This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 856 583 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 05.08.1998 Bulletin 1998/32

(51) Int. Cl.⁶: C12N 15/12, C07K 14/47

(21) Application number: 98300740.2

(22) Date of filing: 02.02.1998

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States: AL LT LV MK RO SI

(30) Priority: 31.01.1997 JP 19254/97

(71) Applicants:

 Japan Science and Technology Corporation Kawaguchi-shi, Saitama-ken 332 (JP)

 Wada, Manabu Kobe-shi, Hyogo 655 (JP) (72) Inventors:

- Takai, Yoshiml Kobe-shi, Hyogo 651-21 (JP)
- Nakanishi, Hiroyuki Kobe-shi, Hyogo 651-21 (JP)
- Wada, Manabu Kobe-shi, Hyogo 655 (JP)
- (74) Representative:
 Matthews, Derek Peter
 Frank B. Dehn & Co.,
 European Patent Attorneys,
 179 Queen Victoria Street
 London EC4V 4EL (GB)

(54) Protein rab3 GEP

The present invention provides a protein Rab3 GEP which is a GDP/GTP exchange protein active on the Rab3 subfamily small G proteins, which has an amino acid sequence of Sequence ID No. 1 or an amino acid sequence substantially the same as that of the Sequence ID No. 1, a cDNA sequence coding this protein, and genomic DNA sequence to which the cDNA sequence or a part thereof hybridizes. According to the invention, there is provided a novel protein (Rab3 GEP) specific for the Rab3 subfamily small G proteins which are involved in intercellular vesicle trafficking, and a genetic material for industrial utilization thereof. This protein is useful, not only for clarification of the molecular mechanism of intracellular vesicle trafficking which is an important cellular event, but also for development of diagnosis, prevention and therapy of neural diseases and the like.

EP 0 856 583 A2

Description

Field of the invention

The present invention relates to a GDP/GTP exchange protein (GEP) specific for the Rab3 subfamily small GTP-binding proteins (G proteins). More particularly, the present invention relates to the protein Rab3 GEP useful for clarification of a molecular mechanism of intracellular vesicle trafficking essential for maintenance of homeostasis of a living organism, or for diagnosis or development of preventive and therapeutic drugs for neural diseases.

10 Description of the Related Art

In a general cell composing a living organism, there exist a number of organelles surrounded by unit membranes, such as endoplasmic reticulum, Golgi complex, lysosome, and endosome, and material transport between these organelles is accomplished by accurate trafficking of vesicles (intracellular vesicle trafficking). For instance, membrane receptors, such as EGF and PDGF receptors, are synthesized on ribosomes and transported to the endoplasmic reticulum membrane from where they are transported to the plasma membrane through the Golgi complex by vesicles. Soluble substances, such as those secreted outside the cell from the plasma membrane, are also transported by vesicles. For instance, hormones and digestive enzymes are synthesized on ribosomes and transported to the endoplasmic reticulum lumen from where they are transported to the plasma membrane. Exocytosis, endocytosis, and transcytosis are performed by intracellular vesicle trafficking. There are two exocytotic pathways: one is a regulated pathway and the other is a constitutive pathway. In the former pathway, in most cases exocytosis is regulated by Ca²⁺. Intracellular vesicle trafficking is also involved in various other cell functions, such as formation of cell polarity, cytokinesis and cell motility. Although intracellular vesicle trafficking is one of the very important cellular events as described above, the molecular mechanism has not as yet been completely clarified. The mechanism of intracellular trafficking clarified so far is as follows.

There are at least four principal mechanisms in intracellular vesicle trafficking: (i) budding of the vesicle from the donor membrane; (ii) targetting of the vesicle to the acceptor membrane; (iii) docking of the vesicle to the acceptor membrane; (iv) fusion of the vesicle with the acceptor membrane. The vesicle trafficking is regulated by the Rab family small G proteins. There are approximately thirty members in the Rab family and each member is located in each membrane compartment and exerts its specific function. The mode of action of the Rab family members in the targetting and docking processes in intracellular vesicle trafficking is as follows: the GDP-bound inactive form of each Rab family member is complexed with Rab GDP dissociation inhibitor (GDI) and remains in the cytoplasm. When it is released from Rab GDI, GEP exerts its action, and the Rab family member is converted to the GTP-bound active form. This GTP-bound form binds to its specific target protein on the vesicle, which is consequently transported to the acceptor membrane. Before or after fusion of the vesicle with the membrane, the GTP-bound form is converted to the GDP-bound form. Once the GDP-bound form is produced on the membrane, it is complexed with Rab GDI and translocated from the membrane to the cytoplasm.

