CS 590: Algorithms

Lecture 10 & 11: Graphs & Graph's algorithm

Problem:

- $oldsymbol{\square}$ A town has a set of houses and a set of roads.
- ☐ A road connects 2 and only 2 houses.
- \square A road connecting houses u and v has a repair cost w(u, v).
- ☐ Goal: Repair enough (and no more) roads such that
 - ☐ Everyone stays connected: can reach every house from, all other houses, and
 - ☐ Total repair cost is minimum.

Model as graph:

- \Box Undirected graph G = (V, E).
- \square Weight w(u, v) on each edge (u, v) \in E.
- \Box Find $T \subseteq E$ such that
 - ☐ T connects all vertices (T is a **spanning tree**), and
 - \square w(T) = $\sum_{(u,v)\in T}$ w(u, v) is minimized.
 - $\square \min(w(T))$ is called a minimum spanning tree (MST).

- ☐ We have more than one MST in this example.
- \square Replace (e,f) in the MST by (c,e) gives a different MST with the same weight.

Some properties of a MST:

- ☐ It has |V|-1 edges.
- ☐ It has no cycles.
- ☐ It might not be unique.

Building up the solution:

- ☐ We will build a set A of edges.
- ☐ Initially, A has no edges.
- \square As we add edges to A, we maintain a loop invariant: A is a subset of some MST.
- ☐ We add only edges that maintain the loop invariant.
- ☐ If A is a subset of some MST, an edge (u, v) is safe for A if and only if A ∪ $\{(u, v)\}$ is also a subset of some MST \Rightarrow we will only add safe edges.

Algorithm (GENERIC-MST(G,w))

```
1 A = \emptyset
```

2 while (A is not in a spanning tree) do

3 find an edge (u, v) that is safe for A

4 $A = A \cup \{(u, v)\}$

5 return A

Correctness:

- oxdot Initialization: The empty set trivially satisfies the loop invariants.
- \square Maintenance: A remains a subset of some MST, since we add only safe edges.
- \Box Termination: All edges added to A are in an MST, so when we stop, A is a spanning tree that is also an MST.

Find a safe edge:

- ☐ How do we find safe edges?
- ☐ In this example, the edge (c, f) has the lowest weight of any edge in the graph. Is it safe for $A = \emptyset$?

Intuitively:

- \square Let $S \subseteq V$ be any set of vertices that includes c but not f (so that f is in V S).
- \square In any MST, there has to be one edge (at least) that connects S with V S.
- \square Why not choose the edge with minimum weight? (would be (c, f) in our case).

Definition:

- \square Let $S \subset V$ and $A \subseteq E$.
 - \square A **cut** (S, V S) is a partition of vertices into disjoint set V and S V.
 - □ Edge $(u, v) \in E$ crosses cut (S, V S) if one endpoint is in S and the other is in V S.
 - ☐ A cut **respects** A if and only if no edge in A crosses the cut.
 - An edge is a **light edge** crossing a cut if and only if its weight is minimum over all edges crossing the cut. For a given cut, there can be > 1 light edges crossing it.

Theorem:

□ Let A be a subset of some MST, (S, V - S) be a cut that respects A, and (u, v) be a light edge crossing (S, V - S). Then (u, v) is safe for A.

1870

Proof:

- Let T be an MST that includes A.
- We are done, if T contains (u, v).
- We assume that T does not contain (u, v). We will construct a different MST T' that includes $A \cup \{(u, v)\}$.
- Recall, a tree has a unique path between each pair of vertices.
- Since T in an MST, it contains a unique path p between u and v.
- The path p must cross the cut (S, V S) at least once. Let (x, y) be an edge of p that crosses the cut. From the way (u, v) is chosen, we must have $w(u, v) \le w(x, y)$.

Proof:

- \square Since the cuts respect A, edge (x, y) is not in A.
- \Box To form T' from T:
 - \square Remove (x, y). Breaks T into two components.
 - ☐ Add (u, v). Reconnects.
 - □ So T' = T $\{(x,y)\}$ ∪ $\{(u,v)\}$.

 \Box T' is a spanning tree.

$$w(T') = w(T) - w(x, y) + w(u, v) \le w(T)$$

- where $w(u, v) \le w(x, y)$.
- \square Since T' is a spanning tree, w(T') \leq w(T), and T is an MST, then T' must be an MST.
- \square We need to show that (u, v) is safe for A:
 - $A \subseteq T$ and $(x, y) \notin A \Rightarrow A \subseteq T'$.
 - $A \cup \{(u, v)\} \subseteq T'$.
 - Since T' in an MST, (u, v) is safe for A.

In GENERIC-MST:

- ☐A is a forest containing connected components. Initially, each component is a single vertex.
- ☐ Any safe edge merges two of these components into one.
- ☐ We can consider each component as a tree.
- \square Since an MST has exactly |V|-1 edges, the for-loop iterates
 - |V|— 1 time \Rightarrow After adding |V| 1 safe edges, we are down to just one component.

Corollary:

If $C = (V_C, E_C)$ is a connected component in the forest, $G_A = (V, A)$ and (u, v) is a light edge connecting C to some other component in G_A (i.e., (u, v) is a light edge crossing the cut $(V_C, V - V_C)$), then (u, v) is safe for A.

- ☐ It leads to Kruskal's algorithm to solve the MST problem.
- \square Let G = (V, E) is connected, undirected, weighted graph, $w: E \to \mathbb{R}$.
 - ☐ Starts with each vertex being its own component.
 - ☐ Repeatedly merges two components into one by choosing the light edge that connects them (i.e., the light edge crossing the cut between them.)
 - ☐ Scans the set of edges in monotonically increasing order by weight.
 - ☐ Uses a disjoint set data structure to determine whether an edge connects vertices in different components.

