

Arduino-IOT

[wk09]

Arduino + nods.js Data visualization l

Visualization of Signals using Arduino, Node.js & Storing Signals in MongoDB & Mining Data using Python

Comsi, INJE University

2nd semester, 2019

Email: chaos21c@gmail.com

My ID

ID	성명
AA01	김관용
AA02	백동진
AA03	김도훈
AA04	김희찬
AA05	류재현
AA06	문민규
AA07	박진석
AA08	이승협
AA09	표혜성
AA10	김다영
AA11	성소진
AA12	김해인
AA13	신송주
AA14	윤지훈

[Review]

- **♦** [wk06]
- Arduino sensors + Node.js
- Complete your project
- Upload folder: AAnn_Rpt06

wk06: Practice: AAnn_Rpt06

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github

제출폴더명: AAnn_Rpt06

- 압축할 파일들

- ① AAnn_cds_IOT_data.png
- ② AAnn_cds_tmp36_lcd.png
- ③ AAnn_cds_tmp36_IOT.png
- AAnn_multi_signals_node.png
- 5 All *.ino
- 6 All *.js

Arduino

& Node.js

Layout [H S C]

Data visualization using ploy.ly

Arduino data on network socket

Real-time console showing a signal from Arduino in Chrome browser

Arduino data on network socket

Arduino data + plotly

Real-time Weather Station from sensors

on Time: 2018-01-22 17:58:31.012

A5. Introduction to visualization

System (Arduino, sDevice, ...)

Data (signal, image, sns, ...)

Visualization & monitoring

Data storaging & mining

Service

A5.1 Introduction to data visualization

A5.1.1 D3.js

components and a data-driven approach to DOM manipulation.

http://d3js.org/

14

A5.1.2 plot.ly

A5.1.3 plotly.js

plotly.js is Plotly's client-side,

interactive JavaScript graphing

library, built on top of D3.js,

stack.gl.

https://plot.ly/javascript/

A5.1.4 Introduction to plotly.js

A5.1.5 Introduction to plotly.js charts

A5.1.6 Introduction to plotly.js charts

A5.1.7 Introduction to plotly.js charts

Maps Ø

Choropleth Maps

Scatter Plots on Maps

Bubble Maps

Lines on Maps

Scatter Plots on Mapbox

3D Charts @

Plats

Ribbon Plots

Plots

A5.1.8 plotly.js: time series & streaming

https://plot.ly/javascript/time-series/

https://plot.ly/javascript/streaming/

A5.1.9 Getting started: plotly.js

https://plot.ly/javascript/getting-started/

A5.1.10 Getting started: plotly.js

<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>

Data charts using plotly.js

A5.2 Data charts

Navigation

Basic Line Plot

Line and Scatter Plot

Adding Names to Line and Scatter Plot

Line and Scatter Styling

Styling Line Plot

Colored and Styled Scatter Plot

Line Shape Options for Interpolation

Graph and Axes Titles

Line Dash

Connect Gaps Between Data

Labelling Lines with Annotations

Back To Plotly.Js

Line Charts in plotly.js

How to make D3.js-based line charts in JavaScript.

Basic Line Plot @

```
var trace1 = (
  x: [1, 2, 3, 4].
  y: [18, 15, 13, 17],
  type: 'scatter'
1:
var trace2 = {
  x: [1, 2, 3, 4],
  y: [16, 5, 11, 9],
  type: 'scatter'
```


A5.2.1 Working folders

A5.2.2.1 Starting plotly basic chart

```
DV00 start.html
                                                Starting chart!
   <html>
   <head>
      <meta charset="utf-8">
     <!-- Plotly.js -->
     <script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
   </head>
   <body>
       <h1>Data visualization by AA00</h1>
 9
       (hr)
10
       <h2>Starting graph by AA00</h2>
11
12
      <!-- Plotly chart will be drawn inside this DIV -->
13
       <div id="myDiv" style="width: 500px; height: 300px"></div>
14
15
       <script>
            <!-- JAVASCRIPT CODE GOES HERE -->
16
17
18
19
      </script>
   </body>
20
   </html>
21
22
```


A5.2.2.2 Starting plotly basic chart

SB3, **^B**

[Tip] Using WEB browser in SB text3

[Tool] Sublime Text - 현재 작업 중인 파일을 웹브라우저로 열기

1. Tool > Developer > New Plugin을 실행 한 후 아래 내용으로 덮어 씌운 후 'open_browser'으로 저장한다.

```
import sublime, sublime_plugin
import webbrowser
class OpenBrowserCommand(sublime_plugin.TextCommand):
  def run(self,edit):
    url = self.view.file name()
    webbrowser.open_new(url)
```

2. Preferences -> Key Bindings - User로 이동한 후 단축키를 할당한다.

```
{ "keys": ["f10"], "command": "open_browser" }
```


A5.2.3.1 Hello plotly basic chart

```
<html>
                                         Hello plotly data chart!
   <head>
       <meta charset="utf-8">
       <!-- Plotly.js -->
4
       <script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
   </head>
   <body>
       <h1>Data visualization by AA00</h1>
8
9
       (hr)
       <h2>Hello plotly!</h2>
10
       <!-- Plotly chart will be drawn inside this DIV -->
11
12
       <div id="myDiv" style="width: 500px; height: 400px"></div>
13
       <hr>>
14
       <script>
15
           <!-- JAVASCRIPT CODE GOES HERE -->
           var data =
16
17
18
               x: [1, 2, 3, 4, 5],
                                                       data는 무엇?
               y: [1, 2, 4, 8, 16],
19
                                                   그래프 객체들의 배열
               type: 'scatter'
20
21
           }];
22
23
           Plotly newPlot('myDiv', data);
24
25
       </script>
   </body>
   </html>
```


A5.2.3.2 Hello plotly basic chart

Graph: Hello plotly chart!

A5.2.4 plotly.js: Line Charts

[1] Basic multi-line charts

```
<script>
    <!-- JAVASCRIPT CODE GOES HERE -->
    var trace1 = {
        x: [1, 2, 3, 4],
        y: [10, 15, 13, 17],
        type: 'scatter'
    };
    var trace2 = {
        x: [1, 2, 3, 4],
        y: [16, 5, 11, 9],
        type: 'scatter'
    };
    var data = [trace1, trace2];
    Plotly.newPlot('myDiv', data);
</script>
```

Line charts by AA00

A5.2.5 plotly.js: Line Charts

[2] Basic line charts with layout

```
var layout = {
    autosize: false,
    width: 600,
    height: 450,
    margin: {
       1: 50, // left
       r: 50, // right
        b: 100, // bottom
       t: 100, // top
        pad: 4 // padding
    },
    paper bgcolor: '#ececec',
    plot bgcolor: '#ffffff' //'#rrggbb'
};
Plotly.newPlot('myDiv', data, layout);
```

Line charts with layout by AA00

AAnn_Chart_Layout.png

Test: pad \rightarrow 40

A5.2.6.1 plotly.js: Line & Scatter plot

[3] Line & scatter plot

```
var trace1 = {
   x: [1, 2, 3, 4],
    y: [10, 15, 13, 17],
   mode: 'markers'
};
var trace2 = {
    x: [2, 3, 4, 5],
    y: [16, 5, 11, 9],
   mode: 'lines'
};
var trace3 = {
    x: [1, 2, 3, 4],
    y: [12, 9, 15, 12],
   mode: 'lines+markers'
};
```

```
var data = [ trace1, trace2, trace3 ];
var layout = {
    title: 'Line and Scatter charts by AA00',
    width: 600,
    height: 450,
    margin: {
        1: 50,
        r: 50,
       b: 100,
       t: 100,
        pad: 4
    },
};
Plotly.newPlot('myDiv', data, layout);
```


A5.2.6.2 plotly.js: Line & Scatter plot

[3.1] Line & scatter plot with title

Line and Scatter charts by AA00

A5.2.6.3 plotly.js: Line & Scatter plot

[3.2] Line & scatter plot with axis name

```
var trace1 = {
    x: [1, 2, 3, 4],
    y: [10, 15, 13, 17],
   mode: 'markers',
    name: 'Scatter'
};
var trace2 = {
    x: [2, 3, 4, 5],
    y: [16, 5, 11, 9],
    mode: 'lines',
    name: 'Lines'
};
var trace3 = {
    x: [1, 2, 3, 4],
    y: [12, 9, 15, 12],
    mode: 'lines+markers',
    name: 'Scatter + Lines'
};
```

