Question Booklet Series: A

Question Booklet Serial No.: 100078

PULEET - 2023

Important: Please consult your Admit Card/Roll No. slip before filling your Roll Number on the Test Booklet and Answer Sheet.

Roll No.	(In Figure)		(In Words)	
O.M.R. An	swer She	et Serial No.		
Signature of Ca	ndidate:		Signature of Inv	igilator:
Time: 100 Minutes Number o		f Questions: 100	Maximum Marks: 100	
DO NOT O	PEN TH	E SEAL ON T	HE BOOKLET UN	TIL ASKED TO DO SO

INSTRUCTIONS:

- Write your Roll No. on the Questions Booklet and also on the OMR Answer Sheet in the space provided and
- Enter the Question Booklet Serial No. on the OMR Answer Sheet. Darken the corresponding bubbles with Black
- 3. Do not make any identification mark on the Answer Sheet or Question Booklet.
- 4. Please check that this Question Booklet contains 100 Questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of Test.
- Each question has four alternative answer (A,B,C,D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Gel Pen. There shall be negative marking for wrong answer, ¼ of the marks of the question will be deducted for every wrong answer.
- 6. If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Booklet. No marks will be deducted in such cases.
- The mediums of examination shall be English only.
- 8. 35 minutes extra would be given to the visually handicapped/PwD Candidates.
- 9. Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the question given in the Question Booklet.
- 10. If you want to change an already marked answer, erase the shade in the darkened bubble completely.
- 11. For rough work only the blank sheet at the end of the Question Booklet be used.
- 12. The University will provide Logarithmic table. Borrowing of log table or other material is not allowed.
- 13. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e. not following the instructions completely, shall be of the candidate only.
- 14. After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on duty.
- 15. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so would be expelled from the examination.
- 16. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistant or found giving or receiving assistant or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall
- 17. Communication equipment such as Pager, Cellular phones, wireless set, scanner, camera or any electronic/digital gadget etc., is not permitted inside the examination hall. Use of calculators is not allowed.
- 18. The candidates will not be allowed to leave the Examination Hall/Room before the expiry of the allotted time.

1.	If α , β are roots of x^2	-3x + 1 = 0, then the	ne value of $\alpha^4 + \beta^4$ is	
	(A) 57	(B) 37	(C) 47	(D) 27
2.	Rank of a matrix A =	$\begin{bmatrix} 1 & 3 & 5 \\ 2 & -1 & 4 \\ -2 & 8 & 2 \end{bmatrix}$ is		
	(A) 3	(B) 2	(C) 1	(D) 0
3.	The value of $\frac{\sec \theta \theta - 1}{\sec 4\theta - 1}$	is equal to		
	(A) $\frac{\tan 2\theta}{\tan 8\theta}$		(C) $\frac{tan6\theta}{tan2\theta}$	(D) $\frac{\tan 8\theta}{\tan 2\theta}$
4.	Slope of a line maki though the origin is	ng an angle 30" with	y-axis and lie in firs	t quadrant and passing
	(A) $\frac{1}{\sqrt{3}}$	(B) $\sqrt{3}$	(C) $\frac{1}{2}$	(D) $\frac{\sqrt{3}}{2}$
5.	The curvature and rac	lius of curvature of the	curve $x^2 + y^2 = a^2$ s	(x, y) is
			(C) a & a	
6.	The limit $\lim_{(x,y)\to(0,1)} \tan$	$-1\left(\frac{y}{x}\right)$ is		
	(A) I	(B) $\pm \frac{2}{\pi}$	(C) $\pm \frac{\pi}{2}$	(D) $\pm \frac{\pi}{4}$
7.	The differential equat	ion: $xy^3 dx + a x^2y^2d$	y = 0 is exact when a	is equal to
	(A) 3	(B) 2	(C) $\frac{2}{3}$	(D) $\frac{3}{2}$
8.	The value of double i	ntegral $\iint_{\mathbb{R}} e^{x^2 dx dy}$,	where the region R is g	iven by
	(A) $\frac{1}{4}(e^4-1)$	(B) $\frac{1}{4}(e^4+1)$	(C) $(e^4 - 1)$	(D) $(e^4 + 1)$
9.	The gradient of a scal	ar field $f(x, y) = y^2 -$	4 x y at (1, 2) is	
	4 4 5 4 4	(B) 8î		(D) - 8î
10.	The line integral \int_C ($(x^2 + yz) dz$, where (It is given by $x = t, y = t$	$= t^2, z = 3t, 1 \le t \le 2$
	is equal to			
	$(A)^{\frac{163}{4}}$	(B) $\frac{153}{4}$	(C) 143 4	(D) 133 4
11.	The displacement of a seconds. The distance at the end of 3 second (A) 10 m and 5 m/s	covered by the partic	$t = t^2 + 3t + 2$, where x de in the first 3 second (B) 10 m and 9 m/s	t is in meters and t is in is and velocity acquired
	(C) 20 m and 5 m/s		(D) 20 m and 9 m/s	
12.	The angle of friction between them is:	between two surfaces	in contact is 30°. The	e coefficient of friction
	(A) √3	(B) 1/v3	(C) 0	(D) 1

