

Neural Networks

Day 6

Learning Objectives

- Mathematically describe a neural network with a single hidden layer
 - ☐ Describe mappings for the hidden and output units
- Manually compute output regions for very simple networks
- Select the loss function based on the problem type
- Build and train a simple neural network in Keras
- Write the formulas for gradients using backpropagation
- Describe mini-batches in stochastic gradient descent

Outline

- Motivating Idea: Nonlinear classifiers from linear features
- Neural Networks
- Neural Network Loss Function
- Building and Training a Network in Keras
 - MNIST
- Backpropagation Training

Motivation - Most Datasets are not Linearly Separable

- Consider simple synthetic data
 - See figure to the right
 - 2D features
 - ☐ Binary class label
- ☐ Not separated linearly

6

Motivation - From Linear to Nonlinear

- ☐ Idea: Build nonlinear region from linear decisions
- Possible form for a classifier:
 - Step 1: Classify into small number of linear regions
 - Step 2: Predict class label from step 1 decisions

Step 1 Outputs and Step 2 Outputs

- ☐ Each output from step 1 is from a linear classifier with soft decision
 - Like logistic regression
- Final output is a weighted average of step 1 outputs using the weights
 - ☐ Weights are indicated on top of the figures

A Possible Two Stage Classifier

- \square Input sample: $\mathbf{x} = (x_1, x_2)^T$
- ☐ First step: Hidden layer
 - \Box Take $N_H = 4$ linear discriminants

$$z_{H,1} = w_{H,1}^T x + b_{H,1}$$
:

$$z_{H,N_H} = \boldsymbol{w}_{H,M}^T \, \boldsymbol{x} + b_{H,M}.$$

☐ Make a soft decision on each linear region

$$u_{H,m} = g(z_{H,m}) = \frac{1}{1 + e^{-z_{H,m}}}$$

- Second step: Output layer
 - $\Box \quad \text{Linear step } z_O = w_O^T u_H + b_O$
 - Soft decision: $u_0 = g(z_0)$

Model Block Diagram

- \square Hidden layer: $\mathbf{z}_H = \mathbf{W}_H^T \mathbf{x} + \mathbf{b}_H$, $\mathbf{u}_H = g(\mathbf{z}_H)$
- Output layer: $\mathbf{z}_O = \mathbf{W}_O^T \mathbf{u}_H + \mathbf{b}_O$, $u_O = g(\mathbf{z}_O)$
- ☐ Each hidden node is a linear classifier with soft decision (Logistic regression)
- Final output is a weighted average of step 1 outputs using the weights indicated on top of the figures

Training the Model

- Model in matrix form:
 - \square Hidden layer: $\mathbf{z}_H = \mathbf{W}_H^T \mathbf{x} + \mathbf{b}_H$, $\mathbf{u}_H = g(\mathbf{z}_H)$
 - \square Output layer: $z_0 = \boldsymbol{W}_0^T \boldsymbol{u}_H + \boldsymbol{b}_0, \ u_0 = g(z_0)$
- \Box $z_0 = F(x, \theta)$: Linear output from final stage
- ☐ Get training data (x_i, y_i) , i = 1, ..., N
- □ Define loss function: $L(\theta) := -\sum_{i=1}^{N} y_{true} \ln P(y_i | x_i, \theta)$
- □ Pick parameters to minimize loss
- ☐ Will discuss how to do this minimization later.

Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- Neural Networks
- Neural Network Loss Function
- ☐ Building and Training a Network in Keras
 - MNIST
- Backpropagation Training

Neural Networks - Inspiration from Biology

- ☐ Simple model of neurons
 - Dendrites: Input currents from other neurons
 - Soma: Cell body, accumulation of charge
 - Axon: Outputs to other neurons
 - Synapse: Junction between neurons
- Operation:
 - Take weighted sum of input current
 - ☐ Outputs when sum reaches a threshold
- Each neuron is like one unit in neural network

General Structure

- \square Input: $\mathbf{x} = (x_1, \dots, x_d)$
 - \square N_I = number of features
- ☐ Hidden layer:

 - \square Activation function: $u_H = g_{act}(z_H)$
 - \square Dimension: N_H hidden units
- Output layer:
 - $\Box \quad \text{Linear transform: } \mathbf{z}_O = \mathbf{W}_O^T \mathbf{u}_H + \mathbf{b}_O$
 - \square Output function: $u_0 = g_{out}(z_0)$
 - Dimension: N_0 = number of classes / outputs
- Can be used for classification or regression, with different decision functions

Terminology

- \Box Hidden variables: the variables z_H , u_H
 - ☐ These are not directly observed
- ☐ Hidden units: The functions that compute:
 - \Box $z_{H,i} = \sum_{i} W_{H,ii} x_i + b_{H,i}, u_{H,i} = g(z_{H,i})$
 - \square The function g(z) called the activation function
- Output units: The functions that compute
 - $\square \quad z_{O,i} = \sum_{i} W_{O,ji} u_{H,j} + b_{O,i}$

