557_Project_2BS

Ben Straub, Hillary Koch, Jiawei Huang, Arif Masrur 3/15/2017

EDA in no particular order of sanity

Names of Variables

[1]	"seismic"	"seismoacoustic"	"shift"	"genergy"
[5]	"gpuls"	"gdenergy"	"gdpuls"	"ghazard"
[9]	"nbumps"	"nbumps2"	"nbumps3"	"nbumps4"
[13]	"nbumps5"	"nbumps6"	"nbumps7"	"nbumps89"
Γ17]	"energy"	"maxenergy"	"class"	

Summary Statistics

Mean :0.06579

seismic	seismoacoustic		shift genergy		gy	gpuls	
a:1682	a:1580		N: 921	Min. :	100	Min. : 2.0	
b: 902	b: 956		W:1663	1st Qu.:	11660	1st Qu.: 190.0	
	c: 48			Median :	25485	Median : 379.0	
					90242	Mean : 538.6	
					52832	3rd Qu.: 669.0	
				Max. :	2595650	Max. :4518.0	
gdene	rgy	gdpuls				oumps	
Min. :	-96.00	Min.	:-96.00	0 a:234	2 Min.	:0.0000	
1st Qu.:	-37.00	1st Q	u.:-36.00	0 b: 21	2 1st Qı	1.:0.0000	
Median :	-6.00		n : -6.00		0 Mediar		
Mean :	12.38	Mean	: 4.50	9	Mean	:0.8595	
3rd Qu.:	38.00	3rd Q	u.: 30.25	0	3rd Qı	1.:1.0000	
Max. :	1245.00	Max.	:838.00	0	Max.	:9.0000	
nbumps2		nbu	mps3	nbum	ps4	nbumps5	
Min. :	0.0000	Min.	:0.0000	Min.	:0.00000	Min. :0.000000	
1st Qu.:	0.0000	1st Qu	.:0.0000	1st Qu.	:0.0000	1st Qu.:0.000000	
				Median		Median :0.000000	
Mean :	0.3936	Mean	:0.3928	Mean	:0.06772	Mean :0.004644	
3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:0.0				3rd Qu.:0.000000			
Max. :	8.0000	Max.	:7.0000	Max.	:3.00000	Max. :1.000000	
nbump	s6 n	bumps7	nbump	s89 e	nergy	maxenergy	
Min. :	O Min.	:0	Min. :	0 Min.	: 0	Min. : 0	
1st Qu.:	0 1st	Qu.:0	1st Qu.:	0 1st Q	u.: 0	1st Qu.: 0	
Median :	0 Medi	an :0	Median :	0 Media	n : 0	Median: 0	
Mean :	0 Mean	:0	Mean :	0 Mean	: 4975	Mean : 4279	
3rd Qu.:					u.: 2600		
Max. :	0 Max.	:0	Max. :	0 Max.	:402000	Max. :400000	
class							
Min. :0.00000							
1st Qu.:	0.00000						
Median :0.00000							

3rd Qu.:0.00000 Max. :1.00000

Dimensions of Data Matrix

[1] 2584 19

What the Factor Variables look like

Class/Response Distribution

Seismic Distribution

Seismoacoustic Distribution

Ghazard Distribution

What the Continuous Variables look like

density.default(x = seismic\$genergy)

density.default(x = seismic\$gpuls)

Density

N = 2584 Bandwidth = 66.84

density.default(x = log(seismic\$generg)

density.default(x = log(seismic\$gpuls)

2

0

N = 2584 Bandwidth = 0.2108 density.default(x = seismic\$gdenergy

N = 2584 Bandwidth = 0.1756 density.default(x = seismic\$gdpuls)

6

8

4

density.default(x = seismic\$maxenergy

density.default(x = seismic\$nbumps)

N = 2584 Bandwidth = 279.1

Density

density.default(x = seismic\$nbumps2

density.default(x = seismic\$nbumps3

Density

N = 2564 Danuwiuiii = 0.1595

N = 2584 Bandwidth = 0.1395

density.default(x = seismic\$nbumps4

density.default(x = seismic\$nbumps5

N = 2584 Bandwidth = 0.05218

N = 2584 Bandwidth = 0.01271

Call:

lm(formula = class ~ ., data = seismic)

Residuals:

Min 1Q Median 3Q Max -0.57549 -0.07778 -0.03812 -0.00950 1.03232

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -2.393e-02 2.565e-02 -0.933 0.35090 seismic 1.869e-02 1.076e-02 1.737 0.08254 . seismoacoustic 2.610e-03 1.002e-02 0.260 0.79457 shift 6.190e-04 1.157e-02 0.054 0.95732 -8.698e-08 3.459e-08 -2.5140.01199 * genergy gpuls 1.019e-04 1.670e-05 6.102 1.2e-09 *** 1.006e-04 -0.690 0.49009 gdenergy -6.943e-05 -1.942e-04 gdpuls 1.368e-04 -1.4200.15583 ghazard -1.394e-02 1.608e-02 -0.867 0.38618 nbumps 4.674e-01 1.680e-01 2.783 0.00543 ** nbumps2 -4.282e-01 1.682e-01 -2.5460.01096 * 1.681e-01 -2.535nbumps3 -4.260e-01 0.01131 * nbumps4 -4.622e-01 1.708e-01 -2.7060.00685 ** nbumps5 -2.963e-01 2.332e-01 -1.270 0.20408 2.536e-07 2.395e-06 0.106 0.91568 energy maxenergy -1.054e-06 2.333e-06 -0.4520.65164

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2371 on 2568 degrees of freedom Multiple R-squared: 0.09128, Adjusted R-squared: 0.08597 F-statistic: 17.2 on 15 and 2568 DF, p-value: < 2.2e-16

Lots of multicollinearity to worry about during variable selection

vif(fit) ## seismic seismoacoustic shift genergy gpuls ## 1.209814 1.286183 1.411216 2.889651 4.057018 ## ghazard nbumps nbumps2 gdenergy gdpuls 3.430524 1.395598 798.964152 3.000282 2414.689538 ## ## nbumps3 nbumps4 nbumps5 maxenergy energy 769.131960 104.402690 ## 11.562237 110.283444 93.762895

Correlation of the Variables

\$r				
	row	column	cor	p
1	genergy	gpuls	0.7500	0.0e+00
2	genergy	nbumps4	0.1500	1.4e-14
3	gpuls	nbumps4	0.2600	0.0e+00
4	genergy	nbumps3	0.1900	0.0e+00
5	gpuls	nbumps3	0.2300	0.0e+00
6	nbumps4	nbumps3	0.1800	0.0e+00
7	genergy	nbumps	0.2200	0.0e+00
8	gpuls	nbumps	0.3000	0.0e+00
9	nbumps4	nbumps	0.4000	0.0e+00
10	nbumps3	nbumps	0.8000	0.0e+00
11	genergy	nbumps2	0.1400	2.2e-13
12	gpuls	nbumps2	0.2100	0.0e+00
13	nbumps4	nbumps2	0.1600	0.0e+00
14	nbumps3	nbumps2	0.3500	0.0e+00
15	nbumps	nbumps2	0.8000	0.0e+00
16	genergy	nbumps5	-0.0099	6.2e-01
17	gpuls	nbumps5	0.0490	1.2e-02
18	nbumps4	nbumps5	-0.0170	4.0e-01
19	nbumps3	nbumps5	0.0460	1.8e-02
20	nbumps	nbumps5	0.0700	4.0e-04
21	nbumps2	nbumps5	-0.0053	7.9e-01
22	genergy	gdenergy	0.0490	1.4e-02
23	gpuls	${\tt gdenergy}$	0.2900	0.0e+00

```
24 nbumps4 gdenergy 0.0370 6.1e-02
25 nbumps3 gdenergy -0.0120 5.4e-01
26 nbumps gdenergy 0.0300 1.3e-01
27 nbumps2 gdenergy 0.0410 3.6e-02
28 nbumps5 gdenergy 0.1200 3.3e-10
29 genergy gdpuls 0.0720 2.7e-04
30 gpuls gdpuls 0.3800 0.0e+00
31 nbumps4 gdpuls 0.0660 7.6e-04
32 nbumps3 gdpuls 0.0150 4.5e-01
33 nbumps gdpuls 0.0580 3.2e-03
34 nbumps2 gdpuls 0.0510 9.4e-03
35 nbumps5 gdpuls 0.1400 5.9e-13
36 gdenergy gdpuls 0.8100 0.0e+00
NULL
$svm
NULL
```

