220413 三角与向量 题目选解

Eason S.

作者的话. 这次测验还有点难度, 做得不好不要垂头丧气, 不要冲动, 不要愤怒. 认真总结教训, 积累经验, 学习方法.

Section 1 填空题

- **1.** 以下与 $\sin\left(\alpha \frac{\pi}{2}\right)$ 相等的有: (1) $\sin\left(\frac{3\pi}{2} \alpha\right)$, (2) $\sin\left(\alpha + \frac{\pi}{2}\right)$, (3) $\cos\left(\alpha + 15\pi\right)$. (1) (3). 解析. 三角变换.
- 2. 设 $\tan \alpha = m(m \neq 0), \sin \alpha = \frac{m}{\sqrt{1+m^2}},$ 则 α 可能为第一、四象限角. 解析. 三角变换.
- 3. 若 $\alpha \in \left(0, \frac{\pi}{2}\right)$, 则 $\log_{\cos \alpha} \left(1 + \tan^2 \alpha\right) = -2$. 解析. 三角变换.
- **4.** 若扇形的弧长和面积均为 4,则该扇形的弦心距长度为 $2\cos 1$. **解析**. 初中几何.
- 5. 函数 $y = 2 \tan \left(\frac{\pi}{6} 3x \right)$ 的单调<mark>减</mark>(增/减) 区间为 $\left(-\frac{\pi}{9} + \frac{k\pi}{3}, \frac{2\pi}{9} + \frac{k\pi}{3} \right), k \in \mathbb{Z}$. 解析. 三角函数的单调性. 答案不唯一.
- **6.** 若把函数 $y=\cos x-\sin x$ 的图像做适当的变换后能得到 $y=\sqrt{2}\sin 2x$ 的图像, 这样的移动可以是: 先 将图像上所有点的横坐标<mark>除以 2</mark>, 再将图像向右平移 $\frac{3\pi}{8}$ 个单位.

解析. 三角函数图像的变换; 三角变换.

答案不唯一.

作者的话. 自己选的时候请先伸缩后平移, 反过来比较容易脑抽. 考虑实际平移情况的时候应当将平移量给予 x,y.

7. 将
$$\cos\left(\alpha + \frac{\pi}{3}\right)\sin\left(\beta + \frac{\pi}{6}\right)$$
 化为和差的形式 $\frac{1}{2}\left[\cos\left(\beta + \alpha\right) + \sin\left(\beta - \alpha - \frac{\pi}{6}\right)\right]$.

解析. 三角变换.

答案不唯一.

8. $\vec{a} | \vec{a} + \vec{b} | = 3, |\vec{a} - \vec{b} | = 7, \text{ M } |\vec{a}| \text{ 的取值范围是[2,5]}.$

解析. 向量的基本运算.

作者的话. 此后所有出现的所谓"空间向量""平面向量"等统一使用 \vec{v} 表示 (相对而言比较简洁明了), 仅在明确指明属于线性代数学科讨论范围 (e.g. 与矩阵进行运算) 时使用 M 表示 (保持与矩阵运算样式的统一性). 物理文档中一般向量统一使用 v 表示, 如遇到单位向量使用 \hat{e} (使用 \hat{x} 强调单位, x 强调向量).

9. 在 $\triangle ABC$ 中,记 $\overrightarrow{BA} = \vec{a}, \overrightarrow{BC} = \vec{b}$,已知 $\left| \vec{b} \right| = \sqrt{10}, \left| \vec{a} + \vec{b} \right| = 6, \left| \vec{a} - \vec{b} \right| = 4, \left\langle \vec{b}, \vec{a} - \vec{b} \right\rangle = \arccos - \frac{\sqrt{10}}{8}$ (用反三角表示).

解析. 向量的基本运算.

法一. 利用向量的基本运算的平行四边形法则进行计算/利用向量的和的模长推出向量的差的模长所在的 边的中线进行计算.

如图所示, 作向量 $\vec{a} + \vec{b}, \vec{a} - \vec{b}, \Leftrightarrow \overrightarrow{BD} = \vec{a} + \vec{b}, AC$ 交 $BD \mp O$,

显然有

$$\langle \vec{b}, \vec{a} - \vec{b} \rangle = \pi - \angle ACB.$$

由于给出了 BD,AC,AB,BC 的长度以及平行四边形的对角线相互平分,显然有 $OB=3,OC=2,BC=\sqrt{10}$,由余弦定理可知 $\angle ACB=\arccos\frac{\sqrt{10}}{8}$,则有 $\left\langle \vec{b},\vec{a}-\vec{b}\right\rangle =\arccos-\frac{\sqrt{10}}{8}$.

