## (19) BUNDESREPUBLIK **DEUTSCHLAND**

## Off nl gungsschrift ① DE 3823724 A1

## (5) Int. Cl. 4: G 10 L 5/02

G 10 L 9/02 G 06 F 3/033 G 09 B 19/06 G 09 B 21/00



**DEUTSCHES PATENTAMT** 

15.07.87 JP P 176258/87

19.10.87 JP P 263299/87

Aktenzeichen: P 38 23 724.5 Anmeldetag: 13. 7.88 Offenlegungstag: 2. 2.89

rdeneigenig

3 Unionspriorität: 3 3

③

19.10.87 JP P 263298/87

① Anmelder:

Matsushita Electric Works, Ltd., Kadoma, Osaka, JP

(74) Vertreter:

Prüfer, L., Dipl.-Phys., Pat.-Anw., 8000 München

② Erfinder:

Kunizawa, Hiroharu; Ueji, Noboru; Yamamura, Akira; Itoyama, Hiroshi, Kadoma, Osaka, JP

Prüfungsantrag gem. § 44 PatG ist gestellt

(5) Sprachcodierungs- und Sprachsynthesesystem

Ein Sprachcodierungs- und Sprachsynthesesystem enthält eine Sprachcodiereinheit mit einem Sprachdaten-Eingabemittel, ein Zusammensetzungsanalysemittel und ein Speichermittel für analysierte Sprachinformationen; die Sprachcodiereinheit ist unabhängig von einer Sprachantworteinheit mit einem Steuerinformations-Erzeugungsmittel und einem Sprachsynthesemittel ausgeführt. Die analysierten Informationen werden über ein Schreibmittel in das Informationsspeichermittel in die Sprachcodiereinheit eingegeben, wodurch die Größe des gesamten Systems auf ein Minimum verringert werden kann und das Speichermittel beträchtlich vereinfacht werden kann, wenn gleichzeitig eine sehr einfache Handhabung erhalten wird.

### OS 38 23 724

#### Patentansprüche

5

10

15

20

25

35

50

55

1. Sprachcodierungs- und Sprachsynthesesystem, bei dem gegebene Sprachdaten über ein Dateneingabemittel einem Zusammensetzungsanalysemittel geliefert werden, das eine Rhythmusinformation und eine phonetische Information erzeugt, wobei die entsprechenden Informationen einem Speichermittel zugeführt werden, das sie an Mittel zum Erzeugen einer Steuerinformation liefert, und wobei an einem Sprachsynthesemittel auf der Basis der Steuerinformation eine Sprachinformation zusammengesetzt wird, dadurch gekennzeichnet, daß das Dateneingabemittel, das Zusammensetzungsanalysemittel und das Informationsspeichermittel so ausgebildet sind, daß eine Sprachcodiereinheit entsteht, die unabhängig von einer von dem Mittel zum Erzeugen der Steuerinformation und dem Sprachsynthesemittel gebildeten Sprachcodiereinheit ist, und daß die Rhythmusinformation und die phonetische Information aus dem Zusammensetzungsanalysemittel in dem Sprachcodiermittel durch ein Schreibmittel in das Informationsspeichermittel geladen werden.

2. System nach Anspruch 1, dadurch gekennzeichnet, daß das Informationsspeichermittel ein mittels eines

Aufdrucks erzeugter Barcode ist.

3. System nach Anspruch 1, dadurch gekennzeichnet, daß das Informationsspeichermittel eine IC-Karte ist.

4. System nach Anspruch 2, dadurch gekennzeichnet, daß der Barcode wenigstens jeweils aus schmalen und breiten Bars und schmalen und breiten Abständen besteht, wobei insgesamt "n" Bars und Abstände vorhanden sind, die (n-1)-Bit-Daten bilden.

5. System nach Anspruch 4, dadurch gekennzeichnet, daß der Barcode so gebildet wird, daß er eine kleinere

Anzahl der breiten Bars und Abstände enthält.

6. System nach Anspruch 1, dadurch gekennzeichnet, daß die Sprachantworteinheit ein Leseorgan mit einem Sensor enthält, der eine Linse, ein in die Linse eingebettetes Licht emittierendes Element, eine Lichtleitfaser, die so durch die Linse geführt ist, daß zumindest ihr Vorderende an die Oberfläche der Linse zu liegen kommt, und ein mit dem hinteren Ende der Lichtleitfaser verbundenes lichtempfangendes Element

aufweist.
7. System nach Anspruch 6, dadurch gekennzeichnet, daß das Vorderende der Lichtleitfaser zugespitzt ist.
8. System nach Anspruch 6, dadurch gekennzeichnet, daß der Sensor eine Perle aus Glasmaterial aufweist, die an das Vorderende der Lichtleitfaser angesetzt ist.

9. System nach Anspruch 6, dadurch gekennzeichnet, daß das Licht empfangende Element ebenfalls in die Linse eingebettet ist.

10. System nach Anspruch 2, dadurch gekennzeichnet, daß die Sprachcodiereinheit ein Sprachwörterbuch ist, in dem der Barcode für entsprechende in ihm enthaltene Wörter vorgesehen ist.

11. System nach Anspruch 2, dadurch gekennzeichnet, daß die Sprachcodiereinheit in Form eines Bilderbuchs vorgesehen ist, das mehrere Bilder und mehrere Barcodes enthält, die jeweils für jedes einem der Bilder entsprechenden Wort vorgesehen sind, und daß die Sprachcodiereinheit außerdem ein Leseorgan zum Lesen der Barcodes und Mittel zum Wiedergeben der von ihm gelesenen Wörter enthält.

12. System nach Anspruch 11, dadurch gekennzeichnet, daß das Leseorgan mit einem Speichermittel ausgestattet ist.

13. System nach Anspruch 1, dadurch gekennzeichnet, daß die Sprachcodiereinheit ein an einer Ware angebrachter Barcode ist.
 14. System nach Anspruch 13, dadurch gekennzeichnet, daß der Barcode an einem vorstehenden Steg der

14. System nach Anspruch 13, dadurch gekennzeichnet, daß der Barcode an einem vorstenenden Steg der Ware angebracht ist.
 15. System nach Anspruch 2, dadurch gekennzeichnet, daß der Barcode längs einer Nut in einer Fläche der

15. System nach Anspruch 2, dadurch gekennzeichnet, daß der Barcode langs einer Nut in einer Flache der Ware angebracht ist, so daß die den Barcode bildenden Bars und Abstände quer zu der Nut verlaufen, und daß die Sprachantworteinheit außerdem ein Barcode-Leseorgan mit einem Sensor enthält, der den Barcode längs der Nut abtasten kann.

