Project 2 Report

赵心怡 19307110452

2022.5.3

1. Train a Network on CIFAR-10

CIFAR-10 是用于视觉识别任务的广泛使用的数据集。 CIFAR-10 数据集(加拿大高级研究所)是一组通常用于训练机器学习和计算机视觉算法的图像。它是机器学习研究中使用最广泛的数据集之一。 CIFAR-10 数据集包含 10 个不同类别的 60,000 张 32 × 32 彩色图像。这 10 个不同的类别分别代表飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、轮船和卡车。每个类别有 6,000 张图像。由于 CIFAR-10 中的图像是低分辨率的(32 × 32),这个数据集可以让我们快速尝试我们的模型,看它是否有效。

1.1 Basic Network

我们先设了一个基础的双层神经网络,设置epoch为50,优化器为SGD, loss function 为nll loss,神经网络的结构如下:

Model	total parameter	optimizer	loss function	L2- regularization	batch norm
MyNet	1757258	SGD	nll	no	yes
hidden size	kernel	activation	epoch	dropout rate	res connect
100	5*5+5*5	ReLU	50	0.3	no

因为batch_size越小需要训练的时间越长,我们在下面的实验中选取batch_size=64。

1.2 Batch normalization

首先加入batch norm比较加入后的结果:

batch norm	speed	accuracy
no	493.27s	0.716
add batch norm	496.68s	0.718

发现加了batch norm以后的时间增加了但是准确率有一定提升。

1.3 Dropout rate

然后我们设置dropout rate: 比较了p=0.1, 0.3的情况,我们尝试在每个卷积层后都dropout一次

dropout	speed	accuracy
0	496.68s	0.718
0.5	506.95s	0.7597
0.3	493.46s	0.7737

最终选取了dropout rate=0.3作为模型的最优dropout。

1.4 Loss function

比较不同的loss function:

loss	speed	accuracy
nll	493.46s	0.7737
crossEntropy	490.29s	0.7571

发现选取nll的loss function时准确率更高。

1.5 Optimizer

比较不同的optimizer,初始学习率都是0.1,结果如下.有几个优化器没能收敛,猜测是由于对初始学习率的敏感性。

optimizer	speed	accuracy
SGD+momentum(default)	493.46s	0.7737
Adam	498.81s	0.7077
RmsProp	517.69s	0.6341

最终选取SGD+momentum优化器。

1.6 Activation

尝试不同的激活函数:

activation	speed	accuracy
ReLU	493.46s	0.7737
tanh	514.81s	0.5768

结果显示ReLU激活函数对我们的模型效果较好。

1.6 Nueron & Filter

尝试不同数量的神经元/过滤器:

neuron kernel	speed	accuracy
5*5+5*5	493.46s	0.7737
5*5+3*3	498.58s	0.757
3*3+3*3	490.75s	0.7436

1.7 Hidden layer

尝试修改hidden size大小:

hidden size	speed	accuracy
100	485.98s	0.7847
300	492.81s	0.7506

发现hidden size增加的同时准确率没有明显提升

1.8Best Model

最终我们的模型达到的最优结果准确率是0.7847

```
iteration: 0; Loss: 0.8122363686561584
...
iteration: 0; Loss: 0.4479424059391022
valid loss:0.6731930687427521, Accuracy:0.7807
Accuracy on test set:0.7847
Finish! run time: 485.9873 s
```

最优的模型的accuracy随时间的变化:

我们的基础模型结构因为比较简单,所以可以用draw_convnet工具包画卷积图, 结果如下:

1.9 complex model:

基于以上的基础模型,我根据ResNet9的结构,重新写了一个改进版MyResNet9,对神经网络进行进一步优化。将神经网络扩充到了九层卷积。我们的模型与最初版本大体一致,在卷积层部分我修改了卷积核大小,将原来的kernel-size=5改成3,padding改成1,stride改成1。

我们设的Batch-size=64, epoch=50.

