Faculté

Droit et science

politique

Value at Risk, Projet 2

Ecrit par Sami Azzoug

27 décembre 2021

Table des matières

1	Introduction	2
2	Distribution des aléas	3
	2.1 Estimation d'une distribution normale	4
	2.2 Estimation student asymétrique	5
	2.3 Estimation student symétrique	
	2.4 Gaussienne inverse asymétrique	7
	2.5 Hyperbolique asymétrique	8
	2.6 Hyperbolique généralisé asymétrique	
	2.7 Estimateur par noyau de la densité des rendements et distributions estimées	10
	2.8 Distribution hyperbolique généralisée t asymétrique	11
3	Choix de modèles	14
	3.1 APARCH	17
	3.2 GJR-GARCH (Glosten Jagannathan Runkle-GARCH (1993)	24
	3.3 EGARCH	31
	3.4 EGARCH sous STD	40
	3.5 IGARCH	43
	3.6 ARCH-M	46
	3.7 GARCH (1,1)	49
	3.7.1 Prise en compte de la saisonnalité	49
	3.7.2 New Impact Curve	53
4	Conclusion des modèles	56
5	Estimation de la VaR (Value at Risk)	56
	5.1 Méthode paramétrique	57
	5.2 VaR normale	57
	5.3 VaR par simulation historique	57
	5.4 VaR par simulation historique	57
6	Backtesting EGARCH avec la distribution nig	58
Ü	6.1 Méthode Backtesting par fenêtre glissante distribution nig	58
	6.2 Méthode Backtesting par fenêtre glissante distribution std	59
	6.2.1 Violations de la VaR nig	60
	6.2.2 Violations de la VaR std	
	6.3 Méthode Backtesting VaR avec filtre et distribution nig	63
	6.4 Méthode Backtesting VaR avec filtre et distribution std	65
	6.5 Calcul de L'expected Shortfall (ES)	66
7	Conclusion	66
8	Annexes	68
_	* * * * * * * * * * * * * * * * * * *	

1 Introduction

Lors de notre dernière étude nous avons passé tout notre temps à nous concentrer sur l'étude de l'action Shiseido afin de déceler la présence de racine unitaire et donc de savoir si il serait possible d'effectuer des prévisions sur cette dernière.

Nous en avions conclu que l'action ne possédait pas d'effet janvier, il y avait bien cependant la présence d'effet ARCH, d'effet week-end ainsi que d'effet de levier.

Notre meilleure modèle était un ARMA(0,11). Cependant, afin d'estimer les equations de la moyenne conditionnelle et de la variance conditionnelle nous utiliserons des valeurs par défaut. Nous allons donc employer, un ARMA(1,1) pour l'équation de la moyenne conditionnelle et un GARCH (1,1) pour l'équation de la variance conditionnelle.

Notre but sera ici d'estimer la VaR de notre série rte, nous prenons ici un ensemble d'estimation de 6 années ainsi que d'effectuer un backtesting sur la série rtt.

2 Distribution des aléas

Avant toute chose, nous devons commencer par l'étude de la distribution des aléas par un QQplot en supposant la normalité afin de savoir si la queue de distribution est plus épaisse qu'une loi normale. Cela nous permet d'avoir une première idée de la lourdeur des queues de distribution.

FIGURE 1 - QQplot de l'action Shiseido.

Nous y observons que les queues de distribution sont plus épaisse qu'une loi normale et que pour des valeurs fortement positives l'écart est plus grand.

En effet, la queue droite (celle des valeurs positives) est plus lourde que celle de gauche car la distance entre la courbe et la droite est plus importante pour les valeurs fortement positive de rte que pour les valeurs fortement négatives de rte.

2.1 Estimation d'une distribution normale

Gaussian Distribution:

Parameters:

 $\begin{array}{ccc} & mu & sigm\,a \\ 0.0006427229 & 0.0178271525 \end{array}$

Call:

fit.gaussuv(data = rte)

Optimization information:

 $\begin{array}{ll} \log - \text{Likelihood:} & 5128.013 \\ \text{AIC:} & -10252.03 \end{array}$

Fitted parameters: mu, sigma; (Number: 2)

Number of iterations: 0 Converged: TRUE

FIGURE 2 – Distribution normale.

2.2 Estimation student asymétrique

Asymmetric Student-t Distribution:

Parameters:

Call:

fit.tuv(data = rte)

Optimization information:

 $\begin{array}{ll} \log - \text{Likelihood:} & 5324.654 \\ \text{AIC:} & -10641.31 \end{array}$

Fitted parameters: lambda, mu, sigma, gamma; (Number: 4)

Number of iterations: 175 Converged: TRUE

 $\label{eq:figure} Figure \ 3-Distribution \ student \ asymétrique \ .$

2.3 Estimation student symétrique

Symmetric Student-t Distribution:

Parameters:

Call:

fit.tuv(data = rte, symmetric = TRUE)

Optimization information:

log-Likelihood:5324.405
AIC:
-10642.81

Fitted parameters: lambda, mu, sigma; (Number: 3)

Number of iterations: 126 Converged: TRUE

Figure 4 – Distribution student symétrique.

2.4 Gaussienne inverse asymétrique

Asymmetric Normal Inverse Gaussian Distribution:

Parameters:

Call:

fit.NIGuv(data = rte, silent = T)

Optimization information:

 $\begin{array}{ll} log-Likelihood: & 5325.28 \\ AIC: & -10642.56 \end{array}$

Fitted parameters: alpha.bar, mu, sigma, gamma; (Number: 4)

Number of iterations: 165 Converged: TRUE

Figure 5 – Distribution Gaussienne inverse asymétrique.

2.5 Hyperbolique asymétrique

Asymmetric Hyperbolic Distribution:

Parameters:

Call:

fit.hypuv(data = rte)

Optimization information:

 $\begin{array}{ll} \log-\text{Likelihood:} & 5317.734 \\ \text{AIC:} & -10627.47 \end{array}$

Fitted parameters: alpha.bar, mu, sigma, gamma; (Number: 4)

Number of iterations: 285 Converged: TRUE

FIGURE 6 – Distribution Hyperbolique asymétrique.

2.6 Hyperbolique généralisé asymétrique

Asymmetric Generalized Hyperbolic Distribution:

```
Parameters:
```

Call:

fit.ghypuv(data = rte)

Optimization information:

 $\begin{array}{ll} log-Likelihood: & 5326.095 \\ AIC: & -10642.19 \end{array}$

Fitted parameters: lambda, alpha.bar, mu, sigma, gamma; (Number: 5)

Number of iterations: 502 Converged: FALSE Error code: 1

Error message:

FIGURE 7 – Distribution Hyperbolique généralisé asymétrique.

2.7 Estimateur par noyau de la densité des rendements et distributions estimées

FIGURE 8 – Estimateur par noyau de la densité des rendements et distributions estimées.

Nous pouvons donc y observer grâce à la figure 8 que la distribution nig est la meilleure.

Nous y voyons cependant un AIC légèrement plus faible pour la distribution student symétrique $\dot{}^1$

De plus, nous savons que la ditribution nig prend bien en compte l'asymétrie présente dans les données lorsque les queues de distribution sont plus épaisses qu'une loi normale mais pas de façon trop importante, ce qui est donc notre cas.

Nous partirons donc sur une distribution nig pour la suite de nos tests.

¹. Des modèles seront testés avec la distribution nig car plus performant pour le calcul de la VaR que nous verrons plus tard.

${\bf 2.8}\quad {\bf Distribution\ hyperbolique\ généralisée\ t\ asymétrique}$

Figure 9 – Distribution hyperbolique.

Nous y voyons ici également que la distribution gh
st se rapproche bien de la série r
te $^2.\,$

^{2.} nous utiliserons cette distribution sur quelques modèles

* GARCH Model Fit * * Conditional Variance Dynamics

 $\begin{array}{lll} \operatorname{GARCH} \ \operatorname{Model} & : \ \operatorname{gjrGARCH} \left(1 \,, 1 \right) \\ \operatorname{Mean} \ \operatorname{Model} & : \ \operatorname{ARFIMA} \left(1 \,, 0 \,, 1 \right) \end{array}$

Distribution : nig

Optimal Parameters

	${\bf Estimate}$	Std. Error	t value	$\Pr\left(>\mid\mathrm{t}\mid\right)$
mu	0.000265	0.000363	0.73013	0.465309
ar1	-0.895107	0.108325	-8.26317	0.000000
ma1	0.906487	0.102056	8.88225	0.000000
omega	0.000003	0.000002	1.61290	0.106765
alpha1	0.019270	0.006623	2.90939	0.003621
$\mathrm{bet}\mathrm{a}1$	0.961207	0.003975	241.82535	0.000000
gamma1	0.023385	0.012784	1.82930	0.067355
\overline{s} kew	-0.094553	0.045528	-2.07681	0.037819
$_{ m shape}$	0.781336	0.122739	6.36585	0.000000

Robust Standard Errors:

	Estimate	Std. Error	t value	$\Pr(> \mathbf{t})$
mu	0.000265	0.000377	0.70305	0.482027
ar1	-0.895107	0.083253	-10.75159	0.000000
ma1	0.906487	0.079052	11.46703	0.000000
omega	0.000003	0.000004	0.58438	0.558967
alpha1	0.019270	0.008368	2.30293	0.021283
$\mathrm{bet}\mathrm{a}1$	0.961207	0.006728	142.85911	0.000000
$_{ m gamma1}$	0.023385	0.017130	1.36512	0.172216
skew	-0.094553	0.048243	-1.95994	0.050003
$_{ m shape}$	0.781336	0.210475	3.71225	0.000205

LogLikelihood: 5381.212

Information Criteria

 $\begin{array}{lll} {\rm A\,kaike} & -5.4651 \\ {\rm B\,ayes} & -5.4396 \\ {\rm S\,hib\,ata} & -5.4652 \\ {\rm H\,annan-Quinn} & -5.4557 \end{array}$

Weighted Ljung-Box Test on Standardized Residuals

 $\begin{array}{c} \text{ statistic } p-value \\ \text{Lag[1]} & 0.008025 & 0.9286 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 0.221240 & 1.0000 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 0.647669 & 1.0000 \\ \text{d.o.f=2} \end{array}$

HO: No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

 $\begin{array}{c} \text{tatistic } p-value \\ \text{Lag}[1] & 5.087 \ 0.02411 \\ \text{Lag}[2*(p+q)+(p+q)-1][5] & 5.448 \ 0.12094 \\ \text{Lag}[4*(p+q)+(p+q)-1][9] & 5.713 \ 0.33251 \\ \text{d.o.f} = 2 \end{array}$

Weighted ARCH LM Tests

ARCH Lag[3] 0.4214 0.500 2.000 0.5163 ARCH Lag[5] 0.6391 1.440 1.667 0.8419 ARCH Lag[7] 0.7165 2.315 1.543 0.9548

Nyblom stability test

Joint Statistic: 73.5872 Individual Statistics:

mu 0.44496 0.06309ar1ma10.069257.79973omegaalpha1 0.29543 bet a1 0.32316gamma1 0.31736 skew0.12026shape 0.36371

Sign Bias Test

3 Choix de modèles

Lorsque nous réalisons un test de la famille ARCH/GARCH plusieurs résultats s'affichent et il convient de comprendre à quoi ils correspondent.

— Dans l'onglet **Robust Standar Errors** nous pouvons tout d'abord regarder 2 coefficients (pour modèle GJR-GARCH) qui sont :

$$\gamma$$
 (gamma1) α (alpha1)

Ces deux coefficients là se doivent d'être significatif ainsi que positif pour **gamma1** et négatif pour **alpha1** afin de prendre en compte l'effet signe et l'effet taille.

