Capítulo 1

Grupos

1.1 Grupóides, semigrupos e monóides

Definição 1.1.1. Seja X um conjunto. Uma operação binária (interna) em X é uma função $*: X \times X \to X$, $(x,y) \mapsto x * y$. Uma operação binária * em X diz-se associativa se para cada três elementos $x,y,z \in X$, (x*y)*z=x*(y*z). Uma operação binária * em X diz-se comutativa se para cada dois elementos $x,y \in X$, x*y=y*x.

Exemplos 1.1.2. (i) A adição + e a multiplicação \cdot são operações associativas e comutativas em \mathbb{N} , \mathbb{Z} , \mathbb{Q} e \mathbb{R} . Salienta-se que, nestes apontamentos, \mathbb{N} designa o conjuntos dos inteiros não negativos: $\mathbb{N} = \{0, 1, 2, \dots\}$.

- (ii) A subtração é uma operação binária em \mathbb{Z} , \mathbb{Q} e \mathbb{R} , mas não em \mathbb{N} . A subtração não é associativa nem comutativa.
 - (iii) Uma operação em \mathbb{N} que é comutativa mas não associativa é dada por a*b = |a-b|.
- (iv) Uma operação associativa no conjunto $\mathcal{M}_{n\times n}(\mathbb{R})$ das matrizes reais $n\times n$ é dada pela multiplicação das matrizes. Se $n\geq 2$, então a multiplicação de matrizes não é comutativa.
- (v) A composição de funções é uma operação associativa no conjunto $\mathcal{F}(X)$ das funções no conjunto X. Se X tiver pelo menos dois elementos, a composição não é comutativa.
- (vi) A reunião e a intersecção são operações associativas e comutativas no conjunto potência $\mathcal{P}(X)$ de um conjunto X.

Nota 1.1.3. Uma operação binária * num conjunto finito $X = \{x_1, \ldots, x_n\}$ pode ser

dada através de uma tabela da forma:

	x_1	x_2	• • •	x_j	• • •	x_n
x_1	$x_1 * x_1$	$x_1 * x_2$	• • •	$x_1 * x_j$		$x_1 * x_n$
x_2	$x_2 * x_1$	$x_2 * x_2$	• • •	$x_2 * x_j$	• • •	$x_2 * x_n$
i	:	:	:	÷	:	:
x_i	$x_i * x_1$	$x_i * x_2$	• • •	$x_i * x_j$	• • •	$x_i * x_n$
÷	:	÷	:	÷	÷	:
x_n	$x_n * x_1$	$x_n * x_2$	• • •	$x_n * x_j$	• • •	$x_n * x_n$

Esta tabela é às vezes chamada a tabela de Cayley da operação *. Por exemplo, a tabela de Cayley da reunião no conjunto potência de um conjunto X com um elemento é dada por:

$$\begin{array}{c|cccc} & \emptyset & X \\ \hline \emptyset & \emptyset & X \\ X & X & X \end{array}$$

Definição 1.1.4. Um grupóide é um par (X, *) em que X é um conjunto não vazio e * é uma operação binária em X. Um semigrupo é um grupóide associativo, isto é, um grupóide cuja operação é associativa.

Exemplos 1.1.5. Cada uma das operações binárias nos exemplos 1.1.2 (i),(iv),(v),(vi) é a operação de um semigrupo. O grupóide $(\mathbb{Z}, -)$ não é um semigrupo.

Convenção 1.1.6. No desenvolvimento da teoria, denotaremos as operações de grupóides em geral pelos símbolos \cdot e +, sendo o uso do símbolo + restrito a operações comutativas. No caso de uma operação denotada por \cdot falaremos da multiplicação do grupóide e do $produto\ a \cdot b$ de dois elementos a e b. Em vez de $a \cdot b$ escrevemos também simplesmente ab. No caso de uma operação denotada por + falaremos da adição do grupóide e da $soma\ a + b$ de a e b. Muitas vezes indicaremos um grupóide pelo símbolo do conjunto subjacente. Assim, faleremos simplesmente do grupóide X em vez do grupóide (X,\cdot) . Estas convenções serão aplicadas a quaisquer grupóides e, em particular, a grupóides especiais como, por exemplo, semigrupos. Em exemplos e exercícios continuaremos a usar símbolos como * e \bullet para designar operações de grupóides.

Definição 1.1.7. Definimos os *produtos* dos elementos a_1, \ldots, a_n de um grupóide X (nesta ordem) recursivamente como se segue: O único produto de um elemento $a \in a$. Para $n \geq 2$, um elemento $x \in X$ é um produto dos elementos a_1, \ldots, a_n se existem $i \in \{1, \ldots, n-1\}$ e $y, z \in X$ tais que y é um produto dos elementos a_1, \ldots, a_i, z é um produto dos elementos a_{i+1}, \ldots, a_n e $x = y \cdot z$.

Assim, o único produto de dois elementos a e b de um grupóide é $a \cdot b$. Para três elementos a, b e c temos os dois produtos $a \cdot (b \cdot c)$ e $(a \cdot b) \cdot c$, que são, em geral, diferentes.

Por isso devemos, em geral, fazer atenção aos parênteses. No entanto, em semigrupos podemos omitir os parênteses:

Proposição 1.1.8. Sejam S um semigrupo e $a_1, \ldots, a_n \in S$. Então existe um único produto dos elementos a_1, \ldots, a_n .

Demonstração: Procedemos por indução. Para n=1 o resultado verifica-se por definição. Seja $n \geq 2$ tal que o resultado se verifica para qualquer $i \in \{1, \ldots, n-1\}$. Por hipótese de indução, existe um único produto dos elementos a_1, \ldots, a_n . Seja b este produto. Então $a_1 \cdot b$ é produto dos elementos a_1, \ldots, a_n . A fim de mostrar a unicidade deste produto consideramos um produto x dos elementos a_1, \ldots, a_n e mostramos que $x = a_1 \cdot b$. Sejam $i \in \{1, \ldots, n-1\}$ e $y, z \in S$ tais que y é um produto dos elementos a_1, \ldots, a_i , z é um produto dos elementos a_{i+1}, \ldots, a_n e $x = y \cdot z$. Se i = 1, então $y = a_1, z = b$ e $x = a_1 \cdot b$. Suponhamos que i > 1. Pela hipótese de indução existe um produto c dos elementos a_2, \ldots, a_i . Então $a_1 \cdot c$ é um produto dos elementos a_1, \ldots, a_i . Pela hipótese de indução, $y = a_1 \cdot c$. Como a operação \cdot de S é associativa, temos $x = y \cdot z = (a_1 \cdot c) \cdot z = a_1 \cdot (c \cdot z)$. Como $c \cdot z$ é um produto dos elementos a_2, \ldots, a_n , temos $c \cdot z = b$ e então $x = a_1 \cdot b$. \Box

Notação 1.1.9. Sejam S um semigrupo e $a_1, \ldots, a_n \in S$. O único produto dos elementos a_1, \ldots, a_n é denotado por $a_1 \cdots a_n$ ou por $\prod_{i=1}^n a_i$ no caso da escrita multiplicativa da operação e por $a_1 + \cdots + a_n$ ou por $\sum_{i=1}^n a_i$ no caso da escrita aditiva da operação.

Definição 1.1.10. Sejam S um semigrupo, $a \in S$ e $n \ge 1$ um inteiro. O único produto de n cópias de a é chamado potência de ordem n de a e é denotado por a^n . Se a operação de S for denotada por +, fala-se antes do múltiplo de ordem n de a e escreve-se $n \cdot a$ ou na em vez de a^n .

As seguintes regras de cálculo com potências seguem imediatamente de 1.1.8:

Proposição 1.1.11. Sejam S um semigrupo, $a \in S$ um elemento e $m, n \ge 1$ números inteiros. Então $(a^n)^m = a^{nm}$ e $a^{n+m} = a^n a^m$.

Definição 1.1.12. Seja X um grupóide. Um elemento neutro à esquerda de X é um elemento $e \in X$ tal que $e \cdot x = x$ para todo o $x \in X$. Um elemento neutro à direita de X é um elemento $e \in X$ tal que $x \cdot e = x$ para todo o $x \in X$. Um elemento de X que é ao mesmo tempo um elemento neutro à esquerda e à direita de X diz-se um elemento neutro de X.

Proposição 1.1.13. Sejam e um elemento neutro à esquerda e e' um elemento neutro à direita de um grupóide X. Então e = e'. Em particular, um grupóide admite, no máximo, um elemento neutro.

Demonstração: Como e' é um elemento neutro à direita, $e \cdot e' = e$. Como e é um elemento neutro à esquerda, $e \cdot e' = e'$. Logo e = e'.

Definição 1.1.14. Chama-se *monóide* a um semigrupo com elemento neutro.

Exemplos 1.1.15. (i) Os semigrupos \mathbb{N} , \mathbb{Z} , \mathbb{Q} e \mathbb{R} com a multiplicação como operação são monóides com elemento neutro 1.

- (ii) Os semigrupos \mathbb{N} , \mathbb{Z} , \mathbb{Q} e \mathbb{R} com a adição como operação são monóides com elemento neutro 0.
- (iii) O semigrupo $\mathcal{M}_{n\times n}(\mathbb{R})$ das matrizes reais $n\times n$ é um monóide. A matriz identidade é o elemento neutro.
- (iv) O semigrupo $\mathcal{F}(X)$ das funções no conjunto X é um monóide. A função identica id_X é o elemento neutro.
- (v) O conjunto potência de um conjunto X é um monóide com a reunião ou a intersecção como multiplicação. O conjunto vazio é o elemento neutro para a reunião e X é o elemento neutro para a intersecção.
 - (vi) O semigrupo das matrizes reais $n \times n$ com determinante zero não é um monóide.
- (vii) O semigrupo das funções constantes num conjunto com mais do que um elemento não é um monóide. Neste semigrupo, todos os elementos são elementos neutros à direita.
- (viii) O grupóide $\mathbb N$ com a operação dada por $a\cdot b=|a-b|$ admite um elemento neutro, mas não é um monóide.
- **Notas 1.1.16.** (i) Sejam M um monóide com elemento neutro e e $n \ge 1$ um inteiro. Uma indução simples mostra que $e^n = e$.
- (ii) Na tabela de Cayley da multiplicação de um grupóide finito com elemento neutro costuma-se ordenar os elementos do grupóide de modo que o elemento neutro é o primeiro.

Notação 1.1.17. Se nada for especificado, o elemento neutro de um monóide será denotado por e. Na escrita multiplicativa da operação também é habitual usar o símbolo 1 para o elemento neutro. Na escrita aditiva também se usa o símbolo 0 para indicar o elemento neutro.

Elementos invertíveis

Definição 1.1.18. Seja X um grupóide com elemento neutro e. Um elemento $y \in X$ diz-se inverso à esquerda de um elemento $x \in X$ se yx = e. Um elemento $y \in X$ diz-se inverso à direita de um elemento $x \in X$ se xy = e. Um elemento $y \in X$ diz-se inverso de um elemento $x \in X$ se é ao mesmo tempo um inverso à esquerda e à direita de x. Um elemento $x \in X$ diz-se invertível (à esquerda, à direita) se admite um inverso (à esquerda, à direita).

Nota 1.1.19. Um elemento de um grupóide finito com elemento neutro é invertível à esquerda (direita) se e só se a coluna (linha) do elemento na tabela de Cayley da multiplicação contém o elemento neutro.

Proposição 1.1.20. Sejam M um monóide $e \ x \in M$. Sejam y um inverso à esquerda de x e z um inverso à direita de x. Então y = z.

Demonstração: Usando a associatividade, tem-se y = ye = y(xz) = (yx)z = ez = z.

Notação. Pela proposição anterior, um elemento invertível x de um monóide admite um único inverso. Se a operação do monóide é denotada por \cdot , escrevemos x^{-1} para indicar o inverso de x. Se a operação é denotada por +, escrevemos -x para indicar o inverso de x.

Observação 1.1.21. O elemento neutro de um monóide é sempre invertível e tem-se $e^{-1} = e$.

Exemplos 1.1.22. (i) Nos monóides \mathbb{Q} e \mathbb{R} com a multiplicação como operação, todos os elementos a menos do 0 são invertíveis. O inverso de um elemento x é o elemento $\frac{1}{x}$.

- (ii) Nos monóides \mathbb{N} e \mathbb{Z} com a multiplicação como operação, nenhum elemento a menos dos de módulo 1 admite um inverso à esquerda ou à direita.
- (iii) Nos monóides \mathbb{Z} , \mathbb{Q} e \mathbb{R} com a adição como operação, todos os elementos são invertíveis.
- (iv) No monóide $\mathbb N$ com a adição como operação, nenhum elemento a menos do 0 admite um inverso à esquerda ou à direita.
- (v) No monóide $\mathcal{M}_{n\times n}(\mathbb{R})$ das matrizes reais $n\times n$, os elementos invertíveis são as matrizes com determinante diferente de zero. Neste monóide, um elemento é invertível à esquerda se e só se é invertível à direita.
- (vi) No monóide $\mathcal{F}(X)$ das funções no conjunto X, os elementos invertíveis são as funções bijectivas. Os elementos invertíveis à esquerda são as funções injectivas e os elementos invertíveis à direita são as funções sobrejectivas.
- (vii) Num conjunto potência com a reunião ou a intersecção como multiplicação, o único elemento invertível à esquerda ou à direita é o elemento neutro.

Proposição 1.1.23. Sejam a e b elementos invertíveis de um monóide M. Então a^{-1} e ab são invertíveis e $(a^{-1})^{-1} = a$ e $(ab)^{-1} = b^{-1}a^{-1}$.

Demonstração: Tem-se $aa^{-1}=e$ e $a^{-1}a=e.$ Logo a^{-1} é invertível e $(a^{-1})^{-1}=a.$ Tem-se

$$(ab)(b^{-1}a^{-1}) = abb^{-1}a^{-1} = aea^{-1} = aa^{-1} = e$$

е

$$(b^{-1}a^{-1})(ab) = b^{-1}a^{-1}ab = b^{-1}eb = b^{-1}b = e.$$

Logo ab é invertível e $(ab)^{-1} = b^{-1}a^{-1}$.

Corolário 1.1.24. Sejam a_1, \ldots, a_n elementos invertíveis de um monóide M. Então $a_1 \cdots a_n$ é invertível e $(a_1 \cdots a_n)^{-1} = a_n^{-1} \cdots a_1^{-1}$.

