Programmation linéaire

Alain Haït

ICAE CHIDAÉDO Département d'Ingénierie des Systèmes Complexes

Septembre 2016

Alain Hait Programmation linéaire

1/92

Plan du cours

- Introduction
 - Exemples Formulations
 - Élements de résolution
- Approche géométrique
 - Notions de base Caractérisation des solutions
- Résolution graphique
- Approche algébrique Mise sous forme standard

 - Résolution de systèmes linéaires Résolution du problème
 - Alain Hait

Programmation linéaire

Prix d'achat

P₁: 12 euros/litre

• P2: 24 euros/litre

P₃: 20 euros/litre

2/92

Programmation linéaire

Problèmes d'optimisation sous contraintes :

 min_x ou max_x z = J(x) sous les contraintes

$$\begin{cases} C_i(x) &= 0 \quad \forall i \in I^0 \\ C_i(x) &\geq 0 \quad \forall i \in I^+ \\ C_i(x) &\leq 0 \quad \forall i \in I^- \\ x &\in (\mathbb{R}_+)^n \quad \text{qu'on notera } x \geq 0 \end{cases}$$

Lest une fonction linéaire

 C_i , $i \in I^0 \cup I^+ \cup I^-$, sont des fonctions affines des variables x.

- Intérêt de l'étude de la programmation linéaire
 - Cas particulier du problème d'optimisation sous contraintes

Programmation linéaire

- Nombreuses applications
- Méthodes de résolution performantes Analyse de sensibilité des solutions

Exemple : problème de dosage

3 produits de base P₁, P₂, P₃.

Capacité

- P₁: 3000 litres
 - P₂: 2000 litres
- P2 : 1000 litres
- 2 mélanges M₁, M₂ à réaliser.

Prix de vente

- M1: 18 Euros/litre
- M₂: 22 Euros/litre

- Algorithme du simplexe
 - Exemple Algorithme
- Dualité
 - Introduction Résultats fondamentaux
 - Bilan
 - Utilisation de la dualité
 - Interprétation économique

Programmation linéaire

Approche glométrique Approche algébrique Algorithme du simplexe Dualité (Introduction Approche glométrique Approche algébrique Algorithme du simplexe Dualité

Exemple : problème de dosage

Contraintes de dosage

Mélange M₁

- Pas plus de 50 % de P1
- Pas moins de 10 % de P2
- Pas de Pa

Mélange M₂

- Pas plus de 30 % de P₁
- Pas moins de 40 % de Pa
- Pas moins de 50 % de Pa

Objectif

Trouver la composition des mélanges permettant d'optimiser le revenu, compte tenu des contraintes de capacité et de dosage.

Alain Hait Programmation linéaire

6/ 92

Autres exemples

- Problèmes de mélange (raffineries)
- Problèmes de transport
- Planification des horaires de personnel
- · Problèmes d'ordonnancement
- · Problèmes d'investissement et de financement
- etc.

Exemple : problème de dosage

- Variables de décision : v_{ij} volume de produit P_i dans le mélange M_j $(v_{ij} \geq 0 \quad \forall i, j)$.
- Contraintes de capacité :

$$(v_{11} + v_{12}) \le 3000$$
 $(v_{21} + v_{22}) \le 2000$ $(v_{31} + v_{32}) \le 1000$

Contraintes de dosage :

$$\begin{array}{lll} \text{M\'elange } M_1 & \text{M\'elange } M_2 \\ v_{11} \leq 0, 5(v_{11} + v_{21} + v_{31}) & v_{12} \leq 0, 3(v_{12} + v_{22} + v_{32}) \\ v_{21} \geq 0, 1(v_{11} + v_{21} + v_{31}) & v_{22} \geq 0, 4(v_{12} + v_{22} + v_{32}) \\ v_{31} = 0 & v_{32} \geq 0, 5(v_{12} + v_{22} + v_{32}) \end{array}$$

· Fonction objectif:

$$\max z = 18(v_{11} + v_{21} + v_{31}) + 22(v_{12} + v_{22} + v_{32}) -12(v_{11} + v_{12}) - 24(v_{21} + v_{22}) - 20(v_{31} + v_{32})$$

Alain Hait

Programmation linéaire 7/ 92

Notations

Pour une matrice $A(m \times p)$, un vecteur $b(m \times 1)$ et un vecteur $x(p \times 1)$:

- Transposée de la matrice A : A^T
- Ligne i de la matrice A : Ai
- Colonne j de la matrice A : A^j
- Élement ij de la matrice A : aij
- Élement du vecteur $x: x_j$
- Système de m équations à p inconnues : Ax = b

Alain Halt

Non-négativité des éléments de x : x ≥ 0

Forme standard

Problème avec contraintes égalité :

$$\begin{aligned} & \text{min ou } & \text{max } z = c^T x \\ & \text{Sous les contraintes} \\ & \begin{cases} & Ax & = b \\ & x & \geq 0 \end{cases} \end{aligned}$$

- x est le vecteur des variables de décision (dimension p)
- c est le vecteur des coûts du problème (dimension p)
- A matrice m × p des m contraintes

Tout problème linéaire peut être mis sous forme standard.

Alain Hait

Mitoduction Approche géométrique Approche algébrique Algorithme du simplese Dualit Bilan

Programmation linéaire

- Un programme (ou problème) linéaire est défini par :
 - Ses variables
 - Ses contraintes
 - Sa fonction objectif
- Une solution x est admissible (ou réalisable) si elle satisfait toutes les contraintes.
- Une solution optimale x* est une solution admissible qui minimise (ou maximise) le critère z.

