Metody numeryczne Wykład nr 7 Aproksymacja

Aneta Wróblewska

UMCS, Lublin

April 15, 2024

Zagadnienie aproksymacji

Aproksymacja polega na zastąpieniu funkcji f inną funkcją f^* lub na znalezieniu funkcji f^* na podstawie pewnego znanego ciągu wartości funkcji f. Wartości te często mogą być obarczone dużym błędem (wartości empiryczne). Funkcja aproksymująca f^* powinna mieć tę własność, że łatwo przeprowadza się na niej operacje matematyczne (różniczkowanie, całkowanie). Dlatego jako funkcje aproksymujące stosuje się wielomiany algebraiczne, funkcje wymierne lub wielomiany trygonometryczne.

Źródła błędów w aproksymacji

W aproksymacji występują dwa źródła błędów: danych wejściowych, są to tzw. błędy pomiarów, oraz konkretnego modelu (klasy funkcji), który zamierza się dostosować do danych wejściowych, są to tzw. błędy modelu. W praktyce zarówno dane wejściowe, jak i model nie są doskonałe.

Aproksymację można traktować jako **problem dostosowania modelu matematycznego do danych**, którymi się dysponuje i do innych znanych faktów.

Aproksymacja w postaci ogólnej

W aproksymacji liniowej funkcję f zastępuje się (aproksymuje) funkcją f^* , wyrażoną następującą kombinacją liniową:

$$f^*(x) = a_0\phi_0(x) + a_1\phi_1(x) + \ldots + a_k\phi_k(x)$$

w której znanych jest k+1 funkcji $\phi_0,\phi_1,\ldots,\phi_k$.

W aproksymacji tej oblicza się wartości parametrów a_0, a_1, \ldots, a_k . Jeżeli np. $\phi_i(x) = x^i$, to klasą dopuszczalnych funkcji f^* jest klasa wielomianów stopnia k.

Układ $1, x, x^2, ..., x^k$ nazywa się bazą zbioru wszystkich wielomianów stopnia k. Możliwe są też inne bazy tego zbioru.

Zagadnienie aproksymacji

Zagadnienie aproksymacji można zatem zapisać w skrócie następująco: mając dany ciąg t_i , poszukujemy ciągłej funkcji, która najlepiej przybliża daną funkcję f(t). Rozważając zbiór punktów:

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n),$$

dążymy do znalezienia funkcji f(x) danej klasy, która w punktach x_1, x_2, \ldots, x_n najefektywniej przybliża wartości y_i . Podobne zagadnienie można sformułować dla funkcji. Dla danej funkcji g(x), która ma być przybliżona przez funkcję f(x) danej klasy, potrzebujemy określić miarę jakości przybliżenia - odległość

między zbiorem $\{y_1, y_2, \dots, y_n\}$ a zbiorem $\{f(x_1), f(x_2), \dots, f(x_n)\}$

lub też między funkcją g(x) a przybliżającą ją funkcją f(x).

Wprowadzenie do metryk i norm

Zdefiniujemy miarę odległości w zbiorze X, zwaną metryką. Przestrzeń metryczna to para (X,d), gdzie X jest zbiorem, a d jest funkcją zdefiniowaną na $X \times X$

$$d:(x,y)\mapsto [0,1),$$

która spełnia warunki:

- d(x,y) = d(y,x),
- $d(x,y) + d(y,z) \geqslant d(x,z).$

Ostatni warunek jest znany jako warunek trójkąta. Wartość metryki d(x, y) reprezentuje odległość między punktami x i y.

Normy funkcji

Niech F będzie rodziną funkcji rzeczywistych, ciągłych i ograniczonych, określonych na odcinku K = [a, b] lub funkcji określonych na zbiorze $K = \{x_1, x_2, \ldots, x_n\}$. Norma funkcji to odwzorowanie

$$\|\cdot\|:F\to [0,1),$$

które funkcji $f \in F$ przypisuje nieujemną liczbę ||f|| i które spełnia warunki:

Ostatni warunek to warunek trójkąta. Norma określa metrykę w rodzinie funkcji. Jeśli F jest rodziną funkcji określonych na zbiorze K, to wzór

$$d_{\|\cdot\|}(f,g) = \|f-g\|$$

określa metrykę w tej rodzinie. Para $(F, d_{\|\cdot\|})$ stanowi przestrzeń metryczną.

