Quiz 5, Solutions

1. Q1 Calculate:

$$\int e^{2x} \sin(x) dx$$

Solution

We use the integration by parts $\int u dv = uv - \int v du$. We set $u = e^{2x}$, $du = 2e^{2x}$ with $v = -\cos(x)$ and $dv = \sin(x)$. Then

$$\int e^{2x} \sin(x) dx = -e^{2x} \cos(x) + 2 \int e^{2x} \cos(x).$$

Let us use the integration by parts again with $u = e^{2x}$, $du = 2e^{2x}$, $v = \sin(x)$ and $dv = \cos(x)$. We can continue

$$\int e^{2x} \sin(x) dx = -e^{2x} \cos(x) + 2 \int e^{2x} \cos(x)$$
(integration by parts) = $-e^{2x} \cos(x) + 2 \left(e^{2x} \sin(x) - 2 \int e^{2x} \sin(x) dx \right)$

$$= -e^{2x} \cos(x) + 2e^{2x} \sin(x) - 4 \int e^{2x} \sin(x) dx.$$

We can bring the summand $4 \int e^{2x} \sin(x) dx$ to the left hand side as follows

$$5 \int e^{2x} \sin(x) dx = -e^{2x} \cos(x) + 2e^{2x} \sin(x).$$

Finally,

$$\int e^{2x} \sin(x) dx = \frac{1}{5} \left(-e^{2x} \cos(x) + 2e^{2x} \sin(x) \right) + C.$$

2. **Q2** Calculate:

$$\int_0^{\pi/2} \cos^3(x) \sin^3(x) dx$$

Solution

$$\int_0^{\pi/2} \cos^3(x) \sin^3(x) dx = \int_0^{\pi/2} \cos^3(x) (\sin^2 x) \sin x dx = \int_0^{\pi/2} \cos^3(x) (1 - \cos^2 x) \sin x dx.$$

We've used $\sin^2 x + \cos^2 x = 1$ in the last step. We can use the substitution $u = \cos x$, then $du = -\sin x$. Note that x = 0 gives us $u = \cos(0) = 1$ and $x = \frac{\pi}{2}$ gives us $u = \cos(\frac{\pi}{2})$. Now

$$\int_0^{\pi/2} \cos^3(x) \sin^3(x) dx = -\int_1^0 u^3 (1 - u^2) du$$
$$= \int_1^0 u^5 - u^3 du$$
$$= \left[\frac{u^6}{6} - \frac{u^4}{4} \right]_1^0$$
$$= \frac{1}{12}.$$