1. Throw a 2kg ball with speed 5m/s into the air. How high does it go?

Initial Energy

KE

PE

Final Energy

KE

PE

Solve
$$E_f = E_i + W$$

2a. The natural length of this spring is 5cm and it has a stiffness of 800N/m. When the spring is released, it pushes the block across the floor. How fast is the block moving as soon as it loses contact with the spring?

Initial Energy

Final Energy

KE

KE

PE

PE

Work W

2b. Same setup as before. If the coefficient of kinetic friction between block and table is μ_K =0.2, how far will the block go before stopping?

Initial Energy

Final Energy

KE

KE

PE

PE

Work W

3. A 50kg skiier starts from rest at the top of a hill. How fast is she moving at the top of the second hill? (Assume no friction.)

Initial Energy

Final Energy

KE

KE

PE

PE

Work W

4. What is the minimum force required to push this bowling ball (weight mg=50N) 2 meters to the top of the ramp?

Initial Energy

T.Z.

KE

KE

Final Energy

PE

PE

Work W

5. An 80kg man falls 40m and lands on a spring with stiffness k=4000 N/m. The spring compresses by Δy before bouncing him back into the air.

Find Δy .

Initial Energy

KE

 PE_G

Solve
$$E_f = E_i$$

 PE_S

Final Energy

KE

 PE_G

PEs