

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	10:30

C05.570**R**25**R**01**R**14**R**ΠςΔ∈

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Prova

Aquesta prova només la poden realitzar els estudiants que han aprovat l' Avaluació Continuada

Fitxa tècnica de la Prova

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 1 h.
- En cas que els estudiants puguin consultar algun material durant la prova, quin o quins materials poden consultar?
- Valor de cada pregunta: Totes igual
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquesta prova:

Enunciats

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	10:30

Activitat 1 (10+15%)

- a) Formalitzeu utilitzant la lògica d'enunciats les següents frases. Feu servir els àtoms que s'indiquen.
 - 1) L'estudiant està content quan ha estudiat i no ha suspès.

 $E \wedge \neg S \rightarrow C$

2) Perquè l'estudiant estigui content és necessari que el professor l'ensenyi bé $C \to B$ - $||- \neg B \to \neg C$

Àtoms:

- C: l'estudiant està content
- E: l'estudiant ha estudiat
- S: l'estudiant suspèn
- B: el professor ensenya bé a l'estudiant
- b) Formalitzeu utilitzant la lògica de predicats les següents frases. Feu ús dels predicats que s'indiquen
 - 1) Tots els vaixells de gran tonatge presenten un alt risc de naufragi $\forall x[B(x) \land T(x) \rightarrow R(x)]$
 - 2) L'Anna és una guardacostes que no vigila tots els vaixells de gran tonatge $G(a) \land \neg \forall x [B(x) \land T(x) \rightarrow V(a,x)]$

Predicats:

- B(x): x és un vaixell
- T(x): x és de gran tonatge
- R(x): x presenta un alt risc de naufragi
- V(x,y): x vigila y (y és vigilat per x)
- G(x): x és un guardacostes

Constants:

- a: L'Anna

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	10:30

Activitat 2 (25%)

Demostreu, utilitzant la deducció natural, que el següent raonament és correcte. Només podeu fer servir les regles primitives.

$$\begin{array}{l} C \vee A \to \neg B \wedge D, \\ \neg A \vee \neg D \to B \wedge C \\ \therefore \neg B \vee D \end{array}$$

(1)	$C \lor A \rightarrow \neg B \land D$		Р
(2)	$\neg A \lor \neg D \to B \land C$		Р
(3)		$\neg D$	Н
(4)		$\neg A \lor \neg D$	l∨ 3
(5)		B∧C	E→ 4,2
(6)		С	E∧ 5
(7)		C∨A	I∨ 6
(8)		¬B∧D	E→ 7,1
(9)		В	E∧ 5
(10)		¬B	E∧ 8
(11)	¬¬D		I¬ 3,9,10
(12)	D		E¬ 11
(13)	¬B∨D		l∨ 12

Activitat 3 (25%)

El raonament següent és vàlid. Utilitzeu el mètode de resolució amb l'estratègia del conjunt de suport per a demostrar-ho. Si podeu aplicar la regla se subsumpció o la regla del literal pur, apliqueu-les i indiqueu-ho.

```
\begin{split} &M \!\!\rightarrow \!\! S, \\ &S \!\!\rightarrow \!\! T, \\ &W \!\!\rightarrow \!\! T, \\ &\neg W \!\!\rightarrow \!\! M \\ & \therefore \neg T \!\!\rightarrow \neg (\neg T \vee S) \\ &FNC \ [M \!\!\rightarrow \!\! S] = \neg M \!\!\vee \!\! S \\ &FNC \ [S \!\!\rightarrow \!\! T] = \neg S \!\!\vee \!\! T \\ &FNC \ [W \!\!\rightarrow \!\! T] = \neg W \!\!\vee \!\! T \\ &FNC \ [\neg W \!\!\rightarrow \!\! M] = W \!\!\vee \!\! M \\ &FNC \ \neg [\neg T \!\!\rightarrow \!\! \neg (\neg T \!\!\vee \!\! S)] = \neg T \!\!\wedge (\neg T \!\!\vee \!\! S) \end{split}
```

El conjunt de clàusules que s'obté és:

 $S = \{\neg M \lor S, \ \neg S \lor T, \ \neg W \lor T, \ W \lor M, \neg T, \neg T \lor S\}$ Les dues darreres (negreta) són el conjunt de suport Es pot observar que la clàusula $\neg T$ subsumeix la clàusula $\neg T \lor S$ la qual cosa redueix el conjunt a S'= $\{\neg M \lor S, \ \neg S \lor T, \ \neg W \lor T, \ W \lor M, \neg T\}$ La regla del literal pur no és aplicable

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	10:30

Troncals	laterals
¬T	¬S∨T
¬S	⊣M∨S
⊸M	W∨M
W	$\neg W \lor T$
Т	¬T

Activitat 4 (25%)

Considereu el següent raonament (incorrecte)

```
 \forall x L(x), \\ \forall x [L(x) \rightarrow \exists y N(x,y)] \\ \therefore \ \forall x \forall y N(x,y)
```

Doneu una interpretació en el domini {1,2} que en sigui un contraexemple

Un contraexemple ha de fer certes les premisses i falsa la conclusió.

En el domini $\{1,2\}$ la primera premissa és equivalent a $L(1) \wedge L(2)$. Perquè aquest enunciat sigui cert ha de passar que L(1)=V i L(2)=V

La segona premissa és equivalent a $[L(1) \rightarrow \exists y N(1,y)] \land [L(2) \rightarrow \exists y N(2,y)]$. Amb L(1) = V i L(2) = V això és equivalent a $[V \rightarrow \exists y N(1,y)] \land [V \rightarrow \exists y N(2,y)]$ i això darrer ho és a $\exists y N(1,y) \land \exists y N(2,y)$. Aquest enunciat es equivalent a $[N(1,1) \lor N(1,2)] \land [N(2,1) \lor N(2,2)]$ una manera de fer cert aquest enunciat és amb N(1,1) = V i N(2,2) = V

La conclusió és equivalent a $N(1,1) \land N(1,2) \land N(2,1) \land N(2,2)$. Per fer fals aquest enunciat n'hi ha prou amb fer fals qualsevol conjuntand. Per exemple N(1,2)=F

Així, un contraexemple d'aquest raonament és:

<{1,2}, {L(1)=V, L(2)=V, N(1,1)=V, (1,2)=F, N(2,1)=V, N(2,2)=V}, ∅>

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	10:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	10:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	10:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	10:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	25/01/2014	10:30