10. ЭКОНОМИЧЕСКАЯ ЧАСТЬ

10.1 Расчёт технологических показателей котельной

Задачей дипломного проекта является реконструкция котельной теплоэнергетического комплекса промывочно-пропарочной станции Барбаров Мозырского района. Реконструкция включает в себя замену существующих газовых паровых котлоагрегатов 3хДКВР-6,5-13, выработавших свой ресурс, на 3 паровых котла VIESSMANN Vitomax 200-HS. Основным видом топлива для проектируемой котельной является смесевое топливо, приготавливаемое на производстве.

Расчёт установленной мощности котельной, МВт:

$$Q_{\text{yct}} = (D_{\text{HoM}}^{\text{IIK}} \cdot (h_{\text{II}} - h_{\text{IIB}}) + D_{\text{IIp}} \cdot (h_{\text{KB}} - h_{\text{IIB}})) \cdot n \cdot 10^{-3} + Q_{\text{BK}} \cdot n_{\text{BK}},$$
(10.1)

где $D_{\text{ном}}^{\text{пк}}$ – номинальная паропроизводительность одного котла, кг/с, ; n – число установленных котлов; $D_{\text{пр}} = 0.01 \cdot p_{\text{пр}} \cdot D_{\text{ном}}^{\text{ПК}}$ – расход воды на непрерывную продувку, т/ч; $h_{\text{п}}$ – энтальпия пара на выходе из котла, $h_{\text{п}}$ =2788,900 кДж/кг; $h_{\text{пв}}$ – энтальпия питательной воды, $h_{\text{пв}}$ =426,900 кДж/кг; $h_{\text{кв}}$ – энтальпия котловой воды, $h_{\text{кв}}$ = 693,000 кДж/кг.

– до реконструкции:

$$D_{\text{ном}(ДКВР-6,5)}^{\text{пк}}$$
=1,806 кг/с; $n_{(ДКВР-6,5)}$ =3 шт.
$$Q_{\text{уст}}$$
=(1,806·(2788,900–426,900)+0,01·3·1,806·(693,000–426,900))× ×3·10⁻³=12,837 МВт=11,038 Гкал/ч.

после реконструкции:

$$D_{\text{ном(Vitomax 200-HS)}}^{\text{пк}} = 1,667 \text{ кг/c}; n_{\text{(Vitomax 200-HS)}} = 3 \text{ шт.}$$

$$Q_{\text{уст}} = (1,667 \cdot (2788,900-426,900)+0,01 \cdot 3 \cdot 1,667 \cdot (693,000-426,900)) \times 3 \cdot 10^{-3} = 11,850 \text{ MBT} = 10,189 \Gamma_{\text{Кал/ч}}.$$

					ДП 1–43 01 07.22.51с.10				
Изм.	Лист	№ докум.	Подпись	Дата	· ·				
Разр	абот.	Лапташ А.В.			Экономическая часть	/lum.	Лист	Листов	
Руков	вод.	Кидун Н.М.				y		<i>1</i> 5	
Консц	ульт.	Полозова А.А.				Экономическая часть ГГТУ им. П.О. Сухого,			
Н. ко	нтр.	Никулина Т.Н.				ПТЭиЭ			
Зав.	каф.	Макеева Е.Н.							

Годовой отпуск теплоты на отопление, ГДж/год:

$$Q_{o}^{\text{год}} = 24 \cdot 0,0036 \cdot Q_{o}^{\text{cp}} \cdot n_{o}, \tag{10.2}$$

где $n_{\rm o}$ — продолжительность отопительного периода, сут., $n_{\rm o}$ =189 суток для Мозырь; $Q_{\rm o}^{\rm cp}$ — средний расход теплоты на отопление за отопительный период, МВт.

$$Q_{\rm o}^{\rm cp} = Q_{\rm o} \cdot \frac{t_{\rm BH} - t_{\rm o}^{\rm cp}}{t_{\rm BH} - t_{\rm po}}.$$
 (10.3)

Так как в задании на проектирование дан суммарный расход тепла на отопление и вентиляцию (0,941 МВт), принимается, что расход тепла на отопление $Q_{\rm o}$ =0,659 МВт, на вентиляцию – $Q_{\rm b}$ =0,282 МВт; $t_{\rm BH}$ – расчетная температура воздуха внутри зданий, принимается в соответствии со СНиП 11-35-76, $t_{\rm BH}$ =18 °C; $t_{\rm o}^{\rm cp}$ – средняя за отопительный период температура наружного воздуха, в соответствии с [1] $t_{\rm o}^{\rm cp}$ = -0,7 °C; $t_{\rm po}$ – расчетная температура наружного воздуха для отопления, в соответствии с [1], $t_{\rm po}$ = -22 °C.

Тогда:

$$Q_o^{\text{cp}} = 0.659 \cdot \frac{18 - (-0.7)}{18 - (-22)} = 0.308 \text{ MBT};$$

 $Q_{0}^{\text{год}}$ =24·0,0036·0,308·10³·189=5028,574 ГДж/год=1201,054 Гкал/ч.

