

Chapter 2. Direct Link Networks

- Link Service and Framing
- Error Detection and Reliable Transmission
- HDLC, PPP, and SONET
- Token Ring
- Ethernet
- Bridges and Layer-2 switch
- Wireless Networks
- Network Performance

Ethernet

Ethernet

"Dominant" wired LAN technology:

- First widely used LAN technology
- Simpler, cheaper than token LANs and ATM
- Keep up with speed race: 10 Mbps ~ 10 Gbps

Metcalfe's Ethernet sketch

Ethernet

- Multiple access protocols
- CSMA/CD
- IEEE 802.3
- High-Speed Ethernet

Multiple access protocols

- point-to-point
 - PPP for dial-up access
 - point-to-point link between Ethernet switch, host
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - 802.11 wireless LAN
- Properties of Multiple Access Links
 - Single shared broadcast channel
 - Two or more simultaneous transmissions by nodes: interference
 - Collision: node receives two or more signals at the same time

Multiple Access Protocols

- An ideal multiple access protocol
 given a broadcast channel of rate R bps, we want
 - 1. when one node wants to transmit, it can send at rate R.
 - 2. when M nodes want to transmit, each can send at average rate $\ensuremath{\mathsf{R}/\mathsf{M}}$
 - 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
 - 4. simple

Handling Multiple Access

- Multiple access control (MAC)
 - Determine when node can transmit on shared media
- Three classes:
- Channel Partitioning
 - Divide channel into smaller "pieces" (time slots, frequency, code)
 - Allocate piece to node for exclusive use
- Taking turns
 - Nodes take turns to transmit, nodes with more to send can take longer turns
- Random Access
 - Channel not divided, allow collisions
 - Coordinate or recover from collisions

Channel Partitioning with TDMA

- TDMA: time division multiple access
- Access to channel in "slots and rounds"
- Each station gets fixed length slot (packet trans time) in each round
- Unused slots go idle
- Example: a 6-station LAN, 1,3,4 have packets, slots 2,5,6 idle

Channel Partitioning with FDMA

- FDMA: frequency division multiple access
- Channel spectrum divided into frequency bands
- Each station assigned fixed frequency band
- Unused transmission time in frequency bands go idle
- Example: a 6-station LAN, 1,3,4 have packets, frequency bands 2,5,6 idle

Channel Partitioning with CDMA

- CDMA: Code Division Multiple Access
 - Used in wireless broadcast channels (cellular, satellite, etc)
- All nodes share same frequency, but each node has own "chipping" sequence (i.e., code set) to encode data
- Encoded signal = (original data) × (chipping sequence)
- Decoding = inner-product of encoded signal and chipping sequence
- If codes are "orthogonal"
 - Multiple nodes can transmit simultaneously with minimal interference

CDMA: Example

Taking Turns

Polling:

- Master node "invites" slave nodes to transmit in turn
- Typically used with "dumb" slave devices

Concerns:

- Polling overhead
- Latency
- Single point of failure (master)
- e.g. Bluetooth

slaves

Taking Turns

Token passing:

- Control token passed from one node to next sequentially
- Token to message

Concerns:

- Token overhead
- Latency
- Single point of failure (token)
- IBM Token Ring, FDDI

Random Access Protocols

- When node has packet to send
 - Transmit at full channel data rate R
 - No priori coordination among nodes
- Two or more transmitting nodes → collision
- Random access MAC protocol specifies:
 - How to detect / avoid collisions
 - How to recover from collisions (e.g. via delayed retransmissions)
- Examples of random access MAC protocols:
 - ALOHA, Slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA

ALOHA

- Additive Link On-line HAwaii system
 - Developed for Packet Radio networks by Hawaii University
- Sender
 - When station has frame, it sends
 - If ACK, fine.
 - If not, retransmit with probability p, and wait with probability (1-p)
 - If no ACK after repeated transmissions, give up
- Receiver
 - Use frame check sequence (as in HDLC)
 - If frame OK and address matches receiver, send ACK
- Frame may be damaged by noise or collision
 - Another station transmitting at the same time
 - Any overlap of frames causes collision

ALOHA Efficiency

- Collision occurs when frames overlap
- Successful transmission probability for node i, assuming N node

 $P(success) = P(node i transmits) \cdot P(no other node transmits in [t₀-1,t₀]$

· P(no other node transmits in $[t_0,t_0+1]$

=
$$p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1} = p \cdot (1-p)^{2(N-1)}$$

 $P(\text{any success}) = N \cdot P(\text{success}) = Np \cdot (1-p)^{2(N-1)}$

... choosing optimum p and then letting N -> ∞

P(any success) $\approx 1/(2e) = 0.18$

Max utilization is 18%

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

Slotted ALOHA

- All frames have same size
- \blacksquare Time in uniform slots equal to frame transmission time (T_0)
- Nodes are synchronized (need central clock or other sync mechanism)
- Transmission begins at slot boundary
- Frames either miss or overlap totally

operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with probability p until success

