VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB RECORD

Computer Network Lab (23CS5PCCON)

Submitted by

Jeevan A (1BM22CS119)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING in COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING (Autonomous Institution under VTU)
BENGALURU-560019
Academic Year 2024-25 (odd)

B.M.S. College of Engineering

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

This is to certify that the Lab work entitled "Computer Network (23CS5PCCON)" carried out by **Jeevan A** (1BM22CS119), who is bonafide student of **B.M.S.** College of Engineering. It is in partial fulfilment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum. The Lab report has been approved as it satisfies the academic requirements of the above-mentioned subject and the work prescribed for the said degree.

Rajeshwari Madli	Dr. Kavitha Sooda				
Assistant Professor	Professor & HOD				
Department of CSE, BMSCE	Department of CSE, BMSCE				

Index

Sl.	Date	Experiment Title	Page No.
No.			
1	01.10.24	Lab Program – 1 (Topology Simulation)	1
2	08.10.24	Lab Program – 2 (Router IP Configuration)	5
3	08.10.24	8	
4	22.10.24	Lab Program – 4 (Default and Static Configuration)	11
5	29.10.24	Lab Program – 5 (TELNET Access)	16
6	29.10.24	Lab Program – 6 (TTL Demonstration)	18
7	12.11.24	Lab Program – 7(A) (DHCP Configuration within the same LAN)	22
8	12.11.24	Lab Program – 7(B) (DHCP Configuration outside the LAN)	25
9	12.11.24	Lab Program – 8 (Web Server & DNS)	28
10	19.11.24	Lab Program – 9 (RIP Routing Setup)	30
11	26.11.24	Lab Program – 10 (WLAN Setup	33
12	26.11.24	Lab Program – 11 (ARP in LAN)	36
13	3.12.24	Lab Program – 12 (VLAN Configuration)	40
14	3.12.24	Lab Program – 13 (CRC Error Detection)	44

Github Link:

Jeevan-017/CN-LAB-1BM22CS119

LAB PROGRAM-1

AIM: Create a topology and simulate sending a simple PDU from source to destination using hub and switch as connecting devices and demonstrate ping message.

· For each device det the following 12 Addressey

1 - 20 7

PCO - 10.0.0.1

PC1 - 10.0.0.2

PC2 - 10.0.0.3

Simple PDU Tremsminion:

- 6. To send a simple message from dance to destination; select a simple PDU option and first click on the downer, downer here is considered as PC1 and then click on the destination, here destination is taken as PC2.
- 7. Then Change the mode to simulation mode
- 8. In order to visual the travelling of the message clark on the Auto Capture / Play buyon in Play controls dection.
- 9. In the simulation we can see the message pawing from PCO (source) to the hub and then from hub to all the other devices in the topology (: Hub downot have intuligence to identify the destination system, so it just forward to all the device in the topology).
- ound rejected by PCI

the state of the s

ppo transmission between two days connected

A. Topology Formation .-

- 1. Select three devices, generic Pc, and a switch and place there in the weekspace
- coppen Straight through connection.
- B. Configure devices:-
- PCO 10.0.0.14.

 PCI 10.0.0.2

 PCZ 10.0.0.3
- C. Simple PDU Fransmission 1-
- 1. Select simple PDV option and first click on the dounce, here dounce is considered as PCO, and then click on the destination, has degrited considered as PC 2.
- 2. Change the mode to directation mode
- 3. Visualize the dimulation Using Auto Capture 1 Play In Play Control Jakon
- 4. In the dispositation we can dee that the message is passed from verver (Pro) to downth and then from switch of pane the message only to the distination system (Pro)

OUTPUT:


```
C:\>ping 10.0.0.3

Pinging 10.0.0.3 with 32 bytes of data:

Reply from 10.0.0.3: bytes=32 time=9ms TTL=128
Reply from 10.0.0.3: bytes=32 time<1ms TTL=128
Reply from 10.0.0.3: bytes=32 time=1ms TTL=128
Reply from 10.0.0.3: bytes=32 time<1ms TTL=128

Ping statistics for 10.0.0.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 9ms, Average = 2ms</pre>
```

LAB PROGRAM-2

AIM: Configure IP address to routers in packet tracer. Explore the following messages: ping responses, destination unreachable, request timed out, reply.

