Análisis Matemático I

Pedro Sánchez Terraf Ana Andrés Martín Agustín Luciana José Luis

FaMAF, 20 de marzo de 2024

Contenidos estimados para hoy

- Funciones
- Gráficas
- 3 Ejemplos
- Dominio e imagen
- 5 Aritmética de funciones
- 6 Propiedades de funciones
 - Funciones inyectivas y suryectivas
 - Funciones (de)crecientes
- 7 Conclusión

Repaso

Sección 4.1 del apunte del cursillo

■ P. Kisbye et al., *Ingreso a Famaf: materiales de estudio* [1].

Componentes de una función f

lacksquare su conjunto de **salida** X (casi siempre $\mathbb R$ ó $\mathbb N$);

Componentes de una función f

- su conjunto de **salida** X (casi siempre \mathbb{R} ó \mathbb{N});
- su conjunto de **Ilegada** Z (casi siempre \mathbb{R});

Componentes de una función f

- su conjunto de **salida** X (casi siempre \mathbb{R} ó \mathbb{N});
- su conjunto de **Ilegada** Z (casi siempre \mathbb{R});
- la regla de asociación: cómo transforma f a un argumento $x \in X$ en un valor $f(x) \in Z$.

Componentes de una función f

- su conjunto de **salida** X (casi siempre \mathbb{R} ó \mathbb{N});
- su conjunto de **Ilegada** Z (casi siempre \mathbb{R});
- la regla de asociación: cómo transforma f a un argumento $x \in X$ en un valor $f(x) \in Z$.

¿Qué es realmente una función?

■ Una relación (al final del apunte).

Componentes de una función f

- su conjunto de **salida** X (casi siempre \mathbb{R} ó \mathbb{N});
- su conjunto de **Ilegada** Z (casi siempre \mathbb{R});
- la regla de asociación: cómo transforma f a un argumento $x \in X$ en un valor $f(x) \in Z$.

¿Qué es realmente una función?

- Una relación (al final del apunte).
- Un conjunto (en Spivak).

Componentes de una función f

- su conjunto de **salida** X (casi siempre \mathbb{R} ó \mathbb{N});
- su conjunto de **Ilegada** Z (casi siempre \mathbb{R});
- la regla de asociación: cómo transforma f a un argumento $x \in X$ en un valor $f(x) \in Z$.

¿Qué es realmente una función?

- Una relación (al final del apunte).
- Un conjunto (en Spivak).
- Algo "indefinido" (como "conjunto").

No nos preocuparemos ahora en esto.

- Conjunto de salida X (casi siempre \mathbb{R} ó \mathbb{N});
- \blacksquare conjunto de llegada Z (casi siempre \mathbb{R});
- la regla de asociación

- Conjunto de salida X (casi siempre \mathbb{R} ó \mathbb{N});
- conjunto de llegada Z (casi siempre \mathbb{R});
- la regla de asociación:

Viene dada por una expresión f(x) que involucra x y otras variables (parámetros).

- Conjunto de salida X (casi siempre \mathbb{R} ó \mathbb{N});
- conjunto de llegada Z (casi siempre \mathbb{R});
- la regla de asociación:

Viene dada por una expresión f(x) que involucra x y otras variables (**parámetros**). Puede no estar definida para todos los $x \in X$.

- Conjunto de salida X (casi siempre \mathbb{R} ó \mathbb{N});
- \blacksquare conjunto de llegada Z (casi siempre \mathbb{R});
- la regla de asociación:

Viene dada por una expresión f(x) que involucra x y otras variables (**parámetros**). Puede no estar definida para todos los $x \in X$.

Si lo está, escribimos

$$f: X \to Z$$
.

- Conjunto de salida X (casi siempre \mathbb{R} ó \mathbb{N});
- \blacksquare conjunto de llegada Z (casi siempre \mathbb{R});
- la regla de asociación:

Viene dada por una expresión f(x) que involucra x y otras variables (**parámetros**). Puede no estar definida para todos los $x \in X$. Si lo está, escribimos

$$f: X \to Z$$
.

Ejemplo

Sea $a \in \mathbb{R}$. Definamos f(x) := x + a.

- Conjunto de salida X (casi siempre \mathbb{R} ó \mathbb{N});
- conjunto de llegada Z (casi siempre \mathbb{R});
- la regla de asociación:

Viene dada por una expresión f(x) que involucra x y otras variables (**parámetros**). Puede no estar definida para todos los $x \in X$. Si lo está, escribimos

$$f: X \to Z$$
.

