Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Политехнический институт							
институт							
Кафедра техносферной и экологической безопасности							
кафедра							

ОТЧЕТ О ПРАКТИЧЕСКОЙ РАБОТЕ №1

по дисциплине

«Безопасность жизнедеятельности»

Определение полезной площади, объёма помещений Кондиционеры в помещениях Вентиляция Задачи № 1-8, Вариант № 20

 Преподаватель
 О. Н. Ледяева инициалы, фамилия

 Студент
 КИ23-16/16, 032322546
 Е. А. Гуртякин инициалы, фамилия

 номер группы, зачётной книжки
 подпись, дата
 инициалы, фамилия

1 ВВЕДЕНИЕ

1.1 Цель работы

Изучить теоретический материал по предложенным темам. Выполнить поставленные задачи.

1.2 Задачи

В рамках данной практической работы необходимо выполнить следующие задачи:

- 1 изучить теоретический материал по предложенной теме;
- 2 выполнить задания;
- 3 предоставить отчёт преподавателю.

2 ХОД РАБОТЫ

2.1 Задание 1

2.1.1 Условия

Определить соответствия учебных помещений требованиям нормативных документов. Для выполнения задания использовать значения таблицы 1 по вариантам.

Таблица 1 – Вариант задания

N₂	№ Предназначение		b,	h,	l,	Расположение	Количество
варианта	аудитории	M	M	M	M	окон	студентов
0	Лекционная	15	8	3	1,8	ЮГ	80

2.1.2 Решение

Рассчитаем площадь учебной аудитории S_{Π} по формуле:

$$S_{\Pi} = a \cdot b$$
,

где a — длина, b — ширина аудитории, м.

Применим формулу:

$$S_{\Pi} = 15.8 = 120 \text{ M}^2$$

Рассчитаем объём учебной аудитории V_{Π} по формуле:

$$V_{\Pi} = a \cdot b \cdot h$$
,

где h – высота от пола до потолка аудитории, м.

Применим формулу:

$$V_{\Pi} = 15.8.3 = 360 \text{ m}^3$$

Рассчитать площадь и объём, приходящиеся на 1 студента можно по формулам:

$$S_{\Pi 1} = \frac{S_{\Pi}}{n},$$

$$V_{\Pi 1} = \frac{V_{\Pi}}{n}$$

где n – количество студентов в аудитории.

Применим данные формулы:

$$S_{\Pi 1} = \frac{120}{80} = 1.5 \text{ M}^2$$

$$V_{\Pi 1} = \frac{360}{80} = 4.5 \text{ m}^3$$

Согласно гигиеническим требованиям, в лекционной аудитории, рассчитанной на 100 человек, на одно место должно приходиться $1,3\,\mathrm{m}^2$. Расстояние от экрана (или доски) до первого ряда аудиторных столов – не менее $2\,\mathrm{m}$.

Требуемые данные и вычисленные указаны в таблице 2.

Таблица 2 – Сравнение фактических и требуемых значений

Данные	Фактическое значение	Требуемое значение
$S_{\Pi 1}$	1,5 м ²	1,3 м ²
$V_{\Pi 1}$	4,5 м ³	не менее 4-5 м ³
l	1,8 м	не менее 2 м

Исходя из данных выше, делается вывод, что помещение соответствует нормативным документам по параметрам площади и объёма на одного студента, но не подходит по параметру расстояния до первого ряда аудиторных столов.

2.2 Задание 2

2.2.1 Условия

- 1 Обосновать необходимость применения кондиционера в рабочем помещении (таблица 1);
 - 2 Рассчитать его мощность;
 - 3 Подобрать конкретный кондиционер.

