Using arxiv.org as a Source of Edit Data

Samuel Stevens

February 2020

Computer Science Engineering

Prof. Wei Xu

Abstract

Natural language processing (NLP) has applications in automatic editing applications, such

as Grammarly. Because current models are so heavily data-driven, additional source of data

for specific problems can dramatically improve current results. We aim to provide a new

large scale dataset of sentence-level edits from arxiv.org via text extraction and automatic

sentence alignment, taking advantage of recently developed methods. In addition to a dataset

of sentence-level edits, we aim to provide some introductory analysis of the data to aid future

research.

1

1. Background and Motivation

Natural language processing has current applications in areas such as virtual assistants (Alexa, ¹ Siri²), but also is applicable in machine translation (Google Translate³) and automatic editing (Grammarly⁴). Automatic editing results can be improved with additional examples of edits from which algorithms can learn. However, compared to web chats, translated texts, or free form prose, finding large repositories of text being edited (with before and after data) is more difficult.

arxiv.org is the "the standard repository for new papers in mathematics, physics, statistics, computer science, biology, and other disciplines" (Krantz 2007). As noted in (Tan and Lee 2014), arxiv.org authors often submit multiple versions of their papers. At the time of writing, arxiv.org hosts 1.6M papers, with 611K with two or more versions. Can these papers be used to create a large dataset of examples of improving the quality of a sentence through editing? More concretely, can data from arxiv.org be used to improve current NLP metrics such as Split and Rephrase (Narayan et al. 2017) or atomic insertions (Faruqui et al. 2018)?

Related Work

Previous work on using publicly available data for as a source of edit data has primarily focused on using Wikipeida (Faruqui et al. 2018; Botha et al. 2018) (Chenhao has lots of sources here). arxiv.org has only been looked at by Tan and Lee (2014), examined all papers from 2011. Work on arxiv.org (Tan and Lee 2014) and Wikipedia (Faruqui et al. 2018) produced a dataset of 108,678 and 43 million sentence edits, respectively. I will look at

¹https://www.amazon.com/b?node=17934671011

²https://www.apple.com/siri/

³https://translate.google.com/

⁴https://www.grammarly.com/

all papers on arxiv.org with two or more revisions to create a larger dataset. In addition, (Tan and Lee 2014) does not look at how edit data in academic writing could improve model scores in areas such as Split and Rephrase (Narayan et al. 2017) or phrases insertion with existing sentences (Faruqui et al. 2018). Given that Wikipedia edit data has been useful in many applications including (... big list here [with citations]...), arxiv.org could also be a valuable source of edit data with many similar applications.

Significance

Previous work on edit data has demonstrated that edit data can be used for both discriminative (Botha et al. 2018; Faruqui et al. 2018) and generative (Faruqui et al. 2018) tasks. By introducing a dataset of academic writing, we will be able to perform similar tasks in more formal domains, such as writing and editing scientific papers.

Due the to the lack of understanding about this data, part of the significance of this project is discoving unique features that can be utilized by future work.

Research Goals

At the end of this project, we aim to produce a large dataset of sentence level edits, deletions and additions in an academic writing domain, as well an initial analysis on distinctive features of this new dataset.

I will be working on this project with Prof. Wei Xu as my research advisor and Chao Jiang, a Ph.D. student at Ohio State. Given Prof. Xu and Chao Jiang's experience in sentence alignment, my role will be to design a pipeline for extracting plain text from documents stored on arxiv.org and furthering the analysis of aligned sentences.

Methodology

In order to use arxiv.org as a source of data, the papers available for download will be used as a source of academic writing. By finding papers with two or more versions, we can find edits made to papers and used as a source of data similar to WikiAtomicEdits (Faruqui et al. 2018) or the Academic Edits dataset (Tan and Lee 2014).

Finding Papers

To find papers, arxiv.org's Open Archives Initiative for metadata harvesting will be used.

Downloading Latex Source Code

To download the Latex source code, an automated web scraper will be developed using Python. About 900K papers need to be downloaded. To not overly stress the arxiv.org server, a small delay will be introduced between requests. With this delay, it will require about 10 days to download all papers.

