

POWER OF ATTORNEY BY ASSIGNEE OF ENTIRE INTEREST
AND REVOCATION OF PRIOR POWERS

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

As assignee of record of the entire right, title, and interest, the undersigned corporation hereby revokes all previous powers of attorney and appoints the attorneys and/or agents of Staas & Halsey LLP, under USPTO Customer No. 21,171, to prosecute and transact all business in the U.S. Patent and Trademark Office for the following listed patent applications:

DOCKET NO.	SERIAL No.	FILING DATE	INVENTOR(S)	TITLE
1789.1008 RE	09/779,877	February 8, 2001	Ryusuke HASEGAWA, et al.	MAGNETIC CORE-COIL ASSEMBLY FOR SPARK IGNITION SYSTEMS

All correspondence and telephone communications should be directed to:

STAAS & HALSEY LLP
1201 New York Avenue, N.W.
Suite 700
Washington, D.C. 20005
Telephone: (202) 434-1512
Facsimile: (202) 434.1501

USPTO Customer No. 21171

ASSIGNEE CERTIFICATION

The undersigned assignee further states that the registered attorneys and/or agents, identified in the new power of attorney above, are empowered and authorized to sign the statement(s) and certification(s) under 37 C.F.R. §3.73(b) on behalf of the assignee. Attached to this power is/are "CERTIFICATE(S) UNDER 37 C.F.R. §3.73(b)".

METGLAS INC.

Dated: 09 August 2005

By: Ryusuke Hasegawa
Ryusuke Hasegawa
Vice-President, Research & Development
440 Allied Drive
Conway, South Carolina 29526

B790 Gr 3747

STATEMENT AND CERTIFICATION UNDER 37 C.F.R. §3.73(b)

Honorable Commissioner of
Patents and Trademarks
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

This statement hereby certifies that the below-listed patent application is owned, and continues to be owned by the Assignee, METGLAS INC., by way of Assignment, as recorded at the United States Patent and Trademark Office on September 25, 2003, at Reel 014506/Frame 0521, for U.S. Patent No. 5,868,12, issued February 9, 1999.

DOCKET NO.	SERIAL NO.	FILING DATE	INVENTOR(S)	TITLE
1789.1008RE	09/779,877	February 8, 2001	Ryusuke HASEGAWA, et al.	MAGNETIC CORE-COIL ASSEMBLY FOR SPARK IGNITION SYSTEMS

If there are any fees associated with the filing of this Statement and Certification, please charge and/or credit the same to our Deposit Account No. 19-2925.

Dated: September 13, 2005

STAAS & HALSEY LLP

By:

David M. Pitcher
Registration No. 25,908

DMP:sbh

1201 New York Avenue, N.W.
Suite 700
Washington, D.C. 20005
Telephone: (202) 434-1512
Facsimile: (202) 434-1501

UNITED STATES PATENT AND TRADEMARK OFFICE

UNDER SECRETARY OF COMMERCE FOR INTELLECTUAL PROPERTY AND
DIRECTOR OF THE UNITED STATES PATENT AND TRADEMARK OFFICE

APRIL 16, 2004

PTAS

102562645A

MORGAN, LEWIS & BOCKIUS LLP
MICHAEL S. TUSCAN, PH.D.
1111 PENNSYLVANIA AVE., NW
WASHINGTON, DC 20004

UNITED STATES PATENT AND TRADEMARK OFFICE NOTICE OF RECORDATION OF ASSIGNMENT DOCUMENT

THE ENCLOSED DOCUMENT HAS BEEN RECORDED BY THE ASSIGNMENT DIVISION OF THE U.S. PATENT AND TRADEMARK OFFICE. A COMPLETE MICROFILM COPY IS AVAILABLE AT THE ASSIGNMENT SEARCH ROOM ON THE REEL AND FRAME NUMBER REFERENCED BELOW.

PLEASE REVIEW ALL INFORMATION CONTAINED ON THIS NOTICE. THE INFORMATION CONTAINED ON THIS RECORDATION NOTICE REFLECTS THE DATA PRESENT IN THE PATENT AND TRADEMARK ASSIGNMENT SYSTEM. IF YOU SHOULD FIND ANY ERRORS OR HAVE QUESTIONS CONCERNING THIS NOTICE, YOU MAY CONTACT THE EMPLOYEE WHOSE NAME APPEARS ON THIS NOTICE AT 703-308-9723. PLEASE SEND REQUEST FOR CORRECTION TO: U.S. PATENT AND TRADEMARK OFFICE, ASSIGNMENT DIVISION, BOX ASSIGNMENTS, CG-4, 1213 JEFFERSON DAVIS HWY, SUITE 320, WASHINGTON, D.C. 20231.

