ННГУ им. Н. И. Лобачевского Высшая школа общей и прикладной физики Группа№ 10191

ОТЧЁТ

ПО ЛАБОРАТОРНОЙ РАБОТЕ

«Исследование колебательных процессов в колебательном контуре»

Отчёт выполнили: Ремез Максим

Седунова Анна

Отчёт принял: Водопьянов. А. В.

Нижний Новгород - 2021

Цель работы: изучить колебательный процесс в линейном осцилляторе с потерями. В данной работе на примере электрического контура.

Оборудование: осциллограф, вольтметр, амперметр, блок с исследуемым контуром, генератор.

Теоретическая часть:

Общие моменты

Рассматриваем следующую схему:

Процессы в данном контуре описывает следующее дифференциальное уравнение

$$\ddot{q} + 2\delta \dot{q} + \omega_0^2 q = f(t), \tag{1}$$

где

 $\delta=rac{R}{2L}$ – коэффициент затухания; $\omega_0=rac{1}{\sqrt{LC}}$ – собственная частота контура;

$$f(t) = \frac{\mathrm{e(t)}}{L}$$
 – «вынуждающая сила».

Уравнение (1) - линейное дифференциальное уравнение 2-го порядка с постоянными коэффициентами. Решение можно представить в виде суммы

1) Общего решения однородного уравнения

$$\ddot{q} + 2\delta \dot{q} + \omega_0^2 q = 0, \tag{2}$$

описывающее поведение осциллятора в отсутствие внешней ЭДС и колебания называются собственные (свободные).

2) Частного решения неоднородного уравнения

$$\ddot{q} + 2\delta \dot{q} + \omega_0^2 q = f(t), \tag{3}$$

описывающее вынужденные колебания.

Собственные колебания

Для удобства анализа выделим три случая

1) $\,\delta < \omega_0 \,$ – слабые затухания

Общее решение (2) можно записать в следующем виде:

$$q = A_0 e^{-\delta t} \cos \left(\sqrt{\omega_0^2 - \delta^2} t + \phi \right)$$
 (4)

где A_0 и ϕ – константы, получаемые из начальных условий.

Общий вид таких колебаний, называющихся квазигармоническими:

2) $\,\delta>\omega_0\,$ – сильные затухания

Общее решение (2) можно записать в следующем виде:

$$q = A1 * e^{\lambda_1 t} + A2 * e^{\lambda_2 t},$$
 (5)

где $\lambda = -\delta \pm \sqrt{\delta^2 - \omega_0^2}$ – вещественное и A1, A2 определяются из начальных условий.

Общий вид таких колебаний, называющихся апериодическим:

3) $\delta = \omega_0$ – критический режим колебаний, соответствующее этому условию сопротивления – критическое сопротивление контура

$$R_{\rm \kappa p} = 2\sqrt{\frac{L}{c}} \tag{6}$$

Декремент затухания. Добротность.

Логарифмический декремент затухания d — это логарифм отношения значений заряда q на пластинках конденсатора в двух последовательных максимумах:

$$d = \ln\left(\frac{q_n}{q_{n+1}}\right) = \delta T \tag{7}$$

Из (4) можем сказать, что коэффициент затухания есть величина обратная периоду времени т, за который амплитуда колебаний уменьшилась в е раз.

И тогда определим число колебаний за т:

$$N = \frac{\tau}{T} = \frac{1}{\delta T} = \frac{1}{d} \tag{8}$$

Т.е. число колебаний, за которое амплитуда уменьшилась в е раз, обратно пропорциональна логарифмическому декременту затухания.

Также вводят понятия добротности

$$Q=\pi N \tag{9}$$

Добротность контура и логарифмический декремент затухания можно выразить так:

$$(\delta = \frac{R}{2L}; T = \frac{2\pi}{\omega_0})$$

$$d = \frac{\pi R}{L\omega_0} = \pi R C\omega_0 = \pi R \sqrt{\frac{C}{L}}$$
 (10)

$$Q = \frac{\omega_0 L}{R} = \frac{1}{RC\omega_0} = \frac{1}{R} \sqrt{\frac{L}{C}}$$
 (11)

