Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/NL05/000212

International filing date: 21 March 2005 (21.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: NL

Number: 04075907.8

Filing date: 19 March 2004 (19.03.2004)

Date of receipt at the International Bureau: 11 May 2005 (11.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

Europäisches Patentamt

European **Patent Office** Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

04075907.8

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

European Patent Office Office européen des brevets

Anmeldung Nr:

Application no.:

04075907.8

Demande no:

Anmeldetag:

Date of filing: 19.03.04

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Stichting Glass for Health J. van Maerlantlaan 9 2343 JX Oegstgeest PAYS-BAS

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Use of a poly(dialkylsiloxane) for improving the strength and the surface of dental fillings

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

A61K6/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR LI

USE OF A POLY(DIALKYLSILOXANE) FOR IMPROVING THE STRENGTH AND THE SURFACE OF DENTAL FILLINGS

FIELD OF THE INVENTION

5

The present invention relates to dental fillings having improved properties, said dental fillings being formed by filling dental cavities with a glass ionomer cement composition. In particular, the invention relates to the use of a particular poly(dialkylsiloxane) for improving the strength and the surface of such dental fillings.

10

15

20

BACKGROUND OF THE INVENTION

Glass ionomer cements ("GIC"), also known in the art as fluoroaluminosilicate glass cements ("FAS"), are widely used for already a considerable period of time in clinical and dental applications, e.g. as a permanent filling material. Reference is made to US 4.376.835, US 5.063.257, US 5.453.456, US 5.552.485 and US 5.670.258, all incorporated by reference herein.

Non-prepublished European Patent Application 03076770 and US Provisional Patent Application No. 60/475,903 (both filed on 5 June 2003) disclose an improved glass ionomer cement composition (also indicated as glass carbomer cement composition or "GCC") that can be obtained by treating a fluorosilicate glass powder with (a) a poly(dialkylsiloxane) having terminal hydroxyl groups, wherein the alkyl groups contain 1 to 4 carbon atoms, (b) an aqueous acid solution, and (c) separating the treated fluorosilicate glass powder from the aqueous acid solution.

25

In this patent application the term GIC is used and it is also to be understood to encompass GCC's.

Commercially available GIC's are for example KetacMolar® from 3M ESPE, Fuji IX® from GC Corp. and Ionofil Molar AC® of Voco GmbH.

30

Commercially, GIC's are supplied by the manufacturer in capsules together with a leaflet containing instructions how the GIC's are activated. Obviously, activation can also be established by providing the ingredients separately, adding them together and mixing them manually. The usual method that is employed by a dentist is filling a dental cavity with the activated GIC which is then cured, preferably by using

ultrasound and/or heat.

5

10

15

25

30

However, dental fillings made of prior art GIC's still suffer from several disadvantages. For example, the strength, stiffness, hardness and solubility properties of the dental fillings that can be obtained by using the GIC's according to the prior art are often insufficient. The surface of these fillings are also not very smooth with the result that they are difficult to polish. Another disadvantage of these fillings is their relatively low wear resistance due to the rather high water solubility of GIC's (conventional GIC's have relatively a too high solubility in aqueous media, in particular acidic aqueous media as can prevail in the mouth so that the abrasive resistance of the cured GIC is unsatisfactory). In addition, it appears that the known GIC's require a considerable curing time for acquiring an acceptable strength. Furthermore, the handleability of GIC's is insufficient. These materials are highly viscous liquids and are difficult to apply and to finish to a smooth filling. Consequently, there is still a need for dental fillings having an improved strength and surface.

It is therefore an object of the present invention to provide the skilled practitioner with a method which enables him or her to form dental fillings having an improved strength and surface.

20 SUMMARY OF THE INVENTION

The inventors have surprisingly found that when a dental cavity is filled with a conventional GIC to form a dental filling followed by aftertreating the surface of the incompletely cured dental filling with a poly(dialkyl)siloxane results in a dental filling having *inter alia* an improved strength surface. The invention therefore relates to the use of a poly(dialkylsiloxane) having terminal hydroxyl groups, wherein the alkyl groups contain 1 to 4 carbon atoms, for improving the strength and the surface of dental fillings that are based on glass ionomer cement compositions.

Alternatively, the invention relates to the use of a poly(dialkylsiloxane) having terminal hydroxyl groups, wherein the alkyl groups contain 1 to 4 carbon atoms, as active ingredient for the preparation of a filling composition for improving the strength and the surface of dental fillings that are based on glass ionomer cement compositions.

