HILL AND VALLEY PREDICTION

Objective: To analyze the hills and valleys

Data Source: YBI Foundation through Github

Import Library

Import Data

In []: import pandas as pd import numpy as np

df = pd.read_csv(r'https://raw.githubusercontent.com/YBIFoundation/Dataset/main/Hil
df.head()

Out[]:		V1	V2	V3	V4	V5	V6	V7	V8	V9
	0	39.02	36.49	38.20	38.85	39.38	39.74	37.02	39.53	38.81
	1	1.83	1.71	1.77	1.77	1.68	1.78	1.80	1.70	1.75
	2	68177.69	66138.42	72981.88	74304.33	67549.66	69367.34	69169.41	73268.61	74465.84
	3	44889.06	39191.86	40728.46	38576.36	45876.06	47034.00	46611.43	37668.32	40980.89
	4	5.70	5.40	5.28	5.38	5.27	5.61	6.00	5.38	5.34

5 rows × 101 columns

4

Describe Data

In []: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1212 entries, 0 to 1211
Columns: 101 entries, V1 to Class
dtypes: float64(100), int64(1)

memory usage: 956.5 KB

In []: df.describe()

```
Out[ ]:
                           V1
                                           V2
                                                          V3
                                                                          V4
                                                                                         V5
                   1212.000000
                                  1212.000000
                                                  1212.000000
                                                                 1212.000000
                                                                                 1212.000000
                                                                                                1212.
         count
                   8169.091881
                                  8144.306262
                                                  8192.653738
                                                                 8176.868738
                                                                                 8128.297211
                                                                                                8173.
          mean
            std
                  17974.950461
                                 17881.049734
                                                 18087.938901
                                                                17991.903982
                                                                                17846.757963
                                                                                               17927.
           min
                      0.920000
                                     0.900000
                                                     0.850000
                                                                    0.890000
                                                                                    0.880000
                                                                                                   0.
           25%
                     19.602500
                                    19.595000
                                                    18.925000
                                                                                                  19.
                                                                   19.277500
                                                                                   19.210000
           50%
                    301.425000
                                   295.205000
                                                   297.260000
                                                                  299.720000
                                                                                  295.115000
                                                                                                 294.
          75%
                   5358.795000
                                  5417.847500
                                                  5393.367500
                                                                 5388.482500
                                                                                 5321.987500
                                                                                                5328.
           max 117807.870000 108896.480000 119031.350000 110212.590000 113000.470000 116848.
```

8 rows × 101 columns

```
In [ ]: df.columns
Out[]: Index(['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10',
                'V92', 'V93', 'V94', 'V95', 'V96', 'V97', 'V98', 'V99', 'V100',
                'Class'],
              dtype='object', length=101)
In [ ]: print(df.columns.tolist())
       ['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13',
       'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25',
       'V26', 'V27', 'V28', 'V29', 'V30', 'V31', 'V32', 'V33', 'V34', 'V35', 'V36', 'V37',
       'V38', 'V39', 'V40', 'V41', 'V42', 'V43', 'V44', 'V45', 'V46', 'V47', 'V48', 'V49',
       'V50', 'V51', 'V52', 'V53', 'V54', 'V55', 'V56', 'V57', 'V58', 'V59', 'V60', 'V61',
       'V62', 'V63', 'V64', 'V65', 'V66', 'V67', 'V68', 'V69', 'V70', 'V71', 'V72', 'V73',
       'V74', 'V75', 'V76', 'V77', 'V78', 'V79', 'V80', 'V81', 'V82', 'V83', 'V84', 'V85',
       'V86', 'V87', 'V88', 'V89', 'V90', 'V91', 'V92', 'V93', 'V94', 'V95', 'V96', 'V97',
       'V98', 'V99', 'V100', 'Class']
In [ ]: df.shape
Out[]: (1212, 101)
In [ ]: df['Class'].value counts()
Out[]: 0
             606
             606
        Name: Class, dtype: int64
In [ ]: df.groupby('Class').mean()
```

```
Out[]:
                     V1
                                   V2
                                               V3
                                                           V4
                                                                        V5
                                                                                    V6
        Class
            0 7913.333251 7825.339967 7902.497294 7857.032079 7775.610198 7875.436337 7804.
            1 8424.850512 8463.272558 8482.810182 8496.705396 8480.984224 8470.623680 8572.
        2 rows × 100 columns
        Define Target Variable (y) and Feature Variables (X)
In [ ]: y = df['Class']
        y.shape
Out[]: (1212,)
Out[]: 0
                 0
         1
                 1
         2
                 1
         3
                 0
         1207
         1208
         1209
                 1
         1210
                 1
         1211
         Name: Class, Length: 1212, dtype: int64
In [ ]: X = df.drop('Class',axis=1)
        X. shape
Out[]: (1212, 100)
In [ ]: X
```