法二. 利用向量的内积及相关量进行计算.

由向量的内积运算,显然有

$$\begin{split} \vec{b} \cdot \left(\vec{a} - \vec{b} \right) &= \left| \vec{b} \right| \cdot \left| \vec{a} - \vec{b} \right| \cdot \cos \left\langle \vec{b}, \vec{a} - \vec{b} \right\rangle = 4\sqrt{10} \cdot \cos \left\langle \vec{b}, \vec{a} - \vec{b} \right\rangle = \vec{a} \cdot \vec{b} - \left| \vec{b} \right|^2 = \vec{a} \cdot \vec{b} - 10, \\ \left| \vec{a} + \vec{b} \right|^2 &= \left(\vec{a} + \vec{b} \right)^2 = \vec{a}^2 + 2 \cdot \vec{a} \cdot \vec{b} + \vec{b}^2 = |\vec{a}|^2 + 2 \cdot \vec{a} \cdot \vec{b} + \left| \vec{b} \right|^2 = |\vec{a}|^2 + 2 \cdot \vec{a} \cdot \vec{b} + 10 = 36, \\ \left| \vec{a} - \vec{b} \right|^2 &= \left(\vec{a} - \vec{b} \right)^2 = \vec{a}^2 - 2 \cdot \vec{a} \cdot \vec{b} + \vec{b}^2 = |\vec{a}|^2 - 2 \cdot \vec{a} \cdot \vec{b} + \left| \vec{b} \right|^2 = |\vec{a}|^2 - 2 \cdot \vec{a} \cdot \vec{b} + 10 = 16, \end{split}$$

则有

$$\cos\left\langle \vec{b}, \vec{a} - \vec{b} \right\rangle = \frac{\vec{a} \cdot \vec{b} - 10}{4\sqrt{10}} = -\frac{5}{4\sqrt{10}} = -\frac{\sqrt{10}}{8},$$

即

$$\left\langle \vec{b}, \vec{a} - \vec{b} \right\rangle = \arccos{-\frac{\sqrt{10}}{8}}$$

10.
$$\mbox{id} f(x) = 2\sin\frac{\pi x}{2}, g(x) = \log_3|x-1|, \ \mbox{M} \sum_{\substack{f(x)=g(x)\\x\in\mathbb{P}}} x = 10.$$

解析. 三角函数; 对数函数.

显然, y = f(x) 与 y = g(x) 的图像均关于直线 x = 1 对称, 且 x = 1 是 g(x) 的一个无穷间断点, 故 $\forall x, f(x) = g(x): f(2-x) = g(2-x)$, 考虑 $(1, +\infty)$ 或 $(-\infty, 1)$ 上的解即可. 同时有:

$$\sum_{\substack{f(x)=g(x)\\x\in\mathbb{R}}}x=2\sum_{\substack{f(x)=g(x)\\x\in(1,+\infty)}}1=2\sum_{\substack{f(x)=g(x)\\x\in(-\infty,1)}}1$$

绘制 y = f(x) 与 y = g(x) 的图像, 考虑 f(x) = g(x) 在 $(1, +\infty)$ 上的解. 注意到题目已经将 f(x) 的特殊点 (i.e. 极值点, 零点) 作了有理化, 故绘制图像是一个比较好的解决方法.

Section 2 解答题

11. 在 $\triangle ABC$ 中, $b = 1, c = 5, S_{\triangle ABC} = 2$, 求边 a 的长度. $a = 4\sqrt{2}$ or $2\sqrt{5}$. 解析. 解三角形. 过程略.

12. 解三角方程.

(1)
$$\cos\left(2x - \frac{\pi}{3}\right) = -\frac{1}{4},$$
 其中 $x \in \left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$. $x \in \left\{\frac{\pi}{6} - \frac{1}{2}\arccos\left(-\frac{1}{4}\right), \frac{\pi}{6} + \frac{1}{2}\arccos\left(-\frac{1}{4}\right)\right\}$.

