République Algérienne Démocratique Et populaire

Université de Med Boudiaf M'sila

Département de génie électrique

3eme année licence académique en électrotechnique et électromécanique

Module: Electronique de puissance

Corrigé type examen S05

28/01/2020 Durée: 1H30mn

Exercice N°01(0) pts)

(19) Dans ce montage, on a un regime à la limite de conduction.

(1) Les allure des cognanx de y(+), i (+) et V(+) I min

c)-Pour te [o, at]. $\lambda(+) = \frac{E}{L} + \dots = (n)$ at = at: $\lambda(at) = \lambda_{max} = \frac{E}{L} = \frac{1}{L} - \dots = (2)$ $\lambda(+) \neq 0$ Pour Le [at, T]:

() ALmay = 1 max

(1) e) Namoy = NLmoy (T- ot)

V2(t) A D(Amay = N may (4 - ar))

(1) f) - remay = ilmay of = dilmay

= (Le moy = d. LL moy

8) -
$$\lambda_{1}(t) = \lambda_{1}(t) + \lambda_{1}(t)$$
 $\Rightarrow \lambda_{1}(t) = \lambda_{1}(t) + \lambda_{2}(t)$
 $\Rightarrow \lambda_{1}(t) = \lambda_{2}(t) + \lambda_{2}(t)$
 $\Rightarrow \lambda_{2}(t) = \lambda_{2}(t) + \lambda_{3}(t)$
 $\Rightarrow \lambda_{2}(t) = \lambda_{3}(t) = \lambda_{4}(t)$
 $\Rightarrow \lambda_{2}(t) = \lambda_{4}(t) = \lambda_{4}(t)$
 $\Rightarrow \lambda_{2}(t) = \lambda_{4}(t) = \lambda_{4}(t)$
 $\Rightarrow \lambda_{3}(t) = \lambda_{4}(t) = \lambda_{4}(t)$
 $\Rightarrow \lambda_{4}(t) \lambda_{4}(t)$

Exercice N°03(05 pts)

1- tableau d'analyse de fonctionnement du document réponse.

Intervalles	Diode en conduction	\mathbf{U}_{ch}	v_{D1}	i _{D1}	i ₂
$\left[0,\frac{\pi}{6}\right]$	D 3	V3	Ua3	0	0
$\left[\frac{\pi}{6}, \frac{5.\pi}{6}\right]$	DT.	V_1	0	Ic	0
[CT, 3T]	02	Ve	412	0	Ic
[智,217]	D3	V3	413	0	0

2- Représentation des graphes : $u_C(\theta), v_{D1}(\theta), i_{D1}(\theta)$ et $i_2(\theta)$.

3) - Mchmay =
$$\frac{3}{2\pi}$$
 $\int_{\frac{\pi}{6}}^{5\pi} V_{max} \cdot Sim o do.$

$$= + \frac{3V_{max}}{2\pi} \left(-\cos \frac{\pi}{6} + \cos \frac{\pi}{6} \right)$$

$$= 3V_{max} \left(-\cos \frac{5\pi}{6} + \cos \frac{\pi}{6} \right)$$

$$= \frac{3 V_{\text{mat}}}{2 \Pi} \left(-\cos \frac{5 \Pi}{6} + \cos \frac{7 \Pi}{6} \right)$$

$$= \frac{3V.\sqrt{2}}{2\Pi} \left(\frac{2\times\sqrt{3}}{2} - \frac{3V.\sqrt{6}}{2\Pi} \right) = \frac{3V.\sqrt{6}}{2\Pi}$$

$$\Rightarrow \sqrt{=\frac{2\pi \times 256}{3.\sqrt{6}}}$$

$$\Rightarrow (V = 218,88V)$$