

Dkt. 03194

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:
Group Art Unit: 1742
TADAYOSHI TOMINAGA et al

Examiner: N. T. Mai Serial No.: 10/715,122

MAIL STOP AFTER FINAL

Filed: November 18, 2003

For: SURFACE TREATING METHODS OF TITANIUM PARTS

DECLARATION UNDER 37 CFR 1.132

We Tadayoshi Tominaga, Naoki Komoto and Teruhisa Ushio do hereby declare as follows:

We are the named inventors of the above-identified patent application.

An error was made in the preparation of the specification of the above identified patent application in that the proper units were omitted in the disclosure of surface roughness Rz.

Rz is defined in the attached Japanese Industrial Standard JIS B 0601 a copy of which is attached hereto. According to the Standard, a section of standard length is sampled from the mean line on the roughness chart. The distance between the peaks and valleys of the sampled line is measured in the y direction and the average peak is obtained among the five tallest peaks and the

average valley is obtained between the five lowest valleys. The sum of these two values is expressed in micrometers.

Thus, it is known to those of ordinary skill in the art that the proper unit of measurement of the parameter Rz is micrometers.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, or any patent issued thereon.

August 25, 2006

Date

Tadayoshi Tominaga

Tadayoshi Tominaga

August 25, 2006

Date

August 25, 2006

Date

Teruhisa Ushio

Teruhisa Ushio

JIS B 0601

Informative reference 2 Attached Fig. 3.

-9190 B-

one side with regard to the basic cone angle a Position of the cone angle tolerance AT with the same sign symbol for AT, and AT, on

From the indication on drawing:

(a) When internal cone at 817

external cone

it results in contact at the ameter or the whole conical larger or smaller cone disurface depending on the actual cone angle.

external cone $\alpha_{AT_a}^0$ (b) When internal cone

it results in contact at the ameter or the whole conical larger or smaller cone disurface depending on the actual cone angle.

Informative reference 2 Attached Fig. 4.

opposite sign symbol for AT and AT, on one side Position of the cone angle tolerance AT with with regard to the basic cone angle a

ج بر it results in contact at the at the whole conical surface smaller cone diameter or depending on the actual external cone cone angle.

(b) When internal cone a. An

external cone

larger cone diameter or the it results in contact at the pending on the actual cone whole conical surface de-

Surface roughness -

Definitions and designation

designation of the arithmetical mean roughness, maximum height, ten-point mean roughness, mean spacing of profile irregularities, mean spacing of local peaks of the profile and profile bearing length ratio, which are the parametors expressing This Japanese Industrial Standard specifies the definitions and the surface roughness of industrial products.

The International standards corresponding to this Standard are abown below: Remarks:

Surface roughness — Parameters, their values and general rules for specifying requirements ISO 468-1982

transformation -- Contact profile meters, system Instruments for the measurement of surface roughness by the profile method — Contact (stylus) instruments of consecutive profile ISO 3274-1975

Surface roughness - Terminology Part 1: Surface and its parameters ISO 4287/1-1984

Measurement of surface roughness parameters Surface roughness - Torminology Part 2: ISO 428772-1984

Rules and procedures for the measurement of surface roughness using stylus instruments ISO 4288-1985

For the main terms used in this Standord, the Definitions and symbols following definitions apply.

The symbols for them are given in parentheses following each term.

roughness (R.), maximum height (R.), ten-point mean roughness (R.), mean expressing the surface roughness at each part sampled randomly from the Each arithmetical mean value of arithmetical mean profile (S) and profile bearing length ratio (t,) which are the parameters spacing of profile irregularities (Sa), mean spacing of local peaks of the surface of an object (hereafter referred to as "objective surface"). surface roughness E

surface roughness of the objective surface, it is necessary to determine the measuring positions and numbers thereof so considerably large dispersion. Therefore, in assessing the individual positions is not uniform, and usually presents Remarks 1. Generally in an objective surface, surface roughnoss on that the population mean can be assumed offectively. According to the objects of measurement, an assessed value at one point on the objective surface may represent the surface roughness of the entire surface.

-1090 E-

(2) profile curve A contour appears on a cut end, when a surface to be measured has been cut with a plane which is perpendicular to that surface.

-IB 0601-

- Remarks: In this cutting, if the surface has generally the directionality, it shall be cut in perpendicular in that direction.
- roughness curve A curve which has been cut off any longer surface waviness component than a prescribed wavelength from the profite curve by means of phase compensation type high-pass filter.

9

- (4) cut-off value of roughness curve (3) A wavelength corresponding to the frequency which makes the gain of phase compensation type high-pass filter for at the contract of the corresponding to the
 - 50% (hereafter referred to as "cut-off value").

 reference length of roughness curve (!) A length of a part made by sampling the langth of cut-off value from the roughness curve (hereafter

9

9

- sampling the length of cut-off value from the roughness curve (hereafter referred to as "reference length").

 evaluation length of roughness curve (1,2)

 reference length used for evaluation of surface roughness (hereafter referred to as "evaluation length"). The standard value of evaluation length
- shall be five times the reference length.

