5 A student uses a rectangular glass block to determine the refractive index of glass.

The diagram shows a ray of red light in air as it enters the glass block at **P**.

The normal at **P** is shown as a dotted line.

- (a) Complete the diagram by
 - drawing the ray that continues inside the block
 - labelling the angle of incidence (i) and the angle of refraction (r)
 - drawing the ray that leaves the block.

(4)

(b) The student measures values for the angle of incidence (i) and the angle of refraction (r).

i	60°
r	34°
sin <i>i</i>	
sin r	

/*\						_				
(i)	(omplete	the tabl	h۱ ≏	y inserting	values	tor	sin i	and	sin	r
(')	Compice	. tric tabi	_ ~ ;	y miscreming	values	101	21111	aria	2111	

(1)

(ii) State the equation that links refractive index, angle of incidence (i) and angle of refraction (r).

(1)

(iii) Calculate the refractive index of the glass.

(2)

Refractive index =

(Total for Question 5 = 11 marks)

(c)	How should the student continue the investigation to obtain a more accurate value
	for the refractive index of glass?

(3)