2. To configur the norter, click on north and go to CLI Section and execute the following command:

Router (config) # interface (Interface_name)

Router (config-if) # ip address (ipadanen) (subnet mand)

Router (config-if) # ho Shutdown

- 3. Follow the above commands for both the networks
- 4. Once the commands are executed, the connection will be established
- 5. Set the brakeway addresses for the Pts.
- 6. We can explore ping command by Executing
 the following command in command priorit of PE durce
 PC> ping 20:0.0.2

Observations:

The execution of ping command - resulted in the following response

Reply from 20.0.0.2: bytes = 32 time = 0mg TTL=127

Reply from 20.0.0.2: bytes = 32 time = 0mg TTL=128

Reply from 20.0.0.2: bytes = 25 time = 0mg TTL=128

got topposed the second to complete the

OUTPUT:


```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 20.0.0.2
Pinging 20.0.0.2 with 32 bytes of data:
Request timed out.
Reply from 20.0.0.2: bytes=32 time<1ms TTL=127
Reply from 20.0.0.2: bytes=32 time=1ms TTL=127
Reply from 20.0.0.2: bytes=32 time<1ms TTL=127
Ping statistics for 20.0.0.2:
   Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping 20.0.0.2
Pinging 20.0.0.2 with 32 bytes of data:
Reply from 20.0.0.2: bytes=32 time<1ms TTL=127
Reply from 20.0.0.2: bytes=32 time=1ms TTL=127
Reply from 20.0.0.2: bytes=32 time<1ms TTL=127
Reply from 20.0.0.2: bytes=32 time<1ms TTL=127
Ping statistics for 20.0.0.2:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

LAB PROGRAM-3

AIM: Configure static route to the Router.

Fire	Last Status	Source	Destination	Туре	Color	Time(sec)	Periodic	Num	Edit	Delete	
	Successful	PC2	PC3	ICMP		0.000	N	0	(edit)		(delete)
•	Successful	PC3	PC2	ICMP		64.457	N	1	(edit)		(delete)

```
C:\>ping 40.0.0.2

Pinging 40.0.0.2 with 32 bytes of data:

Reply from 40.0.0.2: bytes=32 time=44ms TTL=125

Reply from 40.0.0.2: bytes=32 time=24ms TTL=125

Reply from 40.0.0.2: bytes=32 time=19ms TTL=125

Reply from 40.0.0.2: bytes=32 time=2ms TTL=125

Ping statistics for 40.0.0.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 2ms, Maximum = 44ms, Average = 22ms
```

demonstrate the configuration of default 910018 to the nouter

TOPOLOGY :

PROCEDURE -

1. Select devices and growter and place them on the workspace and es connect them to form a network.

the second of the second

2. Set 19 address for the during

To configure souter :-

Run the below command !-

Route # show it grounds of world of OFF - T9-07 a)

C 10. 0.0.0 /8 is directly counciled, tottethantelo C 20.0.0.0/8 is directly commend, social 2/0

=) This will show the littly networks to which the

Mouth is committed. . In order to configure the neutre to other network the commande one; In Power O CLI, - Route > trable · Route # config t - Route (config) # 18 nouts (desiredon news 10 states) (delination debut mack) (next immediate his is adding) e) This wall add new ip troubes. Run the above commands for all the nowley. P ctd :bence Re -10-0-0-1 Paule 0 - 10.0.0.0 Route 1 - 20.0.0.2 Power 2 - 30.00.2 40.0.0.1 amon RI - 40.0.0. a > In R-PT-RO > Debut > Command frompt > p > ping 40.0.0.2 (Destruction of assum)

Program Timel Cost

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 772-ns

Riply from 40.0.0.2: byte : 32 time 7ms 7ms

Riply from 40.0.0.2: byte : 32 time 7ms

Riply from 40.0.0.2: byte : 32 time 7ms

Riply from 40.0.0.2: byte : 32 time 7ms

Riply from 40.0.0.2: byte : 32 tim

LAB PROGRAM - 4(A)

AIM: Configure default route, static route to the Router.


```
C:\>ping 40.0.0.2

Pinging 40.0.0.2 with 32 bytes of data:

Reply from 40.0.0.2: bytes=32 time=34ms TTL=125
Reply from 40.0.0.2: bytes=32 time=33ms TTL=125
Reply from 40.0.0.2: bytes=32 time=30ms TTL=125
Reply from 40.0.0.2: bytes=32 time=33ms TTL=125

