# Closely aligning our quantitative methods with our sociolinguistic theories

Josef Fruehwald 4/19/2017

# **Outline**

- · A brief review of how statistical models and sociolinguistic theory were related in the good (& bad) old days.
- · In intro to Stan, a system for writing and estimating Bayesian models
- · A few examples of bespoke Stan models
- · Pros, Cons & Resoures

Intro

The good (& bad) old days

# **Quantitative Methods & Theory**

Early variationist work had tight relationship between our hypothesized linguistic theories & our statistical models:

(91) 
$$a \rightarrow (\emptyset) / [*pro] \# \begin{bmatrix} - \\ +T \end{bmatrix} [*nas] \# \begin{bmatrix} \alpha Vb \\ \beta gn \end{bmatrix}$$

which is automatically read as:

(92) 
$$\varphi = 1 - \left(\frac{-1 * 1}{-2}\right) (k_0 - \alpha k_1 - \beta k_2 \cdots \nu k_n).$$

Labov(1969)

5/44

# Today - Better and fancier statistics

... but less tightly connected to theory



# **Quantitative Methods & Theory**

To some extent this is still true for, e.g. Stochastic OT & Maximum Entropy Grammars

| (22) |         | 2      | 1       | 1        | Н  | $e^H$ | р   |
|------|---------|--------|---------|----------|----|-------|-----|
|      | /guddo/ | Id-Vce | OCP-Vce | *Vce-Gem |    |       |     |
|      | guddo   |        | -1      | -1       | -2 | 0.14  | .50 |
|      | gutto   | -1     |         |          | -2 | 0.14  | .50 |

Coetzee & Pater (2011)

6/4

# **Bayesian Models & MCMC**

7/44

# What is Bayesian Modelling & MCMC?

Bayesian statistics is a paradigm of statistical modelling and inference that takes into account prior beliefs about the model parameters being estimated.

- a coefficient of ±5 is about as big as it gets in logistic regression (Gelman et al, 2007)
- · variance estimates will skew leftwards, but have a fat right tail (Gelman, 2006)

MCMC, and related methods, are ways of estimating the parameters of a Bayesian model. In this talk, I'll be using Stan (Stan Development Team, 2016).

# Writing a Stan model

Composing a model in Stan consists of writing a program in which you:

- · Declare the data to be modeled
- · You define the parameters of the model,
- · You define the statistical constraints (a.k.a. priors) on the parameters,
  - "The intercept is drawn from a normal distribution with mean 0 and sd 100"
- · You define the relationship between the parameters and the data.

#### A Basic Linear Model

Pre-voiceless /ay/ raising in Philadelphia (Fruehwald, 2017).



#### Stan Model - Data and Parameters

```
data{
  int <lower=0> N;
  real y[N];
  real x[N];
}

parameters{
  real intercept;
  real slope;
  real<lower=0> sigma;
}
```

11/44 12/44

# Stan Model - The Model

```
model{
  real mus[N];

for(i in 1:N){
    mus[i] = intercept + (slope * x[i]);
}

intercept ~ normal(0, 100);
  slope ~ normal(0, 100);
  sigma ~ cauchy(0, 100);

  y ~ normal(mus, sigma);
}
```

# Fitting a the Stan Model

13/44 14/44

# Results



# Coefficients



15/44

# **Fits**



# A mixed effects model

The simple linear model was a "flat" model, but as we all know, we should be including random effects, at least of speaker and word.

17/44 18/44

#### Stan - Mixed Effects Data

```
data{
  int <lower=0> N;
  real y[N];
  real x[N];
  int speaker[N];
  int max_speaker;
  int word[N]
  int max_word;
}
```

#### Stan - Mixed Effects Parameters

```
parameters{
   real intercept;
   real slope;
   real<lower=0> sigma;

   real speaker_effect[max_speaker];
   real<lower=0> speaker_sigma;
   real<lower=0> sigma_per_speaker[max_speaker];

   real word_effect[max_word];
   real<lower=0> word_sigma;
}
```

19/44 20/44

#### Stan - Mixed Effects Model

```
model{
 real mus[N];
 sigmas mus[N];
  for(i in 1:N){
   mus[i] = intercept + (slope * x[i]) +
              speaker_effect[speaker[i]] + word_effect[word[i]];
   sigmas[i] = sigma_per_speaker[speaker[i]];
  intercept ~ normal(0, 100);
 slope ~ normal(0, 100);
 sigma ~ cauchy(0, 100);
 sigma per speaker ~ cauchy(0, sigma);
  speaker_effect ~ normal(0, speaker_sigma);
  speaker_sigma ~ cauchy(0, 100);
 word effect ~ normal(0, word sigma);
 word sigma ~ cauchy(0, 100);
 y ~ normal(mus, sigmas);
```

# Stan - Model



21/44 22/44

# **Mixed Effects Comparison**



# **Fits**



23/44 24/44

# Speaker sigmas



# Matching Models to Theories

25/44

# **Exponential Model**

Guy (1991) proposed the following model of TD Retention

| past     | semiweak | monomorpheme | level  |
|----------|----------|--------------|--------|
| miss     | kep[t]   | mist         | stem   |
| miss[ed] | kept     | mist         | word   |
| missed   | kept     | mist         | phrase |

