1 System Theory

1.1 Nonlinear Systems

1.2 Linear Systems

Continuous

$$\begin{split} \dot{x}(t) &= A^{c}x(t) + B^{c}u(t) \\ x(t) &= e^{A^{c}(t-t_{0})}x_{0} + \int_{t_{0}}^{t} e^{A^{c}(t-\tau)}Bu(\tau)d\tau \\ e^{A^{c}t} &= \sum_{n=0}^{\infty} \frac{(A^{c}t)^{n}}{n!} \end{split}$$

Discrete

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k + Du_k$$

$$x_{k+N} = A^N x_k + \sum_{i=0}^{N-1} A^i Bu_{k+N-1-i}$$

Discretization Euler:
$$A = I + T_s A^c$$
, $B = T_s B^c$, $C = C^c$, $D = D^c$
$$x_{k+1} = x_k + T_s g^c(x_k, u_k) = g(x_k, u_k)$$

$$y_k = h^c(x_k, u_k) = h(x_k, u_k)$$
 Exact: (assume constant $u(t)$ during T_s)

$$A = e^{A^c T_s}, \ B = \int_0^{T_s} e^{A^c (T_s - \tau')} B^c d\tau$$

$$B = (A^c)^{-1} (A - I) B^c, \text{ if } A^c \text{ invertible}$$

1.3 Lyapunov Stability

System is stable in the sense of Lyapunov iff it stays in any arbitrarily small neighborhood of the origin when it is disturbed slightly.

$$\textbf{Lyapunov stable} \quad \text{iff } \forall \epsilon > 0 \; \exists \delta(\epsilon) \; \text{s.t.} \; \|x_0\| < \delta(\epsilon) \to \|x_k\| < \epsilon, \forall k \geq 0 \\$$

asymptotically stable in $\Omega \subseteq \mathbb{R}^n$ if Lyapunov stable and attractive $\lim_{k\to\infty} x_k = 0, \forall x_0 \in \Omega.$

Lyapunov Function $V: \mathbb{R}^n \to \mathbb{R}$ continous at the origin, finite $\forall x \in \Omega$, V(0) = 0 and $V(x) > 0, \forall x \in \Omega \setminus \{0\}$

$$V(g(x)) - V(x) \le -\alpha(x), \forall x \in \Omega \setminus \{0\}$$

where $\alpha: \mathbb{R}^n \to \mathbb{R}$ is continuous positive definite, equilibrium at x=0and $\Omega \subset \mathbb{R}^n$ closed and bounded set containing the origin.

Lyapunov Theorem If system admits Lyapunov function V(x), then x = 0 is asymptotically stable in Ω (sufficient but not necessary). If additionally $||x|| \to \infty \Rightarrow V(x) \to \infty$ globally asymptotically stable. To check if $V(x) = x^T P x$ is valid Lyapunov function of system $x_{k+1} = Ax_k$ check if (APA - P) has neg. eigen values. In other words: Iff eigenvalues of A inside unit circle (i.e. stable) then $\exists unique \ P > 0 \text{ that solves } A_{cl}^T P A_{cl} - P = -Q, \ Q > 0 \text{ and }$ $V(x) = x^T P x$ is a lyapunov function.

1.4 Observability ⇒ Detectability, Controllability ⇒ Stabilizability

$$(A,C) \begin{tabular}{l} \begi$$

$$(A,H) \ \textbf{detectable} \quad \text{iff rank} \begin{bmatrix} \boldsymbol{A} - \lambda \boldsymbol{I} \\ \boldsymbol{H} \end{bmatrix} = n \ \forall \ \textbf{unstable} \ |\lambda_i| \geq 1 \ \text{of} \ \boldsymbol{A}.$$

(A, B) controllable if rank C = n, $C = [B \ AB \ ... \ A^{n-1}B]$ or if rank $([\lambda_j \mathbf{I} - \mathbf{A} \ \mathbf{B}]) = n \ \forall \lambda_i \text{ of } \mathbf{A} \text{ (PBH-test)}.$ Intuition: Can reach any state in (at most) n steps.

(A, B) stabilizable if rank $[\lambda_i I - A \ B] = n \ \forall \text{unstable} |\lambda_i| > 1 \text{ of } A.$ Intuition: Can reach origin in (at most) n steps.

2 Unconstrained Control

2.1 Block Approach (used also for \bar{w} substition)

$$\begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} I \\ A \\ \vdots \\ A^N \end{bmatrix} x(0) + \begin{bmatrix} 0 & 0 & \dots & 0 \\ B & 0 & \dots & 0 \\ AB & B & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ A^{N-1}B & \dots & AB & B \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N_1} \end{bmatrix}$$

$$x = \mathbf{S}^x \cdot x(0) + \mathbf{S}^u \cdot u \quad \text{size}(\mathbf{S}^x) = [n_{\text{states}} \cdot (N+1), N]$$

$$\text{size}(\mathbf{S}^u) = [n_{\text{states}} \cdot (N+1), n_{\text{states}}]$$

$$\bar{\mathbf{Q}} = \text{diag}(\mathbf{Q}, \dots, \mathbf{Q}, \mathbf{P}) \quad \text{size}(\bar{\mathbf{Q}}) = [n_{\text{states}} \cdot (N+1), n_{\text{states}} \cdot (N+1)]$$

