

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

FLOWNET2 IMPLEMENTATION LILIAN, HOANG & PIERRE

SOMMAIRE

- 1. FLOWNET2 VS FLOWNET
- 2. IMPLEMENTATION
 - 2.1 Code used
 - 2.2 Adaptation to the challenge
- 3. METHODS & RESULTS ON TRAINING SEQUENCE
 - 3.1 Flownet2 output
 - 3.2 Results
- 4. RESULTS ON TEST SEQUENCE
- 5. CONCLUSION
- 6. APPENDIX

SECTION 1 FLOWNET2 VS FLOWNET

SECTION 1: FLOWNET2 VS FLOWNET

Remember:

Flownet

- CNN
- Correlation & interpretability

SECTION 1: FLOWNET2 VS FLOWNET

FlowNet2:

SECTION 2 IMPLEMENTATION

SECTION 2: IMPLEMENTATION

2.1 code used

Which code we used?:

NVIDIA implementation in pytorch

- Most used git of flownet implementation
- Weights converted from caffe
- Use of colab

BUT

- Still old (python 3.8) -> incompatibilities
- home made libraries
- Hard to understand & to adapt

SECTION 2: IMPLEMENTATION

2.3 Adaptation to the challenge

Create folders with 2 images in each: For sequential integration: img 1 - img 2 | img 2 - img 3 ...
For direct integration: img1 - img2 | img 1 - img 3 ...

Run inference on each folder -> get an optical flow

Process the optical flow (right format) & either apply to mask or concatenate and apply to mask.

SECTION 3 METHODS AND RESULTS ON TRAINING SEQUENCE

3.1. Flownet 2 output and our adaptation technique

- Competitive outcomes (Retaining the shape of the object)
- Problem of moving camera → Affect negatively mask propagation process

3.1. Flownet 2 output and our adaptation technique

Our solution is to eliminate all the background flow

Another problem if removing all background flow

3.1. Flownet 2 output and our adaptation technique

Our solution is to eliminate all the background flow except the begin mask area

If the model is **robust enough**, it should predict this area to **move to other places not stationary**

3.1. Flownet 2 output and our adaptation technique

3.1. Results on Training sequence (Direct integration, Swan sequence)

Before our method (Bring Flownet output directly to mask propagation):

3.1. Results on Training sequence (Direct integration, Swan sequence)

After our method:

SECTION 4 RESULTS ON TESTING SEQUENCE

3.1. Results on Test sequence - Octopus

3.1. Results on Test sequence - Octopus

3.1. Results on Test sequence - Cow

3.1. Results on Test sequence - Cow

3.1. Results on Test sequence - Fish

3.1. Results on Test sequence - Fish

SECTION 5 CONCLUSION

SECTION 5:

- Flownet 2 performs pretty well for large displacement (High accuracy between very far frames → good performance in direct integration)
- Our technique work well only on direct integration →
 Depend on the begin mask → Not too robust to occlusion/
 when the object changes its pose to the camera
- Occlusion weakness may come from the model as well (relies on local pixel information and motion consistency)

Direct integration

SECTION 5:

 However, by examining 2 consecutive frames, the model can also produce reliable results → We can try hybrid approach to see if it would be better or not

THANK FOR YOUR ATTENTION

Results on Training sequence (Direct integration, bear sequence)

Results on Training sequence (Direct integration, bear sequence)

Results on Training sequence (Direct integration, rhino sequence)

Results on Training sequence (Direct integration, rhino sequence)

Results on Training sequence (Direct integration, camel sequence)

Results on Training sequence (Direct integration, camel sequence)

