FCS Week 2 Reading Note

Notebook: Fundamentals of Computer Science

Created: 2021-04-13 10:30 AM **Updated:** 2021-04-14 5:16 PM

Author: SUKHJIT MANN

Cornell Notes

Topic: Logic: Part 2

Course: BSc Computer Science

Class: CM1025 Fundamentals of Computer

Science[Reading]

Date: April 14, 2021

Essential Question:

What is propositional logic?

Questions/Cues:

- What are Quantifiers?
- What is a Predicate?
- What is the universe of discourse?
- How are De Morgan's Laws applied to quantifiers?

Notes

- All people are mortal.
- Every computer is a 16-bit machine.
- · No birds are black.
- · Some people have blue eyes.
- There exists an even prime number.

Each contains a word indicating quantity such as *all*, *every*, *none*, *some*, and *one*. Such words, called **quantifiers**, give us an idea about how many objects have a certain property.

There are two different quantifiers. The first is all, the **universal quantifier**, denoted by \forall , an inverted A. You may read \forall as for all, for each, or for every. The second quantifier is some, the **existential quantifier**, denoted by \exists , a backward E. You may read \exists for some, there exists a, or for at least one. Note that the word some means at least one.

EXAMPLE 1.24

Let x be any apple. Then the sentence All apples are green can be written as $For\ every\ x,\ x\ is\ green.$ Using the universal quantifier \forall , this sentence can be represented symbolically as $(\forall x)(x \text{ is green})$ or $(\forall x)P(x)$ where P(x):x is green. (Note:x is just a dummy variable.)

Predicate

Here P(x), called a **predicate**, states the property the object x has. Since P(x) involves just one variable, it is a **unary** predicate. The set of all values x can have is called the **universe of discourse** (UD). In the above example, the UD is the set of all apples.

Note that P(x) is *not* a proposition, but just an expression. However, it can be transformed into a proposition by assigning values to x. The truth value of P(x) is predicated on the values assigned to x from the UD.

The variable x in the predicate P(x) is a **free** variable. As x varies over the UD, the truth value of P(x) can vary. On the other hand, the variable x in $(\forall x)P(x)$ is a **bound** variable, bound by the quantifier \forall . The proposition $(\forall x)P(x)$ has a fixed truth value.

A predicate may contain two or more variables. A predicate that contains two variables is a **binary** predicate. For instance, P(x, y) is a binary predicate. If a predicate contains n variables, it is an n-ary predicate.

EXAMPLE 1.25

Rewrite the sentence *Some chalkboards are black*, symbolically.

SOLUTION:

Choose the set of all chalkboards as the UD. Let x be an arbitrary chalkboard. Then the given sentence can be written as:

There exists an *x* such that *x* is black.

Using the existential quantifier, this can be symbolized as $(\exists x)b(x)$, where b(x): x is black.

The next example illustrates how to find the truth values of quantified propositions.

EXAMPLE 1.27

Rewrite each proposition symbolically, where UD = set of real numbers.

- (1) For each integer x, there exists an integer y such that x + y = 0.
- (2) There exists an integer x such that x + y = y for every integer y.
- (3) For all integers x and y, $x \cdot y = y \cdot x$.
- (4) There are integers x and y such that x + y = 5.

SOLUTION:

- (1) $(\forall x)((\exists y)(x+y=0))$, which is usually written as $(\forall x)(\exists y)(x+y=0)$.
- $(2) (\exists x)(\forall y)(x+y=y)$
- (3) $(\forall x)(\forall y)(x \cdot y = y \cdot x)$
- $(4) (\exists x)(\exists y)(x+y=5)$

The order of the variables x and y in $(\forall x)(\forall y)$ and $(\exists x)(\exists y)$ can be changed without affecting the truth values of the propositions. For instance, $(\forall x)(\forall y)(xy=yx)\equiv (\forall y)(\forall x)(xy=yx)$. Nonetheless, the order is important in $(\forall x)(\exists y)$ and $(\exists y)(\forall x)$. For example, let P(x,y): x< y where x and y are integers. Then $(\forall x)(\exists y)P(x,y)$ means For every integer x, there is a suitable integer y such that x< y; y=x+1 is such an integer. Therefore, $(\forall x)(\exists y)P(x,y)$ is true. But $(\exists y)(\forall x)P(x,y)$ means There exists an integer y, say, y, such that y is true. But y is every integer y is less than y. Clearly, it is false. Moral? The proposition y is evaluated as y is evaluated as y in y in y in y in y is evaluated as y in y in y in y in y is evaluated as y in y in y in y in y is evaluated as y in y

De Morgan's laws

- $\sim [(\forall x)P(x)] \equiv (\exists x)[\sim P(x)]$
- $\sim [(\forall x)P(x)] \equiv (\forall x)[\sim P(x)]$

By virtue of these laws, be careful when negating quantified propositions. When you negate the universal quantifier ∀, it becomes the existential quantifier \exists ; when you negate the existential quantifier, it becomes the universal quantifier. In Section 1.5, we discuss a nice application of the first law to disproving propositions.

EXAMPLE 1.29 Negate each proposition, where the UD = set of integers.

(1)
$$(\forall x) (x^2 = x)$$

(2)
$$(\exists x) (|x| = x)$$

SOLUTION:

$$\begin{array}{c} \bullet \ \sim [(\forall x)(x^2=x)] \equiv (\exists \, x)[\sim (x^2=x)] \\ \equiv (\exists \, x)(x^2 \neq x). \end{array}$$

•
$$\sim [(\exists x)(|x| = x)] \equiv (\forall x)[\sim (|x| = x)]$$

 $\equiv (\forall x)(|x| \neq x).$

EXAMPLE 1.30

Negate each quantified proposition.

- (1) Every computer is a 16-bit machine.
- (2) Some girls are blondes.
- (3) All chalkboards are black.
- (4) No person has green eyes.

SOLUTION:

Their negations are:

- (1) Some computers are not 16-bit machines.
- (2) No girls are blondes.
- (3) Some chalkboards are not black.
- (4) Some people have green eyes.

Summary

In this week, we learned about quantifiers.