

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 July 2003 (17.07.2003)

PCT

(10) International Publication Number WO 03/057927 A2

C12Q 1/70 (51) International Patent Classification⁷:

(21) International Application Number: PCT/GB03/00030

(22) International Filing Date: 7 January 2003 (07.01.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 7 January 2002 (07.01.2002) 0200258.2 GB

- (71) Applicant (for all designated States except US): NORCHIP A/S [NO/NO]; Industriveien 8, N-3490 Klokkarstua (NO).
- (71) Applicant (for MG only): ALLARD, Susan, Joyce [GB/GB]; Verulam Gardens, 70 Gray's Inn Road, London WC1X 8BT (GB).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): KARLSEN, Frank [NO/NO]; Hovkastet 2, N-3490 Klokkarstua (NO).
- (74) Agents: BALDOCK, Sharon, Claire et al.; Boult Wade Tennant, Verulam Gardens, 70 Gray's Inn Road, London WC1X 8BT (GB).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: DETECTION OF HUMAN PAPILLOMAVIRUS E6 MRNA

(57) Abstract: An oligonucleotide molecule for use in the detection of mRNA transcribed from the E6 gene of a human papillomavirus, the oligonucleotide comprising any one of sequence numbers 1-133.

10

15

20

25

30

35

PCT/GB03/00030
DT04 Rec'd PCT/PTO 0 7 JUL 2004

DETECTION OF HUMAN PAPILLOMAVIRUS E6 mRNA

The present invention is concerned with oligonucleotide primers and probes for use in detecting the presence of mRNA transcripts from the E6 gene of human papillomavirus in clinical samples.

In the last few years, there has been an improvement in the methods used to detect HPV, with methods based on amplification of nucleic acids using the polymerase chain reaction (PCR) becoming increasingly widespread. It is now possible to detect small amounts of HPV DNA (<100 pg), quantify the amount of viral DNA in clinical samples, identify a broad spectrum of genital HPV types, test for selected HPV types and localise the viral genome transcripts and proteins to the individual cells. Since HPV detection is often carried out in the presence of vast quantities of host nucleic acids and cells not infected with the virus, the ability of the primers to be virus specific is critical for a sensitive and specific amplification.

The present inventors have selected new primer and probe sequences, specific for the E6 region, which may be used in the detection of E6 transcripts by the NASBA technique, particularly sensitive, real-time NASBA, or by RT-PCR. The inventors' approach is based upon the development of primers specific for regions of E6 which are conserved across high-risk, cancerassociated HPV types.

Therefore, in accordance with a first aspect the invention provides target-specific primers and oligonucleotide probes for use in the detection of human papillomavirus (HPV) E6 mRNA, particularly for use in detection of HPV E6 mRNA by RT-PCR or NASBA.

In particular, the invention provides primer and probe oligonucleotides comprising the HPV-specific sequences represented as sequence numbers (SEQ NO) 1 to 133 in Table 1. For each individual sequence an indication is given in the column "primer/probe type" of the general types of primers or probes into which the HPV-specific sequence may be incorporated for the purposes of HPV detection. The HPV type and position in the HPV genome is also indicated.

10 .

. `\

Table 1-Summary of primer sequences

	• • •	·			
	PRIMER/PROBE TYPE	SEQUENCE	SEQ NO	HPV	nt
15	NASBA P2/PCR	CCACAGGAGCGACCCAGAAAGTTA	1	16	116
	NASBA P1/PCR	ACGGTTTGTTGTTTGCTGTTC	2	16	368
	NASBA P2/PCR	CCACAGGAGCGACCCAGAAA	3	16	116
	NASBA P1/PCR	GGTTTGTTGTATTGCTGTTC	4	16	368
	NASBA P1/PCR	TCACGTCGCAGTAACTGT	126	16	208
20	NASBA P1/PCR	TTGCTTGCAGTACACACA	127	16	191
	NASBA P1/PCR	TGCAGTACACACTTCTA	128	16	186
	NASBA P1/PCR	GCAGTACACACTTCTAA	129	16	185
•	NASBA P2/PCR	ACAGTTATGCACAGAGCT	130	16	142
	PROBE				·
25	NASBA P2/PCR	ATATTAGAATGTGTGTAC	131	16	182
	PROBE	·			
•	NASBA P2/PCR	TTAGAATGTGTGTACTGC	132	16	185
	PROBE				.203
	NASBA P2/PCR	AATGTGTGTACTGCAAG.	133	16	188
30	PROBE	,			
	PROBE	CTTTGCTTTTCGGGATTTATGC	5	16	235
	PROBE	TATGACTTTGCTTTTCGGGA	. 6	16	230
	NASBA P2/PCR	CAGAGGAGGATGAAATAGTA	7	16	656
•	NASBA P1/PCR	GCACAACCGAAGCGTAGAGTCACAC	8	16	741
35	PROBE	TGGACAAGCAGAACCGGACAGAGC	9 .	16	687
•	NASBA P2/PCR	CAGAGGAGGATGAAATAGA	10	16	656
	NASBA P1/PCR	GCACAACCGAAGCGTAGAGTCA	. 11	16	741
	PROBE	AGCAGAACCGGACAGAGCCCATTA	12	16	693
	NASBA P2/PCR	ACGATGAAATAGATGGAGTT	13	18	702
40	NASBA P1/PCR	CACGGACACAAAGGACAG	14	18	869
	PROBE	AGCCGAACCACAACGTCACA	15	18	748
	NASBA P2/PCR	GAAAACGATGAAATAGATGGAG	16	18	698
٠.	NASBA P1/PCR	ACACCACGGACACACAAAGGACAG	17	18	869
	PROBE	GAACCACAACGTCACACAATG	18	18	752
45	NASBA P2/PCR	TTCCGGTTGACCTTCTATGT	19	18	651
	NASBA P1/PCR	GGTCGTCTGCTGAGCTTTCT	20	18	817
	NASBA P2/PCR	GCAAGACATAGAAATAACCTG.	21	18	179
					/ /

•	NACDA DI (DOD	A COCA COCOMA COMA COM		10	1220
	NASBA P1/PCR	ACCCAGTGTTAGTTAGTT	22	18	379
	PROBE	TGCAAGACAGTATTGGAACT	23	18	207
	NASBA P2/PCR	GGAAATACCCTACGATGAAC	24	31	164
	NASBA P1/PCR	GGACACAACGGTCTTTGACA	25.	3.1	423
5	PROBE	ATAGGGACGACACCACACGGAG	26	31	268
	NASBA P2/PCR	GGAAATACCCTACGATGAACTA	27	31	164
	NASBA P1/PCR	CTGGACACAGGTCTTTGACA	28	31	423
	PROBE	TAGGGACGACACCACAGGA	29	·31	269
	NASBA P2/PCR	ACTGACCTCCACTGTTATGA	30	31	617
10	NASBA P1/PCR	TATCTACTTGTGTGCTCTGT	31	31	766
	PROBE	GACAAGCAGAACCGGACACATC	32	31 .	687
	NASBA P2/PCR	TGACCTCCACTGTTATGAGCAATT	33 ·	31	619
	NASBA P1/PCR	TGCGAATATCTACTTGTGTGCTCTGT	34	31	766
	PROBE	GGACAAGCAGAACCGGACACATCCAA	35	31	686
15 .	NASBA P2/PCR	ACTGACCTCCACTGTTAT	36	31	617"
	NASBA P1/PCR	CACGATTCCAAATGAGCCCAT	. 37	31	809
	NASBA P2/PCR	TATCCTGAACCAACTGACCTAT	. 38	33	618
	NASBA P1/PCR	TTGACACATAAACGAACTG	39	33	763
	PROBE	CAGATGGACAAGCACAACC	40	33	694
20	NASBA P2/PCR	TCCTGAACCAACTGACCTAT	41	33	620
	NASBA P1/PCR	CCCATAAGTAGTTGCTGTAT	42	33	807
	PROBE	GGACAAGCACAACCAGCCACAGC	43	33	699
	NASBA P2/PCR	GACCTTTGTGTCCTCAAGAA	44	33	431
	NASBA P1/PCR	AGGTCAGTTGGTTCAGGATA	45	33	618
25	PROBE	AGAAACTGCACTGTGACGTGT	46	33	543
	NASBA P2/PCR	ATTACAGCGGAGTGAGGTAT	47	35	217
	NASBA P1/PCR	GTCTTTGCTTTTCAACTGGA	48	35	442
	NASBA P2/PCR	TCAGAGGAGGAGGAAGATACTA	49	35	655
	NASBA P1/PCR	GATTATGCTCTCTGTGAACA	50	35	844
30	NASBA P2/PCR	CCCGAGGCAACTGACCTATA	51	35	610
30	NASBA P1/PCR	GTCAATGTGTGTGCTCTGTA	52	35	770
	PROBE	ATAGAGAAGGCCAGCCATAT	53	35	270
	PROBE	GACAAGCAAAACCAGACACCTCCAA	54	35	692
•	PROBE	GACAAGCAAAACCAGACACC	55	35	692
35	NASBA P2/PCR	TTGTGTGAGGTGCTGGAAGAAT	56	52 .	144
55	NASBA P1/PCR	CCCTCTCTTCTAATGTTT	57	52	358
	PROBE	GTGCCTACGCTTTTTATCTA	58	52	296
	NASBA P2/PCR	GTGCCTACGCTTTTTATCTA	59	52	296
	NASBA P1/PCR	GGGGTCTCCAACACTCTGAACA	60	52	507
40 .	PROBE	TGCAAACAAGCGATTTCA	61	52	461
40			62	58	
	NASBA P2/PCR	TCAGGCGTTGGAGACATC	——————————————————————————————————————		157
	NASBA P1/PCR	AGCAATCGTAAGCACACT	63	58	301
	NASBA P2/PCR	TCTGTGCATGAAATCGAA	64	58	173
	NASBA P1/PCR	AGCACACTTTACATACTG	65	58	291
45	PROBE-	TGAAATGCGTTGAATGCA	66	58	192
	PROBE	TTGCAGCGATCTGAGGTATATG	67	58	218
	NASBA P2/PCR	TACACTGCTGGACAACAT	68	В	514
	NASBA P1/PCR	TCATCTTCTGAGCTGTCT	69	В	619
_	NASBA P2/PCR	TACACTGCTGGACAACATGCA '	70	В	514
50	NASBA P1/PCR	GTCACATCCACAGCAACAGGTCA	.71	В	693
	PROBE -	GTAGGGTTACATTGCTATGA	72	В	590
	PROBE	GTAGGGTTACATTGCTATGAGC	73	В	590
	NASBA P2/PCR	TGACCTGTTGCTGTGGATGTGA	74	В	693

