

Parse Trees

--Sakshi Surve

Basics of Grammar:

- A language is set of strings over a set of symbols
 - Language --- Finite set of sentences
 - Sentence --- Finite set of words
 - Words --- Finite set of Alphabets / Symbols
- Grammar is essential to give syntactical structure to the language
- Grammar is the set of rules used to describe string of Language
- The language may be Programming language or natural language ...Any type will require grammar

Example:

- If we want English statement "Dog Runs" We may use following rules :
 - <Sentence $> \rightarrow <$ Noun> <Verb>
 - <Noun> → Dog
 - < Verb > → Runs
- <Sentence> → <Noun> <Verb>→ Dog Runs

- These rules indicate how the sentence of the form 'Noun' followed by 'Verb' can be generated.
- There are many such rules of the language and they are collectively called the **Grammar** for the language

Constituents of Grammar:

- Two Symbols :
 - Terminals
 - Non Terminals

- **Terminals** are part of the generated sentence
 - E.g. In the above example, 'Dog' and 'Runs' are terminal symbols as they collectively formulate the statement and are part of the statement

- Non Terminals take part in the formation of the statement, but are not part of the generated sentence.
- No statement that is generated using grammar will contain Non Terminals in it.
 - E.g. In above example, 'Sentence', 'Noun', 'Verb' are Nonterminals...which are not in the generated statement but took part on the formation of the statement
- <Sentence> → <Noun> <Verb>→ Dog Runs
- Thus, Non-terminals are essential while declaring the rules
- These rules are called as 'Productions' or 'Production Rules'

Formal Definition:

 Like a natural language has Constituents like Nouns, Verbs, Adjectives etc....

• Two Constituents :

- Terminals
- Non terminals
- This grammar that is based on Constituent structure is called Constituent Structure Grammar Or Phrase Structure Grammar
- The idea is ...Basing a grammar on Constituent structure blocks

Summary:

- If we want English statement "Dog Runs" We may use following rules :
 - <Sentence $> \rightarrow <$ Noun> <Verb>
 - <Noun $> \rightarrow Dog$
 - < Verb > → Runs
- We have to begin with rule<Sentence> → <Noun> <Verb>
- Start SymbolSentence
- Non Terminals.....Sentence, Noun, Verb
- **Terminals**......Dog ,Runs
- **Rules**.....indicating how the sentence can be generated.

Grammar:

A Grammar G is a four tuple collection G = (V, T, P, S)Where

- V is the (finite) set of variables or Non terminals They take part in the derivation, but are not part of the derived sentence
- **T** is a finite set of **Terminals**, i.e., the symbols that form the strings of the language being defined
- P is a finite set of Production Rules
- **S** is the **Start Symbol** (One of the Non terminals)

• In the example before :

- S = Sentence
- V = { Noun, Verb}
- $T = \{Dog, Runs\}$
- P
 - <Sentence> \rightarrow <Noun> <Verb>
 - <Noun $> \rightarrow Dog$
 - < Verb > → Runs

Example:

- $G = \{ S, V, P, T \}$
- T = { Man, Book, Reads, The }
- $V = \{ N, V, A \}$
- \circ S = S
- P

 $S \rightarrow ANVN$

 $A \rightarrow A \mid An \mid The$

N → Man | Book

 $V \rightarrow Reads$

Derive string "The Man Reads Book"

Derivation

- \bullet S \rightarrow ANVN
 - →The NVN
 - \rightarrow The Man VN
 - → The Man Reads N
 - → The Man Reads Book

 $S \rightarrow ANVN$

 $A \rightarrow A \mid An \mid The$

N → Man | Book

 $V \rightarrow Reads$

The Man Reads Book

Leftmost Derivation

Derivation

- \bullet S \rightarrow ANVN
 - → ANV Book
 - → AN Reads Book
 - → A Man Reads Book
 - → The Man Reads Book

