THE TOP TEN PRIME NUMBERS

(a catalogue of primal configurations)

from the unpublished collections of R. Ondrejka assisted by C. Caldwell and H. Dubner

May 05, 2001

Table of Contents

Introduction		4
An Unalphabe	tical Glossary	5
Table 1:	The TOP TEN Prime Numbers	8
Table 1.A:	The TOP TEN Mersenne Prime Numbers	9
Table 1.B:	The TOP TEN non-Mersenne prime Numbers	10
Table 2:	The TOP TEN Prime Factors of Fermat Numbers	11
Table 2.A	The Five Known Fermat Prime Numbers	11
Table 2 B:	The TOP TEN Generalized Fermat Prime Numbers	12
Table 3.A:	The TOP TEN Cullen Primes: $C_n = n \cdot 2^n + 1$	13
Table 3.B:	The TOP TEN Woodall Primes: $W_n = n \cdot 2^n - 1$	14
Table 4:	The TOP TEN Known Largest Primes with Total Digits Prime	15
Table 5:	The TOP TEN Naughtiest Prime Numbers	16
Table 6:	The TOP TEN Almost-All-Even-Digits Prime Numbers	17
Table 7:	The TOP TEN Quasiall-Even-Digits Prime Numbers	18
Table 8:	The TOP TEN All Odd Digits Prime Numbers	19
Table 9:	The TOP TEN Primes with Long Repdigit Strings	20
Table 9 A:	The TOP TEN Leading Repdigit Prime Numbers	21
Table 9.B:	The TOP TEN Internal Repdigit (0) Prime Numbers	22
Table 9 B.1:	The TOP TEN Internal Repdigit (nonzero) Primes	23
Table 9.C:	The TOP TEN Ending Repdigit(9) Primes	$\frac{1}{24}$
Table 10:	The TOP TEN Palindromic Prime Numbers	25
Table 10.A:	The TOP TEN Tetradic Prime Numbers	26
Table 10.B:	The TOP TEN Triadic Prime Numbers	$\frac{1}{27}$
Table 10.C:	The TOP TEN Quasi-Even-Digits Palindromic Prime Numbers	28
Table 10.D:	The TOP TEN Zero-free Palindromic Primes	29
Table 10.E:	The TOP TEN Near-Repdigit Palprimes	30
Table 10.F:	The TOP TEN All-Odd Digits Palprimes	31
Table 10.G:	The Top Beastly Palindromic Prime Numbers	32
Table 10.G.1:	The TOP TEN Generalized Beastly Palindromic Primes	33
Table 10.H:	The TOP TEN Pandigital, Palindromic Prime Numbers	34
Table 10.I:	The TOP TEN Alternate-Digit Palprimes	35
Table 10.I.1:	The TOP TEN Primes with Alternating Unholey/Holey Digits	36
Table 10.I.2:	The TOP TEN Primes with Alternating Straight/Curved Digits	37
Table 10.I.3:	The TOP TEN Primes with Alternating Prime/Composite Digits	38
Table 10.J.:	The TOP TEN Palprimes with Composite Digits & The TOP TEN Holey Palprimes	39
Table 10.K:	The TOP TEN Palprimes with Curved Digits	40
Table 10.L.:	The TOP TEN Unholey Palprimes	41
Table 10 M.:	The TOP TEN Invertible Palprime Pairs	42
Table 10 N.:	The TOP TEN Smoothly Undulating Palprimes	43
Table 10.0:	The TOP TEN Palprimes with Prime Digits	44
Table 10.P:	The TOP TEN Palindromic Quasi-Repdigit Prime Numbers	45
Table 10.P.1:	The TOP TEN $P^{latea}u$ Prime Numbers	46
Table 10.1.1. Table 10.P.2:	The TOP TEN $D_{epressio}$ Prime Numbers	47
Table 10.1.2.	The TOP TEN Palprimes with Straight Digits	48
Table 10.Q.	The Five Repunit Primes Known	48
Table 10.K.		
Table 10.5:	The TOP TEN Known Palindromic Primes in Arithmetic Progression The TOP TEN Primes with Square Digits	49 51
Table 11:	The TOP TEN Primes with Square Digits The TOP TEN Prime Numbers with Cube Digits	$\frac{51}{52}$
Table 13:	The TOP TEN Prime Numbers with Cube Digits The TOP TEN Anti-Yarborough Primes with 1's and 0's Digits	$\frac{52}{53}$
Table 14:	The TOP TEN Yarborough Primes with 1's and 0's Digits The TOP TEN Yarborough Prime Numbers; The TOP TEN Zero-free Primes	53
Table 14.	THE TOT TEN TAIDOLOUGH THIRE NUMBERS, THE TOT TEN ZEIG-HEE FHIRES	აა

Table 15:	The TOP TEN Prime Twins	54
Table 15.A:	The TOP TEN Prime Triplets	55
Table 15.B:	The Top k-tuplets of Primes	56
Table 16.A:	The TOP TEN Near Repdigit Prime Numbers AB_n	57
Table 16.B:	The TOP TEN Near-Repdigit Prime Numbers A_{n-k-1} BA_k	58
Table 16.C:	The TOP TEN Near Repdigit Prime Numbers A_nB	59
Table 16.D:	The TOP TEN Near-Repunit Prime Numbers	60
Table 17:	The TOP TEN Quasi-Repdigit Prime Numbers	61
Table 18:	The TOP TEN Factorial Prime Numbers	62
Table 18.A:	The TOP TEN Factorial-Plus-One Primes	63
Table 18.B:	The TOP TEN Factorial-Minus-One Primes	64
Table 19:	The TOP TEN Primes of Alternating Sums of Factorials	65
Table 20:	The TOP TEN Primorial Prime Numbers	66
Table 20.A:	The TOP TEN Primorial-Plus-One Primes	67
Table 20.B:	The TOP TEN Primorial-Minus-One Primes	68
Table 21:	The TOP TEN Multifactorial Prime Numbers	69
Table 21.A:	The TOP TEN Double Factorial Prime Numbers	70
Table 21.B:	The TOP TEN Triple Factorial Prime Numbers	71
Table 21.C:	The TOP TEN Quadruple Factorial Prime Numbers	72
Table 21.D:	The TOP TEN Quintuple Factorial Prime Numbers	73
Table 21.E:	The TOP TEN Sextuple Factorial Prime Numbers	74
Table 21.F:	The TOP TEN Septuple Factorial Prime Numbers	75
Table 22:	The TOP TEN Primes w. Composite Digits & the TOP TEN Holey Primes	76
Table 23:	The TOP TEN Undulating Prime Numbers	77
Table 24:	The TOP TEN Primes with Curved Digits	78
Table 25:	The TOP TEN Sophie Germain Primes	79
Table 26:	The TOP TEN Anti-Palindromic Prime Numbers	80
Table 27:	The TOP TEN Generalized Repunit Primes	81
Table 28:	The TOP TEN Strobogrammatic Primes (nonpalindromic)	82
Table 29:	The TOP TEN Beastly Primes (nonpalindromic)	83
Table 30:	The TOP TEN Sub_{script} Prime Numbers	84
Table 31:	The TOP TEN Unholey Primes	85
Table 32:	The TOP TEN Prime Numbers with Prime Digits	86
Table 33:	The TOP TEN Lucas Prime Numbers	87
Table 34:	The TOP TEN Prime Fibonacci Numbers	88
Table 35:	The TOP TEN Countdown Prime Numbers	89
Table 36:	The TOP TEN Reversible Primes (nonpalindromic)	90
Table 37:	The TOP TEN Primes with Straight Digits	91
Table 38:	The TOP TEN Primes with Largest Unique Periods	92
Table 39:	The TOP TEN Absolute Prime Numbers	93
Talbe 40:	The TOP TEN Consecutive Primes in Arithmetic Progression	94
Table 41:	The TOP TEN Known Factors of Googolplex Plus One	95
Table 42:	Ten Types of "Rare" Prime Numbers	96

Introduction

The infinity of prime numbers (or primes) may be categorizied in many ways, as will be seen in the TOP TEN tabular listings or charts. One may divide the primes into two groups: the Mersenne and non-Mersenne types. The former, named after the French friar-mathematician Marin Mersenne (1588-1648), are rather special, as they are generally the world's largest known. Also, they are directly linked with even perfect numbers: $[2^{p-1}, (2^p-1)]$; those rare numbers whose <u>proper</u> divisors sum to the above expression. For completeness, all known Mersenne primes (2^P-1) can be found in table 1.A, including the latest and largest one.

The non-Mersenne primes, infinite in number, may be subdivided into palindromic and non-palimdromic classes. The palindromic prime numbers (or palprimes) are thought to be infinite in number, but this is only a conjecture. Of the 20 palprime tables listed, six will be mentioned: (1) the rare repunit primes, R_n , which are a small subclass of the tetradics; (2) the tetradic or 4-way primes: those palprimes which are unchanged when turned upside down or reflected in a mirror; (3) the triadic or 3-way primes; (4) the near repdigit, which are some of the prettiest palprimes, having all like digits except for the center digit; (5) Q-E-D palprimes, those whose digits are all even, except for the end, odd digits; (6) pandigital palprimes are those having all ten (0 to 9) digits represented.

The class of nonpalindromic primes are an infinite and diverse lot. Listing of "The TOP TEN" primorials, factorials, and multifactorials are found in the following pages. These primes are: products of consecutive primes, plus or minus unity; products of the first N consecutive integers, plus or minus one; and generalizations of the factorials, respectively. The famous Fermat primes $(2^{2^n} + 1)$ and generalizations of the Fermat primes are charted, along with listings of Cullen primes and Sophie Germain primes. Some primes on a list (like Fibonacci or Cullen) exceed ten in number, and if all are known, are included for completeness; a few lists (like Fermat or repunits), are also included, though lacking the requisite number (10). As in all the lists, the number 1 prime will include its discoverer(s) and date.

A set of primes having many zeros (thousands), or primes with none are reported; as well as primes with long repdigit strings; most leading and ending strings of thousands of like digits. There are tables of "odd" digit primes and odd digit primes, as well as primes having almost all even digits. The digits of primes may be characterized in other ways: primes with all <u>prime</u> digits or all composite digits; all "straight" digits or all "curved" digits, and digits with "holes"; even primes having all digits "square" or all "cube". Tables of absolute primes, alternate-digit primes and antipalindromic primes, among others are here for the asking. Among the 80 <u>odd</u> tables or charts are found: the largest known TOP TEN prime twin pairs; beastly and unholey primes (two entirely different species); undulating primes, unique-period primes, etc.

On the last page is a table of rare primes ranked by rarity. Should anyone having a fast computer, decide to set a new record by finding a larger, rare prime, one should first tackle the "easier" types, like: "B", "C", "G", or "J".

A small glossary follows for those who may be unfamiliar with some of the nomenclature above, or technical terms in the prime listings.

An Unalphabetical Glossary

A Mersenne Prime, generally the worlds largest, is of the form $M_p = 2^p - 1$, p always prime.

A naught-y or naught-iest prime is one having a very high percentage of naughts or zeros.

A **near-repdigit prime** is one with all like or repeated digits, but one.

A quasi-repdigit prime is an all repeating digit prime, except for two digits.

Q-E-D prime: a quasiall-even-digits prime-a prime with even digits and two odd digits.

An almost-all-even-digits prime: a prime with even digits and one odd, right-most digit.

A palindromic prime (or palprime), is the same, whether read from left to right or vice versa.

A tetradic prime is a 4-way prime: palindromic, as well as the same upside down and mirror reflected.

A triadic prime is a 3-way prime: having up-down or vertical mirror symmetry, as well as palindromicity.

A **beastly prime** is a palindrome with 666 in the center, 0's surrounding these digits, and 1 or 7 at the end.

A non-palindromic beastly prime will start with 666, followed by 0's, and either a 1 or 7 at the right end.

Pandigital means all 10 digits (0 to 9); almost pandigital means 9 digits (usually zero is the missing digit).

Almost-equi-pandigital means all digits are equal in number, except for one particular digit.

Prime digit primes only have the digits: 2, 3, 5, or 7; composite digit primes have only: 4, 6, 8, or 9

Holey primes are primes having digits with holes, like the composite digits primes, and can include the zero.

Wholly, holey primes are primes, all of their digits have holes; unholey primes do not have holes in digits.

A **repunit prime**, $R_n = (10^n - 1)/9$, is a prime with all repeated 1's.

A near-repunit prime has almost all repeated units, except one.

An alternate-digit prime has alternating odd and even digits.

In an **undulating prime number**, the neighboring digits are consistently greater or less than the digits adjacent to them.

In a smoothly undulating prime (palindromic), only two types of digits are involved.

A Yarborough prime can have any number of the digits: 2, 3, 4, 5, 6, 7, 8, or 9, only.

A depression prime is a palprime having all interior digits repeating, and smaller than its two end digits.

A plateau prime is a palprime having all interior digits repeating, and larger than its two end digits.

A factorial prime is the product of the first n consecutive integers, plus or minus unity.

A primorial prime is the product of the first n consecutive primes, plus or minus unity.

Multifactorial primes $N!_k \pm 1$, are generalizations of the factorial prime:

```
double factorial primes (N! ! \pm 1) = N \cdot (N-2)(N-4)(N-6) \cdots \pm 1; triple factorial primes (N! ! \pm 1) = N \cdot (N-3)(N-6)(N-9) \ldots, etc.
```

An **odd digit prime** has a single "odd" digit in its decimal representation; an all odd digit prime has all its digits odd.

A Fermat prime is of the form $2^{2^N} + 1$; a generalized Fermat prime is of the form $b^{2^N} + 1$.

Primes with curved digits are composed only of 0's, 3's, 6's, 8's, or 9's; primes with straight digits only, include 1's, 4's, or 7's.

An anti-Yarborough prime can have any number of 1's and 0's only.

An **antipalindromic prime** must have a total <u>even</u> number of digits; and the digits in the first half of the prime <u>must</u> differ from the corresponding digits of the second half, resulting in a coincidence ratio of <u>zero</u>.

A Cullen prime is of the form: $C_n = n \cdot 2^n + 1$; A Woodall prime is of the form: $W_n = n \cdot 2^n - 1$.

 Sub_{script} primes are so called because they are usually expressed in their subscriptal notation.

A **Sophie Germain prime** is an odd prime p for which 2p + 1 is also prime.

A unique-period prime (P) is one, whose reciprocal (1/p), is a period not shared by any other prime.