2.2.2 Решение

Ориентировочная мощность бытового кондиционера Q определяется по формуле:

$$Q = Q_{\mathsf{T\Pi}} + Q_{\mathsf{TB}},$$

где $Q_{\mathsf{T\Pi}}$ – теплоприток, Вт

$$Q_{T\Pi} = S \cdot h \cdot k$$
,

где S — площадь помещения, M^2 ;

h – высота помещения, м;

k – коэффициент, равный 30-40 Вт/м³: для помещения, в которое попадает много солнечного света, k=40 Вт/м³; для затененного помещения k=30 Вт/м³; при средней освещенности k=35 Вт/м³;

 Q_{TB} – тепловыделения, Вт

$$Q_{\mathsf{TB}} = q_{\mathsf{J}} + q_{\mathsf{TD}},$$

где $q_{\rm Л}$ — тепло, выделяемое людьми, в спокойном состоянии один человек выделяет 0,1 кВт тепла;

 $q_{\mathsf{пp}}$ — тепло, выделяемое электроприборами (компьютер или копировальный аппарат выделяют 0,3 кВт, для остальных приборов можно считать, что они выделяют в виде тепла 1/3 паспортной мощности).

Просуммировав все тепловыделения и теплопритоки, получают требуемую мощность охлаждения:

$$Q = S \cdot h \cdot k + q_{\Pi} + q_{\Pi D}$$

Исходя из результата, выбирают близкую по мощности модель кондиционера из стандартного ряда. Следует отметить, что на маркировке кондиционеров большинства производителей указана мощность не в привычных киловаттах, а в БТЕ/ч, где БТЕ – это британская тепловая единица. 1 БТЕ/ч = 0,3 Вт.

Установка кондиционера может быть обоснована требованиями к соблюдению норм санпин.

Считаем, что лекционная аудитория укомплектована одним компьютером.

Коэффициент k был подобран исходя из южного расположения окон.

Пользуясь формулами выше, посчитаем требуемую мощность охлаждения:

$$Q = 120 \cdot 3 \cdot 30 + 100 \cdot 80 + 300 =$$

$$= 10800 + 8000 + 300 =$$

$$= 19100 \text{ BT}$$

$$= 19,1 \text{ kBT}$$

Наиболее подходящим кондиционером для данного помещения является колонный кондиционер Midea MFS2-48ARN1 (14,07 кВт). Стоит отметить, что мощность целевого кондиционера не достигает необходимой мощности, что может привести к повышенному износу техники.

2.3 Задание 3

2.3.1 Условия

Определить производительность общеобменной вентиляции L, $\rm M^3/v$, обеспечивающей в холодный период года удаление теплоизбытков $\rm Q_{\rm ИЗ6}$, Вт из производственного помещения и поддержание минимально допустимой температуры воздуха в рабочей зоне $\rm t_{\rm p.3.}$ на постоянных рабочих местах с легкой физической работой категории Iб, которая согласно санитарным нормам равна $\rm 20^{\circ}C$. Тепловыделения в помещении от технологического оборудования равны $\rm Q_{\rm o6}$, Вт, а теплопотери через наружные ограждения составляют $\rm Q_{\rm H.o}$, Вт. Плотность воздуха при расчетах принимать равной 1,25 кг/м³.

Таблица 3 – Варианты параметров тепловыделения

Параметры	Варианты исходных данных
	0
Q ₀₆ , Вт	100000
$Q_{H.O}$, BT	60000

2.3.2 Решение

Общее количество воздуха L, которое должно подаваться общеобменной вентиляцией в производственное помещение для обеспечения в рабочей зоне предельно допустимой концентрации вредных газов, паров и пыли, рассчитывается по формуле, ${\rm M}^3/{\rm H}$

$$L = \frac{M \cdot 10^6}{K \cdot (C_{\Pi / K} - C_0)} ,$$

где M – интенсивность выделения рассматриваемого вредного вещества в помещении, кг/ч;

К – безразмерный коэффициент равномерности распределения вентиляционного воздуха в помещении;

 $C_{\text{пдк}}$, C_0 – предельно допустимая концентрация в рабочей зоне помещения, мг/м 3 и его концентрация в поступающем для проветривания помещения воздухе.

Кратность воздухообмена $K_{\text{об}}$ в помещении определяется по формуле:

$$K_{o6} = \frac{L}{V}$$
,

где V – объем проветриваемого помещения, м 3 .

