Linguagens Formais e Autômatos

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- **6** Linguagens Livres do Contexto
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes e Linguagens e Conclusões

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Seqüencial, Concorrente e Não-Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não-Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3 – Linguagens Regulares

3 Linguagens Regulares

- ◆ Linguagens Regulares ou Tipo 3 formalismos
 - Autômato Finito
 - * formalismo operacional ou reconhecedor
 - * basicamente, um sistema de estados finitos
 - Expressão Regular
 - formalismo denotacional ou gerador
 - * conjuntos (linguagens) básicos + concatenação e união
 - Gramática Regular
 - * formalismo axiomático ou gerador
 - * gramática com restrições da forma das regras de produção

◆ Hierarquia de Chomsky

- classe de linguagens mais simples
- algoritmos de reconhecimento, geração ou conversão entre formalismos
 - * pouca complexidade
 - * grande eficiência
 - fácil implementação

◆ Fortes limitações de expressividade

- exemplo: duplo balanceamento n\u00e3o \u00e9 regular.
- linguagens de programação em geral: não-regulares

Complexidade de algoritmos - autômatos finitos

- classe de algoritmos mais eficientes (tempo de processamento)
 - * supondo determinada condição
- qualquer autômato finito é igualmente eficiente
- qualquer solução é ótima
 - * a menos de eventual redundância de estados
- redundância de estados
 - * (não influi no tempo)
 - pode ser facilmente eliminada: Autômato Finito Mínimo

Importantes propriedades - podem ser usadas para

- construir novas linguagens regulares
 - * a partir de linguagens regulares conhecidas
 - * (definindo uma álgebra)
- provar propriedades
- construir algoritmos

◆ Se um problema tiver uma solução regular

- considerar preferencialmente a qualquer outra n\u00e3o-regular
 - * propriedades da Classe
 - * eficiência e simplicidade dos algoritmos

Universo de aplicações das linguagens regulares

- muito grande
- constantemente ampliado
- Exemplo típico e simples
 - análise léxica
- Exemplos mais recentes
 - sistemas de animação
 - hipertextos
 - hipermídias

◆ Capítulos subseqüentes

- minimização de autômatos finitos
- propriedades da Classe
- algumas importantes aplicações

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Seqüencial, Concorrente e Não-Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não-Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.1 Sistema de Estados Finitos

Sistema de Estados Finitos

- modelo matemático de sistema com entradas e saídas discretas
- número finito e predefinido de estados
 - * podem ser definidos antes de iniciar o processamento

◆ Estado

- somente informações do passado
- necessárias para determinar as ações para a próxima entrada

Motivacional

• associados a diversos tipos de sistemas naturais e construídos

Exp: Elevador

Não memoriza as requisições anteriores

- Estado: sumaria "andar corrente" e "direção de movimento"
- Entrada: requisições pendentes

Exp: Analisador Léxico, Processador de Texto

- Estado: memoriza a estrutura do prefixo da palavra em análise
- Entrada: texto

◆ Restrição

- nem todos os sistemas de estados finitos
- são adequados para serem estudados por esta abordagem

Exp: Cérebro humano

- Neurônio: número finito de bits
- Cérebro: cerca de 2³⁵ células
 - * abordagem pouco eficiente
 - * explosão de estados

Exp: Computador

- processadores e memórias: sistema de estados finitos
- estudo da computabilidade
 - * exige uma memória sem limite predefinido
- Máquina de Turing
 - * mais adequado ao estudo da computabilidade
- computabilidade e solucionabilidade de problemas
 - * apenas introduzido
 - * questões tratadas na Teoria da Computação

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Seqüencial, Concorrente e Não-Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não-Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.2 Composição Seqüencial, Concorrente e Não-Determinista

- Construção composicional de sistema
 - construído a partir de sistemas conhecidos
 - * e assim sucessivamente
 - * até chegar ao nível mais elementar (como uma ação atômica)

◆ Composição

- Sequencial
- Concorrente
- Não-Determinista

Sequencial

- execução da próxima componente
- depende da terminação da componente anterior

Concorrente

- componentes independentes
 - * ordem em que são executadas não é importante
- portanto, podem ser processadas ao mesmo tempo

Não-Determinista

- próxima componente: escolha entre diversas alternativas
- em oposição à determinista
 - * para as mesmas condições
 - * próxima componente é sempre a mesma
- não-determinismo pode ser
 - * interno: sistema escolhe aleatoriamente
 - * externo: escolha externa ao sistema

Sistemas reais

as três formas de composição são comuns

Exp: Banco

Sequencial

- fila: próximo cliente depende do atendimento do anterior
- pagamento de uma conta depende do fornecimento de um valor

Concorrente

- diversos caixas atendem independentemente diversos clientes
- clientes nos caixas: ações independentemente dos clientes na fila

Não-determinista

- dois ou mais caixas disponíveis ao mesmo tempo
 - próximo cliente pode escolher o caixa
- caminhar de um indivíduo: perna esquerda ou direita

Linguagens Formais

• sequencial e não-determinimo: especialmente importantes

Semântica do não-determinismo adotada

- a usual para Linguagens Formais, Teoria da Computação...
 - * não-determinismo interno
 - * objetivo: determinar a capacidade de reconhecer linguagens e de solucionar problemas
- difere da adotada no estudo dos Modelos para Concorrência
 - * exemplo: Sistemas Operacionais
 - pode causar confusão com a semântica da concorrência

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Seqüencial, Concorrente e Não-Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não-Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.3 Autômato Finito

- Autômato Finito: sistema de estados finitos
 - número finito e *predefinido* de estados
 - modelo computacional comum em diversos estudos teórico-formais
 - * Linguagens Formais
 - * Compiladores
 - * Semântica Formal
 - * Modelos para Concorrência

◆ Formalismo operacional/reconhecedor - pode ser

determinístico

- dependendo do estado corrente e do símbolo lido
- * pode assumir um *único* estado

não-determinístico

- * dependendo do estado corrente e do símbolo lido
- * pode assumir um *conjunto* de estados alternativos

com movimentos vazios

- * dependendo do estado corrente e sem ler qualquer símbolo
- pode assumir um conjunto de estados (portanto é nãodeterminístico)

