NMMB538 - Zkouška Jan Oupický

Lemma Q.1. Proof:

Denote $h = x_2^2 - f(x_1)$ and assume $h = u \cdot v$ where $u, v \in \bar{K}[x_1, x_2]$.

First assume $u, v \in \bar{K}[x_1, x_2] \setminus \bar{K}[x_1]$ i.e. $\deg_{x_2}(u) > 0$, $\deg_{x_2}(v) > 0$. Because $\deg_{x_2}(u) + \deg_{x_2}(v) = \deg_{x_2}(h) = 2 \implies \deg_{x_2}(u) = 1 = \deg_{x_2}(v)$. W.l.o.g assume $lc_{x_2}(u) = 1 = lc_{x_2}(v)$, we can do that since $lc_{x_2}(h) = 1$. Therefore we can write $u = x_2 - s_1$ and $v = x_2 - s_2$ where $s_1, s_2 \in \bar{K}[x_1]$. This gives us

$$x_2^2 - f(x_1) = h = (x_2 - s_1)(x_2 - s_2) = x_2^2 - (s_1 + s_2)x_2 + s_1s_2$$

So it must hold that $s_1 = -s_2$ and then $h = x_2^2 + s_1(-s_1) \implies f(x_1) = s_1^2$. Now assume w.l.o.g $u \in \overline{K}[x_1]$. We compare the leading coefficients.

$$1 = lc_{x_2}(h) = lc_{x_2}(u) \cdot lc_{x_2}(v) = u \cdot lc_{x_2}(v)$$

This shows that u must be invertible in $\bar{K}[x_1, x_2] \implies u \in \bar{K}^*$. In other words h is absolutely irreducible.

Sublemma Q.3.5 Let F/K be an algebraic function field, $char(K) \neq 2$, that is given by $y^2 = f(x)$, f being a quaternary polynomial that possesses a simple root. Let $P \in \mathbb{P}_{F/K}$. If $x \notin P$ or $y \notin P$, then $x, y \notin P$ and $2v_P(x) = v_P(y)$.

Proof: In F it holds $y^2 = f(x)$ by definition which implies that for every $P \in \mathbb{P}_{F/K}$ $v_P(y^2) = 2v_P(y) = v_P(f(x))$.

Assume $v_P(x) < 0 \le v_P(y)$. By properties of valution we have $\deg(f)v_P(x) = v_P(f(x)) = 2v_P(y) \implies 2v_P(x) = v_P(y)$ and by assumption $v_P(y) > v_P(x) \implies 2v_P(x) > v_P(x) \iff v_P(x) > 0$. That's a contradiction.

Now assume $v_P(x) \ge 0 > v_P(y)$. $v_P(x) \ge 0 \implies v_P(f(x)) \ge 0$ then $0 \le v_P(f(x)) = 2v_P(y) < 0$ which is again a contradiction.

We have proven $v_P(x) < 0 \iff v_P(y) < 0$. Therefore we have the equality $4v_P(x) = 2v_P(y) \iff 2v_P(x) = v_P(y)$ assuming $v_P(x) < 0$ or $v_P(y) < 0$.

Lemma Q.4. Proof: By sublemma Q.3.5 we know, that if $P \in \mathbb{P}_{F/K} : x^{-1} \in P \implies y^{-1} \in P$ and $2v_P(x) = v_P(y)$. This proves $(y)_- = 2(x)_ (x^{-1}, y^{-1})$ "share" places and the valuation is 2:1).

Let's first assume that f possesses a multiple root. Therefore $f(x_1) = (x_1 - \alpha)^2 g(x_1)$ where $\deg(g) = 2$ and g is not a square. By Q.3 F is given by $z^2 = g(x)$ i.e. F = K(x, z). [F:K(x)] = 2 since $\min_{z,K(x)}(T) = T^2 - g(x)$, that polynomial has z as a root in F and it is absolutely irreducible (as a polynomial in K[x,T]) since g is not a square. We can then assume $\bar{K} = K$ since $[F:\bar{K}(x)] = 2$ (same polynomial) and $[F:K(x)] = [F:\bar{K}(x)][\bar{K}:K] = 2 \implies [\bar{K}:K] = 1$.

Then we know $deg((x)_{-}) = [F : K(x^{-1})] = [F : K(x)] = 2$ i.e. deg(D) = 2.

Now assume f is separable. We can then use the same argument for K = K since $min_{y,K(x)}(T) = T^2 - f(x)$ and by Q.1 this one is also absolutely irreducible. $F = K(x,y) \Longrightarrow [F:K(x)] = [F:\bar{K}(x)][\bar{K}:K] = 2 \Longrightarrow [\bar{K}:K] = 1$. And again $\deg(D) = 2$.

