STAT-510 2017 Fall

Lecture 2: Families of Distributions

Instructor: Xiaohui Chen Scribe: Yutong Dai Last Modified: 2018-02-16

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

2.1 Location-Scale Family

Definition 2.1 Let f(x) be any pdf. Then for any $-\infty < \mu < +\infty$ and any $\sigma > 0$, the family of pdfs $\{\frac{1}{\sigma}f(\frac{x-\mu}{\sigma})|-\infty < \mu < +\infty, \sigma > 0\}$ is called the location-scale familiy with standard pdf f(x); μ is called the location parameter and σ is called the scale parameter.

Remark:

- 1. $\int \frac{1}{\sigma} f(\frac{x-\mu}{\sigma}) dx = 1$, therefore, $\frac{1}{\sigma} f(\frac{x-\mu}{\sigma})$ are distributions.
- 2. $\sigma > 1$ means to strech the pdf while $\sigma < 1$ means to contract the pdf.
- 3. The point of defining the location-scale family is to state that we can generate a family of pdfs with any pdf f(x) by introducing scale or location parameters.

Theorem 2.2 Let f(x) be any pdf, $\mu \in R$ and $\sigma > 0$. Then Z is a random variable with pdf $\frac{1}{\sigma}f(\frac{z-\mu}{\sigma})$ $\iff Z = \sigma X + \mu$.

2.2 Exponential Families

Definition 2.3 A family of pdfs or pmfs is called an exponential family if it can be expressed as

$$f(x; \boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta})exp(\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x)),$$

where h(x) > 0 and $\forall i, t_i(x)$ is real-valued function and doesn't depend on $\boldsymbol{\theta} \in \mathbb{R}^d$, $d \leq k$. Also, $c(\boldsymbol{\theta}) \geq 0$ and $\forall i, w_i(\boldsymbol{\theta})$ is real-valued function and doesn't depend on x.

Claim 2.4 If $f(x;\theta)$ is in the exponential family, then the support of $f(x;\theta)$, $\{x \in \mathcal{X}; f(x;\theta) > 0\}$, doesn't depend on parameter θ . It only depends on the set $\{x|h(x)>0\}$.

Remark

- 1. Noraml, Gamma, Beta, Binomial, Possion, negative Binominal distributions are all in exponential family.
- 2. Some distributions in location family are not in the exponential family, for example, $f(x;\theta) = \frac{1}{\theta} exp(1-\frac{x}{\theta})I(x>\theta), \theta>0.$

An exponential family is sometimes reparameterized as

$$f(x;\eta) = c^*(\eta)h(x)exp(\sum_{i=1}^k \eta_i t_i(x)),$$

where $h(.), t_i(.)$ are the same as in the original parameterization. And $c^*(\eta)$ is the parameter that ensures $\int f(x;\eta)dx = 1$. The set

$$H = \{(\eta_1, ..., \eta_k) | \int_{-\infty}^{+\infty} h(x) exp(\sum_{i=1}^k \eta_i t_i(x)) dx < +\infty\},$$

is called the *natural parameter space* for the family. Since the original $f(x; \theta)$ is a pdf/pmf in exponential family, $(\eta = (w_1(\theta), w_2(\theta), ..., w_k(\theta) : \theta \in \Theta)$ must be a subset of the natural parameter space.

Definition 2.5 A curved exponential family is a family of densities of the form $f(x; \theta) = h(x)c(\theta)exp(\sum_{i=1}^k w_i(\theta)t_i(x))$ for which the dimension of the vector θ is equal to $d \leq k$. If d = k, then the family is a **full exponential family**. If d < k, it is **curved exponential family**.