

### **Contact**

- **LinkedIn:** rk-pothal
- Phone No.:+91 9853006156

## **Top Skills**

- Analog Circuit Design
- Analog Layout Design
- DesignVerification

## Workshops

- Attended
   Processor Design
   Workshop at
   IIT-GN
- Participated in a seminar about Highly-efficient, affordable PMICs in HV 0.35um CMOS technology at IIT-GN

## Languages

- o English
- o Hindi
- Odia (Native)

## **Hobbies**

- Tinkering
- Cricket
- Badminton
- Cooking

# Rakesh Kumar Pothal IIT Gandhinagar

rakesh.pothal@iitgn.ac.in

#### **Education**

#### 2018 - Present, IIT Gandhinagar, Gujarat

M.Tech Electrical Engineering (VLSI and Microelectronics): 7.19 CGPA

#### 2011 - 2014, IGIT, Sarang, Odisha

B.Tech (BPUT, Odisha) Electronics and Telecommunication Engineering: 7.99 CGPA

#### 2008 - 2011, BOSE, Cuttack, Odisha

Diploma (SCTEVT): 80.1 percentage

#### 2008 Bhuban High School, Bhuban, Dhenkanal, Odisha

10th (BSE, Odisha): 81.2 percentage

## **Experience**

June 2015- January 2017, Part Time Guest Faculty in Orissa Institute of Engineering and Technology, Dhenkanal

- o Company Profile: Academic Institution
- o Role: Guest Faculty and Lab Instructor
- Work profile: Lecturer in Analog Electronics, Network Theory, Signals and Systems, and Instructor in Analog Lab

### **Skills**

#### **Tools**

- Cadence Virtuoso
- QuestaSim
- Xilinx Vivado

- Cadence Liberate
- Design Compiler
- o Sentaurus TCAD

MATLAB Simulink

- Calibre
- o Innovus

#### **Programming/Scripting Languages**

- Verilog
- SystemVerilog
- o C++

- VHDL
- SKILL

## M.Tech Thesis

On-chip Power Management IC (from schematic to layout) (Prof. Nihar R Mohapatra)

- Designing a full on-chip Low-Drop Out (LDO) Regulator for biomedical applications
- Designing Switching DC-DC Converter and Control Techniques (Buck-Boost Converter) for ASICs
- Extending work to Advanced Topics in PMIC (Digitally controlled LDO, Single-Inductor Multiple-Output (SIMO) Converter)

## **Major Projects**

## Single and Double stage Op-Amps (schematic to layout) (Prof. Nihar R Mohapatra)

 Designed and implemented low-power and high speed Op-Amps in 180nm technology using Cadence Virtuoso adhering to the specified design constraint parameters like gain, bandwidth, voltage swing etc.

## Bandgap Reference Circuit (schematic to layout) (Prof. Nihar R Mohapatra)

 $\circ$  Implemented Op-Amp based  $\beta$  - multiplier BGR Circuit in 180nm technology node using Cadence Virtuoso

## Study and implementation of Robust Clock Networks (Prof. Joycee Mekie)

 Simulated both un-buffered and buffered robust clock networks in sub-threshold and threshold regimes in Cadence Virtuoso UMC 65nm technology node

### **Industrial Automation**

(Prof. Uttama Lahiri)

 Implemented multi-sensor based hardware of Industrial Automation using Arduino Uno and various sensors like Ultrasonic, IR, Moisture, Temperature Sensor and LDR

## Verilog and VHDL Projects

#### **FIFO**

#### (Prof. Joycee Mekie)

 Implemented the 32 bit synthesizable synchronous FIFO with a depth of 16 with read and write control

## Noise Cancelling FIR Filter

(Prof. Nithin V George)

Designed a noise cancelling direct and transpose form FIR Filter using
 LMS Algorithm in VHDL in Xilinx Vivado

## **Positions of Responsibility**

- Engaged in teaching tools such as Cadence Virtuoso and Xilinx Vivado to juniors at IIT Gandhinagar
- o Teaching Assistant for **Analog and Digital course**, IIT Gandhinagar

#### **Achievements**

- Awarded runner-up position in under-16 cricket Vinoo Mankad Trophy against 16 teams
- Topped the school in class 10 among 82 batchmates