

Vorlesung 4 - Naive Mengenlehre und vollständige Induktion

Diskrete Strukturen (WS 2024-25)

Łukasz Grabowski

Mathematisches Institut

Diskrete Strukturen	
1. Wiederholung	
2. Verallgemeinerung von Vereinigung und Schnitt	
3. Kardinalität von endlichen Mengen, Potenzmenge	
4. Vollständige Induktion und Induktionsbeweise	

NI 77 (D) ID housishness issuelle die Mongor

- $\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R}$ bezeichnen jeweils die Mengen

Beispiele von Mengen.

Beispiele von Mengen.

• $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ bezeichnen jeweils die Mengen aller natürlichen Zahlen,

• N Z O P hezeichnen jeweils die Mengen aller na

• $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ bezeichnen jeweils die Mengen aller natürlichen Zahlen, aller ganzen Zahlen,

Beispiele von Mengen.

Beispiele von Mengen.

N Z O R bezeichnen jeweils die Mengen aller natürlichen Zahlen, aller ganzen

• $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ bezeichnen jeweils die Mengen aller natürlichen Zahlen, aller ganzen Zahlen, aller rationalen Zahlen

Beispiele von Mengen.

• $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ bezeichnen jeweils die Mengen aller natürlichen Zahlen, aller ganzen Zahlen, aller rationalen Zahlen und aller reellen Zahlen.

 $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ bezeichnen Jeweils die Mengen aller naturlichen Zahlen, aller ganzen Zahlen, aller rationalen Zahlen und aller reellen Zahlen.

Beispiele von Mengen.

Beispiele von Mengen.

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ bezeichnen jeweils die Mengen aller natürlichen Zahlen, aller ganzen Zahlen, aller rationalen Zahlen und aller reellen Zahlen.
- Vollständige oder unvollständige Aufzählung:

Beispiele von Mengen.
N. Z. O. R bezeichnen jeweils die Mengen aller natürlichen Zahlen, aller ganzen

Zahlen, aller rationalen Zahlen und aller reellen Zahlen.

• Vollständige oder unvollständige Aufzählung: $\{1, 2, 3\}$ bzw. $\{0, 1, 2, \ldots\}$

Beispiele von Mengen.
N. Z. O. R bezeichnen jeweils die Mengen aller natürlichen Zahlen, aller ganzen

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ bezeichnen jeweils die Mengen aller naturlichen Zahlen, aller ganzen Zahlen, aller rationalen Zahlen und aller reellen Zahlen.
- Vollständige oder unvollständige Aufzählung: $\{1,\,2,\,3\}$ bzw. $\{0,\,1,\,2,\,\ldots\}$ Das Muster muss klar erkennbar sein.

- Zahlen, aller rationalen Zahlen und aller reellen Zahlen.
- Vollständige oder unvollständige Aufzählung: $\{1,\,2,\,3\}$ bzw. $\{0,\,1,\,2,\,\ldots\}$ Das Muster muss klar erkennbar sein.
- $\{1, 2, 3\} = \{1, 2, 3, 2\} = \{2, 3, 1\},$

- Zahlen, aller rationalen Zahlen und aller reellen Zahlen.
- Vollständige oder unvollständige Aufzählung: $\{1,\,2,\,3\}$ bzw. $\{0,\,1,\,2,\,\ldots\}$ Das Muster muss klar erkennbar sein.
- $\{1, 2, 3\} = \{1, 2, 3, 2\} = \{2, 3, 1\},$
- Leere Menge: \emptyset enthält keine Elemente.

- Zahlen, aller rationalen Zahlen und aller reellen Zahlen.
- Vollständige oder unvollständige Aufzählung: $\{1,\,2,\,3\}$ bzw. $\{0,\,1,\,2,\,\ldots\}$ Das Muster muss klar erkennbar sein.
- $\{1, 2, 3\} = \{1, 2, 3, 2\} = \{2, 3, 1\},$
- Leere Menge: \emptyset enthält keine Elemente.
- + $\{\emptyset\}$ ist die Menge mit genau einem Element. Dieses Element is die leere Menge.

Beispiele von Mengen.
N. Z. O. R bezeichnen jeweils die Mengen aller natürlichen Zahlen, aller ganzen

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ bezeichnen Jeweils die Mengen aller naturlichen Zahlen, aller ganzen Zahlen, aller rationalen Zahlen und aller reellen Zahlen.
- Vollständige oder unvollständige Aufzählung: $\{1,\,2,\,3\}$ bzw. $\{0,\,1,\,2,\,\ldots\}$ Das Muster muss klar erkennbar sein.
- $\{1, 2, 3\} = \{1, 2, 3, 2\} = \{2, 3, 1\},$
- Leere Menge: ∅ enthält keine Elemente.
- $\{\emptyset\}$ ist die Menge mit genau einem Element. Dieses Element is die leere Menge.
- Definition mit einem Prädikat, z.B. $\{n \in \mathbb{N} \mid \mathsf{Gerade}(n)\}$

- Zahlen, aller rationalen Zahlen und aller reellen Zahlen.
- Vollständige oder unvollständige Aufzählung: $\{1,\,2,\,3\}$ bzw. $\{0,\,1,\,2,\,\ldots\}$ Das Muster muss klar erkennbar sein.
- $\{1, 2, 3\} = \{1, 2, 3, 2\} = \{2, 3, 1\}$,
- Leere Menge: \emptyset enthält keine Elemente.
- + $\{\emptyset\}$ ist die Menge mit genau einem Element. Dieses Element is die leere Menge.
- Definition mit einem Prädikat, z.B. $\{n \in \mathbb{N} \mid \mathsf{Gerade}(n)\}$
- M ist eine Teilmenge von N,

- Zahlen, aller rationalen Zahlen und aller reellen Zahlen.
- Vollständige oder unvollständige Aufzählung: $\{1,\,2,\,3\}$ bzw. $\{0,\,1,\,2,\,\ldots\}$ Das Muster muss klar erkennbar sein.
- $\{1, 2, 3\} = \{1, 2, 3, 2\} = \{2, 3, 1\},$
- Leere Menge: \emptyset enthält keine Elemente.
- + $\{\emptyset\}$ ist die Menge mit genau einem Element. Dieses Element is die leere Menge.
- Definition mit einem Prädikat, z.B. $\{n \in \mathbb{N} \mid \mathsf{Gerade}(n)\}$
- M ist eine Teilmenge von N, geschrieben $M \subset N$,

- Zahlen, aller rationalen Zahlen und aller reellen Zahlen.
- Vollständige oder unvollständige Aufzählung: $\{1,\,2,\,3\}$ bzw. $\{0,\,1,\,2,\,\ldots\}$ Das Muster muss klar erkennbar sein.
- $\{1, 2, 3\} = \{1, 2, 3, 2\} = \{2, 3, 1\},$
- Leere Menge: \emptyset enthält keine Elemente.
- + $\{\emptyset\}$ ist die Menge mit genau einem Element. Dieses Element is die leere Menge.
- Definition mit einem Prädikat, z.B. $\{n \in \mathbb{N} \mid \mathsf{Gerade}(n)\}$
- M ist eine Teilmenge von N, geschrieben $M \subset N$, genau dann wenn

- Zahlen, aller rationalen Zahlen und aller reellen Zahlen.
- Vollständige oder unvollständige Aufzählung: $\{1,\,2,\,3\}$ bzw. $\{0,\,1,\,2,\,\ldots\}$ Das Muster muss klar erkennbar sein.
- $\{1, 2, 3\} = \{1, 2, 3, 2\} = \{2, 3, 1\},$
- Leere Menge: \emptyset enthält keine Elemente.
- $\{\emptyset\}$ ist die Menge mit genau einem Element. Dieses Element is die leere Menge.
- Definition mit einem Prädikat, z.B. $\{n \in \mathbb{N} \mid \operatorname{Gerade}(n)\}$
- M ist eine Teilmenge von N, geschrieben $M\subset N$, genau dann wenn $\forall x$

- Vollständige oder unvollständige Aufzählung: $\{1, 2, 3\}$ bzw. $\{0, 1, 2, \ldots\}$ Das Muster muss klar erkennbar sein.
- $\{1, 2, 3\} = \{1, 2, 3, 2\} = \{2, 3, 1\}$.

Zahlen, aller rationalen Zahlen und aller reellen Zahlen.

- Leere Menge: \emptyset enthält keine Elemente.
- $\{\emptyset\}$ ist die Menge mit genau einem Element. Dieses Element is die leere Menge.
- Definition mit einem Prädikat, z.B. $\{n \in \mathbb{N} \mid \mathsf{Gerade}(n)\}$
- M ist eine Teilmenge von N, geschrieben $M \subset N$, genau dann wenn $\forall x \ x \in M \to x \in N$.

• $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ bezeichnen jeweils die Mengen aller natürlichen Zahlen, aller ganzen Zahlen, aller rationalen Zahlen und aller reellen Zahlen.

Beispiele von Mengen.

- Vollständige oder unvollständige Aufzählung: $\{1,\,2,\,3\}$ bzw. $\{0,\,1,\,2,\,\ldots\}$ Das Muster muss klar erkennbar sein.
- $\{1, 2, 3\} = \{1, 2, 3, 2\} = \{2, 3, 1\},$
- Leere Menge: \emptyset enthält keine Elemente.

• Definition mit einem Prädikat, z.B. $\{n \in \mathbb{N} \mid \mathsf{Gerade}(n)\}$

- $\{\emptyset\}$ ist die Menge mit genau einem Element. Dieses Element is die leere Menge.
- M ist eine Teilmenge von N, geschrieben $M \subset N$, genau dann wenn
- Für alle Mengen M und N gilt:

 $\forall x \ x \in M \rightarrow x \in N$.

Muster muss klar erkennbar sein.

Beispiele von Mengen.

Zahlen, aller rationalen Zahlen und aller reellen Zahlen. Vollständige oder unvollständige Aufzählung: {1, 2, 3} bzw. {0, 1, 2, ...} Das

• N. Z. O. R bezeichnen jeweils die Mengen aller natürlichen Zahlen, aller ganzen

- $\{1, 2, 3\} = \{1, 2, 3, 2\} = \{2, 3, 1\}$.
- Leere Menge: Ø enthält keine Elemente.
- {\(\psi \)} ist die Menge mit genau einem Element. Dieses Element is die leere Menge.
- Definition mit einem Prädikat, z.B. $\{n \in \mathbb{N} \mid \mathsf{Gerade}(n)\}$ • M ist eine Teilmenge von N, geschrieben $M \subset N$, genau dann wenn
- Für alle Mengen M und N gilt: $M = N \iff M \subseteq N$ und $N \subseteq M$.

 $\forall x \ x \in M \rightarrow x \in N$.

Die Vereinigung $M \cup N$,

Die Vereinigung $M \cup N$, der Schnitt $M \cap N$,

Die Vereinigung $M \cup N$, der Schnitt $M \cap N$, die Differenz $M \setminus N$,

Die Vereinigung $M \cup N$, der Schnitt $M \cap N$, die Differenz $M \setminus N$, das Komplement M^c

Die Vereinigung $M\cup N$, der Schnitt $M\cap N$, die Differenz $M\setminus N$, das Komplement M^c (nur wenn wir eirgenwelches Universum U fixieren)

Die Vereinigung $M\cup N$, der Schnitt $M\cap N$, die Differenz $M\setminus N$, das Komplement M^c (nur wenn wir eirgenwelches Universum U fixieren)

• Wenn $M \cap N = \emptyset$ dann sagen wir dass M und N disjunkt sind.

Beweisen wir zum Beispiel,

Beweisen wir zum Beispiel, dass $(A \cap B)^c = A^c \cup B^c$

· Zuerst nehmen wir an,

• Zuerst nehmen wir an, dass $x \in (A \cap B)^{c}$,

• Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$.

• Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$

• Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder

• Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$.

• Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$. Also $x \in A^c$

• Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$. Also $x \in A^c$ oder

• Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$. Also $x \in A^c$ oder $x \in B^c$. Das bedeutet aber genau $x \in A^c \cup B^c$.

• Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$. Also $x \in A^c$ oder $x \in B^c$. Das bedeutet aber genau $x \in A^c \cup B^c$. Wir haben also bewiesen, dass $(A \cap B)^c \subset A^c \cup B^c$.

- Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$. Also $x \in A^c$ oder $x \in B^c$. Das bedeutet aber genau $x \in A^c \cup B^c$. Wir haben also bewiesen, dass $(A \cap B)^c \subset A^c \cup B^c$.
- Nehmen wir nun an, dass $x \in (A^c \cup B^c)$.

- Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$. Also $x \in A^c$ oder $x \in B^c$. Das bedeutet aber genau $x \in A^c \cup B^c$. Wir haben also bewiesen, dass $(A \cap B)^c \subset A^c \cup B^c$.
- Nehmen wir nun an, dass $x \in (A^c \cup B^c)$. Also $x \in A^c$ oder $x \in B^c$.

- Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$. Also $x \in A^c$ oder $x \in B^c$. Das bedeutet aber genau $x \in A^c \cup B^c$. Wir haben also bewiesen, dass $(A \cap B)^c \subset A^c \cup B^c$.
- Nehmen wir nun an, dass $x \in (A^c \cup B^c)$. Also $x \in A^c$ oder $x \in B^c$. D.h. $x \notin A$ oder $x \notin B$.

- Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$. Also $x \in A^c$ oder $x \in B^c$. Das bedeutet aber genau $x \in A^c \cup B^c$. Wir haben also bewiesen, dass $(A \cap B)^c \subset A^c \cup B^c$.
- Nehmen wir nun an, dass $x \in (A^c \cup B^c)$. Also $x \in A^c$ oder $x \in B^c$. D.h. $x \notin A$ oder $x \notin B$. Das heißt aber $x \notin A \cap B$.

- Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$. Also $x \in A^c$ oder $x \in B^c$. Das bedeutet aber genau $x \in A^c \cup B^c$. Wir haben also bewiesen, dass $(A \cap B)^c \subset A^c \cup B^c$.
- Nehmen wir nun an, dass $x \in (A^c \cup B^c)$. Also $x \in A^c$ oder $x \in B^c$. D.h. $x \notin A$ oder $x \notin B$. Das heißt aber $x \notin A \cap B$, also $x \in (A \cap B)^c$.

- Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$. Also $x \in A^c$ oder $x \in B^c$. Das bedeutet aber genau $x \in A^c \cup B^c$. Wir haben also bewiesen, dass $(A \cap B)^c \subset A^c \cup B^c$.
- Nehmen wir nun an, dass $x \in (A^c \cup B^c)$. Also $x \in A^c$ oder $x \in B^c$. D.h. $x \notin A$ oder $x \notin B$. Das heißt aber $x \notin A \cap B$, also $x \in (A \cap B)^c$. Wir haben jetzt bewiesen,

- Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$. Also $x \in A^c$ oder $x \in B^c$. Das bedeutet aber genau $x \in A^c \cup B^c$. Wir haben also bewiesen, dass $(A \cap B)^c \subset A^c \cup B^c$.
- Nehmen wir nun an, dass $x \in (A^c \cup B^c)$. Also $x \in A^c$ oder $x \notin B$. D.h. $x \notin A$ oder $x \notin B$. Das heißt aber $x \notin A \cap B$, also $x \in (A \cap B)^c$. Wir haben jetzt bewiesen, dass $(A \cap B)^c \subset A^c \cap B^c$.

- Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$. Also $x \in A^c$ oder $x \in B^c$. Das bedeutet aber genau $x \in A^c \cup B^c$. Wir haben also bewiesen, dass $(A \cap B)^c \subset A^c \cup B^c$.
- Nehmen wir nun an, dass $x \in (A^c \cup B^c)$. Also $x \in A^c$ oder $x \in B^c$. D.h. $x \notin A$ oder $x \notin B$. Das heißt aber $x \notin A \cap B$, also $x \in (A \cap B)^c$. Wir haben jetzt bewiesen, dass $(A \cap B)^c \subset A^c \cap B^c$.
- Also $(A \cap B)^c = A^c \cup B^c$.

- Zuerst nehmen wir an, dass $x \in (A \cap B)^c$, d.h. $x \notin A \cap B$. D.h. entweder $x \notin A$ oder $x \notin B$. Also $x \in A^c$ oder $x \in B^c$. Das bedeutet aber genau $x \in A^c \cup B^c$. Wir haben also bewiesen, dass $(A \cap B)^c \subset A^c \cup B^c$.
- Nehmen wir nun an, dass $x \in (A^c \cup B^c)$. Also $x \in A^c$ oder $x \notin B$. D.h. $x \notin A$ oder $x \notin B$. Das heißt aber $x \notin A \cap B$, also $x \in (A \cap B)^c$. Wir haben jetzt bewiesen, dass $(A \cap B)^c \subset A^c \cap B^c$.
- Also $(A \cap B)^c = A^c \cup B^c$.

Satz.

• (1) $M \subset N$

- (1) $M \subset N$
- (2) $M \cap N = M$

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

• Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2):

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$,

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

M =

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = M \cap M \subset$$

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = M \cap M \subset M \cap N$$
.

Mit Abschwächung gilt

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = M \cap M \subset M \cap N$$
.

Mit Abschwächung gilt $M \cap N \subset M$.

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = M \cap M \subset M \cap N.$$

Mit Abschwächung gilt $M \cap N \subset M$. Das bedeutet,

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = M \cap M \subset M \cap N$$
.

Mit Abschwächung gilt $M \cap N \subset M$. Das bedeutet, dass $M \cap N = M$.

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = \ M \cap M \subset \ M \cap N.$$

Mit Abschwächung gilt $M \cap N \subset M$. Das bedeutet, dass $M \cap N = M$.

(2) → (3):

Diskrete Strukturen | Wiederholung

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = M \cap M \subset M \cap N.$$

Mit Abschwächung gilt $M \cap N \subset M$. Das bedeutet, dass $M \cap N = M$.

• (2) \rightarrow (3): $N \subset M \cup N$ ist klar ("Abschwächung").

$\textbf{Satz.} \ \ \textit{F\"{u}r} \ \textit{alle} \ \textit{Mengen} \ \textit{M} \ \textit{und} \ \textit{N} \ \textit{sind} \ \textit{folgende} \ \textit{Aussagen} \ \ddot{\textit{a}quivalent} .$

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = M \cap M \subset M \cap N.$$

Mit Abschwächung gilt $M \cap N \subset M$. Das bedeutet, dass $M \cap N = M$.

• (2) \rightarrow (3): $N \subset M \cup N$ ist klar ("Abschwächung"). Sei $x \in M \cup N$.

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = M \cap M \subset M \cap N.$$

Mit Abschwächung gilt $M \cap N \subset M$. Das bedeutet, dass $M \cap N = M$.

• (2) \to (3): $N \subset M \cup N$ ist klar ("Abschwächung"). Sei $x \in M \cup N$. Dann $x \in N$ oder $x \in M$.

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = M \cap M \subset M \cap N.$$

Mit Abschwächung gilt $M \cap N \subset M$. Das bedeutet, dass $M \cap N = M$.

• (2) \rightarrow (3): $N \subset M \cup N$ ist klar ("Abschwächung"). Sei $x \in M \cup N$. Dann $x \in N$ oder $x \in M$, also $x \in N$ oder $x \in M \cap N$.

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = M \cap M \subset M \cap N.$$

Mit Abschwächung gilt $M \cap N \subset M$. Das bedeutet, dass $M \cap N = M$.

- (2) \rightarrow (3): $N \subset M \cup N$ ist klar ("Abschwächung"). Sei $x \in M \cup N$. Dann $x \in N$ oder $x \in M$, also $x \in N$ oder $x \in M \cap N$. Durch Abschwächung.
- Diskrete Strukturen | Wiederholung

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = M \cap M \subset M \cap N.$$

Mit Abschwächung gilt $M \cap N \subset M$. Das bedeutet, dass $M \cap N = M$.

• (2) \rightarrow (3): $N \subset M \cup N$ ist klar ("Abschwächung"). Sei $x \in M \cup N$. Dann $x \in N$ oder $x \in M$, also $x \in N$ oder $x \in M \cap N$. Durch Abschwächung, das impliziert, dass

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = M \cap M \subset M \cap N.$$

Mit Abschwächung gilt $M \cap N \subset M$. Das bedeutet, dass $M \cap N = M$.

- (2) \rightarrow (3): $N \subset M \cup N$ ist klar ("Abschwächung"). Sei $x \in M \cup N$. Dann $x \in N$ oder $x \in M$, also $x \in N$ oder $x \in M \cap N$. Durch Abschwächung, das impliziert, dass $x \in N$.
- Diskrete Strukturen | Wiederholung

Satz. Für alle Mengen M und N sind folgende Aussagen äquivalent: • (1) $M \subset N$

- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis.

- Wir zeigen (1) \rightarrow (2), (2) \rightarrow (3), und (3) \rightarrow (1).
- (1) \rightarrow (2): Da $M \subset N$, folgt

$$M = M \cap M \subset M \cap N.$$

Mit Abschwächung gilt $M \cap N \subset M$. Das bedeutet, dass $M \cap N = M$.

• (2) \rightarrow (3): $N \subset M \cup N$ ist klar ("Abschwächung"). Sei $x \in M \cup N$. Dann $x \in N$ oder $x \in M$, also $x \in N$ oder $x \in M \cap N$. Durch Abschwächung, das impliziert, dass $x \in N$. Also $M \cup N \subset N$.

Satz.

• (1) $M \subset N$

- (1) $M \subset N$
- (2) $M \cap N = M$

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis (Fortsetzung).

• (3) → (1):

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis (Fortsetzung).

• (3) \to (1): Sei $x \in M$.

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis (Fortsetzung).

• (3) \rightarrow (1): Sei $x \in M$. Dann $x \in M \cup N$

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis (Fortsetzung).

• (3) \rightarrow (1): Sei $x \in M$. Dann $x \in M \cup N$ und,

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis (Fortsetzung).

• (3) \rightarrow (1): Sei $x \in M$. Dann $x \in M \cup N$ und, da (3) angenommen ist,

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis (Fortsetzung).

• (3) \rightarrow (1): Sei $x \in M$. Dann $x \in M \cup N$ und, da (3) angenommen ist, auch $x \in N$.

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis (Fortsetzung).

• (3) \rightarrow (1): Sei $x \in M$. Dann $x \in M \cup N$ und, da (3) angenommen ist, auch $x \in N$.

Das zeigt, dass $M \subset N$.

- (1) $M \subset N$
- (2) $M \cap N = M$
- (3) $M \cup N = N$

Beweis (Fortsetzung).

• (3) \rightarrow (1): Sei $x \in M$. Dann $x \in M \cup N$ und, da (3) angenommen ist, auch $x \in N$.

Das zeigt, dass $M \subset N$.

Diskrete Strukturen	
1. Wiederholung	
2. Verallgemeinerung von Vereinigung und Schnitt	
3. Kardinalität von endlichen Mengen, Potenzmenge	
4. Vollständige Induktion und Induktionsbeweise	

• Wir haben Vereinigung und Schnitt bisher zweistellig definiert.

- · Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
 - ightharpoonup Analog zum Summenzeichen \sum

- Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
 - ightharpoonup Analog zum Summenzeichen \sum verallgemeinern wir die Definition

- Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
 - ► Analog zum Summenzeichen ∑ verallgemeinern wir die Definition auf beliebig viele Argumente.

- · Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
 - \blacktriangleright Analog zum Summenzeichen \sum verallgemeinern wir die Definition auf beliebig viele Argumente.
- Sei I eine Menge

- · Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
 - \blacktriangleright Analog zum Summenzeichen \sum verallgemeinern wir die Definition auf beliebig viele Argumente.
- Sei I eine Menge und M_i eine Menge für jedes $i \in I$.

- · Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
 - \blacktriangleright Analog zum Summenzeichen \sum verallgemeinern wir die Definition auf beliebig viele Argumente.
- Sei I eine Menge und M_i eine Menge für jedes $i \in I$. Wir definieren

$$\bigcup_{i \in I} \Lambda_i$$

- · Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
 - \blacktriangleright Analog zum Summenzeichen \sum verallgemeinern wir die Definition auf beliebig viele Argumente.
- Sei I eine Menge und M_i eine Menge für jedes $i \in I$. Wir definieren

$$igcup M_i \ := \{x \mid \mathsf{es} \ \mathsf{existiert} \ i \in I$$
,

- · Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
 - \blacktriangleright Analog zum Summenzeichen \sum verallgemeinern wir die Definition auf beliebig viele Argumente.
- Sei I eine Menge und M_i eine Menge für jedes $i \in I$. Wir definieren

$$\bigcup M_i := \{x \mid \mathsf{es} \; \mathsf{existiert} \; i \in I, \; \mathsf{so} \; \mathsf{dass} \; x \in M_i \}$$

- · Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
 - ightharpoonup Analog zum Summenzeichen \sum verallgemeinern wir die Definition auf beliebig viele Argumente.
- Sei I eine Menge und M_i eine Menge für jedes $i \in I$. Wir definieren

$$\bigcup_{i} M_i := \left\{x \mid \text{es existiert } i \in I, \text{ so dass } x \in M_i\right\} = \left\{x \mid \exists i \big((i \in I) \land (x \in M_i)\big)\right\}$$

- Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
 - ▶ Analog zum Summenzeichen ∑ verallgemeinern wir die Definition auf beliebig viele Argumente.
- Sei I eine Menge und M_i eine Menge für jedes $i \in I$. Wir definieren

$$\bigcup_{i \in I} M_i \ := \{x \mid \text{es existiert } i \in I \text{, so dass } x \in M_i\} \ = \big\{x \mid \exists i \big((i \in I) \land (x \in M_i)\big)\big\}$$

- · Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
 - ightharpoonup Analog zum Summenzeichen \sum verallgemeinern wir die Definition auf beliebig viele Argumente.
- Sei I eine Menge und M_i eine Menge für jedes $i \in I$. Wir definieren

$$\bigcup_{i \in I} M_i \ := \big\{ x \mid \mathsf{es\ existiert}\ i \in I \text{, so dass}\ x \in M_i \big\} \ = \big\{ x \mid \exists i \big((i \in I) \land (x \in M_i) \big) \big\}$$

$$\bigcap M$$

- · Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
 - ightharpoonup Analog zum Summenzeichen \sum verallgemeinern wir die Definition auf beliebig viele Argumente.
- Sei I eine Menge und M_i eine Menge für jedes $i \in I$. Wir definieren

$$\bigcup_{i \in I} M_i \ := \big\{ x \mid \mathsf{es\ existiert}\ i \in I \text{, so dass}\ x \in M_i \big\} \ = \big\{ x \mid \exists i \big((i \in I) \land (x \in M_i) \big) \big\}$$

$$igcap M_i \ := \{x \mid \mathsf{für} \; \mathsf{alle} \; i \in I$$

- · Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
 - \blacktriangleright Analog zum Summenzeichen \sum verallgemeinern wir die Definition auf beliebig viele Argumente.
- Sei I eine Menge und M_i eine Menge für jedes $i \in I$. Wir definieren

$$\bigcup_{i \in I} M_i \ := \{x \mid \mathsf{es \ existiert} \ i \in I, \ \mathsf{so \ dass} \ x \in M_i\} \ = \big\{x \mid \exists i \big((i \in I) \land (x \in M_i)\big)\big\}$$

$$\bigcap M_i := \{x \mid \mathsf{für} \; \mathsf{alle} \; i \in I \; \; \mathsf{gilt} \; x \in M_i \}$$

- · Wir haben Vereinigung und Schnitt bisher zweistellig definiert.
- \blacktriangleright Analog zum Summenzeichen \sum verallgemeinern wir die Definition auf beliebig viele Argumente.
- Sei I eine Menge und M_i eine Menge für jedes $i \in I$. Wir definieren

$$\bigcup_{i \in I} M_i \ := \big\{ x \mid \text{es existiert } i \in I \text{, so dass } x \in M_i \big\} \ = \big\{ x \mid \exists i \big((i \in I) \land (x \in M_i) \big) \big\}$$

$$\bigcap M_i := \{x \mid \mathsf{für\,alle}\ i \in I \ \ \mathsf{gilt}\ x \in M_i\} \ = \big\{x \mid \forall i \in I \ x \in M_i\big\}$$

• Sonderfälle für $I = \emptyset$:

• Sonderfälle für $I = \emptyset$:

$$\blacktriangleright \bigcup_{i \in \emptyset} M_i = \emptyset$$

• Sonderfälle für $I = \emptyset$:

$$\blacktriangleright \bigcup_{i \in \emptyset} M_i = \emptyset$$

 $ightharpoonup \bigcap_{i\in\emptyset}M_i=U$ für Grundmenge U,

• Sonderfälle für $I = \emptyset$:

$$\blacktriangleright \bigcup_{i \in \emptyset} M_i = \emptyset$$

 $ightharpoonup \bigcap_{i\in\emptyset}M_i=U$ für Grundmenge U, sonst undefiniert.

• Sonderfälle für $I = \emptyset$:

$$\blacktriangleright \bigcup_{i \in \emptyset} M_i = \emptyset$$

 $ightharpoonup \bigcap_{i\in\emptyset}M_i=U$ für Grundmenge U, sonst undefiniert.

• Erinnerung/Definition:

- Sonderfälle für $I = \emptyset$:
 - $\blacktriangleright \bigcup_{i \in \emptyset} M_i = \emptyset$
 - $ightharpoonup \bigcap_{i \in \emptyset} M_i = U$ für Grundmenge U, sonst undefiniert.
- Erinnerung/Definition: die leere Summe wird als null definiert,

- Sonderfälle für $I = \emptyset$:
 - $\blacktriangleright \bigcup_{i \in \emptyset} M_i = \emptyset$
 - $ightharpoonup \bigcap_{i \in \emptyset} M_i = U$ für Grundmenge U, sonst undefiniert.
- Erinnerung/Definition: die leere Summe wird als null definiert, z.B.

- Sonderfälle für $I = \emptyset$:
 - $\blacktriangleright \bigcup_{i \in \emptyset} M_i = \emptyset$
 - $ightharpoonup \bigcap_{i \in \emptyset} M_i = U$ für Grundmenge U, sonst undefiniert.
- Erinnerung/Definition: die leere Summe wird als null definiert, z.B. $\sum_{i=5}^{3} i = 0$.

Das geschlossene Interval [u,o]

• Für jede Menge M gilt $M = \bigcup_{m \in M} \{m\}$.

• Das geschlossene Interval [u,o] für $u,o\in\mathbb{R}$

• Für jede Menge M gilt $M = \bigcup_{m \in M} \{m\}$.

• Das geschlossene Interval [u,o] für $u,o\in\mathbb{R}$ mit $u\leq o$

• Für jede Menge M gilt $M = \bigcup_{m \in M} \{m\}$.

Beispiele.

Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \leq o$ ist definiert durch

Diskrete Strukturen | Verallgemeinerung von Vereinigung und Schnitt

Beispiele.

Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \leq o$ ist definiert durch [u,o] :=

Beispiele.

Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \leq o$ ist definiert durch $[u,o] := \{r \in \mathbb{R}:$

Beispiele.

Das geschlossene Interval [u, o] für $u, o \in \mathbb{R}$ mit $u \leq o$ ist definiert durch $[u, o] := \{ r \in \mathbb{R} : u < r < o \}.$

• Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \leq o$ ist definiert durch

• Für jede Menge M gilt $M = \bigcup_{m \in M} \{m\}$.

 $[u, o] := \{ r \in \mathbb{R} : u < r < o \}.$

Es gilt

• Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \le o$ ist definiert durch $[u,o] := \{r \in \mathbb{R} \colon \ u \le r \le o\}.$

• Es gilt $\mathbb{R}=$

Beispiele.

• Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \leq o$ ist definiert durch

$$[u,o] := \{ r \in \mathbb{R} \colon \ u \le r \le o \}.$$

• Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n] =$

Beispiele.

• Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \leq o$ ist definiert durch

$$[u,o]:=~\{r\in\mathbb{R}\colon~u\le r\le o\}.$$

• Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n] = \bigcup_{r \in \mathbb{R}_{>0}} [-r, r]$.

- Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \leq o$ ist definiert durch
 - $[u, o] := \{ r \in \mathbb{R} \colon u \le r \le o \}.$
- Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n] = \bigcup_{r \in \mathbb{R}_{>0}} [-r, r]$.
- ightharpoonup Wir zeigen $\mathbb{R} \subseteq$

- Das geschlossene Interval [u,o] für $u,o\in\mathbb{R}$ mit $u\leq o$ ist definiert durch
- $[u,o] := \{r \in \mathbb{R} \colon u \le r \le o\}.$
- Es gilt $\mathbb{R}=\bigcup_{n\in\mathbb{N}}[-n,n]=\bigcup_{r\in\mathbb{R}>0}[-r,r].$
- ightharpoonup Wir zeigen $\mathbb{R}\subseteq\bigcup_{n\in\mathbb{N}}[-n,n]\subseteq$

- Das geschlossene Interval [u,o] für $u,o\in\mathbb{R}$ mit $u\leq o$ ist definiert durch
 - $[u,o] := \{ r \in \mathbb{R} \colon \ u \le r \le o \}.$
- Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n] = \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r]$.
- ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$

- Das geschlossene Interval [u,o] für $u,o\in\mathbb{R}$ mit $u\leq o$ ist definiert durch
 - $[u,o] := \{r \in \mathbb{R} \colon u \le r \le o\}.$
- Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n,n] = \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r,r]$.
 - ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{>0}} [-r, r] \subseteq \mathbb{R}$.

Tui jede Meilge M gitt $M = \bigcup_{m \in M} \{ m \}$

- Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \le o$ ist definiert durch $[u,o] := \{r \in \mathbb{R}: \ u \le r \le o\}.$
- Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n,n] = \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r,r]$.
 - ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$. Es folgt dass alle diese Mengen gleich sind

Für inde Mange M gilt M — I I (m)

• Für jede Menge M gilt $M = \bigcup_{m \in M} \{m\}$.

- Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \le o$ ist definiert durch $[u,o] := \{r \in \mathbb{R}: \ u \le r \le o\}.$
- Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n,n] = \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r,r]$.
 - ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$. Es folgt dass alle diese Mengen gleich sind "Ringinklusion".

- Für jede Menge M gilt $M = \bigcup_{m \in M} \{m\}$.
- Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \le o$ ist definiert durch $[u,o] := \{r \in \mathbb{R}: \ u \le r \le o\}.$
- Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n,n] = \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r,r]$.
 - ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$. Es folgt dass alle diese Mengen gleich sind "Ringinklusion".
 - ightharpoonup Zu $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n]$:

- Für jede Menge M gilt $M = \bigcup_{m \in M} \{m\}$.
- Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \le o$ ist definiert durch $[u,o] := \{r \in \mathbb{R}: \ u \le r \le o\}.$
- Es gilt $\mathbb{R}=\bigcup_{n\in\mathbb{N}}[-n,n]=\bigcup_{r\in\mathbb{R}_{\geq 0}}[-r,r]$.
 - ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$. Es folgt dass alle diese Mengen gleich sind "Ringinklusion".
 - ightharpoonup Zu $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n]$: Sei $r \in \mathbb{R}$ und $n := \lceil |r| \rceil$ (aufrunden).

Für inde Mange Mailt M

• Für jede Menge M gilt $M = \bigcup_{m \in M} \{m\}$.

- Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \le o$ ist definiert durch $[u,o] := \{r \in \mathbb{R}: \ u \le r \le o\}.$
- Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n] = \bigcup_{r \in \mathbb{R}_{>0}} [-r, r]$.
 - ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$. Es folgt dass alle diese Mengen gleich sind "Ringinklusion".
 - ▶ Zu $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n]$: Sei $r \in \mathbb{R}$ und $n := \lceil |r| \rceil$ (aufrunden). Dann gilt $-n \le r \le n$

Für inde Mange Mailt M

• Für jede Menge M gilt $M = \bigcup_{m \in M} \{m\}$.

- Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \le o$ ist definiert durch $[u,o] := \{r \in \mathbb{R}: \ u \le r \le o\}.$
- Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n] = \bigcup_{r \in \mathbb{R}_{>0}} [-r, r]$.
 - ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$. Es folgt dass alle diese Mengen gleich sind "Ringinklusion".
 - ▶ Zu $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n]$: Sei $r \in \mathbb{R}$ und $n := \lceil |r| \rceil$ (aufrunden). Dann gilt $-n \le r \le n$ und damit $r \in [-n, n]$.

Für inde Mange M gilt M | | (m)

• Für jede Menge M gilt $M = \bigcup_{m \in M} \{m\}$.

- Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \le o$ ist definiert durch $[u,o] := \{r \in \mathbb{R} \colon \ u \le r \le o\}.$
- Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n] = \bigcup_{r \in \mathbb{R}_{>0}} [-r, r]$.
 - ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$. Es folgt dass alle diese Mengen gleich sind "Ringinklusion".
 - ▶ Zu $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n]$: Sei $r \in \mathbb{R}$ und $n := \lceil |r| \rceil$ (aufrunden). Dann gilt $-n \le r \le n$ und damit $r \in [-n, n]$. Also auch $r \in \bigcup_{n \in \mathbb{N}} [-n, n]$.

- Das geschlossene Interval [u, o] für $u, o \in \mathbb{R}$ mit $u \leq o$ ist definiert durch $[u, o] := \{ r \in \mathbb{R} : u < r < o \}.$
- Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n] = \bigcup_{r \in \mathbb{R}_{>0}} [-r, r]$.
 - ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{>0}} [-r, r] \subseteq \mathbb{R}$. Es folgt dass alle diese Mengen gleich sind - "Ringinklusion".

