

Examenes-topologia.pdf

Aprobarrr

Topología I

2º Doble Grado en Ingeniería Informática y Matemáticas

Escuela Técnica Superior de Ingenierías Informática y de **Telecomunicación** Universidad de Granada

Que no te escriban poemas de amor cuando terminen la carrera

(a nosotros por

(a nosotros pasa)

WUOLAH

Suerte nos pasa)

No si antes decirte Lo mucho que te voy a recordar

(a nosotros por suerte nos pasa)

TOPOLOGÍA I

Prueba Tema 1 21 de noviembre de 2013

1. En \mathbb{R} se considera la familia de intervalos

$$\mathcal{B}' = \{ | m, n[: m < n \in \mathbb{Z} \}.$$

- (a) Demostrar que existe una topología $\mathcal T$ sobre $\mathbb R$ tal que $\mathcal B'$ es una familia de abiertos y cerrados en $(\mathbb R,\mathcal T)$.
- (b) Probar que \mathcal{B}' es base de una topología \mathcal{T}' sobre \mathbb{R} .
- (c) Comparar \mathcal{T} con \mathcal{T}' y deducir que \mathcal{B}' no es base de \mathcal{T} .
- (d) Calcular interior y adherencia de]1,3[y $\mathbb Z$ en ambas topologías.
- 2. Sea (X, \mathcal{T}) un espacio topológico y $A \subset X$. Demostrar:
 - (a) A es abierto si y solo si $A \cap Fr(A) = \emptyset$.
 - (b) A es cerrado si y solo si $Fr(A) \subset A$.
- 3. Se considera \mathbb{N} con la topología \mathcal{T} , tal que $O_n = \{1, \dots, n\}$ es un entorno básico de $n \in \mathbb{N}$.
 - (a) Probar que $O_n \in \mathcal{T}$ para cada $n \in \mathbb{N}$.
 - (b) Hallar el interior y la adherencia de $\{2,4\}$ en $A = \{2,3,4\}$ con \mathcal{T}_A .

Puntuación: 1°) 5 puntos, 2°) y 3°) 2'5 puntos. Tiempo: 2 horas.

TOPOLOGÍA I

Prueba Tema 2 9 de enero de 2014

1. Sea $\mathbb{S}^2=\{(x_1,x_2,x_3)\in\mathbb{R}^3/x_1^2+x_2^2+x_3^2=1\}$ la esfera unidad. Estudiar para que valores de $a\in[-1,+1]$ son homeomorfos

$$\mathbb{S}_a^+ = \mathbb{S}^2 \cap \mathbb{R}^2 \times [a, +\infty[$$
 $y \quad \mathbb{S}_a^- = \mathbb{S}^2 \cap \mathbb{R}^2 \times] - \infty, a],$

con las topologías usuales inducidas.

Encontrar, si es posible, dos homeomorfismos distintos.

- 2. Sea $(\mathbb{R}^2, \mathcal{T})$ el espacio topológico producto de $(\mathbb{R}, \mathcal{T}_u)$ y $(\mathbb{R}, \mathcal{T}_{CF})$.
 - (a) Estudiar si la aplicación $f:(\mathbb{R}^2,\mathcal{T}_u)\longrightarrow(\mathbb{R}^2,\mathcal{T}),$ dada por

$$f(x_1, x_2) = (x_2, x_1), \quad \forall (x_1, x_2) \in \mathbb{R}^2,$$

es continua, abierta o cerrada.

- (b) Lo mismo para $p_1 \circ f$, con $p_1 : (\mathbb{R}^2, \mathcal{T}) \longrightarrow (\mathbb{R}, \mathcal{T}_u)$ proyección.
- 3. Se considera el disco unidad cerrado $D=\{(x_1,x_2)\in\mathbb{R}^2/x_1^2+x_2^2\leq 1\}$ con la relación de equivalencia

$$xRy \Leftrightarrow x = y \ \acute{o} \ x, y \in \mathbb{S}^1 = \{(x_1, x_2) \in \mathbb{R}^2 / x_1^2 + x_2^2 = 1\}.$$

- (a) Estudiar si la proyección $\pi:(D,\mathcal{T}_{uD})\longrightarrow(D_{/R},\mathcal{T}_{uD/R})$ es continua, abierta o cerrada.
- (b) Probar que $(D_{/R}, \mathcal{T}_{uD/R})$ es homeomorfo a $(\mathbb{S}^2, \mathcal{T}_{u\mathbb{S}^2})$.

(Se puede usar que toda sucesión en ${\cal D}$ tiene una parcial convergente).

Puntuación: 1°) 2'5 puntos, 2°) 3'5 puntos y 3°) 4 puntos. Tiempo: 2 horas.

TOPOLOGÍA I

12 de febrero de 2014

1. En \mathbb{R} se define la siguiente familia de subconjuntos:

$$\mathcal{B} = \{ \{q\} \mid q \in \mathbb{Q} \} \cup \{]x - \varepsilon, x + \varepsilon [\mid x \in \mathbb{R} - \mathbb{Q}, \ \varepsilon > 0 \}.$$

- (a) Demostrar que $\mathcal B$ es base de una topología $\mathcal T$ sobre $\mathbb R.$
- (b) Comparar \mathcal{T} con la topología usual \mathcal{T}_u .
- (c) Calcular interior, adherencia y frontera de los subconjuntos $A = [0, \sqrt{2}]$ y $B = \{\sqrt{n} / n \in \mathbb{N}\}$ en $(\mathbb{R}, \mathcal{T})$.
- 2. (a) Determinar la menor topología \mathcal{T} sobre \mathbb{N} , tal que $O_n = \{1, ..., n\} \in \mathcal{T}$, para todo $n \in \mathbb{N}$ y la aplicación $f : (\mathbb{N}, \mathcal{T}) \longrightarrow (\mathbb{N}, \mathcal{T})$, dada por

$$f(2n) = 2n - 1$$
 y $f(2n - 1) = 2n$,

es cerrada.

- (b) Caracterizar los homeomorfismos de $(\mathbb{N}, \mathcal{T})$ en $(\mathbb{N}, \mathcal{T})$ y encontrar un homeomorfismo del produto $(\mathbb{N}^2, \mathcal{T}(\mathcal{T} \times \mathcal{T}))$ que no sea producto de ellos.
- 3. Sea (X, \mathcal{T}) un espacio topológico Hausdorff. Probar:
 - (a) Si $f:([0,1],\mathcal{T}_{u[0,1]}) \longrightarrow (X,\mathcal{T})$ es una aplicación continua, con

$$f(0) \in A \subset X$$
 y $f(1) \in X - A$,

entonces existe $t \in [0, 1]$ tal que $f(t) \in Fr(A)$.

- (b) No existe una topología $T' \neq T$ sobre X con (X, T') compacto y $T \subset T'$.
- 4. En $X = \mathbb{R} \times \{-1, +1\}$ se considera la relación de equivalencia:

$$(x_1, x_2)R(y_1, y_2) \Leftrightarrow (x_1, x_2) = (y_1, y_2) \ o \ x_1, y_1 \le -2 \ o \ x_1, y_1 \ge +2.$$

- (a) Estudiar si la proyección $p:(X,\mathcal{T}_{uX})\longrightarrow (X_{/R},\mathcal{T}_{uX/R})$ es abierta o cerrada.
- (b) Probar que $(X_{/R}, \mathcal{T}_{uX/R})$ es homeomorfo a $(\mathbb{S}^1, \mathcal{T}_{u\mathbb{S}^1})$.

Puntuación: todos igual.

Tiempo: 3 horas.