Test 1

Avi Herman

10/1/2024

Table of Contents

- Vectors & Scalars
- Units
- Newton's Laws of Motion
 - Newton's First Law of Motion
 - Newton's Second Law of Motion
 - Newton's Third Law of Motion
- Gravitational Force
- Ramps
 - Ramp Anatomy
 - o Gravitational Force on an Inclined Plane
- Work
- Rotational Motion
 - Units of Motion
 - Rules
 - Right Hand Rule
 - Angular Velocity
 - Torque
 - Diagram of Torque
- Friction
- Wheels
 - o Diagram of Forces on a Wheel
 - Angular Velocity of a Wheel
- Work + Power
- Kinetic Energy
 - Formulas for Kinetic Energy
- Momentum and Impulse
 - Momentum
 - Impulse
- Elastic Potential Energy and Restoring Force
 - Hooke's Law
 - Example Diagram of a Spring
 - Harmonic Oscillators
- Pendulum and Clocks

Notes

Vectors & Scalars

- Scaler
 - o A quantity that has magnitude only
- Vectors are quantities that have both magnitude and direction
 - Magnitude
 - The size of the vector
 - Examples: 1, 2, 3, 4
 - Direction
 - The direction the vector is pointing
 - Examples: North, South, East, West
 - o Examples: Velocity, force, displacement
 - Position vector
 - A vector that points from the origin to a point in space
 - Example: home is $\langle 0,0 \rangle$, lecture hall is $\langle -1,3 \rangle$, and coffee shop is $\langle 2,2 \rangle$
 - ullet The noted as $ec{V}$ from home to lecture hall is X **mph north**
 - \hat{V} = north
 - $|\vec{V}| = X$
 - ullet To go from the lecture hall to the coffee shop, you would go X MPH east
 - To get the vector length, you would use the Pythagorean theorem (where vector length is the hypotenuse)
 - $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
 - $\sqrt{(2-(-1))^2+(2-3)^2} =$
 - $\sqrt{3^2 + (-1)^2} =$
 - $\sqrt{9+1} =$
 - $\sqrt{10}$
 - To get the vector displacement, you would subtract the two vectors
 - ullet $\langle x_2,y_2
 angle -\langle x_1,y_1
 angle =\langle x_2-x_1,y_2-y_1
 angle$
 - ullet 2-(-1)=3 and 2-3=-1 and thus the vector displacement is $\langle 3,-1
 angle$

Units

- Dimensionless numbers
 - Numbers that have no units
 - Examples: 1, 2, 3, 4
 - Dimensional numbers
 - Numbers that have units
 - Examples: 100W, 10kg, 25V
 - o Examples: The temperature in a room, the mass of an object
- Dimensional Scalers

- o Dimensionless number **x** unit
 - Examples: 1m, 2kg, 3s, 300,000m/s

Thing to Measure	Unit
Length	Meters (m)
Area	Square meters (m^2)
Volume	Cubic meters (m^3)
Time	Seconds (s)
Angle	Radians (rad), 1 degree = $\pi/180$ radians
Mass	Kilograms (kg)
Speed	Meters per second (m/s)
Force	Newtons ($kg \cdot m/s^2$)
Temperature	Fahrenheit (F), Celsius (C), Kelvin (K)

Newton's Laws of Motion

Newton's First Law of Motion

- An object subject to no external forces moves at a constant velocity.
- Equation of predicting an object at constant velocity: $\vec{x}_f = \vec{x}_i + \vec{v} \cdot (t_f t_i)$
 - $\circ \; ec{x}_f$ is the final position (m)
 - $\circ \,\, ec{x}_i$ is the initial position (m)
 - $\circ \ \overrightarrow{v}$ is the velocity ($rac{m}{s}$)
 - $\circ \ t_f$ is the final time (s)
 - \circ t_i is the initial time (s)
- Example of finding the final position of an object at constant velocity:
 - \circ What is $ec{x}_f$ if $ec{x}_i=(-4,6,-8)$, $ec{v}=(2,rac{-4}{3},2)$, $t_f=3$, and $t_i=0$?
 - $lacksquare ec{x}_f = ec{x}_i + ec{v} \cdot (t_f t_i)$
 - $\vec{x}_f = (-4, 6, -8) + (2, \frac{-4}{3}, 2) \cdot (3)$
 - $\vec{x}_f = (-4, 6, -8) + (6, -4, 6)$
 - $\vec{x}_f = (2,2,-2)$

