

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen III

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2023-24.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Rafael Ortega Ríos.

Descripción Primer parcial.

Fecha 31 de octubre de 2023.

Duración 120 minutos.

Ejercicio 1. Pruebe que la siguiente ecuación define una única función implícita $x : \mathbb{R} \to \mathbb{R}, t \mapsto x(t)$:

$$e^x + x^3 + t = 0$$

Pruebe además que la función x(t) es decreciente.

Para que la ecuación anterior defina una única función implícita, hemos de ver que, para cada $t \in \mathbb{R}$, la ecuación $e^x + x^3 + t = 0$ tiene una única solución. Demostremos por tanto la existencia y unicidad de la solución de la ecuación anterior.

Existencia Definimos:

$$f_t: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto e^x + x^3 + t$$

Tenemos que:

$$\lim_{x \to -\infty} f_t(x) = -\infty, \quad \lim_{x \to +\infty} f_t(x) = +\infty$$

Como f_t es continua, por el Teorema de Bolzano tenemos que existe $x_t \in \mathbb{R}$ tal que $f_t(x_t) = 0$. Por tanto, la ecuación $e^x + x^3 + t = 0$ tiene solución para cada $t \in \mathbb{R}$.

Unicidad Como f_t es derivable, tenemos que:

$$f'_t(x) = e^x + 3x^2 > 0, \quad \forall x \in \mathbb{R}$$

Por tanto, f_t es estrictamente creciente, por lo que es inyectiva. Por tanto, la ecuación $e^x + x^3 + t = 0$ tiene una única solución x_t para cada $t \in \mathbb{R}$.

Sea entonces la función implícita la siguiente:

$$x: \mathbb{R} \longrightarrow \mathbb{R}$$

$$t \longmapsto x_t$$

Para probar que x(t) es decreciente, podemos hacerlo de dos formas:

Opción 1 Sea $t_1, t_2 \in \mathbb{R}$ tales que $t_1 < t_2$. Hemos de probar que $x(t_1) > x(t_2)$.

Como $x(t_1)$ y $x(t_2)$ son las soluciones de las ecuaciones $e^x + x^3 + t_1 = 0$ y $e^x + x^3 + t_2 = 0$, respectivamente, tenemos que:

$$e^{x(t_1)} + (x(t_1))^3 + t_1 = 0, \quad e^{x(t_2)} + (x(t_2))^3 + t_2 = 0$$

Restando ambas ecuaciones, obtenemos:

$$e^{x(t_1)} + (x(t_1))^3 - e^{x(t_2)} - (x(t_2))^3 + t_1 - t_2 = 0$$

Como $t_1 - t_2 < 0$, tenemos que:

$$e^{x(t_1)} + (x(t_1))^3 - e^{x(t_2)} - (x(t_2))^3 > 0 \Longrightarrow e^{x(t_1)} + (x(t_1))^3 > e^{x(t_2)} + (x(t_2))^3$$

Definimos ahora la siguiente función:

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto e^x + x^3$$

Como g es suma de una función estrictamente creciente y otra función creciente, tenemos que g es estrictamente creciente. Por tanto, usando g, tenemos que:

$$g(x(t_1)) > g(x(t_2))$$

Como g es estrictamente creciente, esto solo será posible si $x(t_1) > x(t_2)$, por lo que hemos probado que x(t) es decreciente.

Opción 2 Aplicar el Teorema de la Función Implícita. Para ello, definimos:

$$F: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}$$
$$(t,x) \quad \longmapsto \quad e^x + x^3 + t$$

Calculamos las derivadas parciales:

$$\frac{\partial F}{\partial x}(t,x) = e^x + 3x^2, \quad \frac{\partial F}{\partial t}(t,x) = 1, \quad \forall (t,x) \in \mathbb{R}^2$$

