Extractors: QLDPC Architectures for Efficient Pauli-Based Computation

Zhiyang He (Sunny), Alexander Cowtan, Dominic Williamson, Theodore Yoder

I. Motivation: A QLDPC-Based Quantum Computer

II. Code Surgery and Extractors

III. Extractor Architecture and Compilation

IV. Building an Extractor with Graph Theory

V. Discussions and Outlooks

The Promise of QLDPC Codes

Surface code is the leading candidate for building a large-scale, fault tolerant quantum computer.

Amazing properties: high threshold, 2D connectivity, fast decoding, transversal gates, lattice surgery... Challenge: Significant asymptotic space overhead, ~1000x for factoring.

Quantum LDPC codes promise to implement fault-tolerant computation with O(1) space overhead.

At what scale can we fulfill this promise to gain a practical advantage?

Fast Progress in QLDPC Memory

Quantum Low-Density Parity-Check (LDPC) Codes: stabilizers of O(1) weight, qubits in O(1) stabilizers. Better encoding rate than surface code!

Recent constructions:

- Bivariate Bicycle code [144, 12, 12]*
- Hypergraph product code [2500, 100, 12] **
- Lifted product code [544, 80, ≤ 12] **

Surface code: [265, 1, 12].

Memory: Decoding algorithm, threshold and logical error rate, hardware.

From memory to computer: logical computation.

➤ Long-standing challenge and many works.

^{* [}Bravyi et al. 2308.07915]. ** [Xu et al. 2308.08648].

Extractor Architecture for QLDPC Computation

In this work, we present a solution to the QLDPC computation challenge: Extractors. Our solution has a few distinctive features:

- 1. **Any** quantum code can be augmented by an extractor system to become a computational block. I.e., extractors augment memories into processors.
- 2. Given **any** magic state factory, can implement universal quantum circuits via parallelized logical operations.
- 3. Highly optimizable, practical space and time overheads.
- 4. Can be implemented with fixed, constant degree connectivity (having movable qubits is certainly helpful but not necessary).

An Extractor-augmented computational (EAC) block.

I. Motivation: A QLDPC-Based Quantum Computer

II. Code Surgery and Extractors

III. Extractor Architecture and Compilation

IV. Building an Extractor with Graph Theory

V. Discussions and Outlooks

Universal Computation via Logical Measurements

A Clifford + T circuit can be written in terms of Pauli rotations, where:

- Pauli gates \rightarrow Pauli $\pi/2$ rotations,
- Clifford gates \rightarrow Pauli $\pi/4$ rotations,
- T gates \rightarrow Pauli $\pi/8$ rotations.

Pauli rotations can be implemented with Pauli measurements.

Pauli-based computation: Pauli measurements+ magic states = universal computation.

➤ Fault-tolerant measurements + magic state factory = universal FT computation!

Surface Code Lattice Surgery

Logical measurements on surface codes: lattice surgery, [Horsman et al, 1111.4022].

Product of red X-checks = $X_L \otimes X_L$ – obtain logical measurement result by measuring new stabilizers.

Surface Code Architecture Based on Lattice Surgery

Game of Surface Code [Litinski 1808.02892]

- Allocate surface code patches on a 2D plane into memory, ancilla, and distillation regions.
- Any Pauli measurement can be performed in 2D local connectivity with different protocols and ancilla patches.

QLDPC Code Surgery

First proposed by [Cohen et al., 2110.10794], > 10 papers on surgery in the past year.

Section 3.2 of the present work [2503.10390] is a 2-page review.

High level description: for a quantum LDPC code Q, for every logical operator \mathcal{L} , can construct ancilla system $\mathcal{A}_{\mathcal{L}}$ such that Q augmented by $\mathcal{A}_{\mathcal{L}}$ can be used to measure \mathcal{L} .

- (a) Start: Code Q and operator \mathcal{L} .
- (b) Init: Initialize ancilla in product state.
- (c) Merge: Code deformation by measuring new stabilizers
- (d) Split: Measure out ancilla and return to Q.

Challenge: Compact Memory Has Many Operators

Prior works: for every logical operator \mathcal{L} , construct an ancilla system for measurement.

Challenge: High-rate codes have many operators, and they overlap.

> Building many ancilla systems will quickly blow up space and connectivity overhead.

Extractors: one ancilla system \mathcal{X} , can measure any logical operator.

I.e., Extractors extract logical Pauli observables from the memory.

