

Documento de Requisitos e Arquitetura do Sistema

Projeto: Detecção de Erros em Impressão 3D

Versão: 3.0

Data: 01/03/2025

Equipe: Ana Larissa Teixeira, Antonio Everton Teixeira, Lemuel Santana,

Maria Clara Pereira e Wagner Vasconcelos.

1. Introdução

1.1 Objetivos

Este documento tem como objetivo elencar os requisitos para o desenvolvimento do projeto de detecção de erros em impressões 3D. Este projeto visa desenvolver uma aplicação web capaz de processar imagens de impressões 3D e identificar possíveis falhas por meio de um modelo de inteligência artificial.

O sistema permitirá que usuários enviem imagens de impressões 3D, as quais serão analisadas por um modelo baseado em Máquinas de Vetores de Suporte (SVM) para detecção e classificação de erros comuns na impressão.

1.2 Escopo de validação inicial

Na primeira versão do projeto, será desenvolvida uma aplicação web estruturada para o processamento de imagens de impressões 3D. A aplicação permitirá que usuários façam upload das imagens, que serão analisadas por um modelo de IA, retornando informações sobre possíveis falhas na impressão.

2.Termos Aplicados

TERMO001: Inteligência Artificial (IA)

A Inteligência Artificial é um ramo da computação que busca criar sistemas capazes de executar tarefas que normalmente exigiriam inteligência humana. No contexto deste projeto, a IA será utilizada para classificar falhas em impressões 3D com base em um modelo treinado de Máquinas de Vetores de Suporte (SVM).

TERMO002: Impressão 3D

A impressão 3D é um processo de fabricação aditiva onde objetos tridimensionais são criados camada por camada. Defeitos comuns incluem warping (deformação das camadas), stringing (filamentos indesejados entre partes do objeto) e falhas de aderência.

TERMO002: SVM (Support Vector Machine)

A Máquina de Vetores de Suporte (SVM) é um modelo de aprendizado de máquina utilizado para classificação. Elas funcionam encontrando um hiperplano que melhor separa os dados em diferentes categorias. No contexto deste projeto, um modelo SVM é usado para classificar imagens de impressões 3D, determinando se apresentam ou não falhas com base nas características extraídas das imagens.

TERMO003: HOG (Histogram of Oriented Gradients)

O Histograma de Gradientes Orientados (HOG) é um método de extração de características que analisa a distribuição dos gradientes de intensidade em uma imagem. Ele é amplamente utilizado em visão computacional para detectar padrões, como bordas e contornos. No projeto, o HOG é aplicado para capturar informações estruturais das impressões 3D, auxiliando na identificação de falhas.

TERMO004: LBP (Local Binary Pattern)

O Padrão Binário Local (LBP) é um método de análise de textura que transforma uma imagem em um conjunto de valores binários com base na relação entre os pixels vizinhos. Essa técnica é útil para identificar padrões de textura e irregularidades na superfície de um objeto. No projeto, o LBP é utilizado para detectar variações na textura das impressões 3D, contribuindo para a identificação de possíveis defeitos.

3.Requisitos

3.1 Requisitos Funcionais e de capacidade

RF001: Upload de Imagens

 Descrição: A aplicação deve permitir que o usuário faça upload de imagens de impressões 3D nos formatos .jpg e .png, sem necessidade de login para maior praticidade.

• Fluxo Principal:

- O usuário acessa a interface da aplicação.
- o O usuário seleciona a opção de upload de imagem.
- o O usuário escolhe a imagem a ser enviada.
- o O sistema recebe a imagem e valida o formato.
- o O sistema armazena temporariamente a imagem para processamento.

• Critérios de Aceitação:

- O usuário consegue fazer upload de imagens sem precisar de login.
- o O sistema aceita somente imagens nos formatos .jpg e .png.
- o O sistema exibe uma mensagem de erro caso o formato não seja suportado.

RF002: Processamento de Imagens

• **Descrição:** O sistema deve processar a imagem enviada utilizando um modelo de IA baseado em SVM para identificar falhas.

• Fluxo Principal:

- o O sistema recebe a imagem enviada pelo usuário.
- o O sistema aplica pré-processamento na imagem.
- O modelo de lA analisa a imagem e identifica possíveis falhas.
- O sistema armazena os resultados temporariamente para exibição ao usuário.

• Critérios de Aceitação:

- O modelo de IA deve processar a imagem em até 10 segundos.
- O sistema deve retornar um resultado indicando a presença ou ausência de falhas.
- O sistema deve notificar o usuário em caso de erro no processamento.

RF003: Exibição dos Resultados

• **Descrição:** A aplicação deve exibir a imagem enviada pelo usuário juntamente com a classificação do erro identificado. O container que exibe o resultado da análise deve mudar de cor para indicar visualmente o status da impressão.

• Fluxo Principal:

- O sistema processa a imagem e obtém a classificação do erro.
- o O sistema exibe a imagem original junto com o resultado da análise.
- o O container da análise muda de cor conforme o resultado:
 - verde: para impressões sem erro
 - vermelho: para impressões com erro
- o O sistema permite que o usuário visualize os detalhes da falha detectada.

• Critérios de Aceitação:

- o O sistema exibe corretamente a imagem enviada.
- O sistema exibe a classificação do erro de maneira clara e compreensível.
- O container de exibição do resultado muda de cor de acordo com a análise realizada.
- o O usuário pode visualizar um resumo dos erros detectados na impressão.

