In [1]:

```
# Importando as bibliotecas
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sbs
%matplotlib inline
from statsmodels.formula.api import ols
```

In [2]:

```
# Carregando os dados
data = pd.read_csv ('pesos2.csv')
```

In [3]:

```
# Verificando as 5 primeiras linhas
data.head ( )
```

Out[3]:

	Sexo	Grupo	Head Size	Brain Weight
0	1	1	4512	1530
1	1	1	3738	1297
2	1	1	4261	1335
3	1	1	3777	1282
4	1	1	4177	1590

In [4]:

```
# Verificando as 15 primeiras linhas
data.head (15)
```

Out[4]:

	Sexo	Grupo	Head Size	Brain Weight	
0	1	1	4512	1530	
1	1	1	3738	1297	
2	1	1	4261	1335	
3	1	1	3777	1282	
4	1	1	4177	1590	
5	1	1	3585	1300	
6	1	1	3785	1400	
7	1	1	3559	1255	
8	1	1	3613	1355	
9	1	1	3982	1375	
10	1	1	3443	1340	
11	1	1	3993	1380	
12	1	1	3640	1355	
13	1	1	4208	1522	
14	1	1	3832	1208	

In [5]:

```
# Verificando as 5 últimas linhas data.tail ( )
```

Out[5]:

	Sexo	Grupo	Head Size	Brain Weight
232	2	2	3214	1110
233	2	2	3394	1215
234	2	2	3233	1104
235	2	2	3352	1170
236	2	2	3391	1120

In [6]:

```
#Verificando o número de linhas e colunas
data.shape
```

Out[6]:

(237, 4)

In [7]:

```
#Verificar se há valores NAN (Retirar se houver)
data.isnull().sum()
```

Out[7]:

Sexo 0
Grupo 0
Head Size 0
Brain Weight 0
dtype: int64

In [8]:

```
#Retirando a coluna Grupo
data.drop('Grupo', axis = 1, inplace=True)
```

In [9]:

```
data.shape
```

Out[9]:

(237, 3)

In [10]:

```
data.head( )
```

Out[10]:

	Sexo	Head Size	Brain Weight
0	1	4512	1530
1	1	3738	1297
2	1	4261	1335
3	1	3777	1282
4	1	4177	1590

In [11]:

```
#Utilizar o método describe para conhecer sua tabela data.describe( )
```

Out[11]:

	Sexo	Head Size	Brain Weight
count	237.000000	237.000000	237.000000
mean	1.434599	3633.991561	1282.873418
std	0.496753	365.261422	120.340446
min	1.000000	2720.000000	955.000000
25%	1.000000	3389.000000	1207.000000
50%	1.000000	3614.000000	1280.000000
75%	2.000000	3876.000000	1350.000000
max	2.000000	4747.000000	1635.000000

In [16]:

```
data.rename(columns={'Head Size':'cabeca', 'Brain Weight':'peso'}, inplace= True)
```

In [18]:

data.corr()

Out[18]:

	Sexo	cabeca	peso
Sexo	1.000000	-0.51405	-0.465266
cabeca	-0.514050	1.00000	0.799570
peso	-0.465266	0.79957	1.000000

In [19]:

```
corr= data.corr()
```

In [20]:

sbs.heatmap(corr,annot = True)

Out[20]:

<matplotlib.axes._subplots.AxesSubplot at 0x5feadf88e0>

In [21]:

sbs.scatterplot(x='cabeca' , y='peso', data=data)

Out[21]:

<matplotlib.axes._subplots.AxesSubplot at 0x5ff18056a0>

In [22]:

```
formula = 'cabeca ~ peso'
modelo_v1 = ols (formula, data = data).fit()
modelo_v1.summary()
```

Out[22]:

OLS Regression Results

Dep. Variable:		:	cabeca		R-squared:		0.639
	Model:			OLS		R-squared:	0.638
	Method	:	Least Squares		F-statistic:		416.5
	Date	: T	ue, 22 Se	e, 22 Sep 2020		(F-statistic):	5.96e-54
	Time	:	2	1:57:55	Log	-Likelihood:	-1613.4
No. Obser	vations	:		237		AIC:	3231.
Df Re	siduals	:	235			BIC:	3238.
Df Model:		:		1			
Covariance Type:		:	nor	nrobust			
	co	ef	std err	t	: P>	t [0.025	0.975]
Intercept	520.61	01	153.215	3.398	0.00	1 218.759	822.461
peso	2.42	69	0.119	20.409	0.00	0 2.193	2.661
Om	nibus:	2.68	37 D u	rbin-Wa	tson:	1.726	
Prob(Omnibus):		0.26	31 Jarq	ue-Bera	(JB):	2.321	
Skew:		0.20	07	Prob	(JB):	0.313	
Kuı	rtosis:	3.25	52	Cond	d. No.	1.38e+04	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.38e+04. This might indicate that there are strong multicollinearity or other numerical problems.

In [24]:

sbs.lmplot(x='cabeca', y='peso', data=data,fit_reg=True)

Out[24]:

<seaborn.axisgrid.FacetGrid at 0x5ff18bc7c0>

