- 1) Which operators are linear?
- a) $Au = -\partial^2 u$, $\mathcal{D} = \{ u \in C^2[0, \pi] \mid u(0) = 0 \text{ and } u'(\pi) = 0 \}$
- b) $Au = -\partial^2 u$, $\mathcal{D} = \{ u \in C^2[0, \pi] \mid u(0) = 0 \text{ and } u'(\pi) = \pi \}$
- c) $Au = u_{xx} + x^2u$, $\mathcal{D} = C^2(\mathbb{R})$
- d) $Au = u_{xx} + u^2$, $\mathcal{D} = C^2(\mathbb{R})$
- 2) Solve $u_t = 3u_x + 5u$, u(x, 0) = f(x).
- 3) Solve $u_{tt} u_{xx} = 0$, $x \in \mathbb{R}$, t > 0 for $u(x, 0) = 3\sin 5x \cos 3x$, $u_t(x, 0) = 2x + 3x^2$. Find only u(0, t).
- 4) Find u(x,t) for the equation $u_t ku_{xx} = 0$, $x \in \mathbb{R}$, t > 0 subject to $u(x,0) = e^{-(x+1)^2}$.
- 5) Find the Fourier transform $\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x}$ for $f(x) = xe^{-x^2}$.
- **6*)** Find the Fourier transform for f(x) = -H(x+1) + 2H(x) H(x-1), where $H(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$.
- **7*)** Solve $u_t = 5u_x 3xu + u$, $x \in \mathbb{R}$, t > 0 with u(x, 0) = f(x). Display the graph of f(x).