RECORDATION DATE: 09/25/2003

REEL/FRAME: 014506/0521
NUMBER OF PAGES: 8

BRIEF: ASSIGNMENT OF ASSIGNEE'S INTEREST (SEE DOCUMENT FOR DETAILS).

ASSIGNEE:

HONEYWELL INTERNATIONAL INC.

DOC DATE: 08/25/2003

ASSIGNEE:

METGLAS, INC.
440 ALLIED DRIVE
CONWAY, SOUTH CAROLINA 29526

SERIAL NUMBER: 07116604
PATENT NUMBER: 4762678

FILING DATE: 11/03/1987
ISSUE DATE: 08/09/1988

SERIAL NUMBER: 07116599
PATENT NUMBER: 4762677

FILING DATE: 11/03/1987
ISSUE DATE: 08/09/1988

SERIAL NUMBER: 06741255
PATENT NUMBER: 4649248

FILING DATE: 06/04/1985
ISSUE DATE: 03/10/1987

RECEIVED

APR 23 2004

MORGAN, LEWIS & BOCKIUS LLP

P.O. Box 1450, Alexandria, Virginia 22313-1450 - www.uspto.gov

1442304

SERIAL NUMBER: 06700309 PATENT NUMBER: 4637563	FILING DATE: 02/11/1985 ISSUE DATE: 01/20/1987
SERIAL NUMBER: 06749304 PATENT NUMBER: 4646803	FILING DATE: 06/27/1985 ISSUE DATE: 03/03/1987
SERIAL NUMBER: 06841164 PATENT NUMBER: 4639707	FILING DATE: 03/19/1986 ISSUE DATE: 01/27/1987
SERIAL NUMBER: 06726450 PATENT NUMBER: 4631509	FILING DATE: 04/24/1985 ISSUE DATE: 12/23/1986
SERIAL NUMBER: 08397317 PATENT NUMBER: 5496418	FILING DATE: 03/02/1995 ISSUE DATE: 03/05/1996
SERIAL NUMBER: 07707206 PATENT NUMBER: 5424140	FILING DATE: 05/23/1991 ISSUE DATE: 06/13/1995
SERIAL NUMBER: 08417283 PATENT NUMBER: 5542993	FILING DATE: 04/05/1995 ISSUE DATE: 08/06/1996
SERIAL NUMBER: 07896505 PATENT NUMBER: 5340413	FILING DATE: 06/02/1992 ISSUE DATE: 08/23/1994
SERIAL NUMBER: 08044094 PATENT NUMBER: 5338373	FILING DATE: 04/06/1993 ISSUE DATE: 08/16/1994
SERIAL NUMBER: 07787495 PATENT NUMBER: 5252144	FILING DATE: 11/04/1991 ISSUE DATE: 10/12/1993
SERIAL NUMBER: 07962638 PATENT NUMBER: 5395460	FILING DATE: 10/16/1992 ISSUE DATE: 03/07/1995
SERIAL NUMBER: 07977378 PATENT NUMBER: 5441783	FILING DATE: 11/17/1992 ISSUE DATE: 08/15/1995
SERIAL NUMBER: 08428805 PATENT NUMBER: 5564490	FILING DATE: 04/24/1995 ISSUE DATE: 10/15/1996
SERIAL NUMBER: 08920416 PATENT NUMBER: 6200690	FILING DATE: 08/29/1997 ISSUE DATE: 03/13/2001
SERIAL NUMBER: 08589227 PATENT NUMBER: 5800635	FILING DATE: 01/22/1996 ISSUE DATE: 09/01/1998
SERIAL NUMBER: 08672909 PATENT NUMBER: 5868123	FILING DATE: 06/28/1996 ISSUE DATE: 02/09/1999
SERIAL NUMBER: 08920717 PATENT NUMBER: 6103396	FILING DATE: 08/29/1997 ISSUE DATE: 08/15/2000
SERIAL NUMBER: 08699274 PATENT NUMBER: 5842511	FILING DATE: 08/19/1996 ISSUE DATE: 12/01/1998

