통계학 (강좌) 중간고사 2 (16:00~18:00)

※ 답안지에 소속, 학번, 이름을 빠짐없이 기록하였는지 확인 후, 다음 물음에 대한 정답을 반드시 풀이 과정과 함께 잘 정리하여 제출하세요. 부정행위 (계산기 부정사용 포함) 적발 시 즉시 퇴실 조치할 것입니다.

- ※ 소수점 넷째자리까지 쓰세요.
- 1. (총 10점, 각 2점) 다음 문장에 대하여 참이면 O, 거짓이면 X로 답하시오.
- (1) 모평균에 대한 95% 신뢰구간을 계산하여 (120, 129)를 얻었다. 이 때 이 신뢰구간이 모평균을 포함할 확률은 95%이다. (X)
- (2) 일표본 T-검정에서 단측 검정과 양측 검정은 동일한 유의수준에서 제 1종의 오류가 발생할 확률이 서로 다르다. (X)
- (3) 모평균에 대한 95% 신뢰구간의 길이는 동일한 표본을 이용하여 계산한 모평균에 대한 99% 신뢰구간의 길이보다 더 길다. (X)
- (4) $H_0: \mu = \mu_0 \ vs \ H_1: \mu > \mu_0$ 의 검정에서 $\mu_2 > \mu_1 > \mu_0$ 이라면, 모든 조건이 동일 할 때 실제로 $\mu = \mu_1$ 일 때의 검정력보다 $\mu = \mu_2$ 일 때의 검정력의 크기가 더 크다. (O)
- (5) 대응 비교에서 단측 검정을 시행하였을 때 귀무가설이 기각되었다면, 동일한 유의수준의 양측 검정에서는 귀무가설이 기각되지 않는다. (X)
- 2. (17점) 대학교 신입생들의 도덕성 지수-MQ(Morale Quotient)는 모평균이 80이고 표준편차가 15인 정규 분포를 따른다고 한다. 어떤 교육학자가 취업위주의 교육 때문에 대학교육 후졸업 예정자들의 도덕성 지수는 오히려 떨어진다고 주장하며 졸업 예정자 500명을 대상으로도덕성 지수를 측정하였다.
- (1) (2점) 교육학자의 주장이 옳다고 할 수 있는지 검정하기 위한 적절한 통계적 가설을 세우시오.

(풀이) H_o : μ =80 VS H_1 : μ <80

(2) (5점) (1)의 가설을 검정하기 위해 조사된 500명의 표본평균을 \overline{X} 라고 하자. 유의수준 5% 에서 \overline{X} 의 기각역을 구하여라.

$$(\frac{\Xi}{2}\circ]) \quad P(\frac{\overline{X}-80}{15/\sqrt{500}} \le -1.645) = 0.05 \quad \Longrightarrow \quad P(\overline{X} \le 78.8965) = 0.05 \quad \therefore 78.8965$$

(3) (5점) 실제로 졸업예정자들의 도덕성 지수의 모평균이 78일 때 유의수준 $\alpha = 0.05$ 에서 검정력을 구하여라.

$$(\Xi\circ)$$
) $\gamma(78) = P(\frac{\overline{X}-80}{15/\sqrt{500}} \le -1.645 | \mu_o = 78) = P(\frac{\overline{X}-78}{15/\sqrt{500}} \le \frac{-78+80}{15/\sqrt{500}} -1.645 | \mu_o = 78)$
= $P(Z < 1.3364) = 0.9093$

(4) (5점) 1인당 도덕성 지수를 측정하기 위해서는 12,000원의 비용이 발생한다고 한다. 그리고 제 1종의 오류와 제 2종의 오류가 발생할 확률이 각각 1% 이하가 되도록 하는 검정법을 사용하려고 한다. 이를 위해서는 최소 얼마의 비용이 발생하는가?

$$\begin{split} (\Xi \circ)) & \beta = P(\frac{\overline{X} - 80}{15/\sqrt{n}} \ge -z_{001} | \mu_o = 78) \\ & = P(\frac{\overline{X} - 78}{15/\sqrt{n}} + \frac{78 - 80}{15/\sqrt{n}} \ge -2.326 | \mu_o = 78) \\ & = P(\frac{\overline{X} - 78}{15/\sqrt{n}} \ge \frac{-78 + 80}{15/\sqrt{n}} -2.326 | \mu_o = 78) \le 0.01 \end{split}$$

을 만족하는 표본의 크기를 먼저 찾도록 한다.

