

Werkstoffe

1. Mathematische Grundlagen

1.1.	Sinus,	Cosin	ıs siı	$n^2(x) +$	$-\cos^2(a$	(x) = 1		
x φ	0 0°	π/6 30°	π/4 45°	π/3 60°	$\frac{1}{2}\pi$ 90°	π 180°	$1\frac{1}{2}\pi$ 270°	2π 360°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$	$\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	±∞	0	∓∞	0

Additionstheoreme	Stammfunktionen
$\cos(x - \frac{\pi}{2}) = \sin x$	$\int x \cos(x) \mathrm{d}x = \cos(x) + x \sin(x)$
$\sin(x + \frac{\pi}{2}) = \cos x$	$\int x \sin(x) \mathrm{d}x = \sin(x) - x \cos(x)$
$\sin 2x = 2\sin x \cos x$	$\int \sin^2(x) \mathrm{d}x = \frac{1}{2} \left(x - \sin(x) \cos(x) \right)$
$\cos 2x = 2\cos^2 x - 1$	$\int \cos^2(x) \mathrm{d}x = \frac{1}{2} \left(x + \sin(x) \cos(x) \right)$
$\sin(x) = \tan(x)\cos(x)$	$\int \cos(x)\sin(x) = -\frac{1}{2}\cos^2(x)$
$\sin(x \pm y) = \sin x \cos y$	$\pm \sin y \cos x$
$\cos(x \pm y) = \cos x \cos y$	$y \mp \sin x \sin y$

1.2. Integrale $\int e^x dx = e^x = (e^x)'$

F(x)	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{a}{2\sqrt{ax}}$
$x \ln(ax) - x$	$\ln(ax)$	$\frac{a}{x}$
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	$\sin(x)$	$\cos(x)$

 $\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$ $\int \frac{\mathrm{d}t}{\sqrt{at+b}} = \frac{2\sqrt{at+b}}{a} \qquad \qquad \int t^2 e^{at} \, \mathrm{d}t = \frac{(ax-1)^2 + 1}{a^3} e^{at}$ $\int t e^{at} \, \mathrm{d}t = \frac{at-1}{a^2} e^{at} \qquad \qquad \int x e^{ax^2} \, \mathrm{d}x = \frac{1}{2a} e^{ax^2}$

1.3. Exponentialfunktion und Logarithmus

$a^x = e^{x \ln a}$	$\log_a x = \frac{\ln x}{\ln a}$	$\ln x \le x - 1$
$\ln(x^a) = a \ln(x)$	$\ln(\frac{x}{a}) = \ln x - \ln a$	log(1) = 0

2. Einheiten

SI-Präfix	е				
Symbol	Vorsatz	Faktor	Symbol	Vorsatz	Faktor
Υ	Yotta	10^{24}	d	Dezi	10-1
Z	Zetta	10^{21}	с	Zenti	10^{-2}
E	Exa	10^{18}	m	Milli	10^{-3}
Р	Peta	10^{15}	μ	Mikro	10^{-6}
Т	Tera	10^{12}	n	Nano	10^{-9}
G	Giga	10^{9}	р	Piko	10^{-12}
M	Mega	10^{6}	f	Femto	10^{-15}
k	Kilo	10^{3}	a	Atto	10^{-18}
h	Hekto	10^{2}	z	Zepto	10^{-21}
da	Deka	10^{1}	У	Yokto	10^{-24}

3. Konstanten und Basisgleichungen

Naturkonstanten Lichtgeschwindigkeit $c_0 = 299792458 \frac{m}{s}$ Elementarladung $e = 1.602177 \times 10^{-19} C$ PLANCK-Konst. $h = 6.62606957 \times 10^{-34} \text{ J s}$

 $\hbar = \frac{h}{2\pi} = 1.05457 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$ Elektr. Feldkonst. $\varepsilon_0 = \overset{2^n}{8.854} 188 \times 10^{-12} \; \underline{F}$ Magn. Feldkonst. $\mu_0 = 4\pi \times 10^{-7} \, \frac{\mathrm{H}}{\mathrm{m}}$ Avogadro-Konst. $N_A = 6.022\,141\times10^{23} \, \frac{1}{\mathrm{mol}}$ Atomare Masse $u = 1.660539 \times 10^{-27} \text{ kg}$ Elektronenmasse $m_e = 9.109383 \times 10^{-31} \text{ kg}$ Protonenmasse $m_p = 1.674\,927 \times 10^{-27} \,\mathrm{kg}$ Neutronenmasse $m_n = 1.672622 \times 10^{-27} \text{ kg}$ BOLTZMANN-Konst. $k_b = 1.380\,655 \times 10^{-23} \, \frac{\text{J}}{\text{K}}$ allg. Gaskonstante $R = k_b N_A = 8,3144 \frac{\text{J}}{\text{mod } \text{K}}$

4. Aufbau der Materie

Planck'sches Postulat In der Quantenmechanik kann der harmonische Oszillator mit der Schwingungsfrequenz f nur diskrete Energiewerte an-

$$E_n = hf\left(n + \frac{1}{2}\right) = \hbar\omega\left(n + \frac{1}{2}\right)$$

Heisenberg'sche Unschärferelation Ort und Impuls (bzw. Energie und Zeit) können nicht gleichzeitig scharf definiert werden. $\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$ und $\Delta t \cdot \Delta E \geq \frac{\hbar}{2}$

Welle-Teilchen-Dualismus Materie kann sowohl Eigenschaften von Teilchen als auch von Wellen haben

4.1. Quanten

Hierbei wird die Materie als Menge von Teilchen betrachtet. Sie haben eine Energie E und einen Impuls p sowie eine Masse m.

Das Photon Für das Photon gilt: $E_{\rm ph}=f\cdot h=\hbar\cdot\omega=\frac{hc}{\lambda}=m_{\rm ph}c^2$ $m_{\mathsf{ph}} = \frac{\hbar \omega}{c^2}$ $p_{\mathsf{ph}} = m_{\mathsf{ph}} \cdot c = \frac{\hbar}{\lambda}$

4.2. Materiewellen

4.2.1 Allgemeine Wellenfunktion $\Psi({m r},t)=C\cdot e^{\mathrm{i}(\omega\,t-{m k}\cdot{m r})}$

Im eindimensionalen Fall: $\Psi(x,t) = C \cdot e^{i(\omega t - kx)}$

ш	(, .)	
	Größe	Beziehung
	Energie	$E = \frac{1}{2}mv^2 = \hbar\omega$ $\lambda = \frac{\hbar}{p}$
	De-Broglie-Wellenlänge	$\lambda = \frac{h}{p}$
	Impuls	$\underline{\boldsymbol{p}} = m\underline{\boldsymbol{v}} = \hbar\underline{\boldsymbol{k}}$
1	Kreisfrequenz	$\omega = 2\pi f = \frac{\hbar}{2m}k^2$
	Phasengeschwindigkeit	$\begin{array}{l} \underline{p} = m\underline{v} = \hbar\underline{k} \\ \omega = 2\pi f = \frac{\hbar}{2m} k^2 \\ v_{\rm ph} = \frac{\omega}{k} = \frac{\hbar k}{2m} = \frac{v_{\rm Teilchen}}{2} \end{array}$
	Wellenzahl	$k = \frac{2\pi}{\lambda}$

4.2.2 Das Wellenpaket

Der bewegten Korpuskel wird eine im Raum begrenzte Wellenfunktion zugeordnet, die sich aus der Überlagerung einzelner Wellen zu einem Wellenpaket ergibt. Ein Teilchenstrom entspricht der Folge einzelner Wellen-

$$\Psi(\underline{r},t) = \int_{k_0 - \Delta k}^{k_0 + \Delta k} C(k) \cdot e^{i(\omega t - \underline{k}\underline{r})} dk$$

Gruppengeschwindigkeit des Wellenpakets:

$$v_{\mathrm{gr}} = \frac{\mathrm{d}\omega}{\mathrm{d}k} = \frac{\hbar k}{m} = \frac{p}{m} = v_{\mathrm{Teilchen}}$$

Phasengeschwindigkeit $v_{\rm ph} = \frac{\omega}{T}$

4.3. Die Schrödingergleichung

Beschreibt die Dynamik der quantenmech. Zustände eines Systems.

Allgemeine Schrödingergleichung:

$$E = E_{\mathsf{kin}} + V_{\mathsf{pot}} = \frac{p^2}{2m} + V \qquad \mathsf{mit} \ p = \mathrm{i}\hbar \nabla \Psi$$

$$-\mathrm{i}\hbar \frac{\partial}{\partial t} \Psi(\underline{\boldsymbol{r}},t) = -\frac{\hbar^2}{2m} \ \Delta \ \Psi(\underline{\boldsymbol{r}},t) + V(\underline{\boldsymbol{r}},t) \cdot \Psi(\underline{\boldsymbol{r}},t)$$

Zeitunabhängige Schrödingergleichung:

$$-\frac{\hbar^2}{2m}\Delta\Psi(\underline{\boldsymbol{r}}) = (E - V)\Psi(\underline{\boldsymbol{r}})$$

Herleitung Durch den Separationsansatz $\Psi(r, t) = \Psi(r)\Phi(t)$ lässt sich die Zeitabhängigkeit abtrennen.

Aufenthaltswahrscheinlichkeit $dw(\mathbf{r}) = \Psi^*(\mathbf{r}, t) \cdot \Psi(\mathbf{r}, t) \cdot d\tau$

Normierungsbedingung: $\int_{\text{Volumen}} \Psi^* \Psi \, dr' = 1$ $\Rightarrow C_i = \sqrt{\frac{2}{L_i}}$

Herleitung der Schrödingergleichung

- Aus De-Broglie-Beziehungen: $\omega = \frac{\hbar}{2m}k^2 \longrightarrow \hbar\omega = \frac{\hbar^2}{2m}k^2$
- Multipliziere beide Seiten mit Ψ und ersetze $\omega \to \frac{2m}{\partial t}$ sowie
- $\begin{array}{l} k^2 \to {\rm div \, grad} \quad {\rm es \, folgt:} -{\rm i}\hbar \frac{\partial}{\partial t} \Psi(\underline{\boldsymbol{r}},t) = -\frac{\hbar^2}{2m} \underline{\Delta} \Psi(\underline{\boldsymbol{r}},t) \\ \bullet \ \ {\rm In \, einem \, Kraftfeld} \ \underline{\boldsymbol{F}}(\underline{\boldsymbol{r}},t) \, {\rm mit} \ \underline{\boldsymbol{F}}(\underline{\boldsymbol{r}},t) = -\, {\rm grad} \, V(\underline{\boldsymbol{r}},t) \, {\rm gilt:} \end{array}$
- $E=\frac{p^2}{2m}+V(p,t)\qquad \text{mit }p=\mathrm{i}\hbar\nabla\Psi$
 Die allg. Schrödingergleichung folgt aus Multiplikation mit Ψ und den Operatoren $E o -\mathrm{i}\hbar rac{\partial}{\partial t}$ und $rac{p^2}{2m} o -rac{\hbar^2}{2m}$ Δ

4.4. Potentialtopf

Schrödingergleichung (im eindimensionalen Potentialtopf)

