UNCLASSIFIED

A	N			
Л	V	-		

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA, VIRGINIA

DOWNGRADED AT 3 YEAR INTERVALS: DECLASSIFIED AFTER 12 YEARS DOD DIR 5200 10

UNCLASSIFIED

THIS REPORT HAS BEEN DECLASSIFIED AND CLEARED FOR PUBLIC RELEASE.

DISTRIBUTION A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AD No. 2892 ISTIA FILE COPY

ON THE EFFECT OF TRUNCATION IN SOME OR ALL COORDINATES OF A MULTINORMAL POPULATION

by

Z. W. Birnbaum and Paul L. Meyer University of Washington and Stanford University

Technical Report No. 2

Contract N8onr-520 Task Order II Project Number NR-042-038

Laboratory of Statistical Research

Department of Mathematics
University of Washington

Seattle, Washington

STA SOLVEN

ON THE EFFECT OF TRUNCATION IN SOME OR ALL COORDINATES OF A MULTINORMAL POPULATION 1/

N

2. W. Birnbaum and Paul L. Meyer 2/ University of Washington and Stanford University

Summary.

This paper is conserned with the following problem: Given a p =dimensional normal random variable with means zero, variances one, and correlation matrix R; truncate this random variable in all coordinates, say at t_1, t_2, \ldots, t_p respectively, and find expressions for $E(X_1^{m}X_2^{m})$ after truncation. An explicit solution of this problem is obtained for $m \approx 1.2$, $n \approx 0$ and $n \approx 1$, $n \approx 1$, that is for the expectations, variances and covariances of the distribution after truncation, and an extension of the method for greater values of m,n is indicated.

1. Introduction.

In various fields of applied statistics, such as psychological measurements and personnel selection, one frequently deals with populations which may be considered as originally

Presented to the Institute of Mathematical Statistics, Chicago, December 29, 1950.

Research done under the sponsorchip of the Office of Muvel Research.

multivariate normal, but modified by truncation in each coordinate separately. For example, a p -dimensional normal random variable X_1 , X_2 , ..., X_p may represent p quantitative traits of an individual; very often an admission test requires that each of these traits be above a certain pre-assigned value, so that only those individuals pass the test for whom $X_1 \geq t_1$,..., $X_p \geq t_p$. It has been shown [1], that this method of selection has some undesirable properties; it is however frequently the only practical method, and hence it may be of some interest to study the properties of distributions obtained by such truncation.

In the present paper explicit expressions are obtained for the moments $E(X_1)$, $E(X_2)$, $E(X_2X_3)$, and it is indicated how the method can be extended to the general case of $E(X_1 X_1^n)$. The possibility of truncation in some but not all coordinates is included since e.g. the case of X_1 not truncated, X_2 truncated at T corresponds to $t_1 = -co$, $t_2 = T$. Explicit expressions are also obtained for the marginal probability density function of X_1 and for the joint marginal p.d.f. of (X_1, X_2) , after truncation in X_1, X_2, \ldots, X_p . Examples are given for the use of some of the results for determining t_1, t_2, \ldots , so that certain pre-cassigned changes in the population are achieved.

2. A known lemma on determinants.

Let R be a pap matrix with the elements P_{ij} ; let P_{ij} be the cofeator of P_{ij} , R^{ij} the matrix of the R_{ij} .

M_{1,j} the cofestor of $R_{i,j}$ in $R^{i,j}$, and $M_{i,j,k}^{i,j}$ the (p-2) dimensional minor in $R^{i,j}$ obtained by deleting the i -th and j -th rows and u -th and v -th columns. Then we have

The proof of this lamma may be found in standard treatises on determinants, e.g. [5] p.31.

