BS2280 - Econometrics 1

Lecture 3 - Part 1: Properties of OLS

by Dr Yichen Zhu

Outline

OLS assumptions

Sampling distribution

Intended Learning Outcomes

- Evaluating assumptions of OLS regressions
- Understanding sampling distributions

Review: Simple Linear Regression Model - Population vs. Sample

PopulationSample $Y_i = \beta_1 + \beta_2 X_i + u_i$
parameters β_1 and β_2
 u_i disturbance term $Y_i = \hat{Y}_i + \hat{u}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{u}_i$
coefficients $\hat{\beta}_1$ and $\hat{\beta}_2$
 \hat{u}_i residual

- OLS estimates $\hat{\beta}_1$ and $\hat{\beta}_2$ have certain desirable properties which make them highly attractive amongst all estimators
- It is possible to calculate $\hat{\beta}_1$ and $\hat{\beta}_2$ using other methods, but OLS is favoured because of the properties of its estimators
- But these properties (to be discussed later) rely on a set of assumptions we need to make!!!
- Important to understand these assumptions part of econometrics topics taught later revolves around consequences of these assumptions not holding

- OLS estimates $\hat{\beta}_1$ and $\hat{\beta}_2$ have certain desirable properties which make them highly attractive amongst all estimators
- It is possible to calculate $\hat{\beta}_1$ and $\hat{\beta}_2$ using other methods, but OLS is favoured because of the properties of its estimators
- But these properties (to be discussed later) rely on a set of assumptions we need to make!!!
- Important to understand these assumptions part of econometrics topics taught later revolves around consequences of these assumptions not holding

- OLS estimates $\hat{\beta}_1$ and $\hat{\beta}_2$ have certain desirable properties which make them highly attractive amongst all estimators
- It is possible to calculate $\hat{\beta}_1$ and $\hat{\beta}_2$ using other methods, but OLS is favoured because of the properties of its estimators
- But these properties (to be discussed later) rely on a set of assumptions we need to make!!!
- Important to understand these assumptions part of econometrics topics taught later revolves around consequences of these assumptions not holding

- OLS estimates $\hat{\beta}_1$ and $\hat{\beta}_2$ have certain desirable properties which make them highly attractive amongst all estimators
- It is possible to calculate $\hat{\beta}_1$ and $\hat{\beta}_2$ using other methods, but OLS is favoured because of the properties of its estimators
- But these properties (to be discussed later) rely on a set of assumptions we need to make!!!
- Important to understand these assumptions part of econometrics topics taught later revolves around consequences of these assumptions not holding.

Model is linear in parameters and correctly specified

• Put simply, this means that the model is always written in a way that β_2 is simply multiplied by X, i.e. $\beta_2 X$

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

• An example of a model that is not linear in parameters. There are other ways in which β_1 and β_2 can interact making the model non-linear in parameters, e.g.:

$$Y_i = \beta_1 X_i^{\beta_2} + u_i$$

Model is linear in parameters and correctly specified

• Put simply, this means that the model is always written in a way that β_2 is simply multiplied by X, i.e. $\beta_2 X$

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

• An example of a model that is not linear in parameters. There are other ways in which β_1 and β_2 can interact making the model non-linear in parameters, e.g.:

$$Y_i = \beta_1 X_i^{\beta_2} + u_i$$

There is some variation in the X variable

- if X is constant in the sample, it cannot account for any of the variation in Y
- The values of X must be different across different observations. Cannot be constant, otherwise cannot run a regression and cannot get estimates $\hat{\beta}_1$ and $\hat{\beta}_2$

$$\hat{\beta}_2 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

• If X does not vary, $X_i = \bar{X}$ above, and cannot calculate $\hat{\beta}_1$ and $\hat{\beta}_2$

There is some variation in the X variable

- if X is constant in the sample, it cannot account for any of the variation in Y
- The values of X must be different across different observations. Cannot be constant, otherwise cannot run a regression and cannot get estimates $\hat{\beta}_1$ and $\hat{\beta}_2$

$$\hat{\beta}_2 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

• If X does not vary, $X_i = \bar{X}$ above, and cannot calculate $\hat{\beta}_1$ and $\hat{\beta}_2$

There is some variation in the X variable

- if X is constant in the sample, it cannot account for any of the variation in Y
- The values of X must be different across different observations. Cannot be constant, otherwise cannot run a regression and cannot get estimates $\hat{\beta}_1$ and $\hat{\beta}_2$

$$\hat{\beta}_2 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

• If X does not vary, $X_i = \bar{X}$ above, and cannot calculate $\hat{\beta}_1$ and $\hat{\beta}_2$

Disturbance term has zero expectation

 We assume that the expected value of the disturbance term in any observation should be zero.

$$E(u_i) = \mu_u = 0$$
 for all i

 The disturbance term will sometimes be positive, sometimes negative, but on average will be zero.

