Elliptische Kurven Kryptographie

Kevin Kappelmann, Lukas Stevens

Technische Universität München

30. Mai 2016

Einleitung

Sicherheitsniveau	RSA/Diffie-Hellman	Elliptische-Kurven
≤ 80	1024	160-223
112	2048	224-255
128	3072	256-383
192	7680	384-511
256	15360	512+

Tabelle: Vergleich Schlüssellängen

Überblick

- 1 Einleitung
- 2 Grundbegriffe
 - Affine Ebenen
 - Projektive Ebenen
- 3 Elliptische Kurven E
 - Weierstraß-Gleichung
 - Affine Darstellung
- 4 Eine Gruppe über *E*

- Tangenten und Geraden
- Die Verknüpfung ⊕
- Die Gruppenoperation
- 5 Anwendungen
 - Diskretes-Logarithmen-Problem
 - Sicherheit
 - Angriffe

Definition affiner Ebenen

Definition

Es sei \mathcal{A} eine Menge von Punkten und \mathcal{G} eine Menge von Geraden mit $\mathcal{G} \subseteq Pot(\mathcal{A})$. Bei $(\mathcal{A},\mathcal{G})$ handelt es sich um eine affine Ebene, wenn folgende Bedingungen erfüllt sind:

I Zu je zwei Elementen $a, b \in \mathcal{A}$ mit $a \neq b$ existiert genau ein $G \in \mathcal{G}$ mit $a, b \in G$.

Definition affiner Ebenen

Definition

Es sei \mathcal{A} eine Menge von Punkten und \mathcal{G} eine Menge von Geraden mit $\mathcal{G} \subseteq Pot(\mathcal{A})$. Bei $(\mathcal{A},\mathcal{G})$ handelt es sich um eine affine Ebene, wenn folgende Bedingungen erfüllt sind:

- I Zu je zwei Elementen $a, b \in \mathcal{A}$ mit $a \neq b$ existiert genau ein $G \in \mathcal{G}$ mit $a, b \in G$.
- 2 Zu $G \in \mathcal{G}$ und $a \in \mathcal{A} \setminus G$ existiert genau ein $G' \in \mathcal{G}$ mit $a \in G'$ und $G \cap G' = \emptyset$.

Affine Ebenen

Definition affiner Ebenen

Definition

Es sei \mathcal{A} eine Menge von Punkten und \mathcal{G} eine Menge von Geraden mit $\mathcal{G} \subseteq Pot(\mathcal{A})$. Bei $(\mathcal{A},\mathcal{G})$ handelt es sich um eine affine Ebene, wenn folgende Bedingungen erfüllt sind:

- I Zu je zwei Elementen $a, b \in \mathcal{A}$ mit $a \neq b$ existiert genau ein $G \in \mathcal{G}$ mit $a, b \in G$.
- 2 Zu $G \in \mathcal{G}$ und $a \in \mathcal{A} \setminus G$ existiert genau ein $G' \in \mathcal{G}$ mit $a \in G'$ und $G \cap G' = \emptyset$.
- 3 Es existieren drei Elemente $a, b, c \in A$ mit $c \notin \overline{a, b}$.

Definition

Es sei \mathcal{A} eine Menge von Punkten und \mathcal{G} eine Menge von Geraden mit $\mathcal{G} \subseteq Pot(\mathcal{A})$. Bei $(\mathcal{A},\mathcal{G})$ handelt es sich um eine projektive Ebene, wenn folgende Bedingungen erfüllt sind:

I Zu je zwei Elementen $P,Q\in\mathcal{P}$ mit $P\neq Q$ existiert genau ein $G\in\mathcal{G}$ mit $P,Q\in G$.

