

BUNDESREPUBLIK DEUTSCHLAND

REC'D 28 SEP 2000

WIPO PCT

10 / 049404

DE 00/02589

4

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Aktenzeichen: 199 37 264.0

Anmeldetag: 6. August 1999

Anmelder/Inhaber: Deutsches Krebsforschungszentrum Stiftung
des öffentlichen Rechts, Heidelberg, Neckar/DEBezeichnung: F_v-Antikörper-Konstrukte

IPC: C 07 K, A 61 K

**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.**

München, den 6. September 2000
Deutsches Patent- und Markenamt
Der Präsident
 Im Auftrag

Hoß

K 2619

F_v-Antikörper-Konstrukte

Die vorliegende Erfindung betrifft F_v-Antikörper-Konstrukte, die eine Regression von Morbus Hodgkin induzieren können, für solche F_v-Antikörper-Konstrukte kodierende DNAs sowie ein Verfahren zur Herstellung der F_v-Antikörper-Konstrukte und ihre Verwendung.

5

10

15

25

30

Natürliche Antikörper weisen vier variable Domänen, zwei V_H- und zwei V_L-Domänen, auf. Die variablen Domänen dienen als Bindungsstellen für ein Antigen, wobei eine Bindungsstelle aus einer V_H- und einer V_L-Domäne ausgebildet ist. Natürliche Antikörper weisen zwei gleiche Bindungsstellen auf, d.h. sie erkennen ein Antigen und werden daher auch als monospezifisch bezeichnet. Künstliche Antikörper können auch zwei verschiedene Bindungsstellen aufweisen, d.h. sie erkennen dann zwei Antigene und werden entsprechend als bispezifisch bezeichnet. Ein Beispiel solcher Antikörper ist jener, der den FcγIIIA Rezeptor (CD16) von natürlichen Killerzellen (NK-Zellen) und das Oberflächenprotein CD30 von Morbus Hodgkin-Zellen erkennt. Mit diesem Antikörper (bimAbHRS-3/A9) können NK-Zellen aktiviert und gegen Morbus Hodgkin-Zellen ausgerichtet werden, wodurch eine Regression von Morbus Hodgkin induziert wird (vgl. Hartmann, F. et al., Blood 89 (1997), 2042). Andererseits hat sich gezeigt, daß bimAbHRS-3/A9 nur schwer herstellbar bzw. reinigungsfähig ist. Darüber hinaus hat sich gezeigt, daß bimAbHRS-3/A9 bei vielen Patienten unerwünschte Immunreaktionen hervorruft.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, einen Antikörper bereitzustellen, mit dem eine Regression von Morbus Hodgkin induziert werden kann, wobei vorstehende Nachteile vermieden werden.

Erfindungsgemäß wird dies durch die Gegenstände in den

Patentansprüchen erreicht.

Die vorliegende Erfindung beruht auf den Erkenntnissen des Anmelders, daß ein F_v-Antikörper-Konstrukt, das Bindungsstellen für einen CD16-Rezeptor und ein CD30-Oberflächenprotein aufweist, eine Regression von Morbus Hodgkin induzieren kann, wobei die Lyse der Tumorzellen stärker ist als mit bimAbHRS-3/A9. Ferner hat er erkannt, daß ein solches F_v-Antikörper-Konstrukt in großen Mengen und hoher Reinheit hergestellt werden kann. Des Weiteren zeichnet sich das F_v-Antikörper-Konstrukt dadurch aus, daß es keine Teile enthält, die zu unerwünschten Immunreaktionen bei Patienten führen können.

15 Erfindungsgemäß werden die Erkenntnisse des Anmelders genutzt, ein F_v-Antikörper-Konstrukt bereitzustellen, das Bindungsstellen für einen CD16-Rezeptor und ein CD30-Oberflächenprotein aufweist.

20 Der Ausdruck "F_v-Antikörper-Konstrukt" weist auf ein Antikörper-Konstrukt hin, das variable Domänen, nicht aber konstante Domänen aufweist. Als variable Domänen liegen insbesondere Bindungsstellen für einen CD16-Rezeptor und ein CD30-Oberflächenprotein vor.

25 Der Ausdruck "Bindungsstelle" weist auf eine V_H- und eine V_L-Domäne hin, mittels derer das F_v-Antikörper-Konstrukt an einen CD16-Rezeptor bzw. ein CD30-Oberflächenprotein binden kann.

30 Der Ausdruck "CD16-Rezeptor" umfaßt einen CD16-Rezeptor jeglicher Art und Abstammung. Beispielsweise kann der CD16-Rezeptor von NK-Zellen, Makrophagen oder aktivierten Monocyten stammen. Auch kann der CD16-Rezeptor in Wildtyp- oder veränderter Form vorliegen, wobei letztere Form auch ein Fragment eines CD16-Rezeptors umfaßt, an das ein gegen einen CD16-Rezeptor gerichteter Antikörper binden kann.

