

Claims

- 1 1. A method for retrieving digital objects from a group of digital objects
2 maintained by a database, the group of digital objects being represented by the equation
3 $G = \{m_i, i = 1, 2, \dots, N\}$, wherein G represents the group of digital objects, N represents
4 the number of digital objects maintained by the database, i represents an index having
5 allowable values between 1 and N inclusive, and m_i represents an i^{th} digital object
6 within the group of digital objects, the method comprising:
7 generating a random number R and keys k_i, i having allowable values between 1
8 and N inclusive, for a symmetric key cryptosystem;
9 determining a prime number p;
10 encrypting digital object m_i with key k_i using the symmetric key cryptosystem to
11 obtain ciphertext c_i ;
12 assigning a value of $k_i^R \bmod p$ to a key ciphertext s_i ,
13 responsive to the database receiving a request signal from a user, sending c_i and
14 s_i to the user;
15 receiving from the user a number n of input signals W_j , such that n is less than N,
16 and j is an index having allowable values between 1 and n inclusive;
17 computing changed ciphertext U_j , such that U_j is equal to $W_j^{1/R \bmod (p-1)} \bmod p$; and
18 sending U_j to the user.
- 1 2. The method of claim 1, where the modulo operations may be carried out
2 in any group in which a discrete logarithm is infeasible to compute.

1 3. A method for a user to privately retrieve digital objects from a group of
2 digital objects $G = \{m_i, i = 1, 2, \dots, N\}$ maintained by a database, the method comprising
3 the steps of:

4 sending a request signal to the database;
5 receiving reply signals $c_j, s_j, j = 1, 2, \dots, N$ from the database;
6 generating random numbers w_j , computing and sending $W_j = s_j^{w_j} \bmod p, j = 1, 2,$
7 ..., n to the database;
8 receiving signals $U_j, j = 1, 2, \dots, n$ from the database;
9 computing $k_j = U_j^{1/w_j \bmod (p-1)} \bmod p, j = 1, 2, \dots, n$; and
10 decrypting c_j with k_j and a symmetric key cryptosystem to recover digital objects
11 $m_j, j = 1, 2, \dots, n$.

1 4. The method of claim 3, wherein the modulo operations may be carried out
2 in any group in which a discrete logarithm is infeasible to compute.

1 5. A method for selectively retrieving digital objects from a database of
2 digital objects using a symmetric key cryptosystem, the method comprising:
3 for each digital object in the database:
4 generating a unique key for the symmetric key cryptosystem;
5 associating the key with the digital object;
6 encrypting the digital object using the associated key and the
7 symmetric key cryptosystem to produce a ciphertext of the
8 digital object;
9 encrypting the associated key to obtain a ciphertext of the key;
10 transmitting the ciphertext of the digital object and the ciphertext of
11 the key associated with the digital object to a user;

12 receiving at least one changed ciphertext of the keys associated with the digital
13 objects in the database;
14 decrypting each received changed ciphertext; and
15 transmitting the decrypted received changed ciphertexts.

16

1 6. A method for retrieving digital objects from a group of digital objects
2 maintained by a database, the method comprising the steps of:

3 selectively requesting a plurality of digital objects from the database;
4 receiving encrypted ciphertext digital objects from the database;
5 receiving from the database encrypted ciphertext keys associated with the
6 received ciphertext digital objects;

7 encrypting at least one of the encrypted ciphertext keys to obtain changed
8 ciphertext keys;

9 sending the changed ciphertext keys to the database;
10 receiving partially decrypted changed ciphertext keys from the database;
11 decrypting the partially decrypted changed ciphertext keys; and
12 decrypting at least one of the received ciphertext digital objects using the
13 decrypted keys.

1 7. An apparatus comprising:

2 a computerized database;

3 coupled to the database, a computer user;

4 coupled to the database, a transmitting module for transmitting data to the user;

5 coupled to the database, a receiving module for receiving data from the user;

6 coupled to the database, a random number generating module for generating
7 random numbers;

8 coupled to the database, a key generating module for generating cryptographic
9 keys;
10 coupled to the database, an encrypting module for encrypting data;
11 coupled to the database, a decrypting module for decrypting data;
12 coupled to the user, a requesting module for requesting data from the database;
13 coupled to the user, a transmitting module, for transmitting data to the database;
14 coupled to the user, a receiving module, for receiving data from the database;
15 coupled to the user, a random number generating module for generating random
 numbers;
17 coupled to the user, an encrypting module for encrypting data; and
18 coupled to the user, a decrypting module for decrypting data.

1 8. A computer program product stored on a computer readable medium for
2 retrieving digital objects from a group of digital objects maintained by a database, the
3 computer program product controlling a processor coupled to the medium to perform
4 the operations of:
5 for each digital object in the database:
6 generating a unique key for a symmetric key cryptosystem;
7 associating the key with the digital object;
8 encrypting the digital object using the associated key and the
9 symmetric key cryptosystem to produce a ciphertext of the
10 digital object;
11 encrypting the associated key to obtain a ciphertext of the key;
12 transmitting the ciphertext of the digital object and the ciphertext of
13 the key associated with the digital object to a user;
14 receiving at least one changed ciphertext of the keys associated with the digital
15 objects in the database;

- 16 decrypting each received changed ciphertext; and
- 17 transmitting the decrypted received changed ciphertexts.