EE223 Analog Integrated Circuits Fall 2018

Lecture 10: Folded –Cascode and Differential Pairs

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Output Impedance of Cascode Stage

$$R_{out} = r_{o1} + r_{o2} + (g_{m2}r_{o2})r_{o1}$$

$$R_{out} = r_{o1} + r_{o2} + (g_{m2} + g_{mb2})r_{o2}r_{o1}$$
 if $g_{mb} \neq 0$

Gain of Cascode Stage

$$V_{DD}$$
 R_D
 V_{b}
 V_{c}
 $V_$

$$A_v = \frac{V_{out}}{V_{in}} = -g_{m1}R_{out}$$

$$R_{out} = \{r_{o1} + r_{o2} + (g_{m2} + g_{mb2})r_{o2}r_{o1}\} //R_D$$

$$\approx (g_{m2}r_{o2}) r_{o1} //R_D$$

$$A_v \approx -g_{m1}(g_{m2}r_{o2}) r_{o1} = -(g_m r_o)^2$$
 if R_D is neglected

Cascode Amp with Cascode Current Source

$$A_v \approx -g_{m1}[\{(g_{m2}r_{o2}) r_{o1}\}||\{(g_{m3}r_{o3}) r_{o4}\}] \approx -\frac{(g_m r_o)^2}{2}$$

Folded Cascode Structures

Folded Cascode Topology: Cascade of CS stage and CG stage with different transistor types for CS and CG

Folded Cascode Structures

Folded Cascode Topology: Cascade of CS stage and CG stage with different transistor types for CS and CG

NMOS CS PMOS CG

Output Impedance of Folded Cascode

$$R_{out} = R_S + r_{o2} + (g_{m2} + g_{mb2})r_{o2}R_S$$

$$R_S = r_{o1}//r_{o3}$$

Single-Ended vs. Differential Operation

Single-ended

Differential

Advantages of Differential Operation

Single-ended

Differential

Immunity to environmental noise

→ Reject common-mode noise

Advantages of Differential Operation

Single-ended

V_{DD} R_{D} V_{out}

Differential

Immunity to environmental noise

→ Robust to supply noise

Other Advantages of Differential Operation

- Increased Swing
- Simpler Biasing
- Higher Linearity

- Disadvantage
 - → Area Increase
 - → Common-mode stabilization circuit necessary

Simple Differential Circuit

Sensitive to input common-mode level

MOS Differential Pair

Input-Output Characteristics of Differential Pair

Input-Output Characteristics of Differential Pair

- Output signal levels are well defined and independent of input CM level
- Circuit becomes nonlinear as input swing increases

CM Response of MOS Differential Amplifier

Common-Mode Characteristics of Differential Pair

$$V_{GS1} + (V_{GS3} - V_{TH3}) \le V_{in,CM} \le \min \left[V_{DD} - R_D \frac{I_{SS}}{2} + V_{TH}, V_{DD} \right]$$

Differential Gain vs. V_{in,CM}

Large Signal Analysis of Differential Pair

$$I_D = (1/2)\mu_n C_{ox}(W/L)(V_{GS} - V_{TH})^2$$

$$V_{GS} = V_{TH} + \sqrt{\frac{2I_D}{\mu_n C_{ox} \frac{W}{L}}}$$

$$(V_{GS} - V_{TH})_{equil.} = \sqrt{\frac{2I_{D1}}{KP(\frac{W}{L})}} = \sqrt{\frac{2(\frac{I_{SS}}{2})}{KP(\frac{W}{L})}}$$

$$V_{in1} - V_{GS1} = V_{in2} - V_{GS2}$$

$$I_{D1} + I_{D2} = I_{SS}$$

$$V_{GS1} = V_{TH}$$

$$V_{GS2} = V_{TH} + \sqrt{\frac{2I_{SS}}{\mu_n C_{ox} \frac{W}{L}}}$$

$$|V_{in1} - V_{in2}|_{max} = \sqrt{\frac{2I_{SS}}{\mu_n C_{ox} \frac{W}{L}}}$$

$$|V_{in1} - V_{in2}|_{max} = \sqrt{2}(V_{GS} - V_{TH})_{equil.}$$

Large Signal Analysis of Differential Pair