 - ightharpoonup Zu $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n]$: Sei $r \in \mathbb{R}$ und $n := \lceil |r| \rceil$ (aufrunden). Dann gilt -n < r < nund damit $r \in [-n, n]$. Also auch $r \in \bigcup_{n \in \mathbb{N}} [-n, n]$.
 - ightharpoonup Zu $\bigcup_{n\in\mathbb{N}}[-n,n]\subseteq\bigcup_{r\in\mathbb{R}_{>0}}[-r,r]$:

Beispiele.

- Das geschlossene Interval [u,o] für $u,o\in\mathbb{R}$ mit $u\leq o$ ist definiert durch
- $[u, o] := \{ r \in \mathbb{R} : u < r < o \}.$
- Es gilt $\mathbb{R}=\bigcup_{n\in\mathbb{N}}[-n,n]=\bigcup_{r\in\mathbb{R}>0}[-r,r]$.
 - ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$. Es folgt dass alle diese Mengen gleich sind "Ringinklusion".
 - ▶ Zu $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n]$: Sei $r \in \mathbb{R}$ und $n := \lceil |r| \rceil$ (aufrunden). Dann gilt $-n \le r \le n$ und damit $r \in [-n, n]$. Also auch $r \in \bigcup_{n \in \mathbb{N}} [-n, n]$.
 - ▶ Zu $\bigcup_{n\in\mathbb{N}}[-n,n]\subseteq\bigcup_{r\in\mathbb{R}_{\geq 0}}[-r,r]$: Klar aus dem Abschwächungsprinzip, da $\mathbb{N}\subset\mathbb{R}_{\geq 0}$.

Diskrete Strukturen | Verallgemeinerung von Vereinigung und Schnitt

• Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \le o$ ist definiert durch $[u,o] := \{r \in \mathbb{R}: \ u < r \le o\}.$

• Es gilt
$$\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n] = \bigcup_{r \in \mathbb{R}_{>0}} [-r, r]$$
.

- ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$. Es folgt dass alle diese Mengen gleich sind "Ringinklusion".
- Mengen gleich sind Ringinktusion.

 Figure 2. Fing in the state of t
- ightharpoonup Zu $\bigcup_{n\in\mathbb{N}}[-n,n]\subseteq\bigcup_{r\in\mathbb{R}_{\geq 0}}[-r,r]$: Klar aus dem Abschwächungsprinzip, da $\mathbb{N}\subseteq\mathbb{R}_{\geq 0}$.
- ightharpoonup Zu $\bigcup_{r\in\mathbb{R}>0}[-r,r]\subseteq\mathbb{R}$:

Beispiele.

• Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \le o$ ist definiert durch $[u,o] := \{r \in \mathbb{R}: \ u < r \le o\}.$

- Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n] = \bigcup_{r \in \mathbb{R}_{>0}} [-r, r]$.
 - ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$. Es folgt dass alle diese Mengen gleich sind "Ringinklusion".

 - ightharpoonup Zu $\bigcup_{n\in\mathbb{N}}[-n,n]\subseteq\bigcup_{r\in\mathbb{R}_{\geq0}}[-r,r]$: Klar aus dem Abschwächungsprinzip, da $\mathbb{N}\subseteq\mathbb{R}_{>0}$.
 - ightharpoonup Zu $\bigcup_{r\in\mathbb{R}>0}[-r,r]\subseteq\mathbb{R}$: Es ist $[-r,r]\subseteq\mathbb{R}$ für alle $r\in\mathbb{R}_{\geq0}$,

Beispiele.

• Das geschlossene Interval [u,o] für $u,o \in \mathbb{R}$ mit $u \leq o$ ist definiert durch $[u,o] := \{r \in \mathbb{R}: \ u \leq r \leq o\}.$

- Es gilt $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n] = \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r].$
 - ▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$. Es folgt dass alle diese Mengen gleich sind "Ringinklusion".
 - Mengen gleich sind Ringinktusion.

 ► Zu $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n]$: Sei $r \in \mathbb{R}$ und $n := \lceil |r| \rceil$ (aufrunden). Dann gilt $-n \le r \le n$
 - und damit $r \in [-n,n]$. Also auch $r \in \bigcup_{n \in \mathbb{N}} [-n,n]$. \blacktriangleright Zu $\bigcup_{n \in \mathbb{N}} [-n,n] \subseteq \bigcup_{r \in \mathbb{R}_{>0}} [-r,r]$: Klar aus dem Abschwächungsprinzip, da
 - $\mathbb{N} \subseteq \mathbb{R}_{\geq 0}$. \blacktriangleright Zu $\bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$: Es ist $[-r, r] \subseteq \mathbb{R}$ für alle $r \in \mathbb{R}_{\geq 0}$, also folgt aus der Monotonie.

• Das geschlossene Interval [u,o] für $u,o\in\mathbb{R}$ mit $u\le o$ ist definiert durch $[u,o]:=\ \{r\in\mathbb{R}\colon\ u\le r\le o\}.$ • Es gilt $\mathbb{R}=\ \bigcup_{n\in\mathbb{N}}[-n,n]=\ \bigcup_{r\in\mathbb{R}>o}[-r,r].$

• Für jede Menge M gilt $M = \bigcup_{m \in M} \{m\}$.

Beispiele.

▶ Wir zeigen $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$. Es folgt dass alle diese Mengen gleich sind - "Ringinklusion".

▶ Zu $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}} [-n, n]$: Sei $r \in \mathbb{R}$ und $n := \lceil |r| \rceil$ (aufrunden). Dann gilt $-n \le r \le n$ und damit $r \in [-n, n]$. Also auch $r \in \bigcup_{n \in \mathbb{N}} [-n, n]$.

und damit $r \in [-n,n]$. Also auch $r \in \bigcup_{n \in \mathbb{N}} [-n,n]$. \blacktriangleright Zu $\bigcup_{n \in \mathbb{N}} [-n,n] \subseteq \bigcup_{r \in \mathbb{R}_{\geq 0}} [-r,r]$: Klar aus dem Abschwächungsprinzip, da $\mathbb{N} \subseteq \mathbb{R}_{\geq 0}$.

▶ Zu $\bigcup_{r \in \mathbb{R}_{\geq 0}} [-r, r] \subseteq \mathbb{R}$: Es ist $[-r, r] \subseteq \mathbb{R}$ für alle $r \in \mathbb{R}_{\geq 0}$, also folgt aus der Monotonie.

• Wichtige Notationsvarianten.

• Wichtige Notationsvarianten. Für $I = \{u, u+1, \dots, o\} \subseteq \mathbb{N}$

$$\triangleright \bigcup_{i=u}^{o} M_i :=$$

$$ightharpoonup \bigcup_{i=u}^{o} M_i := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcup_{i=u}^{o} M_i := \bigcup_{i \in I} M_i$$

$$ightharpoonup \cap_{i=n}^{o} M_i :=$$

$$\blacktriangleright \bigcup_{i=u}^{o} M_i := \bigcup_{i \in I} M_i$$

$$ightharpoonup \bigcap_{i=u}^{o} M_i := \bigcap_{i \in I} M_i$$

$$\blacktriangleright \bigcup_{i=u}^{o} M_i := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcap_{i=u}^{o} M_i := \bigcap_{i \in I} M_i$$

· Liegt eine Menge von Mengen vor,

$$\blacktriangleright \bigcup_{i=u}^{o} M_i := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcap_{i=u}^{o} M_i := \bigcap_{i \in I} M_i$$

$$ightharpoonup \bigcup_{i=u}^{o} M_i := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcap_{i=u}^{o} M_i := \bigcap_{i \in I} M_i$$

$$\blacktriangleright \bigcup \{M_i \mid i \in I\} :=$$

$$ightharpoonup \bigcup_{i=u}^{o} M_i := \bigcup_{i \in I} M_i$$

$$ightharpoonup \bigcap_{i=u}^{o} M_i := \bigcap_{i \in I} M_i$$

$$\blacktriangleright \bigcup \{M_i \mid i \in I\} := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcup_{i=n}^{o} M_i := \bigcup_{i\in I} M_i$$

$$ightharpoonup \bigcap_{i=u}^{o} M_i := \bigcap_{i \in I} M_i$$

$$\blacktriangleright \bigcup \{M_i \mid i \in I\} := \bigcup_{i \in I} M_i$$

$$ightharpoonup \left\{ M_i \mid i \in I \right\} :=$$

$$\blacktriangleright \bigcup_{i=n}^{o} M_i := \bigcup_{i\in I} M_i$$

$$ightharpoonup \bigcap_{i=u}^{o} M_i := \bigcap_{i \in I} M_i$$

$$\blacktriangleright \ \bigcup \{M_i \mid i \in I\} := \bigcup_{i \in I} M_i$$

$$ightharpoonup \bigcup_{i=u}^{o} M_i := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcap_{i=u}^{o} M_i := \bigcap_{i \in I} M_i$$

• Liegt eine Menge von Mengen vor, so lassen wir die Laufvariable auch ganz weg:

$$\blacktriangleright \bigcup \{M_i \mid i \in I\} := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcap \{M_i \mid i \in I\} := \bigcap_{i \in I} M_i$$

$$\blacktriangleright \bigcup_{i=u}^{o} M_i := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcap_{i=u}^{o} M_i := \bigcap_{i \in I} M_i$$

• Liegt eine Menge von Mengen vor, so lassen wir die Laufvariable auch ganz weg:

$$\blacktriangleright \bigcup \{M_i \mid i \in I\} := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcup_{i=u}^{o} M_i := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcap_{i=u}^{o} M_i := \bigcap_{i \in I} M_i$$

• Liegt eine Menge von Mengen vor, so lassen wir die Laufvariable auch ganz weg:

$$\blacktriangleright \bigcup \{M_i \mid i \in I\} := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcap \{M_i \mid i \in I\} := \bigcap_{i \in I} M_i$$

$$\blacktriangleright \bigcup \{\{1, 3, 5\}, \{1, 2, 3\}, \{2, 3, 5\}\} = \{1, 2, 3, 5\}$$

$$\blacktriangleright \bigcup_{i=u}^{o} M_i := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcap_{i=u}^{o} M_i := \bigcap_{i \in I} M_i$$

• Liegt eine Menge von Mengen vor, so lassen wir die Laufvariable auch ganz weg:

$$\blacktriangleright \bigcup \{M_i \mid i \in I\} := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcap \{M_i \mid i \in I\} := \bigcap_{i \in I} M_i$$

Poigniele

$$\blacktriangleright \bigcup_{i=u}^{o} M_i := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcap_{i=u}^{o} M_i := \bigcap_{i \in I} M_i$$

• Liegt eine Menge von Mengen vor, so lassen wir die Laufvariable auch ganz weg:

$$\blacktriangleright \bigcup \{M_i \mid i \in I\} := \bigcup_{i \in I} M_i$$

$$\blacktriangleright \bigcap \{M_i \mid i \in I\} := \bigcap_{i \in I} M_i$$

• Beispiel "Distributivität von ∩":

• Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i)$

• Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$

• Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$

Beweis:

- Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
- ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$.

- Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
- ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$

- Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und

- Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$.

- Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h.

- Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$

- Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und

- Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:

▶ Sei
$$x \in M \cap (\bigcup_{i \in I} M_i)$$
. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I$

- Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I$ mit

- Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$.

- Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I$

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$,

Diskrete Strukturen | Verallgemeinerung von Vereinigung und Schnitt

- Beispiel "Distributivität von \cap ": $M \cap \left(\bigcup_{i \in I} M_i\right) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
 - ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$.

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:

▶ Sei
$$x \in M \cap (\bigcup_{i \in I} M_i)$$
. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.

▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I$

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
 - ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I$ mit

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I$ mit $x \in M_i$. Deswegen $\exists i \in I$ mit $x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
 - ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I \text{ mit } x \in M \cap M_i$.

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
 - ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I \text{ mit } x \in M \cap M_i$. Deswegen $x \in M$

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I$ mit $x \in M_i$. Deswegen $\exists i \in I$ mit $x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
 - ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I \text{ mit } x \in M \cap M_i$. Deswegen $x \in M$ und

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
 - ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I \text{ mit } x \in M \cap M_i$. Deswegen $x \in M$ und $\exists i \in I$

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
 - ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I \text{ mit } x \in M \cap M_i$. Deswegen $x \in M$ und $\exists i \in I \text{ mit }$

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
 - ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I \text{ mit } x \in M \cap M_i$. Deswegen $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$.

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
 - ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I \text{ mit } x \in M \cap M_i$. Deswegen $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. D.h. $x \in M$

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
 - ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I \text{ mit } x \in M \cap M_i$. Deswegen $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. D.h. $x \in M$ und

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
 - ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I \text{ mit } x \in M \cap M_i$. Deswegen $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. D.h. $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$,

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
 - ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I \text{ mit } x \in M \cap M_i$. Deswegen $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. D.h. $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$, und es folgt

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:
 - ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. Deswegen $\exists i \in I \text{ mit } x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
 - ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I \text{ mit } x \in M \cap M_i$. Deswegen $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. D.h. $x \in M \text{ und } x \in (\bigcup_{i \in I} M_i)$, und es folgt $x \in M \cap (\bigcup_{i \in I} M_i)$.