Por tanto, $F \in C^1(\mathbb{R}^2)$. Además, tenemos $\frac{\partial F}{\partial x}(t,x) > 0$ para todo $(t,x) \in \mathbb{R}^2$ (en particular, no se anula). Por tanto, podemos aplicar el Teorema de la Función Implícita en cualquier punto (t_0,x_0) tal que $F(t_0,x_0)=0$, obteniendo así que la función implícita x(t) es derivable. Aplicaremos este teorema a los puntos de la forma $(t,x_t)=(t,x(t))$. Calculamos su derivada mediante derivación implícita:

$$\frac{\partial F}{\partial t}(t, x(t)) + \frac{\partial F}{\partial x}(t, x(t)) \cdot x'(t) = 0$$

Despejando, tenemos que:

$$x'(t) = -\frac{\frac{\partial F}{\partial t}(t, x(t))}{\frac{\partial F}{\partial x}(t, x(t))} = -\frac{1}{e^{x(t)} + 3(x(t))^2} < 0 \quad \forall t \in \mathbb{R}$$

Por tanto, hemos probado que x(t) es decreciente.

Ejercicio 2. Se considera la siguiente función:

$$F:]0, +\infty[\longrightarrow \mathbb{R}$$

$$t \longmapsto \int_0^{\sqrt{t}} e^{s^2} ds$$

Es F de clase C^1 ? En caso afirmativo, calcula la derivada.

Definimos las siguientes funciones:

$$\varphi: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$$

$$t \longmapsto \sqrt{t}$$

$$\psi: \mathbb{R}^+ \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_0^x e^{s^2} ds$$

Tenemos que $\varphi \in C^1(\mathbb{R}^+)$ de forma directa, y $\psi \in C^1(\mathbb{R}^+)$ por el Teoremema Fundamental del Cálculo. Sus respectivas derivadas son:

$$\varphi'(t) = \frac{1}{2\sqrt{t}}$$
$$\psi'(x) = e^{x^2}$$

Por tanto, como $F = \psi \circ \varphi$, tenemos que $F \in C^1(\mathbb{R}^+)$. Para calcular su derivada, aplicamos la regla de la cadena:

$$F'(t) = \psi'(\varphi(t)) \cdot \varphi'(t) = e^{(\sqrt{t})^2} \cdot \frac{1}{2\sqrt{t}} = \frac{e^t}{2\sqrt{t}} \quad \forall t \in \mathbb{R}^+$$

Ejercicio 3. Encuentra la solución del problema de valores iniciales siguiente:

$$\dot{x} = \left(\frac{x}{t}\right)^3 + \frac{x}{t} - 1, \quad x(1) = 1$$

¿En qué intervalo está definida?

Tenemos que se trata de una ecuación homogénea definida en $D = \mathbb{R}^+ \times \mathbb{R}$. Definimos el siguiente cambio de variable:

$$\varphi = (\varphi_1, \varphi_2) : \mathbb{R}^+ \times \mathbb{R} \longrightarrow D_1$$

$$(t, x) \longmapsto (t, y) = \left(t, \frac{x}{t}\right)$$

Veamos el codomidio de φ :

$$D_1 = \varphi(D) = \left\{ (t, y) \in \mathbb{R}^2 \mid (t, yt) \in D \right\} = D$$

Además, como podemos despejar cada componente de forma única, tenemos que φ^{-1} es:

$$\varphi^{-1}: D_1 \longrightarrow D$$

 $(t,y) \longmapsto (t,x) = (t,yt)$

En primer lugar, tenemos que φ, φ^{-1} son biyectivas. Además, ambas son de clase C^1 , por lo que φ es un difeomorfismo. Además, es admisible por no cambiar la primera variable. La ecuación transformada es:

$$\frac{dy}{dt} = \frac{dy}{dx} = -\frac{x}{t^2} + \frac{x'}{t} = -\frac{y}{t} + \frac{y^3 + y - 1}{t} = \frac{y^3 - 1}{t}$$
 con dominio D_1

