CRUDEOIL PRICEPREDICTION

Bonafiderecordofworkdoneby

NANDHINI D	(1902125)
PRATHIKSHA R	(1902143)
KARTHIKEYAN R	(1902105)
HARISH KUMAR H.H	(1901050)

ProfessionalReadinessforInnovation,Employability,andEn trepreneurship

GUIDE:Mr.SELVAGANESH,Mr.VIMAL

BACHELOROFENGINEERING

BRANCH: ELECTRONICS AND COMMUNICATIONENGINEERING

NOVEMBER2022

DEPARTMENTOFELECTRONICS AND COMMUNICATIONENGINEERING

SRI RAMAKRISHNA ENGINEERING COLLEGE (AutonomousInstitution)C

OIMBATORE -641022

TableofContents

Profes	ssionalReadinessforInnovation,Employability, andEntrepreneurship	0
PSGC	COLLEGEOFTECHNOLOGY	0
INTRO	DDUCTION	2
1.1	ProjectOverview	2
1.2	Purpose	2
oilpı	s project helps the People working in the investment of crude oil needs earlier cruce prediction system, which can help them to find the right time to buy crude oil reasier cruck canincrease profit from the purchase and reduce any substantial loss	so that
LITER	RATURESURVEY	3
2.1	ExistingProblem	3
2.2	ProblemDefinition	3
2.3	References	3
IDEAT	FIONANDPROPOSEDSOLUTION	4
3.1	EmpathyMap	4
3.2	IdeationandBrainstorming	5
3.3	ProposedSolution	6
3.4	ProblemSolutionFit	7
REQU	JIREMENTANALYSIS	8
4.1	FunctionalRequirements	8
4.2	Non-FunctionalRequirements	8
PROJ	ECTDESIGN	9
5.1	DataflowDiagram	9
5.2	TechnicalArchitecture	9
5.	.2.1 ComponentandTechnologies	10
5.	.2.2 ApplicationCharacteristics	10
5.3	UserStories	11
PROJ	ECTPLANNINGANDSCHEDULING	13
6.1	SprintPlanning &Estimation	13
6.2	SprintDeliverySchedule	14
6.3	ReportsforJIRA	14
CODII	NGANDSOLUTION	15
7.1	Feature	15
TEST	ING	17

IBM-Project-PNT2022TMID05980 8.1TestCases	CrudeOilPricePrediction17
RESULTS	18
9.1 PerformanceMetrics	18
PROSAND CONS	19
10.1 Pros	19
10.2 Cons	19
CONCLUSION	20
FUTUREWORKS	21
APPENDIX	21
13.1 SourceCode	21
13.2 GitHub& ProjectDemo Link	23

INTRODUCTION

1.1 ProjectOverview

Oil demand is inelastic, therefore the rise in price is good news for producers because theywill see an increase in their revenue. Oil importers, however, will experience increased costs ofpurchasing oil. Because oil is the largest traded commodity, the effects are quite significant. Arising oil price can even shift economic/political power from oil importers to oil exporters. Thecrudeoil price movements are subjecttodiverse influencing factors.

This Guided Project mainly focuses on applying Neural Networks to predict the Crude OilPrice. This decision helps us to buy crude oil at the proper time. Time series analysis is the bestoption for this kind of prediction because we are using the previous history of crude oil prices topredict future crude oil. So, we would be implementing RNN (Recurrent Neural Network) withLSTM(Long Short-TermMemory)toachievethetask.