Movimento vazio

- pode ser visto como transições encapsuladas
 - * excetuando-se por uma eventual mudança de estado
 - * nada mais pode ser observado
- análogo à encapsulação das linguagens orientadas a objetos
- ◆ Três tipos de autômatos: equivalentes
 - em termos de poder computacional

- Autômato finito (determinístico): máquina constituída por
 - Fita: dispositivo de entrada
 - contém informação a ser processada
 - Unidade de Controle: reflete o estado corrente da máquina
 - * possui unidade de leitura (cabeça da fita)
 - * acessa uma célula da fita de cada vez
 - * movimenta-se exclusivamente para a direita
 - Programa, Função Programa ou Função de Transição
 - * comanda as leituras
 - * define o estado da máquina

◆ Fita é finita

- dividida em células
- cada célula armazena um símbolo
- símbolos pertencem a um alfabeto de entrada
- não é possível gravar sobre a fita (não existe memória auxiliar)
- palavra a ser processada ocupa toda a fita

Unidade de controle

- número finito e predefinido de estados
 - * origem do termo controle finito
- leitura
 - * lê o símbolo de uma célula de cada vez
 - * move a cabeça da fita uma célula para a direita
 - * posição inicial da cabeça célula mais à esquerda da fita

a a b	С	С	b	а	а
-------	---	---	---	---	---

Programa: função parcial

- dependendo do estado corrente e do símbolo lido
- determina o novo estado do autômato

Def: Autômato Finito (Determinístico) ou AFD

$$M = (\Sigma, Q, \delta, q_0, F)$$

- **\(\Sigma \)** é um alfabeto (de símbolos) de entrada
- Q é um conjunto de estados possíveis do autômato (finito)
- ô é uma (função) programa ou função de transição (função parcial)

$$\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$$

- * transição do autômato: $\delta(p, a) = q$
- q₀ é um elemento distinguido de Q: estado inicial
- F é um subconjunto de Q: conjunto de estados finais

♦ Autômato finito como um diagrama: $\delta(p, a) = q$

♦ Estados iniciais e finais

♦ Transições paralelas: $\delta(q, a) = p e \delta(q, b) = p$

◆ Função programa como uma tabela de dupla entrada

$$\delta(p, a) = q$$

◆ Computação de um autômato finito

- sucessiva aplicação da função programa
- para cada símbolo da entrada (da esquerda para a direita)
- até ocorrer uma condição de parada

◆ Lembre-se que um autômato finito

- não possui memória de trabalho
- para armazenar as informações passadas
- deve-se usar o conceito de estado

Exp: Autômato Finito: aa ou bb como subpalavra

 $L_1 = \{ w \mid w \text{ possui aa ou bb como subpalavra } \}$

Autômato finito

$$M_1 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_1, q_0, \{q_f\})$$

δ1	а	b	
q 0	q 1	q 2	
q 1	qf	q 2	
q ₂	91	9f	
qf	qf	qf	

- q₁: "símbolo anterior é a"
- q2: "símbolo anterior é b"
- qual a informação memorizada por q₀ e q_f
- após identificar aa ou bb
 - * qf (final): varre o sufixo da entrada terminar o processamento

Obs: Autômato Finito Sempre Pára

Como

- qualquer palavra é finita
- novo símbolo é lido a cada aplicação da função programa

não existe a possibilidade de ciclo (loop) infinito

Parada do processamento

- Aceita a entrada
 - * após processar o último símbolo, assume um estado final
- Rejeita a entrada. Duas possibilidades
 - * após processar o último símbolo, assume um estado não-final
 - programa indefinido para argumento (estado e símbolo)

Obs: Autômato Finito × Grafo Finito Direto

Qual a diferença entre um autômato finito e um grafo finito direto?

Qualquer autômato finito pode ser visto como um grafo finito direto

- podem existir arcos paralelos (mesmos nodos origem e destino)
- dois ou mais arcos podem ser identificados com a mesma etiqueta (símbolo do alfabeto)
- existe um nodo distinguido: estado inicial
- existe um conjunto de nodos distinguidos: estados finais

Usual considerar um autômato finito como grafo finito direto especial

herda resultados da Teoria dos Grafos

- Definição formal do comportamento de um autômato finito
 - dar semântica à sintaxe
 - necessário estender a função programa
 - argumento: estado e palavra

Def: Função Programa Estendida, Computação

 $M = (\Sigma, Q, \delta, q_0, F)$ autômato finito determinístico

$$\delta^*: \mathbb{Q} \times \Sigma^* \to \mathbb{Q}$$

é δ: Q × Σ → Q estendida para palavras - indutivamente definida

- $\delta^*(q, \varepsilon) = q$
- $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$

Observe

- sucessiva aplicação da função programa
 - para cada símbolo da palavra
 - * a partir de um dado estado
- se a entrada for vazia, fica parado
- aceita/rejeita: função programa estendida a partir do estado inicial

Exp: Função Programa Estendida

- $\delta^*(q_0, abaa) =$
- $\delta^*(\delta(q_0, a), baa) =$
- $\delta^*(q_1, baa) =$
- $\delta^*(\delta(q_1, b), aa) =$
- $\delta^*(q_2, aa) =$
- $\delta^*(\delta(q_2, a), a) =$
- $\delta^*(q_1, a) =$
- $\underline{\delta}^*(\delta(q_1, a), \epsilon) =$

função estendida sobre abaa processa *a*baa função estendida sobre baa

processa baa

função estendida sobre aa

processa aa

função estendida sobre a

processa a

• $\underline{\delta}^*(q_f, \varepsilon) = q_f$ função estendida sobre ε : fim da indução; ACEITA

Def: Linguagem Aceita, Linguagem Rejeitada

 $M = (\Sigma, Q, \delta, q_0, F)$ autômato finito determinístico.

Linguagem Aceita ou Linguagem Reconhecida por M

$$L(M) = ACEITA(M) = \{ w \mid \delta^*(q_0, w) \in F \}$$

Linguagem Rejeitada por M:

REJEITA(M) = { w |
$$\delta^*(q_0, w) \notin F$$
 ou $\delta^*(q_0, w)$ é indefinida }

Supondo que ∑* é o conjunto universo

- ACEITA(M) \cap REJEITA(M) = \emptyset
- ACEITA(M) \cup REJEITA(M) = Σ^*
- ~ACEITA(M) = REJEITA(M)
- ~REJEITA(M) = ACEITA(M)

◆ Cada autômato finito M sobre ∑

- induz uma partição de Σ* em duas classes de equivalência
- e se um dos dois conjuntos for vazio?

