계층적 군집 (2)

kaggle customer 데이터 셋 적용

#01. 패키지 참조

```
import warnings
warnings.filterwarnings('ignore')

import seaborn as sb
import numpy as np
from pandas import read_excel, DataFrame
from matplotlib import pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage
from sklearn.cluster import AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
```

#02. 데이터 가져오기

```
origin = read_excel("https://data.hossam.kr/G02/customer.xlsx")
print(origin.info())
origin.head()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
    Column Non-Null Count Dtype
  고객ID 200 non-null
                          int64
0
1 성별
          200 non-null object
           200 non-null
2 나이
                         int64
           200 non-null
                          int64
   연수입
3
  지출점수
             200 non-null
                           int64
dtypes: int64(4), object(1)
memory usage: 7.9+ KB
None
```

	고객ID	성별	나이	연수입	지출점수
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

#03. 데이터 전처리

1. 필요한 변수만 추출

```
x = origin.filter(['나이', '연수입', '지출점수'])
x.head()
```

	나이	연수입	지출점수
0	19	15	39
1	21	15	81
2	20	16	6
3	23	16	77
4	31	17	40

2. 데이터 표준화

```
scaler = StandardScaler()
n_data = scaler.fit_transform(x)
#n_data[:5]
ndf = DataFrame(n_data, columns=x.columns)
ndf.head()
```

	나이	연수입	지출점수
0	-1.424569	-1.738999	-0.434801
1	-1.281035	-1.738999	1.195704
2	-1.352802	-1.700830	-1.715913
3	-1.137502	-1.700830	1.040418
4	-0.563369	-1.662660	-0.395980

```
ndf['성별'] = origin['성별'].map({'Male':0, 'Female':1})
ndf
```

	나이	연수입	지출점수	성별
0	-1.424569	-1.738999	-0.434801	0
1	-1.281035	-1.738999	1.195704	0
2	-1.352802	-1.700830	-1.715913	1
3	-1.137502	-1.700830	1.040418	1
4	-0.563369	-1.662660	-0.395980	1
195	-0.276302	2.268791	1.118061	1

	나이	연수입	지출점수	성별
196	0.441365	2.497807	-0.861839	1
197	-0.491602	2.497807	0.923953	0
198	-0.491602	2.917671	-1.250054	0
199	-0.635135	2.917671	1.273347	0

200 rows × 4 columns

3. 데이터 분포 확인

```
plt.figure(figsize=(10, 5))
#sb.scatterplot(x=n_data[:, 0], y=n_data[:, 1])
sb.scatterplot(data=ndf, x='연수입', y='지출점수', hue='성별')
plt.grid()
plt.show()
plt.close()
```


#04. 계층 군집 수행

1. scipy 패키지

```
#lnk = linkage(n_data, method='ward')
lnk = linkage(ndf, method='ward')

plt.figure(figsize=(10, 4))
dendrogram(lnk, show_leaf_counts=True)
plt.show()
plt.close()
```


2. sklearn 패키지

```
ac = AgglomerativeClustering(n_clusters=5, metric='euclidean', linkage='ward',
                             compute_distances=True)
#clustering = ac.fit(n_data)
clustering = ac.fit(ndf)
counts = np.zeros(clustering.children_.shape[0])
n_samples = len(clustering.labels_)
for i, merge in enumerate(clustering.children_):
    current_count = 0
    for child_idx in merge:
        if child_idx < n_samples:</pre>
            current_count += 1 # leaf node
        else:
            current_count += counts[child_idx - n_samples]
    counts[i] = current_count
linkage_matrix = np.column_stack(
    [clustering.children_, clustering.distances_, counts]
).astype(float)
plt.figure(figsize=(10, 4))
dendrogram(linkage_matrix)
plt.show()
plt.close()
```


군집수를 5로 제한했을 경우 분류 결과값

```
clustering.labels_
```

분류 결과를 데이터프레임과 병합

```
origin['labels'] = clustering.labels_
origin.head()
```

	고객ID	성별	나이	연수입	지출점수	labels
0	1	Male	19	15	39	4
1	2	Male	21	15	81	0
2	3	Female	20	16	6	4
3	4	Female	23	16	77	0
4	5	Female	31	17	40	4

```
plt.figure(figsize=(10, 5))
#sb.scatterplot(x=n_data[:, 0], y=n_data[:, 1])
sb.scatterplot(data=origin, x='연수입', y='지출점수', hue='labels')
plt.grid()
```

