Cálculo Numérico

Interpolação Polinomial

Estudo do Erro na Interpolação Polinomial

Alessandro Alves Santana

Universidade Federal de Uberlândia Faculdade de Matemática

Fundamentos

Os métodos de interpolação polinomial são técnicas de aproximação de funções. Por serem aproximações o erro, em uma determinada magnitude, existe. Esse tópico do assunto é o tema que iremos aqui abordar.

Fundamentos

Os métodos de interpolação polinomial são técnicas de aproximação de funções. Por serem aproximações o erro, em uma determinada magnitude, existe. Esse tópico do assunto é o tema que iremos aqui abordar.

Teorema 1: Teorema da Aproximação de Weierstrass

Se f(x) é uma função definida e contínua em um um intervalo [a,b], então para cada $\varepsilon > 0$ existe um polinômio $p_n(x)$ tal que $|f(x) - p_n(x)| < \varepsilon$.

Fundamentos

Os métodos de interpolação polinomial são técnicas de aproximação de funções. Por serem aproximações o erro, em uma determinada magnitude, existe. Esse tópico do assunto é o tema que iremos aqui abordar.

Teorema 1: Teorema da Aproximação de Weierstrass

Se f(x) é uma função definida e contínua em um um intervalo [a,b], então para cada $\varepsilon > 0$ existe um polinômio $p_n(x)$ tal que $|f(x) - p_n(x)| < \varepsilon$.

Figura 1: Gráfico de f(x) com o polinômio interpolante $p_n(x)$ dentro de uma região onde $|f(x) - p_n(x)| < \varepsilon$.

Teorema 2: Teorema do Erro na Interpolação

Se x_0, x_1, \ldots, x_n são números distintos em um intervalo [a, b] e $f(x) \in C^{n+1}[a, b]$, então existe $\xi(x)$ entre x_0, x_1, \ldots, x_n tal que

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

onde $p_n(x)$ é o polinômio que interpola a função f(x) nos pontos x_0, x_1, \ldots, x_n .

Teorema 2: Teorema do Erro na Interpolação

Se x_0, x_1, \ldots, x_n são números distintos em um intervalo [a, b] e $f(x) \in C^{n+1}[a, b]$, então existe $\xi(x)$ entre x_0, x_1, \ldots, x_n tal que

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

onde $p_n(x)$ é o polinômio que interpola a função f(x) nos pontos x_0, x_1, \ldots, x_n .

Observação 1: Sobre o número $\varepsilon(x)$

A função $\xi(x)$ no teorema acima é um número que varia para cada x e seu valor é tal que $\xi(x) \in (\alpha, b)$. Normalmente essa função é desconhecida. Esse teorema é a base para o estabelecimento do limitante para o erro na interpolação polinomial.

Teorema 2: Teorema do Erro na Interpolação

Se x_0, x_1, \ldots, x_n são números distintos em um intervalo [a, b] e $f(x) \in C^{n+1}[a, b]$, então existe $\xi(x)$ entre x_0, x_1, \ldots, x_n tal que

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

onde $p_n(x)$ é o polinômio que interpola a função f(x) nos pontos x_0, x_1, \ldots, x_n .

Observação 1: Sobre o número $\varepsilon(x)$

A função $\xi(x)$ no teorema acima é um número que varia para cada x e seu valor é tal que $\xi(x) \in (a, b)$. Normalmente essa função é desconhecida. Esse teorema é a base para o estabelecimento do limitante para o erro na interpolação polinomial.

Observação 2: Comparação do erro na interpolação com o erro no polinômio de Taylor

O erro ao aproximar uma função por um polinômio de Taylor é dado por

$$E_n^{\mathsf{T}}(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}$$

e na interpolação polinomial

$$E_n^{IP}(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^n (x - x_i).$$

Note que a fórmulas são próximas. A diferença que existe que o polinômio de Taylor concentra todas as suas informações, para obter o polinômio, em um único ponto x_0 . Na interpolação polinomial o erro envolve todos os pontos utilizados nos processo de interpolação.

Considere a função $f(x) = x^{-1}$ no intervalo [2, 4]. Obtenha uma expressão para o limitante do erro na interpolação polinomial dessa função ao utilizar um polinômio de grau n = 2 considerando os pontos $x_0 = 2$, $x_1 = 3$ e $x_2 = 4$.

Considere a função $f(x) = x^{-1}$ no intervalo [2, 4]. Obtenha uma expressão para o limitante do erro na interpolação polinomial dessa função ao utilizar um polinômio de grau n=2 considerando os pontos $x_0=2$, $x_1=3$ e $x_2=4$.

Resolução: Do teorema do erro na interpolação, temos que a expressão do erro, para n=2, é dada por

Considere a função $f(x) = x^{-1}$ no intervalo [2, 4]. Obtenha uma expressão para o limitante do erro na interpolação polinomial dessa função ao utilizar um polinômio de grau n = 2 considerando os pontos $x_0 = 2$, $x_1 = 3$ e $x_2 = 4$.

Resolução: Do teorema do erro na interpolação, temos que a expressão do erro, para n=2, é dada por

$$E_2^{\text{IP}}(x) = \frac{f^{(3)}(\xi(x))}{3!}(x - x_0)(x - x_1)(x - x_2) \Rightarrow E_2^{\text{IP}}(x) = \frac{f^{(3)}(\xi(x))}{6}(x - 2)(x - 3)(x - 4). \tag{1}$$

com $\xi(x) \in (2,4)$. No estudo o erro, esse é basicamente medido em valor absoluto (em módulo). Passando o módulo em ambos os membros de (1),

$$|E_2^{\text{IP}}(x)| = \frac{|f^{(3)}(\xi(x))|}{6} |\underbrace{(x-2)(x-3)(x-4)}_{g(x)}|.$$
 (2)

Considere a função $f(x) = x^{-1}$ no intervalo [2, 4]. Obtenha uma expressão para o limitante do erro na interpolação polinomial dessa função ao utilizar um polinômio de grau n = 2 considerando os pontos $x_0 = 2$, $x_1 = 3$ e $x_2 = 4$.

Resolução: Do teorema do erro na interpolação, temos que a expressão do erro, para n=2, é dada por

$$E_2^{\text{IP}}(x) = \frac{f^{(3)}(\xi(x))}{3!}(x - x_0)(x - x_1)(x - x_2) \Rightarrow E_2^{\text{IP}}(x) = \frac{f^{(3)}(\xi(x))}{6}(x - 2)(x - 3)(x - 4). \tag{1}$$

com $\xi(x) \in (2,4)$. No estudo o erro, esse é basicamente medido em valor absoluto (em módulo). Passando o módulo em ambos os membros de (1),

$$|E_2^{\text{IP}}(x)| = \frac{|f^{(3)}(\xi(x))|}{6} |\underbrace{(x-2)(x-3)(x-4)}_{g(x)}|. \tag{2}$$

Como $f^{(3)}(x) = -6x^{-4}$ e g(x) = (x-2)(x-3)(x-4) são ambas funções contínuas no intervalo [2, 4], as mesmas possuem um valor máximo em módulo no referido intervalo. Daí, segue que

$$|E_2^{\text{IP}}(x)| \le \frac{\max_{x \in [2,4]} |f^{(3)}(x)| \max_{x \in [2,4]} |g(x)|}{6}.$$
(3)

Considere a função $f(x) = x^{-1}$ no intervalo [2, 4]. Obtenha uma expressão para o limitante do erro na interpolação polinomial dessa função ao utilizar um polinômio de grau n = 2 considerando os pontos $x_0 = 2$, $x_1 = 3$ e $x_2 = 4$.

