Лекции курса «Алгебра», лекторы И.В. Аржанцев и Р.С. Авдеев

ФКН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2014/2015 учебный год

Лекция 3

Конечно порождённые и свободные абелевы группы. Подгруппы свободных абелевых групп. Теорема о согласованных базисах. Алгоритм приведения целочисленной матрицы к диагональному виду.

Всюду в этой и следующей лекции (A,+) — абелева группа с аддитивной формой записи операции. Для произвольного элемента $a \in A$ и целого числа s положим

$$sa = \begin{cases} \underbrace{a + \ldots + a}_{s}, & \text{если } s > 0; \\ 0, & \text{если } s = 0; \\ \underbrace{(-a) + \ldots + (-a)}_{|s|}, & \text{если } s < 0. \end{cases}$$

Определение 1. Абелева группа A называется конечно порождённой, если найдутся такие элементы $a_1, \ldots, a_n \in A$, что всякий элемент $a \in A$ представим в виде $a = s_1 a_1 + \ldots + s_n a_n$ для некоторых целых чисел s_1, \ldots, s_n . При этом элементы a_1, \ldots, a_n называются порождающими или образующими группы A.

Замечание 1. Всякая конечно порождённая группа конечна или счётна.

Замечание 2. Всякая конечная группа является конечно порождённой.

Определение 2. Конечно порождённая абелева группа A называется $c 6 o 6 o \partial h o \ddot{u}$, если в ней существует b a 3 u c, т. е. такой набор элементов a_1, \ldots, a_n , что каждый элемент $a \in A$ единственным образом представим в виде $a = s_1 a_1 + \ldots + s_n a_n$, где $s_1, \ldots, s_n \in \mathbb{Z}$. При этом число n называется b a b c свободной абелевой группы a b c и обозначается b c конечно b c и обозначается b c конечно b c и обозначается b c конечно b c конечно

 Π ример 1. Абелева группа $\mathbb{Z}^n:=\{(c_1,\ldots,c_n)\mid c_i\in\mathbb{Z}\}$ является свободной с базисом

$$e_1 = (1, 0, \dots, 0),$$

 $e_2 = (0, 1, \dots, 0),$
 \dots
 $e_n = (0, 0, \dots, 1).$

Этот базис называется $\mathit{стандартным}$. В группе \mathbb{Z}^n можно найти и много других базисов. Ниже мы все их опишем.

Предложение 1. Ранг свободной абелевой группы определён корректно, т. е. любые два её базиса содержат одинаковое число элементов.

Доказательство. Пусть a_1, \ldots, a_n и b_1, \ldots, b_m — два базиса группы A. Предположим, что n < m. Элементы b_1, \ldots, b_m однозначно разлагаются по базису a_1, \ldots, a_n , поэтому мы можем записать

$$b_1 = s_{11}a_1 + s_{12}a_2 + \dots + s_{1n}a_n,$$

$$b_2 = s_{21}a_1 + s_{22}a_2 + \dots + s_{2n}a_n,$$

$$\dots$$

$$b_m = s_{m1}a_1 + s_{m2}a_2 + \dots + s_{mn}a_n,$$

где все коэффициенты s_{ij} — целые числа. Рассмотрим прямоугольную матрицу $S=(s_{ij})$ размера $m\times n$. Так как n< m, то ранг этой матрицы не превосходит n, а значит, строки этой матрицы линейно зависимы над \mathbb{Q} . Домножая коэффициенты этой зависимости на наименьшее общее кратное их знаменателей, мы найдём такие целые s_1,\ldots,s_m , из которых не все равны нулю, что $s_1b_1+\ldots+s_mb_m=0$. Поскольку $0=0b_1+\ldots+0b_m$, это противоречит однозначной выразимости элемента 0 через базис b_1,\ldots,b_m .

Предложение 2. Всякая свободная абелева группа ранга n изоморфна группе \mathbb{Z}^n .

Доказательство. Пусть A — свободная абелева группа, и пусть a_1,\dots,a_n — её базис. Рассмотрим отображение

$$\varphi \colon \mathbb{Z}^n \to A, \quad (s_1, \dots, s_n) \mapsto s_1 a_1 + \dots + s_n a_n.$$

Легко видеть, что φ — гомоморфизм. Так как всякий элемент $a \in A$ представим в виде $s_1a_1 + \ldots + s_na_n$, где $s_1, \ldots, s_n \in \mathbb{Z}$, то φ сюръективен. Из единственности такого представления следует инъективность φ . Значит, φ — изоморфизм.

