第一章 随机事件与概率

第二节

概率的定义及其确定方法

Overview

- 1 概率的公理化定义
- 2 排列与组合公式
- ③ 确定概率的频率方法
- 4 确定概率的古典方法
- 5 确定概率的几何方法

• 主观定义:

• 主观定义: 事件 A 出现的可能性大小.

- 主观定义: 事件 A 出现的可能性大小.
- 频率定义:

- 主观定义: 事件 A 出现的可能性大小.
- 频率定义:事件A在大量重复试验下出现的频率的稳定值称为该事件的概率.

- 主观定义: 事件 A 出现的可能性大小.
- 频率定义:事件 A 在大量重复试验下出现的频率的稳定值称为该事件的概率.
- 古典定义:

- 主观定义: 事件 A 出现的可能性大小.
- 频率定义:事件 A 在大量重复试验下出现的频率的稳定值称为该事件的概率.
- 古典定义:如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等.

- 主观定义: 事件 A 出现的可能性大小.
- 频率定义:事件A在大量重复试验下出现的频率的稳定值称为该事件的概率.
- 古典定义:如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等.
- 几何定义:

- 主观定义: 事件 A 出现的可能性大小.
- 频率定义:事件A在大量重复试验下出现的频率的稳定值称为该事件的概率.
- 古典定义:如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等.
- 几何定义: 推广到无限个试验结果.

概率的公理化定义

非负性公理: P(A) ≥ 0;

概率的公理化定义

- 非负性公理: P(A) ≥ 0;
- 正则性 (规范性) 公理: $P(\Omega) = 1$;

概率的公理化定义

- 非负性公理: P(A) ≥ 0;
- 正则性 (规范性) 公理: $P(\Omega) = 1$;
- 可列可加性公理: 若 A_1 ,, A_2 , ..., A_n ... 互不相容,则 $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

说明:

• 排列组合是什么?

• 排列组合是什么? 从 n 个元素中任取 r 个元素, 求取法数.

- 排列组合是什么? 从 n 个元素中任取 r 个元素, 求取法数.
- 排列讲次序,组合不讲次序.

- 排列组合是什么? 从 n 个元素中任取 r 个元素, 求取法数.
- 排列讲次序, 组合不讲次序.
- 全排列:Pⁿ_n = n!

- 排列组合是什么? 从 n 个元素中任取 r 个元素, 求取法数.
- 排列讲次序, 组合不讲次序.
- 全排列:P_nⁿ = n!
- 0! = 1.

- 排列组合是什么? 从 n 个元素中任取 r 个元素, 求取法数.
- 排列讲次序, 组合不讲次序.
- 全排列:P_nⁿ = n!
- 0! = 1.
- 排列: $P_n^r = \frac{n!}{(n-r)!} = n(n-1)...(n-r+1)$

- 排列组合是什么? 从 n 个元素中任取 r 个元素, 求取法数.
- 排列讲次序, 组合不讲次序.
- 全排列:P_n = n!
- 0! = 1.
- 排列: $P_n^r = \frac{n!}{(n-r)!} = n(n-1)...(n-r+1)$
- 重复排列: n'

- 排列组合是什么? 从 n 个元素中任取 r 个元素, 求取法数.
- 排列讲次序, 组合不讲次序.
- 全排列:Pⁿ_n = n!
- 0! = 1.
- 排列: $P_n^r = \frac{n!}{(n-r)!} = n(n-1)...(n-r+1)$
- 重复排列: n^r
- 组合: $C_n^r = \begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{r!(n-r)!} = \frac{P_n^r}{r!}$

- 排列组合是什么? 从 n 个元素中任取 r 个元素, 求取法数.
- 排列讲次序, 组合不讲次序.
- 全排列:Pⁿ_n = n!
- 0! = 1.
- 排列: $P_n^r = \frac{n!}{(n-r)!} = n(n-1)...(n-r+1)$
- 重复排列: n^r
- 组合: $C_n^r = \begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{r!(n-r)!} = \frac{P_n^r}{r!}$
- 重复组合: $C_{n-r+1}^r = \begin{pmatrix} n+r-1 \\ r \end{pmatrix}$

加法原理

完成某件事情有 n 类途径, 在第一类途径中有 m_1 种方法, 在第二类途径中有 m_2 种方法, 依次类推, 在第 n 类途径中有 m_n 种方法, 则完成这件事共有 $m_1+m_2+...+m_n$ 种不同的方法.

