

Progetto di alta formazione in ambito tecnologico economico e culturale per una regione della conoscenza europea e attrattiva approvato e cofinanziato dalla Regione Emilia-Romagna con deliberazione di Giunta regionale n. 1625/2021

Università degli Studi di Ferrara

Outline

- Introduction to Python
- Introduction to Neural Networks
- Convolutional NN
- Recurrent NN
- Autoencoders and self supervised learning

Outline

- Introduction to Python
- Introduction to Neural Networks
- Convolutional NN
- Recurrent NN
- Autoencoders and self supervised learning

Supervised vs Unsupervised Learning

Supervised Learning

- Data: (x, y)x is data, y is label
- Goal: Learn a function to map x -> y
- Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Unsupervised Learning

- **Data:** x Just data, no labels!
- Goal: Learn some underlying hidden structure of the data
- **Examples:** Clustering, dimensionality reduction, feature learning, density estimation, etc.

Supervised vs Unsupervised Learning

Supervised Learning

• **Data:** (x, y)

x is data, y is label

Collect data is cheaper

- Goal: Learn a function to map x -> y
- Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Unsupervised Learning

- Data: x Just data, no labels!
- Goal: Learn some underlying hidden structure of the data
- Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Supervised vs Unsupervised Learning

Supervised Learning

- Data: (x, y)x is data, y is label
- Goal: Learn a function to map x -> y
- Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Unsupervised Learning

- **Data:** x Just data, no labels!
- Goal: Learn some underlying hidden structure of the data
- Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Generative Models

Generative Models

• Given training data, generate new samples from same distribution

Training data $\sim p_{data}(x)$

Generated data $\sim p_{model}(x)$

Want to learn $p_{model}(x)$ as much close as possible to $p_{data}(x)$

Generative Models

Given training data, generate new samples from same distribution

Generated data $\sim p_{model}(x)$

Want to learn $p_{model}(x)$ as much close as possible to $p_{data}(x)$

Addresses density estimation, a core problem in unsupervised learning

Several flavours:

- Explicit density estimation: explicitly define and solve for $p_{model}(x)$
- Implicit density estimation: learn model that can sample from $p_{model}(x)$ w/o explicitly defining it

Motivations

- Generate realistic samples
- Generative models of time-series data can be used for simulation and planning
- Training generative models can also enable inference of latent representations that can be useful as general features

Motivations

Autoencoders

 Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

Autoencoders

 Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

Autoencoders

 Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

- This feature representation is trained so that features can be used to reconstruct
 original
 - → Autoencoding encoding itself

- This feature representation is trained so that features can be used to reconstruct
 original
 - → Autoencoding encoding itself

Autoencoders

Autoencoders can reconstruct data, and can learn features to initialize a supervised model

Features capture factors of variation in training data. Can we generate new images from an autoencoder?

Now that we have the model compiled and trained, we can generate new data, with the predict function of the model from samples of z (e.g. $z \sim \mathcal{N}(0, I)$).

- Thus, we can use autoencoders to generate new data
 - Possibly, artificial training data
- Generated data will be similar to original training data but of poorer quality.
 - E.g., zooming an image or reducing the bit rate of a mp3 file
- There are many possibilities to improve the quality of the generated data
 - Variational Autoencoders
 - Boltzmann Machine
 - GAN

Semantic Segmentation Idea: Fully Convolutional

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Semantic Segmentation Idea: Fully Convolutional

Downsampling
Pooling, strided
convolution

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Upsampling ???

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

In-network Upsampling Unpooling

		1				
1	2		1	1	2	2
3	4		3	3	4	4
			3	3	4	_

Input: 2 x 2

Output: 4 x 4

Input: 2 x 2

Output: 4 x 4

In-network Upsampling Max Unpooling

Learnable Upsampling Transpose Convolution

Recall: Typical 3 x 3 convolution, stride 1 pad 1

Output: 4x4

Unpooling are fixed functions, here we learn some weigths guiding the upsample

Learnable Upsampling Transpose Convolution

Recall: Typical 3 x 3 convolution, stride 1 pad 1

Learnable Upsampling Transpose Convolution

Recall: Typical 3 x 3 convolution, stride 1 pad 1

Learnable Upsampling Transpose Convolution

Recall: Typical 3 x 3 convolution, **stride 2** pad 1

Output: 2x2

Learnable Upsampling Transpose Convolution

Recall: Typical 3 x 3 convolution, **stride 2** pad 1

Learnable Upsampling Transpose Convolution

Recall: Typical 3 x 3 convolution, **stride 2** pad 1

Filter moves 2 pixels in the input for every one pixel in the output

Stride gives ratio between movement in input and output

Learnable Upsampling Transpose Convolution

3 x 3 **transpose** convolution, stride 2 pad 1

Input: 2x2

Output: 4x4

Learnable Upsampling Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Learnable Upsampling Transpose Convolution

Sum where output overlaps

3 x 3 **transpose** convolution, stride 2 pad 1

Filter moves 2 pixels in the **output** for every one pixel in the **input**

Stride gives ratio between movement in output and input

Learnable Upsampling Transpose Convolution

3 x 3 **transpose** convolution, stride 2 pad 1

Deconvolution

Other names:

- Upconvolution
- Fractionally strided convolution
- Backward strided convolution

Transpose Convolution 1D Example

Output contains copies of the filter weighted by the input, summing at where it overlaps in the output

Need to crop one pixel from output to make output exactly 2x input

Semantic Segmentation Idea: Fully Convolutional

Downsampling

Pooling, strided convolution

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Upsampling
Unpooling or
strided transpose
convolution

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

- Thus, we can use autoencoders to generate new data
 - Possibly, new artificial training data
- Generated data will be similar to original training data but of poorer quality.
 - E.g., zooming an image or reducing the bit rate of a mp3 file
- There are many possibilities to improve the quality of the generated data
 - Variational Autoencoders
 - Boltzmann Machine
 - GAN

Generative Adversarial Networks

- The main difference with respect Autoencoders is that instead of learn and model a density, it just samples data miming a distribution without explicitly model it
- GANs don't work with any explicit density function!
- Instead, take game-theoretic approach: learn to generate from training distribution through 2-player game

Generative Adversarial Networks

- Learn to generate from training distribution through 2-player game
 - Generator network: try to fool the discriminator by generating reallooking images
 - Discriminator network: try to distinguish between real and fake images

Generator Network

- Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!
- Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution using NNs

Generative Adversarial Networks

- **Generator network**: try to fool the discriminator by generating real-looking images
- **Discriminator network**: try to distinguish between real and fake images

Train GANs: Two-Player game

- Generator network: try to fool the discriminator by generating real-looking images
- **Discriminator network**: try to distinguish between real and fake images
 - Train jointly in minimax game
- Training is done by gradient ascent, which facilitates the training more than gradient descent. However jointly training two networks is challenging, can be unstable.
 - Refer to Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014 for detail on the training.
- This is an active area of research.

Generative Adversarial Networks

• **Generator network**: try to fool the discriminator by generating real-looking images

• **Discriminator network**: try to distinguish between real and fake images

(from generator)

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014 Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

