

Генетические алгоритмы оптимизации

Тема №2

- 1. Идея и общая схема генетических алгоритмов
- 2. Символьная модель и ее структура
- 3. Этапы жизненного цикла поколения и методы их реализации
- 4. Условие остановки алгоритма

Идея и общая схема генетических алгоритмов

• Генетические алгоритмы –

 алгоритмы, моделирующие природную эволюцию в пространстве оптимизируемых параметров, а не в пространстве параметров алгоритмы поиска

Основные понятия и определения в эволюции

- Особь
 - Наименьшая неделимая единица биологического вида a_k^t , где k номер особи
- Эволюционный процесс продолжается во времени
 - Рассматриваются отдельные моменты t = 1, ..., T, ...
- Приспособленность особи к окружающей среде
 - Фенотип особи характеризует её выживаемость в окружающих условиях
 - Фенотип определяется совокупностью наследственных признаков
- Эволюционный процесс
 - В процессе эволюции особи размножаются, выживают и продолжают или заканчивают жизнь в зависимости от приспособленность к окружающей среде
 - Наследственные признаки передаются от родителям к потомкам, характеризую приспособленность
 - Эволюционный процесс предполагает улучшение наследственных признаков в процессе естественного отбора

Основные понятия и определения в генетических алгоритмах

- Что такое особь в генетических алгоритмах?
 - В качестве аналога особи a_k^t принимаем произвольное допустимое решение $x \in D$: $x = (x_1, ..., x_n)$
- Что такое фенотип в генетических алгоритмах?
 - В качестве фенотипа особи принимаем значение целевой функции (критерия) в соответствующей точке варьируемых параметров $q(x) = q(x_1, ..., x_n)$
- Что такое генотип в генетических алгоритмах?
 - Генотип символьная строка, характеризующая наличие тех или иных качественных признаков особи
 - Генотип формируется из генотипов родителей особи, определяя наследственность
 - Родителя передают наследственные признаки потомкам

Термины наследственности в генетических алгоритмах

- Ген
 - Единица наследственного материала, ответственного за формирование альтернативных признаков особи
 - Битовая (символьная) комбинация, определяющая фиксированное значение целочисленного кода управляющей переменной x_i
- Хромосома
 - Набор из n сцепленных генов, которые следуют друг за другом в определенной последовательности
 - Хромосому будем обозначать s_i^t
- Локус
 - Местоположение определенного гена в хромосоме
- Генотип
 - Хромосома, заполненная конкретными значениями
 - Строковая кодировка, соответствующая решению исходной задачи

• Популяция

- Набор особей, живущих в одном поколении
 - Размножаются, воспроизводя потомков для нового поколения
 - Являются конкурентами по выживанию и переходу в следующее поколение
- Оценивание
 - Вычисление значений функции приспособленности для кодировки (генотипа)
- Селекция
 - Выбор из множества особей подмножества по определенному признаку

• Воспроизводство (размножение)

- Скрещивание
 - Конструирование новых генотипов особей из генотипов родителей
- Мутация
 - Изменение генотипа особи по определенному случайному закону и определенным правилам

Общая схема – процесс решения

Формирование начальной популяции Поколение 1 Поколение N Окончание работы – получение решения задачи

- ✓ Работа генетических алгоритмов последовательный процесс жизни особей в нескольких поколениях
 - Генетические алгоритмы моделирование процессов живой природы, в которых особи рождаются, живут и выживают, рождают потомство и умирают.
- ✓ Каждое поколение особей состоит из родителей (особей, рожденных в предыдущих поколениях) и детей (особей, рожденных в данном поколении).
- ✓ Каждая особь характеризуется набором наследственных признаков, которые определяются соответствующими признаками родителей.
 - В математической модели совокупность наследственных признаков характеризуется значением варьируемых параметров *x*.
- ✓ Под выживаемостью особи понимается переход ее в следующее поколение; выживаемость определяется приспособленностью особи к окружающей среде.
 - В математической модели приспособленность к окружающей среде характеризуется значением оптимизируемой функции q(x): чем больше (в случае максимизации функции q(x)) или меньше (в случае минимизации), тем выше вероятность выживания особи и, следовательно, перехода ее в следующее поколение.
- ✓ Объект работы оптимизационного алгоритма символьная модель пространства параметров, области допустимых решений и каждой точки из этой области.