주어진 식을 정리하면 $\frac{-78+80}{15/\sqrt{n}} - 2.326 \ge z_{0.01}$ 이므로 구하는 표본수는 다음과 같다.

$$\therefore n \ge \left(\frac{2.326 + 2.326}{(80 - 78)/15}\right)^2 = 1217.312$$

따라서 최소 표본수는 1218명이고 필요한 최소 비용은 1218*12,000=14,616,000 원이다.

- 3. (총 10점) 특정 상표의 냉장고 20대를 임의 추출하여 냉동실의 온도를 측정하였더니 온도의 표본표준편차가 1.35도였다. 다음 물음에 답하시오.
- (1) (5점) 냉동실 온도의 표준편차의 참값이 1도보다 높다는 뚜렷한 증거가 있는가? 유의수준 α =0.05에서 검정을 하여라. 그리고 검정이 유효하기 위해 필요한 가정들을 함께 기술하여라.

(풀이) 검정에 필요한 가정: 냉동실 온도의 분포가 정규분포를 따른다.

가설: $H_0: \sigma=1$ vs $H_1: \sigma>1$

검정 통계량 :
$$\chi^2 = (20-1)\frac{S^2}{\sigma_0^2} = \frac{19 \times 1.35^2}{1^2} = 34.6275 \sim \chi^2(19)$$

유의수준 5%의 기각역은 $\chi^2 > \chi^2_{0.95}(19) = 30.14$ 이므로 귀무가설을 기각할 수 있다. 따라서 냉동실 온도의 표준편차의 참값이 1도 보다 높다고 할 수 있는 충분한 통계적 근거가 있다.

(2) (5점) 냉동실 온도의 모표준편차에 대한 95% 신뢰구간을 구하시오.

(풀이)
$$\frac{(n-1)S^2}{\chi^2_{0.025}(n-1)} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{0.975}(n-1)}$$
$$\frac{19 \times 1.35^2}{32.85} \le \sigma^2 \le \frac{19 \times 1.35^2}{8.91}$$

 $1.05411 \le \sigma^2 \le 3.8864$

 $\therefore 1.0267 \le \sigma \le 1.9714$

4. (10점) A,B 두 청량음료를 7명의 시음전문가가 평가한 결과 다음 자료를 얻었다. 두 청량음료의 맛이 차이가 있다고 할 수 있는지 유의수준 5%에서 검정하시오. 검정에 필요한 합리적인 가정을 함께 기술하시오.

	1	2	3	4	5	6	7
A	85	78	77	90	88	86	78
B	80	79	74	84	86	89	72

sol) 주어진 자료는 대응 표본 자료이므로 적절한 분석 방법은 대응 비교 방법이다. A 청량음료를 평가한 결과를 X_i , B 청량음료를 평가한 결과를 Y_i 라고 하자. 동일한 짝(pair) 내에서 두 실험 결과의 차이를 나타내는 새로운 변수 $D_i = X_i - Y_i$ 를 정의하도록 하자. 이 때, 귀무가설과 대립가설은 다음과 같다.

$$H_0: \mu_D = 0$$
 vs $H_1: \mu_D \neq 0$

차이의 모집단이 정규분포를 따른다는 가정 하에 검정통계량은 다음과 같다.

$$T = \frac{\overline{D} - \mu_D}{s_D / \sqrt{n_D}} = \frac{2.5714 - 0}{3.505 / \sqrt{7}} = 1.941$$

유의수준 0.05에서 양측 검정의 기각역은 $|T| \ge t_{0.025}(6) = 2.447$ 으로 검정통계량의 관측값은 기각역에 속하지 않으므로 귀무가설을 기각할 수 없다. 따라서 두 청량음료의 맛의 차이는 있다고 할 수 없다.

