第1章 化学反应中的能量关系

- 1.2 化学反应的自发性
 - 1.2.1 焓变与反应的自发性
 - 1.2.2 混乱度和熵
 - 1.2.3 反应的熵变
 - 1.2.4 吉布斯函数

1.2.1 焓变与反应的自发性

自发过程

一定条件下,不需环境对系统做非体积功就能进行的过程

许多放热反应能够自发进行。例如: 298K、 p^{θ} 下,

$$CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$$

$$\Delta_{\rm r} H_{\rm m}^{\theta} = -179.2 \text{kJ} \cdot \text{mol}^{-1}$$

$$CH_4(g) + 2O_2(g) \rightarrow 2H_2O(1) + CO_2(g)$$

$$\Delta_{\rm r} H_{\rm m}^{\theta} = -890.5 \text{kJ} \cdot \text{mol}^{-1}$$

焓变规则:

在没有外界能量的参与下,化学反应总是向放热更多的方向进行 1173 K、 p^{θ} 下,

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$
 $\Delta_r H_m^{\theta} = 178.5 \text{kJ} \cdot \text{mol}^{-1}$

焓变只是影响反应自发性的因素之一,并不是唯一的影响因素

1.2.2 混乱度和熵

1. 混乱度与反应的自发性

温度高于621K时

$$NH_4Cl(s) \rightarrow NH_3(g) + HCl(g)$$

$$\Delta_{\rm r} H_{\rm m}^{\theta} = 176.91 \text{kJ} \cdot \text{mol}^{-1}$$

气态 N₂O₄(g) 在324K以上,可以分解为 NO₂(g)

$$N_2O_4(g) \rightarrow 2NO_2(g)$$

$$\Delta_{\rm r} H_{\rm m}^{\theta} = 58.03 {\rm kJ \cdot mol}^{-1}$$

经验规则 2: 化学反应总是向系统混乱度增大的方向进行

2. 混乱度和微观状态数

第一个体系:3个微观粒子处于3个位置

Α	В	С	В	Α	С	
С	Α	В	Α	С	В	
		Α				

6 种微观状态

即 $\Omega = 6$

第二个体系:3个微观粒子处于4个位置

A B C	A B C A B C A B C	
A C B	A C B A C B	24 种微观状态
ВАС	B A C B A C B A C	24
BCA	B C A B C A B C A	$\mathbb{RP} \Omega = 24$
CAB	C A B C A B	
CBA	C B A C B A C B A	

第三个体系:2个微观粒子处于4个位置

AB	AB	A B
ВА	ВА	ВА
АВ	АВ	АВ
В А	ВА	В А

12 种微观状态

即 $\Omega = 12$

系统	微观粒子数	位置数	微观状态数
	3	3	6
	3	4	24
	2	4	12

- ① 粒子的活动范围越大, 体系的微观状态数越多;
- ② 粒子数越多,体系的微观状态数越多。

微观状态数可以定量地表明体系的混乱度

3. 状态函数 — 熵 5

玻耳兹曼 (Boltzmann L,1844-1906) 奥地利物理学家

 $S = k \ln \Omega$

波尔兹曼关系式

S:系统的熵

Ω:系统内部微观状态总数

k:波尔兹曼常数 1.38 × 10⁻²³ J·K⁻¹

熵 S

- (1) 熵是系统的混乱度的量度。系统熵值越高,表示系统混乱度越大;
- (2) 熵是具有加和性的状态函数;
- (3) 熵的 SI 单位为 J·K⁻¹。

1.2.3 反应的熵变

1. 热力学第三定律的表述

热力学第三定律:在0 K时,纯物质完美晶体的熵值等于零

 $S^*(0K, 完美晶体) = 0$

2. 标准摩尔规定熵

某纯物质完美晶体 $0 \text{ K} \rightarrow p=100 \text{kPa}$ 和 T

$$S(B,T) = \Delta S = S(B,T) - S^*(B, 0K, 完美晶体)$$

B的规定熵

TK 时B 的终态熵

OK B 纯物质的熵

在某温度 T 和标准压力下,1 摩尔某纯物质 B 的规定熵 称为该物质的标准摩尔规定熵,简称标准摩尔熵

$$S_{m}^{\theta}(\mathbf{B},$$
相态, $T)$

- (1) 稳定单质的 S_{m}^{θ} (单质, 相态,298K) $\neq 0$
- (2) 熵的符号为 S_{m}^{θ} , 不是 $\Delta_{\mathrm{f}} S_{\mathrm{m}}^{\theta}$
- (3) 标准摩尔熵的单位是 J·K⁻¹·mol⁻¹

