

Aufgabenserie 4

Abgabe: 5. Oktober

Die Aufgaben sollten bis zum 5. Oktober bearbeitet werden. Die Lösungen schickt ihr an physikrolf@gmail.com. Jede Aufgabe hat eine bestimmte Anzahl an erreichbaren Punkten. Wie viele das sind, müsst ihr raten. Versucht, die Lösungen so genau wie möglich aufzuschreiben. Für besonders schnelle/gute/witzige Lösungen kann es Bonuspunkte geben. Die aktuellen Aufgaben sowie alle alten Aufgabenserien mit Lösungen findet ihr auch auf pankratius.github.io/rolf.

Aufgabe 1 (Atwoodmaschinen)

Eine Atwoodmaschine besteht im einfachsten Fall aus einer festen Rolle, an der (durch eine masselose Schnur verbunden) zwei Massen m_1 und m_2 hängen.

1. Bestimme für den Fall einer einfachen Atwoodmaschine die Beschleunigung des Systems sowie die Zugkraft im Seil.

Betrachte jetzt eine unendlichen Atwoodmaschine, bei der alle Massen m betragen.

2. Bestimme die Beschleunigung der obersten Masse, für den Fall, dass alle Massen gleichzeitig los gelassen werden.

Aufgabe 2 (Bimetallstreifen)

Ein geklebter Bimetallstreifen besteht aus zwei Metallschichten der Dicke d, die Wärmeausdehungskoeffizienten α_1 bzw. α_2 ($\alpha_2 > \alpha_1$) haben. Im Anfgangszustand ist der Streifen gerade. Wie groß ist der Krümmungsradius, wenn der Streifen um ΔT erwärmt wird? Was passiert im Grenzfall fast gleicher Wärmeausdehungskoeffizienten ($\alpha_2 \to \alpha_1$)?

Aufgabe 3 (Project Trinity)

Die Ausbreitung einer halbkreisförmigen Schockwelle hängt von der Energie E der Explosion sowie der Dichte der Luft ρ ab.

1. Bestimme eine Gleichung, die den Radius R der Schockwelle als Funktion der Zeit t nach der Explosion angibt.

Die folgenden Bilder zeigen die Schockwelle nach dem ersten Atombombentest der USA 1945, Project Trinity:

Abbildung 3.1: Massstabsgerechte Abbildung einer Schockwelle nach der Detonation

2. Unterstützen diese Bilder dein Ergebnis aus 1.?