Stuff \pmod{p}

- 1. Let p = 4k + 3 be a prime number. Find the number of different residues modulo p of $(x^2 + y^2)^2$, where gcd(x, p) = gcd(y, p) = 1.
- 2. Let both p and 2p + 1 be primes. There are a total of 2p + 1 balls in two boxes, and neither is empty. Each step, one is allowed to move exactly half the balls in one box to the other box. Let k be any positive integer less than 2p + 1. Prove that there is a stage such that there are exactly k balls in one of the boxes.
- 3. Let p be an odd prime and let

$$f(x) = \sum_{i=1}^{p-1} \left(\frac{i}{p}\right) x^{i-1}.$$

- (a) Prove that f is divisible by x-1 but not by $(x-1)^2$ if and only if $p \equiv 3 \pmod{4}$.
- (b) Prove that if $p \equiv 5 \pmod{8}$ then f is divisible by $(x-1)^2$ and not by $(x-1)^3$.
- 4. Find all odd primes p such that both of the numbers

$$n_1 = 1 + p + p^2 + \dots + p^{p-2} + p^{p-1}$$
 and $n_2 = 1 - p + p^2 - \dots - p^{p-2} + p^{p-1}$

are primes.

- 5. Find all surjective functions $f: \mathbb{N} \to \mathbb{N}$ such that for every $m, n \in \mathbb{N}$ and every prime p, the number f(m+n) is divisible by p if and only if f(m) + f(n) is divisible by p. (Here \mathbb{N} denotes the set of all positive integers.)
- 6. Let p be a prime such that $p = k \cdot 2^n + 1$, where k is odd, k > 1. Suppose that p divides Fermat number $2^{2^m} + 1$ for some integer m with $m \le n 2$. Prove that $k^{2^{n-1}}$ is congruent to 1 modulo p.
- 7. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence with $x_1 = 2$, $x_2 = 12$, and $x_{n+2} = 6x_{n+1} x_n$ for every positive integer n. Let p be an odd prime, and let q be a prime divisor of x_p . Prove that if q > 3, then $q \ge 2p 1$.
- 8. Let p be a prime, and let k be an integer greater than 2. There are integers a_1, a_2, \ldots, a_k such that p divides neither a_i $(1 \le i \le k)$ nor $a_i a_j$ $(1 \le i < j \le k)$. Denote by S the set

$${n|1 \le n \le p-1, (na_1)_p < (na_2)_p} < \dots < (na_k)_p},$$

where $(b)_p$ denotes the remainder when b is divided by p. Prove that S contains less than $\frac{2p}{k+1}$ elements.

9. Let p > 2 be a prime number, and let $S = \{0, 1, \dots, p-1\}$. Determine the number of 6-tuples $(x_1, x_2, x_3, x_4, x_5, x_6)$ with $x_i \in S, 1 \le i \le 6$, such that

$$x_1^2 + x_2^2 + x_3^3 \equiv x_4^2 + x_5^2 + x_6^2 \pmod{p}$$
.

- 10. Given a finite set P of prime numbers, prove that there exists a positive integer x which is representable in the form $x = a^p + b^p$ (with $a, b \in \mathbb{N}$) for each $p \in P$, but not representable in that form for any $p \notin P$.
- 11. Let p > 2 be a prime and let a, b, c, d be integers not divisile by p, such that

$$\left\{\frac{ra}{p}\right\} + \left\{\frac{rb}{p}\right\} + \left\{\frac{rc}{p}\right\} + \left\{\frac{rd}{p}\right\} = 2$$

for any integer r not divisible by p. Prove that at least two of the numbers a+b, a+c, a+d, b+c, b+d, c+d are divisible by p. Here, for real numbers x $\{x\} = x - \lfloor x \rfloor$ denotes the fractional part of x.

- 12. Let m be a given positive integer.
 - (a) Prove that there exists an integer N_1 such that for every prime p greater than N_1 , there are m consecutive positive integers each of which is congruent to the square of an integer modulo p.
 - (b) Prove that there exists an integer N_2 such that for every prime p greater than N_2 , there are m consecutive positive integers each of which is not congruent to a square of an integer modulo p.
- 13. Let $f, g: \mathbb{N} \to \mathbb{N}$ be functions with the properties:
 - (a) q is surjective;
 - (b) $2f(n)^2 = n^2 + g(n)^2$ for all positive integers n;
 - (c) $|f(n) n| < 2004\sqrt{n}$ for all n.

Prove that there are infinitely many $n \in \mathbb{N}$ with f(n) = n.

- 14. Find all positive integers n > 1 for which there exists a unique integer a with $0 < a \le n!$ such that $a^n + 1$ is divisible by n!.
- 15. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^p p$ is not divisible by q.
- 16. Let f be a polynomial with integer coefficients, and let p be a prime such that f(0) = 0, f(1) = 1, and f(k) is congruent to either 0 or 1 modulo p for all positive integers k. Show that the degree of f is at least p 1.

17. Find all integer solutions of the equation

$$\frac{x^7 - 1}{x - 1} = y^5 - 1.$$

18. Find all ordered triples of primes (p, q, r) such that

$$p|q^r + 1$$
, $q|r^p + 1$, $r|p^q + 1$.