X-601-73-330 PREPRINT

NASA TM X-7050/

AFWL TECHNICAL LI

RADIATION HAZARDS TO SYNCHRONOUS SATELLITES:

THE IUE (SAS-D) MISSION

(RESA-TM-X-70501) RADIALION HAZARDS TO SYNCHRONOUS SATELLILLES: THE TUE (SES-E) MISSION (NASA) 245 p HC £14.25 CSCL 03E

N74-10759

Unclas G3/29 21843

E. G. STASSINOPOULOS

SEPTEMBER 1973

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

TECH LIBRARY KAFB, NM

2

RADIATION HAZARDS TO SYTCHRONOUS SATELLITES:

The IUE (SAS-D) Mission

E. G. Stassinopoulos

NASA-Goddard Space Flight Center Space and Earth Sciences Directorate National Space Science Data Center

September 1973

Goddard Space Flight Center Greenbelt, Maryland

PRECEDING PAGE BLANK NOT FILMED

Foreword

A special study was conducted to determine the ambient trapped particle fluxes incident on the IUE (SAS-D) satellite. Several synchronous elliptical and circular flight paths were evaluated and the effect of inclination, eccentricity, and parking longitude on vehicle encountered intensities was investigated. Temporal variations in the electron environment were considered and partially as unted for. Magnetic field calculations were performed with a current field model extrapolated to a later epoch with linear time terms. Orbital flux integrations were performed with the latest proton and electron environment models using new improved computational methods. The results are presented in graphical and tabular form; they are analyzed, explained, and discussed. Firally, estimates of energetic solar proton fluxes are given for a one year mission at selected integral energies ranging from 10 to 100 MeV, calculated for a year of maximum solar activity during the next solar cycle.

PRECEDING PAGE BLANK NOT FILMED

Contents

		Page			
Introducti	on	1			
Results:	Analysis and Discussion	9			
I. II.	Trajectory Data A. World Maps B. Magnetic Dipole Mapping Spectral Profiles	11 11 13 16			
Energetic	Solar Proton Fluxes	18			
The Local-	time Drift of Synchronous Satellites	21			
References		22			
Appendices					
Appendix A	. General Background Information	A-1			
Appendix E	3. Description of Tables	B-1			
Appendix (C. Description of Plots	C-1			

Attachments: Tables and Figures

LIST OF TABLES

Table

- 1 Use of Attribute "Standard"
- 2 B and L Extrema of Synchronous Trajectories
- 3-38 L-band Tables
- 39-74 Spectral Profiles
- 75-92 Exposure Analysis and Time Account

LIST OF FIGURES

Figure

- 1 Guide to Table Arrangement for Single Trajectory
- 2 Guide to Plot Arrangement for Single Trajectory
- 3-38 Time and Flux Histograms
- 39-74 Spectral Profiles
- 75-92 World Map Projections
- 93-110 B-L Space Tracings
 - 111 Orbit Integrated Solar Proton Spectrum
 - 112 Tilt and Longitudinal Spread of Surface Traces
 - 113 Schematic Presentation of Geographic Polar and Geomagnetic Dipole Geometry of Synchronous Orbits
 - 114 Local Time Drift

Introduction

The objective of the present study is to evaluate the charged particle fluxes to be encountered by a spacecraft in a synchronous orbit, specifically as applied to the IVE (SAS-D) mission. Because synchronous orbits have certain characteristics entirely their own, some general observations are in order.

Circular geosynchronous (geostationary) trajectories are flight paths with a periodicity of exactly 24 hours; this fixes their altitude to about 5.6 earth radii. Satellites in such orbits are co-rotating with the geoid, as if rigidly attached. When the trajectories lie in the equatorial plane, the satellites appear to be stationary in geocentric space (over the equator) on a meridian which is determined by their injection conditions. This position is called the parking longitude. If the plane of the circular orbit is tilted away from the equator, the trace of all subsatellite points (geocentric projections) on the earth's surface form a figure "eight" with its node at the parking position and its exis of symmetry aligned horizontally in the north-south direction (normal to the equator). When inclination is increased, the size of the projected trace (figure eight) becomes larger, probably reaching its maximum for polar orbits.

Of course, it is possible to have a synchronous trajectory which is elliptical rather than circular: in fact, the only requirement for any trajectory to be considered synchronous is that it have a period of exactly 24 hours. However, there are three important consequences associated with elliptical synchronous trajectories:

- 1. A wide range of altitudes is visited; perigee lies deeper in the high intensity regions of the outer zone trapped electron and low-energy proton belts, while apogee is nearer to the magnetospheric boundary of the trapping regions.
- Spacecraft velocity is smaller at apogee and greater at perigee, causing the satellite to spend more time in regions of space lying above synchronous altitude, and
- 3. Because of these variations in velocity, a range of longitudes extending symmetrically about its parking meridian are covered.

The degree to which these events take place depends entirely on the eccentricity of the orbit. More eccentric orbits experience the described effects to a greater extent. Some relative quantitative evaluations will be given in subsequent sections of this report.

Incidentally, the surface fraces of synchronous elliptical trajectories with inclination 1=0° (equatorial orbits) are straight lines on the equator, whose lengths depend on the eccentricity of the orbit. For inclinations i>0°, the elliptical surface traces form again the familiar figure "eight" patterns, previously discussed for the circular orbits, with their nodes also at the parking positions, but in contrast to the circular cases, their symmetric axes are azimuthally tilted towards the equator. The tilt of the axes and the area enclosed by the traces are functions of orbit inclination and

eccentricity.

In order to determine the effects of:

- (a) eccentricity
- (b) inclination, and
- (c) parking position

on the mission integrated trapped particle fluxes encountered by synchronous satellites, three inclinations and three parking longitudes were selected for study, namely:

Inclinations = 0° , 30° , and 45° Longitudes = 110° E, 290° E, 310° E

For all combinations of these conditions, circular as well as elliptical trajectories were then investigated.

Some comments are necessary at this point in regards to the two new electron environment models used in the flux calculations: The AE5 for the inner zone (1.1< L< 2.8) by Teague and Vette, 1972 and the AE4 for the outer zone (2.8< L< 11.) by Singley and Vette, 1972.

Both are static models describing the environment as it existed back in October 1967, at about solar maximum conditions. In constructing these models it was possible to infer a change of the average quiet-time electron flux levels as a function of the solar cycle. However for the regions of space covered by the various orbits in this study there are no appreciable changes in the time averaged flux.

Additional static versions of the AE5-AE4 models for the 1964 solar minimum epoch have just been released and will be incorporated into

the "Unified Orbital Flux Integration and Analysis System" for future applications (Stassinopoulos and Gregory, 1973).

The IUE launch date of 1975.5 will occur very near to solar minimum and the satellite will spend its early lifetime with a low probability of encountering large solar proton flares.

Another important feature of the synchronous electron environment is the strong local time dependence of the ambient particle fluxes. The local time variations for high energy electrons (1-3 MeV) at synchronous altitudes (L~5.6 e.r.) exceed one order of magnitude. These variations are due to the distortion of the magnetosphere caused by the solar wind (compression at local noon, elongation at local midnight).

Theoretically, the new outer-zone AE4 recognized this dependence and accounted for it by incorporating an analytic function for its calculation. However, the version distributed in card deck form for practical application purposes provides fluxes which are averaged over local time. The reason behind this simplification is that most users employ the model in orbit- or time-integration processes to missions which have durations of 6 months or more and the local time effects would be averaged out anyway. Here, in order to save time, core, and effort, a local time averaged value, which is nearly equivalent to the fluxes at the dawn meridian, was inserted into the model in place of the analytic function.

The consequence of this simplification on circular equatorial synchronous orbits (that is, orbits lying on constant L-shells) is insignificant as long as complete periods (= revolutions = 24-

hour intervals) are being considered. But when the circular synchronous orbits are inclined or when the synchronous orbits are elliptical (for any inclination, including equatorial), the results conceivably could be biased for very short term missions or for the flux encountered in a transfer orbit because the vehicle briefly passes through varying L-shells at different local times, without spending more than a fraction of its period at any shell; the averaged flux values yielded by the model for these transit positions may be off (up or down) by as much as a factor of 7, depending on the particular conditions. Since such trajectories have an effective L range from about 5.5 e.r. to about 22.0 e.r. and since the relative shell-related intensities over this L range vary by several orders of magnitude, a significant intrinsic uncertainty is associated with these results for short term missions. However, for long term missions where local times are encountered fairly uniformly, the local time averaged fluxes are appropriate. The effect of this possible error for short term missions is reflected in the uncertainty factor given for the electron data in Appendix A.

In contrast to the electrons, no special considerations are required for the proton results obtained from standard models long in use. Although they describe a static environment, this is a valid representation for these particles because experimental measurements have shown that no significant changes with time have occurred in the proton population. With the exception of the fringe areas of the proton helt, that is, at very low altitudes and at the outer edges of the trapping region, the possible error introduced by the

static approximation lies well within the uncertainty factor attached to the models. Consequently, the proton data may be applied to any epoch without the need for an updating process.

We wish to emphasize that our calculations are only approximations although they are based on the best available data; as always, we strongly recommend that all persons receiving parts of this report be advised anout the uncertainty in the data, as discussed in Appendix A.

Appendix A also contains pertinent information on units, field models, trajectory generation and conversion, etc.

Finally, an explanation regarding the attribute "standard", frequently used in the reformatted OFI (Orbital Flux Integration) Study Reports. The term is applied as a modifier to parameters, constants, or variables in order to indicate or refer to some specific value of these quantities that had been used without change over extended periods of time. Although override possibilities do exist in the OFI system, a routinely submitted production run will, by default option, always use these "standard" values. The term is also used in reference to established forms, style, processes, or procedures, as for example. "standard tables", "standard plots", "standard production runs", etc. A list of some quantities, values, or expressions modified by "standard" is given in Table 1.

Results: Analysis and Discussion

The outcome of our calculations is summarized in Tables 3 to 92, which are all computer produced. The tables are arranged in four mets, where every set pertains to one specific type of table: the first set contains the "L-band" tables, the second the "Spectral Distribution and Exposure Index" tables, the third the tables of "Peaks"? and the fourth the "Exposure Analysis" summary and the "Time Account" breakdown. All sets except the last contain two similar members: one for low energy protons, and one for electrons, in that order. The last contains only one member. No high energy protons of the trapped particle variety exist in the regions of space visited by synchronous satellites, hence no tables. Further explanations on the tables and a more detriled description of their contents is given in Appendix B. Figure ? is a guide to table arrangement, as produced by a standard production run of the Orbital Flux Integration (OFI) program UNIFLUX. for a single trajectory.

Some of the tabulated data is also computer plotted in Figures 3 to 74, with additional Figures 75-110 containing plots of flight path data. Finally, Figure III shows the unaffenuated interplanetary solar proton spectrum at 1 A.U., applicable to all trajectories considered in this study. As with the tables, the plots are arranged in four sets, where each set pertains to one specific type of plot: the first set contains "Time and Flux Histograms", the second

"Spectral Profiles", the third "peaks per Orbit", and the fourth trajectory "World Map Projections" and "B-L Space Tracings". Again, all sets except the last contain two similar members: one for each type of particle encountered. The last set contains two independent members. Appendix C describes and explains the plots. Figure ? is a guide to plot arrangement, as produced by a standard production run for a single trajectory. The final, single, concluding plot (Figure 1) is explained in the section on "Energetic Solar Proton Fluxes".

^{*} Ommitted: not applicable

I. Spectral Profiles

For tabulated data consult Tables 39-74. For plotted data consult Figures 39-74.

The integral spectra presented in this report are orbit integrated, statistically averaged, trapped particle spectra, characteristic of the specific trajectories that produced them.

It should be noted that of the trapped particle species, only electrons and low energy protons exist at synchronous altitudes: that is, the synchronous environment is completely devoid of trapped high energy protons.

A comparison of the available data reveals that:

- a) elliptical trajectories encounter more particles than circular ones; this is valid for all inclinations and parking positions considered.
- b) equatorial orbits experience greater intensities than inclined orbits; this holds for all eccentricities and parking positions investigated, and
- c) parking longitude has little effect on mission integrated fluxes; this is true for both circular and elliptical orbits and applies to all inclinations: the maximum difference in flux levels due to any parking longitude variation is not likely to exceed 30%. In regards to the electrons, the error introduced by neglecting this charge is insignificant, in view of

the very large uncertainties associated with the data (about a factor of 5).

These conclusions apply equally to electrons and protons and they include all energies.

A useful corrolary may be stated: the best synchronous trajectory in terms of radiation hazard is circular and inclined, the worst elliptical and equatorial. The difference between worst and best over the range of inclination and for the eccentricity used in the study, is about a factor of 4.

II. Trajectory Data

See Figures 75-92 for World Map Projections. See Figures 93-110 for B-L Space Tracings.

A. World Maps

World map projections of trajectories are by definition the surface traces of their subsatellite points.

Projections of synchronous <u>equatorial</u> orbits, circular or elliptical, display no salient features; they appear on the equator as a point or a straight line, respectively. See Figures 75-77 for circular and Figures 84-86 for elliptical flight paths.

Inclined synchronous orbit projections display characteristic butterfly patterns, the figure "eight" tracings discussed in a previous section, whose axes are tilted for elliptical trajectories, and vertical for circular flight paths (Figures 87-92 and 78-83 respectively); for orbits with a prograde inclination, the tilt is in the SW to NE direction, forming an angle with the equator which, when measured in a counterclockwise sense, is zero degrees for the i=0° orbit, about 52° for the i=30° orbit, and about 56° for the i=45° orbit. Obviously the tilt of the axis is not a linear function of inclination, as shown in Figure 112.

The area enclosed by the surface traces increases perceptibly

when orbit inclination is raised.

The "longitudinal spread" of a surface trace is the greatest longitudinal displacement about a central position(parking longitude) achieved during one complete revolution (=one period); it is a function of eccentricity and inclination; at a given eccentricity it is always minimum for equatorial trajectories and it increases when inclination is raised, probably reaching its maximum for polar orbits. This last assumption has not been tested.

Specifically, the total longitudinal displacement of the <u>circular</u> synchronous orbits is less than 3° for the equatorial trajectories, goes up to about 9° for the $i=30^{\circ}$ flight paths, and reaches almost 20° for the $i=45^{\circ}$ orbits. The displacement of the <u>elliptical</u> trajectories (generated with that special eccentricity) is much greater to begin with (about 43° for $i=0^{\circ}$), but over the inclination range considered in the study $(0^{\circ} \le i \le 45^{\circ})$, it displays almost the same variation as in the circular cases, that is, about 15° . Corresponding curves for circular and eccentric orbits are depicted in Figure 112.

The effect of parking position on either tilt, area enclosed, or longitudinal spread is imperceptible.

B. Magnetic Dipole Mapping

At the geocentric distances of synchronous orbits, the quantities B and L have no physical meaning any more because of the interaction between solar wind and magnetosphere.

The noon-midnight distortion of the magnetosphere, produced by that interaction (compression in the solar and elongation in the antisolar direction), causes a breakdown in the symmetry of the dipole magnetic shell parameter L and introduces significant external currents and fields, whose contributions substantially alter the apparent field strength B at a given synchronous position, that is presently obtained from the dipole terms of the internal field model applied in the calculations.

Therefore, in this atudy (as well as in every model of chargedparticle radiation utilized), these variables are being employed only as ordering parameters.

The magnetic B-L-space tracings of the equatorial synchronous trajectories appear as small (circular orbits) or large(elliptical crbits) line segments on the plots (Figures 93-95 and 102-104, respectively), running parallel to the contour of the magnetic dipole equator, but removed from it by a finite distance corresponding to the magnetic latitude of the parking position.

This displacement occurs because the magnetic dipole axis is tilted to the earth's axis of rotation by an angle of about 11.4 degrees. Hence, positions on the geographic equator may be displaced from the geomagnetic equator by that angle, at most. If the parking longitude coincides with the nodes of the two equatorial planes, the trace should be tangent to the equatorial contour in the B-L plots.

The length of the traces is a measure of the B and L variations encountered on a particular trajectory. The relatively stationary circular orbit has the shortest trace, while the oscillating elliptical orbit indicates by the length of its trace that a substantial change in these parameters occurs during one revolution.

The selection of a different parking longitude has no effect on the magnitude of the L-interval covered by the trace but it changes slightly the B-interval (maximum variation between smallest and largest interval appears to be less than 10%) and shifts the position of the trace relative to the equatorial contour, both in B and in L.

Particularly interesting may be the apparent traversal of identical volumes of B-L space, with identical gradients, in the ascending as well as the descending portions of the elliptical flight paths; this is clearly indicated by the overlap of the corresponding tracing segments in Figures 102 and 103 for the two parking positions at 110° and 290° east longitude.

It appears that this symmetry does not prevail everywhere along the geographic equator, as is indicated by the

separation of the respective tracing segments in Figure 140 for the 310° east longitude position.

As would be expected, the tracings of <u>inclined</u> synchronous trajectories extend over large B and L ranges.

Incidentally, all inclined orbits (any eccentricity) cross the magnetic equator twice per period at the points where the tracings touch the equatorial contour.

The inclined circular orbits display a similar volume symmetry (flight path overlap) as that observed for the equatorial circular orbits, discussed above, in this case however it holds for all selected parking positions.

The inclined elliptical orbits strikingly reflect the local geomagnetic geometry conditions prevailing at each parking position. For example, clearly distinguishable is the portion of the flight path that lies south of the magnetic equator from the portion north of the equator; the former is the "inside" contour, the latter is the "outside" contour in Figures 105-110. A schematic presentation of geographic polar and geomagnetic dipole geometry, relating to inclined synchronous orbits (circular and elliptical), is given in Figure 113.

Energetic Solar Proton Fluxes

Good measurements of solar cycle 20 interplanetary cosmic rey fluxes at about 1 A.U. are now available. These interplanetary particles are also observed over the high latitude polar cap regions. However, at other latitudes the geomagnetic field effectively shields the earth from some of these cosmic rays by deflecting the lower energy particles while only particles with increasingly higher energy penetrate to lower latitudes.

In order to consider the effect of geomagnetic shielding from cosmic rays on an orbiting spacecraft, the total time spent by the vehicle in regions of space accessible to these particles has to be calculated, as a function of particle energy, for the entire lifetime of the satellite. In other words, the exposure of a spacecraft to these particles is in essence a function of trajectory altitude and inclination, and mission duration. Of course, this applies only to the years of increased solar activity, and whether a satellite will "see" energetic solar protons or not, even in accessible regions of the magnetosphere, depends on the epoch within the solar cycle, at which the mission is to be flown. If it coincides with the period of low solar activity (years of solar minimum), it most likely will not encounter any significant number of energetic solar protons, and vice versa.

Having calculated a mission related exposure time for a specific trajectory, one can use experimentally determined low energy cosmic

ray fluxes of solar origin from which the galactic background has been subtracted, to obtain vehicle encountered energetic solar proton intensities. In the present study, the annual mean of event and cycle integrated proton fluxes of cycle 20, given by Stassinopoulos and King (1973) for energies ranging from E > 10 MeV to E > 100 MeV, were used to estimate cycle 21 intensities on the IUE (SAS-D) mission.

Rowever, no thorough statistical treatment has yet been worked out in regards to the probability of actual cycle 21 fluxes exceeding the predicted intensities. Crude model confidence levels only are available at this time. The importance of such statistics must be emphasized; it is best demonstrated by the occurrence of the August 4-7, 1972, event, which was the largest recorded in solar cycles 19 and 20, its fluxes exceeding the accumulative total of all other cycle 20 events by about a factor of 2 for the E > 10 MeV protons and by a factor of 4 for the E > 30 and E > 60 MeV particles. Therefore, caution is advisable when using the data presented in this report.

The probability that the estimated fluxes for the IUE (SAS-D) mission will be exceeded by an actual event, is about 33% for a one year mission duration.

Figure 111 shows the annual, omnidirectional, integral spectral profile of the vehicle encountered energetic solar proton fluxes in units of particles per square centimeter.

The reason only one curve appears on this graph is because all eighteen investigated trajectories remain completely outside

the magnetic dipole shell of L=5 e.r. and, consequently, experience no magnetospheric shielding effects; that is, they all encounter the same 100% exposure to energetic solar protons.

Note: these fluxes apply only to missions planned for periods of increased solar activity. It is not expected that solar-min missions will encounter energetic solar protons of any significance: at least, it is very unlikely (but not impossible) to have a major event occurring during the years of minimum solar activity. The 1975.5 IUE mission will be launched during solar minimum but if the operating lifetime is a couple of years then the probability of encountering some solar protons is high.

The Local-time Drift of Synchronous Satellites

and the second s

At any instant during a day, the parking position of a synchronous satellite can be temporally referenced by its "local time", where geographic local time LT of a position is defined as the sum of universal time UT and the position's longitude, converted to hours.

Now, when the local time of a synchronous spacecraft, LT_g , is compared to the local time of its parking position, LT_p , the satellite appears to oscillate in local time over the duration of a period, alternately advancing ahead of and falling behind the corresponding LT_p value by some finite amount of time, whose magnitude is a function of orbit eccentricity and inclination. At the completion of a period $LT_s = LT_p$.

Obviously, this cyclic phenomenon arises out of the difference in the rotational velocity of the spacecraft relative to the rotational speed of the geoid. This difference in velocity manifests itself also as "longitudinal spread", an equivalent concept discussed earlier in the study.

With the exception of <u>circular equatorial</u> orbits, all synchronous trajectories (whether circular, elliptical, equatorial, or inclined) are affected by this "local-time drift "(LTD). Values of LTD for the selected inclinations and eccentricities are given in Figure 114.

A final note: the LTD discussion applies equally to magnetic local time considerations. In fact, LT is a good approximation of magnetic local time for low latitudes ($<50^{\circ}$), assuming that the dipole axis is parallel to the axis of rotation.

References

- Cain, J. C., and S. J. Cain, "Derivation of the International Geomagnetic Reference Field (IGRF 10/68)", NASA Technical note TN D-6237, August 1971,
- Hassit, A., and C. E. McIlwain, "Computer Programs for the Computation of B and L (May 1966)", Data User's Note NSSDC 67-27, National Space Science Data Center, Greenbelt, Maryland, March 1967.
- King, J. H., Models of the Trapped Radiation Environment, Volume IV: Low Energy Protons, NASA SP-3024, 1967.
- Lavine, J. P., and J. I. Vette, Models of the Trapped Radiation Environment, Volume V: Inner Belt Protons, NASA SP-3024, 1969.
- Lavine, J. P., and J. I. Vette, Models of the Trapped Radiation Environment, Volume VI: High Energy Protons, NASA SP-3024,1970.
- Singley, G. W., and J. I. Vette, "A Model Environment for Outer Zone Electrons", NSSDC 72-13, National Space Science Data Center, Greenbel*, Maryland, July 1972.
- Stassinopoulos, E.G., and P. Verzariu, "General Formula for Decay Lifetimes of Starfish Electrons", J.Geophys.Res., 76, 1841-1844,1971.
- Starsinopoulos, E.G., and G. D. Mead, "ALLMAG, GDALMG, LINTRA: Computer Programs for Geomagnetic Field and Field-Line Calculations", NSSDC 72-12, National Space Science Data Center, Greenbelt, Maryland, February 1972.
- Stassinopoulos, E.G., and J.H. King, "An Empirical Model of Energetic Solar Proton Fluxes with Applications to Earth Orbiting Spacecraft", NASA-GSFC Report X-601-72-489, December 1972.
- Teague, M. J., and E.G. Stassiropoulos, "A Model of the Starfish Flux in the Inner Radiation Zone", NASA-GSFC Report X-601-72-487, December 1972.
- Teague, M. J., and J. I. Vette, "The Inner Zone Electron Model AE-5", NSSDC 72-10, National Space Science Data Center, Greenbelt, Maryland, September 1972.
- Stassinopoulos, E.G., and C. Z. Gregory, "UNIFLUX: A Unified Orbital Flux Integration and Analysis System", to be published.

APPENDIX A

General Background Information

For the selected IUE(SAS-D)flight paths, orbit tapes were generated, with a constant integration stepsize of two minutes, and for a 24 hour flight duration each. Since all the orbits are geosynchronous, this time interval is adequate for a sufficient sampling of the ambient environment. (For more details see section: "Results, I. Trajectory Data.") For the following nine combinations of inclination and parking position, circular and elliptical trajectories were thus produced:

Incl.	Parking Longitude		
0°) 30°) 45°)	110°E	290 ⁰ E	310°

The orbits were subsequently converted from geocentric polar into magnetic B-L coordinates with McIlwain's INVAR Program of 1965 (Hassit and McIlwain, 1967) and with the field routine ALLMAG by Stassinopoulos and Mead (1972), utilizing the IGRF (1965) geomagnetic field model by Cain and Cain (1971), calculated for the epoch 1975.5.

Orbital flux integrations were performed with Vette's current models of the environment, the new AE5-AE4 for the inner and outer zone electrons, the AP6-AP7 for high energy protons, and the AP5 for low energy protons. All are scatic models which do not consider temporal variations; this includes the new electron models, at least as far as the present calculations are concerned. See text for further details on this matter.

The documents that describe these models are listed below:

Model

AE4	Singley and Vette, 1972
AE5	Teague and Vette, 1:)72
AP5	King, 1967
AP6	Lavine and Vette, 1969
AP7	Lavine and Vette, 1970

The results, relating to omnidirectional, vehicle encountered, integral, trapped particle fluxes, are presented in graphical and tabular form with the following unit conventions:

1. Daily averages: total trajectory integrated flux averaged into particles/cm2 day,

2. Average instantaneous: time integrated average, charac-

teristic of the orbit, in particles/

cm² sec,

3. Totals per orbit: non-averaged, single-orbit,

integrated flux in particles/cm2

orbit, and

Peaks per or it: highest orbit-encountered instan

taneous flux in particles/cm2 sec,

where one orbit = one revolution.

Please note: we wish to emphasize the fact that the data presented in this report are only approximations. We do not believe the results to be any better than a factor of $\underline{2}$ for the protons and a factor of $\underline{5}$ for the electrons. It is advisable to inform all potential users about this uncertainty in the data.

APPENDIX B

Description of Tables

3) The L-band Teble!

٤.

The table contains 36 L-bands l_i of equal size, covering the range from L = 1.0 to L = 8.2 earth radii in constant increments of .2 earth radii. For the L-intervals determined in this way, orbital spectral functions

$$N(>E,E_{N};-_{1}) = \left[\sum_{k} J_{k}(>E;B)\right] L_{1} / \left[\sum_{k} J_{k}(>E_{N};B)\right] L_{1} \qquad \qquad L_{1}: L_{1} < L \le L_{1+1}$$
 (1)

are obtained at nine crbitrary energy levels such that the integral spectrum is equal to 1 for $E = E_N$, where E_N was taken to be .1, 5., and .5 Mev for low energy protons, the high energy protons, and the electrons, respectively. The notation L_i is used to indicate the L-band from L_i to L_{i+1} , while J(>E;B) is the integral, emidirectional flux yielded by the environment model used in the calculation. The spectral functions N are evaluated for the total flight time simulated in the study, where the summing index k selects all trajectory points lying in each L_i .

The corresponding orbital distribution functions, representing fluxes above energy $\mathbf{E}_{\mathbf{N}^{*}}$ are given by

$$F(E;L_{\underline{i}}) = \Delta t \left[\sum_{k} J_{\underline{k}}(>E;B) \right]_{L_{\underline{i}}}$$
(2)

where At is the constant time increment of orbit integration, whose

standard value is 60 seconds. The distribution functions are fluxes accumulated in their respective L_1 bands over the total flight period considered.

The orbital distribution functions are listed on the table at the bottom of each L-interval and are labeled "NURMPLUX". The nine integral energy levels selected for the low and high energy protons and for electrons are given below in units of "Mev" for all particles:

Protons		Electrons	
Low	High		
.1*	3.	•	
.5	5,*	.5*	
.9	10.	1.0	
1.1	15.	1.5	
1.5	20.	2.0	
2.0	25.	2.5	
2.5	30.	3.0	
3.0	50.	4.0	
3.5	100.	5.0	

where the normalization energy is indicated by a star (*).

b) The Spectral Distribution and Exposure Index Table:

This table has three parts:

I. The spectrum Y_j (ΔΕ) given in % for energy intervals that correspond to the energy levels of the previously discussed table (L-bands), with two special columns showing the total orbit integrated flux for these energy intervals averaged into instantaneous I_j^S and daily I_j^D intensities

$$V_{j}(\Delta E) = 100 \frac{I_{j}^{D}(\Delta E)}{F(>E_{1})}$$
 $j=1,9$ (3)

where

$$F(>E_1) = C \sum_{k=1}^{k_0} J_k(>E_1;B,L)\Delta t$$
 (4)

$$I_{j}^{D}(\Delta E) = C \sum_{k=1}^{k_{0}} \Delta t \left\{ J_{k}(>E_{j};B,L) - J_{k}(>E_{j+1};B,L) \right\}$$
 (5)

$$I_{j}^{s}(\Delta E) = I_{j}^{D}(\Delta E)/86400$$
 (6)
 $C = \frac{24}{T}$, $T = k_{0}\Delta t$ i=1,36

and where k_0 is the upper limit of k. It is equal to the total number of time increments considered in the study.

II. The composite orbit spectrum for integral energies, giving the total vehicle encountered fluxes averaged into daily S^D(>L_j) and per second S^S(>E_j) intensities for 15 discrete energy levels:

$$S^{0}(>E_{j}) = c\Delta t \sum_{m=0}^{T} J_{m}(>E_{j})$$
 j=1,15 (7)

$$S^{S}(>E_{j}) = S^{D}(>E_{j})/86499$$
 (8)

where the summation is performed for the entire simulated mission duration T and includes all fluxes with energies greater than E_i .

III. The exposure index, given (for the normalization energy used in the L-band table) at nine successive intensity ranges R_n one order of magnitude apart, in terms of exposure duration $\tau(R_n)$, converted to hours, and total number of particles $\phi(>E_N;R_n)$ accumulated while in that intensity range. The notation R_n is used to indicate the intensity range from r_n to r_{n+1} :

$$\phi(>E_N;R_n) = \tau(R_n) \theta(>E_N;R_n)$$

$$R_n = r_n < r \le r_{n+1}$$
(9)

$$\theta(>E_N;R_n) = \left[\sum_{k} J(>E_N;r)\right]_{R_n} / \zeta_n$$
 (10)

$$\tau(R_n) = \Delta t \zeta_n \tag{11}$$

where ζ_n is the upper limit of ℓ in each R_n .

c) The Table of Peaks:

In this table, the absolute instantaneous peak flux encountered during each successive orbit (revolution) is listed for the indicated energy range. There are nine columns on this table. Column 1 is an orbit counting device, based on the period of the orbit when the trajectory lies in the equatorial plane and is circular, on the physical perigee in all elliptical cases, and on the equatorial crossing for circular inclined trajectories. Column 2 gives the peak flux. Columns 3, 4, and 5

indicate the spacecraft position in geocentric coordinates at which the peak was encountered, while columns 6, 7, and 8 determine respectively the time and the magnetic B-L coordinates for this event. It should be noted that all simulated flight paths for the purpose of orbital radiation studies start at t₀ = 0 hours. Finally, the last column indicates the total flux encountered during that particular orbit. It is advisable to disregard the last line on this table because many times that orbit is incomplete and the fluxes or positions shown do not correspond to true peaks.

d) The Exposure Analysis Summary:

The summary is contained in the left half of this last table of each set as a semi-independent and separate table. It indicates what percent of its total lifetime T the satellite spends in "flux free" regions of space, what percent of T in "high intensity" regions, and while in the latter, what percent of its total daily flux it accumulates.

In the context of this study, the term "flux free" applies to all regions of space where trapped particle fluxes are less than one proton or electron per square centimeter per second, having energies E > .1, E > 5., and E > .5 Mev for the low energy protons, the high energy protons, and the electrons, respectively; by definition, this includes all regions outside the radiation belts. The concept of "trapped particle fluxes" is meant to include stably trapped, pseudo-trapped, and transient fluxes, as long as they are part of or contained in the environment models used and, in the case of transients or pseudos, their sources

are considered powerful enough to supply them frequently in substantial numbers.

Similarly, we define as "high intensity" those regions of space where the instantaneous, integral, omnidirectional, trapped-particle flux is greater than 10^3 protons with energies E > .1 or E > 5. MeV, and greater than 10^3 electrons with energies E > .5 MeV.

The values given in this table are statistical averages, obtained over extended intervals of mission time. However, they may vary significantly from one orbit to the next, when individual orbits are considered.

e) The Time Account Breakdown:

The breakdown of orbit time is given in the right half of the last table of every set, in the same semi-independent form as the summary. The table shows the total lifetime spent by the vehicle in the inner zone T^1 (1.0 < L \leq 2.5) and the outer zone T^0 (2.5 < L \leq 7.0) of the trapped particle radiation belt, and also the percent duration spent outside that region (L > 7.0), which is denoted by T^0 (T-external), such that for any mission

$$T = T^{1} + T^{0} + T^{0} = 100$$

The confinement of the outer zone within the boundary of the L=7.0 volume is arbitrary and has no physical meaning. It is intended only as a simplification to facilitate our calculations. The region considered "external" (L=7.0) in this study is still partially a domain of the outer zone, at least as far out as L=11.0 earth radii, accord-

ing to the latest electron models (Singley and Votte, 1972).

A last item on this table: the inner zone time T^1 may be subdivided into two parts: the percentage of time spent outside the region (1.0 < L \leq 1.1) and inside the region (1.1.< L \leq 2.5).

APPENDIX C

Description of Plots

a) The Time and Flux Histogram:

This plot shows two curves superimposed on the same graph, namely, one each for the variables "time" and "flux". Both are given as functions of the parameter L (earth radii) within the range 1 - L - 7, on a semilog scale. The plot depicts: (1) by a plain curve the characteristic trajectory intensities as obtained from the orbital integration process in terms of averaged. integral particle fluxes above a given energy, over constant L-bands of .1 earth radius width, and (2) by a contour marked with symbols the percent of total lifetime (\$T) spent in each L-interval. The logarithmic ordinate relates to the timeflux variables. The printed numbers are powers of 10 and pertain to the fluxes; the scale values for the time curve are given in the upper part of the ordinate label; from 10⁻³ to 10² percent of T. The type of particles, their integral energy, and the units, are all given in the lower part of the label. The label on top of the graph lists some useful information about the trajectory.

b) The Spectral Profile:

A graphical presentation of the final spectral distribution, obtained from the orbital integration process. The plot is a semi-log graph, where the abscissa is a linear energy scale for integral particle energies

 E_0 in Mev, and the ordinate is a logarithmic scale for the orbit integrated fluxes, given in daily averages for energies greater than E_0 ; the printed scale values are powers of 10.

c) Peaks per Orbit:

Here the absolute peak intensities, encountered per period, are plotted for the duration of the total flight time considered (1 period = 1 revolution = 1 orbit). The logarithmic ordinate relates to instantaneous particle fluxes of the environment at the indicated energy threshold, while the abscissa is a linear orbit enumeration.

d) World Map Grid Projection of Orbits:

The trajectory is plotted for several revolutions on a global map produced by a Miller Cylindrical Projection. The contours of the continents have been omitted for clarity. The positions of either equatorial crossing, of physical perigee, or of period commencement are indicated by numbers identifying the orbits shown in this graph. For all trajectories, the distance between successive sequential numbers is a measure of the orbit precession.

e) B-L Trace of Orbits:

This plot shows a trace of the trajectory in B-L space on a semi-log scale. Several orbits are usually depicted, each identified by its sequential number. The magnetic equator is entered on all plots. The logarithmic ordinate relates to the field strength B in gauss; the

printed values are exponents of 10. L is given in earth radii on the linear abscissa.

TABLE 1

Partial Listing of Parameters, Constants, Variables, or Expressions

designated as "standard" in the text

- Standard Tables: set of tables as listed in Figure 2, in the regular format described in Appendix B.
- Standard Plots: set of plots as listed in Figure 2A, in the regular format described in Appendix C.
- Standard Production Run: a production run processed on default options.
- 4. Standard Integration Stepsize: constant time increment of orbit integration: 1'(60").
- 5. Standard Energies: low energy protons E > .1 Mev, high energy protons E > 5. Mev, and electrons E > .5 Mev.
- 6. Standard Procedure: established procedure normally followed vs. procedure followed in special cases.

