1Q:

Para o circuito ao lado, pede-se:

- a) Mostre
 algebricamente que
 Fs=A⊕B⊕C
- a) Mostre algebricamente que

Fc=AB+AC+BC

Solução: numerando as portas

1Q:

Para o circuito ao lado,

pede-se:

- a) Mostre algebricamente que Fs=A⊕B⊕C
- a) Mostre algebricamente que

$$Fc=AB+AC+BC$$

Solução:

```
Porta1: (AB)';
```

```
Porta2: (A(AB)')' \rightarrow (A(A'+B'))'=(AA'+AB')'=(0+AB')' \rightarrow (AB')';
```

```
Porta3: (B(AB)')' \rightarrow (A'B)';
```

Porta4:
$$((AB')'(A'B)')' \rightarrow (AB')+(A'B)=A \oplus B \rightarrow X$$
;

Porta5: (XC)';

Porta6:
$$(C(XC)')' \rightarrow (X'C)'$$
;

Porta7:
$$(X(XC)')' \rightarrow (XC')';$$

Porta8:
$$((X'C)'(XC')')' \rightarrow X \oplus C \rightarrow A \oplus B \oplus C$$

1Q:

Para o circuito ao lado, pede-se:

- a) Mostre algebricamente que Fs=A⊕B⊕C
- a) Mostre algebricamente que Fc=AB + AC + BC

Porta9:
$$((XC)'(AB)')' \rightarrow XC + AB \rightarrow$$

 $(A \oplus B)C + AB \rightarrow (AB' + A'B)C + AB \rightarrow$
 $AB'C + A'BC + AB \rightarrow$
 $A(B'C + B) + B(A'C + A) \rightarrow$
 $A(B + C) + B(A + C) \rightarrow AB + AC + BC$

2Q:

Dada as equações de um circuito digital de 3 saídas R,S e T. Pede-se, implemente o circuito usando apenas 3 portas NAND de 3 entradas cada uma e 3 portas NAND de 2 entradas cada uma. obs: as variáveis de entrada estão complementadas

R(a,b,c,d)= \sum m(0,4,11,15)+ d(1,3,5,8,10,14)

S(a,b,c,d)= \sum m(0,4,5,13) + d(2,3,6,7,9,14,15)

T(a,b,c,d)= \sum m(5,11,13,15) + d(3,4,9,12)

Solução:

2Q:

Dada as equações de um circuito digital de 3 saídas R,S e T. Pede-se, implemente o circuito usando apenas 3 portas NAND de 3 entradas cada uma e 3 portas NAND de 2 entradas cada uma. obs: as variáveis de entrada estão complementadas

$$R(a,b,c,d)=\sum m(0,4,11,15)+d(1,3,5,8,10,14)$$

$$S(a,b,c,d)=\sum m(0,4,5,13) + d(2,3,6,7,9,14,15)$$

$$T(a,b,c,d)=\sum m(5,11,13,15) + d(3,4,9,12)$$

 $R=a'c'd' + acd \rightarrow ((a'c'd')'(acd)')'$

 $S=a'c'd' + bc'd \rightarrow ((a'c'd')'(bc'd)')'$

 $T=bc'd + acd \rightarrow ((bc'd)'(acd)')'$

3Q:

Usando somente um decodificador 74138 (3x8 → saída invertida), um mux 74153 (4x1) e duas portas NAND, implemente a função descrita no mapa de Karnaugh reduzido.

Solução:

B'C' → A'D'E'=0; ADE'=6

B'C → A'D'E'=0; ADE'=6

BC→ A'DE'=2; ADE=7

BC'→ F=0

08/03/2020

 $3 \rightarrow 2$ $3 \rightarrow 7$

Solução:

4Q: Para a função F abaixo implementar com o menor número de portas de fan-in 2 sem usar literais complementares.

$$F(a,b,c,d)=\sum (4,6,7,10,1$$

1,12,15)+ $dm(0,3,14)$

5Q: Um circuito combinatório multinível de 3 saídas está representado pelas tabelas verdade e pelo circuito parcial. Encontre as funções mínimas Fa e Fb

Solução:

Caixa Preta F3

Solução:

5Q: Um circuito combinatório multinível de 3 saídas está representado pelas tabelas verdade e pelo circuito parcial. Encontre as funções mínimas Fa e Fb

Solução:

5Q: Um circuito combinatório multinível de 3 saídas está representado pelas tabelas verdade e pelo circuito parcial. Encontre as funções mínimas Fa e Fb

Fa=B'CDE Fb=A'EX Onde X=(BCD)'

Prof. Duarte Lopes de Oliveira Divisão de Engenharia Eletrônica do ITA

- 6Q: Usando portas sintetize um *multiplexador de prioridade* como mostra a figura abaixo.
- A ordem de prioridade é respectivamente A, B, C e D.
- As saídas de cada bloco são AO, OB, OC e OD.
- As variáveis de solicitação para a saída do MUX são RA, RB, RC e RD.
- As variáveis de retorno para os blocos são SA, SB, SC e SD.
- Quando um bloco solicita sua saída na saída do MUX a sua respectiva variável de solicitação deve ser "1".
- Quando a solicitação do bloco é aceita pelo MUX á variável retorno deste bloco deve ser "1" e para os demais blocos deve ser "0".
- Quando a solicitação do bloco é aceita pelo MUX, a saída Out do MUX deve ser a saída do bloco cuja solicitação foi aceita.
- A solicitação a ser aceita pelo MUX deve obedecer a ordem de prioridade.
- Quando nenhum bloco solicita a saída então a saída Out do MUX dever ser "0" e todas as variáveis de retorno também devem ser "0".

