PAIR OF LINES

OBJECTIVES

- 1. The equation $x^2 + ky^2 + 4xy = 0$ represents two coincident lines, if k = 0
 - (a) 0

(b) 1

(c)4

- (d) 16
- 2. The equation of one of the line represented by the equation $x^2 + 2xy \cot \theta y^2 = 0$, is
 - (a) $x y \cot \theta = 0$
 - (b) $x + y \tan \theta = 0$
 - (c) $x \sin \theta + y(\cos \theta + 1) = 0$
 - (d) $x \cos \theta + y(\sin \theta + 1) = 0$
- 3. The nature of straight lines represented by the equation $4x^2 + 12xy + 9y^2 = 0$ is
 - (a) Real and coincident

(b) Real and different

(c) Imaginary and different

- (d) None of the above
- **4.** If the equation $ax^2 + 2hxy + by^2 = 0$ represents two lines $y = m_1x$ and $y = m_2x$, then
 - (a) $m_1 + m_2 = \frac{-2h}{b}$ and $m_1 m_2 = \frac{a}{b}$
 - (b) $m_1 + m_2 = \frac{2h}{b}$ and $m_1 m_2 = \frac{-a}{b}$
 - (c) $m_1 + m_2 = \frac{2h}{b}$ and $m_1 m_2 = \frac{a}{b}$
 - (d) $m_1 + m_2 = \frac{2h}{b}$ and $m_1 m_2 = -ab$
- 5. If the equation $2x^2 2hxy + 2y^2 = 0$ represents two coincident straight lines passing through the origin, then h =
 - $(a) \pm 6$
- (b) $\sqrt{6}$
- (c) $-\sqrt{6}$
- $(d) \pm 2$
- 6. If one of the line represented by the equation $ax^2 + 2hxy + by^2 = 0$ is coincident with one of the line represented by $a'x^2 + 2h'xy + b'y^2 = 0$, then
 - (a) $(ab'-a'b)^2 = 4(ah'-a'h)(hb'-h'b)$

 $\left(b\right)(ab'+a'b)^2=4(ah'-a'h)(hb'-h'b)$

(c) $(ab' - a'b)^2 = (ah' - a'h)(hb' - h'b)$

(d)None of these

Difference of slopes of the lines represented by equation $x^2(\sec^2\theta - \sin^2\theta) - 2xy \tan\theta + y^2 \sin^2\theta = 0$ is

	(a) 4	(b) 3	
	(c) 2	(d) None of these	
8.	The gradient of one	of the lines of $ax^2 + 2hxy + by^2 = 0$ is twice that of the other, then	
	(a) $h^2 = ab$	(b) $h = a + b$	
	(c) $8h^2 = 9ab$	(d) $9h^2 = 8ab$	
9.	If the ratio of gradi	ents of the lines represented by $ax^2 + 2hxy + by^2 = 0$ is 1:3, then the value	
	of the ratio $h^2:ab$ is		
	(a) $\frac{1}{3}$	(b) $\frac{3}{4}$	
	(c) $\frac{4}{3}$	(d) 1	
10.	If $\frac{x^2}{x^2} + \frac{y^2}{x^2} + \frac{2xy}{x} = 0$ re	present pair of straight lines and slope of one line is twice the other.	
	Then <i>ab</i> : <i>h</i> ² is (a) 9: 8	(b) 8:9	
	(c) 1:2	(d) 2:1	
11.	If the sum of slope	es of the pair of lines represented by $4x^2 + 2hxy - 7y^2 = 0$ is equal to the	
	product of the slopes, then the value of h is		
	(a) - 6	(b) - 2	
	(c) – 4	(d) 4	
12.	If the slope of one li	the of the pair of lines represented by $ax^2 + 4xy + y^2 = 0$ is 3 times the slope	
of the other line, then a is		en a is	
	(a) 1	(b) 2	
	(c) 3	(d) 4	
13.	If the sum of the sl	lopes of the lines given by $x^2 - 2cxy - 7y^2 = 0$ is four times their product,	
then c has the value			
4	(a) - 2	(b) 1	
	(c) 2	(d) 1	

14.	Difference of sl	lopes of the lines repres	ented by equation $x^2(\sec^2\theta - \sin^2\theta) - 2xy \tan\theta + y^2 \sin^2\theta = 0$ is
	(a) 4 (b) 3	3 (c)2	(d) None of these
15.	The pair of str	aight lines passes throu	igh the point (1, 2) and perpendicular to the pair of
	straight lines 3	$x^2 - 8xy + 5y^2 = 0, iS$	
	(a) $(5x+3y+11)(x-1)$	+y+3)=0	
	(b) $(5x+3y-11)(x+3y-11)$	+y-3)=0	
	(c) $(3x+5y-11)(x+1)$	+y+3)=0	
	(d) $(3x-5y+11)(x+1)$	+y-3)=0	
16.	If the equation	$ax^2 + by^2 + cx + cy = 0$ repres	sents a pair of straight lines, then
	(a) $a(b+c)=0$	(b) $b(c+a) = 0$	
	(c) $c(a+b)=0$	(d) $a+b+c=0$	
17.	If the equation	$Ax^2 + 2Bxy + Cy^2 + Dx + Ey + F$	= 0 represents a pair of straight lines, then $B^2 - AC$
	(a) < 0	(b) = 0	
	(c) > 0	(d) None of these	
18.	If $4ab = 3h^2$, then	n the ratio of slopes of t	the lines represented by the equation $ax^2 + 2hxy + by^2 = 0$
	will be		
	(a) $\sqrt{2}:1$	(b) $\sqrt{3}:1$	
	(c) 2:1	(d) 1:3	
19.	If $6x^2 + 11xy - 10y^2$	$x^2 + x + 31y + k = 0$ represents	a pair of straight lines, then $k =$
	(a) - 15	(b) 6	
	(c) - 10	(d) – 4	
20.	The lines repre	esented by the equation	$ax^{2}(b-c) - xy(ab-bc) + cy^{2}(a-b) = 0$ are
	(a) $a(b-c)x-c(a-b)$	y(y) = 0, $x + y = 0$	
	(b) $x + y = 0$, $x - y$	= 0	
	(c) $a(b-c)x-c(a-b)$	(x)y = 0, $x - y = 0$	
	(d) None of thes	se	

(a) $4\lambda h = ab(1+\lambda)$ (b) $\lambda h = ab(1+\lambda)^2$ (c) $4\lambda h^2 = ab(1+\lambda)^2$

of the other, then

21. If the slope of one of the line represented by the equation $ax^2 + 2hxy + by^2 = 0$ be λ times that

22.	The equation of the lines passing through the origin and having slopes 3 and	$-\frac{1}{3}$	is
-----	--	----------------	----

