建立一种用于动态预测脓毒症患者 诱发PICS的机器学习方法

华东理工大学 白栋栋 成昊南 黄海骅 霍松泽 摘要

目录

1	项目	背景	2		
2	材料和方法				
	2.1	数据来源	2		
	2.2	选择数据	2		
	2.3	定义输出	2		
	2.4	计算输出	2		
	2.5	数据分析	2		
3	3 模型结果				
	3.1	基准特征	3		
	3.2	模型比较	3		
	3.3	完整模型与紧凑模型	4		
	3.4	性能分析	5		
	3.5	模型解释	5		
	3.6	H5预测工具	5		
4	结论		6		
Α	附录		6		

1 项目背景

- 2 材料和方法
- **2.1** 数据来源 TODO:
- **2.2 选择数据** TODO:
- **2.3** 定义输出 TODO:
- **2.4** 计算输出 TODO:
- **2.5** 数据分析 TODO:

3 模型结果

3.1 基准特征

从eICU数据库中共提取出100,308条数据,包含17,729名不同的脓毒症患者。其中,3,866(3.85%)条数据为正例,96,442(96.15%)条数据为反例。

经过比较,正例拥有更长的ICU入住天数(21.067 vs. 10.852, p < 0.001),更少的血浆蛋白(2.109 vs. 2.520, p < 0.001),更少的淋巴细胞数目(9.931 vs. 12.473, p < 0.001),更高的心率(93.337 vs. 88.458, p < 0.001),更高的呼吸频率(21.814 vs. 21.019, p < 0.001),更少的血清总蛋白(5.578 vs. 5.928, p < 0.001),更低的红细胞比容(27.808 vs. 29.888, p < 0.001),更少的肌酸酐(1.489 vs. 1.610, p < 0.001),更高的白细胞计数(13.218 vs. 12.189, p < 0.001),更多的血小板(260.259 vs. 226.342, p < 0.001),更低的平均动脉压(79.727 vs. 82.055, p < 0.001)。

3.2 模型比较

排名	模型名称	平均准确率	平均AUC ¹
1	CatBoost	$0.996(\pm 0.001)$	$0.996(\pm0.001)$
2	Light Gradient Boosting	$0.995(\pm0.001)$	$0.996(\pm 0.001)$
3	Extreme Gradient Boosting	$0.995(\pm0.001)$	$0.994(\pm 0.002)$
4	Hist Gradient Boosting	$0.994(\pm 0.002)$	$0.996(\pm 0.002)$
5	Ada Boost	$0.993(\pm 0.002)$	$0.995(\pm 0.002)$
6	Decision Tree	$0.989(\pm0.002)$	$0.949(\pm 0.013)$
7	Multi-Layer Perceptron	$0.982(\pm0.004)$	$0.975(\pm0.008)$
8	SVM (RBF Kernel)	$0.973(\pm0.003)$	$0.957(\pm0.011)$
9	Logistic	$0.966(\pm0.007)$	$0.956(\pm 0.012)$
10	Extra Trees	$0.961(\pm0.006)$	$0.977(\pm0.006)$
11	Naive Bayes	$0.961(\pm0.006)$	$0.689(\pm 0.034)$
12	Ridge	$0.961(\pm0.007)$	$0.952(\pm0.013)$
13	Linear Discriminant Analysis	$0.961(\pm0.010)$	$0.952(\pm0.013)$
14	K-Nearest Neighbours	$0.951(\pm 0.006)$	$0.544(\pm 0.025)$

¹ AUC: Area Under Curve,接受者操作特性曲线下与坐标轴围成的面积。

表 1: 14种模型的交叉验证结果比较(按平均准确率排序)

用提取出的数据训练预测模型,各种模型的交叉验证结果如表1所示。Logistic回归表现良好(平均准确率: 0.966, 平均AUC: 0.956), 而集成学习方法拥有更高的平均准确率和平均AUC。其中,CatBoost的预测结果最好(平均准确率: 0.996, 平均AUC: 0.996), 故选择CatBoost进入下一步。

3.3 完整模型与紧凑模型

图 1: 完整模型中各变量的平均SHAP值比较

根据预测结果比较,选择含57个输入变量的CatBoost模型为完整模型。 计算完整模型中各变量的平均SHAP值,结果如图1所示。此摘要图展示了 各个变量对预测结果的影响情况分布。例如,ICU入住天数(offset)对结果影响明显,且ICU入住天数越长,发生ICU综合症的概率越大。

TODO:

3.4 性能分析

TODO:

3.5 模型解释

TODO:

3.6 H5预测工具

4 结论

TODO:

A 附录