Stat 4201 Homework 5

Mengqi Zong < mz2326@columbia.edu > February 24, 2012

Question 1

- 1. I use two models to predict 'bwt' birth weight in grams.
 - OLS

Here is the output from R:

Call:

lm(formula = bwt ~ x.p1)

Residuals:

Min 1Q Median 3Q Max -991.22 -300.96 -5.39 277.74 1637.80

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	3612.508	229.457	15.744	< 2e-16	***
x.p1low	-1131.217	73.957	-15.296	< 2e-16	***
x.p1age	-6.245	6.347	-0.984	0.326416	
x.p1lwt	1.051	1.133	0.927	0.355085	
x.p1race	-100.905	38.544	-2.618	0.009605	**
x.p1smoke	-174.116	72.000	-2.418	0.016597	*
x.p1ptl	81.340	68.552	1.187	0.236980	
x.p1ht	-181.955	137.661	-1.322	0.187934	
x.p1ui	-336.776	93.314	-3.609	0.000399	***

x.p1ftv -7.578 30.992 -0.245 0.807118

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 433.7 on 179 degrees of freedom Multiple R-squared: 0.6632, Adjusted R-squared: 0.6462 F-statistic: 39.16 on 9 and 179 DF, p-value: < 2.2e-16

• Least Median Squares of Regression

Here is the output from R:

I choose LMS as the optimal model due to its robustness.

Question 2

i) I use VIF to decide whether there is multicollinearity. Here is the output from R:

As we can see, none of these VIF is greater than 10. So there is no serious multicollinearity among variables.

- ii)
- a) I use OLS to fit the data. Here is the output from R:

Call:

lm(formula = stack.loss ~ Air.Flow + Water.Temp + Acid.Conc.)

Residuals:

Min 1Q Median 3Q Max

-232.72 -82.09 -53.22 -18.43 1312.54

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1045.451	1260.498	0.829	0.418
Air.Flow	1.899	10.657	0.178	0.861
Water.Temp	-6.285	8.811	-0.713	0.485
Acid.Conc.	-10.837	16.110	-0.673	0.510

Residual standard error: 333.1 on 17 degrees of freedom Multiple R-squared: 0.03577, Adjusted R-squared: -0.1344 F-statistic: 0.2102 on 3 and 17 DF, p-value: 0.8879

b) Here are the influential points identified by different methods:

• DFFITS

The influential points are sample 13 and sample 20. $DFFITS_{13} = -2.55103$, $DFFITS_{20} = 97.32509$. They are the only two samples that $|DFFITS_i| > 1$.

• DFBETAS

- Intercept
 - The influential points are sample 10, sample 17 and sample 20. $DFBETAS_{intercept_{13}} = 1.015542, DFBETAS_{intercept_{17}} = 1.540897, DFBETAS_{intercept_{20}} = -2.398968.$ They are the only three samples that $|DFBETAS_{intercept_i}| > 1$.
- Air.Flow
 The influential points are sample 20. $DFBETAS_{Air.Flow_{20}} = 7.578975$. It is the only sample that $|DFBETAS_{Air.Flow_i}| > 1$.
- Water.Temp The influential points are sample 17. $DFBETAS_{Water.Temp_{17}} = -1.34151$. It is the only sample that $|DFBETAS_{Water.Temp_i}| > 1$.
- Acid.Conc.
 The influential points are sample 17. $DFBETAS_{Acid.Conc._{17}} = -1.302743$. It is the only sample that $|DFBETAS_{Acid.Conc._{i}}| > 1$.
- Studentized Deleted Residuals

Since n = 21, p = 3, so we will use $t_{.975/44,16} = 2.5101$ to decide the Y outliers. The only Y outlier is sample 20, since $T_{(20)} = 316.4351 > t_{.975/44,16}$.

- Cooks' Distance
 - Since n=21, p=3, so we will use $F_{.975,4,17}=0.1161$ to decide the influential points. The influential points are sample 13, sample 17 and sample 20. $D_{13}=1.7266663, D_{17}=0.1418525, D_{20}=0.4019801$. They are the only three samples that $|D_i| > F_{.975,4,17}$.
- c) The coefficients of different methods before and after the changes are listed in Table 1.