Воздухообмен, необходимый для обеспечения установленной санитарными нормами температуры воздуха в рабочей зоне производственных помещений, рассчитывается по формуле, м³/ч:

$$L = \frac{3.6 \cdot Q_{u36}}{c \cdot \rho \cdot (t_{ebim} - t_{np})},$$

где $Q_{\mathsf{из6}}$ – избыточное явное тепло, выделяемое в помещении, Вт;

 $\mathsf{C} - \mathsf{y}$ дельная теплоемкость воздуха (в расчетах можно принять $\mathsf{C} = 1 \, \mathsf{K} \mathsf{Д} \mathsf{ж} / (\mathsf{K} \mathsf{\Gamma} \mathsf{F} \mathsf{p} \mathsf{a} \mathsf{J});$

- плотность наружного (приточного) воздуха при рассматриваемой температуре, кг/м 3 ;

 $t_{\mathsf{выт}},\,t_{\mathsf{пр}}$ – температура соответственно вытяжного и приточного воздуха, °C;

$$Q_{\mu 36} = Q_{66} - Q_{66}$$

где Q_{06} – тепловыделения в помещении от технологического оборудования, Вт; Q – выделение тепла от других источников (плюс) или его потери (минус), Вт, для теплого и холодного периодов года

$$t_{\rm BMM}=t_{p3}+3,$$

где t_{p3} – температура воздуха в рабочей зоне по санитарным нормам, °C; $t_{пp}=t_{жнм}$, °C – для теплого периода года, $t_{np}=t_{p3}$ – 5, °C – для холодного периода года;

где $t_{\text{жнм}}$ — средняя температура наружного воздуха в 13 ч наиболее жаркого месяца в районе расположения предприятия, °C.

Посчитаем $Q_{изб}$:

$$Q_{\text{M36}} = 100000 - 60000 = 40000 \text{ BT}$$

Следующим шагом посчитаем $t_{\mathit{eыm}}$ и $t_{\mathsf{пp}}$:

$$t_{ghm} = 20 + 3 = 23$$
 °C,

$$t_{np} = 20 - 5 = 15 \, ^{\circ}\text{C}$$

Удельная теплоёмкость и плотность воздуха даны следующие:

$$c = 1 \text{ кДж/(кг·град)},$$

$$= 1,25 \text{ кг/м}^3$$
7

Подставим значения в формулу:

$$L = \frac{3.6 \cdot 40000}{1000 \cdot 1.25 \cdot (23 - 15)} = \frac{144000}{10000} = 14.4 \text{ m}^3/\text{y}$$

2.4 Задание 4

2.4.1 Условия

Определить производительность общеобменной вентиляции L, м 3 /ч, обеспечивающей в теплый период года удаление теплоизбытков $Q_{\rm из6}$, Вт, из производственного помещения и поддержание максимально допустимой температуры воздуха в рабочей зоне $t_{\rm p.s.}$ на непостоянных рабочих местах с физической работой средней тяжести категории IIa, которая согласно санитарным нормам равна 29 °C. Тепловыделения в помещении от технологического оборудования равны $Q_{\rm o6}$, Вт, от электродвигателей – $Q_{\rm э.д.}$, Вт, и приток тепла от солнечной инсоляции – $Q_{\rm c}$ (Вт).

Средняя температура наружного воздуха в 13 ч наиболее жаркого месяца $t_{\text{жнм}}$, °С. Плотность воздуха при расчетах принимать равной 1,2 кг/м³.

Таблица 4 – Исходные данные по вариантам

Параметр	Варианты исходных данных
ы	5; 0
Q ₀₆ , Вт	120000
$Q_{9.Д}$, Вт	8000
Q_{c} , BT	20000
t [™] _H M	20

