Datum: 7. 12. 2023	SPŠ CHOMUTOV	Třída: A4
Číslo úlohy:	MĚŘENÍ PARAMETRŮ ELEKTRONICKÝCH OBVODŮ – PŘEVODNÍK R → U	Jméno: LEVICKÝ

ZadáníZměřte sadu rezistorů a normálů pomocí převodníku R/U.

<u>Schéma</u>

1. Měření středních a velkých odporů

2. Měření malých odporů

Tabulka použitých přístrojů:

Zařízení	Značka	Údaje	Evidenční číslo
Stabilizovaný zdroj		KEYSIGHT AUL 310	LE2 1031
Odporová dekáda	R_{N}	$0,1-111\ 111\ \Omega$	LE2 1831
Odporový normál	R _{N1}	1 Ω	LE1 2209
Číslicový voltmetr	ČV	Keysight U3401A 15 V/ 1 A	LE 5097
Tranzistor	Т	TESLA KD 501	-
Operační zesilovač	OZ		LE 2381
Referenční zdroj napětí	U _{REF}	1 V a 10 V	-
Měřené odpory	R _X	$390~\Omega-100~k\Omega,~P_{MAX}=2~W$ $0.1~m\Omega$ $1~m\Omega$ $10~m\Omega$ $100~m\Omega$	LE1 1932 LE1 1934 LE1 1933 LE4 2024

1. Měření středních a velkých odporů

&1.1. Odvoď te vztah pro výpočet R_X

$$I_X = -I_N$$

$$\frac{U_2}{R_X} = -\frac{U_{REF}}{R_N}$$

$$R_X = -\frac{R_N}{U_{RFF}} \times U_2$$

&1.2. Vytvořte převodník R/U dle následujících požadavků

K dispozici máte zdroj referenčního napětí MAC01 - 10 V OZ MAA 741CN napájený ze symetrického zdroje ± 15 V $4^{\frac{1}{2}}$ místný číslicový voltmetr s rozlišitelností 0.01 mV

Jaký odpor R_N zvolíte, aby zobrazený údaj na $\check{C}V$ byl:

1) v
$$\Omega$$
 (1 V \cong 1 Ω) \Rightarrow R_N = 10 Ω

2)
$$v k\Omega (1 V \cong 1 k\Omega) \Rightarrow R_N = 10 k\Omega$$

3) v M
$$\Omega$$
 (1 V \cong 1 M Ω) \Rightarrow R_N = 10 M Ω

$\&1.3.\;$ Pro jednotlivé odpory R_N určete rozsah převodníku R/U a doplňte tabulku

převod	$R_N[k\Omega]$	$R_{ ext{MIN}}[\Omega]$	$R_{MAX}[k\Omega]$
1 V ≅ 1 Ω	0,01	0,0001	0,013
1 V ≅ 1 kΩ	10	0,01	13
$1 \text{ V} \cong 1 \text{ M}\Omega$	10 000	10	13000

&1.4. Jaký proud by musel být schopen dodat zdroj referenčního napětí a OZ převodníku v případě, že chceme, aby zobrazený údaj byl přímo v Ω? Je to možné?

Referenční zdroj by musel dodat I = 1 A. Ne, není to možné, referenční zdroj neumí dodat 1 A.

&1.5. Převodník sestavte a změřte dané odpory. Stejné odpory změřte na multimetru a hodnoty porovnejte.

Pro 1 mV = 1 Ω

$R_{X}\left[\Omega\right]$	U2[V]	RNAM $[\Omega]$
390	386,71	385,90
820	820,03	818,80
4700	4 682,40	4675,60
10000	10 041,00	10029,00

Pro 1 V = $10 \text{ k}\Omega$

$R_X [k\Omega]$	U2 [V]	RNAM $[k\Omega]$
27	2,751	27,21
39	3,956	39,49
82	8,248	82,36
100	10,060	100,52

2. Měření malých odporů

&2.1. Odvoď te vztah pro výpočet R_X

$$U_{REF} = U_{RN}$$

$$\frac{U_2}{R_X} = \frac{U_{REF}}{R_N}$$

$$R_X = \frac{R_N}{U_{RFF}} \times U_2$$

&2.2. Určete velikost odporu R_N tak, aby údaj zobrazený na ČV byl přímo v Ω . Tj. platilo 1 V \cong 1 Ω .

$$R_X = \frac{R_N}{U_{REF}} \times U_2 \Rightarrow R_N = \frac{R_X \times U_{REF}}{U_2} = \frac{1 \times 1}{1} = 1 \Omega$$
 $U_{REF} = 1 \text{ V}$

Pro zvolení odpor R_N určete rozsah převodníku R/U

$$R_{MIN} = 0.01 \, m\Omega$$

$$R_{MAX}=12,3\ V$$

&2.3.	Převodník sestavte a změřte dané odpory.	Experimentálně ověřte,	jaké chyby se	dopouštíme při
	2svorkovém připojení měřeného odporu.			

Pro 1 V = 1 Ω

$R_X [m\Omega]$	U2 (4svor) [V]	U2 (2s vor) [V]
0,1	0,10	1,28
1	1,00	2,38
10	10,04	11,37
100	100,40	100,70

Závěr:

Měření na převodníku bylo téměř vždy přesnější než na multimetru, u malých odporů bylo přesnější 4svorkové měření než 2svorkové, které přičítá odpor spojení vodičů a platí u něj: čím větší odpor, tím větší chyba měření. Všechny hodnoty vyšly dle teoretických předpokladů.