Day 3, AM Session

PLINK

whole genome association analysis toolkit

Richard Flamio Jr., Ph.D.

Madison Zimmerman

Kristina M. Ramstad, Ph.D.

University of South Carolina Aiken

What is PLINK?

 An open-source tool for analyzing genotype and phenotype data from large omics datasets

https://zzz.bwh.harvard.edu/plink/index.shtml

Variant calling must be done beforehand

 Visualization of results has limited support --> we will visualize results using R and associated packages

Some PLINK Capabilities

- Data management
 - Read in data in various formats
 - Merge files
 - Extract SNP subset
- Summary statistics
 - Allele frequencies
 - Hardy-Weinberg Equilibrium
 - Missing genotype rates
 - Kinship

More PLINK Capabilities

- Population stratification
 - Significance tests for whether two individuals belong to same population
- Association testing
 - Case/control
 - Fisher's exact test
 - Logistic regression
 - Quantitative traits
 - Linear regression
- Imputation

PED (.ped) File

- Pedigree, genotype, and phenotype information
- No header line allowed

```
GNU nano 2.0.6 File: toy.ped

1 1000000000 0 0 1 1 0 0 A A
1 1000000001 0 0 1 2 C C A G
```

PED: Columns 1 and 2 (FID and IID)

Column 1

- Family ID (FID)
- Can be same as individual ID

Column 2

- Individual ID (IID)
- This must be unique if FIDs are the same!

```
GNU nano 2.0.6 File: toy.ped

1 1000000000 0 0 1 1 0 0 A A
1 1000000001 0 0 1 2 C C A G
```

PED: Columns 3 (PATID) and 4 (MATID)

- Required even if pedigree is unknown
- Column 3 = paternal ID (PATID or FATID)
- Column 4 = maternal ID (MATID)
- If pedigree is known, fill in the cell with the appropriate ID
- If the pedigree is not known, fill in the cell with –9 or 0, which code for missing data

```
GNU nano 2.0.6 File: toy.ped

1 1000000000 0 0 1 1 0 0 A A
1 1000000001 0 0 1 2 C C A G
```

PED: Column 5 (Sex)

Column 5 = Sex

- If male --> 1
- If female --> 2
- If unknown --> 0 or -9

```
GNU nano 2.0.6 File: toy.ped

1 1000000000 0 0 1 1 0 0 A A
1 1000000001 0 0 1 2 C C A G
```

PED: Column 6 (Trait of interest)

Column 6 = Phenotype

- Quantitative
 - Plant height: 1.12
 - No commas

- Case/control
 - Unaffected = 1
 - Affected = 2
 - Missing = -9 or 0

```
GNU nano 2.0.6 File: toy.ped

1 1000000000 0 0 1 1 0 0 A A
1 1000000001 0 0 1 2 C C A G
```

PED: Columns 7 and Beyond (Genotypes)

Genotype data

- Must be biallelic
- Can code allele as numbers 1,2,3, etc. or letters (A,B,C, etc. or A,T,G,C)
- Missing data
 - Coded as 0 or -9
 - Cannot have one allele present and one allele missing

```
GNU nano 2.0.6 File: toy.ped

1 1000000000 0 0 1 1 0 0 A A
1 1000000001 0 0 1 2 C C A G
```

MAP (.map) File

- Four columns
- Marker information
- Same order as PED file
- Do not need to be in genomic order

GNU	nano 2.0	.6		File:	toy.map
1	rs0 rs10	0 0	1000 1001		

MAP: Columns 1 and 2

Column 1 = Chromosome

- Number (1, 2, 3, etc.)
- If unplaced --> 0
- X = X chromosome
- Y = Y chromosome
- XY = pseudo-autosomal region
- MT = mitochondrion

Column 2 = SNP identifier

- rs# for human SNP ID
- chromosome:position for most other organisms

GNU	nano 2.	File:	toy.map		
1 1	rs0 rs10	0 0	1000 1001		

MAP: Columns 3 and 4

Column 3 = Genetic distance (cM)

Set to 0 for association testing

Column 4 = Physical base-pair position

- If you preface this with a "-", you exclude the SNP from analysis
 - Example: -1562

GNU nar	no 2.0.6		File:	toy.map	
	rs0 rs10	0 0	1000 1001		

PLINK Exercise

- Check PLINK is installed on the system.
 plink
- Download hapmap1.zip data and unzip. Move this folder to Desktop).(Do this manually)
- Open and observe each file.nano hapmap1.pednano hapmap1.map (Exit a nano file with Control X)
- 4. Identify how many individuals and SNPs are in the initial dataset. plink --file hapmap1 --out hapmap1