Si ce n'est pas le cas alors notre modèle choisit n'aura pas pu modéliser l'effet de levier que nous avions détecter dans les rendements logarithmique lors de notre précédente étude.

Il y également le coefficient (skew) à vérifier, ce dernier se doit d'être significatif afin de pouvoir prendre en compte l'asymétrie de notre série rte.

 H_0 : Prise en compte de l'asymétrie dans les données.

Nous devons aussi être attentif au coefficient (shape) qui lui permet de savoir si le modèle prend en compte le fait que les queues de distribution de notre série rte sont plus épaisses qu'une loi normale.

 H_0 : Prise en compte des queues de distribution plus épaisse qu'une loi normale. (1)

— Dans l'onglet **Information Criteria** nous avons à notre disposition 4 critères d'information, ces critères nous permettront, lorsque des modèles se concurrence entre eux car ils passent tous les tests, de savoir lequel nous privilégierons. Nous nous emploieront à utiliser le critère BIC car il est plus parcimonieux et plus consistant. (2)

Afin de rappeler son principe de fonctionnement nous pouvons dire que BIC cherche à minimiser le logarithme de la variance des résidus en tenant compte d'une pénalité additive basée sur la taille du modèle. ³

— La partie Weigthed Ljung-Box Test nous permet de savoir si nos aléas sont autocorrélés ou non, pour ce faire nous regarderons les p-value associées, si les p-values sont supérieures à 0.05 alors nous acceptons l'hypothèse H_0 .(3)

Si nous acceptons H_0 alors nous pouvons conclure que notre modèle ARMA(1,1) à réussi à prendre en compte toute l'autocorrelation.

 H_0 : Absence d'autorrelation dans les aléas.

^{3.} Voici son calcul : $SBIC = log \hat{\sigma}_T^2(k) + \frac{log T}{T} k \label{eq:SBIC}$

- Weighted ARCH LM Tests nous permet de savoir si nos aléas sont conditionnellement homoscédastique en regardant les p-values avec H_0 : Absence de cluster de volatilité. Nous pouvons donc savoir si notre modèle GARCH(1,1) prend en compte les clusters de volatilité. (4)
- Nyblom stability test sert à mesurer la stabilité dans le temps de notre modèle. Afin d'interpreter ce test nous nous devons tout d'abord de regarder la valeur de la |statistiquecalcule| et regarder si elle est supérieur au critère d'information (Joint Statistique) à 5%, si c'est le cas nous rejetons :

 H_0 : Tous les coefficients sont stables dans le temps.

Cela voudrait alors dire que nous avons au moins un coefficient qui n'est pas stable, afin de savoir lequel il conviendra de regarder la valeur de sa statistique et de la comparer avec celle du critère d'information à 5% individuelle (Individual Statistique). (5)

Sign Bias Test permet de prendre en compte l'impact de l'effet de levier.
 Ce test fait par Engle et Ng (1993) est basé sur cette équation :

$$\tilde{v}_t^2 = c_0 + c_1 I_{\tilde{v}_{t-1} < 0} + c_2 I_{\tilde{v}_{t-1} < 0} \tilde{v}_{t-1} + c_3 I_{\tilde{v}_{t-1} > 0} \tilde{v}_{t-1} + \mu_t$$

Où I est une fonction indicatrice qui vaut 1 si la condition entre les accolades est vérifiée. Sous R, nous devons regarder la p-value de chacun de ces coefficients :

Sign Bias

 H_0 : Pas d'effet signe.

 H_a : Bonne ou mauvaise nouvelle ont un impact différencié sur la volatilité.

Negative Sign Bias

 H_0 : Pas d'effet taille d'un choc négatif.

 H_a : Présence d'effet taille, une petite mauvaise nouvelle ou une grande mauvaise nouvelle ont un impact

différent sur la volatilité.

Positive Sign Bias

 H_0 : Pas d'effet taille d'un choc positif.

 H_a : Présence d'effet taille, une petite bonne

nouvelle ou une grande bonne nouvelle ont un impact

différent sur la volatilité

Joint Effect

 H_0 : Pas d'effet et pas d'effet taille.

 H_a : Présence soit d'effet taille d'un choc négatif

soit d'effet taille d'un choc positif ou présence des

deux effets en même temps.

Nous désirons avoir une p-value supérieur à 5% pour chacune de ces variables afin que notre modèle puisse prendre en compte l'effet de levier. (6)

— Adjusted Pearson Goodness of fit test nous permet de savoir si la distribution que nous avons choisie dans la spécification (distribution.model) est correcte par rapport à la distribution empirique des résidus standardisés. (7)

 ${\cal H}_0$: La distribution supposée des aléas est correcte.

3.1 APARCH

Nous allons commencer nos tests par celui de APARCH(1,1). Ce modèle à été introduit par Ding, Granger et Engle (1993), il a comme particularité d'admettre comme cas particulier plusieurs autres processus existants.

On dit que un processus v_t satisfait une représentation APARCH(m,s) si et seulement si :

$$r_t = \mu + v_t$$

avec

$$v_t = \sigma_t \epsilon_t$$

$$\sigma_t^{\delta} = \alpha_0 + \sum_{i=1}^{s} (|v_{t-i}| - \gamma_i v_{t-i})^{\delta} + \sum_{i=1}^{m} \beta_i \sigma_{t-i}^{\delta}$$

 δ peut être ajusté à 1 ou 2, cela dépendra du résultat du test.

Nous utilisons la spécification "nig" et nous affichons les résultats du test $\operatorname{APARCH}(1,1)$ cidessous :

Conditional Variance Dynamics

 $\begin{array}{lll} \text{GARCH Model} & : & \text{apARCH} (1,1) \\ \text{Mean Model} & : & \text{ARFIMA} (1,0,1) \\ \end{array}$

Distribution : nig

Optimal Parameters

	Estimate	Std. Error	t value	$\Pr(> \mathbf{t})$
mu	0.000331	0.000363	0.91117	0.362207
ar1	-0.891257	0.057362	-15.53729	0.000000
ma1	0.903260	0.053999	16.72726	0.000000
omega	0.000068	0.000172	0.39574	0.692294
alpha1	0.048696	0.015161	3.21182	0.001319
b et a 1	0.952800	0.011161	85.36865	0.000000

gamma1	0.200492	0.123883	1.61841	0.105575
delta	1.253207	0.531462	2.35804	0.018372
skew	-0.083636	0.046592	-1.79507	0.072643
shape	0.807909	0.118412	6.82288	0.000000

Robust Standard Errors:

	${\bf Estimate}$	Std. Error	t value	$\Pr(> \mathbf{t})$
mu	0.000331	0.000405	0.81738	0.413711
ar1	-0.891257	0.024455	-36.44473	0.000000
ma1	0.903260	0.023707	38.10084	0.000000
omega	0.000068	0.000328	0.20768	0.835482
alpha1	0.048696	0.027495	1.77108	0.076547
beta1	0.952800	0.019163	49.72198	0.000000
$_{\rm gamma1}$	0.200492	0.148353	1.35146	0.176549
delta	1.253207	1.021251	1.22713	0.219774
skew	-0.083636	0.055295	-1.51253	0.130399
shape	0.807909	0.140737	5.74055	0.000000

LogLikelihood: 5384.081

Information Criteria

 $\begin{array}{lll} {\rm A\,kaike} & -5.4670 \\ {\rm B\,ayes} & -5.4386 \\ {\rm S\,hib\,at\,a} & -5.4671 \\ {\rm H\,annan-Quinn} & -5.4566 \end{array}$

Weighted Ljung-Box Test on Standardized Residuals

```
\begin{array}{c} \text{tatistic} & \text{p-value} \\ \text{Lag[1]} & 0.01255 & 0.9108 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 0.38023 & 1.0000 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 0.87915 & 0.9999 \\ \text{d.o.f=2} \end{array}
```

HO: No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

	statistic	p-value
Lag[1]	5.575	0.01822
Lag[2*(p+q)+(p+q)-1][5]	5.966	0.09160
Lag[4*(p+q)+(p+q)-1][9]	6.254	0.27008
d.o.f = 2		

Weighted ARCH LM Tests

```
      Statistic Shape Scale P-Value

      ARCH Lag[3]
      0.4224 0.500 2.000 0.5158

      ARCH Lag[5]
      0.7083 1.440 1.667 0.8209

      ARCH Lag[7]
      0.7524 2.315 1.543 0.9502
```

Nyblom stability test

Joint Statistic: 2.6808Individual Statistics: 0.505270.05208ar1 ma10.05826omega 0.36059alpha1 0.32626 beta10.35614gamma1 0.32880 delta 0.30534skew 0.09729shape 0.26821

Sign Bias Test

t-value prob sig
Sign Bias 0.1918 0.8479
Negative Sign Bias 2.3226 0.0203 **
Positive Sign Bias 0.6941 0.4877
Joint Effect 8.0394 0.0452 **

Adjusted Pearson Goodness-of-Fit Test:

	group	statistic	p-value (g-1)
1	20	15.67	0.6793
2	30	27.40	0.5503
3	40	38.56	0.4899
4	50	38.93	0.8479

Elapsed time: 10.41995

Nous voyons que notre δ est plus proche de 1 que de 2 et il est non significatif car sa p-value est supérieur à 5%, nous allons donc estimer à nouveau le modèle avec un $\delta = 1$.

```
> spec7bis = ugarchspec(variance.model=list(model="apARCH", garchOrder=c(1,1)),\\ mean.model=list(armaOrder=c(1,1)),\\ distribution.model="nig",fixed.pars = list(delta=1))\\ > fit7bis= ugarchfit(spec = spec7bis,data = rt,out.sample=length(rtt),solver="hybrid")\\ > show(fit7bis)
```

Conditional Variance Dynamics

 $\begin{array}{lll} \text{GARCH Model} & : & \text{apARCH} \left(1 \,, 1 \, \right) \\ \text{Mean Model} & : & \text{ARFIMA} \left(1 \,, 0 \,, 1 \right) \\ \end{array}$

Distribution : nig

Optimal Parameters

	Estimate	Std. Error	t value	$\Pr\left(>\mid\mathrm{t}\mid\right)$
mu	0.000374	0.000355	1.0532	0.292253
ar1	-0.887038	0.034109	-26.0056	0.000000
ma1	0.899386	0.032183	27.9459	0.000000
omega	0.000219	0.000089	2.4554	0.014074
alpha1	0.053681	0.009010	5.9578	0.000000
$\mathrm{bet}\mathrm{a}1$	0.948917	0.008782	108.0487	0.000000
$_{\rm gamma1}$	0.210001	0.129708	1.6190	0.105443
$\operatorname{delt} \mathbf{a}$	1.000000	NA	NA	NA
skew	-0.077322	0.044950	-1.7202	0.085398
$_{ m shape}$	0.811110	0.118569	6.8408	0.000000

Robust Standard Errors:

	Estimate	Std. Error	t value	$\Pr(> \mathbf{t})$
mu	0.000374	0.000365	1.0244	0.305634
ar1	-0.887038	0.009422	-94.1468	0.000000
ma1	0.899386	0.008536	105.3641	0.000000
omega	0.000219	0.000079	2.7619	0.005747
alpha1	0.053681	0.007722	6.9513	0.000000
$\mathrm{bet}\mathrm{a}1$	0.948917	0.006675	142.1580	0.000000
$_{\rm gamma1}$	0.210001	0.132028	1.5906	0.111704
$\operatorname{delt} \mathbf{a}$	1.000000	NA	NA	NA
skew	-0.077322	0.048006	-1.6107	0.107253
$_{ m shape}$	0.811110	0.135223	5.9983	0.000000

