

Approximation Bounds for SLACK on Identical Parallel Machines

Louis-Claude Canon¹, Anthony Dugois¹, Pierre-Cyrille Héam¹, and Ismaël Jecker¹

¹Marie and Louis Pasteur University, CNRS, FEMTO-ST institute (France)

Table of Contents

The $P||C_{\text{max}}|$ Problem

The SLACK Heuristic

The Approximation Ratio

Conclusion

Table of Contents

The **P**||**C**_{max} Problem

The SLACK Heuristic

The Approximation Ratio

Conclusion

The $P||C_{\text{max}}|$ Problem

- Input: m identical machines and n tasks with processing times p₁, p₂,...,p_n
- Output: an assignment for each task
- **Objective**: minimize the makespan C_{max}

The $P||C_{\text{max}}|$ Problem

- Input: m identical machines and n tasks with processing times p₁, p₂,...,p_n
- Output: an assignment for each task
- **Objective**: minimize the makespan C_{max}

NP-hard

The $P||C_{\text{max}}|$ Problem

- Input: m identical machines and n tasks with processing times p₁, p₂,...,p_n
- Output: an assignment for each task
- **Objective**: minimize the makespan C_{max}

NP-hard ⇒ **Approximation results**

7

Strategy: put each task on the least-loaded machine Machine 4 Machine 3

Machine 2

Machine 1

7

Strategy: put each task on the least-loaded machine Machine 4

Machine 2

Machine 1

2 1	4	5	
3	4	4	

	1	4	5	
3		4	4	

	4	5	
3	4	4	

7

Strategy: put each task on the least-loaded machine

4

+

7

- Strategy: put each task on the least-loaded machine
- Time: $O(n \log m)$
- Approx. ratio: 2 1/m

Machine 4	4	4	
Machine 3	4	4	
Machine 2	5		•
Machine 1	5	3	
			1

 Strategy: schedule tasks in non-increasing order of processing time

Machine 4	4	4		
Machine 3	4	4		
Machine 2	5	3		
Machine 1	5	3		
				т

2 1

 Strategy: schedule tasks in non-increasing order of processing time

Machine 4	4	4			
Machine 3	4	4			
Machine 2	5	3			
Machine 1	5	3	2		
				 	- → time

1

Machine 4	4	4					
Machine 3	4	4					
Machine 2	5	3	1				
Machine 1	5	3	2	2			
						— tin	ne

- Strategy: schedule tasks in non-increasing order of processing time
- ▶ Time: $O(n \log n)$
- ► Approx. ratio: 4/3 − 1/3*m*

... and so on

Strategy	Time	Approx. ratio	Ref.
LS LPT Multi-Fit Combine List-Fit PTAS	$O(n \log m)$ $O(n \log n)$ $O(n \log n + knm)$ same as MF same as MF $n^{O((1/\varepsilon)^2 \log(1/\varepsilon))}$	$2-1/m$ $4/3-1/3m$ $13/11+1/2^k$ same as MF same as MF $1+\varepsilon$	Graham, 1969 Graham, 1969 Coffman, 1978; Yue, 1990 Lee and Massey, 1988 Gupta and Ruiz-Torres, 2001 Hochbaum and Shmoys, 1987
EPTAS	$2^{O(1/\varepsilon\log^4(1/\varepsilon))} + O(n\log n)$	$1 + \varepsilon$	Jansen et al., 2020

... and so on

Strategy	Time	Approx. ratio	Ref.
LS	$O(n \log m)$	2 – 1/m	Graham, 1969
LPT	$O(n \log n)$	4/3 - 1/3m	Graham, 1969
Multi-Fit	$O(n \log n + knm)$	$13/11 + 1/2^k$	Coffman, 1978; Yue, 1990
Combine	same as MF	same as MF	Lee and Massey, 1988
List-Fit	same as MF	same as MF	Gupta and Ruiz-Torres, 2001
PTAS	$n^{O((1/arepsilon)^2\log(1/arepsilon))}$	1 +arepsilon	Hochbaum and Shmoys, 1987
EPTAS	$2^{O(1/\varepsilon\log^4(1/\varepsilon))} + O(n\log n)$	1+arepsilon	Jansen et al., 2020

Table of Contents

The $P||C_{\text{max}}|$ Problem

The SLACK Heuristic

The Approximation Ratio

Conclusion

SLACK (Della Croce and Scatamacchia, 2020)

Strategy:

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- Compute slack of each pack (largest task minus smallest task)
- Sort packs in non-increasing order of slack
- Schedule tasks greedily

SLACK (Della Croce and Scatamacchia, 2020)

Strategy:

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- Compute slack of each pack (largest task minus smallest task)
- Sort packs in non-increasing order of slack
- 4. Schedule tasks greedily

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- 2. Compute slack of each pack (largest task minus smallest task)
- Sort packs in non-increasing order of slack
- Schedule tasks greedily

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- Compute slack of each pack (largest task minus smallest task)
- 3. Sort packs in non-increasing order of slack
- 4. Schedule tasks greedily

