Read ctcaaactcctgacctttggtgatccacccgcctaggccttc

Reference

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC **ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA** AACCCCCCCCCCCCCCCCTTCTGGCCACAGC AAAAC **CTCTGCCAAACCCCAAAA** ACAAAGAACCCTAACACCAGCCTAACC/ TTGGCGGTATGCAC TTTTAACAGTCACCCCCAACTAACA ATTATT CATACTACTAAT CTCATCAATACAACCCCCGCCCATCATACCCAGCAC CTAACCCCATA CCCCGAACCAACCAAACCCCAAAC CCTCCTCAAA GCAATACACTGACCCGCTCAAAC CCTGGATTTTGGATC TTGGCCTAAA CTAGCCTTTCTATTAGCTCTTAG AAGATTACACATGCAAGCA **CCAGTGAGT** TCACCCTCTAAATCACCACGATC AAAGGAACAAGCATCAAGCACG **AATGCAGCTC** AAAACGCTTAGCCTAGCCACACCUTCACGGGAAACAGCAGTGATTAA TTAGCAATAA ACGAAAGTTTAACTAAGCTATACT ACCCCAGGGTTGGTCAATTTCG1 CCAGCCACCGC **AGATCACCCC** GGTCACACGATTAACCCAAGTCAAT, GAAGCCGGCGTAAAGAGTGT **FACAAAATAGAC** TCCCCAATAAAGCTAAAACTCACCTGA TTGTAAAAAACTCCAG TACGAAAGTGGCTTTAACATATCTGAACA **GGGATTAGA** TACCCCACTATGCTTAGCCCTAAACCTCAACAC CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCA AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTT CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTAC ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATT **AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTAA** AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCAC AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGACA CGTAACCTCAAACTCCTGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATGAAG GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG **AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA** TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT ACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA GGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGATAGAATCTTAG TTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAATTTAACTGTTAGTC

Differences between read and reference occur because of...

- 1. Sequencing error
- 2. Natural variation

```
T: G G A A A A A G A G G T A G C G G C G T T T A A C A G T A G

| | | | | | | | |

P: G T A A C G G C G

Mismatch

(Substitution)
```


Hamming distance

For X & Y where |X| = |Y|, hamming distance = minimum # substitutions needed to turn one into the other

(AKA Levenshtein distance)

For X & Y, edit distance = minimum # edits (substitutions, insertions, deletions) needed to turn one into the other

For X, Y where |X| = |Y|, hamming distance = minimum # substitutions needed to turn one into the other

For *X*, *Y*, *edit distance* = minimum # edits (substitutions, insertions, deletions) needed to turn one into the other

If |X| = |Y| what can we say about the relationship between **editDistance**(X, Y) and **hammingDistance**(X, Y)?

editDistance $(X, Y) \leq \text{hammingDistance}(X, Y)$

If x and y are different lengths, what can we say about **editDistance**(X, Y)?

editDistance
$$(X, Y) \ge ||X| - |Y||$$

X:??

Y:????

A T G C C G C G A A A A A C A T A

editDistance(X[:-1], Y[:-1]) = 147

GGCCGCAAAACAGC α

ATGCCGCGAAAACATA

eta

 α C

 β A

$$\mathbf{edist}(\alpha\mathbf{C},\beta\mathbf{A}) = \min \left\{ \begin{array}{l} \mathbf{edist}(\alpha,\beta) + 1 \\ \mathbf{edist}(\alpha\mathbf{C},\beta) + 1 \\ \mathbf{edist}(\alpha,\beta,\mathbf{A}) + 1 \end{array} \right.$$

$$\mathbf{edist}(\alpha \mathsf{C}, \beta \mathsf{A}) = \min \left\{ \begin{array}{l} \mathbf{edist}(\alpha, \beta) + 1 \\ \mathbf{edist}(\alpha \mathsf{C}, \beta) + 1 \\ \mathbf{edist}(\alpha, \beta, \beta) + 1 \end{array} \right.$$

 α C

 β A

$$\mathbf{edist}(\alpha \mathsf{C}, \beta \mathsf{A}) = \min \left\{ \begin{aligned} &\mathbf{edist}(\alpha, \beta) + 1 \\ &\mathbf{edist}(\alpha \mathsf{C}, \beta) + 1 \\ &\mathbf{edist}(\alpha, \beta, \lambda) + 1 \end{aligned} \right.$$

