Sitzung 28

Schätzen und Testen (3)

Sitzung Mathematik für Ingenieure C4: INF vom 3. August 2020

Wigand Rathmann

Lehrstuhl für Angewandte Analysis Department Mathematik Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Fragen

Schätzen und Testen

Leitfragen

- Wie können aus einer Stichprobe Kenngrößen einer Verteilung geschätzt werden?
- Wie könnnen Parameter in einer Verteilung geschätzt werden?
- Entspricht die Schätzung unseren Erwarungen

Ziel dieses Themas

- 1. Sie erkennen den Zusammenhang zwischen beschreibender und schließender Statistik.
- Sie können den Unterschied zwischen Schätzer und Schätzung erklären.
 Schätzung ist instanz eines schätzers
- 3. Sie können den Maximum-Likelihood-Schätzer anwenden.
- 4. Sie können Hypothesentests anwenden.

punktschätzungenkonfider

https://www.studon.fau.de/vote/RH28

https://www.studon.fau.de/xlvo3210029.html

Typische Fragestellen sind:

- Ist der Erwartungswerte μ einer normalverteilten Grundgesamtheit gleich einem Wert μ_0 .
- Ist der Erwartungswerte μ einer normalverteilten Grundgesamtheit größer oder kleiner einem Wert μ_0 . konf. intervall
- Ist die Grundgesamtheit entsprechend einer gegebenen Verteilung verteilt?
- Besitzen zwei verschiedenen Grundgesamtheiten den gleichen Erwartungswert?

Hypothesentests

Eine **Hypothese** *H* wird mittels **statistischem Test**, (auch statische Prüfverfahren, Tests) überprüft. Die Aufgabe ist, die Hypothese aufgrund einer konkreten Stichprobe anzunehmen oder abzulehnen.

Die Hypothese H heißt **Nullhypothese** H_0 , wenn noch andere Hypothesen oder **Alternativhypothesen** aufgestellt werden können.

Hypothesentests

Eine **Hypothese** *H* wird mittels **statistischem Test**, (auch statische Prüfverfahren, Tests) überprüft. Die Aufgabe ist, die Hypothese aufgrund einer konkreten Stichprobe anzunehmen oder abzulehnen.

Die Hypothese H heißt Nullhypothese H_0 , wenn noch andere Hypothesen oder Alternativhypothesen aufgestellt werden können.

z.B. H_0: E(X)=mu_0alternati

Bei der Fertigung von Wellen sein ein Nennmaß vbon 4 mm vorgeschrieben. Von der Maschinen sei bekannt, dass sie mit einer Standardabweichung von $\sigma=0,003$ mm fertigt. Nach einiger Zeit soll anhand einer Stichprobe mit n=25 geprüft werden, ob die Maschine neu eingestellt werden muss. Das Messprotokoll ergibt $\bar{x}=4,0012$ mm. Wie muss nun gehandelt werden?

Folgerungen aus dem Beispie

Mögliche Entscheidunger

 + H₀ wird nicht abgelehnt: Die Abweichung des Mittelwertes ist gering und wird als zufällig angenommen.

 H₀ wird abgelehnt: Die Abweichung des Mittelwertes ist so groß, dass c konkrete Stichprobe anscheinend nicht zur Grundgesamtheit X gehört.

Die auftretende Abweichung wird dann als signifikant oder statistisch gesichert bezeichnet.

Frage

Bei der Fertigung von Wellen sein ein Nennmaß vbon 4 mm vorgeschrieben. Von der Maschinen sei bekannt, dass sie mit einer Standardabweichung von $\sigma=0,003$ mm fertigt. Nach einiger Zeit soll anhand einer Stichprobe mit n=25 geprüft werden, ob die Maschine neu eingestellt werden muss. Das Messprotokoll ergibt $\bar{x}=4,0012$ mm. Wie muss nun gehandelt werden?