Г

Now let's prove that the genus is at most 1. Since $\deg(D)=2 \Longrightarrow \sum_{P:x^{-1}\in P} v_P(x)\deg(P)=2$ means we have 2 possibilities (we are assuming $K=\bar{K}$ which implies $\forall P\in \mathbb{P}_{F/K}:\deg(P)=1$:

- 1. There exists a unique place $P_{\infty}: v_{P_{\infty}}(x) = -2, v_{P_{\infty}}(y) = -4$ and $D = 2P_{\infty}$
- 2. There are 2 distinct places P, Q s.t. $v_P(x) = -1 = v_Q(x), v_P(y) = -2 = v_Q(y)$ and D = P + Q.

In both cases we can see that for $k \geq 2: \{1, x, \ldots, x^k, y, yx, \ldots, yx^{k-2}\} \subset \mathcal{L}(kD)$ because $(x^k) + kD = k((x)_+ - (x)_-) + k(x)_- = k(x)_+ \geq 0$ and also $(y)_- = 2(x)_-$ so it holds if we substitute x^2 for y. This subset is linearly indepent over K because y cannot be expressed as a linear combination of x^i since f has one simple root (if $f(x) = g^2(x) \implies y = g(x)$). The set also contains 2k elements. Therefore $l(kD) \geq 2k$.

We know that for a sufficiently large k (if $l(kD) \ge 2g-1$, g genus) we have $l(kD) = \deg(kD) - g + 1$ having $\deg(kD) = 2k$, $l(kD) \ge 2k \implies 0 \le l(kD) - \deg(kD) = -g+1 \iff g \le 1$.

Proposition Q.5. Proof: As noted by paragraph before Q.5. w.l.o.g. we can assume $f(x) = x^4 + bx^2 + cx + d$. Denote $bx^2 + cx + d = g(x) = f(x) - x^4$. First we will prove that for both $z \in Z = \{y + x^2, y - x^2\} : [F : K(z)] = 2$.

Denote $z_1 = y + x^2$, $z_2 = y - x^2$. First we show that $F = K(x, z_i)$ for i = 1, 2. F can be expressed as K(x, y). $y \in K(x, z_i)$ since $z_i \pm x^2 = y$. This shows $F \subseteq K(x, z_i)$ and the converse is obvious. Also $K(x, z_i) \neq K(z_i)$ because for genus 1 it is a contradiction. If genus is 0 then F = K(x + y) and it would mean $K(x + y) = K(y \pm x^2)$.

We will find minimal polynomial m(T) of x over $K(z_1)$ then $\deg(m) = [F : K(z_1)] = [K(x, z_1) : K(z_1)]$. $z_2 = z_1 - 2x^2$ and $z_1 z_2 = y^2 - x^4 = g(x)$. Then:

$$z_1(z_1 - 2x^2) = g(x) = bx^2 + cx + d$$

Then $m(T) = z_1(z_1 - 2T^2) - bT^2 - cT - d \in K(z_1)[T]$. $\deg(m) = 2$ and m(x) = 0 and $F \neq K(z_1) \Longrightarrow$ this must be a minimal polymial of x over $K(z_1)$.

In a similar way we can find a minimal polynomial of x over $K(z_2)$: $m(T) = z_2(z_2 + 2T^2) - bT^2 - cT - d \in K(z_2)[T]$.

We have shown $[F:K(z_i)]=2$.

Choose $P \leq D$ a place. We will prove that for at least one $z \in Z : v_P(z) < v_P(x)$.

$$y^2 = f(x) \iff y^2 - x^4 = g(x), 0 \le \deg(g) \le 3 \implies$$

 $(y+x^2)(y-x^2) = g(x) \implies v_P(y+x^2) + v_P(y-x^2) = v_P(g(x)) = \deg(g)v_P(x)$

Denote $z_1 = y + x^2$, $z_2 = y - x^2$. Assume to contrary $v_P(z_1) \ge v_P(x)$ and $v_P(z_2) \ge v_P(x)$. We will look at all possible cases.

 $\deg(g) = 3$: $3v_P(x) = v_P(z_1) + v_P(z_2) \ge v_P(x) + v_P(x) \implies v_P(x) > 0$ which is a contradiction since $v_P(x) < 0$.

 $\deg(g) = 2: 2v_P(x) = v_P(z_1) + v_P(z_2).$

First consider $v_P(x) = v_P(z_1) = v_P(z_2)$ and $v_P(x) = -2$, then $2P = (x)_- = (z_1)_- = (z_2)_-$. Then $z_1, z_2 \in \mathcal{L}(D)$ but then also $\frac{z_1+z_2}{2} = y \in \mathcal{L}(D)$ which is a contradiction since $(y)_- = 2(x)_-$.

Now let's assume $v_P(x) = -1$ and then there also exist a different place Q s.t. $v_Q(x) = v_Q(z_1) = v_Q(z_2) = -1$. Since $\deg((z)_-) = 2$ then again $P + Q = (x)_- = (z_1)_- = (z_2)_-$ and we have the same contradiction.

We have proven that $v_P(x) = v_P(z_1) = v_P(z_2)$ is impossible therefore for one z it must hold $v_P(z) < v_P(x)$.

