BAR Nash Equilibrium and Application to Blockchain Design

Designing a Solution for the Verifier's Dilemma in Quorum-Based Blockchains

Maxime Reynouard^{1,3}, Olga Gorelkina², Rida Laraki^{1,2}

1. Université Paris Dauphine - PSL

2. UM6P

3. Nomadic Labs

21 September 2023

Outline

Byzantine-Altruist-Rational (BAR) model and BAR Nash equilibria

Model Primitives

The BAR model: three types of agents

BAR-Robust Equilibrium

Byzantine-Altruist-Rational Nash Equilibrium (BARNE)

Application to Quorum-Based Consensus Protocols

Setup

- lacktriangleright T the strategy space, $au\in T$ the prescribed protocol
- ▶ $N = \{1, 2, ..., n\}$, the set of all agents, $i \in N$ a single agent
- $s \in T^n$ a (joint) strategy profile,
- $ightharpoonup s_i \in T$ the strategy of agent i for the profile s
- $ightharpoonup s_I \in T^{|I|}$ the sub-profile of agents in $I \subset N$
- \triangleright $u_i(s)$ the payoff of agent i
- ▶ $I, J \subset N$ disjoint, $i, j \in N \setminus (I \cup J)$, we write
 - $(s_I, s_J, s_i, s_j) = s_{I \cup J \cup \{i,j\}})$
 - $u_i(s) = u_i(s_1, ...s_n) = u_i(s_l, s_{N \setminus l})$

Symmetric games

Definition

A game is symmetric iff $u_i(s_1,...,s_n)=u_{\pi(i)}(s_{\pi(1)},...,s_{\pi(n)})$ for any permutation π over N.

The BAR model: three types of agents

Following the *Byzantine–Altruistic–Rational* (*BAR*) model, we distinguish three types of agents:

- ▶ $F \subset N$, the Faulty (Byzantine) agents that deviate arbitrarily from τ . Their behaviour may range from non-strategic faults to collusive attacks.
- ▶ $G \subset N$, the Gain seeking (Rational) agents maximizing their payoff u_i .
- ▶ $H \subset N$, the Honest (Altruistic) agents following τ unconditionally
- \triangleright F, G, and H partition N, so
 - they are distinct
 - their cardinals f, g, and h sum to n

BAR-Robust Equilibrium

Definition

A joint strategy profile $s^* \in T^n$ is a (\bar{f}, \bar{g}) BAR-robust equilibrium for two given integers \bar{f} and \bar{g} if:

- 1. For all $F \subset N$ such that $f \leq \overline{f}$, $s_F \in T^f$ and $i \in N \setminus F$: $u_i(s_F, s_{N \setminus F}^*) \geq u_i(s^*)$.
- 2. For all disjoint sets $F, G \subset N$, and strategy profile $s \in T^n$ such that $g \leq \overline{g}$ and $f \leq \overline{f}$, where $s_G \in T^g$ and $s_F \in T^f$, there exists $i \in G$ such that $u_i(s_F, s_G, s_{N \setminus F \cup G}^*) \leq u_i(s_F, s_{N \setminus F}^*)$.
- ▶ (1) corresponds to byzantine fault tolerance (BFT) in the distributed computing literature
- (2) is equivalent to the strong Nash equilibrium condition when g = n.

Ittai Abraham, Lorenzo Alvisi, and Joseph Y. Halpern. "Distributed Computing Meets Game Theory: Combining Insights from Two Fields". In: *SIGACT News* 42.2 (June 2011), pp. 69–76

Drawbacks

Both conditions are fairly restrictive

- ▶ With $\bar{g} \ge 1$, condition (2) implies that s^* is a Nash equilibrium (let f = 0 and g = 1).
- ▶ With $\bar{g} \ge 2$, condition (2) further implies that no two players can jointly deviate to simultaneously increase their payoff (let f = 0 and g = 2).

Already in the prisoner's dilemma these two conditions are incompatible.

In symmetric games, conditions (1) and (2) imply that the equilibrium strategy of Rationals is a best reply to all possible deviations of Byzantines.

New Concept: BARNE

Definition

The joint strategy profile $s_G^* \in T^g$ is

- 1. BARNE at (F, G) with $F, G \subset N$ disjoint, if: for all $i \in G$, $s_i^* \in argmax_{s_i \in T} min_{s_F \in T^f} u_i(s_F, s_i, s_{G \setminus \{i\}}^*, s_H)$.
- 2. BARNE at (f,g) if: for all F and G such that |F|=f and |G|=g, s_G^* is a BARNE at (F,G).

