Formale Sprachen und Komplexitätstheorie

WS 2019/20

Robert Elsässer

Definition

Eine (deterministische 1-Band) Turingmaschine (DTM) wird beschrieben durch ein 7-Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$.

Dabei sind Q, Σ , Γ endliche, nichtleere Mengen und es gilt:

- Σ ist Teilmenge von Γ
- t in Γ ist das *Blanksymbol* (auch \sqcup)
- *Q* ist die *Zustandsmenge*
- Σ ist das Eingabealphabet
- Γ ist das Bandalphabet
- q₀ in Q ist der Startzustand
- q_{accept} in Q ist der akzeptierende Endzustand
- q_{reject} in Q ist der ablehnende Endzustand
- $\delta: Q \setminus \{q_{accept}, q_{reject}\} \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ ist die (partielle) Übergangsfunktion. Sie ist für kein Argument aus $\{q_{accept}, q_{reject}\} \times \Gamma$ definiert.

Momentaufnahme einer Turingmaschine:

- Bei Bandinschrift uv (dabei beginnt u am linken Ende des Bandes und hinter v stehen nur Blanks)
- Zustand q
- Kopf auf erstem Zeichen von v

Konfiguration C = uqv

Definition

- Eine Sprache L heißt rekursiv aufzählbar,
 falls es eine Turingmaschine M gibt, die L akzeptiert.
- Eine Sprache L heißt rekursiv oder entscheidbar, falls es eine Turingmaschine M gibt, die L entscheidet.

- Eine Mehrband- oder k-Band Turingmaschine (k-Band DTM) hat k Bänder mit je einem Kopf.
- Die Übergangsfunktion ist dann von der Form $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$
- Zu Beginn steht die Eingabe auf Band 1, sonst stehen überall Blanks. Die Arbeitsweise ist analog zu 1-Band-DTMs definiert.

Universelle Turingmaschinen

- Bislang special purpose Computer.
 eine Sprache eine Turing-Maschine
- Allgemein programmierbare Turing-Maschinen: universelle Turing-Maschinen
- Erhalten als Eingabe die Beschreibung einer Turingmaschine und simulieren diese Maschine
- Benötigen dafür eine einheitliche Beschreibung von Turingmaschinen durch sog. Gödel-Nummern

Definition Gödelnummern

Sei *M* eine 1-Band-Turingmaschine mit

$$Q = \{q_0, ..., q_n\},$$

$$q_{accept} = q_{n-1},$$

$$q_{reject} = q_n.$$

Sei
$$X_1 = 0, X_2 = 1, X_3 = t, D_1 = L, D_2 = R$$
.

Wir kodieren $\delta(q_i, X_j) = (q_k, X_l, D_m)$ durch $0^{i+1}10^j 10^{k+1} 10^l 10^m$.

 $Code_r$: Kodierung des r-ten Eintrags für δ , $1 \le r \le 4(n-1)$

Gödelnummer $\langle M \rangle = 111Code_111Code_211...11Code_g111$

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

$$\Sigma = \{0,1\}$$

$$\Gamma = \Sigma \cup \{t\}$$

$$\delta(q_0, 0) = (q_{reject}, 0, R)$$

$$\delta(q_0, 1) = (q_0, 1, R)$$

$$\delta(q_0, t) = (q_{accept}, t, R)$$

$$L = \{1^n \mid n \ge 0\}$$

Gödel-Nummer:

111010100010100110100101001001101000100100100111

Definition Universelle Turingmaschine

Eine Turingmaschine M_0 heißt **universell**, falls für jede 1-Band-Turingmaschine M und jedes x aus $\{0,1\}^*$ gilt:

- M₀ gestartet mit (M)x hält genau dann, wenn M
 gestartet mit x hält.
- M_0 akzeptiert $\langle M \rangle x$ genau dann, wenn M das Wort x akzeptiert.

Satz

Es gibt eine universelle 2-Band Turingmaschine.

Die Sprache Gödel:

Sprache Gödel $= \{ w \text{ aus } \{0,1\}^* \mid w \text{ ist die Gödel-Nummer einer DTM} \}$

Lemma

Die Sprache Gödel ist entscheidbar.

Die Sprache States:

Sprache States $\coloneqq \{(\langle M \rangle, d) \mid M \text{ besitzt mindestens } d \text{ Zustände}\}$

Lemma

Die Sprache States ist entscheidbar.

Das Halteproblem

 $H := \{(\langle M \rangle, x) \mid M \text{ ist DTM, die gestartet mit Eingabe } x \text{ hält}\}$

Satz

Das Halteproblem ist rekursiv aufzählbar.