SERIAL NUMBER: 08790339	FILING DATE: 01/27/1997
PATENT NUMBER: 5841336	ISSUE DATE: 11/24/1998
SERIAL NUMBER: 08639498	FILING DATE: 04/29/1996
PATENT NUMBER: 5844462	ISSUE DATE: 12/01/1998
SERIAL NUMBER: 08841017	FILING DATE: 04/29/1997
PATENT NUMBER: 5923236	ISSUE DATE: 07/13/1999
SERIAL NUMBER: 09096022	FILING DATE: 06/11/1998
PATENT NUMBER: 6123062	ISSUE DATE: 09/26/2000
SERIAL NUMBER: 09669421	FILING DATE: 09/25/2000
PATENT NUMBER: 6457464	ISSUE DATE: 10/01/2002
SERIAL NUMBER: 08819280	FILING DATE: 03/18/1997
PATENT NUMBER: 6144279	ISSUE DATE: 11/07/2000
SERIAL NUMBER: 08796011	FILING DATE: 02/05/1997
PATENT NUMBER: 5873954	ISSUE DATE: 02/23/1999
SERIAL NUMBER: 09658083	FILING DATE: 09/11/2000
PATENT NUMBER: 6535096	ISSUE DATE: 03/18/2003
SERIAL NUMBER: 09276164	FILING DATE: 03/25/1999
PATENT NUMBER: 6411188	ISSUE DATE: 06/25/2002
SERIAL NUMBER: 09311423	FILING DATE: 05/13/1999
PATENT NUMBER: 6299989	ISSUE DATE: 10/09/2001
SERIAL NUMBER: 09086832	FILING DATE: 05/29/1998
PATENT NUMBER: 6165290	ISSUE DATE: 12/26/2000
SERIAL NUMBER: 09634121	FILING DATE: 08/08/2000
PATENT NUMBER: 6373387	ISSUE DATE: 04/16/2002
SERIAL NUMBER: 09186914	FILING DATE: 11/06/1998
PATENT NUMBER: 6331363	ISSUE DATE: 12/18/2001
SERIAL NUMBER: 09477905	FILING DATE: 01/05/2000
PATENT NUMBER: 6346337	ISSUE DATE: 02/12/2002
SERIAL NUMBER: 09544033	FILING DATE: 04/06/2000
PATENT NUMBER: 6348275	ISSUE DATE: 02/19/2002
SERIAL NUMBER: 09187656	FILING DATE: 11/06/1998
PATENT NUMBER: 6420813	ISSUE DATE: 07/16/2002
SERIAL NUMBER: 09470707	FILING DATE: 12/23/1999
PATENT NUMBER: 6462456	ISSUE DATE: 10/08/2002
SERIAL NUMBER: 10188385	FILING DATE: 07/03/2002
PATENT NUMBER: 6559570	ISSUE DATE: 05/06/2003

SERIAL NUMBER: 09290642	FILING DATE: 04/12/1999
PATENT NUMBER: 6432226	ISSUE DATE: 08/13/2002
SERIAL NUMBER: 09633058	FILING DATE: 08/08/2000
PATENT NUMBER: 6475303	ISSUE DATE: 11/05/2002
SERIAL NUMBER: 09427379	FILING DATE: 10/25/1999
PATENT NUMBER: 6544662	ISSUE DATE: 04/08/2003
SERIAL NUMBER: 09716568	FILING DATE: 11/20/2000
PATENT NUMBER: 6551421	ISSUE DATE: 04/22/2003
SERIAL NUMBER: 09842078	FILING DATE: 04/25/2001
PATENT NUMBER: 6552639	ISSUE DATE: 04/22/2003
SERIAL NUMBER: 06287338	FILING DATE: 07/27/1981
PATENT NUMBER: 4708194	ISSUE DATE: 11/24/1987
SERIAL NUMBER: 06652167	FILING DATE: 09/19/1984
PATENT NUMBER: 4515870	ISSUE DATE: 05/07/1985
SERIAL NUMBER: 06608079	FILING DATE: 05/08/1984
PATENT NUMBER: 4589470	ISSUE DATE: 05/20/1986
SERIAL NUMBER: 06701791	FILING DATE: 02/14/1985
PATENT NUMBER: 4566525	ISSUE DATE: 01/28/1986
SERIAL NUMBER: 07166738	FILING DATE: 03/02/1988
PATENT NUMBER: 4791979	ISSUE DATE: 12/20/1988
SERIAL NUMBER: 07168524	FILING DATE: 03/07/1988
PATENT NUMBER: 4834814	ISSUE DATE: 05/30/1989
SERIAL NUMBER: 07233979	FILING DATE: 08/18/1988
PATENT NUMBER: 4938267	ISSUE DATE: 07/03/1990
SERIAL NUMBER: 06727940	FILING DATE: 04/26/1985
PATENT NUMBER: 4594104	ISSUE DATE: 06/10/1986
SERIAL NUMBER: 06871955	FILING DATE: 06/09/1986
PATENT NUMBER: 4668309	ISSUE DATE: 05/26/1987
SERIAL NUMBER: 06933276	FILING DATE: 11/17/1986
PATENT NUMBER: 4745037	ISSUE DATE: 05/17/1988
SERIAL NUMBER: 06881566	FILING DATE: 07/02/1986
PATENT NUMBER: 4755239	ISSUE DATE: 07/05/1988
SERIAL NUMBER: 06767248	FILING DATE: 08/20/1985
PATENT NUMBER: 4664176	ISSUE DATE: 05/12/1987
SERIAL NUMBER: 06781207	FILING DATE: 09/30/1985
PATENT NUMBER: 4676298	ISSUE DATE: 06/30/1987

