

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ "Информатика и системы управления"

КАФЕДРА "Программное обеспечение ЭВМ и информационные технологии"

ОТЧЁТ К ЛАБОРАТОРНОЙ РАБОТЕ №4 HA TEMY:

"Программная имитация і-го прибора"

Студент	<u>ИУ7-68Б(В)</u> (Группа)	(Подпись, дата)	<u>Д.П. Косаревский</u> (И.О.Фамилия)
Преподаватель			И.В. Рудаков (И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

УТ	ВЕРЖДАІ	Ю	
Завед	ующий ка	федрой	ИУ7
		(И	ндекс)
		И.В.І	У удаков
		(И.О.	Фамилия)
«	>>		2021 г.

ЗАЛАНИЕ

Эпд		
на выполнение л	абораторной раб	ОТЫ
по дисциплине "Моделирование"		
Студент группы <u>ИУ7-68Б(В)</u>		
Косаревский Дмитр	ий Петрович	
•	и, имя, отчество)	
Тема лабораторной работы "Программная им	<u>иитация і-го прибора"</u>	
Задание: <u>Разработать программу</u> . У нас есп	<u>пь генератор (или исто</u>	<u>чник сообщений), есть</u>
<u>память, и есть обслуживающий аппарат (С</u>	РА). Генератор выдаёт	<u>сообщения по</u>
равномерному закону распределённого в инт	ервале a+-b (от a до b).	. ОА выбирает
<u>сообщения из памяти, и вот здесь преподава</u>	<u>итель пишет наш закон</u>	, тот который мы
писали во 2-й ЛР (по вариантам, нормальных	й, экспоненциальный, п <u>у</u>	уассоновский и т.д.). <u>Все</u>
эти законы параметрически настраиваютс.	я. Необходимо определі	<u>ить минимальную длину</u>
очереди (или объём памяти), при котором со	общения не теряются	(т.е. не возникает такая
ситуация, когда сообщение идёт в ОА, а он з	ванят). Реализовывать	это нужно двумя
способами (принципами): дельта t и событи	ийно. Посмотреть есть	ли разница. А дальше
наступает ужас-ужас. Преподаватель умус	дряется передать выда	нные сообщения из ОА в
процентном соотношении снова на вход оче	реди. Он задаёт, напри	мер, что половина
сообщение снова поступает на ОА, или 0,7 и	ли 0,1 и снова смотрит	1, что произойдёт <u>с</u>
очередью. Определить оптимальную длину с	-	=
сообщение необработанным не исчезает. Т.	• •	•
которая сначала выдаст минимальное t, поп	10м подаём % и она сно	ва выдаёт минимальное
t. И хорошо если ещё и статистики сюда пр		
каждому устройству как оно нагружено, т.	**	<u>*</u>
Дата выдачи задания « » 2021	•	
Преподаватель		И.В. Рудаков
	(Подпись, дата)	(И.О.Фамилия)
Студент		Д.П. Косаревский
	(Подпись, дата)	(И.О.Фамилия)

Принцип Δt заключается в последовательном анализе состояний всех блоков в момент $t + \Delta t$ по заданному состоянию блоков в момент t. Чем меньше Δt , тем выше точность моделирования. Основной недостаток этого принципа: значительные затраты машинного времени на реализацию моделирования системы при малом Δt .

Событийный принцип, заключается в том, что состояние всех блоков имитационной модели анализируется лишь в момент появления какого-либо события. Момент поступления следующего события определяется минимальным значением из списка будущих событий, представляющего собой совокупность моментов ближайшего изменения состояния каждого из блоков системы.

Результат

В результате работы была достигнута поставленная цель:

- 1. Создана программа в соответствии с описанным заданием
- 2. Реализована параметризация

Код программы находится в открытом репозитории по ссылке: https://github.com/dKosarevsky/modelling_labs/tree/master/lab_004

Работающую программу можно увидеть и протестировать по ссылке: https://share.streamlit.io/dkosarevsky/modelling_labs/main.py

Программа написана на языке программирования Python 3.8.8 с использованием следующих библиотек:

- streamlit
- numpy
- pandas