Годовой отпуск теплоты на вентиляцию, ГДж/год:

$$Q_{\rm B}^{\rm rog} = Z \cdot 0.0036 \cdot Q_{\rm B}^{\rm cp} \cdot n_{\rm o},$$
 (10.4)

где $Q_{\rm B}^{
m cp}$ — средний расход теплоты на вентиляцию за отопительный период, кВт;

$$Q_{\rm B}^{\rm cp} = Q_{\rm B} \cdot \frac{t_{\rm BH} - t_{\rm O}^{\rm cp}}{t_{\rm BH} - t_{\rm pB}} \tag{10.5}$$

$$Q_{\rm B}^{\rm cp} = 0.282 \cdot \frac{18 - (-0.7)}{18 - (-5.6)} = 0.224 \text{ MBT}.$$

Z – усреднённое за отопительный период число часов работы в сутки системы вентиляции по [2]; при отсутствии данных принимается равным 16 часов согласно СНиП 2.04.07-86 «Тепловые сети».

					l
					l
Изм	Лист	№ докум.	Подпись	Дата	

 $Q_{\text{\tiny R}}^{\text{год}} = 16.0,0036\cdot0,224\cdot10^3\cdot189 = 2435,145$ ГДж/год=581,624 Гкал/ч.

Годовой отпуск теплоты на горячее водоснабжение, ГДж/год:

$$Q_{\Gamma BC}^{\Gamma o \pi} = 24 \cdot 0,0036 \cdot Q_{\Gamma BC}^{cp} \cdot n_o + 24 \cdot 0,0036 \cdot Q_{\Gamma BC\pi}^{cp} \cdot (350 - n_o), \tag{10.6}$$

где $Q_{\Gamma BC}^{\rm cp}$ — средний расход теплоты на горячее водоснабжение за отопительный период, МВт; из задания на проектирование $Q_{\Gamma BC}^{\rm cp}$ =0,091 МВт; $Q_{\Gamma BC\pi}^{\rm cp}$ — средний расход теплоты на горячее водоснабжение за летний период, МВт; из задания на проектирование $Q_{\Gamma BC\pi}^{\rm cp}$ = 0,073 МВт; 350 — число суток в году работы системы горячего водоснабжения.

$$Q_{\text{гвс}}^{\text{год}} = 24.0,0036.0,091.10^3.189 + 24.0,0036.0,073.10^3.(350-189) =$$
 =2501,453 ГДж/год=597,462 Гкал/ч.

Годовой отпуск теплоты на технологические нужды, ГДж/год:

$$Q_{\rm T}^{\rm rog} = (D_{\rm T} \cdot (h_{\rm II} - h_{\rm IIB}) - D_{\rm T} \cdot \frac{\beta}{100} \cdot h_{\rm K})) \cdot n_{\rm T} \cdot k_{\rm H} \cdot 10^{-3}, \tag{10.7}$$

где $D_{\rm T}$ — расход редуцированного пара на технологические нужды при максимальном режиме, из задания на проектирование, $D_{\rm T}$ =13,400 т/ч; $h_{\rm K}$ — энтальпия возвращаемого конденсата, $h_{\rm K}$ =335,000 кДж/кг; β — возврат конденсата технологическими потребителями, 50%; $n_{\rm T}$ — годовое число часов использования пара потребителями, при непрерывном режиме работы равно 8760 часов [2, стр.249]; $k_{\rm H}$ — коэффициент неравномерности суточного графика по пару: $k_{\rm H}$ =0,8 [2, стр.249].

$$Q_{\mathrm{T}}^{\mathrm{rog}} = ((13,400 \cdot (2788,900 - 426,900) - 13,400 \cdot \frac{50}{100} \cdot 335,000)) \cdot 8760 \cdot 0,8 \times 0.000 \cdot 0.000 \cdot$$

 $\times 10^{-3}$ =206079,350 ГДж/год=49221,2 Гкал/год.

Годовой отпуск тепла от котельной, ГДж/год:

$$Q_{\text{отп}}^{\text{год}} = \frac{Q_{\text{o}}^{\text{год}} + Q_{\text{B}}^{\text{год}} + Q_{\text{гв}}^{\text{год}} + Q_{\text{T}}^{\text{год}}}{1 - k_{\text{пот.т.c.}}},$$
(10.8)

где $k_{\text{пот.т.с.}}$ – коэффициент потерь тепла в тепловых сетях.

	·			·
Изм	Лист	№ докум.	Подпись	Дата

$$\mathcal{Q}_{\text{отп}}^{\text{год}} \!\!=\! \frac{5028,\!574 \!+\! 2435,\!145 \!+\! 2501,\!453 \!+\! 206079,\!350}{1 \!-\! 0,\!03} \!=\!$$

=222726,311 ГДж/год=53197,3 Гкал/год.

Годовая выработка теплоты котельной, ГДж/год:

$$Q_{\text{выр}}^{\text{год}} = \frac{Q_{\text{отп}}^{\text{год}}}{1 - k_{\text{с.н.}}} = \frac{222726,311}{1 - 0,1} = 247473,679 \ \Gamma \text{Дж/год} =$$
 (10.9)

=59108,1 Гкал/год.

