Group-18 Elements: Noble Gases

SINGLE CORRECT CHOICE TYPE QUESTIONS

- Which of the following elements has the highest ionization energy?
 - (A) He
 - (B) Ne
 - (C) F
 - (D) H
- 2. The most abundant inert gas element is
 - (A) Ne
 - (B) Ar
 - (C) He
 - (D) Xe
- 3. Which of the following elements is used in cryoscopic study for superconductivity?
 - (A) Liquid bromine
 - (B) Mercury liquid

- (C) Liquid nitrogen
- (D) Liquid helium
- 4. Which of the following properties does not increase from helium to xenon?
 - (A) Boiling point
 - (B) Atomic radius
 - (C) Rate of diffusion through glass
 - (D) None of these
- When XeO₃ reacts with XeOF₄, the product formed is
 - (A) XeO,
 - (B) XeO,F,
 - (C) XeOF₂
 - (D) XeO₃F₂

MULTIPLE CORRECT CHOICE TYPE QUESTIONS

- 1. When liquid helium is cooled below the λ- point temperature, which of the following abrupt changes is/are observed in the properties?
 - (A) Increase in thermal conductivity
 - (B) The viscosity becomes zero
 - (C) It becomes a superconductor and shows zero electrical resistance.
 - (D) The liquid can flow up the sides of the vessel.
- 2. Which of the following statements is/are true for XeOF₄ molecule?
 - (A) It is planar.
 - (B) It has a total of 15 lone pairs.
 - (C) It hydrolyses to produce XeO₃.
 - (D) The shape is square pyramidal.
- 3. Which of the following properties are a consequence of the small size of the noble gases?

- (A) Clathrate compounds are not formed by helium.
- (B) Rate of diffusion through glass in very high for helium.
- (C) Extent of London force in the lowest for helium.
- (D) Abundance in atmosphere is poor.
- 4. Which of the following momentarily occurring species have fractional bond order?
 - (A) He₂⁺
 - (B) HeH+
 - (C) HeH²⁺
 - (D) Ar₂⁺
- 5. How many of the following molecules have trigonal bipyramidal electronic geometry for their central atom?
 - (A) XeO_3F_2
 - (B) XeF₂
 - (C) XeF
 - (D) XeOF,

COMPREHENSION TYPE QUESTIONS

Passage 1: For Questions 1 and 2

In 1962, Bartlett coined the new branch of chemistry of noble gas Xe and the first compound of Xe detected (wrongly) was Xe⁺[MF₆]⁻.

- 1. What was the concept involved behind the idea that xenon can combine with other elements to form compounds when the experiment was started?
 - (A) IE, of Xe is close to that of O atom.
 - (B) IE₁ of Xe ≈IE₁ of O₂ molecule.
 - (C) ΔH_{egl} of Xe $\approx \Delta H_{egl}$ of O-atom.
 - (D) $\Delta H_{col}^{g_1}$ of Xe $\approx \Delta H_{col}^{g_2}$ of O₂ molecule.
- 2. IE₁ of noble gases is in the order He > Ne > Ar > Kr > Xe > Rn. Accordingly, which of the following statements is correct?
 - (A) Rn should form compounds more easily than Xe.
 - (B) Kr should form compounds more easily than Xe.
 - (C) Rn and Kr both should form compounds with equal ease.
 - (D) None of the above prediction is correct.

Passage 2: For Questions 3 to 5

Xenon fluorides are very good oxidizing agent, fluorinating agents and also can act as F donors and F acceptors.

- 3. When XeF₄ donates its fluoride to SbF₅, then the states of hybridization of central atoms of cationic part and anionic part of the product formed are:
 - (A) sp^3d , sp^3d^2
 - (B) sp^3d^2 , sp^3d
 - (C) sp^3d , sp^3d
 - (D) sp^3d^2 , sp^3d^2
- 4. XeO4 is obtained when
 - (A) Xe reacts with O, directly.
 - (B) XeF₄ is hydrolyzed and disproportionated to give XeO₄.
 - (C) XeF₆ is hydrolyzed in alkaline medium followed by treatment with conc. H₂SO₄ at low temperature.
 - (D) XeF₆ is hydrolyzed in neutral medium followed by reaction with O₂.
- The state of hybridization in the Xe compound obtained in alkaline hydrolysis product of XeF₆ is
 - (A) sp^3d^2
 - (B) sp^3d^3
 - (C) d^2sp^3
 - (D) sp^3d

ASSERTION-REASONING TYPE QUESTIONS

In the following set of questions, a Statement I is given and a corresponding Statement II is given below it. Mark the correct answer as:

- (B) If both Statement I and Statement II are true but Statement II is not the correct explanation for Statement I
- (C) If Statement I is true but Statement II is false.
- (D) If Statement I is false and Statement II is true.
- Statement I: Helium is used in preference to N₂ to dilute O₂ in the gas cylinder used by divers.

