

REMARKS

Entry of this amendment and reconsideration of this application, as amended, are respectfully requested.

It is believed that the amendments to claims 114 and 115 overcome the objections thereto and the § 101 rejection.

It is also believed that the amendments or cancellation of claims overcome the § 112 first and second paragraph rejections.

Claims 41-96 and 107-109 were rejected under 35 U.S.C. §103(a) over Gros in view of Koegler. Claims 41-66, 69-92, 95-96 and 107-109 were rejected under 35 U.S.C. §103(a) over Stevenson in view of Koegler. Claims 58-59 were rejected under 35 U.S.C. §103(a) over Gros in view of Koegler and Dichter. Claims 58-59 and 85-86 were rejected under 35 U.S.C. §103(a) over Gros in view of Koegler and Stevenson. Claims 110-113 were rejected under 35 U.S.C. §103(a) over Gros in view of Koegler or over the combination of Stevenson in view of Koegler, further in view of Shustack. Claims 114-115 were rejected under 35 U.S.C. §103(a) over the combination of Gros, Koegler, Anderson and Field. Applicants respectfully traverse each of these rejections.

Koegler only relates to thick-layer coating of metallic substrates (col. 1, lines 10-11)

Furthermore, Applicants reiterate that Gros concerns radically curable compositions with certain types of electroconductive particles. Examples 1 to 3, 5 and 6 show a content of aliphatic urethane acrylate, but the selection of reactive diluents ("polymerizable compounds") does not provide any hint or suggestion to select isobornylacrylate, isobornylmethacrylate, but to other acrylates/diacrylates/triacrylates as mentioned in the examples of the present application.

The base polymer is called a "binder" which is disclosed in pars. [0016] and [0023]. In the examples, novolak epoxy resin, acrylic ester of an aromatic epoxy resin and perhaps aliphatic urethane acrylate are mentioned as base polymer.

Dichter discloses the corrosion protection of steel pipes with compositions on the base of a) hydroxyethyl or hydroxypropyl methacrylates as well as similar acrylates, b) epoxy resins based on bisphenol A and epichlorohydrin, phenol or cresol based polyfunctional epoxy novolac resins, water reducible epoxy esters and urethane prepolymers as well as other prepolymers, c) silver, iron, copper and cobalt salts as graft initiators, d) peroxide or persulfate as catalyst and e) water (Claim 1).

The amount of monomers may be 3 to 10 % of the composition, the amount of [acrylic] prepolymers may be 30 to 50 % of the composition (Claim 2).

This composition has to contain a considerable content of water. The examples show water contents of about 20 % and often relatively high amounts of acrylic prepolymer emulsion or styrene acrylic emulsion.

However, there is no indication that these compositions could be radically polymerized. The coatings seem to be dried on, whereby the polymerization might have taken place.

It does not specifically disclose to add urethane acrylate polyester or isobornylacrylate or isobornylmethacrylate.

Shustack describes radiation-curable coating compositions for application on metal surfaces, which coating shall be metal worked together with the substrate afterwards, but it often refers more to an ink than to a type of a primer coating.

The compositions contain:

a) 15 to 75 % of ethylenically unsaturated bulky monomers on the base of acrylic acid and methacrylic acid (note general formula therefor, including isobornyl (meth)acrylates too! note col. 16, l. 50), b) 10 to 80 % of (i) urethane (meth)acrylate as well as (ii) epoxy (meth)acrylate, c) <= 10 % of an acidic adhesion promoter (Claim 1, 4th par. of col. 4: e.g. phosphate ester), as well as a photoinitiator (Claim 4).

Further additives are mentioned in the paragraph bridging pars. 3 and 4.

Such compositions are intended for use in metal can production (top of col. 1).

Can production, however, requires certain properties for inks and coatings that are not intended for other metal coating or metal working applications – as may be seen by a cooking test where the coated article does not form brownish or darker colored coatings which is indicated by the need of a pasteurizing treatment at temperatures from 40 to 100 °C (col. 2, l. 23/24, 4th par. of col. 3).

Therefore, the metal substrates are not made primarily of zinc coated steel (col. 2, l. 65/66), but primarily made of aluminum alloys for beverage cans. Such coatings are applied on cups that are already formed, (2nd and 3rd par. of col. 3), but not on strips/coils or metal sheets.

Shustack mentions polyester acrylates, but not polyester urethane acrylates (3rd to 5th par. of col. 8). Shustack does not disclose the use of any corrosion resistant agents such as organic or inorganic corrosion inhibitors or corrosion resistant silicate pigments.

It does not specifically disclose to add urethane acrylate polyester.

Stevenson protects curable coating compositions comprising a coating solids component which includes:

A) at least 30 %w of quaternized reaction product from epoxy resin and acid/tertiary amine including ammonium salts,

B) at least 5 %w of reactive diluent (Claim 1; cols. 7/8, e.g. polyester acrylates) and optionally curing agent.

The compositions of this reference may be free of organic solvents, as the reactive diluents work as such solvents, but are then able to chemically react to form binder phase.

There may be up to 30 %w of organic solvent and up to 60-70 %w of water nevertheless (bottom of col. 4). In col. 10, l. 36 and 40 flat sheet and coil are mentioned, but not any corrosion resistant agents like organic or inorganic corrosion inhibitors or corrosion resistant silicate pigments.

Stevenson does not specifically disclose to add urethane acrylate polyester or isobornylacrylate or isobornylmethacrylate.

All these cited publications mentioned above do disclose the different compositions and sometimes chemical reactions for the production of a binder, but nowhere is data provided for corrosion resistance and paint adherence. Therefore, a comparison by coating properties is impossible.

The present application discloses a combination of binder generating substances from urethane acrylates with reactive diluents like isobornylacrylate and isobornylmethacrylate.

None of the cited references discloses the coating of metallic strips at the claimed velocity. Thus, all rejections should be withdrawn.

Allowance is respectfully requested.

If any fee are due enter this amendment or to maintain pendency of this application, authorization is given to charge such fees to deposit account no: 50-0624.

Respectfully submitted,

FULBRIGHT & JAWORSKI L.L.P.

By _____

James R. Crawford
Reg. No: 39,155

666 Fifth Avenue
New York, New York 10103
(212) 318-3000