МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)"

Физтех-школа радиотехники и компьютерных технологий

Отчёт по лабораторной работе № 3.4.5 "Петля гистерезиса"

> Выполнили: Студенты гр. Б01-305 Миннахметов Артур Киселев Руслан

1 Введение

Цель работы: изучение петель гистерезиса ферромагнитных материалов с помощью осциллографа.

Оборудование: автотрансформатор, понижающий трансформатор, амперметр и вольтметр (мультиметры), резистор, делитель напряжения, интегрирующая цепочка, электронный осциллогра, тороидальные образцы с двумя обмотками.

1.1 Теоретическое введение

Рис. 1: Петля гистерезиса ферромагнетика

Магнитная индукция \vec{B} и напряженность магнитного поля \vec{H} в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряженности, но и от предыстории образца. Связь между индукцией и напряженностью поля типичного ферромагнетика иллюстрирует рис. 1. Если к размагниченному образцу начинают прикладывать магнитное поле, то его намагничивание следует кривой OACD, выходящей из начала координат. Эту кривую называют основной кривой намагничи-

вания.

Индукция \vec{B} в образце состоит из индукции, связанной с намагничивающим полем \vec{B} , и индукции, создаваемой самим намагниченным образцом. В системе СИ эта связь имеет вид

$$\vec{B} = \mu_0(\vec{H} + \vec{M}),$$

где \vec{M} - намагниченность - магнитный момент единичного объема образца, а μ_0 - магнитная постоянная.

Намагнитим образец до насыщения - до точки D. Соответствующее значение индукции B_s называют индукцией насыщения. При уменьшении поля H до нуля зависимость B(H) имеет вид кривой DCE, и при нулевом поле индукция имеет конечное ненулевое значение. Это остаточная индукция B_r . Чтобы размагнитить образец, то есть перевести его в состояние F, необходимо приложить "обратное" магнитное поле H_c , которое называют коэрцитивной силой.

Замкнутая кривая DEFD'E'F'D, возникающая при циклическом перемагничивании образца, намагниченного до насыщения, называется npedenbhoù nemneù vucmepesuca.

1.2 Измерение магнитной индукции в образцах.

Магнитную индукцию удобно определять с помощью ЭДС, возникающей при изменении магнитного потока Ф в катушке, намотанной на образец:

$$\varepsilon = -\frac{d\Phi}{dt}.$$

Тогда отсюда и из формулы $\Phi = BSN_{\rm M}$ получаем:

$$|B| = \frac{1}{SN_{\rm M}} \int Edt.$$

Для интегрирования сигнала применяют интегрирующие схемы (рис. 2).

Рис. 2: Интегрирующая RC-цепь

Если выходной сигнал намного меньше входного ($U_{\rm вых} \ll U_{\rm вx}$,) ток в цепи пропорционален входному напряжению: $I \simeq \frac{U_{\rm вx}}{R}$, а напряжение на емкости С

$$U_{\scriptscriptstyle
m BMX} pprox rac{1}{RC} \int U_{\scriptscriptstyle
m BX} dt$$

Этот вывод тем ближе к истине, чем больше постоянная $\tau = RC$ превосходит характерное время процесса (например, его период). Для синусоидальных напряжений

$$U_{\text{вых}} = \frac{U_{\text{вх}}}{RC\Omega},$$

где Ω - частота сигнала.

В итоге, обозначив параметры интегрирующей цепи через $R_{\mathtt{u}}$ и $C_{\mathtt{u}}$, получаем

$$|B| = \frac{1}{SN_{\text{\tiny M}}} \int U_{\text{\tiny BX}} dt = \frac{R_{\text{\tiny M}} C_{\text{\tiny M}}}{SN_{\text{\tiny M}}} U_{\text{\tiny Bbix}}$$

1.3 Экспериментальная установка.

Схема экспериментальной установки показана на рис. 3.

Действующее значение переменного тока в обмотке N0 измеряется амперметром A (мультиметром GDM). Последовательно с амперметром включено сопротивление R_0 , напряжение с которого подается на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно и напряженности H магнитного поля в образце.

Для измерения магнитной индукции B с измерительной обмотки $N_{\rm H}$ на вход интегрирующей RC -цепочки подается напряжение $U_{\rm H}$ (UBX), пропорциональное производной \dot{B} , а

с выхода снимается напряжение $U_{\rm C}(U_{\rm Bыx})$, пропорциональное величине B , и подается на вход Y осциллограа. Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т.е. провести калибровку каналов X и Y ЭО. Для этого, во-первых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и во-вторых, каким значениям B и H соответствуют эти напряжения (или токи).

Рис. 3: Схема установки для исследования намагничивания образцов

2 Ход работы

1. Данные, снятые с установки:

$$R_U = 20$$
 кОм, $C_U = 20$ мк Φ , $R_0 = 0.2$ Ом.

