Contest Report: Autumn Integration Bee Contest

Integration Bee

2024-10-18 15:54:32

1 Participants (25 max):

admin admin None test test None

2 preliminary

2.1 Integral

(difficulty 5)

$$I = \int_{1}^{2} x e^{x} \, dx$$

2.2 Solution:

Step 1: Apply the formula for integration by parts

$$\int u \, dv = uv - \int v \, du$$

Step 2: Choose u and dv

$$u = x$$
 and $dv = e^x dx$

Step 3: Differentiate u and integrate dv

$$du = dx$$
 and $v = e^x$

Step 4: Apply the formula for integration by parts

$$I = \int_{1}^{2} x e^{x} dx = \left[x e^{x} \right]_{1}^{2} - \int_{1}^{2} e^{x} dx$$

Step 5: Compute the remaining integral

$$I = [xe^x]_1^2 - [e^x]_1^2$$

Step 6: Substitute the limits of integration

$$I = (2e^2 - e^1) - (e^2 - e^1)$$

Step 7: Simplify the expression

$$I = 2e^2 - e - e^2 + e$$

$$I = e^2$$

2.3 Integral

(difficulty 5)

$$I = \int_{1}^{2} x e^{x} \, dx$$

2.4 Solution:

Step 1: Apply the formula for integration by parts

$$\int u \, dv = uv - \int v \, du$$

Step 2: Choose u and dv

$$u = x$$
 and $dv = e^x dx$

Step 3: Differentiate u and integrate dv

$$du = dx$$
 and $v = e^x$

Step 4: Apply the formula for integration by parts

$$I = \int_{1}^{2} x e^{x} dx = \left[x e^{x} \right]_{1}^{2} - \int_{1}^{2} e^{x} dx$$

Step 5: Compute the remaining integral

$$I = [xe^x]_1^2 - [e^x]_1^2$$

Step 6: Substitute the limits of integration

$$I = (2e^2 - e^1) - (e^2 - e^1)$$

Step 7: Simplify the expression

$$I = 2e^2 - e - e^2 + e$$

Step 8: Final result

$$I = e^2$$

2.5 Integral

(difficulty 5)

$$I = \int_{1}^{2} x e^{x} dx$$

2.6 Solution:

Step 1: Apply the formula for integration by parts

$$\int u \, dv = uv - \int v \, du$$

Step 2: Choose u and dv

$$u = x$$
 and $dv = e^x dx$

Step 3: Differentiate u and integrate dv

$$du = dx$$
 and $v = e^x$

Step 4: Apply the formula for integration by parts

$$I = \int_{1}^{2} x e^{x} dx = \left[x e^{x} \right]_{1}^{2} - \int_{1}^{2} e^{x} dx$$

Step 5: Compute the remaining integral

$$I = [xe^x]_1^2 - [e^x]_1^2$$

Step 6: Substitute the limits of integration

$$I = (2e^2 - e^1) - (e^2 - e^1)$$

Step 7: Simplify the expression

$$I = 2e^2 - e - e^2 + e$$

Step 8: Final result

$$I = e^2$$

3 semifinals

3.1 Integral

(difficulty 5)

$$I = \int_{1}^{2} x e^{x} \, dx$$

3.2 Solution:

Step 1: Apply the formula for integration by parts

$$\int u \, dv = uv - \int v \, du$$

Step 2: Choose u and dv

$$u = x$$
 and $dv = e^x dx$

Step 3: Differentiate u and integrate dv

$$du = dx$$
 and $v = e^x$

Step 4: Apply the formula for integration by parts

$$I = \int_{1}^{2} x e^{x} dx = \left[x e^{x} \right]_{1}^{2} - \int_{1}^{2} e^{x} dx$$

Step 5: Compute the remaining integral

$$I = [xe^x]_1^2 - [e^x]_1^2$$

Step 6: Substitute the limits of integration

$$I = (2e^2 - e^1) - (e^2 - e^1)$$

Step 7: Simplify the expression

$$I = 2e^2 - e - e^2 + e$$

Step 8: Final result

$$I = e^2$$

3.3 Integral

(difficulty 5)

$$I = \int_{1}^{2} x e^{x} \, dx$$

3.4 Solution:

Step 1: Apply the formula for integration by parts

$$\int u \, dv = uv - \int v \, du$$

Step 2: Choose u and dv

$$u = x$$
 and $dv = e^x dx$

Step 3: Differentiate u and integrate dv

$$du = dx$$
 and $v = e^x$

Step 4: Apply the formula for integration by parts

$$I = \int_{1}^{2} x e^{x} dx = \left[x e^{x} \right]_{1}^{2} - \int_{1}^{2} e^{x} dx$$

