Introduction to Data Structures

The Search Problem

- Find items with keys matching a given search key
 - Given an array A, containing n keys, and a search key x, find the index i such as x=A[i]
 - As in the case of sorting, a key could be part of a large record.

example of a record

Key	other data
	i

Hashing

- Aimed towards faster search performance
- Search techniques covered
 - Linear/sequential search
 - Binary search
- When log(n) is just too big...
 - air traffic control
 - packet routing
- What hashing does
 - Storage location depends on the item

Hashing: Usefulness

- Some other examples where hashing helps
 - Click count of webpages
 - Number of connections from a url
 - Reservations in a given flight
 - Unique terms from a book
 - List of visited cells/nodes in an application
- Basic idea: item itself determines (narrows down) where the element can be found
 - H:Item domain->set of storage locations
 - i=h(k) is where the item is present
 - (Not always true, but provides starting point)

The Search Problem

- Find items with keys matching a given search key
 - Given an array A, containing n keys, and a search key x, find the index i such as x=A[i]
 - As in the case of sorting, a key could be part of a large record.

example of a record

Key	other data
	i

Direct Addressing

Assumptions:

- Key values are distinct
- Each key is drawn from a universe U = {0, 1, . . . , m 1}

Idea:

Store the items in an array, indexed by keys

Direct-address table representation:

- An array T[0 . . . m 1]
- Each slot, or position, in T corresponds to a key in U
- For an element x with key k, a pointer to x (or x itself) will be placed in location T[k]
- If there are no elements with key k in the set, T[k] is empty, represented by NIL

Direct Addressing (cont'd)

(insert/delete in O(1) time)

Operations

Alg.: DIRECT-ADDRESS-SEARCH(T, k) return T[k]

Alg.: DIRECT-ADDRESS-INSERT(T, x) $T[key[x]] \leftarrow x$

Alg.: DIRECT-ADDRESS-DELETE(T, x) $T[key[x]] \leftarrow NIL$

Running time for these operations: O(1)

Handling Collisions

- We will review the following methods:
 - Open addressing
 - Linear probing
 - Quadratic probing
 - Double hashing
 - Chaining

Handling Collisions Using Chaining

Idea:

Put all elements that hash to the same slot into a

 Slot j contains a pointer to the head of the list of all elements that hash to j

Analysis of Hashing with Chaining: Worst Case

 How long does it take to search for an element with a given key?

Worst case:

- All n keys hash to the same slot
- Worst-case time to search is
 Θ(n), plus time to compute the hash function
- Expected time?

Successful Search

 $X_{ij} = I\{x_i \text{ and } x_j \text{ hash to same bucket}\}$

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\right]$$

$$=\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}E\left[X_{ij}\right]\right) \text{ (by linearity of expectation)}$$

$$=\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}\frac{1}{m}\right)$$

$$=1+\frac{1}{nm}\sum_{i=1}^{n}(n-i)$$

$$=1+\frac{1}{nm}\left(\sum_{i=1}^{n}n-\sum_{i=1}^{n}i\right)$$

$$=1+\frac{1}{nm}\left(n^{2}-\frac{n(n+1)}{2}\right) \text{ (by equation (A.1))}$$

$$=1+\frac{n-1}{2m}$$

$$=1+\frac{\alpha}{2}-\frac{\alpha}{2n}.$$

Successful Search

Successful search: $\Theta(1 + \frac{a}{2}) = \Theta(1 + a)$ time on the average (search half of a list of length a plus O(1) time to compute h(k))

Analysis of Search in Hash Tables

- If m (# of slots) is proportional to n (# of elements in the table):
- n = O(m)
- $\alpha = n/m = O(m)/m = O(1)$
- ⇒ Searching takes constant time on average