Interim Technical Report 7

RESPONSE OF WINDOWS TO SONIC BOOMS

Prepared for:

NATIONAL SONIC BOOM EVALUATION OFFICE DEPARTMENT OF THE AIR FORCE THE PENTAGON WASHINGTON, D.C.

CONTRACT AF49(638)-1696

June 1967

Interim Technical Report 7

RESPONSE OF WINDOWS TO SONIC BOOMS

Prepared for:

NATIONAL SONIC BOOM EVALUATION OFFICE DEPARTMENT OF THE AIR FORCE THE PENTAGON WASHINGTON, D.C.

CONTRACT AF49(638)-1696

By: L. SEAMAN

MECHANICS DEPARTMENT

SRI Project ETU-5897

Approved: DUNALD R. GRINE

MANAGER, SONICS DEPARTMENT

Copy No. 73

ABSTRACT

'A method for calculating the response of simply supported windows to sonic booms has been developed. The procedure is based on a linear one-degree-of-freedom analysis plus estimates of the importance of nonlinear and multimodal effects. Effects of stress raisers and of movement followed by impact of loose windows are not considered.

Significant contributions to the maximum stress in windows subjected to 2 psf aonic booms are made by large deflections (nonlinearities), modes above the fundamental, and the internal pressure built up in the building by the boom.

An attempt to estimate statistically the occurrence of window failure under 2 psf booms was frustrated by the lack of precise knowledge of the statistical distribution of glass strength.

PREFACE

This report is one of a series of technical reports dealing with various effects of sonic booms. The research was aponsored by the National Sonic Boom Evaluation Office of the Air Force.

CONTENTS

			Page
ABST	RACT		iii
I	INTRO	ODUCTION	1
II	GENE	RAL PROPERTIES OF WINDOWS AND WINDOW GLASS	3
ш	DEFLI	ECTION AND STRESS OF WINDOWS UNDER SONIC BOOMS	7
	A	Problem Statement	7
	В	Window Deflection and Stream Based on Linear Analyses	9
	С	Deflection Under Internal Pressures Based on Linear Analyses	12
	D	Nonlinear Deflections and Stresses Under Booms	18
	E	Determination of the Amplitude of Internal Pressure	28
	F	Summary of Window Behsvior Under Boom Loading	32
TV	STAT	ISTICAL PREDICTION OF FAILURE	35
v	SUMM	ARY	37
VI	FURT	HER STUDY	39
APPE	NDICE	s	
	A	Dynamic Amplification Factor: Linear	41
	B	Reaponae to Internal Presaure	59
	С	Nonlinear Load-Deflection Relations	63
	D	Experimental Data on Window Response	75
	E	Dynamic Amplification Factor: Nonlinear	95
BIRL	IOGRA	PHY	107

ILLUSTRATIONS

Figure		Page
1	Natural Frequencies of Glass Panes	6
2	Prassuras On and Within s Building	8
3	Plata Deflection Undar Sonic Boom Loading	10
4	Dynsmic Amplification Factor for a Square Plata: Linear, First Mode Deflection Undar Booms	11
5	Linear, Multimodal Dynamic Amplification Factor for Central Deflection of a Square Plate	13
6	Linear, Multimodal Dynamic Amplification Factor for Stress in the Center of a Square Plate	14
7	Dynamic Amplification Factor for First Mode Deflection of a Square Plate to Intarnal Pressure Only	15
8	Dynsmic Amplification Factor for First Mode Deflaction of s Square Plata to Boom and Internal Pressure: q ₂ = 0.25	16
9	Dynsmic Amplification Factor for First Mode Deflection of a Square Plate to Boom and Internal Pressure: $q_2 = 0.50$	17
10 -	Deflection and Stress in the Centar of a Square Plata as a Function of Static Pressura	19
11	Nonlinear Relation Betwaan Central Deflaction and Strass	20
12	Nonlinear First Moda Deflection of a Square Plate to a Boom Loading with Amplitude such that $\xi_s=1.0$	22
13	Nonlinear First Moda Deflection of a Square Plate to a Boom Loading with Amplituda such that $\xi_s = 2.0$.	23
14	Nonlinear First Mode Daflection of a Square Plate to a Boom Loading with Amplitude such that $\xi_s = 3.0$	24
15	Summsry of Nonlinesr First Moda Deflection of a Square Flate to a Boom Loading	25
16	Variation of Apparent Natural Frequency with Central	26

ILLUSTRATIONS (continued)

Figure		Page
17	Pressures Considered in Calculating the Internal Pressure of a Building	. 29
A. 1	Flow Chart for Multiplate Program to Compute Multimodal Dynamic Amplification Factora	. 49
A.2	Flow Charta for Portiona of the Main Multiplate Program for Computation of Deflectiona (Portiona for Calculating Momenta are Similar)	. 5 0
A.3	Subroutinea Uaed in Multiplate Program	. 51
C.1	Graph for Determination of D_1	. 73
C.2	Graph for Determination of B_1	. 74
D.1	Relation Between Applied Pressure and Deflection at Rupture	. 78
D.2	Experimental and Theoretical Load-Deflection Curves	. 80
р.3	Deflection at Rupture as a Function of Thickness Ratio, a/h	. 82
D.4	Deflection at Rupture as a Function of Thickness	. 83
р.5	Failure Pressure on Flates as a Function of the Thickness Ratio, a/h	. 84
D.6	Effect of Loading Rate on Ultimate Strength	. 85
D.7	Bending Stream as a Function of Central Deflection	. 87
p.8	Membrane Stress as a Function of Central Deflection	. 88
D.f.	Relation Between Central Bending Stream and Applied Pressure	. 90
D.10	Relation Between Central Membrane Stream and Applied	. 91

TABLES

Tsbls		Ps ge
1	Properties of Window Glass	4
2	Nominal Sizes of Square Panes	5
3	Deflaction and Stress of Square Windows Under a 2 psf Boom	28
C.1	Coefficients for Large Deflection of Squsr? Plstes	71
D.1	Ultimate Deflection and Bursting Pressures	76
D.2	Ultimate Deflection and Bursting Prassurss	77
D.3	Stress Data	79
D.4	Statistical Data on Failure	93
D.5	Statistics Data on Bresking Stress	93
E.1	Amplitude Reduction for Higher Modes	99
E.2	Frequency Incresse for Higher Modes	101

RESPONSE OF WINDOWS TO SONIC BOOMS

SECTION I

INTRODUCTION

The reaponse of windows to sonic hoom loadings presents an importent problem in the evaluation of sonic hoom effects on structures. Experimental studies which have been undertaken to ascertein the effects of hooms on windows of various sizes are those of Maglieri, Huckel and Perrott (1961), Blume and Associates (1965), and Freynik (1963). These test progrems have shown that nearly all windows ere broken by hoom pressures of 100 paf and that e few will breek at pressures of 10 or 20 psf. No lower limit has been established on the pressure required to breek a window. These three studies and the stetic tests of Bowles end Sugsrman (1952) and Orr (1957) heve shown that windows have a nonlineer behavior even at low pressures.

Nonlinearities become important when the central deflection exceeds one-half the plate thickness, and, for usual window dimensions, static pressures of 1 paf to 10 paf will cause such a deflection. The consequence of the nonlinearities is that stress and deflection ere not proportional to pressure or to each other. Hence, there has been considerable difficulty in interpreting experimental results and in extrapolating the findings. In most cases the data were not correlated with theory. In the dynamic tests the pressures acting on the window were not measured, only the nominal pressure in the vicinity was measured. In cases where window deflection was measured, only maximum excursion was obtained.

Knowledge of window hehavior requires careful procuring of the right data and data reduction hesed on a theoretical analysis of the window motion. This present study is intended to hring together available theoretical knowledge on the subject to

- 1. indicate the experimental parameters which should be meesured,
- 2. provide a basis for data reduction,
- provide a hasis for prediction of window atreases and deflections in response to booms,

4. indicate those areas where further experimental or theoretical work is most needed.

The study is primarily concarned with boom loadings with peak pressures of about 2 psf.

Nat loading on a window is a function of the stiffness and volume of the structure in which the window occurs. Response of a window to loading is highly nonlinear and depends on the participation of savaral deflection modes. Because of this complexity the problem has not been solved analytically but has been approximated by considering (1) general properties of windows, (2) the linear response of windows in the fundamental mode, (3) linear response in all modes, (4) effect of internal pressure on the reaponse, and (5) nonlinear reaponse in the first mode. By comparing the results of (2), (3), (4), and (5), we have estimated the nonlinear, multimodal response. Finally, using the calculated response, the statistical probability of window damage was estimated.

SECTION II

GENERAL NATURE OF WINDOWS

To celculate window response, we need to know the normal mounting conditions of windows, strength and modulus of glass, common sizes of windows, end the neturel frequencies of windows.

Window glass is mounted either with glazing nails and putty or in a rubber seal. It may be assumed that the edge conditions cen be approximated by a simple support with a moveable edge. This assumption has been studied by Freynik (1963). Freynik used aquare windows mounted with glezing nails and putty. He compared empirical natural frequencies with those from vioration theory for simple supported plates, and compared measured atreases with theoretical values. Both comparisons showed that the experimental results could be explained on the basis of a simple support condition. The results of Bowles and Sugarman (1952) in static testing of windows confirms the existence of the simple, moveable boundary condition.

An unknown, but probably large, fraction of existing windows are loose in their mountings and/or have atreas reisers present in poor mountings. The results of this report cannot be applied to such defective windows since the above assumption of simple support edge conditions does not apply. Our results should apply well to calculation of the response of new, well-mounted windows such as those usually encountered in laboratory tests or field test structures.

Strength of window glass has been reported by R. W. McKinley (1964); values for strength and other parameters of glass windows ere listed in Table 1. Strengths were determined by the standard ASTM (1965) beam test procedure. Flexural strength was evaluated as failure in tension: glass feils without any significent amount of plastic deformation so that the yield value equals the ultimate strength. There is considerable scatter in results from strength tests. McKinley (1964) states that the strengths are normally distributed and suggests using a coefficient of varietion of 25% (that is, the standard devietion is one-fourth the mean strength).

TABLE I
PROPERTIES OF WINDOW GLASS
(from McKinley)

Property	Velue
Flexurel Strength	
Short duration: sonic booms, blests	6600 psi
One minute lording: wind	4400 psi
Elestic modulue	10 ⁷ psi
Density	0.09 lb/in^3
Poisson's ratio	0.23

On the other hand, Shand (1958) states that the distribution is not normal, but skewed so that the mean is larger than median and mode; possibly a lognormal or Poisson distribution would fit the data.

Normal sizes for glase panes are dictated by building code requirements which in turn are based on wind loadings end nominal factors of safety. The allowed thicknesses for panes of various ereas as specified in the Uniform Building Code (1964) are shown in the first two columns of Teble 2. The values are for a wind loading of 20 psf. Dimension of the window may be combined to form the dimensionless parameter, a/h, where a is the length of one side of a square pane and h is the thickness. For a rectangular pane, e is taken as the square root of the area. In a equere pane the a/h ratio and the pressure govern the magnitude of stress in the pane under uniform loading. From the building code requirements, the maximum allowable retio (a/h) was determined and listed in column 3 of Table 2. If it is presumed that a builder will always use the minimum thickness permitted, then we cen also obtain a minimum ratio as in column 4 of Tuble 2. This minimum value of a/h was computed for each thickness using the value of e associated with the next smaller thickness. The minimum values are listed opposite the thickness values used in each computation.

TABLE 2
Nominal Sizes of Square Panes*

Ares a ² (ft ²)	Thickness t, (in.)	Maximum Allowed a/h (dimensionleas)	Minimum Probable e/h (dimensionless)
5.8	0.085	340	141**
10.85	0.115	343	251
12	1/8	332	316
27	3/16	332	222
48	7/32, 1/4	380, 333	285, 242
75	5/16	333	268
198	3/8	333	277
190	1/2	331	250

^{*} Data in Columna (1) and (2) ere from the Uniform Building Code (1964).

The listings in Table 2 show that the range of s/h values is not very large. Since most of the values are between 220 and 340, this range was used in the enelyses of this report.

The netural frequencies of windows ere importent for studies of dynemic loadings. For this anelysis the windows are treated as simply supported plates undergoing small deflections. This epproach appears to be adequate for deflections which ere less than the pane thickness. Figure 1 is a greph of natural frequency as a function of the area-to-thickness ratio, calculated from the equation shown on the figure. Square end rectangular panes with several espect ratios are included and the first three frequencies are considered. These three frequencies correspond to modes in which there are one maximum point of deflection, three maxime, and nine maxime. The range of eres-to-thickness ratios for various glass thicknesses is also shown to indicate the probable frequencies which are encountered.

^{**} Based on e 12 x 12-inch window.

FIG. 1 NATURAL FREQUENCIES OF GLASS PANES

SECTION III

DEFLECTION AND STRESS OF WINDOWS UNDER SONIC BOOMS

A. Problem Statement

To determine the deflection end stress of windows under booms let us examine qualitatively pressures on the buildings end resction of the building. Characteristic boom pressures related to structure reection are shown in Fig. 2. In the free field the pressure rises sharply. At the front wall of the building the pressure shows a sharp rise and evidence of reflections from the ground end wall. The boom pressure at the rear shows e more gradual rise and follows that on the front face by s few milliseconds. The pressure at each point on the roof has a sharp rise, but the averege roof pressure has a longer rise time, corresponding to the travel time of the wave across the roof.

The effects of these loadings on the building are of two types:

- (1) general compression of the building followed by a rarefaction,
- (2) racking of the building first in the direction of travel of the boom and then in the reverse direction. The oversll compression of the building causes an increase in the pressure inside the building. This internal pressure is usually one-fourth to one-half the peek boom pressure end significantly sdds to the atructural stiffness in compression.

Window deflections during a sonic boom ere e function of the external pressure, structure motion, and internal pressure built up through compression of the building. The external pressure shows evidence of reflections from ground and buildings and passage around buildings and so may not correspond closely to the free-field boom pressure. To calculete the internal pressures and building mot and it will be necessary to know (1) motion of the walls and roof caused by a boom pressure, and (2) motion of the walls, ceiling, and roof caused by internel pressure. If internal end externel pressure ere known, window motion can be calculated ea the motion of a nonlinear, multimodal system under the action of known forces. Such an analysis was made end the contribution of nonlinearities and higher modes computed as perturbations of the single mode solution.

FIG. 2 PRESSURES ON AND WITHIN A BUILDING

To make the problem tractable the following assumptions were introduced:

- 1. The outside boom is an ideal symmetric N-wave. This assumption eliminates the rise time and minor irregularities in the wave form. If the period of the structure is much longer than the rise time or durations of irregularities, then this assumption is justified.
- 2. The inside pressure has the form of a full sine wave with the same duration as the boom signature. This pressure history is a simplification of observed internal pressure histories.

The state of the s

3. The variation in strivel times around the building cen be neglected.

The several enslyses required ere

- Lineer enelyeis of first mode motion under an N-wave
- Lineer analysis of first mode motion under internal pressure
- Linesr snalysis of first mode motion under sn N-wave end internal pressure
- Lineer enelysis of multimodel motion under en N-weve
- large deflection enelysis of first mode motion under en N-wsve
- Calculation of the emplitude of internel pressure

The results of these enelyses ere presented next. Following them, the results are collected to produce an anelysis o? e window motion end stress.

B. Window Deflection and Strees Based on Lineer Analyses

Figure 3 is an illustration of the probable bictory of central deflection of a window (fundamental mode only) to an N-shaped pressure wave. The applied pressure is shown as the dotted line with an emplitude corresponding to the stress which would occur if the pressure were applied statically. The dynamic deflection curve shows oscillation at the fundamental frequency of the plate. The plate is oscillating about the static deflection curve so that the dynamic deflection appears as a superposition of static deflection and free vibrations. In this figure the maximum negative deflection is approximately equal to the maximum positive. The two maxima are 26% and 40% higher than the static stress corresponding to the maximum applied pressure. The ratio of maximum dynamic stress or deflection to the static value is referred to as the dynamic amplification factor.

The dynemic smplification fector for the fundemental mode of a square plate (applicable to both stress and deflection) is shown in Fig. 4. The loading was a symmetric N-shaped pressure wave. In this figure there are separate curves for the maximum positive and negative deflection during the boom and the magnitude of the free oscillation following the boom.

These curves were derived from the analysis in Appendix A for linear

FIG. 3 PLATE DEFLECTION UNDER SONIC BOOM LOADING

FIG. 4 DYNAMIC AMPLIFICATION FACTOR FOR A SQUARE PLATE: LINEAR, FIRST MODE DEFLECTION UNDER BOOMS

amplification factors. The abscissa is $\omega \tau/2\pi$, a nondimensional relation between ω , the fundamental circular frequency of the window, and τ , the duration of the N-wave.