16. System nach Anspruch 2, dadurch gekennzeichnet, daß der Barcode an einer Fläche eines Objekts angebracht ist und daß die Sprachantworteinheit ein Barcode-Leseorgan enthält, das in Form eines tragbaren, armbanduhrartigen Teils ausgeführt ist.

17. System nach Anspruch 16, dadurch gekennzeichnet, daß das Leseorgan eine auf die Fingerspitze eines Benutzers aufsetzbare Fingerkappe enthält, und daß an einem Teil dieser Fingerkappe ein Barcode-Fühler mit einer Linse angebracht ist, wobei die Fingerkappe mit der Oberfläche des Objekts in Kontakt gebracht werden kann.

#### Beschreibung

Die Erfindung bezieht sich auf Sprachcodierungs- und Sprachsynthesesysteme und insbesondere auf Systeme, die Sprachdaten erzeugen, die in Form von Barcodes oder dergleichen als eine Art von Informationsspeicherelementen geschrieben werden können, so daß eine wirksame Anwendbarkeit auf Sprachantworteinrichtungen ermöglicht wird.

Das Sprachcodierungs- und Sprachsynthesesystem der erwähnten Art kann in wirksamer Weise beispielsweise in Sprachlerngeräten, insbesondere Sprachwörterbüchern mit gesprochener Wortwiedergabe, in Warenunterscheidungseinrichtungen zur Verwendung durch schwachsichtige und blinde Personen und dergleichen angewendet werden.

Als Schnittstelle zwischen Computern und dem Menschen sind in zunehmendem Ausmaß Sprachantworteinrichtungen als Terminalgeräte computergesteuerter Systeme angewendet. Die Sprachantworteinrichtungen sind so ausgebildet, daß als Sprachantwort zu verwendende Sprachausgangsdaten gespeichert werden, und als

Antwort auf eine Serviceanforderung auf der Basis der gespeicherten Daten Sprache erzeugt wird, die als Sprachausgangssignal ausgegeben werden soll. Die Einfügung eines Speichermittels in die Sprachantworteinrichtung macht es wahrscheinlich, daß die erforderlichen Vorrichtungen zur Verwirklichung des Synthesesystems größer hinsichtlich der Abmessungen werden, da die benötigte Speicherkapazität trotz einer kleinen verfügbaren Eingangsinformationsmenge groß ist.

Bei der Anwendung der Sprachantworteinrichtung der Lerngeräte oder dergleichen ist es erwünscht, daß die Einrichtung mit kleineren Abmessungen und mit niedrigeren Kosten hergestellt wird, da sie von einzelnen Lernenden benutzt werden soll. Außerdem müssen die Sprachdaten beim Speichern in eine Form codiert werden, die sich für eine Verarbeitung zur Sprachsynthese eignet, die in drei Verarbeitungsarten klassifiziert werden, nämlich einen Prozeß mit regelmäßiger Synthese, einen Aufzeichnungs- und Editierprozeß und einen Parametereditierprozeß; Merkmale dieser Prozesse sind in der folgenden Tabelle I angegeben.

Tabelle I

| Eigenschaften                    | Regelmäßige Synthese | Aufzeichnung<br>und Editierung | Parametereditierung | 15 |
|----------------------------------|----------------------|--------------------------------|---------------------|----|
| Tonqualität<br>Verständlichkeit: | mittel ·             | hoch                           | hoch                | 20 |
| Tonqualität<br>Natürlichkeit:    | niedrig              | hoch                           | mittel              |    |
| Informationsmenge:               | 50-75 bps            | 24-64 bps                      | 2.4—9,6 kbps        |    |

Aus der obigen Tabelle I geht deutlich hervor, daß der Prozeß mit regelmäßiger Synthese eine niedrigere Tonqualität (der Verständlichkeit und der Natürlichkeit) als die anderen zwei Prozesse hat, jedoch eine extremhohe Informationsverdichtungsrate hat, so daß er sich sehr gut für kleine und billige Sprachantworteinrichtungen eignet.

Der Prozeß mit regelmäßiger Synthese ist ein Prozeß, bei dem Sprache aus phonetischen Informationen (Zeichenfeld) und rhythmischen Informationen wie Betonung, Intonation und dergleichen auf der Basis phonetischer und linguistischer Regeln erzeugt werden. Insbesondere wird ein Prozeß zur Erzeugung von Sprache ausschließlich aus phonetischen Informationen (Zeichenfeld) als Textsyntheseprozeß bezeichnet, der als der letzte Aspekt des Sprachsynthesesystems betrachtet werden kann, der sogar bis in die intellektuellen Fähigkeiten der menschlichen Sprache eingedrungen ist. Der Textsyntheseprozeß ist beispielsweise in einem Aufsatz mit dem Titel "Conversion of unrestricted English text to voice" (MIT), in MJTALK-79 erörtert worden, der 1979 veröffentlicht wurde.

Der Textsyntheseprozeß umfaßt allgemein einen Zusammensetzungsanalyseteil, der die phonetische Information und die Rhythmusinformation wie den Akzent, die Intonation, die phonetische Länge oder dergleichen für die eingegebenen Textdaten mittels eines linguistischen Wörterbuchs oder dergleichen erzeugt, ferner einen Steuerinformations-Erzeugungsteil, der mittels der vom Zusammensetzungsanalyse-Teil erzeugten Information eine Steuerinformation erzeugt, sowie einen Sprachsyntheseteil, der die Sprachinformation auf der Basis der Steuerinformation zusammensetzt. Bei dieser Anordnung hat sich jedoch eine Schwierigkeit ergeben, da der Zusammensetzungsanalyseteil zur Erzeugung der Rhythmusinformation hinsichtlich der Kapazität so groß geworden ist, daß die mittels des speziellen Prozesses arbeitende Sprachantworteinheit schließlich mit größeren Abmessungen versehen werden mußte.

45

Damit der Prozeß mit regelmäßiger Synthese als Lerngerät oder dergleichen bei Aufteilung der Sprachcodiereinheit und der Sprachantworteinheit in voneinander unabhängige Einheiten optimal anwendbar wird, sind verschiedene Maßnahmen zur Vereinfachung des Gesamtsystems durch Modifizieren der Sprachcodiereinheit in der Weise, daß sie aus einer Barcode-Einheit besteht, beispielsweise in der US-PS 43 37 375, der US-PS 43 98 059 und der US-PS 44 57 719 beschrieben worden. Die Maßnahmen gemäß diesen US-Patentschriften bewirken die Erzielung der beabsichtigten Minimierung der Größe und des Gewichts des Synthesesystems, so daß dieses bei der Anwendung in Lerngeräten nützlich ist. Es bleibt jedoch das Problem bestehen, daß der als Informationsspeichermittel für die Sprachcodiereinheit verwendete Barcode in Handarbeit herzustellen ist, was die Herstellung extrem kompliziert macht, während das Informationsspeichermittel beträchtlich kleiner gemacht werden kann.