Resolução: Do teorema do erro na interpolação, temos que a expressão do erro, para n=2, é dada por

$$E_2^{\text{IP}}(x) = \frac{f^{(3)}(\xi(x))}{3!}(x - x_0)(x - x_1)(x - x_2) \Rightarrow E_2^{\text{IP}}(x) = \frac{f^{(3)}(\xi(x))}{6}(x - 2)(x - 3)(x - 4). \tag{1}$$

com $\xi(x) \in (2,4)$. No estudo o erro, esse é basicamente medido em valor absoluto (em módulo). Passando o módulo em ambos os membros de (1),

$$|E_2^{\text{IP}}(x)| = \frac{|f^{(3)}(\xi(x))|}{6} |\underbrace{(x-2)(x-3)(x-4)}_{g(x)}|. \tag{2}$$

Como $f^{(3)}(x) = -6x^{-4}$ e g(x) = (x-2)(x-3)(x-4) são ambas funções contínuas no intervalo [2, 4], as mesmas possuem um valor máximo em módulo no referido intervalo. Daí, segue que

$$|E_2^{\text{IP}}(x)| \le \frac{\max_{x \in [2,4]} |f^{(3)}(x)| \max_{x \in [2,4]} |g(x)|}{6}.$$
(3)

Vamos determinar esses máximos. Continuando,

Considere a função $f(x) = x^{-1}$ no intervalo [2, 4]. Obtenha uma expressão para o limitante do erro na interpolação polinomial dessa função ao utilizar um polinômio de grau n = 2 considerando os pontos $x_0 = 2$, $x_1 = 3$ e $x_2 = 4$.

Resolução: Do teorema do erro na interpolação, temos que a expressão do erro, para n=2, é dada por

$$E_2^{\text{IP}}(x) = \frac{f^{(3)}(\xi(x))}{3!}(x - x_0)(x - x_1)(x - x_2) \Rightarrow E_2^{\text{IP}}(x) = \frac{f^{(3)}(\xi(x))}{6}(x - 2)(x - 3)(x - 4). \tag{1}$$

com $\xi(x) \in (2,4)$. No estudo o erro, esse é basicamente medido em valor absoluto (em módulo). Passando o módulo em ambos os membros de (1),

$$|E_2^{\text{IP}}(x)| = \frac{|f^{(3)}(\xi(x))|}{6} |\underbrace{(x-2)(x-3)(x-4)}_{g(x)}|. \tag{2}$$

Como $f^{(3)}(x) = -6x^{-4}$ e g(x) = (x-2)(x-3)(x-4) são ambas funções contínuas no intervalo [2, 4], as mesmas possuem um valor máximo em módulo no referido intervalo. Daí, segue que

$$|E_2^{\text{IP}}(x)| \le \frac{\max_{x \in [2,4]} |f^{(3)}(x)| \max_{x \in [2,4]} |g(x)|}{6}.$$
(3)

Vamos determinar esses máximos. Continuando,

▶ Pode se notar que a função $f^{(3)}(x) = -6x^{-4}$, em módulo, é decrescente no intervalo [2,4] e assume maior valor em módulo para x = 2, isto é, em no extremo à esquerda do referido intervalo. Daí segue que

$$\max_{x \in [2,4]} |f^{(3)}(x)| = \frac{6}{x^4} \xrightarrow{x=2} \max_{x \in [2,4]} |f^{(3)}(2)| = \frac{6}{16} \Rightarrow \max_{x \in [2,4]} |f^{(3)}(2)| = \frac{3}{8}.$$
 (4)

>	Para obter o maior valor que a função $g(x)$ assume em módulo no intervalo $[2,4]$ temos que derivá-la, obter os número críticos da mesma que estejam no referido intervalo e depois avaliar, em módulo , os valores que $g(x)$ assume nos extremos e nos números críticos que pertençam ao intervalo em questão.

$$g(x) = (x-2)(x-3)(x-4) \Rightarrow g'(x) = (x-3)(x-4) + (x-2)(x-4) + (x-2)(x-3) \Rightarrow g'(x) = 3x^2 - 18x + 26$$

$$g(x) = (x-2)(x-3)(x-4) \Rightarrow g'(x) = (x-3)(x-4) + (x-2)(x-4) + (x-2)(x-3) \Rightarrow g'(x) = 3x^2 - 18x + 26.$$

Essa derivada se anula para $x_1 = \frac{9-\sqrt{3}}{3} \approx 2.42 \approx (2,4)$ e $x_2 = \frac{9+\sqrt{3}}{3} \approx 3.58 \in (2,4)$. Agora, resta avaliar |g(x)| para os número do conjunto

$$S = \left\{ 2, \frac{9 - \sqrt{3}}{3}, \frac{9 + \sqrt{3}}{3}, 4 \right\}.$$

Avaliando, temos que |g(2)| = |g(4)| = 0, $|g(\frac{9-\sqrt{3}}{3})| = |g(\frac{9+\sqrt{3}}{3})| = \frac{2\sqrt{3}}{9} \approx 0.3849$. Portanto,

$$\max_{x \in [2,4]} |g(x)| = \frac{2\sqrt{3}}{9}.$$
 (5)

$$g(x) = (x-2)(x-3)(x-4) \Rightarrow g'(x) = (x-3)(x-4) + (x-2)(x-4) + (x-2)(x-3) \Rightarrow g'(x) = 3x^2 - 18x + 26.$$

Essa derivada se anula para $x_1 = \frac{9-\sqrt{3}}{3} \approx 2.42 \approx (2,4)$ e $x_2 = \frac{9+\sqrt{3}}{3} \approx 3.58 \in (2,4)$. Agora, resta avaliar |g(x)| para os número do conjunto

$$S = \left\{ 2, \frac{9 - \sqrt{3}}{3}, \frac{9 + \sqrt{3}}{3}, 4 \right\}.$$

Avaliando, temos que |g(2)| = |g(4)| = 0, $|g(\frac{9-\sqrt{3}}{3})| = |g(\frac{9+\sqrt{3}}{3})| = \frac{2\sqrt{3}}{9} \approx 0.3849$. Portanto,

$$\max_{x \in [2,4]} |g(x)| = \frac{2\sqrt{3}}{9}.$$
 (5)

Com os máximos calculados, podemos agora finalizar o cálculo do limitante do erro. Prosseguindo, substituindo na equação (3) os resultados nas equações (4) e (5),

$$g(x) = (x-2)(x-3)(x-4) \Rightarrow g'(x) = (x-3)(x-4) + (x-2)(x-4) + (x-2)(x-3) \Rightarrow g'(x) = 3x^2 - 18x + 26.$$

Essa derivada se anula para $x_1 = \frac{9-\sqrt{3}}{3} \approx 2.42 \approx (2,4)$ e $x_2 = \frac{9+\sqrt{3}}{3} \approx 3.58 \in (2,4)$. Agora, resta avaliar |g(x)| para os número do conjunto

$$S = \left\{ 2, \frac{9 - \sqrt{3}}{3}, \frac{9 + \sqrt{3}}{3}, 4 \right\}.$$

Avaliando, temos que |g(2)| = |g(4)| = 0, $|g(\frac{9-\sqrt{3}}{3})| = |g(\frac{9+\sqrt{3}}{3})| = \frac{2\sqrt{3}}{9} \approx 0.3849$. Portanto,

$$\max_{x \in [2,4]} |g(x)| = \frac{2\sqrt{3}}{9}.$$
 (5)