Folgerungen aus dem Beispiel

Mögliche Entscheidungen

- + H₀ wird nicht abgelehnt: Die Abweichung des Mittelwertes ist gering und wird als zufällig angenommen.
- H₀ wird abgelehnt: Die Abweichung des Mittelwertes ist so groß, dass die konkrete Stichprobe anscheinend nicht zur Grundgesamtheit X gehört.
- gesichert bezeichnet

Frage

Bei der Fertigung von Wellen sein ein Nennmaß vbon 4 mm vorgeschrieben. Von der Maschinen sei bekannt, dass sie mit einer Standardabweichung von $\sigma=0,003$ mm fertigt. Nach einiger Zeit soll anhand einer Stichprobe mit n=25 geprüft werden, ob die Maschine neu eingestellt werden muss. Das Messprotokoll ergibt $\bar{x}=4,0012$ mm. Wie muss nun gehandelt werden?

Folgerungen aus dem Beispiel

Mögliche Entscheidungen

- + H₀ wird nicht abgelehnt: Die Abweichung des Mittelwertes ist gering und wird als zufällig angenommen.
- H₀ wird abgelehnt: Die Abweichung des Mittelwertes ist so groß, dass die konkrete Stichprobe anscheinend nicht zur Grundgesamtheit X gehört.
 Die auftretende Abweichung wird dann als signifikant oder statistisch gesichert bezeichnet.

Frage

Bei der Fertigung von Wellen sein ein Nennmaß vbon 4 mm vorgeschrieben. Von der Maschinen sei bekannt, dass sie mit einer Standardabweichung von $\sigma=0,003$ mm fertigt. Nach einiger Zeit soll anhand einer Stichprobe mit n=25 geprüft werden, ob die Maschine neu eingestellt werden muss. Das Messprotokoll ergibt $\bar{x}=4,0012$ mm. Wie muss nun gehandelt werden?

Folgerungen aus dem Beispiel

Mögliche Entscheidungen

- + *H*₀ wird nicht abgelehnt: Die Abweichung des Mittelwertes ist gering und wird als zufällig angenommen.
- H₀ wird abgelehnt: Die Abweichung des Mittelwertes ist so groß, dass die konkrete Stichprobe anscheinend nicht zur Grundgesamtheit X gehört. Die auftretende Abweichung wird dann als signifikant oder statistisch gesichert bezeichnet.

Frage

Bei der Fertigung von Wellen sein ein Nennmaß vbon 4 mm vorgeschrieben. Von der Maschinen sei bekannt, dass sie mit einer Standardabweichung von $\sigma=0,003$ mm fertigt. Nach einiger Zeit soll anhand einer Stichprobe mit n=25 geprüft werden, ob die Maschine neu eingestellt werden muss. Das Messprotokoll ergibt $\bar{x}=4,0012$ mm. Wie muss nun gehandelt werden?

Folgerungen aus dem Beispiel

Mögliche Entscheidungen

- + H₀ wird nicht abgelehnt: Die Abweichung des Mittelwertes ist gering und wird als zufällig angenommen.
- H₀ wird abgelehnt: Die Abweichung des Mittelwertes ist so groß, dass die konkrete Stichprobe anscheinend nicht zur Grundgesamtheit X gehört.
 Die auftretende Abweichung wird dann als signifikant oder statistisch gesichert bezeichnet.

Frage

Bei der Fertigung von Wellen sein ein Nennmaß vbon 4 mm vorgeschrieben. Von der Maschinen sei bekannt, dass sie mit einer Standardabweichung von $\sigma=0,003$ mm fertigt. Nach einiger Zeit soll anhand einer Stichprobe mit n=25 geprüft werden, ob die Maschine neu eingestellt werden muss. Das Messprotokoll ergibt $\bar{x}=4,0012$ mm. Wie muss nun gehandelt werden?

Folgerungen aus dem Beispiel

Mögliche Entscheidungen

- + *H*₀ wird nicht abgelehnt: Die Abweichung des Mittelwertes ist gering und wird als zufällig angenommen.
- H₀ wird abgelehnt: Die Abweichung des Mittelwertes ist so groß, dass die konkrete Stichprobe anscheinend nicht zur Grundgesamtheit X gehört. Die auftretende Abweichung wird dann als signifikant oder statistisch gesichert bezeichnet.
 ==> neu einstellen der maschine

Frage

- Ein Wert α (0 < α < 1) wird gewählt.
- *c* wird so bestimmt, dass die Wahrscheinlichkeit für den Betrag des Abweichens der ZV \bar{X} vom Nennmaß um mindestens *c* gerade die Wahrscheinlichkeit a beträgt wann H richtig ist. Die is

$$P(|\bar{X} - \mu| \geqslant c|H_0) = \alpha. \tag{1}$$

 α wird als Irrtumswahrscheinlichkeit oder auch Signifikanzniveau bezeichnet. Üblich ist die Wahl $\alpha=0,05;0,01;0,001$. Aus α wird die Schranke c bestimmt und somit der Ablehnungsbereich (kritischer Bereich) K für die Nullhypothese H_0 gewonnen.

