Estimación de la captura realizada en buques pesqueros mediante visión artificial

Autor

Lic. Nicolás Eduardo Horro

Director

PhD. Félix Ramón Rojo La Palma (INVAP S.E.)

Cliente (interno)

Dr. Jorge Omar Lugo (INVAP S.E.)

Marco de la propuesta

• INVAP S.E.

- Energía Nuclear
- Aeroespacial
- Defensa
- Otros.
 - Ej: Sistemas de Control Fiscal.

Marco de la propuesta

 2021: Proyecto para control de buques pesqueros utilizando cámaras y otros sistemas de registro de información.

¿Automatización de la extracción de información de los videos utilizando IA?

∮MENÚ

31/03/2021

Agricultura y el INVAP acordaron operativizar un sistema de control de buques pesqueros

La empresa nacional proveerá de la tecnología necesaria para fiscalizar a los buques pesqueros que operen en el Mar Argentino

La Subsecretaría de Pesca y Acuicultura del Ministerio de Agricultura, Ganadería y Pesca de la Nación firmó un convenio con el INVAP para operativizar el desarrollo del Sistema Integrado de Control a través de Cámaras de Video y del Registro de Información a Bordo de Buques Pesqueros.

Sistemas de Monitoreo Electrónico

Central de control

Videocámara

Localización de buques

Videocámara

Sensores de rotación de tambores

"Es indispensable saber qué ocurre realmente cuando los barcos están en el

Mar. Se puede **medir y estimar con precisión** lo que queda retenido por la red a bordo, lo que se procesa y se encajona, pero hay que tener un medio, ya sea cámaras u observadores a bordo, que hagan la estimación de la cantidad que se descarta".- Guillermo Cañete, especialista en pesca sustentable y planificación espacial marina. Fundación Vida Silvestre

Propuesta técnica

- Prototipo para extender sistema existente con capacidades de IA.
- Detecta piezas (pescados),
 operadores y registra sus
 movimientos en una base de datos.
- Usos:
 - Reportes automáticos de parte de pesca.
 - Organiza datos para análisis de expertos.
- Despliegue en PC industrial ó Edge.
- Técnicas de IA:
 - YOLOv4 (detector)
 - DeepSORT (seguimiento)

Requerimientos

Generales

 Automatizar operaciones de inspección y conteo actualmente realizadas por operadores humanos.

Funcionales

- Registrar todos los eventos de interés en una base de datos para su posterior utilización con fines estadísticos.
- Definir Eventos:
 - Pieza presente en cinta transportadora?
 - Arrojada por un lado del barco (indicando un descarte)?
 - ¿Cuánto tiempo permanece en recipiente?

Desempeño

- Equivalente o superior al de un operador humano medio
- mAP >= 70%.

Funcionales

 Detectar regiones de la imagen que contengan presas (pescados) en una escena.

Interesados

<u>Aclaración:</u> este proyecto es un subproducto de un desarrollo más completo de INVAP S.E. para el Estado, se considera como cliente (interno) a INVAP S.E.

Rol	Nombre y Apellido	Organización	Puesto			
Cliente (interno)	Dr. Jorge Omar Lugo	INVAP S.E.	Jefe de Especialidad - Depto. de Modelística. Aceptación del producto.			
Responsable	Lic. Nicolás Eduardo Horro	FIUBA/INVAP S.E.	Alumno.			
Orientador	PhD. Félix Ramón Rojo	INVAP S.E.	Director Trabajo final. Analista Principal de Área de Sistemas Complejos.			

Diagrama AoN

- Relevamiento y capacitación.
 ID01
- Bloque de recepción de video.
 ID02, ID03.
- Bloque de detección: ID04, ID05, ID06.
- Bloque de registro y generación de reportes: ID07.
- Iteraciones de desarrollo y mejora de modelos / selección de HPs: ID08, ID09,ID10,ID11,ID12,ID13.
- Integración en PC y Edge:
 ID14,ID15.
- Documentación: ID16,ID17.

Gantt

 Fecha final de planificación: 23 de abril de 2021.

2021

• Finalización: 10 de diciembre de 2021.

Gestión de riesgos

 Mitigación en los riesgos de RPN mayores a 18.

Riesgo	S	0	RPN	S*	O*	RPN*
Datos Insuficientes	10	6	60	5	6	30
Bajo desempeño de modelos	10	4	40	5	2	10
Costo excesivo	5	9	45	2	4	4
Falta de recursos	6	3	18	-	_	-

18

Desviación programática

(*) Luego de aplicar mitigación.

Gestión de calidad

Requerimientos de desempeño del modelo de IA

- Req #3: detectar regiones de la imagen que con presas (pescados) en una escena con un porcentaje de confianza.
- Req #4: **computar la trayectoria de un objeto detectado**, con el propósito de asociar estas trayectorias a eventos.
 - Verificación y validación:
 - Verificación: comparar contra resultados generados manualmente por operadores en un video anotado.
 - Validación: ensayo cuantitativo (métrica estándar: mAP u otra).

Requerimientos funcionales, de interfaz, ambiente

- Verificación y validación:
 - Verificación: comparación contra caso testigo.
 - Validación: inspección.

¿Preguntas?

iMuchas gracias!