- Seperation: Ist das Potential zeitunabhängig? Wenn ja $\Rightarrow v({m r},t)
 ightarrow$ $v(\boldsymbol{r})$
- Bereichseinteilung:

$$\begin{array}{l} x < a \\ a < x < b \text{ (im Topf)} \\ b < x \end{array}$$

- Aufstellen der zeitunabhängigen Schrödingergleichung
- Ansatz: $\Phi(x) = Ae^{jkx} + Be^{-jkx}$ oder $A\sin(kx) + B\cos(kx)$
- ullet Bestimme Koeffizienten A,B und k über die Randbedingungen
- Amplitude aus der Normierungsbedingung bestimmen
- Einsetzen und Umformen $E=\frac{k^2\pi^2}{2ma^2}n^2$ mit $k=\frac{\pi}{a}n$

δ-Dim., unendl., zeitinvar. Potentialtopf: $i = \{x, y, ..., \delta\}$

Lösung der DGL: $\Psi(\underline{r}) = \sqrt{\frac{2^{\delta}}{\prod L_i}} \int_{-1}^{\delta} \sin(k_i \cdot r_i)$

Energie: $E_n = \frac{\hbar^2}{2m} \cdot \sum k_i^2$

für $\delta = 1$ (eindimensionaler PT)

$$E_n = \frac{\hbar^2}{2m} k_n^2 = \frac{h^2 n^2}{8mL^2} = E_1 n^2$$

4.5. Moleküle - Bindungstypen

Bindung	Eigenschaften	Energie
Ionisch	Elektronaustausch, stark, starr	$3.4\mathrm{eV}$
Kovalent	Gemeinsame Elektronen	
Metallisch	"Elektronensee"	
Dipol	Coulombkräfte von Partialladungen	

4.5.1 Ionische Bindung

Voraussetzung: unterschiedliche Atome,leicht zu ionisieren

Ionisierung

- Anion und Kation ziehen sich an bis auf einen Abstand der Ionenmit $r_0 = (r_{\rm CI} + r_{\rm Na} +)$ (bis sich die Elektronenschalen gerade noch
- Dabei wird die Energie frei: $E_{\rm el}=\int\limits_{-4\pi\epsilon_0}^{r_0}\frac{-e^2}{4\pi\epsilon_0 r^2}\,{\rm d}r=\frac{e^2}{4\pi\epsilon_0 r_0}$
- Bindungsenergie beträgt $\frac{3.4\,\mathrm{eV}}{\mathrm{lonenpaar}}$ oder $328\,\frac{\mathrm{kJ}}{\mathrm{Mol}}$
- Coulombanziehung nicht gerichtet → positive und negative Ionen lagern so dicht aneinander wie möglich → Ionenkristall (nicht verformbar)
- Elektronen sind an den Ionen lokalisiert → keine freien Elektronen vorhanden → Isolator
- ullet Differenz der Elektronegativität meist $\Delta E > 1.7$

4.5.2 Kovalente Bindung

Spinabsättigung der äußeren Elektronenschale durch gemeinsame Elektro-

- Valenz-Elektronen zwischen den Atomen lokalisiert
- keine Kugelsymmetrische Ladungsverteilung mehr im Atom
- Die Anzahl der Elektronen mit umgepaartem Spin zeigt an wie vielfache kovalente Bindungen eingegangen werden können
- treten bei und zwischen Elementen der IV. bis VII. Hauptgruppe auf gerichtete Bindungen → mögliche Kristallstrukturen werden einge-
- ullet Differenz der Elektronegativität meist $\Delta E < 1.7$ kovalente gebundene Kristalle sind üblicherweise schlechte Leiter

4.5.3 Metallische Bindung

Sonderfall der kovalenten Bindung, bei der die Valenz-Elektronen nicht lokalisiert sind

- Vorwiegend Elemente mit nur wenigen Außenelektronen
- freie Elektronen → hohe elektrische Leitfähigkeit, hohe Wärmeleitfähigkeit
- ullet Bindung nicht gerichtet o hohe Packungsdichte
- Bindungen mit gleich- und ungleichartigen Metallen eingegangen wer-
- Metallische Bindung ist schwächer als die ionische oder kovalente
- Bindungsstärke hängt von der Zahl der Leitungselektronen ab

4.5.4 Dipolbindung

- zwischen Molekülen mit permanentem Dipolmoment → Moleküle mit positiver und negativer Ladung
- Dipole ordnen sich im Dipolfeld der Nachbaratome so an, dass möglichst geringe Abstand und durch die Coulombkräfte gebunden

4.5.5 Van-der-Waals-Bindung:

- Atome/Moleküle haben kein permanentes Dipolmoment
- Bindung zwischen Dipolen durch statistische Fluktuationen der Ladungsschwernunkte
- · Sehr schwache Bindung

4.5.6 Wasserstoffbrückenbindung

Vorraussetzung: Äußere Schale > vier Elektronen, zwischen 2 Atomen.

- Bindungen über Wasserstoffbrücken der Form A-H-A
- Das H-Atom geht eine kovalente Bindung mit Atom der Sorte A ein und gibt sein Elektron ab. Das Proton bleibt fest an Reaktionspartner gebunden und bindet nun zusätzlich das andere negative Atom
- Bindungsenergie ist gering $(0.1 \, eV)$

4.6. Das Periodensystem (Siehe Seite 4)

 $n = 1, 2, \ldots (= K, L, \ldots$ - Schale) Hauptquantenzahl Nebenquantenzahl $l = 0, \ldots, n-1$ (= s,p,d,f - Zuständen) $m = -l, -l + 1, \dots, l - 1, l$ Magnetische Quantenzahl Spinguantenzahl

Zu jedem Wert n gehören n^2 Zustände durch Variation von l und m. Außerdem ist jeweils ein Spin $s=\pm\frac{1}{2}$ möglich.