Higher modes slso contribute to the deflection and stress in the window. Dynsmic smplification factors for the deflection and streas under a symmetric N-shaped pressure wave for the first eleven modes are shown in Figs. 5 and 6. The first eleven modes were calculated but the msin contributors were the first (1,1) and second symmetric (1,3) modes. For compsrison the two figures include the positive and free vibration msxima for the fundsmentsl mode. We note that, while the amplification factor was the same for stress and deflection in the fundamental mode, it differs for the multimodal case. The factor for deflection is modified only very slightly by the contributions of higher modes: the first pesk is about 4% higher and other curves are modified less. The smplification factor for stress is increased 0.60 in some regions of the sbscissa and the peaks of the curve sre broadened. In addition the second symmetric mode is sufficiently important to provide well-defined humps on some of the curves. On the sversge the stress increase during free vibrstion is 0.28 and for the positive maximum the increase is 0.26.

C. Deflection Under Internsl Pressure Based on Linear Anslyses

The response of a one-degree-of-freedom systom to s pressure in the form of a full sine wave is shown in Fig. 7. This is the expected form of internal pressure. Again the positive maximum, negative maximum, and free vibration maximum are shown as a function of fundamental frequency. The amplification factor is larger than 2.0 only near coincidence of the forcing frequency and the natural frequency. The analysis on which these curves are based is detailed in Appendix B.

In Appendix B sn snslysis is also made of the response of a one-degree-of-freedom system to a combination of the N-wave and internal pressure. Some results are shown in Figs. 8 and 9 for deflection (atress curves are identical). The main effect of increasing the internal pressure is to greatly decrease the amplification factors in the vicinity of $\omega \tau/2\pi = 1.0$.

FIG. 5 LINEAR, MULTIMODAL DYNAMIC AMPLIFICATION FACTOR FOR CENTRAL DEFLECTION OF A SQUARE PLATE

FIG. 6 LINEAR, MULTIMODAL DYNAMIC AMPLIFICATION FACTOR FOR STRESS IN THE CENTER OF A SQUARE PLATE

FIG. 7 DYNAMIC AMPLIFICATION FACTOR FOR FIRST MODE DEFLECTION OF A SQUARE PLATE TO INTERNAL PRESSURE ONLY

FIG. 8 DYNAMIC AMPLIFICATION FACTOR FOR FIRST MODE DEFLECTION OF A SQUARE PLATE TO BOOM AND INTERNAL PRESSURE: $q_2 = 0.25$

FIG. 9 DYNAMIC AMPLIFICATION FACTOR FOR FIRST MODE DEFLECTION OF A SQUARE PLATE TO BOOM AND INTERNAL PRESSURE: \mathbf{q}_2 = 0.50

D. Nonlinear Deflections and Stressea Under Booms

In reaponse to normal wind pressure loadings, window deflection is a markedly nonlinear function of the pressure. This nonlinear behavior occurs because the plate resists part of the load as a membrane after the deflection becomes large. According to the discussion of Freynik (1963) this nonlinearity causes the motion to differ considerably from that shown in Fig. 3. Inseed of the amouth sinusoidal vibrations, the motion shows abrupt changes in direction. The natural frequencies of a window undergoing large deflections are a function of the deflection amplitude and are almost a continuous band of frequencies above the fundamental. With such a mixture of frequencies in the motion, the natural frequencies cannot be readily determined from the records. The nonlinearities have an important effect on

- atreases and deflections,
- natural frequency,
- dynamic amplification factor.

We will consider each of these effects and then provide some numerical values to guide in assessing the seriousness of the nonlinearity.

The variation of stream and deflection with applied static pressure is shown in Fig. 10 based on the calculations in Appendices C and D. In Appendix C the forms of the equations are derived theoretically. The coefficients of the equations are evaluated in Appendix D from experimental data of other investigations. Figure 10 shows the nondimensional quantities w_0/h (deflection, ξ), ca^2/Eh^2 (stress, S), and ca^4/Eh^4 (pressure, Q), where

wo = central deflection of the square plate

σ = streas (bending, membrane, or both)

q = uniform pressure on the plate

a = side of plate

h = thickness of plate

E = elaatic modulua of plate material

The nonlinearities became important for a deflection greater than 0.5 times the plate thickness. A 2 paf boom will cause deflections up to 1.9 times the thickness in some windows - that is, well into the nonlinear range.

FIG. 10 DEFLECTION AND STRESS IN THE CENTER OF A SQUARE PLATE AS A FUNCTION OF STATIC PRESSURE

In Fig. 11 it is apparent that the relation between deflection and central stress is not altered much by the nonlinearities. The fact that the linear and nonlinear curves do not coincide at the origin suggests that there may be some uncertainties about the experimental values from Appendix D on which the curves are based.

FIG. 11 NONLINEAR RELATION BETWEEN CENTRAL DEFLECTION AND STRESS

Next we consider the large deflection of a window under boom pressures. Dynamic calculations of plates undergoing large deflections normally begin with von Karman's equations. (See Timoshenko (1936) for a derivation of the equations.) However, the results from von Karman's equations did not agree well with experimental data on window deflections (see Appendix D). Therefore we took the pressure-deflection relation derived from the static experimenta, restricting attention to motion in the fundamental mode only.

Nonlinear deflection of a window under an N-wave is shown in Figs. 12, 13, and 14 (based on calculations in Appendix E). These three figures correspond to peek pressure amplitudes required to cause static deflections of h, 2h, end 3h. (ξ_s is the nondimensional static deflection w_s/h under the peek pressure.) The peaks of these figures and Fig. 4 are summarized in Fig. 15. In the summary figure we see that large deflections tend to reduce the period of the plate so that the maxima occur at smaller values of $wt/2\pi$ than occur from small deflections. Also, the amplification factor for free vibration is reduced for large deflections but is unaffected for the positive maximum during forcing. The change in the apparent natural frequency with deflection is summarized in Fig. 16.

An estimate of the multimodal nonlinear behavior is made in Appendix E for both stress and deflection. The peak deflections are modified very slightly by the perticipation of modes above the fundamental. Therefore, it is recommended that the nonlinear response in the fundamental mode be used to calculate deflections with no changes to account for higher modes.

The estimate for peak stress is more complicated, and the accuracy of the estimate may be considerably Jess than that for deflection. The estimation procedure to be outlined eppears logical but has not been verified in any way. The procedure includes two elements:

- Conversion of the nonlinear deflection amplification factor to stress amplification factor
- Addition of an increment to correspond with the contribution of higher modes.

To convert from deflection to stress, Eq. D.8 can be used to relate the stress in the first mode, S_1 , to the total central deflection, ξ ,

$$S_1 = 4.95 (1 + 0.1675)$$

But the deflection ξ is $F_{\xi}\xi_{s}$ where

 F_{ξ} is the amplification factor for deflection and ξ_{s} is the static deflection.

Therefore

$$S_1 = 4.9 F_{\xi} \xi_{s} (1 + 0.167 F_{\xi} \xi_{s})$$

The next step is to add a fector corresponding to the contribution of

FIG. 12 NONLINEAR FIRST MODE DEFLECTION OF A SQUARE PLATE TO A BOOM LOADING WITH AMPLITUDE SUCH THAT $\xi_{\rm s}$ = 1.0

FIG. 13 NONLINEAR FIRST MODE DEFLECTION OF A SQUARE PLATE TO A BOOM LOADING WITH AMPLITUDE SUCH THAT $\xi_s=2.0$

Fig. 14 Nonlinear first mode deflection of a square plate to a boom loading with amplitude such that ξ_z = 3.0

FIG. 15 SUMMARY OF NONLINEAR FIRST MODE DEFLECTION OF A SQUARE PLATE TO A BOOM LOADING

FIG. 16 VARIATION OF APPARENT NATURAL FREQUENCY WITH CENTRAL DEFLECTION

the higher modes. According to the snslysis of Appendix E, the stress sssocisted with these modes is primsrily bending (not membrane) stress and hence equal to that obtained for the linear case. Therefore add 0.28 times the total linear static stress if the peak occurs during free vibration, or 0.26 if the peak occurs during forcing. That is, for free vibration the dynamic stress is

$$S = 4.9 F_{\xi} \xi_{s} (1 + C.167 F_{\xi} \xi_{s}) + 0.28 (4.4) \xi_{s}$$

The stress smplification factor, F_{σ} , is found by dividing S by S_{s} where

$$S_{s} = 4.4 \xi_{s} (1 + 0.186 \xi_{s})$$

As an example consider a square window and a boom with the following characteristics

Window area = 45 aquare feet

Thickness = 1/4 inch

Natural frequency = 7.4 Hz

Boom duration = 0.1 seconds

Peak pressure = 8.85 paf

Nondimensional pressure = 66

According to Fig. 10, the static deflection under the peak pressure is 2h. F_{ξ^1} is 1.80 according to Fig. 15, using an abacissa of 0.1 (7.4) = 0.74. Then for moment we compute

$$F_{\text{C}} = \frac{4.9 (1.80) (1 + 0.167 \times 2.0 \times 1.80) + 0.28 (4.4)}{4.4 (1 + 0.186 \times 2.0)}$$
= 2.54 (nondimensional)

a value which appears quite reasonable.

Now let us take three examples of windows and determine the deflections, stresses, and frequencies in response to a 2 psf boom, disregarding internal pressure. The maximum and minimum slenderness ratios (340 and 220) and an intermediate value will be used for the comparison. The calculated values are given in Table 3. Included in the table are values from the linear analysis of the same problem. The window with the largest a/h value gives the most markedly nonlinear behavior. For this window the large deflection theory gives a deflection just 84% of that from the linear theory, and stresses 75% of those from the linear theory. The windows with smaller a/h ratios give deflections about equal to the linear values although the stresses are considerably lower.

TABLE 3

DEFLECTION AND STRESS OF SQUARE WINDOWS UNDER A 2 PSF BOOM

a/h	Static Loading		Dynamic Losding		Linearized Anslysis, Dynamic Loading	
	w _o /h Deflection	σ Stress (psi)	w _o /h Deflection	Stress (psi)	w _o /h Deflection	σ Stress (pai)
220	0.15	160	0.30	370	0.30	440
280	0.39	240	0.75	560	0.78	730
340	0.78	350	1.43	810	1.70	1080

NOTE:

The boom durstion and fundamental frequency of the window were presumed to be such that $w\tau/2\pi = 1.0$.

E. Determination of the Amplitude of Internal Pressure

The pressure in s building which is struck by s boom may be caused by

- flow of the pressure weve through openings in the building (open doors, windows, ventilation ports),
- 2. cverall compression of the building,
- 3. transmission through flexible sress such as windows.

The third is essentially a different way of stating the second with the added presumption that the only elements which will deflect appreciably are windows. The third cause was assumed by Blume (1965) to be the most important. In this section a calculation is presented determining the pressure rise as a function of overall building compression. The calculation shows that building compression may be the prime cause of internal pressure.

For the calculation we will assume that the history of the internal pressure is sinusoidal with period equal to the boom duration. Internal pressure is calculated from the equilibrium condition between the boom pressure, wall deflection and internal pressure. The necessary equations are derived using the variables illustrated in Fig. 17. The maximum deflection of the roof is

$$w_{R} = F_{BR} w_{SR} q_{1} - (F_{BR} - F_{BIR}) w_{SR} q_{21}$$
 (1)

where F_{BR} is a dynamic amplification factor for the roof under boom loading.

F_{BIR}
is a dynamic amplification factor for the roof under boom and internal pressure (as shown in Figs. 8 and 9).

w_{SR}
is average static deflection under unit pressure.

q₁, q₂₁
are outdoor boom and attic peak pressures.

FIG. 17 PRESSURES CONSIDERED IN CALCULATING THE INTERNAL PRESSURE OF A BUILDING

Comparable equations can be written for the wall and window deflections. Similarly, the ceiling deflection is

$$w_{C} = F_{IC} w_{SC} (q_{21} - q_{22})$$
 (2)

where

Fig. is the dynamic amplification factor for the ceiling under internal pressure

 w_{SC} is the average static ceiling deflection under unit pressure q_{22} is the pressure in the first floor rooms.

The internal pressure is caused by deflection of the structural surfaces so that

$$q_{22} = w_C^G_C + w_W^G_W + w_B^G_B$$
 (3)

$$q_{21} = w_R^G_R - w_C^G_{RC}$$
 (4)

where

 $w_w = window deflection$

w_B = wall deflection

 G_{C} , G_{W} , G_{B} , G_{R} , and G_{RC} are factors relating the average deflection to the change in pressure.

The main contribution to internal pressure is from large panel elements such as the roof, large doors, or windows.

To validate the method, a calculation was made of the peak internal pressure in a simple rectangular one-atory structure designated PF-6 in the White Sands sonic boom test report of John A. Blume and Associates (1965).

The experimental results obtained during the sonic boom tests indicate a nonlinear relation between internal and external pressure. For low pressures the ratio is about 40% for booms from an F-104. At 5 psf the ratio is 30%. For our calculation the 2 x 4's in the walls and roof

were assumed to provide all the atiffness to those elements and to be fixed at both ends. The positive maximum amplification factor was used from Figs. 4, 7-9. The boom duration was assumed to be 0.10 seconds, a nominal value for the F-104. Calculated frequencies of the atructural elements were

Windows 18

18 Hz

Walla

25 Hz

Roof, Ceiling 8 Hz

Equations 1 through 4 were solved for a 1 paf boom to give

q₂₁ = 0.64 psf (peak attic pressure)

q₂₂ = 0.36 psf (peak pressure in first floor rooma)

The value of 0.36 for q_{22} should be compared to the internal pressure of 30 to 40% measured by Blume and Associates.

The correspondence between the calculated and experimental values is very good considering the uncertain basis for some of the assumptions. The present calculations also show the relative importance of the contribution of each element to the pressure rise in the structure. For PF-6, the pressure caused by motion of the roof and ceiling was 82% of the internal pressure, q_{22} . The walls contributed 8%, windows 10%. While the calculations are not verified sufficiently to use for predictions, the results led us to believe that compression is the main cause of the rise in internal pressure.

The preceding procedure is dependent on the validity of certain assumptions concerning the end fixity of wall and roof members, and on windows and doors being closed. Instead of conducting this procedure, which is unverified, it is reasonable to depend on an estimate of the internal pressure based on the experimental results of Blume (1965). For a flexible structure the internal pressure might be estimated at 50% of the boom pressure. If the roof or ceiling or upper floor is a stiff element and the walls are not abnormally flexible, an educated guesa indicates that the internal pressure is 25% or less of the boom pressure. Following the reduction of the Edwards Air Force Base test data it is expected that a more reliable basis for these pressure estimates will be available.

F. Summary of Window Behavior Under Boom Loading

Determination of the response of windows to booms requires the computation of a host of factors. Now that each of the factors has been introduced, a summary of the calculation is presented:

- Eatimate window deflection using some guess at internal pressure; use Figs. 4, 8, and 9. This estimate is required for Step 2.
- Compute the internal pressure acting on the inside of the window as outlined in Section E.
- Determine the amplification factor for the window as a onedegree-of-freedon system to boom pressure and internal pressure; use Figs. 4, 8, and 9.
- 4. Modify the computed factor for nonlinear effects: Find the dynamic amplification factors for appropriate static deflection and for zero deflection; multiply the amplification factor from Step 3 by the ratio of these factors to obtain $F_{\mathfrak{F}_1}$.
- 5. Modify the values for the multimodal effect: For deflection, let $F_{\xi} = F_{\xi^1}$. For moment or stress, compute F_{ζ} , the dynamic amplification factor from the relation

$$\mathbf{F}_{\sigma} = \frac{1.115 \ \mathbf{F}_{\xi} \ (1 + 0.167 \ \mathbf{F}_{\xi} \xi_{s}) + 0.28}{1 + 0.186 \ \xi_{s}}$$

The values of stress and deflection can then be found from the equations

$$\xi = F_{\xi} \xi_{s}$$

and

$$S = F_{\sigma S} = 4.4 \xi_{s} (1 + 0.186 \xi_{s}) F_{\sigma}$$

It is expected that the dominant displacement response of square windows to a 2 psf far-field sonic boom will be resonance in the fundamental frequency of the window. For longer rectangular windows there will be oscillation in the first and second symmetric modes. The noar-

field boom exhibits oscillations which may excite other window frequencies.

Nonlinear effects are expected for windows with large slenderness ratios (length to thickness over 300) when subjected to 2 psf booms. Instead of a resonance in the fundamental mode at the fundamental frequency, the resonance will occur at a range of frequencies near the fundamental. Freynik (1963) has shown that the Fourier spectrum of response has a continuous band of frequencies with the frequencies from linear theory dominant. The linear frequencies hecome less dominant as the deflections increase. The magnitude of the peak deflection and stress will be reduced by the nonlinearities. The dynamic amplification factor for deflection and stress will be 1.4 to 2.7.

