# زبان و ساختار کامپیوتر

فصل پنجم مماسبات کامپیوتری



### Copyright Notice

Parts (text & figures) of this lecture are adopted from:

© D. Patterson & J. Hennessey, "Computer

Organization & Design, The Hardware/Software

Interface", 5th Ed., MK publishing, 2014

### Some Concepts

- LSB and MSB
  - Least Significant Bit (LSB)
  - Most Significant Bit (MSB)
- Signed versus Unsigned
  - Unsigned (Assume all non-negative numbers)
    - Used usually for memory addresses
  - Signed
    - Using sign bit
    - Using two's complement notation
- Carry Out
- Overflow

## Number Representation

- Weighted number system
  - Can be represented in any base (radix)
    - $\circ$  Value of  $i^{th}$  digit " $d_i$ " =  $d_i$  \* Base

$$\circ O = < d_i < Base$$

| 31              | 30              | 29              | <br>i  | <br>3              | 2              | 1     | 0     |
|-----------------|-----------------|-----------------|--------|--------------------|----------------|-------|-------|
| d <sub>31</sub> | d <sub>30</sub> | d <sub>29</sub> | <br>di | <br>d <sub>3</sub> | d <sub>2</sub> | $d_1$ | $d_0$ |

### Base Examples

#### Binary

$$(101101)_2 = 1x2^5 + 0x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0$$

#### Octal

$$(736.4)_8 = 7 \times 8^2 + 3 \times 8^1 + 6 \times 8^0 + 4 \times 8^{-1}$$
  
=  $7 \times 64 + 3 \times 8 + 6 \times 1 + 4/8 = (478.5)_{10}$ 

#### Hexadecimal

$$(F3)_{16} = F \times 16 + 3 = 15 \times 16 + 3 = (243)_{10}$$

#### Decimal

$$(7245)_{10} = 7x10^3 + 2x10^2 + 4x10^1 + 5x10^0$$

### Which Base?

- Number Representation
  - Humans prefer base 10, why?
  - Base 2 best works for computers, why?
  - Base 10 inefficient for computers, why?

### Decimal to Base i Conversion

- $\circ$  Convert  $65_{10}$  to base 5
- Convert 19<sub>10</sub> to base 2

### Converting Fractions

• Convert  $0.4304_{10}$  to base 5 = 0.2034

.4304
$$0.7600$$
 $\times$  5.76002.1520 $\times$  5.1520.8000 $\times$  5 $\times$  50.7600 $\times$  5

• Convert  $0.34375_{10}$  to base 2 = 0.01011

### Converting between power of 2 radices

- Convert 110101010001111<sub>2</sub>
  - to base 8
  - to base 16

### Binary to Decimal Conversion

- Question:
  - What is decimal value of this 32-bit number?
    - 1111 1111 1111 1111 1111 1111 1000<sub>two</sub>
  - Depends on the notation
    - Signed
    - Unsigned

### Unsigned Numbers

$$N = (d_{31}*2^{31}) + (d_{30}*2^{30}) + \dots + (d_1*2^1) + (d_0*2^0)$$

### Signed Numbers (2's Complement)

$$N = (d_{31}^* - 2^{31}) + (d_{30}^* + 2^{30}) + \dots + (d_1^* + 2^1) + (d_0^* + 2^0)$$

```
00000000000000000000000000000001_{two} = 1_{ten}
10000000000000000000000000000001_{two} = -2,147,483,647_{ten}
```

## Other Signed Number Notations

- Signed-Magnitude Notation
- Ones' Complement Notation
- Biased Notation

### Signed-Magnitude Notation

- Signed Notation with Sign Flag
- Most positive number
  - *011* ... *1*
- Most negative number
  - 177 ... 7
- o There are two zero's
  - *000 ... 0*
  - 100 ... 0
- Used in floating point representation (mantissa)

## Ones' Complement Notation

- O Positive number same as two's complement
- O Negative number:
  - Invert each bit in positive representation
- There are two zero's in ones' complement
  - 000...0
  - *111...1*
- Most positive number
  - *0111* ... *1*
- Most negative number
  - 1000 ... O