Mit Hilfe der Erfindung soll ein Sprachcodierungs- und Sprachsynthesesystem geschaffen werden, das die Vorbereitungsarbeit für das Informationsspeichermittel in großem Ausmaß vereinfachen kann, so daß auf diese Weise die Kompaktheit des Gesamtsystems erhalten bleibt, und das bei Anwendung auf ein Lerngerät und dergleichen eine sehr einfache Handhabung ergibt.

Nach der Erfindung kann dies dadurch erreicht werden, daß ein Sprachcodierungs- und Sprachsynthesesystem geschaffen wird, bei dem Sprachdaten (Zeichenfeld) von einem Dateneingabemittel als Eingangssignale an ein Zusammensetzungsanalysemittel geliefert werden, das eine phonetische Information und eine Rhythmusinformation erzeugt, wobei die von dem Zusammensetzungsanalysemittel erzeugten Informationen als Eingangssignale einem Speichermittel zum Abspeichern zugeführt werden, die gespeicherten Informationen als Eingangssignale Mitteln zum Erzeugen eines Steuersignals zugeführt werden und ein Sprachsynthesemittel in Abhängigkeit von der Steuerinformation eine als Sprachausgangssignal abzugebende Sprachinformation zusammensetzt,

wobei das Dateneingabemittel, das Zusammensetzungsanalysemittel und das Informationsspeichermittel als Sprachcodiereinheit unabhängig von einer Sprachantworteinheit zusammengefügt sind, die das Mittel zum Erzeugen der Steuerinformation und das Sprachsynthesemittel enthält, und wobei in der Sprachcodiereinheit die von dem Zusammensetzungsanalysemittel gelieferte Information durch ein Schreibmittel in das Speichermittel geladen wird.

Weitere Ziele und Vorteile der Erfindung werden durch die nachfolgende Beschreibung der Erfindung

verdeutlicht, in der Ausführungsbeispiele anhand der Zeichnung erläutert werden.

In der Zeichnung zeigen:

. 10

Fig. 1 ein Blockschaltbild einer Sprachcodierungseinheit in dem Sprachcodierungs- und Sprachsynthesesystem nach der Erfindung,

Fig. 2 ein Blockschaltbild einer Sprachantworteinheit in dem Sprachcodierungs- und Sprachsynthesesystem nach der Erfindung,

Fig. 3 ein Flußdiagramm zur Erläuterung der Arbeitsweise der Sprachcodierungseinheit von Fig. 1,

Fig. 4 ein erläuterndes Diagramm für die Erstellung eines Barcodes als Informationsspeichermittel in Fig. 1, Fig. 5 eine schematische Schnittansicht eines im Hinblick auf die praktische Anwendung ausgeführten Sensors für die Verwendung als Leseorgan der Sprachantworteinheit von Fig. 2,

Fig. 6 bis 8 ähnliche Schnittansichten weiterer Ausführungsformen des Sensors,

Fig. 9 bis 11 erläuternde Darstellungen für den Betrieb des Leseorgans gemäß der Erfindung,

Fig. 12 bis 16 schematisch erläuternde Darstellungen für ein Sprachwörterbuch gemäß dem System nach der

Fig. 17 eine erläuternde Darstellung eines weiteren Leseorgans nach der Erfindung,

Fig. 18 eine erläuternde Darstellung einer Lernanordnung nach der Erfindung,

Fig. 19 ein Blockschaltbild der Lernanordnung von Fig. 18,

Fig. 20 ein Blockschaltbild der genauen Schaltungsanordnung der Lernanordnung von Fig. 18,

Fig. 21 eine erläuternde schematische Darstellung der Verwendung einer gemäß der Erfindung ausgeführten Warenerkennungsvorrichtung für Blinde,

Fig. 22 eine schematische perspektivische Ansicht eines weiteren Aspekts des im erfindungsgemäßen System verwendeten Leseorgans und

Fig. 23 und 24 erläuternde Darstellungen weiterer Aspekte des Leseorgans.

Die Erfindung wird nun zwar unter Bezugnahme auf die in den Zeichnungsfiguren dargestellten Ausführungsbeispiele beschrieben, doch ist zu erkennen, daß eine Beschränkung der Erfindung auf diese Ausführungsbeispiele nicht beabsichtigt ist, sondern daß die Erfindung alle im Rahmen der Ansprüche erfaßten Modifikationen und äquivalenten Ausführungen beinhaltet.

In den Fig. 1 und 2 ist ein Sprachcodierungs- und Sprachsynthesesystem nach der Erfindung dargestellt, wobei Fig. 1 eine Sprachcodierungseinheit 10 zeigt, während Fig. 2 eine Sprachantworteinheit 20 zeigt. Gemäß einem wichtigen Merkmal der Erfindung sind die Sprachcodiereinheit 10 und die Sprachantworteinheit 20 unabhängig

voneinander vorgesehen.

Die Sprachcodiereinheit 10 enthält ein Textdaten-Eingabemittel 11, das als Eingangssignale Grunddaten zum Zusammensetzen eines Textes enthält und Textdaten liefert, ferner ein Zusammensetzungsanalysemittel 12, das die Textdaten empfängt und als Ausgangssignale eine Rhythmusinformation RI und eine phonetische Information PI liefert, außerdem ein Schreibmittel 13, das die Rhythmusinformation RI und die phonetische Information PI empfängt und verschlüsselt und einen Schreibvorgang mit den codierten Sprachdaten ausführt, sowie ein Informationsspeichermittel 14, in das die codierten Sprachdaten durch das Schreibmittel 13 geschrieben werden.

Die Sprachantworteinheit 20 enthält ein Steuerinformations-Erzeugungsmittel 21, das eine (nicht dargestellte) Leseeinrichtung für die codierten Sprachdaten im Speichermittel 14 enthält und die gelesenen Daten in die Rhythmusinformation RI und eine phonetische Information PI decodiert, damit sie aus diesen decodierten Informationen eine Steuerinformation CI erzeugt, sowie ferner ein Sprachsynthesemittel 22, das an das Steuerinformations-Erzeugungsmittel 21 angeschlossen ist und auf der Basis der Steuerinformation CI Sprachsignale zusammensetzt, wobei diese Signale von dem Sprachsynthesemittel 22 als Sprache abgegeben werden.