TABLE 2

B and L Extrema of Synchronous Trajectories

Parking Longitude:	1	10°	29	o ರೆ	31	10°
Elliptical:	B-Range (Gammas)	L-Range (e.r.)	B-Range (Gammas)	L-Range (e.r.)	B-Range (Gammas)	L-Range (e.r.)
07/27952-43615	69-214	5.56-8.13	66-203	5.72-8.29	65-199	5,68-8.25
30%27952-43615	67-238	5.40-11.23	64-277	5.53-11.21	64-219	5,54-10.13
45%27952-43615	66-265	5.38-20.11	64-255	5,50-19,50	63-249	5.51-17.04
Circular:						· · · · · · · · · · · · · · · · · · ·
0735863	114-114	6.86-6.86	109-109	7.02-7.02	108-103	6.98-6.98
30%35863	108-163	6.60-11.80	103-158	6.72-11.94	102-154	6.73-11.21
45%35863	109-187	6.60-21.99	102-183	6.72-21.72	102-181	6.73-20.45

SO DESITAL FLUX STUDY WITH COMPOSITE PARTICLE ENVIRONMENTS: VETTES APS. APS. APS. APS. FOR SOLAR MAXIMUM SOOS UNIFLE OF 1973 SO . THE ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. O WITH LIFETINES: E.G. STASSINGPOULDSEP-VERZARIU . CUTOPP TIMES: ** MAGNETIC COORDINATES & AND L COMPUTED BY INVARA OF 1972 WITH ALLMAG. PODEL 4: CAINGSWEENEY 120-TERM POGO 8/69 * TIME# 1975-5 ** ** VEHICLE : SAS-D (110) ** INCLIMATION= ODEG ** PERIGEE=35863KM ** APOGEE= 35863KM ** B/L DRBIT TAPE: TD7512 ** PERIOD= 24,000 ** .. SPECTRAL DISTRIBUTION : NORMALIZED BY PLUX OF ENERGY GREATER THAN . 100 MEY .. ENTRGY L-BANDS (MAGNETIC SHELL PARAMETER IN EARTH RADII) L-BANDS 1 CVELS \$1.0-1.20 \$1.2-1.40 \$1.4-1.60 \$1.6-1.60 \$1.6-2.00 \$2.0-2.20 \$2.2-2.40 \$2.4-2.60 \$2.6-2.80 \$2.8-3.00 \$3.0-3.20 \$3.2-3.40 >(MEY) -100 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0-0 . 500 0.0 0.0 0.0 0.0 0.0 9.0 C. 0 0.0 0.0 0.3 0.0 0.0 .900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.50 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0-0 0.0 0.0 0.0 0.0 2.00 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 2.0 0.0 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.00 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 3.50 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 MORMFLUX= 0.0 0.0 0.0 0.0 0.0 ENERGY L-BANDS IMAGNETIC SHELL PARAMETER IN EARTH RADII) L-BANDS LEVELS #3.4-3.60 #3.6-3.69 #3.8-4.00 #4.0-4.20 #4.2-4.40 #4.4-4.60 #4.6-4.60 #4.6-5.00 #5.)-5.20 #5.2-5.40 #5.4-5.60 #5.6-5.60 > (MEY) -100 0.0 0.0 0.0 0.0 9.0 0.0 0.0 £ 500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.10 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.50 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.00 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.50 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 HORNFLUX# 0.0 0.0 0.0 ENERGY L-BANDS (MAGNETIC SHELL PARAMETER IN BARTH MADII) L+BANDS LEVELS ቁጜ_ኯውለት ይዩ ለፈ-ይኖር የልፈያ።ሲፈለና የፋ-ሲካሲፈርና የፋ-ርምስኒያና የፋ-ቤተ-የፈርና የ7-ይተ የ7-ደ-7-45 የ7-4-7-65 የ7-4-7-66 የ7-4-7-68 የ7-4-1 > [MEY] 1.00E 00 0.0 .100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .500 0.0 0.0 0.0 3.53E-02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .900 0.0 0.0 0.0 0.5 0.0 1.25E-03 0.0 0.0 0-0 0-0 0.0 0.0 1.10 0.0 0.0 0.0 0.0 0.0 2.34E-04 0.0 0.0 0.0 0.0 0.0 0.0 1.50 0.0 0.0 0.0 0.0 6.0 6.25E-06 0.0 0.0 0.0 0.0 0.0 0.0 2.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 . 0.0 2.0 0.0 0.0 0.0 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3-00

3.50

NORMFLUX# 0.6

0.0

0.0

0.0

0.0

0.0

0.0

0.3

0.0

0.0

0.0

0.0

0.9

0.0

9-90# 10 0-3

0.0

9.0

0.0

0.0

0.0

0.0

0.0

9.0

0.0

0.0

0.0

0.0

0.0

**************************************	FLUXES EX	PONENTIALL	Y DECAYED COMPUTED	TO 1970. D By invara	WITH LIFE OF 1972 WI	TIMES: E.G. Th Allhag.	STASSINOPO	CAINESWE	RZARIU 6# ENEV 120-T	CUTOFF TIME	PARRAGES PRO UNIFLX ES: 769 # TIME	**
·					••	ELECTRONS			*******			
		** SP	ECTRAL DIS	MOLTUBLAT		ED BY FLUX	OF ENERGY	GREATER T	MAN -500 M	FY ##		
		** **	********	********	*********	********	********	******		****		
ENERGY	L - B A	NDS (HAGNE	TIC S	HP LL	PARAN	ETER	IN	EARTH	RADI	11'L-	5 A N D 3
LEVELS	+1.0-1.2+	#1.2-1.4+	*1.4-1.6*	#1-6-1-6*	*1.8-2.0*	#2-0-2-2#	42.2-2.44	*2.4-2.6*	*2.6-2.8*	*2.8-3.0*	+3-0-3-2+	+3-2-3-4+
>(MEV)												
				_								
•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0
-500	0.0	0.0	0.0	0.0	0.0	0.0	0 • Q	0.0	0.0	0.0	0.0	0.0
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.0.0
1.50	0. 0	0.0	0.0	0.0	0.0	0.0	0.0	Q • Q	0.0	0.0	0.0	0.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.00	0.0	0.0	0∙Q	Q • Q	0.0	0.0	Ω•0 .	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	G a G	0.0	0.0	0.0	0.0	0.0	0.0	0.0
											,	
NORMFLUX=	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ENERGY	L - 6 A	NDS (M A G N E '	TIC S	HELL	PARAM	IETER	IN I	EARTH	RADI	1) L-	
LE/ELS	*3.4-3.61	+3.6-3.6+	#3.8-4.0#	*4.0-4.2	14-2-4-40	+4.4-4.6+	*4-5-4-8*					
>(MEV)				******			*****		-000 3020	7002 314 2	* 384 3460	V 540 - 3400
•0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	Q. O	0.6	0.0	0.0	0.0	0.0	Q.Q	0.0	0.0	0.0	0.0	0.0
1:10	0.0	0.0	0.0	0.0	υ•0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	2.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.00	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORMFLUX=	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ENERGY	L - B A	u n e " "/	HAGNE		HZLL	PARAI		- IN	EARTH	RADI	• • • -	BANDS
						#6+0-7+Q#.						
>(NEV)	_: 000-000	, y y 0 - 0 0 C	7 76 6 - 04 44		-230-2300	7# * V",\$ \$ 7.	V180-1927			. + /80-/80+	+/40-0494	486 G-U (K4
•0	0. 0	0.0	0.0	0.0	0.0	1.56E 01	0.0	0.0	0.0	0.0	0.0	0.0
	0,0	0.0	. 0.0	9. 9	0.0	1+00E, SJ	. 0.0			0.0	0.0	0.0
1.00	0.0	0.0	0.0	0.0	0.0	1.78E-01	0.0	0.0	0.0	0.0	0.0	0.0
3+50	0,0	0.0	0.0	0.0	_0.0	4,10E-CZ	. 0 • Q	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0.4	0.0	0.0	9.0	9.44E-03	0.0	0.0	0.0	0.0	0.0	0.0
2,50	.0.0	0.0	0.0	0,0	0.0	\$ <u>+0</u> 66-03	0.0	0.0		. 0.0	0.0	
3.00	0.0	0.0	0.0	0.0	0.0	4-14E-04	0.0	0.0	0.0	0.0	0.0	0.0
4,90	_ 0•0	0•0	0•0	_ 0.0		7.89E-07	0.0	_0•0	_ 0.0	. 0.0	. 0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

** ORBITAL FLUX STUDY WITH COMPOSITE PARTICLE ENVIRONMENTS: VETTES 405. ADE. ADT: AF4. AF5, FOD COLAR MAXIMUM **** UNIFLY OF 1971 ** ** ELECTADN FLUXES EXPUNENTIALLY DECAYED TO 1970. O WITH LIFETIMES: E.G. STABSINGROULDSER, V/H ZAPID ** CUTCHE TIWES: ** MAGNETIC COORDINATES & AND L COMPUTED BY INVARA OF 1972 BITH ALLMAG, MODEL 4: CAINGEBTINEY 120-TIPM OFCO AVE: 4 TIME= 1075.5 ** ** VEHICLE : SAS-0 (293) ** INCLINATION* ODEG ** PERIGES#358638M ** APGGSS# 353638M ** PZL DREIT TAPE: TOPPOR ** OFFICE PARCOC PA ** SPECTRAL DISTRIBUTION : NORMALIZED BY FLUX OF ENERGY GREATER THAN . 100 MEV ** ENERGY L-BANDS IMAGNETIC SHELL PARAMETER IN CARTH FADILI 1-BANDS LEVELS #10J-102# 0102-104# 0104-106# 0106-106# \$108-200 #200-202# 0202-204# 0204-206# 0205-208# 0207-209# 0707-100# 0302-304# >(MEY) .100 0.0 0.0 0.0 0.0 0.3 0.0 C. 0 0.0 0.0 3.3 242 -500 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.6 0-0 0.0 0.0 .900 0.0 J. 0 0.0 0.0 C.O 0.0 0.0 0.0 0.0 0.0 0.0 2-2 1.10 0.0 C. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 1.50 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 2.00 0.0 0.0 0.0 0.0 0.0 0.0 C. 2 0.0 0.0 0-0 0.0 0.0 2.50 0.0 2.0 0.3 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.0 2.0 3-00 0.0 0.0 0.0 0.0 C.O 0.0 0.0 0.0 0.0 0.0 3-0 0.0 3.50 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 NORMFLUX = 0.0 0.0 0.0 0.0 0.0 0.0 PARAMETCR ENERGY L-BANDS IMAGNETIC 5 M E L L I N FARTH FADII) L-BANDS #3.4~3.60 #3.6~3.60 #3.6~4.60 #4.0~4.2* #4.2~4.40 #4.4~4.60 *4.6~4.6* *4.6~5.6* *5.0~5.0* *5.0~5.2* *5.2~5.4* *5.1~5.6* *5.6~5.8* LEVELS > (MEV) .100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 - 500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3. 2 0.0 0.0 0.0 -900 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 1.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.40 0.0 0.0 0.0 0.0 0.0 C.C 2.00 0.0 0.0 0.0 0.0 C-0 0.0 0.0 0.0 0.0 2.50 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 3.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.50 .3 . 0 0.40 0.0 0.0 0.0 0.0 0.0 0.0 C.O 0.0 7.0 2.0 NURMFLUX# 0.0 0.0 0.0 0.0 0.0 FARTH RADILL L-BANDS ENERGY L'-BANDS (MAGNETIC SHELL PARAMETER IN LEVELS #5.8-6.0* #6.0-6.2* #6.2-6.4* #6.4-6.6* #6.5-6.8* #6.8-7.0* #7.0-7.2* #7.2-7.4* *7.4-7.6* #7.6-7.8* #7.6-7.8* #8.0-6VR* (VEV) -100 4.0 0.0 0.0 0.0 0.0 1.00E 00 0.0 C.O 0.0 0.0 0.0 0.0 .500 0.0 0.3 0.0 0.0 0.0 0.0 4.14E-02 0.0 0.0 0.0 0.0 1.72E-03 0.0 0.0 9.0 0.0 0.0 .900 0.0 0.0 0.0 0.0 C. C 0.0 3-498-04 0-0 0.0 0.0 1.10 0.0 0.0 ... 0.0 0.0 0.0

0.40

C.O

0.0

3.3

7 . 6

0.0

0.0

0.0

0.0

0.0

0.0

C-0

0.0

6.0

0.0

0.0

0.0

0.0

1.50

2.00

2.50

3.00

3-50

NORMFLUX# C.O

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0-0

0.0

C.O

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.451-05 0.0

4-86F 10 0-0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0-6

0.0

0.0

0.0

0.0

0.0

0.2

0-0

** SPECTRAL DISTRIBUTION: NURMALIZED BY FLUX OF ANTRO GREATER THAN SOO MEY **

** SPECTRAL DISTRIBUTION: NURMALIZED BY FLUX OF ANTRO GREATER THAN SOO MEY **

** SPECTRAL DISTRIBUTION: NURMALIZED BY FLUX OF ANTRO GREATER THAN SOO MEY **

** SPECTRAL DISTRIBUTION: NURMALIZED BY FLUX OF ANTRO GREATER THAN SOO MEY **

		** **	*****		********	. * * * : * * *			**********	****		
ENERGY	L - 5 A	1 N 2 S	LMAGNE	TIC	5 F E L L		A M E T " R	ΙN	FARTH		(- 9 A N C S
LEVELS	· 1.0-1.2						24 47.2-2.44					
>(MFV)											- /0:	
•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.9	0.0
.500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.00	≎• 0	0.0	0.0	0.0	0.0	C+0	0.0	0.0	0.0	0.0	0.0	0 • C
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	^•a	0.0
2.00	0.0	0.0	C.Q	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0 • 0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	J.0	0.0	C+0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	C • O	0.0	↑. 0	2.0	0 = 0	0.0
4.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.40	3.0	0.0
NORMFLUX=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	^•0	0.0	0.0	์ ๆ. บ
ENERGY	L - R A	N D S	. 4 A 3 N E	T 1 C	5 H E L L	D A D	AMETER	IN	EAPTH		11) L	 - 8 A N D S
LEVELS							44.6-4.84					
> (MEV)	4204-560	250-56	34 4380-460			******	4460-4604	-4,0-5	100 000000020	- 302-50		, ne +240-200
•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
.500	0.0	. 0.0	0.0	0.0	0.0	0.0	0 - 0	0.0	0.0	0.0	0.0	0.0
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0. 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0 • Q	0.0	0.0	0.0	0.0	C • O	0.0	0.0	0.0	9.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 • C	0.0	0.0	3.0	0.0
4.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C+0	0.0	. 0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORMFLUX=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0
ENERGY	L - 9 /	ANDS		TIC	5 H E L L	PAR	AMETER	ī N	EARTH	RAJ	ii) L	- B A N D S
LEVELS	#5.8-6.0						0# #7.0-7.2*					
>(MEV)												
•0	0.0	C. 0	0.0	0.0	0.0	0.0	1.835 01	0.0	0.0	0.0	0.0	0.0
.500	0.0	0.0	0.0	0.0	0.0	0.0	1.00E 00	0.0	C • O	0.0	0.0	0.0
1.00	0.0	0.0	0.0	0.0	0.0	0.0	1.53F-01	0.0	0.0	0.0	0.0	0.0
1.50	Q• O	0.0	0.0	0.0	0.0	0.0	3.32E-02	0.0	9.0	0.0	7.0	0.0
2,00	0.0	0.0	0.0	0.0	0.0	0.0	7.18E-03	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	1.52E-03	0.0	0.0	0.0	C.0	* 0.0 .
3.00	0.0	0.0	0.0	0.0	0.0	0.0	3-12E-04	0.0	C • O	0.0	0.0	0.0
4.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0

•

1.70F 11 0.0

0.0

ENERGY	L - 8 A	NDS (MAGNE	TIC S	HELL	PARAN	A B T T	1 N	EARTH	RADI	1) L-	EANDS
- (MEA)	+1.0-1.2+	*1.2-1.4*	+1.4-1.6	* *1.6-1.5*	*1.8-2.0*	*2.0~2.2*	* 2•2-2•4 *	42.4-2.6	* *2.6-2.8*	*2.6-3.0*	43.0-3.2*	*3.2-3.4*
.100	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	C • O	0. C	0.0	0.0
.500	U.O	0.0	0.0	0.0	0.0	0.0	Q.C	0.0	0.0	0.0	0.0	0.0
.900	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0
1.10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.0 .
1,50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 -
2.50	0.0	2. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0
3.00	0.0	D • D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	D• Ó	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0
*ORHFLUX=	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0	C=0	0.0	0.0	0.0
ENERGY	L - 8 A	NDS (M A G N E	TIC S	HELL	PARAM	ETER	l N	EARTH	RADE		
EVELS	43.4-3.6 *	*J.6-3.d*	*3.8-4.0	* *4.0-4.2*	*4.2-4.4*	*4.4-4.6*	*4.6-4.8*	+4.8-5.0	* *5.0-5.2*	+5-2-5-4+	+5.4-5.64	45.6-5.84
(NEV)												
-100	0.0	C- 0	0.0	0.0	0.0	0.0	0 • n	0.0	6.0	2.0	0.0	9.0
-500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
.900	0.0	0.0	0.0	0.0	C+0	0.0	C.O	0.0	0.0	0.0	0.0	0.0
1.10	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 • C
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.O	0.0	0.0	Q.C
2.50	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WRMFLUX=	0.0	0.0	0.0	0.0	Q • Q	9.9	0.0	0.0	0.0	0.0	0.0	0.0
MERGY	L - 8 A	N 0 5 1	4 A G N E	TIC S	HELL	PARAL	ETER	I N	FARTH	RADI	1) L-	8 A N O S
LEVELS	#5.8~6.0	16-0-6-24	*6.2-6.4	+ +6.4-6.6+	#6.6-6.8*	#6.8-7.04	#7.0-7.2¢	47.2-7.4	+ +7.4-7.64	#7.6-7.8*	.47+8-8+0+	.8.0-DVR
(AEA)												
-100	0.0	0.0	0.0	0.0	0.0	1.00E 00	0.0	0.0	0.0	0.0	0.0	0.0
. 500	0.0	0.0	0.0	0.0	0.0	4.012-02	0.0	0.0	0.0	0.0	0.0	0.0
-900	0.0	0.0	0.0	0.0	0.0	1.616-03	0.0	0.0	0.0	0.0	0.0	0.0
1.10	0.0	J=0	0.0	0.0	0.0	3.225-04	0.0	0.0	0.0	0.0	0.0	0.0 -
1.50	0.0	0.0	0.0	0.0	0.0	1.298-05	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0
2.50	5.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORMFLUX=	0.0	0.0	0.0	0.0	0.0	5. 8) E 10	0.0	0.0	0.0	0.0	0.0	0.0

/

												3 2 -
											-) 현12 년
## ORBITAL !	********** FLUX STUDY	** ** * * * * * * * * * * * * * * * *	POSITE PAR	TICLE ENVI	FONMENTS: VI	TTES APS.	********* AP6: AP7:	******** **** A!	S. FCR SOLAR		************	T X OF 1973 **
** ELECTRON	FLUXES EX	PONENT 1 🕰	LY DECAYED	TO 1970.	O WITH LIFF	rimes: c.,	. STASSINGP	UULUSEP.	VIRZARIU ** (CUTOFF TIA	175:	**
VEHICLE	: SAS-D (3	110) ** 1	NCLINATION	- ODEG .	PERIGEE = 35	SPRM 44 W	POSEE = 358	CAINS:	CV: OHELT TAI	PE: 107401	1209 - 11 7 40 PEG	1MT= 1975.5 HT
*********	••••	*******	********	•••••	*********	• • • • • • • • • •	• • • • • • • • • • •	*****	***********	*****	******	*********
			########## PECTRAL DI:			ELECTRUNS D BY FLUX			**************************************		,	•
		** **	******	*******	*********	********	******	*****	*****			
				•								
ENERGY			MAGNE		SHELL		METER	IN	TAFTH			- BANDS
>(MEV)	+1.0-1.2+	*1.2-1.4	* *!.4-1.6	* *1.6-1.5	+ +1.8-2.0+	*2.0-2.2*	*2.2-2.4*	• 2.4-2.	6 *2.6-2.6*	*2.8-3.01	* 3.0-3.	2* +3.2-3.44
•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.O	0 • G	2.0	9.0
.300	0.0	0.0	0.0	0.0	9 • 0	0.0	0.0	0.0	0 • ú	0.0	0.0	C • G
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	∵•0	0.0	7 • C	0.0
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 • C	0.0
2.00 2.50	0.0 0.0	0.0 0.0	0.0	0 • 0 0 • 0	0.0	0•0 0•0	C • O	0.0	0.0	0.0	0.5	0.3
3.00	0.8	0.0	0.0	0.0	0.0	0.0	C.O	0.0	0+0 0+0	0.0	0.0	0.0 . 0.3
4.00	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	C+0	0.0	0.0	. 0.0
5.00	0.0	0.0	0.0	0.0	C.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORMFLUX=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ENERGY	L - B A	N D 5 (MAGNE	TIC	5 H E L L	PARA	# F T E R	I N	FARTH	FADI		- B A N D S
LEVELS	*3.4-3.6*	+3.6-3.8	• •3.8-4.0°					+4.8-5	0+ +5.0-5.2+			
>(ME V)												
• 0	G.O	U.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0
•500	0.0	0.0	0.0	0.0	C • 0	0.0	0.0	0.0	0.0	0.0	0.0	C. C .
1.00	0.0	C • O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- 0.0
2.00 2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0
3.00	0.0	0.0	J.0	0 • 0 0 • 0	0 • 0 C • 0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	2.0
4.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0+C	0•0 0•0	0.0	3•0 3•0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.0	0.0
NGRMFLUK=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ENERGY	L - B A	N D 5 (MAGNE	TIC	SHELL	PARA	METER	1 N	EAPTH	RADI	: :) L	B A N D 5
LEVELS >(MEV)	#5.6-6.0#	+6.0-6.2	+ +6.2-6.4	• •6•4-6•6	* *6.6~6.8*	*6.8-7.0 *	*7.0-7.2*	* 7 • 2-7	4* 47.4-7.6*	* 7.6-7.8	+7.8 −6.	0+ +5-0-DVR+
•0	0.0	0.0	0.0	0.0	0.0	1.75E 01	0.0	0.0	0.0	0.0	6.0	0.0
• 5.00	0.0	0.0	0.0	0.0	0.0	1.00E 00		0.0	0.0	0.0	C.C	0.0
1.00	0.0	(,0	0.0	0.0	0.0	1.58E-01		0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	0.0	0.0	3.466-02		0.0	0.0	0.0	0.C	. 0.0 -
2.00 2.50	0.0 0.0	0.0	0.0	0.0	0.0	7.58E-03		0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	C.O	0.0	0.0 0.0	1.62E-03 3.32E-04		0.0	0.0	0.0	0.0	0.0 .
4.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.0.0	0 • 0 0 • 0	0.0	0.0	0•0 0•0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HORMFLUX=	0.0	0.0	0.0	0.0	0.0	1.816 11	0.0	0.0	0.0	0.0	0 • C	0.0

40 DR31TAL FLUX STUDY GITH COMPOSITE PARTICLE ENVIRONMENTS: VETTES AP5, AP6, AP7; AE4, AE5, FOR SOLAR MAXIMUM 4000 UNIFLX OF 1973 40 . ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. D WITH LIFETIMES: E.G. STASSINOPOULDSEP. VERZARIU . CUTOFF TIMES: . MAGNETIC COORDINATES B AND L COMPUTED BY INVARA OF 1972 WITH ALL 4AG. MODEL 4: CAINESWEENEY 120-TERM POGO 8/69 . TIME* 1975.5 .. ** YEMICLE : 5A5-D (113) ** INCLINATION * 29DEG ** PERIGEE * 35863KM ** APOGEE = 35863KM ** B/L ORBIT TAPE: TD7512 ** PEPIDD * 24.000 **

** SPECTRAL DISTRIBUTION : NORMALIZED BY FLUX OF ENERGY GREATER THAN .100 MEY **

ENERGY	L - B A	NDS (4 A G N E	7 1 C S	HELL	PARAN	FTEH	IN E	ARTH	RADI		8 A N D S
LEVELS	-			*1.6-1.8*								
1y3M)<												-502-504-
.100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
.500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
.900	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.10	0.0	0 • Q	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	Q. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NOF.MFLUX=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0•0	0.0
ENERGY	L - 8 A	NDS (T 1 C 5	HELL	PARA	ETER	IN E	ARTH	RADI		
LEVELS				44.0-4.24								
>(MEV)												-500 5000
.100	0.0	0.0	0.0	0.0	0.0	0.0	C.0	0.0	0.0	0.0	0.0	0.0
-500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
.900	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0
1-10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0
NORMFLUX=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0+0	0.0	0,0	0.0	0.0
ENERGY	L - B A	NDS (M A G N E	716 5	HELL	PARAI		IN E	ARTH	RADI		
LEVELS				*6.4-6.6*								
>(MEV)												
-100	0.0	0.0	0.0	1.00E 00	1.00E 00	1.00E 00	1.00E 00	1.00E 00	1.00E 00	1.00E 00	1.00€ 00	1.00E 00
.500	0.0	0.0	0.0	2.798-02	2.945-02	3.60E-02	4.328-02	5-236-02	6-17E-02	7.36E-02	8.65E-02	1 - 15E-01
.900	0.0	0.0	0.0	7.80E-64	8.68E-04	1.30E-03	1.675-03	2.748-03	3.82E-03	5.436-03	7-50E-03	1.425-02
1-10	0.0	0.0	0.0	1.30E-04	1.49E-04	2.47E-04	3.89E-04	6+28E-04	9.52E-04	1,48E-03	2.21E-03	5.26E-03
3.50	0.0	0.0	0.0	3.645-06	4.42E-06	8.96E-06	1.69=-05	3.306-08	5.92E~05	1-09E-04	1.925-04	2.97E-04
2.00	0.0	0.0	0.0	0.0	0+0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	C.O	0.0	0.0	0.0	0.0	0.0
3-00	0.0	0.0	0.0	0.0	0+0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.0	0.0	0.0	G. 0	0.0	0.0	0.0	0.0	0.0
NORMFLUX=	0.0	0.0	0.0	2.70E 09	5.48E 10	9.49E 09	3.31E 09	1.85E 09	1.32E 06	4.31E 07	1.445 07	1.102 07

40 ORBITAL FLUX STUDY WITH COMPOSITE PARTICLE ENVIRONMENTS: VETTES APS. APO. AP7: AE4. AE5. FOR SOLAR MAXIMUM **** UNIFLX OF 1973 90 40 ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. 0 WITH LIFETINES: E.G. STASSINOPOULOSEP. VERZARIU . CUTOFF TIMES: . MAGNETIC COORDINATES 8 AND L COMPUTED BY INVARA OF 15-2 WITH ALLMAG, MODEL 4: CAINGSWEENEY 120-TERM POGO 8/69 * TIME= 1975.5 ** ** VEHICLE : SAS-D (110) ** INCLINATION= 29DEG ** PERIGEE=35863KM ** APDGEE= 35863KM ** B/L ORBIT TAPE: TD7512 ** PERIDD= 24.000 ** FLECTRONS **************** .. SPECTRAL DISTRIBUTION : NORMALIZED BY FLUX OF ENERGY GREATER THAN .500 MEY .. L-BANDS INAGNETIC SHELL PARAMETER IN EARTH RADII) L-BANDS PHENCY LEVELS \$1.0-1.20 \$1.2-1.40 \$1.4-1.60 \$1.6-1.60 \$1.6-2.00 \$2.0-2.20 \$2.2-2.40 \$2.4-2.60 \$2.6-2.60 \$2.6-3.00 \$3.0-3.20 \$3.2-3.40 >(MEV) 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 .500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.50 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.00 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 4.00 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 5.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NORMFLUX= 0.0 0.0 ENERGY L-BANDS (MAGNETIC SHELL PARAMETER IN EARTH LEVELS >(MEV) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .500 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 ..0 0.0 0.0 0.0 1.00 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.50 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0

RADII) L-BANDS #314~3160 #316~3160 #318~4100 #410~4120 #412~4140 #414~4160 #416~4180 #418~510# #510~5120 #512~5140 #514~5160 #516~5180 2.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 2.50 0.0 0.0 0.0 0.0 C. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 4.00 0.0 0.0 0.0 0.0 0.0 0.0 5-00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 NORMPLUX# 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0

ENERGY L-BANDS (MAGNETIC SKELL PARAMETER IN EARTH RADIIS L-BANDS LEVELS #5-8-6-00 #6-0-6-24 #6-2-6-40 #6-4-6-60 #6-6-6-80 #6-6-7-00 #7-0-7-20 #7-2-7-40 #7-4-7-60 #7-6-7-80 #7-8-8-00 #8-0-04R8 >(MEV) .0 0.0 0.0 0.0 1.22E 01 1.30E 01 1.61E 01 2.06E 01 2.84E 01 3.90E 01 6.66E 01 1.13E 02 1.47E 03 1.00E 00 -500 0.0 0.0 0.0 1.00 0.0 0.0 0.0 2-30E-01 2-16E-01 1.73E-01 1.47E-01 1.30E-01 1.17E-01 1.03E-01 9.11E-02 6.14E-02 1.50 0.0 0.0 0.0 5.91E-02 5.40E-02 3.93E-02 3.14E-02 2.68E-02 2.33E-02 1.98E-02 1.69E-02 7.40E-03 0.0 1.52E-02 1.35E-02 8.95E-03 6.72E-03 5.54E-03 4.66E-03 3.80E-03 3.13E-03 1.01E-03 2.00 0.0 0.0 3.49E-03 3.07E-03 1.95E-03 1.41E-03 1.13E-03 9.27E-04 6-93E-04 5-21E-04 1-19E-04 0.0 0-0 0.0 2.50 9.0 0.0 6.68E-04 5.94E-04 3.92E-04 2.87E-04 2.24E-04 1.73E-04 9.58E-05 5.27E-05 1.70E-08 3.00 0.0 3.03E-06 2.24E-06 6.45E-07 C.0 0.0 4.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.00 0.0 0.0 NORMFLUX= 0.0 2.37E 09 5.88E 10 2.13E 10 1.36E 10 1.33E 10 1.52E 09 7.25E 08 3.39E 08 4.49E 08

** ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. O WITH LIFETIMES: L.G. STASSINOPOULUSEP. VC4ZAPIU ** CUTOFF TIVEC: 40 MAGNETIC COORDINATES B AND L COMPUTED BY INVARA OF 1972 BITH ALLMAG, WIFTL 4: CAINGENETHEY 120-TEMP PUST 3/67 - TIME 1975.5 ** VEHICLE : SAS-0 (24)1 ** INCLINATION: DODEG ** PEHICEE: DEMONE ** APOUT : DEMONEM ** P/L CREIT TAPE: T7/2/7 * PM. 1/2 24.003 ** TH SPECTRAL CISTRIBUTION : NORMALIZED BY FLUX OF INTRGY GREATER THAN ALON MOV TO ENERGY L-BANDS INAGNÉTIC SHELL PARASETER IN SARTH RADIES L-RANDS #1.071.28 #1.271.44 #1.471.68 #1.671.68 #1.671.68 #1.672.08 #2.072.22 #2.272.48 #2.472.08 #2.672.88 #2.873.58 #3.673.58 #3.673.78 #3.773.48 LEVELS >(MEY) -100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.9 2.6 -500 0.3 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 -900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.3 0.0 1.10 0-0 0-0 0-0 0.0 0-0 0.0 0.2 0.0 0.0 0.0 3.0 240 1.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 2.00 0.0 0.0 C.0 0.0 0.0 0.0 0-0 0.0 0.0 2.3 3.0 0.0 2450 0.0 0.0 0.0 0.0 0.0 0.0 C.C 0.0 0.0 0.0 2.0 C . ^ 3.00 0.1 3.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 3.0 2.2 0.0 3.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 3.0 0.4.2 NORMFLUX= 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 ENFRGY L-BANDS (MAGNETIC SHELL PARAMETER IN EAFTH RADIII L-BANDS LEVELS #3.4~3.6% #3.6~3.6% #3.6~4.0% #4.0~4.2% #4.2~4.4% #4.4~4.0% #4.6~4.6% #4.8~5.0% #5.6~5.2% #5.2~5.4% #5.4~3.6% #5.6~5.8% >(MEV) -100 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 3.0 C . O -500 0.0 0.0 0.0 0.0 0.0 0.0 :.. 0.0 0.0 3.3 0.0 2.0 .900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 1.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 1.50 0-0 0.0 0.0 0.0 0-0 0.0 3.0 0.0 0.0 2.0 2.0 C. 0 2.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 2.50 0.0 C. Q 0.0 0.0 0.0 6.0 0.0 0.0 0.0 2.0 0-0 0.0 3.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 C . 0 3.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 9,0 C.C NURMFLUX# 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 2.0 ENERGY L-BANDS IMAGNETIC SHELL PARAMETER IN EARTH RACII) L-BANDS \$5.8~5.0\$ \$6.0~6.2~ \$6.2~6.4\$ \$6.4~6.6\$ \$6.6~6.6\$ \$6.6~6.8\$ \$6.8~7.0\$ \$7.0~7.2* \$7.2~7.4* \$7.4~7.0* \$7.6~7.6* \$7.6~7.6* \$7.6~7.6* LEVELS >{MEV}

-100 0.0 0.0 0.0 0.0 1.00E 00 -500 0.0 6.0 0.0 0.0 3.246-02 3.666-02 4.415-02 5.325-02 6.015-02 7.515-02 8.807-02 1.195-01 .930 .0.0 0.0 0.0 0.0 1.05E-03 1.35E-03 1.95E-03 2.93E-03 3.62E-03 5.64F-03 7.75'-03 1.51F-02 1.10 0.0 0.0 0.0 0.0 1.906-04 2.586-04 4.116-04 6.556-04 8.915-04 1.555-03 2.300-03 5.62-03 1.50 0.0 0.0 0.0 0-0 6-16E-06 9-52E-06 1-62E-05 3-50C-05 5-39E-05 1-170-04 2-04"-04 3-72"-04 2.00 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.50 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 3.0 0.0 ... 3.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 3.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 . 0 . 0 NORMFLUX= 0.0 0.0 0.0 2.52. 10 1.27E 10 3.69E 09 1.69E 09 4.38E 08 4.50E 07 1.95 C7 1.12E 07

48 GREETAL FLUX STUDY WITH COMPISITE PARTICLE ENVIRONMENTS: VETTES APP. APC. APT. ALA. AFS. FOR SOLAR HAXIMUM **** UNITE OF THE AP 4% ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. O WITH LIFTTIMOS: R.G. STASSINGPLULOSEPAYER ARTHU SE CUTOFF TIMOS: ** MAGNETIC COORDINATES B AND & COMPUTED BY INVARA OF 1972 WITH ALLMAG. MUTTLE AT CAINGERTINGY 120-TIME MODEL ATTENDED BY TIME 1975.5 B. ** VEHICLE : SAS-0 (290) ** INCLINATION# 30DEG ** PERIGE: #15663Kd ** APONT 2: 35867KM ** BYL DREIT TAPE: TAPE: TAPE: TAPE: TAPE? TAPE? ## SPECTHAL DISTRIBUTION : NORMALIZED BY FLUX DE LNUAGY GREATER THAN . 500 MLV ## ENERGY L-BANDS (MAGNETIC SHELL PARAMETER IN IRETH RADIES L-PANCS LEVELS #le0-le2# #le2-le4# #le4-le6# #le6-le6# #le6-le6# #le9-2e0# #2e0-2e2# #2e2-2e4# #2e4-2e6# #2e6-2e## #2e4-3e6# #3e6-1e6# #3e6# #3e6-1e6# #3e6-1e >(464) .0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 -500 0.0 0-0 0.0 0.0 0.0 C.3 0.2 0.0 9-0 0.0 3.9 2.0 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 2-2 9.0 0.0 1.50 0.0 0-0 41 - 0 0.0 0.0 0.0 0.0 0.0 2-0 2.0 3-6 0.0 2.00 0.0 0.0 0.0 0.0 0.0 0.0 0.40 0.0 2.0 0.0 0 - 1 0.0 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3-2 3.0 3.CO 0.0 0.0 0.0 0.0 0-0 0.0 0.0 2-3 0.0 0.0 0.0 2.0 4.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2-0 3 0.0 5.00 0-0 0.0 0.0 0.0 C. 0 0.0 0.0 0.0 0.0 0.9 0.0 # C.O NORMFLUXT 0.0 0-0 0-0 0.0 ENTRGY L-BANDS IMAGNETIC SHELL PARAMETER IN CARTH RADIES L-BANDS LEVELS #3-4-3-6+ #3-6-3-8+ #3-6-4-0+ #4-0-4-2+ #4-2-4-4+ #4-4-4-0+ #4-6-4-8+ #4-8-7-6-0+ #5-0-5-2+ #5-2-5-4+ #7-6-7-6 > (MEV) •0 0.0 0.0 0.0 . 0.0 0-0 0.0 0-0 0.0 0.0 0-0 3.0 0- 1 -500 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00 0.0 0.0 0.0 0.0 0.0 0.0 2.0 . 0.0 0.0 0-0 0-0 0.0 1.50 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 2.0 0.0 0.0 . 0.C 2.00 0.0 0.0 0.0 0.0 0-0 0-0 0.0 0.0 0.0 0.0 9.0 0.0

NORMFLUX# 0-0 0.0 0.0 0.0 0.0 7.0 0.0 0.0 2.0 0.0 ENERGY L-BANDS (MAGNETIC SHELL FARAMETER IN FARTH RADII) L-BANDS \$5.6~6.0* \$6.0-6.2* \$6.2-6.4* \$6.4-6.6* \$6.6-6.8* &6.6-7.0* \$7.0-7.2* \$7.2-7.4* \$7.4-7.6* \$7.6-7.5* \$7.6-7.6* LEVELS >(MEV) à O 0.0 0.0 0.0 0.0 1.40E 01 1.61E 01 2.66E 01 2.80F 01 3.49E 01 6.56E 01 1.11T 02 1.42E 03 .500 0.0 0.0 0.0 0.0 1.00E 00 1.00E 00 1.00E 00 1.00E 00 1.00F 00 1.00F 00 1.00F 00 1.00F 00 1.00 0.0 0.0 0.0 0.0 1.99E-01 1.730-01 1.47E-01 1.31E-01 1.21E-01 1.03E-01 9.17E-02 6.00E-02 1.50 0.0 0.0 0.0 0.0 4.61E-02 3.94E-02 3.142-02 2.70E-02 2.44E-02 1.99E-02 1.70T-02 7.14F-03 2.00 0.0 0.0 0.0 0.0 1-16E-02 8-98E-03 6-71E-03 5-57E-03 4 . 9 2t. -0 3 3.838-03 3.167-03 9.495-04 2.59E-03 1.95E-03 1.41E-03 1.14E-03 2.50 0.0 0.0 0.0 0.0 9-905-04 6-995-04 5-295-04 1-075-04 3.00 0.0 0.0 9.0 0.0 5.09E-04 3.93E-04 2.87E-04 2.26E-04 1-905-04 9.750-05 5.420-05 1.642-05 4.00 0.0 0.0 0.0 0.0 1.42E-06 6.59E-07 0.0 0.0 0.0 0.0 0.0 0.0 5.00 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.2 0.0 NORMFLUX = 0.0 3.668 10 2.688 10 1.558 10 1.238 10 4.518 09 7.708 08 4.527 08 4.778 08 0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

9.2

9.0

2.0

0-0

0.0

0.0

0.0

2.50

3-00

4-00

5.00

0.0

0.0

0.0

0.0

C. 0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.3

0.0

0.0

0-0

القا مناعدا SE DESITAL PLUE STUDY WITH COMPOSITE PARTICLE ENVIRONMENTS: VETTES APS. APS. APS. AFS. FCS SOLAR MAXIMUM *** UNIFLE OF 1973 54 ** ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. O WITH LIFETIMES: E.G. STASSINCPCULOSEP. VEGZABIU . CUTOFF TIMES: DO MAGNETIC COORDINATES B AND L COMPUTED BY INVARA OF 1912 WITH ALLMAG. MODEL 4: CAINGSETNEY 120-TERM FOOD 8/69 + TIMIX 1975,5 ## 44 WEHICLE : SASTD (310) 00 INCLINATIONS 29DEG 00 PERIGEES 35863KM 00 APOGEES 35863KM 00 B/L CRRIT TAPE: TOTAGT TO PERIOTE 24.000 ma ** SPECTRAL DISTRIBUTION : NORMALIZED BY FLUX OF ENERGY GREATSP THAN .100 MYV ** ENERGY L-BANDS (MAGNETIC SHELL PARAMETER IN FARTH RIDII) L-PANDS LEVELS #1.0-1.2# #1.2-1.4# #1.4-1.6# #1.6-1.8# #1.6-2.0# #2.0-2.2# #2.2-2.4# #2.4-2.t * \$2.6-2.5* #2.4-3.0# #3.0-3.7# #3.2-3.4# >{KEY} -100 0.0 0.0 0.0 0-0 CAG C.O 0.0 0.0 0-0 0-0 0.7 -500 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0-0 0.0 1-16 0.0 0-0 0.0 0.0 0.0 0.0 0-0 0.0 0-0 0-0 2-0 0-0 1.50 0.0 0.0 0.0 0.0 0.0 C-0 0.0 0.0 0.0 0.0 0.0 0.0 2-00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0-0 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 3-00 0.0 C. 0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3-50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2-0 NORMFLUX= 0.0 0.0 FUEDGY L-BANDS (MAGNETIC SHELL PARAMETER EARTH I N PADIII L-BANDS

LEVELS #3a4-3a6# #3a6-3a6# #3a8-4a0# #4a0-4a2# #4a2-4a4# #4a4-4a6# #4a6-6a## #4a8-5a0# #5a0-5a2# #5a2-5a4# #5a4-5a6# #5a6-5a6# >(MEV) -100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 . 0.0 -500 0. D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0-0 0.0 .900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 1.10 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 1.50 0.0 0-0 0.0 0.0 A . A 0-0 0-0 0.0 2-0 0.0 0.0 0. C 2.00 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 3.3 3-0 2.50 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.00 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 3.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 NORMFLUX= 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0

