Methodologies for Software Processes

Lecture 3

Tentative course outline

Satisfiability Modulo Theories Solvers

 A foundational topic in theoretical and applied computer science

Our focus:
 effectively applying
 SMT technology to
 program verification

But first: Recap

The Floyd-Hoare triple { P } S { Q } is valid if and only if every execution of S that starts in a state satisfying precondition P terminates without an error in a state satisfying postcondition Q.


```
method foo(x: Int)
  returns (r: Int)
  requires x > 0
  ensures r > y
{
  // S
  var y: Int := 7
  r := x + y
}
```

Recap: Weakest Pre & Strongest Post

S	WP(S, Q) (total correctness)	SP(P, S) (partial correctness: accepts errors/divergence)
var x	<pre>forall x :: Q</pre>	exists x :: Q
x := a	Q[x / a]	exists $x0 :: P[x / x0] && x == a[x / x0]$
assert R	R && Q	P && R
assume R	R ==> Q	P && R
S1; S2	WP(S1, WP(S2, Q))	SP(SP(P, S1), S2)
S1 [] S2	WP(S1, Q) && WP(S2, Q)	SP (P, S1) SP (P, S2)

Automating Program Verification

Mains steps of a tool for checking that { P } S { Q } is valid:

1. Compute WP(S, Q)

→ last lecture

2. Check whether P ==> WP(S, Q) is valid

→ delegate to SMT solver

Alternative approach

Mains steps of a tool for checking that { P } S { Q } is valid:

- 1. Compute SP(P, S) and SAFE(P, S)
- 2. Check whether SP(P, S) ==> Q is valid and SAFE(P, S) is valid

Tentative course outline

Roadmap

Overview

- 1. Propositional logic and SAT solvers
- 2. Using Z3 as a SAT solver
- 3. First-order logic and SMT solvers
- 4. Using Z3 as an SMT solver

Propositional Logic

X: Boolean variable in Var

Syntax

```
F ::= false \mid true \mid X \mid \neg F \mid F \land F \mid F \lor F \mid F \Rightarrow F \mid F \Leftrightarrow F
```

Interpretation \mathfrak{J} : Var \rightarrow { true, false }

Satisfaction relation

$$\mathfrak{I} \models \mathsf{true}$$
 iff always $\mathfrak{I} \models \mathsf{X}$ iff $\mathfrak{I}(\mathsf{X}) = \mathsf{true}$

$$\Im \models \neg F$$
 iff not $\Im \models F$

$$\mathfrak{I} \models \mathbf{F} \land \mathbf{G}$$
 iff $\mathfrak{I} \models \mathbf{F}$ and $\mathfrak{I} \models \mathbf{G}$

$$\Im$$
 is a model of F iff $\Im \models F$

$$\mathfrak{I} ::= [X = false, Y = true]$$

$$\mathfrak{F} \models \neg X \lor Y$$

$$\mathfrak{I} \models X \Rightarrow Y$$

$$\mathfrak{I} \vDash (\neg X \lor Y) \Leftrightarrow (X \Rightarrow Y)$$

Satisfiability & Validity

F is satisfiable iff F has some model

$$(X \Rightarrow Y) \Rightarrow Y$$

Models:
$$[X = true, Y = true]$$
, $[X = false, Y = true]$, $[X = true, Y = false]$

• F is unsatisfiable iff F has no model

$$X \land \neg Y \land (X \Rightarrow Y)$$

F is valid iff every interpretation is a model of F
 (¬F is unsatisfiable)

$$X \wedge (X \Rightarrow Y) \Rightarrow Y$$

■ F is not valid iff some interpretation is not a model of F (¬F is satisfiable)

$$X \wedge (X \Rightarrow Y) \Leftrightarrow Y$$

Model of $\neg \mathbf{F}$: [X = false, Y = true]

The Satisfiability Problem

A formula is satisfiable if it has a model

Satisfiability Problem (SAT):

Given a propositional logic formula, decide whether it is satisfiable.