An absolute prime is one that remains a prime, for all permutations of its digits.

Generalized repunit primes are primes of the form $(b^n - 1)/(b - 1)$ b not equal to 2 or 10.

A strobogrammatic prime remains unchanged when turned upside down or rotated 180°).

A generalized beastly prime is a palindrome <u>not</u> limited to only zeros surrounding the infamous "666."

A "k-tuplet" is a sequence of k consecutive primes: $q_1 \ q_2 \dots q_k$, with $q_k - q_1$ as small as possible.

Prime twins (p and p+2) are the smallest of these sequences; followed by prime triplets, quadruplets, etc.

A countdown prime is one whose leading digits descend: 10 or 9 8 7 6 5 4 3 2 1.

Lucas numbers (L_n) unlike their famous Fibonacci cousins (F_n) , are derived initially from the sequence 2, 1, 3, 4, 7, 11, 18, 29, 47.

An **Invertible prime number** is one that, when turned upside down (revolved 180⁰), results in a new different prime. Digits like 0, 1, 6, 8, or 9, must be only used.

A Nonpalindromic reversible prime (also known as an emirp), produces a different prime, when all its digits are reversed; .e.g. 13 and 31.

Googolplex, a number impossible to represent fully in decimal, is equal to $10^{10^{10}}$, or ten to the googol power, i.e. one followed by a zeros $[10^{100}zeros]$.

A Googol is a number of 101 digits, or more precisely, one followed by 100 zeros.

Subscriptal digits are sometimes used to show repeated decimal digits; e.g. $13_4 = 13333$; $(23)_3 = 232323$.

A Titanic Prime is a number having one thousand or more digits; a Gigantic Prime has ten thousand or more digits; a Megaprime is a prime number having one million or more digits.

TABLE 1. The TOP TEN Prime Numbers

$$[M_p = 2^p - 1; k \cdot 2^N \pm 1]$$

		Digits	
1.	$M_{6972593} = 2^{6972593} - 1$	2098960	[N.Hajratwala, etal:1999]
*2.	$M_{3021377} = 2^{3021377} - 1$	909526	
*3.	$M_{2976221} = 2^{2976221} - 1$	895932	
*4.	$M_{1398269} = 2^{1398269} - 1$	420921	
*5.	$M_{1257787} = 2^{1257787} - 1$	378632	
**6.	$48594^{65536} + 1$	307140	
*7.	$M_{859433} = 2^{859433} - 1$	258716	
*8.	$M_{756839} = 2^{756839} - 1$	227832	
***9.	$667071 \cdot 2^{667071} - 1$	200815	
**10.	$1041870^{32768} + 1$	197192	

^{*} Former Mersenne world record holder

^{**} Generalized Fermat prime number

^{***} Woodall prime number

Table 1. A: The TOP TEN Mersenne Prime Numbers

$$[M_p = 2^p - 1]$$

		Digits	
1.	$M_{6972593} = 2^{6972593} - 1$	2098960	[N.Hajratwala, etal;1999]
2.	$M_{3021377} = 2^{3021377} - 1$	909526	
3.	$M_{2976221} = 2^{2976221} - 1$	895932	
4.	$M_{1398269} = 2^{1398269} - 1$	420921	
5.	$M_{1257787} = 2^{1257787} - 1$	378632	
6.	$M_{859433} = 2^{859433} - 1$	258716	
7.	$M_{756839} = 2^{756839} - 1$	227832	
8.	$M_{216091} = 2^{216091} - 1$	65050	
9.	$M_{132049} = 2^{132049} - 1$	39751	
10.	$M_{110503} = 2^{110503} - 1$	33265	

[and the rest]								
		D	·	•	D			D
11.	M_{86243}	25962	20.	M_{4253}	1281	29.	M_{89}	27
12.	M_{44497}	13395	21.	M_{3217}	969	30.	M_{61}	19
13.	M_{23209}	6987	22.	M_{2281}	687	31.	M_{31}	10
14.	M_{21701}	6533	23.	M_{2203}	664	32.	M_{19}	6
15.	M_{19937}	6002	24.	M_{1279}	386	33.	M_{17}	6
16.	M_{11213}	3376	25.	M_{607}	183	34.	M_{13}	4
17.	M_{9941}	2993	26.	M_{521}	157	35.	M_7	3
18.	M_{9689}	2917	27.	M_{127}	39	36.	M_5	2
19.	M_{4423}	1332	28.	M_{107}	33	37.	M_3	1
						38.	M_2	1

Table 1. B: The TOP TEN Non-Mersenne Prime Numbers

		Digits	
*1.	$48954^{65536} + 1$	307140	[S.Scott & Y.Gallot:2000]
**2.	$667071 \cdot 2^{667071} - 1$	200815	
*3.	$1041870^{32768} + 1$	197192	
*4.	$999236^{32768} + 1$	196598	
*5.	$524552^{32768} + 1$	187427	
*6.	$167176^{32768} + 1$	171153	
7.	$169719 \cdot 2^{557557} + 1$	167487	
8.	$302627325 \cdot 2^{530101} + 1$	159585	
9.	$43541 \cdot 2^{507098} - 1$	152657	
10.	$144643 \cdot 2^{498079} - 1$	149942	

^{*} Generalized Fermat prime

^{**} Woodall prime

Table 2: The TOP TEN Prime Factors of Fermat Numbers

$$F_m = 2^{2^m} + 1$$

$$[k \cdot 2^n + 1]$$
Fermat
Digits exp (m)

1. $3 \cdot 2^{382449} + 1$ 115130 382447 [J. Cosgrove & Y. Gallot:1998]
2. $3 \cdot 2^{303093} + 1$ 91241 303088
3. $3 \cdot 2^{213321} + 1$ 64217 213319
4. $3 \cdot 2^{157169} + 1$ 47314 157167
5. $57 \cdot 2^{146223} + 1$ 44020 146221
6. $5 \cdot 2^{125413} + 1$ 37754 125410
7. $13 \cdot 2^{114296} + 1$ 34408 114293
8. $39 \cdot 2^{113549} + 1$ 34184 113547
9. $7 \cdot 2^{95330} + 1$ 28699 95328
10. $21 \cdot 2^{94801} + 1$ 28540 94798

Table 2. A: The Five Known Fermat Prime Numbers

94798

$$F_m = 2^{2^m} + 1$$

Actual* Primes

1.	$F_4 = 2^{2^4} + 1$	=	65537	[P. Fermat:	1640]
2.	$F_3 = 2^{2^3} + 1$	=	257		•
3.	$F_2 = 2^{2^2} + 1$	=	17		
	$F_2 = 2^{2^1} + 1$		5		
5.	$F_0 = 2^{2^0} + 1$	=	3		

Actual Primes; the next 26 Fermat numbers, F_5 to F_{30} are composite

Table 2. B: The TOP TEN Generalized Fermat Prime Numbers

$$[P = b^{2^n} + 1]$$

Digits

- 1. $48594^{2^{16}} + 1$ 307140 [S. Scott & Y. Gallot: 2000]
- $2. \quad 1041870^{2^{15}} + 1 \quad 197192$
- $3. \quad 999236^{2^{15}} + 1 \qquad 196598$
- 4. $524552^{2^{15}} + 1$ 187427
- 5. $167176^{2^{15}} + 1$ 171153
- 6. $840796^{2^{14}} + 1$ 97071
- 7. $704930^{2^{14}} + 1$ 95817
- 8. $656210^{2^{14}} + 1$ 95307
- 9. $641762^{2^{14}} + 1$ 95149
- $10. \quad 638980^{2^{14}} + 1 \qquad 95118$

Table 3. A: The TOP TEN Cullen Primes $C_n = n \cdot 2^n + 1$

	C	D:-:+-	
	C_n	Digits	
1.	$481899 \cdot 2^{481899} + 1$	145072	[M.Morii & Y.Gallot:1998]
2.	$361275 \cdot 2^{361275} + 1$	108761	
3.	$262419 \cdot 2^{262419} + 1$	79002	
4.	$90825 \cdot 2^{90825} + 1$	27347	
5.	$59656 \cdot 2^{59656} + 1$	17964	
6.	$32469 \cdot 2^{32469} + 1$	9779	
7.	$32292 \cdot 2^{32292} + 1$	9726	
8.	$18496 \cdot 2^{18496} + 1$	5573	
9.	$6611 \cdot 2^{6611} + 1$	1994	
10.	$5795 \cdot 2^{5795} + 1$	1749	
	[8	and the re	est]
11.	$4713 \cdot 2^{4713} + 1$	1423	
12.	$141 \cdot 2^{141} + 1$	45	
13.	$1 \cdot 2^1 + 1$	1	

Table 3. B: The TOP TEN Woodall Primes $W_n = n \cdot 2^n - 1$

$_{1a}$	ble 3. B: The TOP T	EN Wooda	If Primes $W_n = T$	$n \cdot 2^{n} - 1$
	W_n	Digits		
1.	$667071 \cdot 2^{667071} - 1$	200815 [M.Toplic & Y.G	allot:2000]
2.	$151023 \cdot 2^{151023} - 1$	45468		
3.	$143018 \cdot 2^{143018} - 1$	43058		
4.	$98726 \cdot 2^{98726} - 1$	29725		
5.	$23005 \cdot 2^{23005} - 1$	6930		
6.	$22971 \cdot 2^{22971} - 1$	6920		
7.	$18885 \cdot 2^{18885} - 1$	5690		
8.	$15822 \cdot 2^{15822} - 1$	4768		
8.	$12379 \cdot 2^{12379} - 1$	3731		
10.	$9531 \cdot 2^{9531} - 1$	2874		
	[and the res	st]	
	W_n D)	W_n	D
11.	$7755 \cdot 2^{7755} - 1 233$	39 20.	$123 \cdot 2^{123} - 1$	40
12.	$5312 \cdot 2^{5312} - 1$ 160)3 21.	$115 \cdot 2^{115} - 1$	37
13.	$822 \cdot 2^{822} - 1$ 25	51 22.	$81 \cdot 2^{81} - 1$	27
14.	$751 \cdot 2^{751} - 1$ 22	29 23	$75 \cdot 2^{75} - 1$	25

15.	$512 \cdot 2^{512} - 1$	157	24.	$30 \cdot 2^{30} - 1$	11
16.	$462 \cdot 2^{462} - 1$	142	25.	$6 \cdot 2^6 - 1$	3
17.	$384 \cdot 2^{384} - 1$	119	26.	$3 \cdot 2^3 - 1$	2
18.	$362 \cdot 2^{362} - 1$	112	27.	$2 \cdot 2^2 - 1$	1

19. $249 \cdot 2^{249} - 1$ 78

Table 4: The TOP TEN Known Largest Primes with Total Digits Prime

 $[k\cdot 2^n\pm 1]$

		Total Digits	
1.	$43541 \cdot 2^{507098} - 1$	152657	[R. Ballinger & Y. Gallot: 2000]
* 2.	$361275 \cdot 2^{361275} + 1$	108761	
3.	$115947 \cdot 2^{350003} + 1$	105367	
4.	$189453 \cdot 2^{324103} - 1$	97571	
** 5.	$422666^{16384} + 1$	92177	
6.	$144817 \cdot 2^{258857} - 1$	77929	
7.	$15809 \cdot 2^{256640} - 1$	77261	
8.	$892451707 \cdot 2^{239848} + 1$	72211	
9.	$73 \cdot 2^{227334} + 1$	68437	
*** 10.	$3 \cdot 2^{213321} + 1$	64217	

^{*} Cullen prime ** Generalized Fermat prime *** Fermat factor of $2^{213319} + 1$

Table 5: The TOP TEN Naughtiest Prime Numbers

[Naught/cifre/zero/egg/oh/0]

		Naughts	Naught%	Total Digits	
* 1.	$105594 \cdot 10^{105994} + 1$	105994	99.994	106000	[Loeh & Gallot: 2000]
2.	$193 \cdot 10^{69004} + 1$	69003	99.994	69007	
3.	$49521 \cdot 10^{49521} + 1$	49520	99.988	49526	
** 4.	$10^{35352} + 2049402 \cdot 10^{17673} + 1$	35346	99.980	35353	
5.	$127 \cdot 10^{31000} + 1$	30999	99.987	31003	
** 6.	$10^{30802} + 1110111 \cdot 10^{15398} + 1$	30795	99.974	30803	
7.	$3 \cdot 10^{27720} + 1$	27719	99.993	27721	
8.	$9964227 \cdot 10^{21244} + 1$	21243	99.96	21251	
9.	$247 \cdot 10^{20006} + 1$	20005	99.98	20009	
10.	$10^{20000}10^{19536} + 1$	19535	97.68	20000	

^{*} Most consecutive zeros; highest zero %; more zeros than any known prime except M_{38}

^{**} Palindrome

Table 6: The TOP TEN Almost-All-Even-Digits Prime Numbers $\ast\ast$

$$[K \cdot 10^N + 1; \quad D \cdot R(N) \cdot 10^K + 1, \quad D = 2, 4, 6, 8]$$

		Digits	E-D%	
1.	$8 \cdot R(12600) \cdot 10^{3705} + 1$	16305	99.994	[H. Dubner:1997]
*2.	$666 \cdot 10^{14020} + 1$	14023	99.993	
3.	$80602 \cdot 10^{14013} + 1$	14018	99.993	
4.	$4 \cdot R(10200) \cdot 10^{2894} + 1$	13094	99.992	
5.	$2 \cdot R(10200) \cdot 10^{2396} + 1$	12596	99.992	
6.	$6 \cdot R(10200) \cdot 10^{2057} + 1$	12257	99.992	
7.	$8 \cdot R(10080) \cdot 10^{1003} + 1$	11083	99.991	
8.	$4 \cdot R(9240) \cdot 10^{151} + 1$	9391	99.989	
*9.	$666 \cdot 10^{9198} + 1$	9201	99.989	
10.	$4 \cdot R(7560) \cdot 10^{1023} + 1$	8583	99.988	

^{*} Beastly prime (non palindromic)
** All primes discovered by H. Dubner

Table 7: The TOP TEN Quasiall-Even-Digits Prime Numbers

[Q - E - D Primes; 0, 2, 4, 6, 8]

