Hyperparameter tuning, Batch Normalization, Programming Frameworks

10/10 points (100.00%)

Quiz, 10 questions

✓ Congratulations! You passed!	Next Item
 1/1 points 1. If searching among a large number of hyperparameters, you should try values in a values, so that you can carry out the search more systematically and not rely on characters. True 	
Correct	
 1/1 points 2. Every hyperparameter, if set poorly, can have a huge negative impact on training, a 	and so all hyperparameters
are about equally important to tune well. True or False? True False	
Correct Yes. We've seen in lecture that some hyperparameters, such as the learning rate others.	, are more critical than

3.

1/1 points During hyperparameter search, whether you try to babysit one model ("Panda" strategy) or train a lot of models in parallel ("Caviar") is largely determined by:

Hyperparameter tuning, Batch Normalization, Programming Framewowlether you use batch or mini-batch optimization

10/10 points (100.00%)

I I allic vv	OTIES (a) you doe date of the action of the	(100.00%)
Quiz, 10 quest	ions The presence of local minima (and saddle points) in your neural network	
0	The amount of computational power you can access	
Corr	ect	
	The number of hyperparameters you have to tune	
	1 / 1 points eta (hyperparameter for momentum) is between on 0.9 and 0.99, which of the finended way to sample a value for beta?	ollowing is the
	1 r = np.random.rand() 2 beta = r*0.09 + 0.9	
0	1 r = np.random.rand() 2 beta = 1-10**(- r - 1)	
Corre	ect	
	1 r = np.random.rand() 2 beta = 1-10**(- r + 1)	

1/1 points

r = np.random.rand() beta = r*0.9 + 0.09 5.

Finding good hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the start of Hyperparameter values is very time-consuming. So typically you should do it once at the Hyperparameter values is very time-consuming. So typically you should do it once at the Hyperparameter values is very time-consuming. So typically you should do it once at the Hyperparameter values is very time-consuming. So typically you should do it once at the Hyperparameter values is very time-consuming. So typically you should do it once at the Hyperparameter values is very time-consuming. So typically you should do it once at the Hyperparameter value is very time-consuming. So ty

Quiz, 10 questions True

False

Correct

1/1 points

6.

In batch normalization as presented in the videos, if you apply it on the lth layer of your neural network, what are you normalizing?

- $igcup W^{[l]}$
- $\int z^{[l]}$

Correct

- $igcup_{[l]}$
- $igcap a^{[l]}$

1/1 points

7.

In the normalization formula $z_{norm}^{(i)}=rac{z^{(i)}-\mu}{\sqrt{\sigma^2+arepsilon^2}}$ why do we use epsilon?

O To av

To avoid division by zero

Correct

To have a more accurate normalization

To speed up convergence

Hyperparameter tuning, Batch Normalization, Programming Frameworks

10/10 points (100.00%)

Quiz, 10 questions

1/1 points

8.

Which of the following statements about γ and β in Batch Norm are true?

They can be learned using Adam, Gradient descent with momentum, or RMSprop, not just with gradient descent.

Correct

 $oxedsymbol{eta}$ and γ are hyperparameters of the algorithm, which we tune via random sampling.

Un-selected is correct

There is one global value of $\gamma\in\Re$ and one global value of $\beta\in\Re$ for each layer, and applies to all the hidden units in that layer.

Un-selected is correct

They set the mean and variance of the linear variable $z^{[l]}$ of a given layer.

Correct

The optimal values are $\gamma=\sqrt{\sigma^2+arepsilon}$, and $eta=\mu$.

Un-selected is correct

1/1 points

9.

After training a neural network with Batch Norm, at test time, to evaluate the neural network on a new example you should:

Hyperparameter tuning, Batch Normalization, Programming Frameworks

10/10 points (100.00%)

Quiz, 10 questions