

Rodzaj dokumentu:	Aneks do Informatora o egzaminie maturalnym z matematyki w Formule 2023 obowiązujący w latach szkolnych 2022/2023 i 2023/2024	
Egzamin:	Egzamin maturalny	
Przedmiot:	Matematyka – poziom podstawowy	
Termin egzaminu:	Termin główny – maj 2023 i 2024 r. Termin dodatkowy – czerwiec 2023 i 2024 r. Termin poprawkowy – sierpień 2023 i 2024 r.	
Data publikacji dokumentu:	13 czerwca 2022 r. (aktualizacja: 26 sierpnia 2022 r.)	

Na podstawie art. 11 ust. 4 ustawy z dnia 12 maja 2022 r. o zmianie ustawy o systemie oświaty oraz niektórych innych ustaw¹ w *Informatorze o egzaminie maturalnym z matematyki jako przedmiotu obowiązkowego od roku szkolnego 2022/2023*² wprowadza się następujące zmiany.

	1	Nr strony/stron w <i>Informatorze</i>	Zakres zmiany
		Cały dokument	Zmiana podstawy przeprowadzania egzaminu

- 1. W roku 2023 oraz 2024 egzamin maturalny z matematyki jako przedmiotu obowiązkowego jest przeprowadzany na podstawie **wymagań egzaminacyjnych** określonych w załączniku do rozporządzenia Ministra Edukacji i Nauki z dnia 10 czerwca 2022 r.³, zwanych dalej "wymaganiami egzaminacyjnymi".
- 2. Wymagania egzaminacyjne są podane poniżej.

III etap edukacyjny

Poziom podstawowy

Ogólne wymagania egzaminacyjne

Sprawność rachunkowa.

Wykonywanie obliczeń na liczbach rzeczywistych, także przy użyciu kalkulatora, stosowanie praw działań matematycznych przy przekształcaniu wyrażeń algebraicznych oraz wykorzystywanie tych umiejętności przy rozwiązywaniu problemów w kontekstach rzeczywistych i teoretycznych.

- II. Wykorzystanie i tworzenie informacji.
 - 1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel.
 - Używanie języka matematycznego do tworzenia tekstów matematycznych, w tym do opisu prowadzonych rozumowań i uzasadniania wniosków, a także do przedstawiania danych.
- III. Wykorzystanie i interpretowanie reprezentacji.
 - Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.
 - 2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.

¹ Dz.U. 2022, poz. 1116.

² Dokument jest dostępny pod adresem:

https://cke.gov.pl/images/ EGZAMIN MATURALNY OD 2023/Informatory/Informator EM2023 matematyka PP .pdf

³ Dz.U. 2022, poz. 1246.

- 3. Tworzenie pomocniczych obiektów matematycznych na podstawie istniejących, w celu przeprowadzenia argumentacji lub rozwiązania problemu.
- 4. Wskazywanie konieczności lub możliwości modyfikacji modelu matematycznego w przypadkach wymagających specjalnych zastrzeżeń, dodatkowych założeń, rozważenia szczególnych uwarunkowań.

IV. Rozumowanie i argumentacja.

- 1. Przeprowadzanie rozumowań, także kilkuetapowych, podawanie argumentów uzasadniających poprawność rozumowania, odróżnianie dowodu od przykładu.
- 2. Dostrzeganie regularności, podobieństw oraz analogii, formułowanie wniosków na ich podstawie i uzasadnianie ich poprawności.
- 3. Dobieranie argumentów do uzasadnienia poprawności rozwiązywania problemów, tworzenie ciągu argumentów, gwarantujących poprawność rozwiązania i skuteczność w poszukiwaniu rozwiązań zagadnienia.
- 4. Stosowanie i tworzenie strategii przy rozwiązywaniu zadań, również w sytuacjach nietypowych.