2.4.2 Решение

Воспользуемся формулами из решения задания 3. Вычислим $Q_{из6}$:

$$Q_{\text{M36}} = 120000 + 8000 + 20000 = 148000 \text{ BT}$$

Теперь вычислим $t_{выт}$ и $t_{пр}$:

$$t_{\rm eыm} = 29 + 3 = 32 \, {\rm ^oC},$$
 $t_{\rm np} = 20 \, {\rm ^oC}$

Удельная теплоёмкость и плотность воздуха даны следующие:

$$c = 1 \ \text{кДж/(кг·град)},$$

$$= 1.2 \ \text{кг/м}^3$$

Подставим значения в формулу тем самым найдя результат:

$$L = \frac{3.6 \cdot 148000}{1000 \cdot 1.2 \cdot (32 - 20)} = \frac{532800}{14400} \approx 37 \text{ m}^3/\text{y}$$

2.5 Задание 5

2.5.1 Условия

Рассчитать во сколько раз должна быть увеличена производительность общеобменной вентиляции в теплый период года по сравнению с холодным для удаления избыточного тепла из помещения при следующих условиях: приток тепла от технологического оборудования — $Q_{\rm ob}$, Вт, от солнечной инсоляции в теплый период $Q_{\rm c}$, Вт, потери тепла через наружные ограждения в холодный период — $Q_{\rm H.o.}$, Вт, средняя температура наружного воздуха в 13 ч наиболее жаркого месяца $t_{\rm жнм}$; его плотность в теплый период — 1,2 кг/м³; а в холодный — 1,25 кг/м³; температура в рабочей зоне в теплый период — 28°С, в холодный — 24°С.

Таблица 5 – Варианты задания

т иолици о	Вирианты задания
Параметр	Варианты исходных данных
ы	5; 0
Q _{об} , Вт	160000
Q_{c} , Вт	160000
Q _{н.о} ,. Вт	60000
t _{жнм} , °C	20

2.5.2 Решение

Воспользуемся формулами из решения задания 3. Сначала вычислим L для холодного периода. Посчитаем $Q_{\rm из6}$:

$$Q_{\text{M36}} = 160000 - 60000 = 100000 \text{ BT}$$

Следующим шагом посчитаем $t_{\mathit{eыm}}$ и $t_{\mathsf{пp}}$:

$$t_{BMm} = 24 + 3 = 27$$
 °C,

$$t_{\rm np} = 24 - 5 = 19 \, {\rm ^oC}$$

Удельная теплоёмкость и плотность воздуха даны следующие:

Вычислим производительность общеобменной вентиляции в холодный период L_{xon} :

$$L_{\text{XOЛ}} = \frac{3.6 \cdot 100000}{1000 \cdot 1.25 \cdot (27 - 19)} = \frac{360000}{10000} = 36 \text{ m}^3/\text{y}$$

Теперь вычислим L для тёплого периода: Посчитаем $Q_{\text{из6}}$:

$$Q_{\text{M36}} = 160000 + 160000 = 320000 \text{ BT}$$

Следующим шагом посчитаем $t_{\mathit{eыm}}$ и $t_{\mathsf{пp}}$:

$$t_{gыm} = 28 + 3 = 31 \text{ °C},$$
 $t_{\Pi D} = 20 \text{ °C}$

Удельная теплоёмкость и плотность воздуха даны следующие:

$$c = 1 кДж/(кг \cdot град),$$

= 1,2 кг/м³

Вычислим производительность общеобменной вентиляции в тёплый период $L_{\mbox{\scriptsize T\"en}}$:

$$L_{\text{TER}} = \frac{3.6 \cdot 320000}{1000 \cdot 1.2 \cdot (31 - 19)} = \frac{1152000}{14400} = 80 \text{ m}^3/\text{y}$$

Итоговое отношение равно:

$$\frac{L_{\text{TER}}}{L_{\text{XOR}}} = \frac{80}{36} \approx 2.2$$

Именно во столько раз должна быть увеличена производительность общеобменной вентиляции в теплый период года.

2.6 Задание 6

2.6.1 Условия

Нужно ли осушать или увлажнять воздух, поступающий с улицы в приточную вентиляционную систему, если относительная влажность воздуха на улице $_{\rm H}$ (%) при $+11^{\circ}$ С, а относительная влажность воздуха в цехе должна быть равной $_{\rm L}$ (%) при температуре $+22^{\circ}$ С? (Максимальная влажность воздуха при $+22^{\circ}$ С в 2 раза выше, чем при $+11^{\circ}$ С).