5. (15점) 지역 환경에 따라 중학교 학생들의 학력에 차이가 있는가를 알아보기 위하여, 두 도시의 중학교 1학년 학생 10명을 각각 단순랜덤추출하여 동일한 시험을 시행한 결과가 다음과 같다. 단, 두 모집단 모두 학생들의 시험성적은 정규분포를 따른다고 가정하자.

	표본크기	평균	표준편차
도시1	10	76.4	8.2
도시2	10	81.2	7.6

(1) (5점) 두 모집단 분산은 동일하다고 볼 수 있는가? 적절한 통계적 가설을 쓰고 유의수준 5%에서 검정을 시행하시오.

sol) (1) 검정하고자 하는 가설은 다음과 같다.

$$H_0: \sigma_1^2 = \sigma_2^2 \text{ vs } H_1: \sigma_1^2 \neq \sigma_2^2$$

검정통계량
$$F=rac{S_1^2}{S_2^2}$$
 에 대하여, 관측값 $f=rac{s_1^2}{s_2^2}=rac{8\cdot 2^2}{7\cdot 6^2}pprox 1.1641$ 이고

귀무가설 H_0 : $\sigma_1^2=\sigma_2^2$ 하에서 $F\sim F$ (9,9) 이므로 ($\because n_1=10,n_2=10$)

유의수준 α 의 기각역은 $F \leq 1/F_{0.025}(9,9)$ or $F \geq F_{0.025}(9,9)$ 이다.

 $F_{0025}(9,9)=4.026$ 이므로 기각역은 다음과 같다.

$$F \le 1/4.026 = 0.2484$$
 or $F \ge 4.026$

검정통계량의 관측값이 기각역에 속하지 않으므로 귀무가설 H_0 를 기각하지 못한다. 즉, 두 모집단의 분산이 동일하다고 결론 내릴 수 있다.

(2) (5점) (1)의 검정 결과를 반드시 반영하여, 두 모집단의 모평균에 차이가 존재하는지 검정하기 위한 적절한 통계적 가설을 쓰고 유의수준 5%에서 검정하시오.

단, 필요하다면
$$df = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{(s_1^2/n_1)^2/(n_1 - 1) + (s_2^2/n_2)^2/(n_2 - 1)}$$
 를 사용하여라.

(풀이) (1)에서 두 모집단의 분산이 동일하다는 결론을 얻었으므로, 등분산을 가정한 독립 이 표본 평균 검정을 시행한다.

가설 :
$$H_0: \mu_2 - \mu_1 = 0$$
 vs $H_1: \mu_2 - \mu_1 \neq 0$

검정통계량:
$$T = \frac{\overline{X} - \overline{Y}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{(76.4 - 81.2) - 0}{7.9057 \sqrt{\frac{1}{10} + \frac{1}{10}}} = -1.3576$$

$$(s_p = \sqrt{\frac{9s_1^2 + 9s_2^2}{18}} = 7.9057)$$

기각역 : $|T| \ge t_{0.025}(18) = 2.101$ 이므로 검정 통계량의 관측값이 기각역에 속하지 않는다. 따라서, H_0 를 기각하지 않고 두 모집단의 모평균이 서로 같다고 결론 내릴 수 있다.

(3) (5점) 두 도시의 시험성적의 모평균의 차에 대한 95% 신뢰구간을 구하여라.

(풀이) 두 도시의 시험성적의 모평균에 차이에 대한 95% 신뢰구간은 다음과 같다.

$$(\bar{x} - \bar{y}) \pm t_{0.025}(n_1 + n_2 - 2)s_p\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = (-12.2281, 2.6282)$$

6. (총 13점) 모집단의 정규성 검정을 적합도 검정을 이용하여 시행하는 방법은 다음과 같다. 먼저 전체의 자료의 범위에 대해 이를 k개의 구간으로 나눈 후, 정규 모집단이 가정된 경우의 각 구간별 확률값을 계산한다. 즉, 모집단의 모수를 표본의 평균과 표준편차를 사용하여 추정한 뒤, 이를 모집단의 참값으로 간주하여 각 구간의 확률 p_i 를 정규분포의 확률밀도함수를 이용하여 계산한다. 그러면 각 구간의 기대도수 E_i 는 자료의 총 개수 n과 계산된 각 구간의 확률 p_i 의 곱에 의해 구해지고, 또한 관측도수 O_i 는 각 구간에 속하는 표본의 개수가 된다. 이와 같이 구한 기대도수와 관측도수를 이용하면 통계량

$$\chi^2 = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$$

는 근사적으로 자유도 (k-3) 인 χ^2 분포를 따름을 이용하여 모집단의 정규성 검정을 할 수 있다.

