Gradient Boosted Decision Tree

JrPhy

Introduction

- We've known the Adaboost and Random Forest(RF). Adaboost is a algorithm with weak base learning algorithm + **optimal re-weighting** factor + linear aggregation α . And RF is a algorithm uses decision tree by bootstrapping and form many decision trees.
- Now we want to combine them, but RF just aggregate those trees, without weighting factor, so here we need a weighted decision tree.

Adaboost decision tree

- Both adaboost and decision tree needs bootstrapping. In the BAGging algorithm, the weights represents how many bootstrap-sampled copies in the dataset. In the randomized base algorithm, the weights represents the proportion. So we don't modify the decision tree algorithm.
- So that we can tell it the information of weights by sampling.
- So Adaboost decision tree = Adaboost + sampling + decision tree

Adaboost decision tree

- In adaboost, the weight is $\alpha = \ln \sqrt{\frac{(1-t)}{t}}$, t is weighted error rate.
- If the decision tree is **fully-grown**, then $E_{in} = 0$, so $E^{u}_{in} = 0$, too, so that t = 0, then a is infinity,
- So we don't need the fully-grown tree, and just needs **some** sample instead of all data.
- Adaboost decision tree = Adaboost + sampling + pruned decision tree
- A pruned method is to limit the height of the tree.

Weights of adaboost

• In adaboost, the next score is from the previous.

$$u_n^{(t+1)} = \begin{cases} u_n^{(t)} \times \sqrt{(1-t)/t}, \text{ correct} \\ u_n^{(t)} / \sqrt{(1-t)/t}, \text{ incorrect} \end{cases} \rightarrow \alpha = \ln \sqrt{\frac{(1-t)}{t}} \rightarrow \sqrt{\frac{(1-t)}{t}} = e^{\alpha}$$

$$= u_n^{(t)} \sqrt{(1-t)/t}^{-y_n g_i(x_n)} = u_n^{(t)} \exp(-y_n \alpha_i g_i(x_n))$$

$$u_n^{(N+1)} = u_n^{(1)} \prod_{i=1}^N \exp(-y_n \alpha_i g_i(x_n)) = \frac{1}{N} \exp(-y_n \sum_{i=1}^N \alpha_i g_i(x_n)) = \frac{1}{N} \exp(-y_n \times \text{voting score})$$

•
$$G(x_n) = \text{sign}\left(\sum_{i=1}^N \alpha_i g_i(x_n)\right)$$
 is the voting score.

Weights of adaboost

- The voting score is like the margin of hard-margin SVM, we want the large margin, means the positive and large.
- Voting score is positive and large $\rightarrow \exp(-y_n \times \text{voting score})$ small
- $\rightarrow u^{(N+1)}n \text{ small}$
- So that here we want to minimize the

$$\sum_{n=1}^{M} u_n^{(N+1)} = \frac{1}{N} \sum_{n=1}^{M} \exp\left(-y_n \sum_{i=1}^{N} \alpha_i g_i(x_i)\right)$$

• Here we use gradient descent algorithm to find the minimum.

Weights of adaboost

• Gradient descent: $f(u+\eta v) \sim f(u) + \eta v f(u)$, ||v|| = 1. the following v = h(x)

$$\frac{1}{N} \sum_{n=1}^{M} \exp\left(-y_n \sum_{i=1}^{N} \alpha_i g_i(x_i)\right) \rightarrow \frac{1}{N} \sum_{n=1}^{M} \exp\left(-y_n \left(\sum_{i=1}^{N} \alpha_i g_i(x_i) + \eta v\right)\right)$$

$$= \sum_{n=1}^{M} u_n^{(N)} \exp\left(-y_n \eta v\right) \approx \sum_{n=1}^{M} u_n^{(N)} (1 - y_n \eta v)$$

$$= \sum_{n=1}^{M} u_n^{(N)} + \sum_{n=1}^{M} u_n^{(N)} (-y_n \eta v)$$
taylor expansion
$$= \sum_{n=1}^{M} u_n^{(N)} + \sum_{n=1}^{M} u_n^{(N)} (-y_n \eta v)$$

Optimize

$$E_{in}^{u} = \sum_{n=1}^{M} u_{n}^{(N)} + \eta \sum_{n=1}^{M} u_{n}^{(N)} \left(-y_{n} h(x_{n}) \right)$$

• So that we want to minimize the last term.

$$\sum_{n=1}^{M} u_n^{(N)} \left(-y_n \eta h(x_n) \right) = \sum_{n=1}^{M} u_n^{(N)} \times \begin{cases} 1, \ y_n = h(x_n) \\ -1, \ y_n \neq h(x_n) \end{cases}$$

$$= -\sum_{n=1}^{M} u_n^{(N)} + \sum_{n=1}^{M} u_n^{(N)} \times \begin{cases} 0, \ y_n = h(x_n) \\ 2, \ y_n \neq h(x_n) \end{cases} = -\sum_{n=1}^{M} u_n^{(N)} + 2E_{in}^u(h)N$$

• In adaboost, the base algorithm minimizes E_{in} . It finds $h = g_i$ for gradient descent.