3. Equations for the moments $E(X_g^m X_g^n)$.

We consider a multi-normal p -dimensional random variable X_1 , X_2 ,..., X_p , with the correlation matrix $R = (r_{ij})$, $i,j = 1, 2, \ldots, p$, and (without less of generality) the means 0 and variances 1. Its p.d.f. is

0 and variances 1. Its p,d.f. is
$$-\frac{p}{2} \sum_{i=1}^{R_{i}} X_{i}X_{j}.$$
(3.1) $f(X_{1},X_{2},...,X_{p}) = \frac{1}{(2\pi)^{p/2}\sqrt{|X|}} \cdot \frac{1}{(2\pi)^{p/2}\sqrt{|X|}}$

The distribution is assumed to be non-singular and hence the quadratic form $\sum_{i,j=1}^{p} \frac{R_{i,j}}{|R_i|} x_i x_j$ is positive definite.

respectively so have for the new p.d.f. of L₁ , L₂ ,..., L_p at t₁ , L₂ ,..., L_p

The following notations will; be used in the rest of the paper:

(3.21)
$$\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
; $\varphi(z) = \frac{1}{\sqrt{2\pi}} \int_{z}^{\infty} e^{-z^2/2} dz$

$$= \frac{1}{(2\pi)^{3/2}\sqrt{n!}} \int_{e_1}^{\infty} \cdots \int_{e_p}^{\infty} -\frac{1}{2} \sum_{i,j=1}^{n} \frac{R_{i,j}}{1!!} x_i x_j$$

With these metations (3.2) becomes

To obtain $E(X_n^m X_n^m)$ for $n \neq n$, we sat, again without loss of generality, n = 1, n = 2 and write

(3.4)
$$E(x_1^m x_2^n) = \frac{G_p^{-1}(t_1, \dots, t_p; R)}{(2\pi)^{p/2} \sqrt{R!}} \int_{t_1}^{\infty} \dots$$

$$= \frac{a_p^{-1}(t_1, \dots, t_p; \mathbb{R})}{(2\pi)^{p/2} \sqrt{|\mathbb{R}|}} \int_{t_1}^{\infty} \pi_1 e^{-\frac{R_{11}}{2 \|\mathbb{R}|}} x_1^2 x_1^{m-1} \int_{t_2}^{\infty} \dots$$

Integrating the right side by parts, we obtain from (3.4)

(3.5)
$$R_{11}E(X_1^mX_2^n) + \sum_{i=2}^{p} R_{i1}E(X_iX_i^{m-1}X_2^n) - [R[E[\frac{d}{dX_1}(X_1^{m-1}X_2^n)]] =$$

$$\frac{0_{-1}^{-1}(t_{1},...,t_{p};R)}{(2\pi)^{p/2}\sqrt{R}} |R| t_{1}^{m} = \frac{R_{11}t_{1}^{2}}{2|R|} \int_{t_{2}}^{\infty} -\frac{1}{2|R|} |2t_{1}| \sum_{i=2}^{p} R_{11}x_{i} + \sum_{i=2}^{p} R_{1i}x_{i}x_{j}$$
...
$$\int_{t_{p}}^{\infty} x_{2}^{n} = \frac{1}{2|R|} (2t_{1}) \sum_{i=2}^{p} R_{11}x_{i} + \sum_{i=2}^{p} R_{1i}x_{i}x_{j}$$

$$dx_{2}...dx_{p}$$

To evaluate the integral on the right side we apply the transformation

(3.6)
$$V_1 = \frac{X_1 - Y_{11}Y_1}{\sqrt{1 - Y_{11}^2}}$$
; 1 = 2,3,...,p

and obtain, using the lemma of section 2,

$$(3.7) \quad R_{11} \mathbb{E}(X_1^m X_2^n) + \sum_{i=2}^{p} R_{11} \mathbb{E}(X_1 X_1^{m-1} X_2^n) = \mathbb{E}(\mathbb{E}(X_1^{m-1} X_2^n)) = \mathbb{E}(\mathbb{E}(X_1^m X_2^n)) = \mathbb{E}(\mathbb{E$$

$$= \frac{\rho(t_1) \operatorname{Eq} t_1^{-1} \sqrt{\rho_{11}}}{G_p(t_1, \dots, t_p; \mathbf{R})(2 \text{ T})^{\frac{p-1}{2}}} \int_{0}^{\infty} \dots$$

$$\frac{\int_{0}^{\infty} (\sqrt{1-v_{21}^{2}v_{2}} + v_{21}v_{1})^{n} e^{-\frac{1}{2}\sum_{j=2}^{p} P_{1j}v_{1}v_{j}}}{\sqrt{1-v_{21}^{2}}} (\sqrt{1-v_{21}^{2}v_{2}} + v_{21}v_{1})^{n} e^{-\frac{1}{2}\sum_{j=2}^{p} P_{1j}v_{1}v_{j}}} dv_{2}...dv_{p}$$

whore

(3.8)
$$\beta_{11} = \frac{R_{11}}{R_{11}} \sqrt{1-r_{11}^2} / (1-r_{11}^2)$$
, 1, 1=2,3,...,p.

