Chimie - Chapitre 4 : Structure cristalline

Ce qu'il faut retenir...

CARACTERISTIQUES DU RESEAU CRISTALLIN :

Un solide cristallin est constitué d'un empilement régulier d'un motif (atome, molécule, ion) qui se répète périodiquement dans le cristal. Le modèle du cristal parfait correspond à un empilement infini.

Contraire : solide amorphe

Un cristal peut se représenter comme un motif qui se répète aux **nœuds** d'un **réseau**.

La juxtaposition périodique de la maille reproduit la structure cristalline.

ETUDE DE LA MAILLE :

Multiplicité : nombre de motifs par maille, un motif appartenant équitablement à n mailles compte pour 1/n.

Compacité :
$$C = \frac{volume\ occupé\ par\ les\ motifs}{volume\ de\ la\ maille}$$

Coordinence : nombre de plus proches voisins

Modèle des sphères dures tangentes: Atomes sphériques indéformables et impénétrables, de rayon fini. L'empilement compact correspond à un empilement des sphères permettant de maximiser les contacts entre sphères et de minimiser le volume (condition de tangence).

Le cristal est électriquement neutre.

TYPE DE CRISTAUX :

Type	Ionique	Covalent	Métallique	Moléculaire
Motif	Ions	Atome	Atome	Molécule
Liaison	Ionique, interaction électrostatique forte entre cation et anion	Covalente, forte	Métallique, forte	Inter moléculaire, faible
Exemple	NaCl	Carbone graphite ou diamant	Fer, cuivre etc	Eau glace

SITES:

Un assemblage, même compact, ne peut remplir tout l'espace : C < 1 et laisse donc apparaître des zones non occupées par les atomes : les sites interstitiels.

<u>Exemples</u>: Site octaédrique:

Site tétraédrique :

EXEMPLES DE MAILLES :

	Cubique	Cubique centrée	Cubique faces centrées
Maille			
Multiplicité	1	2	4
Condition de tangence	Atomes tangents sur chaque arête : 2R = a	Atome central tangent aux atomes des sommets : $4R = a \sqrt{3}$	Atome au centre d'une face tangent aux atomes des sommets de la même face : $4R = a\sqrt{2}$
Compacité	51%	68%	74%
Coordinance	6	8	12