PSALTer results panel

Wave operator and propagator

								Multiplicities								^{0,+} Æ∥		0+f	0,+ f_	⁰ <i>F</i> (∥	$^{2}\sigma^{\parallel}_{\alpha\beta\chi}$	0	2 <mark>)</mark> 0	4 °							
$\frac{1}{t^{\perp}}\sigma$	0	0	0	$\frac{4ik}{\alpha+2\alpha\cdot k^2}$	$\frac{2i\sqrt{2}k(a_0^2+4a_1k^2)}{(a_0^2+2a_0k^2)^2}$	0	$-\frac{4 k^2 (\alpha + 4 \alpha , k^2)}{(\alpha + 2 \alpha , k^2)^2}$	Mult	П	3	3 3	10	0,+f1.	†	α. +4(α 0	$\begin{array}{c} \alpha_1 + \alpha_2 + \frac{\alpha_1}{2} \\ \frac{i \alpha_1 k}{\sqrt{2}} \\ 0 \\ 0 \end{array}$	$-3 \alpha_{3} k^{2}$ 0	$ \begin{array}{c} -\frac{i a k}{0} \\ -\frac{i a}{\sqrt{2}} \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $	0	0 0 0 $\frac{\alpha}{2}$	$2^+ \sigma^{\parallel}_{\alpha\beta}$ $2^+ \tau^{\parallel}_{\alpha\beta}$	$0 \qquad \frac{2i\sqrt{2}}{\alpha_0^{*}k}$	$\frac{2i\sqrt{2}}{\alpha_0 k} \frac{2(\alpha_0 - 2(\alpha_1 + \alpha_2) k^2)}{\alpha_0^2 k^2}$	0 0			ρ ₀	0	0	0	
$1_{-t^{\parallel}_{\alpha}}$	0	0	0	0	0	0	0				+2 0,80,080 0xa6	× -5	0 <i>A</i> ∥.			U	U	U		2	7	±αβ		αβχ	J		0+ ¹ -			0	į
$^{1}\sigma^{_{_{\alpha}}}$	0	0	0	$\frac{2\sqrt{2}}{\alpha_0^2+2\alpha_0^2k^2}$	$-\frac{2(\alpha_1 + 4\alpha_1 k^2)}{(\alpha_1 + 2\alpha_0 k^2)^2}$	0	$\frac{2i \sqrt{2} k(\alpha, +4 \alpha, k^2)}{(\alpha, +2 \alpha, k^2)^2}$			$\hat{q}^{\partial^{\chi}\partial_{\beta}\tau}(\Delta+\mathcal{K})^{\alpha\beta}+2\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$			S =		$\mathscr{A}^{lphaeta\chi}$ o	(<i>A</i>	^β τ (Δ+I _{αχ β} A ^{αβχ} ^β _α A _{β χ}	+		^{2,+} A	† ^{αβ}	$\frac{1}{4} - \frac{1}{4} + \frac{1}{4}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\alpha$) k^2		3 ² $\mathcal{A}^{\parallel}_{\alpha_{i}}$	βχ ¹ / ₊ 0	$\frac{-\alpha.k}{0}$	$\alpha_0^2 k^2$	0	C
$^{1}\sigma^{\parallel}_{lpha}$	0	0	0		$\frac{2\sqrt{2}}{a_0^{*}+2a_0^{*}k^2}$		$\frac{4ik}{\alpha+2\alpha\cdot k^2}$			+K) ^{aβ} +;	$\frac{+\mathcal{K})^{\beta\alpha}}{ x^{\alpha} }$ $\frac{ x^{\alpha} }{ x^{\alpha} }$ $\frac{ x^{\alpha} }{ x^{\alpha} }$	`				$\partial_{eta}\mathcal{G}$	$\mathcal{A}_{\alpha \chi}^{\chi}$ -2 ∂_{μ}^{χ}	$_{3}\mathcal{A}^{lphaeta}_{lpha}$ -		2 ⁺ f 2 <i>F</i> (†	-		$-\frac{i \underset{0}{\alpha_{k}} k}{\sqrt{2}}$	0	0	$-\frac{\alpha}{4}$	0.	0 0	α k	0 0	
$1^+_{} t^{\parallel}_{ eta}$	$\frac{2i\sqrt{2}k}{\alpha+\alpha,k^2}$	$-\frac{2i k(\alpha_1+2(\alpha_1-\alpha_2)k^2)}{\alpha_0^2 (1+k^2)^2}$	$-\frac{2 k^2 (\alpha_1 + 2(\alpha_1 - \alpha_2) k^2)}{\alpha_0^2 (1 + k^2)^2}$	0 0	0	0 0	0	form	ر) _{ھۇ} == 0	$+\mathcal{K})^{\beta\chi} == \mathring{Q}\partial^{\chi}\partial_{\beta}\tau(\Delta)$	$\begin{split} \partial_{\lambda}\partial_{\theta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta \lambda} &= \partial_{\alpha} \partial^{\lambda} \partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta \alpha} \\ \partial_{\alpha}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta \lambda} &+ \partial_{\alpha}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\chi \alpha} + \\ \partial_{\alpha}\partial^{\gamma}\tau \left(\Delta + \mathcal{K}\right)^{\alpha \beta} &+ 2 \partial_{\sigma} \partial_{\alpha}\partial^{\alpha}\sigma^{\chi} \stackrel{\beta \sigma}{\sigma} + 2 \partial_{\sigma} \partial^{\sigma}\partial_{\chi} \sigma^{\chi \alpha \beta} = \\ \partial_{\alpha}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi} &+ \partial_{\gamma}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta \alpha} &+ \partial_{\gamma}\partial^{\gamma}\tau \left(\Delta + \mathcal{K}\right)^{\beta \alpha} \end{split}$					$2 f$ $\alpha_{1} (\partial_{x} (\partial_{x} + \partial_{x} + $	$egin{array}{l} egin{array}{l} egin{array}{l} eta & eta _{\chi} eta ^{eta \chi} eta ^{\chi} eta ^{\chi} eta & eta ^{\chi} eta ^{\chi} & eta ^{\chi} eta & eta ^{\chi} eta ^{\chi} & et$	(β) - $(\alpha^{\alpha\beta}_{\alpha} + \alpha^{\alpha\beta}_{\alpha} + \alpha^{\alpha\beta}_{\alpha} + \alpha^{\alpha\beta}_{\alpha})$			$+^{\alpha\beta}$		$ \begin{array}{c} 1^{+}\mathcal{A}^{\parallel}_{\alpha\beta} \\ 2\left(\alpha_{1}-\alpha_{2}\right) \\ \frac{\alpha_{0}}{2\sqrt{2}} \end{array} $		$\frac{1^{+}\mathcal{A}^{\perp}_{\alpha\beta}}{\frac{\alpha}{2\sqrt{2}}}$		1. Ala 0			+ + + + + + + + + + + + + + + + + + +	١,
$1^+_{.} \sigma^{_{\perp}}_{\alpha\beta}$	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$\frac{\alpha_0^2 + 2(\alpha_1^2 - \alpha_2^2) k^2)}{\alpha_0^2 (1 + k^2)^2}$	$\frac{2i k(\alpha_0 + 2(\alpha_1 - \alpha_1) k^2)}{\alpha_0^2 (1 + k^2)^2}$					Covariant fo	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$		e e	Total expected gauge generators:				$4 \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_4 \alpha_5 \alpha_5 \alpha_5 \alpha_5 \alpha_5 \alpha_5 \alpha_5 \alpha_5 \alpha_5 \alpha_5$	$egin{aligned} eta_{eta}^{lphaeta}igar{\partial}_{\delta} \ eta^{ar{\zeta}}_{\delta^{ar{\zeta}}} \partial^{\delta} \mathcal{J} \end{aligned}$	$(^{\beta\chi}_{\beta} +$		1,+ _f .	† ^{αβ}		$-\frac{i \alpha_{0} k}{2 \sqrt{2}}$		0	0	0	0	0	0	
	·	2(α ₀	2i k(α α	0	0	0	0	_		α == 0	αβ == (gang					Ά ^{βχ δ} -2 ĉ	${}^{\delta}\mathcal{A}^{eta\chi}_{eta})$		$^{1}\mathcal{A}^{\parallel}$	† ^a		0	¢		0	$\frac{\alpha_0}{4} + \alpha_1 k^2$	$\frac{\alpha}{2} - \frac{\alpha}{2} \frac{\alpha}{\sqrt{2}}$: 0	$-\frac{1}{2}i$	(
$1^+\sigma^{\parallel}_{\alpha\beta}$	0	$\frac{2\sqrt{2}}{\alpha_0^* + \alpha_0^* k^2}$	$\frac{2i\sqrt{2}k}{\alpha_0+\alpha_0k^2}$	0	0	0	0	ity form		$^{\alpha}$ + 1 $_{T^{\perp}}^{\alpha}$:	$1 \cdot r^{\parallel \alpha} == 0$ $\uparrow k 1^{\perp} \sigma^{\perp \alpha \beta} + 1^{\perp} r^{\parallel \alpha \beta} == 0$	pected (x, y, z	₹ _{δχ}))[d z			$^1\mathcal{F}$			0	0	0		$-\frac{\alpha_0}{2\sqrt{2}}$	0	0		
-	αβ	+αβ		+ 4	_α+		ğ+	Spin-parity	0+1-=0	21 k1 01 +	$a = 0$ $+ \frac{1}{2} \sigma^{+} \alpha \beta$	alexp			d y d x					$^{1}f^{\parallel}$	-		0	0	0		0	0	0	0	
	$^{1^+}\sigma^{\parallel}+^{^{lphaeta}}$	$^{1^+}\sigma^{\scriptscriptstyle \perp}$ 1	$1, r^{\parallel} \uparrow^{\alpha\beta}$	$^{1}\sigma^{\parallel}\uparrow^{\alpha}$	$^{1}\sigma^{\perp}$ †	$^{1}\tau^{\parallel}\uparrow^{\alpha}$	1 1	Spir	0+4	21,	1 t a	Tot			d t					$^{1}f^{1}$	†α		0	0	0		$\frac{i \stackrel{\alpha.k}{\stackrel{0}{0}}}{2}$	0	0	0	

Massive and massless spectra

Unitarity conditions