2. Данные с торроидальных образцов:

Феррит:

$$N_0 = 40, \ N_U = 400, \ S = 3 \text{ cm}^2, \ 2\pi R = 25 \text{ cm};$$

Пермалой:

$$N_0 = 35, \ N_U = 220, \ S = 3.8 \ \text{cm}^2, \ 2\pi R = 24 \ \text{cm};$$

Кремнистое железо:

$$N_0 = 40, \ N_U = 400, \ S = 1.2 \text{ cm}^2, \ 2\pi R = 10 \text{ cm}.$$

3. Для каждого образца сфотографируем предельную петлю: Феррит – рис. 4, Пермаллой – рис. 5, Кремнистое железо – рис. 6.

Рис. 4: Петля гестерезиса феррита

Рис. 5: Петля гестерезиса пермалоя

- 4. Для разных токов измерены данные для петель гестерезиса. Все данные предсталены в таблицах $1,\,2,\,3$.
- 5. Проведена калибровка горизонтальной оси Y ЭО. Измерения проводились для ЦД 50 и 20 мВ. Измерена двойная амплитуда синусоиды $2y_1=3$ см, $2y_2=3.2$ см. Эффективные значения напряжения на вольтметре $U_1=100$ мВ и $U_2=44$ мВ. Погрешностьи примем равными ценам деления: $\sigma_y=0.2$ см, $\sigma_U=1$ мВ. Полученные чувствительности:

$$K_{1y} = (94 \pm 6),$$

$$K_{2y} = (39 \pm 3).$$

6. На вход ячейки подано напряжение 6,3 В. Напряжение на выходе получилось равным 4,24 В по осциллографу и 4,3 по вольтметру. Так точность осциллографа выше, возьмем его. Частота, подаваемая на вход, равна 50 Гц. Погрешность будет только у измерений осциллографа. Она равна 8%. Итого, получен результат

$$au = U_{ ext{bx}}/(\omega U_{ ext{bhx}}) = (0.45 \pm 0.04) \; ext{mc}.$$

Заметим, что получилось довольно близко к теоретическому результату $\tau = RC = 0.4$ мс.

7. Значения в предельных точках: Феррит

Ток, мА	Xa	Ya	ЦД х, мВ	ЦД у, мВ	Хкоэр	Үкоэр	ЦД х, мВ	ЦД у, мВ
240	24	23	50	20	4	9	50	20
210	22	22	50	20	36	35	5	5
180	46	21	20	20	36	34	5	5
150	40	20	20	20	31	31	5	5
120	33	38	20	10	29	31	5	5
90	24	33	20	10	26	28	5	5
60	36	25	10	10	25	22	5	5
30	34	19	5	5	11	6	5	5

Таблица 1: Данные для Феррита

Ток, мА	Xa	Ya	ЦД х, мВ	ЦД у, мВ	Хкоэр	Үкоэр	ЦД х, мВ	ЦД у, мВ
170	39	38	20	50	27	36	20	50
150	31	35	20	50	25	34	20	50
130	24	30	20	50	22	28	20	50
110	41	21	10	50	39	20	10	50
90	36	28	10	20	32	25	10	20
70	30	21	10	10	23	16	10	10
50	46	14	5	5	25	7	5	5

Таблица 2: Данные для Пермалоя

Ток, мА	Xa	Ya	ЦД х, мВ	ЦД у, мВ	Хкоэр	Үкоэр	ЦД х, мВ	ЦД у, мВ
300	30	30	50	50	9	14	50	50
260	28	28	50	50	42	34	10	20
220	23	25	50	50	39	32	10	20
180	47	22	20	50	35	30	10	20
140	35	18	20	50	30	12	10	20
100	48	30	10	20	24	18	10	20
60	30	30	10	10	15	16	10	10

Таблица 3: Данные для Кремнистого железа

Рис. 6: Петля гестерезиса кремнистого железа

Ампл.	Fe-Ni	Fe-Si	Феррит
$H_c, \frac{A}{M}$	3.9 ± 0.2	8.0 ± 0.2	8.2 ± 0.2
B_s , Тл	1.04 ± 0.7	0.24 ± 0.04	1.9 ± 0.2

Таблица 4

$$H = 19 \pm 2 \text{ A/м}, B = 15 \pm 1 \text{ мТл};$$

Пермаллой

$$H = 11 \pm 1 \text{ A/м}, B = 90 \pm 3 \text{ мТл};$$

Кремнистое железо

$$H = 60 \pm 4 \; {\rm A/m}, \, B = 125 \pm 5 \; {\rm мТл}.$$

8. Вычислены H_c и B_s . Данные внесены в таблицу 4.

3 Выводы

В ходе выполнения данной лабораторной работы были исследованы петли гистерезиса для трех различных образцов и получены характерные величины для каждого образца, которые сошлись с табличными значениями по порядку величины. Кроме того, была проверена применимость используемого метода в условиях нашего эксперимента. В итоге было установлено, что условия применимости выполняются и метод является неплохим способом определения характерных параметров для ферромагнитных материалов.