Teoria da Computação

Prof. Sergio D. Zorzo

Departamento de Computação – UFSCar

02

Teoria da Computação

Linguagens Regulares

Sistema de Estados Finitos
Autômato Finito
Autômato Finito Não Determinístico
Autômato Finito com Transições Espontâneas
(ou com movimentos vazios)
Equivalência entre as representações

Linguagens Regulares ou Tipo 3

Formalismos de Estudo:

Autômato Finito

formalismo operacional (reconhecedor de sentenças) um sistema de estados finitos

Expressão Regular

formalismo denotacional (gerador de sentenças) conjuntos (linguagens) básicos + concatenação e união

Gramática Regular

formalismo axiomático (gerador de sentenças) gramática com restrições nas regras de produção

Linguagens Regulares ou Tipo 3

- Pela Hierarquia de Chomsky é a classe de linguagens mais simples
- Há três formalismos (autômatos, expressões regulares e gramáticas regulares), com algoritmos de reconhecimento, geração ou conversão entre formalismos
- Há pouca complexidade para a sua representação, mas com grande eficiência e de fácil implementação
- Há fortes limitações de expressividade, sendo que as linguagens de programação em geral não são linguagens regulares

Linguagens Regulares ou Tipo 3

Há importantes propriedades que podem ser usadas para:

- construir novas linguagens regulares a partir de linguagens regulares conhecidas (definindo uma álgebra)
- provar propriedades de determinado conjunto (linguagem) regular
- construir algoritmos
- Se um problema tiver uma solução regular deve-se considerar preferencialmente a qualquer outra não-regular, pelas propriedades da Classe e eficiência e simplicidade da implementação
- O universo de aplicações das linguagens regulares é muito grande e constantemente ampliado
- **Exemplos :** análise léxica dos compiladores, sistemas de animação, hipertextos e hipermídias

Sistema de Estados Finitos

Sistema de Estados Finitos

modelo matemático de sistema com entradas e saídas discretas

número *finito e predefinido de estados* (podem ser definidos antes de iniciar o processamento)

Estado

somente informações do passado necessárias para determinar as ações para a próxima entrada

Autômatos finitos

Definição informal

- Conjunto de estados: cada um "lembra" o que já foi feito na história de um sistema
- Conjunto de transições: movimentos possíveis de um estado para outro
- Controle: dispositivo hipotético que lê uma entrada externa e move de um estado para outro
- Existem transições que não mudam o estado

Autômatos finitos

Geladeira

Autômatos finitos

Aplicações

Avaliar um determinado processo/protocolo em busca de erros/falhas

Ex: e se eu fechar a porta com o alarme tocando? Dependendo da implementação, pode resultar em erros

Definição Formal: DFA M ou AF-d M

$$M=(Q,\Sigma,\delta,q_0,F)$$

Q=Conjunto finito de estados

Σ=Conjunto finito de símbolos de entrada

δ=Função de transição

 q_0 =Um estado inicial ($q_0 \in Q$)

F=Um conjunto de estados finais ou de aceitação (F ⊆ Q)

Função de transição

$$\delta: Q \times \Sigma \to Q$$

Define o funcionamento do autômato

Ex. da geladeira:

Precisa ter estado inicial e de aceitação

Q = {Fechada, Aberta, Alarme}

 Σ = {abrir, fechar, 10seg, 20seg}

 q_0 = Fechada

F = {Fechada}

 δ (Fechada, abrir) = Aberta

 δ (Aberta, fechar) = Fechada

 $\delta(Aberta, 10seg) = Alarme$

 $\delta(Alarme, 20seg) = Aberta$

Em um Autômato Finito Determinístico (DFA)
As transições estão completas
Para todo estado e todo símbolo de entrada
Sempre sabe o que fazer
Definição de determinismo

Notações

Diagramas (Exemplo mais comum)

Tabelas de transição (Versão tabular do diagrama)

Representam completamente a 5-upla do autômato

Diagrama de estado

Cada estado tem um nó correspondente

Estado inicial (seta apontando para o estado a partir do nada)

Estado de aceitação (círculo duplo)

Setas saindo de um estado para outro são transições Representação visual da função δ