Out[]:		V1	V2	V3	V4	V5	V6	V7	V8	
	0	39.02	36.49	38.20	38.85	39.38	39.74	37.02	39.53	38
	1	1.83	1.71	1.77	1.77	1.68	1.78	1.80	1.70	
	2	68177.69	66138.42	72981.88	74304.33	67549.66	69367.34	69169.41	73268.61	7446
	3	44889.06	39191.86	40728.46	38576.36	45876.06	47034.00	46611.43	37668.32	4098
	4	5.70	5.40	5.28	5.38	5.27	5.61	6.00	5.38	
	•••									
	1207	13.00	12.87	13.27	13.04	13.19	12.53	14.31	13.33	1.
	1208	48.66	50.11	48.55	50.43	50.09	49.67	48.95	48.65	48
	1209	10160.65	9048.63	8994.94	9514.39	9814.74	10195.24	10031.47	10202.28	915
	1210	34.81	35.07	34.98	32.37	34.16	34.03	33.31	32.48	3.
	1211	8489.43	7672.98	9132.14	7985.73	8226.85	8554.28	8838.87	8967.24	863

1212 rows × 100 columns

```
In [ ]: import matplotlib.pyplot as plt
    plt.plot(X.iloc[0,:])
    plt.title('Valley');
```


Train Test Split

```
In [ ]: from sklearn.preprocessing import StandardScaler
        ss = StandardScaler()
        X = ss.fit transform(X)
Out[]: array([[-0.45248681, -0.45361784, -0.45100881, ..., -0.45609618,
                -0.45164274, -0.45545496],
               [-0.45455665, -0.45556372, -0.45302369, ..., -0.45821768,
                -0.45362255, -0.45755405],
                [ 3.33983504, 3.24466709, 3.58338069, ..., 3.5427869 ,
                 3.27907378, 3.74616847],
                . . . ,
               [0.11084204, 0.0505953, 0.04437307, ..., 0.12533312,
                 0.04456025, 0.06450317],
               [-0.45272112, -0.45369729, -0.45118691, ..., -0.45648861,
                -0.45190136, -0.45569511],
               [0.01782872, -0.02636986, 0.05196137, ..., 0.03036056,
                 0.01087365, 0.03123129]])
In [ ]: X.shape
Out[]: (1212, 100)
In [ ]: from sklearn.model_selection import train_test_split
        X_train,X_test,y_train,y_test = train_test_split(X,y, test_size = 0.3, stratify= y,
        X_train.shape, X_test.shape, y_train.shape, y_test.shape
Out[]: ((848, 100), (364, 100), (848,), (364,))
In [ ]: from sklearn.linear_model import LogisticRegression
        lr = LogisticRegression()
        lr.fit(X_train, y_train)
Out[]: • LogisticRegression
        LogisticRegression()
        Prediction
In [ ]: y_pred = lr.predict(X_test)
        y_pred.shape
Out[]: (364,)
In [ ]: y_pred
```

```
0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
              0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
              0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
              1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1,
              0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0,
              0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
              1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0,
              0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
              0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1])
```