Line and Scatter charts by AA00

A5.2.6.4 plotly.js: Line & Scatter plot

[3.3] Line & scatter plot with style

```
var trace1 = {
 x: [1, 2, 3, 4],
 y: [10, 15, 13, 17],
 mode: 'markers',
 name: 'Scatter',
 marker: {
   color: 'rgb(219, 64, 82)',
   size: 12
var trace2 = {
 x: [2, 3, 4, 5],
 y: [16, 5, 11, 9],
 mode: 'lines',
 name: 'Lines',
 line: {
   color: 'rgb(55, 128, 191)',
   width: 3
```

```
var trace3 = {
 x: [1, 2, 3, 4],
 y: [12, 9, 15, 12],
 mode: 'lines+markers',
 name: 'Scatter + Lines',
 marker: {
   color: 'rgb(128, 0, 128)',
   size: 8
 line: {
   color: 'rgb(128, 0, 128)',
  width: 1
```


A5.2.6.5 plotly.js: Line & Scatter plot

[3.4] Line & scatter plot with axis titles

```
var layout = {
 title:'Line and Scatter Plot',
 width: 600, height: 450,
 margin: {
   l: 50,
   r: 50,
   b: 100,
   t: 100,
   pad: 4
 xaxis: {
   title: 'x-axis title'
 yaxis: {
   title: 'y-axis title'
```


A5.2.6.6 plotly.js: Line & Scatter plot

[3.5] Line & scatter plot with dash and dot

```
var trace1 = {
 x: [1, 2, 3, 4],
 y: [10, 15, 13, 17],
 mode: 'lines',
 name: 'Solid',
 line: {
   color: 'rgb(255, 0, 0)',
   dash: 'solid',
   width: 4
var trace2 = {
 x: [2, 3, 4, 5],
 y: [16, 5, 11, 9],
 mode: 'lines',
 name: 'dot',
 line: {
   color: 'rgb(55, 228, 0)'
   dash: 'dot',
   width: 4
```

```
var trace3 = {
 x: [1, 2, 3, 4],
 y: [12, 9, 15, 12],
 mode: 'lines',
 name: 'dashdot',
 line: {
   color: 'rgb(55, 0, 255',
   dash: 'dashdot',
   width: 4
};
```


AAnn_Line_Dash_Dot.png

Data visualization using plotly.js

A5.3. Time series

A5.3.1 plotly.js: Time series

[1] Time series : date strings

```
<!-- Plotly chart will be drawn inside this DIV -->
<div id="myDiv" style="width: 500px;height: 400px"></div>
<script>
    <!-- JAVASCRIPT CODE GOES HERE -->
    var data = [
        x: ['2017-9-04 22:23:00',
        '2017-10-04 22:23:00',
        '2017-11-04 22:23:00',
        '2017-12-04 22:23:00'],
        y: [1, 3, 6, 8],
        type: 'scatter'
    Plotly.newPlot('myDiv', data);
</script>
```


A5.3.2 plotly.js: Time series

Time series : date strings – result

오늘 날자와 데이터를 추가

A5.3.3.1 plotly.js: Time series

[2] Time series: financial data strings – AAPL stock price

A5.3.3.2 plotly.js: Time series

[2] Time series: financial data strings – AAPL stock price

```
Plotly.d3.csv("https://raw.githubusercontent.com/plotly/datasets/master/
    finance-charts-apple.csv", function(err, rows){
   function unpack(rows, key) {
        return rows.map(function(row) { return row[key]; });
   var trace1 = {
       type: "scatter",
        mode: "lines",
        name: 'AAPL High',
        x: unpack(rows, 'Date'),
       y: unpack(rows, 'AAPL.High'),
       line: {color: '#17BECF'}
   var trace2 = {
       type: "scatter",
        mode: "lines",
        name: 'AAPL Low',
        x: unpack(rows, 'Date'),
        y: unpack(rows, 'AAPL.Low'),
        line: {color: '#7F7F7F'}
   var data = [trace1,trace2];
```