 Diferentes autômatos finitos podem aceitar uma mesma linguagem

Def: Autômatos Finitos Equivalentes

M₁ e M₂ são Autômatos Finitos Equivalentes se e somente se

 $ACEITA(M_1) = ACEITA(M_2)$

Def: Linguagem Regular, Linguagem Tipo 3

L é uma Linguagem Regular ou Linguagem Tipo 3

existe pelo menos um autômato finito determinístico que aceita

Exp: ...Autômato Finito: Vazia, Todas as Palavras

Linguagens sobre o alfabeto { a, b }

$$L_2 = \emptyset$$
 e

$$L_3 = \Sigma^*$$

Exp: Autômato Finito: Vazia, Todas as Palavras

$$L_2 = \emptyset$$
 e $L_3 = \Sigma^*$

- diferença entre δ_2 e δ_3 ?
- o que, exatamente, diferencia M2 de M3?

Exp: Autômato Finito: número par de cada símbolo

 $L_4 = \{ w \mid w \text{ possui um número par de a e um número par de b } \}$

Como seria para aceitar um número ímpar de cada símbolo?

Obs: Função Programa × Função Programa Estendida

Objetivando simplificar a notação

- δ e a sua correspondente extensão δ*
- podem ser ambas denotadas por δ

Obs: Computações × Caminhos de um Grafo

- conjunto de arcos: computações possíveis
- subconjunto de arcos
 - * com origem no estado inicial
 - * destino em algum estado final
 - * linguagem aceita

Obs: ...Computações × Caminhos de um Grafo

Computações(M)
=
{ ε, a, b, c, d,
ab, bc, abc}

 $\begin{array}{c} \mathsf{ACEITA}\;(\mathsf{M})\\ =\\ \{\epsilon\;,\;\mathsf{d},\;\mathsf{abc}\} \end{array}$

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Seqüencial, Concorrente e Não-Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não-Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.4 Autômato Finito Não-Determinístico

Não-determinismo

- importante generalização dos modelos de máquinas
- fundamental no estudo
 - Modelos para Concorrência
 - * Teoria da Computação
 - Linguagens Formais, ...

Semântica de não-determinismo adotada

- usual no estudo das Linguagens Formais
- objetiva determinar a capacidade de
 - * reconhecer linguagens
 - * solucionar problemas
- pode causar alguma confusão com semântica da concorrência

◆ Nem sempre não-determinismo aumenta o poder

- reconhecimento de linguagens de uma classe de autômatos
 - * qualquer autômato finito não-determinístico pode ser simulado por um autômato finito determinístico

◆ Não-determinismo no programa, é uma função parcial

dependendo do estado corrente e do símbolo lido, determina um conjunto de estados do autômato.

Assume um conjunto de estados alternativos

- como uma multiplicação da unidade de controle
- uma para cada alternativa
- processando independentemente
- sem compartilhar recursos

Def: Autômato Finito Não-Determinístico (AFN)

$$M = (\Sigma, Q, \delta, q_0, F)$$

- ∑ alfabeto (de símbolos) de entrada
- Q conjunto de estados possíveis (finito)
- δ (função) programa ou função de transição (função parcial)

$$\delta: \mathbb{Q} \times \Sigma \to 2^{\mathbb{Q}}$$

- * transição: $\delta(p, a) = \{ q_1, q_2, ..., q_n \}$
- q₀ é um elemento distinguido de Q: estado inicial
- F é um subconjunto de Q: conjunto de estados finais

Autômato como diagrama

$$\delta(p, a) = \{q_1, q_2, ..., q_n\}$$

Computação de um autômato finito nãodeterminístico

- sucessiva aplicação da função programa
- para cada símbolo da entrada (da esquerda para a direita)
- até ocorrer uma condição de parada

- Argumentos: computação/função programa estendida
 - conjunto finito de estados e uma palavra

Def: Função Programa Estendida, Computação

 $M = (\Sigma, Q, \delta, q_0, F)$ autômato finito não-determinístico

$$\delta^*: 2^Q \times \Sigma^* \to 2^Q$$

indutivamente definida

- $\delta^*(P, \varepsilon) = P$
- $\underline{\delta}^*(P, aw) = \underline{\delta}^*(\bigcup_{q \in P} \delta(q, a), w)$

◆ Transição estendida (a um conjunto de estados)

$$\delta^*(\{q_1, q_2, ..., q_n\}, a) = \delta(q_1, a) \cup \delta(q_2, a) \cup ... \cup \delta(q_n, a)$$

Parada do processamento

- Aceita a entrada
 - após processar o último símbolo da fita, existe pelo menos um estado final pertencente ao conjunto de estados alternativos atingidos
- Rejeita a entrada. Duas possibilidades
 - após processar o último símbolo da fita, todos os estados alternativos atingidos são não-finais
 - programa indefinido para o argumento (conjunto de estados e símbolo)

Def: Linguagem Aceita, Linguagem Rejeitada

Seja $M = (\Sigma, Q, \delta, q_0, F)$ um autômato finito não-determinístico

Linguagem Aceita ou Linguagem Reconhecida por M

$$L(M) = ACEITA(M) = \{ w \mid \delta^*(\{q_0\}, w) \cap F \neq \emptyset \}$$

Linguagem Rejeitada por M

REJEITA(M) = { w |
$$\delta^*(\{q_0\}, w) \cap F = \emptyset$$
 ou $\delta^*(\{q_0\}, w)$ é indefinida }

Exp: Autômato Finito Não-Determinístico: aa ou bb como subpalavra

 $L_5 = \{ w \mid w \text{ possui aa ou bb como subpalavra } \}$

Autômato finito não-determinístico:

$$M_5 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_5, q_0, \{q_f\})$$

- o ciclo em q₀ realiza uma varredura em toda a entrada
- o caminho q₀/q₁/q_f garante a ocorrência de aa
- o caminho q₀/q₂/q_f garante a ocorrência de bb

δ5	а	b
90	{ q ₀ ,q ₁ }	{ q ₀ ,q ₂ }
q 1	{ q _f }	-
q 2	-	{ q _f }
Qf	{ q _f }	{ q _f }

