Branch: CSE & IT

Computer Network IPv4 Addressing

DPP 09

Batch: Hinglish

[NAT]

1. Suppose, a network 102.105.108.79/26 is divided into 4 subnets. Then the subnet mask contains ones.

[NAT]

2. In the network 212.69.78.58/28. The fourth octet (in decimal) of first IP address of the network which can be assigned to a hos?

[MCQ]

3. Consider a hypothetical CIDR based address 212.129.244.87/20. The ISP wants to create 4 subnets for GATE wallah, Physics wallah, Engineers wallah and CA wallah. Which of the following range is possible for GATE Wallah?

SID bits	
00	Physics wallah
01	CA wallah
10	GATE wallah
11	Engineers wallah

- (a) 212.129.244.254/22 to 212.129.247.255/22
- (b) 212.129.240.0/20 to 212.129.248.255/22
- (c) 212.129.248.0/22 to 212.129.251.255/22
- (d) 212.129.240.0/22 to 212.129.248.255/21

[MSO]

- **4.** Suppose, a block contains 128 IP addresses, which of the following can be first host address of the block?
 - (a) 198.174.68.1
 - (b) 198.174.68.129
 - (c) 198.174.68.0
 - (d) 198.174.68.128

[MCQ]

- **5.** A block contains 2048 IP addresses. Which of the following can be first address of the block?
 - (a) 16.15.19.0
 - (b) 16.15.16.0
 - (c) 16.15.20.0
 - (d) Both (b) and (c)

[NAT]

6. Consider a network 194.193.89.114/28. The last octet (in decimal) of first IP address and last IP address of the network that can be assigned to a host are X and Y respectively then the value of Y – X is _____.

[MCQ]

- 7. Suppose a CIDR representation is 118.1.3.25/20 what is the range of IP address in the CIDR block?
 - (a) 118.1.0.0 to 118.1.15.255
 - (b) 118.1.3.0 to 118.1.3.255
 - (c) 118.1.2.0 to 118.1.3.254
 - (d) None of these

[MCQ]

- **8.** An internet service provider (ISP) has the following chunk of CIDR based IP addresses available with it: 245.248.128.0/20. The ISP wants to give half of this chunk of addresses to organization A, and quarter to organization B, while retaining the remaining with itself. Which of the following is a valid allocation of addresses to A and B?
 - (a) 245.248.136.0/21 and 245.248.128.0/22
 - (b) 245.248.128.0/21 and 245.248.128.0/22
 - (c) 245.248.132.0/21 and 245.248.132.0/21
 - (d) 245.248.136.0/24 and 245.248.132.0/21

Answer Key

(28) 1.

2. **(49)**

3. (c)

(a, b)

5.

(b) (13)

(a) 7.

8. (a)

Hints & Solutions

1. (28)

Network = 102.105.108.79/26

NID = 26 bits

To divide the network into 4 subnets 2 bits needed.

SID bits = 2

The number ones in SM = 26 + 2

= 28

2. (49)

IP = 212.69.78.58/28

NID = 28 bit

HID = 4 bit

NID = 212.69.78.58

255.255.255.240 212.69.78.48

First host = 212.69.78.49

Last octet = 49.

3. (c)

IP = 212.129.244.87/20

NID = 20 bit

SID = 2 bit

HID = 10 bit

NID = 212.129.11110100.87

255.255.240.0 212.129.240.0

SID for GATE wallah = 212.129.1111<u>10</u> 00.00000000

 \downarrow HID (10 bits)

SID GW

SID = 212.129.148.0

First host = 212.129.248.1

Last host = 212.129.11111011.11111110

= 212.129.251.254

DBA = 212.129.251.255

Range = 212.129.248.0 to 212.129.251.255

Hence, option (c) is correct.

4. (a, b)

The number of IP address = 128

=7 (bit)

• For first host last 7 bit must be 0000001

(a) 198.174.68.0<u>0000001</u>

valid

(b) 198.174.68.10000001

valid

(c) 198.174.68.0<u>0000000</u>

invalid

(d) 198.174.68.1<u>0000000</u>

invalid

Hence, options (a, b) are correct.

5. (b)

The number of IP addresses = 2048

= 11 bits

HID bits = 11

Last 11 bits of the network must be 000.00000000.

(a) 16.15.00010011.00000000

invalid

(b) 16.15.00010000.00000000

valid

(c) 16.15.00010100.00000000

invalid

Hence, option (b) is correct.

6. (13)

Network = 194.193.89.114/28

NID = 255.255.255.240

194.193.89.114

194.193.89.112

NID = 194.193.89.01110000

First host = 194.193.89.01110001

Last host = 194.193.89.01111110

DBA = 194.193.89.01111111

Last octet of first host = 01110001

$$X = 113$$

Last octet of last host = 0111111110

$$Y = 126$$

$$Y - X = 126 - 113$$

= 13

7. (a)

Network = 118.1.3.25/20

NID bits = 20

SID bits = 12

Network ID = $118.1.0000\underline{0000.00000000}$

HID

First host = 118.1.00000000.00000001

Last host = 118.1.00001111.11111110

DBA = 118.1.00001111.11111111

Range = 118.1.0.0 to 118.1.15.255

Hence, option (a) is correct.

8. (a)

IP = 245.248.128.0

SM = 255.255.240.0

Organization $A = 2^{11}$

Organization $B = 2^{10}$

It self = 2^{10}

SM = 255.255.248.0

A = 245.248.136.0/21

B = 245.248.128.0/22

Hence, option (a) is correct.

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

