2022 høst

10.01 a) Utstrålingstetthet M er den utstrålte effekten for et legeme per overflateareal. $M = \frac{P}{A}$

Innstrålingstætthet E er den innstrålte effekten for et legeme per overflateareal. $E = \frac{P}{A}$

b) P = 2400 W (ampe) $P = \frac{1}{2} \cdot P = 1200 \text{W} = P_{\text{inn for areal}}$ $E = \frac{P_{\text{inn}}}{A} = \frac{1200 \text{W}}{12 \text{m}^2} = 100 \frac{\text{W}}{\text{m}^2} = 0.10 \frac{\text{kW}}{\text{m}^2}$

c) $E = 3.8 \frac{W}{m^2}$ R = 2.5m $P = E \cdot A = E \cdot 4\pi R^2 = 3.8 \frac{W}{m^2} \cdot 4\pi \cdot (2.5m)^2 = 298.4 w$ = 0.30 kW

d) $E = \frac{P}{A} = \frac{P}{4\pi R_2^2} = \frac{298,4w}{4\pi \cdot (5,0m)^2} = 0.9498 \frac{w}{m^2} = 0.95 \frac{w}{m^2}$

10.02 Alt "Lys" blir absorbert av overflaten til et svart legeme. All innkommende stråling på Eks. En smal alle bølgelengder åpning i en keramikkovn eller en liten åpning i en tett boks uten indre lyskilde, Pupillen i øyet er også et eksempel.

10.03 = 5780K $M = 5T^{4} = 5,67.10 \frac{8}{m^{2}} \frac{W}{m^{2}} (5780K)^{2}$ $= 6,3284 \cdot 10^{7} \frac{W}{m^{2}} = 63,3 \frac{MW}{m^{2}}$ b) $P = M \cdot A = 4\pi R \cdot M = 4\pi \cdot 6,3284 \cdot 10^{7} \frac{W}{m^{2}} \cdot (6,95.10^{8}m)^{2}$ $= 3,8412 \cdot 10^{26} W = 3,84.10 W$

10.03 c)
$$M = \frac{P}{A} = \frac{P}{4\pi R^2} = \frac{1}{R^2} \cdot P \cdot \frac{1}{4\pi} \, dvs \, M \, d \, \frac{1}{R^2}$$

d) $E = \frac{P}{A} = \frac{P}{4\pi R^2} = \frac{3,8412 \cdot 10^{26} \, w}{4\pi \cdot (1,496 \cdot 10^{19} \, m)^2} = 1365 \frac{w}{m^2} = 1,37 \frac{kw}{m^2}$

10.04
$$T_1 = 3000K$$

a) $M_2 = \sigma T_1^4 = 0.90 \cdot \sigma T_1$
 $T_2^4 = 0.90 \cdot T_1^4$
 $\left(\frac{T_2}{T_1}\right)^4 = 0.90$
 $T_2 = \sqrt[4]{0.90}^4 \cdot T_1 = 0.974 \cdot T_1 = 97.4\% \cdot T_1$
 T_1 Senkes $(100 - 97.4)\% = 2.6\% \text{ dvs } 0.026.3000K$
b) $\sigma T_2^4 = 0.50 \cdot \sigma T_1^4$
 $T_2 = \sqrt[4]{0.50}^4 \cdot T_1 = 0.840 \cdot T_1 = 84.0\% \cdot T_1$
 $T_3 = \sqrt[4]{0.50}^4 \cdot T_1 = 0.840 \cdot T_1 = 84.0\% \cdot T_1$
 $T_4 = \sqrt[4]{0.50}^4 \cdot T_1 = 0.840 \cdot T_1 = 84.0\% \cdot T_1$

$$T_2 = \sqrt[4]{0.50} \cdot T_1 = 0.840 \cdot T_1 = 84.0\% \cdot T_1$$
 T_1 Senkes $(100 - 84.0)\% = 16\%$ dvs $0.16 \cdot 3000K$

$$= 480K$$

$$= 0.48kK$$

10.05
$$T = 600\%$$

a) $\lambda_{topp} = \frac{a}{T} = \frac{2,90 \cdot 10 \text{ Km}}{(273 + 600)K} = 3,32 \cdot 10 \text{ m} = 3,32 \mu \text{m}$

b) Ovnen sender også ut kontere bølgelengden og fordi intensiteten avtar til venstre for toppen på Planckkurven vil rødt lys dominere i synlig del av spekteret.

10.06
$$\lambda = 550 \text{ nm} = 550 \cdot 10^9 \text{m}$$

 $\lambda = \frac{a}{7} \Rightarrow \lambda \cdot T = \alpha \Rightarrow T = \frac{a}{\lambda}$
 $T = \frac{2,90 \cdot 10^3 \text{km}}{550 \cdot 10^9 \text{m}} = 5272 \text{K} = \frac{5,27 \text{kK}}{5,27 \text{kK}}$

10.07 a) Rod har topp for 1400 nm Grann har topp for 2100 nm

$$\lambda_{topp} = \frac{\alpha}{T}$$

$$T = \frac{\alpha}{\lambda_{topp}} = \frac{2,90 \cdot 10^{3} \text{Km}}{1400 \cdot 10^{9} \text{m}} = 2071 \text{K} = \frac{2,1 \text{KK}}{1400 \cdot 10^{9} \text{m}} = 1380 \text{K} = \frac{1,4 \text{KK}}{1400}$$

$$T_{6} = \frac{\alpha}{\lambda_{topp}} = \frac{2,90 \cdot 10^{3} \text{Km}}{2100 \cdot 10^{9} \text{m}} = 1380 \text{K} = \frac{1,4 \text{KK}}{1400}$$

b) T=1700K må være mellom de to linjene i a) fordi temperaturen er mellom de to temp, i a).

- 10.08a) Atmosforen på jorda virker som et drivhus. Den slipper igjennom kort bølget solstråling men hindrer noe av varmestrålingen, som har lengre bølgelengde, i å forsvinne ut.
 - b) Varmebalansen bestemmes av innkommende solstråling, reflektert solstråling og utgående termisk stråling.
 - c) Tilbakestråling fra drivhusgasser i atmosforen påvirker denne varmebalansen.

10.09 Innstrålingstettheten fra sola er 240 m² og utstrålingstettheten fra jordoverflaten er 390 m². Dette er mulig fordi mye av denne utstrålingen reflekteres tilbake til jordoverflaten av driv-husgassene.

10.10	A(I	be tove	rdier
10000	1100	12 40 VX	14121

dyrket mark	0,20
skog	0,15
vann	0,06
nyshø	0,9
gammel sno	0,4
skyer	0,3-0,8

5ky fri dag har innstrålingstettheten $700\frac{W}{m^2}$ a) $A = 1000 \text{ m}^2$ eft de kar t = 3600 s

 $Pt = EAt = 700 \frac{W}{m^2} \cdot 1000 m^2 \cdot 3600s$ $= 2,52 \cdot 10^9 \text{ } = 2,52 \cdot 67$

P.t = 700 w . 1000 m2. h = 700 kWh

b)
$$Vann$$
: $0.06 \cdot P.t = 0.06 \cdot 2.526J = 0.26J$

nysnø:
$$0.9 \cdot P \cdot t = 0.9 \cdot 2.526J = 2.2686J = 26J$$

- 10.11 a) En klimagass absorberer termisk stråling og gjøn at gjennomsnittstemperaturen på jorda er høyere enn den ellers ville vært.
 - b) Karbondioksid, Co2 Metan, CH4 Nitrogenoksid N20
 - c) Brenning av kull, olje og gass påvirker mengden av disse klimagassene i atmosfæren.