 $S \rightarrow ANVN$

 $A \rightarrow A \mid An \mid The$

N → Man | Book

 $V \rightarrow Reads$

The Man Reads Book

Rightmost Derivation

- $\sum = \{a, b\}$
- $L = \{ w \in L \mid w \text{ begins with a } \}$
- L = { a , aa, ab, aab, aba, aaa,}
- S -> aA
 A -> aA | bA | €
- For 'a'

Derivation of 'a'

$$S \rightarrow aA$$

 $\rightarrow a$

S -> aA A -> aA | bA | €

• For generating 'aa'

Derivation of 'aa'

 $S \rightarrow aA$

→aaA

→aa

S -> aA A -> aA | bA | €

For generating 'aba'

a A A a A

Derivation of 'aba'

In this grammar, the tuples are:

$$V = \{S, A\}$$

$$T = \{a,b\}$$

$$P$$

$$S = S$$

Parser:

- Parser is a component of a Compiler or Interpreter that breaks data into smaller elements
- Parser takes the input in the form of a sequence of tokens and builds a data structure in the form of a tree called **Parse tree**
- Deriving a Syntactic tree like structure from the stream of tokens is called Parsing
- Parsing is a process of determining if a string of tokens can be generated by a grammar

EXAMPLE FOR TOP DOWN PARSING

- Supppose the given production rules are as follows:
- S-> aAd aB
- S

- A-> b c
- B->ccd

Parse Tree:

- The process of deriving a string using grammar rules is called as **derivation**.
- The geometrical representation of a derivation is called as a **parse tree** or **derivation tree**.

Leftmost Derivation

- The process of deriving a string by expanding the leftmost non-terminal at each step is called as leftmost derivation.
- The geometrical representation of leftmost derivation is called as a **leftmost derivation tree**.

Example 1:

Consider the following example :

$$S \rightarrow aB / bA$$

 $A \rightarrow aS / bAA / a$
 $B \rightarrow bS / aBB / b$

Let us consider a stringw = aaabbabbba

 Now, let us derive the string w using leftmost derivation.

Leftmost Derivation

 $S \rightarrow aB / bA$

 $A \rightarrow aS / bAA / a$

 $B \rightarrow bS / aBB / b$

aaabbabbba

$$S \rightarrow aB$$

$$\rightarrow$$
 aa**B**B (Using B \rightarrow aBB)

$$\rightarrow$$
 aaa**B**BB (Using B \rightarrow aBB)

$$\rightarrow$$
 aaab**B**B (Using B \rightarrow b)

$$\rightarrow$$
 aaabb**B** (Using B \rightarrow b)

$$\rightarrow$$
 aaabba**B**B (Using B \rightarrow aBB)

$$\rightarrow$$
 aaabbab**B** (Using B \rightarrow b)

$$\rightarrow$$
 aaabbabb**S** (Using B \rightarrow bS)

$$\rightarrow$$
 aaabbabbA (Using S \rightarrow bA)

$$\rightarrow$$
 aaabbabbba (Using A \rightarrow a)

- The process of deriving a string by expanding the rightmost non-terminal at each step is called as **rightmost derivation**.
- The geometrical representation of rightmost derivation is called as a **rightmost derivation tree**.

Example 1:

Consider the following grammar-

```
S \rightarrow aB / bA

S \rightarrow aS / bAA / a

B \rightarrow bS / aBB / b
```

- Let us consider a string w = aaabbabbba
- Now, let us derive the string w using rightmost derivation.

$$S \rightarrow aB / bA$$

 $A \rightarrow aS / bAA / a$
 $B \rightarrow bS / aBB / b$

$$S \rightarrow a\mathbf{B}$$

 $\rightarrow ab$ (Using $B \rightarrow b$)

This is NOT what we want

aaabbabbba

 $S \rightarrow aB / bA$ $A \rightarrow aS / bAA / a$ $B \rightarrow bS / aBB / b$

