Kerasではじめよう システマティック・トレーディング

森谷博之 Quasars22 Private Limited

金融財務研究会 2017年11月16日木

Kerasではじめようシステマティック・トレーディング

今日はご参加いただき大変ありがとうございます。

システマティック・トレーディング 人工知能のトレーディング分野への応用

Keras

などに

ご興味をお持ちの皆様のご参考になれば幸いです。

Kerasではじめようシステマティック・トレーディング 参加者の予想タイプ

IT関連の強い知識をお持ちの方金融機関・商社等でトレード・運用に関わる方個人投資家の方人工知能の専門家の方

Kerasではじめようシステマティック・トレーディング 今日の内容

ディープラーニングの基礎知識20分 トレーディング・投資の基礎知識20分 休憩10分 Kerasを用いた株価予測モデルの説明 45分 Kerasではじめようシステマティック・トレーディングなぜシステムトレードとディープラーニングなのか?

システムトレード

あらかじめ定められた規則(アルゴリズム)にしたがい 売買を行うトレード手法

ディープラーニング

特定の分野で人間の脳を上回る情報処理能力をもつアルゴリズム

この2つを融合できないか?

単純パーセプトロン と 多層パーセプトロン

が分かればまずはOK。

> ディープラーニングのかなめは ニューラルネットワーク

人工知能分野のアルゴリズムの1つ

人間の脳の神経細胞を模したアルゴリズム

ニューラルネットワークの単純なモデル

 W_1X_1

この意味が分かればまずはOK

W₁X₁ の意味は?

W₁X₁ の意味は?

W₁X₁ の意味は?

ニューラルネットワークの単純なモデル

$$W_1X_1 + W_2X_2$$

この意味が分かればまずはOK

W₁X₁ + W₂X₂の意味は?

$$y=w_1 x_1 + w_2 x_2 + b$$

 $y=w_1 x_1 + w_2 x_2 + b$

W₁X₁ + W₂X₂の意味は?

この場合は論理回路のANDゲート

W₁X₁ + W₂X₂の意味は?

*線形回帰

$$y=w_1 x_1 + w_2 x_2 + b$$

* 分類問題

$$y = \begin{cases} 0 & (w_1 x_1 + w_2 x_2 + b \le 0 \\ 1 & (w_1 x_1 + w_2 x_2 + b > 0 \end{cases}$$

W₁X₁ +,...,+ W_n X_n の意味は?

W₁X₁ +,...,+ W_n X_n の意味は?

$$y=W_1 X_1 + , , + W_n X_n + b$$
 線形の多重回帰

単純パーセプトロン

複数の単純パーセプトロン?

2つの単純パーセプトロンの例

多層パーセプトロン?

参考

TensorFlow Playground でわかるニューラルネットワーク

https://cloudplatform-jp.googleblog.com/2016/07/tensorflow-playground.html

<u>TensorFlow Playgroundの仕組み</u>

https://hinaser.github.io/Machine-Learning/index.html

ディープニューラルネットワーク (Deep Neural Network:DNN)

> ニューロンの数を増やす 隠れ層の数を増やす 全結合層

畳み込みニューラルネットワーク (Convolutional Neural Network:CNN)

全結合層の欠点: データの形状が無視される。 時間・空間の情報が失われる。 そこで 層を流れるデータの形状を維持。

リカレントニューラルネットワーク
(Recurrent Neural Network:RNN)
過去の隠れ層の情報(特徴量)を用いて時系列データを解析

LSTM (Long short-term meory) 代表的なRNN Kerasではじめようシステマティック・トレーディングディープランニングをどのように投資に生かすのか?

金融市場の将来の価格の予測 統計的裁定戦略 外国為替レートの予測 モメンタム投資戦略の強化 ボラティリティの予測

参考

Deep learning with long short-term memory networks for financial market predictions by Fischer, Thomas; Krauss, Christopher

Kerasではじめようシステマティック・トレーディング 投資への基本的な考え方?

