	MCQ 19MA201 UNIT II			
	Prepared by Vinaya Acharya			
1)	$xy \frac{dy}{dx} + 2 x^3 y \frac{d^2 y}{dx^2} = 0$ is a differential equation of order (a) 1 (b) 2 (c) 3 (d) 4			
2)	$\frac{dy}{dx} + \sin(x + 2y) = 0 \text{ is a differential equation of order}.$ (a) 1 (b) 2 (c) 3 (d) 4			
3)	$xy\left(\frac{dy}{dx}\right)^3 + 2 x^3 y \frac{d^2 y}{dx^2} = 0$ is a differential equation of order (a) 2 (b) 1 (c) 3 (d) 4			
4)	The differential equation $\frac{dy}{dx} + y\left(\frac{d^3y}{dx^3}\right) = 7 xy$ is			
5)	The differential equation $\frac{dy}{dx} + (4 x)^2 = 9 xy$ is			
6)	The differential equation $\frac{dy}{dx} + \left(\frac{dy}{dx}\right)^4 = y$ is			

7)	The differential equation $p^3 + 2xp^2 - y^2p^2 - 2xy^2p = 0$ is					
	(a) linear					
	(b) non-linear ,solvable for $P = \frac{dy}{dx}$					
	(c) non-linear , solvable for x (d) of order 3					
8)	The differential equation $\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$ is					
	(a) linear(b) exact(c) Bernoulli's equation(d) non -linear					
9)	The differential equation $\frac{dy}{dx} + (5 y) = x^4 y^7$ is					
	(a) linear(b) exact(c) Bernoulli's equation(d) of order 2					
10)	The differential equation $2 x^3 y \frac{dx}{dy} + \left(\frac{x^4}{1-y}\right) = x^6 y^7$ is					
	(a) linear(b) exact(c) Bernoulli's equation(d) of order 2					
11)	The differential equation 5 $xy \frac{dy}{dx} + \left(\frac{y^2}{x}\right) = x^4 y^3$ is					
	(a) linear(b) exact(c) Bernoulli's equation(d) of degree 2					
12)	The differential equation $6 \frac{dy}{dx} + (y) = 8$ is					
	(a) linear(b) exact(c) Bernoulli's equation(d) of order 2					

13)	The differential equation $y - 2px = \tan^{-1}(xp^2)$ is
	(a) linear
	(b) solvable for $p = \frac{dy}{dx}$
	(c) solvable for x (d) solvable for y
14)	The differential equation $y = 2 px + y^2 p^3$ is
	(a) linear
	(b) solvable for $p = \frac{dy}{dx}$
	(c) solvable for x (d)solvable for y
15)	The differential equation $p = \log(px - y)$ is
	(a) Clairaut's equation (b) Bernoulli's equation
	(c) exact (d)solvable for y
16)	The singular solution of $y - p^2 = px$ is
	(a) $y = \frac{x^2}{8}$
	(b) $y = -\frac{x^2}{4}$
	4
	(c) $y = \frac{x^2}{4}$
	T
	(d) $y = -\frac{x^2}{8}$
17)	The general solution of $p = \log(px - y)$ is
	(a) $y = cx + e^x$
	$(b) y = cx + e^c$
	(c) $y = cx - e^c$
	$(d) \ y = cx - e^x$
18)	The singular solution of $p = \log(px - y)$ is
	(a) $y = x + \log x$
	(b) $y = x \log x$

(d)
$$y = x \log x - x$$

The differential equation Pdx + Qdy = 0 is exact if _____

(a)
$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$$

(b)
$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial x}$$

(c)
$$\frac{\partial P}{\partial x} = \frac{-\partial Q}{\partial y}$$

(d)
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

The solution of exact differential equation N(x, y)dx + M(x, y)dy = 0 is _____

(a)
$$\int M(x,y)dx + \int N(y)dy = c$$

(b)
$$\int N(x,y)dx + \int M(y)dy = c$$

(c)
$$\int M(x)dx + \int N(y)dy = c$$

(d)
$$\int M(x,y)dx + \int N(x,y)dy = c$$

21) When a resistance R ohms is connected in series with an inductance L henries with an e.m.f E volts, the current i amperes at time t is given by

(a)
$$L\frac{di}{dt} + iE = R$$

(b)
$$L\frac{di}{dt} + iR = E$$

(c)
$$\frac{di}{dt} + iE = L$$

(d)
$$\frac{di}{dt} + iE = R$$

Solution of $5\frac{di}{dt} + i = t$ is _____

(a)
$$ie^{\left(\frac{t}{5}\right)} = 5te^{\left(\frac{t}{5}\right)} - 25e^{\left(\frac{t}{5}\right)} + c$$

(b)
$$ie^{\left(-\frac{t}{5}\right)} = 5te^{-\left(\frac{t}{5}\right)} - 25e^{-\left(\frac{t}{5}\right)} + c$$