Пусть e'_1, \ldots, e'_n — некоторый набор элементов из \mathbb{Z}^n . Выразив эти элементы через стандартный базис e_1, \ldots, e_n , мы можем записать

$$(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C,$$

где C — целочисленная квадратная матрица порядка n.

Предложение 3. Элементы e'_1, \ldots, e'_n составляют базис группы \mathbb{Z}^n тогда и только тогда, когда $\det C = \pm 1$.

Доказательство. Предположим сначала, что e'_1, \ldots, e'_n — базис. Тогда элементы e_1, \ldots, e_n через него выражаются, поэтому $(e_1, \ldots, e_n) = (e'_1, \ldots, e'_n)D$ для некоторой целочисленной квадратной матрицы D порядка n. Но тогда $(e_1, \ldots, e_n) = (e_1, \ldots, e_n)CD$, откуда $CD = E_n$, где E_n — единичная матрица порядка n. Значит, $(\det C)(\det D) = 1$. Учитывая, что $\det C$ и $\det D$ — целые числа, мы получаем $\det C = \pm 1$.

Обратно, пусть $\det C = \pm 1$. Тогда матрица C^{-1} является целочисленной, а соотношение $(e_1,\ldots,e_n) = (e'_1,\ldots,e'_n)C^{-1}$ показывает, что элементы e_1,\ldots,e_n выражаются через e'_1,\ldots,e'_n . Но e_1,\ldots,e_n- базис, поэтому элементы e'_1,\ldots,e'_n порождают группу \mathbb{Z}^n . Осталось доказать, что всякий элемент из \mathbb{Z}^n однозначно через них выражается. Предположим, что $s'_1e'_1+\ldots+s'_ne'_n=s''_1e'_1+\ldots+s''_ne'_n$ для некоторых целых чисел $s'_1,\ldots,s'_n,s''_1,\ldots,s''_n$. Мы можем это переписать в следующем виде:

$$(e'_1, \dots, e'_n)$$
 $\begin{pmatrix} s'_1 \\ \vdots \\ s'_n \end{pmatrix}$ $= (e'_1, \dots, e'_n)$ $\begin{pmatrix} s''_1 \\ \vdots \\ s''_n \end{pmatrix}$.

Учитывая, что $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)C$ и что e_1,\ldots,e_n — это базис, получаем

$$C \begin{pmatrix} s_1' \\ \vdots \\ s_n' \end{pmatrix} = C \begin{pmatrix} s_1'' \\ \vdots \\ s_n'' \end{pmatrix}.$$

Домножая это равенство слева на C^{-1} , окончательно получаем

$$\begin{pmatrix} s_1' \\ \vdots \\ s_n' \end{pmatrix} = \begin{pmatrix} s_1'' \\ \vdots \\ s_n'' \end{pmatrix}.$$

Теорема 1. Всякая подгруппа N свободной абелевой группы L ранга n является свободной абелевой группой ранга $\leq n$.

Доказательство. Воспользуемся индукцией по n. При n=0 доказывать нечего. Пусть n>0 и e_1,\dots,e_n базис группы L. Рассмотрим в L подгруппу

$$L_1 = \langle e_1, \dots, e_{n-1} \rangle := \mathbb{Z}e_1 + \dots + \mathbb{Z}e_{n-1}.$$

Это свободная абелева группа ранга n-1. По предположению индукции подгруппа $N_1:=N\cap L_1\subseteq L_1$ является свободной абелевой группой ранга $m\leqslant n-1$. Зафиксируем в N_1 базис f_1,\ldots,f_m .

Рассмотрим отображение

$$\varphi \colon N \to \mathbb{Z}, \quad s_1 e_1 + \ldots + s_n e_n \mapsto s_n.$$