 α C

eta A

 $\mathbf{edist}(\alpha\mathbf{C},\beta\mathbf{A}) = \min \left\{ \begin{array}{l} \mathbf{edist}(\alpha,\beta) + 1 \\ \mathbf{edist}(\alpha\mathbf{C},\beta) + 1 \\ \mathbf{edist}(\alpha,\beta) + 1 \end{array} \right.$

 α X

 β y

$$\mathbf{edist}(\alpha \mathbf{x}, \beta \mathbf{y}) = \min \left\{ \begin{array}{l} \mathbf{edist}(\alpha, \beta) + \delta(\mathbf{x}, \mathbf{y}) \\ \mathbf{edist}(\alpha \mathbf{x}, \beta) + 1 \\ \mathbf{edist}(\alpha, \beta \mathbf{y}) + 1 \end{array} \right.$$

 $\delta(x, y) = 0$ if x = y, or 1 otherwise

$$\mathbf{edist}(\alpha x, \beta y) = \min \left\{ \begin{array}{l} \mathbf{edist}(\alpha, \beta) + \delta(x, y) \\ \mathbf{edist}(\alpha x, \beta) + 1 \\ \mathbf{edist}(\alpha, \beta y) + 1 \end{array} \right.$$

 $\delta(x, y) = 0$ if x = y, or 1 otherwise

```
edDistRecursive("ABC", "BBC")

("ABC", "BB") ("AB", "BB") ("AB", "BBC")

("ABC", "B") ("AB", "B") ("AB", "BB")
```

```
edDistRecursive("ABC", "BBC")

("ABC", "BB") ("AB", "BB") ("AB", "BBC")

("ABC", "B") ("AB", "B") ("AB", "BB")
```


edist (GCGTATGC, GCTATAC)

$$\begin{aligned} & \textbf{edist}(\alpha \textbf{x}, \beta \textbf{y}) = \min \begin{cases} & \textbf{edist}(\alpha, \beta) + \delta(\textbf{x}, \textbf{y}) \\ & \textbf{edist}(\alpha \textbf{x}, \beta) + 1 \\ & \textbf{edist}(\alpha, \beta \textbf{y}) + 1 \end{cases} \end{aligned}$$

$$| \mathbf{edist}(\alpha x, \beta y) | = \min \begin{cases} \mathbf{edist}(\alpha, \beta) + \delta(x, y) &= 0 + 1 = 0 \\ \mathbf{edist}(\alpha x, \beta) + 1 &= 0 \\ \mathbf{edist}(\alpha x,$$

$$| \mathbf{edist}(\alpha x, \beta y) | = \min \begin{cases} \mathbf{edist}(\alpha, \beta) + \delta(x, y) &= 0 + 1 = 0 \\ \mathbf{edist}(\alpha x, \beta) + 1 &= 0 \\ \mathbf{edist}(\alpha x,$$

$$\mathbf{edist}(\alpha x,\beta y) = \min \left\{ \begin{array}{l} \mathbf{edist}(\alpha,\beta) + \delta(x,y) \\ \mathbf{edist}(\alpha x,\beta) + 1 \\ \mathbf{edist}(\alpha,\beta y) + 1 \end{array} \right.$$

		I												
		€	G	C	Т	Α	Т	Α	C					
X	ϵ	0	1	2	3	4	5	6	7					
	G	1	0	1	2	3	4	5	6					
	C	2	1	0	1	2	3	4	5					
	G	3	2	1	1	2	3	4	5					
	Т	4	3	2	1	2	2	3	4					
	Α	5	4	3	2	1	2	2	3					
	T	6	5	4	3	2	1	2	3					
	G	7 6		5	4	3	2	2	3					
	C	8	7	6	5	4	M	3	2					

For any pair of prefixes from *X* & *Y*, edit distance is calculated *once*

Dynamic programming

Edit distance & approximate matching

T

		ϵ	Т	Α	Т	Т	G	G	C	Т	Α	Т	Α	C	G	G	T	Т
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1
	C	2	2	2	2	2	1	1	0	1	2	2	2	1	1	1	1	2
P	G	3	3	3	3	3	2	1	1	1	2	3	3	2	1	1	2	2
	T	4	3	4	3	3	3	2	2	1	2	2	3	3	2	2	1	2
	Α	5	4	3	4	4	4	3	3	2	1	2	2	3	3	3	2	2
	T	6	5	4	3	4	5	4	4	3	2	1	2	3	4	4	3	2
	G	7	6	5	4	4	4	5	5	4	3	2	2	3	3	4	4	3
	C	8	7	6	5	5	5	5	5	5	4	3	3	2	3	4	5	4

P occurs in T with 2 edits

How did I get here?

