

planetmath.org

Math for the people, by the people.

defect theorem

 ${\bf Canonical\ name} \quad {\bf Defect Theorem}$

 Date of creation
 2013-03-22 18:21:43

 Last modified on
 2013-03-22 18:21:43

 Owner
 Ziosilvio (18733)

 Last modified by
 Ziosilvio (18733)

Numerical id 6

Author Ziosilvio (18733)

Entry type Theorem Classification msc 20M10 Classification msc 20M05

Defines $x^m = y^n$ has only trivial solutions over A^*

Let A be an arbitrary set, let A^* be the free monoid on A, and let X be a finite subset of A^* which is not a code. Then the free hull H of X is itself finite and |H| < |X|.

Observe how from the defect theorem follows that the equation $x^m = y^n$ over A^* has only the trivial solutions where x and y are powers of the same word: in fact, $x^m = y^n$ iff $\{x, y\}$ is not a code.

Proof. It is sufficient to prove the thesis in the case when X does not contain the empty word on A.

Define $f: X \to H$ such that f(x) is the only $h \in H$ such that $x \in hH^*$: f is well defined because of the choice of X and H. Since X is finite, the thesis shall be established once we prove that f is surjective but not injective.

By hypothesis, X is not a code. Then there exists an equation $x_1 \cdots x_n = x'_1 \cdots x'_m$ over X with a nontrivial solution: it is not restrictive to suppose that $x_1 \neq x'_1$. Since however the factorization over H is unique, the h such that $x_1 \in hH^*$ is the same as the h' such that $x'_1 \in h'H^*$: then $f(x_1) = f(x'_1)$ with $x_1 \neq x'_1$, so f is not injective.

Now suppose, for the sake of contradiction, that $h \in H \setminus f(X)$ exists. Let $K = (H \setminus \{h\})h^*$. Then any equation

$$k_1 \cdots k_n = k'_1 \cdots k'_m, k_1, \cdots, k_n, k'_1, \dots, k'_m \in K$$
 (1)

can be rewritten as

$$h_1 h^{r_1} \cdots h_n h^{r_n} = h'_1 h^{s_1} \cdots h'_m h^{s_m}, h_1, \dots, h_n, h'_1, \dots, h'_m \in H \setminus \{h\},$$

with $k_i = h_i h^{r_i}$, $k'_i = h'_i h^{s_i}$: this is an equation over H, and as such, has only the trivial solution n = m, $h_i = h'_i$, $r_i = s_i$ for all i. This implies that (??) only has trivial solutions over K: by the characterization of free submonoids, K is a code. However, $X \subseteq K^*$ because no element of x "starts with h", and K^* is a proper subset of H^* because the former does not contain h and the latter does. Then K^* is a free submonoid of A^* which contains X and is properly contained in H^* , against the definition of H as the free hull of X.

References

[1] M. Lothaire. Combinatorics on words. Cambridge University Press 1997.