Московский Физико-Технический Институт (государственный университет)

Дискретные случайные процессы. Лекция 8.

Выполнил: Дурнов Алексей Николаевич студент Б01-009

Замечание. Теорема о единственном продолжении неотрицательной ограниченной счётноаддитивной меры с кольца на порождённое им σ -кольцо с сохранением sigma-аддитивности меры - главная теорема курса

Обозначение. Пусть K - множественное кольцо $\xrightarrow{\mu}_{\sigma_{a\partial\partial}} [0,N]$. Тогда $\bigcup K := E := \bigcup_{A \in K} A = \bigcup \{A | A \in K\}$.

Определение 1. Множество $M \in E$ назовём K_{σ} -покрываемым, если $\exists (A_1, A_2, \dots) \in K^{\mathbb{N}}$ такое, что $M \subset \bigcup_{k=1}^{\infty} A_k \equiv \bigcup_{n=1}^{\infty} (\bigcup_{k=1}^{n} A_k) \equiv \coprod_{m=1}^{\infty} (\underbrace{A_m \setminus \bigcup_{k \in K} \{A_k | k < m\}}).$

Обозначение. $\mathcal{P}_{K_{\sigma}}(E) = \{M | M \text{ является } K_{\sigma}\text{-покрываемым}\}.$

$$\mu^*(M) = \inf\{\sum_{k=1}^{\infty} \mu(C_k) | \forall k \in N \, C_k \in K; \, M \subset \bigsqcup_{k=1}^{\infty} C_k\} \leqslant N$$

$$\rho^*_{\mu} : \mathcal{P}_{K_{\sigma}}(E) \times \mathcal{P}_{K_{\sigma}}(E) \to [0, N] : (A, B) \to \mu^*(A\Delta B), \, \forall M \in \mathcal{P}_{K_{\sigma}}(E)$$

$$\mu_*(M) = \sup\{\mu(A) | A \in K, \, A \subset M\} \leqslant N$$

Будем называть μ^* внешней мерой, а μ_* - внутренней.

Определение 2. μ *-измеримыми подмножества в $E \equiv \bigcup K$ назовём такие $M \in \mathcal{P}_{K_{\sigma}}(E)$, что для некоторой $(A_1, A_2, \dots, A_n, \dots) \in K^{\mathbb{N}}$ такие, что $M \subset \bigcup_{k=1}^{\infty} A_k \equiv U$, выполнено соотношение:

$$\mu^*(M) + \mu^*(U \setminus M) = \mu^*(U) \equiv \sup_{n \in \mathbb{N}} \left\{ \mu\left(\bigcup_{k=1}^n A_k\right) \right\} (\mathit{конструкция} \ \mathit{Каратеодорu})$$

Определение 3. ρ_{μ}^* -измеримым называется такое $M \in \mathcal{P}_{K_{\sigma}}(E)$, что $\exists (A_{k,l})_{k,l=1}^{\infty} \in K^{\mathbb{N} \times \mathbb{N}}$, что $\rho_{\mu}^* \left(\bigcap_{l=1}^{\infty} \left(\bigcup_{k=1}^{\infty} A_{k,l} \right), M \right) = 0$ (Лебег).

Упражнение* 1. Система μ^* -измеримых подмножеств в E совпадает c системой ρ_{μ}^* -измеримый подмножеств E, является σ -кольцом, которое называется σ -кольцом множеств, измеримых относительно естественного продолжения меры μ , обозначим \bar{K}^{μ} .

$$\mu^*|_{\bar{K}^{\mu}} =: \bar{\mu} - \sigma - a\partial \partial$$
$$\bar{\mu}|_{K} = \mu^*|_{K^{\mu}} = \mu$$

Замечание. Вообще говоря, $\mu^* \big|_{\bar{K}^\mu}
eq \bar{\mu}$

Замечание. $ho_{\bar{\mu}}$ порождает ту же самую метрику на фактор пространстве $\bar{K}/\tilde{\rho}_{\bar{\mu}}$, что и копия аналогично получаемой метрики из пополнения полуметрического пространства (K, ρ_{μ}) , т.е. классу эквивалентных фундаментальных последовательностей будет соответствовать один класс эквивалентных измеримых множеств из $(\bar{K}^{\mu}, \rho_{\bar{\mu}})$.

Обозначение. $\mathscr{B}(\mathbb{R}^n)$ - борелевская σ -алгебра, т.е. наименьшее σ -кольцо или σ -алгебра, содержащая все декартовы произведения одномерных промежутков. Она же порождается и открытами шарами, и просто открытыми множествами в \mathbb{R}^d , и значит замкнутыми.

Конструкция d-мерной меры Лебега.

- a) 1
- b) 2
- c)

Теорема 1. Определение λ^d корректно: λ^d называется полной d-мерной мерой.

Замечание. $Card(B(\mathbb{R}^d)) = \mathbb{C}$ (continuum), где \mathfrak{Card} - количество элементов (кардинальное число), мощность.