- Ein Wert α (0 < α < 1) wird gewählt.
- c wird so bestimmt, dass die Wahrscheinlichkeit für den Betrag des Abweichens der ZV X̄ vom Nennmaß um mindestens c gerade die Wahrscheinlichkeit α beträgt, wenn H₀ richtig ist. D.h.:

$$P\left(|\bar{X} - \mu| \geqslant c|H_0\right) = \alpha.$$
 (1)

 α wird als Irrtumswahrscheinlichkeit oder auch Signifikanzniveau bezeichnet. Üblich ist die Wahl $\alpha=0.05;0.01;0.001$. Aus α wird die Schranke c bestimmt und somit der Ablehnungsbereich (kritischer Bereich) K für die Nullhypothese H_0 gewonnen.

- Ein Wert α (0 < α < 1) wird gewählt.
- c wird so bestimmt, dass die Wahrscheinlichkeit für den Betrag des Abweichens der ZV \bar{X} vom Nennmaß um mindestens c gerade die Wahrscheinlichkeit α beträgt, wenn H_0 richtig ist. D.h.:

$$P(|\bar{X} - \mu| \geqslant c|H_0) = \alpha. \tag{1}$$

 α wird als Irrtumswahrscheinlichkeit oder auch Signifikanzniveau bezeichnet. Üblich ist die Wahl $\alpha=0.05;0.01;0.001$. Aus α wird die Schranke c bestimmt und somit der **Ablehnungsbereich** (**kritischer Bereich**) K für die Nullhypothese H_0 gewonnen.

- Ein Wert α (0 < α < 1) wird gewählt.
- c wird so bestimmt, dass die Wahrscheinlichkeit für den Betrag des Abweichens der ZV \bar{X} vom Nennmaß um mindestens c gerade die Wahrscheinlichkeit α beträgt, wenn H_0 richtig ist. D.h.:

$$P(|\bar{X} - \mu| \geqslant c|H_0) = \alpha. \tag{1}$$

 α wird als Irrtumswahrscheinlichkeit oder auch Signifikanzniveau bezeichnet. Üblich ist die Wahl $\alpha=0,05;0,01;0,001$. Aus α wird die Schranke α bestimmt und somit der Ablehnungsbereich (kritischer Bereich) K für die Nullhypothese H_0 gewonnen.

- Ein Wert α (0 < α < 1) wird gewählt.
- c wird so bestimmt, dass die Wahrscheinlichkeit für den Betrag des Abweichens der ZV \bar{X} vom Nennmaß um mindestens c gerade die Wahrscheinlichkeit α beträgt, wenn H_0 richtig ist. D.h.:

$$P(|\bar{X} - \mu| \geqslant c|H_0) = \alpha. \tag{1}$$

 α wird als Irrtumswahrscheinlichkeit oder auch Signifikanzniveau bezeichnet. Üblich ist die Wahl $\alpha=0,05;0,01;0,001$. Aus α wird die Schranke c bestimmt und somit der **Ablehnungsbereich** (**kritischer Bereich**) K für die Nullhypothese H_0 gewonnen.

Beispiel 11.3 (Fortsetzung Beispiel 11.2)

benötigt wird:Realisierung einer Prüfgröße (z.b. mittelv

Fehlerarten

- 1. Art: Die Nullhypothese H₀ wird abgelehnt, obwohl sie richtig ist.
- 2. Art: Die Nullhypothese H₀ wird nicht abgelehnt, obwohl sie falsch ist.