Entartungsgrad: Kombination der QZ mit gleicher Energie: $2n^2$

4.7. Atome - Hundsche Regeln

Legen fest, nach welchem Schema jedes einzelne Orbital eines Atoms mit Flektronen hesetzt wird

- 1. Die Schale wird so aufgefüllt, dass $|S| = |\sum s_i| = \max$
- 2. Quantenzahl $|L| = |\sum m_i| = \max$
- 3. Falls die Schale weniger als halbvoll ist:
- · Bahndrehimpuls und Spin antiparallel
 - Gesamtdrehimpuls J: |J| = ||L| |S||

Falls die Schale mehr als halbvoll ist:

- · Bahndrehimpuls und Spin parallel
- Gesamtdrehimpuls J: |J| = ||L| + |S||

Merke: Volle Schalen liefern keinen Beitrag zu $S,\ L$ und J

Pauli-Prinzip: Alle Elektronen unterscheiden sich in mindestens einer Quantenzahl

4.8. Kunststoffe

Bestehen im wesentlichen aus C,H,N und O

Polymerisation: Reaktion von Manomeren mit Doppelbindungen zu makromolekularen Ketten

Polykondensation: Reaktion von Monomere mit reaktiven Endguppen unter Abspaltung von z.B H_2O oder HCL

Polyaddition: Venetzung von Epoxiden mit Aminen oder Alkoholen ohne weiteres Reaktionsprodukt

4.9. Legierungen und Schmelze

5. Mechanische Eigenschaften von Festkörpern

Gitterkonstante ($\approx 10^{-10} \text{ m}$)

Anzahl Atome in EZ (Anzahl Atome geteilt durch die Zellen, die sich dieses Atom teilen)

Dichte:
$$\rho=\frac{\mathrm{d}m}{\mathrm{d}V}=\frac{mP}{\frac{4}{3}\pi r^3}=\frac{mN}{a_0^3}=\frac{1}{V}\frac{N}{N_A}A_r$$
 $\rightarrow A_r$ in kg Umrechnen!

Packungsdichte:
$$P = \frac{\text{Volumen (Atome)}}{\text{Volumen (Einheitszelle)}} = \frac{N\frac{4}{3}\,r^3\,\pi}{V_{E\,Z}}$$

5.2. Kristallstrukturen

FCC/KFZ

$$r_{\mathsf{A}} = \frac{\sqrt{4}}{4} a_0$$
 $r_{\mathsf{A}} = \frac{\sqrt{3}}{4} a_0$ $r_{\mathsf{A}} = \frac{\sqrt{2}}{4}$ KZ = 8 KZ = 12

$P = \frac{\pi}{3\sqrt{2}} \approx 0.74$
$V_{\text{hex}} = \frac{3\sqrt{3}}{2}a^2h$

HCP

KZ = 6.12

$$P = \frac{\pi\sqrt{3}}{16} \approx 0.34$$

$$V_{\mathsf{Tetra}} = \frac{\sqrt{2}}{12} a^3$$

$$\mathsf{KZ} = 4$$

Tetraeder

$$P = \frac{\pi\sqrt{3}}{16} \approx 0.34$$
$$V_{\mathsf{Diamant}} = a_0^3$$

$$V_{\mathsf{Diamant}} = a_0^3$$

 $\mathsf{KZ} = 4$

Diamant

KZ: Koordinationszahl (Zahl der nächsten Nachbarn) Polymorphie: Ein Stoff hat mehrere Kristallgitterstrukturen.

5.3. Elastische Verformung

Elastizitätsgrenze $\sigma_{\rm F}$ Streckgrenze σ_S Bruchgrenze σ_B (E=0)

Dehnung $\epsilon_{xx} = \frac{\partial u_x}{\partial x}$ $\epsilon_{yy} = \frac{\partial u_y}{\partial y}$ $\epsilon_{zz} = \frac{\partial u_z}{\partial z}$

Scherdeformation

$$\epsilon_{xy} = \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \quad \epsilon_{yz} = \frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \quad \epsilon_{xz} = \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x}$$

Spannungen Normalspannungen σ_{xx} , σ_{yy} , σ_{zz} sind Zug bzw. Druckspannungen. Tangentialspannungen (Scherspannungen) σ_{xy}, σ_{yz} Verallgemeinertes Hooksches Gesetz

 $\sigma = C\varepsilon$ mit C ist 81 Komponenten Elastizitätstensor 4. Stufe

Uniaxial:
$$\sigma_{xx} = \left(c - \frac{2\lambda^2}{c + \lambda}\right) \varepsilon_{xx} = E \cdot \varepsilon_{xx} \quad \varepsilon_{xx} = \frac{\Delta l}{l}$$

$$|\sigma| = \frac{|F|}{l} = \frac{EF}{r^2} = E \cdot \frac{\Delta l}{l} = \varepsilon E$$

Hydrostatisch: $(\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = -p)$

Kompressionsmodul $K=-V_0 \frac{\mathrm{d}p}{\mathrm{d}V} \stackrel{\mathrm{isotrop}}{=} \frac{E}{3-6\nu}$ Metall $\nu\approx 0.3$

Mikroskopische Ebene: Bindungskräfte zwischen Atomen

Potential
$$V(r) = \frac{\alpha}{r^n}$$
 + $\frac{\beta}{r^m}$ $m > n$

Zw. atomare Kraft
$$F(r)=-rac{dV(r)}{dr}$$
 im GG-Fall $F(r=r_0)=0$

Elastizitätsmodul
$$E:=-rac{1}{r}rac{dF}{dr}=\sigmarac{r_0}{\Delta r}=rac{\sigma}{arepsilon}=n(m-n)rac{\alpha}{r_0+3}$$

Akustische Wellen in Festkörpern: $v_{||} = \sqrt{\frac{c}{\rho}} \qquad v_{\perp} = \sqrt{\frac{\mu}{\rho}}$

