МФТИ. ■

Изучение группового обучения в общем образовании

Машалов Никита

29 мая 2024 г.

План презентации

- 🕕 Введение
 - Соискатель
 - Мотивация работы
- Теория
- План научных работ
 - Работы, готовые к публикации
 - Работы в исследовании
- 4 Заключение

Соискатель

Образование и научные интересы

Магистр и преподаватель в МФТИ

Область научных интересов

- Теория игр в образовании
- Интеллектуальные ассистенты

Академические достижения

Научная работа

- доклад по федеративному обучению на предметной смене в Сириус
- два доклада на конференции МФТИ по результатам подготовки диссертации

Педагогическая деятельность

Образовательный курс по прикладному использованию языка Python

Постановка магистерской работы

- ullet Сложность задания d, знания учащегося u
- Модель Эло

$$p(x = 1|d, u) = \frac{1}{1 + \exp(d - u)}$$

• Адаптивные алгоритмы задают оптимальный уровень попыток s^* на исход выполнения задания

Алгоритм Роббинса-Монро

Пускай x - бернулевская случайная величина с параметром s=f(d), где f(x) - выпуклая. Тогда для схема пересчета $d_t=\mathbf{x}_t+a_t(s^*-x_t)$ с шагами a_t удовлетворяющих условиям $\sum_{t=0}^\infty a_t=\infty, \sum_{t=0}^\infty a_t^2<\infty$, выполняет спуск к целевому значению $\lim_{t\to\infty} d_t=d^*$, где $d^*:s(d^*)=s^*$.

Постановка для диссертации

Индивидуальное обучение

Постановка

Каждый учащийся i получает задачу сложности d_i , соответствующую текущему развитию

Преимущества

- адаптивное обучение
- сроки исполнения выбираются из потребностей обучающегося

Недостатки

- проверка большого числа заданий
- координация работы

Коллективное обучение

Постановка

Все обучающиеся выполняют одну задачу сложности d

Преимущества

- возможность предварительной подготовки программы
- поощряет соревновательный дух
- относительная простота проверки

Проблемы

- отсутствие интереса у отстающих и одаренных обучающихся
- сложность учета индивидуальных потребностей

Постановка для кандидатской диссертации

Цель

Определение оптимальных стратегий обучений в группах с использованием адаптивных алгоритмов сложности

Задачи

- демонстрация несостоятельности базового алгоритма
 Роббинса-Монро для коллективного обучения
- изучение распределения нагрузки между учащимися с учетом супераддитивности функций совместной работы
- разработка алгоритма адаптивной сложности для работы с группами

Совместные задания для групп

Описание

Постановка

Учащиеся объединяются в k групп. Каждой группе i предлагается задача сложности d_i .

Преимущества

- оптимальное число заданий к проверке
- обучение командной работе
- применимость адаптивного обучения

Проблемы

- неравномерное распределение нагрузки в группе
- неясность в выборе сложности задания

Алгоритм Роббинса-Монро для функций многих переменных

Обобщение алгоритма для случая многомерной функции отклика задаёт условия на параметры схемы. 1

Алгоритм Роббинса-Монро для случая многих переменных

Пусть \vec{x} - вектор бернулевских случайных величин с параметрами $\vec{s}=f(\vec{d})$, где $f(\vec{x})$ - выпуклая. Тогда схема пересчета $d_t=\vec{x}_t+A^{(t)}(s-\vec{x}_t)$ с шагами $A^{(t)}$ удовлетворяющих условиям: $\forall t,j \to a_{jj}^{(t)}>0, \sum_{t=1}^\infty a_{jj}^{(t)}=\infty, \sum_{n=1}^\infty (a_{jj}^{(t)})^2<\infty$ сходится по вероятности к целевому значению \vec{s}^*

¹Xiong, Cui, and Jin Xu. "Efficient Robbins–Monro procedure for multivariate binary data."

Супераддитивность в групповом образовании

Эффективность совместногого обучения

Считаем, что эффективность учащихся задается как гауссова случайная величина

$$\vec{x} \sim \mathcal{N}(\vec{\mu}, \Sigma)$$
.