Newton's Second Law of Motion

- The acceleration that an object experiences is equal to the net force exerted on it divided by the object's mass.
- ullet Equation of predicting the acceleration of an object: $ec{a}=rac{ec{F}_{
 m net}}{m}$
 - $\circ \vec{a}$ is the acceleration $(\frac{m}{s^2})$
 - $\circ \; ec{F}_{
 m net}$ is the net force ($N \cdot m$ Newton meters)
 - $\circ \,\, m$ is the mass of the object (kg)

- ullet Equation of predicting an object's final velocity: $ec{v}_f = ec{v}_i + ec{a} \cdot (t_f t_i)$
 - $\circ \ \vec{v}_f$ is the final velocity $(\frac{m}{s})$
 - $\circ \; ec{v}_i$ is the initial velocity ($rac{m}{s}$)
 - $\circ \vec{a}$ is the acceleration $(\frac{m}{s^2})$
 - $\circ t_f$ is the final time (s)
 - $\circ \ t_i$ is the initial time (s)
- ullet Equation for finding the average velocity of an object: $ec{v}_{ ext{avg}}=rac{ec{v}_i+ec{v}_f}{2}$
 - $ec{v}_{
 m avg}$ is the average velocity ($rac{m}{s}$)
 - $ec{v}_i$ is the initial velocity ($rac{m}{s}$)
 - $\circ \ \vec{v}_f$ is the final velocity ($rac{m}{s}$)
- By integrating the average velocity over the time interval, we get the equation for the final position:

$$ec{x}_f = ec{x}_i + ec{v}_i \cdot (t_f - t_i) + rac{1}{2}ec{a} \cdot (t_f - t_i)^2$$

- $ec{x}_f$ is the final position
- $ec{x}_i$ is the initial position
- $\circ \; ec{v}_i$ is the initial velocity
- $\circ \; ec{a}$ is the acceleration
- \circ t_f is the final time
- \circ t_i is the initial time

Newton's Third Law of Motion

- For every force from an object A exterted to B, there is an equal in magnitude and opposite in direction force from B exerted to A.
- $ec{F}_{
 m BA} = -ec{F}_{
 m AB}$
 - \circ "The force exerted by A on B is equal in magnitude and opposite in direction to the force exerted by B on A."

Gravitational Force

Force	Symbol	Description	Direction
Gravitational	\vec{F}_g or \vec{w} = weight	The force of attraction between two masses. $ec{F}_g = (0,0,-9.81 rac{m}{s^2})$	Towards the center of the Earth (downwards)
Frictional	$ec{F}_f$	The force that opposes the motion of an object.	Opposite to the direction of motion
Normal	$ec{F}_N$	The support force exerted by a surface perpendicular to the object.	Perpendicular to the surface (upwards)
Drag	$ec{F}_d$	The force that opposes the motion of an object through a fluid.	Opposite to the direction of motion

- The *equivelence principle* states that the force of gravity is equivalent to the force of acceleration. This is why objects in free fall experience weightlessness.
- When dropping an object from a height, the object will accelerate downwards at a rate of $-9.81 \frac{m}{s^2}$.

 \circ Putting that into a formula gives us $ec{x}_f = ec{x}_i + ec{v}_i \cdot (t_f - t_i) + rac{1}{2}ec{a} \cdot (t_f - t_i)^2$

$$\vec{X}_i = (0,0,h)$$

$$ec{v}_i=(0,0,0)$$

$$\vec{a} = \vec{g} = (0, 0, -9.81 \frac{m}{s^2})$$

 \circ Rearranging, $h=rac{1}{2}\cdot -9.81\cdot t^2$

Ramps

Ramp Anatomy

• Ramps are a simple machine that allow us to lift heavy objects with less force.

Here, we can find the angle θ using the relationship:

$$\tan(\theta) = \frac{\text{height}}{\text{base}}$$

By the Pythagorean theorem, the length of the ramp (hypotenuse) can be calculated if the height and base are known:

$$length = \sqrt{height^2 + base^2}$$

Gravitational Force on an Inclined Plane

When an object is placed on an inclined plane, the gravitational force acting on it can be resolved into two components:

- 1. **Parallel Component** (F_{\parallel}): This component acts parallel to the surface of the inclined plane and causes the object to slide down.
- 2. **Perpendicular Component** (F_{\perp}): This component acts perpendicular to the surface of the inclined plane and is responsible for the normal force.

The gravitational force (F_g) acting on the object can be expressed as:

$$F_g = m \cdot g = F_w$$

where:

- ullet m is the mass of the object
- g is the acceleration due to gravity (9.8m/s^2)

The parallel and perpendicular components can be calculated using the angle of the incline (θ):

$$F_{\parallel} = F_g \cdot \sin(heta) = m \cdot g \cdot \sin(heta)$$

$$F_{\perp} = F_g \cdot \cos(heta) = m \cdot g \cdot \cos(heta)$$

Forces at Work on an Inclined Plane

Symbol	Name	Description	Calculation Formula
F_w	Weight	The gravitational force acting on the object.	$F_w = m \cdot g$
F_{\perp}	Perpendicular Component	The component of the gravitational force acting perpendicular to the surface of the inclined plane.	$F_{\perp} = F_w \cdot \cos(heta)$
F_N	Normal Force	The force exerted by the inclined plane on the object, equal in magnitude and opposite in direction to F_\perp .	$F_N = -F_\perp$
F_{\parallel}	Parallel Component	The component of the gravitational force acting parallel to the surface of the inclined plane, causing the object to slide down.	$F_{\parallel} = F_w \cdot \sin(heta)$

Work

Work is the transfer of energy from one object to another The *Work-Energy Principle* state the work done on an object is equal to the force applied to the object times the distance the object moves in the direction of the force

$$ext{Work} = ec{ ext{F}} imes ec{\Delta x} = ec{F} \cdot (ec{x}_f - ec{x}_i)$$

Note that $ec{F}=ec{F}_{\parallel}+ec{F}_{\perp}$

• You only do work if the displacement is a non-zero component of the force

Rotational Motion

Units of Motion

Translational Motion	Rotational Motion	
Position: $ec{x}$ (m)	Angle : $\vec{\theta}$ (rad)	
Velocity: $\vec{v}(rac{m}{s})$	Angular Velocity: $\vec{\omega}$ $(\frac{\mathrm{rad}}{\mathrm{s}})$	
Acceleration: $ec{a}$ ($rac{m}{s^2}$)	Angular Acceleration: \vec{lpha} ($rac{\mathrm{rad}}{s^2}$)	
Force: $ec{F}$ (N)	Torque: $\vec{ au}$ (Nm)	
Mass: m (kg)	Rotational Mass/Moment of Inertia: I (kg m^2)	

Rules

Translational Motion	Rotational Motion
No outside forces means constant $ec{v}$	No outside torques means constant $\vec{\omega}$
$ec{a}=rac{ec{ ext{Fnet}}}{m}$	$ec{lpha} = rac{ec{ au}_{ m net}}{I}$
$ec{F}_{ m BA} = -ec{F}_{ m AB}$	$ec{ au}_{ m BA} = -ec{ au}_{ m AB}$

Right Hand Rule

- The right hand rule is used to determine the direction of the angular momentum vector $(\vec{\omega})$.
- 1. Identify the Rotation Axis: Determine the axis around which the object is rotating.
- 2. **Curl Your Fingers**: Point the fingers of your right hand in the direction of the rotation (the direction in which the object is moving).
- 3. **Thumb Direction**: Extend your thumb perpendicular to your fingers. The direction your thumb points is the direction of the angular momentum vector $(\vec{\omega})$.
- Example
 - If a wheel is rotating counterclockwise when viewed from above, you would:
 - o Point your fingers in the direction of the rotation (counterclockwise).
 - \circ Your thumb will point upwards, indicating that the angular momentum vector $(\vec{\omega})$ is directed upwards.
- Trick
 - Clockwise = away from you
 - Counterclockwise = towards you

Angular Velocity

Angular velocity is the rate of change of angular displacement with respect to time.