- 4 -

NASBA P2/FCR CATGCCATAAATGTATAGA 77 C 295		NASBA P1/PCR PROBE	TACCTGAATCGTCCGCCAT ATWGTGTGTCCCATCTGC	75	B	832
NASBA P1/PCR CACCGCAGGCACCTTATTAA 78					B	794
PROBE AGAATTAGGAATTAGGAAA Reference Reference						
NASBA P2/PCR GCAGAGGACCACTACAGCAAA 80 39 210	5					
NASBA P1/FCR ACACCGAGTCCGAGTAATA 81 39 344	-			·		
PROBE ATAGGGACGGGAACCACT 82 39 273						
NASBA P1/PCR TATTACTCGGACTCGTTT						
NASBA P1/PCR CTTGGGTTTCTCTTGTGTTA St 33 558			·			
PROBE GGACCACAAAACGGGAGGAC 85 39 531	10					
NASBA P2/PCR GAAATAGATGAACCCGACCA 86 39 703	10					
NASBA P1/PCR GCACACCAGGACACACAAA 87 39 886						
PROBE						
NASBA P2/PCR AACCATTGAACCCAGCAGAAA 89 45 430						
NASBA P1/PCR TCTTTCTTGCCGTGCTCA 90 45 527	15					
NASBA P2/PCR GAAACCATTGAACCCAGCAGAAAA 91 45 428 NASBA P1/PCR TTGCTATACTTGTGTTTCCTACG 92 45 558 PROBE GTACCGAGGGCAGTGTAATA 93 45 500 PROBE GGACAAACGAAGATTTCACA 94 45 467 NASBA P2/PCR GTTGACCTGTGTGTTACCAGCAAT 95 45 656 NASBA P2/PCR GTTGACCTGTTGTTTACCAGCAAT 95 45 656 NASBA P2/PCR CACCACGGACACAAAAGGACAAG 96 45 868 NASBA P1/PCR CCACGACACACAAAAGGACAAG 97 45 654 NASBA P1/PCR CCACGACACACAAAAGGACAAG 97 45 656 NASBA P1/PCR CCACGACACACAAAAGGACAAG 99 45 656 NASBA P1/PCR CCACGACACACAAAGGACAAG 99 45 656 NASBA P1/PCR ACGGACACACAAAGGACAAG 99 45 656 NASBA P1/PCR ACGGACACACAAAGGACAAG 100 45 686 PROBE AGGAAAACGATGAAGGACAAG 100 45 686 PROBE AGGAAAACGATGAAGGACAAG 100 45 686 PROBE ACAACTACCAGCCCGACGAGCCGAA 103 45 730 NASBA P1/PCR GGAGGAGGATGAAGTAA 104 51 658 NASBA P1/PCR GGAGGAGGATGAAGTAA 104 51 658 NASBA P1/PCR GGCCATTAACATCTGCTGTA 105 51 807 NASBA P1/PCR ACGGGAAACCAGGCTTAGTA 106 51 655 NASBA P1/PCR ACGGGAAACCAGGCTTAGTA 108 51 747 NASBA P1/PCR TTGGGGTGCTGGAGACAACATCT 110 56 519 NASBA P1/PCR TTGGGGTGCTGGAGACAACATCT 110 56 519 NASBA P1/PCR TTGGGGTGCTGGAGACAACATCT 110 56 520 NASBA P1/PCR TTGGGGTGCTGGAGACAAACATCT 112 56 520 NASBA P1/PCR TTGGGCTGCTGGAGACAAACATCT 114 56 519 NASBA P1/PCR TTGGGCTGCTGGAGACAAACATCT 114 56 519 NASBA P1/PCR TTGGGCTGCTGGAGACAAACATCT 117 56 665 PROBE AGAACTAACACCTCCAACCATCAACATCT 117 56 665 PROBE AGAACTAACACCTCAAACAGACATT 114 56 519 NASBA P1/PCR CACCACACCTGCAAACAGACATT 117 56 610 PROBE AGAACTAACACCTCAAACAGACATT 118 56 565 PROBE AGAACTAACACCTCAAACAGACATT	13		· 		 -	
NASBA P1/PCR TTGCTATACTTGTGTTTCCTACG 92 45 558						
PROBE GTACCGAGGGCAGTGTATA 93 45 500				 _		
PROBE GGACAAACGAAGATTCACA 94 45 467 NASBA P2/PCR GTTGACCTGTTGTTTACCAGCAAT 95 45 656 NASBA P1/PCR CACCACGGACACAAAGGACAAG 96 45 868 NASBA P2/PCR CTGTTGACCTGTTGTTACGA 97 45 654 NASBA P2/PCR CTGTTGACCTGTTGTGTTACGA 97 45 654 NASBA P2/PCR CTGTTGACCTGTTGTGTTACGA 97 45 654 NASBA P2/PCR CTGACCTGTTGTGTTACGA 98 45 868 NASBA P2/PCR GTTGACCTGTTGTGTTACGA 99 45 656 NASBA P1/PCR ACGGACACAAAAGGACAAG 100 45 868 PROBE GAGTCAGAGGAGAGACAAG 100 45 666 PROBE ACAACTACCAGCCCGACGAGCCGAA 103 45 730 PROBE ACAACTACCAGCCCGACGAGCCGAA 103 45 730 NASBA P1/PCR GGAGGAGGATGAAGTA 104 51 658 NASBA P1/PCR ACGGCATTAACATCTGCTGTA 105 51 807 NASBA P1/PCR ACGGGCAAACCAGGATGAGTA 106 51 655 NASBA P1/PCR ACGGGCAAACCAGGCTTAGT 107 51 829 PROBE GCAGTGTTCAAGTGTAGTA 108 51 771 NASBA P1/PCR TTGGGGTGCTGGAGCAGACA 109 51 771 NASBA P1/PCR TTGGGGTGCTGGAGCAAACATCT 110 56 519 NASBA P1/PCR TTCATCCTCATCCTCTCTGA 111 56 665 NASBA P1/PCR TTCATCCTCATCCTCTCTGA 111 56 565 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 111 56 565 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 113 56 665 PROBE AGAACTACACACTT 114 56 519 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 115 56 510 PROBE AGAACTACACGTGCAAGACAT 114 56 519 NASBA P1/PCR CATCCTCATCCTCAACACAGAACAT 115 56 610 PROBE AGAACTACACGTGCAAGACATT 116 56 581 PROBE AGAACTACACTCTAACACAGACATT 118 56 583 PROBE AGAACTACACTC					-	558
NASBA P2/PCR GTTGACCTGTTGTTTACCAGCAAT 95 45 656 NASBA P1/PCR CACCACGGACACAAAAGGACAAG 96 45 868 NASBA P2/PCR CTGTTGACCTGTTGTTACGA 97 45 654 NASBA P1/PCR CCACGGACACAAAAGGACAAG 98 45 868 NASBA P1/PCR CCACGGACACAAAAGGACAAG 98 45 868 NASBA P1/PCR CCACGGACACAAAAGGACAAG 99 45 656 NASBA P1/PCR ACGGACACCAAAAGGACAAG 99 45 656 NASBA P1/PCR ACGGACACAAAAGGACAAG 100 45 868 PROBE GAGTCAGAGGAGGACAAAG 101 45 686 PROBE ACGACACACAAAAGGACAGT 101 45 686 PROBE ACGACTACCAGCCCGACGAGCCGAA 103 45 730 NASBA P1/PCR GGAGGAGGATGAAGTAGATA 104 51 658 NASBA P1/PCR GGAGGAGGATGAAGTAGATA 104 51 658 NASBA P1/PCR GCCCATTAACATCTGCTGTA 105 51 807 NASBA P1/PCR ACGGGCAAACCAGGATGAAGTA 106 51 655 NASBA P1/PCR ACGGGCAAACCAGGCTAGT 107 51 829 PROBE GCAGTTGTCAAGTGTAGTA 108 51 747 NASBA P1/PCR TTGGCAGTGTAGTA 108 51 747 NASBA P1/PCR TTGGCAGTGTAGTA 108 51 747 NASBA P1/PCR TTGCATCCTCATCCTCTCATC 110 56 519 NASBA P1/PCR TTCATCCTCATCCTCATCCTCTCATC 110 56 519 NASBA P1/PCR TTGGGGTGCTGGAGACAAACATC 111 56 665 NASBA P1/PCR TTGGGGTGCTGGAGACAAACATC 112 56 520 NASBA P1/PCR CATCCTCATCCTCATCCTCTCATC 114 56 519 NASBA P1/PCR TTGGGGTGCTGGAGACAACATC 114 56 519 NASBA P1/PCR TTGGGGTGCTGGAGACAACATC 114 56 519 NASBA P1/PCR CATCCTCATCCTCATCCTCTCATC 116 56 581 PROBE AGAACTAACACTTCACACACA 115 56 665 PROBE AGAACTAACACCTCAAACACA 115 56 561 PROBE AGAACTAACACCTCAAACACACA 115 56 583 PROBE AGAACTAACACCTCAACACACAT 114 56 583 PROBE AGAACTAACACCTCAACACACACA 115 56 656 NASBA P1/PCR GCAATCTTAGCACCACTAACACACACACACACACACACAC	.5 Q				45	500
NASBA P1/PCR CACCACGGACACAAAGGACAAG 96 45 868 NASBA P2/PCR CTGTTGACCTGTTGTTACGA 97 45 654 NASBA P1/PCR CCACGGACACACAAAGGACAAG 98 45 868 NASBA P1/PCR CCACGGACACACAAAGGACAAG 98 45 868 NASBA P1/PCR ACGGACACACAAAGGACAAG 99 45 656 NASBA P1/PCR ACGGACACACAAAGGACAAG 100 45 868 PROBE GAGTCAGAAGGACAAG 101 45 686 PROBE AGGAAAACGATGAAGGACAAG 101 45 686 PROBE AGGAAAACGATGAAGGACAAG 102 45 696 PROBE ACAACTACCAGCCCGACGACCCGAA 103 45 730 NASBA P2/PCR GGAGGAGGATGAAGTA 104 51 658 NASBA P1/PCR ACGGCATTAACATCTGCTGTA 105 51 807 NASBA P1/PCR ACGGGCAAACCAGGATGAAGTA 106 51 655 NASBA P1/PCR ACGGGCAAACCAGGCTTAGT 107 51 829 PROBE GCAGTGTAAGATGAGTA 108 51 747 PROBE TGCAGTGGAAACATCT 110 56 519 NASBA P1/PCR TTGGGGTGCTGGAAACATCT 110 56 519 NASBA P1/PCR TTCATCCTCATCCTCATCCTCTGA 111 56 665 NASBA P1/PCR TTGGGGTGCTGGAGACAACATCT 110 56 520 NASBA P1/PCR TTGGGGTCTGGAGACAACATCT 111 56 665 NASBA P1/PCR TTGGGGTCTGGAGACAACATCT 110 56 550 NASBA P1/PCR TTGGGGTCTGGAGACAACATCT 111 56 550 NASBA P1/PCR TTGGGGTCTGGAGACAACATCT 111 56 665 NASBA P1/PCR TTGGGGTCTGGAGACAACATCT 111 56 550 NASBA P1/PCR TTGGGGTCTGGAGACAACATCT 111 56 565 NASBA P1/PCR TTGGGGTCTGGAGACAACATCT 111 56 665 NASBA P1/PCR TTGGGGTCTGGAGACAACATCT 111 56 665 NASBA P1/PCR TTGGGGTCTGGAGACAACATCT 111 56 665 NASBA P1/PCR TTGGGGTCTGAGACACACTT 111 56 665 NASBA P1/PCR TTGGGGTCTGAGACACACTT 111 56 665 NASBA P1/PCR TTGGACACCTCAACCAGCTTCTCTCTCTCTCTCTCTCTCT	20				-}	
NASBA P2/PCR CTGTTGACCTGTTGTGTTACGA 97 45 654 NASBA P1/PCR CCACGGACACACAAAGGACAAG 98 45 868 NASBA P1/PCR GTTGACCTGTTGTGTTACGA 99 45 656 NASBA P1/PCR ACGGACACAAAAGACAAG 100 45 868 PROBE GAGTCAGAGGAGAAAGACAAG 100 45 868 PROBE AGGAAAACGACAAAGACATG 101 45 686 PROBE AGGAAAACGATGAGATG 102 45 696 PROBE ACAACTACCAGCCCGACGACCGAA 103 45 730 NASBA P1/PCR GGAGGAGGATGAGATA 104 51 658 NASBA P1/PCR GGACGACATCTGCTGTA 105 51 807 NASBA P1/PCR ACAGGAGGAGGATGAGATA 106 51 655 NASBA P1/PCR ACAGGAGAGAGATGAGATA 106 51 655 NASBA P1/PCR ACAGGAGAGAGATGAGATA 107 51 829 PROBE GCAGGTGTTCAAGTGTAGTA 108 51 747 NASBA P1/PCR ACGGGCAAACCAGGCTTAGT 107 51 829 PROBE GCAGGTGTAGAGTAGATA 108 51 747 NASBA P2/PCR TTGGGTGGTGGAGACAACATCT 110 56 519 NASBA P1/PCR TTCATCCTCATCCTCTGA 111 56 665 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 115 56 520 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 115 56 520 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 115 56 519 NASBA P1/PCR CAACAACTTACACTCAAACA 115 56 565 PROBE AAAGTACAACCTCAAACAACT 116 56 581 PROBE AAAGTACAACCTCAAACAACT 117 56 610 PROBE AAAGTACAACCTCAAACAACT 117 56 610 PROBE AGAACTAACACCTCAACAACT 117 56 610 PROBE AGAACTAACACCTCAACAACT 117 56 610 PROBE AGAACTACACCTCAACAACT 117 56 610 PROBE GACTATTCATTATGACTCTATT 121 56 410 PROBE GACTATTCACTTATGACCTTATT 121 56 410 PROBE GACTATTCACTTATGACCTTATT 124 A			* * · · · · · · · · · · · · · · · · · ·		45	656
NASBA P1/PCR CCACGGACACAAAGGACAAG 98 45 868 NASBA P2/PCR GTTGACCTGTTGTGTTACGA 99 45 656 NASBA P1/PCR ACGGACACAAAGGACAAG 100 45 868 PROBE GAGTCAGAGGAGGAAACGATG 101 45 686 PROBE AGGACACCACAAAGGACGATG 101 45 686 PROBE ACGACTACCAGCCCGACGAGGAGT 102 45 696 PROBE ACACTACCAGCCCGACGAGCCGAA 103 45 730 NASBA P2/PCR GGAGGAGGATGAAGTA 104 51 658 NASBA P1/PCR GCCCATTAACATCTGCTGTA 105 51 807 NASBA P1/PCR ACGGGCAAACCAGGCTTAGT 107 51 829 PROBE GCAGGTGTCAAGTGTAGTA 108 51 747 NASBA P1/PCR ACGGCCAAACCAGGCTTAGT 107 51 829 PROBE TGGCAGTGGAAACATCT 110 56 519 NASBA P1/PCR TTCATCCTCATCCTCTGAA 111 56 665 NASBA P1/PCR TTCATCCTCATCCTCTCTGA 111 56 565 NASBA P1/PCR TTCATCCTCATCCTCTCTGA 111 56 565 NASBA P1/PCR CATCCTCATCCTCTCTGA 111 56 665 NASBA P1/PCR CATCCTCATCCTCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCTCTGA 114 56 519 NASBA P1/PCR CATCCTCATCCTCTCTGA 115 56 656 NASBA P1/PCR CATCCTCATCCTCAACCA 115 56 561 PROBE AAAGTACCAACGCTGCAACACT 116 56 581 PROBE AGAACTAACACCTCAACACA 115 56 610 PROBE AGAACTAACACCTCAAACACAT 118 56 583 PROBE AGAACTAACACCTCAAACACAT 119 56 656 NASBA P1/PCR GACATTTCCTTATGCAGTGAGG 119 56 656 NASBA P1/PCR GACATTGTATGCACCTTATT 121 56 410 PROBE GACTATTCAGTGTATGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE CAACTGAYCTMYACTGTTATGA 124 A					45	868
NASBA P2/PCR GTTGACCTGTTGTTTACGA 99 45 656 NASBA P1/PCR ACGGACACAAAGGACAAG 100 45 868 PROBE GAGTCACAGAGGAGAAACGATG 101 45 686 PROBE AGGAAAACGATGAGAGT 102 45 696 PROBE ACGACTACCAGCCCGACGAGCCGAA 103 45 730 NASBA P2/PCR GCAGGAGTAGAGTAGATTA 104 51 658 NASBA P1/PCR GCCCATTAACATCTGCTGTA 105 51 807 NASBA P1/PCR ACGGCAAACCAGGAGTAGATA 106 51 655 NASBA P1/PCR ACGGCAAACCAGGCTTAGT 107 51 829 PROBE GCAGGTGTTCAAGTGTAGTA 108 51 747 PROBE GCAGGTGTTCAAGTGTAGTA 108 51 747 NASBA P1/PCR TTGGGGTGCTGGAGACAACATCT 110 56 519 NASBA P1/PCR TTCATCCTCATCCTCTGA 111 56 665 NASBA P1/PCR TTCATCCTCATCCTCTCTGA 111 56 665 NASBA P1/PCR CATCCTCATCCTCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCTCTGA 114 56 519 NASBA P1/PCR CATCCTCATCCTCTCTGA 114 56 519 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 114 56 519 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 114 56 519 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 115 56 665 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 117 56 610 PROBE AAAGTACCAACGCTGCAACACT 116 56 581 PROBE AGAACTAACACCTCAACACA 115 56 610 PROBE AGAACTAACACCTCAACACA 115 56 656 NASBA P1/PCR GGCATCTGTAGGAGAGAGGT 116 56 581 PROBE AGAACTAACACCTCAAACAGAGATT 118 56 583 PROBE TTGGACAGCTGCAAGAGGT 116 56 56 NASBA P1/PCR GACATCTGTAGGAGGAGGT 120 56 279 NASBA P1/PCR GACATCTGTAGGAGCATTTT 121 56 410 PROBE GACTATTCAGTGTATGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE CAACTGAYCTMYACTGTTATGA 124 A PROBE CAACTGAYCTMYACTGTTATGA 124 A				97	45	654
NASBA P1/PCR ACGGACACAAAAGGACAAG 100 45 868	25			98	45	868
PROBE GAGTCAGAGGAGAAAACGATG 101 45 686 PROBE AGGAAAACGATGAAGCAGATGGAGT 102 45 696 PROBE ACAACTACCAGCCCGACGAGCCGAA 103 45 730 NASBA P2/PCR GGAGGAGGATGAAGTAGATA 104 51 658 NASBA P1/PCR GCCCATTAACATCTGCTGTA 105 51 807 NASBA P1/PCR ACGGGCAAACCAGGCTAGATA 106 51 655 NASBA P1/PCR ACGGGCAAACCAGGCTTAGT 107 51 829 PROBE GCAGTGTTCAAGTGTAGTA 108 51 747 PROBE GCAGTGGAAAACCAGGCTTAGT 109 51 771 NASBA P2/PCR TTGGGGTGCTGGAGAACAACATCT 110 56 519 NASBA P1/PCR TTCATCCTCATCCTCTGA 111 56 665 NASBA P1/PCR TTCATCCTCATCCTCTGA 111 56 665 NASBA P1/PCR TGGGGTGCTGGAGACAACATC 112 56 520 NASBA P1/PCR TGGGGTGCTGGAGACAAACATC 112 56 520 NASBA P1/PCR CATCCTCATCCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCTGA 114 56 519 NASBA P1/PCR CATCCTCATCCTCAGAACA 115 56 764 PROBE AAAGTACCAACGCTGAAACAAT 114 56 581 PROBE AGAACTAACAACGCTCAAACAA 115 56 610 PROBE AGAACTAACAACCTCAAACAACAT 117 56 610 PROBE AGAACTAACACCTCAAACAACAT 119 56 583 PROBE TTGGACAGCTCAAACAACAT 119 56 656 NASBA P2/PCR GATTTTCCTTATGCAGTGT 110 56 583 PROBE AGAACTAACACCTCAAACAACAAT 117 56 610 PROBE AGAACTAACACCTCAAACAACAACAAT 117 56 610 PROBE AGAACTAACACCTCAAACAACAAT 117 56 610 PROBE AGAACTAACACCTCAAACAACAAT 117 56 610 PROBE AGAACTAACACCTCAAACAACAACAAT 117 56 610 PROBE AGAACTAACACCTCAAACAACAAT 117 56 610 PROBE AGAACTAACACTCTAACAACAACAAT 117 56 610 PROBE AGAACTAACACCTCAAACAACAAT 117 56 610 PROBE AGAACTAACACCTCAAACAACAAAT 117 56 610 PROBE AGAACTAACACTCTAACAACAACAAAT 117 56 610 PROBE AGAACTAACACTCAACCATTATT 112 56 410 PROBE AGAACTAACACTCTAACAACAACAAT 1124 A	25			99	45	656
PROBE AGGAAACCATGAAGCAGATGAGT 102 45 696 PROBE ACAACTACCAGCCCGACGAGCCGAA 103 45 730 NASBA P2/PCR GGAGGAGGATGAAGTAGATA 104 51 658 NASBA P1/PCR GCCCATTAACATCTGCTGTA 105 51 807 NASBA P1/PCR ACAGGAGGAGGATGAAGTAGATA 106 51 655 NASBA P1/PCR ACAGGAGGAGGATGAAGTAGATA 106 51 655 NASBA P1/PCR ACGGGCAAACCAGGCTTAGT 107 51 829 PROBE GCAGGTGTTCAAGTGTAGTA 108 51 747 PROBE TGGCAGTGGAAAGCAGTGGAGCA 109 51 771 NASBA P2/PCR TGGGGTGCTGGAGACAAACATCT 110 56 519 NASBA P1/PCR TCATCCTCATCCTCTGA 111 56 665 NASBA P1/PCR TGGGGTGCTGGAGACAAACATC 112 56 520 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 114 56 519 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 115 56 764 PROBE AAAGTACCAACACCTCAACCA 115 56 764 PROBE AAAGTACCAACACCTCAACCA 115 56 581 PROBE AAAGTACCAACACCTCAAACAAAT 117 56 610 PROBE AGAACCAACGCTGCAAGACGT 118 56 583 PROBE AGACCAACGCTGCAAGACGT 119 56 656 NASBA P2/PCR GATTTCCTTATGCAGGATGAGG 119 56 656 NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACTATTCAGTGTATGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE CAACTGAYCTMYACTGTTATGA 123 A				100	45	868
PROBE ACAACTACCAGCCCGAGACCGAA 103 45 730				101	45	686
NASBA P2/PCR GGAGGAGGATGAAGTAGATA 104 51 658 NASBA P1/PCR GCCCATTAACATCTGCTGTA 105 51 807 NASBA P2/PCR AGAGGAGGAGGATGAAGTAGATA 106 51 655 NASBA P1/PCR ACGGGCAAACCAGGCTTAGT 107 51 829 PROBE GCAGGTGTTCAAGTGTAGTA 108 51 747 PROBE TGGCAGTGGAAACCAGGCTTAGT 109 51 771 NASBA P2/PCR TTGGGGTGCTGGAGACAACATCT 110 56 519 NASBA P1/PCR TTCATCCTCATCCTCATCCTCTGA 111 56 665 NASBA P1/PCR TTGGGGTGCTGGAGACAAACATC 112 56 520 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCTGA 114 56 519 NASBA P1/PCR CATCCTCATCCTCAACCACACA 115 56 764 PROBE AAAGTACCAACGACGACACAT 116 56 581 PROBE AGAACTAACACCTCAAACAGAACAT 116 56 581 PROBE AGAACTAACACCTCAAACAGAACAT 117 56 610 PROBE AGAACTAACACCTCAAACAGAACAT 118 56 583 PROBE AGTACCAACGCTGCAAGACGTT 118 56 583 PROBE AGTACCAACGCTGCAAGACGTT 118 56 583 PROBE TTGGACAGCTCAGAGGATGT 119 56 656 NASBA P1/PCR GACATCTGTAGCACTTATT 121 56 410 PROBE GACATTTCCTTATGCAGTGTGT 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A				102	45	696
NASBA P1/PCR GCCCATTAACATCTGCTGTA 105 51 807	2.0		ACAACTACCAGCCCGACGAGCCGAA .	103	45 .	730
NASBA P2/PCR AGAGGAGGAGGATGAAGTAGATA 106 51 655 NASBA P1/PCR ACGGGCAAACCAGGCTTAGT 107 51 829 PROBE GCAGGTGTTCAAGTGTAGTA 108 51 747 PROBE TGGCAGTGGAAAGCAGTGGAGACA 109 51 771 NASBA P2/PCR TTGGGGTGCTGGAGACAACATCT 110 56 519 NASBA P1/PCR TTCATCCTCATCCTCTGA 111 56 665 NASBA P1/PCR TGGGGTGCTGGAGACAAACATC 112 56 520 NASBA P1/PCR CATCCTCATCCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCTGA 114 56 519 NASBA P1/PCR CATCCTCATCCTCTGA 114 56 519 NASBA P1/PCR CCACAAACTTACACTCACAACA 115 56 764 PROBE AAAGTACCAACGCTGCAAGACAT 116 56 581 PROBE AGAACTAACACCTCAAACAACAT 117 56 610 PROBE AGAACTAACACCTCAAACAGAAAT 117 56 610 PROBE AGTACCAACGCTGCAAGACGTT 118 56 583 PROBE TTGGACAGCTCAAGAGAGGT 119 56 656 NASBA P2/PCR GATTTCCTTATGCAGTGTG 120 56 279 NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACATCTGTAGCACCTTATT 121 56 410 PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A	30		GGAGGAGGATGAAGTAGATA	104	51	658
NASBA P1/PCR ACGGGCAAACCAGGCTTAGT 107 51 829			GCCCATTAACATCTGCTGTA	105	51	807
NASBA P1/PCR ACGGGCAAACCAGGCTTAGT 107 51 829			AGAGGAGGATGAAGTAGATA	106	51	655
PROBE GCAGGTGTTCAAGTGTAGTA 108 51 747		NASBA P1/PCR	ACGGCCAAACCAGGCTTAGT	107	51	
PROBE TGGCAGTGGAAAGCAGTGGAGACA 109 51 771 NASBA P2/PCR TTGGGGTGCTGGAGACAAACATCT 110 56 519 NASBA P1/PCR TTCATCCTCATCCTCTGA 111 56 665 NASBA P2/PCR TGGGGTGCTGGAGACAAACATC 112 56 520 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 113 56 665 NASBA P2/PCR TTGGGGTGCTGGAGACAAACAT 114 56 519 NASBA P1/PCR CCACAAACTTACACTCACAACA 115 56 764 PROBE AAAGTACCAACGCTGCAAGACGT 116 56 581 PROBE AGAACTAACACCTCAAACAGAAAT 117 56 610 PROBE AGTACCAACGCTGCAAGACGTT 118 56 583 PROBE AGTACCAACGCTGCAAGACGTT 118 56 583 PROBE TTGGACAGCTCAGAGGATGAGG 119 56 656 NASBA P2/PCR GATTTTCCTTATGCAGTGTG 120 56 279 NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACATCTGTAGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A		PROBE	GCAGGTGTTCAAGTGTAGTA	108	51	-
NASBA P2/PCR TTGGGGTGCTGGAGACAACATCT 110 56 519 NASBA P1/PCR TTCATCCTCATCCTCTGA 111 56 665 NASBA P2/PCR TGGGGTGCTGGAGACAACATC 112 56 520 NASBA P1/PCR CATCCTCATCCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCTGA 113 56 665 NASBA P2/PCR TTGGGGTGCTGGAGACAACAT 114 56 519 NASBA P1/PCR CCACAAACTTACACTCACAACA 115 56 764 PROBE AAAGTACCAACGCTGCAAGACGT 116 56 581 PROBE AGAACTAACACCTCAAACAGAAAT 117 56 610 PROBE AGTACCAACGCTGCAAGACGTT 118 56 583 PROBE TTGGACAGCTCAGAGGATGAGG 119 56 656 NASBA P2/PCR GATTTTCCTTATGCAGTGTG 120 56 279 NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACATCTGTAGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A	35	PROBE	TGGCAGTGGAAAGCAGTGGAGACA	109	51	
NASBA P1/PCR TTCATCCTCATCCTCTGA 111 56 665 NASBA P2/PCR TGGGGTGCTGGAGACAACATC 112 56 520 NASBA P1/PCR CATCCTCATCCTCTGA 113 56 665 NASBA P1/PCR CATCCTCATCCTCTGA 113 56 665 NASBA P2/PCR TTGGGGTGCTGGAGACAACAT 114 56 519 NASBA P1/PCR CCACAAACTTACACTCACAACA 115 56 764 PROBE AAAGTACCAACGCTGCAAGACGT 116 56 581 PROBE AGAACTAACACCTCAAACAGAAAT 117 56 610 PROBE AGTACCAACGCTGCAAGACGTT 118 56 583 PROBE TTGGACAGCTCAGAGGATGAGG 119 56 656 NASBA P2/PCR GATTTTCCTTATGCAGTGTG 120 56 279 NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACTATTCAGTGTATGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A 50 PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A		NASBA P2/PCR	TTGGGGTGCTGGAGACAACATCT	110		
NASBA P2/PCR TGGGGTGCTGGAGACAACATC 112 56 520		NASBA P1/PCR	TTCATCCTCATCCTCTGA			
NASBA P1/PCR CATCCTCATCCTCATCCTCTGA 113 56 665 NASBA P2/PCR TTGGGGTGCTGGAGACAACAT 114 56 519 NASBA P1/PCR CCACAAACTTACACTCACAACA 115 56 764 PROBE AAAGTACCAACGCTGCAAGACGT 116 56 581 PROBE AGAACTAACACCTCAAACAGAAAT 117 56 610 PROBE AGTACCAACGCTGCAAGACGTT 118 56 583 PROBE TTGGACAGCTCAGAGGATGAGG 119 56 656 NASBA P2/PCR GATTTTCCTTATGCAGTGTG 120 56 279 NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACTATTCAGTGTATGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A		NASBA P2/PCR	TGGGGTGCTGGAGACAACATC			
40 NASBA P2/PCR TTGGGGTGCTGGAGACAACAT 114 56 519 NASBA P1/PCR CCACAAACTTACACTCACAACA 115 56 764 PROBE AAAGTACCAACGCTGCAAGACGT 116 56 581 PROBE AGAACTAACACCTCAAACAGAAAT 117 56 610 PROBE AGTACCAACGCTGCAAGACGTT 118 56 583 PROBE TTGGACAGCTCAGAGGATGAGG 119 56 656 NASBA P2/PCR GATTTTCCTTATGCAGTGTG 120 56 279 NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACTATTCAGTGTATGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A		NASBA P1/PCR	CATCCTCATCCTCTGA			
NASBA P1/PCR CCACAAACTTACACTCACAACA 115 56 764 PROBE AAAGTACCAACGCTGCAAGACGT 116 56 581 PROBE AGAACTAACACCTCAAACAGAAAT 117 56 610 PROBE AGTACCAACGCTGCAAGACGTT 118 56 583 PROBE TTGGACAGCTCAGAGGATGAGG 119 56 656 NASBA P2/PCR GATTTTCCTTATGCAGTGTG 120 56 279 NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACTATTCAGTGTATGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A PROBE CAACTGAYCTAYWCTGCTAT 124 A PROBE CAACTGACCTAYWCTGCTAT 124 A	40	NASBA P2/PCR	TTGGGGTGCTGGAGACAACAT			-
PROBE AAAGTACCAACGCTGCAAGACGT 116 56 581 PROBE AGAACTAACACCTCAAACAGAAAT 117 56 610 PROBE AGTACCAACGCTGCAAGACGTT 118 56 583 45 PROBE TTGGACAGCTCAGAGGATGAGG 119 56 656 NASBA P2/PCR GATTTTCCTTATGCAGTGTG 120 56 279 NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACTATTCAGTGTATGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A 50 PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A	•	NASBA P1/PCR	**************************************			
PROBE AGAACTAACACCTCAAACAGAAAT 117 56 610 PROBE AGTACCAACGCTGCAAGACGTT 118 56 583 PROBE TTGGACAGCTCAGAGGATGAGG 119 56 656 NASBA P2/PCR GATTTTCCTTATGCAGTGTG 120 56 279 NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACTATTCAGTGTATGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A 50 PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A		PROBE		~		·
PROBE AGTACCAACGCTGCAAGACGTT 118 56 583 PROBE TTGGACAGCTCAGAGGATGAGG 119 56 656 NASBA P2/PCR GATTTTCCTTATGCAGTGTG 120 56 279 NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACTATTCAGTGTATGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A 50 PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A	•	PROBE				
PROBE TTGGACAGCTCAGAGGATGAGG 119 56 656 NASBA P2/PCR GATTTTCCTTATGCAGTGTG 120 56 279 NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACTATTCAGTGTATGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A 50 PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A		PROBE				·
NASBA P2/PCR GATTTTCCTTATGCAGTGTG 120 56 279 NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACTATTCAGTGTATGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A	45					
NASBA P1/PCR GACATCTGTAGCACCTTATT 121 56 410 PROBE GACTATTCAGTGTATGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A 50 PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A				·		
PROBE GACTATTCAGTGTATGGAGC 122 56 348 PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A						
PROBE CAACTGAYCTMYACTGTTATGA 123 A PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A	•					
PROBE GAAMCAACTGACCTAYWCTGCTAT 124 A						348
PRODE	50					
AAGACATTATTCAGACTC 125 A	50 .				<u> </u>	
		LINODE	AAGACATTATTCAGACTC	125	A	
			•			
			. <i>*</i>	•		
•	-					
	•		•	•		

WO 03/057927

10

. 1

CT/GB03/00030

Oligonucleotides for use as NASBA P1 primers have the general structure "X₁-SEQ", wherein "X₁" represents a nucleotide sequence comprising a promoter and "SEQ" represents the HPV-specific sequence, as given in Table 1. The inclusion of a promoter sequence is essential in NASBA P1 primers but is not necessary in PCR primers, as discussed below. In a preferred embodiment, X₁ may be a sequence comprising a bacteriophage promoter, preferably the T7 promoter. In the most preferred embodiment, X₁ represents the sequence AATTCTAATACGACTCACTATAGGGAGAAGG.

The oligonucleotide molecules of the invention are selected to be specific for mRNA transcribed from the HPV E6 gene. Active expression of the E7 and E6 15 genes of HPV is associated with cervical cytological abnormalities which often progress to more serious disease. A number of studies relate the expression of the E6 and E7 genes to oncogenesis. Co-operation between E6 and E7 increases significantly the 20 frequency of immortalization. Evidence has been presented that the E6 and E7 open reading frames are involved in the transforming activity of the virus (Tanaka et al., J. Virol. 63: 1465-1469, 1989). These transformation effects of E6 and E7 may at least in 25 part be explained by their interaction with the cellular tumour suppressor gene products p53 and pRb 105, respectively (Boyer et al., Cancer Research. 56: 4620-4624, 1996; Lechner et al. EMBO J. 11: 3045-3051, 1992). 30

HPV16 mRNA isolated from transfected cells and a variety of tumour cell lines and lesions containing both extrachromosomal and integrated HPV16 genomes has

been analysed in multiple laboratories (see Doorbar JA et al., Virology 178:254?262, Rohlfs et al., Virology 183:331?342; Sherman et al., Int. J. Cancer 50:356?364). These studies have shown that several different alternatively spliced transcripts may be produced from the E6 and E7 region. In summary, there are four major transcripts: one with the whole E6/E7 gene area (E6), one with a loss of a coding sequence between basepairs 226 and 409 (E6*I), one with a loss of a coding sequence in a larger part of E6 between 226 and 526 (E6*II) and one with the loss of the E7 transcript (E6*III). However there are clearly consensus sequences in the area up to 226 basepairs in the E6 region. The inventors therefore selected the areas between 97 and 226 and between 526 and 880 as areas to target for diagnostic purposes.

The oligonucleotides provided by the invention may be grouped according to specificity for different 20 specific HPV types or groups of HPV types. Sequence numbers 1-12 and 126-133 are specific for HPV type 16, sequence numbers 13-23 are specific for HPV type 18, sequence numbers 24-37 are specific for HPV type 31, sequence numbers 38-46 are specific for HPV type 33. 25 HPV types 16, 18, 31 and 33 are the major cancer-associated HPV types. Sequence numbers 47-55 are specific for HPV type 35, sequence numbers 56-61 are specific for HPV type 52, sequence numbers 62-67 are specific for HPV type 58, sequence numbers 80-88 30 are specific for HPV type 39, sequence numbers 89-103 are specific for HPV type 45, sequence numbers 104-109 are specific for HPV type 51, sequence numbers 110-122 are specific for HPV type 56. Sequence numbers 68-76 are consensus sequences for group B HPV types (in

. \

25

30

particular HPV types 6 and 11). Sequence numbers 77-79 and 125 are consensus sequences for group C HPV types (including HPV types 18, 39 and 45). Sequence numbers 123 and 124 are consensus probe sequences for group A HPV types. Sequence 123 is a consensus for HPV types 16, 31 and 35; sequence 124 is a consensus for HPV types 33, 52 and 58).

The oligonucleotide molecules of the invention are preferably single stranded DNA molecules. 10 Non-natural synthetic polynucleotides which retain the ability to base-pair with a complementary nucleic acid molecule and are also within the scope of the invention, including synthetic oligonucleotides which incorporate modified bases and synthetic 15 oligonucleotides wherein the links between individual nucleosides include bonds other than phosphodiester bonds. The oligonucleotide molecules of the invention may be produced according to techniques well known in . 20 the art, such as by chemical synthesis using standard apparatus and protocols for oligonucleotide synthesis.