On the other hand, the present inventors have discovered Rab3A as a member of the Rab family small G proteins (J. Biol. Chem., 263:2879-2904, 1998), and revealed that Rab3A plays an important role in Ca²⁺-dependent exocytosis, particularly in neurotransmitter release (Int. Rev. Cytol., 133: 187-230, 1992). They have further found Rab GDI, a regulatory protein of Rab3A (J. Boil. Chem., 265: 2333-2337, 1990) and Rabphilin3A, a target protein of Rab3A (Mol. Cell. Biol., 13: 2061-2068, 1993).

In intracellular vesicle trafficking, as described above, the mode of action of the Rab family members has been clarified, and the research efforts made by the present inventors have permitted specification of regulatory proteins and target proteins of the Rab family members.

However, in order to understand the more detailed mechanism of intracellular vesicle trafficking, it is indispensable to find GEP and GAP specific for each Rab family member or Rab subfamily. At least, no GEP or GAP specific for the Rab3 subfamily members (Rab3A, -B, -C and -D) has not as yet been identified. Two GEPs for Rab3A, Mss4 (Nature, 361: 464-467, 1993) and Rab3A GRF (J. Boil. Chem., 267: 22715-22718, 1992) have been so far found: the former is not specific for the Rab3 subfamily, and the latter has been just partially purified and its primary structure has not been reported.

Summary of The Invention

55

The present invention has an object to provide a novel protein (Rab3 GEP) specific for the Rab3 subfamily small G proteins involved in intracellular vesicle trafficking, in a state that the structure (amino acid sequence) and properties thereof have not been clarified.

Another object of the invention is to provide a material for genetic engineering manipulation of this Rab3 GEP.

The invention provides a protein Rab3 GEP, which is a GDP/GTP exchange protein specific for the Rab3 subfamily small G proteins, and comprises the amino acid sequence of Sequence ID No. 1.

Further, the invention provides an animal protein having substantially the same amino acid sequence as that of the Sequence ID No. 1.

In addition, the invention provides a cDNA sequence encoding the amino acid sequence of the Sequence ID No. 1 or an amino acid sequence substantially the same as that of the Sequence ID No. 1.

The invention also provides a genomic DNA sequence to which the cDNA set forth above or a part thereof is hybridized.

According to the invention, there is provided a novel protein (Rab3 GEP) specific for the Rab3 subfamily small G proteins involved in intracellular vesicle trafficking, and a genetic material for industrially utilizing such a protein. This protein is useful not only for clarifying the molecular mechanism of intracellular vesicle trafficking which is an important cellular event, but also for developing diagnosis, prevention and therapy of neural diseases.

Brief Description of The Drawings

15

20

25

Fig. 1 illustrates the column chromatographies: (A) shows Superdex 200 column chromatography, and (B) shows the second hydroxyapatite column chromatography (O represents the [3H]GDP bound which is an indicator of Rab3 GEP activity, ---, absorbance at 280 nm, and the lower panels illustrate SDS-polyacrylamide gel electrophoresis (PAGE) analysis with silver staining);

Fig. 2 illustrates the substrate specificity of Rab3 GEP II (A-1, B-1) and Mss4 (A-2, B-2): (A-1, A-2) Rab3A (O), Rab2 (Δ), Rab5A (〇), Rab10 (Δ) and Rab11 (□); and (B-1, B-2) Rab3A (O), Rab3B (Δ), Rab3C (Δ), Rab3D (〇); and

Fig. 3A illustrates the requirement of Rab3 GEP II (A-1) and Mss4 (A-2) for lipid modifications of Rab3A, representing their activity to lipid-modified Rab3A (O) and lipid-unmodified Rab3A (O); and Fig. 3B illustrates the sensitivity of Rab3 GEP II and Mss4 to Rab GDI (with Rab3 GEP II (O), with Mss4 (Δ), without Rab3 GEP II or Mss4 (O))

Detailed Description of The Invention

A protein Rab3 GEP of the invention is purified from rat brain synaptic soluble fraction through successive column chromatographies by using lipid-modified Rab3A as a substrate, and has a molecular weight of about 200 kD as estimated by SDS-PAGE (about 270 kD as estimated by gel filtration). A cDNA clone was obtained from a rat cDNA library with partial amino acid sequences of this purified protein as probes, and the cDNA amino acid sequence was analyzed. This protein Rab3 GEP was confirmed to have the amino acid sequence ID No. 1.

