Spherical varieties, L-functions, and crystal bases

Jonathan Wang (joint w/ Yiannis Sakellaridis)

MIT

MIT Lie Groups Seminar, September 23, 2020

Notes available at:

http://jonathanpwang.com/notes/sphL_talk_notes.pdf

Outline

- What is a spherical variety?
- 2 Function-theoretic results
- Geometry
 - $F = \mathbb{F}_q((t)), O = \mathbb{F}_q[t]$
 - $k = \overline{\mathbb{F}}_q$
 - ullet G connected split reductive group $/\mathbb{F}_q$

What is a spherical variety?

Definition

A G-variety $X_{/\mathbb{F}_q}$ is called spherical if X_k is normal and has an open dense orbit of $B_k \subset G_k$ after base change to k

Think of this as a finiteness condition (good combinatorics) Examples:

- Toric varieties G = T
- Symmetric spaces $K \setminus G$
 - Group $X = G' \circlearrowleft G' \times G' = G$

Why are they relevant?

Conjecture (Sakellaridis, Sakellaridis-Venkatesh)

For any affine spherical G-variety X (*), and an irreducible unitary G(F)-representation π , there is an "integral"

$$|\mathcal{P}_X|_{\pi}^2:\pi\otimes\bar{\pi}\to\mathbb{C}$$

involving the IC function of X(O) such that

- $|\mathcal{P}_X|_{\pi}^2 \neq 0$ determines a functorial lifting of π to $\sigma \in Irr(G_X(F))$ corresponding to a map $\check{G}_X(\mathbb{C}) \to \check{G}(\mathbb{C})$,
- 2 there should exist a \check{G}_X -representation

$$\rho_X : \check{G}_X(\mathbb{C}) \to \mathsf{GL}(V_X)$$

such that $|\mathcal{P}_X|_{\pi}^2$ "=" $L(\sigma, \rho_X, s_0)$ for a special value s_0 .

Some history on \check{G}_X

Goal: a map $\check{G}_X o \check{G}$ with finite kernel

- \check{T}_X is easy to define
- Little Weyl group W_X and spherical root system
 - Symmetric variety: Cartan '27
 - Spherical variety: Luna–Vust '83, Brion '90; reflection group of fundamental domain
 - Irreducible *G*-variety: Knop '90, '93, '94; moment map, invariant differential operators
- Gaitsgory–Nadler '06: define subgroup $\check{G}_X^{GN} \subset \check{G}$ using Tannakian formalism
- Sakellaridis–Venkatesh '12: normalized root system, define $\check{G}_X \to \check{G}$ combinatorially with image \check{G}_X^{GN} under assumptions about GN
- ullet Knop–Schalke '17: define $\check{G}_X o \check{G}$ combinatorially unconditionally

	$X \circlearrowleft G$	Ğ _X	V_X
Usual Langlands	$G' \circlearrowleft G' \times G'$	Ğ′	ğ′
Whittaker normal-ization	$(N,\psi)\backslash G$	Ğ	0
Hecke	$\mathbb{G}_m \backslash PGL_2$	$\check{G} = SL_2$	T^* std
Rankin–Selberg, Jacquet–Piatetski- Shapiro–Shalika	$ \frac{\overline{H}\backslash GL_n \times GL_n}{GL_n \times \mathbb{A}^n} = $	Ğ	T*(std⊗std)
Gan-Gross-Prasad	$SO_{2n} \setminus SO_{2n+1} \times SO_{2n}$	$\check{G} = SO_{2n} \times Sp_{2n}$	std ⊗ std

Example (Sakellaridis)

$$G = \mathsf{GL}_2^{\times n} \times \mathbb{G}_m, \ H =$$

$$\left\{ \left(\begin{array}{cc} a & x_1 \\ & 1 \end{array} \right) \times \left(\begin{array}{cc} a & x_2 \\ & 1 \end{array} \right) \times \cdots \times \left(\begin{array}{cc} a & x_n \\ & 1 \end{array} \right) \times a \, \middle| \, x_1 + \cdots + x_n = 0 \right\}$$

$$X = \overline{H \backslash G}$$

- $\check{G}_X = \check{G} = \operatorname{GL}_2^{\times n} \times \mathbb{G}_m$
- $V_X = T^*(\operatorname{std}_2^{\otimes n} \otimes \operatorname{std}_1).$

To find new interesting examples, need to consider singular $X \neq H \backslash G$.

