

Microbiología General

Silvia Raffellini

siluade@yahoo.com.ar

Verónica Berges Soubies

bergessoubies@yahoo.com.ar

Régimen de Cursada

- Clases teóricas (basada en bibliografía recomendada).
 Autoevaluaciones (individuales no obligatorias)
- Trabajos Prácticos en el Laboratorio. 4 encuentros. Guardapolvo - Guía de Trabajos Prácticos Grupos de 4 integrantes
- 2 parciales. Examen final. Fechas en cronograma

Espacios de consulta

Bibliografía

- Brock, Thomas D. y Madigan, Michael T. Microbiología; . 6a ed. México,
 D.F.: Prentice Hall, 1993.C. de Biblioteca: 576.8/B928a
- Madigan M., Martinko J., Parker J. Brock, Biología de los microorganismos, desde 8a ed.....
- Tortora G., Funke B., Case C.Introducción a la microbiología; Zaragoza: Acribia, 1993. 3° Ed. Código de Biblioteca: 576.8/T714/ 9° Ed. Bs. As. Ed. Médica Panamericana, 2007// 12°, 2017
- Bergey's Manual of Determinative Bacteriology 1994 (9ed)
- Bergey´s Manual of Systematic Bacteriology 1° Ed 1984(vol 1)-1989(4 volúmenes)
- Bergey's Manual of Systematic Bacteriology 2a Ed 2001 (vol 1) a 2012 (vol. 5)
- Mac Faddin J. Pruebas bioquímicas para la identificación de bacterias de importancia clínica. 3° Ed. Ed. Médica Panamericana. 2003
- TODO LO QUE ENCONTREMOS VIA WEB Y PODAMOS COMPARTIR...

Micro 23

Grupo de WhatsApp

Bienvenidos a la Microbiología

«....En la naturaleza, el papel de lo infinitamente pequeño es infinitamente grande ...»

Fecha	Tema	
07/agosto	Grupos microbianos – <mark>Procariotas – Bacterias</mark>	
14/agosto	Laboratorio 1: TP 1 Medios de Cultivo – Esterilización	
28/agosto	Laboratorio 2: TP 2 Microbiología ambiental – TP 3 Recuento	
4/setiembre	Crecimiento microbiano. Req. nutricionales y ambientales	
11/setiembre	Metabolismo	
18/setiembre	Taxonomía – Clasificación e identificación – (Inmunología)	
25/setiembre	Laboratorio 3: TP 4 Técnicas de siembra – TP 5 Tinciones	
02/octubre	1° Parcial	
9/octubre	<mark>Virus</mark>	
23/octubre	Control de crecimiento microbiano	
30/octubre	Genética bacteriana	
06/noviembre	Laboratorio 4: TP 6 Pruebas bioquímicas TP 7 Inmunología Hongos (características generales)	
14/noviembre	2° Parcial Hongos (micotoxinas)	
27/noviembre	Recuperatorio/ final adelantado	
05/diciembre	Final regular	

Temario

- Definición y subdivisiones de la Microbiología
- Principales grupos microbianos. Microorganismos procariotas y eucariotas
- Diferencias citológicas, químicas, metabólicas y reproductivas entre procariotas y eucariotas.

Bacterias

Morfología microscópica

Estructura: Cápsula – Pared celular – Membrana citoplasmática

Cromosoma – Plásmido – Ribosomas

Flagelos – Fimbrias y pili

Endosporas – Inclusiones citoplasmáticas

Morfología macroscópica

Conceptos Básicos

Microbiología

Biología de los microorganismos o microbios

Los microorganismos son seres:

- de pequeño tamaño, que en general no pueden ser

observados a simple vista (microscopios)

- Acelulares - Unicelulares - Pluricelulares

1 mm 1 000 μm 1 000 000 nm

Subdivisiones de la Microbiología

- Microbiología básica. Estructura y propiedades de los microorganismos: morfología, fisiología, bioquímica, genética, ecología, taxonomía, etc.
- Microbiología aplicada. Utiliza los conocimientos generados por la Microbiología básica para resolver problemas y obtener beneficios en medicina, medio ambiente, elaboración de alimentos, etc.
- Microbiología sanitaria (médica y veterinaria)
- Microbiología de los alimentos
- Microbiología ambiental
- Microbiología industrial y biotecnología