The invention also relates to a method for improving the strength and the surface of dental fillings that are based on glass ionomer cement compositions, wherein a surface of a dental filling, which is already formed by filling a dental cavity with a glass ionomer composition, is treated with a poly(dialkylsiloxane) having terminal hydroxyl groups, wherein the alkyl groups contain 1 to 4 carbon atoms.

The invention further relates to a dental filling composition comprising a poly(dialkylsiloxane) having terminal hydroxyl groups, wherein the alkyl groups contain 1 to 4 carbon atoms and the use of said dental filling composition for improving the strength and the surface of dental fillings that are based on glass ionomer cement compositions.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

Dental fillings obtained according to the method of the invention appear to have an improved strength and a lower solubility in comparison to dental fillings that are made according to the prior art methods and are therefore less sensitive to abrasion and wear. In addition, the surface of cured dental fillings obtained according to the method of the invention appear to be very smooth which makes finishing off of the dental filling, e.g. by polishing much easier. Another important advantage of the invention is that the handleability of the GIC is improved: the skilled practitioner first applies the GIC to the cavity and then finishes the filling with the poly(dialkylsiloxane). The inventors assume that the poly(dialkylsiloxane) mixes with the top layer of the GIC and said mixed top layer appears to cure faster than the GIC alone.

After the poly(dialkylsiloxane) has been applied, the dental filling is cured, preferably by using ultrasound ad/or heat. As is well known in the art, ultrasound apparatus used in dentistry also provide heat. Various heat sources can obviously be used, e.g. IR sources, a heated needle etc.

Preferably, the poly(dialkylsiloxane) is applied within a period of less than 5 minutes after that the cavity is filled with the GIC since curing of the GIC already occurs under ambient conditions. More preferably, this period is less than 3 minutes and in particular less than 1 minute.

According to the invention, the poly(dialkylsiloxane) may be linear or cyclic. It may further be a blend of different poly(dialkylsiloxane)s, e.g. a blend of a

poly(dimethylsioxane) of high kinematic viscosity and a poly(dimethylsiloxane) of low kinematic viscosity. It is further preferred that the alkyl groups of the poly(dialkylsiloxane) are methyl groups. The kinematic viscosity is preferably in the range of about 1 cSt to about 100.000 cSt at 25°C [about 1 to about 100.000 mm²/s], preferably about 100 cSt to about 10.000 cSt at 25°C [about 100 to about 10.000 mm²/s], even more preferably about 500 cSt to about 5000 cSt at 25°C [about 100 to about 10.000 mm²/s]. The best results are obtained with a viscosity of about 1000 cSt at 25°C [about 1000 mm²/s].

The GIC's that can be used in this invention are for example those that are disclosed in US 4.376.835, US 5.063.257, US 5.453.456, US 5.552.485 and US 5.670.258, non-prepublished European Patent Application 03076770 and US Provisional Patent Application No. 60/475,903, all incorporated by reference herein.

However, according to the present invention, it is preferred that the GIC is a GCC (as disclosed in non-prepublished European Patent Application 03076770 and US Provisional Patent Application No. 60/475,903) which is obtainable by treating a fluorosilicate glass powder with: (a) a poly(dialkylsiloxane) having terminal hydroxyl groups, wherein the alkyl groups contain 1 to 4 carbon atoms, (b) an aqueous acid solution, and (c) separating the treated fluorosilicate glass powder from the aqueous acid solution.

The fluorosilicate glass powder particles are generally depleted of calcium at their surface such that the quotient of the atomic ratio Si/Ca at the surface of the powder particles and the atomic ratio Si/Ca in the core region is at least 2.0, preferably at least 3.0, and most preferably at least 4.0. The calcium content of the powder particles of the invention increases asymptotically from the surface to the core region.

The depth of the depletion zone depends on the conditions given in each individual case. However, the depletion zone preferably extends at least to a depth of about 10 nm, more preferably to at least about 20 nm, and most preferably to at least about 100 nm. These ranges are particularly suited for use of the fluorosilicate glass powders in dentistry. For other purposes, e.g., for use in bone cements, the depletion zone may also be deeper and may be 200 to 300 nm, for example.

As is known in the art, the fluorosilicate glass powders are produced by surface treatment of glass powders having a composition corresponding to the core region of the powders. Upon surface treatment the number of silicon atoms per unit volume

30

25

5

10

15

20

remains substantially constant. The actual change in the absolute number of atoms per unit volume of other types of atoms is therefore obtained by forming the quotient of the relative atom proportion with the percentage silicon proportion. The quotient of the atomic ratio Si/Ca at the surface and the atomic ratio Si/Ca in the core region therefore constitutes a useful value to characterize the fluorosilicate glass powders.

The surface measurement to determine Ca depletion of the glass powders is suitably carried out by photo electron spectroscopy for chemical analysis (ESCA). This method has been described by R. S. Swingle II and W. M. Riggs in Critical Reviews in Analytical Chemistry, Vol. 5, Issue 3, pages 267 to 321, 1975 and by K. Levsen in "Chemie in unserer Zeit", Vol. 40, pages 48 to 53, 1976. The measuring data underlying the description presented above are outlines in US 4.376.835.

The fluorosilicate glass powders have an average particle size (weight average) of at least 0.5 μm, preferably at least 1.0 μm, and most preferably at least 3.0 μm. For dental purposes the average particle size (weight average) is 1.0 to 20.0 μm, preferably 3.0 to 15.0 μm, most preferably 3.0 to 10.0 μm. The particles have a maximum particle size of 150 μm, preferably 100 μm, especially 60 μm. For use as dental bonding cement the maximum particle size is 25 μm, preferably 20 μm. In order to achieve good mechanical properties a not excessively narrow particle size distribution is favorable, as usual, which is achieved, for example, by conventional grinding and classifying of the coarse.

The fluorosilicate glass powders are prepared from glass powders having the average composition of the core region of the powders described herein. To this end the glass powders described, for example, in DE A 2.061.513 and in Table I are suitable. The glass powders employed as starting materials are obtained as usual by fusing the starting components together at temperatures above 950°C., quenching, and grinding. The starting components may be, for example, the compounds stated in DE A 2.061.513 in suitable quantitative ranges.

The thus obtained powders are then subjected to a surface treatment. The powders are obtainable, for example, by removal of Ca by suitable chemical agents.

For example, the starting glass powders are treated on the surface with acid, preferably at room temperature. To this end substances containing acidic groups are employed, preferably substances forming soluble calcium salts. Sparing water-solubility of the respective calcium salts may be compensated to a certain degree by a

30

5

10

15

20

25

large amount of liquid per unit of powder. The reaction period varies between a few minutes and several days, depending on the strength and concentration of the acid employed.

Thus, for instance, for the preparation of the powders hydrochloric, sulfuric, nitric, acetic, propionic and perchloric acid may be used.

5

10

15

20

25

30

The acids are employed at a concentration of 0.01 to 10% by weight, preferably from 0.05 to 3% by weight.

After the respective reaction period the powders are separated from the solution and thoroughly washed to leave substantially no soluble calcium salts on the surface of the powder particles. Finally the powder is dried, preferably above 70°C, and screened to the desired particle size ranges.

The stronger the acid employed and the longer a given acid acts on the powder the longer will be the processing period after mixing with the mixing fluid.

The favorable surface character of the powders permits the use of an especially high powder/fluid ratio in the cement mix resulting in high strength values of the hardened material. The possibility of using a particularly reactive mixing fluid has the same effect. Furthermore, the processing period of a cement of the invention may be tailored to meet the user's requirements. The length of the processing period hardly influences the subsequent hardening period, so that also upon long processing periods rapid setting and early water insensitivity occurs.

The glass powders may be mixed, to form dental cements or bone cements, with the conventional aqueous polycarboxylic acid solutions as described, for example, in DE A 2.061.513, DE A 2.439.882 and DE A 2.101.889. Suitable polycarboxylic acids are polymaleic acid, polyacrylic acid and mixtures thereof, or copolymers, especially maleic acid/acrylic acid copolymers and/or acrylic acid/itaconic acid copolymers. It is self-evident that with the use of an extremely reactive glass powder a less reactive polycarboxylic acid will be employed in order to obtain a satisfactory hardening characteristic.

In order to accelerate and improve hardening of said glass ionomer cements chelating agents may be added during mixing, in a manner known from DE A 2.319.715. Instead of the customary use of the aqueous polycarboxylic acid solution as mixing fluid, the glass powder may also be pre-mixed in the corresponding ratio with the dry powdered polycarboxylic acid, as the solid substances do not undergo reaction

with each other. In that case water is used as mixing fluid, preferably an aqueous solution of a chelating agent together with conventional additives such as bacteriostatic agents, if appropriate.