Ex:{1...100...01y | y é qualquer cadeia de 0's e 1's}

Versão tabular

Linhas correspondem aos estados

Colunas correspondem às entradas

Estado inicial é marcado com uma seta

Estados de aceitação são marcados com asterisco

	0	1
→ q0	q1	q0
q1	q1	q2
* q2	q2	q2

Um DFA M denota uma linguagem

Conjunto de todas as cadeias que aceita

L(M) = A

M reconhece A

M aceita A

Mesmo que um M não aceite nenhuma cadeia Ele aceita a linguagem vazia Ø

Quando o autômato recebe uma cadeia de entrada

Processa a cadeia e produz uma saída: aceita ou rejeita

Começa no estado inicial

Lê símbolos da esquerda para a direita

Após ler um símbolo, move-se de um estado para outro, de acordo com a função de transição

Quando lê o último símbolo, produz a saída

Se o autômato estiver em estado de aceitação, a saída será aceita

Caso contrário, será rejeitada

Ex: abrir-fechar-abrir-fechar

Ex: 0010111

Definição formal de linguagem (indutiva) δ(q,a)=p

$$\delta^{\hat{}}(q,\epsilon)=q$$

 $\delta^{(q,w)} = \delta(\delta^{(q,x)},a)$ onde w=xa

 $L(M)=\{w| \delta^{(q_o,w)} \text{ está em } F\}$

Definição:

Se L é L(M) para algum DFA M

L é regular

Configuração instantânea

 $W_1W_2W_3...W_kQW_{k+1}W_{k+2}...W_{n-2}W_{n-1}W_n$

Ex:

Entrada: 001010011

Configuração: 001[q₃]010011

Já leu 001, falta ler 010011

Encontra-se no estado q₃

Próxima entrada é 0

Interpretando autômatos finitos

Dado o seguinte autômato finito:

Interpretando autômatos finitos

Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:

00000 0100

01000 010000

010101 11111

Quais dessas cadeias fazem parte da linguagem do autômato?

Descreva informalmente a linguagem do autômato Descreva formalmente a linguagem do autômato

Respostas

Linguagens com um 1 pelo menos e um número par de zeros depois do último 1 (zero é par)

A = {w | w contém pelo menos um 1 e um número par de 0s segue o último 1}

Interpretando autômatos finitos

Dado o seguinte autômato finito:

Interpretando autômatos finitos

Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:

0101 0110

1001 1111

1 11100

Quais dessas cadeias fazem parte da linguagem do autômato?

Descreva informalmente a linguagem do autômato Descreva formalmente a linguagem do autômato

Respostas

Cadeias com um número par de 0s e 1s

L = {w | w tem ao mesmo tempo um número par de 0s e um número par de 1s}

Interpretando Autômatos Finitos

Dado o seguinte autômato finito:

	0	1
→ q1	q1	q2
* q2	q1	q2

Interpretando autômatos finitos

Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:

010 0111110

0000001 1101

001 11100

Quais dessas cadeias fazem parte da linguagem do autômato?

Descreva informalmente a linguagem do autômato

Descreva formalmente a linguagem do autômato

Respostas

Todas as cadeias que terminam com 1

L = {w | w termina com um 1}

Interpretando autômatos finitos

Interpretando autômatos finitos

Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:

a b

aa bb

bab ab

ba bbba

Quais dessas cadeias fazem parte da linguagem do autômato?

Descreva informalmente a linguagem do autômato Descreva formalmente a linguagem do autômato

Respostas

Cadeias que começam e terminam com o mesmo símbolo

L = {w | w começa e termina com a ou w começa e termina com b}

Projetando autômatos finitos

Ex:

$$\Sigma = \{0,1\}$$

Linguagem = cadeias com número ímpar de 1s

Projetando autômatos finitos

Ex:

$$\Sigma = \{0,1\}$$

Linguagem = cadeias que contém a cadeia 001 como uma subcadeia

Projetando autômatos finitos

- Ex:
 - $\Sigma = \{0,1\}$
 - Linguagem = cadeias que terminam em 00

Mais um exercício

- Linguagem A consistindo de todas as cadeias sobre {0,1} contendo um 1 na terceira posição a partir do final
 - Ex: 000100, 010110 estão em A, mas 0011 não

