

ABS

Devuelve el valor absoluto de un número. El valor absoluto de un número es el número sin su signo.

Sintaxis

ABS(número)

Número es el número real cuyo valor absoluto desea obtener.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

ACOS

Devuelve el arco coseno, o coseno inverso, de un número. El arco coseno es el ángulo cuyo coseno es *número*. El valor del ángulo devuelto se expresa en radianes en el intervalo de 0 (cero) a pi.

Sintaxis

ACOS(número)

Número es el coseno del ángulo deseado y debe estar entre -1 y 1.

Observación

Para convertir el resultado de radianes a grados, multiplíquelo por 180/PI() o utilice la función GRADOS.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

	A	В	
1	Fórmula	Descripción (Resultado)	
2	=ACOS(-0,5)	Arco coseno de -0,5 en radianes, 2*pi/3 (2,094395)	
3	=ACOS(-0,5)*180/PI()	Arco coseno de -0,5 en grados (120)	
4	=GRADOS(ACOS(-0,5))	Arco coseno de -0,5 en grados (120)	

ACOSH

Devuelve el coseno hiperbólico inverso de un número. El número debe ser mayor o igual que 1. El coseno hiperbólico inverso es el valor cuyo coseno hiperbólico sea *número*, de modo que ACOSH(COSH(número)) es igual a *número*.

Sintaxis

ACOSH(número)

Número es cualquier número real igual o mayor que 1.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=ACOSH(1)	Coseno hiperbólico inverso de 1 (0)
3	=ACOSH(10)	Coseno hiperbólico inverso de 10 (2,993223)

AHORA

Devuelve el número de serie de la fecha y hora actuales. Si el formato de celda era **General** antes de escribir la función, el resultado tendrá formato de fecha.

Sintaxis

AHORA()

Observaciones

 Microsoft Excel almacena las fechas como números de serie secuénciales para que se puedan utilizar en cálculos. De manera predeterminada, la fecha 1 de enero de 1900 es el número de serie 1 y la fecha 1 de enero de 2008 es el número de serie 39448, porque es 39.448 días posterior al 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.

Fechas y sistemas de fechas

Microsoft Excel almacena los datos como números secuenciales denominados valores de serie. De manera predeterminada, la fecha 1 de enero de 1900 es el número de serie 1 y la fecha 1 de enero de 2008 es el número de serie 39448, porque es 39.448 posterior al 1 de enero de 1900. Excel almacena las horas como fracciones decimales, ya que la hora se considera como una porción del día.

Las fechas y las horas son valores y, por lo tanto, pueden sumarse, restarse e incluirse en otros cálculos. Puede ver una fecha como un valor de serie y una hora como una fracción decimal, cambiando el formato de la celda que contenga la fecha o la hora a formato General.

Dada la complejidad de las reglas que gobiernan la manera en que el programa de cálculo interpreta las fechas, éstas deben escribirse de la manera más específica posible. Así obtendrá el nivel de precisión más elevado en los cálculos de fechas.

Los sistemas de fechas 1900 y 1904

Excel admite dos sistemas de fecha: los sistemas de fecha 1900 y 1904. El sistema de fechas predeterminado para Microsoft Excel para Windows es el 1900 y en el caso de Microsoft Excel para Macintosh es el 1904. Se puede cambiar el sistema de fechas. En el menú **Herramientas**, haga clic en **Opciones**, a continuación haga clic en la ficha **Calcular** y, finalmente, desactive la casilla de verificación **Sistema de fechas 1904**.

El sistema de fechas cambia automáticamente cuando se abre un documento creado en otra plataforma. Por ejemplo, si está trabajando en Excel para Windows y abre un documento creado en Excel para Macintosh, la casilla de verificación "Sistema de fechas 1904" se activará automáticamente.

En la siguiente tabla se muestran la fecha inicia y la fecha final de cada sistema de fechas y el valor de serie asociado a cada una de ellas.

Base para contar días	Fecha inicial	Fecha final
1900	1 de enero, 1900	31 de diciembre, 9999
	(valor de serie 1)	(valor de serie 2958465)
1904	2 de enero, 1904	31 de diciembre, 9999
1501	(valor de serie 1)	(valor de serie 2957003)

¿Cómo interpreta Excel los años expresados con dos dígitos?

Para asegurarse de que los valores de los años se interpreten de la manera que desee, escríbalos como cuatro dígitos (2001 en vez de 01). Al escribir cuatro dígitos para los años, Excel no interpretará el siglo.

Para Microsoft Windows 98 o Microsoft Windows 2000

Si utiliza Microsoft Windows 98 o Microsoft Windows 2000, las **Opciones regionales** del **Panel de control** de Windows controlan cómo interpretará Excel los años expresados con dos dígitos.

Para Windows NT Workstation 4.0 o para fechas introducidas como valores de texto

Cuando se introduce el valor de un año de dos dígitos en Windows NT Workstation 4.0 o una fecha como un valor de texto, Excel interpreta el año como se indica a continuación:

- **Del 00 al 29** Excel interpreta los valores de año de dos dígitos comprendidos entre 00 y 29 como los años 2000 a 2029. Por ejemplo, si escribe la fecha **28-05-19**, Excel supone que se trata del 28 de mayo del año 2019.
- Del 30 al 99 Excel interpreta los valores de año de dos dígitos comprendidos entre 30 y 99 como los años 1930 a 1999. Por ejemplo, si escribe la fecha 28-05-98, Excel supone que se trata del 28 de mayo de 1998.
- En los números de serie, los dígitos a la derecha del separador decimal representan la hora; los números a la izquierda representan la fecha. Por ejemplo, el número de serie 0,5 representa la hora 12:00 del mediodía.
- La función AHORA sólo cambia cuando se realiza un cálculo en la hoja de cálculo o cuando se ejecuta una macro que contiene la función. No se actualiza constantemente.

ALEATORIO

Devuelve un número aleatorio mayor o igual que 0 y menor que 1, distribuido uniformemente. Cada vez que se calcula la hoja de cálculo, se devuelve un número aleatorio nuevo.

Sintaxis

ALEATORIO()

Observaciones

Para generar un número real aleatorio entre a y b, use:

 Si desea usar ALEATORIO para generar un número aleatorio pero no desea que los números cambien cada vez que se calcule la celda, puede escribir =ALEATORIO() en la barra de fórmulas y después presionar la tecla F9 para cambiar la fórmula a un número aleatorio.

Ejemplo

	A	В	
1	Fórmula	Descripción (Resultado)	
2	=ALEATORIO()	Un número aleatorio entre 0 y 1 (varía)	
3	=ALEATORIO()*100	Un número aleatorio igual a 0 pero menor que 100 (varía)	

Profesor: WILSON A. PRIETO H.

AÑO

Devuelve el año correspondiente a una fecha. El año se devuelve como número entero comprendido entre 1900 y 9999.

Sintaxis

AÑO(núm de serie)

Núm_de_serie es la fecha del año que desee buscar. Las fechas deben introducirse mediante la función FECHA o como resultados de otras fórmulas o funciones. Por ejemplo, utilice FECHA(2008;5;23) para el día 23 de mayo de 2008. Pueden producirse problemas si las fechas se introducen como texto.

Observaciones

Microsoft Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.

Los valores que devuelven las funciones AÑO, MES Y DIA serán valores gregorianos independientemente del formato de visualización del valor de fecha suministrado. Por ejemplo, si el formato de visualización de la fecha suministrada es **Hijri**, los valores devueltos para las funciones AÑO, MES Y DIA serán valores asociados con la fecha gregoriana equivalente.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

AREAS

Devuelve el número de áreas de una referencia. Un área es un rango de celdas adyacentes o una sola celda.

Sintaxis

AREAS(ref)

Ref es una referencia a una celda o un rango de celdas y puede referirse a varias áreas. Si desea especificar varias referencias como un argumento único, deberá incluir otro par de paréntesis para que Microsoft Excel no interprete el punto y coma como separador de campo. Vea el siguiente ejemplo.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В	
1	Fórmula	Descripción (Resultado)	
2	=AREAS(B2:D4)	Número de áreas en el rango (1)	
3	=AREAS((B2:D4;E5;F6:I9))	Número de áreas en el rango (3)	
4	=AREAS(B2:D4 B2)	Número de áreas en el rango (1)	

ASENO

Devuelve el arco seno, o seno inverso, de un número. El arco seno es el ángulo cuyo seno es número. El valor del ángulo devuelto se expresa en radianes en el intervalo -pi/2 a pi/2.

Sintaxis

ASENO(número)

Número es el seno del ángulo deseado y debe estar entre -1 y 1.

Observación

Para expresar el arco seno en grados, multiplique el resultado por 180/PI() o utilice la función GRADOS.

Ejemplo

	A	В
1	Fórmula	Descripción (Resultado)
2	=ASENO(-0,5)	Arco seno de -0,5 en radianes, -pi/6 (-0,5236)
3	=ASENO(-0,5)*180/PI()	Arco seno de -0,5 en grados (-30)
4	=GRADOS(ASENO(-0,5))	Arco seno de -0,5 en grados (-30)

ASENOH

Devuelve el seno hiperbólico inverso de un número. El seno hiperbólico inverso es el valor cuyo seno hiperbólico es *número*, de modo que ASENOH(SENOH(número)) es igual a *número*.

Sintaxis

ASENOH(número)

Número es cualquier número real.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=ASENOH(-2,5)	Seno hiperbólico inverso de -2,5 (-1,64723)
3	=ASENOH(10)	Seno hiperbólico inverso de 10 (2,998223)

ATAN

Devuelve el arco tangente, o tangente inversa, de un número. El arco tangente es el ángulo cuya tangente es n'umero. El valor del ángulo devuelto se expresa en radianes en el intervalo -pi/2 a pi/2.

Sintaxis

ATAN (número)

Número es la tangente del ángulo deseado.

Observación

Para expresar el arco tangente en grados, multiplique el resultado por 180/PI() o utilice la función GRADOS.

Ejemplo

A	В	
Fórmula	Descripción (Resultado)	
=ATAN(1)	Arco tangente de 1 en radianes, pi/4 (0,785398)	
=ATAN(1)*180/PI()	Arco tangente de 1 en grados (45)	
=GRADOS(ATAN(1))	Arco tangente de 1 en grados (45)	
	=ATAN(1) =ATAN(1)*180/PI()	

ATAN2

Devuelve el arco tangente, o tangente inversa, de las coordenadas X e Y especificadas. El arco tangente es el ángulo medido desde el eje X hasta la línea que contiene el origen (0; 0) y el punto con las coordenadas (coord_x; coord_y). El valor del ángulo se expresa en radianes entre -pi y pi, excluyendo -pi.

Sintaxis

ATAN2(coord_x;coord_y)

Coord_x es la coordenada X del punto.

Coord_y es la coordenada Y del punto.

Observaciones

- Un resultado positivo representa un ángulo formado en sentido opuesto a las agujas del reloj a partir del eje X; un resultado negativo representa un ángulo formado en el sentido de las agujas del reloj.
- ATAN2(a;b) es igual a ATAN(b/a), con la excepción de que "a" puede ser igual a 0 en ATAN2.
- Si coord_x y coord_y son 0, ATAN2 devuelve el valor de error #iDIV/0!
- Para expresar el arco tangente en grados, multiplique el resultado por 180/PI() o utilice la función GRADOS.

Ejemplo

	A	В	
1	Fórmula	Descripción (Resultado)	
2	=ATAN2(1;1)	Arco tangente del punto 1;1 en radianes, pi/4 (0,785398)	
3	=ATAN2(-1)-1)	Arco tangente del punto -1;-1 en radianes, -3*pi/4 (-2,35619)	
4	=ATAN2(-1;-1)*180/PI()	Arco tangente del punto 1;1 en grados (-135)	
5	=GRADOS(ATAN2(-1;-1))	Arco tangente del punto 1;1 en grados (-135)	

ATANH

Devuelve la tangente hiperbólica inversa de un número. El número debe estar entre -1 y 1 (excluyendo -1 y 1). La tangente hiperbólica inversa es el valor cuya tangente hiperbólica es *número*, de modo que ATANH(TANH(número)) es igual a *número*.

Sintaxis

ATANH(número)

Número es cualquier número real entre 1 y -1.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В	
1	Fórmula	Descripción (Resultado)	
2	=ATANH(0,76159416)	Tangente hiperbólica inversa de 0,76159416 (1, aproximadamente)	
3	=ATANH(-0,1)	Tangente hiperbólica inversa de -0,1 (-0,10034)	

BDCONTAR

Cuenta las celdas que contienen números en una columna de una lista o base de datos y que concuerdan con las condiciones especificadas.

El argumento nombre_de_campo es opcional. Si se pasa por alto, BDCONTAR cuenta todos los registros de la base de datos que coinciden con los criterios.

Sintaxis

BDCONTAR(base_de_datos;nombre_de_campo;criterios)

Base_de_datos es el rango de celdas que compone la lista o base de datos. Una base de datos es una lista de datos relacionados en la que las filas de información son registros y las columnas de datos, campos. La primera fila de la lista contiene los rótulos de cada columna.

Nombre_de_campo indica el campo que se utiliza en la función. Nombre_de_campo puede ser texto con el rótulo encerrado entre dobles comillas, como por ejemplo "Edad" o "Campo", o como un número que represente la posición de la columna en la lista: 1 para la primera columna, 2 para la segunda y así sucesivamente.

Criterios es el rango de celdas que contiene las condiciones especificadas. Puede utilizar cualquier rango en el argumento Criterios mientras éste incluya por lo menos un rótulo de columna y por lo menos una celda debajo del rótulo de columna que especifique una condición de columna.

	A	В	C	D	E	F
1	Árbol	Alto	Edad	Rendimiento	Beneficio	Alto
2	Manzano	>10				<16
3	Peral					
4	Árbol	Alto	Edad	Rendimiento	Beneficio	
5	Manzano	18	20	14	105,00	
6	Peral	12	12	10	96,00	
7	Cerezo	13	14	9	105,00	
8	Manzano	14	15	10	75,00	
9	Peral	9	8	8	76,80	
10	Manzano	8	9	6	45,00	

### ESDCONTAR(A4:E10;"Edad";A1:F2) ### ESDCONTARA(A4:E10;"Beneficio";A1:F2) ### ESDCONTARA(A4:E10;"Beneficio";A1:F2) ### ESDCONTARA(A4:E10;"Beneficio";A1:F2) ### ESDCONTARA(A4:E10;"Beneficio";A1:F2) ### ESDCONTARA(A4:E10;"Beneficio";A1:F2) ### ESDCONTARA(A4:E10;"Beneficio";A1:A3) ### ESDCONTARA(A4:E10;"Beneficio";A1:A3) ### ESDCONTARA(A4:E10;"Beneficio";A1:A3) ### BEDMAX(A4:E10;"Beneficio";A1:B2) ### BEDMIN(A4:E10;"Beneficio";A1:B2) ### BEDSUMA(A4:E10;"Beneficio";A1:B2) ### BEDSUMA(A4:E10;"Beneficio";A1:A2) ### BEDSUMA(A4:E10;"Beneficio";A1:F2) ### BEDSUMA(A4:E10;"Beneficio";A1:F2) ### BEDPRODUCTO(A4:E10;"Rendimiento";A1:B2) ### BEDPRODUCTO(A4:E10;"Rendimiento";A1:B2) ### BEDPROMEDIO(A4:E10;"Rendimiento";A1:B2) ### BEDPROMEDIO(A4:E10;"Rendimiento";A1:B2) ### BEDPROMEDIO(A4:E10;"Rendimiento";A1:B2) ### BEDPROMEDIO(A4:E10;"Rendimiento";A1:A3) ##	Fórmula	Descripción (Resultado)
metros y determina cuántos campos Edad de esos registros contienen números. (1) =BDCONTARA(A4:E10;"Beneficio";A1:F2) Esta función examina los registros de manzanos cuyo alto varía entre 10 y 16 metros, y determina el número de campos Ganancia de esos registros que no están en blanco. (1) =BDMAX(A4:E10;"Beneficio";A1:A3) =BDMIN(A4:E10;"Beneficio";A1:B2) =BDSUMA(A4:E10;"Beneficio";A1:B2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:F2) =BDSUMA(A4:E10;"Beneficio";A1:F2) =BDPRODUCTO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;*Rendimiento";A1:A3) =BDPROMEDIO(A4:E10;*Rendimiento";A1:A3) =BDDESVEST(A4:E10;*Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) =BDDESVESTP(A4:E10;*Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,*Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65)	=BDCONTAR(A4:E10;"Edad";A1:F2)	
de esos registros contienen números. (1) =BDCONTARA(A4:E10;"Beneficio";A1:F2) =BDCONTARA(A4:E10;"Beneficio";A1:F2) =BDMAX(A4:E10;"Beneficio";A1:A3) =BDMAX(A4:E10;"Beneficio";A1:A3) =BDMIN(A4:E10;"Beneficio";A1:B2) =BDMIN(A4:E10;"Beneficio";A1:B2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:F2) =BDSUMA(A4:E10;"Beneficio";A1:F2) =BDPRODUCTO(A4:E10;"Rendimiento";A1:B2) =BDPRODUCTO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la		
### Esta función examina los registros de manzanos cuyo alto varía entre 10 y 16 metros, y determina el número de campos Ganancia de esos registros que no están en blanco. (1) #### BDMAX(A4:E10;"Beneficio";A1:A3) #### BDMIN(A4:E10;"Beneficio";A1:B2) ###################################		•
manzanos cuyo alto varía entre 10 y 16 metros, y determina el número de campos Ganancia de esos registros que no están en blanco. (1) =BDMAX(A4:E10;"Beneficio";A1:A3) =BDMIN(A4:E10;"Beneficio";A1:B2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:F2) =BDSUMA(A4:E10;"Beneficio";A1:F2) =BDPRODUCTO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:A3) =BDPROMEDIO(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) La varianza estimada en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65)		
metros, y determina el número de campos Ganancia de esos registros que no están en blanco. (1) =BDMAX(A4:E10;"Beneficio";A1:A3) =BDMIN(A4:E10;"Beneficio";A1:B2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:F2) =BDSUMA(A4:E10;"Beneficio";A1:F2) =BDPRODUCTO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:A3) =BDPROMEDIO(A4:E10;"Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una questra de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una questra de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una questra de la población (2,65)	=BDCONTARA(A4:E10;"Beneficio";A1:F2)	
Ganancia de esos registros que no están en blanco. (1) =BDMAX(A4:E10;"Beneficio";A1:A3) =BDMIN(A4:E10;"Beneficio";A1:B2) =BDSUMA(A4:E10;"Beneficio";A1:B2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:F2) =BDPRODUCTO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la base de atos sen con con con con con con con con con co		
en blanco. (1) =BDMAX(A4:E10;"Beneficio";A1:A3) =BDMIN(A4:E10;"Beneficio";A1:B2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:F2) =BDPRODUCTO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la		
### BDMAX(A4:E10;"Beneficio";A1:A3) ### Beneficio máximo de los manzanos y perales (105) #### BDSUMA(A4:E10;"Beneficio";A1:B2) ###################################		
perales (105) =BDMIN(A4:E10;"Beneficio";A1:B2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:F2) =BDPRODUCTO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;3;A4:E10) =BDPROMEDIO(A4:E10;3;A4:E10) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la		\ /
### BDMIN(A4:E10; "Beneficio"; A1:B2) ### BENSUMA(A4:E10; "Beneficio"; A1:B2) ### BENSUMA(A4:E10; "Beneficio"; A1:A2) ### Beneficio total de los manzanos (225) ### BENSUMA(A4:E10; "Beneficio"; A1:F2) ### BENPRODUCTO(A4:E10; "Rendimiento"; A1:B2) ### BDPROMEDIO(A4:E10; "Rendimiento"; A1:B2) ### BDDESVEST(A4:E10; "Rendimiento"; A1:A3) ### BDDESVEST(A4:E10; "Rendimiento"; A1:A3) ### BDDESVEST(A4:E10; "Rendimiento"; A1:A3) ### BDDESVESTP(A4:E10; "Rendimiento"; A1:A3) ### BENDESVESTP(A4:E10; "Rendimiento"; A	=BDMAX(A4:E10;"Beneficio";A1:A3)	
alto superior a 10 (75) =BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:F2) Beneficio total de los manzanos con un alto entre 10 y 16 (75) =BDPRODUCTO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;3;A4:E10) =BDPROMEDIO(A4:E10;3;A4:E10) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la		
=BDSUMA(A4:E10;"Beneficio";A1:A2) =BDSUMA(A4:E10;"Beneficio";A1:F2) =BDPRODUCTO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;3;A4:E10) =BDPROMEDIO(A4:E10;3;A4:E10) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la	=BDMIN(A4:E10;"Beneficio";A1:B2)	
BDSUMA(A4:E10;"Beneficio";A1:F2) Beneficio total de los manzanos con un alto entre 10 y 16 (75) Beneficio total de los manzanos con un alto entre 10 y 16 (75) Producto de los rendimientos de los manzanos con un alto superior a 10 (140) BEDPROMEDIO(A4:E10;"Rendimiento";A1:B2) Beneficio total de los manzanos con un alto superior a 10 (140) Rendimiento medio de los manzanos con un alto superior a 3 metros (12) Edad media de todos los árboles de la base de datos (13) BEDDESVEST(A4:E10;"Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) BEDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) BEDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la		
alto entre 10 y 16 (75) =BDPRODUCTO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;3;A4:E10) =BDPROMEDIO(A4:E10;3;A4:E10) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de frutales (2,97) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la		` /
=BDPRODUCTO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;3;A4:E10) =BDPROMEDIO(A4:E10;3;A4:E10) =BDPROMEDIO(A4:E10;3;A4:E10) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDVAR(A4:E10,"Rendimiento",A1:A3)	=BDSUMA(A4:E10;"Beneficio";A1:F2)	
manzanos con un alto superior a 10 (140) =BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;3;A4:E10) =BDPROMEDIO(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la		, , ,
=BDPROMEDIO(A4:E10;"Rendimiento";A1:B2) =BDPROMEDIO(A4:E10;3;A4:E10) =BDPROMEDIO(A4:E10;3;A4:E10) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) =BDVAR(A4:E10,"Rendimiento",A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la	=BDPRODUCTO(A4:E10;"Rendimiento";A1:B2)	
un alto superior a 3 metros (12) =BDPROMEDIO(A4:E10;3;A4:E10) Edad media de todos los árboles de la base de datos (13) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la	DDDDOMEDIO(AA.E10.IID diit-II.A1.D3)	
=BDPROMEDIO(A4:E10;3;A4:E10) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la	=BDPROMEDIO(A4:E10;"Rendimiento";A1:B2)	
base de datos (13) =BDDESVEST(A4:E10;"Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la	DDDDOMEDIO(AA:E10:2:AA:E10)	
=BDDESVEST(A4:E10;"Rendimiento";A1:A3) La desviación estándar estimada en el rendimiento de manzanos y perales si los datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la	=BDPROMEDIO(A4:E10;3;A4:E10)	
rendimiento de manzanos y perales si los datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la	DDDEC/ECT(A4.E10."Dandimiente", A1.A2)	
datos de la base de datos son únicamente una muestra de la población total de la superficie de frutales (2,97) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la	=BDDESVEST(A4:E10; Rendimiento ;A1:A3)	
una muestra de la población total de la superficie de frutales (2,97) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la		
superficie de frutales (2,97) =BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la		
=BDDESVESTP(A4:E10;"Rendimiento";A1:A3) La desviación estándar verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la		·
rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la	-RDDESVESTD(A4·E10·"Pendimiento"·A1·A3\	
datos de la base de datos representan el conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la	-DDDL3VL3TF(AT.LIU, KEHUHHEHU ,AI.A3)	
conjunto de la población (2,65) =BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la		
=BDVAR(A4:E10,"Rendimiento",A1:A3) La varianza estimada en el rendimiento de manzanos y perales si los datos de la		·
manzanos y perales si los datos de la	=BDVAR(A4·F10 "Rendimiento" A1·A3)	
	25 The Marian Marian (Marian)	
		base de datos son únicamente una

	muestra de la población total de la superficie de frutales (8,8)
=BDVARP(A4:E10;"Rendimiento";A1:A3)	La varianza verdadera en el rendimiento de manzanos y perales si los datos de la base de datos representan el conjunto de la población (7,04)
=BDEXTRAER(A4:E10;"Rendimiento";A1:A3)	Devuelve el valor de error #iNUM! porque más de un registro cumple con los criterios

Sugerencias

 Cualquier rango se puede usar como argumento criterios, siempre que incluya por lo menos un nombre de campo y por lo menos una celda debajo del nombre de campo para especificar un valor de comparación de criterios.

