Highlights from Class #13 – John-Morgan Manos

Today's highlights on Monday — Alysa Fintel

Our text doesn't cover our next topics very thoroughly, so we will use a few other sources, which are posted on the class web site under READING & NOTES. https://courses.washington.edu/ess511/NOTES/notes.shtml

For Monday class – Please read

- Stein and Wysession 5.7.2
- Stein and Wysession 5.7.3/4
- Raymond notes on failure

Also see slides about upcoming topics

Failure and Mohr's circles – slides

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools vectors, tensors, coordinate changes
- Stress principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain Finite strain; infinitesimal strains
- Moments lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Midterm

- Study questions will be posted this weekend.
- HW session next Thursday will be devoted to the study questions

Problem Set #1

- Remember to include *units* when you evaluate expressions
- Q 1 some of you got the correct equation for stress evolution n
 (a), then totally ignored it when drawing your graphs.
- Some of you interpreted 1(f) to be about shearing the lithosphere. If you used the thickness of the asthenosphere (~200 km), you would have found that the shear strain rate fell below the minimum strain rate needed for failure in (c).
- 1(f) some of you didn't use the thickness of the asthenosphere (100 200 km), or the typical rate of plate motion (1-10 cm per year) to estimate the strain rate.

Question 2 – viscosity of silly putty

- Some of you are clearly theoreticians rather than experimentalists. You never told me how you would set up an experiment in your Lab.
- Data from some of your experiments would require very complicated interpretation.

Mohr's circle in 2-D view

Revisiting creation of 3 Mohr's circles for stress state σ_{ij}

- σ_{\parallel} , σ_{\parallel} , σ_{\parallel} are principal stresses
- n_i is normal vector to a plane at point P
- σ_N and σ_S are normal and shear components of traction vector $t_i^{(n)} = \sigma_{ij} n_i$ on that plane

Projection of
$$t_i^{(n)}$$
 onto n_i
$$\sigma_N = \sigma_I n_1^2 + \sigma_{II} n_2^2 + \sigma_{III} n_3^2$$
Pythagoras gives σ_s
$$\sigma_N^2 + \sigma_S^2 = \sigma_I^2 n_1^2 + \sigma_{II}^2 n_2^2 + \sigma_{III}^2 n_3^2$$

$$n_i \text{ is a unit vector}$$

Revisiting creation of 3 Mohr's circles

We can use those 3 equations to find n_i , the plane on which traction σ_N and σ_S exists

$$\begin{array}{l} n_1^2 = \frac{\left(\sigma_N - \sigma_{II}\right)\left(\sigma_N - \sigma_{III}\right) + \sigma_S^2}{\text{use those 3 equations-toofind of the Malues}} & \text{Denominator >0} \\ \text{use those 3 equations-toofind of the Malues} & \text{of } \sigma_N \text{ and } \sigma_S \text{ that satisfy the} \\ \text{equality in} \\ n_2^2 = \frac{\left(\sigma_N - \sigma_{III}\right)\left(\sigma_N - \sigma_{I}\right) + \sigma_S^2}{\left(\sigma_{II} - \sigma_{III}\right)\left(\sigma_{II} - \sigma_{I}\right)} & \text{Denominator <0} \\ n_3^2 = \frac{\left(\sigma_N - \sigma_{I}\right)\left(\sigma_N - \sigma_{II}\right) + \sigma_S^2}{\left(\sigma_{III} - \sigma_{I}\right)\left(\sigma_{III} - \sigma_{II}\right)} & \text{Denominator >0} \end{array}$$

We can also multiply each equation by the denominator on the RHS term. Th LHS squares are always non-negative.

Knowing the signs of the denominators, we can create 3 inequalities involving the RHS numerators