 (7) waviness of filtered wave A curve made by cutting off the component of surface roughness shorter than a given wavelength from the profile curve by means of phase compensation type low-pass filter [see Fig. 1 (a)].
 - (8) mean line of roughness curve (m) A line made by converting the waviness of filtered wave at the part sampled from the profile curve to the straight line (hereafter referred to as "mean line") [see Fig. 1 (a)].
- (9) profile peak. An outwardly directed entity of profile surrounded by the roughness curve and the mean line connecting two adjacent points of the intersection made when cutting the roughness curve with the mean line (see Fig. 1 (b)).

Remarks: In the roughness curve, the outwardly directed portion from the mean line at the beginning and the end of the reference length should be considered as a profile peak.

(10) (10)

profile valley An inwardly directed portion of space surrounded by the roughness curve and the mean line connecting two adjacent points of intersection made when cutting the roughness curve with the mean line (see Fig. 1 (b)).

Remarks: In the roughness curve, the inwardly directed nortion from the

Remarks: In the roughness curve, the inwardly directed portion from the mean line at the beginning and end of the reference length should be considered as a valley.

- (11) top of profile peak A point of the highest attitude in the profile peak of roughness curve [see Fig. 1 (b)].
- (12) bottom of profile valley. A point of the lowest altitude in the profile valley of roughness curve [see Fig. 1 (b)].

(13) top of profile peak line Of the reference lengths sampled from the roughness curve, the line parallel to the mean line passing through the highest top of profile peak [see Fig. 1 (b)].

bottom of profile valley line Of the reference lengths sampled from the roughness curve, the line parallel to the mean line passing through the lowest bottom of profile valley [see Fig. 1 (b)].

(15) cutting level A vertical distance between the top of profile peak line end the line parallel to the top of profile peak line intersecting the roughness enrye.

(16) local peak of profile A part of entity between two adjacent minima of the roughness curve [see Fig. 1 (c)].

(17) local valley of profile A part of space between two adjacent maxima of the roughness curve [see Fig. 1 (c)].

(18) top of local peak of profile A point of the highest altitude is the board.

(18) top of local peak of profile A point of the highest altitude in the local peak of profile [see Fig. 1 (c)].

(19) bottom of local valley of profile A point of the lowest altitude in the local valley of profile [see Fig. 1 (c)].

7

-19 000 F

Fig. 1. Explanation on profile curve, roughness curve, mean line, reference longth, profile peak, profile valley, local peak of profile and local valley of profile

-B 0601-

3. Definition and designation of arithmetical mean roughness (R.)

3.1 Definition of R.

3.1.1 Determination of R_* R, means the value obtained by the following formula and expressed in micrometer (μ m) when sampling only the reference length from the roughness curve in the direction of mean line, taking X-axis in the direction of mean line and Y-axis in the direction of longitudinal magnification of this sampled part and the roughness curve is expressed by y = f(x):

$$R_s = \frac{1}{f} \int_{-1}^{\infty} |f(x)| dx$$

where, I : reference length

Fig. 2. Determination of R.

3.1.2 Cut-off values The cut-off values when obtaining R, shall generally be chosen from the following six kinds:

3.1.3 Standard values of cut-off values The standard values of the cut-off value and the evaluation length corresponding to the range of R_{\star} , when obtaining R_{\star} shall be in accordance with the divisions in Table 1.

- 864 -

−B 0601--

Table 1. Standard values of cut-off value and evaluation length in determining R_{\bullet}

Evaluation length	4,	(mm)	0.4	1.25	4	12.5	9
Cut-off value	~ ~	(mm)	90:0	0.25	9.0	2.5	80
of R.	0)	Мах.	0.02	0.1	2.0	10.0	80.0
Range of R.	(mm)	Bxceeding	(0.006)	0.02	0.1	2.0	10.0

The value within () is given for informative reference.

Remarks: R. shall be determined by firstly designating the cut-off values. In carrying out the designation or instruction of the surface roughness, as it is inconvenient to designate that on all such occasions, values given in Table 1 should be used generally.

3.2 Expression of R.

3.2.1 Designation of R. The designation of R. shall be as follows:

valuation	engthmm	
Cut-off E	value nm, l	
Arithmetical	mean roughness µm,	or

___ µmR., д.____ mm, l,____ mm

Remarks 1. In the case where the value of R, obtained by using the standard value of the cut-off value given in Table 1 is in the range shown in Table 1, the designation of the cut-off value may be omitted.

 In the case where the evaluation length is five times the cutoff value that is the standard value of evaluation length in Table 1 is used, the designation of the evaluation length may be omitted.

3.2.2 Preferred number series of R. When the surface roughness is designated by R., the preferred number series of Table 2 should be used generally.