Com os máximos calculados, podemos agora finalizar o cálculo do limitante do erro. Prosseguindo, substituindo na equação (3) os resultados nas equações (4) e (5),

$$|E_2^{\text{IP}}(x)| \le \frac{\left(\frac{3}{8}\right)\left(\frac{2\sqrt{3}}{9}\right)}{6} \Rightarrow |E_2^{\text{IP}}(x)| \le \frac{\sqrt{3}}{72} \approx 0.024$$
 (6)

$$g(x) = (x-2)(x-3)(x-4) \Rightarrow g'(x) = (x-3)(x-4) + (x-2)(x-4) + (x-2)(x-3) \Rightarrow g'(x) = 3x^2 - 18x + 26.$$

Essa derivada se anula para $x_1 = \frac{9-\sqrt{3}}{3} \approx 2.42 \approx (2,4)$ e $x_2 = \frac{9+\sqrt{3}}{3} \approx 3.58 \in (2,4)$. Agora, resta avaliar |g(x)| para os número do conjunto

$$S = \left\{ 2, \frac{9 - \sqrt{3}}{3}, \frac{9 + \sqrt{3}}{3}, 4 \right\}.$$

Avaliando, temos que |g(2)| = |g(4)| = 0, $|g(\frac{9-\sqrt{3}}{3})| = |g(\frac{9+\sqrt{3}}{3})| = \frac{2\sqrt{3}}{9} \approx 0.3849$. Portanto,

$$\max_{x \in [2,4]} |g(x)| = \frac{2\sqrt{3}}{9}.$$
 (5)

Com os máximos calculados, podemos agora finalizar o cálculo do limitante do erro. Prosseguindo, substituindo na equação (3) os resultados nas equações (4) e (5),

$$|E_2^{\text{IP}}(x)| \le \frac{\left(\frac{3}{8}\right)\left(\frac{2\sqrt{3}}{9}\right)}{6} \Rightarrow |E_2^{\text{IP}}(x)| \le \frac{\sqrt{3}}{72} \approx 0.024$$
 (6)

Portanto, o limite para o erro, na interpolação polinomial da função $f(x) = x^{-1}$, utilizando um polinômio de grau 2 no intervalo [2,4] considerando os pontos $x_0 = 2$, $x_1 = 3$ e $x_2 = 4$ é

$$\mathcal{L} = \frac{\sqrt{3}}{72}.$$

Assim sendo, o erro $|f(x) - p_2(x)| \le \frac{\sqrt{3}}{72}$ para qualquer valor de $x \in [2, 4]$.

X	ORDEM 0	ORDEM 1	ORDEM 2
2	0.50000	-0.16667	0.04167
3	0.33333	-0.08333	
4	0.25000		

X	ORDEM 0	ORDEM 1	ORDEM 2
2	0.50000	-0.16667	0.04167
3	0.33333	-0.08333	
4	0.25000		

X	ORDEM 0	ORDEM 1	ORDEM 2
2	0.50000	-0.16667	0.04167
3	0.33333	-0.08333	
4	0.25000		

X	ORDEM 0	ORDEM 1	ORDEM 2
2	0.50000	-0.16667	0.04167
3	0.33333	-0.08333	
4	0.25000		

$$p_2(x) = 0.5 - 0.16667(x - 2) + 0.04167(x - 2)(x - 3)$$

X	ORDEM 0	ORDEM 1	ORDEM 2
2	0.50000	-0.16667	0.04167
3	0.33333	-0.08333	
4	0.25000		

$$p_2(x) = 0.5 - 0.16667(x - 2) + 0.04167(x - 2)(x - 3) \xrightarrow{x=3.5}$$

X	ORDEM 0	ORDEM 1	ORDEM 2
2	0.50000	-0.16667	0.04167
3	0.33333	-0.08333	
4	0.25000		

$$p_2(x) = 0.5 - 0.16667(x - 2) + 0.04167(x - 2)(x - 3) \xrightarrow{x = 3.5} p_2(3.5) = 0.5 - 0.16667(3.5 - 2) + 0.04167(3.5 - 2)(3.5 - 3)$$

X	ORDEM 0	ORDEM 1	ORDEM 2
2	0.50000	-0.16667	0.04167
3	0.33333	-0.08333	
4	0.25000		

$$p_2(x) = 0.5 - 0.16667(x - 2) + 0.04167(x - 2)(x - 3) \xrightarrow{x = 3.5} p_2(3.5) = 0.5 - 0.16667(3.5 - 2) + 0.04167(3.5 - 2)(3.5 - 3) \Rightarrow$$

X	ORDEM 0	ORDEM 1	ORDEM 2
2	0.50000	-0.16667	0.04167
3	0.33333	-0.08333	
4	0.25000		

$$p_2(x) = 0.5 - 0.16667(x - 2) + 0.04167(x - 2)(x - 3) \xrightarrow{x = 3.5} p_2(3.5) = 0.5 - 0.16667(3.5 - 2) + 0.04167(3.5 - 2)(3.5 - 3) \Rightarrow \mathbf{p_2(3.5)} = \mathbf{0.28125}.$$

X	ORDEM 0	ORDEM 1	ORDEM 2
2	0.50000	-0.16667	0.04167
3	0.33333	-0.08333	
4	0.25000		

$$p_2(x) = 0.5 - 0.16667(x - 2) + 0.04167(x - 2)(x - 3) \xrightarrow{x = 3.5} p_2(3.5) = 0.5 - 0.16667(3.5 - 2) + 0.04167(3.5 - 2)(3.5 - 3) \Rightarrow \mathbf{p_2(3.5)} = \mathbf{0.28125}.$$
 Calculando o erro,

X	ORDEM 0	ORDEM 1	ORDEM 2
2	0.50000	-0.16667	0.04167
3	0.33333	-0.08333	
4	0.25000		

O polinômio interpolador e seu valor em x = 3.5 são dados por

$$p_2(x) = 0.5 - 0.16667(x - 2) + 0.04167(x - 2)(x - 3) \xrightarrow{x = 3.5} p_2(3.5) = 0.5 - 0.16667(3.5 - 2) + 0.04167(3.5 - 2)(3.5 - 3) \Rightarrow \mathbf{p_2(3.5)} = \mathbf{0.28125}.$$

Calculando o erro,

$$|f(3.5) - p_2(3.5)| = |0.28571 - 0.28125| = 0.00446 < \mathcal{L} = 0.024.$$

Pode-se notar que o erro não ultrapassou o limitante estabelecido para a configuração da função f(x) e dos pontos utilizados.

Limitantes do Erro na Interpolação Polinomial

X	ORDEM 0	ORDEM 1	ORDEM 2
2	0.50000	-0.16667	0.04167
3	0.33333	-0.08333	
4	0.25000		

O polinômio interpolador e seu valor em x = 3.5 são dados por

$$p_2(x) = 0.5 - 0.16667(x - 2) + 0.04167(x - 2)(x - 3) \xrightarrow{x = 3.5} p_2(3.5) = 0.5 - 0.16667(3.5 - 2) + 0.04167(3.5 - 2)(3.5 - 3) \Rightarrow \mathbf{p_2(3.5)} = \mathbf{0.28125}.$$

Calculando o erro,

$$|f(3.5) - p_2(3.5)| = |0.28571 - 0.28125| = 0.00446 < \mathcal{L} = 0.024.$$

Pode-se notar que o erro não ultrapassou o limitante estabelecido para a configuração da função f(x) e dos pontos utilizados.

