Proofs for the paper "Piecewise-Linear Motion Planning amidst Static, Moving, or Morphing Obstacles"

October 16, 2020

1 Proof of Theorems 1 and 2

 $\mathrm{SDP}(r, s; \mathcal{D})$ is an obvious relaxation of $\mathrm{MP}(s; \mathcal{D})$ and therefore $\rho_r \leq \rho^*$ for all r.

Theorem 1 (SDP $(r, s; \mathcal{D})$ is solvable) The semidefinite program $SDP(r, s; \mathcal{D})$ has an optimal solution $\phi^r \in \mathbb{N}^{s(2n+1)}$.

Proof 1 Let $\phi \in \mathbb{N}^{s(2n+1)}$ be a feasible solution of $SDP(r, s; \mathcal{D})$. Recall that $g_m(t, \boldsymbol{x}) = R^2 - \|\boldsymbol{x}\|^2$. We first use the constraint $M_{\phi}(g_m(t, \boldsymbol{u}_i + t\boldsymbol{v}_i)) \succeq 0$ for all $t \in [\frac{(i-1)T}{s}, \frac{iT}{s}]$, to prove that $L_{\phi}(u_{ij}^{2r}) \leq \tau^{2r}$ and $L_{\phi}(v_{ij}^{2r}) \leq \tau^{2r}$ for all i, j, and some scalar τ . Let $i \in [s], j \in [n]$ be fixed, and write:

$$u_{ij} + \frac{(i-1)T}{s}v_{ij} =: x; \quad u_{ij} + \frac{T}{s}v_{ij} =: y,$$

so that $u_{ij} = ax + by$ and $v_{ij} = a'x + b'y$ for some scalars a, a', b, b'. Observe that $M_{\phi}(g_m(t, \boldsymbol{u}_i + \frac{(i-1)T}{s}\boldsymbol{v}_i)) \succeq 0$ and $M_{\phi}(g_m(t, \boldsymbol{u}_i + \frac{iT}{s}\boldsymbol{v}_i)) \succeq 0$. This implies that $L_{\phi}(x^2 + y^2) \leq R^2$ and so $L_{\phi}(x^2) \leq R^2$ and $L_{\phi}(y^2) \leq R^2$. Next, again because of the localizing constraint with g_m , $L_{\phi}(x^2(R^2 - x^2 + y^2)) \geq 0$ so that $L_{\phi}(x^4) \leq R^4$; and similarly $L_{\phi}(y^4) \leq R^4$. Iterating the process yields

$$L_{\phi}(x^{2k}), L_{\phi}(y^{2k}) \le R^{2k} \quad k = 0, \dots, r.$$
 (1)

Next, consider the bi-variate moment matrix H with rows and columns indexed by the monomials $(x^iy^j)_{i+j \le r}$ and with entries

$$H((i,j),(i'j')) \,:=\, L_{\phi}(\boldsymbol{x}^{i+i'}\boldsymbol{y}^{j+j'}), \quad \forall \, (i,j)\,,(i',j') \in \mathbb{N}_{r}^{2}\,.$$

Using (1), $H \succeq 0$ and /?, Proposition 2.38/, yields

$$|L_{\phi}(x^{i}y^{j})| \le R^{i+j}, \quad \forall i, j : (i+j) \le 2r.$$
 (2)

Finally, recall that $u_{ij} = ax + by$ and $v_{ij} = a'x + b'y$, and so

$$L_{\phi}(u_{ij}^2) \leq a^2 L_{\phi}(x^2) + \underbrace{2 |ab L_{\phi}(x y)|}_{\leq 2|ab|R^2} + b^2 L_{\phi}(y^2).$$

Therefore $L_{\phi}(u_{ij}^2) \leq [(|a|+|b|)R]^2$, and $L_{\phi}(v_{ij}^2) \leq (|a'|+|b'|)R^2$. Similarly one obtains $L_{\phi}(u_{ij}^{2r}) = L_{\phi}((ax+by)^{2r}) \leq [(|a|+|b|)R]^{2r} =: V_{ij}^{2r}$ and $L_{\phi}(v_{ij}^{2r}) = L_{\phi}((a'x+b'y)^{2r}) \leq [(|a'|+|b'|)R]^{2r} =: W_{ij}^{2r}$.

As this holds for an arbitrary couple (i,j), letting $\tau := \max_{(i,j)} [V_{ij}, W_{ij}]$, one finally obtains $L_{\phi}(u_{ij}^{2r}), L_{\phi}(v_{ij}^{2r}) < \tau^{2r}$, for all $i \in [s], j \in [n]$.

