Office européen des brevets

(11) EP 0 845 532 A2

(12)

EUROPÄISCHE PATENTANMEI DUNG

(43) Veröffentlichungstag: 03.06.1998 Patentblatt 1998/23 (51) Int. Cl.⁶: **C12N 15/53**, C12N 9/02, C12P 7/22, C12N 9/80

(21) Anmeldenummer: 97120058.9

(22) Anmeldetag: 17.11.1997

(84) Benannte Vertragsstaaten: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30) Priorität: 29.11.1996 DE 19649655

(71) Anmelder: HAARMANN & REIMER GMBH D-37601 Holzminden (DE)

(72) Erfinder:

 Steinbüchel, Alexander, Prof Dr. 48341 Altenberge (DE) Priefert, Horst, Dr. 48291 Teigte (DE)

 Rabenhorst, Jürgen, Dr. 37671 Höxter (DE)

(74) Vertreter:

Petrovicki, Wolfgang, Dr. et al Bayer AG Konzernbereich RP Patente und Lizenzen 51368 Leverkusen (DE)

(54) Syntheseenzyme für die Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure und deren Verwendung

(57) Die vorliegende Erfindung betrifft Syntheseenzyme für die Herstellung von Coniferylalkohol. Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure, deren Verwendung bei der Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vaniilinsäure, für diese Enzyme codierende DNA sowie mit dieser DNA transformierte Mitroorganigmen.

EP 0 845 532 A2

Beschreibung

Die vorliegende Erfindung betrifft Syntheseenzyme für die Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasaure, Vanilifin und Vanillinsaure, deren Verwendung bei der Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasaure, Vanillin und Vanillinsaure, für diese Enzyme codierende DNA sowie mit dieser DNA transformierte Mikroorganismen.

Der erste Artikel der sich mit dem Abbau von Eugenol befaßt, stammt von Tadasa 1977 (Degradation of eugenol by a microorganism. Agric. Biol. Chem. 41, 925-929). In ihm wird der Abbau von Eugenol mit einem Bodenisolat, vermutlich <u>Covynebacterium</u> sp., beschrieben. Es wurden dabei Ferulasäure und Vanillin als intermediäre Abbauprodukte gefunden und der weitere Abbau über Vanillinsäure und Protocatechusäure postuliert.

1983 erschien von Tadasa und Kyahara (Initial Steps of Eugenol Degradation Pathway of a Microorganism. Agric. Biol. Chem. 47, 2639-2640) ein weiterer Artikel, über die ersten Schritte des Eugenolabbaus; diesmal mit einem Bodenisolat, das als <u>Pseudomonas</u> sp. identifiziert wurde. In ihm wurden Eugenoloxid, Coniferyalkohol und Coniferylaldehyd als Zwischenstulen zur Bildung von Ferulasäure beschrieben.

Ebenfalls 1983 erschien von Sutherland et al. (Metabolism of cinnamic, p-coumaric, and ferulic acids by <u>Strepto-</u> mycas satonii. Can. J. Microbiol. 29, 1253-1257 jein Bericht über den Metabolismus von Zimtsäure, p-comarsäure und Ferulasäure in <u>Streptomycas setonii</u>. Dabei wird Ferulasäure über Vanillin, Vanillinsaure und Protocatechusäure abgebaut. Dabei wurden die ringspaltenden Enzyme Catechol 1,2-Dioxygenase und Protocatechuat 3,4-Dioxygenase in zellfreien Extrakt indirekt nachgewiesen.

Ötük (Degradation of Ferulic Acid by Escherichia coli. J. Ferment. Technol. 63, 501-506) berichtete 1985 über den Abbau von Ferulasäure mit einem <u>Escherichia</u> coli Stamm, der von verrottender Rinde isoliert wurde. Auch hier wurden Vanillin, Vanilinsaure und Protocatechusaure als Abbauprodukte nachgewiesen.

1987 erschien eine deutsche Patentanmeldung der BASF (Verfahren zur Gewinnung von Conilerylaldehyd und Mikroorganismus deitr; DE-A 3 606 398) für ein Verfahren zur Herstellung von Conilerylaldehyd aus Eugenol mit einer Arthrobader olobibrronis Mutante. Dabei war das Ziel die Gewinnung von natürlichem Vanillin.

Abraham et al. (Microbial transformations of some terpenoids and natural compounds. in: Bioflavour '87, pp 399-413) berichten auf der Bioflavor '87 über die Verstoffwechslung von Eugenol mit verschiedenen Mikroorganismen. Dabei wurden bei der Verwendung von Pilzen vor allem Dimere gefunden, und nur bei Verwendung von Isoeugenol bildet Aspergillus niger ATCC 9142 auch Vanillin.

1988 wurde von Omori et al. (Protocatechuic acid production from trans-ferulic acid by <u>Pseudomonas</u> sp. HF-1 mutants defective in protocatechuic acid catabolism. Appl. Microbiol. Biotechnol. 29, 497-500) ein Verfahren zur Gewinnung von Protocatechusäure mit einer Mutante einer Pseudomonas sp. HF-1 beschrieben. Als Zwischenprodukt wird nur Vanillinsature erwähnt

Der Metabolismus von Ferulasäure mit zwei Pilzen, Paecilomyces variotii und <u>Pestalotia palmarum</u> wurde 1989 von Alboutie et al. (Metabolism of terulic acid by Paecilomyces variotii and Pestalotia palmarum. Appl. Environ. Microbiol. 55: 2391-2399) beschrieben. Dabei wurde der Abbau über 4-Vinvlauaiacol und Vanilin zuv Vanillinature postuliert.

1990 erscheinen zwei japarische Patentanmeldung von Hasegawa über eine neue <u>Pseudomonas</u> sp. und dioxygenase erzyme. JP. 2158-87:125.10.88-JP-267 284 (02.08.90) 09.03.89 as 055111), und über eine neue Methode zur Herstellung eines Aldehyds, wie z. B. Vanillin (A new method for the preparation of aldehyde e.g. vanillin. JP. 2200-192.25.10.88-JP-267 285 (08.08.90) 09.03.89 o55112). Dabei wird über eintit von Eugend ausgegangen, sondern von verschiedenen Edultein wie Isoeugenol und Coniferylalkohol. Es besteht auch keine Übereinstimmung zwischen der dort beanspruchten Dioxygenase und den hier beanspruchten Enzymen.

In (Production of natural vanillin by microbial oxidation of eugenol or isoeugenol. EP-A 405 197) wurden Bakterien der Gattungen Serratia. Enterobacter oder (<u>Klebsiella zur mikrobiellen Oxidation</u> von Eugenol und Isoeugenol verwendet. Der Prozeoß brachte aber nur mit Isoeugenol qute Umsetzungen, mit Eugenol lief er nur sehr schlechen.

1991 erschien die EP-A 453 368 (Production de vanilline par bioconversion de précurseurs benzeniques), bei der mit einem Basidionyceten, <u>Pyroporus cinnabarinus</u> CNCM I-937 und I-938, mit Vanillinsäure und Ferulasäure die Umsetzung zu Vanillin beobachtet wurde.

Takasago Perfumery Company erhielt 1992 ein japanisches Patent (Preparation of vanillin, coniferyl-alcohol and -aldehyde, fenilic acid and vanillyl alcohol - by culturing mutant belonging to <u>Pseudomonas</u> genus in presence of eugenol which is oxidatively decomposed; JP 05 227 980 21.02.1992) für die Herstellung von Vanillin, Coniferylalkohol, Coniferylalkohol, Erulasäure und Vanilvalkohol aus Eugenol mit einer Pseudomonas Mutante.

Ebenfalls 1992 wurde das US-Patent 5 128 253 von Labuda et al. (Kraft-Generals Foods) (Bioconversion Process for the production of vanillin) erteilt, in dem eine Biotransformation zur Herstellung von Vanillin beschrieben wird. Ausgangsmaterial ist auch hier Ferulasäure, verwendete Organismen sind <u>Asperdillus niger. Bhodotorula glutinis</u> und <u>Corynebacterum glutamicum.</u> Entscheidend dabei ist die Verwendung von Sufflydryl-Komponenten (z.B. Dittionteriol) im Medium 1939 erscheint der Inhalt des Patents auch als Publisation (Microbial bioconversion cess for the

production of vanillin; Prog. Flavour Precursor Stud. Proc. Int. Conf. 1992, 477-482).

Die EP-A 542 348 (Process of preparation of phenylaldehydes) beschreibt ein Verfahren zur Herstellung von Phenyldehyden mit dem Enzym Lipoxygenase. Substrate sind u.a. Eugenol und Isoeugenol. Wir haben versucht, das Verfahren mit Eugenol nachzuarbeiten, konnten aber die Umsetzungen nicht bestätigen.

Die DE-A 4 227 076 (Verfahren zur Herstellung substituierter Methoxyphenole und dafür geeigneter Mikroorganismus) beschreibt die Herstellung substituierter Methoxyphenole mit einer neuen <u>Pseudomonas</u> sp. Ausgangsmaterial ist hier Eugenol und die Produkte sind Ferulasäure, Vanillinsäure, Coniferylalkohol und Coniferylaldehyd.

Ebenfalls 1995 erscheint ein umfangreiches Review über die Biotransformationsmöglichkeiten mit Ferulasäure von Rosazza et al. (Biocatalytic transformation of ferulic acid: an abundant aromatic natural product; J. Ind. Microbiol 15, 10 457-471)

Die vorliegende Erfindung betrifft nun Syntheseenzyme für Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanil-

Syntheseenzyme gemäß der Erfindung sind beispielsweise die

a) Eugenol-Hydroxylase.

16

20

30

35

- b) Coniferylalkohol-Dehydrogenase,
- c) Coniferylaldehyd-Dehydrogenase.
- d) Fervlasäuredeacvlase und die
- e) Vanillin-Dehydrogenase.

Weiterhin betrifft die Erfindung DNA codierend für die genannten Enzyme und Cosmidklone enthaltend diese DNA and Mikroorganismen transformiert mit der DNA bzw. den Vektoren. Sie betrifft auch die Verwendung der DNA zur Transformation von Mikroorganismen zur Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulassune, Vanillin und Vanillinsature. Die Erfindung betrifft auch Teilsequenzen dieser DNA sowie kunt inoelle Aquivalente. Unter funktionellen Aquivalenten sind solche Derivate zu verstehen, bei denen einzelne Nudeobasen ausgelauscht wurden (Wobbelaustausche), ohne de Funktion zu andern. Auch auf Proteinebene können Aminosäuren ausgetauscht werden, ohne daß es eine Veränderung der Funktion zu Folge hat.

Ebenso betrifft die Erfindung die einzelnen Herstellungsschritte der Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure aus Eugenol, also konkret:

- a) das Verfahren zur Herstellung von Coniferylalkohol aus Eugenol, das in Anwesenheit von Eugenolhydroxylase stattfindet;
- b) das Verfahren zur Herstellung von Coniferylaldehyd aus Coniferylalkohol, das in Anwesenheit von Coniferylalkohol-Dehydrogenase stattfindet;
 - c) das Verfahren zur Herstellung von Ferulasäure aus Coniferylaldehyd, das in Anwesenheit von Coniferylaldehyd-Dehydrogenase stattfindet;
- d) das Verfahren zur Herstellung von Vanillin aus Ferulasäure, das in Anwesenheit von Ferulasäuredeacylase stattfindet;
 - e) das Verfahren zur Herstellung von Vanillinsäure aus Vanillin, das in Anwesenheit von Vanillin-Dehydrogenase stattfindet.

Von dem Eugend verwertenden Stamm <u>Pseudomonas</u> sp. HR 199 (DSM 7063) wurden nach NMG-Mutagenese Mutantien erhalten, die Delektei in einzelnen Schritten des Eugend-Katabolismus aufweisen. Ausgebend von partiell <u>Eoc</u>RI-verdauter Gesamt-DNA des <u>Pseudomonas</u> sp. HR 199 Wildtyps wurde eine Genbank in dem Cosmid pVK100 angelegt, welches über ein breites Wirtsspektrum verfügt und auch in Pseudomonaden stabil repliziert wird. Hybridcosmide wurden nach Verpackung in 3-Phagenpartikel nach E. goli §17-1 transduziert. Die Genatik muflaßte 1330 rekombinante <u>E. goli</u> §17-1 klone. Das Hybridcosmid eines jeden Klons wurde konjugativ in zwei Eugenol-negative Mutanten (Mutanten 6164 und 6165) des Stammes <u>Pseudomonas</u> sp. HR 199 übertragen und auf eine mögliche Komplementationseigenschaft überprüft. Dabei wurden zwei Hybridcosmide (pE207 und pE115) identifiziert, deren Erhalt die Mutante 6165 wieder in die Lage versetzten, Eugenol zu verwerten. Ein Hybridcosmid (pE5-1) führte zur Komplementation der Mutante 6164.

Die komplementierende Eigenschaft der Plasmide pE207 und pE115 konnte auf ein 23 kbp EopRi-Fragment (E230) zurückgeführt werden. Von diesem Fragment wurde eine physikalische Karte angefertigt und das Fragment wurde vollständig sequenziert. Auf einem 11,2 kbp Hindli-Subfragment (H110) wurden die Gene wand und wanß loka-

lisiert, die für die Vanillat-Demethylase codieren. Ein weiterer offener Leserahmen (ORF) wies Homologie zur y-Glutamylcystein Synthetase aus <u>Escherichia coli</u> auf. Zwischen diesem ORF und dem <u>vanB</u>-Gen wurde ein weiterer ORF
identifiziert, der Homologie zu Formalderhyd-Dehydrogenasen aufwies. Zwei weitere ORF wiesen Homologien zur
Cytochrom C- bzw. Flavoprotein-Untereinheit der p-Cresol Methylhydroxylase aus <u>Fseudomonas putida</u> auf und codieren im Stamm <u>Fseudomonas</u> sp. HR 199 für eine bishen noch nicht beschriebene Eugenoh Hydroxylase, welche Eugenol, in Analogie zum Reaktionsmechanismus der p-Cresol Methylhydroxylase, über ein Chinon-Methid-Derivat zu
Confierylalishol umsetzt Zwischen den Genen der beiden Untereinheiten der Eugenol Hydroxylase wurde ein weiterer
ORF unbekannter Funktion identifiziert. Auf einem 5.0 kbp <u>Hind</u>III-Subfragment (H50) wurde ein ORF identifiziert, der
Homologie zur Lignostilben-cp.P-Dioxygenase aufwies. Daneben wurde ein ORF identifiziert, welcher Homologie aufklorbi-Dehydrogenasen autwies. Auf einem 3.8 kbp <u>Hind</u>III-EgoRH-Subfragment wurde das Strukturgen dich der Vanilin Dehydrogenasen autwies. Auf einem diesem Gen wurde ein ORF mit Homologie zu Enoyl-CoA Hydratasen aus unterschiedlichen Organismen lokalisiert.

Die komplementierende Eigenschaft des Plasmids pE5-1 konnte auf den gemeinsamen Erhalt der 1.2 und 1.8 kbp
EcoRI-Fragmente (E12 und E18) zurückgeführt werden. Fragment E 12 wurde vollständig, Fragment E 19
weise sequenziert. Auf diesen Fragmenten wurde das Strukturgen <u>cach</u> der Coniferylalkohol Dehydrogenase lokalisisiert, welches eine EcoRI-Schnittstelle aufwies. Das Enzym wurde mittels chromatographischer Methoden aus der löslichen Fraktion des Rohextraktes auf Eugenol gewachsener Zellen von <u>Pseudomonas</u> sp. HR 199 isoliert. Von der bestimmten N-terminalen Amrinosäuresequenz wurde eine Oligonukfeotidsequenz abgeleitet. Eine entsprechende Die Die Deschaft von der Desc

Eine Eugenol- und Ferulasature-negative Mutante (Mutante 6167) ließ sich durch den Erhalt eines 9,4 kbp EopRi-Fragments (E 94) des Hybridosomids pE5-1 komplementieren. Von diesem Fragment wurde eine physikalische Karte angefertigt. Die komplementierende Eigenschaft ließ sich auf ein 1,9 kbp EopRivInitifill-Subfragment eingrenzen. Die ses Fragment wies unvollständige ORF (erstreckten sich über die EopRII- bzw. Hightill-Schnittstelle) mit Homologien zu Acetyl-CoA Acetyltransferasen unterschiedlicher Organismen bzw. mit der "Medium-chain acyl-CoA Synthetsea" aus <u>Resudomonas oleoxorans</u> auf. Das Fragment E 94 wurde vollständig sequenziert. Stromabwärts des zuvor genannten ORFs befand sich ein ORF mit Homologie zu ß-Ketothiolasen. In zentraler Lage auf Fragment E 94 wurde das Strutturgen der Coniferylatidehyd-Dehydrogenase (calgdt) lokalisiert. Das Enzym wurde mittels chromatographischer Methoden aus der löslichen Fraktion des Rohextraktes auf Eugenol gewachsener Zellen von <u>Pseudomonas</u> sp. HR 199 isoliert.

Die konjugative Übertragung des Hybridcosmids pE207 in eine Vielzahl von <u>Pseudomonas</u>-Stämmen führte zur heterologen Expression der Gene <u>van A. van B. voh</u> und der Eugenol-Hydroxylase-Gene in den erhaltenen Transkonjuganten. Ein Stamm wurde durch den Erhalt des Plasmids zum Wachstum mit Eugenol als C- und Energiequelle befähiot.

Material und Methoden

Wachstumsbedingungen der Bakterlen. Stämme von Escherichia coli wurden bei 37°C in Luria-Bertani (LB) der M9-Mineralmedium (Sambrook, J.E.F. Fristoh und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl., Cold Spring Harbor, Laboratory Press, Cold Spring Harbor, New York) angezogen. Stamme von Escudomonas sp. und Alcaligenes eutrophys wurden bei 30°C in Nutrient Biroth (NB. 0.8 Gew. *>0,0 dor in Mineralmedium (MM) (Schlee, H. G. et al. 1961. Arch. Mikrobiol. 38: 209-222) angezogen. Ferulasaure, Vanillin, Vanilinsaure und Protocatechusaure wurden in Dimethylsufloxid gelöst, und dem jeweiligen Medium in einer Endkonzentration von 0.1 tol. 6 w. zugesetzt. Eugenol wurde dem Medium direkt in einer Endkonzentration von 0.1 tol. % zugesetzt, bzw. in den Deckel von MM-Agarplatten auf Filterpapier (Rundfilter 595, Schleicher & Schuell, Dassel, Deutschland) appliziert. Bei der Anzucht von Transkonjuganten von Escudomonas sp. wurde Tetracyclin und Kanamycin in Endkonzentrationen von 25 µg/ml bzw. 300 µg/ml eingesetzt.

Nitrosoguanidin-Mutagenese. Die Nitrosoguanidin-Mutagenese von <u>Pseudomonas</u> sp. HR 199 wurde mit Modifikationen nach Miller (Miller, J.H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory. Cold Spring Harbor, New York) durchgeführt. An Stelle des Citral-Puffers kam Kalium-Phosphat (KP)-Puffer (100 mM, pH 7.0) zum Einsatz. Die Endkonzentration von N-Methyl-N-Nitro-N-Nitrosoguanidin betrug 200 µg/ml. Die erhaltenen Mutanten wurden hinsichtlich des Verfustes der Fähigkeit, Eugenol. Ferulasäure, Vanillin und Vanillinsäure als Wachstumssubstrate nutzen zu konnen, gescreent.

Qualitativer und quantitativer Nachweis von Stoffwechselintermediaten in Kulturüberständen. Kulturüberständen kulturüberstände wurden direkt bzw. nach Verdünnung mit zweifach destilliertem Wasser mittels Hochdruck-Flüssigkeits-Chromatographie (Knauer-HPLC) analysiert. Die Chromatographie erfolgte an Nucleosil-100 C18 (7 μm, 250 x 4 mm). Als Lösungsmittel diente 0,1 Vol.-% Ameisensaure und Acetonitril.

Reinigung der Conifervialkohol-Dehydrogenase und der Conifervialdehyd-Dehydrogenase. Die Aufreinigun-

gen erfolgten bei 4°C.

Rohextrakt. Auf. Eugenol angezogene Zellen von <u>Pseudomonas</u> sp. HR 199 wurden in 10 mM Natriumphosphat-Puffer, pH 7,5 gewaschen, im gleichen Puffer resuspendiert und durch zweimalige Passage einer French-Presse (Amicon, Silver Spring, Maryland, USA) bei einem Druck von 1 000 psi aufgeschlossen. Das Zellhomogenat wurde einer Ultrazentrifugation (1 h, 100 000 x g. 4°C) unterzogen, wodurch die lösliche Fraktion des Rohextraktes als Überstand erhalten wurde.

Anionenaustauschchromatographie an DEAE-Sephacel. Die lösiche Fraktion des Rohextraktes wurde über Nacht gegen 10 mM Natriumphosphat-Puffer, pH 7.5 mit 100 mM NaCl dialysiert. Das Dialysat wurde aut eine mit 10 mM Natriumphosphat-Puffer, pH 7.5 mit 100 mM NaCl daquilibrierte DEAE-Sephacel-Saule (2,6 cm x 35 cm, Bettvolumen [BV]: 186 ml) mit einer Durchflußrate von 0,8 ml/min aufgetragen. Die Saule wurde mit zwei BV 10 mM Natriumphosphat-Puffer, pH 7.5 mit 100 mM NaCl igespült. Die Elution der Coniferylalkohol-Dehydrogenase (CALDH) erfolgte mit einem linearen Salzgradient von 100 bis 500 mM NaCl in 10 mM Natriumphosphat-Puffer, pH 7.5 (2 x 150 ml). Es wurden 5 ml-Fraktionen aufgefangen. Fraktionen mit hoher CADH- bzw. CALDH-Aktivität wurden zum jeweilgen DEAE-Pool vereinitg.

Gelfiltrationschromatographie an Sephadex G200. Der CADH-DEAE-Pool wurde in einer 50 ml Amicon Ultrafiltrationskammer über eine Diafo Ultrafiltrationsmembran PM 30 (beide Fa. AMICON CORP., Lexington, USA) bei Druck von 290 kPa auf ein Volumen eingeengt, welches ca. 2 % des Sephadex G200-BV entsprach. Die eingeeingte Proteinlösung wurde auf eine mit 10 mM Natriumphosphat-Puffer, pH 7,5 mit 100 mM NaCl äquilibrierte Sephadex G200-Saule (BV: 138 ml) aufgetragen und mit einer Flußrate von 0,2 ml/min mit dem gleichen Puffer elluiert. Es wurden 2ml-Fraktionen aufgetengen. Fraktionen mit höher CADH-Aktivität wurden zum Sephadex-G200-Pool vereinigt.

Hydrophobe Interaktionschromatographie an Butyl-Sepharose 4B. Der CADH-Sephadex-G200-Pool wurde und 3 M NaCl eingestellt und anschließend auf eine mit 10 mM Natriumphosphat-Puffer, ph 7.5 mit 3 MCI daquii-brierte Butyl-Sepharose 4B-Saule (BV: 48 ml) aufgetragen (Flußrate: 0,5 ml/min). Die Saule wurde anschließend mit 2 BV 10 mM Natriumphosphat-Puffer, ph 7.5 mit 3 M NaCl gewaschen (Flußrate: 1,0 ml/min). Die Elution der CADH-roftigte mit einem linearen abfallenden NaCl-Gradienten von 3 bis 0 M NaCli in 10 mM Natriumphosphat-Puffer, ph 7.5 to 3 ml). Es wurden 4 ml-Fraktionen aufgefangen. Fraktionen mit hoher CADH-Aktivität wurden zum HIC-Pool vereinitigt und wie oben beschrieben eingegendt.

Chromatographie an Hydroxylapatit. Der CALDH-DEAE-Pool wurde in einer 50 ml Amicon Ultraflitationskamen mer über eine Diello Ultraflitationsmembran PM 30 (beide Fa. AMICON CORP. Lexington, USA) bei eine Druck von 290 kPa auf 10 ml eingeengt. Die eingeengte Proteinlösung wurde auf eine mit Puffer (10 mM NaCL in 10 mM Natri-umphosphat-Puffer, pH 7,0) aquilibrierte Hydroxylapatit-Säule (BV:80 ml) aufgergaen (Flübrate: 2 ml/min). Die Saule wurde anschließend mit 2;5 PV Puffer gewaschen (Flübrate: 2 ml/min). Die Elution der CALDH erfolgte mit einem linearen ansteigenden Natriumphosphat-Gradienten von 10 bis 400 mM NaP (jeweils mit 10 mM NaCL) (2 x 100 mi)]. Exwon 10 ml mit holer CALDH-Aldvirdt wurden zum CALDH-HAP over einigt.

Gelfiltrationschromatographie an Superdex HR 200 10/30. Der CALDH-HA-Pool wurde auf 200 µl eingeengt Amicon Ultrariltrationskammer, Ultrafiltrationsmembran PM 30), und auf eine mit 10 mM Natriumphosphat-Puffer, pH 7,0 äquilibrierte Superdex HR 200 10/30-Säule (BV: 23,6 ml) aufgetragen. Die CALDH-wurde mit einer Flußrate von 0.5 ml/min mit dem gleichen Puffer eluiert. Es wurden 250 µl-Fraktionen aufgetangen. Fraktionen mit hoher CALDH-Aktivität wurden zum CALDH-Superdex-Pool vereinigt.

Bestimmung der Coniferylalkohol- Dehydrogenase-Aktivität. Die Bestimmung der CADH-Aktivität erfolgte bei durch einen optisch enzymatischen Test nach Jaeger et al. (Jaeger, E., L. Eggeling und H. Sahm. 1982. Current Microbiology, 6: 333-339) mit Hilfe eines ZEISS PM 4 Spektralphotometers mit angeschlossenem TE-Wandler (beide Fa. ZEISS, Oberkochen, Deutschland) und Schreiber. Der Reaktionsansatz mit einem Volumen von 1 ml enthielt 0,2 mnol Tris/HCI (pH 9,0), 0,4 mnol Coniferylalkohol, 2 mnol NAD, 0,1 mmol Semicarbazid und Enzymolosung ("Tris"=Tris(hydroxymethyl)-aminomethan). Die Reduktion von NAD wurde bei \(\) = 340 nm verfolgt (e = 6,3 cm²/µmol). Die Enzymaktivität wurde in Einheiten (U) angegeben, wobei 1 U der Enzymmenge entspricht, die 1 µmol Substrat pro Minute umsetzt. Die Proteinkonzentrationen in den Proben wurden nach Lowry et al. (Lowry, O.H., N.J. Rosebrough, AL. Farr und R. J. Randall. 1951. J. Biol. Chem. 193: 265-275) bestimmt.

Bestimmung der Coniferylaldehyd-Dehydrogenase-Aktivität. Die Bestimmung der CALDH-Aktivität erfolgte bei 30°C durch einen optisch enzymatischen Test mit Hille eines ZEISS PM 4 Spektralphotometers mit angeschlossenem TE-Wandler (beide Fa. ZEISS, Oberkochen, Deutschland) und Schreiber. Der Reaktionsanstatz mit einem Volumen von 1 ml enthielt 10 mM Tris/HCI-Puffer (pH 8,8), 5,6 mM Coniferylaldehyd, 3 mM NAD und Enzymlösung. Doxidation von Coniferylaldehyd zu Ferulasature wurde bei 3 ± a 400 nm evrologi (e = 3 4 cm²/µmol). Die zymlösung in wurde in Einheiten (U) angegeben, wobei 1 U der Enzymmenge entspricht, die 1 µmol Substrat pro Minute umsetzt. Die Proteinkonzentration in den Proben wurden nach Lowry et al. (Lowry, O. H., N.J. Rosebrough, A.L. Farr und R.J. Randall, 1951, J. Biol. Chem 193:265-275) bestimmt.

Electrophoretische Methoden. Die Auftrennung von proteinhaltigen Extrakten erfolgte in 7,4 Gew.-% Polyacrylamidgelen unter nativen Bedingungen nach der Methode von Stegemann et al. (Stegemann et al. 1973. Z. Naturforsch.

285: 722-732) und unter denaturierenden Bedingungen in 11,5 Gew.-% Polyacrylamidgelen nach der Methode von Laemmil, Likemmil, U.K. 1970. Nature (London) 227: 680-685). Zur unspezifischen Proteinflatbung wurde Serva Blue R erwewendet. Zur spezifischen Anfarbung der Coniferylalkohol-, Coniferylaldehyd- und Vanillin-Dehydrogenase wurden die Gele für 20 min in 100 mM KP-Puffer (pH 7.0) umgepuffert und anschließend bei 30°C im gleichen Puffer, dem 0,08 Gew.-% NAD, 0,04 Gew.-% p-Nitroblau-Tetrazoliumchlorid, 0,003 Gew.-% Phenazine-Methosulfat und 1 mM des jeweiligen Substrates zugesetzt worden war, inkubiert, bis entsprechende Farbbanden sichtbar wurden.

Transfer von Proteinen aus Polyacrylamidgelen auf PVDF-Membranen. Proteine wurden aus SDS-Polyacrylamidgelen mit Hille eines Semidy-Fastblot Gerätes (B32/33, Biometra, Göttingen, Deutschland) nach Herstellerangaben auf PVDF-Membranen (Waters-Milipore, Bedford, Mass., USA) übertragen.

Bestimmung von N-terminalen Aminosäuresequenzen. Die Bestimmung von N-terminalen Aminosäuresequenzen erfolgte mit Hilfe eines Protein Peptide Sequenzers (Typ 477 A, Applied Biosystems, Foster City, USA) und eines PTH-Analysers nach Herstelleranaben.

Isolierung und Manipulation von DNA. Die Isolierung von genomischer DNA erfolgte nach der Methode von Marmur (Marmur, J. 1961. J. Mol. Biol. 3: 208-218). Megaplasmid-DNA wurde nach der Methode von Nies et al. (Nies, D., et al. 1987. J. Bacteriol. 169; 4865-4869) isoliert. Die Isolierung und Analyse von anderer Plasmid-DNA von DNA-Restriktionsfragmenten, die Verpackung von Hybridcosmiden in λ-Phagenpartikel und die Transduktion von E. coli erfolgte nach Standardmethoden (Sambrook, J.E.F. Fritsch und T. Maniatis. 1999. Molecular cloning: a laboratory manual. 2. Aufl. Cold Spring Habor Laboratory Press. Cold Spring Habor, New York)

Transfer von DNA. Die Präparation und Transformation von kompetenten <u>Escherichia coli</u>. Zellen erfolgte nach methode von Hanahan (Hanahan, D. 1983. J. Mol. Biol. 166: 557-580). Konjugativer Plasmidtransfer zwischen Plasmidtragenden <u>Escherichia coli</u> S17-1-Stämmen (Donor) und <u>Pseudomonas</u> sp. Stämmen (Rezipient) <u>bw. Alcaligenes eutrophus</u> (Rezipient) gerlogte auf NIB-Agarplatten nach der Methode von Friedrich et al. (Friedrich, B. et al. 1951. <u>Bacteriol. 147</u>: 198-205) oder durch eine "Minikomplementations-Methode" auf MM-Agarplatten mit 0,5 et al. 1961. J. Bacteriol. 147: 198-205) oder durch eine "Minikomplementations-Methode" auf MM-Agarplatten mit operation als C-Quelle und 25 µg/ml Tetracyclin oder 300 µg/ml Kanamycin. Dabei wurden Zellen des Rezipienten in einer Richtung als Implistrich aufgetragen. Nach 5 min wurden dann Zellen der Donor-Stämme als linetrich eutgetragen wobei der Rezipienten-Impfistrich gekreuzt wurde. Nach einer Inkubation für 48 h bei 30°C wuchsen die Transkonjuganten direkt hinter der Kreuzungsstelle, wohingegen weder Donor- noch Rezipienten-Impfistrich gekreuzt wurde.

Hybridisierungsexperimente. DNA-Restriktionsfragmente wurden in einem 0,8 Gew.-% Agarose-Gel in 50 mM Tris- 50 mM Borsaure-1,25 mM EDTA-Puffer (pH 8,5) elektrophoretisch aufgetrennt (Sambrook, J.E.F. Fritsch und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl., Cold Spring Harbor Laboratory Press, Cold Spring Habor, New York). Die Übertragung der denaturierten DNA aus dem Gel auf eine positiv geladene Nylonmembran (Porengröße: 0,45 µm, Pall Filtrationstechnik, Dreieich, Deutschland), die anschließende Hybridisierung mit bicitrylierten bzw. ³²P-markierten DNA-Sonden und die Herstellung dieser DNA-Sonden erfolgten nach Standardmethoden (Sambrook, J.E.F. Fritsch und T. Maniatis. 1999 Molecular cloning: a laboratory manual. 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Habor, New York).

Synthese von Oligonukleotiden. Ausgehend von Desoxynukleosid-Phosphoramiditen wurden Oligonukleotiden 0,2 µmol-Maßstab synthetisiert (Beaucage, S. L., and M.H. Caruthers. 1981. Tetrahedron Lett. 22: 1859-1862). Die Synthese erfolgte in einem Gene Assembler Plus nach Herstellerangaben (Pharmacia-LKB, Uppsala, Schweden). Die Abspaltung von Schutzgruppen erfolgte durch eine 15 h Inkubation bei 55°C in 25 Vol. % wäßriger Ammoniak-Lösung. Die Oligonukleotide wurden abschließend durch Chromatographie an einer NAP-5-Säule (Pharmacia-LKB, Uppsala, Schweden) gereinigt.

DNA-Sequenzierung. Die Bestimmung von Nuldeotidsequenzen erfolgte nach der Didesovy-KettenabbruchMethode von Sanger et al. (Sanger et al. 1977. Proc. Natl. Acad. Sci. USA 74: 5463-5467) mit [a-35-S[dATP und einem
T7-Polymerase-Sequencing-Kit (Pharmacia-LKB). Dabei wurde 7-Desazaguanosin-5-Tirphosphat an Stelle von dGTP
verwendet (Mizusawa, S. et al. 1986. Nucleic Acids Res. 14: 1319-1324). Die Produkte der Sequenzierreaktionen wurden in einem 6 Gew. % Polygarylamid-Gell in 100 mM TirsHCH. 38 mM Borsaure-, 1 mM EDTA-Puffer (pH 8.3) mit 42
Gew. % Harnstoff aufgetrennt, wobei eine S2-Sequenzier-Apparatur (GIBCO/BRL, Bethesda Research Laboratories
GmbH, Eggenstein, Deutschland) nach Vorschrift des Herstellers zum Einsatz kam. Nach der Elektrophorese wurden
Gelle 30 min in 10 Vol. % Essigsäuer inkubiert und nach kurzem Spülen in Wasser für 2 h bei 80°C getrocknet. Für
die Autoradiographie der getrockneten Gele fanden Kodak X-OMAT AR-Röntgerfilme (Eastman Kodak Company,
Rochester, NY, USA) Verwendung, Dameben wurden DNA-Sequenzen auch "nicht-radioaktiv" mit einem *LOPA DNASequencer Modell 4000L" (LI-COR Inc., Biotechnology Division, Linzoln, NE-USA) unter Verwendung eines "Thermo
Sequenase fluorescent labelled primer cycle sequencing kit with 7-deaza-dGTP" (Amersham Lie Science, Amersham
International plc, Little Challont, Buckinghamshire, England) jeweils nach Vorschrift des Herstellers bestimmt.

Es kamen unterschiedliche Sequenzierungsstrategien zur Anwendung: Mit Hilfe von synthetischen Oligonuklecht den wurde nach der "Primer-hopping Strategie" von Strauss et al. (Strauss, E. C. et al. 1986. Anal. Biochem. 154: 353-360) sequenziert. Bei ausschließlicher Verwendung von "Universal-" und "Reverse-Primer" kamen Hybridplasmide als

"Template-DNA" zum Einsatz, deren Insert-DNA-Fragmente mit Hilfe eines "Exo III/Mung Bean Nuklease Deletions"-Kits (Stratagene Cloning Systems, La Jolla, Cal., USA) nach Herstellerangaben unidirektional verkürzt worden waren.

