The GAPic Package

Lukas Schnelle

GAPDays Spring 2024

Let $X_0, X_1, X_2 \subset \mathbb{N}_0$ be finite subsets and

Let $X_0, X_1, X_2 \subset \mathbb{N}_0$ be finite subsets and \prec a symmetric relation between the sets called incidence.

Let $X_0, X_1, X_2 \subset \mathbb{N}_0$ be finite subsets and \prec a symmetric relation between the sets called incidence.

We call (\prec, X_0, X_1, X_2) triangular complex if

0000

Let $X_0, X_1, X_2 \subset \mathbb{N}_0$ be finite subsets and \prec a symmetric relation between the sets called incidence.

We call (\prec, X_0, X_1, X_2) triangular complex if

$$(v \prec e) \land (e \prec f) \Rightarrow v \prec f.$$

Let $X_0, X_1, X_2 \subset \mathbb{N}_0$ be finite subsets and \prec a symmetric relation between the sets called incidence.

We call (\prec, X_0, X_1, X_2) triangular complex if

(i) The relation \prec is transitive, i.e. $\forall v \in X_0, e \in X_1, f \in X_2$:

$$(v \prec e) \land (e \prec f) \Rightarrow v \prec f.$$

(ii) $\forall e \in X_1 \exists ! \ v_1 \neq v_2 \in X_0 \text{ such that } v_1 \prec e, v_2 \prec e.$

Let $X_0, X_1, X_2 \subset \mathbb{N}_0$ be finite subsets and \prec a symmetric relation between the sets called incidence.

We call (\prec, X_0, X_1, X_2) triangular complex if

$$(v \prec e) \land (e \prec f) \Rightarrow v \prec f.$$

- (ii) $\forall e \in X_1 \exists ! \ v_1 \neq v_2 \in X_0 \text{ such that } v_1 \prec e, v_2 \prec e.$
- (iii) $\forall e \in X_1 \exists f \in X_2 \text{ such that } e \prec f$.

Let $X_0, X_1, X_2 \subset \mathbb{N}_0$ be finite subsets and \prec a symmetric relation between the sets called incidence.

We call (\prec, X_0, X_1, X_2) triangular complex if

$$(v \prec e) \land (e \prec f) \Rightarrow v \prec f.$$

- (ii) $\forall e \in X_1 \exists ! \ v_1 \neq v_2 \in X_0 \text{ such that } v_1 \prec e, v_2 \prec e.$
- (iii) $\forall e \in X_1 \exists f \in X_2$ such that $e \prec f$.
- (iv) $\forall f \in X_2 \exists ! \ v_1 \neq v_2 \neq v_3 \in X_0 \text{ such that } v_1, v_2, v_3 \prec f$.

Let $X_0, X_1, X_2 \subset \mathbb{N}_0$ be finite subsets and \prec a symmetric relation between the sets called *incidence*.

We call (\prec, X_0, X_1, X_2) triangular complex if

$$(v \prec e) \land (e \prec f) \Rightarrow v \prec f.$$

- (ii) $\forall e \in X_1 \exists ! \ v_1 \neq v_2 \in X_0 \text{ such that } v_1 \prec e, v_2 \prec e.$
- (iii) $\forall e \in X_1 \exists f \in X_2 \text{ such that } e \prec f$.
- (iv) $\forall f \in X_2 \exists ! \ v_1 \neq v_2 \neq v_3 \in X_0 \text{ such that } v_1, v_2, v_3 \prec f$.
- (v) $\forall f \in X_2 \exists ! \ e_1 \neq e_2 \neq e_3 \in X_1 \text{ such that } e_1, e_2, e_3 \prec f$.

Let $X_0, X_1, X_2 \subset \mathbb{N}_0$ be finite subsets and \prec a symmetric relation between the sets called *incidence*.

We call (\prec, X_0, X_1, X_2) triangular complex if

(i) The relation \prec is transitive, i.e. $\forall v \in X_0, e \in X_1, f \in X_2$:

$$(v \prec e) \land (e \prec f) \Rightarrow v \prec f.$$

- (ii) $\forall e \in X_1 \exists ! \ v_1 \neq v_2 \in X_0 \text{ such that } v_1 \prec e, v_2 \prec e.$
- (iii) $\forall e \in X_1 \exists f \in X_2 \text{ such that } e \prec f$.
- (iv) $\forall f \in X_2 \exists ! \ v_1 \neq v_2 \neq v_3 \in X_0 \text{ such that } v_1, v_2, v_3 \prec f$.
- (v) $\forall f \in X_2 \exists ! e_1 \neq e_2 \neq e_3 \in X_1 \text{ such that } e_1, e_2, e_3 \prec f$.

