Distribuição da brioflora em diferentes fisionomias de cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP, Brasil

Sandra Regina Visnadi¹

Recebido em 25/06/2003. Aceito em 16/06/2004

RESUMO – (Distribuição da brioflora em diferentes fisionomias de cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP, Brasil). O trabalho refere-se à distribuição da brioflora ocorrente no cerrado Reserva Biológica e Estação Experimental de Mogi-Guaçu. Este bioma apresenta fisionomias que variam de florestas a campos. As coletas foram realizadas entre 1993 e 1995, na casca de 15 espécies de forófitos arbustivo-arbóreos, ao longo de um transecto, passando por cinco fisionomias diferentes de cerrado. Estudaram-se 1.345 exsicatas de 49 gêneros e 92 espécies de briófitas. A brioflora está relacionada às fisionomias de cerrado e não aos forófitos arbustivo-arbóreos. As fisionomias são mais semelhantes quanto à flora de musgos do que em relação à flora de hepáticas. As briófitas distribuem-se em três grupos de fisionomias: cerrado sentido restrito, campo cerrado e transição / cerrado sentido restrito de *Myrsine* / campo cerrado queimado.

Palavras-chave: hepáticas, musgos, distribuição de briófitas, fisionomias de cerrado, Mogi-Guaçu

ABSTRACT- (Distribution of the brioflora in the different cerrado physiognomies of the Biological Reserve and of the Experimental Station of Mogi-Guaçu, SP, Brazil). This paper refers to the distribution of the brioflora in the cerrado vegetation of the Biological Reserve and of the Experimental Station of Mogi-Guaçu. This biome includes forests to grassland physiognomies. Collects of bryophytes was made between 1993 and 1995 on bark of 15 shrubby-arboreous phorophytes species along a transect, through five different physiognomies of the cerrado vegetation. The studied material totalized 1,345 numbers from 49 genera and 92 species of bryophytes. The brioflora is not related to the shrubby-arboreous phorophytes, but to the cerrado physiognomies. Similarity between physiognomies is higher due to mosses than hepatics distribution. Bryophytes are distributed in three physiognomic groups: cerrado 'stricto sensu', cerrado grassland and transition / cerrado 'stricto sensu' of *Myrsine* / burned cerrado grassland.

Key words: hepatics, mosses, distribution of the brioflora, cerrado physiognomies, Mogi-Guaçu

Introdução

A paisagem da região neotropical inclui áreas diversificadas e altamente contrastantes, como as ilhas luxuriantes do Caribe, os picos com mais de 6.000m e cobertos por neve da Cordilheira dos Andes, a Mata Amazônica situada numa planície com clima quente e úmido e o planalto brasileiro, onde o clima é mais seco, com vegetação de cerrado (Gradstein *et al.* 2001).

A vegetação do cerrado apresenta diversas fisionomias, embora seja diferenciada dos biomas adjacentes. As fisionomias podem ser florestais, onde o dossel é contínuo ou descontínuo, com predominância de espécies arbóreas; savânicas, cujo dossel é descontínuo, pois as árvores e os arbustos estão espalhados sobre um estrato graminoso e campestres, com predomínio de espécies herbáceas e algumas arbustivas (Ribeiro & Walter 1998).

A região neotropical apresenta brioflora extremamente rica, incluindo quase um terço das espécies do grupo no planeta. Poucos estudos referem-se aos aspectos ecológicos das briófitas que desempenham papel importante em ecossistemas tropicais. Uma das áreas que merece prioridade na realização de inventário dessas plantas é o Sudeste do Brasil (Gradstein *et al.* 2001). Sobre a vegetação de cerrado, há poucos trabalhos que registraram a ocorrência de 71 gêneros e 138 espécies de briófitas e, especificamente, para Mogi-Guaçu, SP, a brioflora deste bioma está representada por 50 gêneros e 94 espécies (Vital 1983; 1984; Egunyomi & Vital 1984; Vilas Bôas-Bastos & Bastos 1998; Visnadi & Vital 2001a).

O presente trabalho tem o objetivo de verificar a distribuição da brioflora no cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP

Seção de Briologia e Pteridologia, Instituto de Botânica, C. Postal 4005, CEP-01061-970, São Paulo, SP, Brasil

e se esta distribuição está relacionada aos forófitos ou às fisionomias do cerrado.

Material e métodos

O local de estudo é um remanescente de cerrado na Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP, descrito com mais detalhes em Visnadi & Vital (2001a).

A área, coberta anteriormente por cerrado denso, sofreu frequentes queimadas antes de 1960, foi ocupada por fazenda de gado bovino e pastejada até 1964 e, finalmente, sofreu a última queimada mais intensa, num trecho limitado, em julho/1975 (Mantovani & Martins 1993). A drenagem deficiente do solo, os cortes seletivos de espécimes, as queimadas localizadas e as exposições às geadas são os fatores responsáveis pela existência de diversas fisionomias de cerrado na Reserva, desde campo cerrado a cerrado sentido restrito, com predomínio das fisionomias abertas (Gibbs et al. 1983; Mantovani & Martins 1993).

