Single Period Market Models

Tahir Choulli

1 Probability modelling and probability tools: Review 1

1.1 σ -algebras and random variables

The mathematical modelling of any experiment, for which outcome(s) involve randomness, starts with a given triplet (Ω, \mathcal{F}, P) . Ω is the set of all scenarios (the set of all states the world) related to the experiment under consideration, \mathcal{F} is a σ -algebra, and P is a probability measure. **Details**, examples and interpretations are given in class, and below is a summary table.

	Ω general	Ω finite
σ -algebra	collection \mathcal{F} of	one can take \mathcal{F}
	subsets of Ω s.t.	= power set of Ω
	a) $\Omega \in \mathcal{F}$	$=$ all subsets of Ω
	b) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$	$\exists B_1,\ldots,B_m$
	c) $A_1, A_2, \ldots \in \mathcal{F}$	i) (B_i) disjoint
	$\Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$	$ii) \bigcup_{i=1}^{m} B_i = \Omega$
		iii) every $A \in \mathcal{F}$ is
		a union of some B_i
probab.	$P: \mathcal{F} \to [0,1] \text{ s.t.}$	P is determined
measure	a) $P[\Omega] = 1$	by the values $P[\omega_i], \omega_i \in \Omega$.
	b) $P[\bigcup_{i=1}^{\infty} A_i]$	
	$=\sum_{i=1}^{\infty}P[A_i]$	
	for disjoint (A_i)	
filtration	σ -algebras	characterized by a
	$(\mathcal{F}_t)_{t=0,1,\dots,T}$ with	sequence $(B_{t,i})$
	$\mid \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \dots$	of increasing
	$\ldots \subseteq \mathcal{F}_T \subseteq \mathcal{F}$	partitions of Ω
random	$\mod X: \Omega \to \mathbb{R} \text{ s.t.}$	if $\mathcal{F} = \text{power set}$,
variable	$ \{\omega X(\omega) \le a\} \in \mathcal{F}$	every map is a
	for any $a \in \mathbb{R}$	random variable

1.2 Conditional expectations

Again details, examples and interpretations are given in class.

• Conditional probability:

$$P[B|A] = \frac{P[A \cap B]}{P[A]}$$
 for $A, B \in \mathcal{F}$ with $P[A] > 0$;

the probability that B happens given we already know that A happens.

• Conditional expectation with respect to events: For $A \in \mathcal{F}$ with P[A] > 0 and a random variable X, we define the conditional expectation E[X|A] by

$$E[X|A] = E_O[X],$$

where $E_Q[.]$ is the expectation under the probability Q given by Q(B) := P[B|A] for any event B.

• Conditional expectation with respect to sub- σ -algebra: Let $\mathcal{A} \subseteq \mathcal{F}$ be a sub- σ -algebra, that is generated by the sequence of events $(B_i)_{i=1,\dots n}$ that constitutes a partition

of
$$\Omega$$
 (i.e. $\mathcal{A} := \sigma(B_1, ..., B_n)$, $\bigcup_{i=1}^n B_i = \Omega$, $B_i \cap B_j = \emptyset$ $i \neq j$).

For any random variable X, the conditional expectation E[X|A] is given by

$$E[X|\mathcal{A}] = \sum_{i=1}^{n} E[X|B_i]I_{B_i},$$

• Proposition: Let X be a random variable and A a sub- σ -algebra. Then

$$Y = E[X|\mathcal{A}] \iff \begin{cases} \text{(i) } Y \text{ is } \mathcal{A}\text{-measurable,} \\ \text{(ii) } E[YI_A] = E[XI_A] \ \forall A \in \mathcal{A}. \end{cases}$$

- Properties of the conditional expectation:
 - 1. Tower property:

$$E[E[X|\mathcal{A}]|\mathcal{B}] = E[X|\mathcal{B}]$$

for $\mathcal{B} \subseteq \mathcal{A} \subseteq \mathcal{F}$ sub- σ -algebras.

