23

Breathing and Exchange of Gases

Importance of Respiratory systems:

- Cellular respiration is a catabolic process, so energy can release.
- In cellular respiration oxidation of glucose takes place by glycolysis, Krebs cycle and oxidative phophorylation.
- During the respiration process CO₂ is produced which toxic to cell. Hence it becomes a compultion to cell remove it. Sameway for oxidative phosphorylation cell has necessity to get oxygen.
- In Respiratory system this process is possible. This system has two major paths: (1) Inspiration, by which O₂ is accepted. (2) Expiration by which CO₂ is released.
- In body for the supplies O₂ and removal of CO₂ circulatory system and respiratory system are these.
- The respiratory system consists of organs that exchange gases between atmosphere and blood.
- Blood transports gases between lung and cells.
- The overall exchange of gases between atmosphere, blood and cell is called respiration in general.
- It is not proper for complete oxidation of glucose. **(1)**
 - (A) TCA Cycle
- (B) ETS
- (C) Fermentation
- (D) Glycolysis

- What is not true for human respiratory system? (2)
 - (A) CO₂ is removed by it and O₂ is obtained.
 - (B) It has two passage, Inspiration and expiration.
 - (C) It makes exchanges of gases possible at pulmonary level.
 - (D) It makes exchange of gases possible at cellular level.
- In human for the exchange of CO₂ and O₂ which system is linked with respiratory system? (3)
 - (A) Nervous system
- (B) Circulatory system (C) Digestive system
- (D) Excretory system
- Sequentially with which exchange of gases takes place, termed as breathing? (4)
 - (A) Atmosphere -blood -cells

(B) Blood -Atmosphere -cells

(C) Atmosphere -cells- blood

- (D) Blood cells atmosphere
- Role of blood in respiration in human (5)
 - (A) Connects exchanges of gases at pulmonary and cellular level
 - (B) Connects exchange of gases at atmospheric and pulmonary level
 - (C) Connects exchange of gases at atmospheric and cellular level
 - (D) All of above

Answers: (1-C), (2-D), (3-B), (4-A), (5-A)

Respiratory system of human: The respiratory system of human consists organs like nose, pharynx, larynx, trachea, bronchi and lungs.

- Nose: It has external portion jutting out from the face and an internal portion lying hidden inside the **(1)** skull. It is divided into external noses, nasal chamber and internal nosed.
 - External noses or Nostrils: Two nostrils are seperated by septums
 - Nosal chamber: The internal region of nose is a large cavity within the skull. Anteriorly it opens through external noses and posteriorly it communicates with the pharynx through internal noses. Each noses chamber is divided into their regions lower vestibular, middle respiratory and upper olfactory. The two nosal chambers are also separated by the nosal septum.

- (2) **Pharynx:** It is a tube about 12.5cm long, serving as a passage way for air and food, Pharynx is divided into three parts.
- (i) Nasopharynx: The upper most portion of the pharynx from which air passes.
- (ii) Osopharynx: The second portion of the pharynx, lies behind the buccal cavity from which air and food passes.
- (iii) Laryngo pharynx: The lowest portion of the pharynx. It extends downward and empties into oesophagus posteriorly and into the larynx (voice box) anteriorly from which air and food passes.
- (3) Larynx: It is a passage that connects the pharynx with the trachea. The leaf shaped piece of cartilaege called glottis is always remains open except during swallowing. The mucous membrane of the larynx contains vocal cords. It has ability to vibrate. This ability allows us to speech.
- (4) Trachea: It is about 12cm in length and 2.5cm in diameter. It extends from the larynx to the middle of the thoracic cavity, where it divides into right and left primary bronchi. It is a tubular passage way for air. The trachea is divided into right primary bronchus, which enters the right lung and left primary bronchus-which enters the left lung. The right primary bronchus is more vertical, shorter and wider than the left. Along the length in the trachea and bronchi at short distances 'C' shaped incomplete; cartilagenous rings occur. They keep the respiratory passage open and prevent it from blockage.
 - When primary bronchi enter into lungs, divide as follows. (In each lobe of lungs)
 - Primary bronchi divide in each lung lobe into secondary bronchi \rightarrow Tertiary bronchi or segmental bronchi divides further into bronchioles \rightarrow Bhronchioles further divide into terminal bronchioles ended into alveoli \rightarrow millions of alveoli in each lung, Each alveolus is sac like structure surrounded by pulmonary cell and enveloped by a net work of blorod capillaries.
 - Bronchial tree: It is arising by trachea and alveoli between network of tubules are present.
- (5) Lungs: The lungs are paired, cone shaped organs lying in the thoraeic cavity. Protected by rib-cage, The diaphragm is placed beneath them. Two layers collectively called the plural membrane covers each lung.
 - The outer layer is attached with the wall of thoracic cavity.
 - The inner layer covers, the lungs themselves.
 - The space between two layers contains a lubricating fluid secreted by the membranes. This fluid protects lungs against shock.

1 6 6	
Right lung	Left lung
(1) It is thickers, broader, longer and heavier.	(1) It is thinner, narrower, shorter and lighter.
(2) It has three lobes, (upper, lower and	(2) It has two lobes.(upper and lower lobes,
middle lobess which are demarkated by	which are demarkated by one fissure
two fissures one ablique and one horizontal)	(oblique)
(3) Cardiac notch in which the heart lies is not present.	(3) Cardiac notch is present.

	_				
	(3) Cardiac notch in which	the heart lies is not presen	t. (3)	Cardiac notch is j	present.
(6)	How many organs include	d in respiratory system pe	rform	functions other than	respiration?
	(A) 2	(B) 1	(C) .	3	(D) 4
(7)	Large part of nose enclose	ed by bone of cranium			
	(A) External nares	(B) Nasal chamber	(C) I	Internal nares	(D) A and C both
(8)	What is connected by inte	rnal nares?			
	(A) Nasal chamber - phar	ynx	(B) 1	Nasal chamber - lary	/nx
	(C) Nasal chamber - track	nea	(D)	Nasal chamber - oes	sophagus
(9)	Which region of nasal cha	mber is near to internal na	ares?		
	(A) Pre olfactory region	(B) Respiratory regi	ion ((C) A and B	(D) olfactory region
(10)	Number of vestibular region	on in nose.			
	(A) 2	(B) 4	(C)	6	(D) 1