35 Der Ausdruck "CD30-Rezeptor" umfaßt einen CD30-Rezeptor jeglicher Art und Abstammung. Beispielsweise kann der CD30-

Rezeptor von Morbus Hodgkin- oder Reed-Sternberg-Zellen stammen. Auch kann der CD30-Rezeptor in Wildtyp- oder veränderter Form vorliegen, wobei letztere Form auch ein Fragment eines CD30-Rezeptors umfaßt, an das ein gegen einen CD30-Rezeptor gerichteter Antikörper binden kann.

Ein erfindungsgemäßes F_v -Antikörper-Konstrukt weist eine oder mehrere Bindungsstellen für einen CD16-Rezeptor und eine oder mehrere Bindungsstellen für ein CD30-Oberflächenprotein auf. Vorzugsweise weist das F_v -Antikörper-Konstrukt eine oder zwei Bindungsstellen für einen CD16-Rezeptor und eine oder zwei Bindungsstellen für ein CD30-Oberflächenprotein auf.

Ein erfindungsgemäßes F_v -Antikörper-Konstrukt kann durch verschiedene Verfahren hergestellt werden. Beispielsweise kann ein F_v -Antikörper-Konstrukt, das eine Bindungsstelle für einen CD16-Rezeptor und eine Bindungsstelle für ein CD30-Oberflächenprotein aufweist, z.B. dadurch hergestellt werden, daß ein erstes einzelkettiges F_v -Antikörper-Konstrukt, das eine V_H -Domäne eines anti-CD16-Antikörpers und eine V_L -Domäne eines anti-CD30-Antikörpers aufweist, zusammen mit einem zweiten einzelkettigen F_v -Antikörper-Konstrukt, das eine V_L -Domäne eines anti-CD16-Antikörpers und eine V_H -Domäne eines anti-CD30-Antikörpers aufweist, exprimiert wird, wodurch sich beide aneinanderlagern und das erfindungsgemäße F_v -Antikörper-Konstrukt ausgebildet wird. Ergänzend wird auf die Beispiele 1-3 verwiesen.

Ferner kann ein F_v -Antikörper-Konstrukt, das zwei bis vier Bindungsstellen für einen CD16-Rezeptor und zwei Bindungsstellen für ein CD30-Oberflächenprotein aufweist, z.B. dadurch hergestellt werden, daß ein einzelkettiges F_v -Antikörper-Konstrukt exprimiert wird, das die Elemente (a) und (b) umfaßt:

- (a) eine V_H -Domäne eines anti-CD16-Antikörpers und eine V_L -Domäne eines anti-CD30-Antikörpers, wobei die Domänen über einen Peptidlinker 1 miteinander verbunden sind, der

jegliche Aminosäuren, insbesondere Glycin (G), Serin (S) und Prolin (P) und vorzugsweise 0 - 10 Aminosäuren umfassen kann,

5 (b) eine V_H -Domäne eines anti-CD30-Antikörpers und eine V_L -Domäne eines anti-CD16-Antikörpers, wobei die Domänen über vorstehenden Peptidlinker 1 miteinander verbunden sind,

10 wobei die Elemente (a) und (b) über einen Peptidlinker 2 miteinander verbunden sind, der jegliche Aminosäuren, insbesondere Glycin, Serin und Prolin und vorzugsweise 3 - 10 Aminosäuren und ganz besonders die Aminosäuresequenz GPGPS umfassen kann. Ergänzend wird auf die Patentanmeldung 198 19
15 846.9 des Anmelders verwiesen.

Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Nukleinsäure, insbesondere eine DNA, die für ein vorstehendes F_v -Antikörper-Konstrukt kodiert. Ferner sind Expressionsvektoren, die eine solche DNA enthalten, ein Gegenstand der vorliegenden Erfindung. Bevorzugt wird der Expressionsvektor pKID16-30 von Fig. 1. Dieser wurde bei der DSMZ (Deutsche Sammlung für Mikroorganismen und Zellen) am 29. Juli 1999 unter DSM 12960 hinterlegt. Des Weiteren sind Zellen, die einen vorstehenden Expressionsvektor enthalten, ein Gegenstand der vorliegenden Erfindung.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kit, umfassend:

30 (a) ein erfindungsgemäßes F_v -Antikörper-Konstrukt, und/oder
(b) einen erfindungsgemäßen Expressionsvektor, sowie
(c) übliche Hilfsstoffe, wie Puffer, Lösungsmittel, Träger, Kontrollen und Marker.

35 Von den einzelnen Komponenten können ein oder mehrere Vertreter vorliegen.

Die vorliegende Erfindung stellt ein F_v-Antikörper-Konstrukt bereit, das Bindungsstellen für einen CD16-Rezeptor und ein CD30-Oberflächenprotein aufweist. Dieses F_v-Antikörper-Konstrukt lässt sich in großen Mengen und großer Reinheit herstellen. Auch weist es keine Teile auf, die zu unerwünschten Immunreaktionen bei Patienten führen können. Besonders kennzeichnet sich das F_v-Antikörper-Konstrukt dadurch, daß es NK-Zellen aktivieren und gegen CD30-Oberflächenproteine exprimierende Zellen, insbesondere Tumorzellen, ganz besonders Morbus Hodgkin- oder Reed-Sternberg Zellen, ausrichten kann, wodurch diese Zellen lysiert werden. Somit eignet sich die vorliegende Erfindung gegen Erkrankungen vorzugehen, bei denen CD30-Oberflächenproteine exprimierende Zellen eine Rolle spielen. Solche Erkrankungen sind z.B. Tumorerkrankungen, insbesondere Morbus Hodgkin.

