Procesado on the edge de señales EEG para reconocimiento de tareas de imaginación motora

Daniel Enériz, Ana Caren Hernández-Ruiz, Nicolás Medrano, Belén Calvo {eneriz, anaacaren, nmedrano, becalvo}@unizar.es, Grupo de Diseño Electrónico (GDE-I3A)

Introducción - Brain-Computer Interface (BCI) - Motor Imagery (MI) - Electroencefalograma (EEG) - Procesado: Feature Extractor + Classifier Redes Neuronales Convolucionales (CNN) - Soporte Hardware: ШШШ ASIC **FPGA**

Dataset

- Physionet Motor Movement/Imagery:
- 109 sujetos
- 64 canales EEG
- 4 clases: L/R/0/F
- 3 escenarios
- 21 muestras/clase 160 Hz

- Parámetros reducción del *dataset*:
- Ventana temporal T
- Número de canales N_{chan}
- Downsampling ds → Data augmentation

Implementación

- Xilinx Zynq 7010:
- · PL: 28K CLBs, 17.6K LUTs, 35.2K FFs, 2.1Mb BRAM, 80 DSP
- PS: ARM Cortex-A9 @ 667MHz
- Red Pitaya STEMLab 125-10
- Descripción algorítmica: C/C++
- Datos de punto fijo: (16,8)
- Resultados de síntesis:

Vivado™ HLS

T(s)	ds	Lat.	FF (%)	LUIS	BRAIN	DSPS
1 (5)		(ms)	11 (70)	(%)	(%)	(%)
	1	87.50	29.12	28.01	152.50	18.75
3	2	25.42	28.97	28.05	84.17	17.50
	3	12.43	28.40	27.55	84.17	17.50
	1	58.33	29.22	27.98	150.83	18.75
2	2	16.95	29.07	28.02	82.50	17.50
	3	8.29	28.39	27.49	48.33	17.50
	1	29.17	28.97	27.98	82.50	17.50
1 _	2	8.48	28.86	27.85	48.33	17.50
	3	4.14	28.16	27.38	31.67	17.50

- Simulación HLS modelo global con *T*=3, ds=2: Accuracy 65.45%, pérdida del 0.11%

Arquitectura, validación y entrenamiento

Eficiencia

- Adaptación de la EEGNet:

Flexibilidad

- Sustitución de las ELUs por LReLUs
- · Ajuste de las alfas de las LReLUs
- Eliminación de *Droputouts* y *BatchNorm*.
- Validación, dos tipos de modelos:
- Global: Cross Validation 5-fold (sujetos)
- Subject specific: Transfer Learning CV 4-fold (muestras)
- Entrenamientos (Adam):
- Global: 100 épocas, BS 16, LR scheduler
- SS: 5 épocas, BS 16, LR = 10⁻²

/		Dose et al.		Wang et al.		Proposed work			
	$N_{\rm classes}$					<i>ds</i> = 1		<i>ds</i> = 2	
	·	Global	SS-TL	Global	SS-TL	Global	SS-TL	Global	SS-TL
	2	80.38	86.49	82.43	84.32	83.15	87.46	82.52	93.10
	3	69.82	76.25	75.07	80.07	75.74	83.26	75.34	93.21
	4	58.59	68.51	65.07	70.83	65.75	74.31	65.56	89.23

Conclusiones

- Modelo para el reconocimiento de tareas de MI a partir de EEG
- Adaptación de la EEGNet que mejora el estado del arte en el dataset Physionet Motor Movement/Imagery
- Parámetros de reducción: Control del tamaño del modelo
- Uso del downsampling como data augmentation
- Implementación en FPGA de bajo coste usando tipos de dato de punto fijo
- Pequeña pérdida de precisión (~0.11%)

Contacto y más información:

Instituto Universitario de Investigación en Ingeniería de Aragón **Universidad** Zaragoza