Node retransmits frame in each subsequent slot with prob.
 p until success

Slotted ALOHA: Efficiency

- Suppose: N nodes with many frames to send, each transmits in slot with probability p
- Prob (given node has success in a slot) = $p(1-p)^{W-1}$
- Prob (any node has a success) = $Np(1-p)^{W-1}$
- Max efficiency: find p* that maximizes
 Np(1-p)^{N-1}
- When n -> ∞ max efficiency $\approx 1/e = 0.37$
- Max utilization is 37%

CSMA

CSMA

- CSMA (carrier sense multiple access, 载波侦听多路访问)
- Suppose
 - Propagation time is much less than transmission time
 - All stations know that a transmission has started almost immediately
- Method
 - listen before transmit:
 - Sender listen for clear medium (carrier sense), if medium idle, transmit
 - If channel sensed busy, wait reasonable time (round trip plus ACK contention)
 - If no ACK then retransmit
- Longer frame and shorter propagation gives better utilization

Nonpersistent CSMA (非持续CSMA)

- Station wishing to transmit listens
 - 1. If medium is idle, transmit; otherwise, go to 2
 - 2. If busy, wait amount of random time (delay) and repeat 1
- Random delays reduces probability of collisions
 - Two stations waiting will take different time to begin transmission
- Capacity is wasted, since medium will remain idle following end of transmission
 - Even if one or more stations waiting
- Nonpersistent stations are deferential

1-persistent CSMA

- To avoid idle channel time, 1-persistent protocol used
- Station wishing to transmit listens
 - 1. If medium idle, transmit; otherwise, go to step 2
 - 2. If medium busy, listen until idle; then transmit immediately
- 1-persistent stations selfish
 - If two or more stations waiting, collision guaranteed

- Try making compromise
 - Attempts to reduce collisions like Nonpersistent
 - And reduce idle time like 1-persistent

Rules

- 1. If medium idle, transmit with probability p, and delay one time unit with probability (1-p)
 - Typically, time unit = maximum propagation delay
- 2. If medium busy, listen until idle and repeat step 1
- 3. If transmission is delayed one time unit, repeat step 1
- What is an effective value of p?

Value of p

- Objective: avoid instability under heavy load
- Suppose: N stations waiting to send
 - The best value of p in theory is 1/N
- If heavy load expected, p small
- However, as p made smaller, stations wait longer
- In general, this gives very long delays

CSMA/CD

- With CSMA, collision occupies medium for duration of transmission
 - Colliding transmissions aborted once detected
- Stations listen whilst transmitting
 - 1. If medium idle, transmit; otherwise, step 2
 - 2. If busy, listen for idle, then transmit immediately
 - 3. If collision detected, send jam signal then abort
 - 4. After jam, wait random time then start from step 1

CSMA/CD Operation

Signal on bus

// >>>>

- IEEE 802.3 uses 1-persistent
 - Both non-persistent and p-persistent have performance problems
- Collision handling for 1-persistent
 - Wasted time due to collisions is short
 - With random backoff, unlikely to collide on next tries
 - Binary exponential backoff used

Binary Exponential Backoff

- Attempt to transmit repeatedly if repeated collisions
 - First 10 attempts, mean value of random delay doubled
 - Value then remains same for 6 further attempts
 - After 16 unsuccessful attempts, station gives up and reports error
- 1-persistent algorithm with binary exponential backoff efficient over wide range of loads
 - Low loads, 1-persistence guarantees efficiency
 - High loads, at least as stable as other techniques
- Backoff algorithm gives last-in, first-out effect
 - Stations with few collisions transmit first

- On baseband bus, collision produces much higher signal voltage than signal
 - Collision detected if cable signal greater than single station signal
- Signal attenuated over distance
 - Jam needed
 - Limit distance to 500m (10Base5) or 200m (10Base2)
- For twisted pair (star-topology) activity on more than one port is collision
 - Special collision presence signal

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!

- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from {0,1,2, ..., 2m-1}. NIC waits K·512 bit times, returns to Step 2
 - longer backoff interval with more collisions

IEEE 802.3 Transmission Algorithm

CSMA/CD efficiency

- T_{prop} = max prop delay between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame
- efficiency goes to 1
 - as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- better performance than ALOHA: and simple, cheap, decentralized!

efficiency =
$$\frac{1}{1 + 5t_{prop}/t_{trans}}$$

IEEE 802.3

Ethernet Frame Format

	Ethernet v	2	MAC fram	es	(DEC,	Int	el,	Xerox,	1980,	,	简称DI	<u>X</u> v2
Preamble			DA		SA	Type Data		ta		FCS		
	8 octets		6		6	2		46~	1500		4	
	IEEE 802.3 MAC frames					-	46 to 1500	octets	→			
	7 octets	1	6		6	2		з 0		³ О	4	
	Preamble	S F D	DA		SA	Length		LLC Data	ı	P a d	FCS	

