Vorlesung 17 | 22.12.2020 | 14:15-16:00 via Zoom

Handzettel

In der letzten Vorlesungen haben wir gesehen: Momenten, Momenten erzeugenden Funktionen, Tchebichev und Markov Ungleichungen, Das schwache Gesetz der großen Zahlen, Kolmogorov'sche Ungleichung.

6 Das Gesetz der großen Zahlen (Fortsetzung und Ende)

(Kapitel 6 in Bovier Skript)

6.5 Kolmogorov'sche Ungleichung

Lemma 15. Seien $(X_n)_{n\geqslant 1}$ unabhängige Z.V. mit $\mu_k = \mathbb{E}[X_k]$, $\sigma_k^2 = \operatorname{Var}(X_k)$. Setze

$$S_n \coloneqq \sum_{k=1}^n X_k, \quad m_n \coloneqq \sum_{k=1}^n \mathbb{E}[X_k] = \mathbb{E}[S_n]$$

und

$$\mathfrak{z}_n^2 \coloneqq \sum_{k=1}^n \, \sigma_k^2 = \operatorname{Var}(S_n).$$

Dann, für alle t > 0:

$$\mathbb{P}\left(\exists k \leqslant n \text{ s.d. } |S_k - m_k| \geqslant t \, \delta_n\right) \leqslant t^{-2}.$$

6.6 Das starkes GGZ

Satz 1. (Starkes Gesetz der großen Zahlen). Sei $(X_n)_{n\geqslant 1}$ eine Folge i.i.d. Z.V. $X_n\in \mathcal{L}^1$. Dann

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k = \mathbb{E}[X_1], \quad f.s.$$

Lemma 16. Seien $(X_k)_{k\geqslant 1}$ unabhängige Z.V. mit $Var(X_k) = \sigma_k^2$, $\mathbb{E}[X_k] = \mu_k$. Falls

$$\sum_{k \ge 1} \frac{\sigma_k^2}{k^2} < \infty$$

dann

$$\frac{1}{n}\sum_{k=1}^{n} (X_k - \mu_k) \to 0 \quad f.s.$$

6.7 Große Abweichungen von GGZ

Satz 17. Für alle $n \ge 1$, $a \in \mathbb{R}$

(a)
$$\mathbb{P}\left(\frac{S_n}{n} \geqslant a\right) \leqslant e^{-nI(a)}$$
, $f\ddot{u}r \ a \geqslant m$
(b) $\mathbb{P}\left(\frac{S_n}{n} \leqslant a\right) \leqslant e^{-nI(a)}$, $f\ddot{u}r \ a \leqslant m$

wobei die exponentielle Abfallrate I(a) ist gegeben durch

$$I(a) = \sup_{t \in \mathbb{R}} \left[at - \log \psi(t) \right]$$

Proposition 18. (Jensen's Ungleichung) Sei X eine reelle Z.V., integrierbar, und $f: \mathbb{R} \to \mathbb{R}$ eine konvexe Funktion. Dann

$$f(\mathbb{E}[X]) \leq \mathbb{E}(f(X)).$$

Eigenschaften von I(a).

- a) I ist convex.
- b) $I(a) \ge 0$ für alle $a \in \mathbb{R}$
- c) Falls $\psi(\lambda) < \infty$ auf $(-\delta, \delta) \delta > 0$, dann

$$f_a(\lambda) = a\lambda - \log \psi(\lambda) \in C^{\infty}((-\delta, \delta))$$

mit
$$f_a(0) = 0$$
, $f'_a(0) = a - m$

$$\Rightarrow I(a) > 0, \quad a \neq m.$$