

BACK TO CLUSTERING

Classification. Training two Gaussians given data labeled +, - Clustering. Training two Gaussians given unlabeled data

Algorithms.

- 1. k-Means
 - a. Given hard labels, compute centroids
 - b. Given centroids, compute hard labels
- 2. Expectation-Maximization
 - a. Given soft labels, compute Gaussians
 - b. Given Gaussians, compute soft labels

GENERATIVE MODEL

Model Parameters

 p_1, \dots, p_k $\mu^{(1)}, \dots, \mu^{(k)}$ $\sigma_1^2, \dots, \sigma_k^2$

Huttese - Lesson 1

Distroth - blaster
groptula - ransom
moulee-rah - money
juliminmee - kidasp
tonta tonial - tentacies upt
wavanna coe mouleer rah?
- when can I expect payment?

GENERATIVE MODEL

Points x – dots Label y – color of dots Prior p_y – proportion of dots Mean $\mu^{(y)}$ – center of circle Variance σ_y^2 – size of circle

GENERATIVE MODEL

OBSERVED LABELS

Label. $y \sim \text{Multinomial}(p_1, ..., p_k)$

Point. $x \sim \mathcal{N}(\mu^{(y)}, \sigma_y^2)$

Parameters. $\theta = \{p_1, ..., p_k, \mu^{(1)}, ..., \mu^{(k)}, \sigma_1^2, ..., \sigma_k^2\}$

Data. $S_n = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$

PDF of Spherical Gaussian

$$P(x|y,\theta) = (2\pi\sigma_y^2)^{-d/2} \exp\left\{-\frac{1}{2\sigma_y^2} \|x - \mu^{(y)}\|^2\right\}$$

PDF of Model

$$P(x,y|\theta) = p_y P(x|y,\theta)$$

Log Likelihood $\mathcal{L}_n(\theta) = \sum_{(x)} f(x) dx$

$$\mathcal{L}_n(\theta) = \sum_{(x,y) \in \mathcal{S}_n} \log p_y P(x|y,\theta)$$

OBSERVED LABELS

Hard Labels (Given).

$$\delta(y|x^{(t)}) = \begin{cases} 1 & \text{if label } y^{(t)} \text{ equals y,} \\ 0 & \text{otherwise.} \end{cases}$$

Log Likelihood.

$$\begin{split} \mathcal{L}_n(\theta) &= \sum_{(x,y) \in \mathcal{S}_n} \log p_y P(x|y,\theta) \\ &= \sum_{x \in \mathcal{S}_n} \sum_{y=1}^k \delta(y|x) \log \{p_y P(x|y,\theta)\} \\ &= \sum_{y=1}^k \sum_{x \in \mathcal{S}_n} \delta(y|x) \log \{p_y P(x|y,\theta)\} \\ &= \sum_{y=1}^k \sum_{x \in \mathcal{S}_n} \delta(y|x) \log \{P(x|y,\theta)\} + \sum_{y=1}^k \sum_{x \in \mathcal{S}_n} \delta(y|x) \log \{p_y\} \end{split}$$

OBSERVED LABELS

Hard Labels (Given).

$$\delta(y|x^{(t)}) = \begin{cases} 1 & \text{if label } y^{(t)} \text{ equals y,} \\ 0 & \text{otherwise.} \end{cases}$$

Maximum Likelihood Estimate.

$$\hat{n}_{y} = \sum_{x \in \mathcal{S}_{n}} \delta(y|x)$$

$$\hat{p}_y = \hat{n}_y / n$$

$$\hat{\mu}^{(y)} = \frac{1}{\hat{n}_y} \sum_{x \in \mathcal{S}_n} \delta(y|x) x$$

$$\hat{\sigma}_{y}^{2} = \frac{1}{d\hat{n}_{y}} \sum_{x \in \mathcal{S}_{n}} \delta(y|x) \|x - \hat{\mu}^{(y)}\|^{2}$$

(number of points with label y)

(fraction of points with label y)

(mean of points with label y)

(variance of points with label y)

MIXTURE MODEL (HIDDEN LABELS)

Label. $y \sim \text{Multinomial}(p_1, ..., p_k)$

Point. $x \sim \mathcal{N}(\mu^{(y)}, \sigma_y^2)$

Parameters. $\theta = \{p_1, ..., p_k, \mu^{(1)}, ..., \mu^{(k)}, \sigma_1^2, ..., \sigma_k^2\}$

