

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 146000 N	M _v	= -7860000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 12000000 Nmm	$\hat{M_{v}}$			$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(N	y.	σ_{mis}	ses=
y_G	=	J_u	=	τ(M	$_{t}) =$	$\sigma_{\rm st.}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	ro	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	sca=	-	
					_		

Ν $= 200000 \text{ N/mm}^2$ = 12500000 Nmm = 11800000 Nmm M_{v} Ε $\sigma(M_v)=$ $\sigma_{\text{mises}} =$

M₊ X_{G} $\tau(M_t) =$ y_{G} σ α σ_{I} $\sigma(N) =$ σ_{II} $\sigma(M_x)=$

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 174000 N	M _x	= -6060000 Nmm	σ_{a}	= 260 N/mm ²	G	= 76000 1	N/mm ²
M_t	= 9260000 Nmm	$M_{v}^{}$	= 13100000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M,	,,	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=	
u_o	=	J_v	=	σ	=	Θ_{t}	=	
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=	
Α	=	J_t	=	σ_{I}	=	r_v	=	
J_{xx}	=	$\sigma(N)$	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, I	Polited	nico di Milano, vers.27	.03.13				27.05.15

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6550000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
         = 123000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 9860000 Nmm
                                                           = 13300000 Nmm
                                                 M_{v}
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -22200000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 210000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 19400000 Nmm
                                                          = 11300000 Nmm
                                                M_{v}
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -16500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 229000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 20300000 Nmm
                                                          = 12200000 Nmm
                                                M_{v}
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                α
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -17400000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 251000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 15000000 Nmm
                                                          = 13000000 Nmm
                                                M_{v}
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -19300000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 183000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 16000000 Nmm
                                                         = 13700000 Nmm
                                                M_{v}
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                α
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -18300000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
         = 208000 N
Ν
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 21300000 Nmm
                                                         = 13900000 Nmm
                                                M_{v}
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -13500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 76000 \text{ N/mm}^2
Ν
         = 226000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 22700000 Nmm
                                                          = 15100000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -14400000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                = 76000 \text{ N/mm}^2
Ν
         = 248000 N
                                                                                                                                                      G
                                                                                                             = 200000 \text{ N/mm}^2
         = 16700000 Nmm
                                                           = 16400000 Nmm
                                                  M_{v}
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_{\star}) =
y_{G}
                                                                                                    σ
                                                  α
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -15900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
         = 181000 N
Ν
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 18100000 Nmm
                                                         = 17300000 Nmm
                                                M_{v}
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -17000000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 76000 \text{ N/mm}^2
         = 200000 N
Ν
                                                                                                                                                     G
                                                                                                            = 200000 \text{ N/mm}^2
         = 21200000 Nmm
                                                           = 15500000 Nmm
                                                 M_{v}
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                 α
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
J_{xx}
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -12600000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
         = 217000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 22600000 Nmm
                                                           = 16900000 Nmm
                                                 M_{v}
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_G
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
J_{xx}
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -13400000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
        = 240000 N
Ν
                                                                                                                                    G
                                                                                                = 200000 \text{ N/mm}^2
        = 16700000 Nmm
                                                    = 18300000 Nmm
                                            M_{v}
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{G}
                                                                                        σ
                                            α
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                              27.05.15
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -14900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 76000 \text{ N/mm}^2
         = 174000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 18200000 Nmm
                                                           = 19500000 Nmm
                                                 M_{v}
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                 α
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
J_{xx}
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativo: it	^PP.00	ornaro ramaamonto ao		or tarigoriziani			•
Ν	= 209000 N	M_{x}	= -13500000 Nmm	σ_{a}	= 260 N/mm ²	G	= 76000 1	N/mm ²
M_t	= 20000000 Nmm	M_{v}	= 17200000 Nmm	Ε	$= 200000 \text{ N/mm}^2$			
x_G	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=	
u_{o}	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=	
Α	=	J_t	=	σ_{l}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi,	Polited	nico di Milano, vers.27	.03.13	}			27.05.15