同时我们添加了data sugmentation, 修改优化器为SGD优化器,增加weight_decay=1e-4来进行L2-regularization。

改变不同的激活函数和损失函数的影响和上面简单的网络结果类似,没有对模型起到明显的优化。

数据增强包括了截取图像,随机的翻转核标准化等,增加数据增强显著增强了模型的泛化性能。

Data augmentation	Accuracy
no augmentation (default)	0.7907
RandomCrop+HorizontalFlip	0.845

我们增加了I2-regularization设置weight_decay为1e-4:

L2-regularization	accuracy
no	0.845
4e-4	0.8675

修改momentum的大小:

Momentum	Accuracy
0.5	0.8675
0.9	0.8749

我们设定了一个新的学习率调整策略,根据循环学习率策略(CLR)设置每个参数组的学习率。

该策略以恒定频率循环两个边界之间的学习率。两个边界之间的距离可以在每次迭代或每个周期的基础上进行缩放。 CyclicLR策略在每批之后改变学习率。

Learning rate	Accuracy
0.01	0.8749
0.04-0.01 CyclicLR	0.899
0.04-0.01 Linear	0.882

画图发现cyclicLR的accuracy和loss曲线也呈现周期性波动,准确率的波动幅度较大。

相比较前20个epoch0.04后面改成0.01的learning rate,的准确率曲线发现准确率的提升较平缓,但是在20epoch时候会有一个准确率陡增,猜测是因为新的learning rate让模型收敛到了更好的位置。

论文中的研究表明修改某一块卷积核大小对整体的影响并不大,在此尝试微调修改模型的卷积形式

Network	Accuracy
5*5, stride=2, padding=2	0.899
3*3, stride=1, padding=1	0.9076

进一步修改相关的参数,因为发现仍然有过拟合现象,因此适当增加了L2-regularization。 最终的模型可以较好地解决过拟合问题,在50个epoch下的最优准确率达到91.58%。

iteration: 0; Loss: 0.010011647827923298

valid loss:0.004894815228506923, Accuracy:0.9131

Accuracy on test set:0.9158
Finish! run time: 1128.697 s

最终的模型参数:

Optimizer	L2-regularization	loss function	Momentum
SGD	4e-4	crossEntropy	0.9
Activation	Batch size	learning rate	Batch Norm

模型的参数个数为2143808

accuracy与loss随时间的变化,看到准确率到最后趋近于平稳,loss先快速下降然后有略微上升的趋势。

简单绘制神经网络模型结构如下:

PlotNeuralNet 可以直观的画出模型的结构,而且较为美观。 我们的模型修改后的结构图大致如下:

2. BatchNormalization VGG

batch normalization(BN) 是一种广泛采用的技术,可以更快、更稳定地训练深度神经网络 (DNN)。提高准确性和加速训练的趋势使 BN 成为深度学习中最受欢迎的技术。在高层次上,BN 是一种旨在通过稳定层输入分布来改进神经网络训练的技术。这是通过引入控制这些分布的前两个矩(均值和方差)的附加网络层来实现的。

VGG的基本结构可视化:

查找VGG的论文中, 官方给出的梯度预测效果图如下:

我在标准VGG模型上测试了batch norm的效果,给定超参数:

optim	loss function	epoch num	batch size	activation
SGD	CrossEntropy	20	64	ReLU

模型的精度如下:

Model	speed	test accuracy
vgg	14.53s/epoch	0.764
vgg_batchnorm	18.34s/epoch	0.8251

绘制valid accuracy 随epoch增加的变化趋势图:

从结果可以看出,batch normalization可以有效提升模型的准确率,而且模型的精度提升更快。说明 BN可以加速模型收敛。对损失的下降速度在下一部分讨论。

2.2 Loss Landscape

首先我创建了一个学习率列表来储存不同的步长,对每个步长都进行训练和保存模型

我们选择的学习率为:[2e-3,1e-3, 5e-4,1e-4], 在每一步时用loss的最小值min_loss, 和最大值max_loss, 储存在min_curve和max_curve的数组中。

然后用matplotlib.plt函数绘制折线,用fill between 的方法填充中间的区域。我们可以看到VGG-A+BN收敛 速度更快,并且在不同的学习速率下波动较小。

2.3 Gradient Prediction

模型的梯度预测能力如下图所示,同样选择学习率为: [2e-3,1e-3, 5e-4,1e-4]梯度误差可以用迭代前后的梯度张量的二范数表示:

$$Gradient_Difference = ||grad_{k+1} - grad_k||_2, k = 1, 2, \dots$$

类似于loss landscape, 我们也进行了可视化, 结果如下可以看到有BN时, VGG-A的梯度预测比没有BN时稳定得多。

Gradient Predictiveness

2.4 Effective β -Smoothness

beta-smooth的条件是其梯度函数是beta-Lipschitz的,通过推导可以得到

$$eta_i = maxrac{||igtriangledown f_{x_i}(w_i) - igtriangledown f_{x_i}(w_i)||}{lr_i||igtriangledown f_{x_i}(w_i)||}, i = 1, 2, 3.\dots$$