Limitantes do Erro na Interpolação Polinomial

O Limitante para o erro na interpolação polinomial é dado por

$$|E_n(x)| = |f(x) - p_n(x)| \le \frac{\left| \prod_{i=0}^{n} (x - x_i) \right|}{(n+1)!} M_{n+1}$$
(7)

sendo
$$M_{n+1} = \max_{x_0 \le x \le x_n} |f^{(n+1)}(x)|.$$

É importante que fique bem claro que o limitante para o erro é dado por

$$\mathcal{L}_n(x) = \frac{\left| \prod_{i=0}^n (x - x_i) \right|}{(n+1)!} M_{n+1}$$
(8)

sendo
$$M_{n+1} = \max_{x_0 \le x \le x_n} |f^{(n+1)}(x)|.$$

É importante que fique bem claro que o limitante para o erro é dado por

$$\mathcal{L}_{n}(x) = \frac{\left| \prod_{i=0}^{n} (x - x_{i}) \right|}{(n+1)!} M_{n+1}$$
(8)

sendo $M_{n+1} = \max_{x_0 \le x \le x_n} |f^{(n+1)}(x)|.$

Teorema 3: Limitante do erro para pontos igualmente espaçados

O limitante do erro na interpolação polinomial quando se trabalha com pontos igualmente espaçados igualmente espaçados, isto é, $h = x_{i+1} - x_i$, i = 0, 1, 2, ..., n - 1, é dado por

$$\mathcal{L}_n = \frac{h^{n+1} M_{n+1}}{4(n+1)} \tag{9}$$

sendo $M_{n+1} = \max_{x_0 \le x \le x_n} |f^{(n+1)}(x)|.$

É importante que fique bem claro que o limitante para o erro é dado por

$$\mathcal{L}_n(x) = \frac{\left| \prod_{i=0}^n (x - x_i) \right|}{(n+1)!} M_{n+1}$$
(8)

sendo $M_{n+1} = \max_{x_0 \le x \le x_n} |f^{(n+1)}(x)|.$

Teorema 3: Limitante do erro para pontos igualmente espaçados

O limitante do erro na interpolação polinomial quando se trabalha com pontos igualmente espaçados igualmente espaçados, isto é, $h = x_{i+1} - x_i$, i = 0, 1, 2, ..., n - 1, é dado por

$$\mathcal{L}_n = \frac{h^{n+1} M_{n+1}}{4(n+1)} \tag{9}$$

sendo $M_{n+1} = \max_{x_0 \le x \le x_n} |f^{(n+1)}(x)|.$

Exemplo 2

Deseja-se obter aproximações para $f(x) = e^x \cos(2x)$ em [0, 2], com duas casas decimais de precisão, através de interpolação linear (polinômio de grau 1) usando uma tabela de pontos igualmente espaçados com tamanho h. Quantos pontos deve ter essa tabela ? Trabalhe com 5 casas decimais.

É importante que fique bem claro que o limitante para o erro é dado por

$$\mathcal{L}_{n}(x) = \frac{\left| \prod_{i=0}^{n} (x - x_{i}) \right|}{(n+1)!} M_{n+1}$$
(8)

sendo $M_{n+1} = \max_{x_0 \le x \le x_n} |f^{(n+1)}(x)|.$

Teorema 3: Limitante do erro para pontos igualmente espaçados

O limitante do erro na interpolação polinomial quando se trabalha com pontos igualmente espaçados igualmente espaçados, isto é, $h = x_{i+1} - x_i$, i = 0, 1, 2, ..., n - 1, é dado por

$$\mathcal{L}_n = \frac{h^{n+1} M_{n+1}}{4(n+1)} \tag{9}$$

sendo $M_{n+1} = \max_{x_0 \le x \le x_n} |f^{(n+1)}(x)|.$

Exemplo 2

Deseja-se obter aproximações para $f(x) = e^x \cos(2x)$ em [0, 2], com duas casas decimais de precisão, através de interpolação linear (polinômio de grau 1) usando uma tabela de pontos igualmente espaçados com tamanho h. Quantos pontos deve ter essa tabela ? Trabalhe com 5 casas decimais.

Resolução: Para resolver esse problema, devemos determinar h de tal modo que o limitante para o erro na interpolação da função dada não ultrapasse 10^{-2} , sendo n=1 (para interpolação linear). Assim sendo,

É importante que fique bem claro que o limitante para o erro é dado por

$$\mathcal{L}_{n}(x) = \frac{\left| \prod_{i=0}^{n} (x - x_{i}) \right|}{(n+1)!} M_{n+1}$$
(8)

sendo $M_{n+1} = \max_{x_0 \le x \le x_n} |f^{(n+1)}(x)|.$

Teorema 3: Limitante do erro para pontos igualmente espaçados

O limitante do erro na interpolação polinomial quando se trabalha com pontos igualmente espaçados igualmente espaçados, isto é, $h = x_{i+1} - x_i$, i = 0, 1, 2, ..., n - 1, é dado por

$$\mathcal{L}_n = \frac{h^{n+1} M_{n+1}}{4(n+1)} \tag{9}$$

sendo $M_{n+1} = \max_{x_0 \le x \le x_n} |f^{(n+1)}(x)|.$

Exemplo 2

Deseja-se obter aproximações para $f(x) = e^x \cos(2x)$ em [0, 2], com duas casas decimais de precisão, através de interpolação linear (polinômio de grau 1) usando uma tabela de pontos igualmente espaçados com tamanho h. Quantos pontos deve ter essa tabela ? Trabalhe com 5 casas decimais.

Resolução: Para resolver esse problema, devemos determinar h de tal modo que o limitante para o erro na interpolação da função dada não ultrapasse 10^{-2} , sendo n=1 (para interpolação linear). Assim sendo,

$$\frac{h^{n+1}M_{n+1}}{4(n+1)} < 10^{-2} \Rightarrow \frac{h^2M_2}{8} < 10^{-2} \Rightarrow h < \sqrt{\frac{0.08}{M_2}}.$$

$$\frac{h^{n+1}M_{n+1}}{4(n+1)} < 10^{-2} \Rightarrow \frac{h^2M_2}{8} < 10^{-2} \Rightarrow h < \sqrt{\frac{0.08}{M_2}}.$$

$$\frac{h^{n+1}M_{n+1}}{4(n+1)} < 10^{-2} \Rightarrow \frac{h^2M_2}{8} < 10^{-2} \Rightarrow h < \sqrt{\frac{0.08}{M_2}}.$$

$$f(x) = e^x \cos(2x)$$
 $f^{(1)}(x) = -e^x (2 \sin(2x) - \cos(2x))$ $f^{(2)}(x) = -e^x (4 \sin(2x) + 3 \cos(2x))$ $f^{(3)}(x) = e^x (2 \sin(2x) - 11 \cos(2x))$

$$\frac{h^{n+1}M_{n+1}}{4(n+1)} < 10^{-2} \Rightarrow \frac{h^2M_2}{8} < 10^{-2} \Rightarrow h < \sqrt{\frac{0.08}{M_2}}.$$

$$f(x) = e^x \cos(2x)$$
 $f^{(1)}(x) = -e^x (2 \sin(2x) - \cos(2x))$
 $f^{(2)}(x) = -e^x (4 \sin(2x) + 3 \cos(2x))$ $f^{(3)}(x) = e^x (2 \sin(2x) - 11 \cos(2x))$

Para obter M_2 temos que obter os pontos críticos de $f^{(2)}(x)$ que estão dentro do intervalo [0,2]. Para tanto, precisamos resolver a equação $f^{(3)}(x) = 0$. Prosseguindo,

$$\frac{h^{n+1}M_{n+1}}{4(n+1)} < 10^{-2} \Rightarrow \frac{h^2M_2}{8} < 10^{-2} \Rightarrow h < \sqrt{\frac{0.08}{M_2}}.$$

$$f(x) = e^x \cos(2x)$$
 $f^{(1)}(x) = -e^x (2 \sin(2x) - \cos(2x))$ $f^{(2)}(x) = -e^x (4 \sin(2x) + 3 \cos(2x))$ $f^{(3)}(x) = e^x (2 \sin(2x) - 11 \cos(2x))$

