EECE322-01: 자동제어공학개론

Introduction to Automatic Control

Chapter 7: Controller Design

Kim, Jung Hoon

◆ The main objectives of this chapter are

1. Introduction

2. Stabilizing controllers

3. Two-degree-of-freedom control systems

1. Introduction

Controllers in the consideration

Rational functions

$$C(s) = \frac{n[s]}{d[s]}$$

 $C(s) = \frac{n[s]}{d[s]}$ • n[s], d[s]: ploynomials of s

Proper functions

$$C(s) = \frac{n[s]}{d[s]}$$

 $C(s) = \frac{n[s]}{d[s]}$ • the order of $d[s] \ge$ the order of n[s]

Strictly proper functions

$$C(s) = \frac{n[s]}{d[s]}$$

 $C(s) = \frac{n[s]}{d[s]}$ • the order of d[s] > the order of n[s]

Motivation of stabilizing controllers

• Typical control problem

Stabilizing controllers

Clarify the structure of all C that stabilize the closed-loop system

Example: undesirable controller

Undesirable controller

•
$$T_{yr}(s) = \frac{\frac{1}{s-1} \cdot \frac{s-1}{s+1}}{1 + \frac{1}{s-1} \cdot \frac{s-1}{s+1}} = \frac{1}{s+2}$$
: stable

•
$$T_{ur}(s) = \frac{\frac{1}{s-1}}{1 + \frac{1}{s-1} \cdot \frac{s-1}{s+1}} = \frac{s+1}{(s+2)(s-1)}$$
: unstable

→ Unstable pole-zero cancellation is inadequate!!

Example: desirable controller

Desirable controller

•
$$T_{yr}(s) = \frac{\frac{s+2}{s+5} \cdot \frac{s-1}{s+1}}{1 + \frac{s+2}{s+5} \cdot \frac{s-1}{s+1}} = \frac{(s+2)(s-1)}{(2s+1)(s+3)}$$
: stable

•
$$T_{ur}(s) = \frac{\frac{s+2}{s+5}}{1+\frac{s+2}{s+5} \cdot \frac{s-1}{s+1}} = \frac{(s+2)(s+1)}{(2s+1)(s+3)}$$
: stable

→ What is a generalized form of stabilizing controllers?

Internal stability

Control problem with disturbance

Internal stability

All the transfer functions from (r, w) to (u, y) are stable

$$T_{ur} = \frac{C}{1 + PC} \qquad T_{uw} = \frac{-PC}{1 + PC}$$

$$T_{yr} = \frac{PC}{1 + PC} \qquad T_{yw} = \frac{P}{1 + PC}$$

$$T_{yr} = \frac{PC}{1 + PC} \qquad T_{yw} = \frac{P}{1 + PC}$$

$$T_{yr} = \frac{PC}{1 + PC} \qquad T_{yw} = \frac{P}{1 + PC}$$

8

Structure of stabilizing controllers

The structure of all C that stabilize the closed-loop system

The structure of all C that stabilize the following transfer functions

$$\frac{C}{1+PC}, \ \frac{-PC}{1+PC}, \ \frac{PC}{1+PC}, \ \frac{P}{1+PC}$$

2. Stabilizing controllers

Stable rational functions

$$C_{+}: \operatorname{Re}\{s\} \ge 0$$
 $C_{-}: \operatorname{Re}\{s\} < 0$

Pole
$$p: G(p) = \infty$$
 Zero $z: G(z) = 0$

 RH_{∞} : stable + proper

• Stable: $|G(s)| < \infty, \ \forall s \in C_+$

No poles in C_+

• Proper: $|G(s)| < \infty, s \to \infty$

No poles at ∞

• Transfer functions in RH_{∞}

$$C(\text{constnat}), \quad \frac{1}{s+1}, \quad \frac{s-2}{s+1}, \quad \frac{s-1}{s+2}$$

$$\frac{\prod_{j=1}^{m} (s - z_j)}{\prod_{i=1}^{n} (s - p_i)} : n \ge m \text{ and } \operatorname{Re}[p_i] < 0 \text{ for all } p_i (i = 1, \dots, n)$$

