9. Formy dwuliniowe hermitowskie i przestrzenie unitarne.

Zadania

Niech $\mathbf{u} = [x_1, x_2, x_3], \mathbf{v} = [y_1, y_2, y_3] \in \mathbb{C}^3$.

- 1. Sprawdzić, czy podane odwzorowanie $g: C^3 \times C^3 \to C$ jest formą dwuliniową hermitowską:
 - (a) $g(\boldsymbol{u}, \boldsymbol{v}) = x_1 \overline{y_1} i x_1 \overline{y_2} + (1 2i) x_2 \overline{y_2} + i x_2 \overline{y_1} x_3 \overline{y_3}$
 - (b) $g(\boldsymbol{u}, \boldsymbol{v}) = x_1 \overline{y_1} + i x_1 \overline{y_2} + 2 x_2 \overline{y_2} i x_2 \overline{y_1} + 2 x_1 \overline{y_3} + 2 x_3 \overline{y_1} + 3 x_3 \overline{y_3}$
 - (c) $g(\boldsymbol{u}, \boldsymbol{v}) = x_1 \overline{y_3} + x_3 \overline{y_1},$
 - (d) $g(\boldsymbol{u}, \boldsymbol{v}) = 2x_1\overline{y_1} + ix_1\overline{y_2} ix_2\overline{y_1} + x_2\overline{y_2} + 2x_1\overline{y_3} + 2x_3\overline{y_1} x_3\overline{y_3}$.
- 2. Dla podanej formy dwuliniowej hermitowskiej $g: C^3 \times C^3 \to C$ znaleźć macierz Grama $M_q(\mathcal{B})$ w bazie standardowej \mathcal{B} :
 - (a) $g(\boldsymbol{u}, \boldsymbol{v}) = 2x_1\overline{y_1} + ix_1\overline{y_2} ix_2\overline{y_1} + x_2\overline{y_2} + 2x_1\overline{y_3} + 2x_3\overline{y_1} x_3\overline{y_3}$
 - (b) $g(\boldsymbol{u}, \boldsymbol{v}) = ix_1\overline{y_3} ix_3\overline{y_1},$
 - (c) $g(\boldsymbol{u}, \boldsymbol{v}) = x_2 \overline{y_2} + x_2 \overline{y_3} + x_3 \overline{y_2} + x_3 \overline{y_3}$.
- 3. Zbadać określoność formy dwuliniowej hermitowskiej $g: C^3 \times C^3 \to C, g(\boldsymbol{u}, \boldsymbol{v}) = 2x_1\overline{y_1} + ix_1\overline{y_2} ix_2\overline{y_1} + x_2\overline{y_2} + 2x_1\overline{y_3} + 2x_3\overline{y_1} x_3\overline{y_3}$.
- 4. Znaleźć formę biegunową formy hermitowskiej $h: C^3 \to C: h([x_1, x_2, x_3]) = x_1\overline{x_1} ix_1\overline{x_2} + ix_2\overline{x_1} x_2\overline{x_2}$.
- 5. Znaleźć formę biegunową formy kwadratowej $h: \mathbb{R}^3 \to \mathbb{R}$:
 - (a) $h([x_1, x_2, x_3]) = x_1^2 4x_1x_2 4x_2^2$,
 - (b) $h([x_1, x_2, x_3]) = x_1^2 4x_1x_2 + 4x_1x_3 4x_3^2$
- 6. Znaleźć w bazie standardowej macierz formy kwadratowej $h: \mathbb{R}^3 \to \mathbb{R}, h([x_1, x_2, x_3]) = 3x_2^2 + 3x_3^2 + 4x_1x_2 + 4x_1x_3 2x_2x_3$.
- 7. Zbadać określoność formy hermitowskiej $h: C^3 \to C$, $h(\boldsymbol{u}) = 2x_1\overline{x_1} + 4x_1\overline{x_2} + 2ix_1\overline{x_3} + 4x_2\overline{x_1} + x_2\overline{x_2} 2ix_3\overline{x_1} + x_3\overline{x_3}$
- 8. Sprawdzić, czy podana funkcja $g\colon R^2\times R^2\to R$ jest iloczynem skalarnym w przestrzeni $R^2(\mathbb{R})$:
 - (a) $g([x_1, x_2], [y_1, y_2]) = x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2$
 - (b) $g([x_1, x_2], [y_1, y_2]) = 3x_1y_1 + 4x_1y_2 + 4x_2y_1 + 5x_2y_2$
 - (c) $g([x_1, x_2], [y_1, y_2]) = x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$.
- 9. Obliczyć kąt między wektorami $\boldsymbol{u}[1,0]$ i $\boldsymbol{v}=[1,1]$ w przestrzeni unitarnej $R^2(\mathbb{R})$, jeśli iloczyn skalarny $<\cdot,\cdot>$ jest określony wzorem:
 - (a) $\langle [x_1, x_2], [y_1, y_2] \rangle = x_1 y_1 + x_2 y_2$,
 - (b) $\langle [x_1, x_2], [y_1, y_2] \rangle = x_1y_1 + 2x_1y_2 + 2x_2y_1 + 7x_2y_2$.
- 10. Sprawdzić, czy podane wektory tworzą bazę ortonormalną przestrzeni unitarnej $R^3(\mathbb{R})$ z iloczynem skalarnym $<[x_1,x_2,x_3],[y_1,y_2,y_3]>=x_1y_1+x_2y_2+x_3y_3$:
 - (a) $\mathbf{v}_1 = \frac{1}{5}[4,3,0], \mathbf{v}_2 = \frac{1}{5}[3,-4,0], \mathbf{v}_3 = [0,0,1],$
 - (b) $\mathbf{v}_1 = \frac{1}{9}[1, 4, 8], \mathbf{v}_2 = \frac{1}{9}[-4, -7, 4], \mathbf{v}_3 = \frac{1}{3}[2, -2, 1],$
 - (c) $\mathbf{v}_1 = \frac{1}{3}[1, 2, 2], \mathbf{v}_2 = \frac{1}{3}[2, 1, -2], \mathbf{v}_3 = \frac{1}{3}[2, -2, 1].$
- 11. Stosujac ortogonalizację Grama-Schmidta znaleźć bazę ortonormalną danej podprzestrzeni U przestrzeni unitarnej $R^4(\mathbb{R})$ z iloczynem skalarnym $<[x_1,x_2,x_3,x_4],[y_1,y_2,y_3,y_4]>=x_1y_1+x_2y_2+x_3y_3+x_4y_4$:
 - (a) $U = \mathcal{L}([1, 1, 1, 1], [3, 3, 1, 1], [7, 5, 3, 1]),$
 - (b) $U = \mathcal{L}([5, 3, 1, 1], [11, 5, 1, 1], [13, 1, 3, 1]),$
 - (c) $U = \mathcal{L}([2, 2, 1, 0], [4, 1, 8, 2], [9, -3, 6, 2]).$
- 12. W przestrzeni unitarnej $C_{[-1,1]}$ funkcji ciągłych na przedziale [-1,1] z iloczynem skalarnym $<\cdot,\cdot>: C[-1,1]\times C[-1,1] \to R$, $< f,g> = \int_{-1}^{1} f(x)g(x)dx$, znaleźć bazę ortonormalną podprzestrzeni $U = \mathcal{L}(1,x,x^2)$.