		Digits	E-D%	
**1.	$(10_{14285}80_{14285}1)$	28573	99.993	[D. Heuer:2001]
* 2.	$30_{27719}1$	27721	99.993	
3.	$2470_{20005}1$	20009	99.990	
4.	$10_{13326}20840_{6658}1$	20000	99.990	
** 5.	$(10_{7771}42606240_{7771}1)$	15551	99.98	
*** 6.	$261840_{12090}1$	12096	99.98	
* 7.	$30_{10452}1$	10454	99.98	
8.	$362640_{8061}1$	8067	99.98	
** 9.	$\left(10_{3525}22202220_{3525}1\right)$	7059	99.97	
**** 10.	$(10_{2864}6_{15}0_{2864}1)$	5745	99.97	

^{*} Quasi-repdigit prime

^{**} Palindrome

^{***} All even digits represented

^{****} Generalized beastly palindrome

Table 8: The TOP TEN All Odd Digits Prime Numbers

 $[K \cdot 10^N - 1]$

				Digits	
*1.	$10^{50103} - 4 \cdot 10^{50097} - 1$	or	9_559_{50097}	50103	[P. Carmody:2000]
* 2.	$10^{25000} - 4 \cdot 10^{18479} - 1$	or	$9_{6521}59_{18479}$	25001	
* 3.	$10^{19999} - 2 \cdot 10^{18038} - 1$	or	$9_{1960}79_{10838}$	19999	
** 4.	$2 \cdot 10^{19233} - 1$	or	19_{19233}	19234	
** 5.	$6 \cdot 10^{18668} - 1$	or	59_{18668}	18669	
** 6.	$2 \cdot 10^{15749} - 1$	or	19_{15749}	15750	
** 7.	$8 \cdot 10^{11336} - 1$	or	79_{11336}	11337	
*** 8.	$10 \cdot 159795 \cdot R(10080)/R(6) + 1$	or	$(159795)_{1680}1$	10081	
** 9.	$2 \cdot 10^{7517} - 1$	or	19_{7517}	7518	
** 10.	$2 \cdot 10^{5969} - 1$	or	19_{5969}	5970	

^{*} Near-repdigit prime

** Near repdigit string prime

*** Palindrome

Table 9: The Ten Top Primes with Long Repdigit Strings

 $[K\cdot 10^N\pm 1]$

		Repdigit String	String %	Total Digits	
* 1.	$105994 \cdot 10^{105994} + 1$	105993	99.993	106000	[G. Loeh & Y. Gallot: 2000]
2.	$193 \cdot 10^{69004} + 1$	69003	99.994	69007	
**3.	$10^{50103} - 4 \cdot 10^{50097} - 1$	50097	99.998	50103	
4.	$49521 \cdot 10^{49521} + 1$	49520	99.988	49526	
*** 5.	$9 \cdot 10^{48051} - 1$	48051	99.998	48052	
***6.	$9 \cdot 10^{41475} - 1$	41475	99.998	41476	
**** 7.	$3 \cdot 10^{33058} - 1$	33058	99.997	33059	
8.	$127 \cdot 10^{31000} + 1$	30999	99.987	31003	
****9.	$3 \cdot 10^{27720} + 1$	27719	99.993	27721	
**** 10.	$3 \cdot 10^{26044} - 1$	26044	99.996	26045	

^{*} Most consecutive 0's

^{**} Most consecutive ending 9's

^{***} Highest string %

^{****} Near-repdigit prime

^{*****} Q-E-D prime

Table 9. A: The TOP TEN Leading Repdigit Prime Numbers

 $[D \cdot R(n) \cdot 10^k + 1]$

Digit			Repdigits	String %	Total Digits	
1.	$R(10080) \cdot 10^{2136} + 1$	or $1_{10080}0_{2135}1$	10080	82.51	12216	[1996]
2.	$2R(10200) \cdot 10^{2396} + 1$	or $2_{10200}0_{2395}1$	10200	80.98	12596	[1996]
3.	$3R(10080) \cdot 10^{2286} + 1$	or $3_{10080}0_{2285}1$	10080	81.51	12366	[1996]
4.	$4R(10200) \cdot 10^{2894} + 1$	or $4_{10200}0_{2893}1$	10200	77.90	13094	[1996]
* 5.	$5R(12600) \cdot 10^{68} + 1$	or $5_{12600}0_{67}1$	12600	99.46	12668	[1997]
6.	$6R(10200) \cdot 10^{2057} + 1$	or $6_{10200}0_{2056}1$	10200	83.22	12257	[1996]
7.	$7R(12600) \cdot 10^{381} + 1$	or $7_{12600}0_{380}1$	12600	97.06	12981	[1996]
8.	$8R(12600) \cdot 10^{3705} + 1$	or $8_{12600}0_{3704}1$	12600	77.28	16305	[1997]
**9.	$10^{38500} - 10^{18168} - 1$	or $9_{20332}89_{18168}$	20332	52.81	38501	[2000
*** 9.	$10^{30000} - 10^{13560} - 1$	or $9_{16440}89_{13560}$	16440	54.80	30001	[2000]

^{*} Highest string percentage

^{**} Most leading repdigit

^{***} Discovered by P. Underwood; all other primes by H. Dubner

Table 9. B: The TOP TEN Internal Repdigit (0) Prime Numbers

 $[K \cdot 10^N + 1]$

		Repdigit String	String %	Total Digits	
1.	$105994 \cdot 10^{105994} + 1$	105993	99.993	106000	[G. Loeh & Y. Gallot:2000]
*2.	$193 \cdot 10^{69004} + 1$	69003	99.994	69007	
3.	$49521 \cdot 10^{49521} + 1$	49520	99.988	49526	
4.	$127 \cdot 10^{31000} + 1$	30999	99.987	31003	
5.	$3 \cdot 10^{27720} + 1$	27719	99.993	27721	
6.	$9964227 \cdot 10^{21244} + 1$	21243	99.96	21251	
7.	$247 \cdot 10^{20006} + 1$	20005	99.98	20009	
8.	$10^{20000} - 10^{19536} + 1$	19535	97.67	20001	
**9.	$10^{35352} + 204\underline{9}402 \cdot 10^{17673} + 1$	17672	49.99	35353	
10.	$10^{16201} + 37$	16199	99.98	16202	

 $[\]begin{array}{ll} * & \text{Highest string } \% \\ ** & \text{Palindrome} \end{array}$

Table 9. B. 1: The TOP TEN Internal Repdigit (nonzero) Primes $\ast\ast$

Digit		Repdigits	String $\%$	Total Digits
1	$16671_{10075}094441$	10075	99.90	10085
2	$113882_{10075}108341$	10075	99.89	10086
2	$223072_{10074}1999151$	10074	99.88	10086
3	643 ₇₅₅₇ 2691	7557	99.92	7563
4	$12896734_{5033}31547711$	5033	99.70	5048
*5	285 ₁₀₀₇₈ 271	10078	99.95	10083
6	$26_{6995}39_{54}1_{6996}$	6995	49.80	14047
7	$35047_{10076}42731$	10076	99.91	10085
8	$13965168_{5033}74923721$	5033	99.70	5048
9	$17309_{10076}82691$	10076	99.91	10085

Most internal repdigits/highest string % All discovered by H. Dubner (1997)

Table 9. C: The TOP TEN Ending Rep
digit (9) Primes $\ast\ast$

 $[AB_n; K \cdot 10^n - 1]$

		Repdigit String	String %	Total Digits	
1	$10^{50103} - 4 \cdot 10^{50097} - 1$	50097	99.988	50103	[P. Carmody:2000]
*2.	$9 \cdot 10^{48051} - 1$	48051	99.988	48052	
*3.	$9 \cdot 10^{41475} - 1$	41475	99.998	41476	
*4.	$3 \cdot 10^{33058} - 1$	33058	99.997	33059	
*5.	$3 \cdot 10^{26044} - 1$	26044	99.996	26045	
6.	$10^{30005} - 10^{23906} - 1$	23906	79.67	30006	
7.	$10^{30007} - 10^{22717} - 1$	22717	75.70	30008	
8.	$10^{25000} - 7 \cdot 10^{22632} - 1$	22632	90.52	25001	
9.	$10^{30006} - 10^{21425} - 1$	21425	71.40	30007	
10.	$10^{30002} - 10^{21020} - 1$	21020	70.06	30003	

^{*} Near-repdigit string prime ** Plus three other ending repdigit (1, 3, 7) primes:

Repdigit		Repdigit String	String%	Total Digits
(1)	$26_{6995}39_{54}1_{6996}$	6996	49.80	14047
(3)	$13_{5216}19_{2300}3_{5217}$	5217	40.97	12735
(7)	$2668319_{5694}7331680_{2299}17_{5700}$	5700	41.59	13706

Table 10: The TOP TEN Palindromic Prime Numbers

 $[10^A + K \cdot 10^B + 1]$

				Digits	
1.	$10^{35352} + 2049402 \cdot 10^{17673} + 1$	or	$(10_{17672}20494020_{1762}1)$	35353	[H.Dubner :1999]
* 2.	$10^{30802} + 1110111 \cdot 10^{15398} + 1$	or	$(10_{15397}11101110_{15397}1)$	30803	
* 3.	$10^{28572} + 8 \cdot 10^{14286} + 1$	or	$(10_{14285}80_{14285}1)$	28573	
4.	$10^{19390} + 4300034 \cdot 10^{9692} + 1$	or	$(10_{9691}43000340_{9691}1)$	19391	
5.	$10^{16650} + 53735 \cdot 10^{8323} + 1$	or	$(10_{8322}537350_{8322}1)$	16651	
6.	$10^{16360} + 3644463 \cdot 10^{8177} + 1$	or	$(10_{8176}36444630_{8176}1)$	16361	
** 7.	$10^{15640} + 3 \cdot 10^{7820} + 1$	or	$(10_{7819}30_{7819}1)$	15641	
8.	$10^{15550} + 7410147 \cdot 10^{7772} + 1$	or	$(10_{7771}74101470_{7771}1)$	15551	
8.	$10^{15550} + 7105017 \cdot 10^{7772} + 1$	or	$(10_{7771}71050170_{7771}1)$	15551	
*** 8.	$10^{15550} + 4260624 \cdot 10^{7772} + 1$	or	$(10_{7771}42606240_{7771}1)$	15551	
8.	$10^{15550} + 3698963 \cdot 10^{7772} + 1$	or	$(10_{7771}36989630_{7771}1)$	15551	

^{*} Tetradic or 4-way prime

** Triadic or 3-way prime

*** Q-E-D palprime

Table 10. A: The TOP TEN Tetradic Prime Numbers

[4-way Palprimes]

[0, 1, 8]

				Digits	
* 1.	$10^{30802} + 1110111 \cdot 10^{15398} + 1$	or	$\left(10_{15397}1110111_{15397}1\right)$	30803	[H.D. :1999]
** 2.	$10^{28572} + 8 \cdot 10^{14286} + 1$	or	$(10_{14285}80_{14285}1)$	28573	
* 3.	$10 \cdot 110101 \cdot R(10080) / R(6) + 1$	or	$(110101)_{1680}1$	10081	
4.	$10^{6906} + 8811188181818811188 \cdot 10^{3445} + 1$	or	$(10_{3444}88111881818111880_{3444}1)$	6907	
* 5.	$10^{4840} + 1111111111 \cdot 10^{2416} + 1$	or	$(10_{2415}1_90_{2415}1)$	4841	
** 6.	$10^{4186} + 888 \cdot 10^{2092} + 1$	or	$(10_{2091}8880_{2091}1)$	4187	
7.	$10^{3628} + 8811188181818811188 \cdot 10^{1806} + 1$	or	$(10_{1805}88111881818111880_{1805}1)$	3629	
8.	$10^{3504} + 88111818881811188 \cdot 10^{1744} + 1$	or	$(10_{1743}881118188818111880_{1743}1)$	3505	
* 9.	$10^{2992} + 1111111111 \cdot 10^{1492} + 1$	or	$(10_{1491}1_90_{1491}1)$	2993	
* 10.	$10^{2810} + 1_5 \cdot 10^{1403} + 1$	or	$(10_{1402}1_50_{1402}1$	2811	

^{*} Anti-Yarborough palprime ** Quasi-even-digit palprime

Table 10. B: The TOP TEN Triadic Prime Numbers *

[3-way Palprimes]

[0, 1, 3, 8]

					Digits
1.	$10^{15640} + 3 \cdot 10^{7820} + 1$	or	$(10_{7819}30_{7819}1)$	15641	[H.D: 1999]
2.	$10^{11650} + 3 \cdot 10^{5825} + 1$	or	$(10_{5824}30_{5824}1)$	11651	
3.	$10 \cdot 13003 \cdot (10^{9240} - 1)/(10^5 - 1) + 1$	or	$(13003)_{1848}1$	9241	
4.	$10 \cdot 13388833 \cdot (10^{7560} - 1)/(10^8 - 1) + 1$	or	$(13388833)_{945}1$	7561	
5.	$10^{6572} + 3 \cdot 10^{3286} + 1$	or	$(10_{3285}30_{3285}1)$	6573	
6.	$10^{5030} + 11101310111 \cdot 10^{2510} + 1$	or	$(10_{2509}111013101110_{2509}1)$	5031	
7.	$10^{4594} + 3 \cdot 10^{2297} + 1$	or	$(10_{2296}30_{2296}1)$	4595	
8.	$10^{3830} + 3 \cdot 10^{1915} + 1$	or	$(10_{1914}30_{1914}1)$	3831	
9.	$10^{3054} + 131 \cdot 10^{1526} + 1$	or	$(10_{1525}1310_{1525}1)$	3055	
10.	$10^{2976} + 3 \cdot 10^{1488} + 1$	or	$(10_{1487}30_{1487}1)$	2977	

^{*} All discovered by H. Dubner

Table 10. C: The TOP TEN Quasi-Even-Digits Palindromic Prime Numbers $\left[\right.$ Q-E-D Palprimes; 0, 2, 4, 6, 8 $\left.\right]$