Demonstração: Para n=1, o resultado é trivial. Para n=2, o resultado é a proposição 1.1.23. Seja $n\geq 3$ tal que o resultado se verifica para m< n. Então $a_1\cdots a_{n-1}$ é invertível e $(a_1\cdots a_{n-1})^{-1}=a_{n-1}^{-1}\cdots a_1^{-1}$. Logo $a_1\cdots a_n=(a_1\cdots a_{n-1})\cdot a_n$ é invertível e $(a_1\cdots a_n)^{-1}=((a_1\cdots a_{n-1})\cdot a_n)^{-1}=a_n^{-1}\cdot (a_{n-1}^{-1}\cdots a_1^{-1})=a_n^{-1}\cdots a_1^{-1}$. □

Corolário 1.1.25. Sejam a um elemento invertível de um monóide M e $n \ge 1$ um inteiro. Então a^n é invertível e $(a^n)^{-1} = (a^{-1})^n$.

Notação 1.1.26. Seja a um elemento invertível de um monóide M. Se a operação de M é denotada por \cdot , pomos $a^0 = e$ e $a^{-n} = (a^n)^{-1}$ para todo o inteiro $n \ge 1$. Se a operação de M é denotada por +, pomos $0 \cdot a = e$ e $(-n) \cdot a = -(n \cdot a)$ para todo o inteiro $n \ge 1$. Em vez de $m \cdot a$ escrevemos também simplesmente ma $(m \in \mathbb{Z})$.

Observação 1.1.27. Seja a um elemento invertível de um monóide M. Então para todo o $n \in \mathbb{Z}$, $a^{-n} = (a^n)^{-1} = (a^{-1})^n$. Isto segue de 1.1.25 para n > 0 e é claro para n = 0. Para n < 0, tem-se -n > 0 e logo $a^{-n} = ((a^{-n})^{-1})^{-1} = (a^{-(-n)})^{-1} = (a^n)^{-1}$ e $a^{-n} = ((a^{-n})^{-1})^{-1} = (a^{-(-n)})^{-1} = ((a^{-1})^{-n})^{-1} = (a^{-1})^{-(-n)} = (a^{-1})^n$. Na escrita aditiva da operação temos (-n)a = -(na) = n(-a) para todo o $n \in \mathbb{Z}$.

Proposição 1.1.28. Sejam a um elemento invertível de um monóide M e $m, n \in \mathbb{Z}$. $Então (a^n)^m = a^{nm} e a^{n+m} = a^n a^m$.

Demonstração: Mostramos primeiramente que $(a^n)^m=a^{nm}$. Se $m,n\geq 1$, isto segue de 1.1.11. Se m=0 ou n=0, $(a^n)^m=e=a^{nm}$. Suponhamos que $m\geq 1$ e n<0. Seja k=-n. Então $k\geq 1$ e temos $(a^n)^m=(a^{-k})^m=((a^k)^{-1})^m=((a^k)^m)^{-1}=(a^{km})^{-1}=a^{-km}=a^{nm}$. Suponhamos que m<0 e $n\geq 1$. Seja l=-m. Então $l\geq 1$ e temos $(a^n)^m=(a^n)^{-l}=((a^n)^l)^{-1}=(a^{nl})^{-1}=a^{-nl}=a^{nm}$. Suponhamos finalmente que m,n<0. Sejam k=-n e l=-m. Então $k,l\geq 1$ e $(a^n)^m=(a^n)^{-l}=((a^n)^{-1})^l=(a^{-n})^l=(a^k)^l=a^{kl}=a^{nm}$.

Mostramos agora que $a^{n+m}=a^na^m$. Começamos com o caso m>0. Se $n\geq 1$, o resultado segue de 1.1.11. Se n=0, $a^{n+m}=a^m=ea^m=a^0a^m=a^na^m$. Se n<0 e n+m=0, então n=-m e $a^{n+m}=e=a^{-m}a^m=a^na^m$. Se n<0 e n+m>0, então $a^{-n}a^{n+m}=a^{-n+n+m}=a^m$, pelo que $a^{n+m}=a^na^{-n}a^{n+m}=a^na^m$. Se n<0 e n+m<0, então $a^{-n}a^{n+m}=a^{-n+n+m}=a^m$, pelo que $a^{n+m}=a^na^{-n}a^{n+m}=a^na^m$. Se n<0 e n+m<0, então $a^{n+m}(a^m)^{-1}=a^{-(-(n+m))}(a^m)^{-1}=(a^{-(n+m)})^{-1}(a^m)^{-1}=(a^ma^{-(n+m)})^{-1}=(a^ma^{-(n+m)})^{-1}=(a^{-n})^{-1}=a^n$, pelo que $a^{n+m}=a^{n+m}(a^m)^{-1}a^m=a^na^m$. No caso m=0 temos $a^{n+m}=a^n=a^ne=a^na^0=a^na^m$. Consideremos finalmente o caso m<0. Então -m>0. Segue-se que $a^{n+m}=a^{-(-n-m)}=(a^{-1})^{-n-m}=(a^{-1})^{-n}(a^{-1})^{-m}=a^na^m$.

1.2 Grupos

Definição 1.2.1. Um *grupo* é um monóide em que todos os elementos são invertíveis. Se a operação for comutativa, o grupo é dito commutativo ou *abeliano*.

Observação 1.2.2. Sejam M um monóide e G o conjunto dos elementos invertíveis de M. Segue-se de 1.1.21 e 1.1.23 que G é um grupo relativamente à multiplicação de M.

Exemplos 1.2.3. (i) Os conjuntos \mathbb{Z} , \mathbb{Q} e \mathbb{R} são grupos (comutativos/abelianos) relativamente à adição.

- (ii) Os conjuntos $\mathbb{Q} \setminus \{0\}$ e $\mathbb{R} \setminus \{0\}$ são grupos (comutativos/abelianos) relativamente à multiplicação.
- (iii) O conjunto das matrizes reais $n \times n$ com determinante diferente de zero é um grupo relativamente à multiplicação das matrizes. Este grupo é denotado por $GL_n(\mathbb{R})$.
- (iv) O conjunto S(X) das funções bijectivas num conjunto X é um grupo com a composição de funções como multiplicação. Chama-se grupo simétrico de X a este grupo e permutações de X aos seus elementos. Usa-se a abreviação $S_n = S(\{1, \ldots, n\})$.
 - (v) O conjunto $G = \{e\}$ é um grupo relativamente à única operação que existe em G.
- (vi) O conjunto potência de um conjunto não vazio com a reunião ou a intersecção como multiplicação nunca é um grupo.

Definição 1.2.4. Se X é um grupóide e se $a \in X$, definimos as funções $\lambda_a : X \to X$ e $\rho_a : X \to X$ por $\lambda_a(x) = ax$ e $\rho_a(x) = xa$.

Proposição 1.2.5. Se G for um grupo então, para todo o $a \in G$, as funções $\lambda_a : G \to G$ e $\rho_a : G \to G$ são bijetivas.

Demonstração: Seja $a \in G$. Sejam $x, y \in G$ tais que $\lambda_a(x) = \lambda_a(y)$, isto é, ax = ay. Como a é invertível, multiplicando à esquerda por a^{-1} , obtemos $a^{-1}ax = a^{-1}ay$. Disto vem ex = ey ou seja x = y, o que mostra a injetividade de λ_a . Seja agora $y \in G$. Temos $y = aa^{-1}y = \lambda_a(x)$ onde $x = a^{-1}y$. Como $x \in G$, podemos concluir que λ_a é sobrejetiva e, finalmente, bijetiva. De forma analoga, provamos que ρ_a é bijetiva.

Nota 1.2.6. Segue-se da Proposição 1.2.5 que cada linha e cada coluna da tabela de Cayley de um grupo finito contém cada elemento do grupo exactamente uma vez. Assim, existe no máximo uma estrutura de grupo no conjunto $G = \{e, a, b\}$ na qual e é o elemento neutro. Com efeito, a única tabela de Cayley possível é:

Verifica-se que a operação assim definida é associativa e então que G é de facto um grupo relativamente a esta operação.

Definição 1.2.7. Dizemos que um grupóide X satisfaz as leis do corte se para quaisquer três elementos $a, b, c \in X$, tem-se

- (i) $ac = bc \Rightarrow a = b$
- (ii) $ca = cb \Rightarrow a = b$

ou seja, se para todo o $a \in X$, as funções λ_a e ρ_a são injetivas.

Em consequência da Proposição 1.2.5 temos:

Proposição 1.2.8. Qualquer grupo satisfaz as leis do corte.

Proposição 1.2.9. Seja G um semi-grupo. Se, para todo o $a \in G$, as funções $\lambda_a : G \to G$ e $\rho_a : G \to G$ são sobrejetivas então G é um grupo.

Demonstração: Como G é um semi-grupo, falta ver que G admite um elemento neutro e que todo o elemento de G é invertível.

Como $G \neq \emptyset$, existe $a \in G$. Como λ_a é sobrejetiva, existe $e \in G$ tal que e = ae. Seja $e \in G$. Vamos ver que e = x. Como $e \in G$ é sobrejetiva, existe $e \in G$ tal que $e \in G$. Logo $e \in G$ tal que $e \in G$ tal que $e \in G$. Provámos assim que $e \in G$ tal que $e \in G$ tal que, para todo o $e \in G$, e' = x. Segue-se da Proposição 1.1.13 que $e \in G$. Podemos concluir que este elemento é elemento neutro de $e \in G$.

Seja $x \in G$. Como λ_x é sobrejetiva, existe $z \in G$ tal que xz = e. Como ρ_x é sobrejetiva, existe $y \in G$ tal que yx = e. Como G é um semi-grupo, deduzimos da Proposição 1.1.20 que y = z. Este elemento é o inverso de x pelo que x é invertível.

Podemos concluir que G é um grupo.

Proposição 1.2.10. Um semigrupo finito G é um grupo se e só se satisfaz as leis do corte.

Demonstração: Basta mostrar que G é um grupo se satisfaz as leis do corte. Seja $a \in G$. Se G satisfaz as leis do corte, então as funções $\lambda_a \colon G \to G$ e $\rho_a \colon G \to G$ são injetivas. Como G é finito e é simultanemente o conjunto de partida e de chegada, podemos concluir que λ_a e ρ_a também são sobrejetivas. Pela Proposição 1.2.9, isto implica que G é um grupo. \square

Nota 1.2.11. O resultado anterior não se estende aos semigrupos infinitos como mostra o exemplo do monóide $(\mathbb{N}, +)$.

1.3 Homomorfismos de grupos

Definição 1.3.1. Sejam G e H dois grupos. Um homomorfismo de grupos $f: G \to H$ é uma função $f: G \to H$ tal que $f(a \cdot b) = f(a) \cdot f(b)$ para quaisquer dois elementos $a, b \in G$. Um homomorfismo de grupos $f: G \to H$ diz-se

- endomorfismo se o grupo de chegada (H,\cdot) é igual ao grupo de partida (G,\cdot) ;
- monomorfismo se f é injectivo;
- \bullet epimorfismo se f é sobrejectivo;
- isomorfismo se f é bijectivo;
- \bullet automorfismo se f é um endomorfismo bijectivo.

Dois grupos $G \in H$ dizem-se isomorfos, $G \cong H$, se existe um isomorfismo entre eles.

Proposição 1.3.2. Sejam G e H dois grupos e $f: G \to H$ um homomorfismo. Então

- (i) f(e) = e;
- (ii) para todo o $x \in G$, $f(x^{-1}) = f(x)^{-1}$.

Demonstração: (i) Temos $f(e)^2 = f(e^2) = f(e) = f(e) \cdot e$. Pelas leis do corte, isto implica que f(e) = e.

(ii) Seja
$$x \in G$$
. Temos $f(x^{-1})f(x) = f(x^{-1}x) = f(e) = e = f(x)^{-1}f(x)$ e então $f(x^{-1}) = f(x)^{-1}$.

Nota 1.3.3. Sejam G e H dois grupos e $f: G \to H$ um homomorfismo. Segue-se da proposição anterior que para qualquer $x \in G$ e qualquer $n \in \mathbb{Z}$, $f(x^n) = f(x)^n$ (exercício).

Exemplos 1.3.4. (i) Sejam G e H dois grupos. Então a função constante $g \mapsto e$ é um homomorfismo de G para H.

- (ii) Seja $n \in \mathbb{Z}$. Um endomorfismo $f: (\mathbb{Z}, +) \to (\mathbb{Z}, +)$ é dado por f(m) = nm. O endomorfismo f é um monomorfismo se e só se $n \neq 0$ e um automorfismo se e só se $n \in \{1, -1\}$.
 - (iii) Um monomorfismo $f: (\mathbb{R}, +) \to (\mathbb{R} \setminus \{0\}, \cdot)$ é dado por $f(x) = 2^x$.
 - (iv) O determinante é um epimorfismo do grupo $GL_n(\mathbb{R})$ para o grupo $(\mathbb{R} \setminus \{0\}, \cdot)$.
 - (v) A função identidade de um grupo é um automorfismo.

Proposição 1.3.5. Sejam $f: G \to H$ e $g: H \to K$ dois homomorfismos de grupos. Então $g \circ f$ é um homomorfismo de grupos de G para K.

Demonstração: Sejam
$$x,y \in G$$
. Então $g \circ f(xy) = g(f(xy)) = g(f(x)f(y)) = g(f(x)f(x)) = g(f(x)f(x)$

Definição 1.3.6. Seja $f: G \to H$ um homomorfismo de grupos. A *imagem* de f é o conjunto $Im(f) = \{f(x) \mid x \in G\}$. O *núcleo* de f é o conjunto $Ker(f) = \{x \in G \mid f(x) = e\}$. Às vezes escreve-se Nuc(f) em vez de Ker(f).

Proposição 1.3.7. Um homomorfismo de grupos $f: G \to H$ é injectivo se e só se $Ker(f) = \{e\}.$

Demonstração: Basta demonstrar que f é injectivo se $Ker(f) = \{e\}$. Sejam $x, y \in G$ tais que f(x) = f(y). Então

$$f(xy^{-1}) = f(x)f(y^{-1}) = f(x)f(y)^{-1} = f(x)f(x)^{-1} = e.$$

Portanto $xy^{-1} \in \text{Ker}(f)$, pelo que $xy^{-1} = e$. Logo x = y. Segue-se que f é injetivo. \square

Proposição 1.3.8. Seja $f: G \to H$ um isomorfismo de grupos. Então a função inversa f^{-1} é também um isomorfismo de grupos.