Por ejemplo, si el rango G1:G2 contiene el encabezado de campo Ingresos en la celda G1 y la cantidad 10.000 en la celda G2, el rango podría definirse como CoincidirIngresos y ese nombre podría usarse como argumento criterios en las funciones para bases de datos.

- Aunque el rango de criterios puede ubicarse en cualquier parte de la hoja de cálculo, no
 coloque el rango de criterios debajo de la lista. Si agrega más información a la lista
 utilizando el comando **Formulario** en el menú **Datos**, la nueva información se agrega a la
 primera fila debajo de la lista. Si la fila de debajo no está vacía, Microsoft Excel no podrá
 agregar la nueva información.
- Asegúrese de que el rango de criterios no se superpone sobre la lista.
- Para realizar una operación en toda una columna de la base de datos, introduzca una línea en blanco debajo de los nombres de campo en el rango de criterios

Ejemplos de criterios

Varias condiciones en una sola columna

Si incluye dos o más condiciones en una sola columna, escriba los criterios en filas independientes, una directamente bajo otra. Por ejemplo, el siguiente rango de criterios presenta las filas que contienen "Davolio," "Buchanan" o "Suyama" en la columna Vendedor.

Vendedor	
Davolio	
Buchanan	
Suyama	

Una condición en dos o más columnas

Para buscar datos que cumplan una condición en dos o más columnas, introduzca todos los criterios en la misma fila del rango de criterios. Por ejemplo, el siguiente rango de criterios muestra todas las filas que contienen "Producto" en la columna Tipo, "Davolio" en la columna Vendedor y valores de ventas superiores a 1.000 \$.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

Escriba	Vendedor	Ventas
Generar	Davolio	>1000

Una condición en una columna u otra

Para buscar datos que cumplan una condición de una columna o una condición de otra, introduzca los criterios en filas diferentes del rango. Por ejemplo, el siguiente rango de criterios muestra todas las filas que contienen "Producto" en la columna Tipo, "Davolio" en la columna Vendedor o valores de ventas superiores a 1.000 \$.

Escriba	Vendedor	Ventas
Generar		
	Davolio	
		>1000

Uno de dos conjuntos de condiciones para dos columnas

Para buscar filas que cumplan uno de dos conjuntos de condiciones, donde cada conjunto incluye condiciones para más de una columna, introduzca los criterios en filas independientes. Por ejemplo, el siguiente rango de criterios muestra las filas que contienen "Davolio" en la columna Vendedor y valores de ventas superiores a 3.000 \$ y también muestra las filas del vendedor Buchanan con valores de ventas superiores a 1.500 \$.

Vendedor	Ventas
Davolio	>3000
Buchanan	>1500

Más de dos conjuntos de condiciones para una columna

Para buscar filas que cumplan más de dos conjuntos de condiciones, incluya columnas múltiples con el mismo título. Por ejemplo, el siguiente rango de criterios muestra las ventas comprendidas entre 5.000 y 8.000 \$ junto con aquellas inferiores a 500 \$.

Ventas	Ventas
>5000	<8000
<500	

Condiciones creadas como resultado de una fórmula

Puede utilizar como criterio un valor calculado que sea el resultado de una fórmula (fórmula: secuencia de valores, referencias de celda, nombres, funciones u operadores de una celda que producen juntos un valor nuevo. Una formula comienza siempre con el signo igual (=).). Si emplea una fórmula para crear un criterio, no utilice un rótulo de columna como rótulo de criterios;

conserve este rótulo vacío o utilice uno distinto a un rótulo de columna de la lista. Por ejemplo, el siguiente rango de criterios muestra filas que tienen un valor en la columna C mayor que promedio de las celdas C7:C10.

=C7>PROMEDIO(\$C\$7:\$C\$10)

Notas

- La fórmula que utilice con el fin de generar una condición debe utilizar una referencia relativa (referencia relativa: en una fórmula, dirección de una celda basada en la posición relativa de la celda que contiene la fórmula y la celda a la que se hace referencia. Si se copia la fórmula, la referencia se ajusta automáticamente. Una referencia relativa toma la forma A1.) para hacer referencia al rótulo de columna (por ejemplo, Ventas) o al campo correspondiente del primer registro. Todas las demás referencias de la fórmula deben ser referencias absolutas (referencia de celda absoluta: en una fórmula, dirección exacta de una celda, independientemente de la posición de la celda que contiene la fórmula. Una referencia de celda absoluta tiene la forma \$A\$1.) y la fórmula debe evaluarse contra VERDADERO o FALSO. En el ejemplo, "C7" hace referencia al campo (columna C) del primer registro (fila 7) de la lista.
- En la fórmula puede utilizar un rótulo de columna en lugar de una referencia relativa a celda o un nombre de rango. Si Microsoft Excel presenta el error #¿NOMBRE? en la celda que contiene el criterio, puede no tenerlo en cuenta, ya que no afecta a la forma en que se filtra la lista.
- Cuando evalúa datos, Microsoft Excel no distingue entre caracteres en mayúscula y minúscula.

BINOM.CRIT

Devuelve el menor valor cuya distribución binomial acumulativa es menor o igual que un valor de criterio. Utilice esta función en aplicaciones de control de calidad. Por ejemplo, use BINOM.CRIT para determinar el mayor número de piezas defectuosas que una cadena de montaje pueda producir sin tener por ello que rechazar todo el lote.

Sintaxis

BINOM.CRIT(ensayos;prob éxito;alfa)

Ensayos es el número de ensayos Bernoulli.

Prob_éxito es la probabilidad de éxito en cada ensayo.

Alfa es el valor del criterio.

Observaciones

- Si uno de los argumentos no es numérico, BINOM.CRIT devuelve el valor de error #iVALOR!
- Si el argumento ensayos no es un entero, se trunca.

- Si el argumento ensayos < 0, BINOM.CRIT devuelve el valor de error #iNUM!
- Si el argumento prob_éxito < 0 o si prob_éxito > 1, BINOM.CRIT devuelve el valor de error #iNUM!
- Si alfa < 0 o si alfa > 1, BINOM.CRIT devuelve el valor de error #iNUM!

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	6	Número de ensayos Bernoulli
3	0,5	Probabilidad de éxito de cada ensayo
4	0,75	Valor del criterio
	Fórmula	Descripción (Resultado)
	=BINOM.CRIT (A2;A3;A4)	El menor valor cuya distribución binomial acumulativa es mayor o igual que un valor de criterio (4)

BUSCAR

La función BUSCAR tiene dos formas de sintaxis: vectorial y <u>matricial (matriz: utilizada para crear fórmulas sencillas que producen varios resultados o que funcionan en un grupo de argumentos que se organizan en filas y columnas. Un rango de matriz comparte una fórmula común; una constante de matriz es un grupo de constantes utilizadas como un argumento.)</u>.

Un vector es un rango que contiene una sola fila o una sola columna. La forma vectorial de BUSCAR busca en un rango de una fila o de una columna un valor (vector) y devuelve un valor desde la misma posición en un segundo rango de una fila o de una columna. Utilice esta forma de la función BUSCAR cuando necesite especificar el rango que contiene los valores que desea hacer coincidir. La otra forma de BUSCAR, busca automáticamente en la primera fila o en la primera columna.

Sintaxis 1

Forma vectorial

BUSCAR(valor_buscado;vector_de_comparación;vector_resultado)

Valor_buscado es un valor que BUSCAR busca en el primer vector. Valor_buscado puede ser un número, texto, un valor lógico, o un nombre o referencia que se refiere a un valor.

Vector_de_comparación es un rango que sólo contiene una fila o una columna. Los valores en el vector_de_comparación pueden ser texto, números o valores lógicos.

Profesor: WILSON A. PRIETO H.

Importante Los valores en el vector_de_comparación deben colocarse en orden ascendente: ...;-2; -1; 0; 1; 2; ...; A-Z; FALSO; VERDADERO; de lo contrario, BUSCAR puede dar un valor incorrecto. El texto en mayúsculas y en minúsculas es equivalente.

Vector_resultado es un rango que sólo contiene una fila o una columna. Debe ser del mismo tamaño que vector de comparación.

Observaciones

- Si BUSCAR no puede encontrar el valor_buscado, utilizará el mayor valor de vector_de_comparación que sea menor o igual al valor_buscado.
- Si valor_buscado es menor que el valor más bajo de vector_de_comparación, BUSCAR devuelve el valor de error #N/A.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Frec	Color
2	4,14	rojo
3	4,19	anaranjado
4	5,17	amarillo
5	5,77	verde
6	6,39	azul
	Fórmula	Descripción (Resultado)
	=BUSCAR (4,91;A2:A6;B2:B6)	Busca 4,19 en la columna A y devuelve el valor de la columna B que está en la misma fila (anaranjado)
	=BUSCAR (5,00;A2:A6;B2:B6)	Busca 5,00 en la columna A y devuelve el valor de la columna B que está en la misma fila (anaranjado)

BUSCARH

Busca un valor en la fila superior de una tabla o una <u>matriz (matriz: utilizada para crear fórmulas sencillas que producen varios resultados o que funcionan en un grupo de argumentos que se organizan en filas y columnas. Un rango de matriz comparte una fórmula común; una constante de <u>matriz es un grupo de constantes utilizadas como un argumento.)</u> de valores y, a continuación, devuelve un valor en la misma columna de una fila especificada en la tabla o matriz. Use BUSCARH cuando los valores de comparación se encuentren en una fila en la parte superior de una tabla de datos y desee encontrar información que se encuentre dentro de un número especificado de filas. Use BUSCARV cuando los valores de comparación se encuentren en una columna a la izquierda o de los datos que desee encontrar.</u>

La H de BUSCARH significa "Horizontal".

Sintaxis

BUSCARH(valor_buscado;matriz_buscar_en;indicador_filas; ordenado)

Valor_buscado es el valor que se busca en la primera fila de la tabla. Valor_buscado puede ser un valor, una referencia o una cadena de texto.

Matriz_buscar_en es una tabla de información en la que se buscan los datos. Utilice una referencia a un rango o el nombre de un rango.

- Los valores de la primera fila del argumento matriz_buscar_en pueden ser texto, números o valores lógicos.
- Si ordenado es VERDADERO, los valores de la primera fila de matriz_buscar_en deben colocarse en orden ascendente: ...-2, -1, 0, 1, 2,..., A-Z, FALSO, VERDADERO; de lo contrario, BUSCARH puede devolver un valor incorrecto. Si ordenado es FALSO, no es necesario ordenar matriz buscar en.
- El texto en mayúsculas y en minúsculas es equivalente.
- Se pueden poner los datos en orden ascendente de izquierda a derecha seleccionando los valores y eligiendo el comando Ordenar del menú Datos. A continuación haga clic en Opciones y después en Ordenar de izquierda a derecha y Aceptar. Bajo Ordenar por haga clic en la fila deseada y después en Ascendente.

Indicador_filas es el número de fila en matriz_buscar_en desde el cual debe devolverse el valor coincidente. Si indicador_filas es 1, devuelve el valor de la primera fila en matriz_buscar_en; si indicador_filas es 2, devuelve el valor de la segunda fila en matriz_buscar_en y así sucesivamente. Si indicador_filas es menor que 1, BUSCARH devuelve el valor de error #iVALOR!; si indicador_filas es mayor que el número de filas en matriz_buscar_en, BUSCARH devuelve el valor de error #iREF!

Ordenado es un valor lógico que especifica si BUSCARH debe localizar una coincidencia exacta o aproximada. Si es VERDADERO o se omite, devolverá una coincidencia aproximada. Es decir, si no encuentra ninguna coincidencia exacta, devolverá el siguiente valor mayor inferior a valor_buscado. Si es FALSO, BUSCARH encontrará una coincidencia exacta. Si no encuentra ninguna, devolverá el valor de error #N/A.

Observaciones

- Si BUSCARH no logra encontrar valor_buscado, utiliza el mayor valor que sea menor que valor buscado.
- Si valor_buscado es menor que el menor valor de la primera fila de matriz_buscar_en, BUSCARH devuelve el valor de error #N/A.

Ejemplo

	A	В	C
1	Ejes	Cojinetes	Pernos
2	4	4	9
3	5	7	10
4	6	8	11
	Fórmula	Descripción (Resultado)	

Fórmula	Descripción (Resultado)
=BUSCARH("Ejes";A1:C4;2;VERDADERO)	Busca Ejes en la fila 1 y devuelve el valor de la fila 2 que está en la misma columna (4)
=BUSCARH("Cojinetes";A1:C4;3;FALSO)	Busca Cojinetes en la fila 1 y devuelve el valor de la fila 3 que está en la misma columna (7)
=BUSCARH("B";A1:C4;3;VERDADERO)	Busca F en la fila 1, y devuelve el valor de la fila 3 que está en la misma columna. Debido a que F no es una coincidencia exacta, se utiliza el siguiente valor menor que F: Ejes. (5)
=BUSCARH("Pernos";A1:C4;4)	Busca Pernos en la fila 1 y devuelve el valor de la fila 4 que está en la misma columna (11)
=BUSCARH(3;{1;2;3 \"a";"b";"c"\"d";"e";"f"};2;VERDADERO)	Busca 3 en la primera fila de la constante matricial y devuelve el valor de la fila 2 en la misma columna (c)

BUSCARV

Busca un valor específico en la columna más a izquierda de una matriz y devuelve el valor en la misma fila de una columna especificada en la tabla. Utilice BUSCARV en lugar de BUSCARH cuando los valores de comparación se encuentren en una columna situada a la izquierda de los datos que desea encontrar.

La V de BUSCARV significa "Vertical".

Sintaxis

BUSCARV(valor_buscado;matriz_buscar_en;indicador_columnas;ordenado)

Valor_buscado es el valor que se busca en la primera columna de la <u>matriz</u>. Valor_buscado puede ser un valor, una referencia o una cadena de texto.

Matriz_buscar_en es la tabla de información donde se buscan los datos. Utilice una referencia a un rango o un nombre de rango, como por ejemplo Base_de_datos o Lista.

- Si el argumento ordenado es VERDADERO, los valores de la primera columna del argumento matriz_buscar_en deben colocarse en orden ascendente: ...; -2; -1; 0; 1; 2; ...; A-Z; FALSO; VERDADERO. De lo contrario, BUSCARV podría devolver un valor incorrecto.
- Para colocar los valores en orden ascendente, elija el comando **Ordenar** del menú **Datos** y seleccione la opción **Ascendente**.
- Los valores de la primera columna de matriz_buscar_en pueden ser texto, números o valores lógicos.
- El texto en mayúsculas y en minúsculas es equivalente.

18

Indicador_columnas es el número de columna de matriz_buscar_en desde la cual debe devolverse el valor coincidente. Si el argumento indicador_columnas es igual a 1, la función devuelve el valor de la primera columna del argumento matriz_buscar_en; si el argumento indicador_columnas es igual a 2, devuelve el valor de la segunda columna de matriz_buscar_en y así sucesivamente. Si indicador_columnas es menor que 1, BUSCARV devuelve el valor de error #iVALOR!; si indicador_columnas es mayor que el número de columnas de matriz_buscar_en, BUSCARV devuelve el valor de error #iREF!

Ordenado es un valor lógico que especifica si BUSCARV debe localizar una coincidencia exacta o aproximada. Si se omite o es VERDADERO, devolverá una coincidencia aproximada. En otras palabras, si no localiza ninguna coincidencia exacta, devolverá el siguiente valor más alto inferior a valor_buscado. Si es FALSO, BUSCARV encontrará una coincidencia exacta. Si no encuentra ninguna, devolverá el valor de error # N/A.

Observaciones

- Si BUSCARV no puede encontrar valor_buscado y ordenado es VERDADERO, utiliza el valor más grande que sea menor o igual a valor buscado.
- Si valor_buscado es menor que el menor valor de la primera columna de matriz_buscar_en, BUSCARV devuelve el valor de error #N/A.
- Si BUSCARV no puede encontrar valor_buscado y ordenado es FALSO, devuelve el valor de error #N/A.

Ejemplo

	А	В	С
1	Densidad	Viscosidad	Temperatura
2	0,457	3,55	500
3	0,525	3,25	400
4	0,616	2,93	300
5	0,675	2,75	250
6	0,746	2,57	200
7	0,835	2,38	150
8	0,946	2,17	100
9	1,09	1,95	50
10	1,29	1,71	0
	Fórmula	Descripción (Resultado)	
	=BUSCARV(1;A2:C10;2)	Busca 1 in en la columna A y devuelve el valor de la columna B en la misma fila (2,17).	
	=BUSCARV (1;A2:C10;3;VERDADERO)	Busca 1 in en la columna A y devuelve el valor de la columna C en la misma fila (100).	
	=BUSCARV (0,7;A2:C10;3;FALSO)	Busca 0,746 en la columna A. Puesto que no hay ninguna coincidencia exacta en la columna A, se devuelve un error (#N/A).	
	=BUSCARV (0,1;A2:C10;2;VERDADERO)	Busca 0,1 in en la columna A. Puesto que 0,1 es menor que el valor más bajo de la columna A, se devuelve un error (#N/A).	
	=BUSCARV (2;A2:C10;2;VERDADERO)	Busca 2 in en la columna A y devuelve el valor de la columna B en la misma fila (1,71).	

CARACTER

Devuelve el carácter especificado por un número. Use CARACTER para pasar a caracteres los números de código de página que se obtengan de archivos en otro tipo de equipo.

Entorno operativo	Conjunto de caracteres
Macintosh	Conjunto de caracteres de Macintosh
Windows	ANSI

Sintaxis

CARACTER(n'umero)

Número es un número entre 1 y 255 que especifica el carácter deseado. El carácter forma parte del conjunto de caracteres empleado por su PC.

Ejemplo

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=CARACTER(65)	Muestra el carácter 65 del conjunto (A).
3	=CARACTER(33)	Muestra el carácter 33 del conjunto (!).

CELDA

Devuelve información acerca del formato, ubicación o contenido de la celda del extremo superior izquierdo de una referencia.

Sintaxis

CELDA(tipo_de_info,ref)

Tipo_de_info es un valor de texto que especifica el tipo de información que se desea obtener acerca de la celda. La siguiente lista muestra los posibles valores de tipo_de_info y los correspondientes resultados:

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

Si tipo_de_info es	Devuelve	
"DIRECCION"	la referencia, en forma de texto, de la primera celda del argumento ref.	
"COLUMNA"	El número de columna de la celda del argumento ref.	
"COLOR"	${\bf 1}$ si la celda tiene formato de color para los valores negativos; en caso contrario devuelve ${\bf 0}.$	
"CONTENIDO"	Valor de la celda superior izquierda de la referencia, no una fórmula.	
"ARCHIVO"	El nombre del archivo (incluyendo el de la ruta de acceso) que contiene referencia, con formato de texto. Devuelve texto vacío ("") si la hoja de cálculo que contiene el argumento ref aún se ha guardado.	
"FORMATO"	Un valor de texto correspondiente al formato numérico de la celda. Los valores de texto para los distintos formatos se muestran en la tabla a continuación. Si la celda tiene formato de color para los números negativos, devuelve "-" al final del valor de texto. Si la celda está definida para mostrar todos los valores o los valores positivos entre paréntesis, devuelve "()" al final del valor de texto.	
"PARENTESIS"	1 si la celda tiene formato con paréntesis para los valores positivos o para todos los valores, de lo contrario, devuelve 0.	
"PREFIJO"	Un valor de texto que corresponde al "prefijo de rótulo" de la celda. Devolverá un apóstrofo (") si la celda contiene texto alineado a la izquierda, comillas (") si la celda contiene texto alineado a la derecha, acento circunflejo (^) si la celda tiene texto centrado, una barra inversa (\) si la celda contiene texto con alineación de relleno y devolverá texto vacío ("") si la celda contiene otro valor.	
"PROTEGER"	0 si la celda no está bloqueada y 1 si la celda está bloqueada.	
"FILA"	El número de fila de la celda del argumento ref.	
"TIPO"	Un valor de texto que corresponde al tipo de datos de la celda. Devolverá "b" (para blanco) si la celda está vacía, "r" (para rótulo) si la celda contiene una constante de texto y "v" (para valor) si la celda contiene otro valor.	
"ANCHO"	El ancho de columna redondeado a un entero. Cada unidad del ancho de columna es igual al ancho de un carácter en el tamaño actual de fuente seleccionado.	

Ref es la celda acerca de la cual desea obtener información. Si se omite, la información especificada en tipo_de_info se devuelve para la última celda cambiada. La siguiente lista describe los valores de texto que devuelve la función CELDA cuando el argumento tipo_de_info es "formato" y el argumento ref es una celda con formato para números integrados.