Forme canonique

Problème avec contraintes inégalité :

$$\max z = c'^T x'$$
 Sous les contraintes
$$\left\{ \begin{array}{ll} A' x' & \leq b \\ x' & \geq 0 \end{array} \right.$$

11/92

13/92

- ullet x' est le vecteur des variables de décision (dimension n)
- c' est le vecteur des coûts du problème (dimension n)

Alain Hait

A' matrice m × n des contraintes

Programmation linéaire

Programmation linéaire

- Minimiser (ou maximiser) sur \mathbb{R}^p l'objectif z = J(x) linéaire : pas de sens l
- J(x) linéaire n'a pas de minimum (maximum) sur un ouvert car $\nabla J(x) = \operatorname{Cste} (\neq 0)$
- Une fonction continue sur un ensemble compact (fermé borné) atteint ses extrémums
- Il faut donc chercher l'optimum à la frontière du domaine admissible.

10/92

Éléments de résolution

Problème sous forme standard

$$\max z = c^T x$$
 Sous
$$\begin{cases} Ax &= b & (A \text{ matrice } m \times p) \\ x &\geq 0 \end{cases}$$

Lagrangien :

$$f(x, \lambda, \mu) = -c^T x + \lambda^T (Ax - b) - \mu^T x$$

 $\lambda \in \mathbb{R}^m$ vecteur des paramètres de Lagrange $\mu \in (\mathbb{R}_+)^p$ vecteur des paramètres de Kuhn et Tucker

Conditions de qualification : contraintes linéaires

convexe de points de S appartient à S.

Alain Hait Programmation linéaire

14/92

Notions de base

Un ensemble S est convexe si et seulement si toute combinaison

$$\begin{aligned} & \text{Soient } x^k \in \mathcal{S}, \ \alpha_k \in [0,1], \ k=1,\dots,K, \\ & \text{Si S convexe, alors } \sum_{k=1}^K \alpha_k x^k \in \mathcal{S} \text{ avec } \sum_{k=1}^K \alpha_k = 1 \end{aligned}$$

- L'intersection finie de plusieurs ensembles convexes est un ensemble convexe
- Un point extrême d'un ensemble convexe S est un point qui n'est situé à l'intérieur d'aucun segment joignant deux points de S.

Éléments de résolution

Conditions d'optimalité du premier ordre

$$\begin{split} & \frac{\partial \mathcal{L}(\mathbf{x}^*, \lambda, \mu)}{\partial \mathbf{x}} = -\mathbf{c}^T + \lambda^T \mathbf{A} - \mu^T = \mathbf{0} \\ & \frac{\partial \mathcal{L}(\mathbf{x}^*, \lambda, \mu)}{\partial \lambda} = \mathbf{A}\mathbf{x}^* - \mathbf{b} = \mathbf{0} \\ & \frac{\partial \mathcal{L}(\mathbf{x}^*, \lambda, \mu)}{\partial \mu} = -\mathbf{x}^* \le \mathbf{0} \\ & \mu^T \mathbf{x}^* = \mathbf{0} \quad \text{et} \quad \mu \ge \mathbf{0} \end{split}$$

Soit, en éliminant μ :

$$A^{T}\lambda - c \ge 0$$

$$(A^{T}\lambda - c)^{T}x^{*} = 0$$
et
$$Ax^{*} = b, \quad x^{*} > 0$$

Ces conditions d'optimalité ne permettent cependant pas de calculer explicitement x^* .

Alain Hait Programmation linéaire

15/92

Notions de base

- Hyperplan de \mathbb{R}^n : sous-espace affine de dimension n-1.
- Demi-espace de Rⁿ: partie de Rⁿ délimitée par un hyperplan.
- Tout demi-espace (ouvert ou fermé) de Rⁿ est convexe.

 Sous forme canonique, une contrainte inégalité large d'un programme linéaire définit donc un demi-espace fermé de Rⁿ. on (Approche géométrique) Approche algébrique Algorithme du simplexe Dualité Introduction (Approche géométrique) Approche algébrique Algorithme du simplexe D

Polvèdres

 L'intersection d'un nombre fini de demi-espaces fermés est un ensemble convexe appelé polyèdre.

 Un point extrême ou sommet d'un polyèdre de Rⁿ est un point du polyèdre situé à l'intersection de n hyperplans, parmi ceux qui définissent le polyèdre.

Alain Hait Programmation linéaire

19/92

Ургоста деотестцае)

Fonctions convexes

• Une fonction f est convexe si pour tout $x^1, x^2 \in \mathcal{K} \subseteq \mathbb{R}^n$

$$f(x^{\alpha}) = f(\alpha x^{1} + (1 - \alpha)x^{2}) \le \alpha f(x^{1}) + (1 - \alpha)f(x^{2}) \quad \forall \alpha \in [0, 1].$$

- le maximum d'une fonction convexe sur un ensemble convexe est atteint en un point extrême de cet ensemble.
- Par définition, la fonction objectif d'un programme linéaire est à la fois concave et convexe.

Résultat fondamental

L'optimum de la fonction objectif sur un polyèdre convexe, s'il existe, est atteint en au moins un sommet du polyèdre.

Ensemble des solutions admissibles

• L'ensemble des solutions admissibles d'un programme linéaire est un polyèdre convexe ${\cal K}$ (en vert sur la figure).

 Tout point de l'ensemble des solutions admissibles peut donc être défini par une combinaison convexe des points extrêmes du polyèdre.

Programmation linéaire

Alain Hait

20/ 92

Résolution graphique

• On trace les droites isocritères $z = c^T x = C^{ste}$ en balayant l'ensemble des solutions admissibles

Alain Halt

Configurations particulières

Alain Hait Programmation linéaire

Dégénerescence

23 / 92

Alain Hait

Transformation :
 Canonique

Sous les contraintes

A'x' < b

 $x' \ge 0$ $A'(m \times n)$

 $max z = c'^T x'$

Annualis defluiens

Programmation linéaire

Forme canonique → forme standard

25/92

Standard

 $\max z = c^T x$

Ax = bx > 0

 $A(m \times p)$

Sous les contraintes

Forme canonique \rightarrow forme standard

Solution non bornée

- Au total, m variables d'écart sont ajoutées : A' $(m \times n)$ devient sous forme standard $A = [A' | \mathbb{I}_{m \times m}]$ $(m \times p)$ avec p = n + m.
- Lorsqu'une contrainte est saturée, la variable d'écart correspondante est nulle.
- $\bullet \;$ En un sommet du polyèdre, n variables d'écart s'annulent.