If yes, provide a model as a witness

```
(X ∨ Y ∨ ¬Z)
∧ (U ∨ ¬Y)
∧ (¬X ∨ ¬Z ∨ U ∨ V)
```

```
ℑ ::= [
  U = false
  V = false
  X = true
  Y = false
  Z = false
]
```

Complexity of SAT

 For formulas in conjunctive normal form (CNF), SAT is the classical NP-complete problem

 $\bigwedge_{i} \bigvee_{j} C_{i,j}$ where $C_{i,j} \in \{x_{i,j}, \neg x_{i,j}\}$

- Many difficult problems can be efficiently encoded
- Every known algorithm is exponential in the formula's size
- Modern SAT solvers are extremely efficient in practice
 - Scale to formulas with millions of variables
 - May still perform poorly on certain formulas

Example: Boolean Pythagorean Triples

- BPT: a triple of natural numbers $1 \le a \le b \le c$ with $a^2 + b^2 = c^2$
- Question: Can we color all natural numbers with just two colors such that no BPT is monochromatic?
- Answer: No! The set {1, ..., 7825} always contains a monochromatic BPT
- This was first proven using a SAT solver
 - number of combinations: 2⁷⁸²⁵
 - "the largest math proof ever" (ca. 200 TB)
- Modern SAT solvers are efficient in practice

Overview

- 1. Propositional logic and SAT solvers
- 2. Using Z3 as a SAT solver
- 3. First-order logic and SMT solvers
- 4. Using Z3 as an SMT solver

The Z3 Satisfiability Modulo Theories solver

- Developed by Microsoft (under MIT license)
- Building block of many verification tools including Viper
- Various input formats and APIs
 - Z3, SMTLIB-2, C, C++, Python, Java, Rust, OCaml, ...
- For now: Use Z3 as a SAT solver

A first example (SMTLIB-2)

```
; declare variables
(declare-const X Bool)
(declare-const Y Bool)
(declare-const Z Bool)
; define formula (X \Rightarrow Y \Rightarrow Z) \land X
(assert (=> X Y Z))
(assert X)
(check-sat)
(get-model); fails if unsat
```

```
$ z3 01-example.smt2
sat
(model
  (define-fun ∠ () Bool
    false)
  (define-fun X () Bool
    true)
  (define-fun Y () Bool
    false)
```

A first example (Z3Py)

```
from z3 import *
# declare variables
X = Bool('X')
Y = Bool('Y')
Z = Bool('Z')
# define formula F
F = And( Implies(X, Implies(Y, Z)), X)
solve(F) # find a model for F
# find a counterexample for F
solve(Not(F))
```

F is satisfiable, this is a model

```
$ python .\02-example.py
[Z = False, X = True, Y = False]
[Z = False, X = False, Y = True]
```

¬F is satisfiable, this is a model

there is an example for which the law is true

Using a SAT solver

Is F satisfiable?

counterexample: model of ¬ F

Is F valid?

Using a SAT Solver for Program Verification

Mains steps of a tool for checking that { P } S { Q } is valid:

1. Compute WP(S, Q)

last lecture

- 2. Check whether entailment P ==> WP(S, Q) is valid \rightarrow ask SAT solver

- Check satisfiability of negation: P && !WP(S, Q)
- unsat →
- model explains why { P } S { Q } is not valid

