Riffled Independence for Ranked Data Jonathan Huang and Carlos Guestrin NIPS, 2009

Zachary Schutzman

University of Pennsylvania

February 2, 2017

Presentation Outline

Introduction

A Short Detour to Group Theory

Properties of Riffle Independence

Fourier Domain Algorithms

Questions and discussion

Distributions over permutations show up in a lot of contexts

Distributions over permutations show up in a lot of contexts

- Object tracking
- ► Feature mapping
- RANKED DATA!

Distributions over permutations show up in a lot of contexts

- Object tracking
- ► Feature mapping
- RANKED DATA!

Are there any mathematical techniques that can tease out useful information from distributions?

Distributions over permutations show up in a lot of contexts

- Object tracking
- ► Feature mapping
- RANKED DATA!

Are there any mathematical techniques that can tease out useful information from distributions?

Yes!

Notation!

Notation!

 S_n is the symmetric group on n elements (the set of bijections $\pi:[n] \to [n]$)

Notation!

 S_n is the symmetric group on n elements (the set of bijections $\pi:[n] \to [n]$)

A distribution over S_n is a function $h: S_n \to \mathbb{R}$ such that:

- for all $\sigma \in S_n$, $h(\sigma) \ge 0$
- $\sum_{\sigma \in S_n} h(\sigma) = 1$

Let h be a distribution over S_n and let σ_P be a p-subset of [n], and σ_Q its complement

Let h be a distribution over S_n and let σ_P be a p-subset of [n], and σ_Q its complement

h is **probabilistically independent** if there exist distributions f and g over S_p and S_q such that $h(\sigma) = f(\sigma_P) \cdot g(\sigma_Q)$

Let h be a distribution over S_n and let σ_P be a p-subset of [n], and σ_Q its complement

h is **probabilistically independent** if there exist distributions f and g over S_p and S_q such that $h(\sigma) = f(\sigma_P) \cdot g(\sigma_Q)$

Why is this nice?

Let h be a distribution over S_n and let σ_P be a p-subset of [n], and $\sigma_{\mathcal{O}}$ its complement

h is **probabilistically independent** if there exist distributions f and g over S_p and S_q such that $h(\sigma) = f(\sigma_P) \cdot g(\sigma_O)$

Why is this nice? If h is probabilistically independent, it only has p! + q! parameters

Let h be a distribution over S_n and let σ_P be a p-subset of [n], and σ_Q its complement

h is **probabilistically independent** if there exist distributions f and g over S_p and S_q such that $h(\sigma) = f(\sigma_P) \cdot g(\sigma_Q)$

Why is this nice? If h is probabilistically independent, it only has p! + q! parameters

But!

Let h be a distribution over S_n and let σ_P be a p-subset of [n], and σ_Q its complement

h is **probabilistically independent** if there exist distributions *f* and *g* over S_p and S_q such that $h(\sigma) = f(\sigma_P) \cdot g(\sigma_Q)$

Why is this nice? If h is probabilistically independent, it only has p! + q! parameters

But!

This is a very strong assumption to make for ranked data

Let's define a looser form of independence

Let's define a looser form of independence

A (p,q)-interleaving is an element of S_n which preserves the ordering within the p- and q-subsets. Call $\Omega_{p,q} \subset S_n$ the set of such permutations

Let's define a looser form of independence

A (p,q)-interleaving is an element of S_n which preserves the ordering within the p- and q-subsets. Call $\Omega_{p,q}\subset S_n$ the set of such permutations

A **riffle distribution** over Σ_n is a distribution which assigns non-zero probability only to elements of $\Omega_{p,q}$

Let's define a looser form of independence

A (p,q)-interleaving is an element of S_n which preserves the ordering within the p- and q-subsets. Call $\Omega_{p,q}\subset S_n$ the set of such permutations

A **riffle distribution** over Σ_n is a distribution which assigns non-zero probability only to elements of $\Omega_{p,q}$

h is **riffle independent** if there exist distributions *f* and *g* and a riffle distribution *m* such that $h(\sigma) = m * (f(\sigma_P) \cdot g(\sigma_Q))$

m can be an arbitrary distribution on $\Omega_{p,q}$, but we might find it useful to think about some restrictions

m can be an arbitrary distribution on $\Omega_{p,q}$, but we might find it useful to think about some restrictions