(11)	Which region of pharynx,t	ransport air and food?			
	(A) Nasopharynx	(B) Buccopharynx	(C)) Larynx	(D) B and C
(12)	Which part of pharynx ope	ens posteriorly into oesopl	hagu	s ?	
	(A) Buccopharynx	(B) Laryngo -pharynx	(C)) Nasopharynx	(D) Larynx
(13)	Normally epiglottis remain	s closed in which condition	on?		
	(A) During Yawning	(B) While drinking water	er	(C) Speaking	(D) A and B
(14)	What is length from laryny	to the midregion of thora	acic (cavity?	
	(A) 12.5 cm	(B) 2.5 cm	(C)) 12 cm	(D) 24.5 cm
(15)	Length of respiratory pass	age, having 'C' shaped ca	ırtila	genous ring.	
	(A) 12 cm	(B) Less than 12 cm	(C)) 2.5 cm	(D) More than 12 cm
(16)	Total mumber of secondar	y bronchioles.			
	(A) 2	(B) 5	(C)) 3	(D) 4
(17)	Bronchiole, totally located	in pulmonary lobules			
	(A) Secondary	(B) Primary	(C)) Tertiary	(D) A and B
(18)	Having same number as a	lveoli			
	(A) Secondary bronchiole		(B)	Tertiary bronchiole	
	(C) Terminal bronchiole		(D	Primary bronchiole	
(19)	It is improper for Bronchia	al tree.			
	(A) Primary bronchiole		(B)	Tertiary bronchiole	
	(C) Secondary bronchiole		(D) Trachea		
(20)	What is proper for lungs w	vith median fissure?			
	(A) Small and light		(B)) Parallel fissure	
	(C) Presence of cardiac no	otch	(D) Thin and narrow		
(21)	What is proper for both lun	ngs?			
	(A) cardiac notch	(B) Median fissure	(C)	Oblique fissure	(D) All
(22)	Cartilagenous tissue in the	structure-			
	(A) Trachea	(B) Bronchus	(C)	Primary bronchiole	(D) A and C both
(23)	What is proper for left bro	nchus compared to right	bron	chus?	
	(A) Narrow	(B) More straight	(C)) Short	(D) (B) and (C)
1	swers: (6-C), (7-B), (8-		-	(12-B), (13-B), (1	4-C), (15-D), (16-B),
(17-	C), (18-C), (19-D), (20-1)				
	Mechanism of respiration	on, respiratory volumes	s an	d capacities, transp	ortation of respiratory
	gases:	:h	- 41- i-		
	Respiration process: It	is phenomenon of brea	atnii	ıg.	
	Breathing:	s of drown in oir from the	otes	asphara taward lungs	is called inhalation
	• Inhalation: The proces			_	
	• Exhalation : The proces	ss of expolatation of all H	OIII I	ungs mio me annospi	icie is caneu exilalation.

• Inhalation + exhalation = Breathing

- In this process diaphargm and ribs play important role.
- The diaphragm is dome shaped separates the thoraic cavity and abdominal cavity. It is attached anteriorly with sternum and at its posterior, it remains attached to the vertebral column.
- Inter costal muscles are associated with the ribs.

	Inspiration process		Exhalation process
_	Contraction of diaphragm muscles.	_	Relaxation of diaphragm muscles.
-	The diaphragm is pulled down wards.	_	The diaphragm is more upwards.
-	The size of thoracic cavity is increase.	_	The size of thoraic cavity is decrease.
_	The partial pressure of air in lungs is reduced.	-	The partial pressure of air in lungs increases by the contraction of lungs.
_	Air from atmosphere move into lungs.	-	Under such pressure the air within the lungs goes out into the atmosphere.
-	Exchanges of O ₂ -CO ₂ in alvadli	_	CO ₂ contain air removed from the alveolli.
-	Ribcage moves upper and out side.	_	Ribcage moves lower and interior side.
_	In rapid inhalation process muscles of neck also plays in important role.	-	In rapid exhalation process muscles of abdominal also plays important role.

Respiratory volumes and capacities: Many factors effect respiratory capacity viz: Person's age, size, sex and physical conditions.

- (1) **Tidal Volume (TV):** Normal quiet breathing moves approximately 500 ml of air into and out of the lungs with each breath. This volume is referred as a tidal volume (TV).
- (2) Inspiratory Reserve Volume (IRV): The amount of air that can be inhaled forcibly over the normal (tidal) volume is the IRV. Normally IRV is between 2500 ml to 3000 ml.
- (3) Exparatory Reserve Volume (ERV): The amount of air that can be forcibly exhaled after a normal (tidal) expiration is known as ERV. The ERV is approximately 1000 ml to 1100 ml.
- (4) Residual volume (RV): It is the amount of air remains in the lungs after a forcible expiration. The approximately RV is 1100 ml to 1200ml.
- (5) Inspiratory Capacity (IC): It is the total volume of air which can be inhaled by a person after normal expiration i. .e IC is a sum of TV and IRV. It is about 3000 ml to 3500 ml.
- **(6) Expiratory Capacity (EC) :** It is the total volume of air which can be exhaled by a person normal inspiration i.e. EC is a sum of TV and ERV. It is about 1500 ml to 1600 ml.
- (7) Functional residual capacity (FRC): It is a volume of air that will remain in the lungs after normal expiration. FRC is the sum of ERV and RV. FRC is about 2100 ml to 2300 ml.
- (8) Vital Capacity (VC): It is the total of air which can be breathe by a person. The VC is the sum of TV, RV and ERV, VC is about 4000 ml to 4600 ml.
- (9) Total Lung Capacity (TLC): It is the amount of air in the lungs and respiratory passage after a maximum inspiration. The TLC is the sum of TV, IRV, ERV or VC + RV. TLC is about 5100 ml. to 5800 ml.

Transport of respiratory gases:

- The interstitial fluid makes possible exhanges between alveoli and blood.
- Here transport of O₂ and CO₂ by simple diffusion.
- The partial pressures (in mm Hg) of O₂ and CO₂ at different parts is compared with atmosphere as under.

Respiratory	Atmospheric	Alveoli	Blood	Blood	Tissues
gas	Air		(deoxygenated)	(oxygenated)	
O_2	159	104	40	95	40
CO ₂	0.3	40	45	40	45