Norma jednostajna

Definiujemy normę jednostajną wzorem

$$||f|| = \sup_{x \in K} |f(x)|,$$

gdzie supremum (sup) oznacza wartość największą w zbiorze. Jest to norma, ponieważ spełnione są warunki (1) i (2). Warunek (3) jest spełniony, ponieważ dla dowolnych $a,b\in\mathbb{R}$

$$|a|+|b|\geqslant |a+b|.$$

Przykład 1

Na przedziale K = [-5, 5] mamy zdefiniowane funkcje

$$f(x) = \frac{x}{x^2 + 1} - \frac{10x^2}{10x^2 + 1},$$
$$g(x) = \frac{x}{10}.$$

Interesuje nas znalezienie maksimum ich różnicy

$$h(x) = f(x) - g(x) = \frac{9x}{100x^2 + 10}.$$

Przykład 1 cd

Pochodna funkcji h(x):

$$h'(x) = \frac{-9(10x^2 - 1)}{10(10x^2 + 1)^2}.$$

Dla x > 0, pochodna zeruje się w punkcie

$$x_0 = \sqrt{\frac{1}{10}} \approx 0.3162277660168379,$$

i to w tym punkcie funkcja h osiąga swoje maksimum.

Przykład 1 cd

Maksymalna różnica między funkcjami f i g wynosi

$$||f-g|| = h(x_0) = \frac{9}{2 \cdot 10^{3/2}} \approx 0.142302494707577.$$

Norma L2

Zdefiniujemy normę L2, zwaną także normą kwadratową. Dla funkcji f należącej do przestrzeni F, norma L2 jest wyrażona wzorem:

$$||f||_2 = \sqrt{\int_a^b f^2(x) dx},$$

co można również zapisać jako:

$$||f|| = \sqrt{\int_a^b f^2(x) dx}.$$

Przykład 2

Rozważamy funkcje na przedziale K = [-5, 5]:

•
$$f(x) = \frac{x}{x^2+1} - \frac{10x^2}{10x^2+1}$$

•
$$g(x) = \frac{x}{10}$$

Szukamy normy L2 ich różnicy:

$$h(x) = f(x) - g(x) = \frac{9x}{100x^2 + 10}.$$

Przykład 2 cd

Obliczamy normę L2 różnicy funkcji h(x):

$$\int_0^5 h^2(x) \, dx = \frac{20331}{\sqrt{10} \arctan \left(\frac{5}{\sqrt{10}}\right)} - \frac{4050}{5020000}$$
$$\approx 0.01850184574525332,$$

co oznacza, że norma L2 funkcji h jest równa:

$$||h|| = \sqrt{\int_{-5}^{5} h^2(x) dx} = \sqrt{\frac{20331}{\sqrt{10} \arctan \left(\frac{5}{\sqrt{10}}\right)} - \frac{4050}{100\sqrt{251}}}$$
$$\approx 0.1923634359500439.$$

Norma L1

Definiujemy normę L1 dla funkcji f należącej do rodziny funkcji F za pomocą wzoru:

$$||f||_1 = \int_a^b |f(x)| dx.$$

Norma ta jest dobrze zdefiniowana, o ile całka niewłaściwa jest zbieżna.

Przykład 3

Rozważamy funkcję h(x) określoną wzorem:

$$h(x) = \frac{9x}{100x^2 + 10}.$$

Obliczamy całkę normy L1 dla funkcji h(x) na przedziale [0,5]:

$$\int_0^5 h(x) \, dx = \frac{9 \ln 210}{200} \approx 0.2486453822609302,$$

co daje normę L1 funkcji h na przedziale [-5,5] równą:

$$||h||_1 = \int_{-5}^{5} |h(x)| dx \approx 0.4972907645218605.$$

Normy funkcji określone na zbiorach skończonych lub ciągach

Normy mogą być również zdefiniowane dla funkcji określonych na zbiorach skończonych lub ciągach. Rozważmy zbiór $K = \{x_1, x_2, \dots, x_n\}$ lub $K = \{x_1, x_2, x_3, \dots\}$, gdzie $a_i = f(x_i)$.

- ② Norma L2 $||f||_2 = \sqrt{\sum_{i=1}^{\infty} a_i^2}$.
- **3** Norma L1 $||f||_1 = \sum_{i=1}^{\infty} |a_i|$.

Aproksymacja wielomianowa

1. Szeregi potęgowe i ich zastosowania w aproksymacji

Szeregi potęgowe

Szereg potęgowy zdefiniowany dla pewnego punktu x_0 wyraża się jako:

$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k,$$

gdzie $x \in (x_0 - r, x_0 + r)$, a r jest promieniem zbieżności szeregu. Dla x spoza tego przedziału, szereg jest rozbieżny.

