I2C

Connecting devices using I2C

SDA: Serial Data

SCL: Serial Clock

Sending bits of data

- The SDA values changes when SCL is low.
- The receiver reads SDA on the falling edge of SCL.

Start and Stop conditions

Start

Stop

Packet Format

- Each packet is 9 bits long.
- First 8 bits are put on SDA by the transmitter
- The 9th bit is an acknowledge by the receiver
 - NACK (leave high) or ACK (pull down)

Master vs. Slave

- Master
 - Begins the communication
 - Chooses the slave
 - Makes clock
 - Sends or receives data
- Slave
 - Responds to the master
 - Each slave has a unique 7-bit address

Master vs. Slave (Cont.)

- There might be more than 1 master on an I2C bus
- Each device can be both Master and Slave

Steps of a communication

- 1. Start
- 2. Address
- 3. Send or Receive (Write or read)
- 4. Acknowledge
- 5. Send/receive a byte of data
- 6. Acknowledge
- 7. Stop

Sending a byte

Sending 19 to device 25.

Receiving a byte from Device 9

Multi-byte Burst Write

- Master can send multiple bytes of data to slaves.
 - E.g. To store data in memories with I2C interface, first the address and then data is sent.

Repeated start

A new Start condition before the Stop condition

Repeated-Start and Multi-byte Burst Read

- Reading from location 0x0F of memory:
 - Send the address of memory for write
 - Write the address of memory location to be read (0x0F)
 - Make a repeated-start and send the address of memory for read
 - Get data and send Ack. as long as, you want to get the next byte

12C in STM32F10x

	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
I2Cx_CR1:	SW RST	Res.	ALERT	PEC	POS	ACK	STOP	START	NOST RETCH	ENGC	ENPEC	EN ARP	SMB TYPE	Res.	SMBU S	PE
Field		Bit	Desc	riptio	ons											
SWRS		15	Softv	vare F	Reset											
ALERT		13	SMB	us ale	ert (It i	s used	d in SI	MBus.	.)							
PEC		12	Pack	et Err	or Ch	ecking	3									
POS		11	PEC	Posit	ion											
ACK		10	The I	bit is s	_		•	•		•	K/NAC	K. Ha	ardwai	re clea	ars the	e bit
STOP		9	If sof	tware		the bit	-			•	erates SR2 is		•	dition	and	
START		8	Whe	n soft hes to	o mas	sets th	ode (N	1SL is	set). I	If it is	genera alread					
NO STRET	СН	7	No c	lock s	tretch	ing in	slave	mode	(0: cl	ock st	tretchir ching.	ng en	abled,	1: dis	sabled)
ENGC		6	Gene	eral C	all En	able (0	0: Ger	neral d	call dis	sabled	d, 1: en	abled	d (Add	r. 0 is	ACKe	d))
ENPEC	;	5	PEC	enab	le (0:	PEC c	calcula	ation d	lisable	ed, 1:	PEC c	alcula	ation e	nable	d)	
ENARP)	4	ARP	enab	le (It is	s used	d in SI	ИBus.)							
SMBTY		3	SMB	Type	(It is	used i	n SMI	Bus.)								
SMBUS	5	1	SMB	Bus	(0: 120	mod	e, 1: S	SMBus	s mod	e)						
PE		0	Perip	heral	Enab	le (0:	periph	neral d	lisable	e, 1: e	nable)					
Electro	nics [Depa	rtmen	t, HC	MUT											15

I2C_CR2 (Control Register 2)

	D15	D14		D12				D8		D6	D5	D4	D3	D2	D1	D0
I2Cx_CR2:		Reserve	d	LAST	DMA EN	ITBUF EN	ITEVT EN	ITERR EN	Rese	erved			FR	EQ		

Field	Bit	Descriptions
LAST	12	DMA Last Transfer
DMAEN	11	DMA request Enable (0: disabled, 1: enabled)
ITBUFEN	10	Buffer Interrupt Enable (0: Interrupt disabled, 1: enabled) If ITBUFEN is set, an interrupt is generated when TxE or RxNE flags of I2C_SR1 are set.
ITEVTEN	9	Event Interrupt Enable (0: Interrupt disabled, 1: enabled) If ITEVTEN is set, an interrupt is generated when any of the event flags (SB, ADDR, ADD10, STOPF, or BTF) are set.
ITERREN	8	Error Interrupt Enable (0: Interrupt disabled, 1: enabled) If ITERREN is set, an interrupt is generated when any of the error flags (BERR, ARLO, AF, OVR, PECERR, TIMEOUT, or SMBALERT) are set.
FREQ	5-0	PCLK (Peripheral Clock) Frequency

