Circus-LATEX style explained Community Z Tools (CZT)

Leo Freitas leo@cs.york.ac.uk

Department of Computer Science University of York, YO10 5DD York, United Kingdom

October 2008

Contents

\mathbf{A}	Environments						
	A.1	Informal argument	3				
В	erence card	4					
	B.1	Special <i>Circus</i> symbols	4				
		Refinement	4				
	B.2	Circus channels and name sets	4				
	B.3	Circus actions	4				
		Action definition	4				
		Basic actions	4				
		Prefixing action	4				
		Prefixing action (extra)	5				
		Unary actions	5				
		Binary actions	5				
		Replicated actions	5				
		Parenthesised actions	6				
	B.4	Circus command definitions	6				
		Guarded commands	6				
		Parameterised commands	6				
	B.5	Circus processes	7				
		Process definition	7				
		Basic process	7				
		Unary processes	7				
		Binary processes	7				

	Parameterised and indexed processes	7
	Parenthesised processes	8
	Replicated processes	8
B.6	Mathematical toolkits	8
	Circus prelude	8
	Circus model checking toolkit	8
	Circus Spivey's Z bag toolkit	8

List of Tables

^{*} PARSER DOES NOT YET SUPPORT LOGICAL CONSTANTS

A Environments

A.1 Informal argument

```
To typeset an informal argument, you write in \LaTeX
```

B Reference card

B.1 Special Circus symbols

Refinement

```
\begin{array}{lll} n \Vdash S = I & \text{n \circassertref S = I} \\ n \Vdash S \preccurlyeq I & \text{n \circassertref S \circsimulates I} \\ n \Vdash S \sqsubseteq I & \text{n \circassertref S \circrefines I} \\ n \Vdash S \sqsubseteq Tr\,I & \text{n \circassertref S \circrefines Tr}^r\,\,I \\ n \Vdash S \sqsubseteq SFl\,I & \text{n \circassertref S \circrefines SFl}^r\,\,I \\ n \Vdash S \sqsubseteq FlDv\,I & \text{n \circassertref S \circrefines FlDv}^r\,\,I \\ \end{array}
```

B.2 Circus channels and name sets

```
{\color{red}{\bf channel}}\,e
                                 \circchannel e
channel c:T
                                 \circchannel c : T
\underline{channel}[X]c:X
                                 \circchannel [X] c : X
\underline{channelfrom} S
                                 \circchannelfrom S
\underline{channelfrom}[X|S[X]]
                                 \circchannelfrom [X] S[X]
<u>channelset</u> n == \{ c \}
                                 \circchannelset n == \lchanset c \rchanset
channelset n == CSRef
                                 \circchannelset n == CS
\underline{channelset}[X]n == CSRef
                                 \circchannelset [X] n == CS
\underline{\mathbf{nameset}} \ n == \{ \ x \ \}
                                 \circnameset n == \{ x ^{x} \}
nameset n == NSRef
                                 \circnameset n == NS
```

B.3 Circus actions

Action definition

```
n \mathrel{\widehat{=}} A n \circdef A n \mathrel{\widehat{=}} x : T \bullet A n \circdef x: T \circspot A
```

Basic actions

Prefixing action

```
e \longrightarrow A
                                                                        e \then A
                                                  c.0 \longrightarrow A
                                                                        c.0 \then A
Skip
                \Skip
                                                  c!v \longrightarrow A
                                                                        c!v \then A
Stop
                \Stop
                                                  c?x \longrightarrow A
                                                                        c?x \then A
Chaos
                \Chaos
                                                  c?x!y?z \longrightarrow A
                                                                        c?x!y?z \then A
```

