Best Available Copy

d 114 1-10 cit, ab

(1.) 5,109,070, Apr. 28, 1992, Compositions of insulating polymers and allfonated polyaniline compositions and uses thereof; Arthur J. Epstein, et al., 525/189, 420, 422, 523 [IMAGE AVAILABLE]

US PAT NO: 5,109,070 [IMAGE AVAILABLE]

L14: 1 of 10

18 JUL 92 Ø8:54:37

U.S. Patent & Trademark Office

PØØ16

US PAT NO:

5,109,070 [IMAGE AVAILABLE]

L14: 1 of 10

ABSTRACT:

Multicomponent polymeric compositions comprising self-pro/tonated sulfonic acid-substituted polyaniline compositions or derivatives thereof and at least one insulating polymer are disclosed. The sulfonated polyaniline compositions have faster electronic and optical responses to electrochemical potentials, improved environmental stability, and improved solubility than the parent polymer, polyaniline. The multicomponent sulfonated polyaniline/insulating polymer compositions are useful in electronic, chemical, electrochemical, and optical microelectric applications which use and control the chemical and physical properties of the sulfonated polyaniline compositions.

3. 5,096,586, Mar. 17, 1992, Membranes having selective permeability;
Rachard B. Kaner, et al., 210/500.37; 264/41, DIG.48, DIG.62 [IMAGE
AVAILABLE]

18 JUL 92 Ø8:54:49

U.S. Patent & Trademark Office

PØØ17

US PAT NO:

5,096,586 [IMAGE AVAILABLE]

L14: 2 of 10

ABSTRACT:

Dopable, fully dense polymer membranes are used to form membranes having selective permeabilities. To improve selectivity, the membranes may be subjected to chemical or electrochemical treatment with electron donors or acceptors to alter the doping level of the polymer membrane, generally in a reversible fashion. This leads to significant changes in gas permeation rates relative to what is observed for the non-doped, fully dense polymers. This change in doping level of the polymer films can be precisely controlled by varying the concentration and nature of chemical dopants used. Desirable changes in permeation rates are achieved by a treatment which comprises a reversal doping of the polymeric material, followed by removal of the dopants (to provide an "undoped" polymer). Further addition of controlled amounts of at least one dopant species to the undoped polymer by a second, "redoping" procedure can still more dramatically change the permeability of large 18 JUL 92 Ø8:55:03 U.S. Patent & Trademark Office PØØ18

US PAT NO: 5,076,586 [IMAGE AVAILABLE] L14: 2 of 10 species, leading to particularly large separation factors.

5,095,076, Mar. 10, 1992, Preparation of highly soluble conductive polymer materials; Sandra K. Clement, et al., 525/435, 420, 436, 509, 524, 527, 528, 540, 928; 528/81, 157, 158, 159, 397, 422 [IMAGE AVAILABLE]

US PAT NO:

5,095,076 [IMAGE AVAILABLE]

L14: 3 of 10

ABSTRACT:

Preparation of conductive polymers, particularly polyanilines having good solubility in organic solvents and high electrical conductivity, by providing a mixture of aniline, of miline and a flexible diamine such as 1,3-bis (3-aminophenoxy)benzence or triethylene tetramine. It mixture is reacted in the presence of an oxidant such as ammonium persulter and a protonic

US PAT NO: 5,095,00 [IMAGE AVAILABLE] L14: 3 of 10 conductive polyaniline in which the conjugation is interrupted by an intermediate diamine group, and which renders the resulting polymer more flexible than polyaniline per se. The conductive polymer so produced also has terminal primary amino groups which aid solubility and which are further reactive. The conductive polyaniline product of the invention can be blended with non-conductive resins such as polyimides to provide cured conductive resin blends having good mechanical properties.

5,093,439, Mar. 3, 1992, Processes for preparation of sulfonated polyaniline compositions and uses thereof; Arthur J. Epstein, et al., 525/540; 252/500, 518; 428/364, 402, 524, 526; 524/422, 429, 438; 525/534, 535; 528/210, 391, 422, 487 [IMAGE AVAILABLE]

US PAT NO: 5,093,439 [IMAGE AVAILABLE] L14: 4 of 10

18 JUL 92 Ø8:55:25 U.S. Patent & Trademark Office

PØØ2Ø

PØ019

US PAT NO:

5,093,439 [IMAGE AVAILABLE]

L14: 4 of 10

ABSTRACT:

Sulfonic acid-substituted polyaniline compositions and their derivatives are produced by reacting a polyaniline polymer with SO.sub.3 gas. The sulfonated polyaniline compositions have faster electronic and optical responses to electrochemical potentials and improved environmental stability solubility than the parent polyaniline polymer.

