Individual meeting

Advisor: Wen-Chih Peng Student: Zheng-Ming Lin Date: 2022/11/16

- Log clustering
 - TSMC requires the KPI for the latest result
 - Here is an example
 - cluster159, 160, 161, 162, 163, 164, 165, 166, 167 were grouped together in the original data
 - But in the latest result, they are split into three subgroups
 - cluster159, 160
 - cluster161, 162
 - cluster164, 165, 166, 167
 - In my view, I think that the accuracy should be 8/9

- Log clustering
 - My thought

$$kpi = \sum_{i=0}^{\# of \ subgroup} len(group \ i) \frac{len(group \ i)}{len(the \ longest \ group)} \ if \ len(group \ i) > 1$$

- Case: cluster159, 160, 161, 162, 163, 164, 165, 166, 167
 - o cluster159, 160
 - o cluster161, 162
 - o cluster164, 165, 166, 167

- Anomaly detection
 - At first, I want to try GDN for anomaly detection
 - However, the feature in metric and infra data is too much
 - It will consume too much time for learning the graph structure
 - So, I am going to try univariate anomaly detection
 - DEPTS: Deep Expansion Learning for Periodic Time Series Forecasting
 - ICLR 2022, citations = 3

- Feature selection
 - At first, I don't know that the data contains the trigger point
 - So now I will use the trigger point to count the pearson relation for feature selection
 - Choose top-k for important feature

- Causal discovery
 - TCDF utilizes the attention mechanism to predict whether each two time series are similar
 - If I use feature selection, the features I choose will be similar as the trigger point
 - So each time series will be similar and make them be relative each others
 - TSMC uses the same method to detect the root cause