이제 100개의 자료에 대한 정규성 검정을 시행하기 위해 자료 구간을 다음과 같이 8개의 구간으로 나눈 후 각 구간별 확률값을 계산하고 관측도수를 조사한 결과, 다음의 표를 얻었다.

구간번호	1	2	3	4	5	6	7	8
확 률 (p_i)	0.05	0.10	0.15	0.20	0.20	0.15	0.10	0.05
관측도수(O_i	5	10	22	25	19	12	6	1

(1) (8점) 각 구간의 기대도수를 계산하고 검정 통계량의 값을 계산하여라. sol)

(기대도수 3점) 각 구간별 기대도수는 $n \times p$, 로 계산할 수 있고 그 결과는 아래와 같다.

구간번호	1	2	3	4	5	6	7	8
기대도수(E_i)	5	10	15	20	20	15	10	5

(통계량 5점) 이를 이용하여 통계량의 관측값을 계산하면,

구간번호	1	2	3	4	5	6	7	8
$O_i - E_i$	0	0	7	5	-1	-3	-4	-4

$$\chi_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$
= $7^2 / 15 + 5^2 / 20 + (-1)^2 / 20 + (-3)^2 / 15 + (-4)^2 / 10 + (-4)^2 / 5 = 9.9667$

(2) (5점) 100개의 자료는 정규분포에서 생성된 자료라고 할 수 있는가? 적절한 통계적 가설을 쓰고 유의수준 5%에서 검정하라.

sol)

가설 : H_0 : 모집단은 정규분포를 따른다. vs H_1 : not H_0

검정 통계량 : $\chi_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} = 9.9667$

기각역 : $\chi_0^2 \ge \chi_{0.05}^2(5) = 11.07$ 이고 검정통계량이 기각역에 속하지 않으므로 귀무가설을 기각하지 못한다. 따라서 해당 표본은 정규 분포에서 생성된 자료이다.

7. (25점) 다음은 150명의 남녀 표본에 대해 연소득을 조사한 결과이다. 연소득은 연 4000만 원 미만, 연 4000만원 이상에서 연 6000만원 미만, 그리고 연 6000만원 이상의 세 그룹으로 범주화 하여 기록하였다.

	남성	여성
연 4000만원 미만	10	30
연 4000만원 이상	35	15
~ 연 6000만원 미만	33	15
연 6000만원 이상	15	45

(1) (5점) 남성 그룹에서 연 4000만원 미만의 소득을 갖는 비율에 대한 95% 신뢰구간을 구하 시오

(풀이)

X: 연 4000만원 미만의 소득을 갖는 남자의 수

n: 남자의 수

 $\hat{p} = X/n = 10/60 = 0.1666$ $z_{0.025} = 1.96$

연 4000만원 미만의 소득을 갖는 남자의 비율에 대한 95%신뢰 구간

$$\hat{p} \pm z_{0.025} \sqrt{\hat{p}(1-\hat{p})/n} = 0.1666 \pm 1.96 \sqrt{0.1666(1-0.1666)/60}$$

 \Rightarrow (0.07236612,0.2609672)

(2) (10점) 연 6000만원 이상의 소득을 갖는 비율이 성별에 따라 다른지를 비율검정을 이용하여 유의수준 5%에서 검정하여라. 적절한 가설을 함께 제시하시오. (검정을 위한 가설, 검정통계량과 검정방법을 정확히 서술할 것)