Chemikalien, Biochemikalien und Enzyme. Restriktionsenzyme, T4 DNA-Ligase, Lambda-DNA und Enzyme bzw. Substrate für die optisch enzymatischen Tests wurden von C. F Boshringer & Sohne (Mannheim, Deutschland) oder von GIBCO/BRL (Eggenstein, Deutschland) bezogen. [ca.³⁵S]dATP und [ry.³²P]ATP kam von Amerisham/Buchler (Braunschweig). Deutschland). Agarose vom Typ Na wurde von Pharmadia-LNB (Uppsala, Schweden) bezogen. Als anderen Chemikalien waren von Haarmann & Reimer (Holzminden, Deutschland). E. Merck AG (Darmstatt, Deutschland), Fluka Chemie (Buchs, Schweiz), Serva Feinbiochemica (Heidelberg, Deutschland) oder Sigma Chemie (Deisennofen, Deutschland).

Beispiele

10

Beispiel 1

15 Isolierung von Mutanten des Stammes Pseudomonas sp. HR 199 mit Defekten im Eugenol-Katabolismus

Der Stamm Pseudomonas sp. HR 199 wurde einer Nitrosoquanidin-Mutagenese unterzogen mit dem Ziel, Mutanten mit Delekten im Eugen-Katabolismus zu isolieren. Die erhaltenen Mutanten wurden bezüglich ihres Vermögens, Eugenol, Ferulasäure und Vanillin als C- und Energiequelle nutzen zu können, klassifiziert. Die Mutanten 6164 und 6165 waren nicht mehr in der Lage, Eugenol als C- und Energiequelle zu nutzen, vermochten jedoch wie der Wildursten 6167 nuf 6202 waren nicht mehr in der Lage, Eugenol und Ferulasäure als C- und Energiequelle zu nutzen, vermochten jedoch wie der Wildup, Vanillin zu verwerten. Die obengenannten Mutanten kamen bei den weiteren molekularbiologischen Analvsen zum Einsatz ein den weiteren molekularbiologischen Analvsen zum Einsatz.

5 Beispiel 2

Anlegen einer Pseudomonas sp. HR 199 Genbank im Cosmidvektor pVK100

Die genomische DNA des Stammes <u>Pseudomonas</u> sp. HR 199 wurde isoliert und einer partiellen Restriktionsverdung mit <u>Eoo</u>Rl untertzogen. Die so erhaltene DNA-Präparation wurde mit <u>Eoo</u>Rl-geschnittenem Velktor pVK100 ligiert. Die DNA-Konzentrationen lagen dabei relativ hoch, um die Entsehung konkatemerer Ligationsprodukte zu forcieren. Die Ligationsansätze wurden in λ-Phagenpartikel verpackt, mit denen anschließend <u>E. coli</u> S17-1 transduziert wurde. Die Selektion der Transduktanten erfolgte auf Tetracyclin-haltigen LE-Agarplatten. Auf diese Weise wurden 1330 Transduktanten erhalten, die über unterschiedliche Hubridcosmide verfücten.

Beispiel 3

35

Identifizierung von Hybridcosmiden, die essentielle Gene des Eugenol-Katabolismus beherbergen

Die Hybridcosmide der 1330 Transduktanten wurden durch ein Minikomplementations-Verfahren konjugativ in die Mutanten 6164 und 6165 übertragen. Die erhaltenen Transkonjuganten wurden auf MM-Platten mit Eugenol bezeigheines Verwögens, wieder auf Legenol wezeighen (Komplementation der jeweiligen Mutante), untersucht. Die Mutante 6164 wurde durch den Erhalt des Hybridcosmids pE5-1 komplementiert, in welchem ein 1,2 kbp, ein 1,8 kbp, ein 3 kbp, ein 5,8 kbp und ein 9,4 kbp EogRI-Fragment kloniert vorlag. Der dieses Hybridcosmid pE5-1 tragende E. coli S17-1-Stamm wurde bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH (DSM) unter der Nummer DSM 10440 hinterlegt. Die Mutante 6165 wurde jeweils durch den Erhalt der Hybridcosmide pE207 und pE115 komplementiert. Die komplementierende Eigenschaft war auf ein 23 kbp EcoRI-Fragment zurückzuführen, weiches in dem Hybridcosmid pE207 ats alteiniges EcoRI-Fragment kloniert vorlag, wohingegen in dem Hybridcosmid pE115 zusätzlich noch ein 3 kbp und ein 6 kbp EcoRI-Fragment enhalten war. Der das Hybridcosmid pE207 tragende E, coli S17-1-Stamm wurde bei der DSM unter der Nummer DSM 10439 hinterlegt.

Beispiel 4

Analyse des 23 kbp EcoRI-Fragments (E230) des Hybridcosmids pE207

Das Fragment E230 wurde präparativ aus dem mit <u>Eco</u>RI-verdautem Hybridoosmid pE207 isoliert und mit <u>Eco</u>RIverdauter pBluescrip SK-DNA ligiert. Mit dem Ligationsansatz wurde <u>E. ooli</u> XL1-Blue transformiert. Nach "Blau-Weiß" Selektion auf X-Gal und IPTG eintblienden LB-Tc-Amp-Agarplatten wurden "weiße" Transformanden erhalten,

deren Hybridplasmide pSKE230 das Fragment E230 kloniert enthielten. Mit Hilfe dieses Plasmids und durch Einsatz unterschiedlicher Restriktionsenzyme wurde eine physikalische Karte des Fragments E230 angefertigt (Abb. 1).

Der die Mutante 6165 komplementierende Bereich wurde durch Klonierung von Subfragmenten von E230 in den Vektoren pVK101 und pMP92, die beide über ein weites Wirtsspektrum verfügen und auch in Pseudomonaden stabi sind, mit anschließender konjugativer Übertragung in die Mutante 6165 auf ein 1,8 kbp <u>Kpnl-Fragment</u> (K18) eingegrenzt. Nach Klonierung dieses Fragments in pBluescript SK: wurde die Nukleotidsequenz bestimmt, wobei das Gen er Cytochrom C-Untereinheit der Eugenol-Hydroxylase identifiziert wurde. Das Genprodukt von 117 Aminosauren besaß N-terminal ein Leader-Peptid (MMNVNYKAVGASLLLAFISQGAWA) und wies eine 32,9 %ige Identität (über einen Bereich von 82 Aminosauren) mit der Cytochrom C-Untereinheit der p-Cresol Methylhydroxylase aus <u>Pseudomo</u>nas putdat (Mclintire et al. 1986. Biochemistry 25: 5975-5981) auf.

Durch Klonierung der an K18 angrenzenden <u>Konl</u>-Subfragmente von E230 in pBluescript SK' und Sequenzierung werden weitere offene Leserahmen (ORF) identifiziert, wobei einer dieser ORFs für die Flavoprotein-Untereinheit der Eugenol-Hydroxylase aus <u>Pseudomonas putida</u> aufwies. Ein weiterer ORF wies hohe Homologie zur Pseudomonas <u>putida</u> aufwies. Ein weiterer ORF wies hohe Homologien zur Clutamylcystein Synthetase (erstes Enzym in der Glutathion-Biosynthese) aus <u>Escherichia coli</u> (Watanabe et al. 1986. Nucleic Acids Res. 14: 4393-4400) auf.

In der löslichen Fraktion des Rohextraktes von E. <u>coli</u> (pSKE230) konnte durch spezifische Aktivitätsflarbung im Polyacrylamid-Gel Vanillin-Ohlydrogenase nachgewiesen werden. Durch Subklonierung in pBluescript SK* und entsprechender Analyse löslicher Fraktionen der Rohextrakte von erhaltenen Transformanden konnte das Vanillin-Dehydrogenase-Gen (<u>v.d.</u>b) auf einem 3,8 kbp <u>Hindill/Ep</u>GRI-Subtragment von E230 lokaisiert werden. Die Nukleedtösequenz dieses Fragments wurde vollstandig bestimmt. Das Molekluafgewicht der Vanillin-Ohlydrogenase betrug 50 779, was durch SDS-Polyacrylamid-Gelektrophorese bestätigt wurde. Die Aminosauresequenz wies höhe Homologien zu anderen Aktehyd-Dehydrogenasen unterschiedlicher Herkunit auf.

Stromaufwärts des <u>vdh</u>-Gens wurde ein weiterer ORF identifiziert, der Homologien zu Enoyl-CoA Hydratasen aufwies. Das errechnete Molekulargewicht von 27 297 wurde durch SDS-Polyacrylamid-Gelelektrophorese bestätigt.

Durch Sequenzierung des 5,0 kbp <u>Hind</u>III-Subfragments von E230, welches ebenfalls in pBluescript SK' kloniert worden war, wurde ein ORF mit hoher Homologie zur Lignostilben-α,β-Dioxygenase aus <u>Pseudomonas paucimobilis</u> dientifiziert. Durch vollständige Sequenzierung des Fragments E 230 wurden zwei weitere ORFs identifiziert, die Homologien zu Formaldehyd-Dehydrogenasen (dah) aufwiesen (s. Abb. 1).

Beispiel 5

Analyse des die Mutante 6164 komplementierenden Bereichs des Hybridcosmids pE5-1

Die Mutante 6164 wurde durch den Erhalt des Hybridossmids pES-1 komplementiert, welches ein 1,2 kbp (E12), ein 3 kbp (E30), ein 3 kbp (E30), ein 5,8 kbp (E58) und ein 9,4 kbp (E94) <u>Eo</u>gRI-Fragment kloniert enthielt (Ab.). Durch Verdauung von pES-1 mit <u>Eo</u>gRI und anschließender Religation wurde ein Derivat (pE106) dieses Hybridos-nids erhalten, welches nur noch über die Fragmente E12, E18 und E30 verfügte. Dieses Plasmid war jedoch nach konjugativer Übertragung in die Mutante 6164 in der Lage, diese zu komplementieren, wodurch entsprechende Transkoniuganten wieder auf Eugenol als C- und Energieugelle wachsen konnten.

Nach Verdauung des Plasmids pE106 mit EcoRI, gelelektrophoretischer Auftrennung des Verdauungsansatzes in einem 0,8 Gew. % Agarose-Gel und Übertragung der DNA auf eine Nylonmembran erfolgte eine Hybridisierung mit einem mit ³²⁰ markiterten Diigonul/deotid-Sonde mit der folgenden Sequenz:

5'-ATG	CAA	CTC	ACC	AAC	AAA	AAA	ATC	GT-31
	G	G	С	T	G	G	Τ	
	G	G	C		G	G		
	G	T	G		G	G		
			G		G	G		
			T		G	G		

Die Sequenz dieser Gensonde war aus der N-terminalen Aminosäuresequenz der aus <u>Pseudomonas</u> sp. HR 199 aufgereinigten Coniferylalkohol-Dehydrogenase (CADH) (s.u.) abgeleitet worden. Mit Hilfe dieser Sonde wurde der den

N-Terminus der CADH codierende Bereich des <u>cadh</u>-Gens auf Fragment E12 lokalisiert. Dieses Fragment und Teile des angrenzenden Fragments E 18 wurden ebenfalls sequenziert und somit die vollständige Sequenz des <u>cadh</u>-Gens bestimmt. Die Von <u>cadh</u> abgeleitete Aminosäuresequenz wies Homologien zu anderen Alkohol-Dehydrogenasen der Klasse I, Gruppe II (nach Matthew und Fewson. 1994. Critical Rev. Microbiol. 20(1): 13-56) auf.

Beispiel 6

5

20

25

30

Reinigung und Charakterisierung der Conifervialkohol-Dehydrogenase

<u>Pseudomonas</u> sp. HR 199 wurde auf Eugenol angezogen. Die Zellen wurden geerntet, gewaschen und mit Hilfe einer French-Presse aufgeschlossen. Die nach Ultrazentrifugation erhaltene follsiche Fraktion des Rohesträtes eine spezifische Aktivität von 0,24 Ulmg Protein auf. Durch Chromatographie an DEAE-Sephacel wurde eine 11,7 fache Anreicherung der CADH bei einer Ausbeute von 83,7 % erzielt. Durch Chromatographie an Sephadex G200 wurde eine 6,81ache Anreicherung der CADH bei einer Ausbeute von 11,2 % erzielt. Durch Chromatographie an Butyl-Sepharose 48 wurde eine 7,06 fache Anreicherung der CADH bei einer Ausbeute von 17,8 werzielt.

Durch diese Methode wurde ein Präparat erhalten, welches nach SDS-Polyacrylamid-Gelelektrophorese eine Bande bei 27 kDa ergab. Der Aufreinigungsfaktor betrug 64 bei einer Ausbeute von 0,8 %.

Temperatur-Optimum und -Stabilität

Das Temperatur-Optimum der von der CADH katalysierten Reaktion lag bei 42°C. Das Enzym war jedoch wärmeempfindlich. Die Halbwertszeiten waren wie folgt: $T_{1/2}$ (34°C) = 5 min, $T_{1/2}$ (39°C) = 1 min, $T_{1/2}$ (42°C) <1 min.

pH-Optimum

Das pH-Optimum für die von der CADH katalysierten Reaktion (ag bei pH 10,9 in 25 mM MOPS-Puffer. Bei höheren pH-Werten wurde ein Aktivitätsverlust durch Denaturierung beobachtet.

Apparentes Molekulargewicht

Das native Molekulargewicht der CADH wurde mit Hilfe der FPLC durch Gelfiltration an Superdex 200HR 10/30 mit 54,9 kDa ermittelt, was eine α_0 -Untereinheitenstruktur nahelegt.

N-terminale Aminosäuresequenz

Die N-terminale Aminosäuresequenz-Bestimmung des gereinigten Proteins ergab folgendes Ergebnis:

(Sequenz im Ein-Buchstaben-Code; ?: keine Angabe möglich; (): unsicher; in der zweiten Zeile wurde eine ebenfalls mögliche Aminosäure angegeben)

Beispiel 7

Reinigung und Charakterisierung der Coniferylaldehyd-Dehydrogenase

<u>Pseudomonas</u> sp. HR199 wurde auf Eugenol angezogen. Die Zellen wurden geerntet, gewaschen und mit Hilfe einer French-Presse aufgeschlossen. Die nach Ultrazentrfugation erhaltene lösliche Fraktion des Rohextraktes wies eine spezifische Aktivität von 0,43 U/mg Protein auf. Durch Chromatographie an DEAE-Sephacel wurde eine 6,6-fache Anreicherung der CALDH, bei einer Ausbeute von 65,3 % erzielt. Durch Chromatographie an Hydroxylapatit wurde eine 63-fache Anreicherung der CALDH, bei einer Ausbeute von 33 % erzielt. Durch Chromatographie an Superdex HR 200 wurde eine 81-fache Anreicherung der CALDH, bei einer Ausbeute von 13 % erzielt. Durch diese Methode wurde ein

Präparat erhalten, welches nach SDS-Polyacrylamid-Gelelektrophorese eine Bande bei ca. 49 kDa ergab.

Temperatur-Optimum und -Stabilität

Das Temperatur-Optimum der von der CALDH katalysierten Reaktion lag bei 26°C. Das Enzym war warmeempfindlich. Die Halbwertzeiten waren wie folgt: $T_{1/2}$ (31°C) = 5 min, $T_{1/2}$ (34°C) = 2,5 min, $T_{1/2}$ (38°C) = 1 min.

pH-Optimum

10

Das pH-Optimum für die von der CALDH katalysierten Reaktion lag bei pH 8,8 in 100 mM Tris/HCI-Puffer. Bei diesen pH-Wert ist das Enzym jedoch schon instabil (87 % Aktivitätsverlust innerhalb von 5 min). Bei niedrigen pH-Werten ist das Enzym stabiler (2.8 bH 6.0:50 % Aktivitätsverlust innerhalb von 4 h).

Substratspezifität

Das Enzym setzt neben Coniferylaidehyd (100 %) auch trans-Zimtatlehyd (96,7 %). Sinapylaidehyd (76,7 %), p-Anisaldehyd (23,1 %), Benzaidehyd (17,8 %), p-Anisaldehyd (2,7 %), Benzaidehyd (1,7 %), p-Misaldehyd (1,7 %), p-

N-terminale Aminosäureseguenz

Die N-terminale Aminosäuresequenz-Bestimmung des gereinigten Proteins ergab folgendes Ergebnis:

1 SILGLNG APV GAEQLG SAL (D) 20

(Sequenz im Ein-Buchstaben-Code; (): unsicher).

Beispiel 8

Lokalisierung und Sequenzierung des Coniferylaldehyd-Dehydrogenase Gens (caldh)

Die N-terminate Aminosäuresequenz konnte eindeutig einer von der DNA-Sequenz des Fragmentes E94 des Plasmise pE5-1 abgeieiterten Aminosäuresequenz zugeordnet werden. Somit ist das GALDH-Sirutkturen <u>caldin</u> utst die lokalisiert. Die von <u>caldin</u> abgeleitete Aminosäuresequenz wies Homologien zu anderen Aldehyd-Dehydrogenasen auf.

Beispiel 9

35

Komplementierung weiterer, im Eugenol-Katabolismus defekter Mutanten durch die Hybridcosmide pE207 und pE5-1

Nach NMG-Mutagenese waren die Mutanten 6167 und 6202 erhalten worden, die nicht mehr in der Lage waren, Eugenol und Ferulasäure als G- und Energiequelle zu nutzen (s.o.). Die Mutante 6202 war durch Erhalt des Plasmids pE207 nach konjugativem Transfer wieder in der Lage, diese Substrate zu nutzen. Diese Mutante wird durch das Enoyl-CoA Hudratase-homologe Gen komplementiert.

Die Mutante 6167 war durch Erhalt des Plasmids pE5-1 nach konjugativem Transfer wieder in der Lage, diese Substrate zu nutzen. Die komplementierende Eigenschaft konnte durch einzelne Klonierung der EogRI-Fragmente von pE5-1 in pHP1014 und konjugativer Übertragung dieser Plasmide in die Mutante 6167 auf das Fragment E94 eingegrenzt werden. Von Fragment E94 wurde nach Klonierung in pBluescript SK* und Verdauung mit unterschiedlichen Restriktionsenzymen eine physikalische Karte angefertigt. Der die Mutante 6167 komplementierende Bereich wurde durch Klonierung von Subtragmenten von E94 in den Vektoren pVK101 und pMP92 mit anschließender konjugativer Übertragung in die Mutante 6167 auf ein 1,9 kbp EogRII/HindIII-Fragment (EK19) eingegrenzt. Nach Klonierung dieses Fragments in pBluescript SK* und Sequenzierung wurden 2 OFRs identifiziert, die Homologien zu Gest-CoA Acetyltransferasen bzw. zur "Medium-chain acyl-CoA Synthetase" aus Pseudomonas oleovorans aufwiesen. Durch vollständige Sequenzierung des Fragments E94 wurden weitere ORFs identifiziert, die Homologien zu Regulator-Proteinen und einem Chenotaxis-Proteis aufwiesen (s. Abb. 1).

Beispiel 10

Nachweis der chromosomalen Codierung der Gene des Eugenol-Katabolismus in Pseudomonas sp. HR 199

Da <u>Pseudomonas</u> sp. HR 199 ein Megaplasmid mit einer Größe von ca. 350 kbp besitzt, wurde in einem Hybridsierungsevereiment überprüft, ob die Gene des Eugenof-Katabobismus auf diesem Megaplasmid oder auf dem Chromosom lokalisiert waren. Dazu wurden Megaplasmidpraparationen des Wildtyps und der Mutanten im 0.8 Gew.-% Agarose-Gel aufgetrennt. Die chromosomale und megaplasmiddre DNA wurde auf eine Nylommembran geblottet und anschließend gegen eine biotriynierte HE38-DNA-Sonde hybridisiert. Dabei wurde nur mit der chromoselne DNA, nicht jedoch mit der Megaplasmid-DNA ein Hybridisierungssignal erhalten. Somit liegen die Gene des Eugenol-Katabolismus in Pseudomonas so. HR 199 chromosomal codiert vor.

Beispiel 11

15 Heterologe Expression von Genen des Eugenol-Katabolismus aus <u>Pseudomonas</u> sp. HR 199 in anderen <u>Pseudomonas</u>-Stämmen und in <u>Alcaligenes eutrophus</u>.

Das Plasmid pE207 und ein pVK101-Hybridplasmid mit Fragment H110 (pVKH110) wurden konjugativ nach A.
<u>eutrophus</u> und in <u>Pseudomonas</u>-Stamme übertragen, die nicht in der Lage waren. Eugenol, Vanillin oder Vanillinste zu verstoffwerbeln. Die erhaltenen Transkonjuganten wurden zum einen auf ihr Vermögen überprüft, auf MM-Agarplatten mit Eugenol, Vanillin oder Vanillinsäure wachsen zu können. Zum anderen wurden einige Transkonjuganten in MM-Flüssigmedium mit Eugenol inkubiert. Mittels HPLC-Analyse der Kulturüberstände wurde eine Umsetzung von
Eugenol durch einige der Transkonjuganten beobachtet.

Auf diese Weise wurde eine funktionelle Expression des <u>vdh</u>-Gens in Transkonjuganten von <u>P. stutzeri</u>, <u>P. asplenii</u>, Pseudomonas sp. DSM13, Pseudomonas sp. DSM15a und Pseudomonas sp. D1 nachgewiesen.

Transkonjuganten des Stammes <u>Pseudomonas</u> sp. D1, die das Plasmid pE207 erhalten hatten, waren in der Lage, mit Eugend lats G- und Energiequelle zu wachsen. Auch in entsprechenden Transkonjuganten von P. testosjestoni LMD3324. P. fluoresscans TypB, P. stutzer DSM50027, <u>Pseudomonas</u> sp. DSM1455 und P. fragi DSM3456 wurde eine funktionelle Expression der Eugenol-Hydroxylase-Gene beobachtet, was zu einer Ausscheidung von Intermediaten des Eugenol-Katabolismus (Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin, Vanillinsäure) in das Kulturmedium führte. Ein Wachstum dieser Transkonjuganten auf Eugenol wurde hingegen nicht beobachtet.

45

SEQUENZPROTOKOLL

3	(1) ALLGEMEINE ANGABEN:
10	(i) ANMELDER: (A) NAME: Haarmann & Reimer GmbH (B) STRASSE: Rumohrtalstrasse 1 (C) ORT: Holzminden (E) LAND: Deutschland (F) POSTLEITZAHL: 37603 (G) TELEFON: 0214-3067988 (H) TELEFAX: 0214-303482
15	(ii) BEZEICHNUNG DER ERFINDUNG: Syntheseenzyme fuer die Herstellung von Coniferylaikohol, Coniferylaidehyd, Ferulasaeure, Vanillin und Vanillinsaeure und deren Verwendung
20	(iii) ANZAHL DER SEQUENZEN: 42 (iv) COMPUTER-LESBARE FASSUNG: (A) DATENTRÄGER: Floppy disk (B) COMPUTER: IBM PC compatible (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS (D) SOETMARE: Patentlin Release #1.0, Version #1.30 (EPA)
	(2) ANGABEN ZU SEQ ID NO: 1:
30	(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 32679 Basenpaare (B) ART: Nucleotid (C) STRANFORM: Doppelstrang (D) TOPOLOGIE: linear
35	(ii) ART DES MOLEKÜLS: Genom-DNA
	(iii) HYPOTHETISCH: NEIN
40	(iv) ANTISENSE: NEIN (vi) URSPRONLICHE HERKUNFT: (A) ORGANISMUS: Pseudomonas sp. (B) STAMM: HR199
45	(ix) MERKMAL: (A) NAME/SCHLUSSEL: CDS (B) LAGG:31463997 (D) SONSTIGE ANGABEN:/gene= "ORF1"
50	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1: GAATTCATCC TCATGGAGCA CTTCTACAAG CAGCAGGCAG GCCACCCTCC CCAGACCGAT 60

120	00100074740	GCINCCIGGA	AGGIIIAAA	000000000	IIIIIOOOOAI	0,100,100,111
180	GCAGAACTGT	GTGACTATCA	GATAACGACG	CGCAATTCGA	TCAGAGTTGC	CTCCTGAACA
240	CCCAGATCCT	TTTTCGCCGC	TCGGCCAAGA	CCTGTACGAG	ACGAAGGCTA	GTAGCGAACT
300	TGACGATCTC	AGAAAGCCTG	CGTGACAACC	AGGGCTGTAC	CCTTCGAAAT	GACCGAAGCA
360	TAAAGCGGAT	TGCTCAAAAA	CAAGAGTACA	ACTGACCGTG	GTCGCAAAAA	TTTGTTGCGG
420	GTACATACAG	TCGCCCCGAA	GCTGAACTGA	CAAGAAGTCC	AGCTGCTGAC	GCCGCTTTCG
480	AAAACCAGCC	AGGATCCGGG	TCTCCGTCGC	AGCGTAATTT	AATGGATAAG	GAAGCGATCG
540	ACGGACAACA	CATCACTTAC	GGGCATTGGT	CTTGATCAGC	GCGTCTCAGC	TGATCATCGA
600	TCCAACATCA	GGTGATCCCA	AGAGATTCGG	AGGATCATTC	CCTGCGCAAC	ATCACCGGCA
660	ATGCAATTGC	TCGGCCCTTG	GGTTCTGCȚA	TTCCTGCATG	GTACTTCTCG	CGCTCATGAC
720	CCCTGAACG	CAGGCAGTAC	GTCCGCCCAA	AATTTCAGAC	ACGAGGCCTA	AGCTAGGAAC
780	GCGAAACTGC	CTGCCGCCTC	GGCTCTATCA	GGAAGCGGCA	GTATCGCGAT	ATCTCAATCG
840	TACGACTGCC	GGAGCGCTTT	GTGCCCGCCT	CCGGATGTGC	GCAGGCCTTA	TGGACGTTGC
900	CTGGAGGTTT	CAACCTCCTG	GTCACGACTT	GATTTCGCGG	CGAGGTACAG	TGTACGTCGA
960	TTCGATACCA	CCAGCACACC	GTGATTTCCA	ACGTTCGTCG	GATCGGCATG	CACGGGCGAA
1020	GAGAAGCGCT	CGTTCGCTAC	ACGACGATGC	AAAACCCTTC	AGCGGTAAAC	GCCGAGACGG
1080	CGATGCGCCA	CCGCAGCTGG	AAACGTTGAA	GTGGACAAGC	CGGCATTTCG	TTCGTGATGC
1140	TCACGAGGAG	CGATGGACGC	TGAAAATTGG	AGCGCAAAGC	TGACTTCATC	AAACGGTCTG
1200	GCACGTTGAC	CCAACTTGTT	CAAGAGCAGG	AGTTGATGAC	GGATCATTAG	CGGGGCAGCC
1260	CTCCGAAAAC	ACGGCTGCCA	CACTACAAGT	TTTGAGCGAA	TGAAGCTGTT	CCAACCATCG
1320	GGCCCGGGTA	CGTTGTGATG	ACGATGTCTG	GATCACTTTA	GCAAGGCATG	TGGGGGGCAA
1380	CGAAACAAGC	CCCGCAAACC	ACCAGGCCAA	GAGAGGTTAC	CTATGTGGCT	TCTGGAAAGA
1440	AAGCTCTTGA	CGTGCCTGAG	ATCTGTATTT	GCGCGGGGTG	CTGCACTAGG	TGTACGTGGC
1500	GTAAAGACCA	GGATTTTCAA	AGCTGAAAAA	TAGGCGATAA	ACAGGGAAAT	GGGCCTTCAA
1560	CGGCAAAGAA	CAGTCACGAC	CGATTTCTGC	CGCTTTTGGC	ACTCGATGTC	CTCCTTCCTT
1620	TGGTGGGCTT	TATTGAAGCT	GCCTGCCTCT	CGGTTACTAA	CGGACTGATG	CGGCCAAAAG
1680	CCAAGCCTAT	ATGCACGCAG	GTTCCGCTTT	GCCTGATGAT	GTGCGATCCA	TAAGAATGTG
1740	GTGGCCATGG	TTTGCCGCTG	CGCCTGTGCC	TAACCGACTA	CTGCACGTTG	CGACCGCCGT

AGCGTGCATC	CGGATCGGTG	AGTGAGACTT	GCCCATCCGG	TGCTTCACGT	AGCTGCTGCT	1800
CCATCTCCTT	GAGCGCCTGC	ATCTGCTGGC	GGAGTTTCTC	GATTTTATCC	TGGAGGCGGC	1860
TGGCTTTGGC	TTCGGCGACA	TCGGATTGAG	TTCTGTCGGC	GGTGTCCATC	GCTGCCAGAT	1920
AGCGGTCGAT	GATTTTATCA	ATCTGGTCCA	TCCGGGCGCG	CACCCGCTAT	GATCCGGAGT	1980
CCTCCGATAT	CGATGAGGCC	TATCTGGGCT	GGAAGAGCGG	TTCGGTGTTC	TCAGACCTTG	2040
GCGAGAACGC	GGTCAAGCTC	AGCTTCGGGC	GCCAAGCCTT	CAAGATCGGC	AACGGCTTCC	2100
TGATCGGCGA	AGGCCACGTC	GACCAAGGTA	ACGATGCGGG	CTACTGGCTG	GCCCCTACCT	2160
AGGCGTTCGA	CAACACCGTC	CTAGCCCAAC	TGGACACCGG	CAAGCTGCAT	GTCGACCTGT	2220
TCGACCTCCA	GGCGGGCATG	GATCTGGACG	TCGCCGACAT	CAAGGAGAAA	GTCCGGGTGC	2280
GCGGGGGCAA	CGTCGAGTGG	CGCGACGAGA	CCTACGGCAC	GGTAGGGTTC	ACCGGCTTCC	2340
ATACGCTGGA	CGCTGACAAT	CCGCTGCGCG	ACGGCATGAA	TGTCTACGAC	GTACGCGCAT	2400
CGGGCAGCCC	GATCCGAGCC	CTGCCGCAGG	TGGCCCTGGC	GGCGGAGTAC	GCCTGGCAGC	2460
GCGGCGGCGA	GGCGGACAAG	ACGAGTGAGG	CCTGGTACCT	ACAGGGCAGC	TACACCTTTC	2520
GGGATGCCCC	CTGGACGCCA	GTGCTGATGT	ACCGTCACGC	GGTCTTCTCC	GACGACTACG	2580
ACTCCCTGCT	GTACGGCTAA	GGGGGCAACA	ACATGGGCTG	gaaaggagca	TTGCGTTGAA	2640
ACGATGCTGA	AGGGCGTCAC	TCTTTTACTG	CTGTCCGCTC	ACGTCGAAAC	TGCATGATTT	2700
CGGGCAGCCT	TTCTTCTATC	CAGTCGGCCA	GCACCTGAAC	ATGAGCCGCT	ACTTCCTGGC	2760
CAAGCGGCGT	CAGGCTGTAC	TCGACATGTG	GGGGAACGAC	CGGGAGCGAA	TGTCGAGCTA	2820
TGAAACCGTC	TCCCTCCAGG	CCTTGTAGGG	TCTGCGCAAG	CATTCTTTTC	GCTGACACCG	2880
CCGATTCTTC	CGACGCAGGT	CGCTGAATCG	ATGGACACCG	TCCACCAAGA	TGATCAGCAC	2940
GAGCACGCCC	AGCGGCTTGT	CACGTGCTTG	AGCACGTCCC	GCGACGGCAT	TCAGCACTCA	3000
GCAATTCCCG	CGCCGTGCTT	GCATGGAGAG	ACTGGTAAGG	GCGGCCAGCG	TGAGTTTCAT	3060
GGCACTAACC	TTTATGTATG	TACTTACTTT	TAGTTGCTAG	TAGGGATATG	GTGACGCCTT	3120
CATCCTACGA	AACAAGTGAA	GACTG ATG A		ACA GGT GCC Thr Gly Ala		3172
	y Arg Leu Ti	CT ATA GAG (hr Ile Glu) 15				3220
TCC GAA AT	TATT GCC C	rc GTC CGG	GAT CCG AAT	AAG GCC GG	A GAC CTT	3268

14

10

	Ser	Glu	Ile	Ile	Ala 30	Leu	Val	Arg	Asp	Pro 35	Asn	Lys	Ala	Gly	Asp 40	Leu		
5						GTG Val											3	316
				45					50					55				
10						CTG Leu											3	364
	TCC	AGT		GTG	GGT	CAA	CGA		GCG	CAA	CAC	CGG		GTG	ATC	GAC	3	8412
						Gln												
15																		
						GGT Gly											3	460
	90		-,-			95					100	-,-				105		
20						GCG											3	508
	His	Ala	Asp	Lys	Ser 110	Ala	Leu	Gly	Leu	Ala 115	Thr	Glu	His	Arg	120	Thr		
	GAA	CAG	GCC	CTG	ACA	GAG	TCC	GGT	ATT	ССТ	CAT	GTC	CTG	TTG	CGC	AAC	3	556
25	Glu	Gln	Ala	Leu 125	Thr	Glu	Ser	Gly	Ile 130	Pro	His	Val	Leu	Leu 135	Arg	Asn		
						AAC											3	604
	Gly	Trp	Tyr 140	His	Glu	Asn	Tyr	Thr 145	Ala	Gly	Ile	Pro	Val 150	Ala	Leu	Val		
30																		
						GGC Gly											-	652
		155				•	160			·	•	165						
35						GCC											3	700
	170	Arg	Ala	Asp	Tyr	Ala 175	GIu	Ala	Ala	ALA	180	Val	Leu	rnr	GIY	185		
						GTC											3	748
40	Asn	Gln	Ala	Gly	Arg 190	Val	Tyr	Glu	Leu	Ala 195	Gly	Glu	Pro	Ala	Tyr 200	Thr		
						GCT											3	3796
	Leu	Thr	G1u	Leu 205	Ala	Ala	Glu	Val	Ala 210	Pro	Gln	Ala	G1 y	Lys 215	Thr	Va1		
45	GTG	TAT	TCG	AAC	CTA	TCC	GAG	AGC	GAT	TAC	CGA	TCT	GCG	TTG	ATC	AGT	3	3844
						ser												
	GCG	GGC	CTT	ccc	GAT	GGT	TTT	GCG	GCA	TTG	CTC	GCA	GAC	TCT	GAT	GCA	3	8892
50						Gly												

	GGC GCA GCC AAG GGG TAT TTG TTT GAT TCC AGT GGA GAC AGT CGC AAG Gly Ala Ala Lys Gly Tyr Leu Phe Asp Ser Ser Gly Asp Ser Arg Lys 250 255 260 255	3940
	CTG ATC GGT CGC CCA ACC ACT CCG ATG TCG GAA GCC ATC GCG GCA GCA Leu Ile Gly Arg Pro Thr Thr Pro Met Ser Glu Ala Ile Ala Ala Ala 270 270 275 280	3988
0	ATT GGC CGC TAAAACTGCA TTTTCGCGAC TTGAGTGACA CCTGGGTTAG Ile Gly Arg	4037
	ATAACCCAGG TGTCTCGCAC CGCTTTGGGT TAGTGGTGGG CAATAGCGGT GTCTGGTCAC	4097
5	CGCTTGCCCG GCGGCGCGCC CGCTATTGGA TGATTCTCAA CTTCCTGGTG CCGGCGTCTT	4157
	GTTGGGGCCC AAACAGGCGG GCATAACGCA ATGTGGCATT TGCACTGTCG CGCATGATGG	4217
	CTTCTGCTCG AGCACCTTGC CCGCTAATCA GCGCGTCTAC CACAGCATGA TGCTGCATGT	4277
o	TGGCAAAATT GAACCGGCGG TACTCTTGGG GAGGTTGCTA CCGTCGACGG CCAGTGAACT	4337
	GACAGAGGCA AAGGGCAGGT GTTCATTCCG AGCCAATGCT TCACCTATGG CAGCGTTACC	4397
	GCTGGCATCC ACGATAGCTT GATGGAAGCG CTTGTTGATG TCGTGGTATT CGGCGAGGTC	4457
5	GTCTTCGCTG ACATAACCTT TCTCAAATAG GGCATCGCCC TGGGCCAAGC ACTGCAAGAG	4517
	GATCTCTTGC GTTTCACTGG ATAGCCCTCG CTCGGCAGCC TGCCTTGCGG CCAGTCCTTC	4577
	AAGTACCCCT CGAACCTCCA CCGCGCCTGC CAGGTCATTT GGGGTCATTT GCCGCACTGC	4637
0	ATAGCCACGT GCGCCTTGGC GATCAGTAAC CCTTCCTGTT CTAGCGCTCG GAACGCAATG	4697
	CGGATAGGTG TGCGCCGACA CTCCCAGGCG CTCGGCAGTG GGGATTTCGG CGATGCGCTC	4757
5	TCCTGCCGGG AGTTCGCCAT CCACAATCAT TTTGCGCAGT AGATTGAGTA CTCGCTGCCC	4817
	GGGCCCGCTC ATTTCAGCCT CCGATTGGAT CCAGTAATGG TTTGAGAGAA TTTTACTCGC	4877
	AAGGGATTIC TGGGCAATAG CCCCGCTGAT TGCTGGTTTT TGTATGTGGC GTGCGACTAT	4937
,	CGCACAGAAT TGGATCCACC TTGGCGCAAA AAAACTGGAG CTACCTCATC GGTCGTGGTT	4997
		5057
	TCCAAAAACA AGATCGCCAT TGAGGAACGC GCCATGTTTC CGAAAAACGC CTGGTATGTC	5117
5		5177
	ATTGTCTTCT ATCGGGGGCC GGAAGGACGT GTTGCCGCGG TAGAGGATTT CTGCCCTCAT	5237
	CGCGGGGCAC CGTTGTCCCT GGGTTTCGTT CGCGACGGTA AGCTGATTTG CGGCTACCAC	5297

TTCCCTTGCA	TCAAAAGCTA	CGCGGTAGAA	GAGCGATACG	GCTTTATCTG	GGTATGGCCT	5417
GGTGATCGCG	AGCTGGCGGA	TCCGGCGCTT	ATTCACCACC	TGGAGTGGGC	CGATAATCCG	5477
GAGTGGGCCT	ATGGTGGCGG	TCTCTACCAC	ATCGCTTGTG	ATTACCGCCT	GATGATCGAC	5537
AACCTCATGG	ATCTCACCCA	TGAGACCTAT	GTGCATGCCT	CCAGCATCGG	TCAAAAGGAA	5597
ATTGACGAGG	CACCGGTCAG	TACTCGTGTC	GAGGGCGACA	CCGTGATTAC	CAGCCGGTAC	5657
ATGGATAACG	TCATGGCCCC	TCCGTTCTGG	CGTGCTGCGC	TTCGTGGCAA	CGGCTTGGCC	5717
GACGATGTAC	CGGTTGATCG	CTGGCAGATC	TGCCGATTCG	CTCCTCCGAG	TCACGTACTG	5777
ATCGAAGTAG	GTGTGGCTCA	TGCGGGCAAA	GGCGGATATG	ACGCGCCGGC	GGAATACAAG	5837
GCCGGCAGCA	TAGTGGTCGA	CTTCATCACG	CCGGAGAGTG	ATACCTCGAT	TTGGTACTTC	5897
TGGGGCATGG	CTCGCAACTT	CCGTCCGCAG	GGCACGGAGC	TGACTGAAAC	CATTCGTGTT	5957
GGTCAGGGCA	AGATTTTTGC	CGAGGACCTG	GACATGCTGG	AGC A GC A GCA	GCGCAATCTG	6017
CTGGCCTACC	CGGAGCGCCA	GTTGCTCAAG	CTGAATATCG	ATGCCGGCGG	GGTTCAGTCA	6077
CGGCGCGTCA	TTGATCGGAT	TCTCGCAGCT	GAACAAGAGG	CCGCAGACGC	AGCGCTGATC	6137
GCGAGAAGTG	CATCATGATT	GAGGTAATCA	TTTCGGCGAT	GCGCTTGGTT	GCTCAGGACA	6197
TCATTAGCCT	TGAGTTTGTC	cgggctgacg	GTGGCTTGCT	TCCGCCTGTC	GAGGCCGGCG	6257
CCCACGTCGA	TGTGCATCTT	CCTGGCGGCC	TGATTCGGCA	GTACTCGCTC	TGGAATCAAC	6317
CAGGGGCGCA	GAGCCATTAC	TGCATCGGTG	TTCTGAAGGA	CCCGGCGTCT	CGTGGTGGTT	6377
CGAAGGCGGT	GCACGAGAAT	CTTCGCGTCG	GGATGCGCGT	GCAAATTAGC	GAGCCGAGGA	6437
ACCTATTCCC	ATTGGAAGAG	GGGGTGGAGC	GGAGTCTGCT	GTTCGCGGGC	GGGATTGGCA	6497
TTACGCCGAT	TCTGTGTATG	GCTCAAGAAT	TAGCAGCACG	CGAGCAAGAT	TTCGAGTTGC	6557
ATTATTGCGC	GCGTTCGACC	GACCGAGCGG	CGTTCGTTGA	ATGGCTTAAG	GTTTGCGACT	6617
TTGCTGATCA	CGTACGTTTC	CACTTTGACA	ATGGCCCGGA	TCAGCAAAAA	CTGAATGCCG	6677
CAGCGCTGCT	AGCGGCCGAG	GCCGAAGGTA	CCCACCTTTA	TGTCTGTGGG	CCCGGCGGGT	6737
TCATGGGGCA	TGTGCTTGAT	ACCGCGAAGG	AGCAGGGCTG	GGCTGACAAT	CGACTGCATC	6797
GAGAGTATTT	CGCCGCGGCG	CCGAATGTGA	GTGCTGACGA	TGGCAGTTTC	GAGGTGCGGA	6857
TTCACAGCAC	CGGACAAGTG	CTTCAGGTCC	CCGCGGATCA	AACGGTCTCC	CAGGTGCTCG	6917
ATGCGGCCGG	AATTATCGTT	CCCGTTTCTT	GTGAGCAGGG	CATCTGCGGT	ACTTGCATCA	6977
CTCGGGTGGT	AGACGGAGAG	CCTGATCATC	GTGACTTCTT	CCTCACGGAT	GCGGAGAAGG	7037

CAAAGAACGA	CCAGTTCACC	CCCTGTTGCT	CGCGAGCCAA	GAGCGCCTGT	TTGGTCTTGG	709
ATCTCTAACT	CATCCCCGTG	TCCGGTCCCC	TGCT TT GGTG	CGGCGGACTG	TGCGCGGGTA	715
AGTAAACAGG	CTCAACCGTT	TTTAGCGGGA	TAACCATTCT	TGAGGATGAA	GGAGGGTTAT	721
CCCGCTCTTT	TCATGCACCA	AGCCATTCAT	AGTCACCAGC	TGCTTCTACG	TGCTGCTGCG	727
TTACAAGTTT	ATTCAGAAGG	AAATCGGAAT	GATCAAATCC	CGCGCCGCTG	TGGCGTTCGC	733
ACCCAATCAG	CCATTGCAGA	TCGTCGAAGT	GGACGTGGCT	CCGCCCAAGG	CCGGTGAAGT	739
CCTGGTGCGG	GTCGTGGCCA	CCGGCGTTTG	CCACACCGAT	GCCTACACCC	TGTCCGGCGC	745
TGATTCCGAG	GGCGTTTTCC	CCTGCATCCT	TGGTCACGAA	GGCGGCGGCA	TTGTCGAAGC	751
GGTGGGCGAG	GGCGTCACCT	CGCTGGCGGT	CGGCGACCAC	GTGATCCCGC	TCTACACGGC	757
CGAATGCCGT	GAGTGCAAGT	TCTTCAAGTC	CGGCAAGACC	AACCTGTGCC	AGAAAGTGCG	763
TGCTACTCAG	GGCAAGGGTC	TGATGCCGGA	CGGCACCTCC	CGCTTCAGCT	ACAACGGTCA	769
GCCGATCTAC	CACTACATGG	GCTGCTCGAC	CTTCTCCGAG	TACACCGTGC	TGCCGGAAAT	775
CTCCCTGGCG	AAGATTCCCA	AGAATGCGCC	GCTGGAGAAA	GTCTGCCTGC	TGGGCTGCGG	781
CGTGACCACC	GGCATTGGCG	CGGTGCTGAA	CACTGCCAAG	GTGGAGGAGG	GTGCTACCGT	787
GGCCATCTTC	GGCCTGGGCG	GCATCGGCTT	GGCGGCGATC	ATCGGCGCGA	AGATGGCCAA	793
GGCCTCGCGC	ATCATCGCCA	TCGACATCAA	TCCGTCCAAG	TTCGATGTGG	CTCGCGAGCT	799
GGGCGCCACT	GACTTCGTCA	ATCCGAACGA	TCACGCGAAG	CCGATCCAGG	ATGTCATCGT	805
CGAGATGACT	GATGGCGGTG	TGGACTACAG	CTTCGAGTGC	ATCGGCAACG	TTCGACTCAT	811
GCGCGCAGCA	CTCGAGTGCT	GCCACAAGGG	ctggggcgaa	TCCGTGATCA	TCGGCGTGGC	817
GCCGGCGGG	GCCGAAATCA	ACACCCGTCC	GTTCCACCTG	GTGACCGGTC	GCGTCTGGCG	823
GGGTTCGGCG	TTCGGTGGCG	TAAAGGGCCG	CACCGAACTG	CCGAGCTACG	TGGAGAAGGC	829
ACAGCAGGGC	GAGATCCCGC	TGGACACCTT	CATCACTCAC	ACCATGGGCC	TGGACGACAT	835
CAACACGGCC	TTCGACCTGA	TGGACGAAGG	GAAGAGCATC	CGCTCTGTTG	TTCAATTGAG	841
TCGCTAGTGA	AGTGGGGTGA	GGAAATTGGA	TTAGGAGGCG	GATGGTTCCT	GCCGCTTAAC	847
CACCTTGTCC	CAGCTTCTGG	CTGAGATTTC	CAAGATTCGG	TGAAATTTGC	CATGCCGCAA	853
ACTCTTGCTG	GACGGTTGAG	TCTGTTATCC	GGCACCGACG	AATTAACCCT	GCTTCTTCGG	859
GGTGGTCGGG	GCATTGAGCG	TGAAGCCTTG	CGGGTCGATG	TTCAAGGTGA	ACTGGCGCTG	865
ACGCCTCACC	CGGCGGCGCT	TGGCTCTGCG	TTGACCCATC	CGACAATTAC	TACGGATTAC	871

	GCCGACGCCC	TOCTTONOTT	ONICACIOGG	CCGGCAACCG	ATTOTOCOCA	AUCCITUOCI	0,,,
	GAGCTGGAGG	AGCTTCACCG	TTTCGTTCAT	TCGAGACTTG	AGGGGGAGTA	TCTCTGGAAT	8837
	CTGTCCATGC	CTGGCAGATT	GCCGGTTGAT	GAGCAAATCC	CGATTGCTTG	GTATGGACCA	8897
	TCAAATCCAG	GCATGTTGCG	CCACGTTTAT	CGCCGTGGCC	TAGCTCTGCG	TTATGGCAAG	8957
,	CGAATGCAAT	GCATCGCAGG	GATTCACTAC	AACTACTCAC	TGCCGCCAGA	GCTTTTCGCT	9017
	GTCCTGACCA	AGGCAGAGGT	CGGGTCTCCC	AAGTTACTGG	AGCGCCAGTC	AGCAGCTTAC	9077
	ATGCGCCAAA	TTCGCAACCT	TCGGCAATAC	GGTTGGTTGC	TGGCCTACTT	GTTCGGCGCT	9137
5	TCCCCCGCCA	TCTGCAAGAG	CTTCTTGGGG	GGCGAGAGAG	ATGAGCTAGC	TCGCATGGGG	9197
	GGCGATACGC	TTTACATGCC	CTATGCAACC	AGCTTGCGCA	TGAGTGACAT	CGGGTACCGC	9257
	AACCGTGCCA	TGGATGATCT	ATCTCCCAGC	CTGAATGATC	TGGGTGCCTA	TATTCGCGAT	9317
,	ATTTGCCGTG	CTCTTCACAC	TCCCGATGCC	CAGTACCAGG	CGCTGGGTGT	GTTTGCACAG	9377
	GGCGAGTGGC	GGCAGTTAAA	CGCCAATCTA	TTGCAGTTGG	ATAGTGAGTA	CTACGCACTG	9437
	GCGCGACCGA	AGTCAGCGCC	CGAGCGGGG	GAGCGAAACC	TGGATGCTCT	CGCTAGGCGT	9497
	GGAGTCCAGT	ATGTGGAGCT	GCGCGCACTG	GATCTCGATC	CATTCTCCCC	GTTAGGCATT	9557
	GGCCTGACCT	GCGCCAAGTT	CCTCGATGGC	TTTTTGCTTT	TCTGCTTGTT	GTCTGAGGCG	9617
,	CCGGTTGATG	ATCGAAATGC	CCAGCGTTCA	AGACCGGGAA	AATCTGAGCC	TGGCCGGCAA	9677
	GTACGGGCGT	CACCTGGCTT	AAAGCTGCAT	CGGAATGGTC	AGTCCATTCT	CCTCAAGGAT	9737
	TGGGCGCAGG	aagtgttgac	GGAGGTTCAG	GCCTGTGTGG	AATTGCTCGA	CAGTGCAAAT	9797
5	GGGGGCTCAT	CTCACGCATT	GGCTTGGTCA	GCACAGGAGG	AAAAGGTGCT	TAATCCGGAT	9857
	TGTGCGCCAT	CAGCTCAGGT	GCTCGCAGAG	ATACACAGAC	ACGGTGGGAG	CTTCACGGCA	9917
	TTTGGTCGCC	AATTAGCTAT	CGACCATGCA	AAACACTTCA	GTGCCTCCTC	GCTTGAGGCT	9977
)	GGCGTAGCCA	AAGCGCTTGA	CCTCCAGGCG	ACGTCGTCTC	TGCGCGAGCA	GCATCAATTG	10037
	GAGGCCAACG	ACCGTGCGCC	ATTTTCTGAC	TACCTTCAGC	AATTCTCCCT	GGCTTTCGGT	10097
	CAATCCGTCG	GCGCCTCTCG	TGCGCCCAAC	CCTACCGCGC	ACCTCATCGA	TCTGACCCCT	10157
,	CCTGTCTAAG	GTTGTCGTGG	GAGCAGATCC	GTGGGCCGAG	CTTCCTCCAG	GGCCTGGCCG	10217
	CAGCGATCCA	GTTGCTAGGT	CCCTATGCTC	TTGCATAGGG	TAAAAATTAG	TTATTGTGTT	10277
,	TAACGAAACG	TCTGGCATAC	TGGCTTTAGG	CACGAGCTTC	CACGCCGAAG	TTGAGAGCGT	10337
	CATGAACGAT	TTTTCGTGTG	GAGAGACGAT	GCCCGATGCG	GTCGACGAGG	TTCAGGTCCT	10397

AATGGCAGTG	CCGGCGGCTA	AACGGAACGT	GCCGTATTTT	GAGGCTTGGA	GCGTGGTGAA	10457
GCAGCTTGGC	TGCTCCCTGG	GCCTGTCAGG	ATCACGCTGT	GTCGGCAGTG	ACACTTCAAA	10517
ACAAGAAGGG	CATTAAGATG	ATGAATGTTA	ATTATAAGGC	TGTCGGGGCG	AGCCTACTCC	10577
TCGCCTTCAT	CTCTCAGGGA	GCTTGGGCAG	AGAGCCCCGC	AGCCTCTGGC	AATACCCCTG	10637
ACATTTATCG	AAAGACCTGC	ACCTACTGCC	ATGAGCCTAC	TGTCAACAAT	GGCCGGGTCA	10697
TTGCCCGAAG	CCTCGGGCCG	ACTCTGCGAG	GGCGCCAGAT	CCCTCCACAG	TACACGGAGT	10757
ACATGGTGCG	TCATGGACGC	GGGGCAATGC	CTGCATTCTC	TGAAGCAGAA	GTGCCTCCGG	10817
CGGAGCTGAA	AGTTCTGGGC	GATT GGATTC	AGCAAAGCAG	TGCTCCCAAA	GACGCTGGAG	10877
TCGCGCCATG	ACTACCCGTC	GCAACTTTCT	AATAGGCGCG	TCGCAGGTGG	GGGCATTGGT	10937
GATGATGTCG	CCGAAATTGG	TCTTCCGTAC	GCCGCTCAAG	CAGAAGCCCG	TGCGCATCCT	10997
GTCGACCGGG	CTGGCCGGTG	AGCAAGAGTT	T CACTCGATG	CTTCGCGCGC	GATTGACCCA	11057
TACGGGTCAG	GTCGACATCG	CGTCGGTACC	GCTGGACGCA	GCTATTTGGG	CTTCTCCCGC	11117
TCGACTTGCC	CAGGCAATGG	ATGCGTTGAA	TGGTACGCGT	CTGATCGCTT	TTGTTGAGCC	11177
CAGGAACGAA	TTGATACTGA	TGCAATTCTT	GATGGATCGC	GGGGCTGCGG	TGCTTATTCA	11237
AGGTGAGCAT	GCGGTGGACA	GCAAGGGGGT	CTCTCGGCAC	GACTTTCTGA	GTACCCCATC	11297
CAGTGCGGGA	ATTGGAGGG	CGCTAGCCGA	CAGCCTGGCA	AAAGGGGGCT	CGCCGTTCTC	11357
TATTTCCGTC	CGAGCGCTTG	GCTCGGTAAC	TGCTCAGCCA	AGAAGTAATC	AGAGTGAGGT	11417
GGCCACCCAC	TGGACGACCG	CTCTGGGGAC	CTATTATGCC	GATATCGCAG	TGGGGCGCTG	11477
GGAGCCGCAG	CGCGAAGTGG	CCAGCTATGG	AAGTGGACTA	ATCATGGCGG	AACGGCTTGA	11537
TCGTGTTGCC	TCAACCTTCA	TTGCAGATCT	CTGAGTCAGG	GTATTGATAT	GGAAAGCACC	11597
GTAGTTCTTC	CCGAGGGTGT	CACCCCGGAG	CAGTTCACCA	AAGCCATCAG	CGAGTTCCGT	11657
CAGGTATTGG	GTGAGGACAG	TGTTCTTGTC	ACTGCTGAAC	GAGTTGTTCC	CTATACGAAA	11717
CTCCTCATTC	CTACACAGGA	TGATGCCCAG	TACACCCCGG	CCGGTGCCTT	GACTCCTTCT	11777
TCGGTGGAGC	AGGTCCAGAA	AGTCATGGGG	ATCTGCAATA	AGTACAAGAT	CCCGGTATGG	11837
CCAATCTCTA	CCGGTCGGAA	CTGGGGGTAT	GGGTCCGCTT	CGCCTGCAAC	TCCTGGGCAG	11897
ATGATTCTTG	ACCTTCGCAA	GATGAACAAG	ATCATTGAGA	TCGATGTTGA	GGGGTGTACT	11957
GCCCTGCTCG	AGCCGGGCGT	TACCTACCAG	CAGCTTCACG	ATTACATCAA	GGAGCACAAT	12017
CTGCCCTTGA	TGCTGGATGT	GCCGACTATT	GGGCCTATGG	TTGGCCCGGT	GGGTAACACG	12077

55

CIGGAICGAG	GCGITGGTTA	TACGCCGTAC	GGCGAGCACT	TCATGATGCA	GIGIGGIAIG	1213
GAAGTCGTCA	TGGCCGATGG	CGAAATCCTC	CGTACTGGTA	TGGGCTCGGT	GCCCAAAGCC	1219
AAGACTTGGC	AGGCATTCAA	ATGGGGCTAT	GGTCCATATC	TGGACGGTAT	CTTTACCCAG	1225
TCCAACTTTG	GTGTTGTGAC	AAAGCTCGGG	ATTTGGTTGA	TGCCCAAGCC	GCCAGTGATC	1231
AAGTCGTTTA	TGATCCGTTA	TCCCAATGAA	GCTGATGTGG	TTAAGGCAAT	TGATGCTTTT	1237
CGCCCGCTGC	GTATTACTCA	GCTGATTCCT	AACGTCGTTT	TGTTCATGCA	CGGCATGTAC	1243
GAAACGGCAA	TCTGCCGGAC	GCGTGCTGAG	GTTACTTCGG	ACCCAGGTCC	TATTTCTGAA	1249
GCGGACGCCC	GCAAAGCATT	CAAAGAGCTA	GGCGTTGGCT	ACTGGAACGT	TTACTTCGCG	1255
CTTTACGGCA	CAGAAGAGCA	GATAGCCGTC	aatgaaaaga	TCGTCCGCGG	CATCCTCGAA	1261
CCGACGGGG	GTGAGATCCT	CACCGAAGAG	GAGGCTGGAG	ATAACATTCT	TTTCCATCAC	1267
CATAAGCAGC	TCATGAACGG	CGAGATGACA	TTGGAGGAAA	TGAATATCTA	CCAGTGGCGC	1273
GGAGCAGGTG	GCGGTGCTTG	CTGGTTTGCA	CCGGTTGCTC	AGGTCAAGGG	GCATGAGGCA	1279
GAGCAGCAGG	TCAAGCTTGC	TCAGAAGGTG	CTTGCAAAGC	ATGGGTTCGA	TTACACGGCG	1285
GGCTTTGCGA	TTGGTTGGCG	CGATCTTCAC	CATGTGATCG	ATGTGCTGTA	CGACCGTAGC	1291
AATGCCGACG	AGAAAAAGCG	CGCTTACGCT	TGCTTTGATG	AATTGATCGA	CGTCTTTGCG	1297
GCCGAAGGCT	TTGCAAGTTA	CAGGACCAAT	ATTGCCTTTA	TGGACAAAGT	CGCCTCTAAG	1303
TTCGGCGCTG	AGAATAAGAG	GGTCAATCAG	AAGATCAAGG	CTGCCCTTGA	TCCAAACGGC	1309
ATCATCGCTC	CCGGCAAGTC	GGGCATTCAT	CTTCCCAAAT	AATGCGTGTT	CGTGAGGCGG	1315
CTGCTAGCCG	CCTCATTTGA	AGAAAGAGTC	GTATCGGCGA	TGCATGATGC	GTCGTTCGCT	1321
CTCGGCTGTT	GATTCTTCGA	AAGAAGCGTA	TGGGGGGGGA	ATGATTGCAA	TCACTGCGGG	1327
CACCGGAAGT	CTTGGTCGGG	CTATCGTTGA	GCGACTAGGG	GACTGCGGTC	TTATCGGTCA	1333
AGTTCGATTG	ACGGCTCGCG	ATCCTAAAAG	GCTTCGTGCC	GCTGCCGAGG	AAGGGTTTCA	1339
GGTCGCTAAG	GCGGATTACG	CCGATATTGG	GAGTCTTGAC	CAGGCATTAC	AGGGGGTAGA	1345
CGTATTACTC	CTGATTTCTG	GTACTGCACC	CAATGAAATA	AGGATCCAAC	AGCATAAGTC	1351
GGTCATCGAC	GCGGCAAAAC	GAAACGGCGT	GTCGCGTATT	GTGTATACCA	GCTTCATAAA	1357
TCCAAGTACT	CGCAGCAGGT	CTATTTGGGC	CTCCATTCAT	CGTGAAACTG	AGACTTACCT	1363
CAGGCAGTCT	GGGGTGAAGT	TTACGATTGT	CCGAAATAAT	CAGTATGCGT	CTAACCTGGA	1369
TCTCTTCCTC	CTCACCCCTC	Anchereces	namerecc.	herececeses	CCDDCCCCCC	1275

-

GGTGGCGTAC	GTCTCTCATC	GCGACGTTGC	CGCTGCCATC	TGTAGTGTCC	TGACGACCGC	1381
CGGACACGAT	AACAGGATCT	ACCAGCTCAC	AGGCTCTGAG	GCTCTCAATG	GGCTCGAGAT	1387
CGCGGAGATT	CTTGGTGGG	TGCTCGGGCG	TCCAGTGCGC	GCGATGGATG	CCTCGCCTGA	1393
CGAGTTTGCT	GCCAGCTTTC	GCGAGGCTGG	ATTCCCTGAG	TTTATGGTTG	AAGGCCTACT	1399
AAGCATTTAT	GCCGCTTCAG	GTGCTGGGGA	GTACCAATCC	GTCAGTCCTG	ATGTTGGGTT	1405
GTTGACGGGA	CGACGTGCCG	AATCGATGCG	AACTTACATA	CAGCGTCTAG	TTTGGCCTTG	1411
AGGGAGGTGA	CCGACGTATG	AAGGCTTATG	AGCTTCACAA	GATTTCGGAA	CAGGTAGAGG	1417
TCAGGCTCCA	GCCAACTCGG	ccccccccc	AGTTGAATCA	TGGCGAGGTC	CTCATCAGGG	1423
TCCATGCAGC	CTCGCTCAAC	TTTCGCGATT	TGATGATCTT	GGCCGGTCGC	TATCCGGGTC	1429
AAATGAAACC	CGATGTGATC	CCGCTGTCCG	ATGGTGCTGG	CGAGATTGTG	GAGGTCGGGC	1435
CTGGCGTATC	TTCGGAGGTG	CAGGGTCAGC	GCGTAGCCAG	CACCTTTTTC	CCTAACTGGC	1441
GGGCCGGAAA	GATTACCGAG	CCGGCTATTG	AGGTGTCGTT	GGGCTTCGGT	ATGGACGGGA	1447
TGCTCGCGGA	ATACGTTGCT	CTGCCCTATG	AGGCAACGAT	ACCGATACCG	GAGCACCTGT	1453
CGTACGAGGA	GGCTGCAACA	TTGCCTTGCG	CGGCGCTAAC	CGCTTGGAAT	GCGTTGACCG	1459
AAGTGGGGCG	TGTCAAGGCC	GGTGATACGG	TCTTGTTGCT	TGGCACTGGC	GGTGTCTCGA	1465
TGTTCGCGTT	GCAGTTCGCC	AAGCTCTTGG	GGGCGACGGT	CATTCACACC	TCGAGCAGTG	1471
AACAAAAGCT	GGAGAGGGTG	AAAGCGATGG	GGGCTGATCA	TCTGATCAAC	TACCGCAATT	1477
CGCCAGGGTG	GGACCGTACT	GTCCTGGATC	TCACCGCGGG	GCGAGGGGTT	GACCTGGTAG	1483
TCGAGGTAGG	GGGGCGGG	ACCTTGGAGC	GCTCACTTCG	TGCGGTCAAG	GTAGGCGGTA	1489
TTGTCGCCAC	GATTGGGCTA	GTGGCTGGCG	TTGGCCCGAT	TGACCCATTG	CCGCTTATCT	1495
CCAGGGCTAT	TCAGCTCTCG	GGCGTCTATG	TCGGTTCCCG	GGAAATGTTT	CTCTCAATGA	1501
ACAAAGCCAT	TGCATCAGCC	GAAATCAAGC	CAGTGATCGA	TTGCTGCTTC	CCCATCGACG	1507
AGGTTGGAGA	TGCTTATGAG	TACATGCGTA	GCGGCAATCA	CCTTGGCAAA	GTAGTTATCA	1513
CGATCTAACT	GCCGCTAAAC	CCGTTGTGCG	GCAATTTGCG	GGAGCTAGTA	CCGGGCTTTC	1519
GGTTTGGCTC	TTGGATGGTC	TTCGCATGCA	CGCTTTACGA	AGGGGCCAG	GGACAGACGC	1525
cccgggcgT	AATCAATGGC	CTTGCGTGCA	GGCTCTCACC	GTCGTGATCG	GGATTGGAAA	1531
TTCGTGCGAG	GACAGCGGCC	ACGTACCGGC	GCCCTGAAGG	GCTGGAAGGT	TGGAGTTTCG	1537
TTAAGGTCTG	GTACCCAGCA	GCCATGGAGA	GCGGCCCTTA	GCCGGAATGG	CAGCTTGATG	1543

••

GTTGCCACGG	GACCAGACTG	GATGTCTTGA	GTGTCGAGAA	TTACCAGATC	GCTGCGATTT	1549
TCATCGAGGC	GACCAACCAC	GGTCAGCAAG	TACCCGTCAC	CTTCGGCGGC	GGTCGGACTT	1555
CTAGGGACGA	AGGCCGGCTC	CTGGGCCGCC	GAGGCTTCGC	CGGAGTACCA	GAGGTCGTAG	1561
TCACCTCGGT	GGTTGTCCCA	GATGCCGAGT	GAGTTGTACG	CGAATATCTT	CTCGGCCTGC	1567
TGATGCGCAA	GTGGTTTGCG	TGGATCGTCC	ACCCCCATAA	AGCCATAGCG	GTTGCATTGC	1573
AGGGCGAACG	AAGAATCCAT	GATTGGCATT	TCCGCAAAGA	aatcgtgtag	CCGGGTTCGC	1579
TTGATCTCGT	CGCTGCTGCT	ATCGAGGTCA	ATTTCCCAAC	GAGTCAGGCG	TGGTACGGCT	1585
TTCTCAGGGG	CGAAGGGTTG	GTTTTGTGAG	TTGGGGAAGG	GGAACGGCAG	GATTTCACTT	1591
TCCATAAGGT	CGATATAAAT	CTTGGTTCCG	ACTTCCCAAG	CATTCACAAC	ATGAAATACC	1597
CAGAGCGCCG	GTGCCTTGAG	CCAGCGAATC	AGACTGCCCT	GGCGCGGCGC	GAGTACGCCA	1603
ATGTAGCTGC	CCAGTTCCGG	CTCCCACATA	TAAATTGGCT	GTTTCGCCTT	GAGGCGGGAC	1609
AGGCTGTTGG	TGGCCGGCAT	aattgggaaa	ATGGACCAAT	TTCGGGTAAT	GGCAAAGTCG	1615
TGCATGAATG	CGCCATAGGG	CTGCTCAAAC	CAAGTTTCAT	GTGTCACCTT	GCCGTGCTTG	1621
TCGACAATGT	AATAGGCCAT	GTCTGGAGTT	GCTTCGCCCT	TAGCTGCCGA	ACCGAAGAAC	1627
AACAAGTCAC	CCGTTTCCGG	GTCATATTTT	GGATGGGCGG	TGTGGGTTTG	GCTGGTAACT	1633
TGGCCGTCGT	AGTCGAAGTG	TCCGCGAGTT	TCAAGTGTAC	GAGGATCCAG	TTCGTACGGT	1639
AGGCCGTCTT	CCTTCACCGC	CAGCACCTTG	CCGTGATGGC	TAATGATGCT	TGTATTGGCA	1645
ACGGTGCGGT	CTAGTCCTTT	TACACTGGTG	TCGTCGGTAT	AGGGGTTTCT	GTACATGCCA	1651
AATAGCGATT	TTCGCGCTAG	TCGTTCGGCC	GTGAATCGAG	CGGTTTTAAC	CCAGCGACTG	1657
ATGAAGTCGA	CATGACCATC	TTCGAAGTGG	AAGGCAGAGG	CCATTCCATC	TCCATCTATG	1663
AAGGTGTGGA	ATTTTTGTGG	GGTAACTTGA	GGCTCTGGCG	TATTACGGTA	GAACGTTCCA	1669
TTTATTGATT	TTGGGATTTC	GCCGTCAACC	TCTAGATCGA	ACAAGTCTGC	CTCTATACGG	1675
GTGGGGAGAA	GTGTTCCTAC	TAATTGCGGG	TCGTTGCGGT	TGAATCTCGC	CATGGCACGG	1681
TCTCCTTTGT	TGTTCTGAAT	GGCCTAAATG	CGCGGCTTGC	CGGGTTGGAG	TTTATGTTTA	1687
GGACTGACCG	GATTTCATGT	GTGCCGGTGA	AGTGAAGATG	TCTGTGAGTG	CARTGGTGGT	1693
GGTATTGAAA	ATGGGCCGAG	GCTGGCCTAT	TGTTTAGAAT	TTCAAGAATG	ACAACTATTC	1699
GGTGGCGGCG	TATGTCCATT	CACTCTGAGG	GGATCACTCT	CGCGGATTCG	CCGCTGCATT	1705
CCCCCCTTTC	CCTCDDTCCD	TCARTCCCTA	CTCDTTTCCD	NGTCCNGCCT	CTTCTCCCCC	1711

GTAGAGGTGC	CTCCCTTGCC	CGATCTAGAT	TTGGCGCGGG	TGAGCTGTAC	AGTGCCATTG	1717
CACCAAGCCA	GGTACTTCGC	CACTTCAACG	ACCAGCGAAA	TGCTGATGAG	GCTGAGCACA	1723
GCTATTTGAT	TCAGATACGA	AGTGGCGCTT	TGGGCGTTGC	ATCCGGCGGA	AGAAAGGTGA	1729
TCTTGGCAAA	TGGTGATTGC	TCCATAGTTG	ATAGTCGCCA	AGACTT CACA	CTTTCCTCGA	1735
ACTCTTCGAC	CCAAGGTGTC	GTAATACGCT	TTCCGGTGAG	TTGGCTGGGA	GCGTGGGTGT	1741
CCAATCCGGA	GGATCTTATC	GCCCGACGAG	TTGATGCTGA	GGTAGGGTGG	GGTAGGGCGC	1747
TAAGCGCATC	GGTTTCTAAT	CTAGATCCAT	TGCGCATCGA	CGATTTAGGT	AGCAATGTAA	1753
ATGGCATTGC	AGAGCATGTT	GCTATGTTAA	TTTCACTAGC	AAGTTCTGCG	GTTAGTTCTG	1759
AAGATGGGGG	TGTGGCTCTT	CGGAAAATGA	GGGAAGTGAA	GAGAGTACTC	GAGCAGAGTT	1765
TCGCAGACGC	TAATCTCGGG	CCGGAAAGTG	TTTCAAGTCA	ATTAGGAATT	TCGAAACGCT	1771
ATTTGCATTA	TGTCTTTGCT	GCGTGCGGTA	CGACCTTTGG	TCGCGAGCTG	TTGGAAATAC	1777
GCCTGGGCAA	AGCTTATCGA	ATGCTCTGTG	CGGCGAGTGA	CTCGGGTGCT	GTGCTGAAGG	1783
TGGCCATGTC	CTCAGGTTTT	TCGGATTCAA	GCCATTTCAG	CAAGAAATTT	AAGGAAAGAT	1789
ACGGTGTTTC	GCCTGTCTCC	TTGGTGAGGC	AGGCTTGATT	TCCCATAGCG	TTATTGCGGT	1795
CGTCGTTGCA	AATGCGGACC	TGCGTGATCA	TCAAGGCTAA	GACTGCCACA	TTAGGTGTCG	1801
ACTCGAGCGT	CCCTCTATCC	GCCTGACCGC	GCTCCGTCCC	TAGTACCTAG	GAAATTGAGT	1807
GGGCCTACTT	GCCAGGGCCA	GTTGGATT CG	GTGCTGGTGA	GCGCTGCGGG	TGACAGAATC	1813
CTGATCGTGG	CGATCACGAT	GGCGATAAAG	TTGCCCGGTG	TCGTAGATCG	CAGGGTGACC	1819
AAGACGGGGA	CTCATGGCGC	GGATCCCGCC	AGTGATGCCT	TCGCATGACG	CCACCTCTCT	1825
CCTCCGCTCA	GCCTTCATGC	CTGACTAATT	aagtcgtata	TCAATCTGGC	TCTGTGCCGC	1831
ATTCAGTTCC	TCCAGCTGCA	TTGTCTCTCG	GCGGGAGGGC	ATTCCCCTGC	ATTGGCCAAA	1837
TGGGTCCCCT	TGTTCACGAC	CGGACAAGCG	CACCGTGCTG	CCCGTTCGTC	GTGTGCCCTG	1843
TCAAAAAGCC	TGGCGACGAA	AGGGCGGCAG	GCCGCATGGC	CACGGCTGGG	CGGTAACTGA	1849
TGCTTGCGTT	AATCGTTAAC	CGTTTGAAAT	TCCTTGCCAA	ATTTCGGCGA	GAGAATCATG	1855
CGGGTACGCC	TTTCCGTGCG	CTTTGATCTG	CGCTTCCGTG	CCTTGAATCA	GAAAAATAGT	1861
TAATTGACAG	AACTATAGGT	TCGCAGTAGC	TTTTGCTCAC	CCACCAAATC	CACAGCACTG	1867
GGGTGCACGA	TGAATAGCTA	CGATGGCCGT	TGGTCTACCG	TTGATGTGAA	GGTTGAAGAA	1873
GGTATCGCTT	GGGTCACGCT	GAACCGCCCG	GAGAAGCGCA	ACGCAATGAG	CCCAACTCTC	1879

	AATCGAGAGA	TGGTCGAGGT	TCTGGAGGTG	CTGGAGCAGG	ACGCAGATGC	TCGCGTGCTT	1885
5	GTTCTGACTG	GTGCAGGCGA	ATCCTGGACC	GCGGGCATGG	ACCTGAAGGA	GTATTTCCGC	1891
	GAGACCGATG	CTGGCCCCGA	aattctgcaa	GAGAAGATTC	GTCGCGAAGC	GTCGACCTGG	1897
	CAGTGGAAGC	TCCTGCGGAT	GTACACCAAG	CCGACCATCG	CGATGGTCAA	TGGCTGGTGC	1903
10	TTCGGCGGCG	GCTTCAGCCC	GCTGGTGGCC	TGTGATCTGG	CCATCTGTGC	CGACGAGGCC	1909
	ACCTTTGGCC	TGTCCGAGAT	CAACTGGGGC	ATCCCGCCGG	GCAACCTGGT	GAGTAAGGCT	1915
	ATGGCCGACA	CCGTGGGTCA	CCGCGAGTCC	CTTTACTACA	TCATGACTGG	CAAGACATTT	1921
15	GGCGGTCAGC	AGGCCGCCAA	GATGGGGCTT	GTGAACCAGA	GTGTTCCGCT	GGCCGAGCTG	1927
	CGCAGTGTCA	CTGTAGAGCT	GGCTCAGAAC	CTGCTGGACA	AGAACCCCGT	AGTGCTGCGT	1933
20	GCCGCCAAAA	TAGGCTTCAA	GCGTTGCCGC	GAGCTGACTT	GGGAGCAGAA	CGAGGACTAC	1939
.0	CTGTACGCCA	AGCTCGACCA	ATCCCGTTTG	CTCGATCCGG	AAGGCGGTCG	CGAGCAGGGC	1945
	ATGAAGCAGT	TCCTTGACGA	GAAAAGCATC	AAGCCGGGCT	TGCAGACCTA	CAAGCGCTGA	1951
?5	TAAATGCGCC	GGGGCCCTCG	CTGCGCCCCC	GGCCTTCCAA	TAATGACAAT	AATGAGGAGT	1957
	GCCCAATGTT	TCACGTGCCC	CTGCTTATTG	GTGGTAAGCC	TTGTTCAGCA	TCTGATGAGC	1963
	GCACCTTCGA	GCGTCGTAGC	CCGCTGACCG	GAGAAGTGGT	ATCGCGCGTC	GCTGCTGCCA	1969
30	GTTTGGAAGA	TGCGGACGCC	GCAGTGGCCG	CTGCACAGGC	TGCGTTTCCT	GAATGGGCGG	1975
	CGCTTGCTCC	GAGCGAACGC	CGTGCCCGAC	TGCTGCGAGC	GGCGGATCTT	CTAGAGGACC	1981
	GTTCTTCCGA	GTTCACCGCC	GCAGCGAGTG	AAACTGGCGC	AGCGGGAAAC	TGGTATGGGT	1987
35	TTAACGTTTA	CCTGGCGGCG	GGCATGTTGC	GGGAAGCCGC	GGCCATGACC	ACACAGATTC	1993
	AGGGC GATGT	CATTCCGTCC	AATGTGCCCG	GTAGCTTTGC	CATGGCGGTT	CGACAGCCAT	1999
10	GTGGCGTGGT	GCTCGGTATT	GCGCCTTGGA	ATGCTCCGGT	AATCCTTGGC	GTACGGGCTG	2005
	TTGCGATGCC	GTTGGCATGC	GGCAATACCG	TGGTGTTGAA	AAGCTCTGAG	CTGAGTCCCT	2011
	TTACCCATCG	CCTGATTGGT	CAGGTGTTGC	ATGATGCTGG	TCTGGGGGAT	GGCGTGGTGA	2017
4 5	ATGTCATCAG	CAATGCCCCG	CAAGACGCTC	CTGCGGTGGT	GGAGCGACTG	ATTGCAAATC	2023
	CTGCGGTACG	TCGAGTGAAC	TTCACCGGTT	CGACCCACGT	TGGACGGATC	ATTGGTGAGC	2029
	TGTCTGCGCG	TCATCTGAAG	CCTGCTGTGC	TGGAATTAGG	TGGTAAGGCT	CCGTTCTTGG	2035
50 .	TCTTGGACGA	TGCCGACCTC	GATGCGGCGG	TCGAAGCGGC	GGCCTTTGGT	GCCTACTTCA	2041
	ATCAGGGTCA	AATCTGCATG	TCCACTGAGC	GTCTGATTGT	GACAGCAGTC	GCAGACGCCT	2047

TTGTTGAAAA	GCTGGCGAGG	AAGGTCGCCA	CACTGCGTGC	TGGCGATCCT	AATGATCCGC	2053
AATCGGTCTT	GGGTTCGTTG	ATTGATGCCA	ATGCAGGTCA	ACGCATCCAG	GTTCTGGTCG	2059
ATGATGCGCT	CGCAAAAGGC	GCGCGGCAGG	TCGTCGGTGG	TGGCTTAGAT	GGCAGCATCA	2065
TGCAGCCGAT	GCTGCTTGAT	CAGGTCACTG	AAGAGATGCG	GCTCTACCGT	GAGGAGTCCT	2071
TTGGCCCTGT	TGCCGTTGTC	TTGCGCGGCG	ATGGTGATGA	AGAACTGCTG	CGTCTTGCCA	2077
ACGATTCGGA	GTTTGGTCTT	TCGGCCGCCA	TTTTCAGCCG	TGACGTCTCG	CGCGCAATGG	2083
AATTGGCCCA	GCGCGTCGAT	TCGGGCATTT	GCCATATCAA	TGGACCGACT	GTGCATGACG	2089
AGGCTCAGAT	GCCATTCGGT	GGGGTGAAGT	CCAGCGGCTA	CGGCAGCTTC	GGCAGTCGAG	2095
CATCGATTGA	GCACTTTACC	CAGCTGCGCT	GGCTGACCAT	TCAGAATGGC	CCGCGGCACT	2101
ATCCAATCTA	AATCGATCTT	CGGCGCCGC	GGGCATCATG	ccccccccc	TCGCCTCATT	2107
TCAATCTCTA	ACTTGATAAA	AACAGAGCTG	TTCTCCGGTC	TTGGTGGATC	AAGGCCAGTC	21137
GCGGAGAGTC	TCGAAGAGGA	GAGTACAGTG	AACGCCGAGT	CCACATTGCA	ACCGCAGGCA	21197
TCATCATGCT	CTGCTCAGCC	ACGCTACCGC	AGTGTGTCGA	TTGGTCATCC	TCCGGTTGAG	2125
GTTACGCAAG	ACGCTGGAGG	TATTGTCCGG	ATGCGTTCTC	TCGAGGCGCT	TCTTCCCTTC	21317
CCGGGTCGAA	TTCTTGAGCG	TCTCGAGCAT	TGGGCTAAGA	CCCGTCCAGA	ACAAACCTGC	21377
GTTGCTGCCA	GGGCGGCAAA	TGGGGAATGG	CGTCGTATCA	GCTACGCGGA	AATGTTCCAC	2143
aacgtccgcg	CCATCGCACA	GAGCTTGCTT	CCTTACGGAC	TATCGGCAGA	GCGTCCGCTG	21497
CTTATCGTCT	CTGGAAATGA	CCTGGAACAT	CTTCAGCTGG	CATTTGGGGC	TATGTATGCG	21557
GGCATTCCCT	ATTGCCCGGT	GTCTCCTGCT	TATTCACTGC	TGTCGCAAGA	TTTGGCGAAG	21617
CTGCGTCACA	TCGTAGGTCT	TCTGCAACCG	GGACTGGTCT	TTGCTGCCGA	TGCAGCACCT	21677
TTCCAGCGCG	CAATTGAGAC	CATTCTGCCG	GACGACGTGC	CCGCAATCTT	CACTCGAGGC	21737
GAATTGGCCG	GGCGGCGCAC	GGTGAGTTTT	GACAGCCTGC	TGGAGCAGCC	TGGTGGGATT	21797
GAGGCAGATA	ATGCCTTTGC	GGCAACTGGC	CCCGATACGA	TTGCCAAGTT	CTTGTTCACT	21857
TCTGGCTCTA	CCAAACTGCC	TAAGGCGGTG	CCGACTACTC	AGCGAATGCT	CTGCGCCAAT	21917
CAGCAGATGC	TTCTGCAAAC	TTTCCCGGTT	TTTGGTGAAG	AGCCGCCGGT	GCTGGTGGAC	21977
TGGTTGCCGT	GGAACCACAC	CTTCGGCGGC	AGCCACAACA	TCGGCATCGT	GTTGTACAAC	22037
GGCGGCACGT	ACTACCTTGA	CGACGGTAAA	CCAACCGCCC	AAGGGTTCGC	CGAGACGCTT	22097
CCCDBCCDCD	COCREROGO	maaaaaaaa	macamaaama			

TTAGTGGGTG	CCCTTGAGCG	AGACAGTACC	CTGCGCGAAC	GCTTCTTCGC	TCGCATGAAG	2221
CTGTTCTTCT	TCGCGGCGGC	TGGGTTGTCG	CAAGGGATCT	GGGATCGTTT	GGACCGGGTC	2227
GCTGAACAGC	actgtggtga	GCGCATTCGC	ATGATGGCGG	GTCTGGGCAT	GACGGAGACT	2233
GCTCCTTCCT	GCACTTTTAC	CACCGGACCG	CTGTCGATGG	CTGGTTACAT	TGGGCTGCCA	2239
GCGCCTGGCT	GCGAGGTCAA	G CTCG T TCCG	GTCGATGGGA	AATTGGAAGG	GCGTTTCCAT	2245
GGTCCGCACG	TCATGAGCGG	CTACTGGCGT	GCTCCTGAAC	AAAATGCCCA	AGCGTTCGAC	2251
GAGGAAGGCT	ATTACTGCTC	CGGTGATGCC	ATCAAATTGG	CAGATCCTGC	CGATCCTCAG	2257
AAAGGTCTGA	TGTTTGACGG	TCGAATTGCT	GAAGACTTCA	AGCTGTCCTC	AGGGGTATTT	2263
GTCAGCGTTG	GGCCATTGCG	CACGCGGGCG	GTTCTGGAAG	GCGGCTCTTA	CGTCCTGGAC	2269
GTAGTGGTTG	CTGCTCCTGA	TCGTGAATGC	CTTGGATTGC	TCGTGTTTCC	GCGTCTTCTC	2275
GACTGCCGTG	CCTTGTCGGG	GCTAGGAAAA	GAGGCGTCGG	ACGCCGAGGT	GCTTGCCAGT	2281
GAGCCGGTTC	GGGCCTGGTT	TGCTGACTGG	CTCAAACGAC	TCAATCGAGA	AGCAACTGGC	2287
AATGCCAGTC	GCATCATGTG	GGTAGGGCTC	CTCGATACGC	CGCCGTCGAT	TGATAAGGC	2293
GAGGTCACTG	ACAAGGGCTC	GATCAACCAG	CGCGCTGTTT	TGCAATGGCG	GTCGGCGAAA	2299
GTTGATGCGC	TGTATCGTGG	TGAAGATCAA	TCCATGCTGC	GTGACGAGGC	CACACTGTGA	2305
GTTGGTCAGG	GGGGGCTTAC	TCGGCGTTTT	CCGACACTGC	GTTGGTTGCG	GCAGTGCGCA	2311
CCCCCTGGAT	TGATTGCGGG	GGTGCCCTGT	CGCTGGTGTC	GCCTATCGAC	TTAGGGGTAA	2317
AGGTCGCTCG	CGAAGTTCTG	ATGCGTGCGT	CGCTTGAACC	ACAAATGGTC	GATAGCGTAC	2323
TCGCAGGCTC	TATGGCTCAA	GCAAGCTTTG	ATGCTTACCT	GCTCCCGCGG	CACATTGGCT	2329
TGTACAGCGG	TGTTCCCAAG	TCGGTTCCGG	CCTTGGGGGT	GCAGCGCATT	TGCGGCACAG	2335
GCTTCGAACT	GCTTCGGCAG	GCCGGCGAGC	AGATTTCCCA	AGGCGCTGAT	CACGTGCTGT	2341
GTGTCGCGGC	AGAGTCCATG	TCGCGTAACC	CCATCGCGTC	GTATACACAC	CGGGGCGGGT	2347
TCCGCCTCGG	TGCGCCCGTT	GAGTTCAAGG	ATTTTTTGTG	GGAGGCATTG	TTTGATCCTG	2353
CTCCAGGACT	CGACATGATC	GCTACCGCAG	AAAACCTGGC	GCGCCTGTAC	GGAATCACCA	2359
GGGGAGAAGC	TAATTCCTAC	GCGGTAAGCA	GCTTCGAGCG	CGCATTGAGG	GCGCAAGAGG	2365
AGAAATGGAT	TGACCAAGAG	ATCGTGGCTG	TTACGGATGA	ACAGTTCGAT	TTAGAGGGCT	2371
ACAACAGTCG	AGCAATTGAA	CTGCCTCGGA	AGGCAAAATT	GTTGATCGTG	ACAGTCATCC	2377
GCGGCCTAGC	AGTCTTTGAA	GCCCTTTCCC	GATTGAAGCC	TGTTCATTCT	GGCGGGGTGC	2383

AGACTGCGGG	CAACAGCTGT	GCCGTAGTGG	ACGGCGCCGC	GGCGGCTTTG	GTGGCTCGAG	23897
AGTCGTCTGC	GACACAGCCG	GTCTTGGCTA	GGATACTGGC	TACCTCCGTA	GTCGGGATCG	23957
AGCCCGAGCA	TATGGGGCTC	GGCCCTGCGC	CCGCGATTCG	CCTGCTGCTT	GCGCGTAGTG	24017
ATCTTAGTTT	GAGGGATATC	GACCTCTTTG	AGATAAACGA	GGCGCAGGCC	GCCCAAGTTC	24077
TAGCGGTACA	GCATGAATTG	ggtattgagc	ACTCAAAACT	TAATATTTGG	GGCGGGGCCA	24137
TTGCACTTGG	ACACCCGCTT	GCCGCGACCG	GATTGCGTCT	CTGCATGACC	CTCGCTCACC	24197
aattgcaagc	TAATAACTTT	CGATATGGAA	TTGCCTCGGC	ATGCATTGGT	GGGGGACAGG	24257
GGATGGCGGT	TCTTTTAGAG	AATCCCCACT	TCGGTTCGTC	CTCTGCACGA	AGTTCGATGA	24317
TTAACAGAGT	TGACCACTAT	CCACTGAGCT	AACGGGCATC	TCCTTTGTTG	CTTTGAGGTG	24377
GCGCACGAAG	GAGGGCTCGA	AAATCTCTGC	TAAAAACAAG	AAGAAGGAAC	AGGGAACATG	24437
ATTAGTTTCG	CTCGTATGGC	AGAAAGTTTA	GGAGTCCAGG	CTAAACTTGC	CCTTGCCTTC	24497
GCACTCGTAT	TATGTGTCGG	GCTGATTGTT	ACCGGCACGG	GTTTCTACAG	TGTACATACC	24557
TTGTCAGGGT	TGGTGGAAAA	GAGCGCGATA	GCTGGTGAGT	TGCGGGCGAA	AATTCAGGAA	24617
CTGAAGGTTC	TGGAGCAGCG	CGCCTTATTC	ATCGCCGATG	AAGGGTCGCT	GAAGCAGCGC	24677
TCGATCCTCC	TAAGTCAGGT	GATAGCTGAA	GTTAATGATG	CTATAGATAT	TTTTGACTTT	24737
CAGCGCGGAC	GATCTGAGTT	ACTTAAATTC	GCTGCTTCTT	CGCGCGAAGC	AAGTTACTCC	24797
ATTGAGGTCG	GTAGTAACGC	TGCGGCCGAT	AAGTTGCAGT	CGGGCGAACC	AAGTGACGCA	24857
TTGATGGTTG	CCGATAAAAA	GCTGAATGTT	GAGTATGAGC	AATTGAGTTC	TGCTGTGAAT	24917
GCACTGATGG	GGCATTTAAT	TGAGGATCAG	aatgaaaaag	TTCCACTAAT	CTACTATATG	24977
CTTGGCGGCG	TAACTTTGTT	TACGATGCTC	ATGAGTGCTT	ATTCGGTCTG	GTTCATTTCG	25037
CGTCAGTTAG	TTCCGCCATT	AAAGTCGACG	GTGCAGCTTG	CCGAGCGGAT	TGCATCAGGC	25097
GACTTGGCTG	ATGTCGGGGA	CAGCAGGCGC	aaggatgaaa	TCGGTCAGTT	GCAAAGTGCA	25157
ACTAGGCGGA	TGGCGATTGG	ACTGCGTAAT	CTGGTCGGTG	ATATTGGTCA	AAGTCGTGCG	25217
CAACTGGTTT	CATCGTCCAG	CGACCTTTCG	GCCATCTGTG	CTCAGGCTCA	GATTGATGTC	25277
GAGTGCCAGA	AGCTTTCGGT	CGCCCAGGTC	TCTACCGCCG	TGAACGAGTT	GGTTGAAACC	25337
GTCCAGGCAA	TAGCAAAAAG	CACCGAAGAG	GCAGCAACAG	TCGCCGTCTT	GGCCGATGAA	25397
AAGGCACGCG	GTGGTGAAAG	TGTCGTTAAC	AAGGCCGTTG	ATTTCATTGA	GCACCTCTCC	25457
GGAGATATGG	CGGAACTGGG	AGACGCAATG	GAGCGGCTTC	AGAACGACAG	TGCGCAGATC	25517

28

15

AATAAGGTAG	TAGACGTCAT	TAAGGCTGTG	GCGGAGCAGA	CCAATCTGCT	AGCCCTGAAT	2557
GCGGCGATAG	AGGCGGCCCG	TGCAGGAGAG	CAGGGCAGGG	GCTTTGCGGT	CGTGGCGGAT	2563
GAGGTTCGTG	CTTTGGCGAT	GCGCACCCAA	CARTCGACCA	aagaaattga	GAGGCTAGTG	2569
GTTTCATTGC	AGCAGGGAAG	TGAAGCTGCG	GGCGAGTTGA	TGCGGCGTGG	CAAGGTCCGG	2575
ACGCATGACG	TCGTTGGATT	GGCCCAGCAA	GCCGCGCCC	GCGCTACTCG	AAATTACCCA	2581
GCTGTCGCCG	GCATCCAAGC	GATGAACTAT	CAGATCGCCG	CTGGAGCAGA	GCAGCAAGGG	2587
GCTGCTGTGG	TTCAAATCAA	CCAGAATATG	CTTGAAGTGC	ATAAGATGGC	TGACGAGTCC	2593
GCCATTAAAG	CGGGACAGAC	CATGAAGTCA	TCGAAGGAGC	TTGCTCACCT	CGGCAGTGCG	2599
CTACAAAAAT	CCGTTGATCG	ATTCCAGCTG	TAGCGCTCCG	GGTGGCTGAA	ACGCGCATTT	2605
TCGTTAAGGT	CTTCAGCGCG	GTCTGCTGGT	GCGTGGGCCG	CTAGCCTAAC	TGTTGCGCTT	2611
CAGGCTCCGC	ATGGATCTTG	TGCAGCAGCA	ATAGCAATTG	TTCACGTTCG	TCATCACTCA	2617
GCATCGACGT	CGCGTCTTGG	TCGCTCTGTA	CCACGATCTT	CTTCAGCTCT	TTGAGCTGCG	2623
TCTCCCCAGC	TTTGCTGAGA	AATATCCCAT	AGGAACGCTT	GTCCGGCTTG	CAGCGCACGC	2629
GCACAGCAAG	GCCGAGCTTC	TCGAGCTTGT	TCAGCAAGGG	AACCAGTTGT	GGTGGTTCGA	2635
TTGCGAGCAT	CCGCGCTAGG	TCAGCCTGCA	TAAGCCCAGG	GCTCGCTTCG	ATGATTAGAA	2641
GTGCCGACAG	CTGCGCCGGG	CGTAGGTCAT	ATGGCGTCAG	GGCTTCAATC	AGGCCCTGAG	2647
CGAGCTTCAG	CTGTGAGCCG	GCGTAAGGCA	TAGCCAATCA	ATTGATTCAG	GAGCGTATCG	2653
CCCGGTTCTA	TCAGCGGGCC	GCTTTCGAAA	GTCATGGTGT	TAGCCGGTAG	GGTCTTTTTC	2659
TTGGCCATGC	TTGTTGCCTG	AACCTTCGTT	GACATAGGGC	AGAGGTGCGT	TTGCCGCTTC	2665
GCTTCGCGAT	GAACCGCATC	GAGATGCTGA	GGTCAGGATT	TTTCCTTAAC	TCGCGTAAGC	2671
ATTCTGTCAT	TTTTTTGGTG	GCTTTGAACA	GCCTGATGAA	AGGTGGTCTC	GCCCTTTGAG	2677
GCCGATTCTT	GGGCGCTTGG	CGGCGTCGAA	GCGATGCTCC	ACTACCGATT	aagataatta	2683
aaataaggaa	ACCGCATGGT	TTCTTATGTG	AATTTGTCTG	GCATACTCCA	GCTCAAGGGC	2689
AATTTTTGGG	CTATTGGCTG	AGCAGTTGCC	TCTATATGGT	TATTCAGAAT	AACAATTGAC	2695
TCCTCAGGAG	GTCAGCGATG	AGCATTCTTG	GTTTGAATGG	TGCCCCGGTC	GGAGCTGAGC	2701
AGCTGGGCTC	GGCTCTTGAT	CGCATGAAGA	AGGCGCACCT	GGAGCAGGGG	CCTGCAAACT	2707
TGGAGCTGCG	TCTGAGTAGG	CTGGATCGTG	CGATTGCAAT	GCTTCTGGAA	AATCGTGAAG	2713
Ch nmm cooch	acaeemmmem	comes ammed	car rmacar c	accman cann	1 C1 C0 C0 C0 C0	0710

GCGACATTGC	TGGCTCGGTG	GCAAGCCTGA	AGGATAGCCG	CGAGCACGTG	GCCAAATGGA	2725
TGGAGCCCGA	ACATCACAAG	GCGATGTTTC	CAGGGGCGGA	GGCACGCGTT	GAGTTTCAGC	2731
CGCTGGGTGT	CGTTGGGGTC	ATTAGTCCCT	GGAACTTCCC	TATCGTACTG	GCCTTTGGGC	2737
CGCTGGCCGG	CATATTCGCA	GCAGGTAATC	GCGCCATGCT	CAAGCCGTCC	GAGCTTACCC	2743
CGCGGACTTC	TGCCCTGCTT	GCGGAGCTAA	TTGCTCGTTA	CTTCGATGAA	ACTGAGCTGA	2749
CTACAGTGCT	GGGCGACGCT	GAAGTCGGTG	CGCTGTTCAG	TGCTCAGCCT	TTCGATCATC	2755
TGATCTTCAC	CGGCGGCACT	GCCGTGGCCA	AGCACATCAT	GCGTGCCGCG	GCGGATAACC	2761
TAGTGCCCGT	TACCCTGGAA	TTGGGTGGCA	AATCGCCGGT	GATCGTTTCC	CGCAGTGCAG	2767
ATATGGCGGA	CGTTGCACAA	CGGGTGTTGA	CGGTGAAAAC	CTTCAATGCC	GGGCAAATCT	2773
GTCTGGCACC	GGACTATGTG	CTGCTGCCGG	AAGAATCGCT	GGATAGCTTT	GTCGCCGAGG	2779
CGACGCGCTT	CGTGGCCGCA	ATGTATCCCT	CGCTTCTAGA	TAATCCGGAT	TACACGTCGA	2785
TCATCAATGC	CCGAAATTTC	GACCGTCTGC	ATCGCTACCT	GACTGATGCG	CAGGCAAAGG	2791
GAGGGCGCGT	CATTGAAATC	AATCCTGCGG	CCGAAGAGTT	GGGGGATAGT	GGTATCAGGA	2797
AGATCGCGCC	CACTTTGATC	GTGAATGTGT	CGGATGAAAT	GCTGGTCTTG	AACGAGGAGA	2803
TCTTTGGTCC	GCTGCTCCCG	ATCAAGACTT	ATCGTGATTT	CGACTCGGCT	ATCGACTACG	2809
TCAACAGCAA	GCAGCGACCA	CTTGCCTCGT	ACTTCTTCGG	CGAAGATGCG	GTTGAGCGTG	2815
AGCAAGTGCT	TAAGCGTACG	GTTTCGGGCG	CCGTGGTCGT	GAACGATGTC	ATGAGCCATG	2821
TGATGATGGA	TACGCTTCCA	TTTGGTGGTG	TGGGGCACTC	GGGGATGGGG	GCATATCACG	28277
GCATTTATGG	TTTCCGAACC	TTCAGCCATG	CCAAGCCTGT	TCTCGTGCAA	AGTCCTGTGG	28337
GTGAGTCGAA	CTTGGCGATG	CGCGCACCCT	ACGGAGAAGC	GATCCACGGA	CTGCTCTCTG	28397
TCCTCCTTTC	AACGGAGTGT	TAGAACCGTT	GGTAGTGGTT	TTGGACGGGC	CCAGGAGCAT	28457
GCGCTTCTGG	GCCCGTTTCT	TGAGTATTCA	TTGGATAGTC	ACGCGTGGTA	GCTTCGAGCC	28517
TGCACAGCTG	ATGAGCACCC	TGGAAGGCGC	GCTGTACGCG	GACGACTGGG	TTCATCTTCG	2857
CCATTCATGA	CGGAACTCCG	TTCCCCAGTA	CCGCGATGAC	TATTTTGCCT	CTTCCGATGT	2863
CCGATTCCAC	GCCGCCTGAC	GCTAAGCGGG	GGCGGGGGCG	CCCGCATCCC	AGCCCAGACA	2869
GCAACAAATG	AGTAGGCTCT	TGGATGCCGC	GGCGGCTGAG	ATTGGTAACG	GCAATTTCGT	2875
CAATGTGACG	ATGGATTCGA	TTGCCCGTGC	TGCCGGCGTC	тсалалалал	CGCTGTACGT	2881
CTTGGTGGCG	AGCAAGGAAG	AACTCATTTC	CCGGTTAGTG	GCTCGAGACA	TGTCCAACCT	2887

TGAGCTGCTG	CTTTGTCACG	AGGTTGAGTC	TGCGGAGGCC	CTTCAGGATG	AGTTGCGAAA	28937
CTATCTGCTG	CTCTGGGCGC	GCTTGACCTT	GTCCCCTCTT	GCTTTGGGCA	TTTTTCTGAT	28997
GGCCGTGCAG	gggcgtgaaa	GTGCCCCGGG	CCTGGCGAGA	ATCTGGTATC	GAGAGGGGC	29057
AGAGCGTTGC	CTCAGCTTGC	TTCGGGGATG	GTTGGCAAGG	ATGGCAAGCC	GGGAGCTGAT	29117
CGCTCCTGGA	GATATCGACT	CCGCAGTGGA	GCTTATCGAT	TCGCTCCTGA	TCTCACAGCC	29177
TTTGAAATTA	TTTGGCCTGG	GGATCCAGAG	CGGCTGGACC	GATGATCAGA	TCAATCAACG	29237
GGTCACAATC	GCTCTCGATG	CATTCCGTCG	GTGCTATGTC	GTTTAGCACC	GTTCTCGCGG	29297
GCTGTGGCGG	CGTGACCTAT	TTGTCTAGTG	GTCGGCGCGA	AATTCGATAA	GAAAGCTGGG	29357
CGCGAGTGAG	GCCGAGCCGG	CGGGCAGCTT	CCGAGACATT	GCCTTTCACC	TGGCCCAGAG	29417
CATGGCTAAT	CATCGCGTCC	TCCACTTCTT	GCAGCGTCAT	CGCGCTCAGG	TCCTTTGAGT	29477
CAAGCGGCGA	GTCGATTGTG	CTGGTCGGTT	TGGAGAAGGA	AGTACTTGGG	CTGCCAGTTT	29537
CCTGTGGCTG	ATTATCTTGA	GCGGTGGCCA	GGATGCCGCT	GGCCCCAATG	GAGAACATCG	29597
GTTGAGTCAG	TCGTTCACCG	CTAGTGAAGA	GGTGGCTCAC	GTCAATGGCT	CCATCCTCCG	29657
GAGCGCTGAT	GACTCCGCGC	TCCACCAAAT	TTTGAAGCTC	CCGGATGTTT	CCTGGAAAGT	29717
CGTAGCCAAG	CAGGGCATTG	GCTGCACGTG	GAGTGAATCC	GCTGACCACC	CGGCTATGAC	29777
GCTGATTGAA	GCGGTGCAGG	AAATAGGTCA	TCAGGAGGGG	AATGTCTTCC	TTCCTCTCTC	29837
GAAGCGGCGG	GAGGTGGATC	GGGTAAACAT	TGAGGCGGAA	AAAAAGGTCC	TCGCGGAACT	29897
CGCCGCGCTG	GACGCCTGCG	CGAAGATCGA	CATTGGTTGC	GGCTACCACA	CGGACGTCAA	29957
CCTTGAGTGT	CCTGCTTCCG	CCAACCCGTT	CGACCTCCGA	CTCTTGCAGG	GCGCGAAGTA	30017
ACTTCCCTTG	GGCCACGAGG	CTTAGCGTCC	CTATCTCGTC	AAGGAATAGT	GTGCCGCCCG	30077
AAGCGCGCTC	GAACCGTCCT	GCTCGAGATT	GGGTGGCGCC	GGTAAACGCC	CCCCGTTCGA	30137
CGCCGAACAA	CTCGGACTCC	ATCAGGGTTT	CGGGAATACG	TGCGCAATTG	ACCGCAACAA	30197
ACGGGCCGTC	GTGTCTGGGG	CTGATGCGGT	GAAGCATGCG	GGCGAACATC	TCCTTGCCCA	30257
CACCTGATTC	ACCCGTAAAC	AGTACCGTCG	CCTCCGTGGG	TGCTACGCGC	TTCAGCATGT	30317
GGCAGGCAGC	ATTGAATGCC	GAGGAAATTC	CCACCATGTC	GTGTTCCGAT	GCAGTGCTTG	30377
AGTCTGCGGC	GGAGTGATGG	GGAGTGTTCC	TTTGTCCCTG	CTGCGTTCTT	CGTCTCTGCG	30437
GCGTGCTTGG	TTGCCGACAA	ATGGTTGCGC	TAAGCGCCGC	CAAGTCCTCT	TCGGCGTCTT	30497
CCCATTCTTC	CCCTCCCTTC	CCGATCATCC	GGCAGATCTG	CGBBCCCCTC	GAGCGGCATT	30557

CCACCTCTCG	GTAAAGGATG	AGGCGACCAA	CCAGCGCGGA	CGTATAGCCA	ATGGCATAAC	3061
CCGTCTGCGT	CCAGCACGCG	GGCTCGGTGC	CGATGCCGTA	GTGCGCAATA	TGTTCATCAT	3067
CTTCGCTCGA	ATGGTGCCAG	AGGAATTCGC	CGTAGTAGGT	CCCCAAATCC	ATGTCGAAGT	3073
CGAAGTGGAT	CGGCTCCACG	CGTACTGCGC	CTTCCAGAGA	GTGCAAGTTC	GGGCCGGCGG	3079
CAAATAGGGA	GAGCGGATCG	GCGTTGCTGA	AGCGCTCCTT	CAGAAGGGCG	GCATCTTTGG	3085
CGCCGCAGTG	GTAACCGGTT	CGCAGCATGA	TTCCGCGGGC	GCGGGCGAAG	CCCACGCTTT	3091
CAATTAATTC	GCGTCGCAAT	GCACCCAGTC	CGCTGCTGTG	GAGGAGCAGC	ATTCGCGCGC	3097
CGTTCAACCA	GATGCGTCCA	TCGCCAGGGC	TGAAAAGGAG	GGATTCAGTG	AGGTCATGAA	3103
GGGAGGGGAC	GGCGCCTGGC	TCCAATTGCT	CGATGGCGCC	GCGATTGAGT	GTCTTGGGCG	3109
CGGTCTTGGA	GAGTTCGGCT	AGGGAGATAA	ATTTGCTGGC	CATGGTGGCG	GCCCCTGATG	3115
GGTTGGATGA	TTTTCTGCAT	TCTGCATCAT	GAAATTCATG	AAATCATCAC	TTTTCGGGGG	3121
GTGGGTGCAC	GGGATTGAAG	GTTGCTAGGA	GAGTGCATTG	CTCGTAAGCC	CAGGAAGCAC	3127
GCGGGTTTCA	GGATGGTGCA	TGGAAATGGC	ATGAGCTTTG	CTGGATATGA	TTAGAGACAT	3133
TAACTATTTT	GGCGGAATGG	AAGCACGATT	CCTCGCCCGG	TAGAGCGGTA	ACCGCGACAT	3139
TCAGGACCGT	AAAAAGGAAA	GAGCATGCAA	CTGACCAACA	AGAAAATCGT	CGTCACCGGA	3145
GTGTCCTCCG	GTATCGGTGC	CGAAACTGCC	CGCGTTCTGC	GCTCTCACGG	CGCCACAGTG	3151
ATTGGCGTAG	ATCGCAACAT	GCCGAGCCTG	ACTCTGGATG	CTTTCGTTCA	GGCTGACCTG	3157
AGCCATCCTG	AAGGCATCGA	TAAGGCCATC	TCTCAGCTGC	CGGAGAAAAT	TGACGGACTC	3163
TGCAATATCG	CCGGGGTGCC	CGGCACTGCC	GATCCTCAGC	TCGTCGCAAA	CGTGAACTAC	3169
CTGGGTCTAA	AGTATCTGAC	CGAGGCAGTC	CTGTCGCGCA	TTCAACCCGG	TGGTTCGATT	3175
GTCAACGTGT	CCTCTGTGCT	TGGCGCCGAG	TGGCCGGCCC	GCCTTCAGTT	GCATAAGGAG	3181
CTGGGGAGTG	TTGTTGGATT	CTCCGAAGGC	CAGGCATGGC	TTAAGCAGAA	TCCAGTGGCC	3187
CCCGAATTCT	GCTACCAGTA	TTTCAAAGAA	GCACTGATCG	TTTGGTCTCA	AGTTCAGGCG	3193
CAGGAATGGT	TCATGAGGAC	GTCTGTACGC	ATGAACTGCA	TCGCCCCCGG	CCCTGTATTC	3199
ACTCCCATTC	TCAATGAGTT	CGTCACCATG	CTGGGTCAAG	AGCGGACTCA	GGCGGACGCT	3205
CATCGTATTA	AGC GCCCAGC	ATATGCCGAT	GAAGTGGCCG	CGGTGATTGC	ATTCATGTGT	3211
GCTGAGGAGT	CACGTTGGAT	CAACGGCATA	AATATTCCAG	TGGACGGAGG	TTTGGCATCG	3217
ACCTACGTGT	AAGTTCGTGG	ACGCCCTTTG	CACGCGCACT	ATATCTCTAT	GCAGCAGCTG	3223