где $k_{\text{с.н.}}$ – коэффициент потерь тепла на собственные нужды.

Число часов использования установленной мощности котельной в год, ч/год (зависит от категории надежности котельной, режима работы котельных агрегатов и выработанной теплоты котельной):

-до реконструкции:

$$h_{\text{уст}} = \frac{Q_{\text{выр}}^{\text{год}}}{Q_{\text{уст}}} = \frac{59108,1}{11,038} = 5354,873 \text{ ч/год.}$$
 (10.10)

-после реконструкции:

$$h_{
m yct} = rac{Q_{
m выр}^{
m rog}}{Q_{
m vct}} = rac{59108,1}{10,189} = 5801,112$$
 ч/год.

Удельный расход условного топлива на 1 Гкал отпущенной теплоты:

$$\eta_{\text{BK}}^{\text{брутто}} = \frac{\eta_{\text{BK}}^{\text{Hetto}}}{(1 - k_{\text{c.H.}})},$$

$$b_{\text{отп}}^{y} = \frac{142,86 \cdot 100}{\eta_{\text{BK}}^{\text{Hetto}}},$$

$$b_{\text{выр}}^{y} = \frac{142,86 \cdot 100}{\eta_{\text{BK}}^{\text{брутто}}} = \frac{142,86 \cdot 100}{\eta_{\text{BK}}^{\text{Hetto}}} \cdot (1 - k_{\text{c.H.}}) = b_{\text{отп}}^{y} \cdot (1 - k_{\text{c.H.}}).$$
(10.11)

– до реконструкции:

 $\eta_{\text{ДКВР-6,5-13}}^{\text{нетто}} = 84 \%$ (по паспорту).

$$b_{\text{отп}(ДКВР-6,5-13)}^{\text{У}} = \frac{142,86\cdot100}{84} = 170,071 \text{ кг у.т./Гкал.}$$

$$b_{\text{выр}}^{\text{y}} = \frac{170,071}{(1-0,1)} = 188,968 \text{ кг у.т./Гкал.}$$

Изм	Лист	№ докум.	Подпись	Дата

- после реконструкции:

 $\eta_{Vitomax\ 200-HS}^{Hetto}$ =90,400 % (по паспорту).

$$b_{\text{отп(Vitomax 200-HS)}}^{\text{y}} = \frac{142,86 \cdot 100}{90,400} = 158,031 \text{ кг у.т./Гкал.}$$

$$b_{\text{выр(Vitomax 200-HS)}}^{\text{y}} = \frac{158,031}{(1-0,1)} = 175,590 \text{ кг у.т./Гкал.}$$

Годовой расход топлива котельной на отпуск теплоты:

- условного, т у.т./год:
- до реконструкции:

$$B_{\text{год}}^{\text{y}} = b_{\text{выр}}^{\text{y}} \cdot Q_{\text{вып}}^{\text{год}} \cdot 10^{-3}.$$
 (10.12)

$$B_{\text{год}}^{\text{y}} = 188,968 \cdot 59108,1 \cdot 10^{-3} = 10052,594$$
 т у.т./год.

– после реконструкции:

$$B_{\text{гол}}^{\text{y}} = 175,590.59108,1.10^{-3} = 10378,785 \text{ т у.т./год.}$$

- натурального, тыс. $M^3/год$ (т н.т./год):
- до реконструкции:

$$B_{\text{rod}}^{\text{H}} = B_{\text{rod}}^{\text{y}} \cdot \frac{7000}{O_{\text{H}}^{\text{p}}}.$$
 (10.13)

$$B_{\text{год}}^{\text{H}} = 10052,594 \cdot \frac{7000}{8002} = 8793,822 \text{ тыс.м}^3/\text{год.}$$

- после реконструкции:

$$B_{\text{год}}^{\text{H}} = 10378,785 \cdot \frac{7000}{7640,000} = 9509,358 \text{ т.н.т./год.}$$

Годовой расход электроэнергии на собственные нужды котельной, кВт·ч/год:

$$W_{\text{год}}^{\text{ch}} = P_{\text{сум}} \cdot h_{\text{кот}}, \tag{10.14}$$

где $h_{\text{кот}}$ — число часов работы оборудования в году, ч/год; $P_{\text{сум}}$ — суммарная мощность однотипного оборудования:

$$P_{\text{cvm}} = P_{\text{hom}} \cdot n \cdot K_{\text{H}}, \tag{10.15}$$

Изм	Лист	№ докум.	Подпись	Дата

где $P_{\rm ycr}$ – номинальная мощность оборудования, кВт; $h_{\rm kor}$ – число часов работы оборудования в году; $K_{\rm u}$ – коэффициент использования установленной электрической мощности.