(c)
$$ie^{\left(\frac{t}{5}\right)} = te^{\left(\frac{t}{5}\right)} - 5e^{\left(\frac{t}{5}\right)} + c$$

(d)
$$ie^{\left(\frac{t}{5}\right)} = 5te^{\left(\frac{t}{5}\right)} - 5e^{\left(\frac{t}{5}\right)} + c$$

00)	
23)	Solution of $ye^{xy}dx + xe^{xy}dy = 0$ is
	a) $e^{xy} = c$
	(b) $e^{xy} + y = c$
	(c) $e^{xy} + x = c$
	(d) $e^{xy} + xy = c$
24)	Solution of $y \sin(2x) dx - (1 + y^2 + \cos^2 x) dy = 0$ is
	y^3
	(a) $y \cos(2x) - \frac{y^3}{3} = c_1$
	v^3
	(b) $y\cos(2x) + 2y + \frac{y^3}{3} = c_1$
	5
	(2) , 2 , $2y^3$
	(c) $y\cos(2x) + 2y + \frac{2y^3}{3} = c_1$
	(d) $y \cos(2x) + 2y = c_1$
25)	Solution of $\frac{dx}{dy} + x = e^{-y}$ is
	Solution of $\frac{dy}{dy}$ is
	(a) $xe^x + y = c$
	(b) $xe^{y} - y = c$
	(c) $xe^x - y = c$
	(d) $xe^y + y = c$
	(a)
26)	Solution of $xdy - ydx = 5x^2dx$ is
	(a) $x + y = 2.5$
	(b) $x - y - 2.5 x^3 = c$
	(c) $yx + 5x = c$
	(d) $\frac{y}{x} - 5x = c$
	(d) $\frac{1}{x} - 5x = c$
27)	$d\left(\tan^{-1}\left(\frac{y}{x}\right)\right) = \underline{\hspace{1cm}}$

	(a) $\frac{xdy - ydx}{x^2 y}$					
	(b) $\frac{xdy + ydx}{x^2y}$					
	(c) $\frac{xdy - ydx}{x^2 + y}$					
	(d) $\frac{xdy - ydx}{x^2 + y^2}$					
28)	Integrating factor for $f_1(xy)xdy + f_2(xy)ydx = 0$ is					
	(a) $\frac{1}{xyf_1(xy) + xyf_2(x,y)}$					
	(b) $\frac{1}{xyf_1(xy) - xyf_2(x, y)}$					
	(c) $\frac{1}{xyf_2(xy) - xyf_1(x, y)}$					
	(d) $\frac{1}{yf_1(xy) - xf_2(x,y)}$					
29)	The integrating factor for $(2 - xy)xdy + (2 + xy)ydx = 0$ is					
	(a) $\frac{1}{x^2y^2}$					
	(b) $\frac{-1}{x^2 y^2}$ (c) $\frac{1}{2x^2 y^2}$					
	(d) $\frac{-1}{2x^2y^2}$					
30)	The integrating factor for $[xy^2 - e^{\left(\frac{1}{x^3}\right)}]dx - x^2ydy = 0$ is					

	(a) x^{-1}
	(b) x^{-2} (c) x^{-3} (d) x^{-4}
	(c) x^{-3}
	(d) x^{-4}
31)	The integrating factor for $[xy^3 + y]dx + 2[x^2y^2 + x + y^4]dy = 0$ is
	(a) \mathcal{Y}
	(b) x
	(c) x^{-1}
	(c) x^{-1} (d) y^{-1}
32)	
32)	The integrating factor for $[xy\sin(xy) + \cos(xy)]ydx + [xy\sin(xy) - \cos(xy)]xdy = 0$ is
	1
	(a) $\frac{1}{2x \cos(xy)}$
	$(b) \frac{-1}{2x^2y^2\sin xy}$
	$(0) 2x^2y^2 \sin xy$
	(c) $\frac{1}{2x^2y^2}$
	$(c) 2x^2y^2$
	4 m1
	(d) $\frac{1}{2xy \cos xy}$
33)	The integrating factor for $y(x+y+1)dx+x(x+3y+2)dy=0$ is
	The integrating factor for y ($x + y + 1$) $ax + bx$ ($x + 2y + 2$) $ay = 0$ is
	(a) \mathcal{Y}
	(b) <i>x</i>
	(c) x^{-1} (d) y^{-1}
34)	$\begin{pmatrix} 2 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$
,	The integrating factor for $(x^2 + y^2 + x)dx + xydy = 0$ is

