

<u>Course</u> > <u>Unit 7:</u> ... > <u>Lec. 17:</u>... > 3. Exer...

3. Exercise: LMS and LLMS

Exercises due Apr 15, 2020 05:29 IST Completed

Exercise: LMS and LLMS

2/2 points (graded)

Suppose that the random variables Θ and X are not independent, but $\mathbf{E}\left[\Theta\mid X=x\right]=3$ for all x. Then the LLMS estimator of Θ based on X is of the form aX+b, with

$$a=oxed{0}$$
 Answer: 0

$$b= \mid$$
 3 \checkmark Answer: 3

Solution:

The LMS estimator of Θ based on X is of the form $\mathbf{E}\left[\Theta\mid X\right]=3$. This is already linear in X (with a=0 and b=3), and therefore it is also the LLMS estimator.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 7: Bayesian inference:Lec. 17: Linear least mean squares (LLMS) estimation / 3. Exercise: LMS and LLMS

Show all posts

by recent activity

Dependence

?	The statement: 'Suppose that the random variables Θ and X are not independent ' is natural in the Infer	1
2	where to start? The last video seemed to be a very general intro. Now suddenly expected to calculate. Not even sure wh	8
?	<u>Dependence of Theta and X</u> <u>I'm having trouble understanding how the estimator of theta can be independent of X but the r.v. theta i</u>	2

© All Rights Reserved