The oligonucleotide molecules provided by the invention will typically be isolated single-stranded polynucleotides of no more than 100 bases in length, more typically less than 55 bases in length. For the avoidance of doubt it is hereby stated that the language "oligonucleotide comprising sequence number n" excludes the naturally occurring full-length HPV genomes.

The invention provides several general types of oligonucleotide primers and probes incorporating the HPV-specific sequences listed in Table 1. Typically,

such oligonucleotides may comprise additional, non-HPV sequences, for example sequences which are required for an amplification reaction or which facilitate detection of the products of the amplification reaction. The HPV-specific part of the oligonucleotide may consist of one of the sequences listed in Table 1 in the absence of any other contiguous HPV sequences. However, it will be appreciated that minor variations may be made to the HPV-specific sequences, for example the addition, deletion or substitution of bases, without affecting the ability of the oligonucleotide to bind to its target sequence and function as a primer or probe to a material extent.

15 . .

.5

The first type of oligonucleotides are primer 1 oligonucleotides (also referred to herein as NASBA P1 primers), which are oligonucleotides of generally approximately 50 bases in length, containing an 20 average of about 20 bases at the 3' end that are complementary to a region of the target mRNA. Oligonucleotides suitable for use as NASBA P1 primers are denoted "NASBA P1/PCR" in Table 1. The 5' ends of the P1 primer oligonucleotides (represented herein in 25 general terms as X_1) comprise a promoter sequence that is recognized by a specific RNA polymerase. Bacteriophage promoters, for example the T7, T3 and SP6 promoters, are preferred for use in the oligonucleotides of the invention, since they provide 30 advantages of high level transcription which is dependent only on binding of the appropriate RNA polymerase. In a preferred embodiment, the 5' terminal sequence of the Pl primer oligonucleotides may comprise the sequence AATTCTAATACGACTCACTATAGGG or

15

20

. 25

the sequence AATTCTAATACGACTCACTATAGGGAGAAGG. These sequences contains a T7 promoter, including the transcription initiation site for T7 RNA polymerase. The HPV-specific sequences denoted in Table 1 as "NASBA P1/PCR" are suitable for use in both NASBA P1 primers and standard PCR primers. When these sequences are used as the basis of NASBA P1 primers they have the general structure X₁-SEQ, wherein X₁ represents a sequence comprising a promoter and SEQ represents the HPV-specific sequence. The promoter sequence X₁ is essential. However, when the same sequences are used as the basis of standard PCR primers it is not necessary to include X₁. The phrase "sequence number" as used in the claims is to be interpreted accordingly.

For the avoidance of doubt, the phrase "a NASBA P1 primer comprising sequence number 1" is to be interpreted as requiring the presence of an X₁ sequence 5' to the HPV-specific sequence listed as sequence number 1, whereas the phrase "a PCR primer comprising sequence number 1" refers to any suitable PCR primer comprising the HPV-specific sequence, X₁ not being an essential feature of a PCR primer. The phrase "an oligonucleotide primer including sequence number n" is taken to encompass NASBA P1, NASBA P2 and PCR primers.

A second type of oligonucleotide provided by the invention are NASBA primer 2 oligonucleotides (also referred to herein as NASBA P2 primers) which generally comprise a sequence of approximately 20 bases substantially identical to a region of the target mRNA. The oligonucleotide sequences denoted in

Table 1 as "NASBA P2/PCR" are suitable for use in both NASBA P1 primers and standard PCR primers.

Oligonucleotides intended for use as NASBA P2 primers may, in a particular but non-limiting embodiment, further comprise a sequence of nucleotides at the 5' end which is unrelated to the target mRNA but which is capable of hybridising to a generic detection probe. The detection probe will preferably be labelled, for example with a fluorescent, luminescent or enzymatic label. In one embodiment the detection probe is labelled with a label that permits

detection probe is labelled with a label that permits detection using ECL^m technology, although it will be appreciated that the invention is in no way limited to this particular method of detection. In a preferred embodiment the 5' end of the primer 2 oligonucleotides may comprise the sequence GATGCAAGGTCGCATATGAG. This sequence is capable of hybridising to a generic ECL^m probe commercially available from Organon Teknika having the following structure:

20

25

10

15

Ru (bpy) 32+-GAT GCA AGG TCG CAT ATG AG-3'

In a different embodiment the primer 2 oligonucleotide may incorporate "molecular beacons" technology, which is known in the art and described, for example, in WO 95/13399 by Tyagi and Kramer, Nature Biotechnology. 14: 303-308, 1996, to allow for real-time monitoring of the NASBA reaction.

A third type of oligonucleotide molecules provided by the invention are target-specific probe oligonucleotides (denoted "probe" in Table 1). The probe oligonucleotides generally comprise a sequence of approximately 20-25 bases substantially identical

to a region of the target mRNA, or the complement thereof. The probe oligonucleotides may be used as target-specific hybridisation probes for detection of the products of a NASBA or PCR reaction. In this connection the probe oligonucleotides may be coupled to a solid support, such as paramagnetic beads, to form a capture probe (see below). In a preferred embodiment the 5' end of the probe oligonucleotide may be labelled with biotin. The addition of a biotin label facilitates attachment of the probe to a solid support via a biotin/streptavidin or biotin/avidin linkage.

A fourth type of oligonucleotide molecules provided by the invention are target-specific probes incorporating "molecular beacons" technology which is known in the art and described, for example, by Tyagi and Kramer, Nature Biotechnology. 14: 303-308, 1996 and in WO 95/13399.

20

30

-15

10

À

The term "molecular beacons probes" as used herein is taken to mean molecules having the structure:

 X_2 -arm₁-target-arm₂- X_3

wherein "target" represents a target-specific sequence of nucleotides, " X_2 " and " X_3 " represent a fluorescent moiety and a quencher moiety capable of substantially or completely quenching the fluorescence from the fluorescent moiety when the two are held together in close proximity and " arm_1 " and " arm_2 " represent complementary sequences capable of forming a stem duplex.

The invention provides molecular beacons probes incorporating a target-specific sequence comprising one of sequence numbers 6, 18, 35, 43, 123, 124 or 125.

5

Suitable pairs of arm, and arm, sequences for use with these HPV-specific sequences include, but not exclusively, the following:

For use with sequence number 6: 10. CGCATG-----CATGCG CCAGCT-----AGCTGG CACGC-----GCGTG CGATCG-----CGATCG 15 For use with sequence number 18: CGCATG-----CATGCG CCGTCG-----CGACGG CGGACC-----GGTCCG CGATCG-----CGATCG 20 For use with sequence number 35: CCGAAGG----CCTTCGG CCGTCG-----CGACGG CACGTCG----CGACGTG 25 - CGCAGC-----GCTGCG CGATCG-----CGATCG For use with sequence number 43: CCAAGC-----GCTTGG .30 CCAAGCG-----CGCTTGG CCCAGC-----GCTGGG CCAAAGC-----GCTTTGG CCTGC-----GCAGG

CGATCG-----CGATCG

For use with sequence number 123:

CGCATG-----CATGCG

CCGTCG-----CGACGG

CCACCC-----GGGTGG

CGATCG-----CGATCG.

For use with sequence number 124:

10 CCAAGC-----GCTTGG

CCAAGCC-----GGCTTGG

CCAAGCG-----GCGTTGG

CCAGCG-----CGCTGG

CGATCG-----CGATCG

15

25

30

For use with sequence number 125:

CCAAGC-----GCTTGG

CGCATG-----CATGCG

CCCAGC-----GCTGGG

20 CGATCG-----CGATCG

The use of probe molecules incorporating molecular beacons technology allows for real-time monitoring of amplification reactions, such as NASBA or RT-PCR reactions. The use of molecular beacons technology allows for real-time monitoring of the NASBA reaction (see Leone et al., Nucleic Acids Research., 1998, vol: 26, pp 2150-2155). The molecular beacons probes generally include complementary sequences flanking the HPV-specific sequence, represented herein by the notation arm, and arm, which are capable of hybridising to each other form a stem duplex structure. The precise sequences of arm, and arm, are not material to the invention,

10

except for the requirement that these sequences must be capable of forming a stem duplex when the probe is not bound to a target HPV sequence.

Molecular beacons probes also include a fluorescent moiety and a quencher moiety, the fluorescent and the quencher moieties being represented herein by the notation X₂ and X₃. As will be appreciated be the skilled reader, the fluorescer and quencher moieties are selected such that the quencher moiety is capable of substantially or completely quenching the fluorescence from the fluorescent moiety when the two moieties are in close proximity, e.g. when the probe is in the hairpin "closed" conformation in the absence of the target sequence. Upon binding to the target sequence, the fluorescent and quencher moieties are held apart such that the fluorescence of the fluorescent moiety is no longer quenched.

20

15

Many examples of suitable pairs of quencher/fluorescer moieties which may be used in accordance with the invention are known in the art (see WO 95/13399, Tyagi and Kramer, ibid). A broad 25 range of fluorophores in many different colours made be used, including for example 5-(2'-aminoethyl) aminonaphthalene-1-sulphonic acid (EDANS), fluorescein, FAM and Texas Red (see Tyagi, Bratu and Kramer, 1998, Nature Biotechnology, 16, 49-The use of probes labelled with different 30 coloured fluorophores enables "multiplex" detection of two or more different probes in a single reaction vessel. A preferred quencher is 4-(4'-dimethylaminophenylazo)benzoic acid (DABCYL), a

non-fluorescent chromophore, which serves as a 'universal' quencher for a wide range of fluorophores. The fluorescer and quencher moieties may be covalently attached to the probe in either orientation, either with the fluorescer at or near the 5' end and the quencher at or near the 3' end or vice versa. Protocols for the synthesis of molecular beacon probes are known in the art. A detailed protocol for synthesis is provided in a paper entitled "Molecular Beacons: Hybridization Probes for Detection of Nucleic Acids in Homogenous Solutions" by Sanjay Tyagi et al., Department of Molecular Genetics, Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA, which is available online via the PHRI website (at www.phri.nyu.edu or www.molecularbeacons.org).

Suitable combinations of the NASBA P1 and NASBA P2 primer oligonucleotide molecules provided by the invention may be used to drive a NASBA amplification reaction. In order to drive a NASBA amplification reaction the primer 1 and primer 2 oligonucleotides must be capable of priming synthesis of a double-stranded DNA from a target region of mRNA. For this to occur the primer 1 and primer 2 oligonucleotides must comprise target-specific sequences which are complementary to regions of the sense and the antisense strand of the target mRNA, respectively.

30

10

15

20

25

In the first phase of the NASBA amplification cycle, the so-called "non-cyclic" phase, the primer 1 oligonucleotide anneals to a complementary sequence in the target mRNA and its 3' end is extended by the

. 5

10

15

action of an RNA-dependent DNA polymerase (e.g. reverse transcriptase) to form a first-strand cDNA synthesis. The RNA strand of the resulting RNA: DNA hybrid is then digested, e.g. by the action of RNaseH, to leave a single stranded DNA. The primer 2 oligonucleotide anneals to a complementary sequence towards the 3' end of this single stranded DNA and its 3' end is extended (by the action of reverse transcriptase), forming a double stranded DNA. RNA polymerase is then able to transcribe multiple RNA copies from the now transcriptionally active promoter sequence within the double-stranded DNA. This RNA transcript, which is antisense to the original target mRNA, can act as a template for a further round of NASBA reactions, with primer 2 annealing to the RNA and priming synthesis of the first cDNA strand and primer 1 priming synthesis of the second cDNA strand. The general principles of the NASBA reaction are well known in the art (see Compton, J. Nature. 350: 91-92).

- 16 -

20

25

The target-specific probe oligonucleotides described herein may also be attached to a solid support, such as magnetic microbeads, and used as "capture probes" to immobilise the product of the NASBA amplification reaction (a single stranded RNA). The target-specific "molecular beacons" probes described herein may be used for real-time monitoring of the NASBA reaction.

30

In a particular embodiment the invention provides the oligonucleotide listed in Table 2, these being NASBA Pl primers and NASBA P2 primers containing the sequences listed in Table 1. The NASBA P1 primers further include a T7 promoter sequence, the NASBA P2

primers include a sequence for binding of a generic detection probe (see below) and associated probe molecules for use in the detection of HPV mRNA by NASBA. The oligonucleotides listed in Table 2 are merely illustrative and it is not intended that the scope of the invention should be limited to these specific molecules.

17 -

The NASBA P2 primers (p2) in Table 2 include the

sequence GATGCAAGGTCGCATATGAG at the 5' end; the NASBA P1

primers (p1) in Table 2 include the sequence

AATTCTAATACGACTCACTATAGGGAGAAGG at the 5' end.

Oligonucleotides suitable for use as probes are

identified by "po". The P2 primers generally contain

HPV sequences from the postive strand, whereas the p1

primers generally contain HPV sequences from the

negative strand. nt-refers to nucleotide position in

the relevant HPV genomic sequence.

20 Table 2-NASBA primer and probe sequences

AGAAAGTTA HAe6701p1 AATTCTAATACGACTCACTATAGGGAGAAGGACGG 16 36 TTTGTTGTATTGCTGTTC HAe6702p2 GATGCAAGGTCGCATATGAGCCACAGGAGCGACCC 16 11 AGAAA HAe6702p1 AATTCTAATACGACTCACTATAGGGAGAAGGGGTT 16 369 TGTTGTATTGCTGTTC	Primer name	nt
AGAAAGTTA HAe6701p1 AATTCTAATACGACTCACTATAGGGAGAAGGACGG 16 36 TTTGTTGTATTGCTGTTC HAe6702p2 GATGCAAGGTCGCATATGAGCCACAGGAGCGACCC 16 11 AGAAA HAe6702p1 AATTCTAATACGACTCACTATAGGGAGAAGGGGTT 16 369 TGTTGTATTGCTGTTC		-
HAe6701p1 AATTCTAATACGACTCACTATAGGGAGAAGGACGG 16 TTTGTTGTATTGCTGTTC HAe6702p2 GATGCAAGGTCGCATATGAGCCACAGGAGCGACCC 16 AGAAA HAe6702p1 AATTCTAATACGACTCACTATAGGGAGAAGGGGTT 16 TGTTGTATTGCTGTTC	HAe6701p2	116
TTTGTTGTATTGCTGTTC HAe6702p2 GATGCAAGGTCGCATATGAGCCACAGGAGCGACCC 16 11 AGAAA HAe6702p1 AATTCTAATACGACTCACTATAGGGAGAAGGGGTT 16 369 TGTTGTATTGCTGTTC		
HAe6702p2 GATGCAAGGTCGCATATGAGCCACAGGAGCGACCC 16 AGAAA HAe6702p1 AATTCTAATACGACTCACTATAGGGAGAAGGGGTT 16 TGTTGTATTGCTGTTC	HAe6701p1	368
AGAAA HAe6702p1 AATTCTAATACGACTCACTATAGGGAGAAGGGGTT 16 36 TGTTGTATTGCTGTTC	•	
HAe6702pl AATTCTAATACGACTCACTATAGGGAGAAGGGGTT 16 368 . TGTTGTATTGCTGTTC	HAe6702p2	116
TGTTGTATTGCTGTTC		
	HAe6702p1	368
HAE6702Apl AATTCTAATACGACTCACTATAGGGAGAAGGTCA 16 20	·	1
	HAe6702Ap1	208
CGTCGCAGTAACTGT		
	HAe6702Bp1	191
CTTGCAGTACACACA		<u> </u>
	HAe6702Cp1	186
AGTACACACTTCTA		<u> </u>
	HAe6702Dp1	185
GTACACACTTCTAA		<u> </u>
H16e6702Ap2 GATGCAAGGTCGCATATGAGACAGTTATGCACAGA 16 14:	H16e6702Ap2	142
GCT		

