Casamento aproximado de dados e esquemas

Carlos A. Heuser
Universidade Federal do Rio Grande do Sul
Instituto de Informática
Porto Alegre - Brazil

Roteiro

- Introdução ao casamento de dados
- □ Casamento de instâncias
- ☐ Casamento de esquemas

Problemas de pesquisa em integração de dados

- ☐ Integração de esquemas
- ☐ Casamento de esquemas
- Mapeamentos entre esquemas
- □ Casamento de instâncias

Casamento aproximado de dados

Objetivo

Determinar se

dois objetos de dados diferentes

representam

o mesmo objeto da vida real

Exemplo – casamento de *strings*

Objetivo:

Determinar se duas **cadeias de caracteres** diferentes representam o mesmo objeto da vida real

☐ Possíveis cadeias de caracteres:

UFRS

UFRGS

Univ. Fed. do Rio Grande do Sul

Universidade Federal do Rio Grande do Sul

Exemplo casamento de registros

□ Determinar se dois **registros** representam o mesmo objeto da vida real:

Instituição	Cidade	Data Inscrição
Universidade Federal do Rio de Janeiro (UFRJ)	Rio deJaniero	23.jan.2003

Instituição	Cidade	Data Inscrição
Universidade federal do Rio de Janeiro	Rio de Janeiro	2003.01.23

Aplicações de casamento de dados

- ☐ Integração de dados oriundos de fontes diferentes
- ☐ Limpeza de dados (data cleaning) coletados pela WEB
 - (por exemplo, dados de clientes)
- □ Consultas aproximadas a bancos de dados

- Ponto comum:
 - o entidades não têm uma chave primária para união ou junção.

Casamento aproximado de dados

- □ Tema antigo de pesquisa:
 - banco de dados
 - o aprendizagem de máquina
 - o recuperação de informações
- □ Termos:
 - instance matching
 - object matching
 - merge/purge problem
 - fuzzy match
 - odata linkage
 - record linkage
 - Entity resolution
 - **O**....

Onde casamento de instâncias é usado

□ Integração de dados

- Determinar se duas instâncias de dados representam o mesmo objeto da realidade.
- Opis tipos:
 - Casamento de instâncias
 - Casamento de esquemas

□ Consultas por similaridade

 Encontrar todas instâncias de dados que representam o mesmo objeto na vida real

Roteiro

- ☐ Introdução ao casamento de dados
- □ Casamento de instâncias
- ☐ Casamento de esquemas

Função de similaridade

☐ Casamento é computado por uma função de similaridade:

$$f(v_1, v_2) \rightarrow s$$

- \square O **escore de similariade** s define a similaridade entre duas instâncias de dados v_1 e v_2
- ☐ Escores mais altos signficam similaridade maior
- \square Aqui, assumimos $s \in [0..1]$

Limiar

- ☐ Casamento de instâncias é um problema **booleano** (falso/verdadeiro):
 - Casamento tem que resultar em falso (não casam) ou verdadeiro (casam).
- □ Mas, funções de similaridade retornam valores numéricos entre 0 e 1
- ☐ Escore tem que ser transformado em booleano
- \square Um **limiar** (*threshold*) t tem que ser definido
 - $\bigcirc s \ge t \rightarrow \text{instâncias casam}$
 - $\bigcirc s < t \rightarrow \text{instâncias não casam}$

Taxonomia de funções de similaridade

☐ Funções de similaridade podem ser classificadas de acordo com o tipo de instâncias de dados que casam

Funções de similaridade de atômicos (nomes, strings)

- ☐ Há um grande número de funções na literatura
- □ Podem ser classificadas em:
 - Funções baseadas em caracteres
 Comparam caracteres individuais que compõe as cadeias
 - Funções baseadas em termos
 Comparam os termos (palavras) que compõe as cadeias

Funções baseadas em caracteres

- ☐ Distância de edição (Levenshtein)
 - É uma função de distância não de similaridade
- ☐ A distância entre dois strings é o número de operações de :
 - o exclusão,
 - oinserção, or
 - substituição

de um caractere requeridas para transformar um string no outro

Exemplo de distância de edição

Calcular a distância entre as cadeias:

