Fyzikální praktikum 2 ČVUT v Praze

Vysokoteplotní plazma na tokamaku GOLEM

Jméno: Ondřej Brož Kolega: Stella Králová

Kruh: **Úterý 9:30** Číslo skup.: 9 Měřeno: **12.4.2022** Zpracování: 20h

Klasifikace:

1 Pracovní úkoly

- 1. Domácí příprava: Naučte se zacházet se vzdálenými daty z tokamaku GOLEM, seznamte se s dálkovým velínem tokamaku a jeho obsluhou. Alespoň jeden člen skupiny musí mít připravený způsob, jak z databáze GOLEM získávat data, před začátkem měření.
- 2. Připojte se k ostrému velínu přidělenému vaší skupině a zapojte váš osciloskop do sítě a k němu odpovídající měřící prvky (Rogowského pásku, malou měrnou cívku, jeden závit cívky kolem celého tokamaku a fotodiodu s H_{α} filtrem.
- 3. Přes dálkový velín proveďte test výboje na tokamaku s libovolnými hodnotami U_B , U_{CD} a p_0 se zapnutou předionizací. Vykreslete do grafu všechny 4 získané výstupy z osciloskopu.
- 4. Pomocí vzdáleného přístupu proveďte 10 výbojů s 5 různými hodnotami U_B , ke každé z nich dvěma různými U_{CD} a stejnou p_0 . Výboje mohou být sdílené pro více skupin v rámci šetření omezeného času v laboratoři.
- 5. Zpracujte data získaná z osciloskopu na předchozích 10 výbojích. Porovnejte je se standardními diagnostikou výstupních dat z tokamaku GOLEM^[2].
- 6. Pro každý z výbojů spočítejte dobu udržené energie τ_E a magnetické toroidální pole B_t během kvazi-statické fáze výboje. Vykreslete do grafu B_t v závislosti na τ_E s chybami. Spočítejte průměrnou dobu udržené energie $\overline{\tau_E}E$ a porovnejte ji s Neo-Alcatorovým škálovacím zákonem, který určuje τ_E v závislosti na elektronové hustotě n_e , velkém poloměru tokamaku R a malém poloměru tokamaku r.

2 Pomůcky

Tokamak GOLEM, Rogowského cívka, U_l kabel, B_t cívka, fotodioda s H_{α} filtrem, osciloskop RIGOL, koaxiální kabely, laptop.

3 Teoretický úvod

3.1 Získání základních veličin z naměřených napětí

Hodnoty v tomto měření získané z osciloskopu jsou všechny pouze různými hodnotami napětí: U_{B_t} napětí na malé cívce, U_l napětí na drátu omotaném kolem obvodu tokamaku, U_R napětí na Rogowského pásce a U_f napětí na fotodiodě, které není při zpracovávání využíváno. Hodnoty magnetické indukce na cívce $B_t(t)$ lze z napětí získat pomocí vztahu:

$$B_t(t) = C_B \int_0^t U_{B_t}(\tau) d\tau, \tag{1}$$

kde C_B je konstanta, kterou lze získat inverzním postupem ze standardního výstupu tokamaku. Napětí na drátu U_l není nutno nijak zpracovávat, jelikož se jedná přesně o tu samou veličinu, která má být zkoumána. Nakonec elektrický proud v plazmatu $I_p(t)$ lze získat pomocí napětí U_R a U_l ze vztahu:

$$I_p(t) = C_R \int_0^t U_R(\tau) d\tau - \frac{U_l(t)}{R_{ch}},\tag{2}$$

kde C_R je konstanta, také určitelná ze standardního výstupu tokamaku, a R_{ch} značí elektrický odpor komory známý [1] jako konstanta $R_{ch} = 0,0097\Omega$.

3.2 Určení doby udržené energie

K určení doby udržené energie τ_E je nutné nejprve předem zjistit několik dalších hodnot. První z nich je odpor plasmatu R_p určený pomocí napětí na drátu podél obvodu tokamaku U_l a elektrického proudu v plasmatu I_p pomocí Ohmova zákona, tedy jako:

$$R_p = \frac{U_l}{I_p}. (3)$$

Z něj je následně možné určit elektronovou teplotu T_e jako:

$$T_e = 0.9R_p^{-\frac{2}{3}}. (4)$$

Nakonec je ještě nutné znát elektronovou hustotu plasmatu n_e určenou vztahem

$$n_e = \frac{2p_0 V_{ch}}{k_B T_0 V_p},\tag{5}$$

kde p_0 značí tlak ve vakuové komoře (nastavený jako počáteční podmínka výboje), V_p objem plasmatu známý ^[1] jako konstanta 80 l, V_ch celkový objem komory známý ^[1] jako konstanta 150 l, k_B Boltzmannovu konstantu ^[1] 1,38 ·10⁻²³ JK⁻¹ a T_0 pokojovou teplotu ^[1] 300 K. Z nich pomocí vztahu