	(a) \mathcal{Y}
	(b) x
	(c) x^{-1}
	(d) y^{-1}
35)	The column of $dy + [y ton y = sin y] dy = 0$:
00)	The solution of $dy + [y \tan x - \sin x]dx = 0$ is
	(a) $y \sec x + 2 \log(\sec x) = c$ (b) $y \sec x + \log(\sec x) = c$
	(b) y see $x + \log(\sec x) = c$
	(c) $y \sec x - 2 \log(\sec x) = c$
	(d) $y \sec x - \log(\sec x) = c$
20)	
36)	The solution of $(x^3 + 2y)dx + (2x + y^4)dy = 0$ is
	(a) $\frac{x^4}{4} - 3xy + \frac{y^5}{5} - c = 0$
	(a) $\frac{-3xy + -6}{5} = 0$
	(b) $\frac{x^4}{4} + 3xy + \frac{y^5}{5} - c = 0$
	(6) 4 5
	(c) $\frac{x^4}{4} - 2xy + \frac{y^5}{5} - c = 0$
	x^4 v^5
	(d) $\frac{x^4}{4} + 2xy + \frac{y^5}{5} - c = 0$
07\	
37)	The solution of $(x-10y)dy + dx = 0$ is
	(a) $xe^y - 10 ye^y + 10 e^y = c$
	(b) $xe^y - ye^y + 10e^y = c$
	(c) $xe^y - 10 ye^y + e^y = c$
	(d) $xe^y - ye^y + e^y = c$
38)	dx
	The solution of $\frac{dx}{dy} + x = e^{-y}$ is
	(a) $xe^y - 10e^y = c$
	(b) $ye^{y} + e^{y} = c$
	(c) $xe^y = y + c$

	(d) $xe^y - ye^y + e^y = c$
39)	If a thermometer is taken outdoors where the temperature is $0^{0}C$ from a room having temperature $21^{0}C$ and the reading drops to $10^{0}C$ in one minute then its reading will be $5^{0}C$ after (a) 2.21 minutes (b) 3.21 minutes (c) 4.21 minutes (d) 5.21 minutes
40)	$xy\left(\frac{dy}{dx}\right)^3 + y\frac{d^2y}{dx^2} = 5x + 9 \text{ is a differential equation of degree } \underline{\qquad}.$ (a) 1 (b) 2 (c) 3 (d) 4
41)	$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{1}{C}i = E\cos\omega t \text{ is a differential equation of degree}$ (a) 1 (b) 2 (c) 3 (d) 4
42)	$\frac{\left[1+\left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}}=c \text{is a differential equation of degree} $ (a) 1 (b) 2 (c) 3
43)	$\left[\frac{d^2w}{dx^2}\right]^3 - xy\frac{dw}{dx} + w = 0 \text{is a differential equation of degree} $ (a) 1 (b) 2 (c) 3 (d) 4

44) The differential equation $f'(y)\left(\frac{dy}{dx}\right) + f(y)P(x) = Q(x)$ can be reduced to Leibnitz linear equation by substituting (a) f'(y) = z(b) f(y) = z(c) Q(x) = z(d) P(x) = z45) The differential equation (sec $y \tan y$) $\left(\frac{dy}{dx}\right)$ + (sec y) $(x) = (x^3)$ can be reduced to Leibnitz linear equation by substituting (a) $\sec y = z$ (b) sec $y \tan y = z$ (c) tan y = z(d) $x \sec y = z$ 46) The differential equation $2\theta \frac{dr}{d\theta} + r + 10 = 0$ is _____ (a) linear (b) exact (c) Bernoulli's equation (d) of order 2 differential equation $[2r\sin\theta + \cos^2\theta - 7]dr + [r^2\cos\theta - r\sin2\theta]d\theta = 0$ 47) The (a) linear (b) exact (c) Bernoulli's equation (d) of order 2 48) The differential equation $\frac{dx}{dy} + x = \sin y$ is _____ (a) linear (b) exact (c) Bernoulli's equation (d) of order 2 49) The differential equation $y \frac{dx}{dy} + \left(\frac{x}{y}\right) = x^3 y$ is ______

	(a) linear (b) exact (c) Bernoulli's equation (d) of order 2				
50)	The	differential	equation	$[\sin 2y + 2xy - 5]dx + [2x\cos 2y + x^2 + y^5]dy = 0$	is
	(a) linea (b) exac (c) Berr (d) of c		on		
	ANSW	ERS			
	1.b				
	2.a				
	3.a				
	4.b				
	5.a				
	6.c 7.b				
	7.b 8.d				
	9.c				
	10.c				
	11.c				
	12.a				
	13.d				
	14.c				
	15.a				
	16.b 17.c				
	18.d				
	19.d				
	20.b				
	21.b				
	22.c				
	23.a				
	24.c 25.b				
	26.d				
	27.d				
	28.c				
	29.d				
	30.d				
	31.a				
	32.d				
	33.a				
	34.b 35.d				
	36.c				
	37.a				
	38 c				

