# Osciladores Parte 2 Ruido de Fase

Universidad Tecnológica Nacional de Argentina - F. R. Córdoba
Departamento de Electrónica - Electrónica Aplicada III
Daniel Rabinovich
Ramón Oros
Claudio Paz
Año 2016

## Ruido de fase

- Oscilador ideal
  - Amplitud constante
  - Fase crece linealmente con  $t \rightarrow$  cruces por 0 periódicos
- Variaciones en la fase
  - Menores a 1 s → ruido de fase (en sistemas digitales jitter)
  - Mayores a 1 s → inestabilidad a largo plazo, deriva o drift
- Importancia del ruido de fase en comunicaciones
  - Cada vez, canales más cargados y menos espaciados
  - Sistemas de modulación más complejos para lograr mayor relación bps/Hz
  - Esto implica señalizaciones en la fase con una mayor resolución

## Definiciones

Tensión de salida ideal de un oscilador

$$V(t) = V_0 \sin(\omega_0 t) = V_0 \sin(2\pi f_0 t)$$

Tensión de salida real

$$V(t) = [V_0 + \varepsilon(t)] \sin[2\pi f_0 t + \phi(t)]$$

Representación vectorial



 La saturación de la etapa de sostenimiento de los osciladores reduce el ruido de amplitud (no todos los autores concuerdan)

- Análisis del espectro de una portadora
  - Salida: Generador Analógico HP8640B aproximadamente 1 GHz, 0 dBm
  - Observada: Analizador Espectro HP8568A, 50 Hz/div, span 500 Hz, sweep time 1s/div
  - Durante 0,5 s, en la zona central, se observan múltiples picos en un rango de 25 Hz, esto se lo denomina <u>FM residual</u>
    - No se repite igual en barridos subsiguientes
    - Es un proceso no determinístico
    - La FM residual, la PM residual y el jitter están matemáticamente relacionados



- Se amplia el span a 4,8 kHz
- La FM residual es menos observable
- Se aprecian la bandas laterales de ruido simétricas por naturaleza
- A ± 240, ± 360, y ± 480 Hz probablemente armónicos de la frecuencia de línea de 60 Hz. No aparecen con la señal de calibración por lo que las introduce el generador de señales

 A ± 1560 Hz componentes discretas causadas por disturbios repetibles como el ripple de la fuente o bandas laterales de referencia del

sintetizador



- Ruido de fase, definiciones
  - Densidad espectral de las fluctuaciones de fase

• 
$$S_{\phi}(f_m) = \frac{\Delta \phi_{rms}^2(f_m)}{BW_{\Delta \phi_{rms}}} (rad^2/Hz)$$

- Ruido de fase de banda lateral única (SSB noise)
  - $L(f_m) = \frac{1}{2}S_{\phi}(f_m)$
  - Es la más común, es la relación de la potencia de una sola banda lateral modulada en fase, medida en 1 Hz de ancho de banda, a la potencia total de la señal
  - ullet Se especifica para un determinado apartamiento  $f_m$  de la portadora
  - Si se mide  $L'(f_m)$  con un ancho de banda BW mayor que 1 Hz se debe corregir así

• 
$$L(f_m)\left(\frac{dBc}{Hz}\right) = L'(f_m)\left(\frac{dBc}{BW}\right) - 10logBW$$

Densidad espectral de las fluctuaciones de frecuencia

• 
$$S_{\Delta f}(f_m) = \frac{\Delta f_{rms}^2(f_m)}{BW_{\Delta f_{rms}}} (Hz^2/Hz)$$

 Se relaciona con la densidad espectral de fluctuaciones de fase

• 
$$S_{\phi}(f_m) = \frac{S_{\Delta f}(f_m)}{fm^2} (rad^2/Hz)$$

 Por lo tanto con el ruido de fase de banda lateral única

• 
$$L(f_m) = \frac{S_{\Delta f}(f_m)}{2fm^2}$$

## • Medición de $L(f_m)$

- Basado en la figura anterior, para  $f_m$  = -960 Hz
- $-L(-960) = -72 \text{ dB} 10*\log(30) + 1,7 = -85,1 \text{ dBc/Hz}$
- 1,7 dB tiene en cuenta que el BW del filtro del AE no es igual que el BW efectivo de ruido
- Se observa que para  $f_m$  = +960 Hz el ruido promedio es 4 dB menor
- La asimetría se debe a que el ruido es un fenómeno estadístico y el barrido es lento
- Un nuevo barrido dará valores diferentes debido a la inestabilidad a largo plazo
- Una medición con un promediado mayor requiere mayor tiempo de barrido (Ejemplo VBW menor) la que es afectada por la inestabilidad a largo plazo
- Con un RBW mayor y ST menores, las bandas laterales de ruido se observan más simétricas