Вынужденные колебания

Колебания под действием внешней гармонической силы описываются следующим дифференциальным уравнениям

$$\ddot{q} + 2\delta \dot{q} + \omega_0^2 q = f_0 \cos \omega t \tag{12}$$

Общее решение имеет вид

$$q = B(\omega)\cos(\omega t + \psi) \tag{13}$$

где

$$B(\omega) = \frac{f_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2}}$$
 (14)

$$tg \psi = \frac{2\delta\omega}{\omega^2 - \omega_0^2} \tag{15}$$

Используя формулы (14) и (15) и вспомнив, что $f_0=\frac{e_0}{L}$ где e_0 -амплитуда внешней ЭДС, получаем формулу для амплитуды тока в контуре и для амплитуд напряжений на отдельных участках

$$I_0 = \omega B(\omega) = \frac{e_0}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$
(16)

$$U_L = I_0 \omega L = \frac{\omega L e_0}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$
(17)

$$U_C = \frac{I_0}{\omega C} = \frac{e_0}{\omega C \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$
(18)

Практическая часть:

- 1. Исследование собственных колебаний
- 1) Мы рассмотрели осциллограммы $U_c(t)$ при разных значениях сопротивления, сняли значения на пиках. И по ним определили период собственных колебаний и декремента затухания для каждого сопротивления. И построили графики зависимостей.

R, кОм	U_c1, B	U_c2, B	U_c3, B	U_c4, B	U_c5, B	U_c6, B	Т, мкс
0,1	6, 88	5,68	4,4	3,52	2,88	2,32	260
0,22	6,48	4,96	3,76	2,8	2,08	1,6	260
0,35	5,92	4,32	3,12	2,24	1,6	1,2	260
0,54	5,36	3,68	2,48	1,76	1,12	-	260
0,86	5,2	3,52	2,32	1,6	1,04	-	260
1,6	2,96	1,36	0,56	-	ı	-	260
2,4	1,84	0,64	-	-	ı	-	260

2) Для одного из значений R посчитаем добротность и коэффициент затухания, индуктивность и критическое сопротивление контура.

Возьмём R=350 Ом. Добротность считаем по формуле (8) и (9)

$$Q = \frac{\pi}{d} \approx 9,82$$

Коэффициент затухания по формуле (7)

$$\delta = \frac{d}{r} \approx$$
1230,8 c⁻¹

Ищем параметры контура

$$d=\pi R\sqrt{\frac{C}{L}}$$

где k= $\pi\sqrt{\frac{C}{L}}$ — угловой коэффициент прямой d(R). Из графика k≈0,0003718 Om^{-1}

$$T=2\pi\sqrt{LC}$$
 $L=rac{T}{2k}pprox 0,35\ \Gamma$ н $C=rac{T^2}{4\pi^2L}pprox 4,89*10^{-9}\Phi$

$$R_{\mathrm{kp}} = 2\sqrt{\frac{L}{C}} \approx 16920,4 \,\mathrm{Om}$$

3) Далее посмотрим осциллограмму при различных значениях R. И согласно формулам Q обратно пропорционален R, что и наблюдается.

2. Исследование вынужденных колебаний

Здесь изучаем явление резонанса.

1) Снимаем зависимость $U_C(\nu)$, $U_L(\nu)$, $U_R(\nu)$. И затем сравним это с теоретическим значением по формулам (16), (17), (18).

E=0,29 В; r=250 Ом

Для R=100 Ом

ν, Гц	U_c, B	U_L, B	U_R, B
100	0,295	0,001	0,003
700	0,305	0,01	0,004
1300	0,322	0,037	0,007
1600	0,355	0,06	0,009
1800	0,376	0,08	0,01
2000	0,401	0,106	0,012
2200	0,434	0,139	0,014
2400	0,477	0,182	0,016
2600	0,534	0,239	0,02
2800	0,613	0,318	0,024
3000	0,729	0,435	0,031
3200	0,909	0,62	0,04

