精算概论第四次作业: 非寿险精算答案

庄源

目录

1	参数估计 Parameter Estimation	2
2	安全附加 Security Loads	3
3	聚合风险模型 Aggregate Risk Model	4
4	非寿险准备金 Reserve in Non-life Insurance	5

1 参数估计 Parameter Estimation

注. 本题有 EXCEL 答案,供同学们学习参考使用。[下载]

1.1 原题

某保险公司有10000份机动车辆的保单,在1年中通过观察得到的发生索赔次数为0、1、2、3、4、5的保单数分别为7752、1698、441、90、16和3。使用泊松分布计算出赔款次数分别为0、1、2、3、4、5的保单数,并比较与观察数之间的关系。

1.2 参考答案

知识点:第三章 PPT 中关于 Poisson 分布的例题,位置为 PPT 7-9 面。本题拟合参数及误差如下表所示:

索赔次数	保单数	占比	拟合数	误差
0	7752	77.52%	7461	-291
1	1698	16.98%	2185	487
2	441	4.41%	320	-121
3	90	0.90%	31	-59
4	16	0.16%	2	-14
5	3	0.03%	0	-3
 合计	10000	100%	9999	-1

表 1: 拟合结果与误差

其中,Poisson 分布参数 $\hat{\lambda}$ 的估计为 $0 \times 0.7752 + 1 \times 0.1698 + 2 \times 0.0441 + 3 \times 0.009 + 4 \times 0.0016 + 3 \times 0.0003 = 0.2929$ 。拟合数为总保单数与索赔次数概率的乘积,索赔次数服从参数为 $\hat{\lambda}$ 的 Poisson 分布。从最终结果来看,拟合结果和实际保单数差别不大。

1.3 赋分及批改情况

采分点	分值
估计 Poisson 分布的参数	8
计算 Poisson 分布下的拟合数	6
计算拟合数与观察数间的误差,或简要叙述与观察数间的关系	6

表 2: Question 1 给分标准 (共 20 分)

本题完成情况较好,平均分 19.63。有部分同学没有比较拟合数与观察数之间的关系。还有部分同学未比较表1中"合计"一行,不扣分。

2 安全附加 Security Loads

2.1 原题

某保险公司发行保额为 1 单位、2 单位和 3 单位的 1 年期保险, 对应发生损失的概率分别为 0.2、0.15 和 0.1,具体分布如表所示。假设保险公司 1000 份保单,每个被保险人交纳的保费是 其期望赔款的倍数,即 $(1+\theta)$ E (X_i) , θ 为风险系数,保险公司的目标是总保费大于总赔款的概率为 95%,求 θ 。

K:保单类型	概率	保额	保单数
1	0.1	3	200
2	0.15	2	400
3	0.2	1	400

2.2 参考答案

知识点: 第三章 PPT 21-23 面例题。

由已知条件可知, $Z = X_1 + X_2 + \cdots + X_{1000}$ 。

对于第 1 类保单,有: $\mu_1 = 3 \times 0.1 = 0.3$, $\sigma_1^2 = 3^2 \times 0.1 \times (1 - 0.1) = 0.81$; ¹

对于第 2 类保单,有: $\mu_2 = 2 \times 0.15 = 0.3$, $\sigma_2^2 = 2^2 \times 0.15 \times (1 - 0.15) = 0.51$;

对于第 3 类保单,有: $\mu_3 = 1 \times 0.2 = 0.2$, $\sigma_3^2 = 1^2 \times 0.2 \times (1 - 0.2) = 0.16$ 。

对于总索赔,有:

$$E(Z) = \sum_{i=1}^{1000} E(X_i) = 200 \times 0.3 + 400 \times 0.3 + 400 \times 0.2 = 260$$

$$Var(Z) = \sum_{i=1}^{1000} Var(X_i) = 200 \times 0.81 + 400 \times 0.51 + 400 \times 0.16 = 430$$

由题目要求: $\Pr[Z \le (1+\theta) E(Z)] = 0.95$,

即:
$$\Pr\left(\frac{Z - \mathrm{E}(Z)}{\sqrt{\mathrm{Var}(Z)}} \le \frac{\theta \mathrm{E}(Z)}{\sqrt{\mathrm{Var}(Z)}}\right) = 0.95$$
。

根据中心极限定理, $\frac{Z-\mathrm{E}(Z)}{\sqrt{\mathrm{Var}(Z)}}$ 可近似为标准正态分布,利用 0.95 分位数得出: $\frac{\theta\,\mathrm{E}(Z)}{\sqrt{\mathrm{Var}(Z)}}=1.645$,

