(19)日本国特許庁(JP)

(12) 公 期 特 許 公 報 (A)

(11)特許出限公開書号

特開平5-276461

(43)公開日 平成5年(1998)(0月22日

(51)Int.CL*

推到記号

庁内整理番号

FΙ

技術表示電所

HO4N 5/59

9/64

F 8942-5C

移査請求 未請求 請求項の数2(全 8 頁)

(21)出版委号

特頭平4-98940

(22)出頭日

平成 4年(1992) 3月25日

(71)出願人 000002185

ソニー株式会社

東京都品川区北岛川6丁自7番95号

(72) 元明者 田村 孝彦

東京都品川区北品川8丁目7番35号 ソニ

一样式会社内

(74)代理人 弁理士 佐藤 隆久

(54)【発明の名称】 カラーテレビ受像機の自動ビーム制限回路

(57)【要約】

【目的】 カソード電流の総和に基づく全体的なコント ラスト調整に加えて、過大なカソード電流を個別に検出 してその過大カソード電流によるCRT表示管の短命化 を防止するカラーテレビ受像機の自動ビーム制限回路を 提供する。

【構成】 カラーテレビ受像機の自動ビーム制限(AB L) 回路は、カソード電流の総和に基づく全体的なコン トラスト調整を行うフィードバック回路としての、アノ ード電流検出器 11, フライバックトランス6、ABL 検出回路7およびコントラスト制御回路5に加えて、C RTドライブアンプ2からの3原色信号RGBを値別に 検出するカソード電流検出部3、個別カソード電流の最 大のものが基準電圧Vrefを超えたか否かを検出する 比較回路 4 を有し、カソード電流の最大値が基準電圧V refを越えたとき、その差に基づくコントラスト調査 がビデオ信号処理集積回路(において行われる。

【特許請求の範囲】

【論求項】】カラーテレビ受像級のカソード電流を個別 に鉄出するカソード電流回路と、

該鉄出された複数のカソード検出信号の最大値が第1の 基準値を越えていることを検出する第1の比較回路と、 上記最大値が上記基準値を超えているとき上記最大値と 上記菩連領との型に応答してカソード電流を制限する回 路とを有するカラーテレビ受像機の自動ビーム制限回

する回路と.

該後出されたアノード電流が第2の基準値を超えている ことを検出する第2の比較回路と、

上記アノード電流が第2の普運電圧を越えているとき上 記アノード電流と第2の基準電圧との差に応答してカラ ーテレビ受像機のカソード電流を制限する回路とを有す る請求項1記載のカラーテレビ受像機の自動ビーム制限 回路.

【発明の詳細な説明】

[0001]

【虚業上の利用分野】本発明はカラーテレビ受像機に関 するものであり、特に、カラーテレビ受像機の自動ビー ム制限回路に関する。

[0002]

1.--

【従来の技術】カラーテレビ受像機には、X級放射対 策、あるいは、CRTの保護のために、目動ビーム制限 回路(ABL:Automatic Beam Limitter)が組み込ま れている。ABL回路はCRTのアノード高流を検出 し、それがある一定値を越えないようにコントラストや プライトネスにフィードバックをかけるシステム構成を 30 とるものが一般的である。

【0003】従来のカラーテレビ受像機の自動ビーム制 駿国路の具体例を図2を参照して述べる。 図2に示した カラーテレビ受像機は、ビデオ信号処理集積回路1, C RTドライブアンプ2, CRT表示管10, アノード電 確終出器II、フライバックトランス6,ABL狭出回 路7およびコントラスト制御回路(またはブライトネス 制御回路) 5 Aを有している。

【0004】ビデオ信号処理集積回路1は、たとえば、 号RGBに変換する。CRTドライブアンプ2はビデオ 信号処理集積回路1からの3原色信号R、G、BをCR 「表示管10を光らせるため100∨程度まで増幅する **増幅国路であり、増幅したカソード電圧をCRT表示管** 10内のカソードKR、KG、KBに印加する。アノー F電流検出器11はCRT表示管10のアノード面に接 続され、アノード電流、すなわち、カソード電流の総和 ∑ 「、を検出する。このアノード高流: ∑ 「、は20~ 30KV程度の高圧電圧HVとしてフライバックトラン ス6に印加される。