Using a SAT Solver for Program Verification

```
{ true }
// check that validity of true \Rightarrow a \land \dots
\{a \land (b \land (true \Leftrightarrow (a \Rightarrow b)) \lor \neg b \land (false \Leftrightarrow (a \Rightarrow b))) \lor \neg a \land (true \Leftrightarrow (a \Rightarrow b))\}
if (a) {
\{b \land (true \Leftrightarrow (a \Rightarrow b)) \lor \neg b \land (false \Leftrightarrow (a \Rightarrow b))\}
   if (b) {
{ true \Leftrightarrow (a \Rightarrow b) }
       res := true
\{ res \Leftrightarrow (a \Rightarrow b) \}
  } else {
{ false \Leftrightarrow (a \Rightarrow b) }
       res := false
\{ \text{ res} \Leftrightarrow (a \Rightarrow b) \}
\{ \text{ res} \Leftrightarrow (a \Rightarrow b) \}
} else {
{ true \Leftrightarrow (a \Rightarrow b) }
   res := true
\{ \text{ res} \Leftrightarrow (a \Rightarrow b) \}
\{ \text{ res} \Leftrightarrow (a \Rightarrow b) \}
```

Propositional logic is not enough

```
{ x == X && y == Y }
{ y == Y && y - Y == 0 }
// ... swap X and Y
{ x == Y && y == X }
```

```
Entailment to check:
(x == X && y == Y) ==> y == Y && y - Y == 0
```

- Entailment is not in propositional logic
 - Integer-valued variables (x,X,y,Y) and numeric constants (0)
 - Arithmetic operations (-) and comparisons (==)
- Logic must support at least the expressions appearing in programs
 - It is also useful to support quantifiers (e.g., for array algorithms)
- General framework: first-order predicate logic (FOL)

Overview

- 1. Propositional logic and SAT solvers
- 2. Using Z3 as a SAT solver
- 3. First-order logic and SMT solvers
- 4. Using Z3 as an SMT solver

Ingredients of Many-sorted First-order logic (FOL)

- 1. Sorts
 - specifies possible types
- 2. Typed Variables
- 3. Typed Function symbols
 - building blocks of terms
- 4. Typed Relational symbols
 - turn terms into logical propositions
- 5. Logical symbols
- 6. An equality symbol

```
Bool, Int, Real, T
X, Y, Z, ...
0, 1.5 +, *, _?_:_
0 	 x ? y - 17 : z*z + 1
< prime R
x < 0 prime(y+4) R(x,y,z)
\land \lor \lor \neg \Rightarrow \Leftrightarrow \exists \lor ...
```

FOL Formulas

- A signature Σ is a set of
 - at least one sort
 - function symbols
 - relational symbols (= does not count)

 A Σ-formula is a logical formula over propositions built from symbols in Σ

$$\forall x$$
: Int $\exists y$: Int $(y = x + 1 \land y * y \le x * x + (1 + 1) * x + 1)$

Is this Σ -formula satisfiable?

FOL Formulas

Is this Σ -formula satisfiable?

$$\Sigma = \{ Int, 0, 1, +, *, \leq \}$$

$$\forall x$$
: Int $\exists y$: Int $(y = x + 1 \land y * y \le x * x + (1 + 1) * x + 1)$

Yes, if the symbols +, *, = have the canonical meaning

No, if

- 1 actually means 2, or
- + actually means maximum

Satisfiability of Σ -formulas depends on the admissible interpretations of symbols in Σ

determined by Σ -theories

FOL Σ-Interpretations

- - a non-empty domain (set) U^N to each sort U in Σ
 - a function $f^{\mathfrak{A}}$ over domains (respecting types) to each function symbol f in Σ
 - a relation $R^{\mathfrak{A}}$ over domains (respecting types) to each relational symbol R in Σ
- A Σ-assignment β maps variables x of sort
 U to domain elements in U^¾
- A Σ-interpretation is a pair $\mathfrak{I} = (\mathfrak{U}, \beta)$
- ℑ(t) denotes the domain element obtained by evaluating term t in ℑ

```
\Sigma = \{ \text{Int}, one, plus, leq \}
\mathfrak{A} ::= (\mathbf{Int}^{\mathfrak{A}}, one^{\mathfrak{A}}, plus^{\mathfrak{A}}, leq^{\mathfrak{A}})
Int^{\mathfrak{A}} ::= \mathbb{Z}
one^{\mathfrak{A}} ::= 1
plus^{\mathfrak{A}}: Int^{\mathfrak{A}} \times Int^{\mathfrak{A}} \to Int^{\mathfrak{A}}, (a, b) \mapsto a + b
leq^{\mathfrak{A}} ::= \{ (a,b) \in Int^{\mathfrak{A}} \times Int^{\mathfrak{A}} | a \leq b \}
\beta: Var \rightarrow Int^{\mathfrak{A}}
\Im(plus(plus(one, one), x))
```