$$\frac{1}{s^3 + as^2 + bs + c} : a > 0, \ b > 0, \ c > 0, \ ab - c > 0$$

Motivation of coprime factorization over RH_{∞}

$$G(s) = \frac{s-1}{(s-2)^2} = \frac{n[s]}{d[s]}: \text{ ratio between polynomials}$$

$$= \frac{\frac{s-1}{(s+1)^2}}{\frac{(s-2)^2}{(s+1)^2}} = \frac{N(s)}{D(s)} \stackrel{\in}{\in} RH_{\infty} : \text{ ratio between transfer functions in } RH_{\infty}$$

- $n, d \in \mathbb{Z}$: No common divisor $\Leftrightarrow \exists x, y \in \mathbb{Z}, \ nx + dy = 1$
- $n[s], d[s] \in \mathbb{R}[s]$: No common divisor (i.e., zero) $\Leftrightarrow \exists x[s], y[s] \in \mathbb{R}[s], \ n[s]x[s] + d[s]y[s] = 1$
- $N(s), D(s) \in RH_{\infty}$: No common unstable zero (including ∞) $\Leftrightarrow \exists X(s), Y(s) \in RH_{\infty}, \ N(s)X(s) + D(s)Y(s) = 1$

Coprime factorization

When there exist $N(s), X(s), D(s), Y(s) \in RH_{\infty}$ such that

$$P(s) = \frac{N(s)}{D(s)}$$
 and $N(s)X(s) + D(s)Y(s) = 1$

we call $\frac{N(s)}{D(s)}$ the coprime factorization of P(s)

Computing coprime factorization

• Case 1: $P \in RH_{\infty}$

$$N = P, D = 1, X = 0, Y = 1$$

As a general solution, $X = Q \in RH_{\infty}, Y = 1 - PQ \in RH_{\infty}$

• Case 2: $C \in RH_{\infty}$ stabilizes P

$$N = \frac{P}{1 + PC}, D = \frac{1}{1 + PC}, X = C, Y = 1$$

$$Y = \frac{P}{1 + PC}R = NR, U = \frac{1}{1 + PC}R = DR$$

• Case 3: $C \notin RH_{\infty}$ stabilizes P

$$P$$
 C

$$\frac{P}{1+PC} \cdot C + \frac{1}{1+PC} \cdot 1 = 1$$

$$\frac{P}{1+PC} \cdot \frac{N_C}{D_C} + \frac{1}{1+PC} \cdot \frac{D_C}{D_C} = 1 \qquad \left(C = \frac{N_C}{D_C} \in RH_{\infty}\right)$$

$$\left(C = \frac{N_C}{D_C} \in RH_\infty\right)$$

$$N = \frac{P}{1 + PC} \cdot \frac{1}{D_C}, \ D = \frac{1}{1 + PC} \cdot \frac{1}{D_C}, \ X = N_C, \ Y = D_C$$

Summary of coprime factorization

$$P = \frac{N}{D}$$
, $NX + DY = 1$, $\{N, X, D, Y\} \in RH_{\infty}$

	N	D	X	Y
$P \in RH_{\infty}$	P	1	0	1
$C \in RH_{\infty}$	$\frac{P}{1 + PC}$	$\frac{1}{1 + PC}$	C	1
$C = \frac{N_C}{D_C}$	$\frac{P}{1 + PC} \cdot \frac{1}{D_C}$	$\frac{1}{1 + PC} \cdot \frac{1}{D_C}$	N_C	D_C

• Coprime factorization of $P = \frac{1}{s(s+2)} \notin RH_{\infty}$

By using $C = C_0(> 0) \in RH_{\infty}$, P can be stabilized.