Data. $S_n = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$

PDF of Spherical Gaussian

$$P(x|y,\theta) = (2\pi\sigma_y^2)^{-d/2} \exp\left\{-\frac{1}{2\sigma_y^2} \|x - \mu^{(y)}\|^2\right\}$$

PDF of Model

$$P(x|\theta) = \sum_{y=1}^{k} p_y P(x|y,\theta)$$

Log Likelihood

$$\mathcal{L}_n(\theta) = \sum_{x \in \mathcal{S}_n} \log \sum_{y=1}^k p_y P(x|y, \theta)$$

MIXTURE MODEL (HIDDEN LABELS)

PDF of Model

Observed Labels
$$P(x, y|\theta) = p_y P(x|y, \theta)$$

Hidden Labels

$$P(x|\theta) = \sum_{y=1}^{k} p_y P(x|y,\theta)$$

Marginalizing over y

Log Likelihood

Observed Labels

$$\mathcal{L}_n(\theta) = \sum_{(x,y) \in \mathcal{S}_n} \log \qquad p_y P(x|y,\theta)$$

$$p_{y}P(x|y,\theta)$$

Hidden Labels

$$\mathcal{L}_n(\theta) = \sum_{x \in \mathcal{S}_n}$$

$$\mathcal{L}_n(\theta) = \sum_{x \in \mathcal{S}_n} \log \sum_{y=1}^k p_y P(x|y, \theta)$$

Log Likelihood.

$$\mathcal{L}_n(\theta) = \sum_{x \in \mathcal{S}_n} \log \sum_{y=1}^k p_y P(x|y, \theta)$$

Numerical Algorithm.

- 1. Initialize parameters $\theta = \{p_1, \dots, p_k, \mu^{(1)}, \dots, \mu^{(k)}, \sigma_1^2, \dots, \sigma_k^2\}$
- 2. Repeat until convergence:
 - **E-Step.** Given parameters θ , compute soft labels p(y|x).
 - **b. M-Step.** Given soft labels p(y|x), compute parameters θ .

Initialize Parameters.

 $p_y=1/k~$ for all y $\mu^{(y)}~$ centroids from k-means algorithm $\sigma_y^2=\sigma^2~$ the sample variance, for all y

Expectation Step.

Compute soft labels

$$p(y|x) = \frac{p(y,x)}{p(x)} = \frac{p_y P(x|\mu^{(y)}, \sigma_y^2)}{\sum_{z=1}^k p_z P(x|\mu^{(z)}, \sigma_z^2)}$$

Maximization Step.

$$\hat{n}_{y} = \sum_{x \in \mathcal{S}_{n}} p(y|x)$$

$$\hat{p}_y = \hat{n}_y / n$$

$$\hat{\mu}^{(y)} = \frac{1}{\hat{n}_y} \sum_{x \in \mathcal{S}_n} p(y|x) x$$

$$\hat{\sigma}_{y}^{2} = \frac{1}{d\hat{n}_{y}} \sum_{x \in \mathcal{S}_{n}} p(y|x) \left\| x - \hat{\mu}^{(y)} \right\|^{2}$$

(effective number of points with label y)

(effective fraction of points with label y)

(weighted mean of points with label y)

(weighted variance of points with label y)

COMPARISON WITH K-MEANS

Different cluster analysis results on "mouse" data set:

COMPARISON WITH K-MEANS

- Like k-means, EM clustering may get stuck in local minima.
- Unlike k-means, the local minima are more favorable because soft labels allow points to move between clusters slowly.

SMOOTHING

Problem.

We want to maximize

$$\mathcal{L}_{n}(\theta) = \sum_{x \in \mathcal{S}_{n}} \log \left\{ \sum_{y=1}^{k} p_{y} (2\pi\sigma_{y}^{2})^{-d/2} \exp \left(-\frac{1}{2\sigma_{y}^{2}} \|x - \mu^{(y)}\|^{2} \right) \right\}$$

- Let $\mu^{(1)} = x^{(1)}$ be equal to a data point.
- Term in inner sum becomes $(2\pi\sigma_y^2)^{-d/2} \exp(0)$.
- As σ_{ν} tends to zero, $\mathcal{L}_{n}(\theta)$ will tend to infinity!
- In fact, if $x^{(1)}$ is the only point with soft label $p(1|x) \neq 0$, then

$$\hat{\sigma}_1^2 = \frac{1}{d\hat{n}_1} \sum_{x \in \mathcal{S}_n} p(1|x) \|x - \hat{\mu}^{(1)}\|^2 = 0.$$

SMOOTHING

Solution.