= plus^{\mathfrak{A}}(plus^{\mathfrak{A}}(one^{\mathfrak{A}}, one^{\mathfrak{A}}), $\beta(x)$)

 $= (1+1) + \beta(x)$

FOL Semantics

 \Im is a model of F iff $\Im \models F$

	FOL formula F (excerpt)	$\mathfrak{J}=(\mathfrak{A},\beta)\vDash F$ if and only if
	$t_1 = t_2$	$\mathfrak{I}(t_1)=\mathfrak{I}(t_2)$
we can always -	$R(t_1, \dots, t_n)$	$\left(\mathfrak{I}(t_1),\ldots,\mathfrak{I}(t_n)\right)\in R^{\mathfrak{A}}$
express equality between terms	$G \wedge H$	$\mathfrak{I} \models \mathbf{G} \text{ and } \mathfrak{I} \models \mathbf{H}$
	$G\Rightarrow H$	If $\Im \models G$, then $\Im \models H$
	∃ <i>x</i> : T (G)	For some $v \in T^{\mathfrak{A}}$, $\mathfrak{I}[x := v] \models G$
	$\forall x: \mathbf{T} (\mathbf{G})$	For all $v \in T^{\mathfrak{A}}$, $\mathfrak{I}[x := v] \models G$

F is satisfiable iff **F** has some model

Issues with FOL Satisfiability

- All symbols are uninterpreted
- The meaning of functions and relations is determined in the chosen model
- Many formulas are satisfiable if we can choose Σ-structures that defy the intended meaning of functions and relations
- → Filter out unwanted Σ-structures

```
\Sigma = \{ \text{Nat}, zero, one, plus, leq \}
```

```
F::= \exists x: Nat(x plus one leq zero)

infix notation for leq(plus(x, one), zero)

sat: Nat = \mathbb{N}, one^{\mathfrak{A}} ::= 0, leq ::= \le zero^{\mathfrak{A}} ::= 1, plus^{\mathfrak{A}} ::= +

sat: Nat = \mathbb{N}, one^{\mathfrak{A}} ::= 1, leq ::= \le zero^{\mathfrak{A}} ::= 0, plus^{\mathfrak{A}} ::= -
```

Satisfiability Modulo Theories

- A Σ-sentence is a formula without free variables
- An axiomatic system AX is a set of Σ-sentences
- The Σ-theory Th given by AX is the set of all Σ-sentences implied by AX

A Σ -formula **F** is satisfiable modulo **Th** iff there exists a Σ -interpretation \Im such that

- $\Im \models \mathbf{F}$, and
- $\mathfrak{I} \models G$ for every sentence G in Th.

A Σ -formula **F** is valid modulo **Th** iff \neg **F** is *not* satisfiable modulo **Th**.

Some important theories

- Arithmetic (with canonical axioms)
 - Presburger arithmetic: $\Sigma = \{ Int, <, 0, 1, + \}$
 - Peano arithmetic: $\Sigma = \{ Int, <, 0,1,+,* \}$
 - Real arithmetic: $\Sigma = \{ \text{Real}, <, 0,1,+,* \}$

decidable undecidable decidable

decidable

- EUF: Equality logic with Uninterpreted Functions
 - $\Sigma = \{ \mathbf{U}, =, f, g, h, ... \}$
 - arbitrary non-empty domain U
 - axioms ensure that = is an equivalence relation
 - arbitrary number of uninterpreted function symbols of any arity
 - axioms do not constrain function symbols
- We typically need a combination of multiple theories
 - Program verification: theories for modeling different data types

