INTRODUCTION TO COMPUTER SCIENCE

Ad Week 9-2: Recursion 1 der

Giulia Alberini, Fall 2020

WHAT ARE WE GOING TO DO IN THIS VIDEO?

Recursive algorithmsment Project Exam Help

https://powcoder.com

Add WeChat powcoder

EXAMPLE

```
public static void countdown(int n) {
    if (n == 0) {
    Assignment Project Exam Help
    System.out.print("Go!");
       elsehttps://powcoder.com
        System out print(n + "");
Add WeChat powcoder
countdown(n-1);
```

■ What prints if we call countdown (3)?

```
>3 2 1 Go!
```

EXAMPLE - EXECUTION

```
System.out.print("Go!"); https://powcoder.com
if (n == 0) {
                                        System.out.print(n + " ");

Add WeChat powcoder (");

Since it is not 0, 1 is printed and countdown is called with in the called with i
                                             countdown (n-1);
```

Execution of countdown (3).

The execution of count down starts with n==3. Since it is not 0, 3 is printed and countdown is called with input 2

public static void countdown (int n) { Project Lexecution of the execution of the pountdown starts with n==2. It is not 0, thus 2 is printed and countdown is called with

- \clubsuit The execution of countdown starts with n==1.
- - > The execution of count down starts with n==0. Since n is 0, Go! is printed and the execution ends.
 - **The execution of** countdown (1) **ends.**
 - The execution of countdown (2) ends.
 - The execution of countdown (3) ends and we are back in main.

RECURSIVE – DEFINITION

Recursive functions metables of the tolowing

https://powcoder.com

- Base Case(s): one (or a finite number) of terminating scenario that does not use recursion to be duce an answer.
- Recursive or Inductive step(s): rules that determine how to produce an answer from simpler cases.

BASE CASE

Note that if there is no base case in a recursive method, or if the base case is never reached, the precution will never end.

https://powcoder.com

```
public static Volat powcoder
public static volat powcoder
forever(n);
}
```

COMING UP

Several examples of algorithms that can be implemented recursively:

Factorial function Assignment Project Exam Help

Fibonacci numbers

https://powcoder.com

reverseList

Add WeChat powcoder

sortList

towerOfHanoi

EXAMPLE 1 – FACTORIAL

The factorial of a number is defined as follows:

```
Assignment Project Exam Help

1! = 1

https://powcoder.com

2! = 1 * 2 = 2

3! = 3 * 2 * 1 = 6

Add WeChat powcoder

n! = n * (n-1) * (n-2) * (n-3) * ... * 1
```

FACTORIAL: RECURSIVE DEFINITION

Notice that:

$$n! = n * (n-1) * (n-2) * (n-3) * ... * 1$$

$$= n * https!//powcoder.com$$

Thus, the following definition completely determines the factorial:

Base case: 0! = 1

Recursive step: n! = n * (n-1)!

FACTORIAL (ITERATIVE)

```
Assignment Project Exam Help
public static int factorial (int n) {
  int resultps://powcoder.com
  for(int i=2; i<=n; i++) {
       result = result ** 1;
  }
  return result;
}</pre>
```

FACTORIAL (RECURSIVE)

Let's use its recursive definition to write a method that computes the factorial function:

Assignment Project Exam Help

```
https://powcoder.com

public static int factorial (int n) {

if (n = Add) WeChat powcoder

return 1;
}

return n * factorial(n-1);

Induction step
```

FACTORIAL: AN EXAMPLE

• What happens when the method call factorial (4) is executed?

Assignment Project Exam Help

CORRECTNESS

Claim: the recursive factorial (n) algorithm returns n!.

Proof (by mathematical induction): Assignment Project Exam Help

- Base case: factorial (0) returns 1. https://powcoder.com
- Induction step:
 - IH: Assume factoriaf(k) WeChat poweroder 1
 - To prove: factorial (k+1) returns (k + 1)!

 factorial (k+1) returns

 factorial (k) * (k + 1) = k! * (k + 1), by IH = (k + 1)!

