Learning and Decision Making

Laboratory 1: Markov chains

In the end of the lab, you should submit all code/answers written in the tasks marked as "Activity n. XXX", together with the corresponding outputs and any replies to specific questions posed to the email <u>adi.tecnico@gmail.com</u>. Make sure that the subject is of the form [<group n.>] LAB <lab n.>.

1. Modeling Consider once again the train modeling problem described in the Homework and for which you

wrote a Markov chain model: Recall that your chain should describe the motion of the single train traveling

the network, where: ullet Stations A and B are just like regular stops;

- The travel time between any two consecutive stops is exactly 10 minutes. The train stops
- exactly 2 minutes in each location. • At the intersection marked with a bold \times , the train follows the branch 1-3 with probability
- 0.5, the branch 4 with probability 0.15, and the branch 5-6 with probability 0.35.

Activity 1.

 Create a list with all the states; Define a numpy array with the corresponding transition probabilities.

Implement your Markov chain model in Python. In particular,

- The order for the states used in the transition probability matrix should match that in the list of states.

Note 2: Make sure to print the result in the end.

powers or eigenvalues and eigenvectors), you may also import the library numpy.linalg.

Note 1: Don't forget to import numpy. If you need additional matrix operations (such as matrix

X = ("Station A", "Stop 1", "Stop 2", "Stop 3", "Stop 4", "Stop 5",

In [1]: import numpy as np

"Stop 6", "Station B")

```
print("States: {}".format(X))
P = np.zeros((8, 8))
P[0, 1] = 0.5
P[0, 4] = 0.15
P[0, 5] = 0.35
P[1, 2] = 1
P[2, 3] = 1
P[3, 7] = 1
P[4, 7] = 1
P[5, 6] = 1
P[6, 7] = 1
P[7, 0] = 1
print("Transition probability matrix:")
print(P)
States: ('Station A', 'Stop 1', 'Stop 2', 'Stop 3', 'Stop 4', 'Stop 5', 'Stop
6', 'Station B')
Transition probability matrix:
[[0.
      0.5 0.
               0.
                   0.15 0.35 0.
                                0.
 [0.
      0.
          1.
               0.
                   0.
                        0.
                            0.
                                0.
 [0.
          0. 1.
      0.
                   0.
                        0.
                            0. 0.
 [0.
      0.
          0. 0. 0. 0.
                            0. 1.
 [0.
      0.
          0. 0. 0. 0. 1.
         0. 0. 0. 0. 1. 0. ]
 [0.
      0.
 [0.
      0.
          0. 0. 0. 0. 1.
 [1.
               0. 0.
                                0. ]]
      0.
          0.
                        0.
                            0.
Activity 2.
```

• A - 2 - 3 - B - A

In [2]:

trajectories:

• 4 - B - A - 4

def calculateProb(path):

prob = 1

• 5-6-*B*-*A*-4 **Note:** Make sure to print the result in the end.

Compute, using the proper transition matrix manipulations, the probability of the following

```
prob *= P[path[step], path[step + 1]]
   return prob
path1 = [4, 7, 0, 4]
path2 = [0, 2, 3, 7, 0]
path3 = [5, 6, 7, 0, 4]
```

for step in range(len(path) - 1):

recall that the stationary distribution is a distribution.

=> u.T is an eigenvector of P.T with eigenvalue 1

eigenValues, eigenVectors = np.linalg.eig(P.T)

```
print("Probability of path '{}': \t{}".format(path1, calculateProb(path1)))
print("Probability of path '{}': \t{}".format(path2, calculateProb(path2)))
print("Probability of path '{}': \t{}".format(path3, calculateProb(path3)))
Probability of path '[4, 7, 0, 4]':
                                        0.15
Probability of path '[0, 2, 3, 7, 0]': 0.0
Probability of path '[5, 6, 7, 0, 4]': 0.15
2. Stability
```

stationary distribution. **Note:** The stationary distribution is a *left* eigenvector of the transition probability matrix associated

Activity 3

 $\# \iff (u \otimes P).T = u.T$ # <=> P.T @ u.T = u.T

he first one,

In [3]: # (@ is the "dot" operator) $\# u \otimes P = u$

Compute the stationary distribution for the chain. Confirm, computationally, that it is indeed the

to the eigenvalue 1. As such, you may find useful the numpy function numpy.linalg.eig. Also,

