STAT 3690 Lecture Note

Part I: R and matrix basics

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2023/Feb/27 08:27:01

IN THE CASE OF A FIRE ALARM:

- · Remain calm
 - · if it is safe, evacuate the classroom or lab
 - · go to the closest fire exit
 - · do not use the elevators
- If you need assistance to evacuate the building, inform your professor or instructor immediately.
- If you need to report an incident or a person left behind during a building evacuation, report it to a fire warden or call security services 204-474-9341.
 - Do not reenter the building until the "all clear" is declared by a fire warden, security services or the fire department.
- Important: only those trained in the use of a fire extinguisher should attempt to operate one!

Syllabus

Contact

- Instructor: Zhiyang (Gee) Zhou, PhD, Asst. Prof.
 - Email: zhiyang.zhou@umanitoba.ca
 - Homepage: zhiyanggeezhou.github.io
- Marker: Mr. Masudul Islam
 - Email: islamm8@myumanitoba.ca

Timeline

- Lectures
 - Mon/Wed/Fri 9:30–10:20 am
- Office Hour
 - Wed 10:30–11:30 am
- Assessments
 - 4 or 5 Assignments
 - Midterm
 - Final project

Grading

- Assignments (30%)
 - Scanned/photographed and submitted to Crowdmark
 - Attaching both outputs and source codes (if applicable)
 - Including necessary interpretation
 - Organized in a clear and readable way
 - Accepting NO late submission
- Midterm (35%)
 - Open-book
 - In-person on Mar 10 6-8 pm OR take-home (webcam-invigilated) NOT later than Mar. 20
- Final project (35%)
 - Individual report analying recently collected datasets
 - See the Project Guideline posted at UM Learn

Materials

- Reading list (recommended but not required)
 - [J&W] R. A. Johnson & D. W. Wichern. (2007). Applied Multivariate Statistical Analysis, 5/6th Ed. London: Pearson Education.
 - * 2HR print reserve in the Sciences and Technology Library
 - [R&C] A. C. Rencher & W. F. Christensen. (2012). *Methods of Multivariate Analysis*, 3rd Ed. Hoboken: Wiley.
 - * Digital copy accessible via the library
 - D. Salsburg (2001). The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century. New York: WH Freeman.
- Lecture notes and beyond
 - zhiyanggeezhou.github.io
 - UM Learn

Outline

- Topics to be covered
 - Matrix manipulation
 - Basics of statistical modeling
 - Multivariate normal distribution
 - Inference on a mean vector
 - Comparisons of several multivariate means
 - Multivariate linear regression
 - Principal component analysis
 - Factor analysis
 - Canonical correlation analysis
 - and so forth

R basics

- Installation
 - -download and install BASE ${\cal R}$ from https://cran.r-project.org
 - download and install Rstudio from https://www.rstudio.com
 - download and install packages via Rstudio
- Working directory
 - When you ask R to open a certain file, it will look in the working directory for this file.
 - When you tell R to save a data file or figure, it will save it in the working directory.

```
getwd()
mainDir <- "c:/"</pre>
subDir <- "stat3690"</pre>
dir.create(file.path(mainDir, subDir), showWarnings = FALSE)
setwd(file.path(mainDir, subDir))
   • Packages
       installation: install.packages()
        loading: library()
install.packages('nlme')
library(nlme)
   • Help manual: help(), ?, google, stackoverflow, etc.
   • R is free but not cheap
        - Open-source
        - Citing packages
       - NO quality control
        - Requiring statistical sophistication
        - Time-consuming to become a master
   • References for R
        - M. L. Rizzo (2019) Statistical Computing with R, 2nd Ed. (forthcoming)
       - O. Jones, R. Maillardet, A. Robinson (2014) Introduction to Scientific Programming and Simulation
          Using R, 2nd Ed.
        - .....
   • Courses online
        - https://www.pluralsight.com/search?q=R
   • Data types: let str() or class() tell you
        - numbers (integer, real, or complex)
        - characters ("abc")
        - logical (TRUE or FALSE)
       - date & time
        - factor (commonly encountered in this course)
       - NA (different from Inf, " '', 0, NaN etc.)
   • Data structures: let str() or class() tell you
       - vector: an ordered collection of the same data type
       - matrix: two-dimensional collection of the same data type
       - array: more than two dimensional collection of the same data type
       - data frame: collection of vectors of same length but of arbitrary data types
        - list: collection of arbitrary objects
   • Data input and output
        - create
            * vector: c(), seq(), rep()
            * matrix: matrix(), cbind(), rbind()
            * data frame
```

```
output: write.table(), write.csv(), write.xlsx()
import: read.table(), read.csv(), read.xlsx()
* header: whether or not assume variable names in first row
* stringsAsFactors: whether or not convert character string to factors
- scan(): a more general way to input data
- save.image() and load(): save and reload workspace
- source(): run R script
```

