Lecture 22: Gaussian quadrature and Legendre polynomials

Ciaran Evans

Course logistics

- Project 2 released, due April 18
 - No HW due that week or the week before
 - We will have several project work days in class
- Challenge 6 released (inverse variance weighting)

Summary so far

To approximate $\int_{-1}^{1} f(x)dx$:

- 1. Choose *n* points $x_1, ..., x_n$ in (-1, 1)
- 2. Construct the interpolating polynomial: $q(x) = \sum_{i=1}^{n} f(x_i) L_{n,i}(x)$
- 3. Integrate q:

$$\int_{-1}^{1} q(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i}) \qquad w_{i} = \int_{-1}^{1} L_{n,i}(x)dx$$

4. Approximate the integral of f:

$$\int_{-1}^{1} f(x) dx \approx \int_{-1}^{1} q(x) dx = \sum_{i=1}^{n} w_{i} f(x_{i})$$

Today: Which points $x_1, ..., x_n$ do we use??

Warmup

Warmup activity to motivate importance of node choice:

 $https://sta379-\\ s25.github.io/practice_questions/pq_22_warmup.html$

- Work with your neighbors on the warmup activity
- In a bit, we will discuss key points as a class

Warmup

- ▶ If $x_1 = -0.1$, $x_2 = 0.5$, then $w_1 = 5/3$ and $w_2 = 1/3$
- ▶ Best two-point rule: $x_1 = -1\sqrt{3}$, $x_2 = 1\sqrt{3}$, $w_1 = w_2 = 1$

$$\int_{-1}^{1} (x^3 - 2x^2 + 3) dx = 14/3$$

$$\frac{5}{3} f(-0.1) + \frac{1}{3} f(0.5) = 5.84 \neq \frac{14}{3}$$

$$f(-1/\sqrt{3}) + f(1/\sqrt{3}) = \frac{14}{3}$$

Warmup

- If $x_1 = -0.1$, $x_2 = 0.5$, then $w_1 = 5/3$ and $w_2 = 1/3$
- ▶ Best two-point rule: $x_1 = -1\sqrt{3}$, $x_2 = 1\sqrt{3}$, $w_1 = w_2 = 1$

wo-point rule:
$$x_1 = -1\sqrt{3}$$
, $x_2 = 1\sqrt{3}$, $w_1 = w_2 = 1$

$$\int_{-1}^{1} (2x+1)dx = 2$$

$$\frac{5}{3}f(-0.1) + \frac{1}{3}f(0.5) = \begin{cases} \frac{5}{3}(2(-0.1)+1) + \frac{1}{3}(2(0.5)+1) \\ = 2 \end{cases}$$

$$f(-1/\sqrt{3}) + f(1/\sqrt{3}) = (2(-\sqrt{3})+1) + (2(\sqrt{3})+1)$$

Summary so far

▶ Choose *n* points $x_1, ..., x_n$ in (-1, 1)

$$\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} w_i f(x_i) \qquad w_i = \int_{-1}^{1} L_{n,i}(x)dx$$

▶ If f(x) is a polynomial of degree $\leq n-1$, approximation is **exact**:

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} w_i f(x_i)$$

for any choice of n distinct points $x_1, ..., x_n$ in (-1, 1).

▶ If we are **clever** about choosing $x_1, ..., x_n$, we can get exact integrals for polynomials of degree $\leq 2n-1$

Next step: How should we be clever? Turns out the best nodes $x_1, ..., x_n$ are the roots of **Legendre polynomials**

Legendre polynomials

The **Legendre polynomials** are a set of polynomials $p_0, p_1, p_2, ...$ The first few Legendre polynomials are:

$$p_0(x) = 1$$
 $p_1(x) = x$ $p_2(x) = \frac{1}{2}(3x^2 - 1)$ $p_3(x) = \frac{1}{2}(5x^3 - 3x)$

Degree: Degree of p_n is n

Roots of Legendre polynomials

▶
$$p_1(x) = x$$
. Root of p_1 : $x_1 = 0$

Best are paint whe: $2f(0)$

▶ $p_2(x) = \frac{1}{2}(3x^2 - 1)$. Roots of p_2 :

 $3x^2 - 1 = 0$ = 7 $x^2 = \frac{1}{3}$ = 7 $x_1 = \frac{1}{\sqrt{3}}$) $x_2 = \frac{1}{\sqrt{3}}$