Statement II: Helium has lower solubility in blood as compared to N₂; thus minimising the risk of bend.

 Statement I: In the adduct [XeF₆· ASF₅], XeF₆ acts as fluoride donor.

Statement II: XeF6 acts as a Lewis base.

- (A) If both Statement I and Statement II are true and Statement II is the correct explanation of Statement I.
- Statement I: When Pt is fluorinated with XeF₂, it is mixed with anhydrous HF.

Statement II: Reactivity of XeF₂ increases greatly due to the formation of XeF⁺.

 Statement I: XeO₄ with oxidation state of Xe as +8 is formed, but XeF₈ does not form.

Statement II: Steric crowding is more for XeF₈ than in XeO₄.

Statement 1: The variable oxidation state of Xe is observed by jump of two units.

Statement II: The valence shell electronic configuration is $5s^25p^6$ and on excitation it always produces an even number of unpaired electrons.

INTEGER ANSWER TYPE QUESTIONS

The answer to each of the following is a non-negative integer.

- Find the number lone pairs in XeO₂F₂.
- 2. Find the number of d-orbitals used for bonding of XeOF4.
- 3. When XeF2 fluorinates Ph2S, the product is Ph2SF2 + Xe. Find the difference in the number of d-orbitals involved in bonding of reactants to product.
- 4. In the following reaction, find the difference in oxidation state of Xe in the underlined species (numerical

$$2[H XeO_4]^- + 2OH^- \rightarrow [XeO_6]^{4-} + Xe + O_2 + 2H_2O$$

5. Find the number of molecules that can form clathrate compounds from the following:

The maximum number of identical angles in [XeF₈]²⁻

MATRIX-MATCH TYPE QUESTIONS

In each of the following questions, statements are given in two columns, which have to be matched. The statements in Column I are labelled as (A), (B), (C) and (D), while those in Column II are labelled as (P), (Q), (R), (S) and (T). Any given statement in Column I can have correct matching with one or more statements in Column II.

 $(C) \rightarrow (P), (T)$

 $(D) \rightarrow (R), (S)$

 Match the com 	pounds with	their pro	operties.
-----------------------------------	-------------	-----------	-----------

2.	Match	the	com	pounds	with	their	pro	perties.
----	-------	-----	-----	--------	------	-------	-----	----------

Column I	Column II	Column I	Column II
(A) XeO ₃	(P) Powerful explosive.	(A) XeO ₆ ⁴	(P) Central atom is sp^3d^2 hybridized.
(B) XeF ₂ (C) XeO ₄	(Q) Acts as fluoride donor.(R) Central atom carries at least one	(B) XeF ₄	(Q) On treatment with conc. H₂SO₄ produces XeO₄.
(D) XeOF,	lone pair. (S) It is formed by the reaction be-	(C) XeO ₃	(R) Only one lone pair is present on the central atom.
,	tween XeO ₃ and XeF ₆	(D) XeO_2F_2	 (S) Central atom of the molecule has four surrounding atoms.
	(T) It is formed by the reaction of Na ₄ XeO ₆ with conc. H ₂ SO ₄ at -9°C		

Single Correct Cl	oice Type One	estions			
1. (A)	2. (B)	3. (D)	4. (C)	5. (B)
Multiple Correct	Choice Type (uestions			
1. (A), (B), (C), (D	2. (B), (C),	(D) 3. (A), (B), (C)	4. (A), (C), (D)	5. (A), (B), (D)
Comprehension 7	Type Questions	i			
1. (B)	2. (A)	3.	(A)	4. (C)	5. (A)
Assertion-Reaso	ning Type Que	stions			
1. (A)	2. (C)	3. (A)	4. (A)	5. (A)
Integer Answer T	ype Questions				
1. 11	2.3	3. 0	4. 2	5. 8	6. 8
Matrix-Match Ty	pe Questions				
1. $(A) \rightarrow (P), (R)$ $(B) \rightarrow (O), (R)$		2. (A) → (B) → (I	7 - 5 - 7		

 $(C) \rightarrow (R)$

 $(D) \rightarrow (R), (S)$