

Exact Methods: Policy and Value Iteration

Easwar Subramanian

TCS Innovation Labs, Hyderabad

Email: easwar.subramanian@tcs.com / cs5500.2020@iith.ac.in

August 23, 2022

Overview

Review

2 Policy Iteration

3 Value Iteration

Review

Solution to an MDP

Solving an MDP means finding a policy π_* as follows

$$\pi_* = \operatorname*{arg\,max}_{\pi} \left[\mathbb{E}_{\pi} \left(\sum_{t=0}^{\infty} \gamma^t r_{t+1} \right) \right]$$

is maximum

- ▶ Denote optimal value function $V_*(s) = V^{\pi_*}(s)$
- ▶ Denote optimal action value function $Q_*(s,a) = Q^{\pi_*}(s,a)$
- ▶ The main goal in RL or solving an MDP means finding an **optimal value function** V_* or **optimal action value function** Q_* or **optimal policy** π_*

Optimal Policy

Define a partial ordering over policies

$$\pi \ge \pi'$$
, if $V^{\pi}(s) \ge V^{\pi'}(s)$, $\forall s \in \mathcal{S}$

Theorem

- ▶ There exists an optimal policy π_* that is better than or equal to all other policies.
- ▶ All optimal policies achieve the optimal value function, $V_*(s) = V^{\pi_*}(s)$
- ▶ All optimal policies achieve the optimal action-value function, $Q_*(s,a) = Q^{\pi_*}(s,a)$

Question: Suppose we are given $Q_*(s, a), \forall s \in \mathcal{S}$. Can we find $V_*(s)$?

$$V_*(s) = \max_a Q_*(s, a)$$

Question: Suppose we are given $V_*(s), \forall s \in \mathcal{S}$. Can we find $Q_*(s, a)$?

$$Q_*(s, a) = \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma V_*(s') \right) \right]$$

Greedy Policy

For a given $Q^{\pi}(\cdot,\cdot)$, define $\pi'(s)$ as follows

$$\pi'(s) = \operatorname{greedy}(Q) = \begin{cases} 1 & \text{if } a = \arg \max_{a \in \mathcal{A}} Q^{\pi}(s, a) \\ 0 & \text{Otherwise} \end{cases}$$

For a given $V^{\pi}(\cdot)$, define $\pi'(s)$ as follows

$$\pi'(s) = \operatorname{greedy}(V) = \begin{cases} 1 & \text{if } a = \arg \max_{a \in \mathcal{A}} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right) \right] \\ 0 & \text{Otherwise} \end{cases}$$

Policy Iteration

Policy Iteration

Question: Is there a way to arrive at π_* starting from an arbitrary policy π ?

Answer: Policy Iteration

- ightharpoonup Evaluate the policy π
 - ★ Compute $V^{\pi}(s) = \mathbb{E}_{\pi}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s)$
- ▶ Improve the policy π

$$\pi'(s) = \operatorname{greedy}(V^{\pi}(s))$$

$$\pi_0 \xrightarrow{\mathrm{E}} V^{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} V^{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi^* \xrightarrow{\mathrm{E}} V^*,$$

Policy Evaluation

- **Problem**: Evaluate a given policy π
- Compute $V^{\pi}(s) = \mathbb{E}_{\pi}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s)$
- ▶ Solution 1 : Solve a system of linear equations using any solver
- ▶ Solution 2: Iterative application of Bellman Evaluation Equation
- ► Iterative update rule :

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}^{\pi}(s') \right]$$

▶ The sequence of value functions $\{V_1^{\pi}, V_2^{\pi}, \cdots, \}$ converge to V^{π}

Policy Improvement

Suppose we know V^{π} . How to improve policy π ?

The answer lies in the definition of action value function $Q^{\pi}(s,a)$. Recall that,

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t} = s, a_{t} = a \right)$$

$$= \mathbb{E}(r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_{t} = s, a_{t} = a)$$

$$= \sum_{s' \in S} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

- ▶ If $Q^{\pi}(s, a) > V^{\pi}(s)$ \implies Better to select action a in state s and thereafter follow the policy π
- ► This is a special case of the policy improvement theorem

Policy Improvement Theorem

Theorem

Let π and π' be any pair of deterministic policies such that, for all $s \in \mathcal{S}$,

$$Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s).$$

Then $V^{\pi'}(s) > V^{\pi}(s)$ for all $s \in \mathcal{S}$

Proof.

$$V^{\pi}(s) \leq Q^{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'}(r_{t+1} + \gamma V^{\pi}(s_{t+1})|s_{t} = s)$$

$$\leq \mathbb{E}_{\pi'}(r_{t+1} + \gamma Q^{\pi}(s_{t+1}, \pi'(s_{t+1}))|s_{t} = s)$$

$$= \mathbb{E}_{\pi'}(r_{t+1} + \gamma r_{t+2} + \gamma^{2} V^{\pi}(s_{t+2})|s_{t} = s)$$

$$\leq \mathbb{E}_{\pi'}(r_{t+1} + \gamma r_{t+2} + \gamma^{2} Q^{\pi}(s_{t+2}, \pi'(s_{t+2}))|s_{t} = s)$$

$$\leq \mathbb{E}_{\pi'}(r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \cdots |s_{t} = s) = V^{\pi'}(s)$$

