Econ 6190 Mid Term Exam

© Chen Qiu. Do not reproduce or share with any third party

14 October 2021

Instructions

This exam consists of six questions, not of equal length or difficulty. Answer all questions. This exam counts toward 35% of your final grade. Remember to always explain your answer. Good luck!

1. [10 pts] Let X have a discrete distribution. In the note Random Vector and Their Distribution we defined the conditional distribution function of Y given X = x as

$$F_{Y|X}(y|x) = P\{Y \le y|X = x\}$$

for any x such that $P\{X = x\} > 0$. Verify that

$$\lim_{y \to -\infty} F_{Y|X}(y|x) = 0, \quad \lim_{y \to \infty} F_{Y|X}(y|x) = 1.$$

- 2. **[5 pts]** Let C and D be two events. Show that if $C \Rightarrow D$, then $P\{C\} \leq P\{D\}$.
- 3. **[25 pts]** Suppose $\theta > 0$ is a random variable with density

$$g(\theta) = \begin{cases} \theta e^{-\theta} & \text{if } \theta > 0 \\ 0 & \text{if } \theta \le 0 \end{cases},$$

(notice here we use notation θ as both the random variable and the specific values it can take) and X is another random variable with conditional density

$$f(x|\theta) = \begin{cases} \frac{1}{\theta} & \text{if } 0 < x < \theta \\ 0 & \text{otherwise} \end{cases}.$$

- (a) Find f(x), the marginal density of X.
- (b) Find $g(\theta|x)$, the conditional density of θ given X = x.
- (c) Find $\mathbb{E}[(\theta a)^2 | X = x]$ for some given constant a. (You are NOT required to work out the final integration.)

4. [15 pts] Let Y, X_1, X_2 be three continuous random variables and assume all their related joint, marginal and conditional densities are well defined. Show the following variation of law of iterated expectations holds:

$$\mathbb{E}[Y|X_1 = c] = \mathbb{E}[\mathbb{E}[Y|X_1 = c, X_2]|X_1 = c]$$

for any constant c.

- 5. [15 pts] Let $\{X_1, X_2 ... X_n\}$ be a random sample of size n from the uniform distribution $U[0, \theta]$ for some unknown parameter $\theta > 0$.
 - (a) Find the pdf of $T = \max\{X_1, X_2 \dots X_n\}$.
 - (b) Derive the bias of T as an estimator for θ . Is T asymptotically unbiased?
- 6. **[30 pts]** Suppose $\{X_1, X_2 ... X_n\}$ is a random sample from a population distribution F with mean $\mathbb{E}X = 0$ and variance $\text{var}(X) = \sigma^2 > 0$. Consider estimating σ^2 by $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$.
 - (a) Find the distribution of $n\frac{\hat{\sigma}^2}{\sigma^2}$ when F is normal, that is, when $F \sim N(0, \sigma^2)$.
 - (b) Suppose now the distribution F is unknown. Impose suitable assumptions to derive the stochastic order of magnitude of $\hat{\sigma}^2 \sigma^2$. Carefully state your reasoning.
 - (c) Thus find the asymptotic distribution of $\sqrt{n}(\hat{\sigma}^2 \sigma^2)$. Is there any additional assumption you need to make other than what is stated in (b)?
 - (d) Propose an estimator, say \hat{m} , for standard deviation $m = \sqrt{\sigma^2}$. Thus find the asymptotic distribution of $\sqrt{n}(\hat{m} m)$.