则 $\theta = 0.1312$ 。

 $^{^1}$ 如果有一个随机变量满足伯努利分布,有 p 的概率取 a、1-p 的概率取 0,则其方差为 $a^2p(1-p)$,同学们可自行验证。。

2.3 赋分及批改情况

表 3: Question 2 给分标准 (共 20 分)

采分点	分值
计算每类保单的索赔均值与方差	6
总索赔的均值与方差	8
θ	6

本题完成情况很好, 班级平均分19.79。

3 聚合风险模型 Aggregate Risk Model

3.1 原题

现有一组保单,该保单组合的索赔次数 N 服从均值为 500 的泊松分布;每次索赔额 X_i 的均值和方差均为 100。N, X_1 , …, X_N 相互独立。请使用聚合风险模型计算总体损失的期望和方差。该组保单的总保费按照期望总损失的 1.1 倍收取。请利用正态分布估计该保单组合总保费损失率超过 0.95 的概率。(提示:总保费损失率 = 总损失/总保费)

3.2 参考答案

知识点: 第三章 PPT 中"聚合风险模型"一节,位置为 PPT 24-25 面。对于损失次数,有:

$$E(N) = Var(N) = \lambda = 500$$

对于损失严重程度,有:

$$E(X) = Var(X) = 100$$

所以,对于总损失,有:

$$E(Z) = \lambda E(X) = 500 \times 100 = 50000$$

$$Var(Z) = \lambda E(x^2) = 500 \times (100 + 100^2) = 5050000$$

由于保单总保费按照期望总损失的 1.1 倍收取,则对于损失率超过 0.95 的概率,有:

$$\begin{split} \mathbf{P}\left(\frac{Z}{1.1\,\mathbf{E}(Z)}\geqslant 0.95\right) &= \mathbf{P}\left(\frac{Z-\mathbf{E}(Z)}{\sqrt{\mathrm{Var}(Z)}}\geqslant \frac{0.95\times 1.1\,\mathbf{E}(Z)-\mathbf{E}(Z)}{\sqrt{\mathrm{Var}(Z)}}\right) \\ &= 1-\Phi(1) = \mathbf{0.1587} \end{split}$$

其中, $\Phi(\cdot)$ 为标准正态分布的累积分布函数。

3.3 赋分及批改情况

表 4: Question 3 给分标准 (共 20 分)

—————————————————————————————————————	分值
索赔次数的均值与方差	4
总损失的均值	4
总损失的方差	6
保单组合总保费损失率超过 0.95 的概率	6

本题平均分为 19.57,部分同学没搞清楚 $\Phi(1)$ 到底是生存函数还是累积分布函数导致错误。

4 非寿除准备金 Reserve in Non-life Insurance

注. 本题有 EXCEL 答案,供同学们学习参考使用。[下载]

4.1 原题

已知累积已付赔款流量三角形和累积已付赔款次数流量三角形分别为下表,用链梯法和案均赔款法计算未决赔款准备金。(用简单算术平均法计算进展因子)。

表 5: 累积已付赔款流量三角形

事故年	进展年								
事 飲 牛	0	1	2	3	4	5+			
2017	1000	1849	2395	2988	3320	3565			
2018	1003	1855	2413	2999	3337				
2019	1120	2113	2776	3400					
2020	1275	2423	3235						
2021	1489	2865							
2022	1730								

表 6: 累积已付赔款次数流量三角形

車批任	进展年								
事故年	0	1	2	3	4	5+			
2017	255	350	400	440	455	460			
2018	275	375	426	466	479				
2019	300	408	460	499					
2020	326	440	500						
2021	340	464							
2022	350								

4.2 参考答案

知识点: 第三章 PPT 中"链梯法"和"案均赔款法"两节,位置为 PPT 65-76 面。

4.2.1 链梯法

首先,根据表5,计算出逐年进展因子(即下一年累积已付赔款/上一年累积已付赔款):

进展年 事故年 0-1 1-2 2-3 3-4 4-5+ 2013 1.8490 | 1.2953 1.2476 1.1111 1.0738 2014 1.8495 | 1.3008 1.2429 1.1127 2015 1.8866 1.3138 1.2248 2016 1.9004 1.3351 1.9241 2017

表 7: 链梯法下累积已付赔款逐年进展因子

将同一进展年的逐年进展因子简单算术平均,可得逐年进展因子的估计:

表 8: 逐年进展因子估计

0-1	1-2	2-3	3-4	4-5+
1.8819	1.3112	1.2384	1.1119	1.0738

对每个事故年应用进展因子,可得最终索赔:

表 9: 填补后的已付赔款流量三角形

事故年			最终损失与对角线的差额				
4.1X.T.	0	1	2	3	4	5+	取 名
2013	1000	1849	2395	2988	3320	3565	0
2014	1003	1855	2413	2999	3337	<u>3583.25</u>	246.25
2015	1120	2113	2776	3400	3780.49	4059.47	659.47
2016	1275	2423	3235	4006.26	4454.59	4783.32	1548.32
2017	1489	2865	<u>3756.73</u>	4652.38	<u>5173.01</u>	<u>5554.76</u>	2689.76
2018	1730	3255.71	4269.04	5286.83	5878.47	6312.27	4582.27

总准备金为: 246.25 + 659.47 + 548.32 + 2689.76 + 4582.27 = 9726.07。

4.2.2 案均赔款法

表5除以表6,可得已付案均赔款流量三角形:

表 10: 已付案均赔款流量三角形

事故年	进展年								
予以丁	0	1	2	3	4	5+			
2013	3.9216	5.2829	5.9875	6.7909	7.2967	7.7500			
2014	3.6473	4.9467	5.6643	6.4356	6.9666				
2015	3.7333	5.1789	6.0348	6.8136					
2016	3.9110	5.5068	6.4700						
2017	4.3794	6.1746							
2018	4.9429								

预测的最终已付案均赔款为:

表 11: 预测最终已付案均赔款

事故年	进展年								
争队千	0	1	2	3	4	5+			
2013	3.9216	5.2829	5.9875	6.7909	7.2967	7.7500			
2014	3.6473	4.9467	5.6643	6.4356	6.9666	7.3994			
2015	3.7333	5.1789	6.0348	6.8136	7.3485	7.8050			
2016	3.9110	5.5068	6.4700	7.3314	7.9069	8.3981			
2017	4.3794	6.1746	7.1295	8.0787	8.7128	9.2541			
2018	4.9429	6.8296	7.8858	8.9357	9.6371	10.2358			

预测的最终已付赔款次数2为:

表 12: 预测最终已付赔款次数

事故年	进展年							
	0	1	2	3	4	5+		
2013	255	350	400	440	455	460		
2014	275	375	426	466	479	484.26		
2015	300	408	460	499	<u>514.47</u>	<u>520.12</u>		
2016	326	440	500	<u>546.45</u>	<u>563.38</u>	<u>569.57</u>		
2017	340	464	<u>526.95</u>	575.90	<u>593.75</u>	600.27		
2018	350	<u>476.74</u>	<u>541.42</u>	<u>591.71</u>	610.05	616.76		

最终损失如下:

²无论赔款次数是否约整,都视为正确。

表 13: 最终赔款的确定

事故年	最终案均赔款	最终赔款次数	最终赔款估计值	已付赔款	未决赔款准备金
2013	7.7500	460.00	3565.00	3565	0.00
2014	7.3994	484.26	3583.25	3337	246.25
2015	7.8050	520.12	4059.51	3400	659.51
2016	8.3981	569.57	4783.32	3235	1548.32
2017	9.2541	600.27	5555.00	2865	2690.00
2018	10.2358	616.76	6312.99	1730	4582.99

其中,最终案均赔款、最终赔款次数和已付赔款分别来自于表11、表12和表5,最终赔款估计值为最终案均赔款与赔款次数的乘积,每一事故年的未决赔款准备金为最终赔款估计和已付赔款的差额。

所以,总准备金为: 246.25 + 659.51 + 1548.32 + 2690.00 + 4582.99 = 9727.07。³

4.3 赋分及批改情况

表 14: Question 4 给分标准 (共 40 分)

采分点	分值
链梯法下的逐年进展因子	5
链梯法下逐年进展因子的估计	5
链梯法下已付赔款流量三角形的填补及差值计算	5
链梯法下总准备金的计算	2
案均赔款法下计算已付案均赔款流量三角形	5
案均赔款法下预测最终案均赔款	5
案均赔款法下预测最终已付赔款次数	5
案均赔款法下预测最终赔款	5
案均赔款法下总准备金的计算	3

本题完成情况很差,平均分为33.70。常见的错误有:

- 计算完每一事故年的未决赔款准备金后不加总。我们计算准备金,都是计算总准备金;
- 本题要求使用两种方法进行计算,但有些同学漏掉了其中一种;
- 部分同学计算完最终损失后,没有继续计算准备金;
- 很多同学的最终赔款次数都计算错误,并且错的一模一样,还请大家独立思考。

8

³如对最终赔款次数取整,则总准备金为9727.72。