Ping statistics for 40.0.0.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 30ms, Maximum = 34ms, Average = 32ms
```

of mon configure default meeters to secutor of and Rower 2
the to Rowho D > Ca L Go to Renter D .) CH Alm - To donfigure default and thatit grottles to 2. But the below commande: a connection of growens. Route) Anable Rown # config 1 TOPOLOGY :-Route (config) # ip made 0.0.00 0.0.00 (months 17 ma -) Then configure State needs to Panter 1 1. Go to Rower > CU o. Run the below communation Route (config)# ip made (december returning 255.0.0) EMM MAD Here for Router of Facilities -(+ 1) tende 0.000 00.00 00.000 PROCEDURE :-(+ 1) nout 0.000 0.00.0 30.0.0.1 Fin Routin 1:-1. Check a now file and build fire Topology or (+ ip hous 40.0.00 255.000 30.002 above and connect fore devices and howevery 8 # 10 Houts 10.0.00 255.00.0 20.0.0.1 2. Set the 10 Address OBSTRUCTION Pco - 10-0-0-1 To ensure that the receiving was successful, go to fout 0 - 100.c.2 PCO) Command Promp 20.0.0.1 PC> Ping 40.0.0.2 Ruse 1 - 20.00.2 Program 40.0.0.2 with 32 types of data Replying from 40.0.0.2: bytes = 32 time = 19ms TTL-1
Reply from 40.0.0.2: bytes = 32 time = 15ms TTL-1 Care 2 + 3000 2 Any seasons for 40.002: PC1 - t10.0.0.2

LAB PROGRAM - 4(B)

AIM: Configure default route, static route to the Router, inclusive switches.


```
C:\>ping 40.0.0.3

Pinging 40.0.0.3 with 32 bytes of data:

Reply from 40.0.0.3: bytes=32 time=35ms TTL=125
Reply from 40.0.0.3: bytes=32 time=37ms TTL=125
Reply from 40.0.0.3: bytes=32 time=24ms TTL=125
Reply from 40.0.0.3: bytes=32 time=38ms TTL=125
Ping statistics for 40.0.0.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 24ms, Maximum = 38ms, Average = 33ms
```

LAB PROGRAM-5

To understand the operation of TELNET by accessing the router in server room from a PC in IT office.

LAB-05

Almir To understand the speaker of TELNET by Occasing the secret placed in the drawn swom from a PC in 17 offer

Teresony_

PERROUPE :-

机世

- 1. Pick a genuse Pe and a mounter and place thousand on the workplace.
- "2- Configure PCO IP address: 10.0.0.1 and menter O IP address: 10.0.0.0
- 3. In the CEI of RowerD type the following commands:

Power (confg. if) # hostroume 911

11 (confg.) # enoble decrif po

911 (confg.) # line uty 05

11 (confg. line) # logar

911 (confg. line) # formand P1 (10 molfer logar)

11 (confg. line) # cont

Obstruction;

PC > folial 10.0.0.2

Use Acces Veryhallon

Powerd : Pr

m > endle

Parment - Po

71#

Office

LAB PROGRAM-6

Demonstrate the TTL/ Life of a Packet.

Figure 6.1: Inbound PDU, Router2

Figure 6.2: Outbound PDU, Router2

Figure 6.3: Inbound PDU, Router4

Figure 6.4: Outbound PDU, Rout

Fire	Last Status	Source	Destination	Туре	Color	Time(sec)	Periodic	Num	Edit	Delete
•	Successful	PC0	PC1	ICMP		0.000	N	0	(edit)	

```
C:\>ping 40.0.0.2

Pinging 40.0.0.2 with 32 bytes of data:

Reply from 40.0.0.2: bytes=32 time=72ms TTL=123
Reply from 40.0.0.2: bytes=32 time=53ms TTL=123
Reply from 40.0.0.2: bytes=32 time=55ms TTL=123
Reply from 40.0.0.2: bytes=32 time=69ms TTL=123

Ping statistics for 40.0.0.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 53ms, Maximum = 72ms, Average = 62ms
```


LAB PROGRAM - 7(A)

To Configure IP addresses of the host using DHCP server within a LAN.


```
PC0
Physical
        Config
                Desktop
                        Programming
                                    Attributes
Command Prompt
 Cisco Packet Tracer PC Command Line 1.0
C:\>ping 10.0.0.4
Pinging 10.0.0.4 with 32 bytes of data:
Reply from 10.0.0.4: bytes=32 time<1ms TTL=128
 Ping statistics for 10.0.0.4:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 0ms, Average = 0ms
```


LAB-06

AIM:-

- A. To configure IP Addresses of the host using DHEP server present within the LAN
- B. To configure IP Addresses of the host present in the different LAN.

Topology ...

PROCEPURE :-

- T. Select a Generic Pt; I lumuic Serven and a Switch,
- 2. Connect the network as shown in the topology
- 3. In the dervices of the cono, enoble DHCP, and DNS server traffe the godeway (10.02)
- h. Here ServerO of considered as the DHEP source
- Shift the PC's from Glodic to DHCP mode.

I this your (down) was also so dyname to extension to be the the forms have from the promoter loss of the strength of the down feet.

to oresings

Connection was made as per one objectory stories

For the stress network,

7 in helper 10-0-0-1

In Fastinana as

7 in helper 10-0-0-1

LAB PROGRAM - 7(B)

AIM: To Configure IP addresses of the host using DHCP server outside a LAN.


```
config denue : At denuices, using DHEP protocal;
                   Jones is 'on'
             Rul Name: Sure Pools
            Default hateway: 20.0.0.1
              DNS Suru: 10.0.0.1
           Start 10 Addrew: 20.0.0.0
            Subnut Mark : 255.000.
         Save the somubola
           Pad Name: SenverPoull
           refacill lateriay : 20.0.0. 2
            DNS Sava : 10.0.0.1
            Start 17 Addacu : 10 . c . 0 0
         → Same the ServerPool 1
- Objevation !-
 · Now clicking on DHCP in PCI:
             IP Address: 20.0.0.2
           Subnet Maik: 255.0.0.0
      On clicking DHCP in Paper 1:
               19 Addrew: 20.0.0.3
               Subnet Mark : 255.0.0.0
 · In Pco > ping do-0.0.2
         Pinging 20.0.0 2 with 32 light of data.
               from doors d : bytu = 32 time chang 776 - 125 mg
         Ping stolethy for 20.00 a
                Pockey sond = 4, Accieved=4 Loit = 0 (01.Lou)
                              Locald althought
                            of the state of all
```

LAB PROGRAM - 8

AIM: To Configure DNS server to demonstrate the mapping of IP addresses and Domain names.

AIM:- To configure DNS solver to demonstrate the mapping of 1P Addrew and domain Name

PROCEDURE -

- Connections are made occording to the topology above
- At Severo :

In Fattethunes 0: 10 oddru : 10.0.0.1

In Servicu > Use DHCP Protocol

Default horney: 0.0.0.0

DNS Suva : 10.0.0.1

> In DNS sovieus:

Name: Website Addmess : 10.0.0.1

> In HTTP :- Edit indirinal as pur the

grequeine ment

. In PCO : click on DHCP, the 1P address get configured audomatically

In Laptopa: On clicking DHCP, the address got configurated · Configs are done.

Observation :-

- · Using any end device, click on "web because in
- · On typing website, the domain name, inder think get displayed URE: help: // websites

Sample Output :-

WELLOME TO COMPUTER NETWORKS LAB

LAB PROGRAM - 9

To Configure RIP routing protocol in Routers.


```
C:\>ping 192.168.2.3

Pinging 192.168.2.3 with 32 bytes of data:

Reply from 192.168.2.3: bytes=32 time=18ms TTL=126
Reply from 192.168.2.3: bytes=32 time=14ms TTL=126
Reply from 192.168.2.3: bytes=32 time=1ms TTL=126
Reply from 192.168.2.3: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.2.3:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 1ms, Maximum = 18ms, Average = 8ms
```

LABORA TORY - 08

AIM:- To configure RIP Routing priotocol in moutery:

Topology :-

PROCEDURE:

· Connections are made as pu the topology above

· Config and devices with the following 10 actions

Peo -> 192-188.1.2 (10)

. 192.168.1.1 (Covering)

192. 168. 2.1 (Beking)

Rower o:

In Facro : 1P addin : 192.168.1.1

In Sealo : 10 addrew : 10.10.0.2

Clock Rate: 64000

=) RIP Rewaits :-

Rowa (confg) # nava nip

Render (configurates) =# notweek 192-168-1.0

Renter Cramin - market of me at 10.000

Rower (config - house) # ouch * Routed :-In Facto : IP Addinen : 192. 168.2.1 In Se 210 : 11 Addres: 10.10.0.3 Clark Rate: 2000000 RIP Rowling: # noute mip # network 192.168.20 # Preducik 10.00.0 # end Observation -In Pco > ping 192-168.2.2 Pinging 192-168-2.2 with 32 byte of date: Reply from 192.168.2.2 : bytes = 32 Time . 7ms TTE = 115 Correctly the Priors of the state of the country and Ping Statistics of matters and result comes have provided Packets: Sent = 4, Recirved = 4, Lat = 0 (0x100) Approx nound taip time in ms: Min : 6ms Mox = 7ms , Ag = 6ms 10 March 1 10 10 10 10 U.S. 20032

LAB PROGRAM - 10

To demonstrate communication between two devices using a wireless LAN.


