Algèbre 2 - SMI/SMA - S1

Fractions rationelles - Séance 05

Pr. Hamza El Mahjour

Faculté
Polydisciplinaire
Larache
Université Abdelmalek Essaâdi

Objectifs principaux

- Comment est construit Q?

Objectifs principaux

- Comment est construit Q?
- Peut-on faire la même chose avec $\mathbb{K}[X]$?

Objectifs principaux

- Comment est construit Q?
- Peut-on faire la même chose avec $\mathbb{K}[X]$?
- Comment manipuler des fractions rationnelles ?

Fractions rationnelles

Les fractions de l'ensemble des nombres rationnels $\mathbb Q$ sont définies par une **relation** comme suit

$$\frac{a}{b} = \frac{c}{d} \iff a \times d = b \times c,$$

où $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$ et $(c,d) \in \mathbb{Z} \times \mathbb{Z}^*$.

Pour des polynômes (A,B) et (C,D) dans $\mathbb{K}[X] \times \mathbb{K}[X]^*$, on définit de même que dans \mathbb{Q} une **relation**

$$\frac{A}{B} = \frac{C}{D} \iff A \cdot D = B \cdot C.$$

En injectant cette **relation** dans $\mathbb{K}[X]$, nous obtenons un ensemble noté $\mathbb{K}(X)$ et nommé l'ensemble des **fractions rationnelles**. Une fraction rationnelle est un élément $\frac{A}{B}$ de $\mathbb{K}(X)$ où $A \in \mathbb{K}[X]$ et $B \in \mathbb{K}[X]^*$.

En effet,

Proposition

Soit (A(X), B(X)) et (C(X), D(X)) dans $\mathbb{K}[X] \times \mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\}$. La relation \equiv définie sur $\mathbb{K}[X] \times \mathbb{K}[X]$ par

$$(A,B) \equiv (C,D) \ si \ A \cdot D = B \cdot C$$

est une relation d'équivalence.

Preuve

- 11 (Réfl.) On a $(A, B) \equiv (A, B)$ car AB = AB.
- [2] (Sym.) Soit $(A, B) \equiv (C, D)$ alors AD = BC donc, par commutativité, CB = DA alors $(C, D) \equiv (A, B)$
- (Tran.) Si $(A,B) \equiv (C,D)$ et $(C,D) \equiv (E,F)$ alors AD = BC et CF = DE alors ADF = B CF donc ADF = BDE. Puisque $\mathbb{K}[X]$ est un anneau commutatif alors AFD = BED. Donc, $AFD BED = 0_{\mathbb{K}[X]}$ (car -BED est l'opposé de BED). Et parce que ($\mathbb{K}[X], +, \times$) est un anneau alors (AF BE) $D = 0_{\mathbb{K}[X]}$. Ce qui implique que $AF BE = 0_{\mathbb{K}[X]}$ ou bien $D = 0_{\mathbb{K}[X]}$ (car $\mathbb{K}[X]$ est un anneau intègre). Mais $D \neq 0_{\mathbb{K}[X]}$ donc forcément $AF BE = 0_{\mathbb{K}[X]} \implies AF = BE$

Donc \equiv est bien une relation d'équivalence.

À partir de la relation d'équivalence précédente, on peut créer un anneau quotient $\mathbb{K}[X]/\equiv$. Où les éléments de cet anneau seront des classes d'équivalence. Ceci est une pratique que vous connaissez implicitement avec l'ensemble \mathbb{Q} .

$$\frac{50}{100} = \frac{15}{30} = \frac{1}{2} = \frac{20}{40} = \dots$$

Ces fractions sont équivalentes bien que leur écriture est différente. On appelle ces nombres des **représentants**.

Définition

 $\mathbb{K}[X]/\equiv$ est appelée l'ensemble des fractions rationnelles et est noté $\mathbb{K}(X).$ On a

$$\mathbb{K}(X) = \left\{ rac{A}{B}, \qquad A \in \mathbb{K}[X], B \in \mathbb{K}[X] \setminus \left\{ 0_{\mathbb{K}[X]}
ight\}
ight\}$$

On peut munir $\mathbb{K}(X)$ de lois de compositions interne. Notamment une addition et une multiplication. Afin de former un anneau.

Définition

■ Soit $\frac{A}{B}$, $\frac{C}{D}$ ∈ $\mathbb{K}(X)$ on définit la somme des deux fractions par

$$\frac{A}{B} + \frac{C}{D} = \frac{AD + BC}{BD}.$$

Le produit des deux fractions est

$$\frac{A}{B} \times \frac{C}{D} = \frac{A \times C}{B \times D}.$$

Exemple

$$\frac{1}{X^2} + \frac{X}{X - 1} = \frac{1(X - 1) + X^2X}{X^2(X - 1)} = \frac{X - 1 + X^3}{X^2(X - 1)}$$

Si on muni $\mathbb{K}(X)$ des deux lois précédentes on obtient un anneau $(\mathbb{K}(X),+,\times)$ d'élément neutre pour l'addition $\frac{0_{\mathbb{K}[X]}}{1_{\mathbb{K}[X]}}$ noté 0. L'élément neutre de la multiplication est $\frac{1_{\mathbb{K}[X]}}{1_{\mathbb{K}[X]}}$ noté 1. De plus

Proposition

 $(\mathbb{K}(X), +, \times)$ est un corps!

