

Première année de Licence MIASHS

TD corrigé – Analyse 1¹

Julien GREPAT²

- 1 Éléments de logique
- 2 Variations des suites
- 3 Terme général d'une suite définie par récurrence

Exercice 3.1 Afin d'assurer son appartement, un couple compare deux propositions:

- Proposition A : le montant de l'assurance est de 200 euros la première année puis augmente de 10 euros par an,
- Proposition B : le montant de l'assurance est de 180 euros la première année puis augmente de 6 % par an.

On note a_n le montant de l'assurance avec la proposition A et b_n celui avec la proposition B la n-ième année. Ainsi $a_1 = 200$ et $b_1 = 180$.

- (i) Étude de la proposition A.
 - (a) Calculer a_2 puis a_3 .
 - (b) Donner la nature de la suite (a_n) en précisant sa raison.
 - (c) Donner, pour tout entier naturel n non nul, a_n en fonction de n.

Correction.

$$a_1 = 200;$$
 $a_2 = 210;$ $a_3 = 220$

. La suite est arithmétique de raison 10 et de premier terme $a_1=200.$ On a donc

$$a_n = 200 + 10(n-1), \qquad n \in \mathbb{N} \setminus \{0\}.$$

¹Reproduction et diffusion interdite sans l'accord de l'auteur

²Contact: julien.grepat@univ-grenoble-alpes.fr

- (ii) Étude de la proposition B.
 - (a) Calculer b_2 puis b_3 .
 - (b) Donner la nature de la suite (b_n) en précisant sa raison.
 - (c) Donner, pour tout entier naturel n non nul, b_n en fonction de n.

Correction.

$$b_1 = 180;$$
 $a_2 = 180 \times \left(1 + \frac{6}{100}\right) = 190, 8;$ $a_3 = 190, 8 \times \left(1 + \frac{6}{100}\right) \approx 202, 25.$

La suite est géométrique de raison 1,06 et de premier terme $a_1=180$. On a donc

$$a_n = 180 \times 1,08^{n-1}, \qquad n \in \mathbb{N} \setminus \{0\}.$$

(iii) Quelle proposition est la plus avantageuse si le couple conserve son assurance pendant 10 ans ? Justifier la réponse.

Correction.

Formulaire:

Somme des termes d'une suite arithmétique :

$$u_1 + u_2 + \ldots + u_n = n \times \frac{u_1 + u_n}{2}$$
.

Somme des termes d'une suite géométrique où q est la raison de la suite et $q \neq 1$:

$$u_1 + u_2 + \ldots + u_n = u_1 \times \frac{1 - q^n}{1 - q}.$$

• Pour la proposition A, nous sommons les 10 années de cotisation :

$$\sum_{i=1}^{10} a_i = 10 \times \frac{u_1 + u_{10}}{2} = 2450.$$

• Pour la proposition B,

$$\sum_{i=1}^{10} b_i = 180 \times \frac{1 - 1,06^{10}}{1 - 1,06} = 2372.54$$

C'est la deuxième proposition qui est la plus intéressant à 10 ans.

Exercice 3.2 Soit (u_n) définie par $u_0 = 1$ et $u_{n+1} = 3u_n + 1$.

Déterminer le terme général de (u_n) .

Indication. La suite (u_n) est une suite arithmetico-géométrique.

Correction.

D'après le cours, il existe α tel que $v_n = u_n - \alpha$ est géométrique de raison 3.

Alors $v_{n+1} = u_{n+1} - \alpha = 3u_n + 1 - \alpha$, et on souhaite que cette quantité soit égale à $3v_n = 3(u_n - \alpha)$.

Il suit que α vérifie

$$1 - \alpha = -3\alpha, \qquad \Longleftrightarrow \qquad \alpha = -\frac{1}{2}.$$

2

On a donc

$$v_n = v_0 \times 3^n$$
, $v_0 = u_0 - \alpha = 1 + \frac{1}{2} = 1, 5$.

On conclut que

$$u_n = v_n + \alpha = v_n - \frac{1}{2} = 1,5 \times 3^n - 0,5.$$

Exercice 3.3 Soit $a \in \mathbb{R}^*$, $a \neq 1$, et soit $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = 1$ et $u_{n+1} = \frac{a+1+u_n}{a}$. Déterminer le terme général de (u_n) .

Correction. La suite (u_n) est une suite arithmetico-géométrique :

$$u_{n+1} = \frac{a+1}{a} + \frac{1}{a}u_n.$$

D'après le cours, il existe α tel que $v_n = u_n - \alpha$ est géométrique de raison 1/a.