- 13. Niech $R^4(\mathbb{R})$ będzie przestrzenią unitarną z iloczynem skalarnym $<[x_1,x_2,x_3,x_4],[y_1,y_2,y_3,y_4]>=x_1y_1+x_2y_2+x_3y_3+x_4y_4$. Znaleźć rzut ortogonalny wektora $\mathbf{v}\in R^4$ na podprzestrzeń W przestrzeni $R^4(\mathbb{R})$:
 - (a) $\mathbf{v} = [7, 11, -7, 5], W = \mathcal{L}([1, 1, -1, -1]),$
 - (b) $\mathbf{v} = [7, 6, 5, -5], W = \mathcal{L}([1, 2, 0, 2], [7, 4, 4, 6]),$
 - (c) $\mathbf{v} = [5, 4, -3, -4], W = \mathcal{L}([1, 1, 1, 1], [5, 5, 9, 1], [4, 7, 7, 4]).$
- 14. Korzystając z nierówności Schwarza pokazać, że w przestrzeni unitarnej $C^n(\mathbb{C})$ z iloczynem skalarnym $\langle [x_1,\ldots,x_n],[y_1,\ldots,y_n]\rangle = \sum_{j=1}^n x_j\overline{y_j}$, funkcja $\|\cdot\|\colon V\times V\to R, \|v\|=\sqrt{\langle v,v\rangle}$ jest normą.
- 15. Niech $V(\mathbb{K})$ będzie przestrzenią unitarną z iloczynem skalarnym <,> i niech v_1,\ldots,v_n będzie bazą ortonormalną przestrzeni $V(\mathbb{K})$. Pokazać, że dla każdego wektora $v \in V$ zachodzi:

$$v = \langle v, v_1 > v_1 + \ldots + \langle v, v_n > v_n.$$

- 16. Niech U będzie podprzestrzenią przestrzeni unitarnej $V(\mathbb{K})$. Pokazać, że dopełnienie ortogonalne U^{\perp} jest podprzestrzenią $V(\mathbb{K})$.
- 17. Niech $C^3(\mathbb{C})$ będzie przestrzenią unitarną z iloczynem skalarnym $\langle [x_1, x_2, x_3], [y_1, y_2, y_3] \rangle = \sum_{j=1}^3 x_j \overline{y_j}$ i niech $F \colon C^3 \to C^3$, $F([x_1, x_2, x_3]) = [-2ix_3, -x_2, 2ix_1 + 3x_3]$ będzie przekształceniem liniowym. Pokazać, że F jest przekształceniem hermitowskim. Znaleźć wartości własne F oraz bazę złożoną z wektorów własnych tego przekształcenia. Znaleźć bazę ortonormalną przestrzeni $C^3(\mathbb{C})$ złóżoną z wektorów własnych odwzorowania F.

 Niech \mathcal{B} będzie bazą standardową w przestrzeni $C^3(\mathbb{C})$ i niech $A = M_{\mathcal{B}}^{\mathcal{B}}(F)$. Obliczyć A^{1000} .
- 18. Niech $A \in M_n^n(K)$ będzie macierzą hermitowską. Pokazać, że $Det A \in R$.
- 19. Sprawdzić, czy macierz $A=\begin{pmatrix} \sqrt{2}/2 & \sqrt{3}/3 & \sqrt{6}/6 \\ 0 & -\sqrt{3}/3 & \sqrt{6}/3 \\ -\sqrt{2}/2 & \sqrt{3}/3 & \sqrt{6}/6 \end{pmatrix}$ jest macierzą ortogonalną w przestrzeni $R^3(\mathbb{R})$ z iloczynem skalarnym $<[x_1,x_2,x_3],[y_1,y_2,y_3]>=x_1y_1+x_2y_2+x_3y_3.$
- 20. Sprawdzić, czy macierz $A = \begin{pmatrix} \frac{1}{2}(1+i) & \frac{1}{2}(1-i) \\ \frac{1}{2}(1-i) & \frac{1}{2}(1+i) \end{pmatrix}$ jest macierzą unitarną w przestrzeni $C^2(\mathbb{C})$ z iloczynem skalarnym $\langle [x_1,x_2],[y_1,y_2] \rangle = x_1\overline{y_1} + x_2\overline{y_2}$.