$$\bar{\mathbf{R}} = \text{diag}(\mathbf{R}, \dots, \mathbf{R}) \quad \text{size}(\bar{\mathbf{R}}) = [n_{\text{input}} \cdot N, n_{\text{input}} \cdot N]$$

$$\mathbf{H} = \mathbf{S}^{uT} \bar{\mathbf{Q}} \mathbf{S}^u + \mathbf{R} \quad \mathbf{F} = \mathbf{S}^{xT} \bar{\mathbf{Q}} \mathbf{S}^u$$

$$\mathbf{Y} = \mathbf{S}^{xT} \bar{\mathbf{Q}} \mathbf{S}^x$$

Optimal cost and control

$$J^{*}(x_{0}) = -x_{0}^{T} \mathbf{F} \mathbf{H} \mathbf{F}^{T} x_{0} + x_{0}^{T} \mathbf{Y} x_{0}$$
$$u^{*}(x_{0}) = -\mathbf{H}^{-1} \mathbf{F}^{T} x_{0} = -\left(\mathbf{S}^{uT} \bar{\mathbf{Q}} \mathbf{S}^{u} + \mathbf{R}\right)^{-1} \mathbf{S}^{uT} \bar{\mathbf{Q}} \mathbf{S}^{x} x_{0}$$

2.2 Recursive Approach

$$J_k^*(x_k) = \min_{u_k} I(x_k, u_k) + J_{k+1}(x_{k+1})$$

Is a feedback controller as opposed to the Batch Approach. For LQR solve via Riccati Difference Equation (RDE).

$$egin{aligned} F_k &= -(B^T P_{k+1} B + R)^{-1} B^T P_{k+1} A \ P_k &= A^T P_{k+1} A + Q - A^T P_{k+1} B (B^T P_{k+1} B + R)^{-1} B^T P_{k+1} A \ u_k^* &= F_k \; x_k & J_k^*(x_k) = x_k^T P_k \; x_k & P_N &= P \end{aligned}$$

For unconstrained Infinite Horizon Problem, substituting $P_{\infty} = P_k = P_{k+1}$ into RDE gives DARE. Uniquely solvable, iff (A, B)stabilizable and (A, G) detectable, where $GG^T = Q$. Follows from closed-loop system $x_{k+1} = (\mathbf{A} + \mathbf{B}\mathbf{F}_k)x_k$

3 (Convex) Optimization

General Problem $\min_{x \in \text{dom}(f)} f(x)$ s. t. $g_i(x) \leq 0$ and $h_j(x) = 0$.

$$\begin{aligned} & \text{Norm } f(x): \mathbb{R}^n \to \mathbb{R} \\ & f(x) = 0 \Rightarrow x = 0, & f(x) \geq 0 \\ & f(\alpha \cdot x) = |\alpha| \cdot f(x) & \text{for scalar } \alpha \\ & f(x+y) \leq f(x) + f(y) & \forall x,y \in R^n \end{aligned}$$

3.1 Convexity

Convex set \mathcal{X} iff $\forall \lambda \in [0,1] \forall x,y \in \mathcal{X}$ $\lambda x + (1-\lambda)y \in \mathcal{X}$. Intersection preserves convexity, union does not.

Affine set
$$\mathcal{X} = \{x \in \mathbb{R}^n | \mathbf{A}x = b\}$$
 for some \mathbf{A}, b

Subspace is affine set through origin, i.e. b = 0, aka Nullspace of A.

Hyperplane
$$\mathcal{X} = \{x \in \mathbb{R}^n | a^T x = b\}$$
 for some a, b .

Halfspace
$$\mathcal{X} = \{x \in \mathbb{R}^n | a^T x \leq b\}$$
 for some a, b .

Polyhedron
$$\mathcal{P} = \{x | a_i^T x \leq b_i, i = 1, \dots, n\} = \{x | \mathbf{A}x \leq b\}$$

Cone \mathcal{X} if for all $x \in \mathcal{X}$, and for all $\theta > 0$, $\theta x \in \mathcal{X}$.

Ellipsoid
$$\mathcal{E} = \{x | (x - x_c)^T \mathbf{A}^{-1} (x - x_c) \le 1\}, x_c \text{ center point.}$$

Convex function $f : \operatorname{dom}(f) \to \mathbb{R}$ is convex iff $\operatorname{dom}(f)$ is convex and $f(\lambda x + (1 - \lambda)y) > \lambda f(x) + (1 - \lambda) f(y), \forall \lambda \in (0, 1), \forall x, y \in \text{dom}(f).$

Norm ball is convex (for all norms).

$$\begin{array}{l} \textbf{Epigraph set} \ f: \mathbf{dom}(f) \to \mathbb{R} \quad \text{is the set} \\ \mathrm{epi}(f) := \left\{ \begin{bmatrix} x \\ t \end{bmatrix} | x \in \mathrm{dom}(f), f(x) \le t \right\} \subseteq \mathrm{dom}(f) \times \mathbb{R} \\ \end{array}$$

Level set L_a of a function f for value a is the set of all $x \in \text{dom}(f)$ for which f(x) = a: $L_a = \{x | x \in \text{dom}(f), f(x) = a\}$.

Sublevel set C_a is defined by $C_a = \{x | x \in \text{dom}(f), f(x) \le a\}$.