- Beispiel "Distributivität von \cap ": $M \cap (\bigcup_{i \in I} M_i) = \bigcup_{i \in I} (M \cap M_i)$
- Beweis:

 $x \in M \cap (\bigcup_{i \in I} M_i).$

- ▶ Sei $x \in M \cap (\bigcup_{i \in I} M_i)$. Also $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$. D.h. $x \in M$ und $\exists i \in I$ mit $x \in M_i$. Deswegen $\exists i \in I$ mit $x \in M \cap M_i$, also $x \in \bigcup_{i \in I} (M \cap M_i)$.
- ▶ Sei $x \in \bigcup_{i \in I} (M \cap M_i)$. Also $\exists i \in I \text{ mit } x \in M \cap M_i$. Deswegen $x \in M$ und $\exists i \in I \text{ mit } x \in M_i$. D.h. $x \in M$ und $x \in (\bigcup_{i \in I} M_i)$, und es folgt

• Jede Menge kann entweder

• Jede Menge kann entweder endlich

• Jede Menge kann entweder endlich oder unendlich sein.

- Jede Menge kann entweder endlich oder unendlich sein.
- Für endliche Mengen M

- Jede Menge kann entweder endlich oder unendlich sein.
- Für endliche Mengen M bezeichnen wir mit |M|

- Jede Menge kann entweder endlich oder unendlich sein.
- Für endliche Mengen M bezeichnen wir mit |M| die Anzahl ihrer Elemente,

- Jede Menge kann entweder endlich oder unendlich sein.
- Für endliche Mengen M bezeichnen wir mit |M| die Anzahl ihrer Elemente, auch Kardinalität genannt.

- Jede Menge kann entweder endlich oder unendlich sein.
- Für endliche Mengen M bezeichnen wir mit |M| die Anzahl ihrer Elemente, auch Kardinalität genannt.
- Ist M unendlich,

- Jede Menge kann entweder endlich oder unendlich sein.
- Für endliche Mengen M bezeichnen wir mit |M| die Anzahl ihrer Elemente, auch Kardinalität genannt.
- Ist M unendlich, so schreiben wir auch $|M| \ge \infty$.

- Jede Menge kann entweder endlich oder unendlich sein.
- Für endliche Mengen M bezeichnen wir mit |M| die Anzahl ihrer Elemente, auch Kardinalität genannt.
- Ist M unendlich, so schreiben wir auch $|M| \ge \infty$.
- Für alle endlichen Mengen M und N gilt

- Jede Menge kann entweder endlich oder unendlich sein.
- Für endliche Mengen M bezeichnen wir mit |M| die Anzahl ihrer Elemente, auch Kardinalität genannt.
- Ist M unendlich, so schreiben wir auch $|M| \ge \infty$.
- Für alle endlichen Mengen M und N gilt

$$|M \cup N| \leq$$

- Jede Menge kann entweder endlich oder unendlich sein.
- Für endliche Mengen M bezeichnen wir mit |M| die Anzahl ihrer Elemente, auch Kardinalität genannt.
- Ist M unendlich, so schreiben wir auch $|M| \ge \infty$.
- Für alle endlichen Mengen M und N gilt

$$|M \cup N| \le |M| + |N|.$$

- Jede Menge kann entweder endlich oder unendlich sein.
- Für endliche Mengen M bezeichnen wir mit |M| die Anzahl ihrer Elemente, auch Kardinalität genannt.
- Ist M unendlich, so schreiben wir auch $|M| \ge \infty$.
- Für alle endlichen Mengen M und N gilt

$$|M \cup N| \le |M| + |N|.$$

Wenn M und N disjunkt sind, also $M \cap N = \emptyset$,

- Jede Menge kann entweder endlich oder unendlich sein.
- Für endliche Mengen M bezeichnen wir mit |M| die Anzahl ihrer Elemente, auch Kardinalität genannt.
- Ist M unendlich, so schreiben wir auch $|M| \ge \infty$.
- Für alle endlichen Mengen M und N gilt

$$|M \cup N| \le |M| + |N|.$$

Wenn M und N disjunkt sind, also $M \cap N = \emptyset$, so haben wir die Gleichheit

- Jede Menge kann entweder endlich oder unendlich sein.
- Für endliche Mengen M bezeichnen wir mit |M| die Anzahl ihrer Elemente, auch Kardinalität genannt.
- Ist M unendlich, so schreiben wir auch $|M| \ge \infty$.
- Für alle endlichen Mengen M und N gilt

$$|M \cup N| \le |M| + |N|.$$

• Wenn M und N disjunkt sind, also $M \cap N = \emptyset$, so haben wir die Gleichheit

$$|M \cup N| = |M| + |N|.$$

• Beispiele.

• Beispiele.

- · Beispiele.
 - lacktriangle Die Mengen $\{1, 2, 3\}$ und $\{2, 4, 6\}$ sind nicht disjunkt

- · Beispiele.
 - \blacktriangleright Die Mengen $\{1, 2, 3\}$ und $\{2, 4, 6\}$ sind nicht disjunkt und es gilt

· Beispiele.

 \blacktriangleright Die Mengen $\{1, 2, 3\}$ und $\{2, 4, 6\}$ sind nicht disjunkt und es gilt

$$|\{1, 2, 3\} \cup \{2, 4, 6\}| = 5 < 6 = 3 + 3 = |\{1, 2, 3\}| + |\{2, 4, 6\}|.$$

• Beispiele.

ightharpoonup Die Mengen $\{1, 2, 3\}$ und $\{2, 4, 6\}$ sind nicht disjunkt und es gilt

$$|\{1, 2, 3\} \cup \{2, 4, 6\}| = 5 < 6 = 3 + 3 = |\{1, 2, 3\}| + |\{2, 4, 6\}|.$$

▶ Die Mengen $\{1, 2, 3\}$ und $\{4, 5, 6\}$ sind disjunkt

• Beispiele.

lacktriangle Die Mengen $\{1, 2, 3\}$ und $\{2, 4, 6\}$ sind nicht disjunkt und es gilt

$$|\{1,\,2,\,3\}\cup\{2,\,4,\,6\}|=5<6=3+3=|\{1,\,2,\,3\}|+|\{2,\,4,\,6\}|.$$

lacktriangle Die Mengen $\{1,\,2,\,3\}$ und $\{4,\,5,\,6\}$ sind disjunkt und es gilt

- Beispiele.
 - ▶ Die Mengen $\{1, 2, 3\}$ und $\{2, 4, 6\}$ sind nicht disjunkt und es gilt

$$|\{1,\,2,\,3\}\cup\{2,\,4,\,6\}|=5<6=3+3=|\{1,\,2,\,3\}|+|\{2,\,4,\,6\}|.$$

▶ Die Mengen $\{1, 2, 3\}$ und $\{4, 5, 6\}$ sind disjunkt und es gilt

$$|\{1, 2, 3\} \cup \{4, 5, 6\}| = 6 = 3 + 3 = |\{1, 2, 3\}| + |\{4, 5, 6\}|.$$

Für eine Menge ${\cal M}$

Für eine Menge M ist die Potenzmenge $\mathcal{P}(M)$

$$\mathcal{P}(M) = \{ N \mid N \subseteq M \}$$

$$\mathcal{P}(M) = \{ N \mid N \subseteq M \}$$

• $\mathcal{P}(\emptyset) = \{\emptyset\}$,

$$\mathcal{P}(M) = \{ N \mid N \subseteq M \}$$

•
$$\mathcal{P}(\emptyset) = \{\emptyset\}$$
,

•

$$\mathcal{P}(\{1, 2, 3\}) =$$

$$\mathcal{P}(M) = \{ N \mid N \subseteq M \}$$

•
$$\mathcal{P}(\emptyset) = \{\emptyset\}$$
,

$$\mathcal{P}(\{1, 2, 3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Diskrete Strukturen | Kardinalität von endlichen Mengen, Potenzmenge

$$\mathcal{P}(M) = \{ N \mid N \subseteq M \}$$

- $\mathcal{P}(\emptyset) = \{\emptyset\}$,

• $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

 $\mathcal{P}(\{1, 2, 3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$

• Wie viele Elemente

• Wie viele Elemente enthält die Potenzmenge

• Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M?

• Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h.

• Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität

• Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)

- Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)
- Durch systematisches Probieren

- Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)
- Durch systematisches Probieren gelangt man zu der Hypothese

- Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)
- Durch systematisches Probieren gelangt man zu der Hypothese

$$|\mathcal{P}(M)| = 2^{|M|}.$$

- Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)
- Durch systematisches Probieren gelangt man zu der Hypothese

$$|\mathcal{P}(M)| = 2^{|M|}.$$

· Der Grund dafür ist,

- Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)
- Durch systematisches Probieren gelangt man zu der Hypothese

$$|\mathcal{P}(M)| = 2^{|M|}.$$

- Der Grund dafür ist, dass die Definition einer Teilmenge ${\cal S}$ von ${\cal M}$

- Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)
- Durch systematisches Probieren gelangt man zu der Hypothese

$$|\mathcal{P}(M)| = 2^{|M|}.$$

- Der Grund dafür ist, dass die Definition einer Teilmenge ${\cal S}$ von ${\cal M}$ gleichbedeutend damit ist,

- Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)
- Durch systematisches Probieren gelangt man zu der Hypothese

$$|\mathcal{P}(M)| = 2^{|M|}.$$

• Der Grund dafür ist, dass die Definition einer Teilmenge S von M gleichbedeutend damit ist, für jedes $x \in M$ zu entscheiden,

- Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)
- Durch systematisches Probieren gelangt man zu der Hypothese

$$|\mathcal{P}(M)| = 2^{|M|}.$$

- Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)
- Durch systematisches Probieren gelangt man zu der Hypothese

$$|\mathcal{P}(M)| = 2^{|M|}.$$

Da es $2^{|M|}$ solche Auswahlmöglichkeiten gibt,

- Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)
- Durch systematisches Probieren gelangt man zu der Hypothese

$$|\mathcal{P}(M)| = 2^{|M|}.$$

Da es $2^{|M|}$ solche Auswahlmöglichkeiten gibt, ist dies auch die Anzahl der Teilmengen von M.

- Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)
- Durch systematisches Probieren gelangt man zu der Hypothese

$$|\mathcal{P}(M)| = 2^{|M|}.$$

Da es $2^{|M|}$ solche Auswahlmöglichkeiten gibt, ist dies auch die Anzahl der Teilmengen von M.

• Um solche Argumente präzis schreiben zu können,

- Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)
- Durch systematisches Probieren gelangt man zu der Hypothese

$$|\mathcal{P}(M)| = 2^{|M|}.$$

damit ist, für jedes $x \in M$ zu entscheiden, ob es in S enthalten ist oder nicht. Da es $2^{|M|}$ solche Auswahlmöglichkeiten gibt, ist dies auch die Anzahl der Teilmengen

• Der Grund dafür ist, dass die Definition einer Teilmenge S von M gleichbedeutend

• Um solche Argumente präzis schreiben zu können, benötigen wir eine neue Beweistechnik

von M.

- Wie viele Elemente enthält die Potenzmenge einer endlichen Menge M? (d.h. was ist die Kardinalität von $\mathcal{P}(M)$?)
- Durch systematisches Probieren gelangt man zu der Hypothese

$$|\mathcal{P}(M)| = 2^{|M|}.$$

damit ist, für jedes $x \in M$ zu entscheiden, ob es in S enthalten ist oder nicht. Da es $2^{|M|}$ solche Auswahlmöglichkeiten gibt, ist dies auch die Anzahl der Teilmengen

• Der Grund dafür ist, dass die Definition einer Teilmenge S von M gleichbedeutend

• Um solche Argumente präzis schreiben zu können, benötigen wir eine neue Beweistechnik "Induktion".

von M.

• Wir betrachten die folgende Aussage.

• Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt

• Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^n i = \frac{n(n+1)}{2}$.

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.
- · Obwohl der Beweis dieser Aussage

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.
- Obwohl der Beweis dieser Aussage $\,$ für eine konkrete Zahl n

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.
- Obwohl der Beweis dieser Aussage für eine konkrete Zahl n unproblematisch ist,

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.
- Obwohl der Beweis dieser Aussage für eine konkrete Zahl n unproblematisch ist, stellt der Beweis für alle $n \in \mathbb{N}$

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.
- Obwohl der Beweis dieser Aussage für eine konkrete Zahl n unproblematisch ist, stellt der Beweis für alle $n \in \mathbb{N}$ eine Hürde dar.

