Name: Raghu Date: 17/04/2023

#### **Business case Study- Target**

#### 1. # Time period for which the data is given

select min(order\_purchase\_timestamp) as first\_order\_time, max(order\_purchase\_timestamp) as last\_order\_time from `Target\_sql.orders`

| JOB INFORMATION RESULTS |                  | JSON    | EXECUTION DETAILS | EXECUTION GRAPH |  |
|-------------------------|------------------|---------|-------------------|-----------------|--|
| Row                     | first_order_time |         | last_order_tir    | ne              |  |
| 1                       | 2016-09-04 21:15 | :19 UTC | 2018-10-17 1      | 7:30:18 UTC     |  |

# Cities and States of customers ordered during the given period

select distinct customer\_state, customer\_city from `Target\_sql.customers`

| JOB IN | IFORMATION     | RESULTS | JSON          | EXECUTION DE | TAILS | EXECUTION GRAPH |
|--------|----------------|---------|---------------|--------------|-------|-----------------|
| Row    | customer_state |         | customer_city |              |       |                 |
| 1      | RN             |         | acu           |              |       |                 |
| 2      | CE             |         | ico           |              |       |                 |
| 3      | RS             |         | ipe           |              |       |                 |
| 4      | CE             |         | ipu           |              |       |                 |
| 5      | SC             |         | ita           |              |       |                 |
| 6      | SP             |         | itu           |              |       |                 |
| 7      | SP             |         | jau           |              |       |                 |
| 8      | MG             |         | luz           |              |       |                 |
| 9      | SP             |         | poa           |              |       |                 |
| 10     | MG             |         | uba           |              |       |                 |

#### 2. # In-depth Exploration:

# Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months

select \* from (select extract(month from order\_purchase\_timestamp) as Month, count(order\_id) as Total\_orders

from `Target\_sql.orders` group by extract(month from order\_purchase\_timestamp)) TAB1 order by Month

| JOB II | NFORMATION | RESULTS      | JSON | EXECUTION DETAILS | EXECUTION GRAPH |
|--------|------------|--------------|------|-------------------|-----------------|
| Row    | Month      | Total_orders |      |                   |                 |
| 1      | 1          | 8069         |      |                   |                 |
| 2      | 2          | 8508         |      |                   |                 |
| 3      | 3          | 9893         |      |                   |                 |
| 4      | 4          | 9343         |      |                   |                 |
| 5      | 5          | 10573        |      |                   |                 |
| 6      | 6          | 9412         |      |                   |                 |
| 7      | 7          | 10318        |      |                   |                 |
| 8      | 8          | 10843        |      |                   |                 |
| 9      | 9          | 4305         |      |                   |                 |
| 10     | 10         | 4959         |      |                   |                 |
| 11     | 11         | 7544         |      |                   |                 |
| 12     | 12         | 5674         |      |                   |                 |

#### # Growing trend: Total number of orders per month in 2018

select Month, count(order\_id) as Total\_No\_orders from (select extract(month from order\_purchase\_timestamp) as Month,extract(year from order\_purchase\_timestamp) year, order\_id from `Target\_sql.orders`) tab1 where year = 2018 group by Month order by Month

| JOB II | NFORMATION | RESULTS         | JSON | EXECUTION DETAILS | EXECUTION GRAPH |
|--------|------------|-----------------|------|-------------------|-----------------|
| Row    | Month      | Total_No_orders |      |                   |                 |
| 1      | 1          | 7269            |      |                   |                 |
| 2      | 2          | 6728            |      |                   |                 |
| 3      | 3          | 7211            |      |                   |                 |
| 4      | 4          | 6939            |      |                   |                 |
| 5      | 5          | 6873            |      |                   |                 |
| 6      | 6          | 6167            |      |                   |                 |
| 7      | 7          | 6292            |      |                   |                 |
| 8      | 8          | 6512            |      |                   |                 |
| 9      | 9          | 16              |      |                   |                 |
| 10     | 10         | 4               |      |                   |                 |

<sup>\*\*</sup> From the above two tables, it is clear that, in the month of September (9) and October (10), people tend to buy less.

And people tend to buy more during the period between March and August

So company can increase number of sales by giving discounts and offering large variety of products during the period between March & August. And people tend to buy less in the month of September & October, company needs to find reason for this lower number of orders. If not

possible to increase the number of orders, company can save storage cost, maintenance cost and shipping cost etc.

