Numerical Linear Algebra -Sheet 12

to be handed in until February 22, 2025, 2pm.

Problem 1. Let **A** and **B** be symmetric positive-definite matrices in $\mathbb{R}^{n \times n}$. Let there be constants c_1, c_2 auch that

$$c_1 \mathbf{x}^T \mathbf{A} \mathbf{x} \le \mathbf{x}^T \mathbf{B} \mathbf{x} \le c_2 \mathbf{x}^T \mathbf{A} \mathbf{x}.$$

Derive an estimate for the convergence of the conjugate gradient iteration for $\mathbf{A}\mathbf{x} = \mathbf{b}$ with preconditioner \mathbf{B}^{-1} depending on c_1 and c_2 .

Hints: Lemma 3.4.72 in the lecture notes and Theorem 2.2.17 (note that the definition of the Rayleigh quotient is independent of the choice of inner product).

Problem 2. Develop a modified version of the non-Hermitian Lanczos algorithm that produces a sequence of vectors \mathbf{v}_i , \mathbf{w}_i that are such that each \mathbf{v}_i is orthogonal to every \mathbf{w}_i with $j \neq i$ and $\|\mathbf{v}_i\| = \|\mathbf{w}_i\| = 1$ for all i.

Problem 3. Find an example of a matrix with a real spectrum for which the QR method will not converge to an upper triangular matrix.