Los tres grandes dominios de la vida

Semejanzas entre todas las células

- 1. Mismo código genético (ATGC)
- 2. Almacenan información en el ADN
- 3. ADN→ ARN→ proteínas
- 4. Sintetizan proteínas en el ribosoma
- 5. ATP

Características diferenciales procariotas-eucariotas

Propiedades	Bacteria/Archaea (procariotas)	Eukarya (eucariotas)
Grupos	Bacterias, Arqueobacterias	Algas, Hongos, Plantas, Animales, Protozoarios
Membrana nuclear	Ausente	Presente
Número de cromosomas	1	> 1
ADN	Molécula única (no forma complejos con histonas)	Presente en cromosomas
Mitosis y meiosis	Ausente	Presente
Tamaño	Pequeño (2 µ de diámetro)	Usualmente grandes (2 a más de 100 µ de diámetro)
Endosporas	Presentes (en algunos) muy termorresistentes	Ausentes

Características diferenciales procariotas-eucariotas

Propiedades	Bacteria/Archaea	Eukarya
Ribosomas (tamaño)	Tamaño 70S	80S (salvo algunos 70S)
Unicelular vs. pluricelular	Básicamente unicelulares y no diferenciados	Unicelulares & no diferenciados, pluricelulares & altamente diferenciados, y muchos grados intermedios
Cloroplastos y mitocondrias	Ausentes	Presentes
Membrana plasmática	Sin esteroles, contienen lípidos monoinsaturados y saturados	Contiene esteroles y lípidos poliinsaturados
Multiplicación (división) Reproducción (recombinación)	División binaria, transformación, transducción, conjugación	Asexual, sexual
Quimioautotrofía	Presentes (algunas especies microbianas)	Ausente

Resumen general de las "formas de vida"

Unidades de replicación	Formas de vida
Celular	Bacteria*
(procariotas)	Archaea*
	Protozoos *
	Hongos (*)
Celular	Algas (*)
(eucariotas)	Plantas
	Animales
	Virus
No celular *	Viroides
	Priones

^{*} Todos considerados microorganismos(*) Muchos (no todos) son microorganismos

Procariotas

Pared celular Lípidos de MC

Procariotas

- ARQUEOBACTERIAS: "fósiles vivientes" (hábitats ≈ Tierra primitiva)
- **ambientes termales** temperaturas mayores a 100 ° C (*Pyrolobus fumarii*: temperatura óptima de crecimiento es 106 ° C.)
- **medios halófilos** (muy salados), (Ej.: *Halobacterium salinarum*)
- BACTERIAS: bacterias típicas (Ej. *Escherichia coli*). Microorganismos unicelulares cuyo tamaño oscila entre 0,2 y 50 μ (como son muy pequeños no necesitan citoesqueleto), y adaptados a vivir en amplia diversidad de ambientes. Hay especies autótrofas (fotosintéticas y quimiosintéticas), y heterótrofas (saprofitas, simbióticas y parasitarias).

Arqueobacteria

Halobacterium salinarum

Bacteria
Bacillus anthracis

Bacterias Clasificación según morfología celular

Bacterias Clasificación según morfología celular

Bacilos

Bacilo

Diplobacilo (b)

Empalizada

[@] Pearson Education, Inc. © 2017 Editorial Médica Panamericana S.A.C.F.

Cocobacilo

Diplobacilo

Bacterias

Clasificación según morfología celular

Morfología y tamaño

Células procariotas dibujadas a escala

TEM Escherichia coli

1 µm

Bacterias Relación morfología y modo de vida

Cocos	Bacilos	Espirilos y Vibrios
 Forma redondeada (relación superficie volumen mínima) Poca relación con el exterior Viven en medios ricos en nutrientes Se transmiten por el aire Muy resistentes Suelen ser patógenas 	 Forma alargada, cilíndrica (mayor relación superficie volumen) Obtienen nutrientes de manera más eficaz Viven en medios pobres en nutrientes (suelos, aguas) Menos resistentes Suelen ser saprófitas 	 Forma de hélice y de coma Viven en medios viscosos Pequeño diámetro Atraviesan fácilmente las mucosas Patógenas por contacto directo o mediante vectores

Estructura bacteriana

- 1) Cápsula; 2) pared celular;
- 3) membrana plasmática; 4) mesosomas;
- 5) Citoplasma 6) ribosomas; 7) flagelo;
- 8) ADN, cromosoma o genoma; 9) plásmidos.