 $S \rightarrow a\mathbf{B}$ aaabbabbba

This is NOT what we want

```
S \rightarrow aB / bA

A \rightarrow aS / bAA / a

B \rightarrow bS / aBB / b
```

aaabbabbba

```
S \rightarrow aB
                                 (Using B \rightarrow aBB)
    \rightarrow aaBB
                               (Using B \rightarrow bS)
    \rightarrow aaBbS
    \rightarrow aaBbbA
                                 (Using S \rightarrow bA)
                                 (Using A \rightarrow a)
     \rightarrow aaBbba
     \rightarrow aaaBBbba
                                     (Using B \rightarrow aBB)
                                     (Using B \rightarrow b)
     → aaaBbbba
     → aaabSbbba
                                     (Using B \rightarrow bS)
     → aaabbAbbba
                                        (Using S \rightarrow bA)
                                          (Using A \rightarrow aS)
      \rightarrow aaabbaSbbba
```

This is NOT what we want

 $S \rightarrow aB / bA$ $A \rightarrow aS / bAA / a$ $B \rightarrow bS / aBB / b$

aaabbabbba

$$S \rightarrow aB$$

 \rightarrow aaBB (Using B \rightarrow aBB)

 \rightarrow aaBaB**B** (Using B \rightarrow aBB)

 \rightarrow aaBaBb**S** (Using B \rightarrow bS)

 \rightarrow aaBaBbb**A** (Using S \rightarrow bA)

 \rightarrow aaBa**B**bba (Using A \rightarrow a)

 \rightarrow aa**B**abbba (Using B \rightarrow b)

 \rightarrow aaaBBabbba (Using B \rightarrow aBB)

 \rightarrow aaa**B**babbba (Using B \rightarrow b)

 \rightarrow aaabbabbba (Using B \rightarrow b)

Parse Tree:

Properties Of Parse Tree-

- Root node of a parse tree is the **start symbol** of the grammar.
- Each leaf node of a parse tree represents a **terminal symbol**.
- Each interior node of a parse tree represents a **non-terminal symbol**.
- Parse tree is independent of the order in which the productions are used during derivations.

Yield Of Parse Tree-

- Concatenating the leaves of a parse tree from the left produces a string of terminals.
- This string of terminals is called as **yield of a parse tree**.

Example 2:

Consider the grammar-

$$S \rightarrow bB / aA$$

 $A \rightarrow b / bS / aAA$
 $B \rightarrow a / aS / bBB$

For the string w = bbaababa, find-

- 1. Leftmost derivation
- 2. Rightmost derivation
- 3. Parse Tree

Solution:

1. Leftmost Derivation-

(Using $B \rightarrow bBB$)

(Using $B \rightarrow a$)

(Using $B \rightarrow aS$)

 $(Using S \rightarrow bB)$

(Using $B \rightarrow aS$)

(Using $S \rightarrow bB$)

$S \rightarrow b\mathbf{B}$

$$\rightarrow bbBB$$

 \rightarrow bba**B**

 \rightarrow bbaa**S**

 \rightarrow bbaab**B**

→ bbaaba**S**

 \rightarrow bbaabab**B**

 \rightarrow bbaababa (Using B \rightarrow a)

2. Rightmost Derivation-

$$S \rightarrow bB$$

 \rightarrow bbB**B**

→ bbBa**S** (Using H

bb Dabl

 \rightarrow bbBab**B**

 \rightarrow bbBaba**S**

 \rightarrow bbBabab**B**

 \rightarrow bb**B**ababa

→ bbaababa

(Using $B \rightarrow bBB$)

(Using $B \rightarrow aS$)

 $(Using S \rightarrow bB)$

(Using $B \rightarrow aS$) (Using $S \rightarrow bB$)

(Using $B \rightarrow a$)

(Using $B \rightarrow a$)

Example 3:

Consider the grammar-

$$S \rightarrow A_1B$$

 $A \rightarrow oA / \in$
 $B \rightarrow oB / _1B / \in$

For the string $\mathbf{w} = \mathbf{oo1o1}$, find-

Leftmost derivation

Rightmost derivation

Parse Tree

Solution-

1. Leftmost Derivation-

$S \rightarrow A_1B$

$$\rightarrow$$
 oA₁B (Using A \rightarrow oA)

$$\rightarrow$$
 ooA₁B (Using A \rightarrow oA)

$$\rightarrow ooi\mathbf{B}$$
 (Using $A \rightarrow \in$)

$$\rightarrow$$
 oo $_{10}$ B (Using B \rightarrow oB)

$$\rightarrow$$
 00101**B** (Using B \rightarrow 1B)

$$\rightarrow$$
 00101 (Using B \rightarrow \in)