Tenemos que se trata de una ecuación de variables separadas. Veamos en qué puntos se anula la función dependiente de y:

$$y^3 - 1 = 0 \Longrightarrow y = 1$$

Por tanto, tenemos que una solución de la ecuación diferencial dada es:

$$y(t) = 1 \qquad \forall t \in \mathbb{R}^+$$

Deshaciedo el cambio de variable, una solución de la ecuación original es:

$$x(t) = y(t)t = t \qquad \forall t \in \mathbb{R}^+$$

Tenemos que dicha solución satisfece x(1) = 1, luego es la solución buscada. Está definida en \mathbb{R}^+ , ya que así se tiene que $x \in C^1(\mathbb{R}^+)$ y $(t, x(t)) \in D$ para todo $t \in \mathbb{R}^+$.

Ejercicio 4. Demuestra que las fórmulas

$$s = -e^t, \quad y = (t^2 + 1)x$$

definen un difeomorfismo que va de $D = \mathbb{R}^2$ a un dominio \hat{D} que se especificará. Prueba que se trata de un cambio admisible para la ecuación x' = x + t y encuentra la ecuación transformada.

Definimos el siguiente cambio de variable:

$$\varphi = (\varphi_1, \varphi_2) : \mathbb{R}^2 \longrightarrow \widehat{D}$$

 $(t, x) \longmapsto (s, y) = (-e^t, (t^2 + 1)x)$

Además, como podemos despejar cada componente de forma única, tenemos que φ^{-1} es:

$$\varphi^{-1}: \widehat{D} \longrightarrow D$$

$$(s,y) \longmapsto (t,x) = \left(\ln(-s), \frac{y}{t^2+1}\right) = \left(\ln(-s), \frac{y}{\ln^2(-s)+1}\right)$$

Veamos el codominio de φ :

$$\widehat{D} = \varphi(D) = \left\{ (s, y) \in \mathbb{R}^2 \mid \left(\ln(-s), \frac{y}{\ln^2(-s) + 1} \right) \in D \right\}$$

En primer lugar, necesitamos que la inversa esté bien definida, luego s < 0. Además, el denominador de la segunda componente de esta no se anula nunca. Como $D = \mathbb{R}^2$, tenemos que $\widehat{D} = \mathbb{R}^- \times \mathbb{R}$.

Una vez visto que φ, φ^{-1} son biyectivas, falta por ver que son de clase C^1 . La primera componente de ambas es una función elemental de clase C^1 , y la segunda componente es un producto o cociente de funciones de clase C^1 , que en definitiva es de clase C^1 . Por tanto, como ambas componentes de φ, φ^{-1} son de clase C^1 , tenemos que φ, φ^{-1} son de clase C^1 , y por tanto φ es un difeomorfismo.

Veamos ahora que se trata de un cambio admisible para la ecuación x' = x + t. Tenemos que:

$$\frac{\partial \varphi_1}{\partial t} + \frac{\partial \varphi_1}{\partial x} x' = -e^{-t} + 0 \cdot x' = -e^{-t} \neq 0 \qquad \forall (t, x) \in D$$

Por tanto, se trata de un cambio admisible. La ecuación transformada es:

$$\frac{dy}{ds} = \frac{dy}{dt} \cdot \frac{dt}{ds} = \frac{2tx + (t^2 + 1)x'}{-e^t} = \frac{2tx + (t^2 + 1)(x + t)}{-e^t}$$

Aplicamos ahora φ, φ^{-1} para que la ecuación esté en función de y y s:

$$y' = \frac{2tx + y + (t^2 + 1)t}{s} = \frac{2\ln(-s) \cdot \frac{y}{\ln^2(-s) + 1} + y + (\ln^2(-s) + 1)\ln(-s)}{s}$$

Por tanto, la ecuación transformada es:

$$y' = \frac{2\ln(-s) \cdot \frac{y}{\ln^2(-s) + 1} + y + (\ln^2(-s) + 1)\ln(-s)}{s}$$
 con dominio \widehat{D}

Ejercicio 5. Se considera la transformación en el plano

$$\psi(\theta, r) = (t, x), \quad t = r \cos \theta, \quad x = r \sin \theta, \quad (\theta, r) \in \widehat{\Omega} =]^{-\pi/2}, \pi/2[\times]0, +\infty[$$

Determina $\Omega = \psi(\widehat{\Omega})$ y prueba que ψ es un difeomorfismo de $\widehat{\Omega}$ a Ω . Dada una ecuación $\frac{dx}{dt} = f(t,x)$ con $f: \Omega \to \mathbb{R}$, ¿bajo qué condiciones se puede asegurar que el difeomorfismo $\varphi = \psi^{-1}$ es admisible?