3.2 Linear Programming (LP)

Problem statement min $c^T x$ such that $Gx \le h$ and Ax = b.

$$\begin{array}{ll} \text{Norm } l_{\infty} & \min_{x} \|x\|_{\infty} = \min_{x \in \mathbb{R}^n} \left[\max\{x, \dots, x_n, -x_1, \dots, -x_n\} \right] \\ & \min_{x,t} t & \text{subject to} & x_i \leq t, -x_i \leq t, & \textbf{\textit{F}} x \leq g \\ & \iff \min_{x,t} t & \text{subject to} & -1t \leq x \leq 1t, & \textbf{\textit{F}}_x \leq g. \end{array}$$

Norm
$$l_1 \quad \min_x \|x\|_1 = \min_x \left[\sum_{i=1}^m \max\{x_i, -x_i\} \right]$$
:
 $\min_t t_1 + \dots + t_m \quad \text{subject to} \quad x_i \leq t_i, -x_i \leq t_i, \qquad \mathbf{\textit{F}} x \leq g$
 $\iff \min_t \mathbf{1}^T t \quad \text{subject to} \quad -t \leq x \leq t, \qquad \mathbf{\textit{F}}_x \leq g.$

Note that for dim x = 1, l_1 and l_{∞} are the same. Note also that t is scalar for norm l_{∞} and a vector in norm l_1 .

Piecewise Affine

$$\min_{x} \left[\max_{i=1,\dots,m} \{c_i^T x + d_i\} \right] \quad \text{s.t. } \mathbf{G} x \le h$$

$$\iff \min_{x,t} t \quad \text{s.t. } c_i^T x + d_i \le t, \mathbf{G} x \le h$$

3.3 Duality

Lagrangian Dual Function

$$L(x, \lambda, \nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$
$$d(\lambda, \nu) = \inf_{x \in \mathcal{X}} L(x, \lambda, \nu) \quad \text{i.e. } \nabla_x L(x, \lambda, \nu) = 0$$

Dual Problem (always convex) $\max_{\lambda,\nu} d(\lambda,\nu)$ s. t. $\lambda > 0$. Optimal value is lower bound for primal: $d^* \leq p^*$.

If primal convex, Slater condition (strict feasibility) implies strong duality: $\{x \mid Ax = b, f_i(x) < 0, \} \neq \emptyset \Rightarrow d^* = p^*$

Karush-Kuhn-Tucker (KKT) Conditions are necessary for optimality (and sufficient if primal convex).

Primal Feasability $f_i(x^*) < 0$ Dual Feasability

 $h_i(x^*) = 0$ $i = 1, \dots, p$

 $i = 1, \ldots, m$

 $i = 1, \ldots, m$

Complementary slackness $\lambda_i^* \cdot f_i(x^*) = 0$ Stationarity $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$

Dual of LP

$$\min_{x} c^{T} x \quad \text{s.t. } \mathbf{A} x = b, \mathbf{C} x \le e$$

$$\iff \max_{\lambda, \nu} -b^{T} \nu - e^{T} \lambda \quad \text{s.t. } A^{T} \nu + C^{T} \lambda + c = 0, \lambda \ge 0$$

Dual of QP

$$\min_{x} \frac{1}{2} x^{T} \mathbf{Q} x + c^{T} x \quad \text{s.t. } \mathbf{C} x \le e$$

$$\iff \min_{\lambda, \nu} \frac{1}{2} \lambda^{T} \mathbf{C} \mathbf{Q}^{-1} \mathbf{C}^{T} \lambda + (\mathbf{C} \mathbf{Q}^{-1} c + e)^{T} \lambda + \frac{1}{2} c^{T} \mathbf{Q}^{-1} c$$

$$\text{s.t. } \mathbf{Q} x + \nu + c^{T} \lambda = 0, \lambda > 0$$

4 Constrained Finite Time Optimal Control (CFTOC)

4.1 MPC with linear cost

$$J(x_0, u) = \|Px_N\|_p + \sum_{i=0}^{N-1} \|Qx_i\|_p + \|Ru_i\|_p.$$

The CFTOC problem can be formulated as an ∞-norm LP problem as shown below.

$$\begin{aligned} & \min_{z} \ \epsilon_{0}^{x} + \dots + \epsilon_{N}^{x} + \epsilon_{0}^{u} + \dots + \epsilon_{N-1}^{u} \\ & \text{s.t.} \quad -\mathbf{1}_{n} \epsilon_{i}^{x} \leq \pm Q \left[\boldsymbol{A}^{i} x_{0} + \sum_{j=0}^{i-1} \boldsymbol{A}^{j} \boldsymbol{B} u_{i-1-j} \right] \\ & -\mathbf{1}_{r} \epsilon_{N}^{x} \leq \pm \boldsymbol{P} \left[\boldsymbol{A}^{N} x_{0} + \sum_{j=0}^{N-1} \boldsymbol{A}^{j} \boldsymbol{B} u_{N-1-j} \right] \\ & -\mathbf{1}_{m} \epsilon_{N}^{u} \leq \pm \boldsymbol{R} u_{i} \\ & x_{i} = \boldsymbol{A}^{i} x_{0} + \sum_{j=0}^{i-1} \boldsymbol{A}^{j} \boldsymbol{B} u_{i-1-j} \in \mathcal{X} \\ & x_{N} = \boldsymbol{A}^{N} x_{0} + \sum_{j=1}^{N-1} \boldsymbol{A}^{j} \boldsymbol{B} u_{N-1-j} \in \mathcal{X} \\ & u_{i} \in \mathcal{U} \end{aligned}$$

