A BENCHMARK FOR RECIPE UNDERSTANDING IN AUTONOMOUS AGENTS

Creation and Analysis of a New Recipe Execution Benchmark

Robin De Haes

Promotor: Prof. Dr. Paul Van Eecke

Advisor: Dr. Jens Nevens

BACKGROUND

INTRODUCTION CONTEXT & MOTIVATION

- Meaning and Understanding in Human-centric Artificial Intelligence (MUHAI)
- Deep understanding of an everyday human activity
 - Cooking
- Natural Language Understanding (NLU)
 - Instructional Language
- Benchmarking
 - Written English recipes
 - Recipe Execution

LITERATURE REVIEW

RESEARCH TRAINING

Recipe Understanding

- Challenges
- State-of-the-art
- Robotic Recipe Execution

Benchmarking in AI

- Benchmark definition
- High-quality properties
- Advantages & Disadvantages

Existing Benchmarks for Recipe Understanding

- Composition
- Analysis

New Benchmark?

RECIPE UNDERSTANDING

LITERATURE REVIEW

- Recipes are popular in AI
 - High availability
 - Practical applications

BUT: referential & reasoning challenges

- Graph-based representations are common
 - Implicit or explicit
 - Dependencies
 - Multiple modalities
- Recipe execution requires an integrated approach
 - Robustness by improving subsystems

Illustrative graph, created for this presentation

BENCHMARKING LITERATURE REVIEW

Benchmark components

- Abstract & concrete task(s)
- 2. Dataset(s)
- 3. Evaluation method(s)
- 4. Community adoption?

- Relevancy
- Reproducibility
- Verifiability
- Fairness
- Usability

(von Kistowski et al., 2015)

BENCHMARKING LITERATURE REVIEW

Pros

- Communal resources
- Empirical comparisons
- Historically proven catalyst

Cons

- Introduction of biases
- Benchmark overfitting & saturation
- Competition over exploration

RECIPE CORPORA LITERATURE REVIEW

- CURD (Tasse & Smith, 2008)
 - = 260 recipes with domain-specific FOL annotations, but
 - limited design documentation
 - no evaluation tools
- RISeC (Jiang et al., 2020)
 - = 260 recipes with PropBank annotations, but
 - limited design documentation
 - no evaluation tools
- r-FG Corpus (Yamakata et al., 2020)
 - = 300 recipes with directed acyclic graphs, but
 - low accessibility
 - no evaluation tools

Low community adoption

BENCHMARK DESIGN

Abstract task

= Understanding a recipe deeply enough to execute it

Concrete task

- = Parsing a written English recipe text into an executable semantic network
 - MUHAI Cooking Language

SEMANTIC NETWORK

PRIMITIVES

KITCHEN STATES

FOOD, TOOLS & SPECIFIERS

DATASET

Data

- 30 recipes, from 5 different sources
- Salads & baked goods
- Input: XML
- Annotation: File with flat network

6 fully explained example solutions

```
<recipe>
  <id>easy-banana-bread</id>
  <title>Easy Banana Bread</title>
  <ingredients>
    <ingredient>
         60 grams butter, room temperature
    </ingredient>
  </ingredients>
  <instructions>
    <instruction>
       Cream together butter, eggs and sugar.
     </instruction>
  </instructions>
</recipe>
```

easy-banana-bread.xml

DATASET

Data

- 30 recipes, from 5 different sources
- Salads & baked goods
- Input: XML
- Annotation: File with flat network

6 fully explained example solutions

```
#easy-banana-bread
(get-kitchen ?init-ks)
(fetch-and-proportion ?butter ?ks-2
          ?init-ks ?empty-bowl-1
         butter 60 g)
(bring-to-temperature ?warm-butter ?ks-3
         ?ks-2 ?butter
          ?room-temp-qty ?room-temp-unit)
(beat ?creamed-mixture ?ks-5
          ?ks-4 ?output-e ?whisk)
(bake ?banana-bread ?final-ks
          ?ks-10 ?pan-with-batter ?oven
         60 minute 165 degrees-celsius)
```

easy-banana-bread.solution

SIMULATION-BASED EVALUATION

- Simulator
 - Babel: IRL (Loetzsch et al., 2008)
 - Portable
 - Qualitative simulation
 - Implementation for all primitives
 - Hierarchical ontology
 - Affordances
 - Temporality
- Visualization via web interface
- Multiperspective metric combination

SIMULATION-BASED EVALUATION

- Simulator
 - Babel: IRL (Loetzsch et al., 2008)
 - Portable
 - Qualitative simulation
 - Implementation for all primitives
 - Hierarchical ontology
 - Affordances
 - Temporality
- Visualization via web interface
- Multiperspective metric combination

METRICS

NON-SIMULATION- & SIMULATION-BASED

Non-simulation-based

- Smatch (Cai & Knight, 2013)
 - Semantic overlap of two semantic networks
 - Maximum F-score of matching triples
 - Good adoption rate, but resource-intensive and structural

Simulation-based

- Goal-condition Success
- Dish Approximation Score
- Recipe Execution Time

(flour ?floured-thing ?ks-in ?ks-out ?thing-to-flour almond-flour)

INSTANCE(a_0 , flour) \wedge INSTANCE(a_1 , var) \wedge INSTANCE(a_2 , var) \wedge INSTANCE(a_3 , var) \wedge INSTANCE(a_4 , var) \wedge ARG0(a_0 , a_1) \wedge ARG1(a_0 , a_2) \wedge ARG2(a_0 , a_3) \wedge ARG3(a_0 , a_4) \wedge ATTR4(a_0 , almond-flour)

GOAL-CONDITION SUCCESS

- = Ratio of reached goal-conditions to minimally required goal-conditions
- Between 0 and 1
- Estimates the number of correctly identified steps
- Very strict
- Sequence-independent

GOAL-CONDITION SUCCESS

= Ratio of reached goal-conditions to minimally required goal-conditions

GOAL-CONDITION SUCCESS

= Ratio of reached goal-conditions to minimally required goal-conditions

"Cut the tomato with a knife."