RF004: Histórico de Processamento

 Descrição: O sistema deve armazenar as imagens processadas, juntamente com suas datas, horários e resultados, permitindo que o usuário consulte um histórico de análises anteriores.

• Fluxo Principal:

- O sistema armazena a imagem enviada e seu resultado após o processamento.
- o O usuário acessa a seção de histórico da aplicação.
- O sistema exibe a lista de imagens processadas, com data, hora e resultado da análise.

• Critérios de Aceitação:

- O sistema mantém um histórico acessível sem necessidade de login.
- o O usuário pode visualizar as imagens analisadas anteriormente.
- o O histórico exibe corretamente os resultados associados a cada imagem.

3.2 Requisitos Não Funcionais

RNF001: Tempo de Resposta

 Descrição: O sistema deve processar as imagens e fornecer um resultado ao usuário em um tempo máximo de 10 segundos.

RNF002: Usabilidade e Navegação

 Descrição: A interface do sistema deve ser intuitiva e permitir fácil navegação para usuários sem conhecimento técnico avançado.

RNF003: Suporte a Formatos de Arquivo

• **Descrição:** O sistema deve suportar imagens nos formatos .jpg e .png, garantindo compatibilidade com os arquivos mais utilizados na área de impressão 3D.

RNF004: Armazenamento de Dados

 Descrição: O sistema deve ser capaz de armazenar imagens de até 5 MB e registrar um histórico de análises realizadas.

RNF005: Precisão do Modelo

 Descrição: O modelo de IA utilizado para detecção de erros deve atingir uma precisão mínima de 80% na identificação de falhas em impressões 3D.

4. Arquitetura do Sistema

4.1 Visão Geral

O sistema será composto por três componentes principais:

1. Frontend (Interface do Usuário)

A interface gráfica do sistema foi desenvolvida com **React.js**, uma biblioteca Javascript de código aberto com foco em criar interfaces de usuário em páginas web. Suas principais funcionalidades são:

- Upload de imagens para análise.
- Exibição do resultado da análise do modelo de Machine Learning.
- Histórico de imagens já analisadas, armazenadas no Firebase Firestore.

2. Backend (Processamento e Análise de Imagens)

O backend foi implementado em Python usando o framework **Flask**. Ele é responsável por:

Receber a imagem enviada pelo frontend e armazená-la temporariamente.

- Extrair características da imagem utilizando o **feature_extractor**.
- Fazer a predição da imagem usando um modelo de Máquina de Vetores de Suporte (SVM).
- Retornar o resultado ao frontend.

3. Banco de Dados (Armazenamento do Histórico)

O armazenamento do histórico das análises é feito no **Firebase Firestore**, um banco de dados NoSQL na nuvem. Ele é utilizado para guardar as seguintes informações sobre os uploads:

- Nome do arquivo enviado.
- Data e hora do envio.
- Resultado da análise do modelo.

4.2 Diagrama de Arquitetura

4.3 Tecnologias Utilizadas

Componente	Tecnologia
Frontend	React
Backend	Python
Modelo de IA	SVM

Banco de dados	Firebase Firestore

4.4 Fluxo de Funcionamento

- 1. **Upload da Imagem:** O usuário faz o upload da imagem através da interface do sistema, observando os seguintes requisitos:
 - Apenas imagens nos formatos .jpg e .png são aceitas.
 - O tamanho do arquivo não pode ultrapassar 5MB.
- 2. Processamento Backend: A imagem recebida é enviada ao backend via uma requisição HTTP. O backend recebe a imagem e a armazena temporariamente no servidor. Logo após, os seguintes passos são executados:
 - 1. Extração de características: A imagem passa pelo processo de extração de características que começa com o pré-processamento da imagem, onde ela é convertida para escala de cinza e redimensionada para um tamanho padrão. Em seguida, são extraídas características por meio do HOG e do LBP. Por fim, os vetores extraídos pelo HOG e LBP são concatenados, formando o vetor final de características que será usado pelo modelo.
 - 2. Predição do modelo: O vetor de características é passado como entrada para um modelo de Máquina de Vetores de Suporte (SVM) treinado previamente. O modelo retorna uma classificação:
 - \circ 0 \rightarrow Impressão sem erro
 - 1 → Impressão com erro

O modelo SVM foi treinado utilizando um conjunto de imagens rotuladas e avaliado usando validação cruzada K-Fold (10 folds). Foram testadas duas versões do SVM:

- SVM com C=10 e kernel RBF
- o SVM com C=100 e kernel RBF

A versão final foi selecionada com base nas métricas Accuracy, Precision, Recall e F1 Score.

- Retorno do Resultado: O sistema retorna o tipo de erro detectado ao usuário junto com a imagem.
- 4. **Armazenamento no Banco de Dados:** O histórico do upload é salvo no Firebase Firestore, permitindo que o usuário consulte as análises anteriores. O histórico salvo inclui o nome do arquivo, a data do upload e o resultado da predição.

5. **Histórico:** O usuário pode acessar a lista de imagens já processadas com os resultados.

5. Protótipo do Sistema

Protótipo Figma

6. Considerações Finais

Este documento descreveu os principais requisitos e a arquitetura do sistema de detecção de erros em impressões 3D. A implementação inicial focará no processamento de imagens via upload, visando simplicidade e clareza na entrega do projeto.