Jan Graffelman^{1,2}

¹Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona, Spain

> ²Department of Biostatistics University of Washington Seattle, WA, USA

26th Summer Institute in Statistical Genetics (SISG 2021)

Introduction

Contents

- Introduction
- 2 Maximization problem
- 3 Biplots
- 4 Examples

Some History

- Hotelling, H. (1935) The most predictable criterion, Journal of Educational Psychology 26 pp. 139-142.
- Hotelling, H. (1936)
 Relations between two sets of variates. *Biometrika*, 28 pp. 321-377.

Objective

- Study the relationship between two sets of variables **X** and **Y**
- Find linear combinations of **X** and **Y** that have maximal correlation

Notes

Introduction

Canonical correlation analysis is important from a theoretical point of view, since it:

- underlies multiple linear regression (q = 1)
- underlies discriminant analysis (Y categorical)
- underlies correspondence analysis (X and Y categorical)
- underlies many multivariate methods!

Some notation

Introduction

- x a p-variate random vector
- y a q-variate random vector
- Σ_{xx} within set correlation matrix of x variates
- Σ_{vv} within set correlation matrix of y variates
- Σ_{xy} between set correlation matrix

$$\mathbf{\Sigma} = \left[egin{array}{cc} \mathbf{\Sigma}_{xx} & \mathbf{\Sigma}_{xy} \\ \mathbf{\Sigma}_{yx} & \mathbf{\Sigma}_{yy} \end{array}
ight],$$

- $\mathbf{u} = \mathbf{a}'\mathbf{x}$ first canonical x variate
- $\mathbf{v} = \mathbf{b}' \mathbf{y}$ first canonical y variate

Biplots

Maximization problem

We have:

$$V\left(\mathbf{u}\right) = \mathbf{a}' \mathbf{\Sigma}_{xx} \mathbf{a} \quad V\left(\mathbf{v}\right) = \mathbf{b}' \mathbf{\Sigma}_{yy} \mathbf{b} \qquad \textit{Cov}\left(\mathbf{u}, \mathbf{v}, =\right) \mathbf{a}' \mathbf{\Sigma}_{xy} \mathbf{b}$$

Maximize

$$\rho(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{a}' \mathbf{\Sigma}_{xy} \mathbf{b}}{\sqrt{\mathbf{a}' \mathbf{\Sigma}_{xx} \mathbf{a}} \sqrt{\mathbf{b}' \mathbf{\Sigma}_{yy} \mathbf{b}}}$$

Equivalently

$$\max_{\mathbf{a},\mathbf{b}} \ \mathbf{a}' \mathbf{\Sigma}_{xy} \mathbf{b} \text{ subject to } \mathbf{a}' \mathbf{\Sigma}_{xx} \mathbf{a} = 1 \quad \mathbf{b}' \mathbf{\Sigma}_{yy} \mathbf{b} = 1$$

Solution as eigenvalue problem

The coefficients \mathbf{a} and \mathbf{b} are obtained as eigenvectors from the equations

$$\mathbf{\Sigma}_{xx}^{-1}\mathbf{\Sigma}_{xy}\mathbf{\Sigma}_{yy}^{-1}\mathbf{\Sigma}_{yx}\mathbf{a}=\lambda_1\mathbf{a}$$

$$\mathbf{\Sigma}_{yy}^{-1}\mathbf{\Sigma}_{yx}\mathbf{\Sigma}_{xx}^{-1}\mathbf{\Sigma}_{xy}\mathbf{b} = \lambda_1\mathbf{b}$$

- Eigenvalues are squared canonical correlations
- min(p, q) succesive uncorrelated canonical variates can be extracted
- The covariance matrices Σ_{xx} , Σ_{xy} and Σ_{yy} are estimated by the respective sample covariance or correlation matrices.

Solution as a singular value decomposition

$$\mathbf{K} = \mathbf{R}_{xx}^{-1/2}\mathbf{R}_{xy}\mathbf{R}_{yy}^{-1/2} = \tilde{\mathbf{A}}\mathbf{D}\tilde{\mathbf{B}}'$$