The matrix (ρ_{ij}) is positive definite since $(\frac{R_{ij}}{R_{ij}})$ was assumed positive definite.

Replacing the subscripts 1,2 by w,s respectively we obtain

(3.9)
$$R_{WW}E(\bar{X}_{w}^{m}X_{s}^{m}) + \sum_{i=1}^{p} R_{i,w}E(X_{i}X_{w}^{m-1}X_{s}^{m}) - |R|E[\frac{d}{dX_{w}}(X_{w}^{m-1}X_{s}^{m})] =$$

$$= \frac{9(t_w) \, \text{tr} \, t_w^{\text{thel}} \, \sqrt{|\rho(w)|}}{\eta_p(t_1, \dots, t_p; R) \, (2 \, \text{Tr})^{\frac{D-1}{2}}} \frac{t_1 - r_1 w t_1}{\sqrt{1 - r_1^2 w}}$$

$$\frac{1}{2} \sum_{i,j=1}^{\infty} \rho_{ij}^{(w)} v_i v_j = \frac{1}{2} \sum_{i,j=1}^{\infty} \rho_{ij}^{(w)} v_i v_j = \frac{1}{2} \sum_{i,j=1}^{\infty} a v_i = \frac{1$$

for 8, 221, 2, ..., P,

, apere

(3.91)
$$\rho_{ij}^{(w)} = \frac{R_{ij}}{|w|} \sqrt{(1-r_{iw}^2)(1-r_{jw}^2)}$$
, i, jul, 2,..., p.

It can be verified that the inverse of the matrix $(P_{11}^{(w)})$ is

(3.92)
$$(p_{ij}^{(w)})^{-1} = (\frac{r_{ij}^{(w)} - r_{ij}^{(w)}}{\sqrt{(1-r_{ij}^2)(1-r_{ij}^2)}}) T_w$$
, for 1, jul, 2,...,p,

that is the matrix of partial correlation coefficients $r_{ij} = 1, j=1,2,..., p$.

i. Special cases: m=1, n=0; m=2, n=0; m=n=1.

Letting m=1, n=0 in (3.9) we obtain

$$(4.1) \sum_{i=1}^{p} R_{i,p} E(X_{i}) = \frac{\rho(t_{n}) |R| \sqrt{|\rho(n)|}}{\theta_{p}(t_{1}, \dots, t_{p}; R) (2 \pi)^{\frac{p-1}{2}}} \int_{1-r_{1} n}^{\infty} \dots$$

for =1,2,...,p

Using the abbreviation

$$(4.2) \quad b(w) = \frac{\phi(t_w) c_{p=1} \left(\frac{t_1 - r_{1w}}{\sqrt{1 - r_{1w}^2}}, \dots, \frac{t_p - r_{pw}}{\sqrt{1 - r_{1w}^2}}, \frac{r_w}{\sqrt{1 - r_{pw}^2}}, \frac{r_w}{\sqrt{1 - r_{pw}^2}}}, \frac{r_w}{\sqrt{1 - r_{pw}^2}}, \frac{r_w}{\sqrt{1 - r_{pw}^2}}, \frac{r_w}{\sqrt{1 -$$

we can rewrite the equations (4.1) more consissly, as

(4.3)
$$\sum_{i=1}^{p} R_{i,i} B(X_i) = h(u) \cdot |R|$$
, well, 2,..., p.

To solve this system of equations we use (2.1) and (2.2) and obtain

$$(4.4)$$
 $E(X_w) = \sum_{i=1}^{p} r_{iw} h(1)$, $m=1,2,...,p$.