T

		E	Т	Α	Т	Т	G	G	C	Т	Α	Т	Α	C	G	G	Т	Т
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1
	C	2	2	2	2	2	1	1	0	1	2	2	2	1	1	1	1	2
D	G	3	3	3	3	3	2	1	1	1	2	3	3	2	1	1	2	2
Γ	Т	4	3	4	3	3	3	2	2	1	2	2	3	3	2	2	1	2
	Α	5	4	3	4	4	4	3	3	2	1	2	2	3	3	3	2	2
	Т	6	5	4	3	4	5	4	4	3	2	1	2	3	4	4	3	2
	G	7	6	5	4	4	4	5	5	4	3	2	2	3	3	4	4	3
	C	8	7	6	5	5	5	5	5	5	4	3	3	2	3	4	5	4

G G C T ATACG G G G G

How did I get here?

		E	T	Α	Т	T	G	G	C	T	Α	T	Α	C	G	G	Т	Т
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1
	C	2	2	2	2	2	1	1	0	1	2	2	2	1	1	1	1	2
D	G	3	3	3	3	3	2	1	1	1	2	3	3	2	1	1	2	2
Γ	T	4	3	4	3	3	3	2	2	1	2	2	3	3	2	2	1	2
	Α	5	4	3	4	4	4	3	3	2	1	2	2	3	3	3	2	2
	T	6	5	4	3	4	5	4	4	3	2	1	2	3	4	4	3	2
	G	7	6	5	4	4	4	5	5	4	3	2	2	3	3	4	4	3
	C	8	7	6	5	5	5	5	5	5	4	3	3	2	3	4	5	4

		E	Т	Α	Т	T	G	G	C	Т	Α	Т	Α	C	G	G	Т	Т
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1
	C	2	2	2	2	2	1	1	0	1	2	2	2	1	1	1	1	2
D	G	3	3	3	3	3	2	1	1	1	2	3	3	2	1	1	2	2
r	T	4	3	4	3	3	3	2	2	1	2	2	3	3	2	2	1	2
	Α	5	4	3	4	4	4	3	3	2	1	2	2	3	3	3	2	2
	T	6	5	4	3	4	5	4	4	3	2	1	2	3	4	4	3	2
	G	7	6	5	4	4	4	5	5	4	3	2	2	3	3	4	4	3
	C	8	7	6	5	5	5	5	5	5	4	3	3	2	3	4	5	4

		ϵ	Т	Α	Т	Т	G	G	C	Т	Α	Т	Α	C	G	G	T	Т
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1
	C	2	2	2	2	2	1	1	0	1	2	2	2	1	1	1	1	2
Р	G	3	3	3	3	3	2	1	1	1	2	3	3	2	1	1	2	2
Γ	T	4	3	4	3	3	3	2	2	1	2	2	3	3	2	2	1	2
	Α	5	4	3	4	4	4	3	3	2	1	2	2	3	3	3	2	2
	T	6	5	4	3	4	5	4	4	3	2	1	2	3	4	4	3	2
	G	7	6	5	4	4	4	5	5	4	3	2	2	3	3	4	4	3
	C	8	7	6	5	5	5	5	5	5	4	3	3	2	3	4	5	4

		ϵ	Т	Α	Т	Т	G	G	C	Т	Α	Τ	А	C	G	G	Т	Τ
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1
	C	2	2	2	2	2	1	1	0	1	2	2	2	1	1	1	1	2
Р	G	3	3	3	3	3	2	1	1	1	2	3	3	2	1	1	2	2
Γ	T	4	3	4	3	3	3	2	2	1	2	2	3	3	2	2	1	2
	Α	5	4	3	4	4	4	3	3	2	1	2	2	3	3	3	2	2
	Т	6	5	4	3	4	5	4	4	3	2	1	2	3	4	4	3	2
	G	7	6	5	4	4	4	5	5	4	3	2	2	3	3	4	4	3
	C	8	7	6	5	5	5	5	5	5	4	3	3	2	3	4	5	4