EXAMPLE 2 – FIBONACCI NUMBERS

Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Assignment Project Exam Help

Base cases:

https://powcoder.com

$$f_1 = 1$$

 f_2 Add1WeChat powcoder

Recursive/Inductive Step:

$$f_n = f_{n-1} + f_{n-2}$$

FIBONACCI (ITERATIVE)

```
public static int fibonacci(int n) {
  if(n==0 | n==1) {
     return 1;
       Assignment Project Exam Help
  fib0 = 1 https://powcoder.com
  fib1 = 1;
  for (int Add We Chat powcoder
     fib2 = fib0 + fib1;
     fib0 = fib1;
     fib1 = fib2;
  return fib2;
```

FIBONACCI (RECURSIVE)

```
public static int fibonacci (int n) {
    Assignment Project Exam Help
    if (n==0 || n==1) {
        return https://powcoder.com
    }
    return fibonacci(hat powcoder
}
```

This is much simpler to express than the iterative version.

CORRECTNESS

Claim: the recursive Fibonacci algorithm is correct.

Assignment Project Exam Help

Proof(sketch): (by strong mathematical induction)

https://powcoder.com

Induction step:

- IH: Let $k \geq 0$, Assume Add We Chat powers f_i for every $0 \leq i < k$
- To prove: fibonacci(k) returns f_k

However, the recursive Fibonacci algorithm is very inefficient. It computes the same quantity many times, for example:

EXAMPLE 3: REVERSING A LIST

input

 $\{a,b,c,d,e,f,g,h\}$ Assignment Project Exam Help

output

https://poweodef.com}

Add WeChat powcoder

EXAMPLE 3: REVERSING A LIST

input

 $\{a,b,c,d,e,f,g,h\}$ Assignment Project Exam Help

output

https://poweodef.com}

Idea of recursion. Add WeChat powcoder

 $a \quad \{b,c,d,e,f,g,h\}$

 $\{h, g, f, e, d, c, b\}$ a

REVERSING A LIST (RECURSIVE)

EXAMPLE 4 – SORTING A LIST (RECURSIVE)

EXAMPLE 5 – TOWER OF HANOI

Problem: Move n disks from start tower to finish tower such that:

- move one disk at a time
- you can have a smaller disk on top of bigger disk (but you can't have a bigger disk onto a smaller disk)

EXAMPLE - n=1 Assignment Project Exam Help https://powfoodbr.com start Add WeChat powcoder finish start

HOW SHOULD WE MOVE 5 DISKS FROM A TO B?

Let's think about it recursively!

ALGORITHM

```
tower(n, start, Assignment Project Exam Hepper(5, A, B, C)
  if(n==1) {
    move from starhttps://powcoder.com
} else {
    tower(n-1, staAdd WeChat powcoder
    tower(1, start, finish, other)
    tower(n-1, other, finish, start)
}
```


CORRECTNESS

Claim: the tower() algorithm is correct, namely it moves the blocks from start to finish without breaking the two rules (one at a time, and can't put bigger one onto smaller one).

Assignment Project Exam Help

Proof: (sketch) https://powcoder.com

- Base case: tower(1,*A*dd WisCharesbucoder
- Induction step:
 - for any k > 1, assume tower (k, *, *, *) is correct
 - Prove tower (k+1, *, *, *) is correct.

tower(l, start, finish, other)

Assignment Project Exam Help

 $\begin{array}{c} \text{start to finish} \\ \text{https://powcoder.com} \end{array}$

Add WeChat powcoder

Answer: 1

Answer: $1+2+4=2^0+2^1+2^2$

RECURSION AND ITERATION

Assignment Project Exam Help
Recursion and iteration (loops) are equally expressive.

https://powcoder.com
Anything recursion can do, iteration and do

Add WeChat powcoder
 Anything iteration can do, recursion can do

RECURSION VS ITERATION

- Which one to use?
 - Use the one is easiementh Projecte Ensign, For problem.
 - https://powcoder.com.
 For simple cases, iteration is usually easier and faster.
 - For complex cases decivis on is premotive elegant and simpler to code.
 - It is important to remember that when using one or the other, this decision might impact the performance of your program.

RECURSIVE DATA STRUCTURE

- Assignment Project Exam Help

 We can recursively defined also data structures. https://powcoder.com
- Let's consider arrays and let's think how we can recursively defined a list of items.

LINKEDLIST

LinkedList<E> class:

private E val; Assignment Project Exam Help

private LinkedList<https://powcoder.com

Add WeChat powcoder

Assignment Project Exam Help In the next videos:

https://powcoder.comBinary Search

Add WeChat powcoder