当beta的值越小说明模型平滑程度越好。

有效的beta平滑模型训练结果如图4所示。

我们可以看到加了BN, VGG-A的平滑度比没有BN时稳定得多。

3 Extra Bonus 2

如今深度学习的巨大成功依赖于过度参数化。过度参数化虽然有利于训练过程,但由于参数量大,给我们使用深度神经网络带来了困难。我们可以使用 DessiLBI 进行前向选择,而不是使用后向选择方法来获得紧凑的模型,从而可以同时获得经过训练的过参数化模型和稀疏结构。在这个部分中我通过实验证明 DessiLBI的改善。

3.1 DessiLBI + LeNET on MNIST

首先我们用Lenet模型对数据进行分类,在https://github.com/DessiLBI2020/DessiLBI/tree/master/DessiLBI/中作者给的代码中提供了超参数如下:

optim	kappa	mu	batch size	epoch	lr
DessiLBI	1	20	128	30	1*0.1^(1+epoch/20)

初始的Ir比较小,为了方便比较,我们先训练20个epoch得到一个pretrained model. 准确率在95.24%和SGD方法准确率比较结果,sgd的learning rate设置为0.04

Optimizer	Speed	Accuracy
SGD	3m45s	0.9824
Dessilbi	3m55s	0.9706

DessiLBI的准确率提升:

SGD的准确率提升:

Dessil BI的模型准确率似乎没有SGD好,猜测原因是超参数的选取,学习率太小导致训练精度和验证的精度都不再上升。同时epoch的设置可能也太小,模型未达到拟合。但也说明了确实Dessibli可以减少过参数化问题。

为了证明过参数化问题确实存在而且DessilLBI确实可以让模型有更好的泛化性能,我们对第三个卷积层作剪枝。

准确率变化如下表:

剪枝程度	0%	10%	20%	30%	40%	50%	60%
conv3	0.9706	0.9704	0.9702	0.97	0.9653	0.9395	0.8925
conv3+fc1	0.9706	0.9706	0.9707	0.9714	0.9659	0.9347	0.8837

可以看到经过剪枝模型的准确率有所降低但是基本变化不大。

在剪枝40%以上时,猜测是因为关键的权重被剪枝了,模型准确率下降很快。

观察conv3过滤器模块的可视化:

Dessilbi:

SGD:

Dessilbi比SGD的黑色块更多,总体颜色更深。

这种结果似乎可以说明 DessiLBI 在不牺牲精度的情况下享有稀疏的过滤器选择。

3.2 Combine with adam

在优化深度网络的过程中,可以考虑使用 Adam 或其他自适应梯度方法来更新 DessiLBI 的 W。

按照project2附录中Adam Implementation提供的代码,我对opt中的step函数进行修改,保存在slbiopt-adam函数中。

Test with Mnist

使用lenet5模型作为我们训练的模型,

超参数如下:

lr	kappa	mu	betas
0.0003	1	20	(0.9,0.999)
eps	weight_decay	dampening	epoch
		-	-

混合了adam后模型的具体准确率如下:

Model	accuracy
opt+adam	0.9903
opt	0.9706

在时间耗费上两个方法接近一致。

dessiLBI+adam的训练的accuracy和loss曲线:

从结果上将DessiLBI 和Adam优化器结合确实可以提升模型的准确率。发现在某些时间内验证的准确率会比训练准确率高,猜测是模型较简单存在欠拟合问题。

Test with Cifar10

同样,我们用cifar10数据集来验证adam优化器算法的效果。

我们用问题2中VGGwith batchnorm的模型来训练。

超参数如下:

Ir	kappa	mu	betas
0.04	1	500	(0.9,0.999)
eps	weight_decay	dampening	epoch

在第二问中已经讨论并得到了SGD优化器下VGG模型的准确率为0.8251,因此在这块直接比较DessiLBI和DessiLBI+ADAM的区别。

混合了adam后模型的具体准确率如下:

Model	accuracy
opt+adam	0.8345
opt	0.8185

画出两个模型准确率的提升曲线:

DessiLBI:

DessiLBI+Adam:

从结果上也可以得出,将DessiLBI 和Adam优化器结合确实可以提升模型的准确率。发现在某些时间内 验证的准确率会比训练准确率高,猜测是模型较简单存在欠拟合问题。