				Digits	E-D%	
*** 1.	$10^{28572} + 8 \cdot 10^{14286} + 1$	or	$(10_{14285}80_{14285}1)$	28573	99.99	[D. Heur: 2001]
2.	$10^{15550} + 4260624 \cdot 10^{7772} + 1$	or	$(10_{7771}42606240_{7771}1)$	15551	99.99	
3.	$10^{7058} + 2220222 \cdot 10^{3526} + 1$	or	$(10_{3525}22202220_{3525}1)$	7059	99.97	
* 4.	$10^{5744} + 6_{15} \cdot 10^{2865} + 1$	or	$(10_{2864}6_{15}0_{2864}1)$	5745	99.97	
** 5.	$10^{5250} + 666 \cdot 10^{2624} + 1$	or	$(10_{2623}6660_{2623}1)$	5251	99.96	
** 6.	$10^{4948} + 666 \cdot 10^{2473} + 1$	or	$(10_{2472}6660_{2472}1)$	4949	99.96	
* 7.	$10^{4784} + 6_{15} \cdot 10^{2385} + 1$	or	$(10_{2384}6_{15}0_{2384}1)$	4785	99.96	
*** 8.	$10^{4186} + 888 \cdot 10^{2092} + 1$	or	$(10_{2091}8880_{2091}1)$	4187	99.95	
* 9.	$10^{3322} + 6_{21} \cdot 10^{1651} + 1$	or	$(10_{1650}6_{21}0_{1650}1)$	3323	99.94	
* 10.	$10^{2752} + 6_{15} \cdot 10^{1369} + 1$	or	$(10_{1368}6_{15}0_{1368}1)$	2753	99.93	

^{*} Generalized beastly palindrome
Beastly palindrome
Tetradic or 4-way prime

Table 10. D: The TOP TEN Zero-free Palindromic Primes

[1, 2, 3, 4, 5, 6, 7, 8, 9]

		Digits	
* 1.	$(9_{6768}29_{6768})$	13537	[H.Dubner:1999]
* 2.	$(9_{5876}29_{5876})$	11753	
3.	$(1818535818)_{1008}1$	10081	
** 4.	$(159795)_{1680}1$	10081	
*** 5.	$(13388833)_{945}1$	7561	
* 6.	$(9_{2874}29_{2874})$	5749	
**** 7.	$(1676)_{1170}1$	4681	
* 8.	$(9_{1918}29_{1918})$	3837	
**** 9.	$(1676)_{948}1$	3793	
10.	$(11925291)_{450}1$	3601	

Near-repdigit prime All odd digits

Triadic prime Alternate digit prime

Table 10. E: The TOP TEN Near-Repdigit Palprimes

$[A_NBA_N]$

			Digits	
1.	$9R(13537) - 7 \cdot 10^{6768}$	or $(9_{6768}29_{6768})$	13537	[H.Dubner: 1999]
2.	$9R(11753) - 7 \cdot 10^{5876}$	or $(9_{5876}29_{5876})$	11753	
3.	$10^{5749} - 7 \cdot 10^{2874} - 1$	or $(9_{2874}29_{2874})$	5749	
4.	$10^{3837} - 7 \cdot 10^{1918} - 1$	or $(9_{1918}29_{1918})$	3837	
* 5.	$10^{3597} - 10^{1798} - 1$	or $(9_{1798}89_{1798})$	3597	
** 6.	$10^{3159} - 8 \cdot 10^{1579} - 1$	or $(9_{1579}19_{1579})$	3159	
** 7.	$10^{3017} - 8 \cdot 10^{1508} - 1$	or $9_{1508}19_{1508}$)	3017	
8.	$10^{2631} - 7 \cdot 10^{1315} - 1$	or $(9_{1315}29_{1315})$	2631	
* 9.	$10^{2493} - 10^{1246} - 1$	or $(9_{1246}89_{1246})$	2493	
*** 10.	$10^{2273} - 5 \cdot 10^{1136} - 1$	or $(9_{1136}49_{1136})$	2273	

^{*} All composite digits and curved digits

** All odd digits

*** All composite digits

Table 10. F: The TOP TEN All-Odd Digits Palprimes

[1, 3, 5, 7, or 9]

		Digits	
1.	$(159795)_{1680}1$	10081	[H.Dubner:1996]
* 2.	$9_{1579}19_{1579}$	3159	
3.	$(13919193)_{390}1$	3121	
4.	$(9_{1508}19_{1508})$	3017	
**5.	$(37)_{1441}3$	2883	
*** 6.	$(35_{1973}3)$	1975	
7.	$(19)_{984}1$	1969	
8.	$(37)_{946}3$	1893	
9.	$(15)_{895}1$	1791	
10.	$(1_{874}91_{874})$	1749	

^{*} Largest all odd, near-repdigit palprime

** Largest, smoothly undulating prime with prime digits

Plateau prime with prime digits

Table 10. G: The Top Beastly Palindromic Prime Numbers*

$$[(10^n + \underline{666}) \cdot 10^{n-2} + 1]$$

			Digits	
1.	$(10^{2626} + 666) \cdot 10^{2624} + 1$	or $(10_{2623}6660_{2623}1)$	5251	[H. Dubner: 1988]
2.	$(10^{2475} + 666) \cdot 10^{2473} + 1$	or $(10_{2472}6660_{2472}1)$	4949	
3.	$(10^{611} + 666) \cdot 10^{609} + 1$	or $(10_{608}6660_{608}1)$	1221	
4.	$(10^{509} + 666) \cdot 10^{507} + 1$	or $(10_{506}6660_{506}1)$	1017	
5.	$(10^{45} + 666) \cdot 10^{43} + 1$	or $(10_{42}6660_{42}1)$	89	
6.	$(10^{16} + 666) \cdot 10^{14} + 1$	or $(10_{13}6660_{13}1)$	31	
7.	$(10^3 + 666) \cdot 10 + 1$	or (16661)	5	

^{*} All discovered by H.Dubner

Table 10. G. 1: The TOP TEN Generalized Beastly Palindromic Primes

 $[10\dots\underline{X666X}\dots01]$

				Digits	
1.	$10^{9008} + 2166612 \cdot 10^{4501} + 1$	or	$(10_{4500}21666120_{4500}1)$	9009	[H.Dubner1990]
2.	$10^{5744} + 6_{15} \cdot 10^{2865} + 1$	or	$(10_{2864}6_{15}0_{2864}1)$	5745	
3.	$10^{4784} + 6_{15} \cdot 10^{2385} + 1$	or	$(10_{2384}6_{15}0_{2384}1)$	4785	
4.	$10^{3322} + 6_{21} \cdot 10^{1651} + 1$	or	$(10_{1650}6_{21}0_{1650}1)$	3323	
5.	$10^{2752} + 6_{15} \cdot 10^{1369} + 1$	or	$(10_{1368}6_{15}0_{1368}1)$	2753	
6.	$10^{2692} + 666999666999666 \cdot 10^{1339} + 1$	or	$(10_{1338}6_39_36_39_36_30_{1338}1)$	2693	
7.	$10^{2414} + 10536663501 \cdot 10^{1202} + 1$	or	$(10_{1201}105366635010_{1201}1)$	2415	
8.	$10^{2046} + 6_{15} \cdot 10^{1016} + 1$	or	$(10_{1015}6_{15}0_{1015}1)$	2047	
9.	$10^{1888} + 6660066600666 \cdot 10^{938} + 1$	or	$(10_{937}66600666006660_{937}1)$	1889	
10.	$10^{1812} + 6_{21} \cdot 10^{896} + 1$	or	$(10_{895}6_{21}0_{895}1)$	1813	

Table 10. H: The TOP TEN Pandigital, Palindromic Prime Numbers*

 $[\ 0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9\]$

				Digits	
1.	$10^{4954} + 976543282345679 \cdot 10^{2470} + 1$	or	$\left(10_{2469}9765432823456790_{2469}1\right)$	4955	HD:1987
2.	$10^{3826} + 234567989765432 \cdot 10^{1906} + 1$	or	$\left(10_{1905}2345679897654320_{1905}1\right)$	3827	
3.	$10^{3802} + 23456789198765432 \cdot 10^{1893} + 1$	or	$(10_{1892}234567891987654320_{1892}1)$	3803	
4.	$10^{3106} + 987654323456789 \cdot 10^{1546} + 1$	or	$(10_{1545}9876543234567890_{1545}1)$	3107	
5.	$10^{2594} + 23456789198765432 \cdot 10^{1289} + 1$	or	$(10_{1288}234567891987654320_{1288}1)$	2595	
6.	$10^{2468} + 23456789198765432 \cdot 10^{1226} + 1$	or	$(10_{1225}234567891987654320_{1225}1)$	2469	
7.	$10^{2220} + 56789123432198765 \cdot 10^{1102} + 1$	or	$(10_{1101}56789123432198765_{1101}1)$	2221	
8.	$10^{1890} + 23456790809765432 \cdot 10^{937} + 1$	or	$(10_{936}234567908097654320_{936}1)$	1891	
9.	$10^{1612} + 23456789298765432 \cdot 10^{798} + 1$	or	$(10_{797}234567892987654320_{797}1)$	1613	
10.	$10^{1522} + 234567989765432 \cdot 10^{754} + 1$	or	$(10_{753}2345679897654320_{753}1)$	1523	

^{*} All discovered by H. Dubner

Table 10. I: The TOP TEN Alternate-Digit Palprimes

 $[\ \mathrm{odd\text{-}even\text{-}odd}...\ \mathrm{-}odd\]$

		Digits	
1.	$(1676)_{1170}1$	4681	[H. Dubner: 1997]
2.	$(1676)_{948}1$	3793	
*3.	$(12)_{989}1$	1979	
**4.	$(1858)_{414}1$	1657	
**5.	$(1838)_{410}1$	1641	
*6.	$(14)_{815}1$	1631	
7.	$(1232)_{402}1$	1609	
*8.	$(12)_{798}1$	1597	
*9.	$(18)_{739}1$	1479	
*10.	$(12)_{699}1$	1399	

^{*} Smoothly undulating ** Undulating

Table 10. I. 1: The TOP TEN Primes w Alternating Unholey/Holey Digits

 $[\ 1,\ 2,\ 3,\ 5,\ 7/0,\ 4,\ 6,\ 8,\ 9\]$

		Digits	
1.	$(1676)_{1170}1$	4681	[H. Dubner: 1997]
2.	$(1676)_{948}1$	3793	
*3.	$(19)_{984}1$	1969	
**4.	$(1858)_{414}1$	1657	
**5.	$(1838)_{410}1$	1641	
*6.	$(14)_{815}1$	1631	
*7.	$(18)_{739}1$	1479	
*8.	$(16)_{480}1$	961	
9.	$(1474)_{231}1$	925	
**10.	$(1434)_{205}1$	821	

^{*} Smoothly Undulating ** Undulating

Table 10. I. 2: The TOP TEN Primes w. Alternating Straight/Curved Digits

 $[\ 1,\ 4,\ 7\ /\ 3,\ 6,\ 8,\ 9,\ 0\]$

		Digits	
1.	$(1676)_{1170}1$	4681	[H. Dubner: 1997]
2.	$(1676)_{948}1$	3793	
*3	$(37)_{1441}3$	2883	
*4.	$(19)_{984}1$	1969	
*5	$(37)_{946}3$	1893	
*6.	$(18)_{739}1$	1479	
*7.	$(16)_{480}1$	961	
*8.	$(37)_{424}3$	849	
*9.	$(37)_{157}3$	315	
*10.	$(16)_{114}1$	229	

^{*} Smoothly undulating

Table 10. I. 3: The TOP TEN Primes with Alternating Prime/Composite Digits

 $[\ 2,\ 3,\ 5,\ 7\ /\ 4,\ 6,\ 8,\ 9\]$

		Digits	
1.	$(92)_{97}9$	195	[H. Dubner: 1991]
2.	$(78)_{47}7$	95	
3.	$(38)_{28}3$	57	
4.	$(97)_{22}9$	45	
5.	$(97)_{13}9$	27	
6.	$(78)_{13}7$	27	
7.	$(78)_{10}7$	21	
8.	$(38)_{10}3$	21	
9.	$(95)_{8}9$	17	
10.	$(74)_87$	17	

Table 10. J: The TOP TEN Palprimes w. Composite Digits & The TOP TEN Holey Palprimes

[4, 6, 8, 9; 0]

		Digits	Holes	H/D %	
1.	$9_{1798}89_{1798}$	3597	3598	100.03%	[H. Dubner: 1989]
2.	$9_{1246}89_{1246}$	2493	2494	100.04%	
3.	$9_{1136}49_{1136}$	2273	2273	100.00%	
3 A.	$9_{874}8089_{874}$	1751	1753	100.11%	
* 3 B.	$9_{593}400049_{593}$	1191	1191	100.00%	
** 4.	989839	985	1968	199.80%	
5.	937889378	757	758	100.13%	
6.	$9_{104}49_{104}$	209	209	100.00%	
7.	$98_{203}9$	205	408	199.02%	
8.	$(98)_{80}9$	161	241	149.69%	
9.	$(94)_{71}9$	143	143	100.00%	
10.	98 ₁₁₃ 9	115	228	198.26%	

^{*} Holey palprime only

** Highest holes/digits percentage

Table 10. K: The TOP TEN Palprimes w. Curved Digits

 $[\ 0,\ 3,\ 6,\ 8,\ 9\]$

		Digits	
* 1.	$9_{1798}89_{1798}$	3597	[H. Dubner: 1989]
* 2.	$9_{1246}89_{1246}$	2493	
* 3.	$98_{983}9$	985	
* 4.	$9_{378}89_{378}$	757	
5.	$38_{631}3$	633	
6.	$38_{289}3$	291	
* 7.	$98_{203}9$	205	
8.	$3_{94}83_{94}$	189	
9.	$3_{85}83_{85}$	171	
* 10.	$(98)_{80}9$	161	

^{*} All composite digits

Table 10. L: The TOP TEN Unholey Palprimes

 $[\ 1,\ 2,\ 3,\ 5,\ 7\]$

		or	Digits
* 1.	$[(17275727273727273727275727)R_{3120}/R_{26}] \cdot 10 + 1$	$(17275727273727273727275727)_{120}1$	3121 H.D:1992
2.	$[(1(2)_{17}35553(2)_{17})(R_{3120}/R_{40})] \cdot 10 + 1$	$(1(2)_{17}35553(2)_{17})_{78}1$	3121
**3.	$370 \cdot ((100^{1441}) - 1)/99 + 3$	$(37)_{1441}3$	2883
* 4.	$[(173737573725727257272737573737)R_{2160}/R_{30}] \cdot 10 + 1$	$(173737573727572727572737573737)_{72}1$	2161
* 5.	$[(173737572727375757372727573737)R_{2160}/R_{30}] \cdot 10 + 1$	$(173737572727375757372727573737)_{72}1$	2161
* 6.	$[(173727375757572727575757372737)R_{2160}/R_{30}] \cdot 10 + 1$	$(173727375757572727575757372737)_{72}1$	2161
** 7.	$120 \cdot R(1978)/R(2) + 1$	$(12)_{989}1$	1979
*** 8.	$32 \cdot R(1974) + 1$	$35_{1973}3$	1975
**9.	$370 \cdot ((100^{946}) - 1)/99 + 3$	$(37)_{946}3$	1893
** 10.	$150 \cdot R(1790)/R(2) + 1$	$(15)_{895}1$	1791

