Computer Vision

CNN Architectures

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology
Sri City, Chittoor

This Class

CNN Architectures: Plain Models

- LeNet
- AlexNet
- ZFNet
- VggNet
- Network in Network

CNN Architectures: DAG Models

- GoogLeNet
- ResNet
- Pre-act ResNet
- SENet
- DenseNet
- ResNetXt
- Etc.

CNN Architectures: Plain Models

- LeNet
- AlexNet
- ZFNet
- VggNet
- Network in Network

Review: LeNet-5

LeCun et al. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 1998.

Source: cs231n

Review: LeNet-5

Conv filters are 5x5, applied at stride 1 Subsampling (Pooling) layers are 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC-FC]

LeCun et al. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 1998.

Source: cs231n

Architecture:

CONV1 MAX POOL1

MAX POOL2

NORM1(Local Response Normalization) NORM2(Local Response Normalization)

CONV3

CONV2

CONV4

CONV5 Max POOL3

FC6

FC7

FC8

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: (227-11)/4+1=55

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = 35K

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1=27

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume [27x27x96]

Q: what is the number of parameters in this layer?

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume [27x27x96]

Parameters: 0!

Input: 227x227x3 images

After CONV1: 55x55x96

After POOL1: 27x27x96

• • •

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Full (simplified) AlexNet architecture: [55x55x48] x 2

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Historical note: Trained on GTX 580 GPU with only 3 GB of memory. Network spread across 2 GPUs, half the neurons (feature maps) on each GPU.

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

CONV1, CONV2, CONV4, CONV5: Connections only with feature maps on same GPU

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

CONV3, FC6, FC7, FC8: Connections with all feature maps in preceding layer, communication across GPUs

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- batch size 128
- SGD Momentum 0.9
- Learning rate 0.01, reduced manually when val accuracy saturates

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ZFNet

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

Source: cs231n

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGGNet)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

FC 4096 FC 4096 VGG19

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGGNet)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

ImageNet top 5 error: 11.4% (ZFNet, 2013)

->

7.3% (VGGNet, 2014)

Q: Why use smaller filters? (3x3 conv)

Q: Why use smaller filters? (3x3 conv)
Stack of three 3x3 conv (stride 1) layers
has same **effective receptive field** as
one 7x7 conv layer

Q: Why use smaller filters? (3x3 conv)
Stack of three 3x3 conv (stride 1) layers
has same **effective receptive field** as
one 7x7 conv layer

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

Q: Why use smaller filters? (3x3 conv) Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

[7x7]

But deeper, more non-linearities

And fewer parameters: 3 * (3²C²) vs. 7²C² for C channels per layer


```
(not counting biases)
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
```

```
(not counting biases)
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
```

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

TOTAL params: 138M parameters

```
(not counting biases)
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
                                                                                   Note:
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 - 147,456
                                                                                   Most
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
                                                                                   memory is in
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
                                                                                   early CONV
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                   Most params
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
                                                                                   are in late
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
                                                                                   FC
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
```

Simonyan et al. Very deep convolutional networks for large-scale image recognition. ICLR2015. Source: cs231n

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)

(a) Linear convolution layer

(b) Mlpconv layer

(b) Mlpconv layer

- Mlpconv layer with "micronetwork" within each conv layer to compute more abstract features for local patches
- Micronetwork uses multilayer perceptron (FC, i.e. 1x1 conv layers)

Source: cs231n

The overall structure of NiN: stacking of three mlpconv layers and one global average pooling layer

The overall structure of NiN: stacking of three mlpconv layers and one global average pooling layer

Table 1: Test set error rates for CIFAR-10 of various methods.	
Method	Test Error
Stochastic Pooling [11]	15.13%
CNN + Spearmint [14]	14.98%
Conv. maxout + Dropout [8]	11.68%
NIN + Dropout	10.41%
CNN + Spearmint + Data Augmentation [14]	9.50%
Conv. maxout + Dropout + Data Augmentation [8]	9.38%
DropConnect + 12 networks + Data Augmentation [15]	9 32%
NIN + Dropout + Data Augmentation	8.81%

Lin et al. Network in Network. 2014.

