

MATEMÁTICAS AVANZADAS

Transformada Discreta de Fourier

Ejemplos

FACULTAD DE INGENIERÍA

Universidad Nacional de Cuyo 2020

Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada Discreta de Fourier

Ejemplos

MATEMÁTICAS AVANZADAS 2020

Transformada Discreta de Fourier - Ejemplos

Ejemplo 1:

Sea el registro discreto de una determinada señal, indicado en la en la *Tabla* 1.

tj	Valores de la señal
$t_0 = 0.0$	$f_0=1.0$
$t_1 = 2.3$	$f_1 = 0.0$
$t_2 = 4.6$	$f_2 = 0.0$
$t_3 = 6.9$	f ₃ =1.0
t ₄ =9.2	$f_4=0.0$
t ₅ =11.5	$f_5=0.0$
$t_6=13.8$	$f_6 = 0.0$
$t_7 = 16.1$	f ₇ =1.0

Tabla 1.

Período discreto:

$$N=8$$

Frecuencia fundamental:

$$w_0 = \frac{2\pi}{N}$$

Aproximación por Mínimos cuadrados:

$$y = \sum c_k \Phi_k(\tau)$$

Funciones Base:

$$\Phi_k(\tau) = e^{ik\omega_0\tau}$$

Los coeficientes c_k se obtienen a partir de:

$$\mathbf{\Phi}^T \mathbf{\Phi} \mathbf{c} = \mathbf{\Phi}^T \mathbf{f}$$

Teniendo en cuenta la ortogonalidad de las funciones base $\Phi_k(t)$, cada c_k resulta:

$$c_{\mathbf{k}} = \frac{\langle \mathbf{f}. \ \mathbf{\Phi}_{\mathbf{k}}(\tau_j)^* \rangle}{N} = \frac{1}{N} \sum_{n=0}^{N-1} f_n \ e^{-ikw0n}$$

(recordamos que ()* representa complejo conjugado)

Para *k*=0 obtenemos:

$$c_0 = \frac{\langle f. \, \Phi_k(t_j)^* \rangle}{N} = \frac{1}{N} \sum_{n=0}^{N-1} f_n \, e^0 = 3/8$$

 c_0 es la media aritmética del vector f.

Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada Discreta de Fourier

Ejemplos

El resto de los valores de c_k los calculamos a partir de un código en Matlab o Scilab. Los resultados se indican en la Tabla 2.

k	c_k	$ c_k $
-4	- 0.125	0.125
-3	0.125	0.125
-2	0.125 - 0.25i	0.2795
-1	0.125	0.125
0	0.375	0.375
1	0.125	0.125
2	0.125 + 0.25i	0.2795
3	0.125	0.125

Tabla 2.

En la *Figura* 1. se muestran las funciones de aproximación y_1 , y_2 , y_3 , obtenidas cada una de ellas con las 3, 5 y 7 primeras funciones base respectivamente. Al añadir el término correspondiente a c_{-4} , y considerando la parte real de la aproximación, ésta pasa por todos los puntos dato, tal como muestra la curva y_4

Figura 1.

En la *Figura* 2. se representan los valores de $|c_k|$ en función de k, obteniendo el *espectro* asociado a los datos.

Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada Discreta de Fourier

Ejemplos

Figura 2.

Con el comando *fft* de Matlab o Scilab, a partir del vector dato *f*, se obtienen las componentes de la *Transformada Discreta de Fourier*. Para nuestro ejemplo tenemos siguientes valores:

$$C = [0.375 \ 0.125 \ 0.125 \ -0.25i \ 0.125 \ -0.125 \ 0.125 \ 0.125 \ +0.25i \ 0.125]$$

Observamos que son la solución al problema dado, sólo que el orden corresponde a:

$$c_0, c_{-1}, c_{-2}, c_{-3}, c_{-4}, c_3, c_2, c_1.$$

Ejemplo 2:

El registro discreto de la *Tabla* 3., corresponde a la presión del viento sobre una superficie cilíndrica dado por el Reglamento CIRSOC 102

Ángulo (gr)	Presión	Ángulo (gr)	Presión
0	1,00	180	-1,20
10	0,90	190	-1,20
20	0,70	200	-1,20
30	0,35	210	-1,20
40	0,00	220	-1,20
50	-0,50	230	-1,20
60	-0,80	240	-1,25
70	-1,10	250	-1,28
80	-1,23	260	-1,30
90	-1,30	270	-1,30
100	-1,30	280	-1,23
110	-1,28	290	-1,10
120	-1,25	300	-0,80
130	-1,20	310	-0,50
140	-1,20	320	0,00
150	-1,20	330	0,35
160	-1,20	340	0,70
170	-1,20	350	0,90

Tabla~3.

Universidad Nacional de Cuyo

Tema:

Transformada Discreta de Fourier

Ejemplos

Los valores de c_k dados por la expresión:

$$c_{k} = \frac{1}{N} \sum_{n=0}^{N-1} f_{n} e^{-ikw0n}$$

se obtienen a partir de un código Scilab, y los resultados correspondientes se indican en la Tabla 4.

k	c_k	$ c_k $
-3	0.1123084	0.1123084
-2	0.3012501	0.3012501
-1	0.4424320	0.4424320
0	- 0.7172222	0.7172222
1	0.4424320	0.4424320
2	0.3012501	0.3012501
3	0.1123084	0.1123084

Tabla 4.