A vegetação de cerrado da Reserva é composta principalmente pelas famílias mais numerosas da flora angiospérmica mundial. É relativamente rica em espécies, gêneros e famílias, quando comparada com a flora ocorrente em outras áreas de cerrado, fato relevante em função da pequena extensão da Reserva e da sua localização como mancha disjunta de cerrado (Mantovani & Martins 1993).

A flora arbustivo-arbórea apresenta uma composição similar em quase toda a área e também é menos sensível às mudanças de solo, queimadas, clima e diversos outros fatores que atuam nas regiões de sua ocorrência que a flora herbáceo-subarbustiva (Mantovani & Martins 1993). Por essa razão, o material foi coletado na casca de 15 espécies de forófitos arbustivo-arbóreos mais importantes da comunidade, listadas na Tab. 1 e escolhidas segundo valores de importância - VI (E.A. Batista, dados não publicados), ao longo de um transecto, passando por cinco fisionomias de cerrado (Mantovani & Martins 1993), cuja terminologia foi atualizada segundo Ribeiro & Walter (1998), como relacionado na Tab. 2.

As coletas foram realizadas entre 1993 e 1995 e resultaram em 1.345 exsicatas de material herborizado, depositadas no acervo do Herbário de Briófitas, do Instituto de Botânica de São Paulo (SP). O material coletado corresponde aos números S.R. Visnadi & D.M. Vital 636 - 726A, 2.318 - 2.348, 2.732 - 2.815, 2.819 - 3.191 e 3.193 - 3.931, dentre os quais 27,5% são provenientes do cerrado sentido restrito, 21,2% de

transição, 19,2% do cerrado sentido restrito de *Myrsine*, 16,6% de campo-cerrado e 15,5% de campo-cerrado queimado.

Os procedimentos para o estudo do material foram relacionados em Visnadi & Vital (2001a). Acrescentam-se apenas os trabalhos de Müller (1851) e Yuzawa (1988) à lista de trabalhos utilizados para a identificação e para a consulta de dados referentes à distribuição geográfica das espécies.

Aplicaram-se técnicas de análise multivariada (Digby & Kempton 1987; Manly 1994), utilizando-se os programas Matriz, Coef e Cluster do pacote FITOPAC, desenvolvido por G.J. Shepherd, a um total de 31 matrizes de dados binários, a fim de comparar a brioflora ocorrente na área de estudo.

Verificou-se a semelhança entre as cinco fisionomias, por meio da análise das seguintes matrizes:
1) hepáticas coletadas nos diferentes forófitos arbustivo-arbóreos × fisionomias de cerrado, 2) hepáticas sem as espécies restritas, coletadas nos diferentes forófitos arbustivo-arbóreos × fisionomias de cerrado, 3) musgos coletados nos diferentes forófitos

Tabela 1. Forófitos arbustivo-arbóreos, ocorrentes nas cinco fisionomias de cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP.

Família/Espécie	Nome popular na região		
APOCYNACEAE			
Aspidosperma tomentosum Mart.	leitero		
ARALIACEAE			
Didymopanax vinosum March.	mandioqueira		
FABOIDAE			
Acosmium subelegans (Mohlenbr.) Yakovlev	perobinha		
Machaerium villosum Vogel ex Benth.	jacarandá		
GUTTIFERAE			
Kielmyera variabilis Mart.	pau-santo		
MALPIGHIACEAE			
Byrsonima coccolobifolia Kunth	murici-mirim		
Byrsonima verbascifolia Rich. ex Juss	murici		
MIMOSOIDAE			
Anadenanthera falcata (Benth.) Speg.	angico		
Stryphnodendron adstringens (Mart.) Coville	e barbatimão		
MYRSINACEAE			
Myrsine guianensis (Aubl.) Kuntze	pororoca		
OCHNACEAE			
Ouratea spectabilis Engl.	murici-branco		
SAPOTACEAE			
Pouteria ramiflora Radlk.	brasa-viva		
STYRACACEAE			
Styrax ferrugineus Nees & Mart.	aranjeira do mato		
VOCHYSIACEAE			
Qualea grandiflora Mart.	pau-terra		
Vochysia tucanorum Mart.	pau-tucano		

Tabela 2. Briófitas coletadas em 15 forófitos arbustivo-arbóreos, ocorrentes ao longo de um transecto, passando por cinco fisionomias de cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP. CSR - cerrado sentido restrito; T - transição; CSRM - cerrado sentido restrito de *Myrsine*; CCQ - campo cerrado queimado; CC - campo cerrado.