2. Linearity:

$$E[X_1Y_1 + X_2Y_2|\mathcal{A}] = X_1E[Y_1|\mathcal{A}] + X_2E[Y_2|\mathcal{A}]$$

for random variables X_1, X_2, Y_1, Y_2 and a sub- σ -algebra $\mathcal{A} \subseteq \mathcal{F}$ with X_1, X_2 \mathcal{A} -measurable. In particular, when X is \mathcal{A} -measurable, we get $E[X|\mathcal{A}] = X$.

3. Independence:

$$E[X|\mathcal{A}] = E[X]$$

if X is independent from \mathcal{A} (i.e. the case where $P[(X \leq a) \cap A] = P[X \leq a]P[A]$ for all $a \in \mathbb{R}$ and $A \in \mathcal{A}$) or when the sub- σ -algebra is equal to the trivial one $\mathcal{F}_0 = \{\Omega, \emptyset\}$.

2

• Filtration and stochastic processes: Details to be given in class.

2 One Period Mathematical/Economic/Financial Model

2.1 Uncertainty Modelling:

• The set Ω of the states of the world is finite:

$$\Omega = \{\omega_1, \dots, \omega_K\} \text{ for } K < \infty$$

- Probability measure P on Ω with $P(\omega) > 0$ for all $\omega \in \Omega$
- Filtration=Flow of information about the market:

$$(\mathcal{F}_t)_{t=0,1}$$
 $\mathcal{F}_0 \subset \mathcal{F}_1$

Very often we assume that \mathcal{F}_0 is trivial, i.e. $\mathcal{F}_0 = \{\emptyset, \Omega\}$.

2.2 Underlying Assets:

- The trading dates are the initial date t = 0 and the terminal date t = 1;
- Bank account process (non-risky asset) B: $B_0 = 1$, B_1 random variable with $B_1 \ge 1 \Longrightarrow$ interest rate $r = B_1 1 \ge 0$
- N Stocks (Risky assets) with price processes given by S: $S_t = (S_1(t), \dots, S_N(t)), t = 0, 1;$

 $S_n(0)$ = positive, deterministic price of the n^{th} security

 $S_n(1)$ = nonnegative, random price of the n^{th} security

2.3 Trading Strategies and Value Processes:

• Trading strategy $H = (H_0, \ldots, H_N) \in \mathbb{R}^{N+1}$;

 H_0 = dollars invested in the bank account

 H_n = units of the n^{th} security held by the investor, n = 1, ..., N.

• Value process $V := V^H$

 V_t = value of the portfolio at time t

$$= H_0 B_t + \sum_{n=1}^{N} H_n S_n(t), \qquad t = 0, 1$$

• Gain $G := G^H$: describes profit (G > 0) or loss (G < 0) between times 0 and 1:

$$G:=V_1-V_0.$$

Exercise: Prove that

$$G = H_0(B_1 - B_0) + \sum_{n=1}^{N} H_n(S_n(1) - S_n(0))$$
$$= H_0 r + \sum_{n=1}^{N} H_n \Delta S_n,$$

where $\Delta S_n = S_n(1) - S_n(0)$.

2.4 Discounted prices:

- \bullet Normalize prices such that B is constant; the bank account is then called the numéraire
- Discounted price process S^*

$$S^{\star}(t) = (S_1^{\star}(t), \dots, S_N^{\star}(t)), \quad \text{where} \quad S_n^{\star}(t) := \frac{S_n(t)}{B_t}$$

• Discounted value and gains processes:

$$V_t^* := \frac{V_t}{B_t} = H_0 + \sum_{n=1}^N H_n S_n^*(t), \qquad G^* := V_1^* - V_0^*.$$

Exercise: Prove that

$$G^* = \sum_{n=1}^N H_n(S_n^*(1) - S_n^*(0)) = \sum_{n=1}^N H_n \Delta S_n^*.$$

3 Arbitrage and risk neutral probability measures

Definition 1. 1) An arbitrage opportunity is a trading strategy H satisfying

$$V_0 = 0$$
, $V_1(\omega) \ge 0 \ \forall \ \omega \in \Omega$, and $E[V_1] > 0$.

