Azzolini Riccardo 2020-04-30

Teorema di compattezza

1 Insieme finitamente soddisfacibile

Definizione: Un insieme di formule Γ è finitamente soddisfacibile se e solo se ogni sottoinsieme finito di Γ è soddisfacibile.

Nel seguito, si scriverà $\Delta \subset_{FIN} \Gamma$ e $\Delta \subseteq_{FIN} \Gamma$ per indicare che Δ è un sottoinsieme finito (rispettivamente proprio o meno¹) di Γ .

2 Teorema di compattezza

Si vuole dimostrare il seguente teorema:

Teorema (di compattezza): Un insieme è soddisfacibile se e solo se è finitamente soddisfacibile.

Osservazione: Verificare la soddisfacibilità di un insieme infinito corrisponde a mostrare l'esistenza di una valutazione che verifica contemporaneamente tutte le (infinite) formule dell'insieme. Invece, considerare la soddisfacibilità dei suoi sottoinsiemi finiti non obbliga, in linea di principio, a considerare la stessa valutazione per tutti i sottoinsiemi.

La parte complicata della dimostrazione è provare che la soddisfacibilità di tutti i sottoinsiemi finiti di Γ (in base a valutazioni potenzialmente diverse) comporta la soddisfacibilità dell'intero insieme Γ , cioè l'esistenza di una valutazione che soddisfa contemporaneamente tutte le formule di Γ .

Viceversa, se un insieme Γ è soddisfacibile, allora è banale mostrare che anche ogni suo sottoinsieme (finito) Δ è soddisfacibile:

$$\begin{aligned} v \models \Gamma &\implies \widetilde{\forall} H \in \Gamma, \ v \models H \\ &\implies \widetilde{\forall} H \in \Delta \subseteq \Gamma, \ v \models H \\ &\implies v \models \Delta \end{aligned}$$

Infine, è banale anche il caso in cui Γ è finito: se Γ è finitamente soddisfacibile, tutti i suoi sottoinsiemi finiti sono soddisfacibili, ma uno di questi è $\Gamma \subseteq_{FIN} \Gamma$, quindi Γ è soddisfacibile.

¹Nel caso di $\Delta \subseteq_{FIN} \Gamma$, se $\Delta = \Gamma$ allora anche Γ deve essere finito.

3 Schema della dimostrazione

La dimostrazione della "parte difficile" del teorema di compattezza segue uno schema per certi versi simile a quello del teorema di completezza di $T_{\rm CPL}$.

- Si mostrerà (LFC2) che, dato un insieme finitamente soddisfacibile Γ , lo si può estendere in un insieme che ha una "struttura forte" (è finitamente soddisfacibile e, in più, anche *completo*) Γ^* .
- Si mostrerà (LFC1) che, a partire da un insieme finitamente soddisfacibile e completo Γ^* , si può definire una valutazione v tale che $v \models \Gamma^*$. Siccome Γ^* è un'estensione di Γ , cioè $\Gamma \subseteq \Gamma^*$, da $v \models \Gamma^*$ si deduce che $v \models \Gamma$.

4 Insieme completo

Definizione: Un insieme di formule Γ è **completo** se e solo se, per ogni formula $H \in FORM$, si ha che $H \in \Gamma$ oppure $\neg H \in \Gamma$.

Osservazione: Per definizione, un insieme completo di formule è infinito (dovendo contenere un elemento per ognuna delle possibili formule della logica proposizionale classica, che sono infinite).

5 Proprietà degli insiemi completi finitamente soddisfacibili

Proposizione (PFC1): Sia Γ un insieme di formule completo e finitamente soddisfacibile. Allora:

- 1. $A \in \Gamma$ se e solo se $\neg A \notin \Gamma$;
- 2. $A \wedge B \in \Gamma$ se e solo se $A \in \Gamma$ e $B \in \Gamma$;
- 3. $A \vee B \in \Gamma$ se e solo se $A \in \Gamma$ o $B \in \Gamma$;
- 4. $A \to B \in \Gamma$ se e solo se $A \notin \Gamma$ o $B \in \Gamma$.

