

Hands on Tutorial k-means Clustering Model

Tutorial #3 Questions:

- What are we trying to accomplish?
 - Build a clustering algorithm to classify wells based on dynamometer card data.
 - Which are similar?
 - Which are dissimilar?

How can we use Azure Machine Learning to address this question?

Scenario Data:

- ~3.4 million rows of data
- 263 unique wells
- The data comprises of the following:
 - Date-Time at which the readings were taken
 - Idx Reading number (1-60): During every up and down motion of the Pump Jack, 60 sets of reading will be taken at various positions
 - X Position of the Pump Jack
 - Y Load on the Pump Jack
- We then perform the Principal Component Analysis over this data which was covered during your Exploratory Data Analysis lecture

well	date	idx	x	у
Alabama	8/16/2013 1:55	1	0.00074002	-5327.23698
Alabama	8/16/2013 1:55	2	0.15595834	-4476.758361
Alabama	8/16/2013 1:55	3	1.536036006	-3475.778052
Alabama	8/16/2013 1:55	4	3.779102308	-2636.548613
Alabama	8/16/2013 1:55	5	6.817062356	-1999.545532
Alabama	8/16/2013 1:55	6	10.7311654	-1622.668567
Alabama	8/16/2013 1:55	7	15.5308829	-1432.091513
Alabama	8/16/2013 1:55	8	21.09257393	-1346.745211
Alabama	8/16/2013 1:55	9	27.24284435	-1325.808833

Scenario Data:

 After the PCA was performed we ended up with~57K rows of data with 3 Principal Components (PC1, PC2, PC3)

- 263 unique wells
- Training data comprises of the following:
 - Date-Time at which the readings were taken
 - PC1
 - PC2
 - PC3

well	date	PC1	PC2	PC3
Alabama	8/16/2013 1:55	-8.243340971	2.918070697	2.023029116
Alabama	8/16/2013 23:49	-8.243340971	2.918070697	2.023029116
Alabama	9/3/2013 0:17	-8.495327766	2.311736767	2.154066737
Alabama	9/6/2013 9:38	-8.148383208	2.731807776	2.341956526
Alabama	9/6/2013 16:13	-8.148383208	2.731807776	2.341956526
Alabama	9/13/2013 3:48	-8.206877815	2.58376763	2.282912974
Alabama	9/13/2013 20:28	-8.206877815	2.58376763	2.282912974
Alabama	11/5/2013 13:17	-8.640142409	2.146508336	2.971266786
Alabama	11/5/2013 17:26	-8.640142409	2.146508336	2.971266786
Alabama	12/12/2013 9:46	-3.139291754	7.206502009	-2.257469677
Alabama	12/12/2013 14:13	-3.139291754	7.206502009	-2.257469677

Step by Step Guide for Building a Clustering Model

Step 1: Go to https://studio.azureml.net/

Step 2 : Log in to your account

Saved Datasets

▶ **a** Data Format Conversions

Data Input and Output

Data Transformation

Feature Selection

Machine Learning

Py Python Language Modules

R Language Modules

 $\triangleright \sum_{|\mathbf{i}|}$ Statistical Functions

Text Analytics

Deprecated

Web Service

Step 3.1: Create New Experiment

- AML modelling ... a checklist approach
 - Create new experiment

Step 3.2 : Create a new experiment

Step 3.3 : Create a new experiment

Step 3.4 : Name your experiment

- Click on the title box at the top that says "Experiment Created on"
- Give the experiment the following title: "Oil & Gas – Dynamometer Clustering"

Saved Datasets

▶ **a** Data Format Conversions

Data Input and Output

Data Transformation

Feature Selection

▶ 🔼 Machine Learning

Py Python Language Modules

R Language Modules

 $\triangleright \sum_{|\mathbf{i}|}$ Statistical Functions

Text Analytics

Deprecated

Web Service

Step 4.1: Import the dataset

- AML modelling ... a checklist approach
 - **☐** Create new experiment
 - Import data set

Option 1 -Import the training dataset from the Azure Blob Storage. If option 1 did not work, skip to option 2.

Step 4.2 : Q? How to import data from Azure Blob?

- Open "Data Input and Output" from the navigation pane at the left
- Drag "Import Data" to the canvas
 - "Import Data" loads data from sources such as the Web, Azure SQL, Windows Azure Blob storage, etc

Step 4.3 : Q? How to import data from Azure Blob?

Step 4.4 : Q? How to import data from Azure Blob?

If Option 1 worked, move on to Step 4.12

Option 2 -Import the training dataset from the saved datasets.

