Entity Deduplication for Veridion Data Engineer Internship

A Detailed, Large-Scale Approach to Noisy Company Records

(Bîrsan Gheorghe-Daniel)

Contents

1	Intr	roduction	2
	1.1		2
	1.2		2
	1.3	Overall Two-Part Pipeline	2
2	Cha	allenge & Constraints	3
	2.1	The Task	3
	2.2	Goals & Requirements	3
3	Solı	ition Outline	3
	3.1	Part 1: Data Normalization and Preprocessing	3
	3.2	Part 2: Blocking and Finding Duplicates	4
	3.3	Part 3: Clustering & Enriching the Data	4
4	Pro	blems Encountered	4
	4.1	Naive Approach with Column-by-Column Compare	4
	4.2	Overly Detailed Location Enrichment	5
	4.3	General Speed vs. Coverage Trade-off	5
5	Det		5
	5.1	Data Normalization (Step 1)	5
		5.1.1 Logic Explanation	5
		5.1.2 Data Example	6
	5.2	Finding Duplicates (Step 2)	6
		1 11	6
		9 V	6
	5.3	0 (1)	7
		1 11	7
		5.3.2 Merging Code (Detailed)	7
6	Ana	alysis of Criteria	8
	6.1		8
	6.2		8
	6.3	Code Quality	8
	6.4	Fyrtra Mila	Q

	6.5 Presentation	8
7	Future Adjustments	9
8	Conclusion	9
9	Results	10

1 Introduction

1.1 Context and Rationale

In modern data environments, companies often receive large, noisy datasets from multiple sources, each using different standards for naming, location, industry codes, and so on. The **task** here is to **identify unique companies** among these messy records, gather duplicates into clusters, and produce a single enriched row for each cluster. This challenge was presented specifically for a Veridion Data Engineer Internship assignment but is relevant to many data integration scenarios.

1.2 Motivation

- Data duplication leads to inflated statistics, confusion, and wasted resources.
- Combining partial or inconsistent data into the "best" or "golden" record yields the most robust dataset.
- Speed and correctness are both crucial: blocking or indexing ensures we do not blow up computationally.

1.3 Overall Two-Part Pipeline

In broad terms, the approach can be split into two phases:

1. Normalization & Preprocessing:

- Cleaning textual columns, normalizing websites, approximating missing location fields, merging or inferring company_name from other columns.
- Producing a df_cleaned that is consistent and more easily comparable.

2. Similarity & Clustering:

- Using a blocking strategy (e.g., main_country) to keep it fast.
- A scoring system (points-based or fuzzy approach) to decide if pairs are duplicates.
- Converting these duplicates into connected components and merging each cluster into a single row.

2 Challenge & Constraints

2.1 The Task

We are given a Parquet file with company records. The columns span:

- Company Identifiers: company_name, company_legal_names, ...
- Location Data: main_country_code, main_region, main_city, ...
- Contact: primary_phone, phone_numbers, ...
- Web Presence: website_url, website_domain, facebook_url, ...
- Business Details: company_type, year_founded, ...
- Industry Codes: naics_vertical, main_business_category, ...
- Other Data: revenue, employee_count, inbound_links_count, ...

The dataset is known to be:

- Noisy (missing, partial, or contradictory fields).
- *Inconsistent* (some records only have company_name, others only have a partial company_legal_names, etc.).
- Potentially *large*, requiring efficient grouping of duplicates.

2.2 Goals & Requirements

- 1. **Speed**: Must handle tens (or hundreds, I hope not :*(but it is quite fast) of thousands of rows quickly.
- 2. Correctness: Identify duplicates with minimal false positives or false negatives.
- 3. Robustness: Should handle unexpected or missing data gracefully.
- 4. **Development Feasibility**: Code should be maintainable, understandable, and easily adapted for future improvements.

3 Solution Outline

The final approach divides the solution into three major parts:

3.1 Part 1: Data Normalization and Preprocessing

- Enrich Company Name: If company_name is missing, use company_legal_names, or short_description, or parse the website_domain.
- Location Approximation: If main_country is missing, parse from main_country_code or from TLD. We skip advanced geocoding to remain offline and fast.

- Activity Sector Normalization: Combine codes like naics_2022_primary_code, sic_codes, or parse textual columns with an ML model.
- Numeric Columns: Convert revenue, employee_count to numeric if possible, ignoring invalid strings.

3.2 Part 2: Blocking and Finding Duplicates

- Blocking by Country: Only compare records within the same country. If main_country is missing, group those in a "missing" or "unknown" block.
- Scoring System: Assign points (or partial fuzzy scores) for matching columns:
 - Company Name (fuzzy ratio via RapidFuzz).
 - Website Domain (exact match).
 - Social Media links (partial or exact match).
 - Revenue or Employee Count if within $\pm 10\%$.
- Thresholding: If the total points exceed (e.g.) 4, mark them as duplicates.

