Data Science – Data Visualization

1. DATA VISUALIZATION PART – 1

Contents

1. Data Visualization	
1.1. Example in words	
2. Common data visualization techniques	
3. Advantages	
4. Few examples	
5. Matplotlib	
6. Line chart	8
7. Bar Chart	14
8. Histogram	18
9. Pie Chart	19
10. Scatter Plot	22
11. Box Plots	24
12. Heatmap	26

1. DATA VISUALIZATION PART - 1

1. Data Visualization

- ✓ **Data Visualization** is the process of converting raw information (text, numbers, or symbols) into a graphical representation.
- ✓ If we visualize the data then it is very easy to understand.

Best quote

✓ A picture gives more meaningful information than thousand words

1.1. Example in words

✓ Reaching to target

2. Common data visualization techniques

- ✓ Bar charts
- ✓ Pie charts
- ✓ Line graphs
- ✓ Box plot
- ✓ Scatter plot & etc

3. Advantages

- ✓ To identify trends, such as whether sales increasing or decreasing.
- ✓ To identify patterns, such as during weekend more sales.
- ✓ To identify relationships, such as if we study more hours then we will get good marks.
- ✓ To identify frequency, such as how often a product is purchased in a specific area & etc

4. Few examples

What's your favorite ice cream flavor?

Flavor	Count
Chocolate	62
Vanilla	22
Strawberry	20

What's your favorite ice cream flavor?

Based on 104 survey responses

	Actual	Forecast
Jan	100K	
Feb	115K	
Mar	121K	
Apr	150K	
May	137K	
Jun	152K	152K
Jul		167K
Aug		184K
Sep		202K
Oct		223K
Nov		245K
Dec		269K

Data Science - Data Visualization

5. Matplotlib

- ✓ Matplotlib is the most popular plotting library in python.
- ✓ Using matplotlib we can plot the data.

Environment

✓ We can install this library by using pip command.

matplotlib installation

pip install matplotlib

6. Line chart

- ✓ A line chart or line graph is a type of chart which displays information as
 a series of data points connected by straight line
- ✓ A line chart is often used to visualize a trend in data over intervals of time.

import matplotlib.pyplot as plt

$$x = [5, 6]$$

y = [5, 6]

plt.plot(x, y)

plt.show()

Create a simple line chart demo2.py

import matplotlib.pyplot as plt

x = [5, 6]

y = [5, 6]

plt.plot(x, y, marker='*')

plt.show()

Create a simple line chart

demo3.py

import matplotlib.pyplot as plt

$$x = [5, 6, 9]$$

y = [5, 6, 20]

plt.plot(x, y, marker='*')

plt.show()

Create a simple line chart and title demo4.py

import matplotlib.pyplot as plt

$$x = [5, 6, 9]$$

 $y = [5, 6, 20]$

plt.title("Boss it is a line graph")

plt.plot(x, y, marker='*')

plt.show()

6.1. Labelling the axes

✓ We can label x axis and y axis by using xlabel and ylabel

Create a simple line chart and giving title and labelling **Program** Name demo5.py import matplotlib.pyplot as plt x = [5, 6, 9]y = [5, 6, 20]plt.title("A line graph") plt.xlabel("X values") plt.ylabel("Y values") plt.plot(x, y, marker = '*') plt.show() Output A line graph 20 18 16 14 Y values 12 10 8

6

5.0

5.5

6.0

6.5

7.0

X values

7.5

8.0

8.5

9.0

Create two lines in single chart demo6.py

import matplotlib.pyplot as plt

plt.title("A line graph")

plt.xlabel("X values")
plt.ylabel("Y values")

plt.plot(x, y, marker = '*')
plt.plot(x, p, marker = '*')

plt.show()

7. Bar Chart

✓ The bar graph is the graphical representation of categorical data.

Creating horizontal bar chart **Program** demo8.py Name import matplotlib.pyplot as plt months = ["Jan", "Feb", "Mar", "Apr", "May", "June", "July", "Aug", "Sep", "Oct", "Nov", "Dec"] sales = [23, 45, 56, 78, 213, 45, 78, 89, 99, 100, 101, 130] plt.title('A Bar Graph') plt.xlabel('Product Sales') plt.ylabel('Month') plt.barh(months, sales) plt.show() Output A Bar Graph 12 10 8 Month 6 2 25 50 75 100 125 150 175 200 Product Sales

Creating horizontal bar chart **Program** demo9.py Name File name sales11.csv import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv("sales11.csv") plt.title('A Bar Graph') plt.xlabel('Month') plt.ylabel('Product Sales') plt.bar(df.month, df.sales) plt.show() Output A Bar Graph 200 175 150 **Product Sales** 125 100 75 50 25 Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Month

Program Creating bar chart demo10.py Name import matplotlib.pyplot as plt months = ["Jan", "Feb", "Mar", "Apr", "May", "June", "July", "Aug", "Sep", "Oct", "Nov", "Dec"] sales = [23, 45, 56, 78, 213, 45, 78, 89, 99, 100, 101, 130] plt.title('A Bar Graph') plt.xlabel('Month') plt.ylabel('Product Sales') plt.bar(months, sales, width = 1.0) plt.show() Output A Bar Graph 200 175 150 Product Sales 125 100 75 50 25 0 Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Month

8. Histogram

- ✓ A histogram is the graphical representation of quantitative data.
- ✓ This displays the frequency/count of numerical data in bars.

