

Why Detect and Quantify Proteins?

Central dogma of molecular biology

- 1. Diagnosis e.g. biomarkers
- 2. Prognosis e.g. clinical outcome, disease monitoring
- 3. Treatment e.g. targeting functional proteins for therapeutic purposes

Why Detect and Quantify Proteins?

Oncogenic / Tumour Promoting Increased in cancer vs. normal

Tumour Suppressive
Decreased in cancer vs. normal

Methods of Protein Detection

Western Blotting

Western Blotting: The Theory

'....identifies proteins using specific antibodies that have been separated from one another according to their size by electrophoresis'

Factors usually affecting electrophoretic mobility:

- Size
- Charge

Western Blotting: The Theory

- 1. Anionic detergent, commonly SDS
 - Disrupts protein structure into a linear polypeptide
 - Imparts uniform negative charge
- 2. Reducing agent e.g. DTT, β -mercaptoethanol
 - Disrupt disulphide bonds

Western Blotting: The Theory

Polyacrylamide Gels

Running a Western Blot

Properties of a Protein-of-Interest

- 1.Size
- 2.Function
- 3. Cellular Localisation
- 4.Expression

Step 1: Cell Lysis

Cell Lysis: Things to Think About

Objective: To break apart a cell and solubilise its constituent parts (including proteins within) to form a **cell lysate**

1. Protein Localisation

2. Required state for desired experiment

Cell Lysis: Things to Think About

Inhibitor Cocktails: Slowing down cellular processes e.g dephosphorylation

Sonication: Using sound energy to mechanically shear cells and increase yield

Cell Lysis: Things to Think About

Contaminants negatively affecting Western results

The more care you take, at every step, the nicer your Western blot will look.

Masashi Narita, 2015 and 2016 and 2017 and 2018....

Typical Sample Preparation from Cultured Cells

Typical Sample Preparation from Frozen Tissue

Step 2: Protein Quantification

Methods for Protein Quantification

1. Colorimetric Assays

2. Fluorescent Qubit

Protein Quantification: Things to Think About

Protein degradation with long-term storage

Step 3: Loading a Gel

Preparing Samples for Loading

1. Add loading buffer to samples

2 x Laemmli buffer component	Function
4% SDS	Denaturing agent (disrupts 3D structure)
10% Beta-mercaptoethanol or dithiothreitol (100mM)	Reducing agent (breaks disulphide bonds)
20% glycerol	Increases the density of the sample to maintain the sample at the bottom of the well
0.0004% bromophenol blue	To visualise protein migration (dye is anionic and small so it migrates the fastest to provide a 'dye front'
0.125M Tris-HCl	To provide a pH buffer

Preparing Samples for Loading

2. Heating 3. Vortex

Preparing Polyacrylamide Gel

Cross-linker

+ Ammonium Persulphate (APS, initiator)

+ TEMED (catalyst)

Pore size determined by

- 1. Total amount of acylamide present (%T)
- 2. Total amount of cross-linker (%C)

Gel Options

Gel types	When to use them
Tris-Glycine	Separation of medium to high MW proteins
Tris-Hepes	Separation of medium to high MW proteins
Bis-Tris	Separation of small to medium proteins (1-200KDa)
Tris-Tricine	Separation of small proteins (<20KDa)
Tris-Acetate gels	Separation of large proteins (up to 400KDa)
Native gels	Separation of proteins in their native state

Manually poured

- Single percentage (e.g. 10%)
- Gradient gels (e.g. 4-12%)

Pre-cast

Sizes (mini, midi, large-format)

Typical migration patterns

The smaller the size of protein, the higher the percentage of acrylamide you will need to slow it for sufficient resolution

All require different running buffers

Standards for Comparison

1. Molecular weight marker

2. Loading controls

Loading Control	Sample type	Molecular weight (KDa)
Beta actin	Whole cell/cytoplasmic	43
GAPDH	Whole cell/cytoplasmic	35
Tubulin	Whole cell/cytoplasmic	55
VDAC	Whole cell/Mitochondrial	31
COXIV	Whole cell/Mitochondrial	16
Lamin B1	Nuclear	38