L	2			
(24)	Diaphragm is conn	ected with on its dorsal	side.	
	(A) Ribs	(B) Sternum	(C) Vertebral column	(D) Femur
(25)	Process associated	with breathing.		
	(A) Contraction of	diaphragm muscle	(B) Relaxation of diaph	nragm muscle
	(C) Partial pressure	e of air increases in lungs	(D) Decreases size of	thoracic cavity
(26)	When diaphragm is	s pushed up, process occurs is	S	
	(A) Contraction of	diaphragm muscles	(B) Relaxation of diap	hragm muscles
	(C) Diaphragm is p	ushed down	(D) Increases size of the	noracic cavity
(27)	Which situation is	observed when diaphragm cor	ntracts?	
	(A) Decreases size	of thoracic cavity, partial pre	ssure of air increases in lun	gs.
	(B) Size of thoraci	c cavity decreases, partial pre-	ssure of air decreases in lun	igs.
	(C) Size of thoracio	c cavity increases, partial pres	sure of air increases in lung	SS.
	(D) Size of thoraci	c cavity increases, partial pres	ssure of air decreases in lun	gs.
(28)	Contraction and rel	axation of diaphragm is seque	entially connected with which	ch process?
	(A) Exhalation - Inl	nalation (B) Inhalation - I	nhalation	
	(C) Inhalation - Exh	nalation (D) Exhalation -	Exhalation	
(29)	When breathing pro	ocess is slow?		
	(A) Anger	(B) Excersing	(C) Excited condition	(D) Sleeping
(30)	Phenomenon, which	h do not affect respiratory cap	pacity.	
	(A) Age	(B) Size	(C) Caste	(D) Physical condit
(31)	Total volume of air	, normaly inhalation and force	fully taken is	
	(A) ERV	(B) IRV	(C) RV	(D) IC
(32)	What is obtained w	hen TLC - FRC ?		
	(A) EC	(B) IC	(C) VC	(D) RV
(33)	What is obtained in	1 EC-TV + RV ?		
	(A) VC	(B) TLC	(C) FRC	(D) IC
34)	What is volume of	air by VC - IC ?		
	(A) 2500 to 3000 m	(B) 4000 to 4600 ml	(C) 1000 to 1100 ml	(D) 3000 to 3500 m
(35)	Approximate volun	ne of air, coming out during sn	eezing?	
	(A) 1500 to 1600 m	(B) 1000 to 1100 ml	(C) 3000 to 3500 ml	(D) 2100 to 2300 m
(36)	Total volume of air	taken by person during breatl	hing is	
	(A) EC	(B) VC	(C) IC	(D) FRC

(37)	What has largest volume	?				
	(A) EC	(B) ERV	(C) FRC	(D) RV		
(38)	Air entering during yawni	ing in lungs has volume	·····			
	(A) EC	(B) IC	(C) VC	(D) TLC		
(39)	During excessive excercis	se air taken by person and	given out, volume is			
	(A) 3000 to 3500 ml	(B) 1500 to 1600 ml	(C) 5100 to 5800 ml	(D) 4000 to 4600 ml		
(40)	Exchange of O ₂ and CO ₂	between blood and tissue	cells occurs by			
	(A) Cerebro spinal fluid	(B) Coelomic fluid	(C) Inter cellular fluid	(D) Lymph		
(41)	Exchange of gases at resp	piratory surface occurs by	which process?			
	(A) Simple diffusion	(B) Fascilitated diffusion	n (C) Active transport	(D) All		
(42)	How less mm Hg is partia	al pressure of O ₂ in alveol	us than atmosphere?			
	(A) 104	(B) 159	(C) 5	(D) 55		
(43)	Blood Capillary having si	milar partial pressure of C	CO ₂ as that of alveolus.			
	(A) Pulmonary artery	(B) Hepatic portal vein	(C) Pulmonary vein	(D) Renal vein		
(44)	Partial pressure of O ₂ in b	blood of left auricle				
	(A) 40	(B) 95	(C) 45	(D) 104		
(45)	Difference of partial pres	sure of CO ₂ mm hg betwe	en pulmonary artery and	renal artery is		
	(1) Left ventricle	(2) Right ventricle	(3) Pulmonary artery	(4) Pulmonary vein		
	(5) Hepatic artery	(6) Hepatic portal vein	(7) Different vein	(8) Renal vein		
	(A) 1, 3, 5, 7,	(B) 1, 3, 5, 6, 8	(C) 2, 3, 5, 6, 8	(D) 1, 4, 5, 7		
(46)	What is difference of part	tial pressure of CO ₂ mm H	Ig between pulmonary ar	tery and Renal artery?		
	(A) 40	(B) 95	(C) 45	(D) 104		
Ans	swers : (24-C), (25-A), (26	6-B), (27-D), (28-C), (29-	·D), (30-C), (31-D), (32-	B), (33-C), (34-C), (35-		
A),	(36-B), (37-C), (38-B), (3	9-D), (40-C), (41-A), (42	-D), (43-C), (44-B), (45-	C), (46-D)		
	Transport of O ₂ in the l	olood :				
	• Nearly 97% O ₂ is transp	ported through RBCs.				
	• Haemoglobin, a respiratory pigment, present in RBCs is responsible for transport of O2; Each RBC					
	transports around one bill	ion molecules of O ₂ .				
Reac	tions at respiratory surf	ace:				
•	$H + Hb \rightarrow H \cdot HB$ (Haemo	globinic acid)				
•	$H.Hb + O_2 \rightarrow H·Hb O_2(C)$	Oxyhaemoglobinic acid)				
•	$\text{H.HbO}_2 + \text{KHCO}_3 \rightarrow \text{K}$	$HbO_2 + H_2CO_3$				
•	Thus, O ₂ is transported in a form of potassium oxyhaemoglobin (KHbO ₂) near tissue surface KHbO ₂					

— 467 —

splits to release Potassium haemoglobin and oxygen.

 $\text{KHbO}_2 \rightarrow \text{KHb} + \text{O}_2$ (Near tissue surface)

(47)	Transport of O_2 takes place by						
	(A) RBC	(B) WBC	(C) Blood plasma	(D) A and C			
(48)	How many O ₂ molecules	How many O_2 molecules are carried by one RBC ?					
	(A) 10^7	(B) 10^9	(C) 10^8	(D) 10^6			
(49)	Where is HHb Present?						
	(A) At the respiratory surface in RBC of Blood.						
	(B) Blood Surrounding ti	(B) Blood Surrounding tissue cells.					
	(C) Respiratory surface b	plood plasma.					
	(D) Blood plasma surrour	nding tissue.					
(50)	Which component is form	med in the blood by O_2 at	respiratory surface?				
	(A) HHb	(B) KHCO ₃	(C) KHbO ₂	(D) HHbO ₂			
(51)	Which part of the Hb acc	cepts O ₂ ?					
	(A) R - Group	(B) Fe^{+2}	(C) NH ₂ - Group	(D) COOH - Group			
(52)	By which process potasit	ım oxyhaemoglobin is for	med in R.B.C?				
	(A) $HHbO_2 + H_2Co_3$	(B) $KHCo_3 + H_2Co_3$	(C) $HHbO_2 + KHCO_3$	(D) $HHbO_2 + KC1$			
(53)	How much O ₂ is transpor	ted in the form of KHbO	?				
	(A) 100 %	(B) 3 %	(C) 97 %	(D) 70 %			
(54)	Which is correct option for transport of O_2 from respiratory surface to tissue cells?						
	(A) $O_2 \rightarrow KHbO_2 \rightarrow HHbO_2 \rightarrow O_2$		(B) $O_2 \rightarrow HHbO_2 \rightarrow I$	$\text{KHbO}_2 \rightarrow \text{O}_2$			
	(C) $O_2 \rightarrow KHCO_3 \rightarrow$	$\mathrm{HHbO_2} \rightarrow \mathrm{O_2}$	(D) $O_2 \rightarrow H_2CO_3 \rightarrow KHbO_2 \rightarrow O_2$				
(55)	Reactant at respiratory s	urface for carbonic anhyo	Irase:				
	(A) CO ₂	(B) H_2O	(C) H_2CO_3	(D) A and B			
(56)	Which is proper option for	or transport of O ₂ ?					
	(A) KHbO ₂	(B) NH ₂ HPO ₄	(c) NaH ₂ PO ₄	(D) HHbO ₂			
Ans	wers: (47-D), (48-B),	(49-A), (50-D), (51-B),	(52-C), (53-C), (54-B),	(55-C), (56-A)			
Tran	sport of CO, in blood:						
•	- 2	ellular respiration in cells	s diffuses into the blood w	vithin the canillaries. It is			
	transported in two forms		, diffuses into the blood w	remir the capmanes. It is			
•	(1) Physical solution and						
•	(2) Chemical compound						
(1)	In a form of physical solu	ution: About 10% of CO ₂	2				
•	Combines chemically wi	Combines chemically with water of plasma forming carbonic acid.					