(a)
$$3y^2 + 8xy - 3x^2 = 0$$
 (b) $3x^2 + 8xy - 3y^2 = 0$

(b)
$$3x^2 + 8xy - 3y^2 = 0$$

(c)
$$3y^2 - 8xy + 3x^2 = 0$$
 (d) $3x^2 + 8xy + 3y^2 = 0$

(d)
$$3x^2 + 8xy + 3y^2 = 0$$

23. If the slope of one of the lines represented by $ax^2 + 2hxy + by^2 = 0$ be the square of the other, then

(a)
$$a^2b + ab^2 - 6abh + 8h^3 = 0$$

(b)
$$a^2b + ab^2 + 6abh + 8h^3 = 0$$

(c)
$$a^2b + ab^2 - 3abh + 8h^3 = 0$$

(d)
$$a^2b + ab^2 - 6abh - 8h^3 = 0$$

24. If the lines represented by the equation $6x^2 + 41xy - 7y^2 = 0$ make angles α and β with x-axis, **then** tan α . tan β =

$$(a) - 6/7$$

(b)
$$6/7$$

$$(d) - 7/6$$

25. The gradient of one of the lines
$$x^2 + hxy + 2y^2 = 0$$
 is twice that of the other, then $h =$

$$(a) \pm 3$$

(b)
$$\pm \frac{3}{2}$$

$$(c) \pm 2$$

(d)
$$\pm 1$$

26. The equation of the locus of foot of perpendiculars drawn from the origin to the line passing through a fixed point (a, b), is

(a)
$$x^2 + y^2 - ax - by = 0$$

(b)
$$x^2 + y^2 + ax + by = 0$$

(c)
$$x^2 + y^2 - 2ax - 2by = 0$$
 (d) None of these

27. If the bisectors of the lines $x^2 - 2pxy - y^2 = 0$ be $x^2 - 2qxy - y^2 = 0$, then

(a)
$$pq + 1 = 0$$

(b)
$$pq - 1 = 0$$

(c)
$$p + q = 0$$

(d)
$$p - q = 0$$

28. The figure formed by the lines
$$x^2 + 4xy + y^2 = 0$$
 and $x - y = 4$, is

(a) A right angled triangle

(b)An isosceles triangle

(c) An equilateral triangle

(d)None of these

29. Area of the triangle formed by the lines $y^2 - 9xy + 18x^2 = 0$ and y = 9 is

(a)
$$\frac{27}{4}$$
 sq. units

(b) 27 sq. units (c)
$$\frac{27}{2}$$
 sq. units

30. The area (in square units) of the quadrilateral formed by the two pairs of lines

$$l^2x^2 - m^2y^2 - n(lx + my) = 0$$
 and $l^2x^2 - m^2y^2 + n(lx - my) = 0$ is

(a)
$$\frac{n^2}{2|lm|}$$

(b)
$$\frac{n^2}{|lm|}$$

(c)
$$\frac{n}{2|lm|}$$

(d)
$$\frac{n^2}{4 |lm|}$$

31. If the pair of straight lines given by $Ax^2 + 2Hxy + By^2 = 0$, $(H^2 > AB)$ forms an equilateral triangle with line ax + by + c = 0, then (A + 3B)(3A + B) is

- (a) H^2
- (b) $-H^2$
- (c) $2H^2$
- (d) $4H^2$

32. If one of the lines of the pair $ax^2 + 2hxy + by^2 = 0$ bisects the angle between positive directions of the axes, then a, b, h satisfy the relation

- (a) a+b=2|h|
- (b) a+b=-2h
- (c) a-b=2|h|
- (d) $(a-b)^2 = 4h^2$

33. The equation of the pair of straight lines, each of which makes an angle α with the line y = x, is

- (a) $x^2 + 2xy \sec 2\alpha + y^2 = 0$
- (b) $x^2 + 2xy \csc 2\alpha + y^2 = 0$
- (c) $x^2 2xy \csc 2\alpha + y^2 = 0$
- (d) $x^2 2xy \sec 2\alpha + y^2 = 0$

34. The circum centre of the triangle formed by the lines xy + 2x + 2y + 4 = 0 and x + y + 2 = 0

- (a)(0,0)
- (b) (-2, -2)
- (c)(-1,-1) (d)(-1,-2)

35. If the lines $ax^2 + 2hxy + by^2 = 0$ represents the adjacent sides of a parallelogram, then the equation of second diagonal if one is lx + my = 1, will be

- (a) (am + hl)x = (bl + hm)y
- (b) (am hl)x = (bl hm)y
- (c) (am hl)x = (bl + hm)y
- (d)None of these

36. The orthocenter of the triangle formed by the lines xy = 0 and x + y = 1 is

- (a) (0,0)
- (b) $\left(\frac{1}{2}, \frac{1}{2}\right)$
- (c) $\left(\frac{1}{3}, \frac{1}{3}\right)$
- (d) $\left(\frac{1}{4}, \frac{1}{4}\right)$

37. If the pair of lines $ax^2 + 2(a+b)xy + by^2 = 0$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then

(a)
$$3a^2 + 10ab + 3b^2 = 0$$

(b)
$$3a^2 + 2ab + 3b^2 = 0$$

(c)
$$3a^2 - 10ab + 3b^2 = 0$$
 (d) $3a^2 - 2ab + 3b^2 = 0$

(d)
$$3a^2 - 2ab + 3b^2 = 0$$

38. The equations to a pair of opposite sides of a parallelogram are $x^2 - 5x + 6 = 0$ and $y^2 - 6y + 5 = 0$. The equations to its diagonals are

(a)
$$x + 4y = 13$$
 and $y = 4x - 7$

(b)
$$4x + y = 13$$
 and $4y = x - 7$

(c)
$$4x + y = 13$$
 and $y = 4x - 7$

(d)
$$y - 4x = 13$$
 and $y + 4x = 7$

39. The equation of the pair of straight lines parallel to x-axis and touching the circle $x^2 + y^2 - 6x - 4y - 12 = 0$

(a)
$$y^2 - 4y - 21 = 0$$

(a)
$$y^2 - 4y - 21 = 0$$
 (b) $y^2 + 4y - 21 = 0$

(c)
$$y^2 - 4y + 21 = 0$$
 (d) $y^2 + 4y + 21 = 0$

(d)
$$y^2 + 4y + 21 = 0$$

- 40. The equation $x^2 3xy + \lambda y^2 + 3x 5y + 2 = 0$ when λ is a real number, represents a pair of straight lines. If θ is the angle between the lines, then $\csc^2\theta =$
 - (a) 3

