Ejercicio 1.1.1

Let A be a square matrix that is filled with all zeros except for the coordinates where the row number equals the column number. In those cells, the numbers from 1 to n appear in alphabetical order based on each number's English spelling. For example if n=3 then the order would be 1-3-2. Find the trace of $A^{**}2$

- (A) n^2
- (B) n(n+1)/2
- (C) n(n+1)(2n+1)/6
- (D) n^3

Solución:

First, lets compute A^2 . We have for all i, j = 1, ..., n;

$$(A^2)_{i,j} = \sum_{k=1}^{n} (A)_{i,k} (A)_{k,j}$$

because A is filled with zeros except for the coordinates where the row number equals the column number, when $i \neq j$ we have that:

$$(A)_{i,k}(A)_{k,j} = 0, \quad \forall k = 1, ..., n$$

wich implies that $(A^2)_{i,j} = 0$ when $i \neq j$. When i = j the sum becomes:

$$(A^{2})_{i,i} = \sum_{k=1}^{n} (A)_{i,k} (A)_{k,i}$$
$$= \sum_{k=1}^{n} (A)_{i,k}^{2}$$
$$= (A)_{i,i}^{2}$$

so now, the trace of A^2 would be:

Trace(A) =
$$\sum_{i=1}^{n} (A^2)_{i,i}$$

= $\sum_{i=1}^{n} (A)_{i,i}^2$

because all the numbers from 1 to n appear in the diagonal of A, then we are just making the sum of all squared numbers from 1 to n, so rearranging all the terms, the sum becomes:

Trace(A) =
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

so the answer is (C).

Ejercicio 1.1.2

Let a be a prime number bigger than 3 and b an integer coprime to a. What is the smallest prime number that divides both a^4b^4 and $a^2 + ab$?

- (A) The smallest prime divisor of b
- (B) The smallest prime divisor of ab

- (C) a
- (D) b

Solución:

It can't be (D) because b not necessarly is a prime number. Also, it can't be (A) because the smallest prime divisor of b not necessarly divides $a^2 + ab = a(a + b)$.

If p is prime such that $p \mid a^4b^4$ then because a and b are coprime we must only one of these: $p \mid a$ or $p \mid b$.

In the second part, we have that $p \mid a(a+b)$. If $p \mid b$ then p cant divide a, so $p \mid a+b$ which by linearity implies that $p \mid a$, a contradiction.

So, $p \mid a$, which implies that p = a. Therefore the answer is (C).

Ejercicio 1.1.3

Let m, n be the 11th and 12-th Fibonacci numbers where the first and second Fibonacci numbers are both 1. How many subgroups of Z_{m*n} are there?

- (A) 20
- (B) 25
- (C) 30
- (D) 35

Solución:

We compute the Fibonacci numbers up to 11 and 12 position:

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots$$

so we must compute all subgroups of $Z_{89.144}$. Recall that:

$$89 \cdot 144 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 89$$

we note first that $Z_{89\cdot144}$ is isomorphic to $Z/89\cdot144Z$. Let $n=89\cdot144$. Now, by correspondence theorem, all subgroups of Z/nZ (namely rZ/nZ) are in correspondence with the subgroups of Z such that:

$$nZ \subseteq rZ \subseteq Z$$

the condition $nZ \subseteq rZ$ implies that $r \mid n$, so the set of all subgroups of Z/nZ is:

$$\left\{ rZ/nZ\Big|r\mid n\right\}$$

so, we must compute all divisors of n, with the prime decomposition of $89 \cdot 144$ its seen that there are 30 divisors, so the answer is (C).

Ejercicio 1.1.4

Let v = [1,2] be a vector in the plane and let A = 2[[1/sqrt(2), -1/sqrt(2)], [1/sqrt(2), 1/sqrt(2)]]. What is $(A^8)v$?

- (A) v
- (B) 256 v
- (C) [128, 0]

(D) -v

Solución:

Recall the matrix A is:

$$A = 2 \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

we remember the form of the rotation matrix of angle θ in the euclidean plane:

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

so, $A = 2R_{\theta}$ where $\theta = \frac{\pi}{4}$. We observe that:

$$A^8 = (2R_\theta)^8 = 2^8 R_\theta^8 = 256 R_\theta^8$$

but rotation matrix has the property that:

$$R_{\alpha}R_{\beta} = R_{\alpha+\beta}$$

SO,

$$R_{\theta}^8 = R_{8\theta} = R_{2\pi} = I$$

We conclude that $A^8 = 256I$, which implies that $(A^8)v = 256Iv = 256v$, so the answer is (B).

Ejercicio 1.1.5

Consider the subset of the real line $A = (-\inf, 0]$. Which of the following are open sets (there may be more than 1 correct answer)?

- $(A) A \cap [0,1]$
- (B) $A \cap (-inf, -1)$
- $(C) \ A \cup \{1/2\}$
- (D) $A \cup (-1,1)$
- (E) $A \cup (0, 1, 1)$

Solución:

(A) cannot be, because closed sets are closed under intersection, also with (C) but now with union of sets. (E) es not even a subset of the real line.

Now, $A \subseteq (-inf, -1)$, so $A \cap (-inf, -1) = A$, it can't be open because A is closed, which discards (B)

Finally, $A \cup (-1,1) = (-inf,1)$, which is open. So the answer is (D).