Propriétés

Soient A(X), B(X) deux éléments non-nuls de $\mathbb{K}[X]$. Alors

- L'élément $\frac{A(X)}{1}$ de $\mathbb{K}(X)$ coïncide avec A(X) de $\mathbb{K}[X]$.
- L'inverse de $\frac{A}{B} \in \mathbb{K}(X)$ est $\frac{B}{A}$.
- $\blacksquare \mathbb{K}[X] \subset \mathbb{K}(X) \text{ car } A = \frac{A}{1}.$

Définition

Un représentant $\frac{A}{B}$ est irréductible ssi A et B sont premiers entre eux.

Exemples

- $\frac{X^3-2X^2+2X-4}{X^4-2X^3+iX-2i}$ n'est pas irréductible car $\frac{X^3-2X^2+2X-4}{X^4-2X^3+iX-2i} = \frac{(X^2+2)(X-2)}{(X^3+i)(X-2)}$. Donc X-2 est un diviseur commun de A et B.
- $\frac{X-11}{X+17i}$ est irréductible car les seuls diviseurs communs de X-11 et X+17i sont les polynômes constants.

Définition

On dit que α_0 est un **pôle** de la fraction $\frac{A}{B}$ s'il est une racine du polynôme B (i.e si $B(\alpha_0)=0$). Le pôle est d'ordre n si la racine est de multiplicité n.

Soit le résultat de la division euclidienne de A par B tel que : A = BQ + R. On peut constater que en multipliant par $\frac{1}{B}$ on obtient

$$\frac{A}{B} = Q + \frac{R}{B},$$

avec deg $R < \deg B$. Dans ce cas, on appelle Q la **Partie Entière** de $\frac{A}{B}$.

Exemple:

$$\frac{2X^4 + 3X^3 - X + 1}{X^2 - 3X + 1} = 2X^2 + 9X + 25 + \frac{65X - 24}{X^2 - 3X + 1}$$

Nous avons maintenant besoin d'un cadre plus général que le résultat précédent.

Théorème

Soient A, B, B_1, B_2 des polynômes tels que :

- la fraction rationnelle est de partie entière nulle,
- B_1 et B_2 sont premiers entre eux et $B = B_1B_2$.

Alors il existe des polynômes uniques A_1 et A_2 tels que

$$\frac{A}{B} = \frac{A_1}{B_1} + \frac{A_2}{B_2}$$

avec $\deg(A_1) < \deg(B_1)$ et $\deg(A_2) < \deg(B_2)$. Si de plus $\frac{A}{B}$ est irréductible, alors les deux fractions $\frac{A_1}{B_1}$ et $\frac{A_2}{B_2}$ sont irréductibles.

Exemples:

$$\frac{6X^3-21X^2+9X-21}{(X-1)^3(X^2+X+1)} = \frac{-2X^2+8X-15}{(X-1)^3} + \frac{2X+6}{X^2+X+1}$$

$$\frac{10x^2+12x+20}{x^3-8}=\frac{7}{x-2}+\frac{3x+4}{x^2+2x+4}.$$

$$\frac{25}{(x+2)(x^2+1)^2} = \frac{1}{x+2} + \frac{-x+2}{x^2+1} + \frac{-5x+10}{(x^2+1)^2}$$

Afin d'éviter l'énonciation de plusieurs théorèmes il est important d'avoir une idée sur la pratique de la décomposition en éléments simples. On choisit pour cet objectif de travailler sur $\mathbb{C}[X]$. En général, on peut écrire tout polynôme B de $\mathbb{C}[X]$ de la forme

$$B=k(X-\alpha_1)^{p_{\alpha_1}}(X-\alpha_2)p_{\alpha_2}(X-\alpha_3)^{p_{\alpha_3}}\dots(X-\alpha_m)^{p_{\alpha_m}}$$

où chaque α_i est une racine distincte et p_{α_i} sa multiplicité. On a alors la décomposition suivante

$$\frac{A}{B} = E + \frac{A_{\alpha_{11}}}{X - \alpha_{1}} + \frac{A_{\alpha_{12}}}{(X - \alpha_{1})^{2}} + \dots + \frac{A_{\alpha_{1p\alpha_{1}}}}{(X - \alpha_{1})^{p\alpha_{1}}} + \dots
+ \frac{A_{\alpha_{21}}}{X - \alpha_{2}} + \frac{A_{\alpha_{22}}}{(X - \alpha_{2})^{2}} + \dots + \frac{A_{\alpha_{2p\alpha_{1}}}}{(X - \alpha_{2})^{p\alpha_{2}}} + \dots
+ \frac{A_{\alpha_{m1}}}{X - \alpha_{m}} + \frac{A_{\alpha_{m2}}}{(X - \alpha_{m})^{2}} + \dots + \frac{A_{\alpha_{mp\alpha_{m}}}}{(X - \alpha_{m})^{p\alpha_{m}}}$$

Références

- Gourdon, X.
 - « Algèbre, Maths en tête ». ellipses, 1994.
- R. A. Earl.
 - « Complex Numbers ».
 University of Oxford, Mathematical Institute,2015/2016.
- J.-B.Hiriart-Urruty
 - « Les nombres complexes de A à Z ». Université de Toulouse,2009.
- Jean-Pierre Escofier
 - « Toute l'algèbre de la licence ». Édition Dunod,2020.