Szczegółowe wymagania egzaminacyjne

- I. Liczby rzeczywiste. Zdający:
 - 1) wykonuje działania (dodawanie, odejmowanie, mnożenie, dzielenie, potęgowanie, pierwiastkowanie, logarytmowanie) w zbiorze liczb rzeczywistych;
 - 2) przeprowadza proste dowody dotyczące podzielności liczb całkowitych i reszt z dzielenia nie trudniejsze niż dowód podzielności przez 24 iloczynu czterech kolejnych liczb naturalnych;
 - 3) stosuje własności pierwiastków dowolnego stopnia, w tym pierwiastków stopnia nieparzystego z liczb ujemnych;
 - 4) stosuje związek pierwiastkowania z potęgowaniem oraz prawa działań na potęgach i pierwiastkach;
 - 5) stosuje własności monotoniczności potęgowania, w szczególności własności: jeśli x < y oraz a > 1, to $a^x < a^y$, zaś gdy x < y i 0 < a < 1, to $a^x > a^y$;
 - 6) posługuje się pojęciem przedziału liczbowego, zaznacza przedziały na osi liczbowej;
 - 7) stosuje interpretację geometryczną i algebraiczną wartości bezwzględnej, rozwiązuje równania i nierówności typu: |x + 4| = 5, |x 2| < 3, $|x + 3| \ge 4$;
 - 8) wykorzystuje własności potęgowania i pierwiastkowania w sytuacjach praktycznych, w tym do obliczania procentów składanych z kapitalizacją roczną i zysków z lokat;
 - 9) stosuje związek logarytmowania z potęgowaniem, posługuje się wzorami na logarytm iloczynu, logarytm ilorazu i logarytm potęgi.
- II. Wyrażenia algebraiczne. Zdający:
 - 1) stosuje wzory skróconego mnożenia na: $(a+b)^2$, $(a-b)^2$, a^2-b^2 ;
 - 2) dodaje, odejmuje i mnoży wielomiany jednej i wielu zmiennych;
 - 3) wyłącza poza nawias jednomian z sumy algebraicznej;
 - 4) rozkłada wielomiany na czynniki metodą wyłączania wspólnego czynnika przed nawias oraz metodą grupowania wyrazów, w przypadkach nie trudniejszych niż rozkład wielomianu $W(x) = 2x^3 \sqrt{3}x^2 + 4x 2\sqrt{3}$;
 - 5) mnoży i dzieli wyrażenia wymierne;

6) dodaje i odejmuje wyrażenia wymierne, w przypadkach nie trudniejszych niż:

$$\frac{1}{x+1} - \frac{1}{x}$$
, $\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}$, $\frac{x+1}{x+2} + \frac{x-1}{x+1}$.

III. Równania i nierówności. Zdający:

- 1) przekształca równania i nierówności w sposób równoważny;
- 2) interpretuje równania i nierówności sprzeczne oraz tożsamościowe;
- 3) rozwiązuje nierówności liniowe z jedną niewiadomą;
- 4) rozwiązuje równania i nierówności kwadratowe;
- 5) rozwiązuje równania wielomianowe postaci $W(x)=0\,$ dla wielomianów doprowadzonych do postaci iloczynowej lub takich, które dają się doprowadzić do postaci iloczynowej metodą wyłączania wspólnego czynnika przed nawias lub metodą grupowania;
- 6) rozwiązuje równania wymierne postaci $\frac{V(x)}{W(x)} = 0$, gdzie wielomiany V(x) i W(x) są zapisane w postaci iloczynowej.

IV. Układy równań. Zdający:

- 1) rozwiązuje układy równań liniowych z dwiema niewiadomymi, podaje interpretację geometryczną układów oznaczonych, nieoznaczonych i sprzecznych;
- 2) stosuje układy równań do rozwiązywania zadań tekstowych.