Gold: Tomato on countertop Knife on countertop Tomato slices on countertop

Prediction: Knife on countertop Tomato on countertop

Goal-condition success = 2/3

DISH APPROXIMATION SCORE

- = Similarity estimate between two dishes
- Between 0 and 1
- Estimates how close to the expected dish we are
- "Taste test": imperfect and subjective, but useful

SIMULATION-BASED METRICS DISH APPROXIMATION SCORE

- Weighted sum
 - 2% presentation
 - 98% food composition
- Focus on
 - Correctness of base ingredients
 - Correctness of intermediary food products

Gold Standard Dish

baking-tray

located at counter-top

- lined-with: baking-paper
- arrangement: side-to-side

25 portions

homogeneous-mixture

- temperature: 175 °C
- · current-shape: crescent
- baked: true
- · mixing-type: mixed
- amount: 25 g

all-purpose-flour

- sifted: false
- amount: 10 g

white-sugar

- temperature: 18 °C
- amount: 5 g

butter

- temperature: 18 °C
- amount: 10 g

Predicted Dish

cookie-sheet

located at counter-top

- · lined-with: baking-paper
- arrangement: side-to-side

20 portions

homogeneous-mixture

- temperature: 175 °Ccurrent-shape: ball
- baked: true
- mixing-type: beaten
- amount: 36.25 g

cocoa-powder

amount: 5 g

all-purpose-flour

- · sifted: false
- amount: 13.125 g

white-sugar

- temperature: 18 °C
- amount: 6.25 g

butter

- temperature: 5 °C
- amount: 13.125 g

EVALUATION TOOLS

IN PRACTICE

- Python Library Smatch
- Simulator Executable
 - Command-line Interface
 - Graphical User Interface
- Babel toolkit component
 - Open source
 - Extensible

DISCUSSION & CONCLUSION

DISCUSSION

BENCHMARK PROPERTIES

	Pros	Cons
Relevance	 Domain-specific representation language Separation of training and test data collection Multiperspective, transferable evaluation 	 Limited amount of test data Results depend on simulation detail Only Western, English recipes
Reproducibility	 Deterministic and consistent results 	/
Verifiability	Automatic evaluation tools	/
Fairness	No promotion of specific approachesPortable tools	 Test data is publicly available: Risk of cheating
Usability	Portable and open sourceWell-documentedPublicly available online	Challenging task requiring substantial resource investments

CONCLUSION SUMMARY

- Recipe benchmarks
 - Progress in recipe understanding is still needed
 - Steer research and foster field progression
 - Limitations and low adoption rates
- MUHAI Recipe Execution Benchmark
 - Reuse well-functioning concepts
 - Overcome limitations
 - Focus on evaluation that transfers well to the real world
 - BUT trade-offs are inevitable

CONCLUSION FUTURE WORK

- Simulator improvements
 - University of Bremen
- Dataset extensions
 - Dish categories
 - Cultures
 - Languages
- Community adoption

REFERENCES

BIBLIOGRAPHY

- [1] Cai, S., & Knight, K. (2013). Smatch: an Evaluation Metric for Semantic Feature Structures. In *Proceedings of the 51st Annual Meeting of the ACL* (pp. 748–752). ACL.
- [2] von Kistowski, J., Arnold, J. A., Huppler, K., Lange, K.-D., Henning, J. L., & Cao, P. (2015). How to Build a Benchmark. In *Proceedings of the 6th ICPE* (pp. 333–336). ACM.
- [3] Loetzsch, M., Wellens, P., De Beule, J., Bleys, J., & van Trijp, R. (2008). *The Babel2 Manual* (tech. rep. No. Al-Memo 01-08). Al-Lab VUB. Brussels, Belgium.
- [4] Tasse, D., & Smith, N. A. (2008). SOUR CREAM: Toward Semantic Processing of Recipes (tech. rep. No. CMU-LTI-08-005). Carnegie Mellon University. Pittsburgh, PA, USA.
- [5] Jiang, Y., Zaporojets, K., Deleu, J., Demeester, T., & Develder, C. (2020). Recipe instruction semantics corpus (RISeC). In *Proceedings of AACL-IJCNLP 2020* (pp. 821–826). ACL.
- [6] Yamakata, Y., Mori, S., & Carroll, J. A. (2020). English Recipe Flow Graph Corpus. In *Proceedings* of the 12th LREC (pp. 5187–5194). ELRA.

https://ehai.ai.vub.ac.be/recipe-execution-benchmark

MUHAI Recipe Execution Benchmark

a benchmark for natural language understanding

QUESTIONS?