Таблица 6 – Исходные данные

Параметр	Варианты исходных данных							
ы	5; 0							
Фн, %	70							
φ _μ , %	50							

2.6.2 Решение

Относительная влажность воздуха (%) показывает степень насыщения воздуха водяными парами. Она выражает отношение абсолютной влажности воздуха e при данном состоянии e0 максимальной влажности, e1. абсолютной влажности воздуха при полном e1 насыщении при e2 же значениях температуры и давления e3 насыщения e4 насыщения e6 насыщения e

$$= \frac{e}{e_{\text{Max}}} \cdot 100\%$$

Относительная влажность может быть также выражена отношением парциального давления водяных паров при данном состоянии p к парциальному давлению этих паров при полном насыщении воздуха p_H (в %):

$$= \frac{p}{p_{\text{max}}} \cdot 100\%$$

При нагреве воздуха в системах вентиляции и кондиционирования его абсолютная влажность остается постоянной, а максимальная влажность увеличивается пропорционально изменению парциального давления водяных паров при полном насыщении воздуха (таблица 7).

Таблица 7 – Изменение парциального давления

Температура, °С	Давление насыщенного водяного пара, кПа, при температуре, °C										
	00										
0	0,61	0,66	0,71	0,76	0,81	0,87	0,94	1,00	1,07	1,15	
10	1,23	1,31	1,40	1,49	1,60	1,71	1,81	1,95	2,07	2,20	
20	2,33	2,49	2,64	2,81	2,99	3,18	3,36	3,56	3,79	4,00	
30	4,24	4,49	4,76	5,03	5,32	5,63	5,95	6,28	6,63	6,98	

Из условия задания более явно выпишем, что нам известно:

$$T_{\rm H} = + 11 \, ^{\circ}{\rm C},$$
 $\varphi_{\rm H} = 70 \, ^{\circ}{\rm K},$ $T_{\rm U} = + 22,$ $\varphi_{\rm U} = 50 \, ^{\circ}{\rm K},$ $e_{\rm U,max} = 2 \cdot e_{\rm H,\,max}$

Из формул выразим e_{H} и e_{L} :

$$e_{H} = \varphi_{H} \cdot \frac{e_{H,max}}{100\%}$$

$$e_{U} = \varphi_{U} \cdot \frac{e_{U,max}}{100\%}$$

Вычислим e_{H} и e_{L} :

$$\mathbf{e}_{\mathsf{H}} = 0,70 \cdot 1,31 = 1,1135 \; \mathsf{к} \mathsf{\Pi} \mathsf{a}$$
 $e_{\mathsf{H}} = 0,50 \cdot 2,64 = 1,98 \; \mathsf{k} \mathsf{\Pi} \mathsf{a}$

Видим, что внутренняя нужная влажность значительно превышает наружную влажность даже после подогрева наружного воздуха до температуры цеха. Исходя из того, что $e_{\rm ц} > e_{\rm h}$, необходимо увлажнять поступающий воздух перед подачей внутрь цеха.

2.7 Задание 7

2.7.1 Условия

- 1. Определить площадь световых проемов и количество окон для помещений, используя данные табл.1 и формулы;
 - 2. Подсчитать световой коэффициент по формуле;
 - 3. Определить коэффициент заглубления по формуле;
- 4. Сделать вывод о соответствии полученных коэффициентов санитарногигиеническим нормам, учитывая, что световой коэффициент для учебного помещения должен составлять не менее 1/6; коэффициент заглубления — не менее 1/2.

Таблица 8 – Исходные данные

No	Предназначение	a,	b,	h,	l,	Расположение	Количество
варианта	аудитории	M	M	M	M	окон	студентов
0	Лекционная	15	8	3	1,8	ЮГ	80

2.7.2 Решение

Как правило, дневное естественное освещение в помещении происходит за счет одностороннего поступления бокового света из окон, расположенных на одной стене.

В этом случае нормируется минимальное значение коэффициента естественного освещения (КЕО) в точке, расположенной на расстоянии 1 м от стены, наиболее удаленной от светового проема, на пересечении вертикальной плоскости и условной рабочей поверхности столов (или пола).