Forma szeregu potęgowego

Możemy zapisać szereg potęgowy jako:

$$f(x) = \sum_{k=0}^{n-1} a_k (x - x_0)^k + R_n,$$

gdzie R_n jest resztą szeregu.

Aproksymacja szeregu potęgowego - wzór Taylora i Maclaurina

Jeśli:

$$f(x) = \sum_{k=0}^{n-1} a_k (x - x_0)^k + R_n$$

i $x \in (x_0 - r, x_0 + r)$, to

$$f(x) \approx \sum_{k=0}^{n-1} a_k (x - x_0)^k.$$

Powyższy wzór, gdzie $a_k = \frac{f^{(k)(x_0)}}{k!}$ nazywamy wzorem Taylora.

Dla $x_0 = 0$ wzór Taylora nazywamy wzorem Maclaurina:

$$f(x) \approx \sum_{k=0}^{n-1} a_k x^k.$$

Przykład 4 - aproksymacja sin x

Przybliżenie funkcji $\sin x$ wzorem Maclaurina ma następującą formę:

$$\sin x \approx \sum_{k=1}^{n} (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!}.$$

2.	Wielomiany	Czebyszewa	i ich	zastosowanie	w	aproksymacji
----	------------	------------	-------	--------------	---	--------------

Definicja wielomianów Czebyszewa

Wielomiany Czebyszewa definiuje się rekurencyjnie:

$$T_0(x) = 1,$$

 $T_1(x) = x,$
 $T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x), \quad k \ge 2.$

W przedziale [-1,1], wielomiany Czebyszewa wyrażają się jako:

$$T_k(x) = \cos(k \arccos x),$$

dla
$$k = 0, 1, 2, ...$$

Aproksymacja funkcji za pomocą wielomianów Czebyszewa

Aproksymacja funkcji f(x) sumami wielomianów Czebyszewa $T_k(x)$:

$$f(x) \approx \frac{c_0}{2} + \sum_{k=1}^n c_k T_k(x),$$

gdzie

$$c_k = \frac{2}{\pi} \int_{-1}^1 \frac{f(x) T_k(x)}{\sqrt{1 - x^2}} dx.$$

Przykład 5 - funkcja signum (sgn)

Rozważamy funkcję sgn(x), określoną jako:

$$sgn(x) = \begin{cases} 1 & \text{dla } x > 0, \\ -1 & \text{dla } x < 0, \\ 0 & \text{dla } x = 0. \end{cases}$$

Ograniczając do dziedziny (-1,1), otrzymujemy:

$$f(x) = \begin{cases} 1 & \text{dla } x \in (0,1), \\ -1 & \text{dla } x \in (-1,0), \\ 0 & \text{dla } x = 0. \end{cases}$$

Można wykazać, że współczynniki c_k dla funkcji sgn(x) wynoszą:

$$c_k = egin{cases} 0 & ext{dla } k = 2i, \ (-1)^{k+1} rac{4}{\pi k} & ext{dla } k = 2i+1, \quad k = 0, 1, \ldots. \end{cases}$$

Aproksymacja szeregami trygonometrycznymi

Szeregi trygonometryczne Fouriera

Szereg trygonometryczny Fouriera dla funkcji okresowej ma postać:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)),$$

gdzie $x \in [-\pi, \pi]$, pod warunkiem zbieżności szeregu. Funkcja f(x) jest okresowa z okresem 2π .

Aproksymację funkcji f(x) uzyskujemy, biorąc początkowe składniki sumy szeregu trygonometrycznego:

$$f(x) \approx \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx)).$$

Przykład 6 - funkcja signum (sgn)

Rozważamy funkcję sgn(x) na dziedzinie $(-\pi, \pi)$:

$$f(x) = \begin{cases} 1 & \text{dla } x \in (0, \pi), \\ -1 & \text{dla } x \in (-\pi, 0), \\ 0 & \text{dla } x = 0. \end{cases}$$

Współczynniki szeregu Fouriera dla funkcji sgn(x) są takie, że $a_k = 0$ oraz:

$$b_k = \begin{cases} 0 & \text{dla } k = 2i, \\ \frac{4}{\pi k} & \text{dla } k = 2i+1, \end{cases}$$

gdzie k = 0, 1, 2, ...

Przykład 6 cd

Aproksymacja funkcji sgn(x) szeregiem trygonometrycznym:

$$f(x) \approx \sum_{k=0}^{n} b_{2k+1} \sin((2k+1)x),$$

gdzie $s(k,x) = b_k \sin(kx)$, a więc:

$$f(x) \approx \sum_{k=0}^{n} s(2k+1,x).$$

Aproksymacja średniokwadratowa

Aproksymacja średniokwadratowa

Kolejnym zagadnieniem jest aproksymacja średniokwadratowa (metoda najmniejszych kwadratów) i jej zastosowanie do przybliżania funkcji z użyciem normy L_2 .