3. 物质熵值变化的一般规律

- (1) 温度升高,同种物质的摩尔熵值增大
- (2) 同种物质的聚集状态不同,摩尔熵值不同

$$S_{m}^{\theta}(g) > S_{m}^{\theta}(l_{2}) > S_{m}^{\theta}(s)$$

(3) 对于同一温度下的分散体系而言,溶液的熵值总大于纯溶质加纯溶剂的熵值

(4) 同系列物质,摩尔质量越大,摩尔熵值越大

$$S_{m}^{\theta}(F_{2},g) < S_{m}^{\theta}(Cl_{2},g) < S_{m}^{\theta}(Br_{2},g) < S_{m}^{\theta}(I_{2},g)$$

$$S_{m}^{\theta}(HF,g) < S_{m}^{\theta}(HCl,g) < S_{m}^{\theta}(HBr,g) < S_{m}^{\theta}(HI,g)$$

(5) 同种物质,相同聚集状态,密度大者熵值小

如
$$S_{\mathrm{m}}^{\Theta}(\mathbf{金刚石}) < S_{\mathrm{m}}^{\Theta}(\mathbf{石墨})$$

(6) 压力增大,气态物质的熵减小;压力对固态和液态物质的熵影响很小

物质熵值变化的一般规律

4. 反应的熵变

对于气体物质的量增加的反应

熵变总是正值

对于气体物质的量减少的反应

熵变总是负值

对于气体物质的量不变的反应

熵变一般总是很小

(1)
$$2N_2(g) + O_2(g) \rightarrow 2N_2O(g), \Delta_r S_m^{\theta} \leq 0$$

(2)
$$\operatorname{Ag}(s) + \frac{1}{2}\operatorname{Cl}_{2}(g) \to \operatorname{AgCl}(s), \ \Delta_{r}S_{m}^{\theta} \leq 0$$

(3) HgO(S)
$$\to$$
 Hg(l) + $\frac{1}{2}$ O₂(g), $\Delta_r S_m^{\theta} \ge 0$

5. 标准摩尔熵变的计算

对于任意反应:
$$eE + fF \rightarrow gG + rR$$
 $\Delta_r S_m^{\theta} = ?$

在标准态下,温度为T时,单位反应进度时反应

的熵变,称为标准摩尔熵变(标准摩尔熵反应熵)

$$\Delta_{\mathbf{r}} S_{\mathbf{m}}^{\theta} = g S_{\mathbf{m}}^{\theta}(\mathbf{G}) + r S_{\mathbf{m}}^{\theta}(\mathbf{R}) - e S_{\mathbf{m}}^{\theta}(\mathbf{E}) - f S_{\mathbf{m}}^{\theta}(\mathbf{F})$$
$$\Delta S_{\mathbf{m}}^{\theta} = \sum \nu_{\mathbf{B}} S_{\mathbf{m}}^{\theta}$$

1.2.4 吉氏函数

吉布斯 (1839~1903年)-- 天才与白痴/热力学大师

吉布斯1839年生于美国的一个书香门第,祖上几代都毕业于哈佛大学。父亲是耶鲁大学的教授,母亲是一位博士的女儿。吉布斯本人于1863年获得耶鲁大学博士学位,一直担任耶鲁大学的数学物理教授。吉布斯在数学和物理化学方面的造诣极为高深。

