Formal Systems & Languages

The Mathematical Foundation of Computation

How do we precisely define computational problems?

Learning Objectives

By the end of this session, you will be able to:

- **Define** alphabets, strings, and formal languages
- Construct examples of formal languages
- Recognize whether strings belong to specific languages
- Explain why formal languages are essential in computer science
- Connect formal languages to real-world computational problems

The Big Question

What exactly is a computational problem?

Answer: A formal system or formal language

Let's build up to this answer step by step...

Building Blocks: Alphabets

Definition

An **alphabet** (denoted Σ) is a finite set of symbols

Examples:

Name	Alphabet Σ	Usage
Binary	{0, 1}	Computer memory
Decimal	{0, 1, 2,, 9}	Human numbers
DNA	{A, C, G, T}	Genetic sequences
English lowercase	{a, b, c,, z}	Text processing

Which of these are valid alphabets?

- 1. {0, 1, 2, ...}
- $2.\{\diamondsuit, \diamondsuit, \heartsuit, \diamondsuit\}$
- 3. {red, green, blue}
- 4. All real numbers between 0 and 1
- 5. {+, -, *, /}

Think: What's the key requirement for an alphabet?

Quick Check #1 - Answers

Valid Alphabets ✓

- 2. $\{ \spadesuit, \clubsuit, \heartsuit, \blacklozenge \}$ Finite set of symbols \checkmark
- 3. {red, green, blue} Finite set ✓
- 4. {+, -, *, /} Finite set of operators ✓

Invalid Alphabets X

- 1. {0, 1, 2, ...} **Infinite** set ×
- 2. All real numbers Infinite and uncountable ×

Key: Alphabets must be finite!

Building Blocks: Strings

Definition

A **string** (or word) is a finite sequence of symbols from an alphabet

Notation:

- Empty string: ε (epsilon) or λ (lambda)
- String length: |w| where w is a string
- Concatenation: xy (string x followed by string y)

String Examples

Over different alphabets:

Alphabet	Example Strings	Notes
{0, 1}	1011, 00, ε	Binary strings
{a,, z}	hello , xyz , aaa	English-like
{0,, 9}	42 , 007 , 999	Numeric strings

Things to note:

- Strings are finite
- Order matters: abc ≠ bca
- Repetition allowed: aaa is valid

Active Learning: String Construction

Your Turn: Given alphabet $\Sigma = \{a, b\}$

- 1. Write all strings of length 0
- 2. Write all strings of length 1
- 3. Write all strings of length 2
- 4. How many strings of length n exist?

String Construction - Solution

For alphabet $\Sigma = (\{a, b\})$:

Length	Strings	Count
0	8	1
1	a , b	2
2	aa, ab, ba, bb	4
3	aaa , aab , aba ,	8
n	All combinations	(2^n)

Pattern: For alphabet of size k, there are (k^n) strings of length n

The Main Concept: Formal Languages

Definition

A formal language L is a set of strings over an alphabet

Key Points:

- Can be finite or infinite
- Subset of all possible strings (L ⊆ Σ*)
- Σ* denotes all possible strings over alphabet Σ

Examples:

- $L_1 = (\{00, 11\})$ finite language
- $L_2 = (\{a^n b^n | n \ge 0\}) = (\{\epsilon, ab, aabb, aaabbb, ...\})$ infinite

Formal Language Examples

Language Description	In Language ✓	Not in Language X
English	apple, racecar, computer	qptey, znwy
Palindromes	bob, racecar, noon	apple, banana
Prime numbers	2,3,5,7,11	1,4,6,8
Valid emails	user@domain.com	user@, @domain
Balanced parentheses	(),(()),(()())	(, ()) , (()

More Complex Patterns

1. Even Binary Numbers

$$L = \{w \in \{0, 1\}^* | w \text{ ends with } 0\}$$

- In: 10 , 100 , 1110
- Not in: 11, 101, 1

2. Equal Count Language

$$L = \{a^n b^n | n \ge 0\}$$

- In: ε, ab, aabb, aaabbb
- Not in: aab, abab, ba

Active Learning: Language Detective

Challenge: Determine the pattern!