 $\deg(g)=1$: $v_P(x)=v_P(z_1)+v_P(z_2)$. First assume $v_P(x)=-2$. And also $v_P(z_1)=v_P(z_2)=-1$. This is impossible since $\deg((z)_-)=2$ but for every other place $Q\neq P:0=v_Q(z_1)+v_Q(z_2)\Longrightarrow v_Q(z_1)=-v_Q(z_2)$. If there was $Q_1:v_{Q_1}(z_1)=-1\Longrightarrow v_{Q_1}(z_2)=1$ and $Q_2:v_{Q_2}(z_2)=-1\Longrightarrow v_{Q_2}(z_1)=1$. Then for some P_1,P_2 places of degree 1: $(z_1)=(P_1+Q_2)-(P+Q_1),(z_2)=(P_2+Q_1)-(P+Q_2)$. Set $D'=P+Q_1+Q_2$ then $z_1,z_2\in\mathcal{L}(D')$ and as before this means that $y\in\mathcal{L}(D')$ which is a contradiction.

Now if $v_P(x) = -1$ then either $v_P(z) < v_P(x)$ for a $z \in Z$ or w.l.o.g $v_P(z_1) = -1$ and $v_P(z_2) = 0$. Then also assume first $v_Q(z_1) = -1 \implies v_Q(z_2) = 0$. But since $\deg((z)_+) = 2$ there must be a place P' s.t. $v_{P'}(z_2) > 0$ and $v_{P'}(x) = 0$ since $P' \neq P, Q$ but it must be $v_{P'}(z_1) < 0$. This again contradicts the degree of the divisor.

If $v_Q(z_1) = 0$ and $v_Q(z_2) = -1$. Then again there must be a place P_1 s.t. $v_{P_1}(z_1) = -1$ and $v_{P_1}(z_2) = 1$ and a place $v_{P_2}(z_2) = 1 \implies v_{P_2}(z_1) = -1$. This also contradicts divisor degree.

The last case is $\deg(g)=0$: $v_P(z_1)=-v_P(z_2)\Longrightarrow (z_1)=-(z_2)$. First assume $v_P(z_1)=0\Longrightarrow v_P(z_2)=0$ and same for v_Q (Q not necessarly different from P). Then there exist places $P_1,P_2,Q_1,Q_2\neq P,Q$ s.t. $(z_1)=P_1+P_2-(Q_1+Q_2),(z_2)=-(z_1)$. Set $D'=P_1+P_2+Q_1+Q_2$ then $z_1,z_2\in\mathcal{L}(D')$ but also $y\in\mathcal{L}(D')$ which is again contradiction since $(y)_-=2(x)_-$.

If $v_P(z_1) = 1 \implies v_P(z_2) = -1$. There exists another place P' s.t. $v_{P'}(z_1) = 1 \implies v_{P'}(z_2) = -1$. There must be again two places Q_1, Q_2 s.t. $(z_1) = P + P' - (Q_1 + Q_2), (z_2) = -(z_1)$. Put $D' = P + P' + Q_1 + Q_2$ then again $y \in \mathcal{L}(D')$ which is a contradiction.

We have proven that for each place $P \leq D$ at least one $z \in Z$ must have $v_P(z) < v_P(x)$. This shows also that $(x)_- = P + Q$ for distinct P, Q. If P = Q then $v_P(x) = -2 \implies v_P(z) \leq -3$ which contradicts [F:K(z)] = 2. Since $\deg((z)_-) = 2$ and $v_P(z) < -1$ it must be that $(z)_- = 2P, (z')_- = 2Q$ for $z, z' \in Z$. Since we have not distinguished P and Q we can say $(z_1)_- = 2P$ and $(z_2)_- = 2Q$.

Theorem Q.6. Proof: Assume genus 0. There exists $t \in F$ s.t. (t) = P - Q and also $(t^{-1}) = -(t) = Q - P$. Also $l(D) = \deg(D) + 1 = 3$.

 $t \in \mathcal{L}(D)$ since $(t) + D = P - Q + P + Q = 2P \ge 0$. Also $t^{-1} \in \mathcal{L}(D) : (t^{-1}) + D = Q - P + P + Q = 2Q \ge 0$. t and t^{-1} are linearly independent since $t \notin K$. This means $\{1, t, t^{-1}\}$ is a basis of $\mathcal{L}(D)$.

 $x \in \mathcal{L}(D) \implies x = c_0 + c_1 t + c_2 t^{-1}$ for some $c_i \in K$. This is equivalent to saying $tx = u(t), u(t) \in K[t], \deg(u) = 2$.

In the same way we see $\{1, t, t^{-1}, t^2, t^{-2}\}$ for a basis of $\mathcal{L}(2D)$. Again $y \in \mathcal{L}(2D)$: $(y) + 2D = (y)_+ - (y)_- + 2(x)_- = (y)_+ \ge 0$. This means $t^2y = v(t)$ where $v(t) \in K[t], \deg(v) = 4$.