他奠定了化学热力学的基础,提出了吉布斯自由能与吉布斯相律。他创立了 向量分析并将其引入数学物理之中。

1. 吉布斯函数和自发过程

定义:吉布斯(Gibbs)自由能 G = H - TS

- (1) G 是状态函数 , G 的 SI 单位为 J
- (2) G 的绝对值无法测量,可测量的只是 ΔG
- (3) G 具有加和性

由 G = H - TS 可得恒温条件下 $\Delta G = \Delta H - T\Delta S$

吉布斯—赫姆霍兹方程(吉布斯等温方程)

$$T = 273 \text{K}$$

$$\Delta_{r} S_{m}^{\theta} = 22.0 \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

$$Q_{\text{fus}} = \Delta_{r} H_{m}^{\theta} = 6007 \text{J} \cdot \text{mol}^{-1}$$

用 $T\Delta_{r}S_{m}^{\theta}$ 和 $\Delta_{r}H_{m}^{\theta}$ 作定量比较

$$T\Delta_{\rm r}S_{\rm m}^{\theta} = 273 \,{\rm K} \times 22.0 \,{\rm J} \cdot {\rm mol}^{-1} \cdot {\rm K}^{-1} = 6007 \,{\rm J} \cdot {\rm mol}^{-1} = \Delta_{\rm r}H_{\rm m}^{\theta}$$

冰水共存,平衡状态

> T > 273K (如 300 K)

$$T\Delta_{r}S_{m}^{\theta} = 300K \times 22.0 \text{ J.mol}^{-1} \text{ K}^{-1} > 6007 \text{ J.mol}^{-1}$$

$$T\Delta_{r}S_{m}^{\theta} > \Delta_{r}H_{m}^{\theta}$$
 冰熔化成水,正向自发进行

➤ T < 273K (如250K)

$$T\Delta_{\rm r}S_{\rm m}^{\theta} = 250 \text{K} \times 22.0 \text{ J.mol}^{-1} \text{ K}^{-1} < 6007 \text{ J} \cdot \text{mol}^{-1}$$

$$T\Delta_{r}S_{m}^{\theta} < \Delta_{r}H_{m}^{\theta}$$
 水变为冰,逆向自发进行

即自发过程的条件: $\Delta_{\rm r} H_{\rm m}^{\theta} - T \Delta_{\rm r} S_{\rm m}^{\theta} < 0$

若封闭体系

恒温恒压下,且不做非体积功,即 $W_{\sharp}=0$,化学反应方向的判据:

 $\Delta G < 0$,反应以不可逆方式自发进行

 $\Delta G = 0$,反应以可逆方式进行

 $\Delta G > 0$, 反应不能自发进行

当化学反应进度为 1 mol 时: $\Delta_r G_m = \Delta_r H_m - T \Delta_r S_m$

 $\Delta_{\mathbf{r}}G_{\mathbf{m}}$: 摩尔反应吉氏函数 单位:(k)J·mol⁻¹

化学反应自发方向的判断

 $\Delta_{\rm r}G_{\rm m}$ < 0,化学反应正向自发进行

 $\Delta_{\rm r}G_{\rm m} > 0$,化学反应的逆过程自发

 $\Delta_{\rm r}G_{\rm m}=0$,化学反应系统处于平衡状态

2. 摩尔反应吉布斯函数变与反应自发性

在()_{T, p, W'=0}时,
$$\Delta_{\mathbf{r}}G_{\mathbf{m}}(T) = \Delta_{\mathbf{r}}H_{\mathbf{m}} - T\Delta_{\mathbf{r}}S_{\mathbf{m}}$$

$\Delta_{ m r} H_{ m m}$	$\Delta_{ m r} S_{ m m}$	$\Delta_{ m r} G_{ m m}$	反应特征
< 0	> 0	< 0	任何温度下均自发进行
> 0	< 0	> 0	任何温度下均非自发进行
< 0	< 0		低温有利于自发进行
> 0	> 0		高温有利于自发进行

3.标准摩尔反应吉布斯函数变

若参与化学反应的各物质均处于标准状态,则可用标准摩尔反应 吉氏函数 $\Delta_{\Gamma}G_{\mathbb{R}}^{\theta}(T)$ 来判断反应方向

$$\Delta_{\mathrm{r}}G_{\mathrm{m}}^{^{\theta}}(T) < 0$$
 反应正向进行

$$\Delta_{r}G_{m}^{\theta}(T)=0$$
 反应达到平衡状态

$$\Delta_{r}G_{m}^{\theta}(T) > 0$$
 反应逆正向进行

注意: 若参与化学反应的物质不处于标准状态时,

不能用 $\Delta_{\Gamma}G_{m}^{\theta}$ 来判断反应方向,必须用 $\Delta_{\Gamma}G_{m}$ 来判断!