Policy Improvement

- Now consider the greedy policy $\pi' = \operatorname{greedy}(V^{\pi})$.
- ▶ Then, $\pi' \geq \pi$. That is, $V^{\pi'}(s) \geq V^{\pi}(s)$ for all $s \in \mathcal{S}$.
 - \bigstar By defintion of π' , at state s, the action chosen by policy π' is given by the greedy operator

$$\pi'(s) = \operatorname*{arg\,max}_{a} Q^{\pi}(s, a)$$

 \star This improves the value from any state s over one step

$$Q^{\pi}(s, \pi'(s)) = \max_{s} Q^{\pi}(s, a) \ge Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$$

- \bigstar It therefore improves the value function, $V^{\pi'}(s) \geq V^{\pi}(s)$
- ▶ Policy π' is at least as good as policy π

Policy Improvement

► If improvements stop,

$$Q^{\pi}(s, \pi'(s)) = \max_{a} Q^{\pi}(s, a) = Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$$

▶ Bellman optimality equation is satisfied as,

$$V^{\pi}(s) = \max_{a} Q^{\pi}(s, a)$$

 \blacktriangleright The policy π for which the improvement stops is the optimal policy.

$$V^{\pi}(s) = V_*(s) \quad \forall s \in \mathcal{S}$$

Policy Iteration: Algorithm

Algorithm Policy Iteration

- 1: Start with an initial policy π_1
- 2: **for** $i = 1, 2, \dots, N$ **do**
- 3: Evaluate $V^{\pi_i}(s) \quad \forall s \in \mathcal{S}$. That is,
- 4: **for** $k = 1, 2, \dots, K$ **do**
- 5: For all $s \in \mathcal{S}$ calculate

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}^{\pi_i}(s') \right]$$

- 6: end for
- 7: Perform policy Improvement

$$\pi_{i+1} = \operatorname{greedy}(V^{\pi_i})$$

8: end for

Policy Iteration: Example

Update Rule:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^a \left[\mathcal{R}_{ss'}^a + \gamma V_k^{\pi_i}(s') \right]$$

 v_k for the

$$k = 1$$

$$\begin{vmatrix}
0.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & -1.0
\end{vmatrix}$$

$$k = 2$$

$$\begin{array}{c}
0.0 & -1.7 & -2.0 & -2.0 \\
-1.7 & -2.0 & -2.0 & -2.0 \\
-2.0 & -2.0 & -2.0 & -1.7 \\
-2.0 & -2.0 & -1.7 & 0.0
\end{array}$$

greedy policy

w.r.t. vi

random

policy

Policy Iteration: Example

Policy Iteration: Schematic Representation

- The sequence $\{\pi_1, \pi_2, \cdots, \}$ is guaranteed to converge.
- At convergence, both current policy and the value function associated with the policy are optimal.

course

Modified Policy Iteration

Can we computationally simplify policy iteration process?

- ▶ We need not wait for policy evaluation to converge to V^{π}
- ▶ We can have a stopping criterion like ϵ -convergence of value function evaluation or K iterations of policy evaluation
- \blacktriangleright Extreme case of K=1 is value iteration. We update the policy every iteration

Value Iteration

Value Iteration

Question: Is there a way to arrive at V_* starting from an arbitrary value function V_0 ?

Answer : Value Iteration

Optimality Equation for State Value Function

Recall the Bellman Evaluation Equation for an MDP with policy π

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

Question: Can we have a recursive formulation for $V_*(s)$?

$$V_*(s) = \max_{a} Q_*(s, a) = \max_{a} \left[\sum_{s' \in S} \mathcal{P}^a_{ss'} \left(\mathcal{R}^a_{ss'} + \gamma V_*(s') \right) \right]$$

Optimality Equation for Action-Value Function

Similarly, there is a recursive formulation for $Q_*(\cdot,\cdot)$

$$Q_*(s, a) = \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma \max_{a'} Q_*(s', a') \right) \right]$$

Question: These are also a system of equations with n = |S| with n variables. Can we solve them?

<u>Answer</u>: Optimality equations are non-linear system of equations with n unknowns and n non-linear constraints (i.e., the max operator).

Solving the Bellman Optimality Equation

- ▶ Bellman optimality equations are non-linear
- ▶ In general, there are no closed form solutions
- ▶ Iterative methods are typically used

Bellman's Optimality Principle

Principle of Optimality

The tail of an optimal policy must be optimal

 \blacktriangleright Any optimal policy can be subdivided into two components; an optimal first action, followed by an optimal policy from successor state s'.

Solution Methodology: Dynamic Programming

Bellman optimality equation:

$$V_*(s) = \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma V_*(s') \right) \right]$$

Optimal Substructure : Optimal solution can be constructed from optimal solutions to subproblems

Overlapping Subproblems : Problem can be broken down into subproblems and can be reused several times

- ▶ Markov Decision Processes, generally, satisfy both these characteristics
- ▶ Dynamic Programming is a popular solution method for problems having such properties

Value Iteration : Idea

- ▶ Suppose we know the value $V_*(s')$
- ▶ Then the solution $V_*(s)$ can be found by one step look ahead

$$V_*(s) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma V_*(s') \right) \right]$$

▶ Idea of value iteration is to perform the above updates iteratively

Value Iteration: Algorithm

Algorithm Value Iteration

- 1: Start with an initial value function $V_1(\cdot)$;
- 2: **for** $k = 1, 2, \dots, K$ **do**
- 3: for $s \in \mathcal{S}$ do
- 4: Calculate

$$V_{k+1}(s) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right) \right]$$

- 5: end for
- 6: end for