Briófita		Fisionomias de Cerrado				
	CSR	T	CSRM	CCQ	CC	
HEPÁTICAS						
Acrolejeunea torulosa (Lehm. & Lindenb.) Schiffn.	X	X	X	X	X	
Anoplolejeunea conferta (Meissn. ex Spreng.) A. Evans	_	X	_	_	_	
Brachiolejeunea phyllorhiza (Nees) Kruijt & Gradst.	_	_	_	_	X	
Cheilolejeunea acutangula (Nees) Grolle	X	_	_	_	_	
C. adnata (Kunze) Grolle	X	_	_	_	_	
C. discoidea (Lehm. & Lindenb.) Kachroo & R.M. Schust.	X	X	X	X	X	
C. rigidula (Nees ex Mont.) R.M. Schust.	_	X	X	_	_	
C. trifaria (Reinw., Blume & Nees) Mizut.	X	_	_	_	_	
Chonecolea doellingeri (Nees) Grolle	X	X	X	X	X	
Cololejeunea minutissima (Smith) Schiffn.	_	_	X	X	X	
Cylindrocolea rhyzantha (Mont.) R.M. Schust.	_	X	X	_	X	
Drepanolejeunea mosenii (Steph.) Bischl.	_	_	X	_	_	
Frullania arecae (Spreng.) Gottsche	X	_	_	_	X	
F. brasiliensis Raddi	_	_	_	_	X	
F. breuteliana Gottsche	_	_	X	_	_	
F. caulisequa (Nees) Grolle	_	X	_	X	_	
F. ecklonii (Spreng.) Gottsche, Lindenb. & Nees	_	_	X	_	X	
F. ecuadorensis Steph.	X	_	_	_	_	
F. ericoides (Nees) Mont.	X	X	X	X	X	
F. gibbosa Nees in Mont.	X	X	_	X	_	
F. neesii Lindenb.	X	X	X	X	X	
Lejeunea bermudiana (A. Evans) R.M. Schust.	_	_	X	_	_	
L. caespitosa Lindenb.	X	_	_	_	_	
L. confusa E.W. Jones	X	_	_	_	_	
L. flava (Sw.) Nees	X	X	X	X	X	
L. glaucescens Gottsche	_	_	X	X	X	
L. laetevirens Nees & Mont.	_	_	X	_	_	
L. minutiloba A. Evans	_	X	X	_	_	
L. phyllobola Nees & Mont. ex Mont.	X	_	_	_	X	
L. ulicina (Taylor) Gottsche, Lindenb. & Nees	X	X	X	X	X	
Leucolejeunea conchifolia (A. Evans) A. Evans	_	X	X	X	_	
L. unciloba (Lindenb.) A. Evans	_	_	X	_	X	
L. xanthocarpa (Lehm. & Lindenb.) A. Evans	X	X	X	X	X	
Metzgeria dichotoma (Sw.) Nees	X	_	X	_	_	
M. fruticulosa (Dicks.) A. Evans	_	_	_	_	X	
M. myriopoda Lindb.	X	_	_	_	_	
M. vivipara A. Evans	X	_	X	_	X	
Microlejeunea globosa (Spruce) Steph.	X	X	X	X	X	
Omphalanthus filiformis (Sw.) Nees	_	_	X	X	_	
Plagiochila corrugata (Nees) Nees & Mont.	X	_	_	_	X	
P. martiana (Nees) Nees in Lindenb.	X	_	_	_	_	
Radula surinamensis Steph.	_	X	_	_	X	
R. tectiloba Steph.	X	_	X	_	X	
Rectolejeunea evansiana R.M. Schust.	_	_	_	_	X	
Schiffneriolejeunea polycarpa (Nees) Gradst.	X	X	X	_	X	
Sub-total	25	18	26	15	25	
MUSGOS						
Aptychopsis pungifolia (Hampe) Broth.	X	X	_	_	_	
A. pyrrhophylla (Müll. Hal.) Wijk. & Margad.	X	_	_	_	_	
Bryohumbertia filifolia (Hornsch.) JP. Frahm	X	_	_	_	_	
Bryum capillare Hedw.	X	X	X	X	X	

Tabela 2 (continuação)