Below graph shows Number of orders for each month in 2018



### # Time do Brazilian customers tend to buy (Checking for 2017, January)

select Time\_period, count(order\_id) as Number\_of\_orders from (select extract(hour from order\_purchase\_timestamp) as Hours,order\_id, case

when extract(hour from order\_purchase\_timestamp) between 0 and 6 then 'Dawn' when extract(hour from order\_purchase\_timestamp) between 7 and 12 then 'Morning' when extract(hour from order\_purchase\_timestamp) between 13 and 18 then 'Afternoon' else

'Night' end as Time period

from 'Target sql.orders'

where extract(month from order\_purchase\_timestamp)= 1 and extract(year from order\_purchase\_timestamp)= 2017)tab1

group by Time\_period order by Number\_of\_orders

| JOB IN | IFORMATION  | RESULTS | JSON           | EXECUTION DETAILS | EXECUTION GRAPH |
|--------|-------------|---------|----------------|-------------------|-----------------|
| Row    | Time_period |         | Number_of_orde |                   |                 |
| 1      | Dawn        |         | 45             |                   |                 |
| 2      | Morning     |         | 179            |                   |                 |
| 3      | Night       |         | 231            |                   |                 |
| 4      | Afternoon   |         | 345            |                   |                 |

<sup>\*\*</sup> From the above result table, people tend to buy afternoon more and tend to buy less in the morning

### 3. Evolution of E-commerce orders in the Brazil region

#### # Month on month orders by states

with info\_state\_wise\_orders as (select order\_id, extract(month from order\_purchase\_timestamp) as Month, customer\_state from `Target\_sql.orders` o join `Target\_sql.customers` c on o.customer\_id = c.customer\_id)

select customer\_state, Month, count(order\_id) as Total\_orders from info\_state\_wise\_orders group by customer\_state, Month order by Total\_orders desc

| JOB IN | IFORMATION     | RESULTS | JSON  | EXECUTION DET | TAILS EXECUTION GRAPH |
|--------|----------------|---------|-------|---------------|-----------------------|
| Row    | customer_state |         | Month | Total_orders  |                       |
| 1      | SP             |         | 8     | 4982          |                       |
| 2      | SP             |         | 5     | 4632          |                       |
| 3      | SP             |         | 7     | 4381          |                       |
| 4      | SP             |         | 6     | 4104          |                       |
| 5      | SP             |         | 3     | 4047          |                       |
| 6      | SP             |         | 4     | 3967          |                       |
| 7      | SP             |         | 2     | 3357          |                       |
| 8      | SP             |         | 1     | 3351          |                       |
| 9      | SP             |         | 11    | 3012          |                       |
| 10     | SP             |         | 12    | 2357          |                       |

#### # Month on month orders by states for 2018

with info\_state\_wise\_orders\_2018 as (select order\_id, extract(month from order\_purchase\_timestamp) as Month, extract(year from order\_purchase\_timestamp) as Year,customer\_state from `Target\_sql.orders` o join `Target\_sql.customers` c on o.customer\_id = c.customer\_id)

select customer\_state, Month, count(order\_id) as Total\_orders from info\_state\_wise\_orders\_2018 where Year = 2018 group by customer\_state, Month order by Total\_orders desc

| JOB IN | NFORMATION     | RESULTS | JSON  | EXECUTION D  | ETAILS EXECUTION GRAPH |
|--------|----------------|---------|-------|--------------|------------------------|
| Row    | customer_state |         | Month | Total_orders |                        |
| 1      | SP             |         | 8     | 3253         |                        |
| 2      | SP             |         | Ĺ     | 3207         |                        |
| 3      | SP             |         | 2     | 3059         |                        |
| 4      | SP             |         | 1     | 3052         |                        |
| 5      | SP             |         | 3     | 3037         |                        |
| 6      | SP             |         | 7     | 2777         |                        |
| 7      | SP             |         | 6     | 2773         |                        |
| 8      | SP             |         | 2     | 2 2703       |                        |
| 9      | RJ             |         | 2     | 922          |                        |
| 10     | RJ             |         | 3     | 907          |                        |

