2025 春季学期微积分 B 期末考试(回忆版)

声明:卷子为回忆版,不保证选项和题目完全一样,但不影响答案和做题

回忆 (按 Unicode 编码排序)

2000-Hours, Fun10165, Hurricane, fruly ZERO, syhanjin, yasumi, 卡其米, 歪比巴卜, 船, 钱浮, ^···

排版: syhanjin

一、选择题(每题2分,共10分)

(1). 隐函数 z = f(x, y) 由方程 F(x - z, y - 2z) = 0 确定,则().

$$A. \frac{\partial z}{\partial x} + 2 \frac{\partial z}{\partial y} = 1 \qquad B. \frac{\partial z}{\partial x} - 2 \frac{\partial z}{\partial y} = 1 \qquad C. -\frac{\partial z}{\partial x} + 2 \frac{\partial z}{\partial y} = 1 \qquad D. -\frac{\partial z}{\partial x} - 2 \frac{\partial z}{\partial y} = 1$$

(2).
$$C: \begin{cases} x-y+z &= 2 \\ x^2+y^2 &= 1 \end{cases}$$
,从 z 轴正向看为顺时针, $\oint_C (z-y) \mathrm{d} x + (x-z) \mathrm{d} y + (x-y) \mathrm{d} z = ($).

$$A. 2\pi$$
 $B. -2\pi$ $C. 4\pi$ $D. -4\pi$

$$(3). \ C: rac{x^2}{a^2} + rac{y^2}{b^2} = 1, \oint_C x \mathrm{d}y - y \mathrm{d}x \ ().$$

A. 与 C 的方向无关,与 a,b 的大小有关 B.与 C 的方向无关,与 a,b 的大小无关

C. 与 C 的方向有关,与 a,b 的大小有关 D. 与 C 的方向有关,与 a,b 的大小无关

(4). P(x,y), Q(x,y) 为定义在复(多)连通区域 G 上的可微函数,下列说法与另外三项不等价的是(

$$A$$
. 在 G 上有 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$

$$B.\int_{L}P\mathrm{d}x+Q\mathrm{d}y$$
 与路径无关

$$C.\,G$$
 上存在函数 $u(x,y)$ 的全微分 $\mathrm{d}u=P\mathrm{d}x+Q\mathrm{d}y$ $D.$ 对于任意闭合回路 C 都有 $\oint_c P\mathrm{d}x+Q\mathrm{d}y=0$

(5).
$$a_n < bn$$
, 且 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 均收敛,则 " $\sum_{n=1}^{\infty} a_n$ 绝对收敛" 是 " $\sum_{n=1}^{\infty} b_n$ 绝对收敛" 的 ().

A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件

二、填空题(每题2分,共10分)

(1).
$$u = (1 - xz - y^2) \arctan xyz$$
, $\nabla \cdot (\nabla \times (\nabla u)) = \underline{\qquad}$.

(2). 曲线
$$L: x = e^t \cos t, y = e^t \sin t, z = e^t (0 \le t \le 2), \ \int_L \frac{\mathrm{d}s}{x^2 + y^2 + z^2} = \underline{\hspace{1cm}}.$$

(3). 曲面 $1 = z \cos xy$ 在 (0,0,1) 的切平面方程为 . .

$$(4). \ f(x) = egin{cases} 2, & 0 \leq x < rac{\pi}{2} \ x^2, & rac{\pi}{2} \leq x < \pi \end{cases}$$
的周期为 2π 的余弦级数的和函数为 $S(x)$,则 $S(\pi) =$ _____.

(5).
$$\Sigma$$
 为 $z = \sqrt{x^2 + y^2}$ 被 $z = 1$ 所截的曲面(不包括顶面的圆), $\iint_{\Sigma} \frac{(x + y + z + 1)^2}{\sqrt{x^2 + y^2}} dS =$ ______.

三 (每小题 5 分, 共 10 分)

(1) 设 $z = f(y^3, e^{2x} \cos y)$, z 有一阶连续偏导, $f'(0, e^2) = 1$,求 d $z|_{x=1,y=0}$.
(2) 判断级数 $\sum_{n=2}^{\infty} \frac{(-1)^n \ln^2 n}{n^2}$ 的敛散性(若收敛,请指出是绝对收敛还是条件收敛),再说明理由。

四 (6 分) 将 $\arctan x^2$ 展开为 x 的幂级数,并指出收敛域.

五 (6分)
$$L: y=1-|x|$$
 从 $(-1,0)$ 到 $(1,0)$,求 $\int_L xy dx + x^2 dy$.

七(4 分)设 f(x,y,z) 在 $\Omega = \{(x,y,z)|x^2+y^2+z^2 \leq 1\}$ 上具有连续的一阶偏导,且在边界上为零。M 为 $\sqrt{(\frac{\partial f}{\partial x})^2+(\frac{\partial f}{\partial y})^2+(\frac{\partial f}{\partial z})^2}$ 在 Ω 上的最大值。证明:

$$(1). \iiint_{\Omega} \left(3f(x,y,z) + x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} \right) \mathrm{d}x \mathrm{d}y \mathrm{d}z = 0.$$

$$(2).\left|\iiint_{\Omega}f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z
ight|\leqrac{\pi}{3}M.$$