Theorem (Luna, Richardson)

 $H \setminus G$ is affine if and only if H is reductive

$$\check{G}_X = \check{G}$$

For this talk, assume $\check{G}_X = \check{G}$ (and X has no type N roots). ['N' is for normalizer]

Equivalent to:

(Base change to k)

- X has open B-orbit $X^{\circ} \cong B$
- $X^{\circ}P_{\alpha}/\mathcal{R}(P_{\alpha}) \cong \mathbb{G}_m \backslash PGL_2$ for every simple α , $P_{\alpha} \supset B$

Sakellaridis-Venkatesh á la Bernstein

Definition

Fix $x_0 \in X^\circ(\mathbb{F}_q)$ in open *B*-orbit. Define the *X*-Radon transform

$$\pi_!: C_c^{\infty}(X(F))^{G(O)} \to C^{\infty}(N(F)\backslash G(F))^{G(O)}$$

by

$$\pi_!\Phi(g):=\int_{N(F)}\Phi(x_0ng)dn,\quad g\in G(F)$$

 $\pi_{!}\Phi$ is a function on $N(F)\backslash G(F)/G(O)=T(F)/T(O)=\check{\Lambda}$.

Related:

- ullet spherical functions (unramified Hecke eigenfunction) on X(F)
- unramified Plancherel measure on X(F)

Conjecture 1 (Sakellaridis-Venkatesh)

Assume $\check{G}_X = \check{G}$ and X has no type N roots. There exists a symplectic $V_X \in \operatorname{Rep}(\check{G})$ with a \check{T} polarization $V_X = V_X^+ \oplus (V_X^+)^*$ such that

$$\pi_!\Phi_{\mathsf{IC}_{X(O)}} = \frac{\prod_{\check{\alpha}\in\check{\Phi}_G^+}(1-q^{-1}e^{\check{\alpha}})}{\prod_{\check{\lambda}\in\mathsf{wt}(V_X^+)}(1-q^{-\frac{1}{2}}e^{\check{\lambda}})}\in\mathsf{Fn}(\check{\Lambda})$$

where $e^{\check{\lambda}}$ is the indicator function of $\check{\lambda},~e^{\check{\lambda}}e^{\check{\mu}}=e^{\check{\lambda}+\check{\mu}}$

Mellin transform of right hand side gives

$$\chi \in \check{\mathcal{T}}(\mathbb{C}) \mapsto \frac{L(\chi, V_X^+, \frac{1}{2})}{L(\chi, \check{\mathfrak{n}}, 1)}, \text{ this is "half" of } \frac{L(\chi, V_X, \frac{1}{2})}{L(\chi, \check{\mathfrak{g}}/\check{\mathfrak{t}}, 1)}$$

Previous work

Conjecture 1 (possibly with $\check{G}_X \neq \check{G}$) was proved in the following cases:

- Sakellaridis ('08, '13):
 - $X = H \backslash G$ and H is reductive (iff $H \backslash G$ is affine), no assumption on \check{G}_X
 - doesn't consider $X \supseteq H \backslash G$
- Braverman-Finkelberg-Gaitsgory-Mirković [BFGM] '02:
 - $X = \overline{N^- \setminus G}$, $\check{G}_X = \check{T}$, $V_X = \check{\mathfrak{n}}$
- Bouthier-Ngô-Sakellaridis [BNS] '16:
 - X toric variety, G = T, $\check{G}_X = \check{T}$, weights of V_X correspond to lattice generators of a cone
 - $X \supset G'$ is L-monoid, $G = G' \times G'$, $\check{G}_X = \check{G}'$, $V_X = \check{\mathfrak{g}}' \oplus T^*V^{\check{\lambda}}$

Theorem (Sakellaridis-W)

Assume X affine spherical, $\check{G}_X = \check{G}$ and X has no type N roots. Then

$$\pi_! \Phi_{\mathsf{IC}_{X(\mathcal{O})}} = \frac{\prod_{\check{\alpha} \in \check{\Phi}_{\mathcal{G}}^+} (1 - q^{-1} e^{\check{\alpha}})}{\prod_{\check{\lambda} \in \mathsf{wt}(V_X^+)} (1 - q^{-\frac{1}{2}} e^{\check{\lambda}})}$$

for some $V_X^+ \in \text{Rep}(\check{T})$ such that:

- $V_X':=V_X^+\oplus (V_X^+)^*$ has action of $(\mathsf{SL}_2)_lpha$ for every simple root lpha
 - We do not check Serre relations
- ② Assuming V_X' satisfies Serre relations (so it is a \check{G} -rep), we determine its highest weights with multiplicities (in terms of X)
 - (2) gives recipe for conjectural V_X in terms of X
 - If V_X is minuscule, then $V_X = V_X'$.

Proposition

If $X = H \setminus G$ with H reductive, then V_X is minuscule.