Удельный расход электрической энергии на собственные нужды котельной определяем по формуле, кВт·ч/Гкал:

$$w_{\rm end} = \frac{W_{\rm rog}^{\rm ch}}{Q_{\rm opt}^{\rm rog}}.$$
 (10.16)

Таблица 10.1 – Годовой расход электроэнергии

Наименование оборудования	Кол- во, шт.	<i>P</i> _{ном} , кВт	Ки	<i>Р</i> _{сум} , кВт	Время работы, ч/год	Потребление электроэнергии, кВт∙ч/год		
Насос сетевой воды	2	4	0,7	5,6	8400	47040		
Насос подачи воды	1	1	0,8	0,8	8400	6720		
Насос печного								
бытового топлива	1	0,45	0,8	0,36	8400	3024		
Насос питательный	6	2,2	0,5	6,6	8400	55440		
Насосная станция	2	3	0,8	4,8	8400	40320		
Насос подачи воды								
на обратный осмос	1	0,75	0,75	0,562	8400	4725		
Потери (3 %)	6351,03							
Итого с учетом	219052.02							
потерь	218052,03							
Отпуск теплоты,	52107.265							
Гкал/год	53197,265							
Удельный расход								
электроэнергии на				1	099			
отпуск теплоты,		4,099						
кВт·ч/Гкал								

Годовой расход воды котельной, т/год:

$$G_{\rm cB}^{\rm rog} = 24 \cdot n_{\rm o} \cdot G_{\rm cB}^{\rm 3} + 24 \cdot (350 - n_{\rm o}) \cdot G_{\rm cB}^{\rm m},$$
 (10.17)

где $G_{\rm cB}^3$, $G_{\rm cB}^{\scriptscriptstyle \Pi}$ — расход сырой воды на XBO для зимнего и летнего режимов, из расчёта тепловой схемы $G_{\rm cB}^3$ =0,304 т/ч, $G_{\rm cB}^{\scriptscriptstyle \Pi}$ =0,041 т/ч.

$$G_{\text{св}}^{\text{год}}$$
=24·189·0,304+24·(350–189)·0,041=24735,168 т/год.

Удельный расход сырой воды на 1 Гкал отпущенного тепла, т/ Гкал:

$$G_{\text{св}} = \frac{G_{\text{св}}^{\text{год}}}{Q_{\text{отп}}} = \frac{24735,168}{53197,3} = 0,465 \text{ т/Гкал.}$$
 (10.18)

Изм	Лист	№ докцм.	Подпись	Дата

10.2 Расчёт экономических показателей котельной

Расчёт топливной составляющей затрат, руб./год:

$$\mathbf{H}_{\mathbf{T}} = B_{\mathbf{ro}\mathbf{J}}^{\mathbf{H}} \cdot \mathbf{\Pi}_{\mathbf{T}}, \tag{10.19}$$

где $\coprod_{\scriptscriptstyle T}$ – текущая цена природного газа, руб./м³:

$$\coprod_{\mathbf{T}} = \coprod_{\mathbf{6}} \cdot \frac{Q_{\text{H.H.T.}}^{\mathbf{P}}}{Q_{\text{H.T.}}^{\mathbf{p}}} \cdot \frac{K_{\text{TeK}}}{K_{\text{6a3}}},\tag{10.20}$$

где \coprod_6 — базовая цена топлива, при теплоте сгорания $Q_{\rm H.T.}^{\rm p}$ =7900 ккал/кг и курсе доллара США $K_{\rm баз}$ =2,5789 руб./\$: \coprod_6 = 679,070 руб./тыс.м³ — в соответствии с постановлением Министерства антимонопольного регулирования и торговли от 22.01.2021 № 5; $K_{\rm тек}$ — текущий курс доллара США, $K_{\rm тек}$ =2,5164 руб./\$ на 18.01.2022 г.; $\coprod_{\rm тмc}$ — цена за тонну топлива ТМС по данным предприятия.

$$\coprod_{\text{тмс}} = 556,90 \text{ руб./т н.т.}$$

$$\coprod_{\text{газ}} = 679,070 \cdot \frac{8002}{7900} \cdot \frac{2,5164}{2,5789} = 671,168 \text{ руб./тыс.м}^3.$$

– до реконструкции:

$$И_T = 8793,822.671,168.10^{-3} = 5902,131$$
 тыс.руб./год.

– после реконструкции:

$$H_T = 9509,358.556,90.10^{-3} = 5295,76$$
 тыс.руб./год.

Годовые затраты на электроэнергию, тыс.руб./год (стоимость электроэнергии определяем по двухставочному тарифу):

$$W_{9} = \left(\frac{a \cdot 12}{T_{\text{max}}} + b\right) \cdot \left(0.31 + 0.69 \cdot \frac{K_{\text{TEK}}}{K_{633}}\right) \cdot W_{\text{FOZI}}^{\text{cH}}, \tag{10.21}$$

где $T_{\rm max}$ — число часов использования предприятием максимальной нагрузки, $T_{\rm max}=7500$ ч для непрерывного режима работы; a — основная ставка тарифа — стоимость 1 кВт максимальной мощности, a=26,71339 руб./кВт·мес.; b — дополнительная ставка тарифа — стоимость 1 кВт максимальной мощности, b=0,22591 руб./кВт·мес.; $K_{\rm Tek}$ — текущий курс доллара США, $K_{\rm Tek}=2,5164$ руб./\$ на 18.01.2022 г.