If we take C=1,

$$N = \frac{P}{1 + PC} = \frac{\frac{1}{s(s+2)}}{1 + \frac{1}{s(s+2)}} = \frac{1}{s^2 + 2s + 1} = \frac{1}{(s+1)^2} \in RH_{\infty}$$

$$D = \frac{1}{1 + PC} = \frac{1}{1 + \frac{1}{s(s+2)}} = \frac{s^2 + 2s}{s^2 + 2s + 1} = \frac{s^2 + 2s}{(s+1)^2} \in RH_{\infty}$$

$$X = C = 1 \in RH_{\infty}$$

$$Y=1\in RH_{\infty}$$

• Coprime factorization of $P = \frac{1}{s} \notin RH_{\infty}$

By using $C = C_0(> 0) \in RH_{\infty}$, P can be stabilized.

$$N = \frac{P}{1 + PC} = \frac{\frac{1}{s}}{1 + \frac{C_0}{s}} = \frac{1}{s + C_0} \in RH_{\infty}$$

$$D = \frac{1}{1 + PC} = \frac{1}{1 + \frac{C_0}{s}} = \frac{s}{s + C_0} \in RH_{\infty}$$

$$X = C_0 \in RH_{\infty}$$

$$Y=1\in RH_{\infty}$$

• Coprime factorization of $P = \frac{1}{s^2} \notin RH_{\infty}$

By using $C = \frac{bs+c}{s+a} \in RH_{\infty}$, P can be stabilized.

$$(\Phi[s] = s^3 + as^2 + bs + c \Rightarrow a > 0, \ b > 0, \ c > 0, \ ab - c > 0)$$

Let a = b = 3, c = 1

$$N = \frac{P}{1 + PC} = \frac{s + a}{s^3 + as^2 + bs + c} = \frac{s + 3}{(s + 1)^3} \in RH_{\infty}$$

$$D = \frac{1}{1 + PC} = \frac{s^2(s+a)}{s^3 + as^2 + bs + c} = \frac{s^2(s+3)}{(s+1)^3} \in RH_{\infty}$$

$$X = C = \frac{3s+1}{s+3} \in RH_{\infty}$$

$$Y=1\in RH_{\infty}$$

Internal stability and coprime factorization

All the transfer functions from (r, w) to (u, y) are stable

$$P = \frac{N}{D}, \quad NX + DY = 1$$

$$N, X, D, Y \in RH_{\infty}$$

$$C = \frac{N_C}{D_C}, \quad N_C X_C + D_C Y_C = 1 \qquad N_C, \ X_C, \ D_C, \ Y_C \in RH_{\infty}$$

$$\begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} \frac{C}{1 + PC} & \frac{-PC}{1 + PC} \\ \frac{PC}{1 + PC} & \frac{P}{1 + PC} \end{bmatrix} \begin{bmatrix} r \\ w \end{bmatrix} = \begin{bmatrix} T_{ur} & T_{uw} \\ T_{yr} & T_{yw} \end{bmatrix} \begin{bmatrix} r \\ w \end{bmatrix}$$

$$T_{ur} = \frac{C}{1 + PC} = \frac{N_C D}{NN_C + DD_C} \qquad T_{yr} = \frac{PC}{1 + PC} = \frac{NN_C}{NN_C + DD_C}$$

$$T_{yw} = \frac{P}{1 + PC} = \frac{ND_C}{NN_C + DD_C}$$

$$T_{uw} = \frac{-PC}{1+PC} = \frac{1}{1+PC} - 1 = \frac{D_CD}{NN_C + DD_C} - 1$$

Let
$$\Xi^{-1} := (NN_C + DD_C)^{-1}$$

Internal stability:
$$\begin{bmatrix} T_{ur} & T_{uw} \\ T_{yr} & T_{yw} \end{bmatrix} \in RH_{\infty}$$

$$\frac{1}{\Xi} \begin{bmatrix} N_C D & D_C D \\ N_C N & D_C N \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \in RH_{\infty}$$

$$\frac{1}{\Xi} \begin{bmatrix} N_C D & D_C D \\ N_C N & D_C N \end{bmatrix} \in RH_{\infty}$$

Necessary and sufficient condition for internal stability

• This closed-loop system is internal stable if and only if $\Xi^{-1} \in RH_{\infty}$

- Proof:
 - (a) Sufficient condition (\leq =) is obvious because $N, N_C, D, D_C \in RH_{\infty}$

(b) Necessary condition (\Rightarrow) :