Prefixing action (extra)

```
\begin{array}{l} c?x:(P)!(f\,x)\longrightarrow A\\ \\ c?x\prefixcolon\prefix(P)!(f~x)\prefix(x)>1)!(f~x)\prefix(x)\longrightarrow A\\ \\ c?x\prefixcolon\prefix(x)>1)!(f~x)\prefix(x)\rightarrow A\\ \\ c[\mathbb{N}\times\mathbb{P}\prefix(R)\longrightarrow A\\ \\ c[\text{nat }\prefix(R)\rightarrow A\\ \\ \prefix(R)\rightarrow A
```

Unary actions

(S)	\lschexpract S \rschexpract
$\mu X \bullet A$	\circmu X \circspot A
$A \setminus CS$	A \circhide CS
(P) & A	\lcircguard P \rcircguard \circguard A

Binary actions

$A \parallel \! [\ NSa \mid NSb \] \! \parallel B$	A \linter NSa NSb \rinter B
$A \parallel \mid B$	A \interleave B
$A \; \llbracket \; NSa \; \; CS \; \; NSb \; \rrbracket \; B$	A \lpar NSa CS NSb \rpar B
$A \ \llbracket \ CS \ \rrbracket \ B$	A \lpar CS \rpar B
$A[NSb \mid CSa \mid CSb \mid NSb]B$	A [NSb CSa CSb NSb] B
$A[CSa \mid CSb]B$	A [CSa CSb] B
$A \sqcap B$	A \intchoice B
$A \square B$	A \extchoice B
$A \; ; \; B$	A \circseq B
AName	AName
AName(x, y)	AName(x, y)
AName[new/old,x/y]	AName[new/old, x/y]

Replicated actions

Parenthesised actions

```
(A)
                                (A)
(x: T \bullet A)
                               (x : T \circspot A)
                               (\circval x : T \circspot A)
(\underline{val} x : T \bullet A)
(\underline{res} x : T \bullet A)
                               (\circres x : T \circspot A)
(\underline{\mathbf{vres}}\,x:T\bullet A)
                               (\circvres x : T \circspot A)
(x:T\bullet A)(v)
                               (x : T \circspot A)(v)
(\underline{\mathbf{val}} x : T \bullet A)(v)
                               (\circval x : T \circspot A)(v)
(\operatorname{res} x : T \bullet A)(v)
                               (\circres x : T \circspot A)(v)
(\underline{\mathbf{vres}}\,x:T\bullet A)(v)
                               (\circvres x : T \circspot A)(v)
(\mu X \bullet x : T \bullet A)(v)
                                (\circmu X \circspot x : T \circspot A)(v)
(\mu X \bullet (x : T \bullet A))(v)
                               (\circmu X \circspot (x : T \circspot A))(v)
                               (\circmu X \circspot \circval x : T \circspot A)(v)
(\mu X \bullet \underline{val} x : T \bullet A)(v)
(\mu X \bullet res x : T \bullet A)(v) (\circmu X \circspot \circres x : T \circspot A)(v)
(\mu X \bullet \underline{\mathbf{vres}} x : T \bullet A)(v) (\circmu X \circspot \circvres x : T \circspot A)(v)
```

B.4 Circus command definitions

Guarded commands

```
x, y := v1, v2
                             x, y := v1, v2
x, y : [P, Q]
                             x, y \prefixcolon [~ P, Q ~]
:[P,Q]
                             \prefixcolon [~ P, Q ~]
{ P }
                             \{~ P ~\}
[P]
                             [~ P ~]
                             \circif P \circthen A \circelse B \circfi
if P \longrightarrow A \parallel B fi
\underline{do} P \longrightarrow A \underline{od}
                             \circdo P \circthen A \circod
con X \bullet A
                             \circcon X \circspot A
\mathbf{var} x : T \bullet A
                             \circvar x : T \circspot A
```

Parameterised commands

 $\underline{val}x: T \bullet A$ \circval x : T \circspot A $\mathbf{res}x: T \bullet A$ \circres x : T \circspot A

```
\underline{\mathbf{vres}}\,x:T\bullet A \circvres x : T \circspot A
```

