Содержание

	Вероятностное пространство 1.1 Некоторые следствия аксиоматики	
2	Условные вероятности и независимость	2
3	Случайные величины	2

1 Вероятностное пространство

Определение (Алгебра). Семейство \mathcal{A} подмножеств множества Ω называется алгеброй, если выполнены след. аксиомы:

- 1. $\varnothing \in \mathcal{A}$
- 2. $A \in \mathcal{A} \implies \overline{A} \in \mathbb{A}$
- 3. (аддитивность) $A_1, \ldots, A_n \in \mathbb{A} \implies A_1 \cup \cdots \cup A_n \in \mathbb{A}$

Определение (σ -алгебра). Алгебра называется σ -алгеброй, если

$$A_1, \dots, A_n \in \mathcal{A} \implies \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$$

Определение (мера). $\mu:\mathcal{A}\to[0;\infty)$ - мера, если

$$A_1,...,A_n\in\mathcal{A},A_i\cap A_j=\varnothing,i
eq j: \quad \mu(igcup_{n=1}^\infty A_n)=\sum_{n=1}^\infty \mu(A_n)$$
 счетная аддитивность

Мера конечная, если $\mu(\Omega) < \infty$ Мера вероятностная, если $\mu(\Omega) = 1$

Определение (Вероятностное пространство). Тройка (Ω, \mathcal{A}, P) , где

- 1. Ω пространство элементарных событий;
- 2. \mathcal{A} σ -алгебра подмножеств Ω (события);
- 3. Р вероятностная счетно-аддитивная мера на \mathcal{A} (вероятность); называется вероятностным пространством.

Все элементарные исходы равновозможны

Определение (Классическая вероятность). Модель вероятностного пространства (A - событие)

- 1. $\Omega = \{\omega_1, \dots, \omega_n\}$ конечное пространство
- 2. \mathcal{A} все подмножества Ω

3.
$$P(A) = \sum_{\omega \in A} p_{\omega} = \frac{|A|}{|\Omega|}$$

Определение (Геометрическая вероятность). $V \in \mathbb{R}^n$

- 1. $\Omega = V$
- 2. \mathcal{A} борелевская $\sigma-$ алгебра (минимальная $\sigma-$ алгебра, содержащая все компакты) подмножеств V

3.
$$P(A) = \frac{\mu(A)}{\mu(V)}$$

1.1 Некоторые следствия аксиоматики

1.

Аксиома (Аксиома непрерывности). *Если* $A_1\supset A_2,\ldots,\supset A_n\supset \mathcal{A}, \bigcap_{i=1}^\infty A_i=\varnothing,\ mo$

$$\lim_{n \to \infty} P(A_n) = 0$$

 \mathcal{A} оказательство. Пусть $B_n \downarrow \varnothing$. Тогда обозначим $A_n = B_n \setminus B_{n+1}, n = 1, \ldots, \ldots A_n$ попарно несовместны и

$$B_1 = \sum_{n=1}^{\infty} A_n \quad B_n = \sum_{k=n}^{\infty} A_k,$$

поэтому из счетной аддитивности меры следует сходимость ряда

$$P(B_1) = \sum_{n=1}^{\infty} P(A_n),$$

и сумма остатка ряда

$$P(B_n) = \sum_{k=n}^{\infty} P(A_k) = 0.$$

2. (Формула включений и исключений)

$$P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{n} P(A_k) - \sum_{i< j}^{n} P(A_i \cap A_j) + \dots + (-1)^{n-1} P(A_1 \cap \dots \cap A_n)$$

Доказательство. Выводится через обычную формулу включений и исключений для множеств по индукции

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

+

$$\begin{cases} A \cup B = A + (B \setminus AB) \\ \text{Счетная аддитивность} \\ P(B \setminus AB) = P(B) - P(AB) \text{(также по счетной аддитивности)} \end{cases}$$

1.1.1 Индикатор

Определение. Индикатор события A - это функция $I_A(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}$

Свойства индикатора

1.
$$I_{\bar{A}} = 1 - I_A$$

$$2. \ I_{A_1 \cap A_2} = I_{A_1} I_{A_2}$$

3.
$$I_{A_1 \cup \dots \cup A_n} = 1 - I_{\bar{A_1} \cap \dots \cap \bar{A_n}} = 1 - I_{\bar{A_1}} \dots I_{\bar{A_n}} = 1 - (1 - I_{A_1}) \dots (1 - I_{A_n})$$

2 Условные вероятности и независимость

3 Случайные величины

Определение (Случайная величина). Случайной величиной (СВ) $X(\omega)$ называется функция элементарного события ω с областью определения Ω и областью значений $\mathbb R$ такая, что событие $\{\omega: X(\omega) \leq x\}$ принадлежит σ -алгебре $\mathcal F$ при любом действительном $x \in \mathbb R$. Значения х функции $X(\omega)$ называются реализациями СВ $X(\omega)$.

Определение (Закон распределения). Любое правило (таблица, функция), позволяющее находить вероятности всех возможных событий, связанных со случайной величиной.

Примеры законов распределения

Определение (Математическое ожидание). Математическое ожидание случайной величины $\xi = xi(\omega)$ обозначается $M\xi$ и определяется как сумма

$$M\xi = \sum_{\omega \in \Omega} \xi(\omega) p(\omega)$$

Свойства мат. ожидания

1. $MI_A = P(A)$

Доказательство.

$$MI_A = \sum_{\omega \in \Omega} I_A(\omega) p(\omega) = \sum_{\omega \in A} p(\omega) = P(A)$$

2. Аддитивность: $M(\xi + \eta) = M\xi + M\eta$

 $oldsymbol{\mathcal{A}}$ Оказательство.

Из этого также следует конечная аддитивность.

3. Для любой константы С

$$M(C\xi) = cM\xi, \quad MC = C$$

4. Математическое ожидание ξ выражается через закон распределения случайной величины ξ формулой

$$M\xi = \sum_{i=1}^{k} x_k P\{\xi = x_i\}$$

Подставляя в числовую функцию случайную величину, мы также получаем случайную величину. Например, если $\eta = g(\xi)$, то

$$M\eta = Mg(\xi) = \sum_{i=1}^{k} g(x_i) P\{\xi = x_i\}$$

 Π ри этом

$$g(x_i) = \sum_{i=1}^{k} g(x_i) I_{\xi = x_i}$$