Math 253 Homework assignment 6

- 1. Consider the integral $\int_R xy^2 dA$, where A is the rectangle $[0,1] \times [0,1]$.
 - (a) Calculate the Riemann sum corresponding to this integral, with the subdivision corresponding to $\Delta x = \Delta y = 0.2$ and using the centre of each small rectangle as the sample point (x_{ij}^*, y_{ij}^*) .
 - (b) Using an iterated integral, calculate the value exactly.
- 2. Find the volume of the solid bounded by the planes $x=1, x=2, y=0, y=\pi/2, z=0$ and the surface $z=x\cos y$.
- 3. Calculate $\iint_R \sqrt{x+y} dA$, where $R = [0,1] \times [0,3]$.
- 4. Find $\iint_R (x^2 + y^2) dA$, where R is the rectangle $0 \le x \le a$, $0 \le y \le b$.
- 5. Calculate the iterated integral $\int_0^{\pi} \int_{-x}^{x} \cos y dy dx$.
- 6. Find the volume under the surface $z = \frac{1}{x+y}$ and above the region in the xy-plane bounded by x = 1, x = 2, y = 0 and y = x.
- 7. Using a double integral, calculate the volume of the tetrahedron in the first quadrant bounded by the coordinate planes and the plane which intersects the x- y- and z-axes at a, b and c, respectively, where a, b, c are positive numbers.
- 8. Calculate the integral $I = \int_0^1 \int_{\sqrt{x}}^1 e^{y^3} dy dx$.