2) The law of one price holds if for any two trading strategies \hat{H} and \tilde{H} , the following holds.

$$\hat{V}_1(\omega) = \tilde{V}_1(\omega) \ \forall \ \omega \in \Omega \ implies \ that \ \hat{V}_0 = \tilde{V}_0.$$

3) A probability measure $Q:\Omega\to[0,1]$ is a risk neutral probability measure if $Q(\omega)>0$ for all $\omega\in\Omega$ and

$$S_n^{\star}(0) = \sum_{\omega \in \Omega} Q(\omega) S_n^{\star}(1)(\omega) = E_Q[S_n^{\star}(1)], \ n = 1, \dots, N.$$

What is the economic/financial meaning of the above?

- Economic point of view: reasonable to study models that are free from arbitrage
- If an arbitrage opportunity were to exist
 - \Longrightarrow every body would use this trading strategy
 - ⇒ prices of the securities would be affected so that the arbitrage opportunity would vanish!

Proposition 2. If there are no arbitrage opportunities, the law of one price holds. The converse, however, is not necessarily true.

It is always NOT easy to check directly whether a model is arbitrage-free or not . The following is very helpful in this direction!

Theorem 3. The following assertions are equivalent.

- (a) There are no arbitrage opportunities.
- (b) There exists a risk neutral probability measure.

Exercise: Prove that assertion (b) of the above theorem implies assertion (a).

Example 1 (Exercise 1.4 of the textbook): Suppose that there are three scenarios, $\omega_1, \omega_2, \omega_3$, r = 0 and two stocks with the following price processes

scenario	$S_1(0)$	$S_2(0)$	$S_1(1)$	$S_2(1)$
ω_1	4	7	8	10
ω_2	4	7	6	8
ω_3	4	7	3	4

Solve the following questions:

- (i) Prove that the model has the law of one price
- (ii) Provide an arbitrage opportunity for the model.

Example 2: Prove that a market model has arbitrage if there exists a trading strategy satisfying

$$V_0 < 0$$
 and $V_1(\omega) \ge 0$, $\forall \omega \in \Omega$.

Precisely, we define the following

Definition 4. A trading strategy, $H = (H_0, H_1, ..., H_N)$, is called a dominating strategy if there exists another strategy $H' = (H'_0, H'_1, ..., H'_N)$ such that

$$V_0^H = V_0^{H'} \quad and \quad V_1^H(\omega) > V_1^{H'}(\omega), \quad \forall \ \omega \in \Omega.$$

It is easy to prove the following

Lemma 5. A market admits a dominating strategy if and only if there exists a strategy $H = (H_0, H_1, ..., H_N)$ satisfying

$$V_0^H = 0$$
 and $V_1^H(\omega) > 0 \quad \forall \ \omega \in \Omega.$

In fact, it is enough to use the definition of dominating strategy, put $\bar{H} := H - H'$, and then easily check that this strategy \bar{H} satisfies the conditions given by the lemma.

Theorem 6. Consider the following assertions.

- (a) The market admits a dominating strategy.
- (b) There exists a strategy H satisfying

$$V_0^H < 0$$
 and $V_1^H(\omega) \ge 0$, $\forall \ \omega \in \Omega$.

(c) The market has arbitrages. Then, we have (a) \iff (b) \implies (c). The proof is discussed in class together with examples made up some times on the spot.

Example 3: Suppose that there are three scenarios, $\omega_1, \omega_2, \omega_3, r \geq 0$ deterministic and two stocks with the following price processes

scenario	$S_1(0)$	$S_2(0)$	$S_1(1)$	$S_2(1)$
ω_1	4	7	8	10
ω_2	4	7	a	8
ω_3	4	7	3	4,

where a is a positive number. Solve the following questions:

- (i) What relation should a and r satisfy in order that the market model is arbitrage free.
- (ii) If the relationship found in part a) holds, determine the set of all risk-neutral measures for the model. Is the market model complete nor not?

4 Contingent claims

Definition 7. 1) A contingent claim is a random variable X representing a payoff at time 1. 2) A contingent claim X is attainable if there exists a trading strategy H such that

$$X = V_1$$
.

Such an H is called replicating portfolio.

What is a fair value for a contingent claim?

Proposition 8. Suppose that the market has no arbitrage opportunity.