Therefore, Rab3 GEP of the invention is available by inserting the foregoing cDNA into an appropriate expression vector, and expressing the cDNA in Escherichia coli and the like. A protein derived from other animals than rat can be obtained by a process, for example, of isolating a cDNA from the cDNA library of the animal by using the cDNA of the invention or a part thereof as a probe, and causing expression in a suitable host-vector system. The thus obtained protein derived from an animal other than rat also has an amino acid sequence substantially the same as that of Sequence ID No. 1

The cDNA sequence of the invention includes, as described above, cDNA of rat or cDNA coming from any animal other than rat. The genomic DNA sequence of the invention include DNA sequence of any of all the animal species.

Examples

55

A protein Rab3 GEP of the invention will be described further in detail by means of Examples. The invention is not however limited by the following examples.

Example 1: Purification of Rab3 GEP

Synaptic soluble fraction was prepared from 80 rat brains. A half of the fraction (500 ml, 455 mg of protein) was adjusted to 0.2 M NaCl and applied to a Q-Sepharose FF column (2.6 x 10 cm) equilibrated with Buffer A (20 mM Tris/Cl at pH 7.5 and 1 mM DTT) containing 0.2 M NaCl. Elution was performed with 350 ml of Buffer A containing 0.5 M NaCl. Fractions of 10 ml each were collected. When the Rab3 GEP activity was assayed by measuring the dissociation of [3H]GDP from lipid-modified Rab3A, the activity was observed in Fractions 5-19.

These fractions (150 ml, 159 mg of protein) were collected, and NaCl was added to give a final concentration of 2 M. The sample was applied to a phenyl-Sepharose column (2.6 x 10 cm) equilibrated with Buffer A containing 2 M NaCl. Elution was performed with a 360-ml linear gradient of NaCl (2-0 M) in Buffer A, followed by 180 ml of Buffer A. Fractions of 6 ml each were collected. The Rab3 GEP activity was observed in Fractions 52-63.

	Sequence Listing															
	Sequence ID No.:1															
5	Len	gth	:160)2 a	min	o ac	ids									
	Type: protein															
10	Seq	uen	ce													
70	Met	Va I	GIn	Lys	Lys	Phe	Cys	Pro	Arg	Leu	Leu	Asp	Tyr	Leu	Val	Пe
	1				5					10					15	
15	Va I	Gly	Ala	Arg	His	Pro	Ser	Ser	Asp	Ser	Va I	Ala	Gln	Thr	Pro	Glu
				20					25					30		
	Leu	Leu	Arg	Arg	Tyr	Pro	Leu	Glu	Asp	His	Pro	Glu		Pro	Leu	Pro
20			35					40					45			
	Pro		Va I	Va I	Phe	Phe		Gln	Pro	Glu	Gly		Leu	Ser	Val	Arg
		50					55					60				
25		Arg	Arg	Met	Ser		Arg	Asp	Asp	lhr		Phe	Val	Phe	Ihr	80
	65	A		A	TL	70	V- I	Thu	A	T	75	110	Cur	Val	Acn	
	inr	ASP	Lys	ASP	1nr 85	ч	vai	inr	Arg	90	ч	116	Uys	Vai	95	1110
30	Tvr	Ara	Ser	Phe	_	Lve	Arσ	Met	Pro		Glu	lvs	Ala	Glu		GIV
	• • •	ь		100		-,-	6		105	_,-		_,-		110		•
35	Ala	Gly	Pro		Gly	Lys	Glu	Gly	Ala	His	Ala	Pro	Cys	Ala	Ser	Glu
			115					120					125			
	Glu	Ala	Ala	Thr	Glu	Ser	Ser	Glu	Ser	Gly	Ser	Thr	Leu	Gln	Pro	Pro
40		130					135					140				
	Ser	Ala	Asp	Ser	Thr	Pro	Asp	Va I	Asn	GIn	Ser	Pro	Arg	Gly	Lys	Arg
	145					150					155				•	160
45	Arg	Ala	Lys	Ala	Gly	Asn	Arg	Ser	Arg	Asn	Ser	Thr	Leu	Thr	Ser	Leu
					165					170					175	
	Cys	Val	Leu	Ser	His	Tyr	Pro	Phe	Phe	Ser	Thr	Phe	Arg	Glu	Cys	Leu
·· 50				180					185					190		
	Tyr	Thr	Leu	Lys	Arg	Leu	Val	Asp	Cys	Cys	Ser	Glu	Arg	Leu	Leu	Gly