Para obter M_2 temos que obter os pontos críticos de $f^{(2)}(x)$ que estão dentro do intervalo [0,2]. Para tanto, precisamos resolver a equação $f^{(3)}(x) = 0$. Prosseguindo,

$$e^{x}$$
 (2 sen(2x) – 11 cos(2x)) = 0

$$\frac{h^{n+1}M_{n+1}}{4(n+1)} < 10^{-2} \Rightarrow \frac{h^2M_2}{8} < 10^{-2} \Rightarrow h < \sqrt{\frac{0.08}{M_2}}.$$

$$f(x) = e^x \cos(2x)$$
 $f^{(1)}(x) = -e^x (2 \sin(2x) - \cos(2x))$ $f^{(2)}(x) = -e^x (4 \sin(2x) + 3 \cos(2x))$ $f^{(3)}(x) = e^x (2 \sin(2x) - 11 \cos(2x))$

Para obter M_2 temos que obter os pontos críticos de $f^{(2)}(x)$ que estão dentro do intervalo [0,2]. Para tanto, precisamos resolver a equação $f^{(3)}(x) = 0$. Prosseguindo,

$$e^{x} (2 \operatorname{sen}(2x) - 11 \cos(2x)) = 0$$

Como $e^x \neq 0 \ \forall \ x \in R$, basta resolver a equação

$$\frac{h^{n+1}M_{n+1}}{4(n+1)} < 10^{-2} \Rightarrow \frac{h^2M_2}{8} < 10^{-2} \Rightarrow h < \sqrt{\frac{0.08}{M_2}}.$$

$$f(x) = e^x \cos(2x)$$
 $f^{(1)}(x) = -e^x (2 \sin(2x) - \cos(2x))$ $f^{(2)}(x) = -e^x (4 \sin(2x) + 3 \cos(2x))$ $f^{(3)}(x) = e^x (2 \sin(2x) - 11 \cos(2x))$

Para obter M_2 temos que obter os pontos críticos de $f^{(2)}(x)$ que estão dentro do intervalo [0,2]. Para tanto, precisamos resolver a equação $f^{(3)}(x) = 0$. Prosseguindo,

$$e^{x} (2 \operatorname{sen}(2x) - 11 \cos(2x)) = 0$$

Como $e^x \neq 0 \ \forall \ x \in R$, basta resolver a equação

$$2 \operatorname{sen}(2x) - 11 \cos(2x) = 0 \Rightarrow \frac{\operatorname{sen}(2x)}{\cos(2x)} = \frac{11}{2} \Rightarrow \tan(2x) = \frac{11}{2} \Rightarrow x = \frac{1}{2} \arctan\left(\frac{11}{2}\right) \Rightarrow x = 0.69547.$$

$$\frac{h^{n+1}M_{n+1}}{4(n+1)} < 10^{-2} \Rightarrow \frac{h^2M_2}{8} < 10^{-2} \Rightarrow h < \sqrt{\frac{0.08}{M_2}}.$$

$$f(x) = e^x \cos(2x)$$
 $f^{(1)}(x) = -e^x (2 \sin(2x) - \cos(2x))$ $f^{(2)}(x) = -e^x (4 \sin(2x) + 3 \cos(2x))$ $f^{(3)}(x) = e^x (2 \sin(2x) - 11 \cos(2x))$

Para obter M_2 temos que obter os pontos críticos de $f^{(2)}(x)$ que estão dentro do intervalo [0,2]. Para tanto, precisamos resolver a equação $f^{(3)}(x) = 0$. Prosseguindo,

$$e^{x} (2 \operatorname{sen}(2x) - 11 \cos(2x)) = 0$$

Como $e^x \neq 0 \ \forall \ x \in R$, basta resolver a equação

$$2 \operatorname{sen}(2x) - 11 \cos(2x) = 0 \Rightarrow \frac{\operatorname{sen}(2x)}{\cos(2x)} = \frac{11}{2} \Rightarrow \tan(2x) = \frac{11}{2} \Rightarrow x = \frac{1}{2} \arctan\left(\frac{11}{2}\right) \Rightarrow x = 0.69547.$$

Os candidados a máximo em módulo no intervalo [0, 2] são: x = 0, x = 0.69547 e x = 2. Daí, segue que

$$\frac{h^{n+1}M_{n+1}}{4(n+1)} < 10^{-2} \Rightarrow \frac{h^2M_2}{8} < 10^{-2} \Rightarrow h < \sqrt{\frac{0.08}{M_2}}.$$

$$f(x) = e^x \cos(2x)$$
 $f^{(1)}(x) = -e^x (2 \sin(2x) - \cos(2x))$ $f^{(2)}(x) = -e^x (4 \sin(2x) + 3 \cos(2x))$ $f^{(3)}(x) = e^x (2 \sin(2x) - 11 \cos(2x))$

Para obter M_2 temos que obter os pontos críticos de $f^{(2)}(x)$ que estão dentro do intervalo [0,2]. Para tanto, precisamos resolver a equação $f^{(3)}(x) = 0$. Prosseguindo,

$$e^{x} (2 \operatorname{sen}(2x) - 11 \cos(2x)) = 0$$

Como $e^x \neq 0 \ \forall \ x \in R$, basta resolver a equação

$$2 \operatorname{sen}(2x) - 11 \cos(2x) = 0 \Rightarrow \frac{\operatorname{sen}(2x)}{\cos(2x)} = \frac{11}{2} \Rightarrow \tan(2x) = \frac{11}{2} \Rightarrow x = \frac{1}{2} \arctan\left(\frac{11}{2}\right) \Rightarrow x = 0.69547.$$

Os candidados a máximo em módulo no intervalo [0, 2] são: x = 0, x = 0.69547 e x = 2. Daí, segue que

$$M_2 = \max\{|f^{(2)}(0)|, |f^{(2)}(0.69547)|, |f^{(2)}(2)|\} = \max\{3, 8.96508, 36.85765\} = 36.85765.$$

$$\frac{h^{n+1}M_{n+1}}{4(n+1)} < 10^{-2} \Rightarrow \frac{h^2M_2}{8} < 10^{-2} \Rightarrow h < \sqrt{\frac{0.08}{M_2}}.$$

$$f(x) = e^x \cos(2x)$$
 $f^{(1)}(x) = -e^x (2 \sin(2x) - \cos(2x))$ $f^{(2)}(x) = -e^x (4 \sin(2x) + 3 \cos(2x))$ $f^{(3)}(x) = e^x (2 \sin(2x) - 11 \cos(2x))$

Para obter M_2 temos que obter os pontos críticos de $f^{(2)}(x)$ que estão dentro do intervalo [0,2]. Para tanto, precisamos resolver a equação $f^{(3)}(x) = 0$. Prosseguindo,

$$e^{x}$$
 (2 sen(2x) – 11 cos(2x)) = 0

Como $e^x \neq 0 \ \forall \ x \in R$, basta resolver a equação

$$2 \operatorname{sen}(2x) - 11 \cos(2x) = 0 \Rightarrow \frac{\operatorname{sen}(2x)}{\cos(2x)} = \frac{11}{2} \Rightarrow \tan(2x) = \frac{11}{2} \Rightarrow x = \frac{1}{2} \arctan\left(\frac{11}{2}\right) \Rightarrow x = 0.69547.$$