13. The rotation of	earth about its axis is:			
(A) periodic an	nd simple harmonic mot	tion		
(B) non-period	ic and simple harmonic	motion		
(C) periodic bu	t not simple harmonic	notion		
(D) non-period	ic and not simple harme	onic motion		
14. The specific he	at of a gas during an iso	othermal chance !		
(A) zero	6		P. S.	
(C) negative an	d finite	(B) positive and finite (D) infinite		
slits, the change	in fringe width is 3 ×	th monochromatic light	nt, fringes are obtained on a eved 5×10^{-2} m towards the evelength of light used, if the	
assumed between	n slits is $10^{-3} \mathrm{m}$?		and or ngin used, it the	
(A) 300 nm	(B) 600 nm	(C) 750 nm	(D) 900 nm	
(A) -2 17. Two parallel win (A) no mutual for (C) repulsion 18. In a photoelectr leV for incomin	(B) -3 res carrying current in torce ric effect experiment, rig radiation of frequency vill be the maximum	the mid-point of the dip (C) 2 the same direction expension (B) attraction (D) sometimes at the maximum kinetic energy v ₀ and 3 eV for incompany to the diposition of the d	(D) 3	
(A) 3 eV	(B) 6 eV	(C) 9 eV	(D) 12 eV	
respectively. The	value of R ₁ /R ₂ is:	nbers 216 and 64 w	ith their radii R ₁ and R ₂	
(A) 3:2	(B) 2:3	(C) 1:3	(D) 1:2	
 The focal length refractive index (A) f 	of a thin lens in the of 3/2, its focal length in (B) 4f/3	vacuum is f. If the n water (refractive inde (C) 2f	material of the lens has a ex of water is 4/3) is: (D) 4f	
21. The commutator	segments of a DC mac	A CONTRACTOR OF THE CONTRACTOR	(14) 1/	
(A) Stainless stee		(B) Brass		
(C) Hard drawn o	copper	(D) Bronze		
	1000	A SOUTH PROPERTY OF THE		

22. The copper-loss and core-loss of a transformer at various loads are:

Load	Core-loss	Copper-loss
(A) 50 kVA	320 W	500 W
(B) 40 kVA	320 W	320 W
(C) 30 kVA	320 W	180 W
(D) 20 kVA	320 W	80 W

At what load will the efficiency of the transformer be maximum?

- 23. A transformer when supplying a load maintained 11 kV across load terminals. When the load was switched off, the terminal voltage became 11550 V. What is the voltage regulation at this load?
 - (A) 11.55%
- (B) 5.5%
- (C) 5%
- (D) 55%
- 24. To attain the higher starting torque in a three-phase slip-ring induction machine
 - (A) Extra resistance should be connected across the slip-ring terminals
 - (B) The phase-sequence of the supply to the motor should be reversed
 - (C) The supply voltage should be increased
 - (D) The winding should first connected in star and then in delta
- 25. In a split phase capacitor start induction motor, a time-phase difference between the currents in the main and auxiliary winding is achieved by
 - (A) Placing the two windings at an angle of 90° electrical in the stator slots
 - (B) Applying two-phase supply across the two windings
 - (C) Introducing capacitive reactance in the auxiliary winding circuit
 - (D) Connecting the two windings in series across a single-phase supply
- 26. Calculate the current, I drawn from the battery shown in figure-1.