 $y^2 = f(x) \iff t^4y^2 = t^4f(x)$. Substitute yt = v(t) and $xt^2 = u(t)$ then we have equality $v^2(t) = t^4f(\frac{u(t)}{t})$. f is a polynomial of degree 4 therefore it has up to 4 different roots $1 \le i \le 4$: $\alpha_i \implies v^2(t) = t^4(\frac{u(t)}{t} - \alpha_1)(\frac{u(t)}{t} - \alpha_2)(\frac{u(t)}{t} - \alpha_3)(\frac{u(t)}{t} - \alpha_4)$ we can

rewrite this as

$$v^{2}(t) = (u(t) - t\alpha_{1})(u(t) - t\alpha_{2})(u(t) - t\alpha_{3})(u(t) - t\alpha_{4})$$

 $v^2(t) = v(t)v(t)$ is a polynomial of degree 8, which has at most 4 different roots. Also $u(t) - t\alpha_i$ is a polynomial of degree 2. There exist at most two $\alpha \in K$ s.t. $u(t) - t\alpha$ has a root of multiplicity 2. This is because the root of a quadratic polynomial has multiplicity 2 when the discriminant D is 0. If $g(x) - \alpha x = ax^2 + (b - \alpha)x + c \implies 0 = D = (b - \alpha)^2 - 4ac \iff \alpha = \pm 2\sqrt{ac} + b$.

Also if $i \neq j$: $\alpha_i \neq \alpha_j$ the polynomials $u(t) - t\alpha_i$ and $u(t) - t\alpha_j$ do not have common roots. This means that if $1 \leq i \leq 4$: α_i are all different then $v^2(t)$ has at least 6 = 2 + 2 + 1 + 1 different roots. This a contradiction.

Therefore if genus is 0 then f cannot be separable. We have shown that genus of F is 0 or 1, this means that for f separable we must have genus 1.

Denote $w = x_2^2 - f(x_1)$.

$$\frac{\partial w}{\partial x_1} = -f'(x_1), \frac{\partial w}{\partial x_1} = 2x_2 \tag{1}$$

For a singularity $\alpha = (\alpha_1, \alpha_2)$, α_2 must be 0 and α_1 must be a root of $f(x_1)$ and also of $f'(x_1)$ this is true iff $f(x_1)$ is separable. If $f(x_1)$ is not separable then it shares a common root α_1 with $f'(x_1)$ and this gives us singularity at $(\alpha_1, 0)$. This proves the rest of the theorem.

Theorem Q.7. Proof: Denote D = P + Q a divisor. Due to genus being $1 \ \forall k \geq 1$: l(kD) = 2k. l(D) = 2 and that means there exists $x \notin K$ s.t. $\{1, x\}$ is a basis of $\mathcal{L}(D)$ and also $(x)_- \leq P + Q$. Then $(x)^2 = 2(x) = 2(x)_+ - 2(x)_- \implies x^2 \in \mathcal{L}(2D), \{1, x, x^2\}$ is linearly independent in $\mathcal{L}(2D)$ but l(2D) = 4 that means there exists $y \in \mathcal{L}(2D) \setminus \mathcal{L}(D)$ such that $\{1, x, x^2, y\}$ is a basis of $\mathcal{L}(2D)$.

Denote $B = \{1, x, x^2, x^3, x^4, y, yx, yx^2, y^2\}$, clearly $B \subseteq \mathcal{L}(4D), l(4D) = 8$ and $|B| = 9 \implies 1 \le i \le 8 : \exists a_i \in K :$

$$y^2 = a_1y + a_2yx + a_3yx^2 + a_4x^4 + a_5x^3 + a_6x^2 + a_7x + a_8$$

Denote $C = \{1, x, x^2, x^3, y, yx\}$. C is a basis of $\mathcal{L}(3D)$, $C \cup \{yx^2, y^2\}$ is also a basis of $\mathcal{L}(4D)$. If $a_4 = 0$ that would be a contradiction to $C \cup \{yx^2, y^2\}$ being a basis of $\mathcal{L}(4D)$ since y^2 would be a linear combination of 7 elements.

Now we make a substitution $y \to y - \frac{a_1 + a_2 x + a_3 x^2}{2}$. This gives us form:

$$y^2 = b_1 x^4 + b_2 x^3 + b_3 x^2 + b_4 x + b_5$$

where $b_1 = a_4 + \frac{a_3^2}{4}$. If $b_1 = 0$ then y^2 would be a linear combination of elements in $\mathcal{L}(3D)$ but

Theorem Q.8. Proof: Denote $f(x) = g(x^2)$. F is EFF therefore genus is 1 and there exists a place of degree 1. Also K can be assumed algebraically closed.

If g(x) has a multiple root α , then $f(x) = g(x^2)$ has also a multiple root because $g(x) = (x - \alpha)^2 \implies g(x^2) = (x - \sqrt{\alpha})^2 (x + \sqrt{\alpha})^2$. Set $z = \frac{y}{x - \sqrt{\alpha}}$. Then F is given by $z^2 = (x + \sqrt{\alpha})^2$. This means $x \in K(z)$ and from the definition of y also $y \in K(z)$ which means F has genus 0, a contradiction.