解析. 利用复合函数可化为最简三角方程的三角方程.

$$x \in \left[-\frac{\pi}{4}, \frac{3\pi}{4} \right] \Rightarrow 2x - \frac{\pi}{3} \in \left[-\frac{5\pi}{6}, \frac{7\pi}{6} \right],$$

$$\begin{split} \cos\left(2x-\frac{\pi}{3}\right) &= -\frac{1}{4} \Rightarrow 2x - \frac{\pi}{3} = 2k\pi \pm \arccos\left(-\frac{1}{4}\right), k \in \mathbb{Z} \\ &\Rightarrow 2x - \frac{\pi}{3} = \pm \arccos\left(-\frac{1}{4}\right) \\ &\Rightarrow x \in \left\{\frac{\pi}{6} - \frac{1}{2}\arccos\left(-\frac{1}{4}\right), \frac{\pi}{6} + \frac{1}{2}\arccos\left(-\frac{1}{4}\right)\right\}. \end{split}$$

(2)

$$\sin 3x = \cos 2x.$$

$$x \in \left\{ x | x = \frac{2k\pi}{5} + \frac{\pi}{10}, k \in \mathbb{Z} \right\}.$$

解析. 利用简单三角变换可化为最简三角方程的三角方程.

$$\sin 3x = \cos 2x \Rightarrow \cos \left(\frac{\pi}{2} - 3x\right) = \cos 2x$$

$$\Rightarrow \cos \left(3x - \frac{\pi}{2}\right) = \cos 2x$$

$$\Rightarrow 3x - \frac{\pi}{2} = 2x + 2k\pi, k \in \mathbb{Z}, \text{ or } 3x - \frac{\pi}{2} + 2x = 2k\pi, k \in \mathbb{Z}$$

$$\Rightarrow x \in \left\{x|x = 2k\pi + \frac{\pi}{2} \text{ or } x = \frac{2k\pi}{5} + \frac{\pi}{10}\right\}$$

$$\Rightarrow x \in \left\{x|x = \frac{2k\pi}{5} + \frac{\pi}{10}, k \in \mathbb{Z}\right\}.$$

13. 已知
$$\sin \alpha = \frac{\sqrt{10}}{10}$$
, $\tan \beta = -\frac{1}{7}$, $\alpha \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$, $\beta \in (0, \pi)$,

- (1) 求 $\sin(2\alpha \beta)$. $\sin(2\alpha \beta) = -\frac{\sqrt{2}}{2}$. **解析.** 三角变换. 过程略.
- (2) \vec{x} $2\alpha \beta$. $2\alpha \beta = -\frac{3\pi}{4}$.

解析. 反三角函数的基本运用. 过程略.

14. 为建设方舱医院, 某区政府考察了甲, 乙两块空地, 其中甲地是一半径 2 千米的半圆, 乙地是一圆心角为 $\frac{2\pi}{3}$ 的扇形, 其半径可视情况开辟. 受条件限制, 方舱必须建设为空地的内接矩形, 如图所示.

(1) 若选定在甲地建设, 求方舱面积的最大值. 4km²

解析. 三角函数的极值性; 三角变换.

连接 OB, 设 $\angle AOB = \theta, \theta \in \left(0, \frac{\pi}{2}\right)$. 有 OB = 2km, $\angle BAO = \frac{\pi}{2}$, 显然有 $OA = 2\cos\theta$ km, $AB = 2\sin\theta$ km, 有

$$\max_{\theta \in \left(0, \frac{\pi}{2}\right)} S = \max_{\theta \in \left(0, \frac{\pi}{2}\right)} (2 \cdot OA \cdot AB)$$

$$= \max_{\theta \in \left(0, \frac{\pi}{2}\right)} (8 \sin \theta \cos \theta) \text{ km}^2$$

$$= \max_{\theta \in \left(0, \frac{\pi}{2}\right)} (4 \sin 2\theta) \text{km}^2$$

$$= 4 \sin 2\theta |_{\theta = \frac{\pi}{4}} \text{ km}^2$$

$$= 4 \text{km}^2.$$

(2) 若选定在乙地建设,那么为了使乙地方舱的最大面积不小于甲地的,则至少需要开辟多少长度的半径? 2⁴3km.

解析. 三角函数的极值性; 三角变换.

连接
$$OD,OC$$
, 设 $\angle AOD = \theta, \theta \in \left(0,\frac{\pi}{3}\right), OP = OE = r.$ 有 $\angle OAD = \frac{2\pi}{3}$, 有

$$\frac{r}{\sin\frac{2\pi}{3}} = \frac{AD}{\sin\theta} - \frac{OA}{\sin\left(\frac{\pi}{3} - \theta\right)} \Rightarrow AD = \frac{2}{\sqrt{3}}r\sin\theta, OA = \frac{2}{\sqrt{3}}r\sin\left(\frac{\pi}{3} - \theta\right).$$

