Trabalho 4 - DNS

Miguel Ferreira
miguelferreira108@gmail.com
Vanessa Silva
up201305731@fc.up.pt

Administração de Redes, Departamento de Ciências de Computadores, Faculdade de Ciências da Universidade do Porto

25 de Maio de 2016

Introdução

No âmbito da unidade curricular de Administração de Redes, implementamos a rede descrita na figura seguinte:

Figura 1: Rede implementada na aula.

Questões

1.

```
[root@localhost etc]# host -t mx dept.lr-g11.pt
dept.lr-g11.pt mail is handled by 10 mail.lr-g11.pt.
```

2. Não obtivemos uma query DNS bem sucedida. A resolução partiu da root "." e Top-Level-Domain ".pt" e como o domínio "lr-g11" não está registado, a resolução de nome falhou.

```
[root@Labs5610 ar]# host -t mx lr-g11.pt
Host lr-g11.pt not found: 3(NXDOMAIN)
```


Figura 2: Captura wireshark no dns.dept.lr-gX.pt.

3.

[root@Labs5610 ar]# dig www.jn.pt

```
; <<>> DiG 9.10.3-P2-RedHat-9.10.3-7.P2.fc23 <<>> www.jn.pt
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 34829
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 4, ADDITIONAL: 5
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;www.jn.pt. IN A

;; ANSWER SECTION:
www.jn.pt. 300 IN A 80.251.169.144</pre>
```

```
www.jn.pt. 300 IN A 80.251.169.145
www.jn.pt. 300 IN A 80.251.169.146
www.jn.pt. 300 IN A 80.251.169.147
;; AUTHORITY SECTION:
jn.pt. 7200 IN NS dns3.jn.pt.
jn.pt. 7200 IN NS dns2.jn.pt.
jn.pt. 7200 IN NS dns1.jn.pt.
jn.pt. 7200 IN NS dns.jn.pt.
;; ADDITIONAL SECTION:
dns.jn.pt. 7200 IN A 194.65.90.97
dns1.jn.pt. 7200 IN A 80.251.161.203
dns2.jn.pt. 7200 IN A 194.65.90.101
dns3.jn.pt. 7200 IN A 83.240.201.246
;; Query time: 339 msec
;; SERVER: 10.0.0.2#53(10.0.0.2)
;; WHEN: Wed May 25 10:45:21 WEST 2016
;; MSG SIZE rcvd: 241
```

a. O term1 pede ao dns.dept.lr-g11.pt (servidor de nomes local) para resolver o nome www.jn.pt, este verifica que o nome não faz parte do seu domínio e por isso, interroga o servidor de nomes da raiz (193.0.14.129), este devolvo ao servidor de nomes local uma referência para o servidor de nomes do subdomínio pt. O servidor de nomes local interroga o o servidor de nomes de pt (194.0.25.23) sobre o endereço IP de www.jn.pt e obtém assim, uma referência para o servidor do nomes jn.pt que devolve ao servidor de nomes local. Este interroga, finalmente o servidor de jn.pt (194.65.90.97) que tem condições de resolver o endereço IP pedido. Termina então o processo de resolução e o dns.dept.lr-g11.pt devolve ao term1 o endereço IP correspondente ao nome solicitado.

Figura 3: Captura wireshark do(s) pedido(s) do registo A no dns.dept.lr-g11.pt.

b. Sim, a resposta dada ao terminal 1 é autoritativa, como podemos ver pelos campos marcados na figura abaixo Autority RRs: 4:

Figura 4: Captura wireshark da resposta dada ao terminal no dns.dept.lr-gX.pt.

- c. jn.pt Não, a resposta obtida pelo dns.dept.lr-gX.pt não é autoritativa.
- **d.** Na resposta obtida a esta pergunta é nos fornecido mais do que um endereço para este nome, na qual a ordem dos endereços é *round-robin*.

Round robin é um mecanismo de equilíbrio local de carga (load balancing), usado pelos servidores DNS para compartilhar e distribuir cargas (pedidos de resolução de nomes) entre dois ou mais servidores da rede, e é esta a principal vantagem do uso deste mecanismo.

Usando o *round robin*, a um único nome DNS são associados mais do que um endereços IP. À medida que as requisições vão chegando, o servidor DNS responde cada consulta com um dos endereços IP e depois faz uma **reordenação** da lista de endereços, para que na próxima requisição, um endereço IP diferente seja o primeiro da lista. Isto resulta numa distribuição igual de carga entre os diferentes servidores.

4. Glue record, ou registo-cola, é a associação de um nome host (servidor de nomes ou DNS) a um endereço IP. Este tipo de registo é necessário quando queremos definir servidores de nomes de um domínio para um nome host que é um subdomínio desse domínio, (que leva a uma dependência cíclica).