- D diagonal matrix with canonical correlations
- $\mathbf{A} = \mathbf{R}_{xx}^{-1/2} \tilde{\mathbf{A}}$ matrix of canonical weights for x variables, $\mathbf{A}' \mathbf{R}_{xx} \mathbf{A} = \mathbf{I}$.
- $\mathbf{B} = \mathbf{R}_{yy}^{-1/2} \tilde{\mathbf{B}}$ matrix of canonical weights for y variables, $\mathbf{B}' \mathbf{R}_{yy} \mathbf{B} = \mathbf{I}$.
- Canonical x variates $\mathbf{U} = \mathbf{X}_s \mathbf{A}$
- Canonical y variates $\mathbf{V} = \mathbf{Y}_s \mathbf{B}$

$$\mathbf{K} = \mathbf{R}_{xx}^{-1/2}\mathbf{R}_{xy}\mathbf{R}_{yy}^{-1/2} = \mathbf{\tilde{A}}\mathbf{D}\mathbf{\tilde{B}}'$$

Biplots

$$F = R_{xx}AD$$
 $G = R_{yy}B$

Joint plot of first two columns of F and G is a biplot of the between set correlation matrix.

$$\begin{split} \textbf{FG}' &= \textbf{R}_{xx} \textbf{AD} (\textbf{R}_{yy} \textbf{B})' = \textbf{R}_{xx} \textbf{ADB}' \textbf{R}_{yy} = \textbf{R}_{xx}^{1/2} \tilde{\textbf{A}} \tilde{\textbf{D}} \tilde{\textbf{B}}' \textbf{R}_{yy}^{1/2} \\ &= \textbf{R}_{xx}^{1/2} \textbf{R}_{xx}^{-1/2} \textbf{R}_{xy} \textbf{R}_{yy}^{-1/2} \textbf{R}_{yy}^{1/2} = \textbf{R}_{xy} \end{split}$$

Like in PCA, there are different scalings

$$\begin{split} \textbf{F} &= \textbf{R}_{xx} \textbf{A} \textbf{D} & \textbf{G} &= \textbf{R}_{yy} \textbf{B} \\ \textbf{F} &= \textbf{R}_{xx} \textbf{A} & \textbf{G} &= \textbf{R}_{yy} \textbf{B} \textbf{D} \\ \textbf{F} &= \textbf{R}_{xx} \textbf{A} \textbf{D}^{1/2} & \textbf{G} &= \textbf{R}_{yy} \textbf{B} \textbf{D}^{1/2} \end{split}$$

Introduction

Textbook example: Fret's (1921) data

- 25 families
- x₁ head length of first son
- y₁ head length of second son
- x₂ head breadth of first son
- y_2 head breadth of second son

Family	<i>x</i> ₁	<i>x</i> ₂	У1	<i>y</i> ₂
1	191	155	179	145
2	195	149	201	152
3	181	148	185	149
4	183	153	188	149
5	176	144	171	142
6	208	157	192	152
7	189	150	190	149
8	197	159	189	152
9	188	152	197	159
10	192	150	187	151
11	179	158	186	148
12	183	147	174	147
13	174	150	185	152
14	190	159	195	157
15	188	151	187	158
16	163	137	161	130
17	195	155	183	158
18	186	153	173	148
19	181	145	182	146
20	175	140	165	137
21	192	154	185	152
22	174	143	178	147
23	176	139	176	143
24	197	167	200	158
25	190	163	187	150

Download Heads.dat

Scatterplot matrix

Correlation matrix

		X_1	X_2	Y_1	Y_2
_	$\overline{X_1}$	1.00	0.73	0.71	0.70
	X_2	0.73	1.00	0.69	0.71
	Y_1	0.71	0.69	1.00	0.84
	Y_2	0.70	0.71	0.84	1.00

Introduction

$$U_1 = 0.5522x_1 + 0.5215x_2$$
$$V_1 = 0.5044y_1 + 0.5383y_2$$

$$U_2 = -1.3664x_1 + 1.3784x_2$$
$$V_2 = -1.7686y_1 + 1.7586y_2$$

Standard numerical output

	$r_1 = 0.7885$		$r_2 =$	0.0537	
	U_1		U_2		
	0.5522	(0.9353)	-1.3664	(-0.3539)	
<i>x</i> ₂	0.5215	(0.9272)	1.3784	(0.3747)	
Var. Expl.	0.8672		0.1328		
	V_1		V_2		
<i>y</i> 1	0.5044	(0.9562)	-1.7686	(-0.2927)	
<i>y</i> ₂	0.5383	(0.9616)	1.7586	(0.2743)	
Var. Expl.	0.9195		0.0805		