Vemos directamente que ψ es el cambio de coordenadas de polares a cartesianas en el semiplano x > 0, es decir, primer y cuarto cuadrante. Busquemos en primer lugar la inversa de ψ . Buscamos despejar θ, r en función de t, x.

Dividimos x entre t, ya que el coseno no se anula en el dominio de defición dado. Tenemos que:

$$\frac{x}{t} = \frac{r \sin \theta}{r \cos \theta} = \tan \theta \Longrightarrow \theta = \arctan \left(\frac{x}{t}\right)$$

donde en la última implicación hemos usado que $\theta \in]-\pi/2, \pi/2[$. Concluimos además que $t \neq 0$, y como $t = r \cos \theta$, tenemos que t > 0.

• Despejamos ahora r. Sumando $x^2 + t^2$, tenemos:

$$x^{2} + t^{2} = r^{2}(\operatorname{sen}^{2}\theta + \cos^{2}\theta) = r^{2} \Longrightarrow r = \sqrt{x^{2} + t^{2}}$$

donde hemos usado que r > 0.

Por tanto, como hemos podido despejar cada componente de forma única, tenemos que $\psi^{-1}=\varphi$ es:

$$\psi^{-1} = \varphi = (\varphi_1, \varphi_2): \quad \Omega \longrightarrow \widehat{\Omega}$$

$$(t, x) \longmapsto (\theta, r) = \left(\arctan\left(\frac{x}{t}\right), \sqrt{x^2 + t^2}\right)$$

Estudiemos ahora el conjunto $\widehat{\Omega}$. Tenemos que:

$$\begin{split} \Omega &= \psi(\widehat{\Omega}) = \left\{ (t,x) \in \mathbb{R} + \times \mathbb{R} \mid \left(\arctan\left(\frac{x}{t}\right), \sqrt{x^2 + t^2} \right) \in \widehat{\Omega} \right\} = \\ &= \left\{ (t,x) \in \mathbb{R}^+ \times \mathbb{R} \mid \arctan\left(\frac{x}{t}\right) \in]^{-\pi/2}, \pi/2[, \sqrt{x^2 + t^2} > 0 \right\} = \\ &= \mathbb{R}^+ \times \mathbb{R} \end{split}$$

Ya sabemos que ψ, ψ^{-1} son biyectivas. Además, $\psi, \psi^{-1} \in C^1$ de forma directa, puesto que son composición de funciones de clase C^1 . Por tanto, ψ, ψ^{-1} son difeomorfismos.

Para que φ sea admisible para dicha ecuación, necesitamos que se cumpla:

$$0 \neq \frac{\partial \varphi_1}{\partial t} + \frac{\partial \varphi_1}{\partial x} x' = \frac{1}{1 + (x/t)^2} \cdot \left(-\frac{x}{t^2} \right) + \frac{1}{1 + (x/t)^2} \cdot \frac{1}{t} \cdot f(t, x) =$$

$$= \frac{1}{1 + (x/t)^2} \left(-\frac{x}{t^2} + \frac{f(t, x)}{t} \right) \Longleftrightarrow \frac{-x}{t} + f(t, x) \neq 0 \Longleftrightarrow f(t, x) \neq \frac{x}{t} \qquad \forall (t, x) \in \Omega$$

Por tanto, la condición de admisibilidad equivale a:

$$f(t,x) \neq \frac{x}{t}$$
 $\forall (t,x) \in \mathbb{R}^+ \times \mathbb{R}$