Maximum stress and maximum deflection are not closely related, even in the static case. Maximum deflection under a uniform static pressure is essentially a function of the first mode reaponse whereas maximum stress receives a contribution of about 10% from the higher modes. In the case of dynamic and particularly nonlinear dynamic response, there is even less correlation between the stress and deflection. Hence, if stress is desired from experimental data, stress should be determined from strain gage measurements, and if deflection is desired, deflection should be measured. One should not depend on calculating one quantity from a measurement of the other at a given point.

SECTION IV

STATISTICAL PREDICTION OF FAILURE

The most important information which should be obtained from a study of window response to some is an enswer to the question: What is the probability of failure of windows under some pressures? To answer this question we need statistical data of three types:

- Variability of maasured ...ximum prasaures for a planned pressure of the sonic boom. These variations are dependent on weather conditions, position, valocity, and acceleration of aircraft, and terrain. With our present state of knowledge about booms, these variations must be handled statistically rather than deterministically.
- Distribution of window sizas in buildings.
- Distribution of window strengths in normal kinds of caaings.

We have made two computations, assuming first that window glass strangths are distributed normally, and second that they are distributed lognormally. (Available data do not distinguish between these distributions.) We take the coefficient of variation of the strength as 25% as recommended by McKinley (1964) of Pittsburgh Plate Glass. The mean boom strength is taken as 2 psf with a coefficient of variation of 25%. The 25% is characteristic of fairly calm days. The pask atresses used will be those from Table 3, for a/h = 340 (most critical case) and for a glass strength of 6600 psi.

The probability of failura is treated from the viewpoint of multiplevalued random phenomena as described by Parzen (1960) (Chap. 7, Sec. 3):

$$\mathbf{P} = \int_{-\infty}^{\infty} \varphi_1(\mathbf{x}_1) \int_{-\infty}^{\mathbf{x}_1} \varphi_2(\mathbf{x}_2) d\mathbf{x}_2 d\mathbf{x}_1 \qquad (3)$$

where ϕ 's are mutually independent probability density functions. For a normal distribution, ϕ is given by

$$\varphi(x) = \sqrt{2\pi\sigma} \quad \exp\left[-1/2 \left(\frac{x-m}{\sigma}\right)^2\right]$$

PRECEDING PAGE BLANK

and for the lognormal, ϕ is (see Aitchison and Brown (1957))

$$\varphi(x) = \sqrt{\frac{1}{2\pi x\sigma}} \qquad \exp\left[-1/2 \left(\frac{\log x - m}{\sigma}\right)^2\right]$$

While an exact analytical solution of Eq. 5 is not possible, the integration can be easily performed numerically. These computations were made for the most critical case of Table 3, that is, for a/h=340. The results are

Distribution	Probability
Normal	.0002
Lognormal	10-9

Evidently then the failure probability is critically dependent on the distribution assumed. It is often said that the normal distribution is impossible because it predicts a finite possibility of negative values of atrength and boom pressure. However, if we truncate the normal distribution at zero for the above calculation, we make no noticeable change in the calculated probability. Hence there appears to be neither logical nor experimental bases for determining the correct distribution.

From claims data it appears that the probability of damage for win-dowd per 2 paf boom is of the order of 10^{-8} . This indicates that the correct distribution for window atrengths may be intermediate between the normal and lognormal. Because of the very low probability value of 10^{-6} , it is not to be expected that laboratory tests can provide the distribution with sufficient accuracy for damage calculations.

SECTION V

SUMMARY

The results of this report spply only to windows which may be considered simply supported. An unknown portion of reel windows are loose or have stress relaers in their mountings. Most windows without such defects will feil under boom pressures of 100 psf or less while at lesst e few will fail et 10 or 20 psf. Defective windows mey fail at even lower levels. At stetic pressures of 1 to 10 psf the response of simply supported windows becomes nonlineer. The nonlineerity radically effects the reletions emong deflection, strees, and pressure.

The dominent motion of s window under e 2 psf boom ie oscillation in the fundamental frequency. For windowe with s length to thickness retio over 300, nonlineer effects are expected to increese the response in the higher modes. Also the motion in the fundamental mode will occur at e renge of frequencies near the fundamental frequency.

A procedure was developed for predicting the deflection and streas of windows under low-pressure booms. The present enalysic is sdequate elthough spproximate. The procedura is based on e one-degree-of-freedom enelysis plus estimates of the multimodel and nonlinear effects end of the interection with the building motion.

The celculation procedure provides pradictions of

- Peek internel pressure caused by incidence of a boom on a building
- Response of a one-degree-of-freedom system to e combined boom and internal pressure loading
- Contribution of higher modes to the streas end deflection of windows
- Modification of wirdow response ceused by large-deflaction (nonlinear) effecta.

The possibility of window failure caused by 2 psf booms is considered from a statistical standpoint. But no reasonable estimate of the statistics of failure can be made because statistical distribution of the strength of glass is not known precisely.

In experimental studies of window motion it is necessary to measure
(a) central deflection of the window, (b) strains at aeveral points on
both sides of the pane, (c) pressure on hoth sides of the window,
(d) edge fixity of the window. In dynamic studies the history of each
of the measurements a, b, and c must be taken. Auxiliary measurements
must be made of Young's modulus and Poisson's ratio and the exact dimensions of the glass pane.

A basis for reduction of experimental data on window response is provided. Stress, deflection, and pressure should be nondimensionalized and graphed against each other to show the trends. Dynamic results will require a dynamic analysis similar to those herein to provide an adequate evaluation of the data.

There is need for empirical relations among stress, deflection, and pressure for windowe in the usual mountings. Such relations should provide a basis for multimodal response calculations. The next step is a dynamic multimodal calculation. With static relations and dynamic calculations, an adequate base is laid for reducing data from sonic boom tests on windows.

SECTION VI

FURTHER STUDY

To more clearly define the response of windows to sonic booms, four further studies may be considered. The first three should be undertaken in the order listed.

- An experimental determination of the static and dynamic loaddeflection relations for windows. Measurements must be aufficiently complete to provide information on the behavior in several modes.
- A calculation of the dynamic multimodal response of windows undergoing large deflections.
- 3. A detailed analysis of the response of windows in test houses at White Sands or Edwards Air Force Base. The required instrumentation consists of an accelerometer, atrain gages or displacement gages on the window, and pressure gages on the inside and outside of the window. In addition, a motion gage on the window frame would be useful to show the amount of support movement.
- 4. A study of the magnitude of internal pressures in huildinga subjected to booms. The internal pressure should be measured and calculated from the motion of structural elements. A byproduct of such a study would be an accurate method to calculate the frequencies and deflections of building elements in residential construction.

While each of the above studies has scientific and engineering merit, none appears to be justified by the needs of the sonic boom program.

ことことととなる 不安かの

APPENDIX A

DYNAMIC AMPLIFICATION FACTOR: LINEAR

The dynamic amplification factors for the stress and deflection at the center of a simply supported square plate were calculated for a pressure pulse in the form of an N-wave. The static moment and deflection are given by Timoshenko¹⁶ (1959) in the following series form:

$$M_{x} = \frac{16q_{0}a^{2}}{\pi^{4}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} + vn^{2}}{mn(m^{2} + n^{2})^{2}} \sin(m\pi x/a) \sin(n\pi y/a)$$
 (A.1)

$$w = \frac{16q_0a^4}{\pi^8D} \sum_{m=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{mn(m^2+n^2)^2} \sin(m\pi x/a) \sin(n\pi y/a) \qquad (A.2)$$

where M_{x} is the moment in the x-direction in the plate

w is the deflection

qo is the pressure

a is the length of one side of the plate

D is the flexural rigidity of the plate

x,y are coordinates of the plate

v is Poisson's ratio

m, n are indices denoting the number of modes in the x and y directions respectively.

For purposes of the computer program required to evaluate the equations, nondimensionalized static deflection and moment, ZO and MO, were defined by

$$w_0 = \frac{16q_0a^4}{\pi^6D} ZO$$

and

$$M_0 = \frac{16q_0a^2(1+v)}{\pi^4}MO$$

where w_0 and M_0 are the central deflection and moment under a uniform static pressure. Therefore

$$20 = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^{\frac{m-n}{2}}}{mn(m^2+n^2)^2} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} R_1(m,n)$$
odd only

But for m = n

$$R_1(m,m) = \frac{1}{4m^6}$$

and for m \ n

$$R_1(m,n) = R_1(n,m)$$

Now define

$$R(m,m) = \frac{1}{4m^6}$$

and

$$R(m,n) = \frac{2(-1)^{\frac{m-n}{2}}}{mn(m^2+n^2)^2}$$
 for $m \ge n$

Then the nondimensional atatic deflection is

$$ZO = \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} R(m,n)$$
odd only

The nondimensional static moment is

MO =
$$\frac{1}{1+\nu}$$
 $\sum_{m=1}^{\infty}$ $\sum_{n=1}^{\infty}$ $(-1)^{m-n}$ $\frac{m^2+\nu n^2}{mn(m^2+n^2)^2}$ = $\frac{1}{1+\nu}$ $\sum_{m=1}^{\infty}$ $\sum_{n=1}^{\infty}$ $S_1(m,n)$ odd only

But for m = n

$$S_1(m,m) = \frac{1+v}{4m^4}$$

and for m + n

$$S_1(m,n) + S_1(n,m) = \frac{1+v}{mn(m^2+n^2)} (-1)^{\frac{m-n}{2}}$$

Therefore, let

$$S(m,m) = \frac{1}{4m^4}$$

and

$$S(m,n) = \frac{(-1)^{\frac{m-n}{2}}}{mn(m^2+n^2)}$$
 for $m = n$

Then

$$MO = \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} S(m,n)$$
odd only

The dynamic deflection is obtained using the mode superposition approach which can be found in many texts (see, for example Norris, et al (1959)). In this method, the deflection is represented as a series of products of three elements:

$$w(t) = \sum_{m} \sum_{n} F_{mn}(t) \psi_{mn} \varphi_{mn} (x,y) \qquad (A.3)$$

where

 $\mathbf{F}_{mn}(\mathbf{t})$ is the dynamic amplification factor ψ_{mn} is a participation factor for each mode ϕ_{mn} is the mode shape.

For the square plate

$$\varphi_{mn}(x,y) = \sin (m\pi x/a) \sin (n\pi y/a)$$
 (A.4)

$$\psi_{mn} = \frac{q_{og} \int_{0}^{a} \int_{0}^{a} \phi_{mn}(x,y) dxdy}{a a a}$$

$$\omega^{2}_{mn} \int_{0}^{\gamma} \int_{0}^{q} \phi_{mn}^{2}(x,y) dxdy$$
(A.5)

$$w^{2}_{mn} = \frac{\pi^{4}Dg}{a^{4}\gamma} (m^{2}+n^{2})^{2}$$
 (A.6)

where

g is the acceleration of gravity

Y is the weight per unit area

 w_{mn} is the natural circular frequency of the mn mode

qo is the maximum of the applied pressure

In the subsequent analyses, we will develop two solutions: one applicable during forcing and the other applicable in the free vibration following forcing. Let the loading be given by the expression $q_0f(t)$. Then the dynamic amplification factor is

$$F_{mn}(t) = \omega_{mn} \int_{0}^{t} f(t') \sin \left[\omega_{mn}(t-t')\right] dt'$$
 (A.7)

For an N-wave the loading is

$$q_0(1-2t/\tau)$$
 for $0 \le t \le \tau$

where τ is the duration of the N-wave. Then the solution during the time of forcing is given by

$$F_{mn}(t) = 1-\cos(\omega_{mn}t) - \frac{2t}{t} + \frac{2}{\omega_{mn}\tau} \sin(\omega_{mn}t) \qquad (0 \le t \le \tau) \quad (A.8)$$

$$\psi_{mn} = \frac{16q_0a^4}{\pi^6 Dmn(m^2+n^2)^2}$$
 for m and n odd (A.9)

$$w(t) = \frac{16q_0a^4}{\pi^6D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} ain (m\pi x/a) sin (n\pi y/a) F_{mn}(t)$$
 (A.10) odd only

Corresponding to this deflection is the moment

$$M_{x} = \frac{16q_{0}a^{2}}{\pi^{4}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} + vn^{2}}{mn(m^{2} + n^{2})^{2}} \sin(m\pi x/a) \sin(n\pi y/a) F_{mn}(t)$$

$$odd only$$

$$for (0 \le t \le \tau)$$

These values of w(t) and M_{χ} are valid only during the loading, that is, up to $t = \tau$.

Using the quentities R and S, and introducing nondimensionalized central deflection Z and moment M, Eqs. A.10 and A.11 take the following form.

$$Z = \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} R(m,n) \left[1-\cos(\omega_{mn}t) - \frac{2t}{t} + \frac{2}{\omega_{mn}\tau} \sin(\omega_{mn}t)\right] \qquad (A.12)$$
odd only

$$M = \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} S(m,n) \left[-\cos(\omega_{mn}t) - \frac{2t}{t} + \frac{2}{\omega_{mn}T} \sin(\omega_{mn}t)\right] \qquad (A.13)$$
odd only

Figure 3 shows the history of the stress or deflection in the fundamental mode during forcing and during free vibration. Both for deflection and moment in the plate, the major contribution is given by the first mode (m = n = 1). Using this fact we can approximately locate the maxima of the deflection and moment by finding the maxima of the first mode. The maxima occur at a time when the derivative of the temporal term is zero, i.e. when

$$\frac{\omega \tau}{2} \sin \omega t = 1 - \cos (\omega t) \qquad (A.14)$$

This relation is aatisfied in two ways. The positive maxima (defining inward deflection) are given by

$$w_{11}t_{max} = 2 \text{ arc tan } (w_{11}\tau/2) + 2 i\pi$$
 (A.15)

where i is zero or a positive integer. The case !=0 is of interest here because it defines the largest of the positive maxima. The negative maxima (defining outward deflection) occur for $w_{11}t_{max}=2i\pi$ where i is a positive integer. To obtain the largest negative value, i is chosen so that

$$2 i\pi < \omega\tau < 2(i+1) \pi$$
 (A.16)

The maximum values obtained from Eqa. A.12 and A.13 represent the peak of the first inward motion of the window. To reduce these values to the dynamic amplification factors we divide them by the corresponding static values from Eqa. A1. and A.2. That is

$$F_{\xi} = \frac{Z}{ZO} = A \text{ or } C$$

and

$$F_m = \frac{M}{MO} = B \text{ or } E$$

where F_g and F_G stand for dynamic amplification factors for deflection and moment. A, B, C, E, are names for these factors in the computer program developed to evaluate the equations. A and B are for positive maxima, C and E for negative maxima.

In addition to finding the amplification factor for the multimodal case, it is of interest to find the factor for the first mode. This calculation is easily made because the Eqs. A.15 and A.16 exactly locate the maxima. The amplification factors for deflection and moment in the first mode only are designated A1 and C1. Curves showing the amplification factors for deflection and moment are shown in Figs. 4, 5, and 6.

Following the application of the load the plate undergoes free vibrations which are also associated with deflections larger than the static ones. The deflections during a period of free vibrations have the form

$$w = w_0 \cos [\omega(t-t_0)] + \frac{\dot{w}_0}{\omega} \sin [\omega(t-t_0)]$$

where w_0 and \tilde{w}_0 are initial deflection and velocity at the time t_0 . Therefore, the first step in calculating these free motions is to determine the displacement and velocity at the termination of forcing and beginning of free vibration, that is, at $t=\tau$. The displacement and velocity at the center of the plate are

$$w(\tau) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} w_{mn}(\tau)$$
 (A.17)
odd only

and

$$\dot{\mathbf{w}}(\tau) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \dot{\mathbf{w}}_{mn}(\tau)$$
 (A.18)

where

$$w_{mn}(\tau) = \frac{16q_{c}a^{4}}{\pi^{6}Dmn} \frac{\sin(m\pi x/e)ein(n\pi y/a)}{(m^{2}+n^{2})^{2}} (-1-\cos \omega_{mn}\tau + \frac{2}{\omega_{mn}\tau} \sin \omega_{mn}\tau) (A.19)$$

$$\dot{w}_{mn}(\tau) = \frac{16q_0e^4}{\pi^8Dmn} \frac{\omega_{mn}sin(m\pi x/e)sin(n\pi y/e)}{(m^2+n^2)^2} (sin \omega_{mn}\tau - \frac{2}{\omega_{mn}\tau} + \frac{2}{\omega_{mn}\tau} cos \omega_{mn}\tau) (A.20)$$

Then for $t \ge \tau$ the deflection is

$$w(t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} w_{mn}(\tau) \cos w_{mn}(t-\tau) + \frac{w_{mn}(\tau)}{w_{mn}} \sin w_{mn}(t-\tau)$$
odd only

(A.21)

end the nondimensional deflection is

$$Z = \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} R(m,n) \left\{ \left[\left(-1 - \cos(\omega_{mn} \tau) + \frac{2}{\omega_{mn} \tau} ein(\omega_{mn} \tau) \right] \cos \left(\omega_{mn} \tau \right) \right\} \right\} \cos \left(\omega_{mn} \tau \right)$$
 odd only

+
$$\left[\sin(\omega_{mn}\tau) - \frac{2}{\omega_{mn}\tau} + \frac{2}{\omega_{mn}\tau}\cos(\omega_{mn}\tau)\right] \sin\left[\omega_{mn}(t-\tau)\right]$$

The equations for moment efter the loeding cen be determined by the same procedure. The maxima in the first mode ere given by

ten
$$[w_{11}(t-\tau)] = \frac{\tilde{w}_{11}}{w_{11}w_{11}}$$
 (A.22)

which reduces to

$$\omega_{11}t = \frac{\omega_{11}T}{2} + i(\pi)$$
 (A.23)

where i is zero or e positive integer. i must be large enough so that $t > \tau$.