- For any code of n qubits, can built LDPC extractor of size $\tilde{O}(n)$.
- In practice, expect space overhead to be a small constant. E.g., 103-qubit extractor for [144, 12, 12] gross code. [2407.18393]
- \triangleright Any operator can be measured with O(d) syndrome rounds.
- ➤ Built using tools developed in [2407.18393], [WY 2410.02213]*, and [SJOY 2410.03628].

An Extractor-augmented computational (EAC) block.

^{*} See also [Ide et al. 2410.02753].

Modularity: Bridges and Adapters

For a full PBC architecture, we need logical measurements on magic states and multiple QLDPC blocks. Can we design our quantum computer modularly?

Bridge/Adapter: primitive developed in [2407.18393] and [2410.03628].

- ➤ LDPC Ancilla system that can connect two surgery ancillas together from arbitrary codes. Size O(d).
- > Enables Pauli measurements across connected blocks.

Two names for the same system:

- ➤ If it connects blocks of the same code, we call it bridge.
- ➤ If it connects blocks of different codes, we call it adapter.

Two EAC blocks joined by a bridge **B**.

An EAC blocks connected to a source of magic states by an adapter A.

I. Motivation: A QLDPC-Based Quantum Computer

II. Code Surgery and Extractors

III. Extractor Architecture and Compilation

IV. Building an Extractor with Graph Theory

V. Discussions and Outlooks

Extractor Architecture: MWE

Let's start with a minimal working example (MWE) of extractor architectures.

A [n, k, d] code Q, augmented by an extractor X. This is an EAC block with k-1 computational qubits.

The extractor X is connected to the factory by an adapter.

An arbitrary $|T\rangle$ state factory. E.g., consider a magic state cultivation patch of surface code.

Features & Comments

- Every logical measurement takes O(d) syndrome rounds, has fault distance d.
- ➤ Can be built with any code Q and any |T⟩ state factory.
- For near-term, can use small QLDPC code + magic state cultivation.
- ➤ Entire system has fixed, constantdegree connectivity.
- \triangleright 1 logical qubit in Q is used as ancilla.
- > Factory should have partial extractors, intentionally unspecified here.

Extractor Architecture

EAC blocks connected by bridges

Storage for $|T\rangle$ states, connected to EAC blocks by adapters.

Centralized magic state factory

Extractor Architecture

- Any logical Pauli supported on blocks and caches connected by bridges and adapters can be measured in O(d) syndrome rounds, with fault distance d.
- Operators supported on disjoint blocks can be measured in parallel by deactivating bridges/adapters.
- Minimal cost for modularity: bridges/adapters have size O(d).
- ➤ Flexibility: global architecture can be tailored to hardware or application.

Compilation for an Extractor Architecture

Compilation similar to Game of Surface Code. Given a logical circuit of Pauli rotations, we consider three types of gates:

- 1. Pauli $\pi/8$ rotations,
- 2. Pauli $\pi/4$ rotations supported within one EAC block (in-block Cliffords),
- 3. Pauli $\pi/4$ rotations supported on two EAC blocks (cross-block Cliffords).

We conjugate all in-block Cliffords to the end of the circuit. This conjugation changes the Pauli axis of type 1 and 3 rotations, but do not expand their support to other EAC blocks.

- 1. We implement type 1 & 3 rotations via logical measurements;
- 2. In-block Cliffords are absorbed by standard basis measurements at the end of the computation.

Circuit Example

- 1. Conjugate all in-block Cliffords to the end of the circuit.
- 2. Absorb in-block Cliffords by the final measure-out.

Green operations are what we compile and implement. White operations are in-block Clifford that are compiled away.

Remarks

- ➤ In-block Clifford gates are essentially free.
- > This compilation heavily relies on the fact extractors can measure any logical Pauli.
- ➤ Bottleneck: magic state supply speed and number of cross-block gates.
- Highly optimizable for specific applications.

I. Motivation: A QLDPC-Based Quantum Computer

II. Code Surgery and Extractors

III. Extractor Architecture and Compilation

IV. Building an Extractor with Graph Theory

V. Discussions and Outlooks

Scalable Tanner Graphs

Stabilizers of the code Q

Symplectic check matrix

Physical qubits of the code Q

Building an Extractor from a Graph

Let X = (V, E) be a graph.

- 1. For every edge in E, create an ancilla qubit.
- 2. For every vertex in V, create an ancilla check, which act on adjacent edge qubits by Pauli Z.
- 3. Pick a cycle basis R of X. For every cycle C in R, create an ancilla check, which act on edges in C by Pauli X.