$$\Delta_{\mathbf{r}} G_{\mathbf{m}}^{\theta}(T) = \Delta_{\mathbf{r}} H_{\mathbf{m}}^{\theta}(T) - T \Delta_{\mathbf{r}} S_{\mathbf{m}}^{\theta}(T)$$

实验证明,无论是摩尔反应熵还是摩尔反应焓,受反应温度的影响不大,所以在实际应用中,在一定温度范围内可忽略温度对二者的影响。

$$\Delta_{r}H_{m}^{\theta}(T) \approx \Delta_{r}H_{m}^{\theta}(298K)$$

$$\Delta_{r}S_{m}^{\theta}(T) \approx \Delta_{r}S_{m}^{\theta}(298K)$$

$$\therefore \Delta_{\mathbf{r}} G_{\mathbf{m}}^{\theta}(T) = \Delta_{\mathbf{r}} H_{\mathbf{m}}^{\theta}(T) - T \Delta_{\mathbf{r}} S_{\mathbf{m}}^{\theta}(T)$$

$$\approx \Delta_{\rm r} H_{\rm m}^{\theta}(298{\rm K}) - T\Delta_{\rm r} S_{\rm m}^{\theta}(298{\rm K})$$

$$\Delta_{\mathbf{r}} G_{\mathbf{m}}^{\theta} = \Delta_{\mathbf{r}} H_{\mathbf{m}}^{\theta} - T \Delta_{\mathbf{r}} S_{\mathbf{m}}^{\theta}$$

标准摩尔生成吉氏函数 $\Delta_{_{\mathrm{f}}}G_{_{\mathrm{m}}}^{^{0}}$

某温度在标准状态下,由<u>规定单质生成 1mol 某物质</u>的标准摩尔反应吉布斯函数,称为该物质的标准摩尔生成吉布斯函数(或标准摩尔生成吉布斯自由能)

处于标准状态下的规定单质的 $\Delta_{_{\mathrm{f}}}G_{_{\mathrm{m}}}^{^{0}}=0$

单位:kJ·mol-1

对于任意反应: $eE + fF \rightarrow gG + rR$

$$\Delta_{\mathbf{r}} G_{\mathbf{m}}^{\theta} = g \Delta_{\mathbf{f}} G_{\mathbf{m}}^{\theta}(\mathbf{G}) + r \Delta_{\mathbf{f}} G_{\mathbf{m}}^{\theta}(\mathbf{R}) - e \Delta_{\mathbf{f}} G_{\mathbf{m}}^{\theta}(\mathbf{E}) - f \Delta_{\mathbf{f}} G_{\mathbf{m}}^{\theta}(\mathbf{F})$$

$$\Delta_{r} G_{m}^{\theta} = \sum_{B} v_{B} \Delta_{f} G_{m}^{\theta} (B, H \overline{\Delta}, T)$$

例如:
$$H_2(g) + \frac{1}{2} O_2(g) = H_2O(1)$$
 $\Delta_r G_m^{\theta} = -237 \text{kJ} \cdot \text{mol}^{-1}$

则
$$H_2O(1)$$
 的 $\Delta_f G_m^\theta = -237 \text{kJ} \cdot \text{mol}^{-1}$

规定单质的 $\Delta_{\mathrm{f}}G_{\mathrm{m}}^{\theta}$ 为零

例如:
$$C(s, 石墨)$$
 $Cl_2(g)$ $Br_2(l)$ $I_2(s)$

$$\Delta_{\mathrm{f}}G_{\mathrm{m}}^{\theta}$$
 0 0 0

4. 吉氏函数应用的延伸

在()_{T,p,W'=0}时,

$$\Delta_{\rm r}G_{\rm m}(T) = \Delta_{\rm r}H_{\rm m} - T\Delta_{\rm r}S_{\rm m}$$