Изм	Лист	№ докум.	Подпись	Дата

$$\mathbf{M}_{9} = \left(\frac{26,71339 \cdot 12}{7500} + 0,22591\right) \cdot \left(0,31 + 0,69 \cdot \frac{2,5164}{2,5789}\right) \cdot 0,855 \cdot 10^{-3} = 0.00123 \cdot 0.00123$$

=57,600 тыс.руб./год.

Годовые затраты на использованную воду, тыс.руб./год:

$$M_{\rm B} = G_{\rm cB}^{\rm rog} \cdot \mathbf{U}_{\rm B} = 24735,168 \cdot 1,161 \cdot 10^{-3} = 28,72 \text{ тыс.руб./год.}$$
(10.22)

Расчёт капитальных затрат на сооружение котельной, тыс. руб.:

- стоимость существующей котельной, тыс. руб.:

$$K_{\text{кот}}^{\text{до рек}} = K_{\text{об}}^{\text{старое}} + K_{_{3\text{Д}}} + K_{_{\text{МОНТ}}} = 771,007 + 444,812 + 266,887 = 1482,706$$
 тыс.руб.

где $K_{_{3д}}$ — стоимость зданий и сооружений, (рассчитывается исходя из структуры капитальных вложений, тыс. руб.; $K_{_{\text{МОНТ}}}$ — стоимость монтажных работ,

$$K_{_{3\text{Д}}} = K_{o6}^{\text{старое}} \cdot 30/52 = 771,007 \cdot 30/52 = 444,812$$
 тыс.руб.;

$$K_{\text{монт}} = K_{\text{об}}^{\text{старое}} \cdot 18/52 = 771,007 \cdot 18/52 = 266,887 \text{ тыс.руб.}$$

Таблица 10.2 – Вид устанавливаемого оборудования и его стоимость

Наименование	Ед.	Кол.	Цена без	Стоимость,	Примечание
оборудования	ИЗМ		НДС за	бел.руб.	
			ед., бел.		
			руб.		
Vitomax 200-HS	шт.	3	171694,4	618099,99	https://www.viessmann.ru/
Wilo VeroLine IP E 40/160-4/2	шт.	2	10809,2	25942,09	http://www.rimos.ru
		-	2044 227	57010 15	1-44//
Grundfos CRE 10-6K	шт.	6	8044,327	57919,15	http://www.rimos.ru
RED 2M	шт.	2	7877,73	18906,55	http://www.rimos.ru
ТТАИбр 50/1950	шт.	2	29113,35	69872,04	http://www.rimos.ru
ТТАИб Псв 65/1050	шт.	2	25688,25	61651,8	https://www.oookedr.by/
ТТАИбр св 25/2400	шт.	1	26715,78	32058,94	https://www.oookedr.by/
Установка ХВО	шт.	1	10778,79	12934,54	http://hvo.by/
Арматура,			15000	18000	
трубопроводы		_	13000	18000	_
Другое					
вспомогательное	_	_	50000	60000	_
оборудование					
Итого:				975,385 тыс.р	уб.

Изм	Лист	№ докум.	Подпись	Дата

- стоимость котельной после реконструкции:

Стоимость оборудования принимаем по реальным ценам с учетом стоимости вспомогательного оборудования, транспортных расходов, строительно-монтажных работ (СМР), зданий и сооружений по формуле [2]:

$$K_{\text{кот}}^{\text{после pek}} = K_{\text{кот}}^{\text{до pek}} - K_{\text{of}}^{\text{crapoe}} + K_{\text{of+cmp}}^{\text{Hoboe}}, \tag{10.23}$$

где $K_{\text{об+смр}}^{\text{новое}}$ — стоимость нового основного и вспомогательного оборудования с учетом СМР:

$$K_{\text{об+смр}}^{\text{новое}} = K_{\text{об}}^{\text{новое}} + K_{\text{монт}} + K_{\text{демонт}} + K_{\text{пнр}} + K_{\text{проект}} = 975,385 + 337,633 + 101,290 + 29,262 + 33,763 = 1477,333$$
 тыс. руб.

 $K_{\text{кот}}^{\text{после рек}} = 1482,706 - 771,007 + 1477,333 = 2189,032$ тыс.руб.

Таблица 10.3 – Капиталовложения в реконструкцию котельной

Статьи стоимости котельной, тыс. руб.	Капиталовложения в
	реконструкцию
Стоимость основного и вспомогательного оборудования, K_{oo}^{hoboe} , тыс. руб.	975,385
Стоимость монтажных работ, К _{монт} , тыс. руб.	337,633
Стоимость зданий и сооружений, К _{зд} , тыс. руб.	0,000
Стоимость демонтажных работ, К _{демонт} , тыс. руб.	101,290
Стоимость металла с демонтажа старых котлоагрегатов, $K_{\text{мет}}$, тыс.руб.	10,000
Стоимость проектных работ (10 % от $K_{\text{монт}}$), $K_{\text{проект}}$, тыс.руб.	33,763
Стоимость пуско-наладочных работ (3–5 % от K_{o6}), $K_{пнр}$, тыс.руб.	29,262
Итого, К, тыс. руб.	1404,308

