$\Delta(1900) \ 1/2^-$

 $I(J^P) = \frac{3}{2}(\frac{1}{2})$ Status: **

OMITTED FROM SUMMARY TABLE

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

Δ (1900) POLE POSITION

REAL PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
1845 ± 20	SOKHOYAN	15A	DPWA	Multichannel	
$1865 \pm 35 \pm 19$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$	
1780	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$	
1870 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
1845 ± 20	GUTZ	14	DPWA	Multichannel	
1845 ± 25	ANISOVICH	12A	DPWA	Multichannel	
1844	SHRESTHA	12A	DPWA	Multichannel	
1795	VRANA	00	DPWA	Multichannel	
-2×IMAGINARY PART					
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
295±35	SOKHOYAN	15A	DPWA	Multichannel
$187 \pm 50 \pm 19$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
180 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following	ng data for averages	s, fits,	limits, e	etc. • •
295 ± 35	GUTZ	14	DPWA	Multichannel
300 ± 45	ANISOVICH	12A	DPWA	Multichannel
223	SHRESTHA	12A	DPWA	Multichannel
58	VRANA	00	DPWA	Multichannel

△(1900) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
11±2	SOKHOYAN	15A	DPWA	Multichannel	
$11 \pm 4 \pm 2$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$	
10±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use the following data for averages, fits, limits, etc. • •					
11±2	GUTZ	14	DPWA	Multichannel	
10±3	ANISOVICH	12A	DPWA	Multichannel	

PHASE θ

VALUE (°)	DOCUMENT ID		TECN	COMMENT	
-115 ± 20	SOKHOYAN	15A	DPWA	Multichannel	
$20 \pm 27 \pm 19$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$	
$+ 20 \pm 40$	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					
-115 ± 20	GUTZ	14	DPWA	Multichannel	
-125 ± 20	ANISOVICH	12A	DPWA	Multichannel	

△(1900) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized residue in $N\pi \to \Delta(1900) \to \Sigma K$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.07 + 0.02	-50 + 30	ANISOVICH 12A	DPWA	Multichannel

Normalized residue in $N\pi \to \Delta(1900) \to \Delta\pi$, *D*-wave

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.18 ± 0.10	105 ± 25	SOKHOYAN 15A	DPWA	Multichannel
• • • We do not	t use the following data	for averages, fits, lin	nits, etc.	• • •
$0.12^{+0.08}_{-0.05}$	110 ± 20	ANISOVICH 12A	DPWA	Multichannel

Normalized residue in $N\pi \to \Delta(1900) \to \Delta(1232)\eta$

MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.013 ± 0.006	undefined	GUTZ	14	DPWA	Multichannel

Normalized residue in $N\pi \rightarrow \Delta(1900) \rightarrow N(1440)\pi$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.11 ± 0.06	$\overline{115\pm30}$	SOKHOYAN 15/	DPWA	Multichannel

Normalized residue in $N\pi ightarrow \Delta(1900) ightarrow N(1520)\pi$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.06±0.03	undefined	SOKHOYAN 15A	DPWA	Multichannel

△(1900) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1840 to 1920 (≈ 1860) OUR ESTIM	IATE			
1840 ± 20	SOKHOYAN	15A	DPWA	Multichannel
1890 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1908 ± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

1840 ± 20	GUTZ	14	DPWA	Multichannel
1840 ± 30	ANISOVICH	12A	DPWA	Multichannel
1868 ± 12	SHRESTHA	12A	DPWA	Multichannel
1802 ± 87	VRANA	00	DPWA	Multichannel

△(1900) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
295 ± 30	SOKHOYAN	15A	DPWA	Multichannel
170 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
140 ± 40	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	data for average	s, fits,	limits, e	etc. • • •
295 ± 30	GUTZ	14	DPWA	Multichannel
300 ± 45	ANISOVICH	12A	DPWA	Multichannel
234 ± 27	SHRESTHA	12A	DPWA	Multichannel
48 ± 45	VRANA	00	DPWA	Multichannel