• Parenthesis in R

- paenthesis () to enclose inputs for functions
- square brackets [], [[]] for indexing
- braces {} to enclose for loop or statements such as if or if else

```
# Create numeric vectors
v1 = c(1,2,3); v1
v2 = seq(4,6,by=0.5); v2
v3 = c(v1, v2); v3
v4 = rep(pi, 5); v4
v5 = rep(v1,2); v5
v6 = rep(v1, each=2); v6
# Create Character vector
v7 <- c("one", "two", "three"); v7
# Select specific elements
v1[c(1,3)]
v7[2]
# Create matrices
m1 = matrix(-1:4, nrow=2); m1
m2 = matrix(-1:4, nrow=2, byrow=TRUE); m2
m3 = cbind(m1, m2); m3
(m4 = cbind(m1, m2))
# Create a data frame
e \leftarrow c(1,2,3,4)
f <- c("red", "white", "black", NA)</pre>
g <- c(TRUE,TRUE,TRUE,FALSE)</pre>
mydata <- data.frame(e,f,g)</pre>
names(mydata) <- c("ID", "Color", "Passed") # name variable</pre>
mydata
# Output
write.csv(mydata, file='mydata.csv', row.names=F)
# Import
(simple = read.csv('mydata.csv', header=TRUE, stringsAsFactors=TRUE))
class(simple)
class(simple[[1]])
class(simple[[2]])
class(simple[[3]])
(simple = read.csv('mydata.csv', header=FALSE, stringsAsFactors=FALSE))
class(simple[[3]])
# EXERCISE
# Create a matrix with 2 rows and 6 columns such that it contains the numbers 1,4,7,...,34.
```

```
# Make sure the numbers are increasing row-wise; ie, 4 should be in the second column. # Use the seq() function to generate the numbers. Do NOT type them out by hand!
```

```
# ANSWER
matrix(seq(from=1, to=34, by=3), nrow=2)
```

- Elementary arithmetic operators
 - +, -, *, /, ^
 - $-\log$, exp, sin, cos, tan, sqrt
 - FALSE and TRUE becoming 0 and 1, respectively
 - $-\operatorname{sum}(), \operatorname{mean}(), \operatorname{median}(), \operatorname{min}(), \operatorname{max}(), \operatorname{var}(), \operatorname{sd}(), \operatorname{summary}()$
- Matrix calculation
 - element-wise multiplication: A * B
 - matrix multiplication: A %[∗]% B
 - singlar value decomposition: eigen(A)
- Loops: for() and while()
- Probabilities
 - normal distribution: dnorm(), pnorm(), qnorm(), rnorm()
 - uniform distribution: dunif(), punif(), qunif(), runif()
 - multivariate normal distribution: dmvnorm(), rmvnorm()

```
# Generate two datasets
set.seed(100)
x = rnorm(250, mean=0, sd=1)
y = runif(250, -3, 3)
```

- Basic plots
 - strip chart, histogram, box plot, scatter plot
 - Package ggplot2 (RECOMMENDED)

```
# Strip chart
stripchart(x)

# Histogram
hist(x)

# Box plot
boxplot(x)

# Side-bu-side box plot
xy = data.frame(normal=x, uniform=y)
boxplot(xy)

# Scatter Plot with fitted line
plot(x, y ,xlab="x", ylab = "y", main = "scatter plot between x and y")
abline(lm(y~x))
```

```
# EXERCISE
# Play with a data set called "Gasoline" included in the package "nlme".
# 1. How many variables are contained in this data set? What are they?
# 2. Generate a histogram of yield and calculate the five number summary for it.
# What is the shape of the histogram?
# 3. Generate side-by-side boxplots,
# comparing the temperature at which all the gasoline is vaporized (endpoint) to sample.
# Does it seem that the temperatures at which all the gasoline is vaporized differ by sample?
# 4. Generate a plot that illustrates the relationship between yield and endpoint.
  Describe the relationship between these two variables.
# 5. What if the plot created in Q4 were separated by sample?
# Generate a plot of yield v.s. endpoint, separated by sample.
# ANSWER
attach(nlme::Gasoline)
# 1. Six variables: yield, endpoint, sample, API, vapor, ASTM
summary(yield)
hist(yield, nclass=50)
# 3.
boxplot(endpoint ~ Sample)
anova(lm(endpoint ~ Sample))
# 4.
plot(x=endpoint, y=yield, xlab="endpoint",ylab = "yield",
      main = "scatter plot between endpoint and yield")
abline(lm(yield~endpoint))
# 5.
par(mfrow=c(2,5))
for (i in 1:10){
  plot(x=endpoint[Sample==i], y=yield[Sample==i], xlab='', ylab='', main=paste('Sample=', i))
  abline(lm(yield[Sample==i]~endpoint[Sample==i]))
# Do not forget to detach the dataset after using it.
detach(nlme::Gasoline)
```