## Biased Notation (Excess $2^{n-1}$ )

- If n bits used for representation:
  - Add all numbers with 2<sup>n-1</sup>
- Zero represented by
  - 100 ... O
- o Most negative number  $(-2^{n-1})$ 
  - *000 ... 0*

| 0       | Most   | positive | number   | $(2^{n-1}-1)$ |
|---------|--------|----------|----------|---------------|
| $\circ$ | 111050 | positive | number ( | (             |

• *111* ... *1* 

| N  | Excess-4 | 2's Comp    |
|----|----------|-------------|
| -4 | 000      | 100         |
| -3 | 001      | 101         |
| -2 | 010      | 110         |
| -1 | 011      | 111         |
| 0  | 100      | 000         |
| 1  | 101      | 001         |
| 2  | 110      | 010         |
| 3  | 111      | <b>0</b> 11 |

## Biased Notation (Excess $2^{n-1}-1$ )

- If n bits used for representation:
  - Add all numbers with 2<sup>n-1</sup>-1
- Zero represented by
  - *O*11 ... 1

| 0 | Most | negative | number | $(-2^{n-1}+1)$ |
|---|------|----------|--------|----------------|
|---|------|----------|--------|----------------|

• *000* ... *0* 

| 0 | Most | positive | number | $(2^{n-1})$ |
|---|------|----------|--------|-------------|
|---|------|----------|--------|-------------|

• *111* ... *1* 

 Used in floating point representation (exponent)

| N  | Excess-3 | Excess-4 |
|----|----------|----------|
| -4 | -        | 000      |
| -3 | 000      | 001      |
| -2 | 001      | 010      |
| -1 | 010      | 011      |
| 0  | 011      | 100      |
| 1  | 100      | 101      |
| 2  | 101      | 110      |
| 3  | 110      | 111      |
| 4  | 111      | -        |

### Signed Number Notations (Summary)

#### Unbiased

$$N = +14$$

0 0001110

$$-N=-14$$

1 0001110

• 1's Complement 
$$(2^n-N-1) - N=-14$$

• 2's Complement 
$$(2^n-N)$$
  $-N=-14$ 

#### O Biased $(2^{n-1}+N)$

$$M = -14$$

2'5

### Integer Addition / Subtraction

```
000000001000000 +
                                 64
       000000000101010
                                +42
       000000001101010
                                106
      1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0
       000000001000000 +
                                 64
       1111111111010110
                                - 42
                                 22
       000000000010110
compliment
```

### Overflow Conditions for Add/Sub

| Operation | Operand A | Operand B | Result indicating overflow |
|-----------|-----------|-----------|----------------------------|
| A + B     | ≥0        | ≥ 0       | < 0                        |
| A + B     | < 0       | < 0       | ≥ 0                        |
| A – B     | ≥ 0       | < 0       | < 0                        |
| A – B     | < 0       | ≥ 0       | ≥ 0                        |

- O While adding signed numbers, an overflow occurs when
  - Both operands have the same sign,
  - but the result has the opposite sign
- o the carry into and out of the MSB differ

### One-bit Full Adder

Input and output specification for a 1-bit adder



|   | Inputs |         |          | uts |                               |  |
|---|--------|---------|----------|-----|-------------------------------|--|
| а | b      | Carryin | CarryOut | Sum | Comments                      |  |
| 0 | 0      | 0       | 0        | 0   | $0 + 0 + 0 = 00_{two}$        |  |
| 0 | 0      | 1       | 0        | 1   | $0 + 0 + 1 = 01_{two}$        |  |
| 0 | 1      | 0       | 0        | 1   | $0 + 1 + 0 = 01_{two}$        |  |
| 0 | 1      | 1       | 1        | 0   | $0 + 1 + 1 = 10_{two}$        |  |
| 1 | 0      | 0       | 0        | 1   | $1 + 0 + 0 = 01_{two}$        |  |
| 1 | 0      | 1       | 1        | 0   | 1 + 0 + 1 = 10 <sub>two</sub> |  |
| 1 | 1      | 0       | 1        | 0   | 1 + 1 + 0 = 10 <sub>two</sub> |  |
| 1 | 1      | 1       | 1        | 1   | 1 + 1 + 1 = 11 <sub>two</sub> |  |