$$\tau_E = \frac{en_e T_e V_p}{3U_l I_p} \tag{6}$$

tedy lze získat dobu udržené energie τ_E , přičemž U_l a I_p jsou námi zjištěné hodnoty napětí na drátu omotaném kolem obvodu tokamaku a elektrického proudu v plasmatu a e značí elementární náboj $1,602 \cdot 10^{-19}$ C.

3.3 Neo-Alcatorův škálovací zákon

Doba udržení energie může být také vyjádřena pomocí takzvaného Neo-Alcatorova škálovacího zákona [3]

$$\tau_E^{neo} = 1,92 \cdot 10^{-20} R^{2,04} a^{1,04} n_e, \tag{7}$$

kde n_e stále značí elektronovou hustotu plasmatu, R větší poloměr vakuové komory tokamaku (v případě GOLEMu^[1] rovný 0,4 m) a a menší poloměr vakuové komory tokamaku (v případě GOLEMu^[1] rovný 0,085 m).

4 Postup měření

Nejprve projdeme školením o bezpečnosti a podepíšeme, že jsme s ním byli seznámeni. Zapojíme oscilátor do sítě a do zdroje, podél obvodu tokamaku umístíme kabel U_l , příčně na něj kolem těla tokamaku umístíme Rogowského cívku, mezi hliníkové bloky s cívkami generujícími toroidální magnetické pole umístíme kleště s malou cívkou a na optickou výpust tokamaku připevníme fotodiodu s H_{α} filtrem. Všechny tyto detektory připojíme koaxiálními kabely k oscilátoru a dáváme si pozor aby se žádný z nich v době výboje neležel příliš blízko napájecích kabelů. Přes dálkový ostrý velín pro úterní skupinu 9 spustíme výboj s libovolnými hodnotami p_0 , U_B a U_{CD} . Následně podle zadání úkolu 4 provedeme 10 dalších systematických výbojů. Po každém výboji si pomocí bashového skriptu stáhneme data z databáze tokamaku GOLEM.

5 Naměřené hodnoty a vypracování

5.1 Základní diagnostiky

Test byl proveden s parametry $p_0=18$ mPa, $U_B=400$ V a $U_{CD}=500$ V, což nevedlo k výboji. Napětí na malé cívce mezi hliníkovými bloky je vykreslené na Obr. 1, napětí na drátu omotaném podél obvodu tokamaku je vykreslené na Obr. 2, napětí na Rogowského pásce příčné k tokamaku je vykreslené na Obr. 3 a napětí na fotodiodě u optického výstupu tokamaku je vykreslené na Obr. 4.

5.2 Určení času udržení energie

Výboje byly prováděny za tlaku $p_0=$ mPa a pro napětí $U_B=950~\rm{V}$ s $U_{CD}=550~\rm{V}$ a 650 V, $U_B=1000~\rm{V}$ s $U_{CD}=550~\rm{V}$ a 700 V, $U_B=1050~\rm{V}$ s $U_{CD}=450~\rm{V}$ a 550 V, $U_B=1100~\rm{V}$ s $U_{CD}=450~\rm{V}$ a 550 V a 700 V. v s $U_{CD}=600~\rm{V}$ a 700 V.

Jejich průběhy napětí na drátu kolem obvodu tokamaku U_l jsou zobrazeny na Obr. 5, Obr. 6, Obr. 7, Obr. 8, Obr. 9, Obr. 10, Obr. 11, Obr. 12, Obr. 13 a Obr. 14.

Obdobně jejich průběh magnetické indukce na malé cívce mezi hliníkovými bloky B_t získané numerickou integrací z napětí na této cívce podle vztahu (1) jsou zobrazeny na Obr. 15, Obr. 16, Obr. 17, Obr. 18, Obr. 19, Obr. 20, Obr. 21, Obr. 22, Obr. 23 a Obr. 24.

Nakonec jejich průběhy proudu plasmatem I_p získané pomocí numerické integrace napětí na Rogowského cívce a z napětí na drátu kolem obvodu tokamaku podle vztahu (2) jsou zobrazeny na Obr. 25, Obr. 26, Obr. 27, Obr. 28, Obr. 29, Obr. 30, Obr. 31, Obr. 32, Obr. 33 a Obr. 34.