25

	Primer name	Sequence	HPV Type	nt
	H16e6702Bp2	GATGCAAGGTCGCATATGAGATATTAGAATGTGTG	16	182
•		TAC		1
	H16e6702Cp2	GATGCAAGGTCGCATATGAGTTAGAATGTGTGTAC	16	185
		TGC		
	H16e6702Dp2	GATGCAAGGTCGCATATGAGGAATGTGTGTACTGC	16	188
•		AAG		
· ·	H16e6702Apo	ACAGTTATGCACAGAGCT	16	142
5	H16e6702Bpo	ATATTAGAATGTGTGTAC	16	182
:	H16e6702Cpo	TTAGAATGTGTGTACTGC	16	185
	H16e6702Dpo	GAATGTGTACTGCAAG	16	188
	HAe6701po	CTTTGCTTTTCGGGATTTATGC	16	235
	HAe6702po	TATGACTTTGCTTTTCGGGA	16	230
10	HAe6702mb1	X2-cgcatgTATGACTTTGCTTTTCGGGAcatgcg	16	230
\		-X ₃		
	HAe6702mb2	X2-ccagctTATGACTTTGCTTTTCGGGAagctgg	16	230
		-X ₃		
	HAe6702mb3	X ₂ -cacgcTATGACTTTGCTTTTCGGGAgcgtg-X ₃	16	230
		n2-cacycinioncillocillicodongcycy -X3		2.30
15	H16e6702mb4	X ₂ -cgatcgTATGACTTTGCTTTTCGGGAcgatcg	16	230
10			10	250
	UD - 6702-2	-X ₃	3.6	
•	HAe6703p2	GATGCAAGGTCGCATATGAGCAGAGGAGGATG	16	656
		AAATAGTA		
•	HAe6703p1	AATTCTAATACGACTCACTATAGGGAGAAGGGCAC	16	741
		AACCGAAGCGTAGAGTCACAC		
•	HAe6703po	TGGACAAGCAGAACCGGACAGAGC	16	687
	HAe6704p2	GATGCAAGGTCGCATATGAGCAGAGGAGGAGGATG	16	656
·		AAATAGA		
20	HAe6704pl	AATTCTAATACGACTCACTATAGGGAGAAGGGCAC	16	741
		AACCGAAGCGTAGAGTCA		
•	HAe6704po	AGCAGAACCGGACAGAGCCCATTA	16	693
	H18e6701p2	GATGCAAGGTCGCATATGAGACGATGAAATAGATG	18	702
		GAGTT	•	
•	H18e6701p1	AATTCTAATACGACTCACTATAGGGAGAAGGCACG	18	869
		GACACAAAGGACAG		
	H18e6701po	AGCCGAACCACAACGTCACA	18	748
25	H18e6702p2	GATGCAAGGTCGCATATGAGGAAAACGATGAAATA	18	698
		GATGGAG		. 050
	H18e6702p1	AATTCTAATACGACTCACTATAGGGAGAAGGACAC	18	869
	nibed/uzpi		10	003
	1110-6700	CACGGACACAAAGGACAG		
	H18e6702po	GAACCACAACGTCACACAATG	18	752
	H18e6702mb1	X ₂ -cgcatgGAACCACAACGTCACACAATGcatgcg	18	752
		-X ₃		
	H18e6702mb2	X2-ccgtcgGAACCACAACGTCACACAATGcgacgg	18 .	752
		-X ₃		
30	H18e6702mb3	X2-cggaccGAACCACAACGTCACACAATGggtccg	18	752
		-X ₃		
	H18e6702mb4	X ₂ -cgatcgGAACCACAACGTCACACAATGcgatcg	18	752

•		
· · .	Type	
-X ₃		
GATGCAAGGTCGCATATGAGTTCCGGTTGACCTTC	18	651
TATGT		· ·
AATTCTAATACGACTCACTATAGGGAGAAGGGGTC	18	817
GTCTGCTGAGCTTTCT		
GATGCAAGGTCGCATATGAGGCAAGACATAGAAAT	18	. 179
AACCTG		•
AATTCTAATACGACTCACTATAGGGAGAAGGACCC	18	379
AGTGTTAGTTAGTT		
	18	207
	31	164
AATTCTAATACGACTCACTATAGGGAGAAGGGGAC	31	423
	31	268
<u></u>	31	164
·		}
	31	423
	31	269
<u> </u>		617
·		
	31	766
	31	687
		619
	31	766
	31	686
	 -	686
	0-	
<u> </u>	31	686
	31	1 000
	21	686
• •	31.	000
	31	686
	31	686
X ₂ -cgatcgGGACAAGCAGAACCGGACACAICCAA	31	000
	31	
GATGCAAGGTCGCATATGAGACTGACCTCCACTGT	31	617
TAT		
AATTCTAATACGACTCACTATAGGGAGAAGGCACG	31	809
ATTCCAAATGAGCCCAT		
GATGCAAGGTCGCATATGAGTATCCTGAACCAACT	33	618
GACCTAT		
	-X, GATGCAAGGTCGCATATGAGTTCCGGTTGACCTTC TATGT AATTCTAATACGACTCACTATAGGGAGAAGGGGTC GTCTGCTGAGCTTTCT GATGCAAGGTCGCATATGAGGCAAGACATAGAAAT AACCTG AATTCTAATACGACTCACTATAGGGAGAAGGACCC AGTGTTAGTTAGTT TGCAAGACACTATTGGAACT GATGCAAGGTCGCATATGAGGGAAATACCCTACGA TGAAC AATTCTAATACGACTCACTATAGGGAGAAGGGAC ACAACGGTCTTTGACA ATAGGGACGACACACACAGGAG GATGCAAGGTCGCATATGAGGGAAATACCCTACGA TGAAC AATACTAATACGACTCACTATAGGGAGAAGGCAC ACAACGGTCTTTGACA ATACGAACTA AATTCTAATACGACTCACTATAGGGAGAAGGCTGG ACACAACGGTCTTTGACA TAGGGACGACACACCACAC	-X3 GATGCAAGGTCGCATATGAGTTCCGGTTGACCTTC 18 TATGT AATTCTAATACGACTCACTATAGGGAGAAGGGGTC 18 GTCTGCTGAGCTTTCT GATGCAAGGTCGCATATGAGGCAAGACATAGAAAT 18 AACCTG AATTCTAATACGACTCACTATAGGGAGAAGGACCC 18 AATTCTAATACGACTCACTATAGGGAGAAGGACCC 18 GTGGTAGGTTAGTT TGCAAGACAGTATTGGAACT 18 GATGCAAGGTCGCATATGAGGGAAATACCCTACGA 31 TGAACA AATTCTAATACGACTCACTATAGGGAGAAGGGGAC 31 ACAACGGTCTTTGACA ATAGGGACGACACCACACGGAG 31 ACAACGGTCTTTGACA AATTCTAATACGACTCACTATAGGGAGAAGGCTGG 31 ACAACGGTCTTTGACA AATTCTAATACGACTCACTATAGGGAGAAGGCTGG 31 ACACAACGGTCTTTGACA ACACACGGTCTTTGACA ACACACGGTCTTTGACA ACACCACACC

Primer name	Sequence	HPV	nt
		Type	763
H33e6701p1	AATTCTAATACGACTCACTATAGGGAGAAGGTTGA	33	/63
	CACATAAACGAACTG		
H33e6701po	CAGATGGACAAGCACAACC	33	694
H33e6703p2	GATGCAAGGTCGCATATGAGTCCTGAACCAACTGA	. 33	620
	CCTAT .		1
H33e6703p1	AATTCTAATACGACTCACTATAGGGAGAAGGCCCA	33	807
	TAAGTAGTTGCTGTAT	·	
H33e6703po	GGACAAGCACCAGCCACAGC	33	699
H33e6703mb1	X2-ccaagcGGACAAGCACAACCAGCCACAGCgct	33	699
	tgg -X ₃		
H33e6703mb2	X ₂ -ccaagcgGACAAGCACAACCAGCCACAGC	33	699
H33e6703mb3	cgcttgg -X ₃ X ₂ -cccagcGGACAAGCACAACCAGCCACAGCgct	33	699
12360103	A2-CCCagcGGACAAGCACAACCAGCCACCAGCGCC	33	
	ggg -X ₃		
H33e6703mb4	X2-ccaaagcGGACAAGCACAACCAGCCACAGCg	33	699
	ctttaa -Y		
H33e6703mb5	Ctttgg -X ₃ X ₂ -cctgcGGACAAGCACAACCAGCCACAGCgcagg	33	699
12260 (O31102			
H33e6703mb6	-X ₃ X ₂ -cgatcgGGACAAGCACAACCAGCCACAGCcga	33	699
ממווכח ו פפרביו	nz cyattyddhonndonothacondconddocya		
	tcg-X ₃		
H33e6702p2	GATGCAAGGTCGCATATGAGGACCTTTGTGTCCTC	33	431
	AAGAA		
H33e6702p1	AATTCTAATACGACTCACTATAGGGAGAAGGAGGT	33	618
	CAGTTGGTTCAGGATA		
H33e6702po	AGAAACTGCACTGTGACGTGT	33	543
H35e6701p2	GATGCAAGGTCGCATATGAGATTACAGCGGAGTGA	35	217
_	GGTAT		
H35e6701p1	AATTCTAATACGACTCACTATAGGGAGAAGGGTCT	35	442
•	TTGCTTTTCAACTGGA	٠.	
H35e5601po	ATAGAGAAGGCCAGCCATAT	35	270
H35e6702p2	GATGCAAGGTCGCATATGAGTCAGAGGAGGAGGAA	35	655
	GATACTA		
H35e6702p1	AATTCTAATACGACTCACTATAGGGAGAAGGGATT	35	844
	ATGCTCTCTGTGAACA		
H35e6703p2	GATGCAAGGTCGCATATGAGCCCGAGGCAACTGAC	35	610
113360,0365			.
u25-6702-3	TATA ANTICENATACCACTE ACTATACCE ACAACCETCA	35	770
H35e6703p1	AATTCTAATACGACTCACTATAGGGAGAAGGGTCA	33	1,10
	ATGTGTGTGCTCTGTA	25	602
H35e6702po	GACAAGCAAAACCAGACACCTCCAA	35	692
H35e6703po	GACAAGCAAAACCAGACACCCCCCCCCCCCCCCCCCCCC	35	144
H52e6701p2	GATGCAAGGTCGCATATGAGTTGTGTGAGGTGCTG	52	144
	GAAGAAT	50	350
H52e6701p1	AATTCTAATACGACTCACTATAGGGAGAAGGCCCT	52 .	358
	CTCTTCTAATGTTT		
		52	296

i,

Primer name	Sequence	HPV	nt
	··	Type	
	ATCTA		
H52e6702p1	AATTCTAATACGACTCACTATAGGGAGAAGGGGGG	52	50
	TCTCCAACACTCTGAACA		
H52e6702po	TGCAAACAAGCGATTTCA	52	46
H58e6701p2	GATGCAAGGTCGCATATGAGTCAGGCGTTGGAGAC	58	15
	ATC		
H58e6701p1	AATTCTAATACGACTCACTATAGGGAGAAGGAGCA	58	30
	ATCGTAAGCACACT		
H58e6702p2	GATGCAAGGTCGCATATGAGTCTGTGCATGAAATC	58	17
•	GAA		
H58e6702p1	AATTCTAATACGACTCACTATAGGGAGAAGGAGCA	58	29
	CACTTTACATACTG	,	
H58e6701po	TGAAATGCGTTGAATGCA	58	19
H58e6702po	TTGCAGCGATCTGAGGTATATG	58	21
HBe6701p2	GATGCAAGGTCGCATATGAGTACACTGCTGGACAA	B(11)	51
•	CAT		
HBe6701p1	AATTCTAATACGACTCACTATAGGGAGAAGGTCAT	B(11)	61
	CTTCTGAGCTGTCT		
HBe6702p2	GATGCAAGGTCGCATATGAGTACACTGCTGGACAA	B(11)	51
	CATGCA	_ , _ ,	
HBe6702p1	AATTCTAATACGACTCACTATAGGGAGAAGGGTCA	B(11)	69
upeolozpi)	
UD-6701-0	CATCCACAGCAACAGGTCA GTAGGGTTACATTGCTATGA	B(11)	59
HBe6701po HBe6702po	GTAGGGTTACATTGCTATGA	B(11)	59
HBe6703p2	GATGCAAGGTCGCATATGAGTGACCTGTTGCTGTG	B(11)	69
·	GATGTGA		
HBe6703p1	AATTCTAATACGACTCACTATAGGGAGAAGGTACC	B(11)	83
iibed/d5p1	TGAATCGTCCGCCAT]	
НВе6703ро	ATWGTGTGTCCCATCTGC	B(11)	79
HCe6701p2	GATGCAAGGTCGCATATGAGCATGCCATAAATGTA	C(18	29
·		39 45)	1
HCe6701p1	TAGA AATTCTAATACGACTCACTATAGGGAGAAGGCACC	·C(18	40
nceo/oipi		39 45	1
WC2670122	GCAGGCACCTTATTAA	C(18	32
HCe6701po	AGAATTAGAGAATTAAGA		32
"20-6701-0	CAMOCA A COMOCO MAMOA COCA CA CA COA COA COA COA COA COA CO	39 45	21
H39e6701p2	GATGCAAGGTCGCATATGAGGCAGACGACCACTAC	39	21
	AGCAAA	1 20	-
H39e6701p1	AATTCTAATACGACTCACTATAGGGAGAAGGACAC	39	34
·	CGAGTCCGAGTAATA		
H39e6701po	ATAGGGACGGGAACCACT	39	27
H39e6702p2	GATGCAAGGTCGCATATGAGTATTACTCGGACTCG	39	34
·	GTGT		
H39e6702p1	AATTCTAATACGACTCACTATAGGGAGAAGGCTTG	39	55
	GGTTTCTCTTCGTGTTA		
H39e6702po	GGACCACAAAACGGGAGGAC	39	53
H39e6703p2	GATGCAAGGTCGCATATGAGGAAATAGATGAACCC	39	70
	GACCA		

50

	Primer name	Sequence	HPV	nt
			Type	
•	H39e6703p1	AATTCTAATACGACTCACTATAGGGAGAAGGGCAC	39	886
		ACCACGGACACAAA		}
	H39e6703po	TAGCCAGACGGGATGAACCACAGC	39	749
	H45e6701p2	GATGCAAGGTCGCATATGAGAACCATTGAACCCAG	45	430
		CAGAAA		
	H45e6701p1	AATTCTAATACGACTCACTATAGGGAGAAGGTCTT	45	527
		TCTTGCCGTGCCTGGTCA		
5	H45e6702p2	GATGCAAGGTCGCATATGAGGAAACCATTGAACCC	45	428
3	n 13co rozpz	AGCAGAAAA	•	
	H45e6702p1	AATTCTAATACGACTCACTATAGGGAGAAGGTTGC	45	558
	h4Je0702p1	•		
•	W45 - 6201	TATACTTGTGTTTCCCTACG	45	500
٠.	H45e6701po	GTACCGAGGGCAGTGTAATA GGACAAACGAAGATTTCACA	45	467
	H45e6702po	GATGCAAGGTCGCATATGAGGTTGACCTGTTGTGT	45	656
	H45e6703p2		13	1.000
- ^		TACCAGCAAT	45	868
10	H45e6703p1	AATTCTAATACGACTCACTATAGGGAGAAGGCACC	45	000
		ACGGACACAAAGGACAAG		
•	H45e6704p2	GATGCAAGGTCGCATATGAGCTGTTGACCTGTTGT	45	654
		GTTACGA		
	H45e6704p1	AATTCTAATACGACTCACTATAGGGAGAAGGCCAC	45	868
		GGACACAAAGGACAAG		
	H45e6705p2	GATGCAAGGTCGCATATGAGGTTGACCTGTTGTGT	45	656
•		TACGA		
	H45e6705p1	AATTCTAATACGACTCACTATAGGGAGAAGGACGG	45	868
•		ACACACAAAGGACAAG		
15	H45e6703po	GAGTCAGAGGAGGAAAACGATG	45	686
	H45e6704po	AGGAAAACGATGAAGCAGATGGAGT	45	696
	H45e6705po	ACAACTACCAGCCGACGAGCCGAA	45	. 730
	H51e6701p2	GATGCAAGGTCGCATATGAGGGAGGAGGATGAAGT	51	658
		AGATA		
. •	H51e6701p1	AATTCTAATACGACTCACTATAGGGAGAAGGGCCC	51	807
	-	ATTAACATCTGCTGTA		
20	H51e6702p2	GATGCAAGGTCGCATATGAGAGGAGGAGGATGA	51	655
	.,	AGTAGATA		
	H51e6702p1	AATTCTAATACGACTCACTATAGGGAGAAGGACGG	51	829
	"SICO, OZPI	GCAAACCAGGCTTAGT		
•	H51e6701po	GCAGACCAGGCTTAGT	51	747
	H51e6702po	TGGCAGTGGAAAGCAGTGGAGACA	51	771
·	H56e6701p2	GATGCAAGGTCGCATATGAGTTGGGGTGCTGGAGA	56.	519
	1150ed/01p2			
25	US C- 6701-1	CAAACATCT AATTCTAATACGACTCACTATAGGGAGAAGGTTCA	56	665
25	H56e6701p1			
	100000000000000000000000000000000000000	TCCTCATCCTCATCCTCTGA	E.C.	520
	H56e6702p2	GATGCAAGGTCGCATATGAGTGGGGTGCTGGAGAC	56	520
		AAACATC	-	
	H56e6702p1	AATTCTAATACGACTCACTATAGGGAGAAGGCATC	56	665
		CTCATCCTCATCCTCTGA		
	H56e6703p2	GATGCAAGGTCGCATATGAGTTGGGGTGCTGGAGA	56	519

