www.anaconda.com

Anaconda 2019.07 for Windows Installer

If linux, use linux download 64bit or 32bit depends on computer

Installing Anaconda

Click next until..... ->

Click next until installation completes

Check the boxes!

Installing Tensorflow (Windows)

- 1. Windows 검색
- 2. "cmd" 검색
- 3. 명령 프롬트 오른쪽 클릭
- 4. 관리자 권한으로 실행 클릭 -> 예 클릭
- 5. "conda install tensorflow" -> 엔터
 (GPU 버전: "conda install tensorflow-gpu")

```
Microsoft Windows [Version 10.0.1] 4.885]
(c) 2018 Microsoft Corporation. All rights reserved.

C:#Windows#system32>conda install tensorflow Collecting nackage metadata (current_repodata.json): done
Solving environment: failed with current_repodata.json, will retry with next repodata source. Initial quick solve with frozen env failed. Unfreezing env and trying again.
Solving environment: failed with current_repodata.json, will retry with next repodata source. Collecting package metadata (repodata.json): done
Solving environment: /
```

Installing Tensorflow (Windows)

```
📷 관리자: 명령 프롬프트 - conda install tensorflow
   protobuf-3.8.0
                                                           527 KB
                                   py37h33f27b4 0
                                                           3.1 MB
    tensorboard-1.13.1
                                   py37h33f27b4_0
                                                              4 KB
                                |mk|_py37h9463c59_0
    tensorflow-1.13.1
                                                           32.4 MB
    tensorflow-base-1.13.1
                                lmkl pv37hcaf7020 0
                                           py_0
py37_1
                                                           205 KB
    tensorflow-estimator-1.13.0
    termcolor-1.1.0
                                                             8 KB
                                                          60.9 MB
                                           Total:
The following NEW packages will be INSTALLED:
  _tflow_select
                     pkgs/main/win-64::_tflow_select-2.3.0-mkl
                     pkgs/main/win-64::absl-py-0.7.1-py37_0
 abs I-py
                     pkgs/main/win-64∷astor-0.8.0-py37_0
 astor
                     pkgs/main/win-64::gast-0.2.2-py37_0
 gast
 grpcio
                     pkgs/main/win-64::grpcio-1.16.1-py37h351948d_1
 keras-applications pkgs/main/noarch::keras-applications-1.0.8-py_0
 keras-preprocessi~ pkgs/main/noarch::keras-preprocessing-1.1.0-py_1
  libmklml
                     pkgs/main/win-64::libmklml-2019.0.5-0
  liborotobuf
                     pkgs/main/win-64::libprotobuf-3.8.0-h7bd577a_0
                     pkgs/main/win-64∷markdown-3.1.1-py37_0
 markdown
 protobuf
                     pkgs/main/win-64::protobuf-3.8.0-py37h33f27b4_0
                     pkgs/main/win-64::tensorboard-1.13.1-py37h33f27b4_0
  tensorboard
  tensorflow
                     pkgs/main/win-64∷tensorflow-1.13.1-mkl py37h9463c59_0
  tensorflow-base
                     pkgs/main/win-64::tensorflow-base-1.13.1-mkl_py37hcaf7020_0
  tensorflow-estima~ pkgs/main/noarch::tensorflow-estimator-1.13.0-py 0
                     pkgs/main/win-64::termcolor-1.1.0-pv37-1
  termcolor
Proceed ([y]/n)?
```

- 6. "y" -> 엔터
- 7. 다 끝나고 "conda list" -> 엔터
- 8. 리스트에 tensorflow, tensorflow-base, tensorflowestimator 확인하 면 정상 설치

Installing Python IDE – pycharm https://www.jetbrains.com/pycharm/

Version: 2019.2

Build: 192.5728.105

Released: July 23, 2019 GMT

System requirements

Installation Instructions

Other versions

Download PyCharm

Windows

macOS

Linux

Professional

For both Scientific and Web Python development. With HTML, JS, and SQL support.

DOWNLOAD

Free trial

Community

For pure Python development

Installing Python IDE – pycharm

다 끝난 후 컴퓨터 다시시작, 그 후 pycharm 실행

Setting up pycharm

Click next until.....

Press skip

Click 'configure' -> 'settings'

Setting up pycharm

Ok 누르면 원본 윈도우 ("settings for new projects")에서 "loading" 뜸 -> click "apply" -> click "ok"

Setting up pycharm

다음 화면에서 위 같은 작업이 진행되는 것을 확인할 수 있음 (컴퓨터 사항에 따라 소요시간 다름)

설치 확인

Python script 생성

Python script 생성

열심히 세팅중...

Project interpreter 세팅 (매 프로젝트당 해야함)

Project interpreter 세팅 (매 프로젝트당 해야함)

1 click

설치 확인 ("hello world" 실행)

위 코드를 똑같이 타입

설치 확인 ("hello world" 실행)

설치 확인 ("hello world" 실행)

결과가 비슷하게 나오면 성공!!

그 후... 실습전 조금 더 배우고 싶은분들

- Python syntax 수업: https://www.codecademy.com/learn/learn-python
 - 사실 필요한 부분은 일부이지만 좋은 introduction to python
- Tensorflow 기본 실습: https://github.com/aymericdamien/TensorFlow-Examples
 - Linear regression:
 <u>https://github.com/aymericdamien/TensorFlow-</u>
 <u>Examples/blob/master/examples/2 BasicModels/linear regression.py</u>

Tensorflow linear regression 예제

```
1-45까지 세팅 (강의에서 디테일하게 커버 예정)
2 A linear regression learning algorithm example using TensorFlow library.
  Author: Aymeric Damien
  Project: https://github.com/aymericdamien/TensorFlow-Examples/
                                                                                  8-12 코드를 돌리기 위한 라이브러리 설정
  from __future__ import print_function
                                                                                  15-18 학습의 파라미터 설정
  import tensorflow as tf
  import matplotlib.pyplot as plt
                                                                                  21-25까지 데이터 로딩
  rng = numpy.random
  # Parameters
  learning_rate = 0.01
                                                                                  28-29까지 데이터가 들어갈 placeholder 세팅
  training epochs = 1000
  display step = 50
  # Training Data
                                                                                  32-33까지 학습하면서 업데이트 될 weights 세팅
   train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
                    7.042,10.791,5.313,7.997,5.654,9.27,3.1])
  train_Y = numpy.asarray([1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221,
                    2.827,3.465,1.65,2.904,2.42,2.94,1.3])
                                                                                  36 weights와 데이터 (x)를 이용한 prediction 설정
  n_samples = train_X.shape[0]
  # tf Graph Input
  X = tf.placeholder("float")
                                                                                  39 계산된 prediction과 실제 값의 차이를 나타내는
  Y = tf.placeholder("float")
                                                                                  cost function 설정
  # Set model weights
  W = tf.Variable(rng.randn(), name="weight")
  b = tf.Variable(rng.randn(), name="bias")
                                                                                  42 cost function을 최소화하면서 weights를 업데이
  # Construct a linear model
  pred = tf.add(tf.multiply(X, W), b)
                                                                                  트할 optimization 설정
  # Mean squared error
  cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
  # Gradient descent
    Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
   optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
                                                                                  여기까지가 tensorflow graph 설정입니다...
  # Initialize the variables (i.e. assign their default value)
  init = tf.global_variables_initializer()
```

Tensorflow linear regression 예제

```
47 # Start training
48 with tf.Session() as sess:
        # Run the initializer
        sess.run(init)
        # Fit all training data
        for epoch in range(training_epochs):
            for (x, y) in zip(train_X, train_Y):
                sess.run(optimizer, feed_dict={X: x, Y: y})
            # Display logs per epoch step
            if (epoch+1) % display_step == 0:
                c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
                print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
                     "W=", sess.run(W), "b=", sess.run(b))
        print("Optimization Finished!")
        training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
        print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
        # Graphic display
        plt.plot(train_X, train_Y, 'ro', label='Original data')
        plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
        plt.legend()
        plt.show()
74
        # Testing example, as requested (Issue #2)
        test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
        test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
78
        print("Testing... (Mean square loss Comparison)")
79
        testing_cost = sess.run(
            tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
            feed_dict={X: test_X, Y: test_Y}) # same function as cost above
         print("Testing cost=", testing_cost)
         print("Absolute mean square loss difference:", abs(
             training_cost - testing_cost))
        plt.plot(test_X, test_Y, 'bo', label='Testing data')
87
        plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
        plt.legend()
        plt.show()
```

텐서플로우는 graph 설정 후, sessio을 실행하여 placeholder에 데이터를 넣어주면서 graph에서 설정한 machine learning algorithm (여기는 선형회기식 w*x+b=y, line 36)을 최적화하는 방식으로 진행됩니다.

54-62 몇번을 돌아가면서 정의한 선형회기식을 최 적화함 session.run(optimizer...)

64-72 학습의 결과를 보여주고 그래프로 나타냄

75-89 테스트 데이터 (학습에 없던 데이터)를 제공하여 학습된 선형회기식에 적용... 그 후 그 결과를 보여줌