Clase 4: Análisis Estructural Datos de Captura y Reglas de Control

Luis A. Cubillos

https://luisacubillos.github.io/curso_sibecorp_evastock_datlim/index.html

Programa

Hora	Tópicos
10:00-11:00	Datos de captura: análisis estructural
11:00-11:15	Pausa y café
11:15-12:00	Lab 6 - Rendimiento Máximo Sostenible
12:00-12:15	Pausa y café
12:15-13:00	Lab 7 - Hacia una regla de control empírica
13:00-14:00	Pausa
14:00-15:00	Consultas casos de estudio

Introducción

- ¿Son las series de tiempo de capturas estacionarias?
- ¿Cómo podemos detectar periodos o bloques de años relativamente estables?
- ▶ ¿Podemos utilizar esos periodos estables de captura para sugerir una regla de control de captura empírica?

El método de clasificación de estatus

Criterios utilizados para asignar estados a datos de captura (Y) relativos a la máxima captura registrada (Y_{max}) , capturas relativas al RMS, y biomasa relativa al B_{RMS} .

Indicador	Año	Y/Y_{max}	Y/RMS	B/B_{RMS}
Subdesarrollada	Antes de $Y \geq Y_{max}$	< 0.1	< 0.1	
En desarrollo	-	0.1 a 0.5	0.2 a 0.75	> 1.5
Explotación plena	Después de $Y \geq Y_{max}$	> 0.5	> 0.75	≤ 0.5
Sobreexplotación	-	0.1 a 0.5	0.2 a 0.75	< 0.5
Colapso	-	< 0.1	< 0.2	< 0.1

Recuperación: Año entre el colapso y el primer año subsecuente de explotación plena.

Froese, R., Zeller, D., Kleisner, K., & Pauly, D. (2012). What catch data can tell us about the status of global fisheries. Marine Biology, 159(6), 1283–1292. doi:10.1007/s00227-012-1909-6

Análisis estructural

- 1. Comprobar estacionaridad de la serie de tiempo
- 2. Comprobar cambios estructurales consistentes en saltos la media y la varianza (regime shifts)
- 3. Considerar el nivel promedio de la captura y comprobar si cuando: 0.5 < Yt/Ymax < 1
- 4. La captura promedio en el punto 3, puede ser \sim *RMS*

Ejemplo Reineta

Clasificación de estatus

Análisis estructural

- 1. Prueba de estacionaridad: Augmented Dickey-Fuller Test (package tseries)
- 2. Prueba F de Chown (package strucchange)
- 3. Puntos de quiebre en la serie de tiempo (package *strucchange*, o *stepR*, o *changepoint*)

Said, SE, Dickey, D.A. 1984. Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order. Biometrika 71, 599-607.

Ejemplos reineta

- 1. Transformar las capturas a logaritmo, ya que las capturas se distribuyen log-normal
- 2. Usar formato de serie de tiempo

Serie de tiempo logaritmo

Prueba estacionaridad (cont.)

```
##
## Augmented Dickey-Fuller Test
##
## data: tsy
## Dickey-Fuller = -2.1386, Lag order = 2, p-value = 0.5196
## alternative hypothesis: stationary
```

Cambio estructurales

```
##
## supF test
##
## data: m1
## sup.F = 60.311, p-value = 4.794e-13
```

Puntos de quiebre

BIC and Residual Sum of Squares


```
Puntos de quiebre (cont.)
   ##
        Optimal (m+1)-segment partition:
   ##
   ##
   ## Call:
   ## breakpoints.formula(formula = tsv ~ 1)
   ##
   ## Breakpoints at observation number:
   ##
   ## m = 1 15
   ## m = 2 15 20
   ## m = 3 4 8 15
   ## m = 4 4 8 15 20
   ## m = 5 4 8 15 19 23
   ##
   ## Corresponding to breakdates:
   ##
   ## m = 1
                       2008
```

Puntos de quiebre (cont.)

Comprobar con otro detector de cambios estructurales

Ejemplo reineta (cont.)

Evaluación de un proxy de reclutamiento

- 1. Utilize parámetros de historia de vida (FishLife) para obtener SPR y YPR en función de F
- 2. Calcule $F_{40\%}$ (proxy de F_{RMS})
- 3. Asuma que el nivel $RMS = \bar{C}$, equivalente a la **captura promedio** más alta en los quiebres de la serie de tiempo de captura.
- 4. Estime en el nivel de reclutamiento promedio (R) = C/YPR = RMS/YPR, donde $YPR@F_{40\%}$.
- 5. Estime la biomasa reproductiva inexplotada con $B_0 = SPR_{F=0} \times \bar{R}$, asumiendo $R_0 = \bar{R}$
- 6. Utilice estas estimaciones para simulación poblacional estructurada por edad, o bien para condicionar una regla de control de captura.

Ejemplo de simulación poblacional

► Demostración en SimPopFish

Análisis de HCR

- ► Ver aplicación en RStudio
- ► Pasar al Práctico