Замкнутые классы

- ullet Пусть B- некоторое множество булевых функций
- \star $\langle B
 angle$ множество функций, которые можно записать формулами над B
- \star $\langle \cdot \rangle$ оператор замыкания:
 - $B \subseteq \langle B \rangle$ (экстенсивность)
 - $A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle$ (монотонность)
 - $\langle \langle B \rangle \rangle = \langle B \rangle$ (идемпотентность)
- ullet В называется замкнутым классом (булевых функций), если $B=\langle B
 angle$
- \star B- полная система $\Leftrightarrow\langle B
 angle$ содержит все булевы функции
- ullet Б.ф. f сохраняет 0, если $f(ec{0})=0$, и сохраняет 1, если $f(ec{1})=1$
 - множество всех б.ф., сохраняющих 0 (сохраняющих 1) обозначается T_0 (T_1) примеры: $0, \vee, \wedge, + \in T_0$; $1, \bar{}, \sim, \downarrow \notin T_0$; $1, \vee, \wedge, \sim \in T_1$; $0, \bar{}, +, ' \notin T_1$

Лемма

 T_0 и T_1 — замкнутые классы.

Доказательство: рассмотрим формулу над T_0 , построим по ней схему

- если любому элементу схемы подать 0 на все входы, то на выходе у него будет 0
- подадим 0 на все входы схемы
- ⇒ на выходе схемы будет 0
- \Rightarrow функция, задаваемая схемой, принадлежит T_0
- для T_1 доказательство аналогично

Линейные функции

- ullet Функция $f(x_1,\ldots,x_k)$ линейна, если ее полином Жегалкина линейный
 - ullet т.е. $f(x_1,\ldots,x_k)=a_0+a_1x_1+a_2x_2+\cdots a_kx_k$ для некоторых $a_0,\ldots,a_k\in\{0,1\}$
 - \star f обладает свойствами самой обычной линейной функции из курса алгебры
 - множество всех линейных б.ф. обозначается **L** примеры: $0, \bar{}, +, \sim \in L; \quad \land, \lor, \to, \downarrow \notin L$

Лемма

L — замкнутый класс.

Доказательство: рассмотрим формулу над L, построим по ней схему

- каждый элемент схемы вычисляет линейную функцию своих входов
- линейная функция от линейных функций переменных является линейной функцией этих переменных
- ⇒ вся схема вычисляет линейную функцию

Самодвойственные функции,

- ullet Функция $f(x_1,\ldots,x_k)$ самодвойственна, если $f(ar x_1,\ldots,ar x_k)=\overline{f(x_1,\ldots,x_k)}$
 - на противоположных наборах аргументов f принимает разные значения
 - множество всех самодвойственных б.ф. обозначается **S** примеры: $\bar{\ \ }, x+y+z, T_2(x,y,z) \in \mathbf{S}; \quad 0, \lor, \to, \downarrow \notin \mathbf{S}$

Лемма

S — замкнутый класс.

Доказательство: рассмотрим формулу над **S**, построим по ней схему

- подадим на входы произвольный битовый вектор
- \star на выходе каждого элемента схемы будет некоторый бит
- поменяем биты на всех входах
- докажем, что бит на выходе каждого элемента поменялся индукцией по максимальной длине n пути от входа до элемента
- \bullet база индукции: n = 1
- входы элемента являются входами схемы, элемент задает функцию из S
- ⇒ выходной бит изменился, так как поменялись все входы
- шаг индукции:
- входами элемента являются либо входы схемы (поменялись по условию), либо выходы элементов с меньшей длиной пути (поменялись по предположению индукции)
- ⇒ выход элемента, задающего самодвойственную функцию, поменялся
- ⇒ в частности, поменялся выходной бит всей схемы
- ⇒ так как рассуждение верно для любого вектора на входе схемы, схема вычисляет самодвойственную функцию

Монотонные функции

- Введем на битовых векторах равной длины покомпонентный порядок:
 - $(x_1,\ldots,x_k) \leqslant (y_1,\ldots,y_k) \Leftrightarrow x_1 \leqslant y_1,\ldots,x_k \leqslant y_k$
 - ullet диаграмма Хассе ЧУМа $(\{0,1\}^k,\leqslant)-k$ -мерный куб
- ullet Функция $f(ec{x})$ монотонна, если $f(ec{x}) \leqslant f(ec{y})$ для любых $ec{x} \leqslant ec{y}$
 - если значения каких-то аргументов f увеличить (подняться вверх по кубу), то значение f не уменьшится
 - множество всех монотонных б.ф. обозначается **М** примеры: $0, \vee, \wedge, T_i \in \mathbf{M}; +, \bar{}, \to, ' \notin \mathbf{M}$

Лемма

М — замкнутый класс.

