Examen Parcial 3

Apellidos y Nombre						
D.N.I		FIRMA				

- 1) ¿Cuál es la parte imaginaria de $(1+i)^{2012}$?
- 2) Hallar una ecuación de segundo grado $z^2 + az + b = 0$ cuyas raíces sean z = 2 + 3i y z = i.
- 3) Sean $P,Q\in\mathbb{Q}[x]$ polinomios no nulos. Probar que si P y Q son coprimos entonces los polinomios P+Q y P-Q también son coprimos.

Soluciones

- 1) Como $1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \operatorname{sen} \frac{\pi}{4}\right)$, se tiene $(1 + i)^{2012} = (\sqrt{2})^{2012} \left(\cos \frac{2012\pi}{4} + i \operatorname{sen} \frac{2012\pi}{4}\right)$ y $\operatorname{sen}(503\pi) = 0$ implica que la parte imaginaria es cero.
- **2)** Basta considerar como primer miembro (z (2+3i))(z-i), que operando es $z^2 (2+4i)z + i(2+3i)$, así pues a = -2-4i y b = -3+2i.
- 3) Si $D \mid (P+Q) \neq D \mid (P-Q)$ entonces sumando y restando $D \mid 2P \neq D \mid 2Q$, o equivalentemente (estamos en $\mathbb{Q}[x]$), $D \mid P \neq D \mid Q$. Entonces hemos demostrado que si $P+Q \neq P-Q$ no son coprimos, tampoco lo son $P \neq Q$.