En la *Figura* 3. se muestran las funciones de aproximación y_1 , y_2 , y_3 , obtenidas cada una de ellas con las 3, 5 y 7 primeras funciones base respectivamente.

Figura 3.

En la *Figura* 4. se representan los valores de $|c_k|$ en función de k, obteniendo el *espectro* asociado a los datos.

Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada Discreta de Fourier

Ejemplos

Figura 4.

Valores obtenidos con el comando fft:

column 1 to 12

 $-0.7172222 \quad 0.4424320 \quad 0.3012501 \quad 0.1123084 \quad 0.0059498 \quad -0.0074208 \quad -0.0041667 \quad -0.0021288 \quad 0.0024090 \quad 0.0011111 \quad 0.0016203 \quad 0.0034749$

column 13 to 24

 $0.0002778 - 0.0013503 - 0.0028704 - 0.0050862 - 0.0000254 \quad 0.0066597 \quad 0.0083333 \quad 0.0066597 - 0.0000254 - 0.0050862 - 0.0028704 - 0.0013503$

column 25 to 36

Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada Discreta de Fourier

Ejemplos

Ejemplo 3:

Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada Discreta de Fourier

Ejemplos

coeficiente que esta dade por:	Ga= (F.	₱ <u>₽</u> >	C= 1 N	f ejkan
Los valeres de Ch son las coarc	devadas de	l vector F	(registro di:	screto de um señal)
en la base de los expenenciale	s complejos	s.		
El conjunto de coordenadas c	a se dene	emina TRANS	sforhada I	PISCRETA de
FOURIER de la señal disereta. Y				
(k=0) Colulo de Co: Co= 1 (f.	हैं>	con k=0,	φ _{(α)=e}	=1
Per le tante : \$ = [1 1 1 1	1111]	т		
Co= 1/8 (0+0707.	+1+0.707.	+0_0.707.	10.707)	=0V
C=0				
V Càlaulo de Ca: Ca= 1 < f.	0,7	con k=1, 0	(z)=ejaga	, ω=7/4
=[1 ejm ejm ejm ejm				
			[us	endo:
C= 1 [0.707 (e) = ej=)-0.707	(e)4,e34)	e 2 e 2		eja conzetjsenae]
$c_{i} = \frac{1}{6} \left[-j - j - 2j \right] = -\frac{1}{2} j$	[en	= 1		
Analogamente se obtienen: c.	=======================================	C= C3 = C3	= C4 = C4 =	0
ESPECTRO:	r Icpl			
4		3 //	> k	
-4 -3 -2 -1	0 1 2	3 4		

Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Transformada Discreta de Fourier

Ejemplos

Con el comando IIt de Matlab a Scilab, a partir del vector I (señal discreta) se obtienen las componentes de la Transformada discreta de Fourier Para nuestro ejemplo se obtiene: c=[0 0.4999j 0 -0.0000378j 0 0.0000378i 0 -0.4999j] Evaluamos la Apreximación per Minimes Cuadrades: 4(2)= 2 5 eikar $y(z) = ce^{-j\omega z} + ce^{j\omega z$ $y(z) = \frac{1}{2} e^{j\frac{\pi}{4}z} - \frac{1}{2} e^{j\frac{\pi}{4}z} = \frac{1}{2} \int \left[\cos\left(\frac{\pi}{4}z\right) + i \sin\left(-\frac{\pi}{4}z\right) \right] - \frac{1}{2} \left[\cos\left(\frac{\pi}{4}z\right) + i \sin\left(\frac{\pi}{4}z\right) \right] = \frac{1}{2} \left[\cos\left(\frac{\pi}{4}z\right) + i \sin\left(\frac{\pi}{4}z\right) + i \sin\left(\frac{\pi}{4}z\right) \right] = \frac{1}{2} \left[\cos\left(\frac{\pi}{4}z\right) + i \sin\left(\frac{\pi}{4}z\right) + i \sin\left(\frac{\pi}{4}z\right) \right] = \frac{1}{2} \left[\cos\left(\frac{\pi}{4}z\right) + i \sin\left(\frac{\pi}{4}z\right) + i \sin$ = $\frac{1}{2}(j)^2 \operatorname{sen}(\pi Z) - \frac{1}{2}(j)^2 \operatorname{sen}(\pi Z) = \operatorname{sen}(\pi Z)$ Recordamos que z'es la variable independiente que indica el indice del punto. y(3)= sen(173) n(z) tn (tz) 1/8 1/4 3/8 1/2 3/8 3/4 7/8 to to + n At t = t . Z At $\overline{C} = \frac{t_0 - 0}{\Delta t} = \frac{t}{1/2} = 8t \implies y(z) = \frac{1}{2} = \frac{t_0 - 0}{4} \Rightarrow y(t) = \frac{t}{2} = \frac{$