การทดลองที่ 4 เรื่อง โครงสร้างผลึก

ทำการทดลอง วัน พฤหัสบดี ที่ 15 เดือน ก็นหง น พ.ศ. ใรใช้ เวลา เช้า / บ่าย ชื่อ ปุญญพัฒน์ ธุรกับเชิกกาง เลขประจำตัว 545น 10682) กลุ่มที่ วิลำดับที่ 42

ตอนที่ 1 การจัดเรียงอะตอมในโครงสร้างผลึก

ก. การเปรียบเทียบการจัดเรียงอะตอม

	Closest packing	Simple cubic
• เลขโคออร์ดิเนชัน	6	4
Packing efficiency	60.46%.	
 เปอร์เซ็นต์ช่องว่างของการ จัดเรียงอนุภาคชั้นเดียว 	3 9. 54 <i>%</i>	47. 64 °lo
 ชนิดของช่องว่างที่เกิดขึ้นจาก การจัดเรียงอนุภาค 2 ชั้น 	Octobedral holes, tetrahedral holes	cubic holes

แสดงวิธีการคำนวณ packing efficiency และเปอร์เซ็นต์ช่องว่างของการจัดเรียงอนุภาคชั้นเดียว

• โครงสร้างแบบ closest packing

วาดรูปประกอบ

ปริมาตรลูกปังปอง 1 ลูก (X) =
$$\frac{4}{3}\pi r^3$$
 cm³ ปริมาตรแท่งสี่เหลี่ยม ABCD (Y) = $\frac{4\sqrt{3}}{3}r^3$ cm³ Packing efficiency $\left(\frac{X}{Y}\times 100\right)$ = $\frac{60.46}{3}$.% เปอร์เซ็นต์ช่องว่าง = $\frac{39.54}{3}$...

• โครงสร้างแบบ simple cubic

ปริมาตรลูกปิงปอง 1 ลูก (X) =
$$\frac{4}{3}\pi r^3$$
 cm³ ปริมาตรแท่งสี่เหลี่ยม ABCD (Y) = $\frac{8 r^5}{3}$ cm³ Packing efficiency $\left(\frac{X}{Y} \times 100\right) = \frac{51.76}{3}$ % เปอร์เซ็นต์ช่องว่าง = $\frac{47.64}{3}$ %

ข. การเปรียบเทียบโครงสร้างผลึกแบบ closest packing

	Hexagonal closest	Face-centred cubic
	packing	packing
• การเรียงลูกปิงปองตามลำดับชั้นแบบ	ARARAR	ARCARC
• ลูกปิงปองในชั้นที่ 1 จะตรงกับชั้นที่	3	4
• จำนวนช่องออกตะฮีดรัลต่ออะตอมกลาง	$\frac{G}{G} = 1$	$\frac{6}{6}$ = 1
• จำนวนช่องเททระฮีดรัลต่ออะตอมกลาง	8/2 = 2	8 4:1
• เลขโคออร์ดิเนชัน	12	12
• วาดภาพการจัดเรียงของช่องเททระฮีดรัล		
และช่องออกตะฮีดรัลรอบอะตอมกลาง	Th	Th
ใน 2 มิติ		
	Oh	Oh

ตอนที่ 2 โครงสร้างผลึกของโลหะที่มียูนิตเซลล์แบบ fcc และ bcc

	Face-centred cubic	Body-centred cubic
• วาดแผนภาพยูนิตเซลล์และแสดง		
ความสัมพันธ์ระหว่างด้านของยูนิต		
เซลล์ (a) กับรัศมีของอะตอม (r)		2 + ([20] = (4r) 2 2 = 15 2
	2 + 2 : (47) 2 2 : 872 22 : 167 2 2: 1827	22 42 0 = 16 2 0 = 453 r
• เลขโคออร์ดิเนชัน	lz	8
• จำนวนอะตอมในหนึ่งยูนิตเซลล์ (n)	4	l
Packing efficiency	74.03%	68.01°J.
• เปอร์เซ็นต์ช่องว่าง	1 S . 95°/ ₀	31.98%.