Parameter representation of stabilizing controllers

C is a stabilizing controller for $P = \frac{N}{D}$ if and only if there exist N_C , $D_C \in RH_{\infty}$ such that $NN_C + DD_C = 1$ where $C = \frac{N_C}{D_C}$

• Proof:

- (a) Sufficient condition (\Leftarrow) is obvious since $\Xi = NN_C + DD_C = 1$
- (b) Necessary condition (\Rightarrow) :

Let $\frac{\tilde{N}_C}{\tilde{D}_C}$ one of the coprime factorizations of C

For
$$\Xi = N\tilde{N}_C + D\tilde{D}_C$$
, $\Xi^{-1} \in RH_{\infty}$

If let
$$N_C = \frac{\tilde{N}_C}{\Xi}$$
 and $D_C = \frac{\tilde{D}_C}{\Xi}$, $NN_C + DD_C = 1$

General solution

Finding all
$$C$$
 that stabilize $P\left(=\frac{N}{D} \in RH_{\infty}\right)$

Finding all $(N_C, D_C) \in RH_{\infty}$ such that $NN_C + DD_C = 1$

• Bezout's identity: general solution to $NN_C + DD_C = 1$

$$NN_C + DD_C = 1$$

$$NX + DY = 1$$

$$N = X + D + C + DH$$

$$N, X, D, Y \in RH_{\infty}$$
 $N_C, D_C \in RH_{\infty}$

$$N(N_C - X) + D(D_C - Y) = 0$$

$$N_C = X + DQ$$

$$D_C = Y - NQ \quad \forall Q \in RH_{\infty}$$

All stabilizing controllers

All stabilizing controllers

The structure of all stsabilizing controllers C is given by

$$C = \frac{X + DQ}{Y - NQ}, \quad \forall Q \in RH_{\infty},$$

$$C=\frac{X+DQ}{Y-NQ},\quad \forall Q\in RH_\infty,$$
 where $P=\frac{N}{D},\quad NX+DY=1,\quad \{N,~X,~D,~Y\}\in RH_\infty$

• All stabilizing controllers for $P = \frac{1}{(s+1)^2}$

$$P \in RH_{\infty} \Rightarrow N = P, D = 1, X = 0, Y = 1$$

$$C = \frac{X + DQ}{Y - NQ} = \frac{Q}{1 - PQ} = \frac{Q}{1 - \frac{1}{(s+1)^2}Q}, \quad \forall Q \in RH_{\infty}$$

• All stabilizing controllers for $P = \frac{1}{s}$

$$P \notin RH_{\infty}$$
 and $C = C_0 > 0$ stabilizes P

$$\Rightarrow N = \frac{1}{s + C_0}, \ D = \frac{s}{s + C_0}, \ X = C_0, \ Y = 1$$

$$C = \frac{X + DQ}{Y - NQ} = \frac{C_0 + \frac{s}{s + C_0}Q}{1 - \frac{1}{s + C_0}Q}, \quad \forall Q \in RH_{\infty}$$

3. Two-degree-of-freedom control systems

Feedback and feedforward

• Feedback (FB) control

• Feedforward (FF) control

Characteristics of FB control

- Disturbance rejection
- Stabilization of unstable plant
- Robustness to model uncertainty (sensitivity)

Characteristics of FF control

- Simple and intuitive
- Improvement of reference tracking

Structure of two-degree-of-freedom control systems

Internal stability

All the transfer functions from (r, w, n) to (u, y) are stable

Structure of two-degree-of-freedom control systems

• This closed-loop system is internal stable if and only if

$$\Xi^{-1} \in RH_{\infty}, \quad D_CM \in RH_{\infty}$$

where
$$\Xi = NN_C + DD_C$$
, $P = \frac{N}{D} \in RH_{\infty}$, $C = \frac{N_C}{D_C} \in RH_{\infty}$

• Proof:

(a) Necessary condition (\Rightarrow) :

$$(w,n) \to (u,y) \in RH_{\infty} \Leftrightarrow \Xi^{-1} \in RH_{\infty}$$

$$r \to (u, y) \in RH_{\infty} \Leftrightarrow \begin{bmatrix} \frac{M}{1 + PC} \\ \frac{PM}{1 + PC} \end{bmatrix} = \frac{1}{\Xi} \begin{bmatrix} DD_CM \\ ND_CM \end{bmatrix} \in RH_{\infty}$$

$$\begin{bmatrix} Y & X \end{bmatrix} \frac{1}{\Xi} \begin{bmatrix} DD_C M \\ ND_C M \end{bmatrix} = \frac{1}{\Xi} D_C M \in RH_{\infty}$$

Because this relation holds for all $\Xi^{-1} \in RH_{\infty}$, $D_CM \in RH_{\infty}$

(b) Sufficient condition (\Leftarrow) :

Because
$$\Xi^{-1} \in RH_{\infty}, (w, n) \to (u, y) \in RH_{\infty}$$

Because $\Xi^{-1} \in RH_{\infty}$ and $D_CM \in RH_{\infty}, r \to (u, y) \in RH_{\infty}$

All stabilizing controllers

All stabilizing controllers

The structure of all stsabilizing controllers C and M are given by

$$C = \frac{X + DQ}{Y - NQ}, \quad \forall Q \in RH_{\infty}, \quad M = \frac{R}{Y - NQ}, \quad \forall R \in RH_{\infty},$$

where
$$P = \frac{N}{D}$$
, $NX + DY = 1$, $\{N, X, D, Y\} \in RH_{\infty}$

• Proof:

(a) For the structure of C, the derivation is essentially the same as one-degree-of freedom control system

(b) For the structure of M, $D_CM := R \in RH_{\infty}$

$$\Rightarrow M = \frac{R}{D_C} = \frac{R}{Y - NQ}$$

Remark: There could exist a case such that $M \notin RH_{\infty}$

Class of transfer function

•
$$T_{yr} = \frac{PC}{1 + PC} = \frac{NN_C}{NN_C + DD_C} = N(X + DQ)$$

•
$$T_{yr} = \frac{PM}{1 + PC} = \frac{ND_CM}{NN_C + DD_C} = ND_CM = NR$$

1 DOF vs 2 DOF

Feasible transfer functions

	1 DOF	2 DOF
T_{yr}	N(X + DQ)	NR
$S = \frac{1}{1 + PC}$	D(Y - NQ)	D(Y - NQ)

$$T_{yr}: r \to y$$
 $S = \frac{1}{1 + PC}$: sensitivity function

Extension of feasible transfer functions by using 2 DOF

$$\{N(X+DQ)\mid \forall Q\in RH_{\infty}\}\subset \{NR\mid \forall R\in RH_{\infty}\}$$

Model matching problem

Find M and C such that $T_{yr} = G_M$

Stabilizing controllers for model matching problem

Stabilizing controllers C and M by which $T_{yr} = G_M$ exist if and only if $\frac{G_M}{P} \in RH_{\infty}$ ($\Leftrightarrow \exists R \in RH_{\infty}$, s.t. $G_M = NR$)

Controller design procedure

1. Check
$$\frac{G_M}{P} \in RH_{\infty}$$

2. Design of stabilizing controller
$$C \left(= \frac{X + DQ}{Y - NQ} \right)$$

3.
$$M = \frac{G_M}{N(Y - NQ)} \left(= \frac{R}{Y - NQ} \right)$$

Another procedure for controller design

1. Check
$$\frac{G_M}{P} \in RH_{\infty}$$

2.
$$F = G_M$$

3. Design of stabilizing controller C

•
$$P = \frac{1}{s-2}$$
, $G_M = \frac{16}{s^2 + 64s + 16}$

1.
$$\frac{G_M}{P} = \frac{16(s-2)}{s^2 + 64s + 16} \in RH_{\infty}$$

2.
$$F = G_M = \frac{16}{s^2 + 64s + 16}$$

3. Design of arbitrary C that stabilizes P

$$C(s) = \frac{3 + \frac{s - 2}{s + 1}Q(s)}{1 - \frac{1}{s + 1}Q(s)}$$