A5.3.3.3 plotly.js: Time series

[2] Time series: financial data strings – AAPL stock price

```
var data = [trace1,trace2];
var layout = {
    title: 'AAPL Price Time Series',
};
Plotly.newPlot('myDiv', data, layout);
```


A5.3.3.4 plotly.js: Time series

[2] Time series: financial data strings – set range

```
var data = [trace1,trace2];
var layout = {
   title: 'AAPL Price Time Series with range',
   xaxis: {
        range: ['2016-07-01', '2016-12-31'],
        type: 'date'
   yaxis: {
        autorange: true,
        range: [86.8700008333, 138.870004167],
        type: 'linear'
Plotly.newPlot('myDiv', data, layout);
```


날짜와 주가의 범위를 지정

A5.3.3.5 plotly.js: Time series

[2] Time series: financial data strings – Range slider

```
var layout = {
    title: 'AAPL Price Time Series with rangeslider',
    xaxis: {
        autorange: true,
        range: ['2015-02-17', '2017-02-16'],
        rangeselector: {buttons: [
                count: 1,
                label: '1m',
                step: 'month',
                stepmode: 'backward'
                count: 6,
                label: '6m',
                step: 'month',
                stepmode: 'backward'
            {step: 'all'}
            ]],
            rangeslider: {range: ['2015-02-17', '2017-02-16']},
            type: 'date'
        },
        yaxis: {
            autorange: true,
            range: [86.8700008333, 138.870004167],
            type: 'linear'
```


A5.3.3.6 plotly.js: Time series

[2] Time series: financial data strings – Range slider

A5.3.4.1 plotly.js: Sensor time series

[3] Time series: my lux data

```
'2015-11-05 12:09:41.382',
'2015-11-05 12:09:42.380',
'2015-11-05 12:09:43.378',
'2015-11-05 12:09:44.377',
'2015-11-05 12:09:45.375',
'2015-11-05 12:09:46.389',
'2015-11-05 12:09:47.388',
'2015-11-05 12:09:48.386',
'2015-11-05 12:09:49.384',
'2015-11-05 12:09:50.383',
'2015-11-05 12:09:51.381',
'2015-11-05 12:09:52.380',
'2015-11-05 12:09:53.394',
'2015-11-05 12:09:54.392',
'2015-11-05 12:09:55.391',
'2015-11-05 12:09:56.389',
'2015-11-05 12:09:57.387',
'2015-11-05 12:09:58.386',
'2015-11-05 12:09:59.384',
'2015-11-05 12:10:00.398',
'2015-11-05 12:10:01.397',
```

Data: date, value

A5.3.4.2 plotly.js: Time series

[3] Time series: my lux data -> DV_ts03_sensor_chart.html

A5.3.4.3 plotly.js: Time series

[3] Time series: my lux data – [DIY] → Set title and axis title

AAnn_lux_Time_Series.png

Project: Time series with Rangeslider

[Project-DIY] AAnn_lux_Rangelslider.html

AAnn_lux_Rangelslider.png

[Practice]

- [wk09]
- Charts by plotly
- Complete your plotly chart project
- Upload folder: AAnn_Rpt07

wk09: Practice: AAnn_Rpt07

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github

```
제출폴더명 : AAnn_Rpt07
```

- 압축할 파일들

- ① AAnn_Chart_Layout.png
- ② AAnn_Axis_Title.png
- 3 AAnn_Line_Dash_Dot.png
- 4 AAnn_lux_Time_Series.png
- **5** AAnn_lux_Rangeslider.png
- 6 All *.ino
- **7** All *.js
- 8 All *.html

[Upload to github]

- [wk09]
 - upload all work of this week
 - Use repo "aann" in github
 - upload folder "aann_rpt07" in your github.

Lecture materials

References & good sites

- ✓ http://www.arduino.cc Arduino Homepage
- http://www.nodejs.org/ko Node.js
- https://plot.ly/ plotly
- ✓ https://www.mongodb.com/ MongoDB
- ✓ http://www.w3schools.com

 By w3schools.com
- http://www.github.com GitHub

주교재 및 참고도서

Target of this class

Real-time Weather Station from sensors

on Time: 2018-01-22 17:58:31.012

Another target of this class