(풀이)

 p_A : 남성의 연 6000만원 이상의 소득을 갖는 비율

 p_{B} : 여성의 연 6000만원 이상의 소득을 갖는 비율

 X_{4} : 연 6000만원 이상의 소득을 갖는 남자의 수

 X_{B} : 연 6000만원 이상의 소득을 갖는 여자의 수

 n_A : 남자의 수

 n_B : 여자의 수

가설) $H_0: p_A = p_B$ vs $H_1: p_A \neq p_B$

검정통계량)
$$Z = \frac{\hat{p}_A - \hat{p}_B}{\sqrt{\hat{p}(1-\hat{p})(n_A^{-1} + n_B^{-1})}}, \ \hat{p} = \frac{X_A + X_B}{n_A + n_B}$$

$$\hat{p_A} = X_A/n_A = 15/60 = 0.25,$$

$$\hat{p}_B = X_B / n_B = 45/90 = 0.5,$$

$$\hat{p} = \frac{X_A + X_B}{n_A + n_B} = \frac{15 + 45}{60 + 90} = 0.4,$$

$$z_0 = \left| \frac{0.25 - 0.5}{\sqrt{0.4(1 - 0.4)(60^{-1} + 90^{-1})}} \right| = 3.061862 > 1.96 = z_{0.025}$$

결론) 따라서 유의수준 0.05에서 H_0 를 기각한다. 즉, 성별에 따른 연 6000만원 이상의 소 득자의 비율이 다르다고 할 수 있다.

(3) (10점) 소득과 성별은 독립이라고 말할 수 있는지 적절한 가설을 세우고 유의수준 5%에서 검정하여라. (검정을 위한 가설, 검정통계량과 검정방법을 정확히 서술할 것)

(풀이) 가설) $H_0: p_{ij} = p_i \cdot p_j$ for 모든i,j $H_1:$ not H_0 검정통계량)

$$\chi^2 = \sum_{i=1}^{2} \sum_{j=1}^{3} \frac{(O_{ij} - \hat{E}_{ij})^2}{\hat{E}_{ij}} \sim \chi^2(2)$$

	남성	여성	합계
연 4000만원 미만	10 (16)	30 (24)	40
연 4000만원 이상 ~ 연 6000만원 미만	35 (20)	15 (30)	50
연 6000만원 이상	15 (24)	45 (36)	60
합계	60	90	150

$$\widehat{E_{11}} = n\widehat{p_{11}} = 150 \cdot \frac{40}{150} \cdot \frac{60}{150} = 16$$

$$\widehat{E_{12}} = n\widehat{p_{12}} = 150 \cdot \frac{40}{150} \cdot \frac{90}{150} = 24$$
....
$$\widehat{E_{21}} = n\widehat{p_{21}} = 150 \cdot \frac{50}{150} \cdot \frac{60}{150} = 20$$
....

$$\widehat{E_{32}} = n\widehat{p_{32}} = 150 \cdot \frac{60}{150} \cdot \frac{90}{150} = 36$$

$$\chi_0^2 = \frac{(10 - 16)^2}{16} + \dots + \frac{(45 - 36)^2}{36} = 28.125 > 5.99 = \chi_{0.05}^2(2)$$

결론) 따라서 유의수준 0.05에서 H_0 를 기각할 수 있으므로 소득과 성별은 독립이 아니라 고 할 수 있다.

표준 정규 분포표 $P(Z \le Z)$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

t 분포표

 χ^2 분포표 $t_{\alpha} : P(T \ge t_{\alpha}) = \alpha, \quad T \sim t(df)$ $\chi_{\alpha}^{2} : P(\chi^{2} \ge \chi_{\alpha}^{2}) = \alpha, \quad \chi^{2} \sim \chi^{2}(df)$

