

Support Vector Machines II

COMPCSI 361

Instructor: Thomas Lacombe
Based on slides from Meng-Fen Chiang

WEEK 9

RECAP: Margin Maximization Hyperplane (MMH)

- A separating hyperplane (H) can be formally defined as $\vec{w} \cdot \vec{x} + b = 0$
 - $\vec{w} = \{w_1, w_2, ..., w_n\}$ is a weight vector and \vec{b} a scalar (bias)
- For 2-D it can be written as: $\overrightarrow{w_1} \cdot \overrightarrow{x_{i,1}} + \overrightarrow{w_2} \cdot \overrightarrow{x_{i,2}} + b = 0$
- The hyperplanes defining the sides of the margin:

•
$$H_1: \overrightarrow{w_1} \cdot \overrightarrow{x_{i,1}} + \overrightarrow{w_2} \cdot \overrightarrow{x_{i,2}} + b \ge 1$$
, for $y_i = +1$, and

•
$$H_2$$
: $\overrightarrow{w_1} \cdot \overrightarrow{x_{i,1}} + \overrightarrow{w_2} \cdot \overrightarrow{x_{i,2}} + b \le 1$, for $y_i = -1$

• Any training tuples that fall on margins H_1 or H_2 (i.e., the hyperplanes defining the margin) are support vectors

OUTLINE

- Data Characteristics
 - Linearly Separable Data
 - Non-Linearly separable Data
- SVM
 - Linearly Separable Data: Hard-margin SVMs (9.1)
 - Non-Linearly Separable Data: Soft-margin SVMs (9.2)
 - Non-Linearly Separable Data: Kernelized SVMs (9.3)
- Summary

Hard-margin v.s. Soft-margin

- The difference between a hard margin and a soft margin in SVMs lies in the separability of the data.
 - 1. Case: If our data is linearly separable, we go for a hard margin.
 - 2. Case: Otherwise, we would have to be more lenient and let some of the data points to be misclassified. In this case, a soft margin SVM is appropriate.

Problem Definition: Soft-margin Maximization

- Given a set of training data $S = ((x_1, y_1), ..., (x_n, y_n)), y_i \in \{+1, -1\}$
- Goal: The soft-margin SVM algorithm aims to find a linear classifier that
 - 1. Maximizes (γ) the margin on S and
 - 2. Minimize the misclassification error ($C\sum_{i=1}^{n} \xi_i$)

Soft-margin Maximization

- Soft-margin SVMs introduce a misclassification penalty (C) controls the trade-off between
 - 1. Maximizing the margin (same as hard-margins)
 - 2. Minimizing the loss
- Primal formulation for the soft-margin

$$\min_{w,b} \frac{\|\overrightarrow{w}\|}{2} + C \sum_{i=1}^{n} \xi_i$$

s.t.
$$y_i(\vec{w} \cdot \vec{x_i} + b) \ge 1 - \xi_i$$
, $i = 1, 2, ..., n, \xi_i \ge 0$

slack variables (ξ_i)

Slack Variables

• Value of slack variables ξ_i :

$$y_i(\overrightarrow{w}\cdot\overrightarrow{x_i}+b)\geq 1-\xi_i, \quad i=1,2,...,n,\xi_i\geq 0$$

$$\rightarrow$$
 If $y_i(\overrightarrow{w} \cdot \overrightarrow{x_i} + b) \ge 1$, $\xi_i = 0$ (no penalty)

$$\rightarrow$$
 If $y_i(\overrightarrow{w} \cdot \overrightarrow{x_i} + b) < 1$, $\xi_i = 1 - y_i(\overrightarrow{w} \cdot \overrightarrow{x_i} + b)$

$$\xi_i = \max(0, 1 - y_i(\overrightarrow{w} \cdot \overrightarrow{x_i} + b))$$

Misclassified data point: $\xi_i > 1$

Data point close to the decision boundary: $0 < \xi_i < 1$

Example: Misclassification Penalty ${\it C}$

Lower Tolerance to Misclassification Error Smaller Margin

Higher Tolerance to Misclassification Error Larger Margin

Example: Misclassification Penalty ${\it C}$

Lower Tolerance to Misclassification Error Smaller Margin

Higher Tolerance to Misclassification Error Larger Margin

Bias and Variance

- A large value of *C* keeps the errors small at the cost of a reduced margin (can lead to *Overfitting*, low bias, high variance)
- A small value of C allows more misclassification while increasing the margin on the remaining examples (can lead to *Underfitting*, large bias, low variance)

Quiz: Hard-margin v.s. Soft-margin

- Question: How do we recover hard-margin SVMs from soft-margin SVMs?
- Set misclassification penalty $C = \infty$

Quiz: Hard-margin v.s. Soft-margin

- Question: Given linearly separable dataset, we train a hard-margin SVM and find out that
 the margin is so small that the model becomes prone to overfitting. How would you
 resolve the overfitting issue?
- We can opt for a larger margin by using soft-margin SVM in order to help the model generalize better.

Jupyter Notebook

Soft-margin SVMs Coding Example

SUMMARY

- Soft-margin SVMs
 - Non-Linearly Separable Data
 - Margin Maximization Hyperplane (MMH)
 - Misclassification Minimization
 - Primal Form Optimization
 - Misclassification Penalty Parameter (C)
 - Slack Variables ($\xi_{\%}$)

Resources

- SVM Website: http://www.kernel-machines.org/
- Representative Implementation
 - **LIBSVM**: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - **SVM-light**: simpler but performance is not better than LIBSVM, support only binary classification and only in C
 - **SVM-torch**: another recent implementation also written in C
 - **Scikit-Learn**: a set of supervised learning methods used for classification, regression and outliers detection. [link]

Resources (Contd.)

- Book Chapters: Christopher Bishop, "Pattern Recognition and Machine Learning" (PDF)
 - Sec 7.1.1-7.1.3
 - Sec 4.1.1, 4.1.2
 - Sec 6.1, 6.2
 - Appendix E
- Literatures
 - C.J.C. Burges, Chris J.C. Burges "A Tutorial on Support Vector Machines for Pattern Recognition." Data Mining and Knowledge Discovery, 1998 (PDF)