- 1. The following is a partial output when Y is regressed on X for 30 observations
 - (a) Complete the output

ANOVA Table							
Source	df	Sum of Squares	Mean Square	F			
Regression		1848.76					
Error							
Coefficients Table							
	Estimate	Std. Error	t valus	P(> t)			
Intercept	-23.4325	12.74	 -	0.8316			
X		0.1528	8.32	6.978225e-08			
n=	$r^2 =$	$r_a^2 =$	s =	df(MSE) =			

- (b) Construct a 95% confidence interval for β_1 and interpret your result.
- 2. The following is a partial output when Y is regressed on X_1 and X_2

ANOVA Table							
Source	df	Sum of Squares	Mean Square	F			
Regression		3042.32	<u>-</u>				
Error		1254.65					
Coefficients Table							
	Estimate	Std. Error	t valus	P(> t)			
Intercept	9.8709	7.0610		0.1735			
X_1	0.6435	0.1185		< 0.0001			
X_2	0.2112	0.1344		0.1278			
n= 30	$r^2 =$	$r_a^2 =$	s =	df(MSE) =			

- (a) Complete the output
- (b) Construct a 95% confidence interval for β_1 and interpret your result.
- (c) Test $H_0: \beta_1 = \beta_2 = 0$. Use $\alpha = 0.05$.
- 3. The following table shows the regression output of a multiple regression model relating the beginning salaries in dollars of 30 employees is a given company to the following predictor variables:

- Gender (a dummy variable (1=male, 0=female)
- Education (Years of schooling at time of the hire)
- Experience (Number of months of previous work experienc)
- Months (number of months with the company)

ANOVA Table						
Source	df	Sum of Squares	Mean Square	F		
Regression		23665352		<u>_</u>		
Error		22657938				
Coefficients Table						
	Estimate	Std. Error	t valus	P(> t)		
Intercept	3526.4	327.7	10.76	0.000		
Gender	722.5	117.8	6.13	0.000		
Education	90.02	24.69	3.65	0.000		
Experience	1.269	0.5877	2.16	0.034		
Months	23.406	5.201	4.50	0.000		

- (a) Construct a 95% confidence interval for β_1 and interpret your result.
- (b) Test $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$ Use $\alpha = 0.05$.
- (c) Compute r^2, r_a^2 and s
- (d) Test $H_0: \beta_1 = 700$ against $H_a: \beta_1 \neq 700$. Use $\alpha = 0.05$.
- 4. In a regression of y on x the least squares line is given by

$$\hat{y} = 4.162 + 15.509x$$

Answer the following questions if n = 14, s = 5.392, $\bar{x} = 6$ and $\sum_{i=1}^{14} (x - \bar{x})^2 = 114$.

- (a) Construct a 95% confidence interval for the mean value of y when x=4. Interpret your result
- (b) Construct a 95% prediction interval for a value of y when x=4. Interpret your result
- 5. Consider the regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2 + \epsilon$$

and suppose we wish to test $H_0: \beta_1 = \beta_2 = 0$ against $H_a:$ at least one of them is not zero. Assume $n = 20, SSE_R = 650$ and $SSE_C = 500$. Test H_0 against H_a using $\alpha = 0.05$.