Sequence models → **Week 03 (Attention mechanism)**

aakashgoel12.medium.com/sequence-models-week-03-attention-mechanism-111345e5a8c0

February 21, 2021

Machine translation as building a conditional language model

In Language Model, we find probability of sentence.

Decoder in Machine Translation system is same as Language Model and a<o> in language model is similar to Encoder in Machine Translation.

In M/C Translation, we use beam search instead of greedy search.

Why not a greedy search?

- → Jane is visiting Africa in September.
- → Jane is going to be visiting Africa in September.

P(Jane is going/X) > P(Jane is visiting/X) but sentence 1 is more optimial

Beam Search

Beam Width considered is 3 i.e. Top 3 words will be considered as candidate...

Say, Word1= "in", need to find P(Y2/X,"in") i.e. Prob. of Y2 given X and "in".

Log is strictly **monotonically increasing** function i.e. maximizing P(Y/X) is same as maximizing Log (p(Y/X)) ..

jane visits africa in september. <EOS>

 $P(y^{<1>}, y^{<2>} | x)$

Above P(Yt/X,Y1,.....,Yt-1), Unnaturally tends/prefer short translations as multiplying no less than 1 will give short tiny number ..

Attention (Alpha (t,x)) \rightarrow How much weight to be used for generating t word using time-stamp x

Part - o1 (Attention) \rightarrow a is combination of backward and forward propagation .. For 1st word, will have 5 timestamp alphas i.e. attention weights and its summation will be 1. C (Context Vectors) is summation of different timestamps.

Attention model

PART – **02** (Attention) \rightarrow A

Now, how to calculate Alpha (t,t') i.e. Amount of attention Y(t) should pay to a(t').

Computing attention $\alpha^{\langle t,t'\rangle}$

What is NEXT? → https://workera.ai/?

<u>utm_source=coursera_sequence_models&utm_medium=Coursera&utm_campaign=coursera_sequence_models</u>

https://drive.google.com/file/d/1099XMofOen_QfoNL3qqLUOXy-CdMyJQ4/view

QUIZ

1. Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

○ True

False

✓ Correct

2.	In beam search, if you increase the beam width ${\cal B}$, which of the following would you expect to be true? Check all that apply.
	Beam search will run more slowly.
	✓ Correct
	Beam search will use up more memory.
	✓ Correct
	$lacksquare$ Beam search will generally find better solutions (i.e. do a better job maximizing $P(y\mid x)$)
	✓ Correct
	Beam search will converge after fewer steps.
3.	In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.
	True
	○ False
	✓ Correct

4.	Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y . Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.
	On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an Al system in Silicon Valley."
	According to your model,
	$P(\hat{y}\mid x) = 1.09*10^{-7}$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

- No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- O No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

- 5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm.
 - True.
 - False.

6. Consider the attention model for machine translation.

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_{x}} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t, t'>}$ are true? Check all that apply.

We expect $\alpha^{< t, t^>}$ to be generally larger for values of $a^{< t^>}$ that are highly relevant to the value the network should output for $y^{< t^>}$. (Note the indices in the superscripts.)

- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)
- $\prod \sum_t lpha^{< t, t'>} = 1$ (Note the summation is over t.)
- $\sum_{t'} lpha^{< t, t'>} = 1$ (Note the summation is over t'.)

✓ Correct

7.	The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small neural network:
	We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t, t'>}$ which in turn depends on $e^{< t, t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.
	True
	○ False
	✓ Correct
8.	Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:
	$lacktriangledown$ The input sequence length T_x is large.
	$igcup$ The input sequence length T_x is small.
	✓ Correct
9.	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?
	_c_oo_o_kkb_ooooo_oo_kkk
	Cokbok
	cookbook
	○ cook book
	Coookkbooooookkk
	✓ Correct
	10. In trigger word detection, $x^{< t>}$ is:
	lacktriangle Features of the audio (such as spectrogram features) at time t .
	The t-th input word, represented as either a one-hot vector or a word embedding.
	\bigcirc Whether the trigger word is being said at time $t.$
	igcup Whether someone has just finished saying the trigger word at time $t.$
	✓ Correct

$Assignment \rightarrow Jupyter\ Notebook$

1 - Translating human readable dates into machine readable dates

- . The model you will build here could be used to translate from one language to another, such as translating from English to Hindi.
- . However, language translation requires massive datasets and usually takes days of training on GPUs.
- . To give you a place to experiment with these models without using massive datasets, we will perform a simpler "date translation" task.
- The network will input a date written in a variety of possible formats (e.g. "the 29th of August 1958", "03/30/1968", "24 JUNE 1987")
- The network will translate them into standardized, machine readable dates (e.g. "1958-08-29", "1968-03-30", "1987-06-24").
- . We will have the network learn to output dates in the common machine-readable format YYYY-MM-DD.

