Link Analysis Algorithms Page Rank Part 2

INF 553

Graph Data: Social Networks

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

New Topic: Graph Data

High dim. data

Locality sensitive hashing

Clustering

Dimensional ity reduction

Graph data

PageRank, SimRank

Community Detection

Spam Detection

Infinite data

Filtering data streams

Web advertising

Queries on streams

Machine learning

SVM

Decision Trees

Perceptron, kNN

Apps

Recommen der systems

Association Rules

Duplicate document detection

3

RECALL: THE FLOW MODEL

Eigenvector Formulation

◆ The flow equations can be written

$$M \cdot r = r$$

- So the rank vector r is an eigenvector of the stochastic web matrix M eigenvector with the corresponding eigenvalue λ if:
- **◆** We can now efficiently solve for *r*!
 - ➤ 1. Power Iteration:
 https://en.wikipedia.org/wiki/Power_iteration
 - > 2. Use the principal eigenvector

 $Ax = \lambda x$

Example

$$r_y = r_y / 2 + r_a / 2$$

 $r_a = r_y / 2 + r_m$
 $r_m = r_a / 2$

$$r = Mr$$

$$\begin{vmatrix} r_y \\ r_a \\ r_m \end{vmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix}$$

Power Iteration method

- Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- ◆ Initialize: $\mathbf{r}^0 = [1/N,....,1/N]^T$
- ♦ Iterate: $\mathbf{r}^{k+1} = \mathbf{M}\mathbf{r}^k$
- ◆ Stop when $|\mathbf{r}^{k+1} \mathbf{r}^{k}|_1 < \epsilon$

 $r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t+1)}}{d_i}$ d_i out-degree of node i

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |\mathbf{x}_i|$ is the **L**₁ norm Can use any other vector norm, e.g., Euclidean

$$r_j = r_i/3 + r_k/4$$
 $r_j/3 + r_k/4$
 $r_j/3 + r_j/3$

Power Iteration Example

Recall: Random Walk Interpretation

Imagine a random web surfer:

- \triangleright At any time t, surfer is on some page i
- ightharpoonup At time t+1, the surfer follows an out-link from i uniformly at random
- \triangleright Ends up on some page j linked from i
- Process repeats indefinitely

Let:

- p(t) ... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
- ightharpoonup So, p(t) is a probability distribution over pages -> rank vector.

Recall: Transition Matrix

- ◆ M[i,j] = prob. of going from node j to node i
 - ➤ If j has k outgoing edges, prob. for each edge = 1/k

Prob. of Locations of Surfer

- Represented as a column vector, v
- Initially, surfer can be at any page with equal probability

$$v^{0} = \begin{bmatrix} A & 1/4 \\ B & 1/4 \\ C & 1/4 \\ D & 1/4 \end{bmatrix}$$

Limiting Distribution

$$\bullet v^1 = Mv^0$$

$$\bullet v^2 = Mv^1 (= M^2 v^0)$$

♦ ...

♦ ...

$$\bullet v = Mv$$

(from some step k on, v does not change any more)

Compute Next Distribution

$$v^1 = Mv^0$$

$$v^{1} = Mv^{0}$$

$$v^{1} = \sum_{j=1}^{n} M_{ij}v_{j}^{0}$$

$$A = B = C = D$$

$$A = \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 0 & 1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$

$$C = \begin{bmatrix} 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$

• E.g.,
$$v_0^1 = 0 * \frac{1}{4} + \frac{1}{2} * \frac{1}{4} + 1 * \frac{1}{4} + 0 * \frac{1}{4} = \frac{3}{8}$$

 \triangleright i.e., prob. at A is 3/8 (or 9/24) after step 1

$$v^{0} = \begin{bmatrix} A & 1/4 \\ 1/4 \\ C & 1/4 \\ 1/4 \end{bmatrix} \quad v^{1} = \begin{bmatrix} A & 9/24 \\ 5/24 \\ 5/24 \\ 5/24 \end{bmatrix}$$

The Stationary Distribution

- ◆ Where is the surfer at time *t*+1?
 - > Follows a link uniformly at random

$$p(t+1) = M \cdot p(t)$$

Suppose the random walk reaches a state

$$p(t+1) = M \cdot p(t) = p(t)$$

then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - ➤ So, r is a stationary distribution for the random walk.