Converting to LP form:

$$\min_{z} \ c^{T}z$$

s.t.
$$\bar{G}z \leq \bar{w} + \bar{s}x_k$$

$$z = \begin{bmatrix} \epsilon_0^x & \dots & \epsilon_N^x & \epsilon_0^u & \dots & \epsilon_{N-1}^u & u_0^T & \dots & u_{N-1}^T \end{bmatrix}$$

$$c = \begin{bmatrix} 1 & \dots & 1 & 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix}$$

$$\bar{G} = \begin{bmatrix} G_\epsilon & G_u \\ 0 & G \end{bmatrix}, \quad \bar{w} = \begin{bmatrix} w_\epsilon \\ w \end{bmatrix}$$

$$\bar{s} = \begin{bmatrix} s_\epsilon \end{bmatrix}$$

Where G is the normal problem constraints and $[G_{\epsilon}G_{u}]$ form the constraints of the newly introduced variable ϵ as given in the first 3 constraints in the section above. For example, we require:

$$-\epsilon_i^u \le u_i \le \epsilon_i^u$$
$$-\epsilon_0^x \le Ax_0 + Bu_0 \le \epsilon_0^x$$
$$-\epsilon_1^x \le A^2x_0 + Bu_1 + ABu_0 \le \epsilon_1^x$$

4.2 QP with substitution (see also Batch approach)

$$J^*(x_k) = \min_{u} \begin{bmatrix} u^T & x_k^T \end{bmatrix} \begin{bmatrix} \boldsymbol{H} & \boldsymbol{F}^T \\ \boldsymbol{F} & \boldsymbol{Y} \end{bmatrix} \begin{bmatrix} u \\ x_k \end{bmatrix}$$

s. t. $\boldsymbol{G} u \leq w + \boldsymbol{E} x_k$

Latter gives three sets (same for without substitution)

$$\mathcal{X} = \{x | A_x \ x \le b_x\}$$

$$\mathcal{U} = \{u | A_u \ u \le b_u\}$$

$$\mathcal{X}_f = \{x | A_f \ x \le b_f\}$$

State equations are in cost matrix, usually in the form:

State equations are in cost matrix, usually in the form:
$$A_x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, b_x = \begin{bmatrix} b_{\max} \\ -b_{\min} \end{bmatrix}$$

$$G = \begin{bmatrix} A_u & 0 & \dots & 0 \\ 0 & A_u & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_u \\ 0 & 0 & \dots & 0 \\ A_xB & 0 & \dots & 0 \\ A_xAB & A_xB & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A_xA^{N-2}B & A_xA^{N-3}B & \dots & 0 \\ A_fA^{N-1}B & A_fA^{N-2}B & \dots & A_fB \end{bmatrix}$$

$$E = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ -A_x \\ -A_xA \\ -A_xA^2 \\ \vdots \\ -A_xA^{N-1} \\ -A_fA^N \end{bmatrix}$$

$$W = \begin{bmatrix} b_u \\ b_u \\ b_u \\ b_x \\ b_x \\ \vdots \\ b_x \\ b_x \\ b_x \end{bmatrix}$$

4.3 QP without substitution

State equations represented in equality constraints (k fixed, usually k = 0).

$$J^{*}(x_{k}) = \min_{z} \begin{bmatrix} z^{T} & x_{k}^{T} \end{bmatrix} \begin{bmatrix} \boldsymbol{H} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{Q} \end{bmatrix} \begin{bmatrix} z \\ x_{k} \end{bmatrix}$$

s.t. $\boldsymbol{G} \ z \leq w + \boldsymbol{E} \ x_{k}$

 $G_{eq} z = E_{eq} x_k$, system dynamics

$$\begin{split} \bar{\boldsymbol{H}} &= \operatorname{diag}(\boldsymbol{Q}, \dots, \boldsymbol{Q}, \boldsymbol{P}, \boldsymbol{R}, \dots, \boldsymbol{R}) \\ z &= \begin{bmatrix} x_1 \\ \vdots \\ x_N \\ u_0 \\ u_{N-1} \end{bmatrix} & \boldsymbol{G}_{\text{eq}} &= \begin{bmatrix} \boldsymbol{I} \\ -\boldsymbol{A} & \boldsymbol{I} \\ \vdots & -\boldsymbol{A} & \boldsymbol{I} \end{bmatrix} & -\boldsymbol{B} \\ \vdots & -\boldsymbol{B} \end{bmatrix} & \boldsymbol{E}_{\text{eq}} &= \begin{bmatrix} \boldsymbol{A} \\ 0 \\ \vdots \\ 0 \end{bmatrix} \end{split}$$

$$w = \begin{bmatrix} b_x \\ \vdots \\ b_f \\ b_u \\ \vdots \\ b_u \end{bmatrix} \qquad G = \begin{bmatrix} 0 & A_x & & & & & & & & \\ & A_x & & & & & & \\ & & A_x & & & & & \\ & & & & A_d \end{bmatrix} \qquad E = \begin{bmatrix} -A_x^T \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

4.4 Invariance

Def.: $x(k) \in O \Rightarrow x(k+1) \in O \forall k$.

$$\operatorname{pre}(S) := \{x | g(x) \in S\}$$
 = $\{x | Ax \in S\}$

Max invariant set calculation: $\Omega_{i+1} \leftarrow \operatorname{pre}(\Omega_i) \cap \Omega_i$, terminating when $\Omega_{i+1} = \Omega_i$.

