1 - Roue liée à un bras en rotation

La roue circulaire de rayon r tourne librement autour du bras coudé CO en rotation autour de l'axe vertical (B, $\overrightarrow{z_0}$) à la vitesse constante ω (rad/s).

Le repère de référence R $_0$ (O, $\overrightarrow{x_0}$, $\overrightarrow{y_0}$, $\overrightarrow{z_0}$) lié au bâti S $_0$.

On définit deux repères R_1 ($O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}$) et R_2 ($A, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2}$) liés à S_1 et S_2 respectivement

On considère les mouvements suivants :

- S_1 est en rotation de α par rapport à S_0 autour de l'axe ($B, \overrightarrow{z_0}$), et le bras S_1 est en liaison pivot avec le bâti S_0 au point C
- S_2 est en rotation de β par rapport à S_1 autour de l'axe ($O, \overline{Z_2}$), et le bras S_2 est en liaison pivot avec le bras S_1 au point O Le point O Le point de contact du disque de rayon O avec le disque de rayon O R.

Le point A est un point de la périphérie du disque de rayon r

On donne par ailleurs les dimensions suivantes : $\overrightarrow{OA} = r.\overrightarrow{x_2}$ et $\overrightarrow{BI} = R.\overrightarrow{y_1}$ On définit $\Theta = (\overrightarrow{y_1}, \overrightarrow{z_2})$ (Θ est constant)

Questions

- 1 Représenter sur des schémas plans, la position des différents repères utilisés par rapport au repère R₀
- 2 Calculer $\vec{\Omega}$ (R_1/R_0) et $\vec{\Omega}$ (R_2/R_1) . En déduire $\vec{\Omega}$ (R_2/R_0)

$$\text{3-Calculer}: \frac{d^{R_0}\, \overline{BO}}{dt}; \frac{d^{R_1}\, \overline{BO}}{dt}; \frac{d^{R_0}\, \overline{BA}}{dt}; \frac{d^{R_1}\, \overline{BA}}{dt}; \frac{d^{R_1}\, \overline{BA}}{dt}; \frac{d^{R_1}\, \overline{CA}}{dt}; \frac{d^{R_2}\, \overline{OA}}{dt}$$

- 4 Déterminer les coordonnées (éléments de réduction) des torseurs { v_{S_1/R_0} } au point B et { v_{S_2/R_1} } au point O
- 5- Ecrire la condition de roulement sans glissement en I et en déduire une relation entre α et β
- 6 Déterminez la vitesse de O appartenant à S_2 par rapport à S_0

Déterminez l'accélération de O appartenant à S2 par rapport à S0

2 - Centre de masse et matrice d'inertie d'une demi-sphère pleine

On considère une demi-sphère pleine S de masse m et de rayon R .

- 1) Calculer la matrice d'inertie de la demi-sphère en son centre O.
- 2) Déterminer la position du centre d'inertie G de S

Figure 3.8 Coordonnées sphériques. L'angle θ correspond à la longitude et ϕ à la latitude en repérage terrestre.

3) Exprimer la matrice d'inertie en G. Utiliser les coordonnées sphériques (r, θ et ϕ).

Avec les conventions de la figure 3.8, on les définit comme suit :

 $x = r \sin\theta \cos\phi$

 $y = r \sin\theta \sin\phi$

 $z = r \cos\theta$

L'élément de volume de la sphère de rayon R est $dv = r^2 dr.\sin\theta.d\theta.d\phi$