Kürze Beschreibung der Zeichnungen:

Fig. 1 zeigt den erfindungsgemäßen Expressionsvektor pKID16-30. Dieser kodiert für zwei einzelkettige F_v-Antikörper-Konstrukte, von denen das eine die V_H-Domäne eines anti-CD16-Antikörpers und die V_L-Domäne eines anti-CD30-Antikörpers und das andere die V_H-Domäne eines anti-CD30-Antikörpers und die V_L-Domäne eines anti-CD16-Antikörpers aufweist. Nach Expression der einzelkettigen F_v-Antikörper-Konstrukte lagern sich diese aneinander, wodurch ein erfindungsgemäßes F_v-Antikörper-Konstrukt erhalten wird.

Fig. 2 zeigt eine FACS-Analyse der Bindung eines erfindungsgemäßen F_v-Antikörper-Konstrukttes an CD30⁺ L540CY Morbus Hodgkin-Zellen und CD16⁺ Granulocyten. Die Tumorzellen und die Granulocyten wurden jeweils mit 20 µg des erfindungsgemäßen F_v-Antikörper-Konstrukttes inkubiert. Die Bindung des F_v-Antikörper-Konstrukttes wurde mit dem anti-c-myc

Antikörper 9E10 und Fluorescein-konjugiertem Ziege-anti-Maus IgG bestimmt. Als Negativ-Kontrolle wurden die Zellen alleine mit 9E10 und Fluorescein-konjugiertem Ziege-anti-Maus-IgG inkubiert.

5

Fig. 3 zeigt die cytolytische Aktivität von in peripheren Blutlymphozyten (PBL-Zellen) enthaltenen NK-Zellen (Effektor) gegenüber CD30⁺ L540CY Morbus Hogdkin-Zellen (Zielzellen) bei unterschiedlichen Effektor-Zielzellen-Verhältnissen in einem 5h JAM-Test. Ein erfindungsgemäßes F_v-Antikörper-Konstrukt (•) wurde mit einer Konzentration von 1 µg/ml verabreicht. Als Kontrolle wurde bimAbHRS-3/A9 (▲) (mit einer Konzentration von 4 µg/ml verwendet. Als Negativ-Kontrolle wurden das erfindungsgemäße F_v-Antikörper-Konstrukt ohne NK-Zellen (○) und NK-Zellen alleine (□) verwendet.

10

15

Fig. 4 zeigt die Behandlung von SCID Mäusen, die Morbus Hodgkin-Xenotransplantate tragen, mit einem erfindungsgemäßen F_v-Antikörper-Konstrukt. Die Mäuse wurden am Tag 0 i.v. mit 100 µg eines erfindungsgemäßen F_v-Antikörper-Konstrukt zusammen mit NK-Zellen enthaltenden PBL-Zellen (•) bzw. ohne solche (○), mit 200 µl PBS (*), mit 1 x 10⁷ PBL-Zellen (□), bzw. mit einem Gemisch von 100 µg mAb HRS-3 und A9 zusammen mit PBL-Zellen (◊) behandelt. Tumor-Durchmesser wurden zweimal pro Woche gemessen und das Tumor-Volumen wurde mit folgender Formel berechnet: Volumen = d²x Dxπ/6, wobei d der kleinere und D der größere Tumor-Durchmesser ist.

20

30

Beispiel 1: Konstruktion des erfindungsgemäßen Expressionsvektors pKID16-30

Die cDNA der V_H- und V_L-Domänen eines anti-CD16-Antikörpers mAb A9 wurde einer PCR unterzogen. Hierfür wurden die folgenden Primer verwendet:

VH5', 5-CAGCCGGCCATGGCGCAGGTC (G) CAGCTGCAGC (G) AG-3 (NcoI);
 VH3', 5-CCAGGGGCCAGTGGATAGACAAGCTTGGGTGTTGTTTT-3 (HindIII);
 VL5', 5-AGAGACGCGTACAGGCTGTTGACTCAGG-3 (MluI);
 VL3', 5-GACTGCGCCGCAGACTGGCTGGCC-3 (NotI).

Die PCR wurde wie folgt durchgeführt: Ein Zyklus; 5 min bei 94°C, 3 min bei 58°C und 2 min bei 72°C, gefolgt von 30 Zyklen; 80 sec bei 94°C, 80 sec bei 58°C und 2 min bei 72°C bzw. letzteres 10 min im letzten Zyklus. Die PCR-Produkte wurden Gel-gereinigt und in den Vektor pCR-Script SK(+) (Stratagene) zur Sequenzierung inseriert. Zur Expression wurde die V_H-Domäne über NcoI/HindIII und die V_L-Domäne über MluI/NotI in den Vektor pHOG21 inseriert.