0 #.##0 0,00 #.##0,00 \$#,##0_);(\$#,##0) \$#.##0;(rojo)-\$#.##0	"G" "F0" ".0" "F2" ".2" "C0" "-M0" "C2"
#.##0 0,00 #.##0,00 \$#,##0_);(\$#,##0) \$#.##0;(rojo)-\$#.##0	".0" "F2" ".2" "C0" "-M0" "C2"
0,00 #.##0,00 \$#,##0_);(\$#,##0) \$#.##0;(rojo)-\$#.##0	"F2" ".2" "C0" "-M0" "C2"
#.##0,00 \$#,##0_);(\$#,##0) \$#.##0;(rojo)-\$#.##0	".2" "CO" "-MO" "C2"
\$#,##0_);(\$#,##0) \$#.##0;(rojo)-\$#.##0	"CO" "-MO" "C2"
\$#.##0;(rojo)-\$#.##0	"-M0" "C2"
	"C2"
## ##O OO \./## ##O OO\	
\$#,##0.00_);(\$#,##0.00)	"-M2"
\$#.##0,00;(rojo)-\$#.##0,00	
0%	"P0"
0,00%	"P2"
0,00E+00	"C2"
#?/?o#??/??	"G"
d/m/aa o d/m/aa h:mm o dd/mm/aa	"D4"
d-mmm-aa o dd-mm-aa	"D1"
d-mmm	"D2"
mmm-aa	"D3"
mm/dd	"D5"
h:mm a.m./p.m.	"D7"
h:mm:ss a.m./p.m.	"D6"
h:mm	"D9"
h:mm:ss	"D8"

Si el argumento tipo_de_info de la fórmula CELDA es "formato" y si se le ha asignado más adelante un formato personalizado, es necesario volver a calcular la hoja de cálculo para poder actualizar la fórmula CELDA.

Observación

La función CELDA se proporciona por razones de compatibilidad con otros programas para hojas de cálculo.

Ejemplo

	A	
1	Datos	
2	5-mar	
3	TOTAL	
	Fórmula	Descripción (Resultado)
	=CELDA("fila";A20)	Número de fila de la celda A20 (20)
	=CELDA("formato";A2)	Código de formato de la primera cadena (D2, vea lo anterior)
	=CELDA("contenido";A3)	Contenido de la celda A3 (TOTAL)

CODIGO

Devuelve el número de código del primer carácter del texto. El código devuelto corresponde al conjunto de caracteres utilizado por su equipo.

Entorno operativo	Conjunto de caracteres
Macintosh	Conjunto de caracteres de Macintosh
Windows	ANSI

Sintaxis

CODIGO(texto)

Texto es el texto del cual se desea obtener el código del primer carácter.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=CODIGO("A")	Muestra el código numérico de A (65)
3	=CODIGO("!")	Muestra el código numérico de ! (33)

COEF.DE.CORREL

Devuelve el coeficiente de correlación entre dos rangos de celdas definidos por los argumentos matriz1 y matriz2. Use el coeficiente de correlación para determinar la relación entre dos propiedades. Por ejemplo, para examinar la relación entre la temperatura promedio de una localidad y el uso de aire acondicionado.

Sintaxis

COEF.DE.CORREL(matriz1;matriz2)

Matriz1 es un rango de celdas de valores.

Matriz2 es un segundo rango de celdas de valores.

Observaciones

- Los argumentos deben ser números, o bien nombres, matrices o referencias que contienen números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si los argumentos matriz1 y matriz2 tienen un número diferente de puntos de datos, COEF.DE.CORREL devuelve el valor de error #N/A.
- Si el argumento matriz1 o matriz2 está vacío, o si s (la desviación estándar de los valores) es igual a cero, COEF.DE.CORREL devuelve el valor de error #iDIV/0!
- La ecuación para el coeficiente de correlación es:

$$\begin{split} & _{\mathcal{O}_{\mathcal{B},\mathcal{Y}}} = \frac{Cov(X,Y)}{\sigma_{_{\mathcal{B}}} \cdot \sigma_{_{\mathcal{Y}}}} \\ & \text{donde:} \\ & -1 \leq _{\mathcal{O}_{X\mathcal{Y}}} \leq 1 \\ & \text{y:} \\ & Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_{_{\mathcal{B}}}) (y_i - \mu_{_{\mathcal{Y}}}) \end{split}$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos1	Datos2
2	3	9
3	2	7
4	4	12
5	5	15
6	6	17
	Fórmula	Descripción (Resultado)
	=COEF.DE.CORREL (A2:A6;B2:B6)	Coeficiente de correlación de los dos conjuntos de datos anteriores (0,997054)

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

Profesor: WILSON A. PRIETO H.

COEFICIENTE.ASIMETRIA

Devuelve la asimetría de una distribución. Esta función caracteriza el grado de asimetría de una distribución con respecto a su media. La asimetría positiva indica una distribución unilateral que se extiende hacia valores más positivos. La asimetría negativa indica una distribución unilateral que se extiende hacia valores más negativos.

Sintaxis

COEFICIENTE.ASIMETRIA(número1; número2; ...)

Número1, número2 ... son de 1 a 30 argumentos cuya asimetría desea calcular. También puede utilizar una matriz única o una referencia matricial en lugar de argumentos separados con punto y coma.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si el número de puntos de datos es menor que tres o si la desviación estándar de la muestra es cero, COEFICIENTE.ASIMETRIA devuelve el valor de error #iDIV/0!
- La ecuación para la asimetría se define como:

$$\frac{n}{(n-1)(n-2)} \sum \left(\frac{x_j - \overline{x}}{s}\right)^3$$

	A	
1	Datos	
2	3	
3	4	
4	5	
5	2	
6	3	
7	4	
8	5	
9	6	
10	4	
11	7	
	Fórmula	
	=COEFICIENTE.ASIMETRIA (A2:A11)	

COEFICIENTE.R2

Devuelve el cuadrado del coeficiente de correlación de momento del producto Pearson mediante los puntos de datos de conocido_y y conocido_x. Para obtener más información, consulte PEARSON. El valor R cuadrado puede interpretarse como la proporción de la varianza de y que puede atribuirse a la varianza de x.

Sintaxis

COEFICIENTE.R2(conocido_y;conocido_x)

Conocido_y es una matriz o un rango de puntos de datos.

Conocido_x es una matriz o un rango de puntos de datos.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si los argumentos conocido_y y conocido_x están vacíos o contienen un número diferente de puntos de datos, COEFICIENTE.R2 devuelve el valor de error #N/A.
- La ecuación para el valor *r* de la línea de regresión es:

$$r = \frac{n(\Sigma XY) - (\Sigma X)(\Sigma Y)}{\sqrt{\left[n\Sigma X^2 - (\Sigma X)^2\right]\left[n\Sigma Y^2 - (\Sigma Y)^2\right]}}$$

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Valor de y conocido	Valor de x conocido
2	2	6
3	3	5
4	9	11
5	1	7
6	8	5
7	7	4
8	5	4
	Fórmula	Descripción (Resultado)
	=COEFICIENTE.R2 (A2:A8;B2:B8)	Cuadrado del coeficiente de correlación de momento del producto Pearson mediante los puntos de datos anteriores (0,05795)

COINCIDIR

Devuelve la posición relativa de un elemento en una matriz que coincida con un valor especificado en un orden especificado. Utilice COINCIDIR en lugar de las funciones BUSCAR cuando necesite conocer la posición de un elemento en un rango en lugar del elemento en sí.

Sintaxis

COINCIDIR(valor_buscado;matriz_buscada;tipo_de_coincidencia)

Valor_buscado es el valor que se utiliza para encontrar el valor deseado en una tabla.

- Valor_buscado es el valor que desea hacer coincidir en la matriz_buscada. Por ejemplo, cuando busque algún número en la guía telefónica, estará usando el nombre de la persona como valor de búsqueda, pero el valor que realmente desea es el número de teléfono.
- Valor_buscado puede ser un valor (número, texto o valor lógico) o una referencia de celda a un número, a un texto o a un valor lógico.

Matriz_buscada es un rango de celdas contiguas que contienen posibles valores de búsqueda. Matriz buscada debe ser una matriz o una referencia matricial.

Tipo_de_coincidencia es el número -1, 0 ó 1 y especifica cómo hace coincidir Microsoft Excel el valor_buscado con los valores de matriz_buscada.

- Si tipo_de_coincidencia es 1, COINCIDIR encuentra el mayor valor que es inferior o igual al valor_buscado. Los valores en el argumento matriz_buscada deben colocarse en orden ascendente: ...-2; -1; 0; 1; 2;...A-Z; FALSO; VERDADERO.
- Si tipo_de_coincidencia es 0, COINCIDIR encuentra el primer valor que es exactamente igual al valor_buscado. Los valores en matriz_buscada pueden estar en cualquier orden.

- Si tipo_de_coincidencia es -1, COINCIDIR encuentra el menor valor que es mayor o igual al valor_buscado. Los valores de matriz_buscada deben colocarse en orden descendente: VERDADERO; FALSO; Z-A; ...2; 1; 0; -1; -2; ...y así sucesivamente.
- Si se omite tipo_de_coincidencia, se supondrá que es 1.

Observaciones

- COINCIDIR devuelve la posición del valor coincidente dentro de la matriz_buscada y no el valor en sí. Por ejemplo: COINCIDIR("b";{"a";"b";"c"};0) devuelve 2, la posición relativa de "b" dentro de la matriz {"a";"b";"c"}.
- COINCIDIR no distingue entre mayúsculas y minúsculas cuando hace coincidir valores de texto.
- Si COINCIDIR no puede encontrar una coincidencia, devuelve el valor de error #N/A.
- Si tipo_de_coincidencia es 0 y valor_buscado es texto, valor_buscado puede contener los caracteres comodín asterisco (*) y signo de interrogación (?). El asterisco equivale a una secuencia de caracteres y el signo de interrogación a un único carácter.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Producto	Contar
2	Bananas	25
3	Naranjas	38
4	Manzanas	40
5	Peras	41
	Fórmula	Descripción (Resultado)
	=COINCIDIR (39;B2:B5;1)	Puesto que no hay ninguna coincidencia exacta, se devuelve la posición del siguiente valor inferior (38) dentro del rango B2:B5 (2).
=COINCIDIR Posición de 41 dentro del rango B2:B5 (4). (41;B2:B5;0) =COINCIDIR Devuelve un error porque el rango B2:B5 no está en ora (40;B2:B5;-1)		Posición de 41 dentro del rango B2:B5 (4).
		Devuelve un error porque el rango B2:B5 no está en orden descendente (#N/A)

COLUMNA

Devuelve el número de columna de una referencia dada.

Sintaxis

COLUMNA(ref)

Ref es la celda o el rango de celdas de las que se desea saber el número de columna.

 Si se omite el argumento ref, se asume que es la referencia de la celda en la que aparece la función COLUMNA.

- Si el argumento ref es un rango de celdas y si COLUMNA se introduce como una matriz horizontal, COLUMNA devuelve los números de columna del argumento ref en forma de matriz horizontal.
- El argumento ref no puede referirse a varias áreas.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=COLUMNA()	Columna en la que aparece la fórmula (1)
3	=COLUMNA(A10)	Columna de la referencia (1)

COLUMNAS

Devuelve el número de columnas de una matriz o de una referencia.

Sintaxis

COLUMNAS(matriz)

Matriz es una matriz, una <u>fórmula matricial</u> o una referencia a un rango de celdas cuyo número de columnas se desea obtener.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=COLUMNAS(C1:E4)	Número de columnas de la referencia (3)
3	=COLUMNAS({1;2;3\4;5;6})	Número de columnas de la constante matricial (3)

COMBINAT

Devuelve el número de combinaciones para un número determinado de elementos. Use COMBINAT para determinar el número total de grupos posibles para un número determinado de elementos.

Sintaxis

COMBINAT(número;tamaño)

Número es el número de elementos.

Tamaño es el número de elementos en cada combinación.

Observaciones

- Los argumentos numéricos se truncan a números enteros.
- Si alguno de los argumentos no es numérico, COMBINAT devuelve el valor de error #iVALOR!
- Si el argumento número < 0, el argumento tamaño < 0 o número < tamaño, COMBINAT devuelve el valor de error #iNUM!
- Una combinación es cualquier conjunto o subconjunto de objetos, independientemente de su orden interno. Las combinaciones son distintas de las permutaciones, en las que el orden interno es importante.
- El número de combinaciones es el siguiente, donde el argumento número = n y el argumento tamaño = k:

$$\binom{n}{k} = \frac{P_{k,n}}{k!} = \frac{n!}{k!(n-k)!}$$
 donde:

$$P_{k,n} = \frac{n!}{(n-k)!}$$

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=COMBINAT (8;2)	Posibles equipos compuestos por dos personas que pueden formarse con 8 candidatos (28)

CONCATENAR

Concatena argumentos de texto.

Sintaxis

CONCATENAR (texto1; texto2; ...)

Texto1, texto2, ... son de 1 a 30 elementos de texto que se unirán en un elemento de texto único. Los elementos de texto pueden ser cadenas de texto, números o referencias a celdas únicas.

Observaciones

Puede utilizar el operador "&" en lugar de CONCATENAR para unir elementos de texto.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

CONTAR

Cuenta el número de celdas que contienen números, además de los números dentro de la lista de argumentos. Utilice CONTAR para obtener el número de entradas en un campo numérico de un rango o de una matriz de números.

Sintaxis

CONTAR(ref1;ref2;...)

Ref1, ref2, ... son de 1 a 30 argumentos que pueden contener o hacer referencia a distintos tipos de datos, pero sólo se cuentan los números.

Observaciones

- Los argumentos que son números, fechas o representaciones textuales de números se cuentan; los argumentos que son valores de error o texto que no puede traducirse a números se pasan por alto.
- Si un argumento es una matriz o referencia, sólo se considerarán los números en esa matriz o referencia. Se pasan por alto las celdas vacías, valores lógicos, texto o valores de error en la matriz o en la referencia. Utilice la función CONTARA si necesita contar valores lógicos, texto o valores de error.

Ejemplo

	A	
1	Datos	
2	Ventas	
3	8-12-2008	
4		
5	19	
6	22,24	
7	VERDADERO	
8	#iDIV/0!	
	Fórmula	Descripción (Resultado)
	=CONTAR(A2:A8)	Cuenta el número de celdas que contienen números en la lista anterior (3)
	=CONTAR(A5:A8)	Cuenta el número de celdas que contienen números en las últimas 4 filas de la list (2)
	=CONTAR (A2:A8;2)	Cuenta el número de celdas que contienen números en la lista, además del valor (4)

CONTAR.BLANCO

Cuenta el número de celdas en blanco dentro de un rango.

Sintaxis

CONTAR.BLANCO(rango)

Rango es el rango dentro del cual desea contar el número de celdas en blanco.

Observación

También se cuentan las celdas con fórmulas que devuelven "" (texto vacío). Las celdas que contienen valores cero no se cuentan.

Ejemplo

	A	В
1	Datos	Datos
2		
3	6	=SI(B4<30;"";B4)
4		27
5	4	34
	Fórmula	Descripción (Resultado)
	=CONTAR.BLANCO (A2:B5)	Cuenta las celdas vacías en el rango anterior. La fórmula devuelve texto vacío. (4)

CONTAR.SI

Cuenta las celdas, dentro del rango, que no están en blanco y que cumplen con el criterio especificado.

Sintaxis

CONTAR.SI(rango;criterio)

Rango es el rango dentro del cual desea contar las celdas.

Criterio es el criterio en forma de número, expresión o texto, que determina las celdas que se van a contar. Por ejemplo, los criterios pueden expresarse como 32, "32", ">32", "manzanas".

Observación

Microsoft Excel proporciona funciones adicionales que se pueden utilizar para analizar los datos basándose en una condición. Por ejemplo, para calcular una suma basándose en una cadena de texto o un número dentro de un rango, utilice la función SUMAR.SI. Para hacer que una fórmula devuelva uno de dos valores según una condición, como una bonificación por ventas basada en un importe de ventas especificado, utilice la función de hoja de cálculo SI.

Ejemplo

	A	В
1	Datos	Datos
2	manzanas	32
3	naranjas	54
4	melocotones	75
5	manzanas	86
	Fórmula	Descripción (Resultado)
	=CONTAR.SI (A2:A5;"manzanas")	Número de celdas con manzanas en la primera columna anterior (2)
	=CONTAR.SI(B2:B5;">55")	Número de celdas con un valor superior a 55 en la segunda columna anterior (2)

CONTARA

Cuenta el número de celdas que no están vacías y los valores que hay en la lista de argumentos. Use CONTARA para contar el número de celdas que contienen datos en un rango o matriz.

Sintaxis

CONTARA(valor1;valor2;...)

Valor1, valor2, ... son de 1 a 30 argumentos que representan los valores que desea contar. En este caso, un valor es cualquier tipo de información, incluyendo texto vacío ("") pero excluyendo celdas vacías. Si un argumento es una matriz o una referencia, se pasan por alto las celdas vacías que se encuentran en la matriz o en la referencia. Si no necesita contar valores lógicos, texto, o valores de error, use la función CONTAR.

Ejemplo

	A	
1	Datos	
2	Ventas	
3	8-12-2008	
4		
5	19	
6	22,24	
7	VERDADERO	
8	#iDIV/0!	
	Fórmula	Descripción (Resultado)
	=CONTARA(A2:A8)	Cuenta el número de celdas que no estén en blanco en la lista anterior (6)
	=CONTARA(A5:A8)	Cuenta el número de celdas que no estén en blanco en las últimas 4 filas de la lista (4)
	=CONTARA(A1:A7;2)	Cuenta el número de celdas que no estén en blanco en la lista anterior, adem del valor 2 (7)
	=CONTARA (A1:A7;"Dos")	Cuenta el número de celdas que no estén en blanco en la lista anterior, adem del valor "Dos" (7)

COS

Devuelve el coseno de un número.

Sintaxis

COS(número)

Número es el ángulo en radianes cuyo coseno desea obtener.

Observación

Si el ángulo se expresa en grados, multiplíquelo por PI()/180 o utilice la función COS para convertirlo en radianes.

Ejemplo

	A	В
1	Fórmula	Descripción (Resultado)
2	=COS(1,047)	Coseno de 1,047 radianes (0,500171)
3	=COS(60*PI()/180)	Coseno de 60 grados (0,5)
4	=COS(RADIANES(60))	Coseno de 60 grados (0,5)

COSH

Devuelve el coseno hiperbólico de un número.

Sintaxis

COSH(número)

Número es cualquier número real cuyo coseno hiperbólico desea buscar.

Observación

La fórmula del coseno hiperbólico es:

$$COSH(z) = \frac{e^z + e^{-z}}{2}$$

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=COSH(4)	Coseno hiperbólico de 4 (27,30823)
3	=COSH(EXP(1))	Coseno hiperbólico de la base del logaritmo natural (7,610125)

COVAR

Devuelve la covarianza, o promedio de los productos de las desviaciones para cada pareja de puntos de datos. Utilice la covarianza para determinar las relaciones entre dos conjuntos de datos. Por ejemplo, puede investigar si unos ingresos más elevados se corresponden con niveles de estudios más altos.

Sintaxis

COVAR(matriz1;matriz2)

Matriz1 es el primer rango de celdas de números enteros.

Matriz2 es el segundo rango de celdas de números enteros.

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si los argumentos matriz1 y matriz2 tienen números distintos de puntos de datos, COVAR devuelve el valor de error #N/A.
- Si los argumentos matriz1 o matriz2 están vacíos, COVAR devuelve el valor de error #iDIV/0!
- La covarianza es:

$$Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_n) (y_i - \mu_y)$$

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos1	Datos2
2	3	9
3	2	7
4	4	12
5	5	15
6	6	17
	Fórmula	Descripción (Resultado)
	=COVAR (A2:A6;B2:B6)	Covarianza, el promedio de los productos de las desviaciones para cada una de las parejas de puntos de datos anteriores (5,2)

CRECIMIENTO

Calcula el pronóstico de crecimiento exponencial a través de los datos existentes. CRECIMIENTO devuelve los valores y de una serie de valores x especificados utilizando valores x y valores y existentes. También puede utilizar la función de hoja de cálculo CRECIMIENTO para ajustar una curva exponencial a los valores x y valores y existentes.

Sintaxis

CRECIMIENTO(**conocido y**;conocido x;nueva conocido x;constante)

Conocido_y es el conjunto de valores que ya se conocen en la ecuación $y = b*m^x$.

- Si la matriz definida por el argumento conocido_y ocupa una sola columna, cada columna de conocido_x se interpreta como una variable separada.
- Si la matriz definida por el argumento conocido_y ocupa una sola fila, cada fila de conocido_x se interpreta como una variable separada.
- Si uno de los números en conocido_y es 0 o negativo, CRECIMIENTO devuelve el valor de error #iNUM!

Profesor: WILSON A. PRIETO H.

Conocido_x es un conjunto de valores x opcionales que ya se conocen en la ecuación $y = b*m^x$.

- La matriz conocido_x puede incluir uno o varios conjuntos de variables. Si se usa una sola variable, conocido_y y conocido_x pueden ser rangos con cualquier forma, siempre y cuando sus dimensiones sean iguales. Si se usa más de una variable, conocido_y tiene que ser un vector (es decir, un rango compuesto por una fila o por una columna).
- Si se omite conocido_x, se asume que ésta es la matriz {1;2;3;...} que tiene el mismo tamaño que conocido_y.

Nueva_conocido_x son nuevos valores de x para los cuales se desea que CRECIMIENTO devuelva los valores de y correspondientes.

- El argumento nueva_matriz_x debe incluir una columna (o una fila) para cada variable independiente, como ocurre con el argumento conocido_x. Por consiguiente, si conocido_y ocupa una sola columna, conocido_x y nueva_matriz_x deben tener el mismo número de columnas. Si conocido_y ocupa una sola fila, conocido_x y nueva_matriz_x deben tener el mismo número de filas.
- Si se omite nueva_conocido_x, se asume que ésta es la misma que conocido_x.
- Si se omiten conocido_x y nueva_conocido_x, se asume que éstas son la matriz {1;2;3;...} que tiene el mismo tamaño que conocido_y.

Constante es un valor lógico que especifica si se ha de forzar a la constante b a ser igual a 1.

- Si el argumento constante es VERDADERO o se omite, *b* se calcula normalmente.
- Si constante es FALSO, b es igual a 1 y los valores m se ajustarán de manera que $y = m^x$.

Observaciones

- Las fórmulas que devuelven matrices deben insertarse como fórmulas matriciales después de seleccionarse el número de celdas correcto.
- Cuando introduzca una constante matricial para un argumento como conocido_x, utilice punto y coma para separar los valores de una misma fila y barra inversa para separar las filas

Ejemplo

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

En este ejemplo se utilizan los mismos datos que en el de ESTIMACION.LOGARITMICA. La primera fórmula muestra los valores correspondientes a los conocidos. La segunda fórmula pronostica los valores de los meses siguientes, si continúa la tendencia exponencial.

	A	В	С
1	Mes	Unidades	Fórmula (Unidades correspondientes)
2	11	33,100	=CRECIMIENTO(B2:B7;A2:A7)
3	12	47,300	
4	13	69,000	
5	14	102,000	
6	15	150,000	
7	16	220,000	
	Mes	Fórmula (Unidades pronosticadas)	
	17	=CRECIMIENTO(B2:B7;A2:A7; A9:A10)	

Nota La fórmula del ejemplo debe escribirse como fórmula matricial. Una vez copiado el ejemplo en una hoja de cálculo en blanco, seleccione el rango C2:C7 o B9:B10 comenzando por la celda de la fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce en formato matricial, los resultados sencillos son 32618,20377 y 320196,7184.