Alors

$$v_{n+1} = u_{n+1} - \alpha = \frac{a+1}{a} + \frac{1}{a}u_n - \alpha,$$

et on souhaite que cette quantité soit égale à $\frac{1}{a}v_n = \frac{1}{a}(u_n - \alpha)$.

Il suit que α vérifie

$$\frac{a+1}{a} - \alpha = -\frac{1}{a}\alpha, \qquad \Longleftrightarrow \qquad \frac{a+1}{a} = \left(1 - \frac{1}{a}\right)\alpha \qquad \Longleftrightarrow \qquad \alpha = \frac{a+1}{a-1}.$$

On a donc

$$v_n = v_0 \times \frac{1}{a^n}$$
, $v_0 = u_0 - \alpha = 1 - \frac{a+1}{a-1} = \frac{-2}{a-1}$.

On conclut que

$$u_n = v_n + \alpha = \frac{-2}{a-1} \times \frac{1}{a^n} + \frac{a+1}{a-1}.$$

Exercice 3.4 On s'intéresse au terme général des suites vérifiant la relation $u_{n+2} = u_{n+1} + u_n$ pour tout $n \ge 0$. On appelle (R) cette relation.

(i) Montrer qu'il existe exactement deux suites géométriques de terme général q^n , avec $q \in \mathbb{R}$, vérifiant la relation (R). On note q_1 et q_2 leur raison respective.

Correction.

Soit une suite géométrique $u_n = q^n$ vérifiant (R). Alors

$$u_{n+2} = u_{n+1} + u_n \quad \Longleftrightarrow \quad q^{n+2} = q^{n+1} + q^n \quad \Longleftrightarrow \quad q^n q^2 = q^n q + q^n \quad \Longleftrightarrow \quad q^2 = q + 1.$$

Trouver q revient à résoudre l'équation du second degré

$$q^2 - q - 1 = 0.$$

Dont le discriminant $\Delta = 5$ est positif. Cette équation admet donc deux racines réelles q_1 et q_2 (qu'on évitera de calculer).

(ii) Montrer que pour tout $a, b \in \mathbb{R}$, la suite (v_n) définie pour tout $n \ge 0$ par $v_n = aq_1^n + bq_2^n$ vérifie (R).

Correction.

$$v_n = aq_1^n + bq_2^n$$

$$v_{n+1} = aq_1^{n+1} + bq_2^{n+1}.$$

Donc,

$$v_n + v_{n+1} = aq_1^n + bq_2^n + aq_1^{n+1} + bq_2^{n+1}$$
$$= aq_1^n(1+q_1) + bq_2^n(1+q_2)$$

Or, dans la question précédente, nous avons vu que

$$q_i^2 = q_i + 1.$$

D'où

$$v_n + v_{n+1} = aq_1^n \times q_1^2 + bq_2^n \times q_2^2 = aq_1^{n+2} + bq_2^{n+2}v_{n+2}.$$

(iii) Soient(u_n) et (v_n) deux suites vérifiant (R) et telles que $u_0 = v_0$ et $u_1 = v_1$. Montrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n = v_n$.

Correction.

Soit (P_n) la propriété définie pour tout $n \in \mathbb{N}$ par : $u_n = v_n$ et $u_{n+1} = v_{n+1}$.

Initialisation: $u_0 = v_0$ et $u_1 = v_1$ donc (P_0) est vraie.

Hérédité : Soit $n \in \mathbb{N}$ tel que (P_n) soit vraie, i.e. $u_n = v_n$ et $u_{n+1} = v_{n+1}$. On a

$$u_{n+2} = u_{n+1} + u_n = v_{n+1} + v_n = v_{n+2}.$$

Donc $u_{n+1} = v_{n+1}$ et $u_{n+2} = v_{n+2}$. Donc (P_{n+1}) est vraie.

Conclusion : D'après l'axiome de récurrence, pour tout $n \in \mathbb{N}$, (P_n) est vraie et $u_n = v_n$ pour tout n.

(iv) Déduire des deux questions précédente que pour toute suite (u_n) vérifiant (R), il existe $a, b \in \mathbb{R}$ tels que pour tout $n \geq 0$, $u_n = aq_1^n + bq_2^n$.

Correction.

La question (iii) nous dit qu'il suffit de fixer les termes u_0 et u_1 pour définir de manière unique la suite. Posons $v_n = aq_1^n + bq_2^n$. Pour toute valeur de u_0 et u_1 , il existe un unique coupe (a,b) vérifiant $u_0 = v_0$ et $u_1 = v_1$ (il suffit de résoudre un système). Par conséquent, la suite u_n est identique à la suite v_n et donc, toute suite u_n s'écrit $aq_1^n + bq_2^n$.