Advanced Calculus III

Ji, Yong-hyeon

January 8, 2025

We cover the following topics in this note.

- Limit of a Function
- Continuity of a Function
- TBA

What is 0 for the set $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$?

Note (Open ε -ball). The open ε -ball of x in S is $B_{\varepsilon}(x) := \{ y \in S : d(x,y) < \varepsilon \}$.

Limit Point (Metric Space)

Definition. Let (X, d) be a metric space. Let $S \subseteq X$. A point $p \in X$ is a **limit point** of S if and only if

$$\forall \varepsilon > 0, \ B_{\varepsilon}(p) \cap (S \setminus \{p\}) \neq \emptyset.$$

That is,

$$\forall \varepsilon > 0, \ \left\{ x \in S : 0 < d(x,p) < \varepsilon \right\} \neq \varnothing.$$

Remark. Note that a limit point p may NOT belong to S.

Note (Limit Point (Topology)). Let (X, τ) be a topological space. For a subset $S \subseteq X$. A point $p \in X$ is a limit point of S if and only if

$$\forall U \in \tau \text{ with } p \in U, \ U \cap (S \setminus \{p\}) \neq \emptyset.$$

Example. Let $S = (a, b) \subseteq \mathbb{R}$:

• Consider p with p < a:

$$B_{\varepsilon}(p)\setminus \{p\}$$

Let $\varepsilon := \frac{a-p}{2} > 0$. Then $B_{\varepsilon}(p) \cap (S \setminus \{p\}) = \emptyset$. Thus, p < a is NOT a limit point.

• Consider p = a:

Let $\varepsilon > 0$. Then $B_{\varepsilon}(p) \cap (S \setminus \{p\}) \neq \emptyset$. Thus, p = a is a limit point of S = (a, b).

Hence the set of all limit points of (a, b) is [a, b].

Example. Let $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$:

- Consider $p = \frac{1}{n} \in S$. No point of S is a limit point.
- Consider p = 0.

Let $\varepsilon > 0$. By Archimedian property,

$$\exists n \in \mathbb{N} \text{ such that } n > \frac{1}{\varepsilon},$$

and so $1/n \in B_{\varepsilon}(0) \cap S$. Thus, p = 0 is a limit point of $S = \{1/n : n \in \mathbb{N}\}$.

Example. Let $S = \mathbb{Q}$.

• Consider $p \in \mathbb{R}$. Let $\varepsilon > 0$. By density of rationals,

$$\exists r \in \mathbb{Q} \text{ such that } p < r < p + \varepsilon.$$

Then $r \in B_{\varepsilon}(p) \cap S$ with $r \neq p$, i.e., r is a limit points. Thus, all reals are limit points of \mathbb{Q} .

★ Limit of a Function $(\varepsilon - \delta)$ ★

Definition. Let $f: X \to \mathbb{R}$ be a function defined on a subset $X \subseteq \mathbb{R}$ of a metric space, and let $p \in X$ be a limit point of X. We say that $L \in \mathbb{R}$ is the **limit of the function** f **as** x **approaches** p if

$$\forall \varepsilon > 0, \ \exists \delta > 0 \text{ such that } \forall x \in X, \ 0 < |x - p| < \delta \implies |f(x) - L| < \varepsilon$$
.

We write

$$\lim_{x \to p} f(x) = L$$

Remark.

$$\lim_{x \to p} f(x) \neq L \iff \exists \varepsilon > 0 : [\forall \delta > 0 : \exists x \in X : 0 < |x - p| < \delta \text{ but } |f(x) - L| > 0].$$

Continuity of a Function

Definition. Let $f: X \to \mathbb{R}$ be a function defined on a subset $X \subseteq \mathbb{R}$ of a metric space, and let $p \in X$. The function f is **continuous** at p if and only if

$$\lim_{x \to p} f(x) = f(p).$$

That is,

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ such that $|x - p| < \delta \implies |f(x) - f(p)| < \varepsilon$.

Remark (Continuity of a Set). The function f is continuous on subset $S \subseteq X$ if it it continuous at every point $p \in S$.

Remark (Continuity in a Topological Space). Let (X, τ_X) and (Y, τ_Y) are topological spaces. $f: X \to Y$ is **continuous** if and only if

$$U_Y \in \tau_Y \implies f^{-1}[U_Y] \in \tau_X,$$

where $f^{-1}[U_Y] = \{x \in X : f(x) \in U_Y\}$ is the preimage of U_Y under f.