The dynamic amplification factor for the first mode is designated A2 and is obtained using the tima given by Eq. A.23. The multimodal amplification factors are designated AFR and MOMFR, where

$$AFR = \frac{Z}{ZO}$$
 and $MOMFR = \frac{M}{MO}$

Z and M are the maximum values of nondimensional deflaction and moment which occur during free vibration.

Flow charts for the program are shown in Figs. A.1 - A.3. Most of the variables have been defined in the previous discussion. Comment carda in the program listing further help to clarify the computation ayatem used. The program is written in Fortran IV and has been used with both a Burrougha B5500 and a CDC3200. The input parameters required for the program are explained in the program. A sample set of data cards are

- (1) 2
- (2) 40 21 0.02 0.02 0.005
- (3) 20 21 1.00 0.05 0.005

The first card indicates that there will be two groups of data. The second requires a calculation for 40 values of the abacissa, $\omega\tau/2\pi$, starting with 0.02 and proceeding to 0.80 in increments of 0.02. The third card produces a calculation for 20 values of abscissa, from 1.00 to 1.95 in steps of 0.05.

The program prints out the input parameters for reference and lists the results in 15 columns. The first column is the abscissa, $\omega\tau/2\pi$. The next group of six columns are results for the fundamental mode only and consist of A1, C1, A2, A1, C1, and A2. The next six columns are results for all modes up to 11, 11. The printout is in the order A, C, AFR, B, E, MOMFR. The final two columns, headed X(Z) and X(M) indicate the value of ω t at which the negative maximum occurs for deflection and moment, respectively.

Until the abaciasa exceeds 0.56, the maximum negative responso during forcing is zero. The program does not correctly provide for this

FIG. A.1 FLOW CHART FOR MULTIPLATE PROGRAM TO COMPUTE MULTIMODAL DYNAMIC AMPLIFICATION FACTORS

FIG. A.2 FLOW CHARTS FOR PORTIONS OF THE MAIN MULTIPLATE PROGRAM
FOR COMPUTATION OF DEFLECTIONS (portions for colculating moments are similar)

FIG. A.3 SUBROUTINES USED IN MULTIPLATE PROGRAM

eventuality so that small positive or negative numbers are listed for C and E with $0<\omega\tau/2\pi<0.50$. Such values should be disregarded.

The compile time was about 80 seconds on either the CDC3200 or the B5500. The execution time per abscissa value was 9 to 10 seconds on the 3200 and 12 to 13 on the 5500.

The resulta of the program are depicted in Figs. 4, 5, and 6. The first is the maximum deflection or moment in the first mode. This figure shows the fundamental pattern of the response which is only slightly modified by the perticipation of higher modes. The first maximum to occur during forcing is called the positive maximum, corresponding to the positive pressure of the N-wave. The curve of positive maximum is monotonically increasing with abscissa values, approaching 20 at infinity. The negetive maxima occur at the largest negative oscillation during the time of forcing. Negstive maxima may occur under two conditions; et the peak of an oscillation where dw/dt = 0 and at the end of forcing when $t = \tau$. The decreesing portions of the curve pertain to the first condition, increasing portions to the second. The free maxima show the lergest values end most clearly show the dependence of the mexima on the natural frequencies. For sbacissa values of 1.43, 2.46, and 3.47, there is no motion efter the time of forcing.

The multimodel deflection is very similar to the first mode deflection. The positive maxima show e 2% or 3% increase over the response in the fundsmentel mode. Negative maxima ere very similar to the first mode response throughout and coincide exactly during decreasing portions. The curves for free vibration maxima shows slightly broader humps and about a 4% increese for the first hump, less for later humps. The minimum points on the free vibration curve are not zero, showing that there is always some residual motion following forcing.

In Fig. 6 it is evident that the moment maxima receive a significant contribution from the higher modes. The curve of positive maximum is eugmented up to 20%. In spite of this feirly large contribution, the response curve is smooth except for a slight undulation near the origin. The everage increase in amplification factor is 0.26. The curve of negative maximum is about 5% higher than those from the first mode. The

curve is bumpy, showing the participation of higher modes, particularly the second symmetric (1,3). The free vibration maxima are modified most significantly by the higher modes. The contribution of the 1,3 mode is clearly evidenced by the triple humps at each main hump of the curve. The increase over the first mode curve varies from 0 th 0.56 with an average value of 0.28.

PROGRAM MULTIPLATE

```
C PROGRAM COMPUTES CENTRAL STRESS AND DEFLECTION OF A SQUARE PLATE UNDER ACTION C OF AN N-WAVE. FIRST ELEVEN MODES (LINEAR THEORY) ARE USED.
      COMMON W.DI.XO.JI.K.OTAU.ASINW.ACOSW
       DIMENSION W(6+6)+Z(40)+R(6+6)+S(6+6)+MOM(40)+ASINW(6+6)+ACOSW(6+6)
      REAL MO, MOM,
                        MOMFR . INCREM
960
      FORMAT(//8H GROUP : ,12,6X,32HABSCISSA = OMEGA TAU/2PI FROM ,
          F6.3,4H TO .F6.3,10x,2HK=,13,6x,4HEPS=,F6.3//)
                                                                                  FORM 960
      FORMAT (11X+29HF I R S T
                                   MODE
                                               O N L Y . 19X . 23HE L E V E N
961
      1M 0 D E S)
                                                                                  FORM 961
962
      FORMAT (9H ABSCISSA: 2X, 2HZ++6X, 2HZ-+4X, 6HZ FREE+4Y, 2HM++6X, 2HM-+
                                                                                  FORM 962
          4X+6HM FREE+4X+2HZ++6X+2HZ-+4X+6HZ FREE+4X+2HM++6X+2HM-+4X+
          6HM FREE,4X,4HX(Z1,3X,4HX(M))
                                                                                  FORM 962
      FORMAT (1X,F6.3,12F8.4,2X,2F7.3)
963
980
       FCRMAT(1X,13HSTATIC DEFL =,F8.4,9X,1SHSTATIC MOMENT =,F8.4)
      FORMAT (13,13,F6.3,F6.3,F6.3)
FORMAT (13:
986
987
C BEGIN LOOP TO CALCULATE ZO AND MO. STATIC DEFL AND MOMENT
       Z0=0
       MQ=0
       DO 123 M=1.6
       FM=2+M-1
       R(M,M)=0.25/FM++6
       S(M.M)=0.25/FM*+4
       Z0=R(M+M)+Z0
       M0=5(M+M)+M0
       MM=M+1
       DO 115 N=MM+6
       FN=2*N-1
       R(M,N)=(2.0/{FM+FN*(FM++2+FN++2)++2))+(-1.0)++ (M-N)
       S(M,N)=(1.0/(FM+FN+(FM++2+FN++2) ))+(-1.0)++ (M-N)
       ZO=R(M+N)+Z0
       M0=5 (M:N)+M0
       CONTINUE
115
120
       CONTINUE
       WRITE (6,980) ZQ,MO
                                                                                  WRITE
C CALCULATIONS ARE MADE FOR GROUPS OF VALUES OF ABSCISSA, OMEGA TAU/2PI
C ON FIRST DATA CARD ENTER VALUE FOR THE NUMBER OF DATA GROUPS. JGROUP.
C ON SECOND AND SUCCEEDING DATA CARDS ENTER JEND, K, FIRST, INCREM,
            JEND IS THE NUMBER OF INCREMENTS OF SIZE INCPEM IN EACH K IS THE TOTAL NUMBER OF STEPS TAKEN ON BOTH SIDES OF THE
C AND EPS.
C GROUP.
C FIRST GUESS.XO. K MUST BE ODD.
                                           FIRST IS THE FIRST VALUE OF
                                  INCREM DEFINES THE INCREMENTAL CHANGE UP. EPS IS THE ACCURACY REQUIREMENT
C ABSCISSA IN EACH GROUP. IN C IN ABSCISSA SITHIN EACH GROUP.
C USED IN DECIDING WHETHER TO ACCEPT THE CURRENT MAX OR TO RECYCLE
       READ (5,987) JGROUP
       DO 691 JUG=1,JGROUP
       READ (5.986) JEND+K+F3...ST+INCREM+EPS
       FK=K
       D=1.6/(FK-1.0)
       DO 690 111=1.JEND
       FIII=III
       ABSCIS=FIRST+INCREM+(FIII-1.0)
```

```
OTAU=ABSCIS+6.2832
      00 180 M=1.6
00 170 N=M.6
      FM=2+M-1
      FN=2+N-I
      ¥(M,N)=OT4U+(FM++2+FN++2)/2.0
      ASINW(M.N)=SIN(W(M.P.))
      ACOSW(M+N)=COS(W(M+N))
170
      CONTINUE
      CONTINUE
180
C BEGIN CALC FOR POSITIVE OAF FOR DEFL -- A AND A1
      DIED
      X0=2.0#A\*M(DTAU/2.0)
      A1=1.0-C02(X0)-2.0+X0/OTAU+2.0+SIN(X0)/OTAU
C CALC 9 VALUES LE Z
      PENULT=0
      CALL FORCEM (Z:R)
CALL ZMAX (Z)
CALL MOOIF
250
                                                                              CALL SUB
                                                                              CALL SUB
      CHANGE=ABS (PENULT-Z(J1))
      PENULT=Z(u)
      IF (CHANGE -6."5) 280 + 280 + 250
      #=2(J1)/Z0
C BEGIN CALC FOR POSITIVE OAF FOR MOMENT, B
      01=0
      (0.2\UATC!NATA+0.S=0X
      PENULT=0
      CALL FORCZM (MOM.S)
                                                                              CALL SUB
310
      CALL ZMAX (MGM)
                                                                              CALL SUB
      CALL MODIFY
                                                                              CALL SUB
      CHANGE=ABS (PENULT-MOM(J1))
      PENULT=MOM(J1)
      IF (CHANGE-EPS) 340,340,310
      B = MOM(J1)/MO
340
C CALCULATE OAF NEG FOR Z
      JJJ = ABSCIS
      しししし しししし
      X0 = 6.2832 * 0JJJ
      C1 = I.0 - COS(XO) - 2.0 * XO/OTAU + 2.0 *SIN(XO)/OTAU
      IF (JJJ-I) 402,402,404
      01=G.5+0TAU/(FK-I.0)
402
      X0=0.75+0TAU
      GO TO 410
404
      01=(0TAU-6.2B32+0JJJ)/(FK-3.0)
      IF (01-D) 406,406,40B
406
      01=0
40B
      X0=0TAU/2.0+3.1416+DJJJ-DI
      PENULT=0
410
420
      CALL FORCZM (2+R)
                                                                             · CALL SUB
      DO 430 I=1.K
      Z(1)=+Z(1)
430
      CON! INUE
                                                                              CALL SUB
      CALL ZMAX (Z)
      CALL MODIFY
                                                                              CALL SUB
```

CHANGE=ABS(PENULT+2(J1))

```
PENULT=Z(JL)
      IF (CHANGE-EP5) 455,455,420
      C=2(J1)/20
455
      XOZ=XO
C CALCULATE DAF NEG FOR MOMENT
      IF(JJJ-1) 462,462,464
462
      01=0.5+0TAU/(FK-1.0)
      X0=0.75+0TAU
      GO TO 470
464
      01=(0TAU-6.2B32+0JJJ)/(FK-3.0)
      IF (01-0) 466,466,46B
466
      01=0
46B
      X0=0TAU/2.0+3.1416*DJJJ-0I
470
      PENULT=0
                                                                            CALL 5UB
      CALL FORCZM (MOM,5)
4B0
      00 490 I=1.K
      MOM(1) = -MCM(1)
490
      CONT INUE
      CALL ZMAX (MOM)
                                                                            CALL 5UB
                                                                            CALL SUB
      CALL MODIFY
      CHANGE=AB5 (PENULT-MOK (J1))
      PENULT=MOA(J1)
      IF (CHANGE-EP5) 510,510,480
E = MOM(J1)/MO
510
      XCM=X0
C CALC MAX OFFL DURING FREE VIBRATION
      DIED
      X0= OTAU/2.0 + 3.1416*(DJJJ+1.0)
      A20= -1.0 -COS(OTAU) +2.0+SIN(OTAU)/OTAU
      A2V= SIN(OTAU)- 2.0/OTAU +2.0* C05(OTAU)/OTAU
      A2 = A20 + COS(XG-OTAU) + A2V + SIN(XO - OTAU)
      PENULT=0
                                                                            CALL SUB
606
      CALL FREEZM (Z.R)
      00 610 I=1.K
      Z(1)=A85(Z(1))
610
      CONTINUE
                                                                            CALL SUB
      CALL ZMAX (Z)
                                                                            CALL 5UB
      CALL MODIFY
      CHANGE=ABS (PENULT-Z (J1))
      PENULT=Z(J1)
      IF (CHANGE-EP5) 620,620,606
      AFR= 2(J1)/20
520
C CALC MAX MOMENT OURING FREE VIBRATION
      D1= 0
      X0= 0TAU/2.0 + 3.1416*(0JJJ+1.0)
      PENULT=0
                                                                            CALL SUB
635
      CALL FREEZM (MOM.S)
      DO 640 I=1.K
      MOM(1)=ABS(MOM(1))
640
       CONTINUE
       CALL ZMAX (MOM)
                                                                             CALL 5UB
                                                                             CALL 5UB
       CALL MODIFY
      CHANGE=ABS(PENULT-MOM(J1))
      PENULT=MOM(J1)
       IF (CHANGE-EPS) 650,650,635
```

```
650
      MOMFR= MOM(J1)/MO
      IF (111-1) 660,660,661
660
      DATEND=JEND
      FLAST=FIRST+INCREM#(OATEND-1.0)
      WRITE (6.960) JUG.FIRST.FLAST.K.EPS
      WRITE (6,961)
WRITE (6,962)
661
      WRITE (6,963) ABSCIS.AI.CI.AZ.AI.CI.AZ.A.C.AFR.B.E.MOMFR.YOZ.XOM
690
      CONTINUE
691
      CONTINUE
      ENO
      SUBROUTINE FREEZH (Y.G)
                                                                         SUB
      COMMON W.OI.XO.JI.K.OTAU.ASINW.ACOSW
      OIMENSION W(6.6).Y(40).G(6.6).ASINW(6.6).ACOSW(6.6)
      00 712 J=1.K
01FF=J-(K+1)/2
      X≃X0 +D1FF + D1
      Y(J) = 0
      Jr (X-OTAU) 712:704:704
704
      00 711 M=1.6
      00 710 N=M.6
      FM=2+M-1
      FN=2+N-1
      V=X+(FM++2+FN++2)/2.0
      Y(J) = G(M,N) * ((2.0*ASINW(M,N)/W(M,N)-1.0-ACOSW(M,N))*COS(V-W(M,N))
     710
      CONTINUE
711
712
      CONTINUE
      CONTINUE
      RETURN
                                                                         SUB
      SUBROUTINE FORCZM (Y.4)
      COMMON W.D1.X0.J1.X.OTAU
      DIMENSION W(6.6).Y(40).G(6.6)
      00 820 J=1.K
      DIFF=U-(K+1)/2
      X=X0 + D1FF + D1
      Y(J) = 0
      IF (X-OTAU) 802,802,820
802
      1F(X) 820.804.804
      DO 819 M=1.6
804
      00 818 N=M+6
FM=2+M-1
      FN=2*N-1
      V=X+(FM++2+FN++2)/2.0
      Y(J)=G(4,N)+(1.0-COS(V)-2.0+V/W(M,N)+2.0+SIN(V)/W(M,N)!+Y(J)
818
      CONTINUE
819
      CONTINUE
820
      CONTINUE
      RETURN
      EN0
```

SUB

SUBROUTINE ZMAX (Y)

```
COMMON W.D1.X0.JI:K.OTAU
OIMENSION W(6.6).Y(40).G(6.6)
J1=I
KKI=K-1
OO 870 J=I.KKI
IF (Y(J+I)-Y(JI)) 870.865.865
B65 JI =J+I
870 CONTINUE
C MAXIMUM Y IS AT Y(J1)
RETURN
END

SUBROUTINE MODIFY
COMMON W.D1.X0.J1.K.OTAU
DIMENSION W(6.6)
DIFF =J1-(K+1)/2
X0=X0+D1FF+D1
FK=K
O1=2.0+OI/(FK+I.O)
RETURN
END

3
10 21 I.00 0.02 0.005
10 21 3.00 0.02 0.005
```

APPENDIX B

RESPONSE TO INTERNAL PRESSURE

The response of an enclosing structure to the combination of boom loading and internal pressure will be considered in two ways. First, it will be assumed that the internal pressure is a function of the deflection of the element considered. This corresponds to the case in which the moving element is the main contributor to the deflection which is ceusing the internel pressure rise. For the second celculation, it is assumed that the internel pressure is known and is not modified by motion of the element. This situation occurs if the motion of the element is making only a small contribution to the internal pressure.