$S \rightarrow A_1B$

$$\rightarrow$$
 A10**B** (Using B \rightarrow oB)

2. Rightmost Derivation-

$$\rightarrow$$
 A101**B** (Using B \rightarrow 1B)

$$\rightarrow$$
 A101 (Using B \rightarrow \in)

$$\rightarrow$$
 oA101 (Using A \rightarrow oA)

$$\rightarrow$$
 ooA101 (Using A \rightarrow oA)

$$\rightarrow$$
 00101 (Using A \rightarrow \in)

Parse Tree:

Example:

Let any set of production rules in a CFG be $X \rightarrow X+X \mid X^*X \mid X \mid$ a over an alphabet {a}.

Show derivation for the string "a+a*a"

$$X \rightarrow X+X$$

 $X \rightarrow X^*X$
 $X \rightarrow X$
 $X \rightarrow a$

The leftmost derivation for the string "a+a*a" may be –

$$X \rightarrow X+X$$

$$\rightarrow a+X$$

$$\rightarrow a + X*X$$

$$\rightarrow a+a*X$$

$$\rightarrow$$
 a+a*a

The stepwise derivation of the above string is shown as below –

$$X \rightarrow X+X$$

 $X \rightarrow X^*X$
 $X \rightarrow X$
 $X \rightarrow a$

The rightmost derivation for the above string "a+a*a" may be –

$$X \rightarrow X^*X$$

$$\rightarrow X^*a$$

$$\rightarrow$$
 X+X*a

$$\rightarrow$$
 X+a*a

$$\rightarrow$$
 a+a*a

The stepwise derivation of the above string is shown as below –

Ambiguous and Unambiguous Grammar:

--Sakshi Surve

Ambiguity:

- Ambiguous means Open to more than one interpretation, Not having one obvious meaning
- A grammar is said to ambiguous if for any string generated by it, it produces more than one-
 - Parse tree Or
 - Leftmost Derivation Or
 - Rightmost Derivation

If there exists at least one such string, then the grammar is ambiguous otherwise unambiguous.

Ambiguous and Unambiguous Grammar:

Grammar Ambiguity-

- 1. There exists no general algorithm to remove the **ambiguity** from **grammar**.
- 2. To check **grammar ambiguity**, we try finding a string that has more than one parse tree.
- 3. If any such string exists, then the **grammar** is **ambiguous** otherwise not.

Example 01-

Consider the following grammar-

$$E \rightarrow E + E \mid E \times E \mid id$$

- Ambiguous Grammar
- This grammar is an example of ambiguous grammar.
- Any of the following reasons can be stated to prove the grammar ambiguous-

Reason-01: Parse Tree

 $E \rightarrow E + E \mid E \times E \mid id$

Let us consider a string w generated by the grammar-

$$w = id + id \times id$$

Now, let us draw the parse trees for this string w.

 Since two parse trees exist for string w, the grammar is ambiguous.

Reason-02: Leftmost Derivat

$$E \rightarrow E + E \mid E \times E \mid id$$

Let us consider a string w generated by the

$$w = id + id \times id$$

Now, let us write the leftmost derivations for this string w.

Since two leftmost derivations exist for string w, the grammar is ambiguous.

Reason-03: Rightmost Derivation

• Let us consider a string w generated by the given $w = id + id \times id$

$$E \rightarrow E + E \mid E \times E \mid id$$

Now, let us write the rightmost derivations for this string w.

Since two rightmost derivations exist for string w, the grammar is ambiguous.

Example -02:

Check whether the given grammar is ambiguous or not-

$$S \rightarrow A / B$$

 $A \rightarrow aAb / ab$
 $B \rightarrow abB / \in$

Solution-

Let us consider a string w generated by the given grammar-

$$w = ab$$

Now, let us draw parse trees for this string w.

