群论导引

离散数学教学组

回顾

- 运算及其封闭性
- 运算的性质
- 运算表
- 代数系统
- 代数系统的同构与同态

提要

- 对称的代数
- 半群
- Monoid
- 群
- 群论公理
- 群的性质

Group theory is the branch of mathematics that answers the question — — "What is

symmetry?"

— Nathan C. Carter

■ 在Longman字典里, symmetry被解释为 "exact likeness in size, shape, form, etc., between the opposite sides of something"

- 如何把这些"对称"当中共同的本质抽象出来,用数学语言理性地加以描述?
- 什么是对称的共性? 什么是对称的本质?

变 vs. 不变

- 对称的数学定义涉及不变性,若一个几何图形在某个变换下保持不变,则称此图形在此变换下对称
- 在科学中,对称性是指某种操作下的不变性或者守恒性,对称性常与守恒定律相联系
 - 空间平移不变性→动量守恒定律
 - 时间平移不变性→能量守恒定律
 - 转动变换不变性→角动量守恒定律
 - 空间反射(镜像)操作不变性→宇称守恒

表 1 对称性和守恒量

对称变换和对称群	守 恒 量	附 注
空间平移	动量 P	
时间平移	能量 E	
空间转动	角动量J	
洛伦兹变换	洛伦兹增压 K	
电磁规范变换群 $U(1)$	电荷 Q	
色规范变换群 SU(3)	色荷	
全同粒子交换		导致统计分类
时空强反射	CPT	
重子数变换	重子数 B	可能破缺
轻子数变换	轻子数(e 轻子数, μ 轻 子数,τ 轻子数等)	可能破缺
空间反射	宇称 P	破缺
时间反演	T	破缺
电荷共轭	C	破缺
味手征变换群 $SU(N)_L \times SU(N)_R$	超荷,同位旋等	破缺(见手征对称性)
味轴矢变换 $U(1)_{A}$		为辐射修正引起的轴矢反 常项破缺
电弱规范群 SU(2) _L ×U(1) _R	电荷	自发破缺(见规范场)
强电弱大统一规范群		尚未确定
〔作为大统一的初步尝试的 $SU(5)$ 、 $SO(10)$ 等规范群〕		自发破缺(见大统一理论)

- 例如:正方形的对称是从正方形的顶点集到它本身的一个一一对应,其保持相邻点之间距离不变(这样的变换在物理上是刚体运动)
- 定义: 几何图形的一个对称是从图形点集到其自身的保距的一一对应变换

设正方形的4个顶点为1、2、3、4; 重心为O, 对角线为 D_1 和 D_2 , 水平中线为H, 垂直中线为V。以下将从 $\{1,2,3,4\}$ 到 $\{1,2,3,4\}$ 的一一对应记成 $\begin{pmatrix} 1 & 2 & 3 & 4 \\ i_1 & i_2 & i_3 & i_4 \end{pmatrix}$.

我们现在找出正方形所有的对称

旋转对称: 由以下刚体运动完成

$$R_1$$
: 绕 O 顺时针转 90° , 易见 $R_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$

$$R_2$$
: 绕 O 顺时针转 180° , 易见 $R_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$

$$R_3$$
: 绕 O 顺时针转 270° , 易见 $R_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$

$$R_0$$
: 绕 O 顺时针转 360° , 易见 $R_0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$

反射对称: 由以下刚体运动完成

H: 对于水平中线H的反射。 $D_1:$ 对于对角线 D_1 的反射。

V: 对于垂直中线V的反射。 D_2 : 对于对角线 D_2 的反射。

$$H = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \quad V = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \quad D_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \quad D_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

- 对称之代数的本质在于我们能定义两个对称的乘积,也即两个变换的连续作用后的结果
- 例如: R₁*H指先右转90°,后
 做水平反射,结果得D₁,故
 R₁*H=D₁;而H*R₁=D₂,
 由此可以看出R₁*H≠H*R₁

我们可以得到下列乘法表(Cayley Table):

