

Evidencia: Semana 6

Alexa Bahena Becerra, A01068291 Erick Martínez Ruiz, A01647070

Herramientas computacionales: el arte de la programación Grupo 101

Prof. Gonzalo Gutierrez Ramos Instituto Tecnológico de Monterrey Campus Guadalajara 19 de septiembre del 2025

Indroducción

Creamos un código que busca solucionar la necesidad de identificar de manera rápida y automática si un plátano está maduro, muy maduro o demasiado maduro, optimizando así procesos de clasificación y control de calidad en la producción y comercialización de esta fruta.

Implementación

Creamos dos máscaras binarias a partir de la imagen original: una para detectar las zonas amarillas del plátano y otra para identificar las áreas negras o oscuras que indican sobremadurez. Posteriormente, se cuentan los píxeles correspondientes a cada máscara para calcular el porcentaje que representa cada color sobre la imagen. Estos porcentajes permiten clasificar el estado de madurez del plátano, determinando si está maduro, muy maduro o pasado de maduro según la proporción de píxeles negros en relación con los amarillos.

Pixeles totales: 327709 (100.00%) Número de pixeles amarillos: 317080 (96.76%) Número de pixeles negros: 12964 (3.96%)

Estado: Plátano maduro

Librerías utilizadas

OpenCV: Procesamiento de imágenes, incluyendo la carga, conversión de color, y creación de máscaras.

Numpy: Crear rangos de color y para contar los píxeles en las máscaras, lo que permite calcular porcentajes de madurez.}

Matplotlib: Mostrar las imágenes en cada paso del procesamiento

Archivos

Entrada:

Imagen formato JPG (Plátanos en fondo blanco).

Salida:

- Máscara amarilla
- Máscara negra
- Máscara combinada
- Imagen final con plátanos aislados
- Número y porcentaje de píxeles amarillos y negros.
- Clasificación del estado del plátano

Conclusión

Desarrollar este proyecto fue un desafío, ya que el código original presentaba errores en los cálculos y dificultades para identificar correctamente las zonas del plátano, llegando incluso a incluir elementos ajenos. Uno de los principales problemas fue la superposición de píxeles entre las máscaras amarilla y negra, lo que generaba porcentajes superiores al 100%. A pesar de estas complicaciones, se lograron realizar mejoras significativas en la lógica de detección, alcanzando una precisión muy aproximada en la identificación del estado de madurez del plátano.

Link al código en colab

https://colab.research.google.com/github/A0164 7070/Semana 6/blob/main/PlatanoCorrect.ipyn b#scrollTo=VIO3chyETuQb&line=1&uniqifier=1