

auto data.show()


```
to rows x 4 columns)
In [28]: # let's create a function to make it easier to find neighbours and find out the quality of results.
      def show_neighbours(model, data, i):
         res = model.query(data[i:i+1])
fil_res = data.filter_by(res['reference_label'],'id')
         fil_res['image'].show()
In [30]: show_neighbours(dog_model, dog_data,0)
      Starting pairwise querying.
      | Query points | # Pairs | % Complete. | Elapsed Time |
      +-----+
              | 1 | 0.196464 | 18.768ms
      0
              | 100 | 105.547ms |
      +-----+
         All 5 images in <SArray>
In [31]: show_neighbours(dog_model, dog_data,135)
      Starting pairwise querying.
      +-----+
      | Query points | # Pairs | % Complete. | Elapsed Time |
      +-----+
      0 1 0.196464 13.184ms
      Done
               1
                     | 100 | 98.114ms |
      +-----+
         All 5 images in <SArray>
In [ ]: # wow, very good results!!!
In [ ]: # now let's play with
In [32]: show_neighbours(auto_model, auto_data,11)
      Starting pairwise querying.
      | Query points | # Pairs | % Complete. | Elapsed Time |
      +-----+
      | 0
              | 1 | 0.196464 | 10.041ms |
                     100
               1
                               81.863ms
      Done
         All 5 images in <SArray>
In [33]: show_neighbours(auto_model, auto_data,428)
      Starting pairwise querying.
      +-----+
      | Query points | # Pairs | % Complete. | Elapsed Time |
      +-----
      0
              | 1 | 0.196464 | 7.704ms |
                      100
                               80.172ms
                1
         All 5 images in <SArray>
```



```
In [47]: # in above section, we have found nearest neighbour for one image at a time.
        # in this section, we will call model to find all nearest neighbour for each image.
In [62]: # First use dog model to find out nearest 1 neighbour.
       # We will find the 1 (one) neighbour (k=1).
dog_dog_nbrs = dog_model.query(dog_test_data,k=1)
       Starting blockwise querying.
       max rows per data block: 4348
       number of reference data blocks: 4
       number of query data blocks: 1
        +------
        | Query points | # Pairs | % Complete. | Elapsed Time |
        +-----
                   127000 | 24.9509
                                      429.574ms
        1000
                                      513.197ms
                  | 509000 | 100
        Done
In [61]: # Use Cat Model on dog data.
# We will find the 1 (one) neighbour (k=1)
       dog_cat_nbrs = cat_model.query(dog_test_data,k=1)
       Starting blockwise guerying.
       max rows per data block: 4348
       number of reference data blocks: 4
       number of query data blocks: 1
        | Query points | # Pairs | % Complete. | Elapsed Time |
       +-----+
                  | 127000 | 24.9509
                                      387.093ms
        I 1000
                  509000 | 100
        Done
                                      430.458ms
        +-----+
In [57]: # Use Auto Model on dog data.
        dog_auto_nbrs = auto_model.query(dog_test_data,k=1)
       Starting blockwise querying.
       max rows per data block: 4348
       number of reference data blocks: 4
       number of query data blocks: 1
        +-----+-----+------
       | Query points | # Pairs | % Complete. | Elapsed Time |
        +-----+
                  | 127000 | 24.9509 | 375.754ms |
        1000
                                      406.031ms
                  509000 | 100
        Done
In [58]: # Use Bird Model on dog data.
       dog_bird_nbrs = bird_model.query(dog_test_data,k=1)
       Starting blockwise querying.
       max rows per data block: 4348
       number of reference data blocks: 4
       number of query data blocks: 1
        +-----+
       | Query points | # Pairs | % Complete. | Elapsed Time |
        +-----+
                  | 119000 | 24.8954 | 382.2ms |
        1000
                                       419.964ms
                   478000 | 100
        Done
        +-----+
In [59]: dog cat nbrs.show()
        query label
                            reference label
                                                 distance
                                                                    rank
         dtype:
                    int
                            dtype:
                                                 dtype:
                                                             float
                                                                    dtype:
                                                                                   int
         num_unique
                            num_unique
                                                 num_unique
                                                                    num_unique (est.):
                                                             999
                    993
                                       265
         (est.):
                            (est.):
                                                 (est.):
                                                                    num_undefined:
                                                                                   0
                            num_undefined:
         num undefined:
                    0
                                       0
                                                 num undefined:
                                                             0
                                                                    min:
                                                                                   1
         min:
                            min:
                                       33
                                                 min:
                                                             28.177
                                                                                   1
                                                                    max:
         max:
                    999
                            max:
                                       49,840
                                                 max:
                                                             52.729
                                                                    median:
         median:
                    500
                            median:
                                       26,336
                                                 median:
                                                             36.672
```


In [67]: dog_distance.head()

Out[67]:

dog_auto	dog_bird	dog_cat	dog_dog
41.9579761457	41.7538647304	36.4196077068	33.4773590373
46.0021331807	41.3382958925	38.8353268874	32.8458495684
42.9462290692	38.6157590853	36.9763410854	35.0397073189
41.6866060048	37.0892269954	34.5750072914	33.9010327697
39.2269664935	38.272288694	34.778824791	37.4849250909
40.5845117698	39.1462089236	35.1171578292	34.945165344
45.1067352961	40.523040106	40.6095830913	39.0957278345
41.3221140974	38.1947918393	39.9036867306	37.7696131032
41.8244654995	40.1567131661	38.0674700168	35.1089144603
45.4976929401	45.5597962603	42.7258732951	43.2422832585

[10 rows x 4 columns]

```
In [81]: dog_distance.apply(dog_wins).sum()
Out[81]: 678
```