

Departamento de Matemática Aplicada

Primer apellido:
Segundo apellido:
Nombre:
DNI:
Titulación y grupo:

Cálculo para la Computación – E. T. S. I. Informática – Curso 2014/2015

Examen Final Convocatoria Febrero - 09/02/2015

- Se deben justificar adecuadamente las respuestas e indicar los resultados más importantes que se aplican en cada momento.
- Se debe escribir con bolígrafo azul o negro (no usar lápiz).
- No se puede utilizar la calculadora.
- 1. (1.5 p) Consideramos la curva polar dada por la ecuación $r^2 = 2 \sin 2 \theta$
 - a) Represente la curva
 - b) Halle la recta o rectas tangentes a la curva en el punto (0,0)
 - c) Halle la recta o rectas tangentes a la curva en el punto (1,1)
- 2. (1.5 p) Encuentre los extremos absolutos del campo $f(x,y)=\dfrac{-1}{\sqrt{x^2+y^2}}$ en el conjunto de puntos $(x,y)\in\mathbb{R}^2$ tales que $(x-5)^2+y^2\leq 1$
- 3. (1.5 p) Consideremos la ecuación diferencial $\, 2x^6 + 2y(1-x^2) xy' = 0 \,$
 - a) Determine el valor de A, B y C para que $f(x) = A + Bx^2 + Cx^4$ sea solución de la ecuación
 - b) Utilice el cambio de variable $y=x^2z$ para determinar la solución general de la ecuación
- 4. (1.5 p) Calcule la integral $\int_0^{3\pi/2} \frac{\cos x}{3+2\sin x-\cos^2 x} dx$
- 5. (1.5 p) Calcule $\iint\limits_R (3x+4y^2)\,dx\,dy$ siendo $R=\{(x,y)\in\mathbb{R}^2\mid 1\leq x^2+y^2\leq 4,\;y\leq |x|\}$
- 6. (2.5 p) Consideremos la serie de potencias $S(x)=\sum_{n=1}^{\infty} rac{1\cdot 4\cdot 7\cdot \ldots\cdot (3n-2)}{(n+1)!}(x-5)^n$
 - a) Determine el campo de convergencia
 - b) Calcule $S(\frac{16}{3})$
 - c) Aproxime $S(\frac{26}{5})$ con un error menor que una milésima