

Пределы

В этом уроке

- Определение пределов последовательности и функции, свойства пределов
- Виды неопределенностей и способы их устранения

Предел последовательности

Окрестность точки

Пусть a — точка на прямой, $\varepsilon>0$. Тогда интервал $(a-\varepsilon,a+\varepsilon)$ — окрестность точки a.

Рассмотрим последовательность:

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots, \frac{1}{n}, \dots$$

Возьмём произвольную окрестность точки $0: (-\varepsilon, \varepsilon)$.

Каким бы маленьким ни было число ε , всегда можно подобрать такое n_0 , чтобы для любого $n>n_0$ число x_n лежало в этой окрестности:

$$n_0=1/arepsilon \Rightarrow x_n\in (-arepsilon,arepsilon)$$
 для всех $n>n_0$

Говорят, что предел последовательности $\{1/n\}$ равен 0.

Понятие предела последовательности

Число a называется пределом последовательности $\{x_n\}$, если для любого $\varepsilon > 0$ существует $n_0 \in \mathbb{N}$, такое, что для всех $n > n_0$ верно:

$$|x_n - a| < \varepsilon$$
 или $a - \varepsilon < x_n < a + \varepsilon$

Обозначение: $\lim_{n\to\infty} = a$ или $x_n \to a$.

Последовательность, имеющая конечный предел, называется сходящейся, в противном случае — расходящейся.

Основные свойства пределов последовательностей GeekBrains

- Если последовательность сходится, то только к одному пределу.
- Если последовательность сходится, то она ограничена.
- Теорема Вейерштрасса: если последовательность монотонна и ограничена, то она сходится.
- $oldsymbol{\Phi}$ Постоянный множитель c можно выносить за знак предела:

$$\lim_{n \to \infty} (c \cdot y_n) = c \cdot \lim_{n \to \infty} y_n$$

Основные свойства пределов последовательностей GeekBrains

5 Если существуют конечные пределы последовательностей $\{x_n\}$ и $\{y_n\}$, то:

$$\lim_{n o\infty}(x_n\pm y_n)=\lim_{n o\infty}x_n\pm\lim_{n o\infty}y_n$$
 $\lim_{n o\infty}(x_n\cdot y_n)=\lim_{n o\infty}x_n\cdot\lim_{n o\infty}y_n$ $\lim_{n o\infty}rac{x_n}{y_n}=rac{\lim\limits_{n o\infty}x_n}{\lim\limits_{n o\infty}y_n}$ при условии, что $\lim_{n o\infty}y_n
eq 0$

 ${f 6}$ Если существуют конечные пределы последовательностей $\{y_n\}$ и $\{y_n^p\}$, то

$$\lim_{n \to \infty} y_n^p = \left(\lim_{n \to \infty} y_n\right)^p$$

Формулы вычисления пределов последовательностей eekBrains

$$\lim_{n\to\infty}\frac{1}{n}=0$$

- $\mathbf{2}\lim_{n o\infty}q^n=0$, если |q|<1
- $\lim_{n \to \infty} C = C$, если C = const

$$\lim_{n \to \infty} \frac{k}{n^m} = 0$$

Неопределённости

Пример:

$$\lim_{n\to\infty}\frac{1+n}{1+n^2}=\left[\frac{\infty}{\infty}\right]$$

Другие неопределённости:

$$\begin{bmatrix} 0 \\ \overline{0} \end{bmatrix}, \begin{bmatrix} \infty \\ \overline{\infty} \end{bmatrix}, [0 \cdot \infty], [1^{\infty}], [0^{0}], [\infty^{0}]$$

Пример 2

Найти предел последовательности $x_n=rac{2}{n}-rac{5}{n^2}+3$ при $n o\infty$.

Решение:

$$\lim_{n \to \infty} \left(\frac{2}{n} - \frac{5}{n^2} + 3 \right) = \lim_{n \to \infty} \frac{2}{n} - \lim_{n \to \infty} \frac{5}{n^2} + \lim_{n \to \infty} 3 = 0 + 0 + 3 = 3$$

Ответ: 3.

Пример 3

Вычислить
$$\lim_{n\to\infty} \frac{2n^2+3}{n^2+4}$$
.

Решение:

$$\lim_{n \to \infty} \frac{2n^2 + 3}{n^2 + 4} = \lim_{n \to \infty} \frac{2n^2/n^2 + 3/n^2}{n^2/n^2 + 4/n^2} = \lim_{n \to \infty} \frac{2 + 3/n^2}{1 + 4/n^2} = \frac{2}{1} = 2$$

Ответ: 2.

Предел функции

Предел функции

Пределы бывают:

- на бесконечности:

 - $\lim_{x \to -\infty} f(x) = b$
 - $\lim_{x \to \pm \infty} f(x) = b \ \left(\lim_{x \to \infty} f(x) = b \right)$
- ullet в конечной точке: $\lim_{x \to a} f(x) = b$

Непрерывность

Функцию y=f(x) называют непрерывной в точке x=a, если выполняется соотношение:

$$\lim_{x \to a} f(x) = f(a)$$

Функцию y=f(x) называют непрерывной на промежутке X, если она непрерывна в каждой точке промежутка X.

Функция y=f(x) непрерывна в точке x=a, если в этой точке выполняется следующее условие: если $\Delta x \to 0$, то $\Delta y \to 0$.

Правило Лопиталя

Пусть
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
 и $g'(x) \neq 0$. Тогда:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Пример 4

Вычислить
$$\lim_{x\to 0} \frac{e^x-1}{x}$$
.

Решение:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \left[\frac{0}{0} \right]$$

По правилу Лопиталя:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{(e^x - 1)'}{x'} = \lim_{x \to 0} \frac{e^x}{1} = e^0 = 1$$

Ответ: 1.