$$ullet$$
 $ec{\omega}=rac{ec{ heta}_f-ec{ heta}_i}{t_f-t_i}$

Torque

- Torque is the rotational equivalent of force.
- ullet $ec{lpha}=rac{ec{ au}_{
 m net}}{I}$
 - \circ Units of $\vec{ au}$ are Nm
 - \circ Units of $\vec{\alpha}$ are $\frac{\mathrm{rad}}{e^2}$
- ullet I rotational mass measures $ext{mass} imes ext{distance}^2$
 - $\circ\,$ Units of I are kg m^2
- $au = |ec{ au}| = ec{r} imes ec{F}_{\perp}$
 - \circ \vec{r} is the distance from the axis of rotation
 - \circ $ec{F}$ is the force applied

Diagram of Torque

$$ullet$$
 Note $ec F=ec F_\perp$

Friction

- Friction is a force that opposes motion.
 - Static friction prevents motion
 - Sliding friction slows motion
- ullet $ec{F}_{
 m sliding\ friction} = \mu_{
 m sliding\ friction} \cdot ec{F}_{
 m support}$
 - $\circ \; \mu$ is the coefficient of friction
 - \circ $ec{F}_{
 m support}$ is the support force
- ullet $\hat{F}_{
 m sliding\ friction} = -\hat{v}$ if $ec{v}>0$
 - \hat{v} is the velocity of the object
- $F_{
 m static\ friction} = F_{
 m push}\ {
 m if}\ F_{
 m push} < \mu_{
 m static\ friction}\cdot F_{
 m support}$
 - $\circ~F_{
 m push}$ is the force applied to the object
 - $\circ~\mu_{
 m static~friction}$ is the coefficient of static friction
 - $\circ~F_{
 m support}$ is the support force

Wheels

- Wheels are a type of simple machine which are used to reduce friction and make it easier to move objects.
- $\vec{v}_{\rm ground}$ must be 0 which means that the wheel is not slipping (because wheels \emph{roll}) and so $\vec{v}_{\rm contact\ point} = \vec{v}_{\rm ground}$.
 - No work down by frictional forces from the ground to the wheel.
- $\vec{v}_{\mathrm{top}} = \vec{v}_{\mathrm{contact\ point}}$

Diagram of Forces on a Wheel

Angular Velocity of a Wheel

- Use right hand rule to determine the direction of the angular velocity vector.
 - $ec{\omega} = rac{ec{v}_{ ext{contact point}}}{r}$ where r is the radius of the wheel.

Work + Power

- Translational Motion
 - $egin{aligned} \circ ext{ work} &= W = ec{F} \cdot ec{\Delta x} = F_{\parallel} \Delta x \end{aligned}$
 - W is the work done by a force.
 - ullet $ec{F}$ is the force applied.
 - $\vec{\Delta x}$ is the displacement of the object.
 - ullet F_{\parallel} is the component of the force parallel to the displacement.

$$\circ ext{ power} = ec{F} \cdot ec{v} = rac{W}{\Delta t}$$

- power is the rate at which work is done.
- ullet $ec{F}$ is the force applied.
- \vec{v} is the velocity of the object.
- ullet W is the work done by a force.
- Δt is the time interval.
- · Rotational Motion

$$\circ \text{ work} = W = \vec{\tau} \cdot \vec{\Delta \theta} = \vec{\tau} \cdot (\vec{\theta_f} - \vec{\theta_i})$$

- ullet W is the work done by a torque.
- $\vec{ au}$ is the torque applied.
- $\vec{\Delta \theta}$ is the angular displacement of the object.
- $\vec{\theta_f}$ is the final angle of the object.
- $\vec{ heta_i}$ is the initial angle of the object.

$$\circ ext{ power} = \vec{ au} \cdot \vec{\omega} = rac{W}{\Delta t}$$

- power is the rate at which work is done.
- $\vec{\tau}$ is the torque applied.
- $\vec{\omega}$ is the angular velocity of the object.
- ullet W is the work done by a torque.
- Δt is the time interval.

Kinetic Energy

- Kinetic energy is the energy of motion.
 - o This means that the total energy of a system is constant.