- (1) CO₂ + H₂O ⇌ H₂CO₃ (Carbonic acid) Any increase in its concentration causes the disassociation of H₂CO₃ into hydrogen ion and bicarbonate ion H₂CO₃ ⇌ H⁺ + HCO₃⁻
 If all amout of Co₂ is transported by blood streams. pH of blood would be lowered from its normal level. i.e. 7.4 about 4.5 This would be instantly fatal.
- (2) In a form of chemical compound : (In RBCs)
- (A) Carbamino compounds : (20% Nearly)
 CO₂ + Hb.NH₂ → Hb.NH.COOH (carbamino haemoglobin)

(B) As a bicarbonate form (Nearly 70%)

Y

- $CO_2 + H_2O \xrightarrow{\text{Carbonic}} H_2CO_3$ $H_2CO_3 + KHb \rightarrow KHCO_3 + HHb$ (Thus maintain the pH of RBS)
- Wall of RBC is Permeable for negative ions (CI⁻, HCO₃⁻) while impearmiable for positive ions. (Na⁺, K⁺)
- In RBC, by the KHCO₃ increase the alkalinity of RBC so Cl⁻ shifting is needed for decrease alkalinity.
- Chloride shifting:(surrounding to tissue cell)

- In Blood plasma
- By the phosphate buffer
 Na₂ HPO₄ + H₂CO₃ → NaHCO₃ + NaH₂PO₄
 (Bisodium sodium bihydrogen phosphate)
 Hydrogen phosphate
- By the blood proteins :

$$NaPr + H_2CO_3 \rightarrow NaHCO_3 + HPr$$

(sodium protein) (proteinic acid)

- By the chloride shifting (surrounding to tissue need)
- By the chloride shifting (surrounding to tissue cell)

$$Cl^{-} \leftarrow Cl^{-} + Na^{+} \leftarrow NaCl$$

$$KHCO_{3} \rightarrow K^{+} + HCO_{3}^{-} \rightarrow HCO_{3}^{-}$$

$$K^{+} + Cl^{-} \rightarrow KCl$$

$$Na^{+} + HCO_{3}^{-} \rightarrow NaHCO_{3}$$

- RBC on respiratory surface has HHb, KCl and Hb.NH COOH.
 - $\text{HHb} + \text{O}_2 \rightarrow \text{HHbO}_2$

- Blood plasma on respiratory surface, it has NaHCO₃
- Chloride reshifting (From respiratory surphase to lungs)

$$KCI \rightarrow K^{+} + CI^{-} \longrightarrow CI^{-}$$

$$HCO_{3}^{-} \leftarrow HCO_{3}^{-} + Na^{+} \leftarrow NaHCO_{3}$$

$$K^{+} + HCO_{3}^{-} \rightarrow KHCO_{3}$$

$$Na^{+} + CI^{-} \rightarrow NaCI$$

Released CO₂ on respiratory surface (lungs)

•
$$H_2CO_3 \rightarrow H_2O + CO_2 \uparrow$$

•
$$2KHCO_3 \rightarrow K_2CO_3 + H_2O + CO_2 \uparrow$$

•
$$2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2 \uparrow$$

$$\bullet \; \mathsf{HbNHCOOH} \to \mathsf{HbNH}_2 + \mathsf{CO}_2 \, {\uparrow}$$

(57)	How much CO ₂ is brought at respiratory surface by blood plasma?					
	(A) 70	(B) 90	(C) 30	(D) 80		
(58)	In which form CO ₂ is no	ot transported at respirator	ry surface?			
	(A) NaHCO ₃	(B) KHCO ₃				
	(C) Physical Solution	(D) Carbamino haemo	globin			
(59)	Reactant for carbonic an	hydrase in blood plasma s	surrounding tissue cells.			
	(A) CO ₂	(B) H_2CO_3	(C) CO ₂ and H ₂ O	(D) None		
(60)	Which are sequential cha	anges during chloride shif	t and reshift?			
	(A) NaCl \rightarrow Cl ⁻ \rightarrow k	$CCI \rightarrow CI^{-} \rightarrow NaCl$	(B) NaCl \rightarrow Cl ⁻ \rightarrow N	$IaCl \rightarrow CI^{-} \rightarrow KCl$		
	(C) $KCl \rightarrow Cl^- \rightarrow Na$	$aCl \rightarrow CI^{-} \rightarrow KCl$	(D) KCl \rightarrow Cl ⁻ \rightarrow KC	$Cl \rightarrow CI^{-} \rightarrow NaCl$		
(61)	Removal of CO ₂ by bloc	od plasma at respiratory s	urface.			
	(A) $2\text{NaHCO}_3 \rightarrow \text{Na}_3$	$_{2}CO_{3} + H_{2}O + CO_{2}$	(B) $Hb \cdot NH \cdot COOH \rightarrow$	\cdot Hb·NH ₂ + CO ₂		
	(C) $H_2CO_3 \rightarrow H_2O +$	· CO ₂	(D) 2 KHCO ₃ \rightarrow K ₂ C	$\mathrm{CO}_3 + \mathrm{H}_2\mathrm{O} + \mathrm{CO}_2$		
(62)) Which components are present in RBC flowing in blood from pulmonary artery?					
	(1) Hb.NH.COOH (2) I	KCl (3) NaHCO ₃ (4) KHO	CO ₃ (5) HHb (6) KHbO ₂	(7) H2CO3		
	(A) 1, 2, 3, 6,	(B) 1, 2, 5	(C) $1, 2, 4, 5, 7$	(D) 1, 2, 4, 5, 6, 7		
(63)	Buffer component prese	nt in blood plasma:	•			
	(A) NaH ₂ PO ₄	(B) NaHCO ₃	(C) Na_2HPO_4	(D) KHCO ₃		
(64)	During transport of CO ₂	in blood formation and di	ssociation of Nacl, Sequen	tially as -		
	(A) tissue cell and respi	ratory surface				
	(B) respiratory surface a	and cell				
	(C) tissue cell and tissue	cell				
	(D) respiratory surface a	and respiratory surface				
(65)	During backshift of chlo	ride, CI ⁻ joins with which	component in blood plasm	a?		
	(A) KCl	(B) KHCO ₃	(C) NaCl	(D) NaHCO ₃		
(66)	Source of necessary CI	for chloride shift is				
	(A) KCl	(B) HCl	(C) NaCl	(D) NH ₄ Cl		
(67)	Transport of CO ₂ by blo	ood plasma as chemical co	omposition by			
	(A) Na ₂ HPO ₄	(B) Cl ⁻ Shift	(C) NaPr	(D) Hb.NH ₂		
(68)	If all CO ₂ is transported in	in the form of physical sol	ution, what will be pH of b	plood?		
	(A) 7.4	(B) 4.5	(C) 8.5	(D) 11.9		
(69)	CI ⁻ from blood plasma,	enters RBC, in exchange	of which component?			
	(A) HCO_3^-	(B) H ⁺	(C) K ⁺	(D) Na ⁺		
1	swers: (57-D), (58-B),	(59-D), (60-C), (61-A),	(62-B), (63-C), (64-B),	(65-D), (66-C), (67-D),		