Exemple

Enoncé du problème :

$$\max z = 5x_1 + 4x_2 + 3x_3$$

Sous les contraintes

$$\begin{array}{l} 2x_1 + 3x_2 + \ x_3 \leq 5 \\ 4x_1 + \ x_2 + 2x_3 \leq 11 \\ 3x_1 + 4x_2 + 2x_3 \leq 8 \end{array}$$

$$\text{ et } x_1,x_2,x_3 \geq 0 \\$$

Alain Halt

Alain Hait Programmation linéaire

Mise sous forme standard :

$$\max z = 5x_1 + 4x_2 + 3x_3$$

Sous les contraintes

$$2x_1 + 3x_2 + x_3 + x_4 = 5$$

 $4x_1 + x_2 + 2x_3 + x_5 = 11$
 $3x_1 + 4x_2 + 2x_3 + x_6 = 8$

et
$$x_1,\dots,x_6\geq 0$$

Alain Hait Programmation linéaire 28/92

Alain Hait

29 / 92

Caractérisation

Résolution de systèmes d'équations linéaires Ax = b avec Amatrice $m \times p$.

Si m = p: règle de Cramer

- $det(A) \neq 0$: le système a une solution unique $x = A^{-1}b$
- det(A) = 0 : le système n'a aucune ou a une infinité de solutions

Si m < p: théorème de Rouché-Fontené

- Soit [A|b] la matrice augmentée, de dimension $m \times (p+1)$
 - rang([A|b]) > rang(A) : le système est incompatible
 - rang([A|b]) = rang(A) = m : le système a au moins une solution
 - rang([A|b]) = rang(A) = r < m: le système a au moins une solution, mais il est redondant

Propriétés

Résolution de systèmes d'équations linéaires Ax = b avec Amatrice $m \times p$.

 Deux systèmes sont équivalents s'ils ont le même ensemble de solutions

$$\{x|Ax=b\}=\{x|\tilde{A}x=\tilde{b}\}$$

- Théorème : étant donnés un système Ax = b et une matrice $\Delta(m \times m)$ inversible, le système $\Delta Ax = \Delta b$ est équivalent au système initial.
- Une équation $\alpha x = \beta$ est redondante si

$$\{x|Ax = b, \alpha x = \beta\} = \{x|Ax = b\}$$

Programmation linéaire

Base de la matrice A

Soit la matrice A $(m \times p)$ telle que rang(A) = m avec m < p (cas sous-déterminé de rang plein).

On peut extraire de A une ou plusieurs sous-matrices carrées $m \times m$ inversibles.

Soit B une telle matrice. Les m vecteurs colonnes de B constituent une hase de \mathbb{R}^m

Par extension, on dira que cette sous-matrice B extraite de A est une hase de A

Forme simpliciale

 Soit B(m × m) une base de A. En réorganisant les colonnes de A sous la forme [B|N], ainsi que les lignes de x, le système s'écrit :

$$Ax = Bx_B + Nx_N = b$$

 x_B : variables de base; x_N : variables hors base

• Ce système est équivalent au système suivant :

$$x_B = B^{-1}b - B^{-1}Nx_N$$

Le système est alors sous la forme simpliciale.

 La solution (x_B, x_N) = (B⁻¹b, 0) est appelée solution de base associée à B.

Alain Hait Programmation linéaire

32/ 92

Alain Hait Programmation linéaire

oduction

Approche algébrique

Valeur du critère

Expression du critère sous la forme simpliciale :

$$z = c^T x = c_R^T x_R + c_N^T x_N$$

En remplaçant x_R par sa valeur en fonction des variables hors base :

$$z = c_R^T B^{-1} b + (c_N^T - c_R^T B^{-1} N) x_N$$

Qu'on note également

$$z = z_0 + \bar{c}_N^T x_N$$

Les con sont appelés coûts réduits relatifs aux variables hors base.

Solutions de base admissibles

- Toute solution de Ax = b telle que x ≥ 0 est une solution admissible du problème.
- Une solution de base telle que x_B ≥ 0 est une solution de base admissible. Elle comporte au plus m variables de valeur strictement positive (les variables de base x_B) et au moins n variables nulles (les variables hors base x_N).

Sommets

Une solution de base admissible est un sommet du polyèdre des solutions admissibles du problème.

..... (A-

Annyoche algébrique

33/92

Conditions d'optimalité

Conditions du premier ordre :

$$A^{T}\lambda - c \ge 0$$
$$(A^{T}\lambda - c)^{T}x^{*} = 0$$
$$Ax^{*} = b \text{ et } x^{*} \ge 0$$

• En une solution de base admissible, $(A^T\lambda - c)_j = 0$ pour $x_j^* \neq 0$ variable de base, et $(A^T\lambda - c)_j \geq 0$ pour $x_j^* = 0$ hors base. Sous forme simpliciale :

$$B^T \lambda - c_B = 0$$
$$N^T \lambda - c_N \ge 0$$

On en déduit :

$$\bar{c}_N^T = c_N^T - c_B^T B^{-1} N \leq 0$$

Une solution de base admissible est optimale ssi les coûts réduits des variables hors base sont tous négatifs ou nuls (maximisation).