			195					200					205			
	Lys	Lys	Pro	Gly	He	Pro	Arg	Gly	Val	Gln	Arg	Asp	Thr	Met	Trp	Arg
5		210					215					220				
	He	Phe	Thr	Gly	Ser	Leu	Leu	Va I	Glu	Glu	Lys	Ser	Ser	Ala	Leu	Leu
	225					230					235					240
10	His	Asp	Leu	Arg	Glu	lle	Glu	Ala	Trp	He	Tyr	Arg	Leu	Leu	Arg	Ser
					245					250					255	
	Pro	Val	Pro	Val	Ser	Gly	Gln	Lys	Arg	Val	Asp	He	Glu	Val	Leu	Pro
15				260					265					270		
	Gin	Glu	Val	Gln	Gln	Ala	Leu	Thr	Phe	Ala	Leu	Pro	Asp	Pro	Ser	Arg
			275					280					285			
20	Phe	Thr	Leu	Va I	Asp	Phe	Pro	Leu	His	Leu	Pro	Leu	Glu	Leu	Leu	Gly
		290			•		295					300				
	Val	Asp	Ala	Cys	Leu	GIn	Va I	Leu	Thr	Cys	He	Leu	Leu	Glu	His	Lys
25	305			-		310					315					320
	Val	Val	Leu	Gln	Ser	Arg	Asp	Tyr	Asn	Ala	Leu	Ser	Met	Ser	Val	Met
					325					330					335	
30	Ala	Phe	Val	Ala	Met	He	Tyr	Pro	Leu	Glu	Tyr	Met	Phe	Pro	Val	He
				340					345					350		
35	Pro	Leu	Leu	Pro	Thr	Cys	Met	Ala	Ser	Ala	Glu	GIn	Leu	Leu	Leu	Ala
55			355					360					365			
	Pro	Thr	Pro	Tyr	lle	He	Gly	Va I	Pro	Ala	Ser	Phe	Phe	Leu	Tyr	Lys
40		370					375					380				
	Leu	Asp	Phe	Lys	Met	Pro	Asp	Asp	Va I	Trp	Leu	Val	Asp	Leu	Asp	Ser
	385					390					395					400
1 5	Asn	Arg	Val	He	Ala	Pro	Thr	Asn	Ala	Glu	Va I	Leu	Pro	lle	Leu	Pro
					405					410					415	
•	Glu	Pro	Glu	Ser	Leu	Glu	Leu	Lys	Lys	His	Leu	Lys	GIn	Ala	Leu	Ala
50				420					425					430		
	Ser	Met	Ser	Leu	Asn	Thr	Gln	Pro	He	Leu	Asn	Leu	Glu	Lys	Phe	His

