Uniwersytet Wrocławski, Instytut Matematyczny Kolokwium nr 1

ımıe ı nazwısko:	
unity i maziviono.	

Kolokwium składa się z 10 stron oraz 4 zadań. Na drugiej stronie znajduje się spis ważniejszych rozkładów. Dwie ostatnie strony stanowią brudnopis. Na rozwiązanie wszystkich zadań jest 100 minut. Zacznij od spokojnego (!) przeczytania treści wszystkich zadań i zacznij od najłatwiejszego. Powodzenia!

zadanie	1	2	3	4	Σ
punkty	10	10	10	10	40
wynik					

- 1. Załóżmy, że mamy n+1 ponumerowanych urn. W k-tej urnie znajduje się k kul białych oraz n-k kul czarnych ($k=0,1,\ldots,n$). Losujemy urnę (z jednakowym prawdopodobieństwem), a następnie z tej urny kolejno, bez zwracania, 2 kule. Niech B_1 oznacza zdarzenie losowe polegające na wyciągnięciu białej kuli w pierwszym losowaniu, B_2 zdarzenie polegające na wyciągnięciu białej kuli w drugim losowaniu, zaś A_k zdarzenie polegające na wylosowaniu urny o numerze k.
 - (a) (3 p.) Wykaż, że $\mathbb{P}[B_1] = \frac{1}{2}$. Wskazówka: $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$.
 - (b) (2 p.) Wyznacz $\mathbb{P}[A_k|B_1]$.
 - (c) (5 p.) Wyznacz $\mathbb{P}[B_2|B_1]$. Wskazówka: $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

2. Z przedziału [-1,1] wybrano losowo punkty A i B. Niech funkcja $f: \mathbb{R} \to \mathbb{R}$ będzie zadana wzorem

$$f(x) = (A+1)x^2 + 2Bx + 1.$$

- (a) (2 p.) Określ zbiór zdarzeń elementarnych i σ -ciało jego podzbiorów. Dobierz odpowiednie prawdopodobieństwo.
- (b) (3 p.) Oblicz prawdopodobieństwo, że f(x) > A dla każdego $x \in \mathbb{R}$. Wskazówka: napisz warunek na wyróżnik pewnego trójmianu kwadratowego.
- (c) (2 p.) Niech zmienna losowa I będzie dana przez $I = \int_0^1 f(x) \, \mathrm{d}x$. Oblicz $\mathbb{E}[I]$.
- (d) (3 p.) Oblicz prawdopodobieństwo warunkowe, że suma rozwiązań równania f(x) = 0 jest dodatnia, pod warunkiem, że równanie to ma dwa różne rozwiązania. Wskazówka: zastosuj wzory Viète'a.

- 3. Niech F będzie ciągłą, ściśle rosnącą dystrybuantą na \mathbb{R} . Przez Φ oznaczmy dystrybuantę standardowego rozkładu normalnego $\mathcal{N}(0,1)$.
 - (a) (3 p.) Niech X będzie zmienną losową o rozkładzie jednostajnym $\mathcal{U}[0,1]$. Udowodnij, że $Z=F^{-1}(X)$ ma rozkład o dystrybuancie F. Wskazówka: znajdź dystrybuantę F_Z .
 - (b) (3 p.) Niech Y będzie zmienną losową o ciągłej, ściśle rosnącej dystrybuancie F_Y . Pokaż, że zmienna losowa $S = F_Y(Y)$ ma rozkład jednostajny $\mathcal{U}[0,1]$. Wskazówka: znajdź dystrybuantę F_S .
 - (c) (4 p.) Oblicz $\int_0^1 \Phi^{-1}(x) \, \mathrm{d}x$ oraz $\int_{\mathbb{R}} \Phi(x) e^{-x^2/2} \, \mathrm{d}x$. Wskazówka: wyraź szukane całki jako wartości oczekiwane pewnych zmiennych losowych i skorzystaj z wiedzy z ćwiczeń.

- 4. Zmienna losowa X ma rozkład wykładniczy $\mathcal{E}xp(\lambda)$.
 - (a) (5 p.) Wykaż, że $Y=\sqrt{X}$ ma rozkład o gęstości $f_Y(t)=2\lambda t e^{-\lambda t^2}\mathbbm{1}_{[0,+\infty)}(t).$
 - (b) (5 p.) Oblicz $\mathbb{P}[Y^2 7Y + 12 > 0]$.