*	R_0	R_1	R_2	R_3	H	V	D_1	D_2
R_0	R_0	R_1	R_2	R_3	H	V	D_1	D_2
R_1	R_1			R_0	D_1			
R_2	R_2		R_0				•	
R_3	R_3	R_0						
Н	H	D_2			R_0			
V	V					R_0		
D_1	D_1						R_0	
D_2	D_2			•				R_0

 $\diamondsuit S = \{R_0, R_1, R_2, R_3, V, H, D_1, D_2\}$

*为S上的两元运算

事实上可通过函数的复合来计算积。例如

$$R_1 * H = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} = D_1$$

通过运算可知

- (1)*对于S是封闭的,即 $(\forall x, y \in S)(x*y \in S)$
- (2) $(\forall x, y, z \in S)(x * (y * z) = (x * y) * z)$
- (3) $(\forall x \in S)(R_0 * x = x * R_0 = x)$
- $(4) (\forall x \in S)(\exists y \in S)(x * y = y * x = R_0)$

半群

定义 设(S, *)为代数系统,(S, *)为半群(Semigroup)指

- $(1) (\forall x, y \in S)(x * y \in S)$
- (2) $(\forall x, y, z \in S)((x*y)*z = x*(y*z))$

- "代数系统"+"结合性"="半群"
- 例:代数系统 $(\{1,2\},*)$ 为半群,其中*定义为 $\forall x, y \in \{1,2\}, x * y = y$

Monoid (幺半群)

定义 设(S, *)为代数系统,(S, *)为Monoid (Semigroup with unit)指

- $(1) (\forall x, y \in S)(x * y \in S)$
- (2) $(\forall x, y, z \in S)((x*y)*z = x*(y*z))$
- $(3) (\exists e \in S)(\forall x \in S)(e * x = x * e = x)$
- "半群" + "单位元" = "Monoid"
- 注意:代数系统中左右单位元若存在则必相等且唯一
- 所有 Monoid 皆为半群,反之不然

Monoid

- 例1: $S = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} | a, b \in \mathbb{R} \right\}, T = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} | a \in \mathbb{R} \right\}$
 - 则集合S与T关于矩阵的乘法皆构成Monoid
- 例2: 〈ℤ⁺, +〉为半群, 但非Monoid
- 例3: $\langle \mathbb{Z}_n, \oplus_n \rangle$ 为Monoid, \oplus_n 是模n加法
- 例4: $\langle A^A, \circ \rangle$ 为Monoid, \circ 是函数复合运算
- M_5 : $\langle \mathcal{P}(B), \oplus \rangle$ 为Monoid, \oplus 为对称差运算

- (G,*)为群当且仅当有 $e \in G$ 和G上的一元运算 $^{-1}$ 使
 - $(0) G \neq \emptyset$
 - $(1) (\forall x, y \in G)(x * y \in G)$ ·······原群(Magma)
 - (2) $(\forall x, y, z \in G)(x * (y * z) = (x * y) * z) \cdots + \#$
 - (3) $(\forall x \in G)(x * e = e * x = x)$ Monoid
 - $(4) (\forall x \in G)(x * x^{-1} = x^{-1} * x = e) \cdots$
 - $(1) \sim (4)$ 有时被称为群论公理

群论公理的等价描述:

设G为非空集合,*为G上的二元运算, $\langle G,*\rangle$ 为

群指 $\langle G, * \rangle$ 为Monoid, 其单位元为e,且满足:

 $(\forall x \in G)(\exists y \in G)(x * y = y * x = e)$

可结合的代数系统中逆元若存在则唯一

命题 设 $\langle G, *, e \rangle$ 为群,任何元素之逆是唯一的。

证: 设y, z为x之逆, 从而

$$x * y = y * x = e = x * z = z * x$$

$$\therefore x * y = e \to z * (x * y) = z * e$$

$$\rightarrow (z * x) * y = z$$

$$\rightarrow e * y = z$$

$$\rightarrow y = z$$

$$\therefore y = z \square$$

■ 例:

- (ℝ,+),(ℤ,+)为群,但(N,+)不为群(1无逆)
- $\langle \mathbb{Z}_n, \bigoplus_n \rangle$ 为群, i之逆为n-i
- 正方形的对称集与乘积构成群
- *T_A* = {*f*: *A* → *A*|*f* 为双射} 构成群,单位元是*I_A*, *f* 的逆元为*f*⁻¹
- $A = \{f : \mathbb{R} \to \mathbb{R} | \text{呈形} f(x) = ax + b\}$, $\langle A, \circ \rangle$ 是否构成群?