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9990000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
        = 227000 N
                                                                                                                                   G
                                                                                                = 200000 \text{ N/mm}^2
        = 21500000 Nmm
                                                    = 18700000 Nmm
                                           M_{v}
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_G
                                                                                       σ
                                           α
                                                                                       \sigma_{\text{I}}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                             27.05.15
```


Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativo. id	^PP. 00	ornaro ramaamonto ao		or tarigoniziani			_
Ν	= 252000 N	M_{x}	= -10800000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	= 76000 1	N/mm ²
M_t	= 15800000 Nmm	M_{v}	= 20600000 Nmm	E	$= 200000 \text{ N/mm}^2$			
X_G	=	J_{xy}	=	σ(M,	_v)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=	
u_{o}	=	J_v	=	σ	=	Θ_{t}	=	
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =			
**							27.05.15	

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -11900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
        = 182000 N
                                                                                                                                     G
                                                                                                 = 200000 \text{ N/mm}^2
        = 17300000 Nmm
                                                    = 21900000 Nmm
                                            M_{v}
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{G}
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                              27.05.15
```


Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8700000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                             = 76000 \text{ N/mm}^2
        = 162000 N
Ν
                                                                                                                                     G
                                                                                                 = 200000 \text{ N/mm}^2
        = 13500000 Nmm
                                                    = 12500000 Nmm
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{G}
                                                                                        σ
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                               27.05.15
```


Ν $= 200000 \text{ N/mm}^2$ = 14100000 Nmm = 13000000 Nmm M₊ Ε $\sigma(M_v)=$ X_{G} $\sigma_{\text{mises}} =$ $\tau(M_t) =$ y_{G} σ σ_{I} $\sigma(N) =$ σ_{II} $\sigma(M_x)=$ @ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

27.05.15

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativo. it	3PP100	ornaro ranaamonto ao		o. tarigoriziani,			•
Ν	= 194000 N	M_{x}	= -6740000 Nmm	σ_{a}	$= 260 \text{ N/mm}^2$	G	= 76000 1	N/mm ²
M_t	= 10400000 Nmm	M_{v}	= 14500000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_G	=	J_{xy}	=	σ(M,	_y)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=	
u_o	=	J_{v}	=	σ	=	Θ_{t}	=	
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =			
**							27.05.15	

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 137000 N	M _x	= -7260000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 11100000 Nmm	M_{v}	= 14700000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

27.05.15

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -24100000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 227000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 21300000 Nmm
                                                          = 12300000 Nmm
                                                M_{v}
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                α
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -17800000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 248000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 22300000 Nmm
                                                          = 13300000 Nmm
                                                M_{v}
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -18900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 272000 N
                                                                                                                                                  G
                                                                                                          = 200000 \text{ N/mm}^2
         = 16400000 Nmm
                                                          = 14100000 Nmm
                                                M_{v}
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -20900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 198000 N
                                                                                                                                                  G
                                                                                                          = 200000 \text{ N/mm}^2
         = 17600000 Nmm
                                                          = 14900000 Nmm
                                                M_{v}
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -16900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 76000 \text{ N/mm}^2
         = 191000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 19400000 Nmm
