Élèves 1 & 4

Exercice CCP (Numéro 69). On considère la matrice

$$A = \begin{pmatrix} 0 & a & 1 \\ a & 0 & 1 \\ a & 1 & 0 \end{pmatrix}, \quad a \in \mathbb{R}$$

- 1. Déterminer le rang de A.
- 2. Pour quelles valeurs de A la matrice A est-elle diagonalisable?

Exercice. Soit E un \mathbb{R} -ev de dimension $3, f \in \mathcal{L}(E)$. On suppose que f est annulé par $X^4 - X^2$ et que -1 et 1 sont valeurs propres de f. Montrer que f est diagonalisable.

Élèves 2 & 5

Exercice CCP (Numéro 67). Diagonalisablité dans $\mathcal{M}_3(\mathbb{R})$ puis dans $\mathcal{M}_3(\mathbb{C})$ de

$$\begin{pmatrix} 0 & a & c \\ b & 0 & c \\ b & -a & 0 \end{pmatrix}, \quad a, b, c \in \mathbb{R}$$

Exercice. Soit $M\in\mathcal{M}_n(\mathbb{R})$ telle que $M^2+M^T=2I_n$. Démontrer que M est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$.

Élèves 3 & 6

Exercice CCP (Numéro 72). Soit f un endomorphisme d'un espace vectoriel de dimension $n \geq 1$, et soit (e_i) une base de E. On suppose $f(e_i) = v$ pour tout i, où $v \in E$. Donner le rang de f et discuter de la diagonalisablité de f.

Exercice. Soient $k \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{K})$ tels que $A^{k+1} = A^k$.

- 1. Démontrer que pour tout entier $q \ge 1$, $A^{k+q} = A^k$.
- 2. Établir que A^k est diagonalisable.
- 3. Démontrer que pour tout $p \in \{1, \dots, k-1\}$, $A^k A^p$ est nilpotente.