^{*} Undulating prime

** Smoothly undulating prime

*** Largest prime with prime digits

Table 10. M: The TOP TEN Invertible Palprime Pairs

	$[\ 0,1,6,8,9\]$	Digits	
1A.	$\left(10_{1137}88088108180898081801880880_{1137}1\right)$	2301	H. Dubner: 2000
1B.	$\left(10_{1137}88088108180868081801880880_{1137}1\right)$	2301	
2A.	$(10_{1038}801111181089801811111080_{1038}1)$	2101	
2B.	$(10_{1038}801111181086801811111080_{1038}1)$	2101	
3A.	$(10_{748}800880081819181800880080_{748}1)$	1521	
3B.	$(10_{748}800880081816181800880080_{748}1)$	1521	
4A.	$(10_{742}18180101800898008101081810_{742}1)$	1511	
4B.	$(10_{742}18180101800868008101081810_{742}1)$	1511	
5A.	$(10_{736}8101880180118981108108810180_{736}1)$	1501	
5B.	$(10_{736}8101880180118681108108810180_{736}1)$	1501	
6A.	$\left(10_{735}100088010081819181800108800010_{735}1\right)$	1501	
6B.	$\left(10_{735}100088010081816181800108800010_{735}1\right)$	1501	
7A.	$\left(10_{685}808008808881009001888088008080_{685}1\right)$	1401	
7B.	$\left(10_{685}808008808881006001888088008080_{685}1\right)$	1401	
8A.	$(10_{685}181188011110189810111108811810_{685}1)$	1401	
8B.	$\left(10_{685}181188011110186810111108811810_{685}1\right)$	1401	
9A.	$\left(10_{685}111110888080189810808880111110_{685}1\right)$	1401	
9B.	$\left(10_{685}111110888080186810808880111110_{685}1\right)$	1401	
10A.	$\left(10_{685}100080108088089808808010800010_{685}1\right)$	1401	
10B.	$(10_{685}100080108088086808808010800010_{685}1)$	1401	

Table 10. N: The TOP TEN Smoothly Undulating Palprimes $[AB_NA] \label{eq:abs}$

		Digits	
1.	$(37)_{1441}3$	2883	[L.C. Noll: 1997]
2.	$(12)_{989}1$	1979	
3.	$(19)_{984}1$	1969	
4.	$(37)_{946}3$	1893	
5.	$(15)_{895}1$	1791	
6.	$(14)_{815}1$	1631	
7.	$(12)_{798}1$	1597	
8.	$(18)_{739}1$	1479	
9.	$(12)_{699}1$	1399	
10.	$(16)_{480}1$	961	

Table 10. O: The TOP TEN Palprimes w. Prime Digits

[2, 3, 5, 7]

		Digits		
* 1.	$(37)_{1441}3$	2883	[L.C. Noll:1997]	
** 2.	$35_{1973}3$	1975		
* 3.	$(37)_{946}3$	1893		
*** 4.	$32_{893}3$	895		
* 5.	$(37)_{424}3$	849		
***** 6.	$(2_P + 1)$	727		
** 7.	$35_{725}3$	727		
*** 8.	$72_{723}7$	725		
**** 9.	$7_{253}57_{253}$	507		
** 10.	$35_{461}3$	463		
* ** ** *** ***	Plateau Depression Near-rep Undulati	prime on prime digit pri ng prim		

(2p+1)=

Table 10. P: The TOP TEN Palindromic Quasi-Repdigit Prime Numbers $(AB_nA) \label{eq:abs}$

-		Repdigits	Repd. %	
1.	$35_{1973}3$	1973	99.90	[C.Rivera:1997]
2.	$13_{1469}1$	1469	99.86	
3.	$17_{1001}1$	1001	99.80	
4.	989839	983	99.80	
5.	$32_{893}3$	893	99.78	
6.	18 ₈₈₃ 1	883	99.77	
7.	$19_{729}1$	729	99.73	
8.	$35_{725}3$	725	99.72	
9.	$72_{723}7$	723	99.72	
10.	$38_{631}3$	631	99.68	

Table 10. P. 1: The TOP TEN $P^{latea}u$ Prime Numbers

 $(AB_nA), A < B$

		Repdigits	Repd. %	
1.	$35_{1973}3$	1973	99.90	[C.Rivera:1997]
2.	$13_{1469}1$	1469	99.86	
3.	$17_{1001}1$	1001	99.80	
4.	18 ₈₈₃ 1	883	99.77	
5.	$19_{729}1$	729	99.73	
6.	$35_{725}3$	725	99.72	
7.	$38_{631}3$	631	99.68	
8.	$78_{565}7$	565	99.65	
9.	$15_{561}1$	561	99.64	
10.	34 ₄₉₁ 3	491	99.59	

Table 10. P. 2: The TOP TEN $D_{epressio}n$ Prime Numbers $[\ (AB_nA),\ \ A>B\]$

		Repdigits	Repd. $\%$	
1.	989839	983	99.80	[R. Carr, etal: 2000]
2.	$32_{893}3$	893	99.78	
3.	$72_{723}7$	723	99.72	
4.	$31_{599}3$	599	99.67	
5.	$76_{573}7$	573	99.65	
6.	$74_{483}7$	483	99.59	
7.	$76_{453}7$	453	99.56	
8.	$75_{421}7$	421	99.53	
9.	$75_{349}7$	349	99.43	
10.	$31_{341}3$	341	99.42	

Table 10. Q: The TOP TEN Palprimes w. Straight Digits

		Digits	
1.	$(14)_{815}1$	1631	[C. Rivera:1997]
* 2.	R_{1031}	1031	
3.	$17_{1001}1$	1003	
4.	$(1474)_{231}1$	925	
5.	$(14)_{291}1$	583	
6.	$74_{483}7$	485	
7.	$(14)_{239}1$	479	
8.	$17_{365}1$	367	
9.	R_{317}	317	
10.	$(14)_{138}1$	277	

^{*} Largest known repunit prime: $(10^{1031} - 1)/9$

Table 10. R: The Five Repunit Primes Known *

$$[R_n = (10^n - 1)/9 = 1_n]$$

				Digits	
1.	$R_{1031} = (10^{1031} - 1)/9$	or	1_{1031}	1031	[H.C. Williams & H.Dubner:1985]
2.	$R_{317} = (10^{317} - 1)/9$	or	1_{317}	317	
3.	$R_{23} = (10^{23} - 1)/9$	or	1_{23}	23	
4.	$R_{19} = (10^{19} - 1)/9$	or	1_{19}	19	
5.	$R_2 = (10^2 - 1)/9$	or	1_2	2	

^{*} All other repunits up to R(49080) are composite

Table 10. S: The TOP TEN Known Palindromic Primes in Arithmetic Progression

								27 D	igits	
1.	742	950	290	879	090	978	092	059	247	[H.Dubner, T.Forbes, M.Toplic, etal: 1999]
2.	742	950	290	878	080	878	092	059	247	
3.	742	950	290	877	070	778	092	059	247	
4.	742	950	290	876	060	678	092	059	247	
5.	742	950	290	875	050	578	092	059	247	
6.	742	950	290	874	040	478	092	059	247	
7.	742	950	290	873	030	378	092	059	247	
8.	742	950	290	872	020	278	092	059	247	
9.	742	950	290	871	010	178	092	059	247	
10.	742	950	290	870	000	078	092	059	247	

 $\label{eq:common difference} \mbox{Common difference} = 1 \quad 010 \quad 100 \quad 000 \quad 000 \quad 000$

Table 11: The TOP TEN Primes with Square Digits

 $[\ 0,\ 1,\ 4,\ 9\]$

		Digits	
* 1.	$10_{15397}11101110_{15397}1$	30803	[H.Dubner:1999]
** 2.	19_{19233}	19234	
** 3.	49 ₁₆₁₃₁	16132	
** 4.	49 ₁₅₇₉₆	15797	
** 5.	19 ₁₅₇₄₉	15750	
6.	$4_{10200}0_{2893}1$	13094	
7.	$1_{10080}0_{2135}1$	12216	
8.	$9_{10080}0_{850}1$	10931	
9.	190 ₁₀₁₄₆ 1	10149	
10.	$4_{9240}0_{150}1$	9391	

^{*} Tetradic or 4-way prime ** Near repdigit string prime

Table 12: The TOP TEN Prime Numbers w. Cube Digits **

 $[\ 0,\ 1,\ 8\]$

		Digits	
* 1.	$\left(10_{15397}11101110_{15397}1\right)$	30803	[H. Dubner:1999]
* 2.	$(10_{14285}80_{14285}1$	28573	
3.	$8_{12600}0_{3704}1$	16305	
4.	$1_{10080}0_{2135}1$	12216	
5.	$8_{10080}0_{1002}1$	11083	
* 6.	$(110101)_{1680}1$	10081	
7.	$1_{6300}0_{2137}1$	8438	
* 8.	$(10_{3444}88111881818111880_{3444}1)$	6907	
9.	$1_{2700}0_{3155}1$	5856	
10.	$1_{2502}0_{2611}1$	5114	

^{*} Tetradic or 4-way prime ** All discovered by H. Dubner

Table 13: The TOP TEN Anti-Yarborough Primes with 1's and 0's Digits **

		Digits	
* 1.	$(10_{15397}11101110_{15397}1)$	30803	[H. Dubner:1999]
2.	$1_{10080}0_{2135}1$	12216	
* 3.	$(110101)_{1680}1$	10081	
4.	$1_{6300}0_{2137}1$	8438	
5.	$1_{2700}0_{3155}1$	5856	
6.	$1_{2502}0_{2611}1$	5114	
7.	$1_{2502}0_{2501}1$	5004	
* 8.	$(10_{2415}1_90_{2415}1)$	4841	
9.	$1_{3120}0_{210}1$	3331	
10.	$1_{2062}0_{1051}1$	3114	

^{*} Tetradic or 4-way prime ** All discovered by H. Dubner

Table 14: The TOP TEN Yarborough Prime Numbers

and

The TOP TEN Zero-Free Primes $\,$

 $[\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9;\ 1\]$

				Digits	
*1.	$10^{50103} - 4 \cdot 10^{50097} - 1$	or	$9_5(5)9_{50097}$	50103	[P. Carmody:2000]
**2.	$9 \cdot 10^{48051} - 1$	or	$(8)9_{48051}$	48052	
**3.	$9 \cdot 10^{41475} - 1$	or	$(8)9_{14175}$	41476	
*4.	$10^{38500} - 10^{18168} - 1$	or	$9_{20332}(8)9_{18168}$	38501	
**5.	$3 \cdot 10^{33058} - 1$	or	$(2)9_{33058}$	33059	
*6.	$10^{30007} - 10^{22717} - 1$	or	$9_{7290}(8)9_{22717}$	30008	
*7.	$10^{30006} - 10^{21425} - 1$	or	$9_{8581}(8)9_{21425}$	30007	
*8.	$10^{30005} - 10^{23906} - 1$	or	$9_{6099}(8)9_{23906}$	30006	
*9.	$10^{30004} - 10^{16623} - 1$	or	$9_{13380}(8)9_{16623}$	30004	
*9.	$10^{30004} - 10^{17794} - 1$	or	$9_{12209}(8)9_{17794}$	30004	
*9.	$10^{30003} - 10^{16681} - 1$	or	$9_{13322}(8)9_{16681}$	30004	
*9.	$10^{30003} - 10^{17640} - 1$	or	$9_{12363}(8)9_{17604}$	30004	

^{*} Near-repdigit prime ** Near-repdigit string prime () The "Odd" digit of that prime

Table 15: The TOP TEN Prime Twins

 $[K\cdot 2^N\pm 1]$

		Digits	
1.	$1807318575 \cdot 2^{98305} \pm 1$	29603	[D. Underbakke, P. Carmody: 2001]
2.	$665551035 \cdot 2^{80025} \pm 1$	24099	
3.	$1693965 \cdot 2^{66443} \pm 1$	20008	
4.	$83475759 \cdot 2^{64955} \pm 1$	19562	
5.	$4648619711505 \cdot 2^{60000} \pm 1$	18075	
6.	$2409110779845 \cdot 2^{60000} \pm 1$	18075	
7.	$2230907354445 \cdot 2^{48000} \pm 1$	14462	
8.	$871892617365 \cdot 2^{48000} \pm 1$	14462	
9.	$361700055 \cdot 2^{39020} \pm 1$	11755	
10.	$835335 \cdot 2^{39014} \pm 1$	11751	

Table 15. A: The TOP TEN Prime Triplets

[k- tuplets, k=3]

			Digits	
1.	p-1, p+1, p+5	$1852468459 \cdot 4999\#/35$	2141	[H. Rosenthal & P. Jobling:2001]
2.	p-1, p+1, p+5	$1042334284 \cdot 4999\#/35$	2141	
3.	p-1, p+1, p+5	$177299114 \cdot 4999 \# / 35$	2140	
4.	p-1, p-1, p+5	$1279378536 \cdot 4993 \# / 35$	2137	
5.	p-1, p+1, p+5	$508157676 \cdot 4993 \# / 35$	2137	
6.	p-1, p+1, p+5	$122194876 \cdot 4983 \# / 35$	2136	
7.	p-1, p+1, p+5	$1855266543 \cdot 4987 \# / 35$	2134	
8.	p-1, p+1, p+5	$167761138 \cdot 4987 \# / 35$	2134	
9.	p-5, p-1, p+1	$871453243 \cdot 4987 \# / 35$	2134	
10.	p-1, p+1, p+5	$388838923 \cdot 4987 \# / 35$	2133	

 $p\# = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \dots p$

Table 15. B: The Top K-tuplets of Primes

[k > 3]

