Building Generative Adversarial Networks in PyTorch

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Understand Generative Adversarial Networks (GANs)

Candidate generation and evaluation

Role of generator

Role of discriminator

Generate handwritten digits using GANs trained on the MNIST dataset

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs)

A new type of ML system (invented in 2014) that rely on two neural networks contesting in a game. Can be used to generate realistic images and videos of virtually anything.

Generative Adversarial Networks (GANs)

A new type of ML system (invented in 2014) that rely on two neural networks contesting in a game. Can be used to generate realistic images and videos of virtually anything.

Generative Adversarial Networks (GANs)

A new type of ML system (invented in 2014) that rely on two neural networks contesting in a game. Can be used to generate realistic images and videos of virtually anything.

Applications of GANs

Al-generated art

Human image synthesis

3D models from 2D images

Improve astronomical image

Traditional classification

Traditional regression

GANS

Considered part of unsupervised learning

Developed in 2014 by Ian Goodfellow et al

Two distinct contesting neural networks

- Generative network
- Discriminative network

Two Neural Networks

Generative Network generates candidates

Discriminative Network evaluates candidates

Generator

Generates data as realistically as possible

Trained to generate data similar to corpus

Seeks to fool discriminator

Discriminator

Generates probability that data is genuine

Classifies output of generator

Just like traditional classifier

Noise in GANs

Requires function that generates noise Create corpus of

- Real data points
- Noise function

Training a GAN

Training a GAN

Start with corpus of real points as well as noise

Train discriminator to tell them apart

Generate new noise points

Train generator to produce data that fools the discriminator

Repeat using optimizer

Discriminator

Maximizes probability of real data being classified as real

Minimizes probability of fake data being classified as real

Generator

Maximizes probability of fake data being classified as real

Loss Functions

Need optimizers for both networks

Loss function used is Binary Cross-Entropy (BCE) Loss

Used to heavily penalize incorrect classifications

Generator and Discriminator

Adversaries during training

At some point generator will generate realistic data

Consistently fool the discriminator

Leaky ReLU Activation

A Neural Network

Unresponsive Neurons

What if the weights of the connections do not change in response to changing input?

Unresponsive Neurons

Neurons may be dead

Activation Functions

Various choices of activation functions exist and drive the design of your neural network

Activation Functions

Consider an S-shaped (sigmoid) activation function

Activation Functions

This is the active or responsive region of the function

Saturating Activation Functions

The activation function saturates at either end

Saturating Activation Functions

If a neuron operates within these saturation regions throughout training it might become unresponsive

Dying Neurons

Neuron might become unresponsive - output won't change as input changes

If this continues throughout training, neuron is "dead"

Saturation of neuron occurs at both ends of S-curve, for instance

Saturating Activation Functions

Logit Activation

Saturates for very large and very small values of input

ReLU Activation

Saturates for very small (negative values) of inputs

Leaky ReLU Activation

Mitigates dying-neuron problem of ReLU

For positive values, output same as input (like ReLU)

For negative values, output is non-zero, but close to zero

Leaky ReLU found to out-perform strict ReLU

Leaky ReLU Activation

LeakyRelu $\alpha(x) = \max(x, \alpha x)$

α is a hyper parameter

Typically 0.01

Small non-zero value of α ensures that neuron does not "die"

Demo

Using Generative Adversarial Networks (GANs) to generate handwritten digits

Summary

Understand Generative Adversarial Networks (GANs)

Candidate generation and evaluation

Role of generator

Role of discriminator

Generate handwritten digits using GANs trained on the MNIST dataset

Related Courses

Building Features from Image Data
Image Classification with PyTorch
Expediting Deep Learning with Transfer
Learning: PyTorch Playbook