Devoir surveillé n°6 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $n \in \mathbb{N}^*$. Calculer le reste de la division euclidienne du polynôme $X^n + X + 1$ par le polynôme $(X - 1)^2$.

II. Une équation fonctionnelle.

Partie 1 : endomorphismes continus de $(\mathbb{R}, +)$.

On veut montrer que l'ensemble des homothéties de \mathbb{R} est égal à l'ensemble \mathscr{E} des endomorphismes continus du groupe additif $(\mathbb{R}, +)$, c'est-à-dire des fonctions **continues** $f: \mathbb{R} \to \mathbb{R}$ vérifiant

$$\forall x, y \in \mathbb{R} , f(x+y) = f(x) + f(y).$$

- 1) Soit $f \in \mathscr{E}$.
 - a) Montrer que : $\forall x \in \mathbb{R}, \forall k \in \mathbb{Z}, f(kx) = kf(x)$.
 - b) On pose $\lambda = f(1)$. Démontrer que : $\forall x \in \mathbb{Q}$, $f(x) = \lambda x$. Indication : si $x \in \mathbb{Q}$, on pourra multiplier x par un entier pour obtenir un entier et utiliser la question précédente.
- 2) Conclure.

Partie 2 : une équation fonctionnelle.

On veut maintenant déterminer l'ensemble \mathscr{E}' des fonctions f de \mathbb{R} vers \mathbb{R} <u>continues en 0</u> vérifiant :

$$\forall x, y \in \mathbb{R} , f(x+y) = \frac{f(x) + f(y)}{1 + f(x)f(y)}.$$

En particulier, cela signifie que $\forall x, y \in \mathbb{R}$, $1 + f(x)f(y) \neq 0$.

- 3) Quelles sont les fonctions constantes de \mathcal{E}' ?
- 4) Soit f un élément de \mathscr{E}' pour lequel il existe un $x_0 \in \mathbb{R}$ tel que $|f(x_0)| = 1$. Montrer que f est une fonction constante sur \mathbb{R} .
- 5) Soit f un élément de \mathcal{E}' qui n'est pas une fonction constante.
 - a) Montrer que f(0) = 0. Étudier la parité de f.
 - **b)** Montrer que f est continue sur \mathbb{R} .
 - c) En déduire que, pour tout réel x, on a |f(x)| < 1.
 - d) On rappelle que th : $\mathbb{R} \to]-1,1[$ est bijective, on note Argth sa réciproque. On pose : $g(x) = \operatorname{Argth}(f(x))$. Justifier l'existence et la continuité de g sur \mathbb{R} .

- e) Vérifier que la fonction th
 est un élément de \mathcal{E}' .
- f) En déduire que g est un élément de \mathscr{E} .
- 6) Donner l'expression des fonctions non constantes de \mathcal{E}' .
- 7) Conclure en donnant une description complète de \mathcal{E}' .

III. Suite, polynôme, suite...

- 1) Soit $u = (u_n)_{n \ge 1}$ la suite de terme général $u_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.
 - a) En s'aidant des suites (u_{2n}) et (u_{2n-1}) , montrer que que la suite u converge.
 - **b)** Justifier que $\forall n \geq 1, \ u_n < 0.$
- 2) Soit un entier naturel $n \ge 2$, on introduit le polynôme

$$P_n = -1 + X + \frac{1}{2}X^2 + \dots + \frac{1}{n}X^n = -1 + \sum_{k=1}^n \frac{X^k}{k}.$$

- a) Déterminer les racines du polynôme dérivé P'_n , en séparant, selon la parité de n, les racines réelles des racines complexes non réelles.
- b) Montrer que tout racine <u>réelle</u> de P_n est simple.
- 3) a) Montrer que, pour tout entier naturel $n \ge 2$, le polynôme P_n admet une unique racine (réelle!) dans l'intervalle $[0, +\infty[$. On note x_n cette racine : vérifier que $x_n \in [0, 1]$.
 - b) Pour $n \ge 2$, déterminer le signe de $P_{n+1}(x_n)$. En déduire la monotonie de $(x_n)_{n\ge 2}$ puis sa convergence. On note ℓ la limite de $(x_n)_{n\ge 2}$.
- 4) On pose, pour $n \ge 2$,

$$G_n: \left\{ \begin{array}{ccc} [0,1[& \rightarrow & \mathbb{R}; \\ x & \mapsto & -1-\ln(1-x)-P_n(x). \end{array} \right.$$

- a) Calculer la valeur exacte de $C = x_2$ et comparer C et 1.
- b) Calculer et simplifier G'_n .
- c) En déduire que, pour tout $x \in [0, C]$ et pout tout $n \ge 2$, $|G'_n(x)| \le \frac{C^n}{1 C}$ puis que $|G_n(x)| \le |x| \frac{C^n}{1 C}$.
- 5) a) Justifier que, pour $n \ge 2$, $x_n \in [0, C]$.
 - **b)** En déduire que, pour $n \ge 2$, $|1 + \ln(1 x_n)| \le \frac{C^{n+1}}{1 C}$.
 - c) Déterminer la valeur de ℓ .

— FIN —