G3 de Álgebra Linear I-2006.2

Data: 21 de novembro 2006 Horário: 17:05 – 18:55

Nome:	Matrícula:
Assinatura:	Turma:

Questão	Valor	Nota	Revis.
1a	1.0		
1b	1.0		
1c	0.5		
1d	1.0		
2a	1.0		
2b	1.0		
2c	1.0		
3a	0.5		
3b	1.0		
3c	1.0		
3d	1.0		
Total	10.0		

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear o caderno de prova.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Respostas a caneta. Escreva de forma clara e legível.
- Justifique de forma clara, ordenada e completa suas respostas. Respostas sem justificativas não serão consideradas.

1) Considere a transformação linear $A\colon \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz na base canônica é

$$[A]_{\mathcal{E}} = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & 2 \end{array} \right).$$

- (1.a) Determine os autovalores de A e suas multiplicidades.
- (1.b) Para cada autovalor λ de A determine o número máximo de autovetores linearmente independentes que existem e mostre um conjunto de tais autovetores.
- (1.c) Decida se A é diagonalizável. Em caso afirmativo determine uma forma diagonal D de A.
- (1.d) Encontre, se possível, uma base $\beta=\{v_1,v_2,v_3\}$ tal que a matriz de Ana base β seja

$$[A]_{\beta} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right).$$

Resposta:

2) Seja $A\colon \mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear cuja matriz [A] na base canônica é ortogonal, onde

$$[A] = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Considere a base ortonormal γ de \mathbb{R}^3 definida por

$$\gamma = \{(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}); (-1/\sqrt{2}, 0, 1/\sqrt{2}); (1/\sqrt{6}, -2/\sqrt{6}, 1/\sqrt{6})\}$$

Suponha que

$$\begin{array}{ll} A(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}) &= (-1/\sqrt{2}, 0, 1/\sqrt{2}), \\ A(-1/\sqrt{2}, 0, 1/\sqrt{2}) &= (1/\sqrt{6}, -2/\sqrt{6}, 1/\sqrt{6}). \end{array}$$

- **2.a)** Sabendo que o determinante de [A] é -1, determine a matriz $[A]_{\gamma}$ de A na base γ .
- **2.b)** Determine o elemento $a_{2,2}$ da matriz [A].
- **2.c)** Determine a terceira coordenada do vetor (1, 1, 0) na base γ .

Resposta:

3) Considere a matriz M dada por

$$M = \left(\begin{array}{ccc} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{array}\right).$$

Sabendo que 2 é um autovalor e que (1,1,1) é um autovetor de M:

- (3.a) Determine os autovalores de M.
- (3.b) Determine uma base β ortogonal de autovetores de M.
- (3.c) Escreva M da forma $M = PDP^t$, onde D é uma matriz diagonal (uma forma diagonal de M).
- (3.d) Determine o determinante de M e o valor absoluto do determinante de P.

Resposta: