Xinshi Wang 661975305 hw02

1.6

From the problem description, we know class A executes $10^6 \times 10\% = 10^5$ instructions, class B executes $10^6 \times 20\% = 2 \times 10^5$ instructions, class C executes $10^6 \times 50\% = 5 \times 10^5$ instructions, and class D executes $10^6 \times 20\% = 2 \times 10^5$ instructions.

We have the following formula: CPU Clock Cycles = $\sum_{i=1}^{n} (CPI_i) \times C_i$. Then we can compute the corresponding the following CPU Clock Cycles.

$$P_{1\text{CPU Clock Cycles}} = (10^5) + (2 \times 2 \times 10^5) + (3 \times 5 \times 10^5) + (3 \times 2 \times 10^5) = 2.6 \times 10^6.$$

$$P_{2\text{CPU Clock Cycles}} = (2 \times 10^5) + (2 \times 2 \times 10^5) + (2 \times 5 \times 10^5) + (2 \times 2 \times 10^5) = 2 \times 10^6.$$
Then the corresponding cpi equals to
$$\frac{\text{CPU Clock Cycles}}{\text{number of total instructions}}.$$

Thus
$$CPI_{P_1} = \frac{2.6 \times 10^6}{10^6} = 2.6$$

 $CPI_{P_2} = \frac{2 \times 10^6}{10^6} = 2$

- (a). $CPI_{P_1} = 2.6$, $CPI_{P_2} = 2$.
- (b). $P_{1\text{CPU Clock Cycles}} = 2.6 \times 10^6$, $P_{2\text{CPU Clock Cycles}} = 2 \times 10^6$

1.9

1.9.1

1 processor: Clock Cycle = $(2.56 \times 10^9) \times 1 + (1.28 \times 10^9) \times 12 + (2.56 \times 10^8) \times 5 = 1.92 \times 10^{10}$. Thus execution time = $\frac{1.92 \times 10^{10}}{2 \times 10^9} = 9.6$.

For p processors, we have clock cycles_p = $\frac{2.56 \times 10^9}{0.7p} \times 1 + \frac{1.28 \times 10^9}{0.7p} \times 12 + 256 \times 10^6 \times 5 =$ $\frac{2.56 \times 10^{10}}{n} + 1.28 \times 10^{9}.$

Therefore execution time for p processors is $\frac{\text{clock cycles}_p}{\text{clock rate}} = \frac{12.8}{p} + 0.64$.

Core execution time speed up

clock cycles = $(2.56 \times 10^9) \times 2 + (1.28 \times 10^9) \times 12 + (2.56 \times 10^8) \times 5 = 2.176 \times 10^{10}$ Expected time for 1 cpu: $\frac{2.176 \times 10^{10}}{2 \times 10^9} = 10.88$.

Let p be the number of processors. Then we have clock cycles = $\frac{2.56 \times 10^9}{0.7n} \times 2 + \frac{1.28 \times 10^9}{0.7n} \times 12 + \frac{1.28 \times 10^9}{0.7n} \times 12 + \frac{1.28 \times 10^9}{0.7n} \times 10^9 \times$ $256 \times 10^6 \times 5 = \frac{2.93 \times 10^{10}}{n} + 1.28 \times 10^9.$

Then execution time =
$$\frac{\frac{2.93 \times 10^{10}}{p} + 1.28 \times 10^{9}}{2 \times 10^{9}} = \frac{14.65}{p} + 0.64.$$
Core execution time speed up
$$\frac{1}{p} = \frac{10.88}{p} + 0.64.$$
Thus we have:
$$\frac{1}{p} = \frac{14.65}{p} + 0.64.$$

1.9.3:

3 times. Execution time =
$$\frac{3.84s}{clockcycles}$$
. Then: $\frac{clock \ cycles}{2Ghz} = 3.84s$

Clock cycles =
$$7.68 \times 10^9 = 2.56 \times 10^9 + 1.28 \times 10^9 \times CPI + (2.57 \times 10^8) \times 5$$
 Thus $CPI = \frac{7.68 \times 10^9 - 3.84 \times 10^9}{1.28 \times 10^9} = 3$.

1.12:

1.12.1:

CPU time =
$$\frac{\text{number of instuctions} \times CPI}{clockrate}$$
$$CPU_1 = \frac{5 \times 10^9 \times 0.9}{4GHz} = 1.125s$$
$$CPU_1 = \frac{1 \times 10^9 \times 0.75}{3GHz} = 0.25s$$

 P_2 is faster

1.12.2:

1.12.2: CPU time =
$$\frac{10^9 \times 0.9}{4GHz} = 0.225s$$
$$\frac{instructionsP_2 \times 0.75}{3GHz} = 0.225s$$
number of instructions =
$$\frac{0.225 \times 3 \times 10^9}{0.75} = 9 \times 10^8$$

number of instructions =
$$\frac{0.225 \times 3 \times 10^9}{0.75} = 9 \times 10^8$$

1.14:

1.14.1 execution time = $\frac{\text{number of instructions} \times CPI}{Clockmate}$ There are in total $50 \times 106 = 5300$ FP instruc-1.14.1 execution time = $\frac{Clockrate}{Clockrate}$ There are in total 50 × 106 = 5300 FP instructions, 110 × 106 = 11660 INT instructions, and 80 × 106 = 8480 LS instructions, and 16 × 106 = 1696 instructions.

Execution time = $\frac{5300 + 11600 + 8480 \times 4 + 1696 \times 2}{2GHz} = 27\mu s.$

To cut that in half, we need cpi equa

$$13.5\mu a = \frac{5300 \times CPI + 11600 + 8480 \times 4 + 1696 \times 2}{2 \times 10^9}$$

Thus CPI = -4.13. Which is impossible

1.14.2:

$$13.5\mu a = \frac{5300 + 11600 + 8480 \times CPI + 1696 \times 2}{2 \times 10^9}$$

Thus CPI = 0.79. We need to reduce it from 4 to 0.79.

$$1.14.3$$
: execution time = $\frac{5300 \times 0.6 + 11600 \times 0.6 + 8480 \times 2.8 + 1696 \times 1.4}{2GHz} = 18\mu s$ $\frac{18}{27} = 0.66$. Then spped up 33.3%.