南京审计大学 2018-2019学年第一学期《高等数学》期末试卷A

一. 选择题:将唯一正确选项的代码填入题目中的横线上。

(本大题分5小题,每小题3分,共15分)

1. x 轴上点的坐标都可以写成()

A. (0, 0, 0); B. (0, y, 0); C.(x, 0, 0); D.(0, 0, z)

2.设 f(x) 是 x 的可导函数,则 [f(-2x)]' =()

A.-2
$$f'(2x)$$
; B.-2 $f'(-2x)$; C.-2 $f'(x)$; D. $f'(-2x)$;

3.无穷大量与无穷小量的乘积一定是()

A.收敛于 0; B.无穷大量; C.常数; D.以上结论都不对。

$$4. \lim_{n \to \infty} (\sqrt{n^2 + n} - n)$$
 的值是 ()

A.0; B. $\frac{1}{2}$; C.1; D.2;

5.设 f(x) 的原函数为 $\frac{\sin x}{x}$,则 $\int x f'(x) dx = ($)

A. $\cos x + c$; $B - \cos x - \frac{2\sin x}{x} + c$; C. $\cos x - \frac{2\sin x}{x} + c$; D. $\frac{\sin x}{x} + c$

二. 填空题: 根据题意,在下列各题的横线处,填上正确的文字,符号或数值。

(本大题分3小题,每小题3分,共9分)

1. 若 $f(x) = \chi^3$ 在 χ_0 处的自变量增量, $\Delta x = 0.2$,对应的函数增量 Δy 的线性主部

dy = 0.3,则自变量 x 的始值 $\chi_0 =$ _____。

2.已知
$$f(x) = \begin{cases} \frac{1-\cos x}{x^2} & x \neq 0 \\ a & x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a = \underline{\qquad}$

3.设
$$\int_a^b f(x)dx$$
存在,则 $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n f(a+k\frac{b-a}{n}) = \underline{\qquad}$

三. 计算题: 计算下列各题。(本大题 12 小题,每小题 4 分,共 48 分)

1.设
$$z = \chi^2 \operatorname{arc} \cot \sqrt{y}$$
, 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ 。 2.求曲线 $y = c + \frac{a^3}{(x-b)^2}$ 的渐近线。

3.求出函数 $f(x) = \arccos \frac{1}{\sqrt{1-\chi^2}}$ 的定义域及值域。

4. 求
$$\lim_{x\to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x}$$
 5. 设 $f(x) = x(x+1)(x+2)\cdots(x+n)$, 求

f'(0).

6. 求函数
$$f(x) = x^3 e^{-x}$$
 的极值。 7. 计算 $\int \frac{x^3}{x+2} dx$; 8. 计算

$$\int_{0}^{1} t (1-t^{2})^{3} dt$$
:

9.计算
$$I = \iint_D (x-1)y dx dy$$
, $D \oplus y = (x-1)^2$, $y = 1 - x$ 和 $y = 1$ 所 围 成。

10.求微分方程
$$5e^{x}tgydx + (1-e^{x})sec^{2}ydy = 0$$
的通解。

11.求微分方程
$$(1+\chi^2)y'' + 2xy' = 0$$
的通解。

12.给出函数
$$f(x) = \frac{(x-1)\sin x}{|x|(\chi^2-1)}$$
的连续区间,并指出各间断点的类型。

四. 证明题: (本大题 6分)

设
$$f(x)$$
 为连续函数,证明
$$\int_0^x f(t)(x-t)dt = \int_0^x \left(\int_0^t f(u)du\right)dt$$

五.(本大题 4分)

求由抛物线
$$y = \chi^2$$
 及直线 $y = x$ 所围成的图形的面积。

六.(本大题 6 分)

求由椭圆
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
分别绕 x 轴、 y 轴旋转而成的旋转体的体积。

七.(本大题 6分)

已知
$$y = f(x)$$
满足2 $f(x) + e^{-x^2} + 4\int_0^x xf(x)dx = 0$ 且 $f(0) = 1$,求 $f(x)$ 。

八.(本大题6分)

证明: 方程
$$\frac{2}{3}\chi^3 - 2x + c = 0$$
(c为常数) 在 $(0,1)$ 内至少有一个根。