df \α	0.10	0.05	0.025	0.01	df \ α	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01
1	3.078	6.31	12.71	31.82	1	0.00	0.00	0.00	0.02	2.71	3.84	5.02	6.63
2	1.886	2.920	4.303	6.965	2	0.02	0.05	0.10	0.21	4.61	5.99	7.82	9.21
3	1.638	2.353	3.182	4.541	3	0.11	0.22	0.35	0.58	6.25	7.81	9.35	11.34
4	1.533	2.132	2.776	3.747	4	0.30	0.48	0.71	1.06	7.78	9.49	11.14	13.28
5	1.476	2.015	2.571	3.365	5	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09
6	1.440	1.943	2.447	3.143	6	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16.81
7	1.415	1.895	2.365	2.998	7	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48
8	1.397	1.860	2.306	2.896	8	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09
9	1.383	1.833	2.262	2.821	9	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67
10	1.372	1.812	2.228	2.764	10	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21
11	1.363	1.796	2.201	2.718	11	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.72
12	1.356	1.782	2.179	2.681	12	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22
13	1.350	1.771	2.160	2.650	13	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69
14	1.345	1.761	2.145	2.624	14	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14
15	1.341	1.753	2.131	2.602	15	5.23	6.26	7.26	8.55	22.31	25.00	27.49	30.58
16	1.337	1.746	2.120	2.583	16	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00
17	1.333	1.740	2.110	2.567	17	6.41	7.56	8.67	10.09	24.77	27.59	30.19	33.41
18	1.330	1.734	2.101	2.552	18	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81
19	1.328	1.729	2.093	2.539	19	7.63	8.91	10.12	11.65	27.02	30.14	32.85	36.19
20	1.325	1.725	2.086	2.528	20	8.26	9.59	10.85	12.44	28.41	31.41	34.17	37.57

F 분포표 $F_{0.05}: P(F \ge F_{0.05}) = 0.05, F \sim F(df_1, df_2)$

							df_1						
df_2	1	2	3	4	5	6	7	8	9	10	11	12	13
1	161.4	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	242.98	243.91	244.69
2	18.51	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385	19.396	19.405	19.413	19.419
3	10.12	9.552	9.277	9.117	9.013	8.941	8.887	8.845	8.812	8.786	8.763	8.745	8.729
4	7.709	6.944	6.591	6.388	6.256	6.163	6.094	6.041	5.999	5.964	5.936	5.912	5.891
5	6.608	5.786	5.409	5.192	5.050	4.950	4.876	4.818	4.772	4.735	4.704	4.678	4.655
6	5.987	5.143	4.757	4.534	4.387	4.284	4.207	4.147	4.099	4.060	4.027	4.000	3.976
7	5.591	4.737	4.347	4.120	3.972	3.866	3.787	3.726	3.677	3.637	3.603	3.575	3.550
8	5.318	4.459	4.066	3.838	3.687	3.581	3.500	3.438	3.388	3.347	3.313	3.284	3.259
9	5.117	4.256	3.863	3.633	3.482	3.374	3.293	3.230	3.179	3.137	3.102	3.073	3.048
10	4.965	4.103	3.708	3.478	3.326	3.217	3.135	3.072	3.020	2.978	2.943	2.913	2.887
11	4.844	3.982	3.587	3.357	3.204	3.095	3.012	2.948	2.896	2.854	2.818	2.788	2.761
12	4.747	3.885	3.490	3.259	3.106	2.996	2.913	2.849	2.796	2.753	2.717	2.687	2.660
13	4.667	3.806	3.411	3.179	3.025	2.915	2.832	2.767	2.714	2.671	2.635	2.604	2.577
14	4.600	3.739	3.344	3.112	2.958	2.848	2.764	2.699	2.646	2.602	2.565	2.534	2.507
15	4.543	3.682	3.287	3.056	2.901	2.790	2.707	2.641	2.588	2.544	2.507	2.475	2.448
16	4.494	3.634	3.239	3.007	2.852	2.741	2.657	2.591	2.538	2.494	2.456	2.425	2.397
17	4.451	3.592	3.197	2.965	2.810	2.699	2.614	2.548	2.494	2.450	2.413	2.381	2.353
18	4.414	3.555	3.160	2.928	2.773	2.661	2.577	2.510	2.456	2.412	2.374	2.342	2.314
19	4.381	3.522	3.127	2.895	2.740	2.628	2.544	2.477	2.423	2.378	2.340	2.308	2.280