Figure-1

(A) 4.52 A

(B) 45.2 A

(C) 0.452 A

(D) 10.8 A

- 27. When a sinusoidal voltage of maximum 1 V is applied to a pure capacitor a current of maximum 1 A flows through the circuit. The average power in the circuit is
 - (A) 0 W
- (B) 0.707 W
- (C) 0.5 W
- (D) 1.0 W
- 28. A balanced three-phase star connected load of 200 kW takes a leading current of 100 A with a line voltage of 1200 V, 60 Hz. What will be the phase impedance of this load?
 - (A) 120 Ω
- (B) 12 Ω
- (C) 12× √3 Ω
- (D) 12/√3 Ω

(V) # × 10	permeability, μ ₀ of free s wb/amp meter wb/amp meter	pace is represented by (B) $3\pi \times 10^{-7}$ wb/s (D) $4\pi \times 10^{-9}$ wb/s	amp meter
(A) Voltage ac(B) Voltage ac(C) Voltage ac	voltage source is applie ross the inductor lags by ross the inductor leads by ross the inductor partially ross the inductor partially	d onto a pure inductor 90° to the current flowing 90° to the current flowing	g through the inductor
31. The average va (A) 53 V	lue of a full-wave rectified (B) 47.8 V	d voltage with a peak val (C) 37.5 V	ue of 75 V is (D) 23.9 V
32. To saturate a B.		102 E 10 E	(D) 23.9 V
(A) $I_B = I_{C (sat)}$)	(B) $I_B > \frac{I_{C(sat.)}}{B_{DC}}$	
(C) V _{CC} must be		(D) the emitter must	be arounded
(A) the depletion (C) cutoff 34. The midrange of (A) rolls off at 2	-MOSFET with a positive in mode pen-loop gain of an op-an 20 dB/decade beginning a	(B) the enhancement (D) saturation	mode
(B) is infinity(C) extends from(D) extends from	m the lower critical freque m 0 Hz to the upper critical	ency to the upper critical	frequency
35. The Wien-bridge	e oscillator's positive feed it (B) an LC circuit	fback circuit is	(D) a lead-lag circuit
Binary equivaler	nt of Gray code number 1 (B) 1101	111 would be	(D) 1100
(A) Change in the control of the change in the	flip-flop has the character ne input is immediately re ne output occurs when the ne output occurs when the ster and slave states are a	flected in the output state of master is affected state of slave is affected	ed
38. Signal $v(t) = 5$ (A) SSB signal	[cos(10 ⁶ πt) – sin(10 ³ πt) ssed carrier signal		ents

- 39. An ammeter is convertible to a voltmeter by
 - (A) Changing the scale
 - (B) Simply installing the instrument in parallel with the circuit
 - (C) Putting a large resistance in parallel with the actual measuring part of the instrument
 - (D) Putting a large resistance in series with the actual measuring part of the instrument
- 40. A varactor diode exhibits
 - (A) a variable capacitance that depends on reverse voltage
 - (B) a variable resistance that depends on reverse voltage
 - (C) a variable capacitance that depends on forward current
 - (D) a constant capacitance over a range of reverse voltages
- 41. What will be the output of following program on 64 bit machine?

```
#include <stdio.h>
  union Sti
    int nu:
     char m;
  int main()
     union Sti s;
     printf("%ld", sizeof(s));
     return 0:
```

(A) 6

(B) 5

(C) 4

(D) 8

- 42. Which is valid C expression?
 - (A) int my num = 100,000;
- (B) int my num = 100000;

(C) int my num = 1000;

- (D) int \$my num = 10000;
- 43. What is the output of below program if the input is "puleet":-

```
#include <stdio.h>
       int main()
        char x [10], *ptr = x;
       scanf ("%s", x);
          change(&x[3]);
      change(char a[])
       puts(a);
(A) eet
                      (B) leet
```