Separating into Test and Training Sets

```
##-----
## Setting up
##------
n <- dim(seismic)[1]
p <- dim(seismic)[2]

set.seed(2016)
test <- sample(n, round(n/4))
train <- (1:n)[-test]
seismic.train <- seismic[train,]
seismic.test <- seismic[test,]

#View(seismic.train)
#View(seismic.test)</pre>
```

Linear regression of an indicator matrix

pc.comp

PC1 vs PC3

lda.class 0 1 0 1771 108 1 36 23 [1] 0.1755725

[1] 0.9800775

lda.class 0 1 0 591 34 1 16 5

[1] 0.1282051

[1] 0.9736409

Logistic Regression on the Training and Test Sets

Call:
glm(formula = class ~ ., family = binomial, data = seismic.train)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.8471 -0.3860 -0.2851 -0.1566 3.0825

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
                           7.721e-01
                                      -8.215 < 2e-16 ***
(Intercept)
               -6.343e+00
                4.808e-01
                           2.111e-01
seismic
                                        2.278 0.022727 *
seismoacoustic
                2.159e-01
                           1.993e-01
                                        1.084 0.278524
shift
                1.179e+00
                           3.573e-01
                                        3.301 0.000965 ***
               -2.471e-07
                           5.044e-07
                                       -0.490 0.624239
genergy
gpuls
                7.095e-04
                           2.474e-04
                                        2.868 0.004136 **
gdenergy
               -1.904e-04
                           2.177e-03
                                       -0.087 0.930292
gdpuls
               -2.997e-03
                           3.093e-03
                                       -0.969 0.332500
ghazard
               -2.335e-01
                           3.509e-01
                                       -0.666 0.505671
nbumps
                1.807e+01
                           5.354e+02
                                        0.034 0.973080
nbumps2
               -1.773e+01
                           5.354e+02
                                       -0.033 0.973590
                                       -0.033 0.973611
nbumps3
               -1.771e+01
                           5.354e+02
nbumps4
               -1.806e+01
                           5.354e+02
                                       -0.034 0.973097
nbumps5
               -1.604e+01
                           5.354e+02
                                       -0.030 0.976095
                1.622e-06
                           4.033e-05
                                        0.040 0.967929
energy
               -7.101e-06
                          3.969e-05
                                       -0.179 0.858012
maxenergy
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 958.82
                           on 1937
                                    degrees of freedom
Residual deviance: 813.40
                           on 1922
                                    degrees of freedom
AIC: 845.4
Number of Fisher Scoring iterations: 12
```

The predictors that are significant in our logistic model are seismic, shift and gpuls. The predictors nbumps6, nbumps7 and nbumps89 were removed as they did not provide any data.

```
glm.pred 0 1
0 1802 125
1 5 6
```

[1] 0.9329205

The diagonal elements of the confusion matrix indicate correct predictions, while the off-diagonals represent incorrect predictions. Hence our model on the training data set correctly predicted that the seismic activity would be of no harzard on 1786 observations and that it would be of hazard on 0 observations, for a total of 1786 + 0 = 1786 correct predictions. The mean() function can be used to compute the fraction of hazards for which the prediction was correct. In this case, logistic regression correctly predicted the class of hazard 92 percent of the time. The bad part about this 92 percent of the time is that it did not get any of our actual real hazards observations correct!!!

```
## ## glm.pred 0 1
## 0 602 37
## 1 5 2
```

[1] 0.9349845

The diagonal elements of the confusion matrix indicate correct predictions, while the off-diagonals represent incorrect predictions. Hence our model on the testing data set correctly predicted that the seismic activity would be of no harzard on 605 observations and that it would be hazardous on 2 observations, for a total of 602 + 2 = 604 correct predictions. The mean() function can be used to compute the fraction of seismic activity for which the prediction was correct. In this case, logistic regression correctly predicted class of hazard 93.5 % of the time. However, again worrisome, is that the model miss 5 observations that were hazardous instances and 37 that were not hazardous.

Recall that the logistic regression model had only 3 predictors that were significant from an avaiable 19. Perhaps by removing the variables that appear not to be helpful in predicting seismic hazard, we can obtain a more effective model. After all, using predictors that have no relationship with the response tends to cause a deterioration in the test error rate (since such predictors cause an increase in variance without a corresponding decrease in bias), and so removing such predictors may in turn yield an improvement [straight from the book]