We claim:

Sub

- 1. A chemical vapor deposition (CVD) process for depositing SiO₂ films on a substrate, said process comprising the steps of:
 - (a) disposing the substrate within a chemical vapor deposition reaction chamber;
- (b) introducing a gas volume of Si0₂ precyrsors into said chamber;
- (c) admitting a gas volume of ozone into the chamber;
- 6 (d) exposing the volume of gases to a source of high intensity light to increase the atomic concentration of oxygen in the reactive gas volume.

- 2. The method of Claim wherein the SiO₂ precursor is selected from the group consisting of TEOS, TMCTS (tetramethylcyclotetrasiloxane), DES (diethylsilane), DTBS (diethylsilane), TMOS (tetramethylorthosilicate) and FTES
- 4 (fluorotriethoxysilane).
- 1 3. The method of Claim 2 further comprising the step of introducing a gas volume of 2 a dopant source for the SiO₂.
- 1 4. The method of Claim 3 wherein the dopant source for CVD deposition of the SiO₂
- 2 film is selected from the group consisting of triisopropylborate, TMB (trimethylborate),
- 3 TEB (triethylborate), TEPo (triethylphosphate), TEPi (triethylphosphite), TMPo
- 4 (trimethylphosphate), and TMPi (trimethylphosphite).

- 1 5. The method of Claim 3 further comprising the step of introducing a gas volume of
- 2 a carrier gas into the reaction chamber, to regulate the uniformity of film deposition on
- 3 the substrate.
- 1 6. The method of Claim 5 wherein the dopant source for CVD deposition of the SiO₂
- 2 film is selected from the group consisting of triisopropylborate, TMB (trimethylborate),
- 3 TEB (triethylborate), TEPo (triethylphosphate), TEPi (triethylphosphite), TMPo
- 4 (trimethylphosphate), and TMPi (trimethylphosphite).

1 /1. The method of Claim 5 wherein the substrate is heated to a temperature within a
2 range of 200° C. to 700° C.
1 (8.) The method of Claim 7 wherein the substrate is heated to a temperature of about
2 480° C.
1 9. The method of Claim 6 wherein the substrate is heated to a temperature within a
2 / range of 200° C. to 700° C.
1 (10.) The method of Claim wherein the substrate is heated to a temperature of about
2 480° C.
,
1 11. The method of Claim 1 further comprising the step of introducing a gas volume of
2 /a dopant source for the SiO_2 .
1 12. The method of Claim 1 wherein the dopant source for CVD deposition of the SiO ₂
2/ film is selected from the group consisting of triisopropylborate, TMB (trimethylborate),
TEB (triethylborate), TEPo (triethylphosphate), TEPi (triethylphosphite), TMPo
4 (trimethylphosphate), and TMPi (trimethylphosphite).
1 13. The method of Claim 1 further comprising the step of introducing a gas volume of
2 a carrier gas into the reaction chamber, to regulate the uniformity of film deposition on
3 the substrate.
1 14. The method of Claim 1 wherein the substrate is heated to a temperature within a
2 range of 200° C. to 700° C.
1 15. The method of Claim 1 wherein the substrate is heated to a temperature of about
2 480° C.

The method of Claim 2 further comprising the step of introducing a gas volume of a carrier gas into the reaction chamber, to regulate the uniformity of film deposition on 3 the substrate. The method of Claim 2 wherein the substrate is heated to a temperature within a range of 200° C. to 700° C. The method of Claim 2 wherein the substrate is heated to a temperature of about 480° C. 2 The method of Claim 3 wherein the substrate is heated to a temperature within a 1 2 range of 200° C. to 700° C. 20. The method of Claim 4 wherein the substrate is heated to a temperature within a 2 / range of 200° C. to 700° C. 21. The method of Claim 3 wherein the substrate is heated to a temperature of about 480° C. The method of Claim 4 wherein the substrate is heated to a temperature of about 2 ... 480° C. 23. A chemical vapor deposition (CVD) process using ozone, for depositing films on a substrate, said process comprising the steps of: disposing the substrate within a chemical vapor deposition reaction a) 4 chamber; 5 (b) introducing a gas volume of a preselected reaction precursor compound into 6 said chamber;

(c) admitting a gas volume of ozone into the chamber;

7

8	(d) exposing the volume of gases to a source of high intensity light to increase the
9	atomic concentration of oxygen in the reactive gas volume.
	/ · · · · · · · · · · · · · · · · · · ·
1	24. A chemical vapor deposition (CVD) process for depositing films on a substrate,
2 . 7	said process comprising the steps of:
3.	a) disposing the substrate within a chemical vapor deposition reaction
4	chamber;
5	(b) introducing a gas volume of a first preselected reaction precursor compound
6	into said chamber;
7	(c) admitting a gas volume of at least a second preselected reaction precursor
8	compound into said chamber;
9	(d) exposing the volume of gases to a source of high intensity light to increase the
0	atomic concentration of reaction compounds in the reactive gas volume.