Затраты на реконструкцию:

$$K_{pek} = K_{ob}^{Hoboe} + K_{Moht} + K_{Demoht} - K_{Met}$$

где K_{o6}^{hoboe} — стоимость нового основного и вспомогательного оборудования, тыс. руб.; K_{moht} — стоимость монтажных работ:

$$K_{\text{монт}} = K_{\text{o}6}^{\text{новое}} \cdot 18/52 = 975,385 \cdot 18/52 = 337,633$$
 тыс. руб.;

 $K_{\text{мет}}$ — стоимость металла с демонтажа старых котлоагрегатов $K_{\text{мет}} = 10,\!000$ тыс. руб.; $K_{\text{демонт}}$ — стоимость демонтажных работ (составляет 30% от монтажа):

Изм	Лист	№ докум.	Подпись	Дата

$$K_{\text{демонт}} = 0,3 \cdot K_{\text{монт}} = 0,3 \cdot 337,633 = 101,290 \text{ тыс. руб.}$$

$$K_{\text{рек}}$$
=975,385+337,633+101,290–10,000=1404,308 тыс.руб.

Амортизационные отчисления определяются в соответствии с нормами амортизации, тыс.руб./год [2]:

$$H_{am} = H_{am.cp} \cdot K_{kot},$$
 (10.24)

где $H_{\text{ам.ср.}}$ – средняя норма амортизации, %; $K_{\text{кот}}$ – стоимость котельной.

$$H_{am.cp} = \alpha_{crp} \cdot H_{am1} + \alpha_{o6} \cdot H_{am2}, \tag{10.25}$$

где $H_{am1} = 0,035$ — норма амортизации по зданиям и сооружениям; $H_{am2} = 0,08$ — норма амортизации по оборудованию; α_{crp} , α_{o6} — доля стоимости общих строительных работ и оборудования с монтажом в общей стоимости котельной.

– до реконструкции:

$$H_{am.cp} = 0.035 \cdot 0.28 + 0.08 \cdot 0.72 = 0.067 \%,$$

$$M_{\text{ам}} = H_{\text{ам.cp}} \cdot K_{\text{кот}}^{\text{до рек}} = 0,067 \cdot 1482,706 = 99,934 \text{ тыс.руб./год.}$$

после реконструкции:

$$H_{am.cp} = 0.035 \cdot 0.28 + 0.08 \cdot 0.72 = 0.067$$
 %,

$$H_{\text{ам}} = H_{\text{ам.cp}} \cdot K_{\text{кот}}^{\text{после рек}} = 0,067 \cdot 2189,032 = 147,541 \text{ тыс.руб./год.}$$

Затраты на ремонтно-эксплуатационное обслуживание [2], тыс.руб./год:

$$H_{pso} = K_{3J} \cdot H_{psJ} + (K_{of} + K_{Bo} + K_{MOHT}) \cdot H_{pof},$$
 (10.26)

где $H_{p_{3д}}$ — норма отчислений на ремонтно-эксплуатационное обслуживание зданий, значение которой можно принять 0,01; H_{pob} — норма отчислений на ремонтно-эксплуатационное обслуживание оборудования, значение которой можно принять 0,04.

– до реконструкции:

 $\times 0,04 = 45,964$ тыс.руб./год.

после реконструкции:

$$M_{pso} = K_{3д} \cdot H_{p3d} + K_{o6+cmp}^{HOBOe} \cdot H_{po6} = 444,812 \cdot 0,01 + 1477,333 \cdot 0,04 = 63,541$$
 тыс.руб./год.

Лист

					ДП 1–43 01 07.22.51с.10
Изм	/lucm	№ докум.	Подпись	Дата	

Годовой фонд заработной платы обслуживающего персонала котельной [2], тыс. руб./год:

$$\mathbf{M}_{3\Pi} = \mathbf{H}_{KOT} \cdot \mathbf{T}_{CT}^{1} \cdot k_{Tap}^{cp} \cdot k_{TBp} \cdot 12 \cdot k_{\Pi p, JO\Pi}, \tag{10.27}$$

где $\rm {\rm {H_{KOT}}}$ — численность производственного персонала котельной, чел. (таблица 10.4); $\rm {\rm {T^1_{cT}}}=150$ — месячная тарифная ставка первого разряда, руб./мес.; $k_{\rm {\rm {Tap}}}^{\rm {cp}}$ — средний тарифный коэффициент, значение которого рассчитывается исходя из среднего тарифного разряда работающих, определяемого по штатному расписанию котельной; $k_{\rm {TBp}}=1,2$ — коэффициент повышения тарифных ставок по технологическим видам работ [18]; $k_{\rm {np.qon}}=1,8$ — коэффициент, учитывающий премиальные начисления и доплаты (премия — 0,3, контракт — 0,2, стаж — 0,2, условия работы — 0,05, мастерство — 0,05); 12 — число месяцев в году.

