v) entre cada parell de vèrtexs $u, v \in V$, el diàmetre i el radi de G(r, s).
- b) Determineu per a quins valors de r i s el graf G(r,s) és eulerià.
- c) Determineu per a quins valors de r i s és G(r,s) hamiltonià.
- d) Esbrineu si G(r,s) té arestes pont.
- 2. (F1-QT14) Definiu la cintura c(G) d'un graf G com la longitud del cicle més curt de G. Si el graf és acíclic, preneu $c(G) = \infty$.
 - (a) Determineu la cintura dels grafs $C_n, K_n, K_{r,s}$, i W_n , per a tots els valors possibles dels paràmetres.
 - (b) Doneu un graf 3-regular amb cintura igual a 4 i ordre el més petit possible.
 - (c) Demostreu que si G és bipartit, aleshores c(G) > 3. Esbrineu si el recíproc és cert.
 - (d) Demostreu que si G no és acíclic, aleshores $c(G) \leq 2D(G) + 1$.
 - (e) Calculeu l'ordre, el grau màxim i el grau mínim de G_r .
- 3. (F1-QT14) Sigui $r \ge 1$ enter. Denotem per V_r el conjunt de tots els subconjunts de $\{1, 2, \dots, r\}$, inclòs el subconjunt buit. Sigui G_r el graf que té per conjunt de vèrtexs al conjunt V_r i on dos vèrtexs $A, B \in V_r$ (per tant, dos subconjunts de $\{1, 2, \dots, r\}$) són adjacents si i només si $A \ne B$ i $A \cap B = \emptyset$.
 - (a) Dibuixeu els grafs G_2 i G_3 .
 - (b) Calculeu l'ordre, el grau màxim i el grau mínim de G_r .
 - (c) Calculeu el radi i el diàmetre de G_r .
 - (d) Esbrineu si G_r és eulerià i/o hamiltonià.
 - (e) Si suprimim de G_r el vèrtex \emptyset , quants components connexos té el graf resultant?
- 4. (P-QP13) D'un graf G en sabem que té conjunt de vèrtexs $V = \{x_1, \ldots, x_n, y_1, \ldots, y_{n-1}, z\}$, $n \geq 2$, que és connex, que els vèrtexs $\{x_1, \ldots, x_n\}$ indueixen un subgraf isomorf a K_n i que els vèrtexs $\{y_1, \ldots, y_{n-1}\}$ indueixen un subgraf isomorf a K_{n-1} .
 - a) Proveu que la mida de G és almenys $n^2 2n + 3$.
 - b) Proveu que el diàmetre de G és menor o igual que 4.
 - c) Esbrineu si, amb les dades que es tenen, es pot afirmar que G^c és connex.
 - d) Proveu que si G té mida $n^2 2n + 3$, aleshores no és eulerià.