			435					440					445			
	Glu	Gly	Gln	Glu	Thr	Pro	Leu	Leu	Leu	Gly	Arg	Phe	Ser	Asn	Asp	Leu
5		450					455					460				
	Gln	Ser	Thr	Pro	Ser	Thr	Glu	Phe	Asn	Pro	Leu	He	Tyr	Gly	Asn	Asp
	465					470					475					480
10	Val	Asp	Ser	Va I	Asp	Va I	Ala	Thr	Arg	Val	Ala	Met	Va I	Arg	Phe	Phe
					485					490					495	
	Asn	Ser	Ala	Asn	Va I	Leu	Gln	Gly	Phe	Gln	Met	His	Thr	Arg	Thr	Leu
15				500					505					510		
	Arg	Leu	Phe	Pro	Arg	Pro	Val	Val	Ala	Phe	Gln	Ala	Gly	Ser	Phe	Leu
20			515					520					525			
20	Ala	Ser	Arg	Pro	Arg	Gln	Thr	Pro	Phe	Ala	Glu	Lys	Leu	Ala	Arg	Thr
		530					535					540				
25	Gln	Ala	Va I	Glu	Tyr	Phe	Gly	Glu	Trp	He	Leu	Asn	Pro	Ser	Asn	Tyr
	545					550					555					560
	Ala	Phe	Gln	Arg	lle	His	Asn	Asn	Thr	Phe	Asp	Pro	Ala	Leu	lle	Gly
30					565					570					575	
	Asp	Lys	Pro	Lys	Trp	Tyr	Ala	His	Gln	Leu	Gln	Pro	He	His	Tyr	Arg
				580					585					590		
35	Val	Tyr	Asp	Ser	Asn	Ser	Gln	Leu	Ala	Glu	Ala	Leu	Ser	Val	Pro	Pro
			595					600					605			
	Glu	Arg	Asp	Ser	Glu	Ser	Asp	Pro	Thr	Asp	Asp	Ser	Gly	Ser	Asp	Ser
40		610					615					620				
	Met	Asp	Tyr	Asp	Asp	Ser	Ser	Ser	Ser	Tyr	Ser	Ser	Leu	Gly	Asp	
	625					630					635					640
45	Val	Ser	Glu	Met	Met	Lys	Cys	Asp	He	Asn	Gly	Asp	Thr	Pro	Asn	Val
					645					650					655	
	Asp	Pro	Leu	Thr	His	Ala	Ala	Leu	Gly	Asp	Ala	Ser	Glu		Glu	He
50				660					665					670		
	Asn	Glu	Leu	Gln	Pro	Gln	Lvs	Glu	GIV	Glu	Glu	Pro	GIV	Pro	Asp	Ser

			675					680					685			
	Glu	Asn	Ser	Gln	Glu	Asn	Leu	Pro	Leu	Arg	Ser	Ser	Ser	Ser	Thr	Thr
5		690					695					700				
	Ala	Ser	Ser	Ser	Pro	Ser	Thr	He	Val	His	Gly	Ala	His	Ser	Glu	Pro
	705					710					715					720
10	Ala	Asp	Ser	Thr	Glu	Val	Gly	Asp	Lys	Ala	Ala	Thr	Gly	Пe	Ser	Lys
					725					730					735	
	Pro	Leu	Pro	Pro	Val	Pro	Pro	Ser	lle	Cys	Lys	Ser	Thr	Val	Asp	Arg
15				740					745					750		
	Arg	Gln	Thr	Glu	Thr	Gly	Glu	Gly	Ser	Val	Cys	Gln	Arg	Thr	Tyr	Asp
20			755					760					765			
-	His	Pro	Tyr	Phe	Glu	Pro	GIn	Tyr	Gly	Ser	Pro	Ala	Glu	Glu	Asp	Asp
		770					775					780				
25	Asp	Glu	Gln	Gly	Glu	Ser	Tyr	Thr	Pro	Arg	Phe	Ser	GIn	His	Ala	Ser
	785					790					795					800
	Gly	Ser	Arg	Ala	Gln	Lys	Leu	Leu	Arg	Pro	Asn	Ser	Leu	Lys	Leu	Ala
30					805					810					815	
	Ser	Asp	Ser	Asp	Ala	Glu	Ser	Asp	Ser	Arg	Ala	Ser	Ser	Pro	Asn	Ser
				820					825					830		
35	Thr	Va I	Ser	Asn	Asn	Ser	Thr	Glu	Gly	Phe	Gly	Gly	He	Met	Ser	Phe
			835					840					845			
	Ala	Ser	Ser	Leu	Tyr	Arg	Asn	His	Ser	Thr	Ser	Phe	Ser	Leu	Ser	Asn
40		850					855					860				_
	Leu	Thr	Leu	Pro	Thr	Lys	Gly	Ala	Arg	Glu	Lys	Thr	Thr	Pro	Phe	
	865					870					875					880
45	Ser	Leu	Lys	Gly	Asn	Arg	Arg	Ala	Leu	Val	Asp	Gln	Lys	Ser		Val
					885					890					895	
50	He	Lys	His	Ser	Pro	Thr	Va I	Lys	Arg	Glu	Pro	Pro	Ser	Pro	Gin	Gly
-				900					905					910		
	Arg	Ser	Ser	Asn	Ser	Ser	Glu	Asn	Gln	Gln	Phe	Leu	Lys	Glu	Val	Val