Ejemplo

Sea $a \in \mathbb{R}$. Definamos f(x) := x + a.

La variable a es un parámetro de la definición.

- Conjunto de salida X (casi siempre \mathbb{R} ó \mathbb{N});
- \blacksquare conjunto de llegada Z (casi siempre \mathbb{R});
- la regla de asociación:

Viene dada por una expresión f(x) que involucra x y otras variables (**parámetros**). Puede no estar definida para todos los $x \in X$. Si lo está, escribimos

$$f: X \to Z$$
.

Ejemplo

Sea $a \in \mathbb{R}$. Definamos f(x) := x + a.

La variable a es un parámetro de la definición.

Como x + a está siempre definido, escribimos $f : \mathbb{R} \to \mathbb{R}$.

Sea f función con conjuntos de salida y llegada \mathbb{R} , y regla $x \mapsto f(x)$.

Sea f función con conjuntos de salida y llegada \mathbb{R} , y regla $x \mapsto f(x)$.

Gráfico de f

$$\{(x,y) \in \mathbb{R} \times \mathbb{R} \mid y = f(x)\},\$$

Sea f función con conjuntos de salida y llegada \mathbb{R} , y regla $x \mapsto f(x)$.

Gráfico de f

$$\{(x,y) \in \mathbb{R} \times \mathbb{R} \mid y = f(x)\}, \quad \{(x,f(x)) \mid x \in \mathbb{R}\}$$

Sea f función con conjuntos de salida y llegada \mathbb{R} , y regla $x \mapsto f(x)$.

Gráfico de f

$$\{(x,y) \in \mathbb{R} \times \mathbb{R} \mid y = f(x)\}, \quad \{(x,f(x)) \mid x \in \mathbb{R}\}$$

Función constante

 $C: \mathbb{R} \to \mathbb{R}$

$$C(x) := c$$
 $(c \in \mathbb{R}).$

Función constante

 $C: \mathbb{R} \to \mathbb{R}$

C(x) := c $(c \in \mathbb{R}).$

Función identidad

 $I:\mathbb{R} o \mathbb{R}$

$$I(x) := x$$
.

Función constante

 $C: \mathbb{R} \to \mathbb{R}$

$$C(x) := c$$
 $(c \in \mathbb{R}).$

Función identidad

 $I:\mathbb{R}\to\mathbb{R}$

$$I(x) := x$$
.

Funciones lineales

$$f(x) := a \cdot x + b.$$

Función constante

 $C: \mathbb{R} \to \mathbb{R}$

$$C(x) := c$$
 $(c \in \mathbb{R}).$

Función identidad

 $I:\mathbb{R} \to \mathbb{R}$

$$I(x) := x$$
.

Funciones lineales

$$f(x) := a \cdot x + b.$$

Función recíproco

$$H(x) := \frac{1}{x}.$$

$$\blacksquare \ H(x) := \frac{1}{x} = x^{-1} \ (\text{``recíproco''}).$$

$$\blacksquare \ H(x) := \frac{1}{x} = x^{-1} \ (\text{``recíproco''}).$$

H no está definida para x = 0.

■
$$H(x) := \frac{1}{x} = x^{-1}$$
 ("recíproco").

H no está definida para x = 0.

Dominio de una función f

$$Dom f := \{x \in \mathbb{R} \mid f(x) \text{ está definido}\}.$$

■
$$H(x) := \frac{1}{x} = x^{-1}$$
 ("recíproco").

H no está definida para x = 0.

Dominio de una función f

$$Dom f := \{x \in \mathbb{R} \mid f(x) \text{ está definido}\}.$$

Luego,
$$\operatorname{Dom} H = \mathbb{R} \setminus \{0\}.$$

■
$$H(x) := \frac{1}{x} = x^{-1}$$
 ("recíproco").

H no está definida para x=0.

Dominio de una función f

$$Dom f := \{x \in \mathbb{R} \mid f(x) \text{ está definido}\}.$$

Luego, $Dom H = \mathbb{R} \setminus \{0\}$.

Si bien no podemos escribir " $H:\mathbb{R}\to\mathbb{R}$ ", si consideráramos como conjunto de salida a su dominio podemos escribir $H:\mathbb{R}\smallsetminus\{0\}\to\mathbb{R}$.

