

Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer

Divisão e conquista e recorrências (Última atualização: 29 de março de 2019)

Referências e materiais complementares desse tópico

Livro Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C.. Introduction to Algorithms. 2nd ed. MIT Press. 2002.
Capítulo 2.3, 4 (intro).

Livro Dasgupta, S.; Papadimitriou, C.; Vazirani, U.. **Algorithms**. Boston: McGraw-Hill. 2008. Capítulo 2.3.

Vídeos Vídeo aulas do prof. Tim Roughgarden, de Stanford, em inglês (com legendas) Aulas 1.5, 1.6, 1.7 e 4.1.

Sumário

1	Divisão e conquista	1
2	Voltando ao problema de ordenação	1
3	Recorrências	5
4	Resolvendo recorrências	6

1 Divisão e conquista

- É uma técnica de projeto de algoritmos que faz uso de recursão.
- Consiste de 3 partes principais (em cada chamada recursiva):
 - DIVIDIR o problema em subproblemas menores do mesmo tipo.
 - Conquistar os subproblemas por meio de recursão.
 - Combinar as soluções dos subproblemas em uma única para o problema original.
- Os dois algoritmos recursivos que vimos para resolver o problema da multiplicação de dois inteiros seguem o paradigma de divisão e conquista.

2 Voltando ao problema de ordenação

• Vimos um algoritmo de ordenação por inserção e agora veremos um por intercalação.

Figura 1: Exemplo de execução completa do MERGESORT. Fonte: https://en.wikipedia.org/wiki/Merge_sort.

• A ideia do Mergesort (Algoritmo 1) é dividir o vetor em duas partes com metade do tamanho da entrada inicial, ordenar cada metade recursivamente e combinar os resultados com o procedimento Merge (Algoritmo 2).

• Veja uma animação desse algoritmo.

Algoritmo 1 Algoritmo de intercalação para o problema de ordenação.

- 1: **função** MERGESORT(A, ini, fim)
- 2: se ini < fim então
- 3: $meio \leftarrow |(ini + fim)/2|$
- 4: MERGESORT(A, ini, meio)
- 5: MERGESORT(A, meio + 1, fim)
- 6: MERGE(A, ini, meio, fim)

- A operação chave do MERGESORT é a intercalação dos dois subvetores já ordenados em um único.
- Como implementar o MERGE? Isto é, dados dois vetores B e C de tamanho n/2 já ordenados, como combiná-los de modo a gerar um único vetor ordenado A de tamanho n, contendo todos os elementos dos dois?
- Seja B = (1, 4, 5, 8) e C = (2, 3, 6, 7). Qual elemento vai ficar em A[1]? E em A[2]?
 - Em A[1] só podemos ter B[1] ou C[1], o que for menor dentre os dois. Se A[1] = B[1], então A[2] só pode ter B[2] ou C[1], o que for menor dentre esses dois. Mas se A[1] = C[1], então A[2] só pode ter B[1] ou C[2], o que for menor dentre esses dois.
 - Note que uma vez que um elemento B[i] é copiado para A, esse elemento não deve mais ser considerado. Da mesma forma, uma vez que um elemento C[j] é copiado para A, ele não deve mais ser considerado.
- Precisamos manter um índice i para percorrer o vetor B, um índice j para percorrer o vetor C e um índice k para o vetor A. A cada iteração, precisamos colocar um elemento em A[k]: se B[i] < C[j], então $A[k] \leftarrow B[i]$ e i deve ser incrementado para que B[i] não seja considerado novamente (j não deve ser incrementado); mas se $C[j] \le B[i]$, então $A[k] \leftarrow C[j]$ e j deve ser incrementado para que C[j] não seja considerado novamente.
- Note que quando colocamos um elemento na posição k de A, sabemos que A[1..k-1] está preenchido com os elementos de B[1..i-1] e C[1..j-1] e já está ordenado. Como B[i] e C[j] são menores do que todos os elementos de B[i+1..n/2] e C[j+1..n/2] e são maiores do que todos os elementos de A[1..k-1], então o menor dos dois é de fato o elemento que deve ser colocado em A[k].

Algoritmo 2 Algoritmo auxiliar para o MERGESORT.

```
1: função MERGE(A, ini, meio, fim)
 2:
        Seja B uma cópia de A[ini..meio] e C uma cópia de A[meio + 1..fim]
 3:
        i \leftarrow 1, j \leftarrow 1, k \leftarrow ini
        enquanto i < meio - ini + 1 e j < fim - meio faça
 4:
             se B[i] < C[j] então
 5:
                 A[k] \leftarrow B[i], i \leftarrow i+1
 6:
             senão
 7:
                 A[k] \leftarrow C[j], j \leftarrow j+1
 8:
 9:
             k \leftarrow k + 1
        enquanto i < meio - ini + 1 faça
10:
             A[k] \leftarrow B[i], i \leftarrow i+1, k \leftarrow k+1
11:
        enquanto j < fim - meio faça
12:
             A[k] \leftarrow C[j], j \leftarrow j+1, k \leftarrow k+1
13:
```

- O MERGESORT está correto?
 - EXERCÍCIO: Mostre que o MERGE está correto por meio de uma invariante de laço.
 Considere a notação do Algoritmo 2.
 - Por indução no tamanho n do vetor de entrada, vamos mostrar que o MERGESORT está correto. Considere a notação do Algoritmo 1 (temos então que n = fim ini + 1). CASO BASE: Quando o vetor tem tamanho 1 ou menos (caso em que $ini \ge fim$)

ele já está ordenado e o algoritmo de fato não faz nada. HIPÓTESE DE INDUÇÃO: Suponha que MERGESORT corretamente ordena qualquer vetor de tamanho menor do que n.

