A Simple Neural Attentive Meta-learning Reporting

KANG SU HYEON

shqk023@gmail.com

Content

- About paper
- Introduction
- Meta-learning preliminaries
- A Simple Neural Attentive Learner
 - Architecture
 - Modular building Blocks
- Experiments
 - Supervised learning
 - Reinforcement learning
- Conclusion and Future work

About paper

UC Berkeley, Department of Electrical Engineering and Computer Science Embodied Intelligence

Nikhil Mishra (OpenAl)

Mostafa Rohaninejad (Embodied Intelligence)

Xi Chen (OpenAl)

Pieter Abbeel (UC Berkeley)

Human

 Humans effectively utilize prior knowledge and experiences to learn new skills quickly

Artificial Learner

 Artificial learners trained with traditional supervised or reinforcement learning methods generally perform poorly when only a small amount of data is available

Artificial Learner

 Artificial learners trained with traditional supervised or reinforcement learning methods generally perform poorly when they need to adapt to a changing task

Meta Learning

- Meta-learning seeks to resolve this deficiency by broadening the learner's scope to a distribution of related tasks.
 - Existing Learner
 Training the learner on a single task
 (with the goal of generalizing to unseen samples from a similar data distribution)
 - Meta-learner
 Training the meta-learner on a distribution of similar tasks
 (with the goal of learning a strategy that generalizes to related but unseen tasks from a similar task distribution)

Meta Learning

- The meta-learner should have the flexibility to learn the best way to solve the tasks it is presented with
- A meta-learner would need to have an expressive, versatile model architecture, in order to learn a range of strategies in a variety of domains
- Meta-learning can be formalized as a sequence to sequence problem; in existing approaches that adopt this view, the bottleneck is in the metalearner's ability to internalize and refer to past experience

Propose a model architectures

Combine Temporal Convolution & Causal attention

SNAIL

Meta Learning

• SNAIL(combine Temporal Convolution & Causal attention)

Enable the meta-learner to aggregate contextual information from past experience

Allow it to pinpoint specific pieces of information within that context

- Supervised Learning
 Omniglot, Mini-ImageNet

Meta-learning Preliminaries

Notation & Formalization

 $T_i : Task \ (or \ Episode \) \sim T = P(T_i)$

 $x_t : iput \sim P_i(x_t | x_{t-1}, a_{t-1})$

 a_t : output $\sim \pi(a_t|x_1,...,x_t;\theta)$

 $\mathcal{L}_i(x_t, a_t) : Loss function$

 H_i : Episode Length

M eta - karne r's objective

$$\min_{\theta} E_{\mathrm{T}_{i} \sim \mathrm{T}} \left[\sum_{t=0}^{H_{i}} \mathcal{L}_{i}(x_{t}, a_{t}) \right]$$

A Meta-learner is trained by optimizing this expected loss over tasks sampled from T

The Meta-learner is evaluated on unseen tasks from a different task distribution $\widetilde{\mathbf{T}} = P(\widetilde{\mathbf{T}}_i)$ that is similar to the training task distribution T

SNAIL

- Key Principle Motivation → Simplicity & Versatility
- It should be generic and expressive enough to learn an optimal strategy, rather than having the strategy already built-in
- Several approach to the Meta-runner
 - > Santoro et al : Using RNN
 - Temporally-linear dependency bottleneck
 - > Van den Oord et al : Using Temporal Convolution(dilated 1-D Conv)
 - They have coarser access to inputs that are further back in time
 - > Vaswani et al : Using Soft attention
 - The lack of positional dependence

SNAIL

- SNAIL(combine Temporal Convolution & Causal attention)
 - > TC and Attention complement each other

Provide high-bandwidth access at the expense of finite context size

Provide pinpoint access over an infinitely large context

- > SNAIL is easier to train than traditional RNNs such as LSTM or GRUs
- > SNAIL can be efficiently implemented so that an entire sequence can be processed in a single forward pass

SNAIL

SNAIL Architecture

Modular Building Blocks

Data Input Shape & Output Shape

Modular Building Blocks

Dense Block

```
1: function DENSEBLOCK(inputs, dilation rate R, number of filters D):
2: xf, xg = CausalConv(inputs, R, D), CausalConv(inputs, R, D)
3: activations = tanh(xf) * sigmoid(xg)
4: return concat(inputs, activations)
```

TCBlock

```
    function TCBLOCK(inputs, sequence length T, number of filters D):
    for i in 1,..., \[\text{log}_2 T\] do
    inputs = DenseBlock(inputs, 2i, D)
    return inputs
```

Modular Building Blocks

Dense Block & TCBlock Process

Modular Building Blocks

Attention Block

- 1: function ATTENTIONBLOCK(inputs, key size K, value size V):
- keys, query = affine(inputs, K), affine(inputs, K)
- 3: logits = matmul(query, transpose(keys))
- 4: probs = CausallyMaskedSoftmax(logits / \sqrt{K})
- 5: values = affine(inputs, V)
- 6: read = matmul(probs, values)
- return concat(inputs, read)

Experiment Purpose

- How does SNAIL's generality affect its performance on a range of metalearning tasks?
- How does its performance compare to existing approaches that are specialized to a particular task domain, or have elements of a high-level already built-in?
- How does SNAIL scale with high-dimensional inputs and long-term temporal dependencies?

