

人工智慧作業報告簡報

信息工程學院 2021 級 干皓丞 2101212850

Planning in Markov Decision Processes with Gap-Dependent Sample Complexity

用間隙相關樣本複雜性來做出利用馬爾可夫決策過程所做出的規劃

https://arxiv.org/abs/2006.05879

https://proceedings.neurips.cc/paper/2020

https://proceedings.neurips.cc/paper/2020/hash/0d85eb24e2add96ff1a7021f83c

1abc9-Abstract.html

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

該研究的研究者提出名為一個名為 MDP-GapE 的算法,這個演算法是一種新的基於"軌跡的蒙特卡洛樹搜索演算法"(trajectory-based Monte-Carlo Tree Search algorithm),此算法用於在馬爾可夫決策過程中進行規劃,該算法會在過程中進行規畫,且而這個過程的轉換是具有'有限支持'(a finite support)。

Intuition 直觉

Table 1: Different settings of planning algorithms in the literature

Setting	Input	Output	Optimality criterion
(1) Fixed confidence (action-based)	$arepsilon, \delta$	\widehat{a}_n	$\mathbb{P}\left(\bar{r}_n(\widehat{a}_n) \le \varepsilon\right) \ge 1 - \delta$
(2) Fixed confidence (value-based)	$arepsilon, \delta$	$\widehat{V}(s_1)$	$\mathbb{P}\left(\widehat{V}(s_1) - V^{\star}(s_1) \le \varepsilon\right) \ge 1 - \delta$
(3) Fixed budget	n (budget)	\widehat{a}_n	$\mathbb{E}\left[\overline{r}_n(\widehat{a}_n)\right]$ decreasing in n
(4) Anytime	-	\widehat{a}_n	$\mathbb{E}\left[\bar{r}_n(\widehat{a}_n)\right]$ decreasing in n

We propose an algorithm in the *fixed confidence* setting (ε, δ) : after n calls to the generative model, the algorithm should return an action \hat{a}_n such that $\bar{r}_n(\hat{a}_n) \leq \varepsilon$ with probability at least $1 - \delta$. We prove that its *sample complexity* n is bounded in high probability by a quantity that depends on

the sub-optimality gaps of the actions that are applicable in state s_1 . We also provide experiments showing its effectiveness. The only assumption that we make on the MDP is that the support of the transition probabilities $p_h(\cdot|s,a)$ should have cardinality bounded by $B < \infty$, for all s, a and h.

Justification 理由

Table 2: Algorithms with sample complexity guarantees

Algorithm	Setting	Sample complexity	Remarks
Sparse Sampling [19]	(1)-(2)	$H^5(BK)^H/\varepsilon^2 \text{ or } \varepsilon^{-\left(2+\frac{\log(K)}{\log(1/\gamma)}\right)}$	proved in Lemma 1
OLOP [2]	(3)	$\varepsilon^{-\max\left(2,\frac{\log\kappa}{\log(1/\gamma)}\right)}$	open loop, $\kappa \in [1, K]$
OP [3]	(4)	$\varepsilon^{-rac{\log \kappa}{\log(1/\gamma)}}$	known MDP, $\kappa \in [0, BK]$
BRUE [8]	(4)	$H^4(BK)^H/\Delta^2$	minimal gap Δ
StOP [27]	(1)	$\varepsilon^{-\left(2+\frac{\log\kappa}{\log(1/\gamma)}+o(1)\right)}$	$\kappa \in [0, BK]$
TrailBlazer [13]	(2)	$\varepsilon^{-\max\left(2,\frac{\log(B\kappa)}{\log(1/\gamma)}+o(1)\right)}$	$\kappa \in [1, K]$
SmoothCruiser [14]	(2)	ε^{-4}	only regularized MDPs
MDP-GapE (ours)	(1)	$\sum_{a_1 \in \mathcal{A}} \frac{H^2(BK)^{H-1}B}{(\Delta_1(s_1, a_1) \vee \Delta \vee \varepsilon)^2}$	see Corollary 1

Corollary 1. The number of episodes used by MDP-GapE satisfies

$$\mathbb{P}\left(\tau = \mathcal{O}\left(\sum_{a_1} \frac{(BK)^{H-1}}{\left(\Delta_1(s_1, a_1) \vee \Delta \vee \varepsilon\right)^2} \left[\log\left(\frac{1}{\delta}\right) + BH\log(BK)\right]\right)\right) \ge 1 - \delta.$$

Framework 框架

Algorithm 1 MDP-GapE

```
1: Input: confidence level \delta, tolerance \varepsilon
 2: initialize data lists \mathcal{D}_h \leftarrow [\ ] for all h \in [H]
 3: for t = 1 \dots do
 4: //Update confidence bounds
 5: U_h^{t-1}, L_h^{t-1} \leftarrow \text{UpdateBounds}(t, \delta, \mathcal{D}_h)
 6: if U_1^{t-1}(s_1, c^t) - L_1^{t-1}(s_1, b^t) \le \varepsilon then
 7: return b_{t-1}, break
        end if
 9: // Best
10: b^{t-1} \leftarrow \operatorname{argmin} \left[ \max_{a \neq b} U_1^{t-1}(s_1, a) - L_1^{t-1}(s_1, b) \right]
11: //Challenger
12: c^{t-1} \leftarrow \operatorname{argmax} U_1^{t-1}(s_1, c)
13: //Exploration
14: a_1^t \leftarrow \underset{a \in \{b^{t-1}, c^{t-1}\}}{\operatorname{argmax}} \left[ U_1^{t-1}(s_1, a) - L_1^{t-1}(s_1, a) \right]
15: observe reward r_1^t, next state s_2^t, save \mathcal{D}_1.append(s_1^t, a_1^t, s_2^t, r_1^t)
       for step h = 2, \dots, H do
        a_h^t \leftarrow \operatorname{argmax} U_h^{t-1}(s_h^t, a)
             observe reward r_{h-1}^t, next state s_h^t, save \mathcal{D}_h append (s_h^t, a_h^t, s_{h+1}^t, r_h^t)
18:
19:
         end for
20: end for
```


Result 结果

Figure 1: Polynomial dependency of the number n of oracle calls with respect to $1/\varepsilon$.

Figure 2: Comparison to KL-OLOP in a fixed-budget setting.