设
$$f(x) = ax + b (a, b \in \mathbb{R}) f \in A f$$
有逆吗?

设
$$g(x) = cx + d$$
 $(c, d \in \mathbb{R})$ 为 f 之逆,从而 $f(g(x)) = g(f(x)) = x$ 。

因此,
$$a(cx+d)+b=x$$
, $c(ax+b)+d=x$; $acx+ad+b=x$, $acx+cb+d=x$; $ac=$

1,
$$ad + b = cb + d = 0$$
; $c = 1/a$, $d = -b/a$.

故当
$$a = 0$$
时 f 无逆,当 $a \neq 0$ 时 f 的逆为 $g(x) = x/a - b/a$ 。

然而令
$$A' = \{f : \mathbb{R} \to \mathbb{R} | f \subseteq \mathcal{H} f(x) = ax + b \perp a \neq 0\}, (A', \circ) 为群。$$

- (1) 若G为有穷集,则称(G,*)为有限群。当|G|=n时称(G,*)之阶为n且称G为n阶群
- (2) 若G为无穷集,则称(G,*)为无限群
- (3) 若群(G,*)满足 $(\forall x,y \in G)(xy = yx)$,则称G为交换群(abelian群)

下面我们给出1,2,3,4阶全部不同构的群

- (1) 若(G,*)为1阶群,从而设 $G = \{e\}$ 有ee = e。故1阶群在同构意义下只有一个。
- (2) 若(G,*)为2阶群,从而设 $G = \{e,a\}(a \neq e)$,易见ea = ae = a, ee = e但aa呢?

乘法表见下:

*	e	a
e	e	a
a	a	e

(3) 若 $\langle G,*\rangle$ 为3阶群,从而可设 $G = \{e,a,b\}$,e,a,b互异。若a*a = e则a*b = a或b或e都与互异性矛盾,故a*a = b。从而乘法表唯一确定。因此3阶群在同构意义下只有一个:

*	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

(4) 若 $\langle G, * \rangle$ 为4阶群,可设 $G = \{e, a, b, c\}$,e, a, b, c互 异,可能的乘法表可以作出4个(表4.1—表4.4):

表4.1

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

表4.2

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	a	e
c	c	b	e	a

■ (4) 可以验证表4.1 – 4.4满足群公理, 故4阶群只能

有这四种。但可证明表4.2,4.3,4.4都同构于

 $\langle \mathbb{Z}_4, \bigoplus_4 \rangle$,而表4.1表示的群就是著名的Klein四元

群(V,*),它不与 $(\mathbb{Z}_4, \bigoplus_4)$ 同构

故4阶群在同构意义下只有两个: ⟨V,*⟩与⟨Z₄, ⊕₄⟩

■ 证明: 四阶群皆为Abel群

证:设 $G = \{e, a, b, c\}$, e为幺。现证ab = ba

情况1. ab = e从而ba只能为e或c,若ba = c则aba = ac,从而ea = ac,从而c = e矛盾,故ba = e。

情况2.ab = c,同理ba = c

同理bc = cb, ac = ca。

群的性质

定理 设(G,*,e,-1)为群

$$(1) (a^{-1})^{-1} = a$$

$$(2) (ab)^{-1} = b^{-1}a^{-1}$$

(3)
$$ab = ac \rightarrow b = c$$
 (左消去律)

$$(4)$$
 $ba = ca \rightarrow b = c$ (右消去律)

(5) 方程
$$ax = b$$
和 $ya = b$ 在 G 中对 x , y 有唯一解

群方程*

NANUL 1902 VI

定理 若代数系统(G,*)为半群且在G中方程ax = b与ya = b有唯一解,则(G,*)为

群

证: 第一步 证明有左幺 $e_l \in G$ 使($\forall a \in G$)($e_l a = a$)