1.2 Purpose

This project helps the People working in the investment of crude oil needs earliercrudeoilpricepredictionsystem, which can help them to find the right time to buy crudeoilso that they can increase profit from the purchase and reduce any substantialloss

LITERATURESURVEY

2.1 ExistingProblem

Crudeoilisoneofthemostsignificantsourcesofenergyavailabletoday.Withoverathirdof all energy consumed worldwide, it continues to be the most popular fuel. In the currentenvironment, when technology is taking over our lives and efforts are being made to reduce theneed for human labor, the Artificial Neural Network Technique has emerged as one of the mostvaluable techniques for data prediction. This paper offers a method for predicting oil prices thatuses an artificial neural network (Sigmoid Function with the Learning Algorithm). Complex

linearinteractionsbetweeninputandoutputcanbemodeledusingANNs. The ability of ANN to generalize allows it to infer relationships even in the absence of data or input after learning from the inputs. A trustworthy method for creating predictions, ANN also learns from hidden relationships in the data without imposing any fixed relationships on the data. Many economists and analysts forecast the price of crude oil using data transformation and regression techniques like autoregressive moving average (ARMA) models and vector autoregressive (VAR)

models, each time using a different input value. They then plot the graph with their forecasted prices while on sidering the main economic factors.

2.2 ProblemDefinition

The business people who invest or works in the crude oil field and petrol bunk ownersrequires a way to predict the crude oil price for the next day so that they can take some majorinvestmentdecisionswhich can leadtobusinessprofitorreduceloss.

Persons working in the investment of crude oil needs a earlier crude oil price predictionsystem, which can help them to find the right time to buy crude oils othat they can increase profit rom the purchase and reduce any substantial loss.

To develop a system that predicts the crude oil prices using LSTM (Long Short-TermMemory)andGRU(GatedRecurrentUnit) andtodisplaytheresults using python-flaskapp.

2.3 References

- "AcomparisonbetweenAdaBoost-LSTMandAdaBoost-GRUforimprovingforecastprediction". Ganiyu AdewaleBusari, DongHoonLim. (2021)
- 2. "CrudeOilPricePredictionUsingLSTMNetworks". VarunGupta, AnkitPandey. (2018)
- 3. "CrudeOilPricePredictionusingArtificialNeuralNetwork".NaliniGupta,ShobhitNigam
- 4. "Crude Oil Price Forecasting based on Support Vector Machines". Wen Xie, Lean Yu,ShanyingXu,andShouyang Wang.
- LSTM.https://blog.mlreview.com/understanding-lstm-and-its-diagrams-37e2f46f1714
 6.GRU.https://medium.com/geekculture/understanding-basic-architecture-of-lstm-grudiagrammatically-6365befc64d

IDEATIONANDPROPOSEDSOLUTION

3.1 EmpathyMap

The primary purpose of the empathymap is to bridge the understanding of the user and developer. Figure 3.1 represents the empathymap for the Crudeoil Price Prediction System.

Figure 3.1-EmpathyMap

3.2 IdeationandBrainstorming

This is often the most exciting stage in a project, because during Ideation and brainstorming, theaim is to generate a large quantity of ideas that the team can then filter and cut down into thebest, most practical, or most innovative ones to inspire new and better design solutions and products. Figure 3.2 shows the stages of ideation and brainstorming for the Crude oil PricePredictionSystem.

Figure 3.2-Ideation & Brainstorming

3.3 ProposedSolution

S.No.	Parameter	Description
ProblemState ment(Problem to besolved)		People working in the investment of crude oil needs anearlier crude oil price prediction system, which can helpthemtofindtherighttimetobuycrudeoilsothattheycan increaseprofitfromthepurchaseandreduceanysubstantiallos s.
2	This solution uses, deep learning models for the prediction of crude oil price. The deep learning models the are	
3	Novelty /Uniquenes s	The solution tries to combine the two best times eries prediction models and predict the oil price with least error.
Social Impact // CustomerSati sfaction Business Model(Revenue Model) Social impact Model Scalability of theSolution This application will help people working in the ofinvestment to take better decision regarding involvence on the crude oil. This will help them to predict days andsellcrudeoil, astheprices are oftenvariable. The customatisfaction depends on the accuracy of the son to the accuracy of the son the accuracy of the son to the accuracy of the son the accuracy of the son the accuracy of the son to the accuracy of the son the accuracy of the son to the accuracy of the son the accuracy of the son to the accuracy of the son the accuracy of the son to the accuracy of the		This application will help people working in the area of investment to take better decision regarding investing on the crude oil. This will help them to predict days to buy and sell crude oil, as the prices are of ten variable. The customers at is faction depends on the accuracy of the solution. The better the closeness of the predicted prices of the crude oil to the original prices, more useful this solution becomes.
		Therevenuemodelcanbeimplementedaspay permonth usemodel.Theusercanpayfortheserviceforamonth.Oritcan alsobe provided by a yearly subscription
		Thesolutionfrontendpagesarebuiltmodularly.Morepages can be added as we require. In backend flask canorchestratethedifferentfunctions,sointhefuturenew functionsandrelated pagescan beaddedtothesolution.