$[Prime\ Quadruplets,\ Quintuplets,\ Sextuplets,\ etc.]$

			Digits	
1.	4-tuplets: p-7, p-5, p-1, p+1	$P = 8954571083387140525(2^{3423} - 2^{1141}) - 6 \cdot 2^{1141}$	1050	[T. Forbes: 1999]
2.	p-7, p-5, p-1, p+1	$P = 24947432928741915235(2^{3363} - 21121) - 6 \cdot 2^{1121}$	1032	
3.	p-7, p-5, p-1, p+1	$P = 17293378403589618790(2^{3363} - 2^{1121}) - 6 \cdot 2^{1121}$	1032	
4.	p-7, p-5, p-1, p+1	$P = 11984747204231082960(2^{3363} - 2^{1121}) - 6 \cdot 2^{1121}$	1032	
5.	p-7, p-5, p-1, p+1	$P = 3510160221387831655(2^{3363} - 2^{1121}) - 6 \cdot 2^{1121}$	1031	
6.	p-7, p-5, p-1, p+1	$P = 331426625784936325(2^{3363} - 2^{1121}) - 6 \cdot 2^{1121}$	1030	
7.	p-7, p-5, p-1, p+1	$P = 76912895956636885(2^{3279} - 2^{1093}) - 6 \cdot 2^{1093}$	1004	
8.	5-tuplets: p, p+4, p+6, p+10, p+12	$P = 3242281037 \cdot 900\# + 1867$	384	[M. Bell: 2000]
* 9.	6-tuplets: p, p+4, p+6, p+10, p+12, p+16	$p = 97953153175 \cdot 670\# + 16057$	290	[M.Bell, etal: 2001]
* 10.	7-tuplets: p, p+2, p+8, p+12, p+14, p+18, p+20	$P = 60922342070 \cdot 350\# + 5639$	152	[M.Bell: 2001]

^{*} $p^{\#} = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \dots p$

Table 16. A: The TOP TEN Near Rep
digit Prime Numbers AB_{n} [Streak or String Primes: ABBBBBBBB. . .B] $\,$

				Repdigits	
*1.	$9 \cdot 10^{48051} - 1$	or	89 ₄₈₀₅₁	48051	[H. Dubner & Y. Gallot: 2000]
* 2.	$9 \cdot 10^{41475} - 1$	or	89 ₄₁₄₇₅	41475	
3.	$3 \cdot 10^{33058} - 1$	or	29 ₃₃₀₅₈	33058	
4.	$3 \cdot 10^{26044} - 1$	or	29_{26044}	26044	
** 5.	$2 \cdot 10^{19233} - 1$	or	19 ₁₉₂₃₃	19233	
** 6.	$6 \cdot 10^{18668} - 1$	or	59_{18668}	18668	
* 7.	$5 \cdot 10^{16131} - 1$	or	49_{16131}	16131	
* 8.	$5 \cdot 10^{15796} - 1$	or	49_{15796}	15796	
** 9.	$2 \cdot 10^{15749} - 1$	or	19_{15749}	15749	
** 10.	$8 \cdot 10^{11336} - 1$	or	79_{11336}	11336	

^{*} All composite digits ** All odd digits

Table 16. B: The TOP TEN Near-Rep
digit Prime Numbers ${\cal A}_{n-k-1}{\cal B}{\cal A}_k$

				Digits	
1.	$10^{50103} - 4 \cdot 10^{50097} - 1$	or	9_559_{50097}	50103	[P. Carmody: 2000]
2.	$10^{38500} - 10^{18168} - 1$	or	$9_{20332}89_{18168}$	38501	
3.	$10^{30007} - 10^{22717} - 1$	or	$9_{7290}89_{22717}$	30008	
4.	$10^{30006} - 10^{21425} - 1$	or	$9_{8581}89_{21225}$	30007	
5.	$10^{30005} - 10^{23906} - 1$	or	$9_{6099}89_{23906}$	30006	
6.	$10^{30004} - 10^{16623} - 1$	or	$9_{13380}89_{16623}$	30004	
7.	$10^{30004} - 10^{17794} - 1$	or	$9_{12209}89_{17794}$	30004	
8.	$10^{30003} - 10^{16681} - 1$	or	$9_{13322}89_{16681}$	30004	
9.	$10^{30003} - 10^{17640} - 1$	or	$9_{12363}89_{17640}$	30004	
10.	$10^{30002} - 10^{21020} - 1$	or	$9_{8982}89_{21020}$	30003	

Table 16. C: The TOP TEN Near Rep
digit Prime Numbers ${\cal A}_n {\cal B}$ $[{\cal A}_N {\cal B}]$

[Streak or string primes: . . . AAAAAAAAB]

				Repdigits	Repd $\%$	
1.	$30 \cdot R(1917) + 1$	or	$3_{1917}1$	1917	99.95	[C. Rivera: 1997]
2.	$30 \cdot R(1731) + 1$	or	$3_{1731}1$	1731	99.94	
3.	$90 \cdot R(1656) + 1$	or	$9_{1656}1$	1656	99.94	
4.	$60 \cdot R(1599) + 1$	or	$6_{1599}1$	1599	99.94	
5.	$20 \cdot R(1493) + 1$	or	$2_{1493}1$	1493	99.93	
6.	$80 \cdot R(1421) + 7$	or	$8_{1421}7$	1421	99.93	
7.	$80 \cdot R(1418) + 1$	or	8 ₁₄₁₈ 1	1418	99.93	
8.	$70 \cdot R(1368) + 1$	or	$7_{1368}1$	1368	99.93	
9.	$60 \cdot R(1363) + 7$	or	$6_{1363}7$	1363	99.93	
10.	$20 \cdot R(1216) + 3$	or	$2_{1216}3$	1216	99.92	

Table 16. D: The TOP TEN Near-Repunit Prime Numbers

 $[1_{n-k-1}01_k]$

				Digits	
1.	$R(179) \cdot 10^{1485} + R(1484)$	or	$1_{179}01_{1484}$	1664	[C. Rivera: 1997]
2.	$R(396) \cdot 10^{686} + R(685)$	or	$1_{396}01_{685}$	1082	
3.	$R(359) \cdot 10^{721} + R(720)$	or	$1_{359}01_{720}$	1080	
4.	$R(370) \cdot 10^{632} + R(631)$	or	$1_{370}01_{631}$	1002	
5.	$R(29) \cdot 10^{973} + R(972)$	or	$1_{29}01_{972}$	1002	
6.	$R(741) \cdot 10^{260} + R(261)$	or	$1_{740}21_{260}$	1001	
7.	$R(534) - 10^{178}$	or	$1_{355}01_{178}$	534	
8.	$R(381) - 10^{127}$	or	$1_{253}01_{127}$	381	
9.	$R(332) - 10^{111}$	or	$1_{220}01_{111}$	332	
10.	$R(282) - 10^{188}$	or	$1_{93}01_{188}$	282	

Table 17: The TOP TEN Quasi-Repdigit Prime Numbers

 $[k \cdot 10^n + 1]$

				Repdigits	Repd. %	
* 1.	$3 \cdot 10^{27720} + 1$	or	$30_{27719}1$	27719	99.99	[J. Liddle & Y. Gallot: 2000]
* 2.	$3 \cdot 10^{10453} + 1$	or	$30_{10452}1$	10452	99.98	
** 3.	$6 \cdot 10^{4426} + 1$	or	$60_{4425}1$	4425	99.95	
** 4.	$6 \cdot 10^{2629} + 1$	or	$60_{2628}1$	2628	99.92	
* 5.	$3 \cdot 10^{2620} + 1$	or	$30_{2619}1$	2619	99.92	
** 6.	$6 \cdot 10^{2236} + 1$	or	$60_{2235}1$	2235	99.91	
* 7.	$7 \cdot 10^{2196} + 1$	or	$70_{2195}1$	2195	99.91	
*** 8.	$32 \cdot R(1974) + 1$	or	$35_{1973}3$	1973	99.90	
* 9.	$3 \cdot 10^{1900} + 1$	or	$30_{1899}1$	1899	99.89	
**** 10.	$12 \cdot R(1470) - 1$	or	$13_{1469}1$	1469	99.86	

Quasi-even-digits prime Almost-all-even-digits prime Plateau palindrome with all prime digits

Plateau palindrome

Table 18: The TOP TEN Factorial Prime Numbers

 $[N! \ \pm 1 \ = 1 \times 2 \times 3 \times 4 \dots N \pm 1]$

	$N! \pm 1$	Digits	
1.	6917! - 1	23560	[C. Caldwell & Y.Gallot: 1998]
2.	6380! + 1	21507	
3.	3610! - 1	11277	
4.	3507! - 1	10912	
5.	1963! - 1	5614	
6.	1477! + 1	4042	
7.	974! - 1	2490	
8.	872! + 1	2188	
9.	546! - 1	1260	
10.	469! - 1	1051	

Table 18. A: The TOP TEN Factorial -Plus-One Primes

$$[N!+1=1\times 2\times 3\times \ \dots \ N+1]$$

	N! + 1	Digits	
1.	6380! + 1	21507	[C. Caldwell & Y. Gallot:1998]
2.	1477! + 1	4042	
3.	872! + 1	2188	
4.	427! + 1	940	
5.	399! + 1	867	
6.	340! + 1	715	
7.	320! + 1	665	
8.	154! + 1	272	
9.	116! + 1	191	
10.	77! + 1	114	

[and the rest]

	N! + 1	Digits		N! + 1	Digits
11.	73! + 1	106	15.	11! + 1	8
12.	41! + 1	50	16.	3! + 1	1
13.	37! + 1	44	17.	2! + 1	1
14.	27! + 1	29	18.	1! + 1	1

Table 18. B: The TOP TEN Factorial -Minus-One Primes

$$[N!-1=1\times 2\times 3\times \ \dots \ N-1]$$

	N! - 1	Digits	
1.	6917! - 1	23560	[C. Caldwell & Y. Gallot: 1998]
2.	3610! - 1	11277	
3.	3507! - 1	10912	
4.	1963! - 1	5614	
5.	974! - 1	2490	
6.	546! - 1	1260	
7.	469! - 1	1051	
8.	379! - 1	815	
9.	324! - 1	675	
	166! - 1		

[and the rest]

	N! - 1	Digits		N! - 1	Digits
11.	94! - 1	147	17.	12! - 1	9
12.	38! - 1	45	18.	7! - 1	4
13.	33! - 1	37	19.	6! - 1	3
14.	32! - 1	36	20.	4! - 1	2
15.	30! - 1	33	21.	3! - 1	1
16.	14! - 1	11			

Table 19: The TOP TEN Primes of Alternating Sums of Factorials

$$[A_n = n! - (n-1)! + (n-2)! - + \dots - (-1)^n 1!]$$

1.
$$160! - 159! + 158! - \dots - 3! + 2! - 1!$$

285 [W.Keller:

2.
$$105! - 104! + 103! - \dots + 3! - 2! + 1!$$

3.
$$61! - 60! + 59! - \dots + 3! - 2! + 1!$$

4.
$$59! - 58! + 57! - \dots + 3! - 2! + 1!$$

5.
$$41! - 40! + 39! - \dots + 3! - 2! + 1!$$

6.
$$19! - 18! + 17! - \dots + 3! - 2! + 1!$$

7.
$$15! - 14! + 13! - \dots + 3! - 2! + 1!$$

8.
$$10! - 9! + 8! - \dots - 3! + 2! - 1!$$

9.
$$8! - 7! + 6! - 5! + 4! - 3! + 2! - 1!$$

10.
$$7! - 6! + 5! - 4! + 3! - 2! + 1!$$

[and the rest]

11.
$$6! - 5! + 4! - 3! + 2! - 1!$$

12.
$$5! - 4! + 3! - 2! + 1!$$

13.
$$4! - 3! + 2! - 1!$$

14.
$$3! - 2! + 1!$$

Table 20: The TOP TEN Primorial Prime Numbers

$$[P^{\#} \pm 1 = 2 \times 3 \times 5 \times 7 \times \dots P \pm 1]$$

- 1. $145823^{\#} + 1$ 63142 [Anderson & Robinson: 2000]
- $2. \quad 42209^{\#} + 1 \quad 18241$
- 3. $24029^{\#} + 1$ 10387
- $4. \quad \ 23801^{\#} + 1 \quad \ 10273$
- 5. $18523^{\#} + 1$ 8002
- 6. $15877^{\#} 1$ 6845
- 7. $13649^{\#} + 1$ 5862
- 8. $13033^{\#} 1$ 5610
- 9. $11549^{\#} + 1$ 4951
- 10. $6569^{\#} 1$ 2811

Table 20. A: The TOP TEN Primorial-Plus-One Primes

$$[P^{\#} + 1 = 2 \times 3 \times 5 \times \dots P + 1]$$

- 1. $145823^{\#} + 1$ 63142 [Anderson & Robinson: 2000]
- $2. \quad 42209^{\#} + 1 \quad 18241$
- $3. \quad 24029^{\#} + 1 \quad 10387$
- 4. $23801^{\#} + 1$ 10273
- 5. $18523^{\#} + 1$ 8002
- 6. $13649^{\#} + 1$ 5862
- 7. $11549^{\#} + 1$ 4951
- 8. $4787^{\#} + 1$ 2038
- 9. $4547^{\#} + 1$ 1939
- 10. $3229^{\#} + 1$ 1368

[and the rest]

- 11. $2657^{\#} + 1$ 1115
- 12. $1021^{\#} + 1$ 428
- 13. $1019^{\#} + 1$ 425
- 14. $379^{\#} + 1$ 154
- 15. $31^{\#} + 1$ 12
- 16. $11^{\#} + 1$ 4
- 17. $7^{\#} + 1$
- 18. $5^{\#} + 1$ 2
- 19. $3^{\#} + 1$ 1
- 20. $2^{\#} + 1$ 1

Table 20. B: The TOP TEN Primorial-Minus-One Primes

$$[P^{\#} - 1 = 2x3x5x7x\dots P - 1]$$

- 1. $15877^{\#} 1$ 6845 [C. Caldwell & H. Dubner: 1992]
- 2. $13033^{\#} 1$ 5610
- 3. $6569^{\#} 1$ 2811
- 4. $4583^{\#} 1$ 1953
- 5. $4297^{\#} 1$ 1844
- 6. $4093^{\#} 1$ 1750
- 7. $2377^{\#} 1$ 1007
- 8. $2053^{\#} 1$ 866
- 9. $1873^{\#} 1$ 790
- 10. $991^{\#} 1$ 413

[and the rest]