取定 $b \in G$, xb = b有唯一解,设为 e_l 。对任何 $a \in G$ 下证 $e_l a = a$ 。

∴ bx = a f R c, ∴ $e_l a = e_l (bc) = (e_l b)c = bc = a$

第二步 证明 $(\forall a \in G)(\exists a^{-1} \in G)(a^{-1}a = e_l)$ 即左逆存在

令 a^{-1} 为 $ya = e_l$ 的唯一解即可

第三步 证明 $aa^{-1} = e_l$ 即左逆=右逆

 $\therefore a^{-1} \in G$ $\therefore ya^{-1} = e_l$ 有唯一解a',从而 $a'a^{-1} = e_l$ 从而

 $aa^{-1} = e_l(aa^{-1}) = (a'a^{-1})(aa^{-1}) = a'(a^{-1}a)a^{-1} = a'e_la^{-1} = a'a^{-1} = e_l$

第四步 $(\forall a \in G)(ae_l = a)$ 即左幺=右幺

 $ae_l = a(a^{-1}a) = (aa^{-1})a = e_l a = a$ $ae_l = a$

因此 $(G,*,e,^{-1})$ 为群 \square

群的方程定义*

对于半群 $\langle G,*\rangle$,设 e_l 为其左幺元(题设),对任意 $a \in G$, a_l 为其左逆元(题设),故 $a*a_l = e_l$,因为 $a_l \in G$,故对于 a_l ,∃ $a^{-1} \in G$,使得 $a^{-1}*a_l = e_l$,则立即有: $a*a_l = e_l*(a*a_l) = (a^{-1}*a_l)*(a*a_l) = a^{-1}*(a_l*a)*a_l = a^{-1}e_la_l = a^{-1}a_l = e_l$. 故左逆元 =右逆元:

下证 e_l 即为右幺: $\forall a \in G$, $a * e_l = a * (a_l * a) = (a * a_l) * a = e_l * a = a$,故 e_l 即为系统的幺元, $\forall a \in G$, a_l 为a之逆.综上, $\langle G, * \rangle$ 即为群.

推论 设(G,*)为半群且|G|有穷,若(G,*)满足消去律,则(G,*)为群证: 设 $G = \{a_1, \cdots, a_n\}$, $\forall a, b \in G$ 下证明方程ax = b有唯一解,令 $aG = \{aa_i|i=1,2,\cdots,n\}$

: 左消去律 : |aG| = n从而aG = G而 $b \in G$ 故有 $a_i \in G$ 使 $aa_i = b$ 从而ax = b有解,又: 左消去律 : 解唯一。同理可证ya = b有唯一解。因此(G,*)为群。 \square

有穷代数系统若满足结合律和消去律,即可判

定为群

教材和练习

• 课后习题:

- pp. 228 230
 - o 2, 4, 5, 11
 - 016-19

- pp. 202 204
 - 0 2, 4, 5, 11
 - 016-19

Niels Abel (1802-1829)

阿贝尔的第一个抱负不凡的冒险,是试图解决一般的五次方程。…失败给了他一个非常有益的打击;它把他推上了正确的途径,使他怀疑一个代数解是否是可能的。他证明了不可解。那时他大约十九岁。

阿贝尔的《关于非常广泛的一类超越函数的一般性质的论文》呈交给巴黎科学院。这就是勒让德后来用贺拉斯的话描述为"永恒的纪念碑"的工作,埃尔米特说:"他给数学家们留下了够他们忙上五百年的东西。"它是现代数学的一项登峰造极的成就。(摘自贝尔:《数学精英》)

这篇论文的一个评阅人勒让德74岁,发现这篇论文很难辨认,而另一位评阅人, 39岁的柯西正处于自我中心的顶峰,把论文带回家,不知放在何处,完全忘了。 4年后,当柯西终于将它翻出来时,阿贝尔已经不在人世。作为赔偿,科学院让阿 贝尔和雅可比一起获得1830年的数学大奖。