Mais um exercício

Autômatos Finitos Equivalentes

Dois Autômatos Finitos M1 e M2 são equivalentes

se e somente se

$$L(M1) = L(M2)$$

Linguagem Regular e Autômato Finito

Uma Linguagem L é linguagem regular

se e somente se

Existe um autômato finito M tal que L=L(M)

Um autômato pode estar em muitos estados ao mesmo tempo

No diagrama:

DFA tem exatamente 1 seta com 1 símbolo para todo símbolo e estado

NFA pode ter zero ou mais setas para um símbolo/estado

Na tabela:

DFA é completamente preenchida, com exatamente um estado em cada célula NFA pode ter células com zero ou mais estados

O que isto significa na prática?

Uma visão: um NFA pode "adivinhar" algumas coisas sobre a entrada

Outra visão: em transições para mais de um estado, é o mesmo que dividir o autômato em dois e seguir cada execução em paralelo

Outra: uma árvore de possibilidades – tentativa e erro

Mais fáceis de projetar e entender

Ex:
$$\Sigma = \{0,1\}$$

A é uma linguagem consistindo de todas as cadeias contendo um 1 na terceira posição a partir do final (exemplo: 000100)

- Ex: $\Sigma = \{0\}$
 - A é uma linguagem que aceita cadeias da forma 0^k, onde k é um múltiplo de 2 ou 3

Autômatos finitos não-determinísticos (NFA)

Definição formal: NFA M= $(Q, \Sigma, \delta, q_0, F)$

Q=Conjunto finito de estados

Σ=Conjunto finito de símbolos de entrada

δ=Função de transição

 q_0 =Um estado inicial ($q_0 \in Q$)

F=Um conjunto de estados finais ou de aceitação (F ⊆ Q)

Diferença está na função de transição

$$\delta{:}Q\times\Sigma\to 2^Q$$

Autômatos finitos determinísticos

RELEMBRANDOAFD $M=(Q, \Sigma, \delta, q_0, F)$

Definição formal de linguagem (indutiva)

- $\delta(q,a)=p$
- $\delta^{\Lambda}(q,\epsilon)=q$
- $\delta^{\wedge}(q,w) = \delta(\delta^{\wedge}(q,x),a)$ onde w=xa, $x \in \Sigma^{*}$ e a $\in \Sigma$
- $L(M)=\{w | \delta^{(qo,w)} \text{ está em } F\}$

Definição:

- Se L é L(M) para algum DFA M
- L é regular

Autômatos finitos não-determinísticos

- Definição formal de linguagem
 - $\delta^{(q,\epsilon)}=\{q\}$
 - $\delta^{\Lambda}(q,x) = \{p_1, p_2, ..., p_k\}$
 - $\delta^{\Lambda}(q,w)$ =união de todos $\delta(p_i,a)$, onde w=xa
 - L(M)={w| $\delta^{\wedge}(q_0, w) \cap F \neq \emptyset$ }
- Definição:
 - Se L é L(M) para algum NFA M
 - L é regular


```
Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
```

111

010

0100

(Use notação de conjuntos)

Descreva a linguagem reconhecida por este autômato

Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:

1234

123

1231

433

412

(Use notação de conjuntos)

Descreva a linguagem reconhecida por este autômato

- Resposta
 - Aceita cadeias cujo símbolo final já apareceu antes

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
 - ave
 - avião
 - aves
 - chave
 - (Use notação de árvore ou conjuntos)
- Descreva a linguagem reconhecida por este autômato

Dado o seguinte autômato finito:

	0	1
→ q0	{q0,q1}	{q0}
q1	Ø	{q2}
* q2	Ø	Ø

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
 - 0101010
 - 11111
 - 001
 - 1101
 - (Use notação de árvore ou conjuntos)
- Descreva a linguagem aceita por este autômato
 - Resp: cadeias que terminam em 01

Projetando NFAs

- Ex:
 - $\Sigma = \{a,b,c,...,z\}$
 - Linguagem = cadeias que contém a cadeia "pre" como uma subcadeia