Definition

Es sei \mathcal{A} eine Menge von Punkten und \mathcal{G} eine Menge von Geraden mit $\mathcal{G} \subseteq Pot(\mathcal{A})$. Bei $(\mathcal{A},\mathcal{G})$ handelt es sich um eine projektive Ebene, wenn folgende Bedingungen erfüllt sind:

- I Zu je zwei Elementen $P,Q\in\mathcal{P}$ mit $P\neq Q$ existiert genau ein $G\in\mathcal{G}$ mit $P,Q\in G$.
- **2** Für je zwei $G, H \in \mathcal{G}$ mit $G \neq H$ gilt $|G \cap H| = 1$.

Definition

Es sei \mathcal{A} eine Menge von Punkten und \mathcal{G} eine Menge von Geraden mit $\mathcal{G} \subseteq Pot(\mathcal{A})$. Bei $(\mathcal{A},\mathcal{G})$ handelt es sich um eine projektive Ebene, wenn folgende Bedingungen erfüllt sind:

- I Zu je zwei Elementen $P, Q \in \mathcal{P}$ mit $P \neq Q$ existiert genau ein $G \in \mathcal{G}$ mit $P, Q \in G$.
- **2** Für je zwei $G, H \in \mathcal{G}$ mit $G \neq H$ gilt $|G \cap H| = 1$.
- Is existieren vier verschiedene Elemente in \mathcal{P} , sodass immer höchstens zwei davon in jedem beliebigen $G \in \mathcal{G}$ liegen.

PG(2, **𝔻**)

Grundbegriffe

Konstruktion affiner Ebenen aus projektiven Ebenen

Abbildung: Von der Fano-Ebene zur minimalen affinen Ebene

Konstruktion affiner Ebenen aus projektiven Ebenen

Abbildung: Von der Fano-Ebene zur minimalen affinen Ebene

Konstruktion affiner Ebenen aus projektiven Ebenen

Abbildung: Von der Fano-Ebene zur minimalen affinen Ebene

Konstruktion affiner Ebenen aus projektiven Ebenen

Abbildung: Von der Fano-Ebene zur minimalen affinen Ebene

Erinnerung: Punktemenge von PG(2, F)

$$P = \{(x : y : z) \mid (x, y, z) \in \mathbb{F}^3 \setminus \{\mathbf{0}\}\}$$

Definition

Wir setzen:

$$F(X,Y,Z) := Y^2Z + a_1XYZ + a_3YZ^2 - X^3 - a_2X^2Z - a_4XZ^2 - a_6Z^3$$

Eine elliptische Kurve $E \subseteq P$ ist durch die Lösung der Weierstraß-Gleichung

$$F(X,Y,Z)=0$$

gegeben, wobei $a_i \in \mathbb{F}$ gilt und die Lösung keine Singularitäten besitzen darf.

Weierstraß-Gleichung

Elliptische Kurven E – Weierstraß-Gleichung

■ Wir schränken ein: Die *Charakteristik* des Körpers \mathbb{F} soll nicht 2 und nicht 3 sein: *char* $\mathbb{F} \neq 2,3$.

Elliptische Kurven E – Weierstraß-Gleichung

- Wir schränken ein: Die *Charakteristik* des Körpers \mathbb{F} soll nicht 2 und nicht 3 sein: *char* $\mathbb{F} \neq 2,3$.
- Dies bedeutet, dass $1+1 \neq 0$ bzw. $1+1+1 \neq 0$, wobei 0,1 die neutralen Elemente der Addition bzw. Multiplikation von \mathbb{F} sind.

- Wir schränken ein: Die *Charakteristik* des Körpers \mathbb{F} soll nicht 2 und nicht 3 sein: *char* $\mathbb{F} \neq 2,3$.
- Dies bedeutet, dass $1+1 \neq 0$ bzw. $1+1+1 \neq 0$, wobei 0,1 die neutralen Elemente der Addition bzw. Multiplikation von \mathbb{F} sind.
- Unter diesen Voraussetzungen können wir die Weierstraß-Gleichung vereinfachen zu:

$$0 = Y^2Z - X^3 - aXZ^2 - bZ^3$$

Elliptische Kurven E – Affine Darstellung

■ Betrachte $U := \overline{P, Q}$ mit P = (1:0:0), Q = (0:1:0).