■
$$H(x) := \frac{1}{x} = x^{-1}$$
 ("recíproco").

H no está definida para x=0.

Dominio de una función f

$$Dom f := \{x \in \mathbb{R} \mid f(x) \text{ está definido}\}.$$

Luego, $\operatorname{Dom} H = \mathbb{R} \setminus \{0\}.$

Si bien no podemos escribir " $H: \mathbb{R} \to \mathbb{R}$ ", si consideráramos como conjunto de salida a su dominio podemos escribir $H: \mathbb{R} \setminus \{0\} \to \mathbb{R}$.

De todos modos, H no alcanza todos los elementos del conjunto de llegada.

■
$$H(x) := \frac{1}{x} = x^{-1}$$
 ("recíproco").

H no está definida para x=0.

Dominio de una función f

$$Dom f := \{x \in \mathbb{R} \mid f(x) \text{ está definido}\}.$$

Luego, $Dom H = \mathbb{R} \setminus \{0\}$.

Si bien no podemos escribir " $H:\mathbb{R}\to\mathbb{R}$ ", si consideráramos como conjunto de salida a su dominio podemos escribir $H:\mathbb{R}\smallsetminus\{0\}\to\mathbb{R}$.

De todos modos, ${\cal H}$ no alcanza todos los elementos del conjunto de llegada.

Imagen de una función f

$$Im f := \{ z \in \mathbb{R} \mid \exists x, \ z = f(x) \}$$

■
$$H(x) := \frac{1}{x} = x^{-1}$$
 ("recíproco").

H no está definida para x=0.

Dominio de una función f

$$Dom f := \{x \in \mathbb{R} \mid f(x) \text{ está definido}\}.$$

Luego, $\operatorname{Dom} H = \mathbb{R} \setminus \{0\}.$

Si bien no podemos escribir " $H:\mathbb{R}\to\mathbb{R}$ ", si consideráramos como conjunto de salida a su dominio podemos escribir $H:\mathbb{R}\smallsetminus\{0\}\to\mathbb{R}$.

De todos modos, ${\cal H}$ no alcanza todos los elementos del conjunto de llegada.

Imagen de una función f

$$\text{Im} f := \{ z \in \mathbb{R} \mid \exists x, \ z = f(x) \} = \{ f(x) \mid x \in \text{Dom} f \}.$$

■
$$H(x) := \frac{1}{x} = x^{-1}$$
 ("recíproco").

H no está definida para x=0.

Dominio de una función f

$$Dom f := \{x \in \mathbb{R} \mid f(x) \text{ está definido}\}.$$

Luego, $\operatorname{Dom} H = \mathbb{R} \setminus \{0\}.$

Si bien no podemos escribir " $H:\mathbb{R}\to\mathbb{R}$ ", si consideráramos como conjunto de salida a su dominio podemos escribir $H:\mathbb{R}\smallsetminus\{0\}\to\mathbb{R}$.

De todos modos, ${\cal H}$ no alcanza todos los elementos del conjunto de llegada.

Imagen de una función f

$$\text{Im} f := \{ z \in \mathbb{R} \mid \exists x, \ z = f(x) \} = \{ f(x) \mid x \in \text{Dom} f \}.$$

Luego, $\operatorname{Im} H = \mathbb{R} \setminus \{0\}.$

Más funciones

```
\operatorname{Dom} f := \{ x \in \mathbb{R} \mid f(x) \text{ definido} \}.

\operatorname{Im} f := \{ f(x) \mid x \in \operatorname{Dom} f \}.
```


$$Dom f := \{x \in \mathbb{R} \mid f(x) \text{ definido}\}.$$
$$Im f := \{f(x) \mid x \in Dom f\}.$$

Funciones cuadráticas

$$g: \mathbb{R} \to \mathbb{R}$$

$$g(x) := a \cdot x^2 + b \cdot x + c.$$

$$\begin{aligned} \operatorname{Dom} f &:= \{x \in \mathbb{R} \mid f(x) \text{ definido} \}. \\ \operatorname{Im} f &:= \{f(x) \mid x \in \operatorname{Dom} f \}. \end{aligned}$$

Funciones cuadráticas

$$g: \mathbb{R} \to \mathbb{R}$$

$$g(x) := a \cdot x^2 + b \cdot x + c.$$

$$S(x) := \sqrt{x}$$
.

