Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. Normally the first step in debugging is to attempt to reproduce the problem. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Following a consistent programming style often helps readability. It is usually easier to code in "high-level" languages than in "low-level" ones. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. There exist a lot of different approaches for each of those tasks. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Ideally, the programming language best suited for the task at hand will be selected. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process.