ランダムウォーク 時間トレンド 自己回帰モデル その他

参考 Python3ではじめるシステムトレード

Kerasではじめようシステマティック・トレーディング 第2部

Keraso

- 1)多層パーセプトロン
- 2) CNN
- 3) LSTM を用いてSPYの将来の 株価を予測

S1	S2	S3	S4	S5	S6	,	•••	•••	•••	•••	,	s6245	s6246
0.4	60	63	0.4	65	0.6							E.C.4.6	05640
S1	S2	S3	<u>S4</u>	\$5	56	,		•••	•••	•••	,	s5611	. S5612
S561	3 S!	5614	S5615	S56	516	,		••	•••	•••	,	s6245	S6246

Kerasではじめようシステマティック・トレーディング Kerasとは?

Kerasとは

Kerasは、Pythonで書かれた、

TensorFlow, CNTK, Theano

上で実行可能な高水準のニューラルネット ワークライブラリです Kerasではじめようシステマティック・トレーディング Kerasとは?

TensorFlowとは、

Googleが開発した 幅広い課題にわたる

機械学習

のための

オープンソースソフトウェアライブラリ。

データの取得

tsd = web.DataReader("SPY","yahoo","1990/1/1")

tsd = tsd.Close.values

S1	S2	S3	S4	S5	S6	,			•••	 •••	,	s6245	s6246
S1	S2	S3	S4	S5	S6	,			•••	 		, s5611	S5612
						, '							
S56 :	13 S	5614	S5615	S56	516	,	•••	•••	••		,	s6245	S6246

Kerasではじめようシステマティック・トレーディング

SPYの価格を米国yahooから取得して将来の価格を予測

連続11個のデータに分割

```
data_div = []
  for index in range(len(data) - time_window-1):
     data_div.append(data[index: index +
time_window+1])
```


Kerasではじめようシステマティック・トレーディング

SPYの価格を米国yahooから取得して将来の価格を予測

Sequenceごとの株価を取り出しリターンに変更

```
n_data = []
for w in data_div:
    n_window = [((float(ww) / float(w[0])-1)) for ww in w]
    n_data.append(n_window)
    data_div = np.array(n_data)
```

Sequence1	S1	S2	S3	S4	S5	S6	,,	S11		
Sequence2		S2	S3	S4	S5	S6	S7	,,	s12	
Sequence3			S3	S4	S 5	S6	S7	,,	s11	s13

SPYのリターンデータを

S1 S2 S3 S4 S5 S6 ,... s6245 s6246

訓練データとテストデータに分割

S1 S2 S3 S4 S5 S6 ,..., s5611 S5612

90%訓練データ

S5613 | S5614 | S5615 | S5616 | ,..., | s6245 | S6246

10%テストデータ

90%訓練データ

X_train: 連続10個のデータに分割 それに続く1個のデータ

X_trainOshape

x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))

X_train

・ 多層パーセプトロン (MLP)

```
model = Sequential()
model.add(Dense(512, activation='relu',
    input_shape=(time_window,)))
model.add(Dense(1, activation='linear'))
model.compile(loss='mse',optimizer='sgd')
```

・ 多層パーセプトロン (MLP)

損失関数(loss):推定の悪さを表す関数

回帰: 平均2乗誤差(mean squared error:mse)

$$\frac{1}{n}\sum_{i=1}^{n}(\hat{X}-X_i)^2$$

クラス分類:0/1損失

・ 多層パーセプトロン (MLP)

```
XX_train=X_train.reshape(X_train.shape[0],time_window)
XX_test=X_test.reshape(X_test.shape[0],time_window)
results=model.fit(XX_train,
    Y_train,epochs=30,batch_size=20,verbose=0)
```

・ 多層パーセプトロン (MLP)

Epochs: 1エポックとはすべての与えられたトレーニング データを用いて重み、バイアスを更新して学習を行い 終了すること。

batch_size: 学習において何個のトレーニングデータで重み、バイアスを更新するかを示す数。

・ 多層パーセプトロン (MLP)

• LSTMを用いた系列データ分析

• LSTMを用いた系列データ分析

• 1D Convolutionを用いた系列データ分析 model = Sequential() model.add(Conv1D(64, 3, activation='relu', input shape=(time window,1))) model.add(Conv1D(64, 3, activation='relu')) model.add(Conv1D(32, 3, activation='relu')) model.add(Conv1D(32, 3, activation='relu')) model.add(GlobalAveragePooling1D()) model.add(Dense(1, activation='linear')) model.compile(loss='mse',optimizer='rmsprop')

• 1D Convolutionを用いた系列データ分析