"false positives"

Betrachten wir die Realisierung u der Prüfgröße U, so gilt

$$P(u \in K|H_0) = \alpha. (2$$

 α ist die Wahrscheinlichkeit, einen Fehler 1. Art zu begehen

Schwierigkei

Wird α klein gewählt, dann ist auch die Wahrscheinlichkeit für den Fehler 1. Art klein. Aber je kleiner α ist, um so schwieriger ist es, die Falschheit einer Hypothese zu zeigen. (K wird für U kleiner.) **Folge:** Die Wahrscheinlichkeit für den Fehler 2. Art steigt.

Betrachten wir die Realisierung u der Prüfgröße U, so gilt

$$P\left(u\in K|H_0
ight)=lpha.$$
 K ist der Bereich außerhalb unseres Konfide kzintervalls

 α ist die Wahrscheinlichkeit, einen Fehler 1. Art zu begehen.

Schwierigkei

Wird α klein gewählt, dann ist auch die Wahrscheinlichkeit für den Fehler 1. Art klein. Aber je kleiner α ist, um so schwieriger ist es, die Falschheit einer Hypothese zu zeigen. (K wird für U kleiner.) Folge: Die Wahrscheinlichkeit für den Fehler 2. Art steigt.

Betrachten wir die Realisierung u der Prüfgröße U, so gilt

$$P(u \in K|H_0) = \alpha. \tag{2}$$

 α ist die Wahrscheinlichkeit, einen Fehler 1. Art zu begehen.

Schwierigkeit

Wird α klein gewählt, dann ist auch die Wahrscheinlichkeit für den Fehler 1. Art klein. Aber je kleiner α ist, um so schwieriger ist es, die Falschheit einer Hypothese zu zeigen. (K wird für U kleiner.)

Betrachten wir die Realisierung u der Prüfgröße U, so gilt

$$P(u \in K|H_0) = \alpha. \tag{2}$$

 α ist die Wahrscheinlichkeit, einen Fehler 1. Art zu begehen.

Schwierigkeit

Wird α klein gewählt, dann ist auch die Wahrscheinlichkeit für den Fehler 1. Art klein. Aber je kleiner α ist, um so schwieriger ist es, die Falschheit einer Hypothese zu zeigen. (K wird für U kleiner.)

Folge: Die Wahrscheinlichkeit für den Fehler 2. Art steigt.

Vorgehen in der allgemeinen Testtheorie

Aufstellen der Hypothesen

$$H_0$$
: $E(X) = \mu_0 = 4$
 H_1 : $E(X) = \mu$, $(\mu \neq 4)$

Idee

Bestimme K derart, dass die Wahrscheinlichkeit für die Ablehnung falscher H_0 möglichst groß ist. Dies entspricht dann der Wahrscheinlichkeit, H_1 anzunehmen unter der Voraussetzung, dass H_1 richtig ist.

$$P(U \in K|H_1) = 1 - \beta. \tag{}$$

b neigt Gute oder Trennscharte des Tests oder Prutverfahrens

Vorgehen in der allgemeinen Testtheorie

Aufstellen der Hypothesen

$$H_0$$
: $E(X) = \mu_0 = 4$
 H_1 : $E(X) = \mu$, $(\mu \neq 4)$

Idee

Bestimme K derart, dass die Wahrscheinlichkeit für die Ablehnung falscher H_0 möglichst groß ist. Dies entspricht dann der Wahrscheinlichkeit, H_1 anzunehmen unter der Voraussetzung, dass H_1 richtig ist.

$$P(U \in K|H_1) = 1 - \beta. \tag{3}$$

β heißt **Güte** oder **Trennschärfe** des Tests oder Prüfverfahrens.

Beta haben wir bei unserern verfahren eig. nie im griff

Ziel ist es, K derart zu wählen, dass

- der Fehler 1. Art durch ein **vorgegebenes** möglichst kleines α und
- die Wahrscheinlichkeit, die Nullhypothese H_0 richtigerweise abzulehnen, durch ein **vorgegebenes** möglichst großes $1-\beta$

begrenzt ist.

Fehlerarter

	nicht abgelehnt	abgelehnt
H ₀ richtig	richtige Entscheidung $p_1 = 1 - \alpha$	Fehler 1. Art $p_2 = \alpha$
	Fehler 2. Art $p_3 = \beta$	richtige Entscheidung $p_1 = 1 - \beta$

Bemerkung

Nird nur lpha vorgegeben und auf die Berücksichtigung der Fehler 2. Art verzichtet, dann wird von **Signifikanztests** gesprochen.