Střední hodnoty $\overline{B_t}$, $\overline{U_l}$ a $\overline{I_p}$ získané z těchto grafů v kvazi-statické fázi a z nich pomocí vztahů (4) a (6) získané hodnoty elektronové teploty T_e a času udržení energie τ_E jsou zobrazeny v Tab. 1. Hodnota elektronové hustoty používané v těchto vztazích je pro naší hodnotu p_0 : $n_e = 9,058 \cdot 10^{18} \ \# \cdot \text{m}^{-3}$.

5.3 Srovnání s Neo-Alcatorovým škálovacím zákonem

Graf vykreslující magnetickou indukci na malé cívce B_t v závislosti na čase udržení energie τ_E z Tab. 1 je zobrazen na Obr. 35. Průměrná hodnota těchto časů je $\overline{\tau_E}=(0,0743\pm0,0006)$ s. Čas udření energie získaný pomocí Neo-Alcarového škálovacího vztahu je $\tau_E^{neo}=0,01093$ s.

6 Diskuse

Experimentálně určená hodnota $\tau_E^{exp}=(0,0743\pm0,0006)$ s se poměrně, ovšem ne řádově liší od hodnoty získané Neo-Alcatorovým škálovacím zákonem $\tau_E^{teo}=0,01093$ s. Možných zdrojů chyb je několik: zaprvé je možné, že jsme nevhodně zapojili některý z měřících přístrojů, případně že datový přesun z nich dat nějakým způsobem poškodil. Toto vysvětlení se ale nezdá pravděpodobné vzhledem k podobnosti dat se standardním výstupem tokamaku GOLEM. Zadruhé je možné, že chyba byla v námi vybraným kvazi-statickými intervaly, které mohly být jak moc krátké tak i příliš dlouhé, což by vedlo k chybě na všech třech určovaných hodnotách. Nakonec ta doufejme nejméně pravděpodobná chyba je lidský faktor způsobený množstvím zpracovávaných dat, tedy "překlepnutí", či špatné zadání numerické integrace dat, které by bylo v tomto množství dat těžko dohledatelné.

7 Závěr

Seznámili jsme se s fyzikou, technologií, diagnostikou a operací tokamaku GOLEM. Provedli jsme test výboje se zapnutou předionizací a provedli 10 různých výbojů, data ze kterých jsme následně zpracovali a zjistili průměrnou dobu udržení energie $\tau_E^{exp}=(0,0743\pm0,0006)$ s a teoretickou dobu udržení energie z Neo-Alcatorova škálovacího zákona $\tau_E^{teo}=0,01093$ s.

Literatura

- Návod k úloze Vysokoteplotní plasma na tokamaku GOLEM Fyzikální Praktikum 2 [13.4.2022] http://golem.fjfi.cvut.cz/wiki/Education/GMinstructions/extracts/Universities/CTU.cz/PRA2/docum.pdf
- Standardní diagnostika výstupních dat z tokamaku GOLEM (Výboj #32499) [13.4.2022] http://golem.fjfi.cvut.cz/shots/32499/analysis_wave_i/BasicDiagnostics/basig_diagnostics_processed.csv
- 3. R.R. Palker et al. Progress in tokamak research at mit. [17.4.2022] https://iopscience.iop.org/article/10.1088/0029-5515/25/9/023/pdf

Přílohy

U_B [V]	U_{CD} [V]	U_l [V]	B_t [T]	I_p [kA]	T_e [eV]	$\tau_E [ms]$
950	550	7.5 ± 0.2	0.307 ± 0.001	$3,646 \pm 0,014$	$55,43 \pm 0,04$	0.078 ± 0.002
950	650	$7,9 \pm 0,2$	$0,304 \pm 0,001$	$4,610 \pm 0,017$	$62,78 \pm 0.04$	$0,0666 \pm 0,0019$
1000	550	$7,6 \pm 0,2$	0.3228 ± 0.0011	$4,018 \pm 0,013$	$58,96 \pm 0.04$	0.075 ± 0.002
1000	700	$8,1 \pm 0,2$	0.3241 ± 0.0011	$5,081 \pm 0,017$	$66,11 \pm 0,04$	0.0624 ± 0.0018
1050	450	$7,18 \pm 0,16$	0.3404 ± 0.0011	$2,348 \pm 0,011$	$42,71 \pm 0.02$	$0,098 \pm 0,002$
1050	550	$7,6 \pm 0,2$	0.3407 ± 0.0011	$4,081 \pm 0,014$	$59,70 \pm 0,04$	0.075 ± 0.002
1100	450	$7,10 \pm 0,16$	0.3492 ± 0.0012	$2,713 \pm 0,011$	$47,39 \pm 0,03$	$0,095 \pm 0,002$
1100	550	7.6 ± 0.2	0.3505 ± 0.0012	$4,068 \pm 0,014$	$59,51 \pm 0,04$	0.075 ± 0.002
1200	600	$7,7 \pm 0,2$	0.3776 ± 0.0012	$4,737 \pm 0,015$	$65,25 \pm 0,04$	0.0695 ± 0.0019
1200	700	$8,1 \pm 0,2$	0.3835 ± 0.0013	$4,442 \pm 0,016$	$60,35 \pm 0,04$	0.0650 ± 0.0018