In []: lr.predict_proba(X_test)

```
Out[]: array([[0.56336744, 0.43663256],
                [0.50327039, 0.49672961],
                [0.57446514, 0.42553486],
                [0.50737525, 0.49262475],
                [0.50767478, 0.49232522],
                [0.5087066 , 0.4912934 ],
                [0.50793217, 0.49206783],
                [0.60357917, 0.39642083],
                [0.51009655, 0.48990345],
                [0.50964836, 0.49035164],
                [0.50721213, 0.49278787],
                [0.51503419, 0.48496581],
                [0.93595857, 0.06404143],
                [0.50968822, 0.49031178],
                [0.52004959, 0.47995041],
                [0.73731198, 0.26268802],
                [0.47389171, 0.52610829],
                [0.50781847, 0.49218153],
                [0.50862145, 0.49137855],
                [0.5086342 , 0.4913658 ],
                [0.29771935, 0.70228065],
                [0.38273299, 0.61726701],
                [0.50865396, 0.49134604],
                [0.28367974, 0.71632026],
                [0.50873182, 0.49126818],
                [0.50707761, 0.49292239],
                [0.50896136, 0.49103864],
                [0.50811697, 0.49188303],
                [0.50861558, 0.49138442],
                [0.5074842 , 0.4925158 ],
                [0.41565133, 0.58434867],
                [0.51322175, 0.48677825],
                [0.19965039, 0.80034961],
                [0.74863308, 0.25136692],
                [0.50865392, 0.49134608],
                [0.50862564, 0.49137436],
                [0.50868082, 0.49131918],
                [0.50853411, 0.49146589],
                [0.51269831, 0.48730169],
                [0.51582682, 0.48417318],
                [0.50858125, 0.49141875],
                [0.52031811, 0.47968189],
                [0.28012043, 0.71987957],
                [0.51125979, 0.48874021],
                [0.54087677, 0.45912323],
                [0.46730929, 0.53269071],
                [0.50822765, 0.49177235],
                [0.5238823, 0.4761177],
                [0.50104301, 0.49895699],
                [0.50875872, 0.49124128],
                [0.50864302, 0.49135698],
                [0.54043012, 0.45956988],
                [0.50846686, 0.49153314],
                [0.50733903, 0.49266097],
                [0.51454789, 0.48545211],
                [0.50856525, 0.49143475],
```

[0.50860437, 0.49139563],[0.50893174, 0.49106826], [0.5586017 , 0.4413983], [0.35542757, 0.64457243],[0.50448798, 0.49551202], [0.50859471, 0.49140529], [0.50862332, 0.49137668], [0.33508012, 0.66491988], [0.51012545, 0.48987455],[0.50853881, 0.49146119], [0.56765074, 0.43234926], [0.47833062, 0.52166938],[0.50867152, 0.49132848],[0.50644915, 0.49355085], [0.509056 , 0.490944], [0.50862813, 0.49137187],[0.51023788, 0.48976212], [0.5082914 , 0.4917086], [0.50959783, 0.49040217], [0.59324195, 0.40675805], [0.40833642, 0.59166358],[0.36255743, 0.63744257],[0.77441815, 0.22558185],[0.54037267, 0.45962733],[0.5085901 , 0.4914099], [0.50863832, 0.49136168], [0.50820561, 0.49179439], [0.4964397 , 0.5035603], [0.5085909, 0.4914091],[0.50399121, 0.49600879], [0.50865059, 0.49134941], [0.50908459, 0.49091541], [0.50847808, 0.49152192],[0.50056184, 0.49943816], [0.64764177, 0.35235823],[0.50865275, 0.49134725],[0.50962532, 0.49037468], [0.5217569, 0.4782431],[0.50861733, 0.49138267], [0.00188839, 0.99811161], [0.45882122, 0.54117878],[0.60418366, 0.39581634],[0.50866312, 0.49133688],[0.53064522, 0.46935478], [0.51532306, 0.48467694], [0.49165318, 0.50834682], [0.54605773, 0.45394227],[0.50882289, 0.49117711],[0.50537031, 0.49462969], [0.55736619, 0.44263381], [0.5083356 , 0.4916644], [0.50016455, 0.49983545],[0.50861668, 0.49138332], [0.50792357, 0.49207643], [0.27493137, 0.72506863], [0.50848806, 0.49151194],

