

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-853_Jul16

DASY5 Validation Report for Body TSL

Date: 25.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:853

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\varepsilon_r = 51.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.4 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 26.3 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.1 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.1 W/kg Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg

Certificate No: D2450V2-853_Jul16

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-853_Jul16

Page 8 of 8

Object

Secondary Standards

Power meter EPM-442A

Power sensor HP 8481A

Power sensor HP 8481A

RF generator R&S SMT-06

Network Analyzer HP 8753E

2600 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Dec-16

Scheduled Check

In house check: Oct-16

Issued: July 26, 2016

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

D2600V2 - SN:1012

CALIBRATION CERTIFICATE

CTTL-BJ (Auden) Certificate No: D2600V2-1012_Jul16

QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: July 25, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 06-Apr-16 (No. 217-02288/02289) Apr-17 Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02288) Apr-17 Power sensor NRP-Z91 SN: 103245 06-Apr-16 (No. 217-02289) Apr-17 Reference 20 dB Attenuator SN: 5058 (20k) 05-Apr-16 (No. 217-02292) Apr-17 Type-N mismatch combination SN: 5047.2 / 06327 05-Apr-16 (No. 217-02295) Apr-17 Reference Probe EX3DV4 SN: 7349 15-Jun-16 (No. EX3-7349_Jun16) Jun-17 DAE4 SN: 601 30-Dec-15 (No. DAE4-601_Dec15)

Check Date (in house)

07-Oct-15 (No. 217-02222)

07-Oct-15 (No. 217-02222)

07-Oct-15 (No. 217-02223)

15-Jun-15 (in house check Jun-15)

18-Oct-01 (in house check Oct-15)

Function

Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

ID#

SN: GB37480704

SN: US37292783

SN: MY41092317

SN: US37390585

SN: 100972

Name

Certificate No: D2600V2-1012 Jul16

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1012_Jul16 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	2600 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.5 ± 6 %	2.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	A
SAR measured	250 mW input power	6.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	2.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1012_Jul16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.8 Ω - 6.6 jΩ	
Return Loss	- 22.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.1 Ω - 4.9 jΩ
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 30, 2007

Certificate No: D2600V2-1012_Jul16

DASY5 Validation Report for Head TSL

Date: 22.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz D2600V2; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 37.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.56, 7.56, 7.56); Calibrated: 15.06.2016;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.3 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.39 W/kg Maximum value of SAR (measured) = 24.7 W/kg

0 dB = 24.7 W/kg = 13.93 dBW/kg

Certificate No: D2600V2-1012_Jul16 Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2600V2-1012_Jul16 Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 22.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz D2600V2; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.2$ S/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.48, 7.48, 7.48); Calibrated: 15.06.2016;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.8 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 14 W/kg; SAR(10 g) = 6.25 W/kg

Maximum value of SAR (measured) = 23.5 W/kg

0 dB = 23.5 W/kg = 13.71 dBW/kg

Certificate No: D2600V2-1012_Jul16

Impedance Measurement Plot for Body TSL

Certificate No: D2600V2-1012_Jul16

ANNEX I SPOT CHECK TEST

As the test lab for 5085B from TCL Communication Ltd, we, CTTL (Shouxiang), declare on our sole responsibility that, according to "Declaration of changes" provided by applicant, only the Spot check test should be performed. The test results are as below.

I.1 Conducted power of selected case

Table I.1-1: The conducted Power for GSM/GPRS

GSM850				
Measured Power (dBm)				
		CH251	CH128	CH191
Config	Tune-up	848.8	836.6	824.4
		MHz	MHz	MHz
GSM Speech	33.30	32.96	33.01	32.95
GPRS 1 Txslot	33.10	32.95	32.99	32.93

GSM1900						
Measured Power (dBm)						
		CH251	CH128	CH191		
Config	Tune-up	848.8	836.6	824.4		
		MHz	MHz	MHz		
GSM Speech 30.30		29.71	29.59	29.56		
GPRS 2 Txslots	28.00	26.99	26.98	26.96		

Table I.1-2: The conducted Power for WCDMA

WCDMA 850					
Measured Power (dBm)					
lt a ma		Itam Tuna un		CH4182	CH4132
Item Tune-up		846.6MHz	836.4MHz	826.4MHz	
WCDMA	RMC	24	23.45	23.29	23.27

WCDMA 1900					
Measured Power (dBm)					dBm)
Item Tune-up		CH9538 1907.6 MHz	CH9400 1880 MHz	CH9262 1852.4 MHz	
WCDMA	RMC	24	23.75	24.25	24.18

Table I.1-3: The conducted Power for LTE

LTE band 4					
BandWidth	RB Number	Channel	Tune-up	Measured Power	
		1745 (20300)	24	23.96	
20 MHz	1H	1732.5 (20175)	24	1	
		1720 (20050)	24	1	
		1745 (20300)	24	1	
20 MHz	1L	1732.5 (20175)	24	23.96	
		1720 (20050)	24	23.97	

LTE band 7						
BandWidth	RB Number	Channel	Tune-up	Measured Power		
		2560 (21350)	24.4	/		
20 MHz	1H	2535 (21100)	24.4	23.85		
		2510 (20850)	24.4	23.89		
		2560 (21350)	24.4	23.79		
20 MHz	1L	2535 (21100)	24.4	1		
		2510 (20850)	24.4	1		

LTE band 12					
BandWidth	RB Number	Channel	Tune-up	Measured Power	
		711(23130)	24.5	1	
10 MHz	1M	707.5(23095)	24.5	23.90	
		704(23060)	24.5	23.93	
		711(23130)	24.5	23.97	
10 MHz	1L	707.5(23095)	24.5	1	
		704(23060)	24.5	/	

LTE band 13						
BandWidth	RB Number	Channel	Tune-up	Measured Power		
	1H		24.5	23.66		
10 MHz	1M	782 (23230)	24.5	23.65		
	1L		24.5	23.78		

LTE band 17						
BandWidth	andWidth RB Number Channel Tune-up					
		711 (23800)	24.5	23.96		
10 MHz	1L	710 (23790)	24.5	23.96		
		709 (23780)	24.5	23.94		

I.2 Measurement results

Test Band	Channel	Frequency	Tune-Up	Measured Power	Test Poisition	Measrued 10g SAR	Measued 1g SAR	Report 10g SAR	Report 1g SAR	Power Drift	Figure
GSM850	251	848.8	33. 3	32.96	Left Cheek	0.265	0.349	0. 29	0.38	-0. 16	Fig I.1
GSM850	251	848.8	33. 1	32.95	Rear	0.22	0.371	0.23	0.38	0.07	Fig I. 2
PCS1900	512	1850. 2	30. 3	29. 56	Left Cheek	0.087	0.139	0.10	0.16	0.07	<u>Fig I.3</u>
PCS1900	512	1850. 2	28	26.96	Bottom	0.221	0.416	0. 28	0.53	0.11	<u>Fig I.4</u>
WCDMA850	4233	846.6	24	23. 45	Left Cheek	0.280	0.368	0.32	0.42	-0.05	Fig I.5
WCDMA850	4233	846.6	24	23. 45	Rear	0.186	0.317	0.21	0.36	0	<u>Fig I.6</u>
LTE Band4	20300	1745 MHz	24	23.96	Left Cheek	0.217	0.342	0.22	0.35	-0.02	Fig I. 7
LTE Band4	20300	1745 MHz	24	23.96	Bottom	0.361	0.671	0.36	0.68	0.12	<u>Fig I.8</u>
LTE Band7	20850	2510 MHz	24. 4	23.89	Right Cheek	0.169	0.319	0.19	0.36	0.12	<u>Fig I.9</u>
LTE Band7	20850	2510 MHz	24. 4	23.89	Bottom	0.291	0. 591	0.33	0.66	0. 16	Fig I. 10
LTE Band12	23130	711 MHz	24. 5	23. 97	Left Cheek	0.192	0. 24	0.22	0.27	-0.04	Fig I. 11
LTE Band12	23130	711 MHz	24. 5	23. 97	Rear	0.235	0. 296	0. 27	0.33	0.01	<u>Fig I. 12</u>
LTE Band13	23230	782 MHz	24. 5	23. 78	Left Cheek	0.106	0. 137	0.13	0.16	0.02	<u>Fig I. 13</u>
LTE Band13	23230	782 MHz	24. 5	23. 78	Rear	0. 167	0. 213	0.20	0.25	0.02	<u>Fig I.14</u>

I.3 Reported SAR Comparison

Exposure Configuration	Technology Band	Reported SAR 1g (W/Kg): spot check	Reported SAR 1g (W/Kg): original
	GSM850	0.38	0.34
	GSM1900	0.16	0.21
	WCDMA 850	0.42	0.42
Hood	WCDMA1900	0.25	0.39
Head	LTE Band4	0.35	0.45
	LTE Band7	0.36	0.31
	LTE Band12	0.27	0.24
	LTE Band13	0.16	0.16
	GSM850	0.38	0.42
	GSM1900	0.53	0.55
	WCDMA 850	0.36	0.48
Dady	WCDMA1900	0.56	0.73
Body	LTE Band4	0.68	1.03
	LTE Band7	0.66	0.87
	LTE Band12	0.33	0.33
	LTE Band13	0.25	0.25

Note: The spot check results of Head for GSM850,, LTE band7 and LTE band12 are larger than the original result. So they replace the original results and others are shared.

GSM850_CH251 Left Cheek

Date: 1/5/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.875 \text{ mho/m}$; $\epsilon r = 41.67$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.01,10.01,10.01)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.404 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.051 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.454 W/kg

SAR(1 g) = 0.349 W/kg; SAR(10 g) = 0.265 W/kg

Maximum value of SAR (measured) = 0.38 W/kg

Figure I.1

GSM850 CH251 Rear

Date: 1/5/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.965 \text{ mho/m}$; $\epsilon r = 55.46$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(9.83,9.83,9.83)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.405 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.93 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.624 W/kg

SAR(1 g) = 0.371 W/kg; SAR(10 g) = 0.22 W/kg

Maximum value of SAR (measured) = 0.447 W/kg

Figure I.2

PCS1900 _CH512 Left Cheek

Date: 1/7/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.425 \text{ mho/m}$; $\epsilon r = 39.852$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1850.2 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.1,8.1,8.1)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.153 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.886 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.205 W/kg

SAR(1 g) = 0.139 W/kg; SAR(10 g) = 0.0872 W/kg

Maximum value of SAR (measured) = 0.164 W/kg

Figure I.3

PCS1900 CH512 Bottom

Date: 1/7/2017

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.562 \text{ mho/m}$; $\epsilon r = 54.01$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1850.2 MHz Duty Cycle: 1:4

Probe: EX3DV4 – SN7307 ConvF(7.67,7.67,7.67)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.499 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.56 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.712 W/kg

SAR(1 g) = 0.416 W/kg; SAR(10 g) = 0.221 W/kg

Maximum value of SAR (measured) = 0.512 W/kg

Figure I.4

WCDMA850-BV_CH4233 Left Cheek

Date: 1/5/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 846.6 MHz; $\sigma = 0.879 \text{ mho/m}$; $\epsilon r = 41.71$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 846.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.01,10.01,10.01)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.482 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.222 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.531 W/kg

SAR(1 g) = 0.368 W/kg; SAR(10 g) = 0.280 W/kg

Maximum value of SAR (measured) = 0.441 W/kg

Figure I.5

WCDMA850-BV_CH4233 Rear

Date: 1/5/2017

Electronics: DAE4 Sn1331 Medium: Head 835 MHz

Medium parameters used: f = 846.6 MHz; $\sigma = 0.969 \text{ mho/m}$; $\epsilon r = 55.43$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 846.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(9.83,9.83,9.83)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.379 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.9 V/m; Power Drift = 0 dB

Peak SAR (extrapolated) = 0.54 W/kg

SAR(1 g) = 0.317 W/kg; SAR(10 g) = 0.186 W/kg

Maximum value of SAR (measured) = 0.392 W/kg

Figure I.6

LTE1700-FDD4_CH20300 Left Cheek

Date: 1/6/2017

Electronics: DAE4 Sn1331 Medium: Head 1750 MHz

Medium parameters used: f = 1745 MHz; $\sigma = 1.398$ mho/m; $\epsilon r = 39.716$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD4 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.37,8.37,8.37)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.41 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.07 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.509 W/kg

SAR(1 g) = 0.342 W/kg; SAR(10 g) = 0.217 W/kg

Maximum value of SAR (measured) = 0.396 W/kg

Figure I.9

LTE1700-FDD4_CH20300 Bottom

Date: 1/6/2017

Electronics: DAE4 Sn1331 Medium: Head 1750 MHz

Medium parameters used: f = 1745 MHz; $\sigma = 1.492$ mho/m; $\epsilon r = 53.124$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD4 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.18,8.18,8.18)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.83 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.52 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.671 W/kg; SAR(10 g) = 0.361 W/kg

