Inf2 – Foundations of Data Science Data

2

How to ask interesting questions?

(From last year's final project)

You can choose any dataset you like, provided that it has the following characteristics:

- Multivariate (at least 3 variables)
- Available for public download.

Choose a few representative samples of instances in your data and look at them closely to get some ideas for potential questions.

- QUESTIONS: What are the questions you wanted to explore? Why are they interesting to you?
- DATASET: Describe the dataset you use; Explain why it is appropriate for answering these
 questions.

Example

- In this project I will be discussing the factors affecting the popularity of Munros.
- The main question I will be exploring is what factors make a Munro popular?
- What factors have the most influence in the popularity of Munros?
 How do the natural relief and cities' location affect the popularity?
- I have used data provided by
- https://www.walkhighlands.co.uk/munros/
- http://www.hills-database.co.uk/downloads

What is data and where does it come from?

Ancient methods

https://www.scribesofthecairogeniza.org/

https://en.wikipedia.org/wiki/Quipu

Late 19th century: US census

Hollerith 1890 tabulating machine

20th century: Storage devices

Fritz Pfleumer, with his magnetic tape machine

Unstructured data

James Webb Telescope: Rings of Neptune

Structured Data

```
starwars
  # A tibble: 87 × 14
             height mass hair_color skin_color eye_color birth_year
     name
     <chr>
           <int> <dbl> <chr>
                                     <chr>
                                                <chr>
                                                               <dbl>
  1 Luke S...
                     77 blond
                                     fair
                                                blue
                                                                19
## 2 C-3P0
                167
                     75 <NA>
                                     gold
                                                yellow
                                                               112
                                     white, bl... red
  3 R2-D2
               96
                     32 <NA>
                                                                33
## 4 Darth ...
                202
                      136 none
                                     white
                                                vellow
                                                                41.9
                150
  5 Leia 0...
                     49 brown
                                     light
                                                brown
                                                                19
                178
## 6 Owen L...
                      120 brown, gr... light
                                                blue
                                                                52
  # ... with 81 more rows, and 7 more variables: sex <chr>,
       gender <chr>, homeworld <chr>, species <chr>, films <list>,
       vehicles <list>, starships <list>
```

Luke Skywalker

From

Tidy Data

- Each variable forms a column.
- Each observation forms a row.
- Each unit forms a table.
- Tables may contain
 - Univariate data
 - Bivariate data
 - Multivariate data

Messy vs. Tidy data

	religion	<10k	10-20k	20-30k	30-40k	40-50k	50-75k	75-100k	100-150k	>150k	refused
0	Agnostic	27	34	60	81	76	137	122	109	84	96
1	Atheist	12	27	37	52	35	70	73	59	74	76
2	Buddhist	27	21	30	34	33	58	62	39	53	54
3	Catholic	418	617	732	670	638	1116	949	792	633	1489
4	refused	15	14	15	11	10	35	21	17	18	116

	religion	income	frequency
0	Agnostic	10-20k	34
1	Atheist	10-20k	27
2	Buddhist	10-20k	21
3	Catholic	10-20k	617
4	Evangelical Prot	10-20k	869

https://towardsdatascience.com/whats-tidy-data-how-to-organize-messy-datasets-in-python-with-melt-and-pivotable-functions-5d52daa996c9

Cleaning data

- Mixing text and numbers
- Missing data
- Mislabeled data
- Munging the data

Merging two tables

	Make + Model	mpg
0	Audi A1	67
1	Audi A2	58
2	Audi A3	48
3	Audi A4	48
4	Audi A5	43
5	Audi A6	34
6	Audi A7	31
7	Audi A8	31

	Make + Model	sales		Mak	e + Model	mpg	Si
	Audi A1	29991	0		Audi A1	67	29
	Audi A2	65972	1		Audi A2	58	65
	Audi A3	89920	2		Audi A3	48	89
	Audi A4	90696	3		Audi A4	48	90
	Audi A5	56673	4		Audi A5	43	56
;	Audi A6	47942	5		Audi A6	34	47
6	Audi A7	36026	6		Audi A7	31	36
7	Audi A8	12819	7		Audi A8	31	12

Cleaning

	Make + Model	mpg	sales	Most Popular Colour
0	Audi A1	67	29991	Grey
1	Audi A2	58	65972	Blue
2	Audi A3	48	89920	Red
3	Audi A4	48	90696	Black
4	Audi A5	43	56673	Grey
5	Audi A6	34	47942	White
6	Audi A7	31	36026	Black
7	Audi A8	31	12819	Black
8	BMW3	-15	83412	Blue
9	BMW5	5555	74991	White

	Make + Model	mpg	sales
0	Audi A1	67	29991
1	Audi A2	58	65972
2	Audi A3	48	89920
3	Audi A4	48	90696
4	Audi A5	43	56673
5	Audi A6	34	47942
6	Audi A7	31	36026
7	Audi A8	31	12819

Joining Tables

Table 1: Characteristics of some imaginary squirrels.

Name	Weight (g)	Length (mm)	Sex	Age
Jakub	320	211.0	Male	Under 1 year
Fiona	342	222.0	Female	1–2 years
Cameron	330	215.0	Male	2+ years

Table 2: Time taken to complete obstacle course by squirrels

Name	Date	Time (s)
Fiona	2021-05-06	67.5
Fiona	2021-05-10	50.2
Cameron	2021-05-08	55.6
Lily	2022-07-13	45.0

Table 3: Results of inner join applied to Tables $\boxed{1}$ and $\boxed{2}$.

Name	Weight (g)	Length (mm)	Sex	Age	Date	Time (s)
Fiona	342	222.0	Female	1-2 years	2021-05-06	67.5
Fiona	342	222.0	Female	1-2 years	2021-05-10	50.2
Cameron	330	215.0	Male	2+ years	2021-05-08	55.6

Only the squirrels in both datasets will be present in the joined dataset.

Table 4: Results of left join applied to Tables 1 and 2.

Name	Weight (g)	Length (mm)	Sex	Age	Date	Time (s)
Jakub	320	211.0	Male	Under 1 year	nan	nan
Fiona	342	222.0	Female	1-2 years	2021-05-06	67.5
Fiona	342	222.0	Female	1-2 years	2021-05-10	50.2
Cameron	330	215.0	Male	2+ years	2021-05-08	55.6

All squirrels present in the first table will be present

Table 5: Results of outer join applied to Tables $\boxed{1}$ and $\boxed{2}$.

Name	Weight (g)	Length (mm)	Sex	Age	Date	Time (s)
Jakub	320.0	211.0	Male	Under 1 year	nan	nan
Fiona	342.0	222.0	Female	1-2 years	2021-05-06	67.5
Fiona	342.0	222.0	Female	1-2 years	2021-05-10	50.2
Cameron	330.0	215.0	Male	2+ years	2021-05-08	55.6
Lily	nan	nan	nan	nan	2022-07-13	45.0

All squirrels in both tables will be present

Handedness Survey

Handedness score

Task	Left	Right
Writing		
Drawing		
Throwing		
Scissors		
Toothbrush		
Knife (without fork)		
Spoon		
Broom (upper hand)		
Striking match (hand that holds the match)		
Opening box (hand that holds the lid)		
Total		

 ${\bf Right-Left:}$

 ${\bf Right\,+\,Left:}$

 $\frac{\text{Right} - \text{Left}}{\text{Right} + \text{Left}}$:

Handedness Histogram

Your data (10 bins)

Distribution of handedness - 10 bins

Your data (20 bins)

Your data (30 bins)