LogLikelihood: 5383.684

Information Criteria

 $\begin{array}{ccc} {\rm A\,kaike} & -5.4676 \\ {\rm B\,ayes} & -5.4421 \\ {\rm S\,hib\,at\,a} & -5.4677 \\ {\rm H\,annan-Quinn} & -5.4582 \end{array}$

Weighted Ljung-Box Test on Standardized Residuals

```
\begin{array}{c} \text{tatistic} & \text{p-value} \\ \text{Lag[1]} & 0.01307 & 0.9090 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 0.46388 & 1.0000 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 0.99879 & 0.9998 \\ \text{d.o.f=2} \end{array}
```

HO: No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

 $\begin{array}{c} \text{tatistic } p-value \\ \text{Lag[1]} & 5.996 \ 0.01434 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 6.360 \ 0.07393 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 6.653 \ 0.23000 \\ \text{d.o.f=2} \end{array}$

Weighted ARCH LM Tests

 Statistic
 Shape
 Scale
 P-Value

 ARCH
 Lag[3]
 0.3711
 0.500
 2.000
 0.5424

 ARCH
 Lag[5]
 0.6667
 1.440
 1.667
 0.8336

 ARCH
 Lag[7]
 0.7192
 2.315
 1.543
 0.9545

Nyblom stability test

 $\begin{array}{lll} \mbox{Joint Statistic:} & 2.0936 \\ \mbox{Individual Statistics:} \\ \mbox{mu} & 0.54039 \end{array}$

ar1 0.04843 ma1 0.05394 omega 0.42832 alpha1 0.38231 bet a1 0.41646 gamma1 0.27785 $\begin{array}{ll} \mathrm{skew} & 0.09076 \\ \mathrm{shape} & 0.22384 \end{array}$

Sign Bias Test

$Adjusted\ Pearson\ Goodness{--}of{--}Fit\ Test:$

	group	statistic	p-value(g-1)
1	20	14.45	0.7570
2	30	29.84	0.4221
3	40	41.73	0.3529
4	50	43.00	0.7137

Elapsed time : 4.774263

Voici l'ensemble des tests validés par le modèle APARCH(1,1):

Pearson Ljung-Box Test ARCH LM Tests Nyblom

Voici l'ensemble des tests non validés par le modèle $\operatorname{APARCH}(1,1)$:

Sign Bias Test

Dans Robust Standar Errors, μ pas significatif ainsi que γ et (skew).

Le BIC du modèle APARCH(1,1) est donc de -5.4421.

Nous avons donc tous les éléments qui nous permettent de juger de la qualité du modèle, la suite de l'étude sera de comparer les tests que les autres modèles passent afin de pouvoir en choisir un pour estimer la VaR et procéder au backtesting.

3.2 GJR-GARCH (Glosten Jagannathan Runkle-GARCH (1993)

Le modèle GJR-GARCH se présente de la façon comme suit :

$$r_t = \mu + v_t$$

avec

$$v_t = \sigma_t \epsilon_t$$

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^m (\alpha_i v_{t-i}^2 + \gamma_i I_{t-i<0} v_{t-i}^2) + \sum_{j=1}^s \beta_j \sigma_{t-j}^2$$

Où ϵ_t sont des bruits blancs et où $I_{t-i}=1$ si $v_{t-i}<0$ et 0 sinon.

GJR-GARCH introduit une nouvelle variable γ capable de prendre en compte l'effet de levier. Afin que nous puissions avoir un effet de levier il faut que cette dernière soit significative et positive.

Nous présentons donc les résultats du test ci dessous :

Conditional Variance Dynamics

 $\begin{array}{lll} \text{GARCH Model} & : & \text{gjrGARCH} (1,1) \\ \text{Mean Model} & : & \text{ARFIMA} (1,0,1) \\ \end{array}$

Distribution : nig

Optimal Parameters

	Estimate	Std. Error		$\Pr\left(>\mid t\mid\right)$
mu	0.000266	0.000363	0.73375	0.463101
ar1	-0.896149	0.111098	-8.06628	0.000000
ma1	0.907476	0.104572	8.67798	0.000000
omega	0.000003	0.000002	1.62243	0.104712
alpha1	0.019269	0.006624	2.90904	0.003625
bet a 1	0.961203	0.003965	242.39920	0.000000
$_{\rm gamma1}$	0.023291	0.012784	1.82193	0.068465

```
skew
        -0.094468
                      0.045541
                                 -2.07436 0.038046
shape
         0.780985
                      0.122540
                                  6.37333 0.000000
Robust Standard Errors:
         Estimate
                    Std. Error
                                  t value Pr(>|t|)
         0.000266
                      0.000377
                                  0.70661 \ 0.479812
mu
        -0.896149
                      0.088520 -10.12369 0.000000
ar1
         0.907476
ma1
                      0.083879
                                 10.81889 0.000000
         0.000003
                      0.000004
                                  0.58977 \ \ 0.555346
omega
alpha1
         0.019269
                      0.008359
                                  2.30522 \quad 0.021155
                      0.006666 144.19691
bet a1
         0.961203
                                           0.000000
gamma1
         0.023291
                                  1.36059 \ 0.173644
                      0.017119
```

0.048255

0.209188

 $-1.95769 \quad 0.050266$

3.73340 0.000189

LogLikelihood: 5381.212

-0.094468

0.780985

Information Criteria

skew

shape

 $\begin{array}{lll} {\rm A\,kaike} & -5.4651 \\ {\rm B\,ayes} & -5.4396 \\ {\rm S\,hib\,ata} & -5.4652 \\ {\rm H\,annan-Quinn} & -5.4557 \end{array}$

Weighted Ljung-Box Test on Standardized Residuals

```
\begin{array}{c} \text{statistic} & \text{p-value} \\ \text{Lag[1]} & 0.008265 & 0.9276 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 0.220904 & 1.0000 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 0.646736 & 1.0000 \\ \text{d.o.f=2} \\ \text{H0} : \text{No serial correlation} \end{array}
```

Weighted Ljung-Box Test on Standardized Squared Residuals

```
\begin{array}{c} \text{tag[1]} & \text{statistic p-value} \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 5.101 & 0.02391 \\ \text{Lag[2*(p+q)+(p+q)-1][9]} & 5.462 & 0.12008 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 5.727 & 0.33084 \\ \text{d.o.f=2} \end{array}
```

Weighted ARCH LM Tests

Statistic Shape Scale P-Value ARCH Lag[3] 0.4203 0.500 2.000 0.5168

ARCH Lag[5]	0.6373	1.440	1.667	0.8425
ARCH Lag[7]	0.7154	2.315	1.543	0.9549

Nyblom stability test

Joint Statistic: 72.8684Individual Statistics: mu 0.447240.06374ar1ma10.07000omega - 7.73279alpha1 0.29708 beta10.32609gamma1 0.31914 skew0.11966shape 0.36344

Sign Bias Test

	t-value	prob	sig
Sign Bias	0.3378	0.73558	
Negative Sign Bias	2.3431	0.01923	**
Positive Sign Bias	0.9428	0.34592	
Joint Effect	8.7186	0.03328	**

$Adjusted\ Pearson\ Goodness{--of-Fit}\ Test:$

	group	statistic	p-value (g-1)
1	20	18.90	0.4631
2	30	30.08	0.4098
3	40	37.91	0.5196
4	50	48.14	0.5079

Elapsed time: 3.190576

Nous observons donc, au vu des résultats, que le modèle GJR-GARCH ne prend en compte l'effet de levier puisque γ n'est pas significatif. Nous allons alors essayer de fixer α à 0 malgré le fait qu'il soit significatif.

Conditional Variance Dynamics

 $\begin{array}{lll} \text{GARCH Model} & : & \text{gjrGARCH} \left(1 \,, 1 \right) \\ \text{Mean Model} & : & \text{ARFIMA} \left(1 \,, 0 \,, 1 \right) \\ \end{array}$

Distribution : nig

Optimal Parameters

	Estimate	Std. Error	t value	$\Pr(> \mathbf{t})$
mu	0.000272	0.000368	0.73851	0.460203
ar1	-0.886253	0.107655	-8.23238	0.000000
ma1	0.900191	0.100808	8.92978	0.000000
omega	0.000002	0.000002	1.50570	0.132144
alpha1	0.000000	NA	NA	NA
$\mathrm{bet}\mathrm{a}1$	0.968915	0.003628	267.10133	0.000000
$_{\rm gamma1}$	0.047959	0.006972	6.87866	0.000000
skew	-0.092199	0.045802	-2.01300	0.044114
$_{ m shape}$	0.751993	0.120646	6.23307	0.000000

Robust Standard Errors:

	Estimate	Std. Error	t value	$\Pr\left(> \mid \mathrm{t} \mid \right)$
mu	0.000272	0.000373	0.72858	0.466259
ar1	-0.886253	0.091486	-9.68732	0.000000
ma1	0.900191	0.084876	10.60599	0.000000
omega	0.000002	0.000005	0.45848	0.646609
alpha1	0.000000	NA	NA	NA
$\mathrm{bet}\mathrm{a}1$	0.968915	0.008298	116.76355	0.000000
$_{\rm gamma1}$	0.047959	0.010986	4.36529	0.000013
skew	-0.092199	0.048484	-1.90165	0.057217
$_{ m shape}$	0.751993	0.239569		0.001696

LogLikelihood: 5375.838

Information Criteria

Akaike -5.4607

```
\begin{array}{lll} {\rm Bayes} & -5.4379 \\ {\rm Shibata} & -5.4607 \\ {\rm Hannan-Quinn} & -5.4523 \end{array}
```

Weighted Ljung-Box Test on Standardized Residuals

```
\begin{array}{c} \text{statistic} & \text{p-value} \\ \text{Lag}\left[1\right] & 0.02613 & 0.8716 \\ \text{Lag}\left[2*(p+q)+(p+q)-1\right]\left[5\right] & 0.24797 & 1.0000 \\ \text{Lag}\left[4*(p+q)+(p+q)-1\right]\left[9\right] & 0.67682 & 1.0000 \\ \text{d.o.f} = 2 \\ \text{H0} : \text{No serial correlation} \end{array}
```

iio . Ito seriar corretation

Weighted Ljung-Box Test on Standardized Squared Residuals

```
\begin{array}{c} \text{tag[1]} & \text{statistic p-value} \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 3.988 & 0.04584 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 4.433 & 0.20471 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 4.922 & 0.44098 \\ \text{d.o.f=2} \end{array}
```

Weighted ARCH LM Tests

```
ARCH Lag[3] 0.01214 0.500 2.000 0.9123
ARCH Lag[5] 0.26787 1.440 1.667 0.9487
ARCH Lag[7] 0.66652 2.315 1.543 0.9609
```

Nyblom stability test

0.05274

0.13465

 $\begin{array}{lll} omega & 11.5\,8661 \\ bet\,a1 & 0.95\,559 \\ gamma1 & 0.87028 \\ skew & 0.14468 \end{array}$

ma1

shape

Sign Bias Test

		t-value	prob	sig
Sign Bias		0.3531	0.72406	
Negative Sign	Bias	2.2166	0.02677	**
Positive Sign	Bias	1.2639	0.20641	
Joint Effect		8.0677	0.04463	**

Adjusted Pearson Goodness-of-Fit Test:

	group	statistic	p-value(g-1)
1	20	16.20	0.6441
2	30	24.74	0.6915
3	40	29.12	0.8756
4	50	33.80	0.9518

Elapsed time : 2.859354

Nous pouvons observer que désormais γ est significatif il y a donc désormais prise en compte de l'effet de levier.