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.
- Obwohl der Beweis dieser Aussage für eine konkrete Zahl n unproblematisch ist, stellt der Beweis für alle $n \in \mathbb{N}$ eine Hürde dar, da wir nicht unendlich viele Beweise angeben können.

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.
- Obwohl der Beweis dieser Aussage für eine konkrete Zahl n unproblematisch ist, stellt der Beweis für alle $n \in \mathbb{N}$ eine Hürde dar, da wir nicht unendlich viele Beweise angeben können.
- Das folgende Prinzip ist ein Beweisprinzip das wir hier nützen können.

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^n i = \frac{n(n+1)}{2}$.
- Obwohl der Beweis dieser Aussage für eine konkrete Zahl n unproblematisch ist, stellt der Beweis für alle $n \in \mathbb{N}$ eine Hürde dar, da wir nicht unendlich viele Beweise angeben können.
- Das folgende Prinzip ist ein Beweisprinzip das wir hier nützen können.

Prinzip der vollständigen Induktion

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^n i = \frac{n(n+1)}{2}$.
- Obwohl der Beweis dieser Aussage für eine konkrete Zahl n unproblematisch ist, stellt der Beweis für alle $n \in \mathbb{N}$ eine Hürde dar, da wir nicht unendlich viele Beweise angeben können.
- Das folgende Prinzip ist ein Beweisprinzip das wir hier nützen können.

Prinzip der vollständigen Induktion Sei F(x) eine Prädikat mit einer Variable x.

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^n i = \frac{n(n+1)}{2}$.
- Obwohl der Beweis dieser Aussage für eine konkrete Zahl n unproblematisch ist, stellt der Beweis für alle $n \in \mathbb{N}$ eine Hürde dar, da wir nicht unendlich viele Beweise angeben können.
- Das folgende Prinzip ist ein Beweisprinzip das wir hier nützen können.

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^n i = \frac{n(n+1)}{2}$.
- Obwohl der Beweis dieser Aussage für eine konkrete Zahl n unproblematisch ist, stellt der Beweis für alle $n \in \mathbb{N}$ eine Hürde dar, da wir nicht unendlich viele Beweise angeben können.
- Das folgende Prinzip ist ein Beweisprinzip das wir hier nützen können.

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^n i = \frac{n(n+1)}{2}$.
- Obwohl der Beweis dieser Aussage für eine konkrete Zahl n unproblematisch ist, stellt der Beweis für alle $n \in \mathbb{N}$ eine Hürde dar, da wir nicht unendlich viele Beweise angeben können.
- Das folgende Prinzip ist ein Beweisprinzip das wir hier nützen können.

• F(0) und

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^n i = \frac{n(n+1)}{2}$.
- Obwohl der Beweis dieser Aussage für eine konkrete Zahl n unproblematisch ist, stellt der Beweis für alle $n \in \mathbb{N}$ eine Hürde dar, da wir nicht unendlich viele Beweise angeben können.
- Das folgende Prinzip ist ein Beweisprinzip das wir hier nützen können.

- F(0) und
- $F(n) \rightarrow F(n+1)$ für alle $n \in \mathbb{N}$,

- Wir betrachten die folgende Aussage. Für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^n i = \frac{n(n+1)}{2}$.
- Obwohl der Beweis dieser Aussage für eine konkrete Zahl n unproblematisch ist, stellt der Beweis für alle $n \in \mathbb{N}$ eine Hürde dar, da wir nicht unendlich viele Beweise angeben können.
- Das folgende Prinzip ist ein Beweisprinzip das wir hier nützen können.

- F(0) und
- $F(n) \to F(n+1)$ für alle $n \in \mathbb{N}$, dann gilt F(x) für alle $x \in \mathbb{N}$.

• Ein Induktionsbeweis funktioniert wie folgt.

- Ein Induktionsbeweis funktioniert wie folgt.
 - ▶ Zunächst

- · Ein Induktionsbeweis funktioniert wie folgt.
 - ► Zunächst zeigen wir die Behauptung

• Ein Induktionsbeweis funktioniert wie folgt.

ightharpoonup Zunächst zeigen wir die Behauptung für den Fall n=0

• Ein Induktionsbeweis funktioniert wie folgt.

 \blacktriangleright Zunächst zeigen wir die Behauptung für den Fall n=0 (Induktionsanfang).

- · Ein Induktionsbeweis funktioniert wie folgt.
 - \blacktriangleright Zunächst zeigen wir die Behauptung für den Fall n=0 (Induktionsanfang).
 - ► Anschließend folgt Induktionsschritt:

- · Ein Induktionsbeweis funktioniert wie folgt.
 - \blacktriangleright Zunächst zeigen wir die Behauptung für den Fall n=0 (Induktionsanfang).
 - lacktriangle Anschließend folgt Induktionsschritt: wir wählen eine beliebige natürliche Zahl n

- · Ein Induktionsbeweis funktioniert wie folgt.
 - \blacktriangleright Zunächst zeigen wir die Behauptung für den Fall n=0 (Induktionsanfang).
 - lacktriangle Anschließend folgt Induktionsschritt: wir wählen eine beliebige natürliche Zahl n und setzen voraus,

- · Ein Induktionsbeweis funktioniert wie folgt.
 - \blacktriangleright Zunächst zeigen wir die Behauptung für den Fall n=0 (Induktionsanfang).
 - ightharpoonup Anschließend folgt Induktionsschritt: wir wählen eine beliebige natürliche Zahl n und setzen voraus, dass die Behauptung für n bereits gezeigt ist

- Ein Induktionsbeweis funktioniert wie folgt.
 - \blacktriangleright Zunächst zeigen wir die Behauptung für den Fall n=0 (Induktionsanfang).
- Anschließend folgt Induktionsschritt: wir wählen eine beliebige natürliche Zahl n und setzen voraus, dass die Behauptung für n bereits gezeigt ist (Induktionshypothese).

- Ein Induktionsbeweis funktioniert wie folgt.
- \blacktriangleright Zunächst zeigen wir die Behauptung für den Fall n=0 (Induktionsanfang).
- Anschließend folgt Induktionsschritt: wir wählen eine beliebige natürliche Zahl n und setzen voraus, dass die Behauptung für n bereits gezeigt ist (Induktionshypothese).

Dann beweisen wir die Induktionsbehauptung:

- Ein Induktionsbeweis funktioniert wie folgt.
 - \blacktriangleright Zunächst zeigen wir die Behauptung für den Fall n=0 (Induktionsanfang).
- Anschließend folgt Induktionsschritt: wir wählen eine beliebige natürliche Zahl n und setzen voraus, dass die Behauptung für n bereits gezeigt ist (Induktionshypothese).

Dann beweisen wir die Induktionsbehauptung: die Behauptung für den Nachfolger n+1.

- Ein Induktionsbeweis funktioniert wie folgt.
 - \blacktriangleright Zunächst zeigen wir die Behauptung für den Fall n=0 (Induktionsanfang).
- Anschließend folgt Induktionsschritt: wir wählen eine beliebige natürliche Zahl n und setzen voraus, dass die Behauptung für n bereits gezeigt ist (Induktionshypothese).

Dann beweisen wir die Induktionsbehauptung: die Behauptung für den Nachfolger n+1. Im Beweis können wir die Induktionshypothese nutzen.

Als Beispiel zeigen wir

Als Beispiel zeigen wir dass für alle $n \in \mathbb{N}$ gilt

Diskrete Strukturen | Vollständige Induktion und Induktionsbeweise

Beweis.

Beweis.

Induktionsanfang:

Beweis.

• Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0 \cdot 1}{2}$.

Beweis.

- Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0 \cdot 1}{2}$.
- Induktionshypothese:

- Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0.1}{2}$.
- Induktionshypothese: Sei $n \in \mathbb{N}$, nehmen wir an dass $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ wahr ist.

Beweis.

- Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0 \cdot 1}{2}$.
- Induktionshypothese: Sei $n \in \mathbb{N}$, nehmen wir an dass $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ wahr ist.

Als Beispiel zeigen wir dass für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

Induktionsbehauptung:

Diskrete Strukturen | Vollständige Induktion und Induktionsbeweise

- Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0.1}{2}$.
- Induktionshypothese: Sei $n \in \mathbb{N}$, nehmen wir an dass $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ wahr ist.
- Induktionsbehauptung: Zu zeigen ist, dass $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.

Beweis.

Als Beispiel zeigen wir dass für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

- Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0 \cdot 1}{2}$.
- Induktionshypothese: Sei $n \in \mathbb{N}$, nehmen wir an dass $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ wahr ist.
- Induktionsbehauptung: Zu zeigen ist, dass $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.
- Beweis der IB:
- , ,

- Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0 \cdot 1}{2}$.
- Induktionshypothese: Sei $n \in \mathbb{N}$, nehmen wir an dass $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ wahr ist.
- Induktionsbehauptung: Zu zeigen ist, dass $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.
- Beweis der IB: Es gilt

$$\sum_{i=1}^{n-1}$$

Beweis.

- Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0 \cdot 1}{2}$.
- Induktionshypothese: Sei $n \in \mathbb{N}$, nehmen wir an dass $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ wahr ist.
- Induktionsbehauptung: Zu zeigen ist, dass $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.
- Beweis der IB: Es gilt

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$

- Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0 \cdot 1}{2}$.
- Induktionshypothese: Sei $n \in \mathbb{N}$, nehmen wir an dass $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ wahr ist.
- Induktionsbehauptung: Zu zeigen ist, dass $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.
- Beweis der IB: Es gilt

$$\sum_{n=1}^{n+1} i = \sum_{n=1}^{n} i + (n+1) \stackrel{\mathsf{IH}}{=}$$

Bewei

- Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0 \cdot 1}{2}$.
- Induktionshypothese: Sei $n \in \mathbb{N}$, nehmen wir an dass $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ wahr ist.
- Induktionsbehauptung: Zu zeigen ist, dass $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.
- Beweis der IB: Es gilt

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) \stackrel{\text{IH}}{=} \frac{n(n+1)}{2} + (n+1) = 0$$

Beweis.

- Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0.1}{2}$.
- Induktionshypothese: Sei $n \in \mathbb{N}$, nehmen wir an dass $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ wahr ist.
- **Induktionsbehauptung**: Zu zeigen ist, dass $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.
- Beweis der IB: Es gilt

$$\sum_{i=1}^{n+1}$$
 $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + (n+1) \stackrel{\text{IH}}{=} \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$

Beweis.

- Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0 \cdot 1}{2}$.
- Induktionshypothese: Sei $n \in \mathbb{N}$, nehmen wir an dass $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ wahr ist.
- Induktionsbehauptung: Zu zeigen ist, dass $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.

Als Beispiel zeigen wir dass für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

- Davida dan ID. Familt
- Beweis der IB: Es gilt
 - $\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + (n+1) \stackrel{\text{IH}}{=} \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$ $= \frac{n(n+1) + 2(n+1)}{2}$

Beweis.

- Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0 \cdot 1}{2}$.
- Induktionshypothese: Sei $n\in\mathbb{N}$, nehmen wir an dass $\sum_{i=1}^n i=rac{n(n+1)}{2}$ wahr ist.
- Induktionsbehauptung: Zu zeigen ist, dass $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.
- $\geq_{i=1}$

Als Beispiel zeigen wir dass für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

Beweis der IB: Es gilt

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + (n+1) \stackrel{\text{IH}}{=} \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$
$$= \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Diskrete Strukturen | Vollständige Induktion und Induktionsbeweise

• Induktionsanfang: Es gilt $\sum_{i=0}^{0} i = 0 = \frac{0.1}{2}$.

• Induktionshypothese: Sei $n\in\mathbb{N}$, nehmen wir an dass $\sum_{i=1}^n i=\frac{n(n+1)}{2}$ wahr ist.

- $\sum_{i=1}^{n} \frac{1}{2}$
- Induktionsbehauptung: Zu zeigen ist, dass $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.

Als Beispiel zeigen wir dass für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

• Beweis der IB: Es gilt

Beweis.

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + (n+1) \stackrel{\text{IH}}{=} \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$
$$= \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Nach dem Prinzip der vollständigen Induktion folgt die Behauptung.

Induktionsbehauptung: Zu zeigen ist, dass $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.

Beweis der IB: Es gilt

$$\sum_{i=1}^{n+1} i$$

Beweis.

$$1 \qquad n$$

Als Beispiel zeigen wir dass für alle $n \in \mathbb{N}$ gilt $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.

Nach dem Prinzip der vollständigen Induktion folgt die Behauptung.

 $=\frac{n(n+1)+2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + (n+1) \stackrel{\text{IH}}{=} \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$

$$=\frac{n(}{}$$

$$=\frac{n}{}$$

Beispiel.