Легко видеть, что φ — гомоморфизм и что $\ker \varphi = N_1$. Далее, $\operatorname{Im} \varphi$ — подгруппа в \mathbb{Z} , по предложению 1 из лекции 1 она имеет вид $k\mathbb{Z}$ для некоторого целого $k\geqslant 0$. Если k=0, то $N\subseteq L_1$, откуда $N=N_1$ и всё доказано. Если k>0, то пусть f_{m+1} — какой-нибудь элемент из N, для которого $\varphi(f_{m+1})=k$. Докажем, что f_1,\ldots,f_m,f_{m+1} — базис в N. Пусть $f\in N$ — произвольный элемент, и пусть $\varphi(f)=sk$, где $s\in \mathbb{Z}$. Тогда $\varphi(f-sf_{m+1})=0$, откуда $f-sf_{m+1}\in N_1$ и, следовательно, $f-sf_{m+1}=s_1f_1+\ldots+s_mf_m$ для некоторых $s_1,\ldots,s_m\in \mathbb{Z}$. Значит, $f=s_1f_1+\ldots+s_mf_m+sf_{m+1}$ и элементы f_1,\ldots,f_m,f_{m+1} порождают группу N. Осталось доказать, что они образуют базис в N. Предположим, что

$$s_1f_1 + \ldots + s_mf_m + s_{m+1}f_{m+1} = s'_1f_1 + \ldots + s'_mf_m + s'_{m+1}f_{m+1}$$

для некоторых целых чисел $s_1,\dots,s_m,s_{m+1},s_1',\dots,s_m',s_{m+1}'$. Рассмотрев образ обеих частей этого равенства при гомоморфизме φ , получаем $s_{m+1}k=s_{m+1}'k$, откуда $s_{m+1}=s_{m+1}'$ и

$$s_1 f_1 + \ldots + s_m f_m = s'_1 f_1 + \ldots + s'_m f_m.$$

Но f_1, \ldots, f_m — базис в N_1 , поэтому $s_1 = s'_1, \ldots, s_m = s'_m$.

Дадим более точное описание подгрупп свободных абелевых групп.

Теорема о согласованных базисах. Для всякой подгруппы N свободной абелевой группы L ранга n найдётся такой базис e_1, \ldots, e_n группы L и такие натуральные числа $u_1, \ldots, u_m, \ m \leqslant n$, что u_1e_1, \ldots, u_me_m — базис группы N и $u_i|u_{i+1}$ при $i=1,\ldots,m-1$.

Доказательство этой теоремы потребует некоторой подготовки.

Определение 3. *Целочисленными элементарными преобразованиями строк* матрицы называются преобразования следующих трёх типов:

- 1) прибавление к одной строке другой, умноженной на целое число;
- 2) перестановка двух строк;
- 3) умножение одной строки на -1.

Аналогично определяются целочисленные элементарные преобразования столбцов матрицы.

Прямоугольную матрицу $C=(c_{ij})$ размера $n\times m$ назовём диагональной и обозначим $\mathrm{diag}(u_1,\ldots,u_p)$, если $c_{ij}=0$ при $i\neq j$ и $c_{ii}=u_i$ при $i=1,\ldots,p$, где $p=\min(n,m)$.

Предложение 4. Всякую прямоугольную целочисленную матрицу $C = (c_{ij})$ с помощью элементарных преобразований строк и столбцов можно привести к виду $diag(u_1, \ldots, u_p)$, где $u_1, \ldots, u_p \geqslant 0$ и $u_i|u_{i+1}$ при $i=1,\ldots,p-1$.

Доказательство. Если C=0, то доказывать нечего. Если $C\neq 0$, но $c_{11}=0$, то переставим строки и столбцы и получим $c_{11}\neq 0$. Умножив, если нужно, первую строку на -1, добьёмся условия $c_{11}>0$. Теперь будем стремиться уменьшить c_{11} .

Если какой-то элемент c_{i1} не делится на c_{11} , то разделим с остатком: $c_{i1} = qc_{11} + r$. Вычитая из i-й строки 1-ю строку, умноженную на q, и затем переставляя 1-ю и i-ю строки, уменьшаем c_{11} . Повторяя эту процедуру, в итоге добиваемся, что все элементы 1-й строки и 1-го столбца делятся на c_{11} .

Если какой-то c_{ij} не делится на c_{11} , то поступаем следующим образом. Вычтя из i-й строки 1-ю строку с подходящим коэффициентом, добьёмся $c_{i1} = 0$. После этого прибавим к 1-й строке i-ю строку. При этом c_{11} не изменится, а c_{1j} перестанет делиться на c_{11} , и мы вновь сможем уменьшить c_{11} .

В итоге добьёмся того, что все элементы делятся на c_{11} . После этого обнулим все элементы 1-й строки и 1-го столбца, начиная со вторых, и продолжим процесс с меньшей матрицей.

Теперь мы готовы доказать теорему о согласованных базисах.