.: NERGY L-BANDS (MAGNETIC SHELL PARAMETER IN BARTH RADIII L-BANDS LEVELS #5.8~6.0# #5.0~6.2* #6.2~6.4* #6.4~6.6* #6.6~6.8# #6.8~7.0# #7.0~7.2# #7.2~7.4# #7.4~7.6# #7.6~7.6# #7.6~7.6# #7.6~7.6# #7.6 >(MEV) .100 0.0 0.0 9.0 0.0 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 -500 3-28E-02 3-67E-02 4-41E-02 5-31F-02 6-04E-02 7-51F-02 8-81F-02 1-18E-01 0.0 0.0 0.0 . 0. 0 .900 0.0 0.0 0.0 0.0 1.08E-03 1.350-03 1.950-03 2.820-03 3.650-03 5.660-03 7.760-03 1.50E-02 1.10 0.0 1.95E-04 2.59E-04 4.10E-04 6.54E-04 8.98E-04 1.55E-03 2.31*-0* 0.0 0.0 0.0 3.586-03 1.50 0.0 0-0 0.0 0.0 0-41E-06 9-55E-06 1-82E-05 3-50C-05 5-45F-05 1-17F-04 2-05"-04 3-757-04 2.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.00 0.0 0.0 0.0 0.0 0.0 C. 0 0.0 0.0 0.0 0.0 0.0 0.0 3.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NORMFLUX= 0.0 2.25E 10 1.37E 10 3.64E 09 1.60E 09 4.62E 08 4.99E 07 1.936 07 1.26E 07

											7	e 6. c 14
********	******	********	** ** ** ** * * * *	********	********	********	*******	********	*******	*******		*****
* ORBITAL F	LUX STU	DY WITH CCM	POSITE PART	TICLE, ENVIR	ONMENTS: VE	TTES APS.	AP6 . AP7;	A54. ALS.	FOR SOLAR	MAXIMUM RE	** UNIFLX	OF 1973 **
* ELECTRON												**
* MAGNETIC												
. AEHICLE :	SAS-D	(310) ** I	NCLINATION A	: 29DEG **	PERIGEE=356	863K4 ** AF						
	*****	********	*********	*********	********	*********	********	• • • • • • • • • • •	******	• • • • • • • • • • •	**** **	******
			********			LLECTRUNS	***	*********	********	****		
		** 5	PECTRAL DIS	TRIBUTION	: NORMALI48	C BY FLUX	OF FNEHGY	GREATER TH	IAN -500 ME	V **		
		** **	** ** ** ** * * * *	,********	*******	*********	********		********	****		•
ENERGY	0											
	-		MAGNE		HELL		4 E T F R		ARTH	FADI		HANDS
LEVELS	*1.U-1.	2* *1.2-1.4	104-100	+1+0-1+8+	#1.8-5.0#	45.0-5.5*	*2.2-2.4*	*2.4-2.6*	#2.6-Z.64	#2**~3***	#3.C-3.I#	# 3. 2 - 3 ₀ 4 #
>(HEV)												
• >	0.0	0.0	0.0	0.0	0.0	• •						
.500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	C • C
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7+0	0.0
1.50	0.0	C. 0	0.0	0.0	C.O	0.0	C.O	0.0	0.0	0.0	0.C	0.0
2.00	0.0	0.0	0.0	0.0			0.0		0.0	0.0	3.0	0.0
2.50	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0		0.0			0.0		0.0	C+0	0.0	3.0	0.0
4.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	3.0	. 0.0
				0.0	¢•0	0.0	0.0	0.0	0.0	3.0		, 0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	3.1
NGRMFLUX=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ე• ი
ENERGY	1 - B	ANDS (MAGNE	TICS	H E L L		4	1 N T	A F 7 H	8 A O 1		
LEVELS		6+ +3+6-3+8		_								
>(ME V)	7307 30	O+ +510 5 60		V 4460-4624		***********	*****	-4.6-3.04	+500-5024	+367-364-	m-19 m-19 (m	-280-2844
•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
•500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.0
1.00	0.0	0.0	0.0	0.0	C.O	0.0	0.0	0.0	0.0	0.0	2.0	0.0
1.50	0.0	0.0	0.0	0.0	C.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.00	0.0	0.0	0.0	0.0	0.0	C.O	0.0	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	n • C	0.0
NORMFLUX=	0.0	. 0.0	0.0	0.0	0.0	C.O	0.0	0.0	0.0	0.7	0.0	0.0
ENERGY	L - 8	ANDS I	MAGNE	TIC S	. H E L L	PARAI	4 E T E R	IN E	AFTH	PADI	11	RANDS
LEVELS	+5.8-6.	0										
>{ MEA }												\$
•0	0.0	3.0	0.0	0.0	1.42E 01	1.61E 01	2.05E 01	2.79E 01	3.495 01	6.53F 01	1.10" 02	1.71= 03
•500	0.0	0.0	0.0	0.0	1.00E 00	1.00E 00	1.00t 00	1.00F 00	1.00F CO	1.00F 00	1.00- 00	1.000 00
1.00	0.0	0.0	0.0	0.0	1.97E-01	1.738-01	1.47E-01	1.31-01	1.215-01	1-03F-01		6.14E-02
1.50	0.0	0.0	0.0	0.0	4.74E-02	3.95F-02	3-15E-02	2.706-02	2.445-02	1.99=-02		7.38F-03
2.00	0.0	0.0	0.0	0.0	1.14E-02	9.01E-03	6.745-03	5-596-03	4.920-03	3.837-03	3-170-03	1+015-03
2.50	0.0	0.0	0.0	0.0	2.54E-03	1.96E-03	1.43E-03	1.15E-03	9.90E-04	7.01E-04	5.315-04	
3.00	0.0	0.0	0.0	0.0	5.00E-04	3.956-04	2-886-04	2-276-04	1.90F-04		5.4405	1.685-05
4.00	0.0	0.0	0.0	0.0	1.35E-06	0.61E-07	0.0	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORMFLUX=	0.0	0.0	0.0	0.0	3.37E 10	3.11E 10	1.50E 10	1.30F 10	4.99E 09	8.54E 08	4.57E C8	5. J2E 08

											***	. , <u>÷</u>
*****		*****	*****		****	*****					10	24
ORBITAL	LUX STUDY	WITH CO	POSITE PA	RTICLE ENVI	RONMENTS: V	ETTES APS	AP6. AP7:	AE4. AES	. FOR SOLAR	MUNIXAM	**** UN1F	X OF 1973
									ERZARIU ++			•
												KE= 1975-5 4
												D= 24.000 (
				•••••		ENERGY PRO			***********		******	*******
									THAN . 100 M			•

ENERGY	L - 3 A	N D S		ETIC	SHELL		METER	IN	EARTH		11) L	- B A N D S
LEVELS									-			2* +3.2-3.40
>(MEV)							1202 204					
100	0.0	0.0	0.0		0.0	0.0		• •				
•100 •500	0.0	0.0	0.0	0 • 0 0 • 0	0.0	0.0	0.0 0.0	0-0	0.0 0.0	0.0	0.0 0.0	0.0 0.0
.930	0.0	0.0	0.0	0.0	C. O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.10	0- 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0
2.00	A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	v.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	; 0.0
NORMFLUX=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	i 0 • 0
ENERGY	L - B A	N D S		ETIC	SHELL	PARA	METER	IN	EARTH	RAD	11) L	- B A N D S
LEVELS >(NEV)	+3.4-3.60	+3.6-3.4	3.0-4.	0+ +4.0-4.2	* *4.2-4.41	*4.4~4.6	*4.6-4.8*	44.6-5.0	+ +5,0-5,20	+5.2-5.4	+ +5.4-5.	* *5.4-5.8*

ENERGA	F - 8 Y	N D 5 ()	RAGNE	17 6 2	HELL	PARA	TETER	IN (EARTH	RADI	1) F-	BANDS
LEVELS >(NEV)	+3.4-3.6	*3.6-3.0*	*3.0-4.0*	*4.0-4.2*	+4.2-4.4+	+4.4-4.6+	*4.6-4.8*	*4.6-5.0*	*5.0-5.2 *	+5.2-5.4+	*5.4~5.6*	+5.6-5.84
-100	0.0	9.0	0.0	0.0	0.0	0.0	0.0.	00	0.0	0.0	0.0	· 0.0
.500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0
.900	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0
1.10	0.0	0+0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0. 0
1.50	0. C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	J.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0. C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORMFLUX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ENERGY	L - 6 A	N D S ()	4-A G N E 1		HELL	PARAI	ETER	E N	EARTH	RADI	1) L-	
LEYELS >(MEV)	.5.8-4.04	46.0-6.24	96.2-6.48	+6.4-6.4	*6.6-6.6*	06.8~7.0 €	47.0-7.20	•7•2-7•4	•7.4-7.6	• 7.4-7.8*	+7-4-6-0+	48.0-0VR

1.00F 00 1.00E 00 .100 0.0 0.0 2.79E-02 2.94E-02 3.59E-02 4.29E-02 5.17E-02 6.16E-02 7.23E-02 6.58E-02 1.17E-01 ... J. 0 9.9 0.0 .900 0.0 0.0 0.0 7.87E-04 8.65E-04 1.29E-03 1.86E-03 2.66E-03 3.80E-03 5.24E-03 7.38E-03 1.50E-02 1.30E-04 1.49E-04 2.45E-04 3.83E-04 4.10E-04 9.44E-04 1.41E-03 2.16E-03 5.72E-03 1.10 0.0 0.0 0.0 0.0 0.0 0.0 3.64E-06 4.42E-06 8.86E-06 1.5E-05 3.17E-05 5.84E-08 1.03E-04 1-87E-04 .2.76F~04 1.50 0.0 0.0 0.0 0.1 0.0 0.0 2.00 0.0 0.0 0.0 0.0 0.0 0.0 2.50 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 Col. 0.0 0.0 0.0 3.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.50 Q. Q 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C.O 0.0 0.0

NGRMFLUX= 0.0 0.0 0.0 2.03E 09 3.60E 10 5.57E 09 1.85E 09 5.91E 08 1.80E 08 7.37E 07 2.80E 07 1.70E 07

SPECTRAL DISTRIBUTION: NORMALIZED BY FLUX OF ENERGY GREATER THAN .500 MEY ...

ENERGY	L - 8 A	M D S (MAGNET		HELL	PARAM		1 N E				
LEVELS >(MEV)		*1.2-1.4.							. A R T H	R A D 1 +2.8-3.0+		8 A N D S *3.2-3.4*
•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
.500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.00	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2-20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.00	0.0	0.0	0.0	0.0	C+0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-	0.0	0.0	0.0	0.0	C+0	0.0	0.0	0.0	0.0	0.0	0.0	~ 0•0
ENERGY	L - B A	N D 3 (M A G N 2 1	ric s	H E L L		4 Z T E R	1 N C	EARTH	RADI	1) L-	BANDS
LEVELS	• J. 4- J. 6	· •3.6-3.4•	+3.6-4.0+	94.0-4.29	*4.2-4.4*	*4.4-4.6*	*4.6-4.8*	*4.8-5.00	+5-0-5-2+	+5-2-5-4+		*5.6-5.8+
>(MEA)												£
• 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		e ⊊ 00
. 500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		1 0.0
1.00	0.0	0. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0
1.50	0.0	P+ 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		4 0.0
2.04	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	10	0.0
2.50	0.0	. 0.0	0.0	0.0	0.0	040	0.0	0.0	0.0	0.0	Ď	0.0
3.00	9.7	9.0	0.0	0.0	0.0	U-0	0.0	0.0	0.0	0.0		° 0. 0
4.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
MURMPLUX-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0=0	0.0	0.0	0.0
ENERGY	1 B A		M A G N E 1	71C 5	HELL		*	E N .	ARTH	RADI	1 1 L-	2 A N D S
LEVELS	45.4-4.0	+ 46.0-6.2+	46.2-6.44	96.4-6.69	+6+5-6-8+	+6.6-7.0+	#7.0-7.2ª	47.2-7.44	+7-4-7-6+	+7-6-7-8+	#7.8-8.00	
>(MEV)									•			
.0	0: 0	0.0	0.0	1.226 01	1.302 01	1.61E 01	2.04E 01	2.788 01	3.83E 01	6-33E 01	1-11E 02	1.022 03
. 300	0.0	0.0	0.0	1.00E 00	1.006 00	1.00E 00	1.00E 00	1.00E 00	1.00E 00	1.00E 00	1.00E 03	1.00E 00
1.00	0.0	9.9	0.0	2.302-01	2.16E-01	1.73E-01	1.48E-01	1-31E-01	1-17E-01	1-045-01	9-16E-112	5. 95E-02
1.50	Co Ø	0.0	0.0	8.91E-02	5.40E-02	J. 95E-02	30 1 6E-02	2.716-02	2.346-02	2.018-02	1.70E-02	6. VIE-03
8.00	9.0	0.0	0.0	1.52%-02	1.356-02	9.02E-03	6.76E-03	5.60E-03	4.685-03	J.68E-03	3-166-03	9-14E-04
2.50	0.0	C. 0	0.0	3-4 9E -03	3.07E-03	1.96E-03	1.42E-03	1-15E-03	9-336-04	7-14E-04	5-28E-04	1.03E-04
J. 00	0.0	0.0	0.0	6-68E-04	5.94E-04	J. 95E-04	2.90E-04	2.28E-04	1.75E-04	1.02E-04	5.43E-05	1.636-05
4.60	0.0	9.0	0.0	3- 04E-06	2.24E-06	6.62E-07	0.0	0.0	0.0	0.0	0.0	0.0
9.00	0. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-	0.0	0.0	0.0	1.78E 09	3.06E 10	1.234 10	7.47E 09	4.11E 09	2.06€ 09	1.15E 09	6.47E 08	7-17E 00

litera .

99 SABITE FLUE STUDY BITH COMPOSITE PARTICLE ENVIRONMENTS: VETILS AND. AND. APT. 446. ALS. FOR SOLAR MARTHUM **** UNIFIRED 1977 ** . The state of the 1 00 MAGNETIC COORDINATES & BUE & COMPOTED BY INVARIA OF 1972 BITH ALLMAG, MODICE AT CATMISBEFREY 120-1704 DOOR HARD & TIMES 1974,5 &. SO VEMERE : SASTO 42938 . SO INCLINATIONS ASDES SO PERIOCES SONOTERS ASHABEN SO BYL DERIT TERMS TOPED TO PERIOD DA DOC SECTION OF SECTION SEC SO SPECTRAL DISTRIBUTION I NUMBER AND A FEW PER CHAPPER THAN 4100 MIN SO ENERGY L-BANDS ERAGNETIC SHELL FARAMETER IN FARTH GARLES L-BHANDS 01-07-1-20 01-2-1-00 01-4-1-00 01-0-1-00 01-05-1-00 01-05-2-01 02-07-2-20 02-2-2-0 02-0-2-0-0 02-0-2-0-0 02-0-1-00 01-07-1-00 01-07-1-08 LEVILS >(=Ev) .100 0.0 0.0 0.0 0.0 0.0 0.0 9.9 .500 0.0 0.3 0.0 C. 0 C . 0 C . O 0.0 0-0 0.0 0.3 0.0 3.0 0.0 0.0 0.0 3-3 ... 0-0 0.0 0.0 0.0 2.0 0.0 2. 1 1.10 0.0 0.0 0.0 0.0 C.0 0.0 0.0 0.0 0-0 2-2 0.5 0.0 1.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 3-1 2.50 0.0 0.0 0.0 1-3 0.0 0.0 0.0 0.0 0.0 0.0 5.3 0-0 2.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 202 1.00 (.0 0.0 0.0 0.0 C. 0 0.0 0.0 0-0 0.0 0.0 2.3 0.0 3.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0-0 0.0 0.0 NORMFLUR: 0.0 0.3 0.0 9.0 0.0 0.0 0.0 0.0 0-0 0.0 2.2 0.0 ENERGY L-BANDS (MAGNETIC SHELL PARAMFTER IN EARTH RATITI L-BANDS 93e4-3e89 93e6-3e89 93e8-4e09 94e0-4e29 94e2-4e49 94e8-4e69 94e6-4e89 94e8-5e00 e5e0-5e20 05e2-5e49 05e4-5e00 65e0-5e0 LEVELS IV3#14 . 100 0.0 . 0.0 0.0 0.0 C. 0 0.0 0.0 0.0 2.0 0.0 .500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 2.0 0.0 1-10 0.0 0.0 3..0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0-6 1.50 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0-0 0-0 2-0 0.0 2.00 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2,50 0.0 0.0 ... 0.C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.00 9.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 3.0 1.50 0.0 0.0 .) . 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MORMPLUK . 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 ELERGY L-BANDS ENAGNETIC SHELL PARAMETER IN PARTH FADII) L-9A4E5 LEVELS 45.2-4.C+ +6.G-6.2+ +6.2-6.4+ +6.4-6.65 +6.6-6.8+ +6.8-7.0+ +7.0-7.2+ +7.2-7.4+ +7.4-7.6+ +7.6-7.6+ +7.6-7.6+ PIMEYI 1.606 80 1.006 00 3.006 00 1.006 00 1.006 00 1.007 00 1.007 CC 1.006 00 4:0 3-25E-02 3-06E-02 4-39E-02 5-21E-02 6-27*-02 7-46F-02 4-85--02 1-20F-01 .240 0.0 9.0 0.0 0.0 . 900 0.0 2.0 0.0 0.0 1.05E-03 1.35E-03 1.93E-03 2.73E-03 3.94E-03 5.58E-03 2.44E-03 1.5EF-02 1.10 0.0 9.6 0.0 0.0 1.90E-04 2.58E-04 4.06E-04 6.24E-04 9.68E-04 1.53T-03 2.34E-03 5.92F-03 1.50 0.9 0.0 9.4 0.0 6-17E-06 9.538-06 1.798-05 3.28E-05 5.23E-05 1.15E-04 2.08"-04 3.776 -04

ķŕ.

2.00 -

2.50

3.00

3.50

HORMFLUE 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

.0.0

0.0

0.0

0. 2

0.0

0.0

0.0

0.0

0.0

0.0

1.68E 10 7.81E 09 1.94E 09 7.02E ON 2.23E CE 8.37F 07 2.81" 07 1.407 07

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0-0

0.0

0.0

0.0

0-0

TOTAL IN THE CO. TOTAL DECAYED TO 1970 O BITH LIFETIMES: \$6.0 STASSING POULDS60.0 VERZAHIU BE COURTED THE 1973 OF MACRETIC COORDINATES B AND L COMPUTED BY INVARA OF 1972 BITH ALLMAG, WITH A STASSING POULDS60.0 VERZAHIU BE COURTED THE 1973 OF MACRETIC COORDINATES B AND L COMPUTED BY INVARA OF 1972 BITH ALLMAG, WITH A STASSING POULDS60.0 VERZAHIV TOTAL FOR PUCH BY INVARA OF 1972 BITH ALLMAG, WITH A STASSING POULDS FOR PUCH BY THE 1975.5 OF PURIOUS SASSING POULD FOR PURIOUS FOR PURIOUS POUR PURIOUS PURIOUS POUR PURIOUS PURIOUS PURIOUS POUR PURIOUS PURIOUS

CONSCIENCE THAT OF ENERGY GREATER THAN 6500 MEV **

		** ** *	********	*****	********	*******	******		*******	****		
ENERGY	L - B A	N D S ()	AGNE	TIC S	HELL	PARA	4 E T E F	IN	EARTH	PACI	111-	BANDS
LEVELS						*2.0-2.2*						
>(MEV)				100 100								702-304
•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
• 500	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	9.0	0.0
1.00	0.0	0.0	0.0	0.0	C.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 .	0.0	0.0
2.00	0.0	0.0	0.0	C • O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.0 • 0
2.50	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.2).0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.2	0.0
4.00	0.0	0.0	y•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORMFLUX=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0
ENERGY	L - B A	N D S ()		TIC S	HELL	PARA	FTER	ì N	CARTH	RADI	1) 4-	B A N D S
LEVELS	*3.4-3.6*	*3.6-3.8*	43.8-4.04	44.0-4.24	44.2-4.44	*4.4-4.6*	+4.6-4.84	*4.8-5.0*	#5.0-5.2#	#5-2-5-4#	#5.A-5.6#	45-6-5-84
>(NEV)												
• 0	0.0	0.0	0.0	0.0	7.0	0.0	0.0	0.0	0.0	0.0	0 0	0.0
-500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.0.0
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1-89	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	Q• 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4-00	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORMFLUX-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0
ENERGY	L - 8 A	N D S 6 1	A G N É	T 1 C S	HELL	PARAL	EZER	I N	EARTH	RADI	11 4-	BANDS
>(NEV)	*5. 8 ~6. 0*	*6.0-6.2*	*6.2-6.4*	+6.4-6.6*	*6.6~6.8*	*6.8-7.0*	*7.0-7.2*	+7.2-7.4 *	47.4-7.64	*7.6-7.8*	*7.8-8.0#	*8.0-0 - 0
•0	G. D	0.0	0.0	0 6 0	1.40E 01	1.61E 01	2.04E 01			6.45E U1	1-12E 02	9.225 02
•500	0.0	0.0	0.0	0.0	1.00E 00	1.00E 00	1.00E 00		1.00E 00	1.00E 00	1.00€ 09	1.005 00-
1.00	0.0	J• 0	0.0	0.0	1.99E-01	1.73E-01	1047E-01					5.97E-02
1.50.	0.0	0.0	0.0	0.0	4.80E-02	3.94E-02	3.15E-02		2×35E-02	2.00E-02	1.706-02	- 6-47E-03 -
2.00	0.0	0.0	0.0	0.0	1.16E-02	8.98E-03	6.75E-03					9.29E-04
	9	. 0.0	0.6%	Qe 0	2.592-03	1.95E-03	1.42E-03	1.17E-03	9.39E-04	- 7-07E-04	5.26E-04	. 1.05E-04-
3.00	0= 0	0.0	0.0	D. 0	5.092-04	3.93E-04	2.895-04	2.32E-04	1.775-04	1-000-04	5.33-05	1-608-05
. 4.00	. ي. فوا س	0.0	. 0.0		1.42E-06	6.632-07	0.0	0.0	0.0	0.0 -	C+0 -	0.0
5.00	0.0	6.0	0.0	0 • C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	U • 0
NORMFLUX=	0.0	0.0	0.0	0.0	2.43E 10	1.78E 10	8.03E 09	4.81E 09	2.585 09	1.41E 09	6.72E 08	8.21E 08

. .

** ORBITAL FLUX STUDY WITH COMPOSITY PARTICLE ENVIRONMENTS: VETES AND. APD. PPT: 464. // 5. FOR SULAN VAXIMUM **** (PENGLA OF EARS) *** 40 ELECTRON FLUXES EXPENDED TO DECAYED TO 1970. O WITH LIF TIMES: 2-0. STASSINGROUGHEN'S 2-213 . FUTER TIMES: ** MAGNETIC COORDINATES B AND L COMPLYED BY INVARA OF 1972 BITH ALLMAG, MUTEL 41 CAINGBERN Y 100-FYAR 0000 4763 + FIVE 1776,5 ** ** VEHICLE : SASTO (310) ** INCLINATION: ASDEG ** PERIGCE: 2506CF 356CZKM ** P.C. LUCIT TAP.; TOTAGE . DELICE PARTER 20 PRESENCE OF THE PROPERTY OF TH ** SPECTRAL DISTRIBUTION : NORMALIALD BY FLUX OF INTEGY GREATER THAN .100 MSV ** ENTRGY L-BANDS (MAGNETIC SHELL PARAMETER IN CARTH PADIT) L-BENDS LEVELS #laQ-la2# *la2-ta4# #la4-la6# #la6-la6# bla6-la6# bla6-2a0x x2a0-2a2x x2a0-2a2x x2a-2a0x x2a0-2a3x x7a2-1a6x x3a0-3a2x x3a2-3a4x >.MEV) .100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.0 0.0 . 500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 .900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 1.10 0.0 0.0 0.0 0-0 0.0 0.0 (.0 2.0 0.0 0.0 7.0 0.0 1.50 0.0 0.0 (40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2-00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 7.0 0.0 2.50 0.0 J. 0 0.0 0.0 0.0 0.0 U . C 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 ٥٥٠٠ 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.2 0.0 3.50 0.0 0.0 0.0 0.0 C . 0 0.0 0.0 0.0 C.D 0.0 3.0 0.0 NORMELUX= 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 ENERGY L-BANDS (MAGNETIC SHELL PARAMETER IN SIFTH PASILL - HANDS LEVELS #3-4-3-5# #3-5-4-3-5# #3-5-4-0# #4-0-4-2# #4-2-4-4# #4-4-4-6# #4-6-4-8# #4-8-9-0# #5-0-5-2# #5-2-5-4# #5-4-5-6# #5-4-5-6# #4-5-4-6# >(4EV) -100 0.0 0.0 0.0 C.0 0.0 0.0 0-0 0-0 0.0 0.0 0.0 .500 0.0 0.0 0.0 0.0 C- 0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 .930 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0-0 0.0 2.0 0.0 1.10 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 2.0 0.0 6.0 1.50 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 2.00 0.0 0. 7 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0-0 0-0 0.0 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 3.00 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 3.50 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 2.0 9.0 NORMFLUX= 0.0 0.0 0.0 0.0 2.3 6.0 ENERGY L-BANDS IMAGNETIC SHELL PARAMETER IN EARTH RADIII L-BANCS LEVELS 45.8-6.0+ +6.0-6.2+ +6.2-6.4+ +6.4-6.6+ +6.6-6.0+ +6.6-6.0+ +6.5-7-0+ +7.0+ +7.0+ +7.2-7.4+ +7.4-7.6+ +7.6-7.8+ +7.8-8.6/+ +8.2-7.8+ >(MEV) .100 0.0 0.0 0.0 0.0 1.00E 00 0.0 0.0 3.285-02 3.655-02 4.385-02 5.275-02 6.305-02 7.545-02 8.92 -02 1.205-02 .500 0.0 0.0 .900 0.0 0.0 0.0 0.0 1.06E-03 1.34E-03 1.92E-03 2.79E-03 3.98I-03 5.70F-03 7-97F-03: 1.56E-02 1.10 0.0 0.0 0.0 0.0 1.956-04 2.566-04 4.036-04 6.415-04 1.006-03 1.575-03 2.385-03 5.956-03 1.50 0.0 0.0 0.0 0.0 6.41E-06 C.40E-06 1.78E-05 3.40E-05 6.35E-05 1.19E-04 2.14F-04 3.73F-04 0.0 2.0 2.00 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 0.0 0.0 0.0 3.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0

0.0

3.50

NORMFLUX# 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.44E 10 8.26E 09 2.28F 09 6.45E 08 2.32E 08 8.05F 07 2.56F 07 1.89E 07

2.0

0.0

** ORBITAL FLUX STUDY WITH COMPUSITE PARTICLE ENVIRONMENTS: VETTSS APS. APS. APS. APS. APS. FOR SULAR MAXIMUM **** UNIFLX OF 1979 ** ** ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. O WITH LIFETIMES: E.G. STASSINCPOULDSOP. VERZAGIO =* COTOFF TIMES: ## MAGNETIC COORDINATES B AND L COMPUTED BY INVARA OF 1972 WITH ALLMAG, MODEL 4: CAINESWEENTY 120-TIPM POGO 8/67 ● TIME= 1975.5 ME ** VEHICLE : SAS-D (310) ** INCLINATION= 45CEG ** PERIGTE=35H63KM ** APOGLE= 35B63KM ** HZL DREIT TAPR: TOTACT #* PPHICO= 24,000 ## ******************* ELECTRONS ****************** ** SPECTHAL DISTRIBUTION : NORMALIZED BY FLUX OF ENERGY GREATER THAN \$500 MEV ** L-BANDS (MAGNETIC SHELL PALAMETER IN CARTH RACTI) L-HANDS ENERGY #100-102# #102-100# #104-100# #106-108# #108-200* #200-.02# #202-204# #204-206# #206-209# #20H-300# #300# #300# #30# LEVELS >(MEV) .0 0.0 0-0 0.0 9-9 2-0 0.0 0.0 0.0 0.0 0.3 0.0 0-0 -500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C . O 3,0 0.0 1.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2-0 3.0 0-0 2.00 0.0 0.0 0.0 0.0 0.0 C. 0 0.0 0.0 0.0 9.0 0.0 0.0 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.00 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NORMFLUX= 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ENFRGY L-BANDS (MAGNETIC SHELL PARAMETER IN TAFTH RADIII Lybands LEVELS #3.4~3.6* #3.0~3.6\$ #3.6~4.09 #4.0~4.2\$ #4.2~4.4\$ #4.4~4.6\$ #4.6~4.6\$ #4.6~6.0\$ #5.0~5.0\$ #5.0~5.2\$ #5.2~5,4a #5.4~5.6# #5.6~5.6# >(MEV) .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.50 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 5. Ū 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 3.00 0.0 0.G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NORMFLUX= 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 ENERGY SHELL PARAMETER IN L-BANDS INAGNETIC EARTH PADII) L-BANDS LEVELS #5.8-6.0# #6.0-6.2# #6.2-6.4# #6.4-6.6# #6.6-6.8# #6.8-7.0# #7.U-7.2# #7.2-7.4# #7.4-7.6# #7.6-7.8# #7.6-7.8# #7.8-6.0# #8.G-0yrk >(MEV) . 0 0.0 0.0 0.0 0.0 1.42E 01 1.60E 01 2.03E 01 2.75E 01 3.83E 01 6.61E 01 1.14E 02 9.77E 02 .500 0.0 0.0 0.0 0.0 1.002 00 1.002 00 1.002 00 1.002 00 1.002 00 1.005 00 1.005 00 1.005 00

0.0 0.0 1.00 0.0 0.0 1.978-01 1.748-01 1.488-01 1.328-01 1.178-01 1.038-01 9.118-02 6.028-02 1.50 0.0 0.0 0.0 0.0 4-74E-02 3-98E-02 3-17E-02 2-72E-02 2-35C-02 1-99E-02 1-69E-02 7-10E-03 2.00 0.0 0.0 0.0 0.0 1-146-02 9-096-03 6-766-03 5-636-03 0-706-03 3-826-03 3-135-03 9-536-04 2.50 0.0 6-98E-04 5-21E-04 1-09E-04 0.0 0.0 0.0 2.54E-03 1.98E-03 1.43E-03 1.16E-03 9.35E-04 3.00 0.0 0.0 0.0 0.0 5-00E-04 3-98E-04 2-91E-04 2-29E-04 1-75E-04 9.745-05 5.23F-05 1.64F-05 4.00 0.0 0.0 0.0 1-35E-06 6-94E-07 0-0 0.0 0.0 0.0 0.0 0.0 5.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 2.16E 10 1.84E 10 9.37E 09 4.54E 09 2.70E 09 1.39E 09 6.22E 08 8.13E 08 NORMFLUXE 0.0 0.0 0-0

. ** MAGNETIC COCRATINATOR IN AND L CHREUTED BY INVINC OF 1072 WITH CLURG, WODEL A: CAINCEMEENEY 120-TURN DOOT BARD . TIME# 1975.5 .. ##. VEMICLE : "AS-D 1110) AS INCLINATING ODES AS DESIGNEEZTON, NO AS ADDITES ATKINES OF MY CARTY TADE: THE 134 OF DESIGNE 24.000 OF

THE SPECTFAL DISTRIBUTION : NORMALIZED BY FLUX OF EMPRGY GREATED THAN . 100 MMY **

											•	
ene pgy Level f >(4ev)	1 4 ·		4 A G N F T		4 E t t. *1+*-2+0+	P A 7 A *		1 M F *2.4-2.5*	8246-24H4	" A 7 E		8 A N D S
.100	0.0	3.0	1.2	3.7 .	0.0	0.0	9.0	0.0	9.9	0.0	7.0	9.0
•500	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
a400	U.C	0.0	6.0	0.7	9.9	0.5	0.0	9.C	2.0	0.0	0.0	0.0
1.10	0.0	0.0	0.0	0.0	0.0	0.0	9.0	9.9	0.0	0.0	7.0	0.2
1.50	0.0	0.0	2.0	0.7	0.0	C • 0	0.0	3.9	0.0	0.0	0.0	0.0
2.00	C.0	6.6	6.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0
2.10	0.0	0.0	^ · 0	3.3	J.1	0.0	0.7	9.0	0.0	0.0	0.0	0.0
3.00	0.0	6.0	0.0	0.0	0.0	6.6	0.0	0.0	0.0	0.0	0.0	0.0
3.50	ეС	0.0	2.5	0.0	C.O	0.0	0.0	0.0	0.0	2.0	0.0	0.0
NCD WEL UK #	6.7	3.0	2.0	0.0	0.0	0.0	9 • C	0.0	0.0	3.0	0.0	0.0
FNEEGY	1 - 3 - 1	. 0 5 ()	4 2 4 4 F T	10 5	4 F L L	3 A E P. A	, E T F C	1 N E	3 5 7 4	2 . 7 1	1) L-	8 A N D S
>(AEA)	*7.4-3.6*	#3.(#1.º#	ш 3, м~А,ги	44,0-4.24	** • 2~* • **	** . * - 4 . * *	** **-4 * **	*4 • *** • • • • •	44.0-2.5	******	******	45.6-5.94
.100	3.6	2.3	C.n	0. 2	0.0	C • 0	0.3	0.0	0.0	0.0	1.00F 00	1-006 00
.300	C.3	C • G	0.0	0.3	0.0	0.0	0.0	0.0	9.0	0.0		2.72502
.700	7.C	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		7.4 1E-04
1.10	6.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	1.325-04	
1.50	\$.a	2.2	2.0	0.0	0.0	0.0	U . O	0.0	0.0	0.0	3.718-05	3.33F-06
2.00	(.0	0.0	6.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	3.0	5.0	0.0	2.0	0.0	0.0	0.0	0.0	0.2		0.0
3.00	0.0	3.0	0.0	0.0	0.0	0.0	0 • 0	0.0	0.0	0.0	0.0	0.0
3.50	9.0	C+C	0.0	0.0	0.0	0.0	0.0	0.0	c.0	0.0	0.0	0.0
NOTHFLUXE	€. ⊕0	0.0	0.0	0.0	J.0	0+0	0.0	0.0	0.0	0.0	9.3FE 10	1+156 11
ENERGY LEVELS	5 - H A /		A G N F 1		4 E L L	9 # F # #		IN 6	A F T 4	0 4 0 1		
.>(YEV)				-110		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		*		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-560-1764-
.100	1.00% CO	1.000 00	1.30E 00	1.00E 00	1.00F CC	1.00F 00	1.00F CC	1.00F 00	1.00E 20	1.COF 00	1.00E 00	1.005 00
.500	2.056-02	2.650-02	2.475-02	2.4 3E-62	2.95F-02	3.6.6F-02	4.525-02	5 - 57F-02	6.89F-02	A.50E-02	1.05E-01	1-285-01
. 200	7-001-0-	7 . 04 F C4	7-150-00	7 . 2 3F - 34	9.72F-C*	1-340-03	2.05E-01	3-12F-03	4.76E-01	7.246-03	1-116-02	
1.10	1.101-04	1-150-64	1 - 174-04	1 - 1 9E - 04	1.50F+04	2.58F-04	4.371-04	7.198-04	1.25E=03	2.12F-03	3.615-03	
1.50	3.011-01	3.055-(6	3-136-00	3.19E-06			1.90F-05	4 - 1 FF-C5	4.70E-75	1 - 52F - 0A	3.84F-04	
7.00	0.0	6.0	6.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0).0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0
3.60	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	2.0	0.0	c.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

NORMFLUX= ".21E 10 4.17E 10 3.07E 10 1.67E 10 1.62E 10 4.2PE 09 1.7FE 09 8.07E 08 3.65E 08 1.7FE 08 9.62E 07 6.98E 07

2...

SE PORTIAL FLUX STUDY WITH COMPOSITE PARTICLE ENVIRONMENTS! VETTES ADS. UNG. 107; AEA, AEE, ECC SOLAR MAXIMUM 4000 UNIFICE OF 1977 60 ** FLECTRON FLUXES EXECUENTIALLY DECLYED TO 1970. 0 WITH LIFETIMES: F.G. STASSINGOPULDSOP, VERZADIU ** CUTOFF TIMES! ** MAGNETIC CHEFOINATES B AND L COMPUTED BY INVERA DE 1972 WITH ALLMAR, MEDEL 4: CAINESWEENEY 120-YERM PORC 8/60 * TIME# 1975.5 ** 44 VEHICLE : SAS-D (110) 44 INCLINATIONS ONES 44 OFFISEES FOR 44 APPROFEE ASALTKW 84 B/L DRAFT TAPE: TOF135 44 PERIODS 24.000 44 ******** ELE!TPONS ******************** ** SPECTRAL DISTSTBUTION I NORMALTZED BY FLUX OF ENERGY GREATER THAN .. SOO WEY BE ******************************** _ - JAMPS (MAGNETIC SHELL PARAMETER IN EARTH GADIT) L-HANDS ENFEGY LEVELS \$1:0-1:2# \$1:7-1:4# \$1:4-1:7# \$1:4-1:9# \$1:4-1:9# \$1:9-2:0# \$2:0-2:2# \$2:2-2:4# \$2:4-2:4# \$2:4-2:4# \$2:4-2:4# \$2:4-2:4# >(KEV) 2.0 0.0 2.0 0.0 0.0 0.0 2.0 0.2 0.0 2.0 0-0 .400 0.0 0.0 0.0 2.0 0.0 0.0 9.0 0.0 0.0 0-0 0.0 1.00 0.0 0.0 2.0 6.0 0.0 0.0 0.0 0.0 4-0 0.0 0-0 1-40 0.6 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 2.70 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.53 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.00 0.0 0.0 2.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 4.00 6.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.0 5.00 0.0 2.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 NOWMFLUX# C.O 0.0 2.0 0.0 0.0 0.0 0.0 0.0 L-BA'DS (MAGNETIC SHELL PARAMETER IN EASTH DADIT) L-GANDS ENFRGY \$3.4-3.60 \$3.60-3.00 \$3.50-6.00 \$6.0-6.00 \$6.60 LEVELS >(4FV) • 0 0.0 2. 2 2.0 3.0 2.0 7.70E CO' 7.65E 00 .300 0.0 0.0 3.0 0.0 2.0 0.0 0.0 0.2 0.0 0.0 1.00F 00 1.00E 00 1.00 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.04E-01 2.46E-01 1.60 0.0 0. " 0.0 0.0 3.0 0.0 0.0 0.0 4.53E-02 8.50E-02 0.0 0.0 2.00 C . O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.09F-02 2.71E-02 2.50 0.0 0.0 0-0 0-0 0.0 C . Q 0.0 0.0 0.0 0-0 9.29E-03 7.45E-03 3.00 0.0 0.0 ^ _ 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.03E-03 1.54E-03 4.00 0.0 0.6 0.0 0.0 3-0 0.0 0.0 0.0 0.0 0.0 3.93E-05 3.25F-05 5.00 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 NCRMFLUKE 0.0 0.0 0.0 0.0 0.0 9.0 4.21E 10 5.59E 10 ENEPGY L-PAPDS IMAGNETIC SHELL PARAMETER IN EACTH RADII) L-BANDS LEVELS \$5.8-6.04 \$6.0-6.24 \$6.2-6.44 \$6.4-6.64 \$6.4-6.64 \$5.6+6.84 \$6.8+7.00 \$7.0-7.00 \$7.2-7.60 \$7.4-7.60 \$7.6-7.80 \$7.6-7.80 >(4EV) . . .0 7.47E CC 4.12E 30 9.45E 00 1.12F 01 1.30E 01 1.62F 01 2.07F 01 2.77E 01 3.44E 01 4.49E 01 1.16E 02 1.91E 02 1.00E 00 1.00E 00 1.00E 00 1.00E 00 1.00E 00 1.00F 00 1.00E 00 1.00E 00 1.00E 00 1.00E 00 1.00E 00 1.00E 00 .500 1.00 2.56E-C1 2.4CE-C1 2.36E-Q1 2.32E-Q1 2.10E-Q1 1.72E-Q1 1.47E-Q1 1.31E-Q1 1.17E-Q1 1.04E-Q1 9.11E-Q2 7.63E-Q2 1.50 7.62E-C2 6.88E-G2 6.47E-02 6.10E-02 5.190m02 3.89E-02 3.18E-02 2.71E-02 2.35E-02 2.00E-02 1.69E-02 1.12E-02 2.00 2.27E-02 1.97E-02 1.7PE-02 1.40E-02 1.28E-02 5.84F-03 6.70F-03 5.61E-03 4.67E-03 3.65E-03 3.13E-03 1.47E-03 2.50 - 4.12E-03 5.15E-03 4.41E-03 3.78E-03 2.01E-03 1.62E-03 1.41F-03 1.15E-03 9.34E-04 7.04E-04 5-215-04 1-985-04 3.00 1.57E-03 1.26E-03 9.79E-04 7.62E-04 5.64E-04 3.67F-04 2.865-04 2.285-04 1.755-04 9.93F-05 5-226-05 2-726-05 4.00 2.28E-05 1.45E-05 7.81E-06 4.22E-06 1.95E-06 6.12E-07 0.0 0.0 0.0 0.0 0.0 0.0 5.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NORMFLUX= 3.24E 10 2.33E 10 1.86E 10 1.42E 10 1.17E 10 5.92E 09 7.57E 09 6.07E 09 A.70E 09 3.39E 09 2.80E 09 2.88E 09

.