This gives the Mohr's circle connecting σ_{II} and σ_{III}

The inequality allows all σ_N and σ_S that fall outside the circle

$$(\sigma_N - \sigma_{II})(\sigma_N - \sigma_{III}) + \sigma_S^2 \geqslant 0$$

Revisiting creation of 3 Mohr's circles

We can use those 3 equations to find n_i , the plane on which traction σ_N and σ_S exists

$$\begin{split} n_1^2 &= \frac{\left(\sigma_N - \sigma_{II}\right)\left(\sigma_N - \sigma_{III}\right) + \sigma_S^2}{\left(\sigma_I - \sigma_{II}\right)\left(\sigma_I - \sigma_{III}\right)} & \text{Denominator} > 0 \\ n_2^2 &= \frac{\left(\sigma_N - \sigma_{III}\right)\left(\sigma_N - \sigma_I\right) + \sigma_S^2}{\left(\sigma_{II} - \sigma_{III}\right)\left(\sigma_{II} - \sigma_I\right)} & \text{Denominator} < 0 \\ n_3^2 &= \frac{\left(\sigma_N - \sigma_I\right)\left(\sigma_N - \sigma_{II}\right) + \sigma_S^2}{\left(\sigma_{III} - \sigma_I\right)\left(\sigma_{III} - \sigma_{II}\right)} & \text{Denominator} > 0 \end{split}$$

We can also use those 3 equations to find all the values of σ_N and σ_S that satisfy the equality in

$$(\sigma_{N} - \sigma_{II})(\sigma_{N} - \sigma_{III}) + \sigma_{S}^{2} \geqslant 0$$

This gives the Mohr's circle connecting σ_{II} and σ_{III}

The inequality allows all σ_N and σ_S that fall outside the circle

Class-prep questions for today

Failure of materials

Faults can slip when shear stress σ_{S} is large enough to overcome frictional resistance. Frictional resistance to failure can be modeled as increasing proportional to the normal traction σ_{N} .

In stress space, if a stress state σ_N and σ_S exists that intersects or touches the frictional line, then the plane represented at that point can fail.

In the diagrams, all principal stresses are negative.

- Are they compressive or extensile?
- In the first diagram, do any stress states exist outside the circle shown?
- Can any faults fail in this stress field?

In the second diagram (below):

- What has changed in the stress field?
- Can any faults fail in this new stress field?
- If yes, how many different faults can fail?
- How could you identify the orientation(s) from the Mohr's circle?

Prep for Class 15 on Monday

Failure of materials

Last class, we looked at frictional sliding on preexisting fractures or faults with a coefficient of friction μ .

 What physical characteristics of a surface cause friction?

Now we are going to actually break new rocks.

Mohr-Coulomb failure $\sigma_s = \tau_0 - n \sigma_M$

n = coefficient of internal friction for fracture on a new fault surface

 τ_0 = cohesion of the material

- Explain what you think n and τ₀ might mean in terms of micro-scale processes at the microcrack, crystalline, or lattice scales.
- Why do you think the failure envelope is rounded off at the right? Think about the sign of σ_N and the processes that might contribute to internal friction.

Cartesian Space vs Stress Space

 \hat{e}_{i}^{*} are principal directions defining principal planes at **P**. Small circles in Cartesian space (e.g. EQG) map onto circles (e.g. eqg) concentric with primary Mohr's circles (e.g. akc). Similarly, KQD maps onto kqd.

Intersection at q shows σ_N and σ_s on plane defined by normal vector n_i at Q.

(I have attempted to (sort of) correct the stress-plane figure below. ②)

(a) Reference angles φ and β for intersection point Q on surface of body octant.

(b) Mohr's stress semicircle for octant of Fig. 3.15(a).

Sliding friction

 σ_S = - $\mu \sigma_N$ μ is *coefficient of friction* for sliding on a pre-existing break

Frictional sliding

 σ_S = - $\mu \sigma_N$ μ is *coefficient of friction* for sliding on a pre-existing break

Differential stress σ_{III} - σ_{I}

But, if $\sigma_{III} = \sigma_{I}$, all 3 principal stresses are equal

- What do the 3 Mohr's circle look like?
- Describe this state of stress inside the body.
- Is frictional failure possible, if differential stress is zero?

Differential stress

$$\sigma_{III} - \sigma_{I}$$

But, if $\sigma_{III} = \sigma_{I}$, all 3 principal stresses are equal

- What do the 3 Mohr's circle look like?
- Describe this state of stress inside the body.
- Is frictional failure possible, if differential stress is zero?

Mohr-Coulomb Fracture

 σ_S = τ_0 - n σ_N σ_N

Mohr-Coulomb Fracture

 $\sigma_S = \tau_0$ - $n \sigma_N$ n is *coefficient of internal friction* for fracture on a new fault surface τ_0 is cohesion of the material

Failure in shear

- Why is failure is not on the plane with maximum shear stress?
- Why are there 2 conjugate failure planes?

