

Fundamentals of spatial Filtering

Outline of the Lecture

- > Introduction.
- > Spatial Correlation and convolution.
- > Vector Representation of linear filtering

Introduction

Filters in frequency domain:

- Lowpass filter that passes low frequencies: used for smoothing (blurring) on the image.
- *Highpass filter* that passes high frequencies: used for sharpening the image.
- Bandpass filter.

Filters in spatial domain:

- Spatial filters used different masks (kemels, templates or windows).
- There is a *one-to-one* correspondence between *linear* spatial filters and filters in frequency domains.
- Spatial filters can be used for *linear* and *nonlinear* filtering. (Frequency domain filters just for linear filtering).
- The **mechanics** of spatial filtering spatial filters consists of:
 - 1. Neighbourhood (small rectangle).
 - 2. Predefined operation that is performed on the image pixel.

- *Filtering* creates new pixel with coordinates equal to the coordinates of the centre of the neighbourhood, and whose value is the result of the filtering operation.
 - o If the operation performed on the image pixel is **linear**, then the filter is called a **linear spatial filter**, otherwise, the filter is **nonlinear**.
 - o Figure 1 presents the mechanics of linear spatial filtering using a 3*3 neighborhood.
 - o the *response* (output) g(x, y) of the filter at any point (x, y) in the image is the sum of products of the filter coefficients and the image pixels values:

$$g(x,y) = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + ... + w(0,0) f(x,y) + ... + w(1,1) f(x+1,y+1)$$

Observe that the center coefficient of the filter, w(0,0) aligns with the pixel at location(x, y).

General mask of size m * n:

Assume that

$$m = 2a + 1$$
and
 $n = 2b + 1$

(where **a**, **b** are positive integers).

(Odd filters)

In general, linear spatial filtering of an image of size M * N with a filter of size m * n is given by the expression:

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t).f(x+s,y+t)$$

Where \boldsymbol{x} and \boldsymbol{y} are varied so that each pixel in \boldsymbol{w} visits every pixel in \boldsymbol{f} .

Spatial Correlation and convolution

- **Correlation**: the process of moving a filter mask over the image and computing the sum of products at each location.
- Convolution: the same process as correlation, except that the filter is first *rotated*by 180⁰

Example: 1-D illustration: (figure 2)

Assume that f is a 1-D function, and w is a filter

FIGURE 3.29 Illustration of 1-D correlation and convolution of a filter with a discrete unit impulse. Note that correlation and convolution are functions of *displacement*.

Notes:

- There are parts of the functions (images) that **do not overlap** (the solution of this problem is **pad f** with enough 0s on either side to allow each pixel in **w** to visit every pixel in **f**.
- If the filter is of size **m**, we need (**m-1**) 0s on either side of **f**.
- The first value of correlation is the sum of products of **f** and **w** for the initial position (Figure 2.c).

(The sum of product =0) this corresponds to a displacement $\mathbf{x} = \mathbf{0}$

- To obtain the second value of correlation, we shift **w** are pixel location to the right (displacement **x=1**) and compute the sum of products (result =0).
- The first nonzero is when **x=3**, in this case the **8** in **w** overlaps the **1** in **f** and the result of correlation is **8**.
- The full correlation result (figure 2.g) -12 values of **x**
- To work with correlation arrays that are the same size as **f**, in this case, we can crop the full correlation to the size of the original function. (Figure 2.h).
- The result of correlation is a copy of \mathbf{w} , but rotated by 180°
- The correlation with a function with a discrete unit impulse yields a rotated version of the function at the location of the impulse.
- The convolution with a function with a discrete unit impulse yields a copy of that function at the location of the impulse.

Correlation and convolution with images

- With a filter of size **m*****n**, we pad the image with a minimum of **m-1** rows of 0s at the top and the bottom, and **n-1** columns of 0s on the left and right.
- If the filter mask is *symmetric*, correlation and convolution yield the same result.

Summary:

• Correlation of a filter w(x,y) of size m * n with an image f(x,y) denoted as

$$W(x,y) \circ f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

In similar manner, the convolution of w(x,y) and f(x,y) denoted by w(x,y) * f(x,y) is given by:

$$W(x,y) * f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)f(x-s,y-t)$$

Where the minus sign on the right flip (rotate by 180°)

(We can flip and shift either f or w)

Dr. Quart Humarshen		0 10 10 10 10 10 10 10 10
	Padded f	
	0 0 0 0 0 0 0 0 0	
	0 0 0 0 0 0 0 0 0	
	0 0 0 0 0 0 0 0 0	
f(x, y) Origin $f(x, y)$	0 0 0 0 0 0 0 0 0	
0 0 0 0 0	0 0 0 0 1 0 0 0 0	
$0 \ 0 \ 0 \ 0 \ 0 \ w(x,y)$	0 0 0 0 0 0 0 0 0	
0 0 1 0 0 1 2 3	0 0 0 0 0 0 0 0 0	
0 0 0 0 0 4 5 6	0 0 0 0 0 0 0 0 0	
0 0 0 0 0 7 8 9	0 0 0 0 0 0 0 0 0	
(a)	(b)	
$\overline{}$ Initial position for w	Full correlation result	Cropped correlation result
1 2 3 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0
4 5 6 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 9 8 7 0
7 8 9 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 6 5 4 0
0 0 0 0 0 0 0 0 0	0 0 0 9 8 7 0 0 0	0 3 2 1 0
0 0 0 0 1 0 0 0 0	0 0 0 6 5 4 0 0 0	0 0 0 0 0
0 0 0 0 0 0 0 0 0	0 0 0 3 2 1 0 0 0	
0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	
(c)	(d)	(e)
\leftarrow Rotated w	Full convolution result	Cropped convolution result
[9 ¹ 8 ⁷] 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0
16 5 4 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 1 2 3 0
3 2 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 4 5 6 0
0 0 0 0 0 0 0 0	0 0 0 1 2 3 0 0 0	0 7 8 9 0
0 0 0 0 1 0 0 0 0	0 0 0 4 5 6 0 0 0	0 0 0 0 0
0 0 0 0 0 0 0 0 0	0 0 0 7 8 9 0 0 0	
0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	
(f)	(g)	(h)
\ /	107	` /

Vector Representation of linear filtering:

Correlation

$$R = w_1 z_1 + w_2 z_2 + \dots + w_{mn} z_{mn} = \sum_{k=1}^{mn} w_k z_k = \mathbf{w}^T Z$$

- \checkmark R- the response of a mask
- ✓ W_k the coefficients of an m * n filter
- \checkmark Z_k the corresponding image intensities encompassed by the filter

Convolution

We simply rotate the mask by 180°

Example: The general 3*3 mask equation:

$$R = w_1 z_1 + w_2 z_2 + \dots + w_9 z_9 = \sum_{k=1}^{9} w_k z_k = \mathbf{w}^T \mathbf{Z}$$

Where:

W and Z are g-dimensional vectors (mask and image)

Another representation of 3*3 filter mask

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

Example of filters masks

$\frac{1}{9}$ ×	1	1	1	$\frac{1}{16} \times$	1	2	1	
	1	1	1		2	4	2	
	1	1	1		1	2	1	

FIGURE 3.32 Two 3 × 3 smoothing (averaging) filter masks. The constant multiplicatin front of each er in front of each mask is equal to 1 divided by the sum of the values of its coefficients, as is required to compute an average.