CUARTIL

Devuelve el cuartil de un conjunto de datos. Los cuartiles se usan con frecuencia en los datos de ventas y encuestas para dividir las poblaciones en grupos. Por ejemplo, puede utilizar la función CUARTIL para determinar el 25 por ciento de ingresos más altos en una población.

Sintaxis

CUARTIL(matriz;cuartil)

Matriz es la matriz o rango de celdas de valores numéricos cuyo cuartil desea obtener.

Cuartil indica el valor que se devolverá.

Si cuartil es igual a	La función CUARTIL devuelve
0	Valor mínimo
1	El primer cuartil (percentil 25)
2	El valor de la mediana (percentil 50)
3	El tercer cuartil (percentil 75)
4	Valor máximo

Observaciones

- Si el argumento matriz esta vacío, CUARTIL devuelve el valor de error #iNUM!
- Si el argumento cuartil no es un número entero, se trunca.
- Si cuartil < 0 o si cuartil > 4, CUARTIL devuelve el valor de error #iNUM!

• Las funciones MIN, MEDIANA y MAX devuelven el mismo valor que CUARTIL cuando el argumento cuartil es igual a 0 (cero), 2 y 4 respectivamente.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	1	
3	2	
4	4	
5	7	
6	8	
7	9	
8	10	
9	12	
	Fórmula	
	=CUARTIL(A2:A9;1)	

CURTOSIS

Devuelve la curtosis de un conjunto de datos. La curtosis caracteriza la elevación o el achatamiento relativos de una distribución, comparada con la distribución normal. Una curtosis positiva indica una distribución relativamente elevada, mientras que una curtosis negativa indica una distribución relativamente plana.

Sintaxis

CURTOSIS(**número1**; número2; ...)

Número1, número2, ... son de 1 a 30 argumentos cuya curtosis desea calcular. También puede utilizar una matriz única o una referencia matricial en lugar de argumentos separados con punto y coma.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si existen menos de cuatro puntos de datos o si la desviación estándar de la muestra es igual a cero, la función CURTOSIS devuelve el valor de error #iDIV/0!
- CURTOSIS se define como:

$$\left\{ \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum \left(\frac{x_j - \overline{x}}{s} \right)^4 \right\} - \frac{3(n-1)^2}{(n-2)(n-3)}$$

donde:

ses la desviación estándar de la muestra.

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	А
1	Datos
2	3
3	4
4	5
5	2
6	3
7	4
8	5
9	6
10	4
11	7
	Fórmula
	=CURTOSIS(A2:A11)

DB

Devuelve la depreciación de un bien durante un período específico usando el método de depreciación de saldo fijo.

Sintaxis

DB(costo;valor_residual;vida;período;mes)

Costo es el costo inicial del bien.

Valor_residual es el valor al final de la depreciación.

Vida es el número de períodos durante los cuales se produce la amortización del bien (también conocido como vida útil del bien).

Profesor: WILSON A. PRIETO H.

Período es el período para el que se desea calcular la depreciación. Debe usar los mismos valores que el argumento vida.

Mes es el número de meses en el primer año. Si se omite el argumento mes, se supondrá que es 12.

Observaciones

• El método de depreciación de saldo fijo calcula la depreciación a tasa fija. La función DB usa las fórmulas siguientes para calcular la depreciación durante un período:

(costo - depreciación total de períodos anteriores) * tasa

donde:

tasa = 1 - ((valor_residual / costo) $^$ (1 / vida)), redondeado hasta tres posiciones decimales.

• La depreciación del primer y último períodos son casos especiales. La función DB usa la fórmula siguiente para calcular el primer período:

Para calcular el último período, DB usa la fórmula siguiente:

((costo - depreciación total de períodos anteriores) * tasa * (12 - mes)) / 12

Ejemplo 1

	А	В
1	Datos	Descripción
2	1.000.000	Costo inicial
3	100.000	Valor residual
4	6	Vida en años
	Fórmula	Descripción (Resultado)
	=DB(A2;A3;A4;1;7)	Amortización del primer año, calculando sólo 7 meses (186.083,33)
	=DB(A2;A3;A4;2;7)	Amortización del segundo año (259.639,42)
	=DB(A2;A3;A4;3;7)	Amortización del tercer año (176.814,44)
	=DB(A2;A3;A4;4;7)	Amortización del cuarto año (120.410,64)
	=DB(A2;A3;A4;5;7)	Amortización del quinto año (81.999,64)
	=DB(A2;A3;A4;6;7)	Amortización del sexto año (55.841,76)
	=DB(A2;A3;A4;7;7)	Amortización del séptimo año, calculando sólo 5 meses (15.845,10)

DDB

Devuelve la depreciación de un bien en un período específico con el método de depreciación por doble disminución de saldo u otro método que se especifique.

Sintaxis

DDB(costo,valor_residual,vida,período,factor)

Costo es el costo inicial del bien.

Valor_residual es el valor al final de la depreciación.

Vida es el número de períodos durante los cuales se produce la amortización del bien (también conocido como vida útil del bien).

Período es el período para el que se desea calcular la depreciación. Debe usar los mismos valores que el argumento vida.

Factor es la tasa a la que disminuye el saldo. Si el argumento factor se omite, se calculará como 2 (el método de amortización con una tasa doble de disminución del saldo).

Importante Los cinco argumentos deben ser números positivos.

Observaciones

• El método de depreciación por doble disminución del saldo calcula la depreciación a una tasa acelerada. La depreciación es más alta durante el primer período y disminuye en períodos sucesivos. La función DDB usa la fórmula siguiente para calcular la depreciación para un período:

costo - valor residual(depreciación total en períodos anteriores) * factor / vida

- Si no desea usar el método de depreciación por doble disminución del saldo, cambie el argumento factor.
- Utilice la función DVS si desea pasar al método de depreciación lineal cuando la depreciación sea mayor que el cálculo de disminución del saldo.

Ejemplo

	A	В
1	Datos	Descripción
2	2400	Costo inicial
3	300	Valor residual
4	10	Vida en años
	Fórmula	Descripción (Resultado)
	=DDB (A2;A3;A4*365;1)	Amortización del primer día. Microsoft Excel asume automáticamente que factor es 2 (1,32)
	=DDB (A2;A3;A4*12;1;2)	Amortización del primer mes (40,00)
	=DDB(A2;A3;A4;1;2)	Amortización del primer año (480,00)
	=DDB (A2;A3;A4;2;1,5)	Amortización del segundo año, utilizando un factor de 1,5 en lugar del método de depreciación por doble disminución del saldo
	=DDB(A2;A3;A4;10)	Amortización del décimo año. Microsoft Excel asume automáticamente que factor es 2 (22,12).

Nota Los resultados se redondean con dos decimales.

DECIMAL

Redondea un número al número de decimales especificado, da formato al número con el formato decimal usando comas y puntos, y devuelve el resultado como texto.

Sintaxis

DECIMAL(**número**;decimales;no separar millares)

Número es el número que desea redondear y convertir en texto.

Decimales es el número de dígitos a la derecha del separador decimal.

No_separar_millares es un valor lógico que, si es VERDADERO, impide que DECIMAL incluya un separador de millares en el texto devuelto.

Observaciones

- Los números en Microsoft Excel nunca pueden tener más de 15 dígitos significativos, pero el argumento decimales puede tener hasta 127 dígitos.
- Si decimales es negativo, el argumento número se redondea hacia la izquierda del separador decimal.
- Si omite el argumento decimales, se calculará como 2.
- Si el argumento no_separar_millares es FALSO o se omite, el texto devuelto incluirá el separador de millares.
- La principal diferencia entre dar formato a una celda que contiene un número con el comando Celdas del menú Formato y dar formato a un número directamente con la función DECIMAL es que DECIMAL convierte el resultado en texto. Un número que recibe formato con el comando Celdas sigue siendo un número.

Ejemplo

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

DERECHA

También se aplica a:

DERECHAB

DERECHA devuelve el último carácter o caracteres de una cadena de texto, según el número de caracteres que el usuario especifica.

DERECHAB devuelve el último carácter o caracteres de una cadena de texto, según el número de bytes que el usuario especifica. Esta función se utiliza con los caracteres de dos bytes.

Sintaxis

DERECHA(texto;núm_de_caracteres)

DERECHAB(texto,núm_bytes)

Texto es la cadena de texto que contiene los caracteres que desea extraer.

Núm_de_caracteres especifica el número de caracteres que desea extraer con DERECHA.

Núm_bytes especifica el número de caracteres que desea extraer con DERECHAB, basados en bytes.

Observaciones

- Núm_de_caracteres debe ser mayor o igual que cero.
- Si núm_de_caracteres es mayor que la longitud del texto, DERECHA devolverá todo el texto.
- Si núm_de_caracteres se omite, se calculará como 1.

Ejemplo (DERECHA)

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	Precio de venta	
3	Número de acción	
	Fórmula	Descripción (Resultado)
	=DERECHA(A2;5)	Los últimos 5 caracteres de la primera cadena (Precio)
	=DERECHA(A3)	El último carácter de la segunda cadena (n)
Ejemplo (DERECHAB)		
:DERE	CHAB("東京都",2) equ	uivale a " 者β"

DESREF

Devuelve una referencia a un rango que es un número de filas y de columnas de una celda o rango de celdas. La referencia devuelta puede ser una celda o un rango de celdas. Puede especificar el número de filas y el número de columnas a devolver.

Sintaxis

DESREF(ref;filas;columnas;alto;ancho)

Ref es la referencia en la que desea basar la desviación. Ref debe referirse a una celda o rango de celdas adyacentes; en caso contrario, DESREF devuelve el valor de error #iVALOR!

Filas es el número de filas, hacia arriba o hacia abajo, al que desea que haga referencia la celda superior izquierda. Si el argumento filas es 5, la celda superior izquierda de la referencia pasa a estar cinco filas más abajo de la referencia. Filas puede ser positivo (lo que significa por debajo de la referencia de inicio) o negativo (por encima).

Columnas es el número de columnas, hacia la derecha o izquierda, al que desea que haga referencia la celda superior izquierda del resultado. Si el argumento columnas es 5, la celda superior izquierda de la referencia pasa a estar cinco columnas hacia la derecha de la referencia. Columnas puede ser positivo (lo que significa a la derecha de la referencia de inicio) o negativo (a la izquierda).

Alto es el alto, en número de filas, que desea que tenga la referencia devuelta. El alto debe ser un número positivo.

Ancho es el ancho, en número de columnas, que desea que tenga la referencia devuelta. El argumento ancho debe ser un número positivo.

Observaciones

- Si los argumentos filas y columnas colocan la referencia más allá del borde de la hoja de cálculo, DESREF devuelve el valor de error #iREF!
- Si los argumentos alto o ancho se omiten, los valores predeterminados serán los del argumento ref.
- DESREF en realidad no desplaza celdas ni modifica la selección, simplemente devuelve una referencia. Se puede utilizar la función DESREF con cualquier función que necesite una referencia como argumento. Por ejemplo, la fórmula SUMA(DESREF(C2;1;2;3;1)) calcula el valor total de un rango de tres filas por una columna que se encuentra por debajo una fila y dos columnas a la derecha de la celda C2.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=DESREF(C3;2;3;1;1)	Muestra el valor en la celda F5 (0)
3	=SUMA(DESREF(C3:E5;-1;0;3;3))	Suma el rango C2:E4 (0)
4	=DESREF(C3:E5;0;-3;3;3)	Devuelve un error porque la referencia no está en la hoja de cálculo (#iREF!)

DESVEST

Calcula la desviación estándar en función de un ejemplo. La desviación estándar es la medida de la dispersión de los valores respecto a la media (valor promedio).

Sintaxis

DESVEST(**número1**; número2; ...)

Número1, número2, ... son de 1 a 30 argumentos numéricos correspondientes a una muestra de una población. También puede utilizar una matriz única o una referencia matricial en lugar de argumentos separados con punto y coma.

Observaciones

- DESVEST parte de la hipótesis de que los argumentos representan la muestra de una población. Si sus datos representan la población total, utilice DESVESTP para calcular la desviación estándar.
- La desviación estándar se calcula utilizando los métodos "no sesgada" o "n-1".
- DESVEST utiliza la fórmula siguiente:

$$\sqrt{\frac{n\sum x^2 - \left(\sum x\right)^2}{n(n-1)}}$$

$$\sqrt{\frac{n\sum x^2 - \left(\sum x\right)^2}{n(n-1)}}$$

 Se pasan por alto los valores lógicos como VERDADERO y FALSO y el texto. Si los valores lógicos y el texto no deben pasarse por alto, utilice la función de hoja de cálculo DESVESTA.

Ejemplo

Supongamos que 10 herramientas forjadas en las misma máquina durante el mismo proceso de producción son elegidas como una muestra aleatoria y medimos su resistencia a la ruptura.

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Resistencia	
2	1345	
3	1301	
4	1368	
5	1322	
6	1310	
7	1370	
8	1318	
9	1350	
10	1303	
11	1299	
	Fórmula	Descripción (Resultado)
	=DESVEST(A2:A11)	Desviación estándar de la resistencia a la rotura (27,46391572)

DESVESTA

Calcula la desviación estándar en función de un ejemplo. La desviación estándar es la medida de la dispersión de los valores respecto a la media (valor promedio). Se incluyen en el cálculo los valores de texto y lógicos como VERDADERO y FALSO.

Sintaxis

DESVESTA(ref1;ref2;...)

49

Ref1, ref2, ... son de 1 a 30 valores correspondientes a una muestra de una población. También puede utilizar una matriz única o una referencia matricial en lugar de argumentos separados con punto y coma.

Observaciones

- DESVESTA asume que los argumentos son una muestra de la población. Si los datos representan toda la población, debe calcular la desviación estándar utilizando DESVESTPA.
- Los argumentos que contengan VERDADERO se evaluarán como 1; los argumentos que contengan texto o FALSO se evaluarán como 0 (cero). Si el cálculo no debe incluir texto o valores lógicos, utilice la función de hoja de cálculo DESVEST.
- La desviación estándar se calcula utilizando los métodos "no sesgada" o "n-1".
- DESVESTA utiliza la fórmula siguiente:

$$\sqrt{\frac{n\sum x^2 - \left(\sum x\right)^2}{n(n-1)}}$$

Ejemplo

Supongamos que 10 herramientas forjadas en las misma máquina durante el mismo proceso de producción son elegidas como una muestra aleatoria y medimos su resistencia a la ruptura.

	A
1	Resistencia
2	1345
3	1301
4	1368
5	1322
6	1310
7	1370
8	1318
9	1350
10	1303
11	1299
	Eármula

Fórmula	Descripción (Resultado)
=DESVESTA (A2:A11)	Desviación estándar de la resistencia a la rotura de todas las herramientas (27,46391572)

Profesor: WILSON A. PRIETO H.

50

DESVESTP

Calcula la desviación estándar de la población total determinada por los argumentos. La desviación estándar es la media de la dispersión de los valores respecto a la media (valor promedio).

Sintaxis

DESVESTP(número1; número2; ...)

Número1, número2, ... son de 1 a 30 argumentos numéricos correspondientes a una población. También puede utilizar una matriz única o una referencia matricial en lugar de argumentos separados con punto y coma.

 Se pasan por alto los valores lógicos, como VERDADERO y FALSO, y de texto. Si los valores lógicos y el texto no se deben pasar por alto, utilice la función de hoja de cálculo DESVESTA.

Observaciones

- DESVESTP parte de la hipótesis de que los argumentos representan la población total. Si sus datos representan una muestra de la población, utilice DESVESTP para calcular la desviación estándar.
- Cuando el tamaño de las muestras es importante, las funciones DESVEST y DESVESTP devuelven aproximadamente el mismo valor.
- La desviación estándar se calcula utilizando los métodos "sesgado" o "n".
- DESVESTP utiliza la fórmula siguiente:

$$\sqrt{\frac{n\sum x^2 - \left(\sum x\right)^2}{n^2}}$$

Ejemplo

	A	
1	Resistencia	
2	1345	
3	1301	
4	1368	
5	1322	
6	1310	
7	1370	
8	1318	
9	1350	
10	1303	
11	1299	
	Fórmula	
	=DESVESTP (A2:A11)	

DESVESTPA

Calcula la desviación estándar en función de toda la población dada como argumentos incluyendo texto y valores lógicos. La desviación estándar es la medida de la dispersión de los valores respecto a la media (valor promedio).

Sintaxis

DESVESTPA(ref1;ref2;...)

Ref1, ref2, ... son de 1 a 30 valores correspondientes a una población. También puede utilizar una matriz única o una referencia matricial en lugar de argumentos separados con punto y coma.

Observaciones

- DESVESTPA asume que los argumentos son toda la población. Si los datos representan una muestra de la población, debe calcular la desviación estándar con DESVESTA.
- Los argumentos que contengan VERDADERO se evaluarán como 1; los argumentos que contengan texto o FALSO se evaluarán como 0 (cero). Si el cálculo no debe incluir texto o valores lógicos, utilice la función de hoja de cálculo STDEVP.
- En el caso de muestras de gran tamaño, DESVESTA y DESVESTPA devolverán aproximadamente los mismos valores.
- La desviación estándar se calcula utilizando los métodos "sesgado" o "n".
- DESVESTPA utiliza la fórmula siguiente:

$$\sqrt{n\sum_{n}x^{2}-\left(\sum_{n}x\right)^{2}}$$

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

_	A	
1	Resistencia	
2	1345	
3	1301	
4	1368	
5	1322	
6		
	1310	
7	1370	
8	1318	
9	1350	
10	1303	
11	1299	
	Fórmula	
	=DESVESTPA (A2:A11)	

DESVIA2

Devuelve la suma de los cuadrados de las desviaciones de los puntos de datos a partir de la media de la muestra.

Sintaxis

DESVIA2(número1; número2; ...)

Número1, número2, ... son de 1 a 30 argumentos cuya suma de las desviaciones cuadradas desea calcular. También puede utilizar una matriz única o una referencia matricial en lugar de argumentos separados con punto y coma.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contienen números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.

Profesor: WILSON A. PRIETO H.

La ecuación para la suma de las desviaciones cuadradas es:

DESVIA2 =
$$\sum (x - \bar{x})^2$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

_	A					
1	Datos					
2	4					
3	5					
4	8					
5						
	7	-		-	-	
6	11	_	-	_	-	-
7	4					
8	3					
	Fórmula	Descripció	Descripción (Resultado)	Descripción (Resultado)	Descripción (Resultado)	Descripción (Resultado)
	=DESVIA2 (A2:A8)	de la muesti	de la muestra (48)	de la muestra (48)	de la muestra (48)	Suma de los cuadrados de las desviaciones de datos anteriores por encima de de la muestra (48)

DESVPROM

Devuelve el promedio de las desviaciones absolutas de la media de los puntos de datos. DESVPROM mide la dispersión de los valores en un conjunto de datos.

Sintaxis

DESVPROM(número1;número2;...)

Número1, número2, ... son de 1 a 30 argumentos cuyo promedio de las desviaciones absolutas desea calcular. También puede utilizar una matriz única o una referencia matricial en lugar de argumentos separados con punto y coma.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- La ecuación para la desviación media es:

DESVPROM está influida por la unidad de medida de los datos introducidos.

Ejemplo

Profesor: WILSON A. PRIETO H.

$$\frac{1}{n}\sum |x-\overline{x}|$$

DESVPROM está influida por la unidad de medida de los datos introducidos.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	4	
3	5	
4	6	
5	7	
6	5	
7	4	
8	3	
	Fórmula	
	=DESVPROM (A2:A8)	

DIA

Devuelve el día de una fecha, representada por un número de serie. El día se expresa como un número entero comprendido entre 1 y 31.

Sintaxis

DIA(núm_de_serie)

Núm_de_serie es la fecha del día que intenta buscar. Las fechas deben introducirse mediante la función FECHA o como resultados de otras fórmulas o funciones. Por ejemplo, utilice FECHA(2008;5;23) para el día 23 de mayo de 2008. Pueden producirse problemas si <u>las fechas se introducen como texto</u>.

Observaciones

Microsoft Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.

Los valores que devuelven las funciones AÑO, MES Y DIA serán valores gregorianos independientemente del formato de visualización del valor de fecha suministrado. Por ejemplo, si el formato de visualización de la fecha suministrada es <u>Hijri</u>, los valores devueltos para las funciones AÑO, MES Y DIA serán valores asociados con la fecha gregoriana equivalente.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

DIAS360

Calcula el número de días entre dos fechas basándose en un año de 360 días (doce meses de 30 días) que se utiliza en algunos cálculos contables. Use esta función para facilitar el cálculo de pagos si su sistema de contabilidad se basa en 12 meses de 30 días.

Sintaxis

DIAS360(fecha_inicial;fecha_final;método)

Fecha_inicial y fecha_final son las dos fechas entre las que desea calcular el número de días. Si la fecha_inicial es posterior a la fecha_final, DIAS360 devuelve un número negativo. Las fechas deben introducirse mediante la función FECHA o como resultados de otras fórmulas o funciones. Por ejemplo, utilice FECHA(2008;5;23) para el día 23 de mayo de 2008. Pueden producirse problemas si las fechas se introducen como texto.

Método es un valor lógico que especifica si se utilizará el método de cálculo europeo o americano.

Método	Modo de cálculo
FALSO u omitido	Método US (NASD). Si la fecha inicial es el 31 del mes, se convierte en el 30 del mismo mes. Si la fecha final es el 31 del mes y la fecha inicial es anterior al 30, la fecha final se convierte en el 1 del mes siguiente; de lo contrario la fecha final se convierte en el 30 del mismo mes.
VERDADERO	Método europeo. Las fechas iniciales o finales que corresponden al 31 del mes se convierten en el 30 del mismo mes.

DIASEM

Devuelve el día de la semana correspondiente al argumento núm_de_serie. El día se devuelve como un número entero entre 1 (domingo) y 7 (sábado).

Sintaxis

DIASEM(núm de serie;tipo)

Núm_de_serie es un número secuencial que representa la fecha del día que intenta buscar. Las fechas deben introducirse mediante la función FECHA o como resultados de otras fórmulas o funciones. Por ejemplo, utilice FECHA(2008;5;23) para el día 23 de mayo de 2008. Pueden producirse problemas si <u>las fechas se introducen como texto</u>.

Tipo es un número que determina el tipo de valor que debe devolverse.

Tipo	Número devuelto
1 u omitido	Números del 1 (domingo) al 7 (sábado). Igual que en versiones anteriores de Microsoft Excel.
2	Números del 1 (lunes) al 7 (domingo).
3	Números del 0 (lunes) al 6 (domingo).

Observación

Microsoft Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	l .
Datos	
14-2-2008	
Fórmula	Descripción (Resultado)
=DIASEM(A2)	Día de la semana, con los números 1 (domingo) a 7 (sábado) (5)
=DIASEM(A2;2)	Día de la semana, con los números 1 (lunes) a 7 (domingo) (4)
=DIASEM(A2;3)	Día de la semana, con los números 0 (lunes) a 6 (domingo) (3)
	14-2-2008 Fórmula =DIASEM(A2) =DIASEM(A2;2)

DIRECCION

Crea una referencia de celda con formato de texto, a partir de los números de fila y de columna especificado

Sintaxis

DIRECCION(fila;columna;abs;a1;hoja)

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

Fila es el número de fila que se utiliza en la referencia de celda.