Demonstração: Como f^{-1} é bijectiva, basta demonstrar que f^{-1} é um homomorfismo de grupos. Sejam $x, y \in H$. Tem-se

$$f(f^{-1}(xy)) = xy = f(f^{-1}(x))f(f^{-1}(y)) = f(f^{-1}(x)f^{-1}(y)).$$

Como f é injectiva, obtém-se $f^{-1}(xy) = f^{-1}(x)f^{-1}(y)$.

1.4 Subgrupos

Definição 1.4.1. Um subconjunto H de um grupo G diz-se subgrupo de G se é um grupo relativamente à multiplicação de G. Usa-se a notação $H \leq G$ para indicar que H é um subgrupo de G. Se se quiser indicar que H é um subgrupo próprio de G, isto é $H \leq G$ mas $H \neq G$, então escreve-se H < G.

Exemplos 1.4.2. (i) $\{-1,+1\}$ é um subgrupo do grupo multiplicativo $\mathbb{R} \setminus \{0\}$ e temos de facto $\{-1,+1\} < \mathbb{R} \setminus \{0\}$.

- (ii) Em qualquer grupo G, o conjunto $\{e\}$ é um subgrupo, chamado o subgrupo trivial de G.
 - (iii) Para qualquer grupo $G, G \leq G$.

Observação 1.4.3. Sejam G um grupo, $K \leq G$ e $H \subseteq K$. Então $H \leq G \Leftrightarrow H \leq K$.

Proposição 1.4.4. Seja G um grupo. Um subconjunto $H \subseteq G$ é um subgrupo de G se e só se satisfaz as seguintes condições:

- (i) $e \in H$;
- (ii) para quaisquer $x, y \in H$, $xy \in H$;
- (iii) para qualquer $x \in H$, $x^{-1} \in H$.

Demonstração: Basta mostrar que um subgrupo de G satisfaz estas três condições. Seja $H \leq G$. Por definição, H satisfaz a condição (ii). Como H é um grupo, existe um elemento neutro $\bar{e} \in H$. Tem-se $e\bar{e} = \bar{e} = \bar{e}^2$ e então $e = \bar{e} \in H$. Seja $x \in H$ e seja \bar{x} o inverso de x no grupo H. Então $x^{-1}x = e = \bar{x}x$, pelo que $x^{-1} = \bar{x} \in H$.

Exemplos 1.4.5. (i) $]0, +\infty[$ é um subgrupo do grupo multiplicativo $\mathbb{R} \setminus \{0\}$.

(ii) O conjunto das matrizes da forma $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ com $a,b \in \mathbb{R} \setminus \{0\}$ é um subgrupo de $GL_2(\mathbb{R})$.

Exemplo 1.4.6. Sendo G um grupo, o conjunto $Z(G) = \{g \in G \mid \forall x \in G \mid gx = xg\}$ é um subgrupo de G. É chamado *centro* de G.

Proposição 1.4.7. Seja G um grupo. Um subconjunto não vazio $H \subseteq G$ é um subgrupo de G se e só se para quaisquer $x, y \in H$, $xy^{-1} \in H$.

Demonstração: Suponhamos primeiramente que H é um subgrupo de G. Sejam $x,y\in H$. Então $y^{-1}\in H$. Logo $xy^{-1}\in H$.

Suponhamos agora que para quaisquer $x,y\in H,\ xy^{-1}\in H.$ Como $H\neq\emptyset$, existe $a\in H.$ Segue-se que $e=aa^{-1}\in H.$ Seja $x\in H.$ Então $x^{-1}=ex^{-1}\in H.$ Sejam $x,y\in H.$ Então $x,y^{-1}\in H$ e portanto $xy=x(y^{-1})^{-1}\in H.$ Por 1.4.4, H é um subgrupo de G.

Proposição 1.4.8. Sejam $f: G \to H$ um homomorfismo de grupos, $U \subseteq G$ e $V \subseteq H$ subgrupos. Então $f^{-1}(V)$ é um subgrupo de G e f(U) é um subgrupo de H.

Demonstração: Como $f(e) = e \in V$, $e \in f^{-1}(V)$ e $f^{-1}(V) \neq \emptyset$. Sejam $x, y \in f^{-1}(V)$. Então $f(xy^{-1}) = f(x)f(y^{-1}) = f(x)f(y)^{-1} \in V$, pelo que $xy^{-1} \in f^{-1}(V)$. Por 1.4.7, $f^{-1}(V)$ é um subgrupo de G.

Como $U \neq \emptyset$, $f(U) \neq \emptyset$. Para quaisquer $a, b \in U$, $ab^{-1} \in U$ e $f(a)f(b)^{-1} = f(a)f(b^{-1}) = f(ab^{-1}) \in f(U)$. Por 1.4.7, f(U) é um subgrupo de H.

Corolário 1.4.9. Seja $f: G \to H$ um homomorfismo de grupos. Então $\operatorname{Ker}(f)$ é um subgrupo de G e $\operatorname{Im}(f)$ é um subgrupo de H.

Exemplo 1.4.10. O conjunto $\mathrm{SL}_n(\mathbb{R}) = \{A \in \mathrm{GL}_n(\mathbb{R}) \mid \det(A) = 1\}$ é o núcleo do homomorfismo det: $\mathrm{GL}_n(\mathbb{R}) \to \mathbb{R} \setminus \{0\}$ e é portanto um subgrupo de $\mathrm{GL}_n(\mathbb{R})$. Este grupo é chama grupo especial linear.

Proposição 1.4.11. Sejam G um grupo $e(H_i)_{i\in I}$ uma família não vazia de subgrupos de G. Então $\bigcap_{i\in I} H_i$ é um subgrupo de G.

 $\begin{array}{ll} \textit{Demonstração:} \ \text{Como} \ e \in H_i \ \text{para todo o} \ i \in I, \ \bigcap_{i \in I} H_i \neq \emptyset. \ \text{Sejam} \ x,y \in \bigcap_{i \in I} H_i. \ \text{Então} \\ x,y \in H_i \ \text{para todo o} \ i \in I. \ \text{Por} \ 1.4.7, \ xy^{-1} \in H_i \ \text{para todo o} \ i \in I, \ \text{pelo que} \ xy^{-1} \in \bigcap_{i \in I} H_i. \\ \text{Por} \ 1.4.7, \ \bigcap_{i \in I} H_i \ \text{\'e} \ \text{um subgrupo de} \ G. \end{array}$

Definição 1.4.12. Sejam G um grupo e $X \subseteq G$ um subconjunto. O subgrupo gerado por X, $\langle X \rangle$, é a intersecção dos subgrupos de G que contêm X. Se $X = \{x_1, \ldots, x_n\}$, escrevemos também $\langle x_1, \ldots, x_n \rangle$ em vez de $\langle X \rangle$ e falamos do subgrupo de G gerado pelos elementos x_1, \ldots, x_n . O conjunto X diz-se um conjunto gerador de G se $G = \langle X \rangle$. Se G admite um conjunto gerador finito, G diz-se finitamente gerado.

Proposição 1.4.13. Sejam G um grupo e $X \subseteq G$ um subconjunto. Então os elementos de $\langle X \rangle$ são o elemento neutro e os produtos finitos formados a partir dos elementos de X e dos seus inversos.

Demonstração: Seja H o subconjunto de G cujos elementos são o elemento neutro e os produtos finitos formados a partir dos elementos de X e dos seus inversos. Então H é um subgrupo de G e $X \subseteq H$. Logo $\langle X \rangle \subseteq H$. Por outro lado, qualquer elemento de H pertence necessariamente a qualquer subgrupo de G que contém X. Logo $H \subseteq \langle X \rangle$. \square

Exemplos 1.4.14. (i) Sendo G um grupo, o subgrupo de G gerado pelo elemento neutro $e \notin \{e\}$. Se $a \in G$, o subgrupo de G gerado por $a \notin \langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

(ii) O subgrupo de $(\mathbb{Z}, +)$ gerado por $m \in \mathbb{Z}$ é o conjunto $m\mathbb{Z} = \{mk \mid k \in \mathbb{Z}\}$. Em particular, o conjunto $\{1\}$ é um conjunto gerador de $(\mathbb{Z}, +)$. O subgrupo de $(\mathbb{Z}, +)$ gerado pelo conjunto $\{2, 3\}$ é o conjunto $\{2m + 3n \mid m, n \in \mathbb{Z}\}$.

Observação 1.4.15. Segue-se imediatamente da definição que para quaisquer dois subconjuntos X e Y de um grupo G, $X \subseteq Y \Rightarrow \langle X \rangle \leq \langle Y \rangle$.

Proposição 1.4.16. Sejam $f, g: G \to H$ dois homomorfismos de grupos que coincidem num conjunto gerador X de G. Então f = g.

Demonstração: Como f e g coincidem em X, também coincidem em qualquer produto finito formado a partir dos elementos de X e dos seus inversos. Como f e g são homomorfismos de grupos, f(e) = g(e) = e. Logo f e g coincidem em $\langle X \rangle = G$.

Exemplo 1.4.17. Seja G um grupo e $g \in G$. Como $\{1\}$ é um conjunto gerador de $(\mathbb{Z}, +)$, existe um único homomorfismo de grupos $f: (\mathbb{Z}, +) \to G$ com f(1) = g. Este homomorfismo é dado por $f(m) = g^m$ (na escrita multiplicativa da operação de G).

1.5 Teorema de Lagrange

Notação 1.5.1. Sejam G um grupo, $A, B \subseteq G$ dois subconjuntos não vazios e $x \in G$. Usamos as notações $AB = \{ab \mid a \in A, b \in B\}$, $Ax = \{ax \mid a \in A\}$ e $xA = \{xa \mid a \in A\}$. Em notação aditiva escreve-se A + B, A + x e x + A em vez de AB, Ax e xA.

Definição 1.5.2. Sejam G um grupo, H um subgrupo de G. Os conjuntos Hx (xH), $x \in G$, são as classes laterais direitas (esquerdas) de H.

Proposição 1.5.3. Sejam G um grupo e H um subgrupo de G. Então uma relação de equivalencia em G é dada por $x \sim_H y \Leftrightarrow xy^{-1} \in H$. A classe de equivalência de um elemento $x \in G$ é a classe lateral direita Hx.

Demonstração: Como $e \in H$, a relação \sim_H é reflexiva. Sejam $x,y \in G$ tais que $x \sim_H y$. Então $xy^{-1} \in H$. Logo $yx^{-1} = (xy^{-1})^{-1} \in H$ e portanto $y \sim_H x$. Segue-se que \sim_H é simétrica. Sejam $x,y,z \in G$ tais que $x \sim_H y$ e $y \sim_H z$. Então $xy^{-1} \in H$ e $yz^{-1} \in H$ Logo $xz^{-1} = xy^{-1}yz^{-1} \in H$ e $x \sim_H z$. Portanto \sim_H é reflexiva. Segue-se que \sim_H é uma relação de equivalência.

Seja $x \in G$ e [x] a classe de equivalência de x. Seja $y \in [x]$. Então $y \sim_H x$, pelo que $yx^{-1} \in H$. Logo $y = yx^{-1}x \in Hx$ e $[x] \subseteq Hx$. Seja $y \in Hx$. Então $yx^{-1} \in Hxx^{-1} = H$, pelo que $y \sim_H x$. Portanto $y \in [x]$ e $Hx \subseteq [x]$.

Proposição 1.5.4. Sejam G um grupo, H um subgrupo de G e $x \in G$. Então a função $f \colon H \to Hx, \ y \mapsto yx \ \acute{e}$ bijectiva.

Demonstração: Pelas leis do corte, f é injectiva. Seja $z \in Hx$. Então existe $y \in H$ tal que z = yx = f(y). Isto mostra que f é sobrejectiva.

Definição 1.5.5. A ordem de um grupo finito G é o número de elementos de G. A ordem de um grupo infinito é ∞ . A ordem de um grupo G é indicada por |G|. A ordem de um elemento a de um grupo G, indicada por |a|, é a ordem do subgrupo de G gerado por a.

Definição 1.5.6. Sejam G um grupo e H um subgrupo de G. O *índice* de H em G, denotado por |G:H|, é o número de classes laterais direitas de H (que pode ser finito ou ∞).

Teorema 1.5.7. (Teorema de Lagrange) Sejam G um grupo finito e H um subgrupo de G. $Ent\~ao$ |G| = |G:H||H|.

Demonstração: Por 1.5.4, cada classe lateral direita de H tem |H| elementos. Por 1.5.3, as classes laterais direitas de H formam uma partição de G. Logo |G| = |G:H||H|. \square

Corolário 1.5.8. A ordem de um subgrupo de um grupo finito é um divisor da ordem do grupo. Em particular, a ordem de um elemento de um grupo finito é um divisor da ordem do grupo.

Exemplo 1.5.9. Seja G um grupo de ordem prima e $a \in G \setminus \{e\}$. Como |a| > 1 e |a| divide |G|, tem-se |a| = |G| e então $G = \langle a \rangle$.

1.6 Subgrupos normais e grupos quociente

Definição 1.6.1. Um subgrupo H de um grupo G diz-se normal ou invariante se para cada $a \in G$, $aHa^{-1} \subseteq H$. Usa-se a notação $H \subseteq G$ ($H \triangleleft G$) para indicar que H é um subgrupo normal (próprio) de G.

Proposição 1.6.2. Sejam G um grupo e H um subgrupo normal de G. Então, para todo o $a \in G$, aH = Ha.

Demonstração: Seja $a \in G$. Seja $ah \in aH$ com $h \in H$. Como $aha^{-1} \in H$, existe $h' \in H$ tal que $aha^{-1} = h'$. Logo ah = h'a e $ah \in Ha$. Isto mostra que $aH \subseteq Ha$. Por outro lado, para $h \in H$, $a^{-1}h(a^{-1})^{-1} \in H$ o que permite concluir que $ha \in aH$.

Exemplos 1.6.3. (i) Para qualquer grupo G, $\{e\}$ e G são subgrupos normais de G.

- (ii) Num grupo comutativo todos os subgrupos são normais.
- (iii) Para qualquer grupo G, o centro Z(G) é um grupo normal de G.

Proposição 1.6.4. Sejam G um grupo e $(H_i)_{i \in I}$ uma família não vazia de subgrupos normais de G. Então $\bigcap_{i \in I} H_i$ é um subgrupo normal de G.