1

./ :

CHEROLOGY OF THE PROPERTY OF THE PARTY OF TH

Mark and Ode	7 4 14	0.5	9.0	0.9	300	4.0	0.00	.7.0	77 0	17.017	0.0	0.0
ENSRGY LEVELS .>(YEV)	L - E A !		1 3 4 6 4 4 3 ***************************		H E L L #A+2-4.4#		* E T E E		E	9 A 0 1		8 4 N D S
-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c.o	0.0	: : 1.00E 00
-500	2.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	2.64E-02
•900	0.0	0.2	C+0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.985-04
1.10	0.0	0.0	2.0	. 0.0	0+0	0.0	0.0	0.0	0.0	0.0	0.0	1-13E-04
1.50	0.0	0.0	0.0	0.0	0.0	r.n	0.0	0.0	0.0	0.0	0.0	3.00E-06
2.00	0.0	0.0	0.0	0.0	0.0	G.O	0.0	0.0	9.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	c.•c	0.0	0.0	0.0	0.0	0.0	0.0
3.50	7.0	2.0	0.0	0.9	0.0	C.O	0.0	0.0	3.0	0.0	0.0	0.0
NCRMFLUX=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	t+12E 11
ENEGGY	L - C 4 5	D 5	CHAGNE 1	, , , , , , , , , , , , , , , , , , ,	HELL		w	T N	F A R T H	9 4 0 1		

>(MEV) -100 1.00E 00 .300 6.45E-04 6.94E-04 7.09E-04 7.17E-04 9.77E-04 1.35E-03 2.05E-03 3.11E-03 4.70E-03 7.19E-03 1.10E-02 1.94E-02 -1-11E-04-1-13E-04-1-15E-04-1-17E-04-1-17E-04-1-15E-04-2-59E-04 4-37E-04 7-36F-04 1-23E-03 2-10F-03 3-56E-03 7-30E-03 1.50 2-90E-06 2-97E-06 3-17E-06 3-14E-06 4-52E-05 9-60E-06 1-99E-05 4-13E-05 3-52E-05 1-79E-04 3-78E-04 1-04E-03 2-00 0+0-.0.0... 0.0 .0.0... -0-0------0-0------ .. . 0 . 0 0.0 0.0 0.0 0.0 2.50 . 0.0 0.0 0.0 0.C 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .3.00.. --- 0.0 م.ه. . D.A -0.0. - 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 3.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

\$5.8-6.0# \$6.0-6.2# \$6.2-6.4# \$6.4-6.6# \$6.6-6.6# \$6.6-6.8# \$6.8-7.0# \$7.0-7.2# \$7.2-7.4# \$7.4-7.6# \$7.6-7.8# \$7.8-8.0# \$8.0-0VR\$

LEVELS

NORMFLUX# 9.32E 10 4.74E 10 3.13E 10 1.92E 10 1.03E 10 3.98E 09 1.65E 09 7.11E 08 3.44E 08 1.49E 08 7.50E 07 6.80E 07

5.00

0.0

0.0

0.0

0.0

0.0

0.0

NORMFLUX= 4.35E 10 2.65E 10 1.91E 10 1.46E 10 1.20E 10 19.39E 09 7.19E 09 5.36E 09 4.38E 09 2.90E 09 2.16E 09 3.23E 09

0.0

0.0

0.0

0.0

0.0

0.0

SE ORBITAL FLUX STUDY WITH COMPOSITE PARTICLE ENVIRONMENTS: VETTES APS. AFG. APT; ALS. FOR SOLAR MAXIMUM SESP *FLX_OF 1973 ** ** ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. O WITH LIFETIMES: E.G. STASSINGPOULOSEP. VERZAPIU 44 CUTOFF TIMES ## MAGNETIC COURDINATES B AND L COMPUTED BY INVARA OF 1972 WITH ALLMAG. MODEL 4: CAINGSWEENEY 120-TERM POGO 8/ . 2 TIME'S 1975-5 ## ## VEHICLE : SAS-0 (310) ## INCLINATION= ODEG ## PERIGEE=27952KM ## APOGEE= 43615KM ## B/L ORBIT TAPE: TO7670 257100 24-000 ## 2445454444444 ** SPECTRAL DISTRIBUTION : NORMALIZED BY FLUX OF ENERGY GREATER THAN .100 MEY ** ENERGY L-BANDS (MAGNETIC SH'LL PARAMETER IN EARTH RADII) L-BA405 \$1.0-1.2* \$1.2-1.4* \$1.4-1.6* \$1.6* \$1.6-2.8* \$1.8-2.0* \$2.0-2.2* \$2.2-2.4\$ \$2.4-2.0\$ \$2.6-2.88 \$2.8-3.0\$ \$3.0-3.0\$ \$3.0-3.2\$ \$3.2-3.4\$ LEVELS >(MEV) -100 0.0 0.0 0.0 0-0 C-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .900 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.10 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 1.50 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 3-0 2.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ٥٠٥ 2-50 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3-00 0.0 0-0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NORMFLUX# 0.0 3.0 0.0 0-3 0.0 0.0 0.0 0.0 0.0 ENERGY L-BADDS INAGNETIC PARAMETER IN EARTH SHELL RADIII L-BANDS #3.4-3.6# #3.6-3.8# #3.8-4.0# #4.0-4.2# #4.2-4.4# #4.4-4.6# #4.6-4.8# #4.8-5.0# #5.0-5.2# #5.2-5.4# #5.4-5.6# #5.6-5.8# LEYELS > (MEV) \$1.00E 00 .100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.708-02 0.0 0.0 0.0 .930 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 7.30E-04 0.0 0-0 0.0 1-205-04 1.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 1.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3-24E-06 2.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.00 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 NORMFLUX- 0.0 0-0 D = D 0.0 0.0 0-0 0-0 0.0 0.0 0.0 0.0 1.362 11 L-BANDS (MAGNETIC SHELL FARAMETER IN EARTH RADII) L-BANDS ENERGY LEVELS \$5.8-6.0= \$6.0-6.27 \$6.2-5.40 \$6.4-6.60 \$6.6-6.80 \$6.8-7.0* \$7.0-7.2* \$7.2-7.40 \$7.4-7.6* \$7.6-7.80 \$7.8-8.0+ \$8.0-0\R\$ > (MEV) -100 1.00E 00 2.65E-02 2.66E-02 2.60E-02 2.70E-02 2.97E-02 3.66E-02 4.53E-02 5.59E-02 6.92E-02 6.56E-02 1.05E-01 1.37E-01 .500 7.04E-04 7.09E-04 7.16E-04 7.27E-04 6.83E-04 1.35E-03 2.06E-03 3.14E-03 4.80E-03 7.35E-03 1.11E-02 1.89E-02 .900 1.15E-04 1.16E-04 1.17E-04 1.17E-04 1.52E-04 2.59E-04 4.39E-04 7.45E-04 1.27E-03 2.16E-03 3.63E-03 7.02E-03 1-10 3.04E-06 3.08E-06 3.15E-C6 3.22E-06 4.56E-06 9.58E-06 2.00E-05 4.21E-05 8.86E-05 1.86E-04 3.86E-04 9.76E-04 1.50 0.0 0.0 0.0 2.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.50 0.0 0.0 0.0 3.00 0.0 0.0 0.0 0 . C 6.0 0.0 0.0 0.0 0.0 0.0 0.0 :0.0 3.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NORMFLUX= 7.666 10 4.658 10 3.088 10 2.038 10 9.638 09 4.288 09 1.758 09 7.468 08 3.508 08 1.528 08 7.668 07 7.078 07

£ 4

The Paris - was the paris with the state of the state of

>{MEV} 0.0 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 .500 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0 0.0 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 2.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.50 0.0 Q4 Q 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NGRMFLUX= 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PNEACY L-BANDS (MAGNETIC SHELL PARAMETER IN EARTH RADII) L-ÉANDS #3.4-3.6# #3.6-3.8# #3.8-4.0# #4.0-4.2# #4.2-4.4# #4.4-4.6# #4.6-4.8# #4.8-5.0# #5.0-5.2# #5.2-5.4# #5.4-5.6# #5.6-5.8# LEVELS >(MEV) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7-64E 00 -500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1,00E 00 0.0 0.0 1-00 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 2.81E-01 1.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.60F-02 2.00 0.0 0.0 9.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.63E-02 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.21E-03 0.0 3.00 0-0 0.0 0-0 0.0 0-0 0-0 0.0 0.0 0-0 0.0 0.0 1.79E-03 4.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3-072-05 0.0 0.0 5.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NORMFLUX# 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.54E 10 ENERGY L-BANDS (MAGNETIC SHELL PARAMETER IN EARTH RADIII L-BANDS LEVELS \$5.8-6.00 #6.0-6.2# \$6.2-6.4# \$6.4-6.6# \$6.6-6.8# \$6.5-7.0# #7.0-7.2# \$7.2-7.4# \$7.4-7.6# \$7.6-7.8# \$7.8-8.0# \$8.0-07# >(MEV) • 0 7.57E 00 6.14E 00 9.56E 00 1.12E 01 1.34E 01 1.62E 01 2.06E 01 2.77E 01 3.86E 01 6.85E 01 1.14E 02 .2.31E 02 .500 1.00E 00 1.00E 2.56E-01 2.40E-01 2.36E-01 2.32E-01 2.10E-01 1.72E-01 1.47E-01 1.31E-01 1.17E-01 1.03E-01 9.11E-02 7.02E-02 1.00 1.50 2.00 2.27E-02 1.97E-02 1.78E-02 1.60E-02 1.28E-02 8.83E-03 6.70E-03 5.61E-03 4.68E-03 3.83E-03 3.13E-03 1.19E-03 2.50 6.13E-03 5.14E-03 9.41E-03 3.78E-03 2.89E-03 1.92E-03 1.41E-03 1.15E-03 9.31E-04 7.01E-04 5.21E-04 1.26E-04 3.00 1.55C-03 1.26E-03 9.78E-04 7.60E-04 5.61E-04 3.87E-04 2.86E-04 2.28E-04 1.74E-04 9-61E-05 5-23E-05 2-19E-08 2.29E-05 1.44E-05 7.75E-06 4.21E-06 1.91E-06 6.11E-07 0.0 4.00 0.0 0.0 0.0 0.0 0.0 6.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 6.0 0.0 0.0

NORMFLUX= 3.99E 10 2.61E 10 1.66E 10 1.54E 10 1.12E 10 9.95E 09 7.61E 09 5.63E 09 4.54E 09 2.99E 09 2.29E 09 3.26E 09

•

market and the second second

大川ではないのないのである。

		*****	*******	********	. LOW E	NEPGY PECT	3N5 ****	********	•••••	****		,
,	,	** SPE	CTRAL DIST	: PERTITURE				GREATER TH	AN .100 ME	V **	:	
						****				•••		٠,
ENERGY	L - B A N		AGNET		4866	PARAM			APTH	0 A D 1		5 A N D
>(MEV)		*1 • 2= 1 • 4 * · ·	+1 •4-1 •6*		41 +5~?+6 4	\$2.6-5.5	*2.2-2.4*	42.4-2.4	42.6~26.44	42.5-3.0 *	*3.0-3.2*	#3.2~3.4
•100	0.0	 C.O	0.0	0.0	0.0	0•C	0.0	0.2	0.0	0.0	0.0	0.0
~,500		.0+0		0.0	0.0	-0+6	0.0	0.0	0.0	0.0	0.0	0.0
• 900	0.0	0.0	0.0	0.0	0.0	C • C	0.0	0.0	0.0	0.0	0.0	0.0
1.10	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50 2.00	0.0	0.0	0.0	0.0	0.0	C.O	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0
		-0.0		4.0	-0.0	6-4-0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	C.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0
NORMFLUX=	0.0	0.0	0.0	J. 0	0.0	e.o	0.0	0.0	0.0	0.0	0.0	0.0
ENEPGY	L - B A N		AGNET		HELL	P A R A M			ARTH	P + 0 1		B A N D
>(MEA)	*3,4-3,6*-	43,4+3+4+	*3+8-4+ 0*	******	***2~*** *	******	44 ₄ 5-4 ₄ E4	44 ₁ 9-5 ₁ 04	#5 ₁ 0~ 5 ₁ 24	+5,2~F,4+	+5,4-5,6+	+5.6-5.6
.100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.005 00	1.00E 00	: 11.00E
	-0.0	-0.0	-0+0			-0.0	0.0	0.0	0.0	3.16F-02	3.056-05	
.900	6.6	0.0	C.0	0.0	0.0	0.0	0.0	0.0	0.0	9.94E-04	9.16E-04	
-1-10 1-50	0.0	- 0-0	0.0	- 0,0		6.0 0.0	0.0	0.0	0.0	- 1 - 76E-QA R - 5f.E-06	1.59E-04 4.8AE-05	
8.90		0.0			0.0	0.0	0.0	0.0		7.395-08	4.718-08	0.0
2.50	0.0	0.0	0.0	0.0	0.0	C.O	0.0	0.0	9.0	0.0	0.0	0.0
_3.00	-c.o						0+0	0+0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORMFLUX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.54E 10	1.136 11	3.74E 1
ENE RGY LEVELS	L - B A N		4 G N E T		4 E L L	PAPAM			APTH	PÅD1		6 A N D
>(MEV)		~ ~~~				-w(-4 ts = +++++			47,642,6114	-140-140-		+00V-UV
.100			1.000 00					1.008 00	1.00E 00	1.00E 00	1.00E 00	
			2.4AE-02		_2.63E-02.		3-906-05	4-89F-02	4.75E-02	8-46E-02 7-23E-03	1.035-01	
.90u 1+10	6.41E-04	6.22E-04			6.96E-0A		1.54F-03 3.08E-04	2.42E-03 5.39E-04	1.25E-03	2.12E-03	1.09E-02 3.50E-03	
1.50		2.47E-06	2.30E-06	2.24E-C6		5.07E-06	1.236-05	2.70F-05	8.84E-05	1.81E-04		
	_0.0		-0.0				0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		^ ^	0 - 0	A - A	-0.0	-0.0	9.0	0.0	0.0	0.0	0.0	0.0

ないない 一般ない 一般ない はればない これ これをおれれまし

NORMFLUX# 1.2CE 10 6.15F 09 4.36E 09 4.15E 09 4.07E 09 3.55F 09 2.91F 69 2.71F 09 1.03E 10 3.6CE 09 1.1AF 09 1.05E 09

Tune THE STUDY WITH COMPOSITE PARTICLE SHAFFOR ASHIST VETTES APE, APE, APE, APE, APE, APE, FOR SOLAR MAXIMUM ASAS HAVES OR 1973 AS AN ELECTRON PLUXES (XPONINTIBLEY OF CLASSED TO 1970. O 41TH LIFETIMES: F.G.STASSINOPOULDSCRIVERZARIU ## CUTOFF TIMES: THE MAGNETTE COCKRINATION IN AND L. COMPUTED BY INVESTOR 1972 WITH ALLINGS, MODEL 4: CAINSSWEENEY 120-TERM POGD 8/69 * TIME# 1975.5 ** 44 VEHICLE 1 FASHD (230) AR INCLINATIONS 30DEG #4 DEGIGERSZOSSKM #4 APOSEES 43615KM #8 B/L DROTT TACK! TOROSO #4 DEGIGDS 24.000 #4 TORTON TO THE TORTON THE TORTON TO THE TORTON TO THE TORTON TO THE TORTON TO THE TORTON SE EPECTAAL DISTRIBUTION : ADENALIZED BY FLUX OF ENERGY GREATER THAN ALOD MEY BE L-FIFO" (MAGNETIC SHELL CAPARETER IN EARTH PARTIS L-BANDS PHET BY しゃりだしゃ 41.0-1.7- A1.7-1.40 *1.4-1.40 *1.4-1.40 *1.4-1.40 *1.4-2.04 *2.0-2.04 *2.0-2.40 *2.4-2.40 *2.4-2.40 *2.4-2.40 *2.4-2.40 *2.4-2.40 SCHOOL .100 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 . 100 2.0 Get 0.0 3.0 3.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 .400 0.0 ---0.0 4.0 0.2 1.0 9.0 0.0 0.0 0.0 0.0 0.0 1.10 0.0 0.0 0.0 0.0 4.4 0.0 0.0 0.0 A . A 0.0 0.0 0.0 .1.40 2.0 0.3 0.0 0.0 2.2 ... 0.40 0-0 0.0 0.0 0.0 0.0 2.00 ·.0 0.0 9.9 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 2.40 0.0 0.0 0.0 0.0 2 - 0 0.0 0.0 0.7 0.0 0.7 4.0 0.0 3.00 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0 9.0 9.0 0.0 0.0 3.50 0.0 0.0 0.0 0. 2 3.3 3.0 9.0 0.0 . 0. 0 NO IMPLUYE 0.0 3.3 2.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 ENTIRY L-PATOS (MAGNETEC SHELL PARAMETER FAPTH IN RADITI L-BANDS LEVELS #3,6-3,64 #3,6-1,80 #3,8-4,04 #4,9-4,2# #1,2-4,4# #4,6-4,64 #4,6-4,64 #4,9-4,64 #5,0-5,04 #5,0-5,2# #5,2-5,4# #5,4-5,6# #5,6-5,6# >(YEV) .100 0.7 0.0 0.0 1.0 3.0 ... 0.0 0.0 0.0 0-0 1.00F 00 1.00E 00 .330 9.9 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 2.98F-02 2.78E-02 8.89E-04 7.73E-04 .000 0.0 2.9 0.0 0.0 0.0 r - 0 0.0 0.0 0.0 0.0 1.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.53E-04 1.29E-04 1.50 0.0 0.0 4.585-06 3.60E-06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.30 0.0 3.0 0.0 0.0 0.0 C - D 0.0 0.0 0-0 0.0 3.21F-08 0.0 2.*0 0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.00 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MORMFLUXE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.62E 10 5.63E 10 ENFRGY L-CANDS (MASNETIS SHELL PARAMETER IN FARTH PADIII L-BANDS LEVELS #5.R-6.0# #6.D-6.2# #6.2-6.4# #6.4-6.6# #6.6-6.3# #6.A-7.0# #7.G-7.2# #7.2-7.4# #7.4-7.6# #7.6-7.## #7.5-8.0# #8.G-00### >(4EV) .100 1,00F to 1.00F to 1.00E to -300 2.40E=02 2.57E=02 2.45E=02 2.45E=02 2.45E=02 3.74E=02 3.74E=02 4.92E=02 4.92E=02 6.52E=02 1.04E=01 1.40E=01 A-FCE-04 4.41F-C4 6.31F-04 5.05F-04 7.25E-04 1.00E-03 1.59FF-03 2.45F-03 4.72E-03 4.98F-03 1.09E-02 2.12E-02 -000 1.10 1.10F-64 1.02E-64 1.00E-64 9.50E-65 1.20E-64 1.93E-64 3.15F-64 5.50E-64 1.12F-03 2.03E-03 3.57E-03 8.52E-03 2.475-04 1.71F-04 3.77E-04 1.24E-03 1.50 2.50F-C5 2.53E-06 2.35F-06 3.26F-05 6.77F-05 1.295-05 2.78F-05 7.46F-05 0.0 .. 2.00 0.0 9.0 0.0 0.0 0 . C 0.0 0.0 0.0 0.0 0.0 0.0 2.50 0.0 0.0 0.0 0.0 0.0 0.9 2.0 0.0 0.0 0.0 0.0 0.0 .. 3.00 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.7 0.0 0.0 C.C 0.0 3.50 0.0 0.3 0.0 0.3 0.0 2.0 0.0 0.0 11.0 0.0 C. 3 6.0

NORMATURE 2,7°F 10 1,915 10 1,175 10 0,285 00 0,025 00 1,026 00 0,095 00 0,305 00 3,765 00 3,395 00 4,975 07 2,255 07

The state of the s

The second of the second secon

1

٦

												· ·
												Tugue at
4414444646 i 0-71-4	First Title	26.174 27.02	1176 PAITS	C) 4 60.0° 6	'A JEA. TE . VE	7126 .00	404 .071			MA 4 1 Maria		
4 11 50 4500	ELINAS PA		1.C. YED 7	(+ 2 2 C . A		TIME TO B. C.	*****				ARR CHARLES	UL. 1013
4 PLFC"F/N	CONTO IN ATE	* 1 440 1	CONDUTED II	V 18:U6FF 7		1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MCD4 1	CATHERWE		CONTRACTOR	; ~ ; 440 a 1140-	: 1575.5
												28.000
	******							, , , , , , , , , , , , , , , , , , , ,		re; (04.144)		36.000
						FEGTERA.						
												. 4
	•	****				********						
												:
		•										
CHICAN	2 - 2 8 5	. 0 5 (5			H t L L	PAPAS		1 N P		- 4 0 1		8 Á 4 P S
LEVELS								*****				
PLACAL			• • • • •	•••	••••	•••					- 100 - 200	- 206 - 300 -
,										•		
• • •	c.c	0.0	2.0	C. O	7. ^	9.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	6.0	2.0	0.0	9.9	C.0	0.2	0.2	0.0	n.n	9.0	0.0
1.00	7.0	C. ^	0.0	0.0	0.3	(.)	0.0	0.8	0.0	2.0	0.0	0.0
1.40	0.0	0.0	ንቀሮ	9.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	C.A	c.r	C • 0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0
2.50	1.0	6.0	6.0	0.7	0.0	0.0	0.0	0.0	2.0	0.0	2.0	0.0
1.00	7.0	6.7	5.0	0.7	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.20	2.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
* • 70	1.0	0.3	C.C	3. n	C.0	0.0	0.0	0.0	0.0	0.0		
				•••	•••		•••	•••		V	0.9	0.0
NO THPLUXE	0.0	0.3	0.0	0.5	7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	- •			•••	•••	. • .	• •			. • • •		
ENFR 3V	1 - 5 1 1		PRNET		4 E L L		4 F T F R	1 4 6	APTH	9491	11 6-	3 A N O S
LEVELS								*4-4-5-00				
· >{ 46 V 1	• •										* 100-50-	+ 10 0 - 3 4 H +
· • • • ·	7.0	7.7	9.0	5.7	2.2	0.0	0.0	0.0	0.0	0.0	7.70E 00	7.65E 00
.500	6.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	1.000 00	1.006 00
1.00	. 0.0	0.0	0.0	2.0	0.0	C.0	0.0	0.0	1.0	0.0	3.076-01	2.95E-01
1.70	0.6	2.0	0 · C	C.O	2.0	0.0	0.0	0.0	0.0	0.0	9.64E-02	P. 76E-02
2.00	9.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	3.025-02	10-300.5
2.70	0.0	6.0	7.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.42F-03	7.40F-03
3.00	9.0	n.c	0.0	0.0	9.2	0.0	0.0	0.0	0.0	0.0	2.05E-03	1.038-03
4.00	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.05E-08	3.716-06
		0.0	7.C	0.0	0.0	7.0	9.0	0.0	2.0	0.0	0.0	0.0
				_								7-7;
M PUPLISE	0.0	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	2.85E 10	2.66E 10
												•••••
ENERGA		. 0 5 (H	ACNET	tr s	1 E L L	P & B A +		1 9 6	HTQA	RADI	1 1 L-	8 A'N D S
LEVELE	1 5. A-F . OR							47.2-7.40				
214EA1												•
												·
• •	7.47F CO	4.11E UD	9.736 30	1.130 01	1.34F 01	1.45E 01	2.CFE 01	2.78E 01	4.67E 01	6.00E 01	1.11E 02	1.178 03
.500	1.00E 00	1.006 60	1.00F 00	1.00F 00	1.00E 00	1.00E 30	1-00E 00	1.00E 00	1.00E 00	1-00E 00		1.00F 00
1.00	2.945-01	2.4 05~ C1	2.3AE-01	2.324-01	2.096-01	1.72E-01	1-47E-01	1.31E-01	1.15E-01	1 -05F-01	94176-02	6-196-05
1.50	7-435-02	6.885-62	6.4RF-02	A. 04E - 02	9-145-02	3.86E-02			2.306-02	2.04E-02		7-338-03
2.70	2.275-02	1.CME-02	1.785-02	1.40F-02	1 .27E-02	3E-03	6.71F-03		4.5AE-03	3-958-03	3.16E-03	9.802-04
2.50	4-12F-C3		A-42E-03	3.776-03	2.8AE-03	1.62F-03	1.41F-03		9.04E-04	7.34E-04	5.29E-04	1-096-04
3.00	1,447-01	1.266-03	4. RZE - 04	7.537-04	5.57F-04	3. P7F-04	2.87E-04	2.2RE-04	1-655-04	1 - 08E-04		1-687-95
4.00	2.206-08	1-445-08	7.875-06	4.1 E-06	1 . BRE - OA	A.03E-07	0.0	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	C-0
HORMFLURE	1.43E 10	1.016 :0	7.375 09	7.31F 09	4.23E C9	3.718 09	3.00€ 09	2.91E 09	4.72E 09	6.33E 09	1.428 09	1-14E 00
										. •		

ON SECTION OF SECTION INDIVIDUAL INDIVIDUAL INDIVIDUAL OF SECTION OF SECTION

		****							********	*****		-
												, , , , , , , , , , , , , , , , , , ,
ENERGY	L-BA		AGNET		P. R. L. L.	PARAI				RADI		
LEVELS	•1.0-1.2 •	-1.2-1,40	*1.4-1.6*	•1.6~1.6 •	*1.6-2.0	•2.0-2.2 +	03-5-5-40	*2.4-2.6*	*2.4-2.90	*2.0-3,6*	+3.0-J.2+	*3.2-3.4*
>(=E v }												
-100	0.0	0.0	C.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	9.0	0.0
.500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
•300	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.10	0.0	0.4	0.0	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0
2.40	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	0.0	0.0	9.0	0.0	0.0
2.50	0.0	/J+ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3,50	0.0	0.0	0.0	0.0	0.0	0.0	C.O	0.9	0.0	0.0	0.0	0.0
MORHFLUXE	0.0	0.0	0.3	0.0	C-0	0.0	0.0	0.0	0.0	9.0	9.0	9.0
ENERGY	L - B A !		. A G N E 1		HELL	DARAS		1 10 1		* 4 0 1	• • • •	
LEVELS										***2-8-01		
>(464)	4304-304	V 360-364V	~ 3 , 0 4 , 0	0400-4020	-402-4040	-4,6-4,60	-400-60			- 364- 86 44	- 3, 4 - 9, 4 4	~5.6~5.50
-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	1.402 00	1.00E 00
.500	0.0	0.0	C.O	0.0	0.0	0.0	0.0	0.0	0.6	0.0	2.486-02	2. 796 -02
.900	9 • C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8. #7E-04	7.82F-04
1.10	0.0	0.0	C.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.532-04	1.315-04
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4-155-04	3.475-04
2.00	C . O	0.0	0.0	0.0	C.0	0.0	0.0	0.0	0.0	0.0	3.025-38	0.0
2,50	0.0	0. D	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0
3.90	0.0	C. O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	3 + 6	0-0
3.30	0.0	0.0	3.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0
NORMPLUX-	0.0	0.0	6.0	6.0	0.0	0.0	9.0	0.0	0.0	0.0	6.26€ 10	6.46E 10
ENERGY	L - B A	N 0 5 6 1			H E L L	PARAI		1 N 0		RADI	1) L-	
LEVELS	+5.8-6.0+	+6.0-4.2+	46.2-0.44	#6.4-6.6*	46.6-b.8+	●6.8-7.0 ●	#7.0-7.2*	*7.2-7.4*	+7-4-7-69	+7-6-7-8+	*7.8-E.O*	
(V3M)<							-					
.100	1.00F 00	1.00E 00	1.008 00	1.00E 00	1.002 00	1.00£ 00	1.00F 00	1.005 20	1.000 00	1.00E 00	1.00E 00	1.00E 00
. 502	24 6 H # 0 2	21342-52	24545-02	2.464-02	2.676-08	2-302-03	4.142-02		4.785-62	8.445-02	1 .03E-01	1.424-01
	64 6 FE = 64	88 486 = 44	62458#94	6.198=84	PelaEzPA	1-106-03	1.736=03	2.722-03	4,452-03	7.245-03	1+08E-05	R. 16E-02
1.10	1-116-04	L. DAE -OA	1,038-04	9.726-05	1.18F-04	2.01E-04	3.545-04	6.262-04	1-225-03	2+13E-03	1.52E-03	8.748-03
1.56	5.956-00	2.652-06	5 * 6 5/ - 00	2 + 4 3E - 06	3.25E-68	8.75E-06	1.50E-05	3.346-05	0.51E-05	1.032-04	3,67E-04	1.245-03
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
.50	ů . 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	Q. Q	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

MONMELUX - 2.77E 10 2.13E 10 1.29E 10 8.42E 09 5.12E 09 2.13E 39 9.83E 08 5.66E 08 4.71E 08 2.05E 08 5.61E 07 2.78E 07

AT URBITAL FLUX STUDY WITH CLAUSSIT: PARTICLE ENVIRONMENTS: VETTES APS. APS. APS. APS. FOR SOLAR MAXIMUM *** UNIFLE OF 1973 ** 40 ILECTRIN FLUARS TAPONINTIALLY LICAVED TO 1970. O WITH ELFETIMEST E.G. STASSINDPOULDSEP. VERZARIU 00 CUTOFF TIMEST BE MAUNETAC COORDINATES & AND L COMPUTED BY INVARA OF 1972 WITH ALLMAG. MODEL 4: CAINGSBEENEY 120-TERM POGO 8/69 & TIME: 197545 BE .. VEHICLE : SAS-U (312) . INCLINATION: SAUCE ** PERICEL: 27952KM ** APOGEE: 43615KM ** B/L ORBIT TAPE: TD7678 ** PERIODE 24.000 ** engrentent entre e .. SPECTHAL DISTRIBUTION : NORMALIZED BY FLUX OF ENLAGY GREATER THAN .500 MEV .. L-BANDS IMAGNETIC SHELL PARAMETER IN EARTH RADII) L-B'ANDS ENFRGY LEVELS \$1.0-1.28 \$1.2-1.40 \$1.4-1.60 \$1.60-1.60\$ \$1.60-2.00 \$2.0-2.24 \$2.2-2.44 \$2.4-2.60 \$2.6-2.68 \$2.6-3.04 \$3.0-3.28 \$3.0-3.28 \$3.2-3.48 >(4EV) 0.0 5.0 0.0 0.0 0.0 . 0 0.0 0.0 0...0 0.0 0.0 0.0 -50C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00 C.O 0.0 0.0 0.0 0.0 1.50 0.0 0.0 0.0 0-0 0.0 0-0 0.0 0.0 0.0 . 0.0 0.0 0.0 0.0 2.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.50 0.C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.00 0.0 0.0 0.40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NORMFLUX= 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 L-BANDS (MAGNETIC SHELL PARAMETER IN EARTH RADII) L-BANDS ENERGY LEVELS #3_4-3_60 #3_6-3_60 #3_9-4_00 #4_0-4_20 #4_2-4_40 #4_4-4_60 #4_6-4_60 #4_6-5_00 #5_0-5_20 #5_2-5_40 #5_4-5_60 #5_6-5_80 >(MEV) 0.0 0.0 C. 0 0.0 0.0 0.0 0.0 0.0 0.0 7.70E 00 7.65E 00 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 1-DOE 00 1-00F 00 •500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3-06E-01 2-86E-01 1.00 0.0 0.0 1.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.644-02 8.78E-02 . 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.01E-02 2.70E-02 2.00 0.0 6.0 0.0 0-0 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 8-36E-03 7-42E-03 3.00 0-0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 0-0 2-048-03 1-848-03 0.0 0.0 4.20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.01E-05 3.23E-05 0.0 5-00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NORMFLUX= 0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0-0 0-0 2.71C 10 3.04E 10 L-BANDS (MAGNETIC SHELL PARAMETER IN EARTH RADII) L-BANDS ENERGY LEVELS \$5.8-6.3* \$6.0-4.2* \$6.2-6.4* \$6.4-6.6\$ \$6.6-6.8* \$6.6-7.0* \$7.0-7.2* \$7.2-7.4* \$7.4-7.6* \$7.6-7.8* \$7.8-8.0* \$8.0-0VR* >(MEV) 7.07g 00 8.09E 00 4.67E 00 1.12E 01 1.33E 01 1.63E 01 2.69E 01 3.96E 01 6.27E 01 1.10E 02 8.20E 02 1.00E 00 - 500 2.56E-01 2.40E-01 2.36E-01 2.32E-01 2.11E-01 1.71E-01 1.46E-01 1.30E-01 1.16E-01 1.04E-01 9 18E-02 6.4E-02 1.00 7.63E-02 6.89E-02 6.47E-02 6.10E-02 5.23E-02 3.89E-02 3.11E-02 2.69E-02 7.32E-02 2.02E-02 1.71E-02 7.26E-03 1.50 2,27E-02 1.98E-02 1.78E-02 1.60E-02 1.29E-02 8.83E-03 6.64E-03 (.56E-03 4.62E-03 3.89E-03 3.17E-03 9.76E-04 2.00 2.50 6.1 X-03 5.17E-03 4.40E-03 3.79E-03 2.93E-03 1.92E-03 1.39E-03 1.14E-03 9.17E-04 7.17E-04 5.31E-04 1.10E-04 1.55E-03 1.27E-03 9.77E-04 7.64E-04 5.69E-04 3.6 E-04 2.83E-04 2.25E-04 1.70E-04 1.03E-04 5.44E 95 1.64E-05 3.00 2-29E-05 1-48E-05 7-76E-06 4-25E-06 2-00E-96 6-36E-07 0-0 0.0 0.0

0.0

0.0

JORNFLUX: 1.45E 10 1.19E 10 8.15E 09 5.95E 09 5.22E 09 4.83E 09 3.93E 09 4.03E 09 6.10E 09 3.96E 09 1.60E 09 1.43E 09

0.0

0.0

0.0

0.0

4.00

5.00

0.0

3.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

					*********			OF ENERGY				•	•		
												· ·			٠
٠	>(nen) Factor		1)			4 F L L	*2.0-2.2*			A P T H		1) L - 43.0-3.24		•	
	•100	0.0	0.0	v.n	0.0	7.0	(.c	0.0	2.2	2.2	0.0	0.0	0.0		
	• 100	0.0	0.0	0.0	0.0	0.0	0.6	9.0	0.0	0.0	0.0	0.0	0.0		
	•200 1•10	0 • 0 6 • 0	0.0	0.0	2.0	0.0	C•0	0.0	0.0	0.0	0.0	0.0	0.0		
	1.50	C.O	0.0 0.0	0.0 2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1	
	2.00	0.0	0.6	0.0	0.0	0.0	C . 0	0.0	0.0	0.0	0.0	0.0	0.0		
	2.50	0.0	0.0	C • O	3.0	7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	,	
	3.00	2.0	0.0	0.0	0.0	0.0	6.0	9.0	0.0	0.0	0.0	0.0	0.0	,	
	3.00	C • ?	0.40	0.0	o• o	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	J. 1944
	AGGAET DXX	C • O	9.0	י• כ	2.0	1.0	r.c	0.0	0.0	0.0	0.0	0.0	0.0		
	ENET GY LEVELE	L - 8 A N	109 (W	/ G N E T		4 E L L	P / P A H			A R T H	PAOI	1) L =,	BANDS		
	>(4EV)		20.		7,00-4,0			4.60-4.6.4		~ ~ • · · · · · · · · · · · · · · · · ·	-312-314+	-544-5494. *	4240-2404		* * * * * * * * * * * * * * * * * * * *
	.100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00E 00	1.00E 00	1.00F 00		•
	. 360	0.0	0.0	0.0	0.0 -	9.0	0.0	0.0	0.0	0.0		2.99E-02			• • • • • • • • • • • • • • • • • • • •
	•400	0.0	C.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	1.00E-03	9.93E-04	7-12E-04		-
	1-10	0.0	0.0	0.0	-0.0		·=0+0	0.0		0.0					
	1.50 2.00	0.0	0.0	0.0 3.0	0.0 0.0	3.0	C • 0	0.0	0.0	0.0		4.63E-06			
	2.50	. 0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	7.51E-08	3.81E-08	0.0		. 5.
	3.00	0.0	0.0	0 • C	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		-
_	3.50	0.0	0.0	0.0	0.0)•)	0.0	0.0	0.0	0.0	0.0		0.0		
	NORMFL UX=	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	3.53E 10		2.42E 10		
_	ENERGY LEVELS >(MEV)	L = 9 # N \$5+8+6+0\$		# G N E 7 46.2+6.44		4 F L L #5.60/ .8#	P # R A N			A P T H ±7•4≈7•5\$		I } L ~ *7•8~8•0*	8 A N D S #8+0-0VR#		
_	•100	1.005 0C	1.005 00		1.00E 00				1.00F 00	1.00E 00 4.61E-02	1.00E 20 8.94E-02	1.00E 00			•
	.900 1.10 1.50	6.07E=04 9.58E=05		*+46E-01 P+35E-05	5 • 1 2E - 04 7 • 7 2E - 05	5.86E-04 9.13E-05	8:19E-04	1.16E-03 2.16E-04	1.62E-03 3.26E-04	2.14E-03 4.62E-04	A-14E-03 2-47E-03	1.026-02	7-54E-03		•
	2.00	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0		-0.)	0.0	-0.0		
	2.50	0.0	0.0	0.6	0.0	0.0	0.0	0.40	0.0	0.0	0.0	0.0	0.0		
	3.00 3.50	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		:
	NOPMFLUX=		9.57E 09												₹. ₩ ₹.
					•		,			~		•			:
						•									-
Į.,.	*	. •	· · · · · · · · · · · · · · · · · ·		·			••			,	•		: ,	
														•	

