

Em uma célula eletroquímica com um eletrodo de platina mergulhado em solução de Zn^{2+} de atividade unitária, $E_{cn}(Zn^{2+}/Zn) = E^{\theta}(Zn^{2+}/Zn) = -0,763 \text{ V} \rightarrow \text{abaixando-se o}$ potencial do eletrodo E através de uma fonte externa abaixo de -0,763 V, cria-se uma sobretensão negativa para a redução do zinco.

> Reações concorrentes

Em uma célula eletroquímica com um eletrodo de platina mergulhado em solução de H+ e Zn²+, ambos com atividade unitária, $E_{\rm cn}({\rm H}^+/{\rm H}_2)=0$ e $E_{\rm cn}({\rm Zn}^2+/{\rm Zn})=-0.763~{\rm V} \rightarrow {\rm abaix}$ ando-se o potencial do eletrodo através de uma fonte externa, cria-se uma sobretensão primeiro para a redução de hidrogênio.

Mesmo com uma sobretensão suficiente para redução do zinco, a evolução do $\rm H_2$ pode impedir a sua deposição no eletrodo. A grosso modo, se $|j_{\rm H2}| > 1$ mA cm⁻² (~ 1 cm³ de $\rm H_2$ por cm² por hora) a deposição do metal fica impedida.

Valor de j_{H2} para uma sobretensão de -0,763 V:

$$j_{H_2} = -j_0 e^{-\alpha f \eta} = -7.9 \times 10^{-4} e(-0.5 \cdot (-763) / 25.7)$$

= -2.21×10³ mAcm⁻²

→ O zinco não vai poder se depositar.

Em eletrodo de chumbo, j_0 (5,0×10⁻¹² mA cm⁻²) é muito pequena para a redução de H⁺ e alta para a redução de Zn²⁺. Neste caso seria possível a deposição do Zn.

Critério alternativo: Em platina mergulhada em água neutra (pH = 7,0), para que $j_{\rm H2}$ = -1 mA cm⁻², $E \sim$ -0,60 V (segundo o Atkins, $\eta_{\rm H2} \sim$ -0,60 V) \rightarrow Se o metal a depositar tiver $E_{\rm cn}$ mais baixo que -0,60 V, ele não se depositará (caso do Zn, com $a_{\rm Zn2+}$ = 1).

Exemplo: Produção de Na por eletrólise de solução de NaOH em eletrodo de mercúrio ($E^{\theta}(Na^{+}/Na)$) = -2,714 V.

- ➤ Uso do NaOH → baixa-se $E_{\rm cn}({\rm H_2/H^+})$ (Ex: pH = 9 → $E_{\rm cn}$ (H₂/H⁺) = -0,53 V) → diminui-se a sobretensão para a evolução de H₂ até o início da deposição do Na.
- > Formação do amálgama Na/Hg impede a reação do Na com a água, elevando o potencial de redução do Na⁺ (E_{cn} ' na figura).
- ightharpoonup Deposição em Hg ightharpoonup o menor j_0 para evolução de H $_2$ ightharpoonup realizase deposição do Na com menos evolução de H $_2$.

Exemplo: carga da bateria de chumbo.

Catodo: PbSO₄ + 2
$$e^-$$
 + H⁺ \rightarrow Pb + HSO₄⁻ E^{θ} = -0,36 V

Placa de Pb: $j_0(H_2/H^+)$ muito baixa \rightarrow alta eficiência na deposição de Pb

Anodo:
$$PbSO_4 + 2H_2O \rightarrow PbO_2 + SO_4^- + 4H^+ + 2e^- E^0 (red) = 1,69$$

Reação concorrente:

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^- E^{\theta}(\text{red}) = 1,23 \text{ V}$$

 \rightarrow Evolução de O_2 começa primeiro mas $j_0(O_2/H_2O)$ é muito baixa \rightarrow Pb O_2 pode se formar com alta eficiência.

