Given a function:

Suppose that we only know some point values. How approximate the derivatives of U(X)?

Recall the definition of the derivative:

$$U(x) = \lim_{h \to 0} \frac{u(x+h) - u(x)}{h}$$

This suggests the approximation:

$$u(\bar{x}) \approx D_4 u(\bar{x}) = \frac{u(\bar{x}+h) - u(\bar{x})}{h}$$

forward difference

30

$$u(x) \approx D L u(x) = \frac{u(x) - u(x - h)}{h}$$

backward difference

or their average:

erage:

$$U'(x) \approx D_0 U(x) = \frac{L}{Z}(D_1 + D_1)U(x) = \frac{U(x+1) - U(x-1)}{ZL}$$

centered difference

The centered difference is the most accurate, for small h. Recall Taylor's Theorem: $U(x) = \underbrace{\underbrace{\underbrace{\underbrace{U^{(j)}(x)\cdot(x-x)}}_{j!}}_{i} = \underbrace{\underbrace{\underbrace{u^{(j)}(x)\cdot(x-x)}_{j!}}_{j!} + \underbrace{O(x-x)^{p+1}}_{j!}}_{i}$ Big-oh notation: f(h)=O(h) means 7 C>0, h,>0 such that If M = Chp for all h = h. $-3U(x+h) = U(x) + hu(x) + \frac{1}{2}u'(x) + \frac{1}{6}u''(x) + O(h^4)$ $U(x-h) = U(x) - hu'(x) + \frac{1}{6}u''(x) - \frac{1}{6}u''(x) + O(h^4)$ u(x) = u(x) $D_{+}U(x) = \frac{u(x+h)-u(x)}{h} = \frac{u(x+h)-u(x)}{h} = \frac{u(x+h)-u(x)}{h} = \frac{u(x+h)-u(x)}{h}$ = U(x)+ \frac{h}{z}U'(\frac{x}{2})+O(h^2) This approximation

Leading truncation is 1st-order accurate.

error T)_U(x)= U(x)-U(x-h)=u(x)-(U(x)-hu'(x)+1/2 u'(x)+0(/3)) - W(x)- hu/x)+0(h2) $Du(x) = \frac{u(x+h)-u(x-h)}{zh} = \frac{u(x)+hu(x)+\frac{h^2}{z^2}u(x)-(ux)-hu(x)+\frac{h^2}{z^2}u(x)}{zh}$ = U(\(\overline{x}\)+(\(\frac{\varphi_{\overline{x}} \(\varphi_{\overline{x}}\)}{\(\sigma_{\overline{x}}\)\)

$= U(\overline{x}) + \frac{h^2}{6} u''(\overline{x}) + O(h^4)$ Znd-order accurate
Deriving finite difference formulas
Suppose you are given
$u(\overline{x})$, $u(\overline{x}+h)$, $u(\overline{x}+2h)$ and want to approximate $u''(\overline{x})$.
we need the Taylor series
$U(\overline{x}+Zh) = U(\overline{x}) + Zhu'(\overline{x}) + Zh^2u''(\overline{x}) + \frac{4h^3}{3}u'''(\overline{x}) + O(h^4)$ Substitute to abtain:
$au(x)+b(u(x)+hu(x)+\frac{h^2}{2}u'(x)+\frac{h^3}{6}u''(x))$
tc(U(又)+Zhu'(文)+Zhzu'(文)+ 4h3 U"(文)) ~ U((文))
(a+b+c)u(x)+(b+zc)hu'(x)+(b+zc)hzu'(x)
16+45) 13 U"(x) 2 U"(x)
This implies: $a+b+c=0$ $(b+2c)h^2=1$
b+1250

We find:
$$b=\frac{2}{k^2}$$
 $a=c=\frac{1}{k^2}$

So we have:

 $u'(x) \simeq \frac{u(x)-2u(x+h)+u(x+2h)}{k^2}$ Error is $O(h)$

We could have obtained this formula by applying D_x twice:

 $D(D(u(x))) = D_x \left(\frac{u(x+h)-u(x)}{k} \right)$
 $= \frac{u(x+2h)-u(x+h)}{k^2} - \frac{u(x+h)-u(x)}{k^2}$
 $= \frac{u(x+2h)-2u(x+h)+u(x)}{k^2}$
 $D_xD_u(x) = \frac{u(x+h)-2u(x)+u(x-h)}{k^2} \simeq u^2(x)$

centered formula $= \frac{1}{2}$ and order accurate

FD formulas can also be derived by

FD formulas can also be derived by constructing an interpolating polynomial and differentiating.

General method for finding FD formulas Siven values of u at x_1, \ldots, x_n , find the most accurate way to approximate $u^{(k)}(\bar{x})$.

 $U(x_j) = U(\bar{x}) + (x_j - \bar{x})U(\bar{x}) + \frac{(x_j - \bar{x})^2}{z}U(\bar{x}) + \cdots = \frac{(x_j - \bar{x})^2}{z}U(\bar{x}) + \cdots$

 $C_1U(x_1)+C_2U(x_2)+\cdots+C_nU(x_n)=U^{(x)}(x_1)+O^{(h^p)}$ After substituting taylor series for each $u(x_1)$, we collect terms:

 $= \frac{(C_1 + C_2 + \cdots + C_N) U(\overline{X})}{+ (C_1(x_1 - \overline{X}) + C_2(x_2 - \overline{X}) + \cdots + C_N(x_N - \overline{X})) U'(\overline{X})}$ $+ \frac{1}{2} (c_1(x_1 - \overline{X})^2 + \cdots - \cdots + C_N(x_N - \overline{X})^2) U'(\overline{X})$ $+ \cdots = U^{(k)}(\overline{X}) + O(h^p)$

This yields a linear system of equations:

Vandermende

The solution of this system will give us a FD formula $U^{(k)}(\bar{x})$.

What is the size of the error? O(hn-k)

Homework: 1 Finite_differences.ipynb Questions in bold Due next Thursday