Formulas for Kinetic Energy

- ullet $K=rac{1}{2}mv^2$ for translational motion.
- ullet $K=rac{1}{2}I\omega^2$ for rotational motion.
- Total energy is conserved
 - $\circ u = mgh$
 - ullet u is the potential energy of an object.
 - ullet m is the mass of the object.
 - g is the acceleration due to gravity ($-9.8 \frac{m}{s^2}$).
 - ullet h is the height of the object.
 - $\circ \ {\rm total \ energy} = K + u + heat + \dots$

Momentum and Impulse

Momentum

- Momentum is the product of mass and velocity.
 - Refers to the quantity of motion an object has.
- Translational Motion
 - $\circ \; ec{p} = m ec{v}$
 - \vec{p} is the momentum of an object ($kg rac{m}{s}$).
 - ullet m is the mass of the object.
 - \vec{v} is the velocity of the object.
 - If no forces are applied, momentum is conserved.
- Rotational Motion
 - $\circ \,\, \vec{L} = I \vec{\omega}$
 - ullet \vec{L} is the angular momentum of an object $(kg rac{m^2}{s})$.
 - ullet I is the moment of inertia of the object.
 - $\vec{\omega}$ is the angular velocity of the object
 - \circ No $ec{ au}$ means $ec{L}$ is constant.

Impulse

- Impulse is the change in momentum.
 - Quantifies the overall effect of a force on an object across a time interval.
- Translational Motion

$$egin{array}{l} \circ \ \Delta ec{p} = ec{p_f} - ec{p_i} = ec{F} \cdot \Delta t \end{array}$$

- ullet $\Delta ec{p}$ is the change in momentum.
- ullet $ec{F}$ is the force applied.
- Δt is the time interval.
- Rotational Motion

$$\circ \; \Delta ec{L} = ec{L_f} - ec{L_i} = ec{ au} \cdot \Delta t$$

- $\Delta \vec{L}$ is the change in angular momentum.
- $prec{ au}$ is the torque applied.
- Δt is the time interval.

Elastic Potential Energy and Restoring Force

Hooke's Law

• Hook's Law states that the force exerted by a spring (or something elastic) is proportional to the displacement from equilibrium

$$\circ \; ec{F}_{
m restoring} = - k ec{x}$$

- ullet $ec{F}_{
 m restoring}$ is the restoring force
- ullet k is the spring constant
- $ec{x}$ is the displacement from equilibrium

$$\circ~U_{
m spring}=rac{1}{2}kx^2$$

- ullet $U_{
 m spring}$ is the spring potential energy
- ullet x is the displacement from equilibrium

$$\circ \; ec{a} = -rac{k}{m}ec{x}$$

- \vec{a} is the acceleration
- lacksquare m is the mass
- $ec{x}$ is the displacement from equilibrium

Example Diagram of a Spring

Harmonic Oscillators

- Harmonic oscillators are systems that oscillate about an equilibrium point
 - o Examples include springs, pendulums, and electric circuits
 - o The period of oscillation does not depend on the amplitude of the oscillation

$$ullet T=2\pi\sqrt{rac{m}{k}}$$

- $\circ \ T$ is the period of the oscillation (time for one complete cycle)
- $\circ \ m$ is the mass
- \circ k is the spring constant

Pendulum and Clocks

- A pendulum is a mass on a string that oscillates back and forth
 - \circ The period of a pendulum is given by $T=2\pi\sqrt{rac{L}{g}}$
 - \blacksquare T is the period
 - ullet L is the length of the pendulum
 - ullet g is the acceleration due to gravity
 - The period of a pendulum is independent of the mass of the pendulum
 - $\circ~U_{
 m gravity}=rac{mg}{2L}x^2$
 - ullet $U_{
 m gravity}$ is the gravitational potential energy
 - ullet m is the mass of the pendulum
 - ullet x is the displacement from equilibrium
 - $\circ k_{ ext{pendulum}} = rac{mg}{L}$
 - ullet $k_{
 m pendulum}$ is the spring constant of the pendulum
- Clocks use pendulums to keep time
 - The period of a pendulum is constant, so the clock will keep time accurately

Pendulum Diagram

• massless rod = L

Notes

- Please refer to the equation sheet for what equations you will have for the exam
- I have left out Forces as a Gradient of Potential Energy as it seems like it will not be tested