Gitterschwingungen / Phononen: (Für kleine
$$k$$
)
$$\omega_1 = \sqrt{2c(\frac{1}{M_1} + \frac{1}{M_2})} \qquad \omega_2 = ka\sqrt{\frac{2c}{M_1 + M_2}}$$

6. Thermische Eigenschaften von Festkörpern

 $\begin{array}{c} \frac{N}{m^2} \\ \frac{\mu V}{K} \\ \frac{W}{m \ K} \\ J = W \ s \end{array}$ Druck [S]Seebeck-Ko. Wärmeleitf. $[\lambda]$ Wärmemenge [Q]Wärmekapazität [C]Wärmeleitwert [G][U]Innere Energie spez. Wärmekapazität J K kg $[c_{\mathsf{m}}]$

Wärmekapazität $C=rac{\partial U}{\partial T}=cn=c_{\mathsf{m}}\cdot m=c_{\mathsf{m}}
ho V$ Innere Energie $U = 3Nk_{\rm B}T$ für 1 mol: $\Delta U = \Delta T c_m$ Spezifische Wärme für hohe Temp. $c_m=3R=24.9\,rac{
m J}{
m mol\,K}$ Wärmemenge Q = CTWärmeleitwert $G = \lambda \frac{A}{T}$ Wärmestrom $\dot{Q} = -\lambda \operatorname{grad}(T)A = C\dot{T} = G\Delta T$ Wärmestromdichte $w=\frac{\dot{Q}}{A}=\frac{\Delta Q}{A\Delta t}=nvc\Delta T=-\lambda\operatorname{grad}(T)$ Phononen: $\lambda_{ph} = \frac{1}{3} C_{ph} v_{Schall} l_{ph}$ Elektronen $\lambda_{\rm el} = \frac{1}{2} C_{\rm el} v_{\rm el} l_{\rm el}$

 $C_{\rm el} \approx 6nk_B^2 \frac{T}{F_{\rm el}}$

6.1. Thermische Ausdehnung

Mittlere freie Weglänge l=v au

Ausdehnungskoeffizient $\alpha = \frac{\beta}{3} = \frac{\Delta l}{l} \cdot \frac{1}{\Delta T}$ Volumenänderung: $\frac{\Delta V}{V_0} = 3\alpha \Delta T = \beta \Delta T$

Grüneisenregel für Metalle: $\alpha \propto \frac{1}{T_G}$ Schmeltemperatur T_S

6.2. Ideales Gas

Ideales Gasgesetz: $pV = n_m RT = Nk_b T = N_v k_B T$ Kinetische Energie $E_{kin} = \frac{1}{2}m\overline{v^2} = \frac{f}{2}k_BT$ Teilchendichte: $N = \frac{n \cdot N_A}{V} = \frac{\rho N_A}{A_B} = \frac{p}{k_B T}$ Stoffmenge: $n = \frac{N}{N_A} = \frac{m}{A_T}$ Druck $p = \frac{1}{3}Nm\overline{v^2}$ Gaskonstante: $R = k_b N_A = 8,3144 \frac{J}{mol \ K}$

6.3. Freies Elektronengas

 $D(E) = \frac{1}{V} \frac{\mathrm{d}Z}{\mathrm{d}E} = \sqrt[2]{\left(\frac{2m}{\hbar^2}\right)^3} \frac{\sqrt{E}}{2\pi^2}$ Zustandsdichte 3D: 2D: $D = \frac{m^*}{\pi \hbar^2 a}$ 1D: $D = \frac{\sqrt{2m^*}}{\pi \hbar a^2} \frac{1}{\sqrt{E - E_{x,j} - E_{z,j}}}$

Energieeigenwerte: $E_{nml}=\frac{\hbar^2 \underline{k}^2}{2m_e^*}=\frac{\hbar^2 \pi^2}{2m_e^* L^2}(n^2+m^2+l^2)$

Wiedemann-Franzsches Gesetz:

 $\frac{\lambda}{\sigma_{el}T} = L := \frac{\pi^{2} k_{B}^{2}}{3e^{2}} = 2.44 \times 10^{-8} \text{ V}^{2}/\text{K}^{2}$ (L: Lorentzzahl)

7. Elektrische Eigenschaften von Festkörpern

Spez. Wid. $[\rho] = \Omega \, \mathrm{m}$ Leitfäh. $[\sigma] = \frac{1}{\Omega \, \mathrm{m}}$ $[\mu] = \frac{\mathrm{m}^2}{\mathrm{V} \, \mathrm{s}}$

7.1. Ladungstransport

Je kleiner a_0 , desto flacher die Potentialbarrieren zwischen den Atomen, desto breiter werden die Energiebänder.

Eingesperrtes Teilchen $\frac{1}{\hbar} \frac{\mathrm{d}E(k)}{\mathrm{d}k}$ $v_{\sf gr}$ v_{ph}

7.2. Widerstand

$$R = \rho \frac{l}{A} = \frac{1}{\sigma} \frac{l}{A}$$
 Fermiradius $k_{\rm F} = \frac{\sqrt{2mE_{\rm F}}}{\hbar}$
$$-en\Delta p_x \qquad e^2$$

 m^*E_x

Elektronen verbinden sich zu Cooper-Paaren

7.3. Elektrochemische Spannung, Korrosion

 \rightarrow edel kathodisch \rightarrow positives Potential Das unedlere anodisch → unedel → negatives Potential Metall wird zuerst in Wasser mit Efeld aufgelöst

7.4. Piezo-Effekt

Mechanische Verformung erzeugt elektrische Spannung in Kristallen $\underline{\underline{D}} = -k_p \frac{F}{AE}$ $\sigma_{xx} = c \frac{\Delta l}{l} + k_p E_x$