Goodness-of-fit of between-set correlation matrix

	1	2
eigenvalue	0.6217	0.0029
fraction	0.9954	0.0046
cumulative	0.9954	1.0000

Correlation matrix of the canonical variates

	U_1	U_2	V_1	V_2
U_1	1.00	0.00	0.79	0.00
U_2	0.00	1.00	0.00	0.05
V_1	0.79	0.00	1.00	0.00
V_2	0.00	0.05	0.00	1.00

Shared and explained variance

- Shared variance between X and Y variables: squared canonical correlations
- Adequacy coefficients
 - Variance in X set explained by canonical x-variates
 - Variance in Y set explained by canonical y-variates
- Redundancy coefficients
 - Variance in X set explained by canonical y-variates
 - Variance in Y set explained by canonical x-variates

Classical plots and Biplots

Examples

00000000000000000

Significance of the canonical correlations

Genetic example

- 41 samples, 16 STRs
- Do allele frequencies depend on geographic coordinates?
- We use D10S1248

Messina F, et al. (2016) Spatially Explicit Models to Investigate Geographic Patterns in the Distribution of Forensic STRs: Application to the North-Eastern Mediterranean. $PLoS\ ONE\ 11(11)$: e0167065.

The data

	Sampling.location	Country.Island	Long.E	Lat.N	N	A9	A11	A12	A13	A14	A15	A16	A17	A18
1	Brno	Czech Rep. (Moravia)	16.61	49.20	49	0.00	0.00	0.04	0.24	0.31	0.24	0.10	0.05	0.01
2	L'Aquila	Italy (Abruzzo)	13.40	42.35	32	0.00	0.02	0.03	0.25	0.33	0.09	0.17	0.11	0.00
3	Avezzano	Italy (Abruzzo)	13.43	42.03	28	0.00	0.00	0.02	0.25	0.32	0.23	0.14	0.04	0.00
4	Pescara	Italy (Abruzzo)	14.22	42.46	18	0.00	0.06	0.08	0.33	0.28	0.14	0.11	0.00	0.00
5	Benevento	Italy (Campania)	14.78	41.13	45	0.00	0.01	0.06	0.22	0.34	0.20	0.12	0.04	0.00
6	Foggia	Italy (Apulia)	15.54	41.46	26	0.00	0.00	0.04	0.31	0.31	0.12	0.14	0.10	0.00
7	Gargano promontory	Italy (Apulia)	15.75	41.73	30	0.00	0.00	0.03	0.22	0.28	0.27	0.17	0.03	0.00
8	Cilento promontory	Italy (Campania)	15.25	40.33	44	0.00	0.00	0.03	0.26	0.29	0.24	0.12	0.04	0.00
9	Matera	Italy (Basilicata)	16.60	40.67	34	0.00	0.00	0.04	0.26	0.29	0.19	0.16	0.04	0.00
10	Altamura	Italy (Apulia)	16.55	40.83	20	0.00	0.00	0.00	0.25	0.32	0.25	0.17	0.00	0.00
11	Brindisi	Italy (Apulia)	17.94	40.63	93	0.00	0.00	0.02	0.28	0.34	0.18	0.10	0.06	0.01
12	Lungro	Italy (Calabria)	16.12	39.74	24	0.00	0.02	0.00	0.25	0.23	0.27	0.21	0.02	0.00
13	Acri	Italy (Calabria)	16.38	39.49	30	0.00	0.00	0.03	0.20	0.43	0.22	0.05	0.07	0.00
14	Mormanno	Italy (Calabria)	15.99	39.89	36	0.00	0.00	0.00	0.24	0.29	0.26	0.12	0.08	0.00
15	Paola	Italy (Calabria)	16.04	39.36	38	0.00	0.00	0.01	0.34	0.35	0.13	0.09	0.05	0.01
16	Lamezia	Italy (Calabria)	16.28	38.93	17	0.00	0.00	0.00	0.38	0.12	0.38	0.06	0.06	0.00
17	Locri	Italy (Calabria)	16.26	38.23	38	0.00	0.01	0.01	0.14	0.38	0.22	0.17	0.04	0.01
18	Reggio Calabria	Italy (Calabria)	15.65	38.11	41	0.00	0.04	0.02	0.26	0.29	0.17	0.17	0.05	0.00
19	Butera	Italy (Sicily)	14.18	37.19	24	0.00	0.00	0.04	0.25	0.40	0.21	0.08	0.02	0.00
20	Ioannina	Greece (Epirus)	20.85	39.66	25	0.00	0.00	0.00	0.18	0.26	0.30	0.14	0.10	0.02