\square оказательство: рассмотрим формулу над M, построим по ней схему

- ullet подадим на входы произвольный битовый вектор, не равный $ec{1}$
- \star на выходе каждого элемента схемы будет некоторый бит
- поменяем биты на некоторых входах с 0 на 1
- \star докажем, что ни у какого элемента выходной бит не поменялся с 1 на 0 индукцией по максимальной длине n пути от входа до элемента
- ! восстановите детали по аналогии с предыдущей леммой
- ⇒ выходной бит всей схемы не уменьшился
- ⇒ так как рассуждение верно для любого вектора на входе схемы, схема вычисляет монотонную функцию

Лемма о несамодвойственной функции

Лемма 1 (о несамодвойственной функции)

Пусть $f \notin \mathbf{S}$. Тогда функции 0 и 1 можно задать формулами над множеством $\{f,\bar{\ }\}.$

- пусть f k-местная несамодвойственная функция
- \Rightarrow существует $ec{b}=(b_1,\ldots,b_k)\in\{0,1\}^k$ такой, что $f(b_1,\ldots,b_k)=f(ar{b}_1,\ldots,ar{b}_k)$
- \bullet рассмотрим унарную функцию $\phi(x) = f(x^{b_1}, \dots, x^{b_k})$

*
$$\phi(0) = f(0^{b_1}, \dots, 0^{b_k}) = f(\bar{b}_1, \dots, \bar{b}_k) = f(b_1, \dots, b_k) = f(1^{b_1}, \dots, 1^{b_k}) = \phi(1)$$

- $\Rightarrow \phi(x)$ константа
- \star вторую константу можно записать формулой $\overline{\phi(x)}$
- \star набор функций x^{b_1}, \dots, x^{b_k} , подставляемых в \hat{f} , содержит только x (при $b_i = 1$) и \bar{x} (при $b_i = 0$)
- $\Rightarrow \phi(x)$ и $\overline{\phi(x)}$ задаются формулами над $\{f,\bar{f}\}$

Лемма о немонотонной функции

Лемма 2 (о немонотонной функции)

Пусть $f
otin \mathbf{M}$. Тогда отрицание можно задать формулой над множеством $\{f,0,1\}$.

- пусть f k-местная немонотонная функция
- \Rightarrow существуют $ec{a}=(a_1,\ldots,a_k), ec{b}=(b_1,\ldots,b_k)\in\{0,1\}^k$. $ec{a}\leqslantec{b},$ $f(ec{a})>f(ec{b})$
 - T.E. $f(\vec{a}) = 1$, $f(\vec{b}) = 0$
 - ullet рассмотрим любой $(ec{a},ec{b})$ -путь в ориентированном k-мерном кубе
 - т.е. в диаграмме Хассе ЧУМа $(\{0,1\}^k,\leqslant)$
 - \star так как $ec{a}\leqslantec{b}$, каждая вершина $(ec{a},ec{b})$ -пути покрывает предыдущую
 - ullet в вершине $ec{a}$ функция f принимает значение 1, а в вершине $ec{b}$ значение 0
- \Rightarrow путь содержит пару вершин $(\vec{\alpha}, \vec{\beta})$ такую, что $\vec{\beta}$ покрывает $\vec{\alpha}$, $f(\vec{\alpha}) = 1$, $f(\vec{\beta}) = 0$
 - \star \vec{eta} покрывает $\vec{lpha}\Rightarrow \vec{lpha}=(c_1,\ldots,c_{i-1},0,c_{i+1},\ldots,c_k),\ \vec{eta}=(c_1,\ldots,c_{i-1},1,c_{i+1},\ldots,c_k)$
 - для некоторых битов c₁,..., c_k
 - ullet рассмотрим унарную функцию $\phi(x) = f(c_1, \dots, c_{i-1}, x, c_{i+1}, \dots, c_k)$
 - $\star \phi(0) = f(\vec{\alpha}) = 1, \ \phi(1) = f(\vec{\beta}) = 0 \Rightarrow \phi(x) = \bar{x}$
 - \star $c_1,\ldots,c_k\in\{0,1\}\Rightarrow\phi(x)$ задана формулой над $\{f,0,1\}$