V. Funkcje. Zdający:

- 1) określa funkcje jako jednoznaczne przyporządkowanie za pomocą opisu słownego, tabeli, wykresu, wzoru (także różnymi wzorami na różnych przedziałach);
- 2) oblicza wartość funkcji zadanej wzorem algebraicznym;
- odczytuje i interpretuje wartości funkcji określonych za pomocą tabel, wykresów, wzorów itp., również w sytuacjach wielokrotnego użycia tego samego źródła informacji lub kilku źródeł jednocześnie;
- 4) odczytuje z wykresu funkcji: dziedzinę, zbiór wartości, miejsca zerowe, przedziały monotoniczności, przedziały, w których funkcja przyjmuje wartości większe (nie mniejsze) lub mniejsze (nie większe) od danej liczby, największe i najmniejsze wartości funkcji (o ile istnieją) w danym przedziale domkniętym oraz argumenty, dla których wartości największe i najmniejsze są przez funkcję przyjmowane;
- 5) interpretuje współczynniki występujące we wzorze funkcji liniowej;
- 6) wyznacza wzór funkcji liniowej na podstawie informacji o jej wykresie lub o jej własnościach;
- 7) szkicuje wykres funkcji kwadratowej zadanej wzorem;
- 8) interpretuje współczynniki występujące we wzorze funkcji kwadratowej w postaci ogólnej, kanonicznej i iloczynowej (jeśli istnieje);
- 9) wyznacza wzór funkcji kwadratowej na podstawie informacji o tej funkcji lub o jej wykresie;
- wyznacza największą i najmniejszą wartość funkcji kwadratowej w przedziale domkniętym;
- 11) wykorzystuje własności funkcji liniowej i kwadratowej do interpretacji zagadnień geometrycznych, fizycznych itp., także osadzonych w kontekście praktycznym;
- 12) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(x a), y = f(x) + b, y = -f(x), y = f(-x);

13) posługuje się funkcjami wykładniczą i logarytmiczną, w tym ich wykresami, do opisu i interpretacji zagadnień związanych z zastosowaniami praktycznymi.

VI. Ciągi. Zdający:

- 1) oblicza wyrazy ciągu określonego wzorem ogólnym;
- 2) w prostych przypadkach bada, czy ciąg jest rosnący, czy malejący;
- 3) sprawdza, czy dany ciąg jest arytmetyczny lub geometryczny;
- 4) stosuje wzór na n-ty wyraz i na sumę n początkowych wyrazów ciągu arytmetycznego;
- 5) stosuje wzór na *n*-ty wyraz i na sumę *n* początkowych wyrazów ciągu geometrycznego;
- 6) wykorzystuje własności ciągów, w tym arytmetycznych i geometrycznych, do rozwiązywania zadań, również osadzonych w kontekście praktycznym.

VII. Trygonometria. Zdający:

- wykorzystuje definicje funkcji: sinus, cosinus i tangens dla kątów od 0° do 180°, w szczególności wyznacza wartości funkcji trygonometrycznych dla kątów 30°, 45°, 60°;
- 2) korzysta z wzorów $\sin^2 \alpha + \cos^2 \alpha = 1$, $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$;
- 3) stosuje twierdzenie cosinusów oraz wzór na pole trójkąta $P = \frac{1}{2} \cdot a \cdot b \cdot \sin \gamma$;
- 4) oblicza kąty trójkąta i długości jego boków przy odpowiednich danych (rozwiązuje trójkąty m.in. z wykorzystaniem twierdzenia cosinusów).

VIII. Planimetria. Zdający:

- wyznacza promienie i średnice okręgów, długości cięciw okręgów oraz odcinków stycznych, w tym z wykorzystaniem twierdzenia Pitagorasa;
- rozpoznaje trójkąty ostrokątne, prostokątne i rozwartokątne przy danych długościach boków (m.in. stosuje twierdzenie odwrotne do twierdzenia Pitagorasa i twierdzenie cosinusów); stosuje twierdzenie: w trójkącie naprzeciw większego kąta wewnętrznego leży dłuższy bok;
- 3) rozpoznaje wielokąty foremne i korzysta z ich podstawowych własności;
- 4) korzysta z własności kątów i przekątnych w prostokątach, równoległobokach, rombach i trapezach;
- 5) stosuje własności kątów wpisanych i środkowych;
- 6) stosuje wzory na pole wycinka koła i długość łuku okręgu;
- stosuje twierdzenia: Talesa, o dwusiecznej kąta oraz o kącie między styczną a cięciwą;
- 8) korzysta z cech podobieństwa trójkątów;
- 9) wykorzystuje zależności między obwodami oraz między polami figur podobnych;
- 10) wskazuje podstawowe punkty szczególne w trójkącie: środek okręgu wpisanego w trójkąt, środek okręgu opisanego na trójkącie, środek ciężkości oraz korzysta z ich własności;
- 11) stosuje funkcje trygonometryczne do wyznaczania długości odcinków w figurach płaskich oraz obliczania pól figur.

