1 Section 4.4 Exercises

Exercises with solutions from Section 4.4 of [UA].

Exercise 4.4.1. (a) Show that $f(x) = x^3$ is continuous on all of **R**.

- (b) Argue, using Theorem 4.4.5, that f is not uniformly continuous on \mathbf{R} .
- (c) Show that f is uniformly continuous on any bounded subset of \mathbf{R} .

Solution. (a) As Example 4.3.5 shows, any polynomial is continuous on all of \mathbf{R} .

(b) Define sequences (x_n) and (y_n) by $x_n = n + \frac{1}{n}$ and $y_n = n$. Then

$$|x_n - y_n| = \frac{1}{n} \to 0$$
 and $|f(x_n) - f(y_n)| = 3n + \frac{3}{n} + \frac{1}{n^3} > 3$.

Theorem 4.4.5 allows us to conclude that f is not uniformly continuous on \mathbf{R} .

(c) Suppose that $A \subseteq \mathbf{R}$ is a bounded subset of \mathbf{R} , so that there is an M > 0 such that $A \subseteq [-M, M]$. For any $x, y \in A$, it follows that

$$|x^2 + xy + y^2| \le |x|^2 + |x||y| + |y|^2 \le 3M^2.$$

Let $\epsilon > 0$ be given and set $\delta = \frac{\epsilon}{3M^2}$. For any $x, y \in A$ we then have

$$|x^3 - y^3| = |x - y||x^2 + xy + y^2| \le 3M^2\delta = \epsilon.$$

Thus f is uniformly continuous on A.

Exercise 4.4.2. (a) Is f(x) = 1/x uniformly continuous on (0,1)?

- (b) Is $g(x) = \sqrt{x^2 + 1}$ uniformly continuous on (0, 1)?
- (c) Is $h(x) = x \sin(1/x)$ uniformly continuous on (0,1)?

Solution. (a) Define sequences (x_n) and (y_n) by $x_n = \frac{1}{n}$ and $y_n = \frac{1}{n+1}$. Then

$$|x_n - y_n| = \frac{1}{n} - \frac{1}{n+1} \to 0$$
 and $|f(x_n) - f(y_n)| = 1$.

Theorem 4.4.5 allows us to conclude that f is not uniformly continuous on \mathbf{R} .

(b) If a function is uniformly continuous on some $B \subseteq \mathbf{R}$, then it is also uniformly continuous on any subset $A \subseteq B$. The function $g(x) = \sqrt{x^2 + 1}$ is continuous on all of \mathbf{R} , hence uniformly continuous on the compact set [0,1] (Theorem 4.4.7), and hence uniformly continuous on the subset (0,1).

(c) Define $h: \mathbf{R} \to \mathbf{R}$ by

$$h(x) = \begin{cases} x \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

The continuity of h away from the origin is clear. As shown in Example 4.3.6, h is also continuous at the origin and thus continuous on all of \mathbf{R} . It follows that h is uniformly continuous on the compact set [0,1] (Theorem 4.4.7) and hence uniformly continuous on the subset (0,1).

Exercise 4.4.3. Show that $f(x) = 1/x^2$ is uniformly continuous on the set $[1, \infty)$ but not on the set [0, 1].

Solution. For any $x, y \in [1, \infty)$, we have

$$\left| \frac{1}{x^2} - \frac{1}{y^2} \right| = \left| \frac{y^2 - x^2}{x^2 y^2} \right| = \frac{x + y}{x^2 y^2} |x - y| = \left(\frac{1}{x y^2} + \frac{1}{x^2 y} \right) |x - y| \le 2|x - y|.$$

Let $\epsilon > 0$ be given and set $\delta = \frac{\epsilon}{2}$. For any $x, y \in [1, \infty)$ such that $|x - y| < \delta$, we then have

$$\left| \frac{1}{x^2} - \frac{1}{y^2} \right| \le 2|x - y| < 2\delta = \epsilon.$$

Thus f is uniformly continuous on $[1, \infty)$.

Define the sequences (x_n) and (y_n) in (0,1] by $x_n = \frac{1}{\sqrt{n}}$ and $y_n = \frac{1}{\sqrt{n+1}}$. Then

$$|x_n - y_n| = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \to 0$$
 and $|f(x_n) - f(y_n)| = 1$.