tim: We need more here, pos. inv. set, max. pos.inv O_{∞}

4.5 Stability and Feasability

Main Idea: Choose \mathcal{X}_f and P to mimic infinite horizon. LQR control law $\kappa(x) = \mathbf{F}_{\infty}x$ from solving DARE. Set terminal weight $\mathbf{P} = \mathbf{P}_{\infty}$, terminal set \mathcal{X}_f as maximal invariant set:

 $x_{k+1} = \mathbf{A}x_k + \mathbf{B}\mathbf{F}_{\infty} \ x_k \in \mathcal{X}_f \quad \forall x_k \in \mathcal{X}_f \text{ terminal set invariant}$

 $\mathcal{X}_f \subseteq \mathcal{X}, \quad \mathbf{F}_{\infty} \ x_k \in \mathcal{U} \quad \forall x_k \in \mathcal{X}_f \text{ constrainst satisfied}$

We get: 1. Positive stage cost function, 2. invariant terminal set by construction, 3. Terminal cost is Lyapunov function with

$$x_{k+1}^T \mathbf{P} x_{k+1} - x_k^T \mathbf{P} x_k = -x_k^T (\mathbf{Q} + \mathbf{F}_{\infty}^T \mathbf{R} \mathbf{F}_{\infty}) x_k$$

Extension to non-linear (time-invariant) MPC possible since terminal set and cost do not rely on linearity.

5.1 MPC for tracking

Target steady-state conditions $x_s = Ax_s + Bu_s$ and $y_s = Cx_s = r$ and constrainsts give:

$$\min_{x_s,u_s} u_s^T \boldsymbol{R} u_s \text{ subj. to } \begin{bmatrix} \boldsymbol{I} - \boldsymbol{A} & -\boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} x_s \\ u_s \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \\ r \end{bmatrix}, x_s \in \mathcal{X}, u_s \in \mathcal{U}$$

Usually assume x_s, u_s unique and feasible. If no solution exists, compute closest steady-state $\min(\mathbf{C}x_s-r)^T\mathbf{Q}(\mathbf{C}x_s-r)$ s. t. $x_s=\mathbf{A}x_s+\mathbf{B}u_s$.

MPC problem to drive $y \to r$ is:

$$\min_{u} \|y_N - Cx_s\|_{P_y}^2 + \sum_{i=0}^{N-1} \|y_i - Cx_s\|_{Q_y}^2 + \|u_i - u_s\|_R^2$$

5.2 Delta formulation

Reference
$$r$$
, $\Delta x_k = x_k - x_s$, $\Delta u_k = u_k - u_s$:

$$\min V_f(\Delta x_N) + \sum_{i=0}^{N-1} \Delta x_i^T Q \Delta x_i + \Delta u_i^T R \Delta u_i$$
s.t. $\Delta x_0 = \Delta x_k$

$$\Delta x_{k+1} = A \Delta x_k + B \Delta u_k$$

$$H_x x \leq k_x \Rightarrow H_x \Delta x \leq k_x - H_x x_s$$

$$H_u u \leq k_u \Rightarrow H_u \Delta u \leq k_u - H_u u_s$$

$$\Delta x_N \in \mathcal{X}_f \quad \text{adjusted accordingly, shift (and scaled)}$$

$$x_s \oplus \mathcal{X}_f \subseteq \mathcal{X}$$

$$K \Delta x + u_s \in \mathcal{U}$$

5.3 Offset free tracking

Control given by $u_0^* = \Delta u_0^* + u_s$.

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k + B_d d_k \\ d_{k+1} &= d_k \\ y_k &= Cx_k + C_d d_k \\ \begin{bmatrix} I - A & -B \\ C & 0 \end{bmatrix} \begin{bmatrix} x_s \\ u_s \end{bmatrix} = \begin{bmatrix} B_d \hat{d} \\ r - C_d \hat{d} \end{bmatrix} \end{aligned}$$

Choice of B_d , C_d requires that (A, C) is observable and $\begin{bmatrix} A - I & B_d \\ C & C_d \end{bmatrix}$ has full $(n_x + n_d)$ column frank (i.e. det $\neq 0$). Intuition: for fixed y_s at steady-state, d_s is uniquely determined.

If plant has no integrator we can choose $B_d = 0$ since $\det(A - I) \neq 0$.

$$\begin{bmatrix} \hat{x}_{k+1} \\ \hat{d}_{k+1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B}_d \\ \boldsymbol{0} & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \hat{x}_k \\ \hat{d}_k \end{bmatrix} + \begin{bmatrix} \boldsymbol{B} \\ \boldsymbol{0} \end{bmatrix} u_k + \begin{bmatrix} \boldsymbol{L}_x \\ \boldsymbol{L}_d \end{bmatrix} \left(-y_k^m + \boldsymbol{C}\hat{x}_k + \boldsymbol{C}_d\hat{d}_k \right)$$

where y_k^m measured output; choose $\begin{bmatrix} L_x \\ L_d \end{bmatrix}$ s.t. error dynamics stable and converge to zero.

tim: Target condition here

If 1) number of dist. = number of outputs, 2) target steady-state problem feasible and no constraints active at steady-state, 3) closed-loop system converges, then target achieved without offset.

