Heegard splittings of 3 manifolds

Apurva Nakade

July 7, 2017

It is difficult to imagine 3 dimensional manifolds as they require at least 4 dimensions to be embedded in. Instead we describe 3 dimensional manifolds using "gluing diagrams" which are obtained by gluing sides of solid polytopes in 3 dimensions.

1 The three dimensional sphere S^3

The 3 dimensional sphere is defined as

$$S^3 = \{(x, y, z, t) : x^2 + y^2 + z^2 + t^2 = 1\}$$

If we consider the standard sphere S^2 of radius 1 and intersect it by a vertical plane z = c we get an S^1 if -1 < c < 1, a point if $c = \pm 1$ and an empty set otherwise. Similarly if we intersect S^3 with t = c we get a sphere S^2 if -1 < c < 1, a point if c = 1 and an empty set otherwise.

Fig. 1: S^3 as a sequence of spheres

Another way to visualize S^3 is by noticing that if we remove one point from S^3 we get the space \mathbb{R}^3 . Conversely this implies that S^3 is the one point compactification of \mathbb{R}^3 i.e. $S^3 = \mathbb{R}^3 \cup \{*\}$.

1.1 Hemispheres and solid tori

Consider the two hemispheres

$$\begin{split} S^3_+ &= \{(x,y,z,t): x^2+y^2+z^2+t^2=1, t\geq 0\} \\ S^3_- &= \{(x,y,z,t): x^2+y^2+z^2+t^2=1, t\leq 0\} \end{split}$$

Both S^3_+ and S^3_- are homeomorphic to the three disc

$$D^{3} = \{(x, y, z) : x^{2} + y^{2} + z^{2} \le 1$$

via the projection maps $S^3_+ \to D^3$ and $S^3_- \to D^3$. Hence we can think of S^3 as two 3 dimensional discs being glued together along the boundary.

$$S_{+}^{3} = \begin{array}{c} \\ \\ \\ \end{array} + \begin{array}{c} \\ \\ \end{array} - \begin{array}{c} \\ \\ \end{array} - \begin{array}{c} \\ \\ \end{array} = S_{-}^{3}$$

Fig. 2: S^3 as two 3 discs S^3_+ , S^3_- glued together

We can perform surgery on S^3_+ and S^3_- by removing and adding a solid cylinder respectively.

Fig. 3: S^3 as two solid tori glued together

We can also remove and add multiple solid cylinders to get

Fig. 4: S^3 as two solid genus 2 surfaces glued together

These are called Heegard splittings of S^3 .

1.2 Heegard splittings of 3 manifolds

Let M be a 3 manifold and suppose we have a "gluing diagram" of M consisting of multiple polytopes. However unlike for 2 manifolds, we do not allow different sides of the same polytope to be glued to each other.

For example, S^3 has a gluing diagram consisting of two solid cubes with corresponding sides glued.

Fig. 5: S^3 as a sum of two solid cubes

Let X be the set of edges of gluing diagram which have been thickened. And let Y be the complement of X in S^3 , $Y = S^3 \setminus X$.

Fig. 6: Heegard splitting of S^3 , both X and Y are solid genus 5 surfaces.

It is not hard to see that both X and Y are solid surfaces of the same genus. This shows that every 3 dimensional manifold M which has a "gluing diagram" can be obtained by gluing two solid surfaces of the same genus. This is called the **Heegard splitting** of the manifold M.

2 Exercises

Exercise 2.1. Construct "gluing diagrams" for $T \times S^1$ and $S^2 \times S^1$ using the gluing diagram of T and S^2 and thinking of S^1 as two endpoints of [0,1] glued together.

Exercise 2.2. Construct Heegard splittings for $T \times S^1$ and $S^2 \times S^1$.

Exercise 2.3. Why does this procedure not work for two dimensional manifolds?