$\Delta_{ m r} H_{ m m}$	$\Delta_{ m r} S_{ m m}$	$\Delta_{ m r} G_{ m m}$	反应特征	
< 0	< 0	< 0	低温有利于自发进行	
> 0	> 0	> 0	高温有利于自发进行	

估算反应进行的温度---反应方向的转变温度

计算反应转变方向的温度

$$\Delta_{\rm r}G_{\rm m} = \Delta_{\rm r}H_{\rm m} - T\Delta_{\rm r}S_{\rm m} = 0$$

$$T = \frac{\Delta_{\rm r} H_{\rm m}}{\Delta_{\rm r} S_{\rm m}}$$

例6: 在石灰窑中煅烧石灰石生产生石灰的反应为:

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

查得有关热力学数据如下表所示:

	CaCO ₃ (s)	CaO(s)	CO ₂ (g)
$\Delta_{\!{}_{\mathrm{f}}} H_{_{\mathrm{m}}}^{^{\theta}} / \mathrm{kJ \cdot mol}^{^{-1}}$	-1207	-636	-394
$\Delta_{\mathrm{f}} G_{\mathrm{m}}^{\theta} / \mathrm{kJ \cdot mol}^{-1}$	-1129	-604	-394
$S_{m}^{\theta} / \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$	93	40	214

分别计算 25 ℃ 和 1000 ℃ 时该反应的 $\Delta_{\rm r}G_{\rm m}^{\theta}$,说明分解反应能否进行,并计算分解反应能进行的最低温度($p_{\rm co}$, = p^{θ})。

解: 25°C时: $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

$$\Delta_{r}G_{m}^{\theta} = \Delta_{f}G_{m}^{\theta}(CaO_{s}) + \Delta_{f}G_{m}^{\theta}(CO_{2},g) - \Delta_{f}G_{m}^{\theta}(CaCO_{3},s)$$

$$= -604 + (-394) - (-1129)$$

$$= 131kJ \cdot mol^{-1} > 0$$

所以在25℃的标准状态($p_{\text{CO}_2} = p^{\theta}$) 时该分解反应不能进行

续解: 1000°C时, $\Delta_{\mathbf{r}}G_{\mathbf{m}}^{\theta} = \Delta_{\mathbf{r}}H_{\mathbf{m}}^{\theta} - T\Delta_{\mathbf{r}}S_{\mathbf{m}}^{\theta}$

$$\Delta_{r}H_{m}^{\theta} = \Delta_{f}H_{m}^{\theta}(CaO,s) + \Delta_{f}H_{m}^{\theta}(CO_{2},g) - \Delta_{f}H_{m}^{\theta}(CaCO_{3},s)$$
$$= (-636) + (-394) - (-1207) = 177 \text{ kJ} \cdot \text{mol}^{-1}$$

$$\Delta_{r} S_{m}^{\theta} = S_{m}^{\theta} (CaO_{s}) + S_{m}^{\theta} (CO_{2},g) - S_{m}^{\theta} (CaCO_{3},s)$$
$$= 40 + 214 - 93 = 161 J \cdot mol^{-1} \cdot K^{-1}$$

$$\Delta_{r}G_{m}^{\theta}(1273K) = \Delta_{r}H_{m}^{\theta} - T\Delta_{r}S_{m}^{\theta} = 177 - 1273 \times (161 \times 10^{-3})$$
$$= -28kJ \cdot mol^{-1} < 0$$

在1000℃的标准状态 $(p_{co_2} = p^{\theta})$ 时该分解反应可以进行

续解: 计算分解反应能进行的最低温度

分解反应所需最低温度对应于 $\Delta_{r}G_{m}^{\theta}(T)=0$

$$\Delta_{\rm r} G_{\rm m}^{\theta} (T) = \Delta_{\rm r} H_{\rm m}^{\theta} - T \Delta_{\rm r} S_{\rm m}^{\theta} = 0$$

$$177 - T \times (161 \times 10^{-3}) = 0$$

$$T = 1100 \,\mathrm{K}$$

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

CO₂ 的分压为 100 kPa 时碳酸钙的分解温度为 837℃ (1110K)

