Bell Work (10 – 12 minutes)

Solve for x:

Solve for x:

$$|3x - 5| + 7 = 26$$

$$12 > 4 | 2x + 7 |$$

Put these examples in your notes... you can use them for the quiz that we will take **next class time**.

*The next slide will help if needed.

(Copy into notes 5 – 8 minutes) Solve for x:

$$|3x - 5| + 7 = 26$$

$$-7 - 7$$

$$|3x - 5| = 19$$

There are two possible answers...

$$3x - 5 = 19$$
 or $3x - 5 = -19$
+5 +5 +5 +5
 $3x = 24$ $3x = -14$

$$x = 8$$
 or $x = -14/3$

Solve for x:

3 > 2x + 7 or

$$\frac{12 > 4|2x+7|}{4}$$

$$3 > |2x+7|$$

Flip sign Because Answer Was negative

-3 < 2x + 7

There are two possible answers...

$$-4 > 2x \quad \text{or} \qquad -10 < 2x$$

$$-2 > x \quad \text{or} \qquad -5 < x$$

Doesn't flip because we divided by a positive 2

From Last Time... (18 – 20 minutes)

New Material

Page 45 #2-5, 29, 45, 65

Mixed Review

Page 48 #96, 99

ALGEBRA 3

Day 11

Chapter 2 Section 3 Linear Equations (20 – 30 minutes)

Objective: To write, graph, and solve linear equations

3 Linear Function Formulas

1.)
$$slope \rightarrow \frac{vertical\ change\ (rise)}{horizontal\ change\ (run)} = \frac{y_2 - y_1}{x_2 - x_1}$$

2.)
$$slope - intercept \ form \rightarrow y = mx + b$$

3.) point
$$-$$
 slope form $\rightarrow y - y_1 = m(x - x_1)$

Note: the points are (x_1, y_1) and (x_2, y_2) and slope is m

Don't Memorize Them, Apply Them

Given the following two points, find the slope, write the equation.

(-6, 4) and (-2, -12)

Given the following two points, find the slope, write the equation.

$$(x_1, y_1) \ and (x_2, y_2)$$

$$(-6, 4) \ and (-2, -12)$$

$$slope = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(-12) - (4)}{(-2) - (-6)} = \frac{-16}{4} = -4$$

point - slope form
$$\rightarrow y - y_1 = m(x - x_1)$$

 $y - (4) = -4(x - (-6)) \rightarrow y - 4 = -4x - 24 \rightarrow y = -4x + 28$

Given the following two points, find the slope, write the equation – with color to help visualize.

$$(x_1, y_1)$$
 and (x_2, y_2)
(-6, 4) and (-2, -12)

slope =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{(-12) - (4)}{(-2) - (-6)} = \frac{-16}{4} = -4$$

point - slope form
$$\rightarrow y - y_1 = m(x - x_1)$$

 $y - (4) = -4(x - (-6)) \rightarrow y - 4 = -4x - 24 \rightarrow y = -4x + 28$

What else could they ask us?

Given: (-6, 4) and (-2, -12)

What else could they ask us?

Given: (-6, 4) and (-2, -12)

Some Examples:

What is the distance between (how far apart are they) these two points?

What is the midpoint of these two points?

Graph.

Graph the following. Is it a function?

$$4y - 2x = -12$$

Graph the following. Is it a function?

$$4y - 2x = -12$$

Plug in the following x and solve for y

X	y
-2	
-1	
0	
1	
2	

Graph the following.

$$4y - 2x = -12$$

Graph the following points now

X	y
-2	-4
-1	-14/4= -3.5
0	-3
1	-10/4= -2.5
2	-2

Graph the following. Another option... solve the equation for y and then type into your

calculator!

$$4y - 2x = -12$$

$$4y = 2x - 12$$

$$y = \frac{2x-12}{4}$$

$$y = \frac{1}{2}x - 3$$

Quick Check for Understanding

Describe the slope between the following two special cases.

(4, 2) and (4, -6)

Can you write the equation of the line that passes through these two points?

Can you graph the line?

For Next Time... (20 – 30 minutes)

New Material

Page 78 #4-6, 23, 31, 37, 50

Mixed Review

Page 80 #68, 69, 71