Driven Random Dynamic Reservoir with Homeostatic Variance Control

1 Model Description

1.1 Dynamics

$$x_i^{t+1} = \tanh\left(g_i^t I_i^{t+1}\right) \tag{1}$$

$$I_i^{t+1} = \sum_{j=1}^{N_{\text{net}}} W_{ij} x_j^t + \sum_{k=1}^{N_{\text{in}}} E_{ik} e_k^{t+1}$$
(2)

$$g_i^{t+1} = \mu_g \left[\text{Var}_{\text{target}} - \left(x_i^t - \langle x_i \rangle \right)^2 \right]$$
 (3)

1.2 Parameters / Settings

 W_{ij} is a sparse random matrix with connection probability cf_{net} . Nonzero entries were drawn from a Gaussian distribution $\mathcal{N}(\mu = 0, \sigma = \sigma_{conn}/\sqrt{N_{net}cf_{net}})$. Diagonal entries were always set to zero

 E_{ij} is also a sparse random matrix with connection probability cf_{in} . Nonzero entries were drawn from a Gaussian distribution $\mathcal{N}(\mu = 0, \sigma = \sigma_{conn}/\sqrt{N_{in}cf_{in}})$.

 e_i^t are activities of an input layer of size $N_{\rm in}$, which are independently drawn from a uniform [0,1] distribution for each time step. External input is turned off after $t_{\rm ext.off}$.

By changing individual gain values g_i , the homeostatic control tries to drive the activity variance of every cell to the value given by Var_{target} . However, this mechanism is also switched off after $t_{ext.off}$. This is done because we can assume that homeostatic processes would biologically act on much slower timescales than changes in input. Before $t_{ext.off}$, we can set μ_g to relatively high values to let homeostasis converge under external drive.

See all parameters in Table 1.

Table 1: Model Parameters

Parameter	Value
$N_{ m net}$	500
$N_{ m in}$	10
$\mathrm{cf}_{\mathrm{net}}$	0.1
$\mathrm{cf_{in}}$	0.1
$\sigma_{ m conn}$	1.0
μ_g	0.0005
Var_{target}	0.1
n_t (Sim. Steps)	200000
$t_{ m ext.off}$	100000

2 Results

Exemplary results are shown in Fig. 1.

Figure 1: **A**: Sample of activity within $[t_{\text{ext.off}} - 100, t_{\text{ext.off}} + 100]$. **B**: Gain dynamics of $N_{\text{net}}/10$ exemplary neurons. **C**: Population mean of squared activity. **D**: Log. of largest real part of eigenvalues of $g_i^t W_{ij}$.