Similarly, in view of the constraint $L_{\phi}((\boldsymbol{u},\boldsymbol{v},z)^{\boldsymbol{\alpha}}h_{i}^{z}))=0$ for all $\boldsymbol{\alpha}\in\mathbb{N}_{2r-2}^{s(2n+1)}$, it follows that $L_{\phi}(z_{i}^{2})=\sum_{j}L_{\phi}(v_{ij}^{2})\leq n\tau^{2}$, and iterating yields $L_{\phi}(z_{i}^{2r})\leq n\tau^{2r}$. By $[?, Proposition\ 2.38]$, combining this with $L_{\phi}(1)=1$ and $M_{\phi}\succeq 0$, yields that $|\phi_{\boldsymbol{\alpha}}|\leq n\tau^{2r}$ for all $\boldsymbol{\alpha}\in\mathbb{N}_{2r}^{s(2n+1)}$. Hence the feasible set is bounded; as it is also closed it is compact and therefore $SDP(r,s;\mathcal{D})$ has an optimal solution, denoted ϕ^{r} . To see that the feasible set is closed, let $(\phi_{\boldsymbol{\alpha}}^{\ell})_{\boldsymbol{\alpha}\in\mathbb{N}^{s(2n+1)}}$ be such that $\phi_{\boldsymbol{\alpha}}^{\ell}\to \phi_{\boldsymbol{\alpha}}$ for all $\boldsymbol{\alpha}\in\mathbb{N}_{2r}^{s(2n+1)}$, as $\ell\to\infty$, and for instance consider the constraint $M_{\phi^{\ell}}(g_{k}(t,\boldsymbol{u}_{i}+t\boldsymbol{v}_{i}))\succeq 0$ for all $t\in\left[\frac{(i-1)T}{s},\frac{iT}{s}\right]$. Fix $t\in\left[\frac{(i-1)T}{s},\frac{iT}{s}\right]$ arbitrary, and let $(\boldsymbol{u}_{i},\boldsymbol{v}_{i})\mapsto g_{k}(t,\boldsymbol{u}_{i}+t\boldsymbol{v}_{i})=:g_{k,t}(\boldsymbol{u}_{i},\boldsymbol{v}_{i})\in\mathbb{R}[\boldsymbol{u},\boldsymbol{v}]$. By construction, each entry of the localizing matrix $M_{\phi^{\ell}}(g_{k,t}(\boldsymbol{u}_{i},\boldsymbol{v}_{i}))$ is linear in the variables $(\phi_{\boldsymbol{\alpha}}^{\ell})$'s. Therefore,

$$\lim_{\ell \to \infty} M_{\phi^{\ell}}(g_{kt}(\boldsymbol{u}_i, \boldsymbol{v}_i)) (\succeq 0) = M_{\phi}(g_{kt}(\boldsymbol{u}_i, \boldsymbol{v}_i)) \succeq 0.$$

Hence as this is true for arbitrary t, it follows that

$$M_{\phi}(g_k(t, \boldsymbol{u}_i + t\boldsymbol{v}_i)) \succeq 0, \quad \forall t \in \left[\frac{(i-1)T}{s}, \frac{iT}{s}\right].$$

A similar (and even simpler) reasoning applies to obtain $L_{\phi}((\boldsymbol{u},\boldsymbol{v},\boldsymbol{z})^{\alpha}h_{i}(\boldsymbol{u},\boldsymbol{v})) = 0$ and $L_{\phi}((\boldsymbol{u},\boldsymbol{v},\boldsymbol{z})^{\alpha}h_{i}^{z}(\boldsymbol{u},\boldsymbol{v},\boldsymbol{z})) = 0$, for all $\alpha \in \mathbb{N}_{2r-2}^{s(2n+1)}$, as well as $M_{\phi}(z) \succeq 0$.