Die V_H- und V_L-Domänen eines anti-CD30-scF_v-Fragmentes wurden einer PCR unterzogen. Hierfür wurden die folgenden Primer verwendet:

5-ATGACCATGATTACGCCAAGC-3
 5-AGACAAGCTTGGGTGTTGTTGGCTGAGGAGACGG-3 (HindIII);
 5-GGCGGATATCGAGCTCACTCAGTCTCC-3 (EcoRV)
 5-TATAGCGGCCGCAGCATCAGCCGTTGATTCC-3 (NotI).

Die V_H- und V_L-Domänen des anti-CD30-scF_v-Fragmentes bzw. des anti-CD16-scF_v-Fragmentes wurden in den Expressionsvektor pKID inseriert, wodurch der erfindungsgemäße Expressionsvektor pKID 16-30 erhalten wurde. Dieser kodiert für die einzelkettigen F_v-Antikörper-Konstrukte V_H 16-V_L 30 und V_H 30-V_L 16.

Beispiel 2: Expression des erfindungsgemäßen F_v-Antikörper-Konstruktes in Bakterien

E.coli-X11 Blue-Zellen (Stratagene, La Jolla, CA), die mit dem Expressionsplasmid pKID16-30 transformiert worden waren,

wurden über Nacht in 2YT-Medium mit 100 µg/ml Ampicillin und 100 mM Glucose bei 37°C gezüchtet. 1:20-Verdünnungen der über Nacht-Kulturen wurden als Kolbenkulturen in 2YT-Medium bei 38°C unter Schütteln mit 280 rpm gezüchtet. Bei einem OD₆₀₀-Wert von 5 0,8 wurden die Bakterien durch 10 minütige Zentrifugation mit 1500 g bei 20°C pelletiert und in dem gleichen Volumen eines frischen 2YT-Mediums, das 100 µg/ml Ampicillin und 0,4 M Saccharose enthielt, resuspendiert. IPTG wurde mit einer Endkonzentration von 0,1 M zugesetzt und das Wachstum wurde 10 bei 21°C (20-22°C) 18-20 h fortgesetzt. Das F_v-Antikörper-Konstrukt wurde wie in Kipriyanov, S.M. et al., Protein Engineering 10, (1997), 445 beschrieben, isoliert. Anschließend wurde es durch eine Ammoniumsulfatfällung (Endkonzentration 70 % Sättigung) eingeengt. Das 15 Proteinpräzipitat wurde durch Zentrifugation (30000 g, 4°C, 45 min) gewonnen und in 10 % des Anfangsvolumens von 50 mM Tris-HCl, 1 M NaCl, pH 7,0 aufgelöst. Eine immobilisierte Metallaffinitäts-Chromatographie (IMAC) wurde wie in Kipriyanov, S.M. et al., J. Immunol. Methods 200, (1997), 69 20 beschrieben, durchgeführt. Das gereinigte F_v-Antikörper-Konstrukt wurde gegen eine Phosphat-gepufferte Kochsalzlösung dialysiert.

Beispiel 3: Charakterisierung des erfindungsgemäßen F_v-Antikörper-Konstruktes

(A) Durchflußcytometrie

Zum Nachweis der Bindung eines erfindungsgemäßen F_v-Antikörper-Konstruktes an CD16⁺ Granulocyten und CD30⁺ L540CY-Morbus Hodgkin-Zellen wurde eine FACScan (Beckton Dickinson)-Analyse 30 durchgeführt. Hierzu wurden 1 x 10⁶-Zellen zweimal in eiskaltem PBS-N (PBS, 0,05% NaN₃) gewaschen und mit 100 µl des F_v-Antikörper-Konstruktes von Beispiel 2 45 min auf Eis 35 inkubiert. Die Zellen wurden 5 min mit 1200 rpm bei 4°C pelletiert und mit 2 ml PBS-N gewaschen. Die Zellen wurden in 100 µl PBS-N, das 10 µg/ml des an das c-myc bindenden

Antikörpers 9E10 (ICI Chemikalien) enthielt, resuspendiert und 30 min auf Eis inkubiert. Die Zellen wurden pelletiert und wie vorstehend gewaschen. Danach wurden die Zellen mit Fluorescein-markiertem Ziege-anti-Maus IgG (Gibco BRL; 1:100 verdünnt in PBS-N), resuspendiert und 30 min auf Eis inkubiert. Nach erneutem Waschen mit PBS-N waren die Zellen für die Analyse mit PBS-N, das 1 µg/ml Propidiumjodid (Sigma) enthielt, bereit. Hintergrund-Fluoreszenz wurde bestimmt, indem die Zellen mit dem Antikörper 9E10 und Fluorescein-markiertem Ziege-anti-Maus-IgG unter gleichen Bedingungen inkubiert wurden.

Es zeigte sich, daß das erfindungsgemäße F_v-Antikörper-Konstrukt sowohl CD16⁺ Granulocyten als auch CD30⁺ L540 CY Morbus Hodgkin-Zellen erkennt und an sie bindet.