B.5 Circus processes

Process definition

Basic process

```
process n = begin \dots BP \dots \underline{end}
```

\circprocess n \circdef \circbegin \ldots BP \ldots \circend

Unary processes

 $P \setminus \mathit{CS}$ P \circhide CS

PName PName

 $\begin{array}{ll} PName [\mathbb{N}] & \text{PName [\nat]} \\ PName (x,y) & \text{PName (x, y)} \end{array}$

 $PName[\mathbb{N}](x,y)$ PName[\nat](x, y)

 $PName \mid x \mid$ PName \lcircindex x \rcircindex

 $PName[\mathbb{N}]|x|$ PName[\nat] \lcircindex x \rcircindex

PName[c,d:=e,f] PName \lcircrename c, d := e, f \rcircrename

 $PName[\mathbb{N}][c,d:=e,f]$ PName[\nat] \lcircrename c, d := e, f \rcircrename

Binary processes

Parameterised and indexed processes

Parenthesised processes

```
(P)
                           (P)
(x:T\bullet P)
                           (x : T \circspot P)
(x:T\odot P)
                           (x : T \circindex P)
(P)[c := d]
                           (P) \lcircrename c := d \rcircrename
(x: T \bullet P)[c := d]
                           (x : T \circspot P) \lcircrename c := d \rcircrename
(x:T\odot P)[c:=d]
                           (x : T \circindex P) \lcircrename c := d \rcircrename
(x:T \bullet P)(v)
                           (x : T \circspot P)(v)
(x:T\odot P)(v)
                           (x : T \circindex P)(v)
[X](x:X \bullet P)[\mathbb{N}](1)
                           [X](x : X \circspot P)[\nat](1)
[X](x:X\odot P)[\mathbb{N}](1)
                           [X](x : X \circindex P)[\nat](1)
(\mu X \bullet x : T \bullet P)(v)
                           (\circmu X \circspot x : T \circspot P)(v)
(\mu X \bullet (x : T \bullet P))(v)
                           (\circmu X \circspot (x : T \circspot P))(v)
(\mu X \bullet \underline{val} x : T \bullet P)(v)
                           (\circmu X \circspot \circval x : T \circspot P)(v)
```

Replicated processes

```
||||x:T \bullet P| \qquad || \text{Interleave x: T \circspot P} \\ ||x:T [\![ CS]\!] \bullet P \qquad || \text{Parallel x: T \lpar CS \rpar \circspot P} \\ || x:T \bullet P \qquad || \text{Intchoice x: T \circspot P} \\ || x:T \bullet P \qquad || \text{Extchoice x: T \circspot P} \\ || x:T \bullet P \qquad || \text{Semi x: T \circspot P} \\ || x:T \bullet P \qquad || \text{Semi x: T \circspot P} \\ || x:T \bullet P \qquad || \text{Semi x: T \circspot P} \\ || x:T \bullet P \qquad || \text{Semi x: T \circspot P} \\ || x:T \bullet P \qquad || x:T \bullet P \qquad || x:T \mid \text{Circspot P} \\ || x:T \bullet P \qquad || x:T \mid \text{Circspot P} \\ || x:T \mid x:
```

B.6 Mathematical toolkits $SS \lozenge S$ SS \dcap S

Circus prelude

\mathbb{B}	\boolean	Circus Spivey's Z bag toolkit	
\mathbb{U}	\universe	$\mathrm{bag}\ X$	\bag~X
\underline{True}	\true	$B \ \sharp \ n$	B \bcount n
\underline{False}	\false	$n\otimes B$	n \otimes B
		$B \uplus C$	B \uplus C
Circus mod	el checking toolkit	$B \cup C$	B \uminus C
$SS \between TT$	SS \gendj TT	$x \to B$	x \inbag B
$\otimes SS$	\regions SS	$B \sqsubseteq C$	B \subbageq C
$SS \setminus S$	SS \dsetminus S	[x,y]	\lbag x, v \rbag

References