National Textile University, Faisalabad

Department of Computer Science

SAJAL NAEEM
BSCS 5 TH B
23-NTU-CS-1089
1ST
IOT AND EMBEDDED SYSTEMS
SIR NASIR MAHMAOOD
26 TH OCTOBER 2025

Code Screen Shot:

Code Explanation

In this code we have integrated three LED and two push buttons, and we have applied logic to switch between 4 different modes. The first button is used to switch between modes while the second button is used to reset the mode. in 1st mode all the led will be off then in second mode the LED will blink in 2 vs 1 pattern. in third mode the led will be on for still time and in 4th mode the LED will have an PWM fade.

Output Pictures:

All LED are OFF

ALternate Blink

Alternate Blink

All are ON

PWM fade

Code Build Screenshot:

Code is successfully build

Code Upload Screenshot:

Code is Successfully uploaded

WOKWI Project Link:

https://wokwi.com/projects/445158302195113985

Handwritten Code:

```
Hand written Code
    Assignment - 1
# Include < Arduino h>
# Include < wire h >
# Include < Adafruit - GiFx.h>
# anclude < Adafruit _ SSD 1306. h>
  11 OLED Setup
# define SCREEN_WIDTH 128
 # define SCREEN - HEIGHT 64
 Adafruit _ SSD1306 display ( SCREEN_ WIDTH.
                        SCREEN - HEIGHT , & wire -1
 11 PIN Define
 # define LED1 14
 # define LED2 16
 # define IFD3 17:
  # define BTN1 25
  # define BTN2 26
    PWM Setup
 # define PWM_ CHI O
 # define PWM_CH2 1
 # define PWM_ CH3 2
 # define FREG 5000
 # define RES 8
  4 Timer
 hw - timer - t My - timer = nullph ;
volatile book - bgglestate = false;
```

```
11 Globals
int mode = 0;
bool last Btn 1 = HIGH, last Btn 2 = HIGH;
Unsigned long last Debounce = 0;
 const int debounce Delay - 200;
11 Display Gde
Void Show Mode ()
   display. clear Display (1;
   display . set Text Size (2):
   display . Set Text-color ( SSD 1306 _ WHITE):
   display · Set courser (10, 20):
      Switch (model
          (ase 0: display Print ( "All Off); brak;
           Case 1: display · Print (" Allemak Blink"); broak;
           Case 2: display . Print ( All ON ?); break;
           case 3: display Print ( "PWM Fade "); break;
      display · display ()
    Timer ISR
 void IRAM_ATTR on Timer ()
    if (mode 1= 1) return:
     togglestate = 1 togglestate;
  ledownik ( PWM_ CH1, toggle Stale ? 255:0);
· lede Write (PWM_CH2, togglestate ? 0: 265);
  led c Write ( PWM_ (H3, toglestate ? 255:0);
```

```
Setup
void setup ()
  Seral . bogin (115200):
   PAMOde ( LED1, OUTPUT);
   PinMode (LED 2, OUTPUT);
   PinModel LEDS, OUTPUT):
   PinMode( BTN1, INPUT - PULLUP);
   Pin Mode ( BIN 2 . INPUT - PULLUP):
Il PWM setup
Icac Setup (PWM-CH1, FREQ, RES);
ledesetup ( PWM_ CH2, FREQ, RES);
lede Schipl PWM_CH3, FREQ, RES);
 lede AttachPin ( LED1, PWM-CH1);
 lede Attach Pin ( LED 2, PWM_CH2):
 lede Attach Pin ( LEDS , PWM_CH3):
11 Timer Setup for Blinking
My-timer = timer begin (0,80, true);
timer Attach Interrupt (My-timer, gontimer, true).
timer Alarm Write (My-timer, 500000 true):
 timer Alarm Enable (My-timer);
  11 Anitial State
   ledowrife / PWM_CH1,0);
   ledowrite ( PWM_ CH2, 0):
   led cwrite (PWM_CHs, 0):
  Show Mode ():
```

```
Void loop ()
   bool btn 1 = digital Read (BTN1);
   bool bln2 = diptal Read (BIN2);
11 Debounce logic
  if (millis () - last Debounce > Debounce Delay) &
     if (btn == low 89 last Btn 1 == HIGH)
     ¿ mode = (mode +1) 10 4:
       Show Mode ():
        last Debounce = millis ();
     last Btn 1 = btn 4:
     last Btn 2 = btn 2:
11 Mode logic
  Switch ( mode)
   Case O:
     ledcurile (PWM-CH1 ,0);
     ledowrite ( PWM-CH2,0);
     ledewrite (PWM_ (H3,0);
     break:
     Case 1:
        break:
    Case 2:
      ledcwrite ( PWM - CH1, 255):
      led c write ( PWM_CH2 , 255):
      lede write ( PNM - (1/3 , 255);
```

```
Case 3:

for ( int 1 = 0; d <= 255 && mode == 3; d+t)

{ led c w rite ( PWM_ (H1, d);
 led c w rite ( PWM_ (H2, d);
 led c w rite ( PWM_ (H3, d);
 delay (10);
 if ( digital Read (BTN1) == low ||
 digital Read (BTN1) == low) return;
}
```

Hand Drawn Sketch:

Component Wire	Pin Color
Ground Pins	Black
Button 1 pin	orange
Button 2 pin	green
Led pins	pink
OLED pins	red

Pin Map:

Component	Pin name	Pin number
Led 1	Resistor pin	GPIO 14
Led 1	Ground pin	GND 1
Led 2	Resistor pin	GPIO 16
Led 2	Ground pin	GND 2
Led 3	Resistor pin	GPIO 17
Led 3	Ground pin	GND 3
Mode Button	One side	GPIO 25
Mode Button	Second side	GND 1
Reset Button	One side	GPIO 26
Reset Button	Second side	GND 3
OLED	Ground Pin	GND 2
OLED	Voltage pin	GPIO 3.3
OLED	Serial clock pin	GPIO 22
OLED	Serial data pin	GPIO 21