(B) Cytotoxizitätstest

Zum Nachweis der Aktivität eines erfindungsgemäßen F_v-Antikörper-Konstruktes NK-Zellen zu aktivieren, CD30⁺ L540CY Morbus Hodgkin-Zellen zu lysieren wurde ein Cytotoxizitätstest entsprechend des in Matzinger, P., J. Immunol. Meth. 145 (1991), 185 beschriebenen JAM-Tests durchgeführt. In dem Cytotoxizitätstest wird die DNA-Fragmentierung bewertet. Zellen wurden mit [³H] Thymidin bis zu einer Endkonzentration von 2,5-5 µCi/ml für 4-6 h markiert. Die Zellen wurden pelletiert, einmal mit Kulturmedium gewaschen und auf 10⁴ Zellen/Vertiefung einer 96-Lochplatte eingestellt. Nach Zugabe von Effektor-Zellen (NK Zellen enthaltende periphere Blutzellen "PBL-Zellen") in verschiedenen Verdünnungen wurde die 96. Lochplatte in einer befeuchteten Atmosphäre mit 7,5 % CO₂ für 4 h inkubiert. Die Zellen und das Medium wurden auf Fiberglas-Filter gesaugt. Nach Waschen und Trocknen der Filter wurden sie in Plastik-Tüten überführt, die eine Szintillationsflüssigkeit enthielten und unter Verwendung eines Flüssig-Szintillations-Zählers (LKB) gezählt. Die gemessene Radioaktivität bezieht sich auf intakte DNA, da DNA aus toten Zellen in kleine Fragmente abgebaut ist, die nicht

von den Filtern festgehalten werden. Zur Bestimmung der Cytotoxizität, d.h. der Abtötung von Zellen, wurde die Standardformel für den JAM-Test verwendet: % spezifische Abtötung = $(S-E)/S \cdot 100$, wobei E = experimentell erhaltene DNA in Gegenwart von Effektor-Zellen (in cpm) und S = erhaltene DNA in Abwesenheit von Effektor-Zellen (spontan).

Es zeigte sich, daß ein erfindungsgemäßes F_v-Antikörper-Konstrukt NK-Zellen aktivieren kann, CD30⁺ L540CY Morbus Hodgkin-Zellen zu lysieren, wobei die Lyse stärker ist als bei Verwendung von bimAbHRS-3/A9.

(C) Einfluß auf Tumoren von Mäusen

CD30⁺ L540CY Hodgkin's Lymphome wurden in SCID Mäusen, wie in Hombach, A. et al., Int. J. Cancer 55, (1993), 830; Renner, C. et al., J. Hematology 4, (1995), 447 beschrieben, etabliert. Hierzu wurden 1.5×10^7 Tumorzellen in 200 μ l PBS subcutan in die rechte Flanke der Mäuse injiziert. Die Tumor-Entwicklung, d.h. der Tumor-Durchmesser, wurde zweimal pro Woche bestimmt. Mäuse mit Tumoren von 4-6 mm im Durchmesser wurden in verschiedene Gruppen eingeteilt und erhielten ein erfindungsgemäßes F_v-Antikörper-Konstrukt in 200 μ l PBS zusammen mit NK-Zellen enthaltenden peripheren Blutlymphozyten (PBL-Zellen). Das Tumorvolumen und seine Entwicklung wurden bestimmt (vgl. Legende zu Fig. 4).

Es zeigte sich, daß ein erfindungsgemäßes F_v-Antikörper-Konstrukt nicht nur in vitro sondern auch in vivo NK-Zellen aktivieren kann, CD30⁺ L540CY Morbus Hodgkin-Zellen zu lysieren.

Patentansprüche

5 1. F_v -Antikörper-Konstrukt mit Bindungsstellen für einen CD16-Rezeptor und ein CD30-Oberflächenprotein.

10 2. F_v -Antikörper-Konstrukt nach Anspruch 1, wobei der CD16-Rezeptor von NK-Zellen stammt.

15 3. F_v -Antikörper-Konstrukt nach Anspruch 1 oder 2, wobei das CD30-Oberflächenprotein von Morbus Hodgkin- oder Reed-Sternberg-Zellen stammt.

15 4. F_v -Antikörper-Konstrukt nach einem der Ansprüche 1 - 3, wobei jeweils eine Bindungsstelle vorliegt.

20 5. F_v -Antikörper-Konstrukt nach Anspruch 4, kodiert durch den Expressionsvektor pKID16-30 (DSM 12960).

20 6. F_v -Antikörper-Konstrukt nach einem der Ansprüche 1-3, wobei jeweils zwei Bindungsstellen vorliegen.

25 7. Expressionsvektor, kodierend für das F_v -Antikörper-Konstrukt nach einem der Ansprüche 1 - 6.

25 8. Expressionsvektor nach Anspruch 7, nämlich pKID16-30 (DSM 12960).

30 9. Transformante, enthaltend den Expressionsvektor nach Anspruch 7 oder 8.

35 10. Verfahren zur Herstellung des F_v -Antikörper-Konstrukt des nach einem der Ansprüche 1-6, umfassend die Kultivierung der Transformante nach Anspruch 9 unter geeigneten Bedingungen.