Elliptische Kurven E – Affine Darstellung

- Betrachte $U := \overline{P, Q}$ mit P = (1:0:0), Q = (0:1:0).
- U ist im dreidimensionalen Raum genau die x,y-Ebene mit z = 0.

Elliptische Kurven E – Affine Darstellung

- Betrachte $U := \overline{P, Q}$ mit P = (1:0:0), Q = (0:1:0).
- U ist im dreidimensionalen Raum genau die x,y-Ebene mit z = 0.

■ Wir bezeichnen *U* als die **unendlich ferne Gerade**.

Elliptische Kurven E – Affine Darstellung

■ Wir betrachten die elliptische Kurve

$$E = \{(X : Y : Z) \mid 0 = Y^2Z - X^3 - aXZ^2 - bZ^3\}$$

Elliptische Kurven E – Affine Darstellung

■ Wir betrachten die elliptische Kurve

$$E = \{(X : Y : Z) \mid 0 = Y^2Z - X^3 - aXZ^2 - bZ^3\}$$

und die unendlich ferne Gerade

$$U = \{(x : y : 0) \mid a, b \in \mathbb{F}\}$$

■ Wir betrachten die elliptische Kurve

$$E = \{(X : Y : Z) \mid 0 = Y^2Z - X^3 - aXZ^2 - bZ^3\}$$

und die unendlich ferne Gerade

$$U = \{(x : y : 0) \mid a, b \in \mathbb{F}\}\$$

■ Es gilt: $U \cap E = (0:1:0) =: \mathcal{O}$, d.h. der einzige Punkt von U, der auf der Kurve E liegt, ist \mathcal{O} .

■ Wir betrachten die elliptische Kurve

$$E = \{(X : Y : Z) \mid 0 = Y^2Z - X^3 - aXZ^2 - bZ^3\}$$

und die unendlich ferne Gerade

$$U = \{(x : y : 0) \mid a, b \in \mathbb{F}\}\$$

- Es gilt: $U \cap E = (0:1:0) =: \mathcal{O}$, d.h. der einzige Punkt von U, der auf der Kurve E liegt, ist \mathcal{O} .
- Wir bezeichnen O als den unendlich fernen Punkt.

Elliptische Kurven E – Affine Darstellung

■ Für alle anderen Punkte $P \in E$ ist die z-Koordinate $\neq 0$, d.h. alle Punkte außer \mathcal{O} liegen im affinen Teil $E \setminus U$.

Elliptische Kurven E – Affine Darstellung

- Für alle anderen Punkte $P \in E$ ist die z-Koordinate $\neq 0$, d.h. alle Punkte außer \mathcal{O} liegen im affinen Teil $E \setminus U$.
- Wir können also $P \in \{(x : y : 1) \mid x, y \in \mathbb{F}\}$ annehmen.

Elliptische Kurven E – Affine Darstellung

- Für alle anderen Punkte $P \in E$ ist die z-Koordinate $\neq 0$, d.h. alle Punkte außer \mathcal{O} liegen im affinen Teil $E \setminus U$.
- Wir können also $P \in \{(x : y : 1) \mid x, y \in \mathbb{F}\}$ annehmen.
- Die Weierstraß-Gleichung für diese Punkte vereinfacht sich zu:

$$f(x,y) := y^2 - x^3 - ax - b$$

- Für alle anderen Punkte $P \in E$ ist die z-Koordinate $\neq 0$, d.h. alle Punkte außer \mathcal{O} liegen im affinen Teil $E \setminus U$.
- Wir können also $P \in \{(x : y : 1) \mid x, y \in \mathbb{F}\}$ annehmen.
- Die Weierstraß-Gleichung für diese Punkte vereinfacht sich zu:

$$f(x,y) := y^2 - x^3 - ax - b$$

Insgesamt gilt also:

$$E = \{(x : y : 1) \mid (x, y) \in \mathbb{F}^2 \land f(x, y) = 0\} \cup \{\mathcal{O}\}$$

Elliptische Kurven E – Affine Darstellung

Abbildung: Affine Darstellung elliptischer Kurven

Elliptische Kurven E – Affine Darstellung

Definition

Eine Kurve E ist **singulär** in einem Punkt $P = (a : b : c) \in E$, wenn gilt:

$$\frac{\partial F}{\partial X}(P) = \frac{\partial F}{\partial Y}(P) = \frac{\partial F}{\partial Z}(P) = 0$$

Abbildung: Kurven mit Singularitäten (Knoten und Spitze)

Eine Gruppe über E – Voraussetzungen

- Es gelte *char* $\mathbb{F} \neq 2,3$
- *E* sei nicht singulär.

Tangenten

Definition

Es sei P ein Punkt der elliptischen Kurve E. Wir definieren die Tangente an E im Punkt P:

$$T_P := \left\{ (u : v : w) \in \mathcal{P} \mid \frac{\partial F}{\partial X}(P)u + \frac{\partial F}{\partial Y}(P)v + \frac{\partial F}{\partial Z}(P)w = 0 \right\}$$

Tangenten und Geraden

Geraden

Unendlich ferne Gerade U

Tangenten und Geraden

Geraden

- 1 Unendlich ferne Gerade *U*
- 2 Affine Geraden: y = kx + d

Geraden

- Unendlich ferne Gerade U
- 2 Affine Geraden: y = kx + d
- **3** Parallele zur *y*-Achse: $v + \lambda(0,1)$ mit v = (x,y) und $\lambda \in \mathbb{F}$

Eine Gruppe über E – Die Verknüpfung \oplus

Die Verknüpfung ⊕

Vereinbarungen

Abbildung: Vereinbarungen(1)

Vereinbarungen

Abbildung: Vereinbarungen(1)

Vereinbarungen

Abbildung: Vereinbarungen(1)

Vereinbarungen

Abbildung: Vereinbarungen(2)

Die Verknüpfung ⊕

Kommutativität und Abgeschlossenheit

$$P \oplus Q = R$$
:

$$P \oplus Q = R$$
:

1
$$P = Q = \mathcal{O}$$
:

$$\mathcal{O}\oplus\mathcal{O}=\mathcal{O}$$

Fallunterscheidung für

 $P \oplus Q = R$:

- **1** $P = Q = \mathcal{O}$:
 - $\mathcal{O} \oplus \mathcal{O} = \mathcal{O}$
- $P = \mathcal{O}$:
 - $\mathcal{O} \oplus \mathcal{Q} = -\mathcal{Q}$

$$P \oplus Q = R$$
:

- **1** $P = Q = \mathcal{O}$:
 - $\mathcal{O}\oplus\mathcal{O}=\mathcal{O}$
- $P = \mathcal{O}:$
 - $\mathcal{O} \oplus \mathcal{Q} = -\mathcal{Q}$

$$P \oplus Q = R$$
:

1
$$P = Q = \mathcal{O}$$
:

$$\mathcal{O}\oplus\mathcal{O}=\mathcal{O}$$

$$P = \mathcal{O}:$$

$$\mathcal{O} \oplus \mathcal{Q} = -\mathcal{Q}$$

3
$$P = -Q$$
:

$$P \oplus (-P) = \mathcal{O}$$

$$P \oplus Q = R$$
:

1
$$P = Q = \mathcal{O}$$
:

$$\mathcal{O}\oplus\mathcal{O}=\mathcal{O}$$

$$P = \mathcal{O}:$$

$$\mathcal{O} \oplus \mathcal{Q} = -\mathcal{Q}$$

3
$$P = -Q$$
:

$$P \oplus (-P) = \mathcal{O}$$

$$P \oplus Q = R$$
:

$$\mathcal{O}\oplus\mathcal{O}=\mathcal{O}$$

$$P = \mathcal{O}:$$

$$\mathcal{O} \oplus \mathcal{Q} = -\mathcal{Q}$$

$$P = -Q$$
:

$$P \oplus (-P) = \mathcal{O}$$

4
$$P \neq \pm Q$$
:

$$P \oplus Q = R$$

$$P \oplus Q = R$$
:

$$\mathcal{O}\oplus\mathcal{O}=\mathcal{O}$$

$$P = \mathcal{O}$$
:

$$\mathcal{O} \oplus \mathcal{Q} = -\mathcal{Q}$$

$$P = -Q$$
:

$$P \oplus (-P) = \mathcal{O}$$

4
$$P \neq \pm Q$$
:

$$P \oplus Q = R$$

$$P \oplus Q = R$$
:

1
$$P = Q = \mathcal{O}$$
:

$$\mathcal{O}\oplus\mathcal{O}=\mathcal{O}$$

$$P = \mathcal{O}:$$

$$\mathcal{O} \oplus Q = -Q$$

3
$$P = -Q$$
:

$$P \oplus (-P) = \mathcal{O}$$

4
$$P \neq \pm Q$$
:

$$P \oplus Q = R$$

5
$$P = Q \neq -P$$
:

$$P \oplus P = R$$

$$P \oplus Q = R$$
:

1
$$P = Q = \mathcal{O}$$
:

$$\mathcal{O}\oplus\mathcal{O}=\mathcal{O}$$

$$P = \mathcal{O}$$
:

$$\mathcal{O} \oplus \mathcal{Q} = -\mathcal{Q}$$

$$P = -Q$$
:

$$P \oplus (-P) = \mathcal{O}$$

4
$$P \neq \pm Q$$
:

$$P \oplus Q = R$$

5
$$P = Q \neq -P$$
:

$$P \oplus P = R$$

Mathematische Beschreibung der ⊕-Verknüpfung

Satz

Es sei
$$P = (x, y), Q = (u, v) \in E \setminus \{\mathcal{O}\}$$
. Dann gilt:
$$\mathcal{O} \oplus \mathcal{O} = \mathcal{O}, \quad \mathcal{O} \oplus P = (x, -y) \eqqcolon -P \quad \text{und}$$

$$P \oplus Q = \begin{cases} \mathcal{O}, & \text{falls } P = -Q \\ (w, k(w - x) + y), & \text{sonst} \end{cases}$$

wobei

$$w = k^2 - x - u$$
 und $k = \begin{cases} \frac{v - y}{u - x}, & \text{falls } P \neq \pm Q \\ \frac{3x^2 + a}{2y}, & \text{falls } P = Q \neq -P \end{cases}$

Wir definieren die Verknüpfung + für $P, Q \in E$ folgendermaßen:

$$P + Q := \mathcal{O} \oplus (P \oplus Q) = -(P \oplus Q).$$

Satz

(E,+) ist eine abelsche Gruppe mit neutralem Element \mathcal{O} .

Die Gruppenoperation

Eine Gruppe über E – Die Gruppenoperation

Abbildung: Grafische Addition in (E, +)

Anwendungen – Diskretes-Logarithmen-Problem

Definition

Sei G eine Gruppe und seien $x, y \in G$. Das Finden von $m \in \mathbb{N}$, so dass gilt

$$x^m = y$$
,

wird Diskretes-Logarithmen-Problem (kurz DLP) genannt.

Anwendungen – Diskretes-Logarithmen-Problem

Definition |

Sei G eine Gruppe und seien $x,y\in G$. Das Finden von $m\in\mathbb{N}$, so dass gilt

$$x^m = y$$
,

wird Diskretes-Logarithmen-Problem (kurz DLP) genannt.

Über elliptische Kurven:

■ Wähle $P, Q \in E$ und ein $m \in \mathbb{N}$. Das DLP ist dann die Lösung der Gleichung mP = Q, wobei P und Q bekannt sind.

Anwendungen – Diskretes-Logarithmen-Problem

Definition

Sei G eine Gruppe und seien $x, y \in G$. Das Finden von $m \in \mathbb{N}$, so dass gilt

$$x^m = y$$
,

wird **Diskretes-Logarithmen-Problem** (kurz DLP) genannt.

