R SCRIPT INTRODUCTION

Version 1.0.143 - © 2009-2016 RStudio, Inc.

In this session

- What is R?
- R current popularity rank
- Why use R language in Machine Learning?
- R Script interpreter installation
- R Studio installation
- Hello world
- Basic calculation
- Variable assignment
- Basic Operator
- Data Structure (Array, Matrix, List, Data Frame)
- If Statement
- For Loop
- Basic plotting

What is R?

- Computer language
- Interpreter
- Multi-paradigm: (OOP, imperative, functional, procedural)
- Typing: dynamic
- Good for: Statistical and graphics
- Origin: New Zealand
- Age: 23 (C# 17)
- Free Software (GNU project)
- Linux, Windows and MacOS
- One of the most powerful ML language
- Tool for ML exploration
- NOT for building a production model
- Supported in Azure ML Studio

R current popularity rank

Language Rank	Types	Spectrum Ranking
1. C	□.□.	100.0
2. Java	⊕ 🕽 🖵	98.1
3. Python	⊕ 🖵	98.0
4. C++	□ 🖵 🛊	95.9
5. R	\Box	87.9
6. C#	\oplus \Box \Box	86.7
7. PHP	(82.8
8. JavaScript		82.2
9. Ruby	⊕ 🖵	74.5
10. Go	⊕ 🖵	71.9

Source: The 2016 Top Programming Languages

http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016

Why use R language in Machine Learning?

- Microsoft Azure ML support
- Free and open source
- Data Scientist's tools of trade
- Simple syntax
- Large community
- Over 7,800 package listed on CRAN
- Good ML packages (e1071, caret, etc.)
- Visualizations
- Full-set tools

R Script interpreter installation

1. Go to CRAN website https://cran.rstudio.com

The Comprehensive R Archive Network

Download and Install R

Precompiled binary distributions of the base system and contributed packages, **Windows** and Mac users most likely want one of these versions of R:

- · Download R for Linux
- Download R for (Mac) OS X
- Download R for Windows

R is part of many Linux distributions, you should check with your Linux package management system in addition to the link above.

2. Click download R for Windows

3. Click base

R Script interpreter installation

4. Click Download R 3.4.0 for Windows (76 megabytes, 32/64 bit)

When downloading done, open downloaded file to run setup

R Studio installation

Go to R Studio download page

https://www.rstudio.com/products/rstudio/download/

Click RStudio Desktop FREE download

RStudio Desktop Open Source License FREE

R Studio installation

1. Click RStudio 1.0.143 - Windows Vista/7/8/10

Installers for Supported Platforms

Installers

RStudio 1.0.143 - Windows Vista/7/8/10

RStudio 1.0.143 - Mac OS X 10.6+ (64-bit)

RStudio 1.0.143 - Ubuntu 12.04+/Debian 8+ (32-bit)

RStudio 1.0.143 - Ubuntu 12.04+/Debian 8+ (64-bit)

RStudio 1.0.143 - Fedora 19+/RedHat 7+/openSUSE 13.1+ (32-bit)

RStudio 1.0.143 - Fedora 19+/RedHat 7+/openSUSE 13.1+ (64-bit)

2. Create a folder R Studio on the desktop

R Studio installation

3. Open Zip file

4. Drag & drop items from zip file to folder R Studio

Name	Туре	Compressed size	Size
bin R resources	File folder File folder File folder		
www-symbolmaps	File folder File folder		
COPYING	File	12 KB	35 KB
INSTALL	File	3 KB	6 KB
☐ NOTICE	File	47 KB	167 KB
README.md	MD File	1 KB	2 KB
☐ SOURCE	File	1 KB	1 KB
UERSION	File	1 KB	1 KB

R Studio installation

5. Click icon C:\Desktop\R Studio\bin\rstudio.exe

Hello world

Create project

Click empty Project

Hello world

Add R Script file to project

Save as hello.R

Hello world

Enter code

Click Run button to run Script

Basic calculation

Variable assignment

Basic data type

Basic Operator

Data Structure

Array

🖭 hello.	R*×		а×			
00	和	7	Filter			
	V1	0	V2	0	V3 ‡	V4
1		1		4	7	10
2		2		5	8	11
3		3		6	9	12

Data Structure

Matrix

Data Structure

List

```
hello.R**

| Source on Save | Source | Source on Save | Source | Source on Save | Source | Source on Save |
```

Data Structure

Data Frame

	name ‡	age ‡	gender [‡]
1	Loy	19	М
2	Jim	17	М
3	Во	22	F
4	Alice	12	F
5	Tan	24	М

```
1  # Data frame
2  rm(list = ls()) # clear objects
3  # create name vector variable
4  name <- c('Loy', 'Jim', 'Bo', 'Alice', 'Tan')
5  # create age vector variable
6  age <- c(19, 17, 22, 12, 24)
7  # create gender vector variable
8  gender <- c('M', 'M', 'F', 'F', 'M')
9  # create data frome from vector
10  student <- data.frame(name,age,gender)
11  student$gender == 'F' # look for female student
12  student$age > 20  # look for student older than 20
```

If Statement

```
1  # If Statement
2  rm(list = ls()) # clear objects
3  x <- 1
4  if (x == 1){
5    print('same')
6  } else if (x > 1){
7    print('bigger')
8  } else {
9    print('smaller')
10  }
11  # ifelse function
12  a = c(5,7,2,9)
13  ifelse(a %% 2 == 0,"even","odd")
```

For Loop

```
1  # For loop
2  x <- c(2,5,3,9,8,11,6)
3  # iterate through elements
4  for (v in x) {
5    print(v)
6  }
7  # count even element
8  count <- 0
9  for (val in x) {
10    if(val %% 2 == 0) count = count+1
11  }
12  print(count)</pre>
```



```
# Define 2 vectors
cars <- c(1, 3, 6, 4, 9)
trucks <- c(2, 5, 4, 5, 12)

# Graph cars using a y axis that ranges from 0 to 12
plot(cars, type="o", col="blue", ylim=c(0,12))

# Graph trucks with red dashed line and square points
lines(trucks, type="o", pch=22, lty=2, col="red")

# Create a title with a red, bold/italic font
title(main="Autos", col.main="red", font.main=4)</pre>
```



```
# Read values from tab-delimited autos.dat
autos_data <- read.table("d:/temp/autos.dat", header=T, sep="\t")
# Graph autos with adjacent bars using rainbow colors
barplot(as.matrix(autos_data), main="Autos", ylab= "Total", beside=TRUE, col=rainbow(5))
# Place the legend at the top-left corner with no frame
# using rainbow colors
# legend("topleft", c("Mon", "Tue", "Wed", "Thu", "Fri"), cex=0.6, bty="n", fill=rainbow(5))</pre>
```

	cars	trucks	suvs
1	1	2	4
2	3	5	4
3	6	4	6
4	4	5	6
5	9	12	16


```
1  # Define cars vector with 5 values
2  cars <- c(1, 3, 6, 4, 9)
3  # Create a pie chart for cars
4  pie(cars)
5  # ------
6  pie(cars, main="Cars", col=rainbow(length(cars)),
7  labels=c("Mon","Tue","Wed","Thu","Fri"))</pre>
```


GreatFriends.Biz

R Script Introduction

More information

More information on R Script Basic

A Complete Tutorial to learn Data Science in R from Scratch

https://www.analyticsvidhya.com/blog/2016/02/complete-tutorial-learn-data-science-scratch/