- 11. $337^{\#} 1$ 136
- 12. $317^{\#} 1$ 131
- 13. $89^{\#} 1$ 35
- 14. $41^{\#} 1$ 15
- 15. $13^{\#} 1$ 5
- 16. $11^{\#} 1$
- 17. $5^{\#} 1$ 2
- 18. $3^{\#} 1$ 1

Table 21: The TOP TEN Multifactorial Prime Numbers

 $[N!\ _k\pm 1]$

·		Digits	
1.	34706!!! - 1	47505	[S. Harvey: 2000]
2.	34626!!! - 1	47384	
3.	32659!!! + 1	44416	
4.	69114! ₇ – 1	43519	
5.	28565!!! + 1	38295	
6.	61467! ₇ – 1	38238	
7.	$54481!_{7} - 1$	33485	
8.	24753!!! + 1	32671	
9.	23109!!! - 1	30272	
10.	$41990!_{6} - 1$	29318	

Table 21. A: The TOP TEN Double Factorial Prime Numbers

$$[N !! \pm 1 = N \cdot (N-2) (N-4) (N-6) \dots (2) \pm 1]$$

- 1. 9682!! 1 17196 [B. deWater: 1999]
- $2. \quad 8670!! 1 \quad 15191$
- 3. 6404!! 1 10800
- 4. 3476!! 1 5402
- 5. 2328!! 1 3416
- 6. 888!! 1 1118
- 7. 842!! 1 1051
- 8. 728!! 1 886
- 9. 518!! + 1 593
- 10. 214!! 1 205

Table 21. B: The TOP TEN Triple Factorial Prime Numbers

$$[N :!!! \pm 1 = N \cdot (N-3) (N-6) (N-9) \cdots \pm 1]$$

- 1. 34706!!! 1 47505 [S. Harvey: 2000]
- $2. \quad 34626!!! 1 \quad 47384$
- $3. \quad 32659!!! + 1 \quad 44416$
- $4. \quad 28565!!! + 1 \quad 38295$
- 5. 24753!!! + 1 32671
- 6. $23109!!! 1 \quad 30272$
- $7. \quad 22326!!! + 1 \quad 29135$
- 8. 21725!!! + 1 28265
- $9. \quad 18037!!! + 1 \quad 22981$
- $10. \quad 16681!!! + 1 \quad 21065$

Table 21. C: The TOP TEN Quadruple Factorial Prime Numbers

$$[N : !!!! \pm 1 = N \cdot (N-4) (N-8) (N-12) \dots \pm 1]$$

		Digits	
1.	27780!!!! - 1	27848	[S. Harvey: 2000]
2.	25938!!!! - 1	25809	
3.	22726!!!! - 1	22287	
4.	19978!!!! - 1	19313	
5.	14614!!!! + 1	13632	
6.	12778!!!! - 1	11733	
7.	6586!!!! + 1	5575	
8.	5920!!!! - 1	4943	
9.	5680!!!! + 1	4717	
10.	5612!!!! + 1	4653	

Table 21. D: The TOP TEN Quintuple Factorial Prime Numbers

$$[N !!!!! \pm 1 = N \cdot (N-5) (N-10) (N-15) \cdots \pm 1]$$

		Digits	
1.	22753!!!!! - 1	17854	[B. deWater: 2000]
2.	21092!!!!! - 1	16412	
3.	12415!!!!! - 1	9090	
4.	12144!!!!! - 1	8868	
5.	11915!!!!! + 1	8681	
6.	10448!!!!! - 1	7493	
7.	10232!!!!! + 1	7320	
8.	9992!!!!! - 1	7128	
9.	9382!!!!! + 1	6641	
10.	9202!!!!! + 1	6498	

Table 21. E: The TOP TEN Sextuple Factorial Prime Numbers

$$[N!_{6} \pm 1 = N(N-6) (N-12) (N-18) \cdots \pm 1]$$

		Digits	
1.	41990! $_{6}-1$	29318	[R. Ballinger: 2000]
2.	$38618!_{\ 6} - 1$	26730	
3.	$29882!_{6} - 1$	20129	
4.	$25848!_{\ 6} - 1$	17141	
5.	25336! $_{6}-1$	16764	
6.	21906! $_{6}-1$	14264	
7.	$21432!_{6} - 1$	13922	
8.	$12798!_{6} + 1$	7837	
9.	12760! $_6 + 1$	7811	
10.	11250! $_6 + 1$	6784	

Table 21. F: The TOP TEN Septuple Factorial Prime Numbers

$$[N!_{7} \pm 1 = N(N-7) (N-14) (N-21) \cdots \pm 1]$$

		Digits	
1.	69144! ₇ – 1	43519	[R. Dohmen: 2000]
2.	61467! $_{7}-1$	38238	
3.	54481! ₇ – 1	33485	
4.	45811! ₇ – 1	27664	
5.	43328! ₇ – 1	26015	
6.	$40707!_{7} - 1$	24284	
7.	31386! ₇ – 1	18218	
8.	27430! ₇ – 1	15693	
9.	26598! ₇ – 1	15166	
10.	$24014!_{7} - 1$	13540	

Table 22: The TOP TEN Primes with Composite Digits

and

The TOP TEN Holey Primes $\,$

[4, 6, 8, 9; 0]

		Digits	Holes	
1.	89 ₄₈₀₅₁	48052	48053	[H. Dubner & Y. Gallot: 2000]
2.	89 ₄₁₄₇₅	41476	41477	
3.	$9_{20332}89_{18168}$	38051	38052	
4.	$9_{7290}89_{22717}$	30008	30009	
5.	$9_{8581}89_{21425}$	30007	30008	
6.	$9_{6099}89_{23906}$	30006	30007	
7.	$9_{13380}89_{16623}$	30004	30005	
7.	$9_{12209}89_{17794}$	30004	30005	
7.	$9_{13322}89_{16681}$	30004	30005	
7.	$9_{12363}89_{17640}$	30004	30005	

Table 23: The TOP TEN Undulating Prime Numbers

		or	Digits	
*1.	$10 \cdot 1704060407 \cdot R(12600)/R(10) + 1$	$(1704060407)_{1260}1$	12601	[HD: 1997]
*2.	$10 \cdot 1506484605 \cdot R_{9240}/R_{10} + 1$	$(1506484605)_{924}1$	9241	
*3.	$[(17275727273727273727275727) \cdot R_{3120}/R_{26}] \cdot 10 + 1$	$(17275727273727273727275727)_{120}1$	3121	
**4.	$(72323252323272325252)(10^{3120} - 1)/(10^{20} - 1) + 1$	$(72323252323272325252)_{156} + 1$	3120	
**5.	$(72323232723232525252)(10^{3120} - 1)/(10^{20} - 1) + 1$	$(72323232723232525252)_{156} + 1$	3120	
***6.	$370 \cdot ((100^{1441}) - 1)/99 + 3$	$(37)_{1441}3$	2883	
*7.	$[(173737573727572727572737573737)R_{2160}/R30] \cdot 10 + 1$	$(173737573727572727572737573737)_{72}1$	2161	
*8.	$[(173737572727375757372727573737)R_{2160}/R_{30}] \cdot 10 + 1$	$(173737572727375757372727573737)_{72}1$	2161	
*9.	$[(173727375757572727575757372737)R_{2160}/R_{30}] \cdot 10 + 1$	$(173727375757572727575757372737)_{72}1$	2161	
**10.	$(723232523232327272)(10^{2160}-1)/(10^{18}-1)+1$	$(723232523232327272)_{120} + 1$	2160	
**10.	$(523232525252327272)(10^{2160}-1)/(10^{18}-1)+1$	$(523232525252327272)_{120} + 1$	2160	

Palindrome

Anti-palindrome with prime digits
Smoothly undulating palindrome with prime digits

Table 24: The TOP TEN Primes with Curved Digits

 $[\ 0,\ 3,\ 6,\ 8,\ 9\]$

		Digits	
1.	89 ₄₈₀₅₁	48052	[H. Dubner & Y. Gallot: 2000]
2.	89_{41475}	41476	
3.	$9_{20332}89_{18168}$	38501	
4.	$9_{7290}89_{22717}$	30008	
5.	$9_{8581}89_{21425}$	30007	
6.	$9_{6099}89_{23906}$	30006	
7.	$9_{13380}89_{16623}$	30004	
7.	$9_{12209}89_{17794}$	30004	
7.	$9_{13322}89_{16681}$	30004	
7.	$9_{12363}89_{17640}$	30004	

Table 25: The TOP TEN Sophie Germain Primes

$$[P = k \cdot 2^n - 1 \; ; \; p = k\# \pm 1]$$

		Digits	
1.	$109433307 \cdot 2^{66452} - 1$	20013	[Underbakke, Jobling, Gallot: 2001]
2.	$984798015 \cdot 2^{66444} - 1$	20011	
3.	$3714089895285 \cdot 2^{60000} - 1$	18075	
4.	$18131 \cdot 22817 \# - 1$	9853	
5.	$18458709 \cdot 2^{32611} - 1$	9825	
6.	$415365 \cdot 2^{30052} - 1$	9053	
7.	$1051054917 \cdot 2^{25000} - 1$	7535	
8.	$885817959 \cdot 2^{24711} - 1$	7448	
9.	$1392082887 \cdot 2^{24680} - 1$	7439	
10.	$14516877 \cdot 2^{24176} - 1$	7285	

 $p\# = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \dots p$

Table 26: The TOP TEN Anti-Palindromic Prime Numbers

 $[D \cdot R_n \cdot 10^n \pm 1 \& k \cdot R_n / R_a + 1]$

		or	Digits	
**1.	$2 \cdot R_{3038} \cdot 10^{3038} + 1$	$2_{3038}0_{3037}1$	6076	H. D: 1990
**2.	$6 \cdot R_{2476} \cdot 10^{2476} + 1$	$6_{2476}0_{2475}1$	4952	
3.	$5 \cdot R_{2093} \cdot 10^{2093} + 1$	$5_{2093}0_{2092}1$	4186	
*4.	$(72323252323272325252)(10^{3120}-1)/(10^{20}-1)+1$	$(72323252323272325252)_{156} + 1$	3120	
*5.	$(72323232723232525252)(10^{3120}-1)/(10^{20}-1)+1$	$(72323232723232525252)_{156} + 1$	3120	
*6.	$(723232523232327272)(10^{2160}-1)/(10^{18}-1)+1$	$(723232523232327272)_{120} + 1$	2160	
*7.	$(523232525252327272)(10^{2160}-1)/(10^{18}-1)+1$	$(523232525252327272)_{120} + 1$	2160	
*8.	$(5232323252325252)(10^{2160}-1)/(10^{18}-1)+1$	$(5232323252325252)_{120} + 1$	2160	
9.	$4 \cdot R(975) \cdot 10^{975} - 1$	$4_{974}39_{975}$	1950	
10.	$3 \cdot R(835) \cdot 10^{835} + 1$	$3_{835}0_{834}1$	1670	

^{*} Undulating prime digits ** Almost all even digits

Table 27: The TOP TEN Generalized Repunit Primes *

 $[(b^n-1) / (b-1) ; b \neq 2 \text{ or } 10]$

		Digits	
1.	$(7568^{3361} - 1)/7567$	13034	[A. Steward: 2001]
2.	$(8854^{2521} - 1)/8853$	9947	
3.	$(7147^{2161} - 1)/7146$	8325	
4.	$(5701^{2161} - 1)/5700$	8113	
5.	$(4411^{2161} - 1)/4410$	7873	
6.	$(3709^{2161} - 1)/3708$	7710	
7.	$(6878^{1801} - 1)/6877$	6908	
8.	$(675065^{1153} - 1)/675064$	6716	
9.	$(402^{2521} - 1)/401$	6563	
10.	$(5507^{1621} - 1)/5506$	6061	

^{*} Excluding Mersenne and repunit primes

Table 28: The TOP TEN Strobogrammatic Primes (nonpalindromic)

 $[\ 0,\ 1,\ 6,\ 8,\ 9\]$

		Digits	
1.	$10_{2709}6669990_{2709}1$	5426	[H. Dubner: 1996]
2.	$10_{2301}6890_{2301}1$	4607	
3.	$6_{1527}19_{1527}$	3055	
4.	$10_{1313}9996660_{1313}1$	2634	
5.	$10_{1295}9996660_{1295}1$	2598	
6.	$10_{899}66689990_{899}1$	1807	
7.	$10_{801}99906660_{801}1$	1611	
8.	$10_{773}6890_{773}1$	1551	
9.	$10_{754}66609990_{754}1$	1517	
10.	$6_{685}19_{685}$	1371	

Table 29: The TOP TEN Beastly Primes (nonpalindromic) *

 $[\underline{666} \cdot 10^n + 1 = \underline{666}0000 \dots 0001]$

	<u>.——</u>			,
		or	Digits	
1.	$666 \cdot 10^{14020} + 1$	6660 ₁₄₀₁₉ 1	14023	[H. Dubner: 2000]
2.	$666 \cdot 10^{9198} + 1$	$6660_{9197}1$	9201	
3.	$666 \cdot 10^{4741} + 1$	$6660_{4740}1$	4744	
4.	$666 \cdot 10^{3076} + 1$	$6660_{3075}1$	3079	
5.	$666 \cdot 10^{2928} + 1$	$6660_{2927}1$	2931	
6.	$666 \cdot 10^{1592} + 1$	$6660_{1591}1$	1595	
7.	$666 \cdot 10^{718} + 1$	$6660_{717}1$	721	
8.	$666 \cdot 10^{619} + 1$	$6660_{618}1$	622	
9.	$666 \cdot 10^{580} + 1$	$6660_{579}1$	583	
10.	$666 \cdot 10^{373} + 1$	$6660_{372}1$	376	
		[and the re	est]	
11.	$666 \cdot 10^{48} + 1$	$6660_{47}1$	51	
12.	$666 \cdot 10^{30} + 1$	$6660_{29}1$	33	
13.	$666 \cdot 10^{12} + 1$	$6660_{11}1$	15	
14.	$666 \cdot 10^{10} + 1$	666091	13	
15.	$666 \cdot 10^2 + 1$	66601	5	
16.	$666 \cdot 10 + 1$	6661	4	