- FM residual y PM residual
  - Un barrido angosto de la salida de un oscilador muestra una portadora dispersa
  - Esto se conoce como FM residual o FM incidental
  - Con un discriminador se obtiene banda base
  - La PM residual está relacionada con  $L(f_m)$ 
    - $\Delta \phi^2 = 2 \int_{f_a}^{f_b} L(f_m) df_m(rms)$
  - Lo mismo la FM residual
    - $\Delta f^2 = 2 \int_{f_a}^{f_b} f_m^2 L(f_m) df_m(rms)$
    - Para un estación de FM comercial  $f_a$  = 30 Hz y  $f_b$ = 15 kHz
  - La FM y PM residual están relacionadas con la performance del sistema ya que fija la máxima S/N alcanzable

• 
$$\frac{S}{N}\Big|_{ultimate} = 10 log \frac{\Delta f_{sig,rms}^2}{\Delta f^2}$$

- Por ejemplo una desviación de la señal deseada de 53 kHz o mejor, para una S/N máxima de 60 dB la FM residual debe ser 53 Hz o mejor
- Este valor es aproximado ya que depende de los perfiles de pre-énfasis y de-énfasis

- Ruido de dos puertos
  - El ruido anterior tratado se llama ruido absoluto, lo produce el oscilador
  - Cuando la señal atraviesa un dispositivo ruidoso de 2 puertos se induce ruido de AM y PM incrementando las bandas laterales de ruido
  - Se lo llama ruido aditivo o de dos puertos
  - Normalmente es menor que el absoluto

A diferencia del absoluto el ruido de AM es comparable en magnitud

con el de FM

En la figura, de 1 a 100 MHz es ruido
 blanco con una NF plana de 2,5 dB

- Los efectos de alta frecuencia hacen que el ruido aumente arriba de 100 MHz (shot noise entre otros)
- Debajo de 1MHz se impone el ruido de parpadeo o flicker o 1/f
- La intersección de la NF del ruido plano con el de parpadeo se la conoce la f esquina de flicker. En este caso 6 kHz



- Perturbaciones acústicas
  - El espectrograma de una portadora de 1 GHz producido por un generador HP8640B, con un pequeño vibrador mecánico apoyado en la misma mesa
  - Los niveles de las bandas laterales entre 400 y 1000 Hz se incrementan entre 10 y 15 dB
  - Se conocen como bandas laterales acústicas
  - Son determinísticas para una excitación sinusoidal y semi-determinísticas para el caso de rodamientos ruidosos
  - Este problema es importante en la aviación y otros entornos móviles
  - También los coolers pueden provocar este tipo de perturbación
  - Verdaderamente limitan la performance de un oscilador



- Predicción del ruido de fase en osciladores
  - De las técnicas para estimar el ruido de fase el método clásico es el descripto por David B. Leeson
    - Es sencillo e intuitivo
    - Está basado en la teoría lineal invariante en el tiempo (LTI)
    - Algunos señalan que ciertas limitaciones de esta teoría se alivian mediante la aplicación de la teoría variante en el tiempo (LTV)

- Teoría lineal invariante en el tiempo
  - D. B. Leeson la derivó heurísticamente
  - Sauvage la probó formalmente
  - Leeson supuso un oscilador lineal y que los resultado solo requieren correcciones menores para tener en cuenta los efectos no lineales
  - Afirmó que los componentes de ruido de AM son mucho menores que los de FM, excepto para f suficientemente alejadas de la portadora
  - Supuso un resonador simple, serie o ||, en la red de realimentación

 La expresión de la densidad espectral de potencia de las fluctuaciones de fase es

• 
$$S_{\phi}(\omega_m) = S_{\Delta\phi} \left[ 1 + \left( \frac{\omega_0}{2Q\omega_m} \right)^2 \right]$$

- $-S_{\Delta\phi}$  es la componente de ruido aditivo de tensión, que es plana e igual a  $FkT/P_S$  para el ruido blanco y se incrementa hacia frecuencias más bajas a 6 dB/octava por el ruido flicker, donde
  - F es un factor empírico débilmente correlacionado con el ruido del dispositivo
  - k es la constante de Boltzmann (1,3806488×10<sup>-23</sup>)
  - T es la temperatura de funcionamiento
  - P<sub>S</sub> es la potencia de salida
  - Q es el Q cargado del circuito a lazo abierto del oscilador realimentado
  - $f_0$  (o  $\omega_0$ ) es la frecuencia de la portadora
  - $f_m$  (o  $\omega_m$ ) es el desplazamiento (offset), modulación o frecuencia banda base

- Agregando un término para tener en cuenta el ruido de flicker o parpadeo, la ecuación queda
  - $L(f_m) = 10log \left[ \frac{1}{2} \left( 1 + \frac{f_c}{f_m} \right) \left( 1 + \left( \frac{f_0}{2Q_L f_m} \right)^2 \right) \left( \frac{FkT}{P_S} \right) \right] (dBc/Hz)$
  - Donde  $f_C$  es la frecuencia esquina de flicker
- Dado que F es empírico y  $f_c$  está solo indirectamente relacionada con la f esquina de flicker del dispositivo, el poder de predicción cuantitativo de la ecuación es limitado
- Sin embargo, el ruido de fase predicho por la ecuación de Leeson correlaciona bien con los datos de osciladores ensayados

- Ejemplo de ruido de fase SSB predicho por la ecuación de Leeson
  - $f_0 = 100 \text{ MHz}$ ,  $f_C = 6 \text{ kHz}$ ,  $Q_L = 100$ , F = 1,77 (2,5 dB) y  $P_S = 0 \text{ dBm}$
  - Para un desplazamiento superior al BW del resonador  $(f_0/2Q_L = 0.5 \text{ MHz})$  el ruido de fase es plano, donde el ruido de AM domina
  - Para  $f_m < f_0/2Q_L$  el ruido de fase aumenta con  $f_m$ -2
  - Para  $f_m < f_C$  el ruido de fase aumenta con  $f_m^{-3}$  donde el primer término de Leeson proporciona el  $f_m^{-1}$
  - Para desplazamientos muy próximos a la portadora se produce una paseo aleatorio (random walk) con una pendiente total  $f_m^{-4}$



- Extensiones a la teoría
  - El ruido predicho por la ecuación de Leeson se llama ruido Leeson
  - El ruido de fase de un oscilador está también generado por otros mecanismos además de los predichos por Leeson, principalmente
    - Pushing
    - Ruido por modulación de varactor
    - Ruido de buffer

# Pushing

- Un cambio en la tensión de alimentación cambia la polarización y por ende la función de transferencia del amplificador
- Un cambio en la fase cambia la f del oscilador
- Este ruido es predecible y se determina midiendo la f para tensiones de alimentación por encima y por debajo de la tensión nominal y está dado por

• 
$$\theta_d = \frac{2K_p V_{ns}}{f_m}$$

- Donde  $K_P$  es la sensibilidad de f a los cambios de tensión en Hz/V, y  $V_{ns}$  es la tensión de ruido de la fuente. El ruido de fase SSB debido al pushing vale
- $L(f_m) = 20log \frac{\theta_d}{2}$
- Si  $V_{ns}$  es una señal discreta el par de BL es determinístico
- Si  $V_{ns}$  es ruido que se expresa en V/Hz las BL son no determinísticas

## Ruido por modulación de varactor

- Es común la sintonía por diodo varactor o varicap
- Cualquier ruido en la tensión de sintonía modula la portadora
- Aunque la tensión de sintonía no tenga ruido, los diodos varactores tienen ruido interno
- La resistencia efectiva de ruido R<sub>enr</sub> para diodos varactores de Si de juntura hiper abrupta va de 300 ohm a 10 kohm
- Esta R<sub>enr</sub> no es la que se usa para modelar el Q sin carga del varactor, la cual es un R en serie normalmente menor que 10 ohm
- La tensión de ruido producida por la  $R_{enr}$  está dada por

• 
$$V_{nv} = \sqrt{4kTR_{enr}}$$

- Y la desviación de fase pico en 1 Hz de BW se calcula con
  - $\bullet \quad \theta_d = \frac{\sqrt{2}K_v V_{nv}}{f_m}$
  - Donde  $K_v$  es la constante de la ganancia del VCO expresada en V/Hz
- El ruido de fase está dado, al igual que el pushing, por
  - $L(f_m) = 20log \frac{\theta_d}{2}$
- La degradación por ruido de varactor es más severa cuanto mayor sea la banda de sintonización por lo que este ruido es limitante en osciladores con  $K_v$  de 50 MHz/V o mayor
- El ruido total es la suma de Leeson + pushing + ruido por varactor

- Comparación de dos módulos osciladores
  - Módulo VCO

# VOLTAGE CONTROLLED OSCILLATOR SURFACE MOUNT MODEL: DCRO1317-5

## OPTIMIZED BANDWIDTH

136 - 174 MHz

#### FEATURES:

- Exceptional Phase Noise Performance
- Small Size, Surface Mount
- Lead Free Patented REL-PRO® Technology
- ► Planar Resonator Construction





## Oven Controlled Crystal Oscillator (OCXO)

# OVEN CONTROLLED CRYSTAL OSCILLATOR PLUG-IN MODEL: OXO120-1-349

#### FEATURES:

- ► Exceptionally Low Phase Noise
- ▶ Fast Warm-up Time
- ▶ Low Power Consumption
- ▶ Tight Frequency Stability
- ▶ Excellent Long-Term Stability
- ► El. Frequency Tuning Input
- ► Reference Voltage Output
- ► Small CO-8 package



### Phase Noise 0.30.800784-LF - 120.000 MHz



## Observaciones de la comparación

- El primero es un VCO probablemente controlado por diodo varactor
- El segundo es un OCXO de frecuencia fija
- El ruido de fase térmico plano vale lo mismo en ambos dispositivos -170 dBc
- En el VCO el ruido de fase comienza a crecer aproximadamente dos décadas antes que el OCXO, esto se debe al ruido por el diodo varactor y el bajo Q
- Sin embargo, si el VCO es parte de un sintetizador con PLL, y el lazo esta enganchado, su ruido de fase tiende a aproximarse al ruido de fase del oscilador fijo de referencia

## Ruido de buffer

- Un amplificador separador degrada la performance del ruido de fase cuando su ruido térmico, referenciado a su entrada, es mayor que el ruido de salida del oscilador
- El ruido de buffer referenciado a su entrada, y luego referenciado a la portadora del oscilador viene dado por

• 
$$L(f_m) = 10\log \frac{F_{buf}kT}{P_S}$$

## Ecuación maestra de ruido

- Los términos anteriores no están correlacionados y se pueden sumar en potencia
- Por lo tanto el ruido de fase SSB de un oscilador es

$$-L(f_{m}) = 10log \left[ \frac{1}{2} \left( 1 + \frac{f_{c}}{f_{m}} \right) \left( 1 + \left( \frac{f_{0}}{2Q_{L}f_{m}} \right)^{2} \right) \left( \frac{FkT}{P_{S}} \right) + \frac{2kTR_{enr}K_{v}^{2}}{f_{m}^{2}} + \left( \frac{K_{p}V_{ns}}{f_{m}} \right)^{2} + \frac{F_{buf}kT}{P_{S}} \right] (dBc/Hz)$$

 Esta expresión vale todas las fuentes de ruido en osciladores bien diseñados, sin un excesivo MG del lazo abierto y con componentes pasivos que sólo poseen ruido térmico

<sup>\*</sup>Se sugiere simular en Genesys

- Multiplicación de frecuencia
  - La multiplicación de frecuencia degrada el ruido de fase SSB
  - Sea N el factor de multiplicación
    - $L_{xN}(f_m) = L(f_m) + 10 \log N^2 + A \quad (dBc/Hz)$
    - Donde A es un factor aditivo que depende del tipo de multiplicador usado
      - Reactancia no lineal
      - Conductancia no lineal (como en los diodos dobladores)
    - Los diodos dobladores de barrera Schottky A vale 1 dB o menos
    - Los varactores reactivos y los diodos multiplicadores tipo snap son generalmente más ruidosos

- Estimación de la fuente de ruido predominante
  - Para mejora el comportamiento hay que determinar la fuente principal de ruido
    - Si se conocen los parámetros, la ecuación maestra del ruido de fase SSB, se la aplica para estimar cual ruido predomina
    - Si lo que predomina es el ruido de modulación producido por el varactor, el aumentar el  $Q_L$  del lazo abierto no lo mejora, pero sí si se reemplaza el varactor por un C fijo
    - Para verificar el pushing se reemplaza la fuente por una batería
    - Relativo al ruido de buffer, si  $P_S$  es mayor que 0 dBm, el ruido de buffer no afectaría salvo a f alejadas de la portadora, para evaluar se puede retirar o anular temporalmente el buffer

- Efectos del ruido de fase
  - Un LO ruidoso por medio de la mezcla con una señal interferente transfiere su ruido de fase a la IF corrompiéndola
  - Este fenómeno se lo llama mezcla recíproca
  - Esto se vuelve crítico en Rx que no tienen filtro de RF, en este caso es muy importante el ruido de fase del LO



## Ejemplo

 Un receptor GSM debe soportar una interferencia localizada a tres canales de distancia del canal deseado y es 45 dB mayor. Estime el ruido de fase máximo tolerable del LO si la corrupción por mezcla recíproca debe permanecer 15 dB debajo del nivel de la señal deseada



- Solución
  - La figura muestra el espectro interferente ya convertido. La potencia total de ruido introducida por la señal interferente en el canal deseado vale  $P_{n,tot} = \int_{f_L}^{f_H} S_n(f) df$
  - Asumiendo  $S_n(f)$  plano con f, e igual a  $S_0$ , se obtiene  $P_{n,tot} = S_0(f_H f_L)$
  - Entonces  $SNR = \frac{P_{sig}}{S_0^{S_0}(f_H f_L)}$  que debería ser al menos 15 dB, en otras palabras  $10log \frac{S_0^{S_0}(f_H f_L)}{P_{sig}} = -15dB 10log(f_H f_L)$
  - Como  $10log(P_{int}/P_{sig}) = 45~dB$  la ecuación anterior queda  $10log\frac{S_0}{P_{int}} = -15dB 10\log(f_H f_L) 45~dB$
  - Si  $f_H$ - $f_L$  = 200 kHz entonces  $10 log \frac{S_0}{P_{int}} = -113 dB/Hz$
  - El ruido de fase SSB del LO no puede mayor que -113 dBc/Hz a 600 kHz

- Efectos del ruido de fase
  - El ruido de fase también corrompe a las señales moduladas en fase en los procesos de up y downconversion
  - Como el ruido de fase no se distingue de una modulación de fase o frecuencia, un LO ruidoso corrompe la información transportada por la señal



Una señal QPSK con ruido de fase se expresa así

• 
$$X_{QPSK} = A\cos\left[\omega_c t + (2k+1)\frac{\pi}{4} + \phi_n(t)\right] k = 0, ..., 3$$

 El ruido puede girar la constelación fuera de la zona de detección correcta

## Ejemplo

- Determine cuales puntos en una constelación 16-QAM son más sensibles al ruido de fase
- Solución
  - Considere los cuatro puntos del cuadrante de arriba a la derecha de la figura
  - Los puntos B y C pueden tolerar una rotación de 45° antes de introducirse en los cuadrantes adyacentes
  - Por otro lado los puntos A y D, solo pueden rotar  $\theta$  = tan-1(1/3) = 18,4°
  - Entonces, los ocho puntos externos cercanos a los ejes I y Q son los más sensibles al ruido de fase



## Parámetros de ruido

- La figura de ruido (F o NF) es un modelo simplificado del ruido real en un sistema
- Supone un único elemento de ruido teórico presente en cada etapa
- Los dispositivos reales tienen varias fuentes contribuyentes al ruido
  - Ruido térmico
  - Ruido de disparo (shot)
  - Ruido 1/f o de parpadeo (flicker)
- La figura de ruido del dispositivo activo cambian en función de la impedancia o admitancia de la fuente

- Normalmente la impedancia de fuente óptima para el ruido no coincide con la óptima para la ganancia
- Para elegir la impedancia óptima se necesitan dos caracterizaciones, una para la ganancia y otra para el ruido
- Con los parámetros S se puede calcular la máxima ganancia disponible o la ganancia para impedancias de puertos dadas
- Para caracterizar los parámetros de ruido del dispositivo bajo prueba (DUT) hace falta un sintonizador especial que presente diferentes impedancias complejas al DUT
- La elección de la impedancia de fuente que ve el dispositivo activo es un compromiso entre ganancia y NF