Overview

- Propositional logic and SAT solvers
- 2. Using Z3 as a SAT solver
- 3. First-order logic and SMT solvers
- 4. Using Z3 as an SMT solver

Using Theories (SMTLIB-2)

- Sorts
 - Bool, Int, Real, BitVec(precision)
 - DeclareSort(name) (uninterpreted)
- Uninterpreted functions are declared with parameter and return types
- Variables are uninterpreted functions of arity 0
 - Const(name, sort)

```
(declare-sort Pair)
(declare-fun cons (Int Int) Pair)
(declare-fun first (Pair) Int)
(declare-const null Pair)
; first axiom
(assert (= null (cons 0 0)))
; second axiom
(assert (forall ((x Int) (y Int))
           (= x (first (cons x y)))
))
; formula (negated for validity check)
(assert (not (= (first null) 0)))
(check-sat)
```

Using Theories (Z3Py)

- Sorts
 - Bool, Int, Real, BitVec(precision)
 - DeclareSort(name) (uninterpreted)
- Uninterpreted functions are declared with parameter and return types
- Variables are uninterpreted functions of arity 0
 - Const(name, sort)

```
from z3 import *
Pair = DeclareSort('Pair')
null = Const('null', Pair)
cons = Function('cons', IntSort(), IntSort(), Pair)
first = Function('first', Pair, IntSort())
ax1 = (null == cons(0, 0))
x, y = Ints('x y')
ax2 = ForAll([x, y], first(cons(x, y)) == x)
s = Solver()
s.add(ax1)
s.add(ax2)
F = first(null) == 0
# check validity
s.add(Not(F))
print( s.check() )
```

Custom theories for user-defined data types and operations

- Encoding via
 - uninterpreted sorts
 - constants
 - uninterpreted functions
 - axioms enforcing the data type's properties
- We call such an encoding an axiomatization
- Week 5: advanced data types
 - sets, sequences, trees
 - accessors, mutators
 - recursive functions

```
(declare-sort Pair)
(declare-fun cons (Int Int) Pair)
(declare-fun first (Pair) Int)
(declare-const null Pair)
; first axiom
(assert (= null (cons 0 0)))
: second axiom
(assert (forall ((x Int) (y Int))
           (= x (first (cons x y)))
))
; formula (negated for validity check)
(assert (not (= (first null) 0)))
(check-sat)
```

Incorporating custom theories

Original verification condition: P ==> WP(S, Q) valid

A Σ -formula **F** is valid modulo **Th** iff **!F** is *not* satisfiable modulo **Th**.

A Σ -formula **F** is satisfiable modulo **Th** iff there exists a Σ -interpretation \Im such that

- $\Im \models \mathbf{F}$, and
- ⋾ ⊨ G for every sentence G in Th.

Enriched verification condition:

```
P ==> WP(S, Q) valid modulo custom theory iff BP && P && !WP(S, Q) unsat iff BP ==> P ==> WP(S, Q) valid
```

Background Predicate: conjunction of all our axioms defining our theory

Automating Program Verification

Mains steps of a tool for checking that { P } S { Q } is valid:

0. Determine axioms of underlying theory

background predicate BP

Reusable: once for every type or function

→ Week 5

Z3 has built-in theories for common theories (e.g. arithmetic)

→ Today

1. Compute WP(S, Q)

→ Week 1 & 2

2. Check whether BP ==> P ==> WP(S, Q) is valid

→ SMT solver

- Check satisfiability of negation: BP && P && !WP(S, Q)
- unsat →

Axiomatize with Care

- Axiomatizations are part of the trusted codebase
- Inconsistent axioms invalidate verification results

```
false ==> P ==> WP(S, Q) is always valid
```