	AAAG	CAGC	ттт	GGTI	TTGA	T C	GAGG	TAGO	GGG	CGGF	AAG	GTGC	AGA	TG 1	CTAP	TAATA	32297
5	AAAG	GATT	ст т	GTGF	AGCT	тт	GTT	TCCG	TAF	ACGA	AAA	TAAF	AATA	VAA (GAGGA	ATGAT	32357
5	ATGA	AAGC	AA G	TAGE	TCAG	т ст	GCAC	тттс	. AAJ	ATAG	CTA	CCCI	GGCF	IGG (GCCF	TATTA	32417
	GCAG	CGCT	GC C	AAT	TCAG	c T	CAA	CTCG	ATO	CAGO	TGG	ATGI	AGGT	AG (TCG	ATTGG	32477
10	ACGG	TGCG	TT G	GGGF	CAAC	A CC	CTC	AGTA	TAC	CCTI	GCC	тстс	GCCI	GA A	TGAG	CAAGA	32537
	CTCA	AGTO	TG P	CAAA	TGCG	c co	ACTO	TCAA	TGG	TTAT	ATC	CGGF	TATI	CA A	AGTO	AGGGT	32597
	GATO	GTAP	ct t	TGAC	ceee	G GC	TTGC	TATO	CAA	TCGT	стс	GATA	TTC1	GT (GGAG	CTTGA	32657
15	TGTC	AGTO	GT G	ACTO	GTTG	G TO	,										32679
20	(2)			ZU S													
			(E	A) LE S) AF S) TO	POLC	Mino GIE:	säun : lir	e near		1							
25				DES UEN2						NO:	2:						
	Met 1	Ile	Ala	Ile	Thr 5	Gly	Ala	Ser	Gly	Gln 10	Leu	Gly	Arg	Leu	Thr 15	Ile	
30	Glu	Ala	Leu	Leu 20	Lys	Arg	Leu	Pro	Ala 25	Ser	Glu	lle	Ile	Ala 30	Leu	Val	
	Arg	Asp	Pro 35	Asn	Lys	Ala	Gly	Asp 40	Leu	Thr	Ala	Arg	G1y 45	Ile	Val	Val	
35	Arg	Gln 50	Ala	Asp	Tyr	Asn	Arg 55	Pro	Glu	Thr	Leu	His 60	Arg	Ala	Leu	Ile	
40	Gly 65	Val	Asn	Arg	Leu	Leu 70	Leu	lle	Ser	Ser	Ser 75	Glu	Va1	Gly	Gln	Arg 80	
40	Thr	Ala	Gln	His	Arg 85	Ala	Val	Ile	Asp	Ala 90	Ala	Lys	Gln	Glu	Gly 95	Ile	
45	Glu	Leu	Leu	Ala 100	Tyr	Thr	Ser	Leu	Leu 105	His	Ala	Asp	Lys	Ser 110	Ala	Leu	
	Gly	Leu	Ala 115	Thr	Glu	His	Arg	Asp 120	Thr	Glu	Gln	Ala	Leu 125	Thr	Glu	Ser	
50	Gly	11e 130	Pro	His	Val	Leu	Leu 135	Arg	Asn	Gly	Trp	Tyr 140	His	Glu	Asn	туг	
	Thr	Ala	Gly	Ile	Pro	Val	Ala	Leu	Val	His	Gly	Val	Leu	Leu	Gly	Cys	

145					150					155					160	
Ala	Gln	Asp	Gly	Leu 165	Ile	Ala	Ser	Ala	Ala 170	Arg	Ala	Asp	Tyr	Ala 175	Glu	
Ala	Ala	Ala	Val 180	Val	Leu	Thr	Gly	Glu 185	Asn	Gln	Ala	G1 y	Arg 190	Val	Tyr	
Glu	Leu	Ala 195	Gly	Glu	Pro	Ala	Туг 200	Thr	Leu	Thr	Glu	Leu 205	Ala	Ala	Glu	
Val	Ala 210	Pro	Gln	Ala	Gly	Lys 215	Thr	Val	Val	Tyr	Ser 220	Asn	Leu	Ser	Glu	
ser 225	Asp	Tyr	Arg	Ser	Ala 230	Leu	Ile	Ser	Ala	Gly 235	Leu	Pro	Asp	Gly	Phe 240	
Ala	Ala	Leu	Leu	Ala 245	Asp	Ser	Asp	Ala	Gly 250	Ala	Ala	Lys	Gly	Туг 255	Leu	
Phe	Asp	Ser	Ser 260	Gly	Asp	ser	Arg	Lys 265	Leu	Ile	Gly	Arg	Pro 270	Thr	Thr	
Pro	Met	Ser 275	Glu	Ala	Ile	Ala	Ala 280	Ala	Ile	G1 y	Arg					
	(ii) (iv) (ix)	SEC () () () () () () () () () () () () () (QUENZ AI AI AI AI AI AI AI AI AI AI	EKENN FRANCE: FRANCE FRANCE FRANCE: FRANCE: SECONDERS FRANCE:	WZEIG 100 Nucle SFORM OGIE LEKÜN NEIN NEIN SCHLÜ (GE / Innil	CHEN: 555 Ba eotic 4: Do :: lir LS: (NEIN) 062 ANGAG "van	: asenplid ppppel cear Genor L: CI BEN:, aeure nA"	lstra m-DN7 DS √proc -0-I	ang l	hyla	ase"					
	ттт	CCG	AAA	AAC	GCC	TGG	TAT	GTC	GCT	TGC						48
Met 285	Phe	Pro	Lys	Asn	Ala 290	Trp	Tyr	Val	Ala	Cys 295	Thr	Pro	Asp	Glu	11e 300	

						GGC Gly											96
5	mam	acc		cac	CDD	GGA	a cm	cmm			cm n	cnc	c n m	mmc	mcc	com	144
						Gly											144
10						TTG Leu											192
15						GGT Gly											240
						CGC Arg 370											288
20	GCG	GTA	GAA	GAG	CGA	TAC	GGC	ттт	ATC	TGG	GTA	TGG	CCT	GGT	GAT	CGC	336
						Tyr											
						GCG											384
25	Glu	Leu	Ala	Asp 400	Pro	Ala	Leu	Ile	His 405	His	Leu	Glu	Trp	Ala 410	Asp	Asn	
						GGT											432
30	Pro	Glu	Trp 415	Ala	Tyr	Gly	Gly	G1y 420	Leu	Tyr	His	Ile	A1a 425	Cys	Asp	Tyr	
						AAC											480
	Arg	430	Met	Ile	Asp	Asn	435	Met	Asp	Leu	Thr	440	Glu	Thr	Tyr	Val	
35						GGT											528
	His 445	Ala	Ser	Ser	Ile	Gly 450	Gln	Lys	Glu	Ile	455	Glu	Ala	Pro	Val	Ser 460	
						GAC											576
40	Thr	Arg	Val	Glu	465	Asp	Thr	Val	He	470	ser	Arg	Tyr	мес	475	Asn	
						TTC											624
	Val	Met	Ala	Pro 480	Pro	Phe	Trp	Arg	Ala 485	Ala	Leu	Arg	G1 y	Asn 490	Gly	Leu	
45				400					403					450			
						GTT											672
	Ala	Asp	Asp 495	Val	Pro	Val	Asp	Arg 500	Trp	Gln	Ile	Cys	Arg 505	Phe	Ala	Pro	
50						ATC											720
	Pro	Ser 510	His	Val	Leu	Ile	Glu 515	Val	Gly	Val	Ala	His 520	Ala	Gly	Lys	Gly	

	Gly	TAT Tyr				Ala					Gly					Asp	768	1
	525					530					535					540		
5																		
		ATC															816	•
	Phe	Ile	Thr	Pro	545	Ser	Asp	Thr	Ser	550	Trp	Tyr	Phe	тгр	555	Met		
10	GCT	CGC	AAC	TTC	CGT	CCG	CAG	GGC	ACG	GAG	CTG	ACT	GAA	ACC	ATT	CGT	864	ı
	Ala	Arg	Asn	Phe 560	Arg	Pro	Gln	Gly	Thr 565	Glu	Leu	Thr	Glu	Thr 570	Ile	Arg		
	GTT	GGT	CAG	GGC	AAG	ATT	TTT	GCC	GAG	GAC	CTG	GAC	ATG	CTG	GAG	CAG	912	
15	Val	Gly	Gln 575	Gly	Lys	Ile	Phe	Ala 580	Glu	Asp	Leu	Asp	Met 585	Leu	Glu	Gln		
	CNG	CAG	ccc	חחת	CTC	crec	ccc	TAC	ccc	GNG	ccc	CDG	TTC.	CTC	D D C	CTC	960	
		Gln 590															500	
20																		
		ATC															1008	١
		Ile	Asp	Ala	Gly		Val	Gln	ser	Arg		Val	Ile	Asp	Arg			
	605					610					615					620		
25	CTC	GCA	GCT	GAA	CAA	GAG	GCC	GCA	GAC	GCA	GCG	CTG	ATC	GCG	AGA	AGT	1056	;
	Leu	Ala	Ala	Glu	G1n 625	Glu	Ala	Ala	Asp	Ala 630	Ala	Leu	Ile	Ala	Arg 635	Ser		
		mar	man														1000	
	Ala	TCA	TGA														1065	
30	Ala	ser																
	(2)	ANG	ABEN	zu s	SEQ I	ED NO): 4:	:										
35	(i) SEQUENZKENNEZICHEN: (A) LÄNGE: 354 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear																	
40			AR?							ои с	: 4:							
	Met 1	Phe	Pro	Lys	Asn 5	Ala	Trp	Tyr	Val	Ala 10	Cys	Thr	Pro	Asp	Glu 15	Ile		
45	Ala	Asp	Lys	Pro 20	Leu	Gly	Arg	Gln	11e 25	Cys	Asn	Glu	Lys	11e 30	Val	Phe		
	Tyr	Arg	Gly 35	Pro	Glu	Gly	Arg	Val 40	Ala	Ala	Val	Glu	Asp 45	Phe	Cys	Pro		
50		D	.	21.		•		•	61.	Di.				G1.	•	•		
	HIS	Arg 50	Gly	Ala	Pro	Leu	Ser 55	Leu	GIY	rne	val	Arg 60	Asp	GIY	Lys	Leu		

36

	Ile 6					70						,,							
5	Ala				85						30								
	Ala			100					1.	05									
10	Glu		115					12	U										
		130				Gly	133	,											
15	145					Asn 150						100							
20					165						170								
				180)	/ Asp				163									
25			195	ò		Phe		2	00					-	-				
		210)			o Vai	21	. 5											
30	225	5				u Il 23	U					2.0	-						
					24						23	0							
35				26	0	u Se				26:	,								
40			27	5		g Pr			280										
40		29	0			ys Il	2	95											
45	30	15					10												
					3	1y G 25						50							
50	Le	eu A	la A	la G 3	1u G 40	ln G	lu /	Ala	Ala	34	sp A 15	да А	ıa ı	eu	116	35	0	- 4	
	A	la S	er																

	(2) ANG	ABEN Z	U SEQ I	LD NO:	5:									
5	(1	(B)	ENZKENN LÄNGE: ART: N STRANG	954 F Nucleot FORM:	asenp id Doppe	lstr	ang							
10	(ii) ART	DES MOI	EKÜLS:	Geno	m-DN	A							
	(iii) HYPO	THETIS	H: NE	N									
	(iv) ANTI:	SENSE:	NEIN										
15														
20	(ix	(B)	NAME/S LAGE:1 SONSTI	951	ABEN:		duct:	= "V	anil:	lin-	0-Dei	meth	ylase"	
	(xi) SEQUI	ENZBESC	CHREIBU	NG: S	EQ I	ono:	: 5:						
25	ATG ATT													48
	Met Ile 355	GIU V	al Ile	360	r Ala	Met	Arg	365	Val	Ala	Gin	Asp	370	
	ATT AGC	CTT G	AG TTT	GTC CC	G GCT	GAC	GGT	GGC	TTG	CTT	CCG	сст	GTC	96
30	Ile Ser													
	GAG GCC													144
	Glu Ala		la His 90	Val As	p Val	395	Leu	Pro	GLy	Gly	Leu 400	Ile	Arg	
15	CAG TAC	mac er	nc mcc	NNT C1	n ccn	ccc	ccc	CDC	n.c.c	C n m	mn c	mcc	n mc	192
	Gln Tyr					Gly								192
10	GGT GTT													240
	Gly Val 420		ys Asp	Pro Al		Arg	Gly	Gly	Ser 430	Lys	Ala	Val	His	
	GAG AAT													288
15	Glu Asn 435	Leu A	rg Val	Gly Me 440	t Arg	Val	Gln	11e 445	Ser	Glu	Pro	Arg	Asn 450	
	CTA TTC Leu Phe													336
	Leu Phe	ETO P	455	GIU GI	y vai	GIU	460	ser	ьeu	ьeu	rne	465	GTA	
io	GGG ATT	GGC A	TT ACG	CCG AT	T CTG	TGT	ATG	GCT	CAA	gaa	TTA	GCA	GCA	384

	Gly	Ile	Gly	Ile 470	Thr	Pro	Ile	Leu	Cys 475	Met	Ala	Gln	Glu	Leu 480	Ala	Ala	
5		GAG Glu															432
10		GCG Ala 500															480
15		TTC Phe															528
		CTG Leu															576
20		GGC Gly															624
25		GCT Ala															672
		AGT Ser 580															720
30		GTG Val															768
35		GCC Ala															816
40		TGC Cys															864
		CTC Leu															912
45		TCG Ser 660												TAA			954
50	(2)	ANG	ABEN	ZU :	SEQ :	ID N	D: 6	:									

20

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 317 Aminosäuren

			1A (E												
			DES QUENS						OM C	: 6:					
Met 1	Ile	Glu	Val	Ile 5	Ile	Ser	Ala	Met	Arg 10	Leu	Val	Ala	Gln	Asp 15	Ile
Ile	Ser	Leu	Glu 20	Phe	Val	Arg	Ala	Asp 25	Gly	Gly	Leu	Leu	Pro 30	Pro	Va1
Glu	Ala	Gly 35	Ala	His	Val	Asp	Val 40	His	Leu	Pro	Gly	Gly 45	Leu	Ile	Arg
G1n	Tyr 50	Ser	Leu	Trp	Asn	Gln 55	Pro	Gly	Ala	Gln	Ser 60	His	Tyr	Cys	Ile
Gly 65	Val	Leu	Lys	Asp	Pro 70	Ala	Ser	Arg	Gly	Gly 75	Ser	Lys	Ala	Val	His 80
Glu	Asn	Leu	Arg	Val 85	Gly	Met	Arg	Val	Gln 90	Ile	Ser	Glu	Pro	Arg 95	Asn
Leu	Phe	Pro	Leu 100	Glu	Glu	Gly	Va1	Glu 105	Arg	Ser	Leu	Leu	Phe 110	Ala	G1y
-	Ile	115					120	-				125			
	Glu 130					135		-			140				-
145	Ala				150		-			155					160
	Phe			165					170		-			175	
	Leu		180					185				-	190	-	-
	Gly	195					200					205			
	Ala 210	·				215	ŕ		•		220				
225	Ser				230					235					240
GIn	Val	Leu	Gin	Val 245	Pro	Ala	Asp	GIn	Thr 250	Val	Ser	Gln	Val	Leu 255	Asp

15

25

	Ala	Ala	Gly	11e 260	Ile	Val	Pro	Val	Ser 265	Cys	Glu	Gln	Gly	11e 270	Cys	Gly	
5	Thr	Cys	Ile 275	Thr	Arg	Val	Val	Asp 280	Gly	Glu	Pro	Asp	His 285	Arg	Asp	Phe	
	Phe	Leu 290	Thr	Asp	Ala	Glu	Lys 295	Ala	Lys	Asn	Asp	Gln 300	Phe	Thr	Pro	Cys	
10	Cys 305	Ser	Arg	Ala	Lys	Ser 310	Ala	Cys	Leu	Val	Leu 315	Asp	Leu				
	(2)	ANG	ABEN	ZU S	EQ I	D NO	o: 7:										
15		(i)	(1	A) L) B) AF	ANGE: RT: 1 RANG	111 ucle	eotic	asenp d oppel	paare Lstra								
20		(ii)							n-DN	Ą							
		(iii)	нүн	POTHE	TIS	:H: 1	NEIN										
25		(iv	'MA	ISEN	ISE:	NEIN	4										
30		(ix	(1	A) NA B) LA	AME/S AGE: I ONSTI	[l] [GE # orma]	l 16 Angai	/d-De	/prod	iuct: roge:							
35		(xi	SEC	QUEN2	BES	HRE	BUNG	3: SI	EQ II	ои с	7:						
		ATC Ile															48
40		ATC Ile 335															96
45		CGG Arg				Thr											144
	350					355					360					365	
		GGC Gly															192
50		GGC Gly															240
55																	

				385					390					395			
		GGC Gly															288
,		TTC Phe 415															336
		CAG Gln															384
5		GGT Gly															432
)		ACC Thr															480
ī		CTG Leu															528
		GCG Ala 495															576
,		TTC Phe															624
5		GCC Ala															672
		GAT Asp															720
,		CAC His															768
;		GTG Val 575															816
ı		GCA Ala															864
	GGC	GTG	GCG	CCG	GCG	GGG	GCC	GAA	ATC	AAC	ACC	CGT	CCG	TTC	CAC	CTG	912

	Gly	Val	Ala	Pro	Ala 610	Gly	Ala	Glu	Ile	Asn 615	Thr	Arg	Pro	Phe	His 620	Leu	
5															AAG Lys		96
10															GAG Glu		100
15															ATC Ile		105
															GTT Val		110
20		TTG Leu			TAG												111:
25	(2)	ANGA	(i) S	EQUE	NZKE	NNZE	ICHE	EN: inosä	urer	n							
30			ART	DES		EKÜI	S: I	near Prote 3: SE		ON C	: 8:						
35	Met 1	Ile	Lys	Ser	Arg 5	Ala	Ala	Val	Ala	Phe 10	Ala	Pro	Asn	Gln	Pro 15	Leu	
	Gln	Ile	Val	Glu 20	Val	Asp	Val	Ala	Pro 25	Pro	Lys	Ala	Gly	Glu 30	Val	Leu	
10	Val	Arg	Va1 35	Val	Ala	Thr	Gly	Val 40	Cys	His	Thr	Asp	Ala 45	туг	Thr	Leu	
	Ser	Gly 50	Ala	Asp	Ser	Glu	Gly 55	Val	Phe	Pro	Cys	Ile 60	Leu	Gly	His	Glu	
15	Gly 65	Gly	Gly	Ile	Val	Glu 70	Ala	Val	Gly	Glu	Gly 75	Val	Thr	Ser	Leu	Ala 80	
50	Val	Gly	Asp	His	Val 85	Ile	Pro	Leu	Tyr	Thr 90	Ala	Glu	Cys	Arg	Glu 95	Cys	
	Lys	Phe	Phe	Lys 100	Ser	Gly	Lys	Thr	Asn 105	Leu	Cys	Gln	Lys	Val 110	Arg	Ala	

	Thr	Gln	Gly 115	Lys	Gly	Leu	Met	Pro 120	Asp	Gly	Thr	Ser	Arg 125	Phe	Ser	Tyr
5	Asn	Gly 130	Gln	Pro	Ile	Tyr	Нis 135	туr	Met	Gly	Cys	Ser 140	Thr	Phe	Ser	Glu
	туг 145	Thr	Val	Leu	Pro	Glu 150	Ile	ser	Leu	Ala	Lys 155	Ile	Pro	Lys	Asn	Ala 160
10	Pro	Leu	Glu	Lys	Val 165	Cys	Leu	Leu	Gly	Cys 170	Gly	Val	Thr	Thr	Gly 175	Ile
15	Gly	Ala	Val	Leu 180	Asn	Thr	Ala	Lys	Val 185	Glu	Glu	Gly	Ala	Thr 190	Val	Ala
	Ile	Phe	Gly 195	Leu	Gly	Gly	Ile	Gly 200	Leu	Ala	Ala	Ile	Ile 205	Gly	Ala	Lys
20	Met	Ala 210	Lys	Ala	ser	Arg	Ile 215	Ile	Ala	Ile	Asp	Ile 220	Asn	Pro	Ser	Lys
	Phe 225	Asp	Val	Ala	Arg	G1u 230	Leu	Gly	Ala	Thr	Asp 235	Phe	Val	Asn	Pro	Asn 240
25	Asp	His	Ala	Lys	Pro 245	Ile	Gln	Asp	Val	11e 250	Val	Glu	Met	Thr	Asp 255	Gly
	Gly	Val	Asp	Tyr 260	Ser	Phe	Glu	Cys	Ile 265	Gly	Asn	Val	Arg	Leu 270	Met	Arg
30	Ala	Ala	Leu 275	Glu	Cys	Cys	His	Lys 280	Gly	Trp	Gly	Glu	ser 285	Val	Ile	Ile
	Gly	Val 290	Ala	Pro	Ala	Gly	Ala 295	Glu	Ile	Asn	Thr	Arg 300	Pro	Phe	His	Leu
35	Val 305	Thr	Gly	Arg	Val	Trp 310	Arg	Gly	Ser	Ala	Phe 315	Gly	Gly	Val	Lys	Gly 320
	Arg	Thr	Glu	Leu	Pro 325	Ser	Tyr	Va1	Glu	Lys 330	Ala	Gln	Gln	Gly	G1u 335	Ile
40	Pro	Leu	Asp	Thr 340	Phe	Ile	Thr	His	Thr 345	Met	Gly	Leu	Asp	Asp 350	Ile	Asn
45	Thr	Ala	Phe 355	Asp	Leu	Met	Asp	Glu 360	Gly	Lys	Ser	Ile	Arg 365	Ser	Val	Val
	Gln	Leu 370	Ser	Arg												
	{2}	ANG	ABEN	ZU S	EQ :	ID NO): 9:	:								
50		(i)				VZEI										
			(2	A) LJ	ANGE	: 163	38 Ba	senp	aare	•						
55																

			(0	3) AI 3) Si 3) To	ran	FOR	1: D	oppe:	lstr	ang								
5		(ii	ART	r DE:	s MOI	LEKÜI	Ls: (Senor	n-DN	Ą								
		(111	нүн	POT H	ETIS	: H:	NEIN											
10		(iv	AN"	riser	NSE:	NEI	4											
		(ix		RKMAI		cuti	iceri	L: CI	2									
				3) LJ					,,,									
15			(1) s					pro									
						ene=			Lcyst	ein-	-Syn1	theta	ise"					
20		(xi	SEÇ	QUEN	ZBES	CHRE	BUNG	3: SI	II QE	ои с	9:							
	ATG	CCG	CAA	ACT	CTT	GCT	GGA	CGG	TTG	AGT	CTG	TTA	TCC	GGC	ACC	GAC	48	
	Met	Pro	Gln 375	Thr	Leu	Ala	G1 y	Arg 380	Leu	Ser	Leu	Leu	Ser 385	Gly	Thr	Asp		
25		TTA															96	
	Glu	Leu 390	Thr	Leu	Leu	Leu	Arg 395	Gly	Gly	Arg	Gly	11e 400	Glu	Arg	Glu	Ala		
		CGG															144	
30		Arg	Val	Asp	Val		Gly	Glu	Leu	Ala		Thr	Pro	His	Pro	Ala 420		
	405					410					415					420		
		CTT															192	
	Ala	Leu	Gly	Ser	Ala 425	Leu	Thr	His	Pro	Thr 430	Ile	Thr	Thr	Asp	Tyr 435	Ala		
35																		
		GCC															240	
	GIU	Ala	Leu	440	GIU	Leu	116	The	445	Pro	Ala	The	Asp	450	Ala	GIN		
40		TTG															288	
	Ala	Leu	Ala 455	Glu	Leu	Glu	Glu	Leu 460	His	Arg	Phe	Val	His 465	Ser	Arg	Leu		
		GGG															336	
45	Glu	Gly	Glu	Tyr	Leu	Trp		Leu	Ser	Met	Pro		Arg	Leu	Pro	Val		
		470					475					480						
		GAG															384	
		Glu	Gln	Ile	Pro		Ala	Trp	Tyr	Gly		ser	Asn	Pro	G1y			
50	485					490					495					500		
		CGC															432	
	Leu	Arg	His	Val	Tyr	Arg	Arg	Gly	Leu	Ala	Leu	Arg	Tyr	Gly	Lys	Arg		

					505					510					515			
	ATG	CAA	TGC	ATC	GCA	GGG	ATT	CAC	TAC	AAC	TAC	TCA	CTG	CCG	CCA	GAG		480
5												ser						
				520					525					530				
	CTT	TTC	GCT	GTC	CTG	ACC	AAG	GCA	GAG	GTC	GGG	TCT	ccc	AAG	ATT	CTG		528
												ser						
10			535					540					545					
	D4D	cec	CAG	TCA	GCD	GCT	TAC	этс	ccc	CDD	חדת	CGC	BBC	CTT	ccc	CDD		576
												Arg						370
		550					555					560						
15	TAC	GGT	TGG	TTG	CTG	GCC	TAC	TTG	ттс	GGC	GCT	TCC	ccc	GCC	ATC	TGC		624
												ser						
	565					570					575					580		
	AAG	AGC	ттс	TTG	GGG	GGC	GAG	AGA	GAT	GAG	СТА	GCT	CGC	ATG	GGG	GGC		672
20												Ala						
.0					585					590					595			
	GAT	ACG	CTT	TAC	ATG	ccc	TAT	GCA	ACC	AGC	TTG	CGC	ATG	AGT	GAC	ATC		720
												Arg						
25				600					605					610				
	GGG	TAC	CGC	AAC	CGT	GCC	ATG	GAT	GAT	CTA	TCT	ccc	AGC	CTG	таа	GAT		768
	Gly	Tyr	Arg	Asn	Arg	Ala	Met	Asp	Asp	Leu	Ser	Pro	Ser	Leu	Asn	Asp		
			615					620					625					
30	CTG	GGT	GCC	TAT	TTA	CGC	GAT	ATT	TGC	CGT	GCT	CTT	CAC	ACT	ccc	GAT		816
,0		Gly					Asp					Leu						
		630					635					640						
	GCC	CAG	TAC	CAG	GCG	CTG	GGT	GTG	ттт	GCA	CAG	GGC	GAG	TGG	CGG	CAG		864
15		Gln	туr	Gln	Ala		Gly	Val.	Phe	Ala		Gly	Glu	Trp	Arg	Gln		
~	645					650					655					660		
	TTA	AAC	GCC	AAT	CTA	TTG	CAG	TTG	GAT	AGT	GAG	TAC	TAC	GCA	CTG	GCG		912
	Leu	Asn	Ala	Asn		Leu	Gln	Leu	Asp		Glu	Tyr	Tyr	Ala		Ala		
10					665					670					675			
	CGA	CCG	AAG	TCA	GCG	ccc	GAG	CGG	GGG	GAG	CGA	AAC	CTG	GAT	GCT	CTC		960
	Arg	Pro	Lys		Ala	Pro	Glu	Arg		Glu	Arg	Asn	Leu		Ala	Leu		
				680					685					690				
_	GCT	AGG	CGT	GGA	GTC	CAG	TAT	GTG	GAG	CTG	CGC	GCA	CTG	GAT	CTC	GAT	1	800
5	Ala	Arg		G1y	Val	Gln	Tyr		Glu	Leu	Arg	Ala		Asp	Leu	Asp		
			695					700					705					
	CCA	TTC	TCC	CCG	TTA	GGC	ATT	GGC	CTG	ACC	TGC	GCC	AAG	TTC	CTC	GAT	1	056
	Pro		Ser	Pro	Leu	Gly		Gly	Leu	Thr	Cys	Ala	Lys	Phe	Leu	Asp		
		710					715					720						
	GGC	TTT	TTG	CTT	TTC	TGC	TTG	TTG	TCT	GAG	GCG	CCG	GTT	GAT	GAT	CGA	1	104

	Gly 725	Phe	Leu	Leu	Phe	Cys 730	Leu	Leu	ser	Glu	Ala 735	Pro	Val	Asp	Asp	Arg 740	
5		GCC Ala															1152
10		GCG Ala															1200
15		AAG Lys															1248
		TTG Leu 790															1296
20		GCA Ala															1344
25		GTG Val															1392
		CGC Arg															1440
30		GAG Glu															1488
35		CGC Arg 870															1536
40		TAC Tyr															1584
		CG T Arg															1632
45	GTC Val	TAA															1638

(2) ANGABEN ZU SEQ ID NO: 10:

(i) SEQUENZKENNZEICHEN:

5			(1	3) AI	ÁNGE RT: A	Amin	său:	re	aurei	n						
								Prote	ein EQ II	оис	: 10	:				
10	Met 1	Pro	Gln	Thr	Leu 5	Ala	Gly	Arg	Leu	Ser 10	Leu	Leu	Ser	Gly	Thr 15	Asp
	Glu	Leu	Thr	Leu 20	Leu	Leu	Arg	Gly	Gly 25	Arg	Gly	Ile	Glu	Arg 30	Glu	Ala
15	Leu	Arg	Val 35	Asp	Val	Gln	Gly	Glu 40	Leu	Ala	Leu	Thr	Pro 45	His	Pro	Ala
	Ala	Leu 50	G1 y	Ser	Ala	Leu	Thr 55	His	Pro	Thr	Ile	Thr 60	Thr	Asp	Tyr	Ala
20	Glu 65	Ala	Leu	Leu	Glu	Leu 70	Ile	Thr	Arg	Pro	Ala 75	Thr	Asp	Cys	Ala	Gln 80
25	Ala	Leu	Ala	Glu	Leu 85	Glu	Glu	Leu	His	Arg 90	Phe	Val	His	Ser	Arg 95	Leu
	Glu	Gly	G l u	Tyr 100	Leu	Trp	Asn	Leu	Ser 105	Met	Pro	етÀ	Arg	Leu 110	Pro	Val
30		Glu	115					120	-	-			125		-	
	Leu	Arg 130	His	Val	Tyr	Arg	Arg 135	Gly	Leu	Ala	Leu	Arg 140	Tyr	Gly	Lys	Arg
35	145	Gln				150					155					160
		Phe			165		-			170				-	175	
40		Arg		180			-		185			-		190		
45		Gly	195				-	200		-			205			-
-		Ser 210			·	·	215		·			220			•	•
50	225					230					235				-	11e 240
	Gly	Tyr	Arg	Asn	Arg 245	Ala	Met	Asp	Asp	Leu 250	Ser	Pro	Ser	Leu	Asn 255	Asp
55																

	Leu G		260					20	,								
5	Ala G	ln Tyr 275	Gln	Ala	Leu	Gly	Val 280	L Ph	e A	la G	ln G	Sly	G1u 285	Trp	Arg	G1	Ln
	Leu A	sn Ala	Asn	Leu	Leu	Gln 295	Lev	ı As	p S	er G	lu 1	fyr 300	Tyr	Ala	Lev	(A)	la
10	305	ro Lys			310						,,,						
	Ala P	rg Ar	g Gly	Val 325	Gln	Туг	٧a	1 G1	.u L	eu <i>1</i> 30	Arg	Ala	Leu	Asp	33	1 A 5	sp
15	Pro E	he Se	r Pro	Leu	Gly	Ile	G1	у Le	eu 1	hr	Cys	Ala	Lys	Phe 350	Le	u A	.sp
20	Gly I	Phe Le	u Lev	Phe	Cys	Lev	1 Le	u S 60	er C	Glu .	Ala	Pro	Val 365	Asp	As	p A	rg
20		Ala Gl 370				3/	9										
25	385	Ala Se			390)					330						
		Lys As		40	5					410							
30		Leu L	42	0				٩	123								
			35				4	40									
35		Val L 450				4:	25										
	465	Arg G			47	U											
40		Glu F		4	85					750	•						
		Arg (5	00					303								
45			515					320									
50	Se	Arg 530	Ala E	ro F	Asn P	ro T	7hr 535	Ala	His	Le	u Il	e As	ър L 40	eu T	'nr	Pro	Pro
	Va	1															

49

	545																
5	(2)	ANG	ABEN	zu :	SEQ :	ID N	o: 1	1:									
10		(i	(1	A) Li B) Ai C) S'	ÁNGE RT: 1 FRAN	NZEI : 35 Nucle GFORE	4 Ba: eoti M: D	senpa d oppe:		ang							
		(ii	AR:						n-DN	PA.							
		(iii	HY)	ротні	ETIS	CH: I	NEIN										
15		(iv	AN:	risei	NSE:	NEI	И										
20		(ix		A) NA	AME/			L: CI	os								
20					DNST:	IGE I	ANGAI					ytoci	nrom	С			
	(A) NAME/SCHLIOSSEL: CDS (B) LAGE:1351 (D) SONSTIGE ANGABEN:/product= "Cytochrom C UE-Eugenol-Hydroxylase" /gene= "ehyA" (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:																
25																	
									_								
			AAT														48
30	met	мет	Asn	Val	550	Tyr	ьуs	Ala	vai	555	Ala	Ser	Leu	Leu	560	Ala	
	ጥ ጥ <i>C</i>	D.T.C	TCT	CDC	CCD	com	TGG	CCD	CDC	nec	ccc	CCD	ccc	TOT	acc	n n m	96
			Ser														30
				565					570					575			
35			GAC														144
	Thr	Pro	Asp 580	Ile	Tyr	Arg	Lys	Thr 585	Cys	Thr	Tyr	Cys	His 590	Glu	Pro	Thr	
	GTC	AAC	AAT	GGC	cee	GTC	ידים	GCC	CGA	AGC	CTC	ccc	cce	ልሮሞ	CTG	CGA	192
40		Asn	Asn				Ile					Gly					
		595					600					605					
	GGG	CGC	CAG	ATC	CCT	CCA	CAG	TAC	ACG	GAG	TAC	ATG	GTG	CGT	CAT	GGA	240
		Arg	Gln	Ile	Pro		Gln	Tyr	Thr	Glu		Met	Val	Arg	His		
45	610					615					620					625	
			GCA														288
	Arg	Gly	Ala	Met		Ala	Phe	Ser	Glu		Glu	۷al	Pro	Pro		Glu	
					630					635					640		
50			GTT														336
	Leu	Lys	Val			Asp							Ala			Asp	

5	GCT GGA GTC GCG CCA TGA Ala Gly Val Ala Pro 660	354
	(2) ANGABEN ZU SEQ ID NO: 12: (i) SEQUENZKENNZEICHEN:	
10	(A) LÄNGE: 117 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear	
15	(ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:	
	Met Met Asn Val Asn Tyr Lys Ala Val Gly Ala Ser Leu Leu Leu Ala 1 5 10	
20	Phe Ile Ser Gln Gly Ala Trp Ala Glu Ser Pro Ala Ala Ser Gly Asn 20 25 30	
	Thr Pro Asp Ile Tyr Arg Lys Thr Cys Thr Tyr Cys His Glu Pro Thr $$35$$	
25	Val Asn Asn Gly Arg Val Ile Ala Arg Ser Leu Gly Pro Thr Leu Arg 50 60	
	Gly Arg Gln Ile Pro Pro Gln Tyr Thr Glu Tyr Met Val Arg His Gly 65 70 75 80	
30	Arg Gly Ala Met Pro Ala Phe Ser Glu Ala Glu Val Pro Pro Ala Glu 85 90 95	
	Leu Lys Val Leu Gly Asp Trp Ile Gln Gln Ser Ser Ala Pro Lys Asp 100 105 110	
35	Ala Gly Val Ala Pro 115	
	(2) ANGABEN ZU SEQ ID NO: 13:	
40	(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 687 Basenpaare (B) ART: Nuclectid (C) STRANGFORM: Doppelstrang (D) TOPOLOGIE: linear	
45	(ii) ART DES MOLEKÜLS: Genom-DNA	
	(iii) HYPOTHETISCH: NEIN	
50	(iv) ANTISENSE: NEIN	
	(ix) MERKMAL:	
55		

(A) NAME/SCHLÜSSEL: CDS

				A) NA B) Li	ME/			ı: Cı	JS								
				D) S				BEN:	/gen	e= "(DRF5	11					
5									,								
		(vi) SEC	OLIEN:	7256	- 400	r DI IM	2. 61	20 TI	ח אם	. 13						
		(**	, 55,	20114	20030	JIIKE.	BOIN	J. J.		, 140	. 15						
			ACC														4
10	Met	Thr	Thr 120	Arg	Arg	Asn	Phe	Leu 125	Ile	Gly	Ala	ser	Gln 130	Val	Gly	Ala	
			120					123					130				
			ATG														9
	Leu		Met	Met	ser	Pro		Leu	Val	Phe	Arg		Pro	Leu	Lys	Gln	
15		135					140					145					
	AAG	ccc	GTG	CGC	ATC	CTG	TCG	ACC	GGG	CTG	GCC	GGT	GAG	CAA	GAG	TTT	14
		Pro	Val	Arg	Ile		Ser	Thr	Gly	Leu		Gly	Glu	Gln	Glu		
	150					155					160					165	
20	CAC	TCG	ATG	CTT	CGC	GCG	CGA	TTG	ACC	CAT	ACG	GGT	CAG	GTC	GAC	ATC	19
	His	Ser	Met	Leu		Ala	Arg	Leu	Thr		Thr	Gly	Gln	Va1		Ile	
					170					175					180		
	GCG	TCG	GTA	CCG	CTG	GAC	GCA	GCT	АТТ	TGG	GCT	тст	ccc	GCT	CGA	стт	24
25			Val														
				185					190					195			
	GCC	CNG	GCA	חתכ	GDT	ece	mmc.	חחת	cerr	n.c.c	CCT	CTG	arc.	CCT	ጥጥጥ	CTT	28
			Ala														20
30			200					205					210				
50	GB G		AGG		an n	mm a	202	am a	n ma	an n	mmc	mmc	nma	C.D.m.	000	000	33
			Arg														
		215	-				220					225		•	-	-	
35																	
55			GTG Val														38
	230					235	,				240			-,-	,	245	
			CAC His														43
40		9		, tup	250	Dou	501	****		255			01,		260	or,	
			GCC Ala														48
	ALG	Leu	ALA	265	ser	Dea	MIA	ьуэ	270	GIY	ser	PLO	rne	275	TTG	ser	
45																	
			GCG														52
	val	Arg	Ala 280	Leu	GLY	ser	vai	285	ALA	GIN	Pro	Arg	Ser 290	Asn	GIN	ser	
			200					200									
50			GCC														57
	GLu	Val 295	Ala	Thr	His	Trp	Thr 300	Thr	Ala	Leu	GIA	Thr 305	Tyr	Tyr	Ala	Asp	