Exp: AFN: aaa como sufixo

 $L_6 = \{ w \mid w \text{ possui aaa como sufixo } \}$

Autômato finito não-determinístico:

$$M_6 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_6, q_0, \{q_f\})$$

◆ Não-determinismo

- aparentemente, um significativo acréscimo ao poder computacional autômato finito
- na realidade não aumenta seu poder computacional

Teorema: Equivalência entre AFD e AFN

Classe dos Autômatos Finitos Determinísticos é equivalente à

Classe dos Autômatos Finitos Não-Determinísticos

Prova: (por indução)

Mostrar que

- a partir de um AFN M qualquer
- construir um AFD MD que realiza as mesmas computações
- M_D simula M

AFN → AFD

- estados de M_D simulam combinações de estados alternativos de M
- prova da simulação: por indução

AFD → AFN

não necessita ser mostrado: decorre trivialmente das definições

 $M = (\Sigma, Q, \delta, q_0, F)$ um AFN qualquer. AFD construído

$$M_D = (\Sigma, Q_D, \delta_D, \langle q_0 \rangle, F_D)$$

- QD todas as combinações, sem repetições, de estados de Q
 - * notação (q₁q₂...q_n)
 - * ordem não distingue combinações: $\langle q_u q_v \rangle = \langle q_v q_u \rangle$
 - imagem de todos os estados alternativos de M
- $\delta_D: Q_D \times \Sigma \rightarrow Q_D$

$$\delta_D(\langle q_1...q_n \rangle, a) = \langle p_1...p_m \rangle$$
 sse $\delta^*(\{q_1, ..., q_n\}, a) = \{p_1, ..., p_m\}$

- $\langle q_0 \rangle$ estado inicial
- F_D conjunto de estados (q₁q₂...q_n) pertencentes a Q_D
 - * alguma componente qi pertence a F, para i em { 1, 2, ..., n }

AFD M_D simula as computações do AFN M ???

- indução no tamanho da palavra
- mostrar que

$$\delta_D^*(\langle q_0 \rangle, w) = \langle q_1 ... q_u \rangle$$
 sse $\delta^*(\{q_0\}, w) = \{q_1, ..., q_u\}$

Base de indução. | w | = 0. Portanto $w = \varepsilon$:

$$\delta_D^*(\langle q_0 \rangle, \varepsilon) = \langle q_0 \rangle$$
 se e somente se $\delta^*(\{q_0\}, \varepsilon) = \{q_0\}$

• verdadeiro, por definição de computação

Hipótese de indução. | w | = n e n ≥ 1. Suponha que:

$$\delta_D^*(\langle q_0 \rangle, w) = \langle q_1 ... q_u \rangle$$
 sse $\delta^*(\{q_0\}, w) = \{q_1, ..., q_u\}$

Passo de Indução. | wa | = n + 1 e n ≥ 1

$$\delta_D^*(\langle q_0 \rangle, wa) = \langle p_1...p_V \rangle$$
 sse $\delta^*(\{q_0\}, wa) = \{p_1, ..., p_V\}$

equivale (hipótese de indução)

$$\delta_D(\langle q_1...q_u \rangle, a) = \langle p_1...p_v \rangle$$
 sse $\delta^*(\{q_1, ..., q_u\}, a) = \{p_1, ..., p_v\}$

verdadeiro, por definição de δ_D

Logo, M_D simula M para qualquer entrada w pertencente a ∑*

Portanto, linguagem aceita por AFN

é Linguagem Regular ou Tipo 3

Obs: Determinismo × Não-Determinismo

Muitas vezes é mais fácil desenvolver um AFN do que um AFD

• exemplo

{ w | o quinto símbolo da direita para a esquerda de w é a }

- solução determinista: não é trivial; número grande de estados
- solução não-determinista: bem simples; poucos estados

Alternativa para construir um AFD

- desenvolver inicialmente AFN
- aplicar o algoritmo apresentado na prova do teorema

Exp: AFN → AFD

$$M_6 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_6, q_0, \{q_f\})$$

$$M_{6D} = (\{a, b\}, Q_D, \delta_{6D}, \langle q_0 \rangle, F_D)$$

- $Q_D = \{ \langle q_0 \rangle, \langle q_1 \rangle, \langle q_2 \rangle, \langle q_f \rangle, \langle q_0 q_1 \rangle, \langle q_0 q_2 \rangle, ..., \langle q_0 q_1 q_2 q_f \rangle \}$
- $F_D = \{ \langle q_f \rangle, \langle q_0 q_f \rangle, \langle q_1 q_f \rangle, ..., \langle q_0 q_1 q_2 q_f \rangle \}$

AFN

AFD

δ_{6D}	a	b
(q ₀)	<q<sub>0q₁></q<sub>	(q ₀)
<q<sub>0q₁></q<sub>	(909192)	$\langle q_0 \rangle$
(909192)	(q0q1q2qf)	$\langle q_0 \rangle$
(q0q1q2qf)	(q0q1q2q _f)	$\langle q_0 \rangle$

δ _{6D}	a	b
$p_0 = \langle q_0 \rangle$ $p_1 = \langle q_0 q_1 \rangle$	<q0q1><q0q1q2></q0q1q2></q0q1>	<q<sub>0></q<sub>
$p_2 = \langle q_0 q_1 q_2 \rangle$	(q0q1q2qf)	(q ₀)
$p_f = \langle q_0 q_1 q_2 q_f \rangle$	(q0q1q2qf)	$\langle q_0 \rangle$

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Seqüencial, Concorrente e Não-Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não-Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.5 Autômato Finito com Movimentos Vazios

Movimentos vazios

generalizam os movimentos não-determinísticos

Movimento vazio

- transição sem leitura de símbolo algum da fita
- interpretado como um não-determinismo interno ao autômato
 - * transição encapsulada
 - * excetuando-se por uma eventual mudança de estados
 - * nada mais pode ser observado

Algumas vantagens

facilita algumas construções e demonstrações

Poder computacional p/ autômatos finitos

- não aumenta o poder de reconhecimento de linguagens
- qualquer aAFNε pode ser simulado por um AFD

Def: Autômato Finito com Movimentos Vazios - AFNε

$$M = (\Sigma, Q, \delta, q_0, F)$$

- ∑ alfabeto (de símbolos) de entrada
- Q conjunto de estados possíveis
- **δ** (função) programa ou função de transição (função parcial)

$$\delta: \mathbb{Q} \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^{\mathbb{Q}}$$

