

Product Review Analysis With pattern

Milestone 2

Team: Sehaj Chawla, Taro Spirig, Lotus Xia, Heather Liu

Agenda

- 1. Motivation and Problem Statement
- 2. Data Insights
- 3. Literature Reviews
- 4. Models

Motivation

pattern is an ecommerce accelerator. It helps businesses grow faster and sell globally on ecommerce marketplaces.

How? For example, help them make better decisions through Al-supported insights and reporting.

Reviews are important! They give an insight into customer preferences, suggestions, complaints, which ultimately can help businesses

- predict how well their products will do in the future,
- 2) adapt their marketing strategy or even their products.

Problem Statement

★ Predict product future sales performance

 In particular, how can review data improve model prediction in addition to other metadata

★ Extract themes from review texts to gain insights on what keywords or topics are predictive of sales performance

Data Description

~9000 products in Amazon's Vitamins and Dietary Supplements category

Time range: 2017-07 to 2021-07

★ 2 measures of sales performance:

- Amazon best seller rank (BSR)
 - Daily rank of each product based on 1) current sales and 2) sales history
 - Lower rank means better sales performance
- Estimated sales volume
 - 1 to 1 mapping from rank to sales volume
 - A lower rank corresponds to a higher sales volume

BSR vs. Estimated Sales Volumes

★ Pattern has provided **estimated sales volumes** corresponding to each rank

Data Description

~9000 products in Amazon's Vitamins and Dietary Supplements category

Time range: 2017-07 to 2021-07

★ Predictors: Review data

- All reviews under a product at the time of scraping
- Review title and review text
- Metadata such as review dates, review ratings, verified purchase, etc.

Literature Reviews

- People use online reviews and historical sales data to predict future sales
 - Geng Cui, Hon-Kwong Lui & Xiaoning Guo (2012), Elizabeth Fernandes, Sérgio Moro, Paulo Cortez, Fernando Batista & Ricardo Ribeiro (2020)
- Commonly used models are Linear Regression, XGBoost for prediction and BERT for texts analysis
 - Ching-Chin Chern, Chih-Ping Wei, Fang-Yi Shen & Yu-Neng Fan (2015), Vimala Balakrishnan, Zhongliang Shi, Chuan Liang Law, Regine Lim, Lee Leng Teh & Yue Fan(2022)
- Commonly used performance metrics include
 - R-squared, RMSE for regression (evaluating sales volume predictions)
 - Elizabeth Fernandes, Sérgio Moro, Paulo Cortez, Fernando Batista & Ricardo Ribeiro (2020)

Non-Text Regression Models

- ★ Target variable: monthly median sales volume
- ★ Features in the input (everything except the text)
 - Smoothed daily BSR
 - Mean and median sales volume
 - Mean and median price
 - Cumulative number of reviews

Non-Text Regression Models: Results

- ★ Trained on 1/3 and tested on 1/3 of the products on AWS
- **★** Optimized the hyperparameters of the Xgboost and random forest models
- **★** OOD performance with best hyperparameters:

Model	Hyperparameters	R ²
Linear Regression		0.938
XGBoost	learning rate = 0.05 n estimators = 100	0.946
Random Forests	max depth = leaves pure n estimators = 500	0.939

Non-Text Regression Models: Feature Importance

Xgboost

monthly mean estimated sales rolling median rank: day29 monthly median estimated sales rolling median rank: day28 monthly mean rank 0.0 0.5 1.0 1.5 2.0 2.5 Permutation Importance

Random Forest

Non-Text Regression Models: Partial Dependence Plots

★ Monthly mean sales volume : most important feature for both models

Non-Text Regression Models: Partial Dependence Plots

★ Smoothed BSR of 29th day of month (2nd and 3rd most important feature for Xgboost and random forest respectively)

Non-Text Regression Models: Partial Dependence Plots

★ Cumulative number of reviews:

Non-Text Regression Models: future work

★ Future Work

- Clean up the models by taking only the most relevant features into account, i.e. have a final benchmark for non-text prediction model
- Run a model without the past ranking/estimated sales to see how the model performs: is there anything interesting in the non-text review data?
- Combine the non-text model with the text based model in an ensemble model

Text-Based Regression Models

Attempt to answer the following two questions:

- ★ In terms of **prediction accuracy**: what more can we do with review texts in addition to the metadata
- ★ In terms of **interpretability**: gain insights on what keywords or topics in review texts are predictive of future sales volumes

- **★** Target variable:
 - monthly median sales volume
- ★ Text processing:
 - o bag of word
 - TF-IDF (term frequency-inverse document frequency)
- **★** Predictor variables:
 - (weighted) frequency of the 500 most common bigrams/trigrams in the training corpus
- **★** Models:
 - LASSO and ridge regression
- **★** Benchmark model with nice interpretability

- ★ Positive words:
 - cider vinegar, <u>garden life</u>, bowel movements, flu season, hair nails, taking probiotic,
 2nd bottle, taste great, getting sick, stopped taking
- ★ Negative words:
 - joint pain, pain relief

- ★ Good, unbiased prediction on observations with low target values.
- ★ Predictions on observations with target values >200 are biased downwards.

- ★ Future work
 - Experiment with a more complex model to improve the model prediction
 - E.g. pass the bigrams/trigrams through a word embedding and a feed-forward neural network

Train Steps: 200

R2: -0.132

BERT Regression: Mark I

Train Steps: 200 **R2:** -0.1 €2

BERT Regression: Mark I

50,000 0.256

BERT Regression: Mark II

50,000 0.256

BERT Regression: Mark II

50,000 0.16

BERT Regression: Mark III

50,000

BERT Regression: Mark III

sales volume

BERT Regression

Bag of Words

BERT

BERT Regression

★ Future Work

- Increase the number of trainable parameters (by increasing the size of the latent review descriptors)
- Train for longer epochs, that allow the model to see each training point more than once.
- Dive deeper into the interpretation, and identify corpuses that BERT performs poorly on - some examples include partitioning on number of reviews, lengths of reviews, positive/negative reviews.

References

- "Using NLP to extract quick and valuable insights from your customers' reviews," https://medium.com/artefact-engineering-and-data-science/customer-reviews-use-nlp-to-gain-insights-from-your-data-4629519b518e
- "Predicting Sales from the Language of Product Descriptions,"
 https://nlp.stanford.edu/pubs/pryzant2017sigir.pdf
- "Amazon Product review Sentiment Analysis using BERT,"
 https://www.analyticsvidhya.com/blog/2021/06/amazon-product-review-sentiment-analysis-using-bert/
- "Sentiment Analysis of Movie Reviews with Google's BERT,"
 https://medium.com/mlearning-ai/sentiment-analysis-of-movie-reviews-with-googles-bert-c
 2b97f4217f
- "Amazon Best Seller Rank," https://www.sellerapp.com/amazon-best-seller-rank.html

Appendix

 \bigstar Naive prediction using average target value in training set has R^2 of -0.0011.