Demonstração: Por 1.4.11, $\bigcap_{i\in I} H_i$ é um subgrupo de G. Sejam $a\in G$ e $x\in \bigcap_{i\in I} H_i$. Então $x\in H_i$ para todo o $i\in I$. Portanto $axa^{-1}\in H_i$ para todo o $i\in I$. Logo $axa^{-1}\in \bigcap_{i\in I} H_i$. \square

Proposição 1.6.5. Sejam $f: G \to G'$ um homomorfismo de grupos e $H \subseteq G$ e $H' \subseteq G'$ subgrupos normais. Então $f^{-1}(H')$ é um subgrupo normal de G e f(H) e G e G e G e G e G e G e G e G e G e G e G e G e G e G e G e G e G e G

Demonstração: Por 1.4.8, $f^{-1}(H')$ é um subgrupo de G. Sejam $x \in f^{-1}(H')$ e $a \in G$. Como H' é um subgrupo normal de G', tem-se $f(axa^{-1}) = f(a)f(x)f(a^{-1}) = f(a)f(x)f(a)^{-1} \in H'$. Logo $axa^{-1} \in f^{-1}(H')$. Segue-se que $f^{-1}(H')$ é um subgrupo normal de G.

Por 1.4.8, $\operatorname{Im}(f)$ e f(H) são subgrupos de G'. Logo f(H) é um subgrupo de $\operatorname{Im}(f)$. Sejam $x \in f(H)$ e $a \in \operatorname{Im}(f)$. Então existem $h \in H$ e $g \in G$ tais que x = f(h) e a = f(g). Temos $axa^{-1} = f(g)f(h)f(g)^{-1} = f(g)f(h)f(g^{-1}) = f(ghg^{-1})$. Como H é um subgrupo normal de G, $ghg^{-1} \in H$. Segue-se que $axa^{-1} = f(ghg^{-1}) \in f(H)$ e então que f(H) é um subgrupo normal de $\operatorname{Im}(f)$.

Corolário 1.6.6. O núcleo de um homomorfismo de grupos $f: G \to G'$ é um subgrupo normal de G.

Exemplo 1.6.7. O conjunto $SL_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) \mid \det A = 1\} = \text{Ker}(\det : GL_n(\mathbb{R}) \to \mathbb{R} \setminus \{0\}) \text{ é um subgrupo normal de } GL_n(\mathbb{R}).$

Proposição 1.6.8. Sejam G um grupo e $H \subseteq G$ um subgrupo. Considere a relação de equivalência \sim_H em G definida por $x \sim_H y \Leftrightarrow xy^{-1} \in H$. Então

- 1. Para quaisquer $x, y, a \in G$, tem-se $x \sim_H y \Rightarrow xa \sim_H ya$.
- 2. H é um subgrupo normal de G se e só se $x \sim_H y \Rightarrow ax \sim_H ay$ para quaisquer $x, y, a \in G$.

Demonstração: Por 1.5.3, a classe de equivalência de um elemento $x \in G$ é a classe lateral direita Hx. Assim, $x \sim_H y \Leftrightarrow Hx = Hy$. Sejam $x, y, a \in G$ tais que $x \sim_H y$. Então [x] = [y], ou seja, Hx = Hy. Então Hxa = Hya, ou seja, [xa] = [ya]. Logo $xa \sim_H ya$ o que prova (1). Suponhamos agora que H é um subgrupo normal de G. Temos

$$x \sim_H y \Rightarrow Hx = Hy \Rightarrow xH = yH \Rightarrow axH = ayH \Rightarrow Hax = Hay \Rightarrow ax \sim_H ay$$
.

Reciprocamente, suponhamos que $x \sim_H y \Rightarrow ax \sim_H ay$ para quaisquer $x, y, a \in G$. Sejam $x \in H$ e $a \in G$. Então $x \sim_H e$ e portanto $ax \sim_H ae = a$. Segue-se que $axa^{-1} \in H$ e então que H é um subgrupo normal de G.

Corolário 1.6.9. Seja H um subgrupo normal de um grupo G. Então para quaisquer $x, y, x', y' \in G$, se $x \sim_H x'$ e $y \sim_H y'$, então $xy \sim_H x'y'$.

Definição 1.6.10. Sejam G um grupo e $H \subseteq G$ um subgrupo normal. O grupo quociente de G por H é o conjunto das classes laterais

$$G/H = \{Hx \mid x \in G\}$$

munido da operação dada por

$$Hx \cdot Hy = Hxy.$$

Por 1.6.9, esta operação está bem definida. É óbvio que G/H é de facto um grupo. O elemento neutro é H e tem-se $(Hx)^{-1} = Hx^{-1}$ $(x \in G)$. Chama-se epimorfismo canónico ao homomorfismo de grupos sobrejectivo $\pi: G \to G/H$ definido por $\pi(x) = Hx$.

Exemplos 1.6.11. (i) Para qualquer grupo G, $G/G = \{G\}$.

(ii) Seja $n \geq 1$ um inteiro. Tem-se $\mathbb{Z}/n\mathbb{Z} = \{r + n\mathbb{Z} \mid 0 \leq r < n\}$. Este grupo quociente é denotado por \mathbb{Z}_n . Muitas vezes usa-se a notação $[r]_n = r + n\mathbb{Z}$. Nota-se que $k \in [r]_n$ se e só se $k \equiv r \mod n$. A operação de \mathbb{Z}_n é denotada por + e é dada por $(r + n\mathbb{Z}) + (s + n\mathbb{Z}) = r + s + n\mathbb{Z}$.

Observações 1.6.12. (i) Sejam G um grupo e $H \subseteq G$ um subgrupo normal. Então o núcleo do epimorfismo canónico $\pi \colon G \to G/H$ é H. Com efeito, tem-se $x \in \operatorname{Ker}(\pi) \Leftrightarrow \pi(x) = H \Leftrightarrow Hx = H \Leftrightarrow x \in H$.

- (ii) Para qualquer grupo G, o epimorfismo canónico $G \to G/\{e\}$ é um isomorfismo.
- (iii) Para um grupo G e um subgrupo normal $H \subseteq G$, |G/H| = |G:H|. Em particular, se G é finito, tem-se, pelo Teorema de Lagrange, |G/H| = |G|/|H|.

Teorema 1.6.13. (Propriedade universal) Sejam $f: G \to G'$ um homomorfismo de grupos, $H \subseteq G$ um subgrupo normal tal que $H \subseteq \operatorname{Ker}(f)$ e $\pi: G \to G/H$ o epimorfismo canónico. Então existe um único homomorfismo de grupos $\bar{f}: G/H \to G'$ tal que $\bar{f} \circ \pi = f$. O homomorfismo \bar{f} é dado por $\bar{f}(Hx) = f(x)$ e é um monomorfismo se e só se $H = \operatorname{Ker}(f)$.

Demonstração: Sejam $x,y \in G$ tais que Hx = Hy. Então $xy^{-1} \in H \subseteq \operatorname{Ker}(f)$. Logo $f(x)f(y)^{-1} = f(x)f(y^{-1}) = f(xy^{-1}) = e$, pelo que f(x) = f(y). Segue-se que a função $\bar{f}: G/H \to G', \bar{f}(Hx) = f(x)$ está bem definida. Tem-se $\bar{f}(HxHy) = \bar{f}(Hxy) = f(xy) = f(x)f(y) = \bar{f}(Hx)\bar{f}(Hy)$, pelo que \bar{f} é um homomorfismo de grupos. Por definição, $\bar{f} \circ \pi = f$. Seja $g: G/H \to G'$ um homomorfismo tal que $g \circ \pi = f$. Então para qualquer $x \in G, g(Hx) = g \circ \pi(x) = f(x) = \bar{f}(Hx)$, pelo que $g = \bar{f}$.

Suponhamos que $H = \operatorname{Ker}(f)$. Seja $x \in G$ tal que $\bar{f}(Hx) = e$. Então f(x) = e e $x \in \operatorname{Ker}(f) = H$. Segue-se que Hx = H e então que \bar{f} é um monomorfismo. Suponhamos inversamente que \bar{f} é um monomorfismo. Seja $x \in \operatorname{Ker}(f)$. Então $\bar{f}(Hx) = f(x) = e = \bar{f}(H)$. Logo Hx = H e portanto $x \in H$. Segue-se que $H = \operatorname{Ker}(f)$.

Corolário 1.6.14. (Teorema do homomorfismo) Seja $f: G \to G'$ um homomorfismo de grupos. Então um isomorfismo de grupos $G/\text{Ker}(f) \to \text{Im}(f)$ é dado por $\text{Ker}(f)x \mapsto f(x)$.

Exemplo 1.6.15. Para qualquer inteiro $n \geq 1$, o grupo $GL_n(\mathbb{R})/SL_n(\mathbb{R})$ é isomorfo ao grupo multiplicativo $\mathbb{R} \setminus \{0\}$.

Proposição 1.6.16. Sejam G um grupo, $H \subseteq G$ um subgrupo e $N \subseteq G$ um subgrupo normal. Então HN é um subgrupo de G e $H \cap N$ é um subgrupo normal de H.

Demonstração: Mostramos primeiramente que HN é um subgrupo de G. Tem-se $e=ee\in HN$, pelo que $HN\neq\emptyset$. Sejam $h,k\in H$ e $n,m\in N$. Então $hk^{-1}\in H,\,nm^{-1}\in N$ e $Nk^{-1}=k^{-1}N$. Portanto $(hn)(km)^{-1}=hnm^{-1}k^{-1}\in hNk^{-1}=hk^{-1}N\subseteq HN$. Segue-se que HN é um subgrupo de G.

Mostramos agora que $H \cap N$ é um subgrupo normal de H. Por 1.4.11, $H \cap N$ é um subgrupo de G e então de H. Sejam $h \in H$ e $x \in H \cap N$. Então $hxh^{-1} \in H$ e $hxh^{-1} \in N$, pelo que $hxh^{-1} \in H \cap N$. Segue-se que $H \cap N$ é um subgrupo normal de H.

Terminamos esta secção com dois teoremas conhecidos como teoremas do isomorfismo.

Teorema 1.6.17. Sejam G um grupo, $H \subseteq G$ um subgrupo e $N \unlhd G$ um subgrupo normal. Então um isomorfismo $H/(H \cap N) \to HN/N$ é dado por $(H \cap N)x \mapsto Nx$.

Demonstração: Consideremos a inclusão $i\colon H\to HN,\ h\mapsto h$ e o epimorfismo canónico $\pi\colon HN\to HN/N$. Então i e π são homomorfismos de grupos. A composta $\pi\circ i\colon H\to HN/N$ é um epimorfismo. Com efeito, para $h\in H$ e $n\in N,\ hnN=hN=\pi\circ i(h)$. Seja $h\in H$. Tem-se $\pi\circ i(h)=N\Leftrightarrow Nh=N\Leftrightarrow h\in H\cap N$ e então $\mathrm{Ker}(\pi\circ i)=H\cap N$. O resultado segue do Teorema do homomorfismo.

Teorema 1.6.18. Sejam G um grupo e N e H subgrupos normais de G tais que $H \subseteq N$. Então N/H \acute{e} um subgrupo normal de G/H e um isomorfismo $(G/H)/(N/H) \rightarrow G/N$ \acute{e} dado por $(N/H)Hx \mapsto Nx$.

Demonstração: Consideremos os epimorfismos canónicos $\pi_N \colon G \to G/N$ e $\pi_H \colon G \to G/H$. Como $H \subseteq N = \operatorname{Ker}(\pi_N)$, existe, por 1.6.13, um único homomorfismo $\bar{\pi}_N \colon G/H \to G/N$ com $\bar{\pi}_N \circ \pi_H = \pi_N$. Seja $x \in G$. Então $Hx \in \operatorname{Ker}(\bar{\pi}_N) \Leftrightarrow \bar{\pi}_N(Hx) = N \Leftrightarrow \bar{\pi}_N \circ \pi_H(x) = N \Leftrightarrow \pi_N(x) = N \Leftrightarrow Nx = N \Leftrightarrow x \in N$. Assim, enquanto conjuntos, $\operatorname{Ker}(\bar{\pi}_N) = \{Hx \mid x \in N\} = N/H$. Como as operações em $\operatorname{Ker}(\bar{\pi}_N) \subseteq G/H$ e N/H coincidem, temos $\operatorname{Ker}(\bar{\pi}_N) = N/H$ enquanto grupos e, em particular, que N/H é um subgrupo normal de G/H. O resultado segue do Teorema do homomorfismo.

Exemplo 1.6.19. Sejam $m, n \in \mathbb{N} \setminus \{0\}$. Tem-se que $m\mathbb{Z}$ é um subgrupo de $n\mathbb{Z}$ se e só se n divide m. Neste caso $n\mathbb{Z}/m\mathbb{Z}$ é um subgrupo normal de \mathbb{Z}_m e $\mathbb{Z}_m/(n\mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}_n$.

1.7 Grupos cíclicos

Definição 1.7.1. Um grupo gerado por um elemento diz-se cíclico.

Nota 1.7.2. Os elementos de um grupo cíclico $G = \langle g \rangle$ são as potências g^k , $k \in \mathbb{Z}$. Um grupo cíclico é comutativo.

Exemplos 1.7.3. (i) O grupo aditivo \mathbb{Z} é cíclico. Tem-se $\mathbb{Z} = \langle 1 \rangle$.

- (ii) Para cada numero natural n > 0, \mathbb{Z}_n é cíclico, gerado por $[1]_n = 1 + n\mathbb{Z}$.
- (iii) Por 1.5.9, qualquer grupo de ordem prima é cíclico.
- (iv) O grupo simétrico S_3 não é cíclico.

Proposição 1.7.4. Sejam $G = \langle g \rangle$ um grupo cíclico $e \{e\} \neq H \subseteq G$ um subgrupo. Seja m o menor número natural positivo tal que $g^m \in H \setminus \{e\}$. Então $H = \langle g^m \rangle$.

Demonstração: É claro que $\langle g^m \rangle \subseteq H$. Seja $n \in \mathbb{Z}$ tal que $g^n \in H$. Então existem $k \in \mathbb{Z}$ e $0 \le r < m$ tais que n = km + r. Portanto $g^n = g^{km}g^r$. Como $g^{km} \in \langle g^m \rangle \subseteq H$, temos $g^r = g^n g^{-km} \in H$. Então $g^r = e$ e portanto $g^n = g^{km} \in \langle g^m \rangle$.

Corolário 1.7.5. Qualquer subgrupo de um grupo cíclico é cíclico.

