2. Vektorrum og underrum

- Aksiomer
- Egenskaber
- Underrum
- Sætning 3.2.1

Definition: En mængde Vudstyret med en addition ($u + v \in V$) og skalarmultiplikation ($\alpha v \in V$). Så kaldes Vet vektorrum, hvis følgende aksiomer er opfyldt:

A1:
$$\forall x, y \in V$$
: $x + y = y + x$ (kommutativ)

A2:
$$\forall x, y, z \in V$$
: $x + (y + z) = (x + y) + z$ (associativ)

$$A3: \exists 0 \in V: x + 0 = x \quad (eksistens \ af \ neutral \ element)$$

A4:
$$\forall x \in V, \exists -x \in V: x + (-x) = 0$$
 (additiv invers)

S1:
$$\forall \alpha \in \mathbb{F}, x, y \in V$$
: $\alpha(x + y) = \alpha x + \alpha y$

S2:
$$\forall \alpha, \beta \in \mathbb{F}, x \in V$$
: $(\alpha + \beta)x = \alpha x + \beta x$ (2 distributive egenskaber)

S3:
$$\forall \alpha, \beta \in \mathbb{F}, x \in V : (\alpha \beta)x = \alpha(\beta x)$$

S4:
$$1 \cdot x = x$$
 (1 er et neutralt element for skalarmultiplikation)

Herudover har vi nogle flere egenskaber ved vektorrum:

Sætning 3.1.1: V er et vektorrum og x er et element i V, så gælder:

(1)
$$0 \cdot x = 0$$

(2)
$$x + y = 0$$
 så $y = -x$ ($-x$ er en entydig additiv invers til x)

$$(3) (-1)x = -x$$

Bevis:

(1)
$$x \stackrel{S4}{=} 1x = (1+0)x \stackrel{S2}{=} 1x + 0x \stackrel{S4}{=} x + 0x$$

$$0 = -x + x \stackrel{brug \ x \ fra \ oven}{=} -x + (x+0x) \stackrel{A2}{=} (-x+x) + 0x$$

$$= 0 + 0x \stackrel{A1}{=} 0x + 0 \stackrel{A3}{=} 0x$$

$$(2) - x \stackrel{A3}{=} - x + 0 \stackrel{brug \, x + y = 0}{=} - x + (x + y) \stackrel{A2}{=} (-x + x) + y = 0 + y \stackrel{A1}{=} y + 0 \stackrel{A3}{=} y$$

(3)
$$0 \stackrel{(1)}{=} 0x = (1 + (-1))x \stackrel{S2}{=} 1x + (-1)x \stackrel{S4}{=} x + (-1)x$$

Vi bruger så (2) til at indse, at der må gælde: x + (-1)x = 0 så er (-1)x = -x

Vi har også underrum, som er defineret ved:

Definition: En ikke-tom delmængde *S* af et vektorrum *V* kaldes et underrum, hvis følgende gælder:

C1:
$$\forall x \in V, \alpha \in \mathbb{F}$$
: $\alpha x \in S$

C2:
$$\forall x, y \in V$$
: $x + y \in S$

*C*1 og *C*2 er også lukkethedsegenskaber for vektor.

Vi definerer et span:

Definition: Lad v_1, \dots, v_n være vektorer i et vektorrum V.

En linear kombination er en sum på formen $\alpha_1v_1+\cdots+\alpha_nv_n$, hvor α_i er skalarer.

Mængden af alle linear kombinationer af v_1, \dots, v_n kaldes span for $v_1, \dots, v_n \to Span(v_1, \dots, v_n)$.

Vi vil nu bevise, at et span er et underrum af *V*.

Sætning 3.2.1: Hvis $v_1, ..., v_n$ er elementer i et vektorrum V, så er $Span(v_1, ..., v_n)$ et underrum til V.

Bevis: Vi bruger definitionen på et underrum. Hvis $v = \alpha_1 v_1 + \dots + \alpha_n v_n$ er et arbitrært element i $Span(v_1, \dots, v_n)$ og β er en skalar:

$$C1: \beta v = \beta(\alpha_1 v_1 + \dots + \alpha_n v_n) \stackrel{S1}{=} (\beta \alpha_1) v_1 + \dots + (\beta \alpha_n) v_n \in Span(v_1, \dots, v_n)$$

Nu definerer vi $w = \beta_1 v_1 + \dots + \beta_n v_n$.

$$\textit{C2:} \ v+w=(\alpha_1v_1+\cdots+\alpha_nv_n)+(\alpha_1v_1+\cdots+\alpha_nv_n)\stackrel{\textit{S2}}{=} (\alpha_1+\beta_1)v_1+\cdots+(\alpha_n+\beta_n)v_n \in \textit{Span}(v_1,\ldots,v_n)$$

Dermed er $Span(v_1, ..., v_n)$ et underrum af V.