SIGNAL PROCESSING Through GATE

G. V. V. Sharma

Copyright ©2024 by G. V. V. Sharma.

https://creative commons.org/licenses/by-sa/3.0/

 $\quad \text{and} \quad$

 $\rm https://www.gnu.org/licenses/fdl-1.3.en.html$

Contents

In	troduction	ii
1	Harmonics	1
2	Filters	3
3	Z-transform	5
4	Systems	7
5	Sequences	15
6	Sampling	17
7	Contour Integration	21
8	Laplace Transform	23

Introduction

This book provides solutions to signal processing problems in GATE.

Harmonics

Filters

Z-transform

Systems

4.1 Consider a unity-gain negative feedback system consisting of the plant G(s) and a proportional-integral controller. Let the proportional gain and integral gain be 3 and 1, respectively. For a unit step reference input, the final values of the controller output and the plant output, respectively, are

$$G\left(s\right) = \frac{1}{\left(s-1\right)}$$

(GATE EE 2023)

Solution:

Parameter	Description	Value	
K_p	Proportional Gain	3	
K_i	Integral Gain	1	
$r\left(t\right)$	Reference Input	$u\left(t\right)$	
$w\left(t\right)$	Controller Output	?	
$y\left(t\right)$	Plant Output	?	
$e\left(t\right)$	Error Input	$r\left(t\right)-y\left(t\right)$	

Table 1: Parameter Table

From the Fig. 4.1:

$$E(s) = U(s) - Y(s)$$

$$(4.1)$$

$$W(s) = 3E(s) + \frac{1}{s}E(s)$$

$$(4.2)$$

$$Y(s) = G(s)W(s) \tag{4.3}$$

Some results:

$$tx(t) \stackrel{\mathcal{L}}{\longleftrightarrow} -\frac{dX(s)}{ds}$$
 (4.4)

$$e^{-at}x\left(t\right) \stackrel{\mathcal{L}}{\longleftrightarrow} X\left(s+a\right)$$
 (4.5)

By using (4.4) and (4.5):

$$e^{-t}u\left(t\right) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+1}, Re\left(s\right) > -1$$
 (4.6)

$$te^{-t}u\left(t\right) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{\left(s+1\right)^{2}}, Re\left(s\right) > -1$$
 (4.7)

Figure 4.1: Block Diagram of System

(a) Plant Output:

From (4.1), (4.2) and (4.3):

$$Y(s) = \frac{3s+1}{s(s+1)^2}, Re(s) > -1$$
(4.8)

Final Value Theorem:

$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s) \tag{4.9}$$

Using (4.9) on Y(s):

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s) \tag{4.10}$$

$$=1 \tag{4.11}$$

Taking partial fraction of (4.8):

$$Y(s) = \frac{1}{s} + \frac{2}{(s+1)^2} - \frac{1}{s+1}$$
 (4.12)

Using (4.6) and (4.7):

$$\therefore y(t) = u(t) + 2te^{-t}u(t) - e^{-t}u(t)$$
(4.13)

(b) Controller Output:

From (4.2)

$$W(s) = \frac{3}{s} + \frac{1}{s^2} - Y(s)\left(3 + \frac{1}{s}\right)$$
 (4.14)

Substituting (4.8)

$$W(s) = \frac{(s-1)(3s+1)}{s(s+1)^2}, Re(s) > -1$$
(4.15)

Using (4.9) on W(s)

$$\lim_{t \to \infty} w(t) = \lim_{s \to 0} sW(s) \tag{4.16}$$

$$= -1 \tag{4.17}$$

Taking partial fraction of equation (4.15):

$$W(s) = -\frac{1}{s} - \frac{4}{(s+1)^2} + \frac{4}{s+1}$$
(4.18)

Using equations (4.6) and (4.7) and taking inverse laplace transform:

$$w(t) = -u(t) - 4te^{-t}u(t) + 4e^{-t}u(t)$$
(4.19)

Figure 4.2: $w\left(t\right)$ converges at -1.

Figure 4.3: y(t) converges at +1

4.2 Level (h) in a steam boiler is controlled by manipulating the flow rate (F) of the break-up(fresh) water using a proportional (P) controller. The transfer function between the output and the manipulated input is

$$\frac{h(s)}{F(s)} = \frac{0.25(1-s)}{s(2s+1)}$$

The measurement and the valve transfer functions are both equal to 1. A process engineer wants to tune the controller so that the closed loop response gives the decaying oscillations under the servo mode. Which one of the following is the CORRECT value of the controller gain to be used by the engineer?

- (a) 0.25
- (b) 2
- (c) 4
- (d) 6

Solution:

4.3 The figure shows a block of mass m=20 kg attached to a pair of identical linear springs, each having a spring constant k=1000 N/m. The block oscillates on a frictionless horizontal surface. Assuming free vibrations, the time taken by the block to complete ten oscillations is _____ seconds . (Rounded off to two decimal places) Take $\pi=3.14$. (GATE ME 2023)

Sequences

5.1 Consider the discrete time signal $x\left[n\right]=u\left[-n+5\right]-u\left[n+3\right],$ where

$$u[n] = \begin{cases} 1; n \ge 0 \\ 0; n < 0 \end{cases}$$

The smallest n for which x[n] = 0 is?