```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0

C:\>ping 10.0.0.5

Pinging 10.0.0.5 with 32 bytes of data:

Reply from 10.0.0.5: bytes=32 time=8ms TTL=128

Reply from 10.0.0.5: bytes=32 time=28ms TTL=128

Reply from 10.0.0.5: bytes=32 time=30ms TTL=128

Reply from 10.0.0.5: bytes=32 time=36ms TTL=128

Reply from 10.0.0.5: bytes=32 time=36ms TTL=128

Reply from 10.0.0.5: bytes=32 time=36ms TTL=128

Ping statistics for 10.0.0.5:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 8ms, Maximum = 36ms, Average = 25ms
```

LABORATORY - 09

AIM:- To demonstrate the communication between two devices using winder LAN.

PROCEDURE :-

- 1. Sclect a Generic Acceu Point-PT Winders device,

 0 smartphone and a haptop and place it in the
- 2. Connect o generic device to a strutch, Window device and growth
- 3. Set IP 10.0.0.0 to PCO $10.0.0.3 \rightarrow RautuO$ $10.0.0.3 \rightarrow Laptopo$ $10.0.0.4 \rightarrow SmadphoneO$
- 4. Bo to config mode of Accentored -PT, Lander Porto, Jet Bandwidth and Puplex to Aluto mode

5. Now under Port 1, Jet SSID to "WAN!"

and Authoritation to WATE-PSK

Set the Posturord (8-dgite)

6. Set the liahway address of Roptop and Smoutphone

7- Under Wirelaw interface of smartphons, det 5510 to want of and Authorization word - PSk and enter the paramed.

Then del the IP add No

- 8. This establishes windu connection BIW smartphone and the Accuracy-pt
- 9. To establish a wineless connection between the laptop and Accorpand PT,

to to physical view of the device and set 2468 hadre and follow step 7 for lopiop.

Obstration - polaried transported armed as a self-

. We are able to citablish a wereless connection Blow the during like smootphone and loptop and the Accounting-Py to to command knowly to knowly a significant

to to command prings to hapter and execute the following community ping 10.0.0.1

physing 10.0.0.1 with 3t hype of data

Reply from 10.0.001: byth = 32 thme = 0m; 776 = 126

Reply from 10.0.0.1: bytes - 32 time: Omy TTL- 125

Reply from 10.0.0.1 : bytes = 32 time = 0mx 771 - 124

Rely from 10.0.0.1 : bytes - 32 fine = Cros 776:123

LABORATORY PROGRAM – 11

To demonstrate the working of Address Resolution Protocol (ARP) within a LAN for communication.

Figure 11.1: Inbound ARP, PC1

OSI Model | Inbound PDU Details | Outbound PDU Details PDU Formats Ethernet II PREAMBLE: DEST MAC: SRC MAC: 0003.F411.7849 0003.F43B.A01D 101010...1011 DATA (VARIABLE LENGTH) TYPE: 0x806 FCS: 0x0 ARP 31 Bits SOURCE MAC: 0003.E43B.A01D (48 bits) SOURCE IP (32 bits) ==> TARGET MAC: 0003.E411.7849 (48 bits) TARGET IP: 10.0.0.3 (32 bits)

PDU Information at Device: Server0

Figure 11.2: Inbound ARP, Server0

ARP Table for Server0 IP Address Hardware Address Interface 10.0.0.1 00E0.B062.0C32 FastEthernet0 10.0.0.2 0001,43E9,C68C FastEthernet0

Figure 11.4: ARP Table, Server0

Figure 11.3: Outbound ARP, Server0

Figure 11.5: ARP Table, PC1

LABORATORY- 10

AIM - To demonstrate the working of address gredolution protocol for communication within a LAN

GRANDA TE

PROCEPURE :-

- . Select 3 generic devices on, a develop and a develop
- 2. Set the IP addresses of the devices as

Pco - 10.0.0.1

PCI - 10.0.0-2 (10.00-20)

Ra - 10.0.0.3

- ho to and deled the Inspect tool, clickon Peo
- 1. Select a PDU and dend a PDU from RO to the
- 5. Now the ARP table will be populated with the

PRP Table on Source O

IP Address	Hardman Addrew	Inteloce	
10-0-0-1	00 60 . 3Enc . 3376	Tao	
10.0.0.2	0009. 70E - 431E	Fac	
10-0-0-3	0001. H278. (7cz	FoO	

ARP TOBLE Ion Pco

IP Addrew

Hardware Addrew Interface

10-0-0-4

000A- 4111. 9800 . FOO

ARP TObe for ALI

IP Addrew

Hardwar Addrew

Interface

10.0.04

000A . 9/111.9B00

Fao

Inbound POU Debits

ARP

Initially,

SOURCE MAC WAY 0000. 0000. 0000

hote ,

000A. 4M. 9BOD

TARGE 7

MAC : 0001. 4078. CZ-2C (484/1)

TARGET

190.0.3 (32 645)

Source

10.0.0.11 (34 44)

LAB PROGRAM – 12

To create a VLAN on top of the physical LAN and enable communication between physical LAN and virtual LAN.


```
Router(config)#interface FastEthernet0/0.1
Router(config-subif)#encapsulation dot1q 20
Router(config-subif)#ip address 192.168.20.3 255.255.255.0
Router(config-subif)#no shutdown
```


Fire	Last Status	Source	Destination	Туре	Color	Time(sec)	Periodic	Num	Edit	Delete
•	Successful	PC1	Router0	ICMP		0.000	N	0	(edit)	

```
C:\>ping 192.168.20.3

Pinging 192.168.20.3 with 32 bytes of data:

Reply from 192.168.20.3: bytes=32 time=2ms TTL=255
Reply from 192.168.20.3: bytes=32 time<1ms TTL=255
Reply from 192.168.20.3: bytes=32 time<1ms TTL=255
Reply from 192.168.20.3: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.20.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 2ms, Average = 0ms</pre>
```

AIM:- To cheate a visitual LAN on top of the physical LAN and enable communication between physical LAN and visitual LAN

TOPOLOGY :-

Procedure 1-

- · Connections are mode according to the topology above
- * Set 19 Modern for the physical network of

 RO -> 192.168.10.2 } -> galeuny -> 192.165.10.1

 Route 0 -> 192.168.10.1
- Go to durich config Sclut VIAN Dotabare

 Add o now VIAN configuration with VIAN Number (20)

 and VIAN Name (VIAN)
- " Under Fa015 of Justin, Select to Trunk Mode

· ho to Fac/3 and delect the Venue or 20 years (newly added YEAN) Similarly do for Fally Now do IP addressed for Vinteal (AM device) Pta -1 190.165.20.1 R3 -> 190. 168-30-2 Under months yeer Router# config 1 Rouse (config) # Interface fortellment 010-1 Rould (config. Jubil) # ip address 190.168.20.3 215.211.20 Router (roding state) # no shelfdown. · New Unda VICAN Database of Powers, Add the new VICAN in RouseO> ca Router(config) # interface failetherned 0/0.1 Route (config-subif) # encopsistation dotty 20 Observations 1to visited LAN and vice verse from Physical WLAN Pco > ping 192-163-20-2 Pinging 192.168.10.2 with 32 byterof data. Reply from 190. 168. 20.2 : byter = 32 time on Tres Ping Steathfree : Packets: dend = 4, Revived = 4, Loss = 0 (01. Loss) Approximate Roand-rip times in mile-house. Accord = Ong

LAB PROGRAM – 13

Write a program for error detecting code using CRC-CCITT (8-bits).

Code

```
def xor(dividend, divisor):
                                                       # Shift left and add the next data bit
  """Perform XOR operation between
                                                       if i + gen_length < len(padded_data):
dividend and divisor."""
                                                          check_value += padded_data[i +
  result = "
                                                  gen_length]
  for i in range(1, len(divisor)):
    result += '0' if dividend[i] ==
                                                     return check_value[1:] # Remove the
divisor[i] else '1'
                                                  leading bit
  return result
                                                  def receiver(data, gen_poly):
                                                     """Simulate the receiver side to check
def crc(data, gen_poly):
                                                  for errors."""
  """Compute the CRC check value using
CRC-CCITT (8-bit)."""
                                                     print("\n-----")
  data_length = len(data)
                                                     print("Data received:", data)
  gen_length = len(gen_poly)
                                                     # Perform CRC computation on
                                                  received data
  # Append n-1 zeros to the data
                                                     remainder = crc(data, gen_poly)
  padded_data = data + '0' * (gen_length -
1)
  check_value =
                                                     # Check if the remainder is all zeros
padded_data[:gen_length]
                                                     if '1' in remainder:
                                                       print("Error detected")
  for i in range(data length):
                                                     else:
    if check value [0] == '1':
                                                       print("No error detected")
       # XOR operation if the first bit is 1
       check value = xor(check value,
                                                  if <u>__name__</u> == "__main__":
gen_poly)
                                                     # Input data and generator polynomial
    else:
                                                     data = input("Enter data to be
       # Retain original check value if
                                                  transmitted: ")
first bit is 0
                                                     gen_poly = input("Enter the Generating
       check_value = check_value[1:]
                                                  polynomial: ")
```

```
# Compute CRC check value
                                               transmitted_data = data + check_value
                                               print("Final data to be sent:",
  check_value = crc(data, gen_poly)
                                             transmitted_data)
  print("\n-----
                                               print("-----
                                             \n")
  print("Data padded with n-1 zeros:",
data + '0' * (len(gen\_poly) - 1))
  print("CRC or Check value is:",
                                               # Simulate the receiver side
check_value)
                                               received_data = input("Enter the
                                             received data: ")
  # Append check value to data for
                                               receiver(received_data, gen_poly)
transmission
```

Output

Enter data to be transmitted: 1001100
Enter the Generating polynomial: 100001011
Data padded with n-1 zeros: 100110000000000
CRC or Check value is: 0100010
Final data to be sent: 10011000100010
Enter the received data: 10011000100011
Data received: 10011000100011 Error detected

```
Implement CRC France deterting code
then implementation +
   def xon (dividual, division):
       Triple = 1 of wall with a larger of while
        for i in range (1, len(divisor)):
     nestule += '0' if dividual (17 == divisorsi) ele 11'
       noturn nesset (
  dy crc (dato, gu-poly):
     data Lin = leu (data)
        gen Len = len (gen-poly)
        padded_data = data + '0' * (quilen =1)
        check_value - padded_data [:genten]
       for i in hauge (datalin):
            ( check_value (0) = = 11" :
          (hak yolu = xon (chrissolar, gen-pay)
           check-value = check-value (1:7
         if it gen-lungth < len (padded-date):
               check-value + = Christman (by padded data (i+ genter)
       91cturn check-value (1:]
      neciona (dato, que. Aly):
          ("Data necieved:", data)
      gremaside _ csic (dato, gen-Ry)
```

```
of " in recovered !
          project (" trucon detected")
      else
        point (" No error detected")
    -mane == "main"
       data = input ("Enter class to be transmitted :")
       gen-poly - input ( " Enter the generaling polynomial.)
    Check Value = OIC (data, gen-poly)
       parint ("Data podded with not zmou.", data +
                                      '0' + (len (gen-poly)-1)
       print (" CRC on check value "1:", checkvalue)
       print ( Data of dent : , Clara + check Value))
       Rainer Kyroci
       greated Dab = input ( " Enter the greatened dab ")
       nections ( necessary Date, gen-poly)
=) OUTPUT 1-1
  Enter data to be transmitted : 100 1001
   Inter the binerating Polynomial: 100001011
   CRC on that value : Dasono
   Final data great : 10010010000001
   Enter the date governed : 10011100010100
  Eronon delicited.
```

LAB PROGRAM - 14

Write a program for congestion control using Leaky bucket algorithm.

Code

```
# Getting user inputs
storage = int(input("Enter initial packets in the bucket: "))
no_of_queries = int(input("Enter total no. of times bucket content is checked: "))
bucket_size = int(input("Enter total no. of packets that can be accommodated in the bucket:
"))
input pkt size = int(input("Enter no. of packets that enters the bucket at a time: "))
output_pkt_size = int(input("Enter no. of packets that exits the bucket at a time: "))
for i in range(no_of_queries): # space left
  size left = bucket size - storage
  if input_pkt_size <= size_left:</pre>
     # update storage
     storage += input pkt size
     print("Packet loss =", input_pkt_size)
  print(f"Buffer size = {storage} out of bucket size = {bucket_size}")
  # as packets are sent out into the network, the size of the storage decreases
  storage -= output_pkt_size
```

Output

```
Enter initial packets in the bucket: 0
Enter total no. of times bucket content is checked: 4
Enter total no. of packets that can be accommodated in the bucket: 10
Enter no. of packets that enters the bucket at a time: 4
Enter no. of packets that exits the bucket at a time: 1
Buffer size = 4 out of bucket size = 10
Buffer size = 7 out of bucket size = 10
Buffer size = 10 out of bucket size = 10
Packet loss = 4
Buffer size = 9 out of bucket size = 10
```