Briófita	Fisionomias de Cerrado				
	CSR	T	CSRM	CCQ	CC
MUSGOS					
Bryum densifolium Brid.	_	_	_	X	_
Campylopus cryptopodioides Broth.	X	X	X	X	X
C. lamellinervis (Müll. Hal.) Mitt.	X	X	_	_	_
C. occultus Mitt.	_	X	X	_	_
Chryso-hypnum diminutivum (Hampe) W.R. Buck	X	_	_	X	X
Donnellia commutata (Müll. Hal.) W.R. Buck	X	X	X	X	X
Erpodium glaziovii Hampe	X	_	_	_	_
Erythrodontium squarrosum (Hampe) Paris	_	_	X	_	_
Fabronia ciliaris (Brid.) Brid. var. polycarpa (Hook.) W.R. Buck	X	_	X	X	X
Fissidens brevipes Besch.	X	_	_	_	X
F. minutus Thwaites & Mitt. var. pusillissimus (Steere) Pursell	X	_	_	_	_
F. serratus Müll. Hal.	X	_	_	_	_
F. submarginatus Bruch	X	X	_	_	_
F. termitarum (Herzog) Pursell	X	_	_	_	X
Floribundaria usneoides (Broth.) Broth.	X	_	_	_	_
Groutiella tomentosa (Hornsch.) Wijk & Margad.	_	_	X	_	_
Helicodontium capillare (Hedw.) A. Jaeger	X	_	_	_	X
Henicodium geniculatum (Mitt.) W.R. Buck	_	_	X	_	_
Isopterygium subbrevisetum (Hampe) Broth.	_	_	_	X	_
I. tenerum (Sw.) Mitt.	X	X	X	X	X
Jaegerina scariosa (Lorentz) Arzeni	X	_	_	_	_
Jonesiobryum cerradense Vital ex B.H. Allen & Pursell	_	X	X	X	X
J. termitarum Vital ex B.H. Allen & Pursell	_	_	X	X	_
Macrocoma orthotrichoides (Raddi) Wijk & Margad.	X	_	X	_	_
M. tenuis (Hook. & Grev.) Vitt ssp. sullivantii (Müll. Hal.) Vitt	_	_	X	_	
Mesonodon regnellianus (Müll. Hal.) W.R. Buck	_	X	_	_	_
		X	X		_
Ochrobryum gardneri (Müll. Hal.) Mitt.	_ X	X	X	_ X	v
Octoblepharum albidum Hedw.	X				X X
Papillaria nigrescens (Hedw.) A. Jaeger		_	_	_	
Philonotis uncinata (Schwägr.) Brid.	X	_	_	_	_
Racopilum tomentosum (Hedw.) Brid.	X	_	_	_	_
Rhachithecium perpusillum (Thwaites & Mitt. ex Mitt.) Broth.	-	_	_	X	_
Schlotheimia jamesonii (W. Arnold) Brid.	X	_	X	X	-
S. rugifolia (Hook.) Schwägr.	X	X	X	X	X
Schoenobryum concavifolium (D.G. Griffin) Gangulee	X	X	X	_	X
Sematophyllum galipense (Müll. Hal.) Mitt.	X	_	_	_	_
S. subpinnatum (Brid.) E. Britton	X	X	X	X	X
S. subsimplex (Hedw.) Mitt.			X		
Syrrhopodon africanus (Mitt.) Paris ssp. graminicola (R.S. Williams) W.D. Reese	_	X	_	_	_
S. ligulatus Mont.	X	X	X	X	_
S. parasiticus (Brid.) Paris	X	X	X	X	X
Tortella humilis (Hedw.) Jenn.	_	_	_	X	_
Wijkia flagellifera (Broth.) H.A. Crum	X	_	_	_	_
Sub-total	32	18	22	18	16
Total	57	36	48	33	41

arbustivo-arbóreos × fisionomias de cerrado, 4) musgos sem as espécies restritas, coletados nos diferentes forófitos arbustivo-arbóreos × fisionomias de cerrado, 5) briófitas coletadas nos diferentes forófitos arbustivo-arbóreos × fisionomias de cerrado e 6) briófitas sem

as espécies restritas, coletadas nos diferentes forófitos arbustivo-arbóreos × fisionomias de cerrado.

A elaboração dessas seis matrizes deve-se a duas razões. A primeira refere-se ao total de 46% dos táxons, que são restritos a um determinado forófito e/ou a uma

determinada fisionomia e que trabalhar apenas com as espécies amplamente distribuídas, excluindo-se as espécies restritas da análise dos dados, limitaria a compreensão do padrão de distribuição das briófitas. A segunda deve-se a particularidades observadas na distribuição de hepáticas e musgos entre diferentes ecossistemas costeiros (S.R. Visnadi, dados não publicados) e entre ilhas distintas (Visnadi & Vital 2001b). Verificou-se que a inclusão das espécies de hepáticas restritas, na análise dos dados, não altera o padrão de distribuição do grupo das hepáticas entre diferentes ecossistemas ou ilhas distintas, porque o número dessas espécies é geralmente menor que o número das espécies em comum ou igual em cada um desses ambientes. Por outro lado, a inclusão das espécies de musgos restritos altera o padrão de distribuição do grupo dos musgos, porque o número dessas espécies é geralmente maior que o número das espécies em comum. Portanto, considerando-se apenas hepáticas e musgos, concluiu-se que o padrão de distribuição das briófitas é alterado apenas pela presença das espécies de musgos restritos. E, essas informações podem também contribuir para o entendimento da distribuição da brioflora no cerrado de Mogi-Guaçu.