			915					920					925			
	His	Ser	Va I	Leu	Asp	Gly	Gln	Gly	Va I	Gly	Trp	Leu	Asn	Met	Lys	Lys
5		930					935					940				
	Val	Arg	Arg	Leu	Leu	Glu	Ser	Glu	Gln	Leu	Arg	Val	Phe	Val	Leu	Ser
10	945					950					955					960
10	Lys	Leu	Ser	Arg	Ala	Val	Gin	Ser	Glu	Asp	Asp	Ala	Arg	Gln	Asp	Va I
					965					970					975	
15	ile	Gin	Asp	Va I	Glu	He	Ser	Arg	Lys	Va I	Tyr	Lys	Gly	Met	Leu	Asp
				980					985					990		
	Leu	Leu	Lys	Cys	Thr	Va I	Leu	Ser	Leu	Glu	Gln	Ser	Tyr	Ala	His	Ala
20			995				•	000				,	005			
	Gly	Leu	Gly	Gly	Met	Ala	Ser	He	Phe	Gly	Leu	Leu	Glu	lle	Ala	Gln
		1010					1015					1020				
25	Thr I	lis i	Tyr	Tyr :	Ser l	ys (31u l	Pro /	Asp l	ys /	Arg I	Lys /	Arg :	Ser f	oro T	Thr
	1025					1030					1035					1040
	Glu	Asn	Val	Asn	Thr	Pro	Va I	Gly	Lys	Asp	Pro	Gly	Leu	Ala	Gly	Arg
30					1045					1050					1055	
	Gly	Asp	Pro	Lys	Ala	Met	Ala	Gin	Leu	Arg	Val	Pro			Gly	Pro
				1060					1065					1070		
35	Arg	Ala	Pro	Ser	Ala	Thr	Gly	Arg	Gly	Pro	Lys			Asp	Thr	Arg
			1075					1080					1085			
	Ser	Leu	Lys	Glu	Glu			Val	Ala	Ser			Pro	Glu	Val	He
40		1090					1095					1100		•	01	
	Lys	Pro	Val	Phe				Glu	Thr				Lys	Ser		lle
	1105					1110					1115		٥.			1120
45	Ser	Ala	Asp			Val	Ser	Leu				Ser	GIN			Asp
					1125					1130					1135	
F0	Gln	Asp				Gly	Val				Val	Met				Ser
50				1140			_	Asn	1145		٠.	.		1150		A 1 -
	6~-	Clo	A = 0	500	Gin	Val	Ser	ASD	Ser	Ser	to I V	o i u	INT	Leu	g i V	nid

		1	1155				1	160				1	165			
5	Asp	Ser	Asp	Leu	Ser	Ser	Asn	Ala	Gly	Asp	Gly	Pro	Gly	Gly	Glu	Gly
3	,	1170				1	175				1	180				
	Ser	Ala	His	Leu	Ala	Ser	Ser	Arg	Ala	Thr	Leu	Ser	Asp	Ser	Glu	He
10	1185				;	190					1195				1	200
	Glu	Thr	Asn	Ser	Ala	Thr	Ser	Thr	lle	Phe	Gly	Lys	Ala	His	Ser	Leu
				1	205				1	1210				1	215	
15	Lys	Pro	Lys	Glu	Lys	Pro	Ala	Ser	Ser	Pro	Va I	Arg	Ser	Ser	Glu	Asp
				1220				1	225				1	230		
	Va I	Ser	Gln	Arg	Va l	Tyr	Leu	Tyr	Glu	Gly	Leu	Leu	Gly	Arg	Asp	Lys
20		•	1235				•	1240				•	1245			
	Gly	Ser	Met	Trp	Asp	Gln	Leu	Glu	Asp	Ala	Ala	Met	Glu	Thr	Phe	Ser
		1250					1255					1260				
25	lle	Ser	Lys	Glu	Arg	Ser	Thr	Leu	Trp	Asp	Gln	Met	GIn	Phe		
	1265					1270			•		1275					280
	Asp	Ala	Phe	Leu	Asp	Ala	Va I	Met	Leu	Glu	Arg	Glu	Gly		_	Met
30					1285					1290	_				1295	٠.
	Asp	Gln	Gly	Pro	GIn	Glu	Met			Arg	Tyr	Leu			Gly	Glu
				1300					1305					1310		. .
35	His			Lys	Arg	Leu			Asp	Glu	Asp			Leu	Ala	Inr
			1315					1320					1325	V- 1	۸	1
40			His	Asn	Leu			lyr	Met	Leu	Leu			vai	ASTI	Lys
40		1330					1335	A =	A	1		1340		Sar	ніе	Val
		Asp	ile	Arg			vai	Arg	Arg		Met 1355	ч	Lys	361		1360
45	1345		\/_ I	T		1350	C1-	l la	A = n		Val	ىرم ا	Asn	Gin		
	ч	Leu	vai			Gin	GIN	116		1370		Leu	ЛЭР		1375	
-	A		A		1365	A	1	°~"				Sar	GLV			His
50.	ASN	Leu			Arg	изр	reu		1385	VIR	Ser	561		1390	, · · · · · · · · ·	,5
	M.A	1		1380	Th	Dha	V- 1			۵۱۵	Gly	The			Asn	Glv
	met	Lys	Lys	GIN	Inr	rne	vai	V d I	1115	A 1 4	Q.y		,,,,p			,