4

From now on we can assume g(x) has 2 distinct roots. If $f(x) = g(x^2)$ would have a multiple root then it's genus would not be 1 by Q.6. So we can assume $g(x^2)$ separable.

First we will prove the second part of the theorem. We have shown that $g(x^2)$ must be separable. Therefore by Q.5 we have places of degree 1 $(P \neq Q)$, $(x)_- = P + Q$ and $(y + x^2)_- = 2Q$, $(y - x^2)_- = 2P$.

$$y^{2} = g(x^{2}) = x^{4} + 2bx^{2} + c \iff y^{2} - (x^{4} - 2bx^{2} - b^{2}) = c - b^{2} \implies (y - (x^{2} + b))(y + (x^{2} + b)) = c - b^{2}$$

Since $g(x^2)$ is separable g(x) must have simple roots. If g(x) has a multiple root then it's discriminant is 0 and that happens iff $c - b^2 = 0$. So we know $0 \neq c - b^2 \in K$.

$$0 = v_P(c - b^2) = v_P(y - (x^2 + b)) + v_P(y + (x^2 + b))$$
$$v_P(y - (x^2 + b)) = v_P(y - x^2) = -2 \implies v_P(y + (x^2 + b)) = 2$$

Similarly we can show $v_Q(y-(x^2+b))=2$ and $v_Q(y+x^2+b)=-2$.

Since $deg((y+x^2+b)_+) = deg((y+x^2+b)_-) = deg((y+x^2)_-) = 2 \implies div(y+x^2+b) = 2P - 2Q$ and similarly $div(y+x^2+b) = 2Q - 2P$.

We have proven the last part of the theorem. Now let's prove the equivalence.

As we have shown before. We can assume $g(x^2)$ separable and then we have involution P-Q as shown above since 2P-2Q=(t) for $t\in F$. We only have to show that $P-Q\neq (t)$ for some $t\in F$.

If $t \in F$ s.t. $(t) = P - Q \implies \deg((t)_+) = 1 = [F : K(t)]$ and that would be contradiction with F being EFF.

Now we assume we have involution. We can always find $t \in F \setminus K$ s.t. (t) = 2P - 2Q where P, Q distinct places of degree 1 and P - Q is involution.

Then $l(2P) = 2 = l(2Q) \implies \{1, t\}$ is a basis of $\mathcal{L}(2P)$ and $\{1, t^{-1}\}$ is a basis of $\mathcal{L}(2Q)$.

Proposition G.2 Proof: Since F/K is given by $y^2 = g(x^2)$ we know that F = K(x, y). Clearly $K(\tilde{x}, \tilde{y}) \subseteq K(x, y)$. The other inclusion is also clear since $x = \tilde{x}^{-1}\tilde{y}$ and $y = 2\tilde{x} - x^2 - b$.

Now we need to show that $-\tilde{y}^2 + \tilde{x}^3 - b\tilde{x}^2 + \frac{b^2-c}{4}\tilde{x} = 0$ in F.

$$\tilde{y}^2 = \tilde{x}^3 - b\tilde{x}^2 + \frac{b^2 - c}{4}\tilde{x}$$
 Substitute \tilde{x}, \tilde{y} :
$$\frac{x^2u^2}{4} = \frac{u^3}{8} - \frac{bu^2}{4} + \frac{b^2 - c}{8}u$$

$$2x^2u^2 = u^3 - 2bu^2 + (b^2 - c)u$$
 Divide by $u \neq 0$ in F :
$$2x^2u = u^2 - 2bu + (b^2 - c)$$
 Substitute $u = y + x^2 + b$:
$$2x^2(y + x^2 + b) = (y^2 + x^4 + 2yx^2 + 2by + 2bx^2 + b^2) - 2b(y + x^2 + b) + b^2 - c$$

$$\iff$$

$$y^2 - x^4 - 2bx^2 - c = y^2 - g(x^2) = 0$$

We have shown that $\tilde{y}^2 = \tilde{x}^3 - b\tilde{x}^2 + \frac{b^2 - c}{4}\tilde{x}$ in F since $y^2 = g(x^2)$ in F by definition.

The only thing left is to show that $y^2 - x^3 + bx^2 + \frac{b^2 - c}{4}x$ is irreducible in K[x, y]. Using Einsenstein criterion with $x \in K[x]$ as a prime element we get that this polynomial is indeed irreducible in (K[x])[y].

Theorem G.3 Proof: Assume we have $(a_2, a_4) \in K \times K$ s.t. $a_4 \neq 0 \neq a_2^2 - 4a_4$. Set $b = -a_2$ and $c = -4a_4 + a_2^2$. If c = 0 this would mean that $4a_4 = a_2^2$ which is a contradiction with $a_2^2 - 4a_4 \neq 0$. If $b^2 - c = 0 \iff c = b^2$ then this is would imply $-4a_4 + a_2^2 = a_2^2 \iff a_4 = 0$ which is again a contradiction.