Corolário 1.7.6. Os subgrupos de \mathbb{Z} são os conjuntos $m\mathbb{Z}$, $m \in \mathbb{N}$.

Corolário 1.7.7. (Lema de Bézout) Sejam $a, b \in \mathbb{Z}$, não ambos iguais $a \ 0$, $e \ d = \operatorname{mdc}(a, b)$. Então existem $u, v \in \mathbb{Z}$ tais que au + bv = d.

Demonstração: Como $d = \operatorname{mdc}(a,b)$, existem números primos entre si $a',b' \in \mathbb{Z}$ tais que a = da' e b = db'. Por 1.7.6, o subgrupo $\langle a',b' \rangle$ de \mathbb{Z} é gerado por um elemento $m \in \mathbb{N}$, que então é um divisor comum de a' e b'. Como a' e b' são primos entre si, m = 1. Segue-se que $\langle a',b' \rangle = \mathbb{Z}$ e então que existem $u,v \in \mathbb{Z}$ tais que a'u+b'v=1. Multiplicando por a' obtém-se au+bv=a.

Teorema 1.7.8. Seja $G = \langle g \rangle$ um grupo cíclico. Se G é infinito, então um isomorfismo $\mathbb{Z} \to G$ é dado por $k \mapsto g^k$. Se G é finito, então um isomorfismo $\mathbb{Z}_{|g|} \to G$ é dado por $k + |g|\mathbb{Z} \mapsto g^k$.

Demonstração: Consideremos o epimorfismo $\phi \colon \mathbb{Z} \to G$ dado por $\phi(k) = g^k$. Por 1.7.6, existe $n \in \mathbb{N}$ tal que $\operatorname{Ker}(\phi) = n\mathbb{Z}$. Pelo Teorema do homomorfismo, um isomorfismo $f \colon \mathbb{Z}/n\mathbb{Z} \to G$ é dado por $k + n\mathbb{Z} \mapsto g^k$. Se G é finito, f é o isomorfismo procurado pois, neste caso, $n = |\mathbb{Z}/n\mathbb{Z}| = |g| \in \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_{|g|}$. Se G é infinito, então n = 0 e $\operatorname{Ker}(\phi) = n\mathbb{Z} = \{0\}$, pelo que o epimorfismo ϕ é um isomorfismo.

Corolário 1.7.9. Seja $G = \langle g \rangle$ um grupo cíclico finito. Então

- (i) $G = \{e, g, \dots, g^{|g|-1}\};$
- (ii) para todo o $m \in \mathbb{Z}$, $g^m = e$ se e só se $m \in |g|\mathbb{Z}$;
- (iii) a ordem de G é o menor inteiro positivo m tal que $g^m = e$.

Demonstração: Seja $f: \mathbb{Z}_{|g|} \to G$ o isomorfismo dado por $f(k+|g|\mathbb{Z}) = g^k$.

- (i) Tem-se $G = Im(f) = \{f(\overline{0}), \dots, f(|\overline{g}| 1)\} = \{e, g, \dots, g^{|g|-1}\}.$
- (ii) Para todo o $m \in \mathbb{Z}$,

$$g^m = e \Leftrightarrow f(m + |g|\mathbb{Z}) = f(|g|\mathbb{Z}) \Leftrightarrow m + |g|\mathbb{Z} = |g|\mathbb{Z} \Leftrightarrow m \in |g|\mathbb{Z}.$$

(iii) segue imediatamente de (ii).

Proposição 1.7.10. Sejam $G = \langle g \rangle$ um grupo cíclico finito.

- (a) Para todo o $k \in \mathbb{Z} \setminus \{0\}$, $|g^k| = \frac{|g|}{\operatorname{mdc}(|g|, k)}$. Em particular, $G = \langle g^k \rangle$ se e só se a ordem de G e k são primos entre si.
- (b) Para cada divisor $d \ge 1$ da ordem de G existe exactamente um subgrupo de G de ordem d. Este subgrupo é $\langle g^{\frac{|g|}{d}} \rangle$.

Demonstração: Seja n = |q| = |G|.

- (a) Seja $d = \operatorname{mdc}(k, n)$. Escrevemos n = n'd e k = k'd onde $\operatorname{mdc}(n', k') = 1$. Por 1.7.9 (ii), $|g^k|$ é o menor inteiro positivo m tal que $g^{km} = e$. Por 1.7.9 (ii), isto implica que $|g^k|$ é o menor inteiro positivo m tal que $km \in n\mathbb{Z}$. Como $n' \geq 1$ e $g^{kn'} = g^{k'n} = e$ temos $|g^k| \leq n'$. Como n = n'd divide $|g^k|k = |g^k|k'd$ obtemos que n' divide $|g^k|k'$. Como $\operatorname{mdc}(n', k') = 1$ podemos concluir que n' divide $|g^k|$ e portanto que $|g^k| = n' = \frac{n}{\operatorname{mdc}(n, k)}$.
- (b) O único subgrupo de G de ordem 1 é o subgrupo trivial $\{e\} = \langle g^{|g|} \rangle$. Seja d > 1 um divisor de |g|. Seja $k = \frac{|g|}{d}$. Então $\langle g^k \rangle$ é um subgrupo de G e tem-se $|g^k| = \frac{|g|}{\mathrm{mdc}(|g|,k)} = \frac{|g|}{k} = d$. Seja $H \leq G$ com |H| = d. Seja m o menor número natural positivo tal que $g^m \in H \setminus \{e\}$. Por 1.7.4, $H = \langle g^m \rangle$. Por 1.7.9(i), 0 < m < |g|. Tem-se $d = |g^m| = \frac{|g|}{\mathrm{mdc}(|g|,m)} = \frac{|g|}{m}$ e portanto $m = \frac{|g|}{d} = k$. Segue-se que $H = \langle g^k \rangle$. Logo existe exactamente um subgrupo de G de ordem d e este é $\langle g^k \rangle$.

Corolário 1.7.11. Os subgrupos de um grupo cíclico finito $G = \langle g \rangle$ são os grupos da forma $\langle g^{\frac{|g|}{d}} \rangle$, onde $d \geq 1$ é um divisor de |g|.

Definição 1.7.12. O produto directo dos grupos G_1, \ldots, G_n é o grupo cujo conjunto subjacente é o produto cartesiano $G_1 \times \cdots \times G_n$ e cuja operação é dada por

$$(g_1, \ldots, g_n) \cdot (h_1, \ldots, h_n) = (g_1 h_1, \ldots, g_n h_n).$$

Verifica-se facilmente que o produto directo dos grupos G_1, \ldots, G_n é de facto um grupo. Este grupo é denotado por $\prod_{i=1}^n G_i$ ou por $G_1 \times \cdots \times G_n$.

Exemplo 1.7.13. O exemplo $\mathbb{Z}_2 \times \mathbb{Z}_2$ mostra que o produto directo de dois grupos cíclicos não é, em geral, um gupo cíclico. Com efeito, $\mathbb{Z}_2 \times \mathbb{Z}_2$ tem dois subgrupos diferentes de ordem 2, nomeadamente $\mathbb{Z}_2\times\{[0]_2\}$ e $\{[0]_2\}\times\mathbb{Z}_2,$ e um grupo cíclico não pode ter mais do que um subgrupo de uma dada ordem.

Proposição 1.7.14. Sejam $n_1, \ldots n_k \geq 1$ inteiros. Então o produto directo $\prod_{i=1}^k \mathbb{Z}_{n_i}$ é cíclico se e só os inteiros $n_1, \ldots n_k$ são dois a dois primos entre si. Neste caso um isomorfismo $\mathbb{Z}_{n_1\cdots n_k} \to \prod_{i=1}^k \mathbb{Z}_{n_i} \ \acute{e} \ dado \ por \ m+n_1\cdots n_k\mathbb{Z} \mapsto (m+n_1\mathbb{Z},\ldots,m+n_k\mathbb{Z}).$

Demonstração: Suponhamos primeiramente os inteiros $n_1, \ldots n_k$ são dois a dois primos entre si. Consideremos o homomorfismo $f: \mathbb{Z} \to \prod_{i=1}^k \mathbb{Z}_{n_i}$ definido por

$$f(m) = (m + n_1 \mathbb{Z}, \dots, m + n_k \mathbb{Z}).$$

É claro que $n_1 \cdots n_k \mathbb{Z} \subseteq \operatorname{Ker}(f)$. Por outro lado, seja $m \in \operatorname{Ker}(f)$. Então existem $u_1,\ldots,u_k\in\mathbb{Z}$ tais que $m=n_1u_1=\cdots=n_ku_k,$ ou seja, cada n_i divide m. Como os n_i são dois a dois primos entre si, o produto $n_1 \cdots n_k$ divide m. Logo $m \in n_1 \cdots n_k \mathbb{Z}$ e Ker $(f) = n_1 \cdots n_k \mathbb{Z}$. Pelo teorema 1.6.13, $\bar{f} : \mathbb{Z}_{n_1 \cdots n_k} \to \prod_{i=1}^k \mathbb{Z}_{n_i}, \ \bar{f}(m + n_1 \cdots n_k \mathbb{Z}) =$ $(m+n_1\mathbb{Z},\ldots,m+n_k\mathbb{Z})$ é um monomorfismo. Como $|\mathbb{Z}_{n_1\cdots n_k}|=n_1\cdots n_k=|\prod_{i=1}^k\mathbb{Z}_{n_i}|, \bar{f}$ é de facto um isomorfismo e $\prod_{i=1}^{\kappa} \mathbb{Z}_{n_i}$ é cíclico.

Suponhamos agora que os inteiros $n_1, \dots n_k$ não são dois a dois primos entre si. Então existem $i \neq j \in \{1, \ldots, k\}$ tais que n_i e n_j têm um divisor comum d > 1. Como \mathbb{Z}_{n_i} e \mathbb{Z}_{n_j} são cíclicos, existem subgrupos $U_i \leq \mathbb{Z}_{n_i}$ e $V_j \leq \mathbb{Z}_{n_j}$ de ordem d. Pomos $U_l = \{n_l \mathbb{Z}\}$ para $l \neq i$ e $V_l = \{n_l \mathbb{Z}\}$ para $l \neq j$. Então $\prod_{l=1}^n U_l$ e $\prod_{l=1}^n V_l$ são dois subgrupos diferentes de

ordem
$$d$$
 de $\prod_{i=1}^k \mathbb{Z}_{n_i}$. Logo $\prod_{i=1}^k \mathbb{Z}_{n_i}$ não é cíclico.

1.8 Grupos simétricos

Recorde que para um conjunto $X \neq \emptyset$, $S(X) = \{f : X \to X : f \text{ bijeção}\}$ é um grupo relativamente à composição, chamado grupo simétrico. Recorde ainda que S_n designa o grupo simétrico $S(\{1, 2, ..., n\})$.

Teorema 1.8.1. (Teorema de Cayley) Cada grupo G é isomorfo a um subgrupo do grupo simétrico S(G).

Demonstração: Para $g \in G$ seja $\lambda_g \colon G \to G$ a função definida por $\lambda_g(x) = gx$. Para quaisquer $g, h, x \in G$, $\lambda_{gh}(x) = ghx = g\lambda_h(x) = \lambda_g(\lambda_h(x)) = \lambda_g \circ \lambda_h(x)$. Segue-se que cada λ_g é bijectiva com função inversa $\lambda_{g^{-1}}$ e que a função $f \colon G \to S(G)$, $f(g) = \lambda_g$ é um homomorfismo. Seja $g \in Ker(f)$. Então $f(g) = \lambda_g = id_G$. Logo $g^2 = \lambda_g(g) = g = eg$. Pelas leis do corte, g = e e temos $Ker(f) = \{e\}$. Segue-se que f é um monomorfismo e portanto que $G \cong Im(f)$.

Corolário 1.8.2. Cada grupo finito G de ordem n é isomorfo a um subgrupo de S_n .

Demonstração: Seja $\alpha: G \to \{1, 2, \dots n\}$ uma bijeção. Verifica-se que $\Psi: S(G) \to S_n$ dada por $\Psi(f) = \alpha \circ f \circ \alpha^{-1}$ é um isomorfismo de grupos (nota: isto não utiliza a estrutura de grupo de G, tal isomorfismo existe para qualquer conjunto com n elementos). Como, pelo Teorema de Cayley, G é subgrupo de S(G) e como Ψ é um isomorfismo de grupos, podemos concluir que G é isomormorfo a um subgrupo de S_n .

Notação 1.8.3. Uma permutação $\sigma \in S_n$ é muitas vezes representada sob a forma

$$\left(\begin{array}{cccc} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{array}\right).$$

Observação 1.8.4. Um monomorfismo $S_n \to S_{n+1}$ é dado por

$$\sigma \mapsto \begin{pmatrix} 1 & \cdots & n & n+1 \\ \sigma(1) & \cdots & \sigma(n) & n+1 \end{pmatrix}.$$

Por conseguinte, S_n é isomorfo ao subgrupo de S_{n+1} das permutações α com $\alpha(n+1) = n+1$.

Proposição 1.8.5. $|S_n| = n!$

Definição 1.8.6. Uma permutação $\sigma \in S_n$ diz-se um *cíclo* se existem $k, i_1, \ldots, i_k \in \{1, \ldots, n\}$ tais que $\sigma(i_j) = i_{j+1}$ para $1 \leq j < k$, $\sigma(i_k) = i_1$ e $\sigma(i) = i$ para $i \notin \{i_1, \ldots, i_k\}$. O cíclo assim definido é denotado por (i_1, \ldots, i_k) . Aos cíclos da forma (i, j) com $i \neq j \in \{1, \ldots, n\}$ chama-se também $transposiç\~oes$. Dois cíclos (i_1, \ldots, i_k) e (j_1, \ldots, j_l) dizem-se disjuntos se $\{i_1, \ldots, i_k\} \cap \{j_1, \ldots, j_l\} = \emptyset$.

Observações 1.8.7. (i) A identidade de $\{1,\ldots,n\}$ é um cíclo. Para cada $i\in\{1,\ldots,n\}$, $id_{\{1,\ldots,n\}}=(i)$.

- (ii) Para quaisquer k números distintos $i_1, \ldots i_k \in \{1, \ldots, n\}, |(i_1, \ldots, i_k)| = k$.
- (iii) Se $\alpha, \beta \in S_n$ são cíclos disjuntos, então $\alpha\beta = \beta\alpha$. Logo se $\alpha_1, \ldots \alpha_l \in S_n$ são cíclos dois a dois disjuntos, então $|\alpha_1 \cdots \alpha_l| = \text{mmc}(|\alpha_1|, \ldots, |\alpha_l|)$.
 - (iv) Para cada transposição $\tau \in S_n$, $\tau^2 = id$.