F 분포표 $F_{0.025}:\ P(F \ge F_{0.025}) \!=\! 0.025,\ F \!\sim\! F(\!df_1,\!df_2)$

							df_1						
df_2	1	2	3	4	5	6	7	8	9	10	11	12	13
1	647.7	799.50	864.16	899.58	921.84	937.11	948.21	956.65	963,28	968.62	973.02	976.70	979.83
2	38.50	39.000	39.165	39.248	39.298	39.331	39.355	39.373	39.387	39.398	39.407	39.415	39.421
3	17.44	16.044	15.439	15.101	14.885	14.735	14.624	14.540	14.473	14.419	14.374	14.337	14.304
4	12.21	10.649	9.979	9.605	9.364	9.197	9.074	8.980	8.905	8.844	8.794	8.751	8.715
5	10.00	8.434	7.764	7.388	7.146	6.978	6.853	6.757	6.681	6.619	6.568	6.525	6.488
6	8.813	7.260	6.599	6.227	5.988	5.820	5.695	5.600	5.523	5.461	5.410	5.366	5.329
7	8.073	6.542	5.890	5.523	5.285	5.119	4.995	4.899	4.823	4.761	4.709	4.666	4.628
8	7.571	6.059	5.416	5.053	4.817	4.652	4.529	4.433	4.357	4.295	4.243	4.200	4.162
9	7.209	5.715	5.078	4.718	4.484	4.320	4.197	4.102	4.026	3.964	3.912	3.868	3.831
10	6.937	5.456	4.826	4.468	4.236	4.072	3.950	3.855	3.779	3.717	3.665	3.621	3.583
11	6.724	5.256	4.630	4.275	4.044	3.881	3.759	3.664	3.588	3.526	3.474	3.430	3.392
12	6.554	5.096	4.474	4.121	3.891	3.728	3.607	3.512	3.436	3.374	3.321	3.277	3.239
13	6.414	4.965	4.347	3.996	3.767	3.604	3.483	3.388	3.312	3.250	3.197	3.153	3.115
14	6.298	4.857	4.242	3.892	3.663	3.501	3.380	3.285	3.209	3.147	3.095	3.050	3.012
15	6.200	4.765	4.153	3.804	3.576	3.415	3.293	3.199	3.123	3.060	3.008	2.963	2.925
16	6.115	4.687	4.077	3.729	3.502	3.341	3.219	3.125	3.049	2.986	2.934	2.889	2.851
17	6.042	4.619	4.011	3.665	3.438	3.277	3.156	3.061	2.985	2.922	2.870	2.825	2.786
18	5.978	4.560	3.954	3.608	3.382	3.221	3.100	3.005	2.929	2.866	2.814	2.769	2.730
19	5.922	4.508	3.903	3.559	3.333	3.172	3.051	2.956	2.880	2.817	2.765	2.720	2.681
20	5.871	4.461	3.859	3.515	3.289	3.128	3.007	2.913	2.837	2.774	2.721	2.676	2.637
21	5.827	4.420	3.819	3.475	3.250	3.090	2.969	2.874	2.798	2.735	2.682	2.637	2.598
22	5.786	4.383	3.783	3.440	3.215	3.055	2.934	2.839	2.763	2.700	2.647	2.602	2.563
23	5.750	4.349	3.750	3.408	3.183	3.023	2.902	2.808	2.731	2.668	2.615	2.570	2.531
24	5.717	4.319	3.721	3.379	3.155	2.995	2.874	2.779	2.703	2.640	2.586	2.541	2.502
25	5.686	4.291	3.694	3.353	3.129	2.969	2.848	2.753	2.677	2.613	2.560	2.515	2.476
26	5.659	4.265	3.670	3.329	3.105	2.945	2.824	2.729	2.653	2.590	2.536	2.491	2.451
27	5.633	4.242	3.647	3.307	3.083	2.923	2.802	2.707	2.631	2.568	2.514	2.469	2.429
28	5.610	4.221	3.626	3.286	3.063	2.903	2.782	2.687	2.611	2.547	2.494	2.448	2.409
29	5.588	4.201	3.607	3.267	3.044	2.884	2.763	2.669	2.592	2.529	2.475	2.430	2.390
30	5.568	4.182	3.589	3.250	3.026	2.867	2.746	2.651	2.575	2.511	2.458	2.412	2.372