CortexType: Typing with your mind

Neureality Hackathon (March 2024)

Team Electric Sheep:

Hussain Ather, shussainather@gmail.com
Ruilin (Joanna) Qiao, rq2184@columbia.edu
Kateryna (Kate) Shapovalenko, kshapova@andrew.cmu

Table of contents

- Team
- Motivation, goals, current tools
- Our approach
- Training and testing
- Evaluation
- Next steps

Meet our team - Electric Sheep!

Our teammates (left to right):

- **@Joanna** biomedical engineering grad at Columbia → responsible for BCI software setup and running tests
- **@Kate** data science grad at Carnegie Mellon University → responsible for modelling
- **@Hussain** phd at University of Toronto
 → participated in the final testing of the algorithm

Present communication

Typing is hard, slow, and boring.

But more importantly, it's not accessible for many people.

What if...

What if there is no physical barrier between your mind and digital interface? What if you could type just with your mind?

Current tools - P300 BCI Speller

Pros:

- Relatively high accuracy in detecting the focused character.

Cons:

- Require extensive training and calibration for each user.
- Slow typing speed.
- Sensitive to external disturbances.

Our goal - Make the P300 BCI Speller more accurate and fast

Improving the model - classifier

Improving the model - classifier

Improving the model - getting predictions

Improving the model - getting predictions

Improving the model - getting predictions

Stimulus data Option 3 example (a mix of LLMs + finetuning): **Model training** The subject is trying to spell "N-E-U-R-E-A-L-I-T-Y" The user already typed in "N-E-U-R-" and currently tries to add "-A" EEG Predicted: A with probability 0.363 **Getting** Bert Predicted: I with probability 0.009 predictions GPT-2 Predicted: 0 with probability 0.168 GPT-2 Fine-tuned Predicted: 0 with probability 0.193 Final Prediction: A Accumulated Text: NEURA **Evaluating the** results

Training & testing - set up

- **EEG device**: g.tec Unicorn Hybrid Black Headset
- Human subject: our teammate Hussain (thanks, Hussain!)
- Training: multiple approaches (repeat trials of single or multiple letters)
- Testing: spell out the word
 N-E-U-R-E-A-L-I-T-Y

Training & testing - demo

LINK TO THE DEMO

Evaluation

- Accuracy
- Speed

Next steps

- Experiment with other EEG signal preprocessing techniques.
- Complete testing and adaptation of models developed during the hackathon the using the EEG equipment.
- Consider introducing additional subject-specific layer to account for variability between users.

Thanks, organizers! We had fun and learned a lot!

References

- PhysioLabXR-Community: https://github.com/PhysioLabXR/PhysioLabXR-Community/tree/master
- Neureality Hackathon: https://neureality-cu.github.io/Neureality/hackathon.html
- Pre-trained motor-imagery models: https://neurotechlab.socsci.ru.nl/resources/pretrained imagery models/

Annex

Train State

Test State

Flash Block

Source: https://physiolabxrdocs.readthedocs.io/en/latest/PhysioLabXRP300SpellerDemo.html