Table 2. Preferred number series of Ra

Unit: µm

-B 0601-

.		125	160	800	250	920	400					
		12.5	16.0	02	88	33	40	22	63	80	901	
		1.25	1.60	2.0	2.5	3.2	4.0	6.0	6.8	8.0	10.0	
		0.125	091'0	0.20	0.25	0.32	0.40	0.60	0.63	0.80	1.00	
0.008	0.010	0.012	0.016	0.020	0.025	0.032	0.040	0.050	0.063	0.080	0.100	

Remarks: It is preferable to use the preferred number series of common ratio of 2 shown with thick figures.

3.2.3 Sectional designation of R_{\star} If it is required to designate R_{\star} in a certain section, numerical values corresponding to the upper limit (that of the largor designation value) and lower limit (that of the smaller designation value) shall be stated additionally by selecting from Table 2.

Example 1. In the case where standard values of cut-off values for uppar limit and lower limit are equal A sectional designation when the upper limit of 6.3 µmR, and the lower limit of 8.3 µmR. and the lower limit of 8.3 µmR. ahall be designated as (6.3 to 8.2) µmR. In this case, 2.5 mm shall be used for the cut-off value.

Example 2. In the case where standard values of cut-off values for upper limit and lower limit are different. A sectional designation when the upper limit of 12.5 µmR, and the lower limit of 3.2 µmR, shall be designated as (12.5 to 3.2) µmR. In this case, it means that the value of R, measured by a cut-off value of 8 mm is 12.5 µmR, or under, and that the value of R, measured by a cut-off value of 2.5 mm is 3.2 µmR, or over.

Remarks 1. In the case where it is required to equalize the cut-off values corresponding to the upper and lower limits, or in the case where cut-off values other than standard values of Table 1 are to be used, the cut-off values shall be appended. In Example 2, when the cut-off value corresponding to the upper and lower limits is taken as 8 mm, it shall be designated as (12.5 to 3.2) µmR., 4, 8 mm.

-B 0601-

- R. of the upper and lower limits mentioned here shall be the arithmetical mean values of R. at several points sampled randomly from the designated surface, but shall not be the maximum value of individual R.
 - Definition and designation of maximum height (R,)
 - 4.1 Definition of R,

4.1.1 Determination of R, R, shall be that only the reference length is sampled from the roughness curve in the direction of mean line, the distance between the top of profile peak line and the bottom of profile valley line on this sampled portion is measured in the longitudinal magnification direction of roughness curve and the obtained value is expressed in micrometer (µm) (see Fig. 3).

Fig. 3. Determination of R,

Remarks: In the determination of the maximum height (R,), a length corresponding to the reference length shall be sampled from the part which is free from extraordinary high peak and deep valley considered as flaws.

4-1.2. Reference length In the determination of R., reference lengths shall generally be chosen from the following six kinds:

THE PERSON NAMED IN COLUMN

0.08, 0.25, 0.8, 2.5, 8, 25. Unit: mm

4.1.3 Standard values for reference lengths The standard values for reference lengths and evaluation lengths corresponding to the range of R_{ν} , when determining R_{ν} , should conform to the division of Table 3 generally.

Table 3. Standard values for reference lengths and evaluation lengths in determination of R_{ν}

Bvaluation	length	و آيا (ا	(mm)	0.4	1.25	4 0	4 5.0	2
Reference	1	(am)	800	. 36	8.0		8	
Range of R,	(mm)	Max.	0.10	0.60	10.0	60.0	200.0	
Range	(1)	Bxceeding	(0.025)	0.10	0.60	10.0	50.0	

The value within () is given for informative reference.

Remarks: R, shall be determined upon designation of the reference length at first, however, in indicating and designating the surface roughness, because it is inconvenient to designate that generally.

Expression of R,

4

4.2.1 Designation of Ry R, shall be designated as follows:

Maximum Reference Evaluation height tm, length mm, length mm or

—— µmR_{y,} / ____ mm, l, ___ m

Remarks 1. In the case where the maximum-beight value which has

been obtained using the standard value of the reference length given in Table 3 lies within the range given in Table 3, the designation of the reference length may be omitted.

2. In the case where the evaluation length uses five times the reference length, namely the standard value of evaluation length shown in Table 3, the designation of evaluation length may be omitted.

4.2.2 Preferred number series of $R_{\rm p}$ — in designating the surface roughness by $R_{\rm p}$, the preferred number series of Table 4 should be used generally.

化大型化 計劃人

- 869

Table 4. Preferred number series of R,

-B 0601-

Vait: µm	1950	7690	0091		_	_					
	125	160	3	200	260	320	400	900	630	800	1000
	12.5	16.0	ŧ	٥	- 28 28	35	40	20	8	90	8
	1.26	9.1	2.0			X9		0.0	, c	D: 00	
0.125	0 160	007:0	080	0.25	0.32	0.40	0.50	890	0.80	1.00	
				0.025	0.032	0.040	0.050	0.083	0.080	0.100	Remarks:

It is recommended to use the number series of common ratio of 2 shown with thick figures.

certain section, numerical values corresponding to the upper limit (the larger value of the designated value) and the lower limit (the smaller value of the designated value) of that section shall be selected from Table 4 and be stated Sectional designation for R.

