# OM02 Optical Mouse Sensor Data Sheet

# Index

| 1. | General description                           | Page 1 |
|----|-----------------------------------------------|--------|
| 2. | Features                                      | Page 1 |
| 3. | Pin configurations (package) and descriptions | Page 1 |
| 4. | Absolute maximum rating                       | Page 3 |
| 5. | Electrical characteristics                    | Page 3 |
| 6. | Application circuit                           | Page 5 |

#### 1. General description

This optical CMOS sensor provides a non-mechanical tracking engine for implementing a computer mouse. On the CMOS IC chip, images are captured, digitized, and then digitally processed. Using an optical navigation technology, the sensor measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement. The sensor is mounted in a plastic optical package and is designed to be used with a high intensity LED. Hence, it provides a complete and compact tracking engine. This optical tracking engine has no moving parts and requires no precise optical alignment. Thus, it enables high volume system assembly. It offers a quadrature output mode for interface flexibility. The tracking resolution is specified at 400 counts per inch (cpi) at rates of motion up to 12 inches per second (ips).

#### 2. Features

- Superior precision and motion tracking by new optical navigation technology
- Non-mechanical surface-tracking engine
- Complete 2D motion sensor
- Smooth surface navigation
- Single 5.0 volt power supply
- Power down pin (PD) for USB suspend mode operation
- On chip oscillator requiring only an external resistor (No resonator required)
- 16-pin staggered dual inline package (ASDIP-16 / I-DIP-16)
- Hibernation/suspend mode

#### 3. Pin configurations (package) and descriptions

(We define as ASDIP-16 and Agilent® define as I-DIP-16 which are 16-pin inter-digitated DIP)

|                  | Front View |                    |
|------------------|------------|--------------------|
| TCLK 1           | 0          | 16 TIO             |
| X <sub>2</sub> 2 |            | 15 PD              |
| $X_1$ 3          |            | 14 RBIN            |
| Y <sub>1</sub> 4 |            | 13 V <sub>DD</sub> |
| Y <sub>2</sub> 5 |            | 12 GND             |
| XY_LED 6         |            | 11 ROSCA           |
| REFA 7           |            | 10 GND             |
| REFB 8           |            | 9 ROSCB            |
| KELD 8           |            |                    |

| Symbol               | I/O | Description                                             |
|----------------------|-----|---------------------------------------------------------|
| $X_1, X_2, Y_1, Y_2$ | О   | $\triangle X$ and $\triangle Y$ axis quadrature outputs |
| XY_LED               | О   | LED control                                             |
| RBIN                 | -   | LED output control                                      |
| ROSCA,<br>ROSCB      | -   | On chip oscillator frequency control                    |
| $V_{ m DD}$          | -   | 5.0 volt DC power supply                                |
| GND                  | -   | System ground                                           |
| REFA, REFB           | -   | Internal reference                                      |
| PD                   | I   | Power down pin, active high                             |
| TCLK                 | I   | Serial port clock for testing mode                      |
| TIO                  | I/O | Serial data for testing mode                            |





#### Note:

- Dimension in millimeter.
- Dimension tolerance is +/- 0.1 mm.
- Coplanarity of leads is 0.1 mm.
- Lead pitch tolerance is +/- 0.15 mm.
- Cumulative pitch tolerance is +/- 0.15 mm.
- Angular tolerance is +/- 3°.
- Maximum flash is +0.2 mm.
- Chamfer (25° X 2) on the taper side of the lead.

