						00	100	111				
	Answer .											 [1]
(ii)	Convert t	he Bir	nary C	ode	d De	cima	l (BC	D) ir	ito de	enary	' .	
						00	100	111				
	Answer .											 [1]
(iii)	Convert t	he 8-b	it two	s co	mple	emer	nt bin	ary iı	ntege	er into	denary.	
						11	100	111				
	Answer .											 [1]
(b) Pe	rform the fo	llowin	g bin	ary s	ubtra	action	n. Sh	ow y	our v	vorki	ng.	
				1	0	1	1	0	0	1	1	
			_	0	1	1	1	0	1	0	1	

(a) (i) Convert the unsigned binary integer into denary.

(c)	Give	e one similarity and two differences between the ASCII and Unicode character sets.	
	Sim	ilarity	
	Diffe	erence 1	
	Diffe	erence 2	
			[3]
(d)	Sou	nd samples are recorded and saved in a file.	
	(i)	State what is meant by sampling rate .	
			[1]
	(ii)	Explain the effect of increasing the sampling resolution on the sound file.	
			[2]

2 Draw **one** line from each security feature to its most appropriate description.

encryption

Security feature Converts data to an alternative form firewall redirects a user to a fake website pharming verifies the authenticity of data anti-virus software

accepts or rejects incoming and outgoing packets based on criteria

scans files on the hard drive for malicious software

3 (a) Draw a logic circuit for the logic expression:

X = NOT ((NOT A AND NOT B) OR (NOT B AND NOT C))

(b) Complete the truth table for the logic expression:

X = NOT ((NOT A AND NOT B) OR (NOT B AND NOT C))

A	В	С	Working space	X
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[2]

4 A photographer creates a relational database to store data about photographs taken at birthday parties.

The database, PHOTOGRAPHS, stores details of the customer, the party, the photographs taken and the cameras used.

The photographer has several cameras that are used for taking the photographs at the parties.

Each camera has a specific lens type (for example, XY32Z) and lighting type (for example, F1672).

Data about each photograph is stored in the database including the party at which it was taken, the time it was taken and the camera used.

The database has these four tables:

```
CUSTOMER (CustomerID, FirstName, LastName, Telephone)

PARTY (PartyID, CustomerID, PartyDate, StartTime)

PHOTO_DATA (PhotoID, PartyID, TimeTaken, CameraID)

CAMERA DATA (CameraID, LensType, LightingType)
```

(a) Complete the entity-relationship (E-R) diagram for the database PHOTOGRAPHS.

PARTY CUSTOMER

PHOTO_DATA

CAMERA_DATA

e table shows s	ome sample data	for the table PHOTO	_DATA.	
PhotoID	PartyID	TimeTaken	CameraID	
ST23-56	BD987	08:34	NIK-02	
ST23-57	BD987	08:55	NIK-02	
ST23-60	BC08	09:01	CAN-01	
ST23-61	BC08	10:23	CAN-12	
ST23-62	BC08	10:56	NIK-01	
		Give an example of	a tuple from PHOTO_DA	
Example				
Example Complete the	Structured Query	/ Language (SQL) s		al nur

(d)	Write an SQL script to include two new fields in <code>CAMERA_DATA</code> to store the number of photographs currently on the camera and the date the camera was last used.
	[3]

(a)		te what is meant by the stored pro nputer system.	ogram conce	pt in the Vor	n Neumann	n model of a
(b)		Central Processing Unit (CPU) cont				_
	(i)	State the role of the following register	ers.			
		Program Counter (PC)				
		Index Register (IX)				
		Status Register (SR)				
	(ii)	Tick (✓) one box in each row to iden	tify the system	n bus used by	each CPU	[3 component.
		CPU component	Data bus	Address	bus Co	ontrol bus
		System clock				
		Memory Address Register (MAR)				
						[1
1	(iii)	Describe the purpose of the Control	Unit (CU) in a	CPU		[1
•	(,	besonible the purpose of the control	Omit (00) iii a	01 0.		
						[2

(c)	Describe the purpose of an interrupt in a computer system.
	[2]
(d)	Identify two causes of a software interrupt.
	1
	2
	[2]
	- ·

6 The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instruction		Evalenation					
Opcode	Operand	- Explanation					
LDM	#n	Immediate addressing. Load the number n to ACC					
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC					
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the index register. Copy the contents of this calculated address to ACC</address>					
LDR	#n	Immediate addressing. Load the number n to IX					
STO	<address></address>	Store contents of ACC at the given address					
ADD	<address></address>	Add the contents of the given address to the ACC					
ADD	#n	Add the denary number n to the ACC					
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)					
CMP	#n	Compare the contents of ACC with number n					
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True</address>					
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False</address>					
OUT		Output to the screen the character whose ASCII value is stored in ACC					
END		Return control to the operating system					

<address> can be an absolute or a symbolic address

[#] denotes a denary number, e.g. #123

B denotes a binary number, e.g. B01001101

- (a) The current contents of main memory and selected values from the ASCII character set are
 - (i) Trace the program currently in memory using the trace table.