Existence and Uniqueness

◆ A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy <u>certain conditions</u>, the <u>stationary distribution is unique</u> and eventually will be reached <u>no matter what the</u> initial probability distribution at time **t = 0**

PageRank: Problems

Two problems:

- (1) Some pages are dead ends (have no out-links)
 - > Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"
- ◆ (2) Spider traps:
 - (all out-links are within the group)
 - Random walked gets "stuck" in a trap
 - > And eventually spider traps absorb all importance.

Problem: Spider Traps

All outlinks are within a group

	У	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	1

m is a spider trap

$$\mathbf{r}^{k+1} = \mathbf{M}\mathbf{r}^k$$

$r_y = r_y/2 + r_a/2$

$$r_a = r_y/2$$

$$\mathbf{r}_{\mathrm{m}} = \mathbf{r}_{\mathrm{a}} / 2 + \mathbf{r}_{\mathrm{m}}$$

Iteration 0, 1, 2, ...

Solution: Teleports!

- ◆ The Google solution for spider traps: At each time step, the random surfer has two options
 - \triangleright With prob. β follow a link at random
 - \triangleright With prob. **1-** β jump to some random page
 - \triangleright Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Random Teleports ($\beta = 0.8$)

Problem: Dead Ends

Pages with no outlinks are "dead ends" for the random surfer:

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2$$

Example:

 $\mathbf{r}^{k+1} = \mathbf{M}\mathbf{r}^k$

Here the PageRank "leaks" out since the matrix is not column stochastic (not all columns total to 1)

Solution 1 for Dead Ends: Always Teleport!

- ◆ Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

	<u>y</u>	a	m
у	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

У	a	m
1/2	1/2	1/3
1/2	0	1/3
0	1/2	1/3

a

 \mathbf{m}

Why Do Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

♦ Spider-traps

- > PageRank scores are **not** what we want
- ➤ Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps

♦ Dead-ends

- The matrix is **not column stochastic** so our initial assumptions are not met
- ➤ Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go.

How is Page Rank Information Used in a Search Engine?

- Each search engine has a secret formula that decides the order in which to show pages to a user in response to a search query
 - Google: thought to use over 250 different properties of pages
- **♦** Search engine decides on a linear order of search results
- To be considered for ranking, page has to have at least one of the query search terms
 - Unless all search terms are present, little chance of being in top ten results
- Among qualified pages, score computed for each
 - PageRank is an important component of the score
 - ➤ Other components: presence/absence of search terms in headers, links to the page.

Sparse Matrix Encoding Example

Example 5.7: Let us reprise the example Web graph from Fig. 5.1, whose transition matrix is

$$M = \left[egin{array}{cccc} 0 & 1/2 & 1 & 0 \ 1/3 & 0 & 0 & 1/2 \ 1/3 & 0 & 0 & 1/2 \ 1/3 & 1/2 & 0 & 0 \end{array}
ight]$$

Recall that the rows and columns represent nodes A, B, C, and D, in that order. In Fig. 5.11 is a compact representation of this matrix.⁵

Source	Degree	Destinations
A	3	B, C, D
B	2	A, D
C	1	A
D	2	B, C

Figure 5.11: Represent a transition matrix by the out-degree of each node and the list of its successors

PageRang Iteration using MapReduce

- If n is small enough that each Map task can store the full vector v and v' in main memory
 - With additional steps to multiply each component of Mv by constant θ and to add $(1 \theta)/n$
- Given the size of the Web, v is much too large to fit in main memory
- ◆ Break M into vertical stripes (chp. 2.3.1) and break v into corresponding horizontal stripes to execute the MapReduce.

Matrix-Vector Multiplication by MapReduce

- n x n matrix M, vector v of length n
- **♦** M x V = X
- the vector x of length n, whose i_{th} element xi is given by

$$x_i = \sum_{j=1}^n m_{ij} v_j$$

Use of Combiners to Consolidate the Result Vector

- ◆ Partition the vector into k stripes and matrix into k^2 blocks
- ◆ E.g., k=4

v ,		M ₁₁	<i>M</i> ₁₂	<i>M</i> ₁₃	M ₁₄
v ,	=	<i>M</i> ₂₁	M ₂₂	M ₂₃	<i>M</i> ₂₄
v ₃ ,		<i>M</i> ₃₁	M ₃₂	M ₃₃	<i>M</i> ₃₄
v ₄ ,		<i>M</i> ₄₁	M ₄₂	M ₄₃	M_{44}

Use of Combiners to Consolidate the Result Vector (Cont'd)