Response Map or Output Activation

- Last layer depends on type of response
- Binary classification: y=±1
 - \Box z_0 is a scalar
 - \square Hard decision: $y_{pred} = \text{sign}(z_0)$
- \square Multi-class classification: y=1,...,K
 - $\mathbf{z}_{O} = \begin{bmatrix} z_{O,1}, \cdots, z_{O,K} \end{bmatrix}^{T}$ is a vector
 - \Box Hard decision: $\hat{y} = \arg \max_{k} z_{0,k}$
 - Soft decision: $P(y = k|x) = S_k(\mathbf{z}_0)$, $S_k(\mathbf{z}_0) = \frac{e^{\mathbf{z}_{0,k}}}{\sum_{\rho} e^{\mathbf{z}_{0,\ell}}}$ (SoftMax)
- □ Regression: $y \in R^K$
- $y_{pred} = z_0$ (linear output layer) 06/05/19

Hidden Activation Function

- Two common activation functions
- Sigmoid:
 - \Box $g_{act}(z) = 1/(1 + e^{-z})$
 - Benefits: Values are bounded
 - Often used for small networks
- Rectified linear unit (ReLU):
- - Often used for larger networks

Number of Parameters

Layer	Parameter	Symbol	Number parameters	
Hidden layer	Bias	b_H	N_H	
	Weights	W_H	$N_H N_I$	
Output layer	Bias	b_O	N_O	
	Weights	W_O	$N_O N_H$	
Total			$N_H(N_I + 1) + N_O(N_H + 1)$	

■ Sizes:

 \square N_I = input dimension, N_H = number of hidden units, N_O = output dimension

 \square N_H = number of hidden units is a free parameter

Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- Neural Networks
- Neural Network Loss Function
- Building and Training a Network in Keras
 - MNIST
- Backpropagation Training

Training a Neural Network

- \square Given data: $(x_i, y_i), i=1,...,N$
- □ Learn parameters: $\theta = (W_H, b_H, W_o, b_o)$
 - ☐ Weights and biases for hidden and output layers
- \square Will minimize a loss function: $L(\theta)$

$$\theta' = \arg\min_{\theta} L(\theta)$$

 \Box $L(\theta)$ = measures how well parameters θ fit training data (x_i, y_i)

Selecting the Right Loss Function

- Depends on the problem type
- \square Always compare final output z_{Oi} with target y_i

Problem	Target y _i	Output z_{0i}	Loss function	Formula
Regression	y_i = Scalar real	z_{0i} = Prediction of y_i Scalar output / sample	Squared / L2 loss	$\sum_{i} (y_i - z_{Oi})^2$
Regression with vector samples	$\mathbf{y}_i = (y_{i1}, \dots, y_{iK})$	z_{Oik} = Prediction of y_{ik} K outputs / sample	Squared / L2 loss	$\sum\nolimits_{ik}(y_{ik}-z_{Oik})^2$
Binary classification	$y_i = \{0,1\}$	z_{0i} = "logit" score Scalar output / sample u_i is the SoftMax of z_{0i}	Binary cross entropy	$\sum_{i} y_{i} \ln(u_{i}) + (1 - y_{i}) \ln(1 - u_{i})$
Multi-class classification	$y_{\rm i} = \{1, \dots, K\}$	z_{Oik} = "logit" scores K outputs / sample	Categorical cross entropy	$\sum_{k=1} r_{ik} ln[P(y_i = k x_i, \theta)]$

Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- Neural Networks
- Neural Network Loss Function
- Building and Training a Network in Keras
 - MNIST
- Backpropagation Training

Python Deep Learning Library - Keras

- ☐ High-level neural network language in Python
- Runs on top of a backend
 - ☐ Much simpler than raw backend language
 - Very fast coding
 - ☐ Uniform language for all backend
- Keras has been incorporated into TF
- □ But...
 - ☐ Slightly less flexible
 - Not as fast sometimes
- ☐ In this class, we use Keras

Keras Recipe

- ☐ Step 1. Describe model architecture
 - □ Number of hidden units, output units, activations, ...
- ☐ Step 3. Select a loss function and compile the model
- ☐ Step 4. Fit the model
- ☐ Step 5. Test / use the model

Example: MNIST data

- Classic MNIST problem:
 - Detect hand-written digits
 - Each image is $28 \times 28 = 784$ pixels
- Dataset size:
 - 50,000 training digits
 - 10,000 test
 - 10,000 validation (not used here)
- Can be loaded with sklearn and many other packages