On the other hand assume we have $(b,c) \in K \times K$ s.t. $c \neq 0 \neq b^2 - c$. Set $a_2 = -b, a_4 = \frac{b^2 - c}{4}$. If $a_4 = 0$ this would imply $b^2 - c = 0$ which is contradiction. If $a_2^2 - 4a_4 = 0 \iff b^2 = b^2 - c \iff c = 0$ which is a contradiction.

We have therefore proven that G.1 holds.

Denote the rational map $C_1 \to C_2$ as ψ and the map $C_2 \to C_1$ as ϕ . Also $f(x_1, x_2) = x_2^2 - x_1^3 - a_2 x_1^2 - a_4 x_1$, $C_1 = V_f$, $g(x_1, x_2) = x_2^2 - x_1^4 - 2bx_1^2 - c$, $C_2 = V_g$.

Now we need to show that ψ and ϕ are actually K-rational maps. We will use lemma R.6 from the lecture.

First we know that ϕ is a rational map thanks to proposition G.2. By proposition G.2 (since $a_2 = -b, a_4 = \frac{b^2 - c}{4}$) we have shown that $(\rho_1, \rho_2) = 0 \in K(C_2)$ where $(\rho_1, \rho_2) = \left(\frac{x_2 + x_1^2 + b}{2} + (g), \frac{x_1(x_2 + x_1^2 + b)}{2} + (g)\right)$. By lemma R.6 this means that ϕ is a K-rational map $C_2 \to C_1$.

To show that ψ is a K-rational map $C_1 \to C_2$ we need to prove that $g(\rho_1, \rho_2) = 0 \in K(C_1)$ where $(\rho_1, \rho_2) = \left(\frac{x_2}{x_1} + (f), \frac{x_1^2 - a_4}{x_1} + (f)\right)$.

$$g(\rho_1,\rho_2) = \frac{(x_1^2-a_4)^2}{x_1^2} - \frac{x_2^4}{x_1^4} - 2b\frac{x_2^2}{x_1^2} - c$$

$$g(\rho_1,\rho_2) = 0 \iff x_1^4g(\rho_1,\rho_2) = 0 \text{ and using } b = -a_2, c = a_2^2 - 4a_4 \implies$$

$$x_1^4g(\rho_1,\rho_2) = -x_2^4 + 2a_2x_1^2x_2^2 + x_1^6 + 2a_4x_1^4 - a_2^2x_1^4 + a_4^2x_1^2$$
 Substitution
$$x_1^6 = (x_2^2 - a_2x_1^2 - a_4x_1)^2 : x_1^4g(\rho_1,\rho_2) = -2a_4x_1x_2^2 + 2a_4x_1^4 + 2a_2a_4x_1^3 + 2a_4^2x_1^2 = 2a_4x_1(-x_2^2 + x_1^3 + a_2x_1^2 + a_4x_1) = 0 \in K(C_1)$$

This proves that ψ is a K-rational map $C_1 \to C_2$.

By definition of birational equivalence we need to show that $\phi \circ \psi = id_{C_1}$ and $\psi \circ \phi = id_{C_2}$.

Let's start with id_{C_1} , we want to show that $\phi \circ \psi$ can be represented as $(x_1, x_2) \in K(C_1)$. First coordinate:

$$\frac{\frac{x_1^2 - a_4}{x_1} + \frac{x_2^2}{x_1^2} + b}{2} = \frac{x_1^3 - a_4 x_1 + x_2^2 + x_1^2 b}{2x_1^2}$$

Substitution for x_2^2 in $K(C_1)$ and using $b = -a_2$:

$$\frac{2x_1^3}{2x_1^2} = x_1$$

Second coordinate (again using $b = -a_2$):

$$\frac{\frac{x_2}{x_1}\left(\frac{x_1^2 - a_4}{x_1} + \frac{x_2^2}{x_1^2} - a_2\right)}{2} = \frac{x_2(x_1^3 - a_4x_1 + x_2^2 - a_2x_1^2)}{2x_1^3}$$

Substitution for x_2^2 again:

$$\frac{x_2(2x_1^3)}{2x_1^3} = x_2$$

We have shown that $\phi \circ \psi = id_{C_1}$ i.e.

Now for $\psi \circ \phi$. First coordinate:

$$\frac{\frac{x_1(x_2+x_1^2+b)}{2}}{\frac{x_2+x_1^2+b}{2}} = \frac{x_1(x_2+x_1^2+b)}{x_2+x_1^2+b} = x_1$$

Second coordinate:

$$\frac{\left(\frac{x_2 + x_1^2 + b}{2}\right)^2 - a_4}{\frac{x_2 + x_1^2 + b}{2}} = \frac{\frac{x_2^2 + x_1^4 + 2x_1^2 x_2 + 2bx_2 + 2bx_1^2 + b^2 - 4a_4}{4}}{\frac{x_2 + x_1^2 + b}{2}}$$

Using substitution for x_1^4 in $K(C_2)$ and $-4a_4 = -b^2 + c$:

$$\frac{2x_2^2 + 2x_1^2x_2 + 2bx_2}{2x_2 + 2x_1^2 + 2b} = x_2$$

We have proved that both compositions of those rational maps are identitities therefore C_1 and C_2 are birationally equivalent.