Axioms do not show up in verification problems

```
{ x == null } S { y > null }
```

- Axiomatizations require separate validation
 - proofs, testing, profiling, ...

```
(declare-const null Int)

; inconsistent axioms
(assert (= null 0)
(assert (= null 17)

(assert (not
   (> 42 23); wrong statement
))

(check-sat); unsat
```

Theory applications

Linear integer/real arithmetic

$$19 * x + 2 * y = 42$$

- (Unbounded) arithmetic is often used to approximate int and float
- Multiplication by constants is supported

Non-linear integer/real arithmetic

$$x * y + 2 * x * y + 1 = (x + y) * (x + y)$$

 Useful for programs that perform multiplication and division, e.g., crypto libraries

Equality logic with uninterpreted functions

$$(x = y \land u = v) \Rightarrow f(x, u) = f(y, v)$$

 Universal mechanism to encode operations not natively supported by a theory

Fixed-size bitvector arithmetic

$$x \& y \leq x \mid y$$

To encode bit-level operations

To perform bit-precise reasoning, e.g., floats

Array theory

$$read(write(a, i, v), i) = v$$

To encode data types such as arrays

→ no explicit background predicate needed

(Quantifier-free) Linear Integer/Real Arithmetic

$$19 * x + 2 * y = 42$$

Non-Linear Integer/Real Arithmetic

$$x * y + 2 * x * y + 1 = (x + y) * (x + y)$$

Quantifier-free fixed-size bitvector arithmetic

$$x\,\&\,y \ \leq \ x\mid y$$

Using Z3 to verify a program

```
{ a = 1 ∧ 0 ≤ b*b - 4*c }

discriminant := b*b - 4*a*c;

if (discriminant < 0) {

   assert false

} else {

   x := (b + √discriminant) / 2

}

{ a*x² + b*x + c = 0 }
```

Step 1: use **WP** to determine the verification condition

Using Z3 to verify a program

```
\{ a = 1 \land 0 \le b*b - 4*c \}
// ==>
{ b*b - 4*a*c < 0 ∧ false ∨
  \neg (b*b - 4*a*c < 0) \land a*((-b + \sqrt{b*b - 4*a*c}) / 2)^2 + b*((-b + \sqrt{b*b - 4*a*c}) / 2) + c = 0
discriminant := b*b - 4*a*c;
{ discriminant < 0 ∧ false ∨
  \negdiscriminant < 0 \land a*((-b + \sqrt{\text{discriminant}}) / 2)<sup>2</sup> + b*((-b + \sqrt{\text{discriminant}}) / 2) + c = 0 }
if (discriminant < 0) {</pre>
{ false }
  assert false
\{ a*x^2 + b*x + c = 0 \}
} else {
{ a*((-b + \sqrt{discriminant}) / 2)^2 + b*((-b + \sqrt{discriminant}) / 2) + c = 0 }
  x := (-b + \sqrt{discriminant}) / 2
\{a*x^2 + b*x + c = 0\}
\{ a*x^2 + b*x + c = 0 \}
```

Using Z3 to verify a program

Step 1: use WP to determine the verification condition

```
{ a = 1 \land 0 \le b*b - 4*c }
// ==>
{ b*b - 4*a*c < 0 \land false \lor \\ \neg(b*b - 4*a*c < 0) \land a*((-b + <math>\sqrt{b*b - 4*a*c}) / 2)^2 + b*((-b + <math>\sqrt{b*b - 4*a*c}) / 2) + c = 0 }
```

- Step 2: check whether the verification condition is valid
 - Check satisfiability of negation: Pre && !WP(S, Post)

```
; declarations ... (full example available online)
; precondition
(assert (and (= a 1) (<= 0 (- (* b b) (* 4 c)))))
; negated weakest precondition
(assert (not <complicated expression here>))
(check-sat) ; want: unsat
```

Z3's Theory Reasoning

- Z3 selects theories based on the features appearing in formulas
 - Most verification problems require a combination of many theories

