Radical-based C-H Functionalization and Modification of Small and Large Molecules

Yumeng Xi Materials Research Laboratory University of California, Santa Barbara

1/14/2022 University of Illinois Urbana Champaign

Overview of Proposal #2

Amine translocation in biology

$$H_2N$$
 CO_2^-
Lysine 5,6-aminomutase
 NH_3^+
 $CO_2^ NH_3^+$
 NH_2^+

Overview of Proposal #2

Overview of Proposal #2

- □ Short-term goal: proving the feasibility of functional group dance strategies; tuning chemo- and site-selectivity; expanding scope
- Long-term goal: conducting late-staging editing; establishing FG migratory functionalization; collaborating with synthetic and medicinally chemists on total synthesis and drug discovery

Why Do We Care about FG Dance?

 IC_{50} (RMGPa): 15.3 μ M

 $\it R$ isomer IC₅₀ (RMGPa): 5.5 μM $\it S$ isomer IC₅₀ (RMGPa): 1.2 μM

Direct Access to Positional Isomers

IC₅₀ (RMGPa): 15.3 μM

- ☐ Site-selectivity?
- ☐ Chemoselectivity?
- Reaction directionality?

R isomer IC₅₀ (RMGPa): 5.5 μ M S isomer IC₅₀ (RMGPa): 1.2 μ M

Expedite Synthetic Planning

 IC_{50} (RMGPa): 15.3 μ M

 \emph{R} isomer IC $_{50}$ (RMGPa): 5.5 μM \emph{S} isomer IC $_{50}$ (RMGPa): 1.2 μM

Expedite Synthetic Planning

 IC_{50} (RMGPa): 15.3 μ M

R isomer IC₅₀ (RMGPa): 5.5 μ M S isomer IC₅₀ (RMGPa): 1.2 μ M

Precedents of Radical Rearrangement Reactions

Design of Catalytic Systems for Functional Group "Dance"

☐ The site where FG is migrated to can be tuned by substrates and HAT/rHAT catalysts/reagents.

Design of Catalytic Systems for Functional Group "Dance"

☐ The site where FG is migrated to can be tuned by substrates and HAT/rHAT catalysts/reagents.

Design of Catalytic Systems for Functional Group "Dance"

☐ The site where FG is migrated to can be tuned by substrates and HAT/rHAT catalysts/reagents.

☐ Grand challenge: how to control reaction direction, selectivity and efficiency?

Kinetically Controlled Systems for Functional Group "Dance"

Key criteria for designing kinetically controlled, catalytic systems for functional group dance.

- ☐ Rate constant k₈ (backward HAT) is smaller than the overall rate constant for the forward reaction.
- Rate constant k₂ should be on similar magnitude with k₃, if not much smaller, to ensure productive catalysis.
- ☐ Transition state for rHAT of intermediate II is high in energy.

Design of Kinetic Systems for Functional Group "Dance"

□ Pool of HAT reagents

Factors to consider:

- ☐ Bond dissociation energy, polarity matching
- Known HAT/rHAT rate constants
- □ Radical cyclization rate constants

Proof-of-Concept Study using a Biased System

EDG =
$$\frac{5}{5}$$
 OR $-\frac{5}{5}$ NR₂

- No reverse reaction
- FG

 Note that the second secon

■ No HAT with products

■ No HAT donor needed

Proof-of-Concept Study using a Biased System

■ No reverse reaction

■ No HAT with products

less polarity
$$0 \delta^{-1}$$
 match $0 \delta^{-1}$ EDG FG

■ No HAT donor needed

Tuning Selectivity in Unbiased Systems

- □ Reaction direction is driven by 1) HAT selectivity for 1°/2° carbon and 2) formation of a more stable tertiary radical.
- □ No major difference in rate constants for rHAT of 1°/2°/3° radical with thiols.

Reversing Selectivity in Unbiased Systems

☐ Reaction direction is in Curtin-Hammett regime and driven by HAT selectivity for 3° carbon.

Expanding the Scope of FG Dance

Possible migrating FGs

FG (masked alcohol):

FG (masked amine):

$$R$$
 R
 R
 $R = Ar, CO_2Me$

Tetrahedron Lett. 1986, 27, 1513.

AIBN, Bu₃SnH

J. Am. Chem. Soc. 1990, 112, 8982.

Late-Stage Editing of Complex Molecules using FG Dance

Drug-like molecules

Biomolecules

Angew. Chem., Int. Ed. Engl. 1987, 26, 233. J. Am. Chem. Soc. 2021, 143, 8590.

Additional Long-Term Goal: FG Migratory Functionalization