Предварительный расчет площади световых проемов производится по формуле:

$$\frac{S_o}{S_n} \cdot 100\% = \frac{e_H \cdot \eta_o \cdot K_{3\partial}}{\tau_0 \cdot r_1} \tag{4.1}$$

где $S_{\rm o}$ – площадь световых проемов при естественном боковом освещении;

 $S_{\rm n}$ – площадь пола помещения;

 $e_{\rm H}$ — нормированное значение KEO с учетом характеристики зрительной работы (для ПИ СФУ $e_{\rm H}$ = 0,6 %);

 η_{o} – световая характеристика окон (для ПИ СФУ η_{o} = 31);

 $K_{_{3\text{д}}}$ — коэффициент, учитывающий затенение окон противостоящими зданиями (если напротив нет зданий, то $K_{_{3\text{д}}}=1$);

 au_o – общий коэффициент светопропускания:

$$\tau_0 = \tau_1 \cdot \tau_2 \cdot \tau_3 \cdot \tau_4, \tag{4.2}$$

где τ_1 – коэффициент светопропускания материала, τ_1 = 0,8;

 au_2 — коэффициент, определяющий потери света в переплетах светопроема, для двойных деревянных переплетов, au_2 = 0,65;

 au_3 — коэффициент, учитывающий потери света в несущих конструкциях, при боковом освещении, au_3 = 1;

 τ_4 — коэффициент, учитывающий потери света в солнцезащитных устройствах, для убирающихся штор, τ_4 = 1;

 r_1 — коэффициент, учитывающий повышение КЕО при боковом освещении благодаря свету, отражаемому от поверхностей помещения и подстилающего слоя, прилегающего к зданию (для аудиторий ПИ СФУ, r_1 = 1,9).

Из формулы (4.1) получаем необходимую площадь светового проема, M^2 :

$$S_0 = \frac{e_H \cdot \eta_0 \cdot K_{3\partial} \cdot S_n}{\tau_0 \cdot r_1 \cdot 100} \tag{4.3}$$

В зависимости от общей площади световых проемов и типа помещения рассчитывают необходимое количество окон стандартных размеров. Например, если в результате получено, что общая площадь световых проемов равна 8 $\rm M^2$, это означает, что размеры окон выбирают исходя из архитектурных особенностей здания, например, для помещения необходимы два окна площадью по 4 $\rm M^2$ каждое.

Следует учитывать отражающую способность окрашенных поверхностей стен. Она составляет для белой поверхности 80 %, для светло-желтой — 60 %, для светло-зеленой — 40 %, для светло-голубой — 30 %, для темно-голубой — 6 %. Загрязненные стены отражают в 2 раза меньше света, чем только что выкрашенные или вымытые.

Для характеристики естественной освещенности помещений используют световой коэффициент, который определяют по формуле

$$CK = \frac{S_0}{S_n} \tag{4.4}$$

где S_0 – площадь застекленной части окон; $S_{\rm n}$ – площадь пола, и коэффициент заглубления – по формуле

$$K_3 = \frac{h_1}{b} \tag{4.5}$$

где h_1 — высота верхнего края окна над полом (принять по реальному расположению окна в помещении); b— глубина (ширина) помещения, м.

Определим площадь световых проемов и количество окон для помещения. Для начала рассчитаем площадь пола помещения:

$$S_n = a \cdot b = 15 \cdot 6 = 120 \text{ M}$$

Затем рассчитаем τ_0 :

$$\tau_0 = 0.8 \cdot 0.65 \cdot 1 \cdot 1 = 0.52$$

Подставим все известные значения в формулу и найдём необходимую площадь светового проёма окон:

$$S_0 = \frac{e_{\scriptscriptstyle H} \cdot \eta_0 \cdot K_{\scriptscriptstyle 3\partial} \cdot S_n}{\tau_0 \cdot r_1 \cdot 100} = \frac{0.6 \cdot 31 \cdot 1 \cdot 120}{0.52 \cdot 1.9 \cdot 100} = \frac{2232}{98.8} \approx 22.6 \text{ m}^2$$

Следующим шагом посчитаем световой коэффициент:

$$CK = \frac{22.6}{120} = 0.188$$

Теперь определим коэффициент загубления:

$$h_1 = h - 0.2 = 3 - 0.2 = 2.8 \text{ M}$$

$$K_3 = \frac{h_1}{h} = \frac{2.8}{8} \approx 0.35$$

Фактические данные и нормативные представлены в таблице 9.

