Работа 3.4.5 Петля гистерезиса.

Подлесный Артём группа 827

16 декабря 2019 г.

Цель работы:

изучение петель гистерезиса ферромагнитных материалов с помощью осциллографа

В работе используются:

автотрансформатор, понижающий трансформатор, интегрирующая цепочка, амперметр, вольтметр, электронный осциллограф, делитель напряжения, тороидальные образцы с двумя обмотками.

Общая теория

Рис. 1: Петля гистерезиса

Рассмотрим большой фрагмет ферромагнетика. Из-за хаотического расположения доменов, его суммарная намагниченность равна нулю. При включении внешеного магнитного поля H будет расти объем областей с магнитным моментом I, сонаправленным с вектором внешного поля. Этот рост происходит путем смещения границ доменов. Из-за дефектов кристаллической структуры могут происходить необратимые изменения доменных границ. При дальнейшем возрастании H момент начинает поворачиваться к полю до совпадения, т.е. при некотором значении внешнего поля ферромагнетик ведет себя как один домен с моментом I_s , направленным по H. Это состояние называется состоянием технического насыщения. Петля гистерезиса — график, описывающий процесс

перемагничивания ферромагнетика. Охватывающая точки, соответствующие техническому насыщению, петля называется предельной.

На графике отмечена коэрцитивная сила H_c , то есть поле, при котором намагниченность зануляется. Намагниченность M_r , которая остается, если, предварительно намагнитив ферромагнетик до насыщения, выключить поле, называется остаточной.

Для аналогичного графика зависимости B(H) можно определить соответствующие величины и ввести характеризующую его величину

$$\mu_{max} = \frac{1}{\mu_0} \cdot \frac{dB}{dH} \tag{1}$$

Измерение магнитной индукции и напряженности магнитного поля в образце

Магнитную индукцию удобно определять с помощью ЭДС, возникающей при изменении потока Φ в катушке, намотанной на образец:

$$\mathscr{E} = -\frac{d\Phi}{dt};\tag{2}$$

$$\Phi = BSN; \tag{3}$$

3десь N - число витков в измерительой катушке, S - площадь викта.

$$|B| = \frac{1}{SN} \int \mathscr{E}dt; \tag{4}$$

Рис. 2: Интегрирующая ячейка — RC-цепочка

Таким образом, для определения *В* нужно проинтегрировать сигнал, наведенный переменным магниным полем на катушку.

Для интегрирования сигнала применяют разного рода интегрирующие схемы. Простейшая из них состоит из соедниненных последовательно резистора R и конденсатора C и выполняет свое назначение, если сопротивление резистора R сильно превышает сопротивление конденсатора (если выходной сигнал много меньше входного $U_{вых} \ll U_{ex}$).

$$U_{ewx} = \frac{q}{C} = \frac{1}{C} \int Idt \simeq \frac{1}{RC} \int U_{ex}dt.$$
 (5)

Этот вывод тем ближе к истине, чем больше постоянная времени $\tau=RC$ превосходит характерное время процесса. Для синусоидальных напряжений

$$U_{\scriptscriptstyle GMX} = \frac{U_{\scriptscriptstyle GX}}{RC\Omega},\tag{6}$$

где Ω - частота сигнала. Отсюда итоговая формула

$$|B| = \frac{1}{SN} \int \mathcal{E}dt = \frac{1}{N} \int U_{ex}dt = \frac{RC}{SN} \cdot U_{eux} = \frac{RC}{SN} \cdot U_y. \tag{7}$$

Для исследования зависимости B(H) ферромагнитных материалов обычно используют образцы тороидальной формы. Подробное рассмотрение теории позволяет получить уравнение:

$$H = \frac{IN_0}{2\pi R} = \frac{U_x N_0}{R_0 \cdot 2\pi R} \tag{8}$$

Экспериментальная установка

Экспериментальные данные и их обработка

Для трех образцов: Fe-Si (кремнистое железо), Феррита и Fe-Ni (Пермаллой) были найдены растущие последовательности петель гистерезиса, в которых поля внутри образцов меняются от незначительных до приводящих вещества в состояния полного насыщения. Основные параметры системы и характеристики образцов:

- 1. $R_0=0.3~{
 m Om};~R=20~{
 m kOm};~C=20~{
 m mk}\Phi$
- 2. (Fe-Ni): $N_0=40;~N_U=200;~S=3.8~{
 m cm};~2\pi R=24~{
 m cm}$
- 3. (Fe-Si): $N_0=35;~N_U=350;~S=1.2~{\rm cm};~2\pi R=10~{\rm cm}$
- 4. Феррит: $N_0 = 35; \ N_U = 400; \ S = 3.0 \ {
 m cm}; \ 2\pi R = 25 \ {
 m cm}$

 Γ рафики соответствующих петель приведены на рисунках 3-5. Найденные исследуемые в эксперименте величины приведены в таблице 1.

Рис. 3: График зависимости B(H) для FeNi

Рис. 5: График зависимости B(H) для Феррита

Таблица 1: Значения исслюдеуемых в работе величин

	Экспериментальнае						Табличные		
	значения						значения		
	$H_c, \frac{A}{M}$	B_r , Тл	B_s , Тл	$\kappa_{max}, \mathrm{T}_{\mathrm{J}} \cdot \frac{\mathrm{M}}{\mathrm{A}}$	μ_{max} , ед. Си	$w, \frac{\mathcal{L}_{M}}{M^3}$	$H_c, \frac{A}{M}$	μ_{max} , ед. Си	B_s , Тл
Fe-Ni	3	0.95	1.1	0.5	$4 \cdot 10^{6}$	13	4	$1 \cdot 10^{6}$	1.08
Fe-Si	80	0.7	2.0-2.2	0.011	$8.5 \cdot 10^{3}$	420	8	$40 \cdot 10^3$	2.0
Fe(техн)							80	$5 \cdot 10^{3}$	2.15
Феррит	9	0.08	0.2-0.25	0.012	$9.6 \cdot 10^{3}$	3.5	8-600	$(3-10)\cdot 10^3$	0.2-0.4

Вывод.

На основании имеющихся данных можно сделать несколько выводов. Во-первых, сравнивая значения максимальной проницаемости и коэрцивной силы для кремнистого и технического железа, можно прийти к заключению, что в исследуемом образце в состав сплава входит ощутимое количество примеси, либо же содержание кремния в вещества больше чем предполгается в таблице(3%). Во-вторых, довольно сильно отличаются значения максимальной проницаемости для пермаллоевого образца. Причина этого, увы, остается загадкой. В третьих, полученные значения для образца из феррита с хорошей степенью точности сходятся с табличными.