Network in Network (NiN)

The overall structure of NiN: stacking of three mlpconv layers and one global average pooling layer

- Precursor to GoogLeNet and ResNet "bottleneck" layers
- Philosophical inspiration for GoogLeNet

CNN Architectures: DAG Models

- GoogLeNet
- ResNet
- Pre-act ResNet
- SENet
- Network with Stochastic Depth
- DenseNet
- ResNetXt

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Deeper networks, with computational efficiency

- 22 layers

- Efficient "Inception" module

- No FC layers

- Only 5 million parameters! 12x less than AlexNet

 Imagenet classification winner (6.7% top 5 error)

"Inception module":

design a good local network topology and then stack these modules on top of each other

Inception module

Naive Inception module

Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together depthwise

Problem: Computational Complexity

Problem: Computational Complexity

Q1: What is the output size of the

1x1 conv, with 128 filters?

Example:

Naive Inception module

1 × 1 Convolutions

Problem: Computational Complexity

Q1: What is the output size of the

1x1 conv, with 128 filters?

Example:

Naive Inception module

Problem: Computational Complexity

Q2: What are the output sizes of all different filter operations?

Example:

Naive Inception module

Problem: Computational Complexity

Q2: What are the output sizes of all different filter operations?

Example:

Naive Inception module

Problem:
Computational Complexity

Q3:What is output size after filter concatenation?

Example:

Naive Inception module

Problem: Computational Complexity

Q3:What is output size after filter concatenation?

Example:

Naive Inception module

Problem: Computational Complexity

Q3:What is output size after filter concatenation?

Example:

Naive Inception module

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x256 [5x5 conv, 96] 28x28x96x5x5x256 **Total: 854M ops**

Very expensive compute

Problem: Computational Complexity

Q3:What is output size after filter concatenation?

Example:

 $28 \times 28 \times (128 + 192 + 96 + 256) = 28 \times 28 \times 672$ Filter concatenation 28x28x192 28x28x96 28x28x128 28x28x256 5x5 conv, 3x3 conv, 1x1 conv. 3x3 pool 192 96 128 Module input: Input 28x28x256

Solution: "bottleneck" layers that use 1x1 convolutions to reduce feature depth

Naive Inception module

1 × 1 Convolutions

preserves spatial dimensions, reduces depth!
Projects depth to lower dimension (combination of feature maps)

Inception module with dimension reduction

Szegedy, Christian, et al. "Going deeper with convolutions." CVPR 2015.

Total: 358M ops

Inception module with dimension reduction

Compared to 854M ops for naive version, Bottleneck can also reduce depth after pooling layer

Full GoogLeNet Architecture

Full GoogLeNet Architecture

Full GoogLeNet Architecture

Full GoogLeNet Architecture

Auxiliary classification outputs to inject additional gradient at lower layers

(AvgPool-1x1Conv-FC-FC-Softmax)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Very deep networks using residual connections

- 152-layer model for ImageNet

- ILSVRC'15 classification winner (3.57% top 5 error)

 Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

He et al. Deep Residual Learning for Image Recognition, IEEE CVPR 2016.

Source: cs231n

FC 1000

3x3 conv. 64

3x3 conv. 64

3x3 conv. 64 3x3 conv. 64

3x3 conv. 64 3x3 conv. 64

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

56-layer model performs worse on both training and test error -> The deeper model performs worse, but it's not caused by overfitting!

Hypothesis: the problem is an optimization problem, deeper models are harder to optimize

The deeper model should be able to perform at least as well as the shallower model.

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Full ResNet architecture:

- Stack residual blocks
- Residual block has two 3x3 conv layers

Full ResNet architecture:

- Stack residual blocks
- Residual block has two 3x3 conv layers
- Periodically, double # of F(x) filters and downsample spatially using stride 2 (/2 in each dimension)

Full ResNet architecture:

- Stack residual blocks
- Residual block has two 3x3 conv layers
- Periodically, double # of F(x) filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning

Full ResNet architecture:

- Stack residual blocks
- Residual block has two 3x3 conv layers
- Periodically, double # of F(x) filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning
- No FC layers at the end (only FC 1000 to output classes)

Total depths of 34, 50, 101, or 152 layers for ImageNet

For deeper networks (ResNet-50+):

use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error saturates
- Mini-batch size 256
- Weight decay of 1e-5 for penalizing regularization term
- No dropout used

ResNet

Experimental Results:

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lower training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

ResNet

Experimental Results:

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lower training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

ResNet

Experimental Results:

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lower training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

ILSVRC 2015 classification winner (3.6% top 5 error) -- better than "human performance"! (Russakovsky 2014)

AlexNet: Smaller compute, still memory

ResNet:

Moderate efficiency depending on model, highest accuracy

Pre-activated ResNet

He, Kaiming, et al. "Identity mappings in deep residual networks." Europ. conf. on computer vision (ECCV), 2016.

