Exercise 18.15

Recall the following definitions:

- (a) F is **exact** if $F = \nabla f$ for some smooth function $f: U \to \mathbf{R}$. The function f is called a **scalar** potential function for F.
- (b) F is **conservative** if $\oint_C F \cdot d\vec{x} = 0$ for every loop C contained in U. (A **loop** is the image of a piecewise smooth map $\gamma : [a,b] \to \mathbf{R}^n$ such that γ is a regular embedding on [a,b), and $\gamma(a) = \gamma(b)$. Or, you could think of it as a smooth, oriented curve C which is closed as a subset of \mathbf{R}^n , and such that $\partial C = \emptyset$.)

In this exercise, we will show that a conservative function is also exact.

Proof. Let $F: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be conservative. For each connected component U_i of U, we pick an arbitrary $q_i \in U_i$. Define a function $f: U \to \mathbb{R}$ as follows. For each $p \in U$, it is contained in some U_i . Let $\gamma: [0,1] \to U_i$ parametrize a path from p to p_i , that is, γ is smooth, regular, and satisfies $\gamma(0) = p$, $\gamma(1) = p_i$. For this γ , we define

$$f(p) = \oint_{\gamma[0,1]} F \cdot d\vec{x} = \int_0^1 F(\gamma(t)) \cdot \gamma'(t) dt$$