Uber elliptische Kurven:

- Wähle $P, Q \in E$ und ein $m \in \mathbb{N}$. Das DLP ist dann die Lösung der Gleichung mP = Q, wobei P und Q bekannt sind.
- Die skalare Multiplikation des Punktes P wird durch wiederholtes Addieren des Punktes mit sich selbst dargestellt.

Sicherheit

Anwendungen - Sicherheit

Wie sicher ist das DLP über elliptische Kurven?

Sicherheit

Anwendungen – Sicherheit

Wie sicher ist das DLP über elliptische Kurven?

■ Naives Probieren: O(|E|).

Anwendungen - Sicherheit

Wie sicher ist das DLP über elliptische Kurven?

■ Naives Probieren: O(|E|).

Wir erinnern uns:

■ DLP beispielsweise mit Babystep-Giantstep in $O(\sqrt{|E|})$ lösbar.

Anwendungen – Sicherheit

Wie sicher ist das DLP über elliptische Kurven?

Naives Probieren: O(|E|).

Wir erinnern uns:

- DLP beispielsweise mit Babystep-Giantstep in $O(\sqrt{|E|})$ lösbar.
- DLP mit Hilfe von Primzahlen mit Index-Calculus-Algorithmen subexponentiell lösbar.

Anwendungen – Sicherheit

Wie sicher ist das DLP über elliptische Kurven?

Naives Probieren: O(|E|).

Wir erinnern uns:

- DLP beispielsweise mit Babystep-Giantstep in $O(\sqrt{|E|})$ lösbar.
- DIP mit Hilfe von Primzahlen mit. Index-Calculus-Algorithmen subexponentiell lösbar.

Aber: Elliptische Kurven besitzen keine "Primzahlen".

Anwendungen - Angriffe

Beispiel: Wir wollen 13P berechnen:

Abbildung: Effiziente Skalarmultiplikation mit Additionsbaum

Anwendungen - Angriffe

Beispiel: Wir wollen 13P berechnen:

Abbildung: Effiziente Skalarmultiplikation mit Additionsbaum

■ Fallunterscheidungen bei Addition notwendig.

Anwendungen - Angriffe

Beispiel: Wir wollen 13P berechnen:

Abbildung: Effiziente Skalarmultiplikation mit Additionsbaum

- Fallunterscheidungen bei Addition notwendig.
 - ⇒ Rückschlüsse über Schlüssel mit Seitenkanalangriff möglich.

Anwendungen - Angriffe

Beispiel: Wir wollen 13P berechnen:

Abbildung: Effiziente Skalarmultiplikation mit Additionsbaum

- Fallunterscheidungen bei Addition notwendig.
 - ⇒ Rückschlüsse über Schlüssel mit Seitenkanalangriff möglich.

Anwendungen - Angriffe

Beispiel: Wir wollen 13P berechnen:

Abbildung: Effiziente Skalarmultiplikation mit Additionsbaum

- Fallunterscheidungen bei Addition notwendig.
 - ⇒ Rückschlüsse über Schlüssel mit Seitenkanalangriff möglich.

Lösung:

Dummy-Additionen

Anwendungen - Angriffe

Beispiel: Wir wollen 13P berechnen:

Abbildung: Effiziente Skalarmultiplikation mit Additionsbaum

- Fallunterscheidungen bei Addition notwendig.
 - ⇒ Rückschlüsse über Schlüssel mit Seitenkanalangriff möglich.

Lösung:

- Dummy-Additionen
- Edwards-Kurven benötigen keine Fallunterscheidungen

Anwendungen – Angriffe

Weitere Angriffe:

- Isomorphismus-Angriffe
- Angriffe durch Reduzierung auf Untergruppen

Anwendungen - Angriffe

Weitere Angriffe:

- Isomorphismus-Angriffe
- Angriffe durch Reduzierung auf Untergruppen

Lösung:

Geeignete Parameter f
ür die Kurve w
ählen (NIST-Vorschl
äge)

The End

Zusammengefasst: Elliptische Kurven sind einfach super.