Elementos estructurales

Cápsula: en muchas bacterias, sobre todo patógenas. Estructura viscosa compuesta por sustancias glucídicas. Función protectora de la desecación, de la fagocitosis o del ataque de anticuerpos.

Pared celular: formada por peptidoglucanos y otras sustancias. Envoltura rígida que soporta las fuertes presiones osmóticas a las que esté sometida la bacteria. Por la estructura de la pared se distinguen

las bacterias Gram+ v Gram-. Membrana plasmática: similar en estructura y composición a la de las células eucariotas. Presenta unos repliegues internos llamados mesosomas.

Mesosomas: Repliegues de la membrana con importantes funciones pues contienen importantes sustancias responsables de procesos metabólicos como el transporte de electrones, la fotosíntesis o

la replicación del ADN. Ribosomas: similares a los de eucariota aunque de menor tamaño. Síntesis de proteínas.

Cromosoma bacteriano: una sola molécula de ADN de doble hélice, circular y no asociado a histonas.

Plásmidos: moléculas de ADN extracromosómico también circular.

Inclusiones: depósitos de sustancias de reserva // Endosporas: resistencia

contactos iniciales en la conjugación.

Flagelos: estructuras filamentosas con función motriz formados por fibrillas proteicas

Fimbrias adhesivas: pelos de 4 a 7 nm de diámetro (según especie) repartidas por toda la superficie, permiten la adhesión a sustratos vivos o inertes.

Pelos sexuales o Pili: son más largos y más gruesos (unos 10 nm de diámetro) que las fimbrias adhesivas. Aparecen en menor número (de 1 a 10 por célula) y su función es la de permitir los

Cápsula

- Glucocáliz

- En numerosas bacterias se forma por fuera de la pared celular una cápsula viscosa compuesta por **sustancias glucídicas** (o peptídica en algunos casos) – "**EPS**".

- Adhesión

- Protección de la célula bacteriana a la desecación y a la fagocitosis por los leucocitos del hospedador, así como a la acción de los anticuerpos, lo que aumenta la virulencia de las bacterias encapsuladas.
- La presencia de la cápsula **NO es un** carácter diferenciador, pues determinadas bacterias pueden o no formarla en función de los medios de cultivo.
- Streptococcus sp.; Klebsiella sp.

Pared celular

Presente en todas las bacterias

Envoltura rígida, exterior a la membrana, que da **forma** a la bacteria Según su composición:

clasificación de bacterias en Gram positivas y Gram negativas

Peptidoglucano: responsable de la rigidez, forma, resistencia osmótica

Pared celular GRAM POSITIVAS

Varias capas de PEPTIDOGLUCANO (90 %)

Junto al resto de los componentes de la pared forman una malla especial llamada sáculo de mureína, de vital importancia para conservar la forma y dar rigidez a la célula bacteriana.

Además,
la pared de **Gram+** posee **ÁCIDOS TEICOICOS**(polímeros de glicerol o ribitol +
fosfato; carga negativa;
antígenos)

-Ácido lipoteicoico/ Ác. teicoico

Pared celular GRAM NEGATIVAS

Capa delgada de peptidoglicano (10 %)

+

lipopolisacáridos, fosfolípidos, lipoproteínas y proteínas.

Estructura de dos capas: externa ("membrana externa" – "ME") e interna ("peptidoglicanos» - "PG"); y entre ellas un espacio periplasmático ("EP")

Membrana externa

Especie de filtro (porinas)

Gracias a esta selectividad de sustancias, Gram negativas suelen ser menos susceptibles a los antibióticos, sales biliares, detergentes, colorantes

Pared celular GRAM (-): Membrana externa

Formada por **fosfolípidos**, **proteínas** (porinas), **lipopolisacáridos (LPS)**

- → LPS:
 - Polisacárido O (antígeno)
 - Núcleo polisacárido: N-acetilglucosamina, glucosa, galactosa, heptosas y cetodesoxioctonato (KDO)
 - ► Lípido A: unidades del disacárido P glucosamina + ácidos grasos de cadena larga (endotoxina)

Diferencias en la pared celular

BACTERIA GRAM POSITIVA

Cytoplasmic

membrane

In

Out
Lipopolysaccharide
(LPS)

8 nm

Phospholipid

Funciones de la pared celular

- Rigidez y resistencia osmótica (mantener la forma, evitar la lisis).
- Comunicación con el medio exterior
- Puede estar involucrada en patogenicidad (LPS en Gram negativas)
- Barrera para algunas moléculas (porinas en Gram negativas)
- Espacio periplásmico (enzimas de transporte, hidrolíticas, etc.)

