Национальный исследовательский университет «МЭИ»

КУРСОВОЙ ПРОЕКТ

«Разработка модуля расчёта координат спутника Beidou»

Группа: ЭР-15-16

Студент: Карнаухов А.А.

Преподаватель: Корогодин И.В.

Москва

ВВЕДЕНИЕ

Цель проекта - добавление в программное обеспечение приемника функции

расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

требования назначения;

отсутствие утечек памяти;

малое время выполнения;

низкий расход памяти;

корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам

проекта и контрольным мероприятиям:

• обработка данных от приемника, работа со сторонними сервисами для

подготовки входных и проверочных данных для разрабатываемого

модуля;

моделирование модуля в Matlab/Python;

реализация программного C/C++модуля на включая юнит-

тестирование в Check.

Конечная цель всего курсового проекта - получить библиотеку функций на

Си++, позволяющую рассчитывать положение спутника Beidou по его эфемеридам.

Исходные данные: PRN спутника Beidou – C09

2

Этап 1. Использование сторонних средств

Описание этапа

На первом этапе подготовим вспомогательные данные для разработки: эфемериды и оценки положения спутника от сторонних сервисов (чтобы было с чем сравниваться на след. этапах).

На крыше корпуса Е МЭИ установлена трехдиапазонная антенна Harxon HX-CSX601A. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- Javad Lexon LGDD,
- SwiftNavigation Piksi Multi,
- Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных - наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года

Определим какому спутнику соответствует выданный PRN спутника.

9	Компас IGSO-4	C09	26.07.2011 21:44	CZ-3A	2011-038Ar	37763₺	Геосинхронная, накл. 55°; 95° в. д.	действующий

Рисунок 1 — Состав орбитальной группировки космической навигационной системы Beidou на 10 марта 2020 года [1]

Номер спутника C09 соответствует спутнику Компас IGSO-4, номер по спутниковому каталогу НОРАД (или SCN) равен 37763. Для проверки этой информации обратимся к ресурсу «Информационно-аналитического центра координатно-временного и навигационного обеспечения» [2].

C09	37763	IGSO-4	BDS-2	27.07.11	3515	Используется по ЦН
-----	-------	--------	-------	----------	------	--------------------

Рисунок 2 — Данные о состоянии космических аппаратов Beidou на 02.03.21 (источник «Информационно-аналитического центра координатно-временного и навигационного обеспечения»)

По рисункам 1 и 2 можно увидеть, что данные совпадают.

1.1. Определение формы орбиты и положения спутника

Определим формы орбиты и положения спутника на ней на начало рассматриваемого интервала времени по данным сервиса CelesTrak: общий вид + положение спутника на 18:00 МСК 16 февраля 2021, так, чтобы было видно подспутниковую точку и время.

18:00 по МСК соответствует 15:00 по UTC (UTC +3). Так как сервис CelesTrak работает в формате времени UTC, установим время 15:00 UTC 16 февраля 2021.

Рисунок 3 — Модель сервиса CelesTrak, видно подспутниковую точку и время

1.2. Расчет графика угла места собственного спутника от времени

Рассчитаем график угла места собственного спутника от времени по данным Trimble GNSS Planning Online на интервал времени с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года.

Установили приблизительные координаты местоположения антенны и границы времени, также выбрали спутник C09.

Рисунок 4 — Экран настроек Trimble GNSS Planning Online

Рисунок 5 — График угла места спутника С09 от времени

По рисунку 5 видно, что спутник находился в зоне видимости в промежутке времени с 23:10 до 6:00.

1.3. Расчет диаграммы угла места и азимута спутника

Рассчитаем диаграммы угла места и азимута спутника (SkyView, он же SkyPlot) по данным Trimble GNSS Planning Online на интервал времени с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года.

Пронаблюдаем траекторию движения спутника.

Рисунок 6 — Траектория движения спутника C09, построенная с помощью SkyPlot.

По рисунку 6 видно, что в конце наблюдаемого интервала времени спутник C09 все еще находился в зоне видимости.

1.4. Формирование списка и описание параметров

Сформируем список и описание параметров, входящих в состав эфемерид в сигнале B1I Beidou. Сформируем список эфемерид [3]:

Таблица 1 — Описание параметров эфемерид

Параметры	Определение					
t_{oe}	Исходное время эфемерид					
\sqrt{A}	Квадратный корень из большой полуоси					
e	Эксцентриситет					
ω	Аргумент перигея					
$\Box n$	Среднее отклонение движения от расчетного значения					
M_0	M_0 Средняя аномалия в исходное время					
Ω_0	Долгота восходящего узла орбитальной плоскости, вычисленная по					
	исходному времени					
Ω	Скорость прямого восхождения					
i_0	Угол наклона в исходное время					
IDOT	Скорость угла наклона					
C_{uc}	Амплитуда косинусного гармонического корректирующего члена к					
ис	аргументу широты					
C_{us}	Амплитуда синусного гармонического корректирующего члена к аргументу широты					
	Амплитуда косинусного гармонического корректирующего члена к радиусу					
C_{rc}	орбиты					
C	Амплитуда синусного гармонического корректирующего члена к радиусу					
C_{rs}	орбиты					
C_{ic}	Амплитуда косинусного гармонического корректирующего члена к углу					
ic	наклона					
C_{is}	Амплитуда синусного гармонического корректирующего члена к углу					
is	наклона					

Таблица 2 — Значения параметров эфемерид спутника С09

Параметр	Обозначение	Значение	Размерность	
SatNum	PRN	9	-	
toe	t _{oe}	244800000.000	мс	
Crs	C_{rc}	-4.98437500000000000e+01	рад	
Dn	$\Box n$	7.87532799390033844e-13	рад/мс	
M0	M_{0}	2.34731910518265385e+00	рад	
Cuc	C_{uc}	-1.24704092741012573e-06	рад	
e	e	7.69855396356433630e-03	-	
Cus	C_{us}	2.29864381253719330e-05	рад	
sqrtA	\sqrt{A}	6.49307452583312988e+03	$M^{1/2}$	
Cic	C_{ic}	-6.98491930961608887e-08	рад	
Omega0	Ω_0	6.79084253670661386e-01	рад	
Cis	C_{is}	8.84756445884704590e-08	рад	
i0	i_0	9.50974837701972997e-01	рад	
Crc	C_{rc}	-4.67468750000000000e+02	рад	
omega	ω	-2.38950527529739887e+00	рад	
OmegaDot	Ω	-1.75185868623179542e-12	рад/мс	
iDot	IDOT	6.78599694972560970e-15	рад/с	
Tgd	T_{GD}	2.09000000000000000e+05	мс	
toc	t_{oc}	2.4480000000000000e+08	мс	
af2	a_{f2}	0.0000000000000000e+00	Mc/Mc^2	
af1	a_{f1}	-2.67101896156418661e-11	мс/мс	
af0	a_{f0}	7.28702425956726074e-01	мс	
URA	-	0	-	
IODE	-	257	-	
IODC	-	0	-	
codeL2	-	0	-	
L2P	-	0	-	
WN	-	789	-	

Список литературы и источников

- 1. Википедия. Бэйдоу https://ru.wikipedia.org/wiki/Бэйдоу#Список_спутников
- 2. «Информационно-аналитический центр координатно-временного и навигационного обеспечения» https://www.glonass-iac.ru/BEIDOU/
- BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal B1I (Version 3.0) - China Satellite Navigation Office February 2019