Применение MDL (Minimal Descripton length) принципа Риссанена для марковских процессов.

Ремизова Анна Петровна

30 апреля 2023 г.

Что нового

- 1. Оказалось, что я неверно считала диграммы: я использовала в Pyhton метод строки s.count(substring), который считает непересекающиеся вхождения подстроки. Пример: для строки '00000' при подсчёте n(00) данный метод выдавал ответ 2 при правильном ответе 4. Т.о., n(00) и n(11) занижались. Эти моменты я исправила и обновила таблицы (1, 2, 3), а также в Таблицу (4) выписала количества диграмм для каждого из 3 случаев.
- 2. Также в таблицах (1, 2, 3) в 1 строку каждой ячейки добавила значение MDL для данных k, l, на второй строке везде логарифм, затем p, q.
- 3. Добавила Утверждение (1) про независимые оптимальные значения p и q и доказательство к нему.
- 4. Предложение (2) о том, что можем просто найти р и q по формулам $p=\frac{n(01)}{n(01)+n(00)}$ и $q=\frac{n(10)}{n(10)+n(11)}$ почему-то подтверждается по таблицам только для π , а для $\sqrt{2},\sqrt{3}$ верно только q, а p немного отличается от найденного по формуле. Возможно, я в программе как-то неверно ищу p, но ошибки я пока там не нашла.
- 5. Добавила Таблицу (5) с оптимальными значениями k для n(00) = 1 и различных n(01).

Введение

Есть данные, мы хотим подобрать марковскую цепь, для которой наибольшая вероятность получить заданную траекторию. По Риссанену, если мы хотим предсказать, что будет дальше, то должны сравнивать друг с другом гипотезы по их сложности, причём даём преимущество простым гипотезам. Выражения для Description length будет выглядеть следующим образом:

$$C(\mu) + \log_2 \frac{1}{\mu(x)} \tag{1}$$

где $C(\mu)$ – complexity, μ – распределение вероятности.

Марковские цепи с 2 состояниями

Для начала рассмотрим простые марковские цепи. Пусть марковская цепь состоит из 2 состояний. Дана последовательность состояний Марковской цепи из 2 состояний: 0 и 1. Найти оптимальные переходные вероятности p из 0 в 1 и q из 1 в 0 по принципу Риссанена MDL.

Для решения этой задачи запишем вероятность получения заданной реализации: пусть n(ij) – число переходов из состояния i в состояние j, тогда:

$$P_c(x) = p^{n(01)} \cdot (1-p)^{n(00)} \cdot q^{n(10)} \cdot (1-q)^{n(11)} \to max$$
 (2)

$$\log_2 \frac{1}{P_c(x)} = -(n(01) \cdot \log_2 p + n(00) \cdot \log_2 (1-p) + n(10) \cdot \log_2 q + n(11) \cdot \log_2 (1-q))$$
 (3)

Сложность $C(\mu)$ будем определять как суммарную длину записи p и q в двоичной системе счисления. Пусть вероятность p имеет k знаков в двоичной системе, q-l знаков, тогда $C(\mu)=k+l$. Далее рассмотрим несколько реализаций Марковских цепей и исследуем, как меняются значения в зависимости от k и l.

Таблица с двоичными значениями

В Таблицах (1,2,3) в каждой ячейке представлены сначала оптимальные (минимальные, т.к. ищем минимальную описательную длину) значения $\log_2\frac{1}{\mu(x)}=-(n_{01}\log_2p+n_{00}\log_2(1-p)+n_{10}\log_2q+n_{11}\log_2(1-q)),$ затем сложность по Риссанену, а после - значения p и q, при которых оно достигается, представленные в двоичной системе счисления, для марковских цепей с траекториями, соответствующими 30 первым знакам $\pi, sqrt(2), sqrt(3)$ соответственно. По горизонтали отмечены значения l - длина перебираемых q в двоичной системе, по вертикали - значения k - длина перебираемых p в двоичной системе.

Выводы к Таблице (1) для π: заметим, что при фиксированной длине l (по столбцам) двоичной записи переходной вероятности q оптимальное значение q неизменно, но при этом с увеличением k оптимальное значение логарифма уменьшается. Аналогично для фиксированного k (по строкам).

