(5) Redes neurais auto-associativas e geradoras Redes Neurais e Arquiteturas Profundas

Moacir Ponti CeMEAI/ICMC, Universidade de São Paulo MBA em Ciência de Dados

www.icmc.usp.br/~moacir — moacir@icmc.usp.br

São Carlos-SP/Brasil - 2020

Agenda

Autoencoders

Tipo "undercomplete"
Tipo "overcomplete"
Denoising autoencoders

Redes Geradoras

Modelos geradores Autoencoders variacionais (VAEs) Redes adversárias geradoras (GANs)

Autoencoders

Redes neurais auto-associativas, ou auto-encoders, são <u>métodos</u> não supervisionados para aprendizado de representações.

Autoencoders: encoder e decoder

Encoder

Aprende um <u>código</u>, também chamado de <u>representação latente</u> ou feature embedding

$$\mathsf{h} = s(\mathsf{W}\mathsf{x} + \mathsf{b}) = f(\mathsf{x})$$

Decoder

Aprende uma reconstrução da entrada

$$\hat{x} = s(W'h + b') = g(h)$$

Arquitetura de um autoencoder

Autoencoders: função de perda

A partir da saída $\hat{x} = g(f(x))$ minimizamos o erro/perda relativa à reconstrução da entrada

$$\mathcal{L}(\mathsf{x}, \mathsf{g}(f(\mathsf{x})) = \hat{\mathsf{x}})$$

Mean squared error (perda quadrática) muito utilizada

$$\mathcal{L}(\mathbf{x}, \hat{\mathbf{x}}) = ||\mathbf{x} - \hat{\mathbf{x}}||^2$$

Autoencoders: tipos

Seja um código $h \in R^m$

Undercomplete

- m possui menos dimensões que x
- ► A camada do código é chamada de gargalo ou "bottleneck" por ser restrita

Overcomplete

- ▶ m possui dimensões maiores ou iguais às de x
- Há diferentes versões desse tipo para compensar a falta de restrição no código

Agenda

Autoencoders

Tipo "undercomplete"
Tipo "overcomplete"
Denoising autoencoders

Redes Geradoras

Modelos geradores Autoencoders variacionais (VAEs) Redes adversárias geradoras (GANs

Código é uma compressão com perdas da entrada

- ► camada do código é chamada de "bottleneck"
- o código produz boa representação para os dados de treinamento, em particular para reconstrução

Auto-encoder treinado na MNIST

Auto-encoders treinados na Fashion

Auto-encoder treinado na Fashion

Auto-encoders treinados na MNIST

- Pode ser usada para aprender uma redução de dimensionalidade
- Um autoencoder denso com uma única camada encoder/decoder tem relações com o método Principal Component Analysis (PCA)
- Se a variedade (manifold) dos dados é linear, o AE tende a convergir para uma projeção nos m principais componentes

Deep Undercomplete Autoencoders

Autoencoders profundos:

- Camadas não densas, ex: convolucionais, pooling, etc.
- Camada do código é comumente densa para permitir projeção dos dados

Modelos com alta capacidade podem mapear cada conceito de entrada em um único neurônio da camada do código

Agenda

Autoencoders

Tipo "undercomplete"
Tipo "overcomplete"

Denoising autoencoders

Redes Geradoras

Modelos geradores Autoencoders variacionais (VAEs) Redes adversárias geradoras (GANs

Overcomplete

Camada intermediária com alta dimensionalidade

• uma implementação simples permitira a cópia simples (e perfeita) dos dados de forma que $x = \hat{x}$

Overcomplete regularized AEs

Uma maneira de impedir a cópia é **regularização** com alguma função R(.), ex. regularização L1

$$\mathcal{L}(x, g(f(x))) + R(f(x))$$

$$\mathcal{L}(x, g(f(x))) + \lambda \sum_{i} |h_{i}|,$$

- ▶ a função de custo tenta manter um baixo número de ativações por entrada
- dropout também pode ser usado, nesse caso imediatamente antes da camada do código

Overcomplete regularized AEs

Regularização com restrição de esparsidade do código

Agenda

Autoencoders

Tipo "undercomplete" Tipo "overcomplete"