But the paint whe: $f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$

▶
$$p_3(x) = \frac{1}{3}(5x^3 - 3x)$$
. Roots of p_3 :

$$5x^3 - 3x = 0 \Rightarrow x(5x^2 - 3) = 0$$

$$x = 0 \text{ or } x^2 = \frac{3}{5}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_2 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_3 = 0, x_3 = \sqrt{3}$$

$$x = -\sqrt{3}, x_3 = 0, x_3 = \sqrt{3}$$

Properties of Legendre polynomials

Let p_n be the *n*th Legendre polynomial

- ▶ p_n has n distinct roots in (-1,1) ▶ Let $g(x) = c_0 + c_1$

$$x + \cdots + c_{n-1}x^{n-1}$$
. Then

$$\int_{-1}^{1} g(x)p_n(x)dx = 0$$
 $\int_{-1}^{1} g(x)p_n(x)dx = 0$
 $\int_{-1}^{1} g(x)p_n(x)dx = 0$

Example:
$$g(x) = x^{2}$$
, $\rho_{3}(x) = \frac{1}{2}(5x^{3}-3x)$
 $\int_{0}^{3} x^{2} \cdot \frac{1}{2}(5x^{3}-3x)dx = \frac{1}{2}\int_{0}^{3} (5x^{3}-3x^{3})dx$
 $= \frac{1}{2}\left[\frac{5x^{6}}{6} - \frac{3x^{4}}{4}\right]_{-1}^{1/2} = 0$

Why the Legendre polynomials?

Theorem: Suppose f(x) is a polynomial of degree 2n-1. Let p_n be the nth Legendre polynomial, and let $x_1, ..., x_n$ be the n roots of p_n . Then

Then

$$\frac{1}{\int_{-1}^{1}} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i}) \qquad w_{i} = \int_{-1}^{1} L_{n,i}(x)dx$$

Proof:

$$\frac{1}{\int_{-1}^{1}} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i}) \qquad w_{i} = \int_{-1}^{1} L_{n,i}(x)dx$$

Proof:

$$\frac{1}{\int_{-1}^{1}} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i}) \qquad w_{i} = \int_{-1}^{1} L_{n,i}(x)dx$$

Proof:

$$\frac{1}{\int_{-1}^{1}} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i}) \qquad w_{i} = \int_{-1}^{1} L_{n,i}(x)dx$$

Proof:

$$\frac{1}{\int_{-1}^{1}} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i}) \qquad w_{i} = \int_{-1}^{1} L_{n,i}(x)dx$$

Proof:

$$\frac{1}{\int_{-1}^{1}} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i}) \qquad w_{i} = \int_{-1}^{1} L_{n,i}(x)dx$$

Proof:

$$\frac{1}{\int_{-1}^{1}} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i}) \qquad w_{i} = \int_{-1}^{1} L_{n,i}(x)dx$$

Proof:

$$\frac{1}{\int_{-1}^{1}} L_{n,i}(x)dx = \int_{-1}^{1} L_{n,i}(x)dx$$

Proof:

$$\frac{1}{\int_{-1}^{1}} L_{n,i}(x)dx$$

Proof:

$$\frac{1}{\int_{-1}^{1}$$

Why the Legendre polynomials?

Theorem: Suppose f(x) is a polynomial of degree 2n-1. Let p_n be the nth Legendre polynomial, and let $x_1, ..., x_n$ be the n roots of p_n . Then

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i}) \qquad w_{i} = \int_{-1}^{1} L_{n,i}(x)dx$$
So fer: $\{2, \omega, f(x_{i}) = \sum_{i=1}^{n} c(x)dx \}$

$$\int_{-1}^{1} f(x)dx = \int_{-1}^{1} (g(x)\rho_{n}(x) + c(x))dx$$

$$= \int_{-1}^{1} g(x) \rho_{n}(x)dx + \int_{-1}^{1} c(x)dx$$

$$= \int_{-1}^{1} g(x) \rho_{n}(x)dx + \int_{-1}^{1} c(x)dx$$

$$= \int_{-1}^{1} f(x)dx = \int_{-1}^{1} L_{n,i}(x)dx$$

$$= \int_{-1}^{1} f(x)dx = \int_{-1}^{1} L_{n,i}(x)dx$$

$$= \int_{-1}^{1} f(x)dx = \int_{-1}^{1} L_{n,i}(x)dx$$

$$= \int_{-1}^{1} f(x)dx = \int_{-1}^{1} c(x)dx$$

$$= \int_{-1}^{1} f(x)dx = \int_{-1}^{1} f(x)dx$$

$$= \int_{-1}^{1} f$$

Your turn

Practice questions with roots of Legendre polynomials and Gaussian quadrature:

https://sta379-s25.github.io/practice_questions/pq_22.html

- Start in class
- You are welcome and encouraged to work with your neighbors
- Solutions posted on course website