

Arquitetura de Computadores Paralelos

Guiou Kobayashi guiou.kobayashi@ufabc.edu.br

2º Quadrimestre, 2014

CONTEÚDO PROGRAMÁTICO:

- História e Evolução dos Computadores e Sistemas
- Estrutura de Computadores Digitais
- Lógica Digital Binária
- Processamento
- Instruções e linguagem de máquina
- Microprocessadores modernos: pipeline, super escalar, RISC
- Memórias cache e gerenciamento de memórias
- Arquitetura de computadores pessoais
- Arquitetura de Computadores Paralelos
- Sistemas Computacionais: desempenho e confiabilidade

Arquitetura de Computadores Paralelos

COMPUTADORES PARALELOS

Computadores de arquitetura paralela, desenvolvidos especialmente para aplicações que exigem alto desempenho computacional: alta capacidade e elevada performance (velocidade)

- performance sustentada

Exemplos de aplicações típicas:

- modelagem física: estrutura, fluidos, deformações. Indústria automobilística, aeroespacial, petróleo;
- modelagem bioquímica: estrutura molecular. Indústria química e farmaceutica;
- análise de sinais: astronomia, petróleo;
- previsão de tempo;
- pesquisa científica em geral;
- órgãos governamentais: armamentos, modelagem nuclear.

Processamento X Programação: características do problema definem a arquitetura

- processamento vetorial: arquitetura principal dos supercomputadores
- multiprocessamento (MPP): computadores com processadores massivamente paralelos
- cluster computers: arquiteturas compostas por computadores comerciais (servers e workstations)

Principais Fabricantes:

- Cray, NEC, CDC Convex (Vector)
- Thinking Machines, MasPar, SGI Origin, Hitachi (MPP)
- IBM SP2, SGI PowerChallenge (Cluster)

CRAY T3E

40 a 2176 Elementos RISC256 ou 512 MB RAM cada

- conexão Toroidal duplo 42 a 166 GB/s

- projeto original da TERA
- paralelismo compilador
- multi-thread
- 16 a 256 processadores
- memoria compartilhada até 1 TB
- facilidade programação

CRAY SV1

- arquitetura clássica vetorial, até 24 elementos
- CPU de 8 GFlop Memória 128 GB

CRAY HPC-Cluster

- conjunto de Elementos comerciais de baixo custo: Dell PowerEdge
- interconexão rede de alta velocidade
- software da Cray (Linux)
- balanceamento

CLASSIFICAÇÃO DOS COMPUTADORES PARALELOS

Uma classificação genérica de um sistema de computador que perdura até hoje devida à sua simplicidade, é aquela clássica, apresentada por Flynn [FLYNN, 1972], na qual uma máquina é caracterizada através da maneira como trata as suas instruções e os seus dados. As categorias são:

- -SISD "Single Instruction, Single Data";
- -SIMD "Single Instruction, Multiple Data";
- -MISD "Multiple Instruction, Single Data";
- -MIMD "Multiple Instruction, Multiple Data".

SISD

Computador von Newmann

Legenda:

P: Processador

MI: Memória de Instruções

MD: Memória de Dados

I: Fluxo de Instruções

D: Fluxo de Dados

SIMD

Array Processors

Obs.: por simplificação, não foram representados os demais operandos e os dados de saída

Exemplo de Computador Vetorial SIMD

Supercomputador Cray-1

- computador mais poderoso da época (meio a fins de 1970)
- clock 80 MHz e 8 MB de memória principal

Figure 8-19. Registers and functional units of the Cray-1

MISD

MIMD

Multiprocessamento: Sistemas Massivamente Paralelos (MMP)

Multicomputadores: Sistemas Distribuídos

MIMD com memória compartilhada

MIMD com troca de mensagens

MIMD MEMÓRIA CACHE

Figure 8-22. Three bus-based multiprocessors. (a) Without caching. (b) With caching. (c) With caching and private memories.

Na prática:

- barramento é o gargalo do sistema
- dificuldade em manter a consistência do Cache
- limite no número de UCPs (dezenas)

MIMD MEMÓRIA COMPARTILHADA

Através de Barramento

Através de Servidor de Memória

Memória Distribuída com controle de integridade

MIMD TROCA DE MENSAGENS

Interconexão por barramento serial ou paralelo

EΡ

ΕP

Conexão por chaveador

EΡ

Chaveador

ΕP

ΕP

EΡ

Conexão em Malha (Mesh)

Problema básico: como interligar milhares de Elementos Processadores - Questão de topologia de rede

Conexão total ponto a ponto

Conexão em anel

Booleano

MIMD TROCA DE MENSAGENS: HIPERCUBOS

Hipercubo Clássico

Hipercubo Genérico

Hipercubo com Múltiplo Acesso

TOPOLOGIAS DE INTERCONEXÃO

Conexão de: Memórias Processadores Computadores

Figure 8-4. Various topologies. The heavy dots represent switches. The CPUs and memories are not shown. (a) A star. (b) A complete interconnect. (c) A tree. (d) A ring. (e) A grid. (f) A double torus. (g) A cube. (h) A 4D hypercube.

QUESTÕES BÁSICAS

NÍVEIS DE PARALELISMO: divisão a partir de uma atividade única

- execução de trabalho ("job"),
- execução de tarefa ("task"),
- execução de função ("thread"),
- execução de instrução,
- transferência de registros e dispositivos lógicos (hardware).

ORGANIZAÇÃO para execução paralela

- particionamento / granularidade;
- escalação e distribuição (fork);
- sincronização;
- comunicação (join).

Grau de ACOPLAMENTO:

- fraco: sistemas distribuídos
- forte: nível de registros

Granularidade Fina

PARADIGMAS DE PROCESSAMENTO

Figure 8-11. Computational paradigms. (a) Pipeline. (b) Phased computation. (c) Divide and conquer. (d) Replicated worker.

PARADIGMA DATA-FLOW

"LEI" DE AMDAHL

"Lei de Amdahl" (1967): interligar computadores em paralelo para realizar uma tarefa implica em coordenar esta solução cooperativa, gerando um "overhead" de natureza seqüencial. Assim, este "overhead" suplantaria a capacidade agregada, estabelecendo um limite superior ao incremento da capacidade de processamento.