Memory.

Michael Ben-Or David Ponarovsky

August 7, 2025

1 Notations and Definitions.

Consider a code with a 2-colorized (k-colorized) Tanner graph, such that any two left bits of the same color share no stabilizer. For a subset of bits S, we denote by S_{c_1} its restriction to color c_1 . We use the integer Δ to denote half of the stabilizers connected to a single bit. (We assume fixed left and right degree in the graph). Our computation is subjected to p-depolarized noise. We denote by m the block length of the code. The decoder works as follows:

- 1. Pick a random color.
- 2. For any (q)bit at that color, check if flipping it decreases the syndrome. If so, then flip it.

We say that a density matrix ρ , induced on the m-length block, is a **good noisy distribution** if:

- 1. ρ is subjected to q local stochastic noise.
- 2. Denote by S the support of an error occurring on ρ (S is a random variable). Then, with high probability $\frac{1}{2}$, $|S_{c_1}| > \frac{1}{4}|S_1|$.

Claim 1.1. Given density ρ , which is a **good noisy distribution**, then with high probability, after correction and noise accumulation, it will remain a **good noisy distribution**.

Figure 1: Illustration of the cycle.

1.1 Proof.

First, let's bound the probability that the error after the decoding round (E_2) is supported on S. (We use here the fact that views of the bits through their stabilizer don't overlap since we took only bits of the same color for the decoding):

 $\Pr[\operatorname{\mathbf{Sup}}(E_2) = S] \leq \Pr[\text{any bit } v \in S_{c_1} \text{ sees majority of unstatisfied stabilizers }] \leq q^{\Delta|S|_{c_1}}$

¹I'm leaving specifying what it is to later.

Now, after observing a round of p-depolarized noise, we get:

$$\begin{aligned} \mathbf{Pr} \left[\mathbf{Sup} \left(E_{3} \right) = S \right] &= \sum_{S' \subset S} \mathbf{Pr} \left[\mathbf{Sup} \left(E_{2} \right) = S' \cap \mathbf{Sup} \left(E_{3} / E_{2} \right) = S / S' \right] \\ &\leq \sum_{S' \subset S} q^{\Delta |S'_{c_{1}}|} p^{|S / S'_{c_{1}}|} \leq \sum_{S' \subset S} q^{\Delta |S'_{c_{1}}|} p^{|S_{c_{1}}| - |S'_{c_{1}}|} \\ &\leq \left(q^{\Delta} + p \right)^{|S_{c_{1}}|} \leq \begin{cases} \left(q^{\Delta} + p \right)^{\frac{1}{4}|S|} & \text{if } |S_{c_{1}}| \geq \frac{1}{4}|S| \\ \star & \text{else} \end{cases} \end{aligned}$$

Let $S^t = \mathbf{Sup}(E)$ at time t and denote by \mathcal{P}_t the probability that $|S_{c_1}^t| > \frac{1}{4}|S_t|$. Then:

$$\mathcal{P}_{t+1} \ge \mathbf{Pr} \left[|S_{c_1}^t| > \frac{1}{4} |S_t| \text{ and } |(S_{t+1}/S_t)_{c_1}| \ge \frac{1}{4} |S_{t+1}/S_t| \right]$$
$$\ge \mathcal{P}_t \cdot \left(1 - e^{-\varepsilon} m \right) \ge \mathcal{P}_0 \left(1 - (t+1)e^{-\varepsilon m} \right)$$