Computational Physics - Project 2

Johannes Scheller, Vincent Noculak, Lukas Powalla September 22, 2015

Contents

1	Introduction And Motivation	3
2	Theory 2.1 Rewriting Schrödinger's equation as eigenvalue problem	
	2.1.2 Two interacting electrons in a harmonic oscialltor potential	3
3	Execution 3.1 Implementing the algorithm	
4	Comparison and discussion of the results	3

1 Introduction And Motivation

In many fields of both mathematics and physics, we often come to the point that we have to solve so-called eigenvalue problems, which are equations of the form $\hat{A} \cdot \hat{v} = \lambda \hat{v}$, where \hat{A} is a matrix of dimension $n \times n$ and v is a vector of dimension n. Equations of this kind occur not only in linear algebra, but also in mechanics and quantum mechanics and will also be a major part of this report. In this project, we are going to rewrite the Schrödinger's equation of one and two electrons in a harmonic oscillator potential in the form of an eigenvalue problem and solve it numerically by implementing Jacobi's method, an algorithm that can be used to solve any eigenvalue problem.

2 Theory

- 2.1 Rewriting Schrödinger's equation as eigenvalue problem
- 2.1.1 One electron in a harmonic oscillator potential
- 2.1.2 Two interacting electrons in a harmonic oscialltor potential
- 2.2 Jacobi's method
- 3 Execution
- 3.1 Implementing the algorithm
- 3.2 Results
- 4 Comparison and discussion of the results