Heri, to obtain equations for the second moments, we set m=2, n=0, and m=1, n=1 in (3.9). Using the notation

$$b(w_2) = \frac{\phi(t_w) \sqrt{|\phi(w)|}}{\phi(t_1, \dots, t_p; R)(2 | \Pi)^2} \int_{\frac{t_1 - t_1}{\sqrt{1 - t_2}}}^{\infty} \dots$$

we obtain, respectively.

State State

(4.6)
$$\sum_{i=1}^{p} R_{i} E(I_{i}I_{i}) = |R| = |R| h(m), m=1,2,...,p, and$$

(4.7)
$$\sum_{i=1}^{p} E_{i} = (X_{i} X_{i}) = (m h(m)), \quad \text{sol}_{i} \geq \dots, p$$

$$m = 1, 2, \dots, p$$

$$n \neq 0$$

Combining (4.6) and (4.7), we have

(4.6)
$$\sum_{i=1}^{p} R_{i} \mathbb{E}(X_{i} X_{i}) = |R| [\{ \{ \}_{i=1}^{n} + h(w_{i}) \} \}, s=1,2,...,p$$

This is a system of p^2 equations in the $\frac{p(p+1)}{2}$ unknowns: $E(E,X_p) = E(X_pX_p)$. Since $p^2 \ge \frac{p(p+1)}{2}$, it will be sufficient to shoose a subsystem of $\frac{p(p+1)}{2}$ independent equations. The equations for which $-1 \le n \le n \le p$ form such a system; to show this, we arrange these equations and their unknowns in the manner indicated by the following table:

11	P ₃₂	0 -	- P 30		- 0	400	E La	0	in a
•	R _{II}	R ₃₂	•	P ₁₃	Ō	•••	Ĉ	E10 0 0	tsi (p
0	P ₂₁	R ₂₂	.0.	. E.	0			R 0 6	
*****	*******	******	******	*****		•••••			
•••••	•••••	*****	*******	******			*****	*********	
			******	*****		. 0			
20000	24404444		APPLICATION OF THE STATE OF		4		1177	1	
ə O							-77		
								-	

In (4.9) all the columns except the last contain the coefficients of the unknown indicated in the solumn heading, while the last column (headed K) contains the right side terms of those equations of system (4.0) for which $1 \le s \le w \le p$. The determinant of the coefficient matrix in (4.9) is

$$(4.10) \triangle = R_{11} \cdot \begin{vmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{vmatrix} \cdot \begin{vmatrix} R_{11} & \cdots & R_{1p} \\ R_{p1} & \cdots & R_{pp} \end{vmatrix}$$

and is \$\neq 0\$ since each factor is a principal minor of a positive definite matrix. Thus these equations yield a solution for (4.8). Using (2.1) and (2.2) it is easily verified that

(4.21)
$$B(X_jX_0) = \sum_{i=1}^{p} \pi_{0i}(b(ij) + f_{ij})$$
, $j, c=1,2,...,p$.

In evaluating h(ws) we can use the previous results, in particular (4.4), on the first term

$$\frac{g(t_p)\sqrt{|\wp|_{\frac{1}{2}}|}}{g_p(t_1,\ldots,t_p)R)(2\pi)^{\frac{1}{2}}}\int_{\infty}^{\infty} \frac{t_1-t_2}{\sqrt{1-t_2}}$$

for it represents, except for appropriate constants, the marginal expectation of the coordinate V_g of a (p-1) dimensional random variable $V_1, V_2, \dots, V_{w-1}, V_{w+1}, \dots, V_p$,

truncated at
$$\frac{t_1-r_{1w}t_w}{\sqrt{1-r_{1w}^2}}$$
, $\frac{t_2-r_{2w}t_w}{\sqrt{1-r_{2w}^2}}$, ..., $\frac{t_{w-1}-r_{(w-1)w}t_w}{\sqrt{1-r_{(w-1)w}^2}}$

$$\frac{t_{w+1} = r_{(w+1)w}t_{w}}{\sqrt{1-r_{(w+1)w}^{2}}}, \dots, \frac{t_{p} = r_{pw}t_{w}}{\sqrt{1-r_{(w+1)w}^{2}}}, \text{ respectively; the second term}$$

