Aufgabe 1 Untersuchen Sie jeweils die Funktion f auf ihrem größtmöglichen Definitionsbereich auf An welchen Unstetigkeitsstellen iso f seeds a $f(x) = \frac{|x|}{x}$ b) $f(x) = \frac{x+3}{x^2-9}$ e) $f(x) = \frac{x}{x^2}$ Stetigkeit. An welchen Unstetigkeitsstellen ist f stetig ergänzbar?

a)
$$f(x) = \frac{|x|}{x}$$

b)
$$f(x) = \frac{x+3}{x^2-9}$$

c)
$$f(x) = 4^{\frac{1}{x}}$$

d)
$$f(x) = \frac{2-x}{4-2x}$$

e)
$$f(x) = \frac{x}{\sin x}$$

f)
$$f(x) = \frac{1}{\ln(1+x^2)}$$

Aufgabe 2 Wie sind jeweils die Parameter $a, b \in \mathbf{R}$ zu wählen, damit f stetig auf ganz \mathbf{R} is

a)
$$f(x) = \begin{cases} ax^2 + 3 & \text{für } x > 1 \\ x + 1 & \text{für } x \le 1 \end{cases}$$

a)
$$f(x) = \begin{cases} ax^2 + 3 & \text{für } x > 1 \\ x + 1 & \text{für } x \le 1 \end{cases}$$
 b) $f(x) = \begin{cases} -x - 1 & \text{für } x < -1 \\ a\cos\left(\frac{\pi}{2}x - \frac{\pi}{2}\right) + b\sin\left(\pi x - \frac{\pi}{2}\right) & \text{für } x \in [-1, 1] \\ \sqrt{x + 3} & \text{für } x > 1 \end{cases}$

c)
$$f(x) = \begin{cases} \frac{a}{x^2 + 1} & \text{für } x \le 0\\ \frac{\sin(x/2)}{2x} & \text{für } x > 0 \end{cases}$$

c)
$$f(x) = \begin{cases} \frac{a}{x^2 + 1} & \text{für } x \le 0 \\ \frac{\sin(x/2)}{2x} & \text{für } x > 0 \end{cases}$$
 d) $f(x) = \begin{cases} \frac{1}{x^2 - 4} - \left(\frac{a}{x - 2} + \frac{b}{x + 2}\right) & \text{für } x \in \mathbf{R} \setminus \{-2, 2\} \\ 0 & \text{für } x \in \{-2, 2\} \end{cases}$

Aufgabe 3 Geben Sie jeweils zu der angegebenen Abbildungsvorschrift $x \mapsto f(x)$ die größtmögliche Definitionsmenge D_f und die zugehörige Wertemenge W_f an. a) $f(x) = \frac{2 \sin x}{2 + e^{-x}}$ b) $f(x) = \sqrt{\ln(4x - x^2)}$ c) $f(x) = \sqrt{\ln \frac{1}{|\cos x|}}$ d) $f(x) = \operatorname{artanh} x^2$

a)
$$f(x) = \frac{2\sin x}{2 + e^{-x}}$$

b)
$$f(x) = \sqrt{\ln(4x - x^2)}$$

c)
$$f(x) = \sqrt{\ln \frac{1}{|\cos x|}}$$

d)
$$f(x) = \operatorname{artanh} x^2$$

e)
$$f(x) = \coth \sqrt{x}$$

e)
$$f(x) = \coth \sqrt{x}$$
 f) $f(x) = \frac{1}{1 - \ln |x|}$ g) $f(x) = e^{-x^2}$ h) $f(x) = e^{-\frac{1}{x^2}}$

$$g) f(x) = e^{-x^2}$$

h)
$$f(x) = e^{-\frac{1}{x^2}}$$

Aufgabe 4 Berechnen Sie:

a)
$$\lim_{x \uparrow 1} 2^{\frac{1}{x-1}}$$

b)
$$\lim_{x \perp \frac{\pi}{4}} 3^{\tan 2x}$$

c)
$$\lim_{x \to 0} \frac{\sin(\sin x)}{x}$$

d)
$$\lim_{x\downarrow 0} \frac{\sin x}{\sqrt{x}}$$

e)
$$\lim_{x \to \pi} \left(\frac{\pi}{2} - x \right) \tan x$$

f)
$$\lim_{x \to 0} \frac{\sin 2x}{\sin 3x}$$

g)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

a)
$$\lim_{x\uparrow 1} 2^{\frac{1}{x-1}}$$
 b) $\lim_{x\downarrow \frac{\pi}{4}} 3^{\tan 2x}$ c) $\lim_{x\to 0} \frac{\sin(\sin x)}{x}$ d) $\lim_{x\downarrow 0} \frac{\sin x}{\sqrt{x}}$ e) $\lim_{x\uparrow \frac{\pi}{2}} \left(\frac{\pi}{2} - x\right) \tan x$ f) $\lim_{x\to 0} \frac{\sin 2x}{\sin 3x}$ g) $\lim_{x\to 0} \frac{1 - \cos x}{x^2}$ h) $\lim_{x\to \infty} \left(1 + \frac{\alpha}{x}\right)^x$ ($\alpha > 0$) i) $\lim_{x\to \infty} \left(\frac{2x+3}{2x+1}\right)^{x+1}$ j) $\lim_{x\to \infty} (1 + \tan x)^{\cot x}$ k) $\lim_{x\to \infty} \frac{\ln x}{x}$ l) $\lim_{x\to \infty} \frac{\ln x}{x^{\alpha}}$ ($\alpha > 0$) m) $\lim_{x\to \infty} \frac{x}{e^x}$ n) $\lim_{x\to \infty} \frac{x^{\alpha}}{e^x}$ ($\alpha > 0$) o) $\lim_{x\downarrow 0} x \ln x$ p) $\lim_{x\downarrow 0} x^x$

i)
$$\lim_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^{x+1}$$

$$j) \lim_{x \to 0} (1 + \tan x)^{\cot x}$$

k)
$$\lim_{x \to \infty} \frac{\ln x}{x}$$

1)
$$\lim_{x \to 0} \frac{\ln x}{x^{\alpha}}$$
 $(\alpha > 0)$

$$m) \lim_{x \to \infty} \frac{x}{e^x}$$

n)
$$\lim_{x \to \infty} \frac{x^{\alpha}}{e^x}$$
 ($\alpha > 0$

o)
$$\lim_{x \to 0} x \ln x$$

$$p) \lim_{x \downarrow 0} x^x$$

Tipps: $\lim_{x \to 0} \frac{\sin x}{x} = 1$, $\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$

Aufgabe 5 Wie lautet jeweils zu der angegebenen Gleichung die Lösungsmenge für x?

a)
$$4\sin^2 x - \cos^2 x = 0$$
 b) $\tan x + \tan 2x = 0$

b)
$$\tan x + \tan 2x = 0$$

c)
$$\sin 2x - \cos 2x = 1$$

d)
$$\sin + \sin 2x + \sin 3x = 0$$
 e) $2\sin x + \cos^2 x = \frac{7}{4}$

e)
$$2\sin x + \cos^2 x = \frac{7}{4}$$

$$f) \cos^4 x - \sin^4 x = \cos 2x$$

g)
$$4\log_4(\log_3 x^2) = \log_2 4$$

g)
$$4\log_4(\log_3 x^2) = \log_2 4$$
 h) $\ln x + \ln 2 = \ln(x+1) + \ln\left(\frac{1}{5}\right)$ i) $(\frac{2}{3})^{\ln x} + (\frac{3}{2})^{\ln x} = \frac{13}{6}$

i)
$$(\frac{2}{3})^{\ln x} + (\frac{3}{2})^{\ln x} = \frac{13}{6}$$

j)
$$e^x + 6e^{-x} - 5 = 0$$

j)
$$e^x + 6e^{-x} - 5 = 0$$
 k) $(1 + e) \sinh \frac{x}{3} + (1 - e) \cosh \frac{x}{3} = e - 1$ l) $\frac{1}{5 - \ln x} + \frac{2}{1 + \ln x} - 1 = 0$

1)
$$\frac{1}{5 - \ln x} + \frac{2}{1 + \ln x} - 1 = 0$$

Aufgabe 6 Vereinfachen Sie jeweils den angegebenen Ausdruck:

a)
$$\frac{\sin(\arccos x)}{\sqrt{1-x^2}}$$

b)
$$\sqrt{1-x^2}\tan(\arcsin x)$$

c)
$$\frac{\tan x_1 + \tan x_2}{1 - \tan x_1 \tan x_2}$$

d)
$$\frac{\cot x_1 \cot x_2 - 1}{\cot x_1 + \cot x_2}$$

e)
$$\operatorname{arsinh}\left(\frac{e}{2} - \frac{1}{2e}\right)$$

a)
$$\frac{\sin(\arccos x)}{\sqrt{1-x^2}}$$
 b) $\sqrt{1-x^2}\tan(\arcsin x)$ c) $\frac{\tan x_1 + \tan x_2}{1-\tan x_1 \tan x_2}$ d) $\frac{\cot x_1 \cot x_2 - 1}{\cot x_1 + \cot x_2}$ e) $\arcsin\left(\frac{e}{2} - \frac{1}{2e}\right)$ f) $\arccos 1$ g) $\arctan\left(\frac{e^4 - 1}{e^4 + 1}\right)$ h) $\operatorname{arcoth}\left(\frac{e^2 + 1}{e^2 - 1}\right)$

h) arcoth
$$\frac{e^2+1}{e^2-1}$$

Aufgabe 7 Zeigen Sie: Für alle $\alpha \in \mathbf{R}$ mit $\sin \alpha \neq 0$ und alle $n \in \mathbf{N}$ gilt

$$\cos \alpha + \cos 3\alpha + \cos 5\alpha + \ldots + \cos(2n-1)\alpha = \frac{\sin 2n\alpha}{2\sin \alpha}.$$

Aufgabe 8 Skizzieren Sie jeweils den Graphen von f für a) $f(x) = \sin(x - \frac{\pi}{2})$, b) $f(x) = |\sin(x - \frac{\pi}{2})|$, c) $f(x) = \sin|(x - \frac{\pi}{2})|$, d) $f(x) = \sin 2x$, e) $f(x) = \sin \frac{\pi}{2}$.

Lösungen zu Aufgabe 1

- a) stetig auf $\mathbf{R} \setminus \{0\}$
- b) stetig auf $\mathbb{R} \setminus \{-3, 3\}$, stetig ergänzbar in -3
- c) stetig auf $\mathbf{R} \setminus \{0\}$
- d) stetig auf $\mathbb{R} \setminus \{2\}$, stetig ergänzbar in 2
- e) stetig auf $\mathbf{R} \setminus \{k\pi/2 \mid k \in \mathbf{Z}\}$, stetig ergänzbar in 0
- f) stetig auf $\mathbf{R} \setminus \{0\}$

Lösungen zu Aufgabe 2

- a) a = -1 b) a = b = 1 c) a = 1/4 d) a = 1/4, b = -1/4

Lösungen zu Aufgabe 3

- a) $D_f = \mathbf{R}, \ W_f =]-1,1[$
- b) $D_f = [2 \sqrt{3}, 2 + \sqrt{3}], W_f = [0, \sqrt{\ln 4}]$
- c) $D_f = \mathbf{R} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbf{Z}\}, \ W_f = [0, \infty[$ d) $D_f =]-1, 1[, \ W_f = [0, \infty[$
- e) $D_f =]0, \infty[, W_f =]1, \infty[$
- f) $D_f = \mathbf{R} \setminus \{-e, 0, e\}, W_f = \mathbf{R} \setminus \{0\}$

g) $D_f = \mathbf{R}, W_f =]0,1]$

h) $D_f = \mathbf{R} \setminus \{0\}, W_f =]0,1[$

Lösungen zu Aufgabe 4

- a) 0 b) 0 c) 1 d) ∞ e) 1 f) $\frac{2}{3}$ g) $\frac{1}{2}$ h) e^a
- i) e j) e k) 0 l) 0 m) 0 n) 0 o) 0 p) 1

Lösungen zu Aufgabe 5

- a) $\left\{\pm \arcsin \sqrt{\frac{1}{5}} + \pi k \mid k \in \mathbf{Z}\right\}$ b) $\left\{\frac{\pi}{3} k \mid k \in \mathbf{Z}\right\}$ c) $\left\{\frac{\pi}{2} + \pi k, \frac{\pi}{4} + \pi k \mid k \in \mathbf{Z}\right\}$
- d) $\left\{ \frac{\pi}{2}k, \frac{2\pi}{3} + 2\pi k, \frac{4\pi}{3} + 2\pi k \mid k \in \mathbf{Z} \right\}$ e) $\left\{ \frac{\pi}{3} + 2\pi k, \frac{2\pi}{3} + 2\pi k \mid k \in \mathbf{Z} \right\}$ f) \mathbf{R}

g) $\{-3,3\}$

h) $\{\frac{1}{9}\}$

i) $\{\frac{1}{10}, 10\}$

j) {3}

- k) $\{\ln 2, \ln 3\}$
- 1) $\{e^2, e^3\}$

Lösungen zu Aufgabe 6

a) 1 b) x c) $\tan(x_1 + x_2)$ d) $\cot(x_1 + x_2)$ e) 1 f) 0 g) 2 h) 1