Example 1. If the standard values for reference lengths of upper and lower limits are equal The sectional designation for the lower limits are equal The sectional designation for the upper limit of 6.3 mmR, and lower limit of 1.60 mmR, shall be designated as (6.3 to 1.60) $\mu m R_{r}$. In this case, 0.8 m m

shall be designated as (12.5 to 1.60) µmR. In this case, it length of 2.5 mm is 12.5 µmR, or under, and that the value If the standard values for reference lengths of upper and lower limits are different. The sectional designation for lower limits are different The sectional designation for the upper limit of 12.5 µmR, and lower limit of 1.60 µmR, of $ar{R_j}$ measured using a reference length of 0.8 mm is 1.60 means that the value of Ry measured using a reference shall be used for the reference length. οį Example

upper and lower limits are required to be equal, or when any reference length other than the standard value of Table 3 is to be used, the reference length shall be stated together. In Example 2, when the reference length corresponding to the In the case where reference lengths corresponding to the upper and lower limits is selected as 2.6 mm, it shall be designated as (12.5 to 1.60) µmR,, I 2.5 mm. ~ Remarks

R, of the upper and lower limits mentioned here shall be an arithmetical mean value of R, at several places which have been eampled randomly from the designated surface, but shall not be the maximum value of individual $R_{
m p}$

S.I RZAKK.

:

Definition and designation of ten-point mean roughness (R.)

-1090 H-

Definition of R.

magnification direction from the mean line of this sampled portion and this sum 5.1.1 Determination of R. R, shall be that only the reference length is sampled from the roughnass curve in the direction of its mean line, the sum of the average value of absolute values of the heights of five highest profile pents (Y,) and the depths of five deepest profile valleys (Y,) measured in the vortical

 $R_i = \frac{|V_{\rm Bl} + Y_{\rm id} + Y_{\rm Bl} + Y_{\rm Bl} + Y_{\rm Bl} + |Y_{\rm il} + Y_{\rm id} + Y_{\rm id} + Y_{\rm id} + Y_{\rm id}|}{|V_{\rm in}|^2 + |V_{\rm in}|^2 + |V_{\rm in}|^2 + |V_{\rm in}|^2}$

sampled portion corresponding to where, $Y_{pi}, Y_{pi}, Y_{pi}, Y_{pi}, Y_{pi}$: altitudos of the heights of five highest profile peaks of the the reference length ?

sampled portion corresponding to Y., Y., Y., Y., Y., : altitudes of the depths of five deepest profile valloys of the the reference length I

Fig. 4. Determination of R.

The reference length, in the determination of $R_{
m u}$ shall 6.1.2 Reference length The reference length, generally be chosen from the following six kinds: 0.8 0.08, 0.25,

The standard values of the reference lengths and the evaluation lengths corresponding to the range of R, in the determination of R,, should conform to the division of Table 5 genevelly. Unit: mm 25 8 Standard values of reference lengths 2.5

:0522211239

-B 0601-

Table 6. Standard values of reference lengths and evaluation lengths in determining R.

Evaluation	length ,	r fi		* 6	. 07.1	# c		?
Reference	leugia I	(mm)	0.08	0.25	. 80	25.	- 00	
Range of R.	(H	Max.	0.10	0.50	10.0	90.0	200.0	
Range	(тт)	Exceeding	(0.026)	0.10	0.50	10.0	60.0	ē

lhe value within () is given for informative reference.

first. In the case where the indication and designation of the surface roughness are to be carried out, because it is inconvenient to designate this on all such occasions, the values given R_{\star} shall be determined on designating the reference length at in Table 5 should be used generally. Remarks:

Expression of R. 5.2

The designation of R. shall be as follows: Designation of R. 5.2.1

8 Evaluation length_ mm, Reference length _ EH. Ten-point mean ronghness ö

mm -_ mm, !"_ - µmR., 1.

Remarks 1. When the values of R. obtained by using the standard values shown in Table 5, the designation of reference length may be of reference length shown in Table 5 are within the range

When using the evaluation lengths of five times the reference lengths, namely, the standard values of evaluation lengths shown in Table 6, the designation of evaluation length may be omitted. ٥i

In the designation of the surface rough-5.2.2 Preferred number series of R_1 In the designation of the surface roness by R_1 , the preferred number series of Table 6 should be used generally.

Table 6. Preferred number series of R.

-B 0001 -

:

Unit- um		1.250	1000	7001												
	36.	071	160		200	6	007	920	200	400	2	3	630	000	Que ;	1000
j	12.6	<u>}</u>	18.0		8	35	}	32	40	2	50		63	8		
	1.26		1.60	ć	2.0	2.5	6	6.2	4.0		6.0		۳. ع	8.0	10.0	
	0.125	0.10	001.5	0.20	}	0.26	0 30	20.0	070		0.60	0.63	3	080	1.00	
						0.025	0.032		0.040	0000	0.00	0.063		0.080	0.100	

Remarks: It is preferable to use the number series of common ratio of 2 shown in thick figures.