Theorem 2 (Asymptotic convergence) Let $(\phi^r)_{r \in \mathbb{N}}$ be a sequence of optimal solutions of $SDP(r, s; \mathcal{D})$, and complete each finite vector ϕ^r with zeros to make it an infinite sequence $(\phi^r_{\alpha})_{\alpha \in \mathbb{N}^{s(2n+1)}}$. Let $(\phi^{\star}_{\alpha})_{\alpha \in \mathbb{N}^{s(2n+1)}}$ be an arbitrary accumulation point of the sequence $(\phi^r)_{r \in \mathbb{N}}$. Then $\rho_r \uparrow \rho^*$ as $r \to \infty$, and:

(a) $(\phi_{\boldsymbol{\alpha}}^{\star})$ is the moment vector of a measure $d\phi^{\star}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})$ supported on S. For ϕ^{\star} -almost all $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})$ in S, the trajectory

$$\boldsymbol{x}_i(t) := \boldsymbol{u}_i + t \boldsymbol{v}_i, \quad t \in \left[\frac{(i-1)T}{s}, \frac{iT}{s}\right]; \quad i \in [s],$$

is an optimal solution of $MP(s; \mathcal{D})$.

(b) If $MP(s; \mathcal{D})$ has a unique optimal piece-wise linear trajectory with s pieces

$$\boldsymbol{x}_{i}^{*}(t) := \boldsymbol{u}_{i}^{*} + t \boldsymbol{v}_{i}^{*}, \ t \in \left[\frac{(i-1)T}{s}, \frac{iT}{s}\right] \quad i \in [s],$$

$$(3)$$

then $\phi^* = \delta_{(\boldsymbol{u}^*, \boldsymbol{v}^*, \boldsymbol{z}^*)}$ is the unique accumulation point of $(\phi^r)_{r \in \mathbb{N}}$ and

$$\lim_{r \to \infty} L_{\phi^r}(\boldsymbol{u}_i) = \boldsymbol{u}_i^* \quad \lim_{r \to \infty} L_{\phi^r}(\boldsymbol{v}_i) = \boldsymbol{v}_i^*, \quad \forall i \in [s].$$
 (4)

In the proof below, for any infinite sequence $\{\phi_{\boldsymbol{\alpha}}\}_{\boldsymbol{\alpha}}$ of pseudo-moments over some variable \boldsymbol{y} and for any polynomial $g \in \mathbb{R}[\boldsymbol{y}]$, we use the notation $M_{\phi}^d(g(\boldsymbol{y}))$ to denote the localisation matrix $M_{\phi'}^d(g(\boldsymbol{y}))$, where $\phi' = \{\phi_{\boldsymbol{\alpha}} \mid |\boldsymbol{\alpha}| \leq 2d\}$.

Proof 2 Let ϕ^r be an arbitrary optimal solution of $SDP(r, s; \mathcal{D})$ which exists by Theorem 1. With τ as in the proof of Theorem 1, we obtain $|\phi^r_{\alpha}| \leq n\tau^{2r}$ for all $\alpha \in \mathbb{N}_{2r}^{s(2n+1)}$. In fact and more precisely:

$$|\phi_{\boldsymbol{\alpha}}^r| \leq n\tau^{2j}, \quad \forall \boldsymbol{\alpha} \in \mathbb{N}_{2r}^{s(2n+1)} : 2j-1 \leq |\boldsymbol{\alpha}| \leq 2j; \ j=1,\ldots,r.$$

Next complete the finite sequence $(\phi_{\boldsymbol{\alpha}}^r)_{\boldsymbol{\alpha} \in \mathbb{N}^{s(2n+1)}}$ with zeros to make it an infinite sequence $(\phi_{\boldsymbol{\alpha}}^r)_{\boldsymbol{\alpha} \in \mathbb{N}^{s(2n+1)}}$. Define a new sequence $\hat{\phi}^r = (\hat{\phi}_{\boldsymbol{\alpha}}^r)_{\boldsymbol{\alpha} \in \mathbb{N}^{s(2n+1)}}$ with:

$$\hat{\phi}^r_{\boldsymbol{\alpha}} := \frac{\phi^r_{\boldsymbol{\alpha}}}{n\tau^{2j}}, \quad \forall \boldsymbol{\alpha} : 2j-1 \leq |\boldsymbol{\alpha}| \leq 2j \, ; \, j \in \mathbb{N},$$

so that $\sup_{\boldsymbol{\alpha} \in \mathbb{N}^{s(2n+1)}} |\hat{\phi}_{\boldsymbol{\alpha}}^r| \leq 1$. Hence $\hat{\phi}^r$ belongs to the unit ball B_1 of the Banach space ℓ_{∞} of uniformly bounded infinite sequences, equipped with the sup-norm. By Banach-Alaoglu Theorem [?], B_1 is sequentially compact in the weak-** topology $\sigma(\ell_{\infty}, \ell_1)$. Therefore there exists a subsequence $(r_{\ell})_{\ell \in \mathbb{N}}$ and an infinite sequence $\hat{\phi}^* = (\hat{\phi}_{\boldsymbol{\alpha}}^*)_{\boldsymbol{\alpha} \in \mathbb{N}^{s(2n+1)}} \in B_1$, such that

$$\lim_{\ell \to \infty} \hat{\phi}_{\boldsymbol{\alpha}}^{r_{\ell}} = \hat{\phi}_{\boldsymbol{\alpha}}^{\star} \quad \forall \boldsymbol{\alpha} \in \mathbb{N}^{s(2n+1)}.$$