### # Distribution of customers across the states in Brazil

select customer\_state, count(customer\_id) as Number\_of\_customers from `Target\_sql.customers` group by customer\_state order by customer\_state

| JOB IN | IFORMATION     | RESULTS | JSON           | EXECUTION DETAILS | EXECUTION GRAPH |
|--------|----------------|---------|----------------|-------------------|-----------------|
| Row    | customer_state |         | Number_of_cust |                   |                 |
| 1      | AC             |         | 81             |                   |                 |
| 2      | AL             |         | 413            |                   |                 |
| 3      | AM             |         | 148            |                   |                 |
| 4      | AP             |         | 68             |                   |                 |
| 5      | BA             |         | 3380           |                   |                 |
| 6      | CE             |         | 1336           |                   |                 |
| 7      | DF             |         | 2140           |                   |                 |
| 8      | ES             |         | 2033           |                   |                 |
| 9      | GO             |         | 2020           |                   |                 |
| 10     | MA             |         | 747            |                   |                 |



<sup>\*\*</sup> From the above result table & pie chart, state SP has more than 40% customers



\*\* Even though 40% of the customers are from the state SP, (Number of customers)/(Number of seller\_ids) is 22 i.e.., customer per seller is 22. But for the state PA, even though % of customers is very less, customer per seller is 975.

State PR has the lowest customer per seller value

So company wants one more seller, it is good to have it in the state which has high customer per seller i.e..,PA. States AP & RR are the two which has lowest number of customers, so company should focus on these cities to increase their market if these two cities have more number of potential customers.

#### 4. Impact of economy

# % increase in cost of orders from 2017 to 2018 (include months between Jan to Augonly)

create view Target\_sql.Order\_Payment\_info as (select o.order\_id, extract(year from order\_purchase\_timestamp) year, extract(month from order\_purchase\_timestamp) as month, payment\_value from `Target\_sql.orders` o join `Target\_sql.payments` p on o.order\_id = p.order\_id);

select round((sum(case when year = 2018 and month between 1 and 8 then payment\_value else 0 end) –

sum(case when year = 2017 and month between 1 and 8 then payment\_value else 0 end))\*100/(sum(case when year = 2018 and month between 1 and 8 then payment\_value else 0 end)),2) percentage\_incr\_cost

from `Target\_sql.Order\_Payment\_info`

| JOB IN | NFORMATION       | RESULTS | JSON | EXECUTION DETAILS | EXECUTION GRAPH |
|--------|------------------|---------|------|-------------------|-----------------|
| Row    | percentage_incr. |         |      |                   |                 |
| 1      | 57.8             |         |      |                   |                 |

- \*\* Around total 58% of total cost of order increased from 2017 to 2018. It might be due to increase in number of orders from 2017 to 2018 or increase in cost of orders, increase in freight value or may be combination of all
- \*\* From the below graph, it is clear that % of increase in payment value from 2017 to 2018 (January to August) is same as % of increase in number of orders from 2017 to 2018 (January to August). So due to increase in number of orders from 2017 to 2018, payment value also increasedfrom 2017 to 2018.



#### # Mean & Sum of price and freight value by customer state

with Mean\_Total\_cost\_per\_state as (select \* from `Target\_sql.order\_items` oi join `Target\_sql.orders` o on oi.order\_id = o.order\_id join `Target\_sql.customers` c on o.customer\_id = c.customer\_id) select customer\_state, avg(price) as Avg\_price, sum(price) as Total\_price, avg(freight\_value) as Avg\_freight\_value, sum(freight\_value) as Total\_freight\_value from Mean\_Total\_cost\_per\_state group by customer\_state

| JOB II | NFORMATION     | RESULTS | JSON       | EXECUTION DE | TAILS EXE        | CUTION GRAPH     |
|--------|----------------|---------|------------|--------------|------------------|------------------|
| Row    | customer_state |         | Avg_price  | Total_price  | Avg_freight_valu | Total_freight_va |
| 1      | MT             |         | 148.297184 | 156453.529   | 28.1662843       | 29715.4300       |
| 2      | MA             |         | 145.204150 | 119648.219   | 38.2570024       | 31523.7700       |
| 3      | AL             |         | 180.889211 | 80314.81     | 35.8436711       | 15914.5899       |
| 4      | SP             |         | 109.653629 | 5202955.05   | 15.1472753       | 718723.069       |
| 5      | MG             |         | 120.748574 | 1585308.02   | 20.6301668       | 270853.460       |
| 6      | PE             |         | 145.508322 | 262788.029   | 32.9178626       | 59449.6599       |
| 7      | RJ             |         | 125.117818 | 1824092.66   | 20.9609239       | 305589.310       |
| 8      | DF             |         | 125.770548 | 302603.939   | 21.0413549       | 50625.4999       |
| 9      | RS             |         | 120.337453 | 750304.020   | 21.7358043       | 135522.740       |
| 10     | SE             |         | 153.041168 | 58920.8500   | 36.6531688       | 14111.4699       |



\*\* From the above results table & graph, Average freight value for the state RR is high (sum (price)/sum(freight value) is low)



\*\* From the above graph, highest ratio between average freight value and average price is 0.33 for the state MA. i.e.., on an average, around 33 % of actual price is spent for freight.