- (b) 9
- (c) 10
- (d) 100
- 41. The angle between the pair of straight lines $y^2 \sin^2 \theta xy \sin^2 \theta + x^2 (\cos^2 \theta 1) = 1$, is
 - (a) $\frac{\pi}{3}$

- (d) None of these
- 42. The lines joining the origin to the points of intersection of the line y = mx + c and the circle $x^2 + y^2 = a^2$ will be mutually perpendicular, if
 - (a) $a^2(m^2 + 1) = c^2$ (b) $a^2(m^2 1) = c^2$
 - (c) $a^2(m^2 + 1) = 2c^2$ (d) $a^2(m^2 1) = 2c^2$
- 43. The lines represented by the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ will be equidistant from the origin, if

(a)
$$f^2 + g^2 = c(b - a)$$

(b)
$$f^4 + g^4 = c(bf^2 + ag^2)$$

(a)
$$f^2 + g^2 = c(b-a)$$
 (b) $f^4 + g^4 = c(bf^2 + ag^2)$ (c) $f^4 - g^4 = c(bf^2 - ag^2)$ (d) $f^2 + g^2 = af^2 + bg^2$

(d)
$$f^2 + g^2 = af^2 + bg^2$$

44.	The area bounded b	by the angle bisectors of the lines $x^2 - y^2 + 2y = 1$ and the line $x + y = 3$, is
	(a)2	(b) 3
	(c)4	(d) 6
45.	The pair of lines re	presented by $3ax^2 + 5xy + (a^2 - 2)y^2 = 0$ are perpendicular to each other for
	(a)Two values of a	(b) $\forall a$
	(c) For one value of	a (d)For no value of a
46. If the lines represented by the equation $ax^2 - bxy - y^2 = 0$ make angles α and β wi		
	axis, then $tan(\alpha + \beta) =$	
	(a) $\frac{b}{1+a}$	(b) $\frac{-b}{1+a}$
	(c) $\frac{a}{1+b}$	(d) None of these
47.	Pair of straight line	s perpendicular to each other represented by
	(a) $2x^2 = 2y(2x + y)$	(b) $x^2 + y^2 + 3 = 0$
	(c) $2x^2 = y(2x + y)$	(d) $x^2 = 2(x - y)$
48.	Acute angle between	n the lines represented by $(x^2 + y^2)\sqrt{3} = 4xy$ is
	(a) π/6	(b) $\pi/4$
	(c) $\pi/3$	(d) None of these
49.	The angle between	the two straight lines $2x^2 - 5xy + 2y^2 - 3x + 3y + 1 = 0$ is
	(a) 45°	(b) 60°
	(c) $\tan^{-1} \frac{4}{3}$	(d) $\tan^{-1} \frac{3}{4}$
50.	The angle between	the lines represented by the equation $x^2 - 2pxy + y^2 = 0$, is
	(a) sec ⁻¹ p (c) tan ⁻¹ p	(b) $\cos^{-1} p$
	(c) tan -1 p	(d) None of these
51.	The angle between	the lines represented by the equation $4x^2 - 24xy + 11y^2 = 0$ are
6	(a) $\tan^{-1} \frac{3}{4}$, $\tan^{-1} \left(-\frac{3}{4} \right)$	(b) $\tan^{-1} \frac{1}{3}$, $\tan^{-1} \left(-\frac{1}{3} \right)$
4	(c) $\tan^{-1} \frac{4}{3}$, $\tan^{-1} \left(-\frac{4}{3} \right)$	(d) $\tan^{-1} \frac{1}{2}$, $\tan^{-1} \left(-\frac{1}{2} \right)$
52.	The angle between	the pair of straight lines $x^2 + 4y^2 - 7xy = 0$, is
	(a) $\tan^{-1} \left(\frac{1}{3} \right)$	(b) $\tan^{-1} 3$ (c) $\tan^{-1} \frac{\sqrt{33}}{5}$ (d) $\tan^{-1} \frac{5}{\sqrt{33}}$

53. If $(a+3b)(3a+b)=4h^2$, then the angle between the lines represented by $ax^2+2hxy+by^2=0$ is

(b) 45°

(d) $\tan^{-1} \frac{1}{2}$

54. The angle between the pair of lines given by equation $x^2 + 2xy - y^2 = 0$, is

(a) 30°

(c) 60°

	(a) $\pi/3$	(b) π/6		
	(c) π/2	(d) 0		
55.	The lines $(lx + my)^2$	$(2^2 - 3(mx - ly)^2 = 0$ and $lx + my + n = 0$ 1	Corm	
	(a) An isosceles t	riangle	(b)A right angled triangle	
	(c) An equilateral	triangle	(d)None of these	
56.	. Angle between the lines represented by the equation $x^2 + 2xy \sec \theta + y^2 = 0$ is			
	(a) <i>θ</i>	(b) 2 <i>θ</i>		
	(c) $\frac{\theta}{2}$	(d) None of these		
57.	The angle betwe	en the pair of lines represente	d by $2x^2 - 7xy + 3y^2 = 0$, is	
	(a) 60°	(b) 45°		
	(c) $\tan^{-1}\left(\frac{7}{6}\right)$	(d) 30°		
58.	If the angle	between the pair of strai	ght lines represented by the equation	
	$x^2 - 3xy + \lambda y^2 + 3x - 5$	$3y + 2 = 0$ is $\tan^{-1} \left(\frac{1}{3}\right)$, where ' λ ' is a	non negative real number. Then λ is	
	(a) 2	(b) 0		
	(c) 3	(d) 1		
59.	If the acute ang	les between the pairs of lines	$3x^2 - 7xy + 4y^2 = 0$ and $6x^2 - 5xy + y^2 = 0$ be θ_1 and	
	θ_2 respectively, 1	then		
	(a) $\theta_1 = \theta_2$	(b) $\theta_1 = 2\theta_2$		
	(c) $2\theta_1 = \theta_2$	(d) None of these		
60.	If two of the	three lines represented b	by the equation $ax^3 + bx^2y + cxy^2 + dy^3 = 0$ are	
4	perpendicular, then			
	(a) $a^2 + d^2 = 2ac$	(b) $a^2 + d^2 = 2bd$		
	(c) $a^2 + ac + bd + d^2 =$	$0 (d) a^2 + d^2 = 4bc$		