IX. Geometria analityczna na płaszczyźnie kartezjańskiej. Zdający:

- rozpoznaje wzajemne położenie prostych na płaszczyźnie na podstawie ich równań, w tym znajduje wspólny punkt dwóch prostych, jeśli taki istnieje;
- 2) posługuje się równaniem prostej na płaszczyźnie w postaci kierunkowej, w tym wyznacza równanie prostej o zadanych własnościach (takich jak na przykład przechodzenie przez dwa dane punkty, znany współczynnik kierunkowy, równoległość lub prostopadłość do innej prostej, styczność do okręgu);
- 3) oblicza odległość dwóch punktów w układzie współrzędnych;
- 4) posługuje się równaniem okręgu $(x-a)^2 + (y-b)^2 = r^2$;
- 5) oblicza odległość punktu od prostej;
- 6) wyznacza obrazy okręgów i wielokątów w symetriach osiowych względem osi układu współrzędnych, symetrii środkowej (o środku w początku układu współrzędnych).

X. Stereometria. Zdający:

- 1) rozpoznaje wzajemne położenie prostych w przestrzeni, w szczególności proste prostopadłe nieprzecinające się;
- 2) posługuje się pojęciem kąta między prostą a płaszczyzną;
- 3) rozpoznaje w graniastosłupach i ostrosłupach kąty między odcinkami (np. krawędziami, krawędziami i przekątnymi), oblicza miary tych kątów;
- 4) oblicza objętości i pola powierzchni graniastosłupów i ostrosłupów, również z wykorzystaniem trygonometrii i poznanych twierdzeń;
- 5) wykorzystuje zależność między objętościami graniastosłupów oraz ostrosłupów podobnych.

XI. Kombinatoryka. Zdający:

- 1) zlicza obiekty w prostych sytuacjach kombinatorycznych;
- 2) zlicza obiekty, stosując reguły mnożenia i dodawania (także łącznie) dla dowolnej liczby czynności w sytuacjach nie trudniejszych niż:
 - a) obliczenie, ile jest czterocyfrowych nieparzystych liczb całkowitych dodatnich takich, że w ich zapisie dziesiętnym występuje dokładnie jedna cyfra 1 i dokładnie jedna cyfra 2,
 - b) obliczenie, ile jest czterocyfrowych parzystych liczb całkowitych dodatnich takich, że w ich zapisie dziesiętnym występuje dokładnie jedna cyfra 0 i dokładnie jedna cyfra 1.

XII. Rachunek prawdopodobieństwa i statystyka. Zdający:

- 1) oblicza prawdopodobieństwo w modelu klasycznym;
- 2) oblicza średnią arytmetyczną i średnią ważoną, znajduje medianę i dominantę;
- 3) oblicza odchylenie standardowe zestawu danych (także w przypadku danych odpowiednio pogrupowanych), interpretuje ten parametr dla danych empirycznych.

XIII. Optymalizacja i rachunek różniczkowy.

Zdający rozwiązuje zadania optymalizacyjne w sytuacjach dających się opisać funkcją kwadratową.

	2	Nr strony/stron w <i>Informatorze</i>	Zakres zmiany
		7	Zmiana formuły arkusza

Zmienia się maksymalną łączną liczbę punktów za arkusz dla poziomu podstawowego z 50 do 46.

	3	Nr strony/stron w <i>Informatorze</i>	Zakres zmiany
		25–147	Anulowane lub zmodyfikowane zadania

Z powodu niezgodności treści zadania z wymaganiami egzaminacyjnymi anuluje się następujące zadania:

- **1.** Zadanie 11. (s. 25–26)
- 2. Zadanie 13. (s. 28–29)
- 3. Zadanie 15. (s. 31-32)
- 4. Zadanie 16. (s 32–36)
- **5.** Zadanie 17. (s. 37)
- **6.** Zadanie 23. (s. 50–51)
- **7.** Zadanie 35. (s. 77–80)
- 8. Zadanie 37. (s. 84-87)
- **9.** Zadanie 38. (s. 88–89)
- 10. Zadanie 40.2. (s. 92-93)
- **11.** Zadanie 41. (s. 93–97)
- 12. Zadanie 43.2. (s. 100-102)
- **13.** Zadanie 45. (s. 104–107)
- 14. Zadanie 49. (s. 118–121)
- **15.** Zadanie 45. (s. 139–141)
- **16.** Zadanie 49. (s. 145–147)