Dimostrazione:

1. Se questo punto non fosse vero, sarebbe possibile avere $A, \neg A \in \Gamma$, cioè $\{A, \neg A\} \subseteq \Gamma$, e l'insieme $\{A, \neg A\}$ non è soddisfacibile, quindi Γ non sarebbe finitamente soddisfacibile, al contrario delle ipotesi della proposizione.

²Invece, non sarebbe comunque possibile avere A, ¬A ∉ Γ : essendo completo, l'insieme deve contenere almeno una delle due formule.

- 2. Per dimostrare questo punto, si trattano separatamente i due versi del "se e solo se", ragionando ancora per assurdo:
 - Si suppone $A \wedge B \in \Gamma$ e $A \notin \Gamma$. Poiché Γ è completo, deve allora essere $\neg A \in \Gamma$, ovvero $\{A \wedge B, \neg A\} \subseteq \Gamma$, ma ciò implica che Γ non è finitamente soddisfacibile, contrariamente alle ipotesi. Il ragionamento nel caso di $B \notin \Gamma$ è analogo.
 - Si suppone che $A, B \in \Gamma$ e $A \wedge B \notin \Gamma$. Siccome Γ è completo, si ha che $\neg (A \wedge B) \in \Gamma$, ma $\{A, B, \neg (A \wedge B)\} \subseteq \Gamma$ non è soddisfacibile, e quindi Γ non è finitamente soddisfacibile.

La dimostrazione per i casi $A \vee B \in \Gamma$ e $A \rightarrow B \in \Gamma$ è analoga.

6 Soddisfacibilità degli insiemi completi e finitamente soddisfacibili

Lemma (LFC1): Un insieme finitamente soddisfacibile e completo è soddisfacibile.

Osservazione: Questo lemma è molto simile al teorema di compattezza (per la precisione, alla sua parte difficile): ha solo la richiesta aggiuntiva che l'insieme di partenza, oltre a essere finitamente soddisfacibile, sia anche completo.

Dimostrazione: Sia Γ completo e finitamente soddisfacibile. Si definisce la seguente valutazione $v: VAR \to \{0,1\}$:

$$\widetilde{\forall} p \in VAR \quad v(p) = \begin{cases} 1 & \text{se } p \in \Gamma \\ 0 & \text{se } p \notin \Gamma \end{cases}$$

Si dimostra poi che questa valutazione soddisfa l'intero Γ , o meglio, per la precisione, che

$$\widetilde{\forall} H \in FORM \quad v \models H \text{ sse } H \in \Gamma$$

e ciò significa che Γ è soddisfacibile. Tale dimostrazione avviene per induzione sulla struttura di H.

• Base: $H = p \in VAR$, quindi

$$v \models p \text{ sse } p \in \Gamma$$

segue dalla definizione di v.

• Passo induttivo:

- Se $H = \neg A$:

$$\neg A \in \Gamma \iff A \notin \Gamma
\iff v \not\models A
\iff v \models \neg A$$
(PFC1)
(IH – ipotesi induttiva)

- Se $H = A \wedge B$:

$$\begin{array}{cccc} A \wedge B \in \Gamma & \Longleftrightarrow & A, B \in \Gamma \\ & \Longleftrightarrow & v \models A \in v \models B \\ & \Longleftrightarrow & v \models A \wedge B \end{array} \tag{IH}$$

 $- \text{ Se } H = A \vee B$:

$$A \lor B \in \Gamma \iff A \in \Gamma \text{ o } B \in \Gamma$$
 (PFC1)
 $\iff v \models A \text{ o } v \models B$ (IH)
 $\iff v \models A \lor B$

- Se $H = A \rightarrow B$: