

b-flavour tagging in pp collisions

Alex Birnkraut on behalf of the LHCb collaboration

Basics

Introduction

Measurements of flavour oscillations and time-dependent *CP* asymmetries in neutral *B* meson systems require knowledge of the *b* quark flavour at production. This identification is performed by the Flavour Tagging. [1,2]

Two independent classes of algorithms

same side taggers (SS)

use charged particles created in the fragmentation process of the *b* quark of the signal *B* meson

- kaon for B_s^0 \rightarrow
- → SS kaon / SS kaon nnet
- pion for B^0
- \rightarrow SS pion / SS pion BDT
- proton for B^0
- \rightarrow SS proton

opposite side taggers (OS)

exploit the non-signal b quark of the initial $b\overline{b}$ pair

- overall charge of the secondary vertex (SV) \rightarrow OS vertex charge
- lepton from semi-leptonic b hadron decays
 → OS muon / OS electron
- kaon from the $b \rightarrow c \rightarrow s$ decay chain \rightarrow 0S kaon / 0S kaon nnet
- D meson from the b → c decay chain
 → OS charm

Each tagger provides a decision d on the initial flavour ("tag") and a probability to be wrong, η .

Flavour Tagging characteristics

mistag

fraction of events with a wrong tagging decision

$$\omega = \frac{N_{\text{wrong}}}{N_{\text{right}} + N_{\text{wrong}}}$$

tagging efficiency

fraction of events with a tagging decision

$$arepsilon_{ ext{tag}} = rac{N_{ ext{right}} + N_{ ext{wrong}}}{N_{ ext{all}}}$$

effective tagging efficiency

represents the statistical reduction factor of a sample in a tagged analysis

$$arepsilon_{ ext{eff}} = arepsilon_{ ext{tag}} \left(1 - 2\omega
ight)^2$$

Calibration

Mistag calibration

$$\omega(\eta) = p_0 + p_1(\eta - \langle \eta \rangle)$$
measured estimated mean

measured estimated mean ev-by-ev mistag ev-by-ev mistag estimated mistag

Several flavour-specific decay channels are used

sion with charge of the final state

- $B^+ \to J/\psi \, K^+, \, B^+ \to D^0 \pi^+$ charged channels: extract ω by comparing tag deci-
- $B^0 \to J/\psi \, K^{*0}$, $B^0 \to D^{*-} \mu^+ \nu_\mu$, $B^0_s \to D^-_s \pi^+$, ... neutral channels: full time-dependent analysis to extract ω from the mixing asymmetry

$$\mathcal{A}_{\mathsf{mix}}(t) \propto (1-2\omega) \cos(\Delta m_{d/s} t)$$

Flavour Tagging in Run I

Strategy

- for each tagger one calibration valid for all channels
- systematic uncertainties from
 - calibration methods
 - results in different control channels
- "ad-hoc" calibration from specific control channels for analyses dominated by FT uncertainty

Performance in analyses

• CP violation in $\overline B{}^0_s o J\!/\psi\,\pi^+\pi^-$

- two analyses:
 - \rightarrow on 1 fb⁻¹: $\varepsilon_{\rm eff} = 2.43 \%$ [3]
- ightarrow on 3 fb $^{-1}$: $arepsilon_{
 m eff}=3.89\,\%$ [4]
- second analysis included SS kaon nnet tagger
- OS algorithms have been re-optimised

• CP violation in $B_s^0 \to D_s^{\mp} K^{\pm}$

 $-\,$ SS kaon nnet (right) adds more than $1.3\,\%$ to $\varepsilon_{\rm eff}$ (OS calibration left) [5]

• CP violation in $B^0 \rightarrow J/\psi K_s^0$ (sin 2 β)

- compared to the $1~{\rm fb}^{-1}$ analysis the SS pion tagger adds more than 0.376 % to $\varepsilon_{\rm eff}$ in the 3 ${\rm fb}^{-1}$ analysis
- precision analysis \rightarrow "ad-hoc" calibration with $B^+ \rightarrow J/\psi \, K^+$ (OS) and $B^0 \rightarrow J/\psi \, K^{*0}$ (SS pion) leads to smaller uncertainties from FT [6]

- CP violation in $B_s^0 \to J/\psi K_s^0$
 - $-B_s^0$ and B^0 events not separable in analysis
 - B_s^0 events: $\varepsilon_{\rm eff} = 4.00 \%$ [7]
 - B^0 events: also small contribution of SS kaon to $oldsymbol{arepsilon}_{ ext{eff}}$
 - → same-side protons misidentified as kaons
 - \rightarrow kaons from K^* (892) produced in correlation with the B^0
 - ⇒ kaons have charge opposite: tag decision has to be inverted