I2Cx_CCR (Clock Control Register)

		D15	D14	L D1	13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
I2Cx	_CCR:	F/S	DUTY	Y R	Resei	rved						C	CR					
	Field		E	Bit		Desc	ripti	ons										
	F/S		1	15	1	Mast	er m	ode s	selec	ction (0: St	anda	ard m	ode,	1: F	ast m	node)	
	DUT'	Y	1	14	5	SCL	clock	c duty	/ cyc	le in	Fast	mod	е					
	CCR		1	11-0) (Clock	< Coi	ntroli	in ma	aster	mod	е						

I2C grade	Baud rate
Standard	100Kbps
Fast	Up to 400Kbps
Fast plus	Up to 1Mbps
High Speed	Up to 3.2Mbps

F/S	DUTY	Duty cycle for SCL	t _{low}	t _{high}	T _{I2C} (=t _{low} +t _{high})	Baud rate (1/T _{r2c})
0 (Standard)	X	50%	CCR × T _{PCLK}	CCR × T _{PCLK}	2×CCR×T _{PCLK}	F _{PCLK} /(2×CCR)
1 (Fast)	0	33.3%	2×CCR×T _{PCLK}	CCR×T _{PCLK}	$3 \times CCR \times T_{PCLK}$	F _{PCLK} /(3×CCR)
1 (Fast)	1	36%	16×CCR×T _{PCLK}	9×CCR×T _{PCLK}	25×CCR×T _{PCLK}	F _{PCLK} /(25×CCR)

I2C_TRISE (T_{Rise})

- Using the I2C_TRISE, we mention the amount of time that the rise time might take.
 - In Standard mode
 - I2C_TRISE is usually set to (PCLK/1M) + 1
 - E.g.: PCLK = $32M \rightarrow TRISE = 32 + 1 = 33$
 - In Fast mode
 - I2C_TRISE = 0.3 × (PCLK/1M) + 1
 - E.g.: PCLK = $40M \rightarrow TRISE = (0.3 \times 40) + 1 = 13$

Example

Assuming PCLK1 is 36MHz. Find I2C_CR2,
 I2C_CCR and I2C_TRISE for speed of 100Kbps.

Solution:

PCLK1 is 36MHz. So, FREQ should be set to 36 (100100 in binary)

I2C_CR2	Res.	LAST	DMAEN	ITBUFEN	ITEVTEN	ITERREN	Res.	FREQ
	000	0	0	0	0	0	00	100100

 $I2C_CR2 = 0x0024$

100Kbps is standard. baud rate = PCLK/(2×CCR) → 100K = 36M/(2×CCR)

→ CCR = 180. So, F/S = 0 and CCR = 000010110100. DUTY can be 0 or 1.

ISC CCB	F/S	DUTY	Res.	CCR
I2C_CCR	0	X	00	0000 1011 0100

 $I2C_CCR = 0x00B4$

 $I2C_TRISE = (PCLK/1M) + 1 = 36 + 1 = 37.$

I2Cx_OAR1 (Own Address Register)

I2C_DR (Data Register)

120	Cx_SR1: ALERT	OUT	Res.	PEC ERR	OVR	AF	ARLO	BERR	TxE	RxNE	Res.	STOPF	ADD10	BTF	ADDR	SB
	Field	Bit	Desc	riptio	ns											
	SMBALERT	15	SMB	Alert (Not us	ed in 12	2C)									
	TIMEOUT	14	Time	out (0	: No tir	neout,	1: SCL	_ remai	ned LC	DW for	25ms)					
	PECERR	12	PEC	Error i	in rece	ption										
	OVR	11				•				1: over See the			,			
	AF	10	Ackn	owled	ge Fail	ure (0:	No Ac	knowle	dge fa	ilure, 1:	: Ackno	owledg	e failur	e)		
	ARLO	9	Arbit	ration l	ost in r	master	mode	(0: no a	arbitra	tion los	t, 1: ar	bitratio	n lost)			
	BERR	8	As di cons	scusse idered	ed earl as ST0	ier, who	en SCL START	_	n, SDA ions. V			_			is e of SD	A
	TxE	7						ot empty en it is			to writ	e data	to the l	2C_D	R regis	ter.
	RxNE	6			ot Empt set whe	•	ew byte	of dat	a is in	I2C_DI	R waiti	ng to b	e read.	ı		
	STOPF	4								ndition,		_				
	ADD10	3	10-bi	t head	er sent	(Used	l in 10-	bit add	ress m	node)						
	BTF	2	Byte	transfe	er finisl	ned (0:	transfe	er not c	lone, 1	: transf	fer suc	cessfu	lly finis	hed)		
	ADDR	1	In sla	ave mo aster m	de, if the	he rece then th	eived a ie addr	ddress ess is	match sent, th	mode) nes with ne flag C_SR2.	n I2C_0 sets.	OAR, tl	he flag	sets.		
	SB	0	In ma	aster n	node, tl	ne flag	sets a	s soon	as a S	ition ge Start co Ite to I2	ndition	is gen	erated.			

