Fixed Point

- * The user should guarantee first that the function f(X) is continuous on the interval and that the function g(X) is smooth and continuous on the interval [A,B] where the function is so that the method can function properly
 - 1) Ask the user for the function f(X), and another function g(X) along with the tolerance.
 - 2) Ask the user for the value X_0 , which will be the initial value.
 - 3) We evaluate X_0 in the function to obtain $f(X_0)$. If $f(X_0) = 0$ then tell the user that this is the root.
 - 4) Now we find the following value of X, we will store it in the variable X_n and continue evaluating X_0 in g(X). like this we have $X_n = g(X_0)$. And we evaluate it in the function f(X)... if $f(X_n) = 0$ then we tell the use that this is the root.
 - 5) We find the error with error = $\mid X_0 X_n \mid$
 - 6) Now we do a cycle ... while the error > tolerance, $f(X_n) \neq 0$, do :
 - a) $X_0 = X_n$
 - b) $X_n = g(X_n)$ to say X_n evulated in the function g.
 - c) $Error = |X_0 X_n|$
 - d) $f(X_n) =$ the new value of X_n evaluated in the function f
 - 7) If the error \leq tolerance, tell the user that the root is approximately X_n (final value) with the error being: _____(with the final value of the error)
 - 8) If $f(X_n) = 0$ tell the user that X_n is the root.