Identification de modèle non linéaire pour le contrôle d'écoulements instables Congrès Français de Mécanique — Besançon

Aurélien HERVÉ, Denis Sipp, Peter Schmid

Office Nationale d'Etudes et de Recherches Aérospatiales

30 Août 2011

Plan

- Introduction
 - Configuration
 - problématique
- 2 Identification
 - Modèle libre
 - Ajout de l'effet du contrôle
- 3 Conclusions

Configuration

NACA010, Re = 200, incidence 30°

Méthode proposée

- Identification d'une dynamique non forcée, à l'aide d'une trajectoire POD
- 2 Utilisation d'un modèle temporel ARX pour inclure la loi de contrôle

Critères de qualité

- Requis :
 - fréquence et amplitude des oscillations respectées
 - Le modèle admet un point d'équilibre instable, qui correspond à la projection du champ de base sur la base réduite choisie
- 2 Requis

Bonne prédiction d'une simulation avec forçage

Méthode proposée

- Identification d'une dynamique non forcée, à l'aide d'une trajectoire POD

- Requis :
 - fréquence et amplitude des oscillations respectées

Méthode proposée

- Identification d'une dynamique non forcée, à l'aide d'une trajectoire POD
- 2 Utilisation d'un modèle temporel ARX pour inclure la loi de contrôle

- Requis :
 - fréquence et amplitude des oscillations respectées
 - Le modèle admet un point d'équilibre instable, qui correspond à la projection du champ de base sur la base réduite choisie
- 2 Requis

Méthode proposée

- Identification d'une dynamique non forcée, à l'aide d'une trajectoire POD
- Utilisation d'un modèle temporel ARX pour inclure la loi de contrôle

- Requis :
 - fréquence et amplitude des oscillations respectées
 - Le modèle admet un point d'équilibre instable, qui correspond à la projection du champ de base sur la base réduite choisie
- 2 Requis

Méthode proposée

- Identification d'une dynamique non forcée, à l'aide d'une trajectoire POD
- Utilisation d'un modèle temporel ARX pour inclure la loi de contrôle

- Requis :
 - fréquence et amplitude des oscillations respectées
 - Le modèle admet un point d'équilibre instable, qui correspond à la projection du champ de base sur la base réduite choisie
- ② Requis :
 - Bonne prédiction d'une simulation avec forçage

Identification du modèle libre : Structure

Structure du modèle

- **1** Calcul POD, autour de Reynolds = 50 : $U = \bar{U}_{|Re=50} + \sum_{i} x_i \Phi_i$ $\varepsilon = \frac{1}{Re_0} \frac{1}{Re}$
- **2** Structure générale du modèle, en gardant la dépendance en Reynolds :

$$\forall \varepsilon, \ x_i^{t+1} = \varepsilon A_i + \sum_j x_j \left(B_{ij} + \varepsilon \beta_{ji} \right) + \sum_{j,k} x_j x_k C_{ijk}$$
$$= f_i(X, \varepsilon)$$

duction Identification

Identification du modèle libre : Structure

Structure du modèle

- **1** Calcul POD, autour de Reynolds = 50 : $U = \bar{U}_{|Re=50} + \sum_{i} x_i \Phi_i$ $\varepsilon = \frac{1}{Re_0} \frac{1}{Re}$
- **2** Structure générale du modèle, en gardant la dépendance en Reynolds :

$$\forall \varepsilon, \ x_i^{t+1} = \varepsilon A_i + \sum_j x_j (B_{ij} + \varepsilon \beta_{ji}) + \sum_{j,k} x_j x_k C_{ijk}$$
$$= f_i(X, \varepsilon)$$

Identification du modèle : ensemble d'apprentissage

Equation du modèle

$$x_i^{t+1}(X,\varepsilon) = \varepsilon A_i + \sum_j B_{ij}x_j + \sum_j \varepsilon \beta_{ij}x_j + \sum_{j,k} C_{i,j,k}x_jx_k$$

Ensemble d'apprentissage. La simulation est ponctuellement forcée pour obserber une dynamique plus riche

Introduction

Identification

Conclusion

Ensemble de test

Résultat de l'identification : prédiction d'une simulation

Simulation sur l'ensemble de test : le Reynods diminue et la loi de forçage est nulle

Prédiction du champ de base grâce au modèle identifié

Ajout de l'effet du forçage : modèle

Identification de l'action du contrôle sur la base :

- Calcul d'une simulation avec forçage aléatoire u(t)
- $\Delta(t) = X(t+1) f(X(t), \varepsilon(t))$
- modèle ARX : $\Delta(t) = \sum_{k} \alpha_k u(t-k)$

Introduction

Ajout de l'effet du forçage : modèle

Identification de l'action du contrôle sur la base :

- Calcul d'une simulation avec forçage aléatoire u(t)
- $\Delta(t) = X(t+1) f(X(t), \varepsilon(t))$
- modèle ARX : $\Delta(t) = \sum_{k} \alpha_k u(t-k)$

Ajout de l'effet du forçage : modèle

Identification de l'action du contrôle sur la base :

- Calcul d'une simulation avec forçage aléatoire u(t)
- $\Delta(t) = X(t+1) f(X(t), \varepsilon(t))$
- modèle ARX : $\Delta(t) = \sum_{k} \alpha_k u(t-k)$

Ajout de l'effet du forçage : résultats

Modèle réduit

- Modélisation fiable de la dynamique non forcée à l'aide de 5 modes, et sur une large plage de Reynolds
- La projection du champ de base sur la base réduite est déduite de la dynamique observée
- Modèle temporel pour prendre en compte les effets du forçage

Perspectives

- Influence du forçage comme fonction du Reynolds
- Définition d'un estimateur
- Contrôle non linéaire

Modèle réduit

- Modélisation fiable de la dynamique non forcée à l'aide de 5 modes, et sur une large plage de Reynolds
- La projection du champ de base sur la base réduite est déduite de la dynamique observée
- Modèle temporel pour prendre en compte les effets du forçage

Perspectives

- Influence du forçage comme fonction du Reynolds
- Définition d'un estimateur
- Contrôle non linéaire

Modèle réduit

- Modélisation fiable de la dynamique non forcée à l'aide de 5 modes, et sur une large plage de Reynolds
- La projection du champ de base sur la base réduite est déduite de la dynamique observée
- Modèle temporel pour prendre en compte les effets du forçage

Perspectives

Influence du forçage comme fonction du Reynolds

Définition d'un estimateur

Contrôle non linéaire

Modèle réduit

- Modélisation fiable de la dynamique non forcée à l'aide de 5 modes, et sur une large plage de Reynolds
- La projection du champ de base sur la base réduite est déduite de la dynamique observée
- Modèle temporel pour prendre en compte les effets du forçage

Perspectives

- Influence du forçage comme fonction du Reynolds

Identification Conclusions

Modèle réduit

- Modélisation fiable de la dynamique non forcée à l'aide de 5 modes, et sur une large plage de Reynolds
- La projection du champ de base sur la base réduite est déduite de la dynamique observée
- Modèle temporel pour prendre en compte les effets du forçage

Perspectives

- Influence du forçage comme fonction du Reynolds
- Définition d'un estimateur

Identification

Modèle réduit

- Modélisation fiable de la dynamique non forcée à l'aide de 5 modes, et sur une large plage de Reynolds
- La projection du champ de base sur la base réduite est déduite de la dynamique observée
- Modèle temporel pour prendre en compte les effets du forçage

Perspectives

- Influence du forçage comme fonction du Reynolds
- Définition d'un estimateur
- Contrôle non linéaire

Identification Conclusions