Die Sprache Useful

Useful
$$\coloneqq$$
 $\{(\langle M \rangle, q) \mid M \text{ ist DTM mit Zustand } q, \text{ und es gibt eine Eingabe } w,\}$ so dass M gestartet mit w in den Zustand q gerät

Satz

Die Sprache Useful ist rekursiv aufzählbar.

Aufzählung von binären Eingabefolgen:

- für alle natürlichen Zahlen i sei $w_i = w$, falls bin(i) = 1w
- damit werden alle möglichen w aus $\{0,1\}^*$ aufgezählt

Aufzählung von Turingmaschinen:

 M_i ist:

- M_{reject} , falls i keine Gödelnummer ist
- M, falls bin(i) die Gödelnummer der DTM M ist, d.h. $\langle M \rangle = bin(i)$

Die Sprache Diag

Diag := { $w \text{ in } \{0,1\}^* \mid w = w_i \text{ und die DTM } M_i \text{ akzeptiert } w \text{ nicht}$ }

Satz

Die Sprache Diag ist nicht rekursiv aufzählbar.

	M_1	M_2	M_3		M_7	 M_i	
$\widetilde{w_1}$			na		na	na	
W_2	na.	\	na		na	na	
w_3	na	na`	.na		na	na	
•			``		• • • • • • • • • • • • • • • • • • • •		
w_7	na	na	na	```	na	 а	
•						, ,	
w_i	na	na	na		na	a	
							\``. Diagona

Tabelle für Akzeptanz/Nichtakzeptanz von DTMs

Quelle: Skript Johannes Blömer, Universität Paderborn

Reduktionen

Formalisierung von

Sprache A ist nicht schwerer als Sprache B

Idee

 Algorithmus/DTM für B kann genutzt werden, um A zu akzeptieren/entscheiden.

Zwei einfache Sprachen

 $P := \{w \text{ in } \{0,1\}^* \mid w \text{ ist ein Palindrom}\}$

$$XOR := \begin{cases} (a, b, c) \text{ in } \{0,1\}^* \times \{0,1\}^* \times \{0,1\}^* \mid a, b, c \text{ haben die gleiche} \\ \text{Länge und } a \oplus b = c \end{cases}$$

$$f: \{0,1\}^* \to \{0,1\}^* \times \{0,1\}^* \times \{0,1\}^*$$

$$w \rightarrow (w, w^R, 0^{|w|})$$

Von XOR und f zu P

 M_P bei Eingabe w

- 1. Berechne mit M_f das Tripel $f(w) = (w, w^R, 0^{|w|})$.
- 2. Simuliere M_{XOR} mit Eingabe f(w).
- 3. Falls M_{XOR} die Eingabe f(w) akzeptiert, akzeptiere w.
- 4. Falls M_{XOR} die Eingabe f(w) ablehnt, lehne w ab.

 M_{XOR} entscheidet XOR, M_f berechnet f.

Definition Reduktionen

L' heißt reduzierbar auf L, falls es eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$ gibt mit

- 1. Für alle w aus $\{0,1\}^*$ gilt: w ist in L' genau dann, wenn f(w) in L
- 2. Funktion f ist berechenbar, d.h., es gibt eine DTM M_f , die die Funktion f berechnet.

f heißt Reduktion von L' auf L, geschrieben $L' \leq L$.

Definition

Eine DTM M berechnet die Funktion $f: \Sigma^* \to \Gamma$, falls für alle w aus Σ^* die Berechnung von M mit Eingabe w in einer akzeptierenden Konfiguration hält und dabei der Bandinhalt f(w) ist.

Hierbei werden ▶ und alle *t* ignoriert.

Lemma

Seien L' und L Sprachen mit $L' \leq L$. Dann gilt:

- 1. Ist L entscheidbar, so ist auch L' entscheidbar.
- 2. Ist L rekursiv aufzählbar, so ist auch L' rekursiv aufzählbar.

Von L und f zu L'

M' bei Eingabe w

- 1. Berechne mit M_f die Folge f(w).
- 2. Simuliere M mit Eingabe f(w).
- 3. Falls M die Eingabe f(w) akzeptiert, akzeptiere w.
- 4. Falls M die Eingabe f(w) ablehnt, lehne w ab.

Akzeptanz- und Halteproblem

 $H := \{\langle M \rangle x \mid M \text{ ist DTM, die gestartet mit Eingabe } x \text{ hält} \}$

 $A := \{\langle M \rangle x \mid M \text{ ist DTM, die die Eingabe } x \text{ akzeptiert}\}$

Lemma

Das Halteproblem kann auf das Akzeptanzproblem reduziert werden.

$$H \leq A$$