It follows from Theorem 4.4.5 that f is not uniformly continuous on (0,1].

Exercise 4.4.4. Decide whether each of the following statements is true or false, justifying each conclusion.

- (a) If f is continuous on [a, b] with f(x) > 0 for all $a \le x \le b$, then 1/f is bounded on [a, b] (meaning 1/f has bounded range).
- (b) If f is uniformly continuous on a bounded set A, then f(A) is bounded.
- (c) If f is defined on \mathbf{R} and f(K) is compact whenever K is compact, then f is continuous on \mathbf{R} .

Solution. (a) This is true. Since f is continuous on the compact set [a, b], Theorem 4.4.2 implies that there exist $x_0, x_1 \in [a, b]$ such that $f(x_0) \leq f(x) \leq f(x_1)$ for all $x \in [a, b]$. By assumption we have $f(x_0) > 0$ and so

$$0 < f(x_0) \le f(x) \le f(x_1) \iff 0 < \frac{1}{f(x_1)} \le \frac{1}{f(x_0)} \le \frac{1}{f(x_0)}$$

for all $x \in [a, b]$, i.e. 1/f is bounded on [a, b].

(b) This is true. Since A is bounded, there is a K > 0 such that $A \subseteq [-K, K]$, and since f is uniformly continuous on A, there is a $\delta > 0$ such that

$$x, y \in A \text{ and } |x - y| < \delta \implies |f(x) - f(y)| < 1.$$

Let $N \in \mathbf{N}$ be such that $\frac{2K}{N} < \delta$ and for each $j \in \{1, 2, \dots, N\}$ define

$$I_{j} = \left[-K + (j-1)\frac{2K}{N}, -K + j\frac{2K}{N} \right],$$

so that $I_1 \cup \cdots \cup I_N = [-K, K]$. For $j \in \{1, 2, \ldots, N\}$, if $I_j \cap A \neq \emptyset$, then there exists some $a_j \in I_j \cap A$. Let

$$M = \max\{1 + |f(a_i)| : j \in \{1, 2, ..., N\} \text{ and } I_i \cap A \neq \emptyset\};$$

we are justified in taking the maximum of this set as it is finite and must be non-empty, since if A is non-empty (which we may as well assume) there must be some j such that $I_j \cap A \neq \emptyset$.

Suppose $x \in A$. Then since $I_1 \cup \cdots \cup I_N = [-K, K]$ and $A \subseteq [-K, K]$, there must be some $j \in \{1, 2, \ldots, N\}$ such that $x \in I_j \cap A$. Since $x, a_j \in I_j \cap A$, we then have $|x - a_j| \leq |I_j| = \frac{2K}{N} < \delta$ and thus

$$|f(x) - f(a_j)| < 1 \implies |f(x)| < 1 + |f(a_j)| \le M.$$

It follows that $f(A) \subseteq [-M, M]$, i.e. that f(A) is bounded.

(c) This is false. Let $f: \mathbf{R} \to \mathbf{R}$ be Dirichlet's function, i.e.

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbf{Q}, \\ 0 & \text{if } x \notin \mathbf{Q}. \end{cases}$$

Then for any subset $A \subseteq \mathbf{R}$, the only possibilities for f(A) are \emptyset , $\{0\}$, $\{1\}$, and $\{0,1\}$; each of these is compact. However, f is nowhere-continuous.

Exercise 4.4.5. Assume that g is defined on an open interval (a, c) and it is known to be uniformly continuous on (a, b] and [b, c), where a < b < c. Prove that g is uniformly continuous on (a, c).

Solution. Let $\epsilon > 0$ be given. There exist $\delta_1, \delta_2 > 0$ such that

$$x, y \in (a, b]$$
 and $|x - y| < \delta_1 \implies |g(x) - g(y)| < \frac{\epsilon}{2}$, $x, y \in [b, c)$ and $|x - y| < \delta_2 \implies |g(x) - g(y)| < \frac{\epsilon}{2}$.

