Álgebra y Álgebra II - Segundo Cuatrimestre 2018 Práctico 4 - Subespacios Vectoriales

- (1) Sea $n \in \mathbb{N}$. Mostrar que el conjunto de polinomios sobre \mathbb{R} de grado menor que n es un subespacio vectorial de $\mathbb{R}[x]$. Este espacio será denotado por P_n .
- (2) Decidir si los siguientes subconjuntos de \mathbb{R}^n son subespacios vectoriales:
 - (a) $\{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1 = x_n\}.$
 - (b) $\{(x_1,\ldots,x_n)\in\mathbb{R}^n\,|\,x_1+\cdots+x_n=1\}.$
 - (c) $\{(x_1,\ldots,x_n)\in\mathbb{R}^n\,|\,x_1+\cdots+x_n=0\}.$
 - (d) $\{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1 \leq x_2\}.$
 - (e) $\{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_n = 1\}.$
 - (f) $\{(x_1,\ldots,x_n)\in\mathbb{R}^n\,|\,x_n=0\}.$
- (3) Sea V=C[0,1] el conjunto de las funciones continuas de [0,1] en \mathbb{R} . Decidir en cada caso si el conjunto dado es un subespacio vectorial de V:
 - (a) $C^1[0,1] = \{f : [0,1] \to \mathbb{R} : f \text{ es derivable}\}.$
 - (b) $\{f \in C[0,1] : f(1) = 1\}.$
 - (c) $\{f \in C[0,1]: \int_0^1 f(x) dx = 0\}.$
- (4) En cada caso caracterizar con ecuaciones el subespacio vectorial dado por generadores.
 - (a) $\langle (1,0,3), (0,1,-2) \rangle \subseteq \mathbb{R}^3$.
 - (b) $\langle (1,2,0), (0,-1,1), (2,3,-1) \rangle \subset \mathbb{R}^3$.
 - (c) $\langle (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1) \rangle \subseteq \mathbb{R}^4$.
 - (d) $(1 + x + x^2, x x^2 + x^3, 1 x, 1 x^2, x x^2, 1 + x^4) \subset \mathbb{R}[x]$.
- (5) Dar una base y la dimensión de los siguientes subespacios vectoriales.
 - (a) $W = \{(x, y, z) \in \mathbb{R}^3 : z = x + y\}.$
 - (b) $W = \{(x, y, z, w, u) \in \mathbb{R}^5 : w = x + z, y = x z, u = 2x 3z\}.$
 - (c) $W = \{p(x) = a + bx + cx^2 + dx^3 \in P_4 : a + d = b + c\}.$
 - (d) $W = \{p(x) \in P_4 : p'(0) = 0\}.$
- (6) (a) Expresar \mathbb{R}^2 como suma de dos subespacios no nulos.
 - (b) Encuentre dos complementos distintos del subespacio generado por (1,2) en \mathbb{R}^2 .
- (7) Sean $V = \mathbb{R}^6$ y sean W_1 y W_2 los siguientes subespacios de V:

$$W_1 = \{(u, v, w, x, y, z) : u + v + w = 0, x + y + z = 0\};$$

$$W_2 = \langle (1, -1, 1, -1, 1, -1), (1, 2, 3, 4, 5, 6), (1, 0, -1, -1, 0, 1), (2, 1, 0, 0, 0, 0) \rangle.$$

1

- (a) Determinar $W_1 \cap W_2$ y describirlo por generadores y con ecuaciones.
- (b) Determinar $W_1 + W_2$ y describirlo por generadores y con ecuaciones.
- (c) ¿Es la suma $W_1 + W_2$ directa?
- (d) Dar un complemento de W_1 .
- (e) Dar un complemento de W_2 .
- (f) Decir cuáles de los siguientes vectores están en $W_1 \cap W_2$ y cuáles en $W_1 + W_2$:

$$(1, 1, -2, -2, 1, 1);$$
 $(0, 0, 0, 1, 0, -1);$ $(1, 1, 1, 0, 0, 0);$ $(3, 0, 0, 1, 1, 3);$ $(-1, 2, 5, 6, 5, 4).$

- (g) Para los vectores v del punto anterior en $W_1 + W_2$, hallar $w_1 \in W_1$ y $w_2 \in W_2$ tales que $v = w_1 + w_2$.
- (8) Sea $S = \{v_1, v_2, v_3, v_4\} \subset \mathbb{R}^4$ donde

$$v_1 = (-1, 0, 1, 2)$$
 $v_2 = (3, 4, -2, 5)$ $v_3 = (0, 4, 1, 11)$ $v_4 = (1, 4, 0, 9)$.

- (a) Describir implícitamente el subespacio $W = \langle S \rangle$.
- (b) Si $W_1 = \langle v_1, v_2, v_3 + v_4 \rangle$ y $W_2 = \langle v_3, v_4 \rangle$ describir $W_1 \cap W_2$ implicitamente.

Coordenadas y cambio de base

- (9) Probar que los vectores $v_1 = (1, 0, -i)$, $v_2 = (1 + i, 1 i, 1)$, $v_3 = (i, i, i)$ forman una base de \mathbb{C}^3 y dar las coordenadas de un vector (x, y, z) en esta base.
- (10) Dados los siguientes vectores de \mathbb{R}^4

$$v_1 = (1, 1, 0, 0)$$
 $v_2 = (0, 0, 1, 1)$ $v_3 = (1, 0, 0, 4)$ $v_4 = (0, 0, 0, 2)$.