【0005】フライバックトランス6は、姿価的にイン ダクタンスし、とダイオードD、で表される高圧トラン スであり、アノード電流後出場11からの高圧のアノー F電流: II. をある程度の低い電圧におとしてABL 検出回路7に出力する。ABL検出回路7は、分割抵抗 器R。およびR。。平滑用コンデンサC。およびトラン ジスタTr8を有しており、フライバックトランス6か 5出力されるアノード電流:ΣI。が一定の値に到達し たことを検出する。この評細動作は役迹する。コントラ 【論水項2】ガラーテレビ受像級のアノード電流を検出 10 スト製御回路5 Aは、可変抵抗器V。、抵抗器R,およ び平滑用コンデンサC、を有し、ユーザーが調整する可 変数抗器V。の値とABL検出回路7からの信号に応じ てビデオ信号処理集積回路 1 の制御稿子 1 a のコントラ スト出力信号を調整する。

> 【0006】図2に示した従来のカラーテレビ受像機の 自動ビーム制限回路の動作を述べる。ビデオ信号処理集 横回路1に入力されたビデオ信号はビデオ信号処理集積 回路!において3原色信号RGBに復調され、CRTド ライブアンプ2においてCRT表示管10内のカソード KR、KG、KBを動作させる電圧まで増幅される。ア ノード電流検出器11はカソーFKR、KG。KBに流 れる電流の総和をアノード電流:エI。として終出し、 フライバックトランス6はアノード電流: Σ1。に対応 する電圧をABL検出回路7にアノード電流:SI。を 印加する。ABL検出回路7に印加されたアノード省 液:Σ1、に対応する電圧が電源電圧V。。, たとえば, 135Vを抵抗分割している分割抵抗器R、およびR、 の接続点N1に印加され、この接続点N1における電圧 がトランジスタTr8のペース・エミッタ電圧を越える と、その出力がコントラスト制御回路5AのノードN2 に印加される。コントラスト制御回路5AはABL検出 回路でからの出力電圧をユーザーが調整した可変抵抗器 V。の値に応じてビデオ信号処理集積回路 I のコントラ スト製御給子1aにおける竜圧を制御して、ビデオ信号 処理集積回路 l から変調して出力される3 原色信号RG Bの振幅を調整する。

【10017】上記カラーテレビ受像機の自動ビーム結構 回路の自動ビーム神殿動作について述べる。ビデオ信号 処理集積回路 1 およびCRTドライブアンプ2を介して コンポジット信号形態のビデオ信号を復調して3.原色信 40 出力される3.原色信号RGBのレベルが増大し、CRT 表示管1(1が明るくなるとそれに応じてCRT表示管1) 0のカソード電流の経和:Σ1。, すなわち, アノード 電流検出器 1.1 で検出するアノード電流:Σ.1、も増大 する。アノード電流:ΣΙ。に対応する電圧がフライバ ックトランス6からABL検出回路7に供給され、AB L供出回路7内の電源電圧Vccを抵抗分圧している抵抗 看R。とR。の共通接続点NIに印加されているため に、電圧分割点NIに電圧降下が生じる。この等価回路 を図3に示す。右側の電源Bがフライバックトランス6 50 から出力されるアノード電流: エー。に対応する電圧を

出力する母源として示される。

【0008】この電圧がABL検出回路7内のトランジ スタTr8のベース・エミック電圧-Vhe以下になる と、トランジスタTr8がオンし、そのコレクタに接続 しているコントラスト制御回路5内のコンデンサC。で 平滑され、抵抗器R、とコントラスト調整用抵抗器V。 とによりビデオ信号処理集積回路1のコントラスト制御* *鑷子 1 8 の電圧を下げ、ビデオ信号処理集積回路 1 から 出力される3原色信号RGBのレベルを下げるため、カ ソードKR、KG、KBに印加される電圧は一定に抑え **られ、アノード電流検出器11で検出されるアノード電** 液: Σ ! 、は低下する。

【0009】ABL検出回路7におけるトランジスタT r8を動作させる設定値(1)は下記式で示される。 設定值(1) = $Vcc \times (R5/(R4+R5)) + Vbe$

R4×R5/(R4+R5)

ただし、Vccは電源電圧を示し、R4は抵抗器R.の 10 アノード電流が第2の基準電圧を越えているとき上記ア 抵抗菌を示し、R 5は抵抗器R。の抵抗菌を示し、V n e はトランジスタTr8のベース・エミッタ電圧を示す。 [0010]

【発明が解決しようとする課題】 図2に示したカラーテ レビ受像機の自動ビーム制限回路によると、3つのカソ ード電流、すなわち、赤色 (R) 用カソード電流、緑色 (G) 用カソード電流、および、青色(B) 用カソード 電流の総和:∑Ⅰ、をアノード電流終出器ⅠⅠにおいて アノード電流:SI。として監視し、このカソード電流 一ム電流を制限しているから、たとえば、コンピュータ グラファクなどの表示におけるような単色に近い信号の みの信号による表示がCRT表示者10に行われている ときには、カソード電流の総和としてはさほど大きくな らず、ABL独出回路7が実質的に作動しない。その結 果、上記単色表示にかかわる特定のカソードに過大な常 確が流れ、CRT表示管 I Oの蛍光体やカソードの劣化 をまねき、CRT表示管 10の寿命を短くする要因とな っている。

【0011】すなわち、カソード電流の総和によるコン 30 トラスト制御はX扱放射対策には有効であるが、単色表 示に超因する上記問題には不十分である。したがって、 本発明はX級放射対策もよび適常のビデオ信号表示にお けるコントラスト調整に有効であるとともに、単色表示 におけるコントラスト調整とCRT表示管の寿命の長寿 命化を可能とするカラーテレビ受象機の自動ビーム制限 回路を提供することを目的とする。

[0012]

【課題を解決するための手段】上記問題を解決し、上述 した目的を達成するため、本発明のカラーテレビ受象機 40 の目動ビーム制限回路は、カラーテレビ受像器のカソー 下電流を個別に検出するカソード電流運路と、該検出さ れた複数のカソード検出信号の最大値が第1の基準値を 越えていることを検出する第1の比較回路と、上記最大 値が上記基準値を越えているとき上記最大値と上記基準 鏡との差に応答してカソード気流を制限する回路とを有 する。好道には、カラーテレビ受像機の自動ビーム制限 回路はさらに、カラーテレビ受象級のアノード電流を検 出する回路と、該検出されたアノード電流が第2の基準

ノード電流と第2の基準電圧との差に応答してカラーテ レビ受像級のカソード電流を制限する回路とを有する。 [0013]

【作用】カソード電流を個別に検出するカソード電流回 路においてカソード電流を闡測に検出し、第1の比較回 路においてその装出カソード電流の最大値が第1の基準 値と比較してその最大値が第1の基準値を越えていると きカソード電流を制限する回路を駆動する。カソード電 歳を練視する回路は第1の比較回路からの最大値と第1 の総和を基準として上記のようにCR T表示管 1 ()のビ 20 の基準値との差に基づいてカソード電流を制限してコン トラストを調整する。このようにカソード電流を個別に 検出し、その最大値に基づいてコントラスト調整を行う ので、かりに、単色表示が行われていて、アノード電流 が低い場合でもその単色表示状態に基づいてコントラス 上調整が行われる。好道には、上記カソード個別制御に 加えて、従来と同様、アノード電流、すなわち、カソー ド電流の総和に益づくコントラスト調整を行う。 [0014]

> 【実場例】図1に本発明のカラーテレビ受象級の自動ビ ーム調視回路の実施例の回路構成を示す。 図1に示した カラーテレビ受像機の自動ビーム制限回路は、ビデオ位 写処理集積回路1,CRTドライブアンプ2,カソード 電流後出部3.CRT表示管10,比較回路4.アノー F電流検出器11. フライバックトランス6、ABL検 出回路7、平滑回路8、および、コントラスト制御回路 5を有している。図1に示したカラーテレビ受像機の自 動ビーム制限回路は、図2に示したカラーテレビ受像投 の自動ビーム制限回路のビデオ信号処理集積回路 1. C RTドライブアンプ2, CRT表示管10, フライバッ クトランス6、ABL検出回路7、および、コントラス ト制御回路5Aに加えて、カソード電流検出部3、比較 回路4を付加している。図1に示した平滑回路8は図2 に示したコントラスト制御回路5A内のコンデンサC。 を分離して示したものである。 一方、 図1 のコントラス ト制御回路5からは平滑回路8のコンデンサC。が除去 されている。

【0015】図1における図2に示した回路要素。すな わち、ビデオ信号処理集積回路 1 , CRTドライブアン プ2、フライバックトランス6、ABL検出回路7、お 値を越えていることを検出する第2の比較回路と、上記 50 よび、コントラスト制御回路5A(図2に示した平滑回 路8を含む)は、図2のカラーテレビ受象機の自動ビー ム制限回路を参照して述べたように、カソード電流の経 和: Σ1。(アノード電流)に基づく全体的なコントラ スト制御を行う。

