

Mathematik

Grundlagen der Differentialrechnung

KA 17

ANR

Aufgabe 1

Bestimmen Sie die Gleichung der 1. Ableitung von $f(x) = tx^2 + 2tx - t$.

- (a) 2tx + 2t 1
- (b) 2tx + 2t
- (c) 2x + 2t 1
- (d) 2t + 2t t

Aufgabe 2

Bestimmen Sie die Gleichung der 1. Ableitung von $f(t) = tx^2 + 2tx - t$.

- (a) 2tx + 2x
- (b) 2tx + 2x 1
- (c) $x^2 + 2x 1$
- (d) $x^2 + 2x$

Aufgabe 3

Sei $f(x) = ax^3 + bx^2 + cx + d$ mit $a \neq 0$. Ermitteln Sie die maximale Anzahl von Schnittpunkten von f(x) und f'(x).

- (a) 0
- (b) 1
- (c) 2
- (d) 3

Aufgabe 4

Berechnen Sie, an welcher Stelle sich die Tangenten an den Stellen x = 4 und x = -2 an die Funktion $f(x) = x^2$ schneiden.

- (a) x = 1
- (b) $x = \frac{11}{3}$
- (c) $x = -\frac{3}{4}$
- (d) x = 0

Aufgabe 5

Sei $f(x) = x^4 - \frac{\pi}{3}x^2 - \sqrt{29}$. Geben Sie den Term der 4. Ableitung $f^4(x)$ von f(x) an.

- (a) 0
- (b) 24
- (c) 24x
- (d) $4x^3 \frac{2\pi}{3}x$

Aufgabe 6

Sei $f(x) = 2x^2 - 4x$ und g(x) = 4x - 3. Kreuzen Sie an, welche Aussage wahr ist.

- (a) f(x) = g'(x) + 1
- (b) f'(x) + 1 = g(x)
- (c) $2 \cdot f'(x) = g(x)$
- (d) $x \cdot g(x) = f(x)$

Aufgabe 7

Sei $f(x) = \sum_{i=0}^{n} a_i \cdot x^i$ eine ganzrationale Funktion vom Grad n. Geben Sie die n+1-te Ableitung $f^{n+1}(x)$ an.

- (a) $f^{n+1}(x) = 0$
- (b) $f^{n+1}(x) = n \cdot \sum_{i=0}^{n-1} a_i \cdot x^i$
- (c) $f^{n+1}(x) = a_0$
- (d) $f^{n+1}(x) = \prod_{i=0}^{n} a_i$

Aufgabe 8

Sei $f_a(x) = ax^2 + 1$ mit $a \in \mathbb{R} \setminus \{0\}$.

A. Ermitteln Sie die Gleichung der Tangente $t_a(x)$ an $f_a(x)$ an der Stelle x=2.

- (a) 4ax
- (b) 4ax 4a + 1
- (c) -4a + 1
- (d) 4ax + 1

B. Bestimmen Sie a so, dass $t_a(x)$ an $f_a(x)$ an der Stelle x=4 die Steigung 16 besitzt.

- (a) a = 1
- (b) a = 2
- (c) a = 3
- (d) a = 4

Aufgabe 9

Sei $f(x) = x^3 - 10x^2 + 35x + 18$. Bestimmen Sie x so, dass f''(x) = 0.

- (a) $x = -\frac{1}{2}$
- (b) $x = \frac{10}{3}$
- (c) $x = \frac{20}{3}$
- (d) x = 18

Mathematik

Grundlagen der Differentialrechnung

KA 17

ANR

Aufgabe 10

Geben Sie eine Funktion f(x) so an, dass f'(0) = f''(0) = 0 gilt.

(a)
$$f(x) = x(x-1)(x-2)$$

(b)
$$f(x) = (x-1)^3$$

(c)
$$f(x) = x^4 - 4x^3$$

(d)
$$f(x) = x^2 + 1$$

Mathematik

KA 17

Grundlagen der Differentialrechnung

ANR

Lösungen

Aufgabe 1

Die Antwort ist (b).

Aufgabe 2

Die Antwort ist (c).

Aufgabe 3

Die Antwort ist (d).

Aufgabe 4

Die Antwort ist (b).

Aufgabe 5

Die Antwort ist (b).

Aufgabe 6

Die Antwort ist (b).

Aufgabe 7

Die Antwort ist (a).

Aufgabe 8

Es gilt $m_{t_a} = f_a'(2) = 2 \cdot 2 \cdot a = 4a$. Weiter liegt der Punkt $P(2|f_a(2))$, also P(2|4a+1) auch auf t_a , da er der Berührpunkt ist. Einsetzen in t_a liefert $4a+1=4a\cdot 2+b \Leftrightarrow -4a+1=b$. Somit ist $t_a(x)=4ax-4a+1$.

- A. Die Antwort ist (b).
- B. Die Antwort ist (c).

Aufgabe 9

Die Antwort ist (b).

Aufgabe 10

Die Antwort ist (c).