Computability Theory

May 6, 2014

Exercises (group I):

- (1) Define a program for the Turing machine TM_1^1 which computes the function $\{(n, 2 * n) \mid n \in \mathbb{N}\}.$
- (2) Define a program for the register machine RM₁¹ which computes the function f for f(0) = 1, f(sy) = 2 * f(y).
- (3) Let P = (1, A) be a program for the register machine RM_1^2 , where A =

 $\{1: \underline{if} \ t_1 \ \underline{then} \ 4 \ \underline{else} \ 2, \ 2: A_3 \ \underline{then} \ 3, \ 3: S_1 \ \underline{then} \ 1,$

4: if t_3 then 0 else 5, 5: if t_2 then 9 else 6, 6: A_4 then 7,

7: A_1 then 8, 8: S_2 then 5, 9: S_3 then 10,

10: if t_4 then 4 else 11, 11: S_4 then 12, 12: A_2 then 10}

Determine Func(P).

(4) Let Σ and Π be the following operators on functions $\mathbb{N}^{n+1} \to \mathbb{N}$:

$$\Sigma(f)(x,y) = \sum_{i=0}^{y} f(x,i), \ \Pi(f)(x,y) = \prod_{i=0}^{y} f(x,i).$$

Show that **PR** and **R** are closed under Σ and Π .

- (5) Show that **PR** and **R** are closed under bounded quantification.
- (6) Prove that **PR** is closed under bounded maximization, i.e.: Let Q be an n+1-place primitive recursive predicate and let

$$(\max Q)(x,y) = \max\{k \mid k \le y \land Q(x,k)\} \text{ if } (\exists i \le y)Q(x,i),$$

= 0 otherwise.

Then $(\max Q)$ is primitive recursive.

(7) Let p(0) = 1 and for all $n \ge 1$ p(n) =the n-th prime. Prove that p is primitive recursive.