			GTG Val														624
•			CTA Leu														672
0			GAT Asp		TGA												687
5	(2)	(ii)	(E	EQUE A) Li B) AI D) TO	ENZKE ÁNGE: RT: # OPOLO	NNZE 228 Imino OGIE:	EICHE B Ami saur lir	N: nosa e near Prote	in		: 14:						
25	1		Thr Met	Met	5				Val	10				Leu	15		
ю	Lys	Pro	Val 35	20 Arg	Ile	Leu	ser	Thr 40	25 Gly	Leu	Ala	Gly	Glu 45	30 Gln	Glu	Phe	
		50	Met				55					60					
35	65		Val			70					75					80	
			Ala		85				-	90					95		
10			Arg	100					105					110	-	-	
			Val 115					120					125				
15		130		·			135					140					
50	145		Ala			150					155					160	
	Val	Arg	Ala	Leu	Gly 165	Ser	Val	Thr	Ala	Gln 170	Pro	Arg	Ser	Asn	Gln 175	Ser	

	Glu	Val	Ala	Thr 180	His	Trp	Thr	Thr	Ala 185	Leu	Gly	Thr	туг	Туг 190	Ala	Asp		
ī	Ile	Ala	Val 195	Gly	Arg	Trp	G1u	Pro 200	Gln	Arg	Glu	Val	Ala 205	Ser	Tyr	Gly		
	Ser	Gly 210	Leu	Ile	Met	Ala	G1u 215	Arg	Leu	Asp	Arg	Val 220	Ala	Ser	Thr	Phe		
o	11e 225	Ala	Asp	Leu														
	(2)	ANG	ABEN	zu s	SEQ]	D NO	: 1	5:										
5		(i)	(E	A) L.2 B) A.E C) S1	ANGE: RT: N	ZEIC 155 Jucle FORM GIE:	4 Ba otio 1: Do	senp i oppel										
0		(ii)	ART	r DES	моі	EKÜI	s: c	Senor	n-DNA	A								
		(iii)	HY	POTHE	ETISC	H: 1	EIN											
5		(iv)	ANT	ISE	ISE:	NEIN	ı											
		(ix)		A) NA	ME/S	CHLU		: CI	s									
0			(1) S	UE-	GE A Euge ene=	nol-	Hydr				lavoj	prote	ein				
5		(xi)	SEC	UEN2	BESC	HREI	BUNG	G: SE	11 Q	NO:	15:							
•		GAA Glu 230															4	8
0		AAA Lys															9	6
5		GTC Val															14	4
	200	CAG	C N m	C N TO		CRC	m n.c	N.C.C	ccc		CCT	ccc	mmc.	n.cm		mcm.	19	2
		Gln															19	4
,		GTG Val															24	0

			295					300					305				
5		CCG Pro 310															288
10		TCG Ser															336
		AAG Lys															384
15		GGC Gly															432
20		CCC Pro															480
25		GGT Gly 390															528
25		TTC Phe															576
30		CTC Leu															624
35		TTC Phe															672
		AAC Asn															720
40		CCA Pro 470															768
45		GTT Val															816
50		CCT Pro															864
	TGC	CGG	ACG	CGT	GCT	GAG	GTT	ACT	TCG	GAC	CCA	GGT	CCT	АТТ	TCT	GAA	912

	Cys	Arg	Thr	Arg 520	Ala	Glu	Val	Thr	Ser 525	Asp	Pro	Gly	Pro	11e 530	Ser	Glu	
5		GAC Asp															960
10		TAC Tyr 550															1008
15		ATC Ile															1056
		GAG Glu															1104
20		AAC Asn															1152
25		GCA Ala															1200
30		CAT His 630															1248
		CAT His															1296
35		CAC His															1344
40		AAG Lys															1392
45		GAA Glu															1440
		GCC Ala 710															1488
50 .		GCT Ala															1536

1554

5	ATT (ro I		AA.										
	(2)	ANGAI	BEN 2	បទ	II Q) ио:	16	:								
10		(:	(A)	LÄI AR	NGE: I: Ai	NZE 517 minos GIE:	Ami: saur	nosă: e	ıren							
15		(xi)	SEQ	UENZ	BESC		BUNG	: SE	2 ID	NO:						
15	Met 1	Glu	Ser	Thr	Val 5	Val	Leu	Pro	Glu	Gly V 10	/al	Thr	Pro	Glu	Gln 15	Phe
20	Thr	Lys	Ala	Ile 20	Ser	Glu	Phe	Arg	Gln 25	Val :	Leu	Gly	Glu	Asp 30	Ser	Val
	Leu	Val	Thr 35	Ala	Glu	Arg	Val	Val 40	Pro	Tyr '	Thr	Lys	Leu 45	Leu	Ile	Pro
25		50					55			Ala		60				
	65					70				Gly	13					
30					85					Arg 90					,,,	
				100					102	Ile				110		
35	Asn	Lys	11e	Ile	Glu	Ile	Asp	Val 120	Glu	Gly	Cys	Thr	Ala 125	Leu	Leu	Glu
	Pro	Gly		Thr	Tyr	Gln	Gln 135	Leu	His	Asp	Tyr	11e	Lys	Glu	His	Asn
40	145	ō				150				Ile	155					
45					165	6				1/0					1	
				18	0				10.	,						/ Glu
50			19	5				20	,				20.	-		o Gln
	Al	a Ph	e Ly	s Tr	p Gl	у ту	r Gl	y Pr	ту	r Le	ı Ası	p Gl	y 11	e Ph	e Th	r Gln

57

		210					215					220				
5	Ser 225	Asn	Phe	G1 y	Va1	Val 230	Thr	Lys	Leu	Gly	11e 235	тгр	Leu	Met	Pro	Lys 240
	Pro	Pro	Val	Ile	Lys 245	Ser	Phe	Met	Ile	Arg 250	Tyr	Pro	Asn	Glu	Ala 255	Asp
10	Val	Val	Lys	Ala 260	Ile	Asp	Ala	Phe	Arg 265	Pro	Leu	Arg	Ile	Thr 270	Gl n	Leu
	Ile	Pro	Asn 275	Va1	Val	Leu	Phe	Met 280	His	Gly	Met	туг	Glu 285	Thr	Ala	Ile
15	Cys	Arg 290	Thr	Arg	Ala	Glu	Val 295	Thr	Ser	Asp	Pro	Gly 300	Pro	Ile	Ser	Glu
20	Ala 305	Asp	Ala	Arg	Lys	Ala 310	Phe	Lys	G1u	Leu	Gly 315	Val	Gly	Tyr	Trp	Asn 320
20	Val	Tyr	Phe	Ala	Leu 325	Tyr	Gly	Thr	Glu	Glu 330	Gl n	Ile	Ala	Val	Asn 335	Glu
25	Lys	Ile	Va1	Arg 340	Gly	Ile	Leu	Glu	Pro 345	Thr	Gly	Gly	Glu	Ile 350	Leu	Thr
	Glu	Glu	Glu 355	Ala	Gly	Asp	Asn	11e 360	Leu	Phe	His	His	His 365	Lys	Gln	Leu
30	Met	Asn 370	Gly	Glu	Met	Thr	Leu 375	Glu	Glu	Met	Asn	11e 380	Tyr	Gln	Trp	Arg
	Gly 385	Ala	Gl y	Gly	Gly	Ala 390	Cys	Trp	Phe	Ala	Pro 395	Val	Ala	Gln	Val	Lys 400
35	Gly	His	Glu	Ala	Glu 405	Gl n	Gln	Val	Lys	Leu 410	Ala	Gln	Lys	Val	Leu 415	Ala
	Lys	His	Gly	Phe 420	Asp	Tyr	Thr	Ala	Gly 425	Phe	Ala	Ile	Gly	Тгр 430	Arg	Asp
40	Leu	His	His 435	Val	Ile	Asp	Val	Leu 440	туг	Asp	Arg	Ser	Asn 445	Ala	Asp	Glu
45	Lys	Lys 450	Arg	Ala	Tyr	Ala	Cys 455	Phe	Asp	Glu	Leu	11e 460	Asp	Val	Phe	Ala
•5	Ala 465	Glu	Gly	Phe	Ala	Ser 470	Tyr	Arg	Thr	Asn	11e 475	Ala	Phe	Met	Asp	Lys 480
50	Val	Ala	Ser	Lys	Phe 485	Gly	Ala	Glu	Asn	Lys 490	Arg	Val	Asn	Gln	Lys 495	Ile
	Lys	Ala	Ala	Leu 500	Asp	Pro	Asn	Gly	11e 505	Ile	Ala	Pro	Gly	Lys 510	ser	G1 y

Ile His Leu Pro Lys

			515															
;	(2)	ANG	ABEN	zu :	SEQ :	ID N): 1	7:										
o		(i	(1	A) LĴ B) Al C) S1	ÁNGE RT: 1 PRANC	86: Nucle	l Ba: eotic 4: Do	senpa i oppe:	aare 1stra	ang								
		(ii	AR!	r DES	MOI	LEKÜ	Ls: d	Senor	n-DNA	4								
5) HY															
90		(ix	(1	A) NI B) Li	AME/S	SCHL	58		DS /gene	e= "(ORF2'	•						
25		ATT	SE(ATC	ACT	GCG	GGC	ACC	GGA	AGT	CTT	GGT						48
	Met	Ile	Ala 520	Ile	Thr	Ala	Gly	525	Gly	ser	Leu	GLY	530	Ala	Ile	Val		
10			CTA Leu															96
15			CCT Pro														1	144
			GCG Ala														1	192
10			GAC Asp														2	240
15			CAA Gln 600														1	288
			CGT Arg														;	336
	AGG	TCT	ATT	TGG	GCC	TCC	ATT	CAT	CGT	gaa	ACT	GAG	ACT	TAC	CTC	AGG	;	384

	Arg 630	Ser	Ile	Trp	Ala	Ser 635	Ile	His	Arg	Glu	Thr 640	Glu	Thr	Tyr	Leu	Arg 645	
		TCT Ser															432
,		CTG Leu															480
5		ccc Pro															528
		GCT Ala 695															576
2		TAC Tyr															624
5		ATT Ile															672
		CCT Pro															720
,		ATG Met															768
5		TAC Tyr 775															816
,		GAA Glu															858
	TGA																861
	(2)	AMG	DEN	711	ero :	TD NO	n 11	٠.									

- - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 286 Aminosäuren
 - (B) ART: Aminosaure
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Protein

 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:

	Met 1	Ile	Ala	Ile	Thr 5	Ala	G l y	Thr	Gly	Ser 10	Leu	Gly.	Arg .	Ala	11e	Val
5	Glu			20					25					50		
	Arg		35					40					43			
10	Ala	50					55					00				
15	65					70	Leu				/3					
					85		Ser			90					,,,	
20				100			Thr		105					110		
			115				Ile	120					123			
25		130					Thr 135					140				
	145					150)				133					Ala 160
30					165	5				1/(,				1.0	
				18	0				18:	•				150		Arg
35			19	5				20	D				200	,		Ala
40		21	0				21:	5				22.				Ala
40	22	5				23	0				23	3				240
45					24	15				23	10					
				26	50				26	,5				-		g Arg
50			2	75			ır Ty	28	le G1 30	n A	rg Le	eu Va	1 Tr 28	р Pr 5	o	
	(2	() Al	NGABI	EN Z	J SE	Q ID	ио:	19:								

5		(1	(i (i	A) L B) A C) S	ÄNGE RT: i TRAN	: 10 Nucl GFOR	ll B eoti M: D : li	asen; d oppe	lstr									
		(ii) AR	T DE	s Mo	LEKÜ	LS:	Geno	m-DN	A.								
10		(iii	HY:	ротн	ETIS	CH:	NEIN											
		(iv) AN	TISE	NSE:	NEI	N											
15		(ix	Ü	A) N. B) L	AME/S AGE:	IGE		BEN:		duct:	= "A	l koh	o1-D	ehyd	roge:	nase"		
20		(xi) SE	QUEN	ZBES	CHRE	IBUN	: 3: SI	EQ II	ON C	: 19	:						
		AAG Lys															4:	8
25		CAG Gln															91	6
30		AGG Arg 320															14	4
35		GGT Gly															19:	2
		GGT Gly															24	0
40		CAG Gln															281	8
15		AAG Lys															33	6
50		GGG Gly 400														ATA Ile	38	4
	CCG	ATA	CCG	GAG	CAC	CTG	TCG	TAC	GAG	GAG	GCT	GCA	ACA	TTG	CCT	TGC	43:	2

	Pro Ile 415	Pro Glu	His Let 420		Tyr Glu	Glu Ala 425	Ala Th	Leu Pr	o Cys 430	
5			GCT TGG Ala Trp 435						l Lys	480
10			GTC TTC Val Let							528
15			GCC AAG Ala Lys	Leu I				His Th		576
13		Glu Glm	AAG CTO							624
20			CGC AAT Arg Ast 500	Ser E						672
25			GGA GGG Arg Gly 515						y Ala	720
			GGC TCJ Arg Sei							768
30			CTA GTO	. Ala c				Pro Le		816
35			GCT ATT							864
40			TCA ATO Ser Met	Asn I						912
			TGC TGC Cys Cys 595						a Tyr	960
45			AGC GGG Ser Gl							1008
50	TAA									1011

(2) ANGABEN ZU SEQ ID NO: 20:

(i) SEQUENZKENNZEICHEN:

							s Amu		lurei	1						
5							lir									
							LS: I			on o	20	:				
10	Met 1	Lys	Ala	Tyr	G1 u 5	Leu	His	Lys	Ile	Ser 10	Glu	Gln	Va1	G1u	Val 15	Arg
	Leu	Gln	Pro	Thr 20	Arg	Pro	Arg	Pro	Gln 25	Leu	Asn	His	Gly	Glu 30	Val	Leu
15	Ile	Arg	Val 35	His	Ala	Ala	Ser	Leu 40	Asn	Phe	Arg	Asp	Leu 45	Met	Ile	Leu
	Ala	Gly 50	Arg	Tyr	Pro	Gly	Gln 55	Met	Lys	Pro	Asp	Val 60	Ile	Pro	Leu	Ser
20	Asp 65	Gly	Ala	Gly	Glu	11e 70	Val	Glu	Val	Gly	Pro 75	G1 y	Val	Ser	Ser	G1u 80
25	Val	Gln	Gly	Gln	Arg 85	Val	Ala	Ser	Thr	Phe 90	Phe	Pro	Asn	Trp	Arg 95	Ala
	Gly	Lys	Ile	Thr 100	Glu	Pro	Ala	Ile	Glu 105	Val	Ser	Leu	Gly	Phe 110	Gly	Met
30	Asp	Gly	Met 115	Leu	Ala	Glu	Tyr	Val 120	Ala	Leu	Pro	Tyr	G1u 125	Ala	Thr	Ile
	Pro	11e 130	Pro	Glu	His	Leu	Ser 135	Tyr	Glu	Glu	Ala	Ala 140	Thr	Leu	Pro	Cys
35	Ala 145	Ala	Leu	Thr	Ala	Trp 150	Asn	Ala	Leu	Thr	Glu 155	Val	Gly	Arg	Val	Lys 160
	Ala	Gly	Asp	Thr	Val 165	Leu	Leu	Leu	Gly	Thr 170	Gly	Gly	Val	Ser	Met 175	Phe
10	Ala	Leu	Gln	Phe 180	Ala	Lys	Leu	Leu	Gly 185	Ala	Thr	Val	Ile	His 190	Thr	Ser
	ser	Ser	Gl u 195	Gln	Lys	Leu	Glu	Arg 200	Val	Lys	Ala	Met	Gly 205	Ala	Asp	His
15	Leu	Ile 210	Asn	Tyr	Arg	Asn	Ser 215	Pro	Gly	Trp	Asp	Arg 220	Thr	Val	Leu	Asp
	Leu 225	Thr	Ala	Gly	Arg	Gly 230	Val	Asp	Leu	Val	Val 235	Glu	Val	Gly	Gly	Ala 240
50	Gly	Thr	Leu	Glu	Arg 245	ser	Leu	Arg	Ala	Val 250	Lys	Val	Gly	Gly	11e 255	Val

	Ala	Thr	lle	Gly 260	Leu	Val	Ala	Gly	Val 265	Gly	Pro	Ile	Asp	Pro 270	Leu	Pro	
5	Leu	Ile	ser 275	Arg	Ala	Ile	Gln	Leu 280	ser	Gly	Val	Tyr	Val. 285	Gly	Ser	Arg	
	Glu	Met 290	Phe	Leu	Ser	Met	Asn 295	Lys	Ala	Ile	Ala	Ser 300	Ala	Glu	Ile	Lys	
10	Pro 305	Val	Ile	Asp	Cys	Cys 310	Phe	Pro	Ile	Asp	Glu 315	Val	Gly	Asp	Ala	Tyr 320	
15	Glu	Tyr	Met	Arg	Ser 325	Gly	Asn	His	Leu	Gly 330	Lys	Val	Val	Ile	Thr 335	Ile	
	(2)	ANG	ABEN	2U :	SEQ :	ID NO	o: 21	L :									
20		(1)	() ()	A) L) B) Al	ANGE RT: 1 PRANC	15: Nucle	otic	senp i oppel									
25		(ii)	AR?	DE	S MOI	LEKÜI	LS: C	Genom	-DNA	A							
		(iii)	HYI	отні	ETIS	CH: 1	NEIN										
		(iv)	ANT	risei	SE:	NEI	4										
30		(ix)		(N (F	AME/:			L: CE									
35					NST:	IGE I	ANGAE	nt (4 BEN:/ Den-D	prod	luct=							
		(xi)	SEC	QUEN	ZBES	CHRE	BUNG	G: SE	Q II	NO:	21:	:					
40	TCAC	CGT	GT (SATC	GGA'	rt G	FAAAT	rtcgi	GC	SAGGA	ACAG	CGG	CAC	TA (CCGG	CGCCCT	60
	GAA	GGC:	rgg /	AAGG	rtgg	AG T	rtcg:	rtaag	GT	TGG	racc	CAG	CAGC	CAT (GGAG	AGCGGC	120
45	CCT	rage	GG)	AATG	GCAG	CT T	GATG	GTTGC	CA	:GGG/	ACCA	GAC.	rgga'	rgt (CTTG	AGTGTC	180
	GAG	ATTA	ACC I	AGAT	CGCT	GC G	ATTT:	CAT	GA	GCG)	ACCA	ACC	ACGG	rca (GCAA	STACCC	240
	GTC	ACCT	rcg (GCGG	CGGT	CG G	ACTT	CTAGG	GA(CGAA	GCC	GGC	rccr	GGG (CCGC	CGAGGC	300
50 .	TTC	GCCG	SAG '	racc.	AGAG	GT C	GTAG	rcaco	TC	GTG	GTTG	TCC	CAGA'	rgc	CGAG'	rgagtt	360
	GTA	CGCG	AAT ;	ATCT'	TCTC	GG C	CTGC	TGAT	G CG	CAAG1	rggt	TTG	CGTG	GAT	CGTC	CACCCC	420

CATAAAGCCA	TAGCGGTTGC	ATTGCAGGGC	GAACGAAGAA	TCCATGATTG	GCATTTCCGC	480
AAAGAAATCG	TGTAGCCGGG	TTCGCTTGAT	CTCGTCGCTG	CTGCTATCGA	GGTCAATTTC	540
CCAACGAGTC	AGGCGTGGTA	CGGCTTTCTC	AGGGGCGAAG	GGTTGGTTTT	GTGAGTTGGG	600
GAAGGGGAAC	GGCAGGATTT	CACTTTCCAT	AAGGTCGATA	TAAATCTTGG	TTCCGACTTC	660
CCAAGCATTC	ACAACATGAA	ATACCCAGAG	CGCCGGTGCC	TTGAGCCAGC	GAATCAGACT	720
GCCCTGGCGC	GGCGCGAGTA	CGCCAATGTA	GCTGCCCAGT	TCCGGCTCCC	ACATATAAAT	780
TGGCTGTTTC	GCCTTGAGGC	GGGACAGGCT	GTTGGTGGCC	GGCATAATTG	ggaaaatgga	840
CCAATTTCGG	GTAATGGCAA	AGTCGTGCAT	GAATGCGCCA	TAGGGCTGCT	CAAACCAAGT	900
TTCATGTGTC	ACCTTGCCGT	GCTTGTCGAC	AATGTAATAG	GCCATGTCTG	GAGTTGCTTC	960
GCCCTTAGCT	GCCGAACCGA	AGAACAACAA	GTCACCCGTT	TCCGGGTCAT	ATTTTGGATG	1020
GGCGGTGTGG	GTTTGGCTGG	TAACTTGGCC	GTCGTAGTCG	AAGTGTCCGC	GAGTTTCAAG	1080
TGTACGAGGA	TCCAGTTCGT	ACGGTAGGCC	GTCTTCCTTC	ACCGCCAGCA	CCTTGCCGTG	1140
ATGGCTAATG	ATGCTTGTAT	TGGCAACGGT	GCGGTCTAGT	CCTTTTACAC	TGGTGTCGTC	1200
GGTATAGGGG	TTTCTGTACA	TGCCAAATAG	CGATTTTCGC	GCTAGTCGTT	CGGCCGTGAA	1260
TCGAGCGGTT	TTAACCCAGC	GACTGATGAA	GTCGACATGA	CCATCTTCGA	AGTGGAAGGC	1320
AGAGGCCATT	CCATCTCCAT	CTATGAAGGT	GTGGAATTTT	TGTGGGGTAA	CTTGAGGCTC	1380
TGGCGTA TTA	CGGTAGAACG	TTCCATTTAT	TGATTTTGGG	ATTTCGCCGT	CAACCTCTAG	1440
ATCGAACAAG	TCTGCCTCTA	TACGGGTGGG	GAGAAGTGTT	CCTACTAATT	GCGGGTCGTT	1500
GCGGTTGAAT	CTCGCCAT					1518

(2) ANGABEN ZU SEQ ID NO: 22:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 505 Aminosauren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 22:
- Met Ala Arg Phe Asn Arg Asn Asp Pro Gln Leu Val Gly Thr Leu Leu
- Pro Thr Arg Ile Glu Ala Asp Leu Phe Asp Leu Glu Val Asp Gly Glu

15

20 25

10

15

20

	11	e E	Pro l	Lys 35	Ser	Ile	Asn	Gly	Th 4	r P	he S	Гуг	Arg	Asn	Th	ır P	ro	G l u	Pr	.0
5			50				Lys	55						00						
		La :	Ser.	Ala	Phe	His	Phe 70	Glu	As	p G	ly	His	Val 75	Asp	Pł	ne I	le	Ser	A	cg 30
10						85	Arg					90								
					100		Arg			,	103									
15				115			Val		1:	20					•					
20			130				Lys	13	5					14						
	1	45					150)					13.	,						
25						16						1/0	,						-	
					180)	y Se				T02									
30				195	5		l As		-	200										
			210)			r Gl	2.	Lo											
35		225					e Pr 23	10					23							
						24						23	0					_		
40					26	50	eu Al				26	>					-	•		
45				27	5		eu T			280										
45			29	0			yr I	2	95					-	,,,,					
50		30	5					10					-	1.5						
		Pr	o Ai	g L	eu T	hr P	rg T	rp (31u	Ile	e As	p L	eu A	sp :	ser	Se	r S	er P	sp	Glu

					325					330					335	
5	Ile	Lys	Arg	Thr 340	Arg	Leu	His	Asp	Phe 345	Phe	Ala	Glu	Met	Pro 350	Ile	Met
	Asp	Ser	Ser 355	Phe	Ala	Leu	Gln	Cys 360	Asn	Arg	Tyr	Gly	Phe 365	Met	Gly	Val
10	Asp	Asp 370	Pro	Arg	Lys	Pro	Leu 375	Ala	His	Gln	Gln	Ala 380	Glu	Lys	Ile	Phe
	Ala 385	Tyr	Asn	ser	Leu	Gl y 390	Ile	Trp	Asp	Asn	His 395	Arg	Gly	Asp	Tyr	Asp 400
15	Leu	Trp	Tyr	Ser	Gly 405	Glu	Ala	Ser	Ala	Ala 410	Gln	Glu	Pro	Ala	Phe 415	Val
20	Pro	Arg	ser	Pro 420	Thr	Ala	Ala	Glu	Gly 425	Asp	Gly	Tyr	Leu	Leu 430	Thr	Val
	Val	Gly	Arg 435	Leu	Asp	Glu	Asn	Arg 440	Ser	Asp	Leu	Val	11e 445	Leu	Asp	Thr
25	Gln	Asp 450	Ile	Gln	Ser	Gly	Pro 455	Val	Ala	Thr	Ile	Lys 460	Leu	Pro	Phe	Arg
	Leu 465	Arg	Ala	Ala	Leu	His 470	Gly	Cys	Trp	Val	Pro 475	Asp	Leu	Asn	Glu	Thr 480
30	Pro	Thr	Phe	Gln	Pro 485	Phe	Arg	Ala	Pro	Val 490	Arg	Gly	Arg	Cys	Pro 495	Arg
	Thr	Asn	Phe	Gln 500	Ser	Arg	ser	Arg	Arg 505							
35	(2)	ANG	ABEN	ZU S	EQ :	ED NO): 23	3:								
		(i)	(F	A) LÀ	NGE:	VZEIG 95: Vucle SFORM	Bas eotic	senpa i								
40						OGIE			SCIO	ing						
		(ii)	ART	DES	MO!	LEKÜI	S: C	Senor	n-DNI	λ.						
45		(iii) (iv)				NEI										
50		(ix	(E	A) NA B) LA	AME/S	SCHL	18			e= "(ORF3					

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 23:

5					CGG Arg 510												48
10					TCG Ser												96
					TTC Phe												144
15					TCT Ser												192
20					GTA Val												240
25					AGC Ser 590												288
					GGA Gly												336
30					CGC Arg												384
35					ATA Ile												432
					GAT Asp												480
40					CTA Leu 670												528
45					GGT Gly												576
50					CTA Leu												624
	GTG	GCT	CTT	CGG	AAA	ATG	AGG	GAA	GTG	AAG	AGA	GTA	CTC	GAG	CAG	AGT	672

Val Ala Leu Arg Lys Met Arg Glu Val Lys Arg Val Leu Glu Gln Ser 715 720 720 725 TTC GCA GAC GCT AAT CTC GGG CCG GAA AGT GTT TCA AGT CAA TTA GGA Phe Ala Asp Ala Asn Leu Gly Pro Glu Ser Val Ser Ser Gln Leu Gly 730 735 745 745 745 745 745 745 745 745 745 74
Phe Ala Asp Ala Asn Leu Gly Pro Glu Ser Val Ser Ser Gln Leu Gly 730 730 745 745 746 750 746 747 746 747 747 747 747 747 747 747
Ile Ser Lys Arg Tyr Leu His Tyr Val Phe Ala Ala Cys Gly Thr Thr 750 TTT GGT CGC GAG CTG TTG GAA ATA CGC CTG GGC AAA GCT TAT CGA ATG Phe Gly Arg Glu Leu Leu Glu Ile Arg Leu Gly Lys Ala Tyr Arg Met 765 CTC TGT GCG GCG GAG GTG TCG GGT GCT GTG CTG AAG GTT GCC Leu Cys Ala Ala Ser Asp Ser Gly Ala Val Leu Lys Val Ala Met Ser 780 TCA GGT TTT TCG GAT TCA AGC CAT TTC AGC AAG ATAT TAAG GAA AGA Sec Gly Phe Ser Asp Ser Ser His Phe Ser Lys Lys Phe Lys Glu Arg 805 TAC GGT TTT TCG CCT GTC TCC TTG GTG AGG CAG GCT TGA Sec Gly Phe Ser Asp Ser Ser His Phe Ser Lys Lys Phe Lys Glu Arg 805 TAC GGT GTT TCG CCT GTC TCC TTG GTG AGG CAG GCT TGA 795 Tyr Gly Val Ser Pro Val Ser Leu Val Arg Gla Ala 810 (2) ANGABEN ZU SEQ ID NO: 24: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 316 Aminosaure (B) ART: Aminosaure (C) TOPOLOGE: linear (ii) ART DES MOLEKÜLS: Protein (Xi) SEQUENZESCHREIBUNG: SEQ ID NO: 24: Met Thr Thr Ile Arg Trp Arg Arg Met Ser Ile His Ser Glu Gly Ile 1 5 10 Thr Leu Ala Asp Ser Pro Leu His Trp Ala His Thr Leu Asn Gly Ser 20 Met Arg Thr His Phe Glu Val Gln Arg Leu Glu Arg Gly Arg Gly Ala 35 Ser Leu Ala Arg Ser Arg Phe Gly Ala Gly Glu Leu Tyr Ser Ala Ile 50 Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp 65 Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp 65
Phe Gly Arg Clu Leu Leu Glu Ile Arg Leu Gly Lys Ala Tyr Arg Met 765 765 765 765 765 765 765 765 765 765
Leu Cys Ala Ala Ser Asp Ser Gly Ala Val Leu Lys Val Ala Met Ser 780 780 780 780 780 780 780 780 780 780
Set Gly Phe Ser Asp Ser Ser His Phe Ser Lys Lys Phe Lys Glu Arg 795 TAC GGT GTT TCG CCT GTC TCC TTG GTG AGG CAG GCT TGA Tyr Gly Val Ser Pro Val Ser Leu Val Arg Gln Ala 810 (2) ANGABEN ZU SEQ ID NO: 24: (1) SEQUENZKENNZEICHEN: (A) LÄNGE: 316 Aminosäuren (B) ART: Aminosäuren (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Protein (xi) SEQUENZESCHREIBUNG: SEQ ID NO: 24: Met Thr Thr Ile Arg Trp Arg Arg Met Ser Ile His Ser Glu Gly Ile 1 5 Thr Leu Ala Asp Ser Pro Leu His Trp Ala His Thr Leu Asn Gly Ser 20 25 30 Met Arg Thr His Phe Glu Val Gln Arg Leu Glu Arg Gly Arg Gly Ala 35 Ser Leu Ala Arg Ser Arg Phe Gly Ala Gly Glu Leu Tyr Ser Ala Ile 50 Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp 65 Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp 65
TYT Gly Val Ser Pro Val Ser Leu Val Arg Gln Ala 810 815 820 (2) ANGABEN ZU SEQ ID NO: 24: (1) SEQUENZKENNZEICHEN: (A) LÄNGE: 316 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Protein (xi) SEQUENZESCHREIBUNG: SEQ ID NO: 24: Met Thr Thr Ile Arg Trp Arg Arg Met Ser Ile His Ser Glu Gly Ile 1 5 10 Thr Leu Ala Asp Ser Pro Leu His Trp Ala His Thr Leu Asn Gly Ser 20 25 30 Met Arg Thr His Phe Glu Val Gln Arg Gly Arg Gly Ala 35 Ser Leu Ala Arg Ser Arg Phe Gly Ala Gly Glu Leu Tyr Ser Ala Ile 50 55 60 Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp 65 70 80
(i) SEQUENZKENNZEICHEN: (A) LÂNGE: 316 Aminosauren (B) ART: Aminosauren (B) ART: Aminosauren (C) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (X1) SEQUENZESCHREIBUNG: SEQ ID NO: 24: Met Thr Thr Ile Arg Trp Arg Arg Met Ser Ile His Ser Glu Gly Ile 1 5 10 Thr Leu Ala Asp Ser Pro Leu His Trp Ala His Thr Leu Asn Gly Ser 20 25 30 Met Arg Thr His Phe Glu Val Gln Arg Leu Glu Arg Gly Arg Gly Ala 35 Ser Leu Ala Arg Ser Arg Phe Gly Ala Gly Glu Leu Tyr Ser Ala Ile 50 55 60 Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp 65 70 80
(A) LANGE: 316 Aminosauren (B) ART: Aminosauren (C) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (Xi) SEQUENZESCHREIBUNG: SEQ ID NO: 24: Met Thr Thr Ile Arg Trp Arg Arg Met Ser Ile His Ser Glu Gly Ile 1 5 10 Thr Leu Ala Asp Ser Pro Leu His Trp Ala His Thr Leu Asn Gly Ser 20 25 30 Met Arg Thr His Phe Glu Val Gln Arg Leu Glu Arg Gly Arg Gly Ala 35 Ser Leu Ala Arg Ser Arg Phe Gly Ala Gly Glu Leu Tyr Ser Ala Ile 50 55 60 Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp 65 70 80
Met Thr Thr Ile Arg Trp Arg Arg Met Ser Ile His Ser Glu Gly Ile 1 10 15 Thr Leu Ala Asp Ser Pro Leu His Trp Ala His Thr Leu Asn Gly Ser 20 20 25 Met Arg Thr His Phe Glu Val Gln Arg Leu Glu Arg Gly Arg Gly Ala 35 45 Ser Leu Ala Arg Ser Arg Phe Gly Ala Gly Glu Leu Tyr Ser Ala Ile 50 55 Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp 65 70 75 80
Thr Leu Ala Asp Ser Pro Leu His Trp Ala His Thr Leu Asn Gly Ser 20 Met Arg Thr His Phe Glu Val Gln Arg Leu Glu Arg Gly Arg Gly Ala 35 40 Ser Leu Ala Arg Ser Arg Phe Gly Ala Gly Glu Leu Tyr Ser Ala Ile 50 Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp 65 70 70 71 72 73 75 76 77 78 78 78 78 78 78 78 78
20 25 30 Met Arg Thr His Phe Glu Val Gln Arg Leu Glu Arg Gly Arg Gly Ala 35 45 Ser Leu Ala Arg Ser Arg Phe Gly Ala Gly Glu Leu Tyr Ser Ala Ile 50 60 Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp 69 70 80
35 40 45 Ser Leu Ala Arg Ser Arg Phe Gly Ala Gly Glu Leu Tyr Ser Ala Ile 50 55 60 Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp 65 70 75 80
50 55 60 Ala Pro Ser Gln Val Leu Arg His Phe Asn Asp Gln Arg Asn Ala Asp 65 70 75 80
65 70 75 80
Glu Ala Glu His Ser Tyr Leu Ile Gln Ile Arg Ser Gly Ala Leu Gly 85 90 95

				100			Lys		105							
5	Ile	Val	Asp 115	Ser	Arg	Gln	Asp	Phe 120	Thr	Leu	Ser	Ser	Asn 125	Ser	Ser	Thr
	Gln	Gly 130	Val	Val	Ile	Arg	Phe 135	Pro	Val	ser	Trp	Leu 140	Gly	Ala	Trp	Val
10	ser 145	Asn	Pro	Glu	Asp	Leu 150	Ile	Ala	Arg	Arg	Val 155	Asp	Ala	G l u	Val	Gly 160
	Trp	Gly	Arg	Ala	Leu 165		Ala	Ser	Val	Ser 170	Asn	Leu	Asp	Pro	Leu 175	Arg
15	Ile	Asp	Asp	Leu 180	Gly	Ser	Asn	Val	Asn 185	Gly	Ile	Ala	G l u	His 190	Val	Ala
20	Met	Leu	Ile 195	ser	Leu	Aļa	ser	ser 200	Ala	Val	Ser	Ser	G1u 205	Asp	G1 y	Gly
20	Val	Ala 210		Arg	Lys	Met	Arg 215	Glu	Val	Lys	Arg	Val 220	Leu	G1u	Gln	ser
25	Phe 225		Asp	Ala	Ası	1 Let 230	ı Gly	Pro	Glu	ser	Val 235	Ser	Ser	Gln	Leu	G1y 240
	Ile	ser	Ly:	s Arg	245	r Let	ı His	Туз	: Val	250	Ala	Ala	Cys	Gly	Thr 255	Thr
30	Phe	e Gly	/ Ar	g G11 26	Le	u Le	u Glu	111	26	j Leu	Gly	Lys	Ala	Ty:	Arç	Met
			27	5				28	U				20.	•		Ser
35	Se	r Gl 29		e Se	r As	p Se	r se 29	r Hi	s Ph	e se	r Ly:	300	Phe	e Ly	s Gl	u Arg
	ТУ 30		y Va	l Se	r Pr	o Va 31	1 Se	r Le	u Va	l Ar	g Gl 31	n Ala	a			
40	(2						ио:									
		(i) 5	(A) (B)	LÄNG ART:	3E: 7	ICHE 335 E cleot	aser id								
45				(D)	TOP	OLOG	ORM: IE:]	inea	ar							
		(:	1)	ART I	ES I	MOLE	KULS	: Ge	nom-	ANC						
50		(i.	Li)	HĀ ÞO.	гнет	ISCH	: NE	IN								
		(LV)	ANTI	SENS	E: N	EIN									