The elements in X_0 are called *vertices*, the elements in X_1 are called *edges* and the elements in X_2 are called *faces*.

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Then we call (\prec, X_0, X_1, X_2) simplicial surface if

- (i) $\forall e \in X_1 : |\{f \in X_2 \mid e \prec f\}| \le 2$
- (ii) $\forall v \in X_0 : |\{f \in X_2 \mid v \prec f\}| < \infty$
- (iii) $\forall v \in X_0$: there is an ordering of the $e_i, f_j \prec v$ such that

$$e_1 \prec f_1 \prec e_2 \prec f_2 \prec \cdots \prec f_{n-1} \prec e_n \prec f_n \prec e_1$$

the last condition is called the *umbrella condition*.

Simplicial Surface

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Then we define an *embedding* of (\prec, X_0, X_1, X_2) as a map

$$c: X_0 \to \mathbb{R}^3$$
.

The image of $v \in X_0$ is called *coordinate of* v.

Let (\prec, X_0, X_1, X_2) be a triangular complex.

Then we define an *embedding* of (\prec, X_0, X_1, X_2) as a map

$$c: X_0 \to \mathbb{R}^3$$
.

The image of $v \in X_0$ is called *coordinate of v*.

Example

Is an embedded triangular complex.

Simplicial Surfaces Package

- Has functionality for displaying surfaces
 - Generates a .html file
 - Uses three.js

Simplicial Surfaces Package

- Has functionality for displaying surfaces
 - Generates a .html file
 - Uses three.js

Fachpraktikum

Was a project with the goal to improve the visualizations by adding shading/local lighting

Fachpraktikum

Was a project with the goal to improve the visualizations by adding shading/local lighting

After some work it turns out: central class used in implementation is deprecated.

THREE.Geometry will be removed from core with r125

Discussion

Mugen87 €

aeometry

Fachpraktikum

Was a project with the goal to improve the visualizations by adding shading/local lighting

After some work it turns out: central class used in implementation is deprecated.

THREE.Geometry will be removed from core with r125

Discussion

Mugen87 €

aeometry

The upcoming release r125 will contain a major, potentially breaking change. The class THREE. Geometry will be no longer part of the core but moved to ism/deprecated/Geometry.is. It will only be available as an ES6 module and not as a global script.

Decided to rewrite whole functionality

Advantages

- New security requirements of javascript and modern browsers: need to load the code from server \rightarrow way smaller file sizes (for small examples 9kB vs. 539kB)

Advantages

- New security requirements of javascript and modern browsers: need to load the code from server \rightarrow way smaller file sizes (for small examples 9kB vs. 539kB)
- More efficient Animations, faster loading, less memory (Demo in Browser)

Advantages

- New security requirements of javascript and modern browsers: need to load the code from server \rightarrow way smaller file sizes (for small examples 9kB vs. 539kB)
- More efficient Animations, faster loading, less memory (Demo in Browser)
- Also works for triangular complexes
 - \rightarrow Does not depend on incidence structure for visualization (Demo in Browser)

GAPic ●00

Afterwards decided to roll this feature into new package:

GAP image creator

Afterwards decided to roll this feature into new package:

GAP image creator

Goal is to divide up working with triangular complexes/simplicial surfaces in SimplicialSurfaces and to visualize them in GAPic.

- Most settings available via GUI in real time

- Most settings available via GUI in real time
- normalsMaterial for visualizing angles of faces
 - \rightarrow maps colors of a face smoothly depending on the normal

- Most settings available via GUI in real time
- normalsMaterial for visualizing angles of faces
 - \rightarrow maps colors of a face smoothly depending on the normal
- Intersection planes
 - → allows seeing inside complexes

- Most settings available via GUI in real time
- normalsMaterial for visualizing angles of faces
 - \rightarrow maps colors of a face smoothly depending on the normal
- Intersection planes
 - \rightarrow allows seeing inside complexes
- Parameterized coordinates
 - ightarrow allows coordinates to be defined as any equation JavaScript can evaluate

Future

- Currently in beta
 - \rightarrow need to finish manual

Future

- Currently in beta
 - \rightarrow need to finish manual
- Make compatible with objects from other packages
 - ightarrow e.g. simpcomp package

Future

- Currently in beta
 - \rightarrow need to finish manual
- Make compatible with objects from other packages
 - ightarrow e.g. simpcomp package
- Partial rewrite with new data structure
 - \rightarrow will reduce storage especially for bug animations

Thank You for your attention

References:

[1] Karl-Heinz Brakhage et al. The icosahedra of edge length 1.

 $2019. \ \, \text{DOI:} \ \, 10.48550 / \text{ARXIV.} 1903.08278. \ \, \text{URL:} \\$

https://arxiv.org/abs/1903.08278.