$$\begin{aligned} & \mathrm{Dom} f := \{x \in \mathbb{R} \mid f(x) \text{ definido}\}. \\ & \mathrm{Im} f := \{f(x) \mid x \in \mathrm{Dom} f\}. \end{aligned}$$

Funciones cuadráticas

$$g: \mathbb{R} \to \mathbb{R}$$

$$g(x) := a \cdot x^2 + b \cdot x + c.$$

$$S(x) := \sqrt{x}$$
.

$$\operatorname{Dom} S = [0, \infty) = \mathbb{R}^{\geq 0}.$$
$$\operatorname{Im} S = [0, \infty).$$

$$\begin{aligned} & \mathrm{Dom} f := \{x \in \mathbb{R} \mid f(x) \text{ definido}\}. \\ & \mathrm{Im} f := \{f(x) \mid x \in \mathrm{Dom} f\}. \end{aligned}$$

Funciones cuadráticas

$$g: \mathbb{R} \to \mathbb{R}$$

$$g(x) := a \cdot x^2 + b \cdot x + c.$$

$$S(x) := \sqrt{x}$$
.

$$\operatorname{Dom} S = [0, \infty) = \mathbb{R}^{\geq 0}.$$
$$\operatorname{Im} S = [0, \infty).$$

$$\begin{aligned} \operatorname{Dom} f &:= \{x \in \mathbb{R} \mid f(x) \text{ definido} \}. \\ \operatorname{Im} f &:= \{f(x) \mid x \in \operatorname{Dom} f \}. \end{aligned}$$

Funciones cuadráticas

$$g: \mathbb{R} \to \mathbb{R}$$

$$g(x) := a \cdot x^2 + b \cdot x + c.$$

$$S(x) := \sqrt{x}$$
.

$$\operatorname{Dom} S = [0, \infty) = \mathbb{R}^{\geq 0}.$$
$$\operatorname{Im} S = [0, \infty).$$

$$Dom f := \{x \in \mathbb{R} \mid f(x) \text{ definido}\}.$$

$$z \in Im f \iff \exists x, z = f(x).$$

 $Dom f := \{x \in \mathbb{R} \mid f(x) \text{ definido}\}.$ $z \in Im f \iff \exists x, z = f(x).$

Módulo $M:\mathbb{R} ightarrow \mathbb{R}$

M(x) := |x|.

$$Dom f := \{x \in \mathbb{R} \mid f(x) \text{ definido}\}.$$

$$z \in Im f \iff \exists x, z = f(x).$$

Módulo $M:\mathbb{R} o \mathbb{R}$

$$M(x) := |x|$$
.

Parte entera $E:\mathbb{R} \to \mathbb{Z}$

$$E(x) := |x|.$$

$$Dom f := \{x \in \mathbb{R} \mid f(x) \text{ definido}\}.$$
$$z \in Im f \iff \exists x, \ z = f(x).$$

Módulo $M:\mathbb{R} ightarrow \mathbb{R}$

$$M(x) := |x|$$
.

Parte entera $E: \mathbb{R} \to \mathbb{Z}$

$$E(x) := \lfloor x \rfloor$$
.

$$E(-0.5) = \lfloor -0.5 \rfloor = -1.$$

$$Dom f := \{x \in \mathbb{R} \mid f(x) \text{ definido}\}.$$
$$z \in Im f \iff \exists x, \ z = f(x).$$

Módulo $M:\mathbb{R} ightarrow \mathbb{R}$

$$M(x) := |x|$$
.

Parte entera $E: \mathbb{R} \to \mathbb{Z}$

$$E(x) := \lfloor x \rfloor$$
.

$$E(-0.5) = \lfloor -0.5 \rfloor = -1.$$

 $\lfloor x \rfloor := \text{el mayor entero } z \leq x.$

Funciones trigonométricas

$$\operatorname{sen}: \mathbb{R} \to \mathbb{R}, \quad \cos: \mathbb{R} \to \mathbb{R}, \quad \tan: \mathbb{R} \setminus \{\dots\} \to \mathbb{R}.$$

Funciones trigonométricas

 $\operatorname{sen}: \mathbb{R} \to \mathbb{R}, \quad \cos: \mathbb{R} \to \mathbb{R}, \quad \tan: \mathbb{R} \setminus \{\dots\} \to \mathbb{R}.$

Funciones trigonométricas

$$\operatorname{sen}: \mathbb{R} \to \mathbb{R}, \quad \cos: \mathbb{R} \to \mathbb{R}, \quad \tan: \mathbb{R} \setminus \{\dots\} \to \mathbb{R}.$$

¡Repasar!