3.4 ProblemSolutionFit

The problem solution fit is the solution one has found to address the problem of the customer. Figure 3.4 depicts the esolution fit for the Crude oil Price Prediction System.

Define CS, and fit into CC	CUSTOMER SEGMENT (CS) governments, public and private enterprises, policymakers, and investors Other businesses which are indirectly depends on crude oil	6. CUSTOMER CONSTRAINTS (CC) Cash, high volatility, latency in acquiring related news	5. AVAILABLE SOLUTION (AS) Prediction by humans based on the news on crude oil. Prediction systems existed in the past, but they weren't very reliable.	Explore AS and differenti ate
Focus on J&P, tap into BE, understa nd RC	2. JOBS-TO-BE-DONE (J&P) As crude oil prices fluctuate daily, Inorder to make better decisions in business which are based on crude oil, it is important to somehow predict the price of crude oil for upcoming days	9. PROBLEM ROOT CAUSE (RC) The root cause of the problem is the fluctuating price of the crude. The price of crude oil varies everyday. Thus creating an uncertainty in the investment decisions of the investors and other members related to the crude oil trade.	7. BEHAVIOUR (BE) The final price at which a stock trades during a standard trading session is known as the closing price. Open the app to learn more about the current market trends.	Focus on J&P, tap into BE, understa nd RC
Identify strong TR & EM	3. TRIGGERS TR seeing companies that are able to predict the crude oil prices yields more than those who are not 4. EMOTIONS: BEFORE / AFTER EM Before: A sense of doubt in the price leads to fear of losing money. Sudden dip in price may cause frustration. After: Assurance in future prices, security, and joy in case the price increase is predicted.	10. YOUR SOLUTION SL. Prediction of the crude oil price prediction using deep learning related models	8. CHANNELS of BEHAVIOUR 8.1 ONLINE Looking up the most recent crude oil prices online. 8.2 OFFLINE Technical analysis,Risk Management	Identify strong TR & EM

Figure 3.4 – Problem Solution Fit

REQUIREMENTANALYSIS

4.1 FunctionalRequirements

Table 4.1 are the functional requirements of the proposed solution.

FR No.	SubRequirement(Story/ Sub-Lask)	
FR-1	Graph	ShowingGraphbyobtainingthedatafromtheExcelsheet.
FR-2	FR-2 News Informationofalloilprices willbeupdatedbytheadmin	
FR-3	Database	Information of the crude oil price will be updated stored inexcel sheet

Table4.1 -FunctionalRequirements

4.2 Non-FunctionalRequirements

FRNo.	Non- FunctionalRe quirement	Description	
NFR-1	Usability	Itcanuse bywidevariety ofclientasitis verysimpletolearnandnotcomplexto proceed.	
NFR-2	Security	Theinformationwillbehashedsothatitwillbevery securetouse.	
NFR-3	Reliability	It will be reliable that it can update with very time period so thattheaccuracywill be good.	
NFR-4	Performance	Itwill beperformedfastandsecureevenatthelower bandwidth.	
NFR-5	Availability	Predictionwillbeavailableforeveryuser.	
NFR-6	Scalability	wearegoingtousedatainexcel soitwillbeeasily scalable.	