Projetando NFAs

- Ex:
 - $\Sigma = \{0,1\}$
 - Linguagem = cadeias que n\u00e3o possuem s\u00eambolos repetidos em sequ\u00eancia

Implementando NFAs

A implementação é mais complexa do que o DFA Mas em essência é o mesmo mecanismo Envolve duas estratégias Processamento paralelo "Backtracking"

Equivalência DFA e NFA

Intuitivamente, NFA é mais poderoso

Mas as linguagens aceitas por um NFA são regulares

Ou seja, qualquer NFA pode ser convertido em um DFA que reconhece a mesma linguagem

Teorema:

Uma Linguagem L é aceita por algum DFA se e somente se L é aceita por algum NFA

Prova por construção dos dois lados:

"Se": um processo que constrói um DFA a partir de um NFA

"Somente se": um processo que constrói um NFA a partir de um DFA

Na maioria dos casos, um DFA equivalente tem o mesmo número de estados que o NFA, só que mais transições

No pior caso, tem 2ⁿ estados

NFA N =
$$(Q_N, \Sigma, \delta_N, q_0, F_N)$$

DFA D =
$$(Q_D, \Sigma, \delta_D, \{q0\}, F_D)$$

$$L(D) = L(N)$$

 Q_D é o conjunto de subconjuntos de Q_N (2^{Q_N})

 F_D é o conjunto S de subconjuntos de Q_N ,

tal que
$$S \cap F_N \neq \emptyset$$

Para cada conjunto $S \subseteq Q_N$

e para cada a
$$\in \Sigma$$

$$\delta_{D}(S,a) = \cup \text{ todos os } \delta_{N}(p,a) \text{ para } p \in S$$

Consiste em pegar todas as combinações de estados e agregar as transições do NFA

Cada combinação de estados do NFA é um estado

no DFA

Consiste basicamente na implementação "em paralelo" Mas pré-calculando as combinações de estados

Passo a passo com exemplo Dado o NFA (cadeias que terminam com 01):

	0	1
→ q0	{q0,q1}	{q0}
q1	Ø	{q2}
* q2	Ø	Ø

Passo 1:

Faça uma tabela "vazia", com as mesmas entradas como colunas (a tabela vai crescer para baixo)

0	1

Passo 2:

Crie um novo estado inicial no DFA, um conjunto que contém somente o estado inicial do NFA

	0	1
→ {q0}		

Passo 3:

Para cada entrada, insira no DFA um conjunto que contém a união de todos os resultados da transição NFA daquela entrada para todos os estados do conjunto à esquerda

	0	1
→ {q0}	{q0,q1}	{q0}

Passo 4:

Para cada novo conjunto de estados que aparecer, insira uma nova linha na tabela do DFA e volte para o passo 3

	0	1
→ {q0}	{q0,q1}	{q0}
{q0,q1}	{q0,q1}	{q0,q2}

Passo 4 (novamente):

	0	1
→ {q0}	{q0,q1}	{q0}
{q0,q1}	{q0,q1}	{q0,q2}
{q0,q2}	{q0,q1}	{0p}

Passo 5: Quando não houver mais novos estados, marque como estado de aceitação os conjuntos que contém ao menos um estado de aceitação do NFA

	0	1
→ {q0}	{q0,q1}	{q0}
{q0,q1}	{q0,q1}	{q0,q2}
* {q0,q2}	{q0,q1}	{0p}

 Passo 6: "Renomeie" os conjuntos para estados, de forma a facilitar a leitura do DFA

	0	1
$\rightarrow A$	В	Α
В	В	С
* C	В	Α

- Dado o seguinte NFA:
 - Construa um DFA que aceite a mesma linguagem

	0	1
→ p	{p,q}	{p}
q	{r}	{r}
r	{s}	Ø
* S	{s}	{s}

	0	1
→ {p} A	{p,q} B	{p} A
{p,q} B	$\{p,q,r\}$ D	{p,r} C
{p,r} C	{p,q,s} E	{p} A
{p,q,r} D	{p,q,r,s} F	{p,r} C
* {p,q,s} E	{p,q,r,s} F	{p,r,s} G
* {p,q,r,s} F	$\{p,q,r,s\}$ F	{p,r,s} G
* {p,r,s} G	{p,q,s} E	{p,s} H
* {p,s} H	$\{p,q,s\} E$	{p,s} H

