- 1. Describe the following sets in set notation:
 - (a) The set containing the numbers 0, 1, and 3

Solution: $\{0,1,3\}$

(b) The set of all real numbers greater than 4

Solution: $\{x \mid x > 4\}$

- 2. If A and B are the sets $A = \{0, 1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$, then write the following in set notation:
 - (a) $A \cap B$

Solution: $A \cap B = \{3, 4\}$

(b) $A \cup B$

Solution: $A \cup B = \{0, 1, 2, 3, 4, 5, 6\}$

- 3. Evaluate the following expressions, keeping in mind the order of operations:
 - (a) $1 + 2 \cdot 3 + 4$

Solution: $1+2\cdot 3+4=1+(2\cdot 3)+4=1+6+4=11$

(b) $(1+2) \cdot 3 + 4$

Solution: $(1+2) \cdot 3 + 4 = 3 \cdot 3 + 4 = (3 \cdot 3) + 4 = 9 + 4 = 13$

(c) $1+2\cdot(3+4)$

Solution: $1 + 2 \cdot (3 + 4) = 1 + 2 \cdot 7 = 1 + (2 \cdot 7) = 1 + 14 = 15$

(d) $(1+2) \cdot (3+4)$

Solution: $(1+2) \cdot (3+4) = 3 \cdot 7 = 21$

(e) $2(3+4)^2 - 8$

Solution: $2(3+4)^2 - 8 = 2(7)^2 - 8 = 2 \cdot 49 - 8 = 98 - 8 = 90$

- 4. Evaluate the following expressions involving fractions:
 - (a) $\frac{3}{8} + \frac{1}{7}$

Solution: $\frac{7\cdot 3}{56} + \frac{8}{56} = \frac{29}{56}$

(b) $\frac{2x+3}{x-5} + \frac{x-1}{2(x-5)}$

Solution: $\frac{2(2x-3)}{2(x-5)} + \frac{x-1}{2(x-5)} = \frac{5x-7}{2(x-5)}$

- 5. The following intervals are written in set notation. Write them in interval notation.
 - (a) $\{x \mid 0 \le x \le 1\}$

Solution: [0,1]

(b) $\{x \mid 0 < x < 1\}$

Solution: (0,1)

(c) $\{x \mid 0 < x \le 1\}$

Solution: (0,1]

(d) $\{x \mid x > 5\}$

Solution: $(5, \infty)$

(e) $\{x \mid x \le 3\}$

Solution: $(-\infty, 3]$

(f) $\{x \mid 2 \le x < 3 \text{ or } x > 11\}$

Solution: $[2,3) \cup (11,\infty)$

- 6. Consider the intervals I=[0,1] and $J=\left(\frac{1}{2},\frac{3}{2}\right)$. Evaluation the following:
 - (a) $I \cap J$

Solution: $\left(\frac{1}{2},1\right]$

(b) $I \cup J$

Solution: $\left[0, \frac{3}{2}\right)$

7. Evaluate the following expressions involving exponents:

(a) $x^2 \cdot x^5$

Solution: x^7

(b) $\frac{x^5}{x^2}$

Solution: x^3

(c) $(x^2)^5$

Solution: x^{10}

(d) $(x+y)^2$

Solution: $x^2 + 2xy + y^2$

(e) 5^{-1}

Solution: $\frac{1}{5}$

 $(f) 2^{-3}$

Solution: $\frac{1}{2^3} = \frac{1}{8}$

(g) $8^{\frac{4}{3}}$

Solution: $(\sqrt[3]{8})^4 = (2)^4 = 16$

8. Factor the following polynomials:

(a) $x^2 + 5x + 6$

Solution: (x+2)(x+3)

(b) $2x^2 - 5x - 3$

Solution: (2x+1)(x-3)

(c) $x^2 - 4$

Solution: (x+2)(x-2)

9. Multiply the following polynomials:

(a)
$$(x+1)(x-8)$$

Solution:
$$x^2 - 7x - 8$$

(b)
$$(3x-4)(x-5)$$

Solution:
$$3x^2 - 19x + 20$$

(c)
$$(x-2)(x^2+3x+7)$$

Solution:
$$x^3 + x^2 + x - 14$$