Cependant, nous devons passer à un autre modèle puisque le test de Sign Bias n'est pas validé. ⁴ Également, nous notons que le **BIC du modèle GJR-GARCH est de -5.4379**, ce qui veut dire que le modèle APARCH le sur-performe.

^{4.} Voir annexe pour une réalisation du modèle GJR-GARCH avec la distribution "ghyp" mais qui ne reste pas concluant tout de même.

3.3 EGARCH

Le modèle EGARCH se définit de la façon suivante :

$$v_t = \sigma_t \epsilon_t$$

$$ln\sigma_t^2 = \alpha_0 + \frac{1 + \beta_1 L + \dots + B_{s-1} L^{s-1}}{1 - \alpha_1 L - \dots - \alpha_m L^m} g(\epsilon_{t-1})$$

Le modèle EGARCH présente une forme d'asymétrie qui dépend :

Du signe positif ou négatif de l'innovation θ .

De l'amplitude de ce choc γ .

EGARCH présente aussi l'avantage de ne nécessiter aucune restriction de non négativité sur les paramètres afin de garantir la positivité de la variance conditionnelle.

Sous R, le modèle EGARCH(m,s) s'écrit de la façon suivante :

$$v_t = \sigma_t \epsilon_t$$

$$ln\sigma_t^2 = \alpha_0 + \sum_{i=1}^s \alpha_i \frac{|\epsilon_{t-i}| + \gamma_i \epsilon_{t-i}}{\sigma_{t-i}} + \sum_{j=1}^m \beta_j ln(\sigma_{t-j}^2)$$

L'effet de levier se présente comme étant les γ_i qui se doivent d'être significatifs et négatifs.

Nous présentons les résultats de ce test ci-joint :

Conditional Variance Dynamics

 $\begin{array}{lll} \text{GARCH Model} & : & \text{eGARCH}(1,1) \\ \text{Mean Model} & : & \text{ARFIMA}(1,0,1) \\ \end{array}$

Distribution : nig

Optimal Parameters

mu ar1 ma1 omega alpha1 beta1 gamma1 skew	Estimate 0.000330 -0.886692 0.899053 -0.100713 -0.023975 0.987683 0.101619 -0.084727	Std. Error 0.000302 0.033621 0.031665 0.007195 0.013114 0.000882 0.024277 0.043298	$\begin{array}{c} 1.0908 \\ -26.3731 \\ 28.3926 \\ -13.9970 \\ -1.8281 \\ 1119.6768 \\ 4.1858 \\ -1.9569 \end{array}$	$0.000028 \\ 0.050364$
$\frac{\text{skew}}{\text{shape}}$	-0.084727 0.805579	$0.043298 \\ 0.125681$		0.030364 0.000000

Robust Standard Errors:

	${\bf Estimate}$	Std. Error	t value	$\Pr\left(>\mid\mathrm{t}\mid\right)$
mu	0.000330	0.000267	1.2352	0.216764
ar1	-0.886692	0.008806	-100.6902	0.000000
ma1	0.899053	0.009031	99.5498	0.000000
omega	-0.100713	0.007279	-13.8370	0.000000
alpha1	-0.023975	0.015964	-1.5019	0.133134
bet a 1	0.987683	0.000882	1120.2704	0.000000
$_{\rm gamma1}$	0.101619	0.034833	2.9173	0.003530
skew	-0.084727	0.045068	-1.8800	0.060108
$_{ m shape}$	0.805579	0.157983	5.0992	0.000000

LogLikelihood : 5384.719

Information Criteria

 $\begin{array}{lll} {\rm A\,kaike} & -5.4687 \\ {\rm B\,ayes} & -5.4431 \\ {\rm S\,hib\,ata} & -5.4687 \\ {\rm H\,annan-Quinn} & -5.4593 \end{array}$

Weighted Ljung-Box Test on Standardized Residuals

```
\begin{array}{ccc} & statistic & p-value \\ Lag\,[\,1\,] & 0.007387 & 0.9315 \\ Lag\,[\,2*(\,p+q)+(\,p+q)-1\,][\,5\,] & 0.392277 & 1.0000 \\ Lag\,[\,4*(\,p+q)+(\,p+q)-1\,][\,9\,] & 0.909328 & 0.9999 \\ d.\,o.\,f\,=\!2 & \end{array}
```

HO: No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

```
\begin{array}{c} Lag\,[\,1\,] \\ Lag\,[\,2*(\,p+q\,)+(\,p+q\,)\,-1\,][\,5\,] \\ Lag\,[\,2*(\,p+q\,)+(\,p+q\,)\,-1\,][\,9\,] \\ d.\,o.\,f\,=\!2 \end{array} \quad \begin{array}{c} st\,at\,istic \\ 5.492 \\ 0.01910 \\ 5.914 \\ 0.09421 \\ 6.212 \\ 0.27451 \end{array}
```

Weighted ARCH LM Tests

ARCH Lag[3] 0.4557 0.500 2.000 0.4996 ARCH Lag[5] 0.7640 1.440 1.667 0.8040 ARCH Lag[7] 0.8066 2.315 1.543 0.9428

Nyblom stability test

 $\begin{array}{lll} \mbox{Joint Statistic:} & 2.1766 \\ \mbox{Individual Statistics:} & \end{array}$

0.56095muar10.04868 0.05423ma10.48462omegaalpha1 0.25777 bet a1 0.48331gamma1 0.34517 skew0.10303shape 0.39533

Sign Bias Test

Adjusted Pearson Goodness-of-Fit Test:

group statistic p-value (g-1)1 20 13.74 0.7989

Elapsed time: 3.013273

Nous observons donc que le modèle EGARCH ne valide pas les tests suivant :

Sign Bias

 α n'est pas significatif dans les paramètres, nous allons donc le fixer à 0

Cependant il valide ceux-ci :

Adjusted Pearson ARCH LM Test Ljung-Box

Voici donc le modèle affiché avec un $\alpha=0$

```
> spec5 = ugarchspec (variance.model=list (model="eGARCH", garchOrder=c (1,1)), \\ + mean.model=list (armaOrder=c (1,1)), distribution.model="nig", fixed.p > fit5 = ugarchfit (spec = spec5, data = rt, out.sample=length (rtt), solver="hybrid") > show (fit5)
```

```
* GARCH Model Fit *
```

Conditional Variance Dynamics

 $\begin{array}{lll} \text{GARCH Model} & : & \text{eGARCH} (1\,,1) \\ \text{Mean Model} & : & \text{ARFIMA} (1\,,0\,,1) \\ \end{array}$

Distribution : nig

Optimal Parameters

	Estimate	Std. Error	t value	$\Pr(> \mathbf{t})$
mu	0.000402	0.000265	1.5171	0.129245
ar1	-0.886080	0.045072	-19.6592	0.000000
ma1	0.898186	0.042561	21.1037	0.000000
omega	-0.099045	0.008489	-11.6681	0.000000
alpha1	0.000000	NA	NA	NA
bet a 1	0.987906	0.001064	928.5284	0.000000
$_{\rm gamma1}$	0.097590	0.032224	3.0285	0.002457

```
skew
                                  -1.9148 \ 0.055517
        -0.080740
                       0.042166
shape
         0.793821
                       0.129279
                                   6.1404 \quad 0.000000
Robust Standard Errors:
         Estimate
                    Std. Error
                                  t value Pr(>|t|)
         0.000402
                       0.000206
                                   1.9514 \ 0.051009
mu
        -0.886080
                       0.014432 -61.3986 0.000000
ar1
                       0.013098
                                  68.5747 \quad 0.000000
ma1
         0.898186
                       0.013449
                                  -7.3647 \ 0.000000
omega
        -0.099045
alpha1
         0.000000
                             NA
                                       NA
                                                  NA
                       0.001753 563.5988 0.000000
bet a1
         0.987906
gamma1
         0.097590
                       0.062112
                                   1.5712 \quad 0.116134
```

0.043157

0.179557

 $-1.8708 \quad 0.061367$

 $4.4210 \quad 0.000010$

LogLikelihood: 5382.973

-0.080740

0.793821

Information Criteria

skew

shape

 $\begin{array}{lll} {\rm A\,kaike} & -5.4679 \\ {\rm B\,ayes} & -5.4452 \\ {\rm S\,hi\,b\,at\,a} & -5.4680 \\ {\rm H\,annan-Quinn} & -5.4596 \end{array}$

Weighted Ljung-Box Test on Standardized Residuals

```
\begin{array}{c} \text{ statistic } & \text{p-value} \\ \text{Lag[1]} & 0.01107 & 0.9162 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 0.38189 & 1.0000 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 0.93461 & 0.9999 \\ \text{d.o.f=2} \end{array}
```

H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

	statistic	p-value
Lag [1]	10.61	0.001123
Lag[2*(p+q)+(p+q)-1][5]	10.99	0.005122
Lag[4*(p+q)+(p+q)-1][9]	11.21	0.027280
$d \cdot o \cdot f = 2$		

Weighted ARCH LM Tests

ARCH Lag[3] Statistic Shape Scale P-Value 0.4382 0.500 2.000 0.5080

ARCH	$\operatorname{Lag}\left[5 ight]$	0.6187	1.440	1.667	0.8481
ARCH	$\operatorname{Lag}[7]$	0.6552	2.315	1.543	0.9623

Nyblom stability test

Joint Statistic: 1.8078 Individual Statistics: 0.40367mu0.04807ar1 $0\,.\,0\,5\,3\,4\,1$ ma10.29824omega bet a1 0.29314gamma1 0.30052 skew0.09296 $_{\mathrm{shape}}$ 0.45342

Sign Bias Test

Adjusted Pearson Goodness-of-Fit Test:

	group	statistic	p-value(g-1)
1	20	13.25	0.8257
2	30	28.47	0.4931
3	40	41.49	0.3628
4	50	41.32	0.7739

Elapsed time: 2.764276

Son critère BIC est égale à -5.4452.

Nous affichons également la courbe des nouvelles en figure 10 qui nous montre l'impact des nouvelles sur notre série rte.

FIGURE 10 – Courbe des nouvelles EGARCH (1,1).

Ici étant donné que ce modèle-ci est meilleur du fait de son BIC que les autres modèles, afin d'enlever le problème du Sign Bias nous allons ajouter un $m = 2^5$.

Std. Error

Estimate

t value Pr(>|t|)

^{5.} Nous savons que ce n'est pas adéquat car nous n'aurons pas connaissance du signe des 2 coefficients, cela est à but pédagogique.

mu	0.000437	0.000305	1.4300	0.152718
ar1	-0.888787	0.063226	-14.0573	0.000000
ma1	0.901601	0.059030	15.2737	0.000000
omega	-0.067441	0.002049	-32.9084	0.000000
alpha1	0.000000	NA	NA	NA
alpha2	0.000000	NA	NA	NA
b et a 1	0.991777	0.000362	2737.2763	0.000000
gamma1	0.221986	0.059761	3.7145	0.000204
gamma2	-0.141187	0.052488	-2.6899	0.007147
skew	-0.076712	0.043424	-1.7666	0.077303
shape	0.823821	0.110557	7.4515	0.000000

Robust Standard Errors:

	Estimate	Std. Error	t value	$\Pr\left(>\mid \mathrm{t}\mid\right)$
mu	0.000437	0.000270	1.6147	0.106383
ar1	-0.888787	0.030025	-29.6013	0.000000
ma1	0.901601	0.026817	33.6199	0.000000
omega	-0.067441	0.004633	-14.5571	0.000000
alpha1	0.000000	NA	NA	NA
alpha2	0.000000	NA	NA	NA
b et a 1	0.991777	0.000545	1821.1503	0.000000
gamma1	0.221986	0.067226	3.3021	0.000960
gamma2	-0.141187	0.065888	-2.1429	0.032125
skew	-0.076712	0.044656	-1.7178	0.085827
$_{\mathrm{shape}}$	0.823821	0.144846	5.6876	0.000000

LogLikelihood : 5385.671

Information Criteria

 $\begin{array}{lll} {\rm A\,kaike} & -5.4697 \\ {\rm B\,ayes} & -5.4441 \\ {\rm S\,hib\,at\,a} & -5.4697 \\ {\rm H\,annan-Quinn} & -5.4603 \end{array}$

Weighted Ljung-Box Test on Standardized Residuals

statistic	p-value
0.01457	0.9039
0.41578	1.0000
0.90691	0.9999
	0.0110.