When it is required to designate R, in a designated values) of that section shall be selected from Table 6 and be stated 5.2.3 Sectional designation for R_s When it is required to designate R_s in cortain section, numerical values corresponding to the upper limit (the larger value of the designated values) and the lower limit (the smaller value of the

Example 1. If the standard values for reference length of upper limit and lower limit are equal The sectional designation for the upper limit 6.3 µmR, and lower limit 1.60 µmR, shall be designated as (6.3 to 1.60) µmR. In this case, 0.8 mm shall be used for the reference length.

If the standard values for reference length of upper limit and lower limit are different. The sectional designation for the upper limit 12.5 µmR, and the lower limit 1.60 µmR, means that the value of $R_{
m r}$ measured in the reference length of 2.5 mm is 12.5 µmR, or under, and that the value of R, measured in the reference length of 0.8 mm is 1.60 µmR, or shall be designated as (12.5 to 1.60) hmR. In this case, it લં Екепрре

reference length carresponding to the upper and lower limits Remarks 1. If it is required to equalize the reference lengths corrospond ing to the upper and lower limits or if any reference length other than the standard value of Table 5 is used, the reference length shall be stated togother. In Example 2., if the is to be taken as 2.5 mm, it shall be designated as (12.5 to 1.60) µmR, l 2.5 mm.

 R_{s} of the upper and lower limits mentioned here shall be an suithmetical mean value of R_i on several places randomly sampled from the designated surface, and shall not be the maximum value of individual R. 63

--19 0601--

Definition and designation of mean spacing of profile irregularities (S.,) ပ

Definition of S.

-B 0601-

within this sampled portion, the sum of the lengths of mean lines corresponding to one of the profile peaks and one profile valley adjacent to it (horeafter referred Determination of S_n shall be that the portion equal to the reference is sampled from the roughness curve in the direction of its mean line, and to as "spacing of profile irregularities") is obtained and the anthmetical mean value of many spacings of these irregularities is expressed in millimeter (mm) length is sampled (see Fig. 5).

$$S_m = \frac{1}{n} \sum_{i=1}^{n} S_{mi}$$

 $S_{\kappa i}$: spacing of irregularities where,

number of spacings of irregularity lying within the reference length ~

Fig. 5. Determination of S.,

The reference length, in the determination of S_{κ} , 6.1.2 Reference length The reference length, in the shall generally be chosen from the following six kinds:

Unit: mm 0.08, 0.25, 0.8, 2.5, 8, 25 6.1.3 Standard values of reference length. The standard values of reference lengths and evaluation lengths corresponding to the range of S_m shall, in general, conform to the division of Table 7.

Table 7. Standard values of reference length and evaluation longth in determination of $\mathcal{S}_{\mathbf{n}}$

Range	Range of S.,	Reference length	Evaluation length
Ē	(mm)	7	۲,
Exceeding	Max.	(ww)	(mm)
0.013	0.04	90.0	9.0
0.04	0.13	0.25	1.25
0.13	0.4	0.8	*
4.0	1.3	2.5	12.5
1.3	4.0	ω,	40

 S_n shall be determined upon designating the reference longth. because it is inconvenient to designate on every occasion, the standard values of reference length and evaluation length In the indication and designation of surface roughness, given in Table 7 should be used generally. Remarks:

Expression of S. 6.2

The designation of S., shall be as follows: Designation of S. 6.2.1

S S Evaluation mn, length Reference mm, length profile irregularities Mean spacing of ö

_ mm, /,

Remarks 1. If the value of S., determined by using the standard value of the reference longth shown in Table 7 is within the range shown in Table 7, the designation of reference length may be omitted.

When using the evaluation length of five times the reference length, namely, the standard value of the evaluation length given in Table 7, the designation of evaluation length may be omitted.

6.2.2 Preferred number series of S_a In the designation of surface roughness by S_a, the preferred number series in Table 8 should be used generally.

-B 0601-

Table 8. Preferred number series of S.

				Unit: mm
	0.0135	0.125	1.25	13.5
	0.0160	0.160	1.60	
	0.020	0.30	2.0	
0.003	0.025	0.25	2.5	
0.003	. 0.032	0.32	69	
0.004	0.040	0.40	4.0	
0.005	0.050	09'0	0.3	
0.008	0.063	0.63	6.3	
0.008	0.080	08'0	8.0	
0.010	0.100	1.00	10.0	

Remarks: It is preferable to use the number series of common ratio of 2 shown in

thick figures.

6.2.3 Sectional designation for S_m When it is required to designate S_a in a certain section, the numerical values corresponding to the upper limit (the larger value of the designated values) and the lower limit (the smaller value of the designated values) of that section shall be selected from Table 8 and be described together.

Example 1. If the standard values of reference length of upper limit and lower limit are equal The sectional designation for the upper limit of 0.100 mmS, and the lower limit of 0.050 mmS, shall be indicated as (0.100 to 0.050) mmS. In this case, 0.25 mm shall be used for the reference length.