Beispiel. Wenn M ist eine endliche Menge,

Beispiel. Wenn ${\cal M}$ ist eine endliche Menge, dann gilt

Beweis.

Beweis. Vollständige Induktion über n = |M|.

Beweis. Vollständige Induktion über n = |M|.

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

Beweis. Vollständige Induktion über n = |M|.

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

• Induktionsanfang.

Beweis. Vollständige Induktion über n = |M|.

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

ullet Induktionsanfang. Sei Menge M beliebig,

Beweis. Vollständige Induktion über n = |M|.

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

• Induktionsanfang. Sei Menge M beliebig, $\min |M| = 0$.

Beweis. Vollständige Induktion über n = |M|.

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

• Induktionsanfang. Sei Menge M beliebig, $\min |M| = 0$. Die einzige solche Menge ist $M = \emptyset$.

Beweis. Vollständige Induktion über n = |M|.

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

• Induktionsanfang. Sei Menge M beliebig, mit |M|=0. Die einzige solche Menge ist $M=\emptyset$. Zusätzlich $\mathcal{P}(\emptyset)=\{\emptyset\}$.

Beweis. Vollständige Induktion über n = |M|.

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

• Induktions an fang. Sei Menge M beliebig, mit |M| = 0. Die einzige solche Menge ist $M = \emptyset$. Zusätzlich $\mathcal{P}(\emptyset) = \{\emptyset\}$, also gilt $|\mathcal{P}(\emptyset)| = \emptyset$

Beweis. Vollständige Induktion über n = |M|.

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

• Induktionsanfang. Sei Menge M beliebig, mit |M| = 0. Die einzige solche Menge ist $M = \emptyset$. Zusätzlich $\mathcal{P}(\emptyset) = \{\emptyset\}$, also gilt $|\mathcal{P}(\emptyset)| = |\{\emptyset\}| = \emptyset$

Beweis. Vollständige Induktion über n = |M|.

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

• Induktionsanfang. Sei Menge M beliebig, mit |M|=0. Die einzige solche Menge ist $M=\emptyset$. Zusätzlich $\mathcal{P}(\emptyset)=\{\emptyset\}$, also gilt $|\mathcal{P}(\emptyset)|=|\{\emptyset\}|=1=$

Beweis. Vollständige Induktion über n = |M|.

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

• Induktionsanfang. Sei Menge M beliebig, mit |M|=0. Die einzige solche Menge ist $M=\emptyset$. Zusätzlich $\mathcal{P}(\emptyset)=\{\emptyset\}$, also gilt $|\mathcal{P}(\emptyset)|=|\{\emptyset\}|=1=2^0=$

Beweis. Vollständige Induktion über n = |M|.

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

• Induktionsanfang. Sei Menge M beliebig, mit |M|=0. Die einzige solche Menge ist $M=\emptyset$. Zusätzlich $\mathcal{P}(\emptyset)=\{\emptyset\}$, also gilt $|\mathcal{P}(\emptyset)|=|\{\emptyset\}|=1=2^0=2^{|\emptyset|}$.

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

- Induktionsanfang. Sei Menge M beliebig, mit |M|=0. Die einzige solche Menge ist $M=\emptyset$. Zusätzlich $\mathcal{P}(\emptyset)=\{\emptyset\}$, also gilt $|\mathcal{P}(\emptyset)|=|\{\emptyset\}|=1=2^0=2^{|\emptyset|}$.
- Induktionshypothese.

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

- Induktionsanfang. Sei Menge M beliebig, mit |M|=0. Die einzige solche Menge ist $M=\emptyset$. Zusätzlich $\mathcal{P}(\emptyset)=\{\emptyset\}$, also gilt $|\mathcal{P}(\emptyset)|=|\{\emptyset\}|=1=2^0=2^{|\emptyset|}$.
- Induktionshypothese. Sei $n \in \mathbb{N}$ und wir nehmen an

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \Big). \Big)$$

- Induktionsanfang. Sei Menge M beliebig, mit |M|=0. Die einzige solche Menge ist $M=\emptyset$. Zusätzlich $\mathcal{P}(\emptyset)=\{\emptyset\}$, also gilt $|\mathcal{P}(\emptyset)|=|\{\emptyset\}|=1=2^0=2^{|\emptyset|}$.
- Induktionshypothese. Sei $n \in \mathbb{N}$ und wir nehmen an dass $|\mathcal{P}(N)| = 2^n$

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \Big). \Big)$$

- Induktionsanfang. Sei Menge M beliebig, mit |M|=0. Die einzige solche Menge ist $M=\emptyset$. Zusätzlich $\mathcal{P}(\emptyset)=\{\emptyset\}$, also gilt $|\mathcal{P}(\emptyset)|=|\{\emptyset\}|=1=2^0=2^{|\emptyset|}$.
- Induktionshypothese. Sei $n\in\mathbb{N}$ und wir nehmen an dass $|\mathcal{P}(N)|=2^n$ für alle Mengen N

$$\forall n \Big(\forall M \big(|M| = n \to |\mathcal{P}(M)| = 2^n \big). \Big)$$

- Induktionsanfang. Sei Menge M beliebig, mit |M|=0. Die einzige solche Menge ist $M=\emptyset$. Zusätzlich $\mathcal{P}(\emptyset)=\{\emptyset\}$, also gilt $|\mathcal{P}(\emptyset)|=|\{\emptyset\}|=1=2^0=2^{|\emptyset|}$.
- Induktionshypothese. Sei $n \in \mathbb{N}$ und wir nehmen an dass $|\mathcal{P}(N)| = 2^n$ für alle Mengen N mit |N| = n.

• Induktionsbehauptung. Sei M eine Menge mit |M| = n + 1.

• Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.

• Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.

▶ Wähle $x \in M$ beliebig

• Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.

▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - lacktriangle Wir unterteilen alle Teilmengen von M in

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - ightharpoonup Wir unterteilen alle Teilmengen von M in (a) diejenigen,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - ▶ Wir unterteilen alle Teilmengen von M in
 (a) diejenigen, die x nicht enthalten,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - lacktriangle Wir unterteilen alle Teilmengen von M in
 - (a) diejenigen, $\,$ die x nicht enthalten, $\,$ und somit Teilmengen von N sind,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind. und

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und
 - (b) diejenigen,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - lacktriangle Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und
 - (b) diejenigen, die x enthalten

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - lacktriangle Wir unterteilen alle Teilmengen von M in
 - (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und
 - (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind,

Diskrete Strukturen | Vollständige Induktion und Induktionsbeweise

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - lacktriangle Wir unterteilen alle Teilmengen von M in
 - (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S eine Teilmenge von N ist.

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - ▶ Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S eine Teilmenge von N ist.
 - ▶ Wenn beispielsweise $M = \{1, 2, 3\}$

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - ▶ Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S eine Teilmenge von N ist.
 - \blacktriangleright Wenn beispielsweise $M = \{1, 2, 3\}$ und x = 3,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - ▶ Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S eine Teilmenge von N ist.
 - \blacktriangleright Wenn beispielsweise $M=\{1,2,3\}$ und x=3, dann ist $N=\{1,2\}$,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - ▶ Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S eine Teilmenge von N ist.
 - \blacktriangleright Wenn beispielsweise $M = \{1, 2, 3\}$ und x = 3, dann ist $N = \{1, 2\}$, und

- Induktionsbehauptung. Sei M eine Menge mit |M| = n + 1. Zu zeigen ist dass $|\mathcal{P}(M)| = 2^{n+1}.$
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - \blacktriangleright Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S
 - \blacktriangleright Wenn beispielsweise $M = \{1, 2, 3\}$ und x = 3, dann ist $N = \{1, 2\}$, und
 - (a) die Teilmengen.

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und
 - (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S eine Teilmenge von N ist.
 - ▶ Wenn beispielsweise $M = \{1, 2, 3\}$ und x = 3, dann ist $N = \{1, 2\}$, und (a) die Teilmengen, die x nicht enthalten,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - ▶ Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S eine Teilmenge von N ist.
 - Wenn beispielsweise $M = \{1, 2, 3\}$ und x = 3, dann ist $N = \{1, 2\}$, und (a) die Teilmengen, die x nicht enthalten, sind

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.

- ▶ Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S
- ▶ Wenn beispielsweise $M = \{1, 2, 3\}$ und x = 3, dann ist $N = \{1, 2\}$, und (a) die Teilmengen, die x nicht enthalten, sind \emptyset ,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - ▶ Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S eine Teilmenge von N ist.
 - ▶ Wenn beispielsweise $M = \{1, 2, 3\}$ und x = 3, dann ist $N = \{1, 2\}$, und (a) die Teilmengen, die x nicht enthalten, sind \emptyset , $\{1\}$,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - ▶ Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S eine Teilmenge von N ist.
 - ▶ Wenn beispielsweise $M = \{1, 2, 3\}$ und x = 3, dann ist $N = \{1, 2\}$, und (a) die Teilmengen, die x nicht enthalten, sind \emptyset , $\{1\}$, $\{2\}$,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - ▶ Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S eine Teilmenge von N ist.
 - ▶ Wenn beispielsweise $M = \{1, 2, 3\}$ und x = 3, dann ist $N = \{1, 2\}$, und (a) die Teilmengen, die x nicht enthalten, sind \emptyset , $\{1\}$, $\{2\}$, $\{1, 2\}$

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - ▶ Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S eine Teilmenge von N ist.
 - ▶ Wenn beispielsweise $M = \{1, 2, 3\}$ und x = 3, dann ist $N = \{1, 2\}$, und (a) die Teilmengen, die x nicht enthalten, sind \emptyset , $\{1\}$, $\{2\}$, $\{1, 2\}$ (b) die Teilemengen,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - lackbox Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S
 - ▶ Wenn beispielsweise $M=\{1,2,3\}$ und x=3, dann ist $N=\{1,2\}$, und (a) die Teilmengen, die x nicht enthalten, sind \emptyset , $\{1\}$, $\{2\}$, $\{1,2\}$ (b) die Teilemengen, die x enthalten,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - ▶ Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S
 - ▶ Wenn beispielsweise $M=\{1,2,3\}$ und x=3, dann ist $N=\{1,2\}$, und (a) die Teilmengen, die x nicht enthalten, sind \emptyset , $\{1\}$, $\{2\}$, $\{1,2\}$
 - (b) die Teilemengen, die x enthalten, sind

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - ▶ Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S
 - ▶ Wenn beispielsweise $M=\{1,2,3\}$ und x=3, dann ist $N=\{1,2\}$, und (a) die Teilmengen, die x nicht enthalten, sind \emptyset , $\{1\}$, $\{2\}$, $\{1,2\}$
 - (b) die Teilemengen, die x enthalten, sind $\{3\}$,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.

- Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S
- ▶ Wenn beispielsweise $M=\{1,2,3\}$ und x=3, dann ist $N=\{1,2\}$, und (a) die Teilmengen, die x nicht enthalten, sind \emptyset , $\{1\}$, $\{2\}$, $\{1,2\}$
- (b) die Teilemengen, die x mehr enthalten, sind $\{0, \{1, 3\}$

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.
 - Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S
 - eine Teilmenge von N ist.
 - Wenn beispielsweise $M=\{1,2,3\}$ und x=3, dann ist $N=\{1,2\}$, und (a) die Teilmengen, die x nicht enthalten, sind \emptyset , $\{1\}$, $\{2\}$, $\{1,2\}$ (b) die Teilemengen, die x enthalten, sind $\{3\}$, $\{1,3\}$, $\{2,3\}$,

- Induktionsbehauptung. Sei M eine Menge mit |M|=n+1. Zu zeigen ist dass $|\mathcal{P}(M)|=2^{n+1}$.
 - ▶ Wähle $x \in M$ beliebig und sei $N = M \setminus \{x\}$.

eine Teilmenge von N ist.

- ▶ Wir unterteilen alle Teilmengen von M in (a) diejenigen, die x nicht enthalten, und somit Teilmengen von N sind, und (b) diejenigen, die x enthalten und somit von der Form $S \cup \{x\}$ sind, wobei S
- Wenn beispielsweise $M=\{1,2,3\}$ und x=3, dann ist $N=\{1,2\}$, und (a) die Teilmengen, die x nicht enthalten, sind \emptyset , $\{1\}$, $\{2\}$, $\{1,2\}$ (b) die Teilemengen, die x enthalten, sind $\{3\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$.

