Übungsblatt 11: Lokalisierung

In den folgenden Übungen sind alle Ringe kommutativ mit Eins.

Übung 11.1. (wird benotet, auf 5 Punkten) Beschreiben Sie den Ring der Brüche $S^{-1}(\mathbb{Z}/168\mathbb{Z})$, wobei S die Teilmenge der Potenzen von $6 \in \mathbb{Z}/168\mathbb{Z}$ bezeichnet.

Übung 11.2. Sei R ein Ring und $f \in R$. Beweisen Sie, dass die folgenden zwei Ringe kanonisch isomorph sind:

$$R[X]/(Xf-1) \cong S^{-1}R,$$

wobei S die Teilmenge der Potenzen von $f \in R$ bezeichnet.

Übung 11.3. Sei R ein Ring.

- 1) Nehmen Sie an, dass für jedes Primideal $\mathfrak{p} \subsetneq R$, die Lokalisierung $R_{\mathfrak{p}}$ kein nicht-nulles nilpotentes Element hat. Beweisen Sie, dass R selbst kein nicht-nulles nilpotentes Element hat.
- 2) Nehmen Sie an, dass für jedes Primideal $\mathfrak{p} \subsetneq R$, die Lokalisierung $R_{\mathfrak{p}}$ ein Integritätsring ist. Ist R selbst ein Integritätsring?

Übung 11.4. Sei $R = \mathbb{C}[X,Y]/(XY)$ und sei $f = X + Y \in R$. Beweisen Sie, dass $R[f^{-1}]$ dem Ring

$$\mathbb{C}[X, X^{-1}] \times \mathbb{C}[Y, Y^{-1}]$$

kanonisch isomorph ist.

Hinweis. Sie können ein Homomorphismus zwischen den folgenden Ringen definieren und betrachten:

$$R \longrightarrow \mathbb{C}[X,Y]/(X) \times \mathbb{C}[X,Y]/(Y).$$

Bonus. Wie kann man dieses Isomorphismus geometrisch in \mathbb{C}^2 interpretieren?