Converting Latex to Text

Because Latex is not a language with plain English text throughout, some processing is needed to extract the text from Latex. Several open source, free-to-use tools (Pandoc⁵, opendetex⁶) are available for extracting text from Latex. A tool will be chosen or developed to accurately extract plain English text from Latex source documents.

Sentence Splitting

To convert the raw text from the papers to sentences, Stanford's CoreNLP software will be used (Manning et al. 2014). A wrapper for said software written by Chao Jiang will be used

⁵https://pandoc.org/

⁶https://github.com/pkubowicz/opendetex

to interface with Stanford's code.

Alignment

To align non-identical sentences, we will take advantage of Chao Jiang's recent experience in sentence alignment and evaluate several approaches to alignment. Because of the limited number of edits between documents, alignment is not expected to be a extremely difficult task.

Analysis

Because arxiv.org is a relatively unexplored dataset, we will perform some linguistic analysis on the data, similar to (Yang et al. 2017). This might include edit type classification, edit intention, or something further.

Timeline

Task	Start Date	End Date
Proposal	Jan 16, 2020	Feb 14, 2020
Gathering data	Jan 18, 2020	Jan 27, 2020
Taking 4999H (2nd session)	Feb 26, 2020	Apr 20, 2020
Analyzing data	Jan 28, 2020	Mar 15, 2020
Writing conference paper	Mar 16, 2020	May 10, 2020
Paper submission to EMNLP	May 11, 2020	
Summer break		
Taking 4999H	Aug 25, 2020	Dec 9, 2020
Writing Ohio State thesis	Aug 25, 2020	Sep 25, 2020
Oral defense	Oct, 2020	
Submission to Knowledge Bank	Oct, 2020 (after defense)	
Presenting at research forum	Nov, 2020	

Personal Statement

I am a third year Honors CSE student interested in artificial intelligence. Communicating with machines through natural language has been a challenge for researchers since the very start of AI research with the Turing test. The opportunity to work in NLP with Prof. Xu is unlike any experience I've had in industry internships. I'll be able to work with both current and future Ph.D.'s in a one-on-one setting on real project. I can't get that kind of experience anywhere else. Because this work is so different to what I experience in the classroom or in industry, I will learn more, and faster.

In addition, this project gives me an opportunity to apply the material taught in my AI and NLP classes in a real world project. So much of computer science is well-documented and

freely available online. Since NLP and AI are the cutting edge of computer science, they aren't as accessible to a student like me. The opportunity to work on a real project with the best of the best isn't something I can find on a video tutorial

Finally, working on a research project from start to finish will give me an first-person look into the lives of Ph.D. students. This opportunity will help inform my decision about graduate school and doing research in my future career.

References

- Botha, Jan A, Manaal Faruqui, John Alex, Jason Baldridge, and Dipanjan Das. 2018. "Learning To Split and Rephrase From Wikipedia Edit History." In *Proceedings of the* 2018 Conference on Empirical Methods in Natural Language Processing, to appear.
- Faruqui, Manaal, Ellie Pavlick, Ian Tenney, and Dipanjan Das. 2018. "WikiAtomicEdits: A Multilingual Corpus of Wikipedia Edits for Modeling Language and Discourse." In *Proc. Of Emnlp*.
- Krantz, Steven G. 2007. "Notices of the Ams." In. American Mathematical Society.
- Manning, Christopher D., Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky. 2014. "The Stanford CoreNLP Natural Language Processing Toolkit." In Association for Computational Linguistics (Acl) System Demonstrations, 55–60. http://www.aclweb.org/anthology/P/P14/P14-5010.
- Narayan, Shashi, Claire Gardent, Shay B. Cohen, and Anastasia Shimorina. 2017. "Split and Rephrase." In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, 606–16. Copenhagen, Denmark: Association for Computational Linguistics. https://doi.org/10.18653/v1/D17-1064.
- Tan, Chenhao, and Lillian Lee. 2014. "A Corpus of Sentence-Level Revisions in Academic Writing: A Step Towards Understanding Statement Strength in Communication." In Proceedings of Acl (Short Papers).
- Yang, Diyi, Aaron Halfaker, Robert Kraut, and Eduard Hovy. 2017. "Identifying Semantic Edit Intentions from Revisions in Wikipedia." In, 2000–2010. https://doi.org/10.18653/v 1/D17-1213.