Stock Price Prediction Using Data Augmentation with Generative Models Vivian Chan | Glen A. Wilson High School

Faculty Mentor: Mohammad Husain & Antoine Si | Cal Poly Pomona

Abstract

This research addresses the data scarcity problem in financial time-series forecasting with an application to stock price prediction. This research hypothesizes that synthetic data augmentation using generative models can improve the predictive accuracy of Long Short-Term Memory (LSTM) models. Models were trained on a hybrid dataset, combining historical data with synthetic data from Wasserstein Generative Adversarial Network (WGAN), Cycle-Consistent Generative Adversarial Network (CycleGAN), and Temporal-oriented Synthetic Minority Oversampling Technique (SMOTE-TS). Initial experiments showed statistically significant improvements, with statically significant improvements of predictability compared to the baseline models. These in-sample results provide evidence supporting a shift in focus toward data quality and diversity, not just model architecture; further testing on out-of-sample datasets will be needed to confirm generalizability. This work demonstrates that data augmentation provides a valuable framework for building more accurate stock price forecasting models, suggesting broader applicability in other domains with scarce, noisy datasets.

Introduction & Problem Statement

Traditional models struggle to accurately predict stock prices due to the limited and noisy nature of financial data.

These models are particularly challenged by rare, high-yield

market events, which often lead to major prediction errors.

This research addresses this critical gap by overcoming data scarcity through synthetic data augmentation.

Methodology & Models

The research implemented three distinct models and a hybrid approach to training

Models Implemented

LSTM Baseline: A standard recurrent neural network used as a primary baseline to establish foundational predictive abilities.

QLSTM Baseline: A quantum-enhanced version of the LSTM model used as a second advanced baseline to measure the functional performance of a quantum-inspired model.

Hybrid Dataset Approach: The primary approach was to combine original historical data with synthetic data generated from WGAN, CycleGAN, and SMOTE-TS. The goal was to evaluate the transformative impact of data augmentation on predictive accuracy.

LSTM Architecture

Figure 1. Long Short-Term Memory Architecture [2]

LSTM
Output
Long

(Sequental)

LSTM laver

sequences
Figure 2. Long Short-Term Memory Layer Architecture [2].

Input

Research Framework Flowchart

igure 3. Research Framework Flowchart [1,3,4]

Google Colab

Figure 4. Google Colab Implementation Code [5]

#DATA LOADING data = pd.read_csv('stock_data.csv')	
#MODEL CREATION model = LSTM(input_size=5, hidden_size=50, output_size=1)	
#TRAINING LOOP for epoch in range(OO): loss = train_step(real_data + synthetic_data) print(f'Epoch (epoch); Loss = (loss)')	
#WELIALIZATION	

nlt plot(actual prices label='Real')

plt_plot(predicted prices, label='LSTM + WGAN')

Complete Model Architecture

Figure 5. Complete Model Architecture [5]

Model Performance

ure 6. LSTM Model Performance Metrics Table [2

rigule 0. Estivi Model Ferioritiance Wetrics Table [2]							
Metric	Real Data	WGAN	CycleG	Smote	QLSTM		
MSE	7.71	111.49	2.30	70.22	3305.8 0		
RMSE	2.78	10.56	1.52	8.38	57.50		
R ²	0.992	0.864	0.998	0.880	-27.74		
DA	94.6%	90.7%	98.3%	93.2%	51.76%		

Key Performance Improvements

Hybrid LSTM models achieved statistically significant improvements across evaluation metrics.

Synthetic data argumentations establishes improved performance gains compared to baseline models.

Resultsing indicating synthetic data addresses limitations of historical data scarcity

Figure 7. Model Performance Chart [1,6]

Findings & Impact

Preliminary Results: Synthetic data arugmentionations enable improvements in model performance, with validations of proper statistical methodologies.

Data-Centric Approach: The statistically significant improvements were due to the quality and diversity of the data, not just the model's architecture.

Financial Impact: These improvements lead to enhanced risk-adjusted forecasting accuracy in financial markets.

Broader Applicability: This work provides a valuable framework for improving predictive performance in domains with scarce and noisy datasets, such as financial time-series forecasting.

Future Works

Extended Validation: Test for overfitting and generalization on different asset classes, market cycles, and reaime shifts.

Quantum Architecture Optimization: An enhanced QLSTM should be implemented that optimizes performance.

Practical Implementation: Explore trading strategies and portfolio management by accounting for real-world factors <u>like transaction</u> costs and liquidity.

Risk-Adjusted Metrics: Evaluate performance using quant finance metrics such as the Sharpe ratio and maximum drawdown.

Mehologdy Validations: Implement multiple trails exponential designs to have proper statistical significance testing

References

[1] M. Arjovsky, S. Chintala, & L. Bottou, "Wasserstein Generative Adversarial Networks," ICML, 2017.

[2] S. Hochreiter & J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, no. 8, pp. 1735–1780,

[3] J. Y. Zhu, et al., "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks," ICCV, 2017.
 [4] T. Sampaio, M. Oliveira, & S. Fernandes, "T-SMOTE: Temporal-oriented Synthetic Minority Oversampling Technique" IJCAI 2022.

[5] A. Paszke, et al., "PyTorch: An Imperative Style, High-Performance Deep Learning Library," NeurIPS, 2019. [6] F. Han, X. Ma, & J. Zhang, "Simulating Multi-Asset Classes Prices Using Wasserstein Generative Adversarial Network," J. Risk Financial Manag., 2022.

[7] B. Samuel, et al., "Quantum Long Short-Term Memory,"

[8] Data Sources: Yahoo Finance, Hong Kong Stock Exchange, Chicago Mercantile Exchange, Japan Exchange Group, Binance, and Kaggle.