* movimento vazio ou transição vazia

$$\delta(p, \varepsilon) = \{ q_1, q_2, ..., q_n \}$$

- q₀ elemento distinguido de Q: estado inicial
- F subconjunto de Q: conjunto de estados finais

Autômato como diagrama

$$\delta(q, \epsilon) = \{ p_0 \}$$
 $\delta(q, a_1) = \{ p_1 \}$... $\delta(q, a_n) = \{ p_n \}$

- Computação de um AFNε
 - análoga à de um AFN
- ◆ Processamento de uma transição vazia
 - não-determinístico
 - assume simultaneamente os estados destino e origem
 - origem de um movimento vazio: caminho alternativo

Exp: AFNε: a's antecedem b's

$$M_7 = (\{a, b\}, \{q_0, q_f\}, \delta_7, q_0, \{q_f\})$$

δ7	a	b	ε
q ₀	{ q ₀ }	-	{ q _f }
qf	-	{ q _f }	

◆ Antes de definir computação

- computação de transições vazias a partir de
 - * um estado
 - * um conjunto finito de estados

Def: Computação Vazia

$$M = (\Sigma, Q, \delta, q_0, F)$$

Computação Vazia ou Função Fecho Vazio (um estado)

$$\delta \epsilon: Q \rightarrow 2^Q$$

indutivamente definida

*
$$\delta \epsilon(q) = \{ q \}$$
, se $\delta(q, \epsilon)$ é indefinida

*
$$\delta \epsilon(q) = \{ q \} \cup \delta(q, \epsilon) \cup (\bigcup_{p \in \delta(q, \epsilon)} \delta \epsilon(p)), \text{ caso contrário}$$

Computação Vazia ou Função Fecho Vazio (conjunto de estados)

$$\delta \varepsilon^*: 2^Q \rightarrow 2^Q$$

• tal que

$$\delta \varepsilon^*(P) = \bigcup_{q \in P} \delta \varepsilon(q)$$

♦ Por simplicidade, δε e δε*

ambas denotadas por δε

Exp: Computação Vazia

- $\delta \epsilon(q_0) = \{q_0, q_f\}$
- $\delta \epsilon(q_f) = \{q_f\}$
- $\delta \epsilon (\{q_0, q_f\}) = \{q_0, q_f\}$

Computação de um AFNε para uma entrada w

- sucessiva aplicação da função programa
- para cada símbolo de w (da esquerda para a direita)
- cada passo de aplicação intercalado com computações vazias
- até ocorrer uma condição de parada

◆ Assim, antes de processar a próxima transição

- determinar
 - * todos os demais estados atingíveis
 - * exclusivamente por movimentos vazios

Def: Função Programa Estendida, Computação

$$M = (\Sigma, Q, \delta, q_0, F) AFN \varepsilon$$

$$\delta^*: 2^Q \times \Sigma^* \rightarrow 2^Q$$

indutivamente definida

- $\delta^*(P, \varepsilon) = \delta \varepsilon(P)$
- $\delta^*(P, wa) = \delta \epsilon(R)$ onde $R = \{ r \mid r \in \delta(s, a) \ e \ s \in \delta^*(P, w) \}$

- Parada do processamento, Ling. Aceita/Rejeitada
 - análoga à do autômato finito não-determinístico

Exp: Computação Vazia, Computação

 $L_8 = \{ w \mid w \text{ possui como sufixo a ou bb ou ccc } \}$

 $M_8 = (\{a, b, c\}, \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_f\}, \delta_8, q_0, \{q_f\})$

$$\delta^*(\{q_0\}, abb) = \delta \varepsilon(\{r \mid r \in \delta(s, b) \ e \ s \in \delta^*(\{q_0\}, ab)\})$$
(1)
$$\delta^*(\{q_0\}, ab) = \delta \varepsilon(\{r \mid r \in \delta(s, b) \ e \ s \in \delta^*(\{q_0\}, a)\})$$
(2)

$$\delta^*(\{q_0\}, a) = \delta \varepsilon(\{r \mid r \in \delta(s, a) \ e \ s \in \delta^*(\{q_0\}, \varepsilon)\})$$
 (3)

Como:

$$\delta^*(\{q_0\}, \epsilon)\} = \delta\epsilon(\{q_0\}) = \{q_0, q_1, q_2, q_4\}$$
 considerado em (3) $\delta^*(\{q_0\}, a) = \{q_0, q_1, q_2, q_4, q_f\}$ considerado em (2) $\delta^*(\{q_0\}, ab) = \{q_0, q_1, q_2, q_3, q_4\}$ considerado em (1)

Resulta na computação: $\delta^*(\{q_0\}, abb) = \{q_0, q_1, q_2, q_3, q_4, q_f\}$

Teorema: Equivalência entre AFN e AFNε

Classe dos Autômatos Finitos com Movimentos Vazios é equivalente à Classe dos Autômatos Finitos Não-Determinísticos

Prova: (por indução)

Mostrar que

- a partir de um AFNε M qualquer
- construir um AFN M_N que realiza as mesmas computações
- M_N simula M

$AFN_{\varepsilon} \rightarrow AFN$

- construção de uma função programa sem movimentos vazios
- conjunto de estados destino de cada transição não-vazia
 - ampliado com os demais estados possíveis de serem atingidos exclusivamente por transições vazias

 $M = (\Sigma, Q, \delta, q_0, F)$ um AFN ε qualquer. AFN construído

$$M_N = (\Sigma, Q, \delta_N, q_0, F_N)$$

• δ_N : $Q \times \Sigma \rightarrow 2^Q$ é tal que

$$\delta_N(q, a) = \delta^*(\{q\}, a)$$

F_N é o conjunto de todos os estados q pertencentes a Q

$$\delta \epsilon(q) \cap F \neq \emptyset$$

estados que atingem estados finais via computações vazias

Demonstração que, de fato, o AFN M_N simula o AFNε M

- indução no tamanho da palavra
- exercício

- Portanto, linguagem aceita por AFNε
 - é Linguagem Regular ou Tipo 3

Exp: Construção de um AFN a partir de um AFNε

AFN_E - M₉ = ({ a, b }, { q₀, q₁, q₂ }, δ_9 , q₀, { q₂ })