11. Kit, umfassend:

(a) ein erfindungsgemäßes F_v -Antikörper-Konstrukt,

und/oder

- 5 (b) einen erfindungsgemäßen Expressionsvektor, sowie
 (c) übliche Hilfsstoffe, wie Puffer, Lösungsmittel,
 Träger, Kontrollen und Marker,

wobei von den einzelnen Komponenten ein oder mehrere
Vertreter vorliegen können.

10 12. Verwendung des F_v-Antikörper-Konstruktes nach einem der
 Ansprüche 1-6 zur Lyse von CD30-Oberflächenproteinen
 exprimierenden Zellen.

15 13. Verwendung nach Anspruch 12, wobei die Zellen Tumorzellen
 sind.

14. Verwendung nach Anspruch 13, wobei die Tumorzellen Morbus
 Hodgkin- oder Reed-Sternberg-Zellen sind.

F_v-Antikörper-Konstrukte

Die vorliegende Erfindung betrifft F_v-Antikörper-Konstrukte mit
5 Bindungsstellen für einen CD16-Rezeptor und ein CD30-
Oberflächenprotein, wobei sich die F_v-Antikörper-Konstrukte
eignen, eine Regression von Morbus Hodgkin zu induzieren.
Ferner - betrifft die Erfindung für solche F_v-Antikörper-
Konstrukte kodierende DNAs sowie ein Verfahren zur Herstellung
10 der F_v-Antikörper-Konstrukte und ihre Verwendung.

Asel

1 CTCGAGAGCGGGCAGTGAG AACGCAATTAAATGTGAGTTAGCTCACTCAT GCACCCAGGCTTACACTTAT
 79 GCTCCGGCTCGTATGTTGAGGAATTGTGAGCGGATAACAATTACACAGAATTCACTAAAGAGGAGAAATTAAC
 PeiB leader AlwNI EcoRI RBS
 157 CATGAAAATACCTATTGCCTACGGCAGCCGCTGGCTTGCTGGCAGCTCAGCCGCCATGGCCAGGTGCAGCTG
 1> MetAlaGlnValGlnLeu

VH anti-CD16 EcoRV

235 CAGCAGTCTGGAGCTGAGCTGGTAAGGCCCTGGACTTCAGTGAAGATATCCTGCAAGGCTCTGGCTACACCTTCACT
 7> GlnGlnSerGlyAlaGluLeuValArgProGlyThrSerValLysIleSerCysLysAlaSerGlyTyrThrPheThr
 CDR-H1 EcoRV CDR-H2
 313 AACTACTGGCTAGGTTGGGTAAAAACAGAGGCCCTGGACATGGACTCGAGTGGATTGGACATATCTACCCCTGGAGGTGGT
 33> AsnTyrTrpLeuGlyTrpValLysGlnArgProGlyHisGlyLeuGluTrpIleGlyAspIleTyrProGlyGlyGly
 391 TATACTAACTACAATGAGAAATTCAAGGCCAACAGTGA
 59> CTGAGACACATCCTCCAGAACTGCCTACGTGCAG
 59> TyrThrAsnTyrAsnGluLysPheLysGlyLysAlaThrValThrAlaAspThrSerArgThrAlaTyrValGln
 CDR-H3

469 GTCAGGAGCCTGACATCTGAGGACTCTGCTGTCTATTCTGCAAGATCGGCTAGCTGGTACTTCGATGTCCTGGGC
 85> ValArgSerLeuThrSerGluAspSerAlaValTyrPheCysAlaArgSerAlaSerTrpTyrPheAspValTrpGly
 CH1 HindIII Linker EcoRV

547 GCACGGACTACGGTCACCGCTCCTCAGCCAAAACACCCAAGCTTGGCGGTGATATCGAGCTCACTCAGTCTCCA
 111> AlaArgThrThrValThrValSerSerAlaLysThrThrProLysLeuGlyGlyAsp IleGluLeuThrGlnSerPro

VL anti-CD30

5 AAATTCAATGTCCACATCAGTAGGAGACAGGGTCAACGTCACCTACAAGGCCAGTCAGAATGTGGGTACTAATGTAGCC
 7> LysPheMetSerThrSerValGlyAspArgValAsnValThrTyrLysAlaSerGlnAsnValGlyThrAsnValAla
 703 TGGTTTCAACAAAACCAGGGCAATCTCTAAAGTTCTGATTTACTCGGCATCTTACCGATACAGTGGAGTCCCTGAT
 163> TrpPheGlnGlnLysProGlyGlnSerProLysValLeuIleTyrSerAlaSerTyrArgTyrSerGlyValProAsp
 781 CGCTTCACAGGCAGTGGATCTGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACTTGGCAGAGTAT
 189> ArgPheThrGlySerGlyThrAspPheThrLeuThrIleSerAsnValGlnSerGluAspLeuAlaGluTyr
 C kappa NotI

859 TTCTGTCAGCAATATCACACCTATCCTCACGTTGGAGGGGGCACCAAGCTGAAATCAAACGGGCTGATGCTGCG
 215> PheCysGlnGlnTyrHisThrTyrProLeuThrPheGlyGlyThrLysLeuGluIleLysArgAlaAspAlaAla
 BamHI c-myc epitope His6 tail BgIII