Theorem G.4 Proof: Assume we have $(a_2, \gamma) \in K \times K$ s.t. $\gamma^2 \neq 0 \neq a_2^2 - 4\gamma^2$. Set $B = \gamma^{-1}$, $A = a_2\gamma^{-1}$. Since $\gamma \neq 0$ then also $\gamma^{-1} = B$ cannot be 0. If $A^2 = 4$ then $a_2^2\gamma^{-2} = 4 \iff a^2 - 4\gamma \neq 0$ which is a contradiction.

On the other hand if we have $(A,B) \in K \times K$ s.t. $B(A^2-4) \neq 0$ then set $\gamma = B^{-1}$ and $a_2 = AB^{-1}$. If $\gamma^2 = 0$ this would imply $\gamma = 0$ which is a contradiction with $B \neq 0$. If $a_2^2 - 4\gamma^2 = 0 \iff a_2^2 = 4\gamma^2$ this would imply $\frac{A^2}{B^2} = 4B^{-2} \iff A^2 = 4$ which is again contradiction.

We have therefore proven that G.2 holds.

As in G.3 denote $f(x_1, x_2) = x_2^2 - x_1^3 - a_2 x_1^2 - a_4 x_1$, $C_1 = V_f$ and $g(x_1, x_2) = B x_2^2 - x_1^3 - A x_1^2 - x_1$, $C_2 = V_g$. Denote the rational map $C_1 \to C_2$ as ψ and the rational map $C_2 \to C_1$ as ϕ .

First we show that ψ is a K-rational map $C_1 \to C_2$ using R.6 as in G.3. We want to show $g(\rho_1, \rho_2) = 0 \in K(C_1)$ where $(\rho_1, \rho_2) = (\gamma^{-1}x_1 + (f), \gamma^{-1}x_2 + (f))$. We know that $\gamma^{-1} = \frac{1}{\sqrt{a_4}}$ and $a_4 \neq 0, B = \frac{1}{\sqrt{a_4}}, A = \frac{a_2}{\sqrt{a_4}}$.

$$g(\rho_1, \rho_2) = \frac{1}{\sqrt{a_4}} \left(\frac{x_2}{\sqrt{a_4}}\right)^2 - \frac{x_1^3}{\sqrt{a_4}^3} - \frac{a_2}{\sqrt{a_4}} \frac{x_1^2}{\sqrt{a_4}^2} - \frac{x_1}{\sqrt{a_4}} = \frac{x_2^2 - x_1^3 - a_2 x_1^2 - a_4 x_1}{a_4 \sqrt{a_4}} = 0$$

Now we want to show $f(\rho_1, \rho_2) = 0 \in K(C_2)$ where $(\rho_1, \rho_2) = (B^{-1}x_1 + (g), B^{-1}x_2 + (g))$. Similarly $a_4 = \frac{1}{B^2}$ since $B \neq 0$ and $a_2 = \frac{A}{B}$:

$$f(\rho_1, \rho_2) = \frac{x_2^2}{B^2} - \frac{x_1^3}{B^3} - \frac{A}{B} \frac{x_1^2}{B^2} - \frac{1}{B^2} \frac{x_1}{B_1} = \frac{Bx_2^2 - x_1^3 - Ax_1^2 - x_1}{B^3} = 0$$

So ψ and ϕ are both K-rational maps. Now as in G.3 we show birational equivalence by proving $\phi \circ \psi = id_{C_1}$ and $\psi \circ \psi = id_{C_2}$ which is trivial in this case.

$$\phi \circ \psi = (B^{-1}(Bx_1), B^{-1}(Bx_2)) = (x_1, x_2)$$
$$\psi \circ \phi = (\gamma^{-1}(\gamma x_1), \gamma^{-1}(\gamma x_2)) = (x_1, x_2)$$

Proposition G.5 Proof: Assume we have $(a,d) \in K^* \times K^*, a \neq d$. Set $B = \frac{4}{a-d}, A = \frac{4}{a-d}$ $\frac{2(a+d)}{a-d}$. $B \neq 0$ and if A=2 then this is a contradiction with $d \neq 0$ and if A=-2 then it is contradiction with $a \neq 0$.

On the other hand assume $(A, B) \in K \times K$ s.t. $B \neq 0$ and $A^2 \neq 4$. Set $a = \frac{A+2}{B}$ and $d = \frac{A-2}{B}$. If a = 0 or d = 0 this is a contradiction with $A \neq \pm 2 \iff A^2 \neq 4$. If $a = d \iff 2 = -2$ which is a contradiction. We have shown that G.3 holds.

Denote the rational map $C_1 \to C_2$ as ψ and the rational map $C_2 \to C_1$ as ϕ . First let's prove that ψ is a rational map.

Theorem G.4 gives us a K-rational map $\Psi_1:C_1\to C'$ s.t. $\Psi_1(x_1,x_2)=(B^{-1}x_1,B^{-1}x_2)$ where $C' = V_f$ where $f(x_1, x_2) = x_2^2 - x_1^3 - a_2 x_1^2 - a_4 x_1$ and $a_2 = \frac{A}{B}$ and $a_4 = \frac{1}{B^2}$. Theorem G.3 gives us a K-rational map $\Psi_2: C' \to C_2$ where $\Psi_2(x_1, x_2) = \left(\frac{x_2}{x_1}, \frac{x_1^2 - a_4}{x_1}\right)$. We can use G.3 because due to the paragraph before G.5 we know that C_2 in G.5 and C_2 in G.3 are equal.

By composition of these 2 K-rational maps we get $\Psi_2 \circ \Psi_1 = \psi$. Since Ψ_1, Ψ_2 are Krational maps of finite degree (because every ρ we used in the proofs were transcendental over K) we get by Theorem R.9 from the lecture that ψ is also a K-rational map $C_1 \to C_2$.

Using similar process theorem G.3 gives us a K-rational map $\Phi_1: C_2 \to C'$ s.t. $\Phi_1(x_1, x_2) = \left(\frac{x_2 + x_1^2 + b}{2}, \frac{x_1(x_2 + x_1^2 + b)}{2}\right)$ where $C' = V_g$ where $g(x_1, x_2) = x_2^2 - x_1^3 - a_2 x_1^2 - a_4 x_1$ where $a_2 = -b, a_4 = \frac{b^2-c}{4}$ where (using paragraph above G.5) $b = \frac{-a-d}{2}, c = ad$ so in total $a_2 = \frac{a+d}{2}$ and $a_4 = \frac{(a-d)^2}{16}$. Theorem G.4 gives us a K-rational map $\Phi_2 : C' \to C_1$ s.t. $\Phi_2(x_1, x_2) = (Bx_1, Bx_2)$ where in theorem G.4 we have $A = \frac{a_2}{\sqrt{a_4}}$ and $B = \frac{1}{\sqrt{a_4}}$. If we resubstitute we get $A = \frac{2(a+d)}{a-d}$ and $B = \frac{4}{a-d}$. Again the composition $\Phi_2 \circ \Phi_1 = \phi$. Since Φ_2, Φ_1 are K-rational maps of finite degree

then ϕ is a K-rational map $C_2 \to C_1$.

Now we need to show $\phi \circ \psi = id_{C_1}$ and $\psi \circ \phi = id_{C_2}$.

$$\phi \circ \psi = (\Phi_2 \circ \Phi_1) \circ (\Psi_2 \circ \Psi_1) = \Phi_2 \circ (\Phi_1 \circ \Psi_2) \circ \Psi_1 = \Phi_2 \circ id_{C'} \circ \Psi_1 = \Phi_2 \circ \Psi_1 = id_{C_1}$$

We have used Theorem G.3 which states $\Psi_2 \circ \Psi_1 = id_{C'}, \Phi_2 \circ \Psi_1 = id_{C_1}$. Similarly due to Theorem G.5:

$$\psi \circ \phi = (\Psi_2 \circ \Psi_1) \circ (\Phi_2 \circ \Phi_1) = \Psi_2 \circ id_{C'} \circ \Phi_1 = \Psi_2 \circ \Phi_1 = id_{C_2}$$

We have shown that C_1 and C_2 are birationally equivalent.

Lemma W.1 Proof: Denote $f(x_1, x_2) = a_1 x_1^2 + a_2 x_2^2 - 1 - dx_1^2 x_2^2 \in K[x_1, x_2]$. First we will prove f absolutely irreducible $\implies d \neq a_1 a_2$ and at least one $a_i \neq 0$.

Assume $d = a_1 a_2$. Then $f(x_1, x_2) = a_1 x_1^2 + a_2 x_2^2 - 1 - a_1 a_2 x_1^2 x_2^2 = (1 - a_1 x_1^2)(-1 + a_2 x_2^2)$. If $a_1 = 0 = a_2$ then $f(x_1, x_2) = -1 - dx_1^2 x_2^2 = (\sqrt{-d}x_1 x_2 - 1)(\sqrt{-d}x_1 x_2 + 1) \in \bar{K}[x_1, x_2]$. This proves the implication.

On the other hand assume $d \neq a_1 a_2$, at least one $a_i \neq 0$ and $f(x_1, x_2) = g(x_1, x_2)h(x_1, x_2)$ where $g, h \in \bar{K}[x_1, x_2]$. We have $2 = \deg_{x_1}(f) = \deg_{x_1}(g) + \deg_{x_1}(h)$ and $2 = \deg_{x_2}(f) = \deg_{x_2}(g) + \deg_{x_2}(h)$. We can assume that $g, h \notin \bar{K}$ because then it would contradict f reducible in $\bar{K}[x_1, x_2]$.