[0.51027351, 0.48972649],[0.50866435, 0.49133565], [0.55368443, 0.44631557], [0.14525857, 0.85474143],[0.50812566, 0.49187434], [0.50425641, 0.49574359],[0.83669283, 0.16330717], [0.51807391, 0.48192609], [0.50934292, 0.49065708], [0.38916501, 0.61083499], [0.50855269, 0.49144731], [0.48813824, 0.51186176],[0.50865032, 0.49134968],[0.50869167, 0.49130833], [0.5074832 , 0.4925168], [0.51478613, 0.48521387],[0.50957087, 0.49042913], [0.56654947, 0.43345053],[0.50531205, 0.49468795], [0.52184111, 0.47815889],[0.50901839, 0.49098161], [0.47509921, 0.52490079],[0.54368227, 0.45631773],[0.50843518, 0.49156482],[0.51352798, 0.48647202], [0.50857309, 0.49142691], [0.48070577, 0.51929423], [0.50821319, 0.49178681], [0.50859266, 0.49140734],[0.61181147, 0.38818853], [0.50871788, 0.49128212], [0.50965742, 0.49034258], [0.50876595, 0.49123405],[0.26235726, 0.73764274], [0.508621 , 0.491379], [0.71522876, 0.28477124], [0.5088026 , 0.4911974], [0.50865615, 0.49134385],[0.50858526, 0.49141474], [0.50864688, 0.49135312],[0.88654953, 0.11345047],[0.50865943, 0.49134057],[0.50865124, 0.49134876],[0.10671285, 0.89328715], [0.50865425, 0.49134575],[0.41188852, 0.58811148], [0.55572713, 0.44427287],[0.51395264, 0.48604736],[0.50861696, 0.49138304], [0.89581583, 0.10418417],[0.50894481, 0.49105519],[0.5096374, 0.4903626],[0.50845822, 0.49154178],[0.62869575, 0.37130425], [0.56013681, 0.43986319], [0.41050707, 0.58949293],

```
[0.51594206, 0.48405794],
[0.51034503, 0.48965497],
[0.51006378, 0.48993622],
[0.50868313, 0.49131687],
[0.53572343, 0.46427657],
[0.5088925, 0.4911075],
[0.57188349, 0.42811651],
[0.49876233, 0.50123767],
[0.80087408, 0.19912592],
[0.50865013, 0.49134987],
[0.733861 , 0.266139 ],
[0.58443597, 0.41556403],
[0.50888943, 0.49111057],
[0.50875194, 0.49124806],
[0.50856455, 0.49143545],
[0.99289372, 0.00710628],
[0.50862518, 0.49137482],
[0.50902015, 0.49097985],
[0.42178743, 0.57821257],
[0.51195925, 0.48804075],
[0.50693383, 0.49306617],
[0.49439744, 0.50560256],
[0.50864169, 0.49135831],
[0.34064698, 0.65935302],
[0.50050909, 0.49949091],
[0.47805584, 0.52194416],
[0.50862875, 0.49137125],
[0.50882094, 0.49117906],
[0.51986751, 0.48013249],
[0.5087651 , 0.4912349 ],
[0.52968383, 0.47031617],
[0.50624454, 0.49375546],
[0.50866737, 0.49133263],
[0.52908124, 0.47091876],
[0.51997503, 0.48002497],
[0.29951874, 0.70048126],
[0.49517002, 0.50482998],
[0.50677621, 0.49322379],
[0.50861995, 0.49138005],
[0.50847963, 0.49152037],
[0.50858711, 0.49141289],
[0.57059462, 0.42940538],
[0.60694762, 0.39305238],
[0.50848908, 0.49151092],
[0.45270204, 0.54729796],
[0.5982575 , 0.4017425 ],
[0.16132575, 0.83867425],
[0.50863962, 0.49136038],
[0.50972408, 0.49027592],
[0.50865437, 0.49134563],
[0.44337178, 0.55662822],
[0.46571331, 0.53428669],
[0.50860372, 0.49139628],
[0.50273773, 0.49726227],
[0.65421583, 0.34578417],
[0.4883913 , 0.5116087 ],
```