Example 2. If the standard values of reference length of upper limit and lower limit are different The sectional designation for the upper limit of 0.80 mmS, and the lower limit of 0.20 mmS, shall be indicated as (0.80 to 0.20) mmS,. In this case, it means that the value of S, measured in the reference length of 2.5 mm is 0.80 mmS,, or under, and that the value of S, measured in the reference length of 0.8 mm is 0.20 mmS, or over.

Remarks 1. If it is required to equalize the reference lengths corresponding to the upper and lower limits or if other reference lengths than the standard values shown in Table 7 are used, the reference length shall be described together. In Example 2., if reference length corresponding to the upper and lower limits is taken as 2.5 mm, it shall be designated as (0.80 to 0.20) mmS_n, I 2.5 mm.

S_a of the upper and lower limits mentioned here shall be the arithmetical mean value of S_a at several places sampled at random from the designated surface and not be the maximum value of individual S_a.

-928 -

1 Definition of S

I.1.1 Determination of S. Shall be that the portion equal to the reference length is sampled from the roughness curve in the direction of its mean line, and within this sampled portion, the length of mean line corresponding to the spacing between two adjacent tops of local peak of profile (hereafter referred to as "spacing of tops of local peak of profile") is obtained and the arithmetical mean value of spacings between these many tops of local peak of the profile is expressed in millimeter (mm) (see Fig. 6).

where, Si : spacing of tops of local peak of profile

2

: number of spacings between tops of local peak of profile within the reference length

Fig. 6. Determination of S.

7.1.2 Reference length The reference length, in the determination of S, shall be chosen from the following six kinds in general:

0.08, 0.25, 0.8, 2.5, 8, 25 Unit: mm

7.1.3 Standard values of reference length. The standard values of reference lengths and evaluation lengths corresponding to the range of S in the determination of S shall conform to the division given in Table 9.

;0522211239

•

-1990 81-

Table 9. Standard values of reference length and evaluation length in determination of ${\cal S}$

Evaluation length	4	(mm)	0.4	1.25	4	12.5	40
Reference	, ~	(mm)	0.08	0.25	8.0	2.5	ø
Range of S	m)	Мах.	0.04	0.13	0.4	1.3	4.0
Rango	(mm)	Exceeding	0.013	0.04	0.13	9.4	1.3

Remarks: S shall be determined upon designating the reference length.

In the indication and designation of surface roughness, because it is inconvenient to designate on every occasion, the standard values of reference length and evaluation length shown in Table 9 should be used generally.

7.2 Expression of S

7.2.1 Designation of S The designation of S shall be as follows:

Evaluation lengthmm	•
Reference leogth mm,	
ns ile mm,	
·Mean spacing of tops of local peak of profile	or

mm

mm, 4,

mmS, 1

Remarks 1. If the value of S determined by using the standard value of the reference length shown in Table 9, is in the range shown in Table 9, the designation of reference length may be omitted.

 When using the evaluation length of five times the reference length, namely, the standard value of evaluation length shown in Table 9, the designation of evaluation length may be omitted.

7.2.2 Preferred number series of S In the designation of surface roughness by S, the preferred number series in Table 10 should be used generally.

Table 10. Preferred number series of S

-IS 0601-

				Unit: mm
	0.0125	0.125	1.25	12.5
	0.0160	0.160	1,60	
	0.020	0.20	2.0	
0.002	0.025	0.25	2.5	
0.003	0.032	0.32	3.2	
0.004	0.040	0.40	4.0	
. 0.006	0.050	0.50	5.0	
0.006	0.063	0.63	6.3	
0.008	0.080	08'0	8.0	
0.010	0,100	1.00	10.0	

Remarks: It is preferable to use the number series of common ratio of 2 indicated by thick figures.

7.2.3 Sectional designation for S. When it is required to designate S in a certain section, the numerical values corresponding to the upper limit (the largor value of the designated values) and the lower limit (the smaller value of the designated values) of that section shall be selected from Table 10 and be described together.

Example 1. If the standard values of reference length of upper fimit and lower limit are equal The sectional designation for the upper limit of 0.100 mmS and the lower limit of 0.050 mmS shall be indicated as (0.100 to 0.050 mmS. In this case, 0.25 mm shall be used for the reference length.

Example 2. If the standard values of reference length of upper limit and lower limit are different The sectional designation for the upper limit of 0.80 mmS and the lower limit of 0.20 mmS shall be indicated as (0.80 to 0.20) mmS. In this case, it means that the value of S measured in the reference length of 2.5 mm is 0.80 mmS or under and that the value of S

Remarks 1. If it is required to equalize the reference lengths corresponding to the upper and lower limits or if other reference lengths than the standard values shown in Table 9 are used, the reference length shall be described together. In Example 2., if the reference length corresponding to the upper and lower limits is taken as 2.5 mm, it shall be designated as (0.80 to 0.20) mmS, 1.2.5 mm.

measured in the reference length of 0.8 mm is 0.20 mmS or

2. S of the upper and lower limits mentioned here shall be the arithmetical mean value of S at several places sampled at random from the designated surface and not be the maximum value of individual S.

