National Institute of Technology Calicut

Department of Electronics and Communication Engineering EC 3093D DIGITAL SIGNAL PROCESSING LAB

Sixth Semester B Tech Electronics & Communication Engineering

Experiment 2: Computation of DTFT and DFT.

Note: All the experiments must be implemented in both Matlab and Python.

1. Evaluation of DTFT

- (a) Write a program to evaluate DTFT which can be expressed as a rational function in e^{-jw} . What is the expression for the DTFT to be evaluated? What is the kind of symmetry exhibited by the magnitude and phase spectrum?
- (b) Modify the above program to evaluate the following DTFT in the range $0 \le \omega \le \pi$:

$$X(e^{jw}) = \frac{1 + e^{-jw}}{1 + 0.8e^{-jw} + 0.64e^{-j2w}}$$

- (c) Modify the above program to compute and plot the magnitude and phase of the DTFT of the sequence $x[n] = \cos(0.4\pi n)$, $0 \le n \le 15$ in the range $-\pi \le w \le \pi$. Consider $x[n] = \cos(0.4\pi n)$, $0 \le n \le 63$ and plot the DTFT again. Comment on your results.
- (d) Using freqz(), determine and plot the magnitude and phase spectra for the moving average filter with M=2, M=3 and M=4 for $-\pi \le w \le \pi$

2. Evaluation of DFT:

- (a) Write a function dft() which computes the DFT of x(n).Using your function, compute and plot the magnitude and phase of the DFT of $x[n]=[1\ 2\ 3\ 4]$.verify your answer with function fft()
- (b) Write a program to verify the fact that the DFT values X[k] are the samples of the DTFT $X(e^{-jw})$ at $w=2\pi k/N$ k=0,1,...N-1.