

WHAT IS CLAIMED IS:

Subj B1

1. An apparatus for executing a secure program in a computer system,
2 wherein the ability to make workable copies of the secure program from the computer
3 system is inhibited, the apparatus comprising:
4 a program memory in which the secure program data is stored in an
5 encrypted form;
6 a security chip coupled to the program memory, the security chip
7 comprising:
8 means for decrypting portions of the secure program into a clear
9 portion and a remainder portion;
10 means for providing the clear portion to memory locations
11 accessible by a processor; and
12 remainder memory for storing the remainder portion of the secure
13 program, the remainder memory not directly accessible by the processor;
14 means for requesting subsets of the remainder portion for use by the
15 processor; and
16 means, within the security chip, for checking that the requested subset is a
17 ~~predetermined dependent on the~~
~~subset expected to be requested given a stored state for the processor.~~

Subj A1

1. The apparatus of claim 1, wherein the secure program stored in the
2 program memory is stored with the program portion and the remainder portion stored
3 separately.

1. The apparatus of claim 1, wherein the remainder portion is a set of
2 branch instructions of the secure program.

1. The apparatus of claim 3, wherein the security chip further includes
2 means for caching branch statements based on recently executed branches.

Subj 2

1. The apparatus of claim 1, wherein the means for decrypting branches
2 is configured with a decryption key.

JL

1 6. The apparatus of claim 5, wherein the decryption key is stored in
2 volatile memory.

1 7. The apparatus of claim 6, wherein the volatile memory is distributed
2 over the security chip, the security chip further comprising overlying circuitry which
3 overlies and obscures at least a part of the volatile memory.

Suey 3
1 8. The apparatus of claim 7, wherein the overlying circuitry is coupled to
2 a power source for the volatile memory such that the removal of the overlying circuitry
3 removes the power to the overlying circuitry.

1 9. The apparatus of claim 1, further comprising a clocking means, within
2 the security chip, for determining a rate of instruction execution of the processor,
3 wherein the security chip responds to processor requests only when the clocking means
4 determines that the rate is within an expected range.

1 10. The apparatus of claim 1, further comprising a data decompressor for
2 decompressing the secure program after decryption, wherein the secure program is
3 compressed before encryption.

1 11. The apparatus of claim 10, wherein the decompressor is an entropy
2 decoder.

Suey 4
1 12. The apparatus of claim 1, further comprising a checksum means,
2 within the security chip, for determining a checksum of bus accesses on a processor bus,
3 wherein the security chip responds to processor requests only when the determined
4 checksum matches an expected checksum.

1 13. The apparatus of claim 1, further comprising a data scrambler for
2 reordering data elements of the secure program according to a reversible and
3 deterministic pattern determined by a key value, wherein the secure program is reordered
4 by the inverse of the data scrambler before being placed in the program memory.

1 14. The apparatus of claim 13, wherein the data scrambler comprises a
2 plurality of first-in, first-out buffers.

1 15. The apparatus of claim 13, wherein the reversible and deterministic
2 pattern is generated by reference to the output of a pseudorandom number generator.

*Sub:
A5*
1 16. The apparatus of claim 1, wherein the means for decrypting operates
2 based on the key value and the output of a pseudorandom number generator.

1 17. The apparatus of claim 1, further comprising means for altering the
2 operation of the security chip and the flow of the program when said means for checking
3 detects that an unexpected subset has been requested, where by the altered operation
4 causes a negative effect on the program flow or operation.

1 18. The apparatus of claim 17, wherein the means for altering is a
2 means for halting the processor.

1 19. An apparatus for ~~securing~~ ^{encrypting} program data ^{to prevent} from unauthorized
2 copying, comprising;
3 a branch separator for extracting branch statements from the program data;
4 a compressor for compressing the extracted branch statements and a
5 remainder of the program data to form compressed data; and
6 an encryptor for encrypting the compressed data.

Sept 6
1 20. The apparatus of claim 19, wherein the branch separator comprises:
2 means for automatically generating checksum data representing checksums
3 of program data; and
4 means for automatically generating timing information used to assess
5 timing of program data processing,
6 whereby the checksum data and the timing information are compressed by
7 the compressor and encrypted by the encryptor.

1 21. A method of executing a secure program to prevent copying of the
2 secure program in a usable form from information acquired over an insecure processor
3 bus, comprising the steps of:

4 accepting a request from the insecure processor for a block of program
5 data, the block of program data including at least one of one or more program
6 instructions or one or more program data elements;

7 decrypting, in a secure manner, the block of program data into a clear
8 portion and a remainder portion;

9 providing the clear portion to the insecure processor; and

10 accepting requests from the insecure processor for elements of the
11 remainder portion;

12 checking that the request is proper given the state of the insecure processor
13 and previous requests;

14 processing the requests from the insecure processor for elements of the
15 remainder portion; and

16 responding to the requests, wherein underlying remainder portion elements
17 are not feasibly determined by reference to only the information content of a response to
18 a request.

1 22. The method of claim 21, further comprising the steps of:

2 separating a program into the clear portion and the remainder portion to
3 form a secure program; and

4 encrypting the secure program prior to placing the secure program in a
5 memory accessible by attackers intent on making unauthorized copies of the secure
6 program.

1 23. The method of claim 22, wherein the step of separating is a step of
2 separating branch instructions of the secure program from other instructions of the secure
3 program.

1 24. The method of claim 21, wherein the step of decrypting is performed
2 with a decryption key.

32

Sub A

25. The method of claim 24, further comprising the step of storing the
2 decryption key in volatile memory.

1 26. The method of claim 25, further comprising the steps of:
2 providing a power source to the volatile memory;
3 covering the volatile memory with a circuit such that the power source is
4 removed from the volatile memory when the circuit is disturbed and the contents of the
5 volatile memory cannot be easily measured without removing the circuit.

1 27. The method of claim 21, further comprising the step of checking a
2 rate of instruction execution of the processor prior to providing a response to a request
3 for information.

1 28. The method of claim 21, further comprising the step of
2 decompressing the secure program after decryption, wherein the secure program is
3 compressed before encryption.

Sub A

1 29. The method of claim 21, further comprising the steps of:
2 determining a checksum of bus accesses on a processor bus;
3 comparing the checksum to a precalculated checksum expected for the
4 instructions of the secure program which were expected to be executed; and
5 preventing the unobstructed operation of the secure program when the
6 checksum and the precalculated checksum differ.

1 30. The method of claim 21, further comprising a steps of:
2 scrambling an order of data elements of the secure program according to a
3 reversible and deterministic pattern determined by a key value prior to storage in a
4 memory accessible by attackers; and
5 desrambling the order of the data elements upon proper request of the
6 processor.

1 31. The method of claim 30, wherein the step of scrambling comprises a
2 step of generating a pseudorandom number used to form the reversible and deterministic
3 pattern.

1 32. A method for securing a program against unauthorized copying,
2 comprising the steps of:
3 separating program code according to sequences of nonbranch instructions
4 and branch instructions;
5 compressing the non-branch instructions to form a first set of compressed
6 data;
7 compressing the branch instructions to form a second set of compressed
8 data; and
9 encrypting the first and second sets of compressed data.

add
A/10

34