Úloha 1. (9 bodů) Zkoumali jsme magnetický Bahexaferit pomocí výpočtů elektronové struktury. Pro dvanáct možných magnetických konfigurací atomových magnetických momentů této látky jsme spočítali celkové energie a z nich určili hodnoty výměnného integrálu *J* (uvedeny v tabulce). Přesnost určení veličiny *J* byla pro použitou výpočetní metodu odhadnuta na 0.02 meV (uvažujte ji jako standardní chybu).

Zpracujte spočítané hodnoty J. Výsledek vyjádřete se standardní odchylkou (" σ ", $P \sim 68$ %) a správně zapište.

výpočet č.	J (meV)	$J - \bar{J}$ (meV)
1	6.374	-0.16775
2	6.708	0.16625
3	6.329	-0.21275
4	6.021	-0.52075
5	6.524	-0.01775
6	6.058	-0.48375
7	6.922	0.38025
8	6.658	0.11625
9	6.857	0.31525
10	6.673	0.13125
11	6.546	0.00425
12	6.831	0.28925
$\bar{J} =$	6.54175	meV
$\sum_{i=1}^{12} (J_i - \bar{J})^2 =$	0.964948	meV ²

Řešení:

Jedná se o zpracování přímo měřené veličiny, takže spočítáme odhad standardní odchylky:

$$s_J = \sqrt{\frac{1}{11} \sum (J_i - \bar{J})^2} = 0.29618 \text{ meV}.$$

S využitím 3σ kritéria zjistíme, že všechna měření vyhovují. Spočítáme tedy standardní odchylku aritmetického průměru, interval rozšíříme podle studentova rozdělení a sloučíme se standardní chybou měřidla ($u_{I,B}$) do kombinované nejistoty měření napětí:

$$s_{\bar{I}} = \frac{1}{\sqrt{12}} s_{\bar{I}} = 0.0855 \text{ meV}, \qquad u_{\bar{I}} = \sqrt{\left(k_{11}^{1\sigma} s_{\bar{I}}\right)^2 + u_{\bar{I},B}^2} = \sqrt{0.089775^2 + 0.02^2} = 0.091976 \text{ meV}$$

(Zde $u_{I,B}$ je již přímo standardní odchylka, takže nedělíme odmocninou ze 3.)

Zaokrouhlíme a zapíšeme výsledek: J = 6.54(9) meV nebo $J = (6.54 \pm 0.09)$ meV

Úloha 2. (6 bodů) Dále jsme pro tuto látku chtěli z výpočtů vyjádřit celkovou magnetizaci, tedy celkový magnetický moment připadající na jednotku objemu. K tomu jsme spočítali celkový magnetický moment m v jedné elementární buňce a mřížové parametry látky (rozměry elementární buňky) a, b, c. Látka má hexagonální strukturu, takže elementární buňka má tvar hranolu s podstavou kosočtverce (hrany a, b jsou stejné a svírají úhel 120°, viz obrázek) a výškou c.

Získané číselné hodnoty jsou:

$$m = (40.005 \pm 0.007) \, \mu_{\rm B},$$
 $(\mu_{\rm B} = {\rm Bohrův \ magneton})$ $a = b = (5.989 \pm 0.001) \, {\rm Å}.$ $(1 \, {\rm Å} = 1 \, {\rm angstr\"om} = 10^{-10} \, {\rm m})$ $c = (23.477 \pm 0.002) \, {\rm Å}.$

Udané nejistoty jsou standardní odchylky.

Spočítejte (objemovou) magnetizaci $M=\frac{m}{V}$ a její standardní nejistotu.

Řešení:

Využijeme zákona přenosu chyb, takže $\,\overline{M}=rac{\overline{m}}{\overline{a}^2\overline{c}\sin 60}=0.054857~\mu_B {
m \AA}^{-3}$

A toho, že funkce R(U,I) je ve tvaru podílu, takže můžeme pro relativní nejistoty psát (α je ve druhé mocnině \rightarrow faktor 4):

$$\eta_M^2=\eta_m^2+4\eta_a^2+\eta_c^2=0.000386516$$
 a tedy $u_M=\eta_M \overline{M}=0.0000212~\mu_B {\rm \AA}^{-3}$

Zaokrouhlíme a zapíšeme výsledek: $M=0.05486(2)~\mu_B {\rm \AA}^{-3}$ Případně převedeno na metry: $M=5.486(2)\times 10^{28}~\mu_B {\rm m}^{-3}.$