#### • Module Structure (Dimension in millimeter)



# 4. Absolute maximum ratings

| Parameter                   | Symbol    | Min. | Max               | Unit                    | Notes                                      |
|-----------------------------|-----------|------|-------------------|-------------------------|--------------------------------------------|
| Storage Temperature Range   | $T_{STR}$ | -40  | 85                | $^{\circ}\! C$          |                                            |
| Operating Temperature Range | $T_{OPR}$ | 0    | 40                | $^{\circ}\! \mathbb{C}$ |                                            |
| Lead solder Temperature     | -         | -    | 245               | $^{\circ}\!\mathrm{C}$  | For 10 seconds, 1.6mm below seating plane. |
| Supply Voltage              | $V_{DD}$  | 4.4  | 5.5               | V                       |                                            |
| ESD                         | -         | -    | 2                 | KV                      | All pins, human body model                 |
| Input Voltage               | -         | -0.5 | $V_{\rm DD}$ +0.5 | V                       | PD, TIO, TCLK                              |
| Angle of incidence          | θ         | 30   | 45                | degree                  |                                            |

### 5. Electrical characteristics

## 5-1. Recommended operating conditions

| Parameter                                                                   |                                                           | Symbol             | Min       | Typ. | Max.             | Unit              | Notes                           |
|-----------------------------------------------------------------------------|-----------------------------------------------------------|--------------------|-----------|------|------------------|-------------------|---------------------------------|
| Oscillator Re                                                               | esistor                                                   | $R_{OSC}$          | 43        | 51   | 56               | ΚΩ                |                                 |
| Speed                                                                       |                                                           | S                  | ı         | 16+  | 1                | inches/sec        |                                 |
| Acceleration                                                                |                                                           | A                  | ı         | 1.0  | 1                | හා                |                                 |
| Din Desistan                                                                | Source Current<br>Mode (RBIN tied<br>to V <sub>DD</sub> ) | $R_1$              | 10        | -    | 191              | ( )               | For type 1 application Circuit. |
| Bin Resistor                                                                | Source Current<br>Mode (RBIN tied<br>to R2 to GND)        | $R_2$              | 8.2       | -    | 33               |                   | For type 2 application Circuit. |
| Distance from Lens Reference<br>Plane to Surface                            |                                                           | A                  | 2.1       | 2.2  | 2.3              | mm                |                                 |
| LED Light onto IC $\frac{\lambda = 639 \text{nm}}{\lambda = 875 \text{nm}}$ |                                                           | IRR <sub>INC</sub> | 80<br>100 | -    | 25,000<br>30,000 | mW/m²             |                                 |
| Unintended External Light onto IC                                           |                                                           | IRR <sub>EXT</sub> | -         | _    | 10               | mW/m <sup>2</sup> |                                 |

## 5-2. DC electrical characteristics

| Parameter       | Symbol      | Min          | Typ.              | Max.         | Unit       | Notes |
|-----------------|-------------|--------------|-------------------|--------------|------------|-------|
| Clock Frequency | $F_{CLK}$   | 13           | 16                | 19           | MHz        |       |
| Frame Rate      | $f_{frame}$ | 1400         | 1700              | 2000         | frames/sec |       |
| REFA Voltage    | $V_{REFA}$  | 3.25         | 3.5               | 3.75         | V          |       |
| REFB Voltage    | $V_{REFB}$  | -            | 0                 | -            | V          |       |
| ROSCA Voltage   | $V_{ROSCA}$ | $0.4*V_{DD}$ | $0.5*V_{DD}$      | $0.6*V_{DD}$ | V          |       |
| ROSCB Voltage   | $V_{ROSCB}$ | -            | $V_{\mathrm{DD}}$ | ı            | V          |       |