Os candidados a máximo em módulo no intervalo [0, 2] são: x = 0, x = 0.69547 e x = 2. Daí, segue que

$$M_2 = \max\{|f^{(2)}(0)|, |f^{(2)}(0.69547)|, |f^{(2)}(2)|\} = \max\{3, 8.96508, 36.85765\} = 36.85765.$$

Com isso, temos que

$$h < \sqrt{\frac{0.08}{36.85765}} \Rightarrow h < 0.04659$$

$$\frac{h^{n+1}M_{n+1}}{4(n+1)} < 10^{-2} \Rightarrow \frac{h^2M_2}{8} < 10^{-2} \Rightarrow h < \sqrt{\frac{0.08}{M_2}}.$$

$$f(x) = e^x \cos(2x)$$
 $f^{(1)}(x) = -e^x (2 \sin(2x) - \cos(2x))$ $f^{(2)}(x) = -e^x (4 \sin(2x) + 3 \cos(2x))$ $f^{(3)}(x) = e^x (2 \sin(2x) - 11 \cos(2x))$

Para obter M_2 temos que obter os pontos críticos de $f^{(2)}(x)$ que estão dentro do intervalo [0,2]. Para tanto, precisamos resolver a equação $f^{(3)}(x) = 0$. Prosseguindo,

$$e^{x}$$
 (2 sen(2x) – 11 cos(2x)) = 0

Como $e^x \neq 0 \ \forall \ x \in R$, basta resolver a equação

$$2 \operatorname{sen}(2x) - 11 \cos(2x) = 0 \Rightarrow \frac{\operatorname{sen}(2x)}{\cos(2x)} = \frac{11}{2} \Rightarrow \tan(2x) = \frac{11}{2} \Rightarrow x = \frac{1}{2} \arctan\left(\frac{11}{2}\right) \Rightarrow x = 0.69547.$$

Os candidados a máximo em módulo no intervalo [0, 2] são: x = 0, x = 0.69547 e x = 2. Daí, segue que

$$M_2 = \max\{|f^{(2)}(0)|, |f^{(2)}(0.69547)|, |f^{(2)}(2)|\} = \max\{3, 8.96508, 36.85765\} = 36.85765.$$

Com isso, temos que

$$h < \sqrt{\frac{0.08}{36.85765}} \Rightarrow h < 0.04659$$

Como $h = \frac{b-a}{N} = \frac{2}{N}$, onde N é o número de divisões, segue que

$$\frac{h^{n+1}M_{n+1}}{4(n+1)} < 10^{-2} \Rightarrow \frac{h^2M_2}{8} < 10^{-2} \Rightarrow h < \sqrt{\frac{0.08}{M_2}}.$$

$$f(x) = e^x \cos(2x)$$
 $f^{(1)}(x) = -e^x (2 \sin(2x) - \cos(2x))$ $f^{(2)}(x) = -e^x (4 \sin(2x) + 3 \cos(2x))$ $f^{(3)}(x) = e^x (2 \sin(2x) - 11 \cos(2x))$

Para obter M_2 temos que obter os pontos críticos de $f^{(2)}(x)$ que estão dentro do intervalo [0,2]. Para tanto, precisamos resolver a equação $f^{(3)}(x) = 0$. Prosseguindo,

$$e^{x}$$
 (2 sen(2x) – 11 cos(2x)) = 0

Como $e^x \neq 0 \ \forall \ x \in R$, basta resolver a equação

$$2 \operatorname{sen}(2x) - 11 \cos(2x) = 0 \Rightarrow \frac{\operatorname{sen}(2x)}{\cos(2x)} = \frac{11}{2} \Rightarrow \tan(2x) = \frac{11}{2} \Rightarrow x = \frac{1}{2} \arctan\left(\frac{11}{2}\right) \Rightarrow x = 0.69547.$$

Os candidados a máximo em módulo no intervalo [0, 2] são: x = 0, x = 0.69547 e x = 2. Daí, segue que

$$M_2 = \max\{|f^{(2)}(0)|, |f^{(2)}(0.69547)|, |f^{(2)}(2)|\} = \max\{3, 8.96508, 36.85765\} = 36.85765.$$

Com isso, temos que

$$h < \sqrt{\frac{0.08}{36.85765}} \Rightarrow h < 0.04659$$

Como $h = \frac{b-a}{N} = \frac{2}{N}$, onde N é o número de divisões, segue que

$$\frac{2}{N} < 0.04659 \Rightarrow \frac{N}{2} > \frac{1}{0.04659} \Rightarrow N > \frac{2}{0.04659} \Rightarrow N > 42.92767 \Rightarrow N = 43.$$

$$\frac{h^{n+1}M_{n+1}}{4(n+1)} < 10^{-2} \Rightarrow \frac{h^2M_2}{8} < 10^{-2} \Rightarrow h < \sqrt{\frac{0.08}{M_2}}.$$

$$f(x) = e^x \cos(2x)$$
 $f^{(1)}(x) = -e^x (2 \sin(2x) - \cos(2x))$ $f^{(2)}(x) = -e^x (4 \sin(2x) + 3 \cos(2x))$ $f^{(3)}(x) = e^x (2 \sin(2x) - 11 \cos(2x))$

Para obter M_2 temos que obter os pontos críticos de $f^{(2)}(x)$ que estão dentro do intervalo [0,2]. Para tanto, precisamos resolver a equação $f^{(3)}(x) = 0$. Prosseguindo,

$$e^{x}$$
 (2 sen(2x) – 11 cos(2x)) = 0

Como $e^x \neq 0 \ \forall \ x \in R$, basta resolver a equação

$$2 \operatorname{sen}(2x) - 11 \cos(2x) = 0 \Rightarrow \frac{\operatorname{sen}(2x)}{\cos(2x)} = \frac{11}{2} \Rightarrow \tan(2x) = \frac{11}{2} \Rightarrow x = \frac{1}{2} \arctan\left(\frac{11}{2}\right) \Rightarrow x = 0.69547.$$

Os candidados a máximo em módulo no intervalo [0, 2] são: x = 0, x = 0.69547 e x = 2. Daí, segue que

$$M_2 = \max\{|f^{(2)}(0)|, |f^{(2)}(0.69547)|, |f^{(2)}(2)|\} = \max\{3, 8.96508, 36.85765\} = 36.85765.$$

Com isso, temos que

$$h < \sqrt{\frac{0.08}{36.85765}} \Rightarrow h < 0.04659$$

Como $h = \frac{b-a}{N} = \frac{2}{N}$, onde N é o número de divisões, segue que

$$\frac{2}{N} < 0.04659 \Rightarrow \frac{N}{2} > \frac{1}{0.04659} \Rightarrow N > \frac{2}{0.04659} \Rightarrow N > 42.92767 \Rightarrow N = 43.$$

Logo, a tabela deve ter N + 1 = 44 pontos.

Minimizando Erros na Interpolação Polinomial em Intervalos Arbitrários

Uma das técnicas que existem para minimizar erros na interpolação polinomial é utilizar como pontos de interpolação as raízes dos polinômios de Chebyshev. Essas raízes se encontram no intervalo [-1,1] e são dadas por

$$t_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right) \tag{10}$$

para k = 0, 1, 2, ..., n, onde $n \in 0$ grau do polinômio que se tem interesse em obter para utilizá-lo no cálculo de aproximações de uma função f(x) por meio da interpolação polinomial. Os valores de $t_k \in (-1, 1)$. Para utilizar esses pontos em outros intervalos é necessário fazer um mapeamento do intervalo [-1, 1] para o intervalo [a, b] de interesse. Isso pode ser feito pela fórmula

$$x(t_k) = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right)$$

para k = 0, 1, 2, ..., n, onde n é o grau do polinômio interpolador. A aplicação dessa técnica é útil quando se tem conhecimento da lei de formação da função. Vamos a um exemplo.