Address	Instruction
77	LDR #0
78	LDX 110
79	CMP #35
80	JPE 92
81	ADD 100
82	STO 101
83	LDM #1
84	ADD 100
85	STO 100
86	INC IX
87	LDX 110
88	CMP #35
89	JPN 81
90	LDD 100
91	ADD #48
92	OUT
93	END
	لم
100	0
101	0
	کے
110	66
111	65
112	35

ASCII value	Character				
49	1				
50	2				
51	3				
52	4				
کے	لم				
65	А				
66	В				
67	С				
68	D				

Instruction	ACC	IX		Output				
address	ACC.	IX.	100	101	110	111	112	Output
			0	0	66	65	35	

(ii) The following instructions are repeated for your reference.

Ins	truction	Evalenation					
Opcode Operand		- Explanation					
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC					
STO	<address></address>	Store contents of ACC at the given address					

State the purpose of this part of an assembly language program.

100
165
101
100
165
101

(b) The following table shows another part of the instruction set for the processor.

Ins	truction						Explan	ation		
Opcode	Opera	nd					Explain	ation		
AND	#n		Bitwis	e AND o	operatio	n of the	content	s of AC	C with th	ne operand
AND	Bn		Bitwis	e AND o	operatio	n of the	content	s of AC	C with th	ne binary number n
XOR	#n		Bitwis	e XOR	operatio	n of the	content	s of AC	C with tl	he operand
XOR	Bn		Bitwis	e XOR	operatio	n of the	content	s of AC	C with tl	he binary number n
OR	#n		Bitwis	e OR op	peration	of the c	ontents	of ACC	with the	e operand
OR	Bn		Bitwis	Bitwise OR operation of the contents of ACC with the binary number n						
LSR	#n				re shifted the left-			ces to th	ne right.	Zeros are
# denotes	can be ar a denary r a binary n	numbe	er, e.g. #	[‡] 123						
(i)	The curr	rent c	ontents	of the A	.CC are:					
		1	0	0	1	0	0	1	1	
	Show th	e res	ult after	the exe	cution of	f the foll	owina ir	structio	n.	
					R B0(
				AC	N DU	70111	T T			
										<u> </u>
(ii)	The curi	rent c	ontents	of the A	CC are:					·
		1	0	0	1	0	0	1	1	
	Show th	ie res	ult after	the exe	cution of	f the foll	owing ir	structio	n.	-
				AN	ID B11	11100	00			
]

									7	
	1	0	0	1	0	0	1	1		
Show	the res	ult after	the exe	cution o	f the foll	owing i	nstructio	n.		
			OI	R B11	00110	0 0				
								1	٦	
(iv) The c	urrent c	ontents	of the A	CC are:					_	[1]
. ,									٦	
	1	0	0	1	0	0	1	1		
Show	the res	ult after	the exe	cution o	f the foll	owing i	nstructio	n.		
				LSR	#2					
								1	٦	
										[1]
(c) Tick () o pass or the							ther the	task is	performed in the	firs
		Task	•				First pa	ass	Second pass	
Remove comm	nents.									
Read the asse	mbly lar	nguage p	orogram	one lin	e at a tir	ne.				
Generate the o	object co	ode.								
Check the opc	ode is ir	the inst	truction	set.						
										[2]

(iii) The current contents of the ACC are:

(a)	State two benefits to a programmer of using Dynamic Link Library (DLL) files.
	1
	2
	2
	[2]
(b)	Memory management is one of the tasks performed by an Operating System (OS).
	Describe the ways in which memory management organises and allocates Random Access Memory (RAM).
	[2]
(c)	An Operating System may include a utility program to compress text files.
	Describe one appropriate method of compressing a text file.
	[3]
(d)	Explain the reasons why increasing the amount of cache memory can improve the performance of a CPU.
	[2]
(e)	State the name of a peripheral device port that provides a physical connection in the computer for each of these peripherals.
	3D printer
	Monitor[2]

	scribe how Carrier Sense Multiple Access/Collision Detection (CSMA/CD) is used work.	in a bus
		[4
Mai	ny modern televisions are examples of embedded systems.	
	ny modern televisions are examples of embedded systems.	
(a)	Explain why these televisions are embedded systems.	
(a)		
(a)	Explain why these televisions are embedded systems.	
(a)	Explain why these televisions are embedded systems.	
(a)	Explain why these televisions are embedded systems.	
	Explain why these televisions are embedded systems.	
	Explain why these televisions are embedded systems.	
	Explain why these televisions are embedded systems. Embedded systems use Electrically Erasable Programmable ROM (EEPROM).	[2
	Explain why these televisions are embedded systems. Embedded systems use Electrically Erasable Programmable ROM (EEPROM). Describe one benefit of using EEPROMs in an embedded system.	[2
	Explain why these televisions are embedded systems. Embedded systems use Electrically Erasable Programmable ROM (EEPROM). Describe one benefit of using EEPROMs in an embedded system.	[2
	Explain why these televisions are embedded systems. Embedded systems use Electrically Erasable Programmable ROM (EEPROM). Describe one benefit of using EEPROMs in an embedded system.	[2
	Explain why these televisions are embedded systems. Embedded systems use Electrically Erasable Programmable ROM (EEPROM). Describe one benefit of using EEPROMs in an embedded system.	[2