Observou-se a variação da brioflora num mesmo forófito entre as cinco fisionomias de cerrado, analisando-se dados referentes às briófitas × fisionomia de cerrado para cada forófito arbustivo-arbóreo, num total de 15 matrizes. A separação das hepáticas e dos musgos e a exclusão das espécies restritas tornariam escassos os dados a serem analisados acerca da brioflora encontrada em cada forófito arbustivo-arbóreo nas cinco fisionomias de cerrado.

Finalmente, a fim de comparar os resultados obtidos com a análise das 21 matrizes acima relacionadas, verificou-se a semelhança da brioflora entre os diferentes forófitos arbustivo-arbóreos de uma mesma fisionomia. Portanto, trabalhou-se com 1ª) briófitas × forófitos arbustivo-arbóreos e 2ª) briófitas sem as espécies restritas × forófitos arbustivo-arbóreos, para cada uma das cinco fisionomias de cerrado, num total de 10 matrizes de dados.

Foram excluídas da análise multivariada, as seguintes espécies listadas em Visnadi & Vital (2001a), pois os dados referentes às coletas não incluem a fisionomia de cerrado, nem os forófitos arbustivo-arbóreos relacionados aqui: *Campylopus carolinae* Grout (Vital 1984, como *C. cerradensis* Vital), *Macromitrium punctatum* (Hook. & Grev.) Brid. (Egunyomi & Vital 1984, como *M. pentastichum* Müll.

Hal.), Brachymenium klotzchii (Schwägr.) Paris, Fissidens bryoides Hedw., F. zollingeri Mont., Isopterygium pygmaeocarpum (Müll. Hal.) Broth. e Zelometeorium ambiguum (Hornsch.) Manuel. Por outro lado, foram incluídas as hepáticas, Cheilolejeunea adnata (Kunze) Grolle, Frullania caulisequa (Nees) Nees e os musgos, Aptychopsis pyrrhophylla (Müll. Hal.) Wijk & Margad., Bryohumbertia filifolia (Hornsch.) J.-P. Frahm e Tortella humilis (Hedw.) Jenn., não listadas no trabalho acima mencionado, porém encontradas posteriormente.

Aplicou-se o índice de Sörensen às 31 matrizes de dados. Julgou-se mais apropriado utilizar um índice que enfatiza co-presenças, pois as co-ausências podem indicar tanto espécies de briófitas não amostradas, quanto ausência de briófitas nos forófitos ou de forófitos nas fisionomias de cerrado. Os valores de similaridade foram submetidos à análise de agrupamento pelos métodos de ligação mínima, completa, média de grupo (UPGMA) e média ponderada de grupo (WUPGMA). Utilizaram-se valores de correlação cofenética do agrupamento acima de 0,7, como indicativos de uma correspondência razoável entre o dendograma e a matriz original de dados (Sneath & Sokal 1973).

Resultados e discussão

A brioflora ocorrente no cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu totaliza 52 gêneros e 99 espécies, dentre os quais 18 gêneros e 45 espécies são hepáticas, e 34 gêneros e 54 espécies são musgos, considerando dados de levantamentos anteriores em Visnadi & Vital (2001a), acrescidos das cinco espécies de briófitas relacionadas anteriormente. Entretanto, trabalhou-se com 18 gêneros e 45 espécies de hepáticas e 31 gêneros e 47 espécies de musgos, totalizando 49 gêneros e 92 espécies de briófitas (Tab. 2), devido à exclusão de sete espécies, listadas em Visnadi & Vital (2001a) e também citadas acima.

Quanto à distribuição geográfica das cinco espécies acrescentadas no presente trabalho, Cheilolejeunea adnata (Kunze) Grolle, Frullania caulisequa (Nees) Nees, Aptychopsis pyrrhophylla (Müll. Hal.) Wijk & Margad. e Bryohumbertia filifolia (Hornsch.) J.-P. Frahm ocorrem em áreas circunscritas à região neotropical e América do Sul e apenas Tortella humilis (Hedw.) Jenn. distribui-se no continente americano, Caribe, na Europa e África. Todas as espécies já foram registradas para o Estado de São Paulo.

A riqueza da brioflora é muito maior em florestas úmidas que em caatinga e cerrado. Nestes últimos, a vegetação é freqüentemente afetada pelo fogo, um fator que reduz as chances de desenvolvimento de uma brioflora diversificada (Gradstein *et al.* 2001). Até o momento, inventariaram-se 99 espécies para o cerrado de Mogi-Guaçu. Esse total é intermediário entre os valores registrados para caxetal (77) e restinga (109), ecossistemas costeiros situados em locais sob clima úmido, em Ubatuba, SP (S.R. Visnadi, dados não publicados).