For the first cese the relevant equation of motion is

$$D\left(\frac{\partial^{4}w}{\partial x^{4}}+2\frac{\partial^{4}w}{\partial x^{2}dy^{2}}+\frac{\partial^{4}w}{\partial y^{4}}\right)+\frac{\gamma}{g}\frac{\partial^{2}w}{\partial t^{2}}=q(t,x,y)\sim Gw \quad (B.1)$$

where

D is the plate stiffness

w is the deflection

x,y ere rectsngulsr coordinates in the plete

y is the weight/unit eres

g is the acceleration of gravity

t is time

q is the boom loading

is e coefficient relating deflection end internal pressurgenerated by the deflection. Possible units ere pounds/cubic
inch.

Following the derivation in Chapter 5 of Norris, et el. 21, let

$$w = \sum \sum D_{mn}(t) \psi_{mn} \varphi_{mn}(x,y) \qquad (B.2)$$

end

$$q(t,x,y) = f(t) q(x,y) q_1$$

where

 $D_{mn}(t)$ is the dynamic amplification factor for each mode, mn

wm ia the participation factor for each mode

 $\phi_{mn}(x,y)$ is the shape factor for each mode

f(t) is the time variation of applied pressure

q(x,y) is the spatial variation of pressure

q₁ is the peak amplitude of pressure.

A uniform pressure distribution over the plate is assumed, so that q(x,y) = 1.0. Then, for the modal deflection

$$\varphi_{mn}(x,y) = \sin (m\pi x/a) \sin (n\pi y/a)$$
 (B.3)

the participation factor is

$$\psi_{mn} = \frac{16q_1a^4}{\pi^8Dmn (m^2+n^2)^2} \text{ for m and n odd}$$

$$= 0 \qquad \text{for m and/or n even.}$$

The participation factor is identical for static and dynamic loading.

In Norria, et al. 21, it is shown that

$$q_1 a(x,y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \psi_{mn} \omega_{mn}^2 \frac{\gamma}{g} \phi_{mn}(x,y)$$
 (B.5)

and that

$$D(\frac{\partial^4}{\partial x^4} + \frac{\partial^4}{\partial x^2 \partial y^2} + \frac{\partial^4}{\partial y^4}) \phi_{mn} = \omega_{mn}^2 \frac{\forall}{g} \phi_{mn} \qquad (B.6)$$

Now Eq. B,2 is substituted into Eq. B.1 taking into account Eqs. B.5 and B.6. The following result is obtained:

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{Y}{g} \psi_{mn} \varphi_{mn} \left[\frac{d^2 D_{mn}}{dt^2} + \omega_{mn}^2 D_{mn} + \frac{G}{Y} D_{mn} - \omega_{mn}^2 f(t) \right] = 0$$
 (B.7)

In order to satisfy this equetion, each of the terms of the doubly infinite series must be zero. The solution for eny term is

$$D_{mn} = \frac{\omega^2 mn}{\sqrt{\omega^2_{mn} + \frac{Gg}{v}}} \int_{V}^{t} f(t') \sin \left[\sqrt{\omega^2_{mn} + \frac{Gg}{v}} (t-t')\right] dt' \quad (B.8)$$

Compere Eq. B.8 with the solution for externel loading only, which is

$$D_{mn} = \omega_{mn} \int_{t_0}^{t} f(t') \sin \left[\omega_{mn}(t-t')\right] dt' \qquad (B.9)$$

The effect of internal pressure is to increese the frequency by the retio

$$R_{D}(m,n) = \frac{\sqrt{\omega_{mn}^{2} + Gg/\gamma}}{\omega_{mn}}$$
 (B.10)

end to decreese the dynamic emplification factor by the seme ratio. For the further discussion only the first mode, ω_{11} , will be considered. For this case Fig. 4 can be used to determine D_{11} provided the frequency and D_{11} ere modified by the ratio in Eq. B.10.

For the second cese the internel pressure is essumed to be sinusoidel, given by the equetion

$$q = q_2 \sin 2\pi t/\tau$$
 during forcing
= 0 after forcing

where

 τ is the duretion of forcing, end coincides with the boom duretion \boldsymbol{q}_2 is peek epplied pressure.

For e combination of boom and internal pressure, the loeding is

a solution was obtained for the first mode only using the methods of Appendix A. The deflection during forcing is

$$\frac{Z}{Z1} = q_1 \left[1 - \cos (\omega t) - 2t/\tau + \frac{2}{\omega \tau} \sin (\omega t) \right]$$

$$- q_2 \frac{1}{1 - 4\pi^2/\omega^2 \tau^2} \left[+ \sin (2\pi t/\tau) - 2\pi/\omega \tau \right) \sin(\omega t) \right]$$
(B.12)

where

Z1 is the static deflection under $q_1 = 1.0$

With internal pressure slone $(q_1 = 0)$ the maxima occur for

$$cos (2\pi t/\tau) = cos (\omega t)$$

The relevant maxima occur at the times

$$t = \frac{2n\pi}{\omega + \frac{2\pi}{\tau}}$$
 (B.13)

The time of positive maximum is given by n=1. The time of negative maximum is given by the largest even value of n such that $t \le \tau$.

During free vibration the deflection is

$$\frac{Z}{Z1} = q_1 \left\{ \begin{bmatrix} -1.0 - \cos(\omega\tau) + \frac{2}{\omega\tau} \sin(\omega\tau) \end{bmatrix} \cos[\omega(t-\tau)] + \begin{bmatrix} \sin(\omega\tau) \end{bmatrix} - \frac{2}{\omega\tau} + \frac{2}{\omega\tau} \cos(\omega\tau) \end{bmatrix} \sin[\omega(t-\tau)] \right\} - q_2 \left[\frac{\omega\tau/2\pi}{1-\upsilon^2\tau^2/4\pi^2} \right] \left\{ \sin(\omega\tau) \cos[\omega(t-\tau)] + \begin{bmatrix} -1.0 + \cos(\omega\tau) \end{bmatrix} \sin[\omega(t-\tau)] \right\}$$

$$(B.14)$$

For $q_1 = 0$, the condition for a maximum is that

$$\cos [\omega(t-\tau)] = \cos (\omega \tau)$$

That is, for

$$\frac{\omega t}{2\pi} = \frac{n}{2} + \frac{1}{2} \frac{\omega \tau}{2\pi} \tag{B.15}$$

Two programs were written to carry out the required computatione. The one called Boom-and-Internal makes calculations of maxima when both q_1 and q_2 are not zero. No flow chart is provided for it as the program is a simplification of the Multiplate program in Appendix A. The input parameters are the same as for Multiplate with the addition of q_1 and q_2 which are the coefficients of the boom and internal pressure terms. The maxima of Eqs. B.12 and B.14 were determined by trial using the same system as in Multiplate.

When $q_1=Q_1=0$, the terms of the maxima can be determined analytically, so a special program called Sinusoidal was written to calculate this case. There are no data cards needed for this program as the input is part of the program instructions.

Both programs were written in Fortran IV and run on a Burroughs B5500 computer. Compilation times were about 50 seconds. Sinusoidal executed at a rate of 0.12 seconde per abeciasa value, Boom-and-Internal tock 0.15 seconds for each.

The resulta of the Sinusoidsl program are in Fig. 7. This shows some of the same features as the response to booms but the first peaks are higher and later peaks are lower.

The resulte of Boom-and-Internal for $Q_2=0.25$ and 0.50 are shown in Figs. 8 and 9. Evidently the main effect of internal pressure is to decrease the first hump in the response curve. Otherwise the curves are essentially the same as those in Fig. 4 for boom loading only.

PROGRAM BOOM AND INTERNAL

```
PROGRAM COMPUTES MOTION OF A 1 DOF SYSTEM TO A 800M LOADING AND AN
   INTERNAL PRESSURE IN THE FORM OF A SINE WAVE
      COMMON D1,X0,J1,K,OTAU,Z,A85CIS,01,02,E95
      DIMENSION Z(40)
      FORMAT (9H ABSCISSA.4X.4HDPOS.4X.4HDNEG.3Y.5HDFREE.4X.4HTPOS.4X.
901
         4HTNEG. 3X. 5HTFREE)
950
      FORMAT (52H DAF FOR 1DOF SYSTEM UMBER SINUSOID AND 800M LOADING)
      FORMAT (/10x,2HK=,12,4x,4HEPS=,F6.3,4X,3HQ1=,F6.3,4X,3HQ2=,F6.3/)
955
      FORMAT (1X,F6.2,6F8.3)
FORMAT (13,13,5F6.3)
963
986
      FORMAT (13)
987
      WRITE (6.950)
      READ (5,987) JGROUP
      DO 691 JUG=1, JGROUP
      READ (5,986) JEND.K.FIRST.DELTA.EPS.Q1.Q2
      WRITE (6.955) K.EPS.Q1.Q2
WRITE (6.901)
      FK=K
      D=1.6/(FK-1.0)
      DO 690 11I=1.JEND
      F1112XII
      ABSCIS = FIRST+DELTA *(F1II-1.0)
      OTAU = ABSCIS+6.2832
C++++CALCULATE ZPOS
      D1=D
      X0=2.0+ATAN(OTAU/2.0)
      PENULT = 0
      CALL FORCEZ
250
       CALL ZMAX
      CHANGE = ABS(PENULT-Z(J1))
PENULT = Z(J1)
       IF (CHANGE-EPS) 280.280.250
       ZPOS=Z(J1)
280
       XPOS = XO/OTAU
C+++++CALCULATE ZNEG
       JJJ = ABSCIS
       ロンシュニノンノ
       X0 = 6.2832+DJJJ
       IF (JJJ-1) 402,402,404
402
       D1=0.S+OTAU/(FK-1.0)
       X0=0.75+0TAU
       60 TO 418
404
       D1=(0TAU-6.2832+DJJJ)/(FK-3.0)
       IF (D1-D) 406,406,408
406
       D1=D
       X0=0TAU/2.0+3.1416+DJJJ-D1
408
       PENULT = 0
416
       CALL FORCEZ
420
       DO 430 I=1.K
       Z(I) = -Z(I)
430
       CONTINUE
       CALL ZMAX
```

```
CHANGE = ABS(PENULT-Z(J1))
      PENULT=Z(J1)
      IF (CHANGE-EPS) 455,455,420
455
      ZNEG = 2(J1)
      XNEG = XO/OTAU
C+++++CALCULATE ZFREE
      GI=D
      X0 = 0TAU/2.0+3.1416*(DJJJ+1.0)
      PENULT = 0
      CALL FREEZ
606
      DO 610 I=I+K
Z(I) = ABS(Z(I))
610
      CONTINUE
      CALL ZMAX
      CHANGE = ABS(PENULT-Z(JI))
      PENULT=Z(JI)
      IF (CHANGE-EPS) 620,620,606
      ZFREE = Z(JI)
620
      XFREE = X0/OTAU
      WRITE (6,963) ABSCIS, ZPOS, ZNEG, ZFREE, XPOS, XNEG, XFREE
690
      CONTINUE
69I
      CONTINUE
      END
C+++++SUBROUTINE FORCEZ
      SUBROUTINE FORCEZ
      COMMON D1.X0.JI.K.OTAU.Z.LBSCIS.QI.Q2.EPS
      DIMENSION Z(40)
      DO 820 J=I+K
      DIFF = J-(K+I)/2
      X = XO + DIFF + D1
Z(J) = 0
      IF(X-0TAU) 802,802,820
      IF(X) 820.803.803
802
803
      AA=ABS(ABSCIS-I.0)
           = 1.0-COS(X)-2.0+X/OTAU+2.0/OTAU+SIN(X)
      IF (AA-EPS) 810,810,804
       Z2= -ABSCIS++2/(1.0-ABSCIS++2)+(-SIN(X/ABSCIS) + SIN(X)/ABSCIS)
B04
      GO TO BI5
      Z2 = -0.5 * (SIN(X) - X * COS(X))
BIC
       Z(J) = QI+Z1 + Q2+Z2
BI5
      CONTINUE
820
      RETURN
      END
C+++++SUBROUTINE FREEZ
      SUBROUTINE FREEZ
      COMMON DI, XG, J1, K, OTAU, Z, ABSCIS, QI, Q2, EPS
      DIMENSION Z(40)
      D0 712 J=1.K
DIFF = J-(K+1)/2
       x = x0 + DIFF*DI
       Z(J) = 0
       IF (X-0TAU) 712,704,704
704
       AA=ABS(ABSCIS-1.0)
           = (-I.O-COS(OTAU)+2.0+SIN(OTAU)/OTAU)+COS(X -OTAU)
       Z1
```

```
1 +(SIN(OTAU)-2.0/OTAU+2.0+COS(OTAU)/OTAU)+SIN(X -CTAU)
IF (AA-EPS) 710+710+706
      Z2=-(ABSCIS/(1.0-ABSCIS++2))+(SIN(OTAU)+COS(X -OTAU)+(-1.0+
706
        COS(OTAU)) +SIN(X -OTAU))
      GO TO 711
Z2= 3.1416+COS(X-OTAU)
710
       Z(J) = Q1*Z1 + Q2*Z2
711
       CONTINUE
       RETURN
       END
C******SUBROUTINE ZMAX
       SUBROUTINE ZMAX
       COMMON D1.X0.J1.K.OTAU.Z.ABSCIS.Q1.Q2.EPS
       DIMENSION Z(40)
       J1=1
       KK1=K+1
      00 870 J=1,KK1
IF (Z(J+1)-Z(J1)) 870,865,865
865
       J1 = J+1
       CONT INUE
       D1FF = J1-(K+1)/2
X0 = X0 + D1FF * D1
       FK = K
       D1 = 2.0 + D1/(FK + 1.0)
       RETURN
       END
PDATA
                        CO78SEAMAN/TAPES
 25 21 0.5
               0.02 0.005 1.0
                                    0.0
 20 21 1.6
15 21 2.7
                      0.005 1.0
               0.02
                                    0.0
               0.02 0.005 1.0
                                    0.0
15 21 3.7
PEND OF DECK
               0.02 0.005 1.0
                                    0.0
```

PROGRAM SINUSOID

```
SINUSOID CALCULATES THE PEAK POSITIVE, NEGATIVE, AND FREE RESPONSE
C OF A 1 DOF SYSTEM TO A LOADING IN THE FORM OF A SINE WAVE EXTENDING C FROM ZERO TO 2 P1 + WITH NO LOADING THEREAFTER
      FORMAT (1X,F6.2,2X,6F8.3)
FORMAT (9H ABSCISSA,4X,4HDPOS,4X,4HDNEG,3X,SHDFREE,4X,4HTPOS,4X,
900
901
         4HTNEG + 3X + 5HTFREE )
      FORMAT (35H DAF FOR 100F SYSTEM UNDER SINUSOID)
902
       WRITE (6+902)
       WRITE (6,901)
      DO 100 11=1,200
IF (11-50) 10,5,10
      DP0S=1.5708
       DNEG=-3.1416
       DFREE=3.1416
       TP05=0.5
       TNEG=1.0
       TFREE=1.0
       ABSC15 = 1.0
       GO TO 90
10
       11=116
       ABSC1S=B11+0.02
       DPOS = ABSCIS/(1.0-ABSCIS)+SIN(6.2B32+ABSCIS/(1.0+ABSCIS))
       TPOS = 1.0/(1.0+ABSCIS)
       M = 0.5 + 0.5*ABSC1S
       FN = 2+M
       DNEG = ABSCIS/(1.0-ABSCIS)+SIN(6.2832+FN+ABSCIS/(1.0+ABSCIS))
       DNEG2= ABSCIS/(1.0-ABSCIS++2)+SIN(6.2832+ABSCIS)
       TNEG = FN/(1.0+ABSCIS)
       DIFF = -DNEG + DNEG2
       1F (DIFF) 15,20,20
       DNEG=DNEG2
15
       TNEG=1.0
       N = ABSCIS + 1.0
       DFREE = 2.0+ABSCIS/(1.0-ABSCIS++2)+SIN(3.1416+ABSCIS)+(-1.0)++N
20
       M = ABSCIS + 1.5
       FM = 2* M-1
       TFREE = 0.5 + FM/4.0/ABSCIS
90
       WRITE (6,900) ABSCIS, DPOS, DNEG, DFREE, TPOS, TNEG, TFREE
100
       CONTINUE
       END
```

APPENDIX C

NONLINEAR LOAD-DEFLECTION RELATIONS

The purpose of this sppendix is to determine the form of the lergedeflection relations between load and deflection, and between etress and deflection for squere plates. These relations will be used in the next eppendix as a basis for reducing eveilable experimental date.