#### 5. # Analysis on sales, freight and delivery time

# days between purchasing, delivering and estimated delivery

select date\_diff(order\_delivered\_customer\_date, order\_purchase\_timestamp, day) days\_btw\_del\_purch, date\_diff(order\_estimated\_delivery\_date,order\_delivered\_customer\_date,day) as days\_btw\_est\_del from `Target\_sql.orders`

| JOB II | NFORMATION      | RESULTS         | JSON | EXECUTION DETAILS | EXECUTION GRAPH |
|--------|-----------------|-----------------|------|-------------------|-----------------|
| Row    | days_btw_del_pt | days_btw_est_de |      |                   |                 |
| 1      | 30              | -12             |      |                   |                 |
| 2      | 30              | 28              |      |                   |                 |
| 3      | 35              | 16              |      |                   |                 |
| 4      | 30              | 1               |      |                   |                 |
| 5      | 32              | 0               |      |                   |                 |
| 6      | 29              | 1               |      |                   |                 |
| 7      | 43              | -4              |      |                   |                 |
| 8      | 40              | -4              |      |                   |                 |
| 9      | 37              | -1              |      |                   |                 |
| 10     | 33              | -5              |      |                   |                 |

### # time\_to\_delivery & diff\_estimated\_delivery (in hours:minutes:seconds)

create view Target\_sql.Analysis as (select customer\_state as state, price, freight\_value,(order\_purchase\_timestamp - order\_delivered\_customer\_date) time\_to\_delivery, (order\_estimated\_delivery\_date - order\_delivered\_customer\_date) diff\_estimated\_delivery from `Target\_sql.orders` o join `Target\_sql.order\_items` oi on o.order\_id = oi.order\_id join `Target\_sql.customers` c on c.customer\_id = o.customer\_id);

select time\_to\_delivery, diff\_estimated\_delivery from `Target\_sql.Analysis` where time\_to\_delivery is not null

| JOB IN   | NFORMATION                           | RESULTS | JSON                               | EXECUTION DET | AILS | EXECUTION GRAPH |
|----------|--------------------------------------|---------|------------------------------------|---------------|------|-----------------|
| Row<br>1 | time_to_delivery<br>0-0 0 -168:14:41 |         | diff_estimated_<br>0-0 0 1088:52:4 | •             |      |                 |
| 2        | 0-0 0 -722:14:59                     |         | 0-0 0 -310:3:51                    |               |      |                 |
| 3        | 0-0 0 -743:13:54                     |         | 0-0 0 681:6:10                     |               |      |                 |
| 4        | 0-0 0 -181:40:7                      |         | 0-0 0 1065:23:1                    |               |      |                 |
| 5        | 0-0 0 -181:40:7                      |         | 0-0 0 1065:23:1                    |               |      |                 |
| 6        | 0-0 0 -262:29:53                     |         | 0-0 0 989:12:17                    |               |      |                 |
| 7        | 0-0 0 -853:56:53                     |         | 0-0 0 397:1:26                     |               |      |                 |
| 8        | 0-0 0 -565:3:54                      |         | 0-0 0 228:49:34                    |               |      |                 |
| 9        | 0-0 0 -311:9:0                       |         | 0-0 0 -133:12:2                    | 7             |      |                 |
| 10       | 0-0 0 -309:37:20                     |         | 0-0 0 298:32:10                    |               |      |                 |