Existence of BARNE

In contrast to the BAR-robust equilibrium the BARNE is guaranteed to exist under the following conditions.

Theorem

For F and G, two disjoint subsets of N, noting $H = N \setminus (F \cup G)$, if (1) T is a convex compact subset of a topological vector space, (2) any $i \in G$, u_i is continuous and (3) $t_i \mapsto u_i(s_F, (t_i, s_{G \setminus \{i\}}), s_H)$ is concave for any strategy profile $s \in T^n$, then a BARNE exists at (F, G).

Moreover, if the game is **symmetric** then for every (f,g) there exists a **symmetric BARNE** at (f,g) that is, $\exists \sigma \in T \text{ s.t. } s_G^* = \sigma^g$ is a BARNE at (f,g).

Hence, the existence of a BARNE is guaranteed in particular in mixed extensions of finite games.

A congestion game

Example

- $ightharpoonup T = \{A, B\}$
- ▶ Parameter $k \in \mathbb{N}^*$, k < n

Different sensible prescribed strategy can be imagined $\tau = A$, or even a prescribed profile with k agents playing B, the rest playing A

- In a standard game theory setting: g = n, f = h = 0: numerous equilibria, k agents play B, the rest plays A
- ▶ In the BAR model, BAR-robust equilibria are impossible:
 - Byzantines can deviate from A to B to lower payoffs (no BFT)
 - Rationals cannot best reply, A could mean missing out on $u_i = 2$ from B while B means risking 0 if their is a congestion
- Several BARNE exist, with $\tau = A$, let max(k f, 0) Rationals play B while the others safely play A

BARNE Refinement: Local Stability

Definition

A strategy $\sigma \in T$ constitutes a δ -stable BARNE with respect to norm $\|.\|_{\nu}$ at (f, g), if for all (f, g) such that $\|(f, g) - (f, g)\|_{\nu} \leq \delta$, σ is a symmetric BARNE at (f, g).

The choice of the relevant norm $\|.\|_{\nu}$ depends on the application.

- Intuitive:
 - ||.||₂, Euclidean but bad when when a byzantine becomes a rational
 - ▶ $\|.\|_{\infty}$ non-Euclidean
- More complex, but better properties:

$$||.||_{2^*}: (f,g) \mapsto \frac{1}{\sqrt{2}} ||(f,g,n-f-g)||_2.$$

BARNE Refinement: Global Stability

Global stability, is more closely related to the notion of fault tolerance.

Definition

A strategy $\sigma \in T$ constitutes a **globally stable symmetric BARNE** at (\bar{f}, \bar{g}) if for all disjoint subsets F and G of N such that $f \leq \bar{f}$ and $g \leq \bar{g}$, σ is a BARNE at (F, G).

Note that in example 5, no equilibrium would be globally stable, however, when f > k, the equilibrium where rational agents all play A is (f-k)-stable. This is because even with f-k less Byzantine agents, if one rational chooses B then byzantine can crash it.

Properties of Different Notions of Equilibrium

	BAR-rob.	BARNE	L.S. BARNE	G.S. BARNE
anti-coalition	1			
anti-deviations	✓	✓	✓	✓
dominant	1			
max-min	1	✓	✓	✓
locally stable	1		✓	✓
globally stable	✓			✓

A simplified Quorum-Based Consensus Protocol

- ▷ BEGINNING OF A NEW ROUND / PROPOSAL 1: **if** We are the round proposer **then Create** a new valid block b
- 3: Propose b on the network
 - ▶ ENDORSING

2:

- 4: while NOT (round timeout OR endorsed this round) do
- if We receive a new block proposal B then 5:
- **Check validity** of B 6:
- if B is valid then 7:
- Endorse B 8:
 - ▶ DECISION
- 9: while NOT round timeout do
- **if** We received Q or more endorsements for B **then** 10.
- 11: add B to our blockchain
- GO TO next level 12:
- 13: GO TO next round

Rational Agent's Payoffs

- ▶ If quorum *Q* is not reached
 - no Loss nor Reward
- ▶ If quorum *Q* is reached
 - ightharpoonup reward r_e if endorsed
 - ► Loss *L* if Invalid
- ightharpoonup Checking validity: c_c

Hence, a Rational agent's payoff is:

 $u=\mathbb{1}_{Accepted\ Block}\left(\mathbb{1}_{Endorsed\ r_e}-\mathbb{1}_{Invalid\ Block}\,L\right)-\mathbb{1}_{Checked\ Validity\ C_C}$ where we assume that $L\gg r_e\gg c_c>0$.