Tinción diferencial de Gram

Clostridium perfringens (Gram positivas)

Cocos Gram Positivos

ESTAFILOCOCOS

ESTREPTOCOCOS

	Gram + (violeta)	Gram – (rosa)
Capa de peptidoglucano	Gruesa (capas múltiples)	Delgada (pocas capa)
Ácidos teicoicos	Presentes	Ausente
Espacio periplasmático	Ausente	Presente
Membrana externa	Ausente	Presente
Contenido de LPS	Prácticamente nulo	Elevado
Lípidos y lipoproteínas	Reducido	Elevado (m. externa)
Resistencia a destrucción física	Elevada	Reducida
Ruptura por lisozima - penicilina	Elevada	Reducida
Inhibición por colorantes y detergentes	Elevada	Reducida
Resistencia a la desecación	Elevada	Reducida

Otra tinción diferencial de pared celular Tinción bacterias ácido-alcohol resistente (BAAR – Tinción de Ziehl-Neelsen)

- Micobacterias: bacterias gram positivas con paredes con alto contenido lipídico (cerasácidos micólicos)
- Mycobacterium tuberculosis; M. leprae
- a) Colorante rojo-carbolfucsina + calor suave
 - b) ácido-alcohol
 - c) azul de metileno

BAAR Rojas

Membrana citoplasmática

Membrana Citoplasmática Funciones

Barrera de permeabilidad

Sólo moléculas pequeñas, sin carga, hidrofóbicas, pueden atravesar la membrana por difusión

Ancla de proteínas

Transporte, generación de energía, quimiotaxis

Generación de fuerza protón motriz

En fotótrofas (además): aparato fotosintético

Síntesis de pared

Cromosoma bacteriano

Una sola molécula de ADN en doble hélice (molécula muy grande en comparación con el tamaño de la bacteria), circular, súper enrollada y asociada a proteínas no histonas.

Suele estar unida a los mesosomas.

Plásmidos

Moléculas de ADN extracromosómico de menor masa molecular que el cromosoma.

Pueden tener:

- genes de resistencia a antibióticos
- genes involucrados en la conjugación (plásmido F).

Ribosomas

Los ribosomas están compuestos de proteínas (35%) y de ARN ribosomal (65%).

Función: Contienen todos los componentes que permiten la síntesis proteica.

Los ribosomas tienen un coeficiente de sedimentación de **70S**. Están constituidos por dos subunidades: **30S** y **50S**

Cantidad de ribosomas en bacterias varía según fase de crecimiento y condiciones de cultivo

Antibióticos

estreptomicina-gentamicina (30S) eritromicina-cloranfenicol (50S)

Flagelos

Apéndices filiformes de mayor longitud que la bacteria que permiten su **locomoción**

Número y disposición variable

Fibrillas proteicas (flagelina)-Antígeno H

Flagelos

© 2017 Editorial Médica Panamericana S.A.C.F.

47

Distribución de flagelos

Monopolar (monótrica)

Monopolar (polítrica)

Bipolar (anfítrica)

Perítrica

Fimbrias y pili en bacterias

MACIÓN

-Filamentos huecos, delgados, cortos y rectos (rígidos), situados en la superficie de determinadas bacterias.

Función no relacionada con la locomoción, sino con la adherencia a los sustratos (fimbrias)

y el intercambio de fragmentos de ADN durante la conjugación (pili).

Fimbrias y pili en bacterias

- Pili sexual:
 - → más largos (1 o 2)
 - ■Intervienen en la transferencia de genes (conjugación)

Funciones de relación de las bacterias ante estímulos de ambiente

- ▶ Las bacterias responden a un número elevado de estímulos ambientales diversos mediante modificaciones de su actividad metabólica o de su comportamiento.
- La respuesta más generalizada consiste en movimientos de acercamiento o distanciamiento respecto a la fuente de los estímulos (taxias) que pueden ser de varios tipos (flagelar).
- Algunas especies bacterianas, ante los estímulos adversos del ambiente, provocan la formación de esporas de resistencia, que, al ser intracelulares, se denominan endosporas.
- Las endosporas bacterianas son **estructuras** destinadas a **proteger el ADN y el resto del contenido protoplasmático**, cuya actividad metabólica se reduce al estado de **vida latente**; pueden resistir temperaturas mayores a 80 °C y soportan la acción de diversos agentes físicos y químicos. En condiciones favorables germinan y dan lugar a una nueva bacteria (forma vegetativa).