Таблица 9 – Сравнение фактических и требуемых значений

	Данные	Фактическое значение	Требуемое значение		
CK	•	0,188	Не менее 0,17		
Кз		0,35	Не менее 0,5		

Исходя из данных выше аудитория не соответствуетсанитарно-гигиеническим нормам по пункту коэффициента загубления.

2.8 Задание 8

2.8.1 Условия

Используя данные табл. 10 по параметрам помещения рассчитать и подобрать необходимое количество ламп.

Таблица 10 – Исходные данные

N₂	Предназначение	a,	b,	h,	l,	Расположение	Количество
варианта	аудитории	M	M	M	M	окон	студентов
0	Лекционная	15	8	3	1,8	ЮГ	80

2.8.2 Решение

Необходимый световой поток каждой лампы, лм, вычисляется по формуле

$$\Phi = \frac{E \cdot S \cdot k \cdot z}{N \cdot \eta} \tag{5.1}$$

где E — нормативная минимальная освещенность рабочих поверхностей для определенного разряда зрительных работ, люкс (лк, справочные данные); принимаем E = 300 лк;

S – освещаемая площадь, M^2 ;

k–коэффициент запаса ламп, учитывающий их запыление и износ в процессе эксплуатации, принимаем k=1,4;

z – коэффициент минимальной освещенности, z = 1,1–1,5 (при оптимальных отношениях расстояния между светильниками к расчетной высоте для люминесцентных ламп z=1,1);

N— число ламп в помещении;

η – коэффициент использования светового потока.

Освещаемая площадь помещения S, M^2 , определяется по формуле:

$$S = a \cdot b, \tag{5.2}$$

где a— длина помещения, м;

b — ширина помещения, м.

Далее рассчитывается количество ламп N для установки в помещении:

$$N = \frac{S}{L^2} \tag{5.3}$$

где L – расстояние между светильниками, м.

Размещение светильников в помещении при системе общего освещения зависит от рассчитанной высоты их подвеса h, которая обычно задается размерами помещений. Наиболее выгодное соотношение расстояния между светильниками к расчетной высоте подвеса:

$$\lambda = \frac{L}{h} \tag{5.4}$$

где λ – соотношение расстояния между светильниками к расчетной высоте подвеса, определяется из таблиц нормативных документов в зависимости от кривой силы света лампы. Для люминесцентных ламп при косинусоидальной типовой кривой λ = 1,4.

H – рассчитанная высота подвеса ламп в светильниках, м. Из формулы следует, что

$$L = \lambda \cdot h \,, \tag{5.5}$$

Следует найти расчетную высоту подвеса над уровнем рабочего стола h по формуле:

$$h = H - h_{\rm CB} - h_{\rm p},$$
 (5.6)

где H – высота помещения, м;

 $h_{\rm cB}$ — расстояние от потолка до нижней кромки светильника (свес), где находится лампа (лампы), м. Величину $h_{\rm c8}$ следует учитывать при использовании компактных люминесцентных ламп или ламп накаливания в люстрах. Современные светильники с лампами, имеющими трубчатую форму, совмещены с уровнем потолка, поэтому для них $h_{\rm c8}$ = 0;

 $h_{\rm p}$ – высота рабочей поверхности столов над полом, м. Обычно она равна 0,8 м

Для определения коэффициента использования светового потока η нужно найти индекс помещения i, а также коэффициенты отражения света от стен ρ_c и потолка ρ_{π_c}

Для прямоугольных помещений:

$$i = \frac{a \cdot b}{h \cdot (a+b)} \tag{5.7}$$

где a и b— соответственно длина и ширина помещения, м; h — расчетная высота подвеса светильников, м; для квадратных помещений

$$i = \frac{0.5}{h}\sqrt{S} \tag{5.8}$$

для помещений большой длины:

$$i = \frac{b}{h} \tag{5.9}$$

Если при расчетах индекс i оказался больше 5, принимают i = 5, а если i при расчетах оказался меньше 0,5, принимают i = 0,5.