- (a) Demostrar que $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$ es una base de \mathbb{R}^4 .
- (b) Hallar las coordenadas de los vectores de la base canónica respecto de \mathcal{B} .
- (c) Hallar las matrices de cambio de base de la base canónica a ${\cal B}$ y viceversa.
- (11) Sea $V = P_3$. Sean

$$g_1 = 1 - x$$
, $g_2 = x + x^2$, $g_3 = (x + 1)^2$.

- (a) Demostrar que $\mathcal{B} = \{q_1, q_2, q_3\}$ es una base de V.
- (b) Hallar las matrices de cambio de base con respecto a \mathcal{B} y a la base canónica $\{1, x, x^2\}$.

$$(12) \text{ Sea } \mathcal{B} = \left\{ \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 2 & -1 \\ 0 & 2 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 1 & 1 \\ 2 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \right\}.$$

(a) Demostrar que \mathcal{B} es una base de $M_{2\times 3}(\mathbb{R})$.

- (b) Hallar las coordenadas de $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ con respecto a la base \mathcal{B} .
- (c) Hallar las matrices de cambio de base de la base canónica a ${\cal B}$ y viceversa.
- (13) Sea $W = \langle v_1, v_2 \rangle$ el subespacio de \mathbb{C}^3 generado por $v_1 = (1, 0, i)$ y $v_2 = (1 + i, 1, -1)$.
 - (a) Demostrar que $\mathcal{B}_1 = \{v_1, v_2\}$ es una base de W.
 - (b) Describir W implícitamente.
 - (c) Demostrar que los vectores $w_1 = (1, 1, 0)$ y $w_2 = (1, i, 1 + i)$ pertenecen a W y que $\mathcal{B}_2 = \{w_1, w_2\}$ es otra base de W.
 - (d) ¿Cuáles son las coordenadas de v_1 y v_2 en la base ordenada \mathcal{B}_2 ?
 - (e) Hallar las matrices de cambio de base $P_{\mathcal{B}_1,\mathcal{B}_2}$ y $P_{\mathcal{B}_2,\mathcal{B}_1}$.

EJERCICIOS ADICIONALES

- (1) Sea V = C[0, 1] el espacio vectorial de las funciones continuas en [0, 1]. Decidir en cada caso si el conjunto dado es un subespacio vectorial de V.
 - (a) $\{f \in C[0,1] : f(1) = 0\}.$
 - (b) $\{f \in C[0,1] : f(1) \ge 0\}.$
 - (c) $\{f \in C[0,1] : f(1) = f(0)\}.$
 - (d) $\{f \in C[0,1]: \int_0^1 (f(x))^2 dx = 0\}.$
- (2) Sea $V = \mathbb{R}^n$. Decidir en cada caso si el conjunto dado es un subespacio vectorial de V.
 - (a) $\{(x_1,\ldots,x_n)\in\mathbb{R}^n\,|\,\exists\,j>1:x_1=x_j\}.$
 - (b) $\{(x_1,\ldots,x_n)\in\mathbb{R}^n\,|\,x_1x_n=0\}.$
- (3) Sea $\mathbb{R}[x]$ el espacio vectorial de polinomios con coeficientes reales. Decidir si el subconjunto de polinomios de grado par, junto con el polinomio nulo, es un subespacio vectorial.
- (4) Sea $V = M_n(\mathbb{R})$ el espacio vectorial de matrices $n \times n$. Decidir en cada caso si el conjunto dado es un subespacio vectorial de V.
 - (a) El conjunto de matrices $n \times n$ invertibles.
 - (b) El conjunto de matrices $n \times n$ NO invertibles.
 - (c) El conjunto de matrices $n \times n$ A tales que AB = BA. (B una matriz $n \times n$ fija).
- (5) Sean

$$A_1 = \begin{bmatrix} 1 & -2 & 0 & 3 & 7 \\ 2 & 1 & -3 & 1 & 1 \end{bmatrix} \quad y \quad A_2 = \begin{bmatrix} 3 & 2 & 0 & 0 & 3 \\ 1 & 0 & -3 & 1 & 0 \\ -1 & 1 & -3 & 1 & -2 \end{bmatrix}$$

y sean W_1 y W_2 los espacios solución de los sistemas homogéneos asociados a A_1 y A_2 respectivamente.

Describir implícitamente $W_1 \cap W_2$ y $W_1 + W_2$.

- (6) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar
 - (a) Sean W_1 y W_2 subespacios no nulos de \mathbb{R}^2 entonces si $W_1\cap W_2$ contiene un vector no nulo $W_1=W_2$
 - (b) Sean W_1 y W_2 subespacios de dimensión 2 de \mathbb{R}^3 entonces si $W_1 \cap W_2$ contiene un vector no nulo.
- (7) Sean W_1 , W_2 subespacios de un espacio vectorial V. Probar que $W_1 \cup W_2$ es un subespacio de V si y sólo si $W_1 \subseteq W_2$ o bien $W_2 \subseteq W_1$.