QUI070 - Métodos	Pontuação ↓		
Data: 18/07/2025	Questões: 1	Pontos totais: 10	
Matrícula:	Nome:		

$Quest\~ao$	Pontos	Nota
1	10	
Total:	10	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas e materiais de consulta com essa folha anexa.
- 1. (10 pontos) O composto **A**, ao reagir com brometo de metilmagnésio (EtMgBr) em THF anidro e, depois, cloreto de amônio, gera o 4-(3-hidroxipentan-3-il)fenol, como mostra a reação abaixo.

Os espectro no infravermelho, de massas e de RMN unidimensionais e bidimensionais do composto ${\bf A}$ estão dispostos nas **Figuras 1 a 6**.

Figura 1: Espectro no infravermelho do composto A.

Figura 2: Espectro de massas do composto ${\bf A},$ adquirido no modo positivo com ionização por impacto de elétrons.

Figura 3: Espectro de RMN ¹H do composto **A**, adquirido em um espectrômetro com frequência de 300 MHz. As regiões A a D estão expandidas, mostrando os deslocamentos químicos e integrais.

 $\textbf{Figura 4:} \ \, \text{Espectro de RMN de} \, \, ^{13}\text{C de } \textbf{A}, \, \text{adquirido em um aparelho com frequência de } 300 \, \, \text{MHz}.$

Figura 5: Mapa de contornos COSY do composto $\bf A$, adquirido em um espectrômetro com frequência de 100 MHz e utilizando DMSO- d_6 como solvente.

Figura 6: Mapa de contornos HSQC de ${}^{1}\text{H}-{}^{13}\text{C}$ do composto **A**, adquirido em um espectrômetro com frequência de 100 MHz e utilizando DMSO- d_{6} como solvente.

Para o espectro de RMN de 13 C, considere que as análises de DEPT-45, DEPT-90 e DEPT-135 geraram os resultados expostos na **Tabela 1**.

Tabela 1: Fases dos sinais de ¹³C de **A** observados nos experimentos de DEPT-45, DEPT-90 e DEPT-135. Fases indicadas como "0" representam sinais não observados no respectivo espectro.

Cinal (5 nnm)	Fase do sinal										
Sinal (δ, ppm)	DEPT-45	DEPT-90	DEPT-135								
200,1	0	0	0								
162,9	0	0	0								
130,2	(+)	(+)	(+)								
129,3	0	0	0								
115,8	(+)	(+)	(+)								
31,7	(+)	0	(-)								
8,4	(+)	0	(+)								

Considerando o conjunto de informações, forneça:

- (i) A estrutura do composto A;
- (ii) O assinalamento completo das ressonâncias do espectro de RMN de ¹H e de ¹³C e;
- (iii) A identificação das frequências relativas aos grupos funcionais de A no espectro no IV;
- (iv) O mecanismo da principal fragmentação no espectro de massas.