Table4.2-Non-FunctionalRequirements

PROJECTDESIGN

5.1 DataflowDiagram

A Data Flow Diagram (DFD) is a traditional visual representation of how information flows within a system. A neat and clear DFD can thus depict the right amount of the system requirementsgraphically. It not only shows how data enters and leaves the system, but also what changes the information and where the data is stored. Figure 5.1 represents the DFD for the given

project.

Figure 5.1 – Dataflow Diagram

5.2 Technical Architecture

Figure 5.2 Technical Architecture

5.2.1 ComponentandTechnologies

	Component	Description	Technology	
S.No				
1. UserInterface		Howuserinteractswithapplicatione.g.Web	HTML,CSS,JavaScript	
		UI,MobileApp,Chatbotetc.	/Flask	
2.	Loadingdata	Convertingthecsvfiletopythonobject	Python	
3.	Pre-Processing	Pre-Processingandnormalizingthedata	Python	
	ofdata	to get accurateresults		
4.	CloudDatabase	DatabaseServiceonCloud	IBMDB2,IBMCloudant	
			etc.	
5.	FileStorage	Filestoragerequirements	IBMBlockStorageorOth	
			erStorage	
			ServiceorLocalFilesyst	
			em	
6.	MachineLearni	Long short-term memory (LSTM) is	Object	
	ngModel	anartificialneuralnetwork.Unlikestandar	Recognition	
		d feedforward neural networks,LSTMhasfeedbackconnectio	Model,etc	
		ns		
		GRU Gated recurrent units is like a		
		longshort-term memory (LSTM) with a		
		forgetgate,buthasfewerparametersthan		
		LSTM,asitlacksanoutputgate.		
7.	Infrastructure(S	ApplicationDeploymentonLocalSystem/	Local,CloudFoundry,Ku	
	erver/Cloud)	CloudLocalServerConfiguration:2.5Ghz processor,8GBRAM	bernetes,etc.	
		CloudServerConfiguration:4GBGPU		
		Clouded voi Corningulation. 40501 0		

Table 5.2.1–Components and Technologies

5.2.2 ApplicationCharacteristics

S.No	Characteristics	Description	Technology
1.	Open- SourceFram eworks	Listtheopen- sourceframeworksu sed	Flask
2.	ScalableArc hitecture	Justify thescalability ofarchitecture(3 –	CloudFoundry,IBMCloud ant

IBM-Project-PNT2022TMID0	CrudeOilPricePredi	ictior	
	tier, Micro-services)		
	·		

IBM-Project-PNT2022TMID06011			<u>CrudeOilPricePrediction</u>
3.	Availability	Justify the availability	CloudFoundry
		ofapplication (e.g., use	
		ofloadbalancers,distribute	
		d	
		serversetc.)	
4.	Performance	Designconsiderationfor	CloudFoundry
		the performance ofthe	
		application	
		(numberofrequestspers	
		ec,useofCache,useof	
		CDN's)etc.	

Table 5.2.2 – Application Characteristics

5.3 UserStories

UserType	Function alRequire ment(Epi c)	User StoryNu mber	UserStory/Task	Acceptancecriteria	Priority	Release
Customer(M obileuser)	Application	USN-1	You can download the crude oil price byopeningtheGooglePlayStoreappdir ectlyasauser.	I can access owndecisio ns.	High	Sprint-1
	Avail ableP roduc ts	USN-2	Users of the application may instantly updatetheenergyandoilpriceswhileusi ngit becausetherearesomanydifferentpro ductsinthecrudeoilpriceapp.	I can receive the dataonceclickthen confirm	High	Sprint-1
	Additi onalF eature s	USN-3	Userscanreadthemostrecentnewsan dseeoil pricecharts. MajorEnergyQuotesUserView Theusermayusemanycolourschemes.	Ican view then read thepriceprediction.	High	Sprint-2
	Expectations	USN-4	User Can Convert Currency AndExchangeRates	Icanexpect	Medium	Sprint-1
	Login	USN-5	Log in as a user without usingyouremailaddres s,username,orpasswo rd.		High	Sprint-1
Customer(W ebuser)			Icanseethepriceofcrudeoilasaconsume r.	Icanviewthepri cedirectly	High	Sprint-1
Customer CareExecuti ve			lamthe userandlexecutivethe pricing history.	Icanaccepttheterms	medium	Sprint-1
Administrator			Asamanager,itanticipatestheresults.	Showtheresult	High	Sprint-1