-879 -

Definition and designation of profile bearing length ratio (tp) ωi

-B 0601-

Definition of t

the ratio of the sum of cut lengths obtained at the time of cutting this sampled portion of roughness curve at the cutting levels parallel to the top of profile peak ine (profile bearing length, 13,) to the reference length is expressed in percentage length is sampled from the roughness curve in the direction of its mean line and to shall be that the portion equal to the reference Determination of te see Fig. 7).

: p1 + p2 + + p" Ę where,

: reference length

7. Determination of to Fig.

The reference length, in the determination of tp, shall 8.1.2 Reference length The reference length, ir be selected from the following six kinds in general:

Unit: mm 22 œ 2.5, **0**.8 0.25, 0.08

The cutting level at the time of determining t, shall be 8.1.3 Cutting level The cutting level at the time of d in accordance with any one of the following two methods:

Express with the numerical value in micrometer (µm). Ξ

Express its ratio to R, with percentage (R). The preferred number series to be used in this case is shown below: 3

8 70, 75, 80, 9 20, 30, 40, 25, 20 10, 15,

When expressing c with the percentage (\Re) in accordance with (2), it is necessary to obtain R_y in the first place from the roughness curve in the reference length. Remarks:

Expression of to 8.2

The designation of t, shall be as follows: Designation of to 8.2.1

E Evaluation mm, length Reference µm, length Cutting %, level Profile bearing length ratio 5

um, l % €, c

ö

E Evaluation length ... mm, Reference length ę. Cutting %, level Profile bearing length ratio

, ö

E

evaluation length, the case of R, applies (see Remarks 1, and To the briefing form for designating the reference length and 2. in 4.2.1). Remarks:

8.2.2 Preferred number series of ℓ_p . When designating the surface roughness by ℓ_p , the preferred number series in Table 11 shall be used in general. Preferred number series of tp.

Table 11. Preferred number series of t,

25 30 40 50	20 25 30 40 50 60	_
-------------	-------------------	---

8.2.3 Sectional designation for t, When it is required to designate t, in a certain section, the numerical values corresponding to the upper limit (the larger value of the designated values) and the lower limit (the smaller value of the designated values) shall be selected from Table 11 and be described togethor.

limit and lower limit, the values specified in Table 3 at the For the standard values of reference lengths for the upper time of determining R, shall be used Remarks:

1. If the reference length is equal to the standard value In the case of (6.3 to 1.60) µmR, 0.8 mm shall be used as the reference length. The sectional designation for the upper limit of t, of 60 % and the lower limit thereof of 40 % shall be (60 to 40) %tp, c40%. Example

together and the following reference length shall be written If the reference length is unequal to the standard length The upper limit and lower limit of t_{θ} shall be described additionally: ci Example

;0522211239

(60 to 40) Rtp. c40 %, 1 2.5 mm

 t_o of the upper limit and lower limit mentioned here shall be the arithmetical mean value of t_o at several places sampled at random from the designated surface and not be the maximum value of individual 🛵 Remarks:

-I3 0601-

-13 0601-

ŕ

Definition and designation of center line average roughness Annex

This Annex specifies the definition and designation of the center line average roughness (Ro13). Scope

formance with the International standards will be The contents of this Annex which are not in conabolished at an appropriate time. Informative reference:

Definitions and symbols. For the main terms used in this Annex, the following definitions apply: ત્વં

The symbols for them are shown in (), next to the respective terms.

- the components of surface roughness shorter than a given wavelength on a profile curve by using the high-pass filter of the decay factor of -12 dB/oct Curve made by extracting [hereafter referred to as "roughness curve (75 %)"] roughness curve for determining Rain (75%) Ξ
- The wavelength cut-off value (75 %) of roughness curve (75 %) (λ_{ce}) The wavelength corresponding to the frequency with which the gain of high-pass filter becomes 75 % (hereafter referred to as "cut-off value (75 %)). 8
- portion of roughness curve (76 %) and the line set so as to make the sum of The straight line or the curve having the geometrical shape of the surface to be measured at the sampled squares of deviation up to the roughness curve (75 %) minimum. mean line of roughness curve (75 %) ල
- The straight line or the curve on center line of roughness curve (75 %) The straight line or the curve the both sides of which the area surrounded by the straight line or the curve parallel to the mean line of roughness curve (75 %) and the roughness curve (75 %) become equal (hereafter referred to as "center 3
- Definition and designation of center line average roughness (Ress)
- Definition of R.18
- measuring length (L) is sampled from the roughness curve (75 %) in the direction and the direction of the longitudinal axis as Y axis, and the roughness curve (75 3.1.1 Determination of Ress Ress is the value obtained by the following formula and expressed in micrometer (µm) under the condition that the portion of of its center line, the center line of the sampled portion is considered as X-axis Determination of Ress (%) is represented by y = f(x):

$$R_{ab} = \frac{1}{L} \int_a^L |f(x)| dx$$

L : measuring length where,

Los shall be the following six kinds: 4 3.1.2

Unit: mm 26 œ 0.8, 2.5, 0.08, 0.25, The standard value of As shall, in general, be in 3.1.3 Standard value of λ_{ex} The standard value o secondance with the division shown in Annex Table 1.