SFD = Start of frame delimiter
DA = Destination address
SA = Source address
FCS = Frame check sequence

Preamble

- 7 octets(八位组) with pattern 10101010 followed by one octet with pattern 10101011
- Used to synchronize receiver, sender clock rates
- SFD: 帧起始定界符
- Addresses (DA, SA)
 - 6 octets MAC addresses
- Type/Length
 - Indicates higher layer protocol, IP, Novell IPX, AppleTalk
 - Or length of LLC data (in IEEE 802.3)
 - 区别: IEEE 802.3没有分配1536 (十进制)以下的数为协议类型代码,故值 >=1536时,为类型字段,是dixv2帧。如果从源地址之后的2个字节小于1536,则是长度字段,为IEEE802.3帧。
- FCS
 - CRC checked at receiver

IEEE 802.3

IEEE 802 – Logical Link Control

Ethernet: Unreliable and connectionless

- No handshaking between sending and receiving NICs
- Receiver doesn't send ACK or NAK to sender

Logical Link Control

- Handle logical links between the stations
- Flow and error control
- Rare used on Ethernet, but on WiFi and Token Ring

LLC Services

Based on HDLC, 3 defined:

- Unacknowledged connectionless service
 - Nothing added
- Acknowledged connectionless service
 - Add ACK and NAK, stop-and-wait
- Connection mode service
 - HDLC in Asynchronous balanced mode

DSAP: destination service access point

SSAP: Source service access point

802.3 Physical Layer

- many different Ethernet standards
 - common MAC protocol and frame format

different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps

different physical layer media: fiber, cable

speed

medium

	10base <u>5</u>	10base <u>2</u>	10base <u>T</u>	10base <u>FX</u>
Medium	Thick coax	Thin coax	Twisted pair	Optical <u>f</u> iber
Max. Segment Length	<u>5</u> 00 m	<u>2</u> 00 m	100 m	2 km
Topology	Bus	Bus	Star	Point-to-point link

802.3 Physical Layer

Thick Coax: Stiff, hard to work with

Twisted Pair Cheap Easy to work with Reliable

High-Speed Ethernet

- Still use IEEE 802.3 MAC protocol and frame format
- Star topology
- Speedup by modern wiring and signaling techniques
 - 100Mbps Fast Ethernet
 - Gigabit Ethernet
 - 10Gbps Ethernet

■ 100BASE-TX

- 2 pairs of twisted-pair cable (STP and Category 5 UTP)
- MLT-3 signaling scheme

■ 100BASE-FX

- 2 optical fiber cables
- 4B/5B-NRZI code group stream

■ 100BASE-T4

- 4 pairs of Cat. 3 or Cat. 5 UTP
- Data stream split into 3 separate streams
- Ternary signaling scheme (8B6T)

	100BA	SE-TX	100BASE-FX	100BASE-T4			
Medium	2 pair, STP 2 pair, cat 5 UTP		2 optical fibre	4 pair, cat 3,4,5 UTP			
Signaling	MLT-3	MLT-3	4B5B, NRZI	8B6T, NRZ			
Transmission Rate	100 Mbps						
Topology	Star						
Max Length (m)	100	100	200	100			
Network Span (m)	200	200	400	200			

- Carrier extension
 - At least 4096 bit-times long
- Frame bursting
 - Treat multiple small frames as a large one
- Support Half Duplex and Full Duplex Operation
 - Half Duplex
 - Full Duplex
 - Use switch
 - Each station constitutes separate collision domain, thus no need CSMA/CD

- 1000Base-SX
 - Short wavelength, multi mode fiber
- 1000Base-LX
 - Long wavelength, multi or single mode fiber
- 1000Base-CX
 - Copper jumpers <25m, shielded twisted pair
- 1000Base-T
 - 4 pairs, cat 5 UTP
- Signaling
 - Fiber: 8B/10B; UTP: 4D-PAM5

Gigabit Distance Options

- Full-duplex mode only
- 10GBASE-S (short)
 - 850 nm on multi-mode fiber, Up to 300 m
- 10GBASE-L (long)
 - 1310 nm on single-mode fiber, Up to 10 km
- 10GBASE-E (extended)
 - 1550 nm on single-mode fiber, Up to 40 km
- 10GBASE-LX4
 - 1310 nm on single-mode or multimode fiber, Up to 10 km
 - Wavelength-division multiplexing (WDM) bit stream across 4 light waves

10Gbps Ethernet Distance Options

Gigabit Ethernet Configuration

Summary

- Multiple access protocols
 - 信道切分,轮流访问,随机访问
- CSMA/CD
 - Nonpersistent, 1-persistent, p-persistent
 - CSMA/CD原理,算法
- IEEE 802.3
 - ■以太网帧格式
- High-Speed Ethernet

Homework

■ 书本16章习题: 16.2, 16.3, 16.6, 16.9, 16.10, 16.14