Actually Loading the Gel

Well Types	Maximum Load Volume
1.0 mm	700 μL
1.0 mm 1.5 mm	400 μL 600 μL
1.0 mm	7 cm IPG Strip
9 well 1.0 mm	28 μL
1.0 mm 1.5 mm	25 μL 37 μL
1.0 mm	20 μL
1.0 mm 1.5 mm	15 μL 25 μL
илилиний 1.0 mm	15 μL

Running the Gel

Transfer immediately to avoid diffusion!

Step 4: Transferring

Setting up the "Transfer Sandwich"

Typical transfer setup

Remember membranes bind proteins!

Options for Transferring

Full Wet

- Method of choice for transferring large proteins (>150kDa)
- Transfer in approx. 1.5L of cooled transfer buffer either for 1.5 hours (with ice pack) or overnight in a cold room.

Semi-Wet

- Uses less buffer than full wet and is good for transfer of proteins of all molecular weights (except very heavy)
- Transfer in approx. 200ml of cooled transfer buffer for 1.25 hours.

Semi-Dry

- Faster transfer (~15-60mins) but not as efficient and cannot transfer large proteins (>150kDa).
- Low buffering capacity means its no good for prolonged transfers.
- Prone to current leakage.

Dry

- Very quick (~7mins) and efficient transfer of proteins under 150kDa, but loses efficiency for proteins larger than this.
- Produces well resolved bands.
- No need for transfer buffer.

Staining Proteins on Membrane

Ponseau staining of membrane

Membrane can be PVDF or nitrocellulose – personal choice, both work, various options available for both e.g. pore size

Step 5: Immunodetection

Blocking the Membrane

Typical block buffers:

- 5% non-fat milk
- 1% Casein
- 2-3% BSA
- Non-mammalian block buffer

Made up in the same buffer as antibody

Probing with Antibody

Typically use a primary-secondary combination:

- Primary for antigen detection
- Secondary for visualization e.g. HRP

Antibodies: Polyclonal vs. Monoclonal

Polyclonal

- Several different antibodies recognizing different epitopes
- Usually more sensitive

Monoclonal

- A single clone of an antibody
- Recognises only one specific epitope on the protein-of-interest
- Usually more specific

Grand Master Tips

- Your Western will only be as good as your primary antibodies!
- Check for pictures, references, recommendations etc.
- Try to use antibodies that have been tried and tested for Western blotting (some antibodies only work in IHC where epitope is in its native form)
- Typically dilute antibodies in block buffer + 0.1% Tween for incubation overnight at 4°C or 1 hr at room temperature
- Use a rocker to ensure homogenous covering and even binding over the membrane.
- Time required will be dependent on the binding affinity of the antibody for the protein and the abundance of the protein
- If possible use a lower concentration of antibody for longer periods to improve specificity.
- Important to wash after antibody incubations (PBS + 0.1% Tween or TBS + 0.1% Tween), 4 x 5min

Grand Master Tips

Concentration of primary to use

- Typically around 1:1000 (Can vary from 1:100 1:100,000!)
- Use application sheets for a recommended dilution to start with, but empirically determining concentration may be necessary to optimise a blot.
- Ideally do a dilution series to find optimal dilution
- Too little antibody will lead to a lack of signal.
- Too much antibody will lead to the appearance of non-specific bands

For multiplexing, use primary antibodies derived from different species

Step 6: Imaging

Options for Imaging

Colometric Imaging

Advantages:

- Cheap, quick and easy to use
- No specialist equipment required

Disadvantages:

- Low sensitivity
- Requires high expression
- Cannot multiplex

Chemiluminescence-Based Imaging

Sensitivity

Pierce Substrates

- ECL System
- Supersignal West Pico
- Supersignal West Dura (Extended duration)
- Supersignal West Femto