Выводы к Таблице (2): для $\sqrt{2}$ практически то же, что и для π .

Выводы к Таблице (3): для $\sqrt{3}$ результаты уже отличаются от π , но наблюдаются те же закономерности. Отличие $\sqrt{3}$ от π и $\sqrt{2}$ в количестве диграмм в их двоичной записи, были рассмотрены первые 30 знаков для каждого числа, не считая точки. Если для π и $\sqrt{2}$ распределение количества диграмм близко к равномерному, то для $\sqrt{3}$ оно менее сбалансированно: количество диграмм 00 меньше остальных, а диграмм 11 - больше (см. Таблицу 4).

Утверждение 1 Оптимальное значение p не зависит от q и наоборот, оптимальное значение q не зависит от p.

Доказательство. Рассмотрим выражение (3) для логарифма. Значения n(00), n(01), n(10), n(11) – постоянные, и данное выражения можно представить в виде линейной комбинации двух функций $f_1(p) + f_2(q)$. Соотвественно, при максимизации всего выражения (логарифм (3) должен быть маленьким, а так как перед всем выражением стоит минус, то выражение в скобках должно быть большим), так как переменные p и q содержатся в отдельных слагаемых, необходимо найти минимум отдельно для $f_1(p)$ и $f_2(q)$, друг на друга их значения при минимизации не влияют.

Таблица 1: Таблица оптимальных зн-й р и q в двоичной записи для π

$\lceil k / l \rceil$	1	2	3	4	5	6
1	31.0	32.0	33.0	33.9891	34.9521	35.9521
	29.0	29.0	29.0	28.9891	28.9521	28.9521
	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.10	0.100	0.1001	0.10001	0.100010
2	32.0	33.0	34.0	34.9891	35.9521	36.9521
	29.0	29.0	29.0	28.9891	28.9521	28.9521
	0.10	0.10	0.10	0.10	0.10	0.10
	0.1	0.10	0.100	0.1001	0.10001	0.100010
3	33.0	34.0	35.0	35.9891	36.9521	37.9521
	29.0	29.0	29.0	28.9891	28.9521	28.9521
	0.100	0.100	0.100	0.100	0.100	0.100
	0.1	0.10	0.100	0.1001	0.10001	0.100010
4	34.0	35.0	36.0	36.9891	37.9521	38.9521
	29.0	29.0	29.0	28.9891	28.9521	28.9521
	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
	0.1	0.10	0.100	0.1001	0.10001	0.100010
5	35.0	36.0	37.0	37.9891	38.9521	39.9521
	29.0	29.0	29.0	28.9891	28.9521	28.9521
	0.10000	0.10000	0.10000	0.10000	0.10000	0.10000
	0.1	0.10	0.100	0.1001	0.10001	0.100010
6	36.0	37.0	38.0	38.9891	39.9521	40.9521
	29.0	29.0	29.0	28.9891	28.9521	28.9521
	0.100000	0.100000	0.100000	0.100000	0.100000	0.100000
	0.1	0.10	0.100	0.1001	0.10001	0.100010

Анализ диграмм

В Таблицу (4) представлены количества диграмм по рассмотренным примерам - их сумма в каждом случае равна 29, так как рассматриваемые числа округлялись до 30 знаков в двоичной записи суммарно, далее оптимальные значения $k,l,\log_2\frac{1}{\mu x},MDL$, найденные при $k,l\in[1,6]$ для минимизации MDL.

Утверждение 2 Значения $p=\frac{n(01)}{n(01)+n(00)}$ и $q=\frac{n(10)}{n(10)+n(11)}$ являются точкой максимума функции $\log_2\frac{1}{P_c(x)}$ (3). Их значения при заданных длинах двоичной записи k и l это соответственно первые k и l знаков их двоичного представления.

Доказательство

1. Найдём точку максимума функции $f_1(p)=n(01)\log_2 p+n(00)\log_2 (1-p)$. Её производная: $f_1'(p)=\frac{n(01)}{p\ln 2}-\frac{n(00)}{(1-p)\ln 2}$, критические точки $p=\frac{n(01)}{n(01)+n(00)}, p=0, p=1$. Т.к.