```
a) Write a program for congestion control implementation using
      leaky bucker algorithm
Rython Implementation :-
         Strange = right (imped ( trital the injetical packater on
»)C implementation :-
     # include < stdio.h>
        ind incoming, outgoing, buck-size, n, stone =0;
        print (" Enter bugket size, outgoing that and no. of inp ")
        deanf ( " tol tol to to buck size, sourgery, sn);
       while ( In 1=0)
          prints (" Enter the incoming parker size");
          Stanf (" 1.d", Streaming );
         prints ( · Incoming poster size rdin ", incoming)
         if ( incoming <= (buckeye - stone))
           { Stoke +: incoming;
                 front (. Brigg poller 28 x4 or4 of x9 in.
              print (" Drupped I'd no of packets in ",
                                       Incoming - (but age - store))
```

Stone = buck_ size;

```
Stone - Stone - outgoing;
       print (" After outgoing I'd bytes left and of I'd in
       bulka ", store, buck-size);
Output :-
Enter bucket lize, outgoing that, and no. of infault: 10 3
 Entu the incoming packet lize: 5
 Bucket hills dige 5 and of 10
              a byter left out of 10 in buffer
  Enter the Incoming backet lige: 6
  Drigged I no of
                   pocket and and a land
   Bucket bulle 1/3 5 out of 10
         outgoing 2 byte left out of 10 m byten
```

LAB PROGRAM – 15(A)

Using TCP/IP sockets, write a client-server program to make client sending the file name and the server to send back the contents of the requested file if present.

Code: Client.py

```
from socket import *
serverName = "127.0.0.1" # Server address (localhost)
serverPort = 12000 # Port number where the server listens
# Create TCP socket
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName, serverPort)) # Connect to server
# Ask user for file name to request
sentence = input("Enter file name: ")
# Send file name to server
clientSocket.send(sentence.encode())
# Receive file contents from server
filecontents = clientSocket.recv(1024).decode()
print('From Server:', filecontents)
# Close the connection
clientSocket.close()
                                     Code: Server.py
from socket import *
serverName = "127.0.0.1" # Server address (localhost)
serverPort = 12000 # Port number to listen on
# Create TCP socket
serverSocket = socket(AF INET, SOCK STREAM)
serverSocket.bind((serverName, serverPort)) # Bind socket to the address and port
serverSocket.listen(1) # Listen for 1 connection
print("The server is ready to receive")
while True:
  # Accept a connection
  connectionSocket, addr = serverSocket.accept()
  # Receive the file name from the client
  sentence = connectionSocket.recv(1024).decode()
  # Try opening the file
  try:
    file = open(sentence, "r") # Open file in read mode
    fileContents = file.read(1024) # Read file content (up to 1024 bytes)
```

connectionSocket.send(fileContents.encode()) # Send file contents to client
file.close()
except FileNotFoundError:
 # Send error message if file not found
 connectionSocket.send("File not found".encode())

Close the connection
connectionSocket.close()

OUTPUT (TCP):

LAB PROGRAM - 15(B)

Using UDP sockets, write a client-server program to make client sending the file name and the server to send back the contents of the requested file if present.

Code: ClientUDP.py

```
from socket import *
serverName = "127.0.0.1" # Server address (localhost)
serverPort = 12000 # Port number where the server listens
# Create UDP socket
clientSocket = socket(AF_INET, SOCK_DGRAM)
# Ask user for file name to request
sentence = input("Enter file name: ")
# Send the file name to the server using UDP
clientSocket.sendto(sentence.encode("utf-8"), (serverName, serverPort))
# Receive file contents from the server
fileContents, serverAddress = clientSocket.recvfrom(2048)
# Print the file contents received from the server
print("From Server:", fileContents.decode())
# Close the UDP socket
clientSocket.close()
                                   Code: ServerUDP.py
from socket import *
serverPort = 12000 # Port number to listen on
# Create UDP socket
serverSocket = socket(AF INET, SOCK DGRAM)
serverSocket.bind(("127.0.0.1", serverPort)) # Bind the socket to the server address and port
print("The server is ready to receive")
while True:
  # Receive file name from the client
  sentence, clientAddress = serverSocket.recvfrom(2048)
  # Try opening the file
    file = open(sentence.decode(), "r") # Open file in read mode
    fileContents = file.read(2048) # Read file content (up to 2048 bytes)
    serverSocket.sendto(fileContents.encode("utf-8"), clientAddress) # Send file contents to
client
    file.close()
  except FileNotFoundError:
```

Send error message if file not found serverSocket.sendto("File not found".encode("utf-8"), clientAddress)

OUTPUT (UDP):