Gemäß dem erfindungsgemäßen System enthält die unabhängig von der Sprachcodiereinheit 10 aufgebaute Sprachantworteinheit 20 kein Zusammensetzungsanalysemittel, das wahrscheinlich eine recht große Kapazität hätte, und die Einheit kann hinsichtlich der Größe und des Gewichts minimiert werden, so daß die Sprachantworteinheit 20 beim Einsatz des zu beschreibenden Systems als Lerneinrichtung bei ausgezeichneter Handhab-

barkeit auf der Benutzerseite angeordnet werden kann.

Für das Speichermittel 14 kann eine IC-Karte oder ein Barcode verwendet werden, in dem die codierten Sprachdaten enthalten sind, so daß im Gegensatz zu einem herkömmlichen Barcode, der von Hand erstellt werden muß, das aus dem Barcode oder dergleichen bestehende Speichermittel 14 in Massenproduktion hergestellt werden kann. Unter Bezugnahme auf Fig. 3 wird nun genauer auf die Sprachcodiereinheit 10 eingegangen. Zum Starten werden ein Satz oder Textdaten als Textdateneingangssignal mit Hilfe des Eingabemittels 11, das als Tastatur oder irgendeine andere Satzeingabevorrichtung oder dergleichen ausgeführt ist, vorgegeben. Im Zusammensetzungsanalysemittel 12 werden die Textdaten in Sprachdaten umgesetzt, die aus der Rhythmusinformation RI (Akzent, Intonation, Pause, Tonhöhe, Lautdauer und dergleichen) und aus der phonetischen Information PI (die die Reihenfolge der Zusammmensetzungseinheiten für die Sprachsynthese angibt) besteht, wobei diese Umsetzung in bekannter Weise auf der Basis des Sprachwörterbuchs oder anderer Regeln durchgeführt wird. Die Sprachdaten werden vom Schreibmittel 13 weiter codiert und dann in das Speichermittel 14 geschrieben. Am Schreibmittel 13 können die Daten binär codiert sein, und als Speichermittel 14 kann eine IC-Karte verwendet werden. Unter dem Gesichtspunkt der optimalen Anwendbarkeit der Erfindung wird die Codierung am Schreibmittel 13 als Barcode ausgeführt, was in anderen Worten heißt, daß das Speichermittel ein

Barcode ist, mit dem die Sprachdaten auch auf Papier durch Drucken in großem Maßstab geschrieben werden können, so daß sich das Speichermittel 14 für eine automatische Herstellung und sehr gut für eine Massenproduktion eignet, wie noch zu erkennen sein wird. Wenn als Speichermittel 14 der Barcode benutzt wird, wird ermöglicht, daß Anwender in beliebiger Weise auf das Speichermittel zugreifen, so daß eine ausgezeichnete Anpaßbarkeit an Lerneinrichtungen gegeben ist.

Bei der Erstellung des Barcodes ist es am besten, wenn die binär angegebenen und seriell aufeinanderfolgenden Sprachdaten bei jeder vorgegebenen ungeraden Anzahl von Bits unterteilt werden. Der Barcode wird auf der Basis einer Tabelle erstellt, in der die Daten gemäß dieser Angabe unterteilt sind und wobei  $2^{2n-1}-1$ -Codes in  $(2^n-2)\times(2^n-2)$ -Variationen angewendet werden, wobei nur aus "1"-Zeichen oder "0"-Zeichen bestehende Codefelder aus denen Codes bezüglich n Bars mit den logischen Werten "1" und "0" abhängig davon entfernt werden, ob sie breit oder schmal sind, und außerdem Codes bezüglich von n Zwischenräumen so angeordnet werden, daß sie einander entsprechen, und ein schmaler Bar wird für eine Beendigung des so erstellten Barcodes hinzugefügt.

Mit Bezugnahme auf Fig. 4 sei angenommen, daß die eingegebenen Sprachdaten gemäß Fig. 4(a) aus 2H (6 Bits), OH (8 Bits), 12H (5 Bits), 2CH (6 Bits), 5H (4 Bits), 3H (8 Bits), 12H (5 Bits), 26H (6 Bits), OH (4 Bits) und OH (1 Bit) bestehen. Ein Startcode 47H (7 Bit) wird an der obersten Position der Eingangsdaten hinzugefügt, und die niedrigwertigen 8 Bits eines Summenwertes mit der Annahme, daß alle Codes 8-Bit-Daten sind, werden der Endposition als Prüfsummencode-80H (8 Bits) gemäß Fig. 4(b)- an der Endposition hinzugefügt.

Die Eingangsdaten, der Startcode und der Prüsummencode werden gemäß der binären Angabe von Fig. 4(c) modifiziert und gemäß dieser Darstellung hintereinandergefügt. In diesem Fall werden der Endposition 2 zusätzliche Bits hinzugefügt, damit eine Unterteilung nach jeweils (2n-1) Bits möglich ist, d. h. nach jeder ungeradzahligen Anzahl, also nach 7 Bits gemäß der Zeichnung. Die jeweiligen geteilten 7-Bit-Daten werden dann in die Form 10ai+bi gemäß Fig. 4(d) der Zeichnung umgesetzt, wobei in diesem Fall die einleitend erstellten Binärdaten gemäß der folgenden Tabelle II als ai und als bi benutzt werden:

| aı | Bar-Daten<br>(0 0 0 0) | bi | Abstands-Daten (0 0 0 0) | :  |
|----|------------------------|----|--------------------------|----|
| 0  | 0 0 0 1                | 0  | 0 0 0 1                  | 30 |
| 1  | 0010                   | 1  | 0010                     |    |
| 2  | 0011                   | 2  | 0011                     |    |
| 3  | 0100                   | 3  | 0 1 0 0                  | 35 |
| 4  | 0101                   | 4  | 0 1 0 1                  |    |
| 5  | 0110                   | 5  | 0110                     | 1  |
| 6  | 0111                   |    | (0 1 1 1)                | 40 |
| 7  | 1000                   | 6  | 1000                     |    |
| 8  | 1001                   | 7  | 1001                     |    |
| 9  | 1010                   | 8  | 1010                     | 45 |
| 10 | 1011                   |    | (1 0 1 1)                |    |
| 11 | 0011                   | 9  | 1100                     |    |
| 12 | 1101                   |    | (1 1 0 1)                | 50 |
|    | (1 1 1 0)              |    | (1 1 1 0)                | 50 |
|    | (1 1 1 1)              |    | (1 1 1 1)                |    |

25

Die Bars und Zwischenräume werden dann so erzeugt wie in Fig. 4(e) dargestellt ist, und auf der Basis dieser Daten wird gemäß Fig. 4(f) ein Barcode BC geschrieben. Dabei ist an die Endposition ein schmaler Bar hinzugefügt, so daß die Breite des an der letzten Stelle befindlichen Bars wirksam erkannt werden kann; die oben angegebene Umsetzungstabelle ist so vorbereitet, daß Daten, die nur aus "0"- oder "1"- Zeichen bestehen, nicht verwendet werden, da die Anzahl der "1", d. h. breite Bars und breite Abstände dann kleiner ist, wie zu erkennen ist.