Tab. 1: Tabulka zobrazující nastavené parametry napětí U_B a U_{CD} , naměřené napětí na drátu omotaném kolem obvodu tokamaku U_l , magnetické indukce na malé cívce B_t a elektrický proud plasmatem I_p a z nich určené hodnoty elektronové teploty T_e pomocí vztahu (4) a času udržení energie τ_E pomocí vztahu (6).

Obr. 1: Graf zobrazující napětí na cívce měřící toroidální magnetické pole U v závislosti na čase t získané z datového výstupu osciloskopu během testu libovolného výboje v úkolu 3.

Obr. 2: Graf zobrazující napětí na drátu vedoucím kolem celého obvodu tokamaku U v závislosti na čase t získané z datového výstupu osciloskopu během testu libovolného výboje v úkolu 3.

Obr. 3: Graf zobrazující napětí na Rogowského pásce U v závislosti na čase t získané z datového výstupu osciloskopu během testu libovolného výboje v úkolu 3.

Obr. 4: Graf zobrazující napětí na fotodiodě s H_{α} filtrem U v závislosti na čase t získané z datového výstupu osciloskopu během testu libovolného výboje v úkolu 3.

Obr. 5: Graf zobrazující průběh napětí na kabelu omotaném podél obvodu tokamaku U v závislosti na čase t pro 1. výboj s parametry $p_0=20$ mPa, $U_B=950$ V a $U_{CD}=550$ V.

Obr. 6: Graf zobrazující průběh napětí na kabelu omotaném podél obvodu tokamaku U v závislosti na čase t pro 2. výboj s parametry $p_0=20$ mPa, $U_B=950$ V a $U_{CD}=650$ V.

Obr. 7: Graf zobrazující průběh napětí na kabelu omotaném podél obvodu tokamaku U v závislosti na čase t pro 3. výboj s parametry $p_0=20$ mPa, $U_B=1000$ V a $U_{CD}=550$ V.

Obr. 8: Graf zobrazující průběh napětí na kabelu omotaném podél obvodu tokamaku U v závislosti na čase t pro 4. výboj s parametry $p_0=20$ mPa, $U_B=1000$ V a $U_{CD}=700$ V.

Obr. 9: Graf zobrazující průběh napětí na kabelu omotaném podél obvodu tokamaku U v závislosti na čase t pro 5. výboj s parametry $p_0=20$ mPa, $U_B=1050$ V a $U_{CD}=450$ V.

Obr. 10: Graf zobrazující průběh napětí na kabelu omotaném podél obvodu tokamaku U v závislosti na čase t pro 6. výboj s parametry $p_0=20$ mPa, $U_B=1050$ V a $U_{CD}=550$ V.

Obr. 11: Graf zobrazující průběh napětí na kabelu omotaném podél obvodu tokamaku U v závislosti na čase t pro 7. výboj s parametry $p_0=20$ mPa, $U_B=1100$ V a $U_{CD}=450$ V.

Obr. 12: Graf zobrazující průběh napětí na kabelu omotaném podél obvodu tokamaku U v závislosti na čase t pro 8. výboj s parametry $p_0=20$ mPa, $U_B=1100$ V a $U_{CD}=550$ V.

Obr. 13: Graf zobrazující průběh napětí na kabelu omotaném podél obvodu tokamaku U v závislosti na čase t pro 9. výboj s parametry $p_0=20$ mPa, $U_B=1200$ V a $U_{CD}=600$ V.

Obr. 14: Graf zobrazující průběh napětí na kabelu omotaném podél obvodu tokamaku U v závislosti na čase t pro 10. výboj s parametry $p_0=20$ mPa, $U_B=1200$ V a $U_{CD}=700$ V.

Obr. 15: Graf zobrazující průběh magnetické indukce B na malé cívce v závislosti na čase t pro 1. výboj s parametry $p_0=20$ mPa, $U_B=950$ V a $U_{CD}=550$ V.