D15

D13

D12

D14

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

I2Cx_SR2 (Status Register 2)

	D15	D14	D13	D12	D11	D10	D9	D8	D7		D5	D4	D3	D2	D1	D0
I2Cx_SR2:				PE	€C				DUALF	SMB HOST	SMBDE FAULT	GEN CALL	Res.	TRA	BUSY	MSL

Field	Bit	Descriptions
PEC	15-8	Packet Error Checking (For more information, see the manual.)
DUALF	7	Dual Flag (It is used when dual address is enabled. See the manual.)
SMBHOST	6	Used in SMBus. (For more information, see the manual.)
SMBDEFAUL T	5	Used in SMBus. (For more information, see the manual.)
GENCALL	4	General call detected (0: no general call, 1: General call address received)
TRA	2	Transmitter/receiver (0: receiver, 1: transmitter) In slave mode, the flag shows if the device is in receiver or transmitter mode. The hardware sets the flag according to the R/W signal.
BUSY	1	Bus Busy (0: no communication on the bus, 1: communication on the bus) The flag indicates that a communication is in progress. Hardware sets the flag when SCL or SDA become low. The flag clears when a stop condition is detected.
MSL	0	Master/Slave (0: Slave, 1: Master) The hardware sets the flag when the I2C module is in master mode. The flag is set when a stop condition or arbitration lost is detected.

Configuring the I2C

- We need to take the following steps to configure the I2C:
 - Enable the clock to I2C module and the GPIO using APB1ENR and APB2ENR,
 - Configure I2C pins as alternate function open-drain output,
 - Initialize the FREQ field of CR2 with the PCLK frequency,
 - Initialize CCR to make proper baud rate in master mode,
 - Initialize the TRISE register,
 - Enable the I2C module by setting the PE bit of CCR1.

Sending data in master mode

- 1. Check the busy flag of SR2 to make sure the bus is not busy.
- Set the START bit of CR1 to make a start condition.
- 3. Monitor the SB bit of SR1 until the start condition is generated.
- 4. Put the slave address in the data register (DR). Bits 1 to 7 should contain the slave address and the bit 0 is R/W. To send data the R/W needs to be 0.
- 5. Monitor the status registers. If the address is sent successfully the ADDR flag sets and you can continue the progress. If the ARLO (Arbitration Lost) is set, you should wait until the bus becomes free and you should repeat steps 1 to 5.
- 6. Load the data register with the data to be sent.
- 7. Monitor the TxE flag. The flag is set when an ACK is received.
- 8. Repeat steps 6 and 7 if you have more bytes to send. Otherwise, set the STOP bit of CR1 to make a stop condition.

Receiving Data

- Receiving data is similar to sending. To receive data in master mode we should do the followings:
 - 1. Check the busy flag of SR2 to make sure the bus is not busy.
 - Set the START bit of CR1 to make a start condition.
 - 3. Monitor the SB bit of SR1 until the start condition is generated.
 - 4. Put the slave address in the data register (DR). Bits 1 to 7 should contain the slave address and the bit 0 is R/W. To receive data, the R/W needs to be 1.
 - 5. Monitor the status registers. If the address is sent successfully the ADDR flag sets and you can continue the progress. If the ARLO (Arbitration Lost) is set, you should wait until the bus becomes free and you should repeat steps 1 to 5.
 - 6. If you want to send an ACK in response, set the ACK bit of CR1.
 - 7. Monitor the RxNE flag. The flag is set when a byte is received. Then, read the data register to get the received byte.
 - 8. Repeat steps 6 and 7 if you want to receive more bytes. Otherwise, set the STOP bit of CR1 to make a stop condition.