Table5.3-UserStories

PROJECTPLANNINGANDSCHEDULING

6.1 SprintPlanning&Estimation

Sprint	Functional Require ment(E pic)	User Stor yNu mbe r	UserStory/Task	StoryPo ints	Priority	TeamMembe rs
Sprint-1	Registration	USN-1	Asauser, Ican register for the a pplication by entering myemai I, password, and confirming mypassword.	10	High	RITHICK ROSHAN
Sprint-1		USN-2	Asauser, Iwillreceiveconfirmationemailon ce Ihave registeredfortheapplication	10	High	RITHIKA
Sprint-1	Login	USN-3	Asauser,Icanlogintothe applicationbyenter ingemail&passwor d.	15	High	KEERTANA
Sprint-2	Input NecessaryD etails	USN-4	As a user, I can give Input Details toPredictLikelinessofcru deoil	15	High	NITHIN SOUNDAR
Sprint-2	DataPre- processing	USN-5	Transform raw data into suitableformatforpre diction.	15	High	NITHIN SOUNDAR
Sprint-3	Prediction ofCrudeOil Price	USN-6	Asauser, Icanpredict Crude oilusing machinelearning odel.	20	High	KEERTANA
Sprint-3		USN-7	Asauser,Icangetaccuratepred ictionofcrudeoil	5	Medium	RITHICK ROSHAN
Sprint-4	Review	USN-8	Asauser,Icangivefeedba ckoftheapplication.	20	High	RITHIKA

Table6.1-SprintPlanning

6.2 SprintDeliverySchedule

Sprint	Total StoryPo ints	Duration	SprintStartDate	SprintEndD ate(Planne d)	Story PointsComplet ed (as onPlannedEnd Date)	SprintReleaseDate(Actual)
Sprint-1	20	6Days	24Oct2022	29Oct2022	20	29Oct2022
Sprint-2	20	6Days	31Oct2022	05Nov2022	20	05Nov2022
Sprint-3	20	6Days	07Nov2022	12Nov2022	20	12Nov2022

C =:	.4.0	:ID.	ical	ادم ط	intian
UIL	iueU	IIPI	icer	rea	iction

Sprint-4	20	6Days	14Nov2022	19Nov2022	20	19Nov2022

Table6.2 -Sprint DeliverySchedule

6.3 ReportsforJIRA

Velocity:

Imaginewehavea10-

daysprintduration, and the velocity of the team is 20 (points persprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart: A burndown chart is a graphical representation of work left to do versus time. It is often used in a graphical representation of work left to do versus time. It is often used in a graphical representation of work left to do versus time. It is often used in a graphical representation of work left to do versus time. It is often used in a graphical representation of work left to do versus time. It is often used in a graphical representation of work left to do versus time. It is often used in a graphical representation of work left to do versus time. It is often used in a graphical representation of work left to do versus time. It is often used in a graphical representation of work left to do versus time. It is often used in a graphical representation of work left to do versus time. It is often used in a graphical representation of work left to do versus time. It is often used in a graphical representation of work left to do versus time. It is often used in a graphical representation of work left to do versus time. It is often used in a graphical representation of work left to do versus time.