3400	1,243	0,952	0,058
3600	1,993	1,719	0,098
3650	2,341	2,078	0,116
3700	2,805	2,563	0,141
3720	3,038	2,806	0,153
3740	3,287	3,074	0,166
3760	3,548	3,36	0,181
3780	3,817	3,665	0,196
3800	4,062	3,942	0,209
3820	4,26	4,18	0,221
3870	4,35	4,39	0,228
3890	4,215	4,29	0,22
3920	3,9	4,03	0,207
3950	3,52	3,68	0,188
3970	3,26	3,45	0,175
4000	2,92	3,13	0,157
4100	2,02	2,28	0,112
4200	1,5	1,77	0,085
4700	0,605	0,889	0,038
5300	0,331	0,622	0,023
6300	0,174	0,468	0,014
7000	0,111	0,4	0,01
9000	0,06	0,35	0,008
12000	0,03	0,32	0,004

И сравнение практических и теоретических значений:

Для R=860 Ом

ν, Гц	U_c, B	U_L, B	U_R, B
100	0,29	0	0,011
800	0,31	0,01	0,014
1200	0,33	0,03	0,019
1600	0,36	0,06	0,027
2000	0,39	0,11	0,036
2300	0,45	0,16	0,046
2600	0,52	0,23	0,06
2800	0,59	0,31	0,072
3000	0,69	0,41	0,09
3200	0,83	0,56	0,115

3300	0,93	0,67	0,13
3400	1,05	0,8	0,15
3450	1,06	0,84	0,16
3500	1,15	0,93	0,178
3520	1,18	0,97	0,183
3540	1,21	1,01	0,189
3560	1,24	1,05	0,195
3580	1,28	1,09	0,202
3600	1,31	1,13	0,208
3620	1,34	1,17	0,214
3640	1,37	1,21	0,221
3660	1,4	1,25	0,227
3680	1,44	1,29	0,234
3700	1,47	1,34	0,24
3720	1,5	1,38	0,246
3750	1,53	1,44	0,254
3780	1,56	1,49	0,261
3820	1,57	1,54	0,269
3830	1,58	1,55	0,27
3840	1,58	1,55	0,271
3850	1,57	1,57	0,272
3900	1,54	1,57	0,274
3950	1,49	1,56	0,269
4000	1,41	1,52	0,26
4050	1,33	1,46	0,248
4100	1,23	1,39	0,234
4150	1,14	1,32	0,219
4200	1,06	1,25	0,205
4250	0,98	1,18	0,192
5000	0,39	0,66	0,088
7000	0,12	0,4	0,036
9000	0,06	0,34	0,023
12000	0,03	0,3	0,014
15000	0,02	0,29	0,01

И сравнение практических и теоретических значений:

2) Определяем добротность контура: R = 100 Om

$$Q = \frac{1}{R_{\text{полн}}} \sqrt{\frac{L}{C}} \approx 9,78$$

По соотношению U_C , U_L , U_R .

$$Q = \frac{U_{Cmax}}{e_0} \approx 19,08$$

По ширине резонансной кривой

Пусть $\Delta \omega$ — ширина резонансной кривой на высоте $\frac{U_{max}}{\sqrt{2}}$. Тогда

$$Q = \frac{\omega_0}{\Delta \omega} \approx 12,9$$

R = 860 Om

$$Q = \frac{1}{R_{\text{полн}}} \sqrt{\frac{L}{C}} \approx 3,08$$

По соотношению U_C , U_L , U_R .

$$Q = \frac{U_{Cmax}}{e_0} \approx 5,77$$

По ширине резонансной кривой

$$Q = \frac{\omega_0}{\Delta \omega} \approx 4.98$$

Результатѕ, полученные вторым методом при R = 100 Ом неверен т.к. измерения проводились ненадежным прибором, из-за чего и возникло резкое отклонение.

3) Далее были рассмотрены фазовые соотношения между напряжениями на отдельных элементах схем при различных частотах. Ниже представлены снимки с осциллографа, полученные при резонансной частоте, уменьшенной и увеличенной

3. Установление вынужденных колебаний

Здесь исследуем процесс установление при разных R.

R, Om	350	540	860	1600	2400
τ, MC	0,92	0,72	0,72	0,52	0,28

Вывод:

В ходе выполнения работы были колебательные процессы в колебательном контуре. Были определены добротность и декремент затухания контура, а также его критическое сопротивление и индуктивность. Получены резонансные кривые напряжений на различных элементах и рассчитаны индуктивность и сопротивление контура, а также его добротность. С помощью осциллографа были исследованы фазовые соотношения между напряжениями на различных элементах.