www.sakshieducation.com

61.	If the angle 2θ is ac	tute, then the acute angle between $x^2(\cos\theta - \sin\theta) + 2xy\cos\theta + y^2(\cos\theta + \sin\theta) = 0$
	is	
	(a) 2 <i>θ</i>	(b) $\theta/3$
	(c) θ	(d) $\theta/2$
62.	Condition that th	e two lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ to be
	perpendicular is	
	(a) $ab = -1$	(b) $a = -b$
	(c) $a=b$	(d) $ab = 1$
63.	If the bisectors of a	ngles represented by $ax^2 + 2hxy + by^2 = 0$ and $a'x^2 + 2h'xy + b'y^2 = 0$ are same,
	then	
	(a) $(a-b)h' = (a'-b')h$	(b) $(a-b)h = (a'-b')h'$
	(c) $(a+b)h' = (a'-b')h$	(d) $(a-b)h' = (a'+b')h$
64.	If $y = mx$ be one of the	e bisectors of the angle between the lines $ax^2 - 2hxy + by^2 = 0$, then
	(a) $h(1+m^2)+m(a-b)=0$	
	(b) $h(1-m^2) + m(a+b) = 0$	
	(c) $h(1-m^2) + m(a-b) = 0$	
	(d) $h(1+m^2)+m(a+b)=0$	
65.	The line $x - 2y = 0$ wi	ill be a bisector of the angle between the lines represented by the
	equation $x^2 - 2hxy - 2y$	$y^2 = 0$, if $h =$
	(a) 1/2	(b) 2
	(c) -2	(d)-1/2
66.	If the bisectors o	f the angles between the pairs of lines given by the equation
	$ax^2 + 2hxy + by^2 = 0$ and	$\int ax^2 + 2hxy + by^2 + \lambda(x^2 + y^2) = 0$ be coincident, then $\lambda =$
	(a) <i>a</i>	(b) <i>b</i>
	(c) h	(d) Any real number
67.	The point of interse	ction of the lines represented by equation
	$2(x+2)^2 + 3(x+2)(y-2) -$	$2(y-2)^2 = 0$ is
	(a) (2, 2)	(b) $(-2, -2)$
	(c)(-2,2)	(d)(2,-2)

68. The equation of the bisectors of angle between the lines represented by equation $(y - mx)^2 = (x + my)^2$ is

(a)
$$mx^2 + (m^2 - 1)xy - my^2 = 0$$

(b)
$$mx^2 - (m^2 - 1)xy - my^2 = 0$$

(c)
$$mx^2 + (m^2 - 1)xy + my^2 = 0$$

- (d) None of these
- 69. One bisector of the angle between the lines given by $a(x-1)^2 + 2h(x-1)y + by^2 = 0$ is 2x + y 2 = 0. The other bisector is

(a)
$$x - 2y + 1 = 0$$

(b)
$$2x + y - 1 = 0$$

(c)
$$x + 2y - 1 = 0$$

(d)
$$x - 2y - 1 = 0$$

70. Distance between the pair of lines represented by the equation $x^2 - 6xy + 9y^2 + 3x - 9y - 4 = 0$ is

(a)
$$\frac{15}{\sqrt{10}}$$

(b)
$$\frac{1}{2}$$

(c)
$$\sqrt{\frac{5}{2}}$$

(d)
$$\frac{1}{\sqrt{10}}$$

71. The lines joining the points of intersection of line x + y = 1 and curve $x^2 + y^2 - 2y + \lambda = 0$ to the origin are perpendicular, then the value of λ will be

(a)
$$1/2$$

$$(b)-1/2$$

(c)
$$1/\sqrt{2}$$

72. The distance between the parallel lines $9x^2 - 6xy + y^2 + 18x - 6y + 8 = 0$ is

(a)
$$1/\sqrt{10}$$

(b)
$$2/\sqrt{10}$$

(c)
$$4/\sqrt{10}$$

(d)
$$\sqrt{10}$$

73. If the lines joining origin to the points of intersection of the line $fx - gy = \lambda$ and the curve $x^2 + hxy - y^2 + gx + fy = 0$ be mutually perpendicular, then

(a)
$$\lambda = h$$

(b)
$$\lambda = g$$

(c)
$$\lambda = fg$$

- (d) λ may have any value
- 74. The equation of second degree $x^2 + 2\sqrt{2}xy + 2y^2 + 4x + 4\sqrt{2}y + 1 = 0$ represents a pair of straight lines. The distance between them is

(b)
$$4/\sqrt{3}$$

(d)
$$2\sqrt{3}$$

- 75. The lines joining the origin to the points of intersection of the curves $ax^2 + 2hxy + by^2 + 2gx = 0$ and $a'x^2 + 2h'xy + b'y^2 + 2g'x = 0$ will be mutually perpendicular, if
 - (a) g(a'-b') = g'(a+b)
- (b) g(a'+b') = g'(a+b)
- (c) g(a'+b') = g'(a-b)
- (d) g(a'-b') = g'(a-b)
- 76. If the distance of two lines passing through origin from the point (x_1, y_1) is 'd', then the equation of lines is
 - (a) $(xy_1 yx_1)^2 = d^2(x^2 + y^2)$
 - (b) $(x_1y_1 xy)^2 = (x^2 + y^2)$
 - (c) $(xy_1 + yx_1)^2 = (x^2 y^2)$
 - (d) $(x^2 y^2) = 2(x_1 + y_1)$

PAIR OF STRAIGHT LINES

HINTS AND SOLUTIONS

- 1. (c) To represent pair of coincident straight lines $x^2 + ky^2 + 4xy = 0$ must be perfect square. Therefore, k = 4.
- 2. (c) The lines represented by the equation $x^2 + 2xy \cot \theta y^2 = 0$ are $ax + hy \pm y\sqrt{h^2 ab} = 0$

$$\Rightarrow x + y \cot \theta \pm y \sqrt{\cot^2 \theta + 1} = 0$$

$$\Rightarrow x + y \left(\frac{\cos \theta}{\sin \theta} \pm \frac{1}{\sin \theta} \right) = 0 \Rightarrow x \sin \theta + y(\cos \theta \pm 1) = 0$$

Hence, one line is $x \sin \theta + y(\cos \theta + 1) = 0$.

3. (a) $4x^2 + 12xy + 9y^2 = 0$

Here
$$h^2 - ab = 36 - 36 = 0$$
, from $\theta = \frac{\pm 2\sqrt{h^2 - ab}}{a + b}$

Hence, lines are real and coincident.