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- Compute slack of each pack (largest task minus smallest task)
- Sort packs in non-increasing order of slack
- 4. Schedule tasks greedily

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- Compute slack of each pack (largest task minus smallest task)
- Sort packs in non-increasing order of slack
- 4. Schedule tasks greedily

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- 2. Compute slack of each pack (largest task minus smallest task)
- Sort packs in non-increasing order of slack
- 4. Schedule tasks greedily

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- Compute slack of each pack (largest task minus smallest task)
- Sort packs in non-increasing order of slack
- 4. Schedule tasks greedily

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- 2. Compute slack of each pack (largest task minus smallest task)
- Sort packs in non-increasing order of slack
- 4. Schedule tasks greedily

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- 2. Compute slack of each pack (largest task minus smallest task)
- Sort packs in non-increasing order of slack
- 4. Schedule tasks greedily

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- Compute slack of each pack (largest task minus smallest task)
- Sort packs in non-increasing order of slack
- 4. Schedule tasks greedily

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- 2. Compute slack of each pack (largest task minus smallest task)
- 3. Sort packs in non-increasing order of slack
- 4. Schedule tasks greedily

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- 2. Compute slack of each pack (largest task minus smallest task)
- Sort packs in non-increasing order of slack
- 4. Schedule tasks greedily

- Sort tasks in non-increasing order of processing time and group them in packs of size m
- Compute slack of each pack (largest task minus smallest task)
- Sort packs in non-increasing order of slack
- 4. Schedule tasks greedily

- Strategy:
 - Sort tasks in non-increasing order of processing time and group them in packs of size m
 - Compute slack of each pack (largest task minus smallest task)
 - 3. Sort packs in non-increasing order of slack
 - 4. Schedule tasks greedily

▶ Time: $O(n \log n)$

Approx. ratio: ???

						_		
Machine 4		4		4				
Machine 3		4		5				
Machine 2	1		3	5				
Machine 1	- 2	2		4				
	$\overline{}$				 	т —		- → tim

slack: 2

slack: 1

slack: 1

SLACK vs. LPT: makespan

Range of p _j	m	Nb. of instances	SLACK wins	draws	LPT wins
1-100	5	50	24%	74%	2%
	10	40	35%	50%	15%
	25	40	25%	72.5%	2.5%
1-1000	5	50	64%	30%	6%
	10	40	67.5%	12.5%	20%
	25	40	60%	30%	10%
1-10000	5	50	72%	24%	4%
	10	40	92.5%	0%	7.5%
	25	40	55%	27.5%	17.5%

Performance comparison on uniform instances (n = 10, 50, 100, 500, 1000).

Extracted from Longest Processing Time rule for identical parallel machines revisited (Della Croce and Scatamacchia, 2020).

SLACK vs. LPT: makespan

Range of p_j	m	Nb. of instances	SLACK wins	draws	LPT wins
1-100	5	50	62%	32%	6%
	10	40	80%	20%	0%
	25	40	57.5%	42.5%	0%
1-1000	5	50	78%	20%	2%
	10	40	100%	0%	0%
	25	40	67.5%	30%	2.5%
1-10000	5	50	78%	20%	2%
	10	40	100%	0%	0%
	25	40	70%	25%	5%

Performance comparison on non-uniform instances (n = 10, 50, 100, 500, 1000).

Extracted from Longest Processing Time rule for identical parallel machines revisited (Della Croce and Scatamacchia, 2020).

SLACK vs. LPT: load imbalance

Evolution of load imbalance on real traces (lower is better).

Table of Contents

The $P||C_{\text{max}}|$ Problem

The SLACK Heuristic

The Approximation Ratio

Conclusion

Approximation Ratio of SLACK

Theorem (Main result)

The approximation ratio of SLACK is 4/3.

Approximation Ratio of SLACK

Theorem (Main result)

The approximation ratio of SLACK is 4/3.

Lemma (Upper bound)

For any instance \mathcal{I} , we have $\frac{SLACK(\mathcal{I})}{OPT(\mathcal{I})} \leq 4/3$.

Approximation Ratio of SLACK

Theorem (Main result)

The approximation ratio of SLACK is 4/3.

Lemma (Upper bound)

For any instance \mathcal{I} , we have $\frac{SLACK(\mathcal{I})}{OPT(\mathcal{I})} \leq 4/3$.

Lemma (Tightness)

There is a family of instances $\mathcal F$ such that $\sup_{\mathcal I\in\mathcal F}rac{\mathit{SLACK}(\mathcal I)}{\mathit{OPT}(\mathcal I)}=4/3.$

Proof Sketch of Upper Bound ($\forall \mathcal{I}, \frac{SLACK(\mathcal{I})}{OPT(\mathcal{I})} \leq 4/3$)

Lemma (Graham's bound)

For any instance \mathcal{I} , we have $C_{\max} \leq OPT(\mathcal{I}) + \delta$ in any list schedule.

Lemma

The imbalance δ of SLACK is lower than:

- the slack $\beta_{[1]}$ of the first scheduled pack, and
- the processing time p_{last} of the last task.