3

| DC                    | Mouse Active                                           | I <sub>DDAVG</sub>    | -          | -       | 13         | mA | No load on $X_1$ , $X_2$ ,                  |
|-----------------------|--------------------------------------------------------|-----------------------|------------|---------|------------|----|---------------------------------------------|
| Supply Current        | Standby                                                | $I_{DDSB}$            | -          | _       | 10         | mA | Y <sub>1</sub> , Y <sub>2</sub> . Excluding |
| Supply Cultell        | Power Down                                             | $I_{DDPD}$            | -          | -       | 3.0        | mA | LED current.                                |
|                       | Input Low Voltage                                      | $V_{IL}$              | -          | -       | 0.8        | V  |                                             |
| TCLK, TIO,            | Input High Voltage                                     | $V_{IH}$              | 3          | -       | -          | V  |                                             |
| PD                    | Output Low Voltage                                     | $V_{OL}$              | -          | -       | 0.4        | V  | $I_{OL} = 0.5 \text{mA}$                    |
|                       | Output High Voltage                                    | $V_{OH}$              | 3.5        | -       | -          | V  | $I_{OH} = 0.5 \text{mA}$                    |
| VVVV                  | Output Low Voltage                                     | $V_{OL}$              | -          | -       | 0.4        | V  | $I_{OL} = 0.5 \text{mA}$                    |
| $X_1, X_2, Y_1, Y_2$  | Output High Voltage                                    | $V_{OH}$              | 3.5        | -       | -          | V  | $I_{OH} = 0.5 \text{mA}$                    |
| I ED Duty             | Mouse Active                                           |                       | -          | -       | 60%        |    |                                             |
| LED Duty<br>Cycle     | Standby                                                |                       | -          | -       | 5%         |    |                                             |
| Cycle                 | Power Down                                             |                       | -          | -       | 0.20%      |    |                                             |
|                       | Low Output Current                                     | $I_{LEDL}$            | -1         | 0       | 1          | μΑ |                                             |
| VV LED                | High Source Current (RBIN tied to V <sub>DD</sub> )    | $I_{\text{LEDHSRC}}$  | 1.5        | 3.1     | 6          | mA | $V_{OH} = 0.6 \text{ V}$                    |
| XY_LED Output Current | High Sink Current (RBIN tied to R <sub>2</sub> to GND) | I <sub>LEDHSINK</sub> | Typ. + 35% | -510/R2 | Тур<br>35% | mA | $V_{OH} = V_{DD} - 2 V$                     |
|                       | High Sink Current (RBIN short to GND)                  | I <sub>LEDHSINK</sub> | -1         | 0       | 1          | μΑ | R2 < 5KΩ                                    |

## 5-3. AC electrical characteristics

| Paran                           | neter      | Symbol            | Min | Тур. | Max. | Unit | Notes                                        |
|---------------------------------|------------|-------------------|-----|------|------|------|----------------------------------------------|
| Power Down Pulse Width          |            | t <sub>PDW</sub>  | 720 | 1    | -    | μs   | Pulse width to initiate the power down mode. |
| Power Down fr                   | om PD↑     | $t_{\mathrm{PD}}$ | -   | 600  | -    | μs   |                                              |
| Power Up from PD↓               |            | t <sub>PUPD</sub> | -   | -    | 300  | ms   | When the mouse is fully active again.        |
| Power Up from V <sub>DD</sub> ↑ |            | $t_{\mathrm{PU}}$ | -   | -    | 200  | ms   |                                              |
| Transient Suppl                 | ly Current | $I_{DDT}$         | -   | 20   | 37   | mA   |                                              |
| TIO                             | Rise Time  | $t_{\rm r}$       | -   | 5    | -    | ns   | $C_L = 30 \text{ pF}$                        |
| 110                             | Fall Time  | $t_{\mathrm{f}}$  | -   | 5    | -    | ns   | $C_L = 30 \text{ pF}$                        |
| v v v v                         | Rise Time  | $t_{\rm r}$       | -   | 100  | -    | ns   | $C_L = 30 \text{ pF}$                        |
| $X_1, X_2, Y_1, Y_2$            | Fall Time  | $t_{\mathrm{f}}$  | -   | 100  | -    | ns   | $C_L = 30 \text{ pF}$                        |
| XY LED                          | Rise Time  | $t_{\rm r}$       | -   | 100  | -    | ns   | With LED                                     |
| A I _LED                        | Fall Time  | $t_{\mathrm{f}}$  | -   | 100  | -    | ns   | With LED                                     |

#### 5-4. Timing and state diagrams

#### 5-4-1. Quadrature Output Waveform

The output signals are two channels quadrature ( $\triangle X$  and  $\triangle Y$ ), which emulates encoder phototransistors. Sensor IC generates  $\triangle X$  and  $\triangle Y$  relative displacement values that are converted into two channel quadrature signals. The two channel quadrature outputs are 3.5V signals. The  $\triangle X$ and  $\triangle Y$  counts are used to generate the X1, X2 and Y1, Y2 quadrature signals. The quadrature signals can change at a maximum rate of 25 KHz. The following diagrams show the timing for positive X motion, to the right direction.