Proposição 1.8.8. Cada permutação $\sigma \in S_n \setminus \{id\}$ pode ser factorizada em cíclos dois a dois disjuntos de $S_n \setminus \{id\}$.

Demonstração: Seja $\sigma \in S_n \setminus \{id\}$. Para $i \in \{1, \ldots, n\}$, seja

$$k_i = \min\{k \in \{1, \dots, n!\} \mid \sigma^k(i) = i\}.$$

Note-se que este mínimo existe pois $\sigma^{n!} = id$ pelo Exercício 33. Definimos os números $j_1, \ldots, j_m \in \{1, \ldots, n\}$ recursivamente como se segue: Enquanto tal i existe, j_l é o menor

$$i \in \{1, \dots, n\} \setminus \{j_1, \sigma(j_1), \dots, \sigma^{k_{j_1}-1}(j_1), \dots, j_{l-1}, \sigma(j_{l-1}), \dots, \sigma^{k_{j_{l-1}}-1}(j_{l-1})\}$$

tal que $\sigma(i) \neq i$. Como $\sigma \neq id$, j_1 existe. Como $\{1,\ldots,n\}$ é finito, o processo pára depois de um número finito, m, de iterações. Para cada $l \in \{1,\ldots,m\}$, $(j_l,\sigma(j_l),\ldots,\sigma^{k_{j_l}-1}(j_l))$ é um cíclo em $S_n \setminus \{id\}$. Sejam $l,r \in \{1,\ldots,m\}$, $0 \leq k < k_{j_l}$ e $0 \leq s < k_{j_r}$ tais que $\sigma^k(j_l) = \sigma^s(j_r)$. Então $j_r = \sigma^{k_{j_r}}(j_r) \in \{j_l,\sigma(j_l),\ldots,\sigma^{k_{j_l}-1}(j_l)\}$, pelo que $r \leq l$. Do mesmo modo temos $l \leq r$ e então r = l. Segue-se que os cíclos $(j_l,\sigma(j_l),\ldots,\sigma^{k_{j_l}-1}(j_l))$ são dois a dois disjuntos. Seja

$$\psi = (j_1, \sigma(j_1), \dots, \sigma^{k_{j_1}-1}(j_1)) \cdots (j_m, \sigma(j_m), \dots, \sigma^{k_{j_m}-1}(j_m)).$$

Temos $\psi(\sigma^k(j_l)) = \sigma^{k+1}(j_l)$ e $\sigma(i) = i = \psi(i)$ para

$$i \notin \{j_1, \sigma(j_1), \dots, \sigma^{k_{j_1}-1}(j_1), \dots, j_m, \sigma(j_m), \dots, \sigma^{k_{j_m}-1}(j_m)\}.$$

Logo $\sigma = \psi$.

Corolário 1.8.9. S_n é gerado pelos cíclos.

Exemplo 1.8.10. Consideremos a permutação $\sigma \in S_6$ dada por

$$\sigma = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 2 & 6 & 3 & 4 \end{array}\right).$$

Tem-se $\sigma = (2, 5, 3)(4, 6)$.

Nota 1.8.11. É possível mostrar que a factorização de uma permutação $\sigma \in S_n \setminus \{id\}$ em cíclos dois a dois disjuntos de $S_n \setminus \{id\}$ é única a menos da ordem dos factores (exercício).

Proposição 1.8.12. Sejam $i_1, \ldots, i_k \in \{1, \ldots, n\}$ número distintos com $k \geq 3$. Então $(i_1, \ldots, i_k) = (i_1, i_k) \cdots (i_1, i_2)$.

Demonstração: Tem-se

$$(i_{1}, i_{k}) \cdots (i_{1}, i_{2})(i_{1}) = (i_{1}, i_{k}) \cdots (i_{1}, i_{3})(i_{2}) = i_{2},$$

$$(i_{1}, i_{k}) \cdots (i_{1}, i_{2})(i_{k}) = (i_{1}, i_{k})(i_{k}) = i_{1},$$

$$(i_{1}, i_{k}) \cdots (i_{1}, i_{2})(i_{l}) = (i_{1}, i_{k}) \cdots (i_{1}, i_{l})(i_{l})$$

$$= (i_{1}, i_{k}) \cdots (i_{1}, i_{l+1})(i_{1})$$

$$= (i_{1}, i_{k}) \cdots (i_{1}, i_{l+2})(i_{l+1})$$

$$= i_{l+1}$$

para $1 < l < k \ e \ (i_1, i_k) \cdots (i_1, i_2)(i) = i \ para \ i \notin \{i_1, \dots, i_k\}.$

Corolário 1.8.13. S_n é gerado pelas transposições.

Definição 1.8.14. Seja $\sigma \in S_n$ uma permutação. Uma *inversão* em σ é um par $(i, j) \in \{1, \ldots, n\} \times \{1, \ldots, n\}$ tal que i < j e $\sigma(i) > \sigma(j)$. O *sinal* de σ , $\operatorname{sgn}(\sigma)$, é 1 se existe um número par de inversões em σ e -1 caso contrário. Uma permutação diz-se *par (impar)* se tem sinal 1 (-1).

Observações 1.8.15. (i) Se m é o numéro de inversões em $\sigma \in S_n$, então $\operatorname{sgn}(\sigma) = (-1)^m$. (ii) O sinal de qualquer transposição é -1.

Proposição 1.8.16. O sinal é um homomorfismo de S_n para o grupo multiplicativo $\{1, -1\}$.

Demonstração: Sejam $\alpha, \beta \in S_n$, k o número de inversões em α e l o número de inversões em β . Um par $(i, j) \in \{1, ..., n\} \times \{1, ..., n\}$ com i < j é uma inversão em $\alpha\beta$ se e só se satisfaz uma das condições seguintes:

- (a) (i, j) é uma inversão em β mas $(\beta(j), \beta(i))$ não é uma inversão em α ;
- (b) (i,j) não é uma inversão em β mas $(\beta(i),\beta(j))$ é uma inversão em α .

Seja r o número de pares (i,j) com i < j que satisfazem a condição (a) e seja s o número de pares (i,j) com i < j que satisfazem a condição (b). Então $\operatorname{sgn}(\alpha\beta) = (-1)^{r+s}$. Seja m o número de inversões (i,j) em β tais que $(\beta(j),\beta(i))$ é uma inversão em α . Então l=r+m. Também temos k=s+m. Com efeito, os pares (i,j) com i < j que satisfazem a condição (b) estão em correspondência bijectiva com as inversões (x,y) em α com $\beta^{-1}(x) < \beta^{-1}(y)$, pelo que o número destas inversões em α é s. E as inversões (i,j) em

 β tais que $(\beta(j), \beta(i))$ é uma inversão em α estão em correspondência bijectiva com as inversões (x, y) em α com $\beta^{-1}(y) < \beta^{-1}(x)$, pelo que o número destas inversões em α é m. Segue-se que $\operatorname{sgn}(\alpha\beta) = (-1)^{r+s} = (-1)^{l+k-2m} = (-1)^{l}(-1)^{k}(-1)^{-2m} = (-1)^{l}(-1)^{k} = (-1)^{l}(-1)^{l} = \operatorname{sgn}(\alpha)\operatorname{sgn}(\beta)$.

Observação 1.8.17. Pela proposição precedente, um produto de um número par de transposições tem sinal 1 e um produto de um número ímpar de transposições tem sinal -1. Segue-se que uma permutação não pode ao mesmo tempo ser factorizada num número par e num número ímpar de transposições e que uma permutação é par se e só se ela pode ser factorizada num número par de transposições. Em particular, pela Proposição 1.8.12, um cíclo de ordem par é ímpar e um cíclo de ordem ímpar é par.

Proposição 1.8.18. Sejam $i_1, \ldots, i_k \in \{1, \ldots, n\}$ k números distintos e seja σ o cíclo (i_1, \ldots, i_k) . Tem-se $\operatorname{sgn}(\sigma) = (-1)^{k-1}$.

Observação 1.8.19. Em geral, para uma permutação qualquer $\sigma \in S_n$, não temos $\operatorname{sgn}(\sigma) = (-1)^{|\sigma|-1}$. Por exemplo, a permutação $\sigma = (1,2)(3,4,5,6,7,8)$ de S_8 têm ordem 6 mas $\operatorname{sgn}(\sigma) = 1 \neq (-1)^5$.

Capítulo 2

Anéis

2.1 Conceitos básicos

Definição 2.1.1. Um anel é um triplo $(A, +, \cdot)$ em que A é um conjunto $e + e \cdot são$ operações binárias em A tais que

- (A, +) é um grupo abeliano;
- (A, \cdot) é um monóide;
- para quaisquer $a, b, c \in A$, $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ e $(a + b) \cdot c = (a \cdot c) + (b \cdot c)$ (distributividade de · em relação a +).

A operação + diz-se a adição do anel e a operação · diz-se a multiplicação do anel. Muitas vezes indica-se um anel pelo símbolo do conjunto subjacente, isto é, escreve-se simplesmente A em vez de $(A, +, \cdot)$. O elemento neutro do grupo aditivo (A, +) de um anel $A = (A, +, \cdot)$ é denotado por 0. O elemento neutro do monóide multiplicativo (A, \cdot) de A é chamado identidade de A e é denotado por 1. O simétrico de um elemento a de um anel A é o inverso de a no grupo aditivo de A e é denotado por -a. Se a é invertível no monóide multiplicativo de A, o inverso de a é o inverso de a em (A, \cdot) e é denotado por a^{-1} . Um elemento invertível no monóide multiplicativo de A diz-se uma unidade de A. Omitiremos muitas vezes o símbolo da multiplicação e escreveremos ab em vez de $a \cdot b$. Usaremos as convenções habituais de omissão de parênteses e escreveremos, por exemplo, ab + c em vez de (ab) + c e -ab em vez de -(ab). Um anel diz-se comutativo se a sua multiplicação é comutativo.

Nota 2.1.2. Alguns autores não exigem a existência de um elemento neutro para a multiplicação na definição de um anel. Num tal contexto, a nossa definição de anel corresponde à noção de anel unitário ou anel com identidade.

Exemplos 2.1.3. (i) \mathbb{Z} , \mathbb{Q} e \mathbb{R} são anéis comutativos relativamente à adição e à multiplicação habituais.

- (ii) Para qualquer inteiro $n \geq 1$, o grupo abeliano \mathbb{Z}_n é um anel comutativo relativamente à multiplicação dada por $(k + n\mathbb{Z}) \cdot (l + n\mathbb{Z}) = kl + n\mathbb{Z}$.
- (iii) Para cada natural $n \geq 1$, o conjunto $\mathcal{M}_{n \times n}(\mathbb{R})$ das matrizes reais $n \times n$ é um anel relativamente à adição e à multiplicação de matrizes.
- (iv) O produto directo $A_1 \times \cdots \times A_n$ dos anéis A_1, \ldots, A_n é o anel cujo conjunto subjacente é o produto cartesiano $A_1 \times \cdots \times A_n$ e cujas operações + e \cdot são definidas componente por componente.
 - (v) O conjunto $\{0\}$ admite uma única estrutura de anel. Note-se que neste anel, 1=0.

Proposição 2.1.4. Sejam A um anel e $x, y \in A$. Então

(i) 0x = x0 = 0;

(ii)
$$(-x)y = x(-y) = -xy$$
;

(iii)
$$(-x)(-y) = xy$$
.

Demonstração: (i) Tem-se 0x = (0+0)x = 0x + 0x e portanto 0 = 0x - 0x = 0x. Do mesmo modo, x0 = 0.

(ii) Tem-se xy + (-x)y = (x + (-x))y = 0y = 0 e portanto -xy = (-x)y. Do mesmo modo, -xy = x(-y).

(iii) Tem-se
$$(-x)(-y) = -x(-y) = -(-xy) = xy$$
.

Observação 2.1.5. Pela propriedade (ii) da proposição precedente, (-1)x = x(-1) = -x para qualquer elemento x de um anel.

Proposição 2.1.6. Sejam A um anel, $n, m \ge 1$ inteiros e $x_1, \ldots, x_n, y_1, \ldots, y_m \in A$. Então

$$\left(\sum_{i=1}^{n} x_i\right) \cdot \left(\sum_{j=1}^{m} y_j\right) = \sum_{1 \le i \le n, \ 1 \le j \le m} x_i y_j.$$

Demonstração: Exercício.

Proposição 2.1.7. Sejam A um anel, $n \in \mathbb{N}$ e $a, b \in A$ tais que ab = ba. Então

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} b^i.$$

Demonstração: Exercício.

Definição 2.1.8. Um subconjunto B de um anel A diz-se um subanel de A se $1 \in B$ e para quaisquer $x, y \in B$, $x - y \in B$ e $xy \in B$.

Observação 2.1.9. Um subanel B de um anel A é um anel relativamente à adição e à multiplicação de A.

Exemplos 2.1.10. (i) Qualquer anel é sempre um subanel de si próprio.

- (ii) O único subanel de \mathbb{Z} é \mathbb{Z} .
- (iii) O único subanel de \mathbb{Z}_n é \mathbb{Z}_n .
- (iv) \mathbb{Q} é um subanel de \mathbb{R} .
- (v) Os matrizes reais diagonais $n \times n$ formam um subanel de $\mathcal{M}_n(\mathbb{R})$.

Definição 2.1.11. Um aplicação entre dois anéis $f: A \to B$ diz-se um homomorfismo de anéis se f(1) = 1 e se para quaisquer dois elements $x, y \in A$, f(x + y) = f(x) + f(y) e f(xy) = f(x)f(y). Um homomorfismo de anéis diz-se um monomorfismo (epimorfismo, isomorfismo) se é injectivo (sobrejectivo, bijectivo). Um homomorfismo (isomorfismo) de anéis $f: A \to A$ diz-se um endomorfismo (automorfismo) de anéis. Dois anéis $A \in B$ dizem-se isomorfos, $A \cong B$, se existe um isomorfismo de anéis entre eles.

Observações 2.1.12. (i) Um homomorfismo de anéis é um homomorfismo dos grupos aditivos. Em particular f(0) = 0.

