Statistics-III

Trishan Mondal

Assignment-6

*For the sake of calculation we will use R. In the following codes, we will upload the data and we will consider the linear model of SF and SJ.

```
ozone = read.table("ozone.txt")
ozone.lm_sf = lm(ozone[,3]~ozone[,1]+ozone[,2])
ozone.lm_sj = lm(ozone[,4]~ozone[,1]+ozone[,2])
```

Calculating SF

```
anova(ozone.lm_sf)
## Analysis of Variance Table
##
## Response: ozone[, 3]
             Df Sum Sq Mean Sq F value
                                          Pr(>F)
## ozone[, 1] 1 9.0569 9.0569 87.119 2.979e-06 ***
## ozone[, 2] 1 1.3112 1.3112
                                12.612 0.005256 **
## Residuals 10 1.0396 0.1040
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
9.0569+1.3112
## [1] 10.3681
(9.0569+1.3112)/2
## [1] 5.18405
9.0569+1.3112 +1.0396
## [1] 11.4077
5.18405/0.1040
## [1] 49.84663
```

(a) We will compute the **ANoVA** for regression.

Source of variation	d.f	sum of squares	mean squares	F-ratio
regression	r - 1 = 2	$SS_{reg} = 10.3681$	$MS_{reg} = SS_{reg}/(r-1) = 5.18405$	$F_{reg} = 49.85$
residual square	n - r = 10	SSE = RSS = 1.0396	MSE = SSE/(n-r) = 0.1040	
Total	12	SST = 11.4077		

(b) The confidence interval for β_y is (-0.25165688, -0.13974968) and for β_r confidence interval is (0.01277538, 0.05580002).

It's not hard to see that confidence interval for $\beta_r - \beta_y$ is (0.17656196, 0.28342).

Calculating SJ

```
anova(ozone.lm_sj)
## Analysis of Variance Table
## Response: ozone[, 4]
             Df Sum Sq Mean Sq F value
                                         Pr(>F)
## ozone[, 1] 1 8.9679 8.9679 19.285 0.001353 **
## ozone[, 2] 1 4.7188 4.7188 10.148 0.009727 **
## Residuals 10 4.6502 0.4650
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
8.9679+4.7188
## [1] 13.6867
(8.9679+4.7188)/2
## [1] 6.84335
4.6502/10
## [1] 0.46502
6.84335+13.6867
## [1] 20.53005
  6.84335/ 0.46502
## [1] 14.71625
```

(a) ANOVA table for this model is given by,

Source of variation	d.f	sum of squares	mean squares	F-ratio
regression	r - 1 = 2	$SS_{reg} = 13.6867$	$MS_{reg} = SS_{reg}/(r-1) = 6.84335$	$F_{reg} = 14.71$
residual square	n - r = 10	SSE = RSS = 6.84335	MSE = SSE/(n-r) = 0.46502	
Total	12	SST = 20.53005		

- (c) We know, $R^2 = 1 \frac{RSS}{SST}$. In this case $R_{SF}^2 = 0.9088$ and $R^2SJ = 0.74640$. It means that the proportion of variation explained by SF's regressors is greater than SJ's regressors.
- (d) We can see that $\hat{\sigma}_{SF} = MSE_{SF} = 0.1040$ and $\hat{\sigma}_{SJ} = MSE_{SJ} = 0.465$. So estimated random error for SF model is less than SJ model.