Math 256. Sample Midterm exam.

No formula sheet, books or calculators!

Part I

Circle what you think is the correct answer. +3 for a correct answer, -1 for a wrong answer, 0 for no answer.

1. The ODE y' - yp(x) = 0, has the solution,

- (a) CJ (b) J+C (c) J-C (d) C/J (e) None of the above,

where C is a constant and $J = \exp[-\int^x p(\tilde{x})d\tilde{x}].$

2. The ODE y' + f(x)/y = 0, has the solution,

(a)
$$\pm [C + 2 \int_{-x}^{x} f(\tilde{x})d\tilde{x}]^{1/2}$$
 (b) $\pm [C - 2 \int_{-x}^{x} f(\tilde{x})d\tilde{x}]^{1/2}$ (c) $\pm [C + \frac{1}{2} \int_{-x}^{x} f(\tilde{x})d\tilde{x}]^{2}$

(b)
$$\pm [C-2\int^x f(\tilde{x})d\tilde{x}]^{1/2}$$

(c)
$$\pm [C + \frac{1}{2} \int_{-\infty}^{x} f(\tilde{x}) d\tilde{x}]^2$$

(d)
$$\pm [C - \frac{1}{2} \int^x f(\tilde{x}) d\tilde{x}]^2$$
 (e) None of the above,

where C is a constant.

3. The ODE y'' - 4y' + 5y = 0, has the solution,

(a)
$$e^{2x}(A\cos x + B\sin x)$$

(a)
$$e^{2x}(A\cos x + B\sin x)$$
 (b) $e^{-2x}(A\cos x + B\sin x)$ (c) $Ae^{2x}\cos(2x + B)$

(c)
$$Ae^{2x}\cos(2x+B)$$

(d)
$$Ae^x \cos(x+B)$$

(d) $Ae^x \cos(x+B)$ (e) None of the above,

where A and B are constants.

4. The ODE $y'' + y' + 2y = 4x^2$, has the particular solution,

(a)
$$2x^2 - 2x + 1$$

(a)
$$2x^2 - 2x + 1$$
 (b) $2x^2 - 2x - 1$ (c) $2x^2 + 2x + 1$

(c)
$$2x^2 + 2x +$$

(d)
$$2x^2 + 2x - 1$$

(d) $2x^2 + 2x - 1$ (e) None of the above.

Part II

Answer in full (i.e. give as many arguments, explanations and steps as you think is needed for a normal person to understand your logic). Answer as much as you can; partial credit awarded.

1. Define the integrating factor for the first-order ODE, y'+yp(x)=q(x). Hence $(1-x^2)y'-xy=\sqrt{1-x^2}(1+x^2)^2$ with y(0)=0.

2. Solve the ODE,

$$y'' - 4y' + 4y = e^{\lambda x}, \qquad y(0) = y'(0) = 0,$$

for (a) $\lambda \neq 2$, and (b) $\lambda = 2$.