 $Sum = a \oplus b \oplus CarryIn$ 

 $CarryOut = a.b + CarryIn.(a \oplus b)$ 

## Ripple-Carry Adder



### One-bit ALU

Performs AND, OR, and addition on a and b or a and  $\underline{b}$ 





## Reminder: Ripple-Carry Adder



### Carry Generate / Propagate



 $Sum = (a \oplus b) \oplus CarryIn$   $CarryOut = a.b + CarryIn.(a \oplus b)$ 

Generate

## CLA vs. Pipes

$$c_1 = g_0 + p_0 \cdot c_0$$

$$c_2 = g_1 + p_1 \cdot g_0 + p_1 \cdot p_0 \cdot c_0$$

$$c_3 = g_2 + p_2 \cdot g_1 + p_2 \cdot p_1 \cdot g_0$$
  
+  $p_2 \cdot p_1 \cdot p_0 \cdot c_0$ 

$$c_4 = g_3 + p_3 \cdot g_2 + p_3 \cdot p_2 \cdot g_1$$
  
+  $p_3 \cdot p_2 \cdot p_1 \cdot g_0 + p_3 \cdot p_2 \cdot p_1 \cdot p_0 \cdot c_0$ 



## CLA Generate/Propagate Circuit



### CLA 4-bit Adder



### Multiplication Approach (1st ver)



Length of product is the sum of operand lengths



### Multiplication Algorithm (1st ver)



## Multiplication (2<sup>nd</sup> ver)



### Division



Dividend = Quotient × Divisor + Remainder, |Remainder| < |Divisor|

### Real Numbers

- O Numbers with Fractions:
  - o 3·14159...
  - 0 2.17
  - 0.0000001
  - o 1.25 \* 10<sup>-12</sup>
  - o 1.43 \* 10<sup>+12</sup>
- Representation in computers:
  - Fixed point
  - Floating point

## Fixed-Point Representation

- A real Example:
  - $d_{23}d_{22}...d_1d_0\cdot f_0f_1f_2f_3f_4f_5f_6f_7$
  - 24-bit: integer bits
  - 8-bit: fraction bits
- Application
  - Used in CPUs with no floating-point unit
    - Embedded microprocessors and microcontrollers
  - Digital Signal Processing (DSP) applications

### Fixed-Point Representation (cont.)

- Consider 5-Bit Representation
  - $d_2d_1d_0\cdot f_1f_0$
  - $(d_{2}\times -2^{2})+(d_{1}\times 2^{1})+(d_{0}\times 2^{0})+(f_{1}\times 2^{-1})+(f_{0}\times 2^{-2})$
- O Largest positive number?
- o Smallest positive number?
- Largest magnitude negative number?
- Smallest magnitude negative number?

### Fixed-Point Representation (cont.)

• Arithmetic:

out of range (overflow)

• *011.11* + *011.11* = *111.10* 

- out of range (underflow)
- $\bullet$  010.10  $\times$  000.10 = 000001.0100
- $\bullet$  000.01  $\times$  000.01 = 000000.0001
- $011.01 \times 011.01 = ?$

## Fixed-Point Representation (cont.)

• Arithmetic:

out of range (overflow)

• *011.11* + *011.11* = *111.10* 

out of range (underflow)

- $\bullet$  010.10  $\times$  000.10 = 000001.0100
- $\bullet$  000.01  $\times$  000.01 = 000000.0001
- $011.01 \times 011.01 = 001010.1001$

Both
overflow &
underflow

## Fixed-Point Representation (cont.)

#### o Pros

- Simple hardware
- Fast computation
- Different precisions at different applications
  - o 24bits/8bits, 18bits/14bits, 8bits/24bits

#### Cons

- Low precision
- Small range

## Scientific Notation (Decimal)

```
coefficient
6.02_{10} \times 10^{23}
decimal point radix (base)
```

- O Normalized Form:
  - Exactly one non-zero digit to left of decimal point
- Alternatives to representing 0.0000000012
  - Normalized:  $1.2 \times 10^{-9}$
  - Not normalized:  $0.12 \times 10^{-8}$ ,  $12.0 \times 10^{-10}$