Set $\delta = \min\{\delta_1, \delta_2\}$ and suppose that $x, y \in (a, c)$ are such that $|x - y| < \delta$. There are four cases.

Case 1. If $x, y \in (a, b]$, then since $|x - y| < \delta \le \delta_1$, we have $|g(x) - g(y)| < \frac{\epsilon}{2} < \epsilon$.

Case 2. If $x, y \in [b, c)$, then since $|x - y| < \delta \le \delta_2$, we have $|g(x) - g(y)| < \frac{\epsilon}{2} < \epsilon$.

Case 3. If $x \in (a, b]$ and $y \in [b, c)$, then note that $|x - b| \le |x - y| < \delta \le \delta_1$ and $|b - y| \le |x - y| < \delta \le \delta_2$. It follows that $|g(x) - g(b)| < \frac{\epsilon}{2}$ and that $|g(b) - g(y)| < \frac{\epsilon}{2}$, which gives

$$|g(x) - g(y)| \le |g(x) - g(b)| + |g(b) - g(y)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Case 4. The case where $x \in [b, c)$ and $y \in (a, b]$ is handled similarly to Case 3.

In any case, we have $|g(x) - g(y)| < \epsilon$. It follows that g is uniformly continuous on (a, c).

Exercise 4.4.6. Give an example of each of the following, or state that such a request is impossible. For any that are impossible, supply a short explanation for why this is the case.

- (a) A continuous function $f:(0,1)\to \mathbf{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence;
- (b) A uniformly continuous function $f:(0,1)\to \mathbf{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence;
- (c) A continuous function $f:[0,\infty)\to \mathbf{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence.
- Solution. (a) Let $f:(0,1)\to \mathbf{R}$ be given by $f(x)=\frac{1}{x}$ and consider the Cauchy sequence $(x_n)\subseteq (0,1)$ given by $x_n=\frac{1}{n+1}$. Then $f(x_n)=n+1$ which is not convergent and hence not Cauchy.
 - (b) This is impossible, as we will show in Exercise 4.4.13 (a).

(c) This is impossible. Let $f:[0,\infty)\to \mathbf{R}$ be continuous on its domain and let $(x_n)\subseteq [0,\infty)$ be a Cauchy sequence; equivalently, (x_n) is a convergent sequence, say $\lim x_n=x$. Since $[0,\infty)$ is a closed set, we must have $x\in [0,\infty)$, and then since f is continuous on its domain, it must be continuous at x. It follows that $\lim f(x_n)=f(x)$ and hence that $(f(x_n))$ is a Cauchy sequence.

Exercise 4.4.7. Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.

Solution. f is continuous on the compact set [0,1] and hence is uniformly continuous on [0,1] (Theorem 4.4.7). Note that for any $x,y \in [1,\infty)$ we have

$$\left|\sqrt{x} - \sqrt{y}\right| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \le \frac{1}{2}|x - y|.$$

It is now straightforward to show that f is uniformly continuous on $[1, \infty)$ (see Exercise 4.4.9). By an argument analogous to the one given in Exercise 4.4.5, we may now conclude that f is uniformly continuous on $[0, \infty)$.

Exercise 4.4.8. Give an example of each of the following, or provide a short argument for why the request is impossible.

- (a) A continuous function defined on [0,1] with range (0,1).
- (b) A continuous function defined on (0,1) with range [0,1].
- (c) A continuous function defined on (0,1] with range (0,1).

Solution. (a) This is impossible. If $f:[0,1] \to \mathbf{R}$ is continuous, then since [0,1] is compact, the image of f must be compact (Theorem 4.4.1). However, (0,1) is not a compact set.

- (b) Consider $f:(0,1)\to \mathbf{R}$ given by $f(x)=\frac{1}{2}\sin(2\pi x)+\frac{1}{2}$; the image of f is then [0,1] (see Figure 1).
- (c) Consider $f:(0,1]\to \mathbf{R}$ given by $f(x)=\frac{1}{2}(1-x)\sin\left(\frac{1}{x}\right)+\frac{1}{2}$; the image of f is then (0,1) (see Figure 1).