Columna es el número de columna que se utiliza en la referencia de celda.

Abs especifica el tipo de referencia que devuelve.

Si abs es	Devuelve este tipo de referencia
1 u omitido	Absoluta
2	Fila absoluta, columna relativa
3	Fila relativa, columna absoluta
4	Relativa

A1 es un valor lógico que especifica el estilo de referencia A1 o L1C1. Si A1 es VERDADERO o se omite, DIRECCION devuelve una referencia estilo A1; si es FALSO, DIRECCION devuelve una referencia estilo L1C1.

Hoja es texto que especifica el nombre de la hoja de cálculo o que se utilizará como referencia externa. Si se omite hoja, no se utilizará ningún nombre de hoja.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=DIRECCION(2;3)	Referencia absoluta (\$C\$2)
3	=DIRECCION(2;3;2)	Fila absoluta, columna relativa (C\$2)
4	=DIRECCION(2;3;2;FALSO)	Fila absoluta; columna relativa del estilo de referencia L1C1 (L2C[3])
6	=DIRECCION(2;3;1;FALSO;"[Libro1] Hoja1")	Referencia absoluta a otro libro y hoja de cálculo ([Libro1] Hoja1!L2C3)
	=DIRECCION(2;3;1;FALSO;"HOJA EXCEL")	Referencia absoluta a otra hoja de cálculo ('HOJA EXCEL'! L2C3)

DIST.WEIBULL

Devuelve la distribución de Weibull. Utilice esta distribución en los análisis de fiabilidad, para establecer, por ejemplo, el período de vida de un componente hasta que presenta un fallo.

Sintaxis

DIST.WEIBULL(x;alfa;beta;acumulado)

X es el valor con el que desea evaluar la función.

Profesor: WILSON A. PRIETO H.

58

Alfa es un parámetro de la distribución.

Beta es un parámetro de la distribución.

Acumulado determina la forma de la función.

Observaciones

- Si los argumentos x, alfa o beta no son numéricos, DIST.WEIBULL devuelve el valor de error #iVALOR!
- Si x < 0, DIST.WEIBULL devuelve el valor de error #iNUM!
- Si alfa ≤ 0 o si beta ≤ 0, DIST.WEIBULL devuelve el valor de error #iNUM!
- La ecuación para la función de distribución acumulativa de Weibull es:

$$F(x;\alpha,\beta) = 1 - e^{-(x/\beta)^{\alpha}}$$

• La ecuación para la función de densidad de probabilidad de Weibull:

$$f(x;\alpha,\beta) = \frac{\alpha}{\beta^{\alpha}} x^{\alpha-1} e^{-(x|\beta)^{\alpha}}$$

• Cuando alfa = 1, DIST.WEIBULL devuelve la distribución exponencial con:

$$A = \frac{1}{B}$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	105	Valor con el que se evalúa la función
3	20	Parámetro alfa de la distribución
4	100	Parámetro beta de la distribución
	Fórmula	Descripción (Resultado)
	=DIST.WEIBULL (A2;A3;A4;VERDADERO)	Función de distribución acumulativa Weibull para los términos anteriores (0,929581)
	=DIST.WEIBULL(A2;A3;A4;FALSO)	Función de densidad de probabilidad Weibull para los términos anteriores (0,035589)

DISTR.BETA

Devuelve la probabilidad para una variable aleatoria continua siguiendo una función de densidad de probabilidad beta acumulativa. La función de probabilidad beta acumulativa se usa generalmente para estudiar las variaciones, a través de varias muestras, de un porcentaje que representa algún fenómeno, por ejemplo, el tiempo diario que la gente dedica a mirar televisión.

Sintaxis

DISTR.BETA(x;alfa;beta;A;B)

X es el valor, dentro del intervalo [A, B] con el que se evalúa la función.

Alfa es un parámetro de la distribución.

Beta es un parámetro de la distribución.

A es un límite inferior opcional del intervalo de x.

B es un límite superior opcional del intervalo de x.

Observaciones

- Si uno de los argumentos no es numérico, DISTR.BETA devuelve el valor de error #iVALOR!
- Si alfa ≤ 0 o si beta ≤ 0 , DISTR.BETA devuelve el valor de error #iNUM!
- Si x < A, x > B, o si A = B, BETADIST devuelve el valor de error #iNUM!.
- Si pasa omite los valores para A y B, DISTR.BETA usa la distribución beta acumulada estándar, de manera que A = 0 y B = 1.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	А	В
1	Datos	Descripción
2	2	Valor con el que se evalúa la función
3	8	Parámetro de la distribución
4	10	Parámetro de la distribución
5	1	Límite inferior
6	3	Límite superior
	Fórmula	Descripción (Resultado)
	=DISTR.BETA (A2;A3;A4;A5;A6)	Función de densidad de probabilidad beta acumulativa para los parámetros anteriores (0,685470581)

DISTR.BETA.INV

Devuelve, para una probabilidad dada, el valor de la variable aleatoria siguiendo una distribución beta. Es decir, si el argumento probabilidad = DISTR.BETA(x;...), entonces DISTR.BETA.INV(probabilidad;...) = x. La distribución beta acumulada puede emplearse en la organización de proyectos para crear modelos con fechas de finalización probables, de acuerdo con un plazo de finalización y variabilidad esperados.

Sintaxis

DISTR.BETA.INV(probabilidad;alfa;beta;A;B)

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

Probabilidad es una probabilidad asociada con la distribución beta.

Alfa es un parámetro de la distribución.

Beta es un parámetro de la distribución.

A es un límite inferior opcional del intervalo de x.

B es un límite superior opcional del intervalo de x.

Observaciones

- Si uno de los argumentos no es numérico, DISTR.BETA.INV devuelve el valor de error #iVALOR!
- Si alfa ≤ 0 o si beta ≤ 0 , DISTR.BETA.INV devuelve el valor de error #iNUM!
- Si probabilidad > 0 o si probabilidad ≤ 1, DISTR.BETA.INV devuelve el valor de error #iNUM!
- Si omite los valores para A y B, DISTR.BETA.INV devuelve el valor estándar de la distribución acumulativa, A = 0 y B = 1.

DISTR.BETA.INV usa una técnica iterativa para calcular la función. Dado un valor de probabilidad, DISTR.BETA.INV itera hasta que el resultado tenga una exactitud de \pm 3x10-7. Si DISTR.BETA.INV no converge después de 100 iteraciones, la función devuelve el valor de error #N/A.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	0,685470581	Probabilidad asociada con la distribución beta
3	8	Parámetro de la distribución
4	10	Parámetro de la distribución
5	1	Límite inferior
6	3	Límite superior
	Fórmula	Descripción (Resultado)
	=DISTR.BETA.INV (A2;A3;A4;A5;A6)	Inversa de la función de probabilidad beta acumulativa para los parámetros anteriores (2)

DISTR.BINOM

Devuelve la probabilidad de una variable aleatoria discreta siguiendo una distribución binomial. Utilice DISTR.BINOM en problemas con un número fijo de pruebas o ensayos, cuando los resultados de un ensayo son sólo éxito o fracaso, cuando los ensayos son independientes y cuando la probabilidad de éxito es constante durante todo el experimento. Por ejemplo, DISTR.BINOM puede calcular la probabilidad de que dos de los próximos tres bebés que nazcan sean hombres.

61

Profesor: WILSON A. PRIETO H.

Sintaxis

DISTR.BINOM(núm_éxito;ensayos;prob_éxito;acumulado)

Núm_éxito es el número de éxitos en los ensayos.

Ensayos es el número de ensayos independientes.

Prob éxito es la probabilidad de éxito en cada ensayo.

Acumulado es un valor lógico que determina la forma de la función. Si el argumento acumulado es VERDADERO, DISTR.BINOM devuelve la función de distribución acumulada, que es la probabilidad de que exista el máximo número de éxitos; si es FALSO, devuelve la función de masa de probabilidad, que es la probabilidad de que un evento se reproduzca un número de veces igual al argumento núm_éxito.

Observaciones

- Los argumentos núm éxito y ensayos se truncan a enteros.
- Si el argumento núm_éxito, ensayos o prob_éxito no es numérico, DISTR.BINOM devuelve el valor de error #iVALOR!
- Si el argumento núm_éxito < 0 o si núm_éxito > ensayos, DISTR.BINOM devuelve el valor de error #iNUM!
- Si el argumento prob_éxito < 0 o si prob_éxito > 1, DISTR.BINOM devuelve el valor de error #iNUM!
- La función de masa de probabilidad binomial es:

$$b(x;n,p) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

donde:

$$\binom{n}{x}$$

es COMBINAT(n; x).

La distribución binomial acumulada es:

$$B(x;n,p) = \sum_{y=0}^{n} b(y;n,p)$$

Ejemplo

	А	В
1	Datos	Descripción
2	6	Número de éxitos de los ensayos
3	10	Número de ensayos independientes
4	0.5	Probabilidad de éxito de cada ensayo
	Fórmula	Descripción (Resultado)
	=DISTR.BINOM (A2;A3;A4;FALSO)	Probabilidad de que exactamente 6 de 10 ensayos tengan éxito (0,205078)

DISTR.CHI

Devuelve la probabilidad de una variable aleatoria continua siguiendo una distribución chi cuadrado de una sola cola. La distribución $\gamma 2$ está asociada a una prueba $\gamma 2$. Utilice la prueba $\gamma 2$ para comparar los valores observados con los esperados. Por ejemplo, un experimento genético podría estar basado en la hipótesis de que la próxima generación de plantas presentará un conjunto determinado de colores. Al comparar los resultados observados con los resultados esperados, puede decidir si su hipótesis original es válida.

Sintaxis

DISTR.CHI(x;grados_de_libertad)

X es el valor al que desea evaluar la distribución.

Grados_de_libertad es el número de grados de libertad.

Observaciones

- Si uno de los argumentos no es numérico, DISTR.CHI devuelve el valor de error #iVALOR!
- Si el argumento x es negativo, DISTR.CHI devuelve el valor de error #iNUM!
- Si el argumento grados_de_libertad no es un entero, se trunca.
- Si el argumento grados_de_libertad < 1 o si grados_de_libertad ≥ 10^10, DISTR.CHI devuelve el valor de error #iNUM!
- DISTR.CHI se calcula como DISTR.CHI = P(X>x), donde X es una variable aleatoria de y2.

Ejemplo

Profesor: WILSON A. PRIETO H.

	A	В
1	Datos	Descripción
2	18.307	Valor al que desea evaluar la distribución
3	10	Grados de libertad
Fórmula Descripción (Resultado)		Descripción (Resultado)
	=DISTR.CHI (A2;A3)	Probabilidad de una sola cola de una distribución chi cuadrado para los términos anteriores (0,050001)

DISTR.EXP

Devuelve la distribución exponencial. Use DISTR.EXP para establecer el tiempo entre dos sucesos, tal como el tiempo que tarda una máquina de cajero automático en entregar efectivo. Por ejemplo, la función DISTR.EXP puede usarse para determinar la probabilidad de que el proceso tarde un minuto como máximo.

Sintaxis

DISTR.EXP(x;lambda;acum)

X es el valor de la función.

Lambda es el valor del parámetro.

Acum es un valor lógico que indica qué forma de la función exponencial debe proporcionarse. Si el argumento acum es VERDADERO, DISTR.EXP devuelve la función de distribución acumulada; si es FALSO, devuelve la función de densidad de la probabilidad.

Observaciones

- Si los argumentos x o lambda no son numéricos, DISTR.EXP devuelve el valor de error #iVALOR!
- Si x < 0, DISTR.EXP devuelve el valor de error #iNUM!
- Si lambda ≤ 0, DISTR.EXP devuelve el valor de error #iNUM!
- La ecuación para la función de densidad de la probabilidad es:

$$f(x; \lambda) = \lambda e^{-\lambda x}$$

$$F(x; \lambda) = 1 - e^{-\lambda x}$$

Ejemplo

	А	В
1	Datos	Descripción
2	0,2	Valor de la función
3	10	Valor del parámetro
	Fórmula	Descripción (Resultado)
	=DISTR.EXP(A2;A3;VERDADERO)	Función de distribución exponencial acumulada (0,864665)
	=DISTR.EXP(0,2;10;FALSO)	Función de distribución exponencial de probabilidad (1,353353)

DISTR.F

Devuelve la distribución de probabilidad F. Esta función puede usarse para determinar si dos conjuntos de datos tienen diferentes grados de diversidad. Por ejemplo, podría examinar los resultados de los exámenes presentados por hombres y mujeres para entrar a la escuela secundaria, y determinar si la variabilidad entre las mujeres es diferente de la variabilidad entre los hombres.

Sintaxis

DISTR.F(x;grados_de_libertad;grados_de_libertad2)

X es el valor con el que desea evaluar la función.

Grados_de_libertad es el número de grados de libertad del numerador.

Grados_de_libertad2 es el número de grados de libertad del denominador.

Observaciones

- Si uno de los argumentos no es numérico, DISTR.F devuelve el valor de error #iVALOR!
- Si el argumento x es negativo, DISTR.F devuelve el valor de error #iNUM!
- Si el argumento grados_de_libertad1 o grados_de_libertad2 no es un entero, se trunca.
- Si grados_de_libertad < 1 o grados_de_libertad ≥ 10^10, DISTR.F devuelve el valor de error #iNUM!
- Si grados_de_libertad2 < 1 o grados_de_libertad2 ≥ 10^10, DISTR.F devuelve el valor de error #iNUM!
- DISTR.F se calcula como DISTR.F=P(F<x), donde F es una variable aleatoria con una distribución F.

Ejemplo

	A	В
1	Datos	Descripción
2	15,20675	Valor con el que se evalúa la función
3	6	Grados de libertad del numerador
4	4	Grados de libertad del denominador
	Fórmula	Descripción (Resultado)
	=DISTR.F(A2;A3;A4)	Distribución de probabilidad F para los términos anteriores (0,01)

DISTR.F.INV

Devuelve el inverso de la distribución de probabilidad F. Si el argumento p = DISTR.F(x,...), entonces DISTR.F.INV(p,...) = x.

La distribución F puede usarse en una prueba F que compare el grado de variabilidad en dos conjuntos de datos. Por ejemplo, podría analizar las distribuciones de ingresos en Venezuela y Colombia para determinar si ambos países tienen un grado de diversidad similar.

Sintaxis

DISTR.F.INV(probabilidad; grados de libertad1; grados de libertad2)

Probabilidad es una probabilidad asociada con la distribución F acumulada.

Grados_de_libertad1 es el número de grados de libertad del numerador.

Grados de libertad2 es el número de grados de libertad del denominador.

Observaciones

- Si uno de los argumentos no es numérico, DISTR.F.INV devuelve el valor de error #iVALOR!
- Si probabilidad < 0 o si probabilidad > 1, DISTR.F.INV devuelve el valor de error #iNUM!
- Si el argumento grados_de_libertad1 o grados_de_libertad2 no es un entero, se trunca.
- Si grados_de_libertad2 < 1 o si grados_de_libertad3 ≥ 10^10, DISTR.F.INV devuelve el valor de error #iNUM!
- Si grados_de_libertad2 < 1 o si grados_de_libertad2 ≥ 10^10, DISTR.F.INV devuelve el valor de error #iNUM!

DISTR.F.INV puede usarse para devolver valores críticos de la distribución F. Por ejemplo, el resultado de un cálculo AN.VAR generalmente incluye datos para la estadística F, la probabilidad F y el valor crítico F con un nivel de significación de 0,05. Use el nivel de significación como argumento probabilidad de DISTR.F.INV para devolver el valor crítico de F.

DISTR.F.INV usa una técnica iterativa para calcular la función. Dado un valor de probabilidad, DISTR.F.INV itera hasta que el resultado tenga una exactitud de \pm 3x10^-7. Si DISTR.F.INV no converge después de 100 iteraciones, la función devuelve el valor de error #N/A.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	0,01	Probabilidad asociada con la distribución F acumulada
3	6	Grados de libertad del numerador
4	4	Grados de libertad del denominador
	Fórmula	Descripción (Resultado)
	=DISTR.F.INV (A2;A3;A4)	Inverso de la distribución de probabilidad F para los términos anteriores (15,20675)

DISTR.GAMMA

Devuelve la probabilidad de una variable aleatoria siguiendo una distribución gamma. Utilice esta función para estudiar variables cuya distribución podría ser asimétrica. La distribución gamma es de uso corriente en análisis de las colas de espera.

Sintaxis

DISTR.GAMMA(x;alfa;beta;acumulado)

X es el valor al que desea evaluar la distribución.

Alfa es un parámetro de la distribución.

Beta es un parámetro de la distribución. Si beta = 1, DISTR.GAMMA devuelve la probabilidad de una variable aleatoria siguiendo una distribución gamma estándar.

Acum es un valor lógico que determina la forma de la función. Si el argumento acum es VERDADERO, DISTR.GAMMA devuelve la función de distribución acumulativa; si es FALSO, devuelve la función de densidad de probabilidad.

Observaciones

- Si los argumentos x, alfa o beta no son numéricos, DISTR.GAMMA devuelve el valor de error #iVALOR!
- Si el argumento x < 0, DISTR.GAMMA devuelve el valor de error #iNUM!
- Si el argumento alfa ≤ 0 o si el argumento beta ≤ 0, DISTR.GAMMA devuelve el valor de error #iNUM!
- La ecuación para la distribución gamma es:

$$f(x;\alpha,\beta) = \frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-\frac{x}{\beta}}$$

La distribución gamma estándar es:

$$f(x; \alpha) = \frac{x^{\alpha - 1} e^{-x}}{\Gamma(\alpha)}$$

Cuando el argumento alfa = 1, DISTR.GAMMA devuelve la distribución exponencial con:

$$\lambda = \frac{1}{\beta^2}$$

- Para un entero positivo n, cuando los argumentos alfa = n/2, beta = 2 y acumulado = VERDADERO, la función DISTR.GAMMA devuelve (1 - DISTR.CHI(x)) con n grados de libertad.
- Cuando alfa es un entero positivo, DISTR.GAMMA también se conoce como la distribución de Erlang.

Ejemplo

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	10	Valor al que desea evaluar la distribución
3	9	Parámetro alfa de la distribución
4	2	Parámetro beta de la distribución
	Fórmula	Descripción (Resultado)
	=DISTR.GAMMA(A2;A3;A4;FALSO)	Distribución gamma de probabilidad con los términos anteriores (0,032639)
	=DISTR.GAMMA (A2;A3;A4;VERDADERO)	Distribución gamma acumulada con los términos anteriores (0,068094)

DISTR.GAMMA.INV

Devuelve, para una probabilidad dada, el valor de la variable aleatoria siguiendo una distribución gamma acumulativa. Si p = DISTR.GAMMA(x,...), entonces DISTR.GAMMA.INV(p,...) = x.

Utilice esta función para estudiar variables cuya distribución podría ser asimétrica.

Sintaxis

DISTR.GAMMA.INV(prob;alfa;beta)

Prob es la probabilidad asociada con la distribución gamma.

Alfa es un parámetro de la distribución.

Beta es un parámetro de la distribución. Si beta = 1, DISTR.GAMMA.INV devuelve el valor de la variable aleatoria siguiendo una distribución gamma estándar.

Observaciones

- Si uno de los argumentos no es numérico, DISTR.GAMMA.INV devuelve el valor de error #iVALOR!
- Si prob < 0 o si prob > 1, DISTR.GAMMA.INV devuelve el valor de error #iNUM!
- Si alfa ≤ 0 o si beta ≤ 0 , DISTR.GAMMA.INV devuelve el valor de error #iNUM!

DISTR.GAMMA.INV utiliza una técnica iterativa para calcular la función. Dado un valor de probabilidad, DISTR.GAMMA.INV itera hasta que el resultado tenga una exactitud de \pm 3x10^-7. Si DISTR.GAMMA.INV no converge después de 100 iteraciones, la función devuelve el valor de error #N/A.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	0,068094	Probabilidad asociada con la distribución gamma
3	9	Parámetro alfa de la distribución
4	2	Parámetro beta de la distribución
	Fórmula	Descripción (Resultado)
	=DISTR.GAMMA.INV (A2;A3;A4)	Inversa de la distribución gamma acumulada para los términos anteriores (10)

DISTR.HIPERGEOM

Devuelve la probabilidad para una variable aleatoria discreta siguiendo una distribución hipergeométrica. La función DISTR.HIPERGEOM devuelve la probabilidad de obtener un número determinado de "éxitos" en una muestra, conocidos el tamaño de la muestra, el número de éxitos de la población y el tamaño de la población. Utilice DISTR.HIPERGEOM en problemas con una población finita, donde cada observación sea un éxito o un fracaso, y donde cada subconjunto de un tamaño determinado pueda elegirse con la misma posibilidad.

Sintaxis

DISTR.HIPERGEOM(muestra_éxito;núm_de_muestra;población_éxito;núm_de_población)

Muestra éxito es el número de éxitos en la muestra.

Núm de muestra es el tamaño de la muestra.

Profesor: WILSON A. PRIETO H.

Población éxito es el número de éxitos en la población.

Núm_de_población es el tamaño de la población.

Observaciones

- Todos los argumentos se truncan a enteros.
- Si uno de los argumentos no es numérico, DISTR.HIPERGEOM devuelve el valor de error #iVALOR!
- Si el argumento muestra_éxito < 0 o si muestra_éxito es mayor que el menor de los números entre el argumento núm_de_muestra o núm_de_población, DISTR.HIPERGEOM devuelve el valor de error #iNUM!
- Si el argumento muestra_éxito es menor que el mayor número entre 0 o (núm_de_muestra núm_de_población + población_éxito), DISTR.HIPERGEOM devuelve el valor de error #iNUM!
- Si el argumento núm_de_muestra < 0 o si núm_de_muestra > núm_de_población, DISTR.HIPERGEOM devuelve el valor de error #iNUM!
- Si el argumento población_éxito < 0 o si población_éxito > núm_de_población, DISTR.HIPERGEOM devuelve el valor de error #iNUM!
- Si el argumento núm_de_población < 0, DISTR.HIPERGEOM devuelve el valor de error #iNUM!
- La ecuación para la distribución hipergeométrica es:

$$P(X = x) = h(x; n, M, N) = \frac{\binom{M}{x} \binom{N - M}{n - x}}{\binom{N}{n}}$$

donde:

x = muestra_éxito

n = núm_de_muestra

M = población_éxito

N = núm_de_población

La función DISTR.HIPERGEOM se utiliza en muestreos sin reemplazo, a partir de una población finita.

Ejemplo

Una caja de bombones contiene 20 piezas. Ocho de ellas contienen caramelo y las 12 restantes contienen nueces. Si una persona selecciona 4 bombones al azar, la siguiente función devuelve la probabilidad de que exactamente 1 contenga caramelo.