Maximum value of SAR (measured) = 0.813 W/kg

Figure I.10

LTE2500-FDD7_CH20850 Right Cheek

Date: 1/8/2017

Electronics: DAE4 Sn1331 Medium: Head 2600 MHz

Medium parameters used: f = 2510 MHz; $\sigma = 1.985 \text{ mho/m}$; $\epsilon r = 39.51$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE2500-FDD7 2510 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.21,7.21,7.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.437 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.728 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.609 W/kg

SAR(1 g) = 0.319 W/kg; SAR(10 g) = 0.169 W/kg

Maximum value of SAR (measured) = 0.397 W/kg

Figure I.11

LTE2500-FDD7_CH20850 Bottom

Date: 1/8/2017

Electronics: DAE4 Sn1331 Medium: Head 2600 MHz

Medium parameters used: f = 2510 MHz; $\sigma = 2.206 \text{ mho/m}$; $\epsilon r = 52.21$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE2500-FDD7 2510 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.03,7.03,7.03)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.762 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.67 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.591 W/kg; SAR(10 g) = 0.291 W/kg

Maximum value of SAR (measured) = 0.751 W/kg

Figure I.12

LTE700-FDD12_CH23130 Left Cheek

Date: 1/4/2017

Electronics: DAE4 Sn1331 Medium: Head 750 MHz

Medium parameters used: f = 711 MHz; $\sigma = 0.895$ mho/m; $\epsilon r = 41.623$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD12 711 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.47,10.47,10.47)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.259 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.792 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.286 W/kg

SAR(1 g) = 0.24 W/kg; SAR(10 g) = 0.192 W/kg

Maximum value of SAR (measured) = 0.26 W/kg

Figure I.13

LTE700-FDD12_CH23130 Rear

Date: 1/4/2017

Electronics: DAE4 Sn1331 Medium: Head 750 MHz

Medium parameters used: f = 711 MHz; $\sigma = 0.975$ mho/m; $\epsilon r = 56.214$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD12 711 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(9.93,9.93,9.93)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.323 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.21 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.359 W/kg

SAR(1 g) = 0.296 W/kg; SAR(10 g) = 0.235 W/kg

Maximum value of SAR (measured) = 0.319 W/kg

Figure I.14

LTE750-FDD13_CH23230 Left Cheek

Date: 1/4/2017

Electronics: DAE4 Sn1331 Medium: Head 750 MHz

Medium parameters used: f = 782 MHz; $\sigma = 0.875$ mho/m; $\epsilon r = 41.725$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.47,10.47,10.47)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.148 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.4 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.171 W/kg

SAR(1 g) = 0.137 W/kg; SAR(10 g) = 0.106 W/kg

Maximum value of SAR (measured) = 0.148 W/kg

Figure I.15

LTE750-FDD13_CH23230 Rear

Date: 1/4/2017

Electronics: DAE4 Sn1331 Medium: Head 750 MHz

Medium parameters used: f = 782 MHz; $\sigma = 0.952$ mho/m; $\epsilon r = 56.347$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(9.93,9.93,9.93)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.232 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.87 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.262 W/kg

SAR(1 g) = 0.213 W/kg; SAR(10 g) = 0.167 W/kg

Maximum value of SAR (measured) = 0.231 W/kg

Figure I.16

ANNEX J Accreditation Certificate

China National Accreditation Service for Conformity Assessment LABORATORY ACCREDITATION CERTIFICATE (Registration No. CNAS L0570)

Telecommunication Technology Labs,
Academy of Telecommunication Research, MIIT

No.52, Huayuan North Road, Haidian District, Beijing, China

No.51, Xueyuan Road, Haidian District, Beijing, China

TCL International E City, No. 1001 Zhongshanyuan Road, Nanshan

District, Shenzhen, Guangdong Province

is accredited in accordance with ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence to undertake testing and calibration service as described in the schedule attached to this certificate.

The scope of accreditation is detailed in the attached schedule bearing the same registration number as above. The schedule form an integral part of this certificate.

Date of Issue: 2015-11-13 Date of Expiry: 2017-06-19

Date of Initial Accreditation: 1998-07-03

Signed on behalf of China National Accreditation Service for Conformity Assessment

China National Accreditation Service for Conformity Assessment(CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation schemes for conformity assessment. CNAS is a signatory of the International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA) and the Asia Pacific Laboratory Accreditation Cooperation Mutual Recognition Arrangement (APLAC MRA). The validity of the certificate can be checked on CNAS website at http://www.cnas.org.cn/english/findanaccreditedbody/index.shtml