- Use k^2 Map tasks
- Each task gets one square of the matrix M (M_{ij}) and one stripe of the vector v (v_i)
 - each stripe of the vector is sent to k different Map tasks
 - \triangleright v_i is sent to the task handling M_{ii} for each of the k possible values of i
- Advantage: keep both the j_{th} stripe of v and the i_{th} stripe of v' in main memory as we process M_{ij}

v ,	=	M ₁₁	<i>M</i> ₁₂	<i>M</i> ₁₃	M ₁₄
\mathbf{v}_{2}		<i>M</i> ₂₁	<i>M</i> ₂₂	M ₂₃	<i>M</i> ₂₄
v ₃		<i>M</i> ₃₁	<i>M</i> ₃₂	<i>M</i> ₃₃	<i>M</i> ₃₄
v ₄ ,		M ₄₁	M ₄₂	M ₄₃	M ₄₄

 $\begin{array}{c|c}
\mathbf{v}_1 \\
\hline
\mathbf{v}_2 \\
\hline
\mathbf{v}_3 \\
\hline
\mathbf{v}_4
\end{array}$

Note that all terms generated from M_{ij} and v_j contribute to v'_i and no other stripe of v'

PageRank Iteration Using MapReduce

- Assume rank vector r does not fit in main memory
- ◆ Block stripe update method: break M into vertical stripes and break r into corresponding horizontal stripes
- Allows us to execute MapReduce efficiently
- Process no more of r at any one Map task than can fit in main memory
- **◆ Trying to use a combiner gets more complicated**: Section 5.2.3
 - > Partition matrix M into k² blocks, vector r in k stripes
 - **➤** Use k² Map tasks
 - Each Map task gets: one square of matrix: M_{ii}, one stripe of vector, r_i
 - Each stripe r_i sent to k Map tasks, transmitted over network k times
 - But each M_{ii} transmitted only once.

Some Problems with Page Rank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - > Solution: Topic-Specific PageRank
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - > Solution: TrustRank
- Uses a single measure of importance
 - Other models of importance
 - > Solution: Hubs-and-Authorities.

Topic-Specific PageRank

Topic-Specific PageRank

- Instead of generic popularity, can we measure popularity within a topic?
- ◆ Goal: Evaluate Web pages not just according to their popularity, but by how close they are to a particular topic, e.g. "sports" or "history"
- Allows search queries to be answered based on interests of the user
 - Example: Query "Trojan" wants different pages depending on whether you are interested in sports, history and computer security.

Topic-Specific PageRank

- Random walker has a small probability of teleporting at any step
- Where a Teleport can go:
 - Standard PageRank: Any page with equal probability
 - To avoid dead-end and spider-trap problems
 - Topic Specific PageRank: A topic-specific set of "relevant" pages (teleport set)
- Idea: Bias the random walk
 - When walker teleports, she picks a page from a set S
 - > S contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic/query
 - \triangleright For each teleport set S, we get a different vector r_{S} .

Discovering the Topic PageRank Vectors r_s for Topic Set S

- ◆ If the search engine can deduce the user's interests, then it can do a better job of returning relevant pages
 - ➤ Ideally, would like to have a private PageRank vector that gives importance of each page to that user (not feasible!)
- Topic-Sensitive PageRank: creates one vector for some small number of topics
 - Bias PageRank to favor pages of that topic
- Create different PageRank vectors for different topics
 - ➤ The 16 top-level categories of the Open Directory (DMOZ): arts, business, sports,...
- ◆ If we can determine that the user is interested in one of these topics (e.g., by content of pages they recently viewed), use the PageRank vector for that topic when deciding on ranking of pages for query results.

Biased Random Walk

- Bias toward a set S of pages
 - ➤ S: called teleport set
 - \geq e_S: a vector with 1 for pages in S, 0 otherwise

$$\mathbf{v}' = \beta M \mathbf{v} + (1 - \beta) \mathbf{e}_S / |S|$$

Example

- \bullet Teleport set S = {B, D}, β = .8
- \bullet e_S: a vector with 1 for pages in S, 0 otherwise

$$M = \begin{bmatrix} A & B & C & D \\ A & 0 & 1/2 & 1 & 0 \\ B & 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