Dla zbioru punktów (x_i, y_i) , gdzie $y_i = f(x_i)$, szukamy funkcji F(x) takiej, że dla pewnej funkcji wagowej w(x) wyrażenie:

$$||F - f||_2 = \sum_{i=1}^n w(x_i)(F(x_i) - y_i)^2$$

osiąga minimum.

Dla uproszczenia w dalszych rozważaniach przyjmujemy w(x) = 1.

Aproksymacja liniowa

Najprostszym przypadkiem aproksymacji średniokwadratowej jest aproksymacja liniowa. W aproksymacji liniowej szukamy F(x) = ax + b, minimalizując:

$$h(a,b) = \sum_{i=1}^{n} (ax_i + b - y_i)^2.$$

Obliczamy pochodne cząstkowe h(a, b) po a i b, a następnie rozwiązujemy układ równań:

$$\begin{cases} \sum_{i=1}^{n} (y_i - ax_i - b)x_i = 0, \\ \sum_{i=1}^{n} (y_i - ax_i - b) = 0. \end{cases}$$

Aproksymacja liniowa

Po przekształceniach otrzymujemy:

$$a = \frac{nA - BC}{nD - B^2}, \quad b = \frac{CD - AB}{nD - B^2},$$

gdzie:

$$A = \sum_{i=1}^{n} x_i y_i, \quad B = \sum_{i=1}^{n} x_i, \quad C = \sum_{i=1}^{n} y_i, \quad D = \sum_{i=1}^{n} x_i^2.$$

Przykład 9 - aproksymacja liniowa

Mając dane przedstawione poniższą tabelą

Xi	Уi
1	1
3	12
5	25
7	38

możemy obliczyć współczynniki a i b jako:

$$a = 6.2$$
, $b = -5.8$.

Aproksymacja wielomianowa

Przyjmujemy formę funkcji aproksymującej:

$$F(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + \ldots + a_m \phi_m(x),$$

gdzie dla uproszczenia $\phi_k(x) = x^k$.

Zadaniem jest minimalizacja funkcji błędu:

$$h(a_0, a_1, \ldots, a_m) = \sum_{i=1}^n \left(\sum_{j=0}^m a_j x_i^j - y_i \right)^2.$$

Aproksymacja wielomianowa

Dla każdego $i=0,1,\ldots,m$ otrzymujemy układ m+1 równań z m+1 niewiadomymi:

$$\frac{\partial h}{\partial a_i} = 2\sum_{i=1}^n \left(\sum_{j=0}^m a_j x_i^j - y_i\right) x_i^j = 0.$$

Budowa układu równań - wielomian 1-go stopnia

Układ równań w postaci macierzowej dla dwóch niewiadomych a_0 i a_1 (wielomian 1-go stopnia, czyli równanie prostej: y = ax + b).

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{bmatrix} \cdot \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{bmatrix}$$

Budowa układu równań - ciąg dalszy

$$nb + a \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}$$
$$b \sum_{i=1}^{n} x_{i} + a \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i} y_{i}$$

Przykład 10 - aproksymacja wielomianem drugiego stopnia

Dla danych z poniższej tabeli znajdziemy wielomian aproksymujący drugiego stopnia.

y _i		
2.00		
2.48		
2.84		
3.00		
2.91		

Przykład 10 cd

Poszukujemy wielomianu $F(x) = ax^2 + bx + c$. Równania wynikające z minimalizacji błędu to:

$$a \sum_{i=1}^{n} x_{i}^{4} + b \sum_{i=1}^{n} x_{i}^{3} + c \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i}^{2} y_{i},$$

$$a \sum_{i=1}^{n} x_{i}^{3} + b \sum_{i=1}^{n} x_{i}^{2} + c \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} x_{i} y_{i},$$

$$a \sum_{i=1}^{n} x_{i}^{2} + b \sum_{i=1}^{n} x_{i} + nc = \sum_{i=1}^{n} y_{i}.$$

Przykład 10 cd

Rozwiązując powyższy układ równań, uzyskujemy:

$$a = -\frac{67}{175}$$
, $b = \frac{2159}{1750}$, $c = \frac{6953}{3500}$.

Wielomian aproksymujący:

$$F(x) = -\frac{67}{175}x^2 + \frac{2159}{1750}x + \frac{6953}{3500}.$$