Commute Conditions

Definition: Simultaneously Triangularizable

Let $A, B \in M_n$. To say that A and B are simultaneously triangularizable means there exists unitary matrix U such that:

$$U^*AU = T_A$$
 and $U^*BU = T_B$

where $T_A, T_B \in UT(n)$.

Theorem

Let $A, B \in M_n$:

 $AB = BA \implies A$ and B are simultaneously triangularizable.

Definition

Let $S, T \subseteq \mathbb{C}$:

$$S - T = \{s - t \mid s \in S \text{ and } t \in T\}$$

Theorem

Let $A, B \in M_n$:

$$AB = BA \implies \sigma(A - B) \subseteq \sigma(A) - \sigma(B)$$

Example

Thus,
$$\sigma(A - B) \not\subseteq \sigma(A) - \sigma(B) \implies AB \neq BA$$

$$A = \begin{bmatrix} 3 & 1 \\ -2 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\sigma(A) = \{1,2\}$$
 and $\sigma(B) = 0,1$

$$\sigma(A) - \sigma(B) = \{1 - 0, 1 - 1, 2 - 0, 2 - 1\} = \{0, 1, 1, 2\} = \{0, 1, 2\}$$

$$A - B = \begin{bmatrix} 2 & 1 \\ -2 & 0 \end{bmatrix}$$

$$p_{A-B}(t) = \det \begin{bmatrix} t-2 & 1 \\ -2 & t \end{bmatrix} = t(t-2) + 2 = t^2 - 2t + 2$$

$$\sigma(A - B) = \{1 \pm 2i\} \not\subseteq \{0, 1, 2\} = \sigma(A) - \sigma(B)$$

So A and B do not commute:

$$\begin{bmatrix} 3 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ -2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 0 & 0 \end{bmatrix}$$
$$AB \neq BA$$

Proof

Assume AB = BA

A and B are simultaneously triangularizable

Let U be the necessary unitary matrix

$$U^*(A - B)U = U^*AU - U^*BU = T_A - T_B$$

So $\sigma(A-B)$ is from the diagonal entries of T_A-T_B , which is a subset of all possible differences, represented by $\sigma(A)-\sigma(B)$

$$\therefore \sigma(A - B) \subseteq \sigma(A) - \sigma(B)$$

Theorem

Let $A, B \in M_n$:

 $AB = BA \implies A$ and B have a common eigenvector.

Proof

Let $\lambda \in \sigma(A)$ with eigenvector \vec{x}

 $A\vec{x} = \lambda \vec{x}$

Consider $B\vec{x}$

Case 1: $B\vec{x} = 0$

 $\vec{x} \in \operatorname{Eig}_{B}(0)$

Therefore \vec{x} is a common eigenvector.

Case 2: $B\vec{x} \neq 0$

$$A(B\vec{x}) = BA\vec{x} = B(\lambda \vec{x}) = \lambda(B\vec{x})$$

So $B\vec{x} \in \text{Eig}_A(\lambda)$

Thus $\{B\vec{x} \mid \vec{x} \in \operatorname{Eig}_A(\lambda)\} \subseteq \operatorname{Eig}_A(\lambda)$

Let $\{\vec{x}_1,\ldots,\vec{x}_r\}$ be a basis for $\mathrm{Eig}_A(\lambda)$

Extend the set to a basis for $\mathbb{C}^n:\{\vec{x}_1,\ldots,\vec{x}_r,\vec{x}_{r+1},\ldots,\vec{x}_n\}$

AWLOG that this is an orthonormal basis (otherwise use Gram-Schmidt)

Let $U = \begin{bmatrix} \vec{x}_1 & \cdots & \vec{x}_r & \vec{x}_{r+1} & \cdots & \vec{x}_n \end{bmatrix}$, thus a unitary matrix

$$BU = \begin{bmatrix} B\vec{x}_1 & \cdots & B\vec{x}_r & B\vec{x}_{r+1} & \cdots & B\vec{x}_n \end{bmatrix}$$

But note that:

$$B\vec{x}_k \in \begin{cases} \operatorname{Eig}_A(\lambda) & 1 \le k \le r \\ \mathbb{C}^n & r+1 \le k \le n \end{cases}$$

and so:

and so:
$$BU \; = \; \begin{bmatrix} \vec{x}_1 & \cdots & \vec{x}_r & \vec{x}_{r+1} & \cdots & \vec{x}_n \end{bmatrix} \begin{bmatrix} k_{1,1} & k_{1,2} & \cdots & k_{1,r} & k_{1,r+1} & \cdots & k_{1,n} \\ k_{2,1} & k_{2,2} & \cdots & k_{2,r} & k_{2,r+1} & \cdots & k_{2,n} \\ \vdots & & & \vdots & & \vdots \\ k_{r,1} & k_{r,2} & \cdots & k_{r,r} & k_{r,r+1} & \cdots & k_{r,n} \\ 0 & 0 & \cdots & 0 & k_{r+1,r+1} & \cdots & k_{r+1,n} \\ \vdots & & & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & k_{n,r+1} & \cdots & k_{n,n} \end{bmatrix}$$

$$= \; U \begin{bmatrix} C_{11} & C_{12} \\ 0 & C_{22} \end{bmatrix}$$

where $C_{11}, C_{12} \in M_r$ and $C_{22} \in M_{n-(r+1)}$ Select an eigenvector \vec{z} of C_{11} with respect to eigenvalue μ

$$C_{11}\vec{z} = \mu \vec{z}$$

Consider $U \begin{bmatrix} \vec{z} \\ 0 \end{bmatrix}$

 $U \begin{bmatrix} \vec{z} \\ 0 \end{bmatrix}$ is a linear combination of $\{\vec{x}_1, \dots, \vec{x}_r\}$ and is thus in $\mathrm{Eig}_A(\lambda)$ But also:

$$B\left(U\begin{bmatrix}\vec{z}\\0\end{bmatrix}\right) = U\begin{bmatrix}C_{11} & C_{12}\\0 & C_{22}\end{bmatrix}\begin{bmatrix}\vec{z}\\0\end{bmatrix}$$
$$= U\begin{bmatrix}C_{11}\vec{z}\\0\end{bmatrix}$$
$$= U\begin{bmatrix}\mu\vec{z}\\0\end{bmatrix}$$
$$= \mu\left(U\begin{bmatrix}\vec{z}\\0\end{bmatrix}\right)$$

Therefore $U\begin{bmatrix} \vec{z} \\ 0 \end{bmatrix} \in \operatorname{Eig}_B(\mu)$