HO: No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

Weighted ARCH LM Tests

ARCH Lag[4] 0.1053 0.500 2.000 0.7455 ARCH Lag[6] 0.4636 1.461 1.711 0.9021 ARCH Lag[8] 0.6165 2.368 1.583 0.9716

Nyblom stability test

Joint Statistic: 1.9091 Individual Statistics:

mu 0.43614 0.05024ar1 ma10.056510.23273omega bet a1 0.23082gamma1 0.28938 gamma2 0.22698 skew0.07983shape 0.56623

Sign Bias Test

t-value prob sig
Sign Bias 0.40291 0.6871
Negative Sign Bias 1.51839 0.1291
Positive Sign Bias 0.01974 0.9842
Joint Effect 4.99706 0.1720

Adjusted Pearson Goodness-of-Fit Test:

group statistic p-value(g-1)
1 20 24.89 0.1644
2 30 35.88 0.1770

3	40	39.82	0.4335
4	50	60.70	0.1219

Elapsed time: 3.812142

Nous voyons donc que grâce à cette procédure nous avons enlevé le problème du sign bias, le BIC est désormais meilleur, seule "skew" n'est pas significatif, c'est désormais notre meilleur modèle pour l'instant. 6

3.4 EGARCH sous STD

Après étude approfondi nous nous sommes rendu compte que la distribution std est la meilleure à choisir.

Conditional Variance Dynamics

 $\begin{array}{lll} \text{GARCH Model} & : & \text{eGARCH}(1\,,1) \\ \text{Mean Model} & : & \text{ARFIMA}(1\,,0\,,1) \\ \end{array}$

Distribution : std

Optimal Parameters

	Estimate	Std. Error	t value	$\Pr(> \mathbf{t})$
mu	0.000689	0.000309	2.2274	0.025922
ar1	-0.885946	0.034745	-25.4982	0.000000
ma1	0.898116	0.032637	27.5182	0.000000
omega	-0.096599	0.005881	-16.4259	0.000000
alpha1	0.000000	NA	NA	NA
bet a 1	0.988092	0.000703	1405.9453	0.000000
$_{\rm gamma1}$	0.099858	0.025339	3.9409	0.000081
$_{ m shape}$	3.804000	0.357958	10.6269	0.000000
Robust	Standard I	Errors:		
	Estimate	Std. Error	t value	$\Pr(> \mathbf{t})$

	Estimate	Std. Error	t value	$\Pr(> t)$
mu	0.000689	0.000316	2.1805	0.029217
ar1	-0.885946	0.008627	-102.6921	0.000000
ma1	0.898116	0.009403	95.5154	0.000000
omega	-0.096599	0.005729	-16.8624	0.000000
alpha1	0.000000	NA	NA	NA

^{6.} Voir annexe pour des tests avec la distribution "ghyp".

LogLikelihood: 5383.434

Information Criteria

 $\begin{array}{lll} {\rm A\,kaike} & -5.4694 \\ {\rm B\,ayes} & -5.4495 \\ {\rm S\,hib\,ata} & -5.4694 \end{array}$

Hannan-Quinn -5.4621

Weighted Ljung-Box Test on Standardized Residuals

```
\begin{array}{c} \text{statistic} & \text{p-value} \\ \text{Lag[1]} & 0.007599 & 0.9305 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 0.395020 & 1.0000 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 0.950417 & 0.9998 \\ \text{d.o.f} = 2 \\ \end{array}
```

H0: No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

	statistic	p-value
Lag[1]	10.85	0.0009876
Lag[2*(p+q)+(p+q)-1][5]	11.25	0.0043754
Lag[4*(p+q)+(p+q)-1][9]	11.49	0.0236707
$d \cdot o \cdot f = 2$		

Weighted ARCH LM Tests

		Statistic	Shape	Scale	P-Value
ARCH	Lag[3]	0.4718	0.500	2.000	0.4922
ARCH	Lag[5]	0.6557	1.440	1.667	0.8369
ARCH	Lag[7]	0.6970	2.315	1.543	0.9572

Nyblom stability test

Joint Statistic: 1.5653 Individual Statistics:

 $\begin{array}{lll} mu & 0.44853 \\ ar1 & 0.05474 \\ ma1 & 0.06024 \\ omega & 0.23797 \end{array}$

beta1 0.22922 gamma1 0.21812 shape 0.22807

Sign Bias Test

t—value prob sig
Sign Bias 0.0297 0.976313
Negative Sign Bias 3.0165 0.002590 ***
Positive Sign Bias 0.6284 0.529842
Joint Effect 12.5722 0.005659 ***

Adjusted Pearson Goodness-of-Fit Test:

	group	statistic	p-value(g-1)
1	20	14.63	0.7458
2	30	28.56	0.4883
3	40	31.80	0.7865
4	50	41.48	0.7687

Elapsed time: 0.8048749

En effet, tous les coefficients sont significatifs et le BIC est plus performant (-5.4495 contre -5.4452 pour la distribution nig).

C'est donc la meilleure distribution sans équivoque pour le modèle GARCH 7.

Pour la suite des modèles nous en savons testé avec d'autres distribution mais aucune n'est meilleure que celle-ci

^{7.} D'autres distributions ont été choisit (ghyp, jsu, sstd, sged etc... mais aucune ne performe comme la Student Symétrique

3.5 IGARCH

Le modèle IGARCH se présente de la façon comme suit :

$$v_t = \sigma_t \epsilon_t$$

$$\sigma_t^2 = \alpha_0 + \beta_1 \sigma_{t-1}^2 + (1 - \beta_1) v_{t-1}^2$$

avec ϵ_t définis comme précédemment et $1>\beta_1>0$.

Conditional Variance Dynamics

 $\begin{array}{lll} \text{GARCH Model} & : & \text{iGARCH} (1,1) \\ \text{Mean Model} & : & \text{ARFIMA} (1,0,1) \\ \end{array}$

Distribution : nig

Optimal Parameters

	Estimate	Std. Error	t value	$\Pr(> \mathbf{t})$
mu	0.000238	0.000366	0.64948	0.51603
ar1	-0.894799	0.108522	-8.24530	0.00000
ma1	0.905588	0.102647	8.82233	0.00000
omega	0.000001	0.000001	1.26970	0.20419
alpha1	0.031426	0.004244	7.40470	0.00000
$\mathrm{bet}\mathrm{a}1$	0.968574	NA	NA	NA
skew	-0.104198	0.046733	-2.22967	0.02577
$_{ m shape}$	0.695712	0.087263	7.97259	0.00000

Robust Standard Errors:

	Estimate	Std. Error	t value	$\Pr(> \mathbf{t})$
mu	0.000238	0.000371	0.64053	0.521828
ar1	-0.894799	0.075014	-11.92843	0.000000
ma1	0.905588	0.070167	12.90616	0.000000
omega	0.000001	0.000001	0.79010	0.429471
alpha1	0.031426	0.012304	2.55415	0.010645

beta1	0.968574	NA	NA	NA
skew	-0.104198	0.049612	-2.10026	0.035706
shape	0.695712	0.098330	7.07530	0.000000

LogLikelihood: 5377.198

Information Criteria

Akaike -5.4631 Bayes -5.4432 Shibata -5.4631

Hannan-Quinn -5.4558

Weighted Ljung-Box Test on Standardized Residuals

 $\begin{array}{ccc} & \text{statistic} & p-value \\ \text{Lag}\left[1\right] & 0.004187 & 0.9484 \\ \text{Lag}\left[2*(p+q)+(p+q)-1\right]\left[5\right] & 0.318369 & 1.0000 \\ \text{Lag}\left[4*(p+q)+(p+q)-1\right]\left[9\right] & 0.840292 & 0.9999 \\ \text{d.o.f} = 2 & \end{array}$

HO: No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

	statistic	p-value
Lag[1]	12.79	0.0003482
Lag[2*(p+q)+(p+q)-1][5]	13.20	0.0013439
Lag[4*(p+q)+(p+q)-1][9]	13.44	0.0084326
d . o . f $=$ 2		

Weighted ARCH LM Tests

ARCH Lag[3] 0.5231 0.500 2.000 0.4695 ARCH Lag[5] 0.6748 1.440 1.667 0.8311 ARCH Lag[7] 0.7362 2.315 1.543 0.9523

Nyblom stability test

Joint Statistic: 57.4096 Individual Statistics:

 $\begin{array}{lll} mu & 0.31077 \\ ar1 & 0.06445 \\ ma1 & 0.06946 \\ omega & 24.29027 \end{array}$

alpha1 0.08163 skew 0.09645 shape 0.80503

Sign Bias Test

t—value prob sig
Sign Bias 0.1174 0.906571
Negative Sign Bias 2.9574 0.003140 ***
Positive Sign Bias 0.7178 0.472979
Joint Effect 12.5321 0.005766 ***

Adjusted Pearson Goodness-of-Fit Test:

	group	statistic	p-value(g-1)
1	20	21.79	0.2947
2	30	30.88	0.3713
3	40	41.49	0.3628
4	50	53.07	0.3200

Elapsed time: 1.46209

Nous voyons ici qu'en ayant augmenté m à deux nous avons toujours le test de sign bias qui ne passe pas, nous devons alors abandonner ce modèle car il n'est pas adéquat. De plus , son BIC (-5.4432) est moins petit que le modèle EGARCH

3.6 ARCH-M

Le modèle ARCH-M se présente de la façon suivante :

$$r_t = \mu + c\sigma_t^2$$

avec

$$v_t = \sigma_t \epsilon_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 v t_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

où μ et c sont des constantes.

c est appelé le paramètre de prime de risque.

Si c est supérieur à 0 alors le rendement est positivement relié à sa volatilité.