1.1 - Dataset

We will train the model on a dataset of 10,000 human readable dates and their equivalent, standardized, machine readable dates. Let's run the following cells to load the dataset and print some examples.

dataset[:10]

```
[('9 may 1998', '1998-05-09'),

('10.11.19', '2019-11-10'),

('9/10/70', '1970-09-10'),

('saturday april 28 1990', '1990-04-28'),

('thursday january 26 1995', '1995-01-26'),

('monday march 7 1983', '1983-03-07'),

('sunday may 22 1988', '1988-05-22'),

('08 jul 2008', '2008-07-08'),

('8 sep 1999', '1999-09-08'),

('thursday january 1 1981', '1981-01-01')]
```

You've loaded:

- . dataset: a list of tuples of (human readable date, machine readable date).
- . human vocab: a python dictionary mapping all characters used in the human readable dates to an integer-valued index.
- . machine vocab: a python dictionary mapping all characters used in machine readable dates to an integer-valued index.
 - Note: These indices are not necessarily consistent with human vocab.
- inv_machine_vocab: the inverse dictionary of machine_vocab, mapping from indices back to characters.

Let's preprocess the data and map the raw text data into the index values.

- We will set Tx=30
 - We assume Tx is the maximum length of the human readable date.
 - . If we get a longer input, we would have to truncate it.
- We will set Ty=10
 - "YYYY-MM-DD" is 10 characters long.

You now have:

- . X: a processed version of the human readable dates in the training set.
 - Each character in X is replaced by an index (integer) mapped to the character using human vocab.
 - Each date is padded to ensure a length of T_x using a special character (< pad >).
 - X.shape = (m, Tx) where m is the number of training examples in a batch.
- Y: a processed version of the machine readable dates in the training set.
 - Each character is replaced by the index (integer) it is mapped to in machine_vocab.
 - Y.shape = (m, Ty).
- . Xoh: one-hot version of X
 - Each index in X is converted to the one-hot representation (if the index is 2, the one-hot version has the index position 2 set to 1, and the remaining
 positions are 0.
 - * Xoh.shape = (m, Tx, len(human_vocab))
- Yoh: one-hot version of Y
 - Each index in Y is converted to the one-hot representation.
 - Yoh.shape = (m, Tx, len(machine_vocab)).
 - len(machine_vocab) = 11 since there are 10 numeric digits (0 to 9) and the symbol.
- . Let's also look at some examples of preprocessed training examples.
- Feel free to play with index in the cell below to navigate the dataset and see how source/target dates are preprocessed.

```
index = 0
print("Source date:", dataset[index][0])
print("Target date:", dataset[index][1])
print()
print("Source after preprocessing (indices):", X[index])
print("Target after preprocessing (indices):", Y[index])
print("Source after preprocessing (one-hot):", Xoh[index])
print("Target after preprocessing (one-hot):", Yoh[index])
Source date: 9 may 1998
Target date: 1998-05-09
36 36 36 36 36]
Target after preprocessing (indices): [ 2 10 10 9 0 1 6 0 1 10]
Source after preprocessing (one-hot): [[ \theta. \theta. \theta. \theta. \theta. \theta.
 [ 1. 0. 0. ..., 0. 0.
                            0.]
 [ 0. 0. 0. ..., 0. 0. 0.]
 [ 0.
       0. 0. ..., 0.
                        Θ.
                             1.1
       0. 0. ...,
 [ 0.
                    Θ.
                         0. 1.]
                    Θ.
                         0.
 [ 0.
       Θ.
           0. ...,
                             1.]]
Target after preprocessing (one-hot): [[ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.
                                    0. 0. 1.]
0. 0. 1.]
0. 1. 0.]
      0.
           Θ.
               Θ.
                   0. 0.
                            0. 0. 0.
   Θ.
       0. 0.
               Θ.
                   Θ.
                        0.
                            Θ.
                                Θ.
 [ 0.
       0. 0.
               0. 0.
                        0.
                            Θ.
                                0.
                                        Θ.
 [ 1.
       Θ.
          Θ.
               Θ.
                   Θ.
                        Θ.
                            Θ.
                                Θ.
                                    Θ.
                                            0.1
                                        Θ.
 [ 0.
       1.
           Θ.
               Θ.
                   Θ.
                        Θ.
                            Θ.
                                Θ.
                                    0.
                                             0.1
 [ 0.
       Θ.
           0.
               Θ.
                   Θ.
                        0.
                            1.
                                Θ.
                                    0.
                                        Θ.
                                             0.1
 [ 1.
       Θ.
           0.
               Θ.
                   Θ.
                        0.
                            Θ.
                                Θ.
                                    Θ.
                                        0. 0.]
   Θ.
           0.
               Θ.
                   Θ.
                        Θ.
                            Θ.
                                Θ.
                                    0.
 [ 0.
      Θ.
               Θ.
                   0.
                        0.
                            0.
                                Θ.
                                    0. 0. 1.]]
```

2.1 - Attention mechanism

In this part, you will implement the attention mechanism presented in the lecture videos.

- . Here is a figure to remind you how the model works.
 - The diagram on the left shows the attention model.
 - ullet The diagram on the right shows what one "attention" step does to calculate the attention variables $a^{(l,l')}$.
 - The attention variables $a^{(t,t')}$ are used to compute the context variable $context^{(t)}$ for each timestep in the output $(t=1,\ldots,T_y)$.

Figure 1: Neural machine translation with attention