Decision Tree in the Endorsement Game

Six pure strategies

- $ightharpoonup \sigma_{ce}$: Check validity, endorse unconditionally
- $ightharpoonup \sigma_{c0}$: Check validity, do not endorse unconditionally
- σ_h : Check validity, endorse iff the block is valid. (The prescribed strategy that Honest or Altruistic agents follow.)
- σ_{f} : Check validity, endorse iff the block is invalid. (The minimising strategy of the Byzantine players.)
- $ightharpoonup \sigma_e$: Do not check validity, endorse unconditionally
- $ightharpoonup \sigma_0$: Do not check validity, do not endorse unconditionally

Due to dominance, *Rationals* only choose among σ_e , σ_0 , and σ_h (= τ). *Byzantines* play σ_f in a symmetric BARNE.

The Byzantine-rational simplex

When we are both in the honest veto and honest quorum (f and g are smallish), σ_e dominates σ_h

Amending the Protocol in 2 steps

- ▶ Fine invalid block endorsers with $L_e \gg r_e$
 - ▶ Proof is transmitted, stake is slashed, possibly given to accuser
 - ▶ Insufficient when little to no Invalid block $(f \ll n)$, then the fine is not a credible threat.
- ▶ Trap blocks
 - Private information gives the right to propose an invalid block
 - Ensures invalid blocks have a minimal probability of being proposed $p_{trap} > \frac{r_e + c_c}{L_c}$

Inspired by similar solution to the free-rider problem in rollups Jason Teutsch and Christian Reitwießner. "A scalable verification solution for blockchains". In: *CoRR* abs/1908.04756 (2019). arXiv: 1908.04756. URL: http://arxiv.org/abs/1908.04756

Areas where the honest strategy σ_h is a BARNE

Other strategies BARNE

Thanks

Questions?

Payoff table

	Valid		Invalid	
Accepted	0	<u>r_e</u>	-L	$\underline{r_e - L}$
/ tecepted	$r_e - c_c$		$-L-c_c$	
Rejected	0	<u>0</u>	0	0
Rejected	$-c_c$		$-c_c$	
Pivotal	0	<u>re</u>	0	$r_e - L$
i ivotai	$r_e - c_c$		$-c_c$	

Aggregating payoffs with beliefs

$$\frac{-p_{AI} L \qquad | (p_A + p_P) r_e - (p_{AI} + p_{PI}) L}{(p_{AV} + p_{PV}) r_e - c_c - p_{AI} L}$$

Equations!

$$\mathbb{E}(u(\sigma_{h})) \leq \mathbb{E}(u(\sigma_{0}))$$

$$(p_{AV} + p_{PV}) r_{e} - c_{c} - p_{AI} L \leq -p_{AI} L$$

$$(p_{AV} + p_{PV}) r_{e} \leq c_{c}$$

$$\mathbb{E}(u(\sigma_{h})) \leq \mathbb{E}(u(\sigma_{e}))$$

$$(p_{AV} + p_{PV}) r_{e} - c_{c} - p_{AI} L \leq (p_{A} + p_{P}) r_{e} - (p_{AI} + p_{PI}) L$$

$$p_{PI} L \leq (p_{AI} + p_{PI}) r_{e} + c_{c}$$

$$\mathbb{E}(u(\sigma_{0})) \leq \mathbb{E}(u(\sigma_{e}))$$

$$-p_{AI} L \leq (p_{A} + p_{P}) r_{e} - (p_{AI} + p_{PI}) L$$

 $p_{PI} L \stackrel{\leq}{=} (p_A + p_P) r_e$

Payoffs with amendments

	Valid	Invalid		
Accepted	0 <u>re</u>	$-L$ $r_e - L - L_e$		
	$r_e - c_c$	$-L-c_c$		
Rejected	0 0	<u>0</u> − <i>L</i> _e		
	$-c_c$	$-c_c$		
Pivotal	0 <u>re</u>	$0 r_e - L - L_e$		
	$r_e - c_c$	$-c_c$		

$$\frac{-p_{AI} L | (p_A + p_P) r_e - (p_{AI} + p_{PI}) L - p_I L_e}{(p_{AV} + p_{PV}) r_e - c_c - p_{AI} L}$$

Equations with amendments

$$u(\sigma_h) \leq u(\sigma_0)$$

$$(p_{AV} + p_{PV}) r_e \leq c_c$$

$$u(\sigma_h) \leq u(\sigma_e)$$

$$p_{PI} L + p_I L_e \leq (p_{AI} + p_{PI}) r_e + c_c$$

$$u(\sigma_0) \leq u(\sigma_e)$$

$$p_{PI} L + p_I L_e \leq (p_A + p_P) r_e$$