[0.50863483, 0.49136517], [0.0332069 , 0.9667931], [0.50858267, 0.49141733], [0.50815533, 0.49184467],[0.55923855, 0.44076145], [0.50893217, 0.49106783],[0.07230376, 0.92769624], [0.50858321, 0.49141679], [0.4224533 , 0.5775467], [0.42780692, 0.57219308], [0.50889484, 0.49110516], [0.52570584, 0.47429416], [0.49822124, 0.50177876],[0.30161901, 0.69838099], [0.50821596, 0.49178404], [0.50888748, 0.49111252],[0.1753728, 0.8246272],[0.50710602, 0.49289398],[0.78121492, 0.21878508], [0.48397767, 0.51602233], [0.50854707, 0.49145293],[0.51044181, 0.48955819], [0.80138593, 0.19861407],[0.50656725, 0.49343275],[0.50568628, 0.49431372], [0.50864418, 0.49135582], [0.50865874, 0.49134126], [0.30934702, 0.69065298], [0.50848121, 0.49151879],[0.05533464, 0.94466536], [0.50864408, 0.49135592], [0.45699689, 0.54300311], [0.53046093, 0.46953907],[0.50863729, 0.49136271],[0.50861171, 0.49138829],[0.50890203, 0.49109797], [0.49228277, 0.50771723],[0.55054228, 0.44945772], [0.49563697, 0.50436303], [0.50864186, 0.49135814], [0.50547373, 0.49452627],[0.50705965, 0.49294035],[0.50850825, 0.49149175],[0.50863514, 0.49136486], [0.6070427, 0.3929573],[0.50861908, 0.49138092], [0.50836716, 0.49163284],[0.50845779, 0.49154221],[0.51338135, 0.48661865], [0.50859941, 0.49140059], [0.50550932, 0.49449068], [0.37826994, 0.62173006], [0.50859178, 0.49140822],[0.91470492, 0.08529508], [0.50860396, 0.49139604], [0.50846494, 0.49153506],