$$\frac{g(t_{w})\sqrt{p_{11}^{(w)}}}{G_{p}(t_{1},...,t_{p};R)(2TI)^{\frac{p-1}{2}}}\int_{\frac{t_{1}-t_{1w}t_{w}}{\sqrt{1-r_{1w}^{2}}}}...$$

$$\frac{g(t_{w})r_{sy}t_{w}}{g_{p}(t_{1},...,t_{p};R)} \quad g_{p-1}\left(\frac{t_{1}-r_{1w}t_{w}}{\sqrt{1-r_{1w}^{2}}},...,\frac{t_{p}-r_{pw}t_{w}}{\sqrt{1-r_{pw}^{2}}}; \quad r_{w}\right).$$

Expressions (4.4) and (4.11) appear to be useful for setting up and solving various practical problems of the kind illustrated in Section 6. The numerical evaluation of these expressions requires the computation of integrals of the type (3.22). The values of such integrals for pe? may be found in Fearsen's Table VIII - IX in [6]. For pe3 and pe4 a large number of the required integrals may still be found in these tables. For pe4 all such integrals involved have to be calculated, a task which may require the use of high-speed ecaputing equipment.

To obtain values of higher moments, one must go back to (3.9), and by sidilar manipulations as above, obtain the required number of independent equations to solve for the unknowns.

5. Expressions for the marginal distributions of X_1 and (X_1, X_2) after truncation in X_1, X_2, \dots, X_p .

If $\psi_1(X_1)$ is the p.d.f. of X_1 after truncation in X_2, X_2, \dots, X_p , then by (3.3)

(5.1)
$$\psi_1(x_1) = e^{-1}(t_1, \dots, t_p; \mathbb{R}) \int_{t_2}^{\infty} \dots \int_{t_p}^{\infty} f(x_1, \dots, x_2) dx_2 \dots dx_p$$

Using the transformation

(5.2)
$$V_1 = \frac{X_1 - Y_1 \cdot X_2}{\sqrt{1 - Y_{11}^2}}, \quad 1=2,3,...,p$$

one obtains

$$E(V_j) = 0, j=2,3,...,p$$

$$E(V_j^2) = 1, j=2,3,...,p$$

$$E(V_jV_j) = \frac{r_{11} - r_{11}r_{11}}{\sqrt{1-r_{11}^2}}, i, j=2,3,...,p$$

$$E(X_1V_1) = 0$$
 $j=2,3,...,p$.

By [2], p.313, X_1 , Y_2 ,..., Y_p is again distributed according to the multi-normal law, and hence according to (5.2) and (5.3), expression (5.1) because:

(5.4)
$$\psi_1(x_1) = \frac{\varphi(x_1)}{a_p(x_1, \dots, x_p; R)} a_{p-1} \left(\frac{t_2 - x_{21} x_1}{\sqrt{1 - x_{21}^2}}, \dots, \frac{t_p - x_{p1} x_1}{\sqrt{1 - x_{p1}^2}}; x_1 \right)$$

where T_1 is defined in (3.92).

If $\psi_2(X_1,X_2)$ denotes the p.d.f. of X_1,X_2 after truncation in X_1, X_2, \dots, X_p , then by (3.3)

$$(5.5) \ \Psi_{2}(x_{1},x_{2}) = 6^{-1}(\epsilon_{1},...,\epsilon_{p},R) \int_{\epsilon_{3}}^{\infty} ... \int_{\epsilon_{p}}^{\infty} f(x_{1},...,x_{p}) \ dx_{3}...dx_{p}.$$

Using the transformation

$$X_1 = X_1$$

$$V_1 = \frac{1}{\sqrt{\Delta_{11} \Delta_1}} [\Delta_{11} X_1 + \Delta_{11} X_1 + \Delta_{21} X_2], i=3,4,...,p$$

where

and Δ_{at} is the cofector of r_{at} in A_{i} , one easily verifies that

$$E(V_{\epsilon}) = 0$$

$$B(V_1^2) = 1$$

1=3,4,....

$$E(V_{1}V_{j}) = \frac{\Delta_{11}}{\sqrt{\Delta_{11} \Delta_{1} \Delta_{1} \Delta_{1}}} \left[\Delta_{jj}^{2} \Delta_{j} + \alpha_{1j}^{2} A_{1} + \alpha_{1j}^{2} A_{2} + \alpha_{2j}^{2} A_{2} \right].$$

i, j=3,4, ..., p.