Primer name	Sequence	HPV	n
		Type	
	CAAACAT		
H56e6703pl	AATTCTAATACGACTCACTATAGGGAGAAGGCCAC	56	7
	AAACTTACACTCACAACA		
H56e6701po	AAAGTACCAACGCTGCAAGACGT	56	+
H56e6702po	AGAACTAACACCTCAAACAGAAAT	56	1
H56e6703po	AGTACCAACGCTGCAAGACGTT	56	1
H56e6703po1	TTGGACAGCTCAGAGGATGAGG	56	1
H56e6704p2	GATGCAAGGTCGCATATGAGGATTTTCCTTATGCA	56	1
•	GTGTG		
H56e6704p1	AATTCTAATACGACTCACTATAGGGAGAAGGGACA	56	17
	TCTGTAGCACCTTATT		
H56e6704po	GACTATTCAGTGTATGGAGC	56	1
HPVAPOLA	CAACTGAYCTMYACTGTTATGA	A (16	┿
III VIII OIA	Officionionina to the contract of the contract		
UDIAnol Anh 1	W	31 35) A (16	+
HPVApo1Amb1	X ₂ -cgcatgCAACTGAYCTMYACTGTTATGAcatgcg	·	
	-X ₃	31 35)	1-
HPVApolAmb2	X ₂ -ccgtcgCAACTGAYCTMYACTGTTATGAcga	A (16	
	cgg -X ₃	31 35)	
HPVApo1Amb3	X2-ccaccCAACTGAYCTMYACTGTTATGAgg	A (16	+
•		31 35)	
	gtgg -X ₃		╽
HPVApo1Amb4	X2-cgatcgCAACTGAYCTMYACTGTTATGAcga	A (16	
	tcg-X ₃	31 35)	
HPVAPO4A	GAAMCAACTGACCTAYWCTGCTAT	A (33	†
		52 58)	
HPVAPO4Amb1	X2-ccaagcGAAMCAACTGACCTAYWCTGCTATgc	A (33	+-
		52 58)	
	ttgg-X ₃		╁-
HPVAPO4Amb2	X2-ccaagccGAAMCAACTGACCTAYWCTGCTAT	A (33	
	ggcttgg -X,	52 58)	
HPVAPO4Amb3	X2-ccaagcgGAAMCAACTGACCTAYWCTGCTA	A (33	+
		52 58)	İ
	Tcgcttgg -X ₃		+
HPVAPO4Amb4	X2-ccagcgGAAMCAACTGACCTAYWCTGCTATcg	A (33	
	ctgg -X ₃	52 58)	
HPVAPO4Amb5	X2-cgatcgGAAMCAACTGACCTAYWCTGCTATcg	A (33	
		52 58)	
	atcg-X ₃		┿
HPVCPO4	AAGACATTATTCAGACTC	C (18	
	· · · · · · · · · · · · · · · · · · ·	45 39)	-
HPVCPO4Amb1	X2-ccaagcAAGACATTATTCAGACTCgcttgg-X3	C (18	
		45 39)	1.
HPVCPO4Amb2	X2-cgcatgAAGACATTATTCAGACTCcatgcg-X3	C (18	T
		45 39)	
HPVCPO4Amb3	X2-cccagcAAGACATTATTCAGACTCgctggg-X3	C (18	1
		45 39)	
			+-
HPVCPO4Amb4	X2-cgatcgAAGACATTATTCAGACTCcgatcg-X3	C (18	r

The meaning of X_2 - and $-X_3$ is defined above, in the discussion of "molecular beacons" probe molecules.

In a further embodiment the invention provides
the oligonucleotides listed in Table 3, these being
PCR primers for use in the detection of HPV mRNA by
RT-PCR. These oligonucleotides are merely
illustrative and it is not intended that the scope of
the invention should be limited to these specific
molecules:

	Primer name	Sequence	HPV type	nt
	HAe6701PCR2	CCACAGGAGCGACCCAGAAAGTTA	16	116
	HAe6701PCR1	ACGGTTTGTTGTATTGCTGTTC	16	368
15	HAe6702PCR2	CCACAGGAGCGACCCAGAAA	16	116
	HAe6702PCR1	GGTTTGTTGTATTGCTGTTC	16	368
	HAe6703PCR2.	CAGAGGAGGATGAAATAGTA	16	656
	HAe6703PCR1	GCACAACCGAAGCGTAGAGTCACAC	16	741
	HAe6704PCR2	CAGAGGAGGATGAAATAGA	16	656
20	HAe6704PCR1	GCACAACCGAAGCGTAGAGTCA	16	741.
	H18e6701PCR2	ACGATGAAATAGATGGAGTT	18 .	702
	H18e6701PCR1	CACGGACACAAAGGACAG	18	869
	H18e6702PCR2	GAAAACGATGAAATAGATGGAG	18	698
	H18e6702PCR1	ACACCACGGACACACAAAGGACAG	18	869
25	H18e6703PCR2	TTCCGGTTGACCTTCTATGT	18	651
	H18e6703PCR1	GGTCGTCTGAGCTTTCT	18	817
	H18e6704PCR2	GCAAGACATAGAAATAACCTG	18	179
	H18e6704PCR1	ACCCAGTGTTAGTT	18	379 .
	H31e6701PCR2	GGAAATACCCTACGATGAAC	31	164
30	H31e6701PCR1	GGACACAACGGTCTTTGACA	31	423
	H31e6702PCR2	GGAAATACCCTACGATGAACTA	31	164
	H31e6702PCR1	CTGGACACAACGGTCTTTGACA	. 31	4:23
•	H31e6703PCR2	ACTGACCTCCACTGTTATGA	, 31	617
	H31e6703PCR1	TATCTACTTGTGTGCTCTGT	31	766
35	H31e6704PCR2	TGACCTCCACTGTTATGAGCAATT	31	619
	H31e6704PCR1	TGCGAATATCTACTTGTGTGCTCT GT	31	766
	H31e6705PCR2	ACTGACCTCCACTGTTAT	31	617
٠.	H31e6705PCR1	CACGATTCCAAATGAGCCCAT	31	809
	H33e6701PCR2	TATCCTGAACCAACTGACCTAT	33	618
40	H33e6701PCR1	TTGACACATAAACGAACTG	33	763
	H33e6703PCR2	TCCTGAACCAACTGACCTAT	33	620
	H33e6703PCR1	CCCATAAGTAGTTGCTGTAT .	33	807
•	H33e6702PCR2	GACCTTTGTGTCCTCAAGAA	33	431
	H33e6702PCR1	AGGTCAGTTGGTTCAGGATA	33	618
45	H35e6701PCR2	ATTACAGCGGAGTGAGGTAT	35	217
	H35e6701PCR1	GTCTTTGCTTTTCAACTGGA	35	442
	H35e6702PCR2	TCAGAGGAGGAGGAAGATACTA	35	655 ·

	Primer name	Sequence	HPV type	nt
	H35e6702PCR1	GATTATGCTCTCTGTGAACA	35	844
	H35e6703PCR2	CCCGAGGCAACTGACCTATA	35	610
	H35e6703PCR1	GTCAATGTGTGTGCTCTGTA	35	770
•	H52e6701PCR2	TTGTGTGAGGTGCTGGAAGAAT	52	144
5	H52e6701PCR1	CCCTCTCTAATGTTT	52	358
	H52e6702PCR2	GTGCCTACGCTTTTTATCTA	52	296
	H52e6702PCR1	GGGGTCTCCAACACTCTGAACA	52	507.
	H58e6701PCR2	TCAGGCGTTGGAGACATC	58	157
	H58e6701PCR1	AGCAATCGTAAGCACACT	58	301
10	H58e6702PCR2	TCTGTGCATGAAATCGAA	58	173
	H58e6702PCR1	AGCACACTTTACATACTG	58	291
	HBe6701PCR2	TACACTGCTGGACAACAT	B(11)	514
	HBe6701PCR1	TCATCTTCTGAGCTGTCT	B(11)	619
	HBe6702PCR2	TACACTGCTGGACAACATGCA	B(11)	514
15 ·	HBe6702PCR1	GTCACATCCACAGCAACAGGTCA	B(11)	693
	HBe6703PCR2	TGACCTGTTGCTGTGGATGTGA	B(11)	693
	HBe6703PCR1	TACCTGAATCGTCCGCCAT	B(11)	832
	HCe6701PCR2	CATGCCATAAATGTATAGA	C (18	295
	HCe6701PCR1	CACCGCAGGCACCTTATTAA	C (18 39 45	408
20	H39e6701PCR2	GCAGACGACCACTACAGCAAA	39 .	210
	H39e6701PCR1	ACACCGAGTCCGAGTAATA	. 39	344
	H39e6702PCR2	TATTACTCGGACTCGGTGT	39	344
•	H39e6702PCR1	CTTGGGTTTCTCTTCGTGTTA	39	558
	H39e6703PCR2	GAAATAGATGAACCCGACCA	39	703
25	H39e6703PCR1	GCACACCACGGACACAAA	39	886
	H45e6701PCR2	AACCATTGAACCCAGCAGAAA	45	430
•	H45e6701PCR1	TCTTTCTTGCCGTGCCTGGTCA	45 .	527
•	H45e6702PCR2	GAAACCATTGAACCCAGCAGAAAA	45	428
	H45e6702PCR1	TTGCTATACTTGTGTTTCCCTACG	45	558
30	H45e6703PCR2	GTTGACCTGTTGTTACCAGCAAT	45	.656
	H45e6703PCR1	CACCACGGACACAAAGGACAAG	45	868
	H45e6704PCR2	CTGTTGACCTGTTGTGTTACGA	45	654
	H45e6704PCR1	CCACGGACACACAAGGACAAG	45	868
	H45e6705PCR2	GTTGACCTGTTGTGTTACGA	45	656
35	H45e6705PCR1	ACGGACACAAAGGACAAG	45	868
	H51e6701PCR2.	GGAGGAGGATGAAGTAGATA	51	658
	H51e6701PCR1	GCCCATTAACATCTGCTGTA	51	807
	H51e6702PCR2	AGAGGAGGATGAAGTAGATA	51	655
•	H51e6702PCR1	ACGGGCAAACCAGGCTTAGT	51	829
40	H56e6701PCR2	TTGGGGTGCTGGAGACAACATCT	56	519
	H56e6701PCR1	TTCATCCTCATCCTCTGA	56	665
	H56e6702PCR2	TGGGGTGCTGGAGACAACATC	56	520
	H56e6702PCR1	CATCCTCATCCTCTGA	56	665
	H56e6703PCR2	TTGGGGTGCTGGAGACAACAT	56	519
45	H56e6703PCR1	CCACAAACTTACACTCACAACA	56	764
	H56e6704PCR2	GATTTTCCTTATGCAGTGTG	56	279
	H56e6704PCR1	GACATCTGTAGCACCTTATT	56	410

Primer-pairs and primer-probe sets

The invention further provides primer-pairs and primer/probe sets for use in the detection of HPV E6 transcripts.

5 .

10

15

20

A "primer-pair" is taken to mean two primers which may be used in combination for amplification of a portion of an HPV E6 transcript, for example by NASBA or RT-PCR. The individual oligonucleotide primers making up the primer-pair may be supplied separately, e.g. in separate containers. A primer-pair may also be supplied as a homogenous mixture of the two primers, this mixture may include additional reagents required for the amplification reaction, as discussed below.

A "primer/probe set" is taken to mean a set of oligonucleotides comprising a primer-pair, as defined above, and at least one oligonucleotide probe which is suitable for use in detection of an amplification product generated by use of the primer-pair. The individual oligonucleotides making up the primer/probe set may be supplied separately, e.g. in separate containers or as a homogenous mixture.

25

30

In this context "primer" is taken to encompass primers suitable for use in PCR and primers suitable for use in NASBA.

The term "probe" may encompass any of the probe types described herein, including molecular beacons probes suitable for use in real-time NASBA (see below) and capture probes for immobilisation of NASBA amplification products.

35

Specific primer-pairs provided by the invention are given below, together with suitable probes which may be used in the detection of amplification products

20

25

generated using the primer-pair. In preferred embodiments, the primer-pairs listed below may comprise a NASBA P1 primer and a NASBA P2 primer or two PCR primers. The most preferred specific primer combinations are listed, using the primer names given in Tables 2 and 3. However, it is not intended to limit the scope of the invention to these particular combinations:

- Primer-pairs and probes for use in the detection of mRNA transcripts from the E6 gene of HPV 16:
- (1) an oligonucleotide primer comprising sequence number 1 and an oligonucleotide primer comprising sequence number 2; oligonucleotide probe comprising sequence number 5.

Preferred NASBA primers: HAe6701p1 and HAe6701p2 Preferred PCR primers: HAe6701PCR1 and HAe6701PCR2

(2) an oligonucleotide primer comprising sequence number 3 and an oligonucleotide primer comprising sequence number 4; oligonucleotide probe comprising sequence number 6.

Preferred NASBA primers: HAe6702p1 and HAe6702p2 Preferred PCR primers: HAe 6702PCR1 and HAe6702PCR2

- (3) an oligonucleotide primer comprising sequence number 7 and an oligonucleotide primer comprising sequence number 8; oligonucleotide probe comprising sequence number 9.
- Preferred NASBA primers: HAe6703p1 and HAe6703p2

 Preferred PCR primers: HAe6703PCR1 and HAe6703PCR2

(4) an oligonucleotide primer comprising sequence number 10 and an oligonucleotide primer comprising sequence number 11; oligonucleotide probe comprising sequence number 12.

5

25

Preferred NASBA primers: HAe6704pl and HAe6704p2 Preferred PCR primers: HAe6704PCR1 and HAe6704PCR2

- (5) an oligonucleotide primer comprising one of sequence numbers 126, 127, 128 or 129 and an oligonucleotide primer comprising sequence number 1 or sequence number 3.
- (6) an oligonucleotide primer comprising sequence number 2 or sequence number 4 and an oligonucleotide primer comprising one of sequence numbers 130, 131, 132 or 133.

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 18:

- (7) an oligonucleotide primer comprising sequence number 13 and an oligonucleotide primer comprising sequence number 14; oligonucleotide probe comprising sequence number 15.
- Preferred NASBA primers: H18e6701pl and H18e6701p2
 Preferred PCR primers: H18e6701PCR1 and H18e6701PCR2
- 30 (8) an oligonucleotide primer comprising sequence number 16 and an oligonucleotide primer comprising sequence number 17; oligonucleotide probe comprising sequence number 18.
- Preferred NASBA primers: H18e6702p1 and H18e6702p2
 Preferred PCR primers: H18e6702PCR1 and H18e6702PCR2

30

(9) an oligonucleotide primer comprising sequence number 19 and an oligonucleotide primer comprising sequence number 20.

- 29 -

- Preferred NASBA primers: H18e6703p1 and H18e6703p2
 Preferred PCR primers: H1836703PCR1 and H18e6703PCR2
- (10) an oligonucleotide primer comprising sequence number 21 and an oligonucleotide primer comprising sequence number 22; oligonucleotide probe comprising sequence number 23.