Nous voyons les résultats de ce test ci-dessous :

Conditional Variance Dynamics

 $\begin{array}{lll} \text{GARCH Model} & : & \text{sGARCH} (1,1) \\ \text{Mean Model} & : & \text{ARFIMA} (1,0,1) \\ \end{array}$

Distribution : nig

Optimal Parameters

	Estimate	Std. Error	t value	$\Pr\left(> \mid \mathrm{t} \mid \right)$
mu	-0.002810	0.002147	-1.3088	0.19061
ar1	-0.897588	0.115457	-7.7742	0.00000
ma1	0.908778	0.108821	8.3511	0.00000
archm	0.204478	0.139352	1.4673	0.14228
$_{ m omega}$	0.000003	0.000002	1.9149	0.05550
alpha1	0.030197	0.005271	5.7287	0.00000
beta1	0.959621	0.005816	164.9970	0.00000
skew	-0.073581	0.047068	-1.5633	0.11798
$_{ m shape}$	0.779422	0.117273	6.6462	0.00000

Robust Standard Errors:

	Estimate	Std. Error	t value	$\Pr(> \mathbf{t})$
mu	-0.002810	0.003172	-0.88570	0.375777
ar1	-0.897588	0.096199	-9.33049	0.000000

ma1	0.908778	0.091435	9.93903	0.000000
archm	0.204478	0.204862	0.99812	0.318220
omega	0.000003	0.000004	0.78531	0.432274
alpha1	0.030197	0.006913	4.36848	0.000013
bet a 1	0.959621	0.009051	106.02256	0.000000
skew	-0.073581	0.053262	-1.38149	0.167129
shape	0.779422	0.170040	4.58377	0.000005

LogLikelihood: 5381.982

Information Criteria

 $\begin{array}{lll} {\rm A\,kaike} & -5.4659 \\ {\rm B\,ayes} & -5.4403 \\ {\rm S\,hib\,at\,a} & -5.4659 \\ {\rm H\,annan-Quinn} & -5.4565 \end{array}$

Weighted Ljung-Box Test on Standardized Residuals

```
\begin{array}{c} \text{statistic} & \text{p-value} \\ \text{Lag[1]} & 0.02452 & 0.8756 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 0.15265 & 1.0000 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 0.51210 & 1.0000 \\ \text{d.o.f=2} \\ \text{H0} : \text{No serial correlation} \end{array}
```

Weighted Ljung-Box Test on Standardized Squared Residuals

```
\begin{array}{c} \text{statistic} & \text{p-value} \\ \text{Lag[1]} & 8.660 & 0.003252 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 9.103 & 0.015588 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 9.382 & 0.067756 \\ \text{d.o.f=2} \end{array}
```

Weighted ARCH LM Tests

	Statistic	Shape	Scale	P-Value
ARCH Lag[3]	0.6004	0.500	2.000	0.4384
ARCH Lag[5]	0.7516	1.440	1.667	0.8078
ARCH Lag[7]	0.8512	2.315	1.543	0.9365

Nyblom stability test

Joint Statistic: 44.3318 Individual Statistics:

mu	0.08845
ar1	0.07095
ma1	0.07707
archm	0.07753
omega	4.63833
alpha1	0.24746
beta1	0.24171
skew	0.21551
shape	0.49808

Sign Bias Test

$Adjusted\ Pearson\ Goodness-of-Fit\ Test:$

	group	statistic	p-value(g-1)
1	20	14.14	0.7753
2	30	22.94	0.7792
3	40	26.43	0.9377
4	50	38.17	0.8682

Elapsed time: 3.069791

Nous observons que comme pour les autres modèles nous avons toujours le test de sign bias qui ne passe pas car nous avons un effet négatif plus présent.

Le test de Nyblom aussi ne passe pas et le BIC est moins grand que pour notre moèle EGARCH, donc pour l'instant EGARCH reste notre meilleur modèle.

FIGURE 11 – Courbe des nouvelles ARCH-M (1,1).

$3.7 \quad GARCH(1,1)$

Préalablement à l'utilisation du package ugarchspec() il nous faut nous assurer, pour une loi normale inverse, d'effectuer des tests sur la saisonnalité et de nous assurer, grâce à la courbe NIC (New impact Curve), que l'impact d'une mauvaise nouvelle sur rte est identique à l'impact d'une bonne nouvelle.

3.7.1 Prise en compte de la saisonnalité

Conditional Variance Dynamics

: sGARCH(1,1)

: ARFIMA(1,0,1)

GARCH Model

Mean Model

```
jour=format(dates, format = "%A")
> mois=format(dates, format = "%B")
> moisrte=mois[1:1966]
> janvier=as.integer(moisrte=="janvier")
> jourrte=jour[1:1966]#comme rte
> lundi=as.integer(jourrte=="lundi")
> spec1bis = ugarchspec(mean.model=list(external.regressors=as.matrix(cbind(lundi,janvi))
> fit1bis = ugarchfit(spec = spec1bis, data = rt, out.sample=length(rtt))
> show(fit1bis)
*
*
GARCH Model Fit *
*
```

Distribution : norm

Optimal Parameters

	Estimate	Std. Error	t value	$\Pr\left(> \mid \mathrm{t} \mid \right)$
mu	0.000889	0.000421	2.11192	0.034694
ar1	-0.864171	0.092761	-9.31610	0.000000
ma1	0.883099	0.085476	10.33156	0.000000
mxreg1	-0.000927	0.000952	-0.97369	0.330208
mxreg2	-0.002228	0.001394	-1.59838	0.109958
omega	0.000019	0.000006	3.35221	0.000802
alpha1	0.082093	0.017208	4.77065	0.000002
$\mathrm{bet}\mathrm{a}1$	0.857944	0.031576	27.17064	0.000000

Robust Standard Errors:

	${\bf Estimate}$	Std. Error	t value	$\Pr\left(> \mid \mathrm{t} \mid \right)$
mu	0.000889	0.000504	1.7622	0.078032
ar1	-0.864171	0.061658	-14.0156	0.000000
ma1	0.883099	0.056642	15.5908	0.000000
mxreg1	-0.000927	0.000902	-1.0272	0.304315
mxreg2	-0.002228	0.001533	-1.4532	0.146176
omega	0.000019	0.000015	1.2835	0.199307
alpha1	0.082093	0.035736	2.2972	0.021609
beta1	0.857944	0.076429	11.2253	0.000000

LogLikelihood: 5223.926

Information Criteria

 $\begin{array}{lll} {\rm A\,kaike} & -5.3061 \\ {\rm B\,ayes} & -5.2834 \\ {\rm S\,hib\,ata} & -5.3062 \\ {\rm H\,annan-Quinn} & -5.2978 \end{array}$

Weighted Ljung-Box Test on Standardized Residuals

	statistic	p-value
Lag [1]	0.01051	0.9183
Lag[2*(p+q)+(p+q)-1][5]	0.22303	1.0000
Lag[4*(p+q)+(p+q)-1][9]	0.56681	1.0000
d . o . f $=$ 2		
TTO 37		

HO: No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

```
\begin{array}{c} \text{ statistic } p-value \\ \text{Lag[1]} & 0.9777 & 0.3228 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 2.6109 & 0.4827 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 3.2298 & 0.7205 \\ \text{d.o.f=2} \end{array}
```

Weighted ARCH LM Tests

	Statistic	Shape	Scale	P-Value
ARCH Lag[3]	1.228	0.500	2.000	0.2679
ARCH Lag[5]	1.775	1.440	1.667	0.5230
ARCH Lag[7]	1.887	2.315	1.543	0.7412

Nyblom stability test

Joint Statistic: 2.5622
Individual Statistics:
mu 0.53592
ar1 0.08334
ma1 0.08885
mxreg1 0.09379
mxreg2 0.18083
omega 1.19174
alpha1 0.57322
bet a1 1.05743

Sign Bias Test

	t-value	prob	sig
Sign Bias	0.9718	0.3313	
Negative Sign Bias	1.2542	0.2099	
Positive Sign Bias	0.8165	0.4143	
Joint Effect	5.1040	0.1643	

Adjusted Pearson Goodness-of-Fit Test:

	group	statistic	p-value(g-1)
1	20	131.8	$6.642\mathrm{e}{-19}$
2	30	161.3	$2.664\mathrm{e}{-20}$
3	40	188.3	$1.924\mathrm{e}{-21}$
4	50	184.3	1.479e - 17

Elapsed time : 1.101082

Nous pouvons donc observer que nous avons les coefficients associés à l'effet janvier (mxreg2) et l'effet lundi (mxreg1) ne sont pas significatifs.

3.7.2 New Impact Curve

Ces courbes, développées par Engle et NG en 1991, montrent la relation qu'il existe entre ϵ_{t-1} et la variance conditionnelle en supposant que toute l'information contenue à partir de t-2 et avant (t-3,etc) est constante.

Nous affichons les resultats en figure

FIGURE 12 – Courbe d'impact des nouvelles pour un modèle GARCH(1,1).

Le modèle GARCH(1,1) se présente de la façon suivante :

$$v_t = \sigma_t \epsilon_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 v t_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

Nous affichons les résultats ci-dessous :

Distribution : nig

Optimal Parameters

	Estimate	Std. Error	t value	$\Pr\left(>\mid\mathrm{t}\mid\right)$
mu	0.000336	0.000361	0.93126	0.351718
ar1	-0.894864	0.105557	-8.47752	0.000000
ma1	0.906059	0.099579	9.09886	0.000000
omega	0.000003	0.000002	1.82352	0.068224
alpha1	0.029860	0.003850	7.75536	0.000000
bet a 1	0.961038	0.003797	253.11918	0.000000
skew	-0.088131	0.045428	-1.94002	0.052377
$_{ m shape}$	0.775095	0.118634	6.53351	0.000000

Robust Standard Errors:

	Estimate	Std. Error	t value	$\Pr\left(> \mid \mathrm{t} \mid \right)$
mu	0.000336	0.000371	0.90600	0.364934
ar1	-0.894864	0.077185	-11.59377	0.000000
ma1	0.906059	0.073466	12.33301	0.000000
omega	0.000003	0.000004	0.69609	0.486374
alpha1	0.029860	0.003791	7.87668	0.000000
b et a 1	0.961038	0.005471	175.67093	0.000000
skew	-0.088131	0.048040	-1.83454	0.066573
shape	0.775095	0.186353	4.15929	0.000032

LogLikelihood: 5379.582

Information Criteria

 $\begin{array}{lll} {\rm A\,kaike} & -5.4645 \\ {\rm B\,ayes} & -5.4418 \\ {\rm S\,hib\,at\,a} & -5.4645 \\ {\rm H\,annan-Quinn} & -5.4561 \end{array}$

Weighted Ljung-Box Test on Standardized Residuals

```
\begin{array}{c} \text{ statistic } p-value \\ \text{Lag[1]} & 0.00399 & 0.9496 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 0.18986 & 1.0000 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 0.63941 & 1.0000 \\ \text{d.o.f=2} \end{array}
```

 ${
m H0}$: No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

 $\begin{array}{ccc} & statistic & p-value \\ Lag [1] & 9.098 & 0.002558 \end{array}$

```
\begin{array}{lll} Lag [\,2*(\,p+q\,)+(\,p+q\,)\,-1\,][\,5\,] & 9.477 & 0.0125\,23 \\ Lag [\,4*(\,p+q\,)+(\,p+q\,)\,-1\,][\,9\,] & 9.735 & 0.05\,71\,15 \\ d.\,o.\,f = & 2 \end{array}
```

Weighted ARCH LM Tests

		Statistic	Shape	Scale	P-Value
ARCH	Lag[3]	0.5018	0.500	2.000	0.4787
ARCH	Lag[5]	0.6487	1.440	1.667	0.8390
ARCH	Lag[7]	0.7436	2.315	1.543	0.9513

Nyblom stability test

Sign Bias Test

	t-value	prob	sig
Sign Bias	0.0793	0.936803	
Negative Sign Bias	3.0115	0.002633	***
Positive Sign Bias	0.8691	0.384918	
Joint Effect	12.6918	0.005353	***

$Adjusted\ Pearson\ Goodness{--}of{--}Fit\ Test:$

	group	statistic	p-value(g-1)
1	20	17.05	0.5864
2	30	29.41	0.4438
3	40	46.78	0.1834
4	50	43.31	0.7022

Elapsed time: 2.102178

Nous pouvons directement affirmer que le modèle GARCH ne passe pas également le test de sign bias car la p-value est supérieur à 5% pour les effets négatifs, le test de Nyblom ne passe pas aussi. Cependant, hormis skew, tous les coefficients sont significatifs et il possède le meilleur BIC (-5.4418).