Der in Fig. 4 dargestellte Barcode BC kann mit veränderlicher Abtastgeschwindigkeit abgetastet werden, indem die Bars und Abstände so angeordnet werden, daß sie bei einer Aufteilung in Vierergruppen beginnend mit dem an der obersten Position befindlichen Bar wenigstens ein Bar ein schmales Element und ein weiteres Bar ein breites Element ist, wobei die Schwellenwerte für die breiten und schmalen Bars in Abstände bezüglich jeder Einheit aus vier Bars und vier Abständen eingestellt werden, Es wird ermöglicht, 7-Bit-Daten mit insgesamt acht Bars und Abstände, d. h. 8 Bits (die 130 Variationen mit 13 Variationen von ai und 10 Variationen von bi) darstellen, und es wird eine wesentlich höhere Speicherdichte für den Barcode erreicht als mit jedem anderen

bekannten Barcode möglich wäre.

Gemäß einem weiteren wichtigen Merkmal der Erfindung macht das Steuerinformations-Erzeugungsmittel 21 in der Sprachantwort 20 von einem besonderen Fühler in einem Leseorgan Gebrauch, das im Erzeugungsmittel 21 enthalten ist, wobei der Fühler eine Reduzierung der für das Leseorgan erforderlichen Bauteile erlaubt. Nach Fig. 5 enthält der Sensor eine Linse 30 und ein lichtemittierendes Element 31, das im oberen Teil der Linse 30 eingebettet ist. Für dieses lichtemittierende Element 31 wird eine Leuchtdiode verwendet, während aus Linse 30 eine aus Kunststoff hergestellte konvexe Linse oder, falls erforderlich, eine im Handel erhältliche Linse mit Leuchtdiode verwendet werden kann. Durch ein in der Linse gebildetes Loch 33 wird eine Lichtleitfaser 32 so geführt, daß ein Ende dieser Lichtleitfaser 32 die untere Fläche der Linse 30 erreicht, d. h. die konvexe Fläche an der lichtabstrahlenden Linsenseite. In anderen Worten heißt dies, daß die konvexe Fläche der Linse 30 diejenige Fläche des Leseorgans ist, die dem das Speichermittel in der obigen Ausführung bildenden Barcode am nächsten liegen soll und die Lichtleitfaser erstreckt sich soweit, daß sie beim Betrieb des Leseorgans bei dieser Fläche liegt, während das Vorderende der Lichtleitfaser 32 jedoch eine vorzugsweise geringfügig nach Innen zurückgezogene Position bezüglich der konvexen Fläche der Linse einnimmt. Das Loch 33 sollte vorzugsweise gleichzeitig mit den Formen der Linse 30 und nicht durch ein Bohren oder dergleichen hergestellt werden. Am anderen Ende der Lichtleitfaser 32 ist ein lichtempfangendes Element 34 eines Fototransistors oder dergleichen ange-

Wenn das lichtemittierende Element 31 Licht in den Sensor der obigen Ausführung abstrahlt, wird dieses abgestrahlte Licht von der Linse 30 kondensiert und auf den Barcode gerichtet, und vom Barcode reflektiertes Licht wird aufgrund der Übertragung durch die Lichtleitfaser 32 auf das lichtempfangende Element 34 gelenkt. In dieser Anordnung ermöglicht die gesamte Baugruppe aus der Linse 30, dem lichtemittierenden Element 31 und der Lichtleitsaser 32, daß der Sensor leicht in bezug zum Barcode angeordnet werden kann, ohne daß eine Positionierung zwischen den jeweiligen Bauteilen und in bezug auf den Barcode erforderlich ist, was im Gegensatz zu bekannten Sensoren steht, in denen die Bauteile voneinander unabhängig sind; außerdem kann die erforderliche Anzahl von Bauteilen von drei auf eins reduziert werden, so daß die gesamte Anordnung in

wirksamer Weise zu einer Verbesserung der Produktivität beiträgt.

Eine weitere Ausführung des Fühlers ist in Fig. 6 dargestellt, bei dieser Ausführung ist das vordere Ende der Lichtleitfaser 32a zugespitzt, so daß ein sich verjüngendes Ende 32a' entsteht. Durch Vorsehen dieses sich verjüngenden Endes 32a' wird es möglich, die Lichteintrittsfläche für das reflektierte Licht an diesem Ende der Lichtleitfaser 32a größer als im Fall von Fig. 5 zu machen, so daß die Verstärkung in einer Verstärkungsschaltung für das Ausgangssignal des lichtempfangenden Elements 34a angehoben wird. In Fig. 6 sind die gleichen Bauteile wie in Fig. 5 mit den gleichen Bezugszeichen unter Hinzufügung des Buchstabens "a" gekennzeichnet;

die übrige Anordnung und die Wirkungsweise sind ebenso wie in Fig. 5.

Eine weitere Ausführungsform des Sensors ist in Fig. 7 dargestellt; bei dieser Ausführung ist am Ende einer Lichtleitfaser 32b eine harte Perle 32b' befestigt, so daß diese Perle an der konvexen Fläche einer Linse 30b zu liegen kommt. Diese Perle 32b' besteht aus Glas oder einem ähnlichen Material, und das Ende der Lichtleitfaser 32b ist in ein Loch eingefügt, das vorzugsweise in der Mitte der Perle 32b' gebildet ist. Bei dieser Anordnung kann der Barcode durch die Perle durch weiches Entlangführen des Sensors längs des Barcodes abgetastet werden, und die Anwendung kann vereinfacht werden, während die Perle in wirksamer Weise zu einem Oberflächenschutz des hier verwendeten optischen Systems beiträgt. Auch in Fig. 7 sind die gleichen Bauteile wie in Fig. 5 mit den gleichen Bezugszeichen unter Hinzufügung des Buchstabens "b" gekennzeichnet; die übrige Anordnung und die Wirkungsweise sind ebenso wie im Fall von Fig. 5.

Eine weitere Ausführungsform des Sensors ist in Fig. 8 dargestellt; bei dieser Ausführungsform ist auch das mit dem hinteren Ende der Lichtleitfaser 32c gekoppelte lichtempfangende Element 32c in den oberen Teil einer Linse 30c eingebettet, damit der Sensor noch kompakter wird. In Fig. 8 sind die gleichen Bauteile wie in Fig. 5 ebenfalls mit den gleichen Bezugszeichen unter Hinzufügung des Buchstabens "c" gekennzeichnet; im übrigen stimmen die Anordnung und die Wirkungsweise im wesentlichen mit der Ausführungsform von Fig. 5 überein.