$$\mathbf{v}' = \beta M \mathbf{v} + (1 - \beta) \mathbf{e}_S / |S|$$

$$=0.8 \text{ Mv} + 0.2 \text{ e}_{S} / 2$$

$$\mathbf{v}' = \begin{bmatrix} 0 & 2/5 & 4/5 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0/5 & 0 & 0 \end{bmatrix} \mathbf{v} + \begin{bmatrix} 0 \\ 1/10 \\ 0 \\ 1/10 \end{bmatrix}$$

$$\mathbf{v} + \begin{bmatrix} 0 \\ 1/10 \\ 0 \\ 1/10 \end{bmatrix}$$

Example

$$\begin{bmatrix} 0/2 \\ 1/2 \\ 0/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} 2/10 \\ 3/10 \\ 2/10 \\ 3/10 \end{bmatrix}, \begin{bmatrix} 42/150 \\ 41/150 \\ 26/150 \\ 41/150 \end{bmatrix}, \begin{bmatrix} 62/250 \\ 71/250 \\ 46/250 \\ 71/250 \end{bmatrix}, \dots, \begin{bmatrix} 54/210 \\ 59/210 \\ 38/210 \\ 59/210 \end{bmatrix}$$

Biased: B and D has largest PageRanks

Integrating Topic-Sensitive PageRank Into a Search Engine

- Decide on topics for which to create specialized PageRank vectors
- 2. Pick a teleport set for each of these topics
 - Use that set to compute topic-sensitive PageRank for that topic
- Determine the topic or set of topics most relevant to a particular search query
 - More on this in next slide
- 4. Use the PageRank vector for those topic(s) to order the responses to the search query.

How to Select the <u>Topic Set</u> that is Most Relevant to the Search Query?

- Tricky
- Several methods proposed:
- 1. User can pick from a topic menu
- 2. Infer the topic(s) from the context of the query
 - Words that appear in Web pages recently searched by user or recent user queries
 - E.g., query is launched from a web page talking about a known topic
 - History of queries: e.g., "basketball" followed by "Jordan"
 - Classification of documents by topic: studied for decades
- 3. Infer the topic(s) from information about the user
 - E.g., the user's bookmarks, their interest on Facebook, etc.

TrustRank: Combatting Web Spam

What is Web Spam?

♦ Spamming:

Any deliberate action to boost a web page's position in search engine results, not commensurate with page's real value

◆ Spam:

- Web pages that are the result of spamming
- This is a very broad definition
 - > **SEO** industry might disagree!
 - SEO = search engine optimization
- Approximately 10-15% of web pages are spam

Web Search

Early search engines:

- Crawl the Web
- > Index pages by the words they contained
- Respond to search queries (lists of words) with the pages containing those words

◆ Early page ranking:

- Attempt to order pages matching a search query by "importance"
- > First search engines considered:
 - (1) Number of times query words appeared
 - (2) Prominence of word position, e.g. title, header.

First Spammers

◆ As people began to use search engines to find things on the Web, those with commercial interests tried to exploit search engines to bring people to their own site – whether they wanted to be there or not

Example:

- Shirt-seller might pretend to be about "movies"
- ◆ Techniques for achieving high relevance/importance for a web page.

First Spammers: Term Spam

- **♦** How do you make your page appear to be about movies?
- ◆ (1) Add the word movie 1,000 times to your page
 - Set text color to the background color, so only search engines would see it
- ◆ (2) Or, run the query "movie" on your target search engine
 - See what page came first in the listings
 - Copy it into your page, make it "invisible"
- ◆ These and similar techniques are called term spam.

Google's Solution to Term Spam

- Believe what people say about you, rather than what you say about yourself
 - Use words in the anchor text (words that appear underlined to represent the link) and its surrounding text
- PageRank as a tool to measure the "importance" of Web pages
 - Doesn't depend on content of pages.

Why It Works?

Our hypothetical shirt-seller loses

- Saying he is about movies doesn't help, because others don't say he is about movies
- His page isn't very important, so it won't be ranked high for shirts or movies

Example:

- > Shirt-seller creates 1,000 pages, each links to his with "movie" in the anchor text
- > These pages have no links in, so they get little PageRank
- ➤ So the shirt-seller can't beat truly important movie pages, like IMDB (Internet Movie Database).

Google vs. Spammers: Round 2!

- Once Google became the dominant search engine, spammers began to work out ways to fool Google
- Spam farms were developed to concentrate PageRank on a single page
- **♦ Link spam:**
 - Creating link structures that boost PageRank of a particular page

Link Spamming

- ◆ Three kinds of web pages from a spammer's point of view
 - Inaccessible pages
 - Accessible pages
 - e.g., blog comments pages
 - spammer can post links to his pages
 - > Owned pages
 - Completely controlled by spammer
 - May span multiple domain names.