- 1) For every trading strategy, one has $V_0 = E_Q[\frac{V_1}{B_1}]$ for any risk neutral probability measure Q.
- 2) [Risk neutral valuation principle] If a contingent claim X is attainable, then its unique fair value at time 0, p_0 is given by

$$E_Q[\frac{V_1}{B_1}] = H_0 + \sum_{n=1}^{N} H_n S_n(0),$$

for any replicating portfolio H and for any risk neutral prob. meas. Q.

Examples of Contingent Claims:

- A European call option with strike price K on S_1 is a contingent claim with payoff $X = (S_1 K)^+ = \max\{0, S_1 K\}.$
- A European put option with strike price K on S_1 is a contingent claim with payoff $X = (K S_1)^+ = \max\{0, K S_1\}.$

5 Complete and incomplete markets

We set $\mathbb{M} = \{Q \mid Q \text{ is a risk neutral probability measure}\}$ and assume $\mathbb{M} \neq \emptyset$ throughout this section.

Proposition 9. A contingent claim X is attainable if and only if $E_Q[\frac{X}{B_1}]$ is constant for all $Q \in \mathbb{M}$. In that case, $E_Q[\frac{X}{B_1}]$ is the unique fair value.

Is there a unique fair value for every contingent claim? What is the set of fair values for a contingent claim?

Definition 10. The market is complete if every contingent claim is attainable. Otherwise, the market is incomplete.

Theorem 11. The following are equivalent.

- a) The market is complete.
- b) The number of states in Ω equals the number of independent vectors in $\{B_1, S_1(1), \ldots, S_N(1)\}$.
- c) M consists of exactly one element.

Proposition 12. For any contingent claim X, we have

fair values =
$$\left(or\left[\inf_{Q \in \mathbb{M}} E_Q\left[\frac{X}{B_1}\right], \sup_{Q \in \mathbb{M}} E_Q\left[\frac{X}{B_1}\right]\right] or\right)$$
.

The interval is one point if and only if X is attainable. Otherwise, the interval is open.

Examples:

• Example 1: Consider the model of example 1.4 of the textbook, which is given by

$$r = \frac{1}{9}$$
, $S_1(0) = 5$, $S_1(1) = \begin{cases} 60/9, & \text{for } \omega_1 \\ 60/9, & \text{for } \omega_2 \\ 40/9, & \text{for } \omega_3 \\ 20/9, & \text{for } \omega_4 \end{cases}$,

$$S_2(0) = 10, \quad S_2(1) = \begin{cases} 120/9, & \text{for } \omega_1 \\ 80/9, & \text{for } \omega_2 \\ 80/9, & \text{for } \omega_3 \\ 120/9, & \text{for } \omega_4 \end{cases}$$

- 1) Describe the set of all risk-neutral probabilities.
- 2) Is the market complete? Justify?
- 3) Describe the set of all fair prices for a call option with strike price K = 10 on the second stock. What conclusion can you withdraw?
- 4) Describe the set of all fair prices for a call option with strike price K = 50/9 on the first stock. What conclusion can you withdraw?

• Example 2: Consider a single-period model with K=3, N=1, interest rate $r \geq 0, S_0=1$,

$$S_1 = \begin{cases} 1+u & \text{with probability } p_1 \\ 1+m & \text{with probability } p_2 \\ 1+d & \text{with probability } p_3 \end{cases}$$

with numbers $u > m > d \ge -1$ and positive numbers p_1, p_2, p_3 with $p_1 + p_2 + p_3 = 1$.

1) Provide necessary and sufficient conditions in terms of u, m, d and r for the market model to be free from arbitrage opportunities.

Hint: You can use without proving that for given real numbers a_1, \ldots, a_N, b , there exist $q_1 > 0, \ldots, q_N > 0$ with $\sum_{n=1}^N q_n = 1$ and $\sum_{n=1}^N q_n a_n = b$ if and only if $\min_n a_n < b < \max_n a_n$.

- 2) Under the no-arbitrage assumption, describe the set M of all risk neutral probability measures and prove that the market is incomplete.
- 3) For a European call option $(S_1 K)^+$ with strike price K = 1 + m, determine the lower and upper bounds on the fair value of the claim.