7CODINGANDSOLUTION

7.1Feature

FR No.	Feature	Description	
FR-1	CrudeoilPriceGraph	Showing the price of crude oil for respective dates in agraphwithdatesin xaxisand crudeoil pricesony axis	
FR-2	CurrentPricePrediction	Showingthelastpredicted priceofthecrudeoil	
FR-3	Prediction based on userprovided values	When user provided with the three days prices of the crudeoilthe applicationwill givepredictedpriceforthenextday	

Table 7.1 –DescriptionforFeature

Figure 7.1 – Dataflow Diagram for Feature 1

Figure 7.1 – Dataflow Diagram for Feature 2

Figure 7.1 – Dataflow Diagram for Feature 3

TESTING

8.1 TestCases

The test cases are window of closing prices, where the window size is 3. The test casesare sent to the model and the prediction is compared with the original closing price. The lossmetric is used to analyze the performance of the model. Figure 8.1 shows the result after thetesting. The blue line in the bottom shows the true closing prices. The orange lines denote the prediction using the training data. The green line denotes the prediction based on testing data.

Figure8.1-TestCases Run

RESULTS

9.1PerformanceMetrics

The performance metric used to measure the model is RMSE (Root Mean SquareError). RMSE is measured on both the prediction on training data and the testing data. Lowerthe RMSE score, better is the accuracy of the model. The results of the RMSE are given in the figure 9.1. From the figure 9.1 it can be observed that the RMSE are quite low. This indicates the model is working better and the predictions are quite accurate.

Train Score: 1.39 RMSE Test Score: 2.37 RMSE

Figure 9.1 – Performance Metrics

PROS ANDCONS

10.1 Pros

- Theapplicationwe havecreated is userfriendly
- This application is flexible as user can choose the way they need to predict theprice
- User can either give crude oil prices of any three continues dates or can get thelatestpredictedpriceofcrude oil

10.2 Cons

As the dataused in this project is not up to date the prices the model predicted will not be applicable for using in real world crude oil price prediction

CONCLUSION

The prediction system works using the model that is built by combination of LSTM andGRU. The RMSE score for both the training and testing data is quite low. This shows that theaccuracy of the model is good. A website is served using flask framework, which helps toenable the users to interact with the model. It helps the user to see the current predicted pricethecrudeoil.Andithelps todopredictionformanuallyenteredcrudeoilclosingpricevalues.

FUTUREWORKS

The model currently cannot update the prices to the current data automatically. Web automationcan be enables to let the system update its database to current prices. And the model can be retrained on the updated data.

CHAPTER13

APPENDIX

13.1 SourceCode

App.py

```
from flask import Flask,render_template,request,redirect
import joblib
from keras.models import load_model
app = Flask(__name__)
@app.route('/',methods=["GET"])
def index():
    return render_template('index.html')
@app.route('/predict',methods=["POST","GET"])
def predict():
    if request.method == "POST":
        string = request.form['val']
        if(string ==""):
            return render_template('predict.html')
        string = string.split(',')
        x_input = [eval(i) for i in string]
        sc = joblib.load("scaler.save")
        x_input = sc.fit_transform(np.array(x_input).reshape(-1,1))
        x_input = np.array(x_input).reshape(1,-1)
```

IBM-Project-PNT2022TMID06011

```
x_input = x_input.reshape(1,-1)
x_input = x_input.reshape((1,10,1))
model = load_model('model.h5')
output = model.predict(x_input)
val = sc.inverse_transform(output)
return render_template('predict.html' , prediction = round(val[0][0],2))
if request.method == "GET":
return render_template('predict.html')

if __name__ == "__main__":
model = load_model('model.h5')
app.run(debug=True)
```

13.2 GitHub&ProjectDemoLink

GitHublink: https://github.com/IBM-EPBL/IBM-Project-22149-1659805918

Project Demo

Link:https://drive.google.com/drive/folders/1nHufpbcAsPpl1zr5xqFod9Qf2brMkKq4?usp=share_link