• Respiratory center / (s) gets impulses from substances which lying on lungs.

Disorders of respiratory systems:

- (1) Bronchitis:
- Causes: infection smoking.
- Symptoms: regular coughing with thick and large amount of phlegm Yellowish / greenish like cough
 - burning sensation in trachea. Prevention Away from the smoke, chemical and pollutants
 - Treatment : By antibiotics.
- (2) Asthma:
- Causes: Allergenes in air.

Symptoms: The muscles wall of tracheal branches remain constantly agitated undergo spasmic contraction - repeated coughing out of phlagm.

Difficulty in breathing - suffocation in trachea.

- Prevention: Avoiding the foreign subtance or allergens.
- Treatment: With suitable antibiotic, antihistamine drugs.

(3)	• Emphysema : causes : Smoking and chronic bronchitis.						
	• Symptoms : lost elastic	city of alveoli - after inhalat	ion alveoli are full - difficu	lty in breathing, suffocatia			
	• Side effect: The heart and brain do not get enough O ₂ .						
	• Prevention : Avoiding of smoking and pollutants.						
	• Teatment : Use of antibiotics and tracheal dialatory drugs. once it occurs, the obtained, there is no permanent treatment.						
(4)	Pneumonia-Causes : S	treptococcus Pneumonia					
	• Symptoms : An acute WBCs, become defanct	infection of the alveoli - a	lveoli of lungs becomes fi	lled with fluid and dead I			
	• Children, old individua	als and AIDS - patients are	susceptible to this disease.				
	• Treatment : with antibio	otics					
(5)	Occupational lung disc	ease:					
	Causes: exposure of har	mful gas and dust					
	Examples: Silicosis and	asbestosis					
(70)	Respiratory centre of me	edulla oblongata sends mes	ssage to				
	(A) diaphragm muscle	(B) Intercostal muscle	(C) Pulmonary muscle	(D) A and B both			
(71)	Where is location of resp	piratory centre with two fol	ds?				
	(A) cerebrum	(B) Brain stem	(C) cerebellum	(D) Diencephalon			
(72)	Chemical regulation of breathing is not regulated by amount of						
	(A) CO ₂ in artery	(B) CO ₂ into cerebr	o spinal fluid				
	(C) A and B both	(C) A and B both (D) O ₂ in cerebrospinal fluid					
(73)	Chemical receptors chec	ks amount of in bloo	od				
	(A) CO_2 , O_2	(B) CO ₂ , O ₂ and pH	(C) CO ₂	(D) O ₂			
(74)	In treatment of which dis	sease antihistamine drugs a	nre given ?				
	(A) amphisema	(B) Asthama	(C) Asbestosis	(D) Bronchitis			
(75)	Due to which disease, fu	nctions of brain and heart	is hampered?				
	(A) Asthama	(B) Pneumonia	(C) Amphysema	(D) Bronchitis			
(76)	Which disease do not oc	cur due to infection of Bac	teria or virus ?				
	(A) Pneumonia	(B) Asbestosis	(C) Bronchitis	(D) All of above			
(77)	Alveolus loses elasticity	and alvelous filled with liq	uid are symptoms of which	n disease ?			
	(A) Amphysema - Astha	ıma	(B) Amphysema - Bronchitis				
	(C) Pneumonia - Amphy	sema	(D) Amphysema - Pneu	monia			
(78)	symptom of bro	onchitis.					
	(A) Suffocation in Bronc	ehus	(B) Inflammation, irritation in bronchus				
	(C) Destruction of alveoli (D) alveoli remain filled with air						
(79)	Probability of which resp	piratory related disease pos	sibly occur in HIV infecte	ed person?			
	(A) Bronchitis	(B) Asthma	(C) Pneumonia	(D) Amphysema			
(80)	Constant contraction of	tracheal muscle is symptor	n of disease.				
	(A) Asthma	(B) Amphysema	(C) Bronchitis	(D) Asbestosis			

- (81) It is symptom of Bronchitis.
 - (A) Alveoli loses elasticity.
 - (B) Alveoli filled with liquid and WBC.
 - (C) Expulsion of thick, greenish yellow cough in large quantity.
 - (D) Mostly difficulty in exhalation.

Answers: (70-D), (71-B), (72-D), (73-B), (74-B), (75-C), (76-B), (77-D), (78-B), (79-C), (80-A),

Column type questions - Select proper option.

(82) Column -I

Column-II

(1) Pre-olfactory region (P) upper region

(A) 1 - R, 2 - Q, 3 - P

- (2) Olfactory region
- (Q) middle region

(B) 1 - P, 2 - R, 3 - Q

- (3) Respiratory region
- (R) lower region

- (C) 1 R, 2 P, 3 O,
- (D) 1 Q, 2 P, 3 R

(83) Column -I

Column-II

- (1) Pharynx
- (P) Opens in pharynx

(A) 1 - R, 2 - O, 3 - S, 4 - P

- (2) Larynx
- (Q) Connects pharynx with trachea
- (B) 1 R, 2 O, 3 P, 4 S

- (3) Trachea
- (R) Opens in larynx and oesophasus
- (C) 1 R, 2 -P, 3 S, 4 Q

- (4) Internal nares
- (S) Gives passage to air towards trachea (D) 1 R, 2 S, 3 Q, 4 P
- (84) Column -I Column-II
 - (1) Primary bronchiole
- (P) Branch entering in each lobules of lungs
- (A) 1- O, 2 R, 3 T, 4 P

- (2) Tertiary bronchiole
- (Q) Branch entering into lungs
- (B) 1 O, 2 S, 3 P, 4 T

- (3) Secondary bronchiole (R) Branch forming trachea (S) Branch forming terminal end
- (C) 1-Q, 2 R, 3 P, 4 T (D) 1- Q, 2 - R, 3 - P, 4 - S