Solution: From Fig. 1, the minimum value of n is given as

$$n = -3 \tag{5.1}$$

Figure 1: Plot of function x(n) taken from python3

Sampling

- (a) 64H
- (b) 65H
- (c) 66H
- (d) 67H

(GATE EE 40)

Solution:

Figure 6.1:

Calculating the step-size:

$$\Delta V_{in} = \frac{V_{max} - V_{min}}{2^n - 1} \tag{6.1}$$

$$=\frac{5-0}{28-1}\tag{6.2}$$

$$=\frac{5}{255} \tag{6.3}$$

$$\Delta V_{in} = \frac{2^{n} - 1}{2^{n} - 1} \tag{6.1}$$

$$= \frac{5 - 0}{2^{8} - 1} \tag{6.2}$$

$$= \frac{5}{255} \tag{6.3}$$

$$\Rightarrow V_{out} = \frac{V_{in}}{\Delta V_{in}} \tag{6.4}$$

$$=\frac{1.9922 \times 255}{5} \tag{6.5}$$

$$= 101.59 \tag{6.6}$$

$$\begin{array}{l}
18 \\
\approx 102_{10}
\end{array} \tag{6.7}$$

Symbol Value		Description	
n	8	Number of bits of ADC	
V_{min}	0V	Minimum Analog Voltage	
V_{max}	5V	Maximum Analog Voltage	
V_{in}	1.9922V	Input Voltage	
V_{out}		Output Voltage	

Table 6.1: Given Parameters

 \therefore correct answer is option (c).

Figure 6.2:

Contour Integration

Laplace Transform

8.1 The number of zeroes of the polynomial $P(s) = s^3 + 2s^2 + 5s + 80$ in the right side of the plane? (GATE IN 2023)

Solution: The table below shows the Routh array of the n^{th} - order characteristic polynomial:

$$a_0 s^n + a_1 s^{n-1} \dots + a_{n-1} s^1 + a_n s^0 (8.1)$$

s^n	a_0	a_2	a_4	
s^{n-1}	a_1	a_3	a_5	
s^{n-2}	$b_1 = \frac{a_1 a_2 - a_3 a_0}{a_1}$	$b_2 = \frac{a_1 a_4 - a_5 a_0}{a_1}$		
s^{n-3}	$c_1 = \frac{b_1 a_3 - b_2 a_1}{b_1}$:		
÷	:	i i		
s^1	i:	i i		
s^0	a_n			

Table 8.1: Routh Array

Characteristic Equation:

$$s^3 + 2s^2 + 5s + 80 = 0 (8.2)$$

From Table 8.1:

s^3	1	5
s^2	2	80
s^1	$\frac{2\times5-80\times1}{2}=-35$	
s^0	$\frac{-35 \times 80}{-35} = 80$	

Table 8.2:

From Table 8.2:

Since there are 2 sign changes in the first column of the Routh tabulation. So, the number of zeros in the right half of the s-plane will be 2.

Figure 8.1:

8.2 The circuit shown in the figure is initially in the steady state with the switch K in open condition and \overline{K} in closed condition. The switch K is closed and \overline{K} is opened simultaneously at the instant $t=t_1$, where $t_1>0$. The minimum value of t_1 in milliseconds such that there is no transient in the voltage across the 100 μF capacitor,

8.3 $y = e^{mx} + e^{-mx}$ is the solution of which differential equation?

- $1. \quad \frac{dy}{dx} my = 0$
- $2. \quad \frac{dy}{dx} + my = 0$
- 3. $\frac{d^2y}{dx^2} + m^2y = 0$
- 4. $\frac{d^2y}{dx^2} m^2y = 0$

(GATE AG 2023) Solution:

8.4 A cascade control strategy is shown in the figure below. The transfer function between the output (y) and the secondary disturbance (d_2) is defined as

$$G_{d2}(s) = \frac{y(s)}{d_2(s)}$$

. Which one of the following is the CORRECT expression for the transfer function $G_{d2}(s)$?

Figure 8.2:

- A. $\frac{1}{(11s+21)(0.1s+1)}$
- B. $\frac{1}{(s+1)(0.1s+1)}$
- C. $\frac{(s+1)}{(s+2)(0.1s+1)}$
- D. $\frac{(s+1)}{(s+1)(0.1s+1)}$

(GATE CH 2023) Solution:

8.5 In the differential equation $\frac{dy}{dx} + \alpha xy = 0$, α is a positive constant. If y = 1.0 at x = 0.0, and y = 0.8 at x = 1.0, the value of α is (rounded off to three decimal places). (GATE CE 2023) Solution: