

Comparison of neutron, proton, and self-ion irradiation of Fe-9%Cr ODS at 3 dpa, 500°C

Matthew Swenson, Janelle Wharry
Boise State University
Department of Materials Science and Engineering

Funding:

Nuclear Regulatory Commission – Grant NRC-HQ-84-14-G-0056 Nuclear Science User Facilities – RTEs 14-486, 15-540 and 15-569

Objective

Develop a simple model to describe oxide nanocluster evolution in ODS alloys upon various irradiation conditions.

Materials Challenges for Gen IV Reactors

Irradiations

Charged particle Irradiation as surrogates for neutron irradiation:

- Different Dose rate
- Different Cascade morphology
 - Volume and efficiency
- Different Depth profiles

Increasing Dose Rate

Тетр.	Fast Neutron Irradiation (10 ⁻⁷ dpa/s)	2 MeV Proton Irradiation (10 ⁻⁵ dpa/s)	5 MeV Fe ⁺⁺ Ion Irradiation (10 ⁻⁴ dpa/s)	
500°C	3 dpa	3 dpa	3 dpa	100 dpa
400°C				100 dpa

Neutron irradiation in Advanced Test Reactor (ATR) Ion irradiations at Michigan Ion Beam Laboratory (MIBL)

Results – Particle Size Distributions

© 2016 Boise State University 5

Nanocluster Guinier Diameter (nm)

2 3 4 5 6 7 8 9

Nanocluster Guinier Diameter (nm)

Literature Survey

Cluster Evolution – Simple Model

$$\frac{dr}{dt} = -\frac{\phi}{N} - \varphi K + \frac{3D^{irr}C}{4\pi pr} - D^{irr}r^2n$$
Recoil Disorder Growth

Change in cluster radius upon irradiation

[1] R.S. Nelson, J.A. Hudson, and D.J. Mazey, "The stability of Precipitates in an Irradiation Environment," *J. Nucl. Mater.*, 44 (1972).

Cluster Dissolution – Recoil

$$\frac{dr}{dt} = -\frac{\Phi}{N} - \varphi K + \frac{3D^{irr}C}{4\pi pr} - D^{irr}r^2n$$
Recoil

flux of atoms $\phi \sim 10^{14} \bullet K (\text{cm}^2/\text{s})$

K = dose rate (dpa/s)

N = atomic density of target = 84.6 atoms/nm³ (b.c.c. Fe)

Depends on dose rate (i.e. irradiating particle)

Cluster Dissolution – Disorder

$$\frac{dr}{dt} = -\frac{\phi}{N} - \varphi K + \frac{3D^{irr}C}{4\pi pr} - D^{irr}r^2n$$
Disorder

$$\varphi = l \bullet f$$

District

• $l \sim \text{size of damage cascade}$ $l \sim 2.3 \text{ nm} \quad (2 \text{ MeV proton irradiation})$ $l \sim 6.8 \text{ nm} \quad (5 \text{ MeV Fe}^{++} \text{ ion irradiation})$ $l \sim 10.4 \text{ nm} \quad (\text{Fast neutron irradiation})$

$$l = f(\overline{T}, E_D, Z_1, Z_2, A_1, A_1, \alpha, \varepsilon)$$

 $a =$ screening radius
 $\varepsilon =$ unit electronic charge
(empirical functions)

[2]

• f = fraction of dissolved solutes - per cascade (empirically fit)

Depends on dose rate and cascade morphology (i.e. irradiating particle)

[2] G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer, (2007).

Cluster Evolution – Growth

$$\frac{dr}{dt} = -\frac{\phi}{N} - \varphi K + \frac{3D^{irr}C}{4\pi pr} - D^{irr}r^2n$$
Growth

C = Total concentration of solutes (Y, Ti)

p = fraction of solutes (Y, Ti) in clusters

r = average radius of clusters

n = number density of clusters

From Atom Probe Tomography Cluster Analysis (IVAS)

 D^{irr} = Radiation-enhanced diffusion of Y, Ti solutes - based on matrix content of Y, Ti

Depends on dose rate (irradiating particle), temperature and the target alloy (solute and cluster morphology)

Cluster Evolution – Calculation

$$\frac{dr}{dt} = -\frac{\phi}{N} - \frac{\partial f}{\partial t} \cdot K + \frac{3D^{irr}C}{4\pi pr} - D^{irr}r^{2}n$$
Empirically fit parameter

Cluster Evolution Iteration:

- 1) Use As-received parameters and estimate $\frac{dr}{dt}$
- 2) Apply $\frac{dr}{dt}$ over a period of time Δt (e.g. 3600 sec)
- 3) Calculate the cluster radius after Δt
- 4) Repeat calculation of $\frac{dr}{dt}$

Cluster Evolution – Simple Model

Model predicts that clusters will converge onto a stable size Limitations:

- Alloy system parameters are NOT updated after each ∆t.
- Does NOT predict changes in cluster number density
- Does NOT consider bimodal particle size distributions

Model – Applied to Literature

Lescoat, et al., Acta Materialia 78 (2014)^[3]

- Fe18Cr-Y₂O₃ ODS Alloy
 - $\bar{d} = 3.0 \, nm$
 - $-n = 2.3 \times 10^{23} m^{-3}$
 - Different Compositions
- 500 eV Fe⁺ irradiation
 - at 500°C
 - $K = 6.4 \times 10^{-3} \text{ dpa/s}$

[3] M.-L. Lescoat, J. Ribis, Y. Chen, E.A. Marquis, E. Bordas, P. Trocellier, Y. Serruys, A. Gentils, O. Kaïtasov, Y. de Carlan, A. Legris, "Radiation-induced Ostwald ripening in oxide dispersion strengthened ferritic steels irradiated at high ion dose," *Acta Mater.*, 78 (2014).

Cluster Stability – At Onset of Irradiation

Notes:

- Lescoat experiment has higher does rate (6.4 x 10⁻³ vs. 2.2 x 10⁻⁴ dpa/s)
- Model correctly predicts direction of evolution (Growth or Dissolution)
- Oxide evolution depends on <u>Irradiation conditions</u> AND <u>alloy system</u>

Future Work

Consider bimodal Particle Size Distributions

- 1) Modelling the nucleation process for new clusters
- 2) Describing how number density will evolve

Conclusions

Oxide evolution upon irradiation depends on irradiation conditions AND alloy system

- Model predicts

 stable cluster size
- Model predicts → Oxides may growth or dissolve

Consistent with variety of results reported in literature

Acknowledgements

Special Thanks:

- Jatu Burns, Dr. Yaqiao Wu
 Center for Advanced Energy Studies, MaCS
- Dr. G.S. Was, Dr. O. Toader, F. Naab
 Michigan Ion Beam Laboratory

Matthew Swenson, Graduate Research Assistant Email Matthewswenson1@u.boisestate.edu

THANK YOU

Appendix

Microscopy

- Transmission electron microscopy (TEM)
 - FEI Tecnai TF30-FEG (300 kV)
 - Imaging grains/laths, dislocations, carbides, voids, dislocation loops
- Atom probe tomography (APT)
 - Cameca LEAP 4000X HR
 - Cluster analysis and solute composition measurements (IVAS)

Performed at:

Center For Advanced Energy Studies (Idaho Falls, ID) Microscopy and Characterization Suite (MaCS)

[3] M.J. Swenson and J.P. Wharry, "The comparison of microstructure and nanocluster evolution in proton and neutron irradiated Fe-9%Cr ODS steel to 3 dpa at 500°C," J. Nucl. Mater., 467 (2015).

Results – Voids / Dislocation Loops

Grains/laths, dislocations and carbides were also statistically indifferent. Charged particle irradiations replicate neutron irradiation for these features.

Cluster Dissolution – Disorder

$$\frac{dr}{dt} = -\frac{\Phi}{N} - \varphi K + \frac{3D^{irr}C}{4\pi pr} - D^{irr}r^2n$$

Disorder

$$E_D = \frac{4}{3}\pi \left(\frac{l}{2}\right)^3 U_a N = \frac{T}{[1 + k_N g(\varepsilon_N)]}$$

 φ (dissolution parameter) = $l \cdot f$

 $l \sim$ size of damage cascade

l ~ 10.4 nm (Fast neutron irradiation)

$$l \sim \text{size of damage cascade}$$

$$l \sim 2.3 \text{ nm} \quad (2 \text{ MeV proton irradiation})$$

$$k_N = 0.1337 Z_1^{1/6} \left(\frac{Z_1}{A_1}\right)^{1/2}$$

$$g(\varepsilon_N) = 3.4008 \varepsilon_N^{1/6} + 0.40244 \varepsilon_N^{3/4} + \varepsilon_N$$

$$I \sim 6.8 \text{ nm}$$
 (5 MeV Fe⁺⁺ ion irradiation)
$$\varepsilon_N = \left(\frac{A_2 T}{A_1 + A_2}\right) \left(\frac{a}{Z_1 Z_2 \varepsilon^2}\right)$$

• $f = \text{fraction of dissolved solutes} - \text{per cascade} \quad a = \left(\frac{9\pi^2}{128}\right)^{1/3} a_0 \left(Z_1^{2/3} + Z_2^{2/3}\right)^{-1/2}$

Depends on dose rate and cascade morphology (i.e. irradiating particle)

Solute Concentrations

Oxide nanoclusters	As-received	Fe ⁺⁺ Irr. (100 dpa, 400°C)	Fe ⁺⁺ Irr. (100 dpa, 500°C)	Fe ⁺⁺ Irr. (3 dpa, 500°C)	Proton-Irr. (3 dpa, 500°C)	Neutron-Irr. (3 dpa, 500°C)			
Cluster Composition	at. %	at. %	at. %	at. %	at. %	at. %			
Y	2.41 ± 1.24%	2.57 ± 1.85%	2.44% ± 1.41%	4.24 ± 1.66%	2.43 ± 1.31%	2.93 ± 1.85%			
Ti	4.77 ± 1.75%	6.46 ± 3.43%	5.98% ± 2.77%	5.35 ± 3.14%	4.64 ± 1.74%	3.75 ± 2.28%			
0	6.25 ± 3.49%	7.87 ± 4.91%	7.64% ± 4.50%	8.56 ± 5.80%	6.24 ± 3.14%	5.85 ± 4.45%			
Cr	9.78 ± 2.08%	11.11 ± 2.69%	6.56% ± 1.66%	11.32 ± 2.21%	11.80 ± 2.52%	10.55 ± 3.25%			
Si	0.19 ± 0.17%	$0.25 \pm 0.30\%$	$0.07\% \pm 0.09\%$	$0.32 \pm 0.19\%$	$0.30 \pm 0.23\%$	$0.38 \pm 0.49\%$			
Mn	$0.07 \pm 0.10\%$	$0.09 \pm 0.23\%$	0.03% 0.05%	$0.11 \pm 0.10\%$	$0.08 \pm 0.12\%$	$0.19 \pm 0.30\%$			
Ni	$0.04 \pm 0.08\%$	$0.05 \pm 0.09\%$	0.09% 0.10%	$0.14 \pm 0.10\%$	$0.10 \pm 0.10\%$	0.13 ± 0.23%			
C	$0.27 \pm 0.30\%$	$0.48 \pm 0.38\%$	0.08% 0.09%	$0.38 \pm 0.30\%$	$0.25 \pm 0.25\%$	$0.28 \pm 0.45\%$			
W	$0.58 \pm 0.39\%$	$0.75 \pm 0.61\%$	$0.48\% \pm 0.25\%$	$0.57 \pm 0.33\%$	$0.37 \pm 0.30\%$	$0.58 \pm 0.62\%$			
Matrix Composition	at. %	at. %	at. %	at. %	at. %	at. %			
Y	0.05%	0.06%	0.02%	0.07%	0.04%	0.10%			
Ti	0.11%	0.16%	0.09%	0.23%	0.15%	0.32%			
О	0.17%	0.25%	0.11%	0.27%	0.19%	0.37%			
Cr	8.38%	8.02%	3.72%	8.15%	8.21%	8.14%			
Si	0.15%	0.12%	0.01%	0.13%	0.13%	0.12%			
Mn	0.06%	0.05%	0.03%	0.08%	0.06%	0.08%			
Ni	0.03%	0.03%	0.03%	0.05%	0.03%	0.05%			
C	0.15%	0.21%	0.03%	0.16%	0.12%	0.16%			
W	0.61%	0.61%	0.84%	0.74%	0.60%	0.67%			
Trace amounts of P, S, N and H, Ga	race amounts of P, S, N and H, Ga detected (balance is Fe)								

Cluster Stability – At Onset of Irradiation

Cluster Evolution – Split PSDs

Denuded Regions for Clusters

Fe⁺⁺ Irradiated to 3 dpa at 500°C