Preferred NASBA primers: H18e6704p1 and H18e6704p2 Preferred PCR primers: H18e6704PCR1 and H18e6704PCR2

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 31:

- (11) an oligonucleotide primer comprising sequence number 24 and an oligonucleotide primer comprising sequence number 25; oligonucleotide probe comprising sequence number 26.
- Preferred NASBA primers: H31e6701p1 and H31e6701p2

 Preferred PCR primers: H31e6701PCR1 and H31e6701PCR2
 - (12) an oligonucleotide primer comprising sequence number 27 and an oligonucleotide primer comprising sequence number 28; oligonucleotide probe comprising sequence number 29.
 - Preferred NASBA primers: H31e6702p1 and H31e6702p2 Preferred PCR primers: H31e6702PCR1 and H3136702PCR2
- 35 (13) an oligonucleotide primer comprising sequence number 30 and an oligonucleotide primer comprising

sequence number 31; oligonucleotide probe comprising sequence number 32.

- Preferred NASBA primers: H31e6703p1 and H31e6703p2

 Preferred PCR primers: H31e6703PCR1 and H31e6703PCR2
 - (14) an oligonucleotide primer comprising sequence number 33 and an oligonucleotide primer comprising sequence number 34; oligonucleotide probe comprising sequence number 35.

Preferred NASBA primers: H31e6704pl and H31e6704p2 Preferred PCR primers: H31e6704PCR1 and H312e6704PCR2

- 15 (15) an oligonucleotide primer comprising sequence number 36 and an oligonucleotide primer comprising sequence number 37;
- Preferred NASBA primers: H31e6705pl and H31e6705p2

 Preferred PCR primers: H31e6705PCR1 and H31e6705PCR2

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 33:

- 25 (16) an oligonucleotide primer comprising sequence number 38 and an oligonucleotide primer comprising sequence number 39; oligonucleotide probe comprising sequence number 40.
- Preferred NASBA primers: H33e6701pl and H33e6701p2 Preferred PCR primers: H33e6701PCR1 and H33e6701PCR2
- (17) an oligonucleotide primer comprising sequence number 41 and an oligonucleotide primer comprising sequence number 42; oligonucleotide probe comprising sequence number 43.

30

35

Preferred NASBA primers: H33e6703pl and H33e6703p2 Preferred PCR primers: H33e6703PCR1 and H33e6703PCR2

- 31 -

- (18) an oligonucleotide primer comprising sequence number 44 and an oligonucleotide primer comprising sequence number 45; oligonucleotide probe comprising sequence number 46.
- Preferred NASBA primers: H33e6702pl and H33e6702p2

 Preferred PCR primers: H33e6702PCR1 and H33e6702PCR2

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 35:

- 15 (19) an oligonucleotide primer comprising sequence number 47 and an oligonucleotide primer comprising sequence number 48; oligonucleotide probe comprising sequence number 53.
- Preferred NASBA primers: H35e6701p1 and H35e6701p2
 Preferred PCR primers: H35e6701PCR1 and H35e6701PCR2
- (20) an oligonucleotide primer comprising sequence number 49 and an oligonucleotide primer comprising sequence number 50; oligonucleotide probe comprising sequence number 54.

Preferred NASBA primers: H35e6702p1 and H35e6702p2 Preferred PCR primers: H35e6702PCR1 and H35e6702PCR2

- (21) an oligonucleotide primer comprising sequence number 51 and an oligonucleotide primer comprising sequence number 52; oligonucleotide probe comprising sequence number 55.
- Preferred NASBA primers: H35e6703p1 and H35e6703p2 Preferred PCR primers: H35e6703PCR1 and H35e6703PCR2

15 ·

30

35

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 52:

- (22) an oligonucleotide primer comprising sequence number 56 and an oligonucleotide primer comprising sequence number 57; oligonucleotide probe comprising sequence number 58.
- Preferred NASBA primers: H52e6701pl and H52e6701p2

 Preferred PCR primers: H52e6701PCR1 and H52e6701PCR2
 - (23) an oligonucleotide primer comprising sequence number 59 and an oligonucleotide primer comprising sequence number 60; oligonucleotide probe comprising sequence number 61.

Preferred NASBA primers: H52e6702p1 and H52e6702p2 Preferred PCR primers: H52e6702PCR1 and H52e6702PCR2

- 20 Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 58:
- (24) an oligonucleotide primer comprising sequence number 62 and an oligonucleotide primer comprising sequence number 63; oligonucleotide probe comprising sequence number 66.

Preferred NASBA primers: H58e6701p1 and H58e6701p2
Preferred PCR primers: H58e6701PCR1 and H58e6701PCR2

- (25) an oligonucleotide primer comprising sequence number 64 and an oligonucleotide primer comprising sequence number 65; oligonucleotide probe comprising sequence number 67.
- Preferred NASBA primers: H58e6702p1 and H58e6702p2 Preferred PCR primers: H58e6702PCR1 and H58e6702PCR2

30

35

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 51:

- (26) an oligonucleotide primer comprising sequence number 104 and an oligonucleotide primer comprising sequence number 105; oligonucleotide probe comprising sequence number 108.
- Preferred NASBA primers: H51e6701p1 and H51e6701p2

 Preferred PCR primers: H51e6701PCR1 and H51e6701PCR2
 - (27) an oligonucleotide primer comprising sequence number 106 and an oligonucleotide primer comprising sequence number 107; oligonucleotide probe comprising sequence number 109.

Preferred NASBA primers: H51e6702p1 and H51e6702p2 Preferred PCR primers: H51e6702PCR1 and H51e6702PCR2

- 20 Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 56:
- (28) an oligonucleotide primer comprising sequence number 110 and an oligonucleotide primer comprising sequence number 111; oligonucleotide probe comprising sequence number 116.

Preferred NASBA primers: H56e6701p1 and H56e6701p2 Preferred PCR primers: H56e6701PCR1 and H56e6701PCR2

- (29) an oligonucleotide primer comprising sequence number 112 and an oligonucleotide primer comprising sequence number 113; oligonucleotide probe comprising sequence number 117.
- Preferred NASBA primers: H56e6702pl and H56e6702p2 Preferred PCR primers: H56e6702PCR1 and H56e6702PCR2

35. ·

- (30) an oligonucleotide primer comprising sequence number 114 and an oligonucleotide primer comprising sequence number 115; oligonucleotide probe comprising sequence number 118 or sequence number 119.
- Preferred NASBA primers: H56e6703p1 and H56e6703p2 Preferred PCR primers: H56e6703PCR1 and H56e6703PCR2
- (31) an oligonucleotide primer comprising sequence number 120 and an oligonucleotide primer comprising sequence number 121; oligonucleotide probe comprising sequence number 122.
- Preferred NASBA primers: H56e6704p1 and H56e6704p2

 Preferred PCR primers: H56e6704PCR1 and H56e6704PCR2

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 39:

- 20 (32) an oligonucleotide primer comprising sequence number 80 and an oligonucleotide primer comprising sequence number 81; oligonucleotide probe comprising sequence number 82.
- Preferred NASBA primers: H39e6701pl and H39e6701p2
 Preferred PCR primers: H39e6701PCR1 and H39e6701PCR2
- (33) an oligonucleotide primer comprising sequence number 83 and an oligonucleotide primer comprising sequence number 84; oligonucleotide probe comprising sequence number 85.

Preferred NASBA primers: H39e6702p1 and H39e6702p2 Preferred PCR primers: H39e6702PCR1 and H39e6702PCR2

(34) an oligonucleotide primer comprising sequence number 86 and an oligonucleotide primer comprising

30

sequence number 87; oligonucleotide probe comprising sequence number 88.

Preferred NASBA primers: H39e6703p1 and H39e6703p2

Preferred PCR primers: H39e6703PCR1 and H39e6703PCR2

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of HPV 45:

- 10 (35) an oligonucleotide primer comprising sequence number 89 and an oligonucleotide primer comprising sequence number 90; oligonucleotide probe comprising sequence number 93.
- Preferred NASBA primers: H45e6701p1 and H45e6701p2 Preferred PCR primers: H45e6701PCR1 and H45e6701PCR2
- (36) an oligonucleotide primer comprising sequence number 91 and an oligonucleotide primer comprising sequence number 92; oligonucleotide probe comprising sequence number 94.

Preferred NASBA primers: H45e6702p1 and H45e6702p2 Preferred PCR primers: H45e6702PCR1 and H45e6702PCR2

(37) an oligonucleotide primer comprising sequence number 95 and an oligonucleotide primer comprising sequence number 96; oligonucleotide probe comprising sequence number 101.

Preferred NASBA primers: H45e6703p1 and H45e6703p2 Preferred PCR primers: H45e6703PCR1 and H45e6703PCR2

(38) an oligonucleotide primer comprising sequence number 97 and an oligonucleotide primer comprising sequence number 98; oligonucleotide probe comprising sequence number 102.

35

Preferred NASBA primers: H45e6704p1 and H45e6704p2 Preferred PCR primers: H45e6704PCR1 and H45e6704PCR2

- (39) an oligonucleotide primer comprising sequence number 99 and an oligonucleotide primer comprising sequence number 100; oligonucleotide probe comprising sequence number 103.
- Preferred NASBA primers: H45e6705p1 and H45e6705p2

 Preferred PCR primers: H45e6705PCR1 and H45e6705PCR2

Primer-pairs for use in the detection of mRNA transcripts from the E6 gene of group B HPV:

- 15 (40) an oligonucleotide primer comprising sequence number 68 and an oligonucleotide primer comprising sequence number 69; oligonucleotide probe comprising sequence number 72.
- Preferred NASBA primers: HBe6701p1 and HBe6701p2
 Preferred PCR primers: HBe6701PCR1 and HBe6701PCR2
- (41) an oligonucleotide primer comprising sequence number 70 and an oligonucleotide primer comprising
 sequence number 71; oligonucleotide probe comprising sequence number 73.

Preferred NASBA primers: HBe6702p1 and HBe6702p2 Preferred PCR primers: HBe6702PCR1 and HBe6702PCR2

- (42) an oligonucleotide primer comprising sequence number 74 and an oligonucleotide primer comprising sequence number 75; oligonucleotide probe comprising sequence number 76.
- Preferred NASBA primers: HBe6703p1 and HBe6703p2 Preferred PCR primers: HBe6703PCR1 and HBe6703PCR2

10

15

20

Primer-pair for use in the detection of mRNA transcripts from the E6 gene of group C HPV:

- 37 -

(43) an oligonucleotide primer comprising sequence number 77 and an oligonucleotide primer comprising sequence number 78; oligonucleotide probe comprising sequence number 79.

Preferred NASBA primers: HCe6701p1 and HCe6701p2 Preferred PCR primers: HCe6701PCR1 and HCe6701PCR2

Methods of detecting HPV

In a further aspect the invention provides a method for detecting HPV mRNA in a test sample suspected of containing HPV which comprises performing an amplification reaction on the test sample to amplify a portion of the mRNA transcribed from the E6 gene of HPV, wherein the amplification reaction is performed using one of the primer-pairs provided by the invention, as defined above.

Preferred amplification techniques which may be used to amplify a portion of the E6 mRNA are RT-PCR or NASBA.

25

30

35

The "test sample suspected of containing HPV" will most commonly be a clinical sample, for example a cervical scraping in the cervical screening field. The amplification reaction will preferably be carried out on a preparation of nucleic acid isolated from the test sample. The preparation of nucleic acid must include mRNA, however it need not be a preparation of purified poly A+ mRNA and preparations of total RNA or crude preparations of total nucleic acid containing both RNA and genomic DNA are also suitable as starting material for a NASBA reaction. Essentially any technique known in the art for the isolation of a

preparation of nucleic acid including mRNA may be used to isolate nucleic acid from the test sample. A preferred technique is the "Boom" isolation method described in US-A-5,234,809 and EP-B-0389,063. This method, which can be used to isolate a nucleic acid preparation containing both RNA and DNA, is based on the nucleic acid binding properties of silicon dioxide particles in the presence of the chaotropic agent guanidine thiocyanate (GuSCN).

10

15

20

25

30

35

Methods for the detection of HPV in a test sample using the NASBA technique will generally comprise the following steps:

- (a) assembling a reaction medium comprising a primer-pair according to the invention, an RNA directed DNA polymerase, a ribonuclease that hydrolyses the RNA strand of an RNA-DNA hybrid without hydrolysing single or double stranded RNA or DNA, an RNA polymerase that recognises said promoter, and ribonucleoside and deoxyribonucleoside triphosphates;
 - (b) incubating said reaction medium with a preparation of nucleic acid isolated from a test sample suspected of containing HPV under reaction conditions which permit a NASBA amplification reaction; and
- (c) detecting and/or quantitatively measuring any HPV-specific product of the NASBA amplification reaction.

Detection of the specific product(s) of the NASBA reaction (i.e. sense and/or antisense copies of the target RNA) may be carried out in a number of different ways. In one approach the NASBA product(s) may be detected with the use of an HPV-specific hybridisation probe capable of specifically annealing to the NASBA product. The hybridisation probe may be attached to a revealing label, for example a

fluorescent, luminescent, radioactive or chemiluminescent compound or an enzyme label or any other type of label known to those of ordinary skill in the art. The precise nature of the label is not critical, but it should be capable of producing a signal detectable by external means, either by itself or in conjunction with one or more additional substances (e.g. the substrate for an enzyme).

Also within the scope of the invention is so-10 called "real-time NASBA" which allows continuous monitoring of the formation of the product of the NASBA reaction over the course of the reaction. In a preferred embodiment this may be achieved using a 15 "molecular beacons" probe comprising an HPV-specific sequence capable of annealing to the NASBA product, a stem-duplex forming oligonucleotide sequence and a pair of fluorescer/quencher moieties, as known in the art described herein. If the molecular beacons probe is added to the reaction mixture prior to 20 amplification it may be possible to monitor the formation of the NASBA product in real-time (Leone et al., Nucleic Acids Research, 1998, Vol 26, 2150-2155).

In a further approach, the molecular beacons technology may be incorporated into the primer 2 oligonucleotide allowing real-time monitoring of the NASBA reaction without the need for a separate hybridisation probe.

30

35

In a still further approach the products of the NASBA reaction may be monitored using a generic labelled detection probe which hybridises to a nucleotide sequence in the 5' terminus of the primer 2 oligonucleotide. This is equivalent to the "NucliSens" detection system supplied by Organon Teknika. In this system specificity for NASBA

products derived from the target HPV mRNA may be conferred by using HPV-specific capture probes comprising probe oligonucleotides as described herein attached to a solid support such as a magnetic microbead. Most preferably the generic labelled detection probe is the ECL™ detection probe supplied by Organon Teknika. NASBA amplicons are hybridized to the HPV-specific capture probes and the generic ECL probe (via a complementary sequence on primer 2). Following hybridization the bead/amplicon/ECL probe complexes may be captured at the magnet electrode of an automatic ECL reader (e.g. the NucliSens™ reader supplied by Organon Teknika. Subsequently, a voltage pulse triggers the ECL™ reaction.

15

20

25

30

35

10

5

Also provided by the invention are reagent kits for use in the detection of HPV by NASBA, the kits comprising a primer-pair cocktail according to the invention. The reagent kits may further comprise a mixture of enzymes required for the NASBA reaction, specifically an enzyme mixture containing an RNA directed DNA polymerase (e.g. a reverse transcriptase), a ribonuclease that hydrolyses the RNA. strand of an RNA-DNA hybrid without hydrolysing single or double stranded RNA or DNA (e.g. RNaseH) and an RNA polymerase. The RNA polymerase should be one which recognises the promoter sequence present in the 5' terminal region of the NASBA P1 primer oligonucleotides in the oligonucleotide primer sets supplied in the reagent kit. The kit may also comprise a supply of NASBA buffer containing the ribonucleosides and deoxyribonucleosides required for RNA and DNA synthesis. The composition of a standard NASBA reaction buffer will be well known to those skilled in the art.

15

20

25 .

30.

35

In certain embodiments the kit may further contain one or more capture probes, comprising a probe oligonucleotide attached to a solid support as described above, for immobilising the products of a specific NASBA reaction. The kit may still further contain labelled generic detection probes.

Advantageously, the detection probes may comprise a sequence of nucleotides complementary to a non-HPV sequence present at the 5' terminal end of the NASBA P2 primer oligonucleotides present in the reagent kit.

In still further embodiments the kit may further contain one or more molecular beacon probes according to the invention. The molecular beacon probes may be supplied as a separate reagent within the kit.

