# Blockchain for federated learning

Sreya Francis, Martinez Ismael

## Current Scenario



## Existing technology - Issues

- Data collection means adopted right now is incredibly privacy invasive
- We give our data for free in return of a free service
- Latency issues
- High transfer costs
- Centralized ownership (Users don't participate in the current system)
- Very limited data for healthcare research

## Current Issues

- Privacy Concerns
  - We don't have control over the data we generate!
- We are losing one source of natural income
  - Data is our natural resource and we own it
- Sensitive Product Problem some services are creepy
  - High risks of theft, embarrassment, resale .....etc
- Centralized control by Big Tech Giants
  - All of our data are controlled by tech giants like google, facebook

## How can we solve this?

- Enhance user privacy
  - We should control our data
- We should be rewarded for the data we own
  - Rewards based on data quality and quantity
- Decentralized power
  - Everyone has control over their data
- Enhance production of sensitive products/models
  - Enhanced privacy would make it easier to collect data related to sensitive fields like healthcare

# Ingredients for the solution

#### **Federated Learning**





**BlockChain** 



Internet of Things





Cryptography





# Federated Learning

- What is Federated Learning?
- How does it work?
- Federated Learning Platforms

# Federated Learning - Definition

- Idea: machine learning over a distributed dataset
- Federated computation: where a server coordinates a fleet of participating devices to compute aggregations of devices' private data.
- Federated learning: where a shared global model is trained via federated computation.
- Definition: training a shared global model, from a federation of participating devices which maintain control of their own data, with the facilitation of a central server.



# Federated Learning – Brief stepwise overview

- Step 1: Users download a Model
- Step 2: Users train the Model on their own data.
- Step 3: Users upload their Gradients to a server
- Step 4: Gradients are added up to protect privacy.
- Step 5: The Model is updated with the Global Model.

# Federated Learning - Algorithm

#### Server

#### **Until Converged:**

- 1. Select a random subset (e.g.200) of the (online) clients
- 2. In parallel, send current parameters  $\theta(t)$  to those clients

#### Selected client K

- 1. Receive  $\theta(t)$  from server.
- 2. Run some number of minibatch SGD steps, producing  $\theta'$
- 3. Return  $\theta' \theta(t)$  to server.
- 3.  $\theta(t+1) = \theta(t) + data$ -weighted average of client updates

## Federated Learning

## - Pros & Cons

#### Pros:

Enhanced User Privacy: Users keep their data secret

#### Cons:

- Privacy: Gradients give hints about data
- Theft: Participants can steal the updated
  models
- No Sensitive Products: Because of theft/privacy issues

# One Possible Solution: Homomorphic Encryption

What is Homomorphic Encryption?



- Homomorphically encrypt the user gradients so that the gradient privacy is preserved
- Privacy-Preserving Deep Neural Network model (2P-DNN) based on the Paillier
   Homomorphic Cryptosystem could be used to enhanced global model privacy
- Hence there is no issue of theft or privacy intrusion in this case

### **Reward Calculation**

#### Possible way

- Based on user model performance on validation set
  - To evaluate the validity of user data, we can run a validation check on the user model based on a trusted validation set.
  - Based on the performance on validation set, the users can be rewarded.
  - o If the validation accuracy goes below a specified threshold, the data is rejected.
- Pros
  - An easy and fast way to calculate user reward immediately after client side training
- Cons
  - At any given iteration, an honest gradient may update the model in an incorrect direction, resulting in a drop in validation accuracy.
  - This is confounded by the problem that clients may have data that is not accurately modeled by our trusted validation set

### Issues with data in FL

#### What can go wrong?

- Gamber attack
  - User/Attacker can randomly pick data and maliciously change them
  - User can give garbage input
  - User/Attacker give data that does not contribute to the model
- Omniscient attack
  - Attackers are supposed to know the gradients sent by all the workers
  - Use the sum of all the gradients, scaled by a large negative value,
  - And replace some of the gradient vectors.
- Gaussian attack
  - Some of the gradient vectors are replaced by random vectors sampled from a Gaussian distribution with large variances.

### How to counter adversaries?

#### Possible ways

- Based on KRUM Algorithm
  - Uses the Euclidean distance to rank the gradients
  - Determines which gradient contributions are removed
  - the top f contributions to the client model that are furthest from the mean client contribution are removed from the aggregated gradient
- Pros
  - o specifically designed to counter adversaries in federated learning.
- Cons
  - Not an absolute measure of user contribution
  - Implementation is a bit complicated

## How to ensure validity of gradients?

Possible ways

Let us assume that q out of n vectors are Byzantine/incorrect, where q < n:



#### Krum's Algo in a nutshell:

$$\begin{split} Krum(\{\tilde{v}_i:i\in[n]\}) &= \tilde{v}_k,\\ k &= \operatorname*{argmin}_{i\in[n]} \sum_{i\to j} \|\tilde{v}_i - \tilde{v}_j\|^2, \end{split}$$

where  $i \to j$  is the indices of the n-q-2 nearest neighbours of  $\tilde{v}_i$  in  $\{\tilde{v}_i : i \in [n]\}$  measured by Euclidean distance.

- •Works only when q < n
- •Ensure upto 33% protection against adversarial attacks
- Best solution proposed till date

### **Proposed Solution to the User Reward Issue**

#### Data Cost

- Each User calculates his/her data cost
- Class id Ci, Number of samples Nci
- Cost per user -> ∑j=1 to k (j\*Nci)
- Generate validation set
  - Based on parameters passed to calculate data cost
  - Automatically generate a validation set with some random samples
  - Samples pertain to user specified classes

#### Training



- •Stop training before the model over-fits data
- •If validation error doesn't go down, user entry is wrong
- •If validation error goes down, user entry is valid and pay the user based on calculated data cost



# To Do: Causal Learning

- How can Causal Learning help FL?
- Issues?
- Possible solutions