Example: Quadrature Output Waveform (+X motion)

#### 5-4-2. PD Pin Timing

- Pulse width to initiate the power down mode, t<sub>PDW</sub> (Power Down Pulse Width) minimum time is 720µs.
- When the mouse is fully active again, t<sub>PUPD</sub> (Power Up from PD) maximum time is 300ms.



PD Timing Normal Mode

#### 6. Application circuit

#### 6-1. Application type 1 (Compatible with Agilent® HDNS-2000)

(where Rosc is  $51K\Omega$ ; R3 open for 400dpi, short for virtual 800dpi; LED-2 is for shining only)

| LED BIN             | OPL-130 | K/L/M/N   | P         | Q         | R        | S        | T        | U        |
|---------------------|---------|-----------|-----------|-----------|----------|----------|----------|----------|
| R1 Value $(\Omega)$ | 22      | 10 ~ 69.8 | 10 ~ 78.7 | 10 ~ 93.1 | 10 ~ 113 | 10 ~ 137 | 10 ~ 169 | 10 ~ 191 |

| EFT Level                  | Rp    | Ru    | Cosc | C1 & C3 | C2    | C0 & C4 | Ср    | Cu    |       |       |  |      |  |  |
|----------------------------|-------|-------|------|---------|-------|---------|-------|-------|-------|-------|--|------|--|--|
| 3.0KV Class A              | 10Ω   | 10Ω   | 1nF  | 1nF     | 1nF   | 0.1nF   | 0.1nF | 0.1nF | 0.1nF | 0.1uF |  | 10uF |  |  |
| 1.2KV Class B              |       | 1022  |      | 0.1 u1  | 100uF |         | 10uF  | 22uF  |       |       |  |      |  |  |
| Don't Care (1.2KV Class C) | Short | Short | Open | Open    | 10001 | Open    | 1001  | 2241  |       |       |  |      |  |  |





This specification may change without further notice.

### 6-2. Application type 2 (Compatible with Agilent® ADNS-2051)

(where Rosc is  $51K\Omega$ ; R3 open for 400dpi, short for virtual 800dpi; LED-2 is for shining only)

| LED BIN              | K/L/M/N/P | Q        | R        | S        | T        | U        |
|----------------------|-----------|----------|----------|----------|----------|----------|
| R2 Value $(K\Omega)$ | 8.2 ~ 12  | 8.2 ~ 15 | 8.2 ~ 18 | 8.2 ~ 22 | 8.2 ~ 27 | 8.2 ~ 33 |

| EFT Level                  | Rp    | Ru    | Cosc    | C1 & C3          | C2    | C0 & C4  | Ср   | Cu      |       |       |       |       |       |       |       |       |  |      |  |  |
|----------------------------|-------|-------|---------|------------------|-------|----------|------|---------|-------|-------|-------|-------|-------|-------|-------|-------|--|------|--|--|
| 3.0KV Class A              | 10Ω   | 10Ω   | 100 1pF | 1 <sub>n</sub> E | 1nF   | 1nE      | 1nE  | 100 1nF | 0.1nF | 0.1nE | 0.1nF | 0.1nE | 0.1nE | 0.1nF | 0.1nF | 0.1uF |  | 10uF |  |  |
| 1.2KV Class B              |       | 1022  | 1111    | 0.1ul            | 100uF | OuF Open | 10uF | 22uF    |       |       |       |       |       |       |       |       |  |      |  |  |
| Don't Care (1.2KV Class C) | Short | Short | Open    | Open             | 10001 |          |      |         |       |       |       |       |       |       |       |       |  |      |  |  |





This specification may change without further notice.