                                                          = 12800000 Nmm
                                                 M_{v}
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -12500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 76000 \text{ N/mm}^2
         = 208000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 20600000 Nmm
                                                           = 13800000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -13300000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 76000 \text{ N/mm}^2
Ν
         = 229000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 15200000 Nmm
                                                          = 15000000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -14600000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 76000 \text{ N/mm}^2
         = 167000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 16400000 Nmm
                                                          = 15900000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -15500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 76000 \text{ N/mm}^2
         = 183000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 19100000 Nmm
                                                           = 14100000 Nmm
                                                 M_{v}
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                 α
                                                                                                   \sigma_{\text{I}}
J_{xx}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -11500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                = 76000 \text{ N/mm}^2
Ν
         = 198000 N
                                                                                                                                                      G
                                                                                                              = 200000 \text{ N/mm}^2
         = 20400000 Nmm
                                                            = 15400000 Nmm
                                                  M_{v}
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                  α
                                                                                                    \sigma_{\text{I}}
J_{xx}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -12300000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 220000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 15100000 Nmm
                                                          = 16700000 Nmm
                                                M_{v}
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -13600000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 76000 \text{ N/mm}^2
         = 159000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 16400000 Nmm
                                                           = 17800000 Nmm
                                                 M_{v}
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

					o			0
Ν	= 227000 N	M_{\star}	= -14700000 Nmm	σ_{a}	= 260 N/mm ²	G	= 76000 1	√mm²
M_t	= 22000000 Nmm	M_{v}^{λ}	= 18700000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	y ′	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.ve}$	en=	
u_o	=	J_v	=	σ	=	Θ_{t}	=	
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=	
Α	=	J_t	=	σ_{I}	=	r_v	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_s)$	_x)=	σ_{tres}	_{ca} =			
							27.05.15	

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -10800000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 76000 \text{ N/mm}^2
Ν
         = 246000 N
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 23600000 Nmm
                                                          = 20300000 Nmm
                                                M_{v}
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_G
                                                                                                 σ
                                                α
                                                                                                 \sigma_{\text{I}}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo: ic	.pp. 000	orriano rarraarriorrio aoi		or tarigoriziani			_
Ν	= 273000 N	M_x	= -11700000 Nmm	σ_{a}	= 260 N/mm ²	G	= 76000 1	ا/mm²
M_t	= 17400000 Nmm	M_{v}	= 22400000 Nmm	E	= 200000 N/mm ²			
X_G	=	J_{xy}	=	σ(M,	,)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=	
u_{o}	=	J_v	=	σ	=	Θ_{t}	=	
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=	
Α	=	J_{t}	=	σ_{l}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_x)$)=	σ_{tres}	_a =			
···							27.05.15	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo: ic	·PP. 00	ornaro ramaamomo ao		or tarigoriziani			•
Ν	= 198000 N	M_x	= -12900000 Nmm	σ_{a}	$= 260 \text{ N/mm}^2$	G	= 76000 1	N/mm ²
M_t	= 19000000 Nmm	M_{v}	= 23800000 Nmm	E	= 200000 N/mm ²			
x_G	=	J_{xy}	=	σ(M	,)=	σ_{mis}	es=	
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_x)$)=	σ_{tres}	_{ca} =			
**							27.05.15	

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7860000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
        = 146000 N
                                                                                                                                     G
                                                                                                 = 200000 \text{ N/mm}^2
        = 12000000 Nmm
                                                    = 11300000 Nmm
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{G}
                                                                                        σ
                                            α
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                              27.05.15
```


