Γεωμετρία Β' Λυκείου

Μάθημα 3: Ασχήσεις στο Θεώρημα Θαλή

2. Από την κορυφή Α παραλληλογράμμου ΑΒΓΔ φέρουμε ευθεία ε η οποία τέμνει τη διαγώνιο ΒΔ στο Ε, την πλευρά ΒΓ στο Ζ και την προέκταση της ΔΓ στο Η. Να αποδείζετε ότι

i)
$$\frac{AZ}{AH} = \frac{AB}{\Delta H}$$
, ii) $AE^2 = EZ \cdot EH$.

i)
$$\frac{AZ}{AH} = \frac{\Delta\Gamma}{\Delta H} = \frac{AB}{\Delta H}$$

ii)
$$AE^{2} = EZ \cdot EH$$
 $AE = EZ = EZ = EB = AE = AE = AB/AH$

3. Οι μη παράλληλες πλευρές ΑΔ, ΒΓ τραπεζίου ΑΒΓΔ τέμνονται στο Ο. Η παράλληλη από το Β προς την ΑΓ τέμνει την ΑΔ στο Ε. Να αποδείζετε ότι το ΟΑ είναι μέσο ανάλογο των ΟΔ και ΟΕ.

$$\frac{O\Delta}{OA} = \frac{O\Gamma}{OB} = \frac{OA}{OE}$$

$$AB // \Delta \Gamma = \frac{OA}{OB} = \frac{OA}{OE}$$

4. Από σημείο Δ της πλευράς ΒΓ τριγώνου ΑΒΓ φέρουμε την παράλληλη προς τη διάμεσό του ΑΜ, που τέμνει τις ευθείες ΑΒ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα.

Nα αποδείζετε ότι
$$\frac{AE}{AZ} = \frac{AB}{A\Gamma}$$
.

$$\frac{AE}{AZ} = \frac{AB}{A\Gamma} \qquad \text{agrei va seisw occ} \qquad \frac{AE}{AB} = \frac{AZ}{A\Gamma}$$

$$\frac{AM/\Delta Z}{AB} = \frac{M\Delta}{BM} = \frac{M\Delta}{M\Gamma} = \frac{AZ}{A\Gamma}$$

$$\frac{AE}{AB} = \frac{M\Delta}{BM} = \frac{M\Delta}{M\Gamma} = \frac{AZ}{A\Gamma}$$

$$\frac{AE}{AB} = \frac{M\Delta}{BM} = \frac{M\Delta}{M\Gamma} = \frac{AZ}{A\Gamma}$$

Θέμα 2 (22132)

Δίνεται ισοσκελές τραπέζιο $AB\Gamma\Delta$ με $AB=\Gamma\Delta=4$ και με βάσεις $A\Delta$ και $B\Gamma$. Στην προέκταση της πλευράς BA προς το A παίρνουμε σημείο E, ώστε EA=1. Το ευθύγραμμο τμήμα $E\Gamma$ τέμνει την $A\Delta$ στο σημείο Z και EZ=1.5

- i) Να αποδείξετε ότι ZΓ=1.5AB (Μονάδες 10)
- ii) Να υπολογίσετε το μήχος του ΖΓ (Μονάδες 05)
- iii) Αν επιπλέον ${\rm B}\Gamma{=}10,$ να υπολογίσετε το μήκος της πλευράς AZ του τριγώνου EAZ (Μονάδες 10)

i) H AZ/BF onit on
$$\theta a \lambda \dot{\eta} = \frac{ZF}{AE} = \frac{ZF}{EZ}$$

$$\Leftrightarrow \frac{AB}{1} = \frac{ZF}{1.5} \Leftrightarrow ZF = 1.5 AB$$

ii)
$$Z\Gamma = 1.5 AB = 1.5 A = 6$$

iii)
$$l \sigma x \dot{\nu} \epsilon_1 \quad \dot{\sigma} \tau_1 \qquad \frac{EA}{EB} = \frac{EZ}{E\Gamma} = \frac{AZ}{B\Gamma} \Leftrightarrow \frac{1}{5} = \frac{AZ}{10} \Leftrightarrow AZ = \frac{10}{5} = 2$$

Θέμα 2 (21987)

Οι ευθείες $\Gamma\Theta$ και ZH τέμνουν τις παράλληλες ευθείες ε_1 , ε_2 και ε_3 στα σημεία Θ , $A,\ B$ και $H,\ \Delta,\ E$ αντίστοιχα και την ευθεία ε_4 στα σημεία Γ και Z όπως στο παρακάτω σχήμα. Επίσης δίνονται τα μήκη $\Theta A = 2,\ A B = 1,\ B \Gamma = H \Delta = 4$ και EZ = 8.

- i) Να αποδείξετε ότι ΔΕ=2 (Μονάδες 10)
- ii) Να αποδείξετε ότι η ευθεία ε_4 είναι παράλληλη στις ευθείες $\varepsilon_1, \varepsilon_2$ και ε_3 . (Μονάδες 5)
- iii) Να σχεδιάσετε το ευθύγραμμο τμήμα ΘΖ το οποίο τέμνει την ευθεία ϵ_2 στο Κ και την ευθεία ϵ_3 στο Λ και να υπολογίσετε το λόγο $\frac{\Lambda Z}{K\Lambda}$ (Μονάδες 10)

i)
$$\frac{\Theta A}{AB} = \frac{H\Delta}{\Delta E} \Leftrightarrow \frac{2}{1} = \frac{4}{\Delta E} \Leftrightarrow \Delta E = \frac{4}{2} = 2$$

ii) Tapathpoipe öt lexiel
$$\frac{\Theta A}{B\Gamma} = \frac{H\Delta}{EZ} \Leftrightarrow \frac{2}{4} = \frac{4}{8}$$
 enopérus $\eta = \frac{4}{8} | \epsilon_3$ apa θ eivai napahhhhh kai ots unohomes.

$$\frac{111}{K\Lambda} = \frac{B\Gamma}{AB} \Leftrightarrow \frac{\Lambda Z}{K\Lambda} = \frac{4}{1} \Leftrightarrow \frac{\Lambda Z}{K\Lambda} = 4$$