Π КШ, Π КШ.2018.Август В' В', конспект лекции

Собрано 10 августа 2018 г. в 10:14

Содержание

1.	Дейкстра	1
	1.1. Описание алгоритма	1
	1.2. Доказательство корректности	1
	1.3. Асимптотика	
	1.4. $\mathcal{O}(V^2)$	
	1.5. $\mathcal{O}(V \log V + E \log V)$	
	1.6. К-ичная куча	
-		
2.	Флойд	3
	2.1. Описание алгоритма	3
	2.2. Об отрицательных циклах	
Q	Форд-Беллман	1
J.		4
	3.1. Описание алгоритма	
	3.2. Оптимизации ФБ	
	3.2.1. ФБ с очередью (SPFA)	
	3.2.2. ΦE c break	4
4.	Примеры задач	5
	4.1. Первым делом самолеты, ну а поезда потом	Ε.
	4.2. Минимальный путь по масимальному ребру	
	4.3. Минимальный путь по сумме двух максимальных ребер	
	4.4. Получаем N из +a +b +c	5
	/Г. У. СПОМОННИИ	h

Тема #1: Дейкстра

9 августа

1.1. Описание алгоритма

Вспомним BFS. Там мы обрабатывали вершинки по удаленности от стартовой. А работает ли такой алгоритм для произвольных весов ребер? Оказывается да, и он называется алгоритмом Дейкстры.

Алгоритм Дейкстры ищет расстояние от одной вершины до всех на графе без отрицательных ребер.

Псевдокод:

```
d[..] = INF // массив расстояний. Изначально заполнен бесконечностями
d[s] = 0 // расстояние до стартовой вершины ноль
used[..] = False // массив посещенных вершин
while Есть непосещенные, достижимие из в вершины:
v = непосещенная вершина с минимальным d[v]
used[v] = True
for (<u, w> : gr[v]):
d[u] = min(d[u], d[v] + w)
```

1.2. Доказательство корректности

Докажем, что на каждой итерации алгоритма ответ для v посчитан верно.

Доказывать будем по индукции.

База. Расстояние до s посчитано правильно.

Переход. Пусть расстояние посчитано правильно для какого-то множества вершин S. Хотим доказать, что если взять сейчас вершину такую, для которой текущее расстояние минимально, то это будет правильно посчитанное для нее расстояние.

Пусть это вершина v. Тогда d[v] = d[u] + w для какой-то вершины u из S и ребра $u \to v$ веса w. Пусть это расстояние неверное и существует какой-то путь в эту вершину из s минимальной стоимости d'[v]. Тогда этот путь какое-то время идет по вершинам из S, потом выходит из S, а потом идет как-то.

TODO: нужна картинка.

Найдем первый момент, когда этот путь выходит из S. Если он идет в v, то мы победили. Если не в v, то в какую-то вершину t. Тогда $d[t] \geqslant d[v]$. Но d'[v] = d[t] + path, где $path \geqslant 0$. Из этих двух неравенств получаем $d'[v] \geqslant d[v] + path$. Но мы предположили, что d'[v] < d[v] и $path \geqslant 0$. Противоречие.

1.3. Асимптотика

Нам нужна структура данных, которая умеет изменять значение элемента в множестве, удалять элемент из множества, находить минимальный элемент во множестве.

Операцию нахождения и удаления минимального элемента назовем extractMin, операцию изменения значения элемента decreaseKey (decrease потому что в нашем случае значения элементов уменьшаются).

Асимптотика алгоритма будет $\mathcal{O}(V \cdot extractMin + E \cdot decreaseKey)$

1.4. $\mathcal{O}(V^2)$

Массив умеет делать extractMin за $\mathcal{O}(V)$ (простой проход) и decreaseKey за $\mathcal{O}(1)$ (поменять по индексу).

Получили $\mathcal{O}(V^2+E)$

1.5. $\mathcal{O}(V \log V + E \log V)$

Куча (set, priority_queue) умеет каждую из этих операций делать за логарифм. Получили $\mathcal{O}(V\log V + E\log V)$.

Код:

```
set < pair < int , int >> Q;
2 Q.insert({s, 0});
   vector < int > dist(V, INF);
   dist[s] = 0;
   vector < bool > used(V, false);
   while (!Q.empty()) {
7
       auto tmp = *Q.begin();
8
       Q.erase(Q.begin());
9
       int v = tmp.second;
10
       int d = tmp.first;
11
       used[v] = true;
       for (auto e : gr[v]) {
12
            if (!used[e.to]) {
13
                Q.erase({dist[e.to], e.to});
14
15
                dist[e.to] = min(dist[e.to], d + e.w);
16
                Q.insert({dist[e.to], e.to});
           }
17
       }
18
19
```

Этот алгоритм можно соптимизировать, если удалять из сета только в случае, когда расстояние уменьшается.

1.6. *K*-ичная куча

Тема #2: Флойд

9 августа

2.1. Описание алгоритма

Алгоритм Флойда считает расстояния между всеми парами вершин. Делает он это с помощью динамики dp[i][j][k] — кратчайший путь от i до j, если промежуточные в пути вершины из промежутка [0,k].

```
Переход: dp[i][j][k] = min(dp[i][j][k-1], dp[i][k][k-1] + dp[k][j][k-1])
```

Заметим, что третья размерность нам не нужна, так как если ее убрать, мы будем перебирать пути из i в j по вершинам из [0;k] и какие-то ещё \Rightarrow ответ не ухудшится.

Получили простой код:

```
for (int k = 0; k < V; ++k) {
    for (int i = 0; i < V; ++i) {
        for (int j = 0; j < V; ++j) {
            dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);
        }
    }
}</pre>
```

Время работы $\mathcal{O}(V^3)$

2.2. Об отрицательных циклах

Тема #3: Форд-Беллман

9 августа

3.1. Описание алгоритма

Алгоритм Форда-Беллмана умеет вычислять расстояние от одной вершины до всех других. При этом в графе могут быть отричательные ребра.

Будем считать динамику dp[v][len] — длина кратчайшего пути из s в v, проходящего не более чем по len ребрам.

Переход: перебираем ребра из v, пытаемся обнобвить dp[e.to][len + 1]

Стандартная оптимизация: если убрать *len*, ответ не ухудшится.

Сколько итераций нужно? Если в графе нет циклов отрицательного веса, то легко доказать, что V-1 итерации точно хватит.

При реализации проще всего хранить граф в виде списка ребер и пытаться обновить все.

```
1  vector < int > dist(V, INF);
2  vector < Edge > gr(E);
3  dist[s] = 0;
4  for (int i = 0; i < V - 1; ++i) {
5     for (Edge e : gr) {
6         dist[e.to] = min(dist[e.to], dist[e.from] + e.w);
7  }
8 }</pre>
```

3.2. Оптимизации ФБ

3.2.1. ФБ с очередью (SPFA)

TODO

3.2.2. ΦB c break

Тема #4: Примеры задач

9 августа

4.1. Первым делом самолеты, ну а поезда потом ТООО

4.2. Минимальный путь по масимальному ребру

Дейкстра умеет работать не только с суммой, но и с максимумом. Конец.

4.3. Минимальный путь по сумме двух максимальных ребер ТООО

4.4. Получаем N из $+\mathbf{a}$ $+\mathbf{b}$ $+\mathbf{c}$ TODO

4.5. Обменник