Ν $= 200000 \text{ N/mm}^2$ = 12500000 Nmm = 11800000 Nmm M_{v} M₊ Ε $\sigma(M_v)=$ X_{G} $\sigma_{\text{mises}} =$ $\tau(M_t) =$ y_{G} σ α σ_{I} $\sigma(N) =$ σ_{II} $\sigma(M_x)=$

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6060000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
        = 174000 N
                                                                                                                                     G
                                                                                                 = 200000 \text{ N/mm}^2
        = 9260000 Nmm
                                                    = 13100000 Nmm
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{G}
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                              27.05.15
```



```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6550000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
        = 123000 N
                                                                                                                                    G
                                                                                                = 200000 \text{ N/mm}^2
        = 9860000 Nmm
                                                    = 13300000 Nmm
                                            M_{v}
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{G}
                                                                                        σ
                                            α
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                              27.05.15
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -22200000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                          = 76000 \text{ N/mm}^2
Ν
         = 210000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 19400000 Nmm
                                                          = 11300000 Nmm
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                α
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -16500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 229000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 20300000 Nmm
                                                          = 12200000 Nmm
                                                M_{v}
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -17400000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 251000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 15000000 Nmm
                                                         = 13000000 Nmm
                                                M_{v}
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                α
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -19300000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 183000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 16000000 Nmm
                                                         = 13700000 Nmm
                                                M_{v}
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -18300000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
         = 208000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 21300000 Nmm
                                                          = 13900000 Nmm
                                                M_{v}
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
J_{xx}
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -13500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 76000 \text{ N/mm}^2
Ν
         = 226000 N
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 22700000 Nmm
                                                          = 15100000 Nmm
M₊
                                                 M_{v}
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                  \sigma_{tresca}=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = -14400000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 76000 \text{ N/mm}^2
         = 248000 N
Ν
                                                                                                                                                    G
                                                                                                  \sigma_{a}
                                                                                                            = 200000 \text{ N/mm}^2
         = 16700000 Nmm
                                                          = 16400000 Nmm
M₊
                                                                                                   Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -15900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
         = 181000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 18100000 Nmm
                                                          = 17300000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -17000000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
        = 200000 N
Ν
                                                                                                                                    G
                                                                                                = 200000 \text{ N/mm}^2
        = 21200000 Nmm
                                                    = 15500000 Nmm
                                            M_{v}
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{G}
                                                                                        σ
                                            α
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                              27.05.15
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -12600000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                             = 76000 \text{ N/mm}^2
Ν
        = 217000 N
                                                                                                                                    G
                                                                                                = 200000 \text{ N/mm}^2
        = 22600000 Nmm
                                                    = 16900000 Nmm
                                            M_{v}
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_G
                                                                                        σ
                                            α
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
J_{xx}
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                              27.05.15
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 240000 N	M _×	= -13400000 Nmm	σ_a	= 260 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 16700000 Nmm	M_y	= 18300000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	, ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -14900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                = 76000 \text{ N/mm}^2
         = 174000 N
Ν
                                                                                                                                                       G
                                                                                                              = 200000 \text{ N/mm}^2
         = 18200000 Nmm
                                                            = 19500000 Nmm
                                                  M_{v}
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                  α
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
J_{xx}
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

27.05.15

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

		approcontaro randamento	<u> </u>	2
Ν	= 209000 N	$M_x = -13500000 \text{ Nmm}$	$\sigma_a = 260 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$
M_t	= 20000000 Nmm	$M_v = 17200000 \text{ Nmm}$	$E^{\circ} = 200000 \text{ N/mm}^2$	
x_{G}	=	$J_{xy} =$	$\sigma(M_y)=$	σ_{mises} =
y_{G}	=	J_u =	$\tau(M_t) =$	$\sigma_{\text{st.ven}}$ =
u_o	=	$J_v =$	σ =	$\theta_{t} =$
V_{o}	=	α =	τ =	$r_u =$
Α	=	$J_t =$	$\sigma_{l} =$	$r_{v} =$
J_{xx}	=	$\sigma(N) =$	$\sigma_{II} =$	$r_o =$
J_{yy}	=	$\sigma(M_x)=$	σ_{tresca} =	
		- u u.s.u.		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	i aconanionio	approcontare ramaamente e	iono tonoi tangoniziani	•		
Ν	= 227000 N	$M_x = -9990000 \text{ Nmm}$	$\sigma_a = 260 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$		
M_t	= 21500000 Nmm	$M_v = 18700000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$			
x_G	=	J_{xy} =	$\sigma(M_{v})=$	$\sigma_{mises} =$		
y_{G}	=	J_{u}^{\prime} =	$\tau(M_t) =$	$\sigma_{\text{st.ven}}$ =		
u_o	=	$J_v =$	σ =	$\theta_{t} =$		
V_{o}	=	α =	τ =	$r_u =$		
Α	=	$J_t =$	$\sigma_{l} =$	$r_v =$		
J_{xx}	=	$\sigma(N) =$	$\sigma_{II} =$	$r_o =$		
J_{yy}	=	$\sigma(M_x)=$	$\sigma_{tresca} =$			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13						