Obr. 16: Graf zobrazující průběh magnetické indukce B na malé cívce v závislosti na čase t pro 2. výboj s parametry $p_0=20~{\rm mPa},\,U_B=950~{\rm V}$ a $U_{CD}=650~{\rm V}.$

Obr. 17: Graf zobrazující průběh magnetické indukce B na malé cívce v závislosti na čase t pro 3. výboj s parametry $p_0=20$ mPa, $U_B=1000$ V a $U_{CD}=550$ V.

Obr. 18: Graf zobrazující průběh magnetické indukce B na malé cívce v závislosti na čase t pro 4. výboj s parametry $p_0=20$ mPa, $U_B=1000$ V a $U_{CD}=700$ V.

Obr. 19: Graf zobrazující průběh magnetické indukce B na malé cívce v závislosti na čase t pro 5. výboj s parametry $p_0=20$ mPa, $U_B=1050$ V a $U_{CD}=450$ V.

Obr. 20: Graf zobrazující průběh magnetické indukce B na malé cívce v závislosti na čase t pro 6. výboj s parametry $p_0=20$ mPa, $U_B=1050$ V a $U_{CD}=550$ V.

Obr. 21: Graf zobrazující průběh magnetické indukce B na malé cívce v závislosti na čase t pro 7. výboj s parametry $p_0=20$ mPa, $U_B=1100$ V a $U_{CD}=450$ V.

Obr. 22: Graf zobrazující průběh magnetické indukce B na malé cívce v závislosti na čase t pro 8. výboj s parametry $p_0=20$ mPa, $U_B=1100$ V a $U_{CD}=550$ V.

Obr. 23: Graf zobrazující průběh magnetické indukce B na malé cívce v závislosti na čase t pro 9. výboj s parametry $p_0=20$ mPa, $U_B=1200$ V a $U_{CD}=600$ V.

Obr. 24: Graf zobrazující průběh magnetické indukce B na malé cívce v závislosti na čase t pro 10. výboj s parametry $p_0=20$ mPa, $U_B=1200$ V a $U_{CD}=700$ V.

Obr. 25: Graf zobrazující průběh proudu probíhajícího plasmou I v závislosti na čase t pro 1. výboj s parametry $p_0=20$ mPa, $U_B=950$ V a $U_{CD}=550$ V.

Obr. 26: Graf zobrazující průběh proudu probíhajícího plasmou I v závislosti na čase t pro 2. výboj s parametry $p_0=20~{\rm mPa},\,U_B=950~{\rm V}$ a $U_{CD}=650~{\rm V}.$

Obr. 27: Graf zobrazující průběh proudu probíhajícího plasmou I v závislosti na čase t pro 3. výboj s parametry $p_0=20$ mPa, $U_B=1000$ V a $U_{CD}=550$ V.

Obr. 28: Graf zobrazující průběh proudu probíhajícího plasmou I v závislosti na čase t pro 4. výboj s parametry $p_0=20~{\rm mPa},\,U_B=1000~{\rm V}$ a $U_{CD}=700~{\rm V}.$

Obr. 29: Graf zobrazující průběh proudu probíhajícího plasmou I v závislosti na čase t pro 5. výboj s parametry $p_0=20$ mPa, $U_B=1050$ V a $U_{CD}=450$ V.

Obr. 30: Graf zobrazující průběh proudu probíhajícího plasmou I v závislosti na čase t pro 6. výboj s parametry $p_0=20~{\rm mPa},\,U_B=1050~{\rm V}$ a $U_{CD}=550~{\rm V}.$

Obr. 31: Graf zobrazující průběh proudu probíhajícího plasmou I v závislosti na čase t pro 7. výboj s parametry $p_0=20$ mPa, $U_B=1100$ V a $U_{CD}=450$ V.

Obr. 32: Graf zobrazující průběh proudu probíhajícího plasmou I v závislosti na čase t pro 8. výboj s parametry $p_0=20$ mPa, $U_B=1100$ V a $U_{CD}=550$ V.

Obr. 33: Graf zobrazující průběh proudu probíhajícího plasmou I v závislosti na čase t pro 9. výboj s parametry $p_0=20$ mPa, $U_B=1200$ V a $U_{CD}=600$ V.

Obr. 34: Graf zobrazující průběh proudu probíhajícího plasmou I v závislosti na čase t pro 10. výboj s parametry $p_0=20~{\rm mPa},\,U_B=1200~{\rm V}$ a $U_{CD}=700~{\rm V}.$

Obr. 35: Graf zobrazující hodnoty naměřené magnetické indukce B_t v závislosti na času udržení energie τ_E .