(T) Branch ending in alveolus

(85) Column -I

Column-II

(1) Right lung

(4) Trachea

- (P) Contraction of diaphragm muscles (A) 1 S, 2 R, 3 P, 4 Q

- (2) Left lung
- (Q) Relaxation of diaphragm muscles (B) 1 R, 2 S, 3 P, 4 Q

- (3) Inhalation
- (R) Two fissures

(C) 1 - R, 2 - S, 3 - O, 4 - P

- (4) Exhalation
- (S) One fissure

(D) 1 - S, 2 - R, 3 - O, 4 - P

(86) Column -I

Column-II

(1) Volume of air, entering into lungs and coming out, during normal breathing

(P) 500 ml (Q) ERV

(2) Residual air after forceful exhalation, in lungs

- (R) 2500 to 3500 ml
- (3) Amount of air, expelled forcefully from lungs after normal exhalation
- (S) RV

- (4) Amount of air, taken by lungs after normal inhalation
 - (A) (1-P), (2-S), (3-R), (4-Q)

(B) (1-P), (2-Q), (3-S), (4-R)

(C) (1-P), (2-S), (3-Q), (4-R)

(D) (1-P), (2-R), (3-S), (4-O)

(87)	Column -I	Column-II	
	(1) TLC - $RV =$	(P) FRC	(A) 1 - R, 2 - S, 3 - Q, 4 - P
	(2) TLC - FRC =	(Q) EC	(B) 1 - R, 2 - S, 3 - P, 4 - Q
	(3) TLC - IC =	(R) VC	(C) 1 - R, 2 - Q, 3 - P, 4 - S
	(4) TLC - (IRV - RV) =	(S) IC	(D) 1 - R, 2 - P, 3 - S, 4 - Q
(88)	Column -I	Column-II	
	(1) HHbO ₂	(P) Haemoglobinic acid	(A) 1 - R, 2 - U, 3 - T, 4 - S
	(2) KHbO ₂	(Q) Disodium hydrogen phosphate	(B) 1 - P, 2 - U, 3 - T, 4 - S
	(3) NaH ₂ PO ₄	(R) Oxyhaemoglobinic acid	(C) 1 - R, 2 - U, 3 - Q, 4 - S
	(4) H.Pr	(S) Proteonic acid	(D) 1 - S, 2 - U, 3 - T, 4 - R
		(T) Sodium hydrogen phosphate	
		(U) Potassium oxyhaemoglobin	
(89)	Column -I	Column-II	
	(1) Silicosis	(P) Irritation, burning sensation in bron	nchus. (A) 1 - R, 2 - T, 3 - P, 4 - Q, 5 - S
	(2) Asthama	(Q) Recurrence of bronchitis	(B) 1 -R, 2 -T, 3 -P, 4 -S, 5 - Q
	(3) Pneumonia	(R) Professional hazards	(C) 1 -R, 2 -T, 3 -S, 4 -Q, 5 - P
	(4) Amphisema	(S) Acute infection of aveoli	(D) 1 -T, 2 -R, 3 -S, 4 - Q, 5 - I
	(5) Bronchitis	(T) Allergic disease	
Ans	swers : (82-C), (83-A), (8	84-D), (85-B), (86-C), (87-B), (88-A),	(89-C)
	A - Statement, R - Rea	nson type questions	
	Select answers for que	estions given below from the follow	ing options:
	(A) A and R true and F	R is explanation of A.	
	(B) A and R true, but l	R is not explanation of A.	
	(C) A is true, R wrong	5.	
	(D) A is wrong, R true	•	
(90)	Statement A : Durin	ng Asthamatic attack antihistamine dru	gs give relief.
	Reason R : Asthr	ma is alergic disease.	
	(A)	(B) (C)	(D)
(91)	Satement A : Food	does not enter into oesophagus while ea	ating.
	Reason R : Oeso	phagus always remain open.	
	(A)	(B) (C)	(D)
(92)	Statement A : Alveo	oli of lungs are its respiratory surface.	
	Reason R : Exch	ange of O ₂ and CO ₂ takes place in lungs	by alveoli.
	(A)	(B) (C)	(D)
(93)	Statement A : When	n muscles of diaphragm contracts, Size	of thoracic cavity decreases.
	Reason R : When	n diaphragm muscles contracts, diaphra	gm is pushed downwards.
	(A)	(B) (C)	(D)

(94)	Statement A:	O ₂ is transported only by RBC in blood.					
	Reason R :	Hb is present in RBC.					
	(A)	(B)	(C)	(D)			
(95)	Statement A:	Respiratory passage remains of	en and do not suffocate				
	Reason R :	Trachea possess 'C' shaped car	rtilagenous rings.				
	(A)	(B)	(C)	(D)			
(96)	Statement A:	Lungs are prevented from jerks	S.				
	Reason R :	Lungs are protected by rib-cag	e.				
	(A)	(B)	(C)	(D)			
(97)	Statement A:	More O ₂ is transported by RBO	C.				
	Reason R :	HHbo ₂ is formed at respiratory	surface in RBC.				
	(A)	(B)	(C)	(D)			
(98)	Statement A:	Cl-Shifting occurs at respirator	ry surface.				
	Reason R :	HHbo ₂ is formed in RBC at re	espiratory surface.				
	(A)	(B)	(C)	(D)			
(99)	Statement A:	Silica enters during inhalation, of	causes silicosis.				
	Reason R :	Elasticity of alveolus is destroye	ed in silicosis.				
	(A)	(B)	(C)	(D)			
(100)	Statement A:	pH of blood is maintaining 7.4					
	Reason R :	Na ₂ HPO ₄ is present in blood p	lasma.				
	(A)	(B)	(C)	(D)			
(101)	Statement A:	Blood emptying in left auricle l	has 95 mmHg partial pres	ssure.			
	Reason R :	Blood from lungs emptied into	left auricle by pulmonary	vein.			
	(A)	(B)	(C)	(D)			
		B), (92-A), (93-D), (94-D), (95	5-C), (96-B), (97-B), (9	8-D), (99-C), (100-C),			
(101-							
		e questions (T - F) tion is correct for true or false	in following contonoos				
	_	of nasal cavity is called respirate		•			
(102)(_		ny passage.				
	(2) Pharynx acts as passage for air in human.(3) Lungs of human are situated in thoracic cavity.						
	(4) 'C' Shaped cartilagenous rings present in the trachea.						
	(A) T T F F	(B) TFFF	(C) TTTF	(D) TFTF			
(103) (. ,	is smallest diameter tube in bronch	• •	(D) 11 11			
		ve striated muscles.	more nec.				
	. , .	W is 1100 to 1200 ml.					
		two lobes and two fissures.					
	(A) T F T T	(B) T T T T	(C) FTTT	(D) T F F F			
,	(11) 11 11	(D) 1 1 1 1	(5) 1 1 1 1	(D) 1111			

(104) In comparison with exhalation which statments are right or wrong?