(ix) MERKMAL:

(A) NAME/SCHLÜSSEL: CDS

			(1	3) L	AGE:	17	32										
5			(1) S					/pro	duct	= "E	noyl.	-CoA	-нус	rata	se"	
					/g	ene=	"ec	h"									
		(xi	SE	QUEN:	ZBES	CHRE	BUN	3: SI	EQ I	D NO	: 25	:					
10																	
				ACT													41
	Met	Ser	Pro	Thr	Leu	Asn	Arg	Glu		Val	Glu	Val	Leu		Val	Leu	
				320					325					330			
	GAG	CAG	GAC	GCA	GAT	GCT	CGC	GTG	CTT	GTT	CTG	ACT	GGT	GCA	GGC	GAA	9
15	Glu	Gln	Asp	Ala	Asp	Ala	Arg	Val	Leu	Val	Leu	Thr	Gly	Ala	G1y	Glu	
			335					340					345				
	TCC	TGG	DCC.	GCG	ccc	D.T.C.	GAC	CTG	Anc	GAG	тат	TTC	ccc	GD.G	Acc	CDT	14
				Ala													,,,
20		350					355				.,.	360	9				
				GAA													19:
	365	GIY	PEO	Glu	He	370	GIN	GIU	ьys	ire	375	Arg	GIU	AIA	ser	380	
	5 05					3,0					3.3					550	
25	TGG	CAG	TGG	AAG	CTC	CTG	CGG	ATG	TAC	ACC	AAG	CCG	ACC	ATC	GCG	ATG	24
	Trp	Gln	Trp	Lys		Leu	Arg	Met	Tyr		Lys	Pro	Thr	Ile		Met	
					385					390					395		
	GTC	аат	GGC	TGG	TGC	ттс	GGC	GGC	GGC	TTC	AGC	CCG	CTG	GTG	GCC	TGT	281
30				Trp													
				400					405					410			
	c n m	ama		ATC	m.c.m		a. a	222			mmm		ama.		ana		33
				Ile													33
35	, to p		415		-,-			420				,	425				
55																	
				ATC													38
	Asn	Trp 430	Gly	Ile	Pro	Pro	G1y 435	Asn	Leu	Val	Ser	Lys 440	Ala	Met	Ala	Asp	
		430					433					440					
40	ACC	GTG	GGT	CAC	CGC	GAG	TCC	CTT	TAC	TAC	ATC	ATG	ACT	GGC	AAG	ACA	43:
	Thr	Val	Gly	His	Arg	Glu	Ser	Leu	Tyr	Tyr	Ile	Met	Thr	Gly	Lys	Thr	
	445					450					455					460	
	ጥጥጥ	GGC	GGT	CAG	CNG	GCC	GCC	nna	ртс	ccc	CTT	GTG.	DDC	CAG	вст	GTT	48
45				Gln													30.
-		- 1	- 3		465					470					475		
				GAG													52
	P.E.O	ьец	мта	Glu 480	Leu	Arg	ser	vai	485	val	31u	Led	ATA	490	Asn	Leu	
50				.50					.00					.50			
	CTG	GAC	AAG	AAC	CCC	GTA	GTG	CTG	CGT	GCC	GCC	AAA	ATA	GGC	TTC	AAG	57

	Leu	Asp	Lys 495	Asn	Pro	Val	Val	Leu 500	Arg	Ala	Ala	Lys	Ile 505	Gly	Phe	Lys	
5		TGC Cys 510															624
10		CTC Leu															672
15		ATG Met															720
15		TAC Tyr			TGA												735
20	(2)	ANG	BEN	ZU S	EQ I	D NO): 26	i:									
25			(E	i) Li	NGE:	244 mino		nosä e	iurer	ì							
								rote 3: SE		No:	26:						
30	Met 1	Ser	Pro	Thr	Leu 5	Asn	Arg	Glu	Met	Val 10	Glu	Val	Leu	Glu	Val 15	Leu	
	Glu	Gln	Asp	Ala 20	Asp	Ala	Arg	Val	Leu 25	Val	Leu	Thr	Gly	Ala 30	Gly	Glu	
35	Ser	Trp	Thr 35	Ala	Gly	Met	Asp	Leu 40	Lys	Glu	Tyr	Phe	Arg 45	Glu	Thr	Asp	
40	Ala	Gly 50	Pro	Glu	Ile	Leu	Gln 55	Glu	Lys	Ile	Arg	Arg 60	Glu	Ala	Ser	Thr	
40	Trp 65	Gln	Trp	Lys	Leu	Leu 70	Arg	Met	Tyr	Thr	Lys 75	Pro	Thr	Ile	Ala	Met 80	
45	Val	Asn	Gly	Trp	Cys 85	Phe	Gly	Gly	Gly	Phe 90	Ser	Pro	Leu	Va1	Ala 95	Cys	
	Asp	Leu	Ala	11e 100	Cys	Ala	Asp	Glu	Ala 105	Thr	Phe	Gly	Leu	Ser 110	Glu	Ile	
50	Asn	Trp	G1y 115	Ile	Pro	Pro	Gly	Asn 120	Leu	Val	Ser	Lys	Ala 125	Met	Ala	Asp	
	Thr	Val	Gly	His	Arg	Glu	Ser	Leu	туг	туг	Ile	Met	Thr	Gly	Lys	Thr	

	130 135 140														
5	Phe Gly Gly Gln Gln Ala Ala Lys Met Gly Leu Val Asn Gln Ser Val 145 150 155 160														
	Pro Leu Ala Glu Leu Arg Ser Val Thr Val Glu Leu Ala Gln Asn Leu 165 170 175														
10	Leu Asp Lys Asn Pro Val Val Leu Arg Ala Ala Lys Ile Gly Phe Lys 180 185 190														
	Arg Cys Arg Glu Leu Thr Trp Glu Gln Asn Glu Asp Tyr Leu Tyr Ala 195 200 205														
15	Lys Leu Asp Gln Ser Arg Leu Leu Asp Pro Glu Gly Gly Arg Glu Gln 210 220														
20	Gly Met Lys Gln Phe Leu Asp Glu Lys Ser Ile Lys Pro Gly Leu Gln 225 230 235 240														
20	Thr Tyr Lys Arg														
	(2) ANGABEN ZU SEQ ID NO: 27:														
25	(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 1446 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Doppelstrang (D) TOPOLOGIE: linear														
30	(ii) ART DES MOLEKÜLS: Genom-DNA														
	(iii) HYPOTHETISCH: NEIN														
35	(iv) ANTISENSE: NEIN														
	(ix) MERKMAL: (A) NAMME/SCHLÜSSEL: CDS (B) LAGE:11443														
40	(D) SONSTIGE ANGABEN:/product= "Vanillin-Dehydrogenase" /gene= "vdh"														
45	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 27:														
	ATG TTT CAC GTG CCC CTG CTT ATT GGT GGT AAG CCT TGT TCA GCA TCT Met Phe His Val Pro Leu Leu Ile Gly Gly Lys Pro Cys Ser Ala Ser														
	245 250 255 260														
50	GAT GAG CGC ACC TTC GAG CGT CGT AGC CCG CTG ACC GGA GAA GTG GTA Asp Glu Arg Thr Phe Glu Arg Arg Ser Pro Leu Thr Gly Glu Val Val 265 270 275														

5			GCT Ala							144
			GCG Ala							192
10			CTG Leu							240
15			GCC Ala							288
_			GTT Val 345							336
20			CAG Gln							384
25			ATG Met							432
30			AAT Asn							480
			TGC Cys							528
35			CAT His 425							576
40			GTG Val							624
45			GAG Glu							672
			TCG Ser							720
50 .			AAG Lys							768

	TTC	TTG	GTC	TTG	GAC	GAT	GCC	GAC	CTC	GAT	GCG	GCG	GTC	GAA	GCG	GCG	816
								Asp									
					505					510					515		
5																	
								CAG									864
	Ala	rne	GIY	520	Tyr	rne	ASII	Gln	525	GIN	ire	cys	mec	530	Thr	GIU	
				320					323					330			
10	CGT	CTG	ATT	GTG	ACA	GCA	GTC	GCA	GAC	GCC	TTT	GTT	GAA	AAG	CTG	GCG	912
	Arg	Leu		٧al	Thr	Ala	Val	Ala	Asp	Ala	Phe	Val	Glu	Lys	Leu	Ala	
			535					540					545				
	200		-m-				acm										
								GCT									960
15	ALY	550	vul	ALU	1111	neu	555	Λια	GLY	лар	FIU	560	мър	FLO	GIII	ser	
								GCC									1008
		Leu	Gly	Ser	Leu		Asp	Ala	Asn	Ala		Gln	Arg	Ile	Gln		
	565					570					575					580	
20	CTG	GTC	TAD	GAT	GCG	CTC	GCA	AAA	GGC	GCG	cee	CAG	GTC	GTC	GGT	GGT	1056
								Lys									1000
					585				-	590	-				595	•	
25								CAG									1104
	GIA	Leu	Asp	e00	ser	Ile	Met	Gln	Pro 605	Met	Leu	Leu	Asp	Gln 610	Val	Thr	
				000					003					010			
	GAA	GAG	ATG	CGG	CTC	TAC	CGT	GAG	GAG	TCC	ттт	GGC	CCT	GTT	GCC	GTT	1152
	Glu	Glu	Met	Arg	Leu	Tyr	Arg	Glu	Glu	Ser	Phe	Gly	Pro	Val	Ala	Val	
30			615					620					625				
	cma	mmc	000		CD.M	o.cm	an.m	GAA	ann	ama	amo	com	amm			an m	1200
								Glu									1200
	*41	630	71.19	O1 y	nsp	O.	635	OI u	O,Lu	Deu	Deu	640	шеш	714	ASII	nap	
35																	
35								GCC									1248
		Glu	Phe	Gly	Leu		Ala	Ala	Ile	Phe		Arg	Asp	Val	Ser		
	645					650					655					660	
	GCA	ATG	GAA	TTG	GCC	CAG	CGC	GTC	GAT	TCG	GGC	АТТ	TGC	CAT	ATC	AAT	1296
40								Val									
					665		-			670	-				675		
								GCT									1344
	GIY	PIO	1111	680	птъ	мэр	GIU	Ala	685	met	PLO	Pne	GTA	690	Val	Lys	
1 5														050			
	TCC	AGC	GGC	TAC	GGC	AGC	TTC	GGC	AGT	CGA	GCA	TCG	ATT	GAG	CAC	TTT	1392
	Ser	Ser		Tyr	Gly	Ser	Phe	Gly	ser	Arg	Ala	Ser		G1 u	His	Phe	
			695					700					705				
50	Acc	CAG	CTG	ccc	TGG	ርጥር	ACC	ATT	CAG	ייממ	GGC	ccc	cec	CAC	TAT	CCA	1440
								Ile									1440
		710	_ ,	9	P		715				9	720	9		- 12		

		1446
	ATC TAA Ile 725	
5		
	(2) ANGABEN ZU SEQ ID NO: 28:	
10	(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 481 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear	
15	(ii) ART DES MOLEKÜLS: Protein(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 28:	
15	Met Phe His Val Pro Leu Leu Ile Gly Gly Lys Pro Cys Ser Ala Ser $1 \ \ 1$	
20	Asp Glu Arg Thr Phe Glu Arg Arg Ser Pro Leu Thr Gly Glu Val Val 20 25 30	
	Ser Arg Val Ala Ala Ala Ser Leu Glu Asp Ala Asp Ala Ala Val Ala 35 40	
25	Ala Ala Gin Ala Ala Phe Pro Glu Trp Ala Ala Leu Ala Pro Ser Glu 50 60	
	Arg Arg Ala Arg Leu Leu Arg Ala Ala Asp Leu Leu Glu Asp Arg Ser 80 65	
30	Ser Glu Phe Thr Ala Ala Ala Ser Glu Thr Gly Ala Ala Gly Asn Trp 90 95	
	Tyr Gly Phe Asn Val Tyr Leu Ala Ala Gly Met Leu Arg Glu Ala Ala 100 110	
35	Ala Met Thr Thr Gln Ile Gln Gly Asp Val Ile Pro Ser Asn Val Pro 115 120 125	
	Gly Ser Phe Ala Met Ala Val Arg Gln Pro Cys Gly Val Val Leu Gly 130 135 140	
40	ile Ala Pro Trp Asn Ala Pro Val Ile Leu Gly Val Arg Ala Val Ala 145 150 150	
45	Met Pro Leu Ala Cys Gly Asn Thr Val Val Leu Lys Ser Ser Glu Leu 165 170	
	Ser Pro Phe Thr His Arg Leu Ile Gly Gln Val Leu His Asp Ala Gly 180 185	
50	Leu Gly Asp Gly Val Val Asn Val Ile Ser Asn Ala Pro Gln Asp Ala 195 200 205	
	Pro Ala Val Val Glu Arg Leu Ile Ala Asn Pro Ala Val Arg Arg Val	

77

		210					215					220				
5	Asn 225	Phe	Thr	G l y	Ser	Thr 230	His	Val	Gly	Arg	Ile 235	Ile	Gly	Glu	Leu	ser 240
	Ala	Arg	His	Leu	Lys 245	Pro	Ala	Val	Leu	Glu 250	Leu	Gly	Gly	Lys	Ala 255	Pro
10	Phe	Leu	Val	Leu 260	Asp	Asp	Ala	Asp	Leu 265	Asp	Ala	Ala	Val	Glu 270	Ala	A1a
15	Ala	Phe	Gly 275	Ala	Tyr	Phe	Asn	Gln 280	Gly	Gln	Ile	Суѕ	Met 285	Ser	Thr	Gl u
13	Arg	Leu 290	Ile	Val	Thr	Ala	Val 295	Ala	Ąsp	Ala	Phe	Val 300	G1 u	Lys	Leu	Ala
20	Arg 305	Lys	Val	Ala	Thr	Leu 310	Arg	Ala	Gly	Asp	Pro 315	Asn	Asp	Pro	Gln	Ser 320
	Val	Leu	Gly	Ser	Leu 325	Ile	Asp	Ala	Asn	Ala 330	Gly	Gln	Arg	Ile	Gln 335	Val
25	Leu	Val	Asp	Asp 340	Ala	Leu	Ala	Lys	Gly 345	Ala	Arg	Gln	Val	Val 350	Gly	Gly
	Gly	Leu	Asp 355	Gly	Ser	Ile	Met	Gln 360	Pro	Met	Leu	Leu	Asp 365	Gln	Val	Thr
30	Glu	Glu 370	Met	Arg	Leu	Tyr	Arg 375	Glu	Glu	Ser	Phe	Gly 380	Pro	Val	Ala	Val
35	Val 385	Leu	Arg	Gly	Asp	Gly 390	Asp	Glu	G l u	Leu	Leu 395	Arg	Leu	Ala	Asn	Asp 400
35	Ser	Glu	Phe	Gly	Leu 405	Ser	Ala	Ala	Ile	Phe 410	Ser	Arg	Asp	Val	Ser 415	Arg
40	Ala	Met	Glu	Leu 420	Ala	Gln	Arg	Val	Asp 425	Ser	Gly	Ile	Cys	His 430	Ile	Asn
	Gly	Pro	Thr 435	Val	His	Asp	Glu	Ala 440	Gln	Met	Pro	Phe	Gly 445	Gly	Val	Lys
45	Ser	Ser 450	Gly	Tyr	Gly	Ser	Phe 455	Gly	Ser	Arg	Ala	Ser 460	Ile	Glu	His	Phe
	Thr 465	Gln	Leu	Arg	Trp	Leu 470	Thr	Ile	Gln	Asn	Gly 475	Pro	Arg	His	Tyr	Pro 480
50	Ile															
	(2)	ANG	ABEN	ZU s	SEQ :	ID N	o: 25	∌:								

5		(i	(1	A) Li 3) Al 3) S	ÁNGE RT: 1 FRANC	: 17	70 Ba eotic 1: De	aseni i oppel									
		(ii	AR?	r DES	MO!	LEKÜ	s: c	Genor	n-DN	à.							
10		(iii)	HY:	ротні	ETIS	CH: I	4EIN										
		(iv) AN	FISE	NSE:	NEI	4										
15		(ix)	(1	A) N/ B) L/	AME/S AGE:	L1 [GE /	167 Angai	L: CI BEN:/	/proc			se"					
20	"Ferulasaeure-CoA-Synthetase" /gene= "fcs" (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 29: ATG GGT TCT CTC GAG GGG CTT CTT CCC TTC CCG GGT CGA ATT CTT GAG																
		(xi	SEC	DUENS	ZBESC	THRE	FRUNG	a: SF	:0 II	NO:	29						
	D.T.C												cen	አጥጥ	CTT	CDC	48
25		Arg															
		CTC Leu															96
30	ALG	ьeu	500	nıs	irp	ALA	цуз	505	ALG	PLO	GIU	GIII	510	Суз	val	Ala	
		AGG Arg															144
	Ата	515	ALA	Ата	Asn	GTÅ	520	TEP	Arg	ALG	116	525	Tyr	мта	GIU	мес	
35		CAC															192
	530	His	Asn	Val	Arg	535	11e	Ala	GIN	ser	540	Leu	Pro	Tyr	GIĀ	545	
		GCA															240
40	Ser	Ala	Glu	Arg	Pro 550	Leu	Leu	Ile	Val	Ser 555	Gly	Asn	Asp	Leu	Glu 560	His	
		CAG															288
	Leu	Gln	Leu	Ala 565	Phe	Gly	Ala	Met	Tyr 570	Ala	Gly	Ile	Pro	Tyr 575	Cys	Pro	
45	GT G	TCT	ССТ	GCT	тат	тса	CTG	CTG	TCG	CAA	GAT	TTG	GCG	ang	CTG	CGT	336
		Ser	Pro					Leu					Ala				
			580					585					590				
50		ATC Ile															384
	nıs	595	val	GT Å	Leu	ren	600	FLO	GTÅ	vea	val	605	ALB	чта	дам	VIA	

	CCT									432
5	ATC Ile									480
10	AGC Ser									528
15	GCA Ala									576
	ACC Thr 675									624
20	AAT Asn									672
25	CCG Pro									720
30	CAC His									768
	GAC Asp									816
35	AGC Ser 755									864
40	GAA Glu									912
	TTC Phe									960
45	GGG Gly								1	800
50	CGC Arg								1	056

5									GCT Ala 845				1104
									CCG Pro				1152
10									AGC Ser				1200
15									GAA Glu				1248
20									GAT Asp				1296
									AAG Lys 925				1344
25									GCG Ala				1392
30									CCT Pro				1440
									TGC Cys				1488
35									CTT Leu				1536
40						$\tau_{\rm rp}$			CTC Leu 1005	Asn			1584
45	Gly				Ile				CTC Leu				1632
				Gly				Lys	GGC Gly			Gln	1680
50			Gln				Lys		GAT Asp		Tyr		1728

						ATG Met								TGA			177
i			1060)				1065	5				107)			
	(2)	ANG	ABEN	ZU S	SEQ :	ID NO): 3	D:									
0			(<i>I</i>	A) L) B) AF	ÀNGE RT:)	ENNZE 589 Amino OGIE:	Am.	inosa ce	iure	n							
5						CHREI				ONO	30:	:					
	Met 1	Arg	Ser	Leu	Glu 5	Ala	Leu	Leu	Pro	Phe 10	Pro	Gly	Arg	Ile	Leu 15	Glu	
o	Arg	Leu	Glu	His 20	Trp	Ala	Lys	Thr	Arg 25	Pro	Glu	Gln	Thr	Cys 30	Val	Ala	
	Ala	Arg	Ala 35	Ala	Asn	Gly	Glu	Trp 40	Arg	Arg	Ile	Ser	Tyr 45	Ala	Glu	Met	
5	Phe	His 50	Asn	Val	Arg	Ala	11e 55	Ala	Gln	Ser	Leu	Leu 60	Pro	Tyr	Gly	Leu	
	Ser 65	Ala	Glu	Arg	Pro	Leu 70	Leu	Ile	Val	Ser	Gly 75	Asn	Asp	Leu	G1u	His 80	
0	Leu	Gln	Leu	Ala	Phe 85	Gly	Ala	Met	Tyr	Ala 90	Gly	Ile	Pro	Tyr	Cys 95	Pro	
5	Val	Ser	Pro	Ala 100	туг	Ser	Leu	Leu	Ser 105	Gl n	Asp	Leu	Ala	Lys 110	Leu	Arg	
,	His	Ile	Val 115	Gly	Leu	Leu	Gln	Pro 120	Gly	Leu	Val	Phe	Ala 125	Ala	Asp	Ala	
,	Ala	Pro 130	Phe	Gln	Arg	Ala	11e 135	Glu	Thr	Ile	Leu	Pro 140	Asp	Asp	Val	Pro	
	Ala 145	Ile	Phe	Thr	Arg	Gly 150	Glu	Leu	Ala	Gly	Arg 155	Arg	Thr	Val	Ser	Phe 160	
5	Asp	Ser	Leu	Leu	Glu 165	Gln	Pro	G1 y	Gly	11e 170	Glu	Ala	Asp	Asn	Ala 175	Phe	
	Ala	Ala	Thr	Gly 180	Pro	Asp	Thr	Ile	Ala 185	Lys	Phe	Leu	Phe	Thr 190	Ser	Gly	
,	Ser	Thr	Lys 195	Leu	Pro	Lys	Ala	Val 200	Pro	Thr	Thr	Gln	Arg 205	Met	Leu	Cys	
	Ala	Asn	Gln	Gln	Met	Leu	Leu	Gln	Thr	Phe	Pro	Val	Phe	Gly	Glu	Glu	

		210					215	5					220						
	Pro 225	Pro	Val	Leu	Val	Asp 230	Tr	p Le	eu E	Pro	Trp	Asn 235	His	Th	r P	he	Gly	G1:	y 0
	Ser	His	Asn	Ile	Gly 245	Ile	Va	1 L	eu 1	ryr	Asn 250	Gly	Gly	Th	rT	yr	Tyr 255	Le	u
10			Gly	260						263									
			Glu 275					2	80					~					
15		290					29	,5					50.						
	305		Ala			310	0					51.	•						
20			, Ile		32	5					331	,							
			j Il∈	34	0					343									
25			s Th:	5					360										
30		37					3	/3											
30	38	5	u Gl			35	90						-						
35			o G1		40)5						. •							
			y As	4:	20					42	,								
40			et Ph	35					444	U									
		4	he V					455											
45	4	65	er T			4	70					,	, ,						
			ly L		4	185					-								
50	G	ly I	eu G	ly I	.ys (3lu i	Ala	Sei	: As	5 P	1a 0	ilu V	/al	Leu	A1	a S 5	er 6	ııu	210

	Val	Arg	Ala 515	Trp	Phe	Ala	Asp	Trp 520	Leu	Lys	Arg	Leu	Asn 525	Arg	Glu	Ala		
	Thr	Gly 530	Asn	Ala	Ser	Arg	11e 535	Met	Trp	Val	Gly	Leu 540	Leu	Asp	Thr	Pro		
0	Pro 545	Ser	Ile	Asp	Lys	Gly 550	Glu	Val	Thr	Asp	Lys 555	Gly	Ser	Ile	Asn	Gln 560		
	Arg	Ala	Val	Leu	G1n 565	Trp	Arg	Ser	Ala	Lys 570	Val	Asp	Ala	Leu	Tyr 575	Arg		
5	Gly	Glu	Asp	Gln 580	Ser	Met	Leu	Arg	Asp 585	Glu	Ala	Thr	Leu					
	(2)	ANG	ABEN	ZU S	EQ I	D NO): 31	L:										
0		(i)	() () ()	A) L.F B) AF C) S1	NGE: RT: 1	Nucle SFORM	6 Ba otio 1: Do	senp i oppel										
	(C) STRANGSORM: Doppelstrang (D) TOPOLOGIE: linear (11) ART DES MOLEKÜLS: GENOM-DNA (111) HYPOTHETISCH: NEIN																	
5	(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Genom-DNA (iii) HYPOTHETISCH: NEIN (iv) ANTISENSE: NEIN																	
		(1V)	AN	ISEN	ISE:	NEIN	•											
0	(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Genom-DNA (iii) HYPOTHETISCH: NEIN																	
,		(xi)	SEC	QUENZ	BESC	CHREI	BUNG	5: SE	11 Q) NO:	31:							
,														ACT Thr			48	
														GCC Ala			96	
5	CTG	GTG	TCG	CCT	ATC	GAC	ATT	GGG	GTA	AAG	GTC	GCT	CGC	GAA	GTT	CTG	144	
	Leu	Val	Ser	Pro 625	Ile	Asp	Leu	G1 y	Val 630	Lys	Val	Ala	Arg	Glu 635	Val	Leu		
)														CTC Leu			192	

5	ATG Met 655								240
•	TTG Leu								288
10	ATT Ile								336
15	TCC Ser								384
20	CGT Arg								432
20	GCG Ala 735								480
25	GCT Ala								528
30	TAC Tyr								576
	GAG Glu								624
35	GTG Val								672
40	GCA Ala 815								720
45	CGC Arg								768
	TCT Ser								816
50 .	GCC Ala								864

5															CCC Pro		912
v															GCG Ala		960
10															GAG Glu		1008
15															GAG Glu 940		1056
20															CCG Pro		1104
															TTG Leu		1152
25															GGG Gly		1200
30												Phe			TCC Ser		1248
35						Ile					His	TAT Tyr)	1293
	TAA	ANG	ABEN	711 6	EO I	ים אוכ	. 35	, .									1296
40	(2)		(i) S (F	EQUE	NZKE INGE:	NNZE 431	ICHE Ami	N: nosă	iurer	ı							
45			ART	DES	MOI	EKÜI	.s: 1	Prote		NO:	32:						
50 .	1		·		5	•		-		10			·		Ala 15 Leu		
				20				-	25	-		-	-	30			

	Leu '		35					40								
5	Met	50					55					•••				
	65					70					Leu 75					
10					85					30						
				100					100	,	Arg					
15			115					120	,		val					
20		130					135				s Arg					
20	145					150	,				u Trp					
25					165	5				1,	0					
				180)				10							Ser
30			199	5				20	U					-		n Glu
		21)				21	3								n Ser
35	22	5				23	0				2.0	-				r Val 240
					24	15				2	50					
40				26	50					63						ıl Asp
			27	15					80				_			ln Pro
45		25	0				2	95				_				ro Glu
50	30)5				3	10				,	13				la Arg 320
-*	S	er A	sp L	eu S	er L	eu A	rg A	sp I	1e /	Asp !	eu P	he G	lu I	le A	sn G	lu Ala

				325					330					335			
5	Gln A	Ala A	la Gln 340	Val	Leu	Ala	Val	Gln 345	His	Glu	Leu	Gly	11e 350	Glu	His		
	Ser I		eu Asn 55	Ile	Trp	Gly	Gly 360	Ala	Ile	Ala	Leu	G1y 365	His	Pro	Leu		
10		Ala T. 370	hr Gly	Leu	Arg	Leu 375	Cys	Met	Thr	Leu	Ala 380	His	Gln	Leu	G1n		
	Ala <i>F</i> 385	Asn A	sn Phe	Arg	Tyr 390	Gly	Ile	Ala	Ser	Ala 395	Cys	Ile	Gly	Gly	Gly 400		
15	Gln (Sly M	et Ala	Val 405	Leu	Leu	Glu	Asn	Pro 410	His	Phe	Gly	Ser	Ser 415	Ser		
20	Ala F	Arg S	er Ser 420	Met.	Ile	Asn	Arg	Val 425	Asp	His	Tyr	Pro	Leu 430	Ser			
20	(2) F	ANGAB	EN ZU	SEQ 1	D NO	: 33	3:										
25		(i) :	SEQUEN: (A) LÀ (B) Al (C) ST (D) TO	ANGE: RT: N PRANC	159 Nucle	6 Ba otio	senp i ppel										
		(ii) ;	ART DES	MOI	EKÜI	s: c	enor	n-DNA	A								
30	(i	iii)	нүротн	ETISC	: H: N	EIN											
	((iv)	ANTISE	NSE:	NEIN	I											
35	4	(ix) 1	MERKMAI (A) NJ (B) LJ (D) SO	AME/S AGE: I	15	93 NGAE	BEN:		luct∘	⊧ "Ch	nemot	axis	s-Pro	oteir	ı"		
40		(xi)	SEQUEN	ZBES	HREI	BUNG	9: SE	EQ II	NO:	33:							
			GT TTC er Phe 435														48
45	CTT C	-cc c	TT GCC	ምምር	GCA	CTC	GTD.	מדים	TOT	GTC	GGG	CTG	ידידמ	GTT.	D.C.C		96
		Ala L	eu Ala 50														96
50	Gly 7		GT TTC ly Phe													1	44

5	GCG Ala								192
	GAG Glu								240
10	TCG Ser								288
15	ATT Ile								336
20	TCT Ser 545								384
	GCC Ala								432
25	gat Asp								480
30	GCA Ala								528
	ATC Ile								576
35	GCT Ala 625								624
40	TCG Ser								672
45	GTC Val								720
	ACT Thr								768
50	CAA Gln								816

								GAT Asp									864
5	GCC	CAG	GTC	TCT	ACC	GCC	GTG	AAC	GAG	TTG	GTT	GAA	ACC	GTC	CAG	GCA	912
	Ala 720	Gln	Va1	Ser	Thr	Ala 725	Val	Asn	Glu	Leu	Val 730	Glu	Thr	Val	Gln	Ala 735	
10								GCA Ala									960
15								AGT Ser									1008
								ATG Met 775									1056
20								CAG Gln									1104
25								AAT Asn									1152
								CAG									1200
30	GIU	MIA	MI	Arg	820	GIY	GIU	Gln	GLY	825	GLY	File	Ala	Val	830	ATa	
								ATG Met									1248
35								TTG Leu 855									1296
40								GTC Val									1344
								GCT Ala									1392
45								CAG Gln									1440
50								AAC Asn									1488

			GAC														153
	Met	Ala	Asp 930	Glu	Ser	Ala	Ile	Lys 935	Ala	Gly	Gln	Thr	Met 940	Lys	Ser	Ser	
5	DDC.	GRG	стт	CCT	CDC	CTC	ccc	n.cm	ccc	CTD	CDD	מממ	TCC	GTT	СРТ	CGA	158
			Leu														130
10	TTC	CAG	CTG	TAG													159
	Phe 960	Gln	Leu														
15	(2)		ABEN		-												
			(E	A) L) B) Alf	ENZKI ÁNGE: RT: A	: 53: Amin	l Ami	nosa e	iure	1							
20			ART SEÇ							NO:	34						
25	Met 1	Ile	Ser	Phe	Ala 5	Arg	Met	Ala	Glu	Ser 10	Leu	Gly	Val	Gln	Ala 15	Lys	
	Leu	Ala	Leu	Ala 20	Phe	Ala	Leu	Val	Leu 25	Cys	Val	Gly	Leu	11e 30	Val	Thr	
30	Gly	Thr	G1 y 35	Phe	туг	Ser	Val	His 40	Thr	Leu	Ser	Gly	Leu 45	Val	Glu	Lys	
	Ser	Ala 50	Ile	Ala	Gly	Glu	Leu 55	Arg	Ala	Lys	Ile	Gln 60	Glu	Leu	Lys	Val	
35	Leu 65	G1u	Gln	Arg	Ala	Leu 70	Phe	Ile	Ala	Asp	Glu 75	Gly	Ser	Leu	Lys	Gln 80	
	Arg	Ser	Ile	Leu	Leu 85	Ser	Gln	Val	Ile	Ala 90	Glu	Val	Asn	Asp	Ala 95	Ile	
40	Asp	Ile	Phe	Asp 100	Phe	Gln	Arg	Gly	Arg 105	Ser	Glu	Leu	Leu	Lys 110	Phe	Ala	
	Ala	Ser	Ser 115	Arg	Glu	Ala	Ser	Туг 120	Ser	Ile	Glu	Val	Gly 125	Ser	Asn	Ala	
45	Ala	Ala 130	Asp	Lys	Leu	Gln	Ser 135	Gly	Glu	Pro	Ser	Asp 140	Ala	Leu	Met	Val	
50	Ala 145		Lys	Lys	Leu	Asn 150	Val	G1u	Tyr	Glu	Gln 155	Leu	Ser	Ser	Ala	Val 160	
	Asn	Ala	Leu	Met	Gly 165	His	Leu	Ile	Glu	Asp 170	Gln	Asn	Glu	Lys	Val 175	Pro	

	Leu	Ile	Tyr	Tyr 180	Met	Leu	Gly	Gly	Val 185	Thr	Leu	Phe	Thr	Met 190	Leu	Met
5	Ser	Ala	Туг 195	Ser	Val	Тгр	Phe	11e 200	Ser	Arg	Gln	Leu	Val 205	Pro	Pro	Leu
	Lys	Ser 210	Thr	Val	Gln	Leu	Ala 215	Glu	Arg	Ile	Ala	ser 220	Gly	Asp	Leu	Ala
10	Asp 225	Val	Gly	Asp	Ser	Arg 230	Arg	Lys	Asp	Glu	Ile 235	Gly	Gln	Leu	Gln	ser 240
15	Ala	Thr	Arg	Arg	Met 245	Ala	Ile	Gly	Leu	Arg 250	Asn	Leu	Va l	Gly	Asp 255	Ile
	Gly	G1n	Ser	Arg 260	Ala	Gln	Leu	Val	Ser 265	Ser	Ser	Ser	Asp	Leu 270	Ser	Ala
20	Ile	Cys	Ala 275	Gln	Ala	Gln	Ile	Asp 280	Val	Glu	Cys	Gln	Lys 285	Leu	Ser	Val
	Ala	G1n 290	Val	Ser	Thr	Ala	Val 295	Asn	Glu	Leu	Val	G1 u 300	Thr	Val	Gln	Ala
25	11e 305	Ala	Lys	Ser	Thr	Glu 310	G1 u	Ala	Ala	Thr	Val 315	Ala	Val	Leu	Ala	Asp 320
	Glu	Lys	Ala	Arg	Gly 325	Gly	Glu	Ser	Val	Val 330	Asn	Lys	Ala	Val	Asp 335	Phe
30	Ile	Glu	His	Leu 340	ser	G1y	Asp	Met	Ala 345	Glu	Leu	Gly	Asp	Ala 350	Met	Glu
	Arg	Leu	Gln 355	Asn	Asp	Ser	Ala	Gln 360	Ile	Asn	Lys	Val	Val 365	Asp	Val	Ile
35		Ala 370					375					380				
40	385	Ala		-		390			-		395					400
***	·	GLu			405				-	410					415	
45		Glu	ĺ	420					425		Ī			430		•
		Leu	435					440					445			
50		Gln 450					455			-		460				
	Gly	Ile	Gln	Ala	Met	Asn	Tyr	Gln	Ile	Ala	Ala	Gly	Ala	Glu	Gln	Gln