Optimize

- So in adaboost, the error is $E_{ada} = \sum_{n=1}^{M} u_n^{(N)} \exp(-y_n \eta g_i(x_n))$
- In the summation, we know
- For correct: $y_n = g_i(x_n) \rightarrow u^{(N)} \exp(-\eta)$
- For incorrect: $y_n \neq g_i(x_n) \rightarrow u^{(N)} \exp(+\eta)$

$$E_{ada} = \sum_{n=1}^{M} u_n^{(N)} ((1-t) \exp(-\eta) + t \exp(+\eta))$$

• Then take differentiate on η , we can find a optimize η^* in gradient descent. And

$$\eta^* = \ln \sqrt{\frac{1-t}{t}} = \alpha$$

Optimize

- So in adaboost, it finds g_i to approximate h, then fix y_n and h to find a optimize η^* , and apply it in gradient descent, this method of gradient descent is called **steepest gradient descent**.
- The original gradient descent tune η by user, so you may try many η to find the optimize $\eta*$, but in steepest gradient descent, the $\eta*$ is determined by the condition.
- In the adaboost with binary output, which we minimize is

$$\min_{\eta} \left(\min_{h} \frac{1}{N} \sum_{n=1}^{M} \exp \left(-y_n \left(\sum_{i=1}^{N} \alpha_i g_i(x_i) + \eta h(x_i) \right) \right) \right)$$

• Here we want to use generalized error function, like square error, or every error can solve by gradient descent.

$$\min_{\eta} \left(\min_{h} \frac{1}{N} \sum_{n=1}^{M} err\left(\sum_{i=1}^{N} \alpha_{i} g_{i}(x_{i}) + \eta h(x_{i}), y_{n} \right) \right)$$

• Here we use square error as example, $err(s, y) = (s - y)^2$

$$\min_{h} \frac{1}{N} \sum_{n=1}^{M} err\left(\sum_{i=1}^{N} \alpha_{i} g_{i}(x_{i}) + \eta h(x_{i}), y_{n}\right)$$

$$\approx \min_{h} \frac{1}{N} \sum_{n=1}^{M} err(s_n, y_n) + \frac{1}{N} \sum_{i=1}^{N} \eta h(x_i) \frac{\partial}{\partial s} err(s_n, y_n) \Big|_{s=s_n}$$

$$\min_{h} \frac{1}{N} \sum_{n=1}^{M} err\left(\sum_{i=1}^{N} \alpha_{i} g_{i}(x_{i}) + \eta h(x_{i}), y_{n}\right)$$

$$\approx \min_{h} \left(\frac{1}{N} \sum_{n=1}^{M} err(s_{n}, y_{n}) + \frac{1}{N} \sum_{i=1}^{N} \eta h(x_{i}) \frac{\partial}{\partial s} err(s_{n}, y_{n})|_{s=s_{n}}\right)$$

$$= \min_{h} \left(\frac{1}{N} \sum_{n=1}^{M} err(s_{n}, y_{n}) + \frac{\eta}{N} \sum_{i=1}^{N} h(x_{i}) \times 2(s_{n} - y_{n})\right)$$

• The 1st term is constant, so we just need to minimize the 2nd term. If h(x) is without constrain, then h(x) can be negative infinity, so we should set some constrain on h(x).

• Here we add $(h(x))^2$ as the constrain

$$\frac{\eta}{N} \sum_{i=1}^{N} h(x_i) \times 2(s_n - y_n) \to \frac{\eta}{N} \sum_{i=1}^{N} \left(h(x_i) \times 2(s_n - y_n) + \left(h(x_i) \right)^2 \right)$$

$$= \frac{\eta}{N} \sum_{i=1}^{N} \left(\left(h(x_i) - \left(y_n - s_n \right) \right)^2 + \text{constant} \right)$$

• So we want to solve the square error regression on $\{(x_n, y_n - s_n)\}$, it finds the $g_i = h$ by regression with residuals.

• After finding h, then find the optimize η .

$$\min_{\eta} \left(\min_{h} \frac{1}{N} \sum_{n=1}^{M} err \left(\sum_{i=1}^{N} \alpha_{i} g_{i}(x_{i}) + \eta h(x_{i}), y_{n} \right) \right) = \min_{\eta} \left(\frac{1}{N} \sum_{n=1}^{M} \left(s_{n} - y_{n} + \eta g_{j}(x_{n}) \right)^{2} \right)$$

$$= \min_{\eta} \left(\frac{1}{N} \sum_{n=1}^{M} \left(-\left(s_{n} - y_{n}\right) - \eta g_{j}(x_{n}) \right)^{2} \right) = \min_{\eta} \left(\frac{1}{N} \sum_{n=1}^{M} \left(\left(y_{n} - s_{n}\right) - \eta g_{j}(x_{n}) \right)^{2} \right)$$

• it's a linear regression problem, the target function is $g_j(x_n)$, $(y_n - s_n)$ is the residual, η is the step size in GradientBoost.

Algorithm

Gradient Boosted Decision Tree (GBDT)

```
s_1 = s_2 = \ldots = s_N = 0 for t = 1, 2, \ldots, T
```

- obtain g_t by $\mathcal{A}(\{(\mathbf{x}_n, \mathbf{y}_n \mathbf{s}_n)\})$ where \mathcal{A} is a (squared-error) regression algorithm
 - —how about sampled and pruned C&RT?
- 2 compute α_t = OneVarLinearRegression($\{(g_t(\mathbf{x}_n), y_n s_n)\}$)
- 3 update $s_n \leftarrow s_n + \alpha_t g_t(\mathbf{x}_n)$

return
$$G(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})$$
 Hsuan Tien Lin, mltech/211_handout