7.5. Pyroelektrizität

 $\Delta P = \lambda \Delta T$

8. Thermoelektrische Effekte

 $\frac{\frac{S}{m}}{\frac{W}{m K}}$ $\frac{\frac{\mu V}{m K}}{K}$ elektrische Leitfähigkeit $[\sigma]$ Wärmeleitfähigkeit $[\lambda]$ Seebeck-Koeffizient [S]

Durch thermische Teilchenbewegung entsteht eine Diffusionsstromdichte:

$$j_{\text{diff}} = -e(n_1 v_{1x} - n_2 v_{2x}) = e \frac{\mathrm{d}}{\mathrm{d}T} (D_n \cdot n) \frac{\mathrm{d}T}{\mathrm{d}x}$$

Diffusionskoeffizient $D_n = v_x l_x = v_x^2 \tau$, Fermigeschw. $v_x^2 = \frac{1}{3} v_{\rm F}^2$ Effektive Teilchengeschw. $\frac{1}{2}m^*v^2 = \frac{1}{2}k_BT$

Seebeck Koeffizient:

$$S := -\frac{e}{\sigma} \frac{\mathrm{d}}{\mathrm{d}T} (D_n \cdot n) \qquad \boxed{\Delta U = S \cdot \Delta T}$$

8.1. Peltier-Effekt

Wärmestromdichte $w = \Pi \cdot j$ Peltierkonstante: $\Pi = S \cdot T$ Gütezahl $Z=\left|\Delta S\right|^2\cdot\frac{\sigma}{\lambda}$ mit Gütefaktor $\Delta S=\Pi_1-\Pi_2$

8.2. Supraleitung

Starke Abnahme des Widerstands um Faktor $\leq 10^{-14}$ bei einer Sprungtemperatur T_c Kritisches Magnetisches Feld: $H_c = H_0(1-(\frac{T}{T_C})^2)
ightarrow$ siehe Tabelle

Londongl. $\underline{E} = \lambda_{\mathsf{L}} \dot{j}_{\mathsf{c}}$ $\underline{B} = -\lambda_{\mathsf{L}} \operatorname{rot} j_{\mathsf{c}}$

Londonsche Eindringtiefe $\Lambda_{\mathsf{L}} = \sqrt{\frac{\lambda_{\mathsf{L}}}{\mu_{\mathsf{D}}}} \qquad \lambda_{\mathsf{L}} = \frac{m}{n_{\mathsf{c}} e^2}$

9. Halbleiter

Valenzbandenergie E_V Leitungsbandenergie E_{L} $E_{\rm G}^{2} = E_{\rm L} - E_{\rm V}$ $E_{\rm F} = k_{\rm B} T_{\rm F} = \frac{\hbar^{2}}{2m_{\rm e}} (3\pi^{2}n)^{2/3}$ $T_{F} = \frac{\hbar^{2}}{2m_{e}k_{b}} (3\pi^{2}n)^{2/3}$ Bandlückenenergie Fermi-Energie Fermi-Temperatur

Fermi-Verteilung für Elektronen

$$f_e(E,T) = 1 / \left(1 + \exp\left(\frac{E - E_F}{k_B T}\right)\right)$$

 $f_h(E,T) = 1 - f_e(E,T)$

 E_{F} : Energieniveau mit Besetzungswahrsch. 0.5 im thermischen Gleichgewicht. Bei $T=0~\mathrm{K}$ entspricht E_F dem maximalen Energiezustand eines

$$E_{\rm F} = \frac{E_{\rm V} + E_{\rm L}}{2} + \frac{k_{\rm B}T}{2} \ln \left(\frac{N_{\rm V}^*}{N_{\rm L}^*} \right)$$

$$\boxed{\sigma = n_i e \mu_n + p_i e \mu_p} \qquad \underline{\boldsymbol{v}} = \pm \mu \underline{\boldsymbol{E}}$$

mit $np = n_i^2$ gilt: $0 = n^2 e \mu_n - \sigma n + n_i^2 e \mu_p$

$$\boxed{ m^* \cdot \mu = e \cdot \tau } \qquad \boxed{ \frac{1}{\tau} = \frac{1}{\tau_{\rm i}} + \frac{1}{\tau_{\rm ph}} } \ \, {\rm Stromdichte} \ \, \underline{\underline{j}} = -ne \underline{v}_{\rm n} + \frac{1}{\tau_{\rm ph}} }$$

9.1. Effektive Masse

$$\begin{split} m^* &= \frac{\hbar^2}{\mathrm{d}^2 E(k)} \qquad m^* &= \sqrt[3]{m_{||}^* m_{\perp}^{*2}} \\ m_{\mathrm{h}}^* &= \left(m_{\mathrm{hl}}^{*\frac{3}{2}} + m_{\mathrm{hh}}^{*\frac{3}{2}} \right)^{\frac{2}{3}} \end{split}$$

Fermi-Verteilung	f_e	[1]
Elektronen/Löcherdichte	n, p	$\left[\frac{1}{\text{cm}^3}\right]$
Zustandsdichte	$D_{L/V}$	$\left[\frac{\text{cm}_1^3}{\text{cm}^3 \text{ eV}}\right]$
effkt. Zustandsdichte Leitungsband	N_L^*	$[\frac{1}{m^3}]$
effkt. Zustandsdichte Valenzband	N_V^*	$[\frac{n_1}{m^3}]$
		E

Intrinsische Ladungsträgerdichte $n_i = \sqrt{N_L^* N_V^*} e^{-\frac{\Sigma g}{2k_b T}}$

Leitungsband Valenzhand Elektronendichte Löcherdichte

$$n = \int\limits_{E_{\mathsf{L}}}^{\infty} D_{\mathsf{L}} \cdot f_e \, \mathrm{d}E \qquad \qquad p = \int\limits_{-\infty}^{E_{\mathsf{V}}} D_{\mathsf{V}} \cdot f_h \, \mathrm{d}E$$

