Механико-математический факультет

Аналитическая геометрия, 1 семестр, 2 поток

Содержание

1	Векторные пространства и множества	2
	1.1 Векторные пространства	2
	1.2 Линейная комбинация векторов	3
	1.3 Линейно зависимые и линейно независимые множества и системы векторов	3
	1.4 Полные множества и системы векторов	4
2	Базис и размерность векторного пространства	4
	2.1 Базис векторного пространства. Конечномерное векторное пространство	4
	2.2 Лемма о количестве векторов в ЛНЗ системе (аналог ОЛЛЗ)	4
	2.3 Теорема о количестве векторов в базисе. Размерность векторного пространства.	5
3	Координаты в базисе	5
	3.1 Однозначность выражения вектора в конечномерном в. п. через базис	5
	3.2 Координаты вектора в базисе	6
4	Аффинные пространства	6
	4.1 Аффинное пространство	6
	4.2 Радиус-векторы и репер	6
	4.3 Конечномерное аффинные пространства и их размерность	7
5	Подпространства	7
	5.1 Векторное подпространство	7
	5.2 Аффинное подпространство	8
	5.3 Прямая в аффинном пространстве	8
6	Скалярное произведение	9
	6.1 Скалярное произведение	9
	6.2 Евклидово векторное и точечно-евклидово аффинное пространство	9
	6.3 Длина вектора и расстояния между точками	9
	6.4 Выражение скалярного произведения через длины	9
7	Неравенство Коши-Буняковского	10
	7.1 Неравенство Коши-Буняковского	10
	7.2 Величина угла и ортогональные векторы	10
8	Прямоугольная система координат	10
	8.1 Ортонормированный базис и прямоугольная система координат	10
	8.2 Выражение скалярного произведения через координаты векторов	10
	8.3 Выражение для прямоугольной системы координат	11
9	Проектирование	11
10	Ортонормированный базис	12
	10.1 Линейная независимость ортогональных векторов	12
	10.2 Теорема о существовании ортонормированного базиса	12

11	. Прямые и их уравнения	13
	11.1 Определения прямой и направляющего вектора	13
	11.2 Уравнения прямой	13
	11.3 Критерий уравнения прямой (нет в билете, важно)	14
12	Взаимное расположение прямых	14
	12.1 Случай общих уравнений	14
	12.2 Случай параметрических уравнений	15
13		15
	13.1 Определение пучка прямых	15
	13.2 Уравнение собственного пучка прямых	15
		16
14	Отрезки	16
	14.1 Отрезки на плоскости	16

Билет 1. Векторные пространства и множества

1.1 Векторные пространства

Геометрические векторы в математике являются **свободными векторами** - классами эквивалентности направленных отрезков по уже известному нам отношению эквивалентности векторов.

Определение. Векторным (линейным) пространством (над полем \mathbb{R}) называется множество V с введенными на нем бинарными операциями "+": $V \times V \to V$ и "*": $\mathbb{R} \times V \to V$, отвечающие следующим свойствам (аксиомам):

$$\forall \bar{a}, \bar{b}, \bar{c} \in V; \lambda, \mu \in \mathbb{R}:$$

- 1. $\bar{a} + \bar{b} = \bar{b} + \bar{a}$ (коммутативность сложения);
- 2. $(\bar{a} + \bar{b}) + \bar{c} = \bar{a} + (\bar{b} + \bar{c})$ (ассоциативность сложения);
- 3. $\exists \bar{0} \in V : \bar{a} + \bar{0} = \bar{0} + \bar{a} = \bar{a}$ (существует нейтральный элемент по сложению нулевой вектор);
- 4. $\exists (-\bar{a}) \in V : \bar{a} + (-\bar{a}) = (-\bar{a}) + \bar{a} = \bar{0}$ (существует противоположный элемент по сложению);
- 5. $\lambda(\mu \bar{a}) = (\lambda \mu) \bar{a}$ (ассоциативность умножения на числа);
- 6. $(\lambda + \mu)\bar{a} = \lambda \bar{a} + \mu \bar{a}$ (дистрибутивность по умножению);
- 7. $\lambda(\bar{a}+\bar{b})=\lambda\bar{a}+\lambda\bar{b}$ (дистрибутивность по сложению);
- 8. $1 * \bar{a} = \bar{a}$.

Примеры. Векторные пр-ва:

- $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^n$:
- Функции;
- Многочлены;
- Многочлены степени $\leq n$.

Замечание. Св-ва векторных пространств:

1. $\bar{0}$ единственный.

Пусть $\bar{0}_1, \bar{0}_2$ - нулевые векторы.

Тогда
$$\bar{0}_1 = \bar{0}_1 + \bar{0}_2 = \bar{0}_2$$
, ч.т.д.

 $2. -\bar{a}$ единственный.

Пусть $-\bar{a}_1, -\bar{a}_2$ - противоположные к \bar{a} векторы.

Тогда
$$-\bar{a}_1=-\bar{a}_1+\bar{0}=-\bar{a}_1+(\bar{a}+-\bar{a}_2)=(-\bar{a}_1+\bar{a})+(-\bar{a}_2)=\bar{0}+(-\bar{a}_2)=-\bar{a}_2$$
, ч.т.д.

3. $\lambda * \bar{0} = \bar{0}$.

$$\lambda * \bar{0} = \lambda * (\bar{0} + \bar{0}) = \lambda * \bar{0} + \lambda * \bar{0}$$

Прибавив к обеим частям вектор, противоположный к $\lambda*\bar{0}$, получим $\lambda*\bar{0}=\bar{0}$, ч.т.д.

4.
$$-(\lambda \bar{a}) = (-\lambda)\bar{a} = \lambda(-\bar{a}).$$

Нетрудно видеть, что все три вектора противоположны $\lambda \bar{a}$, а далее из п.2.

5.
$$-\bar{a} = -1 * \bar{a}$$

Следует из п.4.

6.
$$\lambda \bar{a} = \bar{0} \Leftrightarrow$$
 либо $\lambda = 0$, либо $\bar{a} = \bar{0}$.
Либо $\lambda = 0$, либо $\lambda \neq 0 \Rightarrow \frac{1}{\lambda} * \lambda * \bar{a} = \frac{1}{\lambda} \bar{0} = \bar{0} \Rightarrow \bar{a} = \bar{0}$, ч.т.д.

1.2 Линейная комбинация векторов

Определение. Сумма вида $\lambda_1 \bar{x}_1 + ... + \lambda_n \bar{x}_n$ называется линейной комбинацией векторов $\bar{x}_1 ... \bar{x}_n$.

Определение. Если в линейной комбинации $\lambda_1 = ... = \lambda_n = 0$, то она называется тривиальной, а иначе - нетривиальной.

Определение. Если вектор \bar{x} равен линейной комбинации $\lambda_1 \bar{x}_1 + ... + \lambda_n \bar{x}_n$, то говорят, что он линейно выражается (раскладывается) через векторы $\bar{x}_1...\bar{x}_n$. (Сама линейная комбинация $\lambda_1 \bar{x}_1 + ... + \lambda_n \bar{x}_n$ называется выражением (разложением) вектора \bar{x} через $\bar{x}_1...\bar{x}_n$)

1.3 Линейно зависимые и линейно независимые множества и системы векторов

Определение. Упорядоченное множество векторов называется системой векторов. (В системе векторов элементы могут повторяться)

Определение. Множество векторов называется линейно зависимым, если существует равная нулю нетривиальная линейная комбинация векторов из этого множества. В противном случае оно называется линейно независимым.

Пример. Система из двух векторов \bar{a}, \bar{b} линейно зависима $\Leftrightarrow \bar{a} = \lambda \bar{b}$.

Замечание. Множество векторов линейно зависимо ⇔ один из векторов этого множества линейно выражается через некоторые другие векторы этого множества.

1.4 Полные множества и системы векторов

Определение. Множество (система) векторов из векторного пространства V называется полным (полной) в V, если любой вектор $\bar{x} \in V$ линейно выражается через векторы этого множества.

Замечание. $X \subset V$ полно в $V \Rightarrow \forall Y : X \subset Y$ полно в V.

Замечание. $X \subset V$ линейно независимо в $V \Rightarrow \forall Y \subset X$ линейно независимо в V.

Билет 2. Базис и размерность векторного пространства

2.1 Базис векторного пространства. Конечномерное векторное пространство.

Определение. Множество векторов E в векторном пространстве V называется базисом V, если E линейно независимо и полно в V.

Определение. Векторное пространство, в котором существует конечный (состоящий из конечного числа векторов) базис, называется конечномерным. В противном случае оно называется бесконечномерным.

2.2 Лемма о количестве векторов в ЛНЗ системе (аналог ОЛЛЗ)

Лемма. Если X - конечное полное множество из n векторов в векторном пространстве V и Y - линейно независимое множество векторов в V, то Y конечно и число векторов в $Y \leqslant n$.

Доказательство. (пер.) Произвольно занумеруем векторы в $X:(\bar{x}_1,...,\bar{x}_n)$. Будем по одному добавлять в эту систему векторы из Y и одновременно выкидывать векторы из X так, чтобы система оставалась полной.

Пусть за k шагов $(0 \leqslant k \leqslant n)$ мы добавили некоторые $\bar{y}_1,...,\bar{y}_k$ и выкинули какие-то k векторов из X - осталась система $(\bar{y}_1,...,\bar{y}_k,\bar{x}_{i_1},...,\bar{x}_{i_{n-k}})$. Возьмём \bar{y}_{k+1} из Y (если такого нет, то в $Y \leqslant n$ векторов, что нам и нужно), и добавим его в систему. Так как до этого система оставалась полной, \bar{y}_{k+1} выражается через $(\bar{y}_1,...,\bar{y}_k,\bar{x}_{i_1},...,\bar{x}_{i_{n-k}})$, причём какой-то \bar{x}_{i_j} входит в это разложение с коэффициентом, не равным нулю (иначе противоречие с линейной независимостью Y - \bar{y}_{k+1} выразился через $\bar{y}_1,...,\bar{y}_k$).

Тогда \bar{x}_{i_j} выражается через другие векторы системы и \bar{y}_{k+1} (в выражении \bar{y}_{k+1} перенесём всё, кроме \bar{x}_{i_j} в другую часть и разделим на коэффициент перед ним). А так как $(\bar{y}_1,...,\bar{y}_{k+1},\bar{x}_{i_1},...,\bar{x}_{i_{n-k}})$ - полная, эта же система без \bar{x}_{i_j} . очевидно, останется полной.

Пусть смогли проделать n таких шагов. Тогда имеем систему $(\bar{y}_1,...,\bar{y}_n)$. Если в Y есть ещё векторы, то они с одной стороны выражаются через векторы системы из её полноты, а с другой - не выражаются через них из линейной независимости Y. Противоречие, т.е. в Y не может оказаться больше n векторов, ч.т.д.

2.3 Теорема о количестве векторов в базисе. Размерность векторного пространства.

Теорема. Если в векторном пространстве есть конечный базис. то все базисы в нём конечны и содержат одинаковое количество векторов.

Доказательство. Пусть $\bar{e}_1,...,\bar{e}_n$ - конечный базис в V. Любой другой базис V линейно независим, т.е. по лемме содержит $k\leqslant n$ векторов, а с другой стороны полон, т.е. первый базис по лемме содержит $n\leqslant k$ векторов. Отсюда n=k, ч.т.д.

Определение. Количество векторов в любом базисе векторного пространства V называется размерностью V и обозначается dim V.

Примеры. $dim \ \bar{0} = 0, dim \ \pi (= dim \ \mathbb{R}^2) = 2, dim \ \mathbb{R}^3 = 3.$

Билет 3. Координаты в базисе

3.1 Однозначность выражения вектора в конечномерном в. п. через базис

Теорема. В конечномерном векторном пространстве выражение любого вектора через базис определяется однозначно.

3.2 Координаты вектора в базисе

Доказательство. Если $\bar{x} = \lambda_1 \bar{e}_1 + ... + \lambda_n \bar{e}_n = \lambda_1' \bar{e}_1 + ... + \lambda_n' \bar{e}_n$, то $\bar{x} - \bar{x} = \bar{0} = (\lambda_1 - \lambda_1') \bar{e}_1 + ... + (\lambda_n - \lambda_n') \bar{e}_n$. Если эти два разложения различны, то равная нулю линейная комбинация базисных векторов нетривиальна, что противоречит линейной независимости базиса. То есть двух различных разложений быть не может, ч.т.д.

Определение. Пусть V - конечномерное векторное пространство и $\bar{e}_1,...,\bar{e}_n$ - базис в нём. Коэффициенты $\lambda_1,...,\lambda_n$ в выражении любого вектора $x\in V$ через эти базисные векторы называются координатами вектора x в базисе $\bar{e}_1,...,\bar{e}_n$. (λ_k называется k-й координатой)

Замечание. Векторы в n-мерном векторном пространстве находятся во взаимно однозначном соответствии с упорядоченной строкой из n чисел из \mathbb{R} (например, векторы ассоциированного с евклидовой плоскостью векторного пространства соответствуют парам чисел) Таким образом можно задать операции сложения и умножения на число векторов плоскости через операции над числами, проводимыми покоординатно.

Билет 4. Аффинные пространства

4.1 Аффинное пространство

Элементы плоскости (как множества) - точки, а не векторы, поэтому для работы непосредственно с плоскостью необходимо ввести данное определение.

Определение. Аффинное пространство - тройка (X, V, +) (обычно обозначается \mathbb{A}), где X - множество (точек), V - векторное пространство, а + операция: $X \times V \to X$, для которых выполнены аксиомы:

- 1. $\forall A \in X, \forall \bar{a}, \bar{b} \in V : A + (\bar{a} + \bar{b}) = (A + \bar{a}) + \bar{b};$
- $2. \ \forall A \in X : A + \bar{0} = A;$
- 3. $\forall A, B \in X \; \exists ! \; \bar{a} \in V : A + \bar{a} = B$. Обозначается $\bar{a} = \overrightarrow{AB}$.

4.2 Радиус-векторы и репер

Если зафиксировать какую-нибудь точку $O \in X$, возникает взаимно однозначное соответствие между точками A и их радиус-векторами \overrightarrow{OA} .

Определение. Репер (система координат) в аффинном пространстве (X, V, +) - пара (O, E), где $O \in X$ и E - базис в V. Точка O называется началом координат (отсчёта). Координаты точки A в (O, E) - координаты её радиус-вектора \overrightarrow{OA} в базисе E.

Замечание. Для аффинного пространства верно:

- 1. Если $A=(x_1,...,x_n), \bar{a}=(y_1,...,y_n),$ то $A+\bar{a}=(x_1+y_1,...,x_n+y_n).$
- 2. Если $A = (a_1, ..., a_n), B = (b_1, ..., b_n),$ то $\overrightarrow{AB} = (b_1 a_1, ..., b_n a_n).$

(Следует из сложения векторов)

4.3 Конечномерное аффинные пространства и их размерность

Определение. Если $\mathbb{A} = (X, V, +)$ - аффинное пространство, то говорят, что V - векторное пространство, ассоциированное с \mathbb{A} .

Определение. \mathbb{A} называется конечномерным, если ассоциированное с ним V конечномерно. В этом случае $dim\mathbb{A}$ (размерность \mathbb{A}) равна dimV.

Теперь точки аффинного пространства аналогично векторам можно ассоциировать с наборами чисел. Однако для ассоциирования евклидовой плоскости и её аксиом с двумерным аффинным пространством, необходимы отвечающие аксиомам понятия прямой и расстояния.

Билет 5. Подпространства

5.1 Векторное подпространство

Определение. Векторным подпространством векторного пространства V называется непустое множество $V_1 \subset V$ такое. что $\forall \bar{x}, \bar{y} \in V_1 : \bar{x} + \bar{y} \in V_1, \lambda \bar{x} \in V_1 (\forall \lambda \in \mathbb{R}).$

Замечание. Определение эквивалентно следующему: множество $V_1 \subset V$ - векторное подпространство V, если V_1 является векторным пространством относительно операций + и *, определённых для V. (Доказательство осуществляется путём прямой проверки аксиом векторного пространства для V_1)

5.2 Аффинное подпространство

Введём несколько определений аффинного подпространства и докажем их эквивалентность.

Определение. Аффинным подпространством аффинного пространства $\mathbb{A} = (X, V, +)$ называется

- 1. его непустое подмножество вида $A+V_1=A+\bar a:\bar a\in V_1$, где V_1 векторное подпространство V и $A\in X$ точка;
- 2. тройка $(X_1 \subset X, V_1 \subset V, +_1)$, где V_1 векторное подпространство V и операция $+_1 = +$, для которой $\forall A, B \in X_1, \forall \bar{a} \in V_1 : A + \bar{a} \in X_1, \overrightarrow{AB} \in V_1;$
- 3. тройка $(X_1 \subset X, V_1 \subset V, +_1)$, где V_1 векторное подпространство V и операция $+_1 = +$, которая сама является аффинным пространством.

Утверждение. Приведённые определения эквивалентны.

Доказательство. Докажем следующие следствия:

- $\textcircled{1}\Rightarrow \textcircled{2}$ Пусть $P=A+\bar{a}, Q=A+\bar{b}$. Тогда $\overrightarrow{PQ}=\bar{b}-\bar{a}$ (в силу единственности такого вектора), т.е. $\overrightarrow{PQ}\in V_1$. Второе необходимое свойство 2 очевидно выполнено.
- $\textcircled{2}\Rightarrow \textcircled{1}$ Пусть X_1,V_1 удовлетворяют 2. Зафиксируем произвольную $A\in X_1$. $\forall B\in X_1$ имеем $B=A+\overrightarrow{AB}$, причём $A\in X_1,\overrightarrow{AB}\in V_1\Rightarrow B\in X_1$.

Эквивалентность $\textcircled{2}\Leftrightarrow \textcircled{3}$ очевидна из определения аффинного пространства.

5.3 Прямая в аффинном пространстве

Определение. Прямая в аффинном пространстве - его одномерное аффинное подпространство.

Плоскость (двумерная) в аффинном пространстве - его двумерное аффинное подпространство.

Определение. Единственный вектор в любом базисе векторного пространства, ассоциированного с одномерным аффинным пространством, называется направляющим вектором этого аффинного пространства.

Билет 6. Скалярное произведение

6.1 Скалярное произведение

Определение. Пусть V - векторное пространство. Скалярным произведением в V называется функция $(\ ,\):V\times V\to \mathbb{R}$ со свойствами:

- 1. $(\bar{x}, \bar{x}) \geqslant 0 \ \forall \bar{x} \in V$, причём $(\bar{x}, \bar{x}) = 0 \Leftrightarrow \bar{x} = \bar{0}$ (положительная определённость);
- 2. $(\bar{x}, \bar{y}) = (\bar{y}, \bar{x}) \ \forall \bar{x}, \bar{y} \in V$ (коммутативность);
- 3. $(\alpha \bar{x} + \beta \bar{y}, \bar{z}) = \alpha(\bar{x}, \bar{z}) + \beta(\bar{y}, \bar{z}) \, \forall \bar{x}, \bar{y}, \bar{z} \in V, \alpha, \beta \in \mathbb{R}$ (линейность по первому аргументу)

Из коммутативности выполнена и линейность по второму аргументу, т.е. скалярное произведение - билинейная функция.

6.2 Евклидово векторное и точечно-евклидово аффинное пространство

Определение. Конечномерное аффинное (векторное) пространство вместе со скалярным произведением называется точечно-евклидовым (евклидовым) пространством. Двумерное точечно-евклидово пространство называется евклидовой плоскостью.

6.3 Длина вектора и расстояния между точками

Определение. Длиной вектора называется величина $\sqrt{(\bar{x},\bar{x})}$.

Определение. Расстоянием (евклидовым) между точками $A, B \in \mathbb{A}$ называется длина вектора \overrightarrow{AB} . Будем обозначать d(A, B) как $|\overrightarrow{AB}|$.

6.4 Выражение скалярного произведения через длины

Замечание. Зная длины всех векторов, скалярное произведение можно восстановить по формуле $(\bar{x}, \bar{y}) = \frac{1}{2}(|\bar{x} + \bar{y}|^2 - |\bar{x}|^2 - |\bar{y}|^2)$. Это несложно проверить: $\frac{1}{2}(|\bar{x} + \bar{y}|^2 - |\bar{x}|^2 - |\bar{y}|^2) = \frac{1}{2}((\bar{x} + \bar{y}, \bar{x} + \bar{y}) - (\bar{x}, \bar{x}) - (\bar{y}, \bar{y})) = \frac{1}{2}(2(\bar{x}, \bar{y})) = (\bar{x}, \bar{y})$.

Билет 7. Неравенство Коши-Буняковского

7.1 Неравенство Коши-Буняковского

Теорема (Неравенство Коши-Буняковского). $\forall \bar{a}, \bar{b} \in V(\bar{a}, \bar{b}) \leqslant \sqrt{(\bar{a}, \bar{a})(\bar{b}, \bar{b})},$ причём равенство достигается только при $\bar{a} = \lambda \bar{b}$.

Доказательство. Рассмотрим выражение $(\bar{a}+t\bar{b},\bar{a}+t\bar{b})$. Оно равно нулю $\Leftrightarrow \bar{a}=-t\bar{b}$, т.е. может быть равно нулю не более чем при одном t. С другой стороны $(\bar{a}+t\bar{b},\bar{a}+t\bar{b})=(\bar{a},\bar{a})+2(\bar{a},\bar{b})t+(\bar{b},\bar{b})t^2$ - квадратный трёхчлен относительно t. Его дискриминант равен $4(\bar{a},\bar{b})-4(\bar{a},\bar{a})(\bar{b},\bar{b})$, а из первого рассуждения знаем, что дискриминант $\leqslant 0$, причём равенство достигается только в случае коллинеарности \bar{a} и \bar{b} . Отсюда $(\bar{a},\bar{b})\leqslant \sqrt{(\bar{a},\bar{a})(\bar{b},\bar{b})}$, ч.т.д.

7.2 Величина угла и ортогональные векторы

Определение. Величиной угла между ненулевыми векторами \bar{a}, \bar{b} называется число $\arccos\frac{(\bar{a},\bar{b})}{|\bar{a}||\bar{b}|}$ (из н. Коши-Буняковского $|\frac{(\bar{a},\bar{b})}{|\bar{a}||\bar{b}|}|\leqslant 1$).

Определение. Векторы \bar{a}, \bar{b} называются ортогональными (перпендикулярными), если $(\bar{a}, \bar{b}) = 0$.

Билет 8. Прямоугольная система координат

8.1 Ортонормированный базис и прямоугольная система координат

Определение. Базис векторного пространства V со скалярным произведением называется ортонормированным, если все его векторы попарно ортогональны и имеют длину 1.

Определение. Система координат в точечно-евклидовом пространстве называется прямоугольной, если её базис ортонормированный.

8.2 Выражение скалярного произведения через координаты векторов

Утверждение. В точечно-евклидовом пространстве верно следующее выражение скалярного произведения через координаты векторов: если в некотором

базисе
$$(\bar{e}_1,...,\bar{e}_n)$$
 $\bar{x}=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}, \bar{y}=\begin{pmatrix}y_1\\\vdots\\y_n\end{pmatrix}$, то $(\bar{x},\bar{y})=\sum_{i=1}^nx_i\cdot\sum_{j=1}^ny_j(\bar{e}_i,\bar{e}_j)$.

Доказательство.
$$(\bar{x}, \bar{y}) = (x_1\bar{e}_1 + \dots + x_n\bar{e}_n, y_1\bar{e}_1 + \dots + y_n\bar{e}_n) = \sum_{i=1}^n (x_i\bar{e}_i, y_1\bar{e}_1 + \dots + y_n\bar{e}_n) = \sum_{i=1}^n x_i(\bar{e}_i, y_1\bar{e}_1 + \dots + y_n\bar{e}_n) = \sum_{i=1}^n x_i \cdot \sum_{j=1}^n y_j(\bar{e}_i, \bar{e}_j)$$

8.3 Выражение для прямоугольной системы координат

Замечание. В случае, когда базис ортонормированный, имеем $(e_i,e_j)=\delta_{ij}$, т.е. $(\bar x,\bar y)=x_1y_1+...+x_ny_n$. То есть в прямоугольной системе координат длина вектора вычисляется по формуле $|\bar x|=\sqrt{x_1^2+...+x_n^2}$, а расстояние между точками $P=(x_1,...,x_n), Q=(y_1,...,y_n)$ выражается как $|PQ|=|\overrightarrow{PQ}|=\sqrt{(y_1-x_1)^2+...+(y_n-x_n)^2}$.

Билет 9. Проектирование

Определение. Пусть задано два векторных подпространства V_1, V_2 векторного пространства V такие, что $V_1 \cap V_2 = \bar{0}$ и $V_1 + V_2 = V$ (обозначается $V = V_1 \oplus V_2$). Тогда сумма $\bar{x} = \bar{x}_1 + \bar{x}_2$, где $\bar{x} \in V, \bar{x}_1 \in V_1, \bar{x}_2 \in V_2$, определена единственно. (Следует, например, из того, что в любом базисе V каждый его вектор лежит либо в V_1 , либо в V_2 , тогда разложение в эту сумму соответствует единственному разложению по базису). Проекцией вектора $\bar{x} \in V$ на V_1 параллельно V_2 называется слагаемое \bar{x}_1 этой суммы.

Определение. Пусть задано два аффинных подпространства $\mathbb{A}_1 = (X_1, V_1, +)$, $\mathbb{A}_2 = (X_2, V_2, +)$ аффинного пространства $\mathbb{A} = (X, V, +)$ такие, что $V = V_1 \oplus V_2$. Проекцией точки $P \in \mathbb{A}$ на \mathbb{A}_1 параллельно \mathbb{A}_2 - точка $P_1 = A_1 + \bar{v}$, где A_1 - произвольная точка из X_1 , а \bar{v} - проекция $\overrightarrow{A_1P}$ на V_1 параллельно V_2 . (Очевидно, что от выбора A_1 расположение проеции не зависит)

Пример. Рассмотрим координаты точки евклидовой плоскости относительно прямоугольной системы координат.

Найдём проекцию точки A=(x,y) на прямую Oy параллельно прямой Ox. По определению это точка (назовём её A_y), равная $O+\bar{v}$, где \bar{v} - проекция \overrightarrow{OP} на векторное пространство прямой Oy параллельно Ox. $\overrightarrow{OP}=\{x,y\}=x\bar{e}_1+y\bar{e}_2$. Отсюда $\bar{v}=y\bar{e}_2=\{0,y\}$, то есть $A_y=(0,y)$. Аналогично $A_x=(x,0)$.

Билет 10. Ортонормированный базис

Определение смотри в пункте 8.1 Пусть $\mathbb{A}^n = (X, V^n, +)$ - n-мерное точечно-евклидово пространство.

10.1 Линейная независимость ортогональных векторов

Утверждение. В V^n любая линейно независимая система из n векторов образует базис.

Доказательство. Предположим, что в V^n существует неполная линейно независимая система из п векторов. Т.к. система не полная, существует вектор из V^n , не выражающийся через векторы этой системы, т.е. этот вектор можно добавить в систему без потери линейной независимости. Но по лемме-аналогу ОЛЛЗ линейно независимая система в V^n не может иметь > n векторов. Противоречие, т.е. любая линейно независимая система из n векторов является полной, а значит и базисом, ч.т.д.

Утверждение. Если $\bar{e}_1,...,\bar{e}_n$ - попарно ортогональные ненулевые векторы в евклидовом пространстве, то $\bar{e}_1,...,\bar{e}_n$ линейно независимы.

Доказательство. Предположим противное. Пусть один из векторов (без ограничения общности \bar{e}_n) линейно выражается через остальные: $\bar{e}_n = \lambda_1 \bar{e}_1 + ... + \lambda_{n-1} \bar{e}_{n-1}$. Тогда запишем квадрат его длины: $|\bar{e}_n|^2 = (\bar{e}_n, \bar{e}_n) = (\bar{e}_n, \lambda_1 \bar{e}_1 + ... + \lambda_{n-1} \bar{e}_{n-1}) = \sum_{i=1}^{n-1} \lambda_i (\bar{e}_n, \bar{e}_i) = 0$ (т.к. \bar{e}_n ортогонален всем остальным векторам). Отсюда $|\bar{e}_n| = 0$, и притом \bar{e}_n ненулевой. Противоречие, т.е. никакой вектор системы не выражается через остальные, а значит система линейно независима. ч.т.д.

10.2 Теорема о существовании ортонормированного бази-

Теорема. В любом евклидовом пространстве существует ортонормированный базис.

База: n=1 - очевидно, что существует вектор длины 1, который составляет ортонормированный базис одномерного пространства;

Шаг: Пусть в любом n-мерном пространстве существует ортонормированный базис. Рассмотрим пространство V размерности n+1 и выберем базис

какого-то n-мерного подпространства W (пусть $(\bar{e}_1,...,\bar{e}_n)$). Найдём вектор, ортогональный всем выбранным векторам. Так как базис W не полон в V, к нему можно добавить ещё один вектор $x \in V$ без потери линейной независимости \Rightarrow $(\bar{e}_1,...,\bar{e}_n,\bar{x})$ - базис в V (ЛНЗ система из n+1 векторов).

Теперь необходимо представить \bar{x} как следующую сумму: $\bar{x} = \lambda_1 \bar{e}_1 + ... + \lambda_n \bar{e}_n +$ \bar{e}_{n+1} , где \bar{e}_{n+1} ортогонален $\bar{e}_1,...,\bar{e}_n$. Тогда $\bar{e}_{n+1}=\bar{x}-\lambda_1\bar{e}_1-...-\lambda_n\bar{e}_n$. Рассмотрим $(\bar{e}_{n+1}, \bar{e}_k) = (\bar{x} - \lambda_1 \bar{e}_1 - \dots - \lambda_n \bar{e}_n, \bar{e}_k) = (\bar{x}, \bar{e}_k) - \lambda_1 (\bar{e}_1, \bar{e}_k) - \dots - \lambda_n (\bar{e}_n, \bar{e}_k)$. Так как \bar{e}_k ортогонально всем этим векторам, кроме \bar{e}_k и \bar{x} , это выражение равно $(\bar{x},\bar{e}_k)-\lambda_k(\bar{e}_k,\bar{e}_k)$. Отсюда при $\lambda_k=\frac{(\bar{x},\bar{e}_k)}{(\bar{e}_k,\bar{e}_k)}$ векторы \bar{e}_{n+1} и \bar{e}_k ортогональны (зависит только от λ_k). Составив таким образом все $\lambda_1, ..., \lambda_n$, получим выражение вектора \bar{e}_{n+1} , ортогональный всем векторам базиса W. Таким образом, векторы полученной системы $\bar{e}_1,...,\bar{e}_{n+1}$ попарно ортогональны (по предположению индукции) \Rightarrow линейно независимы \Rightarrow образуют базис в V. Разделив \bar{e}_{n+1} на его длину, получим, что все векторы базиса попарно ортогональны и имеют длину $1 \Rightarrow V$ имеет ортонормированный базис, ч.т.д.

Следствие. Любую систему ортогональных векторов длины 1 в векторном пространстве можно дополнить до ортонормированного базиса.

Прямые и их уравнения Билет 11.

Определения прямой и направляющего вектора

Смотри пункт 5.3

Уравнения прямой 11.2

Вывод формул (**уравнения прямой**). Пусть l - прямая на плоскости: l= $\{X:\overrightarrow{OX}=\overrightarrow{OM}+t\overline{v}\}$, где M - точка прямой, \overline{v} - её направляющий вектор. Если

$$M=egin{pmatrix} X \cdot OX = OM + tv \}, \text{ где } M = \text{ го чка прямой, } v = \text{ се паправляющий вектор. Если } M = egin{pmatrix} x_0 \\ y_0 \end{pmatrix}, \bar{v} = egin{pmatrix} a \\ b \end{pmatrix}, \text{ то из совпадения координат совпадающих векторов } \overrightarrow{OX} \end{pmatrix}$$
 и $(\overrightarrow{OM} + t\bar{v})$ для $X \in l$ верно: $\begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases}$ (параметрические уравнения)

Выразим t из первого уравнения и подставим во второе - получим: $\frac{x-x_0}{a} = \frac{y-y_0}{b}$ (каноническое уравнение прямой). (Заметим, что данное выражение не определено при нулевых a или b, но очевидно, что они не равны нулю одновременно, а запись, где одна из дробей имеет знаменатель 0, иногда используется,

поэтому здесь и далее случай равенства нулю знаменателя может не рассматриваться как отдельный и будет означать, что числитель должен равняться 0)

Если известно, что прямой принадлежат
$$M = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, N = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
, то $\overrightarrow{MN} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$

$$egin{pmatrix} (y_0) & (y_1) \\ (x_1-x_0) \\ y_1-y_0 \end{pmatrix}$$
 - направляющий вектор, т.е. каноническое уравнение прямых при-

нимает вид $\frac{x-x_0}{x_1-x_0} = \frac{y-y_0}{y_1-y_0}$ (уравнение прямой по двум точкам). Домножим каноническое уравнение прямой на знаменатели: $\frac{x-x_0}{a} = \frac{y-y_0}{b} \Rightarrow$ $bx - bx_0 = ay - ay_0 \Rightarrow bx - ay + (ay_0 - bx_0) = 0$. Такое уравнение обычно называют **общим уравнением прямой** и записывают как Ax + By + C = 0.

Замечание. Для прямых в пространстве подобным образом выводятся параметрические и каноническое уравнения.

Замечание. Заметим также, что из итоговой формулы вывода общего уравнения $(bx - ay + (ay_0 - bx_0)) = 0 \Rightarrow Ax + By + C = 0$) следует, что для прямой Ax + By + C = 0 вектор (B, -A) (а соответственно и (-B, A)) является направляющим.

Критерий уравнения прямой (нет в билете, важно) 11.3

Утверждение. Ax+By+C=0 является уравнением прямой $\Leftrightarrow A$ и B не равны нулю одновременно.

Доказательство.

- \Rightarrow Если Ax+By+C=0, то её направляющий вектор ненулевой, а значит вектор (-B,A) ненулевой, то есть одна из его координат $\neq 0$.
- \Leftarrow Пусть без ограничения общности $A \neq 0$. Тогда этому уравнению удовлетворяет точка $(x_0,y_0)=(-\frac{C}{A},0)$, а значит (нетрудно проверить) все удовлетворяющие ему точки имеют вид $(x_0 + Bt, y_0 - At)$, что соответствует прямой с такими параметрическими уравнениями.

Билет 12. Взаимное расположение прямых

Случай общих уравнений 12.1

Теорема. Прямые на плоскости параллельны (или совпадают) ⇔ их направляющие векторы пропорциональны.

Доказательство. Пусть $l_1:A_1x+B_1y+C_1=0; l_2:A_2x+B_2y+C_2=0$ - данные прямые. Рассмотрим систему уравнений, которой удовлетворяют координаты точек, принадлежащих обоим прямым: $\begin{cases} A_1x+B_1y=-C_1\\ A_2x+B_2y=-C_2 \end{cases}$

Из курса алгебры (форумла Крамера) известно, что система не является определённой $\Leftrightarrow det \begin{pmatrix} A_1 & B_1 \\ A_2 & B_2 \end{pmatrix} = 0$. Таким образом, прямые параллельны или совпадают \Leftrightarrow имеют 0 или бесконечно много общих точек $\Leftrightarrow A_1B_2 - A_2B_1 = 0 \Leftrightarrow (A_1 B_1)$ пропорционален $(A_2 B_2)$, ч.т.д.

Замечание. Из этого также видно, что прямые совпадают $\Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$.

12.2 Случай параметрических уравнений

Следствие. Прямые
$$l_1: \begin{cases} x=x_1+a_1t \\ y=y_1+b_1t \end{cases}$$
 ; $l_2: \begin{cases} x=x_2+a_2t \\ y=y_2+b_2t \end{cases}$ пересекаются

 $\Leftrightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$. Условие совпадения прямых также можно записать через параметрические уравнения (вектор $(x_2-x_1\ y_2-y_1)=\lambda(a,b)$).

Из этого также следует, что через две различные точки проходит ровно одна прямая (все такие прямые совпадают).

Билет 13.

13.1 Определение пучка прямых

Определение. Собственным пучком прямых называется множество всех прямых, проходящих через данную точку, называемую центром пучка.

Несобственным пучком прямых называется множество всех прямых, параллельных данной прямой.

13.2 Уравнение собственного пучка прямых

Теорема. Пусть прямые $l_1: A_1x + B_1y + C_1 = 0$ и $l_2: A_2x + B_2y + C_2 = 0$ задают собственный пучок (т.е. содержатся в нём и не совпадают). Тогда прямая l принадлежит пучку $\Leftrightarrow l$ задаётся уравнением $\lambda(A_1x + B_1y + C_1) + \mu(A_2x + B_2y + C_2) = 0$ (*) для некоторых $\lambda, \mu \in \mathbb{R}$.

Доказательство.

 \Leftarrow Пусть l задаётся уравнением (*). Тогда, подставив в уравнение l центр пучка

 (x_0,y_0) , получим $\lambda(0)+\mu(0)=0$ (т.к. центр удовлетворяет уравнениям l_1,l_2). \Rightarrow Пусть $(x_0,y_0)\in l$. Возьмём произвольную точку $(x_1,y_1)\in l, (x_1,y_1)\neq (x_0,y_0)$. Рассмотрим прямую вида (*) с $\lambda=-(A_2x_1+B_2y_1+C_2), \ \mu=(A_1x_1+B_1y_1+C_1):-(A_2x_1+B_2y_1+C_2)(A_1x+B_1y+C_1)+(A_1x_1+B_1y_1+C_1)(A_2x+B_2y+C_2)=0$. Заметим, что это уравнение действительно задаёт прямую: в противном случае необходимы условия $\lambda A_1+\mu A_2=\lambda B_1+\mu B_2=0$, но тогда (A_1,B_1) и (A_2,B_2) пропорциональны, а исходные прямые непараллельны. Такой прямой, очевидно, принадлежат точки (x_0,y_0) и (x_1,y_1) . Так как через две различные точки проходит ровно одна прямая, любая прямая из собственного пучка имеет вид (*), ч.т.д.

13.3 Уравнение несобственного пучка прямых

Теорема. Пусть прямые $l_1: A_1x + B_1y + C_1 = 0$ и $l_2: A_2x + B_2y + C_2 = 0$ задают несобственный пучок (т.е. содержатся в нём и не совпадают). Тогда прямая l принадлежит пучку $\Leftrightarrow l$ задаётся уравнением $\lambda(A_1x + B_1y + C_1) + \mu(A_2x + B_2y + C_2) = 0$ (*) для некоторых $\lambda, \mu \in \mathbb{R}$.

Доказательство.

$$\Leftarrow$$
 Так как $l_1 \parallel l_2$, $\frac{A_1}{B_1} = \frac{A_2}{B_2}$. Тогда если l имеет вид $(*)$, то $\frac{\lambda A_1 + \mu A_2}{A_1} = \lambda + \frac{\mu A_2}{A_1} = \lambda + \frac{\mu B_2}{B_1} = \frac{\lambda B_1 \mu B_2}{B_1} \Rightarrow l \parallel l_1$.

 \Rightarrow Пусть l принадлежит пучку. Так как направляющие векторы l, l_1 и l_2 ; пропорциональны, можем домножить уравнения на числа так, что коэффициенты перед переменными станут равны: пусть $l_1: Ax + By + C_1 = 0; \ l_2 = Ax + By + C_2 = 0; \ l = Ax + By + C_3 = 0$. Тогда возьмём λ, μ из следующей системы: $\begin{cases} C_1\lambda + C_2\mu = C_3 \\ \lambda + \mu = 1 \end{cases} \Leftrightarrow \begin{cases} \lambda = \frac{C_3 - C_2}{C_1 - C_2} \\ \mu = \frac{C_1 - C_3}{C_1 - C_2} \end{cases}$ $(C_1 \neq C_2, \text{ иначе } l_1 \text{ и } l_2 \text{ совпа-} l_2 \text{ совпа-} l_3 \text{ (Compared to the expression of the expression$

дают). Очевидно, что для таких λ, μ уравнение l имеет вид (*) (проверяется несложной подстановкой), ч.т.д.

Билет 14. Отрезки

14.1 Отрезки на плоскости

Определение. Пусть l - прямая, $X_1(x_1, y_1), X_2(x_2, y_2) \in l$ и $X_1 \neq X_2$. Отрезком с концами X_1, X_2 на плоскости называется множество всех точек, лежащих между X_1 и X_2 (на прямой l). Обозначается $[X_1, X_2]$.

Вывод формулы (Уравнение отрезка). Пусть $X \in [X_1, X_2]$. Тогда знаем, что

$$\begin{cases} x = x_1 + t(x_2 - x_1) \\ y = y_1 + t(y_2 - y_1) \end{cases} (X \in l) \Rightarrow \begin{pmatrix} x - x_1 \\ y - y_1 \end{pmatrix} = t \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix} \Rightarrow t \overrightarrow{X_1 X_2} = \overrightarrow{X_1 X} \Rightarrow \overrightarrow{X X_2} = (1 - t) \overrightarrow{X_1 X_2}. \text{ Отсюда видно, что } |\overrightarrow{X_1 X}| \text{ и } |\overrightarrow{X X_2}| < |\overrightarrow{X_1 X_2}| \Leftrightarrow t \in [0, 1]. \text{ Отсюда } X \in [X_1, X_2] \Leftrightarrow \begin{cases} x = x_1 + t(x_2 - x_1) \\ y = y_1 + t(y_2 - y_1) \\ t \in [0, 1] \end{cases}$$

Утверждение.

Мораль в том, что дальше очев... (по Гейне, конечно)