Profesor: WILSON A. PRIETO H.

	A	В
1	Datos	Descripción
2	1	Número de éxitos en la muestra
3	4	Tamaño de la muestra
4	8	Número de éxitos en la población
5	20	Tamaño de la población
	Fórmula	Descripción (Resultado)
	=DISTR.HIPERGEOM (A2;A3;A4;A5)	Distribución hipergeométrica de la muestra y población anteriores (0,363261)

DISTR.LOG.INV

Devuelve el inverso de la probabilidad para una variable aleatoria siguiendo una distribución logarítmico-normal de x, donde ln(x) se distribuye normalmente con los parámetros media y desv_estándar. Si p = DISTR.LOG.NORM(x,...) entonces DISTR.LOG.INV(p,...) = x.

Use la distribución logarítmico-normal para analizar datos transformados logarítmicamente.

Sintaxis

DISTR.LOG.INV(probabilidad;media;desv_estándar)

Probabilidad es una probabilidad asociada con la distribución logarítmico-normal.

Media es la media de ln(x).

Desv_estándar es la desviación estándar de ln(x).

Observaciones

- Si uno de los argumentos es un valor no numérico, DISTR.LOG.INV devuelve el valor de error #iVALOR!
- Si probabilidad < 0 o probabilidad > 1, DISTR.LOG.INV devuelve el valor de error #iNUM!
- Si el argumento desv_estándar < 0, DISTR.LOG.INV devuelve el valor de error #iNUM!
- La inversa de la función de distribución logarítmico-normal es:

 ${\tt DISTR.LOG.INV}\left(p,\mu,\sigma\right) = e^{\left[\mu + \sigma \times \left(DSTR.NORMESTAND.INV\left(p\right)\right)\right]}$

Ejemplo

	A	В
1	Datos	Descripción
2	0,039084	Probabilidad asociada con la distribución logarítmico-normal
3	3,5	Media de In(x)
4	1,2	Desviación estándar de ln(x)
	Fórmula	Descripción (Resultado)
	=DISTR.LOG.INV (A2;A3;A4)	Inversa de la función de distribución logarítmico-normal acumulada para los términos anteriores (4,000014)

DISTR.LOG.NORM

Devuelve la probabilidad para una variable aleatoria continua siguiendo una distribución logarítmico-normal acumulativa de x, donde $\ln(x)$ se distribuye normalmente con los parámetros definidos por los argumentos media y desv_estándar. Utilice esta función para analizar datos que han sido transformados logarítmicamente.

Sintaxis

DISTR.LOG.NORM(x;media;desv_estándar)

X es el valor con el que desea evaluar la función.

Media es la media de In(x).

Desv_estándar es la desviación estándar de In(x).

Observaciones

- Si uno de los argumentos no es numérico, DISTR.LOG.NORM devuelve el valor de error #iVALOR!
- Si el argumento ≤ 0 o si desv_estándar ≤ 0, DISTR.LOG.NORM devuelve el valor de error #iNUM!
- La ecuación para la función de distribución logarítmica normal acumulada es:

DISTR.LOG.NORM
$$(x, \mu, \sigma)$$
 = DISTR.NORM.ESTAND $\left(\frac{\ln(x) - \mu}{\sigma}\right)$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

	A	В
1	Datos	Descripción
2	4	Valor al que debe evaluarse la función (x)
3	3,5	Media de In(x)
4	1,2	Desviación estándar de ln(x)
	Fórmula	Descripción (Resultado)
	=DISTR.LOG.NORM (A2;A3;A4)	Distribución logarítmico-normal acumulada a 4 con los términos anteriores (0,039084)

DISTR.NORM

Devuelve la distribución normal para la media y desviación estándar especificadas. Esta función tiene un gran número de aplicaciones en estadística, incluidas las pruebas de hipótesis.

Sintaxis

DISTR.NORM(x;media;desv_estándar;acum)

X es el valor cuya distribución desea obtener.

Media es la media aritmética de la distribución.

Desv_estándar es la desviación estándar de la distribución.

Acum es un valor lógico que determina la forma de la función. Si el argumento acum es VERDADERO, la función DISTR.NORM devuelve la función de distribución acumulada; si es FALSO, devuelve la función de masa de probabilidad.

Observaciones

- Si los argumentos media o desv_estándar no son numéricos, DISTR.NORM devuelve el valor de error #iVALOR!
- Si el argumento desv_estándar ≤ 0, la función DISTR.NORM devuelve el valor de error #iNUM!
- Si el argumento media = 0, desv_estándar = 1 y acumulado = VERDADERO, la función DISTR.NORM devuelve la distribución normal estándar, DISTR.NORM.ESTAND.
- La ecuación para la función de densidad normal (acumulado = FALSO) es:

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\left(\frac{(\nu-\mu)^2}{2\sigma^2}\right)}$$

 Cuando acumulado = VERDADERO, la fórmula es el entero desde el infinito negativo a x de la fórmula dada.

Ejemplo

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	42	Valor cuya distribución desea obtener
3	40	Media aritmética de la distribución
4	1,5	Desviación estándar de la distribución
	Fórmula	Descripción (Resultado)
	=DISTR.NORM (A2;A3;A4;VERDADERO)	Función de distribución acumulativa para los términos anteriores (0,908789)
	=DISTR.NORM(A2;A3;A4;FALSO)	Función de masa de probabilidad para los términos anteriores (0,10934005)

DISTR.NORM.ESTAND

Devuelve la función de distribución normal estándar acumulativa. La distribución tiene una media de 0 (cero) y una desviación estándar de uno. Use esta función en lugar de una tabla estándar de áreas de curvas normales.

Sintaxis

DISTR.NORM.ESTAND(z)

Z es el valor para el cual desea obtener la distribución.

Observaciones

- Si el argumento z no es numérico, DISTR.NORM.ESTAND devuelve el valor de error
- La ecuación para la función de densidad normal estándar es:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=DISTR.NORM.ESTAND(1,333333)	Función de distribución acumulativa normal a 1,333333 (0,908789)

DISTR.NORM.ESTAND.INV

Devuelve el inverso de la distribución normal estándar acumulativa. La distribución tiene una media de cero y una desviación estándar de uno.

Sintaxis

DISTR.NORM.ESTAND.INV(probabilidad)

Probabilidad es una probabilidad correspondiente a la distribución normal.

Observaciones

- Si el argumento probabilidad no es numérico, DISTR.NORM.ESTAND.INV devuelve el valor de error #iVALOR!
- Si probabilidad < 0 o si probabilidad > 1, DISTR.NORM.ESTAND devuelve el valor de error #iNUM!

La función DISTR.NORM.ESTAND.INV se calcula utilizando una técnica iterativa. Dado un valor de probabilidad, DISTR.NORM.ESTAND.INV itera hasta que el resultado tenga una exactitud de \pm 3x10^-7. Si DISTR.NORM.ESTAND.INV no converge después de 100 iteraciones, la función devuelve el valor de error #N/A.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=DISTR.NORM.ESTAND.INV (0,908789)	Inversa de la distribución normal estándar acumulativa, con una probabilidad de 0,908789 (1,3333)

DISTR.NORM.INV

Devuelve el inverso de la distribución acumulativa normal para la media y desviación estándar especificadas.

Sintaxis

DISTR.NORM.INV(probabilidad;media;desv_estándar)

Probabilidad es una probabilidad correspondiente a la distribución normal.

Media es la media aritmética de la distribución.

Desv_estándar es la desviación estándar de la distribución.

Observaciones

 Si uno de los argumentos no es numérico, DISTR.NORM.INV devuelve el valor de error #iVALOR!

- Si probabilidad < 0 o si probabilidad > 1, DISTR.NORM.INV devuelve el valor de error #iNUM!
- Si desv estándar ≤ 0, DISTR.NORM.INV devuelve el valor de error #iNUM!
- Si media = 0 y desv_estándar = 1, DISTR.NORM.INV utiliza la función de distribución normal estándar (vea DISTR.NORM.ESTAND.INV).

DISTR.NORM.INV se calcula utilizando una técnica iterativa. Dado un valor de probabilidad, DISTR.NORM.INV itera hasta que el resultado tenga una exactitud de \pm 3x10 $^-$ 7. Si DISTR.NORM.INV no converge después de 100 iteraciones, la función devuelve el valor de error #N/A.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	0,908789	Probabilidad correspondiente a la distribución normal
3	40	Media aritmética de la distribución
4	1,5	Desviación estándar de la distribución
	Fórmula	Descripción (Resultado)
	=DISTR.NORM.INV (A2;A3;A4)	Inversa de la distribución acumulativa normal para los términos anteriores (42)

DISTR.T

Devuelve los puntos porcentuales (probabilidad) de la distribución t de Student, donde un valor numérico (x) es un valor calculado de t para el que deben calcularse los puntos porcentuales. La distribución t de Student se utiliza para la comprobación de pruebas de hipótesis cuando el tamaño de la muestra es pequeño. Utilice esta función en lugar de una tabla de valores críticos para la distribución t.

Sintaxis

DISTR.T(x;grados_de_libertad;colas)

X es el valor numérico al que debe evaluarse la distribución.

Grados de libertad es un número entero que indica el número de grados de libertad.

Colas especifica el número de colas de la distribución que deben devolverse. Si colas = 1, DISTR.T devuelve la distribución de una cola. Si colas = 2, DISTR.T devuelve la distribución de dos colas.

Observaciones

- Si uno de los argumentos no es numérico, DISTR.T devuelve el valor de error #iVALOR!
- Si grados de libertad < 1, DISTR.T devuelve el valor de error #iNUM!
- Los argumentos grados de libertad y colas se truncan a enteros.

- Si el argumento colas es un número distinto de 1 ó 2, DISTR.T devuelve el valor de error #iNUM!
- DISTR.T se calcula como DISTR.T = p(x<X), donde X es una variable aleatoria que sigue la distribución t.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	1,96	Valor al que desea evaluar la distribución
3	60	Grados de libertad
	Fórmula	Descripción (Resultado)
	=DISTR.T(A2;A3;2)	Distribución de dos colas (0,054644927 o 5,46 por ciento)
	=DISTR.T(A2;A3;1)	Distribución de una cola (0,027322463 o 2,73 por ciento)

Nota Para ver el número como un porcentaje, seleccione la celda y haga clic en **Celdas** en el menú **Formato**. Haga clic en la ficha **Número** y, a continuación, en **Porcentaje** en el cuadro **Categoría**.

DISTR.T.INV

Devuelve el valor t de la distribución t de Student como función de la probabilidad y los grados de libertad.

Sintaxis

DISTR.T.INV(probabilidad;grados_de_libertad)

Probabilidad es la probabilidad asociada con la distribución t de Student de dos colas.

Grados_de_libertad es el número de grados de libertad que caracteriza la distribución.

Observaciones

- Si uno de los argumentos no es numérico, DISTR.T.INV devuelve el valor de error #iVALOR!
- Si probabilidad < 0 o si probabilidad > 1, DISTR.T.INV devuelve el valor de error #iNUM!
- Si el argumento grados_de_libertad no es un entero, se trunca.
- Si grados_de_libertad < 1, DISTR.T.INV devuelve el valor de error #iNUM!
- DISTR.T.INV se calcula como DISTR.T.INV = p(t<X), donde X es una variable aleatoria que sigue la distribución t.
- Puede devolverse un valor t de una cola reemplazando probabilidad por 2*probabilidad.
 Para una probabilidad de 0,05 y grados de libertad de 10, el valor de dos colas se calcula con DISTR.T.INV(0,05;10), que devuelve 2,28139. El valor de una cola para la misma probabilidad y los mismos grados de libertad puede calcularse con DISTR.T.INV(2*0,05;10), que devuelve 1,812462.

Nota En algunas tablas, la probabilidad se describe como (1-p).

• DISTR.T.INV se calcula utilizando una técnica iterativa. DISTR.T.INV se calcula utilizando una técnica iterativa.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	0,054645	Probabilidad asociada con la distribución t de Student de dos colas.
3 60 Grados de libertad		Grados de libertad
	Fórmula	Descripción (Resultado)
	=DISTR.T.INV(A2;A3)	Valor t de la distribución t de Student para los términos anteriores (1,959997462)

DVS

Devuelve la amortización de un bien durante un período especificado, inclusive un período parcial, usando el método de amortización acelerada con una tasa doble y según el coeficiente que especifique. Las iniciales DVS corresponden a disminución variable del saldo.

Sintaxis

DVS(costo;valor_residual;vida;período_inicial;período_final;factor; sin_cambios)

Costo es el costo inicial del bien.

Valor_residual es el valor al final de la depreciación.

Vida es el número de períodos durante los cuales se produce la depreciación del bien (también conocido como la vida útil del bien).

Período_inicial es el período inicial para el que desea calcular la depreciación. El argumento período inicial debe utilizar las mismas unidades que el argumento vida.

Período_final es el período final para el que desea calcular la depreciación. El argumento período final debe utilizar las mismas unidades que el argumento vida.

Factor es la tasa a la que disminuye el saldo. Si el argumento factor se omite, se calculará como 2 (el método de amortización con una tasa doble de disminución del saldo). Si no desea usar el método de depreciación por doble disminución del saldo, cambie el argumento factor. Para obtener una descripción del método de amortización o de depreciación por doble disminución del saldo, consulte DDB.

Sin_cambios es un valor lógico que especifica si deberá cambiar al método directo de depreciación cuando la depreciación sea mayor que el cálculo del saldo en disminución.

- Si el argumento sin_cambios es VERDADERO, Microsoft Excel no cambia al método directo de depreciación aun cuando ésta sea mayor que el cálculo del saldo en disminución.
- Si el argumento sin_cambios es FALSO o se omite, Excel cambia al método directo de depreciación cuando la depreciación es mayor que el cálculo del saldo en disminución.

Todos los argumentos, excepto el argumento sin cambios, deben ser números positivos.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

A	В
Datos	Descripción
2400	Coste inicial
300	Valor residual
10	Vida en años
Fórmula	Descripción (Resultado)
=DVS(A2;A3;A4*365;0;1)	Depreciación del primer día. Excel supone automáticamente que factor es 2 $(1,32)$.
=DVS(A2;A3;A4*12;0;1)	Depreciación del primer mes (40,00)
=DVS(A2;A3;A4;0;1)	Depreciación del primer año (480,00)
=DVS(A2;A3;A4*12;6;18)	Depreciación entre los meses seis y dieciocho (396,31)
=DVS (A2;A3;A4*12;6;18;1,5)	Depreciación entre los meses seis y dieciocho utilizando un factor de 1,5 en lugar del método de doble disminución del saldo (311,81)
=DV5(A2;A3;A4;0; 0,875; 1,5)	Depreciación del primer ejercicio fiscal en el que ha poseído el bien, suponiendo que las leyes fiscales limiten su depreciación al 150 por ciento de saldo en disminución. El bien se adquiere en medio del primer trimestre del ejercicio fiscal. (315,00)

Nota Los resultados se redondean a dos decimales.

ELEGIR

Utiliza el argumento núm_índice para devolver un valor de una lista de argumentos de valores. Utilice ELEGIR para seleccionar uno de los 29 valores posibles a partir del rango del argumento índice. Por ejemplo, si valor1 a valor 7 son los días de la semana, ELEGIR devuelve uno de los días cuando se utiliza un número entre 1 y 7 como argumento núm_índice .

Sintaxis

ELEGIR(**núm_índice**;**valor1**;valor2;...)

Núm_índice especifica el argumento de valor que se selecciona. El argumento núm_índice debe ser un número entre 1 y 29, o bien una fórmula o referencia a una celda que contenga un número entre 1 y 29.

Profesor: WILSON A. PRIETO H.

- 79
- Si núm_índice es 1, ELEGIR devuelve valor1; si es 2, ELEGIR devuelve valor2 y así sucesivamente.
- Si núm_índice es menor que 1 o mayor que el número del último valor de la lista, ELEGIR devuelve el valor de error #iVALOR!
- Si núm_índice es una fracción, se trunca al entero inferior antes de ser utilizada.

Valor1, valor2,... son de 1 a 29 argumentos de valores entre los cuales ELEGIR selecciona un valor o una acción que se ejecuta basándose en el argumento núm_índice. Los argumentos pueden ser números, referencias a celdas, nombres definidos, fórmulas, funciones o texto.

Observaciones

- Si núm índice es una matriz, cada valor se evaluará cuando se ejecute ELEGIR.
- Los argumentos de valor para ELEGIR pueden ser referencias de rango, así como valores individuales.

```
Por ejemplo, la fórmula:
=SUMA(ELEGIR(2;A1:A10;B1:B10;C1:C10))
evalúa:
```

=SUMA(B1:B10)

que después devuelve un valor basado en los valores del rango B1:B10.

La función ELEGIR se evalúa primero, devolviendo la referencia B1:B10. La función SUMA se evalúa a continuación utilizando B1:B10, que es el resultado de la función ELEGIR, como su argumento.

Ejemplo 1

	A	В
1	Datos	Datos
2	10	Clavos
3	20	Tornillos
4	30	Tuercas
5	Terminado	Pernos
	Fórmula	Descripción (Resultado)
	=ELEGIR(2;A2;A3;A4;A5)	Valor del segundo argumento A3 (2º)
	=ELEGIR(4;B2;B3;B4;B5)	Valor del cuarto argumento B5 (Pernos)

Ejemplo 2

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

¿Cómo?

	А	
1	Datos	
2	23	
3	45	
4	12	
5	10	
	Fórmula	Descripción (Resultad
	=SUMA(A2:ELEGIR(2;A3;A4;A5))	Suma el rango A2:A4 (80)

ENCONTRAR

También se aplica a:

ENCONTRARB

ENCONTRAR encuentra una cadena de texto (texto_buscado) dentro de otra (dentro_del_texto) y devuelve el número del carácter en el que aparece por primera vez texto_buscado desde el primer carácter de dentro_del_texto. También puede utilizar HALLAR para buscar una cadena de texto dentro de otra pero, a diferencia de HALLAR, ENCONTRAR distingue entre mayúsculas y minúsculas y no admite caracteres comodín.

ENCONTRARB encuentra una cadena de texto (texto_buscado) dentro de otra cadena de texto (dentro_del_texto) y devuelve el número de la posición inicial de texto_buscado, en función del número de bytes utilizado por cada carácter, desde el primer carácter de dentro_del_texto. Esta función se utiliza con los caracteres de dos bytes. También puede utilizar HALLARB para buscar una cadena de texto dentro de otra.

Sintaxis

ENCONTRAR(texto buscado; dentro del texto; núm inicial)

ENCONTRARB(texto_buscado,dentro_del_texto,núm_inicial)

Texto_buscado es el texto que desea encontrar.

Dentro_del_texto es el texto que a su vez contiene el texto que desea encontrar.

Núm_inicial especifica el carácter a partir del cual comenzará la búsqueda. El primer carácter de dentro del texto es el carácter número 1. Si omite núm inicial, se asume que es 1.

Utilice núm_inicial para saltar un número específico de caracteres. Por ejemplo, suponga que está utilizando la cadena de texto: "AYF0093.AtuendoParaJóvenes". Para encontrar el número de la primera "A" en la parte descriptiva de la cadena de texto, establezca núm_inicial igual a 8, de manera que la función no busque en la parte correspondiente al número de serie. ENCONTRAR comienza por el carácter 8, localiza texto_buscado en el siguiente carácter y devuelve el número 9. ENCONTRAR siempre devuelve el número de caracteres desde el principio de dentro_del_texto, contando los caracteres omitidos si núm inicial es mayor que 1.

Observaciones

- Si texto_buscado es "" (texto vacío), ENCONTRAR coincide con el primer carácter de la cadena de búsqueda (es decir, el carácter de núm_inicial o 1).
- Texto buscado no puede contener ningún carácter comodín.
- Si texto_buscado no aparece en dentro_del_texto, ENCONTRAR y ENCONTRARB devuelven el valor de error #iVALOR!
- Si núm_inicial no es mayor que cero, ENCONTRAR y ENCONTRARB devuelven el valor de error #iVALOR!
- Si núm_inicial es mayor que la longitud de dentro_del_texto, ENCONTRAR y ENCONTRARB devuelven el valor de error #iVALOR!

Ejemplo 1 (ENCONTRAR)

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Ejemplo 2 (ENCONTRAR)

	A	
1	Datos	
2	Aislante cerámico #124-TD45-87	
3	Alambre de cobre #12-671-6772	
4	Resistencias #116010	
	Fórmula	Descripción (Resultado)
	=EXTRAE(A2;1;ENCONTRAR(" #";A2;1)-1)	Extrae el texto de la posición 1 a la posición de "#" en la primera cadena anterior (Aislante cerámico)
	=EXTRAE(A3;1;ENCONTRAR("	Extrae el texto de la posición 1 a la posición de "#" en la segunda
	#";A3;1)-1)	cadena anterior (Alambre de cobre)

Ejemplo (ENCONTRARB)

En los siguientes ejemplos, ENCONTRAR devuelve 2 porque "" ocupa la segunda posición dentro de la cadena y ENCONTRARB devuelve 3 porque se cuenta cada carácter por sus bytes; el primer carácter tiene 2 bytes de modo que el segundo carácter comienza en byte 3.

```
=ENCONTRAR("京";"東京都") equivale a 2
=ENCONTRARB("京";"東京都") equivale a 3
```

ENTERO

Redondea un número hasta el entero inferior más próximo.

Sintaxis

ENTERO(número)

Número es el número real que desea redondear al entero inferior más próximo.

Ejemplo

	A	
1	Datos	
2	19,5	
	Fórmula	Descripción (Resultado)
	=ENTERO(8,9)	Redondea 8,9 a un valor inferior (8)
	=ENTERO(-8,9)	Redondea -8,9 a un valor inferior (-9)
	=A2-ENTERO(A2)	Devuelve la parte decimal de un número real positivo en la celda A2 (0,5).

Profesor: WILSON A. PRIETO H.

ERROR.TIPICO.XY

Vea también

Devuelve el error típico del valor de y previsto para cada x de la regresión. El error típico es una medida de la cuantía de error en el pronóstico del valor de y para un valor individual de x.

Sintaxis

ERROR.TIPICO.XY(conocido_y;conocido_x)

Conocido_y es una matriz o un rango de puntos de datos dependientes.

Conocido_x es una matriz o un rango de puntos de datos independientes.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si los argumentos conocido_y y conocido_x están vacíos o contienen un número diferente de puntos de datos, ERROR.TIPICO.XY devuelve el valor de error #N/A.
- La ecuación para el error típico del valor *y* pronosticado es:

$$S_{y \cdot s} = \sqrt{\left[\frac{1}{n(n-2)}\right] \left[n\sum y^2 - \left(\sum y\right)^2 - \frac{\left[n\sum xy - \left(\sum x\right)\left(\sum y\right)\right]^2}{n\sum x^2 - \left(\sum x\right)^2}\right]}$$

Ejemplo

	A	В
1	Valor de y conocido	Valor de x conocido
2	2	6
3	3	5
4	9	11
5	1	7
6	8	5
7	7	4
8	5	4
	Fórmula	Descripción (Resultado)
	=ERROR.TIPICO.XY (A2:A8;B2:B8)	Error típico del valor de y previsto para cada \times de la regresión (3,305719)

Funciones ES

Vea también

En esta sección se describen 9 funciones para hojas de cálculo que se utilizan para comprobar el tipo de un valor o referencia.