Exemplo 3

Considere o problema de calcular a integral definida

$$\int_{0}^{1.5} 5xe^{-x} dx$$

e obtenha uma aproximação para a mesma utilizando um polinômio de grau 3.

Vamos resolver esse problema considerando duas abordagens: A primeira interpolando o integrando dentro do intervalo de integração usando um polinômio de grau 3 e a segunda interpolando também por meio de um polinômio de grau 3 só que utilizando os pontos de Chebyshev.

X	0	0.5	1	1.5
$\overline{f(x)}$	0	1.51633	1.8394	1.67348

sendo a tabela de diferenças divididas dada por

X	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
0	0.00000	3.03266	-2.38652	0.93903
0.5	1.51633	0.64614	-0.97798	
1	1.83940	-0.33184		
1.5	1.67348			

X	0	0.5	1	1.5
$\overline{f(x)}$	0	1.51633	1.8394	1.67348

sendo a tabela de diferenças divididas dada por

X	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
0	0.00000	3.03266	-2.38652	0.93903
0.5	1.51633	0.64614	-0.97798	
1	1.83940	-0.33184		
1.5	1.67348			

X	0	0.5	1	1.5
$\overline{f(x)}$	0	1.51633	1.8394	1.67348

sendo a tabela de diferenças divididas dada por

X	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
0	0.00000	3.03266	-2.38652	0.93903
0.5	1.51633	0.64614	-0.97798	
1	1.83940	-0.33184		
1.5	1.67348			

X	0	0.5	1	1.5
f(x)	0	1.51633	1.8394	1.67348

sendo a tabela de diferenças divididas dada por

X	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
0	0.00000	3.03266	-2.38652	0.93903
0.5	1.51633	0.64614	-0.97798	
1	1.83940	-0.33184		
1.5	1.67348			

$$p_3(x) = 3.03266x - 2.38652x(x - 0.5) + 0.93903x(x - 0.5)(x - 1)$$

X	0	0.5	1	1.5
f(x)	0	1.51633	1.8394	1.67348

sendo a tabela de diferenças divididas dada por

X	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
0	0.00000	3.03266	-2.38652	0.93903
0.5	1.51633	0.64614	-0.97798	
1	1.83940	-0.33184		
1.5	1.67348			

$$p_3(x) = 3.03266x - 2.38652x(x - 0.5) + 0.93903x(x - 0.5)(x - 1) \Rightarrow$$

X	0	0.5	1	1.5
f(x)	0	1.51633	1.8394	1.67348

sendo a tabela de diferenças divididas dada por

X	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
0	0.00000	3.03266	-2.38652	0.93903
0.5	1.51633	0.64614	-0.97798	
1	1.83940	-0.33184		
1.5	1.67348			

$$p_3(x) = 3.03266x - 2.38652x(x - 0.5) + 0.93903x(x - 0.5)(x - 1) \Rightarrow p_3(x) = 0.93903x^3 - 3.79507x^2 + 4.69544x$$

X	0	0.5	1	1.5
f(x)	0	1.51633	1.8394	1.67348

sendo a tabela de diferenças divididas dada por

X	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
0	0.00000	3.03266	-2.38652	0.93903
0.5	1.51633	0.64614	-0.97798	
1	1.83940	-0.33184		
1.5	1.67348			

e o polinômio interpolador

$$p_3(x) = 3.03266x - 2.38652x(x - 0.5) + 0.93903x(x - 0.5)(x - 1) \Rightarrow p_3(x) = 0.93903x^3 - 3.79507x^2 + 4.69544x.$$

sendo a integral desse polinômio no intervalo [0, 1.5] dado por **2.20138**, que é a aproximação da integral de f(x) no referido intervalo. Agora vamos fazer a mesma coisa só que usando os pontos de Chebyshev. Para calcular essa integral definida no entanto é necessário fazer uma mudança no intervalo de integração, do intervalo [a, b] para o intervalo [-1, 1], que é onde se encontram as raízes dos polinômios de Chebyshev.

X	0	0.5	1	1.5
f(x)	0	1.51633	1.8394	1.67348

sendo a tabela de diferenças divididas dada por

X	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
0	0.00000	3.03266	-2.38652	0.93903
0.5	1.51633	0.64614	-0.97798	
1	1.83940	-0.33184		
1.5	1.67348			

e o polinômio interpolador

$$p_3(x) = 3.03266x - 2.38652x(x - 0.5) + 0.93903x(x - 0.5)(x - 1) \Rightarrow p_3(x) = 0.93903x^3 - 3.79507x^2 + 4.69544x.$$

sendo a integral desse polinômio no intervalo [0, 1.5] dado por **2.20138**, que é a aproximação da integral de f(x) no referido intervalo. Agora vamos fazer a mesma coisa só que usando os pontos de Chebyshev. Para calcular essa integral definida no entanto é necessário fazer uma mudança no intervalo de integração, do intervalo [a, b] para o intervalo [-1, 1], que é onde se encontram as raízes dos polinômios de Chebyshev.

Para facilitar o entendimento visual dessa mudança, considere a mudança de intervalo da função $f(x) = x - \cos(2x)$ do intervalo [2, 6] para o intervalo [-1, 1]. Essa mundança é feito usando

$$x(t) = \frac{1}{2}[(b-a)t + (a+b)] = 2t + 4.$$

Uma ilustração gráfica é apresentada na Figura 2.

Figura 2: Mundança de intervalo da função $f(x) = x - \cos(2x)$ do intervalo [2, 6] para o intervalo [-1, 1] fazendo x(t) = 2t + 4.

$$x(t) = \frac{(b-a)t}{2} + \frac{a+b}{2}$$

$$x(t) = \frac{(b-a)t}{2} + \frac{a+b}{2} \xrightarrow{[a,b]=[0,1.5]}$$

$$x(t) = \frac{(b-a)t}{2} + \frac{a+b}{2} \xrightarrow{[a,b]=[0,1.5]} x(t) = 0.75(t+1)$$

$$x(t) = \frac{(b-a)t}{2} + \frac{a+b}{2} \xrightarrow{[a,b]=[0,1.5]} x(t) = 0.75(t+1)$$

$$x(t) = \frac{(b-a)t}{2} + \frac{a+b}{2} \xrightarrow{[a,b]=[0,1.5]} x(t) = 0.75(t+1)$$

$$t_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right) \quad \text{com} \quad k = 0, 1, \dots, n,$$

$$x(t) = \frac{(b-a)t}{2} + \frac{a+b}{2} \xrightarrow{[a,b]=[0,1.5]} x(t) = 0.75(t+1)$$

$$t_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right) \quad \text{com } k = 0, 1, \dots, n,$$

onde *n* é o grau do polinômio interpolador. Fazendo agora a mudança na integral, temos que

$$x(t) = \frac{(b-a)t}{2} + \frac{a+b}{2} \xrightarrow{[a,b]=[0,1.5]} x(t) = 0.75(t+1)$$

$$t_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right) \quad \text{com } k = 0, 1, \dots, n,$$

onde n é o grau do polinômio interpolador. Fazendo agora a mudança na integral, temos que

$$\int_{0}^{1.5} 5xe^{-x} dx = 0.75 \int_{-1}^{1} 5x(t)e^{-x(t)} dt$$

$$x(t) = \frac{(b-a)t}{2} + \frac{a+b}{2} \xrightarrow{[a,b]=[0,1.5]} x(t) = 0.75(t+1)$$

$$t_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right) \quad \text{com } k = 0, 1, \dots, n,$$

