MTH9855 Homework Nine

Likun Ouyang

May 13, 2018

Problem 12.1. Complete the proof of Theorem 12.2, in other words show that, under the hypotheses of the theorem, the ERC portfolio is proportional to inverse-volatility weighting.

Proof. (a) First, we show that a portfolio proportional to inverse-volatility weighting is the ERC portfolio.

we fix $x_i = \sigma 1_i$, for this choice of x, we have Sx = 1 hence $RSx = m \cdot 1$, hence

$$SRSx = mS\mathbf{1} = m(\sigma_1, ..., \sigma_n)^T$$

Finally, $x'SRSx = nm = \sigma^2(x)$. It follows that $x_i(\Sigma x)_i = m$ hence

$$\frac{x_i(\Sigma x)_i}{\sigma^2(x)} = \frac{m}{nm} = \frac{1}{n}$$

(b) Then, we show that the ERC portfolio is proportional to inverse-volatility weighting. The ERC condition is

$$\frac{x_i(\Sigma x)_i}{\sigma^2(x)} = \frac{1}{n} \text{ for } i = 1, 2, ..., n$$

So we have

$$x_i(\Sigma x)_i = x_j(\Sigma x)_j$$
 for $i \neq j$

Denote $R = (R_{ij})_{n \times n}$, we have

$$\sigma_i x_i \left(\sum_{k=1}^n \sigma_k x_k R_{ik} \right) = \sigma_j x_j \left(\sum_{k=1}^n \sigma_k x_k R_{jk} \right)$$

So we get,

$$\frac{\sigma_i x_i}{\sigma_j x_j} \left(\sum_{k=1}^n \sigma_k x_k R_{ik} \right) = \sum_{k=1}^n \sigma_k x_k R_{jk}$$

Since $R\mathbf{1} = m \cdot \mathbf{1}$, which means

$$\sum_{k=1}^{n} R_{ik} = \sum_{k=1}^{n} R_{jk}$$

Since R_{ik} is arbitrary, the above two equations hold true if and only if

$$\sigma_i x_i = \sigma_j x_j = const \ for \ i \neq j$$

In consequence, the ERC portfolio is proportional to inverse-volatility weighting.