Ziel ist es, K derart zu wählen, dass

- der Fehler 1. Art durch ein **vorgegebenes** möglichst kleines α und
- die Wahrscheinlichkeit, die Nullhypothese H_0 richtigerweise abzulehnen, durch ein **vorgegebenes** möglichst großes $1-\beta$

begrenzt ist.

Fehlerarter

	nicht abgelehnt	abgelehnt
H ₀ richtig	richtige Entscheidung $p_1 = 1 - \alpha$	Fehler 1. Art $p_2 = \alpha$
H_0 falsch	Fehler 2. Art $p_3 = \beta$	richtige Entscheidung $p_1 = 1 - \beta$

Bemerkung

Wird nur lpha vorgegeben und auf die Berücksichtigung der Fehler 2. Art verzichtet, dann wird von **Signifikanztests** gesprochen.

Ziel ist es, K derart zu wählen, dass

- der Fehler 1. Art durch ein **vorgegebenes** möglichst kleines α und
- die Wahrscheinlichkeit, die Nullhypothese H_0 richtigerweise abzulehnen, durch ein **vorgegebenes** möglichst großes $1-\beta$

begrenzt ist.

Fehlerarter

	nicht abgelehnt	abgelehnt
H ₀ richtig	richtige Entscheidung $p_1 = 1 - \alpha$	Fehler 1. Art $p_2 = \alpha$
H_0 falsch	Fehler 2. Art $p_3 = \beta$	richtige Entscheidung $p_1 = 1 - \beta$

Bemerkung

Wird nur lpha vorgegeben und auf die Berücksichtigung der Fehler 2. Art verzichtet, dann wird von **Signifikanztests** gesprochen.

Ziel ist es, K derart zu wählen, dass

- der Fehler 1. Art durch ein **vorgegebenes** möglichst kleines α und
- die Wahrscheinlichkeit, die Nullhypothese H_0 richtigerweise abzulehnen, durch ein **vorgegebenes** möglichst großes $1-\beta$

begrenzt ist.

Fehlerarten

	nicht abgelehnt	abgelehnt
H ₀ richtig	richtige Entscheidung $p_1 = 1 - \alpha$	Fehler 1. Art $p_2 = \alpha$
H_0 falsch	Fehler 2. Art $p_3 = \beta$	richtige Entscheidung $p_1 = 1 - \beta$

Bemerkund

Wird nur α vorgegeben und auf die Berücksichtigung der Fehler 2. Art verzichtet, dann wird von **Signifikanztests** gesprochen.

Ziel ist es, K derart zu wählen, dass

- der Fehler 1. Art durch ein vorgegebenes möglichst kleines α und
- die Wahrscheinlichkeit, die Nullhypothese H_0 richtigerweise abzulehnen, durch ein vorgegebenes möglichst großes $1-\beta$

begrenzt ist.

Fehlerarten

	nicht abgelehnt	abgelehnt
H ₀ richtig	richtige Entscheidung $p_1 = 1 - \alpha$	Fehler 1. Art $p_2 = \alpha$
H_0 falsch	Fehler 2. Art $p_3 = \beta$	richtige Entscheidung $p_1 = 1 - \beta$

Bemerkung

Wird nur α vorgegeben und auf die Berücksichtigung der Fehler 2. Art verzichtet, dann wird von **Signifikanztests** gesprochen.

Im Auge behalten:

Fehler 2. Art können immer auftreten.

Einseitige Fragestellungen

U ist symmetrisch verteilt und es wird

$$U \geqslant u_{1-\alpha}$$
 oder $U \leqslant -u_{1-\alpha}$

gewählt.

Zweiseitige Fragestellungen

Für die Prüfgröße ${\it U}$ und die gegebene Irrtumswahrscheinlichkeit α wählen wir

$$P(|U| \geqslant u_{1-\frac{\alpha}{2}}|H_0) = \alpha.$$

 \bar{x} ist eine Realisierung von \bar{X} , wobei $X \sim \mathcal{N}(4, 9 \cdot 10^{-6})$ gilt.