3.3 Part 3: Clustering & Enriching the Data

- Connected Components: Build a graph where each record is a node, each duplicate pair is an edge. All records in the same connected component are duplicates of each other.
- Merging Rows: For each cluster, pick the best data:
 - Longest textual field (ensures maximum detail).
 - Largest numeric or average, depending on domain preference.
 - First non-null fallback if no others exist.
- Save Output: The final DataFrame of deduplicated rows is stored in final_data.parquet.

4 Problems Encountered

Despite the plan, we ran into:

4.1 Naive Approach with Column-by-Column Compare

A first naive approach attempted to compare every row with every other row and check all columns if not null. This took **13 hours** and was obviously too slow.

4.2 Overly Detailed Location Enrichment

We tried geocoding via external APIs, but:

- Incurred network latency.
- Data usage / external calls overhead.
- Not feasible for a purely offline, time-sensitive solution.

Hence, we pivoted to TLD-based or code-based approximations.

4.3 General Speed vs. Coverage Trade-off

While more advanced or multi-level blocking might increase coverage, I had to ensure I didn't lose reliability. Ultimately, a single country-based block plus an optional fallback for missing countries was sufficient. I also tried web scrapping, to ensure the data but it was a time consuming running process so I gived up, because of hardware and time constraints. Also, it was possible to enrichmore the activity codes, but I didn't succeded so I tried to focus on other criterias giving the development time constraint

5 Detailed Documentation of the Code

5.1 Data Normalization (Step 1)

5.1.1 Logic Explanation

- best_company_name(row) obtains the best possible name by:
 - 1. Checking company_name or fallback to company_legal_names.
 - 2. If missing, parse short_description or generated_description.
 - 3. If still missing, parse website_domain (remove suffixes like "inc" or "ltd").
- fill_missing_location(row) tries to approximate main_country from main_country_code or from the TLD of website_url.
- unify_activity_info(row) merges multiple industry codes and short descriptions into a single activity_enriched field.

Illustration Code (Excerpt):

```
def best_company_name(row: dict) -> str:
    web = row.get("website_url")
    if pd.isna(web):
        web = None

if web:
        d, _ = parse_domain_tld(web)
        if d:
            return remove_company_suffixes(normalize_text(d))

# Fallback logic with short_description, etc.
for desc_col in ["short_description", "long_description", "generated_description"]:
        val = row.get(desc_col)
```

```
if val and isinstance(val, str):
    # use first n words
    first3 = get_first_n_words(val, 3)
    return remove_company_suffixes(normalize_text(first3)) or None
# final fallback: company_name or commercial_names
...
return None
```

5.1.2 Data Example

Imagine a row with:

- website_url = http://www.testcompany.com
- company_name = NA
- short_description = "leading test solutions"

I parse out "testcompany" from website_url if no better name is found.

5.2 Finding Duplicates (Step 2)

5.2.1 Short Description of the Approach

We block by main_country. So it do not compare records from the US with records from Germany (unless the country is missing). We define a function compute_pair_score(rowA, rowB) awarding points for:

- Name similarity (via rapidfuzz.fuzz.ratio).
- Exact domain match (some columns are strictly 1 point or 2 points if identical).
- Revenue or Employee Count within $\pm 10\%$.
- Social media links if exact matches.

If total points exceed a threshold (like 4), we mark them as a likely duplicate pair.

5.2.2 Scoring System & Code Explanation

```
def within_10pct(valA, valB):
    if valA is None or valB is None:
        return False
    try:
        vA = float(valA); vB = float(valB)
    except:
        return False
    if vA == 0 or vB == 0:
        return False
    ratio = vA / vB
    return (0.9 <= ratio <= 1.1)

def compute_pair_score(rowA, rowB):
    points = 0
    # Name fuzzy => up to 2 points
```

```
ratio = fuzz.ratio(rowA["company_name"] or "", rowB["company_name"] or "")
if ratio >= 80: points += 2
elif ratio >= 50: points += 1

# Website domain exact => +2
if rowA["website_domain"] and rowA["website_domain"] == rowB["website_domain"]:
    points += 2

# Revenue or employee_count within +/- 10% => +1 each
if within_10pct(rowA["revenue"], rowB["revenue"]):
    points += 1
if within_10pct(rowA["employee_count"], rowB["employee_count"]):
    points += 1

# Bonus for social links
# ...
# Punishment for different cities/regions
# ...
return points
```

After computing these pairwise scores, we store pairs with score >= 4 in df_duplicates.

5.3 Clustering and Enriching Data (Step 3)

5.3.1 Short Description of the Approach

We treat each record as a graph node. If two records are duplicates, we add an edge. Then **all connected nodes** belong to the same cluster. We unify them with a function that picks the best column value:

- Longest text for textual columns.
- Largest or first non-null for numeric columns.