		1	1395				1	400				1	405			
	Asp	He	Phe	Phe	Met	Glu	Va I	Cys	Asp	Asp	Cys	Val	Va I	Leu	Arg	Ser
5	1	1410				•	1415				1	420				
	Asn	He	Gly	Thr	Val	Tyr	Glu	Arg	Trp	Trp	Tyr	Glu	Lys	Leu	lle	Asn
	1425					430				1	435				1	440
10	Met	Thr	Tyr	Cys	Pro	Lys	Thr	Lys	Val	Leu	Cys	Leu	Trp	Arg	Arg	Asn
				1	1445				1	1450				1	455	
15	Gly	Ser	Glu	Thr	Gln	Leu	Asn	Lys	Phe	Tyr	Thr	Lys	Lys	Cys	Arg	Glu
			-	1460				1	465				1	470		
	Leu	Tyr	Tyr	Cys	Vai	Lys	Asp	Ser	Met	Glu	Arg	Ala	Ala	Ala	Arg	Gln
20			1475				•	1480				•	1485	-		
	Gin	Ser	lle	Lys	Pro	Gly	Pro	Glu	Leu	Gly	Gly	Glu	Phe	Pro	Val	Gln
	;	1490					1495				•	1500				
25	Asp	Met	Lys	Thr	Gly	Glu	Gly	Gly	Leu	Leu	Gln	Va I	Thr	Leu	Glu	Gly
	1505					1510				1	1515				1	1520
	lle	Asn	Leu	Lys	Phe	Met	His	Asn	Gln	Va I	Phe	lle	Glu	Leu	Asn	His
30				•	1525					1530				•	1535	
	lle	Lys	Lys	Cys	Asn	Thr	Val	Arg	Gly	Val	Phe	Va I	Leu	Glu	Glu	Phe
			•	1540				1	1545					1550		
35	Vai	Pro	Glu	He	Lys	Glu	Val	Val	Ser	His	Lys	Tyr	Lys	Thr	Pro	Met
			1555					1560					1565			
	Ala	His	Glu	He	Cys	Tyr	Ser	Va I	Leu	Cys	Leu	Phe	Ser	Tyr	Val	Ala
40		1570					1575					1580				
	Ala	Val	Arg	Ser	Ser	Glu	Glu	Asp	Leu	Arg	Thr	Pro	Pro	Arg	Pro	Val
	1585					1590					1595					1600
45	Ser	Ser														

50 Claims

- 1. A protein Rab3 GEP, which is a GDP/GTP exchange protein specific for the Rab3 subfamily G proteins, and comprises the amino acid sequence of Sequence ID No. 1.
- 55 2. An animal protein having substantially the same amino acid sequence as that of the Sequence ID No. 1.
 - 3. A cDNA sequence coding the amino acid sequence of the Sequence ID No. 1 or an amino acid sequence substantially the same as that of the Sequence ID No. 1.

4.	A genomic [ONA sequence	to which the cD	NA sequence o	of claim 3 or a p	part thereof is I	nybridized.
	4.	4. A genomic (4. A genomic DNA sequence	4. A genomic DNA sequence to which the cD	4. A genomic DNA sequence to which the cDNA sequence of		

Fig. 2