Résolution du problème

En une solution de base admissible :

- Si les coûts réduits des variables hors base con sont tous négatifs ou nuls, cette solution est optimale.
- · S'il existe une variable hors base de coût réduit strictement positif, alors :
 - soit on peut augmenter z indéfiniment (solution non bornée).
 - soit il existe une autre solution de base avec une meilleure valeur du critère z

Résolution : recherche d'une solution de base admissible qui soit optimale

 Nombre maximal de solutions de base : coefficients du binôme C_n^m ou (Pm)

> Alain Hait Programmation linéaire

36 / 92

Exemple

Enoncé du problème :

$$\max z = 5x_1 + 4x_2 + 3x_3$$

Sous les contraintes

$$2x_1 + 3x_2 + x_3 + x_4 = 4x_1 + x_2 + 2x_3 + x_5 = 1$$

 $3x_1 + 4x_2 + 2x_3 + x_6 = 4$

et
$$x_1,\ldots,x_6\geq 0$$

Historique

- Fourier 1826
- Kantorovitch 1939
- Dantzig 1947 Kachian 1979
- Karmarkar 1984

Alain Hait Programmation linéaire 38/92

-4

-3

0

Format tableau simple

Utilisé pour regrouper toutes les données du problème mis sous forme simpliciale.

 $\max z = 5x_1 + 4x_2 + 3x_3$

Sous les contraintes							
$2x_1$	+	$3x_2$	+	X3	$+x_4$	=	
$4x_1$	+	x_2	+	$2x_3$	$+x_5$	=	1
$3x_1$	+	4x2	+	$2x_3$	$+x_6$	=	

			+x ₆ =	8	<i>x</i> ₆	ıl	
	17.2	-//3	1 20 -	Ŭ	<i>x</i> ₆	ı	

- Les variables de base x₁, x₅, x₆ et le critère z sont donnés en fonction des variables hors base x_1, x_2, x_3 .
- A la solution de base, les variables hors base sont mises à 0.

Alain Hait Programmation linéaire

39/92

Alain Halt

Programmation linéaire

Changement de base : pivot

Variable qui entre dans la base : celle qui a le plus grand coût réduit.

		x_1	X2	X3	
X4	5	-2	-3	-1	5/2
<i>X</i> ₅	11	-4	-1	-2	11/4
<i>X</i> 6	8	-3	-4	-2	8/3
Z	0	5	4	3	

- Variable qui sort de la base : la première qui s'annule lorsqu'on augmente x_1 (avec $x_2 = x_3 = 0$).
- Les nouvelles variables de base sont donc x₁, x₅, x₆.

Alain Hait Programmation linéaire

41/92

Changement de base

 Lorsque x3 entre dans la base, x6 en sort. On écrit donc x3 en fonction de x_4, x_2 et x_6 :

$$x_3 = 1 + 3x_4 + x_2 - 2x_6$$

puis on remplace x₃ par cette expression dans les autres équations.

		x_4	X2	<i>x</i> ₆
<i>x</i> ₁	2	-2	-2	1
X5	1	2	5	0
X3	1	3	1	-2
7	13	_1	-3	_1

 Tous les coûts réduits sont négatifs. On a atteint la solution optimale.

Nouvelle forme simpliciale

 Pour écrire le système dans la nouvelle base, on exprime la variable qui entre dans la base à l'aide des variables hors base :

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

puis on remplace x1 par cette expression dans les autres équations.

		X4	X2	X3
x_1	5 2	$-\frac{1}{2}$	$-\frac{3}{2}$	$-\frac{1}{2}$
<i>X</i> ₅	1	2	5	0
Х6	1/2	3 2	1/2	$-\frac{1}{2}$
z	25 2	$-\frac{5}{2}$	$-\frac{7}{2}$	1/2

· La solution de base associée n'est pas optimale car le coût réduit de x3 est supérieur à 0.

Programmation linéaire

Alain Hait

42 / 92

Algorithme du simplexe

Algorithme 1 : Simplexe

Mise sous forme standard:

Recherche d'un sommet de départ;

Mise sous forme simpliciale:

tant que Sommet non optimal faire

Pivot vers le sommet suivant;

Approcho picanistrinus Approcho delibrinus App

Algorithme du simplexe

- Mise du problème sous forme standard
 - Touiours possible
- Recherche d'une solution de base admissible de départ
 - Immédiat si le problème est sous forme canonique : base formée par les variables d'écart
 - · Peut nécessiter un traitement particulier
 - Pas de base de départ = pas de solution
- Test d'optimalité

Pas de solution

 Optimum atteint si tous les coûts réduits des variables hors base sont négatifs (maximisation) ou positifs (minimisation).

Alain Hait Programmation Indiaire 45/92

Approache gifametrique Approache algibroque (Agenthous du simplice)

Configurations particulières

Pas de solution : pas de sommet de départ (système incompatible).

Infinité de solutions

 Infinité de solutions : à l'optimum, le coût réduit d'une variable hors base est nul.

Algorithme du simplexe

Opération de pivot

- Variable qui entre dans la base: heuristique de choix parmi les variables hors base dont le coût réduit est positif (maximisation) ou négatif (minimisation):
 - celle dont le coût réduit est le plus élevé (resp. le plus faible)
 - o celle qui mène au sommet ayant la plus grande valeur du critère

Programmation linéaire

46 / 92

48/92

- (resp. la plus petite valeur).

 a autre...
- Variable qui sort de la base : la première qui s'annule lorsqu'on augmente la valeur de celle qui entre dans la base.

Alain Hait

- Solution non bornée: aucune contrainte ne limite l'augmentation de la variable qui entre dans la base.
- Dégénérescence: plusieurs variables sont candidates à la sortie de la base (elles s'annulent pour la même valeur de la variable qui entre).
 On en choisit une, les autres restent dans la base mais leur valeur passe à zéro.

Alain Hait Programmation linéaire 47/92 Alain Hait Programmation linéaire

Introduction

Caractérisation de la solution optimale z* d'une maximisation par un intervalle $[z_{inf}; z_{sup}]$.

- Borne inférieure : toute solution admissible constitue une borne inférieure de z*
- Borne supérieure : déterminer une valeur z_{sup} telle que z* ≤ z_{sup}.

Recherche de l'intervalle [zinf; zsup] le plus petit possible pour situer l'optimum.

Alain Hait

Programmation linéaire

50 / 92

Inégalités valides

Toute combinaison linéaire, à coefficients yi positifs, d'inégalités du même type définissant K donne une inégalité valide pour K :

$$y^{T}Ax = \sum_{i=1}^{n} \sum_{i=1}^{m} y_{i}a_{ij}x_{j} \leq \sum_{i=1}^{m} y_{i}b_{i} = y^{T}b$$

est valide pour K si y > 0.

Inégalités valides

Soit $K = \{x \in \mathbb{R}^n : Ax \le b\}$ un polyèdre de \mathbb{R}^n .

Une inégalité $\alpha^T x \leq \beta$ est dite valide pour K si elle est satisfaite pour tout x appartenant à K:

$$\mathcal{K} \subseteq \{x \in \mathbb{R}^n : \alpha^T x \leq \beta\}$$

Alain Hait Programmation linéaire 51/92

Exemple

Problème sous forme canonique

(
$$\mathcal{P}$$
) max $z = 4x_1 + 3x_2$
Sous les contraintes

$$x_1 \le 8$$

 $x_1 + 2x_2 \le 15$
 $2x_1 + x_2 \le 18$
 $x_j \ge 0$ $j = 1, 2$.

La solution optimale est $x_1^* = 7$, $x_2^* = 4$ et $z^* = 40$.

52/92

Généralisation

Exemple

• IDÉE : Faire des combinaisons valides des contraintes permettant de borner la fonction objectif.

$$x_1$$
 $\leq 8 \times 1$
 $x_1 + 2x_2 \leq 15 \times 2$
 $2x_1 + x_2 \leq 18$
 $4x_1 + 3x_2 \leq 41$

$$z = 4x_1 + 3x_2 \le 6x_1 + 3x_2 \le 54 \forall x_1, x_2 > 0$$

$$z = 4x_1 + 3x_2 \le 41$$

 $z = 4x_1 + 3x_2 \le 41$
 $\forall x_1, x_2 > 0$

Programmation linéaire

54/92

Programmation linéaire

55 / 92

Généralisation

Pour des valeurs $x_1 > 0, \ldots, x_n > 0$, on aura

$$z = \sum_{i=1}^{n} c_{i} x_{j} \leq \sum_{i=1}^{m} (y_{i} a_{i1}) x_{1} + \ldots + \sum_{i=1}^{m} (y_{i} a_{in}) x_{n} \leq \sum_{i=1}^{m} y_{i} b_{i}$$

si on vérifie

$$\begin{cases} c_1 \leq \sum_{i=1}^m y_i a_{i1} \\ \vdots \\ c_n \leq \sum_{i=1}^m y_i a_{in}. \end{cases}$$

Pour trouver la meilleure borne supérieure (la plus petite), il faut minimiser $\sum_{i=1}^{m} y_i b_i$ c'est-à-dire ...

Trouver des multiplicateurs $y_1 \ge 0, \dots, y_m \ge 0$ afin d'obtenir une nouvelle inégalité valide bornant la fonction objectif.

Généralisation

résoudre le programme linéaire suivant :

$$\begin{aligned} \min t &=& \sum_{i=1}^m y_i b_i \\ sous & \sum_{i=1}^m y_i a_{i1} & \geq & c_1 \\ & \cdots & & \cdots \\ & \sum_{i=1}^m y_i a_{in} & \geq & c_n \end{aligned}$$

Ce problème est appelé problème dual du problème canonique de départ.

Primal $\max z = c^T x$ Sous

Ax < bx > 0

c et x vecteurs $n \times 1$ A matrice $m \times n$

h vecteur $m \times 1$

 $\min t = b^T y$ Sous $A^T y > c$ $y \ge 0$

Dual

b et y vecteurs $m \times 1$ A^T matrice $n \times m$ c vecteur $n \times 1$

Remarque : le problème dual du dual est le problème primal.

Exemple

Primal $\max z = 4x_1 + 3x_2$

Sous

< 8 $x_1 + 2x_2 < 15$ $2x_1 + x_2 < 18$ x > 0

Dual

 $\min t = 8v_1 + 15v_2 + 18v_3$ Sous

> $y_1 + y_2 + 2y_3 \ge 4$ $2v_2 + v_3 > 3$

> > $y \ge 0$

Alain Hait

Programmation linéaire

59 / 92

Alain Hait Programmation linéaire 58/92

60/92

Exemple

Primal

Sous $+x_3 = 8$ $x_1 + 2x_2 + x_4 = 15$ $2x_1 + x_2 + x_5 = 18$

x > 0

 $\max z = 4x_1 + 3x_2$

Dual $\min t = 8y_1 + 15y_2 + 18y_3$ Sous $v_1 + v_2 + 2v_3 - v_4 = 4$

 $2y_2 + y_3 - y_5 = 3$ v > 0

Exemple

A une solution de base (admissible ou non) du primal correspond une solution de base (admissible ou non) du dual.

Primal

	- 1	1	1	ı		
	-		×1	X2		
	<i>x</i> ₃	8	-1	0		
	<i>X</i> ₃	15	-1	-2		
	<i>X</i> ₅	18	-2	-1		
	z	0	4	3		
Admissible						

Dual

		<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	ı
<i>y</i> 4	-4	1	1	2	1
<i>y</i> ₅	-3	0	2	1	ı
t	0	8	15	18	1

Non admissible

Dualité faible

 Quel que soient x et y solutions admissibles respectivement du primal et du dual, on a

$$z = \sum_{j=1}^n c_j x_j \le \sum_{i=1}^m b_i y_i = t$$

En particulier, $z^* < t^*$.

Corollaire 1 : s'il existe x et y admissibles et telles que $\sum_{i=1}^{n} c_i x_i = \sum_{i=1}^{m} b_i y_i$, alors ces solutions sont optimales.

> Alain Hait Programmation linéaire

62/92

Théorème de la dualité : démonstration (1)

Problème primal: $\max z = c^T x$ sous $Ax \le b$ et $x \ge 0$ On passe en forme standard en ajoutant m variables d'écart.

· Base de départ : les variables d'écart sont en base

$$z=0+\sum_{i=1}^n c_i x_j$$

Dans une base optimale B:

$$\begin{split} z &= c_B^T B^{-1} b + \left(\underbrace{c_N^T - c_B^T B^{-1} N}_{c_N^T \leq 0} \right) x_N \\ z &= z^* + \widetilde{c}_N^T x_N + \underbrace{\widetilde{c}_B^T x_B}_{=0} \\ z &= z^* + \sum_{j=1}^n \widetilde{c}_j x_j + \sum_{j=n+1}^{n+m} \widetilde{c}_j x_j \end{split}$$

Théorème de la dualité (Gale, Kuhn, Tucker, 1951)

Théorème de la dualité

Si le problème primal a une solution optimale, alors le problème dual a une solution optimale telle que

$$z^* = \sum_{j=1}^n c_j x_j^* = \sum_{i=1}^m b_i y_i^* = t^*$$

Primal Dual

Programmation linéaire

63/92

Théorème de la dualité : démonstration (2)

Alain Hait

Montrons qu'une solution optimale du problème dual est donnée par

$$y_i^* := -\overline{c}_{n+i} \quad i = 1, \dots, m$$

En remplacant c̄_{n+i} par −v^{*}:

$$z = z^* + \sum_{j=1}^n \bar{c}_j x_j - \sum_{i=1}^m y_i^* x_{n+i}$$
 avec $x_{n+i} = b_i - \sum_{j=1}^n a_{ij} x_j$

D'où

$$z = \left(z^* - \textstyle\sum_{i=1}^m y_i^* b_i\right) + \sum_{i=1}^n \left(\bar{c}_j + \textstyle\sum_{i=1}^m a_{ij} y_i^*\right) x_j \quad \text{Base optimale}$$

Or

$$+$$
 $\sum_{i=1}^{n} c_{i}x_{i}$

Base initiale

Alain Hait Programmation linéaire 64/92

Alain Halt

Programmation linéaire

Théorème de la dualité : démonstration (3)

Les variables x_1, \ldots, x_n étant indépendantes, on en déduit par identification :

$$\left\{ \begin{array}{lcl} z^* & = & \sum_{i=1}^m y_i^* b_i \\ \\ \bar{c}_j & = & c_j - \sum_{i=1}^m a_{ij} y_i^* & j = 1, \dots, n \end{array} \right.$$

Programmation linéaire

66 / 92

Théorème de la dualité : démonstration (4)

Vérification :

Dans la base optimale, c
_i ≤ 0 j = 1,...,n+m

$$\begin{cases} \bar{c}_j = c_j - \sum_{i=1}^m a_{ij} y_i^* \leq 0 & \Rightarrow \sum_{i=1}^m a_{ij} y_i^* \geq c_j \qquad j = 1, \dots, n \\ \bar{c}_{n+i} \leq 0 & \Rightarrow y_i^* \geq 0 \qquad i = 1, \dots, m \end{cases}$$

Les yi* constituent donc une solution admissible du problème dual.

ullet De plus, $\sum^{\dots} b_i y_i^* = z^*$, d'où par le corollaire 1 de la dualité faible, les yi* constituent bien une solution optimale du problème dual.

Alain Hait

Programmation linéaire

67 / 92

Exemple

Primal

Tableau final du simplexe :

$\max z = 4x_1 + 3x_2 \text{ sous}$						
x_1	$+x_3 = 8$	$\rightarrow y_1$				
$x_1 + 2$	$2x_2+x_4=15$	$\rightarrow y_2$				
$2x_1 +$	$x_2+x_5=18$	$\rightarrow y_3$				
	x > 0					

	ĺ	<i>x</i> ₄	<i>X</i> 5
<i>x</i> ₁	7	1/3	$-\frac{2}{3}$
<i>x</i> ₃	1	$-\frac{1}{3}$	$-\frac{2}{3}$
<i>x</i> ₂	4	$-\frac{2}{3}$	1/3
z	40	$-\frac{2}{3}$	$-\frac{5}{2}$

Les valeurs des variables duales optimales sont donc

$$y_1^* = 0$$
, $y_2^* = \frac{2}{3}$, $y_3^* = \frac{5}{3}$

En ce point, la valeur de l'objectif est :

$$t^* = \sum_{i=1}^m b_i y_i^* = 8 \times 0 + 15 \times \frac{2}{3} + 18 \times \frac{5}{3} = 40.$$

Exemple

A une solution de base (admissible ou non) du primal correspond une solution de base (admissible ou non) du dual.

Dual

Primal Admissible

Lorsque les deux sont admissibles, on a atteint l'optimum.

Conditions d'optimalité

Problème sous forme canonique

$$\max z = c^T x$$
 Sous
$$\begin{cases} Ax & \leq b & (A \text{ matrice } m \times n) \\ x & \geq 0 \end{cases}$$

Lagrangien :

$$\mathcal{L}(x, \mu_A, \mu) = -c^T x + \mu_A^T (Ax - b) - \mu^T x$$

Avec

$$\mu_A \in (\mathbb{R}_+)^m$$
 $\mu \in (\mathbb{R}_+)^n$

· Conditions de qualification : contraintes linéaires

Programmation linéaire

70 / 92

Conditions d'optimalité

D'après les conditions d'optimalité :

- $A^T \mu_A > c$ et $\mu_A > 0$ d'où μ_A constitue une solution admissible du problème dual.
- Les écarts complémentaires donnent :

$$\begin{pmatrix} A^T \mu_A - c \end{pmatrix}^T x^* = 0 \qquad \Rightarrow \quad \mu_A^T A x^* = c^T x^* \\ \mu_A^T (A x^* - b) = 0 \qquad \Rightarrow \quad \mu_A^T A x^* = \mu_A^T b \\ \end{pmatrix} \quad c^T x^* = b^T \mu_A$$

par le corollaire 1 de la dualité faible, μ_A constitue une solution optimale du problème dual.

Les variables duales sont donc les paramètres de Kuhn et Tucker associés aux contraintes du problème primal.