- 4. (a) It is a fundamental concept.
- 5. (d) If it represents two coincident straight lines, then the condition $h^2 ab = 0$ should apply as angle between them would be zero. Hence $h^2 4 = 0$ or $h = \pm 2$.
- 6. (a) concept
- 7. (c) We know that $m_1 m_2 = \sqrt{(m_1 + m_2)^2 4m_1m_2}$

$$= \sqrt{\left(\frac{2\tan\theta}{\sin^2\theta}\right)^2 - 4\left(\frac{\sec^2\theta - \sin^2\theta}{\sin^2\theta}\right)}$$

$$= \sqrt{\frac{4 \tan^2 \theta}{\sin^4 \theta} - 4(\sec^2 \theta \csc^2 \theta - 1)} = 2.$$

8. (c) Here, $m_1 + m_2 = \frac{-2h}{b}$ and $m_1 m_2 = \frac{a}{b}$

Given that $m_1 = 2m_2$

:.
$$3m_2 = \frac{-2h}{b}$$
 and $2m_2^2 = \frac{a}{b}$

$$\implies 2\left(\frac{-2h}{3b}\right)^2 = \frac{a}{b} \implies 8h^2 = 9ab.$$

9. (c) If the gradients of two lines are in ratio 1:n.

Then
$$\frac{h^2}{ab} = \frac{(n+1)^2}{4n} = \frac{(3+1)^2}{4.3} = \frac{4}{3}$$
.

10. (a) Let m_1, m_2 be the slopes

$$\therefore m_1 + m_2 = -\frac{2b}{h} \text{ and } m_1 m_2 = \frac{b}{a}$$

$$\operatorname{Again} m_2 = 2m_1$$

$$3m_1 = -\frac{2b}{h}$$
 and $2m_1^2 = \frac{b}{a}$

$$\therefore \frac{9m_1^2}{2m_1^2} = \frac{4b^2}{h^2} \times \frac{a}{b} \Rightarrow ab : h^2 = 9 : 8.$$

11. (b) Comparing the given equation with the standard equation, we get a=4 and b=-7. Let m_1 and m_2 are the slopes of given lines. Therefore sum of the slopes $(m_1+m_2)=-\frac{2h}{b}=\frac{2h}{7}$ and product of the slopes $(m_1m_2)=\frac{a}{b}=\frac{4}{-7}$.

$$\therefore m_1 + m_2 = m_1 m_2$$
, therefore $\frac{2h}{7} = \frac{4}{-7}$ or $h = -2$.

12. (c) Here,
$$m_1 + m_2 = -4$$

And
$$m_1 m_2 = a$$
(ii)

Given that
$$m_1 = 3m_2$$
.

By (i),
$$3m_2 + m_2 = -4 \implies m_2 = -1$$

Hence,
$$m_1 = -3$$
. Now, by (ii) $a = 3$.

13. (a) Given equation of pair of lines is

$$6x^2 - xy + 4cy^2 = 0(i)$$

Slope of line
$$3x + 4y = 0$$
 is $\frac{-3}{4} = m_1$ (say)

Product of slopes of lines $m_1 m_2 = \frac{a}{b} = \frac{6}{4c} = \frac{3}{2c}$

$$\therefore m_2 = \frac{3/2c}{-3/4} = \frac{-2}{c} \cdot \text{Also, } m_1 + m_2 = \frac{-2h}{b} = \frac{1}{4c}$$

$$\Rightarrow \frac{-3}{4} - \frac{2}{c} = \frac{1}{4c} \Rightarrow -3c - 8 = 1 \Rightarrow c = -3.$$

14. (c) We know that $m_1 - m_2 = \sqrt{(m_1 + m_2)^2 - 4m_1m_2}$

$$= \sqrt{\left(\frac{2\tan\theta}{\sin^2\theta}\right)^2 - 4\left(\frac{\sec^2\theta - \sin^2\theta}{\sin^2\theta}\right)}$$

$$= \sqrt{\frac{4 \tan^2 \theta}{\sin^4 \theta} - 4(\sec^2 \theta \csc^2 \theta - 1)} = 2.$$

15. (a) Equation of lines are (px + qy)(py - qx) = 0.

Hence, one line is px + qy = 0.

16. (c)
$$ab(0) + 2\left(\frac{c}{2}\right)\left(\frac{c}{2}\right)(0) - a\left(\frac{c}{2}\right)^2 - b\left(\frac{c}{2}\right)^2 - 0(0)^2 = 0$$

$$\Rightarrow ac^2 + bc^2 = 0 \Rightarrow c^2(a+b) = 0 \Rightarrow c(a+b) = 0$$
.

17. (d) Using the condition $\Delta = 0$

$$\Rightarrow ACF + 2 \cdot \frac{E}{2} \cdot \frac{D}{2} \cdot B - A \cdot \left(\frac{E}{2}\right)^2 - C \cdot \left(\frac{D}{2}\right)^2 - F \cdot (B)^2 = 0.$$

18. (d) Here
$$m_1 + m_2 = \frac{-2h}{b}$$
(i)

And
$$m_1 m_2 = \frac{a}{b}$$
(ii)

Also, given that $4ab = 3h^2$ now we have to find $\frac{m_1}{m_2}$,

Therefore with the help of (i) and (ii), we get

$$(m_1 - m_2)^2 = \frac{4h^2 - 4ab}{b^2} = \frac{4h^2 - 3h^2}{b^2} = \frac{h^2}{b^2}$$

$$\Rightarrow m_1 - m_2 = \frac{h}{b} \qquad \qquad \dots (iii)$$

Now on solving (i) and (iii), we get $m_1 = \frac{-h}{2b}$ and $m_2 = \frac{-3h}{2b}$; $\therefore m_1 : m_2 = 1 : 3$.

19. (a)
$$-6.10k + \frac{11.1.31}{4} - 6\left(\frac{31}{2}\right)^2 + 10\left(\frac{1}{2}\right)^2 - k\left(\frac{11}{2}\right)^2 = 0$$

$$\Rightarrow -k\frac{361}{4} = \frac{5415}{4} \Rightarrow k = -15.$$

20. (c) From options, proceed as to find the equation represented by them a(b-c)x - c(a-b)y = 0 and x-y=0.