# **Exponential Model**

| level           | monomorpheme | semiweak    | past      |
|-----------------|--------------|-------------|-----------|
| stem            | Pret         |             |           |
| word            | Pret         | Pret        |           |
| phrase          | Pret         | $p_{ret}$   | $p_{ret}$ |
| total retention | $p_{ret}^3$  | $p_{ret}^2$ | $p_{ret}$ |

27/44 28/44

# **Exponential Stan Model**

- Estimate a community level and speaker level  $p_{ret}$
- Estimate a community & speaker level exponent j for semiweak verbs
- Estimate a community & speaker level exponent k for monomorphemes
- · Estimate random word effects
- · Estimate preceding segment effects
- · Estimate following segment effects

Data from Tamminga (2014)

# mono mono

semiwea

exponent

30/44

# Results



# Lifecycle & Two Step

prob

Bermúdez-Otero (2010) proposed a slightly different model of TD Retention

| level | monomorpheme & semiweak    | past       |
|-------|----------------------------|------------|
| stem  | Pstem                      |            |
| word  | Pword                      | $p_{word}$ |
| total | $p_{stem} \times p_{word}$ | Pword      |

 $p_{word} < p_{stem}$ 

29/44

Results

31/44 32/44

#### The Model

Using just pre-vocalic /t d/ tokens:

- · Estimate community and speaker level word level retention rates
- · Estimate community and speaker level stem level retention rates
- · Random effects of word
- · Preceding segment effects

33/44

# Results



34/44

# Kohesion

It's also possible to model external factors. For example, if we were interested in how tightly clustered each speaker's  $p_{speaker}$  was around some communuty norm p, we could model it like so:

$$p_{speaker} \sim beta(p \times \kappa, (1-p) \times \kappa)$$

As  $\kappa$  increases, the more tightly clustered speakers' probabilities will be around the community norm.

# Illustation

#### Clustering around p=0.6 for different k



35/44

# **Kohesion Comparison**

- · TD Deletion
  - monomophemes only
- · ING
  - progressive only
- · DH

Random effects of word for all variables. Separate kohesion estimates for male and female speakers.

Data from Tamminga (2014)

#### 37/44

# Results



38/44

# Pros

We can more directly evaluate our theories if our statistical models closely match them.

With bespoke statistical models, the capabilities of of-the-shelf models need not be the horizion of our analyses.

# The Pros & Cons

#### Cons

Writing fully fledged models can get complex.

- · Requires learning more about statistical distributions.
- · If you think your R code needs debugging...

Fitting the models can be cumbersome.

- "You set it to run, and go get a hambuger for lunch" Labov (p.c.) on GoldVarb
- If you thought convergence was an issue in glmer()...

It requires explaining the full model, not just "I fit a mixed effects logistic regression".

· But, it has been done (Fruehwald, 2016).

# The End

#### Resources

- Kruschke (2014), Doing Bayesian Data Analysis, Second Edition: A Tutorial with R, IAGS, and Stan
  - a.k.a. "The Dog Book"
  - It's very good
- The Stan manual (http://mc-stan.org/documentation/)
- · rstanarm
  - An R package that creates Stan models using the familiar R formula interfaces.

41/44 42/44

#### References

- Bermúdez-Otero, R. (2010). Currently available data on English t/d-deletion fail to refute the classical modular feedforward architecture of phonology. The 18th Manchester Phonology Meeting. Retrieved from www.bermudez-otero.com/18mfm.pdf
- · Coetzee, A. W., & Pater, J. (2011). The Place of Variation in Phonological Theory. In J. Goldsmith, J. Riggle, & A. C. L. Yu (Eds.), The Handbook of Phonological Theory (2nd ed., pp. 401–434). Blackwell.
- Fruehwald, J. (2016). The early influence of phonology on a phonetic change. Language, 92(2), 376-410. http://doi.org/10.1353/lan.2016.0041
- Fruehwald, J. (2017). Generations, lifespans, and the zeitgeist. Language Variation and Change, 29(1), 1–27. http://doi.org/10.1017/S0954394517000060
- $\cdot$  Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models, (3), 515–533.
- Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y. S. (2008). A weakly informative default prior distribution for logistic and other regression models. Annals of Applied Statistics, 2(4), 1360–1383. http://doi.org/10.1214/08-AOAS191
- Guy, G. (1991). Explanation in variable phonology: An exponential model of morphological constraints. Language Variation and Change, 3(1), 1–22. Retrieved from http://journals.cambridge.org/abstract\_S0954394500000429
- · Labov, W. (1969). Contraction, Deletion, and Inherent Variability of the English Copula. Language, 45(4), 715–762.
- · Stan Development Team (2016). RStan: the R interface to Stan. R package version 2.14.1. http://mc-stan.org/.
- · Tamminga, M. (2014). Persistence in the Production of Linguistic Variation. University of Pennsylvania.