Koffi Anan

е

Kofi Annan

 $\square f_{edit}$ (Koffi Anan , Kofi Annan)

v_1	v_2	Edit operation
Koffi_Anan	K	сору

v_I	v_2	Edit operation
Koffi_Anan	K	сору
Koffi_Anan	Ко	сору

v_{I}	v_2	Edit operation
Koffi_Anan	K	сору
Koffi_Anan	Ко	сору
Koffi_Anan	Kof	сору

v_I	v_2	Edit operation
Koffi_Anan	K	сору
Koffi_Anan	Ко	сору
Koffi_Anan	Kof	сору
Koffi_Anan	Kof	Delete f

v_1	v_2	Edit operation
Koffi_Anan	K	сору
Koffi_Anan	Ко	сору
Koffi_Anan	Kof	сору
Koffi_Anan	Kof	Delete f
Koffi_Anan	Kofi	сору

v_I	v_2	Edit operation
Koffi_Anan	K	сору
Koffi_Anan	Ко	сору
Koffi_Anan	Kof	сору
Koffi_Anan	Kof	Delete f
Koffi_Anan	Kofi	сору
Koffi_Anan	Kofi_	сору

v_{I}	v_2	Edit operation
Koffi_Anan	K	сору
Koffi_Anan	Ко	сору
Koffi_Anan	Kof	сору
Koffi_Anan	Kof	Delete f
Koffi_Anan	Kofi	сору
Koffi_Anan	Kofi_	сору
Koffi_Anan	Koffi_A	сору

v_I	v_2	Edit operation
Koffi_Anan	K	сору
Koffi_Anan	Ко	сору
Koffi_Anan	Kof	сору
Koffi_Anan	Kof	Delete f
Koffi_Anan	Kofi	сору
Koffi_Anan	Kofi_	сору
Koffi_Anan	Koffi_A	сору
Koffi_Anan	Koffi_An	сору

v_I	v_2	Edit operation
Koffi_Anan	K	сору
Koffi_Anan	Ко	сору
Koffi_Anan	Kof	сору
Koffi_Anan	Kof	Delete f
Koffi_Anan	Kofi	сору
Koffi_Anan	Kofi_	сору
Koffi_Anan	Koffi_A	сору
Koffi_Anan	Koffi_An	сору
Koffi_Anan	Koffi_Ann	Insert n

v_I	v_2	Edit operation
Koffi_Anan	K	сору
Koffi_Anan	Ко	сору
Koffi_Anan	Kof	сору
Koffi_Anan	Kof	Delete f
Koffi_Anan	Kofi	сору
Koffi_Anan	Kofi_	сору
Koffi_Anan	Koffi_A	сору
Koffi_Anan	Koffi_An	сору
Koffi_Anan	Koffi_Ann	Insert n
Koffi_Anan	Koffi_Anna	сору

v_I	v_2	Edit operation
Koffi_Anan	K	сору
Koffi_Anan	Ко	сору
Koffi_Anan	Kof	сору
Koffi_Anan	Kof	Delete f
Koffi_Anan	Kofi	сору
Koffi_Anan	Kofi_	сору
Koffi_Anan	Koffi_A	сору
Koffi_Anan	Koffi_An	сору
Koffi_Anan	Koffi_Ann	Insert n
Koffi_Anan	Koffi_Anna	сору
Koffi_Anan	Koffi_Annan	сору

$\square f_{edit}$ (Koffi Anan , Kofi Annan) = 2

v_I	v_2	Edit operation
Koffi_Anan	K	сору
Koffi_Anan	Ко	сору
Koffi_Anan	Kof	сору
Koffi_Anan	Kof	Delete f
Koffi_Anan	Kofi	CODY
Koffi_Anan	Kofi_	сору
Koffi_Anan	Koffi_A	сору
Koffi_Anan	Koffi_An	copy
Koffi_Anan	Koffi_Ann	Insert n
Koffi_Anan	Koffi_Anna	Сору
Koffi_Anan	Koffi_Annan	сору

Função de distância vs. função de similaridade

- ☐ Resultado de uma função de distância tem que ser transformado em escore de similaridade
- Exemplo:
 - odistância: 2 operações
 - total de caracteres dos strings: 20 caracteres
 - \bigcirc simialridade: 18/20 = 0.9

Funções baseadas em termos

□ Jaccard

 Número de palavras comuns entre dois strings dividido pelo número total de palavras

☐ TF-IDF

- Função comum em recuperação de informações
- Termos recebem pesos de forma a ponderar menos palavras mais comuns