In the litereture the lerge deflection of square pletes has been determined only for some specific values of Poisson's ratio end certain boundary conditions; the sveileble solutions do not precissly fit the present requirements. An epproximate rather than rigorous solution seemed edequate, and it was also desirable to have the results in analytical rather than graphical form. A modification of the method recommended by Föppl (1924) was used for the celculations.

The method of Foppl is to seek e solution as the sum of two parts: one for membrane and one for bending behavior. Thus the epplied loading can be represented es

$$Q = Q_b + Q_m \qquad (C.1)$$

where

 $Q = \frac{qs^4}{Eh^4}$, s nondimer ions1 loading peremeter end subscripts refer to bending and membrene.

q = pressure

s = length of the eide of the square plete

In Föppl's spproach, the relations between the Q's end the deflection sre teken from the solutions of the small deflection bending and of the membrane problems. These solutions have the form

$$Q_{b} = A_{0}\xi .$$

$$Q_{m} = B_{0}\xi^{3}$$
(C.2)

so that Eq. C.1 becomes

PRECEDING PAGE BLANK

$$Q = A_0\xi + B_0\xi^3 \qquad (C.3)$$

where

is the nondimensional deflection wo/h

wo is the central deflection

Ao and Bo are functions of Poisson's ratio.

When this cubic equation is solved, the membrane and bending stresses can be determined from

$$S_{\mathbf{b}} = G_{\mathbf{0}} \xi$$

$$S_{\mathbf{m}} = D_{\mathbf{0}} \xi$$
(C.4)

where

$$S = \frac{Oa^2}{Eh^2}$$

σ = stress

 C_0 and D_0 are functions of Poisson's ratio, v.

The natural boundary conditions for this solution are the simple support for bending and the immovable edge for membrane action. However, in our case the edge is movable. Therefore, the sought solution was assumed to have the form of Eqs. C.3 and C.4 but with unknown coefficients B_1 and D_1 . Further, it was assumed that B and B_1 would vary in the same way as a function of v so that

$$\frac{B_0(v_1)}{B_1(v_1)} = \frac{B_0(v_2)}{B_1(v_2)} \tag{C.5}$$

and similarly for D and D1.

The steps taken in the solution were the following:

- 1. Find the relations between deflections and pressures for the separate cases of membrane and bending, that is, find $A_0(v)$ and $B_0(v)$ in Eq. C.2.
- 2. Use the theoretical solution of Levy¹⁵ to determine the coefficients B_1 and D_1 (for the case $\nu = 0.316$).
- 3. Determine the coefficients B_1 and D_1 for the case v=0.23 using Eq. C.5.

The values of A_0 and C_0 are readily determined from Chapter 5 of Timoshenko (1959). The results are given in Table C.1.

TABLE C.1
COEFFICIENTS FOR LARGE DEFLECTION OF SQUARE PLATES

υ	Ao	Во	Co	D _o	В,	D ₁
				2,134 2,582		

The coefficients B and D were determined from the analysis on p. 419 of Timoshenko (1959) for the membrane problem. The following expressions were taken for the displacements

$$w = w_0 \cos \frac{\pi x}{s} \cos \frac{\pi y}{s}$$

$$u = c \sin \frac{2\pi x}{s} \cos \frac{\pi y}{s}$$

$$v = c \sin \frac{2\pi y}{s} \cos \frac{\pi x}{s}$$
(C.6)

where u, v sre displacements in the plane of the plate in the x and y directions, respectively, and the origin is at the center of the plate. The strain energy of the plate is then

$$V = \frac{Eh}{2(1-v^2)} \left\{ \frac{5\pi^4}{64a^2} \quad w_0^4 - \frac{5-3v}{3a} \quad \pi^2 c_{\theta_0}^2 + \left[\frac{9-v}{4} \pi^2 + \frac{32}{9} \frac{(1+v)}{2} \right] c^2 \right\} (C.7)$$

The principle of virtual dispiscements was used then as outlined in Timoshenko to find c and w_0 as functions of the applied pressure. The values of B and D in Table 1 are the calculated results.

The theoretical values of Levy¹⁵ were used to find B₁ and D₁. His results were plotted as membrane and bending stresses versus applied pressure for the case $v \approx 0.316$. Two relations were used for the determination. The first was the requirement that the deflection in Eq. C.4

be unique, that is, that

$$\xi^{2} = \frac{S_{b}^{2}}{C_{0}^{2}} = \frac{S_{m}}{D_{1}}$$
 (C.8)

Levy's results were used for S_b and S_m and a value of $D_1 = 1.40$ was found (see Fig. C.1). Then Eqs. C.3 and C.4 were combined as

$$Q = \frac{A_0}{C_0} S_b + B_1 \left(\frac{Sm}{D_1} \right)^{3/2}$$
 (C.9)

Using Levy's values for Q, S_b and S_m , a solution was obtained for B_1 . The determination of B_1 is shown in Fig. C.2 from which it is evident that Eq. C.9 is a good representation of the relation. Following this evaluation of B_1 and D_1 for $\nu=0.316$, B_1 and D_1 for $\nu=0.23$ were calculated using Eq. C.5.

The following equations are then available for solving large deflection problems in aquare plates with simply supported boundaries.

$$Q = A_0 \xi + B_1 \xi^3$$

$$S_b = C_0 \xi \qquad (C.10)$$

$$S_m = D_1 \xi^2$$

In the next appendix experimental values are used to re-evaluate the coefficients $A_{\mathbf{0}}$ through $D_{\mathbf{1}}$ in these equations.

FIG. C.1 GRAPH FOR DETERMINATION OF \mathbf{D}_1

FIG. C.2 GRAPH FOR DETERMINATION OF B

†ì

APPENDIX D

EXPERIMENTAL DATA ON WINDOW RESPONSE

Load-daflaction and atrass-daflaction ralations can be obtained from results of savaral experimental studies. This atudy is based on the results of Bowles and Sugarman (1952), Orr (1957), and Fraynik (1963). The data are fitted to equations in the form of these in Appendix C.

Load-Daflaction Ralations

A load-daflaction aquation like Eq. C.3 will be datarmined first.

 $Q = A_0 \xi + B_0 \xi^3$

whara

 $Q = \text{nondimensional load} = \frac{q}{E} \left(\frac{a}{h}\right)^4$

 ξ = nondimensional deflection = w_0/h

q = appliad prassura

E = Young's modulus

a = distanca between supports of squara pana

h = thicknasa

wo = cantar daflection

The value of A₀ will be taken as 21.7, the theoretical value obtained from small-deflection plate theory for Poieson's ratio equal to 0.23. The data will be related to this equation to determine the value for B₀, and to indicate how well the data follow the analytical equation. We will use the data on ultimate deflection (deflection just preceding fracture) fr : Orr (1957) and from Bowles and Sugarman (1952). The resulting equation should be especially applicable at the utlimate strength of panels, but will not necessarily describe the load-deflection relation at low pressures. The data used are in Tables D.1 and D.2. Or's results represent individual panels whereas Bowles and Sugarman tested 30 or 40 panels of each size and reported mean values and standard devistions from the mean. The results are treated here as though they were from square penals although Orr's panels were rectangular,

TABLE D.1

ULTIMATE DEFLECTION AND BURSTING PRESSURES

(Dats from Orr)

h Thickness (in.)	s ² ares (in. ²)	a/h	q Msx. Pres. (psf)	Q* Nondim. Pressure	Wo Max. Def1.	$\xi = \frac{w_0}{h}$	
PLATE							
0,2373	6720	346	52,25	516	1,200	5,05	
0,240	6720	342	51,87	491	1,189	4.95	
0,303	6720	271	80.65	300	1,200	3,96	
0.301	6720	273	56,17	214	1,000	3.32	
0.2344	8360	389	39,26	631	1,300	5,54	
0,2453	8360	373	36,02	84	1,200	4.89	
0,3045	8360	300	54.09	305	1,200	3.94	
0.305	8360	299	54,02	303	1,200	3,93	
0.242	9840	410	32,52	638	1.400	5.78	
0.239	9840	416	23,58	485	1,200	5.02	
0.303	9840	327	44,56	355	1.311	4,33	
0.304	9840	327	44,00	343	1,300	4,28	
0.369	9840	269	56,13	204	1.200	3.25	
0.372	9840	267	57,85	203	1,200	3.23	
0.114	8640	816	16,72	5120	1,400	12,3	
			SOLEX	<u> </u>	<u> </u>		
0.248	8640	387	54.22	740	1.400	5,65	
0,373	8640	257	73.20	197	1.200	3.22	
0.383	8640	251	61,36	148	1,000	2.61	
0.255	11530	421	38,56	847	1,502	5.88	
0.248	11530	433	41,52	1015	1,600	6,45	

^{*} $Q = \frac{qa^4}{Eh^4}$, E was taken as 10^7 psi.

TABLE D.2

ULTIMATE DEFLECTION AND BURSTING PRESSURES (Data from Bowles and Sugarman)

Description (in.)	No. of Samples	h Thickness (in.)	* 4/a	q Max. Pres. (paf)	Nondim. Pressure	wo Max. Defl. (in.)	5 = *
1/8 plate	40	0.122	328	0.754	871	0.760	6.22
3/16 plate	30	0,197	203	1.412	240	0.726	3.69
1/4 plate	30	0.25	160	1.811	118.7	0.651	2,60
3/8 plate	30	0,373	107	3,625	48.0	0.610	1,63
24 oz sheet	30	0.110	363	0.692	1210	0.807	7.33
32 oz sheet	30	0.158	253	1,369	562	0.870	5.50
3/16 sheet	30	0.195	205	016.1	339	0.860	4.41

* a = 40 in. for all samples.

** $Q = \frac{qa^4}{Eh^4}$ and E was taken as 107 psi.

with sspect ratios between 0.6:1.0 and 1.0:1.0. The data points are plotted in Fig. D.1. The trend line is given by the equation

$$Q = 21.7\xi + 2.80\xi^3 \tag{D.1}$$

which sppears to fit the dats quite well. For comparison the theoretical results of Levy (1942) for Poisson's ratio of 0.316 are also shown.

A check can be made to determine how well Eq. D.1 predicts deflections at low loads, using the data of Bowles and Sugarman on four panels (listed in Table D.3). These four sets of load-deflection points are shown in Fig. D.2 with the theoretical curve of Eq. D.1. Eq. D.1 will be used in subsequent work, with the understanding that its accuracy is limited at small deflections. It may be noted that the data from the tests of the 1/8-inch plate are far from the other points. This tendency is noted in later graphs also. The discrepancy may be caused by using the mean thickness of 0.122 inch in calculating ξ , Q, and S or there may have been some experimental error.

FIG. D.1 RELATION BETWEEN APPLIED PRESSURE AND DEFLECTION AT RUPTURE

TABLE D.3

STRESS DATA
(Date from Bowles and Sugarman)

h* Thickness (in.)	q Pressure (psi)	Q** Nondim. Pressure	<pre>5 = w₀/h Nondim. Deflection</pre>	Ob Bending Stress (psi)	om Membrene Stress (psi)	Sb** Nondim. Bending Stress	S ** Nondim. Membrene Stress
0.122	0.05	57.8	1,61	595	215	6,40	2.315
	0.10	115.5	2.40	795	4 15	8,55	4.465
	0,15	173.2	2.98	900	580	9.68	6.24
	0.20	231.0	3.43	950	750	10.23	8.07
	0.25	289.0	3.78				
0.195	0.05	8.9	0.59	577	92	2,43	.39
	0.10	17.8	0.92	950	200	3.99	.84
	0.15	26.6	1.19	1222	297	5.14	1,25
	0.20	35.5	1.41	1430	400	6.01	1.68
	0.25	44.4	1.62	1595	525	6.71	2,21
	0.30	53.3	1.81	1725	645	7.25	2.71
	0.35	62.2	1.96	1827	752	7.68	3.16
0.25	0.1	6.55	0.42	670	40	1.715	0.10
	0.2	13,10	0.70	1240	160	3,17	0.41
	0.3	19.65	0.93	1705	295	4.37	0.75
	0.4	26.20	1,13	2075	435	5.31	1,11
	0.5	32.75	1.32	2367	563	6.06	1.44
	0.6	39.30	1.48	2615	685	6.69	1.75
	0.7	45.85	1.63	2825	815	7,23	2.09
	0.8	52.40	1.76	2990	950	7,65	2.43
0.373	0.2	2.65	0.25	595	45	0,684	0.052
	0.4	5.42	0.41	1170	100	1,345	0.115
	0.6	7.94	0.57	1730	180	1.99	0.207
	0.8	10.58	0.70	2270	270	2.61	0.311
	1.0	13.23	0.81	2740	380	3.15	0.437
	1.2	15.87	0.92	3170	520	3.64	0.598
	1.4	18.52	1.03	1	Ţ		
	1.6	21.15	1.12	!	!	ļ	
	1.8	23.80	1.21]	
	2.0	26.47	1.30				
	2,2	29.10	1.38				ļ

^{*} The thickness of the specimen tested was not known, so the mesn thickness for the group of specimens was used.

^{**} Nondimensionel pressures and stresses were celculeted using E - 10^7 psi.

FIG. D.2 EXPERIMENTAL AND THEORETICAL LOAD-DEFLECTION CURVES

Ultimate Deflection end Ultimate Strength

The deflection which e penel cen undergo before failing is closely releted to the thickness of the panel. The deflection data of Tebles D.1 end D.2 ere plotted in Figs. D.3 end D.4 to show this reletion. It is cleer from the figures that there is a marked difference between the results of Orr (1957) and of Bowles and Sugarman (1952), and there is a noticeable difference between the plete and about glass results in the latter reference.

To predict ultimate atrength of gleaa penes it is useful to plot nondimensionel maximum pressure against the thickness retio, e/h, es in Fig. D.5. Again there is a distinct difference between the results of Bowlea and Sugerman (1952) and of Orr (1957). The pressures taken by the panes of the former are about 2.5 times those in the letter. This difference is only partly accounted for by the fact that Orr's penes were rectangular and tested at a slower loading rate.

To indicate the probable effect of testing rate on ultimate atrength, we can exemine the equetion given by Frownfelter (1959)

$$\frac{\sigma_{\text{max}}}{\sigma_{0}} = + 0.5 \log_{10} \frac{d\sigma}{dt}$$

where

 $d\sigma/dt$ is the rete of epplication of atress in pai/min σ_0 is e reference atress

With a reference atreas of 2000 psi, this equetion is plotted in Fig. D.6. In addition, the recommended atrength velues from Pittaburgh Plete Gless (1964) ere shown and straight lines were drewn on the figure to indicete the trend of the points. Comparison of the testing retes of Bcwles and Sugarman (1952) with those of Orr (1957) indicates that Orr's atrength velues should be ebout 75% of those from Bowles end Sugarman.

Streas-Deflection Ratioa

Equations releting maximum atress end centrel deflection were determined using the date of Bowles end Sugerman (1952). The equetions have

FIG. D.3 DEFLECTION AT RUPTURE AS A FUNCTION OF THICKNESS RATIO, o/h

FIG. D.4 DEFLECTION AT RUPTURE AS A FUNCTION OF THICKNESS

FIG. D.5 FAILURE PRESSURE ON PLATES AS A FUNCTION OF THE THICKNESS RATIO, a/h

FIG. D.6 EFFECT OF LOADING RATE ON ULTIMATE STRENGTH

the same form as those of Appendix C, that is

$$S_b = C_0 \xi$$

$$S_m = D_0 \xi^3$$

where

$$S = \frac{\mathcal{O}8^2}{Eh^2}$$

σ = stress

 C_0 , D_0 = constants

b,m = subscripts denoting bending or membrane.