Since two different parse trees exist for string w, the given grammar is ambiguous.

Example - 03:

Check whether the given grammar is ambiguous or not-

```
S \rightarrow AB / C
```

 $A \rightarrow aAb / ab$

 $B \rightarrow cBd / cd$

 $C \rightarrow aCd / aDd$

 $D \rightarrow bDc / bc$

Solution-

Let us consider a string w generated by the given grammarw = aabbccdd

Now, let us draw parse trees for this string w.

Since two different parse trees exist for string w, the given grammar is ambiguous.

Example - 04:

Check whether the given grammar is ambiguous or not-S \rightarrow aSbS / bSaS / \in

Solution-

Let us consider a string w generated by the given grammarw = abab

Now, let us draw parse trees for this string w.

Since two different parse trees exist for string w, the given grammar is ambiguous.

Example -05:

Check whether the given grammar is ambiguous or not-

$$S \rightarrow SS$$

$$S \rightarrow a$$

$$S \rightarrow b$$

Solution-

Let us consider a string w generated by the given grammar-

$$w = abba$$

Now, let us draw parse trees for this string w.

Since two different parse trees exist for string w, therefore the given grammar is ambiguous.

- $\sum = \{a, b\}$
- $L = \{ w \in L \mid w \text{ begins with a } \}$
- L = { a , aa, ab, aab, aba, aaa,}
- S -> aA
 A -> aA | bA | €
- For 'a'

Derivation of 'a'

$$S \rightarrow aA$$

 $\rightarrow a$

S -> aA A -> aA | bA | €

• For generating 'aa'

Derivation of 'aa'

 $S \rightarrow aA$

→aaA

→aa

S -> aA A -> aA | bA | €

- For generating 'aba'
 - a / A

 b A

 a / A

Derivation of 'aba'

In this grammar, the tuples are:

This is an example of Unambiguous Grammar

Example 6:

Consider the following example :

$$S \rightarrow aB / bA$$

 $A \rightarrow aS / bAA / a$
 $B \rightarrow bS / aBB / b$

Let us consider a stringw = aaabbabbba

 Now, let us derive the string w using leftmost derivation.

Leftmost Derivation

 $S \rightarrow aB / bA$

 $A \rightarrow aS / bAA / a$

 $B \rightarrow bS / aBB / b$

aaabbabbba

 $S \rightarrow aB$

 \rightarrow aa**B**B (Using B \rightarrow aBB)

 \rightarrow aaa**B**BB (Using B \rightarrow aBB)

 \rightarrow aaab**B**B (Using B \rightarrow b)

 \rightarrow aaabb**B** (Using B \rightarrow b)

 \rightarrow aaabba**B**B (Using B \rightarrow aBB)

 \rightarrow aaabbab**B** (Using B \rightarrow b)

 \rightarrow aaabbabb**S** (Using B \rightarrow bS)

 \rightarrow aaabbabbA (Using S \rightarrow bA)

 \rightarrow aaabbabbba (Using A \rightarrow a)

Rightmost Derivation-

 $S \rightarrow aB / bA$ $A \rightarrow aS / bAA / a$ $B \rightarrow bS / aBB / b$

aaabbabbba

$$S \rightarrow aB$$

 \rightarrow aaBB (Using B \rightarrow aBB)

 \rightarrow aaBaB**B** (Using B \rightarrow aBB)

 \rightarrow aaBaBb**S** (Using B \rightarrow bS)

 \rightarrow aaBaBbbA (Using S \rightarrow bA)

 \rightarrow aaBa**B**bba (Using A \rightarrow a)

 \rightarrow aa**B**abbba (Using B \rightarrow b)

 \rightarrow aaaBBabbba (Using B \rightarrow aBB)

 \rightarrow aaa**B**babbba (Using B \rightarrow b)

 \rightarrow aaabbabbba (Using B \rightarrow b)

Since one parse tree exists for string w, the given grammar is unambiguous.