 La dependencia de la F con la impedancia de fuente del sintonizador está descripta por

• 
$$F = F_{min} + \frac{4R_n}{Z_0} \left( \frac{|\Gamma_{opt} - \Gamma_S|^2}{|1 + \Gamma_{opt}|^2 (1 - |\Gamma_S|^2)} \right)$$

- Donde  $\Gamma$  es coeficiente de reflexión de fuente que resulta en una figura de ruido F
- $F_{min}$  es la mínima figura de ruido que ocurre cuando  $\Gamma = \Gamma_{opt}$
- $R_n$  es la resistencia de ruido (describe la sensibilidad de la figura de ruido a los cambios de la admitancia de fuente)
- A  $F_{min}$ ,  $R_n$  y  $\Gamma_{opt}$  se los conoce como los "parámetros de ruido"

- Cuando se traza  $\Gamma_S$  para un F dado, quedan definidos círculos de ruido constante
- Los círculos de ruido son un formato conveniente para mostrar la compleja relación entre la impedancia de la fuente y el factor de ruido



Plano de  $\Gamma_s$ . En líneas continuas los círculos de figura de ruido constante y en líneas de guiones los círculos de ganancia constante. La figura de ruido mínima es 0,8 dB.

## Modelos de ruido para simuladores

- Existen varios formatos para especificar las características de los dispositivo
- Uno muy difundido es el Touchstone File Format
   Specification Version 1.1 y 2.0
- ! Indica comentario
- # describe el formato de datos subsiguientes
- # MHz S MA R 50
- indica frecuencia en MHz, parámetros S, expresados en MA módulo y ángulo sexagesimal, y R 50 indica impedancia de referencia de 50 ohm
- Los datos de ruido no necesitan encabezado, basta que f sea menor que la última f de los parámetros S
- $-R_n$  está normalizado con la misma  $Z_0$  que los parámetros S

```
! Filename: BFG505C.S2P Version: 3.0
! Philips part #: BFG505 Date: Feb 1992
! Bias condition: Vce=3V, Ic=2.5mA
! IN LINE PINNING: same data as with cross emitter pinning.
# MHz S MA R 50
! Freg S11 S21 S12 S22 !GUM [dB]
40 .949 -3.5 6.588 176.1 .005 86.6 .993 -2.0 ! 45.1
100 .942 -8.7 6.499 170.9 .012 83.9 .988 -4.9 | 42.0
200 .920 -17.1 6.337 163.0 .024 79.0 .972 -9.5 ! 36.8
300 .892 -25.6 6.226 155.7 .035 74.1 .949 -13.8 ! 32.8
400 .858 -33.9 6.046 149.3 .045 69.6 .922 -17.6 ! 29.6
500 .823 -41.3 5.771 143.5 .053 65.8 .893 -21.1 ! 27.1
600 .788 -48.4 5.529 138.3 .060 62.9 .862 -24.1 ! 25.0
700 .750 -55.5 5.338 133.3 .066 60.0 .830 -26.5 ! 23.2
800 .706 -62.1 5.126 128.1 .071 57.6 .801 -28.6 ! 21.6
900 .663 -68.1 4.858 123.3 .076 55.6 .772 -30.5 ! 20.2
1000 .619 -74.2 4.605 119.0 .080 53.8 .745 -32.3 ! 18.9
1200 .539 -86.9 4.210 111.0 .088 51.6 .702 -35.9 ! 16.9
```

Formato de archivo, según especificación Touchstone®, de los parámetros S y de ruido para el transistor BFG505 polarizado a 3 V y 2.5 mA.

3000 .275 179.0 2.125 68.6 .131 51.1 .582 -57.3 ! 8.7

! Noise data:

! Freq. Fmin Gamma-opt rn

900 1.30 .583 19.0 .69

2000 1.90 .473 45.0 .55

\*Se sugiere simular C:\Program Files (x86)\GENESYS2009.04\Examples\Amplifiers\Amp Noise.wsx \*Con más detalle en AWR Examples: LNA measurements.emp