Таблица 2: Таблица оптимальных зн-й р и q в двоичной записи для $\sqrt{2}$

k / l	1	2	3	4	5	6
1	31.0	32.0	32.9148	33.7965	34.7965	35.795
	29.0	29.0	28.9148	28.7965	28.7965	28.795
	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.10	0.101	0.1001	0.10010	0.100101
2	32.0	33.0	33.9148	34.7965	35.7965	36.795
	29.0	29.0	28.9148	28.7965	28.7965	28.795
	0.10	0.10	0.10	0.10	0.10	0.10
	0.1	0.10	0.101	0.1001	0.10010	0.100101
3	33.0	34.0	34.9148	35.7965	36.7965	37.795
	29.0	29.0	28.9148	28.7965	28.7965	28.795
	0.100	0.100	0.100	0.100	0.100	0.100
	0.1	0.10	0.101	0.1001	0.10010	0.100101
4	33.9891	34.9891	35.9039	36.7856	37.7856	38.7842
	28.9891	28.9891	28.9039	28.7856	28.7856	28.7842
	0.0111	0.0111	0.0111	0.0111	0.0111	0.0111
	0.1	0.10	0.101	0.1001	0.10010	0.100101
5	34.9521	35.9521	36.8669	37.7485	38.7485	39.7471
	28.9521	28.9521	28.8669	28.7485	28.7485	28.7471
	0.01111	0.01111	0.01111	0.01111	0.01111	0.01111
	0.1	0.10	0.101	0.1001	0.10010	0.100101
6	35.9521	36.9521	37.8669	38.7485	39.7485	40.7471
	28.9521	28.9521	28.8669	28.7485	28.7485	28.7471
	0.011110	0.011110	0.011110	0.011110	0.011110	0.011110
	0.1	0.10	0.101	0.1001	0.10010	0.100101

$$0 \leq \frac{n(01)}{n(01) + n(00)} \leq 1$$
, то $f_1'(p)$ отрицательна на $p \in (-\infty; 0) \cup \left(\frac{n(01)}{n(01) + n(00)}; 1\right)$, положительная на остальных промежутках, а значит точка максимума $p = \frac{n(01)}{n(01) + n(00)}$, если это значение отлично от 0 и 1 , и $p = 0$ иначе. Аналогично для $f_2(q)$ точкой максимума является $q = \frac{n(10)}{n(10) + n(11)}$, либо $q = 0$.

2. Рассмотрим функцию вероятности $P(x) = x^p (1-x)^{1-p}$. Найдём её вторую производную: $P'(x) = (1-x)^{-p} (p-x) x^{p-1}, P''(x) = (p-1)p(1-x)^{-p-1} x^{p-2}$. При фиксированном р P''(x) имеет нули в точках x=0, x=1 и $P''(x)\geq 0$ на $x\in [0;1]$, а значит на этом интервале исходная функция выпукла вверх – см. Рис. (2). Кроме того, её максимальное значение достигается при x=p. Так как при фиксированном k мы рассматриваем двоичные числа с k-1 знаками после запятой (так как это вероятности, и 1 бит занят под целую часть, равную 0), то $x=\frac{n}{2^{k-1}}$. Соответственно, оптимальным будет именно приближение точки максимума функции P(x): x=p, а будет это приближение с избытком или недостатком – зависит от того, какое из чисел будет ближе к p по значению функции P(x).

Таблица 3: Таблица	оптимальных зн-й	рис	твл	твоичной :	записи	лл я	$\sqrt{3}$	
raominga o. raominga	OHIMMONDHDIA SH H	рис	1 5 2	thou inou	Jannen	ZZ-1 Z1	VO	