Figure 1: Exercise 4.4.8 function graphs

Exercise 4.4.9 (Lipschitz Functions). A function $f: A \to \mathbf{R}$ is called *Lipschitz* if there exists a bound M > 0 such that

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le M$$

for all $x \neq y \in A$. Geometrically speaking, a function f is Lipschitz if there is a uniform bound on the magnitude of the slopes of lines drawn through any two points on the graph of f.

- (a) Show that if $f: A \to \mathbf{R}$ is Lipschitz, then it is uniformly continuous on A.
- (b) Is the converse statement true? Are all uniformly continuous functions necessarily Lipschitz? Solution. (a) Since f is Lipschitz, there is an M > 0 such that

$$|f(x) - f(y)| \le M|x - y|$$

for all $x,y\in A$. Let $\epsilon>0$ be given and set $\delta=\frac{\epsilon}{M}$. Then for any $x,y\in A$ satisfying $|x-y|<\delta,$ we have

$$|f(x) - f(y)| \le M|x - y| < M\delta = \epsilon.$$

It follows that f is uniformly continuous on A.

(b) The converse statement is not true. Consider $f:[0,\infty)\to \mathbf{R}$ given by $f(x)=\sqrt{x}$. As we showed in Exercise 4.4.7, this function is uniformly continuous on $[0,\infty)$. However, we claim that f is not Lipschitz on $[0,\infty)$. To show this, for each M>0 we need to find some $x\neq y\in [0,\infty)$ such that

$$\left| \frac{f(x) - f(y)}{x - y} \right| > M.$$

So, for M > 0, let $x = \frac{1}{4M^2}$ and y = 0. Then

$$\left| \frac{f(x) - f(y)}{x - y} \right| = \left| \frac{\frac{1}{2M}}{\frac{1}{4M^2}} \right| = 2M > M.$$

Exercise 4.4.10. Assume that f and g are uniformly continuous functions defined on a common domain A. Which of the following combinations are necessarily uniformly continuous on A:

$$f(x) + g(x), \quad f(x)g(x), \quad \frac{f(x)}{g(x)}, \quad f(g(x))$$
?

(Assume that the quotient and the composition are properly defined and thus at least continuous.)

Solution. We claim that f+g is uniformly continuous on A. To see this, let $\epsilon > 0$ be given. There exist $\delta_1, \delta_2 > 0$ such that

$$x, y \in A \text{ and } |x - y| < \delta_1 \implies |f(x) - f(y)| < \frac{\epsilon}{2},$$

$$x, y \in A \text{ and } |x - y| < \delta_2 \implies |g(x) - g(y)| < \frac{\epsilon}{2}.$$

Let $\delta = \min\{\delta_1, \delta_2\}$ and observe that for any $x, y \in A$ satisfying $|x - y| < \delta$, we then have

$$|f(x) + g(x) - f(y) - g(y)| \le |f(x) - f(y)| + |g(x) - g(y)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus f + g is uniformly continuous on A.

The product fg need not be uniformly continuous. For a counterexample, consider $f, g : \mathbf{R} \to \mathbf{R}$ given by f(x) = g(x) = x. This function is clearly Lipschitz and hence uniformly continuous on all of \mathbf{R} (Exercise 4.4.9). However, the product $f(x)g(x) = x^2$ is not uniformly continuous on \mathbf{R} ; this can be seen using the same sequences as in Exercise 4.4.1 (b) and appealing to Theorem 4.4.5.

The quotient $\frac{f}{g}$ need not be uniformly continuous. For a counterexample, consider f, g: $(0,1] \to \mathbf{R}$ given by f(x) = 1 and g(x) = x. Both are uniformly continuous, but the quotient $\frac{f(x)}{g(x)} = \frac{1}{x}$ is not (Exercise 4.4.2 (a)).

Suppose that $g(A) \subseteq A$, so that the composition $f \circ g : A \to \mathbf{R}$ is well-defined. We claim that this composition is also uniformly continuous. To see this, let $\epsilon > 0$ be given. There exists a $\delta_2 > 0$ such that

$$s, t \in A \text{ and } |s - t| < \delta_2 \implies |f(s) - f(t)| < \epsilon.$$

There then exists a $\delta_1 > 0$ such that

$$x, y \in A \text{ and } |x - y| < \delta_1 \implies |g(x) - g(y)| < \delta_2.$$

By assumption, if $x, y \in A$ then $g(x), g(y) \in A$. Thus

$$x, y \in A \text{ and } |x - y| < \delta_1 \implies g(x), g(y) \in A \text{ and } |g(x) - g(y)| < \delta_2$$

$$\implies |f(g(x)) - f(g(y))| < \epsilon.$$

Thus $f \circ g$ is uniformly continuous on A.