Por exemplo, no nosso caso, para resolver dept.lr.g11.pt é necessário consultar dns.dept.lr-g11.pt (servidor de nomes), mas para isso é necessário resolver dns.dept.lr-g11.pt, o que implica consultar dns.dept.lr-g11.pt, entrando assim numa dependência cíclica. Perante isto, na nossa montagem, foi necessário usar um glue record na máquina dns.lr-gX.pt, de modo a evitar essa dependência cíclica.

Glue records só devem ser usados na situação descrita acima, onde o servidor DNS se encontra dentro do domínio delegado.

5.

a. No ficheiro named.conf, como podemos ver abaixo, na cláusula options alteramos a declaração recursion para no, e configuramos duas vistas, uma para rede interna e outra para o exterior.

```
options {
     recursion no;
};
view "interior" {
     match-clients {localhost; localnets; 172.16.0.0/24; 10.0.0.0/24;};
     recursion yes;
     zone "lr-g11.pt" IN {
        type master;
  file "master/dns.lr-g11.pt.zone";
     };
     zone "0.16.172.in-addr.arpa" IN {
        type master;
      file "reverse/172.16.0.zone";
     };
     zone "." IN {
type hint;
file "named.ca";
     };
};
view "exterior" {
     match-clients {"any";};
     recursion no;
     zone "lr-g11.pt" IN {
        type master;
  file "master/dns.lr-g11.pt.exterior.zone";
     zone "80.168.192.in-addr.arpa" IN {
        type master;
      file "reverse/192.168.80.zone";
     };
     zone "." IN {
type hint;
file "named.ca";
     };
};
   Também configuramos os ficheiros de zona para resolução direta:
$ORIGIN lr-g11.pt.
$TTL 86400
@ 1D SOA dns.lr-g11.pt. miguelferreira108.google.com. (
2016051904
```

```
3h
15
1w
3h
)
NS dns.lr-g11.pt.
MX 10 mail.lr-g11.pt.
dept NS dns.dept
dns.dept A 10.0.0.2
dns A 192.168.80.2
mail A 192.168.80.7
router A 192.168.80.1
www.lr-g11.pt CNAME dns.lr-g11.pt.
   e zona para resolução inversa:
$ORIGIN 80.168.192.in-addr.arpa.
$TTL 86400
@ 1D SOA dns.lr-g11.pt. miguelferreira108.google.com. (
2016051902
3h
15
1 w
Зh
)
NS dns.lr-g11.pt.
MX 10 mail.lr-g11.pt.
1 PTR router.lr-g11.pt.
2 PTR dns.lr-g11.pt.
7 PTR mail.lr-g11.pt.
   b.
[root@localhost named]# host router.lr-g11.pt
router.lr-g11.pt has address 172.16.0.1
   c.
[\verb|root@local| host network-scripts] \# host router.lr-g11.pt. 192.168.80.2
Using domain server:
Name: 192.168.80.2
Address: 192.168.80.2#53
Aliases:
router.lr-g11.pt has address 192.168.80.1
```

6.

a. Ao ficheiro named.conf, como podemos ver abaixo, acrescentamos as seguintes zonas: zone "dept.lr-g11.pt" IN { type slave; masters {10.0.0.2;}; file "slave/dns.dept.lr-g11.pt.zone"; }; zone "0.0.10.in-addr.arpa" IN { type slave; masters {10.0.0.2;}; file "slave/10.0.0.zone"; }; E também configuramos os ficheiros de zona para resolução direta: \$ORIGIN dept.lr-g11.pt. \$TTL 86400 @ 1D SOA dns.dept.lr-g11.pt. miguelferreira108.google.com. (2016051905 3h 15 1w 3h) NS dns.dept.lr-g11.pt. MX 10 mail.lr-g11.pt. dept NS dns.dept dns.dept A 10.0.0.2 dns A 172.16.0.2 mail A 172.16.0.7 router A 172.16.0.1 www.lr-g11.pt CNAME dns.lr-g11.pt. e zona para resolução inversa: \$ORIGIN 0.0.10.in-addr.arpa. \$TTL 86400 @ 1D SOA dns.dept.lr-g11.pt. miguelferreira108.google.com. (2016051900 3h 15 1w Зh

```
NS dns.dept.lr-g11.pt.

MX 10 mail.lr-g11.pt.

1 PTR router.dept.lr-g11.pt.
2 PTR dns.dept.lr-g11.pt.
7 PTR mail.lr-g11.pt.
```

b. Na captura *wireshark* apresentada abaixo, podemos detetar a transferência do domínio dept.lr-gX.pt do master para o slave, AXFR (*Authority Transfer*):

Figura 5: Captura wireshark no dns.dept.lr-gX.pt.

- c. O registo SOA (*Start Of Authority*), como o próprio nome indica, significa início de autoridade. Este é o registo mais importante dentro do DNS, é sempre o primeiro registo de qualquer zona, e sozinho consegue determinar grande parte das informações necessárias para a correta resolução de um domínio, tais como:
 - nome da zona:
 - servidor DNS principal (primary master), servidor que é a autoridade para a referida zona;
 - endereço de email do administrador da zona;
 - número de série, que é um indicativo se houve ou não alterações na zona;
 - período de refrescamento (transferência de domínio para os slaves);
 - período para nova tentativa se falhar a transferência de domínio;
 - período de expiração da zona, após o qual um *slave* deixa de ser autoritário para esta zona (se não a conseguir refrescar);

• período para caching negativo, da indicação de que um dado nome não existe nesta zona.