(1) diaphragm is pulled up.

(2) Size of thoracic cavity increases.

(3) Partial pressure of air increases in lungs.

(4) Diaphragm muscles relaxed.

(A) TFTF

(B) TFTT

(C) F F T T

(D) TTTT

(105) (1) Value of IRV is more than FRC.

(2) Value of IC is less than IRV.

(3) Value of VC is 5100 to 5800 ml.

(4) Value of TV is less than RV.

(A) TFFT

(B) T F T T

(C) TTFT

(D) T T F F

(106) (1) 3% of CO₂ is transported by blood plasma.

(2) 97% of CO₂ is transported by RBC.

(3) 20% of CO₂ is transported as carbamino components.

(4) O₂ in the form of KHbO₂ amd CO₂ in the form of NaHCO₃, is transported maximum.

(A) FTTT

(B) F F F F

(C) FFTT

(D) F F T F

(107) (1) Message of respiratory centre of medulla oblongata is transported by 10th cranial nerve.

(2) Respiratory centers of medulla oblongata has two folds.

(3) Chemical receptors are present in lungs.

(4) Chemical receptors check percentage of CO₂, pH and O₂ in blood.

(A) TFFT

(B) TTFT

(C) F F T T

(D) F F F T

(108) (1) Antihistamine is useful in the treatment of Asthama.

(2) As a side effect of asthma brain and heart do not receive enough blood.

(3) Alveoli are filled with liquid and dead RBC.

(4) Muscles of trachea remains excited in bronchitis.

(A) TTTF

(B) T F F F

(C) TTFF

(D) TTFT

Answers: (102-B), (103-D), (104-B), (105-A), (106-C), (107-D), (108-B)

Figure 1 Figure 2 Figure 3

- (109) In which structure of Fig. 1 'C' Shaped cartilagenous ring is observed?
 - (A) Q and R
- (B) Q and T
- (C) R and S
- (D) R and P

- (110) What is indicated by 'R' in Fig. -1?
 - (A) Pharynx
- (B) Larynx
- (C) Trachea
- (D) Bronchus
- (111) Which structure of Fig -2 is not included in broncheal tree?
 - (A) P

- (B) V
- (C) Q
- (D) P and V

- (112) What is indicated by 'S' in Fig. 2?
 - (A) Secondary bronchiole (B) quartnary bronchiole (C) Tertiary bronchiole (D) Primary bronchiole

- (113) What is indicated by 'W' in Fig. 3?
 - (A) Oblique fissure of right lung.

- (B) Oblique fissure of left lung.
- (C) Transverse fissure of right lung.
- (D) Transverse fissure of left lung.
- (114) What is indicated by upper lobe in Fig -3?
 - (A) Y and T
- (B) X and U
- (C) Q and T
- (D) X and Q

- (115) What is indicated by 'U' in Fig. 3?
 - (A) upper lobe
- (B) middle lobe
- (C) lower lobe
- (D) lateral lobe

- (116) Which process is indicated by Fig. 4?
 - (A) Exhalation
- (B) Breathing
- (C) Inhalation
- (D) Peristalsis

- (117) What is not proper for Fig. 5?
 - (A) Relaxation of diaphragm muscle.
 - (B) Partial pressure increases in lungs.
 - (C) Size of thoracic cavity reduces.
 - (D) Contraction of diaphragm muscles.

Answers: (109-C), (110-B), (111-A), (112-C), (113-A), (114-D), (115-B), (116-C), (117-D)

Nasal cavity dividing accordingly function

- (i) Vastibular Skin, hair, sebacious gland.
- (ii) Respiratory passage Globlet cells, pseudo columnar epithelial cells, glandular epithelial.
- (iii) Oltaetory region: nerve sensory epithelial.

Activity of respiratory center:

- Increases the concentration of CO₂ in blood, decreases the PH so acidity can occur that why respiratory centers become active.
- Respiratory rate in human 12-18 per minute.
- One molecule of haemoglobin attached with four molecules of Co₂.
- Hb as four units: Each unit react with O₂.
- 1gm Hb transport 1.34 ml of O₂
- 100 ml blood transport 20 ml of O₂.

	QUESTIONS FOR NEET:						
(118)	B) When amount of CO ₂ increases in blood, breathing becomes						
	(A)	Shallow and slow	(B) No effect on bro	eathing			
	(C)	Slow and deep	(D) Fast and deep				
(119)	When analysis of patient's blood shows high amount of carboxyhaemoglobin than which of the following summary may mostly correct ?						
	patient may be breathing more amount of polluted air with high amount of						
	(A)	carbon disulphide	(B) chloroform				
	(C)	carbon dioxide	(D) carbon monoxid	le			
(120)	Whi	Which of the following cells of mammals are not able to metabolizte glucose by aerobic respiration?					
	(A) Non - Striated muscle cells		(B) Hepati cells				
	(C)	RBC		(D) WBC			
(121) What is essential capacity of our lungs?							
	(A) Reserve volume of air - Tidal volume(B) Total lung capacity - Reserve volume of exhalation						
	(C)	Reserve volume of air - R	eserve volume of exha	alation			
	(D)	Total lung capacity - Rema	aining Volume				
(122)	Give	en below is four respiration	n capacity and four irre	egular breathing volume	in normal human.		
	Whi	ich of the two from the giv	en capacity is correct	?			
	Cap	oacity of breathing		Volume of air			
	(i)	Remaining volume		(p) 2500 ml			
	(ii)	Most essential capacity		(q) 3500 ml			
	(iii) Reserve volume of air(iv) Capacity of inhalation			(r) 1200 ml			
				(s) 4500 ml			
) (iii-r) and (iv-p)	(C) $(iv-q)$ and $(i-r)$	(D) $(i-s)$ and $(ii-q)$		
(123)	Res	piratory centre located in t		•			
	(A)	-		(B) Concentration of CO ₂ in arterial blood			
	(C)	Concentration of O_2 in		(A) Concentration of C	CO ₂ in venous blood		
(124)		v, is common cold, differ f	-				
	(A) Pneumonia is spreading disease where as common cold is disease of defeciency of nut substances.						
	(B) Pneumonia can be prevented by live, less, weakened bacterial vaccine where as no effective vaccine for common cold.						
	(C)	Pneumonia is caused by	on cold is due to bacterium	m haemophils, influenzal.			
	(D)	(D) Microorganisms of bacteria affects alveoli, where as effect of common cold is at nose and respiratory passage, lungs are not affected.					
(125)	Nor	mal amount of O_2 and CO	present in air when	inhaled by man, he feels	suffocated because		
	(A) Haemoglobin unites with CO instead of O ₂ to form carboxyhaemoglobin.						
	(B) CO affects nerves of lungs.						
	(C) CO and O ₂ reacts together to decrease their amount.						