Коэффициенты отражения поверхностей помещения: потолка — ρ_n = 70 %, стен — ρ_c = 50 %, рабочей поверхности столов — ρ_p = 30 %. Используя полученные значения i, ρ_n и ρ_{cr} по табл. П.2 прил. 1 определяют величину коэффициента использования светового потока η для выбранного типа ламп в долях единицы. Необходимо обратить внимание на то, что в табл. П.2 величина η дана в %, которые необходимо перевести в доли единиц, т.е. если получилась величина равная 45% (число взято для примера произвольно), то долей единиц будет 0,45. Эта число должно использоваться для дальнейшего расчета.

По формуле (4.1) определяют световой поток одной лампы в каждом светильнике. По табл. П.3, П.4, П.5 в зависимости от светового потока выбирают тип лампы. Необходимо помнить, что мощность одной компактной люминесцентной лампы (их называют энергосберегающими) можно приравнять к мощностям пяти ламп накаливания. Например, мощность лампы YPZ5-2U-3 составляет 15 Вт, что равнозначно 75 Вт лампы накаливания.

Если оказывается, что лампы с полученной при расчете величиной светового потока Φ отсутствуют, то выбирают подходящие для данной ситуации лампы, но затем перерасчетом уточняют количество ламп, необходимое для размещения в помещении, следующим образом:

$$N_{ym} = \frac{N \cdot \Phi}{\Phi_{\omega\omega\delta p}} \tag{5.10}$$

где $N_{\rm yr}$ – уточненное количество ламп;

N — предварительно рассчитанное количество ламп;

 Φ – рассчитанный световой поток лампы, лм;

 $\Phi_{\mathit{выбp}}$ – световой поток выбранной лампы, лм.

Выбранные лампы размещают в светильниках по одной, две, четыре и т. д. Тип и конструкция светильника зависят от конкретного предназначения помещения.

Для установки выберем лампы типа УПД с ρ п = 70 % и ρ c = 50 %.

Рассчитаем расчетную высоту подвеса над уровнем рабочего стола h по формуле:

$$h = 3 - 0 - 0.8 = 2.2 \,\mathrm{M}$$

Для ламп накаливания $\lambda = 1$.

Вычислим расстояние между светильниками:

$$L = 1 \cdot 2,2 = 2,2 \text{ M}$$

Далее посчитаем количество ламп N для установки в помещении:

$$N = \frac{120}{2,2^2} \approx 54,54 = 54$$
 ед.

Таким образом, для освещения лекционной аудитории понадобится 28 ламп.

Следующим шагом посчитаем индекс помещения для помещений большой длины:

$$i = \frac{8}{2.2} \approx 3,73$$

Согласно i = 3,73 величина коэффициента использования светового потока η = 67%.

Посчитаем необходимый световой поток каждой лампы. Считаем, что для ламп накаливания z=1,3.

$$\Phi = \frac{300 \cdot 120 \cdot 1, 4 \cdot 1.3}{54 \cdot 0,67} \approx 1811 \text{ лм}$$

Ламп накаливания с таким световым потоком нет. Выберем лампу типа $H\Gamma$ -150 и $\Phi_{\text{выбр}}$ = 2000. Проведём перерасчёт количества ламп:

$$N_{ym} = \frac{54.1811}{2000} \approx 48.8 \approx 49$$
 ед

Таким образом, потребуется 49 единицы для освещения помещения лампами типа УПД НГ-150.

3 ЗАКЛЮЧЕНИЕ

По результатам работы был изучен теоретический материал по теме. Все поставленные цели и задачи были выполнены. Задания были выполнены и помогли лучше усвоить пройденный материал.