5,008,041, Apr. 16, 1991, Preparation of conductive polyaniline having controlled molecular weight; Randy E. Cameron, et al., 252/500, 518; 525/540; 528/422 [IMAGE AVAILABLE]

US PAT NO: 5,008,041 (IMAGE AVAILABLE)

L14: 5 of 10

18 JUL 92 Ø8:55:34

U.S. Patent & Trademark Office

FØØ21

US PAT NO:

5,008,041 [IMAGE AVAILABLE]

L14: 5 of 10

ABSTRACT:

Process for producing conductive polyaniline of controlled molecular weight by providing a mixture of aniline and dianiline in predetermined proportions dependent on the desired molecular weight of polyaniline to be formed. The mixture is reacted in the presence of an oxidant such as ammonium persulfate and a protonic (Bronsted) acid such as tosylic acid, to polymerize the mixture of aniline and dianiline, and forming conductive polyaniline of the desired molecular weight. Soluble conductive polyanilines having an average molecular weight not higher than about 600,000 (by gel permeation chromatography versus polystyrene in N-methyl pyrrolidone) can be obtained. Using about 6 to about 18 mols of aniline per mol of dianiline, according to one mode of procedure, conductive polyaniline having an average molecular weight ranging from about 150,000 to about 600,000 can be obtained. According to another feature of the invention, mild or weak oxidants such as 18 JUL 92 Ø8:55:47 U.S. Patent & Trademark Office FØØ22

US PAT NO: 5,008,041 [IMAGE AVAILABLE] L14: 5 of 10 o-chloranil and cupric chloride, as well as strong oxidants such as ammonium persulfate, can be used in the reaction.

6. 5,006,278, Apr. 9, 1991, Solution processible forms of electrically conductive polyaniline and the method of manufacture of electroconductive articles therefrom; Ronald L. Elsenbaumer, 427/385.5; 252/500, 518, 519; 264/331.19 [IMAGE AVAILABLE]

US PAT NO:

5,006,278 [IMAGE AVAILABLE]

L14: 6 of 10

electrically conductive substituted and unsubstituted polyanilines and to methods of forming such solutions or compositions and use of same to form conductive articles.

18 JUL 92 Ø8:55:57

U.S. Patent & Trademark Office

PØØ23

US PAT NO:

5,006,278 [IMAGE AVAILABLE]

L14: 6 of 10

4,983,690, Jan. 8, 1991, Conductive polymer-maleimide blends and method of producing same; Randy E. Cameron, et al., 525/436; 252/500, 511; 525/540 [IMAGE AVAILABLE]

US PAT NO:

4,983,690 [IMAGE AVAILABLE]

L14: 7 of 10

ABSTRACT:

Solution blending of (a) a conductive polymer containing carbon-nitrogen linkages, such as polyaniline, having an organic group or an inorganic group, e.g., derived from an anhydride or an aromatic multisulfonic acid, covalently linked to nitrogen atoms of the polymer and (b) a malemide, particularly a bismalemide, e.g., the bismaleimide prepared by reacting 1,3 bis (3 aminophenoxybenzene) with 2 units of maleic anhydride, or a bismaleimide terminated oligomer, in a suitable solvent. On removal of solvent and heating 18 JUL 92 Ø8:56:08

US PAT NO: 4,983,690 [IMAGE AVAILABLE] L14: 7 of 10 to cure the bismaleimide, a continuous phase blend of the conductive polymer and the bismaleimide is formed, having good electrical conductivity and strength. The solution blend can be applied as a coating on a substrate or can be processed to a powder which can be compressed into parts. The conductive blend can be melted and cured without the evolution of volatiles.

