Session 8: SVD, spectral clustering on graphs

Optimization and Computational Linear Algebra for Data Science

Contents

- 1. Singular Value Decomposition
- 2. Graphs and Graph Laplacian
- 3. Spectral clustering

Midterm next week

- "Demo" available on Gradescope.
 - Thu. Oct. 29, the questions have to be downloaded from Gradescope between 00:01 AM and 9:59 PM.
 Time 'w NYC
 - **Duration:** 1 hour and 40 minutes to work on the problems + 20 minutes to scan and upload your work.
 - Upload your work as a single PDF.
 - In case the upload does not work for you, **email me your work**.

Singular Value Decomposition

Singular Value decomposition

Theorem

Let $A \in \mathbb{R}^{n \times m}$. Then there exists two orthogonal matrices $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ and a matrix $\Sigma \in \mathbb{R}^{n \times m}$ such that $\Sigma_{1,1} \geq \Sigma_{2,2} \geq \cdots \geq 0$ and $\Sigma_{i,j} = 0$ for $i \neq j$, that verify

Remarks

Low-rank approximation

How can we approximate a matrix A by a matrix of «small» rank?

② Compute the SVD: $A = U \sum V^T$ ② dook at the singular values.

(3) The matrix
$$A = 0$$
 $\left(\frac{\sigma_1}{\sigma_2} \right)$

is a "good" rank-2 approximation of A.

Graphs

Graph Laplacian

Definition

The Laplacian matrix of G is defined as

$$L = D - A.$$

A, D, L are all symmetric

Graph Laplacian

Definition

The Laplacian matrix of ${\cal G}$ is defined as

$$L = D - A.$$

For all $x \in \mathbb{R}^n$, $x^\mathsf{T} L x = \sum_{i \sim j} (x_i - x_j)^2$.

all edges of the graph

Properties of the Laplacian

Properties of the Laplacian

For all
$$x \in \mathbb{R}^n$$
, $x^TLx = \sum_{i \sim j} (x_i - x_j)^2$.

(G:)

 $x \in \text{Kell}$
 $x \in \text{Kell}$

La = 0 => x La = 0 if ackull) L. PSD Assume at La = 0 then 2 is a minimizer of five or Lo over $\mathbb{R}^n \setminus 204$ because $) \neq (n) = 0$ for all $0 \neq 0$ -> (z EKell)

Algebraic connectivity

Proposition

- The multiplicity of the eigenvalue 0 of L (i.e. the number of i such that $\lambda_i = 0$) is equal to the number of connected components of G.
- In particular, G is connected if and only if $\lambda_2 > 0$.

- λ_2 is sometimes called the «algebraic connectivity» of G and measures somehow how well G is connected.
- From now, we assume that G is connected, i.e. $\lambda_2>0$.

Exercise: show that λ_2 increases when one adds edges to G.

Spectral clustering with the Laplacian

Spectral clustering algorithm

Input: Graph Laplacian L, number of clusters k

- 1. Compute the first $\frac{k}{c}$ orthonormal eigenvectors v_1, \ldots, v_k of the Laplacian matrix L.
- 2. Associate to each node \underline{i} the vector $\underline{x_i} = (v_2(i), \dots, v_k(i))$.
- 3. Cluster the points x_1, \ldots, x_n with (for instance) the k-means algorithm.

The case of two groups

For k=2 groups:

- 1. Compute the second eigenvector v_2 of the Laplacian matrix L.
- 2. Associate to each node i the number $x_i = v_2(i)$.
- 3. Cluster the nodes in:

$$S=\{i\,|\,v_2(i)\geq\delta\}$$
 and $S^c=\{i\,|\,v_2(i)<\delta\},$ for some $\delta\in\mathbb{R}$. S=0

Cut of a partition

Let S C 21, __n/ we define the "cut" of S by:

$$\frac{6}{1}$$
 $\frac{1}{1}$ $\frac{1}{3}$ $\frac{1}{1}$ $\frac{1}$

We encode S by a vector
$$z \in \{+1, -1\}^n$$
 defined by:
$$z_{ij} = \begin{bmatrix} 1 & \text{if } i \in S \\ -1 & \text{otherwise} \end{bmatrix} \text{ in the example}$$

$$z = \begin{bmatrix} 1 \\ 2 \\ -1 \\ -1 \end{bmatrix}$$

Spectral clustering with the Laplacian

Minimal cut problem

Recall $x L x = \sum_{i = 1}^{n} (x_i - x_j)^2$

Hence:
$$cut(S) = \frac{1}{4} x^T L n$$
.

Goal: find S such that cot(s) is small or equivalently spind
$$x \in \lambda-1, 1_{1}^{n}$$
 such that at ln is small

we ash more over that $\#S = \#S^{C}$ i. e. $2 \perp \binom{1}{1}$ "two clusters

of equal sizes"

« Min-Cut » is NP-Hard

Goal: minimize $x^T L x$ subject to $\begin{cases} x \in \{-1,1\}^n \\ x \perp (1,\ldots,1). \end{cases}$

Issue: this problem is NP - Houd.

we basically have to compute at La

for each a \in 2-1, 14") 2" elements

Spectral clustering as a «relaxation»

Questions?

Questions?