Conditions d'optimalité

Conditions du premier ordre :

$$\begin{split} \frac{\partial \mathcal{L}(\mathbf{x}^*, \mu_{\mathbf{A}}, \mu)}{\partial \mathbf{x}} &= -\mathbf{c}^T + \mu_{\mathbf{A}}^T \mathbf{A} - \mu^T = \mathbf{0} \\ \mu^T \mathbf{x}^* &= \mathbf{0} \\ \mu_{\mathbf{A}}^T (\mathbf{A}\mathbf{x}^* - b) &= \mathbf{0} \\ \mu_{\mathbf{A}} &\geq \mathbf{0}, \quad \mu \geq \mathbf{0}, \quad \mathbf{A}\mathbf{x}^* - b \leq \mathbf{0}, \quad \mathbf{x}^* \geq \mathbf{0} \end{split}$$

Soit, en éliminant μ :

$$A^T \mu_A - c \ge 0, \quad \mu_A \ge 0$$

$$(A^T \mu_A - c)^T x^* = 0$$

$$\mu_A^T (Ax^* - b) = 0$$
 écarts complémentaires

et $Ax^* < b$. $x^* > 0$

Alain Hait

Programmation linéaire

71/92

Conditions d'optimalité

Théorème des écarts complémentaires

Soit x^* solution admissible du problème primal et y^* solution admissible du dual. Les conditions nécessaires et suffisantes à l'optimalité de x^* et y^* sont :

$$\sum_{j=1}^{n} a_{ij} x_j^* = b_i \text{ ou } y_i^* = 0 \text{ (ou les deux) pour } i = 1 \text{ à } m$$
 et
$$\sum_{i=1}^{m} a_{ij} y_i^* = c_i \text{ ou } x_i^* = 0 \text{ (ou les deux) pour } j = 1 \text{ à } n$$

- Interprétation :
 - La variable duale correspondant à une contrainte non saturée est nécessairement nulle
 - A une variable duale strictement positive correspond nécessairement une contrainte saturée (variable d'écart nulle).

Exemple

n=2 variables. Primal · m = 3 contraintes Dual: m=3 variables. n=2 contraintes.

Tableau final du simplexe :

Variables duales :

$$y_1^* = 0, \ y_2^* = 2/3, \ y_3^* = 5/3$$

Alain Hait Programmation linéaire 74/92

Bilan

Programmation linéaire

Relations primal-dual

Existence d'une solution optimale :

- Le dual du problème dual étant le problème primal, on déduit du théorème de la dualité que le problème primal a une solution optimale si et seulement si le problème dual a une solution optimale.
- Si le problème dual est non borné, le problème primal n'a pas de solution et inversement
- Dans certains cas, ni le problème primal, ni le dual n'ont de solutions

Configurations particulières :

· Si le problème primal a une infinité de solutions (plusieurs sommets optimaux), le problème dual est dégénéré, et réciproquement.

- Dualité forte : si un programme linéaire admet une solution optimale, alors son dual possède aussi une solution optimale, et ces solutions sont de même valeur.
- Dualité forte : à la solution optimale, les variables duales optimales sont les coûts réduits associés aux variables d'écart du problème primal.
- · Écarts complémentaires : A la solution optimale, si une contrainte n'est pas saturée, la variable duale correspondante est nulle; si une variable duale est strictement positive. la contrainte correspondante est saturée.

Alain Hait

Cas général

PRIMAL	\longleftrightarrow	DUAL
Maximisation	\longleftrightarrow	Minimisation
i^e contrainte de type \leq	\longleftrightarrow	Variable $y_i \ge 0$
i^e contrainte de type =	\longleftrightarrow	Variable $y_i \in \mathbb{R}$
i^e contrainte de type \geq	\longleftrightarrow	Variable $y_i \leq 0$
Variable $x_j \ge 0$	\longleftrightarrow	j^e contrainte de type \geq
Variable $x_j \in \mathbb{R}$	\longleftrightarrow	j^e contrainte de type $=$
Variable $x_i \leq 0$	\longleftrightarrow	je contrainte de type ≤

75 / 92

Analyse post-optimale

Que devient la solution optimale si les paramètres du problème sont modifiés?

- Modification de la borne b d'une contrainte
- Modification des coefficients c: de la fonction objectif

Alain Hait Programmation linéaire 78/92

79 / 92

Exemple

 $\max z = 4x_1 + 3x_2$

unz	- 1/1	1 0/12		
ous	x1	+	$x_3 = 8$	
	x1 +	2x2 +	$-x_4 = 1$	5
	2x1+	x ₂ +	$-x_5 = 1$	8
		v >	· n	

Variation de b: :

- Contrainte i non saturée : seule la valeur de xnu; est affectée
- Contrainte i saturée : toutes les valeurs de xR et z* sont affectées

	x ₁ x ₃ x ₂	7 1 4	$-\frac{1}{3}$ $-\frac{1}{3}$ $-\frac{2}{3}$	-2 3 2 3 1	
	z	40	$-\frac{2}{3}$	$-\frac{5}{3}$	
- 1~		to		الم	S

X4 X5

Modification de la horne d'une contrainte

Variation δb_i de la borne b_i de la i^e contrainte :

- Critère : à l'optimum, $z^* = c^T x^* = b^T y^*$ d'où $\delta z^* = \delta b_i y_i^*$.
- Validité de la solution : le sommet doit rester admissible et optimal.

Tableau final du simplexe :

Les coûts réduits ne sont pas affectés par la variation δb_i . Le tableau reste optimal tant que la solution reste admissible $(x_{R} > 0)$.

> Alain Hait Programmation linéaire

Exemple : contrainte non saturée

Contrainte 1 : $x_1 + x_3 = 8 + \delta b_1$

- Non saturée
- $x_3^* = 1$

Le sommet reste optimal tant que

$$x_3 = 8 + \delta b_1 - x_1^* \ge 0$$

d'où
$$\delta b_1 \in [-1, +\infty]$$

et
$$\delta z^* = 0$$

8

2

Alain Halt

Contrainte 3 · $2x_1 + x_2 + x_5 = 18 + \delta b_3$

- Saturée
- $x_e^* = 0$ (hors base)

Lorsque b_3 varie de δb_3 , le sommet optimal se déplace sur la droite $x_4 = 0$.

