## Reducing Carbon Emissions: Bottom-Up Approaches

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #25: Wed. Oct. 17 2018



## Scale of Problem: 450 ppm target



## Pielke's Policy Criteria

- 1. Policies should flow with public opinion
- 2. Public will not tolerate significant short-term costs, even for big long-term benefits
- 3. Policy must center on clean energy innovation



## Solar Energy over Time



### Top-10 Nations for Solar PV





### Wind Energy over Time



### Top-10 Nations for Wind



# Prospects for Future Renewable Energy

#### Solar PV



## Current World Mix of Energy



## World Electricity Generation



## Decarbonizing the World

#### Implied Decarbonization:

- Goal:
  - Reduce emissions to some percentage below a reference year, by a target year
  - Example: Reduce emissions so F(2050) is 80% less than F(1990).
- Bottom-up procedure:
  - Treat each Kaya identity factor separately: P, g, e, f.
    - o e.g., extrapolate each factor, based on historical rate of change
  - Combine P and g to get G (GDP in target year)
- Top-down procedure:
  - Begin with integrated model of total GDP growth
    - e.g., macroeconomic model that considers interactions between P, g, e
       and f.

#### Implied Decarbonization (Bottom Up)

- We know F and G at the start.
- We know the goal for F at the target date
- We predict what P and g will be at the target date
- Kaya Identity:

$$F = P \times g \times e \times f$$
  
=  $G \times ef$   
 $F/G = ef$ 

- Change if F/G implies change in ef: decarbonization.
- Achieve decarbonization by some mix of energy efficiency (reduce e) and adoption of clean energy (reduce f).

#### Implied Decarbonization (Top Down)

- We know F and E at the start.
- We know the goal for F at the target date
- We predict what energy consumption E will be at the target date
- Kaya Identity:

$$F = E \times f$$
 $F/E = f$ 

- Change if *F/E* implies change in *f*: decarbonization.
- Achieve decarbonization by adopting clean energy (reduce f).

## Worked Example: UK

## UK Climate Change Act (2008)

• Reduce greenhouse gas emissions so *F* in 2050 is 80% lower than in 1990:

F(2050) = 0.20 F(1990)

How hard will it be to achieve this goal?

- Begin by figuring historical rates of change for P, g, e, and f.
- Estimate historical growth rate for P×g.
- Calculate implied rate of change for exf.
- Compare implied rate of change for *ef* to historical rate of change.
- Use on-line web application to calculate rates of change.
  - https://ees3310.jgilligan.org/decarbonization/

#### Decarbonization Explorer



Implied Decarbonization **Energy Mix** Historical Trends Calculations Historical Trends for World **Variable** Population (billion people): Rate of change of P = 1.41% per year Р Calculated from the slope of ln(P) starting in 1980 In(Population) **Population** 7.5 7.5 7.0 7.0 6.5 6.5 6.0 6.0 5.0 4.5 4.0 4.0 -3.5 3.5 -3.0 3.0 -2020 1970 1970 1980 1990 2000 2010 1960 1980 1990 2000 2010 2020 1960

- GDP(2017) = \$2.81 billion
  - Emissions intensity ef(2017) = 520 tons per \$1000
- Business as usual:
  - If growth follows historical trends
    - Population P grows at 0.43%,
    - per-capita GDP g grows at 1.88%,
    - $\circ$  GDP grows at 0.43% + 1.88% = 2.31%

```
GDP(2050) = GDP(2017) \times \exp(0.0231 \times (2050 - 2017))
= $2.81 trillion × exp(0.0231 × 33)
= $6.02 trillion
```

- $F(2017) = 1460 \text{ million tons } CO_2.$
- F(1990) = 2174 million tons  $CO_2$ .
- Goal: Emissions in 2050 are 80% less than in 1990:
  - $F(2050) = 0.20 F(1990) = 0.20 \times 2174 \text{ MMT} = 435 \text{ MMT}$
  - Implied growth rate of F:

```
r_F = \ln(F(2050)/F(2017))/33 years = \ln(435/1460)/33 = -3.67\%.
```

#### Implied decarbonization rates:

- GDP  $(P \times g)$  grows at 2.31%
- Implied growth rate of F:  $r_F = -3.67\%$ .
- Implied growth rate of ef (carbon intensity of the economy):
  - $\blacksquare$  F = Pgef, SO

$$r_F = r_{Pg} + r_{ef} = r_G + r_{ef}$$
 $r_{ef} = r_F - r_G$ 
 $= -3.67\% - 2.31\%$ 
 $= -5.98\%$ 

- The implied  $r_{ef} = -5.98\%$
- The historical  $r_{ef} = -2.97\%$
- To meet the goal, the UK would have to decarbonize 2.0 times faster than it has for the last several decades.

#### Implied decarbonization for UK



## Implied Decarbonization for Australia

#### Australia's Emissions Trading Scheme

- PM Kevin Rudd calls for cutting emissions 60% below 2000 levels by 2050
- $F(2050) = 0.40 F(2000) = 0.40 \times 1271 \text{ MMT} = 508 \text{ MMT}$

#### Implied Decarbonization for Australia

- Historical decarbonization rate:  $r_{ef} = -1.39\%$
- Implied decarbonization rate:  $r_{ef} = -6.49\%$



## Other Considerations

#### Kuznets curve



### Concluding Remarks

- Implied ef depends on prediction of  $GDP = G = P \times g$ .
- Predicting population and economic growth are very tricky and imprecise.
- So take any of these calculations with a grain of salt.
- But are they still useful, despite the uncertainties?