Diszkrét modellek alkalmazásai

I. zh - minta

kidolgozta: Boda Bálint

2022. őszi félév

1. Bizonyítsuk be, hogy az

$$R = \{(a, b) | a \equiv b \pmod{10}\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

reláció ekvivalenciareláció.

Megoldás.

Egy reláció ekvivalenciareláció, ha reflexív, szimmetrikus és tranzitív.

- 1. Reflexív: $\forall a \in \mathbb{Z} : a \equiv a \pmod{10} \iff a \pmod{10} = a \pmod{10}$ ami nyilván igaz
- 2. Szimmetrikus: $\forall a, b \in \mathbb{Z} : a \equiv b \pmod{10} \implies b \equiv a \pmod{10}$ $\iff a \pmod{10} = b \pmod{10} \implies b \pmod{10} = a \pmod{10}$, mivel az egyenlőség szimmetrikus reláció ezért a kongruencia is.
- 3. Tranzitív:

$$\forall a, b, c \in \mathbb{Z} : a \equiv b \pmod{10} \land b \equiv c \pmod{10} \implies a \equiv c \pmod{10}$$

 $\iff a \pmod{10} = b \pmod{10} \land b \pmod{10} = c \pmod{10}$
 $\implies a \pmod{10} = c \pmod{10}$,

mivel az egyenlőség tranzitív reláció ezért a kongruencia is.

Az reláció 10 ekvivalencia
osztályra osztja \mathbb{Z} -t az alapján hogy az adott $a,b\in\mathbb{Z}$ osztályok 10-el vett osztási maradéka mennyi, melyek a 0,1,2,3,4,5,6,7,8,9 maradékosztályok.

2. Oldja meg a 60x + 16y = 60 egyenletet az egész számok halmazán.

Megoldás.

$$60x + 16y = 60 \iff 15x + 4y = 15$$

$$a = -1, b = 4, c = 15, d = 4$$

$$15x + 4y = 15$$
$$15a + 4b = 1$$
$$15 \cdot -1 + 4 \cdot 4 = 1 \quad \backslash \cdot 15$$
$$15 \cdot -15 + 4 \cdot 60 = 15$$

$$x_0 = -15, \ y_0 = 60$$

$$x = -15 + \frac{4}{1} \cdot t = -15 + 4t$$
 $(t \in \mathbb{Z})$
 $y = 60 - \frac{15}{1} \cdot t = 60 - 15t$ $(t \in \mathbb{Z})$

- 3. Határozza meg az Euklideszi algoritmussal a következő értékeket:
 - a) lnko (504, 150)
 - b) lnko (30, 22)

Megoldás.

a)
$$lnko(504, 150) = 6$$

$$504 = 3 \cdot 150 + 54$$

$$150 = 2 \cdot 54 + 42$$

$$54 = 1 \cdot 42 + 12$$

$$42 = 3 \cdot 12 + 6$$

$$12 = 2 \cdot 6 + 0$$

b)
$$lnko(30, 22) = 2$$

$$30 = 1 \cdot 22 + 8$$

$$22 = 2 \cdot 8 + 6$$

$$8 = 1 \cdot 6 + 2$$

$$6 = 3 \cdot 2 + 0$$

- 4. Oldja meg a következő lineáris kongruenciákat:
 - a) $16x \equiv 36 \pmod{28}$
 - b) $15x \equiv 8 \pmod{20}$

Megoldás.

a) $16x \equiv 36 \pmod{28}$ $16x \equiv 36 \pmod{28} \iff 16x \equiv 64 \pmod{28}$ $\iff x \equiv 4 \pmod{7}$ $\implies x = 4 + 7t \pmod{7}$

b)
$$15x \equiv 8 \pmod{20}$$
 lnko $(15, 20) = 5$ $5 \nmid 8 \implies$ Nincs megoldás.

5.

- a) Írjon függvényt, amely természetes számokat tartalmazó halmazt fogad paraméterként (üres halmaz esetén dobjon ValueError kivételt). A függvény a számok valódi (nem triviális) osztóit állítsa elő úgy, hogy egy halmazzal tér vissza, amiben rendezett párok vannak: a pár első komponense az egyik természetes szám, a második komponense az első komponens valódi osztóinak halmaza. Hívja meg a függvényt példákkal (kapja el a dobott kivételt).
- b) Készítse el azt a listát, amelyben 112-nél nagyobb, 1000-nél kisebb prímszámok vannak, amelyek kongruensek 7-tel modulo 235.
- **6.** Olvasson be a billentyűzetről egy m pozitív egész számot. Ábrázolja a következő irányított gráfot: csúcsai az $\{1; 2;; m\}$ összes 3-elemű részhalmazai; egy $\{a; b; c\}$ csúcsból akkor mutat irányított él egy $\{d; e; f\}$ csúcsba, ha a+b+c < d*e*f. Példaként rajzolja ki m=6 esetben a gráfot.