Annex Table 1. Standard value of Ars in determining of Rans

Cut-off value (75 %) λ_{tt}	(mm)	8.0	2.5
of R.m 1)	Max.	12.5	100
Range of Ress [µm]	Exceeding	1	12.5

Rem shall be determined upon designating Ars first. When designating or instructing the surface roughness, the values given in Annex Table I are used in general, because it is inconvenient to designate them at every time. Remarks:

The measuring length shall be the value not shorter Measuring length than three times Ans.

Expression of Rass 3.3

The designation of Ress shall be as follows: Designation of Ress 3.2.1

шm Measuring length_ Ę, um, value (75 %)_ Cut-off Center line average roughness (75 %)_

µmR.28, A.m.

- mm, *L* -

Remarks 1. If the value of Ress obtained by using the standard value of 423 shown in Annex Table 1 lies within the range of Annex Table 1, the designation of λ_m may be omitted

If the measuring length is three times 2,75 or longer, the designation of measuring length may be omitted

When designating the surface roughness by R.n., the preferred number series in Annex Table 2 should be used Preferred number series of R.z. generally. JIS B 0405

Annex Table 2. Preferred number series of R_{ass}

-1090 A-

Unit: µm	12.5	25	20	100	
V	0.4	0.8	1.6	3.2	6.3
	0.013	0.025	0.03	0.1	0.2

3.2.3 Sectional designation for R_{1.2} When it is required to designate R_{1.8} in acertain section, the numerical values corresponding to the upper limit (the larger value of the designated values) and the lower limit (the smaller value of the designated values) shall be selected from Annex Table 2 and be described together.

Example 1. If the standard values of λ_{css} at the upper limit and the lower limit are equal The sectional designation for the upper limit of $6.3 \, \mu m R_{css}$ and the lower limit of $1.6 \, \mu m R_{css}$ shall be $(6.3 \, to \, 1.6) \, \mu m R_{css}$. In this case, the cut-off value $(7.5 \, \%)$ of $0.8 \, mm$ shall be used.

Example 2. If the standard values of \$\lambda_{k,n}\$ at the upper limit and the lower limit are different. The sectional designation for the upper limit of 25 \(\mu R_{k,n} \) and the lower limit of 6.3 \(\mu R_{k,n} \) and the lower limit of 6.3 \(\mu R_{k,n} \) shall be (25 to 6.3) \(\mu R_{k,n} \). In this case, it means that the value of \$R_{k,n}\$ measured with \$\lambda_{k,n}\$ 2.5 \(\mu \) mm is not more than 25 \(\mu R_{k,n} \) and the value of \$R_{k,n}\$ measured with \$\lambda_{k,n}\$ on the set than 6.3 \(\mu R_{k,n} \).

Remarks 1 If it is required to equalize both λ_{13} corresponding to the upper limit and the lower limit or if the values of λ_{13} other than the standard values in Annex Table L are used, λ_{13} shall be written together. In Example 2, if λ_{23} corresponding to the upper limit and the lower limit is 2.5 mm, the designation shall be (25 to 6.3) μmR_{*13} , λ_{23} , Σ_{5} mm, the

2. Riss of the upper limit and lower limit mentioned here shall be the arithmetical mean value of saveral places sampled at random from the designated surface and not be the maximum value of individual Riss.

General tolerances—Part 1: Tolerances for linear and angular dimensions without individual tolerance indications

Foreward as the Japanese Industrial Standard

This Standard is the Japanese Industrial Standard drawn up without changing the technical contents and the form of copy of standard, transfating the ISO 2768-1 (General tolerances—Part 1: Tolerances for linear and sagular dimensions without individual tolerance indications) published on 1989 as the first edition.

Furthermore, "Informative References" underlined (detted lines) in this Standard are the matters not included in the original International Standard.

Introduction

All features on component parts always have a size and a geometrical shape. For the deviation of size and for the deviations of the geometrical characteristics (form, orientation and location) the function of the part requires limitations which, when exceeded, impair this function

The toterancing on the drawing should be complete to ensure that the elements of size and geometry of all features are controlled, i.e. nothing shall be implied or left to judgement in the workshop or in the inspection department.

The use of general tolerances for size and geometry simplifies the task of ensuring that this prerequisite is met.

1. Scope

This Standard is intended to simplify drawing indications, and it specifies general tolerances for linear and angular diagonsions without individual indications in four tolerance classes.

Remarks I. The concepts bettind the general tolerancing of linear and angular dimensions are described in Annex A.

This Standard applies to the dimensions of parts which have been produced by metal removal or parts which have been formed from skeel metal.

These tolerances may be suitable for use with materials other than metal.

3. Simitar standards exist or are planned. For example, see JIS B 0403 for castings.

Informative reference: 11S B 0403-1987 is the International Conforming Standard of 15O 8062: 1284 (Castings-System of dimensional tolerances).

This Standard ordy applies to the fellowing Cimensions without individual tolerance indications:

æ |

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.