5.3.2 Merging Code (Detailed)

```
import networkx as nx
G = nx.Graph()
for row in df_duplicates.itertuples():
   idxA = row.idxA
   idxB = row.idxB
   G.add_edge(idxA, idxB)
components = list(nx.connected_components(G))
def merge_cluster(cluster_indices, df):
   subset = df.loc[list(cluster_indices)]
   merged_row = {}
   for col in df.columns:
       colvals = subset[col].dropna().tolist()
       if len(colvals) == 0:
          merged_row[col] = None
           continue
       # if text, pick longest
       # if numeric, pick largest, etc.
   return merged_row
```

We then iterate through each connected component, *merge* those rows, and produce a final DataFrame. Finally, we write that DataFrame to final_data.parquet.

6 Analysis of Criteria

6.1 Correctness

- By carefully normalizing columns and awarding points for name, domain, location, etc., we reduce the chance of false positives.
- Using *connected components* ensures that if A matches B, and B matches C, then A, B, C are all considered duplicates.

6.2 Robustness

- Missing columns default to None, skipping or awarding 0 points.
- We do not rely on external APIs for location; thus no blocking network calls.
- If the dataset is partially large, we can scale with Dask or Spark if needed.

6.3 Code Quality

- Each transformation is in a clear function: best_company_name, fill_missing_location, ...
- The final merging code is also modular.
- Comments and docstrings are used for clarity.

6.4 Extra Mile

- We used **longest text** logic in merging to preserve maximum detail.
- We handled optional columns like social media and partial phone matches for partial scoring.
- We gave expansions for revenue or employee count within $\pm 10\%$.

6.5 Presentation

We carefully outlined the approach in steps, each with code snippets and logic explanation. We also included a verification snippet that prints original cluster rows for a quick sanity check.

7 Future Adjustments

Even after building a stable approach, we foresee potential expansions:

• LSH (Locality-Sensitive Hashing): If the name fields are extremely large or we approach millions of records, an LSH-based approach can drastically reduce pairwise comparisons.

• Weighted Merging:

- Instead of simply "largest numeric" or "longest text," we can track *confidence* in each record or do a majority vote.
- Language Model Summaries: We might unify textual columns by concatenating or summarizing them with an ML model to produce the final text description.
- Advanced k-Means or DBSCAN Over Embeddings: Instead of pairwise scoring, embed the records in a vector space (like a *Transformer-based* embedding) and use clustering in high-dimensional space. This might be slower or more complex but could capture deeper semantic similarities.
- Spark-based Graph Merging: If the data is extremely large, we can use Apache Spark GraphX or GraphFrames for distributed connected-component detection.

8 Conclusion

- 1. We split the problem into a first step for data normalization and a second step for finding and merging duplicates.
- 2. **Normalization** ensures each column (e.g. company_name, main_country, revenue) is consistent, numeric fields are typed properly, and textual fields are trimmed.
- 3. **Similarity** uses blocking on country, a points-based system for columns, and a threshold for duplicates.
- 4. **Clustering** is done by turning duplicates into a *graph* and identifying *connected* components.
- 5. Merging finalizes the golden record, choosing the best textual or numeric values.

Thus, the final DataFrame in final_data.parquet is fully deduplicated and enriched with the best available data from each cluster of duplicates.

Why this Approach?

- It is *fast* enough for moderate to large data, especially with an offline, TLD-based location fill and a country-based block.
- It is *robust* in that we handle missing data gracefully.
- It is easy to adjust the scoring system or the merging logic as domain knowledge evolves.

9 Results

After executing the full deduplication pipeline on the cleaned dataset, the following outcomes were obtained:

• Total Connected Components (Clusters): 24,445

- This means the dataset was segmented into 24,445 distinct groups of records.
- A component with only one node represents a unique company without detected duplicates.
- Components with more than one node indicate detected duplicates, grouped together.

• Potential Duplicate Pairs Found (score \geq 4): 13,477

- These represent candidate record pairs with high similarity based on the scoring system.
- The score threshold of 4 was determined based on empirical testing to balance recall and precision.
- The scoring system included fuzzy name match, website match, employee count similarity, revenue range, and social media overlap.

These results show that nearly a third of the dataset involved potential duplication, underlining the importance of this deduplication process. The graph-based clustering then ensured all linked duplicate pairs were unified into single golden records.

The final deduplicated and enriched dataset was saved as:

- Filename: final_data.parquet
- Format: Apache Parquet (columnar storage, optimized for large-scale analytics)

Final Words: The *Entity Deduplication* method proposed meets the requirements for a **Veridion Data Engineer Internship** by balancing speed, correctness, running time, and development effort. Our detailed code and approach demonstrate professional best practices in data normalization, fuzzy matching, cluster merging, and overall pipeline structure.