4 Conclusion des modèles

Nous pouvons donc affirmer que, après tous les modèles testés, nous prendrons le modèle EGARCH pour l'estimation de la VaR avec la distribution student symétrique car c'est celle qui valide les tests Ljung-box, ARCH LM Tests, Nyblom Pearson, Sign Bias et tous les coefficients sont significatifs hormis le test du Sign Bias et possède un meilleur BIC que la distribution nig.

5 Estimation de la VaR (Value at Risk)

Nous allons donc estimer la VaR avec l'ensemble des tests réalisés. La VaR est définie comme la perte maximale potentielle qui ne devrait être atteinte qu'avec une probabilité donnée sur un horizon temporel donné (Manganelli et Engle, 2001).

Voici comment la VaR se présente :

$$VaR_t(q) = -F_{rt}^{-1}(q|\Omega_t)$$

5.1 Méthode paramétrique

Figure 13 - VaR paramétrique

Nous prenons un critère de risque de 5% pour l'estimation de la VaR :

5.2 VaR normale

5.3 VaR par simulation historique

5.4 VaR par simulation historique

6 Backtesting EGARCH avec la distribution nig

Afin de valider un modèle de calcul et/ou de prévision de la VaR il faut réaliser une séparation de l'échantillon en deux sous-échantillons :

Un échantillon d'estimation

Un échantillon de prévision ce qui permet d'obtenir une séquence de prévisions de la VaR et de la comparer aux rendements historiques afin de mettre en oeuvre des tests de validation

6.1 Méthode Backtesting par fenêtre glissante distribution nig

La méthode par fenêtre glissante consiste à estimer un modèle avec les T premières observations puis à faire une prévision pour la date T+1 et à calculer la VaR.

Il faut ensuite ré-estimer les modèles des dates T+2 à T+1 inclus puis à réaliser une prévision pour la date T+2 et ainsi de suite.

Nous affichons les résultats du backtesting en figure 15 8.

FIGURE 14 – Backtesting de la VaR par méthode de fenêtre glissante avec distribution nig

^{8.} Afin d'éviter des calculs trop long nous avons choisi de prendre une taille de fenêtre glissante de 10 (refit.every=10) qui n'affecte que très marginalement la véracité les résultats.

6.2 Méthode Backtesting par fenêtre glissante distribution std

 ${\it Figure 15-Backtesting de la VaR par m\'ethode de fen\'etre glissante avec la distribution std}$

6.2.1 Violations de la VaR nig

La violation se définit comme étant une situation dans laquelle on observe ex-post une perte plus importante en valeur absolue que la VaR prévue ex-ante. Formellement il y a une violation de la VaR si et seulement si:

$$r_t \leq VaR_{t+1|t}(q)$$

Pour evaluer cette violation de la VaR nous disposons de 2 tests :

Test LR de Kupiec se définissant comme étant :

$$LR = -2log \frac{q^{N}(1-q)^{T-N}}{\hat{f}^{N}(1-\hat{f})^{T-N}}$$

avec N le nombre de violation de la VaR, T le nombre initial d'observations et q est le taux e violation théorique.

Avec H_0 : taux de violation théorique (5%) est égale au taux de violation empirique Cependant, le test LR de Kupiec ne prend pas en compte les violations potentielles de l'hypothèse d'indépendance des fonctions de Hit.

Il faut pour ce faire regarder le test de Christoffersen.

Test LR de Christoffersen se définissant comme étant un modèle qui corrige le test de Kupiec en testant conjointement la fréquence et l'indépendance des fonctions de Hit.

Ce test est un rapport de vraisemblance (LR) qui est asymptotiquement distribué comme une χ^2 à deux degrés de libertés.

Avec H_0 : taux de violation théorique (5%) est égale au taux de violation empirique

 $\begin{array}{l} \texttt{report} \ (\ \texttt{roll} \ , \texttt{type} = \texttt{"VaR"} \ , \texttt{VaR. alpha} = 0.05 \ , \texttt{conf.level} = 0.95) \\ \texttt{VaR} \ \ \texttt{Backtest} \ \ \ \texttt{Report} \end{array}$

Model: eGARCH-nig Backtest Length: 947 Data:

alpha: 5%
Expected Exceed: 47.4
Actual VaR Exceed: 57

Actual %: 6%

Unconditional Coverage (Kupiec)

Null-Hypothesis: Correct Exceedances

LR. uc Statistic: 1.949
LR. uc Critical: 3.841
LR. uc p-value: 0.163
Reject Null: NO

Conditional Coverage (Christoffersen)

Null-Hypothesis: Correct Exceedances and

Independence of Failures

LR.cc Statistic: 5.287 LR.cc Critical: 5.991 LR.cc p-value: 0.071 Reject Null: NO

En observant les p-values des deux tests LR (Kupiec et Christoffersen) supérieur à 5% nous pouvons donc accepter H_0 et donc affirmer que la VaR est correctement estimée.

Cependant, nous pouvons affirmer, au vu des "Expected Exceed" (47.4) inférieur aux "Actual VaR Exceed" (57), que la VaR est sous-évaluée avec un niveau de confiance de 95%.

6.2.2 Violations de la VaR std

VaR Backtest Report

Model: Backtest Length: Data:	947	eGARCH—std
alpha: Expected Exceed:	47.4	5%
Actual VaR Exceed:	62	G F DA
Actual %:		6.5%

Unconditional Coverage (Kupiec)

Null-Hypothesis: Correct Exceedances

LR.uc Statistic: 4.366 LR.uc Critical: 3.841 LR.uc p-value: 0.037 Reject Null: YES

Conditional Coverage (Christoffersen)

Null-Hypothesis: Correct Exceedances and

Independence of Failures

LR. cc Statistic: 9.702 LR. cc Critical: 5.991 LR. cc p-value: 0.008 Reject Null: YES

Les deux tests LR ne passent pas, c'est la raison pour laquelle nous avons fait aussi la distribution nig. La VaR est donc mal estimée et sous évaluée.

6.3 Méthode Backtesting VaR avec filtre et distribution nig

La méthode de backtesting de la VaR avec filtre nous permet de pouvoir estimer tous les paramètres des modèles GARCH d'un trait sur l'échantillon d'estimation puis de construire la séquence des variances conditionnelles sur l'échantillon de prévision à partir desquelles sont déduites les prévisions de la VaR.

Nous affichons les résultats de cette méthode ci-dessous et en figure 17 :

FIGURE 16 – Backtesting de la VaR avec filtre et distribution nig

En prenant notre modèle EGARCH avec m=2 nous obtenons un bonne estimation de la VaR par filtre car :

Pour le test LR de Kupiec avec H_0 : taux de violation théorique (5%) est égale au taux de violation empirique nous pouvons accepter l'hypothèse nulle et conclure que la VaR est correctement estimé.

Pour le test LR de Christoffersen avec H_0 : taux de violation théorique (5%) est égale au taux de violation empirique nous pouvons accepter l'hypothèse nulle et conclure que la VaR est correctement estimé ⁹

^{9.} Les résultats des test pour un modèle EGARCH avec m=1 et une distribution nig ne valident pas le test de Christoffersen, regarder annexes

```
$expected.exceed
[1] 47
$actual.exceed
[1] 57
$uc. H0
[1] "Correct Exceedances"
\ucsep{uc.LRstat}
[1] 1.949109
$uc.critical
[1] 3.841459
$uc.LRp
[1] 0.1626829
$uc.Decision
[1] "Fail to Reject H0"
$cc. H0
[1] "Correct Exceedances & Independent"
$cc. LRstat
[1] 7.173612
$cc.critical
[1] 5.991465
$cc.LRp
[1] 0.02768662
$cc. Decision
[1] "Reject HO"
```

Nous pouvons donc observer qu'avec la méthode de la VaR avec filtre nous ne validons pas le test LR de Christoffersen car la p-value est inférieur à 5% à moins d'y ajouter un m =2 alors qu'avec la méthode des fenêtres glissantes nous validons les deux tests LR de Kupiec et de Christoffersen

6.4 Méthode Backtesting VaR avec filtre et distribution std

Figure 17 – Backtesting de la VaR avec filtre et distribution std

6.5 Calcul de L'expected Shortfall (ES)

Pour finir, puisque notre VaR est dans un cas de violation car elle est sous-évaluée nous pouvons réaliser un test de ES (Expected Shortfall)

L'ES correspond à la moyenne des pertes extrêmes telle que :

$$ES_q(r) = \frac{1}{q} \int_0 F^{-1}(p) dp$$

où F(.) désigne la focntion de répartition associée à la distribution des pertes et profits, cette mesure de risque est cohérente au sens de Artzner et al.(1997 et 1999).

Cela permet d'avoir une mesure des pertes potentiels dans les pires états financier.

\$actual.exceed

[1] 57

\$H1

[1] "Mean of Excess Violations of VaR is greater than zero"

\$boot.p.value [1] 0.0005211625

\$p. value

[1] 0.0005465264

\$Decision

[1] "Reject HO"

Le test ES nous indique que nous pouvons rejeter H_0 donc la moyenne des violations est plus importante que 0, donc notre VaR est mal estimée pour des situations extrêmes du système financier

7 Conclusion

Nous pouvons donc affirmer, au terme de cette étude que notre meilleure distribution est la "std" malgrè le fait que nous avions réalisé beacoup de tests avec la "nig" car nous avions une estimation de la VaR plus correcte qu'avec std. L'écart n'est pas significatif mais les résultats de la distribution std se trouvent dans le code R. ¹⁰ car c'était celle qui se rapprochait le plus de notre série.

^{10.} voir annexes pour le résultat des autres distributions

Notre meilleure modèle est un EGARCH car c'était celui qui minimiser le plus notre BIC et qui pouvait passer le plus de test parmi ceux présentés 11 .

Lors du backtesting nous pouvons dire que notre VaR est correcte selon la méthode des fenêtres glissantes car elle passe les test LR de Kupiec et de Christoffersen, elle est cependant sous-évaluée. Cependant, avec la méthode VaR avec filtre, les test LR de Christoffersen n'est pas validé.