Language L contains: a , aa , aaaa , aaaaaaaa

Language L does NOT contain: ε , aaa , aaaaa , aaaaaa

Questions:

- 1. What's the pattern?
- 2. Write L in set notation
- 3. Is aaaaaaaaaaaaaaa in L?

(5 minutes - discuss with partner)

Language Detective - Solution

The Pattern Revealed

Observation: String lengths are 1, 2, 4, 8...

Answer:

$$\mathsf{L} = \{a^{2^n} | n \geq 0\} = \{a^1, a^2, a^4, a^8, a^{16}, \dots\}$$

Strings with length equal to powers of 2!

Is aaaaaaaaaaaaaa (16 a's) in L?

Yes! $16 = 2^4$, so $a^{16} \in L$

Programming Languages as Formal Languages

Connecting Theory to Practice

Formal Language	Valid Strings	Invalid Strings
Java Identifiers	x, myVar, _test	123abc, my-var, class
Java Programs	Complete compilable code	Syntax errors
SQL Queries	SELECT * FROM users	SELECTING FROM users

Key Insight:

Compilers are language recognizers - they check if your code belongs to the formal language of valid programs!

Special Mathematical Example

Fermat's Last Theorem as a Language

Language Definition:

$$\mathsf{L} = \{n \in \mathbb{Z} | x^n + y^n = z^n \text{ for some integers } x, y, z > 0 \text{ and } n > 2\}$$

Amazing Fact:

- $L = \emptyset$ (empty set)
- Proved by Andrew Wiles in 1995
- Took 350+ years to prove!

This shows how formal languages can encode deep mathematical problems

Why Formal Languages Matter

1. Precise Problem Definition

Instead of asking vaguely "Is x prime?", we ask:

"Is string x in the language PRIMES = $\{2, 3, 5, 7, 11, ...\}$?"

2. Computability Analysis

We can formally prove:

- What problems are solvable
- What problems are unsolvable
- Complexity of solutions

Graph Problems as Languages

Encoding Complex Objects

Problem: Is graph G connected?

Formal Language Approach:

- 1. Encode graph as string: <G> = "[n1,n2,n3],[(n1,n2),(n2,n3)]"
- 2. Define: CONNECTED = $\{ < G > | G \text{ is a connected graph} \}$
- 3. Question becomes: Is <G> ∈ CONNECTED?

This transformation enables mathematical analysis!

Active Learning: Language Building Game

Group Activity: Create your own formal language!

- 1. Choose an alphabet (2-3 symbols)
- 2. Define a rule for your language
- 3. Give 3 strings IN your language
- 4. Give 3 strings NOT in your language
- 5. Other groups guess your rule!

(7 minutes total - 4 to create, 3 to share)

The Power of Formalization

From Informal to Formal

Informal Question	Formal Language
"Is this password strong?"	L = {passwords with 8+ chars, number, special}
"Is this chemical formula valid?"	L = {valid molecular formulas}
"Can I win this game?"	L = {game states with winning strategy}

Key Benefit: Mathematical tools can now be applied!

Hierarchy of Language Classes

Preview of Coming Attractions

Key Takeaways

Essential Concepts

- 1. **Alphabet** → Finite set of symbols
- 2. **String** → Finite sequence from alphabet
- 3. Language → Set of strings (possibly infinite)

Why This Matters:

- Precision: Exact problem specification
- Analysis: Mathematical proofs of possibility/impossibility
- Applications: Compilers, pattern matching, Al, cryptography

Practical Applications

Immediate Applications:

- Regular Expressions Pattern matching in code
- Parsing Understanding programming languages
- Validation Input checking

Advanced Applications:

- Machine Learning Language models (GPT, BERT)
- Bioinformatics DNA sequence analysis
- Cryptography Security protocols
- Quantum Computing Quantum languages

Go Deeper?

Read my notes on the PQ formal language invented Invented by Douglas Hofstadter in his 1979 book "Gödel, Escher, Bach"

- A useful illustration of a formal system and its relevance to math and computation