Alternatively, the NASBA primers and molecular beacons probe may be supplied as a primer/probe mixture. Such a mixture including the NASBA Pl and P2 primers and also a molecular beacons probe is convenient for use in "real-time" NASBA, wherein the NASBA amplification reaction and detection of an amplification product are performed simultaneously in a single reaction vessel.

The invention will be further understood with reference to the following, non-limiting, Example:

Example 1-Real-time NASBA

Collection and preparation of clinical samples

Cervical cytobrush samples are collected in 9 ml lysis buffer (5M Guanidine thiocyanate) prior to RNA/DNA extraction. Since RNA is best protected in the 5M guanidine thiocyanate at -70°C only 1 ml of the total volume of sample is used for each extraction round. 2-3 tubes with the RNA/DNA are stored at -167°C and the rest stored at -70°C.

RNA and DNA were automatically isolated according to the "Booms" isolation method from Organon Teknika (Organon Teknika B.V., Boselind 15, P.O. Box 84, 5280 AB Baxtel, The Netherlands; now Biomérieux, 69280 Marcy l'Etoile, France).

The following procedure was carried out using reagents from the Nuclisens^m Basic Kit, supplied by Organon Teknika. Procedure for n=10 samples:-

10.

35

5

- 1. Prepare enzyme solution.
 - Add 55 μ l of enzyme diluent (from Nuclisens^M Basic Kit; contains sorbitol in aqueous solution) to each of 3 lyophilized enzyme spheres (from Nuclisens^M Basic
- Kit; contains AMV-RT, RNase H, T7 RNA polymerase and BSA). Leave this enzyme solution at least for 20 minutes at room temperature. Gather the enzyme solutions in one tube, mix well by flicking the tube with your finger, spin down briefly and use within 1
- hour. Final concentrations in the enzyme mix are 375 mM sorbitol, 2.5 μg BSA, 0.08 U RNase H, 32 U T7 RNA polymerase and 6.4 U AMV-reverse transcriptase.
 - 2. Prepare reagent sphere/KCl solution.
- For 10 samples: add 80 μl reagent sphere diluent (from Nuclisens^m Basic Kit; contains Tris/HCl (pH 8.5), 45% DMSO) to the lyophilized reagent sphere (from Nuclisens^m Basic Kit; contains nucleotides, dithiotreitol and MgCl₂) and immediately vortex well.
- .30 Do this with 3 reagent spheres and mix the solutions in one tube.

Add 3 μ l NASBA water (from Nuclisens^M Basic Kit) to the reconstituted reagent sphere solution and mix well.

Add 56 µl of KCl stock solution (from Nuclisens[™] Basic Kit) and mix well. Use of this KCl/water mixture will result in NASBA reactions with a final KCl concentration of 70 mM. Final concentrations in the reagent/KCl solution are 1 mM of each dNTP, 2 mM of ATP, UTP and CTP, 1.5 mM GTP, and 0.5 mM ITP, 0.5 mM dithiotreitol, 70 mM KCl, 12 mM MgCl₂, 40 mM Tris-HCl (pH 8.5).

- 3. Prepare primer/probe solution containing targetspecific primers and molecular beacon probe.
 For each target reaction transfer 91 μ l of the reagent sphere/KCl solution (prepared in step 2) into a fresh tube. Add 25 μ l of primers/molecular beacon probe
 solution (to give final concentration of ~0.1-0.5 μ M each of the sense and antisense primers and ~ 15-70 pmol molecular beacon probe per reaction). Mix well by vortexing. Do not centrifuge.
- In case less than 10 target RNA amplifications are being performed refer to the table below for the appropriate amounts of reagent sphere solution, KCl/water solution and primers to be used. Primer solutions should be used within 30 minutes after preparation.

	Reactions (n)	Reagent sphere solution (µI)	KCI/water (μΙ)	Primer mix (µl)
	10	80	30	10
•	9	72	27	9
30	8	64	24	8
	7	56	21	7
	6	48	18	6
35	5	40	15	5
	4	32	12	4
	3	24	9	3
	2	16	6	2
	1	8	3	1

4. Addition of samples
For each target RNA reaction:
In a 96 well microtiter plate pipette 10 μl of the primer/probe solution (prepared in step 3) into each of 10 wells. Add 5 μl nucleic acid extract to each well. Incubate the microtiter plate for 4 minutes at 65 ± 1 °C. Cool to at 41 ± 0.5 °C for 4 minutes.
Then to each well add 5 μl enzyme solution.
Immediately place the microtiter plate in a fluorescent detection instrument (e.g. NucliSens™ EasyQ Analyzer) and start the amplification.

10

•

Claims:

1. An oligonucleotide molecule for use in the detection of mRNA transcribed from the E6 gene of a human papillomavirus, the oligonucleotide comprising any one of sequence numbers 1-133.

- 45 -

- 2. An oligonucleotide primer for use in the detection of mRNA transcribed from the E6 gene of a human papillomavirus, the oligonucleotide primer being selected from:
- (i) a NASBA P1 primer comprising one of sequence numbers 2, 4, 8, 11, 14, 17, 20, 22, 25, 28, 31, 34, 37, 39, 42, 45, 48, 50, 52, 57, 60, 63, 65, 69, 71, 75, 78, 81, 84 87, 90, 92, 96, 98, 100, 105, 107, 111, 113, 115, 121, 126, 127, 128 Or 129;
- (ii) a NASBA P2 primer comprising one of sequence numbers 1, 3, 7, 10, 13, 16, 19, 21, 24, 27, 30, 33, 36, 38, 41, 44, 47, 49, 51, 56, 59, 62, 64, 68, 70, 74, 77, 80, 83, 86, 89, 91, 95, 97, 99, 104, 106, 110, 112, 114, 120, 103, 131, 132 or 133;
- (iii) a PCR primer comprising one of sequence numbers

 1, 3, 7, 10, 13, 16, 19, 21, 24, 27, 30, 33, 36, 38,

 41, 44, 47, 49, 51, 56, 59, 62, 64, 68, 70, 74, 77,

 80, 83, 86, 89, 91, 95, 97, 99, 104, 106, 110, 112,

 114, 120, 2, 4, 8, 11, 14, 17, 20, 22, 25, 28, 31, 34,

 37, 39, 42, 45, 48, 50, 52, 57, 60, 63, 65, 69, 71,

 75, 78, 81, 84, 87, 90, 92, 96, 98, 100, 105, 107, 111,

 113, 115, 121, 126, 127, 128, 129, 130, 131, 132 or

 133.
- 3. An oligonucleotide primer according to claim
 2 which is a NASBA P1 primer having the sequence
 AATTCTAATACGACTCACTATAGGGAGAAGG-SEQ, wherein SEQ
 represents any one of sequence numbers 2, 4, 8, 11,

- 46 -

14, 17, 20, 22, 25, 28, 31, 34, 37, 39, 42, 45, 48, 50, 52, 57, 60, 63, 65, 69, 71, 75, 78, 81, 84 87, 90, 92, 96, 98, 100, 105, 107, 111, 113, 115, 121, 126, 127, 128 or 129.

5

10

WO 03/057927

- 4. An oligonucleotide primer according to claim 2 which is a NASBA P2 primer having the sequence GATGCAAGGTCGCATATGAG-SEQ wherein SEQ represents any one of sequence numbers 1, 3, 7, 10, 13, 16, 19, 21, 24, 27, 30, 33, 36, 38, 41, 44, 47, 49, 51, 56, 59, 62, 64, 68, 70, 74, 77, 80, 83, 86, 89, 91, 95, 97, 99, 104, 106, 110, 112, 114, 120, 130, 131, 132 or 133.
- 5. An oligonucleotide probe for use in the detection of mRNA transcribed from the E6 gene of a human papillomavirus comprising one of sequence numbers: 5, 6, 9, 12, 15, 18, 23, 26, 29, 32, 35, 40, 43, 46, 53, 54, 55, 58, 61, 66, 67, 72, 73, 76, 82, 85, 88, 93, 94, 101, 102, 103, 108, 109, 116, 117, 118, 119, 122, 130, 131, 132 or 133.
- 6. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of HPV 16, comprising one of the following combinations:

an oligonucleotide primer comprising sequence number 1 and an oligonucleotide primer comprising sequence number 2;

an oligonucleotide primer comprising sequence number 3 and an oligonucleotide primer comprising sequence number 4;

an oligonucleotide primer comprising sequence number 7 and an oligonucleotide primer comprising sequence

35 number 8;

10

15

25

- 47 -

an oligonucleotide primer comprising sequence number 10 and an oligonucleotide primer comprising sequence number 11;

an oligonucleotide primer comprising one of sequence numbers 126, 127, 128 or 129 and an oligonucleotide primer comprising sequence number 1 or sequence number 3; or

an oligonucleotide primer comprising sequence number 2 or sequence number 4 and an oligonucleotide primer comprising one of sequence numbers 130, 131, 132 or 133.

- 7. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of HPV 18, comprising one of the following combinations:
- an oligonucleotide primer comprising sequence number 13 and an oligonucleotide primer comprising sequence number 14;
- an oligonucleotide primer comprising sequence number 16 and an oligonucleotide primer comprising sequence number 17;

an oligonucleotide primer comprising sequence number 19 and an oligonucleotide primer comprising sequence number 20; or

an oligonucleotide primer comprising sequence number 21 and an oligonucleotide primer comprising sequence number 22.

- 30 8. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of HPV 31, comprising one of the following combinations:
- an oligonucleotide primer comprising sequence number 24 and an oligonucleotide primer comprising sequence number 25;

an oligonucleotide primer comprising sequence number 27 and an oligonucleotide primer comprising sequence number 28;

an oligonucleotide primer comprising sequence number 30 and an oligonucleotide primer comprising sequence number 31;

an oligonucleotide primer comprising sequence number 33 and an oligonucleotide primer comprising sequence number 34; or

- an oligonucleotide primer comprising sequence number 36 and an oligonucleotide primer comprising sequence number 37.
- 9. An oligonucleotide primer-pair for use in 15 the detection of mRNA transcripts from the E6 gene of HPV 33, comprising one of the following combinations:

an oligonucleotide primer comprising sequence number 38 and an oligonucleotide primer comprising sequence number 39;

an oligonucleotide primer comprising sequence number 41 and an oligonucleotide primer comprising sequence number 42; or

an oligonucleotide primer comprising sequence number 44 and an oligonucleotide primer comprising sequence number 45.

10. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of HPV 35, comprising one of the following combinations:

an oligonucleotide primer comprising sequence number 47 and an oligonucleotide primer comprising sequence number 48;

an oligonucleotide primer comprising sequence number 49 and an oligonucleotide primer comprising sequence number 50; or

٠, ٠

15

30

an oligonucleotide primer comprising sequence number 51 and an oligonucleotide primer comprising sequence number 52.

- 11. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of HPV 52, comprising one of the following combinations:
- an oligonucleotide primer comprising sequence number 56 and an oligonucleotide primer comprising sequence number 57; or an oligonucleotide primer comprising sequence number 59 and an oligonucleotide primer comprising sequence number 60.

12. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of HPV 58, comprising one of the following combinations:

an oligonucleotide primer comprising sequence number 62 and an oligonucleotide primer comprising sequence number 63; an oligonucleotide primer comprising sequence number 64 and an oligonucleotide primer comprising sequence number 65.

13. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of HPV 51, comprising one of the following combinations:

an oligonucleotide primer comprising sequence number 104 and an oligonucleotide primer comprising sequence number 105; or

an oligonucleotide primer comprising sequence number 106 and an oligonucleotide primer comprising sequence number 107.

20

- 14. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of HPV 56, comprising one of the following combinations:
- an oligonucleotide primer comprising sequence number 110 and an oligonucleotide primer comprising sequence number 111;

an oligonucleotide primer comprising sequence number 112 and an oligonucleotide primer comprising sequence number 113;

an oligonucleotide primer comprising sequence number 114 and an oligonucleotide primer comprising sequence number 115;

an oligonucleotide primer comprising sequence number 120 and an oligonucleotide primer comprising sequence number 121.

- 15. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of HPV 39, comprising one of the following combinations:
 - an oligonucleotide primer comprising sequence number 80 and an oligonucleotide primer comprising sequence number 81;
- an oligonucleotide primer comprising sequence number 83 and an oligonucleotide primer comprising sequence number 84; or
 - an oligonucleotide primer comprising sequence number 86 and an oligonucleotide primer comprising sequence number 87.
 - 16. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of HPV 45, comprising one of the following combinations:

30

15

20

an oligonucleotide primer comprising sequence number 89 and an oligonucleotide primer comprising sequence number 90;

an oligonucleotide primer comprising sequence number 91 and an oligonucleotide primer comprising sequence number 92;

an oligonucleotide primer comprising sequence number 95 and an oligonucleotide primer comprising sequence number 96;

an oligonucleotide primer comprising sequence number 97 and an oligonucleotide primer comprising sequence number 98; or

an oligonucleotide primer comprising sequence number 99 and an oligonucleotide primer comprising sequence number 100.

- 17. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of group B HPV, comprising one of the following combinations:
- an oligonucleotide primer comprising sequence number 68 and an oligonucleotide primer comprising sequence number 69;
- an oligonucleotide primer comprising sequence number 70 and an oligonucleotide primer comprising sequence number 71; or
 - an oligonucleotide primer comprising sequence number 74 and an oligonucleotide primer comprising sequence number 75.
 - 18. An oligonucleotide primer-pair for use in the detection of mRNA transcripts from the E6 gene of group C HPV, comprising the following combination:

30

20

25

30

an oligonucleotide primer comprising sequence number 77 and an oligonucleotide primer comprising sequence number 78.

- 19. An oligonucleotide primer-pair according to any one of claims 6 to 18 which comprises a NASBA P1 primer and a NASBA P2 primer.
- 20. A primer-pair according to claim 19 wherein the NASBA Pl primer includes the sequence AATTCTAATACGACTCACTATAGGGAGAAGG at the 5' end.
 - 21. A primer/probe set comprising a primer-pair according to any one of claims 6 to 20 and at least one oligonucleotide probe specific for amplification products generated using the primer-pair.
 - 22. A method of detecting HPV mRNA in a test sample suspected of containing HPV which comprises performing an amplification reaction on a preparation of nucleic acid isolated from the test sample to amplify a portion of the mRNA transcribed from the E6 gene of HPV, wherein the amplification reaction is performed using a primer-pair according to any one of claims 6 to 18.
 - 23. A method according to claim 22 which comprises performing RT-PCR to amplify a portion of the mRNA transcribed from the E6 gene of HPV.
 - 24. A method according to claim 126 which comprises performing NASBA to amplify a portion of the mRNA transcribed from the E6 gene of HPV.
- 25. A method according to claim 24 which comprises:

10

15

20

·25

- (a) assembling a reaction mixture comprising a primer set as defined in any one of claims 6 to 18, an RNA directed DNA polymerase, a ribonuclease that hydrolyses the RNA strand of an RNA-DNA hybrid without hydrolysing single or double stranded RNA or DNA, an RNA polymerase that recognises said promoter, and ribonucleoside and deoxyribonucleoside triphosphates;
- (b) incubating said reaction mixture with a preparation of nucleic acid isolated from a test sample suspected of containing HPV under reaction conditions which permit a NASBA amplification reaction; and
- (c) detecting and/or quantitatively measuring any HPV-specific product of the NASBA amplification reaction.
- 26. A method according to claim 25 wherein step (c) comprises real-time detection of an HPV-specific product of the NASBA amplification reaction.
- 27. A method according to claim 25 or claim 26 wherein the reaction mixture further comprises a molecular beacons probe oligonucleotide and the formation of any HPV-specific NASBA product in the NASBA reaction is monitored by detecting fluorescence from the fluorescent moiety included in the molecular beacons probe.
- 28. A method according to claim 25 or claim 26 which comprises the further step of capturing the NASBA reaction product by hybridisation to a probe oligonucleotide attached to a solid support.
- 29. A reagent kit for use in the detection of HPV by NASBA, the kit comprising an oligonucleotide primer-pair as defined in claim 19 and optionally an enzyme mixture comprising an RNA directed DNA

polymerase, a ribonuclease that hydrolyses the RNA strand of an RNA-DNA hybrid without hydrolysing single or double stranded RNA or DNA, and an RNA polymerase that recognises the promoter sequence present in at least one NASBA Pl primer oligonucleotide included in the reagent kit.