(C) pule

(D) puleet

44. The concept	of having two functions	with same signatures in	base and doing to a	
known as?		againates in	base and derived class i	
(A) Operator	Overloading	(B) Function Overl	oading	
(C) Function	Overriding	(D) Function renan		
45. What will be	the output of following	program?		
	ude <stdio.h></stdio.h>			
	1.0			
int m	ain()			
in	t a = 1, b = 2, c = 3;			
p	rintf("%d", a += (a += 3,	5, a));		
(4) 12				
(A) 12	(B) 6	(C) 9	(D) 8	
46. Which of the	following declaration is r	not supported by C langua	ge?	
(A) String str		(B) char *str;		
(C) float str =	3e2;	(D) Both "String str	(D) Both "String str;" and "float str = 3e2;"	
22/00/01 2 70/00/01				
	is not able to open a file,	, it returns		
(A) EOF	(B) NULL	(C) Run-time Error	(D) True value	
48. Which of the	following operators takes	s only integer operands an	nd raises error when used	
with other ope			- Thinks circl Mileli dacd	
(A) +	(B) *	(C) /	(D) %	
49 What will be	the entered of C. H		10770	
int main(the output of following co	ode?		
{				
int a,t),c;			
a=1; b=1	10.			
c = 2	T. Control of the Con			
a = b	= c*=5;			
printf	("%d",a);			
1				
(A) 110	(B) 100	(C) 20	(D) 1	
1000		(6) 20	(D) 1	

50. What will be the ouput of following C program

```
#include <stdio.h>
    void reverse(int i);
    int main()
{
       reverse(5);
    }
    void reverse(int i)
    {
       if (i > 10)
          return ;
        printf("%d ", i);
        return reverse((i++, i--));
    }
}
```

(A) 5678910

(B) 54321

(C) 5

(D) 54

- 51. In which method of fluid flow analysis do we describe the motion parameters at a point?
 - (A) Langragian method

(B) Eulerian Method

(C) Control volume analysis

- (D) Control mass analysis
- 52. Find the discharge through totally drowned orifice of width 2.3 m if the difference of water levels on both side of the orifice be 40 cm. The height of water from to and bottom of the orifice are 2.6 m and 2.75 m respectively.

(A) 0.56 m³/s

- (B) 0.64m³/s
- (C) 0.75 m³/s
- (D) 0.55 m³/s

- 53. Air can be cooled and dehumidified by
 - (A) circulating chilled water in tube across air flow
 - (B) placing evaporator coil across air flow
 - (C) spraying chilled water to air
 - (D) A, B, C
- 54. The mean effective pressure of an Otto Cycle increases with an increase in

(A) pressure ratio

(B) compression ratio

(C) temperature ratio

- (D) expansion ratio
- 55. If in a fluid, while applying Newton's second law of motion, compressibility force is neglected then what equation is obtained?
 - (A) Navier Stoke's Equation
- (B) Reynold's equation of motion
- (C) Euler's Equation of motion
- (D) Continuity Equation for fluid flow
- 56. According to Bernoulli equation for steady fluid flow
 - (A) principle of conservation of mass holds
 - (B) velocity and pressure are inversely proportional
 - (C) total energy is constant throughout
 - (D) the energy is constant along streamline but may vary across streamlines

 Which of the foll refrigeration cycle 	lowing is the result of	of a reduction in oper	rating pressure in the Air
(A) decrease in C.(C) increase in C.(C)	O.P.	(B) always decreas	ses
		(D) no change in (C.O.P.
guide the piston ro (A) Chebychev's (C) Peaucellier's	d in a cylinder to have	(B) Watt's	in early steam engines to at-line motion.
59. What is the SF at s	support B?	(D) Grasshopper	
	7	2 KN/m	
	/ 0/		
Δ		→ ← 2M → B	
(A) 5 LN			
(A) 5 kN	(B) 3 kN	(C) 2 kN	(D) 0 kN
about the base. (A) 632×10 ⁴ mm ⁴			width and 80 mm depth
		(C) 734×10 ⁴ mm ⁴	(D) 568×10 ⁴ mm ⁴
of soil particles is 2. (A) 20%	 ample of soil has a If the moisture cont 77% 	unit weight of 2.0 g ent in the soil is 20%, t (C) 92%	/cm³ and specific gravity he degree of saturation is (D) 98%
62. In the cement the co	mpound quickest to rea		(15) 7079
(A) Tricalcium alum(C) Tricalcium silica	iinate	(B) Tetra-calcium al (D) Dicalcium silica	
63. The maximum area	of tension reinforcemen		
(A) 0.15%	(B) 1.5%	(C) 4%	(D) 1%
 64. If the atmospheric pressure at a depth of 	pressure on the surface 2.5 m, is	of an oil tank (sp. g	r. 0.8) is 0.1 kg/cm ² , the
(A) 1 metre of water (C) 3 metres of water		(B) 2 metres of water (D) 3.5 metres of water	
65. A district road with speed of 75 km ph. 7	a bituminous pavemen The super-elevation is		e of 1000 m for a design
(A) 1 in 40	(B) 1 in 50	(C) 1 in 60	(D) 1 in 70
66. A beam is defined as	a structural member su		2000 Cont (C)
(A) axial loading (C) axial and transverse loading		(B) transverse loading (D) torsional loading	

