Métodos Numéricos - Clase 1

Ulises Bussi- Javier Portillo

1° cuatrimestre 2020

Antes de empezar

Definición

Un método numérico es un procedimiento que permite obtener, **de forma aproximada**, solución a un problema, por medio de la aplicación de algoritmos.

Nociones de Error

¿Que es un error?

Un error es todo aquello que hace que nuestra representación de un objeto de estudio difiera de la realidad

Nociones de Error

¿Que es un error?

Un error es todo aquello que hace que nuestra representación de un objeto de estudio difiera de la realidad

Errores Numéricos

Error de truncamiento: expresar con menor cantidad de cifras significativas un número. (e.g. aproximar el valor de una función usando un polinomio de taylor de un grado determinado).

Error de redondeo: Dado por la incapacidad de expresar números infinitos en una computadora (e.g. expresar un numero irracional numéricamente)

IMPORTANTE: Estos errores se pueden acumular en los métodos numéricos e incluso amplificar

Errores Numéricos

Error de truncamiento: expresar con menor cantidad de cifras significativas un número. (e.g. aproximar el valor de una función usando un polinomio de taylor de un grado determinado).

Error de redondeo: Dado por la incapacidad de expresar números infinitos en una computadora (e.g. expresar un numero irracional numéricamente)

IMPORTANTE: Estos errores se pueden acumular en los métodos numéricos e incluso amplificar

Representación de errores

Existen varias maneras, las más comunes:

Error Absoluto:

$$e_a = |\hat{x} - x|$$

e.g.:

$$x = 280^{\circ} K$$
, $\hat{x} = 273^{\circ} K$

Error absoluto: 7°K

Error relativo:

$$e_r = \frac{|\hat{x} - x|}{|x|}$$

e.g.:

$$x = 350^{\circ} K$$
, $\hat{x} = 273^{\circ} K$

Error relativo: $0.025 \approx 2.5 \%$

Cada uno aporta cierta información sobre el error, ninguna es incorrecta.

Errores Numéricos

Example time! caida libre con redondeo

calcular el valor de $\sqrt{2}$ con un polinomio de taylor

La importancia de estos errores se apreciará mejor cuando se presenten métodos iterativos.

Convergencia

Método numérico → conjunto de parámetros propios. (e.g. en polinomio de Taylor el orden del mismo)

Estos determinan:

- Comportamiento.
- Exigencia.
- Calidad de la solución.

La convergencia de un algoritmo relaciona, como al aumentar la exigencia aumenta la calidad de la solución.

Depende no solo del algoritmo, sino también del problema a resolver.

^{**} Poor Definition**

Estabilidad

Cuando un método depende de parámetros de entrada (veremos más adelante),

la estabilidad del método relaciona la variación de los parámetros de entrada con el resultado obtenido.

Número de condición de una matriz

El numero de condición de una matriz, es un valor que permite saber que tan cercana a Singular es esta, i.e. que tan buena será nuestra inversa. y que tan sensible será un sistema a perturbaciones.

Definición

Cond(
$$A$$
) = $||A||.||A^{-1}||$

Se puede calcular como:

$$Cond(A) = \sqrt{\frac{\lambda_{max}^*}{\lambda_{min}^*}}$$

Donde λ_{max}^* y λ_{min}^* son los autovalores mayor y menor de la matriz A' A

Número de condición de una matriz

Una aplicación: supongamos que tenemos el sistema A x = bv queremos hallar x.

Perturbación de entrada:

 \rightarrow Perturbación de salida: $\hat{x} = x + \delta x$.

$$\hat{b} = b + \delta b$$

$$\hat{x} = x + \delta x$$

Si miramos los errores cometidos:

$$\varepsilon_b = \frac{||\delta b||}{||b||}$$

$$\varepsilon_{X} = \frac{||\delta X||}{||X||}$$

Tendremos

$$\varepsilon_{x} < \text{Cond}(A) \varepsilon_{b}$$

Número de condición de una matriz

Un ejemplo

$$A = \begin{bmatrix} 15 & 11 \\ 20 & 15 \end{bmatrix}, \quad b = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$$
$$\mathbf{y} \qquad \delta b = \begin{bmatrix} -1 - 3 \end{bmatrix}$$