Binary PED file

- Compact form that saves time and space
- Produced from command plink --file hapmap1
 - .bed = raw genotype data
 - this is the binary file
 - Cannot be viewed easily
 - .bim = raw genotype data + allele names
 - Can be viewed (nano)
 - .fam = first six columns of .ped file
 - Can be viewed (nano)

Exercise:

Is

nano hapmap1.bim

(Exit a nano file with Control X)

nano hapmap1.fam

(Exit a nano file with Control X)

Summary Statistics

- --missing --> missing data per individual (.imiss) and marker (.lmiss)
- --freq --> minor allele frequencies (.frq)
- --hardy --> Hardy-Weinberg Equilibrium (.hwe)

Adding the --chr modifier (example: --chr 1) provides the statistics for only the chromosome of interest

Adding the --snp modifier (with a SNP ID) provides the statistics for only the SNP of interest

Missing Data Exercise

Determine amount of missing data

- 1. plink --file hapmap1 --missing --out miss_stat
- 2. nano miss_stat.lmissb. nano miss_stat.imissc. Gives missing data per marker/locusd. Gives missing data per individual

Missing data shown as counts and frequencies.

.lmiss

GNU	nano 2.0.6		File: miss_stat.lmiss				
CHR	SNP	N_MISS	N_GENO	F_MISS			
1	rs6681049	0	89	0			
1	rs4074137	0	89	0			
1	rs7540009	0	89	0			
1	rs1891905	0	89	0			

N_MISS = number of missing genotypes/locus
F_MISS = percent of missing data/locus

.imiss

FID	IID	MISS_PHENO	N_MISS	N_GENO	F_MISS
HCB181	1	N	671	83534	0.008033
HCB182	1	N	1156	83534	0.01384
HCB183	1	N	498	83534	0.005962

N_MISS = number of missing genotypes/individual F_MISS = percent of missing data/individual

Minor Allele Frequency Exercise

Using the complete dataset, no population subdivision plink --file hapmap1 --freq --out freq_stat nano freq_stat.frq

.frq

G	NU	nano 2.0.6			File: freq_	stat.frq
CH	R	SNP	A1	A2	MAF	NCHROBS
	1	rs6681049	1	2	0.2135	178
	1	rs4074137	1	2	0.07865	178
	1	rs7540009	0	2	0	178
	1	rs1891905	1	2	0.4045	178
	1	rs9729550	1	2	0.1292	178
	1	rs3813196	1	2	0.02809	178
	1	rs6704013	0	2	0	174
_	1	rs307347	0	2	0	154

A1 = minor allele

A2 = major allele

MAF = minor allele frequency

NCHROBS = number of alleles without missing data (actually genotyped)

MAF (population subdivision)

```
1. Look at the pop.phe file

nano pop.phe

nano pop.phe

2. Calculating MAF per subpopulation

plink --file hapmap1 --freq --within pop.phe --out popfreq_stat

nano popfreq stat.frq.strat
```

.frq.strat

GNU	nano 2.0.6		File:	popf	req_stat.	frq.str	at
-							
CHR	SNP	CLST	A1	A2	MAF	MAC	NCHROBS
1	rs6681049	1	1	2	0.2333	21	90
1	rs6681049	2	1	2	0.1932	17	88
1	rs4074137	1	1	2	0.1	9	90
1	rs4074137	2	1	2	0.05682	5	88
1	rs7540009	1	0	2	0	0	90
1	rs7540009	2	0	2	0	0	88

CLST = cluster

MAC = minor allele count

Filtering Options

- --mind --> allowed missing data/individual to retain individual
 - Example: --mind 0.05 for retaining individuals with 95% data present
- --geno --> allowed missing data/marker to retain marker
 - Example: --geno 0.05 for retaining markers with genotyping call rate of 95%
- --maf --> allow markers with this Minor Allele Frequency and above
 - Example: --maf 0.05 for retaining markers with MAF 0.05 and above
- --hwe --> performs Hardy-Weinberg Exact test at specified threshold
 - Be careful when using this filter
 - Make sure you do this for each population separately
- Syntax example: plink --file hapmap1 --make-bed --mind 0.05 -out filter1

Filtering Options Exercise

Retain markers with a genotype call rate of 85%.

- a. How many markers were removed?
- b. How many markers were retained?

Filtering Options

- To keep or remove individuals from an analysis
 - Two column text file (family ID, individual ID), no header
 - --keep *textfile* = keep these individuals
 - --remove *textfile* = remove these individuals
- To keep or remove certain SNP_IDs from an analysis
 - One column with SNP_IDs, no header
 - --extract *textfile* = keeps these variants
 - --exclude textfile = remove these variants

What type of data is the phenotype? Exercise

1. Open the hapmap1.ped file.

nano hapmap1.ped

- 2. Is phenotype continuous, binary, or categorical?
- 3. What type of regression should we perform?

