STAT1005 Week 6 Cheat Sheet

Geometric Distribution

- Negative binomial with r = 1
 - Pmf: nb(x; 1, p) = $\int (1 p)^{x-1} p$, x = 1, 2, 3, ...otherwise
- If we redefine X to be the number of failures, then
 - $nb(x; 1, p) = (1 p)^{x}p$,
- x = 0, 1, 2, ...

- E[X] = 1/p
- $Var(X) = \frac{(1-p)}{p^2}$

Hypergeometric Distribution

- Binomial distribution is the exact probability model for sampling with replacement from a finite dichotomous population, with an approximate probability model for sampling without replacement
- The hypergeometric distribution is the **exact** probability model for the number of successes when we sample without replacement
- 1. N is finite population to be sampled
- 2. Each individual is a success (S) or failure (F), are there are M successes in the population
- 3. n is the sample of individuals selected without replacement
- Random variable of interest is X = the number of sucesses (S) in the sample
 - To find the pmf:
 - $P(X = x) = h(x; n, M, N) = \frac{\binom{m}{\infty}\binom{N-M}{n-\infty}}{\binom{N}{n}}$ For integer x satisfying max $(0, n N + M) \le x \le min(n, m)$ *
- E[X] = n. M
- $Var(X) = \frac{N}{N-n} \cdot n \cdot \frac{M}{N} \left(1 \frac{M}{N}\right)$

Poisson Distribution/Exponential Distribution

- Used where we count the number of successes in a particular region or interval of time
- A random variable X is said to have a Poisson distribution with parameter λ (λ > 0) if the pmf of X is:

•
$$p(x; \lambda) = \underbrace{e^{-\lambda} \lambda^{x}}_{\infty}$$
, $x = 0, 1, 2, ...$

- If X has a Poisson distribution with parameter λ , we write that X ~ Pois(λ), and it has mean and variance;
 - $E[X] = Var(X) = \lambda$
- A binomial with $n \to \infty$ and $p \to 0$ in such as way that $np \to a$ value $\lambda > 0$, then it tends toward a poisson distribution.
 - In practice, the approximation can be used if n > 50 and np > 5
- It is poisson if
 - · Events occur randomly in time
 - Uniform rate
 - Independent
 - P(event in $(t, t + \delta t)$) = $\mu \delta t + o(\delta t)$
- The poisson distribution can be used as an approximate for a binomial distribution
 - Where $\lambda = E[X]$ of the binomial = np

Continuous Random Variables

- A random variable is continuous if:
 - Its possible values comprise either a single interval on the number line or a union of disjoint intervals, and
 - P(X = c) = 0 for any number c that is a possible value of X
- For continuous variables they might only be able to take discrete measurements, but we still treat them as continuous.
- When X is a continuous random variable, then the pdf of X is a function f(x) such that for any two numbers a and b with a ≤ b,
 - $P(a \le X \le b) = \int_a^b f(x) dx$
 - For f(x) to be a legitimate pdf, it must satisfy:
 - $f(x) \ge 0$ for all x
 - $-\int_{\infty}^{\infty} f(x) dx = 1$
- It does not matter if the upper or lower limit are included, the value will be the same
 - $P(a \le X \le b) = P(a < x < b)$

Uniform Distribution

• A continuous random variable X is said to have a uniform distribution on the interval [A, B] if the pdf of X is

•
$$f(x; A, B) = \begin{cases} \frac{1}{B - A}, & A \le x \le B \\ 0, & \text{otherwise} \end{cases}$$

- We denote this by X ~ Unif[A, B]
- E[X] = A + B
- $Var(X) = \underbrace{(B A)^2}_{12}$

Continuous Numerical Variables

- · Distribution symbols
 - µ population mean
 - x sample mean
 - σ² (population) variance
 - s²- sample variance

Hypothesis Testing

- Confidence intervals are one of two common types of statistical inference
- · Confidence intervals are used when the goal is to estimate a population parameter
- Test of significance is used when the goal is to assess the evidence provided by the data about some claim concerning the population
 - Make a claim (the null hypothesis) and test it against an alternative claim (the alternative hypothesis)
 - An outcome the would rarely happen if a claim were true is good evidence that the claim is not true.
- 1. Set up a null hypothesis, a claim we believe to be true
- 2. Set up an alternative hypothesis, a claim that challenges the null hypothesis
- 3. Start by assuming that the null hypothesis is true
- 4. Sampling distribution: If the null hypothesis is really true, then the proportion of heads in the sample (b) will have a Normal distribution
- 5. Calculate the p-value, which is the probability, in either direction, of observing a value as large as what we actually observed, given the null hypothesis.

· P-Value and Statistical Significance

- The probability, computed assuming H₀ is true, that the statistic would take a value as
 extreme as or more extreme than the one actually observed is called the p-value of the test.
 - The smaller the p-value, the stronger the evidence against Ho provided by the data
 - Small p-values are evidence against H₀ because they say that the observed result is unlikely to occur when H₀ is true
 - Large p-values fail to give convincing evidence against H₀ because they say that the
 observed result could have occurred by chance if H₀ were true
- · Our conclusion in a significance test:
 - P-value small → reject H₀ → conclude H_A (in context)
 - P-value large → fail to reject H₀ → cannot conclude H_A (in context)
- There is no rule for how small a p-value we should require in order to reject H it's a matter
 of judgement and depends on the specific circumstances
 - We can compare the p-value to a fixed value that we regard as decisive called the significance level (generally 0.05, or 0.01)
 - When our p-value is less than the chosen significance level, we say that the result is statistically significant

Large Sample Tests for a Population Proportion

- State: What is the practical question that requires a statistical test?
- Plan: Identify the parameter, state null and alternative hypotheses, and choose the type of test that fits your situation
- · Solve: Carry out the test in three phases:
 - · 1. Check the conditions for the test you plan to use
 - · 2. Calculate the test statistic
 - 3. Find the p-value
- · Conclude: Return to the practical question to describe your result in this setting

• Significance Tests for a Proportion

- Draw an SRS of size n from a large population with an unknown proportion of p successes.
 To test the hypothesis H: p = ph, compute the z statistic
 - $z = (\hat{p} p_0)/p_0(1 p_0)/n$
- In terms of variable Z having the standard Normal distribution, the approximate P-value for a test of H against
 - H: p > p₀ is P(Z ≥ z)
 H: p < p₀ is P(Z ≥ z)
 - H : p \neq p₀ is $2xP(Z \ge |z|)^{\frac{1}{2}}$
- Cautions about significance test:
 - Hypotheses always refer to the population, not to a particular outcome.
 - State H₀ and H_A in terms of population parameters
 - The hypotheses should express hopes and suspicions, it is not ethical to look at the data and then frame the hypotheses to fit
 - Failing to find evidence against H_o means only that the data are not inconsistent with H_o, not that we have clear evidence that H_o is true.
 - Only data that are inconsistent with H_o provide evidence against H_o
 - There is no sharp border between "significant" and "not significant", only increasingly strong evidence as the p-value decreases.
 - P values are relatively arbitrary
 - How important an effect is depends on the size of the effect as well as on its statistical significance
 - · Might not be practically important