8. 4,983,322, Jan. 8, 1991, Solution processible forms of electrically conductive polyaniline; Ronald L. Elsenbaumer, 252/500, 518, 519 [IMAGE AVAILABLE]

US PAT NO:

4,983,322 [IMAGE AVAILABLE]

L14: 8 of 10

ABSTRACT:

This invention relates to solutions and plasticized compositions of electrically conductive substituted and unsubstituted polyanilines and to 18 JUL 92 Ø8:56:19 U.S. Patent & Trademark Office PØØ25

US PAT NO: 4,983,322 [IMAGE AVAILABLE] L14: 8 of 10 methods of forming such solutions or compositions and use of same to form conductive articles.

US PAT NO:

45,855,51

L14: 9 of 10

ABSTRACT:

A conductive polymer blend which comprises mixing a polyimide with a base-type polymer containing carbon-nitrogen linkages, such as polyaniline, having a polyimide-like group covalently linked to nitrogen atoms of the base-type polymer. The conductive polymer blend is formed by first reacting a base-type non-conductive polymer containing carbon-nitrogen linkages, such as 18 JUL 92 Ø8:56:29

U.S. Patent & Trademark Office

PØØ26

 priese baend of one polyamade and one conductive polymer.

10. 4.851.487, Jul. 25 1789, Conductive polymer Serials and method of producing same; Stuart Yaniger, et al., 525/540; 252/500, 511; 528/332, 391, 422

US PAT NO:

4.851.487

L14: 10 of 10

ABSTRACT:

Production of base-type conductive polymers, particularly from the family of 18 JUL 92 Ø8:56:42 U.S. Patent & Trademark Office PØØ27

US PAT NO: **4.851.487**conductive polyaniline, by reacting a base-type non-conductive polymer containing carbon-nitrogen linkages, e.g., polyaniline, with an anhydride, such as R--S0.sub.2 -0-S0.sub.2 -R, R--C0-0-C0-R, or R--C0-0-S0.sub.2 R, or mixtures thereof, where R and R' are alkyl or aryl, e.g., tosylic anhydride or benzophenone tetracarboxylic dianhydride, and forming an electrically conductive polymer in which the S0.sub.2 R and COR groups are covalently linked to the nitrogen atoms of the conductive polymer and the anion of the conductive polymer is the S0.sub.3 R' or 0.sub.2 CR' group.

=> s (polyacrylic or polysulfonic or polyamic or polyphosphoric)(2p)(dopant# or dope# or agent# or doping)

11539 POLYACRYLIC

265 POLYSULFONIC

18 JUL 92 08:57:30

U.S. Patent & Trademark Office

PØØ28

963 POLYAMIC

5064 POLYPHOSPHORIC

11178 DOPANT#

28336 DOPE#

274845 AGENT#

14868 DOPING

L16 8137 (POLYACRYLIC OR POLYSULFONIC OR POLYAMIC OR POLYPHOSPHORIC) (2P) (DOPANT# OR DOPE# OR AGENT# OR DOPING)