δ9	а	b	ε
q 0	{ q ₀ }	1	{ q ₁ }
Q 1	-	{ q ₁ }	{ q ₂ }
q 2	{ q ₂ }	-	-

 $M_{9N} = (\{a, b\}, \{q_0, q_1, q_2\}, \delta_{9N}, q_0, F_N)$

$$F_N = \{ q_0, q_1, q_2 \}$$

- $\delta \epsilon(q_0) = \{q_0, q_1, q_2\}$
- $\delta \epsilon(q_1) = \{ q_1, q_2 \}$
- $\delta \epsilon(q_2) = \{q_2\}$

Na construção de δ_{9N}

- $\underline{\delta}_9^*(\{q_0\}, \epsilon) = \{q_0, q_1, q_2\}$
- $\underline{\delta}_9^*(\{q_1\}, \epsilon) = \{q_1, q_2\}$
- $\delta_9^*(\{q_2\}, \epsilon) = \{q_2\}$

Assim, δ_{9N} é tal que

$$\begin{split} \delta_{9N}(q_0,a) &= \delta_9^*(\{\,q_0\,\},a) = \\ \delta_{\epsilon}(\{\,r \mid r \in \delta(s,a) \; e \; s \in \underline{\delta}^*(\{\,q_0\,\},\epsilon)\,\}) &= \{\,q_0,\,q_1,\,q_2\,\} \\ \delta_{9N}(q_0,b) &= \delta_9^*(\{\,q_0\,\},b) = \\ \delta_{\epsilon}(\{\,r \mid r \in \delta(s,b) \; e \; s \in \underline{\delta}^*(\{\,q_0\,\},\epsilon)\,\}) &= \{\,q_1,\,q_2\,\} \\ \delta_{9N}(q_1,a) &= \delta_9^*(\{\,q_1\,\},a) = \\ \delta_{\epsilon}(\{\,r \mid r \in \delta(s,a) \; e \; s \in \underline{\delta}^*(\{\,q_1\,\},\epsilon)\,\}) &= \{\,q_2\,\} \end{split}$$

- $\delta_{9N}(q_1, b) = \underline{\delta}_{9}^*(\{q_1\}, b) = \delta_{\epsilon}(\{r \mid r \in \delta(s, b) e s \in \underline{\delta}^*(\{q_1\}, \epsilon)\}) = \{q_1, q_2\}$
- $\delta_{9N}(q_2, a) = \underline{\delta}_9^*(\{q_2\}, a) = \delta_{\epsilon}(\{r \mid r \in \delta(s, a) \in s \in \underline{\delta}^*(\{q_2\}, \epsilon)\}) = \{q_2\}$
- $\delta_{9N}(q_2, b) = \underline{\delta}_9^*(\{q_2\}, b) = \delta\epsilon(\{r \mid r \in \delta(s, b) \in s \in \delta^*(\{q_2\}, \epsilon)\})$ é indefinida

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Seqüencial, Concorrente e Não-Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não-Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.6 Expressão Regular

- ◆ Toda linguagem regular pode ser descrita por uma
 - Expressão Regular
- Formalismo denotacional (gerador)
- Definida a partir de
 - conjuntos (linguagens) básicos
 - concatenação e união
- ◆ Adequadas para a comunicação
 - humano x humano
 - humano × máquina

Def: Expressão Regular (ER)

Base de Indução

- Ø é ER
 * denota a linguagem vazia: Ø
- ε é ER* denota a linguagem { ε }
- x é ER (para qualquer x ∈ Σ)
 - * denota a linguagem { x }

Def: ...Expressão Regular (ER)

Passo de Indução: se r e s são ER e denotam as ling. R e S, então

- União. (r+s) é ER
 * denota a linguagem R∪S
- Concatenação. (rs) é ER
 * denota a linguagem R S = { uv | u∈R e v∈S }
- Concatenação Sucessiva. (r*) é ER
 - * denota a linguagem R*

Def: Linguagem Gerada por uma ER

Se r é ER, a correspondente linguagem denotada é dita

Linguagem Gerada por r

L(r) ou GERA(r)

- ◆ Omissão de parênteses em uma ER é usual
 - concatenação sucessiva: precedência sobre concatenação e união
 - concatenação: precedência sobre união

Exp: Expressão Regular

ER	Linguagem Gerada	???
aa		
ba*		
(a + b)*		
(a + b)*aa(a + b)*		
a*ba*ba*		
(a+b)*(aa+bb)		
$(a + \varepsilon)(b + ba)^*$		

Exp: ...Expressão Regular

ER	Linguagem Gerada
aa	somente a palavra aa
ba*	todas as palavras que iniciam por b, seguido por zero ou mais a
(a + b)*	todas as palavras sobre { a, b }
(a + b)*aa(a + b)*	todas as palavras contendo aa como subpalavra
a*ba*ba*	todas as palavras contendo exatamente dois b
(a+b)*(aa+bb)	todas as palavras que terminam com aa ou bb
$(a + \varepsilon)(b + ba)*$	todas as palavras que não possuem dois a consecutivos

Exp: ...Expressão Regular

Linguagem gerada pela ER (a + b)*(aa + bb)

- a e b denotam { a } e { b }, respectivamente
- $a + b denota \{ a \} \cup \{ b \} = \{ a, b \}$
- (a + b)* denota { a, b }*
- aa e bb denotam { a } { a } = { aa } e { b } { b } = { bb }, respectivamente
- (aa + bb) denota { aa } ∪ { bb } = { aa, bb }
- (a + b)*(aa + bb) denota { a, b }* { aa, bb }

```
Portanto, GERA((a+b)*(aa+bb)) é
```

```
{ aa, bb, aaa, abb, baa, bbb, aaaa, aabb, abaa, abbb, baaa, babb, bbaa, bbbb,.... }
```

Teorema: Expressão Regular → Linguagem Regular

Se r é ER, então GERA(r) é linguagem regular

Prova: (por indução)

Uma linguagem é regular sse é possível construir um

AFD, AFN ou AFNε que reconheça a linguagem

É necessário mostrar que

- dada uma ER r qualquer
- é possível construir um autômato finito M tal que

$$ACEITA(M) = GERA(r)$$

Demonstração: indução no número de operadores

Base de indução. r ER com zero operadores

- r = Ø
 - * Autômato???
- $r = \varepsilon$
 - * Autômato???
- $r = x (x \in \Sigma)$
 - * Autômato???