乘法原理

完成某件事情需先后分成 n 个步骤, 做第一步有 m_1 种方法, 第二步有 m_2 种方法, 依次类推, 第 n 步有 m_n 种方法, 则完成这件事共有 $m_1 \times m_2 \times ... \times m_n$ 种不同的方法.

确定概率的频率方法

- 随机试验可大量重复进行.
- 进行 n 次重复试验,记 n(A) 为事件 A 的频数, $\Re f_n(A) = \frac{n(A)}{n}$ 为事件 A 的频率.
- 频率 f_n(A) 会稳定于某一常数 (稳定值).
- 用频率的稳定值作为该事件的概率.

古典概型

若一个随机试验 (Ω, F, P) 具有以下两个特征:

- ① 有限性。样本空间的元素 (基本事件) 只有为有限个,即 $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$;
- 等可能性。每个基本事件发生的可能性是相等的,即
 P(ω₁) = P(ω₂) = ... = P(ω_n)
 则称这类随机试验的数学模型为古典概型。
 则事件 A 的概率为: P(A) = A 中样本点的个数 / 样本点总数

例 1.2.1

n 个人围一圆桌坐, 求甲、乙两人相邻而坐的概率 (n > 2)

例 1.2.1

n 个人围一圆桌坐, 求甲、乙两人相邻而坐的概率 (n > 2) 解:考虑甲先坐好,则乙有 n-1 个位置可坐,而"甲乙相邻"只有两种情况.所以

$$P(A) = 2/(n-1)$$

例 1.2.2

n 个人坐成一排, 求甲、乙两人相邻而坐的概率.(注意: 请与上一题作比较)

例 1.2.2

n 个人坐成一排, 求甲、乙两人相邻而坐的概率.(注意: 请与上一题作比较)

解:

- 先考虑样本空间的样本点数: 甲先坐、乙后坐, 则共有 n(n-1) 种可能.
- 甲在两端,则乙与甲相邻共有2种可能.
- 甲在中间 (n-2) 个位置上,则乙左右都可坐,所以共有 2(n-2) 种可能。由此得所求概率为:

$$\frac{2+2(n-2)}{n(n-1)} = \frac{2}{n}$$

几何概型

若:

- 可度量性。样本空间 Ω 充满某个区域,其度量 (长度、面积、体积) 为 $S_{ }$
- ② 等可能性。落在 Ω 中的任一子区域 A 的概率,只与子区域的度量 S_A 有关,而与子区域的位置无关

则事件 A 的概率为: $P(A) = \frac{S_A}{S_\Omega}$

几何概型的例子

例 1.2.3 蒲丰投针问题

平面上画有间隔为 d 的等距平行线,向平面任意投掷一枚长为 l 的针,求针与平行线相交的概率.

解:

- ① 以 x 表示针的中点与最近一条平行线的距离, 又以 φ 表示针与此直线间的交角.
- ② 易知样本空间 Ω 满足: $0 \le x \le d/2$; $0 \le \varphi \le \pi$
- **③** Ω 形成 $x-\varphi$ 平面上的一个矩形, 其面积为: $S_{\Omega}=\frac{d}{2}\pi$
- **①** A = "针与平行线相交"的充要条件是: $x < \frac{1}{2}\sin(\varphi)$
- ⑤ 针是任意投掷的, 所以这个问题可用几何方法求解得

$$P(A) = \frac{S_A}{S_{\Omega}} = \frac{\int_0^{\pi} \frac{1}{2} \sin(\varphi) d\varphi}{\frac{d}{2}\pi} = \frac{2I}{d\pi}$$

π 的随机模拟

- 由蒲丰投针问题知: 长为 l 的针与平行线相交的概率为:21/dπ
- 而实际去做 N 次试验,得 n 次针与平行线相交,则频率为: n/N
- 用频率代替概率得: $\pi \approx 2IN/(dn)$
- 历史上有一些实验数据.

作业

课本 P30-31: 1, 4, 6, 11, 14, 15, 22, 24, 25