		E	Т	Α	Т	Т	G	G	C	Т	Α	Т	Α	C	G	G	Т	Т
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1
	C	2	2	2	2	2	1	1	0	1	2	2	2	1	1	1	1	2
D	G	3	3	3	3	3	2	1	1	1	2	3	3	2	1	1	2	2
	T	4	3	4	3	3	3	2	2	1	2	2	3	3	2	2	1	2
	Α	5	4	3	4	4	4	3	3	2	1	2	2	3	3	3	2	2
	T	6	5	4	3	4	5	4	4	3	2	1	2	3	4	4	3	2
	G	7	6	5	4	4	4	5	5	4	3	2	2	3	3	4	4	3
	C	8	7	6	5	5	5	5	5	5	4	3	3	2	3	4	5	4

		E	Т	Α	Т	Т	G	G	C	Т	Α	Т	Α	C	G	G	Т	Т
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1
	C	2	2	2	2	2	1	1	0	1	2	2	2	1	1	1	1	2
D	G	3	3	3	3	3	2	1	1	1	2	3	3	2	1	1	2	2
Γ	T	4	3	4	3	3	3	2	2	1	2	2	3	3	2	2	1	2
	Α	5	4	3	4	4	4	3	3	2	1	2	2	3	3	3	2	2
	T	6	5	4	3	4	5	4	4	3	2	1	2	3	4	4	3	2
	G	7	6	5	4	4	4	5	5	4	3	2	2	3	3	4	4	3
	C	8	7	6	5	5	5	5	5	5	4	3	3	2	3	4	5	4

Match occurs at offset 5

Y

		ϵ	G	C	Т	А	Т	Α	C
	ϵ	0	1	2	3	4	5	6	7
	G	1	0	1	2	3	4	5	6
	C	2	1	0	1	2	3	4	5
X	G	3	2	1	1	2	3	4	5
/ (Т	4	3	2	1	2	2	3	4
	Α	5	4	3	2	1	2	2	3
	Т	6	5	4	3	2	1	2	3
	G	7	6	5	4	3	2	2	3
	C	8	7	6	5	4	3	3	2

Human transition to transversion ratio (AKA ti/tv) is ~2.1

Human substitution rate ≈ 1 in 1,000

Small-gap rate is ≈ 1 in 3,000

Penalty matrix

	Α	С	G	Т	_
Α	0	4	2	4	8
С	4	0	4	2	8
G	2	4	0	4	8
T	4	2	4	0	8
_	8	8	8	8	

- 2 Transitions (A↔ G, C ↔ T)
- 4 Transversions
- 8 Gaps

$$\mathbf{edist}(\alpha x, \beta y) = \min \left\{ \begin{array}{l} \mathbf{edist}(\alpha, \beta) + \delta(x, y) \\ \mathbf{edist}(\alpha x, \beta) + 1 \\ \mathbf{edist}(\alpha, \beta y) + 1 \end{array} \right.$$

$$\mathbf{galign}(\alpha \mathbf{x}, \beta \mathbf{y}) = \min \left\{ \begin{array}{l} \mathbf{galign}(\alpha, \beta) + p(\mathbf{x}, \mathbf{y}) \\ \mathbf{galign}(\alpha \mathbf{x}, \beta) + p(\mathbf{x}, \mathbf{y}) \\ \mathbf{galign}(\alpha, \beta \mathbf{y}) + p(\mathbf{-}, \mathbf{y}) \end{array} \right.$$
Use penalty matrix

Global alignment

	ϵ	Т	Α	Т	G	Т	C	Α	Т	G	C
ϵ	0	8	16	24	32	40	48	56	64	72	80
Т	8	0	8	16	24	32	40	48	56	64	72
Α	16	8	0	8	16	24	32	40	48	56	64
C	24	16	8	2	10	18	24	32	40	48	56
G	32	24	16	10	2	10	18	26	34	40	48
Т	40	32	24	16	10	2	10	18	26	34	42
C	48	40	32	24	18	10	2	10	18	26	34
Α	56	48	40	32	26	18	10	2	10	18	26
G	64	56	48	40	32	26	18	10	6	10	18
C	72	64	56	48	40	34	26	18	12	10	10