Esporas bacterianas o endosporas

- Bacterias Gram-positivas: Bacillus, Clostridium, Sporosarcina
- Cuando la bacteria detecta bajos niveles de nutrientes (C, N, P) → se desencadena el proceso de esporulación
- La espora se forma dentro de la célula vegetativa
 Esporangio = célula madre + endospora
- Al final de la esporulación, la célula madre se autolisa, y la espora queda libre
- La endospora soporta prolongados periodos en ausencia de nutrientes.
 Resiste estrés ambientales
- En condiciones adecuadas, la espora germina y se transforma en una célula vegetativa

MACIÓNUA

Esporas bacterianas o endosporas Localización intracelular

(a) Endosporas terminales

(b) Endosporas subterminales

(c) Endosporas centrales

Esporas bacterianas

Germinación

Célula vegetativa

Endospora en desarrollo

Célula esporulante

Endospora madura

Envoltura (cubierta, cutícula) (2)

Corteza (3)
Exosporium (1)
Pared del "núcleo"
ADN
Ribosomas

El septo de la espora comienza a aislar al ADN recién replicado y una pequeña fracción del citoplasma

La membrana plasmática rodea el ADN y citoplasma

Formación de peptidoglicano entre las membranas -Corteza

Aparece el exosporio (proteínas)

La endospora se libera por lisis de la célula

Estructura de endospora bacteriana

Acido dipicolínico + Ca / 10 a 30% H₂O → > termorresistencia Proteínas SASP ("small acid soluble proteins") – ADN (UV-desecación-calor)

Esporas bacterianas o endospora

- Estructura termorresistente, forma latente
- Sobrevive condiciones adversas (desecación, ácidos, radiación, desinfectantes)

■ Germinación:

- Activación
- Iniciación
- Liberación

Salida de la nueva célula vegetativa al final de la germinación. Observar la rotura de las cubiertas (exosporio, etc).

Característica	Célula vegetativa	Endospora
Aspecto microscópico	Gram + No refractil	Cortex grueso, cutícula, exosporio, refráctil

Tinción de esporas de Wirtz- Conklin (Schaeffer- Fulton)	Tiñe selectivamente las endosporas	Se cubre la preparación con verde de malaquita y se calienta a emisión de vapores durante 60 segundos. Se lava con agua durante 30 segundos y se tiñe con safranina. Las endosporas retienen el color verde; el resto de la célula toma el color rosa.	
Tinción de flagelos de Leifson	Permite observar los flagelos	A las células previamente fijadas, se le añade una mezcla de ácido tánico (mordiente) y del colorante rosanilina. El mordiente engruesa los flagelos y el colorante los tiñe.	
Tinción negativa	Revela la presencia de cápsulas	Se utiliza tinta china o nigrosina para teñir una preparación en fresco del espécimen. Las partículas de colorante no pueden penetrar en la cápsula, que se observa como una	

región clara alrededor de la célula.

Fotos Microscopia óptica

59

Inclusiones citoplasmáticas

- Algunas bacterias tienen estructuras internas que constituyen depósitos de reserva
 - gránulos de almacenamiento: polifosfato, azufre, polihidroxibutirato (PHBs)
 - → vesículas de gas flotación
 - Carboxisomas ("fijadoras de CO₂" enzima Ribulosa 1-5 difosfato carboxilasa)

<u>Gránulos de polihidroxibutirato</u> (PHBs)

Bacillus megaterium

Vesículas de gas: flotación en cianobacterias

Morfolología macroscópica

Técnicas de cultivo puro Esterilización – Medios de cultivo

Generación de una población a partir de una célula Colonias Bacterianas

Forma
Borde
Textura
Elevación
Color

Colonias Bacterianas

pigmento verde oscuro, soluble en agua (Piocianina)

pigmento verde fluorescente, soluble en agua (Fluoresceína)

Pseudomonas aeruginosa

Hasta la próxima ...!!!!