Link Farms

♦ Spammer's goal:

Maximize the PageRank of target page t

◆ Technique:

- Get as many links from accessible pages as possible to target page t
- Construct "link farm" to get PageRank multiplier effect.

Link Farms

One of the most common and effective organizations for a link farm

Analysis

N...# pages on the web M...# of pages spammer owns

- x: PageRank contributed by accessible pages
- ♦ y: PageRank of target page t
- Rank of each "farm" page = $\frac{\beta y}{M} + \frac{1-\beta}{N}$

•
$$y = \frac{x}{1-\beta^2} + c \frac{M}{N}$$
 where $c = \frac{\beta}{1+\beta}$

Very small; ignore Now we solve for **y**

Analysis

N...# pages on the web M...# of pages spammer owns

•
$$y = \frac{x}{1-\beta^2} + c \frac{M}{N}$$
 where $c = \frac{\beta}{1+\beta}$

- For $\beta = 0.85$, $1/(1-\beta^2) = 3.6$
- Multiplier effect for acquired PageRank
- By making M large, spammer can make y as large as they want.

TrustRank: Combating the Web Spam

Combating Spam

Combating term spam

- Analyze text using statistical methods
- Similar to email spam filtering
- Also useful: Detecting approximate duplicate pages

Combating link spam

- Detection and blacklisting of structures that look like spam farms
 - Leads to another war hiding and detecting spam farms
- TrustRank = topic-specific PageRank with a teleport set of trusted pages
 - Example: .edu domains, similar domains for non-US schools.

TrustRank: Idea

- **◆** Basic principle: Approximate isolation
 - ➤ It is rare for a "good" page to point to a "bad" (spam) page
- Sample a set of seed pages from the web
- ◆ Have an oracle (human) to identify the good pages and the spam pages in the seed set
 - Expensive task, so we must make seed set as small as possible.

Trust Propagation

- Call the subset of seed pages that are identified as good the trusted pages
- Perform a topic-sensitive PageRank with teleportset = trusted pages
 - Propagate trust through links:
 - Each page gets a trust value between 0 and 1
- Solution 1: Use a threshold value and mark all pages below the trust threshold as spam.

Why is it a good idea?

◆ Trust attenuation:

The degree of trust conferred by a trusted page decreases with the distance in the graph

♦ Trust splitting:

- The larger the number of out-links from a page, the less scrutiny the page author gives each out-link
- Trust is **split** across out-links.

Picking the Seed Set

◆ Two conflicting considerations:

- > Human has to inspect each seed page, so seed set must be as small as possible
- Must ensure every good page gets adequate trust rank, so need make all good pages reachable from seed set by short paths.

Approaches to Picking Seed Set

- Suppose we want to pick a seed set of k pages
- ◆ How to do that?
- **♦ (1) PageRank:**
 - ➤ Pick the top **k** pages by PageRank
 - Theory is that you can't get a bad page's rank really high
- ◆ (2) Use trusted domains whose membership is controlled, like .edu, .mil, .gov

Spam Mass

◆ In the **TrustRank** model, we start with good pages and propagate trust

◆ Complementary view:

What fraction of a page's PageRank comes from spam pages?

In practice, we don't know all the spam pages, so we need to estimate.

Spam Mass Estimation

Solution 2:

- $ightharpoonup r_p$ = PageRank of page p
- r_p^+ = PageRank of p with teleport into trusted pages only
- Then: What fraction of a page's PageRank comes from spam pages?

$$r_p^- = r_p - r_p^+$$

- **Spam mass of** $p = \frac{r_p}{r_p}$
 - Pages with high spam mass are spam.

HITS: Hubs and Authorities

TrustRank

- ◆ A variant of topic-sensitive PageRank
 - Topic = a set of trustworthy pages

- Identify trustworthy pages
 - ➤ Manually examine pages with high PageRanks
 - ▶ Pick pages within controlled domains: edu, gov, mil
 - Avoid borderline pages, e.g., blog sites, forums.

HITS Algorithm

Hyperlink-induced topic search

- Each page has two scores
 - Authority: how important the page is about topic?
 - > Hub: does it provide many pointers to the topic?
- Examples
 - > Hub: department pages listing all courses
 - Authority: individual course pages.