PP OF STAY, BUIN STORY WITH SERVITE DATALOUS PROTEST WASTER OFF FOR AND AND AND AND AND GOLD MEXIMUM PERS UNIFICE OF 1973 FE ** ELECTRON FLUXES EXECUENTIALLY DECLYOF TO 1470, O 41TH LIFETIMES: 1.4. STACCIMOCOHLOSCO. VERZERIU ** CUTOER TIMES: 4# MAGNETIC CITEDITATES 3 AND LICEMPHED BY THIVER OF 1972 ATTH ALLIMON HODEL IN CATEROMEENEY 1204TERM DOGN BARD & TIMER 1975.5 ** ** VEHICLE : SASHO (116) | ** 1/CLINATIONS ASOES ** CHOISECHAZOSZEN ** ADCIGNE ASKIRKN ** HAL OPNIT TADES TORISK ** DEDIGOS 24.000 ** FEFFERING ** SPECTEAL DITTEIBUTEIN E NOOMALTZED BY FELLS OF ENFERY GOFATED THAN SEDO HEV AV ENERSY L-BANDS EMAGNETIC SHELL DASANETEE IN FACTH DADITY L-BANDS LFVFLS \$1.0-1.2* \$1.2-1.0* \$1.4-1.5* \$1.4-1.5* \$1.6-1.40 \$1.3-2.0* \$2.0-2.2* \$2.2-2.4* \$2.4-2.6* \$2.4-2.4* \$2.4-2.4* \$2.4-3.0* >(4EV) .0 0.0 2.0 0.0 2.2 ... 0.0 0.0 0.0 0.0 2.0 0.0 . 300 0.0 0.0 0.6 9.9 3.0 0.0 0.0 1.02 0.0 0.6 2 . C 2.0 1.50 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.2 2.0 0.0 2.00 0.3 0.9 3.0 3.0 C . F 0.0 2.0 0.0 0.0 0.0 2.50 0.0 0.0 (. 0 0.0 0.0 0.0 ... 0.0 0.0 3.00 ٦.0 r.c 200 2.0 2.0 0.0 0.0 0.0 4.00 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 5.00 0.5 C.0 U.C 0.0 ^.0 0.0 0.0 NORMELUX: 0.0 2.0 0.0 1.0 2.5 0.0 0.0 2.0 0.0 0.0 ENCHOY LEPANDS IMAGNETTO STELL PARAMETER IN FARTH FARITE L-BANDS LEYFLS \$3.6-3.60 \$3.6m3.50 \$3.5m6.00\$ \$4.0m4.00\$ \$4.0m4.2m \$4.2m3.0m \$4.2m4.6m \$4.2m5.0m \$4.2 >(454) • > 0.0 (... 0.0 2.7 0.0 0.0 0.0 0.0 7.64E 00 7.69E 00 .7.65E 00 .306 2.0 0.0 1.0 0.0 0.0 0.0 1.00F 00 1.00E 00 1.00E 00 1.00 0.0 2. 7 ... 1.0 0.0 0.0 0.0 3.20F-01 3.14E-01 2.85E-01 1.50 0.0 J.0 0.0 0.0 1.04F-01 9.99E-02 8.78E-02 2.03 (.0 0.0 2.0 0.9 7. 7 3.4 9.3 0.0 3.18E-02 3.18E-02 2.70E-02 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 9.90F-13 9.01E-03 7.42E-03 3.00 0.0 0.0 0.0 2.0 3.3 0.0 0.0 2.0 2.46E-03 2.21E-03 1.84E-03 2.0 4.00 0.0 0.0 0.0 0.4 0.0 6.0 0.6 0.0 0.0 5.27E-05 4.54E-05 3.23E-05 F.20 C.2 2.2 C.O 0.0 0.0 0.0 NORMELUXE C.D 0.2 2.0 0.0 0.0 C . C 0.0 1.315 10 2.756 10 1.166 10 L-PANDS (MAGNETIC SHELL CARAMETER IN FACTH DANSI) L-BANDS ENFRGY LEVELS >(45A) 7.376 CC 0.265 CO 5.576 CO 1.135 C1 1.346 C1 1.626 C1 2.106 C1 2.786 C1 3.666 C1 7.496 C1 1.098 C2 7.988 C2 -0 . 500 1.00E 00 1.00F 00 1.000 00 1.09F 00 1.00F 00 1.00 2.56F-01 2.30C-01 2.3EF-01 2.32E-01 2.10F-01 1.72E-01 1.44F-01 1.32E-01 1.19E-01 1.00F-01 9.22E-02 %6.17E-02 1.50 7.61E-02 6.64E-02 6.46E-02 6.08E-02 5.17E-02 3.90E-02 3.11E-02 2.72F-02 2.30/-02 1.91F-02 1.71E-02 *7.31E-03 2.00 2.27E-02 1.56E-02 1.77E-02 1.59E-02 1.28E-02 2.66E-03 5.64E-03 4.41E-03 3.43E-03 3.19E-03 9.76E-04 2.50 6-10E-03. 5-07E-03. 4-39E-03. 3-76E-03. 2-87E-03. 1-02E-03. 1-3CE-03. 1-16E-03. 9-/4E-04. A.48E-04 5.36E-04 1.08E-04 3.30 1.5^E-03 1.23E-03 9.71E-04 7.52E-04 3.41E-04 3.88E-04 2.83E-04 2.31E-04 1 - 7 3E- 24 5.27F-95 5.54E-05 1.68E-05 2.29F-05 1.37E-05 7.62E-06 4.11E-06 1.95E-06 5.99E-07 0.0 A - DO 0.0 0.0 0.0 0.0 0.0

0.0 NORMELUX# 6.656 09 5.316 09 3.006 07 2.316 09 1.796 07 1.366 09 5.606 09 4.046 08 4.656 08 2.586 09 2.086 09 1.406 09

