Seminar 13

- 1. Evaluati integralele partiale
 - a) $\int_0^1 (x^2 + xy + y^2) dy$ b) $\int_y^{y^2} (y x)^3 dx$
- 2. Evaluati integralele iterate
 - a) $\int_{1}^{2} \left(\int_{0}^{\frac{1}{x}} \frac{1}{1+x^{2}y^{2}} \, dy \right) dx$
 - b) $\int_0^1 \left(\int_0^1 \frac{x}{(1+x^2+y^2)^{3/2}} \, dx \right) dy$
- 3. Evaluati integralele duble pe multimile specificate
 - a) $\iint_A \frac{x}{1+xy} dxdy$, $A = [0,1] \times [0,2]$
 - b) $\iint_A xy \, dx dy$, $A = \{(x, y) \in \mathbb{R}^2 | 0 \le x \le 4, x \le y \le 2x \}$
- c) $\iint_A (y+1) \, \mathrm{d}x \mathrm{d}y$, $A \subseteq \mathbb{R}^2$ este multimea marginita de dreptele de ecuatii y=0, y=3x si x+y=3
- d) $\iint_A \mathrm{d}x\mathrm{d}y$, $A\subseteq\mathbb{R}^2$ este multimea marginita de curbele de ecuatii $y^2=2x$ si $x^2=2y$
 - e) $\iint_A \frac{y}{x} dxdy$, $A \subseteq \mathbb{R}^2$ este placa triunghiulara de varfuri $P_1(5,5)$, $P_2(2,2)$ si $P_3(5,2)$.
- 4. Se considera multimea $A \subseteq \mathbb{R}^2$ marginita de dreptele de ecuatii $x=1,\,y=0$ si y=x.
 - a) Aratati ca multimea A este simpla in raport cu ambele axe
 - b) Folosind eventual rezultatul anterior calculati integrala iterata

$$\int_0^1 \left(\int_y^1 \frac{1}{1+x^4} \, \mathrm{d}x \right) \mathrm{d}y$$