11、(12 分)设有两个浮点数 $x=2^{Ex}\times S_x$, $y=2^{Ey}\times S_y$, $E_x=(-01)_2$, $S_x=(+0.1001)_2$, $E_y=(+10)_2$, $S_y=(+0.1101)_2$ 。若尾数 4 位,数符 1 位,阶码 2 位,阶符 1 位,尾数和阶码均用补码表示。

- (1) 请分别写出 x、y 尾数与阶码的机器数表示。+
- (2) 求 x+y, 并写出运算步骤与结果。

解: (1) x 尾数: 01001 x 阶码: 111→ y 尾数: 01101 y 阶码: 010→

(2) 求阶差: -

$$\Delta E = 111 - 010 = 101$$

对阶: -

x 变为 010, 00.0001001。

尾数求和: 。

00 0001001+00 1101000=00 1110001+

规格化: →

已是规格化数-

舍入: -

0 舍 1 入, 结果为 001110+

判断溢出: +

无溢出。

最终结果 010,01110,即 0.1110×2¹⁰。。

I

12、(12 分)写出 4 位有效信息 1010 对应的循环冗余校验码,其中, G(X)=X³+X+1=1011,要写出详细的计算过程。。

解: 由 G(x) = 1011 推出 k = 3,即有 3 位校验码。将有效信息左移 3 位,模 2 除 G(x),有: ω

因此,循环冗余校验码为1010011。。

13 (12 分)、某机器指令格式如下图所示: 。

7	44	30	2	0.0	67
)P-	L		A +	41

其中 I 为<u>间址特征位</u>, I=0 表示直接寻址, I=1 表示一次间接寻址。设存储器 部分单元有以下内容: ..

地址(十六进制)。	90₽	01+	02-	03+	04-	05+	06+	07₽	.2
内容(十六进制)=	01₽	5Eo	9D₽	74.	A40	15.	04≠	03₽	4)

请给出下列机器指令的操作数有效地址和操作数的具体值。。

(1) D6H (2) 3FH (3) EEH (4) C2H

I

机器指令(十六进制)。	机器指令(二进制)。	操作数有效地址。	操作数。
D6.º	1101 0 110-	06*	04.
3F.≠	0011 1 111-	03-	74≠
EE.	1110 1 1100	040	A4 ₽
C2+	1100 0 010-	02+	9D+

址、二地址三种格式。-

- (1) 设操作码固定, 若零地址指令有 P 条, 一地址指令 Q 条, 则二地址 指令多少条? +
- (2) 采用操作码扩展技术, 若二地址指令有 X 种, 零地址指令 Y 种, 则 一地址指令最多有多少种? +

解:二地址指令格式如下: »

4	6	6
OP	A_1	A ₂

- (1)操作码固定,有4位操作码共有2⁴种编码,其中P+Q种用来定义零地址和一地址指令,所以二地址指令最多有2⁴-P-Q种。。
 - (2) 设一地址指令最多为 Z 条。

零地址指令 Y=[(2*-X)*2*-Z]*2*-

整理得 Z= (2°-X) *2°-Y/2°+

所以一地址指令最多有 (2°-X) *2°-Y/2°种。→

- (1) 指出相斥性微操作和相容性微操作。。
- (2) 设微指令字长 21 位,<u>其中下址字段</u>6 位,不含测试字段,请设计适合的微指令格式。。
- (3) 设指令 SUBSI R1 R2 执行 R1 ← [(R2)-(R1)]/2 操作,请画出指令流程图。 -
- (4) 请写出(3) 中各流程对应的控制信号。。

解: 每小题 4 分, 共 16 分。表述止确即可得分。

(1) 相斥性微操作: -

移位器 (R, L, V); +

ALU (+, -, M); +

A 选通门的四个控制信号; +

B 选通门的七个控制信号; -

寄存器的输入与输出控制信号。

相容性微操作: ..

A 选通门的任一控制信号与 B 选通门的控制信号; 4

B 选通门的任一控制信号与 A 选通门的控制信号; 🚽

ALU 的任一信号与加 1 控制信号; -

寄存器的四个输入控制信号。

五组控制信号中组与组之间是相容的。

(2) 采用字段直接编码控制方式设计的微指令格式如图所示 (不包括顺序控制部分), 其中 每个字段都包含一种不操作的情况。

XXX#	XXX	XX.	XX+	X_{θ}	XXXX
3.0	3€	2.	2.	14	4
001 MDR →A	001 PC ⇒ B+	01 ++	01 R+	1+1+	0001 PCout
010 R ₁ →A.	010 R ₁ -B ₂	10 I	10 L+		0010 PC _{in} -
011 R ₂ →A.	$011 \ \overline{R_1} \rightarrow B_{\pi'}$	11 M÷	11 V+		0011 R _{1out} -
100 R ₃ →A.	100 R ₂ →B.				0100 R _{1in} -
	101 R ₂ →B-				0101 R _{2out}
	110 R ₃ ⇒ B∞				0110 R _{2in} -
	111 R ₃ →B*				0111 R _{3out} +
	e)				1000 R _{3in} =

(4).

$$R_{2o}, R_2 \rightarrow A +$$

$$R_{10}, \overline{R_1} \rightarrow B$$