Bewijzen - Inleveropgave 1 - Poging 2

B.H.J. van Boxtel

5 Oktober 2022 - Week 40

- (a.) Een voorbeeld van een geïndiceerde collectie $\{A_n\}_{n\in\mathbb{N}}$ die voldoet aan de volgende vereisten:
 - Alle A_n zijn verschillend.
 - $\bigcup_{n \in \mathbb{N}} A_n = [2, 6].$
 - $\bigcap_{n \in \mathbb{N}} A_n = [3, 6].$

Is $I = \{[3 - \frac{1}{n}, 6]\}_{n \in \mathbb{N}}$, waar $A_n = [3 - \frac{1}{n}, 6]$.

(b.) **Theorem 1.** De verzamelingen A_n zijn paarsgewijs verschillend. In andere woorden $n \neq m \implies A_n \neq A_m$.

Bewijs van Theorem 1.

Neem $n, m \in \mathbb{N}$ zodat $n \neq m$.

Dan is $\frac{1}{n}$ niet gelijk aan $\frac{1}{m}$, dus $3 - \frac{1}{n}$ is niet gelijk aan $3 - \frac{1}{m}$.

Omdat de linkergrens van de intervallen niet gelijk zijn, zijn de intervallen niet gelijk.

$$[3 - \frac{1}{n}, 6] = A_n \neq [3 - \frac{1}{m}, 6] = A_m.$$

Dus $n \neq m \implies A_n \neq A_m$.

(c.) **Theorem 2.** De vereniging van de collectie I is gelijk aan het interval [2,6]. In andere woorden: $\bigcup_{n\in\mathbb{N}} A_n = [2,6]$.

Hiervoor is een kort subargument nodig.

Lemma 2.1. Voor een gegeven n en m zodat n < m geldt dat $A_m \subseteq A_n$.

Bewijs van lemma 2.1.

Neem $n, m \in \mathbb{N}$ zodat n < m.

Dan geldt $\frac{1}{n} > \frac{1}{m}$, en ook $3 - \frac{1}{n} < 3 - \frac{1}{m}$.

Vanuit de definitie van A_n zien we dat $3 - \frac{1}{n}$ de linkergrens van A_n is en $3 - \frac{1}{m}$ de linkergrens van A_m . Omdat de linkergrens van A_n nu kleiner is dan de linkergrens van A_m en de rechtergrens van beide hetzelfde is, is het interval A_m een deelverzameling van het interval A_n .

Dus
$$n < m \implies A_m \subseteq A_n$$
.

Nu kan **Theorem 2.** bewezen worden.

Bewijs van **Theorem 2**.

Omdat $1 \leq n$ voor elke $n \in \mathbb{N}$, en als gevolg van **lemma 2.1** geldt $A_n \subseteq A_1$ voor elke n.

$$A_1 = [2, 6], \text{ dus } \bigcup_{n \in \mathbb{N}} A_n \subseteq A_1 \iff \bigcup_{n \in \mathbb{N}} A_n \subseteq [2, 6].$$

(d.) **Theorem 3.** Het interval [3,6] is een deelverzameling van $\bigcap_{n\in\mathbb{N}} A_n$.

Bewijs van **Theorem 3.**

Voor elke
$$n \in \mathbb{N}$$
 geldt $\frac{1}{n} > 0$.
Dus $-\frac{1}{n} < 0$, dus $3 - \frac{1}{n} < 3$.

Dus er bestaat geen $n \in \mathbb{N}$ zodat $3 - \frac{1}{n} > 3$.

Dus $[3,6] \subseteq A_n$ voor elke n.

Dus
$$[3,6] \subseteq \bigcap_{n \in \mathbb{N}} A_n$$
.

(e.) **Theorem 4.** De doorsnede van de collectie I is een deelverzameling van het interval [3, 6]. In andere woorden: $\bigcap_{n\in\mathbb{N}} A_n \subseteq [3, 6]$.

Ook hier begin ik met het bewijzen van een subargument.

Lemma 4.1. Voor een gegeven n en $m \in \mathbb{N}$ zodat n < m, geldt dat de doorsnede van A_n en A_m gelijk is aan A_m . In andere woorden:

$$n < m \implies A_n \cap A_m = A_m.$$

Bewijs van **lemma 4.1**. Neem $n, m \in \mathbb{N}$ met n < m.

Dan geldt $3 - \frac{1}{n} < 3 - \frac{1}{m}$.

Dus
$$[3 - \frac{1}{m}, 6] \subseteq [3 - \frac{1}{n}, 6]$$
 en $[3 - \frac{1}{n}, 6] \nsubseteq [3 - \frac{1}{m}, 6]$.

Dus A_m is een subset van A_n , en A_n is geen subset van A_m .

Dus $A_n \cap A_m = A_m$.

Dus
$$n < m \implies A_n \cap A_m = A_m$$
.

Bewijs van **Theorem 4**.

Omdat $\lim_{x\to\infty} 3 - \frac{1}{a} = 3$ is 3 de bovengrens van de linkergrens van het interval. In andere woorden, de linkergrens van A_n kan niet groter worden dan 3.

Omdat ook elke A_n uniek is, betekent dit dat het interval [3,6] het enige interval is dat een deelverzameling is van alle A_n .

Dus
$$\bigcap_{n\in\mathbb{N}} A_n = [3, 6].$$