Mapping to Our Problem

 $\bullet \ \Theta = \{(u, v) : u, v \in \mathbb{R}^n\}$

• w is the Gaussian distribution over Θ

• $\mathscr{P}_{(u,v)}$ is the distribution of $(\alpha/\sqrt{n})\cdot Q^{(1)}(u\otimes v)+Q^{(1)}\cdot \mathrm{vec}(G)$

• By rotational invariance : $Q^{(1)} \cdot \text{vec}(G) \sim N(0, I_t)$

•
$$\mathcal{P}_{(u,v)} = N(\mu = (\alpha/\sqrt{n}) \cdot Q^{(1)}(u \otimes v), \ \Sigma = I_t)$$

Mapping to Our Problem

- $\Theta = \{(u, v) : u, v \in \mathbb{R}^n\}$
- w is the Gaussian distribution over Θ
- $\mathcal{P}_{(u,v)}$ is the distribution of $(\alpha/\sqrt{n})\cdot Q^{(1)}(u\otimes v)+Q^{(1)}\cdot \mathrm{vec}(G)$
 - By rotational invariance : $Q^{(1)} \cdot \text{vec}(G) \sim N(0, I_t)$
 - $\mathcal{P}_{(u,v)} = N(\mu = (\alpha/\sqrt{n}) \cdot Q^{(1)}(u \otimes v), \ \Sigma = I_t)$

Main idea