21. (c) It is given that $m_2 = \lambda m_1 \Rightarrow m_1 + \lambda m_1 = \frac{-2h}{h}$

$$\Rightarrow m_1 = \frac{-2h}{b(1+\lambda)} \qquad \qquad \dots (i)$$

and
$$m_1 \cdot \lambda m_1 = \frac{a}{b} \Rightarrow m_1 = \sqrt{\frac{a}{b\lambda}}$$
(ii)

Hence, by (i) and (ii),
$$\sqrt{\frac{a}{b\lambda}} = \frac{-2h}{b(1+\lambda)}$$

On squaring both sides, we get $4\lambda h^2 = ab(1 + \lambda)^2$.

22. (b) $m_1 = 3$, $m_2 = -\frac{1}{3}$. Hence, the lines are y = 3x, $y = -\frac{1}{3}x$.

Multiplying both the lines, we get

$$(y-3x)(3y+x) = 0 \Rightarrow 3x^2 + 8xy - 3y^2 = 0.$$

23. (a) Here, $m_1 = m_2^2 \Rightarrow m_2^2 + m_2 = \frac{-2h}{h}$ (i

and
$$m_2^2 m_2 = \frac{a}{b} \Rightarrow m_2 = \left(\frac{a}{b}\right)^{1/3}$$
(ii)

Putting this value of m_2 in (i), we get

$$\left\{ \left(\frac{a}{b}\right)^{1/3} \right\}^2 + \left(\frac{a}{b}\right)^{1/3} = \frac{-2h}{b}$$

On cubing both sides, we get

$$\left(\frac{a}{b}\right)^{2} + \frac{a}{b} + 3\left(\frac{a}{b}\right)^{2/3} \cdot \left(\frac{a}{b}\right)^{1/3} \cdot \left\{\left(\frac{a}{b}\right)^{2/3} + \left(\frac{a}{b}\right)^{1/3}\right\} = \frac{-8h^{3}}{b^{3}}$$

$$\Rightarrow \left(\frac{a}{b}\right)^2 + \frac{a}{b} - \frac{6ah}{b^2} = \frac{-8h^3}{b^3} \quad \left\{ \because \left(\frac{a}{b}\right)^{2/3} + \left(\frac{a}{b}\right)^{1/3} = \frac{-2h}{b} \right\}$$

$$\implies ab(a+b) - 6abh + 8h^3 = 0.$$

24. (a)
$$\tan \alpha \tan \beta = m_1 m_2 = \frac{a}{b} = -\frac{6}{7}$$
.

25. (a) Applying the condition, $4\lambda h^2 = ab(1 + \lambda)^2$

Here $\lambda = 2$, therefore

$$4 \times 2 \times \left(\frac{h}{2}\right)^2 = 1 \times 2(1+2)^2 \Rightarrow h^2 = 9 \Rightarrow h = \pm 3$$
.

26. (a) $\lambda(x-a)+(y-b)=0$ is the equation of line.

$$r = -\left(\frac{-a\lambda - b}{\lambda^2 + 1}\right)$$

Coordinates of point $\equiv \left\{ -\lambda \left(\frac{-a\lambda - b}{\lambda^2 + 1} \right), -\left(\frac{-a\lambda - b}{\lambda^2 + 1} \right) \right\}$

$$h = \lambda \left(\frac{a\lambda + b}{\lambda^2 + 1}\right), k = \frac{a\lambda + b}{\lambda^2 + 1}, \lambda = \frac{h}{k}$$

$$\therefore h = h \left(\frac{ah + kb}{h^2 + k^2} \right) \Rightarrow x^2 + y^2 = ax + by.$$

27. (a) Bisector of the angle between the lines $x^2 - 2pxy - y^2 = 0$ is $\frac{x^2 - y^2}{xy} = \frac{1 - (-1)}{-p}$

$$\Rightarrow px^2 + 2xy - py^2 = 0$$

But it is represented by $x^2 - 2qxy - y^2 = 0$.

Therefore
$$\frac{p}{1} = \frac{2}{-2q} \Rightarrow pq = -1$$
.

28. (c)
$$S_1 = \frac{1}{-2 + \sqrt{4 - 1}} = \frac{1}{-2 + \sqrt{3}} = -(\sqrt{3} + 2)$$

$$S_2 = \frac{1}{-2 - \sqrt{4 - 1}} = \frac{1}{-2 - \sqrt{3}} = (\sqrt{3} - 2)$$
 and $S_3 = 1$.

$$\theta_{13} = \tan^{-1} \left| \frac{-(\sqrt{3} + 2) - 1}{1 - (\sqrt{3} + 2)} \right| = \tan^{-1} \left| \frac{-(\sqrt{3} + 3)}{-(\sqrt{3} + 1)} \right|$$

$$= \tan^{-1}(\sqrt{3}) = 60^{\circ}$$
.

$$\theta_{23} = \tan^{-1} \left| \frac{\sqrt{3} - 2 - 1}{1 + \sqrt{3} - 2} \right| = \tan^{-1} \left| \frac{\sqrt{3} - 3}{\sqrt{3} - 1} \right|$$

$$= \tan^{-1}(\sqrt{3}) = 60^{\circ}$$
.

29. (a) Applying the formula given in the theory part, the required area is

$$\frac{(-9)^2\sqrt{(9/2)^2 - 18}}{18 \times 1 + 9 \times 0 \times 1 + 1 \times 0} = \frac{81}{18}\sqrt{\frac{81}{4} - 18}$$

$$=\frac{81}{18}\times\frac{3}{2}=\frac{27}{4}$$
 sq. units.

30. (a) Given lines are

$$lx + my = 0, lx + my + n = 0$$

$$lx - my = 0, lx + my - n = 0$$

Area =
$$\left| \frac{(c_1 - d_1)(c_2 - d_2)}{(a_1 b_2 - a_2 b_1)} \right| = \left| \frac{(0 - n)(0 + n)}{(-lm - lm)} \right| = \frac{n^2}{2|lm|}$$
.

31. (d) We know that the pair of lines

 $(a^2 - 3b^2)x^2 + 8abxy + (b^2 - 3a^2)y^2 = 0$ With the line ax + by + c = 0 form an equilateral triangle. Hence comparing with $Ax^2 + 2Hxy + By^2 = 0$, then

$$A = a^2 - 3b^2$$
, $B = b^2 - 3a^2$, $2H = 8ab$.

Now,
$$(A + 3B)(3A + B) = (-8a^2)(-8b^2)$$

$$= (8ab)^2 = (2H)^2 = 4H^2$$

32. (b) Bisector of the angle between positive directions of the axes is y = x. Since it is one of the lines of the given pair $ax^2 + 2hxy + by^2 = 0$, we have

$$x^{2}(a+2h+b) = 0$$
 Or $a+b = -2h$.