- High sensitivity (and many substrate options to adjust)
- Routinely used
- Widely accepted

or

Disadvantages:

- Not fully linear, signal saturates
- Signal not infinitely stable
- Cannot multiplex

Fluorescence 2º Ab 1º Ab Target

Fluorescence-Based Imaging

Span the visible to near infrared range

- Li-Cor Infra-red dyes
- DyLight dyes
- AlexaFluors
- ECL Plex antibodies (Cy3/Cy5)
- Qdots

Fluorescence-Based Imaging

Advantages:

- Wide linear dynamic range, good for quantification
- The most sensitive method
- Signal infinitely stable (though light sensitive)
- Multiplexing capabilities

Disadvantages:

Requires the most specialized equipment and reagents

Step 7: Quantification & Analysis

Quantifying Western Blots

Western blotting is inherently a qualitative technique!

The Importance of Linearity

Chemiluminescence (with film)

ECL (digital camera)

Fluorescence (digital scanner)

Normalisation and Loading Controls

Housekeeping protein (Red)

Ensuring that quantification is not due to:

- 1. Lane differences e.g. if signal is better in one lane
- 2. Loading differences

Absolute Quantification

Requires purified protein of your target protein, and a standard curve on the same blot

Analysis Software: Options

Analysis: Pitfalls

Band boundaries

- Can be tricky especially if bands are close together
- Depending on downstream analysis factors e.g. different sizes of quantified area may affect

Saturation – remember linearity is key!

- NOT POSSIBLE to quantify saturated samples
- Some analysis software integrate saturation detection
- Others don't (need to use image analysis software to check this beforehand)

Analysis: Pitfalls

Background subtraction

- Varies from lane to lane
- "Rolling background" recommended

Replicates, replicates, replicates!!

ELISA: The Theory

Key Steps

Capture

.... of analyte and antibodies

Blocking

.... to prevent nonspecific binding of your analyte or antibody

Washing

.... to remove unbound materials from the wells between steps

Detection and quantification

.... To measure your protein signal

Different Types

Direct ELISA

Indirect ELISA

Sandwich ELISA

Competitive ELISA

Capture

Capture onto high-binding microtiter plates

Detection method	Typical microtitre plate used
Colorimetric	Clear
Chemiluminescence	Black or white
Fluorescence	Black plates

Typical coating conditions:

- 50-100µl per well
- Antigen / Ab conc 1-10 µg/ml
- Incubation overnight at 4°C or 1-3 hrs at 37°C
- Typical coating buffer = bicarbonate buffer (pH9.6) or PBS

Sample Preparation – Not Just Lysates!

Consider sample matrix and purify if needed (e.g. lipids / carbohydrates can confound analysis)

Consider biosafety level of samples

Store samples at -80°C

Cell lysates

ELISA vary extensively......

Cell culture supernatants

Environmental material

- Sample preparation will vary depending on material
- Handle carefully to maintain sample integrity

Experimental Controls

- Wavelength correction: corrects for changes in background correction
- Non-specific binding control: wells containing no analyte. Subtract form all data points (blanking)
- Secondary / detection antibody controls: Evaluates secondary binding the absence of primary / capture antibodies
- Total activity controls: substrate and enzyme incubated in absence of everything else to ensure no non-specific signal

Comparison: ELISA and Western Blots

	ELISA	Western Blot
Format / capture	Microtitre plate	SDS-PAGE and membrane binding
Readout	Single number	Image with molecular weight bands
Quantitation	Absolute quantitation (using standard curve)	Semi-quantitative
Optimisation required	Extensive if from scratch, less if commercial	Some usually required
Sample throughput	High (typically 96-well)	Low to medium (although 'In-Cell Westerns' are higher throughput)
Versatility	Excellent	Less versatile
Detection	Colorimetric, chemiluminescence and fluorescence	
Ease of technique	Quick and easy once set up	Some skill required
Time taken to complete	Typically a few hours	Longer: typically 2 days
Specificity	Generally less specific	Generally more specific (can see non-specific binding)
Sensitivity	Extremely sensitive (amplification methods): Low fmole levels	Generally less sensitive

Key take-home message.....