SOA da zona é pedido antes de fazer a transferência de domínio para comparar o número de série com o que tem atualmente, se este for o mesmo, significa que não houve alterações na zona, e se for diferente, significa que é necessário transferir novamente a zona (pedido AXFR (transferência completa) ou IXFR (transferência incremental)).

- d. Sim, o protocolo de transporte usado para a transferência de domínio é o **TCP**, enquanto que o que é normalmente usado para as outras perguntas DNS é o **UDP**, uma vez que normalmente os pedidos e respostas são curtos e cabem num único pacote, o que gerava um desperdício se usa-se TCP. Como as transferências de zona, entre *master* e *slave*, são normalmente um grande volume de informação, que precisa de fiabilidade, e as mensagens são precedidas por um número de 16 bits indicando o tamanho das mesmas (TCP não faz delineação de mensagens), é indispensável a utilização do TCP como protocolo de transporte.
 - e. Captura de pacotes na pseudo-interface any no dns.lr-gX.pt:

Figura 6: Captura wireshark no dns.lr-gX.pt.

- **f.** A resposta que obteve na alínea anterior é autoritativa? Justifique. (texRes) Sim, a resposta obtida é autoritativa, como podemos ver na figura abaixo (*Authoritative nameservers*). Também sabemos que os servidores *master* e *slave* são autoritativos para a zona.
- 7. Conteúdo do ficheiro named.ca:

```
; <<>> DiG 9.9.2-P1-RedHat-9.9.2-6.P1.fc18 <<>> +bufsize=1200 +norec
@a.root-servers.net
; (2 servers found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 25828</pre>
```

```
;; flags: qr aa; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 23
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;. IN NS
;; ANSWER SECTION:
. 518400 IN NS a.root-servers.net.
. 518400 IN NS b.root-servers.net.
. 518400 IN NS c.root-servers.net.
. 518400 IN NS d.root-servers.net.
. 518400 IN NS e.root-servers.net.
. 518400 IN NS f.root-servers.net.
. 518400 IN NS g.root-servers.net.
. 518400 IN NS h.root-servers.net.
. 518400 IN NS i.root-servers.net.
. 518400 IN NS j.root-servers.net.
. 518400 IN NS k.root-servers.net.
. 518400 IN NS l.root-servers.net.
. 518400 IN NS m.root-servers.net.
;; ADDITIONAL SECTION:
a.root-servers.net. 3600000 IN A 198.41.0.4
a.root-servers.net. 3600000 IN AAAA 2001:503:ba3e::2:30
b.root-servers.net. 3600000 IN A 192.228.79.201
c.root-servers.net. 3600000 IN A 192.33.4.12
d.root-servers.net. 3600000 IN A 199.7.91.13
d.root-servers.net. 3600000 IN AAAA 2001:500:2d::d
e.root-servers.net. 3600000 IN A 192.203.230.10
f.root-servers.net. 3600000 IN A 192.5.5.241
f.root-servers.net. 3600000 IN AAAA 2001:500:2f::f
g.root-servers.net. 3600000 IN A 192.112.36.4
h.root-servers.net. 3600000 IN A 128.63.2.53
h.root-servers.net. 3600000 IN AAAA 2001:500:1::803f:235
i.root-servers.net. 3600000 IN A 192.36.148.17
i.root-servers.net. 3600000 IN AAAA 2001:7fe::53
j.root-servers.net. 3600000 IN A 192.58.128.30
j.root-servers.net. 3600000 IN AAAA 2001:503:c27::2:30
k.root-servers.net. 3600000 IN A 193.0.14.129
k.root-servers.net. 3600000 IN AAAA 2001:7fd::1
1.root-servers.net. 3600000 IN A 199.7.83.42
1.root-servers.net. 3600000 IN AAAA 2001:500:3::42
m.root-servers.net. 3600000 IN A 202.12.27.33
m.root-servers.net. 3600000 IN AAAA 2001:dc3::35
;; Query time: 78 msec
;; SERVER: 198.41.0.4#53(198.41.0.4)
;; WHEN: Mon Jan 28 15:33:31 2013
;; MSG SIZE rcvd: 699
```

O ficheiro básico named.ca contém registos NS que nomeiam os root servers, e registos A

que fornecem os respectivos endereços dos root servers. Este ficheiro distingue a resolução de domínios ligados e não ligados à Internet: numa rede não ligada à Internet, cada servidor DNS tem entradas no named.ca designando um root server dentro da rede não ligada; numa rede ligada à Internet o named.ca terá de nomear os root servers da Internet (é possível obter o named.ca em ftp.rs.internic.net).