PASSO: Seja A = [ini..fim] um vetor de tamanho n > 1. O Algoritmo 1 faz duas chamadas recursivas a vetores de tamanho claramente menor do que n. Por hipótese, esses dois vetores $(A[ini..meio] \ e \ A[meio+1..fim])$ são ordenados corretamente. Pelo exercício anterior, a chamada à MERGE intercala corretamente esses dois vetores, deixando A[ini..fim] totalmente ordenado.

• Quando tempo o MERGESORT leva?

- Esse é um algoritmo recursivo. Como saber o número de passos básicos em todas as chamadas?
- Antes, uma pergunta mais simples que conseguimos responder: quanto tempo o MERGE leva?
 - * Se o vetor de entrada tem m números, então ele claramente leva tempo $\Theta(m)$.
- Qual o comportamento do Mergesort?
 - * Quando ele faz uma chamada recursiva, é sobre uma entrada bem menor (metade do tamanho original).
 - * Vamos ver a **árvore de recursão** desse algoritmo. Para facilitar, suponha que n é potência de 2^1 :

- * Note que o último nível, ℓ , tem problemas de tamanho 1 e nós começamos com um problema de tamanho n, com cada um sendo subdividido em 2 partes. Portanto, a árvore tem $\log n + 1$ níveis ao todo $(\ell = \log n)$.
- * Para saber o tempo total do algoritmo, a ideia é contar o tempo gasto em cada nível (fora das chamadas recursivas).

 $^{^{1}}$ É possível mostrar que isso não modifica assintoticamente a análise para qualquer n.

* Note que o único trabalho feito fora da recursão é uma chamada ao MERGE. Assim, o tempo gasto em um nível j qualquer é a quantidade de problemas que ele tem (2^j) vezes o tempo gasto pelo MERGE para resolver cada problema $(\Theta(n/2^j)$, pois é proporcional ao tamanho do problema), ou seja:

$$=2^{j}c\frac{n}{2^{j}}=cn ,$$

independente de j!

* O tempo total do algoritmo é, portanto, a soma do tempo gasto em cada nível:

$$= \sum_{j=0}^{\log n} cn = cn(\log n + 1) = cn \log n + cn = \Theta(n \log n) .$$

- O MERGESORT é melhor do que o InsertionSort?
 - * Depende.
 - * Podemos dizer que o MERGESORT leva tempo $\Theta(n \log n)$, mas só podemos dizer que o InsertionSort leva tempo $\Theta(n^2)$ no pior caso. O tempo do Insertio-Sort é $O(n^2)$ mas é $\Omega(n)$.
 - * Como $n \log n \le n^2$, então no pior caso sim, o MERGESORT é melhor.
- Dá para fazer melhor do que o MERGESORT?
 - * Se o algoritmo se baseia em comparações dos itens do vetor para fazer a ordenação, então não é possível conseguir tempo melhor do que $\Theta(n \log n)$.

Teorema 1. Todo algoritmo baseado em comparação tem tempo de execução no pior caso de $\Omega(n \log n)$.

- Veja uma animação comparando vários algoritmos de ordenação.

3 Recorrências

- Uma recorrência é uma equação/inequação que descreve uma função em termos dela mesma sobre entradas menores.
- Muito comuns para descrever tempo de algoritmos recursivos.
- Portanto, tem duas partes:
 - Tempo quando não há recursão (caso base)
 - Tempo quando tem recursão = tempo das chamadas recursivas + tempo na chamada atual.
- MergeSort: $T(n) = 2T(\frac{n}{2}) + \Theta(n)$
- Multiplicação com recursão simples: $T(n) = 4T(\frac{n}{2}) + \Theta(n)$
- Multiplicação com Karatsuba: $T(n) = 3T(\frac{n}{2}) + \Theta(n)$
- Fibonacci recursivo: $T(n) = T(n-1) + T(n-2) + \Theta(1)$

• EXERCÍCIO: O problema da busca é descrito a seguir: dados um vetor A com n elementos e um inteiro x, devolva i caso exista algum i tal que A[i] = x e devolva -1 caso contrário. Note que se A estiver ordenado, podemos comparar o elemento armazenado na posição média (A[n/2]) com x e eliminar metade do vetor do espaço de busca: se A[n/2] = x, então a busca está encerrada; caso contrário, se x < A[n/2], então temos a certeza de que, se x estiver em A, então x está na primeira metade de A, i.e., x está em A[1..n/2-1] (isso segue do fato de A estar ordenado); caso x > A[n/2], então sabemos que, se x estiver em A, então x está no vetor A[n/2+1..n]. A busca binária é um algoritmo que repete essa ideia a cada passo, sempre dividindo ao meio o vetor restante. Escreva um pseudocódigo recursivo da busca binária e uma recorrência para seu tempo de execução. Prove que seu algoritmo está correto por indução no tamanho do vetor.

4 Resolvendo recorrências

- Encontrar uma "fórmula fechada" para a recorrência: uma expressão que não depende da própria função.
- Vimos que o MergeSort tem tempo $\Theta(n \log n)$
 - Será que $T(n) = 2T(\frac{n}{2}) + \Theta(n)$ tem solução $T(n) = \Theta(n \log n)$?
- Existem basicamente quatro métodos de resolução de recorrências:
 - Iteração
 - Substituição
 - Árvore de recursão
 - Teorema Mestre