El material del cursillo, Secciones 5.1 a 5.3 (pp. 163-171).

Suma, producto, cociente

 $(f+g)(x) = f(x) + g(x); \quad \text{Dom} f + g = \text{Dom} f \cap \text{Dom} g.$

Suma, producto, cociente

- $(f+g)(x) = f(x) + g(x); \quad \text{Dom} f + g = \text{Dom} f \cap \text{Dom} g.$
- $(f \cdot g)(x) = f(x) \cdot g(x); \quad \text{Dom} f \cdot g = \text{Dom} f \cap \text{Dom} g.$

Suma, producto, cociente

- $(f+g)(x) = f(x) + g(x); \quad \text{Dom} f + g = \text{Dom} f \cap \text{Dom} g.$
- $(f \cdot g)(x) = f(x) \cdot g(x); \quad \text{Dom} f \cdot g = \text{Dom} f \cap \text{Dom} g.$

Suma, producto, cociente

- $(f+g)(x) = f(x) + g(x); \quad \text{Dom} f + g = \text{Dom} f \cap \text{Dom} g.$
- $(f \cdot g)(x) = f(x) \cdot g(x); \quad \text{Dom} f \cdot g = \text{Dom} f \cap \text{Dom} g.$

Composición

Suma, producto, cociente

- $(f+g)(x) = f(x) + g(x); \quad \text{Dom} f + g = \text{Dom} f \cap \text{Dom} g.$
- $(f \cdot g)(x) = f(x) \cdot g(x); \quad \text{Dom} f \cdot g = \text{Dom} f \cap \text{Dom} g.$

Composición

 $(f \circ g)(x) = f(g(x));$ Dom $f \circ g = \{x \in \mathbb{R} \mid x \in \text{Dom } g \land g(x) \in \text{Dom } f\}.$

Ejemplo

 $f(x) := x^2, g(x) := \frac{1}{x-1}.$

Suma, producto, cociente

- $(f+g)(x) = f(x) + g(x); \quad \text{Dom} f + g = \text{Dom} f \cap \text{Dom} g.$
- $(f \cdot g)(x) = f(x) \cdot g(x); \quad \text{Dom} f \cdot g = \text{Dom} f \cap \text{Dom} g.$

Composición

 $(f \circ g)(x) = f(g(x));$ $Dom f \circ g = \{x \in \mathbb{R} \mid x \in Dom g \land g(x) \in Dom f\}.$

Ejemplo

■ $f(x) := x^2, g(x) := \frac{1}{x-1}$. ¿Dom $f \circ g$?

Suma, producto, cociente

- $(f+g)(x) = f(x) + g(x); \quad \text{Dom} f + g = \text{Dom} f \cap \text{Dom} g.$
- $(f \cdot g)(x) = f(x) \cdot g(x); \quad \text{Dom} f \cdot g = \text{Dom} f \cap \text{Dom} g.$

Composición

 $(f \circ g)(x) = f(g(x));$ Dom $f \circ g = \{x \in \mathbb{R} \mid x \in \text{Dom } g \land g(x) \in \text{Dom } f\}.$

Ejemplo

- $f(x) := x^2$, $g(x) := \frac{1}{x-1}$. ¿Dom $f \circ g$?
- $\blacksquare H(x) := \frac{1}{x}.$

Suma, producto, cociente

- $(f+g)(x) = f(x) + g(x); \quad \text{Dom} f + g = \text{Dom} f \cap \text{Dom} g.$
- $(f \cdot g)(x) = f(x) \cdot g(x); \quad \text{Dom} f \cdot g = \text{Dom} f \cap \text{Dom} g.$

Composición

 $(f \circ g)(x) = f(g(x));$ Dom $f \circ g = \{x \in \mathbb{R} \mid x \in \text{Dom } g \land g(x) \in \text{Dom } f\}.$

Ejemplo

- $f(x) := x^2$, $g(x) := \frac{1}{x-1}$. ¿Dom $f \circ g$?
- $\blacksquare H(x) := \frac{1}{x} \cdot \xi H \circ H$?