Sensoren 30 bis 30c, wie sie oben beschrieben worden sind, werden jeweils zum Abtasten des Barcodes BC, wie er in Fig. 9 dargestellt ist, in der Praxis verwendet, und sie geben an ihrem lichtempfangenden Element 34 bis 34c in Abhängigkeit von der breiten und schmalen Form der Bars und der Abstände ein Ausgangssignal ab, die

anhand der Fig. 10 und 11 noch deutlich wird.

Gemäß einem weiteren wichtigen Merkmal der Erfindung kann das Sprachcodierungs- und Sprachsynthesesystem als Lerngerät, insbesondere als eine Anordnung in der Art eines sprechenden Sprachwörterbuchs angewendet werden. In diesem Zusammenhang wird auf die Fig. 12 bis 14 verwiesen, wonach die Wörterbuchanordnung ein Sprachwörterbuch LD als Sprachcodiereinheit und als Sprachantworteinheit ein Lesemittel 40 aufweist; im vorliegenden Fall enthält das Sprachwörterbuch LD Wörter Weiner Sprache, ihre phonetischen Zeichen PS und entsprechende Wörter in einer anderen Sprache sowie in der mit Bezugnahme auf die Fig. 1 bis 4 beschriebenen Weise erstellte Barcodes BC für die entsprechenden Wortaussprachen, die für jedes Wort W aufgedruckt sind. Der Barcode BC soll hier aus einer digitalisierten Sprachinformation bestehen, so daß eine Stimme des ausgesprochenen Wortes W durch eine Sprachsynthese gemäß dem Prozeß mit regelmäßiger Synthese reproduziert werden kann. Wie in Fig. 15 dargestellt ist, sollte der Barcode BC am besten die phonetische Information aus den Phonemzweigzahlen des gesprochenen Wortes, die Rhythmusinformation aus der Länge der Phonemzweige, dem Tonhöhenschwerpunkt der Phonemzweige und dem Leistungsschwerpunkt der Phonemzweige des gesprochenen Wortes sowie bestimmte Verarbeitungsinformationen über die Stimmlosigkeit, die Assimilation und die Macrotonart des Worts enthalten. Zur Verbesserung der Tonqualität des gesprochenen wiedergegebenen Worts wird der Barcode BC vorzugsweise insbesondere in bezug auf die Länge, den Tonhöhenschwerpunkt und den Leistungsschwerpunkt der die Rhythmusinformation des Wortes bildenden Phonemzweige im Informationsumfang groß gemacht.

## OS 38 23 724

Vorzugsweise ist ein Leseorgan 40 für den Barcode beispielsweise in einer schreibstiftartigen Vorrichtung untergebracht, die leicht in der Hand des Benutzers gehalten werden kann, und in dem schreibstiftartigen Leseorgan 40 ist ein kleiner Lautsprecher 41 eingebaut, so daß das Sprachausgangssignal dem Lautsprecher 41 über einen Barcodeleser 42 und ein ebenfalls im Leseorgan 40 enthaltenes Sprachsynthesemittel 42A zugeführt wird. Ein Schalter 43 zum An- und Abschalter der elektrischen Energieversorgungsquelle ist ebenfalls in erwünschter Weise im Leseorgan 40 vorgesehen, wobei sie an der richtigen Stelle wie dem Mittelteil des schreibstiftartigen Leseorgans 40 angebracht ist.

Wenn der Benutzer eines der Wörter Wim verwendeten Wörterbuch LD nachschlägt und die Aussprache des Wortes lernen will, wird der Schalter 43 des Leseorgans 40 eingeschaltet, ein gegebener Barcode BC für das Wort wird mit Hilfe des Sensors 42' des Leseorgans 40 abgetastet, worauf dann die Sprachinformation des Barcodes von dem den Sensor 42' enthaltenden Barcodeleser 42 gelesen wird und schließlich die gelesene Ausgangsinformation dem Sprachsynthesemittel 42A zugeführt wird. Die dem Sprachsynthesemittel 42A zugeführte Sprachinformation wird für ein sequentielles Lesen eines Zeichenfeldes des Wortes W gemäß Fig. 16(a) auf der Basis der im Barcode enthaltenen Phonemzweigzahl erarbeitet. Für den Phonemzweig können Formantparameter oder PARCOR-Parameter des Analyse- und Zusammensetzungssystems benutzt werden. Wie Fig. 16(b) und Fig. 16(c) zeigen, werden die entsprechenden Phonemzweige entsprechend ihrer Dauer und ihrer Amplitude komprimiert oder expandiert und danach entsprechend einer vorbestimmten Regel gekoppelt, so daß sie sich in einem sogenannten Syntheseeinheitsfeld befinden; sie werden dann mittels des Prozesses mit regelmäßiger Synthese in bezug auf Grundfrequenzen der entsprechenden Phonemzweige der Sprachsynthese unterzogen, und es wird ein Sprachsignal gemäß Fig. 16(d) mit gegebenem Akzent und gegebener Intonation im Barcode des phonetischen Zeichens wird zusammengesetzt und durch den Lautsprecher 41 wiedergegeben.

Als Sprachantworteinheit kann eine Einheit mit flacher Form etwa wie das Leseorgan 50 von Fig. 17 vorgesehen werden, das an seiner Frontseite mit einem Lautsprecher und einer Buchstabierungsanzeige 52 versehen ist. Zum Anzeigen der Buchstabierung kann der Barcode BCso erstellt sein, daß er außerdem eine Buchstabierungsinformation enthält, die alphanumerische Zeichen umfaßt, wodurch ermöglicht wird, daß der Benutzer der wiedergegebenen Aussprache eines ausgewählten Wortes zuhört, während er die Buchstabierung des gleichen Wortes in einer Position beobachten kann, die nahe genug ist, um das Zuhören und das Beobachten leichter und klarer zu machen. Das Leseorgan 50 kann mit Anschlußklemmen 50a und 50b für einen (nicht dargestellten) getrennten Sensor, mit einem Kopfhörer oder dergleichen, mit einem Speichermittel 53 und mit verschiedenen Schaltern PW, SW1, SW2, ... für das An- und Abschalten einer Energiequelle, das An- und Abschalten des

Gemäß einem weiteren wichtigen Merkmal der Erfindung kann das System als Lerneinrichtung verwendet werden, die sich für die Verwendung mit Kindern eignet. Nach Fig. 18 enthält die Lerneinrichtung ein bilderbuchartiges Textbuch EB, das die Sprachcodiereinheit bildet, sowie ein Leseorgan 60, das die Sprachantworteinheit bildet und dem Leseorgan 50 von Fig. 17 gleicht. Im Textbuch EB sind gleichzeitig Bilder M, entsprechende Wörter W und ebenfalls entsprechende, die Sprachinformation enthaltende Barcodes BC gedruckt. Bei der Erzeugung dieser Barcodes BC werden im wesentlichen die gleichen Prozesse angewendet, die im Zusammenhang mit den Fig. 1 bis 4 und den Fig. 12 bis 16 beschrieben worden sind. Das Leseorgan 60 ist als ein Organ mit flacher Form ausgeführt und mit einem Lautsprecher 61 sowie einer Wortanzeige 62 versehen, wobei diese Teile zusammen mit einem erforderlichen Speichermittel 63 in einem Gehäuse untergebracht sind. Über ein Kabel 64 ist ein schreibstiftartiger Sensor 65 mit dem Leseorgan verbunden, mit dessen Hilfe die Barcodes BC abgetastet werden können; ferner ist das Leseorgan 60 mit einem Ein- und Ausschalter PW für die Energiequelle sowie mit entsprechenden Schaltern SW 1 – SW 5 zum Betätigen entsprechender Mittel versehen, wie anschließend noch erläutert wird.

Es wird nun speziell unter Berücksichtigung von Fig. 19 auf das Leseorgan 60 Bezug genommen. Mittels des schreibstiftartigen Sensors 65 wird die Sprachinformation des Barcodes BC gelesen und als Eingangssignal an ein Ausgangssteuermittel OC angelegt, das die Steuerung eines Sprachsynthesemittels VCO sowie eines Umsetzungsmittels CCO bewirkt; das Sprachsynthesemittel VCO setzt die Sprachsignale auf der Basis des Prozesses mit regelmäßiger Synthese so zusammen, daß sie durch den Lautsprecher 61 wiedergegeben werden, und das Umsetzungsmittel CCO setzt beispielsweise eine gedruckte Wiedergabe eines ausgewählten Bildes Mentsprechenden Wortes in eine Eingangsinformation für eine geschriebene Anzeige um, wobei eines von mehreren vorhandenen Zeichen für ein Wort in ein anderes Zeichen umgesetzt wird, oder sie setzt ein Wort der Muttersprache ien Wort einer Fremdsprache für die Wiedergabe an der Anzeigevorrichtung 62 um. Das Ausgangssteuermittel OC kann über eine Schnittstelle I1 auch von einem Ausgangsbestätigungsmittel OP1 betrieben werden, das mit dem Schalter SW1 für den Sprachausgabebetrieb, dem Schalter SW2 für den Anzeigeausgabebetrieb und dem Schalter SW3 für den Ausgabemodus versehen ist, wobei in der Praxis Ein- und Aus-Vorgänge der Sprachausgabe, des Umsetzungsbetriebs oder der Anzeigeausgabe mit Hilfe dieser Schalter SW1 bis SW3 ausgeführt werden.

Die vom Sensor 65 gelesene Sprachinformation wird auch einem Speichersteuermittel MC zugeführt, das über eine Schnittstelle 12 durch ein Speicherbetätigungsmittel OP2 betrieben wird, damit ein Ausgangssignal für ein Zwischenspeichermittel TM erzeugt wird. In diesem Fall enthält das Speicherbetätigungsmittel OP2 vorzugsweise einen Schalter SW4 für den Speicherstart sowie den Schalter SW5 für die Speicherauswahl, wobei diese Schalter an der Frontseite des Leseorgans 60 angebracht sind, so daß das Speichern, Lesen oder Löschen der Sprachinformation bezüglich des Zwischenspeichermittels TM durch Betätigen dieser Schalter SW4 und SW5 gesteuert werden können.

Beim Betrieb der Lerneinrichtung gemäß Fig. 18 unter Bezugnahme auf Fig. 20 schaltet der Benutzer den Stromversorgungsanschlußschalter PW und den Sprachausgabebetätigungsschalter SW1 ein, und er tastet einen Barcode BC eines Bildes M im Textbuch EB mittels des schreibstiftartigen Sensors 65 ab, worauf das

Sprachsynthesemittel VCO ein zusammengesetztes Einheitsfeld in einem Umsetzungsmittel auf der Basis der die Sprachinformation bildenden Phonemzweigzahl in der gelesenen Sprachinformation des Barcodes BC erzeugt, während die Information mit einer zusammengesetzte Einheitsfelder enthaltenden Datei CUF verglichen wird. Die hier genannte zusammengesetzte Einheit wird auf der Basis der Silben der entsprechenden Sprachen zusammengesetzt, und Parameter wie die Formantparameter, Koeffizienten der linearen Voraussage und dergleichen können angewendet werden. Am Sprachsynthesemittel VCO werden die Grundfrequenz BF und das Amplituden/-Dauer-Signal OCT an einem Einstellmittel SM durch Vergleich mit einer Rhythmustabelle RT eingestellt, die auf der Länge, der Schwerpunkttonhöhe und der Schwerpunktenergie der Phonemzweige beruhen, die die Rhythmusinformation der gesprochenen Information bilden. Im Feld der zusammengesetzten Einheit werden die Länge und die Amplitude der jeweiligen zusammengesetzten Einheit auf der Basis einer vorbestimmten Regel bestimmt, bei der die Phonemkopplung berücksichtigt wird und in Abhängigkeit vom Amplituden/Dauer-Signal OCT der entsprechenden Phoneme vorgegangen wird, wobei die Einheiten im Zusammensetzungsmittel CUC zusammengesetzt werden. Die Grundfrequenz BF wird als Parameter einer Sprachquelle VS einer Sprachzusammensetzungseinheit VC zusammen mit der speziellen Verarbeitungsinformation der Sprachinformation zur Verfügung gestellt, während das Feld der zusammengesetzten Einheit als Parameter eines Synthesefilters CF der Sprachzusammensetzungseinheit VC geliefert wird, das simulierte Stimmbander bildet, wodurch die Sprachsynthese in der Sprachzusammensetzungseinheit VC entsprechend einem vorbestimmten Prozeß mit regelmäßiger Synthese verwirklicht wird und die synthetisch gebildete Sprache durch einen Lautsprecher 61 wiedergegeben wird.