Dado o seguinte NFA:

Construa um DFA que aceite a mesma linguagem

	0	1
→ * q0	{q1}	{q2}
* q1	Ø	{0p}
* q2	{q0}	Ø

	0	1
→ * {q0} A	{q1} B	{q2} C
* {q1} B	{} D	(q0) A
* {q2} C	(q0) A	{} D
{} D (morto)	{} D	{} D

Conversão DFA → NFA

"Resto" da prova

Parte fácil

Construir um NFA a partir de um DFA

Basta "copiar" o diagrama (ou tabela), trocando estados por conjuntos de estados

Um DFA é um caso específico de NFA

NFA permite 0 ou mais transições em cada situação

DFA permite sempre 1 transição em cada situação

1 está entre 0 ou mais

Conversão DFA → NFA

	0	1
→ q1	q1	q2
* q2	q1	q2

	0	1
→ q1	{q1}	{q2}
* q2	{q1}	{q2}

Conversão DFA → NFA

Formalmente:

Seja D =
$$(Q, \Sigma, \delta_D, q_0, F)$$
 um DFA

Defina N =
$$(Q, \Sigma, \delta_N, q_0, F)$$

Onde δ_N é definido pela regra:

Se
$$\delta_D(q,a)=p$$
, então $\delta_N(q,a)=\{p\}$

Como consequência

Se
$$\delta^{\wedge}_{D}(q_0, w) = p$$
, então $\delta^{\wedge}_{N}(q_0, w) = \{p\}$

Portanto, w é aceito por D se e somente se é aceito por N Isto é: L(D) = L(N)

Autômatos Finitos com Movimentos Vazios

AF com movimentos ou transições vazias

Movimentos ou Transições espontâneas Isto é, sem nenhuma entrada É uma forma de não-determinismo

Facilita a "programação"

Ex: números decimais

AF com movimentos vazios

Ex: busca por palavras-chave

NFA com transições vazias

Definição formal

A mesma que NFA

Muda somente a função de transição

$$\delta: Q \times \Sigma \cup \{\epsilon\} \rightarrow 2^Q$$

Uma coluna extra na tabela, ou transições vazias no

diagrama

	3	+,-		0,1,,9
→ q0	{q1}	{q1}	Ø	Ø
q1	Ø	Ø	{q2}	{q1,q4}
q2	Ø	Ø	Ø	{q3}
q3	{q5}	Ø	Ø	{q3}
q4	Ø	Ø	{q3}	Ø
* q5	Ø	Ø	Ø	Ø

AF com movimentos vazios

- Essa nova característica não aumenta o poder do NFA
 - Ainda reconhece linguagens regulares
- Conceito de épsilon-fechamento
 - ECLOSE(q)
 - Conjunto de todos os estados alcançáveis espontaneamente a partir de q
 - Incluindo os vizinhos diretos e indiretos
 - Analisando-se os arcos rotulados com ε
- Função de transição estendida
 - Deve considerar sempre o ECLOSE

Dado o seguinte autômato

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
 - 3 •
 - a
 - baba
 - baa
 - b
 - bb
 - babba
 - (Use notação de árvore ou conjuntos)

Dado o seguinte autômato

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
 - 1111
 - 11
 - 101
 - 00010
 - (Use notação de conjuntos)

Projetando ε-NFAs

- Ex:
 - $\Sigma = \{0,1\}$
 - Linguagem = cadeias que contém a sequência 010 ou 101 como subcadeia

Projetando ε-NFAs

- Ex:
 - $\Sigma = \{a,b,c\}$
 - Linguagem = cadeias onde b e c sempre aparecem depois de uma ocorrência de a

Implementando ε-NFAs

- Envolve a implementação do épsilon-fechamento
 - E também precisa de uma coluna para transições vazias