937 GCCGCTGGATCCGAAACAAAGCTGATCTCAGAAGAAGACCTAAACTCACATCACCACATCACCACATCAAAGATCTATT
 241> AlaAlaGlySerGluGlnLysLeuIleSerGluGluAspLeuAsnSerHisHisHisHisHisHis

RBS Pei B leader NcoI

1015 AAAGAGGAGAAATTAAACCATGAAATACCTATTGCCTACGGCAGCCGCTGGCTTGCTGCTGGCAGCTCAGCCGGCC
 NcoI Serum A VH anti-CD30

1093 ATGGCGGCCATGGCCCAGGTGCAACTGCACTGCACTGGGGCTGAGCTGGCTAGACCTGGGGCTTCAGTGAAGATGTCC
 1> MetAlaGlnValGlnLeuGlnSerGlyAlaGluLeuAlaArgProGlyAlaSerValLysMetSer
 1171 TGCAAGGCTTCTGGCTACACCTTACTACACTACAAATACACTGGTAAGACAGAGGCCCTGGACATCTGGAATGG
 24> CysLysAlaSerGlyTyrThrPheThrThrIleHisTrpValArgGlnArgProGlyHisAspLeuGluTrp
 9 ATTGGATACTTAATCCTAGCAGTGGATATTCTGACTACAATCAGAACCTCAAGGGCAAGACACATTGACTGCAGAC
 0> IleGlyTyrIleAsnProSerSerGlyTyrSerAspTyrAsnGlnAsnPheLysGlyLysThrThrLeuThrAlaAsp
 1327 AAGTCCTCAACACAGCCTACATGCAACTGAACAGCCTGACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGAAGA
 76> LysSerSerAsnThrAlaTyrMetGlnLeuAsnSerLeuThrSerGluAspSerAlaValTyrTyrCysAlaArgArg
 CH1

1405 GCGGACTATGGTAACTACGAATATACTGGTTGCTACTGGGGCAAGGGACCACGGTCACCGTCTCCTCAGCCAAA
 102> AlaAspTyrGlyAsnTyrGluTyrThrTrpPheAlaTyrTrpGlyGlnGlyThrThrValThrValSerSerAlaLys
 HindIII Linker EcoRV VL anti-CD16

1483 ACAACACCCAAGCTGGGGTGTATCCAGGCTGTTGACTCAGGAATCTGCACTCACCACATCACCTGGTAAAC
 128> ThrThrProLysLeuGlyAspIleGlnAlaValValThrGlnGluSerAlaLeuThrThrSerProGlyGluTh

CDR-L1

1560 AGTCACACTCACTTGTGCTCAAATACTGGACTGTTACAACACTGAACTATGCCAAGTGGTCCAAGAAAAACCAGA
 153> rValThrLeuThrCysArgSerAsnThrGlyThrValThrSerAsnTyrAlaAsnTrpValGlnGluLysProAs
 CDR-L2

1638 TCATTTATTCACTGGTCTAATAGGTCAACCAACAACCGAGCTCCAGGTGTTCTGCCAGATTCTCAGGCTCCCTGAT
 179> pHisLeuPheThrGlyLeuIleGlyHisThrAsnAsnArgAlaProGlyValProAlaArgPheSerGlySerLeuI
 CDR-L3

1716 TGGAGACAAGGCTGCCCTCACCATCACAGGGCACAGACTGAGGATGAGGCAATATATTCTGCTCTATGGTATAA
 205> eGlyAspLysAlaAlaLeuThrIleThrGlyAlaGlnThrGluAspGluAlaIleTyrPheCysAlaLeuTrpTyrAs

NotI BamHI

1794 CAACCATGGGTGTTGGTGGAGGAACCAAACGACTGACTGTCTAGGCCAGCCAAGTCTGCGGCCGCTGGATCCGAACA
 231> nAsnHisTrpValPheGlyGlyThrLysLeuThrValLeuGlyGlnProLysSerAlaAlaGlySerGluG1