- Dom $f := \{x \in \mathbb{R} \mid f(x) \text{ definido}\}.$
- $\blacksquare \operatorname{Im} f := \{ f(x) \mid x \in \operatorname{Dom} f \}.$

- Dom $f := \{x \in \mathbb{R} \mid f(x) \text{ definido}\}.$
- $\blacksquare \operatorname{Im} f := \{ f(x) \mid x \in \operatorname{Dom} f \}.$

Definiciones

I $f: X \to Z$ es **inyectiva** (o "uno a uno", **1-1**) si $\forall x, y \in X, \, f(x) = f(y) \implies x = y.$

- Dom $f := \{x \in \mathbb{R} \mid f(x) \text{ definido}\}.$
- $\blacksquare \operatorname{Im} f := \{ f(x) \mid x \in \operatorname{Dom} f \}.$

Definiciones

- $f: X \to Z$ es **inyectiva** (o "uno a uno", **1-1**) si $\forall x, y \in X, f(x) = f(y) \implies x = y.$
- lacksquare f: X o Z es suryectiva o sobreyectiva (o "sobre") si $\mathrm{Im} f = Z$

- Dom $f := \{x \in \mathbb{R} \mid f(x) \text{ definido}\}.$
- $\blacksquare \operatorname{Im} f := \{ f(x) \mid x \in \operatorname{Dom} f \}.$

Definiciones

- $f: X \to Z$ es **inyectiva** (o "uno a uno", **1-1**) si $\forall x, y \in X, f(x) = f(y) \implies x = y.$
- $f: X \to Z$ es survectiva o sobreyectiva (o "sobre") si $\mathrm{Im} f = Z$: $\forall z \in Z, \ \exists x \in X, \ z = f(x).$

- Dom $f := \{x \in \mathbb{R} \mid f(x) \text{ definido}\}.$
- $\blacksquare \operatorname{Im} f := \{ f(x) \mid x \in \operatorname{Dom} f \}.$

Definiciones

- $f: X \to Z$ es **inyectiva** (o "uno a uno", **1-1**) si $\forall x, y \in X, f(x) = f(y) \implies x = y.$
- $f: X \to Z$ es survectiva o sobreyectiva (o "sobre") si $\mathrm{Im} f = Z$: $\forall z \in Z, \ \exists x \in X, \ z = f(x).$

Si no decimos nada sobre los conjuntos de salida y llegada de f, se supone que son $\mathbb R$ y se tiene

- $\blacksquare f \text{ es 1-1 si } \forall x, y \in \text{Dom} f, f(x) = f(y) \implies x = y.$
- f es sobre si $\forall z \in \mathbb{R}, \ \exists x \in \text{Dom} f, \ z = f(x)$.

- $\blacksquare f: X \to Z \text{ es 1-1} \iff \forall x, y \in X, f(x) = f(y) \implies x = y.$
- $\blacksquare f: X \to Z \text{ es sobre} \iff \forall z \in Z, \ \exists x \in X, \ z = f(x).$
- [P1E2c] $0 \le x, y$ implica $x \le y \iff x^2 \le y^2$.

- $\blacksquare f: X \to Z \text{ es 1-1} \iff \forall x, y \in X, f(x) = f(y) \implies x = y.$
- $\blacksquare f: X \to Z \text{ es sobre} \iff \forall z \in Z, \ \exists x \in X, \ z = f(x).$
- [P1E2c] $0 \le x, y$ implies $x \le y \iff x^2 \le y^2$.

¿Es $f(x) := x^2$ inyectiva? ¿Es sobre?

- $\blacksquare f: X \to Z \text{ es 1-1} \iff \forall x, y \in X, f(x) = f(y) \implies x = y.$
- $\blacksquare f: X \to Z \text{ es sobre} \iff \forall z \in Z, \ \exists x \in X, \ z = f(x).$
- [P1E2c] $0 \le x, y$ implica $x \le y \iff x^2 \le y^2$.

¿Es $f(x) := x^2$ inyectiva? ¿Es sobre?

Ejemplo

 $g: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ dada por $g(x) := x^2$ es 1-1 y sobre.

- $\blacksquare f: X \to Z \text{ es 1-1} \iff \forall x, y \in X, f(x) = f(y) \implies x = y.$
- $\blacksquare f: X \to Z \text{ es sobre} \iff \forall z \in Z, \ \exists x \in X, \ z = f(x).$
- [P1E2c] $0 \le x, y$ implies $x \le y \iff x^2 \le y^2$.

¿Es $f(x) := x^2$ inyectiva? ¿Es sobre?

Ejemplo

 $g: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ dada por $g(x) := x^2$ es 1-1 y sobre.