(D) CO affects diaphragm and intercostal muscles.

(126)	Breathing is regulated by					
	(A) Hypothalamus	(B) Cerebrum	(C) Cerebellum	(D) medulla oblongata		
(127)	Alveolar epidermis of lungs is formed of					
	(A) non-ciliated columnar	(B) non-ciliated squa	amous			
	(C) ciliated columnar	(D) ciliated squamo	us			
(128)	Transport of CO ₂ from tissue to respiratory surface is by					
	(A) blood plasma and RBO	C	(B) blood plasma			
	(C) RBC		(D) RBC and WBC			
(129)	How is air passed into respiratory passage ?					
	(A) trachea \rightarrow lungs \rightarrow larynx \rightarrow pharynx \rightarrow alveoli					
	(B) Nose \rightarrow larynx \rightarrow pharynx \rightarrow trachea \rightarrow alveoli \rightarrow micro bronchioles					
	(C) Nasal aperture \rightarrow pharynx \rightarrow larynx \rightarrow trachea \rightarrow bronchioles \rightarrow microbronchiole \rightarrow alveoli					
	(D) Nose \rightarrow mouth \rightarrow lungs					
(130)	Normally carbonic anhydr	rease is active in				
	(A) RBC	(B) WBC	(C) blood plasma	(D) blood corpuscles		
(131)	Presence of more number of	of alveoli surrounding alve	colar tubule, opening in	micro bronehioles in lungs		
	indicates					
	(A) Non-functional system for, transport of residual air in less quantity					
	(B) Non-functional system for transport of residual air in more quantity					
	(C) In absence of residual air, functioning system for transportation					
	(D) Functional system for transport of residual air in less amount					
(132)	During transport of CO ₂ why blood does not become acidic?					
	(A) due to neutralization of	of H ₂ CO ₃ By Na ₂ CO ₃ .	(B) Due to absorption of leucocytes.			
	(C) Due to presence of blo	ood buffer.	(D) None of above.			
(133)	If 1500 ml air increases in air, it is called					
	(A) Tidal volume	(B) Inspiratory reserve v	volume			
	(C) Residual volume	(D) Vital capacity				
(134)	What protects lungs?					
	(A) Ribs	(B) Vertebral column				
	(C) sternum	(D) All of above				
(135)	What is haemoglobin?					
	(A) vitamin	(B) Pigments of skin	(C) Blood carrier	(D) Respiratory pigment		
(136)	CO ₂ reacts with water in RBC to form carbonic acid. What is responsible for it?					
	(A) Carbonic anhydrase	(B) Carboxy peptidase	(C) Hydrolase	(D) Oxido reductase		
(137)	What is conditon of diaphragm at the time of exhalation?					
	(A) Oblique	(B) Normal	(C) Flat	(D) Dome shape		
(138)	What is called exchange of bicarbonate and chloride between RBC and blood plasma?					
	(A) Chloride shift	(B) Effect of Bohr	(C) Halden Effect	(D) Intracellular respirtion		

(139)	139) If CO ₂ concentration icreases in blood, then respiration								
	(A) increases	(B) decreases	(C) stops	(D) no change occurs					
(140)	What is vital capacity of our lungs?								
	(A) RV +ERV	(B) $TLC + TV$	(C) RV +TV	(D) TLC - ERV					
(141)	CO ₂ liberated from tissues into blood is in which form?								
	(A) Carbamino haemoglobin in RBC								
	(B) Bicarbonate in blood plasma and RBC								
	(C) Free CO₂ in blood plasma(D) 70% carbamino haemoglobin and 30 % bicarbonate								
(142)	Two friends are taking lunch, one of them has hiccups while swallowing food. It is due to impropose movement of								
	(A) epiglottis	(B) diaphragm	(C) neck	(D) tongue					
(143)	Arrange it in ascending order.								
(1) TV (2) RV (3) IRV (4) VC									
	(A) $1 < 2 < 3 < 4$	(B) $1 < 3 < 2 < 4$	(C) $1 < 4 < 3 < 2$	(D) $1 < 4 < 2 < 3$					
(144)	What is symptoms of amphysema?								
	(A) Haemorrhage of bronchieles								
	(B) Increase in number of alveoli								
	(C) Infection of microbacterium tubeculi								
	(D) Inflammation of alveol	i							
(145)	5) Center for Regulation of rhythemacity in breathing are								
	(A) pons	(B) aortic arch	(C) medulla	(D) carotid artery					
1	wers:(118-D), (119-D),								
(127-B), (128-A), (129-C), (130-A), (131-B), (132-C), (133-C), (134-D), (135-D), (136-A), (137-D), (138-A), (139-A), (140-B), (141-B), (142-A), (143-A), (144-D), (145-B)									
1 (13/	-и), (130-A), (139-A), (1	14v-d), (141-d), (142-A	j, (14 3- A), (144-D), (14	13-D)					

Breathing and Respiration Human Respiratory System Breathing • It is withdrawing in air and releasing CO₂ rich air into atmosphere.

- It involves inspiration (inhalation) and expiration (exhalation).
- It is brought out with the help of diaphragm and intercostal muscles on rib cage.

Respiratory Tract

- It is a passage way for the respiratory gases.
- Gaseous exchange does not occur here.
- It consists of nostrils, nasal cavity, pharynx, larynx, trachea, bronchi and alveoli.

Respiratory Organs

- A pair of lungs which comprise of bronchi, bronchioles and alveoli.
- Alveoli are the primary sites of exchange of gases.

Exchange of Gases

- Alveoli are the primary sites of exchange of gases.
- At alveolar surface, the blood has lower PO₂ and higher PCO₂ than the alveolar air. This results in diffusion of CO₂ out of the blood into the alveolus.
- At tissues surface, blood has more PO₂ than that in the tissues. As a result O₂ from blood diffuses in the tissues and CO₂ from tissues diffuses into the blood.

Transport of Gases

- Blood is the medium of transport for O_2 and CO_2 . About 97 percent of O_2 is transported by RBC in the blood. The remaining 3 percent of O_2 is carried in a dissolved state through the plasma.
- Nearly 20-25% of CO₂ is transported by RBCs where as 70% of it is carried as bicarbonate.
- About 7% of CO₂ is carried in a dissolved state through plasma.

Regulation of Respiration

- Respiration is controlled by nervous regulation, mechanical regulation and chemical regulation.
- Nervous regulation involves respiratory centre located in the medulla oblongata and pons Varolii. Respiratory centre is very sensitive to CO₂ in the arteries and to the pH level of blood.
- Mechanical control involves stretch receptors located in the walls of bronchi and bronchioles which get stimulated by overstocking of the lungs and inhibit inspiratory centre.
- Chemical regulation is performed by chemo sensitive area near respiratory centre and chemoreceptors present in the carotid and aortic bodies. They get stimulated by rise in CO₂ of H⁺ consentration of blood.