Доказательство теоремы о согласованных базисах. Мы знаем, что N является свободной абелевой группой ранга $m\leqslant n$. Пусть e_1,\ldots,e_n — базис в L и f_1,\ldots,f_m — базис в N. Тогда $(f_1,\ldots,f_m)=(e_1,\ldots,e_n)C$, где C — целочисленная матрица размера $n\times m$ и ранга m. Покажем, что целочисленные элементарные преобразования строк (столбцов) матрицы C — это в точности элементарные преобразования над базисом в L (в N). Для этого рассмотрим сначала случай строк. Заметим, что каждое из целочисленных элементарных преобразований строк реализуется при помощи умножения матрицы C слева на квадратную матрицу P порядка n, определяемую следующим образом:

- (1) в случае прибавления к i-й строке j-й, умноженной на целое число z, в матрице P на диагонали стоят единицы, на (ij)-м месте число z, а на остальных местах нули;
- (2) в случае перестановки i-й и j-й строк имеем $p_{ij}=p_{ji}=1,\,p_{kk}=1$ при $k\neq i,j,$ а на остальных местах стоят нули;
- (3) в случае умножения i-й строки на -1 имеем $p_{ii}=-1, p_{jj}=1$ при $j\neq i$, а на остальных местах стоят нули.

Теперь заметим, что равенство $(f_1,\ldots,f_m)=(e_1,\ldots,e_n)C$ эквивалентно равенству $(f_1,\ldots,f_m)=(e_1,\ldots,e_n)P^{-1}PC$. Таким образом, базис (f_1,\ldots,f_m) выражается через новый базис $(e'_1,\ldots,e'_n):=(e_1,\ldots,e_n)P^{-1}$ при помощи матрицы PC.

В случае столбцов всё аналогично: каждое из целочисленых элементарных преобразований столбцов реализуется при помощи умножения матрицы C справа на некоторую квадратную матрицу Q порядка m (определяемую почти так же, как P). В этом случае имеем $(f_1, \ldots, f_m)Q = (e_1, \ldots, e_n)CQ$, так что новый базис $(f'_1, \ldots, f'_m) := (f_1, \ldots, f_m)Q$ выражается через (e_1, \ldots, e_n) при помощи матрицы CQ.

Воспользовавшись предложением 4, мы можем привести матрицу C при помощи целочисленных элементарных преобразований строк и столбцов к диагональному виду $C'' = \operatorname{diag}(u_1, \ldots, u_m)$, где $u_i | u_{i+1}$ для всех $i = 1, \ldots, m-1$. С учётом сказанного выше это означает, что для некоторого базиса e''_1, \ldots, e''_n в L и

4

некоторого базиса f_1'',\ldots,f_m'' в N справедливо соотношение $(f_1'',\ldots,f_m'')=(e_1'',\ldots,e_n'')C''$. Иными словами, $f_i''=u_ie_i''$ для всех $i=1,\ldots,m$, а это и требовалось.

Следствие 1. В условиях теоремы о согласованных базисах имеет место изоморфизм

$$L/N \cong \mathbb{Z}_{u_1} \times \ldots \times \mathbb{Z}_{u_m} \times \underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{n-m}.$$

Доказательство. Рассмотрим изоморфизм $L\cong\mathbb{Z}^n=\underbrace{\mathbb{Z}\times\ldots\times\mathbb{Z}}_{n}$, сопоставляющий произвольному эле-

менту $s_1e_1 + \ldots + s_ne_n \in L$ набор $(s_1, \ldots, s_n) \in \mathbb{Z}^n$. При этом изоморфизме подгруппа $N \subseteq L$ отождествляется с подгруппой

$$u_1 \mathbb{Z} \times \ldots \times u_m \mathbb{Z} \times \underbrace{\{0\} \times \ldots \times \{0\}}_{n-m} \subseteq \mathbb{Z}^n.$$

Теперь требуемый результат получается применением теоремы о факторизации по сомножителям.

Замечание 3. Числа u_1, \ldots, u_p , фигурирующие в теореме о согласованных базисах, называются инвариантными множителями подгруппы $N \subseteq L$. Можно показать, что они определены по подгруппе однозначно.

Список литературы

- [1] Э.Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 9, $\S 1$)
- [2] А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000 (глава 2, § 3)
- [3] Сборник задач по алгебре под редакцией А.И. Кострикина. Новое издание. М.: МЦНМО, 2009 (глава 13, § 60)