SERIAL NUMBER: 06898828	FILING DATE: 08/20/1986
PATENT NUMBER: 4869312	ISSUE DATE: 09/26/1989
SERIAL NUMBER: 07627871	FILING DATE: 12/13/1990
PATENT NUMBER: 5043029	ISSUE DATE: 08/27/1991
SERIAL NUMBER: 06500740	FILING DATE: 06/03/1983
PATENT NUMBER: 4522331	ISSUE DATE: 06/11/1985
SERIAL NUMBER: 06518163	FILING DATE: 07/28/1983
PATENT NUMBER: 4889568	ISSUE DATE: 12/26/1989
SERIAL NUMBER: 06876652	FILING DATE: 06/17/1986
PATENT NUMBER: 4649984	ISSUE DATE: 03/17/1987
SERIAL NUMBER: 06718208	FILING DATE: 04/03/1985
PATENT NUMBER: 4576653	ISSUE DATE: 03/18/1986
SERIAL NUMBER: 07624485	FILING DATE: 12/06/1990
PATENT NUMBER: 5110378	ISSUE DATE: 05/05/1992
SERIAL NUMBER: 07807308	FILING DATE: 12/13/1991
PATENT NUMBER: 5284528	ISSUE DATE: 02/08/1994
SERIAL NUMBER: 07132631	FILING DATE: 12/04/1987
PATENT NUMBER: 4834816	ISSUE DATE: 05/30/1989
SERIAL NUMBER: 07826286	FILING DATE: 01/24/1992
PATENT NUMBER: 5158229	ISSUE DATE: 10/27/1992
SERIAL NUMBER: 07089276	FILING DATE: 08/25/1987
PATENT NUMBER: 4746379	ISSUE DATE: 05/24/1988
SERIAL NUMBER: 06856861	FILING DATE: 04/21/1986
PATENT NUMBER: 4801072	ISSUE DATE: 01/31/1989
SERIAL NUMBER: 06621753	FILING DATE: 06/18/1984
PATENT NUMBER: 4588452	ISSUE DATE: 05/13/1986
SERIAL NUMBER: 06623686	FILING DATE: 06/22/1984
PATENT NUMBER: 4587097	ISSUE DATE: 05/06/1986
SERIAL NUMBER: 06929465	FILING DATE: 11/12/1986
PATENT NUMBER: 4756788	ISSUE DATE: 07/12/1988
SERIAL NUMBER: 07627606	FILING DATE: 12/11/1990
PATENT NUMBER: 5035755	ISSUE DATE: 07/30/1991
SERIAL NUMBER: 07537221	FILING DATE: 06/13/1990
PATENT NUMBER: 5062909	ISSUE DATE: 11/05/1991
SERIAL NUMBER: 08067256	FILING DATE: 05/25/1993
PATENT NUMBER: 5296049	ISSUE DATE: 03/22/1994

SERIAL NUMBER: 07995563	FILING DATE: 12/23/1992
PATENT NUMBER: 5364477	ISSUE DATE: 11/15/1994
SERIAL NUMBER: 06661642	FILING DATE: 10/17/1984
PATENT NUMBER: 4588015	ISSUE DATE: 05/13/1986
SERIAL NUMBER: 07181890	FILING DATE: 04/15/1988
PATENT NUMBER: 4871622	ISSUE DATE: 10/03/1989
SERIAL NUMBER: 07184324	FILING DATE: 04/21/1988
PATENT NUMBER: 4802933	ISSUE DATE: 02/07/1989
SERIAL NUMBER: 06702778	FILING DATE: 02/19/1985
PATENT NUMBER: 4576873	ISSUE DATE: 03/18/1986
SERIAL NUMBER: 06703018	FILING DATE: 02/19/1985
PATENT NUMBER: 4650725	ISSUE DATE: 03/17/1987
SERIAL NUMBER: 07465658	FILING DATE: 01/19/1990
PATENT NUMBER: 4956743	ISSUE DATE: 09/11/1990
SERIAL NUMBER: 06710343	FILING DATE: 03/11/1985
PATENT NUMBER: 4658537	ISSUE DATE: 04/21/1987
SERIAL NUMBER: 06931320	FILING DATE: 11/17/1986
PATENT NUMBER: 4712603	ISSUE DATE: 12/15/1987
SERIAL NUMBER: 07170602	FILING DATE: 03/14/1988
PATENT NUMBER: 4823113	ISSUE DATE: 04/18/1989
SERIAL NUMBER: 06854455	FILING DATE: 04/21/1986
PATENT NUMBER: 4734256	ISSUE DATE: 03/29/1988
SERIAL NUMBER: 07622205	FILING DATE: 11/30/1990
PATENT NUMBER: 5028830	ISSUE DATE: 07/02/1991
SERIAL NUMBER: 07181798	FILING DATE: 04/15/1988
PATENT NUMBER: 4869751	ISSUE DATE: 09/26/1989
SERIAL NUMBER: 07238790	FILING DATE: 08/31/1988
PATENT NUMBER: 4898612	ISSUE DATE: 02/06/1990
SERIAL NUMBER: 08647152	FILING DATE: 05/09/1996
PATENT NUMBER: 5593513	ISSUE DATE: 01/14/1997
SERIAL NUMBER: 08647151	FILING DATE: 05/09/1996
PATENT NUMBER: 5593518	ISSUE DATE: 01/14/1997
SERIAL NUMBER: 08781096	FILING DATE: 01/09/1997
PATENT NUMBER: 5871593	ISSUE DATE: 02/16/1999
SERIAL NUMBER: 07609857	FILING DATE: 11/07/1990
PATENT NUMBER: 5100614	ISSUE DATE: 03/31/1992