Equivalência ε-NFAs e DFAs

- Transições vazias não adicionam poder ao autômato
 - Ainda reconhece as mesmas linguagens
 - Linguagens regulares
- Teorema:
 - Uma Linguagem L é aceita por algum DFA se e somente se L é aceita por algum ε-NFA
 - Prova por construção dos dois lados:
 - "Se": um processo que constrói um DFA a partir de um ε-NFA
 - "Somente se": um processo que constrói um ε-NFA a partir de um DFA

- É o mesmo procedimento da construção de subconjuntos dado anteriormente
 - Porém incorporando o cálculo de ε-fechamento após cada passo
 - Similar à implementação do ε-NFA

- Passo a passo com exemplo
- Dado o NFA:

	3	а	b	С
→ p	Ø	{p}	{q}	{r}
q	{p}	{q}	{r}	Ø
* r	{q}	{r}	Ø	{p}

- Passo 1 (auxiliar): calcule o ECLOSE de todos os estados
- ECLOSE(p) = {p}
- ECLOSE(q) = {p,q}
- ECLOSE(r) = $\{p,q,r\}$

	3	а	b	С
→ p	Ø	{p}	{q}	{r}
q	{p}	{q}	{r}	Ø
* r	{q}	{r}	Ø	{p}

 Passo 2: faça uma tabela "vazia" com as entradas (sem a coluna ε)

а	b	С

 Passo 3: Crie um novo estado inicial no DFA, um conjunto que contém o ECLOSE do estado inicial do NFA

	а	b	С
→ {p}			

- Passo 4:
 - Para cada entrada, insira no DFA um conjunto que contém o ECLOSE da união de todos os resultados da transição NFA daquela entrada para todos os estados do conjunto à esquerda

	а	b	С
→ {p}	{p}	{p,q}	{p,q,r}

- Passo 5:
 - Para cada novo conjunto de estados que aparecer, insira uma nova linha na tabela do DFA e volte para o passo 4

	а	b	С
→ {p}	{p}	{p,q}	{p,q,r}
{p,q}	{p,q}	{p,q,r}	{p,q,r}
{p,q,r}	{p,q,r}	{p,q,r}	{p,q,r}

 Passo 6: Quando não houver mais novos estados, marque como estado de aceitação os conjuntos que contém ao menos um estado de aceitação do NFA

	а	b	С
→ {p}	{p}	{p,q}	{p,q,r}
{p,q}	{p,q}	{p,q,r}	{p,q,r}
* {p,q,r}	{p,q,r}	{p,q,r}	{p,q,r}

 Passo 7: "Renomeie" os conjuntos para estados, de forma a facilitar a leitura do DFA

	а	b	С
\rightarrow A	А	В	С
В	В	С	С
* C	С	С	С

- Dado o seguinte ε-NFA
 - Converta para um DFA que aceita a mesma linguagem

	3	а	b	С
→ p	{q,r}	Ø	{q}	{r}
q	Ø	{p}	{r}	{p,q}
* r	Ø	Ø	Ø	Ø

Resposta

	а	b	С
→ * {p,q,r}	{p,q,r}	{q,r}	{p,q,r}
* {q,r}	{p,q,r}	{r}	{p,q,r}
* {r}	{}	{}	{}
{}	{}	{}	{}

- Dado o seguinte ε-NFA
 - Converta para um DFA que aceita a mesma linguagem

	3	а	b
→ * 1	{3}	Ø	{2}
2	Ø	{2,3}	{3}
3	Ø	{1}	Ø

Resposta

	а	b
→ * {1,3}	{1,3}	{2}
{2}	{2,3}	{3}
{2,3}	{1,2,3}	{3}
{3}	{1,3}	{}
* {1,2,3}	{1,2,3}	{2,3}
{}	{}	{}

Conversão DFA → ε-NFA

- "Resto" da prova
- Parte fácil
 - Mesmo caso da conversão de DFA para NFA
 - Mas fazendo com que δ(q, ε) = Ø para todo estado q do DFA
 - Ou seja, não existem transições espontâneas (mas poderia ter)

Resumo

- Definições X Linguagens X Problemas
- Autômatos Finitos
 - DFA
 - NFA
 - ε-NFA
- Aceitam as mesmas linguagens (regulares)

Resumo