Disturbance term has zero expectation

 We assume that the expected value of the disturbance term in any observation should be zero.

$$E(u_i) = 0$$
 for all i

- There will be no systematic tendency for some error terms in some observations to be more positive/negative than others
- The above assumption is strictly written as

$$E(u_i|X_1, X_2,, X_n) = 0$$
 for all i

• Dougherty (p.116) shows that with an intercept term β_1 in our regression model, this condition is automatically satisfied

The disturbance term is homoscedastic

- We assume that the error term has a constant variance, i.e. its values are drawn from a distribution with constant population variance
- Once sample is generated and OLS regression is run, error term will be greater in some observations, and lower in others
- But it is not expected to be more erratic in some observations than in others

$$E((u_i - \mu_u)^2) = \sigma_u^2$$
 for all

since
$$E(u_i) = \mu_u = 0$$

$$E(u_i^2) = \sigma_u^2$$
 for all i

The disturbance term is homoscedastic

- We assume that the error term has a constant variance, i.e. its values are drawn from a distribution with constant population variance
- Once sample is generated and OLS regression is run, error term will be greater in some observations, and lower in others
- But it is not expected to be more erratic in some observations than in others

$$E((u_i - \mu_u)^2) = \sigma_u^2$$
 for all

since
$$E(u_i) = \mu_u = 0$$

$$E(u_i^2) = \sigma_u^2$$
 for all i

The disturbance term is homoscedastic

- We assume that the error term has a constant variance, i.e. its values are drawn from a distribution with constant population variance
- Once sample is generated and OLS regression is run, error term will be greater in some observations, and lower in others
- But it is not expected to be more erratic in some observations than in others

$$E((u_i - \mu_u)^2) = \sigma_u^2$$
 for all i

since
$$E(u_i) = \mu_u = 0$$

$$E(u_i^2) = \sigma_u^2$$
 for all i

Homoscedasticity vs Heteroscedasticity

Values of disturbance term have independent distributions

- We assume that the error terms are absolutely independent of each other
- u_i is independently distributed from u_j for all $i \neq j$
- Behaviour/value of the error term in one observation should not affect it's value for another observation

Values of disturbance term have independent distributions

 If the error term is large (positive/negative) in one observation, it should not be equally large (positive/negative) in the next observation

$$\sigma_{u_iu_i} = E(u_i - \mu_u)(u_j - \mu_u) = E(u_iu_j) = E(u_i)E(u_j) = 0$$

disturbance terms have independent distributions vs. dependent distribution

Figure: Values of disturbance terms have independent distributions

Figure: Values of disturbance terms have dependent distributions

The disturbance term has a normal distribution

- We assume the error terms come from a normal distribution
- This assumption is by virtue of the central limit theorem
- Once we assume that the error term has a normal distribution, we can assume that $\hat{\beta}_1$ and $\hat{\beta}_2$ will also have a normal distribution, allowing us to carry out hypothesis tests on them.

Regression coefficients are random variables

- The OLS regressions coefficients $\hat{\beta}_1$ and $\hat{\beta}_2$ are random variables
- Different samples from the same population will contain different Y_i , therefore different u_i different values of $\hat{\beta}_1$ and $\hat{\beta}_2$
- Put simply, one sample of data on X and Y will produce one set of values for $\hat{\beta}_1$ and $\hat{\beta}_2$. Another sample of data on X and Y will produce another set of values for $\hat{\beta}_1$ and $\hat{\beta}_2$, and so on . . .

Regression coefficients are random variables

- The OLS regressions coefficients $\hat{\beta}_1$ and $\hat{\beta}_2$ are random variables
- Different samples from the same population will contain different Y_i , therefore different u_i different values of $\hat{\beta}_1$ and $\hat{\beta}_2$
- Put simply, one sample of data on X and Y will produce one set of values for $\hat{\beta}_1$ and $\hat{\beta}_2$. Another sample of data on X and Y will produce another set of values for $\hat{\beta}_1$ and $\hat{\beta}_2$, and so on . . .

Regression coefficients are random variables

- The OLS regressions coefficients $\hat{\beta}_1$ and $\hat{\beta}_2$ are random variables
- Different samples from the same population will contain different Y_i , therefore different u_i different values of $\hat{\beta}_1$ and $\hat{\beta}_2$
- Put simply, one sample of data on X and Y will produce one set of values for $\hat{\beta}_1$ and $\hat{\beta}_2$. Another sample of data on X and Y will produce another set of values for $\hat{\beta}_1$ and $\hat{\beta}_2$, and so on . . .