Pre-activated ResNet

He, Kaiming, et al. "Identity mappings in deep residual networks." Europ. conf. on computer vision (ECCV), 2016.

Pre-activated ResNet

Classification error (%) on the CIFAR-10 test set using different activation functions.

case	ResNet-110	ResNet-164
original Residual Unit [1]	6.61	5.93
BN after addition	8.17	6.50
ReLU before addition	7.84	6.14
ReLU-only pre-activation	6.71	5.91
full pre-activation	6.37	5.46

2017 ImageNet Challenge Winner

Top-5 Error: 2.251%

2017 ImageNet Challenge Winner

Top-5 Error: 2.251%

"Squeeze-and-Excitation" (SE) block adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels.

2017 ImageNet Challenge Winner

Top-5 Error: 2.251%

Squeeze: Average Global Pooling

$$z_c = \mathbf{F}_{sq}(\mathbf{u}_c) = rac{1}{W imes H} \sum_{i=1}^W \sum_{j=1}^H u_c(i,j)$$

2017 ImageNet Challenge Winner

Top-5 Error: 2.251%

2017 ImageNet Challenge Winner

Top-5 Error: 2.251%

2017 ImageNet Challenge Winner

Top-5 Error: 2.251%

2017 ImageNet Challenge Winner

Top-5 Error: 2.251%

2017 ImageNet Challenge Winner

Top-5 Error: 2.251%

Scaling:

$$\widetilde{\mathbf{x}}_c = \mathbf{F}_{scale}(\mathbf{u}_c, s_c) = s_c \cdot \mathbf{u}_c$$

SE-Inception Module

SE-Inception Module

SE-ResNet Module

Other ResNet Improvements to Know ...

Deep Networks with Stochastic Depth

- Motivation: reduce vanishing gradients and training time through short networks during training
- Randomly drop a subset of layers during each training pass
- Bypass with identity function
- Use full deep network at test time

DenseNet

Shorter connections (like ResNet) help

Why not just connect them all?

ResNets

4ResNet-34

26.5

DenseNets-BC

Huang et al. Densely connected convolutional networks. CVPR 2017.

Aggregated Residual Transformations for Deep Neural Networks (ResNeXt)

Things to remember

- Architectures: Plain Models
 - LeNet (1998)
 - 5 Layers
 - No progress till 2012 due to lack of large scale data and computational resources
 - AlexNet (2012)
 - 8 Layers
 - Game changer in Computer Vision Area
 - ZFNet (2013)
 - 8 Layers with improved hypermeter setting
 - VGGNet (2014)
 - Deeper model: 16 or 19 Layers
 - Uniform filters
 - NiN (Network in Network) (2014)
 - Inspiration to DAG Model

Things to remember

- DAG Architectures
 - GoogLeNet

Stochastic Depth

ResNet

- DenseNet
- Pre-activated ResNet ResNetXt

- SENet
- VGG, GoogLeNet, ResNet all in wide use, available in model zoos
- ResNet current best default
- Trend towards extremely deep networks
- Significant research centers around design of layer / skip connections and improving gradient flow
- Even more recent trend towards examining necessity of depth vs. width and residual connections

Acknowledgements

- Thanks to the following researchers for making their teaching/research material online
 - Forsyth
 - Steve Seitz
 - Noah Snavely
 - J.B. Huang
 - Derek Hoiem
 - D. Lowe
 - A. Bobick
 - S. Lazebnik
 - K. Grauman
 - R. Zaleski
 - Antonio Torralba
 - Rob Fergus
 - Leibe
 - And many more

Next Class

Object Detection

Object or Non-Object?