Examples of seperable equations:

Ex: Find the general solution of: $\frac{dy}{dt} = 1 + t + y^2 - ty^2$

* Need to put in standard form: $f(y) = \frac{1}{1+y^2} = \frac{1}{1+y^2}$ dy| $dt = 1 - t + (1 - t)y^2$ dy| $dt = (1 - t)(1 + y^2)$ dy| $dt (\frac{1}{1+y^2}) = 1 - t$, where $f(y) = \frac{1}{1+y^2}$ and g(t) = 1 - t

Step 1: Integrate both sides w/respect to t:

$$\int \frac{1}{1+y^2} \frac{dy}{dt} dt = \int 1-t dt$$

$$\int \frac{1}{1+y^2} dy = t - \frac{1}{2}t^2 + C$$

$$tan^{-1}(y) = t - \frac{1}{2}t^2 + C$$

Step 2: Solve for y: $y = tan(t - \frac{1}{2}t^2 + c)$

Ex: Solve the initial value problem: $\frac{dy}{dt} = \frac{2t}{y+y+2}$; y(2)=3

* Put in standard form: $\frac{dy}{dt} = \frac{2t}{y(1+t^2)}$ = $\frac{2t}{1+t^2}$ $\frac{dy}{y}$ $\frac{dy}{dt} = \frac{2t}{1+t^2}$

 $\int y \, dy = \int \frac{1}{u} \, du$ $\frac{1}{2}y^2 = \ln(u) = \ln(1+t^2) + C$

Step 2: Solve for y: $y^2 = \frac{2 \ln(1+b^2) + 2C}{y} = \frac{1}{2 \ln(1+b^2) + 2C}$

→ initial values: y(2)=3: $3=\sqrt{2\ln(1+4)+2c}$ $9=2\ln(5)+2c$

$$9 = 2 \ln(5) + 2 c$$

 $9 - a \ln(5) = a c$
 $c = \frac{9 - a \ln(5)}{a}$

Then the unique solution is: y= \(2\ln(1+t^2) + 9-2\ln(5)

$$y = \sqrt{\ln\left(\frac{(1+t^2)^2}{as}\right) + 9}$$
 (Simplified)