c-myc epitope His6 tail XbaI BclI NheI
 1872 AAAGCTGATCTCAGA [] GACCTAAACTCACATCA[] CACATCA[] CACCATCA[] ATCTAGAGGCCCTGTGCTAATGATCAGC
 257 nLysLeuIleSerGluGluAspLeuAsnSerHisHisHisHisHisHis
 1950 TAGCTTGGGCATCAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCCTTCGTTTATCTGTTGTTGTCGGTTAAC HpaI
 Sall Earl Pvul FspI BglI
 2028 GTCGACCTGGCGTAATAGCGAAGAGGCCGCACCGATGCCCTCCAACAGTTGCGCAGCTGAATGCCGAATGGGA
 2106 CGGCCCTGTAGCGGCCATTAGCGGGGGTGTGGTGGTACGCGCAGCGTACACTTGCCAGGCCCT
 2184 AGCGCCCCTTCGCTTCTCCCTTCGCCACGTTGCCGGCTTCCCCGTCAGCTCTAAATCGGG f1 IR DralII
 2262 GCTCCCTTAGGGTCCGATTAGCTTACGGCACCTCGACCCAAAAACTGATTAGGGTATGGTTACGTAG
 2340 TGGGCCATGCCCTGATAGACGGTTTCGCCCTTGACGTTGGAGTCCACGTTCTTAATAGTGGACTCTTGTCCA
 2418 AACTGGAACAACACTCAACCCTATCTGGTCTATTCTTTGATTATAAGGGATTTCGCCGATTGCCCTATTGGTT SspI
 2496 AAAAAATGAGCTGATTAAACAAAAATTAAACGGAATTAAACAAAATATTAACGCTTACAATTAGGTGGCACTTTT BspHI
 2574 CGGGGAAATGTGCGCGAACCCCTATTGTTTATTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAA
 SspI Earl
 2652 CCTGATAAAATGCTTCATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTCCGTGCGCCCTATTCCCTT ApaI
 2730 TTTGCCGCATTTGCCCTCTGTTTGCTACCCAGAACCGCTGGTGAAGTAAAAGATGCTGAAGATCAGTTGGT XmnI
 28 GCACGAGTGGTTACATCGAACTGGATCTAACAGCGGTAAAGATCCTTGAGAGTTTCGCCCGAAGAACGTTCCA Dral
 2886 ATGATGAGCACTTTAAAGTCTGCTATGTTGGCGGTATTATCCGTATTGACGCCGGCAAGAGCAACTCGGTCGC Scal 1000
 2964 CGCATAACACTATTCTCAGAATGACTTGGTGAGTACTCACCAGTCACAGAAAAGCATCTACGGATGGCATGACAGTA
 β -Lactamase Pvul
 3042 AGAGAATTATGCACTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCG FspI
 3120 AAGGAGCTAACCGCTTTTGACAAACATGGGGATCATGTAACCTGCCCTGATCGTTGGAACCGGAGCTGAATGAA Asel
 3198 GCCATACCAAACGACGAGCGTGAACACCACGATGCCGTAGCAATGGCAACACGTTGCCAAACTATTAACTGGCGAA BglII
 3276 CTACTTACTCTAGCTCCGCCAACATTAAATAGACTGGATGGAGGCCGATAAAGTTGCAGGACCACTCTGCGCTCG BsaI
 3354 GCCCTTCCGGCTGGCTGGTTATTGCTGATAAAATCTGGAGCCGGTGGCTCGCGGTATCATTGCAAGCAGCAGCTG
 3432 GGGCCAGATGGTAAGCCCTCCCGTACGTTATCTACACCGACGGGGAGTCAGGAAACTATGGATGAACGAAATAGA 3510 CAGATCGCTGAGATAGGTGCCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTACTCATATAACTTAGATT Dral
 38 GATTTAAAACCTCATTTAAATTAAAAGGATCTAGGTGAAGATCCTTTTGATAATCTCATGACCAAAATCCCTAA BspHI
 5 CGTGAGTTTCGTTCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTCTTGAGATCCTTTTCTGCGC
 44 GTAATCTGCTGCTTCAAAACAAAAACCCGCTACCGCGGTGGTTGTTGCGGATCAAGAGCTACCAACTCTT 3822 TTTCGAAGGTAACTGGCTTCAGCAGACCGCAGATACCAAATACTGTCCTCTAGGTAGCCGTAGTTAGGCCACCAC AlwNI
 3900 TTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACAGTGGCTGCTGCCAGTGGCGATAAG CoIE1 2000 ApaI
 3978 TCGTGTCTTACCGGGTGGACTCAAGACGATAGTTACCGGATAAGGCCAGCGGTGGCTGAACGGGGGGTCGTGC
 4056 ACACAGCCCGAGCTGGAGCGAACGACCTACACCGAAGTACGAGATACCTACAGCGTGGCTATGAGAAAGGCCACGCTT
 4134 CCCGAAGGGAGAAAGGCGCACAGGTATCCGTAAGGGCAGGGTGGAAACAGGAGAGCGCACGGAGCTTCCAGGG
 4212 GGAAACGCCCTGGTATCTTATAGTCCTGCGGTTTCGCCACCTCTGACTTGAGCGTCGATTGTTGATGCTCGTCA
 4290 GGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCCGGCTTTTACGGTTCCCTGGCCTTTGCTGGCCTTTGCTCAC
 4368 ATGTTCTTCCCTGCGTTATCCCTGATTCTGTGGATAACCGTATTACCGCCTTGAGTGAAGCTGATACCGCTCGCCG Earl
 4446 AGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCAAATACGCAAACCGCCTCTCCCCCG Asel BspMI
 4524 CGTTGGCCGATTCAATTAAATGCAAGGTATCACGAGGCCCTTTCGTCCTCAC

Fig. 1 (Fortsetzung)

Fig. 2

Granulocytes (CD16⁺)

L540CY cells (CD30⁺)

erfindungsgemäßes F_V-Antikörper-Konstrukt

erfindungsgemäßes F_V-Antikörper-Konstrukt

Fluorescence Intensity

Fig. 3

Fig. 4

This Page Blank (uspto)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)