0.0

F.00

0.0

C . C

9.0

0.0

0.0

												Table 35
*****								*****	*****	********	********	********
DRUTTAL	FLUX STUIT	DALH CHAPP	STE BARTE	CPE EMAINL	N.MENTS: A	TYES APS.	APE, AP7;	AF4, 465.	EUD AUT WU	MEXTMIN D	*** UNIFLX	
** EL EGT#04-	**************************************	PONENTSALLY	UEC AND 1	7 1970. 0	WITH LIFE	MESI F.G.	STATETNOP	10L056#.VE#	ZPRTU 44	cutoff Time	51	
** MAGNETIC	CJOPOLNATI	S U AND L	COMPUTED H	T PRAVAL T	1 172 WIT	FH PLLMAGE	MODEL 4:	CAINGSWEE	NFY 120-T	EBM BDGD W	/69 * TIME:	1975.5
**- ALHICFE-I		who are the safe	£ 108 1/m=-	43666-44-0	4-1-3-6-05 to		MGEE #361	5K4 ++ 8/L	CHALL LY	E: TDM050	** PERIOD	* 24.000 **
**********		*********		********	******	**********	*********	*******	*******	********	*******	*******
	••	*****				NEBGY PROT		*******				
المراجع المتعوان		** '>E	CIMAL DIST	DINUTE IN E	35 J JAPPUP	D HY FLUX	OF ENERGY	GREATED TH	AN -170 H	EV **		4
		*****		****		*****	*******	*********	*****	****		*
Ada				•								
KNERGY	L - W A !											
. TEAST			AGNET		H F L L	PARAM			APTH	TRAPT		BANDS
>(464)	-110-101-	-116.110	-110-1034	-10-m10-d-	-163-460+	47.00-X.02#	-2.6-2.4	+2.1-2.4+	m 2 + 3 - 2 + 3 =	#2.M-3.0#	-2+0-3+8+	.43.2-3.44
rijum s		_										
100	0.0	0.0	0.0	0.0	0.0	0.0	• •	• •				
		-					0.0	0.0	0.5	0.0	0.0	0.0
.700	0.0	0.0	0.0	0.0	0.0	·· 0 • 0 · · · · · · · · · · · · · · · ·	0.0	0.0	0.0	0.0	0.0	0.0
1.10	3.0				0.0	0.0	7.0	0.0	0.0	0.0	0.0	0.0
1.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
2.70			- 0 - 0-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.56	0.0	2.0	0.C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	, 0.0
3.70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0
		7.00		V•17	V • · ·		0.00	0.0	V.9	0.0	0.0	0.0
NOAMELUX#	0 • 0	0.0	0.0	0.0	0+0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ENFRGY	t - 8 / F		IAGNET		HFLL							ĭ
LEVELS .								IN E	A P T H	RADT	1) [-	BANDS
5 31 (EV)	- 36 360-	+340-344-	+340-440-		-412-414-	-4 84-4 844	** **== * 6*	## • J=7 • U#	45 9V- 70 K4	45.5-2.44	#D+4=D+0#	#3.0-3.5 #
												•
.100	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	1.00E 00	1.00E 00
-			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.99E-02	
.900	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	8.95E-04	7.52E-04
		-0-0	-0-0	-0+0	- 0+0	0+0	0.0	0.0	0.0	0.0	1.55E-04	
1.50	0.0	0.0	0.0	0.0	3.0	C+0	0.0	0.0	0.0	0.0	4.635-06	
2.00	. 0 . 0	. 0.0	-	-	- 0.0	0+0	0.0	0.0	0.0	0.0	3.84F-09	
2.50	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.0.0
3-00	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
									•	* * *		
NOR MELUX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	5.788 10	3.75E 10
ENERGY	L - BAR		AGNET	1 6 5	HELL	PAFAM	* T F D	IN E	APTH	RADI		3 A N D S
-LEVELS												
>(4FV)								.,,,,				
.100					1.00E 00	.00E 00	1.0CE 00	1.00F 00	1.008 00	1.00E 00	1.006 00	1.005 00
		2+48E=02-			2.487-02	3-01E-02	3-565-08	4.26E-02	4.736-02	5.74E-02	1.04E-01	1.346-01
.900	6.536-04	6.005-04	5.79E-0A	5.512-04	6.21E-04	5.0FE-04	1.278-03	1.628-03	2.268-03	3.325-03	1.10E-02	1.92E-02
1.50	1.04E-04		A-89E-05	4.48E-05	9-A3E-05	1.68E=04	2.41E-04	3.7RE-04	4.95E-04	7.99E-04	3.59E-03	7.528-03
1.50	2.67E-06	2 • 31 E- 06	2.178-06	1.995-06	2.4BE-05	4.80E-06	8-68E-06	1.64E-05	2.01E-05		3.80E-04	9.4RE-04
2.50	0.0	0.0		0.0		0.0	0-0	0.0	0.0	0.0	0.0	o∙ o
J.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
~~~~				· ····		· 0 • 0 	0.0	0.0	0.0	0.0	0.0	<b>9.0</b>
NORMFLUX=	1.738 10	1-17E 10	6.86E 09	4.36E 09	2.24E 09	7-14E 08	2.84E 08	9.468 07	4.28E 07	2.12E 07	1.13E 08	3.528 07

1. 71.

to Maring Lab great

NORMFLUX= 9.04E 09 6.49E 09 4.42E 09 2.95E 09 2.20E 09 1.40E 09 9.93E 08 5.54E 08 3.80E 08 2.86E 08

SO GRBITAL PLUX STUDY WITH COMPOSITE PARTICLE ENVIRONMENTS: VETTES APS. APS. APS. APS. FOR SOLAR MAXIMUM SOOD UNIFLY OF 1973 CO . ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. D WITH LIFETIMES: E.G. STASSINGPULLOSOP. VERZARIU .. CUTOFF TIMES: SE MAGNETIC CUDROINATES B AND L CUMPUTED BY INVARA OF 1972 BITH ALLMAG. MODEL 4: CAINLEMEENEY 120-TERM POGO 8/69 # TIME# 1975-5 88 ** VEHICLE : SAS-D (310) ** INCLINATION= 45DEG ** PERIGEE=27952KM ** APOGEE= 43615KM ** B/L ORBIT TAPE: TOTATS ** PERIOD# 24-000 **

*********	FOM 1	ENERGY PRG	tons ***	********	***********
** SPECTRAL DISTRIBUTION : N	ORMAL I &	ED BY FLUX	OF ENERGY	GREATER T	AN -100 MEV #4
********************	******	********			*********

ENERGY	L - BAN		AGNET	t C s	HELL	PARAN	ETER	IN E	ARTH	RADI	11 1-	
LEVELS >(MEV)	*1.0-1.2*	<b>*1.2-1.4*</b>	+1.4-1.6 <b>+</b>	*1.6-1.8*	*1.5-2.0*	*2.0-2.2*	<b>*2.2-2.4</b> *	+2.4-2.6+	*2.6-2.8*			
.100	0.0	0.0	0.0	0.0	0.C	0.0	0.0	0.0	0.0	0.0	0.0	0.0
.500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
.900	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.10	0.0	U- 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORMFLUX=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ENERGY	L-BAR			IC 5	HELL	PARA	LETER	IN E	ARTH	RADI	1) L-	8 A N D S
>(KEV)	•3. 4-3. 6•	*3.6-3.8*	*3.6-4.0*	+4.0-4.2+	*4.2-4.4*	*4.4-4.6*	F4.6-4.8P	*4.8-5.0*	<b>*5.0-5.2*</b>	*5.2~5.4*		
.100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0+0	1.002 00	1.00E 00
.500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.998-02	2.76E-02
.930	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8-94E-04	7-60E-04
1-10	0.0	0.0	0 • C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.55E-04	1-26E-04
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4-638-06	3.49E-06
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.9	0.0	0.0	4.00E-08	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ó. O
3.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORMFLUX=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.43E 10	4.05E 10
ENERGY	L - 5 A	4 D'S ( )	4 A G N E 1	1 6 5	HELL	PARAI	1 E T E R	IN E	ARTH	RADI	1) L-	
LEVEL S	<b>=5</b> • 5−6• 0≠	+6.0-6.2+	*6+2~6+4*	+6.4-6.6+	*6.6-6.8*	#6.8~7a0#	<b>#7.0-7.2#</b>	+7.2-7.4*	<b>\$7.4-7.5</b> \$	+7-6-7-8+	<b>*7</b> -8-8-0 <b>*</b>	+8.0-0VR+
.100	1.00E 00	1.00E 00	1.00E 00	1.002 00	1-00E G0	1.005 00	1.00E 00	1.00€ 00	1.00E 00	1.00E 00	L-OGE CO	1.005.00
4500	2.55E-02	2.46E-02	2.415-02	2.335-02	2.50E-02	2.95E-02	3.06E-02	4-10E-02	4-916-02	5.93E-02	1-065-01	1.386-01
-900	6-49E-04	6. C6E-04	5.82E-04	5.42E-04	6.26E-04	8.76E-04	1.215-03	1.696-03	2+432-03	3.64E-03	1-136-02	1.952-02
1.10	1.04E-04	9-526-05		8.27E-05		1.51E-04	2.26E-04	3.46E-04	5.4 3E-04	8-67E-04	3.72E-03	7.59E-03
1.50	2.64E-06	2.355-06	2-185-06	1.93E-06	2.50E-08	4.525-06	7.985-06	1-44E-05	2.385-05	3-912-05	3.97E-04	9.62E-04
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Q+Q	.0.0.	0.0	0.0
2.50	Q+ 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0
3.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Q.Q	0.0	0.0	0.0
3.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MORMFLUX=	1.88E 10	1.01E 10	6- #9# 09	A.A2# 00	9.467 00	7-9AF 08	3-265 08	1.305 08	A-94F 07	1.636 07	1-137 08	3.4W A7

area and the state of the state

									•			
ENERGY	L - B A	N D S ( )	MAGNES	ric s	HELL	PARAI	M E T E R	IN E	ARTH	RADI		
LEVELS	+1.0-1.2+	+1.2-1.4+	*1.4-1.6*			<b>#2.0-2.2</b>			*2.6-2.8¢	+2.8-3.0*	+3-0-3-2+	\$3.2-3.4\$
(VEV)												
	`											
• 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
.500	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	<b>0.</b> 0	0.0	0.0	0.0
1.00	0.0	0.0	0.0	0.0	0.0 .	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.50	0.0	0.0	0.0	0.0	C • Q	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.00	0.0	C • O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NORMFLUX=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	•								-		***	
ENERGY	, L - 8 A		MAGNET		HELL		HETER		ARTH	RADI	1) L-	BANDS
LEVELS	<b>*</b> 3 <b>.</b> 4- 3 <b>.</b> 6 <b>*</b>	+3.6-3.8+	+3.8-4.0+	#4.0-4.2+	P4.2-4.4P	*4.4-4.6*	*4.6-4.8*	#4.8-5.0#	+5.0-5.2+	+5.2-5.4+	+5.4-5.6+	+5-6-5-84
->{MEV}			•									
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.71E 00	7.65E 00
.500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00E 00	
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.09E-01	2.85E-01
1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.70E-02	
2.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.052-02	
2.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.50E-03	
3.09	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	2.07E-03	1.83E-03
4.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4-12E-05	
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
							_					· ·
NORMFLUX=	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.332 10	1.92E 10
ENERGY	L - B A	N D S	4 A G N E 1	ric s	HELL	PARAI	AETER	IN E	EARTH	RADI		B A N D S
LEVELS	#5.8-6.0+	+6.0-6.2+	#6.2-6.4#	+6.4-6.6+	+4.6-6.6+	#6.8-7.0#	47.0-7.24	+7.2-7.4+	+7-4-7-6+	#7.6-7.8 <b>#</b>	#7-8-8-0#	*8.0-0VR*
>(MEA)												
•0	7.56E 00	8.15E 00	9.51E 00	1-12E 01	1.335 01	1.62E 01	2.04E 01	2.74E 01	3.84E 01	6.74E 01	1.13E 02	6.59E 02
• 500	1.00E 00	1.00E 00	1.00E 00	1.00€ 00	1.00E 00	1.00E 00	1.00E 00	1.002 00	1.00E 00	. 1-00E 00	1.00E 00	1.00E 00
1.00	2. 54E-01	2-408-01	2 . 36E-01	1.326-01	2-11E-01	1.725-01	1.47E-01	1.32E-01	1-17E-01	1.03E-01	9-11E-02	
1.50	7.678-02	6.87E-02	6.49E-02	6-116-02	5-226-02	3.90E-02	3-168-02	2.73E-02	2-356-02	1.986-02	1-695-02	
2.00	2.253-02	1-978-02	1.782-02	1.61E-02	1.295-02	8.86E-03	6.76E-03	5.655-03	4.69E-03	3-82E-03	3-1 天-03	1.02E-03
2.50	6.065-03	5.135-03	4.43E-03	3.606-03	2.93E-03	1.93E-03	1.426-03	1-16E-03	9.35E-04		5-21E-04	1.15E-04
3.00	1.536-03	1.258-03	9.86E-04	7-67E-04	5.68E-04	3.685-04	2.90E-04	2.31E-04	1.766-04			
4.00	2.256-05	1.42E-05	7.945-06	4.315-06	2.005-06	7.06E-07	0.0	0.0	0.0	0.0	0.0	0.0
5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NOAMFLUX=	9.935 09	5.66E 09	4.462 09	2.955 09	2.32E 09	1.45E 09	1.05E 09	7.10E G8	4.61E 08	2.64E 08	3.32E 09	1.862 00
				•			<del></del>					

Tain 39

TRUM IN PERCE	NT DELTA ENER	GY #####	AAA EDHI	POSTIE CHRIT 2	PECINUM 444	# EXPOSURE	NOT X : ENERG	A SPIGOREA 6
AVERAGED	AV ERAGED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	EXPOSURE	TOTAL # OF
TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	RANGES	DURATION	ACCUMULATE
#/CM++2/SEC	4/ C4++2/CAY	PER CENT	>{MEV}	#/CM+42/5EC	#/CM4#2/DAY	#/CH++2/SEC	(HOURS)	PARTICLES
1.105E 06	9. 5488 10	96.471	•100	1.145E 06	9+897E 10	ZERO FLUX	0.0	0.0
3.899E 04	J. 36 9E 09	J. 404	.300	2.152E 05	1.6198 10	1.E0-1.E1	0.0	0.0
1.1586 03	1. COLE 08	0.101	.500	4.042E 04	3.492E 09	1.51-1.52	0.0	0.0
2.5856 02	2. 23 3E 07	0.023	.700	7.593E 03	6.560E 08	1.62-1.63	0.0	0.0
9.455E 00	8- 1595 05	0.001	-900	1.426E 03	1.232E 04	1.E3-1.E4	. 0.0	0.0
0.0	0.0	0.0	1.10	2.679E 02	2.3158 07	1.64-1.85	0.0	0.0
0.0	0.0	0.0	1.30	5.033E 01	4.349E 06	1.E5-1.E6	Q+ Q	0.0
0.0	0 • 0	0.0	1.50	9.455E 00	8.1695 05	1.E6-1.E7	23.800	T. 897E 10
0.0	0.0	0.0	1.75	1.169E 00	1.010E 05 ·	L.E7-OVER	0.0	0-0
			2.00	0.0	0.0			
1.145E GO	9. 697E 10	100.000	2.25	0.0	0.0	TOTAL	23.800	P. 497E 10
	•		2+50	0.0	0.0			
			2-75	0.0	0.0			
			3.00	0.0	0.0			
	AVERAGED TOTAL FLUX #/CM+#2/SEC 1:105E 06 3:899E 04 1:158E 03 2:585E 02 9:455E 00 0:0	AVERAGED AVERAGED TOTAL FLUX #/CM++2/SEC 7/CM++2/EAY  1.105E 06 9.5A82 10 3.899E 04 3.309E 09 1.158E 03 1.001E 06 2.588E 02 2.233E 07 9.455E 00 0.109E 05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	TOTAL FLUX #/CM++2/EAY PER CENT  1-105E 06	AVERAGED AVERAGED SPECTRUM ENERGY TOTAL FLUX TOTAL FLUX #/CM++2/SEC 4/CM++2/CAY PER CENT > 1MEV }  1-105E 06 9-5ABE 10 96.471 -:03 3-889E 04 3-309E 09 3-404 -300 1-159E 03 1-001E 08 0-101 -500 2-589E 02 2-233E 07 0-023 -700 9-455E 00 8-159E 05 0-001 -900 0-0 0-0 0-0 1-10 0-0 0-0 0-0 1-30 0-0 0-0 1-50 0-0 0-0 0-0 1-75 2-00 1-145E 00 9-89TE 10 100-000 2-255 2-75	AVERAGED AVERAGED SPECTRUM EMERGY AVERAGED TOTAL FLUX TOTAL FLUX CEVELS INTEGFLUX #/CM++2/SEC 4/CM++2/CAY PER CENT >(MEV) #/CM+2/SEC  1-105E 06 9-5A8E 10 96-471 -:03 1-145E 06 3-899E 04 J-399E 09 J-404 -300 2-152E 05 1-159E 03 1-C01E 06 0-101 -500 4-042E 04 2-589E 02 2-233E 07 0-023 -700 7-593E 03 9-455E 00 8-159E 05 0-001 -900 1-426E 03 0-0 0-0 0-0 0-0 1-10 2-679C 02 0-0 0-0 0-0 1-50 9-455E 00 0-0 0-0 0-0 1-50 9-455E 00 0-0 0-0 0-0 1-75 1-169E 00 1-145E 00 9-897E 10 100-000 2-25 0-0 1-145E 00 2-75 0-0	AVERAGED AVERAGED SPECTRUM ENERGY AVERAGED AVERAGED TOTAL FLUX #/CM+2/SEC 9/CM+2/CAY PER CENT CMEV F/CM+2/SEC #/CM+2/DAY  1:105E 06 9:5ABE 10 96.471 ::00 1:145E 00 9:897E 10 3:899E 04 J.:309E 09 J.:404 :300 2:152E 05 1:6.39E 10 1:158E 03 1:001E 08 0:101 :500 4:042E 04 3:492E 09 2:585E 02 2:233E 07 0:023 :700 7:593E 03 6:500E 08 9:455E 00 0:109E 05 0:001 :900 1:426E 03 1:232E 08 0:0 0:0 0:0 0:0 1:10 2:079C 02 2:315E 07 0:0 0:0 0:0 0:0 1:30 5:033E 01 4:349E 06 0:0 0:0 0:0 0:0 1:50 9:455E 00 8:109E 05 0:0 0:0 0:0 0:0 1:50 9:455E 00 8:109E 05 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:145E 00 9:697E 10 100:000 2:25 0:0 0:0 2-75 0:0 0:0 0:0	AVERAGED AVERAGED SPECTRUM ENERGY AVERAGED AVERAGED INTENSITY TOTAL FLUX TOTAL FLUX CAMP PER CENT COMP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AVERAGED AVERAGED SPECTRUM ENERGY AVERAGED AVERAGED INTENSITY EXPOSURE TOTAL FLUX TOTAL FLUX FLOX P/CM++2/SEC P/CM++2/GAY PER CENT CHEV) B/CM+2/SEC FLOX RANGES DURATION B/CM+2/SEC P/CM+2/DAY B/CM+2/SEC HOURS;  1-105E 06 9-6ABE 10 96-471 -103 1-145E 06 9-697E 10 2ERO FLUX 0-0 3-899E 04 3-309E 09 3-404 -300 2-152E 05 1-0.09E 10 1-E0-1-E1 0-0 1-159E 03 1-001E 08 0-101 -500 4-042E 04 3-492E 09 1-E1-1-22 0-0 2-588E 02 2-233E 07 0-023 -700 7-593E 03 6-500E 08 1-E2-1-E3 0-0 9-455E 00 8-159E 05 0-001 -900 1-426E 03 1-232E 04 1-E3-1-E4 0-D 0-0 0-0 0-0 0-0 1-30 2-679C 02 2-315E 07 1-E4-1-E5 0-0 0-0 0-0 0-0 0-0 1-30 5-033E 01 4-349E 06 1-E5-1-E6 0-0 0-0 0-0 0-0 0-0 1-550 9-455E 00 8-169E 05 1-E6-1-E7 23-809 0-0 0-0 0-0 0-0 0-0 1-75 1-169E 00 1-010E 05 1-E6-1-E7 23-809 0-0 1-145E 00 9-67E 10 100-000 2-255 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0

0.0

0.0

3.50

•••••• <del>••••••••••</del>

***** SPECTRUM IN FERCENT CELTA ENERGY *****				*** COME	POSITE ORBIT S	PECTRUM ***	+ EXPOSURE INDEX: ENERGY >- 500MEY +			
ENERGY	AVERAGED	AV BRAGED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	EXPOSURE	TOTAL # OF	
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	RANGES	DURATION	ACCUMULATED	
(MEV)	#/C###2/SEC	#/04**2/CAY	PER CENT	>(MEV)	#/CM##2/5EC	#/CH+#2/DAY	#/CH+#2/SEC	(HOURS)	PARTICLES	
.0500	3-44.2E 07	2.574E 12	93.598	•0	3.678E 07	3-1785 12	ZERO FLUX	0.0	0.0	
.500-1.00	1.935E 06	1. 6725 11	5.262	-250	7.532E 06	6.508E 11	1.70-1.21	0.0	0.0	
1.00-1.50	3.2278 05	2. 789E 10	0.876	•500	2.354E 06	2.0348 11	1.61-1.62	0.0	0.0	
1.50-2.00	7.430E 04	6.4208 09	0.202	.750	9.935E 05	8.584E 10	1.62-1.63	0.0	0.0	
2.03-2.50	1.737E 04	1. 500E 09	0.047	1.00	4.193E 05	3.622E 10	1.E3~1.E4	0.0	0.0	
2.50-3.00	3.8835 03	J. 355E 08	0.011	1.25	2.012E 05	1.7388 10	1.54-1.55	0.0	0.0	
3.00-4.00	9.7198 02	8.3985 07	0.003	1.50	9+652E 04	8.340E 09	1.65-1.66	0.0	0.0	
4.00-5.00	1.858E 00	1 . £05E 05	0.000	1.75	4.631E 04	4.902E 09	1.56-1.57	23, 600	2-0348 11	
5.00-QVER	0.0	C.C	0.5	2.00	2.222E 04	1.9205 09	1-E7-0 VER	0.0	0.0	
				2.50	4. 857E 03	4.197E 08				
TOT AL	3.678E 07	3. 178E 12	100-000	3.00	9.738E 02	6.414E D7	TOTAL	23.600	2.034E 11	
			•	3.50	1.059E 02	9-150E 06				
				4.00	1.658E 00	1.605E 05				
				4.50	0.0	0.0				
				5.00	0.0	0.0				

-			•				٠,							•		A H
		***	*****	****	******	*****	******	******	******	****	******	****	******	*****	******	*****
; ·	**	MT JORG	. FLUX 5	TUDY WITH	4 CO4P0311	TE PARTICLI	HNORIYN <b>3</b> 1	ENTS: YET	TES APS.	APG. AP	71 AE4.	AES. FC4	SOLAR MA	AXIMUM 48	UNIFLX	OF 1973 **
	_81_	ELECTR	IN ELUXE	S EXPONE	STARLY DI	ECAYED TO	1970a.O. NI	TH LIFETI	MES: "a Ga	STASSIM	DPCH OSE	PAMERZAR	TU AR EU	OFE TIME	S:	
		MAGNET	IC COOMO	S ESTANI	ANE L CO	MPUTED BY	INVARA DE	1972 WITH	ALLMAG.	MODEL	A: CATN	CSKEENEA	120-TER	POGG A	40 & TIME	1975.5 **
		VEHICL	L . SAS-	0 (200)	PP INCL !	MATIONS O	DEG so PER	1 GP P = 38 86	TER DE AD	OCEPA 3	SSATEM #	4 8/L DD	BIT TARE	* TD7257	959100	- 34.200 BA
		*****	******	******	*** ** ** * *	*******	*******	*****		****		****			****	********
٠,																
		•				***	•••••	*******		****	******	***				
	<del></del> -															
٠.	· · ·,				•											
_																<del></del> ,
٠٠,		•														
					/T AD: D											

¥.							**********			
,							The same and the same of the same	and the second s	.6.1.0	
X - 1. 1	00000 SPE	TRUM IN PERCE	INT CELTA ENER	SY *****	*** CON	POSITE ORBIT S	SPECTRUM ##4.	* FYPOSURE	INDEX: FNFRGY	. > LOOMEY
Ú,			AY BRAGED		ENERGY	AVERAGED	AYERAGED	. INTENSITY		SOTAL #OF
5.4,	RANGES .	TOTAL FLUX	TOTAL PLUX		LEVELS	INTEG. FLUX	INTEG PLUX	RANGES	DURATION	ACCUMULATED
`	CHEXI.	A/CHARRASTC.	AL DERECTAY	A R-CENT	· STHEXT-			B/CH#82/SEC		
je.	. 100 200	.A. 297E 45.	4.44.4							<u>.</u>
	-500500	2.236R 04	. 4. 66.3K1Q	P5.457	.100	5.630E 05	4.865E 10	ZERO FLUX		
				3-972	.300	1.1462 06	9.9028 09	1.20-1.61	0.0	0.0
					•500 -	2.333E 04	2.0188 09.	1.61+1.62		<b>4.0</b>
	1-10-1-50	1.886E 02	1.6292 07	0.033	.700	4.746E 03	4.102E 08	1.62-1.63	0.0	0.0
	2.00-2.50	0.0	7-0475-05		000		8-351E-02			
٠ . و	2.50-3.00	0.0	0.0	0+0 	1-10	1.967E 02	1.7008 07	1.64-1.65	0.0	0.0
-						- 4.005E 01	3.4608 06	. 1.E5-1.E6	- 23, 800	4-465E-10-
ć	3-80-3-50 3-50-07EE	0.0	0.0	0.0	1.50	0.1515 00	7.043E 05	1.F6-1.E7	0.0	0.0
	AARONOVER	_2442	_ 10 & 10	0.0	. 1.75	1-114E 00	9.629E 04	1.E7~QVER		- 4.0
1 .	TOTAL	S-630F .05	A. MSE 10	100-000	2.00	0.0	0.0			
V	TOTAL			100.000	2025	. 0.0		IDTAL	23,000	4+86E-10-
έ., . ·	and the second				2.50	0.0	0.0			
-					2.75	0.0	0.0	• • • • • • • • • • • • • • • • • • • •		
ři.	a degree of				3.00	0.0	0.0			
<u> </u>		CONTRACTOR OF THE PARTY AND ADDRESS.			3.50	0.0	0.0			

. ORBITAL FLUX STUDY WITH CEMPOSITE PARTICLE ENVIRONMENTS: VETTES APS. APS. APS. APS. FOR SOLAR MAXIMUM ... UNIFL X OF 1973 ... . ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. O WITH LIFETIMES: E.G. STASSINOPCULOSEP. VERZARIU .. CUTOFF TIMES: ** MAGNETIC COORDINATES B AND L COMPUTED BY INVARA OF 1972 WITH ALLMAG. MODEL 4: CAINGSWEENEY 120-TERM POGO 8/69 * TIME# 1975-5 ** ** VEHICLE : \$45-0 (290) ** INCLINATION* ODEG ** PERIGEE*35663KM ** APOGEE* 35867KM ** E/L DRBIT TAPE: T07257 ** PERIOD* 24.000 ** ELECTRONS

***** SPE	CTRUM IN PERCE	NT CELTA ENER	GY *****	*** CON	POSITE OFBIT S	PECTRUM ***	• EXPOSURE	INDEX: ENER GY	>.500MEV .
ENERGY	AVERAGED	AV ER AGED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	FXPDSURE	TOTAL # OF
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	RANGES	DURATEON	ACCUMULATED
(MEV)	#/CH##2/SEC	4/CH++2/CAY	PER CENT	>(MEA)	#/CM##2/5EC	#/CM++2/DAY	#/C###2/SEC	(HOURS)	PARTICLES
.0500	3.4028 07	2. 540E 12	94.546	•0	3.598E 07	3.109E 12	ZERO FLUX	0.0	0.0 .
.500-1.00	1.662E 06	1.436E 11	4.618	.250	6.604E 06	5.706E 11	1.E0-1.E1	0.0	0.0
1.00-1.50	2.357E 05	2. C37E 10	0.655	-500	1.963E 06	1.696E 11	1.E1-1.F2	0.0	0.0
1.50-2.00	5.100E 04	4.407E 09	0.142	.750	7.683E 05	6.639E 10	1.52-1.53	0.0	0.0
2.00-2.50	1-110E 04	9.5905 08	0.031	1.00	3.008E 05	2.599E 10	1.E3-1.E4	0.0 .	0.0
2.50-3.00	2.373E 03	2. 050€ 08	0.007	1.25	1.399E 05	1.209E 10	1.E4-1.F5	0.0	0.0
3.00-4.00	6-132E 02	5.498E 07	0.002	1.50	6-5098 04	5.624F 09	1.E5-1.E6	0.0	0.0
4.00-5.00	0.0	0 • G	0.0	1.75	3.0285 04	2.616E 09	1.E6-1.E7	23.800	1.6962 11
5-90-0VER	0.0	0.0	0.0	2.00	1.409E 04	1.217E 09	. 1.E7-DVER	. 0. 0	. 0.0
	•			2.50	2.986E 03	2.580E 08			,
TOTAL	3.598E 07	3. 10 9E 12	100.000	3.00	6.132E 02	5.298E 07	TOTAL	23.800 .	. 1.6965-11 .
				3.50	5.784E 01	4.997E 06			<del></del>
				4.00	0.0	0.0			
				4.50	0.0	0.0			
				5.00	0.0	0.0			

Takie 4

***** SPE(	CTRUM IN PERCE	AL GULLA ENEM	UI	-++ COM	POSITE ORBIT S	MECIPUP TTT	# EXPOSURE 1	NUE X I ENER GY	>= f d ONEA 'e"
ENERGY	AVERAGED	AVERAGED	SPECTRUM	ENFRGY	AVERAGED	AVFRAGED	INTENSITY	EXPOSURE	TOTAL # OF .
RANGE S	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	RANGES	DURATION	ACCUMUL ATED
(MEY)	#/CH+#2/SEC	#/ C4 ** 2/DAY	PER CENT	>(MEV)	#/CM*#2/SEC	#\CM##S\DAY	#/CM+#2/SEC	(HOURS)	PARTICLES -
• 100-• 500	6.449E 05	5. 572E 10	95-985	-100	6.719E 05	5.805E 10	ZERO FLUX -	0.0	. 0.0
.500900	2.587E 04	2.2362 09	3.851	.303	1.346E 05	1+163E 10	1.60-1.61	0.0	0.0
.900-1-10	8.648E 02	7.472E 07	0.129	-500	2.696E 04	2.329E 09	1.61-1.62	0.0	0.0
1.10-1.50	2.079E 02	1.796E 07	0 • 0 31	.700	5.399E 03	4.665E 08	1.E2-1.E3	0.0	0.0
1.50-7.00	8. 489E 00	7. 508E 05	0.001	.900	1.081F 03	9.343E 07	1.63-1.64	0.0	0.0
2.00-2.50	0.0	0 • C	0.0	1.10	2.1668 02	1.871E 07	1.F4-1.E5	0.0	0.0
2.50-3.00	0.0	0 • C	0 • Q	1-30	4.338E 01	3.748E 06	1-65-1-64	23.800	5.805E 10-
3.00-3.50	0.0	0.0	0.0	1.50	8.689E 00	7.508E 05	1.56-1.E7	0.0	0.0
3.50-OVER	0.0	0 • C	0.0	1.75	1-164E 00	1.006E 05	1 . F 7-0 VEH	0.0	17.
TOTAL	6.719E 05	5. 605E 10	100.000	2.00 2.25	0.0 0.0	0•0 0•0	TOTAL	23-600	5.805E 10 -
				2.50	0.0	0.0			
				2.75	0.0	0.0			
				3.00	0.0	0.0			
				3.50	0.0	0.0			

Take G byli

***** SPE	ICTRUM IN PERCI	INT CELTA ENER	GY *****	*** CON1	POSITE CREIT 1	PECTRUM +++	* EXPOSURE I	NOC XIFNERGY	>.500MFV 0
ENER GY	AVERAGED	AV BRAGED	SPE CTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	EXPOSURE	TOTAL . OF
RANGES	TOTAL FLUX	TOTAL FLUX	•	LEVELS	INTEG.FLUX	INTEG.FLUX	PANGES	PURATION	ACCUMULATED
(MEA)	#/CM+2/SEC	0/CH005/DAY	PER CENT	>(MEV)	0/CH002/SEC	WACHES S.DAA	#/CH++2/5FC	(HOURS)	PARTICLES
.9 500	3.4500 07	2.5006 12	94.293	•0	3.667F 07	3.1690 12	4ERO FLUX	. 0.0	9.0
-840-1-00	1.7625 04	1. 1226 11	4.808	.250	6.095E 96	5.657F 11	1-20-1-61	9.0	0.0
1.00-1.00	2. 5546 65	2. 23 30 1 0	0.705	. 365	2.0938 04	1.8080 11	1.51-1.52	0.0	0.0 .
1.50-2.00	S.ABTE 04	4. 890E 09	0.154	.780	8.322E 05	7.1902 10	1.72-1.63	9.0	0.0
2.40-2.50	1.2448 04	1.6798 09	0.034	1.00	3.309E 05	2.859E 10	1.53-1.64	0.0	0.0
5.53-3.00	2. 691E GJ	2. 32 SE 08	<b>~ 0. 007</b>	1.25	1.548E 05	1.338E 10	1-64-1-65	0.0	0.0
3.00-4.00	6. 939E 02	5. 99 SE 07	0.002	1.50	7.246E 04	6.261E 09	1.65-1.66	0.0	0.0
4.80-5.00	8.0	0.0	0.0	1.75	3.391€ 04	2.9308 09	1.86-1.87	23.400	1.8085 11
5.00-0VER	0.0	0.6	0.0	2.00	1.587E 04 3.388E 03	1.371E 09 2.925E 08	1.F7-0VER	0.0	0.0
TOTAL	3-447E 47	3.1492 12	100.000	3.00	4. + 39E 02	8.995E 07	TOTAL	53.000	1.BOBE 11 -
98	, a			3,50	4.491E 01	5.781E 06			
•	•			4.00	0.0	0.0	•		•
•				4.50	0.0	0.0			
4				S- 00	0.0	0.0			**

SE URGITAL FLUA STUDY STINDY STIND COMPUSITE PARTICLE ENVIRONMENTS: VETTES APS. APS. APS. APS. FOR SOLAR MARIMUM SEES UNIFER UR 1973 SE . BUSCIACH FLUXI'S EXPONENTIALLY SECRYED TO 1970. Q WITH LIFFTIMES. COMPLIANSEMEDICULGUEP-VERZARIU OF CUTORE TIMES: TO MACHETIC COORDINATES D AND L COMPUTED BY INVARA OF 1972 BITH ALLMAG. MIDEL AT CATHESDEPREY 120-TERM DOGO PLOY & TIME - 1975-5 BE . The section of the state of t 00,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

*********	LUB	[ MERGY	PRCT (MAS	*********
***********				

***** \$PE	CTRUM IN PEACE	NT CELTA CHER	CA	SSS COM	TIMAG STIZES	#* CTHUM ***	• Exhasure t	NNC X : E NER GY	>-100MEA +
ENEMEY	AVEHAGED	AVFRAGED	SPLCTPUM	ENERGY	AVERAGET	AV1846FF	INTENSITY	EFPOSURE	TOTAL . DF
4446£\$	TOTAL PAUR	TOTAL FLUX		Ltveis	INTEGOF CUR	THIE GOPLUS	PANGES	DURATION	CSTAJUMUZDA
(MEA!	41C444517CC	4/ (HP+2/EAY	PER CONT	>(ME / 1	41, 44512FC	<b>GACHERSADVA</b>	0/C#902/5EC	SHOURS !	PARTICLES
. 100 500	## 110± 05	7.0075 10	96.845	•10c	6, 1755 05	F.235E 10	ZERO PLUX	4.700	0.0
. 300 960	20 304 U4	2. 2042 34	3.053	. 300	1.4838 05	1.2816 10	1-60-1-61	0.86.0	1-165F 04
. +03-1-10	7. 620c 02	6. (t St 07	0.084	. 500	3.0036 60	201834 35	1021-1062	0. 900	1.2121 05
1-10-1-10	1.51 4 04	1. 21 34 07	0.018	.700	4. TAGE 03	4.0497 28	1012-1053	1.000	1.3016 06
1-50-7-00	5.05 PE 00	4. 12 5. 05	0.001	• 403	4.544E 07	7.4750 07	1 . 2 3-1 . 2 4	1.100	1.5358 07
2.00-2.90	0.0	5 · C	0.0	1.10	1.574E 02	1.3664 07	1.54-1.65	1. 300	1.8398 08
2.50-J.00	0. 0	0.0	0.0	1 • Ji	20 30 St. 01	2. t. 2.3E 0 e	1.65-1.66	7.150	9.C17E 09
3480-1.30	0.0	3.6	C. D	1.50	> 4 6 9L UD	4.7255 05	toto-lot?	6.850	6.314E 10
J. SO-DVER	. 0.0	0.6	0.0	1.75	4. 6617 -01	4.0278 04	1 of 7-Q VER	0.0	0.0
				2.00	0.0	0.0			
TOTAL	8. 375k 05	7.2366 10	100.000	2.25	0.0	0.0	TOTAL	23.800	7.2368 10
				2.50	0.0	0.0			
				₹47₺	0.0	C-0			
				3.00	C • 0	0.0			
				3.50	0.0	0.0			

This is a property of the particle environments: Vettes aps. Aps. Aps. Aps. For solar maximum sees unifice of the section fluxes exponentially decayed to 1970. Unificatives: e.g. stassinopoulosep. Verzariu es cutopp times: es magnetic courdinates a and L computed by invara of 1972 bith allmag, model 4: Caingsweeney 120-term pogg ap. 400 es times 1975. See Venicle: SAS-D (110) es inclinations 29Deg es periode 25503KM es Aplocations of the 1975 courses of the periode 24.000 es the

***** SPE	CTRUM IN PERCE	INT CELTA ENER	GY +****	*** COM	POSITE GROIT S	PECTRUM ***	* EXPOSURE	index: ener 67	>.500MEV +
ENERGY	AVERAGED	AV ER AGED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	EXPOSURE	TOTAL # OF
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	RANGES	DURATION	ACCUMULATED
(MEA)	8/CH++2/SEC	P/01++2/DAY	PER CENT	>(MEA)	#/CH+#2/SEC	#/CH++2/DAY	#/CH++2/SEC		PARTICLES
. • 9 500	2.877E 07	2.406E 12	95.678	•0	3.007E 07	2.598E 12	ZERO FLUX	3.600	0.0
•500-1•00	1.0578 06	9. 136E 10	3. 51 6	-250	4.4369 06	3.8335 11	1.E0-1.E1	0. 350	4.97EE 03
. 1.09-1.50	1.847E 05	1. 8965 10	0.614	<b>4500</b>	1.300E 96	1-1238 11 .	1.21-1.22	0.350	4.793E 04
1.50-2.00	4.393E 04	3.796E 09	0.146	•750	5.584E 05	4.824E 10	1.E2-1.E3	0.800	1.316E 06
2-00-2-50	1.076E 04	9. 296E 08	0.036	1.00	2.425E 05	2.095E 10 .	1.63-1.64	1.050	1.539E 07
2.50-3.00	2.404E 03	2. 1465 08	0.008	1.25	1.183E 05	1.0228 10	1.64-1.65	1.550	2.294E 08
3-00-4-00	. 6.008E 02	5.191E 07	20000	. 1.50	5.778E 04	4-992E 09	1.E5-1.E6	3, 400	7.638E 09
4-99-5-00	1.767E 00	1. 5268 05	0.000	1.75	2.827E 04	2.442E 09	1.E6-1.E7	12,500	1.042E 11
5.00-DYER	. 0.0	0.4	0.0	. 2.00	1.385E 04	1-196E 09		0.0	0.0
				2.50	3.087E 03	2.667E 08		***	
TOTAL	3.007E_L/	2-5985 12	100-000	. 3.00	6.026E 02		TOTAL	23, 800	- 1-123E 11
				3.50	7.439E 01	6-428E 06			***************************************
•• ••				. 4.00	1.767E 00	1-526E 05			
• • • • • • • • • • • • • • • • • • • •	•	<b>-</b>		4.50	0.0	0.0	***		
				E- 00	0.0	0.0			

Jan. 6 47

14.

***** SPE	CTRUM IN PERCE	INT CELTA ENER	GY *****	*** COM	POSITE GREIT S	PECTRUM ***	• "XPOSURC	NGCX:NF7G1	>+100meA +
ENFRGY	AVERAGED	AV ERAGED	SPECTRUM	ENFRGY	AVERAGED	AVERAGED	INTENSITY	EXPOSUR:	TOTAL # IDE
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.#LUX	PANGES	CUPITION	ACCUMULATED
(MEA )	#/CH+#2/SEC	#/ CH * # 2/ CAY	PER CENT	>(MEV)	#/CM##2/SEC	WACH##SADWA	#/CH##2/5FC	(HOUE 5.)	PARTICLES
. 100 500	4.893E 05	4. 2275 10	96.420	.100	5+074E 05	4.384E 10	ZERO FLUX	4.450	0.0
.500900	1.750E 04	1.5125 09	3.448	• 30C	9.572F 04	8.270F C9	1.F0-1.F1	0,850	1.2647 04
.900-1.10	5,388E 02	4. 6552 07	0.106	•500	1.8175 04	1.5657 09	1071-1012	2, 950	1.3337 05
1.10-1.50	1.252E 02	1. (828 07	0.025	•700	3.472F 03	3.0005 08	1.02-1.63	1.050	1-458" 06
1.50-2.00	5.090E 00	4. 198E 05	0.001	•900	6.6915 02	5.781E 07	1.673-1.64	1-100	1,5231 07
2.00-2.50	0.0	0 • C	0.0	1.10	1.3038 02	1.126F 07	1.74-1.55	2.350	5.141 04
2.50-3.00	0.0	0.0	0.0	1.30	2.5665 01	2.217E 06	10/5-1016	7.150	9.615" 00
3.00-3.50	Q. 0	0 . C	0.0	1.50	5.040E 00	4.3982 05	1.FC-1.E7	5.40C	3,3*9* 13
3.50-0VER	0.0	0.0	0.0	1.75	4.7628-01	4-1150 04	1 of 7-0vEP	2.0	0.0
				2.00	0.0	0.0			
TOTAL	5.074E 05	4. 384E 10	100.000	d • 25	0.0	0.0	TOTAL	23,800	4.3845 10
•				2.50	0.0	0.0			
				2.75	0.0	0.0			
				3.00	0.0	0.0			
				3.50	0.0	0.0			•,

-

eeeee SPE	CTRUM IN PERCE	INT CELTA ENER	GY *****	*** COM	POSITE CRBIT S	PECTRUM ###	A FXPOSURE I	INDE XII NEGGY	>+5004"V +
ENERGY	AVERAGED	AV ERAGED	SPECTPUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	FXPOSURT	TOTAL # OF
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	PANGES	PURKTION	ACCUMUL ATE
(HEY)	#/C###2/SEC	#/ 04+#2/DAY	PER CENT	>(MEV)	#/CM##2/SFC	*/CM++2/CAY	#/CM##2/55C	(HOUPS)	PARTICLES
.0 ~.500	2.865E 07	2. 4758 12	96.141	•0	2.9805 07	2.574E 12	ZERO FLUX	4.050	0.C
500-1-00	9.547E 05	8. 2508 10	3.205	.250	4.084E 06	3.5296 11	1-50-1-51	0.400	5.6917 03
1 - 00 - 1 - 50	1.504E 05	1. 20 OE 10	0.505	.500	1.150E 06	9.9352 10	1.51-1.52	0.350	5-4915 04
1.50-2.00	3.431E 04	2. 565E 05	0.115	.750	4.715E 05	4.074E 10	1.52-1.53	9.809	1.3735 06
2.00-2.5C	7.987E 03	6. SOIE 08	0.027	1.00	1.949E 05	1.6848 10	1.F3-1.E4	1.050	1.525= 07
2.50-3.00	1.785E 03	1. 54 25 06	0.006	1.25	9.3116 04	8.0458 09	1.64-1.65	1.550	2.149" 08
3.00-4.00	4.407E 02	3. 807E 07	0.001	1,50	4.453E 04	3.847E 09	1.E5-1.E6	3,500	5.750F 09
4.00-5.00	8.2235-01	7. 105E 04	0.000	1.75	2.131E 04	1.842 09	1.00-1.57	11.800	9.0372 10
5.00-DYER	0.0	0 • C	0.0	2.00	1.0216 04	8.8248 08	1.E7-OVEF	0.0	0.0
				2 • 50	2.226E 03	1.923F 08			r
TOTAL	2.980E G7	2 . 57 4E 12	100.000	3.00	4.4158 02	3.8158 07	TOTAL	23,400	9.935€ 10
				3.50	4.9078 01	4.2415 06			
				4.00	8.223E-01	7.105E 04			
				4.50	0.0	0.0	•		•
-			-	5.00	0.0	0.0			

Tacie -

married throng officers were

								········ - <del>-</del>	Y.>+100MEV +
ENERGY	AVERAGED	AV ER A GED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	EXPOSURT	TOTAL # CF
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	PANGES	DURATION	ACCUMULATED
(MEV)	#/CM++2/SEC	#/ CH ** 2/ CAY	PER CENT	>(%44)	#/CM**2/SEC	#/CH##2/DAY	#/CH++2/5EC	(HDURS)	PARTICLES
. 100 500	. 4.727E 05	4. C845 10	96.364	-100	4.906E 05	4.238E 10	ZERD FLUX	4.150	<b>3.0</b>
-500900	1.717E G4	1.484E 09	3.500	.303	9. 326E 04	8.058E 09	1.FC-1.E1	1.000	1.5443
.900-1-10	5.364E 02	4. (352 07	0.109	.500	1.7845 04	1.541E 09	1.51-1.72	1.000	1.3975 05.
1-10-1-50	1.2565 02	1. (57E 07	0.026	•700	3.436E 03	2.9695 08	1.42-1.63	1.150	1.552F 06
1.60-2.00	5.195£ 00	4. 48 BE 05	0.001	• 300	6.674F 02	5.766E 07	1.6.3-1.64	1.200	1-671: 07
2.00-2.50	0.0	0.0	0.0	1.10	1.3100 02	1.131E 07	1.54-1.55	2,550	5.6315 08
2.50-3.00	0.0	0.0	0.0	1.30	2.5598 01	2.2468 06	1.5-1.56	7.450	1.050€ 10
3.00-3.50	0.0	0.0	0.0	1.50	5.195E 00	4.4888 05	1.46-1.67	5.200	3.1317 10
PAYO-OF .E	0.0	0.6	0.0	1.75	4.9140-01	4.245E 04	1-E 7-QVER	0.0	0.0
				2,00	0.0	0.0			•
TOTAL	4.906E 05	4. 2386 10	100-000	2.25	0.0	0.0	TOTAL	23,600	4.2385 10.
	•			2.50	0.0	0.0			
				2.75	0.0	0.0		•	
				J. 00	0.0	0.0			

0.0

2 1/2 50

### PAGNETIC COURDINATES B AND L COMPUTED BY INVARA OF 1972 WITH ALLMAG, MODEL A: CAINGSHETNEY 120-TIMM DUGG M/69 & TIME 1975 BAP VETICLE: \$45 OF 1973 BAP VETICLE : \$45 OF 19

***** 5FE	CTRUM IN PERCE	NT CELTA ENER	GY *****	*** CDM	POSITE DRBIT S	PECTRUM ***	• EXPOSURT 1	INCEX:ENERGY	>-500MEV +
ENER GV	AVERAGED	AV BRAGED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	+ XPOSUPF	TOTAL # DF
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	FANGES	CUPATION	ACCUMULATED
(MEV)	#/C###2/SEC	#/CH+#2/EAY	PER CENT	>(MEV)	#/CM##2/SEC	#/CH+#2/DAY	#/C###2/SEC	(HOURS)	PARTICLES
.0500	3.188E 07	2.7551 12	96.475	•0	3.305E 07	2.855F 12	ZEPO FLUX	3.000	0.0