【0016】図1に示したカラーテレビ受像機の自動ビ 一ム制収回路は、上記カソード電流の総和:エI。(ア ノード電流)に芸づく全体コントラスト制御に加えて、 ビデオ信号処理集積回路 1. CRTドライブアンプ2. カソード電流鉄出部3、比較回路4およびコントラスト 電流を個別に後出した個別コントラスト制御を行う。上 記したように、ビデオ信号処理集積回路1は、コンポジ ット信号形態のビデオ信号を復調して3原色信号RGB に変換する。CRTドライブアンプ2はビデオ信号処理 集領回路1からの3原色信号R,G.BをCRT表示管 10を光らせるため増幅する。

【0017】CRTドライブアンブ2の3原色信号RG Bはカソード電波検出部3に印加される。カソード電流 検出部3は、CRTドライブアンプ2からの機幅された 3原色信号RGBを検出する3個並列に設けられたpn pトランジスタTrl, Tr2, Tr3, これらトラン シスタのコレクタに接続され、その平均値を算出する。 それぞれ抵抗器R、とコンデンサC、からなる第1の平 滑用ローパスフィルタ(LPF)**、低抗器**R、とコンデ ンサC、からなる第2の平滑用LPF、抵抗器R,とコ ンデンサC』からなる第3の平滑用しPFを有してい る。したがって、カソード電流検出部3はCRTドライ プアンプ2からの増幅3原色医号RGBの値を独立に検 出してのそれらの平均値を直流電圧として比較回路4に

【0018】比較回路4は、カソード電流検出部3で検 出された3原色信号RGBに対応して設けられたnpn トランジスタTr4, Tr5およびTr6, これらのト ランジスタと差断対に接続されたカウェトランジスタ下 r7. これらのトランジスタTr4~Tr7の電流額と しての抵抗器R。、および、基準電圧Vrefを出力す るバッテリィ電源を有している。トランジスタTェ7は トランジスタTェ4~Tェ6と差動対の接続されている が、トランジスタTr4~Tr6のエミッタが共通接続 されている点NGには最大の電流値が現れるから、トラ ンジスタTr7はその最大電流を出力しているトランジ スタTr4~Tr6のいずれかと差動動作をする。その 結果、トランジスタTr7に印加されている基準電圧V refと接続点NBにおける最大電圧との差がトランジ スタTr4~Tr6のコレクタが共通に接続された点N 3に見れる。つまり、比較回路4はカソード電波検出部 3において検出されたCRTドライブアンプ2からの増 幅3原色信号RGBの検出最大値と基準電圧Vrefと を比較し、最大値が基準電圧を超えたら、その差の電圧 を接続点N3に出力する。

【0019】ノードN5にはノードN3からの上記差念 圧のほか、図2を参照して述べたと同様のアノード電流 検出器11,フライバックトランス6.ABL鈍出回路 7. 平滑回路8からのアノード電流に基づくコントラス ト制御信号が印刷されている。 したがって、 ビデオ信号 処理集積回路1のコントラスト制御端子18には接続点 N3からのカソード電流個別コントラスト制御信号と平 滑回路8のノードN4からのカソード電**流は和**コントラ スト制御信号とが加昇されて印加され、ビデオ信号処理 制御回路5の回路系統によって、下記に述べるカソード 10 集積回路1は両者のコントラスト制御信号に基づいてそ の出力信号の振幅を制御する。

> 【0020】上記カソード電流個別コントラスト制御の 詳細について述べる。CRTドライブアンプ2の3原色 出力信号RGBはカソード電流検出部3内のカソード電 漆個別検出素子としてのトランジスタTェ 1~Tェ3で 検出され、これら検出されたカソード週別電流はトラン ジスタTrl~Tr3のコレクタに流れ、上記平滑用し PFを構成している検出抵抗器R、~R」により電圧に 変換される。検出抵抗R。~R。は対応するコンデンサ C、~C」と控動してローバスフィルタ回路(LPF) を帯成しているので、これらのLPFからはトランジス タTェ1~Tェ3のコレクタ電流信号の平均値の直流電 圧が得られる。これらの赤色カソード電圧VR、緑色カ ソード電圧VGなよび青色カソード電圧VBはそれぞれ カソード電流映出部3内のトランジスタTr1~Tr3 において検出された赤色カソード電流R I k, 緑色カソ ード電流G|kおよび音色カソード電流B|kについて 下記式で表される。

VR=RIk×R1 VG=GIk×R2

VB=Blk×R3

ただし、RI~R3はそれぞれ抵抗器R、~R、の抵抗

【0021】 これらのカソード電圧VR、VG、VBは 比較回路4内のトランジスタTr4~Tr6のベースに 接続されている。比較回路4においては、これらの各電 圧とトランジスタTr7を介して基準電圧Vre1とを 比較し、電圧VR、VG、VBの1つでも基準電圧Vr efを越えると、トランジスタTr4~Tr6のコレク タ電流が抵抗器R,とコントラスト調整抵抗器V。とに 流れ、ビデオ信号処理集積回路1のコントラスト制御論 子laの電圧を下げ、ビデオ信号処理集積回路lの出力 電圧である3原色信号RGBのレベルを増子1aに印加 された電圧に基づいて等しく下げ、赤色カソード電流R 「 k. 緑色カソード電流G [kまたは青色カソード電流 BIkの量を一定値におさえる。たとえば、赤色の単色 のカソード電流が非常に高くなった場合。その赤色のカ ソード電流を芸革としてその他の緑色および青色も赤色 と同じ比率で制限してコントラスト調整する。

【10022】コントラスト制御回路5には従来回路と同

(5)

特開平5-276461

じアノード電流の総和:ΣI、によるABL検出回路7 も接続されているので、ABLのかかる条件は、アノー ド電流:21。<設定値(1),赤色カソード電流R1 、<設定値(2),または緑色カソード電流G I 。<設 定舗(3),または、青色カソード電流81。<設定値 (4)となる。設定値 (2)~(4)はCRT表示管 I ()のサイズ等により、カソード電流会出部3内の低抗器 $R_1 \sim R_1$ の抵抗値 $R_1 \sim R_5$ で任意に設定される。設 定簡(2)~設定値(4)は下記式で示される。

設定値(2)=Vref/R1

設定値(3)=Vref/R2

設定値(4)=Vref/R3

【0023】 このように、図1に示したカラーテレビ会 像標の目動ビーム制度回路においては、カソードKR。 KG、KBに印加されるカソード電流を直接個別に検出 し、適切に最大カソード電流を選ぶことにより、CRT 表示管10の劣化を防ぎ、CRT表示管10の長寿命化 を図ることが可能となる。また図1に示したカラーテレ ビ受保機の目動ビーム制限回路においては、図2に示し たと同様,アノード電流:ΣΙ。でABLを行ってお り、従来の目動ビーム部限も機能している。

【0024】以上、好遺実施例とし、カソード電流個別 コントラスト制御とカソード電流全体コントラスト制御 について述べたが、もし、コンピュータグラフィックな どのように、単色での表示の使用頻度が非常に高く、通 常のビデオ信号表示をあまり行わないようにな用途に対 しては、カソード電流個別コンピュータ制御をのみ行う ことができる。その回路構成は、図1に示したカラーテ レビ受像機の自動ビーム制限回路を参照すると、ビデオ 信号処理集積回路1,CRTFライブアンプ2.カソー 30 11・・アノード電途検出器。 ド電波検出部3.CRT表示管10.比較回路4.およ*

*び、コントラスト制御回路5で構成されるものになる。 【0025】上述した本発明のカラーテレビ受像機の自 動ビーム制限回路の実施例は回路動作の観点から間易に 示したものであり、本発明の実施に際しては、上述した 例示に限らず、種々の変形形態をとることができる。 [0026]

【発明の効果】以上述べたように、本発明によれば、カ ソード電流を個別に検出して、たとえば、単色表示にお ける過大カソード電流を防止し、適切なコントラストで 10 個像表示を可能にするとともに、画像表示質の寿命を長 くすることができる。また本発明によれば、上記の効果 に加えて、カソード電流の秘和による全体的なコントラ スト調査、X條放射対策を行うことができる。

【図画の簡単な説明】

【図1】本発明のカラーテレビ受像機の自動ビーム#解 国路の実施所の国路図である。

【図2】従来のカラーテレビ受像機の自動ビーム制限回 路の回路図である。

【図3】 図2に示した回路の等化回路図である。 【符号の説明】

1・・ビデオ信号処理集積回路。

2・・CRTドライブアンプ。

3・・カソード電流検出部

4・・比較回路。

5・・コントラスト制御回路。

6・・フライバックトランス.

7・・ABL鈴出回路,

8・・平滑回路。

10・・CRT表示管,

[图2]

[図3]

(ච)

[2][

http://www.ipdl.jpo-miti.go.jp/tjcontentbs.ipdl?N0000=20&N0400=image/gif&N0401=/N.../:\$3f\$3a=89:9\$3e//// 00/12/05 and the content of the co