Le sommet reste optimal tant que :

$$x_1 = 7 - \frac{2}{3}(-\delta b_3) \ge 0$$

$$x_3 = 1 + \frac{2}{3}(-\delta b_3) \ge 0$$

$$x_2 = 4 + \frac{1}{3}(-\delta b_3) \ge 0$$

D'où
$$-21/2 \le \delta b_3 \le 3/2$$

Alain Hait Programmation linéaire

82 / 92

Modification de la borne d'une contrainte

Au sommet optimal, si la contrainte i n'est pas saturée :

- La variable d'écart x_i est dans la base (x_i > 0)
- $v_{\cdot}^* = 0$ d'où $\Delta z^* = 0$
- l'intervalle de variation admissible est δ ∈ [-x_i; +∞].

Au sommet optimal, si la contrainte est saturée :

- La variable d'écart x; est hors base (x; = 0)
- $\Delta z^* = \delta \cdot y_i^*$
- δ doit respecter les relations suivantes : -δ(B⁻¹)ⁱ < B⁻¹b où (B-1)i est la ie colonne de B-1. Ces valeurs se lisent directement dans le tableau final du simplexe

Exemple : contrainte saturée

Variations admissibles :

$$-21/2 < \delta b_3 < 3/2$$

Fonction objectif:

$$\delta z^* = \frac{5}{3} \delta b_3$$

d'où $-35/2 < \delta z^* < 5/2$

Alain Hait

Programmation linéaire

83 / 92

Interprétation économique

- Primal : problème de production x_i: quantité de produit j réalisée,
 - a;; : quantité de ressource i nécessaire à la réalisation d'un produit i.
 - b_i: quantité totale de ressource i disponible,
 - c_i: profit réalisé lors de la vente d'un produit j.

Problème : maximiser le profit en respectant les contraintes de ressource

$$\max c^T x$$
 sous $Ax \le b$, $x \ge 0$

Approche géométrique Approche algébrique Algorithme du simplexe (Dualité) Introduction Approche géométrique Approche algébrique Algorithme du simplexe

Interprétation économique

Dual : on propose de racheter les ressources i au prix y_i . Comment fixer ce prix ?

Point de vue du vendeur

Pour tout produit j qu'on ne fabrique pas, on souhaite récupérer au moins autant que le profit qu'on aurait réalisé :

$$\sum a_{ij}y_i \geq c_j \quad \forall j$$

 Point de vue de l'acheteur : on souhaite payer le moins cher possible les ressources :

$$\min \sum_{i} b_i y_i$$

Alain Hait Programmation linéaire

86/ 92

Ajout d'une contrainte

- L'ajout d'une contrainte non redondante augmente la dimension de la base
- La variable d'écart x_{n+m+1} de la nouvelle contrainte m + 1 est dans la nouvelle base puisqu'elle n'apparaît dans aucune autre contrainte et son coefficient est 1
- Pour l'ajouter dans le tableau optimal du simplexe, on exprime cette variable x_{n+m+1} en fonction des variables hors de la base optimale.
 Deux possibilités:
 - e la valeur de \bar{x}_{n+m+1} est positive ou nulle : la solution actuelle est admissible, l'optimum est inchangé (la contrainte m+1 est saturée ou non)
 - la valeur de x

 _{n+m+1} est négative : la solution actuelle n'est plus admissible (la contrainte m + 1 est violée).

Valeur marginale d'une contrainte

La valeur marginale d'une contrainte i correspond à la valeur de sa variable duale à l'optimum, y_i^* :

- Analyse de sensibilité : variation de l'objectif si on modifie la quantité de ressource i disponible
- Prix minimum auquel on accepterait de vendre une unité de ressource
- Prix maximum qu'on accepterait de payer pour acheter une unité de ressource complémentaire.
- Valorisation d'une activité nouvelle : étude d'opportunité de la fabrication d'un nouveau produit.

Alain Halt Programmation linéaire

Exemple

Nouvelle contrainte : $x_1 \le 6$. Forme standard : $x_1 + x_6 = 6$.

87 / 92

Solution non admissible

La solution duale reste admissible $(y_i^* \ge 0)$ mais non optimale. Un pivot dans le problème dual nous ramène à la solution optimale.

Alain Halt

Alain Hallt Programmation lineaire 88/92

Approche géométrique Approche algébrique Algorithme du simplexe Dualité Introduction Approche géométrique Approche algébrique Algorithme du simplexe

Exemple

Nouvelle contrainte : $x_1 \le 6$. Forme standard : $x_1 + x_6 = 6$.

Alain Halt Programmation linéaire

90/ 92

Lectures complémentaires II

Dualité

Lectures complementaires i

Grégoire Allaire. Analyse numérique et optimisation. Support de cours, Ecole Polytechnique.

Support de cours, Ecole Polytechnique.

Jean-François Hêche.
Recherche opérationnelle pour ingénieurs.

Recherche opérationnelle pour ingénieurs.

Support de cours, Ecole Polytechnique Fédérale de Lausanne.

Lectures complémentaires I

Michel Minoux.

Programmation mathématique.

http://web.mit.edu/15.053/www/

Lavoisier, 2008, 2e édition.

Vasek Chvatál.

Linear programming.

Freeman & co, 1983.

Dominique de Werra, Thomas Liebling, Jean-François Hêche.

Recherche opérationnelle pour ingénieurs.

Presses polytechniques et universitaires romandes, 2003.

Stephen Bradley, Arnoldo Hax, Thomas Magnanti Applied mathematical programming. MIT Press, Addison-Wesley, 1977.

Alain Hait Programmation linéaire

r rogrammation mean