Funções baseadas em caracteres x Funções baseadas em termos

- ☐ Baseadas em caracteres
 - Manipulam bem erros de ortografia

- ☐ Baseadas em **termos**
 - Aceitam ordem diferente de termos

Funções atômicas

- ☐ Um grande número de funções já foi definido
- ☐ Bibliotecas de software (Java):
 - William Cohen's SecondString library: http://secondstring.sourceforge.net/
 - SimMetric library: http://sourceforge.net/projects/simmetrics/

Aplicando funções de similaridade - problemas

- ☐ Funções de similaridade são dependentes de domínio:
 - Nomes de pessoas
 - Nomes de organizações a acrônimos
 - Cadeias com uma palavra
 - Cadeias com muitas palavras e erros de ortografia
 - **O** . . .
- □ Como definir o limiar?
 - Distribuição de valores de escore varia de uma função para a outra

Casamento de instâncias - Conclusões

- ☐ Há muitas aplicações de integração de dados
- □ Nem sempre a técnica de junção clássica de bases de dados relacionais resolve
 - o falta de chave primária
- ☐ Técnicas baseadas em similaridade são necessárias
- ☐ Já existem muitas funções disponíveis

Casamento de esquemas

- Modelos de dados que distinguem esquema de instâncias:
 - XML, relacional, ...
- ☐ Distingue-se:
 - o casamento de esquemas de
 - o casamento de instâncias.
- □ Objetivo do casamento de esquemas:
 - Apoiar a definição de mapeamentos entre esquemas
 - Mapeamento:

Especifica como sub-conjuntos de elementos de um esquema S₁ correspondem a sub-conjuntos de S₂

Roteiro

- ☐ Introdução ao casamento de dados
- □ Casamento de instâncias
- **□** Casamento de esquemas

Exemplo de casamentos

Table 2. Full vs partial structural match (example)

S1 elements	S2 elements	
Address	CustomerAddress	full structural match of
Street	Street	Address and CustomerAddress
City	City	
State	USState	
ZIP	PostalCode	
AccountOwner	Customer	partial structural match of AccountOwner and
Name	Cname	Customer
Address	CAddress	
Birthdate	CPhone	
TaxExempt		

Taxonomia de casadores de esquema

Esquema vs. instância

- □ Alguns casadores não consideram dados (instâncias), apenas o esquema.
- Outros casadores usam os valores dos dados
 - Exemplo: duas colunas de nome preço que têm distribuição de valores bem diferente, podem não representar o mesmo atributo

Elementos vs. estutura

- □ Falando de forma geral, um esquema pode ser considerado como sendo um **grafo** formado por **elementos** (por exemplo, nomes de tabelas e nomes de colunas no relacional) e **arcos** (**ligações estruturais** entre elementos por exemplo, as ligações de um nome de tabela com os nomes de suas colunas).
- ☐ Um casador pode considerar somente os elementos ou pode considerar também relações estruturais

Lingüístico vs. restrições

- □ Um casador pode levar em conta somente aspectos lingüísticos, isto é considerar apenas os nomes dos elementos
- ☐ Um casador pode levar em conta **restrições de integridade**:
 - Casar colunas que têm o mesmo tipo;
 - Casar colunas que forma a chave primária,...

Cardinalidade do resultado

- \square Casadores podem ser classificados de acordo com o número de elementos que são casados a cada elemento de S_1 ou S_2 .
 - **O**1:1
 - **1:**n
 - on:1
 - on:n

Entrada considerada pelo casador

- ☐ Além dos esquemas propriamente ditos (e instâncias) casadores podem receber como entrada outros dados:
 - o dicionários,
 - ontologias,
 - o casamentos anteriores,
 - **O** ...
 - o entrada de um usuário.

Combinando casadores

- □ Para a maioria das aplicações, um casador somente não produz resultados adequados.
- □ Vários casadores são combinados:
 - Casador híbrido: um casador é construído combinando as técnicas de vários casadores simples em um novo casador (uma única passada nos dados)
 - Casador composto: os resultados de vários casadores individuais são combinados.

Conclusões – casadores de esquemas

- ☐ Há um grande número de casadores propostos.
- □ Não há soluções genéricas.
- □ Casamento de qualidade provavelmente envolve intervenção humana (pode haver aprendizado)