5

10

15

20

25

30

In order to avoid metering errors and to attain optimum mechanical properties, the powders may be used in pre-dosaged form. For example, the glass powder is metered out in plastic containers. Then the cement can either be mixed mechanically within said plastic capsules, or the container may be emptied and the mix prepared by hand. The aqueous polycarboxylic acid solution in such a case is metered, for example, with a dripping bottle or with a syringe. The use of the powder of the invention in so-called shaker capsules, e.g., corresponding to DE A 2.324.296, is suitable. A predetermined quantity of powder is held in readiness in a so-called main compartment, while the fluid is contained in a separate cushion beneath a lateral clip. By exerting pressure on said clip the fluid is sprayed through a bore into the main compartment and is then available for mechanical mixing. In both types of capsules the pure glass powder may be replaced by a mixture of glass powder and dry polycarboxylic acid in predetermined quantities. The fluid component is then water or an aqueous solution of a chelating agent.

The use of the mixture of glass powder and dry polycarboxylic acid is especially advantageous if said mixture is pelletised. To this end, the dry polycarboxylic acid is used in finely divided form after removal of coarse portions. After thorough blending of said polycarboxylic acid powder with the glass powder pellets may be made in a conventional pelletising machine. The compacting pressure must be selected such that after the addition of the mixing fluid (water or aqueous tartaric acid solution, for example), the pellets can still be readily worked into a cement while, on the other hand, they possess sufficient mechanical stability for transportation. Pellets made in this way permit especially simple mixing into a cement paste after brief dissolution, e.g., in the corresponding amount of tartaric acid solution. The mixing fluid may be added, for example, from a drip bottle or from a syringe.

The particles of the fluorosilicate glass powder have preferably an average size of about 0.5 μm to about 200 μm , more preferably about 3 μm to about 150 μm , even more preferably about 3 μm to about 30 μm and in particular about 20 μm to about 80 μm .

It is preferred that the aqueous acid solution comprises an inorganic acid or an

organic acid. It is even more preferred that the aqueous acid solution comprises an organic acid, wherein the organic acid is preferably a polymer, e.g. a polyacrylic acid. The aqueous acid solution has preferably a pH in the range of 2 to 7.

EXAMPLES

19.03.2004

Claims

5

15

- 1. Use of a poly(dialkylsiloxane) having terminal hydroxyl groups, wherein the alkyl groups contain 1 to 4 carbon atoms, for improving the strength and the surface of dental fillings that are based on glass ionomer cement compositions.
- 2. Use according to claim 1, wherein the poly(dialkylsiloxane) is linear or cyclic.
- 3. Use according to claim 1 or claim 2, wherein the alkyl groups of the poly(dialkylsiloxane) are methyl groups.
- 4. Use according to any one of claims 1 3, wherein the poly(dialkylsiloxane) has a kinematic viscosity in the range of about 1 to about 100.000 cSt at 25°C.
 - 5. Use according to any one of claims 1 4, wherein the glass ionomer cement composition is obtainable by treating a fluorosilicate glass powder with:
 - (a) a poly(dialkylsiloxane) having terminal hydroxyl groups, wherein the alkyl groups contain 1 to 4 carbon atoms,
 - (b) an aqueous acid solution,
 - (c) separating the treated fluorosilicate glass powder from the aqueous acid solution.
 - 6. Use according to claim 5, wherein the particles of the fluorosilicate glass powder have an average size of about 0.5 to about 200 μm .
- 7. Use according to claim 5 or claim 6, wherein the aqueous acid solution comprises an inorganic acid or an organic acid.
 - 8. Use according to claim 7, wherein the organic acid is a polymer.
 - 9. Use according to any one of claims 5-8, wherein the aqueous acid solution has a pH in the range of 2 to 7.
- Use of a poly(dialkylsiloxane) having terminal hydroxyl groups, wherein the alkyl groups contain 1 to 4 carbon atoms, as active ingredient for the preparation of a filling composition for improving the strength and the surface of dental fillings that are based on glass ionomer cement compositions.
- on glass ionomer cement compositions, wherein a surface of a dental filling, which is already formed by filling a dental cavity with a glass ionomer composition, is treated with a poly(dialkylsiloxane) having terminal hydroxyl groups, wherein the alkyl groups contain 1 to 4 carbon atoms.

12. Method according to claim 11, wherein after the treatment with the poly(dialkylsiloxane) the dental filling is cured by ultrasound or by applying heat.

1 9. 03. 2004

Abstract

The present invention relates to a use of a poly(dialkylsiloxane) having terminal hydroxyl groups, wherein the alkyl groups contain 1 to 4 carbon atoms, for improving the strength and the surface of dental fillings that are based on glass ionomer cement compositions.