Zustandsdichte $D_{\mathsf{L}} = rac{(2m_n^*)^{3/2}}{2\pi^2\hbar^3}\sqrt{E-E_{\mathsf{L}}}$ $D_{V} = \frac{(2m_{p}^{*})^{3/2}}{2\pi^{2}\hbar^{3}} \sqrt{E_{V} - E}$

Effektive Zustandsdichte $N_{V}^{*} = 2 \left(\frac{m_{p}^{*} k_{B} T}{2\pi \hbar^{2}} \right)^{3/2}$ $p = N_{V}^{*} \exp \left(-\frac{E_{F} - E_{V}}{k_{B} \cdot T} \right)$ $N_{\mathsf{L}}^* = 2 \left(\frac{m_n^* k_{\mathsf{B}} T}{2\pi \hbar^2} \right)^{3/2}$

9.2. Dotierung von Halbleitern

wahrscheinlichkeit Valenzband	
n-Dotierung $+1e^-$	p-Dotierung $+1h^+$
Donator aus $\overline{\underline{\mathrm{V}}}$	Akzeptor aus $\overline{\overline{\mathrm{III}}}$
$N_{\rm D} = N_{\rm D}^0 + N_{\rm D}^+$	$N_{A} = N_{A}^{0} + N_{A}^{+}$
$N_{A} = 0$	$N_{D} = 0$
$N_{\mathrm{D}}^{0} = N_{\mathrm{D}} \cdot f(E_{\mathrm{D}}, T)$	$N_{A}^0 = N_{A}[1 - f(E_{A}, T)]$
$N_{\rm D}^{+} = N_{\rm D}[1 - f(E_{\rm D}, T)]$	$N_{A}^- = N_{A} \cdot f(E_{A}, T)$

Amphoter: Sowohl n- als auch p-Dotierung. Bei \overline{III} - \overline{V} HL: \overline{IV}

9.3. Temperaturnäherungen für dotierte HL

niedrige T: $n \approx \exp(-\frac{E_{L} - E_{D}}{2k_{B}T})$ mittlere T: $n \approx N_D = \text{const}$ Trick: $\sqrt{N_L^* N_V^*} \sim T^{\frac{3}{2}}$

9.4. Ausgleichsvorgänge

Generationsrate: $G = G_{\mathsf{T}} + G_{\mathsf{L}}$ Thermisch Optisch Rekombinationsrate: R = r(T)np

9.5. Diffusionsströme

 $\begin{array}{ll} j_{n/p}^{\rm diff}=eD_{n/p}\,\frac{{\rm d}n/p}{{\rm d}x} & \text{Einstein Beziehung: } D_{n/p}=\frac{k_{\rm B}T}{e}\mu_{n/p} \\ {\rm Diffusionslänge}\; L_{n/p}=\sqrt{D_{n/p}\,\tau_{n/p}} & \text{Debye-Länge}\; L_{\rm D}=\sqrt{D\tau_{\rm R}} \end{array}$

10. Dielektrische Eigenschaften

Polarisation $[P] = \frac{A_S}{2}$ Polarisierbarkeit $[\alpha] = m^3$ Äußeres Feld E_{out} Induziertes Gegenfeld $E_{::}$

10.1. Polarisation (S. 144)

Dipolmoment $\boxed{\underline{p} = \underline{s} \cdot q} = \varepsilon_0 \alpha \underline{E}_{\mathrm{ext}}$ Polarisation $\boxed{\underline{P} = N\underline{p}}$

 $\begin{array}{c} \text{Im Kristallgitter } N = \frac{1}{8R^3} \\ \text{Claudius-Mosotti-Gleichung: } \frac{\alpha N_v}{3} = \frac{\varepsilon_r - 1}{\varepsilon_r + 2} \Rightarrow \epsilon_r = 1 + \frac{\alpha N}{1 - \frac{\alpha N}{3}} \end{array}$

Suszeptibilität $\chi^{\rm el}=\varepsilon_r-1=rac{\underline{P}}{\varepsilon_0\underline{E}}=rac{\underline{P}_{in}}{\varepsilon_0\underline{E}{\rm in}}=rac{\alpha N}{1-\alpha N}$

Elektronische Polarisation

Elektronenhülle verschiebt sich durch äußeres Feld $\mathbf{p} = \varepsilon_0 \alpha \mathbf{E}$ ext Polarisierbarkeit $\alpha = 4\pi R^3$

Ionische Polarisation

lonen werden durch äußeres Feld verschoben $p = q\Delta r_{Atom} = \epsilon_0 \alpha E$ $\alpha = \frac{q^2}{2c\epsilon_0}$

Orientirungspolarisation

Permanente Dipole werden durch E-Feld ausgerichtet. $\nu = \frac{Ep}{k_BT}$ Energie eines Dipols: $U(\theta) = -p\underline{E} = -pE \cdot \cos(\theta)$

Energieverteilung $w(\theta) = \exp(-\frac{U(\theta)}{k - T})$

 $\overline{\cos(\theta)} = \frac{\overline{w(\theta)\cos(\theta)}}{\overline{w(\theta)}}$

11. Magnetische Eigenschaften

Magnetische Flussdichte	\underline{B}	$\left[T = \frac{Vs}{m^2}\right]$
Magnetische Feldstärke	$\underline{m{H}} = \underline{m{M}}$	$\left[\frac{A}{m}\right]$
Bahndrehimpuls	$\underline{m{L}}$	$[V A s^2]$
Magnetisches Moment	\underline{m}	[A m ²]
magn. Quantenzahl	$m \operatorname{od.} M$	
Spinquantenzahl	S	
gyromagnetisches Verhältnis	g	
Gesamtdrehimpuls	\underline{J}	$[T = \frac{V_s}{m^2}]$
Magnetische Suszepitbilität	χ^m	111-

