Grafos CAMINOS MÍNIMOS

Vamos a ver...

Grafos:

- Definición
- Ejemplo
- Tipos

Caminos mínimos:

- Dijkstra
- Floyd-Warshall

Grafos: Definición

- •Dupla compuesta por un conjunto no vacío de vértices y; un conjunto de aristas que vinculan pares de esos vértices.
- •Las aristas pueden ser dirigidas o no dirigidas.

•G =
$$(V;A)$$
 $V = \{a;b;c;d\}$ $A = \{\{a;b\};(b;c);(a;a);(d;d)\}$

- Vértice aislado: sin relación (mediante aristas) con otro vértice.
- Lazo: arista cuyo vértice origen y destino coincide.
- Arista ponderada: a las aristas se les puede asociar un valor representativo de la relación que representan, en este caso podría representar la cantidad de Km. entre la ciudad a y b.
- Peso de una arista: es el valor asociado a una arista ponderada.

- Vértices adyacentes (v,w): v y w son adyacentes si están relacionados.
- Incidencia (v): conjunto de aristas finalizadas / comenzadas en v.
- Incidencia de entrada (v): conjunto de aristas dirigidas finalizadas en v.
- Incidencia de salida (v): conjunto de aristas dirigidas comenzadas en v.
- Adyacencia (v): conjunto de vértices relacionados con v.
- Adyacencia de entrada (v): vértices iniciales de la incidencia de entrada (v).
- Adyacencia de salida (v): vértices finales de la incidencia de salida (v).

- Grado (v): cantidad de ocurrencias de v en el conjunto de aristas.
- Grado de entrada (v): cantidad de aristas dirigidas finalizadas en v.
- Grado de salida (v): cantidad de aristas dirigidas comenzadas en v.
- Fuente: vértice cuyo grado de salida es 0 y no es aislado.
- Sumidero: vértice cuyo grado de entrada es 0 y no es aislado.

	a	b	С	d
Adyacencia	{a,b}	{a,c}	{b}	{d}
Adyacencia de Entrada	{a}	₽.	{b}	{d}
Adyacencia de Salida	{a}	{c}	₽.	{d}
Incidencia	{a3,a4}	{a3,a2}	{a2}	{a1}
Incidencia de Entrada	{a4}	₽.	{a2}	{a1}
Incidencia de Salida	{a4}	{a2}	₽.	{a1}
Grado	3	2	1	2
Grado de Entrada	1	0	1	1
Grado de Salida	1	1	0	1

Grafos: Tipos

Grafos: Tipos

- Es un algoritmo para la determinación del *camino mínimo*, dado un **vértice origen**, hacia el resto de los vértices en un grafo que tiene pesos en cada arista.
- Consiste en ir *explorando todos los caminos más cortos* que parten del vértice origen y que llevan a todos los demás vértices.
- Cuando se obtiene el camino más corto desde el vértice origen hasta el resto de los vértices que componen el grafo, el algoritmo se detiene.


```
función Dijkstra (Grafo G, nodo inicial s)
entero distancia[n]
booleano visto[n]
  para cada w E V[G] hacer
     Si (no existe arista entre s y w) entonces
         distancia[w] = Infinito
     Si no
         distancia[w] = peso (s, w)
     fin si
  fin para
  distancia[s] = 0
  visto[s] = true
```

```
mientras que (no estén vistos todos) hacer
      vértice = tomar el mínimo del vector distancia y que no esté
visto;
      visto[vértice] = true;
      para cada w E sucesores (G, vértice) hacer
          si distancia[w]>distancia[vértice]+peso (vértice, w)
entonces
             distancia[w] = distancia[vértice]+peso (vértice, w)
          fin si
      fin para
 fin mientras
fin función.
```

Dijkstra (con cola de prioridad)

```
DIJKSTRA (Grafo G, nodo fuente s)
      para u E V[G] hacer
          distancia[u] = INFINITO
          padre[u] = NULL
          visto[u] = false
      distancia[s] = 0
      adicionar (cola, (s, distancia[s]))
      mientras que cola no es vacía hacer
          u = extraer minimo(cola)
          visto[u] = true
          para todos v E adyacencia[u] hacer
              si ¬ visto[v]
                  si distancia[v] > distancia[u] + peso (u, v) hacer
                      distancia[v] = distancia[u] + peso (u, v)
                      padre[v] = u
                      adicionar(cola,(v, distancia[v]))
```

- Es otro algoritmo para encontrar el camino mínimo en grafos dirigidos ponderados.
- Encuentra el camino entre todos los pares de vértices en una única ejecución.
- Compara todos los posibles caminos a través del grafo entre cada par de vértices.
- Para que haya coherencia numérica, supone que no hay ciclos negativos.

- Formar las matrices iniciales D y R, donde D es la matriz de adyacencia o distancias, y R es una matriz de recorridos del mismo tamaño vacía.
- Se toma k=1.
- Se selecciona la fila y la columna k de la matriz D y entonces, para i y j, con i≠k, j≠k e i≠j, hacemos:

Si (Dik + Dkj)
$$<$$
 Dij \Rightarrow Dij = Dik + Dkj y Rij = Rkj

En caso contrario, dejamos las matrices como están.

- Si $k \le n$, aumentamos k en una unidad y repetimos el paso anterior, en caso contrario páramos las interacciones.
- La matriz final D contiene los costos óptimos para ir de un vértice a otro, mientras que la matriz R contiene los penúltimos vértices de los caminos óptimos que unen dos vértices.

	tera	acion	4			
distancias:		Α	В	C	D	Е
	Α	0	4	5	6	7
	В	4	0	1	2	3
	С	8	6	0	4	2
	D	6	2	3	0	5
	E	10	8	2	6	0
recorridos:		Α	В	C	D	Е
	Α	ı	В	В	В	С
	A B	- А	B -	B C	B D	
	•	- А А	B - D	_		С
	В		-	_	D	C C

• Para leer el recorrido de A a E:


```
vector< vector<int> > ady;
vector< vector<int> > Grafo :: floydWarshall() {
    vector< vector<int> > distancias = this->ady;
    for (int i = 0; i < n; i++) //n: cantidad de nodos
        distancias[i][i] = 0;
    for (int k = 0; k < n; k++)
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++) {
                 int dt = distancias[i][k] + distancias[k][j];
                 if(dt < distancias[i][j])</pre>
                     distancias[i][j] = dt; }
    return distancias; }
```

Fin