A **uniform** riffle distribution m^{unif} assigns probability $\frac{1}{|\Omega_{p,q}|}$ to each element of $\Omega_{p,q}$

m can be an arbitrary distribution on $\Omega_{p,q}$, but we might find it useful to think about some restrictions

A **uniform** riffle distribution m^{unif} assigns probability $\frac{1}{|\Omega_{p,q}|}$ to each element of $\Omega_{p,q}$

A biased riffle distribution with parameter α as an interleaving with an α -weighted preference for items in group p over those in group q

m can be an arbitrary distribution on $\Omega_{p,q}$, but we might find it useful to think about some restrictions

A **uniform** riffle distribution m^{unif} assigns probability $\frac{1}{|\Omega_{p,q}|}$ to each element of $\Omega_{p,q}$

A biased riffle distribution with parameter α as an interleaving with an α -weighted preference for items in group p over those in group q

- if $\alpha = .5$, we get the uniform distribution
- if $\alpha = 1$ we 'interleave' by putting all the items in p first, then all the items in q (m(123...n) = 1)
- if $\alpha = 0$, we put all the items in q first

h is **riffle independent** if there exist distributions f and g and a riffle distribution m such that

$$h(\sigma) = m * (f(\sigma_P) \cdot g(\sigma_Q))$$

h is **riffle independent** if there exist distributions f and g and a riffle distribution m such that

$$h(\sigma) = m * (f(\sigma_P) \cdot g(\sigma_Q))$$

The authors present **Fourier-domain algorithms** to analyze and interpret riffle distributions

Presentation Outline

Introduction

A Short Detour to Group Theory

Properties of Riffle Independence

Fourier Domain Algorithms

Questions and discussion

What is a group?

▶ A group *G* is a set and an operation ∘ satisfying the following properties:

- ▶ A group *G* is a set and an operation ∘ satisfying the following properties:
 - ▶ Closure: for all $g, h \in G$, $g \circ h \in G$

- ▶ A group *G* is a set and an operation ∘ satisfying the following properties:
 - ▶ Closure: for all $g, h \in G$, $g \circ h \in G$
 - ▶ Identity: there is a unique $e \in G$ such that for all $g \in G$, $e \circ g = g \circ e = g$

- ▶ A group *G* is a set and an operation ∘ satisfying the following properties:
 - ▶ Closure: for all $g, h \in G$, $g \circ h \in G$
 - ▶ Identity: there is a unique $e \in G$ such that for all $g \in G$, $e \circ g = g \circ e = g$
 - ▶ Inverses: for each $g \in G$, there is a unique g^{-1} such that $g^{-1} \circ g = g \circ g^{-1} = e$

- ▶ A group *G* is a set and an operation ∘ satisfying the following properties:
 - ▶ Closure: for all $g, h \in G$, $g \circ h \in G$
 - ▶ Identity: there is a unique $e \in G$ such that for all $g \in G$, $e \circ g = g \circ e = g$
 - ▶ Inverses: for each $g \in G$, there is a unique g^{-1} such that $g^{-1} \circ g = g \circ g^{-1} = e$
 - ▶ Associativity: for all $f, g, h \in G$, $f \circ (g \circ h) = (f \circ g) \circ h$

The Symmetric Group

 S_n forms a group with respect to the operation of composition of permutations

The Symmetric Group

 S_n forms a group with respect to the operation of composition of permutations

We can write group elements in cycle notation, which describes a way of shifting the objects to form a permutation.

The Symmetric Group

 S_n forms a group with respect to the operation of composition of permutations

We can write group elements in cycle notation, which describes a way of shifting the objects to form a permutation.

Example: The permutation 15324

 S_n forms a group with respect to the operation of composition of permutations

We can write group elements in cycle notation, which describes a way of shifting the objects to form a permutation.

► **Example:** The permutation 15324 can be written as (1)

 S_n forms a group with respect to the operation of composition of permutations

We can write group elements in cycle notation, which describes a way of shifting the objects to form a permutation.

► **Example:** The permutation 15324 can be written as (1)(2

 S_n forms a group with respect to the operation of composition of permutations

We can write group elements in cycle notation, which describes a way of shifting the objects to form a permutation.

► **Example:** The permutation 15324 can be written as (1)(24

 S_n forms a group with respect to the operation of composition of permutations

We can write group elements in cycle notation, which describes a way of shifting the objects to form a permutation.

► **Example:** The permutation 15324 can be written as (1)(245

 S_n forms a group with respect to the operation of composition of permutations

We can write group elements in cycle notation, which describes a way of shifting the objects to form a permutation.

► **Example:** The permutation 15324 can be written as (1)(245)

 S_n forms a group with respect to the operation of composition of permutations

We can write group elements in cycle notation, which describes a way of shifting the objects to form a permutation.

► **Example:** The permutation 15324 can be written as (1)(245)(3)

 S_n forms a group with respect to the operation of composition of permutations

We can write group elements in cycle notation, which describes a way of shifting the objects to form a permutation.

- ► **Example:** The permutation 15324 can be written as (1)(245)(3)
- ▶ The identity element is (1)(2)...(n)

It is useful to be able to think about group elements as matrices, rather than objects in a set.

It is useful to be able to think about group elements as matrices, rather than objects in a set. We know how to do a lot of math with matrices

It is useful to be able to think about group elements as matrices, rather than objects in a set. We know how to do a lot of math with matrices

A **representation** of a group is a function $\rho: G \to \mathbb{C}^{k \times k}$ such that for all $g, h \in G$, $\rho(gh) = \rho(g)\rho(h)$

It is useful to be able to think about group elements as matrices, rather than objects in a set. We know how to do a lot of math with matrices

A **representation** of a group is a function $\rho: G \to \mathbb{C}^{k \times k}$ such that for all $g, h \in G$, $\rho(gh) = \rho(g)\rho(h)$

A representation is **irreducible** if it cannot be written as the direct sum of two other representations

Let's think about the group S_3 . There are only six elements and three irreducible representations

 π

123

213

132

321

231

312

π	g
123	()
213	(12)
132	(23)
321	(13)
231	(132
312	(123

π	g	$ ho_{triv}$
123	()	1
213	(12)	1
132	(23)	1
321	(13)	1
231	(132)	1
312	(123)	1

π	g	$ ho_{ extsf{triv}}$	$ ho_{\sf sgn}$
123	()	1	1
213	(12)	1	-1
132	(23)	1	-1
321	(13)	1	-1
231	(132)	1	1
312	(123)	1	1

π	g	$ ho_{ extit{triv}}$	$ ho_{ m sgn}$	$ ho_{std}$
123	()	1	1	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
213	(12)	1	-1	$\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$
132	(23)	1	-1	$\begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$
321	(13)	1	-1	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$
231	(132)	1	1	$\begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$
312	(123)	1	1	$\begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$

We can define the **Fourier transform** of a function at a representation as follows:

We can define the **Fourier transform** of a function at a representation as follows:

Let f(g) be a function mapping group elements to real numbers and let ρ be any representation of G

We can define the **Fourier transform** of a function at a representation as follows:

Let f(g) be a function mapping group elements to real numbers and let ρ be any representation of G

Then the Fourier transform of f at ρ is equal to $\hat{f}_{\rho} = \sum_{g \in G} f(g) \rho(g)$

We can define the **Fourier transform** of a function at a representation as follows:

Let f(g) be a function mapping group elements to real numbers and let ρ be any representation of G

Then the Fourier transform of f at ho is equal to $\hat{f}_
ho = \sum\limits_{g \in G} f(g)
ho(g)$

If f is a distribution (h from before), then \hat{h} at the irreducibles systematically encodes h.

 π

()

(12)

(23)

(13)

(132)

(123)

$$\hat{h}_{\rho_{triv}} = \frac{2}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{2}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{3}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{1}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{3}{12} \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$$

$$\pi \quad h(\pi)$$
() 2/12
(12) 2/12
(23) 3/12
(13) 1/12
(132) 1/12
(123) 3/12

$$\hat{h}_{\rho_{triv}} = \frac{2}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{2}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{3}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{1}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{3}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{3}{12} \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$$

$$\pi \quad h(\pi)$$
() 2/12
(12) 2/12
(23) 3/12
(13) 1/12
$$\hat{h}_{\rho_{aut}} = \frac{2}{12} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{2}{12} \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} + \frac{3}{12} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} + \frac{1}{12} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} + \frac{1}{12} \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} + \frac{3}{12} \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} = \frac{1}{12} \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$$
(132) 1/12
(123) 3/12

$$\hat{h}_{\rho_{triv}} = \frac{2}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{2}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{3}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{1}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{1}{12} \begin{bmatrix} 1 \end{bmatrix} + \frac{3}{12} \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$$

$$\pi \quad h(\pi)$$

$$() \quad 2/12$$

$$(12) \quad 2/12$$

$$(23) \quad 3/12$$

$$(13) \quad 1/12 \quad \hat{h}_{\rho_{uu}} = \frac{2}{12} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{2}{12} \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} + \frac{3}{12} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} + \frac{1}{12} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} + \frac{3}{12} \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} = \frac{1}{12} \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$$

$$(132) \quad 1/12$$

$$(123) \quad 3/12$$

$$\hat{h}_{\rho_{\mathrm{Sgn}}} = \tfrac{2}{12} \left[1 \right] + \tfrac{2}{12} \left[-1 \right] + \tfrac{3}{12} \left[-1 \right] + \tfrac{1}{12} \left[1 \right] + \tfrac{1}{12} \left[1 \right] + \tfrac{3}{12} \left[-1 \right] = \tfrac{1}{12} \left[0 \right]$$

$$\hat{h}_{
ho_{ ext{triv}}} = ig[1ig]$$

$$egin{aligned} \hat{h}_{
ho_{triv}} &= \begin{bmatrix} 1 \end{bmatrix} \ \hat{h}_{
ho_{std}} &= rac{1}{12} egin{pmatrix} 2 & -1 \ 4 & -2 \end{pmatrix} \end{aligned}$$

$$egin{aligned} \hat{h}_{
ho_{triv}} &= egin{bmatrix} 1 \ \hat{h}_{
ho_{std}} &= rac{1}{12} egin{bmatrix} 2 & -1 \ 4 & -2 \end{pmatrix} \ \hat{h}_{
ho_{sgn}} &= egin{bmatrix} 0 \end{bmatrix} \end{aligned}$$

We have our three Fourier matrices:

$$egin{aligned} \hat{h}_{
ho_{triv}} &= egin{bmatrix} 1 \ \hat{h}_{
ho_{std}} &= rac{1}{12} egin{bmatrix} 2 & -1 \ 4 & -2 \end{pmatrix} \ \hat{h}_{
ho_{sgn}} &= egin{bmatrix} 0 \end{bmatrix} \end{aligned}$$

Let's glue them together

We have our three Fourier matrices:

$$egin{aligned} \hat{h}_{
ho_{triv}} &= egin{bmatrix} 1 \ \hat{h}_{
ho_{std}} &= rac{1}{12} egin{bmatrix} 2 & -1 \ 4 & -2 \end{pmatrix} \ \hat{h}_{
ho_{sgn}} &= egin{bmatrix} 0 \end{bmatrix} \end{aligned}$$

Let's glue them together

$$\frac{1}{12} \begin{pmatrix} \mathbf{0} & 0 & 0 & 0 \\ 0 & \mathbf{2} & -\mathbf{1} & 0 \\ 0 & \mathbf{4} & -\mathbf{2} & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{pmatrix}$$

We have our three Fourier matrices:

$$egin{aligned} \hat{h}_{
ho_{triv}} &= egin{bmatrix} 1 \ \hat{h}_{
ho_{std}} &= rac{1}{12} egin{bmatrix} 2 & -1 \ 4 & -2 \end{pmatrix} \ \hat{h}_{
ho_{sgn}} &= egin{bmatrix} 0 \ \end{bmatrix} \end{aligned}$$

Let's glue them together and change the basis

$$\frac{1}{12} \begin{pmatrix} \mathbf{0} & 0 & 0 & 0 \\ 0 & \mathbf{2} & -\mathbf{1} & 0 \\ 0 & \mathbf{4} & -\mathbf{2} & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{pmatrix}$$

We have our three Fourier matrices:

$$egin{aligned} \hat{h}_{
ho_{triv}} &= egin{bmatrix} 1 \ \hat{h}_{
ho_{std}} &= rac{1}{12} egin{pmatrix} 2 & -1 \ 4 & -2 \end{pmatrix} \ \hat{h}_{
ho_{sgn}} &= egin{bmatrix} 0 \end{bmatrix} \end{aligned}$$

Let's glue them together and change the basis

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{\frac{1}{12}} \begin{pmatrix} \mathbf{0} & 0 & 0 & 0 \\ 0 & \mathbf{2} & -\mathbf{1} & 0 \\ 0 & \mathbf{4} & -\mathbf{2} & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}^{-1}$$

We have our three Fourier matrices:

$$egin{aligned} \hat{h}_{
ho_{triv}} &= egin{bmatrix} 1 \ \hat{h}_{
ho_{std}} &= rac{1}{12} egin{bmatrix} 2 & -1 \ 4 & -2 \ \end{pmatrix} \ \hat{h}_{
ho_{sgn}} &= egin{bmatrix} 0 \ \end{bmatrix}$$

Let's glue them together and change the basis

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{\frac{1}{12}} \begin{pmatrix} \mathbf{0} & 0 & 0 & 0 \\ 0 & \mathbf{2} & -\mathbf{1} & 0 \\ 0 & \mathbf{4} & -\mathbf{2} & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}^{-1} = \frac{1}{12} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 5 & 3 & 4 \\ 0 & 5 & 3 & 4 \\ 0 & 2 & 6 & 4 \end{pmatrix}$$

Example, interpreted:

Distribution:

```
\begin{array}{ccc} \pi & h(\pi) \\ () & 2/12 \\ (12) & 2/12 \\ (23) & 3/12 \\ (13) & 1/12 \\ (132) & 1/12 \\ (123) & 3/12 \\ \end{array}
```

Example, interpreted:

Distribution:

Recall we had $\hat{h}_{\rho_{triv}}=\left(1\right)$. This confirms the values of h sum to 1.

```
\begin{array}{ccc} \pi & h(\pi) \\ () & 2/12 \\ (12) & 2/12 \\ (23) & 3/12 \\ (13) & 1/12 \\ (132) & 1/12 \\ (123) & 3/12 \\ \end{array}
```

Example, interpreted:

Distribution:

Recall we had $\hat{h}_{\rho_{triv}}=\left(1\right)$. This confirms the values of h sum to 1.

$$\begin{array}{ccc}
\pi & h(\pi) \\
() & 2/12 \\
(12) & 2/12 \\
(23) & 3/12 \\
(13) & 1/12 \\
(132) & 1/12
\end{array}$$

(123) 3/12

Our transformed matrix is

$$\frac{1}{12} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 5 & 3 & 4 \\
0 & 5 & 3 & 4 \\
0 & 2 & 6 & 4
\end{pmatrix}$$

Presentation Outline

Introduction

A Short Detour to Group Theory

Properties of Riffle Independence

Fourier Domain Algorithms

Questions and discussion

Back to our regularly scheduled paper

Let's quickly remind ourselves:

Back to our regularly scheduled paper

Let's quickly remind ourselves:

Fully independent: $h = f \cdot g$ Riffle independent: $h = m * (f \cdot g)$ $\Omega_{p,q}$ is the set of interleavings

Back to our regularly scheduled paper

Let's quickly remind ourselves:

Fully independent: $h = f \cdot g$ Riffle independent: $h = m * (f \cdot g)$ $\Omega_{p,q}$ is the set of interleavings

Riffle independence is a generalization of full independence. Indeed, if m is a delta distribution, we recover full independence.

Let's think about m^{unif} as the uniform distribution over $\Omega_{p,q}$. This in a sense reflects preferences within groups, but indifference across groups.

Let's think about m^{unif} as the uniform distribution over $\Omega_{p,q}$. This in a sense reflects preferences within groups, but indifference across groups.

What if we want to think about preferences across groups?

Let's think about m^{unif} as the uniform distribution over $\Omega_{p,q}$. This in a sense reflects preferences within groups, but indifference across groups.

What if we want to think about preferences across groups?

The authors introduce the idea of a **biased riffle shuffle**, with bias parameter α .

Let's think about m^{unif} as the uniform distribution over $\Omega_{p,q}$. This in a sense reflects preferences within groups, but indifference across groups.

What if we want to think about preferences across groups?

The authors introduce the idea of a **biased riffle shuffle**, with bias parameter α .

This weights objects in the *p*-subset proportional to αp .

Let's recall that to specify a full distribution over S_n we need n! parameters.

Let's recall that to specify a full distribution over S_n we need n! parameters.

Full independence requires only p! + q!.

Let's recall that to specify a full distribution over S_n we need n! parameters.

Full independence requires only p! + q!.

So how about conditional independence? Is riffle independence the same?

Let's recall that to specify a full distribution over S_n we need n! parameters.

Full independence requires only p! + q!.

So how about conditional independence? Is riffle independence the same?

No! To see this, notice that conditional independence, where we pick a subset and condition f and g on that subset has $\binom{n}{p} \times (p! + q!)$ parameters while riffle independence requires $\binom{n}{p} + p! + q!$

Let's recall that to specify a full distribution over S_n we need n! parameters.

Full independence requires only p! + q!.

So how about conditional independence? Is riffle independence the same?

No! To see this, notice that conditional independence, where we pick a subset and condition f and g on that subset has $\binom{n}{p} \times (p! + q!)$ parameters while riffle independence requires $\binom{n}{p} + p! + q!$

Nevertheless, we can do things like MAP estimation and probabilistic decomposition over the f and g riffle factors as if we had conditional independence.

Presentation Outline

Introduction

A Short Detour to Group Theory

Properties of Riffle Independence

Fourier Domain Algorithms

Questions and discussion

RiffleJoin and RiffleSplit

The authors define two algorithms to combine riffle factors f, g, m into an h and to split an h into f, g.

RiffleJoin and RiffleSplit

The authors define two algorithms to combine riffle factors f, g, m into an h and to split an h into f, g.

These algorithms are really complicated and (I think) unintuitive without a lot of knowledge of Fourier analysis. See citations [6],[7],[8] for the math.

RiffleJoin and RiffleSplit

The authors define two algorithms to combine riffle factors f, g, m into an h and to split an h into f, g.

These algorithms are really complicated and (I think) unintuitive without a lot of knowledge of Fourier analysis. See citations [6],[7],[8] for the math.

I hope that the example from before at least convinces you that such a decomposition may be possible in the Fourier domain.

Some experiments

The authors tested their algorithm on two data sets: the American Psychological Association election and the Sushi Data Set.

The data: 5738 ballots of ranked preferences across 5 candidates for president of the APA

The data: 5738 ballots of ranked preferences across 5 candidates for president of the APA

The hypothesis: C1,C3 and C4,C5 fall on opposite ends of a political spectrum. Voters may express a preference for one group over the other, then express preferences within the group.

The data: 5738 ballots of ranked preferences across 5 candidates for president of the APA

The hypothesis: C1,C3 and C4,C5 fall on opposite ends of a political spectrum. Voters may express a preference for one group over the other, then express preferences within the group.

The experiment: ignoring C2, decompose the full distribution into riffle factors.

The data: 5738 ballots of ranked preferences across 5 candidates for president of the APA

The hypothesis: C1,C3 and C4,C5 fall on opposite ends of a political spectrum. Voters may express a preference for one group over the other, then express preferences within the group.

The experiment: ignoring C2, decompose the full distribution into riffle factors.

The results: The authors find that C1,C3 and C4,C5 are nearly riffle independent, and that fitting a mixture-of-riffles model yields bias parameters that strongly suggest their hypothesis is correct.

The data: 5000 full rankings of 10 different kinds of sushi (note, WAY fewer than 10! observations). The authors divide this into two groups of five.

The data: 5000 full rankings of 10 different kinds of sushi (note, WAY fewer than 10! observations). The authors divide this into two groups of five.

The hypothesis: the full distribution can be approximated by combining an optimal m with two factor subsets and/or by finding an optimal bias parameter α .

The data: 5000 full rankings of 10 different kinds of sushi (note, WAY fewer than 10! observations). The authors divide this into two groups of five.

The hypothesis: the full distribution can be approximated by combining an optimal m with two factor subsets and/or by finding an optimal bias parameter α .

The experiment: Try to learn the true distribution using these two methods

The data: 5000 full rankings of 10 different kinds of sushi (note, WAY fewer than 10! observations). The authors divide this into two groups of five.

The hypothesis: the full distribution can be approximated by combining an optimal m with two factor subsets and/or by finding an optimal bias parameter α .

The experiment: Try to learn the true distribution using these two methods

The results: Assuming riffle independence significantly lowers the sample complexity required to learn the distribution.

The data: 5000 full rankings of 10 different kinds of sushi (note, WAY fewer than 10! observations). The authors divide this into two groups of five.

The hypothesis: the full distribution can be approximated by combining an optimal m with two factor subsets and/or by finding an optimal bias parameter α .

The experiment: Try to learn the true distribution using these two methods

The results: Assuming riffle independence significantly lowers the sample complexity required to learn the distribution.

Biased riffle shuffles are a useful tool for learning on small samples.

Presentation Outline

Introduction

A Short Detour to Group Theory

Properties of Riffle Independence

Fourier Domain Algorithms

Questions and discussion

Discussion

What are some problems where riffle independence might lend some new insight?

What if the riffle factors are non-obvious?

How about if there are 3+ subsets we want to study?

Anything else?