Step 0: Import the Packages

- Install TensorFlow
- ☐ For this lab, you can use the CPU version
- ☐ If you are using Google Collaboratory, TF is pre-installed

import tensorflow as tf

https://www.tensorflow.org/install

Step 1: Define Model

```
from tensorflow.keras.models import Model, Sequential
                                                                       Load modules for layers
from tensorflow.keras.layers import Dense, Activation
                                                                       Clear graph (extremely important!)
import tensorflow.keras.backend as K
                                                                       Build model
K.clear session()
                                                                           This example: dense lavers
                                                                           Give each layer a dimension, name & activation
nin = Xtr.shape[1] # dimension of input data
             # number of hidden units
nout = int(np.max(ytr)+1) # number of outputs = 10 since there are 10 classes
model = Sequential()
model.add(Dense(units=nh, input_shape=(nin,), activation='sigmoid', name='hidden'))
model.add(Dense(units=nout, activation='softmax', name='output'))
```


Step 2, 3: Select an Optimizer & Compile

- Adam optimizer generally works well for most problems
 - In this case, had to manually set learning rate
 - You often need to play with this.
- ☐ Use binary cross-entropy loss
- Metrics indicate what will be printed in each epoch.

Step 4: Fit the Model

- Use Keras fit function
 - ☐ Specify number of epoch & batch size
- Prints progress after each epoch
 - □ Loss = loss on training data
 - ☐ Acc = accuracy on training data

```
Epoch 1/30
Epoch 2/30
Epoch 3/30
Epoch 4/30
Epoch 6/30
Epoch 7/30
Epoch 8/30
60000/60000 [================ ] - 3s 49us/sample - loss: 0.0980 - acc: 0.9718 - val loss: 0.1097 - val acc: 0.9663
Epoch 9/30
60000/60000 [=========================== ] - 3s 50us/sample - loss: 0.0884 - acc: 0.9751 - val loss: 0.0987 - val acc: 0.9713
Epoch 10/30
60000/60000 [==================== - - 3s 50us/sample - loss: 0.0800 - acc: 0.9777 - val loss: 0.1009 - val acc: 0.9701
```

29

Training and Validation Accuracy

- Training accuracy continues to increase
- ☐ Validation accuracy eventually flattens and sometimes starts to decrease.
- ☐ Should stop when the validation accuracy starts to decrease.
- This indicates overfitting.

```
tr_accuracy = hist.history['acc']
val_accuracy = hist.history['val_acc']

plt.plot(tr_accuracy)
plt.plot(val_accuracy)
plt.grid()
plt.xlabel('epochs')
plt.ylabel('accuarcy')
plt.legend(['training accuracy', 'validation accuracy'])
```


Outline

- Motivating Idea: Nonlinear classifiers from linear features
- Neural Networks
- Neural Network Loss Function
- Building and Training a Network in Keras
 - MNIST
- Backpropagation Training

Computation Graph & Forward Pass

- ☐ Neural network loss function can be computed via a computation graph
- ☐ Sequence of operations starting from measured data and parameters
- Loss function computed via a forward pass in the computation graph

$$\square \quad z_{H\,i} = W_H\,x_i + b_H$$

$$\square \quad u_{H.i} = g_{act} (z_{H.i})$$

$$\square \quad z_{O,i} = W_O u_{H,i} + b_O$$

$$\Box L = \sum_{i} L_{i}(z_{O,i}, y_{i})$$

 $L(\theta)$

Back-Propagation on A Two Node Graph

Variables computed in forward pass

Gradients computed in reverse pass

Back-Propagation on A Two Node Graph

Variables computed in forward pass

Gradients computed in reverse pass

34

Back-Prop on a General Computation Graph

Back-Prop on a General Computation Graph

Back-Prop on a General Computation Graph

Back-Prop on a General Computation Graph

Gradients Descent

- \Box For neural net problem: $\theta = (W_H, b_H, W_O, b_O)$
- ☐ Gradient is computed using back-propagation
- Gradient descent is performed on each parameter:

$$W_H \leftarrow W_H - \alpha \nabla_{W_H} L(\theta),$$

$$b_H \leftarrow b_H - \alpha \nabla_{b_H} L(\theta),$$

. . . .

Regularization in Keras

Activity regularization tries to make the output at each layer small or sparse.

```
• kernel regularizer :instance of keras.regularizers.Regularizer
   bias regularizer: instance of keras.regularizers.Regularizer

    activity regularizer: instance of keras.regularizers.Regularizer

Example
 from keras import regularizers
 model.add(Dense(64, input dim=64,
                 kernel regularizer=regularizers.12(0.01),
                 activity regularizer=regularizers.l1(0.01)))
Available penalties
 keras.regularizers.l1(0.)
 keras.regularizers.12(0.)
 keras.regularizers.l1 l2(0.)
```


Choice of network parameters

- ☐ Number of layers (typically not more than 2)
- ☐ Number of hidden units in the hidden layer
- Regularization level
- Learning rate
- \Box Determined by maximizing the cross-validation error through typically exhaustive search

Learning Objectives

- Mathematically describe a neural network with a single hidden layer
 - Describe mappings for the hidden and output units
- Manually compute output regions for very simple networks
- Select the loss function based on the problem type
- ☐ Build and train a simple neural network in Keras
- Describe mini-batches in stochastic gradient descent
- Importance of regularization
- Hyperparameter optimization

Thank You!