Quantifier-free linear integer arithmetic with uninterpreted functions

$$17 * x + 23 * f(y) > x + y + 42$$

- Some theories are decidable, e.g., quantifier-free linear arithmetic
 - SMT solver will terminate and report either "sat" or "unsat"
- Some theories are undecidable, e.g., nonlinear integer arithmetic
 - Especially in combination with quantifiers
 - SMT solver uses heuristics and may not terminate or return "unknown"
 - Results can be flaky, e.g., depend on order of declarations or random seeds

SMT solvers

- 1. Propositional logic and satisfiability solvers
- 2. Using Z3 as a SAT solver
- 3. First-order logic and SMT solvers
- 4. Using Z3 as an SMT solver
- 5. Quantifiers

Quantifiers

- Program specifications will often require quantifiers to express complex properties
 - "Array a is sorted": $\forall i, j. \ 0 \le i < j < |a| \Rightarrow a[i] \le a[j]$
 - "All entries in a are non-null": $\forall i.\, 0 \leq i < |a| \Rightarrow a[i] \neq null$
- Quantifiers are also useful to model additional theories and data types
 - Function definitions: $\forall x. f(x) = e$
 - We will see an example of this soon
- Addition of quantifiers makes many problems undecidable
 - Quantifier-free linear arithmetic is decidable
 - Linear arithmetic with quantifiers is not

Existential quantifiers

- Existential quantifiers in positive positions can be eliminated via skolemization
 - Positive position means non-negated.
 - Quantifier in $(\exists x. P) \land Q$ is in a positive position, in $(\exists x. P) \Rightarrow Q$ it is not.

 $\exists x. P$ is \mathcal{T} -satisfiable iff P[x/x'], where x' is fresh, is \mathcal{T} -satisfiable.

- Quantifier alternation requires introducing fresh functions
 - Example: $\forall x. \exists y. P$ is satisfiable iff $\forall x. P[y/f(x)]$ is satisfiable, where f is fresh
- Quantifiers in negative positions can be rewritten:

$$\neg \exists x. P \Leftrightarrow \forall x. \neg P$$
$$\neg \forall x. P \Leftrightarrow \exists x. \neg P$$

Universal quantifiers

- Universal quantifiers cannot be eliminated in general
 - Checking whether some formula is satisfiable for all values in an infinite sort is a hard problem
- Recall: Our goal is to prove validity of P, i.e., to prove ¬P unsatisfiable
 - Usually, to prove unsatisfiability, only specific instantiations are needed

Example: To prove unsatisfiability of $\mathbf{F}::=(f(0)=1)\wedge(\forall x.\,f(x)=x)$ we only need to instantiate x with 0 to get $(f(0)=1)\wedge(f(0)=0)$ Unsatisfiable

Universal quantifier instantiation

- Idea: Let users provide hints about relevant quantifier instantiations
- Treat quantified constraints separately from non-quantified constraints
 - Do not attempt to satisfy quantifier in general
 - Quantifier only generates specific instantiations, solver satisfies all generated instantiations
 - Resulting formulas can be solved by decision procedures for quantifier-free problems
- New format of universal quantifiers is $\forall x. \{e(x)\}P$
 - e(x) is the pattern or trigger, must contain all quantified variables
 - Quantifier body P is instantiated for any term with the shape e(x) occurring in the current constraints or model
 - Trigger can consist of multiple terms, quantifier can have multiple triggers
 - Most SMT solvers impose syntactic restrictions on possible trigger terms

Quantifier instantiation using triggers

A ground term is a term in the formula containing no quantified variables

A quantified constraint $\forall x. \{e(x)\} P$ in the current formula leads to an instantiation P[x/v] iff the current formula/model contains a ground term e(v)