014506/0521 PAGE 7

SERIAL NUMBER: 07524892
PATENT NUMBER: 5091253

FILING DATE: 05/18/1990
ISSUE DATE: 02/25/1992

SERIAL NUMBER: 07533242
PATENT NUMBER: 5142227

FILING DATE: 06/04/1990
ISSUE DATE: 08/25/1992

SERIAL NUMBER: 07532484
PATENT NUMBER: 5146790

FILING DATE: 06/04/1990
ISSUE DATE: 09/15/1992

SERIAL NUMBER: 09841833
PATENT NUMBER: 6583707

FILING DATE: 04/25/2001
ISSUE DATE: 06/24/2003

SERIAL NUMBER: 09805386
PATENT NUMBER: 6453984

FILING DATE: 03/13/2001
ISSUE DATE: 09/24/2002

PAULA MCCRAY, EXAMINER
ASSIGNMENT DIVISION
OFFICE OF PUBLIC RECORDS

09-30-2003

U.S. DEPARTMENT OF COMMERCE
Patent and Trademark Office

RECO

102562645

I

Attorney Docket No.: 060357-0000 (b)

To the Assistant Commissioner for Patents:
Please record the attached original documents or copy thereof.

ATTN: BOX ASSIGNMENT

1. Name of conveying party(ies):

Honeywell International Inc.

Additional name(s) of conveying party(ies) attached?

 Yes No

2. Name and address of receiving party(ies):

Name: Metglas, Inc.

Street Address: 440 Allied Drive
Conway, South Carolina 29526

Internal Address:

3. Nature of conveyance:

Assignment Merger
 Security Agreement Change of Name
 Other _____

Additional name(s) & address(es) attached?

Yes No

Effective Date(s): August 25, 2003

4. Application number(s) or patent number(s):

If this document is being filed together with a new application the execution date of the application is:

A. Patent Application No.(s):

B. Patent No.(s): 4,762,678 issued 8/9/88

Additional patent application and patent numbers attached: Yes No See attached Schedule A.

5. Name and address of party to whom correspondence concerning document should be mailed:

6. Total number of applications and patents involved: 98

Name: Michael S. Tuscan, Ph.D.
 Internal Address: Customer No. 009629
 Morgan, Lewis & Bockius LLP

7. Total fee (37 C.F.R. §3.41): \$3,920.00

 Enclosed- payment by check Authorized to be charged to deposit account 50-0310

Street Address: 1111 Pennsylvania Ave., NW
 City: Washington State: D.C. Zip: 20004

8. Deposit account number: 50-0310

Attach duplicate of page if paying by deposit account

9. Statement and Signature

To the best of my knowledge and belief, the foregoing information is true and correct and any attached copy is a true copy of the original document.