Матрица ковариации Σ задает эффективность командной работы

Супераддитивность

Супераддитивной называется функция f для которой

$$\forall x, y, x + y \in \text{dom}(f) \to f(x + y) \ge f(x) + f(y) \tag{1}$$

Функции к изучению

- ullet min-sum $\sum_i min([ec{x}]_i, s^*)$, где s^* порог отсечки
- max-mean $N \cdot \bar{x} + \max_{i} (\vec{x} \bar{x})$
- ullet квадратичная форма $ec{x}^T A ec{x}$

План научных работ

Опубликованные работы

Автор доложил и опубликовал две апробационные работы к своей диссертации на 66-ой Всероссийской научной конференция МФТИ(ВАК):

- Разработка пакетного модуля ShuemacherOCR на языке Python для работы с методической литературой
- Оценка влияния кредитных условий на конкурентные предложения малых поставщиков в сфере образования

Работы, готовые к публикации

Применение схемы Монро-Роббинса в системах тестирования с сложностью заданной логистической функцией

Сводная информация

• Год выполнения: 2024 год

• Академический уровень: ВАК

• Тема: Обработка данных

Абстракт

Работа предлагает алгоритм адаптивного подбора сложности, моделирующий тест как стохастический ряд вида $\{x\}_{t=0}$, где каждый элемент является случайной бернуллевской величиной с параметром s. Управляющей переменной является сложность задачи d, задающая вероятность решения как функцию отклика $s_t = f(d)$. Для случая логистической функции, получены оптимальные коэффициенты стохастической схемы.

Оптимальная сходимость

RuEdu. Бимодальный корпус образовательных данных

Сводная информация

• Год выполнения: 2024 год

• Академический уровень: ВАК

• Тема: Обработка данных

Абстракт

В открытые корпусах текстов на русском языке почти не содержится образовательная тематика. Коллекция состоит из оригинальных собранных данных, включающих текста популярных естественно-научных журналов. Автор также приводит результаты обучения модели на полученном корпусе с помощью низкорангового адаптера, существенно снижающего требования к вычислительным ресурсам.

Источники данных

Журналы

Учебники

Аннотированные иллюстрации

Работы в исследовании

Открытая русскоязычная распределенная система OCR Shuemacher+

Сводная информация

- Год выполнения: 2024 год
- Академический уровень: ВАК
- Тема: Обработка данных

Абстракт

Shuemacher+ - открытая распределенная система распознания корпусов. Модель вычислений описывается классической двуакторской схемой руководитель-рабочий, дополненная флагом наличия графического ускорителя. Таким образом, руководитель распределяет нагрузку на вычислительные узлы и отрабатывает возникающие исключения.

Принципиальная схема распределённых вычислений

Схема Монро-Роббинса для клик с суперадитивными факторами

Сводная информация

- Год выполнения: 2025 год
- Академический уровень: Q1
- Тема: Моделирование

Абстракт

В работе изучается постановка стохастической аппроксимации для супераддитивных функций, оценивающих результат совместной деятельности. Изучены и в аналитической форме представлены коэффициенты для функций агрегации mean-max, min-sum и квадратичной формы.

Исследуемые супераддитивные функции

Запись стохастической аппроксимации в форме уравнений Фоккера-Планка

Сводная информация

• Год выполнения: 2025 год

• Академический уровень: Q1

• Тема: Моделирование

Абстракт

Стохастическая аппроксимация метод поиска корня уравнения по случайному несмещенному отклику, аналитическая форма которого в общем случае неизвестна. В работе предлагается изучение метода с использованием уравнение Фоккера-Планка, позволяющего задать непрерывно во времени оптимальную функцию смещения.

Эволюция распределения инструментальной переменной во времени

Заключение

- тема диссертационной работы
- изучаются постановки командных заданий для случая супераддитивных функций
- заданные постановки изучаются с целью выработки оптимального алгоритма задания сложности
- 2 статьи готовы к публикации

Спасибо за внимание!