การคำนวณหา packing efficiency ของโลหะที่มีโครงสร้างแบบ fcc

ปริมาตรของอะตอมในหนึ่งยูนิตเซลล์ = $n \times \frac{4}{3} \pi r^3 \text{ cm}^3$ = $4 \times \frac{4}{5} \pi r^3 = \frac{16}{5} \pi r^3 = \frac{$

Packing efficiency $= \frac{\left(\frac{16}{2}\pi r^2 / 165 r^2\right) \times 100}{100} = \frac{74.05}{6}$

เปอร์เซ็นต์ช่องว่าง =%

การคำนวณหา packing efficiency ของโลหะที่มีโครงสร้างแบบ bcc

Packing efficiency =

เปอร์เซ็นต์ช่องว่าง =%

ตอนที่ 3 โครงสร้างผลึกของสารประกอบ

	Rock salt	Zinc blende	Fluorite	Cesium chloride
	NaCl	ZnS	CaF ₂	CsCl
• แบบโครงสร้างของ	FCC	FCC	oùlu Th ynkos	SC
ใอออนลบ				
• แบบโครงสร้างของ	อยู่ใน Oh ทุกข้อง	อยู่ใน Th กรั้งเกียง	FCC	où lu cubic hole
ใอออนบวก				
• เลขโคออร์ดิเนชันของ	(- 1	4:4	8:4	8:8
ใอออนบวก : ใอออนลบ	6:6	4,4	0 - 7	8.0
• จำนวนไอออนบวก :				
ใอออนลบในหนึ่ง	4:4	4:4	4:8	11.4
ยูนิตเซลล์				
• อัตราส่วนอย่างง่ายของ			[:1	[:]
ใอออนบวก : ใอออนลบ	(*)	(*)		·
• จำนวนหน่วยสูตรในหนึ่ง	,	,	φ	ſ
ยูนิตเซลล์ (n)	4	4	7	1

ตอบคำถามท้ายการทดลอง

- คำนวณความหนาแน่นผลึกของสารประกอบ NaCl และ CsCl ที่มียูนิตเซลล์แบบลูกบาศก์ยาว
 5.64 และ 4.11 Å ตามลำดับ (มวลอะตอม Na = 22.99, Cl = 35.45, Cs = 132.90)
- NaCl

$$P = \frac{NM}{N_A V} : \frac{4 \text{ atom} \times (22.99 + 35.45)}{6.02 \times 10^{13} \text{ atom/mol} \times (5.64 \times 10^{13})^2 \text{ cm}^2} \approx 2.16 \text{ g/cm}^2$$

CsCl

คำถามข้อ 2–4 นิสิตควรใช้การสืบค้นข้อมูลทางอินเทอร์เน็ตในการหาคำตอบ

i i i i i i i i i i i i i i i i i i i
2. โลหะมีตระกูลและมีค่า (noble and precious metals) ชอบที่จะมีโครงสร้างผลึกแบบใด
เพราะเหตุใด โดงระงับแบบ closest packing โดยที่ ใน และ Os มีโกงสังงแบบ hcp
เอง คี่บันสบกับการนากาน โนะการนางเลื่อน และ และ และ และ เลื่อน เล่า เล่า เล่า เล่า เล่า เล่า เล่า เล่า
noble metals พี่มีความเสกียเมาก และ เกิกปฏิกิริยาโด้ยาก
3. นอกจากผลึกของโลหะและสารประกอบอนินทรีย์อย่างง่ายที่ศึกษาในการทดลองนี้ ให้ยกตัวอย่าง
ผลึกของสารประกอบอื่นๆ อีก 2 ชนิดพร้อมระบุแรงยึดเหนี่ยวระหว่างโมเลกุลในผลึก
1 เพชง ผลึกโคเวเลนตร์เวเทาง่าย covalent bond
2 ปลาลอรัน ผลักโมเอกุล covalent bond
C MOINGIR MUNICIPALATE CONVIENT DONS
 เทคนิคการทดลองอะไรที่ใช้ในการหาโครงสร้างผลึก อธิบายโดยย่อ
1 Maka X-ray diffraction เป็นกรอง X-ray ปีพื้นลึกของสาร กระพบระนาบของสารและกระเจิงออกมา
•
และ หางอมูลที่ได้ จากกราฟร็จกรเบนของ x- ray จะแสดงความสัมพันธระหว่างความาข้ององ x-ray และมุมเลื่องเบน

ไร้ขกว่า เปกุบบารีงงาบน ซึ่งแต่ละสารประกอบจะนี้รูปแบบเลื้องาบนมเตกต่างกัน มงเกตได้จากผีกบองการเลี้ยงกุบน สมากเกต้ากฤร นี้

โดรงสเวนลึกได้ โดยการ*นาคา การห้งเ*อโกรงยลึก