Таблица 10.4 – Штатное расписание

No	Наименование	Разряд	Тарифный коэффициент
1	2	3	4
	Руководители:		
1	Начальник котельной	18	4,26
2	Мастер	16	3,72
	Рабочие:		
3	Оператор	4	1,57
4	Оператор	4	1,57
5	Оператор	4	1,57
6	Оператор	4	1,57
7	Аппаратчик XBO	6	1,9
8	Аппаратчик XBO	6	1,9
9	Техник-теплотехник	6	1,9
10	Слесарь КИПиА	6	1,9
11	Электромонтер по ремонту и обслуживанию электрооборудования	5	1,73
12	Машинист насосных установок	5	1,73
13	Уборщик помещений	2	1,6
ИТО	ГО: 13 чел.		
Сред	ний тарифный коэффициент: 2,071		

– до и после реконструкции:

 $M_{3II} = 13.150.2,071.1,2.12.1,8.10^{-3} = 104,665$ тыс. руб./год.

					-	
						Лист
					ДП 1–43 01 07.22.51с.10	
Изм	Лист	№ докум.	Подпись	Дата		

Средняя заработная плата, руб./мес.:

$$Cp3\Pi = \frac{II_{3\Pi}}{II_{Vor} \cdot 12},$$
 (10.28)

$$Cp3\pi = \frac{104,665 \cdot 10^3}{13 \cdot 12} = 670,929 \text{ руб./мес.}$$

Отчисления на социальные нужды [2], тыс. руб/год:

$$M_{\text{coil},H} = M_{3II} \cdot (n_{\text{c},c} + n_{\text{c},H,c}),$$
 (10.29)

где $n_{\text{с.с.}} = 34\%$ — ставка тарифа на социальные нужды; $n_{\text{с.н.с.}} = 0,6\%$ — отчисление на обязательное страхование от несчастных случаев.

– до реконструкции:

$$M_{\text{соц.H}} = 104,665 \cdot (34+0,6)/100 = 36,214 \text{ тыс.руб./год.}$$

после реконструкции:

$$\rm M_{\rm cou,H} = 104,665 \cdot (34+0,6)/100 = 36,214$$
 тыс.руб./год.

Затраты на общекотельные и прочие нужды [2], тыс.руб./год:

$$\mathbf{M}_{\mathbf{np}} = \mathbf{M}_{\mathbf{yn}} \cdot \mathbf{H}_{\mathbf{np}}, \tag{10.30}$$

где H_{np} – норма прочих (накладных) расходов, H_{np} = 0,2.

Условно постоянные расходы [2], тыс.руб./год:

$$H_{y\Pi} = H_{aM} + H_{coll.H} + H_{3\Pi} + H_{pso},$$
 (10.31)

– до реконструкции:

 $\rm M_{yn}$ =99,934+36,214+104,665+45,964=286,777 тыс.руб./год.

$$M_{\text{пр}} = 0.2 \cdot 286,777 = 57,355 \text{ тыс.руб./год.}$$

– после реконструкции:

$$\mathbf{M}_{\text{vn}}$$
=147,541+36,214+104,665+63,541=351,961 тыс.руб./год.

$$M_{\text{пр}} = 0.2 \cdot 351,961 = 70,392$$
 тыс. руб./год.

Годовые эксплуатационные расходы котельной [2], тыс. руб./год:

$$H_{\text{KOT}} = H_{\text{T}} + H_{\text{B}} + H_{\text{3}\Pi} + H_{\text{aM}} + H_{\text{p3o}} + H_{\text{3}\Pi} + H_{\text{cou,H.}} + H_{\text{\Pi}p}.$$
(10.32)

до реконструкции:

$$H_{\text{кот}} = 5902,131+28,72+57,600+99,934+45,964+104,665+36,214+$$
 $+57,355=6332,581$ тыс.руб./год.

Изм	Лист	№ докум.	Подпись	Дата

– после реконструкции:

$$И_{\text{кот}} = 5295,76+28,72+57,600+147,541+63,541+104,665+36,214+$$
 $+70,392 = 5804,433$ тыс.руб./год.

Себестоимость отпускаемой теплоты, руб./Гкал:

– до реконструкции:

$$S_q^{\text{сущ}} = \frac{H_{\text{кот}}}{Q_{\text{отн}}^{\text{год}}} = \frac{6332,581 \cdot 10^3}{53197,3} = 119,040 \text{ руб./Гкал} = 28,451 \text{ руб./ГДж.}$$
 (10.33)

после реконструкции:

$$S_q = \frac{M_{\text{кот}}}{Q_{\text{отп}}^{\text{год}}} = \frac{5804,433 \cdot 10^3}{53197,3} = 109,111$$
 руб./Гкал=26,078 руб./ГДж.

Топливная составляющая себестоимости, руб./Гкал:

до реконструкции:

$$S_{\text{T}}^{\text{сущ}} = \frac{H_{\text{T}}}{Q_{\text{отп}}^{\text{год}}} = \frac{5902,131 \cdot 10^3}{53197,3} = 110,948 \text{ руб./Гкал} = 26,517 \text{ руб./ГДж.}$$
 (10.34)

после реконструкции:

$$S_{\mathrm{T}} = \frac{H_{\mathrm{T}}}{Q_{\mathrm{OTII}}^{\mathrm{rog}}} = \frac{5295,76 \cdot 10^3}{53197,3} = 99,550 \text{ руб./Гкал} = 23,793 \text{ руб./ГДж.}$$

Срок окупаемости, лет:

$$T_{\text{oK}} = \frac{K_{\text{peK}}}{(S_q^{\text{cyll}} - S_q) \cdot Q_{\text{orm}}^{\text{rog}}} = \frac{1404,308 \cdot 10^3}{(119,040 - 109,111) \cdot 53197,3} = 2,659 \text{ лет.}$$
 (10.35)

Структура годовых расходов представлена в таблице 10.5.