OLS	Intercept	Air.Flow	Water.Temp	Acid.Conc
Before	-39.9197	0.7157	1.2953	-0.1521
After	1045.451	1.899	-6.285	-10.837
LMS	Intercept	Air.Flow	Water.Temp	Acid.Conc
Before	-3.425000e+01	7.142857e-01	3.571429e-01	-3.185417e-16
After	-3.425000e+01	7.142857e-01	3.571429e-01	-3.185417e-16
LTS	Intercept	Air.Flow	Water.Temp	Acid.Conc
Before	-3.429167e+01	7.142857e-01	3.571429e-01	-8.192168e-18
After	-3.630556e+01	7.291667e-01	4.166667e-01	-6.029813e-18
RLM	Intercept	Air.Flow	Water.Temp	Acid.Conc
Before	-41.0265311	0.8293739	0.9261082	-0.1278492
After	-41.0265311	0.8293739	0.9261082	-0.1278492

Table 1: Coefficients before and after the change

Appendices

The code is listed below:

```
# Problem 1
library(MASS)
attach(birthwt)

x.p1 <- cbind(low, age, lwt, race, smoke, ptl, ht, ui, ftv)
ols.p1 <- lm(bwt~x.p1)</pre>
```

```
print(summary(ols.p1))
lms.p1 <- lmsreg(x.p1, bwt)</pre>
print(coef(lms.p1))
# Problem 2
# i)
library(car)
attach(stackloss)
reg.p2 <- lm(stack.loss~Air.Flow + Water.Temp + Acid.Conc.)</pre>
reg.vif.p2 <- vif(reg.p2)</pre>
print(reg.vif.p2)
# ii)
# model before data modification
ols.p2 <- lm(stack.loss~Air.Flow + Water.Temp + Acid.Conc.)</pre>
lms.p2 <- lmsreg(stack.loss~Air.Flow + Water.Temp + Acid.Conc.)</pre>
lts.p2 <- ltsreg(stack.loss~Air.Flow + Water.Temp + Acid.Conc.)</pre>
rlm.p2 <- rlm(stack.loss ~ ., stackloss, psi = psi.huber)</pre>
# data modification
stack.loss[20] <- 1450
Water.Temp[13] <- 180
Acid.Conc.[13] <- 1
# a)
ols.outlier.p2 <- lm(stack.loss~Air.Flow + Water.Temp + Acid.Conc.)</pre>
print(summary(ols.outlier.p2))
# b)
lmi <- lm.influence(ols.outlier.p2)</pre>
lms <- summary(ols.outlier.p2)</pre>
e <- resid(ols.outlier.p2)</pre>
s <- lms$sigma
si <- lmi$sigma
xxi <- diag(lms$cov.unscaled)</pre>
h <- lmi$hat
bi <- coef(ols.outlier.p2) - t(coef(lmi))</pre>
```

```
DFBETAS <- bi/t(si%o%xxi^0.5)
index.DFBETAS1 <- abs(DFBETAS[1,]) > 1
index.DFBETAS2 <- abs(DFBETAS[2,]) > 1
index.DFBETAS3 <- abs(DFBETAS[3,]) > 1
index.DFBETAS4 <- abs(DFBETAS[4,]) > 1
inf.DFBETAS1 <- DFBETAS[1,index.DFBETAS1]</pre>
inf.DFBETAS2 <- DFBETAS[2,index.DFBETAS2]</pre>
inf.DFBETAS3 <- DFBETAS[3,index.DFBETAS3]</pre>
inf.DFBETAS4 <- DFBETAS[4,index.DFBETAS4]</pre>
student.resid <-e/(si*(1-h)^0.5)
t.975.16 <- 2.5101
index.student <- abs(student.resid) > t.975.16
inf.student <- student.resid[index.student]</pre>
print(inf.student)
cooks.p2 <- cooks.distance(ols.outlier.p2)</pre>
f.975.4.17 <- 0.1161
index.cooks \leftarrow abs(cooks.p2) > f.975.4.17
inf.cooks <- cooks.p2[index.cooks]</pre>
print(inf.cooks)
DFFITS <-h^0.5*e/(si*(1-h))
index.DFFITS <- abs(DFFITS) > 1
inf.DFFITS <- DFFITS[index.DFFITS]</pre>
print(inf.DFFITS)
# c)
lms.outlier.p2 <- lmsreg(stack.loss~Air.Flow + Water.Temp + Acid.Conc.)</pre>
lts.outlier.p2 <- ltsreg(stack.loss~Air.Flow + Water.Temp + Acid.Conc.)</pre>
rlm.outlier.p2 <- rlm(stack.loss ~ ., stackloss, psi = psi.huber)</pre>
```