Algorithm (KRUSKAL(G,w))


```
1 A = \emptyset
2 foreach (vertex v \in G.V) do
    MAKE-SET (v)
4 #sort the edge of G.E into non-decreasing order by weight w
5 foreach ((u,v) taken from the sorted
  list) do
    if (FIND-SET(u)≠FIND-SET(v)) then
      A = A \cup \{(u, v)\}
      UNION (u, v)
  return A
```

- \square MAKE-SET(x) creates a new set whose only member is x. Since the sets are disjoint, we require that x not already be in some other set.
- \square **UNION**(x,y) unites the dynamic sets that contain x and y into a new set that is the union of these two sets.
- \Box **FIND-SET**(x) returns a pointer to the representative of the (unique) set containing x.


```
Algorithm (KRUSKAL(G,w))

1 A = ∅

2 foreach (vertex v ∈ G.V) do

3 MAKE-SET(v)

4 #sort the edge of G.E into non-decreasing order by weight w

5 foreach ((u,v) taken from the sorted list) do

6 if (FIND-SET(u) ≠FIND-SET(v)) then

7 A = A ∪ {(u, v)}

8 UNION(u,v)

9 return A
```


- \square All edges are safe except (c, e), (e, d), (b, c), and (g, h).
- ☐ If edges (c, e) were examined before (e, f), then (c, e) would have been safe, and (e, f) would have been rejected.


```
Algorithm (KRUSKAL(G,w))

1 A = ∅

2 foreach (vertex v ∈ G.V) do

3 MAKE-SET(v)

4 sort the edge of G.E into non-decreasing order by weight w

5 foreach ((u,v) taken from the sorted list) do

6 if (FIND-SET(u)≠FIND-SET(v)) then

7 A = A ∪ {(u, v)}

8 UNION(u,v)

9 return A
```

- ✓ Line 1: 0(1)
- ✓ Line 2-3: |*V*|
- ✓ Line 4: $O(E \lg E)$
- ✓ Line 5-8: O(E)

- \Box The total running time is $O(V + E) + O(E \lg E)$
- \square G is connected $\rightarrow |V| 1 \le |E| \le |V|^2$.
 - \Box The total running time is $O(E) + O(E \lg E) = O(E \lg E)$
 - \square or $O(E \lg V)$ since $\lg E = O(2 \lg V) = O(\lg V)$.

- ☐ View as a tree.
- ☐ Build one tree, and A is always a tree.
- ☐ We start from an arbitrary "root", r.
- \square At each step, we find a light edge crossing a cut $(V_A, V V_A)$, where V_A is the vertices that A is incident on and we add this edge to A.

How can we find the light edge quickly?

- ☐ Use a priority queue Q:
 - \Box Each object is a vertex in $V V_A$
 - \square A key of v is the minimum weight of any edge (u, v), where $u \in V_A$.
 - \square We use EXTRACT-MIN to return the vertex v such that there exists $u \in V_A$ and (u, v) is a light edge crossing $(V_A, V V_A)$.
 - \square We give the v's key value ∞ if v is not adjacent to any vertices in V_A .
- \Box The edges of A will form a rooted tree with root r.
 - ☐ We give the root as an input to the algorithm, but it can be any vertex.
 - \Box Each vertex knows its parent in the tree by the attribute v. π =parent of v.
 - \square v. π = NIL if v = r or v has no parent.
 - \square As the algorithm progresses, $A = \{(v, v, \pi) : v \in V \{r\} Q\}$.
 - \square When the algorithm terminates, $V_A = V \Rightarrow Q = \emptyset$, so MST is $A = \{(v, v, \pi): v \in V \{r\}\}$.


```
Algorithm (PRIM(G, w, r))
  Q = \emptyset
2 foreach ( vertex u ∈ G.V ) do
    u.key = \infty
   \mathbf{u}.\mathbf{\pi} = \mathbf{NIL}
5 INSERT (Q, u)
6 DECREASE-KEY(Q, r, 0)
                                              //r.key=0
  while ( Q \neq \emptyset ) do
     u = EXTRACT-MIN(Q)
     foreach (v \in G.Adj[u]) do
        if (v \in Q \text{ and } w(u,v) < v.key) then
10
11
           \mathbf{v}.\boldsymbol{\pi} = \mathbf{u}
12
           DECREASE-KEY (Q, v, w(u,v))
```


- Analysis: depends on the priority queue.
- ☐ Suppose Q is a binary heap:
 - \square Initialize Q and first for loop: $O(V \lg V)$
 - \square Decrease key of r: $O(\lg V)$
 - ☐ while loop:
 - □ |V| EXTRACT-MIN calls
 - $\square \Rightarrow O(V \lg V) \leq |E|$ DECREASE-KEY calls
 - $\Box \Rightarrow O(E \lg V)$
 - $\square \Rightarrow O(E \lg V)$.
- \square We could do DECREASE-KEY in O(1) amortized time.
 - ☐ Then $\leq |E|$ DECREASE-KEY calls take O(E) time altogether \Rightarrow total time becomes $O(V \lg V + E)$

```
Algorithm (PRIM(G, w, r))
   o = \emptyset
   foreach ( vertex u \in G.V ) do
      u.key = \infty
      u.\pi = NIL
      INSERT (Q, u)
   DECREASE-KEY(Q, r, 0)
                                          //r.key=0
   while ( Q \neq \emptyset ) do
      u = EXTRACT-MIN(Q)
      foreach (v \in G.Adj[u]) do
10
        if (v \in Q \text{ and } w(u,v) < v.key) then
11
           v.\pi = u
12
           DECREASE-KEY (Q, v, w(u,v))
```