Lab07-Recursive and Recursively Enumerable Sets

CS363-Computability Theory, Xiaofeng Gao, Spring 2015

* Please upload your assignment to FTP or submit a paper version on the next class.

* Name:______ StudentId: _____ Email: _____

1. Let A, B be subsets of \mathbb{N} . Define sets $A \oplus B$ and $A \otimes B$ by

$$A \oplus B = \{2x : x \in A\} \cup \{2x + 1 : x \in B\},\$$

 $A \otimes B = \{\pi(x, y) : x \in A \text{ and } y \in B\},\$

where π is the pairing function $\pi(x,y) = 2^x(2y+1) - 1$. Prove that

- (a) $A \oplus B$ is recursive iff A and B are both recursive.
- (b) If $A, B \neq \emptyset$, then $A \otimes B$ is recursive iff A and B are both recursive.
- 2. Which of the following sets are recursive? Which are r.e.? Which have r.e. complement? Prove your judgements.
 - (a) $\{x \mid x \in E_x\};$
 - (b) $\{x \mid x \text{ is a perfect square}\};$
 - (c) $\{x \mid \phi_x \text{ is injective}\};$
 - (d) $\{x \mid P_m(x) \uparrow\}$ (m is fixed).
- 3. Suppose A is an r.e. set. Prove the following statements.
 - (a) Show that the sets $\bigcup_{x \in A} W_x$ and $\bigcup_{x \in A} E_x$ are both r.e.
 - (b) Show that $\bigcap_{x \in A} W_x$ is not necessarily r.e. (*Hint*: $\forall t \in \mathbb{N} \text{ let } K_t = \{x : P_x(x) \downarrow \text{ in t steps}\}$. Show that for any t, K_t is recursive; moreover $K = \bigcup_{t \in \mathbb{N}} K_t$ and $\overline{K} = \bigcup_{t \in \mathbb{N}} \overline{K}_t$.)