Δ (1900) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$N\pi$	4–12 %
Γ_2	ΣK	seen
Γ ₃	$N\pi\pi$	45–85 %
Γ_4	$\Delta(1232)\pi$	
Γ_5	$\mathit{\Delta}(1232)\pi$, $\mathit{D} ext{-}$ wave	30–70 %
Γ_6	$N \rho$	
Γ ₇	$N\rho$, $S=1/2$, S -wave	seen
Γ ₈	$N\rho$, $S=3/2$, D -wave	seen
Γ ₉	$N(1440)\pi$	8–32 %
Γ_{10}	$N(1520)\pi$	2–10 %
Γ_{11}	$\Delta(1232)\eta$	0–2 %
Γ_{12}	N γ , helicity=1/2	0.06–0.43 %
Γ ₁₁	$\Delta(1232)\eta$	

Δ (1900) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
7± 2	SOKHOYAN	15A	DPWA	Multichannel	
10± 3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
8± 4	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use the following d	lata for averages	s, fits,	limits, e	tc. • • •	
7± 2	GUTZ	14	DPWA	Multichannel	
7± 3	ANISOVICH	12A	DPWA	Multichannel	
8± 1	SHRESTHA	12A	DPWA	Multichannel	
33 ± 10	VRANA	00	DPWA	Multichannel	
HTTP://PDG.LBL.GOV	Page 3		Creat	ed: 5/30/2017	17:20

$\Gamma(\Delta(1232)\pi, D\text{-wave})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Γ ₅ /Γ
50±20	SOKHOYAN			Multichannel	
• • • We do not use the following of		-			
15^{+50}_{-10}	ANISOVICH	12A	DPWA	Multichannel	
56± 6	SHRESTHA	12A	DPWA	Multichannel	
28± 1	VRANA	00	DPWA	Multichannel	
$\Gamma(N\rho, S=1/2, S-wave)/\Gamma_{total}$					Γ ₇ /Γ
VALUE (%)	DOCUMENT ID			COMMENT	
• • • We do not use the following of	data for averages				
12±4	SHRESTHA			Multichannel	
30±2	VRANA	00	DPWA	Multichannel	
$\Gamma(N\rho, S=3/2, D-wave)/\Gamma_{total}$					Г ₈ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •	
23 ± 5	SHRESTHA	12A	DPWA	Multichannel	
5 ± 1	VRANA	00	DPWA	Multichannel	
$\Gamma(N(1440)\pi)/\Gamma_{\text{total}}$					Г9/Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
$20\!\pm\!12$	SOKHOYAN	15A	DPWA	Multichannel	
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •	
< 1	SHRESTHA	12A		Multichannel	
4± 1	VRANA	00	DPWA	Multichannel	
$\Gamma(N(1520)\pi)/\Gamma_{total}$					Γ_{10}/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
6 ± 4	SOKHOYAN	15A	DPWA	Multichannel	
$\Gamma(\Delta(1232)\eta)/\Gamma_{total}$					Γ ₁₁ /Γ
VALUE (%)	DOCUMENT ID				
1 ± 1	GUTZ	14	DPWA	Multichannel	
△(1900) PHOTON D	ECAY AMPL	ITUE	ES AT	THE POLE	
Δ (1900) $\rightarrow N\gamma$, helicity-1/2	amplitude A ₁	/2			
MODULUS (GeV ^{-1/2}) PHASE (°)	•	'	TF	CN COMMENT	
0.064 ± 0.015 0.064 ± 20				PWA Multichan	nel

△(1900) BREIT-WIGNER PHOTON DECAY AMPLITUDES

Δ (1900) $\rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

$VALUE (GeV^{-1/2})$	DOCUMENT ID		TECN	COMMENT
$0.065\!\pm\!0.015$	SOKHOYAN	15A	DPWA	Multichannel
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •
$0.057\!\pm\!0.014$	GUTZ	14	DPWA	Multichannel
-0.082 ± 0.009	SHRESTHA	12A	DPWA	Multichannel

Δ (1900) FOOTNOTES

△(1900) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

SOKHOYAN	15A	EPJ A51 95	V. Sokhoyan et al.	(CBELSA/TAPS Collab.)
GUTZ	14	EPJ A50 74	E. Gutz et al.	CBELSA/TAPS Collab.)
PDG	14	CP C38 070001	K. Olive et al.	(PDG Collab.)
SVARC	14	PR C89 045205	A. Svarc et al.	
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H.	Lee (PITT, ANL)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMÚ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky <i>et al.</i>	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP

 $^{^{1}}$ Fit to the amplitudes of HOEHLER 79.