How do sample estimates relate to population parameters?

- Monte Carlo Simulation: a controlled artificial experiment
- Rationale: Create artificial data and set population β_1 and β_2 , e.g.:

$$Y_i = 2 + 0.5X_i + u_i$$

How do sample estimates relate to population parameters?

- Monte Carlo Simulation: a controlled artificial experiment
- Rationale: Create artificial data and set population β_1 and β_2 , e.g.:

$$Y_i = 2 + 0.5X_i + u_i$$

"Real" Population linear relationship

We take random samples from this population and estimate β_1 and β_2

Experiment 1: get a sample with 20 observations

- We start with a sample that contains 20 observations, with values of X as whole numbers ranging from 1-20.
- u_i values are drawn from a standard normal distribution (i.e. with mean 0 and variance 1)

Χ	u	Υ	Χ	u	Υ	
1	1.26	3.76	11	-0.82	6.68	
2	0.64	3.64	12	-1.62	6.38	
3	0.46	3.96	13	0.31	8.81	
4	0.77	4.77	14	1.49	10.49	
5	-0.23	4.27	15	0.03	9.53	
6	-0.35	4.65	16	-0.56	9.44	
7	-0.65	4.85	17	0.45	10.95	
8	-1.26	4.74	18	0.60	11.60	
9	-1.70	4.80	19	1.11	12.61	
10	-1.83	5.17	20	-1.96	10.04	

Plotting the sample data

Sample estimated regression line vs. population regression line

Sample estimated regression line vs. population regression line

The "Real" population model is

$$Y_i = 2 + 0.5X_i + u_i$$

• Sample estimated model: from the above table, regression of Y on X gives $\hat{\beta}_1 = 2.05$ and $\hat{\beta}_2 = 0.48$, i.e.:

$$\hat{Y}_i = 2.05 + 0.48X_i$$

• Note: $\hat{\beta}_1$ is an overestimate of β_1 (i.e. 2.05 > 2) but $\hat{\beta}_2$ slightly underestimates β_2 (i.e. 0.48 < 0.5)

Simulating Sample Distribution

The "Real" population model is

$$Y_i = 2 + 0.5X_i + u_i$$

• Take 10 samples from population and estimate $\hat{\beta}_1$ and $\hat{\beta}_2$ for each sample:

Sample	$\hat{\beta_1}$	$\hat{\beta_{2}}$
1	2.05	0.48
2	1.77	0.50
3	1.45	0.57
4	1.52	0.55
5	2.15	0.48
6	1.86	0.50
7	2.52	0.47
8	2.19	0.50
9	2.25	0.46
10	1.86	0.49

Simulating Sample Distribution

- See distributions of $\hat{\beta}_2$ with 100, 1000, 10,000, 100,000 samples.
- Greater sample average value of the $\hat{\beta}_2$ converges onto the true population $\beta_2=0.5$

Experiment 2: get a sample with 20 observations again

- We consider another experiment
- We get a sample that contains 20 observations again, with values of X as whole numbers ranging from 1-20.
- But we now double the values of the disturbance terms

X	u	Υ	X	u	Υ
1	2.52	5.02	11	-1.64	5.86
2	1.28	4.28	12	-3.24	4.76
3	0.92	4.42	13	0.62	9.12
4	1.54	5.54	14	2.98	11.98
5	-0.46	4.04	15	0.06	9.56
6	-0.70	4.30	16	-1.12	8.88
7	-1.30	4.20	17	0.90	11.40
8	-2.52	3.48	18	1.20	12.20
9	-3.40	3.10	19	2.22	13.72
10	-3.66	3.34	20	-3.92	8.08

Simulating Sample Distribution

- See distributions of $\hat{\beta}_2$ with 100, 1,000, 10,000, 100,000 samples.
- Note the limits of the values on the y-axis

Compare experiment 1 and 2

- Comparison of the distributions of $\hat{\beta}_2$ in above two experiments
- Doubling of u_i doubles std deviation of distribution.

• Sampling distributions: dotted line u_i , bold line $2 \times u_i$

Application

- In practice:
 - We do not know the true population values β_1 and β_2
 - We will collect only **one** sample from which we run only **one** regression
 - We will get only one set of values for $\hat{\beta}_1$ and $\hat{\beta}_2$ from that regression
- Whatever the mean value of that sampling distribution, our estimated $\hat{\beta}_2$ will appear somewhere on the x-axis
- Key question: where on the x-axis is our sample value of $\hat{\beta}_2$ located?
- This is where we need to rely on statistical theory hypothesis testing!!!