5.4 Soft-constraints via slack variables

$$\min_{x} f(z) + l_{\epsilon}(\epsilon)$$
 s.t. $g(z) \le \epsilon, \epsilon \ge 0$

Requirement: Softened problem has same minimiser as original problem if feasible.

Quadratic error function $l_{\epsilon}(\epsilon) = v\epsilon + w\epsilon^2$, w > 0 gives smoothness, choose $v > \lambda^* \ge 0$ for exact penalty (above requirement fulfilled).

5.5 Move Blocking

Main idea to set a number of inputs as the same, $u_2 = u_3 = \cdots = u_N$, to reduce computational burden, at the slight cost of sub-optimality.

6 Robust MPC

Enforcing terminal constraints by robust invariance:

$$x \in O^{\mathcal{W}} \Rightarrow g(x, w) \in \Omega^{W} \ \forall w \in \mathcal{W}$$

$$\operatorname{pre}^{\mathcal{W}}(\Omega) = \{x | g(x, w) \in \Omega \ \forall w \in \mathcal{W}\}$$

Enforcing sequential constraints for uncertain system ϕ :

$$\phi_i(x_0,u,w) = \left\{ x_i + \sum_{j=0}^{i-1} A^j w_j \middle| w \in \mathcal{W}^i
ight\} \subseteq \mathcal{X}$$

$$\phi_N(x_0, u, w) \in \mathcal{X}_f$$
 as well

The uncertain system evolves with the summation of all the disturbances up to time i, hence we have to restrict the open-loop (determine control before disturbance is measured):

$$A_x x \le b_x$$
 becomes $A_x x_i + A_x \sum_{j=0}^{i-1} A^j w_k \le b_x$:

$$x_i \in \mathcal{X} \ominus (\mathcal{W} \oplus \mathbf{A}\mathcal{W} \oplus \cdots \oplus \mathbf{A}^{i-1}\mathcal{W})$$

$$= \left(\bigoplus_{j=0}^{i-1} \mathbf{A}^j \mathcal{W} \right) = \left[\mathbf{A}^0 \dots \mathbf{A}^{i-1} \right] \mathcal{W}^i$$

For example: Robust invariant set calculation of $x_{k+1}=0.5x_k+w_k$ under $-10 \le x \le 10$ and $-1 \le w \le 1$.

$$\Omega_0 = [-10, 10]$$

$$\operatorname{pre}^{\mathcal{W}}(\Omega_0) = \{x | -10 \le 0.5x + w \le 10 \text{ for } -1 \le w \le 1\}$$
$$= \{x | -20 - 2w \le x \le 20 + 2w \text{ for } -1 \le w \le 1\}$$
$$= \{x | -18 \le x \le 18\}$$

$$\Omega_1 = [-10, 10] \cap [-18, 18] = [-10, 10] = \mathcal{O}_{\infty}^{\mathcal{W}}$$

For example: Terminal set calculation of $x_{k+1} = w_k, \; -1 \le w \le 1,$ N= 2:

$$\mathcal{X}_f^{\mathcal{W}} = \mathcal{X}_f \ominus \left(\bigoplus_{j=0}^1 \mathbf{A}^j \mathcal{W} \right) = \mathcal{X}_f \ominus 2\mathcal{W} = [-10, 10] \ominus [-2, 2] = [-8, 8]$$

Tube-MPC We want nominal system $z_k = Az_k + Bv_k$ with "tracking" controller $u_k = K(x_k - z_k) + v_k$ i.e. closed-loop, K found offline. Step 1: Compute the minimal robust invariant set $\mathcal{E} = \bigoplus_{i=1}^{\infty} A_{cl}^{i} \mathcal{W}$.

Step 2: Shrink Constraints:

$$\begin{aligned} &\{z_i\} \oplus \mathcal{E} \subseteq \mathcal{X} & \Rightarrow \{z_i\} \in \mathcal{X} \ominus \mathcal{E} \\ &u_i \in \mathbf{K}\mathcal{E} \oplus \{v_i\} \subset \mathbf{U} & \Rightarrow \{v_i\} \in \mathcal{U} \ominus \mathbf{K}\mathcal{E} \\ &z_n \in \mathcal{X}_f \ominus \mathcal{E} & \end{aligned}$$

Also check that the set \mathcal{X}_f is invariant for the nominal system with tightened constraints: $(A+BK)\mathcal{X}_f\subseteq\mathcal{X}_f$, and that it satisfies the constraints: $\mathcal{X}_f\subseteq\mathcal{X}\ominus\mathcal{E}$ and $K\mathcal{X}_f\subseteq\mathcal{U}\ominus K\mathcal{E}$.

7 Explicit MPC

 $z^*(x_k)$ is continuous and polyhedral piecewise affine over feasible set.

7.1 Quadratic Cost

 $J^*(x_k)$ is continuous, convex and polyhedral piecewise quadratic. Using the formulation with substitution,

$$J(x_k) = \min z^T H z - x_k^T (Y - F H^{-1} F^T) x_k$$
s.t $Gz \le w + S x_k$

$$z(x_k) = U + H^{-1} F^T x_k$$

$$S = E + G H^{-1} F^T$$

$$U^* = z^* (x_k) - H^{-1} F^T x_k$$

The first solution gives $u^*(x_k) = \kappa(x_k)$, which is continuous and piecewise affine on polyhedra $\kappa(x) = F_j x + g_j$.