Overall performance improvements in Run I

- OS tagging improved $\mathcal{O}(15\%)$
- SS kaon tagging improved $\mathcal{O}(40\%)$
- ⇒ Flavour Tagging has been a success in Run I

Developments

OS charm tagger

• reconstruct $D^0/D^{\pm}/D^*$ decays related to OS b decay

Decay mode	Relative rate	Relative power
$D^0 \to K^- \pi^+$	10.0%	24.0%
$D^0 o K^-\pi^+\pi^+\pi^-$	5.9%	8.4%
$D^+ \to K^- \pi^+ \pi^+$	10.3%	2.6%
$D^0, D^+ \to K^- \pi^+ X$	69.7%	61.5%
$D^0, D^+ \to K^- e^+ X$	0.5%	0.2%
$D^0, D^+ \to K^- \mu^+ X$	3.4%	0.3%
$\Lambda_c^+ \to p^+ K^- \pi^+$	0.2%	2.4%

- one boosted decision tree (BDT) for each mode [8]
- clean measure of *B* meson flavour (low mistag)
- stand-alone tagging power of $\epsilon_{
 m eff} = 0.30\,\%$ to $0.40\,\%$

SS pion calibration

- calibration performed with $B^0 o J/\psi \, K^{*0}$
- full evaluation of systematic uncertainties
- used for the first time in the measurements of
 - $-\sin(2\beta)$ with $B^0 \to J/\psi K_S^0$
 - \Rightarrow precision comparable to B-factories
 - $\Rightarrow \ arepsilon_{
 m eff}^{
 m SS\pi} = 0.38 \,\%$
 - $\sin(2eta_{
 m eff})$ with $B^0 o J\!/\psi\,\pi^+\pi^-$
 - $\Rightarrow \ arepsilon_{
 m eff}^{
 m SS}\pi = 0.54\,\%$

SS kaon tagging using neural nets (NN)

- basic idea: use two NN
 - first NN distinguishes between:
 - fragmentation tracks
 ⇒ signal for SS kaon nnet
 - ⇒ signal for SS kaon nne2. underlying event tracks
 - Signal (test sample)

 Background (test sample)

 Background (training sample)

 Kolmogorov-Smirnov test: signal (background) probability = 0.402 (0.699)

 3

 2

 1

 0

 0

 0

 0.2

 0.4

 0.6

 0.8

 MLPBNN response
 - second NN:
 - o receives up to 3 candidates
 - o assigns final tag and mistag [9]
- SS kaon nnet tagger is a great success, compared to the previous cut-based SS kaon it gives
 - $-B_s^0 o D_s^- \pi^+$: 50 % relative improvement in $oldsymbol{arepsilon}_{ ext{eff}}$
 - $B_s^0 o J/\psi \, \phi$: 41 % relative improvement in $arepsilon_{ ext{eff}}$

References

- [1] LHCb Collaboration, R. Aaij et. al., Opposite-side flavour tagging of B mesons at the LHCb experiment, Eur. Phys. J. C72 (2012) 2022
- [2] LHCb Collaboration, R. Aaij et. al., Optimization and calibration of the same-side kaon tagging algorithm using hadronic B_s^0 decays in 2011 data, LHCb-CONF-2012-033
- [3] LHCb Collaboration, R. Aaij et. al., Measurement of the CP-violating phase ϕ_S in $\overline{B}_S^0 \to J/\psi \pi^+\pi^-$ decays, Phys.Lett. B713 (2012) 378-386 [4] LHCb Collaboration, R. Aaij et. al., Measurement of the CP-violating phase ϕ_S in $\overline{B}_S^0 \to 0$
- $J/\psi \pi^+\pi^-$ decays, Phys.Lett. B736 (2014) 186 [5] LHCb Collaboration, R. Aaij et. al., Measurement of CP asymmetry in $B_s^0 \to D_s^\mp K^\pm$ decays, JHEP 1411 (2014) 060
- [6] LHCb Collaboration, R. Aaij et. al., Measurement of CP violation in $B^0 \to J/\psi \, K_S^0$ decays, Phys.Rev.Lett. 115 (2015) 031601
- [7] LHCb Collaboration, R. Aaij et. al., Measurement of the time-dependent CP asymmetries in B_S⁰ → J/ψ K_S⁰, JHEP 1506 (2015) 131
 [8] LHCb Collaboration, R. Aaij et. al., B flavor tagging using reconstructed charm decays at
- [8] LHCb Collaboration, R. Aaij et. al., *B flavor tagging using reconstructed charm decays at the LHCb experiment*, LHCb-PAPER-2015.027
- [9] G. A. Krocker, Development and calibration of a same side kaon tagging algorithm and measurement of the $B_S^0-\overline{B}_S^0$ oscillation frequency Δm_S at the LHCb experiment, PhD thesis, Heidelberg U., Sep, 2013, CERN-THESIS-2013-213