Общая схема алгоритма

1. Установить параметры:

- ✓ размер популяции (N)
- ✓ количество потомков в каждом поколении (M)

2. Формирование начальной популяции

- ✓ Номер текущего поколения t=1
- ✓ Генерация N генотипов особей
- ✓ Оценивание фенотипа каждой особи

3. Воспроизводство потомков

- ✓ Случайный выбор родительской пары согласно выбранной системы скрещивания
- ✓ Генерация нескольких генотипов особей (потомков выбранной родительской пары)
- ✓ Оценивание фенотипа каждой особи
- \checkmark Повторение воспроизводства потомков до тех пор, пока не будет получено суммарно M потомков

4. Создание мутантов

- ✓ Выбор случайным образом набора потомков
- ✓ Генерация измененных генотипов при помощи оператора мутации
- ✓ Оценивание фенотипа каждой особи

5. Формирование новой популяции

- ✓ Формирование репродукционной группы (кандидатов на переход в следующее поколение)
- ✓ Селекция особей следующего поколения (естественный отбор)

Символьная модель и ее структура

Символьная модель наследственных признаков

- Особь носитель наследственных признаков.
 - В данной модели точка в области допустимых решений.
- Ген единица наследственности, ответственный за формирование наследственного признака.
 - В данной модели бинарная комбинация.
- Хромосома совокупность генов, формирующая совокупность наследственных признаков особи.
 - В данной модели последовательность из п сцепленных между собой генов, которые расположены в линейной последовательности.
- Локус местоположение определенного гена в хромосоме.
- Аллель (аллелеформа) альтернативные формы гена, расположенного в определенном локусе.
- Генотип (генетический код) хромосома, содержащая в своих локусах определенные значения аллелей.
- В данной модели битовая строка, характеризующая особь.

Локус	1	2	 n
Генетический набор	1011	0001	 1110

- Размер ячейки уменьшается с увеличением длины гена (количества битов) и составляет (при единичном квадрате):
 - 4 бита 1/16
 - $16 \text{ битов} 1/65536 = \sim 10^{-5}$
 - 32 бита 1/4млрд = $\sim 10^{-9}$

0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	0101
0111	0100
1000	1100
1001	1101
1010	1111
1011	1110
1100	1010
1100	
1101	1011
1101	1011

• Получение кода Грея:

$$-G = C | (C \gg 1)$$

• Получение исходного кода:

$$- \quad C = G|G \gg 1|(G \gg 2)|(G \gg 3)$$

Этапы жизненного цикла поколения и методы их реализации

Формирование начальной популяции

Максимальное побитовое разнообразие популяции

• Наибольшее разнообразие, равное 1, происходит в ситуации, когда у всех особей в генотипах половина единиц и половина нулей.

Максимальное генетическое разнообразие • Наибольшее разнообразие, равное 1, происходит в ситуации, аллельные формы неодинаковы в каждом локусе для каждого генотипа.

Случайная генерация

- По генотипу
- По фенотипу

Схема генерации поколения (шаг алгоритма)

Панмиксия

- Случайный выбор по генотипу
- Случайный выбор по одному локусу
- Случайный выбор по совокупности локусов

Инбридинг

- Дифференциация по одному или совокупности локусов и выбор из одной локальной популяции
- Дифференциация по генотипу и выбор из одной и той же локальной популяции, где хеммингово расстояние равно нулю.

Аутбридинг

- Особь в пару выбирается из различных локальных популяций с равновероятным распределением
- Особь в пару выбирается в зависимости от хеммингова расстояния между генотипами этих локальных популяций

Ассортативное скрещивание

- Среди популяции выделяется «супер-индивидуум», с которым сравниваются остальные особи.
- Ассортативное скрещивание может быть положительным и отрицательным.

Схемы размножения особей (системы скрещивания)

Схемы формирования репродукционной группы

Естественный отбор

Условие остановки генетических алгоритмов

Условие остановки генетических алгоритмов

По количеству пройденных поколений По количеству проведенных испытаний функции Условие остановки генетических алгоритмов По изменению генотипа супер-особи По изменению фенотипа супер-особи