[0.50858272, 0.49141728], [0.50860138, 0.49139862], [0.51559009, 0.48440991], [0.50927127, 0.49072873],[0.5093133 , 0.4906867], [0.51131576, 0.48868424], [0.50854686, 0.49145314], [0.50861361, 0.49138639], [0.43520623, 0.56479377], [0.50865075, 0.49134925], [0.51146009, 0.48853991], [0.5081865, 0.4918135],[0.46802482, 0.53197518],[0.50863676, 0.49136324], [0.40298303, 0.59701697], [0.52052627, 0.47947373], [0.44184753, 0.55815247], [0.45694071, 0.54305929],[0.34477066, 0.65522934], [0.50856495, 0.49143505], [0.32961822, 0.67038178],[0.50842322, 0.49157678], [0.50862839, 0.49137161],[0.50861587, 0.49138413],[0.49982741, 0.50017259], [0.50640416, 0.49359584], [0.00939576, 0.99060424], [0.50865029, 0.49134971], [0.40727561, 0.59272439],[0.50783678, 0.49216322], [0.50863236, 0.49136764], [0.50881992, 0.49118008], [0.5062655, 0.4937345],[0.48327858, 0.51672142], [0.49892383, 0.50107617],[0.50862417, 0.49137583], [0.51207822, 0.48792178],[0.87769406, 0.12230594], [0.50885621, 0.49114379], [0.50775443, 0.49224557],[0.50885088, 0.49114912],[0.45953645, 0.54046355],[0.50860029, 0.49139971],[0.49737448, 0.50262552], [0.50902558, 0.49097442],[0.03768716, 0.96231284], [0.46144808, 0.53855192],[0.49909602, 0.50090398], [0.71375106, 0.28624894],[0.50867123, 0.49132877],[0.63597662, 0.36402338],[0.50894067, 0.49105933], [0.53221095, 0.46778905],[0.4735918, 0.5264082],[0.51131842, 0.48868158], [0.47711039, 0.52288961],

```
[0.50836868, 0.49163132],
                [0.51791139, 0.48208861],
                [0.50929629, 0.49070371],
                [0.77824423, 0.22175577],
                [0.50878251, 0.49121749],
                [0.53444807, 0.46555193],
                [0.68401993, 0.31598007],
                [0.50837605, 0.49162395],
                [0.49955891, 0.50044109],
                [0.66733466, 0.33266534],
                [0.51287013, 0.48712987],
                [0.5100684 , 0.4899316 ],
                [0.49493863, 0.50506137],
                [0.50415413, 0.49584587],
                [0.50875424, 0.49124576],
                [0.50859968, 0.49140032],
                [0.51714632, 0.48285368],
                [0.49828539, 0.50171461],
                [0.50868242, 0.49131758],
                [0.5887849, 0.4112151],
                [0.50578145, 0.49421855],
                [0.50864404, 0.49135596],
                [0.78691964, 0.21308036],
                [0.50865314, 0.49134686],
                [0.5085737 , 0.4914263 ],
                [0.48168718, 0.51831282],
                [0.50838591, 0.49161409],
                [0.05333433, 0.94666567]])
        Explanation
In [ ]: from sklearn.metrics import confusion matrix, classification report
         print(confusion_matrix(y_test, y_pred))
               1]
        [106 76]]
In [ ]: print(classification_report(y_test, y_pred))
                      precision
                                   recall f1-score
                                                       support
                  0
                           0.63
                                     0.99
                                               0.77
                                                           182
                  1
                           0.99
                                     0.42
                                               0.59
                                                           182
                                               0.71
                                                           364
           accuracy
          macro avg
                           0.81
                                     0.71
                                               0.68
                                                           364
       weighted avg
                           0.81
                                     0.71
                                               0.68
                                                           364
In [ ]: X_new = df.sample(1)
```

X new

[[181

```
Out[]:
              V1
                   V2
                       V3 V4
                                 V5
                                       V6
                                            V7
                                               V8
                                                       V9 V10 ... V92 V93 V94 V95 V
        409 9.63 8.97 8.48 8.5 9.79 10.15 8.74 9.52 10.18
                                                          8.7 ... 8.43 8.48 8.81 9.26 8.
       1 rows × 101 columns
In [ ]: X_new.shape
Out[]: (1, 101)
In [ ]: X_new = X_new.drop('Class', axis = 1)
        X_new
Out[ ]:
                                                 V8
              V1
                   V2
                        V3 V4
                                 V5
                                       V6
                                            V7
                                                       V9 V10 ... V91
                                                                       V92
        409 9.63 8.97 8.48 8.5 9.79 10.15 8.74 9.52 10.18
                                                          8.7 ... 9.05 8.43 8.48 8.81 9.
       1 rows × 100 columns
In [ ]: X_new.shape
Out[]: (1, 100)
In [ ]: X_new = ss.fit_transform(X_new)
        y_pard_new = lr.predict(X_new)
        y_pard_new
Out[]: array([1])
In [ ]: lr.predict_proba(X_new)
Out[]: array([[0.49714993, 0.50285007]])
```