	465					470					475					480	
5	Gly	Ala	Ala	Val	Val 485	Gln	Ile	Asn	Gln	Asn 490	Met	Leu	Glu	Val	His 495	Lys	
	Met	Ala	Asp	Glu 500	Ser	Ala	Ile	Lys	Ala 505	Gly	G1n	Thr	Met	Lys 510	Ser	Ser	
10	Lys	G1 u	Leu 515	Ala	His	Leu	Gly	Ser 520	Ala	Leu	Gln	Lys	Ser 525	Val	Asp	Arg	
	Phe	G1n 530	Leu														
15	(2)	ANG	ABEN	ZU S	SEQ I	D NO): 35	5 :									
20		(i)	(E	A) Li B) Al	ANGE: RT: N FRANC	411 ucle	Bas otic 1: Do	senpa i oppel		ing							
		(ii)	ART	DES	MOI	EKÜI	s: c	enon	-DNA								
25		(iii)	нүн	отн	ETISC	: H:	EIN										
		(iv)	ANT	ISE	ISE:	NEIN	1										
30		(ix)	(E	A) N/ B) L/	AME/S AGE: C ONSTI	ompl	emer NGAL	: CE nt (4 BEN:/ :ions	41	luct=		?rote	ein"				
35																	
	CTA							e: SE	_				AGCAG	GCA 1	ATAGO	AATTG	60
10	TTC	ACGTI	rcg 1	CAT	CACTO	A GO	ATC	SACGI	CGC	GTCI	TGG	TCG	стст	STA (CCAC	ATCTT	120
	CTT	CAGC	rcr 1	TGA	CTG	CG TC	TCC	CAGO	TTI	GCT	SAGA	AAT	ATCC	CAT A	AGGA	ACGCTT	180
	GTC	GGC1	rrg (CAGC	CAC	GC GC	CACA	GCAAG	GCC	GAGG	TTC	TCG	QGCT1	rgr :	rcago	CAAGGG	240
15	AAC	CAGT	rgr (GTG	TTC	A TT	rgcg)	AGCAI	ccc	CGCI	ragg	TCA	CCT	GCA ?	raago	CCAGG	300
	GCT	CGCT	rcg /	ATGA:	TAG!	AA G1	rGCC	GACAG	ст	cccc	GGG	CGT	AGGT	CAT A	ATGG	CGTCAG	360
10	GGC'	FTCAJ	ATC A	AGGC	CTG	AG CO	GAGC'	rtca(CT(TGA	GCCG	GCG	raago	GCA 1	г		411
	(2)	ANG	ABEN	zu :	SEQ I	D NO	o: 3	6:									

93

			(1	A) L	ÁNGE RT: J	: 13	6 Am: osäu: : lii	inos: re	aure	n						
			AR'							ON C	: 36	:				
9	Met 1	Pro	Tyr	Ala	Gly 5	Ser	Gln	Leu	Lys	Leu 10	Ala	Gln	Gly	Leu	Ile 15	Glu
	Ala	Leu	Thr	Pro 20	туr	Asp	Leu	Arg	Pro 25	Ala	Gln	Leu	ser	Ala 30	Leu	Leu
5	Ile	Ile	Glu 35	Ala	Ser	Pro	Gly	Leu 40	Met	Gln	Ala	Asp	Leu 45	Ala	Arg	Met
	Leu	Ala 50	Ile	Glu	Pro	Pro	Gln 55	Leu	Val	Pro	Leu	Leu 60	Asn	Lys	Leu	Glu
,	Lys 65	Leu	Gly	Leu	Ala	Val 70	Arg	Val	Arg	Cys	Lys 75	Pro	Asp	Lys	Arg	Ser 80
5	Tyr	Gly	Ile	Phe	Leu 85	Ser	Lys	Ala	Gly	Glu 90	Thr	Gln	Leu	Lys	Glu 95	Leu
	Lys	Lys	lle	Val 100	Val	Gln	Ser	Asp	Gln 105	Asp	Ala	Thr	Ser	Met 110	Leu	Ser
,	Asp	Asp	Glu 115	Arg	Glu	Gln	Leu	Leu 120	Leu	Leu	Leu	His	Lys 125	Ile	His	Ala
	G1 u	Pro 130	Glu	Ala	Gln	Gln	Leu 135	Gly								
i	(2)	ANG	BEN	ZU S	SEQ I	ED NO	o: 37	7:								
ı		(i)	(E	A) LÀ B) AI C) ST	NGE: RT: 1	: 144 Nucle GFOR	CHEN: 46 Ba eotic 4: Do : lir	isenr i oppel								
		(ii)	ART	DES	s Mol	LEKÜ	Ls: 0	Senor	n-DNJ	Ą						
		(111)	нүн	РОТН	ETISC	CH: 1	NEIN									
		(iv)	ANT	TISE	NSE:	NEI	N									
		(ix)	(E	A) NJ	AME/S AGE:	11 IGE /	ÜSSEI 443 ANGAL	BEN:/	proc			ana sa	·"			

/gene= "caldh"

5	(xi)	SEC	QUENZ	BESC	HRE	BUNG	S: SI	EQ II	NO:	37:	:			
		ATT Ile												48
10		GCT Ala 155												96
15		TTG Leu												144
20		GAA Glu												192
		CGC Arg												240
25		AGC Ser												288
30		CAT His 235												336
35		CCG Pro												384
		CTG Leu												432
40		ATG Met												480
45		GAG Glu												528
50		GGC Gly 315												576
		CTG Leu												624

		330					335					340					
5			GCG Ala														672
10			CCG Pro														720
			GTG Val														768
15			GAC Asp 395														916
20			GCG Ala														864
			GAT Asp														912
25			TAC Tyr														960
30			CCT Pro														1008
35			ACT Thr 475														1056
			ATC Ile														1104
40			GCT Ala														1152
45			TTC Phe														1200
50			TCG Ser														1248
	ATG	GAT	ACG	CTT	CCA	TTT	GGT	GGT	g t g	GGG	CAC	TCG	GGG	ATG	GGG	GCA	1296

9

	Met	Asp	Thr 555	Leu	Pro	Phe	Gly	Gly 560	Val	Gly	His	Ser	Gly 565	Met	Gly	Ala	
5		CAC His 570															1344
10		GTG Val															1392
15		GGA Gly															1440
	TGT Cys	TAG															1446
20	(2)	ANG	ABEN		_												
25			() (E	A) L) 3) AI	NGE:	481 Amino	l Ami	inosi re	iurei	1							
			AR?							ON C	: 38						
30	Met 1	Ser	Ile	Leu	Gly 5	Leu	Asn	Gly	Ala	Pro 10	Val	G1 y	Ala	G1u	Gl n 15	Leu	
	Gly	ser	Ala	Leu 20	Asp	Arg	Met	Lys	Lys 25	Ala	His	Leu	Glu	Gln 30	Gly	Pro	
35	Ala	Asn	Leu 35	Glu	Leu	Arg	Leu	Ser 40	Arg	Leu	Asp	Arg	Ala 45	Ile	Ala	Met	
40	Leu	Leu 50	Glu	Asn	Arg	Glu	Ala 55	Ile	Ala	Asp	Ala	Val 60	Ser	Ala	Asp	Phe	
	65	Asn	•			70					75				-	80	
45		Ala			85					90					95		
		Glu		100	•				105					110			
50		Gln	115		•			120					125				
	Ile	Val	Leu	Ala	Phe	Gly	Pro	Leu	Ala	Gly	Ile	Phe	Ala	Ala	Gly	Asn	
55																	

		130					135					140				
5	Arg 145	Ala	Me t	Leu	Lys	Pro 150	Ser	Glu	Leu	Thr	Pro 155	Arg	Thr	Ser	Ala	Leu 160
	Leu	Ala	Glu	Leu	Ile 165	Ala	Arg	Tyr	Phe	Asp 170	G1u	Thr	Glu	Leu	Thr 175	Thr
10	Val	Leu	Gly	Asp 180	Ala	Glu	Val	Gly	Ala 185	Leu	Phe	Ser	Ala	Gln 190	Pro	Phe
	Asp	His	Leu 195	Ile	Phe	Thr	Gly	Gly 200	Thr	Ala	Val	Ala	Lys 205	His	Ile	Met
15	Arg	Ala 210	Ala	Ala	Asp	Asn	Leu 215	Val	Pro	Val	Thr	Leu 220	Glu	Leu	Gly	Gly
	Lys 225	Ser	Pro	Val	Ile	Val 230	Ser	Arg	ser	Ala	Asp 235	Met	Ala	Asp	Val	Ala 240
20	Gln	Arg	Val	Leu	Thr 245	Val	Lys	Thr	Phe	Asn 250	Ala	Gly	Gln	Ile	Cys 255	Leu
25	Ala	Pro	Asp	Tyr 260	Val	Leu	Leu	Pro	G1u 265	Glu	Ser	Leu	Asp	Ser 270	Phe	Val
	Ala	G1 u	Ala 275	Thr	Arg	Phe	Val	Ala 280	Al a	Met	Tyr	Pro	Ser 285	Leu	Leu	Asp
30	Asn	Pro 290	Asp	Tyr	Thr	Ser	11e 295	Ile	Asn	Ala	Arg	Asn 300	Phe	Asp	Arg	Leu
	His 305	Arg	Tyr	Leu	Thr	Asp 310	Ala	Gln	Ala	Lys	Gly 315	Gly	Arg	Val	Ile	G1u 320
35	Ile	Asn	Pro	Ala	Ala 325	Glu	Glu	Leu	Gly	Asp 330	Ser	Gly	Ile	Arg	Lys 335	Ile
	Ala	Pro	Thr	Leu 340	Ile	Val	Asn	Val	Ser 345	Asp	Glu	Met	Leu	Val 350	Leu	Asn
40	Glu	Glu	11e 355	Phe	Gly	Pro	Leu	Leu 360	Pro	Ile	Lys	Thr	Tyr 365	Arg	Asp	Phe
45	Asp	Ser 370	Ala	Ile	Asp	Tyr	Val 375	Asn	Ser	Lys	Gln	Arg 380	Pro	Leu	Ala	Ser
45	Tyr 385	Phe	Phe	Gly	G1u	Asp 390	Ala	Val	Glu	Arg	G1u 395	Gln	Va1	Leu	Lys	Arg 400
50	Thr	Val	Ser	Gly	Ala 405	Val	Val	Val	Asn	Asp 410	Val	Met	Ser	His	Val 415	Met
	Met	Asp	Thr	Leu 420	Pro	Phe	Gly	Gly	Val 425	Gly	His	Ser	Gly	Met 430	Gly	Ala

	Tyr His Gly Ile Tyr Gly Phe Arg Thr Phe Ser His Ala Lys Pro Val 435 440 445	
5	Leu Val Gln Ser Pro Val Gly Glu Ser Asn Leu Ala Met Arg Ala Pro 450 450	
	Tyr Gly Glu Ala Ile His Gly Leu Leu Ser Val Leu Leu Ser Thr Glu 465 470470475	
10	Cys	
	(2) ANGABEN ZU SEQ ID NO: 39:	
15	(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 1827 Basenpaare (B) ART: Nucleotid (C) STRANGEORM: Dopelstrang (D) TOPOLOGIE: linear	
20	(ii) ART DES MOLEKÜLS: Genom-DNA (iii) HYPOTHETISCH: NEIN	
25	(iv) ANTISENSE: NEIN	
30	(ix) MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LÄGE:complement (41827) (D) SONSTIGE ANKABEN:/product= "Transkriptions-Aktivator-Protein" //gene= "tap"	
35	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 39:	
	CTATTTGTCT AGTGGTCGGC GCGAAATTCG ATAAGAAAGC TGGGCGCGAG TGAGGCCGAG	60
	CCGGCGGCA GCTTCCGAGA CATTGCCTTT CACCTGGCCC AGAGCATGGC TAATCATCGC	120
10	GTCCTCCACT TCTTGCAGCG TCATCGCGCT CAGGTCCTTT GAGTCAAGCG GCGAGTCGAT	180
	TGTGCTGGTC GGTTTGGAGA AGGAAGTACT TGGGCTGCCA GTTTCCTGTG GCTGATTATC	240
45	TTGAGCGGTG GCCAGGATGC CGCTGGCCCC AATGGAGAAC ATCGGTTGAG TCAGTCGTTC	300
1 5	ACCGCTAGTG AAGAGGTGGC TCACGTCAAT GGCTCCATCC TCCGGAGCGC TGATGACTCC	360
	GCGCTCCACC AAATTTTGAA GCTCCCGGAT GTTTCCTGGA AAGTCGTAGC CAAGCAGGGC	420
50	ATTGGCTGCA CGTGGAGTGA ATCCGCTGAC CACCCGGCTA TGACGCTGAT TGAAGCGGTG	480
	CAGGAAATAG GTCATCAGGA GGGGAATGTC TTCCTTCCTC TCTCGAAGCG GCGGGAGGTG	540

GATCGGGTAA	ACATTGAGGC	GGAAAAAAAG	GTCCTCGCGG	AACTCGCCGC	GCTGGACGCC	600
TGCGCGAAGA	TCGACATTGG	TTGCGGCTAC	CACACGGACG	TCAACCTTGA	GTGTCCTGCT	660
TCCGCCAACC	CGTTCGACCT	CCGACTCTTG	CAGGGCGCGA	AGTAACTTCC	CTTGGGCCAC	720
GAGGCTTAGC	GTCCCTATCT	CGTCAAGGAA	TAGTGTGCCG	CCCGAAGCGC	GCTCGAACCG	780
TCCTGCTCGA	GATTGGGTGG	CGCCGGTAAA	CGCCCCCGT	TCGACGCCGA	ACAACTCGGA	840
CTCCATCAGG	GTTTCGGGAA	TACGTGCGCA	ATTGACCGCA	ACAAACGGGC	CGTCGTGTCT	900
GGGGCTGATG	CGGTGAAGCA	TGCGGGCGAA	CATCTCCTTG	CCCACACCTG	ATTCACCCGT	960
AAACAGTACC	GTCGCCTCCG	TGGGTGCTAC	GCGCTTCAGC	ATGTGGCAGG	CAGCATTGAA	1020
TGCCGAGGAA	ATTCCCACCA	TGTCGTGTTC	CGATGCAGTG	CTTGAGTCTG	CGGCGGAGTG	1080
ATGGGGAGTG	TTCCTTTGTC	CCTGCTGCGT	TCTTCGTCTC	TGCGGCGTGC	TTGGTTGCCG	1140
ACAAATGGTT	GCGCTAAGCG	CCGCCAAGTC	CTCTTCGGCG	TCTTCCCATT	CTTCCGCTGG	1200
CTTGCCGATC	ATGCGGCAGA	TCTGCGAACC	CGTGGAGCGG	CATTCCACCT	CTCGGTAAAG	1260
GATGAGGCGA	CCAACCAGCG	CGGACGTATA	GCCAATGGCA	TAACCCGTCT	GCGTCCAGCA	1320
CGCGGGCTCG	GTGCCGATGC	CGTAGTGCGC	AATATGTTCA	TCATCTTCGC	TCGAATGGTG	1380
CCAGAGGAAT	TCGCCGTAGT	AGGTCCCCAA	ATCCATGTCG	AAGTCGAAGT	GGATCGGCTC	1440
CACGCGTACT	GCGCCTTCCA	GAGAGTGCAA	GTTCGGGCCG	GCGGCAAATA	GGGAGAGCGG	1500
ATCGGCGTTG	CTGAAGCGCT	CCTTCAGAAG	GGCGGCATCT	TTGGCGCCGC	AGTGGTAACC	1560
GGTTCGCAGC	ATGATTCCGC	GGGCGCGGGC	GAAGCCCACG	CTTTCAATTA	ATTCGCGTCG	1620
CAATGCACCC	AGTCCGCTGC	TGTGGAGGAG	CAGCATTCGC	GCGCCGTTCA	ACCAGATGCG	1680
TCCATCGCCA	GGGCTGAAAA	GGAGGGATTC	AGTGAGGTCA	TGAAGGGAGG	GGACGGCGCC	1740
TGGCTCCAAT	TGCTCGATGG	CGCCGCGATT	GAGTGTCTTG	GGCGCGGTCT	TGGAGAGTTC	1800
GGCTAGGGAG	ATABATTTGC	TGGCCAT				1827

45

10

20

(2) ANGABEN ZU SEQ ID NO: 40:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 608 Aminosauren
- (B) ART: Aminosaure
- (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 40:

55

	Met 1	Ala	Ser	Lys	Phe 5	Ile	Ser	Leu	Ala	Glu 10	Leu	ser	Lys	Thr	Ala 15	Pro
5	Lys	Thr	Leu	Asn 20	Arg	Gly	Ala	Ile	G1u 25	Gln	Leu	Glu	Pro	Gly 30	Ala	Val
	Pro	Ser	Leu 35	His	Asp	Leu	Thr	G1u 40	Ser	Leu	Leu	Phe	Ser 45	Pro	Gly	Asp
10	Gly	Arg 50	Ile	Trp	Leu	Asn	Gly 55	Ala	Arg	Met	Leu	Leu 60	Leu	His	Ser	Ser
15	G1y 65	Leu	Gly	Ala	Leu	Arg 70	Arg	G1 u	Leu	Ile	G1u 75	Ser	Val	Gly	Phe	Ala 80
	Arg	Ala	Arg	Gly	11e 85	Met	Leu	Arg	Thr	Gly 90	Tyr	His	Cys	Gly	Ala 95	Lys
20	Asp	Ala	Ala	Leu 100	Leu	Lys	Glu	Arg	Phe 105	Ser	Asn	Ala	Asp	Pro 110	Leu	Ser
	Leu	Phe	Ala 115	Ala	Gly	Pro	Asn	Leu 120	His	Ser	Leu	Glu	Gly 125	Ala	Val	Arg
25	Val	Glu 130	Pro	Ile	His	Phe	Asp 135	Phe	Asp	Met	Asp	Leu 140	Gly	Thr	Tyr	Tyr
	Gly 145	Glu	Phe	Leu	Trp	His 150	His	Ser	Ser	Glu	Asp 155	Asp	Glu	His	Ile	Ala 160
30	His	Tyr	Gly	lle	Gly 165	Thr	Glu	Pro	Ala	Cys 170	Trp	Thr	Gln	Thr	Gly 175	Tyr
	Ala	Ile	Gly	Tyr 180	Thr	Ser	Ala	Leu	Val 185	Gly	Arg	Leu	Ile	Leu 190	Tyr	Arg
35	Glu	Val	G1u 195	Cys	Arg	Ser	Thr	Gly 200	ser	Gln	Ile	Cys	Arg 205	Met	Ile	Gly
40	Lys	Pro 210	Ala	Glu	Glu	Trp	Glu 215	Asp	Ala	Glu	Glu	Asp 220	Leu	Ala	Ala	Leu
	Ser 225	Ala	Thr	Ile	Cys	Arg 230	Gln	Pro	ser	Thr	Pro 235	Gln	Arg	Arg	Arg	Thr 240
45	Gln	Gln	Gly	Gln	Arg 245	Asn	Thr	Pro	His	His 250	Ser	Ala	Ala	Asp	Ser 255	Ser
				260		-			Gly 265					270		
50			275					280	Ala				285			
	Phe	Thr	Gly	Glu	Ser	Gly	Val	Gly	Lys	Glu	Met	Phe	Ala	Arg	Met	Leu

		290					295					300				
5	His 305	Arg	Ile	Ser	Pro	Arg 310	His	Asp	Gly	Pro	Phe 315	Val	Ala	Val	Asn	Cys 320
	Ala	Arg	Ile	Pro	G1u 325	Thr	Leu	Met	Glu	Ser 330	Glu	Leu	Phe	Gly	Val 335	Glu
10	Arg	Gly	Ala	Phe 340	Thr	Gly	Ala	Thr	Gln 345	Ser	Arg	Ala	Gly	Arg 350	Phe	Glu
	Arg	Ala:	Ser 355	Gly	Gly	Thr	Leu	Phe 360	Leu	Asp	G1u	Ile	G1 y 365	Thr	Leu	Ser
15	Leu	Val 2 370	Ala	Gln	Gly	Lys	Leu 375	I,eu	Arg	Ala	Leu	Gln 380	Glu	Ser	Glu	Val
	Glu 385	Arg '	Val	Gly	Gly	Ser 390	Arg	Thr	Leu	Lys	Val 395	Asp	Val	Arg	Val	Val 400
20	Ala	Ala '	Thr	Asn	Val 405	Asp	Leu	Arg	Ala	Gly 410	Val	Gln	Arg	G1 y	Glu 415	Phe
25	Arg	Glu i		Leu 420	Phe	Phe	Arg	Leu	Asn 425	Val	Tyr	Pro	Ile	His 430	Leu	Pro
	Pro	Leu i	Arg 435	Glu	Arg	Lys	Glu	Asp 440	Ile	Pro	Leu	Leu	Met 445	Thr	Tyr	Phe
30	Leu	His / 450	Arg	Phe	Asn	Gln	Arg 455	His	Ser	Arg	Va1	Val 460	ser	Gly	Phe	Thr
	Pro 465	Arg)	Ala	Ala	Asn	Ala 470	Leu	Leu	Gly	Tyr	Asp 475	Phe	Pro	Gly	Asn	Ile 480
35	Arg	Glu 1	Leu	Gln	Asn 485	Leu	Val	G1u	Arg	Gly 490	Val	Ile	ser	Ala	Pro 495	Glu
	Asp	Gly A		Ile 500	Asp	Val	Ser	His	Leu 505	Phe	Thr	Ser	GLy	Glu 510	Arg	Leu
40	Thr	Gln i	Pro 515	Met	Phe	Ser	Ile	Gly 520	Ala	Ser	Gly	Ile	Leu 525	Ala	Thr	Ala
	Gln	Asp 7	Asn	Gln	Pro	Gln	Glu 535	Thr	Gly	Ser	Pro	Ser 540	Thr	Ser	Phe	Ser
45	Lys 545	Pro '	Thr	Ser	Thr	11e 550	Asp	Ser	Pro	Leu	Asp 555	Ser	Lys	Asp	Leu	ser 560
	Ala	Met 1	Thr	Leu	G1n 565	Glu	Val	Glu	Asp	Ala 570	Met	Ile	Ser	His	Ala 575	Leu
50	Gly	Gln V		Lys 580	Gly	Asn	Val	Ser	Glu 585	Ala	Ala	Arg	Arg	Leu 590	Gly	Leu

		, i.e.g	595	0211	Dea	DCI	.,.	600	110	362	ALG	ALG	605	Jeu	Yab	aya	
5	(2)	ANG	ABEN	zu s	SEQ :	ID N	o: 4	1:									
10		(i)	(1	A) LJ B) AI	ANGE: RT: 1 PRANC	: 761 Nucle SFOR	B Ba: eotic M: De	senpa d oppe:		ang							
		(ii)	AR'	DES	MOI	LEKÜI	LS:	Genor	n-DN/	4							
15		(iii)	НҮ	отне	TISC	CH: 1	NEIN										
		(iv)	AN'	riser	ISE:	NEI	1										
20		(ix)	(1	A) NJ B) LJ	AME/S AGE: I	176 LGE 2	55 Angai	L: CI BEN:,	/proc			an a c	."				
25						ene=			101 .	Jeny	ar og	onus.	•				
		(xi)	SEC	QUENS	BES	CHRE	BUNG	3: SI	EQ II	NO:	41	:					
30		CAA Gln 610															48
35		GGT Gly															96
		GGC Gly															144
40		GCT Ala															192
45		CCG Pro															240
50		GCC Ala 690															288
50		CTG Leu															336
55																	

	705					710					715					720	
5							CTT Leu										384
10							AGT Ser										432
							GTG Val										480
15							TGG Trp 775										528
20							ATG Met										576
							TTC Phe										624
25							ATT Ile										672
30							ATG Met										720
							GAC Asp 855										765
35	TAA																768
	(2)						0: 42 EICHE										
40			(1	A) LJ B) AI	ANGE	25 Amino	5 Ami 5 Ami 5 Sau 1 Lin	nos	iurei	1							
45							LS: I IBUN			ON O	: 42						
	Met 1	Gln	Leu	Thr	Asn 5	Lys	Lys	Ile	Val	Val 10	Thr	Gly	Val	Ser	Ser 15	Gly	
50	Ile	Gly	Ala	Glu	Thr	Ala	Arg	Val	Leu	Arg	Ser	His	Gly	Ala	Thr	Val	

		20				25					30		
5	Ile Gly \	Val Asp 35	Arg Ası	n Met	Pro S	Ser !	Leu 1	Thr I	eu l	Asp 45	Ala	Phe	Val
	Gln Ala A	Asp Leu	Ser Hi	s Pro 55	Glu (Gly	Ile i	Asp 1	Lys i	Ala	Ile	Ser	Gln
10	Leu Pro 6	Glu Lys	Ile As	p Gly	Leu	Cys	Asn	11e i 75	Ala	Gly	Val	Pro	80
	Thr Ala	Asp Pro	Gln Le 85	u Val	Ala.	Asn	Val 90	Asn '	Tyr	Leu	Gly	Leu 95	Lys
15	Tyr Leu	Thr Glu 100	Ala Va	l Leu	Ser	Arg 105	Ile	Gln	Pro	Gly	Gly 110	Ser	Ile
20	Val Asn	Val Ser 115	Ser Va	al Leu	Gly 120	Ala	Glu	Trp	Pro	Ala 125	Arg	Leu	Gln
20	Leu His 130	Lys Glu	Leu Gl	ly Ser 135	Val	Val	Gly	Phe	Ser 140	Glu	Gly	Gln	Ala
25	Trp Leu 145	Lys Glr	Asn Pi	ro Val 50	Ala	Pro	Glu	Phe 155	Cys	Tyr	Gln	Tyr	Phe 160
	Lys Glu	Ala Le	ille Va 165	al Trp	Ser	Gln	Val 170	Gln	Ala	Gln	Glu	Trp 175	Phe
30	Met Arg	Thr Se	r Val A	rg Met	Asn	cys 185	Ile	Ala	Pro	Gly	Pro 190	Val	Phe
	Thr Pro	Ile Le	ı Asn G	lu Phe	Val 200	Thr	Met	Leu	Gly	Gln 205	Glu	Arg	Thr
35	Gln Ala 210		a His A	rg Ile 215	Lys	Arg	Pro	Ala	Tyr 220	Ala	Asp	Glu	Val
	Ala Ala 225	Val Il	e Ala P	he Met 230	: Cys	Ala	Glu	Glu 235	Ser	Arç	Trp	Ile	240
40	Gly Ile	Asn Il	e Pro V 245	Val Asp	Gly	, Gl	250	Ala	Ser	Thi	туг	255	5

45

50 .

Anlage zum Sequenzprotokoll

SEQ ID NO	2:	ORF 1
	4:	Van A
	6:	Van B
	8:	FDH
	10:	GCS
	12:	CytC
	14:	ORF 5
	16:	Ehy B
	18:	ORF 2
	20:	ADH
	22:	LSD
	24:	ORF 3
	26:	Ech
	28:	VDH
	30:	FCS
	32:	Aat
	34:	Mac
	36:	Trp
	38:	Caldh
	40:	Tap
	42:	Cadh

Patentansprüche

5

10

15

20

25

30

40

45

- 1. Syntheseenzyme für Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure aus Eugenol.
- 2. Syntheseenzyme gemäß Anspruch 1 ausgewählt aus der Gruppe
 - a) Eugenol-Hydroxylase
 - b) Coniferylalkohol-Dehydrogenase
 - c) Coniferylaldehyd-Dehydrogenase
 - d) Ferulasäuredeacylase.
 - e) Vanillin-Dehydrogenase
- DNA, codierend für die Enzyme gemäß Anspruch 1 und 2 sowie Teilsequenzen und funktionelle Äquivalente davon.
 - 4. Cosmidklone, enthaltend die DNA gemäß Anspruch 3.

- 5. Vektoren, enthaltend DNA nach Anspruch 3.
- 6. Mikroorganismen, transformiert mit DNA gemäß Anspruch 3.
- 7. Verwendung von DNA nach Anspruch 3 zur Transformation von Mikroorganismen.
 - Verwendung von Mikroorganismen gemäß Anspruch 6 zur Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure.
- 10 9. Verfahren zur Herstellung von Coniferylalkohol aus Eugenol, dadurch gekennzeichnet, daß die Reaktion in Anwesenheit von Eugenol-Hydroxylase stattfindet.
 - Verfahren zur Herstellung von Coniferylaldehyd aus Coniferylalkohol, dadurch gekennzeichnet, daß die Reaktion in Anwesenheit von Coniferylalkohol-Dehydrogenase stattfindet.
 - 11. Verfahren zur Herstellung von Ferulasäure aus Coniferylaldehyd, dadurch gekennzeichnet, daß die Reaktion in Anwesenheit von Coniferylaldehyd-Dehydrogenase stattfindet.
 - Verfahren zur Herstellung von Vanillin aus Ferulasäure, dadurch gekennzeichnet, daß die Reaktion in Anwesenheit von Ferulasäuredeacylase stattfindet.
 - Verfahren zur Herstellung von Vanillinsäure aus Vanillin, dadurch gekennzeichnet, daß die Reaktion in Anwesenheit von Vanillin-Dehydrogenase stattfindet.

25

30

35

40

50

Fig. 1	_		œ	strikti	onska	rte de	s sequen	zierten	Ristriktionskarte des sequenzierten Bereichs						
)			5	rößenar	agapu	. B	Größenangaben in Basenpaaren	ç					Fragmente E90, E12, E18 una	E90, E12, E	13 E
អ	EcoRI	ιĒ	ragmer	ıt E230	des	tybride	Fragment E230 des Hybridcosmids pE207	201		Eor			des Hybridcosmids pE5-1	cosmids	PES-1
EcoRI					21	21300				-			00%	λζί	1200 1800
HindIII 1500	0051			11200			33	2000	3800	7	+ 1900 2000	8	2400		×1200+
EcoRV	2000		9	0056		-		0066		٠	2700		2500	1550 4200+ X	× ರ
Xpo]	2500	+	4200	250	2500 1800		7300		0009	+			0076)Zţ+	× +002+
BamHI	BornHIP 2700	1600			8200		2000	1850	3100	+		٤	7900	1500-1200+ X	× ₫
Sali	Sh300 2100 1500	2002	350	0054		οα.	2100	55	1500 950 2350 +		3700		2,000	XĮ.	× +002+
Smal	252	3500	005		9400		1250		9009			77	7700	X +002t+ 0591	× さ
		8	₹ S	makang fah	Safe	ua 服	A ehyB Deracul	ls.	E. Ag	느	fcs out		mac caldh	tap	(1)
		1		1	1		4		4	1	1		**	Į.	1

-1 EcoRI 300 3000

van A. van B.: Vanillirsaure-O-Demethylase ges. z-Gultunylcystein Synthetase ehy B.: Flavoprotein UE Eugenol Hydroxylase Isa: Lignostilben Dioxygenase vah: Vanillin Dehydrogenas aat: p-Ketothiolase	fdh: Formaldehyd Dehydrogenase ehyA: Cytochrom C UE Eugenol Hydroxylase adh: Alkohol Dehydrogenase ech: Enoyl-CoA Hydratuse ft.s: Ferulasäure-CoA Synthetase	mac: Chemotruxis – Protein trp: Transkriptions–Regulator–Protein tap: Transkriptions–Aktivator–Protein calah: Corriferylalkehyd Dehydrogencse cadh: Corriferylalkehol. Dehydrogencse
	2800	1200 1800 3000 pE 5-1
	2800	1200 1800 3000 pE 109
Klonierte Fragmente, Subfragmente und sequenzierte Bereiche		1200 1800 3000 pE106

Europäische tentamt
European Patent Office

Office européen des brevets

(11) EP 0 845 532 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

- (88) Veröffentlichungstag A3: 05.01.2000 Patentblatt 2000/01
- (51) Int. Cl.⁷: **C12N 15/53**, C12N 9/02, C12P 7/22, C12N 9/80
- (43) Veröffentlichungstag A2: 03.06.1998 Patentblatt 1998/23
- (21) Anmeldenummer: 97120058.9
- (22) Anmeldetag: 17.11.1997
- (84) Benannte Vertragsstaaten:
 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
 NL PT SE
- (30) Priorität: 29.11.1996 DE 19649655
- (71) Anmelder: HAARMANN & REIMER GMBH D-37601 Holzminden (DE)
- (72) Erfinder:
 Steinbüchel, Alexander, Prof Dr. 48341 Altenberge (DE)

- · Priefert, Horst, Dr.
- 48291 Telgte (DE)

 Rabenhorst, Jürgen, Dr. 37671 Höxter (DE)
- (74) Vertreter:
 Petrovicki, Wolfgang, Dr. et al
 Bayer AG
 Konzernbereich RP
 Patente und Lizenzen
 51388 Leverkusen (DE)
- (54) Syntheseenzyme für die Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure und deren Verwendung
- (57) Die vorliegende Erfindung betrifft Syntheseenzyme für die Herstellung von Coniferylalkhohl, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure, deren Verwendung bei der Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanilinsäure, für diese Enzyme codierende DNA sowie mit dieser DNA transformierte Mikroorganismen.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

ŧ

EP 97 12 0058

	EINSCHLÄGIG	E DOKUMENTE		
Kategorie	Kennzeichnung des Doku der maßgeblic	ments mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
X	WO 95 02062 A (QUE: 19. Januar 1995 (1 * Seite 2, Zeile 1 * Seite 3, Zeile 1	1-9	C12N15/53 C12N9/02 C12P7/22 C12N9/80	
х	EP 0 583 687 A (HA 23. Februar 1994 (* Seite 5, Zeile 3 Anspruch 2; Beispi	1 - letzte Zeile;	1,3-8	
X	by biotransformatic Pseudomonas sp." APPL. MICROBIOL. B 46(5/6), 470-474,	natural aroma chemicals on of eugenol with a new IOTECHNOL. (1996), 1996, XPO02122081 Spalte, Absatz 2 -	6,8-13	
X	W0 94 02621 A (V. f 3. Februar 1994 (19 * Seite 1, Zeile 1 * Seite 2, Zeile 32 Beispiele 2,7 *	994-02-03)	1	RECHERCHIERTE SACHGEBIETE (Int.Cl.6) C12N C12P
P,X	EP 0 761 817 A (HAA 12. März 1997 (1997 * Spalte 2, letzte 6; Anspruch 2 *	1,3-8		
A	WO 97 35999 A (INS 2. Oktober 1997 (19 * Ansprüche; Abbild	1-13		
Dervo		urde für alle Patentansprüche erstellt		
	DEN HAAG	Abschußdatum der Recherche 9. November 1999	Mont	tero Lopez, B

EPO FORM 1503 03.82 (POAC03)

KATEGORIE DER GENANNTEN DOKUMENTE

X von besonderer Bedeufung allein betrachtet Von besonderer Bedeufung in Verbindung mit einer anderen Veröffentlichung derseiben Kategorie A: technologischer Hintergrund O nichtschriftliche Öfferbarung P: Zwecheniter

T der Erfindung zugrunde liegende Theorien oder Grundsätze E: alteres Palentdokument, das jedoch erst am oder nach dem Ammeldedatun veröffentlicht worden ist D in der Ammeldung angelührtes Dokument L; aus anderen Grunden angeführtes Dokument

[&]amp; : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

²

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 97 12 0058

In desem Anhang and die Majdieder der Palentfamilien der im obengenannten europäischen Recherchenbericht angelührten Das Angaben über die Familienmiglieder entsprechen dem Stand der Datei des Europäischen Patentamis am Diese Angaben über die Familienmiglieder entsprechen dem Stand der Datei des Europäischen Patentamis am

09-11-1999

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichun	
WO	9502062	A	19-01-1995	AT AU DE DE EP JP US	148919 T 6999294 A 69401755 O 69401755 T 0710289 A 8512203 T 5721125 A	15-02-199 06-02-199 27-03-199 12-06-199 08-05-199 24-12-199 24-02-199
EP	583687	Α	23-02-1994	DE DE JP US US	4227076 A 59309293 D 6153924 A 5371013 A 5510252 A	24-02-199 25-02-199 03-06-199 06-12-199 23-04-199
WO	9402621	А	03-02-1994	FR AT DE DE EP JP US	2694020 A 173296 T 69322067 0 69322067 T 0606441 A 7500253 T 5712132 A	28-01-199 15-11-199 17-12-199 15-07-199 20-07-199 12-01-199 27-01-199
EP	761817	A	12-03-1997	DE JP	19532317 A 9206068 A	06-03-199 12-08-199
WO	9735999	A	02-10-1997	AU CA EP	2038597 A 2250043 A 0904396 A	17-10-199 02-10-199 31-03-199

EPO FORM PO461

Für nähere Einzelheiten zu diesem Anhang ; siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