		cut timber should be:		
	(A) Soft and shining	(B) Hard and shining	(C) Perfectly round	(D) Light in colour
68.	According to IS: 800- to the yield stress spec	2007 plastic analysis n cified for the grade of st	nay be performed if th	e ratio of tensile strength
	(A) Greater than 1.2	(B) Less than 1.2	(C) Greater than 1.5	(D) Less than 1.5
69.	For ensuring quality o	f concrete, use		
	(A) single sized aggre	egates	(B) two sized aggrega	ite
	(C) graded aggregates		(D) coarse aggregates	
70.	The sensitiveness of a	level tube decreases if		
	(A) radius of curvature	e of its inner surface is i	ncreased	
	(B) diameter of the tub			
	(C) length of the vapor	ur bubble is increased		
		surface tension are inci	reased	
71.	What is the unit of sp	ecific gravity?		
	(A) Dimensionless	(B) m/s ²	(C) N/m ³	(D) Kg/m ³
72.	Which of the following	ng has the same number	er of moles as in 398 g	rams of CuSO ₄ ?
	(A) 35 grams of nitro	gen	(B) 58.5 grams of So	
	(C) 2 grams of hydro	gen	(D) 40 grams of oxy	
73.	What is the weight of COCl ₂ , 25% SO ₃ and	10 moles of a mixture 5% N ₂ ?	with composition 15	% O ₂ , 25% SO ₂ , 30%
	(A) 564	(B) 475	(C) 867	(D) 719
74.	Which of the following	ng composition can be	controlled by a bypas	s stream?
	(A) Feed	(B) Process	(C) Exit stream	(D) None of these
75.	Which of the following	ng is not true about ide	al gas molecules?	
	(A) They do not have		(B) They have neglig	rible size
	(C) They move in ran		(D) They do not apply pressure	
			(-) they do not app.	y pressure
76.	Which of the following	ng is true about compre	essibility of real gases	?
	(A) Z < 1		(B) Z > 1	
	(C) Z = 1		(D) Both Z < 1 and	Z > 1
77.	Which of the following	ng is not the equation of	of state?	
	(A) Charles Equation		(B) Holborn Equatio	n
	(C) Peng Robinson E	quation	(D) Van der Waals E	