Base de indução. r ER com zero operadores

• $r = \emptyset$. Autômato: $M_1 = (\emptyset, \{q_0\}, \delta_1, q_0, \emptyset)$

• $r = \varepsilon$. Autômato: $M_2 = (\emptyset, \{q_f\}, \delta_2, q_f, \{q_f\})$

• $r = x \ (x \in \Sigma)$. Autômato: $M_3 = (\{x\}, \{q_0, q_f\}, \delta_3, q_0, \{q_f\})$

Hipótese de Indução. r ER com até n > 0 operadores

suponha que é possível definir um AF que aceita GERA(r)

Passo de Indução. r ER com n + 1 operadores

 r pode ser representada por (r₁ e r₂ possuem conjuntamente no máximo n operadores)

```
* r=r<sub>1</sub>+r<sub>2</sub>

* r=r<sub>1</sub>r<sub>2</sub>

* r=r<sub>1</sub>*
```

por hipótese de indução, existem

$$\begin{aligned} M_1 &= (\Sigma_1, Q_1, \delta_1, q_{0_1}, \{ \, q_{f_1} \, \}) & e & M_2 &= (\Sigma_2, Q_2, \delta_2, q_{0_2}, \{ \, q_{f_2} \, \}) \\ & \text{ACEITA}(M_1) &= \text{GERA}(r_1) & e & \text{ACEITA}(M_2) &= \text{GERA}(r_2) \end{aligned}$$

$$r = r_1 + r_2$$

• Autômato???

$$r = r_1 r_2$$

Autômato???

$$r = r_1^*$$

Autômato???

- sem perda de generalidade:
 - * M₁ e M₂ possuem exatamente um estado final (exercícios)
 - * estados dos autômatos: conjunto disjuntos (se não forem?)

$$r = r_1 + r_2$$
. Autômato $M = (\Sigma_1 \cup \Sigma_2, Q_1 \cup Q_2 \cup \{q_0, q_f\}, \delta, q_0, \{q_f\})$

$r = r_1 r_2$. Autômato $M = (\Sigma_1 \cup \Sigma_2, Q_1 \cup Q_2, \delta, q_{01}, \{q_{f_2}\})$

 $r = r_1^*$. Autômato (suponha $q_0 \notin Q_1$, $q_f \notin Q_1$)

• $M = (\Sigma_1, Q_1 \cup \{q_0, q_f\}, \delta, q_0, \{q_f\})$

♦ Exercício: no caso $r = r_1 + r_2$

- não introduzir os estados qo e qf
- identificar ("unificar") os estados iniciais/finais de M₁/M₂ ???

◆ Exercício: no caso r=r₁*

- não introduzir o estado q_f
- manter q_{f1} como o estado final
- transição vazia de q₀ para q_{f1} ???

Exp: AFN ε a partir de a*(aa + bb)

Autômato resultante: a*(aa + bb)

Teorema: Linguagem Regular → Expressão Regular

Se L é linguagem regular, então existe uma ER r tal que

$$GERA(r) = L$$

O teorema não será provado

3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Seqüencial, Concorrente e Não-Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não-Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.7 Gramática Regular

- Formalismo Gramáticas
 - permite definir tanto linguagens regulares como não-regulares
- Gramática Regular
 - restrições nas regras de produção
 - existe mais de uma forma de restringir as regras de produção
 - * Gramáticas Lineares

Def: Gramáticas Lineares

$$G = (V, T, P, S)$$

Gramática Linear à Direita (GLD)

$$A \rightarrow WB$$
 ou $A \rightarrow W$

Gramática Linear à Esquerda (GLE)

$$A \rightarrow Bw$$
 ou $A \rightarrow w$

Gramática Linear Unitária à Direita (GLUD)

• como na gramática linear à direita. Adicionalmente

Gramática Linear Unitária à Esquerda (GLUE)

• como na gramática linear à esquerda. Adicionalmente

◆ Lado direito de uma produção

- no máximo uma variável
 - * sempre antecede (linear à esquerda)
 - * ou sucede (linear à direita)
 - * qualquer subpalavra (eventualmente vazia) de terminais

Exercício

• gramática simultaneamente nas quatro formas lineares?

Teorema: Equivalência das Gramáticas Lineares

Seja L uma linguagem. Então:

- L é gerada por uma GLD sse
- L é gerada por uma GLE sse
- L é gerada por uma GLUD sse
- L é gerada por uma GLUE

Diversas formas das gramáticas lineares

- formalismos equivalentes
- demonstração do teorema: exercício

Def: Gramática Regular (GR)

G é uma gramática linear

Def: Linguagem Gerada

$$G = (V, T, P, S)$$
 gramática

é tal que

$$L(G) = \{ w \in T^* \mid S \Rightarrow^+ w \}$$

Exp: Gramática Regular: a(ba)*

???

Exp: Gramática Regular: a(ba)*

Linear à Direita. $G = (\{S, A\}, \{a, b\}, P, S)$

- S → aA
- A → baA | ε

Linear à Esquerda. $G = (\{S\}, \{a, b\}, P, S)$

• S → Sba | a

Linear Unitária à Direita. $G = (\{S, A, B\}, \{a, b\}, P, S)$

- S → aA
- A → bB | ε
- B → aA

Linear Unitária à Esquerda. G = ({ S, A }, { a, b }, P, S)

- S → Aa | a
- A → Sb

Exp: Gramática Regular: (a + b)*(aa + bb)

Linear à Direita. $G = (\{S, A\}, \{a, b\}, P, S), e P é tal que$

- S → aS | bS | A
- A → aa | bb

Linear à Esquerda. G = ({ S, A }, { a, b }, P, S), e P é tal que

- S → Aaa | Abb
- A → Aa | Ab | ε

Obs: Gramática Linear à Esquerda e Linear à Direita

Suponha | w | ≥ 1

Produções simultaneamente do tipo

- A → wB (direita) e
- A → Bw (esquerda)

correspondente linguagem gerada

- poderá não ser regular
- não é uma gramática regular

É possível desenvolver uma gramática, com produções lineares à direita e à esquerda, que gera (exercício)

$$\{a^nb^n \mid n \in \mathbb{N}\}$$

Teorema: Gramática Regular → Linguagem Regular

Se L é gerada por uma gramática regular, então L é linguagem regular

Prova: (por indução)