k / l	1	2	3	4	5	6
1	31.0	32.0	33.0	33.8419	34.8419	35.8419
	29.0	29.0	29.0	28.8419	28.8419	28.8419
	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.10	0.100	0.0111	0.01110	0.011100
2	31.9053	32.9053	33.9053	34.7472	35.7472	36.7472
	28.9053	28.9053	28.9053	28.7472	28.7472	28.7472
	0.11	0.11	0.11	0.11	0.11	0.11
	0.1	0.10	0.100	0.0111	0.01110	0.011100
3	32.4067	33.4067	34.4067	35.2486	36.2486	37.2486
	28.4067	28.4067	28.4067	28.2486	28.2486	28.2486
	0.101	0.101	0.101	0.101	0.101	0.101
	0.1	0.10	0.100	0.0111	0.01110	0.011100
4	33.4067	34.4067	35.4067	36.2486	37.2486	38.2486
	28.4067	28.4067	28.4067	28.2486	28.2486	28.2486
	0.1010	0.1010	0.1010	0.1010	0.1010	0.1010
	0.1	0.10	0.100	0.0111	0.01110	0.011100
5	34.4067	35.4067	36.4067	37.2486	38.2486	39.2486
	28.4067	28.4067	28.4067	28.2486	28.2486	28.2486
	0.10100	0.10100	0.10100	0.10100	0.10100	0.10100
	0.1	0.10	0.100	0.0111	0.01110	0.011100
6	35.4029	36.4029	37.4029	38.2448	39.2448	40.2448
	28.4029	28.4029	28.4029	28.2448	28.2448	28.2448
	0.101001	0.101001	0.101001	0.101001	0.101001	0.101001
	0.1	0.10	0.100	0.0111	0.01110	0.011100

3. Для π оптимальные p и q, вычисленные по указанным формулам, выглядят следующим образом: $p_0=0.5_{10}=0.1_2, q_0=0.5(3)_{10}=0.(1000)_2$, чему удовлетворяют значения из Таблицы (1).

Для $\sqrt{2}$ имеем: $p_0 = 0.4(6)_{10} = 0.(0111)_2, q_0 = 0.(571428)_{10} = 0.(100)_2$ – по Таблице (2) совпадает q, но не совпадает p.

Для $\sqrt{3}$ имеем: $p_0 = 0.(63)_{10} = 0.(1010001011)_2$, $q_0 = 0.(4)_{10} = 0.(011100)_2$ – по Таблице (3) также совпадает q, но не совпадает p.

Заметим по Таблице (4), что для рассмотренных трёх случаев высокая точность переходных вероятностей p и q не выгодна по Риссанену, Minimal description length достигается при k=l=1. Это будет не так, если при увеличении на 1 бит точности переходной вероятности логарифм будет уменьшаться больше, чем на 1. Т.е. количество диграмм n(00) и n(01) должно быть сильно не сбалансированно.

Рассмотрим различные значения n(01) для n(00)=1 и найдём, при каком k достигается MDL. Алгоритм: берём $p=\frac{n(01)}{n(01)+n(00)}$, переводим в двоичную систему c k знаками после запятой, считаем для каждого $Description length=k-(n(01)log_2(p)+n(00)log_2(1-p))$ и

Таблица 4: Числа, количество диграмм в них, оптимальные k и l

Число	n(00)	n(01)	n(10)	n(11)	k	l	$\log_2 \frac{1}{\mu(x)}$	MDL
π	7	7	8	7	1	1	29.0	31.0
$\sqrt{2}$	8	7	8	6	1	1	29.0	31.0
$\sqrt{3}$	4	7	8	10	1	1	29.0	31.0

ищем минимальное такое при различных $k \in [1, 100]$ В Таблице (5) видно, что результаты k уже нетривиальные – мы нашли те примеры последовательностей, для которых оптимальная модель подразумевает достаточно точные значения переходных вероятностей. Симметричная ситуация будет наблюдаться и для l.

Таблица 5: Оптимальные k для разных n(01)

n(00)	n(01)	k	р	MDL
1	2	1	0.1	4.0
1	4	2	0.11	5.6601
1	8	2	0.11	7.3203
1	16	3	0.111	9.0823
1	32	4	0.1111	10.9795
1	64	5	0.11111	12.9314
1	128	6	0.111111	14.9082
1	256	7	0.1111111	16.8967
1	512	8	0.11111111	18.891
1	1024	9	0.111111111	20.8882

Марковские цепи с 4 состояниями

Рис. 1: График функции P(x) при различных значениях p