Equivalently, letting $\phi_{\boldsymbol{\alpha}}^{\star} := n\tau^{2j} \, \hat{\phi}_{\boldsymbol{\alpha}}^{\star}$, for all $\boldsymbol{\alpha}$ such that $2j-1 \leq |\boldsymbol{\alpha}| \leq 2j$, and $j \in \mathbb{N}$, one obtains:

$$\lim_{\ell \to \infty} \phi_{\alpha}^{r_{\ell}} = \phi_{\alpha}^{\star} \quad \forall \alpha \in \mathbb{N}^{s(2n+1)}, \tag{5}$$

Fix $d \in \mathbb{N}$, and denote $M_{\phi^*}^d$ (resp. $M_{\phi^*}^d(z_i)$) the moment matrix with moments up to order 2d (resp. the localizing matrix with respect to z_i) with moments up to order 2d (resp. 2d-1). The convergence (5) yields $M_{\phi^*}^d \succeq 0$ and $M_{\phi^*}^d(z_i) \succeq 0$, for every d. In addition we have $|\phi_{\mathbf{\alpha}}^*| \leq n\tau^{2r} < (n\tau)^{2r}$ whenever $|\mathbf{\alpha}| \leq 2r$. Therefore by Proposition 2.38 in [?] it follows that $|\phi_{\mathbf{\alpha}}^*| \leq (n\tau)^{|\mathbf{\alpha}|}$, for all $\mathbf{\alpha} \in \mathbb{N}^{s(2n+1)}$. Then by Proposition 2.37 in [?] ϕ^* has a representing measure (still denoted ϕ^*) on the (compact) box $[-n\tau, n\tau]^{s(2n+1)}$. In addition, by Theorem ??, $z_i \geq 0$ for all $i \in [s]$, on $\operatorname{supp}(\phi^*)$.

Next, fix $\boldsymbol{\alpha} \in \mathbb{N}^{s(2n+1)}$ arbitrary. Then by (5):

$$0 = \lim_{\ell \to \infty} L_{\phi^{r_{\ell}}}((\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})^{\boldsymbol{\alpha}} h_{i}(\boldsymbol{u}, \boldsymbol{v}))$$
$$= L_{\phi^{\star}}((\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})^{\boldsymbol{\alpha}} h_{i}(\boldsymbol{u}, \boldsymbol{v})) = \int (\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})^{\boldsymbol{\alpha}} h_{i}(\boldsymbol{u}, \boldsymbol{v}) d\phi^{\star}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})$$

for all $0 \le i \le s$. Similarly:

$$0 = \lim_{\ell \to \infty} L_{\phi^{r_{\ell}}}((\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})^{\boldsymbol{\alpha}} h_{i}^{z}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z}))$$

$$= L_{\phi^{\star}}((\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})^{\boldsymbol{\alpha}} h_{i}^{z}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})) = \int (\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})^{\boldsymbol{\alpha}} h_{i}^{z}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z}) d\phi^{\star}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z}),$$

for all $i \in [s]$. As this holds for arbitrary $\alpha \in \mathbb{N}^{s(2n+1)}$ and the support of ϕ^* is compact, one obtains $h_i(\mathbf{u}, \mathbf{v}) = 0$, that is:

$$u_{i,j} + \frac{iT}{s} v_{i,j} = u_{i+1,j} + \frac{iT}{s} v_{i+1,j},$$

for all $i \in \{0, ..., s\}$ and all $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z}) \in \operatorname{supp}(\phi^*)$. Similarly, $h_i^z(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z}) = 0$ for all $i \in [s]$, for ϕ^* -almost all $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})$. That is, $z_i^2 = (\frac{T}{s} \|\boldsymbol{v}_i\|)^2$. Since $z_i \geq 0$ also holds on $\operatorname{supp}(\phi^*)$, then equivalently $z_i = \frac{T}{s} \|\boldsymbol{v}_i\|$ for all $i \in [s]$.