78. Which of the follo	owing is true about limi	ting respense?	
(A) Consumes partially		(B) Does not reac	
(C) Consumes completely		(D) None of these	
79. In the humidity ch	art, what does the horiz	zontal'	
(A) Air temperatur	re		
(C) Wet-Bulb tem		(B) Dry-Bulb tem(D) Molar volume	
80. What happens to v	vater in the humidificat	ion process?	
(A) Evaporates	(B) Freezes	(C) Saturated	(D) None of these
81. Na+, Mg2+, Al3+, S	i4*are isoelectronic. Th	eir ionic size will fall	and the state of
(A) $Na^{+}> Mg^{2+}> A$	d ³⁺ > Si ⁴⁺	(B) Na ⁺ <mg<sup>2+<a< td=""><td>ow the order</td></a<></mg<sup>	ow the order
(C) Na ⁺ >Mg ²⁺ <al< td=""><td>3+<si<sup>4+</si<sup></td><td>(D) Na⁺<mg<sup>2+>A</mg<sup></td><td></td></al<>	3+ <si<sup>4+</si<sup>	(D) Na ⁺ <mg<sup>2+>A</mg<sup>	
		(D) Ma -Mg -M	1 -21
82. Ionic radii are:			
(A) Inversely property	ortional to effective nu	clear charge	
(B) Directly propor	rtional to effective nucl	ear charge	
(C) Inversely proportion	ortional to the square of	f effective nuclear cha	irge
(D) Directly propor	rtional to square of effe	ective nuclear charge	
83. The artificial zeolit	e used for softening ha	rd water has the form	ula
(A) Na ₂ Al ₃ Si ₂ O _{8.Xl}	H ₂ O	(B) Na ₂ Al ₂ Si ₂ O _{8.X}	
(C) Na ₂ Al ₂ Si ₂ O _{6.Xl}	H ₂ O	(D) Na ₂ Al ₃ Si ₂ O ₆ .xH ₂ O	
84. Why is the high per	rcentage of moisture ur	idesirable for coal?	
(A) It increases the	rate of combustion	(B) It increases the	cost of coal
	alorific value of coal	(D) It decreases its ignition temperature	
85. The ignition charac	teristics of diesel are e	xpressed in terms of	
(A) Octane number		(B) Cetane number	
(C) Viscosity		(D) Flash and fire	
86. Montreal protocol s	signed in 1987 was sign	ned to	
	ting in tropical oceans	(B) Protect endang	ered species
(C) Phase out use o		(D) Reduce green l	
87. A river with high B	OD value is		
(A) Highly polluted		(B) Highly clean	
(C) Highly productive		(D) BOD is not app	plicable to rivers

88 The localized atta	4 -6		
otherwise relatival	ck of a corroding envi	ronment leading to the	formation of holes in a
(A) Water line cor	ly unattackedsurface of		
(C) Concentration		(B) Pitting corrosio	on
(c) concentration	cen corrosion	(D) Wet corrosion	
89. The cathodic inhib	pitors slow down the co	rrosion reaction by dec	reasino
(A) Diffusion of h	ydrated H ⁺ ion to the ar	node	renomig
	T ion to the cathode		
(C) Diffusion of h	ydrated H* ion to the ca	thode	
(D) Diffusion of C	I' ion to the anode		
90. If the largest value type of sub shell?	e of m for an electron i	s +2, then the electron	may be present in which
(A) s subshell	(B) d subshell	(C) p subshell	(D) f subshell
		McGarden Comment	V (political chemistration of
91. In a certain code, 6 that code?	COMPUTER is written	as PMOCRETU, how	is DECIPHER written in
(A) ICEDREHP	(B) ICDEERHP	(C) DEICPHRE	(D) REHPICED
distance of 14 km	 From here she move 	es towards North-Wes	owards West and travels at a distance of 7 km and the starting
(A) 3 km	(B) 4km	(C) 10 km	(D) 11 km
being the male me D. B is the daughte	are six members A, B, ember. D is the only sor er-in-law of F. How is I	of C, who is the brot	B are a married couple, A her of A. E is the sister o
(A) Uncle	(B) Grandmother	(C) Aunt	(D) Mother
94. Which of the follo	wing word is correctly	spelt?	
(A) Questionnaire		(B) Questionaire	
(C) Questionare		(D) Questionnare	
95. She said that she	to the party	tonight	
(A) Will come	(B) Shall come		(D) Will be coming
96. Select the options	that correctly complete	the sentence	
	the documen		it.
(A) reads, signed		(B) reading, signed	
(C) read, signing		(D) read, signs	

9	Most of the corre	ct option that identifies the	e noun in the following	sentence:
	(A) Most	s to this Company are pla (B) Placed	(C) Lengthy holds.	(D) Holds
98	Beauty is in the	lerlined word in the follow eye of the beholder.	ring sentence:	
	(A) Adjective	(B) Adverb	(C) Abstract noun	(D) Common noun
99	and the settle	nent of the sentence, which	ch contains grammatic	al errors. If there is no
	The Police (I) / (A) I	is becoming more(II) / (B) II	and more inactive (II (C) III	I) / No error (IV) (D) IV
00.	Did he show yo Select the correct	u what to do? It passive form from the o	otions given below	
	(A) Has anybod	y been shown? n shown what to do?	(B) Has anybody she	own you what to do? n by him what to do?
		X-X-		
		SPACE FOR RO	HIGH WORK	