(Options: linear, binary logistic, multinomial logistic, ordered logistic)

Logistic Regression Exercise

plink --file hapmap1 --make-bed --logistic --covar pop.phe --out withpopA nano withpopA.assoc.logistic

Output File

GNU	nano 2.0.6						File: plink.assoc.logis			
CHR	SNP	ВР	A1	TEST	NMISS	OR	STAT	Р	Calaman	
1	rs6681049	1	1	ADD	89	0.5781	-1.447	0.1479	Columns	
1	rs6681049	1	1	COV1	89	9.436	4.486	7.247e-06	1. Chrom	
1	rs4074137	2	1	ADD	89	1.54	0.6577	0.5107		
1	rs4074137	2	1	COV1	89	9.764	4.533	5.809e-06	2. SNP ID	
1	rs7540009	3	0	ADD	89	NA	NA	NA	3. Base p	
1	rs7540009	3	0	COV1	89	NA	NA	NA	•	
1	rs1891905	4	1	ADD	89	1.079	0.232	0.8166	4. Minor	
1	rs1891905	4	1	COV1	89	9.307	4.533	5.822e-06	5. Test (A	
1	rs9729550	5	1	ADD	89	2.846	2.007	0.04472	•	
1	rs9729550	5	1	COV1	89	11.23	4.604	4.153e-06	effects o	
1	rs3813196	6	1	ADD	89	1.352	0.2785	0.7806	COV1 = c	
1	rs3813196	6	1	COV1	89	9.229	4.519	6.205e-06	COVI - C	
1	rs6704013	7	0	ADD	87	NA	NA	NA	6. NMISS	

NA is present when the SNP was monomorphic

Columns:

- 1. Chromosome
- 2. SNP ID
- 3. Base position
- 4. Minor Allele
- 5. Test (ADD = additive effects of allele dosage,
- COV1 = covariate)
- 6. NMISS = # of nonmissing genotypes
- 7. Odds ratio
- 8. T-statistic
- 9. P-value

Test Column

- We are interested in the additive effects of allele dosage line.
 - Additive effects of allele dosage = more copies of an allele are more or less strongly correlated with the phenotype.
- This is the significance of the SNP when controlling for the covariate (population).
- We can hide the covariate including the argument --hide-covar

Exercise

```
plink --file hapmap1 --make-bed --logistic --covar pop.phe --hide-covar --out withpopB nano withpopB.assoc.logistic
```

Excluding Covariate Exercise

plink --file hapmap1 --make-bed --logistic --out withoutpop nano withoutpop.assoc.logistic

GNU	nano 2.0.6							File: withpop	A.assoc.logistic
CHR	SNP	BP	A1	TEST	NMISS	OR	STAT	Р	
1	rs6681049	1	1	ADD	89	0.5781	-1.447	0.1479	
1	rs6681049	1	1	COV1	89	9.436	4.486	7.247e-06	

GNU nano 2.0.6 File:									op.assoc.logistic
CHR	SNP	ВР	A1	TEST	NMISS	OR	STAT	Р	
1	rs6681049	1	1	ADD	89	0.592	-1.534	0.1251	

Adding the covariate, makes the SNP effect less significant.

Correcting for Multiple Testing Exercise

plink --file hapmap1 --make-bed --logistic --covar pop.phe --hide-covar --adjust --out withpopC

nano withpopC.assoc.logistic.adjusted

Correcting for Multiple Testing

GNU	nano 2.0.6			File: with	npopC.assoc	.logistic.adjusted	ó				
CHR	SNP	UNADJ	GC	BONF	HOLM	SIDAK_SS	SIDAK_SD	FDR_BH	FDR_BY		
2	rs2222162	2.507e-05	2.507e-05	1	1	0.8056	0.8056	0.9945	1		
2	rs4675607	0.0001382	0.0001382	1	1	0.9999	0.9999	0.9945	1		
13	rs9585021	0.0001603	0.0001603	1	1	1	1	0.9945	1		
9	rs7046471	0.0001963	0.0001963	1	1	1	1	0.9945	1		
2	rs4673349	0.0002892	0.0002892	1	1	1	1	0.9945	1		

Manhattan Plot Exercise

- If you remember, we produced a file "withpopB.assoc.logistic" today.
- We are going to use this file, to produce a Manhattan plot.

• Please run the R Markdown named 'ManhattanPlot.Rmd' in RStudio.

Manhattan Plot Answer

References

- grunwaldlab.github
- https://bookdown.org/kdonovan125/ibis_data_analysis_r4/documen ting-your-results-with-r-markdown.html