OI 训练赛 Day5

[七夕欢乐赛]

题目名称	英文名	时间限制	内存限制	答案比较方式
链式反应	pcr	1s	128MB	全文比较,忽略行尾空白和文末回车
地毯	carpet	1s	128MB	全文比较,忽略行尾空白和文末回车
红石灯	lamp	1s	128MB	全文比较,忽略行尾空白和文末回车
路障	bar	1s	128MB	全文比较,忽略行尾空白和文末回车

注意事项就不用我多说了⑧! 今天过节,我们特意降低了题目难度,玩得愉快w

七夕快乐,祝您早日脱单!

Best wishes!

阮行止, <u>rxz@luogu.org</u>

A. 链式反应(pcr)

题目描述

PCR (多聚酶链式反应) 技术是一种机器自动控制的 DNA 复制技术。

该技术中,根据生成 DNA 两条链的长度,可以将生成的 DNA 分成长中、中短、短短三种类型。

第一次循环的时候,模板链会产生两条长中型 DNA。从第二次循环开始,每条长中型 DNA 可以变成长中和中短型 DNA 各一条,每条中短型 DNA 可以变成中短和短短型 DNA 各一条,而每条短短型 DNA 可以变成两条短短型 DNA。

在 PCR 生成的所有 DNA 产物中,只有短短型 DNA 是我们需要的目的基因,现在问, PCR 技术进行 n 次循环后会产生多少个目的基因?

因为答案可能很大,答案模 19260817 输出。

输入格式

输入仅一行,一个正整数,表示 n.

输出格式

输出仅一行,一个正整数,表示答案。

样例数据

pcr.in	pcr.out
4	8

第一轮循环结束后,有2条长中型。

第二轮循环结束后,有2条长中型、2条中短型。

第三轮循环结束后,有2条长中型、4条中短型、2条短短型。

第四轮循环结束后,有2条长中型、6条中短型、8条短短型。

数据规模与约定

对于前 30%的数据, 保证 $n \le 5$.

对于前 50%的数据, 保证 $n \le 10^6$.

对于 100%的数据, 保证 $n \le 10^{18}$.

B. 地毯(carpet)

题目描述

在 $n \times n$ 的格子上有 m 个地毯。 给出这些地毯的覆盖范围,问每个点被多少个地毯覆盖。

输入格式

第一行,两个正整数 n,m. 意义如题所述。

接下来 m 行,每行两个坐标 (x_1,y_1) 和 (x_2,y_2) ,代表一块地毯,左上角是 (x_1,y_1) ,右下角是 (x_2,y_2) .

输出格式

输出 n 行,每行 n 个正整数。

第 i 行第 j 列的正整数表示 (i,j) 这个格子被多少个地毯覆盖。

样例数据

carpet.in	carpet.out
5 3	0 1 1 1 0
2 2 3 3	0 1 1 0 0
3 3 5 5	0 1 2 1 1
1 2 1 4	0 0 1 1 1
	0 0 1 1 1

样例解释:

00000		00000		01110	
01100		01100		01100	
01100	->	0 1 2 1 1	->	0 1 2 1 1	
00000		0 0 1 1 1		00111	
00000		00111		00111	

数据规模与约定

对于前 20%的数据,保证 $n \le 50, m \le 100$.

对于前 100%的数据, 保证 $n, m \le 1000$.

C. 红石灯(lamp)

题目描述

七夕有祈福的习俗。而作为一名 MC 玩家,我们选择使用红石灯来祈福。

如果你没有玩过 MC,也没有关系,我们下面说一些前置知识。红石灯只有两个状态: H 开和关。H 个红石灯放成一排,称为一个红石灯序列。我们可以通过扳动红石灯后的拉杆,将这个红石灯的状态翻转。

七夕当晚 8 点,服务器管理员 rxz 会公布一个"幸运序列"——也就是一个长度为 k 的 01 串,0 表示关,1 表示开。如果您的红石灯序列与幸运序列一致,那么您就能获得 rxz 的祝福!

您已经建造了 n 个红石灯序列,初始的开关状态将会在输入数据中给出。在幸运序列公布之前,您并不知道幸运序列是哪个串;所以在幸运序列公布之后,您需要选择自己的一个红石灯序列,然后扳动若干个红石灯的拉杆,从而让这个序列与幸运序列一致。

现在, 您想知道, 最坏情况下, 您至少需要扳动多少次拉杆。

输入格式

第一行,两个正整数,分别表示 n,k.

接下来 n 行,每行一个二进制串,长度为 k,表示已有的红石灯序列的状态。

输出格式

输出仅一行,一个整数,表示最坏情况下需要扳动多少次拉杆。

样例数据

lamp.in	lamp.out
2 3	2
0000	
1111	

最坏情况下,幸运序列为0110或1001。此时您需要扳动两次拉杆。

其余情况下,只需要扳动至多一次拉杆。比如 1101, 您可以选择 1111 为初始序列, 然后关掉第三个红石灯。

数据规模与约定

对于前 30%的数据, 保证 $n \le 5, k \le 3$.

对于前 70%的数据, 保证 $n \le 1000, k \le 5$.

对于 100%的数据, 保证 $n \le 100000, k \le 17$.

D. 路障(bar)

题目描述

B 君站在一个 $n \times n$ 的棋盘上。

最开始,B 君站在 (1,1) 这个点,他要走到 (n,n) 这个点。B 君每秒期间可以向上下左右的某个方向移动一格,但是很不妙,C 君打算阻止 B 君的计划。

每秒结束的那一瞬间,C 君会在 (x,y) 上摆一个路障。在任何时刻,B 君所在的点都不能有路障。

我们知道 C 君准备在哪些点放置路障。现在你需要判断, B 君能否走到 (n,n).

输入格式

首先是一个正整数 T,表示数据组数。

对于每一组数据:第一行是一个正整数,表示 n.接下来 2n-2 行,每行两个正整数 x 和 y,表示在那一秒结束时,(x,y)将被摆上路障。

输出格式

对于每一组数据,输出 Yes 或 No,回答 B 君能否走到 (n,n).

样例数据

bar.in	bar.out
2	Yes
	Yes
2	
1 1	
2 2	
5	
3 3	
3 2	
3 1	
1 2	
1 3	
1 4	
1 5	
2 2	

样例解释:

以下 0 表示能走, x 表示不能走, B 表示 B 君现在的位置。从左往右表示时间。

Case 1:

00 00 0B (已经走到了)

B 0 x B x 0

Case 2:

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	х	0	0	0	0	х	0	0	0	0	Χ	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	х	0	0	0	0	Χ	0	0	
В	0	0	0	0	0	В	0	0	0	0	0	В	0	0	0	0	X	В	0	(B 君可以走到终点)

数据规模与约定

对于前 20%的数据,保证 $n \le 3$.

对于前 60%的数据, 保证 $n \le 500$.

对于 100%的数据,保证 $n \le 1000, T \le 10$.