Michael S. Tuscan, Reg. No. 43,210

Name of Person Signing

09/29/2003 LMUELLER 00000117 500310 4762678

01 FC:8021

3920.00 DQ

Signature

September 25, 2003

Date

Total number of pages including cover sheet, attachments and documents: 8

Schedule A

U.S. Patents

Docket Number	Title	Patent Number	Patent Issue Date
30-2410	Method of Preparing a Bulk Amorphous Metal Article	4,762,678	8/9/88
30-2411	A Method of Preparing a Bulk Amorphous Metal Article	4,762,677	8/9/88
30-2951	Annealing Furnace for Annealing Magnetic Cores in a Magnetic Field	4,649,248	3/10/87
30-2952	Toroidal Winding Apparatus	4,637,563	1/20/87
30-2953	Case for Protecting a Magnetic Core	4,646,803	3/3/87
30-2954	Transformer with Toroidal Magnetic Core	4,639,707	1/27/87
30-2955	Electrical Induction Apparatus with Support Inside Casing	4,631,509	12/23/86
30-3054	Amorphous FE-B-Si Alloys Exhibiting Enhanced AC Magnetic Properties and Handleability	5,496,418	3/5/96
30-3064	Low Melting Nickel-Palladium-Silicon Brazing Alloys	5,424,140	6/13/95
30-3064	Low Melting Nickel-Palladium-Silicon Brazing Alloys	5,542,993	8/6/96
30-3139	FE-Ni Based Soft Magnetic Alloys Having Nanocrystalline Structure	5,340,413	8/23/94
30-3182	A Method of Encoding and Decoding of Glassy Alloy Strip to be Used as an Identification Maker	5,338,373	8/16/94
30-3286	Heat Treatment Process and Soft Magnetic Alloys Produced Thereby	5,252,144	10/12/93
30-3296	Improved Harmonic Markers Made From FE-Ni Based Soft Magnetic Alloys Having Nanocrystalline Structure	5,395,460	3/7/95
30-3354	Improved Edge Coating for Amorphous Ribbon Transformer Cores	5,441,783	8/15/95
30-3805	Homogeneous Quench Substrate	5,564,490	10/15/96
30-3902	Nickel-Chromium-Based Brazing Alloys	6,200,690	3/13/01
30-3918	Method of Achieving A Controlled Step Change in the Magnetic Loop of Amorphous Alloys	5,800,635	9/1/98
30-4016	Magnetic Core-Coil Assembly for Spark Ignition Systems	5,868,123	2/9/99
30-4057	Thick Amorphous Alloy Ribbon Having Improved Ductility and Magnetic Properties	6,103,396	8/15/00
30-4149	Casting Wheel Having Equiaxed Fine Grain Quench Surface	5,842,511	12/1/98
30-4154	Magnetic Core-Coil Assembly for Spark Ignition Systems	5,841,336	11/24/98
30-4154	Magnetic Core-Coil Assembly for Spark Ignition Systems	5,844,462	12/1/98
30-4154	Magnetic Core-Coil Assembly for Spark Ignition Systems	5,923,236	7/13/99
30-4154	Magnetic Core-Coil Assembly for Spark Ignition Systems	6,123,062	9/26/00
30-4154	Magnetic Core-Coil Assembly for Spark Ignition Systems	6,457,464	10/1/02
30-4259	Electrical Choke for Power Factor Correction	6,144,279	11/7/00
30-4264	Amorphous Alloy with Increased Operating Induction	5,873,954	2/23/99
30-4373	High Pulse Rate Ignition Source	6,535,096	3/18/03
30-4516	Amorphous Metal Transformer Having a Generally Rectangular Coil	6,411,188	6/25/02
30-4550	High Stack Factor Amorphous Metal Ribbon and Transformer Core	6,299,989	10/9/01
30-4559	Cobalt-Chromium-Palladium-Based Brazing Alloys	6,165,290	12/26/00

Docket Number	Title	Patent Number	Patent Issue Date
30-4581	Integrated Hybrid Electronic Article Surveillance Marker	6,373,387	4/16/02
30-4609	Bulk Amorphous Metal Magnetic Components	6,331,363	12/18/01
30-4609	Bulk Amorphous Metal Magnetic Components	6,346,337	2/12/02
30-4609	Bulk Amorphous Metal Magnetic Components	6,348,275	2/19/02
30-4630	Bulk Amorphous Metal Magnetic Components for Electric Motors	6,420,813	7/16/01
30-4630	Bulk Amorphous Metal Magnetic Components for Electric Motors	6,462,456	10/8/02
30-4630	Bulk Amorphous Metal Magnetic Components for Electric Motors	6,559,570	5/6/03
30-4794	Magnetic Glassy Alloys for High Frequency Applications	6,432,226	8/13/02
30-4794	Magnetic Glassy Alloys for High Frequency Applications	6,475,303	11/5/02
30-4880	Process for Manufacturing of Brazed Multi-Channelled Structures	6,544,662	4/8/03
30-4973	Brazing Foil Preforms and Their Use in the Manufacture of Heat Exchangers	6,551,421	4/22/03
30-5086	Bulk Stamped Amorphous Metal Magnetic Component	6,552,639	4/22/03
81-1785	Conditioning Brushes for Cleaning Rapid Solidification Casting Surfaces	4,708,194	11/24/87
81-1797	Homogeneous, Ductile Iron Based Hardfacing Foils	4,515,870*	5/7/85
81-1821	Method and Apparatus for Cooling a Moving Chill Substrate	4,589,470*	5/20/86
81-2065	Nozzle Assembly	4,566,525*	1/28/86
81-2082	Gas Assisted Nozzle for Casting Metallic Strip Directly from the Melt	4,791,979	12/20/88
81-2100	Metallic Glasses Having Combination of High Permeability Low Coercivity AC Core Loss Existing Power and High Thermal	4,834,814	5/30/89
81-2101	Glassy Metal Alloys with Perminvar Characteristics	4,938,267	7/3/90
81-2102	Consolidated Articles Produced from Heat Treated Amorphous Bulk Parts	4,594,104	6/10/86
81-2103	Rapid Magnetic Annealing of Amorphous Metal in Molten Tin	4,668,309	5/26/87
81-2109	Homogeneous Ductile Braze Foils	4,745,037	5/17/88
81-2126	Low Magnetostriction Amorphous Metal Alloys	4,755,239	7/5/88
81-2128	Casting in a Thermally - Induced Low Density Atmosphere	4,664,176	5/12/87
81-2129	Casting in a Low Density Atmosphere	4,676,298	6/30/87
81-2137	Casting in an Exothermic Reduction Atmosphere	4,869,312	9/26/89
81-2137	Casting in an Exothermic Reduction Atmosphere	5,043,029	8/27/91
81-2144	Method of Braze with Low Melting Point Copper-Tin Foils	4,522,331*	6/11/85
81-2165	Amorphous Alloys for Electromagnetic Devices	4,889,568	12/26/89
81-2183	Localized Conditioning Shoe for Casting Metal Strip	4,649,984	3/17/87
81-2188	Complex Boride Particle Containing Alloys	4,576,653	3/18/86
81-2250	Metallic Glasses Having a Combination of High Permeability Low Coercivity Low AC Core Loss, Low Exciting Power and High Thermal Stability	5,110,378	5/5/92

