Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 9. Robust Watermarking

Lecturer: Jin HUANG

Valumetric Scaling

QIM is not Robust

Error Illustration

Valumetric scaling on the E_LATTICE/D_LATTICE system.

Reason

$$z_{lc}(s) = (s\mathbf{c_w}) \cdot \mathbf{w_r}$$

$$= s(\mathbf{c_w}) \cdot \mathbf{w_r}$$

$$= s \cdot z_{lc}.$$

Possible solution?

$$z_{nc}(s) = \frac{s\mathbf{c_w}}{\|s\mathbf{c_w}\|} \cdot \mathbf{w_r}$$
$$= \frac{\mathbf{c_w}}{\|\mathbf{c_w}\|} \cdot \mathbf{w_r}$$
$$= \cos(\theta(\mathbf{c_w}, \mathbf{w_r})).$$

Linear Correlation

E_FIXED_LC/D_LC.

Correlation Coefficients

E_BLK_FIXED_R/D_BLK_CC.

z_{nc} with Dirty Paper

Angle QIM (Ourique et al. ICASSP 2005.):

Snap work to the closest "grid angle".

2-Dimensional Case

- Choosing two bases X_1, X_2 .
- Get coordinates x_1, x_2 .
- Evaluate the length and angle:

$$r = \sqrt{x_1^2 + x_2^2}, \quad \theta = \arctan(x_2/x_2).$$

Angle QIM:

$$\theta^{Q} = Q_{m,\Delta}(\theta) = \left| \frac{\theta + m\Delta}{2\Delta} \right| 2\Delta + m\Delta.$$

Restore:

$$x_1' = r\cos(\theta^Q), \quad x_2' = r\sin(\theta^Q).$$

L-Dimensional Case

- L bases: X_i , $i = 1, \dots, L$.
- L coordinates: $\mathbf{x}_i, i = 1, \dots, L$.
- L-1 angles: $\mathbf{x}_i, i=1,\cdots,L-1$.

$$\theta_1 = \arctan(x_2/x_1)$$

$$\theta_i = \arctan\frac{x_{i+1}}{\sqrt{\sum_{k=1}^i x_k^2}}, i = 2, \dots L - 1.$$

Restore:

$$x'_{1} = r \prod_{k=1}^{L-1} \cos \theta_{k}^{Q}$$

$$x'_{i} = r \sin \theta_{i-1}^{Q} \prod_{k=i}^{L-1} \cos \theta_{k}^{Q}, i = 2, \dots, L.$$

Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 10. Watermark Security

Lecturer: Jin HUANG

Ambiguity Attacks with Blind

Detection

I am the True Owner!

The owner hold c_o privately, and distribute $c_d = c_o + w_{\mathbf{r}}.$

If other people claim the ownership with c_d .

- ullet c_d containing w_r .
- \bullet AND ONLY the owner has a copy $\mathbf{c_o}$ without $\mathbf{w_r}.$

Example

Ownership

	c_{o}	$\mathbf{c_d}$	$\mathbf{c_f}$
$\mathbf{w_r}$	-0.016	0.973	0.971
$\mathbf{w_f}$	0.968	0.970	0.005

$\mathbf{w_f}$ and $\mathbf{c_f}$

ullet w_f: large z_{lc} for ${f c_o}$ and ${f c_d}$

$$\mathbf{c_o} \cdot \mathbf{w_f}, \quad (\mathbf{c_o} + \mathbf{w_r}) \cdot \mathbf{w_f}.$$

 \circ $\mathbf{c_f}$:

$$\text{small } \mathbf{c_f} \cdot \mathbf{w_f}, \quad \text{large } \mathbf{c_o} \cdot \mathbf{w_f}.$$

- Idea:
 - $\mathbf{w_f}$ has high correlation with $\mathbf{c_o}$: $\mathbf{w_f} \cdot \mathbf{c_o} = 1$.
 - $\mathbf{c}_{\mathbf{f}} = \mathbf{c}_{\mathbf{o}} \mathbf{w}_{\mathbf{f}}$.

A Naive Solution

- \bullet Directly using c_d as w_f
 - $\bullet \ c_f$ has poor fidelity
- Find a noisy $\mathbf{w_f}$ but has high z_{lc} to $\mathbf{c_o}$.

A Better Solution

Using the Fourier transformation *F*:

Project to Fourier bases:

$$\mathbf{c}_{\mathbf{d}}^{1} = F\mathbf{c}_{\mathbf{d}}.$$

• Scaling $\tilde{\mathbf{c}}_{\mathbf{d}}$ by a random diagonal matrix D into a random vector:

$$\mathbf{c_d^2} = D\mathbf{c_d^1}.$$

Reconstruct it back:

$$\mathbf{w_f} = F^T \mathbf{c_d^2}.$$

Check

$$\mathbf{w_f} \cdot \mathbf{c_o} = (F^T D F)(\mathbf{c_d}) \cdot \mathbf{c_o}$$

$$= \mathbf{c_o}^T (F^T D F) \mathbf{c_d}$$

$$= (D^{1/2} F \mathbf{c_o})^T (D^{1/2} F(\mathbf{c_o} + \mathbf{w_r}))$$

$$= \mathbf{c'_o} \cdot \mathbf{c'_o} + \mathbf{c'_o} \cdot \mathbf{w'_r}$$

$$\approx \mathbf{c'_o} \cdot \mathbf{c'_o}.$$

High correlation!

Illustration

More like noisy image, but not enough.

A Refinement

Add noise before applying Fourier transformation.

$$\mathbf{w_f} = (F^T D F)(\mathbf{c_d} + \mathbf{n}).$$

Check:

$$\mathbf{w_f} \cdot \mathbf{c_o} = (F^T D F)(\mathbf{c_d} + \mathbf{n}) \cdot \mathbf{c_o}$$

$$= (D^{1/2} F \mathbf{c_o})^T (D^{1/2} F(\mathbf{c_d} + \mathbf{n}))$$

$$\approx \mathbf{c'_o} \cdot \mathbf{c'_o} + \mathbf{c'_o} \cdot \mathbf{n'}$$

$$\approx \mathbf{c'_o} \cdot \mathbf{c'_o}$$

Illustration

A noisy image, but high correlation to \mathbf{c}_{o} .

 $\mathbf{c}_{\mathbf{f}}$

$$\label{eq:cf} \begin{aligned} \mathbf{c_f} &= \mathbf{c_d} - 0.995 \mathbf{w_f}. \\ &\textit{Ownership} \end{aligned}$$

	c_{o}	$\mathrm{c_{d}}$	$\mathbf{c_f}$
$\mathbf{w_r}$	-0.016	0.973	0.971
$\mathbf{w_f}$	0.968	0.970	0.005

Countering Ambiguity Attacks

Make the reference pattern dependent on c_o .

ullet No c_o , no reference pattern.

Using the md5 of the $\ensuremath{\mathbf{c}}_o$ as the seed of pseudo-noise generator.

- Adding a constraint: $\mathbf{w_r} = PN(md5(\mathbf{w_c}))$.
- Difficult to find a w_f
 - $lackbox{ } \mathbf{w_f} \cdot \mathbf{c_o}$ is high,
 - $\quad \text{ AND } \mathbf{w_f} = \text{PN}(\text{md5}(\mathbf{w_f})).$