Exercise 4.4.11 (Topological Characterization of Continuity). Let g be defined on all of \mathbf{R} . If B is a subset of \mathbf{R} , define the set $g^{-1}(B)$ by

$$g^{-1}(B) = \{x \in \mathbf{R} : g(x) \in B\}.$$

Show that g is continuous if and only if $g^{-1}(O)$ is open whenever $O \subseteq \mathbf{R}$ is an open set.

Solution. Suppose g is continuous and $O \subseteq \mathbf{R}$ is an open set. Fix $c \in g^{-1}(O)$, so that $g(c) \in O$. Since O is open, there exists an $\epsilon > 0$ such that $V_{\epsilon}(g(c)) \subseteq O$, and since g is continuous at c, there is a $\delta > 0$ such that $x \in V_{\delta}(c)$ implies that $g(x) \in V_{\epsilon}(g(c)) \subseteq O$ (Theorem 4.3.2 (ii)). In other words, any $x \in V_{\delta}(c)$ also belongs to $g^{-1}(O)$, so that $V_{\delta}(c) \subseteq g^{-1}(O)$. It follows that $g^{-1}(O)$ is an open set.

Now suppose that $g^{-1}(O)$ is open whenever $O \subseteq \mathbf{R}$ is an open set. Fix $c \in \mathbf{R}$ and let $\epsilon > 0$ be given. The set $V_{\epsilon}(g(c))$ is open, so by assumption the set $g^{-1}[V_{\epsilon}(g(c))]$ is also open. Certainly we have $c \in g^{-1}[V_{\epsilon}(g(c))]$, so there exists a $\delta > 0$ such that $V_{\delta}(c) \subseteq g^{-1}[V_{\epsilon}(g(c))]$. It follows that if $x \in V_{\delta}(c)$, then $g(x) \in V_{\epsilon}(g(c))$ and so Theorem 4.3.2 (ii) allows us to conclude that g is continuous at each $c \in \mathbf{R}$.

Exercise 4.4.12. Review Exercise 4.4.11, and then determine which of the following statements is true about a continuous function defined on **R**:

- (a) $f^{-1}(B)$ is finite whenever B is finite.
- (b) $f^{-1}(K)$ is compact whenever K is compact.
- (c) $f^{-1}(A)$ is bounded whenever A is bounded.

- (d) $f^{-1}(F)$ is closed whenever F is closed.
- Solution. (a) This is false. Consider the function $f: \mathbf{R} \to \mathbf{R}$ given by f(x) = 0. Then $f^{-1}(\{0\}) = \mathbf{R}$.
 - (b) This is false; see part (a) for a counterexample.
 - (c) This is false; see part (a) for a counterexample.
 - (d) This is true. If F is closed, then F^{c} is open. Since f is continuous, we have that $f^{-1}(F^{c})$ is also open (Exercise 4.4.11). It follows that $(f^{-1}(F^{c}))^{c}$ is closed. This set is nothing but $f^{-1}(F)$:

$$x \in (f^{-1}(F^{\mathsf{c}}))^{\mathsf{c}} \iff x \notin f^{-1}(F^{\mathsf{c}}) \iff f(x) \notin F^{\mathsf{c}} \iff f(x) \in F \iff x \in f^{-1}(F).$$

