Определение 1. (условие Липшица) Функция f, определённая на множестве M, называется липшицевой (названо в честь Рудольфа Липшица), если найдётся такая константа C, что для любых $x,y\in M$ выполнено неравенство $|f(x)-f(y)|\leqslant C|x-y|$.

Задача 1. Пусть даны две функции f(x) и g(x), удовлетворяющие условию Липшица, и некоторая константа $c \in \mathbb{R}$. Докажите, что следующие функции также являются липшицевыми:

- а) cf(x); б) $f(x) \pm g(x)$; в) f(g(x)); г) f(x)g(x), если область M ограничена;
- Задача 2. Докажите, что следующие функции являются липшицевыми:
- а) x; б) $\cos x$; в) $\operatorname{arcctg} x$; г) x^n на любом ограниченном множестве;

Задача 3. Докажите, что липшицева функция на множестве M непрерывна в каждой точке области M.

Задача 4*. На сковородке лежат две котлеты (можно считать, что котлеты — выпуклые многоугольники). Докажите, что их можно разрезать каждую на две равновеликих части одним прямолинейным разрезом.

Листок №22

Домашняя работа

сентябрь 2014г.

Определение 1. (условие Липшица) Функция f, определённая на множестве M, называется липшицевой (названо в честь Рудольфа Липшица), если найдётся такая константа C, что для любых $x,y\in M$ выполнено неравенство $|f(x)-f(y)|\leqslant C|x-y|$.

Задача 1. Пусть даны две функции f(x) и g(x), удовлетворяющие условию Липшица, и некоторая константа $c \in \mathbb{R}$. Докажите, что следующие функции также являются липшицевыми:

- а) cf(x); б) $f(x) \pm g(x)$; в) f(g(x)); г) f(x)g(x), если область M ограничена;
- Задача 2. Докажите, что следующие функции являются липшицевыми:
- а) x; б) $\cos x$; в) $\operatorname{arcctg} x$; г) x^n на любом ограниченном множестве;

Задача 3. Докажите, что липшицева функция на множестве M непрерывна в каждой точке области M.

Задача 4*. На сковородке лежат две котлеты (можно считать, что котлеты — выпуклые многоугольники). Докажите, что их можно разрезать каждую на две равновеликих части одним прямолинейным разрезом.

Листок №22

Домашняя работа

сентябрь 2014г.

Определение 1. (условие Липшица) Функция f, определённая на множестве M, называется липшицевой (названо в честь Рудольфа Липшица), если найдётся такая константа C, что для любых $x,y\in M$ выполнено неравенство $|f(x)-f(y)|\leqslant C|x-y|$.

Задача 1. Пусть даны две функции f(x) и g(x), удовлетворяющие условию Липшица, и некоторая константа $c \in \mathbb{R}$. Докажите, что следующие функции также являются липшицевыми:

- а) cf(x); б) $f(x) \pm g(x)$; в) f(g(x)); г) f(x)g(x), если область M ограничена;
- Задача 2. Докажите, что следующие функции являются липшицевыми:
- а) x; б) $\cos x$; в) $\operatorname{arcctg} x$; г) x^n на любом ограниченном множестве;
- **Задача 3.** Докажите, что липшицева функция на множестве M непрерывна в каждой точке области M.
- Задача 4*. На сковородке лежат две котлеты (можно считать, что котлеты выпуклые многоугольники). Докажите, что их можно разрезать каждую на две равновеликих части одним прямолинейным разрезом.