Лемма о нелинейной функции

Лемма 3 (о нелинейной функции)

Пусть $f
otin \mathbf{L}$. Тогда конъюнкцию можно задать формулой над множеством $\{f,0,1,\bar{\ }\}$.

- ullet пусть f-k-местная нелинейная функция, $h(x_1,\ldots,x_k)$ ее полином Жегалкина
- \Rightarrow h содержит нелинейный одночлен
 - ullet без ограничения общности считаем, что этот одночлен содержит x_1 и x_2
 - \bullet если k=2, положим $\psi(x_1,x_2)=h(x_1,x_2)$; пусть k>2
 - существуют полиномы $f_1(x_3,\ldots,x_k), f_2(x_3,\ldots,x_k), f_3(x_3,\ldots,x_k), f_4(x_3,\ldots,x_k)$ такие. Что
 - * $h(x_1, \ldots, x_k) = x_1 x_2 f_1(x_3, \ldots, x_k) + x_1 f_2(x_3, \ldots, x_k) + x_2 f_3(x_3, \ldots, x_k) + f_4(x_3, \ldots, x_k)$
 - $f_1(x_3,\ldots,x_k)$ не равен константе 0
- \Rightarrow выберем вектор (c_3,\ldots,c_k) так, что $f_1(c_3,\ldots,c_k)=1$
 - Φ положим $\psi(x_1, x_2) = f(x_1, x_2, c_3, \dots, c_k)$
 - ullet пусть $lpha = f_2(c_3, \dots, c_k)$, $eta = f_3(c_3, \dots, c_k)$, $\gamma = f_4(c_3, \dots, c_k)$
- $\Rightarrow \psi(x_1, x_2) = x_1 x_2 + \alpha x_1 + \beta x_2 + \gamma$
- ullet при k=2 функция $\psi(\mathit{x_1}\,,\mathit{x_2})$ имеет такой же вид
- ПОЛОЖИМ $\phi(x_1, x_2) = \psi(x_1 + \beta, x_2 + \alpha) + \alpha\beta + \gamma$
- $\Rightarrow \phi(x_1, x_2) = (x_1 + \beta)(x_2 + \alpha) + \alpha(x_1 + \beta) + \beta(x_2 + \alpha) + \gamma + \alpha\beta + \gamma = x_1x_2$
- \star для получения ψ в f подставляются константы
- \star для получения ϕ в ψ подставляются сами переменные или их отрицания (x+1=ar x), и, возможно, берется отрицание итоговой формулы (при $lpha eta + \gamma = 1$)
- $\Rightarrow \phi(x)$ задана формулой над $\{f,0,1,\bar{}\}$

Теорема Поста

Критерий полноты множества булевых функций дает следующая

Теорема Поста

Множество B булевых функций является полной системой $\Leftrightarrow B$ не содержится ни в одном из классов $\mathsf{L},\mathsf{S},\mathsf{M},\mathsf{T}_0,\mathsf{T}_1.$

Доказательство необходимости:

- \star ни один из классов L, S, M, T $_0$, T $_1$ не совпадает со множеством всех булевых функций
- ullet если $B\subseteq C$, где $C\in \{\mathsf{L},\mathsf{S},\mathsf{M},\mathsf{T}_0,\mathsf{T}_1\}$ замкнутый класс, то $\langle B
 angle\subseteq C$
- ⇒ В не является полной системой

Доказательство достаточности:

- будем доказывать, что формулами над В можно задать отрицание и конъюнкцию
- так как $\{\land, \bar{\ }\}$ полная система, отсюда будет следовать полнота B
- доказательство опирается на леммы из предыдущего фрагмента

Теорема Поста — доказательство достаточности

- Выберем в B функции $f_0 \notin T_0$, $f_1 \notin T_1$, $f_s \notin S$, $f_m \notin M$, $f_1 \notin L$ некоторые из выбранных функций могут совпадать
- Зададим конъюнкцию и отрицание формулой над $\{f_0, f_1, f_s, f_m, f_l\}$:

Алгоритмичность теоремы Поста

- * Чтобы проверить произвольную систему булевых функций на полноту, надо уметь проверять функцию на принадлежность к каждому из классов L.S.M.To.T1
 - пусть функция $f(x_1,\ldots,x_n)$ задана таблицей значений, т.е. битовым вектором $F[0..2^n-1]$
- Принадлежность f ко всем классам может быть проверена за время $O(n\cdot 2^n)$:
 - \star T_0 , T_1 : проверить один бит в F
 - \star **S**: сравнить биты F[i] и $F[2^n-i-1]$ для всех i
 - \star L: записать равенство $f(x_1,\ldots,x_n)=a_0+a_1x_1+\cdots a_nx_n$
 - подставить каждое значение вектора \vec{x} и соответствующее значение $f(\vec{x})$ получится система 2^n уравнений с n+1 неизвестными a_0,\ldots,a_n над \mathbb{F}_2
 - проверить совместность системы
 - ! придумайте, как сделать это за время $O(n \cdot 2^n)$
 - \star **М**: для каждого из $O(n\cdot 2^n)$ ребер n-мерного куба проверить, что значение f на верхнем конце не меньше значения на нижнем

Базисы булевых функций

- Полная система б.ф. называется базисом, если никакое ее собственное подмножество не является полной системой
 - * в теории булевых схем используется другая терминология: базисом называют любое фиксированное множество б.ф., элементы которого используются в качестве вентилей при составлении схем

Следствие о базисах

Любой базис содержит не более четырех булевых функций.

- из любой полной системы можно выделить подмножество вида $\{f_0, f_1, f_s, f_m, f_l\}$, тоже являющееся полной системой
- ullet если $f_0(ec{1})=\dot{0}$, то f_0 немонотонна, а если $f_0(ec{1})=1$, то то f_0 несамодвойственна
- \Rightarrow f_m или f_s можно заменить на f_0
- ⇒ полную систему можно «сократить» до 4-элементного подмножества с сохранением полноты
- постройте базис из четырех функций

Решетка замкнутых классов

- ★ ЧУМ замкнутых классов с отношением включения является решеткой
 - $C_1 \wedge C_2 = C_1 \cap C_2$
 - $C_1 \vee C_2 = \langle C_1 \cup C_2 \rangle$
 - ★ вообще, система замкнутых множеств всегда образует решетку
- ullet Решетку замкнутых классов б.ф. иногда обозначают \mathcal{P}_2 в честь Поста
 - ullet \mathcal{P}_k это решетка замкнутых классов функций на k-элементном множестве
- ullet Единицей решетки \mathcal{P}_2 является класс $oldsymbol{\mathsf{B}}$ всех булевых функций
- ullet Нулем решетки \mathcal{P}_2 является класс $\mathbf{Pr} = \{PROJ_i\}$ всех проекций
 - это функции, которые можно задать формулами без операторов (или схемами без вентилей)
- ullet Элемент решетки aтом, если он покрывает 0, и коaтом, если его покрывает 1

Следствие о замкнутых классах

Коатомами решетки \mathcal{P}_2 являются в точности классы $\mathsf{L},\mathsf{S},\mathsf{M},\mathsf{T}_0,\mathsf{T}_1$.

- ullet классы L,S,M,T_0,T_1 несравнимы по включению
 - см. примеры принадлежности функций классам
- по теореме Поста замкнутый класс, не содержащийся ни в одном из классов L, S, M, T₀, T₁, совпадает с B
- \Rightarrow каждый из классов L, S, M, T_0 , T_1 коатом, и других коатомов нет

Диаграмма Хассе решетки \mathcal{P}_2

