Cluster Analysis: Identifying Parkinson's Disease Subtypes

July 16, 2015

1 Preprocessing

1.1 Dataset Description

951 subjects, 145 metrics, collected 15-4-2012 from Pablo Martinez Martín. Only 19 features used for clustering and/or interpretation. 50 subjects with missing values of the features to be used in clustering (brought down to 901). Imputation may be a good idea later on.

1.2 Selected Features

Combination of non-motor scale (NMS) symptoms and standard motor symptoms.

Name	Type	Format	Description
nms_d1	byte	%8.0g	cardiovascular
nms_d2	byte	%8.0g	sleep/fatigue
nms_d3	byte	%8.0g	mood/cognition
nms_d4	byte	%8.0g	percep/hallucinations
nms_d5	byte	%8.0g	attention/memory
$\mathrm{nms_d6}$	byte	%8.0g	gastrointestinal
$\mathrm{nms}_{-}\mathrm{d}7$	byte	%8.0g	urinary
nms_d8	byte	%8.0g	sexual function
nms_d9	byte	%8.0g	miscellaneous
tremor	float	%9.0g	tremor
bradykin	float	%9.0g	bradykinesia ¹
rigidity	float	%9.0g	rigidity
axial	float	%9.0g	$ axial^2 $
pigd	float	%9.0g	postural instability and gait difficulty

Table 1: Selected Features and Details

¹Impaired ability to adjust the body's position.

²Issues affecting the middle of the body.

Name	μ	σ	min-max
nms_d1	1.73	3.35	0-24
nms_d2	8.75	8.70	0-48
$nms_{-}d3$	8.68	11.55	0-60
nms_d4	1.64	3.86	0-33
$nms_{-}d5$	5.42	7.43	0-36
$nms_{-}d6$	5.53	6.79	0-36
$\mathrm{nms}_{-}\mathrm{d}7$	8.08	8.94	0-36
nms_d8	3.52	5.97	0-24
nms_d9	7.13	7.79	0-48
tremor	2.59	2.58	0-12
bradykin	2.40	1.41	0-6
rigidity	2.24	1.36	0-6
axial	3.25	2.68	0-12
pigd	3.31	2.71	0-12

Table 2: Descriptive Statistics

2 k-means

k-means clustering with k=4 was tried. k=2,3 provided models that were too simplistic. k=5 did not provide any new information, but rather just fragmented existing groups.

Table 3: Cluster statistics

Cluster	$\mid n \mid$
1	79
2	394
3	275
4	153

2.1 Decision tree

k	CP^3	CV Xerror ⁴	Root Feature	Root Error	Figure
4	0.0100	0.255	pigd < 2.5	0.563	Figure 1

Table 4: k-kmeans decision trees statistics

2.2 Interpretation of Clusters

2.2.1 Cluster summaries

Available in Figure 2. Error bar is standard error.

³Complexity Parameter

⁴10-fold cross validation

2.2.2 Interpretation

2.2.3 Statistical Significance Tests, k = 4

Using one-way ANOVA for multiple means, we reject the null hypothesis that the means are the same with p < 0.05 for every variable except pdonset.

Post-hoc analysis using Tukey's HSD:

```
age insignificant differences:
         diff
                      lwr
                                  upr
                                             p adj
4-3 -2.271990 -4.7160927 0.1721117 7.920343e-02
sex insignificant differences:
           diff
                       lwr
                                   upr
                                           p adj
2-1 -0.09275204 -0.2454183 0.05991417 0.4000134
3-1 -0.14660529 -0.3046921 0.01148156 0.0803067
4-1 0.04757177 -0.1240051 0.21914864 0.8917054
3-2 -0.05385325 -0.1511666 0.04346014 0.4843788
pdonset insignificant differences:
           diff
                      lwr
                               upr
                                        p adj
2-1 -0.90162565 -4.302019 2.498768 0.9037828
3-1 -0.05040276 -3.571532 3.470727 0.9999820
4-1 -0.53727145 -4.358869 3.284326 0.9837825
3-2 0.85122289 -1.316276 3.018722 0.7431486
4-2 0.36435420 -2.263251 2.991959 0.9844187
4-3 -0.48686869 -3.268952 2.295214 0.9695444
nms_d1 insignificant differences:
          diff
                       lwr
                                  upr
                                             p adj
3-2 0.5565021 -0.01586385
                            1.128868 6.018674e-02
nms_d3 insignificant differences:
          diff
                      lwr
                                            p adj
                                  upr
    -1.192024
4-1
               -4.493510
                            2.109461 0.789133802
nms_d4 insignificant differences:
          diff
                      lwr
                                 upr
    0.2951915 -0.3318339
                           0.922217 6.195406e-01
nms_d5 insignificant differences:
           diff
                        lwr
                                  upr
                                              p adj
3-2
      0.7841071
                -0.4814825
                             2.049697 0.3821565990
nms_d8 insignificant differences:
          diff
                     lwr
                              upr
                                       p adj
4-1 -0.9010507 -2.846119 1.044017 0.6318563
3-2 0.7255838 -0.377602 1.828770 0.3280035
nms_d9 insignificant differences:
          diff
                       lwr
                                  upr
                                            p adj
4-1 0.7048896 -1.6510530
                            3.060832 0.867951568
tremor insignificant differences:
          diff
                     lwr
                                upr
                                          p adj
```

3-1 -0.2662831 -1.064520 0.53195417 0.82613187 4-2 -0.5667198 -1.162396 0.02895624 0.06895758 rigidity insignificant differences: diff lwr upr p adj 4-2 0.2310142 -0.03536748 0.4973959 1.153952e-01

2.2.4 Ranked Features by Information Gain

Table 5: Features ranked by information gain

variable	information gain
axial	0.20640691
cisitot	0.20008571
pigd	0.18193982
nms_d2	0.13178572
nms_d9	0.12116024
bradykin	0.11966097
nms_d3	0.09421859
rigidity	0.09260628
nms_d5	0.07579997
nms_d4	0.07438784
$\mathrm{nms_d6}$	0.06620599
$\mathrm{nms}_{-}\mathrm{d}7$	0.05574956
$\mathrm{nms}_{-}\mathrm{d}1$	0.05509838
tremor	0.04140473
$\mathrm{nms}_{ ext{-}}\mathrm{d}8$	0.03786173
$durat_pd$	0.02794420
age	0.00000000
sex	0.00000000
$\operatorname{pdonset}$	0.00000000

2.2.5 Correlation Plots

Figure 3.

2.2.6 Bradykinesia and rigidity

Figures 4 and 7

3 Other Work

3.1 Bayesian Networks

In Figure 8. Structure is too sparse, need to discretize or use some kind of regularization (e.g. a lasso)

UNSCALED Pruned Tree, 4 clusters

Figure 1: Decision Tree from k-means clustering, 4 clusters

Figure 2: Cluster Summaries, k=4

Figure 3: Correlation plots

Figure 4: Relationship between bradykinesia and cisitot

Figure 5: Relationship between bradykinesia and cisitot (condensed)

Figure 6: Relationship between bradykinesia and cisitot (entire data)

Figure 7: Similar relationship between rigidity and cisitot $\,$

Figure 8: Bayesian Networks