Enter geometry

- ullet Base change to $k=\overline{\mathbb{F}}_q$ (or $k=\mathbb{C}$)
- $X_{O}(k) = X(k[t])$
- $X_F(k) = X(k((t)))$
- Problem: X₀ is an infinite type scheme
- Bouthier–Ngô–Sakellaridis: IC function still makes sense by Grinberg–Kazhdan theorem

Zastava space

Drinfeld's proof of Grinberg–Kazhdan theorem gives an explicit model for $\mathbf{X_0}$:

Definition

Let C be a smooth curve over k. Define

$$\mathcal{Y} = \mathsf{Maps}_{\mathsf{gen}}(C, X/B \supset X^{\circ}/B)$$

Following Finkelberg–Mirković, we call this the **Zastava space** of X.

Fact: y is an infinite disjoint union of finite type schemes.

$$y \downarrow_{\pi} \mathcal{A} \cap$$

 $\{\check{\Lambda}$ -valued divisors on $C\}$

Define the **central fiber** $\mathbb{Y}^{\check{\lambda}} = \pi^{-1}(\check{\lambda} \cdot v)$ for a single point $v \in C(k)$.

$$\begin{array}{cccc}
\mathcal{Y} & & & \mathbb{Y}^{\check{\lambda}} \\
\downarrow & & & \downarrow \\
\mathcal{A} & \longleftarrow & \check{\lambda} \cdot v
\end{array}$$

Graded factorization property

The fiber $\pi^{-1}(\check{\lambda}_1v_1+\check{\lambda}_2v_2)$ for distinct v_1,v_2 is isomorphic to $\mathbb{Y}^{\check{\lambda}_1}\times\mathbb{Y}^{\check{\lambda}_2}$.

Upshot

$$\pi_! \Phi_{\mathsf{IC}_{\mathbf{X}_{\mathbf{O}}}}(t^{\check{\lambda}}) = tr(\mathsf{Fr}, (\pi_! \mathsf{IC}_{\boldsymbol{\mathcal{Y}}})|_{\check{\lambda} \cdot \boldsymbol{\mathcal{V}}}^*)$$

Semi-small map

Can compactify π to proper map $\bar{\pi}: \overline{\mathcal{Y}} \to \mathcal{A}.$

Theorem (Sakellaridis–W)

Under previous assumptions, $\bar{\pi}: \overline{\mathcal{Y}} \to \mathcal{A}$ is stratified semi-small. In particular, $\bar{\pi}_! \mathsf{IC}_{\overline{\mathcal{Y}}}$ is perverse.

If $\overline{\mathcal{Y}}$ is smooth, then semi-smallness amounts to the inequality

$$\dim\overline{\mathbb{Y}}^{\check{\lambda}}\leq \mathrm{crit}(\check{\lambda})$$

Decomposition theorem + factorization property imply

Euler product

$$tr(\mathsf{Fr},(ar{\pi}_!\mathsf{IC}_{\overline{y}})|_{?\cdot v}^*) = rac{1}{\prod_{reve{\lambda}\in\mathfrak{B}^+}(1-q^{-rac{1}{2}}e^{reve{\lambda}})}$$

 $\mathfrak{B}^+=\mathsf{irred}.$ components of $\overline{\mathbb{Y}}^{\check{\lambda}}$ of $\mathsf{dim}=\mathsf{crit}(\check{\lambda})$ as $\check{\lambda}$ varies

- ullet $\mathfrak{B}^+=$ irred. components of $\overline{\mathbb{Y}}^{\check{\lambda}}$ of dim = crit $(\check{\lambda})$ as $\check{\lambda}$ varies
- Define V_X^+ to have basis \mathfrak{B}^+
- ullet Formally set $\mathfrak{B}=\mathfrak{B}^+\sqcup (\mathfrak{B}^+)^*$, so $(\mathfrak{B}^+)^*$ is a basis of $(V_X^+)^*$

Theorem (Sakellaridis-W)

 $\mathfrak B$ has the structure of a (Kashiwara) crystal, i.e., graph with weighted vertices and edges \leftrightarrow raising/lowering operators $\tilde{\mathbf e}_{\alpha}, \tilde{\mathbf f}_{\alpha}$

Crystal basis is the (Lusztig) canonical basis at q=0 of a f.d. $U_q(\check{\mathfrak{g}})$ -module.

f.d. \check{G} -representation \leadsto crystal basis $\in \{\text{crystals}\}$

Conjecture 2

 ${\mathfrak B}$ is the crystal basis for a finite dimensional $\check{\mathsf G}$ -representation V_X .

- Conjecture 2 implies Conjecture 1 ($\mathfrak{B} \leftrightarrow V_X'$).
- Conjecture 2 resembles geometric constructions of crystal bases by Lusztig, Braverman–Gaitsgory, Kamnitzer involving irreducible components of Gr_G
- ullet $\mathbb{Y}^{\check{\lambda}},\overline{\mathbb{Y}}^{\check{\lambda}}\subset\mathsf{Gr}_{G}$