Atkins e de Paula, 7a edição, exercício 29.15(a):

29.13 (a) Uma solução de CdSO₄(aq) 0,10 M é eletrolisada entre um catodo de cádmio e um ânodo de platina, com uma densidade de corrente igual a 1,00 mA cm⁻². A sobretensão de hidrogênio é de 0,60 V. Qual será a concentração dos ions Cd²⁺ quando começa o desprendimento de H₂ no catodo? Admita que os coeficientes de atividade são unitários.

Células galvânicas em operação

Célula funcionando galvanicamente opera irreversivelmente → trabalho máximo (= $\Delta G_{\rm reação})$ não pode ser obtido \rightarrow E ' menor que o potencial de corrente nula.

Considerando uma pilha M | M+(aq) | M'+(aq) | M', o seu potencial de operação é

$$E' = E_R' - E_L'$$

portanto

$$E' = E_{cn} + \eta_R - \eta_I$$

nula (vamos chamá-lo simplesmente de E) e η_R é negativa e η_L é positiva.

Se a pilha tem uma resistência interna, seu potencial diminui por uma queda ôhmica IR_s , em que R_s é a resistência interna.

$$\rightarrow E' = E + \eta_R - \eta_L - IR_s$$

Sobretensões η_R e η_L em função de I (Butler-Volmer no limite de sobretensão alta), considerando áreas A iguais para os eletrodos e também o mesmo $\alpha = 0.50$:

$$\eta_R = \frac{\ln(-j/j_{0,R})}{-\alpha f} = -\frac{2}{f} \ln\left(\frac{I}{Aj_{0,R}}\right)$$

$$\ln(i/j_{0,L}) = 2 \left(\frac{I}{Aj_{0,R}}\right)$$

$$\eta_L = \frac{\ln(j/j_{0,L})}{(1-\alpha)f} = \frac{2}{f} \ln \left(\frac{I}{Aj_{0,L}}\right)$$

$$E' = E - IR_{\rm s} - \frac{4RT}{F} \ln \left(\frac{I}{A\bar{j}} \right)$$
 $\bar{j} = (j_{0L}j_{0R})^{1/2}$

onde j_{0L} e j_{0R} são as densidades de corrente de troca dos dois eletrodos.

Sobretensão de concentração: com o consumo de material próximo à superfície do eletrodo, cria-se um gradiente de concentração que provoca um abaixamento do potencial do eletrodo, proporcional à densidade de corrente no eletrodo.

Segundo o modelo da camada de difusão de Nernst, as sobretensões de concentração dos dois eletrodos combinadas diminuem o potencial da célula segundo a equação

$$E' = E + \frac{RT}{zF} \ln \left\{ \left(1 - \frac{I}{Aj_{\text{lim,L}}} \right) \left(1 - \frac{I}{Aj_{\text{lim,R}}} \right) \right\}$$

onde j_{lim} é a densidade de corrente máxima correspondente a um máximo gradiente de concentração (concentração c'=0 na superfície do eletrodo)

Acrescentando a diminuição de potencial devido às sobretensões de concentração,

$$E' = E - IR_s - \frac{2RT}{zF} \ln g(I)$$

onde

$$g(I) = \left(\frac{I}{A\bar{j}}\right)^{2z} \left\{ \left(1 - \frac{I}{Aj_{\text{lim,L}}}\right) \left(1 - \frac{I}{Aj_{\text{lim,R}}}\right) \right\}^{-1/2}$$

A potência de uma pilha é dada por IE'. Usando a equação acima para E',

$$P = IE - I^2R_s - \frac{2IRT}{zF} \ln g(I)$$

Parcelas do segundo membro da equação:

- 1ª: potência da pilha operando no potencial de corrente nula
- 2ª: potência dissipada como calor por causa da resistência do eletrólito
- 3ª: diminuição do potencial provocada pela geração de corrente.

- → Potencial de operação varia pouco até se exigir uma densidade de corrente próxima à densidade limite de um dos eletrodos.
- → Potência máxima é obtida pouco antes da polarização de concentração obstar a operação da pilha.