# select state, avg(time\_to\_delivery) as Avg\_time\_to\_delivery,avg(diff\_estimated\_delivery) as Avg\_diff\_estimated\_delivery, avg(freight\_value) as Avg\_freight\_value from `Target\_sql.Analysis` group by state

| JOB II | JOB INFORMATION RESULTS |  | JSON EXECUTION DETAILS |               | EXECUTION GRAPH PREVIEW |                     |                  |
|--------|-------------------------|--|------------------------|---------------|-------------------------|---------------------|------------------|
| Row    | state                   |  | Avg_time_to_           | delivery      | Avg_diff                | _estimated_delivery | Avg_freight_valu |
| 1      | MT                      |  | 0-0 0 -431:4:4         | 19.308582449  | 0-0 0 333               | 3:30:17.274831243   | 28.1662843       |
| 2      | MA                      |  | 0-0 0 -519:34:         | :4.800        | 0-0 0 22                | 1:24:4.645          | 38.2570024       |
| 3      | AL                      |  | 0-0 0 -587:44:         | :21.852459016 | 0-0 0 19                | 3:22:34.871194379   | 35.8436711       |
| 4      | SP                      |  | 0-0 0 -209:22:         | :15.899683482 | 0-0 0 25                | 2:19:20.364812781   | 15.1472753       |
| 5      | MG                      |  | 0-0 0 -287:36:         | :49.457072075 | 0-0 0 30                | 3:20:44.706355965   | 20.6301668       |
| 6      | PE                      |  | 0-0 0 -438:42:         | :8.667239404  | 0-0 0 30                | 6:20:47.015463917   | 32.9178626       |
| 7      | RJ                      |  | 0-0 0 -363:33:         | :47.561218719 | 0-0 0 27                | 1:24:6.523540223    | 20.9609239       |
| 8      | DF                      |  | 0-0 0 -311:0:5         | 57.005944798  | 0-0 0 27                | 5:49:59.438641188   | 21.0413549       |
| 9      | RS                      |  | 0-0 0 -364:31:         | :32.063916517 | 0-0 0 32                | 2:22:7.941790314    | 21.7358043       |
| 10     | SE                      |  | 0-0 0 -515:12:         | :59.317333333 | 0-0 0 223               | 3:49:3.408          | 36.6531688       |

## # Top 5 states with highest freight value

select state, avg(freight\_value) as Avg\_freight\_value from `Target\_sql.Analysis` group by state order by Avg\_freight\_value desc limit 5

| JOB II | NFORMATION | RESULTS | JSON            | EXECUTION DETAILS | EXECUTION GRAPH |
|--------|------------|---------|-----------------|-------------------|-----------------|
| Row    | state      |         | Avg_freight_val | lu                |                 |
| 1      | RR         |         | 42.9844230      |                   |                 |
| 2      | PB         |         | 42.7238039      |                   |                 |
| 3      | RO         |         | 41.0697122      |                   |                 |
| 4      | AC         |         | 40.0733695      |                   |                 |
| 5      | PI         |         | 39.1479704      |                   |                 |

<sup>\*\*</sup> Above results table shows top 5 states with highest freight value. Freight value depends on mode of transportation, distance, points of pickup and delivery. So company can reduce the freight vale by picking shortest distance if possible, increasing number of orders, changing points of pickup & delivery, considering cost efficient mode of transportation

### # Top 5 states with lowest freight value

select state, avg(freight\_value) as Avg\_freight\_value from `Target\_sql.Analysis` group by state order by Avg\_freight\_value asc limit 5

| JOB I | NFORMATION | RESULTS | JSON           | EXECUTION DETAILS | EXECUTION GRAPH |
|-------|------------|---------|----------------|-------------------|-----------------|
| Row   | state      |         | Avg_freight_va | lu                |                 |
| 1     | SP         |         | 15.1472753     |                   |                 |
| 2     | PR         |         | 20.5316515     |                   |                 |
| 3     | MG         |         | 20.6301668     |                   |                 |
| 4     | RJ         |         | 20.9609239     |                   |                 |
| 5     | DF         |         | 21.0413549     |                   |                 |

#Top 5 states with highest average time to delivery

create view Target\_sql.avg\_time\_to\_del as(select state, avg(time\_to\_delivery) as Avg\_time\_to\_delivery from `Target\_sql.Analysis` group by state);

select state from `Target\_sql.avg\_time\_to\_del` order by Avg\_time\_to\_delivery desc limit 5

| JOB IN | NFORMATION | RESULTS | JSON | EXECUTION DETAILS | EXECUTION GRAPH |
|--------|------------|---------|------|-------------------|-----------------|
| Row    | state      |         |      |                   |                 |
| 1      | SP         |         |      |                   |                 |
| 2      | PR         |         |      |                   |                 |
| 3      | MG         |         |      |                   |                 |
| 4      | DF         |         |      |                   |                 |
| 5      | SC         |         |      |                   |                 |