Note. $[p \Rightarrow (q \Rightarrow r)] \equiv [p \Rightarrow (\neg q \lor r)] \equiv [\neg p \lor (\neg q \lor r)] \equiv [\neg (p \land q) \lor r] \equiv [(p \land q) \Rightarrow r].$

Limit of Function by Convergent Sequences

Theorem. Let $f: X \to \mathbb{R}$ be a function defined on a subset $\emptyset \neq X \subseteq \mathbb{R}$ of a topological space, and let p is a limit point of X. Then

$$\lim_{x \to p} f(x) = L \iff \left[\forall \{x_n\} \subseteq X \setminus \{p\}, \left(\lim_{n \to \infty} x_n = p \iff \lim_{n \to \infty} f(x_n) = L \right) \right].$$

Proof. (\Rightarrow) Suppose that $\lim_{x\to p} f(x) = L$. Let $\{x_n\} \subseteq X \setminus \{p\}$ be a sequence, and let $\lim_{n\to\infty} x_n = p$. We NTS that

$$\lim_{n\to\infty} f(x_n) = L, \quad \text{i.e.,} \quad \forall \varepsilon > 0 : \exists N \in \mathbb{N} : n \ge N \Longrightarrow |f(x_n) - L| < \varepsilon.$$

Let $\varepsilon > 0$. Since $\lim_{x \to p} f(x) = L$, we know

$$\exists \delta > 0 \text{ such that } 0 < |x - p| < \delta \implies |f(x) - L| < \varepsilon.$$
 (*)

Since $\lim_{n\to\infty} x_n = p$, we obtain

$$\exists N \in \mathbb{N} \text{ such that } n \geq N \implies |x_n - p| < \delta.$$

Thus, if $n \ge N$ then,

$$|x_n - p| < \delta \implies 0 < |x_n - p| < \delta \quad \because x_n \neq p$$

$$\implies |f(x_n) - L| < \varepsilon \quad \text{by (*)}$$

Thus, $\lim_{n\to\infty} f(x_n) = L$.

(\Leftarrow) Let the RHS holds. Assume, for the contradiction, that $\lim_{x\to p} f(x) \neq L$, i.e.,

$$\exists \varepsilon > 0 : \forall \delta > 0 : \exists x_{\delta} \in X : 0 < |x_{\delta} - p| < \delta \text{ but } |f(x_{\delta}) - L| \ge \varepsilon.$$

Take $\delta = 1/n$ for $n \in \mathbb{N}$. Then

$$\exists x_n \in X \text{ such that } 0 < |x_n - p| < \delta \text{ but } |f(x_n) - L| \ge \varepsilon.$$

(Axiom of Countable Choice) This means that

$$\forall n \in \mathbb{N} : \exists \{x_n\} \subseteq X \setminus \{p\} \text{ such that } 0 < |x_n - p| < \frac{1}{n} \text{ but } |f(x_n) - L| \ge \varepsilon.$$

By Squeeze Theorem, we have $\lim_{n\to\infty} x_n = p$ since $0 < |x_n - p| < 1/n$. Since the RHS holds, we obtain $\lim_{n\to\infty} f(x_n) = L$. Then, for some $\varepsilon > 0$,

Hence it is proved.

Continuity of Function by Convergent Sequences

Corollary. Let $f: X \to \mathbb{R}$ be a function defined on a subset $\emptyset \neq X \subseteq \mathbb{R}$ of a topological space, and let p is a limit point of X. Then

$$\lim_{x \to p} f(x) = f(p) \iff \left[\forall \{x_n\} \subseteq X, \left(\lim_{n \to \infty} x_n = p \implies \lim_{n \to \infty} f(x_n) = f(p) \right) \right].$$

Squeeze Theorem; Sandwich Theorem

Theorem. Let

- (i) $\lim_{n\to\infty} a_n = L = \lim_{n\to\infty} b_n;$
- (ii) $\exists n_0 \in \mathbb{N} \text{ such that } a_n \leq c_n \leq b_n \text{ for all } n \geq n_0.$

Then $\lim_{n\to\infty} c_n = L$.

Proof. Let $\varepsilon > 0$. Since $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} a_n = L$, we have

$$\exists n_1 \in \mathbb{N} \text{ such that } n \ge n_1 \implies L - \varepsilon < a_n < L + \varepsilon,$$

 $\exists n_2 \in \mathbb{N} \text{ such that } n \ge n_2 \implies L - \varepsilon < b_n < L + \varepsilon.$

Let $N := \max \{n_0, n_1, n_2\}$. If $n \ge N$ then

$$L - \varepsilon < a_n \le c_n \le b_n < L_+ \varepsilon$$
,

and so $|c_n - L| < \varepsilon$.

Monotone Convergence Theorem (MCT)	
Theorem. TBA	
Proof. TBA	Г
Nested Interval Property (NIP)	
Theorem. TBA	
Proof. TBA	Е

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 10. 해석학 개론 (e) 엡실 론-델타와 수열의 수렴성" YouTube Video, 25:57. Published September 29, 2019. URL: https://youtu.be/2M13G_Duffk?si=qo-CVgW3Ukd4ADRL.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 11. 해석학 개론 (f) MCT and NIP" YouTube Video, 20:17. Published October 1, 2019. URL: https://youtu.be/YdnBQaY5eDk?si=BNe0Ue4iq2P9Fxsd.