

	4	2	3	ч	5	6	+	8	9	10	44	12	18	14	15	16	47	48	19	20	21	22	23	24	25	26	84	28	28	80	81	82	አአ	34	35	36
0	1	1	1	1	1	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	A	٨	1	A	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	1	0	0	0	0	0	1	4	1	1	٨	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	1	0	0	0	0	0	٨	0	0	0	0	0	4	1	4	1	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	٨	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٨	0	1	1	1	1	0	0	0	0	0	0	0	0	0
6	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	Λ	0	0	0	0	0	0	1	1	4	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	٨	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Λ	4	1	1	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
9	0	0	A	0	0	0	0	0	1	0	0	0	0	0	0	Λ	0	0	0	٨	0	0	0	0	0	٥	1	0		0	0	0	0	0	0	0
10	0	1	0	0	0	0	0	Λ	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0		1	0	0	0	0	-	0	Λ	1	0	-
11	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0		0	0	1	0	0	0	1	0	1	1	1
12	Λ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	10	0	1	1			0	0	0	1	1	0	0	0	1	0

- 3) Graf jest pół-hamiltonowski (po wierzchołku 8 widać, że nie będzie on hamiltonowski). Ścieżka Hamiltona: 8, 11, 10, 5, 12, 3, 1, 7, 6, 0, 9, 2, 4
- 4) Graf nie jest ani eulerowski, ani pół-eulerowski (ma 6 wierzchołków nieparzystych stopni).
- 6) Liczba chromatyczna = 4 Indeks chromatyczny = 8
- 8) Rysunek nie jest planarny i nie da się go przedstawić w sposób planarny. Uzasadnienie:

Twierdzenie Eulera [edytuj l edytuj kod]

Dowolny rysunek płaski grafu planarnego wyznacza spójne obszary płaszczyzny zwane ścianami. Dokładnie jeden z tych obszarów, zwany ścianą zewnętrzną, jest nieograniczony.

Zgodnie z wzorem Eulera, jeżeli $|V|\geqslant 3$ oraz G jest grafem spójnym i planarnym, to |V|+|S|-|E|=2, gdzie V – zbiór wierzchołków, E – zbiór krawędzi, S – zbiór ścian dowolnego rysunku plaskiego grafu G.

Wnioski ze wzoru Eulera [edytuj l edytuj kod]

- Jeżeli G jest planarny i posiada k składowych spójnych, to |V| + |S| |E| = k + 1.
- Jeżeli G jest planarny i $|V| \geqslant 3$, to $|E| \leqslant 3 \cdot |V| 6$.
- Jeżeli G jest planarny, to wierzchołek o najmniejszym stopniu jest stopnia co najwyżej 5.

$$36 \le 39 - 6$$

nie zgadza się, więc graf nie może być planarny