* Expired

Docket Number	Title	Patent Number	Patent Issue Date
81-2250	Metallic Glasses Having a Combination of High Permeability Low Coercivity Low AC Core Loss, Low Exciting Power and High Thermal Stability	5,284,528	2/8/94
81-2251	Metallic Glasses Having a Combination of High Permeability Low Coercivity Low AC Core Loss, Low Exciting Power and High Thermal Stability	4,834,816	5/30/89
81-2253	Low Temperature, High Strength, Nickel Base Alloys	5,158,229	10/27/92
81-2278	Low Temperature High Strength Nickel-Palladium Base Brazing	4,746,379	5/24/88
81-2294	Homogenous Ductile Brazing Foils	4,801,072	1/31/89
81-2295	Amorphous Alloys for Electromagnetic Devices	4,588,452	5/13/86
81-2299	Homogenous Low Melting Temperature Brazing Filler Metal for Joining Ferrous and Non-Ferrous Alloys	4,587,097	5/6/86
81-2310	Inline Winder with Take-up Web	4,756,788	7/12/88
81-2319	Amorphous Metal Alloys Having Enhanced AC Magnetic Properties at Elevated Temperatures	5,035,755	7/30/91
81-2331	Iron-Rich Metallic Glasses Having High Saturation Induction and Superior Soft Ferro Magnetic Properties at High Saturation Induction and Low Magnetic Anisotropy Energy	5,062,909	11/5/91
81-2331	Iron-Rich Metallic Glasses Having High Saturation Induction and Superior Soft Ferro Magnetic Properties at High Saturation Induction and Low Magnetic Anisotropy Energy	5,296,049	3/22/94
81-2331	Iron-Rich Metallic Glasses Having High Saturation Induction and Superior Soft Ferro Magnetic Properties at High Saturation Induction and Low Magnetic Anisotropy Energy	5,364,477	11/15/94
81-2337	Casting in an Exothermic Reducing Flame Atmosphere	4,588,015	5/13/86
81-2375	Flexible Multi layered Brazing Materials	4,871,622	10/3/89
81-2378	Nickel Palladium Based Brazing Alloys	4,802,933	2/7/89
81-2408	Homogeneous Ductile Iron Based Hard Facing Foil	4,576,873	3/18/86
81-2410	Homogeneous Ductile Cobalt Based Hard Facing Foil	4,650,725	3/17/87
81-2417	Ground Fault Interrupters from Glassy Metal Alloys	4,956,743	9/11/90
81-2419	Nickel High-Chromium Base Brazing Filler Metal for High Temperature Applications	4,658,537	4/21/87
81-2419	Method of Making Nickel High-Chromium Base Brazing Filler Metal	4,712,603	12/15/87
81-2425	Glassy Alloy Identification Marker	4,823,113	4/18/89
82-2442	Improved Wetting of Low Melting Temperature Solders by Surface Active Additions	4,734,256	3/29/88
82-2505	Rotor Apparatus for Axial Shield Electro Magnetic Devices and Method of Construction Therefor	5,028,830	7/2/91
82-2651	Thermomechanical Processing of Rapidly Solidified High Temperature AL - Base Alloys	4,869,751	9/26/89
82-2750	Friction-Actuated Extrusion of Rapidly Solidified High Temperature AL-Base Alloys and Product	4,898,612	2/6/90
82-2790	Amorphous FE-B-SI-C Alloys Having Soft Magnetic Characteristics Useful in Low Frequency Applications	5,593,513	1/14/97
82-2790	Amorphous FE-B-SI-C Alloys Having Soft Magnetic Characteristics Useful in Low Frequency Applications	5,593,518	1/14/97

