Lab 2 – Full-Custom Design

- Due: 2pm, Apr. 26 (Mon)
- How to submit
 - Zip all the files and upload it in the blackboard "Lab 2" page.
 - Email submission will not be accepted.
- Read the "tutorial_virtuoso.pdf" in the "Labs" page carefully.

Target Design and Specification

- Two-input XOR gate (use the static CMOS design methodology)
- Specification
 - Input ports: A, B, VDD, VSS
 - Output port: Y
 - Layout dimension: Width (2um), Height (2um)
 - Input vector: $(A,B) = (0,0) \rightarrow (1,0) \rightarrow (0,0) \rightarrow (0,1) \rightarrow (0,0) \rightarrow (1,1) \rightarrow (1,0) \rightarrow (1,1) \rightarrow (0,1) \rightarrow (1,1)$
 - Worst-case rise and fall delays (for a 10fF load cap): < ~200ps
 - Do not use M2~M10 layers.

Target Design and Specification

- Submit (zip the files and upload it in the Labs submission page)
 - A screenshot of your layout with two rulers shown (width and height)
 - A snapshot of your transistor-level schematic (you can draw it on paper and take a photo of it). Show the width of each TR.
 - DRC and LVS reports
 - drc.results and drc.summary generated by nmDRC.
 - lvs.report generated by nmLVS.
 - Input and output waveforms for pre-layout simulation (show A, B, Y, and some data points showing the delay values).
 - Input and output waveforms for post-layout simulation (show A, B, Y, and some data points showing the delay values).
 - Pre-layout simulation files (LVS.sp and pre.sp)
 - Post-layout simulation files (post.sp and PEX HSpice files)
 - A summary report. Just show the following numbers.
 - Layout width and height
 - Rise delays for $(0,0) \to (1,0)$, $(0,0) \to (0,1)$, $(1,1) \to (1,0)$, and $(1,1) \to (0,1)$
 - Fall delays for $(1,0) \to (0,0)$, $(0,1) \to (0,0)$, $(1,0) \to (1,1)$, and $(0,1) \to (1,1)$

Procedure

Step	Date	Points	What to do
0	3/12		Announcement
1	3/22	10	A rough layout of the inverter in the tutorial
2	3/29	10	DRC, LVS, PEX, and post-layout simulation of the inverter
3	4/5	10	TR-level schematic design, TR sizing, pre-layout simulation of the XOR gate
4	4/14	10	A rough layout of the XOR gate
5	4/23	10	DRC, LVS, PEX, and post-layout simulation of the XOR gate

Grading Criteria

- Completion of Lab 2: 100 points
 - Even if you can't complete your work by the deadline, you can still submit your work so that you can get some partial credits.
- If you meet the following deadlines, you will get some extra points.

	in you moot the fellowing doddinies, you will got some extra points.						
Step	Date	Points	What to do				
1	3/22	10	A rough layout of the inverter in the tutorial (Submit a layout screenshot) (The layout should look like an inverter. Some DRC errors are accepted. Some LVS errors are accepted, but it shouldn't have noticeable LVS errors.)				
2	3/29	10	DRC, LVS, PEX, and post-layout simulation of the inverter (Submit drc.results, drc.summary, lvs.report, and a screenshot of the I/O waveforms. Show the data points in the waveform snapshot.) (No DRC error, no LVS error.)				
3	4/5	10	TR-level schematic design, TR sizing, pre-layout simulation of the XOR gate (Submit a snapshot of your schematic with TR width shown, pre-layout simulation files (LVS.sp, pre.sp), and a screenshot of the I/O waveforms. Show the data points in the waveform snapshot) (The worst-case rise and fall delays of the pre-layout simulation should be < 180ps.)				
4	4/14	10	A rough layout of the XOR gate (Submit a layout screenshot) (The layout should look like an XOR. Some DRC errors are accepted. Some LVS errors are accepted, but it shouldn't have noticeable LVS errors.)				
5	4/23	10	DRC, LVS, PEX, and post-layout simulation of the XOR gate (Submit drc.results, drc.summary, lvs.report, and a screenshot of the I/O waveforms. Show the data points in the waveform snapshot.) (No DRC error, no LVS error, the worst-case rise and fall delays of the post-layout simulation should be < 220ps.)				

Sample Report: XNOR2 (Schematic)

TR-level schematic

Sample Report: XNOR2 (Pre-layout sim)

Sample Report: XNOR2 (Layout)

A layout

Sample Report: XNOR2 (Post-layout sim)

Sample Report: XNOR2 (Delays)

Layout width: 1.8um

Layout height: 1.8um

Rise delays

Input (A,B)	Delay
$(0,0) \to (0,1)$	100ps
$(0,0) \rightarrow (1,0)$	100ps
$(1,1) \rightarrow (0,1)$	100ps
$(1,1) \rightarrow (1,0)$	100ps

Fall delays

Input (A,B)	Delay
$(1,0) \to (0,0)$	100ps
$(0,1) \to (0,0)$	100ps
$(1,0) \rightarrow (1,1)$	100ps
$(0,1) \to (1,1)$	100ps