Em florestas secas, a maior parte da brioflora está representada por musgos. Observam-se também antóceros e uma flora de hepáticas representada por Marchantiales e poucas epífitas tolerantes à seca (Gradstein *et al.* 2001). Em Mogi-Guaçu, registrou-se um número maior de espécies de musgos (54) que de hepáticas (45), porém os valores não refletem predominância marcante de um grupo sobre o outro. Neste local, não se encontraram antóceros, nem representantes de Marchantiales, mas várias espécies já registradas para ecossistemas costeiros no estado de São Paulo, onde o clima é mais úmido (S.R. Visnadi, dados não publicados).

As espécies que estão representadas pelos maiores números de amostras no cerrado de Mogi-Guaçu são as hepáticas Acrolejeunea torulosa (Lehm. & Lindenb.) Schiffn., Cheilolejeunea discoidea (Lehm. & Lindenb.) Kachroo & R.M. Schust., Chonecolea doellingeri (Nees) Grolle, Lejeunea flava (Sw.) Nees e os musgos Campylopus cryptopodioides Broth., Donnellia commutata (Müll. Hal.) W.R. Buck, Octoblepharum albidum Hedw. e Sematophyllum subpinnatum (Brid.) E. Britton.

Fisionomias de cerrado - a flora de hepáticas divide-se em três grupos de fisionomias: 1) transição, campo cerrado queimado, cerrado sentido restrito de *Myrsine*, 2) campo cerrado e 3) cerrado sentido restrito (Fig. 1). A exclusão das espécies restritas não altera o padrão de distribuição, o qual evidencia apenas maior semelhança entre os agrupamentos, pois o número dos táxons em comum supera o número dos táxons restritos em todas as fisionomias (Fig. 2).

Os musgos dividem-se nos seguintes agrupamentos: 1) transição, cerrado sentido restrito de *Myrsine*, 2) campo cerrado queimado, campo cerrado e 3) cerrado sentido restrito (Fig. 3). Excluindo-se as espécies restritas, observa-se maior semelhança entre os agrupamentos e a divisão dos musgos em 1) transição, cerrado sentido restrito de *Myrsine*, campo cerrado queimado e 2) cerrado sentido restrito,

campo cerrado (Fig. 4), porque o número dessas espécies é maior que o número das espécies em comum em cerrado sentido restrito de *Myrsine* e campo cerrado queimado, fisionomias que ficam em agrupamentos distintos (Fig. 3). Adicionado a isso, enquanto apenas seis táxons (13,3%) do total de 45 espécies de hepáticas estão representados por uma única exsicata de material proveniente de Mogi-Guaçu, mais que o dobro dessa quantidade, isto é, 15 táxons

Figura 1. Agrupamento das fisionomias em relação à presença das espécies de hepáticas. Utilizou-se o coeficiente de Sörensen e o método de ligação pela média de grupo. Correlação cofenética do agrupamento = 0,8897. CC - campo cerrado; CCQ - campo cerrado queimado; CSR - cerrado sentido restrito; CSRM - cerrado sentido restrito de *Myrsine*; T - transição.

Figura 2. Agrupamento das fisionomias em relação à presença das espécies de hepáticas, excluindo as restritas. Utilizou-se o coeficiente de Sörensen e o método de ligação mínima. Correlação cofenética do agrupamento = 0,7360. CC - campo cerrado; CCQ - campo cerrado queimado; CSR - cerrado sentido restrito; CSRM - cerrado sentido restrito de *Myrsine*; T - transição.

(31,9%) do total de 47 espécies de musgos foram também coletados uma única vez nesse local.

A brioflora divide-se em três grupos de fisionomias, 1) transição, cerrado sentido restrito de *Myrsine*, campo cerrado queimado, 2) campo cerrado e 3) cerrado sentido restrito (Fig. 5), os quais são mais semelhantes entre si, excluindo-se as briófitas restritas na análise dos dados (Fig. 6). Entretanto, comparando o padrão

Figura 3. Agrupamento das fisionomias em relação à presença das espécies de musgos. Utilizou-se o coeficiente de Sörensen e o método de ligação pela média de grupo. Correlação cofenética do agrupamento = 0,9296. CC - campo cerrado; CCQ - campo cerrado queimado; CSR - cerrado sentido restrito; CSRM - cerrado sentido restrito de *Myrsine*; T - transição.

Figura 4. Agrupamento das fisionomias em relação à presença das espécies de musgos, excluindo as restritas. Utilizou-se o coeficiente de Sörensen e o método de ligação pela média de grupo. Correlação cofenética do agrupamento = 0,7907. CC - campo cerrado; CCQ - campo cerrado queimado; CSR - cerrado sentido restrito; CSRM - cerrado sentido restrito de *Myrsine*; T - transição.

de distribuição das hepáticas e dos musgos, verifica-se que o padrão de distribuição das briófitas depende mais dos musgos que das hepáticas em comum.