(The eigenvector v with eigenvalue lambda of a matrix A satisfies A @ v = lambda @ v) # Gets all the eigenvalues and vectors for P transposed

Chooses the eigenvector corresponding to the eigenvalue equal to 1, which is t

```
# and normalizes it
# We want the column and not the line because we're working with the eigenvector
s of P transposed
u = eigenVectors.T[0].real / np.sum(eigenVectors[:, 0].real)
# Verifies if u = uP
test = u @ P
if np.allclose(u, test):
    print("Stationary distribution for the chain:\n{}".format(u))
Stationary distribution for the chain:
[0.22988506 0.11494253 0.11494253 0.11494253 0.03448276 0.08045977
 0.08045977 0.22988506]
Activity 4.
Empirically show that the chain is ergodic.
Note: Recall that a chain is ergodic if, given any initial distribution, it converges to the stationary
distribution.
```

Multiplying a random (normalized) initial distribution by the matrix P to the

we conclude the chain is ergodic as the result of the multiplication is simila

uInf = newDist @ np.linalg.matrix_power(P, 100000000)

print("Different from stationary distribution!")

print("The chain is ergodic, as the chain converges to the stationary distri

r to the stationary distribution. # That is done for 1000 randomly generated initial distributions. def act4():

import random

power of 100000000,

for i in range(1000):

def checkTrajPossible(traj):

for step in range(size - 1):

size = len(traj)

for i in range(0, 10000):

trajectory.append(stop)

checkTrajPossible(trajectory)

Note: Don't forget to load matplotlib.

Trajectory length: 10000

trajectory = []

stop = 0

newDist = np.random.rand(8) newDist /= np.sum(newDist)

if not np.allclose(uInf, u):

In [4]:

In [5]:

```
bution calculated in Activity 3" \
           + " with several different initial distributions.")
act4()
The chain is ergodic, as the chain converges to the stationary distribution cal
culated in Activity 3 with several different initial distributions.
3. Simulation
You are now going to simulate the Markov chain that you defined in Question #1.
Activity 5
Generate a 10,000-step long trajectory of the chain defined in Activity #1.
```

raise Exception("The generated trajectory is not possible.")

```
stop = np.random.choice((np.arange(8)), p = P[stop])
print("Trajectory length:", len(trajectory))
print("First 10 stops:", trajectory[0:10])
```

if not P[traj[step], traj[step + 1]] != 0:

print("The generated trajectory is possible.")

2000

Activity 6 Draw a histogram of the trajectory generated in Activity #5. Make sure that the histogram has one

bin for each state. Compare the relative frequencies with the result of Activity #3.

First 10 stops: [0, 5, 6, 7, 0, 5, 6, 7, 0, 1]

The generated trajectory is possible.

```
In [7]:
        import matplotlib.pyplot as plt
        x = np.arange(8)
        y = np.bincount(trajectory)
        plt.bar(x, y, align='center', width=1, alpha=0.5)
        plt.xticks(x, X)
        plt.ylabel('Count')
        plt.title('Count of each Stop in the generated 10,000 step trajectory.')
        plt.show()
        plt.figure()
        plt.bar(x, y / np.sum(y), align='center', width=1, alpha=0.5)
        plt.scatter(x, u, zorder=1, color="red")
        plt.xticks(x, X)
        plt.ylabel('Relative frequency')
        plt.title('Relative frequency of each Stop in the \ngenerated 10,000 step trajec
        tory.\n'\
            + 'The stationary distribution calculated in activity #3\n is represented in
         the red dots.')
        plt.show()
```

```
1500
Count
  1000
   500
          Station AStop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 6Station B
                Relative frequency of each Stop in the
                   generated 10,000 step trajectory.
         The stationary distribution calculated in activity #3
                     is represented in the red dots.
```

Count of each Stop in the generated 10,000 step trajectory.

```
0.20
Relative frequency
    0.15
    0.10
    0.05
    0.00
             Station AStop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 6Station B
```

As we can see in the last histogram, the relative frequency of the stops in the generated trajectory aproximates the stationary distribtution represented as the red dots.