- 2. 5,079,121, Jan. 7, 1992, Seamless polymeric belts for electrophotography and processes for the preparation thereof; John S. Facci, et al., 430/62; 428/515; 430/69 [IMAGE AVAILABLE]
- 16 JUL 92 09:03:29 U.S. Patent & Trademark Office P0044 2. 4,992,349, Feb. 12, 1991, Cyclic bis-dicarboximide charge transport compounds for electrophotography; Chin H. Chen, et al., 430/58; **250/590** C/IMAGE AVAILABLEJ
- 3. 4,989,607, Feb. 5, 1991, Highly conductive non-stringy adhesive hydrophilic gels and medical electrode assemblies manufactured therefrom; Preston Keusch, et al., 128/640, 798, 802; **25//500** [IMAGE AVAILABLE]
- 4. 4,988,597, Jan. 29, 1991, Conductive and blocking layers for electrophotographic imaging members; John W. Spiewak, et al., 430/62;
- (5.) 4,771,111, Sep. 13, 1988, Polypyrrole/polyimide compositions; Bernd Treke, et al., 525/182; **25/7/570**; 428/473.5; 525/180, 417, 436
- 6. 4,731,311, Mar. 15, 1988, Electrically conductive material and secondary bettery using the electrically conductive material; Tetsumi Suzuki, et al., 18 JUL 92 09:03:40 U.S. Patent & Trademark Office P0045 429/213; 2574500
 - 4,698,391, Oct. 6, 1987, Crosslinked polymers with lowered resistivity and materials and methods for their preparation; Paul D. Yacobucci, et al., 525/162; **25/300**, 511; 525/190, 428, 443, 510, 523
 - 4,654,273, Mar. 31, 1987, Electromagnetic shielded body; Arthur E. Gurgiolo, et al., 428/522; **252/2500**; 428/520; 525/381
 - 7. 4,620,943, Nov. 4, 1986, Bicarbazole-oxadiazole electroactive polymers; Peter Denisevich, Jr., et al., 252/518, **200**; 524/80, 167, 300, 404, 408, 410, 415, 419, 421, 429, 443; 528/363
- 4,597,896, Jul. 1, 1986, Carbazole-oxadiazole electroactive polymers; Peter Denisevich, Jr., et al., **257/600**, 518; 524/80, 401; 528/341
- 4,588,762, May 13, 1986, Pressure sensitive adhesive compositions for 18 JUL 92 Ø9:03:50 U.S. Patent & Trademark Office P0046 medical electrodes; Norbert J. Mruk, et al., 524/45; 156/327, 328;
- 12. 4,539,996, Sep. 10, 1985, Conductive adhesive and biomedical electrode; Mizhael R. Engel, 128/640, 798; **25/1470**
- 13. 4,519,940, May 28, 1985, Triazole electroactive polymers; Albert H. Szhroeder, et al., **257/1500**, 512, 518; 528/183, 341, 363
- 14) 4,519,938, May 28, 1985, Electroactive polymers; Yoram S. Papir, **237/370**, 510, 514, 518
- 15. 4,505,844, Mar. 19, 1985, P-Type polyphenoxazine electroactive polymers; reter Denisevich, Jr., 252/2500, 512, 518; 528/183, 210, 342, 363, 374
- 10. 4,505,843, Mar. 19 1985, Heterodiazole electroctive polymers; Shigeto Suzuki, et al., **252/500**, 512, 518; 528/183, 341, 3

まご せいに うに おフォルサミルル U.D. Fatelly w Irauemain williem) 4,505,840, Mar. 1991985, Heterocyclic electrostive polymers; Victor P. kov, **252/500**, 512, 59; 528/183, 341, 363 4,502,980, Mar. 5, 1985, Dithiene electroactive polymers; Feter isevich, Jr., et al., **250/500**, 512, 518 4,010,117, Mar. 1, 1977, Electroconductive material; Motokazu Maruhashi, al., **25/4-707**; 430/62 => d his (FILE 'USPAT' ENTERED AT Ø8:42:34 ON 18 JUL 92) SET PAGELENGTH 19 SET LINELENGTH 78 ACT BRAD/L 18 JUL 92 Ø9:04:11 U.S. Patent & Trademark Office PØØ48 4462) SEA FILE=USPAT CONDUCT? (3A) POLYMER# L1 (460)SEA FILE=USPAT CONDUCT?(P)(POLYANILINE# OR POLYTHIOPHENE# OR L2 (L3 (4539)SEA FILE=USPAT L1 OR L2 L4 (142)SEA FILE=USPAT (POLYANILINE# OR POLYTHIOPHENE# OR POLYPYRROLE L5 (4548) SEA FILE=USPAT L4 OR L3 L6 (12717)SEA FILE=USPAT (POLYACRYLIC OR POLYSULFONIC OR (CELLULOSE(W)S L7 (17460)SEA FILE=USPAT L6 OR POLYPHOSPHORIC L8 (98) SEA FILE=USPAT L7(P) (DOPANT# OR DOPING OR DOPE# OR POLYDOPANT L9 (15)SEA FILE=USPAT L8 AND L5 L10 (1574) SEA FILE=USPAT 252/500,511/CCLS Ø S 252/500

L11

L12 773 S 252/500/CCLS

L13 51 S L12 AND L7 NOT L9

L14 10 S (4855361 OR 4851487)/PN,UREF,BI

18 JUL 92 Ø9:Ø4:24 U.S. Patent & Trademark Office

49 S L13 NOT L14 L.15 L16 8137 S (POLYACRYLIC OR POLYSULFONIC OR POLYAMIC OR POLYPHOSPHORIC)

PØØ49

L 17 19 S L16 AND L15

::::)>

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

	☐ BLACK BORDERS
/	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
۷	FADED TEXT OR DRAWING
/	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.