Step 5: Compute the remaining integral

$$I = [xe^x]_1^2 - [e^x]_1^2$$

Step 6: Substitute the limits of integration

$$I = (2e^2 - e^1) - (e^2 - e^1)$$

Step 7: Simplify the expression

$$I = 2e^2 - e - e^2 + e$$

Step 8: Final result

$$I = e^2$$

3.5 Integral

(difficulty 5)

$$I = \int_{1}^{2} x e^{x} dx$$

3.6 Solution:

Step 1: Apply the formula for integration by parts

$$\int u \, dv = uv - \int v \, du$$

Step 2: Choose u and dv

$$u = x$$
 and $dv = e^x dx$

Step 3: Differentiate u and integrate dv

$$du = dx$$
 and $v = e^x$

Step 4: Apply the formula for integration by parts

$$I = \int_{1}^{2} x e^{x} dx = \left[x e^{x} \right]_{1}^{2} - \int_{1}^{2} e^{x} dx$$

Step 5: Compute the remaining integral

$$I = [xe^x]_1^2 - [e^x]_1^2$$

Step 6: Substitute the limits of integration

$$I = (2e^{2} - e^{1}) - (e^{2} - e^{1})$$

Step 7: Simplify the expression

$$I = 2e^2 - e - e^2 + e$$

Step 8: Final result

$$I = e^2$$

4 finals

4.1 Integral

(difficulty 5)

$$I = \int_{1}^{2} x e^{x} \, dx$$

4.2 Solution:

Step 1: Apply the formula for integration by parts

$$\int u \, dv = uv - \int v \, du$$

Step 2: Choose u and dv

$$u = x$$
 and $dv = e^x dx$

Step 3: Differentiate u and integrate dv

$$du = dx$$
 and $v = e^x$

Step 4: Apply the formula for integration by parts

$$I = \int_{1}^{2} x e^{x} dx = \left[x e^{x} \right]_{1}^{2} - \int_{1}^{2} e^{x} dx$$

Step 5: Compute the remaining integral

$$I = [xe^x]_1^2 - [e^x]_1^2$$

Step 6: Substitute the limits of integration

$$I = (2e^2 - e^1) - (e^2 - e^1)$$

Step 7: Simplify the expression

$$I = 2e^2 - e - e^2 + e$$

Step 8: Final result

$$I = e^2$$

4.3 Integral

(difficulty 5)

$$I = \int_{1}^{2} x e^{x} dx$$

4.4 Solution:

Step 1: Apply the formula for integration by parts

$$\int u \, dv = uv - \int v \, du$$

Step 2: Choose u and dv

$$u = x$$
 and $dv = e^x dx$

Step 3: Differentiate u and integrate dv

$$du = dx$$
 and $v = e^x$

Step 4: Apply the formula for integration by parts

$$I = \int_{1}^{2} xe^{x} dx = [xe^{x}]_{1}^{2} - \int_{1}^{2} e^{x} dx$$

Step 5: Compute the remaining integral

$$I = [xe^x]_1^2 - [e^x]_1^2$$

Step 6: Substitute the limits of integration

$$I = (2e^2 - e^1) - (e^2 - e^1)$$

Step 7: Simplify the expression

$$I = 2e^2 - e - e^2 + e$$

Step 8: Final result

$$I = e^2$$

4.5 Integral

(difficulty 5)

$$I = \int_{1}^{2} x e^{x} \, dx$$

4.6 Solution:

Step 1: Apply the formula for integration by parts

$$\int u \, dv = uv - \int v \, du$$

Step 2: Choose u and dv

$$u = x$$
 and $dv = e^x dx$

Step 3: Differentiate u and integrate dv

$$du = dx$$
 and $v = e^x$

Step 4: Apply the formula for integration by parts

$$I = \int_{1}^{2} x e^{x} dx = \left[x e^{x} \right]_{1}^{2} - \int_{1}^{2} e^{x} dx$$

Step 5: Compute the remaining integral

$$I = [xe^x]_1^2 - [e^x]_1^2$$

Step 6: Substitute the limits of integration

$$I = (2e^2 - e^1) - (e^2 - e^1)$$

Step 7: Simplify the expression

$$I = 2e^2 - e - e^2 + e$$

Step 8: Final result

$$I = e^2$$