7.2 $1/\infty$ -norm

 $J^*(x_k)$ is continuous, convex and polyhedral piecewise affine. Optimal solution: $u_0^* = \begin{bmatrix} 0 & \dots & 0 & I_m & 0 & \dots & 0 \end{bmatrix} z^*(x_k)$, and is in the same form as the QP case above.

7.3 Explicit Example

- 1. Write out KKT conditions and Lagrangian.
- 2. Determine infeasible regions from primal feasibility constraints For example, x1 < 10.
- From primal and dual feasibility, and complementary slackness conditions, list out all cases that can occur.

$$\lambda_1 = 0$$

$$g_1(x) < 0$$

$$\lambda_1 \ge 0$$

$$g_1(x) = 0$$

4. Solve for each case: $z^*(x_1, x_2)$ and $J^*(x_1, x_2)$, listing the active constraints, and range of validity.

8 Hybrid MPC

8.1 Piecewise Affine (PWA) Systems

Affine dynamics and output for each region:

$$\begin{cases} x_{k+1} = A^i x_k + B^i u_k + f^i \\ y_k = C^i x_k + D^i u_k + g_i \end{cases} \text{ if } x_t \in \mathcal{X}_j$$

Polyhedral partition of the (x, u)-space:

$$\{\mathcal{X}_i\}_{i=1}^s = \{x, u | H_j x + J_j u \le K_j\}$$

8.2 Mixed Logical Dynamical Hybrid Model (MLD)

Idea: associate boolean to binary: $p_j \iff \delta_i = 1, \ \neg p_j \iff \delta_i = 0.$

8.2.1 Translate logic rules to Linear Integer Inequalities

AND	$p_1 \wedge p_2$	$\delta_1 \ge 1, \delta_1 \ge 1$ also $\delta_1 + \delta_2 \ge 2$
OR	$p_1 \lor p_2$	$\delta_1 + \delta_2 \ge 1$
NOT	$\neg p_1$	$1 - \delta_1 \ge 1$ also $\delta_1 = 0$
XOR	$p_1 + p_2$	$\delta_1 + \delta_2 = 1$
IMPLY	$p_1 \rightarrow p_2$	$\delta_1 - \delta_2 \le 0$
IFF	$p_1 \leftrightarrow p_2$	$\delta_1 - \delta_2 = 0$
ASSIGNMENT	$p_3 \leftrightarrow p_1 \wedge p_2$	$\delta_1 + (1 - \delta_3) \ge 1,$
		$\delta_2 + (1 - \delta_3) \ge 1,$
		$(1 - \delta_1) + (1 - \delta_2) + \delta_3 \ge 1$
CNF-Clause	$\neg p_1 \lor \neg p_2 \lor p_3$	$\delta_1 + \delta_2 + \delta_3 \le 1$

Logic Equality Rules

$$\neg (A \land B) = \neg A \lor \neg B$$
$$A \land (B \lor C) = (A \land B) \lor (A \land C)$$
$$A \lor (B \land C) = (A \lor B) \land (A \lor C)$$

8.2.2 Translate continuous and logical components into Linear Mixed-Integer Relations

Event generator: $\delta_e(k) = f_{EG}(x_c(k), u_c(k), t)$. Consider: $p \Leftrightarrow a^T x \leq b, \mathcal{X} = \{x | a^T x - b \in [m, M]\}$. Translated to linear inequalities: $m\delta < a^T x - b \leq M(1 - \delta)$, where [m, M] are lower and upper bounds.

Representing Switched Affine Dynamics as "IF-THEN-ELSE" relations

IF p THEN
$$z_k = a_1^T x_k + b_1$$
 else $z_k = a_2^T x_k + b_2 \Leftrightarrow (m_2 - M_1)\delta + z_k \leq a_2^T x_k + b_2 \leq -(m_1 - M_2)\delta + z_k$

$$(m_1 - M_2)(1 - \delta) + z_k \leq a_1^T x_k + b_1 \leq -(m_1 - M_2)(1 - \delta) + z_k$$
This results in a linear MLD model

$$x_{k+1} = Ax_k + B_1 u_k + B_2 \delta_k + B_3 z_k$$

$$y_k = Cx_k + D_1u_k + D_2\delta_k + D_3z_k$$

$$E_2 \delta_k + E_3 z_k \le E_4 x_k + E_1 u_k + E_5$$

where the last equation describes the relationship between the continuous and integer variables. Physical constraints on cont.

variables:
$$\{\mathcal{C}\} = \left\{ \begin{bmatrix} x_c \\ u_c \end{bmatrix} \in \mathcal{R}^{n_c + m_c} | Fx_c + Gu_c \le H \right\}$$

8.3 CFTOC for Hybrid Systems

$$J^*(x) = \min_{U} l_N(x_N) + \sum_{k=0}^{N-1} l(x_k, u_k, \delta_k, z_k)$$
s.t $x_{k+1} = Ax_k + B_1 u_k + B_2 \delta_k + B_3 z_k$

$$E_2 \delta_k + E_3 z_k \le E_4 x_k + E_1 u_k + E_5$$

$$x_N \in \mathcal{X}_f, x_0 = x(0)$$

8.4 MILP/QP

min
$$c_c z_c + c_b z_b + d$$
 OR $zHz + qz + d$
s.t $G_c z_c + G_b z_b \le W$
 $z_c \in \mathbb{R}^{s_c}, z_b \in \{0, 1\}^{s_b}$

Branch and bound method can be used to efficiently solve the problem. Explict solution is a time varying fb law for both problems: $u_k^*(x_k) = F_k^j x_k + G_k^j$ if $x_k \in \mathcal{R}_k^j$.