Hence, since (X_1,X_2,V_3,\dots,V_p) again has a multivariate normal distribution, we obtain from (5.6) and (5.7)

$$(5.8) \psi_{2}(x_{1}, x_{2}) = \frac{\frac{1}{2!!} (x_{1}^{2} - 2x_{1} x_{1}^{2} x_{2}^{2} + x_{2}^{2})}{\frac{2!!}{2!!} (x_{1}^{2} - 2x_{1} x_{1}^{2} x_{2}^{2} + x_{2}^{2})} \underbrace{\frac{q_{-2}(y_{3}, \dots, y_{p;S})}{q_{p}(t_{1}, \dots, t_{p};R)}}_{q_{p}(t_{1}, \dots, t_{p};R)},$$

=here

$$X_{2}(t_{1},X_{2},X_{2}) = \sqrt{\Delta_{11}\Delta_{1}} \left[\Delta_{11}t_{1} + \Delta_{11}X_{1} + \Delta_{21}X_{2} \right], \quad 1=3,4,...,p$$

$$S = (a_{11}) = (B(Y_{1}Y_{1})).$$

6. Some Applications.

The following problem is of practical interest: for a bivariate normal random variable (X_1,X_2) with expectations 0, variances 1 and known correlation coefficient r, it is required to find t_1 and t_2 so that, after truncation at t_1 and t_2 , the expectations of X_1 and X_2 assume the pre-assigned values m_1 and m_2 .

To find such t_1 , t_2 , we have according to (4.4)

(6.1)
$$m_1 = h(1) + r h(2)$$

(6.2)
$$m_2 = h(2) + F h(1)$$

Using expression (4.2, for h(1) and simplifying, one obtains:

(6.3)
$$L_1(t_1, t_2) = \frac{\varphi(t_2)}{\varphi(t_1)} \frac{\varphi(\frac{t_1-rt_2}{r-2})}{\varphi(t_1)} = \frac{\frac{m_2-1m_1}{m_1-rm_2}}{\frac{m_2-rm_1}{N_1-r}}$$

(6.4)
$$L_2(t_1,t_2) = \frac{\varphi(t_1) + \frac{t_2 - rt_1}{\sqrt{1 - r^2}}}{G_2(t_1,t_2; r)} = \frac{E_1 - rm_2}{1 - r^2}$$

These equations show that the inequalities $rn_1 < m_2 < \frac{1}{r} m_1$ are necessary for the existence of a solution.

To obtain numerical values for t₁, t₂, one may consider (6.3) as equations of two curves in the t₁, t₂ plane, and determine their intersection. The following numerical example will serve to illustrate the procedure:

Given r = .60 and the required expectations after truncation $m_1 = 1.5$, $m_2 = 2.0$. The right-hand sides in (6.3) and (6.4) become, respectively, 3.67 and 0.469. By trial, using tables, one finds the following three points on each of the curves:

	^t 1	^t 2	L1(t1t2)		
1	•55	1.532	3.67		
-		1.594	3.67		
	.65	1.655	3.67		

t ₁		^t 2	L2(t1t2)		
	.50	1.430	•469		
	•55	1.530	.469	1	
	.60	1.626	.469		

Hext we consider the following problem: We wish to truncate X_1 and X_2 at t_1 and t_2 respectively so that the expectation of X_1 after truncation has a pre-assigned value m_1 and the retained part of the population

$$G(t_1, t_2; r) = \frac{1}{2\pi\sqrt{1-r^2}} \int_{t_1}^{\infty} \int_{t_2}^{\infty} e^{-\frac{1}{2(1-r^2)}} (x^2 - 2r xy + y^2) dx dy$$