Denoising autoencoders

Redes Geradoras

Modelos geradores Autoencoders variacionais (VAEs) Redes adversárias geradoras (GANs

Denoising AEs (DAEs)

A regularização é atingida adicionando ruído à entrada, $\tilde{x} = \mathcal{N}(x)$

- ▶ a perda é computada usando a entrada não ruidosa x
- AE aprende a reconstruir x a partir de x̃
- o encoder deve aprender a remover o ruído, mantendo apenas as informações essenciais no código, permitindo que o decoder reconstrua a entrada

Denoising AEs (DAEs)

▶ DAEs aprendem uma representação robusta como efeito colateral de aprender a remover o ruído da entrada

Denoising AEs (DAEs)

Como adicionar ruído? Prática comum

- ▶ Comumente ruído Gaussiano/Normal com $\mu = 0$, $\sigma \ge 1$;
- ► Ruído impulsivo: atribuir zero a uma porcentagem da entrada, com probabilidade p (dropout na entrada).

Intuição

- Aprende a projetar os dados ao longo de uma variedade/manifold relativo aos dados de entrada originais
- apenas entradas fora da distribuição original gerarão alto erro de reconstrução

Denoising AEs (DAEs): exemplo

Padrões de ativação do dataset MNIST com Autoencoder convencional

Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion." Journal of Machine Learning Research, 2010: 3371-3408.

Denoising AEs (DAEs): exemplo

Padrões de ativação do dataset MNIST, zerando entradas com taxa 25%

Denoising AEs (DAEs): exemplo

Padrões de ativação do dataset MNIST, zerando entradas com taxa 50%

Técnicas de regularização

► Podem ser usadas também nos AEs undercomplete

Considerações

- ► AEs podem ser boa escolha com dados não supervisionados para aprendizado de manifolds e agrupamento;
- Representam uma nova tarefa: reconstrução que pode ser acoplada a outras arquiteturas

Agenda

Autoencoders

Tipo "undercomplete"
Tipo "overcomplete"
Denoising autoencoders

Redes Geradoras

Modelos geradores Autoencoders variacionais (VAEs) Redes adversárias geradoras (GANs)

Geração de dados

Interpretação: aprender a distribuição

Aprender a distribuição que "gera" os dados permite amostrar a partir dela

Interpretação: aprender a gerar dados

Mas podemos querer apenas dados, não uma distribuição...

Tipos de métodos

Funções densidade explícitas

- ► Fully Visible Belief Nets
- ► Boltzmann Machines
- Variational Autoencoders

Funções densidade implícitas

- ► Métodos de Monte Carlo
- ► Likelihood-free inference via classification
- Generative Adversarial Networks

Autoencoders

Autoencoders convencionais tentam codificar atributos de forma discreta

Autoencoders variacionais (VAEs)

Autoencoders variacionais aprendem distribuições (seus parâmetros) de cada variável, a partir do qual se amostram valores

o espaço latente não é composto por variáveis latentes, mas sim distribuições

latentes para cada dimensão deste espaço

Não se assume uma distribuição explícita

- ► Adversária pois há dois componentes que "disputam"
- ► Geradora pois o objetivo central é aprender a gerar dados

Gerador \mathcal{G}

- recebe um exemplo z' obtido de uma distribuição, i.e. $\mathbf{z}' \sim q(\mathbf{z})$
- lacktriangle gera x por meio de uma função x $= \mathcal{G}_{\Theta}(z')$

Discriminador \mathcal{D}

 recebe x e classifica se esse foi produzido pela distribuição original ou pela aproximação do gerador

Formulação

$$\min_{G} \max_{D} V(G, D) = E_{x \sim p_{data}(x)}[\log D(x)] + E_{z \sim p_g(z)}[\log 1 - D(G(z))]$$

$$-(1/2)E_{x \sim p_{data}(x)}[\log D(x)] - (1/2)E_{z}[\log 1 - D(G(z))]$$

Exemplos gerados por uma GAN de 2017

Exemplos gerados por uma GAN de 2020