Step 4.5: Import this tutorial's training dataset

Step 4.6: Import this tutorial's training dataset

Step 4.7: Import this tutorial's training dataset

Step 4.8: Import this tutorial's training dataset

Step 4.9 : Open "Saved Datasets"

 By clicking on the triangle at the left of "Saved Datasets"

Step 4.10: Take a second to notice the MANY datasets

- To filter to the data set for this tutorial ...
- Type "Dynamometer Card Reading" in the "Search experiment items" dialog box
 - The data set list will reduce to our data set for this tutorial

Step 4.11: Drag the data set to the experiment

- *Note* when you drag the first element of your model to the canvas ... all the guides disappear
- Now, where are all the tools that were at the left Azure Machine Learning?
- They are still there, ... but we need to un-filter to see them

Step 4.12 : Admire your data set living in your experiment

Step 4.13: Visualize the data set

Step 4.14: Now look at the data for 4 attributes

Step 5.1: AML Modeling Components

▶ ■ Data Format Conversions

Data Input and Output

Data Transformation

Feature Selection

Machine Learning

▶ ♠ OpenCV Library Modules

Py Python Language Modules

R Language Modules

▶ ∑_{II} Statistical Functions

Text Analytics

Deprecated

Web Service

☐ Initial data set

- Create new experiment

□ Import data set

Machine Learning

Step 5.2 : Q? How to develop the Machine Learning Algorithm?

- Open "Machine Learning" -> "Initialize Model" -> "Clustering" from the navigation pane at the left
- Drag "K-Means Clustering" to the canvas

Step 5.3 : Q? How to develop the Machine Learning Algorithm?

- Data Transformation Feature Selection Machine Learning Evaluate Initialize Model Score Train Sweep Clustering Train Anomaly Detectio... Train Clustering Model Train Matchbox Recom... Train Model Tune Model Hyperpara...
- OpenCV Library Modules

- Open "Machine Learning" and then "Train" from the navigation pane at the left
- Drag "Sweep Clustering" module to the canvas
 - "Train Clustering Model" performs a sweep on the clustering model to determine the optimum parameter settings

Step 5.4 : Q? How to develop the Machine Learning Algorithm?

- Next, click and hold on the bottom middle circle of your "K-Means Clustering" module and drag the line to the top left circle of the "Sweep Clustering" module.
- Similarly, click and hold on the bottom left circle of your "Dataset" module and drag the line to the top right circle of the "Sweep Clustering" module.

Step 5.5: Q? How to develop the Machine Learning Algorithm?

- Machine Learning
 - Initialize parameters for K-Means Clustering algorithm
 - Click on "K-Means Clustering" module on your canvas, and make sure it has a blue outline
 - A properties window will open on extreme right

Step 5.6: Q? How to develop the Machine Learning Algorithm?

Step 5.7 : Q? How to develop the Machine Learning Algorithm

- Machine Learning
 - Click on K-Means
 Module and a
 properties window will
 open on extreme right
 - Initialize parameters

Starting with 4 Clusters and rest as default options.

Step 5.8 : Q? How to develop the Machine Learning Algorithm

- Machine Learning
 - Click on SweepCluster
 - Set Metric for measuring clustering to "Dunn"
 - Set the Random seed to "1234"
 - Then click on "Launch column selector"

Step 5.9 : Q? How to develop the Machine Learning Algorithm

- Machine Learning
 - Select "With Rules"
 - Select "All Columns" from list
 Begin with

Step 5.10 : Q? How to develop the Machine Learning Algorithm

Step 5.11 : Q? How to develop the Machine Learning Algorithm?

- Open "Machine Learning" and then "Score" from the navigation pane at the left
- Drag "Assign Data to Clusters" module to the canvas
 - "Assign Data to Clusters" assigns data to clusters using an existing trained clustering model

Step 5.12 : Q? How to develop the Machine Learning Algorithm?

- Next, click and hold on the bottom left circle of your "Sweep Clustering" module and drag the line to the top left circle of the "Assign Data to Clusters" module.
- Similarly, click and hold on the bottom middle circle of your "Dataset" module and drag the line to the top right circle of the "Assign Data to Clusters" module.

Step 5.13: Run the Experiment

Step 5.14: Visualize the Results

- The Clustering algorithm has assigned a cluster across each item given by variable "Assignments"
- Right click on the bottom-middle circle of "Assign Data to Clusters" module and select "Visualize"

Step 5.15 : Save the Result as a Dataset

- Right click on the bottom-middle circle of "Assign Data to Clusters" module and select "Save as Dataset"
- A pop-up will appear. Call the new dataset "Dynamometer Clusters"
- Click on the check mark

Step 5.16: Save the Result as a Dataset