- 6Q: Usando portas sintetize um *multiplexador de prioridade* como mostra a figura abaixo.
- A ordem de prioridade é respectivamente A, B, C e D.
- As saídas de cada bloco são AO, OB, OC e OD.
- As variáveis de solicitação para a saída do MUX são RA, RB, RC e RD.
- As variáveis de retorno para os blocos são SA, SB, SC e SD.
- Quando um bloco solicita sua saída na saída do MUX a sua respectiva variável de solicitação deve ser "1".
- Quando a solicitação do bloco é aceita pelo MUX á variável retorno deste bloco deve ser "1" e para os demais blocos deve ser "0".
- Quando a solicitação do bloco é aceita pelo MUX, a saída Out do MUX deve ser a saída do bloco cuja solicitação foi aceita.
- A solicitação a ser aceita pelo MUX deve obedecer a ordem de prioridade.

• Quando nenhum bloco solicita a saída então a saída Out do MUX dever ser "0" e todas as variáveis de retorno

também devem ser "0".

Out

	3							
RA	RB	RC	RD	SA	SB	SC	SD	OUT
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	OD
0	0	1	х	0	0	1	0	ос
0	1	х	х	0	1	0	0	ОВ
1	X	Х	X	1	0	0	0	ОА

Prof. Duarte Lopes de Oliveira Divisão de Engenharia Eletrônica do ITA

6Q: Usando portas sintetize um *multiplexador de prioridade* como mostra a figura abaixo.

7Q: A função soma de produto C4 na figura abaixo tem um tempo de propagação (atraso máximo) de 7,2ns. Usando apenas portas NOT e NAND de fan-in 2 e 3 implemente a função C4 onde o atraso máximo deve ser menor que 7,2ns.

Dados: Tp=1,4ns e Tp=1,8ns são respectivamente para as portas NAND de fan-in 2 e 3. Para a porta NOT o Tp=1ns.

7Q: A função soma de produto C4 na figura abaixo tem um tempo de propagação (atraso máximo) de 7,2ns. Usando apenas portas NOT e NAND de fan-in 2 e 3 implemente a função C4 onde o atraso máximo deve ser menor que 7,2ns.

Dados: Tp=1,4ns e Tp=1,8ns são respectivamente para as portas NAND de fan-in 2 e 3. Para a porta NOT o Tp=1ns.

7Q: A função soma de produto C4 na figura abaixo tem um tempo de propagação (atraso máximo) de 7,2ns. Usando apenas portas NOT e NAND de fan-in 2 e 3 implemente a função C4 onde o atraso máximo deve ser menor que 7,2ns.

Dados: Tp=1,4ns e Tp=1,8ns são respectivamente para as portas NAND de fan-in 2 e 3. Para a porta NOT o Tp=1ns.

8Q: Determine o propósito do circuito abaixo.

Solução:

A	В	YO	Y1	Y2	Y3
0	O	O	0	1	O
О	1	1	0	0	1
1	1	0	0	1	0
1	O	1	1	0	0

Y1=A(AB'+A'B)= AB'; Y2=AB+A'B'; Y3=B(AB'+A'B)=A'B

8Q: Determine o propósito do circuito abaixo.

Solução:

_ A	В	YO	Y 1	Y2	Y3
O	O	0	0	1	0
0	1	1	0	0	1
1	1	0	0	1	0
1	O	1	1	0	0

$$Y1=1 \rightarrow A > B$$

$$Y3=1 \rightarrow B > A$$

O circuito é um comparador de 1 bit

9Q: Faça um conversor de código (código binário para código de Gray) de dois bits, três bits e generalize para N bits Solução:

_a1	a0	g1	g0
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

$$g0 = \overline{a1} \quad a0 + a1 \quad \overline{a0}$$
$$g1 = a1$$

00 01 11

g1	= a2	a1	+ a2	a 1

a2	a1	a0	g2	g1	g0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

$$g2 = a2$$

 $g_{N-2} = a_{N-2} \oplus a_{N-1}$ $g_{N-1} = a_{N-1}$

08/03/2020

10Q: A função multinível abaixo está implementada com portas NAND e inversoras. Converta esta função em uma função multinível com o menor número de inversoras, mas usando somente portas AND, OR e inversora.

Solução:

Usaremos uma regra: substituir a NAND em inversoras + OR em níveis alternados

10Q: A função multinível abaixo está implementada com portas NAND e inversoras. Converta esta função em uma função multinível com um menor número de inversoras, mas usando somente portas AND, OR e inversora.

Solução:

Usaremos uma regra: substituir a NAND em inversoras + OR em níveis alternados

10Q: A função multinível abaixo está implementada com portas NAND e inversoras. Converta esta função em uma função multinível com um menor número de inversoras, mas usando somente portas AND, OR e inversora..