Authority and Hub

- ◆ A good authority page is one
 - pointed by many good hub pages

- ◆ A good hub page is one
 - pointing to many good authority pages.

Computing Authority and Hubbiness

- Authority of a page =
 - > sum of hubbiness of pages pointing to it
 - > a(A) = h(U) + h(V) + h(W)
- Hubbiness of a page =
 - > sum of authority of pages it points to
 - \rightarrow h(B) = a(X) + a(Y) + a(Z)

Counting in-links: Authority

Counting in-links: Authority

Expert Quality: Hub

Reweighting

Mutually Recursive Definition

- **◆** A good hub links to many good authorities
- **◆** A good authority is linked from many good hubs
- **◆** Model using two scores for each node:
 - > Hub score and Authority score
 - \triangleright Represented as vectors h and a.

Hubs and Authorities

◆ Each page *i* has 2 scores:

- \triangleright Authority score: a_i
- \triangleright Hub score: h_i

HITS algorithm:

- Initialize: $a_j^{(0)} = 1/\sqrt{N}$, $h_j^{(0)} = 1/\sqrt{N}$
- Then keep iterating until convergence:
 - $\triangleright \forall i$: Authority: $a_i^{(t+1)} = \sum_{j \to i} h_j^{(t)}$
 - $\triangleright \forall i$: Hub: $h_i^{(t+1)} = \sum_{i \to j} a_i^{(t)}$
 - ➤ ∀i: Normalize:

$$\sum_{i} \left(a_i^{(t+1)} \right)^2 = 1, \sum_{j} \left(h_j^{(t+1)} \right)^2 = 1$$

$$h_i = \sum_{i \to j_{73}} a_j$$

Hubs and Authorities

- **◆ HITS** converges to a single stable point
- **♦** Notation:
 - ightharpoonup Vector $a = (a_1 ..., a_n), \quad h = (h_1 ..., h_n)$
 - \triangleright Adjacency matrix A (NxN): $A_{ij} = 1$ if $i \rightarrow j$, 0 otherwise
- lacktriangle Then $h_i = \sum_{i o j} a_j$ can be rewritten as $h_i = \sum_j A_{ij} \cdot a_j$ So: $h = A \cdot a$
- lacktriangle Similarly, $a_i = \sum_{j o i} h_j$ can be rewritten as $a_i = \sum_j A_{ji} \cdot h_j = A^T \cdot h$ Transpose

Hubs and Authorities

◆ HITS algorithm in vector notation:

$$ightharpoonup$$
 Set: $a_i = h_i = \frac{1}{\sqrt{n}}$

Repeat until convergence:

$$h = A \cdot a$$

$$\triangleright a = A^T \cdot h$$

- \triangleright Normalize a and h
- ♦ Then: $a = A^T \cdot (A \cdot a)$

Convergence criterion:

$$\sum_{i} \left(h_i^{(t)} - h_i^{(t-1)} \right)^2 < \varepsilon$$

$$\sum_{i} \left(a_i^{(t)} - a_i^{(t-1)} \right)^2 < \varepsilon$$

a is updated (in 2 steps):

$$a = A^T(A a) = (A^T A) a$$

h is updated (in 2 steps):

$$h = A(A^T h) = (A A^T) h$$

Repeated matrix powering

Existence and Uniqueness

$$h = \lambda A a$$

$$\lambda = 1 / \sum h_i$$
$$\mu = 1 / \sum a_i$$

$$\bullet$$
 $a = \mu A^T h$

$$\bullet$$
 h = $\lambda \mu A A^T h$

$$\bullet$$
 $a = \lambda \mu A^T A a$

- ◆ Under reasonable assumptions about A, HITS converges to vectors h* and a*:
 - $\rightarrow h^*$ is the principal eigenvector of matrix $A A^T$
 - $> a^*$ is the **principal eigenvector** of matrix $A^T A$

Example of HITS

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}^{\mathrm{T}} = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}$$

PageRank and HITS

- PageRank and HITS are two solutions to the same problem:
 - > What is the value of an in-link from u to v?
 - In the PageRank model, the value of the link depends on the links into u
 - In the HITS model, it depends on the value of the other links **out of** *u*
- The destinies of PageRank and HITS post-1998 were very different.

Summary

- PageRank
 - Power Iteration method
- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - > Solution: Topic-Specific PageRank
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - > Solution: TrustRank
- Uses a single measure of importance
 - Other models of importance
 - > Solution: Hubs-and-Authorities.