Ejercicio (fácil)

Probar que $h: \mathbb{R}^{\leq 0} \to \mathbb{R}^{\geq 0}$ dada por $h(x) := x^2$ es 1-1 y sobre.

- $\blacksquare f: X \to Z \text{ es 1-1} \iff \forall x, y \in X, f(x) = f(y) \implies x = y.$
- $\blacksquare f: X \to Z \text{ es sobre} \iff \forall z \in Z, \ \exists x \in X, \ z = f(x).$
- [P1E2c] $0 \le x, y$ implica $x \le y \iff x^2 \le y^2$.

¿Es $f(x) := x^2$ inyectiva? ¿Es sobre?

Ejemplo

 $g: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ dada por $g(x) := x^2$ es 1-1 y sobre.

Ejercicio (fácil)

Probar que $h: \mathbb{R}^{\leq 0} \to \mathbb{R}^{\geq 0}$ dada por $h(x) := x^2$ es 1-1 y sobre.

Definición

Una función es biyectiva si es inyectiva y suryectiva.

- [P1E2c] $0 \le x, y$ implica $x < y \implies x^2 < y^2$.
- $\blacksquare g: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ dada por $g(x) := x^2$ es 1-1 y sobre.

- [P1E2c] $0 \le x, y$ implica $x < y \implies x^2 < y^2$.
- $\blacksquare g: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ dada por $g(x) := x^2$ es 1-1 y sobre.

La propiedad del ejercicio del práctico es clave en la prueba de 1-1.

- [P1E2c] $0 \le x, y$ implica $x < y \implies x^2 < y^2$.
- $lacksquare g: \mathbb{R}^{\geq 0} o \mathbb{R}^{\geq 0}$ dada por $g(x):=x^2$ es 1-1 y sobre.

La propiedad del ejercicio del práctico es clave en la prueba de 1-1.

Definición

 $f: X \to Z$ es estrictamente (de)creciente si

$$\forall x, y \in X, x < y \implies f(x) < f(y) \ (f(x) > f(y))$$

- [P1E2c] $0 \le x, y$ implica $x < y \implies x^2 < y^2$.
- $lacksquare g: \mathbb{R}^{\geq 0} o \mathbb{R}^{\geq 0}$ dada por $g(x):=x^2$ es 1-1 y sobre.

La propiedad del ejercicio del práctico es clave en la prueba de 1-1.

Definición

 $f: X \to Z$ es estrictamente (de)creciente si

$$\forall x, y \in X, x < y \implies f(x) < f(y) \ (f(x) > f(y))$$

- [P1E2c] $0 \le x, y$ implies $x < y \implies x^2 < y^2$.
- $lacksquare g: \mathbb{R}^{\geq 0} o \mathbb{R}^{\geq 0}$ dada por $g(x) := x^2$ es 1-1 y sobre.

La propiedad del ejercicio del práctico es clave en la prueba de 1-1.

Definición

 $f: X \to Z$ es estrictamente (de)creciente si

$$\forall x, y \in X, x < y \implies f(x) < f(y) \ (f(x) > f(y))$$

Lema

Si $f: X \to Z$ es estrictamente (de)creciente, entonces es 1-1.

- $\blacksquare f: X \to Z \text{ es 1-1} \iff \forall x, y \in X, f(x) = f(y) \implies x = y.$
- [P1E2c] $0 \le x, y$ implies $x < y \implies x^2 < y^2$.
- $\blacksquare g: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ dada por $g(x) := x^2$ es 1-1 y sobre.

La propiedad del ejercicio del práctico es clave en la prueba de 1-1.

Definición

 $f: X \to Z$ es estrictamente (de)creciente si

$$\forall x, y \in X, x < y \implies f(x) < f(y) \ (f(x) > f(y))$$

Lema

Si $f: X \to Z$ es estrictamente (de)creciente, entonces es 1-1.

Ejercicio

Probarlo para estrictamente decrecientes.

Ejercicios para hoy

Con lo visto esta clase, pueden trabajar hasta el E7 del P2.

Ejercicios para hoy

Con lo visto esta clase, pueden trabajar hasta el E7 del P2.

Lectura para las próxima clases

- El material del cursillo [1], Secciones 5.1 a 5.3 (pp. 163–171).
- Apunte, páginas 20–24.

Bibliografía

[1] P. KISBYE, ET AL., "Ingreso a Famaf: materiales de estudio", FaMAF (2017).