Docket Number	Title	Patent Number	Patent Issue Date
82-2790	Amorphous FE-B-SI-C Alloys Having Soft Magnetic Characteristics Useful in Low Frequency Applications	5,871,593	2/16/99
82-2802	Iron-Rich Metallic Glasses Having High Saturation Induction and Superior Soft Ferromagnetic Properties	5,100,614	3/31/92
82-2814	Magnetic Core Utilizing Metallic Glass Ribbons and Mica Paper Inter Laminar Insulation	5,091,253	2/25/92
82-2868	Method and Apparatus for Measuring Strain Within A Ferromagnetic Material by Sensing Change in Coercive Field	5,142,227	8/25/92
82-2869	Torque Sensor	5,146,790	9/15/92
H0001522	Apparatus and Method for the Manufacture of Large Transformers Having Laminated Cores, Particularly Cores of Annealed Amorphous Metal Alloys	6,583,707	6/24/03
H0001627	Apparatus and method for Casting Amorphous Metal Alloys in an Adjustable Low Density Atmosphere	6,453,984	9/24/02

ASSIGNMENT OF U.S. PATENTS

Effective August 25, 2003

WHEREAS, HONEYWELL INTERNATIONAL INC., a Delaware corporation, having a place of business at 101 Columbia Road, Morristown, New Jersey 07962, previously known as AlliedSignal Inc., and prior to that, Allied-Signal Inc. (hereinafter "Assignor"), is the sole owner of the entire right, title and interest in and to the United States Letters Patent described in Schedule A, attached hereto and made a part hereof (the "Patents"); and

WHEREAS, Metglas, Inc., a Delaware corporation, having a place of business at 440 Allied Drive, Conway, South Carolina 29526 (hereinafter "Assignee") is desirous of acquiring the entire right, title and interest in and to the Patents;

NOW, THEREFORE, for good and valuable consideration, the receipt of which is hereby acknowledged, the Assignor by these presents does hereby sell, assign and transfer all right, title and interest in and to the Patents, the inventions disclosed therein, all divisions, continuations and continuations-in-part thereof, and all patents issuing on any of the foregoing, and all reissues, reexaminations and extensions thereof, including the right to apply for Letters Patent in foreign countries in its own name and to claim any priority rights for such foreign applications to which such applications are entitled under international conventions, treaties, or otherwise, all said rights to be held and enjoyed by the Assignee for its own use and for the use of its successors, assigns or other legal representatives, to the full end of the term for which the Patents will be granted, reexamined, extended or reissued, as fully and entirely as the same would have been held and enjoyed by the Assignor if this assignment and sale had not been made, and including the right to recover for past infringement.

Assignor does hereby authorize and request any official whose duty it is to issue Letters Patent, to issue any and all Letters Patent which may be granted upon any of the said applications, to said Assignee, or its successors or assigns, and to record the Assignee as the owner of the Patents.

Assignor further agrees that Assignor will, without demanding any further consideration therefor, at the request but at the expense of Assignee, do all lawful and just acts, including the execution and acknowledgment of instruments, that may be or become necessary for obtaining, sustaining, reexamining or reissuing the Patents, and for maintaining and perfecting Assignee's right to the Patents.

[Signature page follows.]

IN WITNESS WHEREOF, the parties hereto have each caused a duly authorized representative to execute this Assignment as of the date first above written.

HONEYWELL INTERNATIONAL INC.

By:

Name: MARTIN B. HELFANT
Title: AUTHORIZED OFFICER

NY
State of New Jersey)
NY) ss.:
County of Morris)

On this 22 day of August, 2003, before me, a Notary Public, personally appeared Martin Helfant to me known to be the authorized officer of HONEYWELL INTERNATIONAL INC. and also known to me to be the person who executed the foregoing assignment on behalf of HONEYWELL INTERNATIONAL INC. and acknowledged to me that such corporation executed the same.

John P. Bonura
Notary Public

JOHN P. BONURA
Notary Public, State of New York
No. 01BO5086261
Qualified in New York County
Commission Expires October 6, 2005

ACCEPTED:

METGLAS, INC.

By:

Taiji Yamada
Name: Taiji Yamada
Title: President