The values used ere listed in Table D.3 for the four panes instrumented with strein gages to indicate stress in the center of the pane. The data plotted in Figs. D.7 and D.8 give the following relations

$$S_{b} = 4.4\xi \tag{D.2}$$

$$S_{m} = 0.82\xi^{2}$$
 (D.3)

The bending stresses ere about 65% of those given by Levy (1942) while the membrane atresses ere 65% to 80% of Levy's values. It is improbable that these differences can be explained by the fact the Poisson's ratio for the glass was about 0.23, while Levy used v = 0.316. Because of the coefficient of 4.4 instead of 5.91 as from the linear analysis, stress-deflection results do not coincide with the linear theory even for small deflections.

Equations D.2 end D.3 are reletions between the total stress in the center of the plate and the total deflection at that point. In the analytical work it will be necessary to have expressions relating stress and deflections in the first mode only. According to the linear theory of Appendix A the total static stress is 0.897 of the first mode stress; the total static deflection is 0.976 of the first mode deflection. We will assume that these factors from the linear theory are velid for bending but not for membrane stresses; that is, the total membrane stress is contributed by the first mode. Then

FIG. D.7 BENDING STRESS AS A FUNCTION OF CENTRAL DEFLECTION

FIG. D.8 MEMBRANE STRESS AS A FUNCTION OF CENTRAL DEFLECTION

$$S_{b1} = \frac{4.4}{0.897} (0.978) \xi_1 = 4.8 \xi_1$$
 (D.4)

$$S_{m1} = 0.82 (0.976 \xi_1)^2 = 0.78 \xi_1^2$$
 (D.5)

where the aubscript 1 refers to the first mode. In some cases we will want to relate first mode atresses to total deflections. The appropriate relations are

$$S_{b1} = \frac{4.4}{0.897} \xi = 4.9 \xi_1$$
 (D.8)

$$S_{m1} = 0.82\xi^2$$
 (D.7)

or combining,

$$S_1 = 4.95 (1 + 0.1675)$$
 (D.8)

Stream-Loading Relationa

The bending and membrane atresaea can be compared as direct functions of the loading. From the previous data reductions we have that

$$Q = 21.7\xi + 2.80\xi^3$$
 (D.1)

$$S_{b} = 4.4\xi$$
 (D.6)

$$S_m = 0.82\xi^2$$
 (D.7)

Subatituting we obtain

$$Q = 4.53 S_b + 0.0329 S_b^3$$
 (D.9)

and

$$Q = 24.0 \text{ s}_{\text{m}}^{1/2} + 3.77 \text{ s}_{\text{m}}^{3/2}$$
 (D.10)

The data of Bowlea and Sugarman (1952) and Freynik (1963) are compared with these equations in Figs. D.9 and D.10. The theoretical results of

FIG. D.9 RELATION BETWEEN CENTRAL BENDING STRESS AND APPLIED PRESSURE

FIG. D.10 RELATION BETWEEN CENTRAL MEMBRANE STRESS AND APPLIED PRESSURE

Levy (1942) sre slso included. Equation D.9 sgrees fairly well with Levy's results; the data of Bowles and Sugarman appear to fit Eq. D.9 somewhat better than the curve from Levy. The membrane atresa results ahow a marked difference between the curves from Levy and Eq. D.10. The experimental data are divided between the two curves.

All of the stress-loading dats above is for streams from one-quarter to one-half the ultimate stress. Therefore, prediction of the stress condition at failure would require some extrapolation from the available dats. Because the data do not correlate well with the theoretical or quasitheoretical curves at high stress levels, it does not appear that atresses at failure can be predicted now. This situation is unfortunate because it means that ultimate strength data of glass specimens cannot be used directly to predict failure of glass panes.

Statistica of Failure

Strengtha of glass specimens and window panes appear to vary widely from test to test; auch variations are commonly observed with brittle materials. The experimental results have usually been reported in terms of the normal distribution although the data may fit some other distribution equally well.

Table D.4 lists the coefficients of variation (standard deviation divided by the mesh) of the bursting pressure and the central deflection for the data of Bowles and Sugarman (1952). The variations appear to increase with the thickness of the specimens, as expected for a brittle material. It should be noted that these variations pertain to the pressure and deflection, not to the normalized quantities, Q and §. Therefore, the stated variations include the effects of randomness in the glass atrength and in the glass dimensions.

Additional data on the statistics of the strength of glass are listed in Table D.5. The value given by Orr (1957) is for his estimates of the stress at failure in his glass panels. The other data are from strength tests on other types of glass samples. Note that these coefficients of variation pertain to stress at failure whereas the data of Table D.4 refer to applied pressure and ultimate deflection. Because we do not

have s sure relation between atreaa and applied preaaure at failure, we cannot relate the coefficients of variations of these quantities. Hence, a knowledge of the atstiatical variation of breaking atress does not lead to s knowledge of the atstiatical variation of bursting pressure.

TABLE D.4

STATISTICAL DATA ON FAILURE
(Data from Bowles and Sugarman)

Sample Description	No. of Panels	Bursting Preasure Coeff. of Vsristion (%)	Central Deflection Coeff. of Varistion (%)
1/8" plate	40	17,2	8.6
3/16" plate	30	17,9	9.2
1/4" plate	30	25,0	12.1
3/8" plate	30	23.7	13.9
24 oz sheet	30	14.0	7,55
32 oz sheet	30	15.9	7.17
3/16" aheet	30	26.8	10,95

TABLE D.5
STATISTICAL DATA ON BREAKING STRESS

Source	Coefficient of Variation (%)	Type of Glaas
Frownfelter (1959) Orr (1957) McKinley (1964) Haaselman and Fulrath (196	22.0 19.7 25.0* 12.7	Plate and aclex panea Flate and window Sodium Borcailicate

Value recommended by McKinley for use in estimating safety factors.

APPENDIX E

DYNAMIC AMPLIFICATION FACTOR: NONLINEAR

When plates deflect beyond a small deflection range, their apparent stiffness increases because of membrane action. This change in stiffness increases the natural frequency and decreases the amplitude of motion. The purpose of this appendix is to determine the magnitude of these changes for the problem of window response to booms. The solution is developed first for the motion in the fundamental mode only, and then estimates are made for the effects of the higher modes.

First Mode Only

The equation of motion in the first mode has the following general form

$$\frac{d^2\xi}{dt^2} + \frac{k(\xi)}{m} \xi = \frac{Q_D f(t)}{m}$$
 (E.1)

where

ξ is the nondimensional central deflection, w₀/h

k is stiffness which is s function of deflection

Q is the maximum smplitude of the nondimensional forcing function

f(t) is the temporal variation of that function,

From the solution of Eq. E.1, we want to develop curves of maximum deflection as a function of the period ratio, $\omega\tau/2\pi$, and of the loading. Hence, we must choose to plot deflection as a function of loading for specific values of $\omega\tau/2\pi$ or as a function of $\omega\tau/2\pi$ for specific loadings. The latter course seems appropriate because we can expect the deflection maxima to vary monotonically with load. The load values chosen are those producing specific values of static deflection. The next steps are to introduce the nonlinear relation for k(ξ) and to replace Q by the static deflection it produces.

The lead-deflection relation in Eq. C.10 will be used although it pertains to total deflection, not just first mode deflection. This is a

fsirly small approximation because the difference between static total and first mode deflections is only 2.5%, The relation is

$$Q = A_0 \xi + B_1 \xi^3 = k(\xi) \xi$$
 (E.2)

so that the equation of motion is

$$\frac{d^{2r}}{dt^{2r}} + \frac{A_{0}}{m} \left(\xi + \frac{B_{1}}{A_{0}} \xi^{3}\right) = \frac{Q_{D}f(t)}{m} = \frac{k(\xi_{s})Q_{D}}{m k(\xi_{D})} f(t) \qquad (E.3)$$

Note that $k(\xi_s)/m = (A_0\xi_s + B_1\xi_s^3)/m\xi_s$ is the aquare of the natural circular frequency, and $Q_D/k(\xi_s)$ is the static deflection ξ_s under the load Q_D . Now simplify the equation to the form

$$\frac{d^{2}\xi}{dt^{2}} + \alpha(\xi + \varepsilon\xi^{3}) = \alpha(\xi_{s} + \varepsilon\xi_{s}^{3}) \dot{r}(t) \qquad (E.4)$$

where

$$\alpha = A_0/m$$

$$\epsilon = B_1/A_0$$

Equation E.4 was solved numerically using an Adams predictor-corrector method for integration. The computer program used had been previously developed for a three-degree-cf-freedom system and reported by Bycroft (1965). The program was simplified slightly and changed to accept a sharply defined N-wave as the loading. The deflections and velocities were printed out after each step in the integration. Positive, negative, and free vibration maxima were taken from these listings by hand. The results are plotted in Figs. 12 - 15.

The program is lieted at the end of this appendix. It is written in Algol for use on a Burroughs B5500. The compilation time is 40 seconds, and the execution time per abacissa value averages 14 seconds. The input data is entered on two types of cards. An example of input is given in the comment cards at the beginning of the program. The first card lists the number of abacissa values for which calculations are to be made. One card of the second type is required for each abacissa. On the second type of card the variables are

XI = ξ_s , the stetic deflection under the maximum pressure in the loeding function

ABSCISSA = $\omega \tau / 2\pi$

FINAL = time at which celculation is terminated. It should be set at some value greater than 1.0 such that at least one free vibration maximum is reached.

EPS = ϵ , the coefficient of the nonlinear term.

In the progrem the forcing function is the etetic deflection times a temporal function. If s response to a particular pressure level, \mathbf{Q}_{D} , is required, the appropriate value of $\xi_{\mathbf{g}}$ can be found from the equation

$$Q_D = A_0(\xi_B + \varepsilon \xi_B^3)$$

Alternetively, the 32nd cerd of the progrem could be changed from

to

ALFA
$$\leftarrow$$
 (2_D/A) x OMEGA * 2;

where the values of Q_n end A would have to be supplied.

The progrem output lists the velues of ABSCISSA and XI end then prints four columns of figures, heeded TIME, DEFLECTION, VELOCITY, end DEFL/XI. The velues printed under these heedings are t/τ , ξ , $\tau d\xi/dt$, and ξ/ξ_S . The letter is the dynemic emplification factor.

Higher Modes

A rigorous enelysis of the contribution of higher modes is not made for the large deflection case. However, some estimates ere required of the importence of these higher modes. From Appendix A the contribution of these modes to the lineer solution is known. What is needed now is e meens for estimating changes in the emplitudes and frequencies of the higher modes. Such estimates will be made under the assumption that the motion in the higher modes can be merely added to that for the fundamental mode. With this assumption, the problem can be treated as that of a plete with atresses in its plene.

The deflection of a plate with stresses in its plane can be derived from section 93 of Timoshenko (1959). The result is

$$w = \frac{16q_0}{\pi^6 D} \sum_{\substack{m=1 \ m, n \text{ odd}}}^{\infty} \sum_{n=1}^{\infty} \frac{\sin(m\pi x/s)\sin(n\pi y/s)}{\min\left[\left(\frac{m^2+n^2}{s^2}\right)^2 + \frac{\left(m^2N_X + n^2N_Y + 2m_NN_{XY}\right)}{\pi^2 s^2 D}\right]}$$
(E.5)

where N_x , N_y , and N_{xy} are forces per unit width in the midplane of the plate. They are constants in Eq. E.5. In our dynamic case N_x , N_y , and N_x all vary over the surface of the plate, oscillate at the fundamental frequency, and may be compressive or tensile. However, Eq. E.5 gives an indication of the nature of the effect of the membrane stresses on the deflections in the higher modes. In the central region of the plate, the membrane stresses are tensile and the shear is zero. Therefore the assumption is made that $N_x = N_y$ and $N_{xy} = 0$.

Then

$$w = \frac{16q_0}{\pi^6 D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\sin (m\pi x/a) \sin (n\pi y/a)}{\min (m^2 + n^2)/a^2 [(m^2 + n^2)/a^2 + N_x/\pi^2 D]} (E.6)$$

The momenta are computed from

$$M_{x} = -D \left(\frac{\partial^{2} w}{\partial x^{2}} + v \frac{\partial^{2} w}{\partial y^{2}}\right), \text{ etc.}$$
 (E.7)

The momenta are then

$$M_{x} = \frac{16q_{0}a^{2}(1+v)}{\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} \frac{H(m,n) \sin (m\pi x/a) \sin (n\pi y/a)}{mn[(m^{2}+n^{2}) + N_{x}a^{2}/\pi^{2}D]}$$
(E.8)

where

$$H(m,n) = 1/2 \text{ for } m = n$$

= 1 for m = n

Evidently each term in the series for moment is reduced by the factor

$$\frac{1}{1 + N_X a^2 / [\pi^2 D(\pi^2 + n^2)]}$$

from the value it would have if there were no membrane streasea. Using this factor a general expression can be developed to relate reduction of amplitude in the m,nth mode to reduction in the first mode. Let $R_{\rm E}(m,n)$ be the ratio of amplitude for the nonlinear case to that for the linear case. Then

$$\frac{1}{1 + 2[1/R_E(1,1)-1]/(m^2+n^2)}$$
 (E.9)

As an example let us assume that the amplitude in the fundamental mode was reduced by 30%. Then by how much are the higher modes reduced? The results for this example are in Table E.1.

TABLE E.1

AMPLITUDE REDUCTION FOR HIGHER MODES

Mode	Nonlinear/Linear Amplitude Ratio R _E	$N_{x}a^{2}/\pi^{2}D(m^{2}+n^{2})$
1,1	C.70 (aaaumed)	0.428
1,3 and 3,1	0.92	0.086
3,3	0.95	0.048
3,5 and 5,3	0.97	0.025

The values in the table indicate that the amplitudes of the higher modes are reduced by one-fifth (or lesa) as much as the first mode.

The natural frequencies are also altered by large deflectiona. The estimate of the frequency change is made on the same basis as the amplitude estimate above. That is, the modea are considered separately and the in-plane stresses caused by the fundamental mode are the source of the variations from the linear theory. The approach used is to calculate the strain energy and kinetic energy and equate them to find the natural frequencies.

Again taking the results of paragraph 93 of Timoshenko (1959),

the deflection is assumed to have the form

$$w = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \varphi_{m,n} \sin(m\pi x/a) \sin(n\pi y/a)$$
odd only (E.10)

Then the strain energy is

$$V = \frac{\pi^4 D}{8a^2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \phi^2_{m,n} [(m^2 + n^2)^2 + (m^2 N_x + n^2 N_y + 2mnN_{xy})] \frac{a^2}{\pi^2 D}$$
 (E.11)

The kinetic energy ia

$$T = \frac{\gamma h s^2}{8g} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(\frac{d\phi}{dt}(m,n)\right)^2 \qquad (E.12)$$

where

γ ia the unit weight of the plate

h is the plate thickness.

By equating the maximum values for each mode of T and V and assuming that the motion is sinusoidal, we can obtain the following equation for frequency:

$$\omega_{m,n} = \frac{\pi^2}{a^2} \sqrt{gD/YL} \left[(m^2+n^2)^2 + (m^2N_X + n^2N_y + 2mnN_{XY}) a^2/\pi^2D \right]^{1/2}$$

Again, let $N_x = N_y$, $N_{xy} = 0$. Then

$$\omega_{m,n} = \frac{\pi^2}{a^2} \sqrt{gD/YL} (m^2+n^2) \left[1+a^2N_X/\pi^2D(m^2+n^2)\right]^{1/2}$$
 (F.13)

The factor in Eq. E.13 raised to the one-half power contains the effect of the in-plane atreasea. As might be expected, this is the same factor which entered the expression for the change in amplitude as a function of in-plane atreases. If the change in frequency is known for the fundamental mode, then Eq. E.13 permits a computation of the change for all modes. That is, if B(m,n) is the ratio of frequencies in the nonlinear and linear cases, then

$$B_{E}(m,n) = \sqrt{1 + 2[B_{E}^{2}(1,1)-1]/(m^{2}+n^{2})}$$
 (E.14)

Some sample results with Eq. E.14 sre provided in Table F.2. Note that the same values of membrane stress, N_{χ} , are used in Tables E.1 and E.2. There is evidently very little change in the frequency of the higher modes.

TABLE E.2 FREQUENCY INCREASE FOR HIGHER MODES

Mode	Frequency Ratio	$N_{x}a^{2}/\pi^{2}D(m^{2}+n^{2})$
1,1	1.20 (assumed)	0.428
1,3 snd 3,1	1.04	0,086
3,3	1,025	0.048
3,5 snd 5,3	1.01	0.025

The two snalyses above have shown that the contribution of the higher modes to deflections and stresses are very little affected by the non-linearities. Therefore it is suggested that, for purposes of estimation, the linear contributions of the higher modes be assumed to be valid for large deflections also.

