Using Symmetry-Adapted Perturbation Theory (SAPT) in Psi4

Zach Glick

Georgia Tech

PsiCon 2020

What Is SAPT?

A method in electronic structure theory for calculating **non-covalent interactions**

10.2210/pdb1BTN/pdb

What Is SAPT?

SAPT in Psi4 calculates two-body (dimer) interaction energies:

"Supermolecular" Definition:

$$\Delta E_{int} = E_{AB} - E_A - E_B$$

$$\Delta E_{int} \approx -2.71 \ mE_h$$

$$-1.70 \ ^{kcal}/_{mol}$$

How Does SAPT Work?

$$\widehat{H}=\widehat{F}_A+\widehat{F}_B+\widehat{W}_A+\widehat{W}_B+\widehat{V}_{AB}$$
Total Monomer Intramonomer Hamiltonian Fock Operators Correlation Interaction

$$E_{SAPT} = \sum_{m>0} \sum_{n>0} E_{SAPT}^{(mn)}$$

$$E_{SAPT} = E_{elst} + E_{exch} + E_{ind} + E_{disp}$$

 E_{SAPT} : Total dimer IE

 E_{elst} : Electrostatics

E_{exch}: Exchange / Steric Repulsion

 E_{ind} : Induction / Polarization

 E_{disp} : London Dispersion

Levels of SAPT

$$E_{SAPT} = \sum_{m>0} \sum_{n\geq 0} E_{SAPT}^{(mn)} = E_{elst} + E_{exch} + E_{ind} + E_{disp}$$
 E_{elst} : Electrostatics
 E_{exch} : Exchange / Steric Repulsion
 E_{ind} : Induction / Polarization

 E_{SAPT} : Total dimer IE

 E_{elst} : Electrostatics

 E_{ind} : Induction / Polarization

 E_{disp} : London Dispersion

$$\begin{split} E_{SAPT0} &= E_{elst}^{(10)} + E_{exch}^{(10)} + E_{ind,resp}^{(20)} + E_{exch-ind,resp}^{(20)} + \delta E_{HF}^{(2)} + E_{disp}^{(20)} + E_{exch-disp}^{(20)} \\ E_{SAPT2} &+= E_{elst,resp}^{(12)} + E_{exch}^{(11)} + E_{exch}^{(12)} + E_{exch-ind}^{(22)} \\ E_{SAPT2+} &+= E_{disp}^{(21)} + E_{disp}^{(22)} \\ E_{SAPT2+(3)} &+= E_{elst,resp}^{(13)} + E_{disp}^{(30)} \\ E_{SAPT2+3} &+= E_{exch-disp}^{(30)} + E_{ind-disp}^{(30)} + E_{exch-ind-disp}^{(30)} \end{split}$$

Other SAPT in Psi4

- FSAPT0: Functional group SAPT
- ISAPTO: Intramolecular SAPT
- USAPT0: SAPT for open shell systems
- SAPT(DFT): Hartree-Fock -> Kohn-Sham

Useful SAPT Resources

- SAPT: http://www.psicode.org/psi4manual/master/sapt.html
- F/I SAPT: http://www.psicode.org/psi4manual/master/fisapt.html
- Sample Inputs: https://github.com/psi4/psi4/tree/master/samples
- This tutorial: https://github.com/zachglick/PsiCon2020-SAPT