

Validation of a Numerically Inflated Polyethylene Bag

Bradley Bezuidenhout Co-authors: Dr M Venter, Prof G Venter

Department of Mechanical Engineering, Stellenbosch University

September 2019

Aim

• Create numerical model to model stiffness and inflated shape of simple bag

Aim

- Create numerical model to model stiffness and inflated shape of simple bag
- Increase complexity of model

Aim

- Create numerical model to model stiffness and inflated shape of simple bag
- Increase complexity of model
- Use model for shape optimisation for inflatable wing

Inflatable Wings - Planes

Inflatoplane.jpg

Methodology

• Measure stiffness through 4 point bending tests

Methodology

- Measure stiffness through 4 point bending tests
- Capture physical model geometry with 3D scanner

Methodology

- Measure stiffness through 4 point bending tests
- Capture physical model geometry with 3D scanner
- Construct finite element models of single cavity bags
 - LS-DYNA's explicit solver

• Polyethylene - Linear elastic membrane

- Polyethylene Linear elastic membrane
- Airbag model for inflation

- Polyethylene Linear elastic membrane
- Airbag model for inflation
- Two boundary condition types used

- Polyethylene Linear elastic membrane
- Airbag model for inflation
- Two boundary condition types used
- Dynamic relaxation

- Polyethylene Linear elastic membrane
- Airbag model for inflation
- Two boundary condition types used
- Dynamic relaxation
- Mass scaling

• Measure force vs. displacement

- Measure force vs. displacement
- Diameter 50, 75 and 100 mm tubes

4_Point.jpg

- Measure force vs. displacement
- Diameter 50, 75 and 100 mm tubes
- 3 different pressures tested per tube

4_Point.jpg

50_All.pdf

(a) Bag size comparison at 5.75 kPa.

 $\ensuremath{^{(b)}}$ Pressure comparison for 50 mm bag.

At displacement of 40 mm:

• At 5.75 kPa a 100% increase in bag size yields a 375% increase in stiffness

At displacement of 40 mm:

- At 5.75 kPa a 100% increase in bag size yields a 375% increase in stiffness
- \bullet For the 50 mm bag a 160% increase in pressure the stiffness increases by 46%

At displacement of 40 mm:

- At 5.75 kPa a 100% increase in bag size yields a 375% increase in stiffness
- For the 50 mm bag a 160% increase in pressure the stiffness increases by 46%
- Increase on bag size has a larger influence on the stiffness than the pressure

4 Point Bending Tests - 75 mm Bag

(a) 75 mm bag at 5.75 kPa.

(b) 75 mm bag at 6.75 kPa.

Shape Validation

• Point clouds of bags both under load and no load compared

Shape Validation

- Point clouds of bags both under load and no load compared
- Metamodel based optimisation used to minimize Hausdorff distance

Minimise
$$f(\mathbf{x})$$

where $f(\mathbf{x}) = \text{Hausdorff Distance}$
and $\mathbf{x} = [T_x, T_y, T_z, R_x, R_y, R_z]$

Shape Validation

- Point clouds of bags both under load and no load compared
- Metamodel based optimisation used to minimize Hausdorff distance
- Rigid body transformations used to rotate physical model

Minimise
$$f(\mathbf{x})$$

where $f(\mathbf{x}) = \text{Hausdorff Distance}$
and $\mathbf{x} = [T_x, T_y, T_z, R_x, R_y, R_z]$

Hausdorff Distance

Shape Validation - 75 mm Bag Under No Load

Shape Validation - 75 mm Bag Under Load

4-point_75_xz.pdf

4-point_75_yz.pdf

- Larger displacement from physical bag
- Best fit on zy plane

 \bullet Parametrise movement in the x and z directions

- Parametrise movement in the x and z directions
- Minimise RMSE between NACA 0030 aerofoil

Shape Optimisation - 3 Bag Aerofoil

Shape Optimisation - 8 Bag Aerofoil

Shape Optimisation - 15 Bag Aerofoil

Shape Optimisation - Bag Comparison

	3 Bag	8 Bag	15 Bag
RMSE	0.02606	0.00844	0.00453
R^2	0.557	0.961	0.990

Physical Model - 8 Bag Aerofoil

Physical Comparison - 8 Bag Aerofoil

 ${\tt Physical_Comparison_8.pdf}$

Concluding Remarks

- Able to achieve high R^2 fit from between physical profile and target profile.
- More accurate material model could help achieve better fit.

Questions?