- Example: $(\forall x. \{f(x)\}f(x) > 0) \land f(2) < 2$ instantiates f(2) > 0
- Trigger matching is performed modulo equality
 - Example: $g(1)=2 \wedge h(2)=3 \wedge (\forall x. \{h(g(x))\}\ h(g(x)) < x)$ instantiates h(g(1)) < 1
 - This instantiation technique is called e-matching for this reason

Problematic triggers

- Too strict or wrong triggering leads to incompleteness
 - **Example:** $f(0) = 1 \land (\forall x. \{g(f(x))\}) f(x) = x$

Unknown

- Generally, SMT solvers using e-matching cannot prove satisfiability
 - Quantifiers might not be satisfied for values for which they were not triggered
 - Only report unsat or unknown
- Too liberal triggering leads to many or infinite instantiations
 - Cause of most performance issues in automated verifiers
 - Always write triggers yourself! Otherwise, the solver will infer them
- Matching loop: Quantifier instantiation (transitively) triggers same quantifier again, ad infinitum
 - Example: $\forall i. \{a[i]\}\ 0 \le i < |a| 1 \Rightarrow a[i] \le a[i+1]$
 - In practice, tools eventually stop after some limit is reached

Mathematical data types

Our language so far has a very restricted set of types

```
Types
T ::= Bool | Int | Rational | Real
```

- Mathematical data types are useful to encode languages that have them
 - Many functional languages offer lists, tuples, and abstract data types (ADTs)
- Mathematical data types will also be important to specify imperative code
 - "Array sort leaves the multiset of elements unchanged"
 - "All implementations of Java's List interface store a sequence of elements"
 - We will discuss this kind of specification in Lecture 7

Encoding of custom data types

- We encode custom data types into SMT using
 - uninterpreted types
 - constants
 - uninterpreted functions
 - axioms that express properties of the constants and functions

```
from z3 import *
Set = DeclareSort('Set')
empty = Const('empty', Set)
card = Function('card', Set, IntSort())
...
ax1 = (card(empty) == 0)
...
```

- We call such an encoding an axiomatization
- Generics can be handled via monomorphization, that is, by generating a separate axiomatization for each instantiation of a generic type

More background on SAT solvers

- DPLL: Davis-Putnam-Logemann-Loveland Algorithm
 - A machine program for theorem-proving. Martin Davis, George Logemann, and Donald Loveland. 1962.
- CDCL: Conflict-Driven Clause Learning Algorithm
 - GRASP A New Search Algorithm for Satisfiability. João P. Marques Silva and Karem A. Sakallah. 1996.
- Further developments
 - Chaff: engineering an efficient SAT solver. Matthew W. Moskewicz,
 Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. 2001.
 - SAT-solving in practice. Koen Claessen, Niklas Een, Mary Sheeran, Niklas Sörensson, 2008.
- Annual SAT competition:
 - http://www.satcompetition.org/

More background on SMT solvers

- http://www.decision-procedures.org/ (website of book)
- Programming Z3, Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, Christoph M. Wintersteiger, 2018
- SMT-LIB standard
- Other teaching material
 - SMT solvers: Theory and Implementation. Leonardo de Moura
 - SMT Solvers: Theory and Practice. Clark Barrett
 - Satisfiability Checking, Erika Ábrahám
- Efficient E-Matching for SMT Solvers. Leonardo de Moura, Nikolaj Bjørner, 2007

Wrap-up

Mains steps of a tool for checking that { P } S { Q } is valid:

0. Determine axioms of underlying theory

→ background predicate BP

Reusable: once for every type or function

→ Week 5

- Z3 has built-in theories for common theories (e.g. arithmetic)
- 1. Compute WP(S, Q)

→ Week 1 & 2

2. Check whether $BP \implies P \implies WP(S, Q)$ is valid

→ SMT solver

- Check satisfiability of negation: BP && P && !WP(S, Q)
- unsat
- **→** 🕜
- sat → M model explains why { P } S { Q } is not valid
- unknown decidability issues, strengthen theory, hacks

future classes