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	i additativo. id	^PP. 00	ornaro ramaamonto ao		or tarigoniziani			_
Ν	= 252000 N	M_{x}	= -10800000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	= 76000 1	N/mm ²
M_t	= 15800000 Nmm	M_{v}	= 20600000 Nmm	E	$= 200000 \text{ N/mm}^2$			
X_G	=	J_{xy}	=	σ(M,	_v)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=	
u_{o}	=	J_v	=	σ	=	Θ_{t}	=	
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =			
**							27.05.15	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	i accitativo: ic	.pp.000	taro ramaamomo aon	0 .0	or tarrigorization			
Ν	= 182000 N	$M_x =$	-11900000 Nmm	σ_{a}	= 260 N/mm ²	G	= 76000 N	N/mm ²
M_t	= 17300000 Nmm	$M_v =$	21900000 Nmm	E	$= 200000 \text{ N/mm}^2$			
X_G	=	$J_{xy} =$		$\sigma(M_y)$)=	σ_{mise}	es=	
y_{G}	=	$J_u =$		$\tau(M_t)$	=	$\sigma_{st.ve}$	_{en} =	
u_{o}	=	$J_{v} =$		σ	=	θ_{t}	=	
V_{o}	=	$\alpha =$		τ	=	r_u	=	
Α	=	$J_t =$		σ_{l}	=	r_{v}	=	
J_{xx}	=	$\sigma(N) =$		σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_x)=$		σ_{tresc}	a=			
**							27.05.15	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8700000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                             = 76000 \text{ N/mm}^2
        = 162000 N
Ν
                                                                                                                                     G
                                                                                                 = 200000 \text{ N/mm}^2
        = 13500000 Nmm
                                                    = 12500000 Nmm
                                            M_{v}
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{G}
                                                                                        σ
                                            α
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                               27.05.15
```


Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6310000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                              = 76000 \text{ N/mm}^2
        = 172000 N
Ν
                                                                                                                                      G
                                                                                                  = 200000 \text{ N/mm}^2
        = 14100000 Nmm
                                                     = 13000000 Nmm
                                            M_{v}
M₊
                                                                                         Ε
                                                                                         \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{mises}} =
                                                                                         \tau(M_{\star}) =
y_{G}
                                                                                         σ
                                            α
                                                                                         \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                         \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                                27.05.15
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	i aconanioni	approcentare randam	ionio dono tonoi tangonziam	•
Ν	= 194000 N	$M_x = -6740000 N$	$\sigma_a = 260 \text{ N/mm}^2$	$G = 76000 \text{ N/mm}^2$
M_t	= 10400000 Nmm	$M_v = 14500000 I$		
x_G	=	$J_{xy} =$	$\sigma(M_y)=$	σ_{mises} =
y_{G}	=	$J_u =$	$\tau(M_t) =$	$\sigma_{\sf st.ven}$ =
u_{o}	=	$J_v =$	σ =	$\theta_{t} =$
V_{o}	=	α =	τ =	$r_u =$
Α	=	$J_t =$	$\sigma_{l} =$	$r_{v} =$
J_{xx}	=	$\sigma(N) =$	σ _{II} =	$r_o =$
J_{yy}	=	$\sigma(M_x)=$	σ_{tresca} =	
	dolfo Zavelani Rossi, I	Politecnico di Milano,	vers.27.03.13	27.05.15

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		P P . 00			o			•
Ν	= 137000 N	M_{x}	= -7260000 Nmm	σ_{a}	= 260 N/mm ²	G	= 76000 1	√mm²
M_t	= 11100000 Nmm	M_{v}^{λ}	= 14700000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M,	y ′	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_×)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, F	olitec	nico di Milano, vers.27.	03.13	}			27.05.15

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 227000 N	M _x	= -24100000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 76000 \text{ N/mm}^2$
M_t	= 21300000 Nmm	M_{v}	= 12300000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mise}	es =
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -17800000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
Ν
         = 248000 N
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 22300000 Nmm
                                                          = 13300000 Nmm
                                                M_{v}
M₊
                                                                                                Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                \tau(M_t) =
y_{G}
                                                                                                σ
                                                α
                                                                                                \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 272000 N	M _x	= -18900000 Nmm	$\sigma_{\rm a}$	$= 260 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
M_t	= 16400000 Nmm	M_{v}	= 14100000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mise}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -20900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 76000 \text{ N/mm}^2
         = 198000 N
Ν
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 17600000 Nmm
                                                          = 14900000 Nmm
                                                M_{v}
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

27.05.15

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -16900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                  = 76000 \text{ N/mm}^2
          = 191000 N
Ν
                                                                                                                                                        G
                                                                                                               = 200000 \text{ N/mm}^2
          = 19400000 Nmm
                                                            = 12800000 Nmm
                                                  M_{v}
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M_{\star}) =
y_{G}
                                                                                                     σ
                                                  α
                                                                                                     \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                     \sigma_{tresca} =
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

27.05.15

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -12500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 76000 \text{ N/mm}^2
         = 208000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 20600000 Nmm
                                                           = 13800000 Nmm
                                                 M_{v}
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                 α
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                    \sigma_{tresca}=
```