onde n é o grau do polinômio interpolador. Fazendo agora a mudança na integral, temos que

$$\int_{0}^{1.5} 5xe^{-x} dx = 0.75 \int_{-1}^{1} 5x(t)e^{-x(t)} dt$$

onde o valor 0.75 surgiu ao calcular $x(t) = 0.75(t+1) \Rightarrow dx = 0.75dt$. Temos então agora que interpolar a função f(x(t)) no intervalo [-1,1]. Montando a tabela, temos que

$$x(t) = \frac{(b-a)t}{2} + \frac{a+b}{2} \xrightarrow{[a,b]=[0,1.5]} x(t) = 0.75(t+1)$$

$$t_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right) \quad \text{com } k = 0, 1, \dots, n,$$

onde *n* é o grau do polinômio interpolador. Fazendo agora a mudança na integral, temos que

$$\int_{0}^{1.5} 5xe^{-x} dx = 0.75 \int_{-1}^{1} 5x(t)e^{-x(t)} dt$$

onde o valor 0.75 surgiu ao calcular $x(t) = 0.75(t+1) \Rightarrow dx = 0.75dt$. Temos então agora que interpolar a função f(x(t)) no intervalo [-1,1]. Montando a tabela, temos que

t	-0.92388	-0.38268	0.38268	0.92388
x(t)	0.05709	0.46299	1.03701	1.44291
f(x(t))	0.26961	1.45703	1.83817	1.70436

t	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
-0.92388 -0.38268 0.38268 0.92388	0.26961 1.45703 1.83817 1.70436	2.19405 0.49799 -0.24725	-1.29811 -0.57038	0.39384

$$x(t) = \frac{(b-a)t}{2} + \frac{a+b}{2} \xrightarrow{[a,b]=[0,1.5]} x(t) = 0.75(t+1)$$

$$t_k = \cos\left(\frac{(2k+1)\pi}{2(n+1)}\right) \quad \text{com } k = 0, 1, \dots, n,$$

onde n é o grau do polinômio interpolador. Fazendo agora a mudança na integral, temos que

$$\int_{0}^{1.5} 5xe^{-x} dx = 0.75 \int_{-1}^{1} 5x(t)e^{-x(t)} dt$$

onde o valor 0.75 surgiu ao calcular $x(t) = 0.75(t+1) \Rightarrow dx = 0.75dt$. Temos então agora que interpolar a função f(x(t)) no intervalo [-1,1]. Montando a tabela, temos que

t	-0.92388	-0.38268	0.38268	0.92388
x(t)	0.05709	0.46299	1.03701	1.44291
f(x(t))	0.26961	1.45703	1.83817	1.70436

t	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
-0.92388 -0.38268 0.38268 0.92388	0.26961 1.45703 1.83817 1.70436	2.19405 0.49799 -0.24725	-1.29811 -0.57038	0.39384

Daí, segue que o polinômio é dado por

$$p_3(t) = 0.26961 + 2.19405(t + 0.92388) - 1.29811(t + 0.92388)(t + 0.38268) + 0.39384(t + 0.92388)(t + 0.38268)(t - 0.38268)(t - 0.38268)(t - 0.39384t^3 - 0.93425t^2 + 0.440316t + 1.78442$$

$$0.75 \int_{-1}^{1} 5x(t)e^{-x(t)}dt \approx 0.75 \int_{-1}^{1} p_3(t)dt = 0.75(2.946) = 2.20950.$$

$$0.75 \int_{-1}^{1} 5x(t)e^{-x(t)}dt \approx 0.75 \int_{-1}^{1} p_3(t)dt = 0.75(2.946) = 2.20950.$$

A integral exata da função $f(x) = 5xe^{-x}$ no intervalo [0, 1.5] é dada por 2.210872998144627. Calculando os erros temos que:

$$0.75 \int_{-1}^{1} 5x(t)e^{-x(t)} dt \approx 0.75 \int_{-1}^{1} p_3(t) dt = 0.75(2.946) = 2.20950.$$

A integral exata da função $f(x) = 5xe^{-x}$ no intervalo [0, 1.5] é dada por 2.210872998144627. Calculando os erros temos que:

► Primeiro caso (pontos igualmente espaçados:)

$$\left| \int_{0}^{1.5} 5xe^{-x} dx - \int_{0}^{1.5} p_{3}(x) dx \right| = |2.210872998144627 - 2.20138| = 0.00949299814462723.$$

$$0.75 \int_{-1}^{1} 5x(t)e^{-x(t)} dt \approx 0.75 \int_{-1}^{1} p_3(t) dt = 0.75(2.946) = 2.20950.$$

A integral exata da função $f(x) = 5xe^{-x}$ no intervalo [0, 1.5] é dada por 2.210872998144627. Calculando os erros temos que:

► Primeiro caso (pontos igualmente espaçados:)

$$\left| \int_{0}^{1.5} 5xe^{-x} dx - \int_{0}^{1.5} p_{3}(x) dx \right| = |2.210872998144627 - 2.20138| = 0.00949299814462723.$$

► Segundo caso (pontos de Chebyshev:)

$$\left| \int_{0}^{1.5} 5xe^{-x} dx - 0.75 \int_{-1}^{1} p_3(t) dt \right| = |2.210872998144627 - 2.20950| = 0.001372998144627324.$$

$$0.75 \int_{-1}^{1} 5x(t)e^{-x(t)} dt \approx 0.75 \int_{-1}^{1} p_3(t) dt = 0.75(2.946) = 2.20950.$$

A integral exata da função $f(x) = 5xe^{-x}$ no intervalo [0, 1.5] é dada por 2.210872998144627. Calculando os erros temos que:

► Primeiro caso (pontos igualmente espaçados:)

$$\left| \int_{0}^{1.5} 5xe^{-x} dx - \int_{0}^{1.5} p_3(x) dx \right| = |2.210872998144627 - 2.20138| = 0.00949299814462723.$$

► Segundo caso (pontos de Chebyshev:)

$$\left| \int_{0}^{1.5} 5xe^{-x} dx - 0.75 \int_{-1}^{1} p_3(t) dt \right| = |2.210872998144627 - 2.20950| = 0.001372998144627324.$$

Pode se notar que utilizando os pontos de Chebyshev para aproximar o integrando gerou no final do processo uma aproximação para a integral com erro menor.

$$0.75 \int_{-1}^{1} 5x(t)e^{-x(t)}dt \approx 0.75 \int_{-1}^{1} p_3(t)dt = 0.75(2.946) = 2.20950.$$

A integral exata da função $f(x) = 5xe^{-x}$ no intervalo [0, 1.5] é dada por 2.210872998144627. Calculando os erros temos que:

► Primeiro caso (pontos igualmente espaçados:)

$$\left| \int_{0}^{1.5} 5xe^{-x} dx - \int_{0}^{1.5} p_{3}(x) dx \right| = |2.210872998144627 - 2.20138| = 0.00949299814462723.$$

► Segundo caso (pontos de Chebyshev:)

$$\left| \int_{0}^{1.5} 5xe^{-x} dx - 0.75 \int_{-1}^{1} p_3(t) dt \right| = |2.210872998144627 - 2.20950| = 0.001372998144627324.$$

Pode se notar que utilizando os pontos de Chebyshev para aproximar o integrando gerou no final do processo uma aproximação para a integral com erro menor.

Observação 4

Fixado n, quando se faz o cálculo dos pontos de Chebyshev t_k , com k = 0, 1, 2, ..., n os mesmos irão aparecer em ordem decrescente. Fiquem atentos a isso e antes de colocar na tabela para fazer os cálculos. Coloque esses pontos em ordem crescente.