PROGRAM NONLINEAR WINDOW

```
LYNN SEAMAN EXT 3587
BEGIN COMMENT
PROGRAM OF KRIEBEL WAS MODIFIED BY SEAMAN (JAN 67) TO CALCULATE THE
RESPONSE OF A 1 DOF WINDOW TO AN N-WAVE PRESSURE PULSE. PROGRAM USES
RUNGEKUTTA METHOD AS A STARTER AND CONTINUES WITH ADAMS PREDICTOR-
CORRECTOR METHOD.
OATA IS ENTERED ON TWO GROUPS OF CARDS: ONE FOR ITER, ONE FOR XI, ABSCISSA, FINAL AND EPS. ITER IS THE NUMBER OF CASES TO BE HANDLED AND EQUALS THE NUMBER OF DATA CARDS TO FOLLOW. XI IS THE STATIC OFFICETION, ABSCISSA = OMEGATAU/2PI, FINAL IS THE LAST TIME FOR WHICH A CALCULATION IS MADE, AND EPS IS THE COEFFICIENT OF THE NONLINEAR (CUBIC) TERM!
    COMMENT SAMPLE DATA CARDS
3.0,
                                                          END SAMPLE!
                          0.129.
                 1.50
        1 . A.
                  INTIME , HZERO , INITIAL , FINAL , PRINT , RELB , A , SB , OELTAT ,
REAL
                  ABSCISSA, XI: OMEGA, EPS, DELTA, ALFA, DXI;
             II.JJ.SIZE.NFIN.ITER.IC.
INTEGER
REAL ARRAY
                  YINITIAL, YF INALE 1:23;
                 CR (1,15);
LP 4(1,15);
FILE
FILE
                 CLOCK (X36, "CALCULATION TIME OF PROGRAM =",F9.2,X3, "SECONDS",X36);
FORMAT OUT
           + TIME (1)1
INTIME
SIZE+2; NFIN+1; DELTAT+1.0; INITIAL+0.0; RELB+0.001; ABSH+0.001;
               (CR./.ITER);
READ
FOR IC+I STEP 1 UNTIL ITER
DO BEGIN
OME GA+ OF
            ALFA+0; DELTA+0; EPS+0;
FOR II+1 STEP 1 UNTIL 2 DO YINITIAL[II] + 0;
READ (CR./.XI.ABSCISSA.FINAL.EPS)
HZERO + 1.0/(60.0×ABSCISSA) PRINT + HZERO;
OMEGA + ABSCISSA×6.28321
ALFA + (XI+EPS×XI+3)×OMEGA+2;
BEGIN
                  TESTIME1, TESTIME2, TP:
REAL
REAL ARRAY INFCO:NFIN]
REAL PROCEDURE
                       FINPUT (T.FIN);
VALUE
REAL
                  TI
REAL ARRAY
                  FINCODI
         COMMENT
                        SECOND ORDER INTERPOLATION OF INPUT ACCELERATION.
                        USE OF FORWARD DIFFERENCES!
                  IR.R.R1.R2;
REAL
INTEGER
                  II.II1.II2;
IF TETESTIMEI THEN BEGIN
         . T/DELTATI
 IR
         . ENTIER (IR)
H
            - IR-II:
IF ABS(R) SO-06 THEN
FINPUT
             + FINCII)
                  ELSE
THEN BEGIN
                                                              BEGIN
IF TKTESTIME2
 III
        + II+11
```

```
112
       * III+II
R1
       + I-R1
R2
       + 2-RI
FINPUT+ 0.SxR1x(R2xFINCII)-RxFINCII2))+RxR2xFINCIII);
                          ENO
                     ELSE
IF TKTESTIME!
                 THEN BEGIN
III
          + II+I;
RI
          + I-R1
          + 2-RI
R2
FINPUT
          + R1×FINCII] + R×FINC1I1];
                     END
                                                       ENO
                     ENO
               ELSE
FINPUT + 01
ENO OF FINPUTA
PROCEOURE
               FUNCT (TTEMP, YTEMP, OERIV)
REAL
               TTEMP
REAL ARRAY
               YTEMP OERIVE13:
BEGIN
                   COMPUTATION OF OERIVATIVES!
        COMMENT
REAL
               Q12.QI31
INTEGER
               H
       + YTEMPLI 3×YTEMPC1 31
012
       + YTEMP[ I ]xQ121
013
OERIVE13 + YTEMP[2]
OERIV[2] + - (OELTA ×YTEMP[2] + OMEGA*2 ×(YTEMP[1] + EPS ×G13)) + ALFA
            * FINPUT(TTEMP.INFC*3);
ENO OF FUNCTI
REAL ARRAY KFORAOAMS[0:3,1:30], YINCFORAOAMS[1:30]; COMMENT GOES
BEFORE ADAMS!
PROCEOURE AGAMS(SIZE, HZERO, INITIAL, FINAL, PRINT, RELB, ABSB,
                                                                                 AOAMSOOI
                    YINITIAL, YFINAL, FUNCT) ;
     VALUE SIZE, HZERO, INITIAL, FINAL, PRINT, RELB, ABSB ;
    INTEGER SIZE ; REAL HZERO, INITIAL, FINAL, PRINT, RELB, ABSB ; REAL ARRAY YINITIAL, YFINAL(1) ;
    PROCEOURE FUNCT
                AOAMS VERSION OF APRIL I: 1954 #
BEGIN COMMENT
     OWN INTEGER I. J. N :
    OWN REAL X, H, RELTEST, ABSTEST, FACTOR ;
REAL H24, LB, BOUND, T, TEMPX, TEMPH ; BOOLEAN TEST ;
   REAL ARRAY Y, FCO:4:1:SIZE], E, YPE1:SIZE] |
    LABEL
            STARTI, STARTZ, STARTZ, MARCH, LASTSTEP, RETURN J
            LOOPI = FOR I + 1 STEP 1 UNTIL N 00 N 1 MSSG (X4, "THE STEP SIZE IS NOW", EIB+II);
     OEFINE
FORMAT OUT
                SINGY
(X30) "++EQUATIONS CANNOT BE SOLVED WITHIN THE GIVEN ERROR BOUNDS**" (X30)
               TITLE
(XIO. "SOLUTION OF NONLINEAR WINDOW MOTION"///XIO. "ABSCISSA =".Fg.4)
X5,"XI =",F8.4//XB,"TIME",XS,"OEFLECTION",X3,"VELOCITY",X3,"OEFL/XI"//\?
                       (X5.F8.4.X4.F8.4.X4.F8.4.X3.F8.4);
               FRMT
                     (ABSCISSA:XI);
     PROCEOURE RUNGEKUTTA (YOLO, FOLO, YNEW, FUNCT) | REAL ARRAY YOLO, FOLO, YNEW[1]; PROCEOURE FUNCT;
BEGIN
```

```
OEFINE K=KFORAGAMS#, YINC=YINCFORAGAMS#)
       REAL INC. H6 | INTEGER L |
       L + 0 1 H6 + H/6.0 ;
       LOOPI KEO, I] + FOLOEI] ;
       FOR INC + H/2.0, INC, H 00

BEGIN LOOPI YINC[] + YOLDE[]+INC×K[L,I];

L + L +1; FUNCT(X+INC, YINC, KEL,*];
           ENO I
       LOOPI YNEW[]] + YOLO[]]+H6*(K[O,I] -2.0*(K[1,I]+K[2,I]) +K[3,I]);
       X + X +H
     ENO RUNGEKUTTA F
    BOOLEAN PROCEDURE ERRTEST (YP. YC. E) ;
REAL ARRAY YP. YC. E[1];
    BEGIN REAL YCI, EI
                                LABEL RETURN I
       ERRTEST + FALSE ;
           LOOPI BEGIN E[1] +EI+ ABS(YP[1]-(YCI+YC[1])) ;
              IF EI < ABS(YCI) * RELTEST THEN ELIJ + EI / ABS(YCI) ELSE IF EI < ABSTEST THEN ELIJ + EI * FACTOR
              ELSE IF EI < ABSTEST THEN ELI] + EIXFACTOR ELSE BEGIN ERRTEST + TRUE | 60 TO RETURN END |
           END I
  RETURN:
            ENO ERRTEST I
COMMENT INITIALIZE #
    WRITE (LPEPAGE 1);
WRITE (LP, TITLE, LIST1);
    N + SIZE | LOOPI YEO, I] + YINITIALEI] |
                      FUNCT(X+ YE0++3+ FE0++3) #
    X + INITIAL 1
OXI+YINITIAL[1]/X];
    WRITE (LP.FRMT.INITIAL.LOOPI YINITIAL[1].0X1);
    BOUNG + INITIAL+PRINT ;
    IF (TEST+ ABSB#0) THEN
        BEGIN RELTEST + 14.2×RELB | ABSTEST + 14.2×ABSB |
           FACTOR + RELB/ABSB | LB + RELTEST/200+0 |
                          FOR H+0.5×H WHILE H >HZERO 00
        END
    ELSE BEGIN H+HZERO; IF H>PRINT THEN PRINT+H; GO TO STARTS END ;
COMMENT RUNGE-KUTTA STARTING METHOO ;
  START1: H + 2.0×H }
    IF X+H≥FINAL THEN BEGIN J + 0 } GO TO LASTSTEP ENO ;
    RUNGEKUTTA(Y[0,*], F[0,*], YP, FUNCT) ; X + X-H ;
  START2: H + 0.5×H;
START3: IF X+H=X THEN
BEGIN 0XI + YE0.13/XI;
       WRITE (LP.SINGY); WRITE (LP.FRMT.X.LOOPI YEO.I].0XI);
                   GO TO RETURN
                ENO I
    RUNGEKUTTA(YE0,*], FE0,*], YE1,*], FUNCT); FUNCT(X, YE1,*], FE1,*]);
    RUNGEKUTTA(Y[1,*], FL1,*], YL2,*], FUNCT);
IF TEST THEN IF ERRYEST(YP, YL2,*], E) THEN
        BEGIN LOOPI YPEIJ + YE1. IJ I
           X + X-H ; GO TO START2 !
        ENO 1
     FUNCT(X, Y[2,+], F[2,+]) ;
    WRITE (LP+MSSG +H);
         X+H2FINAL THEN BEGIN J + 2 ; GO TO LASTSTEP ENO 1
    RUNGEKUTTA(Y[2+*], F[2+*], Y[3+*], FUNCT)1 H24 + H/24.0 1
```

```
COMMENT CHECK STARTING VALUES FOR PRINTING :
    T + X-3.0×H 1
     FOR J + I+2+3 DO
        BEGIN T + T+H 1
                TEBOUND THEN
               BEGIN BOUND+BOUND+PRINT: DXI + YEJ:13/XII
               WRITE (LP, FRMT, T, LOOPI YEJ, IJ, OXI) END
           ELSE IF T>BOUND-H24 THEN
BEGIN TEMPX + X ; TEMPH +
X + T-H ; H + BOUND-X ;
                                      TEMPH + H 1
                  RUNGEKUTTA (Y[J-I, +], F[J-1, +], YP, FUNCT) ;
                  DXI + YPEI3/XII
                  WRITE (LP.FRMT.X.LOOPI YPEIJ.OXI?)
                  X + TEMPX ; H + TEMPH ; BOUND + BOUNO+PRINT
               END 1
         END I
COMMENT ADAMS MARCHING METHOD : MARCH: FUNCT(X+ YF3++3- FF3-
           FUNCT(X, YE3,+3, FE3,+3) 1
     IF X+H2FINAL THEN BEGIN J + 3 | GO TO LASTSTEP ENO |
             YP[1] + Y[3,1] +H24x(55.0×F[3,1] -59.0×F[2,1] +37.0×F[1,1] -9.0×F[0,1]) ;
    X + X +H 1
                   FUNCT(X, YP, F[4++]) ;
    LOOPI YE4, 1] + YE3, 1] +H24x(9,0xFE4,1] +19,0xFE3,1)
                      -5.0×F[2:1] +F[1:1]) ;
     IF TEST THEN IF ERRTEST (YP, YE4, + ), E) THEN
        BEGIN LOOPI BEGIN YEO, 1] + YE3, 1]; FE0, 1] + FE3, 1] END ; X + X -H; H + 0.5 x H; GO TO STARTI;
        END I
         X=BOUND THEN
        BEGIN BOUND+BOUNO+PRINT : DXI + YE4+13/XI;
        WRITE (LP,FRMT, X, LOOPI Y[4,1], DXI) END
     ELSE IF X>BOUND-H24 THEN
               BEGIN TENOX + X : TEMPH + H :
                   X + X-H | H + BOUND-X |
                  RUNGEKUTTA (YE3, *), FE3, *), YP, FUNCT) | DXI + YPE13/XII
                  WRITE (LP.FRMT.X.LOOPI YP[1].DXI);
                  X + TEMPX : H + TEMPH : BOUND + BOUNO+PRINT
               ENO I
     LOOPI BEGIN Y[3:1] + Y[4:1] | F[0:1] + F[1:1] |
        F[[:1] + F[2:1] + F[2:1] + F[3:1] + F[3:1] + F[4:1] +
        END +
COMMENT CAN INTERVAL H BE DOUBLED & IF H+H>PRINT OR NOT TEST THEN GO TO MARCH &
    LOOPI BEGIN IF E[1] > LB THEN GO TO MARCH END | LOOPI BEGIN Y[0,1] + Y[3,1] | F[0,1] + F[3,1] END |
     H + 2.0×H | GO TO STARTI
LASTSTEP: H + FINAL-X ; RUNGEKUTTA(Y[J,+], F(J,+], YFINAL, FUNCT) ;
     DXI + YFINAL[1]/XII
     WRITE (LP.FRMT.X.LOOPI YFINAL[1].DXI);
RETURN: END ADAMS !
TESTIMEI + NFINXDELYAT:
TESTIME2 + TESTIME1-DELTATI
INFLO] + 1.01 INFLI] + -1.01
ADAMS (SIZE, HZERO, INITIAL, FINAL, PRINT, RELB, ABSB, YINITIAL, YFINAL, FUNCT);
```

```
WRITE (LP[DBL]); WRITE (LP[DBL]); WRITE (LP.CLOCK.(TIME (1)-INTIME)/60); END; CLOSE (CR.RELEASE); END.
?DATA CR
1.
3.0. 1.8. 1.5. 0.129.
?END OF DECK
```

BIBLIOGRAPHY

American Society for Testing Materials, Vol. 13, 1965, p. 142.

Bowles, R., and B. Sugarman, "The Strength and Deflection Characteristics of Large Rectangular Glass Panels Under Uniform Pressure," Glass Technology, Vol. 3, No. 5, October 1952, p. 156-170.

Chu, Hu-Nan and George Herrman, "Influence of Large Amplitudes on Free Flexural Vibrations of Rectangular Elastic Plates," Jour. of Appl. Mech., 1956, Vol. 23, No. 4, p. 532.

Freynik, Henry S., Jr., "The Monlinear Response of Windows to Random Noise," NASA Technical Note, NASA TN D-2025, Dec. 1963.

Frownfelter, C. R., "Structural Testing of Large Glass Installations," p. 19 of a symposium on Testing of Window Assemblies, ASTM Spec. Tech. Publ. No. 251, February 1959.

Hasselman, D. P. H., and Fulrath, R. M., "Proposed Fracture Theory of a Dispersion-Strengthened Glass Matrix," Jour. Am. Ceramic Soc., Vol. 49, February 1966, p. 68-72.

Levy, Samuel, "Bending of Rectangular Plates with Large Deflections," NACA Report No. 737, 1942.

Maglieri, D. J., V. Huckel, and T. L. Parrott, "Ground Measurements of Shock-Wave Pressures for Fighter Airplanes Flying at Very Low Altitudes and Comments on Associated Response Phenomena," NASA Tech. Memc. No. X-611, December 1961.

McKinley, R. W., "Response of Glass in Windows to Sonic Booms," Materials Research and Standards, Vol. 4, No. 11, November 1964, p. 594-600.

Orr, Leighton, "Engineering Properties of Glass, Windows and Glass in the Exterior of Buildings," Pub. 478 of Bldg. Res. Inst. of NAS-NRC, 1957, p. 51.

Pittsburgh Plate Glass Company, "Glass Product Recommendations: Structural, Technical," Service Report No. 101 of Pittsburgh Plate Glass Company, Pittsburgh, Pa., March 1964.

Shand, E. B., "Glass Engineering Handbook," McGraw-Hill Book Co., New York, 1958, p. 47-49.

Timoshenke, S., "Theory of Plates and Shells," Second Ed., McGraw-Hill Book Co., Inc., N. Y., 1959, Chap. 13, Large Deflection of Plates.

Uniform Ewilding Code, Vol. 1, 1964 Edition, International Conference of Building Officials, Pasadena, California, Chap. 54.