Assignment – 4 Team ID: PNT2022TMID06631

STUDENT NAME	KODEESWARAN M
STUDENT ROLL NUMBER	61072011903
MAXIMUM MARKS	2

Problem Statement: Abalone Age Prediction

Description:- Predicting the age of abalone from physical measurements. The age of abalone is determined by cutting the shell through the cone, staining it, and counting the number of rings through a microscope -- a boring and time-consuming task. Other measurements, which are easier to obtain, are used to predict age. Further information, such as weather patterns and location (hence food availability) may be required to solve the problem.

Building a Regression Model

- 1. Download the dataset
- 2. Load the dataset into the tool.
- 3. Perform Below Visualizations.
 - · Univariate Analysis
 - · Bi-Variate Analysis
 - · Multi-Variate Analysis
- 4. Perform descriptive statistics on the dataset.
- 5. Check for Missing values and deal with them.
- 6. Find the outliers and replace them outliers
- 7. Check for Categorical columns and perform encoding
- 8. Split the data into dependent and independent variables.
- 9. Scale the independent variables
- 10. Split the data into training and testing
- 11. Build the Model
- 12. Train the Model
- 13. Test the Model
- 14. Measure the performance using Metrics.

1. Download the dataset:

#import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
import plotly.express as px

2. Load the dataset into the tool:

data = pd.read_csv('/content/drive/My Drive/abalone.csv') data

Out[13]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	Ι	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
•••		:	:	:				:	
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

 $4177\;rows\times 9\;columns$

In [12]: from google.colab import drive

drive.mount('/content/drive')

3. Perform Below Visualizations:

Univariate Analysis

Bi-Variate Analysis

In [15]: plt.scatter(data.Rings, data.Sex) plt.title('The Gender of Abalone vs Number of Rings') plt.xlabel('No. of Rings') plt.ylabel('Gender')

Out[15]: Text(0, 0.5, 'Gender')

Multi-Variate Analysis

In [16]: sb.heatmap(data.corr(),annot=True)

4. Perform descriptive statistics on the dataset :

data.info()

RangeIndex: 4177 entries, 0 to 4176 Data columns (total 9 columns):

#	Column	Non-Null Count Dtype
0	Sex	4177 non-null object
1	Length	4177 non-null float64
2	Diameter	4177 non-null float64
3	Height	4177 non-null float64
4	Whole wei	ght 4177 non-null float64
5	Shucked w	eight 4177 non-null float64
6	Viscera we	eight 4177 non-null float64
7	Shell weig	ht 4177 non-null float64
8	Rings	4177 non-null int64
dty	pes: float64	(7), int64(1), object(1)
me	mory usage	: 293.8+ KB
In	[17]: data . d	escribe()

Out[17]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

5. Check for Missing values and deal with them:

There is no missing values

In [19]: data.isnull().any()

Out[19]: Sex False

 $\begin{array}{lll} length & False \\ Diameter & False \\ Height & False \\ Whole weight & False \\ Shucked weight & False \\ Viscera weight & False \\ Shell weight & False \\ Rings & False \\ \end{array}$

dtype: bool

6. Find the outliers and replace them outliers:

The dataset does not have a outliers

In [20]: fig = px.histogram(data, x='Whole weight') fig.show()

7. Check for Categorical columns and perform encoding:

There is one Categorical column SEX is replaced by an Integer

In [21]: **from** sklearn.preprocessing **import** LabelEncoder le = LabelEncoder()

```
data["Sex"] = le.fit_transform(data["Sex"])
data["Sex"]
Out[21]: 0
             2
            2
       1
            0
        3
            2
        4
             1
       4172 0
        4173 2
        4174 2
        4175 0
        4176 2
        Name: Sex, Length: 4177, dtype: int64
```

8. Split the data into dependent and independent variables:

```
x=data.iloc[:,0:8].values
y=data.iloc[:,8:9].values
In [23]: x
Out[23]:
array([[2. , 0.455, 0.365, ..., 0.2245, 0.101, 0.15],
    [2. , 0.35, 0.265, ..., 0.0995, 0.0485, 0.07],
    [0. , 0.53, 0.42, ..., 0.2565, 0.1415, 0.21],
    [2. , 0.6 , 0.475, ..., 0.5255, 0.2875, 0.308],
    [0. , 0.625, 0.485, ..., 0.531, 0.261, 0.296],
    [2. , 0.71, 0.555, ..., 0.9455, 0.3765, 0.495]])
In [24]:y
Out[24]:array([[15],
    [7],
    [9],
    [9],
    [10],
    [12]])
```

9. Scale the independent variables:

```
x=data.iloc[:,0:8]
   print(x.head())
 Sex Length Diameter Height Whole weight Shucked weight \
0 2 0.455
            0.365 0.095
                             0.5140
                                        0.2245
1 2 0.350
             0.265 0.090
                             0.2255
                                        0.0995
2 0 0.530
            0.420 0.135
                             0.6770
                                        0.2565
  2 0.440
             0.365 0.125
                             0.5160
                                        0.2155
  1 0.330
            0.255 0.080
                             0.2050
                                        0.0895
 Viscera weight Shell weight
0
      0.1010
                 0.150
                 0.070
1
      0.0485
2
      0.1415
                 0.210
3
      0.1140
                 0.155
      0.0395
                 0.055
```

10. Split the data into training and testing:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=0)
In [27]: x_train.shape
Out[27]: (2923, 8)
In [28]: x_test.shape
Out[28]: (1254, 8)
```

11. Build the Model:

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
```

12. Train the Model:

```
lr.fit(x_train, y_train)
Out[30]: LinearRegression()
```

13. Test the Model:

```
y_pred = lr.predict(x_test)
print((y_test)[0:6])
print((y_pred)[0:6])
[[13]
[ 8]
[11]
[ 5]
[12]
[11]]
[[13.11640829]
[ 9.65691091]
[10.35350972]
[ 5.63648715]
[10.67436485]
[11.95341338]]
```

14. Measure the performance using Metrics:

```
# RMSE(Root Mean Square Error)

from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print("RMSE value : {:.2f}".format(rmse))

from sklearn.model_selection import cross_val_score
cv_scores = cross_val_score(lr, x, y, cv=5)
sco=cv_scores.round(4)
print(cv_scores.round(4))
print("Average",sco.sum()/5)
```