Next, let $t \in \left[\frac{(i-1)T}{s}, \frac{iT}{s}\right]$ and $k \in [m]$ be fixed, arbitrary, and rewrite

 $g_k(t, \boldsymbol{u}_i + t\boldsymbol{v}_i)$ as $g_{k,t}(\boldsymbol{u}_i, \boldsymbol{v}_i) \in \mathbb{R}[\boldsymbol{u}_i, \boldsymbol{v}_i]$. Then with $d \in \mathbb{N}$ fixed arbitrary,

$$0 \leq \lim_{\ell \to \infty} M_{\phi^{r_{\ell}}}^{d}(g_{k}(\boldsymbol{u}_{i} + t \boldsymbol{v}_{i})) = \lim_{\ell \to \infty} M_{\phi^{r_{\ell}}}^{d}(g_{k,t}(\boldsymbol{u}_{i}, \boldsymbol{v}_{i}))$$
$$= M_{\phi^{\star}}^{d}(g_{k,t}(\boldsymbol{u}_{i}, \boldsymbol{v}_{i})) = M_{\phi^{\star}}^{d}(g_{k}(\boldsymbol{u}_{i} + t \boldsymbol{v}_{i}).$$

Hence, as d was arbitrary, one obtains $M_{\phi^*}^d(g_{k,t}(\boldsymbol{u}_i,\boldsymbol{v}_i)) \succeq 0$ for all d. As the support of ϕ^* is compact, by Theorem ??, $g_{k,t}(\boldsymbol{u}_i,\boldsymbol{v}_i) \geq 0$ on the support of ϕ^* . That is, for all $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z}) \in \operatorname{supp}(\phi^{\star})$:

$$g_{k,t}(\boldsymbol{u}_i,\boldsymbol{v}_i) \quad (= g_k(t,\boldsymbol{u}_i + t\boldsymbol{v}_i)) \geq 0.$$

As this is true for all $t \in \left[\frac{(i-1)T}{s}, \frac{iT}{s}\right]$ and $k \in [m]$, one obtains $g_k(t, \mathbf{u}_i + t \mathbf{v}_i) \ge 0$ for all $t \in \left[\frac{(i-1)T}{s}, \frac{iT}{s}\right]$, and for all $i \in [s]$. From what precedes, we conclude that for all $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z}) \in \operatorname{supp}(\phi^*)$, the piecewise linear trajectory

$$\boldsymbol{x}_i(t) := \boldsymbol{u}_i + t \boldsymbol{v}_i \quad t \in \left[\frac{(i-1)T}{s}, \frac{iT}{s}\right] \quad i \in [s],$$
 (6)

is feasible for $MP(s; \mathcal{D})$. Finally, we also have

$$\rho^* \ge \lim_{\ell \to \infty} \rho_{r_{\ell}} = \lim_{\ell \to \infty} \sum_{i=1}^{s} L_{\phi^{r_{\ell}}}(z_i)$$

$$= \int \sum_{i=1}^{s} \frac{T}{s} \|\boldsymbol{v}_i\| d\phi^*(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})$$

$$= \int \sum_{i=1}^{s} \left(\int_{\frac{(i-1)T}{s}}^{\frac{iT}{s}} \|\dot{\boldsymbol{x}}_i(t)\| dt \right) d\phi^*(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})$$

$$\ge \rho^*$$

(with $x_i(t)$ as in (6)). Therefore for ϕ^* -almost all (u, v, z), the piecewise linear trajectory x(t) (with s pieces) defined in (6) is optimal for problem $MP(s; \mathcal{D})$. This proves (a).

(b) If the trajectory (3) is the unique optimal solution of $MP(s; \mathcal{D})$ then necessarily $\phi^* = \delta_{(\boldsymbol{u}^*, \boldsymbol{v}^*, \boldsymbol{z}^*)}$ (where $z_i^* = ||\boldsymbol{v}_i^*||$, $i \in [s]$) because in (a) we have seen that for ϕ^* -almost all $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z})$, the piecewise linear trajectory $\boldsymbol{x}(t)$ in (6) is optimal, hence identical to \boldsymbol{x}^* in (3). But then this proves that all accumulation points of $(\phi^r)_{\boldsymbol{\alpha} \in \mathbb{N}^{s(2n+1)}}$ are identical to the vector of moments of the Dirac measure $\phi^* := \delta_{(\boldsymbol{u}^*, \boldsymbol{v}^*, \boldsymbol{z}^*)}$, and therefore (5) now becomes the global convergence (4).