Math 225A Notes

Sarah Mantell

October 13, 2022

Algebraic Number Theory |1

Definition 1.0.1 (Number field): A number field is a finite field extension over \mathbb{Q} .

Definition 1.0.2 (Algebraic integer): Let K be a number field. An algebraic number $a \in K$ is called integral or an algebraic integer of K if f(a) = 0 for some monic polynomial f with coefficients in \mathbb{Z} . Denote the set of algebraic integers in K by \mathfrak{G}_K .

Proposition 1.0.3: Let K be a number field. Then \mathfrak{O}_K is a ring and $K = \operatorname{Frac}(\mathfrak{O}_K)$.

Proposition 1.0.4: The ring \mathfrak{O}_K is Noetherian, integrally closed, and every nonzero prime ideal of \mathfrak{O}_K is maximal.

Notice that the results presented in the proposition above imply that \mathfrak{O}_K is a Dedekind domain, using one of the many equivalent defintions of a Dedekind domain.

Theorem 1.0.5 (Unique Factorization of Ideals): Every nonzero ideal $\mathfrak{a} \nsubseteq \mathfrak{O}_K$ can be uniquely written as

$$\mathfrak{a}=\mathfrak{p}_1^{r_1}\cdots\mathfrak{p}_m^{r_m}$$

where $m \ge 1$, $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ are distinct nonzero prime ideals of \mathfrak{G}_K , and $r_1, \ldots, r_m \in \mathbb{N}$.

Definition 1.0.6 (Trace, Norm): Suppose that $\mathbb{Q} \subseteq K \subseteq L$ is an extension of fields. Let $a \in L$ and view L as a K-vector space to consider the linear transformation

$$T_a:L\to L$$

$$x \mapsto ax$$
.

Define the trace and norm for a as

$$\operatorname{Tr}_{L/K}(a) = \operatorname{Tr}(T_a) \in K$$

The notes here about algebraic number theory are very brief – the recommended texts for a more in depth reading are:

- ► Algebraic Number Theory
 Chapters I, II
 (Neukirch)
- ► Algebraic Number Theory Notes (Milne)

Theorem ?? is actually true for any Dedekind domain, but we just focus on this specific case here.

and

$$\operatorname{Nm}_{L/K}(a) = \det(T_a) \in K.$$

With trace and norm defined as in Definition ??, we obtain a bi-K-linear pairing:

$$\langle \cdot, \cdot \rangle_{L/K} : L \times K \to K$$

given by

$$\langle a, b \rangle_{L/K} = \operatorname{Tr}_{L/K}(ab).$$

Definition 1.0.7: Let $\alpha_1, \ldots, \alpha_n$ be a basis of L over K. The discriminant of $\alpha_1, \ldots, \alpha_n$ is defined as

$$D(\alpha_1,\ldots,\alpha_n) = \det\left(\left(\langle \alpha_i,\alpha_j\rangle\right)_{1\leq i,j\leq n}\right).$$

The discriminant of L/K is denoted by $D_{L/K}$ and is the ideal of O_K generated by

$$\{D(\alpha_1,\ldots,\alpha_n):\alpha_1,\ldots,\alpha_n\text{ is a basis of }L/K\text{ contained in }\mathbb{G}_L\}.$$

For K/\mathbb{Q} , $\mathfrak{G}_{\mathbb{Q}} = \mathbb{Z}$ and therefore is a PID. So, \mathfrak{G}_K is a free \mathbb{Z} -module of rank $n = [K : \mathbb{Q}]$. For any \mathbb{Z} -basis $\alpha_1, \ldots, \alpha_n$ of \mathfrak{G}_K ,

$$D_{K/\mathbb{Q}} = (D(\alpha_1, \ldots, \alpha_n)).$$

Definition 1.0.8: Let L/K be an extension of number fields, $p \subseteq \mathcal{O}_L$ a nonzero prime ideal, and define $\mathfrak{p} = p \cap \mathcal{O}_K \subseteq \mathcal{O}_K$. Write the prime factorization of $\mathfrak{p}\mathcal{O}_L$ as

$$\mathfrak{p}\mathfrak{G}_L = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_m^{e_m}$$

where $p_1 = p$. The ramification index of p over p, denoted by e(p/p), is defined to be e_1 (as given in the prime factorization). The residue class degree, or the intertia degree, of p of p, denoted by e(p/p), is defined to be $[\mathfrak{O}_L/p : \mathfrak{O}_K/p]$.

Definition 1.0.9: Let L/K be an extension of number fields and $\mathfrak{p} \subseteq \mathfrak{G}_K$ a nonzero prime ideal. We say \mathfrak{p} is ramified in L or L/K is ramified at \mathfrak{p} if $e(p/\mathfrak{p}) > 1$ for some $p \subseteq \mathfrak{G}_L$ satisfying $\mathfrak{p} = p \cap \mathfrak{G}_K$. We say \mathfrak{p} is unramified in L or L/K is unramified at \mathfrak{p} if $e(p/\mathfrak{p}) = 1$ for every $p \subseteq \mathfrak{G}_L$ where $\mathfrak{p} = p \cap \mathfrak{G}_K$.

Definition 1.0.10: Let L/K be an extension of number fields and $\mathfrak{p} \subseteq \mathfrak{O}_K$ a nonzero prime ideal. We say \mathfrak{p} splits or splits completely in L if $e(\mathfrak{p}/\mathfrak{p}) = f(\mathfrak{p}/\mathfrak{p}) = 1$ for

The matrix

$$(\langle \alpha_i, \alpha_j \rangle)_{1 \leq i, j \leq n}$$

is an $n \times n$ matrix, with entries in K.

every $p \subseteq \mathcal{O}_L$ with $p \cap \mathcal{O}_K = \mathfrak{p}$.

Definition 1.0.11: Let L/K be an extension of number fields and $\mathfrak{p} \subseteq \mathfrak{O}_K$ a nonzero prime ideal. We say that \mathfrak{p} is inert in L if $\mathfrak{p}\mathfrak{O}_L$ is a prime ideal of \mathfrak{O}_L .

From these definitions, one can derive the following identity: if $\mathfrak{p} \mathfrak{G}_L = p_1^{e_1} \cdots p_m^{e_m}$ then

$$[L:K] = \sum_{j=1}^{m} e(p_j/\mathfrak{p}_j) f(p_j/\mathfrak{p}_j).$$