Mostrar que

- dado uma GLUD G qualquer
- é possível construir um AFNε M tq

ACEITA(M) = GERA(G)

M simula as derivações de G

- demonstração de que ACEITA(M) = GERA(r)
- indução no número de derivações

Suponha G = (V, T, P, S) uma GLUD. Seja o AFNε

$$M = (\Sigma, Q, \delta, q_0, F)$$

•
$$\Sigma = T$$

•
$$Q = V \cup \{q_f\}$$

(suponha $q_f \notin V$)

•
$$F = \{ q_f \}$$

•
$$q_0 = S$$

Tipo da Produção	Transição Gerada
A → ε	$\delta(A, \varepsilon) = q_f$
A→a	$\delta(A, a) = q_f$
$A \rightarrow B$	$\delta(A, \varepsilon) = B$
A → aB	$\delta(A, a) = B$

M simula as derivações de G

$$ACEITA(M) = GERA(G)$$

Base de indução. $S \Rightarrow^1 \alpha$. Quatro casos

•
$$\alpha = \epsilon$$
 existe $S \rightarrow \epsilon$ Logo, $\delta(S, \epsilon) = q_f$

•
$$\alpha = a$$
 existe $S \rightarrow a$ Logo, $\delta(S, a) = q_f$

•
$$\alpha = A$$
 existe $S \rightarrow A$ Logo, $\delta(S, \epsilon) = A$

•
$$\alpha = aA$$
 existe $S \rightarrow aA$ Logo, $\delta(S, a) = A$

Hipótese de indução. $S \Rightarrow^n \alpha$, n > 1. Dois casos

•
$$\alpha = W$$
 então $\underline{\delta}^*(S, W) = q_f$ (1)

•
$$\alpha = wA$$
 então $\delta^*(S, w) = A$ (2)

Passo de Indução. $S \Rightarrow^{n+1} \alpha$. Então (2) é a única hipótese que importa

$$S \Rightarrow^n wA \Rightarrow^1 \alpha$$

Quatro casos:

• $\alpha = w\epsilon = w$. Existe $A \rightarrow \epsilon$. Logo

$$\underline{\delta}^{\star}(S, w_{\epsilon}) = \delta(\underline{\delta}^{\star}(S, w), \epsilon) = \delta(A, \epsilon) = q_f$$

• α = wb. Existe A \rightarrow b. Logo

$$\underline{\delta}^*(S, wb) = \underline{\delta}(\underline{\delta}^*(S, w), b) = \underline{\delta}(A, b) = q_f$$

• $\alpha = wB$. Existe A \rightarrow B. Logo

$$\underline{\delta}^*(S, w\epsilon) = \delta(\underline{\delta}^*(S, w), \epsilon) = \delta(A, \epsilon) = B$$

• $\alpha = \text{wbB}$. Existe A \rightarrow bB. Logo

$$\underline{\delta}^*(S, wb) = \underline{\delta}(\underline{\delta}^*(S, w), b) = \underline{\delta}(A, b) = B$$

Exp: Construção de um AFNε a partir de uma GR

$$G = (\{ S, A, B \}, \{ a, b \}, P, S)$$

- $S \rightarrow aA$
- A → bB | ε
- B → aA

 $M = (\{a, b\}, \{S, A, B, q_f\}, \delta, S, \{q_f\})$

Teorema: Linguagem Regular → Gramática Regular

Se L é linguagem regular, então existe G, gramática regular que gera L

Prova: (por indução)

L é linguagem regular

• existe um AFD $M = (\Sigma, Q, \delta, q_0, F)$ tal que ACEITA(M) = L

Construição de uma GLUD G

$$GERA(G) = ACEITA(M)$$

derivação simula a função programa estendida

Suponha um AFD $M = (\Sigma, Q, \delta, q_0, F)$ tal que ACEITA(M) = L Seja a gramática regular

$$G = (V, T, P, S)$$

• $V = Q \cup \{S\}$

(suponha $S \notin Q$)

- $T = \Sigma$
- suponha $q_i, q_k \in \mathbb{Q}, q_f \in \mathbb{F}$ e $a \in \Sigma$

Transição	Produção
-	$S \rightarrow q_0$
-	qf→ε
$\delta(q_i, a) = q_k$	q _i → aq _k

GERA(G) = ACEITA(M)? Indução no tamanho da palavra ($w \in \Sigma^*$)

Base de Indução. | w | = 0

- por definição, S → q₀ é produção
- se ε ∈ ACEITA(M), então
 - * q₀ é estado final
 - * q₀ → ε é produção

$$S \Rightarrow q_0 \Rightarrow \varepsilon$$

Hipótese de Indução. $|w| = n \ (n \ge 1) \ e \ \underline{\delta}^*(q_0, w) = q$. Dois casos

- q não é final. Suponha S ⇒ⁿ wq
- (única hipótese que importa)
- q é final. Suponha S ⇒ⁿ wq ⇒ w

Passo de Indução. | wa | = n + 1 e
$$\underline{\delta}$$
*(q₀, wa) = p. Então
$$\delta(\underline{\delta}$$
*(q₀, w), a) = δ (q, a) = p

- p não é final
 - $*S \Rightarrow^n wq \Rightarrow^1 wap$
- p é final

$$*S \Rightarrow^n wq \Rightarrow^1 wap \Rightarrow^1 wa$$

Exp: Construção de uma GR a partir de um AFD

 $M = (\{a, b, c\}, \{q_0, q_1, q_2\}, \delta, q_0, \{q_0, q_1, q_2\})$

$$G = (\{q_0, q_1, q_2, S\}, \{a, b, c\}, P, S)$$

Transição	Produção
-	$S \rightarrow q_0$
-	q ₀ → ε
-	q ₁ → ε
-	q ₂ → ε
$\delta(q_0, a) = q_0$	$q_0 \rightarrow aq_0$
$\delta(q_0, b) = q_1$	$q_0 \rightarrow bq_1$
$\delta(q_1,b)=q_1$	$q_1 \rightarrow bq_1$
$\delta(q_1, c) = q_2$	$q_1 \rightarrow cq_2$
$\delta(q_2, c) = q_2$	$q_2 \rightarrow cq_2$
	d1

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- 6 Linguagens Livres do Contexto
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes e Linguagens e Conclusões