^{*} All discovered by H. Dubner

Table 30: The TOP TEN Sub $_{script}$ Prime Numbers *

		Digits	
1.	$1_{1000}2_{1000}3_{1000}4_{1000}5_{1000}6_{1000}7_{1000}8_{1000}9_{1000}0_{6645}1$	15646	[H. Dubner: 2000]
2.	$1_{1000}2_{1000}3_{1000}4_{1000}5_{1000}6_{1000}7_{1000}8_{1000}9_{1000}0_{3339}1$	12340	
3.	$1_{1}2_{2}3_{4}4_{8}5_{16}6_{32}7_{64}8_{128}9_{4220}$	4475	
4.	$2_2 3_4 4_8 5_{16} 6_{32} 7_{64} 8_{128} 9_{256} 0_{3207} 1$	3718	
5.	$1_{111}2_{111}3_{111}4_{111}5_{111}6_{111}7_{111}8_{111}9_{111}0_{1917}1\\$	2917	
6.	$1_{111}2_{111}3_{111}4_{111}5_{111}6_{111}7_{111}8_{111}9_{111}0_{1667}1$	2667	
7.	$1_{1}2_{2}3_{4}4_{8}5_{16}6_{32}7_{64}8_{128}9_{2145}$	2400	
8.	$1_{1}2_{2}3_{4}4_{8}5_{16}6_{32}7_{64}8_{128}9_{1866}$	2121	
9.	$1_{50}2_{50}3_{50}4_{50}5_{50}6_{50}7_{50}8_{50}9_{50}0_{1255}1$	1706	
10.	$1_{50}2_{50}3_{50}4_{50}5_{50}6_{50}7_{50}8_{50}9_{50}0_{1065}1$	1516	

^{*} All discovered by H. Dubner

Table 31: The TOP TEN Unholey Primes

 $[\ 1,\ 2,\ 3,\ 5,\ 7\]$

		or	Digits
*1.	$[(17275727273727273727275727) \cdot R_{3120}/R_{26}] \cdot 10 + 1$	$(17275727273727273727275727)_{120}1$	3121 HD:1992
**2.	$[(1(2)_{17}35553(2)_{17})(R_{3120}/R_{40})] \cdot 10 + 1$	$(1(2)_{17}35553(2)_{17})_{78}1$	3121
***3.	$(72323252323272325252)(10^{3120}-1)/(10^{20}-1)+1$	$(72323252323272325252)_{156} + 1$	3120
***4.	$(72323232723232525252)(10^{3120}-1)/(10^{20}-1)+1$	$(72323232723232525252)_{156} + 1$	3120
*5.	$370 \cdot ((100^{1441}) - 1)/99 + 3$	$(37)_{1441}3$	2883
*6.	$[(173737573727572727572737573737)R_{2160}/R_{30}]\cdot 10 + 1$	$(173737573727572727572737573737)_{72}1$	2161
*7.	$[(173737572727375757372727573737)R_{2160}/R_{30}]\cdot 10 + 1$	$(173737572727375757372727573737)_{72}1$	2161
*8.	$[(173727375757572727575757372737)R_{2160}/R_{30}]\cdot 10 + 1$	$(173727375757572727575757372737)_{72}1$	2161
****9.	$(752275532)(10^{2160} - 1)/(10^9 - 1) + 1$	$(752275532)_{240} + 1$	2160
***10.	$(723232523232327272)(10^{2160}-1)/(10^{18}-1)+1$	$(723232523232327272)_{120} + 1$	2160
****10.	$(575253222)(10^{2160} - 1)/(10^9 - 1) + 1$	$(575253222)_{240} + 1$	2160

^{*} Undulating and palindromic

** Palindromic

Undulating anti-palindromic with all prime digits

All prime digits

Table 32: The TOP TEN Prime Numbers with Prime Digits

 $[\ 2,\ 3,\ 5,\ 7\]$

		or	Digits
*1.	$(72323252323272325252)(10^{3120} - 1)/(10^{20} - 1) + 1$	$(72323252323272325252)_{156} + 1$	3120 HD:1992
*2.	$(72323232723232525252)(10^{3120}-1)/(10^{20}-1)+1$	$(72323232723232525252)_{156} + 1$	3120
**3.	$370 \cdot ((100^{1441}) - 1)/99 + 3$	$(37)_{1441}3$	2883
4.	$(752275532)(10^{2160} - 1)/(10^9 - 1) + 1$	$(752275532)_{240} + 1$	2160
* 5.	$(723232523232327272)(10^{2160}-1)/(10^{18}-1)+1$	$(723232523232327272)_{120} + 1$	2160
6.	$(575253222)(10^{2160}-1)/(10^9-1)+1$	$(575253222)_{240} + 1$	2160
*7.	$(523232525252327272)(10^{2160}-1)/(10^{18}-1)+1$	$(523232525252327272)_{120} + 1$	2160
*8.	$(5232323252325252)(10^{2160}-1)/(10^{18}-1)+1$	$(523232325232525252)_{120} + 1$	2160
***9.	$(323232727272327272)(10^{2160}-1)/(10^{18}-1)+1$	$(323232727272327272)_{120} + 1$	2160
10.	$(323222)(10^{2160} - 1)/(10^6 - 1) + 1$	$(323222)_{360} + 1$	2160

^{*} Anti-palindromic with undulating digits

** Undulating digits and palindrome

*** Undulating digits

Table 33: The TOP TEN Lucas Prime Numbers

 $[L_n = \underline{2}, 1, \underline{3}, 4, \underline{7}, \underline{11}, 18, \underline{29}, \underline{47}, \dots]$

		Digits			
1.	L(35449)	7909	[B. DeV	Vater: 2	001]
2.	L(14449)	3020			
3.	L(10691)	2235			
4.	L(8467)	1770			
5.	L(7741)	1618			
6.	L(5851)	1223			
7.	L(4793)	1002			
8.	L(4787)	1001			
9.	L(1361)	285			
10.	L(1097)	230			
		[and t	he rest]		
11. 12.	L(863) L(617)	181 129	24. 25.	L(37) L(31)	8 7
13.	L(613)	129	26.	L(19)	4
14.	L(503)	106	27.	L(17)	4
15.	L(353)	74 cc	28.	L(16)	4
16. 17.	L(313) L(113)	66 24	29. 30.	L(13) $L(11)$	3
18.	L(79)	17	30. 31.	L(11) $L(8)$	2
19.	L(71)	15	32.	L(7)	2
20.	L(61)	13	33.	L(5)	2
21.	L(53)	12	34.	L(4)	1
22.	L(47)	10	35.	L(2)	1
23.	L(41)	9	36.	L(0)	1

Table 34: The TOP TEN Prime Fibonacci Numbers

 $[F_n = 1, 1, \underline{2}, \underline{3}, \underline{5}, 8, \underline{13}, 21, 34, \dots]$

		Digits	
1.	F(9677)	2023	[B. deWater: 2000]
2.	F(9311)	1946	
3.	F(5387)	1126	
4.	F(4723)	987	
5.	F(2971)	621	
6.	F(571)	119	
7.	F(569)	119	
8.	F(509)	107	
9.	F(449)	94	
10.	F(433)	91	

[and the rest]

		D			D
11.	F(431)	90	19.	F(23)	5
12.	F(359)	75	20.	F(17)	4
13.	F(137)	29	21.	F(13)	3
14.	F(131)	28	22.	F(11)	2
15.	F(83)	17	23.	F(7)	2
16.	F(47)	10	24.	F(5)	1
17.	F(43)	9	25.	F(4)	1
18.	F(29)	6	26.	F(3)	1

Table 35: The TOP TEN Countdown Prime Numbers

[10 or 9 8 7 6 5 4 3 2 1]

		Digits	
1.	$9876543210_{2002}1$	2012	[C. Rivera: 1997]
2.	$(987654321)_{10}0_{1515}1$	1606	
3.	$(987654321)_{10}0_{1388}1$	1479	
4.	$(987654321)_{10}0_{1291}1$	1382	
5.	$(9876543210)_{10}0_{1222}1$	1323	
*6.	$(1098765432)_{131}1098765433$	1320	
7.	$(987654321)_{10}0_{979}1$	1070	
**8.	$(10987654321234567890)_{42}1$	841	
9.	$(9876543210)_{38}1$	381	
10.	$(9876543210)_91$	91	

^{*} Antipalindrome ** Almost-equi-pandigital palindrome

Table 36: The TOP TEN Reversible Primes (nonpalindromic)

 $[\ 10_{xxx}"REVERSE"0_{xxx}1\]$

		Digits	
1.	$10_{850}20471010_{850}1$	1709	[H. Dubner: 1997]
2.	$10_{849}74408010_{849}1$	1707	
3.	$10_{749}26149310_{749}1$	1507	
4.	$10_{747}83012010_{747}1$	1503	
5.	$10_{600}40544310_{600}1$	1209	
6.	$10_{503}28886010_{503}1$	1015	
7.	$10_{502}40982210_{502}1$	1013	
8.	$10_{500}16338110_{500}1$	1009	
* 9.	$10_{496}959260987654320_{495}1$	1007	
10.	$10_{496}40100210_{496}1$	1001	

^{*} Pandigital

Table 37: The TOP TEN Primes with Straight Digits

 $[\ 1,\ 4,\ 7\]$

		Digits	
* 1.	$(14)_{815}1$	1631	[C. Rivera: 1997]
** 2.	$7_{1368}1$	1369	
** 3.	$7_{1066}1$	1067	
*** 4.	R_{1031} or 1_{1031}	1031	
5.	17 ₁₀₀₁ 1	1003	
** 6.	$7_{924}1$	925	
* 7.	$(1474)_{231}1$	925	
* 8.	$(14)_{291}1$	583	
** 9.	17 ₅₁₀	511	
* 10.	$74_{483}7$	485	

Palindrome Near repdigit prime Repunit palindrome

Table 38: The TOP TEN Primes with Largest Unique Periods

		or	Period	Digits
1.	$10_{125}9_{249}89_{124}89_{125}0_{249}10_{124}1$		3750	1001
* 2.	$(10^{1132} + 1)/10001$	$(99990000)_{141} + 1$	2264	1128
3.	$(10_{12}9_{23}89_{12}0_{23})_50(9_{23}89_{12}0_{23}10_{12})_5 + 1$		2232	721
* 4.	$(10^{922} + 1)/(101)$	$(9900)_{230} + 1$	1844	920
5.	$(100999899000)_{25}0(999899000100)_{25} + 1$		1812	601
6.	$(10_49_789_40_7)_{12}0(9_789_40_710_4)_{12} + 1$		1752	577
* 7.	$(9_{39}0_{78})_4(9_{78}0_{39})_4 + 1$		1521	936
** 8.	$(10^{641} + 1)/11$	$(90)_{320} + 1$	1282	640
* 9.	$(10^{586} + 1)/101$	$(9900)_{146} + 1$	1172	584
*** 10.	R_{1031}	1 ₁₀₃₁	1031	1031

^{*} Antipalindromic

** Undulating and antipalindromic

*** Largest known repunit

Table 39: The TOP TEN Absolute Prime Numbers

\mathbf{T}	٠.	•	
- 1	11	മാ	ΤC

1.	R_{1031}	1031	(H. C. Williams & H. Dubner:	1985]
----	------------	------	------------------------------	-------

- 2. R_{317} 317
- 3. R_{23} 23
- 4. R_{19} 19
- * 5. 991 3
- * 6. 919 3
- * 7. 733 3
- * 8. 373 3
- * 9. 337 3
- * 10. 311 3

[and the rest]

Actual Primes					
11.	199	19.	31		
12.	131	20.	17		
13.	113	21.	13		
14.	97	22.	11		
15.	79	23.	7		
16.	73	24.	5		
17.	71	25.	3		

26. 2

18.

37

^{*} Actual Primes

Table 40: the TOP TEN Consecutive Primes in Arithmetic Progression $\,$

 $[\ P,\ P+210,\ P+420,\ P+630,\ P+840,\ P+1050,\ P+1260,\ P+1470,\ P+1680,\ P+1890\]$

1.	P + 1890	= 100			66555 03348			24689	19004
2.	P + 1680	= 100	99697			 . 31399			
3.	P + 1470	= 100	99697			 . 31189			
4.	P + 1260	= 100	99697			 . 30979			
5.	P + 1050	= 100	99697			 . 30769			
6.	P + 840	= 100	99697			 . 30559			
7.	P + 630	= 100	99697			 . 30349			
8.	P + 420	= 100	99697			 . 30139			
9.	P + 210	= 100	99697			 . 29929	·.		
10.	P	= 100			66555 03348			24589	19004

Discovered in 1998 by M. Toplic et l, these 93-digit primes have a common difference of 210.

Table 41: The TOP TEN Known Prime Factors of Googolplex Plus One

		Digits	
1.	$370791604769783808 \cdot 10^{63} + 1$	81	[R. Harley: 1994]
2.	$156941061512238345486336 \cdot 10^{48} + 1$	72	
3.	$353433491556781785088 \cdot 10^{50} + 1$	71	
4.	$325123864299130847232 \cdot 10^{42} + 1$	63	
5.	$83010348331692982272 \cdot 10^{41} + 1$	61	
6.	$8019958276735747672058735099904 \cdot 10^{21} + 1$	52	
7.	$493333612765059415097397477376\cdot 10^{21} + 1$	51	
8.	$98231572083407610249634223245754368 \cdot 10^8 + 1$	43	
9.	$73994152028165749791270453116928 \cdot 10^{11} + 1$	43	
10.	$4951760157141521099596496896\cdot 10^{14} + 1$	42	

Table 42: Ten Types of "Rare" Prime Numbers

		Number Known
A.	Generalized Fermat Prime (or Depression Prime) of the type: $10^{2^n}+1;\ n=1.$	(1)
В.	Sequential prime of the type: $(1234567890)_n1$; $n = 17, 56$.	(2)
С.	Almost-equipandigital prime of the type: $(12345678901098765432)_n1$; $n = 6, 16$.	(2)
D.	Type: $n^{n^n} + 1$; $n = 1, 2$.	(2)
E.	Type: $n^n + 1$; $n = 1, 2, 4$.	(3)
F.	Wilson primes (p): 5, 13, 563; $(p-1)! + 1$ divisible by p^2 .	(3)
G.	Near repdigit type: 8_n9 ; $n = 1, 13, 16, 34.$	(4)
Н.	Fermat primes: $2^{2^n} + 1$; $n = 0, 1, 2, 3, 4$.	(5)
I.	Repunit primes: $R(n)$: $n = 2, 19, 23, 317, 1031$.	(5)
J.	Beastly palindrome of the type: $(10^n + 666) \cdot 10^{n-2} + 1$; $n = 3, 16, 45, 509, 611, 2475, 2626.$	(7)