is as large as possible. This is equivalent to maximizing $G(t_1,t_2;r)$ under the condition (6.1). Using Lagrange multipliers, we consider

$$H(t_1,t_2) = G(t_1,t_2;r) + \lambda(m_1G(t_1,t_2;r) - \phi(t_1) \phi(\frac{t_2-rt_1}{\sqrt{1-r^2}}) - \frac{1}{\sqrt{1-r^2}})$$

$$-r g(t_2) \phi(\frac{t_1-rt_2}{\sqrt{1-r^2}})$$
;

we wish to solve the equations

It is easily verified that these equations become, respectively,

$$\lambda = \frac{1}{t_1 - m_1}$$

(6.6)
$$\frac{9^{(\frac{t_1-rt_2}{\sqrt{1-r^2}})}}{\phi^{(\frac{t_1-rt_2}{\sqrt{1-r^2}})}} = \frac{1+m_1\lambda - \lambda rt_2}{\lambda\sqrt{1-r^2}}$$

(6.7)
$$m_1 G(t_1, t_2; r) - \phi(t_1) \phi(\frac{t_2-rt_1}{\sqrt{1-r^2}}) - r \phi(t_2) \phi(\frac{t_1-rt_2}{\sqrt{1-r^2}}) = 0$$
.

From (6.5) and (6.6) we obtain:

(6.8)
$$\frac{\Phi(\frac{t_1-rt_2}{\sqrt{1-r^2}})}{\Phi(\frac{t_1-rt_2}{\sqrt{1-r^2}})} = \frac{t_1-rt_2}{\sqrt{1-r^2}}$$

It is well known [3], [4], that for finite U > 0, $\frac{\Phi(U)}{\Phi(U)} > U$. Prom (6.8) we see, therefore, that our problem has no solution with t_1 and t_2 both finite. The following four possibilities remain:

b)
$$r > 0$$
, $t_1 < \infty$, $t_2 = -\infty$

d)
$$r < 0$$
, $t_1 < \infty$, $t_2 = -\infty$

In the cases a) and c) (6.7) yields: $\frac{\varphi(t_2)}{\dot{\varphi}(t_2)} = \frac{m_1}{r}$,

while in cases b) and d) (6.7) becomes $\frac{\varphi(t_1)}{\varphi(t_1)} = u_1$. Since

 $\phi(u)$ is a monotonic function of u, increasing from 0 to $\phi(u)$

co , we reach the following conclusions:

For r > 0, (cases a) end b)), max $G(t_1, t_2; r)$ under condition $E(X_1) = m_1$ is obtained by truncating in X_1 alone

at t_1 , where t_1 is obtained from $\frac{\varphi(t_1)}{\varphi(t_1)} = m_1$. Only positive values of m_1 can be achieved.

For r < 0, (cases c) and d)), we must truncate in X_2 alone and use the solution obtained from $\frac{\mathcal{D}(t_2)}{\mathcal{D}(t_2)} = \frac{m_1}{r}$, for $m_1 < 0$; and truncate in X_1 alone, at t_1 obtained from $\frac{\mathcal{D}(t_1)}{\mathcal{D}(t_1)} = m_1$, for $m_1 > 0$. Tables of $\frac{\mathcal{D}(U)}{\mathcal{D}(U)}$ may be found e.g. in [6].

REFERENCES

- [1] Z. W. Birnbaum and D. G. Chapman, "On Optimum Selections from Multinormal Populations", Annals of Mathematical Statistics, Vol. 21 (1950), pp. 443 447.
- Cramer, Harald, Mathematical Methods of Statistics, Princeton University Press, 1946.
- R. D. Gordon, "Values of Mill's Ratio of Area to Bounding Ordinate of the Normal Probability Integral for Large Values of the Argument", Annals of Mathematical Statistics, Vol. 12 (1941), pp. 364 - 366.
- La Place, Mécanique Céleste, transl. by Bowditch, Boston 1839, Vol. 4, p. 493.
- [6] Bocher, Maxime, Introduction to Higher Algebra, Macmillan, 1935.
- [6] Pearson, Karl, Tables for Statisticians and Biometricians, Part II, Cambridge University Press, 1931.