18 VIIIA 2 4.0025 He	Hélio 20.180	m Ne	Neônio	18 39.948	\mathbf{Ar}	Argônio	36 83.8	m Kr	Kriptônio	54 131.29	Xe	Xenônio	86 222	$\mathbf{R}\mathbf{n}$	Radônio	118 294	Og	Oganessônio	1077	T.1	Lutécio		103 262	Lr	Laurêncio
H	17 VIIA		Flúor	17 35.453	C	Cloro	35 79.904	Br	Bromo	53 126.9	Ι	lodo	85 210	At	Astato	117 292	\mathbb{T}_{s}	Tenessino	PO 071 07	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Itérbio		102 259	No	Nobélio
	16 VIA	0	Oxigênio	16 32.065	∞	Enxofre	34 78.96	\mathbf{Se}	Selênio	52 127.6	$^{ m Te}$	Telúrio	84 209	Po	Polônio	116 293	Lv	Livermório	10000	100.93	Tullio		101 258	Md	Mendelévio
	15 VA	Z	Nitrogênio	15 30.974	Ь	Fósforo	33 74.922	$\mathbf{A}\mathbf{s}$	Arsênio	51 121.76	$^{\mathrm{Sp}}$	Antimônio	83 208.98	Bi	Bismuto	115 288	Mc	Moscóvio	20 421 00	10720 H.r	Érbio		100 257	Fm	Férmio
S	14 IVA	Ö	Carbono	14 28.086	\mathbf{Si}	Silício	32 72.64	Ge	Germânio	50 118.71	\mathbf{Sn}	Estanho	82 207.2	Pb	Chumbo	114 289	FJ	Flevório	104 00	HO4.33	Hólmio		99 252	Es	Einsténio
Periódica dos Elementos	13 IIIA		Boro	13 26.982	Al	Alumínio	31 69.723	Ga	Gálio	49 114.82	In	Índio	81 204.38	II	Tálio	113 284	$^{\mathrm{Nh}}$	Nihônio	02 691 88		Disprósio		98 251	Cf	Califórnio
eme						12 IIB	30 65.39	$\mathbf{Z}\mathbf{n}$	Zinco	48 112.41	Cd	Cádmio	80 200.59	$_{ m Hg}$	Mercúrio	112 285	Cn	Copernício	90 02F 30	T L	Térbio		97 247	Bk	Berquélio
\mathbf{S}						11 IB	29 63.546	$C_{\mathbf{n}}$	Cobre	47 107.87	\mathbf{Ag}	Prata	79 196.97	$\mathbf{A}\mathbf{u}$	Ouro	111 280	$\mathbf{R}_{\mathbf{S}}$	Roentgênio	167.05	64 Lof.25	Gaodlínio		96 247	Cm	Cúrio
op 1						9 VIIIB 10 VIIIB	28 58.693	ï	Níquel	46 106.42	\mathbf{Pd}	Paládio	78 195.08	\mathbf{Pt}	Platina	110 281	D_{S}	Darmstádtio	89 151 06		Európio		95 243	Am	Amerício
dica						9 VIIIB	27 58.933	Co	Cobalto	45 102.91	$\mathbf{R}\mathbf{h}$	Ródio	77 192.22	Ir	Irídio	109 268	Mt	Meitnério	150.00	02 130.30	Samário		94 244	Pu	Plutônio
erió						8 VIIIB	26 55.845	Fe	Ferro	44 101.07	$\mathbf{R}\mathbf{u}$	Rutênio	76 190.23	$^{\rm s}$	Ósmio	108 277	$\mathbf{H}_{\mathbf{S}}$	Hássio	10	٥	Promécio		93 237	dN	Netúnio
						7 VIIB	25 54.938	Mn	Manganês	43 96	T^{c}	Tecnécio	75 186.21	\mathbf{Re}	Rênio	107 264	Bh	Bóhrio	NO PPE OF	ZZ	Neodímio		92 238.03	Ω	Urânio
Tabela						6 VIB	24 51.996	$C_{\mathbf{r}}$	Cromo	42 95.94	Mo	Molibdênio	74 183.84	X	Tungstênio	106 266	S	Seabórgio	10 OF 1	ээ <u>140.91</u> D г	Praseodímio		91 231.04	Pa	Protactínio
Ta						5 VB	23 50.942	>	Vanádio	41 92.906	$^{\mathrm{q}}$	Nióbio	73 180.95	\mathbf{La}	Tântalo	105 262	Dp	Dúbnio	0.08	38 140.12	Cério		90 232.04	Th	Tório
						4 IVB	22 47.867	Ţ	Titânio	40 91.224	\mathbf{Zr}	Zircônio	72 178.49	Ht	Háfnio	104 261	Rf	Ruterfórdio	E L	16.06.1 ve	Lantânio		89 227	\mathbf{Ac}	Actínio
						3 IIIA	21 44.956	$S_{\rm c}$	Escândio	39 88.906	X	Ítrio	57-71		Lantanídeos	89-103		Actinideos	Sos		erenenen			ıral	
	2 IIA	\mathbf{Be}	Berílio	12 24.305	Mg	Magnésio	20 40.078	Ca	Cálcio	38 87.62	\mathbf{Sr}	Estrôncio	56 137.33	Ba	Bário	88 226	Ra	Rádio	Metais alcalinos Metais alcalinos terrosos	. <u>s</u>	g g	Gases nobres Lantanídeos/Actinídeos	cool i reminac	Preto: natural	laboratório
1 IA 1 1.0079 H	Hidrogênio	Li	Lítio	11 22.990	$N_{\mathbf{a}}$	Sódio	19 39.098	K	Potássio	37 85.468	$\mathbf{R}\mathbf{b}$	Rubídio	55 132.91	$C_{\mathbf{S}}$	Césio	87 223	Fr	Frâncio	Metais alcalinos Metais alcalinos	Metais Semi-metais	Ametais Halooénios	Gases nobres	Ганопия	z Símbolo	Nome
-	4	2			e			4			2			9			7								