Program: Sending 0x0E and 0 to slave 0x68

```
#include <stm32f10x.h>
void i2c_init(void);
void i2c_waitForReady(void);
void i2c_sendStart(void);
uint8_t i2c_sendAddrForWrite(uint8_t addr);
uint8_t i2c_sendData(uint8_t data);
void i2c_sendStop(void);
int main() {
         i2c_init();
         do{
                  i2c_waitForReady();
                  i2c sendStart();
         }while(i2c_sendAddrForWrite(0x68) != 0);
         i2c_sendData(0x0E);
         i2c sendData(0);
         i2c_sendStop();
         while(1);
```

DS3231

- RTC (Real-time clock)
- Keeps time and date

Connecting DS3231 to the MCU

DS3231 address map

Addr.	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit0	Function	Range	
00H	0		10 Second	ls		Seconds			Seconds	00-59
01H	0		10 Minute	S		Minutes			Minutes	00-59
02H	0	12/24	PM/AM 20 hour	10hour		Hours			Hours	1- 12+AM/PM 0-23
03H	0	0	0	0	0		Day		Day	1-7
04H	0	0	10	Date		Date	Date	01-31		
05H	Century	0	0	10Month		Month	Month Century	1- 12+Century		
06H		10	Year			Year	Year	00-99		
07H	A1M1		10 Second	ls		Seconds			Alarm 1 Seconds	00-59
08H	A1M2		10 Minute	S		Minutes			Alarm 1 Minutes	00-59
09H	A1M3	12/24	AM/PM 20 Hour	10 Hour		Hour			Alarm 1 Hours	1-12 00-23
0AH	A1M4	DY/DT	10	Date		Day			Alarm 1 Day	1-7
OBH OCH	19 B	9 by CD 1	tes form	at is	used	Bata			L Alamas d Data	1-31 0-59 1-12 0-23 1-7
0DH 0EH	· A	ddre	esses	0x0	0 to 0	k06 giv	∕e tiı	me a	ind date)1-31
0FH	OSF	0	0	0	EN32kHz	BSY	A1F	Control/Status	-	
10H	SIGN	DATA	DATA	DATA				DATA	Aging Offset	-
11H	SIGN	DATA	DATA	DATA					MSB of Temp	-
12H	DATA	DATA	0	0	0	0	LSB of Temp	-		

Register Pointer in DS3231

Register pointer:	
-------------------	--

- In DS3231 there is a register pointer that specifies the byte that will be accessed in the next read or write command.
- After each read or write operation, the content of the register pointer is automatically incremented.
 It is useful in multi-byte read or write.

Writing to DS3231

- Transmit START condition
- Transmit the address of DS3231 (1001101) followed by 0 to indicate a write operation
- Transmit the address of location you want to access (it sets the value of Register Pointer)
- Transmit one or more bytes of data
- Transmit STOP condition

Reading from DS3231

- Transmit START condition
- Transmit the address of DS1307 (1001101) followed by 1 to indicate a read operation
- Receive one or more bytes of date
- Transmit STOP condition

 Note: the register pointer indicates which address will be read (you should set it before reading)

Example: Setting Time and Date

```
/* The program sets time and date to 15/9/2019 19:14:35 */
#include <stm32f10x.h>
void i2c_init(void);
void i2c_waitForReady(void);
void i2c_sendStart(void);
uint8_t i2c_sendAddrForWrite(uint8_t addr);
uint8_t i2c_sendData(uint8_t data);
void i2c_sendStop(void);
int main() {
          i2c_init();
          do{
                    i2c_waitForReady();/* wait while the bus is busy */
                     i2c_sendStart(); /* generate a start condition */
          /* send slave addr. 0x68 for write. repeat from beginning if arbitration lost */
          }while(i2c_sendAddrForWrite(0x68) != 0);
          i2c_sendData(0x0); /* set addr. pointer to 0 */
```

Example: Reading Time and Date and sending via USART1

```
#include <stm32f10x.h>
#include <stdio.h>
void i2c_init(void);
void i2c_waitForReady(void);
void i2c_sendStart(void);
void i2c_sendStop(void);
uint8_t i2c_sendAddrForRead(uint8_t addr);
uint8_t i2c_sendAddrForWrite(uint8_t addr);
void getTime(uint8_t *year, uint8_t *month, uint8_t *day, uint8_t *hour, uint8_t *min, uint8_t *sec);
void usart1_init(void);
void usart1_sendByte(unsigned char c);
void usart1_sendStr(char *str);
void delay_ms(uint16_t t);
```

int main()

35

DS3231 module

- It contains:
 - DS3231
 - A backup battery
 - An AT24C0 EEPROM

Connecting DS3231 to the MCU