	Α	С	G	Т	-
Α	0	4	2	4	8
C	4	0	4	2	8
G	2	4	0	4	8
Т	4	2	4	0	8
_	8	8	8	8	

Global alignment

	ϵ	Т	Α	Т	G	Т	C	Α	Т	G	C
ϵ	9	8	16	24	32	40	48	56	64	72	80
Т	8	8	8	16	24	32	40	48	56	64	72
Α	16	8	8	8	16	24	32	40	48	56	64
C	24	16	8	5	10	18	24	32	40	48	56
G	32	24	16	10	3	10	18	26	34	40	48
T	40	32	24	16	10	5	10	18	26	34	42
C	48	40	32	24	18	10	5			26	34
Α	56	48	40	32	26	18	10	15	10	18	26
G	64	56	48	40	32	26	18	10	6	19	18
C	72	64	56	48	40	34	26	18	12	10	

	Α	С	G	Т	_
Α	0	4	2	4	8
C	4	0	4	2	8
G	2	4	0	4	8
Т	4	2	4	0	8
_	8	8	8	8	

Local alignment

Find the most similar pair of substrings from X and Y

Local alignment

Find the most similar *pair of substrings* from X and Y

$$\label{eq:lalign} \begin{aligned} \text{lalign}(\alpha,\beta) + s(x,y) \\ \text{lalign}(\alpha x,\beta) &= \max \left\{ \begin{array}{l} \text{lalign}(\alpha,\beta) + s(x,y) \\ \text{lalign}(\alpha x,\beta) + s(x,-) \\ \text{lalign}(\alpha,\beta y) + s(-,y) \\ 0 \end{array} \right. \end{aligned}$$

Scoring matrix: matches are positive, differences negative

	А	С	G	Т	ı
Α	2	-4	-4	-4	-6
С	-4	2	-4	-4	-6
G	-4	-4	2	-4	-6
Т	-4	-4	-4	2	-6
_	-6	-6	-6	-6	

Y

		ϵ	Т	Α	Т	Α	Т	G	C	G	G	C	G	Т	Т	Т
	ϵ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G	0	0	0	0	0	0	2	0	2	2	0	2	0	0	0
	G	0	0	0	0	0	0	2	0	2	4	0	2	0	0	0
	Τ	0	2	0	2	0	2	0	0	0	0	0	0	4	2	2
	Α	0	0	4	0	4	0	0	0	0	0	0	0	0	0	0
	Τ	0	2	0	6	0	6	0	0	0	0	0	0	2	2	2
	G	0	0	0	0	2	0	8	2	2	2	0	2	0	0	0
	C	0	0	0	0	0	0	2	10	4	0	4	0	0	0	0
V	Τ	0	2	0	2	0	2	0	4	6	0	0	0	2	2	2
Λ	G	0	0	0	0	0	0	4	0	6	8	2	2	0	0	0
	G	0	0	0	0	0	0	2	0	2	8	4	4	0	0	0
	C	0	0	0	0	0	0	0	4	0	2	10	4	0	0	0
	G	0	0	0	0	0	0	2	0	6	2	4	12	6	0	0
	C	0	0	0	0	0	0	0	4	0	2	4	6	8	2	0
	Т	0	2	0	2	0	2	0	0	0	0	0	0	8	10	4
	Α	0	0	4	0	4	0	0	0	0	0	0	0	2	4	6
		·		·			·									

Y

E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0
G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	0	
		0
G 0 0 0 0 0 0 2 0 2 4 0 2 0	0	0
T 0 2 0 2 0 2 0 0 0 0 0 4	2	2
A 0 0 4 0 4 0 0 0 0 0 0 0 0	0	0
T 0 2 0 6 0 5 0 0 0 0 0 2	2	2
G 0 0 0 0 2 0 2 2 2 0 2 0	0	0
C 0 0 0 0 0 0 2 10 4 0 4 0 0	0	0
T 0 2 0 2 0 2 0 4 6 0 0 2	2	2
G 0 0 0 0 0 4 0 5 8 2 2 0	0	0
G 0 0 0 0 0 0 2 0 2 8 4 4 0	0	0
C 0 0 0 0 0 0 0 4 0 2 10 4 0	0	0
G 0 0 0 0 0 0 2 0 6 2 4 2 6	0	0
C 0 0 0 0 0 0 0 4 0 2 4 6 8	2	0
T 0 2 0 2 0 2 0 0 0 0 0 8	10	4
A 0 0 4 0 4 0 0 0 0 0 0 0 2	4	6