.500-1.CO	9.699E 05	8 - 23 OE 10	2.935	• 250	4.165E 06	3.599F 11	1.70-1.51	0,500	7.4495 03
1.00-1.50	1.508E 05	1. 20 38 10	0.456	•50C	1.165E 06	1.007E 11	1-61-1-22	0.400	5.7125 04
1.50-2.00	3.423E 04	2.558E 09	0.104	•750	4.750E 05	4-104E 10	1-52-1-53	0.950	1.5305 06
2.00-2.50	7.920E 03	6. E4_E 0E	0.024	1.00	1.952E 05	1.686E 10	1.E3-1.E4	1.200	1.685E 07
2.50-3.00	1.763E 03	1. 52.30 0 6	0.005	1.25	9.299E 04	8.034E 09	1.E 4-1.E5	1.750	2.5458 05
3.00-4.00	4.362E 02	3.769E 07	0.001	1.50	4+435E 04	3.832E 09	1.65-1.66	3. 950	9.162E 09
4.00-5.00	7-642E-01	6.6028 04	0.000	1.75	2.118E 04	1.8302 09	1.56-1.87	12.050	9.1232 10
5.00-0VER	0.0	0 • C	0.0	2.00	1.012E 04	8.744E 08	1.E7-0 VER	. 0.0	0.0
				2.50	2.200E 03	1.901E 08			
TOTAL	3.305E 07	24 6558, 12	100.000	3.00	4.370E 02	3.776£ 07	TOTAL	23.800	1.007E 11.
				3.50	4.800E 01	4-147E 06			
				4.00	74642E-01	6.6C2E 04			
				4.50	0.0	0.0			
	•			5.00	0.0	0.0			J .

. ORBITAL FLUX STUDY WITH COMPOSITE PARTICLE ENVIRONMENTS: VETTES APS. APS. APS. APS. AES. FOR SOLAR MAXIMUM ... UNIFLX OF 1973 . . ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. O WITH LIFETIMES: E.G. STASSINGPOULDSEP. VERZAHIU . CUTOFF TIMES: SO MAGNETIC COORDINATES B AND L COMPUTED BY INVARA OF 1972 WITH ALLMAG. MODEL 4: CAINESWEENEY 120-TERM POGO 8/69 # TIME# 1975,5 ** ** VEHICLE : SAS-D (110) ** INCLINATION= 45DEG ** PERIGEE=35863KM ** APOGEE= 35863KM ** B/L DRBIT TAPE TD7512 ** PERIOD= 24.000 ** LOW ENERGY PROTONS ********

				ENERGY	AVERAGED	AVERAGED	INTENSITY	FXPOSURE	TOTAL # OF
ENERGY	av eraged	AV ER AGED	SPECTRUM		INTEG.FLUX	INTEG.FLUX	RANGES	DURATION	ACCUMULATE
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS			#/CH##2/5EC	(HOURS )	PARTICLES
(MEA)	#/CM++2/SEC	#/CH++2/CAY	PER CENT	>(MEY)	#/CM++2/SEC	#/CM##2/DAY	F/CH+42/3EC	(HOURS)	
100500	5,200E 05	4.4935 10	96.679	•100	5.368E 05	4.638E 10	ZERO FLUX	7.250	0.0
500900	1.622E 04	1. 401E 09	3.021	•300	9.455E 04	8-169E 09	1.50-1.51	1.700	3.530E 04
	4.406E 02	3. 806E C7	0.082	.500	1.675E 04	1.448E 09	1-21-1-22	1.750	2.653E 0
100-1-10	9,504E 01	6. 21 2E 06	0.018	•700	2.991E 03	2.584E 08	1.62-1.63	1.753	4.459E 0
.10-1.50		2. 93 05 05	0.001	•800	5.390E 02	4.657E 07	1.63-1.64	1.750	2.405E 01
-50-2-00	3.392E 00		0.0	1.10	9.8438 01	8.505E 06	1.E4-1.E5	2.050	3.201E 0
.00-2.50	0.0	0.0	0.0	1.30	1.824E 01	1.576E 06	1-25-1-26	2.850	4.401E 0
50-3.00	0.0	0.0	G. G	1.50	3.3928 00	2.9305 05	1.60-1.67	4.300	4.163E 10
.00-3.50	0.0	0. 4		1.75	3.993E-01	2.594E 04	1.E7-0 VER	0.0	6.0
.50-0VER .	- 0•Q	0.4	0.0	2.00	0.0	0.0			
				2.25	0.0	0.0	TOTAL	23.800	4.638E 1
TOTAL	5. J68E 05	4. C38E 19	100-000	2450	0.0	0.0			
				2475	0.0	0.0			
	,					0.0			
				3.00	0.0				
				3.50	0, 0	0.0			

36	PECTRUM IN PERCE	INT CELTA ENER	GY *****	*** CDM	POSITE ORBIT S	PECTRUM ***	+ EXPOSURE INDEX:ENERGY >- 500MEY		
ENERGY	AVERAGED	AV ERAGED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	EXPOSURE	TOTAL # OF
RANGES	XULT LATET	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG+FLUX	RANGES	DURATION	ACCUMUL ATED
(I:EV)	#/CM+#2/SEC	#/ 01++2/DAY	PER CENT	>(MEV)	#/CH++2/SEC	#/C###2/DAY	#/CH++2/SEC	(HOURS)	PARTICLES
.0500	2.166E 07	1. 6715 12	96.449	•0	2.246E 07	1.9408 12	ZERO FLUX	6.800	0.0
-500-1-00	6.470E 05	5 . 59 OE 10	2.881	.250	2.758E 06	2.383E 11	1.60-1.61	0.200	2.755E 03
1.00-1.50	1.144E 05	9. 6875 05	0.510	-500	7.975E 05	6.890E 10	1.61-1.62	0.150	2.453E 04
1-50-2-00		2. 364E 05	0.122	.750	3.442E Q5	2.9742 10	1.E2-1.E3	1.100	2.656E 06
2-00-2-50		5. 82 85 0 8	0.030	1.00	1.505E 05	1.300E 10	1.63-1.64	2. 550	3-464E 07
£-80-3.00	1.563E 03	1. 3502 08	0.007	1.25	7,358E 04	6.357E 09	1.64-1.65	2.500	3.454E CB
3.00-4.00	3.765E 02	3.253E 07	0.002	1.50	3.604E 04	3-114E 09	1.65-1.66	3. 350	5.3718 09
4-04-5-00		1. CO 2E 05	0.000	1.75	1.768E 04	1-528E 09	1.26-1.27	7.150	6.315E 10
5.00-0VE	0.0	0.6	0.0	2.00	8.686E 03	7.504E 08	1.E 7-0 VER	0.0	0.0
				2.50	1.941E U3	1-6772 08			
TOTAL	2.246E 07	1. \$40E 12	100.000	3.00	3.777E 02	3.2638 07	TOTAL	23.800	6.890E 10
				3.50	4.713E 01	4.072E 06			
	ų.			4.00	1.160E OC	1.0022 05			
				4,50	0.0	0.0			
				5.00	0.0	0.0			

********** LOW ENERGY PROTONS *********

***** SPE	TRUM IN PERCE	NT CELTA ENER	GY *****	*** CDM	POSITE ORBIT S	PECTRUM ***	* EXPOSURE	NDE X : ENERGY	/ >-1COMEY +
ENERGY	AVERAGED	AV ER AGED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENS ITY	EXPOSURE	TOTAL # OF
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG. FL.	INTEG.FL UK	PANGE S	CUPATION	ACCUMULATED
(MEV)	#/CH##2/SEC	#/ CH##2/CAY	HER CENT	>1MEV)	#ZCM##EZ/SEC	4/CH4#2/DAY	#/CM##2/SEC	(HOURS)	PARTICLES
. 100~. 500	3.081E 05	2. 6625 10	96-457	.:00	3-194E 05	2.760E 10	ZEFO FLUX	7.400	0.0
.503900	1.091E 04	9. 4225 08	3.414	.30)	5.495E 04	180E 09	1.50-1.51	1.000	2.5175 04
. 900-1-10	3.330E 02	2. ETTE 07	0-104	.500	1.132E 04	9.779E 08	1.C1-1.E2.	2.450	3.0158 05
1.10-1.50	7.738E 01	6. 685E 06	0-024	.700	2.153E 0J	1.860E 08	1.F2-1.E3	1.900	2.5745 06
1.50-2.00	3.151E 00	2. 72 2E 05	0.001	.900	4.136E 02	3.573E 07	. 1.63-1.64	1.800	2.45CT 07
2.00-2.50	0.0	0.0	0.0	1.10	8.053E 01	6.557E 06	1.E4-1.E5	2,300	3.266E 08
2.50~3.00	0.0	0.0	0.0	1.30	1.591E 01	1.375E 06	1+E5-1.E6	3.45¢	5.497E 09
3.00-3.50	0.0	0. C	0.0	1.50	3.151E 00	2.722E 05	1.56-1.57	3,500	2.1754 10
J.SC-DVER	0.0	0.0	0.0	1.75	2.975E-01	2.570E 04	1-L7-0VER		0.0
				2.00	0.0	0.0			
TOTAL	3.194E 05	2,760E 10	100-000	2.25	0.0	0.0	TOTAL .	23.80C	2.760E 10 .
				2.50	0.0	0.0			
				2.75	0.0	0.0			
				3.00	0.0	0.0			
				3.50	0.0	0.0			

48 ORBITAL FLUX STUDY WITH COMPOSITE PARTICLE ENVIRONMENTS: VETTES APS. APS. APT; AES. FOR SOLAF MAXIMUM *** UNIFLX OF 1973 ** . ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. O WITH LIFETIMES: E.G. STASSINOPOULDSCP. VERZARIU . CUTOFF TIMES: ** MAGNETIC COORDINATES 3 AND L COMPUTED BY INVARA OF 1972 BITH ALLMAG, MODEL 4: CAINESBEENTY 120-TERM POGO 8/6+ 4 TIMT = 1475,5 4. ** VEHICLE : SAS-D (290) ** INCLINATION= ASDEG ** PERIGEE=35863KM ** APDGEE= 35863KM ** H/L DRBIT TAPE: T07257 ** PERICE 24.000 ** ELECTRONS

44444 SPE	CTRUM, IN PERCE	INT CELTA ENER	GY *****	*** CCM	POSITE ORBIT S	PECTRUM ***	* EXPOSUPE 1	INDEXIENTRG	r >+5004EV +
ENERGY	AVERAGED	AV ER AGED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	EXPOSUR_	TOTAL # CF
RANGES	TOTAL FLUX	TOTAL FLUX		LZVELS	INTEG.FLUX	INTEG .FLUX	RANGES	CUPITION	ACCUMULATED
(MEV)	#/CH++2/5EC	#/ CH##2/CAY	PER CENT	>(MEV)	#/CH*#2/SEC	#/CM##2/DAY	#/CM##2/SEC	(HOUFS)	PARTICLES
.0500	2. 180E 07	1.6635 12	96.393	•0	2.249E 07	1.944E 12	ZEKO FLUX	0.900	0.0
.500-1.00	5.804E 05	5.014E 10	<b>≨</b> ∙580	.250	2.5326 06	2.188E 11	1-50-1-61	0.200	2.1475 03
1.00-1.50	9-190E 04	7. S40E 09	0-409	•500	6.996E 05	6.0445 10	1.51-1.52	- 0.200	3.0504 04
1-50-2-00	2-103E 04	1. 61 7E 05	0.093	•750	2.873E 05	2.482E 10	1.F2-1.E3	2.420	6.5345 05
2-00-2-50	4.919E 03	4. 2505 08	0.022	1.00	1.192E C5	1.0305 10	1.53-1.54	2.950	3.7981 07
2.5~3.00	1.102E 03	9,521£ 07	0.005	1.25	5.703E 04	4.927E 09	1-F4-1-F5	2.850	4.016 28
3.00-4.00	2.709E 02	2. 341E 07	0.001	1.50	2.732E 04	2.361E 09	1.E5-1.E6	3.550	5.7345 09
4.00-5.00	5.3646-01	4. 6345 04	0.000	1.75	1.310E 04	1.132" 09	1.F6-1.E7	be 75 Q	5.4275 10
5+00-0 VER	0.0	0.6	0.0	2.00	6.292E 03	5.4375 08	1 .E 7-0 VER	0.0	0.0.
				2.50	1.373E 03	1.187E 08			
TOTAL	2+249E 07	1. 944E 12	100.000	3.0€	2.715E 02	2.346E 07	TOTAL	23.800	6-0448 10
				3.50	3.040E 01	2.627E 06			
				4.00	5.364E-01	4.6345 04			
				4.50	0.0	0.0			•
				5.00	0.0	0.0			<b></b> . ,

TO ORBITAL FLUX STUDY WITH COMPOSITE PARTICLE ENVIRONMENTS: VETTES APS. APS. APS. AFS. FOR SOLAR MAXIMUM **** UNIFLX OF 1973 4* ** ELECTRON PLUXES EXPONENTIALLY DECAYED TO 1970. O WITH LIPLTIMES: E.G. STASSINOPOULOSEP. VERZARIU . CUTOFF TIMES: SO MAGNETIC COORDINATES & AND L COMPUTED BY INVARA OF 1972 BITH ALLMAG. MODEL 4: CAINGSWEENEY 120-TERM POGO 8/69 . TIME 1975.5 .4 ** VEHICLE : \$45-0 (310) ** INCLINATION# 45DEG ** PERIGEN =35863KM ** APOGEE 35863KM ** B/L OPBIT TAPE: TO7407 ** DF0 100 24-000 ** ******* LUW ENERGY PROTONS *********

***** SPEC	ETRUM IN PERCE	NT CELTA ENER	GY +****	*** CCM	POSITE ORBIT S	PECTRUM ***	* FXPOSURE 1	NDEX LENER GY	>+1COMEA +
ENERGY	AVERAGED	AV ERAGED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	EXPOSURE	TOTAL # 0*
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	PANGES	PUPATION	ACCUMULATED
(KEA)	#/CH##2/5&C	#/ CH++2/CAY	PER CENT	>(MEA)	#/CM++2/SEG	#/CH##2/DAY	#/CM**2/5EC	(HOURS)	PARTICLES
. 130 500	2.8972 05	2. CO3E 10	96.403	•100	3.006E 05	2.597E 10	ZERO FLUX	7-100	0.0
500900	1.041E 04	8. S96E 08	34464	•300	5.684E 04	4-9116 09	1.50-1.51	1.950	3.6475 04
. 400-1-10	3.224E 02	2.765E 07	0.107	•500	1.081E 04	9.3425 08	1-71-1-52	1.900	2.483F 05
1-10-1-50	7.555E 01	6. 52 75 06	0.025	•700	2.072E 03	1.790E 08	1-52-1-53	1.850	2.4715 05
-1-50-2-00	3.120E 00	2. 4956 05	0.001	•900	4.010E 02	3.465E 07	1.63-1.64	1.000	2.465F G7
2.00-2.50	0.0	0 0	0.0	:.10	7.867E 01	6.797E 06	1-54-1-5	2.350	3.471 08
2.50-3.00	0.0	0.6	0.0	1.30	1.565E 01	1.J52E 06	1.65-1.66	3.500	5.7065 09
3.00-3.50	0.0	0. C	0.0	1.50	3-120E 00	2.695F 05	1.56-1.57	3, 350	1-989# 10
3.50-0VEN	0.0	0.0	0.0	1.75	2.994F-01	2.587E 04	1.57-QVER	0.0	0.0
· ,				2.00	0.0	0.0			
TOTAL	3.006E 05	2.597E 10	100.000 -	2,25	0.0	0.0	TOTAL	23.800	2.597E 10
·				2.50	0.0	0.0			
an ingenitar				2.75	0.0	0.0	-		
				3.00	0.0	0.0			
3 · 1	٠.	•		3.50	. 0.0	0.0			

化西西山山

<b>2.45.6</b> 4	*****	*****	*******	******					
EMERGY	AVERAGED	_av wraged	_SPECIRUM	. ENERGY	AVERAGED	AVERAGED	_ INTENSITY		- TOTAL #- OK -
ranges	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	RANGES	DURATION	ACCUMULATED
(NEY)	8/CH++2/SEC-	#/ CH442/DAY-	-PER-CENT	>{NEX-}	- <del>8/CH++</del> 2/SEC	- <del>8/CH++2/DAY</del>		4KOURG)	- PARTICLES
	_2.218E_07	-1-917E-12		•0	2.287E 07	1+9765 12	ZERO FLUX.	6.700	0.0
.590-1.00	5.726E 05	4.947E 10	2.504	.250	2.504E 06	2.163E 11	1.60-1.51	0.200	3.926E 03
-1+00-1+60-		39E	0-392	• 50 <del>0</del> -	6.886E 05	5-950E 10	· 1.E1-1.E2	··-0.100	· 1+1315 04-
1.50-2.00	2.040E 04	1. 357E 09	0.089	.750	2.612E 05	2.430E 10	1.E2-1.F3	1.350	3.341E 06
-2-00-2-50-		4+4976 05			1+160E05	-1.003E-10	1.E3-1.E4		3-363E -07
2.50-3.00	1.058E 03	9. 143E 07	0.005	1.25	5.537E 04	4.784E 09	1.64-1.65	2.650	3.739E 08
3.00=4.00	-3-6088-02	2+ 253E 07	0-001	1-50	- 2.646E 04	2-2865 49	I.ES-1.E6	3-600	- 54 802E- 09-
4.00-5.00	4-858E-01	4. 197E 04	0.000	1.75	1.266E 04	1-094E 09	1.E6-1.E7	6.700	54329E 10
-5-00-0VER-	-0-0	-0+4		2.00	-6.642E 03	5.237E-08	- 1.E7-DVER		0.0
				2.50	1.319E 03	1.1405 08			•••
TOTAL	2-2878 07	1-0745-12		3- 00	-2.4135 02	2+257E-07	TOTAL	23- 804	4-9508-10-
				3.50	2.890E 01	2.497E 06			
				4.00	4-8586-01 -	4-1978-04			
				4.50	0.0	0.0			
				. 5.00 ···		- <del>0 0 0</del>			

			********	+- " LGYEN	ERGY PROTONS	**********		<del></del>	
			********	*********	**********	*********			
:	······································	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •	•				
**** SPE	TRUM IN PERC	ENT DELTA ENFI	tgy ******	· +++ COM	POSITE-ORBIT :	PECTRUM ***	- + EXPOSURE 1	NDEX:ENERG	Y >.100MEY +
EHZR6Y	-AVERAGED		- SPECTRUM-	ENFRGY	AVERAGED	AVERAGED	···· INTENSITY ····	EXPOSURE	TOTAL # OF
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG FLUX	INTEG.FLUX	PANGES	DURATION	ACCUMULATE
(MEV)							#/CH+#2/SEC		PARTICLES :
100-1000-		3.710E 11	97.241		-444232 06	- 3.8225 11	ZENO- PLUX	0.0	
300900	1.186E 05	1.025E 10	2.682	.300	7.339E 05	6.341E 10	1-60-1-61	9.0	0.0
<del>900-1+10-</del>	<del>-2+839E-03</del>	8+455E-08				14054E-10			O. O
10-1-50	5.612E 02	4.849E 07	0.013	.700	2.037E 04	1.760E 09	1.E2-1.E3	0.0	0.0
<del>/50~£                                    </del>	<del></del>	- 1+517E-06			-3+410E 03-	-2,953E-06	t+E3-1+E4	5.050	1+416E-00
.00-2.50	0.0	0.0	0.0	1.10	5.7885 02	5,001E 07	1.E4-1.E5	4.550	5.4536 04
<del>-50-3v80</del> -					- 9.952E O1	6.5998 06		3:250	4.426E 01
.00-3.50	0.0	0.0	0.0	1.50	1.756E 01	1.5178 08	1.E6-1.E7	5.500	1.073E 41
<del>150-07 ER -</del>	-0.0				e++39E +0	-1-040E 05		5:450	2+697E-11
				2.00	0.0	0.0		******	
TOTAL	+++23C-06		-100r000		-0.0	-0.0		23×300	3.022E-1
				2.50	0.0	0.0	INE	521300	300886 11
	<del></del>				-0.0	-010 			
•				3.00	0.0	0.0			
				3.00		~~~			

TOUR TOUR PLUMES PRIORITIES BAND L COMPUTED BY THOSE PROFISE OF THE ALTHOUGH AS AREA BY A PROFILE BAND L COMPUTED BY THOSE PROFISE PROFISE BAND L COMPUTED BY THOSE BAND BY T

- ***** 50E	TOUM IN PERCE	YT DELTA ENER	GY *****	ess CLM	Primar Prizne	DECTRUM ***	· FRPTSUME 1	NOE KIENE TGV	>+5004EV *
C ENSOCY	PVEFAGED	#YES + GFD	TRE TTE UM	ENERGY	AVFEAGED	EVERAGED	INTFUSTTY	g xor. supe	TOTAL . IF
#AMGES	TOTAL FLAR	TOTAL FLUX		LEVFL	TATEGOF LUX	INTEG.FLUF	PANGES	DIPATERN	ACCUPULATED
् (बद्ध)	*******	44044454084	FFR CENT	214641	#/C4##2/SEC	#/CHE# \$/D44	4/04442/576	#PRUCH)	PARTICLES
.0309	3.703E 07	3.1996 12	03.143	• 0	34474E 37	3.4356 12	SEAU AFAX	0.0	. 0.0
. 500-1-60.	2.6578 06	1.7778 11	5.174	. 340	7.347F C4	6.36FF 11	1.50-1.51	0.0	0.0
1.00-1.50	. TFEE OA	4.1107 19	1.197	-500	2.7256 06	2.3556 11	1.51-1.52	0.0	0.0
1.50-2.00	1.3648 65	1-1-30 10	3.544	.740	1.3308 0:	1.1576 11	1.62-1.63	0.0	0.0
2.00-2.50	4,1508 04	JOE SAS 40E	0.105	1.00	A. 602E 04	4.792F 10	1.63-1.64	0.0	0.0
2.50-3.00	1-1018 04	7. FEF 04	0.027	1.2"	3.5038 05	3.10E# 10"	tera-ter	0.0	0.0
3.00-4.00	J.557F 03	3.0738 04	0.000	1.90	1.9348 05	1.0728 10	1-64-1-65	9.450	1.3037 10
4.00-5.03	4.53PF C1	4.7 EE 04	0.000	1.75	2.0046 04	0.033E 09	1.61-1.67	10.350	2.225E 11
8.00-DVER		0.0	0.0	2.00	5-462E 04	4.502F 09	1.ET-DVEN	0.0	0.0
<i>3</i> 1777 (1777)			• • • •	2.50	1.403E 04	1.29PE 09			
TOTAL-	3.975E 07	3.4 356 12	100.000	3.00	3.4128 03	J. 1216 08	TOTAL	27,000	2.358E Li
A				3.50	7.0048 08	6.086E 07			
	, .			•.00	5.738E 01	4.765E 06			
	•			4.50	0.0	0.0			
And the same of the contract o	والمتما بالمعارب				0.0	0.0			

OF DRBITAL FURK STUDY WITH COMPOSITE PARTICLE ENVIRONMENTS: VETTE AIR, APR, APRI AIA, AFF, FOR SELEX MARIMUM OCCOUNTER OF ICTS OF THE CENTER FLUXES FROMENTIALLY DECATED TO 1970, O WITH LIFETIMES; F.G. STATSIMPDOLITSER, VETTARIU OF CUTTOP TIMES; OF THE 1975, O COMPOSITE SIAND L COMPUTED BY INVERS OF 1975 WITH ALLMAG, WORLL AT CAINSTREETER 170-TEM PROT ARM O TIMES 1975, O CO-PONICLE 1-645-D 1700+ OF INCLINATIONS OF PRESCRIPTOFFER OF APPLICATIONS OF APPLICATIONS OF PRESCRIPTOFFER OF APPLICATIONS OF APPLICATIONS OF PRESCRIPTOFFER OF APPLICATIONS OF APP

****** S#E:	TPUM IN PPPC!	INT DELTA THE	CV *****		putité Ummia e	PECTRUM	A TALLACINE	INUL KIENEBUA	>-100mt v •
ENERGY	AVE - GED	AVERAGED	SPECTOUM	PAFFGY	PYPRAGED	AVERAGED	1471 451 77	E KPOSIME	TOTAL # DF
RANGES	TOTAL FLUX	TOTAL FLUX		LEVILS	INTEGATLUE	INTER-PLUE	FA41.6 %	DIMETION	ACCUMULATED
	CYCHARRYSEC	evinees Day	HER CENT	2( de 41	#1C###15#EC	0/(4007/DAY	0/54447/RPC	( H7(IPS)	PARTICLPS
.100500	1.401F 00	3.0166 11	97.310	.120	3.50PF 00	1.1000 11	PERT PLUE	0.0	0.0
.900900	9.388E C4	4.1115 09	2.417	. 190	4.8772 09	*.C*#F 10	1.50-1.51	0.0	0.0
	P.201E 03	1.4015 00	0.061	.900	4.4431 04	P. 140F 39	1,71-1,72	0 . D	0,0
1-10-1-50	C. 312E 02	3.77% 07	2.012	.706	1.9026 04	1.1768 09	108 2-108 3	2.0	0.0
-++50-E.00	1.7606 01	1.1796 04	9.000	. 990		POPPE OF	1.5 3-1.54	A. 50C	0.09AF 07
2.00-2.50	0.0	0.0	r. o	1.10	4.4497 07	1.84 SE OF	1.10-1.55	1.900	3.0941 08
2.50-3.00	9.0	0.0	0.0	1.30	7. v 3et 01	*	1.1 * - 1 . F A	1.1.5	40 TARE 01
3.00-3.50	9.0	0.0	0.0	1.79	Liter 21	1.1756 08	1.1 /- 1	4.400	1.1975 11
3.81-0469	0.0	0.0	0.0	1.74	1.4517 00	1.1400 04	1.1	4. PRR	1.8595 11
				2.00	0.0	C • 2			
	-3-5566-00-	1.1000 11	100.000	. 24	0.0	0.0	TATAL	21.000	3.1001 11
• • • • • •			• -• -	2.50	C.0	0.0			
				2.75	0.0	0 . n			
				1.07	1.0	0.0			
				3.50	0.0	0.0			•

3.40.00

<del>-</del>

## CSTIT LELIX TUNY FIRM COMMUNITY MESTICE FLYTCH WITT VETTE VOL. APR. APR. 458, FTD FOLD MIXING BORD INTELS OF 1973 OF
## CSTIT LELIX TUNY FIRM COMMUNITY MESTICE FLYTCH WITT VETTE VOL. APR. APR. APR. 458, FTD FOLD MIXING BORD INTELS OF 1973 OF
## ELECTHON FLUXES FRONCHIALLY OFCOMED TO 1 270, CONTINUES LOCALISE LOCALISE TOPONIONS OF THE TOPONION OF THE 1975 OF
## MARNETIC COCUMENTALES A HOLD COMMUNICATION OF THE 1975 WITH ALLERS NOTES A SHIPM OF DIVIDING TOPONION OF PERIOD 24.000 OF
### MARNETIC COCUMENT OF THE PROPERTY OF THE 1975 OF THE 1

. ***** 30	ECTOUR IN SIECE	NT DELTA EPES	SY *****	*** COM	C TINAGO BYLEGO	PECTEUM ***	* EXPOSURE	INDEXIENERGY	>.500MEV .
ENGREGT	AVF=AGFD	AVET AGED	STE CTRUM	ENSEGY	AVE AGED	AVERAGED	INTENSITY	FXPOSUPE	TOTAL FOF
PANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	PANSES	PUPATION	ACCUMULATED
(MEY)	+>tm++>>fil	#/CH##P/DAY	PER CENT	>(MEV)	4/CM++2/5EC	#/CH## 2/DAY	4/CH++2/5EC	(HOURS)	PARTICLES
.0500	3.607F 07	3.117E 12 *	93.439	•0	3.94 AE - 07	3.3218 12	ZEON FLUX	0.7	0.0
		4.5715 11	730	.250	A-427E 06	5.7286 11	1.E0-1.E1	0.0	0.0
1.03-1.50	3.94 .E 04	3.411F 10	1.027	•500	2.36 .E 06	2.046E 11	1.E1-1.F2	0.0	0.0
1.50-2.00	1.110E 05	9.5005.00	7.275	.730	1-1335 06	· . *87E 10	1.E2-1.E3	0.0	0.0
2.00-2.50	3.281E C4	2.P35E 09	0.043	1.00	5.502E 05	4.754E 10	1.E3E4	0.0	0.0
2.50-3.00	9.7556 63	7.5 94F 08	0.023	1.24	2.410E 04	2. # 22F 10	1.F4-1.E5	0.0	0.0
3.00-4.00	2.7436 03	2.3798 08	0.007	1.50	1.4545 05	1.3436 10	1.F5-1 F6	10.400	1.1935 10
4.00-5.00	3.707E 01	3.203F C6	0.000	1.73	4.294E 04	7.146E 09	1.65-1.67	13.400	1.927E 11
00-NYEF	C . O	0.0	9.0	2.00	#.43RE 04	7.83FE 09	L.F7-OVFP	0.0	0.0
`*	•			2.50	1.157E 04	9,996E 08			
POTAL	· · · · ? · · PAGE · OF	-1.3215 12	- 196.000	3.00	2.7PDE 03	2.4025 00	TOTAL	23.600	2.0465 11
				3.=0	5.183E 02	4.4785 07			
				4.00	3.707E 01	3.203# 06			
14 g	•			4.50	0.0	0.0			
. }*** ** *** **			•	- 5.00	0.0	0.0			

The property of the second second of the second second second second second second second second second second

कें अवस्ति अवह व्यस्ति महिल्य हे कर विकास कर विकास । अवस्ति ।

The first of the second section of the second

recie el

STORDITAL FLUX STUDY WITH COMPOSITE PARTICLE ENVIRONMENTS: VETTES AP5. AP6. AP7: AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 1973 AE4. AE5. FOR SOLAR MAXIMUM SESS UNIFLX OF 19

***** SPE	CTRUM IN PERCE	INT CELTA ENER	GY *****	*** COM	POSITE ORBIT S	SPECTRUM ***	• EXPOSURE	INDEX: ENERGY	>-100MEY 9
ENERGY	AVERAGED	AV BRAGED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	EXPOSURE	TOTAL # OF
RANGES	TOTAL FLUX	TOTAL PLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	RANGES	DURATION	ACCUMULATED
(MEY)	#/CH##2/SEC	#/ CH##2/DAY	PER CENT	>(MEV)	#/CM##2/SEC	#/CH##2/DAY	#/CM+#2/SEC	(HOURS)	PARTICLES
. 100 500	3.6868 06	3. 184E 11	97.270	-100	3.789E Q6	3-274E 11	ZERO FLUX	0.0	0.0
-500~-900	1.006E 05	8.689E 09	2.654	•300	6.253E 05	5.402E 10	1.E0-1.E1	0.0	0.0
900-1-10	2.388E 03	2.063E 08	200.0	. •500	1.034E 05	6.938E 09	1.E1-1.E2	0.0	0.0
1-10-1-50	4.710E 02	4. C70E 07	0.012	.700	1.714E 04	1.485E 09	1.E2-1.E3	0.0	0.0
1.50-2.00	1.493E 01	1. 2905 06 .	0.000		2.874E 03	2.483E 08	1.E3-1.E4	6. 300	9.467E 07
2.00-2.50	0.0	0 • C	0.0	1.10	4.860E 02	4.199E 07	1.64-1.65	4.050	5.365E 08
2.50-3.00	0.0	0.0	0.0	1.30	8.377E 01	7.238E 06	1.65-1.66	J. 150	4.357E 09
3.00-3.50	0.0	0.0	0.0	1.50	1.493E 01	1.290E 06	1.E6-1.E7	5.650	1-1148 11
3.50-OVER	0.0	0.0	0.0	1.75	1.878E 00	1.623E 05	1 .E 7-0 YER	4.650	2.109E 11
TOTAL	3.789E 06	3. 274E 11	100-000	2.25 2.50	0 • 0 0 • 0	0 a 0	TOTAL	23.800	3.274E 11
				2.75	0.0	0.0			
				3.00	0.0	0.0			
. •				3.50	0.0	0.0			

CL

********** ELECTRONS *********

***** SPE	CTRUM IN PERCE	INT DELTA ENER	IGY *****	*** CDM	POSITE ORBIT S	PECTRUM ***	* EXPOSURE	INDEX:ENERGI	>-500MEV 4
ENERGY	AVERAGED	AV ERAGED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	EXPOSURE	TOTAL # OF
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	RANGES	DURATION	ACCUMULATED
(MEA)	#/CM++2/SEC	#/ 04++2/0AY	PER CENT	>(MEV)	#/CM##2/SEC	#/CM##2/DAY	#/C4**2/SEC		PARTICLES
.0500	3.651E 07	J. 163E 12	93.693	• 0	3.908E 07	3.376E 12	JERO FLUX	0.0	0.0
.500-1.00	1.865E 06	1. 6295 11	4.825	.250	6.851E 06	5.9198 11	1.E0-1.E1	0.0	0.0
1.00-1.50	4.146E 05	3. 582E 10	1.061	•500	2.464E 06	2.129E 11	1.E1-1.E2	0.0	0.0
1.50-2.00	1.172E 05	1. Q1 2E 10	0.300	.750	1.185E 06	1.024E 11	1.E2-1.E3	0.0	0.0
2.00-2.50	3.484E 04	3.0105 09	0.089	1.00	5.790E 05	5.002E 10	1.63-1.64	0.0	0.0
2.50-3.00	9. 382E 03	8. 106E 0E	0.024	1.25	3.080E 05	2.661E 10	1.E4-1.E5	0.0	0.0
3-00-4-00	2.929E 03	2. £31E 0E	0.007	1.50	1-644E 05	1.4205 10	1.E5-1.E6	10-200	1.233E 10
4.00-5.00	4. 089E 01	3.533E 06	0.000	1.75	8.796E 04	7.600E 09	1.E6-1.E7	13.600	2.006E 11
5.00-0VER	0.0	0.0	0.0	2.00	4.719E 04	4.078E 09	1.E7-0 VER	0.0	0.0
				2.50	1.235E 04	1.067E 09			
TOTAL	3.908E 07	3.3768 12	100.000	3.00	2.970E 03	2.566E 08	TOTAL	23.800	2.129E 11
				3.50	5.594E 02	4.833E 07	_		
				4.00	4.089E 01	3.533E 06			
				4.50	0.0	0.0			
				5.00	0.0	0.0			

TOLLE 63_

************* Cur FMCPur untilum *********

***** 505	CAEAM IN DEBCE	INT DELTA ENER	GY *****	,	*** C74	CETTE OFHIT S	PECTRUM ***	• EXDOSTIRE	NNEX;ENFAGY	>-100MEA +
ENEPGY	AVEF AGED	AVECAGED	SPECTRUM		ENEFSY	AVEC 4 GED	AVERAGED	THTENSTTY	EXPOSURE	TOTAL # OF
PANGES	TOTAL FLUX	TOTAL FLUX			LEVELS	INTEGAFLUX	<b>さいてどらっだしは</b> そ	FANGES	PURFTION	ACCUMULATED
(MEA)	1/CM**2/5EC	#/CH##2/DAY	ten CENT	,	>( MEA.)	#/C4*#2/5EC	4/C*** 5/DAY	*/C4**2/SEC	(HOUPE)	PATICLES
.100500	2.507E 00	2.235E 11	97.127		.100	2.661F C6	2.301F 11	ZERO FLIIX	4.550	0.0
.500700	7.427E 04	6.417E 09	2.788		305	& . T C RE CF	3.893E 10	1.00-1.01	1.200	1.7085 04
.900-1.10	1.857E 03	1. FOSE 05	0.770		.500	7.4 F 2 E 04	f.412E 09	1.61-1.62	1.350	1.899E 05
1.10-1.50	3.755E 02	3.270F 07	0.014		.700	1.307E 04	1.129E 09	1.52-1.63	1.500	2.2108 06
1.50-2.00	1.2+3E 01 -	1.074H 05	0.000		.900	2.2APE 03	1.94 3E 04	1.F3-1.E4	1.950	2.949E 07
2.00-2.50	7.484E-02	FACCEE 03	0.000		1.10	3.910F 02	3.378E 07	1.FA-1.E5	5-100	9.832E 08
2.50-3.00	0.0	. 0.0	- 0.0		1.30	6.011E 01	5.971E 06	1.61.66	1.700	2.102E 09
3.00-3.50	0.0	9.0	0.0		1.50	1.250E 01	1.080E 96	1.F6-1.E7	2.400	4.3285 10
3.50-0VEP	0.0	0.0	0.0		1.75	1.365E 00	1-1756 05	I.F7-OVEP	3.050	1.838E 11
					2.00	7.4 PCF-92	6.46E 03			
TOTAL	2.564E 06	2.301F 11	100.000		262"	0.0	0.0	TOTAL	23.500	2.301E 11
					2.50	0.0	0.0			
		*****			2.75	C.O	0.0			
					3.00	6.0	0.0			
					3.50	0.0	0.0			

でいることは、大きなないのでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、

******* SPEC	TRUM-IN-PERCE	NT-DELTA-ENE	GY *****	. *** COM	POSITE DPBIT S	PECTRUM ***	* EXPOSURE	INDEXIENERGY	>.5004EV +
PANGES	AVERAGED TOTAL FLUX	TOTAL FLUX	SPECTRUM -	ENERGY LEVELS	AVERAGED INTEG.FLUX	AVERAGED INTEG.FLUX 	INTENSITY PANGES #/CM++2/SEC	EXPOSURE DURATION "(HOURS)	TOTAL # OF ACCUMULATES PARTICLES
(MEA)	*/64**2/266	**************************************	PER CENT	71 mg ¥ 1	4/C#+#2/3EC	- T/CP002/URY	*/(-"#2/366	יבאטטה)	PARITUES
	-3-371E-07	-2.9125-12	95.685		3.523E 07	3.044E 12	ZERD FLUX	3.250	0.0
-500-1-00	1.135E 06	9.803E 10	3.221	.250	4.243E 06	3.666E 11	1.50-1.51	0.550	6.9318 03
1 -00-1 -50	-24711E-05	-21342E-10			-14520E 06 -		-1.61-1.62	0.500	-6.61 1E 04
1.50-2.00	7.994E 04	6.907E 09	0.227	.750	7.556E 05	6.528E 10	1.62-1.63	1.050	1.725E 06
E+00-E+50-	-2+501E-04	- <del>2+1012-09</del>			-3+854E 05	-3+330E-10	1.E3-1.E4-		-1-945E-07
2.50-3.00	7.124E 03	6.155E 08	0.010	1.25	2.095E 05	1.810E 10	1.E4-1.E5	2.250	3.297E 08
3.00-4.00-		-1+933E-00-				-9.600E 09	1.E5-1.E6	- 8:050	1.717E 10
4.00-5.00	4.031E 01	3.483E 06	0.00	1.75	6.263E 04	5.411E 09	1.66-1.67	6.700	1.1386 11
5.80-0VER-	-0.0	-0-0		<del>2</del> .00		- 2.973E 09	- 1.E7-0VEP	0.0	-0.0
	•••	***	•••	2.50	9.402E 03	8.123E 08		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••
TOTAL	-3.5236-07	-3-0445-12	-160.000		<del>2+2785</del> -93	-1-9002 00	TOTAL		
TOTAL	313236-01-	310445 (2	1001000	3.50	4.658E 02	4.025E 07	10186	23000	110150 11
						-3,483E 00			
				4.50	0.0	0.0			

AM OPPITAL FLUX STUDY WITH COLPOSITE DARTICLE ENVIRONMENTS: VETTES APA, APA; AEA, AEA, FOR SOLAR MAXIMUM ARRA IMIELX OF 1973 44 ** FLECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. O WITH LIFETIMES: F.G.STAFSINOPOULOSEP.VERZARIU ** CUTPFE TIMES: AS MAGNETIC COODDINATES B AND L COMPUTED BY . NVRA FF 1972 WITH ALL MG. MODEL 4: CAINSSWEENEY 120-TERM POGT 8/69 . TIME 1975.5 .. ** VEHICLE : SAS-D (290) - ** INCLINATION# 300EG ** DERIGEE#27052** ** APRICEE# 43615KM ** M/L DERIT TAPE: TD#050 ** PERIOD# 24.000 ** ******** LOW ENERGY PROTONS *********

300	CTRUM IN PERCE	INT DILTE ENEG	GY *****	*** (14	DUZILE DEBIL .	PECTRUM ***	* FXPOSUPE 1	INDEX: ENERGY	>-1004EA +
ENERGY RANGES (MEV)	AVERAGED TOTAL FLUX #/CH++2/EEC	AVEFAGED TOTAL FLUX #// M++2/DAY	SDEPTOUM	ENFEGY LEVELS >(MEV)	AVEFAGED INTEG.FLUX #/CM##2/5EC	AVERAGED INTEG.FLUX #/CM## 2/DAY	INTENSITY PANGES #/CY++2/SFC	EXPUSURE DURATION (PAUPH)	TOTAL # OF ACCUMULATED PARTICLES
.100500 .500003 .900-1.10 1.10-1.50 1.50-2.00 2.00-2.50 2.50-3.00 3.00-3.50 3.50-0.4FP	2.204E 06 4.171E 04 1.407E 03 3.031E 02 9.933E 00 2.462E-02 0.0 0.0	1.904E 11 E.332E 09 1.302E 09 2.619E 07 8.542E 05 2.127E 03 0.0 0.0	97-108 2-721 0-066 0-013 0-000 0-00 0-0 0-0 0-0	.100 .300 .500 .700 .900 1.10 1.30 1.50 1.75 2.00 2.25 2.80	2.268F 06 3.788F 08 6.353F 04 1.071E 04 1.920E 03 3.131E 02 5.408E 01 9.058F 00 1.073F 00 2.462F-02 0.0	1.989E 11 3.273F 10 5.489F 09 9.283E 06 1.572F 06 2.705E 07 4.780F 06 8.603E 05 9.274F 04 2.127E 03 0.0	7F77 FLUX 1sf0-1sf1 1sf1-1sf2 1sf2-1sf3 1sf3-1sf6 1sf4-1sf5 1sf5-1sf6 1sf4-1sf7 1sf7-0vf0	1.759 1.700 1.500 1.500 2.200 5.400 1.700 2.550 2.700	0.0 1.628E 00 2.198E 05 2.123C 06 3.333F 07 7.679F 07 2.192E 09 4.805E 10 1.449E 11

0.0

-3.50

0.0

Talle 60

	TRUM IN PERC	ENT DELTA FNER	GY *****	*** COMP	OSITE OPBIT 4	PECTRUM ***	● EXPOSURE 1	HOEX:ENERGY	>.500MEV +
ENERGY	AVERAGED	AVERAGED -	SPECTRUM	ENEPGY	AVERAGED	AVERAGED	INTENSI TY	EXPOSURE	TOTAL # OF
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	PANGES	DUPATION	ACCUMULATE
	<del>4/CH++2/SEC</del>	- <del>4/FH++8/0AY</del>		->(-MEA)	4/CP++2/SEC	#/C### 2/DAY	#/CM+#2/5EC	(HOUPS)	PARTICLES
0500	- 3.4238 07	2.957E-12	95.091	•0	3.562E 07	3.077E 12	ZEOD FLUX	3.350	0.0
.500-1.00	1.053E 04	9.100E 10	2.957	. 2 <b>5</b> 0	3.9655 05	3.4266 11	1.E0-1.E1	0.600	7.528E 03
-1-00-1-50-	2.407E- 05 -	- 2.0FOE 10	- 0.676	- •500	163928 05	1.203E 11	1.51-1.52	0.500	5.980E 04
1.50-2.00	6.953E 04	6.1CTE 09	0.195	.750	6.792E 05	5.868E 10	1.E2-1.E3	1.200	2.031# 06
-2-00-2-50		-1+P3CE-09	<del>0 : 0 0 0</del> -		- 3.392E 05	2.931E 10	1.63-1.64	1.550	2.222E 07
2.50-3.00	5.67FE 03	5.076E 08	0.016	1.25	1.8256 05	1.576E 10	1.E4-1.E5	2.350	3.4915 08
3-00-4-00	1.633E-03 -	1.584F- 08	0.005	. 1.50 -	9.852F 04	6.5126 09	1.65-1.65	7.650	1.449E 10
4.00-5.00	2.987E 01	2.581E 06	0.000	1.75	5.337E 04	4.611E 09	1.66-1.67	6.600 i	1.054E 11
5.00-0VEP	0.0	0.0	0.0	2.00	2.8998 04	2.505F 09	1.E7-0VEP	0.0	0.0
				2.50	7.738E 03	6.685E 08		±	
TOTAL	3.542E 07	3.077E 12	100-000	3.00	1:063E 03	1×609F 08	TOTAL	23.800	1.2038 11
				3.50	3.686E 02	3.185E 07		•	
		•			- 2.9PTE 01	2.581E 05 "		**	• • •
				4.50	0.0	0.0			
				8 - 00	. ^ ^				

. ORBITAL FLUX STUDY WITH CEMPOSITE PARTICLE ENVIRONMENTS: VETTES APS. APS. APS. FOR SOLAR MAXIMUM **** UNIFLX OF 1973 ** ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. 0 WITH LIFETIMES: E.G. STASSINOPOULOSCP. VERZARIU ** CUTOFF TIMES: SO MAGNETIC COORDINATES & AND L COMPUTED BY INVARA OF 1972 WITH ALLMAG. MODEL A: CAINGSMEENEY 120-TERM POGD 8/69 & TIME= 1975.5

** VEHICLE : SAS-D (310) ** INCLINATION* 29DEG ** PERIGEE*27952KM ** APOGEE* 43615KM ** B/L DRBIT TAPE: TD7678 ** PERIDD= 24.000 

********* LOW ENERGY PROTONS ********

	CTRUM IN PERCE	NT CELTA ENER	GY #####	444 COM	POSITE ORBIT S	PECTRUM +++	• EXPOSURE S	NDEX: ENER G	1 >-100MEA
ENERGY	AVERAGED	AV ER AGED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	EXPOSURE	TOTAL #
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	RANGES	DURATION	ACCUMULA
(MEV)	#/CH##2/SEC	#/ CH++2/CAY	PER CENT	>(MEY)	#/C4++2/SEC	#\C###\$\DAY	#/CH+#2/SEC	(HOURS)	PARTICLE
. 100 500	2.332E 06	2. C15E 11	97-195	.100	2.400E 06	2.073E 11	4ERO FLUX	1.900	0.0
.500900	6.5385 04	5. 649E 09	2.724	•300	4.011E 05	3.4665 10	1.50-1.51	2.300	3.047E
-900-1-10	1.597E 03	1. 380E 08	0.067	• 500	6.7318 04	5.815E 09	1.21-1.22	2.100	2.8752
1.10-1.50	3.216E 02	2. 1786 07	0.013	•700	1-1358 04	9.808F 08	1.62-1.63	2.100	3.002E
1.50-2.00	1.054E 01	9. 107E 05	0.000	.900	1.930E 03	1.667E 08	1.63-1.64	2.600	3.9138
2.00-2.50	2. 190E-02	1. 6921 03	0.000	1.10	3.321E 02	2.6708 07	1.E4-1.E5	4.900	7.174E
2.50-3.00	0.0	0.0	0.0	1.30	5.833E 01	5.040E 06	1.65-1.66	2. 250	2.77QE
3.00-3.50	0.0	0. 0	0.0	1.50	1.056E 01	9-126E 05	1.66-1.67	2.800	5.234E
3.50-0VER	0.0	0.0	0.0	1.75	1.156E CO	9.990E 04	1.E7-0VER	2.850	1.515F
0000	•••	***	***	2,00	2-190E-62	1.892E 03			
TOTAL	2.400E 06	2. t735 11	100.000	2.25	0.2	0.0	TOTAL	23.600	2.073E
	201002 00		•••••	2.50	0.0	0.0		•	
				2.75	0.0	0.0			
				3.00	0.0	0.0			
				3.50	0.0	0.0			•

***** 315	CTRUM IN PERCE	NT CELTA ENER	GY F=9###	*** COM	POSITE ORBIT S	SPECTRUM ***	* EXPOSURE 1	NDEX: ENERG	Y >.500ME
ENERGY	AVERAGED	AV ER A GED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	EXPOSURE	TOTAL #
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	RANGES	DURATION	ACCUMUL
(MEV)	#/CM++2/SEC	#/ CM*#2/CAY	PER CENT	>(MEY)	#/CM**2/SEC	#/CH##2/DAY	#/CH+#2/SEC	(HOURS)	PARTICL
0500	3.305E 07	2.656E 12	95.674	•0	3.455E 07	2.9855 12	ZERO FLUX	0.0	0.0
500-1-00	1.133E 06	9.787E 10	3.279	.250	4.249E 06	3.671E 11	1.E0-1.E1	0.0	0.0
.00-1.50	2.571E 05	2. 221E 10	0.744	.500	1.494E 06	1.2918 11	1.61-1.62	1.100	2.674E
-50-2-00	7.395E 04	6.3908 09	0.214	.750	7.268E 05	6.279E 10	1.E2-1.E3	2.500	3.7548
-00-2-50	2.251E 04	1.945E 09	0.065	1.00	3.617E 05	3.125E 10	1.E3-1.E4	2.300	3.2105
-50-3-00	6.2025 03	5. 259E 08	0.018	1.25	1.942E 05	1.677E 10	1.64-1.65	3.050	4.429E
-00-4-00	1.934E 03	1.671E 08	0.006	1.50	1.045E 05	9-040E 09	1.E5-1.E6	7. 250	1.3528
-00-5-00	3. 102E 01	2.680E 06	0.000	1.75	5.657E 04	4.888E 09	1.E6-1.E7	7.600	1.1516
.00-OVER	0.0	0 • C	0.0	2.00	3.068E 04	2.651E 09	1.E7-QVER	0.0	0.0
				2.50	8.167E 03	7.057E 08			•••
TOTAL	3.455E C7	2. 985E 12	100.000	3.00	1.965F 03	1.6968 08	TOTAL	23.600	1.291E
				3.50	3.866E 02	3.341E 07			
				4.00	3-1025 01	2.680E 06			
				4.50	0.0	0.0			
				5- 00	0-0	0-0			

·

1. 1. 1.

M. Cont.

### MAGNETIC COORDINATES B AND L COMPUTED BY INVARA OF 1972 WITH ALLMAG, MODEL 4: CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CHIECTE 1 343-D (110) ** INCLINATION** 55DEG ** PERIOZ=27932KM ** APOGEE** 3015KM ** TVL DROIT TAPE: TOBISO ** PERIOD** 24*000 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 * TIME= 1975.5 **

** CAINGSWEENEY 120-TERM POGD 8/69 **

** CAI

-10-

-4 . <del>4+++ 3PE</del> (	CTRUM-IN-PERCL	INT DELTA ENE	SGA #####	*** COM	POSITE ORBIT S	PECTRUM ***	* EXPOSURE	INDEX:EXERGY	>-100MEA
	AVERAGED	AVERAGED	SPECTRUM	ENERGY	AVERAGED	AYERAGED	INTENSITY	EXPOSURE	TOTAL F-OF-
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	RANGES	DURATION	ACCUMULATED
		<del></del>	PER CENT	>( MEV )-	**/CM**2/SEC	- e/C#++ 2/D4Y	#/C###2/SEC	(HOURS)	PARTICLES-
