Материалы проекта

Аннотация

Здесь находится основная информация об изучаемой RL структуре проводящих колец, полученных вытравкой на текстолите

1 Экспериментальная структура

Подробная таблица с комментариями по ссылке

Параметры кольца	Значение	Единица измерения
Внутренний диаметр	2,5	MM
Внешний диаметр	3,5	MM
Средний диаметр	3	MM
Толщина кольца	18	MKM
Удельное сопротивление	17,2	$MOM \cdot MM^2/M$
Сопротивление	51,2	мкОм
Индуктивность	5,95	нГн
Параметры структуры	$x \times y \times z$	Единица измерения
Линейные размеры	$52 \times 66 \times 34$	MM
Количество колец	$12 \times 15 \times 34$	IIIT
Период решетки	$4.5 \times 4.5 \times 1$	MM
Количество слоев	34	IIIT
Толщина текстолита	1	MM

2 Определение материальных параметров по результатам волноводных измерений

Объяснение метода Николсона-Росса-Вейра.

2.1 Вычисление материальных параметров

Используемые обозначения:

- λ_0 , λ_c , Λ длина волны в вакууме, критическая длина волны и длина волны в образце в волноводе соответственно
- γ, γ_0 постоянные распространения внутри волновода для образца и воздуха соответственно
- $\mu_0, \, \epsilon_0$ магнитная и диэлектрическая постоянные ваккума
- μ_r , ϵ_r (относительные) магнитная и диэлектрические проницаемости образца

Для начала будем считать, что коэффициент отражения от границы материала r и коэффициент прохождения через слой исследуемого материала t нам известны. Коэффициент прохождения через слой материала:

$$t = exp(-\gamma d) \tag{1}$$

, где γ — постоянная распространения в волноводе:

$$\gamma^2 = k_c^2 - k^2 = \left(\frac{2\pi}{\lambda_c}\right)^2 - \left(\frac{2\pi}{\lambda_0}\right)^2 \mu_r \varepsilon_r \tag{2}$$

$$\gamma = i2\pi \sqrt{\frac{\mu_r \varepsilon_r}{\lambda_0^2} - \frac{1}{\lambda_c}} \tag{3}$$

При этом в участках волновода заполненных воздухом:

$$\gamma_0 = i2\pi \sqrt{\frac{1}{\lambda_0^2} - \frac{1}{\lambda_c^2}} \tag{4}$$

Коэффициент отражения от границы материала:

$$r = \frac{\eta - \eta_0}{\eta + \eta_0} \tag{5}$$

, где η и η_0 – волновые импедансы среды и воздуха в волноводе:

$$\eta = \frac{i\omega\mu}{\gamma}, \, \eta_0 = \frac{i\omega\mu_0}{\gamma_0} \tag{6}$$

Подстановкой (6) в (5) получим:

$$r = \frac{\frac{\gamma_0}{\gamma}\mu_r - 1}{\frac{\gamma_0}{\gamma}\mu_r + 1} \Longrightarrow \mu_r = \left(\frac{1+r}{1-r}\right)\frac{\gamma}{\gamma_0} \tag{7}$$

Длина волны в волноводе $\Lambda = \frac{i2\pi}{\gamma}$. Тогда (7) преобразуется к следующему виду:

$$\mu_r = \left(\frac{1+r}{1-r}\right) \frac{1}{\Lambda \sqrt{\frac{1}{\lambda_0^2} - \frac{1}{\lambda_c^2}}} \tag{8}$$

Из (2) получим:

$$\epsilon_r = \frac{\lambda_0^2}{\mu_r} \left(\frac{1}{\lambda_s^2} + \frac{1}{\Lambda^2} \right) \tag{9}$$

Из формулы (1) можно получить $\gamma = \frac{1}{d} \ln{(-t)}$. Тогда совместно с последним равенством формулы (8) и (9) дадут связь материальных параметров с коэффициентами r и t.

2.2 Вычисление коэффициентов отражения и прохождения по результатам волноводных измерений

Рис. 1: Схема установки [1]

3 Экспериментальные данные

После этого можно подставить выше в формулы.

Список литературы

[1] Alexandre Natã Vicente, Gustavo Maciulis Dip u Cynthia Junqueira. «The step by step development of NRW method». B: 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011). IEEE. 2011, c. 738—742.

Рис. 2: Так выглядят изначальные данные. По хорошему для метода образец должен быть в центре, а S-параметры одинаковые для обеих сторон. На деле это не совсем так, и кажется что надо усреднить каким-то правильным образом. Конечно, конкретно по этим графикам ничего не сказать, но для общего понимания они пригодятся.

Рис. 3: Так выглядит модуль Фурье образа одного из параметров. Поскольку зависимость сильно периодическая с огибающей, на Фурье есть только несколько почти точечных пиков. Вот эти пики вблизи. Насколько понимаем, за переотражение отвечают вторые пики, поэтому зануляли мы все правее первого пика.

Рис. 4: Это сравнение реальной части s11 параметра до и после фурье обработкти.

Рис. 5: Промежуточные расчеты коэффициента отражения гамма и прохождения Т.

Рис. 6: Итоговые зависимости для магнитной и диэлектрической пронимаемости