### # Top 5 lowest average time to delivery

select state from `Target\_sql.avg\_time\_to\_del` order by Avg\_time\_to\_delivery asc limit 5

| JOB IN | NFORMATION | RESULTS | JSON | EXECUTION DETAILS | EXECUTION GRAPH |
|--------|------------|---------|------|-------------------|-----------------|
| Row    | state      |         |      |                   |                 |
| 1      | RR         |         |      |                   |                 |
| 2      | AP         |         |      |                   |                 |
| 3      | AM         |         |      |                   |                 |
| 4      | AL         |         |      |                   |                 |
| 5      | PA         |         |      |                   |                 |

<sup>\*\*</sup> Above results table shows that states having lowest average time to delivery. Lowest avg time to delivery may be due to delivery agents or due to heavy traffic in that particular state etc.

Company needs to consider this factor in order to make fastest delivery and to give better customer experience by removing agents who are not enough good at their work or by motivating them with incentive

#### # Top 5 states where delivery is really fast

create view Target\_sql.avg\_diff\_est\_del\_time as(select state, avg(diff\_estimated\_delivery) as Avg\_diff\_est\_del from `Target\_sql.Analysis` group by state);

select state from `Target\_sql.avg\_diff\_est\_del\_time` order by Avg\_diff\_est\_del asc limit 5

| JOB IN | NFORMATION | RESULTS | JSON | EXECUTION DETAILS | EXECUTION GRAPH |
|--------|------------|---------|------|-------------------|-----------------|
| Row    | state      |         |      |                   |                 |
| 1      | AL         |         |      |                   |                 |
| 2      | MA         |         |      |                   |                 |
| 3      | SE         |         |      |                   |                 |
| 4      | ES         |         |      |                   |                 |
| 5      | BA         |         |      |                   |                 |

#### 6. Payment type analysis:

# Month over Month count of orders for different payment types

Create view Target\_sql.order\_payment\_info as (
select o.order\_id, extract(month from order\_purchase\_timestamp) as month,payment\_type,
payment\_installments from `Target\_sql.orders` o join `Target\_sql.payments`p on o.order\_id =
p.order\_id);

select month, payment\_type, count(order\_id) as Total\_orders from `Target\_sql.order\_payment\_info` group by month, payment\_type order by month

| JOB II | NFORMATION | RESULTS      | JSON | EXECUTION DETAI | LS EXECUTION GRAPH |
|--------|------------|--------------|------|-----------------|--------------------|
| Row    | month      | payment_type |      | Total_orders    |                    |
| 1      | 1          | credit_card  |      | 6103            |                    |
| 2      | 1          | UPI          |      | 1715            |                    |
| 3      | 1          | voucher      |      | 477             |                    |
| 4      | 1          | debit_card   |      | 118             |                    |
| 5      | 2          | UPI          |      | 1723            |                    |
| 6      | 2          | credit_card  |      | 6609            |                    |
| 7      | 2          | voucher      |      | 424             |                    |
| 8      | 2          | debit_card   |      | 82              |                    |
| 9      | 3          | credit_card  |      | 7707            |                    |
| 10     | 2          | LIDI         |      | 1042            |                    |



\*\* From the above table results & graph (Graph for only year 2018), payment type for the most of the orders is 'credit\_card' followed by 'UPI'

# # Count of orders based on the no. of payment instalments

select payment\_installments, count(order\_id) as Total\_No\_orders from `Target\_sql.order\_payment\_info` group by payment\_installments order by payment\_installments

| JOB IN | NFORMATION       | RESULTS         | JSON | EXECUTION DETAILS | EXECUTION GRA |
|--------|------------------|-----------------|------|-------------------|---------------|
| Row    | payment_installr | Total_No_orders |      |                   |               |
| 1      | 0                | 2               |      |                   |               |
| 2      | 1                | 52546           |      |                   |               |
| 3      | 2                | 12413           |      |                   |               |
| 4      | 3                | 10461           |      |                   |               |
| 5      | 4                | 7098            |      |                   |               |
| 6      | 5                | 5239            |      |                   |               |
| 7      | 6                | 3920            |      |                   |               |
| 8      | 7                | 1626            |      |                   |               |
| 9      | 8                | 4268            |      |                   |               |
| 10     | 9                | 644             |      |                   |               |



<sup>\*\*</sup> From the above results table, customers buy many orders through 1 instalments plan followed by 2 & 3 instalments plan. Customers may not be ready to go for higher instalments plans due to extra charges. Company can check whether the number of orders & customers can be increased by reducing extra charges for high instalments plans.