在 $\triangle AOB$ 中有 OA = OB, $\angle AOB = \frac{2\pi}{3}$, 有 $\angle OBA = \frac{\pi}{6}$, $AB = \sqrt{3}OA$. 于是有 $AB = 2r\sin\left(\frac{\pi}{3} - \theta\right)$.

$$S = S(r, \theta)$$

$$= AD \cdot AB$$

$$= \frac{4}{\sqrt{3}}r^2 \sin \theta \sin \left(\frac{\pi}{3} - \theta\right)$$

$$= \frac{2}{\sqrt{3}}r^2 \left[\cos \left(2\theta - \frac{\pi}{3}\right) - \cos \frac{\pi}{3}\right]$$

$$= \frac{2}{\sqrt{3}}r^2 \left[\cos \left(2\theta - \frac{\pi}{3}\right) - \frac{1}{2}\right], r \in (0, +\infty), \theta \in \left(0, \frac{\pi}{3}\right).$$

二元函数 $S = S(r, \theta)$ 在定义域内连续且对 r, θ 的偏导数均存在. 下求 S 关于 θ 的偏导:

$$\begin{split} \frac{\partial S}{\partial \theta} &= S_{\theta} = \lim_{\Delta \theta \to 0} \frac{S(r, \theta + \Delta \theta) - S(r, \theta)}{\Delta \theta} \\ &= -\frac{4\sqrt{3}r^2 \sin\left(\frac{6\theta - \pi}{3}\right)}{3}. \end{split}$$

考虑
$$\frac{\partial S}{\partial \theta} = 0$$
, 有 $\theta = \frac{\pi}{6}$, 且对 $\theta \in \left(0, \frac{\pi}{6}\right) : \frac{\partial S}{\partial \theta} > 0$, 对 $\theta \in \left(\frac{\pi}{6}, \frac{\pi}{3}\right) : \frac{\partial S}{\partial \theta} < 0$.

故 $S(r,\theta)$ 在 r 恒定的时候, 在 $\theta = \frac{\pi}{6}$ 取到极大值 $\frac{1}{\sqrt{3}}r^2 \ge 4 \text{km}^2$. 因此至少开辟 $2\sqrt[4]{3}\text{km}$.

Section 3 附加题

(1) 若 f(x) 的图像在 $\left[0, \frac{\pi}{3}\right]$ 中有且只有一个对称中心, 求 ω 的取值范围. $\omega \in [1, 4)$. **解析**• 三角函数图像的广义奇偶性; 三角变换.

$$f(x) = \sin\left(\omega x + \frac{5\pi}{6}\right) + 1 + \cos\omega x$$

$$= -\frac{\sqrt{3}}{2}\sin\omega x + \frac{1}{2}\cos\omega x + \cos\omega x + 1$$

$$= \frac{3}{2}\cos\omega x - \frac{\sqrt{3}}{2}\sin\omega x + 1$$

$$= \sqrt{3}\sin\left(\omega x + \frac{2\pi}{3}\right) + 1.$$

由
$$\omega > 0, x \in \left[0, \frac{\pi}{3}\right]$$
 显然有 $\omega x + \frac{2\pi}{3} \in \left[\frac{2\pi}{3}, \frac{\pi}{3}\omega + \frac{2\pi}{3}\right]$. 则有
$$\begin{cases} \pi \in \left[\frac{2\pi}{3}, \frac{\pi}{3}\omega + \frac{2\pi}{3}\right] \Rightarrow \pi \leq \frac{\pi}{3}\omega + \frac{2\pi}{3} \Rightarrow 1 \leq \omega \\ 2\pi \notin \left[\frac{2\pi}{3}, \frac{\pi}{3}\omega + \frac{2\pi}{3}\right] \Rightarrow 2\pi > \frac{\pi}{3}\omega + \frac{2\pi}{3} \Rightarrow 4 > \omega \end{cases}$$

(2) 若 $\exists a \in \mathbb{R} : f(x)$ 在 $\left[a - \frac{\pi}{6}, a + \frac{\pi}{6} \right]$ 上能同时取到最大值和最小值,且方程 2f(x) = 5 在 $[0, 2\pi]$ 内至多有 7 个实数解,求该方程在 $[0, 2\pi]$ 内所有解之和的取值范围.

解析. 三角函数的最值性, 三角方程.

Section 4 特别致谢

鸭鸭, stOOrz_OwenXu, stOOrz_BubbleTea and Anthan. 提供初版答案参考. stOOrz_AFOer_xrh, stOOrz_Jasonying and stOOrz_Jacky_Chen. 指出预览版中出现的逻辑错误.