Few-Shot Image Classification

Omniglot Dataset

Few-Shot Image Classification

Omniglot Dataset(epoch:100 / iteration:10000)

Few-Shot Image Classification

Omniglot Dataset

Model	1-shot 5-way (Acc)	5-shot 5-way (Acc)	1-shot 20-way (Acc)	1-shot 20-way (Acc)
Paper	99.07%	99.78%	97.64%	99.36%
Repo	98.31%	99.26%	93.75%	97.88%

Few-Shot Image Classification

Mini-ImageNet Dataset

Few-Shot Image Classification

Mini-ImageNet Dataset

Method	5-Way Min	y Mini-ImageNet		
	1-shot	5-shot		
Vinyals et al. (2016)	43.6%	55.3%		
Finn et al. (2017)	$48.7\% \pm 1.84\%$	$63.1\% \pm 0.92\%$		
Ravi & Larochelle (2017)	$43.4\% \pm 0.77\%$	$60.2\% \pm 0.71\%$		
Snell et al. (2017)	$46.61\% \pm 0.78\%$	$65.77\% \pm 0.70\%$		
Munkhdalai & Yu (2017)	$49.21\% \pm 0.96\%$	_		
SNAIL, Ours	$55.71\% \pm 0.99\%$	$68.88\% \pm 0.92\%$		

Reinforcement Learning

Multi-armed Bandits

Setup (N, K)	Method							
	Gittins (optimal as $N \to \infty$)	Random	LSTM	MAML	SNAIL (ours)			
10,5	6.6	5.0	6.7	6.5 ± 0.1	6.6 ± 0.1			
10, 10	6.6	5.0	6.7	$\textbf{6.6} \pm \textbf{0.1}$	6.7 ± 0.1			
10,50	6.5	5.1	6.8	$\textbf{6.6} \pm \textbf{0.1}$	6.7 ± 0.1			
100,5	78.3	49.9	78.7	67.1 ± 1.1	79.1 ± 1.0			
100, 10	82.8	49.9	83.5	70.1 ± 0.6	83.5 ± 0.8			
100, 50	85.2	49.8	84.9	70.3 ± 0.4	85.1 ± 0.6			
500,5	405.8	249.8	401.5		408.1 ± 4.9			
500, 10	437.8	249.0	432.5	_	432.4 ± 3.5			
500, 50	463.7	249.6	438.9	_	442.6 ± 2.5			
1000,50	944.1	499.8	847.43	-	889.8 ± 5.6			

Reinforcement Learning

Tabular MDPs

N	Method								
	Random	€-greedy	PSRL	OPSRL	UCRL2	LSTM	MAML	SNAIL (ours)	
10	0.482	0.640	0.665	0.694	0.706	0.752	0.563	0.766 ± 0.001	
25	0.482	0.727	0.788	0.819	0.817	0.859	0.591	0.862 ± 0.001	
50	0.481	0.793	0.871	0.897	0.885	0.902	-	0.908 ± 0.003	
75	0.482	0.831	0.910	0.931	0.917	0.918	_	0.930 ± 0.002	
100	0.481	0.857	0.934	0.951	0.936	0.922	-	0.941 ± 0.003	

Reinforcement Learning

Continuous Control

Reinforcement Learning

Visual Navigation

Method	Small	Maze	Large Maze		
	Episode 1	Episode 2	Episode 1	Episode 2	
Random	188.6 ± 3.5	187.7 ± 3.5	420.2 ± 1.2	420.8 ± 1.2	
LSTM	52.4 ± 1.3	39.1 ± 0.9	180.1 ± 6.0	150.6 ± 5.9	
SNAIL (ours)	50.3 ± 0.3	34.8 ± 0.2	140.5 ± 4.2	105.9 ± 2.4	

Conclusion and Future Work

Conclusion

- We presented a simple and generic class of architectures for meta-learning, motivated by the need for a meta-learner to quickly incorporate and refer to past experience.
- Our simple neural attentive learner (SNAIL) utilizes a novel combination of temporal convolutions and causal attention, two building blocks of sequence-to-sequence models that have complementary strengths and weaknesses

Conclusion and Future Work

Conclusion

- Another interesting idea would be to train an meta-learner that can attend over its entire lifetime of experience (rather than only a few recent episodes, as in this work)
- An agent with this lifelong memory could learn faster and generalize better; however, to keep the computational requirements practical, it would also need to learn how to decide what experiences are worth remembering.

Conclusion and Future Work

Future Work

 Although we designed SNAIL with meta-learning in mind, it would likely excel at other sequence-to-sequence tasks, such as language modeling or translation; we plan to explore this in future work

THANK YOU Q & A