This ancilla system, the extractor system, commutes.

Building an Extractor from a Graph

We will build fixed connections between:

- 1. Vertex checks V and qubits of Q;
- 2. Stabilizers S and ancilla edge qubits E. What's their Pauli action?

Depends on the operator we want to measure!

Given operator \mathcal{L} , we will pick symplectic matrices $M_{\mathcal{L}}$ and M_{μ} so that

- 1. Entire system in EAC block commutes. I.e, we have a well-defined measurement code $Q_{\mathcal{L}}$.
- 2. Product of vertex checks V equals to \mathcal{L} . Measuring stabilizers of $\mathcal{Q}_{\mathcal{L}}$ for O(d) rounds gives logical measurement of \mathcal{L} fault-tolerantly.

Many Important Details...

Many details not discussed in this talk:

- 1. Why is this system LDPC?
- 2. How to connect S with E and Q with V?
- 3. How to choose matrices $M_{\mathcal{L}}$ and M_{μ} ?
- 4. How to prove fault-tolerance of this codeswitching process?
- 5. How to upper bound size of extractors by $\tilde{O}(n)$?
- 6. Most importantly, how to build this in practice?

All proved & discussed in the paper with graph theory.

I. Motivation: A QLDPC-Based Quantum Computer

II. Code Surgery and Extractors

III. Extractor Architecture and Compilation

IV. Building an Extractor with Graph Theory

V. Discussions and Outlooks

The Landscape of QLDPC Computation

Symmetry

- Transversal gates;
- Automorphisms gates;
- ZX Duality.

Teleportation-based

- Gate teleportation: magic states and Clifford states
- Homomorphic measurements

Code deformation

- Code surgery and extractors
- Punctures?
- Code-switching?

Universal Computation = Symmetry + magic state factory + transversal CNOT + (multiple) Clifford state factories.

> Standard solution: multiple factories for different gates incurs heavy overhead.

Universal Computation = QLDPC memory + surgery + surface code computation (magic state factory).

➤ Hybrid architecture: surface code computation will quickly erase space advantage.

Universal Computation = Magic state factory + extractors.

Extractor architecture: in-block Cliffords are free, fixed & LDPC connectivity. Larger decoding instance.

Universal Computation = Symmetry + magic state factory + transversal CNOT/partial extractors.

➤ [Malcolm et al. 2502.07150]: inverse-exponential rate.

Where does automorphism gates fit?

For a code with automorphism gates \mathcal{U} , we don't need to build a full extractor.

Instead, we can build a partial extractor which can measure Pauli operators in the set \mathcal{O} , such that $\mathcal{U}^{\dagger}\mathcal{O}\mathcal{U}$ generate the full k qubit Pauli group.

 \rightarrow All $\pi/4$ rotations on k-1 qubits!

This is similar to the 103-qubit system on the [144, 12, 12] gross code. [2407.18393]

Same applies if the code has other lowoverhead logical operations.

Bridge used in partial extractor

Partial extractor

Gross code

What if the hardware supports qubits movement?

Everything can move: factories, bridges, adapters, extractors.

Space overhead can be bounded by 'active' components.

Within one EAC block, a moving partial extractor can act as a full extractor.

Movement makes transversal CNOT easy.

- > Extractor can prepare arbitrary logical stabilizer state 'offline', effectively as a 'Clifford factory'.
- ➤ Gate teleportation lets us perform arbitrary Clifford operation in O(1) 'online' step.
- ➤ Universal = addressable non-Clifford(?)* + extractor Clifford factory + transversal CNOT.

Ending Remarks & Hot Takes

Assuming a source of magic states (which is an almost default assumption), Extractor is a one-stop solution to perform universal FT computation on any stabilizer code with low overhead.

- A new and open frontier for explorations and optimizations
- Build extractors on well-studied codes;
- > Design extractor architectures for specific applications/algorithms;
- Better & hardware-specific compilation.
- Design the best possible memory, extractors will take care of the rest.
- > Code decoder extractor codesign.
- **→** Extractors will likely scale before the standard solution. If optimized and built, it could compete with surface code architectures in a practically large-scale regime.
- Challenge ahead: LDPC hardware, fast and accurate decoding.

Extractors: QLDPC Architectures for Efficient Pauli-Based Computation

Zhiyang He (Sunny), Alexander Cowtan, Dominic Williamson, Theodore Yoder