Изм	Лист	№ докум.	Подпись	Дата

Таблица 10.5 – Структура годовых расходов

1 aomi	аолица 10.5 структура годовых расходов						
№	Наименование элементов и	Условное	Значение, тыс.руб./год	Структура, %	Значение, тыс.руб./год	Структура, %	
п/п	статей затрат	обозначение	До реконо	струкции	После реко	нструкции	
	Материальные		5988,449	94,566	5382,079	92,724	
1	затраты: в т.ч.:		3300,443	94,500	3302,079	92,724	
1.1	-топливо	Ит	5902,131	93,203	5295,76	91,237	
1.2	– вода	Ив	28,72	0,453	28,72	0,495	
1.3	–электроэнергия	пеИ	57,600	0,910	57,600	0,992	
2	Амортизационные отчисления	Иам	99,934	1,578	147,541	2,542	
3	Затраты на ремонтно- эксплуатационное обслуживание	$N_{ m pso}$	45,964	0,726	63,541	1,095	
4	Затраты на заработную плату	Изп	104,665	1,653	104,665	1,803	
5	Отчисления на социальные нужды	$V_{ m coц. H}$	36,214	0,572	36,214	0,624	
6	Прочие затраты	Ипр	57,355	0,906	70,392	1,213	
	Итого:	Икот	6332,581	100	5804,433	100	

Основные технико-экономические показатели котельной заносим в таблицу 10.6.

Таблица 10.6 – Основные технико-экономические показатели котельной

		E	Обоз-	Знач	ение
$N_{\underline{0}}$	Наименование	Единицы измерения	наче-	До	После
		измерения	ние	реконструкции	реконструкции
1	2	3	4	6	7
1	Марка и количество установленных котлов	_	ı	3хДКВР-6,5-13	3×Vitomax 200- HS
2	Установленная мощность	МВт Гкал/ч	$Q_{ m yct}$	12,837 11,038	11,850 10,189
3	Годовая выработка тепла	Гкал/год ГДж/год	$Q_{ ext{выр}}^{ ext{год}}$	59108,1 247473,679	59108,1 247473,679
4	Годовой отпуск тепла	Гкал/год ГДж/год	$\mathcal{Q}_{ ext{otti}}^{ ext{год}}$	53197,3 222726,311	53197,3 222726,311
5	Число часов использования установленной мощности	ч/год	$h_{ m ycr}$	5354,873	5801,112
	Годовой расход топлива:	т у.т./год	$B_{ m rog}^{ m y}$	10052,594	10378,785
6	– условного– натурального (пр.газ)	тыс.м ³ /год	$B_{ m rog}^{\scriptscriptstyle m H}$	8793,822	_
	– натурального (печное топливо)	т н.т./год	$B_{ m rog}^{\scriptscriptstyle m H}$	_	9509,358
7	Годовой расход сырой воды	т/год	$G_{ m cB}^{ m rog}$	24735,168	24735,168
8	Годовой расход электроэнергии	тыс.кВт·ч/ год	$W_{ m rog}^{ m ch}$	218,052	218,052
9	Численность персонала	чел.	Ч	13	13
10	Стоимость котельной	тыс.руб.	K _{кот}	1482,706	2189,032

Изм	Лист	№ докум.	Подпись	Дата

Окончание таблица 10.6

1	2	3	4	6	7
11	Капитальные вложения в реконструкцию	тыс.руб.	K _{pek}	ı	1404,308
12	Годовые эксплуатационные расходы котельной	тыс.руб./ год	N_{kot}	6332,581	5804,43
13	Удельный расход топлива на 1 Гкал отпущенной теплоты	кг у.т/ Гкал	$b_{ m oth}$	188,968	175,590
14	Удельный расход электрической энергии на собственные нужды котельной	кВт·ч/ Гкал	$w_{\scriptscriptstyle \ni \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	4,099	4,099
15	Удельный расход сырой воды на 1 Гкал отпущенной теплоты	т/Гкал	$\overline{G}_{\scriptscriptstyle{CB}}$	0,465	0,465
16	Себестоимость отпускаемой теплоты	руб./Гкал	S_q	119,040	109,111
17	Топливная составляющая себестоимости	руб./Гкал	$S_{\scriptscriptstyle m T}$	110,948	99,550
18	Срок окупаемости	лет	$T_{ m ok}$	2,6	559

Вывод: простой срок окупаемости соответствует нормам, приведенным в методике департамента по энергоэффективности, а именно простой срок окупаемости не превышает 10 лет. Исходя из этого можно сделать вывод, что реконструкция котельной с использованием собственного печного топлива является рациональным и энергоэффективным мероприятием.

Изм	Лист	№ докум.	Подпись	Дата