DAILY ASSESSMENT FORMAT

Date:	03-07-2020	Name:	Abhishek
Course:	Satellite Photogrammetry and Its Application	USN:	4al17ec001
Topic:	Photogrammetric products from satellite stereo images	Semester & Section:	6 & 'A'
Github Repository:	Abhishek-online-courses		

SESSION DETAILS			
Image of session			

Report -

Photogrammetric products

- A photogrammetric product is a representation of aspects of a scene derived from imagery of the scene.
- The representation may be geometric and include point coordinates, object geometry or measurements, or other attributes derivable from image geometry.

- In some cases, qualitative object properties may be added onto the basic geometric data.
- Traditionally, photogrammetric products meant hardcopy maps depicting elevation as contours and features as lines.
- With the advent of digital softcopy photogrammetry for production and the widespread adoption of GIS to utilize cartographic data, emphasis has shifted almost exclusively to products in digital.
- A digital elevation model (DEM) is a 3D CG representation of a terrain's surface commonly of a planet (e.g. Earth), moon, or asteroid – created from a terrain's elevation data.
- A "global DEM" refers to a discrete global grid.
- DEMs are used often in geographic information systems, and are the most common basis for digitally produced relief maps.
- While a digital surface model (DSM) may be useful for landscape modeling, city
 modeling and visualization applications, a digital terrain model (DTM) is often
 required for flood or drainage modeling, land-use studies, geological applications, and
 other applications and in planetary science.
- DEM is often used as a generic term for DSMs and DTMs, only representing height information without any further definition about the surface.
- Other definitions equalise the terms DEM and DTM, equalise the terms DEM and DSM, define the DEM as a subset of the DTM, which also represents other morphological elements,[9] or a DEM as a rectangular grid and a DTM as a three-dimensional model.