^{11.} et qui passait tout les tests avec m=2

8 Annexes

GJR-GARCH avec distribution "ghyp"

Conditional Variance Dynamics

 $\begin{array}{lll} \text{GARCH Model} & : & \text{gjrGARCH} \left(1 \,, 1 \right) \\ \text{Mean Model} & : & \text{ARFIMA} \left(1 \,, 0 \,, 1 \right) \\ \end{array}$

Distribution : ghyp

Optimal Parameters

	Estimate	Std. Error	t value	$\Pr(> t)$
mu	0.000262	0.000369	0.71042	0.477441
ar1	-0.896794	0.118295	-7.58101	0.000000
ma1	0.908037	0.111606	8.13612	0.000000
omega	0.000003	0.000002	1.52894	0.126279
alpha1	0.019736	0.006830	2.88940	0.003860
b et a 1	0.961393	0.004009	239.78362	0.000000
$_{ m gamma1}$	0.024344	0.013063	1.86359	0.062379
skew	-0.221467	0.217053	-1.02033	0.307570
$_{ m shape}$	0.412985	0.354889	1.16370	0.244544
ghlambda	-1.609878	0.460469	-3.49617	0.000472

Robust Standard Errors:

		- 0 - 0 -		
	${\bf Estimate}$	Std. Error	t value	$\Pr\left(>\mid\mathrm{t}\mid\right)$
mu	0.000262	0.000383	0.68310	0.494541
ar1	-0.896794	0.098800	-9.07689	0.000000
ma1	0.908037	0.093866	9.67374	0.000000
omega	0.000003	0.000005	0.54652	0.584706
alpha1	0.019736	0.008862	2.22703	0.025945
$\mathrm{bet}\mathrm{a}1$	0.961393	0.007112	135.18222	0.000000
$_{\rm gamma1}$	0.024344	0.017869	1.36234	0.173089
skew	-0.221467	0.188972	-1.17195	0.241215
shape	0.412985	0.424189	0.97359	0.330262
ghlambd	a - 1.609878	0.498068	-3.23224	0.001228

LogLikelihood: 5382.965

Information Criteria

```
\begin{array}{lll} {\rm A\,kaike} & -5.4659 \\ {\rm B\,ayes} & -5.4375 \\ {\rm S\,hib\,at\,a} & -5.4659 \\ {\rm H\,annan-Quinn} & -5.4554 \end{array}
```

Weighted Ljung-Box Test on Standardized Residuals

```
\begin{array}{c} & \text{statistic} & p-value \\ \text{Lag[1]} & 0.009499 & 0.9224 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 0.229210 & 1.0000 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 0.657176 & 1.0000 \\ \text{d.o.f=2} \\ \end{array}
```

HO: No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

```
\begin{array}{c} \text{statistic } p-value \\ \text{Lag} \, [1] & 5.060 & 0.02449 \\ \text{Lag} \, [2*(p+q)+(p+q)-1][5] & 5.422 & 0.12264 \\ \text{Lag} \, [4*(p+q)+(p+q)-1][9] & 5.686 & 0.33591 \\ \text{d.o.f} \, = 2 & \end{array}
```

Weighted ARCH LM Tests

```
ARCH Lag[3] 0.4211 0.500 2.000 0.5164
ARCH Lag[5] 0.6404 1.440 1.667 0.8415
ARCH Lag[7] 0.7151 2.315 1.543 0.9550
```

Nyblom stability test

```
Joint Statistic:
                    72.9977
Individual Statistics:
          0.45252
          0.07201
ar1
ma1
          0.07804
omega
          7.77101
alpha1
          0.29771
beta1
          0.29250
gamma1
          0.30499
          0.11460
skew
shape
          0.31204
ghlambda 0.15883
```

Asymptotic Critical Values (10% 5% 1%) Joint Statistic: 2.29 2.54 3.05 Individual Statistic: 0.35 0.47 0.75

Sign Bias Test

		t-value	prob	sig
Sign Bias		0.3416	0.73269	
Negative Sign	Bias	2 . 3 2 4 5	0.02020	**
Positive Sign	Bias	0.9337	0.35058	
Joint Effect		8.6059	0.03502	**

Adjusted Pearson Goodness-of-Fit Test:

	group	statistic	p-value (g-1)
1	20	16.54	0.6208
2	30	27.18	0.5618
3	40	35.14	0.6466
4	50	48.60	0.4893

Elapsed time : 8.493293GJR-GARCH avec alpha = 0

```
> spec6 = ugarchspec (variance.model=list (model="gjrGARCH", garchOrder=c (1,1)), \\ + mean.model=list (armaOrder=c (1,1)), distribution.model="ghyp", fixed. \\ > fit6= ugarchfit (spec = spec6, data = rt, out.sample=length (rtt), solver="hybrid") \\ > show (fit6)
```

*		*
*	GARCH Model Fit	*
*		*

Conditional Variance Dynamics

 $\begin{array}{lll} \text{GARCH Model} & : & \text{gjrGARCH} \left(1 \;, 1 \right) \\ \text{Mean Model} & : & \text{ARFIMA} \left(1 \;, 0 \;, 1 \right) \end{array}$

Distribution : ghyp

Optimal Parameters

	Estimate	Std. Error	t value	$\Pr(> \mathbf{t})$
mu	0.000245	0.000391	0.62717	0.530549
ar1	0.749014	0.347531	2.15525	0.031142
ma1	-0.736496	0.354730	-2.07621	0.037874
omega	0.000002	0.000002	1.49385	0.135216

alpha1	0.000000	NA	NA	NA
b et a 1	0.968403	0.003610	268.27027	0.000000
$_{ m gamma1}$	0.050573	0.007958	6.35522	0.000000
skew	-0.194017	0.173678	-1.11711	0.263947
$_{ m shape}$	0.441663	0.317051	1.39303	0.163610
ghlambda	-1.520241	0.470648	-3.23010	0.001237

Robust Standard Errors:

	${\bf Estimate}$	Std. Error	t value	$\Pr(> \mathbf{t})$
mu	0.000245	0.000393	0.62327	0.533106
ar1	0.749014	0.266587	2.80964	0.004960
ma1	-0.736496	0.271817	-2.70953	0.006738
omega	0.000002	0.000005	0.47356	0.635812
alpha1	0.000000	NA	NA	NA
bet a1	0.968403	0.007824	123.78071	0.000000
gamma1	0.050573	0.013304	3.80140	0.000144
skew	-0.194017	0.146101	-1.32797	0.184188
$_{ m shape}$	0.441663	0.389877	1.13283	0.257287
ghlambda	-1.520241	0.539226	-2.81930	0.004813

LogLikelihood: 5376.694

Information Criteria

 $\begin{array}{lll} {\rm A\,kaike} & -5.4605 \\ {\rm B\,ayes} & -5.4350 \\ {\rm S\,hib\,at\,a} & -5.4606 \end{array}$

Hannan-Quinn -5.4511

Weighted Ljung-Box Test on Standardized Residuals

	statistic	p-value
Lag[1]	0.0303	0.8618
Lag[2*(p+q)+(p+q)-1][5]	0.7999	1.0000
Lag[4*(p+q)+(p+q)-1][9]	1.7359	0.9930
$d \cdot o \cdot f = 2$		

HO: No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

	statistic	p-value
Lag [1]	3.836	0.05016
Lag[2*(p+q)+(p+q)-1][5]	4.160	0.23482
Lag[4*(p+q)+(p+q)-1][9]	4.668	0.47971
m d . $ m o$. $ m f$ $=$ $ m 2$		

Weighted ARCH LM Tests

```
      Statistic
      Shape
      Scale
      P-Value

      ARCH
      Lag[3]
      0.01365
      0.500
      2.000
      0.9070

      ARCH
      Lag[5]
      0.23137
      1.440
      1.667
      0.9579

      ARCH
      Lag[7]
      0.67228
      2.315
      1.543
      0.9602
```

Nyblom stability test

Joint Statistic: 92.7664 Individual Statistics: 0.84974 ar1 0.022700.02219ma1omega 11.28317bet a1 0.879630.82687gamma1 skew 0.18758shape 0.17354ghlambda 0.09328

Sign Bias Test

t-value prob sig
Sign Bias 0.415 0.67821
Negative Sign Bias 2.154 0.03135 **
Positive Sign Bias 1.212 0.22559
Joint Effect 7.841 0.04942 **

Adjusted Pearson Goodness-of-Fit Test:

	group	statistic	p-value (g-1)
1	20	24.36	0.1828
2	30	38.84	0.1047
3	40	42.91	0.3072
4	50	52.11	0.3540

Elapsed time: 7.61165

On peut observer que les résultats ne sont pas concluant car dans ce cas-ci le test de Sign Bias

ne passe pas.

Ici on test le modèle EGARCH pour une autre distribution afinde voir si le BIC est meilleure.

Conditional Variance Dynamics

 $\begin{array}{lll} \text{GARCH Model} & : & \text{eGARCH}(1,1) \\ \text{Mean Model} & : & \text{ARFIMA}(1,0,1) \\ \end{array}$

Distribution : ghyp

Optimal Parameters

	Estimate	Std. Error	t value	Pr(> t)
mu	0.000393	0.000365	1.07722	0.281382
ar1	-0.888560	0.044877	-19.79976	0.000000
ma1	0.900503	0.042395	21.24103	0.000000
omega	-0.093023	0.005416	-17.17555	0.000000
alpha1	0.000000	NA	NA	NA
beta1	0.988590	0.000659	1499.98821	0.000000
$_{ m gamma1}$	0.098356	0.022872	4.30018	0.000017
skew	-0.200234	0.229562	-0.87225	0.383075
$_{ m shape}$	0.389545	0.383878	1.01476	0.310219
ghlambda	-1.661699	0.478121	-3.47547	0.000510

Robust Standard Errors:

	Estimate	Std. Error	t value	$\Pr\left(>\mid\mathrm{t}\mid\right)$
mu	0.000393	0.000372	1.05901	0.289597
ar1	-0.888560	0.014346	-61.93993	0.000000
ma1	0.900503	0.013096	68.75931	0.000000
omega	-0.093023	0.004387	-21.20285	0.000000
alpha1	0.000000	NA	NA	NA
beta1	0.988590	0.000582	1698.29380	0.000000
$_{ m gamma1}$	0.098356	0.029912	3.28818	0.001008
skew	-0.200234	0.199902	-1.00166	0.316508
shape	0.389545	0.422055	0.92297	0.356022
ghlambda	-1.661699	0.530021	-3.13516	0.001718

LogLikelihood: 5384.763

Information Criteria

 $\begin{array}{ll} {\rm A\,kaike} & -5.4687 \\ {\rm B\,ayes} & -5.4432 \end{array}$

```
\begin{array}{lll} {\rm Shibata} & -5.4688 \\ {\rm Hannan-Quinn} & -5.4593 \end{array}
```

Weighted Ljung-Box Test on Standardized Residuals

H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

```
\begin{array}{c} \text{ statistic } & \text{ p-value} \\ \text{Lag[1]} & 10.87 & 0.0009789 \\ \text{Lag[2*(p+q)+(p+q)-1][5]} & 11.24 & 0.0044033 \\ \text{Lag[4*(p+q)+(p+q)-1][9]} & 11.46 & 0.0239816 \\ \text{d.o.f=2} \end{array}
```

Weighted ARCH LM Tests

ARCH Lag[3] 0.4329 0.500 2.000 0.5106 ARCH Lag[5] 0.6094 1.440 1.667 0.8509 ARCH Lag[7] 0.6459 2.315 1.543 0.9633

Nyblom stability test

Joint Statistic: 1.9281Individual Statistics: 0.417630.05234ar1 ma10.05766omega0.25981bet a1 0.25294gamma1 0.23514skew0.08148 shape 0.34841ghlambda 0.24404

Sign Bias Test

		_	_
	t-value	prob	sig
Sign Bias	0.004329	0.996547	
Negative Sign Bias	3.035593	0.002432	***
Positive Sign Bias	0.584870	0.558702	
Joint Effect	12.718821	0.005286	***

Adjusted Pearson Goodness-of-Fit Test:

	group	statistic	p-value $(g-1)$
1	20	12.01	0.8854
2	30	30.14	0.4068
3	40	31.64	0.7926
4	50	30.85	0.9802

Elapsed time: 7.470575

Nous pouvons observer que ce n'est pas le cas.

Test avec EGARCH m=1 et distribution = nig

```
> print(VaRTest(0.05, rtt, VaR))
$expected.exceed
[1] 47
$actual.exceed
[1] 57
uc.H0
[1] "Correct Exceedances"
$uc.LRstat
[1] 1.949109
\uc.critical
[1] 3.841459
uc . LRp
[1] 0.1626829
$uc.Decision
[1] "Fail to Reject H0"
$cc. H0
[1] "Correct Exceedances & Independent"
cc.LRstat
[1] 7.173612
$cc.critical
[1] 5.991465
$cc.LRp
[1] 0.02768662
$cc. Decision
[1] "Reject HO"
```