Перестановки-2

16 ноября • 8 класс

Разбор

Определение. Пусть $\sigma \in S_n$ — перестановка. **Подгруппой, порождённой** σ называется множество всех степеней σ , обозначение — $\langle \sigma \rangle$. Количество элементов в этой группе $|\langle \sigma \rangle|$, равняется порядку σ (почему?).

Пример 1. $\langle (1\ 2) \rangle = \{e, (1\ 2)\}.$

Задача 1. Положим n=4. Опишите $\langle \sigma \rangle$ для

(a)
$$\sigma = (1\ 2\ 3)$$
; (b) $\sigma = (3\ 2\ 4\ 1)$; (c) $\sigma = (1\ 2)(3\ 4)$.

Решение: (a) $\langle \sigma \rangle = \{e, (1\ 2\ 3), (1\ 3\ 2)\};$

(b)
$$\langle \sigma \rangle = \{e, (3\ 2\ 4\ 1), (3\ 4)(2\ 1), (3\ 1\ 4\ 2)\};$$

(c)
$$\langle \sigma \rangle = \{e, (1\ 2)(3\ 4)\}.$$

Определение. *Транспозициями* называются циклические перестановки порядка 2, то есть перестановки вида $(a\ b)$.

Задача 2. Запишите все элементы $\sigma \in S_3$ в виде произведения транспозиций.

Решение:
$$e$$
, $(1\ 2)$, $(1\ 3)$, $(2\ 3)$, $(1\ 2)(2\ 3)$, $(2\ 3)(1\ 2)$.

Доказательство следующей теоремы может вам напомнить решение задачки про последовательности нулей и единиц из листка 01 (Индукция).

Теорема 1. Для любого $n \in \mathbb{N}$ любая перестановка $\sigma \in S_n$ может быть записана в виде произведения транспозиций.

Доказательство. Докажем по индукции. Предположим, что для n-1 это утверждение уже доказано. Обозначим за x число, в которое σ переводит n; формулой — $x=\sigma n$. Рассмотрим перестановку $\tau=(x\ n)\circ\sigma$. Заметим, что τ оставляет число n на месте, то есть мы можем считать, что $\tau\in S_{n-1}$. По предположению индукции, τ может быть записана в виде произведения транспозиций из S_{n-1} . Следовательно, σ тоже может быть записана в виде произведения транспозиций (только уже из S_n). Если τ записывалась как $\tau=t_1\circ t_2\circ\cdots\circ t_k$, где все t_i — транспозиции, то σ можно записать как $\sigma=(x\ n)\circ t_1\circ t_2\circ\cdots\circ t_k$.

Определение. Зафиксируем перестановку $\sigma \in S_n$. Пара чисел $1 \le a < b \le n$ назывется **беспорядком** или **инверсией** для σ , если $\sigma a > \sigma b$.

Пример 2. Пусть $\sigma = (1\ 3)$. Тогда бепорядками будут пары (1,2), (1,3) и (2,3).

Задача 3. Найдите беспорядки для всех перестановок $\sigma \in S_3$.

Решение: Беспорядки e — {} (пустое множество); беспорядки $(1\ 2)$ — {(1,2)}; беспорядки $(2\ 3)$ — {(2,3)}; беспорядки $(1\ 3)$ — {(1,2),(1,3),(2,3)}; беспорядки $(1\ 2\ 3)$ — {(1,3),(2,3)}; беспорядки $(1\ 3\ 2)$ — {(1,2),(1,3)}. □

Определение. Перестановка называется **чётной**, если у неё чётное число беспорядков, и **нечётной** иначе.

Пример 3. e, $(1\ 2\ 3)$ и $(1\ 3\ 2)$ — чётные перестановки, $(1\ 2)$, $(2\ 3)$ и $(1\ 3)$ — нечётные.

Задачи для самостоятельного решения

```
Задача 1. Опишите \langle \sigma \rangle для (a) \sigma = (1\ 2\ 3)(4\ 5); (b) \sigma = (1\ 2\ 3\ 4\ 5\ 6)(7\ 8\ 9). Задача 2. Запишите в виде произведения транспозиций следующие перестановки: (a) (1\ 2\ 3\ 4); (b) (1\ 2\ 3\ 4)(5\ 6\ 7); (c) (a\ b\ c\ d\ e); (d) (1\ 2\ \dots\ k-1\ k).
```

Определение. Назовём **э**лементарной транспозицией транспозицию соседних чисел $(k\ k+1)$.

Задача 3. Запишите в виде произведения элементарных транспозиций следующие перестановки:

```
(a) (1 3);

(b) (1 2 3);

(c) (1 3 2);

(d) (1 3 5);

(e) (1 3 5)(2 4);

(f) (1 k);

(g) (1 2 ... k - 1 k).
```

Задача 4 (3 балла). Докажите усиленную версию теоремы 1: любая перестановка может быть записана в виде произведения элементарных транспозиций.

Задача 5. Найдите беспорядки для следующих перестановок:

```
(a) (1\ 4); (b) (1\ 2\ 4); (c) (1\ 3\ 4); (d) (1\ 5); (e) (1\ k).
```

Задача 6. Докажите, что все транспозиции — нечётные перестановки.

Задача 7 (4 балла). Докажите, что при умножении перестановок их чётности «складываются».

Произведение двух чётных перестановок — чётная перестановка.

Произведение двух нечётных перестановок — чётная перестановка.

Произведение чётной и нечётной перестановок — нечётная перестановка.

Задача 8. Докажите, что все циклы чётной длины — нечётные перестановки, а все циклы нечётной длины — чётные перестановки.