Proof Sketch of Upper Bound ($\forall \mathcal{I}, \frac{SLACK(\mathcal{I})}{OPT(\mathcal{I})} \leq 4/3$)

Lemma (Graham's bound)

For any instance \mathcal{I} , we have $C_{\max} \leq OPT(\mathcal{I}) + \delta$ in any list schedule.

Lemma

The imbalance δ of SLACK is lower than:

- the slack $\beta_{[1]}$ of the first scheduled pack, and
- the processing time p_{last} of the last task.

$$\implies$$
 Thus, if either $\beta_{[1]} \leq \frac{\mathsf{OPT}(\mathcal{I})}{3}$ or $p_{\mathsf{last}} \leq \frac{\mathsf{OPT}(\mathcal{I})}{3}$, the result immediately follows. Rest of the proof deals with instances where $\beta_{[1]} > \frac{\mathsf{OPT}(\mathcal{I})}{3}$ and $p_{\mathsf{last}} > \frac{\mathsf{OPT}(\mathcal{I})}{3}$.

- Machine 5
- Machine 4
- Machine 3
- Machine 2
- Machine 1

- Machine 5
- Machine 4
- Machine 3
- Machine 2
- Machine 1

slack: 3M slack: 3M - 1

Machine 5

Machine 4

Machine 3

Machine 2

Machine 1 3*M* time


```
Machine 5

Machine 4

Machine 3

Machine 2

Machine 1

Machine 1

Machine 1
```


$\textbf{Proof Sketch of Tightness (} \exists \mathcal{F}, \sup_{\mathcal{I} \in \mathcal{F}} \tfrac{\mathsf{SLACK}(\mathcal{I})}{\mathsf{OPT}(\mathcal{I})} = 4/3 \textbf{)}$

$\textbf{Proof Sketch of Tightness (} \exists \mathcal{F}, \sup_{\mathcal{I} \in \mathcal{F}} \frac{\mathtt{SLACK}(\mathcal{I})}{\mathtt{OPT}(\mathcal{I})} = 4/3 \textbf{)}$

- ► *M* is an arbitrary constant
- ► SLACK(\mathcal{I}) = 8M 1

- ► *M* is an arbitrary constant
- ► SLACK(\mathcal{I}) = 8M 1
- ▶ $\mathsf{OPT}(\mathcal{I}) = 6M$

- ► *M* is an arbitrary constant
- ► SLACK(\mathcal{I}) = 8M 1
- ▶ $OPT(\mathcal{I}) = 6M$
- $lackbox{SLACK}(\mathcal{I}) \over \mathsf{OPT}(\mathcal{I}) \rightarrow 4/3 \ \mathsf{as} \ \mathit{M}
 ightarrow \infty$

Consider the set \mathcal{S}_k of instances \mathcal{I} where all tasks are "small", i.e., $p_j \leq \frac{\mathsf{OPT}(\mathcal{I})}{k}$ for a fixed integer $k \geq 2$.

Consider the set \mathcal{S}_k of instances \mathcal{I} where all tasks are "small", i.e., $p_j \leq \frac{\mathsf{OPT}(\mathcal{I})}{k}$ for a fixed integer $k \geq 2$.

Theorem (Upper bound)

For any instance
$$\mathcal{I} \in \mathcal{S}_k$$
, we have $\frac{SLACK(\mathcal{I})}{OPT(\mathcal{I})} \leq 1 + \frac{m-1}{m(k+1)}$.

Consider the set \mathcal{S}_k of instances \mathcal{I} where all tasks are "small", i.e., $p_j \leq \frac{\mathsf{OPT}(\mathcal{I})}{k}$ for a fixed integer $k \geq 2$.

Theorem (Upper bound)

For any instance $\mathcal{I} \in \mathcal{S}_k$, we have $\frac{SLACK(\mathcal{I})}{OPT(\mathcal{I})} \leq 1 + \frac{m-1}{m(k+1)}$.

Theorem (Lower bound)

If $m \geq k$, there is an instance $\mathcal{I} \in \mathcal{S}_k$ such that $\frac{SLACK(\mathcal{I})}{OPT(\mathcal{I})} \geq 1 + \frac{k-1}{k(k+1)}$.

Table of Contents

The $P||C_{\text{max}}|$ Problem

The SLACK Heuristic

The Approximation Ratio

Conclusion

Conclusion

Takeaways

- The SLACK heuristic was known to often outperform existing approximation algorithms such as LPT and COMBINE.
- ► We proved that SLACK is a 4/3-approximation algorithm.
- ▶ In a worst-case analysis, SLACK is comparable to LPT even for "small" tasks.

Conclusion

Takeaways

- The SLACK heuristic was known to often outperform existing approximation algorithms such as LPT and COMBINE.
- ▶ We proved that SLACK is a 4/3-approximation algorithm.
- ▶ In a worst-case analysis, SLACK is comparable to LPT even for "small" tasks.

Perspectives

- Reduce the gap between the upper and lower bounds of SLACK in the restricted case with "small" tasks only.
- Apply a different analysis framework to understand why SLACK often outperforms other algorithms.