21	Agrinion	Greece (Aetolia-Acamania)	21.41	38.62	22	0.00	0.00	0.00	0.32	0.29	0.20	0.14	0.04	0.00
22	Patrai	Greece (Akhaia)	21.73	38.25	62	0.00	0.01	0.02	0.18	0.33	0.22	0.23	0.02	0.00
23	Kardhitsa	Greece (Thessaly)	21.92	39.36	17	0.00	0.00	0.03	0.21	0.38	0.09	0.23	0.03	0.03
24	Larisa	Greece (Thessaly)	22.42	39.64	17	0.00	0.00	0.03	0.21	0.29	0.26	0.18	0.00	0.03
25	Thessaloniki	Greece (Central Macedonia)	22.94	40.64	15	0.00	0.00	0.03	0.17	0.43	0.30	0.07	0.00	0.00
26	Serrai	Greece (Central Macedonia)	23.54	41.09	27	0.00	0.00	0.04	0.17	0.43	0.24	0.09	0.04	0.00
27	Mitilini	Greece (Lesvos)	26.56	39.11	18	0.00	0.00	0.03	0.17	0.44	0.22	0.06	0.06	0.03
28	Khios	Greece (Khios)	26.14	38.37	30	0.00	0.00	0.00	0.35	0.37	0.15	0.10	0.03	0.00
29	Rhodos	Greece (Rhodos)	28.22	36.44	50	0.00	0.00	0.01	0.27	0.33	0.17	0.14	0.07	0.01
30	Crete (unspecified)	Greece (Crete)	24.81	35.24	65	0.00	0.01	0.04	0.20	0.33	0.20	0.16	0.06	0.00
31	Khania	Greece (Crete)	24.02	35.51	45	0.00	0.03	0.06	0.17	0.37	0.18	0.14	0.06	0.00
32	Rethmnon	Greece (Crete)	24.48	35.36	67	0.00	0.00	0.04	0.20	0.42	0.13	0.16	0.04	0.00
33	Iraklion	Greece (Crete)	25.14	35.34	48	0.00	0.02	0.03	0.18	0.41	0.16	0.17	0.03	0.01
34	Lasithi plateau	Greece (Crete)	25.71	35.08	38	0.00	0.00	0.07	0.14	0.43	0.18	0.10	0.07	0.00
35	Western Mediterranean coast	Turkey	27.13	38.42	54	0.00	0.00	0.03	0.20	0.34	0.30	0.09	0.04	0.00
36	Central Anatolia	Turkey	32.85	39.92	94	0.00	0.00	0.04	0.27	0.25	0.24	0.17	0.03	0.00
37	Black Sea coast	Turkey	36.33	41.29	42	0.00	0.00	0.06	0.23	0.29	0.23	0.14	0.06	0.00
38	Eastern Anatolia	Turkey	41.28	39.91	33	0.00	0.00	0.01	0.20	0.27	0.20	0.27	0.04	0.00
39	Eastern Mediterranean coast	Turkey	34.63	36.80	27	0.00	0.00	0.06	0.26	0.26	0.30	0.09	0.04	0.00
40	Cyprus	Turkey (Cyprus)	33.43	35.13	46	0.00	0.01	0.02	0.26	0.35	0.24	0.08	0.04	0.00
41	Palestine (CEPH)	Palestine	35.23	31.95	50	0.01	0.01	0.05	0.19	0.29	0.25	0.13	0.07	0.00

The analysis

Introduction

- Canonical analysis with X = geographical coordinates, Y =allele frequencies.
- We treat the allele frequencies as compositional, and do the clr transformation
- We need to map samples to the biplot.
- We need to accommodate for singularity of the covariance matrix of the clr transformed data

- Graffelman, J. (2005) Enriched biplots for canonical correlation analysis. Journal of Applied Statistics 32(2) pp. 173-188.
- Graffelman, J., Pawlowsky-Glahn, V., Egozcue, J.J. Buccianti, A. (2018) Exploration of geochemical data with compositional canonical biplots. Journal of Geochemical Exploration 194 pp. 120-133.

Goodness-of-fit

	1	2
correlation	0.322	0.206
eigenvalue	0.103	0.043
fraction	0.709	0.291
cumulative	0.709	1.000

The canonical biplot

The permutation test

permutation p-values 0.8631 and 0.6116

Biplots

References

- Johnson & Wichern, (2002) Applied Multivariate Statistical Analysis, 5th edition, Prentice Hall, Chapter 10.
- Mardia, K.V. et al. (1979) Multivariate Analysis. Academic press. Chapter 10.