#### Normalized Scientific Notation (Binary)



# Floating-Point Notation

- Floating Point Notation Consists of:
  - Fraction (F): 23 bits
  - Exponent (E): 8 bits
  - Fraction Sign bit (5)
  - Also called, single precision floating-point
- $\circ N = (-1)^5 \times (1+F) \times 2^E$

| 31 | 30 |          | 24 | 23 | 22       | 21 |  | 1 | 0 |
|----|----|----------|----|----|----------|----|--|---|---|
| 5  | E  | Exponent |    |    | Fraction |    |  |   |   |

### Floating-Point Notation (cont.)

- Pros (compared to fixed-point)
  - Very Wide Range
  - More precision bits
- Cons (compared to fixed-point)
  - Arithmetic operation more complicated
  - HW more complicated



## Floating-Point Notation (cont.)

- $\circ N = (-1)^5 \times (1+F) \times 2^F$
- o Precision versus Range
  - More precision → smaller range?
  - Wider range → less precision?
- o True for fixed-point
  - Not necessarily correct for floating point

| 31 | 30 |          | 24 | 23 | 22 | 21 |      | 1  | 0 |
|----|----|----------|----|----|----|----|------|----|---|
| 5  | E  | Exponent |    |    |    | Fr | acti | on |   |

## Floating-Point Notation (cont.)

- Overflow:
  - Exponent too large to fit in "Exponent" field
- O Underflow:
  - Non-zero fraction so small to represent
  - Negative exponent too large to fit

| 31 | 30 |      | 24  | 23 | 22       | 21 |  | 1 | 0 |
|----|----|------|-----|----|----------|----|--|---|---|
| 5  | E  | Ехро | nen | t  | Fraction |    |  |   |   |

# IEEE 754 - Single Precision

- Signed-magnitude notation for fraction (mantissa)
- $\circ$  Biased (Excess  $2^{n-1}-1$ ) notation for exponent
- o E<sub>min</sub>=00000001

| 31 | 30 |      | 24  | 23 | 22 | 21 |      | 1  | 0 |
|----|----|------|-----|----|----|----|------|----|---|
| 5  | ŧ  | Ехро | nen | t  |    | Fr | acti | on |   |

 $\circ$   $E_{max} = 111111110$ 

$$N = (-1)^S * (1 + F) * 2^E$$

- E=00000000 reserved for zero
- E=11111111 reserved for infinity & NaN
- o Smallest positive no: 1.17549435 E-38
- Largest positive no: 3.4028235 E38

#### IEEE 754 - Double Precision

- Two words long (64 bits)
- Reduced chances of overflow/underflow
- Format
  - Sign bit (5)
  - Fraction (F): 52 bits
  - Exponent (E): 11 bits
- O A bias of 1023 in Exponential part

#### More on IEEE 754 Standard

- Single precision (32bits)/Double precision (64bits)
- Normalized/ Denormalized forms
- Standard definitions for zero, infinity, NaN
- O Check: https://www.h-schmidt.net/FloatConverter/IEEE754.html

| Single precision |          | Double p | orecision | Object represented      |  |  |
|------------------|----------|----------|-----------|-------------------------|--|--|
| Exponent         | Fraction | Exponent | Fraction  |                         |  |  |
| 0                | 0        | 0        | 0         | 0                       |  |  |
| 0                | Nonzero  | 0        | Nonzero   | ± denormalized number   |  |  |
| 1-254            | Anything | 1-2046   | Anything  | ± floating-point number |  |  |
| 255              | 0        | 2047     | 0         | ± infinity              |  |  |
| 255              | Nonzero  | 2047     | Nonzero   | NaN (Not a Number)      |  |  |

#### Denormalized Forms

- An attempt to squeeze every last bit of precision from a floating-point operation
- Smallest pos. single precision normalized no:
- Smallest single precision denormalized no:



# Concluding Remarks

- Bits have no inherent meaning
  - Interpretation depends on the operations applied
- Computer representations of numbers
  - Finite range and precision
  - Need to account for this in programs
- Bounded range and precision
  - Operations can overflow and underflow

#### Outlines

- Weighted Number System
- Signed Number Representation
  - 2's Compliment/ 1's Compliment
  - Signed-Magnitude Notation
  - Biased Notation
- Arithmetic Operations
  - Addition/ Subtraction/ Multiplication/ Division
- Real Numbers
  - Fixed Point / Floating Point Representation
  - IEEE 754 Standard