Bohrsches Magneton: $\mu_{\rm B}=\frac{e\hbar}{2m_{\rm P}}=9.274\times 10^{-24}~{\rm A~m}^2$

Polarisation $\underline{P} = \varepsilon_0 \chi \underline{I}$ Flussdichte $\underline{D} = \varepsilon_0 \underline{E}$	

Gesamtdrehimpuls J = L + Spermanentes mag. Dipolmoment $M_z = g(-\mu_B)J$ Magnetische Suszeptibilität $\chi^m = \mu_r - 1 = \frac{1}{\mu_0} \frac{J}{H} = \frac{M}{H}$ Magnetische Flussdichte $\mathbf{B} = \mu_T \mu_0 \mathbf{H} = \mu_0 \mathbf{H} + \mathbf{J} = \mu_0 (\mathbf{H} + \mathbf{M})$

Elementare Dipole:

Mechanischer Drehimpuls $\underline{L} = \underline{r} \times m_0 \underline{v} = m_0 r^2 \underline{\omega}$ Magnetisches Moment $\underline{m} = I\underline{A} = -\frac{1}{2}er^2 \underline{\omega} = -\frac{e}{2m_0} \underline{L}$ Gyromagn. Verhältnis: $g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$ Spezial: $S = 0 \Rightarrow g = 1$ (unreal) $L = 0 \Rightarrow g = 2$

Diamagnetismus ($\mu_{\rm r} < 1$)

Wirkung der Lorentzkraft. Immer aktiv, wird aber von Para- und Ferromag. überlagert. Temperaturunabhängig.

 $\chi_{\text{dia}}^{\text{m}} = \frac{\underline{M}}{\overline{H}} = -\frac{NZ^*e^2\overline{r^2}\mu_0}{6m}$

Paramagnetismus ($\mu_r > 1$)

Material besitzt magnetische Dipolmomente. (Unvollständige Elektronen-

dominiert oberhalb der Curie-Temperatur

Curiesches Gesetz: $\chi^{\rm m}_{\rm para} = \frac{N\mu_0 g^2 J(J+1)\mu_{\rm B}^2}{3k_{\rm B}T}$

Leitungselektronen ($\mu_r \gg 1$)

$$\begin{cases} \chi_{\mathsf{para},\mathsf{le}}^{\mathsf{m}} = \frac{3}{2} \frac{n \mu_0 \mu_{\mathsf{B}}^2}{k_{\mathsf{B}} T_{\mathsf{F}}} \\ \chi_{\mathsf{dia},\mathsf{le}}^{\mathsf{m}} = -\frac{1}{3} \chi_{\mathsf{para},\mathsf{le}}^{\mathsf{m}} \end{cases} \chi_{\mathsf{le}}^{\mathsf{m}} = \chi_{\mathsf{para},\mathsf{le}}^{\mathsf{m}} + \chi_{\mathsf{dia},\mathsf{le}}^{\mathsf{m}} = \frac{n \mu_0 \mu_{\mathsf{B}}^2}{k_{\mathsf{B}} T_{\mathsf{F}}} \\ (\mathsf{mit} \ n = \frac{\mathit{freie} \ e}{Vez}) \end{cases}$$

Ferromagnetismus

 $(\mu_r\gg 1)$ gekoppelte, parallele Ausrichtung der Momente. Wirkung nur

 $E_A = -\mu_0 \int_{V_{Ww}} \underline{H}_G \underline{H}_A \, dV$

Curie-Weiss-Gesetz: $\chi^{\text{m}} = \frac{C}{T - \Theta} \text{ mit } \Theta = \frac{E_{\text{F}}}{k_{\text{F}}}$

Hystereseverluste $w_n = \oint B dH$

Antimagnetismus

gekoppelte, antiparallele Ausrichtung.

Ferimagnetismus

In eine Richtung stärkere Magnetisierung. $\underline{m} = IA$ ist antiparallel zu \underline{L}

12. Skizzen und Tabellen

12.1. Skizzen

Name	Seite
molare spezifische Wärme	70
Thermoelement	104
Peltier-Effekt	105
Peltier-Element	105
Leitfähigkeit/Supraleitung	106
Wärmeleitfähigkeit	75
Temp. dot. Halbleiter	122
Berthe-Slater-Kurve	164
Magnetische Sättigung	167
Magnetisierungskurve	171
Legierungssystem ohne Mischlücke	42
Legierungssystem ohne Mischkristallbildung	44
Legierungssystem mit Mischlücke	45
Legierungssystem mit intermetallischen Verbindungen	46
Abstandsabhängigkeit interatomarer Kräfte	59
Spannungs/Dehnungsdiagramm	63
Festigkeit bei wechselnder Belastung	67
Dotierkonzentrationen	126
Hystereskurve eines Ferroelektikums	149

12.2 Tabellon / Worte

12.2. Tabellell / Werte	
Name	Seite
Wärmeleitfähigkeit	75
Thermopaare	104
Kritische Feldstärke Supraleiter	107
Orbitalebestetzung	23
Elektronenhülle	24

Homepage: www.latex4ei.de - Fehler bitte sofort melden.

89**A**C

047

3197

Actinium

90 **[h**

1.0 1750

6.9 4787

1554

7.0 4030

92**U**

3,4,5,6

1.1 1132

93**Np**

3,4,5,6

1 2 640

6.1 3902

94**Pu**

3,4,5,6

~1 2 1340

6.0 3100

96**C**m

97**B**K

3,4

~1 2 900

~1 2 986

98**C**1

~1.2 860

99**E**S

100**-m**

101**M**d

~12

95**A**m

3,4,5,6

5.8 2607

103**L**

102**/\O**