33. (d) Any line through the origin is y = mx. If it makes an angle α with the line y = x, then we should have

$$\tan \alpha = \pm \left\{ \frac{m_1 - m_2}{1 + m_1 m_2} \right\} = \pm \frac{(m-1)}{1 + m}$$

Eliminate m from above eq.

- 34. (c) The separate equations of the lines given by xy + 2x + 2y + 4 = 0 are (x + 2)(y + 2) = 0 or x + 2 = 0, y + 2 = 0. Solving the equations of the sides of the triangle, we obtain the coordinates of the vertices as A(-2,0), B(0,-2) and C(-2,-2). Clearly, $\triangle ABC$ is a right angled triangle with right angle at C. Therefore the centre of the circum-circle is the midpoint of AB whose coordinates are (-1,-1).
- **35.** (b) Let the equation of lines represented by $ax^2 + 2hxy + by^2 = 0$ be $y m_1x = 0$ and $y m_2x = 0$
- 36. (a) Since the triangle is right angled at O(0,0), therefore (0,0) is its orthocentre.
- 37. (b) Angle between the given lines is

$$\tan\frac{\pi}{4} = \frac{2\sqrt{(a+b)^2 - ab}}{a+b}$$

$$\Rightarrow \frac{2\sqrt{(a+b)^2 - ab}}{a+b} = 1$$

$$\Rightarrow$$
 $3a^2 + 2ab + 3b^2 = 0$

38. (c) Equation of diagonal d_1 is $y-1 = \frac{5-1}{3-2}(x-2)$

$$\Rightarrow y - 1 = \frac{4}{1}(x - 2) \Rightarrow y = 4x - 7$$

Equation of diagonal d_2 is $y-1 = \frac{5-1}{2-3}(x-3)$

$$\Rightarrow$$
 y - 1 = -4(x - 3) \Rightarrow 4x + y = 13

So equations are, 4x + y = 13 and y = 4x - 7.

39. (a) Let the lines are $y = m_1x + c_1$ and $y = m_2x + c_2$ since pair of straight lines parallel to x-axis,

$$m_1 = m_2 = 0$$

And the lines will be $y = c_1$ and $y = c_2$

Given circle is $x^2 + y^2 - 6x - 4y - 12 = 0$, centre (3, 2) and radius = 5.

Here, the perpendicular drawn from centre to the lines are CP and CP'.

$$CP = \frac{2 - c_1}{\sqrt{1}} = \pm 5 \implies 2 - c_1 = \pm 5$$
 $c_1 = 7 \text{ and } c_1 = -3$
 $c_2 = -3$
 $c_3 = -3$
 $c_4 = -3$
 $c_4 = -3$

Hence the lines are

$$y-7=0, y+3=0$$
 i.e., $(y-7)(y+3)=0$

 \therefore Pair of straight lines is $y^2 - 4y - 21 = 0$.

40. (c) The equation $x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$ represents a pair of straight lines.

$$\therefore 2\lambda + 2\left(-\frac{5}{2}\right)\left(\frac{3}{2}\right)\left(-\frac{3}{2}\right) - \frac{25}{4} - \frac{9\lambda}{4} - \frac{18}{4} = 0 \implies \lambda = 2$$

If θ is the angle between the lines, then

$$\tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b} = \frac{2\sqrt{(9/4) - 2}}{1 + 2} = \frac{1}{3}$$

$$\Rightarrow$$
 cosec² $\theta = 1 + \cot^2 \theta = 1 + 9 = 10$.

41. (**d**)
$$\alpha = \tan^{-1} \left\{ \frac{2\sqrt{\frac{\sin^2 \theta}{4} - \sin^2 \theta (\cos^2 \theta - 1)}}{\sin^2 \theta + \cos^2 \theta - 1} \right\}$$

$$= \tan^{-1} \infty \Rightarrow \alpha = \frac{\pi}{2}$$

42. (c) Standard problem.

43. (c) Standard problem

44. (a) the lines are x = 0, y = 1 and x+y=3

Required area

$$= \frac{1}{2} \times 2 \times 2 = 2.$$

45. (a) : The lines are perpendicular, if

Coefficient of x^2 + coefficient of y^2 = 0

$$\implies 3a + (a^2 - 2) = 0 \implies a^2 + 3a - 2 = 0$$

: The equation is a quadratic equation in 'a' and $B^2 - 4AC > 0$.

 \therefore The roots of a are real and distinct. Therefore, the lines are perpendicular to each other for two values of 'a'.

46. (b) Here the equation is $ax^2 - bxy - y^2 = 0$ and given that $m_1 = \tan \alpha$ and $m_2 = \tan \beta$ and we know that

$$m_1 + m_2 = \frac{b}{-1} = \tan \alpha + \tan \beta$$

And
$$m_1 m_2 = \frac{a}{-1} = \tan \alpha \cdot \tan \beta$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{-b}{1 - (-a)} = \frac{-b}{(1+a)}.$$

47. (a) Since
$$2x^2 = 2y(2x + y) \Rightarrow x^2 - 2xy - y^2 = 0$$
.

Hence, coefficient of x^2 + coefficient of $y^2 = 1 - 1 = 0$.

Hence the lines are perpendicular.

48. (a)
$$\tan \theta = \pm \frac{2\sqrt{4-3}}{2\sqrt{3}} = \frac{1}{\sqrt{3}}$$
 or $\theta = 30^{\circ}$

Hence, acute angle is 30° or $\frac{\pi}{6}$.

49. (**d**)
$$\theta = \tan^{-1} \left(\frac{2\sqrt{\frac{25}{4} - 4}}{4} \right) = \tan^{-1} \frac{3}{4}$$
.

50. (a)
$$\tan \theta = \frac{\pm 2\sqrt{p^2 - 1}}{1 + 1} = \pm \sqrt{p^2 - 1} \Rightarrow \theta = \sec^{-1} p$$
.

51. (c)
$$\tan \theta = \pm 2 \frac{\sqrt{h^2 - ab}}{a + b} = \pm 2 \frac{\sqrt{144 - 44}}{15} = \pm \frac{4}{3}$$
.

$$\Rightarrow \theta = \tan^{-1} \left(\pm \frac{4}{3} \right)$$
.

52. (c)
$$\alpha = \tan^{-1} \frac{2\sqrt{\frac{49}{4} - 4}}{5} = \tan^{-1} \frac{\sqrt{33}}{5}$$
.