- (ii) O núcleo Ker f de um homomorfismo de anéis $f: A \to B$ é o seu núcleo enquanto homomorfismo de grupos aditivos, isto é, $Ker(f) = \{a \in A \mid f(a) = 0\}$.
- (ii) Um homomorfismo de anéis $f: A \to B$ é um monomorfismo de anéis se e só se é um monomorfismo de grupos aditivos e isto é caso se e só se $Ker(f) = \{0\}$.

Exemplos 2.1.13. (i) Se B é um subanel do anel A, então a inclusão $B \to A$, $x \mapsto x$ é um monomorfismo de anéis.

- (ii) Para qualquer anel A, id_A é um automorfismo de anéis.
- (iv) O epimorfismo canónico $\mathbb{Z} \to \mathbb{Z}_n$, $k \mapsto k + n\mathbb{Z}$ é um epimorfismo de anéis.

Proposição 2.1.14. A composta de dois homomorfismos de anéis $f: A \to B$ e $g: B \to C$ é um homomorfismo de anéis.

Demonstração: A composta $g \circ f: A \to C$ é um homorfismo de grupos. Como $g \circ f(1) = g(f(1)) = g(1) = 1$ e $g \circ f(xy) = g(f(xy)) = g(f(x)f(y)) = g(f(x))g(f(y)) = g \circ f(x)g \circ f(y)$ para todos os $x, y \in A$, $g \circ f$ é um homomorfismo de anéis.

Proposição 2.1.15. A função inversa de um isomorfismo de anéis $f: A \to B$ é um isomorfismo de anéis.

Demonstração: Por 1.3.8, f^{-1} é um isomorfismo de grupos. Como f(1) = 1, $1 = f^{-1}(f(1)) = f^{-1}(1)$. Para quaisquer $x, y \in B$, $f(f^{-1}(xy)) = xy = f(f^{-1}(x))f(f^{-1}(y)) = f(f^{-1}(x)f^{-1}(y))$. Como f é um monomorfismo, isto implica que $f^{-1}(xy) = f^{-1}(x)f^{-1}(y)$. Segue-se que f^{-1} é um homomorfismo de anéis e então um isomorfismo de anéis.

Proposição 2.1.16. Sejam $f: A \to B$ um homomorfismo de anéis, X um subanel de A e Y um subanel de B. Então f(X) é um subanel de B e $f^{-1}(Y)$ é um subanel de A.

Demonstração: Como $1 \in X$, $1 = f(1) \in f(X)$. Sejam $x, y \in X$. Então $x - y, xy \in X$. Logo $f(x) - f(y) = f(x - y) \in f(X)$ e $f(x)f(y) = f(xy) \in f(X)$. Segue-se que f(X) é um subanel de B. Como $f(1) = 1 \in Y$, $1 \in f^{-1}(Y)$. Sejam $x, y \in f^{-1}(Y)$. Então $f(x-y) = f(x) - f(y) \in Y$ e $f(xy) = f(x)f(y) \in Y$. Logo $x-y \in f^{-1}(Y)$ e $xy \in f^{-1}(Y)$. Segue-se que $f^{-1}(Y)$ é um subanel de A.

2.2 Ideais e anéis quociente

Definição 2.2.1. Um *ideal* de um anel A é um subgrupo I do grupo aditivo de A tal que para quaisquer $a \in A$ e $x \in I$, $ax \in I$ e $xa \in I$.

Observações 2.2.2. (i) Como o grupo aditivo de um anel é abeliano, qualquer ideal de um anel é um subgrupo normal do anel.

(ii) Se um ideal I de um anel A contém o elemento 1, então I=A. Com efeito, para qualquer $a \in A$, a=1 $a \in I$.

Exemplos 2.2.3. (i) Em qualquer anel A, $\{0\}$ e A são ideais.

- (ii) Para $n \in \mathbb{Z}$, $n\mathbb{Z}$ é um ideal em \mathbb{Z} .
- (iii) SejamAe Bdois anéis, Ium ideal de Ae Jum ideal de B. Então $I\times J$ é um ideal em $A\times B.$

Proposição 2.2.4. Sejam $f: A \to B$ um homomorfismo de anéis, I um ideal de A e J um ideal de B. Então f(I) é um ideal de Im(f) e $f^{-1}(J)$ é um ideal de A. Em particular, $Im(f) = f^{-1}(\{0\})$ é um ideal de A.

Demonstração: Por 1.6.5, f(I) é um subgrupo do grupo aditivo de $\operatorname{Im}(f)$ e $f^{-1}(J)$ é um subgrupo do grupo aditivo de A. Sejam $a \in A$ e $x \in I$. Então $f(a)f(x) = f(ax) \in f(I)$ e $f(x)f(a) = f(xa) \in f(I)$. Segue-se que f(I) é um ideal de $\operatorname{Im}(f)$. Sejam $a \in A$ e $x \in f^{-1}(J)$. Então $f(ax) = f(a)f(x) \in J$ e $f(xa) = f(x)f(a) \in J$, pelo que $ax \in f^{-1}(J)$ e $xa \in f^{-1}(J)$. Segue-se que $f^{-1}(J)$ é um ideal de A.

Proposição 2.2.5. Sejam A um anel $e(I_k)_{k \in K}$ uma familia não vazia de ideais de A. Então $\bigcap_{k \in K} I_k$ é um ideal de A.

 $\begin{array}{l} \textit{Demonstração:} \text{ Por } 1.4.11, \bigcap_{k \in K} I_k \text{ \'e um subgrupo do grupo aditivo de } A. \text{ Sejam } a \in A \text{ e} \\ x \in \bigcap_{k \in K} I_k. \text{ Então } x \in I_k \text{ para todo o } k \in K. \text{ Logo } ax \in I_k \text{ e } xa \in I_k \text{ para todo o } k \in K. \\ \text{Segue-se que } ax, \, xa \in \bigcap_{k \in K} I_k \text{ e que } \bigcap_{k \in K} I_k \text{ \'e um ideal de } A. \end{array}$

Definição 2.2.6. Sejam A um anel e $X \subseteq A$ um subconjunto. O *ideal gerado por* X, (X), é a intersecção dos ideais de A que contêm X. Se $X = \{x_1, \ldots, x_n\}$, escrevemos também (x_1, \ldots, x_n) em vez de (X) e falamos do *ideal de* A *gerado pelos elementos* x_1, \ldots, x_n .

Proposição 2.2.7. Sejam A um anel $e X \subseteq A$ um subconjunto. Então os elementos de (X) são o elemento 0 e as somas finitas formadas a partir dos elementos da forma axb, onde $a, b \in A$ e $x \in X$.

Demonstração: Seja I o subconjunto de A cujos elementos são o elemento 0 e as somas finitas formadas a partir dos elementos de A da forma axb, onde $a,b \in A$ e $x \in X$. Então I é um ideal de A e $X \subseteq I$. Logo $(X) \subseteq I$. Por outro lado, qualquer elemento de I pertence necessariamente a qualquer ideal de A que contém X. Logo $I \subseteq (X)$.

Exemplos 2.2.8. (i) Em qualquer anel A, $(\emptyset) = \{0\}$.

(ii) Num anel comutativo A, tem-se $(a) = aA = \{ax \mid x \in A\}$ para todo o $a \in A$. Em particular, em \mathbb{Z} , $(n) = n\mathbb{Z}$. Em \mathbb{Z}_4 , $([2]) = [2]\mathbb{Z}_2 = \{[0], [2]\}$.

Nota 2.2.9. Sejam A um anel e I e J ideais de A. Então a soma $I + J = \{i + j \mid i \in I, j \in J\}$ também é um ideal de A e tem-se $(I \cup J) = I + J$.

Definição 2.2.10. Um ideal I de um anel A diz-se principal se existe um elemento $a \in A$ tal que I = (a).

Exemplos 2.2.11. (i) Seja A um anel cujo grupo aditivo é cíclico. Então qualquer subgrupo de A é um ideal principal. Com efeito, seja $A = \langle a \rangle$ e consideremos um inteiro k e o subgrupo $I = \langle ka \rangle$. Então a^2 é um múltiplo de a e isto implica que I é um ideal de A. Como $(ka) \subseteq I = \langle ka \rangle \subseteq (ka)$, I = (ka). Em particular, todos os subgrupos de \mathbb{Z} e \mathbb{Z}_n são ideais principais.

Lema 2.2.12. Sejam A um anel, I um ideal de A e $a, a', b, b' \in A$ tais que $a-a', b-b' \in I$. Então $ab-a'b' \in I$.

Demonstração: Tem-se $ab - a'b' = ab - a'b + a'b - a'b' = (a - a')b + a'(b - b') \in I$. \square

Definição 2.2.13. Sejam A um anel e I um ideal. O anel quociente A/I é o grupo quociente A/I com a multiplicação definida por $(a+I) \cdot (b+I) = ab+I$. Pelo lema precedente, esta multiplicação está bem definida. Verifica-se facilmente que A/I é um anel e que o epimorfismo canónico $A \to A/I$, $a \mapsto a+I$ é um homomorfismo de anéis.

Exemplo 2.2.14. O and \mathbb{Z}_n é o and quociente $\mathbb{Z}/n\mathbb{Z}$.

Teorema 2.2.15. Sejam $f: A \to A'$ um homomorfismo de anéis, $I \subseteq A$ um ideal tal que $I \subseteq \operatorname{Ker}(f)$ e $\pi: A \to A/I$ o epimorfismo canónico. Então existe um único homomorfismo de anéis $\bar{f}: A/I \to A'$ tal que $\bar{f} \circ \pi = f$. O homomorfismo \bar{f} é dado por $\bar{f}(a+I) = f(a)$ e é injetivo se e só se $I = \operatorname{Ker}(f)$.

Demonstração: Por 1.6.13, existe um único homomorfismo de grupos $\bar{f}: A/I \to A'$ tal que $\bar{f} \circ \pi = f$. Como $\bar{f}(1+I) = \bar{f} \circ \pi(1) = f(1) = 1$ e $\bar{f}((a+I)(b+I)) = \bar{f}(ab+I) = \bar{f} \circ \pi(ab) = f(ab) = f(a)f(b) = \bar{f} \circ \pi(a)\bar{f} \circ \pi(b) = \bar{f}(a+I)\bar{f}(b+I)$ para todos os $a, b \in A$, \bar{f} é de facto um homomorfismo de anéis. Por 1.6.13, \bar{f} é injetivo se e só se $I = \mathrm{Ker}(f)$. \Box

Corolário 2.2.16. (Teorema do homomorfismo) Seja $f: A \to A'$ um homomorfismo de anéis. Então um isomorfismo de anéis $A/\text{Ker}(f) \to \text{Im}(f)$ é dado por $x + \text{Ker}(f) \mapsto f(x)$.

Teorema 2.2.17. Sejam A um anel, $B \subseteq A$ um subanel $e \ I \subseteq A$ um ideal. Então B+I é um subanel de A, I é um ideal de B+I, $B \cap I$ é um ideal de B e um isomorfismo de anéis $B/(B \cap I) \to (B+I)/I$ é dado por $x+B \cap I \mapsto x+I$.

Demonstração: B+I é um subgrupo do grupo aditivo de A que contém o elemento 1. Sejam $b,b'\in B$ e $x,x'\in I$. Então $(b+x)(b'+x')=bb'+bx'+xb'+xx'\in B+I$. Logo B+I é um subanel de A. Como I é um ideal de A e $I\subseteq B+I$, I é um ideal de B+I. $B\cap I$ é um subgrupo de B e para $b\in B$ e $x\in B\cap I$, $bx\in B\cap I$ e $xb\in B\cap I$. Logo $B\cap I$ é um ideal de B. Por 1.6.17, um isomorfismo de grupos $f\colon B/(B\cap I)\to (B+I)/I$ é dado por $f(x+B\cap I)=x+I$. Como $f(1+B\cap I)=1+I$ e $f((x+B\cap I)(y+B\cap I))=f(xy+B\cap I)=xy+I=(x+I)(y+I)=f(x+B\cap I)f(y+B\cap I)$ para todos os $x,y\in B$, f é de facto um isomorfismo de anéis.

Teorema 2.2.18. Sejam A um anel e I e J ideais de A tais que $J \subseteq I$. Então I/J é um ideal de A/J e um isomorfismo de anéis $(A/J)/(I/J) \to A/I$ é dado por $x+J+I/J \mapsto x+I$.

Demonstração: Por 1.6.18, I/J é um subgrupo do grupo aditivo de A/J. Para $a \in A$ e $x \in I$, $(a + J)(x + J) = ax + J \in I/J$ e $(x + J)(a + J) = xa + J \in I/J$. Logo I/J é um ideal de A/J. Por 1.6.18, um isomorfismo de grupos $f: (A/J)/(I/J) \to A/I$ é dado por f(x+J+I/J) = x+I. Como f(1+J+I/J) = 1+I e f((x+J+I/J)(y+J+I/J)) = f((x+J)(y+J) + I/J) = f(xy+J+I/J) = xy+I = (x+I)(y+I) = f(x+J+I/J)f(y+J+I/J) para todos os $x,y \in A$, f é de facto um isomorfismo de anéis.

2.3 Domínios de integridade e corpos

Vamos supor que A é um anel não nulo, isto é $A \neq \{0\}$. Sendo assim, $1 \neq 0$ e A tem pelo menos dois elementos.

Definição 2.3.1. Seja A um anel não nulo. Um elemento $a \neq 0$ de A diz-se um divisor de zero se existe um elemento $b \neq 0$ em A tal que ab = 0 ou ba = 0.

Definição 2.3.2. Um domínio de integridade é um anel A comutativo não nulo que não admite divisores de zero, isto é, para quaisquer $a, b \in A$, ab = 0 implica a = 0 ou b = 0.

Exemplos 2.3.3. (i) \mathbb{Z} , \mathbb{Q} e \mathbb{R} são domínios de integridade.

- (ii) \mathbb{Z}_4 não é um domínio de integridade. [2] é um divisor de zero em \mathbb{Z}_4 pois [2]·[2] = [0].
- (iii) Qualquer subanel de um domínio de integridade é um domínio de integridade.

Proposição 2.3.4. Sejam A um domínio de integridade, $a \in A \setminus \{0\}$ e $b, c \in A$. Então $ab = ac \Rightarrow b = c$ e $ba = ca \Rightarrow b = c$.

Demonstração: Como A é comutativo, basta mostrar a primeira implicação. Se ab = ac, então a(b-c) = ab - ac = 0. Como $a \neq 0$, b-c = 0. Logo b = c.