• Give prior probabilities to the σ_{v} .

These are called *conjugate priors*, designed to ensure that prior and posterior have the same form.

$$p(\sigma_y^2 | \alpha_y, s_y^2) = C \left(2\pi\sigma_y^2\right)^{-\alpha_y d/2} \exp\left(-\frac{\alpha_y s_y^2}{2\sigma_y^2}\right)$$

New objective is to maximize the log posterior probability.

$$\mathcal{L}_n(\theta) = \sum_{x \in \mathcal{S}_n} \log \left\{ \sum_{y=1}^k p_y P(x | \mu^{(y)}, \sigma_y^2) p(\sigma_y^2 | \alpha_y, s_y^2) \right\}$$

• New maximization step for $\hat{\sigma}_y^2$ is given by

$$\hat{\sigma}_{y}^{2} = \frac{1}{d(\alpha_{y} + \hat{n}_{y})} \Big(\alpha_{y} s_{y}^{2} + \sum_{x \in S_{n}} p(y|x) \|x - \hat{\mu}^{(y)}\|^{2} \Big).$$

SMOOTHING

Why do we choose prior probabilities of this form?

$$p(\sigma_y^2 | \alpha_y, s_y^2) = C \left(2\pi\sigma_y^2\right)^{-\alpha_y d/2} \exp\left(-\frac{\alpha_y s_y^2}{2\sigma_y^2}\right)$$

• Fix mean μ_y . Suppose we have α_y observations of $s_y + \mu_y$. The likelihood of these observations is

$$p(\alpha_y, s_y^2 | \sigma_y^2) = (2\pi\sigma_y^2)^{-\alpha_y d/2} \exp\left(-\frac{\alpha_y s_y^2}{2\sigma_y^2}\right).$$

• The posterior probability of σ_y^2 will be

$$p(\sigma_y^2 | \alpha_y, s_y^2) \propto p(\alpha_y, s_y^2 | \sigma_y^2) p(\sigma_y^2).$$

Use this posterior as a prior for maximum likelihood estimation.

MODEL SELECTION

- By setting $p_{k+1} = 0$, we see that (mixture model with k clusters) contained in (mixture model with k+1 clusters).
- Therefore, likelihood for (mixture model with k+1 clusters) is greater or equal to that of (mixture model with k clusters).
- How to choose the right k and prevent over-/under-fitting?

VALIDATION VS CROSS-VALIDATION

Method 1 (Simulation)

Estimate testing error using simple validation or cross-validation.

testing error

• $\widehat{R}(\mathcal{D})$

Training data to learn $\hat{r}(x)$

Testing data

 \mathcal{D}

k-fold cross-validation

$$\widehat{R}_{\text{CV}} = \frac{1}{m} \sum_{i=1}^{m} \widehat{R}(\mathcal{D}_i)$$

Training data to learn $\hat{r}(x)$

Testing data

BAYESIAN INFORMATION CRITERION

Method 2 (Marginal Likelihood)

Maximize the marginal likelihood integral. But computing this integral is tedious, so we approximate it using the BIC.

$$BIC(\theta) = \mathcal{L}_n(\theta) - \frac{\text{\# of free params}}{2} \log n$$

For Gaussian mixtures, we have k(d+2)-1 free parameters.

$$BIC(\theta) = \mathcal{L}_n(\theta) - \frac{k(d+2)-1}{2}\log n$$

BAYESIAN INFORMATION CRITERION

SUMMARY

- Expectation-Maximization
 - Mixture Model
 - Clustering
 - Hidden Variables
 - Soft Labels
- Generalization
 - Priors and Smoothing
 - Model Selection
 - Validation and Cross-Validation
 - Bayesian Information Criterion

INTENDED LEARNING OUTCOMES

Expectation-Maximization

- Write down the distribution of a Gaussian mixture model.
 Write down the log likelihood of a given data set.
- Describe the expectation-maximization algorithm. In particular, describe how the parameters may be initialized effectively, and describe how the soft labels are computed in the E-step, and describe how the parameters are updated in the M-step.
- Explain how the EM algorithm may be used in clustering, and describe the differences between k-means and EM clustering.
- Explain how prior probabilities on the variances σ_y^2 may be used to obtain smoothed estimates for the parameters.

INTENDED LEARNING OUTCOMES

Model Selection

- List some strategies for selecting the number of clusters.
- Describe the differences between validation and cross-validation.
- Write down the Bayesian Information Criterion, and explain how it may be used for model selection.