 $\mathcal{P}(M)$

$$\mathcal{P}(M) = \mathcal{P}(N)$$

$$\mathcal{P}(M) = \mathcal{P}(N) \cup$$

$$\mathcal{P}(M) = \mathcal{P}(N) \cup \{S \cup \{x\} \mid S \in \mathcal{P}(N)\}.$$

$$\mathcal{P}(M) = \mathcal{P}(N) \cup \{S \cup \{x\} \mid S \in \mathcal{P}(N)\}.$$

$$|\mathcal{P}(M)|$$

$$\mathcal{P}(M) = \mathcal{P}(N) \cup \{S \cup \{x\} \mid S \in \mathcal{P}(N)\}.$$

$$|\mathcal{P}(M)| = |\mathcal{P}(N)| + |\mathcal{P}(N)|$$

$$\mathcal{P}(M) = \mathcal{P}(N) \cup \{S \cup \{x\} \mid S \in \mathcal{P}(N)\}.$$

$$|\mathcal{P}(M)| = |\mathcal{P}(N)| + |\mathcal{P}(N)| = 2 \cdot |\mathcal{P}(N)|$$

$$\mathcal{P}(M) = \mathcal{P}(N) \cup \{S \cup \{x\} \mid S \in \mathcal{P}(N)\}.$$

$$|\mathcal{P}(M)| = |\mathcal{P}(N)| + |\mathcal{P}(N)| = 2 \cdot |\mathcal{P}(N)| \stackrel{\mathsf{IH}}{=} 2 \cdot 2^n$$

$$\mathcal{P}(M) = \mathcal{P}(N) \cup \{S \cup \{x\} \mid S \in \mathcal{P}(N)\}.$$

$$|\mathcal{P}(M)| = |\mathcal{P}(N)| + |\mathcal{P}(N)| = 2 \cdot |\mathcal{P}(N)| \stackrel{\mathsf{IH}}{=} 2 \cdot 2^n = 2^{n+1}$$

$$\mathcal{P}(M) = \mathcal{P}(N) \cup \{S \cup \{x\} \mid S \in \mathcal{P}(N)\}.$$

$$|\mathcal{P}(M)| = |\mathcal{P}(N)| + |\mathcal{P}(N)| = 2 \cdot |\mathcal{P}(N)| \stackrel{\mathsf{IH}}{=} 2 \cdot 2^n = 2^{n+1} = 2^{|M|},$$

$$\mathcal{P}(M) = \mathcal{P}(N) \cup \{S \cup \{x\} \mid S \in \mathcal{P}(N)\}.$$

▶ Unter Beachtung der Disjunktheit gilt

$$|\mathcal{P}(M)| = |\mathcal{P}(N)| + |\mathcal{P}(N)| = 2 \cdot |\mathcal{P}(N)| \stackrel{\mathsf{IH}}{=} 2 \cdot 2^n = 2^{n+1} = 2^{|M|},$$

wobei $|\mathcal{P}(N)| = 2^n$.

$$\mathcal{P}(M) = \mathcal{P}(N) \cup \{S \cup \{x\} \mid S \in \mathcal{P}(N)\}.$$

▶ Unter Beachtung der Disjunktheit gilt

$$|\mathcal{P}(M)| \ = |\mathcal{P}(N)| + |\mathcal{P}(N)| \ = 2 \cdot |\mathcal{P}(N)| \ \stackrel{\mathsf{IH}}{=} 2 \cdot 2^n \ = 2^{n+1} \ = 2^{|M|},$$

wobei $|\mathcal{P}(N)|=2^n$. Nach dem Prinzip der vollständigen Induktion folgt die Behauptung.

$$\mathcal{P}(M) = \mathcal{P}(N) \cup \{S \cup \{x\} \mid S \in \mathcal{P}(N)\}.$$

Unter Beachtung der Disjunktheit gilt

$$|\mathcal{P}(M)| \ = |\mathcal{P}(N)| + |\mathcal{P}(N)| \ = 2 \cdot |\mathcal{P}(N)| \ \stackrel{\mathsf{IH}}{=} 2 \cdot 2^n \ = 2^{n+1} \ = 2^{|M|},$$

wobei $|\mathcal{P}(N)| = 2^n$. Nach dem Prinzip der vollständigen Induktion folgt die Behauptung.

Der Beginn der Induktion muss nicht bei n=0 liegen.

Der Beginn der Induktion muss nicht bei n=0 liegen. Beispiel:

Beweis.

Induktionsanfang.

Beweis.

• Induktionsanfang. Für n=3 haben wir $n^2=9>8=n+5$.

- Induktionsanfang. Für n = 3 haben wir $n^2 = 9 > 8 = n + 5$.
- Induktionshypothese.

- Induktionsanfang. Für n=3 haben wir $n^2=9>8=n+5$.
- Induktionshypothese. Sei n > 2 beliebig.

- Induktionsanfang. Für n = 3 haben wir $n^2 = 9 > 8 = n + 5$.
- Induktionshypothese. Sei n>2 beliebig. Dann $n^2>n+5$.

- Induktionsanfang. Für n = 3 haben wir $n^2 = 9 > 8 = n + 5$.
- Induktionshypothese. Sei n>2 beliebig. Dann $n^2>n+5$.
- · Induktionsbehauptung.

- Induktionsanfang. Für n = 3 haben wir $n^2 = 9 > 8 = n + 5$.
- Induktionshypothese. Sei n>2 beliebig. Dann $n^2>n+5$.
- Induktionsbehauptung. Zu zeigen ist $(n+1)^2 > (n+1) + 5$

- Induktionsanfang. Für n = 3 haben wir $n^2 = 9 > 8 = n + 5$.
- Induktionshypothese. Sei n>2 beliebig. Dann $n^2>n+5$.
- Induktionsbehauptung. Zu zeigen ist $(n+1)^2 > (n+1) + 5$
 - \blacktriangleright Wir haben $(n+1)^2 =$

- Induktionsanfang. Für n = 3 haben wir $n^2 = 9 > 8 = n + 5$.
- Induktionshypothese. Sei n > 2 beliebig. Dann $n^2 > n + 5$.
- Induktionsbehauptung. Zu zeigen ist $(n+1)^2 > (n+1) + 5$
 - ▶ Wir haben $(n+1)^2 = n^2 + 2n + 1$

- Induktionsanfang. Für n = 3 haben wir $n^2 = 9 > 8 = n + 5$.
- Induktionshypothese. Sei n>2 beliebig. Dann $n^2>n+5$.
- Induktionsbehauptung. Zu zeigen ist $(n+1)^2 > (n+1) + 5$
 - ▶ Wir haben $(n+1)^2 = n^2 + 2n + 1 > 0$

- Induktionsanfang. Für n = 3 haben wir $n^2 = 9 > 8 = n + 5$.
- Induktionshypothese. Sei n > 2 beliebig. Dann $n^2 > n + 5$.
- Induktionsbehauptung. Zu zeigen ist $(n+1)^2 > (n+1) + 5$
 - ▶ Wir haben $(n+1)^2 = n^2 + 2n + 1 \stackrel{\mathsf{IH}}{>} n + 5 + 2n + 1 >$

- Induktionsanfang. Für n = 3 haben wir $n^2 = 9 > 8 = n + 5$.
- Induktionshypothese. Sei n>2 beliebig. Dann $n^2>n+5$.
- Induktionsbehauptung. Zu zeigen ist $(n+1)^2 > (n+1) + 5$
 - ▶ Wir haben $(n+1)^2 = n^2 + 2n + 1 \stackrel{\mathsf{IH}}{>} n + 5 + 2n + 1 > (n+1) + 5$.

- Induktionsanfang. Für n=3 haben wir $n^2=9>8=n+5$.
- Induktionshypothese. Sei n > 2 beliebig. Dann $n^2 > n + 5$.
- Induktionsbehauptung. Zu zeigen ist $(n+1)^2 > (n+1) + 5$
 - ▶ Wir haben $(n+1)^2 = n^2 + 2n + 1$ $\stackrel{\mathsf{IH}}{>} n + 5 + 2n + 1 > (n+1) + 5$. Nach dem Prinzip der vollständigen Induktion

- Induktionsanfang. Für n=3 haben wir $n^2=9>8=n+5$.
- Induktionshypothese. Sei n > 2 beliebig. Dann $n^2 > n + 5$.
- Induktionsbehauptung. Zu zeigen ist $(n+1)^2 > (n+1) + 5$
 - ▶ Wir haben $(n+1)^2 = n^2 + 2n + 1 \stackrel{\mathsf{IH}}{>} n + 5 + 2n + 1 > (n+1) + 5$. Nach dem Prinzip der vollständigen Induktion folgt die Behauptung.

- Induktionsanfang. Für n=3 haben wir $n^2=9>8=n+5$.
- Induktionshypothese. Sei n > 2 beliebig. Dann $n^2 > n + 5$.
- Induktionsbehauptung. Zu zeigen ist $(n+1)^2 > (n+1) + 5$
 - ▶ Wir haben $(n+1)^2 = n^2 + 2n + 1 > n+5+2n+1 > (n+1)+5$. Nach dem Prinzip der vollständigen Induktion folgt die Behauptung.

• Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- Lösung:

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- · Lösung:
 - ► Induktionsanfang:

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- · Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- · Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ► Induktionshypotose:

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- · Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- · Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.
 - ► Induktionsbehauptung:

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- · Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.
 - ▶ Induktionsbehauptung: Zu zeigen ist,

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.
 - ▶ Induktionsbehauptung: Zu zeigen ist, dass $(n+1)! > 2^{n+1}$.

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.
 - ▶ Induktionsbehauptung: Zu zeigen ist, dass $(n+1)! > 2^{n+1}$.

$$(n+1)! = n! \cdot (n+1)$$

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.
 - ▶ Induktionsbehauptung: Zu zeigen ist, dass $(n+1)! > 2^{n+1}$.

$$(n+1)! = n! \cdot (n+1) > {}^{IH}$$

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.
 - ▶ Induktionsbehauptung: Zu zeigen ist, dass $(n+1)! > 2^{n+1}$.

$$(n+1)! = n! \cdot (n+1) \stackrel{IH}{>} 2^n \cdot (n+1)$$

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.
 - ▶ Induktionsbehauptung: Zu zeigen ist, dass $(n+1)! > 2^{n+1}$.

$$(n+1)! = n! \cdot (n+1) \stackrel{IH}{>} 2^n \cdot (n+1)$$

Da $n \geq 4$, gilt $n+1 \geq 2$,

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.
 - ▶ Induktionsbehauptung: Zu zeigen ist, dass $(n+1)! > 2^{n+1}$.

$$(n+1)! = n! \cdot (n+1) \stackrel{IH}{>} 2^n \cdot (n+1)$$

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.
 - ▶ Induktionsbehauptung: Zu zeigen ist, dass $(n+1)! > 2^{n+1}$.

 $2^n \cdot (n+1) >$

$$(n+1)! = n! \cdot (n+1) \stackrel{IH}{>} 2^n \cdot (n+1)$$

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- · Lösung:
 - ▶ Induktionsanfang: Sei n = 4, dann gilt $4! = 24 > 16 = 2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.
 - ▶ Induktionsbehauptung: Zu zeigen ist, dass $(n+1)! > 2^{n+1}$.

$$(n+1)! = n! \cdot (n+1) \stackrel{IH}{>} 2^n \cdot (n+1)$$

$$2^n \cdot (n+1) > 2^n \cdot 2 =$$

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- · Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.
 - ▶ Induktionsbehauptung: Zu zeigen ist, dass $(n+1)! > 2^{n+1}$.

$$(n+1)! = n! \cdot (n+1) \stackrel{IH}{>} 2^n \cdot (n+1)$$

$$2^n \cdot (n+1) > 2^n \cdot 2 = 2^{n+1}$$
.

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.
 - ▶ Induktionsbehauptung: Zu zeigen ist, dass $(n+1)! > 2^{n+1}$.

$$(n+1)! = n! \cdot (n+1) \stackrel{IH}{>} 2^n \cdot (n+1)$$

$$2^n \cdot (n+1) > 2^n \cdot 2 = 2^{n+1}$$
.

Es gilt also $(n + 1)! > 2^{n+1}$

- Beispiel: Für alle $n \in \mathbb{N}, n \ge 4$ gilt: $n! > 2^n$.
- Lösung:
 - ▶ Induktionsanfang: Sei n=4, dann gilt $4!=24>16=2^4$
 - ▶ Induktionshypotose: Sei $n \in \mathbb{N}, n \ge 4$ mit $n! > 2^n$.
 - ▶ Induktionsbehauptung: Zu zeigen ist, dass $(n+1)! > 2^{n+1}$.

$$(n+1)! = n! \cdot (n+1) \stackrel{IH}{>} 2^n \cdot (n+1)$$

$$2^n \cdot (n+1) > 2^n \cdot 2 = 2^{n+1}$$
.

Es gilt also $(n+1)! > 2^{n+1}$ und damit die obige Behauptung gilt für alle $n \in \mathbb{N}$.

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de