Cada una de estas funciones, a las que se conoce como funciones ES, comprueba el tipo del argumento valor y devuelve VERDADERO o FALSO dependiendo del resultado. Por ejemplo, ESBLANCO devuelve el valor lógico VERDADERO si valor es una referencia a una celda vacía, de lo contrario devuelve FALSO.

Sintaxis

ESBLANCO(valor)
ESERR(valor)
ESERROR(valor)
ESLOGICO(valor)
ESNOD(valor)
ESNOTEXTO(valor)
ESNUMERO(valor)
ESREF(valor)
ESTEXTO(valor)

Valor es el valor que desea probar. Puede ser el valor de una celda vacía, de error, lógico, de texto, numérico, de referencia o un nombre que se refiera a alguno de los anteriores.

Función	Devuelve VERDADERO si
ESBLANCO	Valor se refiere a una celda vacía.
ESERR	Valor se refiere a cualquier valor de error con excepción de #N/A.
ESERROR	Valor se refiere a uno de los valores de error (#N/A, #iVALOR!, #iREF!, #iDIV/0!, #iNUM!, #¿NOMBRE? o #iNULO!).
ESLOGICO	Valor se refiere a un valor lógico.
ESNOD	Valor se refiere al valor de error #N/A (el valor no está disponible).
ESNOTEXTO	Valor se refiere a cualquier elemento que no sea texto. (Tenga presente que esta función devuelve VERDADERO incluso si valor se refiere a una celda en blanco.)
ESNUMERO	Valor se refiere a un número.
ESREF	Valor se refiere a una referencia.
ESTEXTO	Valor se refiere a texto.

Observaciones

- Los argumentos valor de las funciones ES no se convierten. Por ejemplo, en la mayoría de las funciones en las que se requiere un número, el valor de texto "19" se convierte en el número 19. Sin embargo, en la fórmula ESNUMERO("19"), "19" no se convierte y ESNUMERO devuelve FALSO.
- Las funciones ES son útiles en fórmulas cuando se desea comprobar el resultado de un cálculo. Al combinar esas funciones con la función SI, proporcionan un método para localizar errores en fórmulas (vea los siguientes ejemplos).

Ejemplo 1

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=ESLOGICO(VERDADERO)	Comprueba si VERDADERO es un valor lógico (VERDADERO)
3	=ESLOGICO("VERDADERO")	Comprueba si "VERDADERO" es un valor lógico (FALSO)
4	=ESNUMERO(4)	Comprueba si 4 es un número (VERDADERO)

Ejemplo 2

	A	
1	Datos	
2	Oro	
3	Región1	
4	#iREF!	
5	330,92	
6	#N/A	
	Fórmula	Descripción (Resultado)
	=ESBLANCO(A2)	Comprueba si C2 es una celda en blanco (FALSO)
	=ESERROR(A4)	Comprueba si #iREF! es un error (VERDADERO)
	=ESNOD(A4)	Comprueba si #iREF! es el error #N/A (FALSO)
	=ESNOD(A6)	Comprueba si #N/A es el error #N/A (VERDADERO)
	=ESERR(A6)	Comprueba si #N/A es un error (FALSO)
	=ESNUMERO(A5)	Comprueba si 330,92 es un número (VERDADERO)
	=ESTEXTO(A3)	Comprueba si Región1 es texto (VERDADERO)

ESPACIOS

Elimina los espacios del texto, excepto el espacio normal que se deja entre palabras. Use ESPACIOS en texto procedente de otras aplicaciones que pueda contener un separación irregular.

Sintaxis

ESPACIOS(texto)

Texto es el texto del que desea quitar espacios.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=ESPACIOS(" Ganancias primer trimestre ")	Elimina los espacios iniciales y finales del texto de la fórmula (Ganancias primer trimestre)

ESTIMACION.LINEAL

Calcula las estadísticas de una línea utilizando el método de "mínimos de cuadrados" para calcular la línea recta que mejor se ajuste a los datos y devuelve una matriz que describe la línea. Debido a

que esta función devuelve una matriz de valores, debe ser introducida como una fórmula de matrices.

La ecuación para la línea es:

```
y = mx + b o
```

y = m1x1 + m2x2 + ... + b (si hay varios rangos de valores X)

donde el valor Y dependiente es función de los valores X independientes. Los valores m son coeficientes que corresponden a cada valor X, y b es un valor constante. Observe que Y, X y m pueden ser vectores. La matriz que devuelve ESTIMACION.LINEAL es {mn,mn-1,...,m1,b}. ESTIMACION.LINEAL también puede devolver estadísticas de regresión adicionales.

Sintaxis

ESTIMACION.LINEAL(conocido y,conocido x,constante,estadística)

Conocido y es el conjunto de valores de y que se conocen en la relación y = mx+b.

- Si la matriz definida por el argumento conocido_y ocupa una sola columna, cada columna de conocido_x se interpreta como una variable separada.
- Si la matriz definida por el argumento conocido_y ocupa una sola fila, cada fila de conocido_x se interpreta como una variable separada.

Conocido_x es un conjunto opcional de valores x en la relación y = mx+b.

- La matriz definida por el argumento conocido_x puede incluir uno o varios conjuntos de variables. Si se usa una sola variable, conocido_y y conocido_x pueden ser rangos con cualquier forma, siempre y cuando sus dimensiones sean iguales. Si se usa más de una variable, conocido_y tiene que ser un vector (es decir, un rango compuesto por una fila o por una columna).
- Si se omite conocido_x, se asume que ésta es la matriz {1;2;3;...} que tiene el mismo tamaño que conocido_y.

Constante es un valor lógico que especifica si se ha de forzar a la constante b a ser igual a 0.

- Si el argumento constante es VERDADERO o se omite, b se calcula normalmente.
- Si constante es FALSO, b se establece como igual a 0 y los valores m se ajustan para encajar en y = mx.

Estadística es un valor lógico que especifica si se deberán devolver estadísticas de regresión adicionales.

- Si estadística es VERDADERO, ESTIMACION.LINEAL devuelve las estadísticas de regresión adicionales, de forma que la matriz devuelta es {mn,mn-1,...,m1,b;sen,sen-1,...,se1,seb;r2,sey;F,df;ssreg,ssresid}.
- Si estadística es FALSO o se omite, ESTIMACION.LINEAL sólo devuelve los coeficientes m y la constante b.

Las estadísticas de regresión adicional son las que se indican a continuación.

Estadística	Descripción
se1,se2,,sen	Los valores de error estándar para los coeficientes m1,m2,,mn.
Seb	El valor de error estándar para la constante b (seb = #N/A cuando constante es FALSO).
r2	El coeficiente de determinación. Compara los valores y estimados y reales, y los rangos con valor de 0 a 1. Si es 1, hay una correlación perfecta en la muestra, es decir, no hay diferencia entre el valor y estimado y el valor y real. En el otro extremo, si el coeficiente de determinación es 0, la ecuación de regresión no es útil para predecir un valor y. Para obtener información sobre el cálculo de r2, consulte la sección de "Comentarios" más adelante en este mismo tema.
sey	El error estándar para la estimación y.
F	La estadística F o valor F observado. Utilice la estadística F para determinar si la relación observada entre las variables dependientes e independientes se produce por azar.
df	Grados de libertad. Utilice los grados de libertad para encontrar valores F críticos en una tabla estadística. Compare los valores que encuentre en la tabla con la estadística F devuelta por ESTIMACION.LINEAL para determinar un nivel de confianza para el modelo.
ssreg	La suma de regresión de los cuadrados.
ssresid	La suma residual de los cuadrados.

La ilustración siguiente muestra el orden en que se devuelven las estadísticas de regresión adicionales.

	А	В	С	D	Е	F
1	mn	m _{n-1}		m ₂	m ₁	b
2	sen	se _{n-1}		se ₂	se ₁	seb
3	r ₂	se _V				
4	F	df				
5	ssreg	ssresid				

Observaciones

Puede describir cualquier línea recta con la pendiente y la intercepción Y:

Pendiente (m):

Para hallar la pendiente de una línea, frecuentemente indicada por m, tome dos puntos de la línea, (x1,y1) y (x2,y2): la pendiente es igual a (y2 - y1)/(x2 - x1).

Intercepción Y (b):

La intercepción Y de una línea, frecuentemente indicada por b, es el valor de Y en el punto en que la línea cruza el eje X.

La ecuación de una línea recta es y = mx + b. Cuando conozca los valores de m y b podrá calcular cualquier punto de la línea insertando el valor Y o el valor X en esa ecuación. También puede utilizar la función TENDENCIA.

• Si sólo tiene una variable X independiente, puede obtener los valores de la pendiente y de la intercepción Y directamente utilizando las fórmulas siguientes:

Profesor: WILSON A. PRIETO H.

Pendiente:

=INDICE(ESTIMACION.LINEAL(conocido_y,conocido_x),1)

89

Y:

Intersección =INDICE(ESTIMACION.LINEAL(conocido y,conocido x),2)

La exactitud de la línea calculada por ESTIMACION.LINEAL depende del grado de dispersión de los datos. Cuanto más lineales sean los datos, más exacto será el modelo ESTIMACION.LINEAL ESTIMACION.LINEAL utiliza el método de mínimos de los cuadrados para determinar el mejor ajuste para los datos. Si sólo tiene una variable X dependiente, los cálculos para m y b se basan en las fórmulas siguientes:

$$m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum (x^2)) - (\sum x)^2}$$
$$b = \frac{(\sum y)(\sum (x^2)) - (\sum x)(\sum xy)}{n(\sum (x^2)) - (\sum x)^2}$$

- funciones de ajuste de línea y de curva ESTIMACION.LINEAL y ESTIMACION.LOGARITMICA pueden calcular la línea recta o la curva exponencial que mejor se ajuste a los datos. Sin embargo, debe decidir cuál de los dos resultados se ajusta mejor. Puede calcular TENDENCIA(conocido y,conocido x) para una línea recta o CRECIMIENTO(conocido v.conocido x) para una curva exponencial. Estas funciones, sin el argumento nuevo x, devuelven una matriz de valores Y pronosticados en la línea o curva en los puntos de datos reales. Después puede comparar los valores pronosticados con los valores reales. Puede crear un gráfico con ambos para realizar una comparación visual.
- En el análisis de regresión, Microsoft Excel calcula para cada punto el cuadrado de la diferencia entre el valor Y estimado para ese punto y su valor Y real. La suma de estas diferencias cuadradas se denomina suma de los cuadrados residual. Microsoft Excel calcula a continuación la suma de las diferencias al cuadrado entre los valores Y reales y la media de los mismos, la cual se denomina suma total de los cuadrados (suma de los cuadrados de la regresión + suma de los cuadrados residual). Cuanto menor sea la suma residual de los cuadrados, en comparación con la suma total de los cuadrados, mayor será el valor del coeficiente de determinación, r2, que es un indicador de hasta qué punto la ecuación resultante del análisis de regresión explica la relación entre las variables.
- Las fórmulas que devuelven matrices deben introducirse como fórmulas matriciales.
- Cuando introduzca una constante matricial, por ejemplo conocido_x, como un argumento, use punto y coma para separar los valores de una misma fila y barra inversa (\) para separar las filas. Los separadores pueden diferir dependiendo de las especificaciones locales en Configuración regional o en Opciones regionales en el Panel de control.
- Observe que los valores Y pronosticados por la ecuación de regresión pueden no ser válidos si quedan fuera del rango de los valores Y empleados para determinar la ecuación.

Profesor: WILSON A. PRIETO H.

Ejemplo 1 Pendiente e intercepción Y

	A	В		
1	Valor de y conocido	Valor de x conocido		
2	1	0		
3	9	4		
4	5	2		
5	7	3		
	Fórmula	Fórmula		
	=ESTIMACION.LINEAL(A2:A5,B2:B5,,FALSO)			

Nota La fórmula del ejemplo debe escribirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A7:B7 a partir de la celda de fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce en formato matricial, el resultado sencillo es 2.

Cuando se escribe como una matriz, se devuelve la pendiente (2) y la intersección Y (1).

Ejemplo 2 Regresión lineal simple

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

	A	В
1	Mes	Ventas
2	1	3100
3	2	4500
4	3	4400
5	4	5400
6	5	7500
7	6	8100
	Fórmula	Descripción (Resultado)
	=SUMA(ESTIMACION.LINEAL(B2:B7, A2:A7)*{9,1})	Calcula las ventas del noveno mes (11000)

En general, $SUMA(\{m,b\}^*\{x,1\})$ igual a mx + b, el valor Y estimado para un valor X dado. También puede utilizar la función TENDENCIA.

En general, $SUMA(\{m,b\}^*\{x,1\})$ igual a mx + b, el valor Y estimado para un valor X dado. También puede utilizar la función TENDENCIA.

Ejemplo 3 Regresión lineal múltiple

Suponga que un programador comercial está pensando en adquirir un grupo de pequeños edificios de oficinas en un distrito comercial conocido.

El programador puede utilizar el análisis de regresión lineal múltiple para estimar el valor de un edificio de oficinas en un área determinada basándose en las variables siguientes.

Variable	Indica			
у	Valor tasado del edificio de oficinas			
x1	Superficie en metros cuadrados			
x2	Número de oficinas			
х3	Número de entradas			
x4	Antigüedad del edificio en años			

Este ejemplo supone que existe una relación de línea recta entre cada variable independiente (x1, x2, x3, y x4) y la variable dependiente (y), el valor de los edificios de oficinas en esa área.

El programador elige al azar una muestra de 11 edificios de oficinas de 1.500 edificios posibles y obtiene los datos siguientes. "Media entrada" significa una entrada sólo para entregas.

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

	A	В	С	D	E
1		06-:	F-bd	A-1:-::-d-d	Valor
2	Superficie (x1)	Oficinas (x2)	Entradas (x3)	Antigüedad (x4)	tasado (y)
3	2310	2	2	20	142.000
4	2333	2	2	12	144.000
5	2356	3	1,5	33	151.000
6	2379	3	2	43	150.000
7	2402	2	3	53	139.000
8	2425	4	2	23	169.000
9	2448	2	1,5	99	126.000
10	2471	2	2	34	142.900
11	2494	3	3	23	163.000
12	2517	4	4	55	169.000
	2540	2	3	22	149.000

Fórmula

=ESTIMACION.LINEAL

(E2:E12,A2:D12,VERDADERO,VERDADERO)

Nota La fórmula del ejemplo debe escribirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A14:E18 a partir de la celda de fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce en formato matricial, el resultado sencillo es -234,2371645.

Cuando se introduce como una matriz, se devuelven las siguientes estadísticas de regresión. Utilice esta clave para identificar las estadísticas deseadas.

	Α	В	С	D	Е	F
1	mn	m _{n-1}		m ₂	m ₁	b
2	sen	se _{n-1}		se ₂	se ₁	seb
3	r ₂	se _V				
4	F	df				
5	ssreg	SSresid				

Ahora puede obtenerse la ecuación de regresión múltiple, y = m1*x1 + m2*x2 + m3*x3 + m4*x4 + b, utilizando los valores de la fila 14:

y = 27,64*x1 + 12.530*x2 + 2.553*x3 + 234,24*x4 + 52.318

Ahora el programador puede calcular el valor tasado de un edificio de oficinas en la misma zona con 2.500 metros cuadrados, tres oficinas, dos entradas y una antigüedad de 25 años, utilizando la ecuación siguiente:

y = 27,64*2.500 + 12.530*3 + 2.553*2-234,24*25 + 52.318 = 158.261\$

O bien, puede copiar la tabla siguiente a la celda A21 del libro de ejemplo.

Superficie	Oficinas	Entradas	Antigüedad	Valor tasado (y)
(x1)	(x2)	(x3)	(x4)	
2500	3	2	25	=D14*A22 + C14*B22 + B14*C22 + A14*D22 + E14

También puede utilizar la función TENDENCIA para calcular este valor.

Ejemplo 4 Utilizar las estadísticas F y R2

En el ejemplo anterior, el coeficiente de determinación, o r2, es 0,99675 (consulte la celda A17 en el resultado de ESTIMACION.LINEAL), que indicaría una relación marcada entre las variables independientes y el precio de venta. Puede utilizar la estadística F para determinar si estos resultados, con un valor r2 tan alto, se produjeron por azar.

Suponga por un momento que en realidad no existe relación entre las variables, pero que ha extraído una muestra peculiar de 11 edificios de oficinas que hace que el análisis estadístico demuestre una relación marcada. El término "alfa" se utiliza para la probabilidad de llegar a la conclusión errónea de que existe una relación.

Existe una relación entre las variables si la estadística F observada es mayor que el valor F crítico. El valor F crítico puede obtenerse consultando una tabla de valores F críticos en numerosos libros de estadística. Para leer la tabla, suponga una prueba de cola única, utilice un valor alfa de 0,05 y, para los grados de libertad (abreviados en casi todas las tablas como v1 y v2), utilice v1 = k = 4 y v2 = n - (k + 1) = 11 - (4 + 1) = 6, donde k es el número de variables del análisis de regresión y n es el número de puntos de datos. El valor F crítico es 4,53.

El valor F observado es 459,753674 (celda A18), que es sustancialmente mayor que el valor F crítico de 4,53. Por tanto, la ecuación de regresión es útil para predecir el valor tasado de los edificios de oficinas en esta área.

Ejemplo 5 Calcular la estadística T

Otra prueba hipotética determinará si cada coeficiente de la pendiente es útil para estimar el valor tasado de un edificio de oficinas del ejemplo 3. Por ejemplo, para probar si el coeficiente de antigüedad tiene significado estadístico, divida -234,24 (coeficiente de la pendiente de antigüedad) entre 13,268 (el error estándar estimado de los coeficientes de antigüedad en la celda A15). El siguiente es el valor t observado:

$$t = m4 \div se4 = -234,24 \div 13,268 = -17,7$$

Si consulta una tabla de un manual de estadística, observará que el valor t crítico, de cola simple, con 6 grados de libertad y alfa = 0,05 es 1,94. Puesto que el valor absoluto de t, 17,7, es superior a 1,94, la antigüedad es una variable importante para estimar el valor tasado de un edificio de oficinas. El significado estadístico de cada una de las demás variables independientes puede probarse de forma similar. Los siguientes son los valores t observados para cada una de las variables independientes.

Variable	valor t observado
Superficie	5,1
Número de oficinas	31,3
Número de entradas	4,8
Edad	17,7

Todos estos valores tienen un valor absoluto superior a 1,94; por tanto, todas las variables utilizadas en la ecuación de regresión son útiles para predecir el valor tasado de los edificios de oficinas de esta área.

ESTIMACION.LOGARITMICA

Calcula, en análisis de regresión, una curva exponencial que se ajusta a los datos y devuelve la matriz de valores que describe dicha curva. Debido a que esta función devuelve una matriz de valores, debe ser introducida como una fórmula de matrices.

La ecuación de la curva es:

$$y = b*m^x o$$

$$y = (b*(m1^x1)*(m2^x2)*_)$$
 (si hay varios valores de X)

donde el valor dependiente y es una función de los valores independientes x. Los valores m son bases que corresponden a cada valor exponencial de x; b es un valor constante. Observe que y, x y m pueden ser vectores. La matriz que ESTIMACION.LOGARITMICA devuelve es {mn,mn-1,...,m1,b}.

Sintaxis

ESTIMACION.LOGARITMICA(conocido y;conocido x;constante; estadística)

Conocido_y es el conjunto de valores que ya se conocen en la ecuación $y = b*m^x$.

- Si la matriz definida por el argumento conocido_y ocupa una sola columna, cada columna de conocido x se interpreta como una variable separada.
- Si la matriz definida por el argumento conocido_y ocupa una sola fila, cada fila de conocido_x se interpreta como una variable separada.

Profesor: WILSON A. PRIETO H.

Conocido x es un conjunto de valores x opcionales que ya se conocen en la ecuación $y = b*m^x$.

- La matriz conocido_x puede incluir uno o varios conjuntos de variables. Si se usa sólo una variable, conocido_y y conocido_x pueden ser rangos con cualquier forma siempre que sus dimensiones sean iguales. Si se usa más de una variable, conocido_y deberá ser un rango de celdas de una fila de alto o una columna de ancho (lo que se conoce también como un vector).
- Si se omite conocido_x, se asume que ésta es la matriz {1;2;3;...} que tiene el mismo tamaño que conocido_y.

Constante es un valor lógico que especifica si se ha de forzar a la constante b a ser igual a 1.

- Si el argumento constante es VERDADERO o se omite, *b* se calcula normalmente.
- Si constante es FALSO, b se definirá como 1 y los valores m se ajustarán de manera que y = m^x.

Estadística es un valor lógico que especifica si se deberán devolver estadísticas de regresión adicionales.

- Si estadística es VERDADERO, ESTIMACION.LOGARITMICA devuelve las estadísticas de regresión adicionales; de manera que la matriz devuelta {mn,mn-1,...,m1,b; sen,sen-1,...,se1,seb; r 2,sey; F; df;ssreq,ssresid}.
- Si estadística es FALSO o se omite, ESTIMACION.LOGARITMICA devolverá sólo los coeficientes m y la constante b.

Para obtener más información acerca de las estadísticas de regresión adicionales, vea ESTIMACION.LINEAL.

Observaciones

- Cuanto más tiende el trazado de los datos hacia una curva exponencial, mayor será la
 exactitud con la que la línea se ajuste a los datos. Al igual que ESTIMACION.LINEAL,
 ESTIMACION.LOGARITMICA devuelve una matriz que describe la relación entre los valores,
 pero ESTIMACION.LINEAL ajusta una recta a los datos mientras que
 ESTIMACION.LOGARITMICA ajusta una curva exponencial. Para obtener más información,
 vea ESTIMACION.LINEAL.
- Cuando tenga sólo una variable independiente x, los valores de m (la pendiente) y b (la intersección con el eje Y) se podrán obtener directamente utilizando las siguientes fórmulas:

Pendiente m: INDICE(ESTIMACION.LOGARITMICA(conocido_y;conocido_x);1)

Intersección con el eje b: INDICE(ESTIMACION.LOGARITMICA(conocido_y;conocido_x);2)

Puede usar la ecuación $y = b*m^x$ para pronosticar valores futuros de y, aunque Microsoft Excel incluye la función CRECIMIENTO para pronosticar valores futuros. Para obtener más información, vea CRECIMIENTO.

- Las fórmulas que devuelven matrices deben introducirse como fórmulas matriciales.
- Cuando introduzca una constante matricial, por ejemplo conocido_x, como un argumento, use punto y coma para separar los valores de una misma fila y barra inversa (\) para separar las filas. Los separadores pueden diferir dependiendo de las especificaciones locales en Configuración regional o en Opciones regionales en el Panel de control.