Folglich ist $\bar{X} \sim \mathcal{N}\left(4, \frac{1}{25}9 \cdot 10^{-6}\right)$.

Die Prüfgröße

$$Z = rac{ar{X} - 4}{\sqrt{rac{9 \cdot 10^{-6}}{25}}} \sim \mathcal{N}(0, 1)$$

und wir erhalten für den kritischen Bereich

$$\left|\frac{\bar{X}-4}{\sqrt{\frac{9\cdot 10^{-6}}{2^{5}}}}\right|\geqslant z_{1-\frac{\alpha}{2}}$$

Mit $\alpha = 0.01$ ergibt sich $z_{0.995} \le 2.58$ und somit aus tabelle ablesen

$$c = z_{0,995} \cdot \frac{3 \cdot 10^{-3}}{5} = \frac{155 \cdot 10^{-5}}{5}$$
.

Ergo gilt f[r den kritischen Bereich

$$ar{X}-c\leqslant 3,9984, \qquad ar{X}+c\geqslant 4,00155.$$

von oben: realisierung x=4.0012wir

 $P(|x-mu|/|sqrt(var/n)| >= z_0.995$

m schraubenbsp wahr std = 0.003 mmde

Var ist bekannt-> quantil der Norr

Vorgehen bei Tests

- 1. Aufstellen der Nullhypothese H_0 .
- 2. Vorgabe der Irrtumswahrscheinlichkeit α .
- 3. Wahl einer geeigneten Prüfgröße $U = U(X_1, X_2, \dots, X_n)$. Die Verteilungsfunktion sei bekannt. typischerweise schätzfunktion für die betrachtete größe
- 4. Ermittlung von K aus $P(U \in K|H_0) = \alpha$. K ist der kritischer bereich (in dem wir für H_0 NICHT se
- 5. Berechnung einer Realisierung *u* von *U* mit Hilfe einer konkreten Stichprobe (x_1, x_2, \dots, x_n) vom Umfang n.
- 6. Falls $u \in K$, wird H_0 abgelehnt; falls $u \neq K$, wird H_0 nicht abgelehnt.

Testsammlung

- Test für $\mathcal{N}(\mu, \sigma^2)$ (EW) bei bekannter Varianz σ^2
- Test für $\mathcal{N}(\mu, \sigma^2)$ (EW) bei unbekannter Varianz σ^2 (Einstichproben t-Test) wir benutzen dann t_(n-1)
- Test E X = E Y, wobei X, Y st. u. und Var X = Var Y (Zweistichproben t-Test)
 ZA. 86 (nicht klausurrelevant bei klausurrel ohne taschenrechner)
- $F^X(t) \equiv F_0(t), \, rac{\chi^2 ext{-Anpassungstest}}{\chi^2 ext{-Anpassungstest}}$ passt diese Verteilung zur Messung?

Selbststudium

Quellen

- Kopien Buch: Hübner, G. Stochastik. Vieweg. Kapitel 10.1-10.4
- Skript Kapitel 9 (Rückblick und Übersicht von bestimmten Summenverteilungen)
 Skript Kapitel 11.1-11.3 (Zusammenfassung Hypthensentests und Vorgehen)

Hinweis Buch und Skript passen an dieser Stelle nicht zusammen.

Fragen

Sammeln Sie Ihre Fragen zu diesem Semester?

Ihre Fragen

... stellen, Fragen haben keine Pause.

- in den Online-Sitzungen (Vorlesungen, Übungen),
- per Mail an wigand.rathmann@fau.de oder marius.yamakou@fau.de,
- im Forum https://www.studon.fau.de/frm2897793.html,
 Die Fragen, die bis Donnerstag gestellt wurden, werden am Freitag in der Online-Runde diskutiert.
- per Telefon (zu den Sprechzeiten sind wir auch im Büro)

```
Wigand Rathmann 09131/85-67129 Mi 11-12 Uhr
Marius Yamakou 09131/85-67127 Di 14-15 Uhr
```

Sprechstunde zur Mathematik für Ingenieure

Wann: dienstags 09:00 - 16:30 Uhr und donnerstags 09:00-17:00 Uhr, Wo:

https://webconf.vc.dfn.de/ssim/ (Adobe Connect) und https://fau.zoom.us/j/91308761442 (Zoom)