- **Exercise 4.4.13 (Continuous Extension Theorem).** (a) Show that a uniformly continuous function preserves Cauchy sequences; that is, if $f: A \to \mathbf{R}$ is uniformly continuous and $(x_n) \subseteq A$ is a Cauchy sequence, then show $f(x_n)$ is a Cauchy sequence.
- (b) Let g be a continuous function on the open interval (a, b). Prove that g is uniformly continuous on (a, b) if and only if it is possible to define values g(a) and g(b) at the endpoints so that the extended function g is continuous on [a, b]. (In the forward direction, first produce candidates for g(a) and g(b), and then show the extended g is continuous.)
- Solution. (a) Let $\epsilon > 0$ be given. Since f is uniformly continuous, there is a $\delta > 0$ such that for any $x, y \in A$ satisfying $|x y| < \delta$, we have $|f(x) f(y)| < \epsilon$. Since $(x_n) \subseteq A$ is a Cauchy sequence, there is an $N \in \mathbb{N}$ such that for all $n > m \ge N$, we have $|x_n x_m| < \delta$, which implies that $|f(x_n) f(x_m)| < \epsilon$. Thus $(f(x_n))$ is also a Cauchy sequence.
- (b) Suppose that g is uniformly continuous on (a, b). Define a sequence $a_n = a + \frac{b-a}{2n}$, so that $(a_n) \subseteq (a, b)$ and $\lim a_n = a$. Then since (a_n) is Cauchy, part (a) implies that the sequence $(g(a_n))$ is also Cauchy and hence convergent, say $\lim g(a_n) = y \in \mathbf{R}$. Define g(a) := y.

We claim that this extended g is continuous at a. Let $(x_n) \subseteq (a,b)$ be a sequence such that $\lim x_n = a$ and let $\epsilon > 0$ be given. Since g is uniformly continuous on (a,b), there is a $\delta > 0$ such that for any $x, y \in (a,b)$ satisfying $|x-y| < \delta$, we have $|g(x)-g(y)| < \epsilon$. Note that $\lim |x_n - a_n| = 0$ since $\lim x_n = \lim a_n = a$, so there is an $N \in \mathbb{N}$ such that $n \geq N$ implies that $|x_n - a_n| < \delta$, which gives us $|g(x_n) - g(a_n)| < \epsilon$. Thus $\lim |g(x_n) - g(a_n)| = 0$. Combining this with $\lim g(a_n) = g(a)$, we see that $\lim g(x_n) = g(a)$ also and hence g is continuous at a.

An analogous argument shows that we can also continuously extend g to be defined at b by considering the sequence $b_n = b - \frac{b-a}{2n}$.

For the converse implication, we apply Theorem 4.4.7 to see that g is uniformly continuous on the compact set [a, b] and hence uniformly continuous on the subset (a, b).

Exercise 4.4.14. Construct an alternate proof of Theorem 4.4.7 using the open cover characterization of compactness from the Heine-Borel Theorem (Theorem 3.3.8 (iii)).

Solution. Suppose $f: K \to \mathbf{R}$ is continuous, where K is compact. Let $\epsilon > 0$ be given. Since f is continuous on K, for each $t \in K$ there exists a $\delta_t > 0$ such that

$$x \in K$$
 and $|x - t| < \delta_t \implies |f(x) - f(t)| < \frac{\epsilon}{2}$.

Observe that the collection $\{V_{\delta_t/2}(t): t \in K\}$ forms an open cover of K. Since K is compact, there exists a finite subcover $\{V_{\delta_{t_1}/2}(t_1), \ldots, V_{\delta_{t_n}/2}(t_n)\}$. Let $\delta = \min\{\delta_{t_1}/2, \ldots, \delta_{t_n}/2\}$ and suppose that $x, y \in K$ are such that $|x - y| < \delta$. There is a $j \in \{1, \ldots, n\}$ such that $x \in V_{\delta_{t_j}/2}(t_j)$, so that $|x - t_j| < \delta_{t_j}/2 < \delta_{t_j}$ and thus $|f(x) - f(t_j)| < \frac{\epsilon}{2}$. Note that

$$|y - t_j| \le |x - y| + |x - t_j| < \delta + \delta_{t_j}/2 \le \delta_{t_j}/2 + \delta_{t_j}/2 = \delta_{t_j}$$

It follows that $|f(y) - f(t_j)| < \frac{\epsilon}{2}$ and hence that

$$|f(x) - f(y)| \le |f(x) - f(t_j)| + |f(y) - f(t_j)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus f is uniformly continuous on K.

[UA] Abbott, S. (2015) Understanding Analysis. 2nd edition.