

Language Model & Distributed Representation (3)

Chen Li cli@xjtu.edu.cn 2024-10

Outlines

- 1. NNLM
- 2. CBOW
- 3. Skip-gram
- 4. Hierarchical softmax
 - & Negative sampling
- 5. GloVe

- GloVe: Global Vectors for Word Representation
 - 1. Constructing co-ocurrence matrix from corpus

with decreasing weighting (The further the two words are, the less weight they have in the total count)

$$decay = 1/d$$

2. Constructing approximations between word vector and co-occurrence matrix

$$w_i^T ilde{w_j} + b_i + ilde{b_j} = \log(X_{ij})$$

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

Pennington J, Socher R, Manning C D. Glove: Global vectors for word representation[C]//Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014: 1532-1543.

- GloVe: Global Vectors for Word Representation
 - 1. Constructing co-ocurrence matrix from corpus

with decreasing weighting (The further the two words are, the less weight they have in the total count)

$$decay = 1/d$$

2. Constructing approximations between word vector and co-occurrence matrix

$$w_i^T ilde{w_j} + b_i + ilde{b_j} = \log(X_{ij})$$

3. Constructing Loss function and training:

- GloVe: Global Vectors for Word Representation
 - 1. Constructing co-ocurrence matrix from corpus

with decreasing weighting (The further the two words are, the less weight they have in the total count)

$$decay = 1/d$$

2. Constructing approximations between word vector and co-occurrence matrix

$$w_i^T ilde{w_j} + b_i + ilde{b_j} = \log(X_{ij})$$

3. Constructing Loss function and training:

$$J = \sum_{i,j=1}^V f(X_{ij}) (w_i^T ilde{w_j} + b_i + ilde{b_j} - \log(X_{ij}))^2$$

- GloVe: Global Vectors for Word Representation
 - 3. Constructing Loss function and training:

$$J = \sum_{i,j=1}^V f(X_{ij}) (w_i^T ilde{w_j} + b_i + ilde{b_j} - \log(X_{ij}))^2$$

where
$$f(X_{ij}) = \begin{cases} (x/x_{max})^{\alpha} & \text{if } x < x_{max} \\ 1 & \text{otherwise} \end{cases}$$

Pennington J, Socher R, Manning C D. Glove: Global vectors for word representation[C]//Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014: 1532-1543.

- 共采用了三个指标: 语义准确度, 语法准确度以及总体准确度;
- Vector Dimension在300时能达到最佳;
- · 而context Windows size大致在6到10之间。

Pennington J, Socher R, Manning C D. Glove: Global vectors for word representation[C]//Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014: 1532-1543.

Q & A