Program Creating histogram Name demo11.py

import matplotlib.pyplot as plt

data = [12, 15, 13, 20, 19, 20, 11, 19, 11, 12, 19, 13, 15, 16, 18, 13]

```
plt.xlabel("X")
plt.ylabel("Y")
plt.title("Histogram Plot")
plt.hist(data, bins = 20)
plt.show()
```


9. Pie Chart

- ✓ This is a circular plot that has been divided into slices displaying numerical proportions.
- ✓ Every slice in the pie chart shows the proportion of the element to the whole.
- ✓ A large category means that it will occupy a larger portion of the pie chart.

Creating pie chart demo13.py

import matplotlib.pyplot as plt

students = ['Daniel', 'Prasad', 'Srinu'] points = [62, 48, 36]

c = ['y', 'r', 'b']

plt.pie(points, labels = students, colors = c, shadow = True, explode = (0.05, 0.05, 0.05), autopct = '%1.1f%%')

plt.axis('equal')
plt.legend()
plt.show()

9.1. Attributes

- ✓ The first parameter to the function is the list of numbers for every category.
 - labels attribute:
 - A list of categories separated by commas is then passed as the argument to labels attribute.
 - o colors attribute:
 - To provide the color for every category.
 - o To create shadows around the various categories in pie chart.
 - o To split each slice of the pie chart into its own.

10. Scatter Plot

- ✓ In scatter plot each value in the data set is represented by a dot.
- ✓ By using this plot we can understand the relationship between two variables.

Creating Scatter plot Program demo14.py Name import matplotlib.pyplot as plt area = [1, 2, 3, 4, 5] rice_packs = [10, 20, 30, 40, 50] plt.xlabel('area') plt.ylabel('rice packs') plt.scatter(area, rice_packs) plt.show() Output 50 45 40 35 rice packs 25 20 15 10 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Program **Creating Scatter plot** Name demo15.py import matplotlib.pyplot as plt area = [1, 2, 3.5, 4, 5] rice_packs = [7, 14, 22, 30, 40] plt.xlabel('area') plt.ylabel('rice packs') plt.scatter(area, rice_packs) plt.show() Output 40 35 30 rice packs 25 20 15 10 1.5 3.5 4.0 1.0 2.0 2.5 3.0 4.5 5.0 area

11. Box Plots

- ✓ Box plots help us measure how well data in a dataset is distributed.
- ✓ The graph shows the maximum, minimum, median, first quartile and third quartiles of the dataset.

11.1. Use Box plots

- ✓ Use a boxplot when you need to get the overall statistical information about the data distribution.
- ✓ It is a good tool for detecting outliers in a dataset.

Program Creating box plot Name demo16.py

import matplotlib.pyplot as plt

data = [10, 20, 30, 40, 50]

plt.boxplot(data)
plt.show()

11.2. Box plot explanation

- ✓ The line dividing the box into two shows the median of the data.
- ✓ The end of the box represents the upper quartile (75%) while the start of the box represents the lower quartile (25%).
- ✓ The part between the upper quartile and the lower quartile is known as the Inter Quartile Range (IQR) and helps in approximating 50% of the middle data.

12. Heatmap

- ✓ A heatmap is a method of data visualization that plots data by replacing numbers with colours.
- ✓ If it is representing with color then it is very easy to understand patterns between different values in the dataset.
- ✓ It is used to visualize data in a two-dimensional format as a coloured map so that different colour variations represent different patterns between features.

12.1. How to understand?

- ✓ A heatmap visualizes the relationship between features as a colour palette.
- ✓ While analysing a heatmap, always remember that dark shades represent a high degree of linear relationship between features and light shades represent a low degree of linear relationship between features.

```
Creating box plot
Program
Name
             demo18.py
             import matplotlib.pyplot as plt
             import pandas as pd
             d = {
                  "Apple": [10, 20, 30, 40],
                  "Orange": [7, 14, 21, 28],
                  "Banana": [55, 15, 8, 12],
                  "Pear": [15, 14, 1, 8]
             }
             i = ['Basket1', 'Basket2', 'Basket3', 'Basket4']
             df = pd.DataFrame(d, index = i)
             plt.imshow(df, cmap = "YlGnBu")
             plt.colorbar()
             plt.xticks(range(len(df)), df.columns)
             plt.yticks(range(len(df)), df.index)
             plt.show()
Output
        Basket1
        Basket2
        Basket3
                                               - 20
                                                10
        Basket4
               Apple
                      Orange
                                      Pear
                              Banana
```