Construction de réseaux biologiques à partir des connaissances

Anne Siegel, Michel Le Borgne, Y. Bastide, S. Laguarrigue

Comment fonctionnent les réseaux ?

Il faut d'abord déterminer de quels réseaux on cherche la dynamique.

- Quels réseaux ?
 - données transcriptômes
 - réseaux biochimiques (métabolisme, signalisation)
 - régulations génétiques de ce réseau
- Reconstruire les réseaux à partir des données (réseaux bayésiens) ?
 - besoin de beaucoup de données;
 - point de vue unique: métabolisme, génétique.

Piste choisie: construire les modèles à partir des BDD et d'une lecture approfondie de la bibliographie.

Construire des réseaux à partir de la biblio ?

Construire les modèles à partir de BDD et d'une lecture approfondie de la bibliographie.

- Connaissances disponibles (BDD)
 - métabolisme: Kegg, levure
 - signalisation: transpath, biocarta
 - interaction protéine-protéine: IntAct, Bind
- Connaissances non disponibles: info qualitative sur les mécanismes
 - action indirecte (ou directe) d'une molécule sur une autre
 - sens de l'action
 - cette information est souvent disponible dans les articles
 - on trouve parfois le mécanisme biochimique associé

On prend en compte les deux points de vue simultanément

Base de connaissance d'interactions

Construire les modèles à partir des connaissances libres et d'une lecture approfondie de la bibliographie.

- Définition très macro d'une interaction
 - biochimique (acteurs, cibles, co-facteurs)
 - qualitative (acteur, cible, sens de l'action, direct, indirect, niveau de l'action)

	Name	Category	Comment
Edit	Action on interaction	behavioral	
Edit	Activation	behavioral	
Edit	Inhibition	behavioral	
Edit	No activation	behavioral	
Edit	No effect	behavioral	
Edit	No inhibition	behavioral	
Edit	Allosteric modification	bio-chemical	
Edit	Cleavage	bio-chemical	
Edit	Degradation	bio-chemical	
Edit	Expression	bio-chemical	Not for use
Edit	Glycosilation	bio-chemical	
Edit	Phosphorylation	bio-chemical	
Edit	Protein binding	bio-chemical	
Edit	Transcription	bio-chemical	
Edit	Transcription inhibition	bio-chemical	
Edit	Transport	bio-chemical	
Edit	Ubiquitination	bio-chemical	

Base de connaissance d'interactions

Construire les modèles à partir des connaissances libres et d'une lecture approfondie de la bibliographie.

- Construction de modèles
 - Lecture de la biblio à partir d'une grille de lecture
 - Données provenant des BDD transformées dans le schéma choisi.
- Exemple de grille de lecture

Schéma général

Démarche appliquée à la lipogénèse: la lecture des articles est faisable mais assez longue.

Démarche (à préciser)

- Protéine d'intéret; voie biochimique associée.
- Récupération des pathways disponibles (métabolisme, signalisation...)
- BiblioSphere: identification des protéines proches pour des intéractions.
- Sélection d'articles relatifs aux protéines ainsi identifiées.
- Lecture approfondie des articles sélectionnées pour récupérer des données qualitatives.