9 Numerical Optimization - Iterative Methods

9.1 Gradient descent

$$x_{i+1} = x_i - h_i \nabla f(x_i)$$
 with step-size $h_i = \frac{1}{L}$ for L -smooth $f(x)$:
 $\exists L : \|\nabla f(x) - \nabla f(y)\| \le L\|x - y\| \ \forall x, y, \in \mathbb{R}^n$
 $\iff \nabla f$ is Lipschitz continuous
 $\iff f$ can be upperbounded by a quadratic function:
 $f(x) \le f(y) + \nabla f(y)^T (x - y) + 0.5L \|x - y\|^2 \ \forall x, y \in \mathbb{R}^n$

9.2 Newton's Method

$$x_{i+1} = x_i - h_i \Delta x_{nt} := x_i - h_i (\nabla^2 f(x_i))^{-1} \nabla f(x_i)$$

Line search problem: choose $h_i > 0$ s.t. $f(x_i + h_i \Delta x_{nt}) \leq f(x_i)$.
Either compute exact and best h_i using:

$$h_i^* = \operatorname{argmin} x_i - h_i \Delta x_{nt}$$

Or use the backtracking search method:

For
$$\alpha \in (0, 0.5)$$
 and $\beta \in (0, 1)$:

initialise
$$h_i = 1$$
;

while $f(x_i + h_i \Delta x_{nt}) > f(x_i) + \alpha h_i \nabla f(x_i)^T \Delta x_{nt}$ do $h_i \leftarrow \beta h_i$ For given equality constraint $\mathbf{A}x = b$ solve:

$$\begin{bmatrix} \nabla^2 f(x_i) & \boldsymbol{A}^T \\ \boldsymbol{A} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \delta x \\ \lambda \end{bmatrix} = \begin{bmatrix} -\nabla f(x_i) \\ \boldsymbol{0} \end{bmatrix}$$

9.3 Constrained optimization with $q_i(x) < 0$

Gradient method $x_{i+1} = \pi_Q(x_i - h_i \nabla f(x_i))$ where π_Q is a projection $\pi_q = \arg\min_x \frac{1}{2} \|x - y\|_2^2$. Projection can be solved directly if simple enough, else solve the dual.

9.4 Interior-Point methods

Assumptions $f(x^*) < \infty$, $\tilde{x} \in \text{dom}(f)$

Barrier method $\min f(x) + \kappa \phi(x)$. Approximate ϕ using diff'able log barrier (instead of indicator function):

$$\phi(x) = \sum_{i=1}^{m} I_{-}(g_i(x)) = -\sum_{i=1}^{m} \log(-g_i(x))$$

$$\lim_{\kappa \to 0} x^*(\kappa) = x^*$$

Analytic center: $\arg\min_{x} \phi(x)$, central path $\{x^*(\kappa)|\kappa>0\}$.

Path following method

- 1. Centering $x^*(\kappa) = \arg\min_x f(x) + \kappa \phi(x)$ with newton's method:
- 1.1. $\Delta x_{\rm nt} = \left[\nabla^2 f(x) + \kappa \nabla^2 \phi(x) \right]^{-1} (-\nabla f(x) \kappa \nabla \phi(x)).$
- 1.2. Line search:

retain feasibility: $\operatorname{argmax}_{h>0} \{h|q_i(x+h\Delta x)<0\}$

Find
$$h^* = \operatorname{argmin}_{h \in [0, h_{\max}]} \{ f(x + h\Delta x) + \kappa \phi(x + h\Delta x) \}$$

- 2. Update step $x_i = x^*(\kappa_i)$
- 3. Stop if $m\kappa_i \leq \epsilon$
- 4. Decrease $\kappa_{i+1} = \kappa_i/\mu$, $\mu > 1$.

Centering step with equality constraints

$$\begin{bmatrix} \nabla^2 f(x) + \kappa \nabla^2 \phi(x) & c^T \\ c & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ \nu \end{bmatrix} = - \begin{bmatrix} \nabla f(x) + \kappa \nabla \phi(x) \\ 0 \end{bmatrix}$$

Relaxed KKT

$$Cx^* = d \qquad g_i(x^*) + s_i^* = 0$$

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) + c^T \nu = 0 \qquad \lambda_i^* = \kappa \frac{\partial \phi}{\partial g_i} = -\frac{\kappa}{g_i}$$

$$\lambda_i^* g_i(x^*) = -\kappa \qquad \lambda_i^*, s_i^* \ge 0$$

Primal Dual Search Direction Computation

$$\begin{bmatrix} H(x,\lambda) & c^T & G(x)^T & 0 \\ c & 0 & 0 & 0 \\ G(x) & 0 & 0 & I \\ 0 & 0 & S & \Lambda \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta u \\ \Delta \lambda \\ \Delta s \end{bmatrix} = - \begin{bmatrix} \nabla f(x) + c^T \nu + G(x)^T \lambda \\ cx - d \\ g(x) + s \\ s\lambda - \nu \end{bmatrix}$$

 $S = \operatorname{diag}(s_1, \ldots, s_m), \Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_m)$ and ν is a vector for choosing centering parameters.