53. (c)
$$\theta = \tan^{-1} \left(\frac{2\sqrt{h^2 - ab}}{a + b} \right) = \tan^{-1} \left(\frac{\sqrt{4h^2 - 4ab}}{a + b} \right)$$

$$= \tan^{-1} \left(\frac{\sqrt{3a^2 + 3b^2 + 10ab - 4ab}}{a + b} \right) = 60^{\circ}.$$

- 54. (c) Using condition a+b=0.
- **55.** (c) standard problem
- 56. (a) Let angle between both the lines is α , then

$$\alpha = \tan^{-1} \left(\frac{2\sqrt{h^2 - ab}}{a + b} \right) = \tan^{-1} \left(\frac{2\sqrt{\sec^2 \theta - 1}}{1 + 1} \right) = \theta$$

57. (b)
$$\tan \theta = \frac{2\sqrt{(-7/2)^2 - 6}}{5} \implies \tan \theta = 1 \implies \theta = 45^{\circ}.$$

58. (a) Given that
$$\theta = \tan^{-1} \left(\frac{1}{3} \right) \implies \tan \theta = \frac{1}{3}$$

Now, since
$$\tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b} \Rightarrow \frac{1}{3} = \frac{2\sqrt{\left(\frac{-3}{2}\right)^2 - \lambda}}{\lambda + 1}$$

$$\Rightarrow (\lambda + 1)^2 = 9(9 - 4\lambda) \Rightarrow \lambda^2 + 38\lambda - 80 = 0$$

$$\Rightarrow \lambda = \frac{-38 \pm \sqrt{(38)^2 + 320}}{2} \Rightarrow \lambda = \frac{-38 \pm 42}{2} \Rightarrow \lambda = 2.$$

59. (b)
$$\tan 45^\circ = \frac{2\sqrt{\frac{1}{4} - ab}}{a + b}$$

$$\Rightarrow (a + b)^2 = (1 - 4ab) \Rightarrow a^2 + b^2 + 6ab - 1 = 0,$$

60. (c) Standard problem.

61. (c) :
$$\tan \phi = \frac{2\sqrt{h^2 - ab}}{a + b}$$

62. (b) Coefficient of
$$x^2$$
 + coefficient of y^2 = 0

$$\Rightarrow a+b=0 \Rightarrow a=-b$$
.

63. (a) Since bisectors are same, therefore $\frac{a-b}{h} = \frac{a'-b'}{h'}$

$$\Rightarrow (a-b)h'=(a'-b')h$$
.

- 64. (c) standard problem
- 65. (c) Here one equation of bisector is x-2y=0. We know that both bisectors are perpendicular, therefore second bisector will be 2x+y=0 because it passes through origin.

Hence the combined equations of bisectors is given by $(2x + y)(x - 2y) = 0 \Rightarrow -2x^2 + 3xy + 2y^2 = 0$.

Now comparing it by $hx^2 + 3xy - hy^2 = 0$, we get h = -2.

- 66. (d) Standard Problem
- **67.** (c) Putting X = x + 2, Y = y 2

Equation becomes $2X^2 + 3XY - 2Y^2 = 0$

Which cuts at X = 0, Y = 0

So,
$$x + 2 = 0$$
, $y - 2 = 0$

Point of intersection (-2,2).

68. (a) The equation is

$$y^2 + m^2x^2 - 2mxy - x^2 - m^2y^2 - 2mxy = 0$$

$$\Rightarrow x^2(m^2-1)+y^2(1-m^2)-4mxy=0$$

Therefore, the equation of bisectors is $\frac{x^2-y^2}{xy}$

$$=\frac{(m^2-1)-(1-m^2)}{-2m} \Rightarrow mx^2+(m^2-1)xy-my^2=0.$$

- 69. (d) Standard Problem
- 70. (c) The distance between the pair of straight lines is $2\sqrt{\frac{g^2-ac}{a(a+b)}}$.
- 71. (d)Making the equation of curve homogeneous with the help of line x + y = 1, we get

$$x^{2} + y^{2} - 2y(x + y) + \lambda(x + y)^{2} = 0$$

$$\Rightarrow x^{2}(1+\lambda) + y^{2}(-1+\lambda) - 2yx = 0$$

Therefore the lines be perpendicular, if A + B = 0.

$$\Rightarrow 1 + \lambda - 1 + \lambda = 0 \Rightarrow \lambda = 0$$
.

72. (b) Distance $= 2\sqrt{\frac{g^2 - ac}{a(a+b)}} = \frac{2}{\sqrt{10}}$.

73. (d) Making the equation of curve homogeneous with the help of equation of line $\frac{fx-gy}{\lambda}=1$ and to be perpendicular to both the lines represented by this homogeneous equation $a+b=0 \Rightarrow \lambda+gf-\lambda-gf=0 \Rightarrow 0=0$

74. (c) Distance
$$=2\sqrt{\frac{g^2-ac}{a(a+b)}}=2\sqrt{\frac{4-1}{1(1+2)}}=2$$
.

75. (b) The family of lines passing through point of intersection of the given curves will be

$$ax^{2} + 2hxy + by^{2} + 2gx + \lambda(a'x^{2} + 2h'xy + b'y^{2} + 2g'x) = 0$$

$$\Rightarrow (a+a'\lambda)x^2 + (2h+2h'\lambda)xy + (b+b'\lambda)y^2 + (2g+2g'\lambda)x = 0$$

Now the condition for perpendicularity is $\Delta = 0$ and a+b=0.

$$\Rightarrow a + a'\lambda + b + b'\lambda = 0 \Rightarrow \lambda = -\frac{a+b}{a'+b'}$$

And
$$\Delta = abc + 2fgh - af^2 - bg^2 - ch^2 = 0$$

$$\Rightarrow 0 + 0 - 0 - (b + b'\lambda)(2g + 2g'\lambda)^2 - 0 = 0$$

$$\Rightarrow 4(b+b'\lambda)(g+g'\lambda)^2 = 0$$

Now on putting the value of λ , we get

$$g(a'+b') = g'(a+b)$$
.

76. (c) Applying the formula, the distance between them is $\left| 2\sqrt{\frac{(k^2/4)-0}{1.(1+4)}} \right| = \left| \frac{k}{\sqrt{5}} \right|$ (a) If the equation

of line is y = mx and the length of perpendicular drawn on it from the point (x_1, y_1) is d, then $\frac{y_1 - mx_1}{\sqrt{1 + m^2}} = \pm d \Rightarrow (y_1 - mx_1)^2 = d^2(1 + m^2)$. But $m = \frac{y}{x}$, therefore on eliminating 'm', the

required equation is $(xy_1 - yx_1)^2 = d^2(x^2 + y^2)$.