CSC236 Assignment 1

1.)

Let N denote the set of all natural numbers.

$$f_1 = 1$$
, $f_2 = 1$. $\forall n \in \mathbb{N}$, $n \ge 3$, $f_n = f_{n-1} + f_{n-2}$.

$$P(n): \forall n \in \mathbb{N}, n \ge 1, \gcd(f_n, f_{n+1}) = 1.$$

The base case for P(n) is when n = 1.

$$P(1)$$
: $f_1 = 1$, $f_{1+1} = f_2 = 1$. Therefore $gcd(f_1, f_2) = gcd(1, 1) = 1$. Therefore $P(1)$ holds.

P(k): Suppose $\exists k \in \mathbb{N}$, $k \ge 1$ such that P(k) holds which means $gcd(f_{k+1}, f_k) = 1$.

To complete the proof, I must show that P(k + 1) holds.

P(k + 1): I need to show that $gcd(f_{k+1}, f_{k+2}) = 1$.

$$f_{k+1} = f_k + f_{k-1}$$
 and $f_{k+2} = f_{k+1} + f_k = f_k + f_{k-1} + f_k = 2f_k + f_{k-1}$.

Since for all $k \ge 1$, $f_{k+2} > f_{k+1}$, this means that $gcd(f_{k+1}, f_{k+2}) = gcd(f_{k+1}, f_{k+2} - f_{k+1})$.

$$f_{k+2} - f_{k+1} = 2f_k + f_{k-1} - f_k + f_{k-1} = f_k$$
.

Therefore $gcd(f_{k+1}, f_{k+2}) = gcd(f_{k+1}, f_k) = 1$ and P(k+1) holds and the proof is complete.

Therefore, $\forall n \in \mathbb{N}, n \ge 1, \gcd(f_n, f_{n+1}) = 1.$

2.)

Let N denote the set of all natural numbers.

$$a_1 = 1$$
, $a_2 = 1$. $\forall n \in \mathbb{N}$, $n \ge 3$, $a_n = a_{n-1} + a_{n-2} + 1$.

$$P(n)$$
: $\forall n \in \mathbb{N}, n \ge 1, a_n = 2f_n - 1.$

The base case for P(n) is when n = 1.

$$P(1)$$
: $a_1 = 2f_1 - 1 = 2(1) - 1 = 2 - 1 = 1$. Therefore $P(1)$ holds.

Suppose $\forall j \in \mathbb{N}$, $\exists k \in \mathbb{N}$, $k \ge j \ge 1$, P(j) holds which means $a_j = 2f_j - 1$.

To complete the proof, I must show that P(k + 1) holds.

P(k + 1): I need to show that $a_{k+1} = 2f_{k+1} - 1$.

$$a_k = a_{k-1} + a_{k-2} + 1$$

$$a_{k+1} = a_k + a_{k-1} + 1$$

$$a_{k+1} = 2f_k - 1 + 2f_{k-1} - 1 + 1$$

$$a_{k+1} = 2(f_k + f_{k-1}) - 1$$

* from problem 1, I know that $f_k + f_{k-1} = f_{k+1}$

$$a_{k+1} = 2f_{k+1} - 1$$

Therefore $a_{k+1} = 2f_{k+1} - 1$ and P(k+1) holds and the proof is complete.

Therefore, $\forall n \in \mathbb{N}, n \ge 1, a_n = 2f_n - 1.$

3.)

Let N denote the set of all natural numbers.

Let P denote the set of all prime numbers.

P(n):
$$\forall$$
n \in N, n > 1, \exists p \in P, p | n.

Assume $\neg P(n)$ which means $\exists n \in \mathbb{N}, n > 1, \forall p \in P, p \nmid n$.

Let
$$S = \{k \in N \mid \neg P(k)\}.$$

Then
$$S = \{k \in \mathbb{N} \mid k > 1, \forall p \in \mathbb{P}, p \nmid k\}.$$

Then $S \neq \emptyset$ and $S \subseteq N$.

By the well ordering principle, S has a minimum element c and by the definition of S this means that c is not divisible by a prime and $\forall d \in \mathbb{N}$, if 1 < d < c then d is divisible by a prime number.

There are two cases to consider, when c is a prime number or when c is not a prime number.

Case 1: c is a prime number

c is obviously divisible by itself which makes it divisible by a prime number which means P(c) holds and this means c∉S which is a contradiction.

Case 2: c is not a prime number

In this case c is a composite number. So $\exists a \in \mathbb{N}$, $\exists b \in \mathbb{N}$ such that c = ab with 1 < a < c and 1 < b < c. Since 1 < a < c this means $\exists p \in \mathbb{P}$ such that $p \mid a$. Since $a \mid c$, and $p \mid a$, this implies that $p \mid c$ which means c is divisible by a prime number which means P(c) holds and this means $c \notin S$ which is a contradiction.

Since both cases have been proven this means the proof is complete and it is true that $\forall n \in \mathbb{N}, n > 1, \exists p \in \mathbb{P}, p \mid n.$

4.)

Let N denote the set of all natual numbers.

Let R denote the set of all real numbers.

$$h_0 = 1, h_1 = 2, h_2 = 3. \forall k \in \mathbb{N}, k \ge 3, h_k = h_{k-1} + h_{k-2} + h_{k-3}.$$

Suppose that $\forall s \in \mathbb{R}, s^3 \ge s^2 + s + 1, s > 1.83$.

P(n): \forall n \in N, n \geq 2, h_n \leq sⁿ.

The base case for P(n) is when n = 2.

P(2): $h_2 = 3$, s > 1.83 so $s^2 > 3.3489$ and 3 < 3.3489 which means $h_2 \le s^2$ and therefore P(2) holds.

Suppose $\forall j \in \mathbb{N}$, $\exists m \in \mathbb{N}$, $m \ge j \ge 2$, P(j) holds which means $h_j \le s^j$.

To complete the proof, I must show that P(m + 1) holds.

P(m + 1): I need to show that $h_{m+1} \le s^{m+1}$.

$$h_m = h_{m-1} + h_{m-2} + h_{m-3}$$

$$h_{m+1} = h_m + h_{m-1} + h_{m-2} \le s^m + s^{m-1} + s^{m-2}$$

$$h_{m+1} = h_m + h_{m-1} + h_{m-2} \le s^{m-2}(s^2 + s + 1)$$

*
$$s^3 \ge s^2 + s + 1$$

$$h_{m+1} = h_m + h_{m-1} + h_{m-2} \le s^{m-2}(s^3)$$

$$h_{m+1} = h_m + h_{m-1} + h_{m-2} \le s^{m+1}$$

$$h_{m+1}\!\leq s^{m+1}$$

Therefore P(m+1) holds and the proof is complete which means $\forall n \in \mathbb{N}, n \geq 2, h_n \leq s^n$.