Biological Vision and Applications Module 05-07: Introduction to neural networks

Hiranmay Ghosh

Neural Networks

- Feed-forward network back-propagation algorithm for training
- Transfer function: y = W.x
- W is a constant: deterministic output
 - no learning from "experience" in deployment stage
- For a 640×480 color image
 - ▶ Number of input nodes = 927,360
 - Large number of parameters to be learned

Convolutional Neural Networks

Why convolution?

- 2D organization exploits
 - Spatial context of a location in 2D
 - Identical operations repeated over the different spatial regions
- Drastic reduction in model parameters
 - For a 3 × 3 convolution filter, only 27 parameters to learn
 - Independent of image size

Convolutional Neural Networks

Structure

- Same operation to be repeated over different receptive fields
 - Do not need so many parameters
- Architecture motivated by early vision
 - Convolution: Aggregates information from receptive field
 - Filtering (ReLU): Non-linear transformation
 - Pooling (max): Reduces information volume

On filter sizes

- A bank of two 3×3 filters in succession has a receptive field of 5×5
- Can implement identical transfer function
- Which one would you prefer?

- Filter size = 1
- For "flattening" the layers
 - $y(i,j) = \sum_k w_k.x_k(i,j)$

Progressive abstraction

- Each location at any layer of a CNN holds information about some locality of the image
- A location in a deeper layer covers more visual field of the image than a shallower layer
 - A deeper layer incorporates more context than a shallower layer
- Visual information is progressively abstracted
- Depth of layer increases with the depth of the network

Does CNN really do progressive abstraction?

Yosinski, et al. Understanding neural networks through deep visualization (2015)

Some notable CNN implementations (2012 – 2015)

These implementations are reused in different contexts

- AlexNet
- VGG
- ResNet
- GoogleNet

Architecture comparisons

Fully Convolutional Network (FCNN)

Used for Image Segmentation

Deconvnet

Recurrent Neural Network (RNN)

- RNN incorporates a feedback loop (with delay)
- Transfer function
 - $h_t = f(W_1.x_t + W_2.y_{t-1})$

 - h accumulates experience
- Tool for sequence processing tasks

Quiz

Quiz 05-07

End of Module 05-07