Definição 2.3.5. Um ideal I de um anel A diz-se primo se $I \neq A$ e se para quaisquer dois elementos $a, b \in A$, $ab \in I$ implica $a \in I$ ou $b \in I$.

Exemplos 2.3.6. (i) Um anel comutativo não nulo é um domínio de integridade se e só se $\{0\}$ é um ideal primo.

(ii) Para $n \geq 1$, $n\mathbb{Z}$ é um ideal primo de \mathbb{Z} se e só se n é primo.

Proposição 2.3.7. Sejam A um anel comutativo e $I \neq A$ um ideal de A. Então I é primo se e só se A/I é um domínio de integridade.

Demonstração: Suponhamos primeiramente que I é primo. Como A é comutativo, A/I é comutativo também. Como $I \neq A$, o anel A/I é não nulo. Sejam $a,b \in I$ tais que (a+I)(b+I) = ab+I = I. Então $ab \in I$ e portanto $a \in I$ ou $b \in I$. Logo a+I=I ou b+I=I. Segue-se que A/I é um domínio de integridade.

Suponhamos inversamente que A/I é um domínio de integridade. Sejam $a, b \in A$ tais que $ab \in I$. Então (a+I)(b+I) = ab+I = I, pelo que a+I = I ou b+I = I. Segue-se que $a \in I$ ou $b \in I$ e então que I é primo.

Corolário 2.3.8. \mathbb{Z}_n é um domínio de integridade se e só se n é primo.

Definição 2.3.9. Um anel comutativo A não nulo é um corpo se todo o elemento $a \in A$ não nulo é invertível (relativamente à multiplicação).

Exemplos 2.3.10. (i) \mathbb{Q} , \mathbb{R} , \mathbb{C} são corpos.

(ii) \mathbb{Z} não é um corpo.

Proposição 2.3.11. Qualquer corpo é um domínio de integridade.

Demonstração: Sejam K um corpo e $a,b \in K$ tais que ab=0 e $a\neq 0$. Então $b=a^{-1}ab=a^{-1}0=0$. Como K é comutativo e não nulo, podemos concluir que K é um domínio de integridade.

Proposição 2.3.12. \mathbb{Z}_n é um corpo se e só se n é primo.

Demonstração: Se n não é primo, \mathbb{Z}_n não é um anel de integridade, pelo que não é um corpo. Se n é primo, \mathbb{Z}_n é comutativo e não nulo e segue-se do Exercício que qualquer elemento não nulo de \mathbb{Z}_n é invertível. Consequentemente, \mathbb{Z}_n é um corpo. \square

Observação 2.3.13. Num corpo K, os únicos ideais são os ideais principais $(0) = \{0\}$ e (1) = K. Com efeito, se $I \neq \{0\}$ é um ideal de K e $x \in I \setminus \{0\}$, então $1 = x^{-1}x \in I$, pelo que I = K.

Definição 2.3.14. Um ideal I de um anel A diz-se maximal se $I \neq A$ e se para qualquer ideal J de A, $I \subseteq J \neq A \Rightarrow J = I$.

Proposição 2.3.15. Sejam A um anel comutativo $e I \neq A$ um ideal. Então I é maximal se e só se A/I é um corpo.

Demonstração: Suponhamos primeiramente que I é maximal. Seja $a \in A \setminus I$. Então (a) + I é um ideal de A que contém I como subconjunto próprio. Como I é maximal, (a) + I = A. Logo existem $b \in A$ e $x \in I$ tais que 1 = ab + x. Tem-se (a + I)(b + I) = ab + I = ab + x + I = 1 + I, pelo que a + I é uma unidade de A/I. Para qualquer $x \in A$, $(x + I)I = I \neq 1 + I$, pelo que I não é invertível em A/I. Segue-se que A/I é um corpo. Suponhamos agora que A/I é um corpo. Seja I um ideal de I tal que $I \subseteq I \neq I$. Seja I existe I existence I existe I existence I existe

Corolário 2.3.16. Qualquer ideal maximal de um anel é primo.

Proposição 2.3.17. Seja A um domínio de integridade. Uma relação de equivalência em $A \times (A \setminus \{0\})$ é dada por $(a,b) \sim (x,y) \Leftrightarrow ay = xb$. Se $(a,b) \sim (x,y)$ e $(c,d) \sim (u,v)$, então $(ad+cb,bd) \sim (xv+uy,yv)$ e $(ac,bd) \sim (xu,yv)$.

Demonstração: É óbvio que a relação \sim é reflexiva e simétrica. Sejam $(a,b), (x,y), (u,v) \in A \times (A \setminus \{0\})$ tais que $(a,b) \sim (x,y)$ e $(x,y) \sim (u,v)$. Então ay = xb e xv = uy. Logo avy = ayv = xbv = bxv = buy. Como $y \neq 0$, obtém-se av = bu = ub, ou seja, $(a,b) \sim (u,v)$. Logo \sim é transitiva e então uma relação de equivalência.

Suponhamos agora que $(a,b) \sim (x,y)$ e $(c,d) \sim (u,v)$. Então (ad+cb)yv = adyv + cbyv = aydv + cvby = xbdv + udby = xvbd + uybd = (xv + uy)bd. Logo $(ad+cb,bd) \sim (xv + uy,yv)$. Tem-se acyv = aycv = xbud = xubd e então $(ac,bd) \sim (xu,yv)$.

Definição 2.3.18. Seja A um domínio de integridade e \sim a relação de equivalência em $A \times (A \setminus \{0\})$ dada por $(a,b) \sim (x,y) \Leftrightarrow ay = xb$. A classe de equivalência de um par $(a,b) \in A \times (A \setminus \{0\})$ é a fracção $\frac{a}{b}$. Pela proposição precedente podemos definir a adição e a multiplicação de fracções por

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$$
 e $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

O corpo de fracções de A, Frac(A), é o conjunto das fracções $\frac{a}{b}$ $(a,b\in A,b\neq 0)$ munido da adição e da multiplicação de fracções.

Exemplo 2.3.19. $Frac(\mathbb{Z}) = \mathbb{Q}$.

Definição 2.3.20. Seja A um anel. A característica de A é definida por

$$car(A) = \begin{cases} 0, & \text{se } |1| = \infty, \\ |1|, & \text{caso contrário.} \end{cases}$$

Exemplos 2.3.21. Tem-se $car(\mathbb{Z}) = car(\mathbb{Q}) = car(\mathbb{R}) = 0$ e $car(\mathbb{Z}_n) = n$.

Notas 2.3.22. (i) Num anel A de característica n tem-se na=0 para todo o $a \in A$. Com efeito, para qualquer $a \in A$, na=n(1a)=(n1)a=0a=0.

(ii) Sejam A um anel e $f: \mathbb{Z} \to A$ o homomorfismo de anéis dado por $f(n) = n \cdot 1$. Note-se que f é o único homomorfismo de anéis de \mathbb{Z} para A. Tem-se $\operatorname{car}(A) = n$ se e só se $\operatorname{Ker}(f) = n\mathbb{Z}$. Segue-se que a característica de A é o único número natural n tal que A contém um subanel isomorfo a $\mathbb{Z}/n\mathbb{Z}$.

Proposição 2.3.23. A característica de um domínio de integridade é ou 0 ou um número primo.

Demonstração: Seja A um domínio de integridade com $\operatorname{car}(A) \neq 0$. Então o elemento 1 de A tem ordem finita e $\operatorname{car}(A) = |1|$. Sejam $1 \leq k \leq l \leq |1|$ inteiros tais que kl = |1|. Então $k1 \cdot l1 = kl1 = |1|1 = 0$, pelo que k1 = 0 ou l1 = 0. Segue-se que l = |1| e k = 1. Logo $\operatorname{car}(A) = |1|$ é um número primo.

Nota 2.3.24. Existe uma múltiplicação com a qual o grupo $\mathbb{Z}_2 \times \mathbb{Z}_2$ é um corpo. Este corpo tem característica 2 e 4 elementos. Note-se que para qualquer número primo p e qualquer número natural $n \geq 1$, existe um corpo \mathbb{F}_{p^n} de característica p com p^n elementos e este corpo é único a menos de isomorfismo. Além disso, qualquer corpo finito é isomorfo a um dos corpos \mathbb{F}_{p^n} .

2.4 Divisibilidade num domínio de integridade

Definição 2.4.1. Seja A um domínio de integridade e sejam $a, b \in A$. Diz-se que a divide b (escreve-se a|b) se existir $q \in A$ tal que a = bq. Diz-se que a e b são associados se a|b e b|a.

Notas 2.4.2. (i) Tem-se: $a|b \Leftrightarrow b \in (a) \Leftrightarrow (a) \subset (a)$.

- (ii) Os elementos a e b são associados se e só se (a) = (b). Mostra-se também que a e b são associados se e só se existir $u \in A$ invertível tal que b = au.
- (iii) Qualquer elemento $a \in A$ divide 0 pois $0 = 0 \cdot a$ mas não é um divisor de zero no sentido da definição 2.3.1 pois, sendo A um domínio de integridade, não existe $q \neq 0$ tal que 0 = aq.

Definição 2.4.3. Seja A um domínio de integridade e seja $p \in A$ um elemento não nulo, não invertível.

- p é dito primo se, para todos os $a, b \in A$, $p|ab \Rightarrow p|a$ ou p|b.
- p é dito irredutível se, para todos os $a, b \in A, p = ab \Rightarrow a$ é invertível ou b é invertível .

Nota 2.4.4. São duas noções que estendem a noção usual de primo nos inteiros. Em particular, $p \in \mathbb{Z}$ é primo/irredutível se e só se |p| é um natural primo no sentido usual.

Proposição 2.4.5. Seja A um domínio de integridade e seja $p \in A$ um elemento não nulo, não invertível. Se p é primo então p é irredutível.

Demonstração: Sejam $a, b \in A$ tais que p = ab. Como $p \neq 0$, temos $a \neq 0$ e $b \neq 0$. Como p = ab, podemos dizer que p|ab (pois $ab = 1 \cdot p$) e, como p é primo, temos p|a ou p|b. Se p|a, então existe $q \in A$ tal que a = pq. Como p = ab, obtemos a = abq e a(1 - bq) = 0. Como $a \neq 0$ e A é um domínio de integridade, obtemos 1 - bq = 0. Logo bq = 1 e, sendo A comutativo, podemos concluir que b é invertível. Da mesma forma, se $b \neq 0$, obtemos que a é invertível. Em todos os casos, obtemos a invertível ou a invertível e podemos concluir que a é irredutível.

Proposição 2.4.6. Seja A um domínio de integridade e seja $p \in A$ um elemento não nulo, não invertível. Considere o ideal (p) de A gerado por p. Tem-se

- (i) p é primo se e só se (p) é primo.
- (ii) Se (p) é maximal então p é irredutível.

Demonstração: Como p é não invertível tem-se $(p) \neq A$. A alínea (i) segue imediatamente das definições de elemento e ideal primo. Como um ideal maximal e sempre primo, a alínea (ii) segue da alínea (i) e da proposição anterior.

Não é verdade em geral que um elemento irredutível seja um elemento primo (ver Exercícios 56). No entanto, existem classes de anéis em que isto é verdade.

Definição 2.4.7. Seja A um domínio de integridade. Diz-se que A é um domínio de fatorização única se

- (E) Para todo o $a \in A$ não nulo e não invertível, existem p_1, \ldots, p_n elementos irredutíveis de A tais que $a = p_1 \cdots p_n$.
- (U) Esta decomposição é única a menos da ordem e de fatores invertíveis. Isto é, se $p_1 \cdots p_n = q_1 \cdots q_m$ onde os p_i e q_j $(1 \le i \le n, 1 \le j \le m)$ são irredutíveis, então n = m e existe uma permutação $\sigma \in S_n$ tal que, para todo o $i \in \{1, \dots, n\}$, p_i e $q_{\sigma(i)}$ são associados.

Exemplos de domínios de fatorização única são \mathbb{Z} (através da decomposição de um natural em naturais primos) e anéis de polinómios.

Proposição 2.4.8. Seja A um domínio de fatorização única e seja $p \in A$ um elemento não nulo não invertível. Se p é irredutível então p é primo.

Demonstração: Sejam $a, b \in A$ tais que p|ab. Queremos ver que p|a ou p|b. Como p|ab existe $q \in A$ tal que ab = pq. Em primeiro lugar, analisemos alguns casos particulares. Se a = 0 temos $a = 0 \cdot p$ pelo que p|a. Se a é invertível, temos $b = a^{-1}pq$ pelo que p|b. Da mesma forma, se b = 0, tem-se p|b e, se b é invertível, tem-se p|a. Se q = 0 tem-se a = 0 ou a = 0 pelo que a = 0 que

$$p_1 \cdots p_n \cdot p_1' \cdots p_m' = p \cdot p_1'' \cdots p_l''.$$

Pela unicidade da decomposição em irredutíveis, p é associado a um dos p_i (neste caso p|a) ou a um dos p'_j (neste caso p|b). Em todos os casos p|a ou p|b e podemos concluir que p é primo.

Definição 2.4.9. Um domínio de integridade A diz-se um domínio de ideais principais se todos os ideais de A são principais.

Exemplos 2.4.10. (i) Qualquer corpo é um domínio de ideais principais.

(ii) \mathbb{Z} é um domínio de ideais principais.

Proposição 2.4.11. Seja A um domínio de ideais principais e seja $p \in A$ um elemento não nulo, não invertível. Se p é irredutível então (p) é maximal.

Demonstração: Como p não é invertível, $(p) \neq A$. Seja J um ideal de A tal que $(p) \subset J$. Queremos mostrar que J = (p) ou J = A. Como A é um domínio de ideais principais, existe $a \in A$ tal que J = (a). De $(p) \subset (a)$ deduzimos que $p \in (a)$ e que existe $b \in A$ tal que p = ab. Como p é irredutível, a é invertível ou b é invertível. Se a é invertível temos J = (a) = A. Se b é invertível, p e a são associados e consequentemente J = (a) = (p). Podemos concluir que (p) é maximal.

Corolário 2.4.12. Sejam A um domínio de ideais principais e seja $p \in A$ um elemento não nulo, não invertível. São equivalentes:

- (i) $p \in \text{primo}$;
- (ii) p é irredutível;
- (iii) (p) é maximal;
- (iv) (p) é primo.

Por fim, pode se estabelecer o seguinte resultado:

Teorema 2.4.13. Seja A um anel. Se A é um domínio de ideais principais então A é um domínio de fatorização única.