

Bài 3: QUẢN LÝ TIẾN TRÌNH

- Phân chia CPU cho các tiến trình ?
 - Tiếp cận
 - Mục tiêu ?
 - Tổ chức?duong than cong . com
 - Chiến lược ?
- Trạng thái tiến trình ?
- Lưu trữ thông tin tiến trình?
- Các thao tác trên tiến trình?
- Bảo vệ tiến trình ?
- Trao đổi thông tin giữa các tiến trình?

Phân chia CPU?

- 1 CPU vật lý: làm thế nào để tạo ảo giác mỗi tiến trình sở hữu CPU riêng của mình?
- Dispatcher luân { chuyển CPU giữa các tiến trình: u duong than cong
 - Ngữ cảnh xử lý riêng biệt cho mỗi tiến trình (PCB)


```
\begin{array}{c} \text{interrupt } P_{cur} \\ \text{save state } P_{cur} \\ \textbf{Scheduler gets } P_{next} \\ \text{load state } P_{next} \\ \text{jump to it} \end{array}
```

while(1)

Trạng thái tiến trình?

Khối quản lý tiến trình trong mô hình multiprocesses

Process control Block **PCB**

pid

State

cuu duon**g th** (State, details)

Context

(IP, Mem, Files...)

cuu duong than Relatives

(Dad, children)

Scheduling statistic

PCB và TCB trong mô hình multithreads

PCB

pid

Threads list

Context

(Mem, global ressources...)

Relatives ong than

(Dad, children)

Scheduling statistic

Thread Control Block TCB

tid

State

(State, details)

Context

(IP, local stack...)

Các thao tác trên tiến trình

- Tạo lập tiến trình :
 - Cấp phát tài nguyên cho tiến trình con?
 - Hoạt động của cha và con độc lập
- Kết thúc tiến trình :
 - Thu hồi tài nguyên ?
 - Ep buộc kết thúc ? n cong . com
- Thay đổi trạng thái tiến trình :

Assign(), Block(), Awake(), Resume(), Suspend()

Trạng thái tiến trình?

- Có nhu cầu Suspend &Resume :
 - Hệ thống quá tải
 - Kiểm soát hoạt động của tiến trình con

An ninh trật tự cho môi trường đa tiến trình!

- Bảo vệ tiến trình:
 - Ngăn cản các tiến trình xâm phạm tài nguyên, can thiệp vàoxử lý của nhau => KGĐC riêng biệt, 2 mode xử lý
 - Bảo đảm quyền tiến triển xử lý cho mỗi tiến trình
 công bằng trong các chiến lược phân phối tài nguyên.
- Trao đổi thông tin , phối hợp hoạt động ?
 - Nhu cầu ?
 - Vấn đề ? => Chương kế tiếp
 - Giải pháp?

Các danh sách tiến trình

Điều phối tiến trình

- Mục tiêu ?
- Các cấp độ điều phối
- Thời điểm ra quyết định điều phối?
- Đánh giá chiến lược điều phối ?
- Một số chiến lược điều phối

Chuyển đổi ngữ cảnh (context switching)

- Kịch bản:
 - Lưu ngữ cảnh tiến trình hiện hành
 - Nạp ngữ cảnh tiến trình được chọn kế tiếp
- Chi tiết cụ thể phụ thuộc vào phần cứng
 - general-purpose & floating point registers, coprocessor state...
- Chi phí chuyển đổi ngữ cảnh :
 - Giữa các tiến trình?
 - Giữa các tiểu trình?

Chuyển đổi ngữ cảnh giữa các tiến trình

- Chuyển đổi mode xử lý
- Chuyển đổi IP và các thanh ghi khác của CPU
- Chuyển đổi không gian địa chỉ

Tiểu trình hạt nhân (Kernel thread)

- Khái niệm tiểu trình được xây dựng bên trong hạt nhân
- Distpatcher làm việc với đơn vị là tiểu trình

Tiểu trình người dùng (User thread)

- Khái niệm tiểu trình được hỗ trợ bởi một thư viện hoạt động trong user mode
- Distpatcher của hạt nhân làm việc với đơn vị là tiến trình
- ThreadDistpatcher làm việc với đơn vị là tiểu trình
 - P -- LWP T
- Không cần chuyển đổi chế độ xử lý khi chuyển đổi các tiểu trình cùng thuộc 1 tiến trình.

Kernel

mode

https://fb.com/tailieudientucntt

15

Lựa chọn tiến trình?

- Tác vụ của Scheduler
- Mục tiêu ?
 - Sử dụng CPU hiệu quả
 - Đảm bảo tất cả các tiến trình đều tiến triển xử lý
- Tiêu chuẩn lựa chọn ?
 - Tất cả các tiến trình đều như nhau?
 - Đề xuất một độ ưu tiên cho mỗi tiến trình?
- Thời điểm lựa chọn ? (Thời điểm kích hoạt Scheduler())

Mục tiêu điều phối

- Hiệu qủa (Efficiency)
 - **╃** Thời gian
 - **▶** Đáp ứng (Response time)
 - **Hoàn tất**(Turnaround Time = T_{quit} - T_{arrive}):
 - **Update** Chờ (Waiting Time = $T_{in Ready}$):
 - **↑** Thông lượng (Throughput = # jobs/s)
 - **↑** Hiệu suất Tài nguyên
 - Chi phí chuyển đổi
- Công bằng (Fairness): Tất cả các tiến trình đều có cơ hội nhận CPU

Các cấp độ điều phối

- Longterm scheduling chọn tiến trình kế tiếp được khởi động (mang vao bộ nhớ và nhận trạng thái co ready)
- Mediumterm scheduling : quyết định chuyển tiến trình đang running sang trạng thái blocked. cuu duong than co
- Shorterm scheduling trạng thái running.
 - chọn 1 tiến trình ở trạng thái ready để chuyển sang Không cổ sự phân biệt rõ

Thời điểm ra quyết định điều phối

- Điều phối độc quyền (non-preemptive scheduling): tiến trình được chọn độc chiếm CPU
- Điều phối không độc quyền (preemptive scheduling): tiến trình được chọn có thể bị « cướp » CPU bởi tiến trình có độ ưu tiên cao hơn

Các chiến lược điều phối

- FIFO
- RR cuu duong than cong . com
- SJF
- MULTILEVELFEEDBACK
- LOTTERY

FIFO – RR -SJF

cuu duong than cong . com

RR

cuu duong than cong . com

Multilevel Feedback

P2 có 70 % cơ hội