A exclusão das briófitas restritas na análise dos dados altera parcialmente o padrão de distribuição das briófitas (Fig. 5, 6). Transição, cerrado sentido restrito de *Myrsine* e campo cerrado queimado (Fig. 6) são mais semelhantes pelos musgos, que pelas hepáticas

Figura 5. Agrupamento das fisionomias em relação à presença das espécies de briófitas. Utilizou-se o coeficiente de Sörensen e o método de ligação pela média de grupo. Correlação cofenética do agrupamento = 0,9152. CC - campo cerrado; CCQ - campo cerrado queimado; CSR - cerrado sentido restrito; CSRM - cerrado sentido restrito de *Myrsine*; T - transição.

Figura 6. Agrupamento das fisionomias em relação à presença das espécies de briófitas, excluindo as restritas. Utilizou-se o coeficiente de Sörensen e o método de ligação pela média de grupo. Correlação cofenética do agrupamento = 0,7741. CC - campo cerrado; CCQ - campo cerrado queimado; CSR - cerrado sentido restrito; CSRM - cerrado sentido restrito de *Myrsine*; T - transição.

em comum (Fig. 2, 4). Cerrado sentido restrito e campo cerrado evidenciam uma brioflora distinta da ocorrente nas outras três fisionomias de cerrado (Fig. 6). A semelhança entre as duas fisionomias também se deve aos musgos em comum. Este agrupamento liga-se às outras três fisionomias pelo mesmo motivo (Fig. 4).

A inclusão das briófitas restritas na análise dos dados não altera o padrão de distribuição das briófitas em transição, cerrado sentido restrito de Myrsine e campo cerrado queimado (Fig. 5, 6) e ainda assemelha-se ao padrão de distribuição dos musgos em comum (Fig. 4). Esse resultado justifica-se pelo tipo de índice utilizado na elaboração dos dendogramas, que evidencia a maior semelhança de musgos entre as três fisionomias. Por outro lado, as espécies restritas tornam campo cerrado e cerrado sentido restrito mais distintos entre si quanto à brioflora (Fig. 5, 6). Todavia, considerando os níveis de ligação entre essas duas fisionomias e o primeiro agrupamento (transição, cerrado sentido restrito de Myrsine e campo cerrado queimado), verifica-se que são mais semelhantes pelos musgos, que pelas hepáticas (Fig. 1, 3).

A divisão da brioflora em três grupos coincide com diferenças nas fisionomias do cerrado. Em cerrado sentido restrito, a vegetação é a mais alta e fechada; campo cerrado apresenta vegetação mais baixa e esparsa, com muitos arbustos e evidente estrato herbáceo-subarbustivo e, em transição, no cerrado sentido restrito de *Myrsine* e em campo cerrado queimado, verifica-se gradações entre esses dois extremos.

Forófitos arbustivo-arbóreos - O número total de espécies de briófitas difere entre os 15 forófitos. Os maiores valores foram registrados para Myrsine guianensis (Aubl.) Kuntze (48) e Vochysia tucanorum Mart. (41). A brioflora está representada por um número menor de espécies em Machaerium villosum Vog. (13), Stryphnodendron adstringens (Mart.) Coville (17) e Styrax ferrugineus Nees & Mart. (18). Os dez forófitos restantes apresentam brioflora formada por um número intermediário de táxons, que varia entre 20 e 30 espécies por forófito. Quanto à distribuição, 34 táxons (37%) ocorrem num único forófito, 21 (22,8%) em dois e 37 (40,2%) em 3 a 15 forófitos arbustivo-arbóreos. Esses dados, que poderiam indicar uma certa especificidade briófita-angiosperma, não são confirmados pela variação da brioflora que foi observada num mesmo forófito entre as diferentes fisionomias de cerrado.

A brioflora ocorrente em *Anadenanthera falcata* (Benth.) Speg., *Byrsonima coccolobifolia* Kunth e

Didymopanax vinosum March. agrupa-se como as hepáticas (Fig. 1, 2), pois o número das espécies de hepáticas supera o número das espécies de musgos nesses forófitos.

A brioflora em Acosmium subelegans (Mohlenbr.) Yakovlev, Aspidosperma tomentosum Mart., Byrsonima verbascifolia Rich. ex Juss., Myrsine guianensis (Aubl.) Kuntze e Ouratea spectabilis Engl. agrupa-se como os musgos (Fig. 3, 4), pois o número das espécies de musgos é geralmente semelhante ao número das espécies de hepáticas ou maior.

O agrupamento da brioflora ocorrente nos forófitos restantes difere dos padrões observados para hepáticas e musgos, provavelmente devido às seguintes razões: valores de correlação cofenética do agrupamento estão abaixo de 0,7 para Kielmyera variabilis Mart.; amostragem baixa de briófitas, árvore não encontrada ou brioflora não amostrada nesse forófito em cerrado sentido restrito para Machaerium villosum Vogel ex Benth.; brioflora formada em sua maioria por espécies restritas para Pouteria ramiflora Radlk., Qualea grandiflora Mart. e Vochysia tucanorum Mart.; amostragem baixa de briófitas e brioflora formada em sua maioria por espécies restritas Stryphnodendron adstringens (Mart.) Coville e amostragem baixa de briófitas para Styrax ferrugineus Nees & Mart.