100500	1.0302 06	-1.5888-11-	97.139	100	1.8925 06	1.6398 11	ZERO FLUX	7.450	0.0
.500900	5.255E 04	4.540E 09	2.777	• 300	3.194E 05	2.760E 10	1.E0-1.E1	1.500	3.349E 04
-+ <del>100-1</del> +10-	1 + 300E-03		0.069		5.413E 04	4.677E 09	1.61-1.E2	2.450	- 3.103E 05-
1.10-1.50	2.650E 02	2.289E 07	U.014	.700	9.217E 03	7.964E 08	1.62-1.63	2.200	3.007E 06
1 150-2100-	-0+615E-00-	T+444E-05			-1+580E 03-		tvE3-1+E4	2.900	4+259E-07-
2.00-2.50	6.014E-02	5.196E 03	0.000	1.10	2.736E 02	2.364E 07	1.E4-1.E5	3.150	2.454E 08
-E-50-3-00-				++30	4.818E 01	4.163E 05	1.65-1.66	0.600	9:1595 00
3.00-3.50	0.0	0.0	0.0	1.50	8.675E 00	7.496E 05	1.E6-1.E7	1.350	2.619E 10
3 -50-0VER	-0.0	-0.0		1 .75	9-808E-01	. 8.474E 04	1.67-OVER	2.200	1 . 3616 -11-
*				2.00	6.014E-02	5.196E 03		1	• • • • • • • • • • • • • • • • • • • •
TOTAL	1+092C-00	-1+655C-11	-100.000					23. <del>800</del>	-11639E 11-
· - · · · · ·				2.50	0.0	0.0		1	
						-0.0			
				3.00	0.0	0.0			
						- A - A			

Table 70

** DEBITAL FLUX STUDY WITH COMPOSITE DASTICLE ENVIRONMENTS: VETTES ARE, ARE, ARE, ARE, ARE SILAR MAXIMUM **** UNIFLX OR 1973 **

** ELECTRON FLUXES EXPONENTIALLY DECAYED TO 1970. 0 4/TH LIFETIMES: E.G.STASSINCHOULDSGRAVERTARIU ** CUTTER TIMES: **

** MAGNETIC CODEDINATES & AND L COMPUTED BY INVARA OR 1972 WITH ALLWAG, MODEL *** CAINFRWEENEY 120-TERM PORO 5/59 *** TIME# 1975.5 ***

** VEHICLE: SAS-D (110) *** (NCLINATION# **DEG *** DERIGHER/270*** *** APPORTER & BRISKM *** AAL ORBIT TARE: TORISO *** DERIGHR 24.000 ***

****** SOECTION IN DEDCENT DELTE ENERGY *****			SY *****	*** CUM	POSITE OFFIT S	PECTFUM ***	* EXPOSURE INDEXTENSED >-500MEV *			
ENEPGY	AVERAGED	/VES/SED	CDECTRUM	ENEFGY	AVERAGED	AVERAGED	INTENSITY	# KUU SUOE	TOTAL # OF	
PANGES	TOTAL FLUX	Trial FLUX		LEVEL S	IFTEG.FLUX	INTEG.FLUX	PANGES	DUPATEON	ACCUMULATED	
(MEV)	b/C44#5/EEC	*/CH+*?/DAY	PER CENT	>(MFV)	#/CW4#2/5FC	#\C### 5\0*A	+/~~+=5/dkc	(HOUPS)	PARTICLES	
.0500	2.40 3E 07	2.0755 12	95.153	•c	2.199E C7	7.159E 12	7ETT FLUX	6.850	0.0	
.500-1.30	7.CCFE OF	6.053E 10	2.903	.250	2.542F 05	2.14tE 11	1.50-1.51	0.250	3.3925 03	
1.00-1.50	1.7678 05	1.5728 10	0.719	•500	SAFPRE OS	9.29eF 10	1.51-1.52	0,200	2.705E 04	
1.50-2.00	5. AAZE 04	4.702F 09	0.218	.750	A. 523E C5	4.2.3F 10	1.E2-1.F3	0.=00	8.244E 05	
2.00-2.50	1.743E 06	1.505E 09	0.070	1.00	2. # P2E 05	2.211F 10	1.F3-1.EA	3.400	4.179E 07	
2.50-3.00	5.040F 03	4.372F 08	0.020	1.2"	1.422E 03	1.225E 10	1.56-1.65	3.250	4.891E 08	
3-20-4-00	1.607E 03	1.3005 00	0 006	1.50	7. PREE CA	6.786F 00	1.54-1.64	5.450	7.020E 09	
2.00-5.00	3.033F 01	2.5716 06	0.000	1.75	#.369E 06	7.75FE 09	1.56-1.57	3,900	7.5295 10	
5.07-0VER	6.0	9.0	0.0	8.00	2.413E C4	2.045F 09	1.E7-0VEP	0.0	0.0	
•				2.50	6.407E 03	F. TEAP OF		,		
TOTAL	7.460E 07	2.1506 12	100.000	3.00	1.639E 03	1.4155 08	TOTAL	23.800	5.2856 10	
				3.40	3,4146 02	2.951E 07				
				•••0	3.033F C1	2.421F 0A				
				# <b>*</b> * ^	C.C	c.c				
				5.00	0.0	9.0				

additional property of the second sec

*****	TTUM "IN PERCE	'NT DELTP ENER	(GY *****	*** CD*	POSITE OFBIT 5	PECTRUM DOD	* EXPOSURE	INDEX:ENERGY	>*100mEA *
ENERGY	AVERAGED	AVERAGED	SPECTRUM	ENERGY	AVERAGED	AVEPAGED	INTENSITY	EXPOSURE	TOTAL . OF
PANGES	TOTAL FLUX	TOTAL FLUX		LE VELS	INTEG.FLUX	INTEG.FLUX	RANGES	DUPATEON	ACCUMULATED
(HEY)		#/^M##2/ <del>DAY</del>		>{ ME V }	#/CH++2/5EC	#/CH++ 2/DAY	4/C4+8/SEC	(HOUPS)	PARTICLES
.100500 ·-	1.5557 06.	1.3528 11 -	97.222	.100	1.6105 06	1.3916 11	ZERO FLUX	7.550	0.0
.500900	1.345E OA	3.754E 09	2.699	.300	2.579E 05	2.314E 10	1.E0-1.E1	0.450	5.897E 03
.900-1.10	1.049E 03 ··	9.062E 07	0.065	.500	4.4718 04	3.863E 09	1.51-1.52	3.350	3.924F 05
1.10-1.50	2.002E 02	1.808E 97	0.013	.700	7.496F 03	6.4768 08	1.62-1.63	2 . 35 .	3.369E 08
-1 +50~ <del>2</del> +00	6+7 <del>33E00</del>	5+010F-05			1.025EE 03	1.0936 08	1.63-1.64	3.450	5.587E 07
2.00-2.50	2.569E-02	2.220E 03	0.000	1.10	2.160F 02	1.866E 07	1.54-1.65	2.350	1.687# 08
2.50-3.00 -		0.0	- 0.0	1 • 30	3.764E 01	3.252E 96	1.55-1.55	0.600	0.772F 08
3.00-3.50	0.0	0.0	0.0	1.50	6.7#9F CO	5.840F 05	1.56-1.57	1.550	3.0525 10
3.50-0VER -	0.0	9.0	0.0	1.75	7.5050-01	6.519E 04	1.ET-OVEP	1.950	1.0745 11
				2.00	2.559E-02	2.2205 03			
TOTAL	-1-610E On-	<del>-1+391E-11</del>		2425	0.0	0.0	TOTAL	23.800	1.3918 11
				2.50	0.0	0.0			
				2.75	0.0	0.0			
				3 • C%	0.0	0.0			
				3.50	0.0	0.0			

AS DESTRUCTED AND THE CONTROL OF THE STATE O

The first the second of the se

****** FLECTRONS ********

ANDRES CUL	LUDA 10 Dive	N'T LIFETE ENER	3GY *****	*** ( 041	POSITE OFFIT 9	UF( , RUW +**	* EXPOSURE	THOE WIENERGY	>* 4004t A *
FNFGGA	AVFE 4 GFO	***	SUFCTOUR	FMERGY	AVERAGED	AVELAGED	INTENSITY	EXPOSING	TOTAL # CH
RANGES	TOTAL FILLIX	TOTAL FLUX		LE VEL 4	TATEG.FLUX	1575い。そしは4	FANGES	DIFFATION	ACCUM ILATED
(MEV)	•\-n••>\?FC	4/C##+ 5/0AY	TES SENT	>( \\mu \) }	#/CM##2/5EC	#/C### 2/17AV	4/CH++5/4FC	( PAUCH )	PARTICLES
.0500	2.417F 07	2.0495 12	95.491	•0	2.5068 07	2.165F 12	ZEON FLUX	4.949	0.0
.700-1.00	4.535E 01	5.f47F 10	2.509	.2 ° C	2.384E CA	2.251F 11	1.50-1.01	0.250	3.0105 03
1.07-1.50	1.6035 05	1.3956 10	C.440	•500	P.PIAF OR	7.4176 10	1.51-1.62	2.200	2.0016 04
1.50-2.00	4. 7005 00	4.100F Q9	0.197	.753	4.430E 05	3.0356 10	1.52-1.53	9.400	1.0345 04
3.00-2.50	1.4446 (4	1.2936 06	0.059	1.00	2.2816 05	1.9715 10	1.E3-1.F4	3.200	4.4445 07
2.53-1.00	4.146E 97	3.5008 00	0.017	1.28	1.212F C4	1.0738 10	1.54-1.55	1,500	5.190F OA
3.07-4.00	1.3106 03	1.1326 0=	0.005	1 + 5 0	6.780E 04	5.4KPF 00	1.65-1.64	5.200	5.7245 09
9.00-5.00	3.21 FE 01	1.3685 04	0.000	1.74	3.71CE 04	3.22AF 09	1.56-1.57	3.900	4.9445 19
4.00-0VF5	2.2	0.0	0.0	2.00	2.034E C4	1.750F 00	1.E7-0VF6	0.0	0.0
				2.50	F.ACOF 03	4.7515 08			
T-DTAL	2.504F 37	2.1454 12	100.020	3.00	1.333E 01	1.152F 09	TOTAL	23.800	7.017F 10
				3.40	2.596F 02	2. 1205 37	_		
				A.00	2.25 F 01	1.9465 06			
				4.40	0.0	0.0			
	•			5.00	0.0	C-0			

# *** SPE	CTRUM IN PERCE	INT CELTA ENER	GY *****	*** COM	POSITE ORBIT S	PECTRUM ***	* EXPOSURE 1	NDEX:ENERGY	>-100MEV *
ENERGY	AVERAGED	AV ER AGED	SPECTRUM	ENERGY	AVERAGED	AVERAGED	INTENSITY	EXPOSURE	TOTAL # OF
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	RANGES	DURATION	ACCUMUL ATED
(MEV)	#/CM##2/SEC	#/CH++2/DAY	PER CENT	>(WEA)	#/CM##2/SEC	#/CH##2/DAY	#/CM##2/SEC	(HOURS)	PARTICLES
. 100 500	1.564E 06	1.2525 11	97.223	•100	1.609E 06	1+390E 11	ZERO FLUX	6.950	0.0
.500900	4.341E 04	3.751E 09	2.698	.300	2.677E 05	2.3138 10	1-E0-1-E1	0. 750	1.038E 04
-900-1-10	1.048E 03	9. C53E 07	0.065	. •500	4.468E 04	3.860E 09	1.61-1.62	3.000	4.4432 05
1.10-1.50	2.091E 02	1. 807E 07	0.013	.700	7.488E 03	6-470E 08	1.22-1.23	2.700	3-805E 06
1.50-2.00	6.777E 00	5. 655E Q5	0.000	.900	1.264E 03	1.0926 08	1.E 3-1.E4	3.650	6.263E 07
2.00-2.50	2-5198-02	2.176E 03	0.000	1-10	2.159E 02	1.8668 07	1.64-1.65	2.400	1.700E 08
2.50-3.00	0.0	0.0	0.0	1.30	3.774E 01	3.261E 06	1.65-1.66	0.600	6.3268 08
3.00-3.50	0.0	0.0	0.0	1.50	6.802E 00	5.877E 05	1.66-1.67	1.550	2.9358 10
J.50-OVER	0.0	0.0	0.0	1.75	7.661E-01	6.619E 04	1.E7-OVER	2.000	1.086E 11
****	•••			2.00	2.519E-02	2.176E 03			
TOTAL	1.609E 06	1.3902 11	100.000	2.25	0.0	0.0	TOTAL	23.600	1.3908 11
				2.50	0.0	0.0			
	,			2.75	0.0	0.0	-		
		•		3.00	0.0	0.0			
				3.50	0.0	0.0			

٠ .

***** SPE	CTRUM IN PERCE	INT CELTA ENER	RGY *****	*** COM	POSITE OPBIT S	SPECTRUM ***	* EXPOSURE 1	INDEX: ENERGI	>.500MEV .
ENERGY	AVERAGED	AV ER AGED	SPECTRUM	ENFRGY	AVERAGED	AVERAGED	INTENSITY	EXPOSURE	TOTAL # OF
RANGES	TOTAL FLUX	TOTAL FLUX		LEVELS	INTEG.FLUX	INTEG.FLUX	RANGES	DURATION	AC MULATED
(MEV)	#/CM##2/SEC	#/ 04 # # 2/ CAY	PEP CENT	>(MEV)	#/CM##2/SEC	#/CH++2/DAY	#/C#**2/SEC	(HOURS)	PARTICLES
.0500	2.5235 07	2. 1801 12	96.593	•0	2.612E 07	2.257E 12	ZERO FLUX	6.300	0.0 .
.500-1.00	6.613F C5	5.7136 10	2.531	.253	2.436E U6	2.105E 11	1.50-1.51	0.300	4.336E 03
1.00-1.50	1.609£ 05	1. 29 0E 1 0	0.615	•500	8.900E 05	7.689E 10	1.51-1.52	0.250	3.804E 04
1.50-2.00	4.752E C4	4.106E 09	0.182	◆750	4.464E 05	3.857E 10	1.62-1.63	0.600	1.088E 06
2.00-2.50	1.484E 04	1. 2825 09	0.057	1.00	2.287E 05	1.976E 10	1.E3-1.E4	2.900	5-103E 07
2.50-3.00	4.156E 03	3. 1915 08	0.016	1.25	1.244E 05	1.075F 10	1.E4-1.E5	3.900	5.701F 08
3.00-4.C0	1.3C8E 03	1 . 130E 08	0.005	1.50	6.785E 04	5.862E 09	1.55-1.56	5.650	6.169E 09
4.00-5.00	2.233E 01	1.5298 06	0.000	1.75	3.710E 04	3.2055 09	1.E6-1.E7	3.900	7.010F 10
5.00-0VER	0.0	0.0	0.0	2.00	2.032E 04	1.7561 09	1.E7-0YEP	0.0	0.0
				2.50	5.486E 03	4.740E 08			
TOTAL	2.612E 07	2. 257E 12	100.000	3.00	1.330E 03	1.149E 08	TOTAL	23.800	7.689E 10
				3.50	2.603E 02	2.318E 07			
				4.00	2.233E 01	1.929E 06			)
				4.50	0.0	0.0			
•				5-00	0.0	0-0			

1 - Ty V.

1 1 1 1 1 1 1

1-1/-

5/5-D (110)

CIRCULAR

INCLIMITION: 0 DEG

PERIGEE: 35863 KM

APOGEE: 35863 KM

DECAY DATE: 1970. 0.

5AS-0 (110)

CIRCULAR

INCLINATION: 0 DEG

PERIGEE: 35863 KM

APOGJE: 35863 KM

DECAY DATE: 1970. 0.

**** EXPOSURE ANALYSIS ****

. PERCENT OF TOTAL LIFETIME SPENT INSIDE AND

2 SUTSIDE THE TRAPPED-PARTICLE RADIATION BELT .

PROTONS-LOW PROTONS-HIGH ELECTRONS

(E>-100MEV) (E>5-00MEV) (E>-500MEV)

INNER ZONE -TI-# : 0.0 %

99.17 X

(1.0 < L < 2.8)

OUTER ZONE -TO- 1

PERCENT OF TOTAL LIFE-

TIME SPENT IN FLUX-FREE

REGIONS* OF SPACE : 100.00 X (2.8 < L < 11.0)

PERCENT OF TOTAL LIFE-

TIME SPENT IN HIGH-

INTENSITY REGIONS+ OF

VAN ALLEN DELTS : 100.00 X 100.00 % EXTERNAL -TE- 1 0.83 %

(L > 11.01

TOTAL 100.00 X

PERCENT OF TOTAL DAILY

FLUX ACCUMULATED IN

HIGH-INTENSITY REGIONS: 100.00 % 100.00 X *TIME IN INNER ZONE MAY BE SUBDIVIDED AS FOLLOWS:

OUTSIDE TRAPPING REGION : 0.0 %

(1.0 < L < 1.1)

INSIDE TRAPPING REGION : 0.0 %

(1.1 < L < 2.8)

* <1 PARTICLE/CH #2/SEC

+ >1.E5 EL/CM##2/SEC OR 1.E3 PR/CM##2/SEC

***********************************

Ballimatering

-	TABLE _	TABLE 76	,-
*******	5 AS-D (290)	SAS-D (290)	•
		CIRCULAR	,
	INCLIMATION: O DEG	INCLINATION: 0 DEG	
	PERIGEE: 35863 KM	PERIGEG: 35863 KM	
	APOGEE: _35863 KM	APDGEE: 35863 KM	
	DECAY DATE: 1970. 0.	DECAY DATE: 1970. 7.	
	**** EXPOSURE ANALYSIS ****	* PERCENT OF TOTAL LIFETIME SPENT INSIDE AND *	: 
		# OUTSIDE THE TRAPPED-PARTICLE RADIATION SELT ●	
	PROTONS-LOW PROTONS-HIGH ELECTRONS		
		INNER ZONE -T1-+: 0.0 %	***.
PERCENT	OF TOTAL LIFE-	(1.0 < L < 2.0)	• • .
TIME SPE	NT IN FLUX-FREE	OUTCR ZONE -TO- : 99.17 %	•
REGIONS	QF SPACE: 0.0 % 100.00 % 0.0 %	(2.8 < L < 11.0)	
	OF TOTAL LIFE-	EXTERNAL -TE- : 0.83 %	
. Time_spe	NI IN HIGH-	_ (L >11.0L	
Intensit	Y REGIONS+ OF	T-T-11	
VAN ALLE	N BELTS: 100.00 % C.0 % 100.00 %	TOTAL : 100.00 %	
PERCENT	OF TOTAL CALLY	Company of the second of the s	
PLUX ACC	UMULATED IN	TIME IN INNER ZONE MAY BE SUBDIVICED AS FOLLOWS:	
HIGH-INT	ENSITY REGIGNS: 100.00 % 0.0 % 100.00 %		
<del>de la Proposition de la Proposition de</del>		DUTSIDE TRAPPING REGION : 0.0 %	•
	- · · · - · · - · · - · · - · · · · - · · · · · · · · · · · · · · · · · · · ·	(1+0 < L < 1+1)	
		INSIDE TRAPPING REGION: 0.0 %	
	***************************************	(1e1 < L < 2e8)	
	+ <1 PARTICLE/CH++2/SEC		
<del></del>	+ >1.E5 EL/CH**2/SEC OR 1.E3 PR/CH**2/SEC		-
	•		
			•
jete · ·			

SAS-0 (310)

CIRCULAR

INCLIMATION: 0 DEG

PERICEE: 35863 KM

APOGEE: 35863 K4

DECAY DATE: 1970. 0.

5AS-0 (110)

CIRCULAR

INCLINATION: 0 DEG

PERIGEE: 35863 KM

APOGEFI 35863 KM

DECAY DATE: 1970. 0.

**** EXPOSURE ANALYSIS ****

* PERCENT OF TOTAL LIFETIME SPENT INSIDE AND ..

* OUTSIDE THE TRAPPES-PARTICLE PAGIATION WILT *

PROTONS-LOW PROTONS-HIGH CLECTRONS

(E>.100MEV) (E>5.00MEV) (E>.500MEV)

100-00 %

INNER ZONE -TI-# : Dan X

(1.0 < L < 2.8)

OUTER ZUNE -TO- : 99-17 %

(2.8 < L < 11.0)

EXTERNAL -TF- : 0.83 %

(L > 11.0)

TOTAL : 100.00 %

PERCENT OF TOTAL CALLY

PERCENT OF TOTAL LIFE-TIME SPENT IN FLUX-FREE

REGIONS* OF SPACE :

TIME SPENT IN HIGH-

VAR ALLEN BELTS :

INTENSITY REGIONS+ OF

PERCENT OF TOTAL LIFE-

FLUX ACCUMULATED IN

HIGH-INTENSITY REGIONS: 100.00 % 0.0 % 100.00 %

100.00 X

TIME IN INNER ZONE MAY BE SUBDIVIDED AS FOLLOWS:

OUTSIDE TRAPPING REGION : 0.0 %

(1.0 < L < 1.1)

INSIDE TRAPPING REGION : 0.0 %

(1.1 < L < 2.0)

# <1 PARTICLE/CH##2/SEC

+ >1.E5 &L/CM++2/SEC OR 1.E3 PR/CM++2/SEC

345-3 (110)

CIRCULAR

INCLINATION: 29 DEG

PERICEE: 35363 KM

APOGEE: 35863 KM

DECAY DATE: 1970. 0.

SAS-0 (110)

CIRCULAR

INCLINATION: 29 DEG

PERIGEE: 35863 KM

APOGEE: 35863 KM

DECAY DATE: 1970. 0.

**** LXPOSURE ANALYSIS ****

. PERCENT OF TOTAL LIFETIME SPENT INSIDE AND .

. OUTSIDE THE TRAPPED-PARTICLE RADIATION BELT .

PROTONS-LOW PROTONS-HIGH ELECTRONS

(E>-100MEV) (E>5-00MEV) (E>-5COMEV)

INNER JONE -TI++ : 0.0 X

(1.0 < L < 2.8)

TIME SPENT IN FLUX-FREE

HEGIONS* OF SPACE : 19.75 X

PERCENT OF TOTAL LIFE-

PERCENT OF TOTAL LIFE-

TIME SPENT IN HIGH-

INTENSITY REGIONS+ OF

VAN ALLEN BELTS : 68. 91 % 66.81 % OUTER ZONE -TO- :

67.29 X

(2.8 < L < 11.0)

EXTERNAL -TE- : 12.71 %

(L > 11.0)

TOTAL 100.00 %

PERCENT OF TOTAL DAILY

FLUX ACCUMULATED IN

HIGH-INTENSITY REGIONS:

*TIME IN INNER ZONE MAY BE SUBDIVIDED AS FOLLOWS:

OUTSIDE TRAPPING REGION :

(1.0 < L < 1.1)

INSIDE TRAPPING REGION :

(1.1 < 1 < 2.8)

# <1 PARTICLE/CH##2/SEC

+ >1.E5 EL/CM++2/SEC OR 1.E3 PR/CM++2/SEC

The manufacture manufact by Allert Land Land of the Control of

SAS-D (290)

CIRCULAR

INCLIMITION: 30 DEG

PERICEE: 35863 KM

APOGEE: 35863 KM

DECAY DATE: 1970. 0.

SAS-D (290)

CIRCULAR

INCLINATION: 30 DEG

PERIGEE: 35863 KM

APOGEE: 35863 KM

DECAY DATE: 1970. 0.

**** EXPOSURE ANALYSIS ****

. PERCENT OF TOTAL LIFETIME SPENT INSIDE AND .

. OUTSIDE THE TRAPPED-PARTICLE RADIATION BELT .

PROTONS-LOW PROTONS-HIGH ELECTRONS

(E)=100MEV) (E>5-00MEV) (E>-500MEV)

INNER ZONE -TI-+: 0.0 x

(1.0 < L < 2.8)

OUTER ZONE -TO- : 86.04 %

12.8 < L < 11.0)

EXTERNAL -TE- : 13.96 %

(L > 11.0)

TOTAL : 100-00 %

TIME SPENT IN FLUX-FREE REGIONS OF SPACE :

PERCENT OF TOTAL LIFE-

REGIONS# OF SPACE : 20.80 % 1

.80 % 100.00 % 17.02 %

PERCENT OF TOTAL LIFE-

TIME SPENT IN HIGH-

INTENSITY REGIONS+ OF

VAN ALLEN BELTS :

67.23 x 0.0 x 65.55 x

PERCENT OF TOTAL DAILY

FLUX ACCUMULATED IN

HIGH-INTENSITY REGIONS:

NS: 100.00 % 0.5 %

*TIME IN INNER ZONE MAY BE SUBDIVICED AS FOLLOWS:

OUTSIDE TRAPPING REGION : 0.0 %

(1.0 < L < 1.1)

INSIDE TRAPPING REGION : 0.0 -x ...

(1.1 < L < 2.8)

* <1 PARTICLE/CM ** 2/SEC

• >1.E5 EL/CM+#2/SEC OR 1.E3 PR/CM+#2/SEC

•

-11111

SAS-0 (310)

CIRCULAR

INCLIMATION: 29 DEG

PERICEE: 35863 KM

APOGEE: 35863 KM

DECAY DATE: 1970. 0.

SAS-D (310)

CIRCULAR

INCLINATION: 29 DEG

PERIGEE: 35863 KM

APOGES: 35863 FM

DECAY DATE: 1970. 0.

**** EXPOSURE ANALYSIS ****

· PERCENT OF TOTAL LIFETIME SPENT INSIDE AND ·

. OUTSIDE THE TRAPPED-PARTICLE RADIATION HELT .

PROTONS-LOW PROTONS-HIGH ELECTRONS

(E>-100MEV) (E>5-00MEV) (E>-500MEV)

INNER ZUNE -TI-+: 0.0

(1.0 < L < 2.8)

PERCENT OF TOTAL LIFE-

TIME SPENT IN FLUX-FREE

PERCENT OF TOTAL LIFE-

TIME SPENT IN HIGH-

INTENSITY REGIONS+ OF

REGIONS# OF SPACE: 17-44 X 100-00 X 12-61 X

DUTER LONT -TO- :

EXTERNAL -TE- : 7.08

(L > 11.01

TOTAL

1 100.00 X

VAN ALLEN BELTS :

. . .

PERCENT OF TOTAL CAILY

FLUX ACCUMULATED IN

HIGH-INTENSITY REGIONS: 100.00 % 0.0 % 99.73 %

TTIME IN INNER ZONE MAY BE SUBDIVIDED AS FOLLOWS:

OUTSIDE TRAPPING REGION : 0.0 %

(1.0 < L < 1.1)

INSIDE TRAPPING REGION : . 0.0. % ..

(1.1 < L < 2.5)

+ <1 PARTICLE/CH+2/SEC

+ >1.E5 EL/CH++2/SEC OR 1.E3 PR/CH++2/SEC

V W +

**************************************	TABLE			
	SAS-0-41103			
CIRCULAR	,			
INCLIMATION: .45 DEG.				
PER LEE: 35863.KK				
APOGEE: 35863 KM				
DECAY DATE: ,1970a Qa	DECAY DATE: 1970. 0			
**** EXPOSURE ANALYSIS ****	* PERCENT OF TOTAL LIFETIME SPENT INSIDE AND			
	#. QUTSIDE THE TRAPPED-PARTICLE RADIATION BELT			
PROJONS-LOW PROTONS-HIGH ELECTRONS	To the state of th			
(E)+LOOMEY) (E>5+GOMEY) (E>+GOMEY)	INNER ZONE -TI-0: 0.0 %			
PERCENT OF TOTAL LIFE-	(1.9 < 1 < 2.81			
	and the contraction of the contr			
TIME SPENT IN PLUX-PREE	OUTER 20NE -TO- : 72,29 %			
MEGIONS* OF SPACE: - 30.46 % 100.00 % 28.57 %	(2.8 < L < 11.0)			
PERCENT OF TOTAL LIFE-	EXTERNAL -TE- 1 27.71 %			
FIME SPENT IN HIGH-	(L > 11a0)			
ENTENSITY REGIONS+ OF	·			
VAN ALLEN BELTS 1 A6485 X DAD X 44418 X	TOTAL 3 100.00 X			
PERCENT OF TOTAL DAILY				
PLUX ACCUMULATED IN	TIME IN INNER ZONE MAY BE SUBDIVIDED AS FOLLOWS:			
HIGH-INTENSITY REGIONS: 99.99 % 0.0 % 99.44 %	angularing and and annual financial and an angular framework and an annual and an analysis of the second and a			
the the sales and the three a december of the sales and the sales are the sales and the sales are the sales and the sales are th	OUTSIDE TRAPPING REGION : 0.0 %			
	(100 < L < 101)			
	INSIDE TRAPPING REGION: 0.0 R			
***************************************	(1el < L < 2el)			
- > PARTICLE/CH+2/SEC				
+ >1.E5 EL/CH0+2/SEC OR 1.E3 PR/CH++2/SEC				

S. 39

έ.,

MAN AND ATTENDED

à

SAS-D (290)

CIRCULAR

INCLIMITION: 45 DEG

PERIGEE: 35863 KM

APOGEE: 35863 KM

DECAY DATE: 1970. 0.

**** EXPOSURE ANALYSIS ****

PROTONS-LOW PROTONS-HIGH ELECTRONS

(E>.100MEV) (E>5.00MEV) (E>.500MEV)

PERCENT OF TOTAL LIFE-

TIME SPENT IN FLUX-FREE

REGIUNS* OF SPACE : 31.09 % 100.00 % 28.99 %

PERCENT OF TOTAL LIVE-

TIME SPENT IN HIGH-

INTENSITY REGIONS+ OF

VAN ALLEN BELTS: 46.43 % 0.0 % 43.28 %

PERCENT OF TOTAL CAILY

FLUX ACCUMULATED IN

HIGH-INTENSITY REGIONS: 99.99 % 0.0 % 99.27 %

• <1 PARTICLE/CM 40 2/SEC

+ >1.E5 EL/CM**2/SEC DR 1.E3 PR/CM**2/SEC

5A5-F (290)

CIFCULAR

INCLINATION: 45 DEG

PERIGEE: 35863 FM

APRICEF: 35863 KM

DECAY DATE: 1970. 0.

* PERCENT OF TOTAL LIFETIME SPENT INSIDE AND ...

* DUTSIDE THE TRAPPED-PARTICLE GADIATION BELT *

INNER ZONE -TI-+: 0.0 x

(1.0 < L < 2.8)

OUTER 43NF -TO- : 71.87 %

(2.8 < L < 11.0)

EXTERNAL -*F- : 28.13 x

(L > 11.0)

TOTAL : 100.00 %

*TIME IN INNER ZINE MAY BE SUPETIVIDED AS FOLLOWS:

DUTSICE TRAPPING REGION : 0.0 %

11.0 < L < 1.11

INSIDE TRAPPING REGION : 0.0 x

(1.1 < L < 2.8)

White I with the train

SAS-0 (310)

CIRCULAR

INCLINATION: 45 DEG

PERIGEE: 35863 KM

APOGES: 35863 KM

DECAY DATE: 1970. 0.

SAS-0 (310)

CIRCULAR

INCLINATION: 45 07G

PERIGEFE 35863 KM

APCGEE: 35863 KM

DECAY DATE: 1970. 0.

**** EXPOSURE ANALYSIS ****

. PERCENT OF TOTAL LIFETIME SPENT INSIDE AND .

• DUTSIDE THE TRAPPEC-PARTICLE RADIATION DELT *

PROTONS-LOW PROTONS-HIGH ELECTRONS

(E>-100MEV) (E>5-00MEV) (E>-500MEV)

INNER JONE -TI-+ : 0.0 T

72.92 %

(1.0 < L < 2.8)

OUTER LONE -TD- :

PERCENT OF TOTAL LIFE-

TIME SPENT IN FLUX-FREE

REGIONS* OF SPACE : 29.83 % 100.00 % 28.15 %

(2.8 < L < 11.0)

EXTERNAL

PERCENT OF TOTAL LIFE-

TIME SPENT IN HIGH-

INTENSITY REGIONS+ OF

VAN ALLEN BELTS : 46.22 % 0.0 % 43.28 %

(L > 11.0)

TOTAL : 100.00 %

PERCENT OF TOTAL DAILY

FLUX ACCUMULATED IN

HIGH-INTENSITY REGIONS: 99.99 % 0.0 % 99.31 %

*TIME IN INNER ZONE MAY BC SUBDIVIDED AS FOLLOWS:

GUTSIDE TRAPPING REGION : '0.0 %

(1.0 < L < 1.1)

INSIDE TRAPPING REGION: . .....

(1.1. < L < 2.8).

+ <1 PARTICLE/CM ++2/SEC

+ >1.E5 EL/CH++2/SEC OR 1.E3 PR/CH++2/SEC

*;* .

1

1

· •

S/ 5-D (110)

- ELLIPTCL

INCLINATION: 0 DEG

PERIGEE: 27952 KW

POGEE: 43615 FM

DECAY DATE: 1970. 0.

545-0 (110)

ELI IPTCL

INCLINATION: 9 DEG

PERISFE: 27952 KM

APPGEE: 4361F KM

DECAY DATE: 1970. 9.

**** EIPY JOVE SOUSCORS ****

* PERCENT OF TOTAL LIFETIME SPENT INSIDE AND *

* CUTSIDE THE TRAPPED-PARTICLE PAGIATION BELT *

PROTONS-LOW PROTONS-HIGH ELECTRONS

(E>.1004EV) (E>5.00MEV) (E>.500MEV)

THNER ZONE -TI-# : 0.0 %

(1.0 < L < 2.9)

12.5 < L < 11.01

DUTER ZONE -TO- :

PERCENT OF TOTAL LIFE-

TIME SPENT IN FLUX-FREE

PERCENT OF TOTAL LIFE-

TIME SPENT IN HIGH-

PEGIONS* OF SPACE : 0.0 % 100.00 % 0.0 %

EXTERNAL -TE- : 0.83 %

(L > 11.0)

INTENSITY REGIONS+ OF

VAN ALLEN BELTE : 100.00 % 0.0 % 100.00 %

TOTAL : 100.00 %

PERCENT OF TOTAL DAILY

FLUX ACCUMULATED IN

HIGH-INTENSITY REGIONS: 100.00 % 0.0 % 100.00 %

*TIME IN INNER ZONE MAY BE SUBDIVIDED AS FOLLOWS:

OUTSIDE TRAPPING REGION : 0.0 %

(1.0 < L < 1.1)

INSIDE TRAPPING REGION : 0.0 %

(1.1 < L < 2.8)

# CE PAPTICLE/CH##2/SEC

+ >1.65 EL/CM+*2/SEC OR 1.63 PR/CM+*2/SEC

10051 G-242

FLLIPTEL

. THELINATION: O DEG

DEDISEE: DESKE KM

ABOUGHT STATE KM

DECKY DATE: 1970. 0.

POW FXP-1919E ANN YSTS ARES

PERFORM PROTENS-HIGH ELECTRONS

(F>-100MEV) (E>4.00MEV) (E>-400MEV)

PERCENT OF TOTAL LIFE-

TIME SPENT IN FLUX-FFFE

PESTONS* OF SPACE :

0.0 ¥ 100.00 ¥ 0.0 ¥

PERCENT OF TOTAL LIFE-

TIME TOENT IN HIGH-

INTENSITY PEGIONS+ OF

VAN ALLEN BELTS :

100.60 x 0.0 x 100.00 x

PERCENT OF TOTAL DILY

LFIN TECHNIFOLED IN

HIGH-INTENSITY REGICNS: 100.00 % 0.0 % 100.00 %

* <1 PAPTICLE/CM**2/SEC

+ >1.F5 EL/CM#+2/SEC OR 1.E3 PR/CM++2/SEC

5A'-0 (290)

ELI TOTCL

INFLINATION: 0 DES

PETIGFE: 27952 KM

APRISEET ABOUT KM

DECAY DATE: 1970. 0.

* PERCENT OF TOTAL LIFETIME SPENT INSIDE AND *

* CUISIDE THE TO PPED-POPTICLE PADIATION WELT &

INNER 701E -TI-+ : 0.0 1

(1.7 < L < 2.3)

NUTER ZENE -TO- 1 49-17 %

(2.8 < L < 11.0)

EXTERNAL -TE- : 0.83 %

(L > 11.0)

TOTAL : 100.00 %

ATTHE IN THINEP ROMP MAY BE SUBDIVIDED AS TOLLOWS!

OUTSIDE TRAPPING REGION : 0.0 1

(1.0 < L < 1.1)

INSIDE TPAPPING REGION : 0.0 %

(1.1 < 1 < 2.9)

, ( )

SAS-0 (310)

FLLIPTCL

INCLIMITION: 0 DEG

PERIGIE: 27952 KM

APOGEE: 43615 KM

OFCAY DATE: 1970. 0.

SAS-0 (310)

ELL IPTCL

INCLINATION: 0 DEG

PERIGEE: 27952 KM

APOGEE: 43615 KM

DECAY CATE: 1970. 0.

**** LAPCEURE ANALYSIS ****

. PERCENT OF TOTAL LIFETIME SPENT INSIDE AND .

* OUTSIDE THE TRAPPED-PARTICLE RADIATION SELT *

PATENS-LIM PROTONS-HIGH ELECTRONS

(E>-100MEV) (L>5-00MEV) (E>-500MEV)

INNER ZUNE -TI-# : 0.0 %

(1.0 < 4 < 2.6)

TIME SPENT IN FLUX-FHEE

TIPE ST. TO IN TECHNICAL

PENJENT OF TOTAL LIFE-

REGIONS OF SPACE : 0.0 X 100.00 % 0.0 %

PERCENT OF SUTAL LIFE-

TIME SPENT IN HIGH-

INTLASTTY RIGIDAS+ OF

VAN ALLEN BELTS: 100.00 % J.O % 100.00 %

GUTER 40NE -TO- : 99.17 %

(2.9 < L < 11.0)

FATFONAL -TE- : 0.83 %

(L > 11.7)

TUTAL : 100.00 %

PERCENT OF TOTAL DAILY

FLUX ACCUMULATED IN

HIGH-INTENSITY REGIONS: 100.00 % 100.00 %

TIME IN INNER ZONE HAY BE SUBDIVIDED AS FULLOWS:

CUTSIDE TRAPPING REGION : 0.0 %

(1.0 < L < 1.1)

INSIDE TRAPPING REGION : 0.0 %

(1-1 < L < 2-8)

. CI PARTICLE/CH+2/SEC

+ >1.25 EL/C4+#2/SEC OH 1.23 PR/CH##2/SEC

## C (110) SAS-D (110) . ELLIPTCL ELLITTCL INCLIPATION: 30 DEG INCLINATION: 30 DEG PERTOLE: 27952 KM PERIGEE: 27952 KM APRICE 43615 KM APCGEE: ABAIR KM DECAY DATE: 1970. 9. DECAY DATE: 1970. D. **** EXPOSURE ANALYSIS **** * PERCENT OF TOTAL LIFETIME SPENT INSIDE AND * . CUTSIDE THE TRAPPED-PARTICLE RADIATION BELT . PECTONS-LOW PROTONS-HIGH ELECTRONS " (#>+100MEY) (#>+100MEY) (#>+100MEY) (#>+100MEY) INNER SOME -TI-+ : 2.2 4 (1.0 < L < 2.6) PERCENT OF TOTAL LIFE-TIME SPENT IN FLUX-FEER CUTEP ZONE -TO- : REGIONS+ OF SPACE : 19.12 9 1 00 - 00 X 13.65 ¥ (2.8 < L < 11.0) PERCENT OF TOTAL LIFE-EXTERNAL -TE- : (L > 11.01 INTENSITY PEGIONS+ OF TOTAL 1 100.00 * 61.77 4 PERCENT OF TOTAL DAILY FLUX ACCUMULATED IN TIME IN INNEP ZONE MAY OF SUBDIVITIED AS FOLLOWS: F GO.OCI SENDING TERMITHIEM PUTSIDE TEAPPING REGION : 0.0 * (1.0 < L < 1.1) INSIDE TRAPPING REGION : 0.0 % (1.1 < L < 2.8) * <1 PARTICLE/CH**2/SEC + >1.E5 EL/CH++2/SEC OR 1.E3 PR/CH++2/SEC

565-0 (290)

FLLIPTCL

INCLINATION: 30 DEG

PERTSEE: 27952 KM

APRICET A 3615 KM

DECAY DATES 1970. 0.

CAS-D (290)

FLLTPTCL

INCLINATION: 30 DEG

PERISEE: 27952 KM

APDGEE: A3615 KM

DECAY DATE: 1970. 0.

***** EXPOSISE ANALYSIS SEES	* PEPCENT OF TOTAL LIFETIME SPENT INSIDE AND *
	. OUTSIDE THE TRAPPED-PARTICLE PADIATION BELT .
PROTONS-LOW PROTONS-HIGH ELECTRONS	
	INNEP ZONE -TI-+ : 0.0 %
PEFCENT OF TOTAL LIFE-	(1.0 < L < 2.8)
TIME SPENT IN FLUX-FREE	OUTER ZONE -TO- : 92.08 %
REGINS* OF SPACE : 19.96 % 100.00 % 14.08 %	(2.8 < ; < 11.0)
PEGCENT-OF-10TAL-Life	EXTERNAL -TE- 1 7.92 %
7146-5FENT-IN-HIGH	
INTENSITY-PEGIONS+-OF	TOTAL : 100.00 %
PERCENT OF TOTAL DAILY	
FLUX ACCUMULATED IN	*TIME IN INNER ZONE MAY RE SUBDIVIDED AS FOLLOWS:
HIGH-INTENSITY REGICNS: 100.00 % 0.0 % 99.69 %	
	OUTSIDE TRAPPING REGION : 0.0 %
	(1.0 < L < 1.1)
+ <1 PARTICLE/CM++2/SEC	
+ >1.E5 EL/CM**2/SEC OP 1.E3 PR/CM**2/SEC	

SAS-D (310)

ELL IPTCL

INCLIMATION: 29 DEG

PERIGEE: 27952 KM

APOGEE: 43615 KM

+ >1.E5 EL/CH++2/SEC OR 1.E3 PR/CH++2/SEC

DECAY DATE: 1970. 0.

5A5-0 (310)

ELL IPTCL

INCLINATION: 29 DEG

PERIGRE: 27952 XM

APDGEE: 43615 KM

DECAY DATE: 1970. 0.

		-	<del></del> ,	
**** EX	POSURE ANALYSIS	5_++++		• PERCENT OF TOTAL LIFETIME SPENT INSIDE AND •
		•		• OUTSIDE THE TRAPPED-PARTICLE RADIATION BELT •
•	PROTONS-LOW I	PROTONS—HIGH	ELECTRONS	
	[ E>+100MEA ]	(E>5.00MEV)	(E>.500MEV)	INNER ZONE -TI-+ : 0.0 %
PERCENT OF TOTAL LIFE-	<del>-</del> .			(1.0 < L < 2.8)
TIME SPENT IN FLUX-FREE		-		OUTER ZONE -TO- : 99.17 %
REGIONS+ OF SPACE :	7.98 %	100.00 X	0.0 x	(2.8 < L < 11.0)
PERCENT OF TOTAL LIFE-				EXTERNAL -TE- : 0.63 %
TIME SPENT IN HIGH				(L > 11+0)
INTENSITY REGIONS+ OF				
VAN ALLEN BELTS :	,64.71 X	0.Q. X ,	62.39_X	TOTAL : 100-00 %
PERCENT OF TOTAL DAILY			a - wa	
PLUX ACCUMULATED IN				STIME IN INNER ZONE MAY BE SUBDIVIDED AS FOLLOWS:
HIGH-INTENSITY REGIONS:				The second section of the control of the control of the control of the section of the section of the control of
n Africanticage				DUTSIDE TRAPPING REGION: 0.0 X
				(1.0 < L < 1.1)
				INSIDE TRAPPING REGION 1 0.0 %
**************	*******	• • • • • • • • • • • • • • • • • • • •	******	(1.01 < L < 2.08)
• <1 PARTICLE/	'CH#2/SEC			

TAOLE	TABLE 90
\$A (110)	SAS-D (110)
ELLIPTOL	ELLIPTEL
INCLINATION: 45 DEG	INCLINATIONS DEG
PERIGEE: 27952 KM	PERIGEE: 27952 KH
AP00000: 43015 KK	APOGEE: 43615 KM
DECAY DATE: 1970. 0.	
der die er under voor der der verpfelijkende verproper aanspronklichte geschappen van de verproper van de ve	
#### EXPOSURE ANALYSTS ####	* PERCENT OF TOTAL LIPETIME SPENT INSIDE AND
	* OUTSIDE THE TPAPPED-PARTICLE RADIATION BELT *
PROTONS-LOW PROTONS-HIGH ELECTRONS -	
(E>.100MEV) (E>3.00MEV) (E>.500MEV)	THE ZINE - TIMET TO
PERCENT OF TOTAL LIFE-	11.0 < L < 2.87
The same of the sa	
TIME SPENT IN FLUX-FREE	OUTER ZONE -TO+ : 72.50 %
REGIONS* OF SPACE : 31.30 % 100.00 % 28.78 %	(2.8 < L < 11.0)
PERCENT OF TOTAL LIFE	
TINE SPENT IN HIGH-	
INTERSITY REGIONS+ OF	
VAN ALLEN DELTO 1	TOTAL : 100.00 %
	ar and the sales of the section, excellent one are a section of the section of th
PERCENT OF TOTAL DAILY	, nannasanna sa, manuna mpamata ng matra sa rang rang kalanan, makagah taki 1 dah. Banah, dalihiri najar — ahkam 1911 - a ta di daki at
FLUX ACCUMULATED IN	STIME IN INNER EDNE WAY BE SUBDIVIOUS AS FOLLOWS:
HIGH-INTENSITY REGIONS: 100-104 # 810 # 99-36 #	
	OUTSIDE TRAPPING REGION : 0.0 %
	(1.0 < L < 1.1)
	INDIDE TRAPPING REGION : 0:0 2
• <1 PARTICLE/CH++2/SEC	

. . . . .

:/* ***

.

545-D (250) · 545-D (290) FLL TOTCL ELLIPTCL INCLINATION: AS DEG INCLINATION: 45 DEG DEDIGEE: 27942 KM PEFIGEE: 27952 KM - 4995EE+- 43615 KM **APCGEE: 43615 KM** DECAY DATE: 1970. 0. DECAY DATE: 1970. Q. **** FXPOFURE *NALYSIS **** * PERCENT OF TOTAL LIFETIME SPENT INSIDE AND * * OUTSIDE THE TRAPPED-BARTICLE PADIATION BELT # PERTENS-LOW PROTONS-HIGH ELECTRONS " "(E>1004E4) (E>5.500ME4) (E>.500ME4) INNER FONE -TI-+ : 0.0 % (1.0 < t < 2.8) PERCENT OF TOTAL LIFE-TIME SPENT IN FLUX-FREE DUTER ZONE -TO- : 72.08 X 12.8 < L < 11.0) RESCENT OF TOTAL LIFE- ----EXTERNAL INTENSITY PEGIONS+ OF ---TOTAL 100.00 % PERCENT OF TOTAL DAILY FLUX ACCUMULATED IN TIME IN INNER ZONE MAY BE SUBDIVIDED AS FOLLOWS: HIGH-INTENSITY REGICNS: 100.CO T 0.0 % OUTSIDE TRAPPING REGION T (1.0 < L < 1.1) " INSIDE " TRAPPING REGION 1" 0.0 % ..... · (1.1 < L < 2.6)

* <1 PARTICLE/CM**2/SEC

SAS-D (310)

ELLIPTCL

INCLINATION: 45 DEG

PERIGEE: 27952 KM

APOGEE: 43615 KN

DECAY DATE: 1970. 0.

SAS-D (310)

ELL IPTCL

INCLINATION: 45 DEG

PERIGEE: 27952 KM

APOGEE: 43615 KM

DECAY DATE: 1970. 0.

**** EXPOSURE ANALYSIS ****

* PERCENT OF TOTAL LIFETIME SPENT INSIDE AND *

* OUTSIDE THE TRAPPED-PARTICLE RADIATION BELT *

PROTONS-LOW PROTONS-HIGH ELECTRONS

(D.100MEY) (E>5.00MEY) (E>.500MEY)

INNER ZONE -TI-# :

PERCENT OF TOTAL LIFE-

TIME SPENT IN FLUX-FREE

REGIONS+ OF SPACE :

PERCENT OF TOTAL LIFE-

TIME SPENT IN HIGH-

INTENSITY REGIONS+ OF

VAN ALLEN BELTS :

(1.0 < L < 2.6)

OUTER LONE -TO- :

(2.8 < L < 11.0)

EXTERNAL

(L > 11.0)

TOTAL 100.00 X

PERCENT OF TOTAL DAILY

FLUX ACCUMULATED IN

HIGH-INTENSITY REGIONS:

TTIME IN INNER ZONE MAY BE SUBDIVIDED AS FOLLOWS:

OUTSIDE TRAPPING REGION :

(1.0 < L < 1.1)

INSIDE TRAPPING REGION :

(1.1 < L < 2.8)

# <1 PARTICLE/CH #2/SEC

+ >1.E5 EL/CM##2/SEC OR 1.E3 PR/CM##2/SEC

## TABLE ARRANGEMENT

Computer Produced Output Tables for Crbital Flux Integrations.

Standard Production Runs with UNIFLUX Program.



Figure 1: Set of tables produced for every trajectory considered in a trapped particle radiation study.

## PLOT ARRANGEMENT

Computer Produced Plots for Orbital Flux Integrations. Standard Production Runs with UNIFLUX Program.



Set of plots produced for every trajectory considered in a trapped particle radiation study.





· 重好的思想一个一次的第三人称形式 的人,只是不好我们就是人们是不够的一种的人

٨.

では、これでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mmのでは、10mm



14 14

からない 重要ないのはないないませんをしている まってって

CONTACT TO

The second of th

3



46.5

į

14.

THE STATE OF THE S

是一个人,我们就是是我们的时候,我们也不会有一个人的时候,我们就是我们的人,也不是一个人的,也是一个人的,我们也是这个人的人的,我们也是我们的人,也是是我们的人



THE REPORT OF THE PROPERTY OF

AND THE PROPERTY OF STREET



ないないないないないないないないまです。 ましまする













THE RESERVE WITH THE PROPERTY OF THE PARTY OF THE PROPERTY OF THE PARTY OF THE PART





The State of the second of the

THE WIND WITH WARNED WITH WARREN



·沙文学、在1人山小山上等级。

and the second second and the second second







THE POST OF THE PROPERTY OF TH





一次是一方子不可以不可以不知知此的一次多数多量的







かいというというなかないないというというないないないないないというとなる



大きななる 一大大学 ないかいかん 大きなないのかない とって

MAIN





是是一个人的一个人的一个人的一个人

11/1/2/11

美世二 多公三

See the self-time the second section in the second second



我我們我有機不可以發展了 人名英格兰

大人一年一一一一一一一年一年一人人











THE PROPERTY OF THE PROPERTY O



The state of the s



·Z



MANNING WISH WAY CONTRACTOR



TO COMPANY THE STATE OF THE STA























THE PROPERTY OF THE PROPERTY O









一、「ない」とは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これの









A the same and and the same as a second state of the



いいかい かいかいかい かんかい かいかい カー・アン・アン 最かから 国に教験をある とない あんかい というこう しゅうきん はいませき







THE COLOR CHAIR TO COLOR COLOR







tellin . . .

ı

The state of the s





1

A CONTRACTOR OF THE PROPERTY O



ì

•

.

.



For the first of the Committee of the Control of th





The second of th









はないない というないと 松のはなる 大変をいかって



大大学の大学の大学の大学の大学の大学の大学の大学の









•

,



And the state of t







The second of th



i



 $\mathfrak{t} = \{ \cdot, \cdot \mid \epsilon \in \mathcal{T} \mid \epsilon \in$ 





And in this content of the interest of the participation of the second



ESID)

FUL MED

DEC 28 1973