Wenn andererseits das andere Zeichen eines der Bilder M im Textbuch EB als das wiedergegebene Zeichen dem Benutzer zur Kenntnis gebracht werden soll, wird der Ausgangsmodusschalter SW3 betätigt, damit die Zeichenumsetzung ausgewählt wird; der Ausgabebetriebsschalter SW2 für die Anzeige des Ausgabebetätigungsmittels OP1 wird eingeschaltet, damit die Zeichenumsetzung im Vergleich mit einer Wörterbuchtabelle DT mit Hilfe von wenigstens zwei Umsetzungseinheiten CC1 und CC2 im Umsetzungsmittel CCO durchgeführt wird, worauf dann das umgesetzte Zeichen vom Anzeigemittel 62 angezeigt wird. Wenn etwas bereits einmal Gelerntes wiederholt gelernt werden soll, wird der Speicherstartschalter SW4 eingeschaltet, damit die Sprachinformationselemente des Barcodes BC sequentiell abgespeichert werden. Im Anschluß daran wird der Speicherwählschalter SW5 für ein wiederholtes Lernen eingeschaltet. In diesem Fall ist die Anordnung so ausgeführt, daß ein gewünschtes Bild abhängig von einer wiederholten Anzahl von Einschaltvorgängen des Schalters SW5 ausgewählt werden kann, und es wird ermöglicht, die Wortanzeige und die Zeichenanzeige

mittels einer vorbestimmten Anzahl von wiederholten Einschaltungen gleichzeitig zu verwirklichen.

Ein weiteres wichtiges Merkmal der Erfindung besteht darin, daß das System als Warenunterscheidungsanordnung für die Verwendung durch Schwachsichtige oder Blinde benutzt werden kann. Nach Fig. 21 enthält die Warenunterscheidungsanordnung ein Leseorgan 70, das die Sprachantworteinheit bildet und die Fähigkeit hat, den an einer Ware CG als Sprachcodiereinheit angebrachten Barcode BC zu lesen. Das Leseorgan 70 enthält einen Abtaster 71 und einen Barcodeleser 72, wobei der Abtaster 71 in einem Lesersockel 73 untergebracht ist, der direkt mit der Ware CG in Kontakt gebracht wird, während der Barcodeleser 72 über ein Sprachsynthesemittel 74 mit einem Lautsprecher 75 verbunden ist. Der an der Ware CG angebrachte Barcode BC ist vorzugsweise in Form von Erhebungen ausgebildet, damit die einzelnen Bars fühlbar sind, oder er kann als ein aufkleberartiges Folienteil auf einen vorstehenden Steg der Ware CG aufgeklebt sein. Der Benutzer kann die Ware CG festhalten und durch Berühren die Position des Barcodes BC festzustellen, und er kann dann den Barcode auf das Leseorgan 70 legen, damit diesem die Sprachinformation zugeführt wird, und durch den Lautsprecher 75 kann dann eine allgemeine Bezeichnung der Ware CG wiedergegeben werden.

Wie Fig. 22 zeigt, kann der Barcode BC auch quer zu einer Nut 52 angebracht werden, die auf einer Fläche der Ware oder des Objekts OJ vorgesehen ist, wobei alle Bars des Codes quer zu der Nut verlaufen; der blinde Benutzer kann auf diese Weise durch Tasten die Lage der Nut 82 erkennen, worauf dann ein schreibstiftartiges Leseorgan 80 längs der Nut geführt wird, wobei eine Sensorspitze 82 des Leseorgans 80 längs der Nut gleitet und der Barcode BC auf diese Weise abgetastet wird; der Warenname kann auf diese Weise in gesprochener Wiedergabe erhalten werden. Die Anordnung in dieser Ausführung kann natürlich in wirksamer Weise nicht nur für die Verwendung durch Blinde eingesetzt werden, sondern auch als allgemeine Unterrichtungseinrichtung.

Gemäß einem weiteren Merkmal der Erfindung kann ein tragbares Leseorgan vorgesehen werden. Nach den Fig. 23 und 24 hat das Leseorgan 90 in dieser Ausführung beispielsweise die Form einer Armbanduhr, die über eine Leitung 91 mit einem Sensor 92 verbunden ist, der die Form einer Fingerkappe hat; eine Linse 92a ist bei einer solchen Anordnung in einer der Ausführungen nach den Fig. 5 bis 8 an der Innenseite des Sensors 92 angebracht, damit sie mit dem Barcode BC an einem Objekt OJ mit einer Anbringung beispielsweise an der Zeigefingerspitze in Kontakt gebracht werden kann. Im Leseorgan 90 kann zur ausgesprochenen Wiedergabe der Barcodeinformation ein Lautsprecher enthalten sein. Außerdem kann beispielsweise beiderseits des Barcodes BC in dessen Abtastrichtung beispielsweise jeweils ein Vorsprung 93, 93a angebracht sein, so daß der blinde Benutzer durch Berühren dieser Vorsprünge 93 und 93a die Lage des Barcodes erkennen und die Barcodeinformation mit der Fingerspitze mittels des Sensors 92 abtasten kann, damit die gesprochen wiedergegebene Information erhalten wird, die nicht nur die Ware bezeichnen kann, sondern auch irgendeine andere in Form eines gedruckten Barcodes gegebene Angabe sein kann.

Da der an der Fingerspitze des Benutzers angebrachte Sensor 92 des Leseorgans 90 von Fig. 23 und Fig. 24 exakt mit dem Barcode unter der Kontrolle durch den Finger des Benutzers in Kontakt gebracht werden muß, kann die Möglichkeit einer fehlerhaften Bedienung auf ein Minimum verringert werden und das Leseorgan kann von allen, die keine Körperbehinderung haben, als Teil eines POS-Systems eingesetzt werden. Wenn die beschriebene Ausführung zu Unterrichtszwecken benutzt wird, ist es möglich, den Lernenden besser mit dem Textbuch vertraut zu machen, da das Buch zum Abtasten des Barcodes mit dem Finger berührt werden muß.

# OS 38 23 724

- Leerseite -

Nummer: Int. Cl.<sup>4</sup>: Anmeldetag: Offenlegungstag: 38 23 724 G 10 L 5/02 13. Juli 1988 2. Februar 1989

20





Zur Patentanmeldung vom 13.7.1988 Matsushita Electric Works, Ltd. Sprachcodierungs- und Sprach ...



Fig. 3







Zur Patentanmeldung vom 13.7.1988 Matsushita Electric Works, Ltd. Sprachcodierungs- und Sprach...



3823724





Fig. 14

Sprachsynthese-mittel

A2

Sprachsynthese-mittel

3823724





3823724







3823724





Zur Patentanmeldung vom 13.7.1988 Matsushita Electric Works, Ltd. Sprachcodierungs- und Sprach...

المستام المحمل المامين



Zur Patentanmeldung vom 13.7.1988 Matsushita Electric Works, Ltd. Sprachcodierungs- und Sprach...



Fig. 21





3823724

Fig. 23



Fig. 24



Docket # S&2 THOOOSO!

Applic. #\_\_\_\_\_
Applicant: Tirgen Herre el

Lerner and Greenberg, P.A.
Post Office Box 2480
Hollywood, FL 33022-2480
Tel: (954) 925-1100 Fax: (954) 925-1101