Western blotting and ELISA and are complimentary methods and both have their place in research!

Thank You!!!

Immunohistochemistry (IHC)

Gideon Nsubuga
Cancer Biology Summer School
Uganda Cancer Institute/Makerere/CRUK Cambridge Institute
01 October 2025

What is IHC?

- IHC is a widely used laboratory technique that combines histological, immunological, and biochemical methods
- Visualization of the presence and localisation of specific proteins (antigens) in tissue sections
- Antigen—antibody interactions

Applications of IHC

- 1. Clinical diagnostics
 - Cancer diagnosis and classification
 - Prognostic and predictive markers
- 2. Research applications
 - Protein localisation
 - Disease mechanism studies
- 3. Drug development
 - Biomarker validation
 - Pharmacodynamics
 - Toxicology

Sample preparation: Pre-IHC Steps

Fixation

- Purpose: Preserve structure & prevent degradation
- Common fixative: Formaldehyde/paraformaldehyde
- Actions:
 - Crosslinks proteins → stabilises tissue architecture
 - Prevents autolysis & bacterial growth
 - Preserves epitopes (though may mask them)
- Caveat: Over-fixation = epitope masking

Dehydration & Embedding

Dehydration

- Removes water with graded ethanol (70–100%)
- Xylene (or substitute) replaces ethanol

Embedding

- Paraffin infiltration → solid block
- Provides rigidity for sectioning

Sectioning

- Performed with a microtome (3–5 μ m slices)
- Sections mounted on slides
- Importance: Thin, uniform slices → antibody penetration + clear imaging

IHC Process

Rehydration Antigen Retrieval Blocking Primary Antibody Secondary Antibody DAB + Counterstain Mounting

- **Deparaffinisation**: Xylene removes paraffin
- **Rehydration**: Graded alcohols (100% \rightarrow 70%) replace xylene with water
- Final step: Slides in distilled water/PBS
- Outcome: Tissue ready for aqueous IHC staining

- Fixation masks epitopes → reduces antibody binding
- Antigen retrieval allows to open up the proteins giving the Ab the access to bind
- Heat-Induced (HIER): Heat + buffer (e.g. citrate pH 6, EDTA pH 9)
- Enzymatic (PIER): Proteolytic digestion (trypsin, proteinase K)
- Restores accessibility of antigens for antibody recognition

• Purpose: Prevent non-specific staining

Materials:

- Normal serum (from species of secondary antibody)
- Hydrogen peroxide (0.3–3%) → blocks endogenous peroxidase
- Outcome: Reduced background signal

- Purpose: Specific recognition of target antigen
- Materials:
 - Primary antibody (host species + validated for IHC)
 - Antibody diluent (PBS/TBS + 1% BSA or serum)
- Outcome: Antibody-antigen binding defines specificity

- Purpose: Detection & signal amplification
- Materials:
 - Secondary antibody (anti-IgG, species-specific)
 - Conjugates: horseradish peroxidase, alkaline phosphatase, Fluorophores
- Outcome: Enables chromogenic or fluorescent detection

• **Purpose:** Visualisation of antigen & tissue context

Materials:

- DAB (3, 3'-diaminobenzidine) substrate kit (HRP + DAB \rightarrow brown precipitate)
- Haematoxylin → nuclear counterstain (blue)
- Outcome: Brown signal = antigen, blue nuclei = contrast

• Purpose: Preserve stained tissue for microscopy

Materials:

- Graded alcohol series (70%, 95%, 100%)
- Xylene (clearing agent)
- Mounting medium (e.g. DPX, Permount)
- Coverslips
- Outcome: Permanent slide, stable long-term storage

Thank you