A brioflora difere entre os forófitos de uma mesma fisionomia, o que poderia indicar especificidade briófitaangiosperma no cerrado de Mogi-Guaçu. Todavia, a brioflora de um mesmo forófito também varia entre as cinco fisionomias de cerrado. As fisionomias assemelham-se quanto à ocorrência dos 15 forófitos, exceto em relação a *Machaerium villosum* Vogel ex Benth. não visto em cerrado sentido restrito. E, no entanto, a brioflora difere, entre essas cinco fisionomias, quanto às espécies, ao número total desses táxons e de espécies restritas. A maioria das espécies restringe-se a uma ou duas (66%) e, o restante (34%) distribui-se em três a cinco fisionomias (Tab. 2).

Esses resultados confirmam que não existe uma brioflora específica para cada forófito arbustivo-arbóreo, pois a composição de espécies de um mesmo forófito varia entre as diferentes fisionomias de cerrado.

Consideradas as 15 espécies de forófitos estudadas, a brioflora está relacionada às fisionomias de cerrado e não aos forófitos arbustivo-arbóreos. As fisionomias são mais semelhantes quanto à flora de musgos, que em relação à flora de hepáticas. As briófitas distribuem-se

em três grupos de fisionomias: 1) cerrado sentido restrito, 2) transição / cerrado sentido restrito de *Myrsine* / campo-cerrado queimado e 3) campo-cerrado.

Agradecimentos

Aos pesquisadores do Instituto de Botânica de São Paulo, Lúcia Rossi da Seção de Curadoria do Herbário e Marcos Mecca Pinto, da Reserva Biológica e Estação Experimental de Mogi-Guaçu, pelo fornecimento de dados sobre o cerrado da região.

Referências bibliográficas

- Digby, P.G.N. & Kempton, R.A. 1987. **Multivariate analysis of ecological communities**. Chapman & Hall, London, 206p.
- Egunyomi, A. & Vital, D.M. 1984. Comparative studies on the bryofloras of the nigerian savanna and the brazilian cerrado. **Revista Brasileira de Botânica 7**: 129-136.
- Gibbs, P.E.; Leitão Filho, H.F. & Shepherd, G. 1983. Floristic composition and community structure in an area of cerrado in SE Brazil. **Flora 173**: 433-449.
- Gradstein, S.R.; Churchill, S.P. & Salazar-Allen, N. 2001.Guide to the bryophytes of Tropical America. Memoirs of the New York Botanical Garden 86: 1-577.
- Manly, B.F.J. 1994. **Multivariate statistical methods a primer**. London, Chapman & Hall.

- Mantovani, W. & Martins, F.R. 1993. Florística do cerrado da Reserva Biológica de Moji-Guaçu, SP. **Acta Botanica Brasílica 7**: 33-60.
- Müller, C. 1851. Synopsis muscorum frondosorum omnium hucusque cognitorum, 2: musci vegetationis pleurocapicae. Berlim, Sumptibus Alb. Foerstner.
- Ribeiro, J.F. & Walter, B.M.T. 1998. Fitofisionomias do bioma cerrado. Pp. 89-166. In: S.M. Sano & S.P. Almeida (eds.). Cerrado: ambiente e flora. Planaltina, EMBRAPA-CPAC.
- Sneath, P.H.A. & Sokal, R.R. 1973. Numerical taxonomy. The principles and practice of numerical classification. San Francisco, W.H. Freeman & Co.
- Vilas Bôas-Bastos, S.B. & Bastos, C.J.P. 1998. Briófitas de uma área de cerrado no município de Alagoinhas, Bahia, Brasil. **Tropical Bryology 15**: 101-110.
- Visnadi, S.R. & Vital, D.M. 2001a. Lista das briófitas de uma área de cerrado da Reserva Biológica e Estação Experimental de Mogi-Guaçu, SP, Brasil. **Vegetalia 35**: 1-15.
- Visnadi, S.R. & Vital, D.M. 2001b. Briófitas das ilhas de Alcatrazes, do Bom Abrigo, da Casca e do Castilho, Estado de São Paulo, Brasil. **Acta Botanica Brasílica 15**: 255-270.
- Vital, D.M. 1983. Two new species of *Jonesiobryum* (Musci) from the Brazilian cerrado regions. **Journal of Bryology** 12: 383-391.
- Vital, D.M. 1984. Notes on Campylopus and Microcampylopus (Musci). Cryptogamie Bryologie-Lichénologie 5: 15-26.
- Yuzawa, Y. 1988. Some little-known species of *Frullania* subgen. *Diastaloba* described from Latin America. The Journal of the Hattori Botanical Laboratory 64: 437-449.