Q_5

(1)

Denote the columns of A by $A = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n]$. Without loss of generality, let \mathbf{a}_n be a non-zero linear combination of the other n-1 columns: $\mathbf{a}_n = A'\mathbf{z}'$ for some $\mathbf{z} \in \mathbb{Z}^{n-1}$.

It is easy to see that because A' contains only a subset of columns of A, so $A'\mathbb{Z}^{n-1}\subseteq A\mathbb{Z}^n$. It naturally follows that

$$A'\mathbb{Z}^{n-1} + q\mathbb{Z}^m \subseteq A\mathbb{Z}^n + q\mathbb{Z}^m$$

On the other hand, let $\mathbf{v} \in A\mathbb{Z}^n + q\mathbb{Z}^m$, then there exist $\mathbf{x}_1 \in \mathbb{Z}^n, \mathbf{x}_2 \in \mathbb{Z}^m$ such that

$$\begin{split} \mathbf{v} &= A\mathbf{x}_1 + q\mathbf{x}_2 \\ &= \sum_{i=1}^n (\mathbf{a}_i \mathbf{x}_{(1,i)}) + q\mathbf{x}_2 \\ &= (\sum_{i=1}^{n-1} \mathbf{a}_i x_{(1,i)}) + \mathbf{a}_n x_{(1,n)} + q\mathbf{x}_2 \\ &= A' \cdot (x_{(1,1)}, x_{(1,2)}, \dots, x_{(1,n-1)}) + A' \mathbf{z}' x_{(1,n)} + q\mathbf{x}_2 \\ &= A' ((x_{(1,1)}, x_{(1,2)}, \dots, x_{(1,n-1)}) + \mathbf{z}' x_{(1,n)}) + q\mathbf{x}_2 \in A' \mathbb{Z}^{n-1} + q \mathbb{Z}^m \end{split}$$

Therefore we have $A\mathbb{Z}^n + q\mathbb{Z}^m \subseteq A'\mathbb{Z}^{n-1} + q\mathbb{Z}^m$, and the two lattices are indeed equal.

(2)

For the remainder of this problem, we assume that full-rank LWE with parameters (m, n, q, U_s, χ_e) exist, which means that $n \leq m$.

Let (A, \mathbf{b}) be a sample from generic (aka potentially not full-rank) LWE (m, n, q, U_s, χ_e) . Without loss of generality, assume that $A = [A_1 \mid A_2] \in \mathbb{Z}_q^{m \times (n_1 + n_2)}$ where A_1 is full-rank, and $A_2 = A_1 B$ for some non-zero $B \in \mathbb{Z}_q^{n_1 \times n_2}$. Denote the secret by $\mathbf{s} = [\mathbf{s}_1 \mid \mathbf{s}_2]$ where $\mathbf{s}_1 \leftarrow \chi_s^{n_1}, \mathbf{s}_2 \leftarrow \chi_s^{n_2}$, then:

$$\begin{aligned} \mathbf{b} &= A\mathbf{s} + \mathbf{e} \\ &= (A_1\mathbf{s}_1 + A_2\mathbf{s}_2) + \mathbf{e} \\ &= A_1\mathbf{s}_1 + A_1B\mathbf{s}_2 + \mathbf{e} \\ &= A_1(\mathbf{s}_1 + B\mathbf{s}_2) + \mathbf{e} \end{aligned}$$

we can discard the linearly dependent columns of A and feed the truncated sample (A_1, \mathbf{b}) into the full-rank LWE oracle. If the corresponding full-rank Search-LWE has unique solution denoted by \mathbf{s}' , then it must be that $\mathbf{b} - A_1 \mathbf{s}' = \mathbf{e}$, where \mathbf{e} is exactly the error term from the original Search-LWE instance (A, \mathbf{b}) .

With the error term recovered, the Search-LWE instance becomes solving noiseless linear equations. Because A is not necessarily full-rank, there may be more than one solutions, but since the secret is uniformly randomly sampled, each solution is equally likely the true secret. I claim that this is the best we can do in terms of solving Search-LWE for non-full-rank A.