Profesor: WILSON A. PRIETO H.

• Recuerde que los valores y pronosticados con la ecuación de regresión pueden no ser válidos si están fuera del rango de los valores y empleados para determinar la ecuación.

Ejemplo 1 coeficientes m y la constante b

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

	A	В	
1	Mes	Unidades	
2	11	33.100	
3	12	47.300	
4	13	69.000	
5	14	102.000	
6	15	150.000	
7	16	220.000	
	Fórmula	Fórmula	
	=ESTIMACION.LOGARITMICA(B2:B7;A2:A7;VERDADERO;FALSO)		

Nota La fórmula del ejemplo debe escribirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A9:89 a partir de la celda de fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce en formato matricial, el resultado sencillo es 1,463275628.

Cuando se introduce como una matriz, se devuelven los coeficientes m y la constante b.

 $y = b*m1^x1$ o si se usan los valores de la matriz:

y = 495,3 * 1,4633x

Puede estimar las ventas de meses futuros si sustituye el número del mes por x en esta ecuación o, bien, usar la función CRECIMIENTO.

Ejemplo 2 Estadísticas completas

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

	A	В
1	Mes	Unidades
2	11	33.100
3	12	47.300
4	13	69.000
5	14	102.000
6	15	150.000
7	16	220.000
	Fórmula	
	=ESTIMACION.LOGARITMICA(B2:B7;A2:A7;VERDADERO;VERDADERO)	

Nota La fórmula del ejemplo debe escribirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A9:B13 a partir de la celda de fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce en formato matricial, el resultado sencillo es 1,463275628.

Cuando se introduce como una matriz, se devuelven las siguientes estadísticas de regresión. Utilice esta clave para identificar las estadísticas deseadas.

	Α	В	С	D	Е	F
1	mn	m _{n-1}		m ₂	m ₁	b
2	sen	se _{n-1}		se ₂	se ₁	seb
3	r ₂	se _V				
4	F	df				
5	ssreq	ssresid				

Puede usar estadísticas de regresión adicionales (celdas A10:B13 en la matriz de salida precedente) para determinar la utilidad de la ecuación en el pronóstico de valores futuros.

Importante Los métodos que se usan para comprobar una ecuación que utiliza la función ESTIMACION.LOGARITMICA son los mismos que se usan para ESTIMACION.LINEAL. Sin embargo, los resultados de estadísticas adicionales devueltos por ESTIMACION.LOGARITMICA se basan en el siguiente modelo lineal:

$$\ln y = x1 \ln m1 + ... + xn \ln mn + \ln b$$

Esto se debe tener en cuenta al evaluar las estadísticas adicionales, especialmente los valores sei y seb, los cuales deben compararse con ln m1 y ln b, no con m1 y b. Para obtener más información, consulte un manual de estadística avanzada.

EXP

Devuelve la constante **e** elevada a la potencia del argumento número. La constante **e** es igual a 2,71828182845904, la base del logaritmo neperiano.

Sintaxis

EXP(número)

Número es el exponente aplicado a la base e.

Observaciones

- Use el operador exponencial (^) para calcular potencias en otras bases.
- EXP es la inversa de LN, el logaritmo neperiano de número.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=EXP(1)	Valor aproximado de e (2,718282)
3	=EXP(2)	Base del logaritmo natural e elevado a la potencia de 2 (7,389056)

EXTRAE

También se aplica a:

EXTRAEB

EXTRAE devuelve un número específico de caracteres de una cadena de texto, comenzando en la posición que especifique y en función del número de caracteres que especifique.

EXTRAEB devuelve un número específico de caracteres de una cadena de texto, comenzando en la posición que especifique y en función del número de bytes que especifique. Esta función se utiliza con los caracteres de dos bytes.

Sintaxis

EXTRAE(texto;posición_inicial;núm_de_caracteres)

EXTRAEB(texto,posición_inicial,núm_bytes)

Texto es la cadena de texto que contiene los caracteres que desea extraer.

Posición_inicial es la posición del primer carácter que desea extraer de texto. La posición_inicial del primer carácter de texto es 1 y así sucesivamente.

Núm_de_caracteres especifica el número de caracteres que desea que EXTRAE devuelva del argumento texto.

Núm_bytes especifica el número de caracteres de texto que desea que EXTRAEB devuelva, en bytes.

Observaciones

Si posición_inicial es mayor que la longitud de texto, EXTRAE devuelve "" (texto vacío).

- Si posición inicial es menor que la longitud de texto, pero posición inicial más núm de caracteres excede la longitud de texto, EXTRAE devuelve los caracteres hasta el final de texto.
- Si posición_inicial es menor que 1, EXTRAE devuelve el valor de error #iVALOR!
- Si núm_de_caracteres es negativo, EXTRAE devuelve el valor de error #iVALOR!
- Si núm_bytes es negativo, EXTRAEB devuelve el valor de error #iVALOR!

Ejemplo (EXTRAE)

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	Flujo de líquido	
	Fórmula	Descripción (Resultado)
	=EXTRAE(A2;1;5)	Cinco caracteres de la cadena anterior, a partir del primero (Flujo)
	=EXTRAE (A2;7;20)	Veinte caracteres de la cadena anterior, a partir del séptimo (de líquido)
	=EXTRAE (A2;20;5)	Como el punto inicial es mayor que la longitud de la cadena, se devuelve texto vacío ()

=EXTRAEB(" 東京都渋谷区",1,6) equivale a "東京都"

FACT

Devuelve el factorial de un número. El factorial de un número es igual a 1*2*3*...* número.

Sintaxis

FACT(número)

Número es el número no negativo cuyo factorial desea obtener. Si el argumento número no es un entero, se trunca.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=FACT(5)	Factorial de 5, ó 1*2*3*4*5 (120)
3	=FACT(1,9)	Factorial del número entero correspondiente a 1,9 (1)
4	=FACT(0)	Factorial de 0 (1)
5	=FACT(-1)	Los números negativos generan un valor de error (#INUM!)
6	=FACT(1)	Factorial de 1 (1)

FALSO

Devuelve el valor lógico FALSO.

Sintaxis

FALSO()

Observación

También puede escribir la palabra FALSO directamente en la hoja de cálculo o en la fórmula y Microsoft Excel la interpreta como el valor lógico FALSO.

FECHA

Devuelve el número de serie secuencial que representa una fecha determinada. Si el formato de celda era **General** antes de escribir la función, el resultado tendrá formato de fecha.

Sintaxis

FECHA(año, mes, día)

Año El argumento año puede tener de uno a cuatro dígitos. Microsoft Excel interpreta el argumento año según el sistema de fechas empleado. De forma predeterminada, Excel para Windows utiliza el sistema de fechas 1900 y Excel para Macintosh utiliza el sistema de fechas 1904.

Para el sistema de fechas 1900

- Si el año está entre 0 (cero) y 1899 (inclusive), Excel agrega ese valor a 1900 para calcular el año. Por ejemplo, FECHA(108;1;2) devuelve la fecha 2 de enero de 2008 (1900+108).
- Si el año está entre 1900 y 9999 (inclusive), Excel utiliza ese valor como año. Por ejemplo, FECHA(2008;1;2) devuelve la fecha 2 de enero de 2008.
- Si el año es inferior a 0 o superior a 10000, Excel devuelve el valor de error #iNUM!

Para el sistema de fechas 1904

- Si el año está entre 4 y 1899 (inclusive), Excel agrega ese valor a 1900 para calcular el año. Por ejemplo, FECHA(108;1;2) devuelve la fecha 2 de enero de 2008 (1900+108).
- Si el año está entre 1904 y 9999 (inclusive), Excel utiliza ese valor como año. Por ejemplo, FECHA(2000,1,2) devuelve la fecha 2 de enero del 2000.
- Si el año es inferior a 4 o superior a 10000 o si está entre 1900 y 1903 (inclusive), Excel devuelve el valor de error #iNUM!

Mes es un número que representa el mes del año. Si el mes es superior a 12, el mes agrega ese número de meses al primer mes del año especificado. Por ejemplo, FECHA(2008;14;2) devuelve el número de serie que representa la fecha 2 de febrero de 2009.

Día es un número que representa el día del mes. Si el día es superior al número de días del mes especificado, día agrega ese número de días al primer día del mes. Por ejemplo, FECHA(2008;1;35) devuelve el número de serie que representa la fecha 4 de febrero de 2008.

Observaciones

- Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.
- La función FECHA es muy útil en fórmulas en las que el año, el mes y el día son fórmulas, no constantes.

Ejemplo

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

Nota Para ver el número como un número de serie, seleccione la celda y haga clic en **Celdas** en el menú **Formato**. Haga clic en la ficha **Número** y, a continuación, en **General** en el cuadro **Categoría**.

FECHANUMERO

Devuelve el número de serie de la fecha representada por texto_de_fecha. Use FECHANUMERO para convertir una fecha representada por texto en un número de serie.

Sintaxis

FECHANUMERO(texto de fecha)

Texto_de_fecha es el texto que representa una fecha en un formato de fecha de Microsoft Excel. Por ejemplo, "30-1-2008" o "30-ene-2008" son cadenas de texto entre comillas que representan

fechas. Con el sistema de fechas predeterminado de Excel para Windows, texto_de_fecha debe representar una fecha entre el 1 de diciembre de 1900 y el 31 de diciembre de 9999. Si utiliza el sistema de fechas predeterminado en Excel para Macintosh, texto_de_fecha debe representar una fecha entre el 1 de enero de 1904 y el 31 de diciembre de 9999. FECHANUMERO devuelve un valor de error #iVALOR! si texto de fecha queda fuera de este rango.

Si omite la parte texto_de_fecha correspondiente al año, FECHANUMERO usa el año corriente del reloj integrado a su PC. La información de hora de texto_de_fecha se pasa por alto.

Observaciones

- Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.
- La mayoría de las funciones convierten automáticamente los valores de fecha en números de serie.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=FECHANUMERO("22-8- 2008")	Número de serie de la fecha de texto, utilizando el sistema de fechas 1900 (39682)
3 4	=FECHANUMERO("22- AGO-2008")	Número de serie de la fecha de texto, utilizando el sistema de fechas 1900 (39682)
5	=FECHANUMERO("2008- 02-23")	Número de serie de la fecha de texto, utilizando el sistema de fechas 1900 (39501)
	=FECHANUMERO("5- JUL")	Número de serie de la fecha de texto, utilizando el sistema de fechas 1900 y suponiendo que el reloj integrado en el equipo está ajustado en 2008 (39634)

Nota Para ver el número como una fecha, seleccione la celda y haga clic en **Celdas** en el menú **Formato**. Haga clic en la ficha **Número** y, a continuación, en **Fecha** en el cuadro **Categoría**.

FILA

Devuelve el número de fila de una referencia.

Sintaxis

FILA(ref)

Ref es la celda o rango de celdas de los que se desea conocer el número de fila.

• Si el argumento ref se omite, se supone que es la referencia de la celda en la que aparece la función FILA.

- Si ref es un rango de celdas y si la función FILA se introduce como una matriz vertical, FILA devuelve los números de filas de referencia como una matriz vertical.
- El argumento ref no puede referirse a varias áreas.

Ejemplo 1

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=FILA()	Fila donde aparece la fórmula (2)
3	=FILA(C10)	Fila de la referencia (10)

Ejemplo 2

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

¿Cómo?

	A	В
1	Fórmula	Descripción (Resultado)
2	=FILA(C4:D6)	Primera fila de la referencia (4)
3		Segunda fila de la referencia (5)
4		Tercera fila de la referencia (6)

Nota La fórmula del ejemplo debe introducirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A2:A4 comenzando por la celda de la fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce como fórmula matricial, el resultado único es 4.

FILAS

Devuelve el número de filas de una referencia o matriz.

Sintaxis

FILAS(matriz)

Matriz es una matriz, una <u>fórmula matricial</u> o una referencia a un rango de celdas de las que desea saber el número de filas.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=FILAS(C1:E4)	Número de filas en la referencia (4)
3	=FILAS({1;2;3\4;5;6})	Número de filas en la constante matricial (2)

FISHER

Devuelve la transformación Fisher en x. Esta transformación produce una función que se distribuye normalmente en lugar de ser asimétrica. Use esta función para realizar pruebas hipotéticas sobre el coeficiente de correlación.

Sintaxis

FISHER(x)

X es un valor numérico para el cual desea calcular la transformación.

Observaciones

- Si el argumento x no es numérico, FISHER devuelve el valor de error #iVALOR!
- Si probabilidad ≤ -1 o si $x \geq 1$, FISHER devuelve el valor de error #iNUM!
- La ecuación para la transformación de Fisher es:

$$z' = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=FISHER(0,75)	Transformación Fisher a 0,75 (0,972955)

FRECUENCIA

Calcula la frecuencia con que se repiten los valores de un rango y devuelve un matriz vertical de números. Por ejemplo, utilice FRECUENCIA para contar el número de los resultados que se encuentran dentro de un rango. Debe introducirse como una fórmula de matrices debido a que FRECUENCIA devuelve una matriz.

Sintaxis

FRECUENCIA(datos; grupos)

104

Datos es una matriz de un conjunto e valores o una referencia a un conjunto de valores cuyas frecuencias desea contar. Si datos no contiene ningún valor, FRECUENCIA devuelve una matriz de ceros.

Grupos es una matriz de intervalos o una referencia a intervalos dentro de los cuales desea agrupar los valores del argumento datos. Si grupos no contiene ningún valor, FRECUENCIA devuelve el número de elementos contenido en datos.

Observaciones

- FRECUENCIA se introduce como una fórmula matricial después de seleccionar un rango de celdas advacentes en las que se desea que aparezca el resultado de la distribución.
- El número de elementos de la matriz devuelta supera en una unidad el número de elementos de grupos. El elemento adicional de la matriz devuelta devuelve la suma de todos los valores superiores al mayor intervalo. Por ejemplo, al sumar tres rangos de valores (intervalos) introducidos en tres celdas, asegúrese de introducir FRECUENCIA en cuatro celdas para los resultados. La celda adicional devuelve el número de valores en grupos que sean superiores al valor del tercer intervalo.
- La función FRECUENCIA pasa por alto celdas en blanco y texto.
- Las fórmulas que devuelven matrices deben introducirse como fórmulas matriciales.

Ejemplo

En este ejemplo, se presupone que los resultados de los exámenes son números enteros.

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	А	В
1	Resultados	Bandejas
2	79	70
3	85	79
4	78	89
5	85	
6	50	
7	81	
8	95	
9	88	
10	97	
	Fórmula	Descripción (Resultado)
	=FRECUENCIA(A2:A10;B2:B5)	Número de puntuaciones menores o iguales que 70 (1)
		Número de puntuaciones en la bandeja 71-79 (2)
		Número de puntuaciones en la bandeja 80-89 (4)
		Número de puntuaciones mayores o iguales que 90 (2)

Nota La fórmula del ejemplo debe introducirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A13:A16 comenzando por la celda de la fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce como fórmula matricial, el resultado único es 1.

GAMMA.LN

Devuelve el logaritmo natural de la función gamma, $\Gamma(x)$.

Sintaxis

GAMMA.LN(x)

X es el valor cuya función GAMMA.LN desea calcular.

Observaciones

- Si el argumento x no es numérico, GAMMA.LN devuelve el valor de error #iVALOR!
- Si $x \le 0$, GAMMA.LN devuelve el valor de error #iNUM!
- El número *e* elevado a la potencia GAMMA.LN(i), donde i es un entero, devuelve el mismo resultado que (i 1)!
- GAMMA.LN se calcula como:

GAMMALN =
$$LN(\Gamma(x))$$

donde:
$$\Gamma(x) = \int_{-\infty}^{\infty} e^{-u} u^{x-1} du$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=GAMMA.LN(4)	Logaritmo natural de la función gamma a 4 (1,791759)

GRADOS

Convierte radianes en grados.

Sintaxis

GRADOS(ángulo)

Ángulo: Es el ángulo en radianes que se desea convertir.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=GRADOS(PI())	Grados de pi radianes (180)

HALLAR

También se aplica a:

HALLARB

HALLAR devuelve el número del carácter en el que se encuentra inicialmente un carácter específico o una cadena de texto, empezando por núm_inicial. Utilice HALLAR para determinar la ubicación de un carácter o de una cadena de texto dentro de otra cadena de texto, de modo que pueda utilizar las funciones EXTRAE o REEMPLAZAR para cambiar el texto.

HALLARB también encuentra una cadena de texto (texto_buscado) dentro de otra (dentro_del_texto) y devuelve la posición inicial de texto_buscado. El resultado está basado en el

Profesor: WILSON A. PRIETO H.

Curso de Excel XP 2002

texto dentro de otra.

107

número de bytes que utiliza cada carácter, comenzando por núm_inicial. Esta función se utiliza con los caracteres de dos bytes. También es posible utilizar HALLARB para encontrar una cadena de

Sintaxis

HALLAR(texto_buscado;dentro_del_texto;núm_inicial)

HALLARB(texto buscado, dentro del texto, núm inicial)

Texto_buscado es el texto que desea encontrar. Puede utilizar los caracteres comodines, signo de interrogación (?) y asterisco (*) en el argumento texto_buscado. El signo de interrogación corresponde a un carácter cualquiera y el asterisco equivale a cualquier secuencia de caracteres. Si lo que desea encontrar es un asterisco o un signo de interrogación, escriba una tilde (~) antes del carácter.

Dentro_del_texto es el texto en el que desea encontrar texto_buscado.

Núm_inicial es el número de carácter en dentro_del_texto donde desea iniciar la búsqueda.

<u>Sugerencia</u>

Utilice núm_inicial para saltar un número específico de caracteres. Por ejemplo, suponga que está utilizando la cadena de texto: "AYF0093.AtuendoParaJóvenes". Para encontrar el número de la primera "A" en la parte descriptiva de la cadena de texto, establezca núm_inicial igual a 8, de manera que la función no busque en la parte correspondiente al número de serie. HALLAR comienza por el carácter 8, localiza texto_buscado en el siguiente carácter y devuelve el número 9. HALLAR siempre devuelve el número de caracteres desde el principio de dentro_del_texto, contando los caracteres omitidos si núm_inicial es mayor que 1.

Observaciones

- HALLAR y HALLARB no distinguen entre mayúsculas y minúsculas cuando buscan texto.
- HALLAR y HALLARB son similares a ENCONTRAR y ENCONTRARB, excepto que ENCONTRAR y ENCONTRARB sí distinguen entre mayúsculas y minúsculas.
- Si no se puede hallar el argumento texto_buscado, la función devuelve el valor de error #iVALOR!
- Si el argumento núm_inicial se omite, el valor predeterminado es 1.
- Si el valor del argumento núm_inicial no es mayor que 0 (cero) o si es mayor que el largo del argumento dentro_del_texto, se devuelve el valor de error #iVALOR!

Ejemplo (HALLAR)

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	Informe anual	
3	Margen de beneficio	
4	margen	

Fórmula	Descripción (Resultado)
=HALLAR("e";A2;6)	Posición de la primera "e" en la cadena anterior, comenzando por el sexto carácter (7)
=HALLAR(A4;A3)	Posición de "beneficio" en "Margen de beneficio" (11)
=REEMPLAZAR(A3;HALLAR (A4;A3);6;"Cantidad")	Reemplaza "Margen" por "Cantidad" (Cantidad de beneficio)

Ejemplo (HALLARB)

En los siguientes ejemplos, HALLAR devuelve 2 porque "" está en la segunda posición dentro de la cadena y HALLARB devuelve 3 porque se cuenta cada carácter por sus bytes; el primer carácter tiene 2 bytes de modo que el segundo carácter comienza en byte 3.

```
=HALLAR("京","東京都") equivale a 2
```

=HALLARB("京"," 東京都") equivale a 3

HIPERVINCULO

Crea un acceso directo o un salto que abre un documento almacenado en un servidor de red, en una <u>intranet</u> o en Internet. Cuando haga clic en la celda que contenga la función HIPERVINCULO, Microsoft Excel abrirá el archivo almacenado en ubicación_del_vínculo.

Sintaxis

HIPERVINCULO(ubicación del vínculo; nombre descriptivo)

Ubicación_del_vínculo es la ruta y el nombre de archivo del documento que se desea abrir como texto. Ubicación_del_vínculo puede hacer referencia a un lugar en un documento, como por ejemplo una celda específica o un rango con nombre en una hoja de cálculo o libro de Microsoft Excel, o a un marcador en un documento de Microsoft Word. La ruta puede ser a un archivo almacenado en una unidad de disco duro, o bien una convención universal nominal (CUN) en un servidor (en Microsoft Excel para Windows) o un Localizador de recursos uniforme (<u>URL</u>) en Internet o en una intranet.

- Ubicación_del_vínculo puede ser una cadena de texto encerrada entre comillas o una celda que contiene el vínculo como cadena de texto.
- Si el salto especificado en ubicación_del_vínculo no existe o no está permito desplazarse por él, aparecerá un error cuando se haga clic en la celda.

Nombre_descriptivo es el texto o valor numérico al que se salta mostrado en la celda. El nombre_descriptivo se muestra en azul y está subrayado. Si contenido_de_celda se pasa por alto, la celda muestra ubicación_del_vínculo como texto de salto.

Profesor: WILSON A. PRIETO H.

- Nombre_descriptivo puede ser un valor, una cadena de texto, un nombre o una celda que contiene el texto o valor al que se salta.
- Si nombre_descriptivo devuelve un valor de error (por ejemplo, #iVALOR!), la celda mostrará el error en lugar del texto de salto.

Observación

Para seleccionar una celda que contiene un hipervínculo sin ir al destino del hipervínculo, haga clic en la celda y mantenga presionado el botón del *mouse* (ratón) hasta que el cursor se convierta en

una cruz y, a continuación, suelte el botón.

Ejemplos

En el siguiente ejemplo se abre una hoja de cálculo denominada Informe presupuestario.xls que se almacena en Internet en el sitio ejemplo@microsoft.com/informe y muestra el texto "Haga clic para obtener un informe":

=HIPERVINCULO("http://ejemplo@microsoft.com/informe/informe presupuestario.xls", "Haga clic para obtener un informe")

En el siguiente ejemplo se crea un hipervínculo a la celda F10 de la hoja de cálculo denominada Anual en el libro Informe presupuestario.xls, que está almacenado en Internet en el sitio ejemplo@microsoft.com/informe. La celda en la hoja de cálculo que contiene el hipervínculo muestra el contenido de la celda D1 como el texto al que se salta:

=HIPERVINCULO("[http://www.ejemplo@microsoft.com/informe/informe presupuestario.xls]Anual!F10", D1)

En el ejemplo siguiente se crea un hipervínculo al rango TotalDept de la hoja de cálculo Primer trimestre del libro Informe presupuestario.xls, que está almacenado en Internet en el sitio ejemplo@microsoft.com/informe. La celda en la hoja de cálculo que contiene el hipervínculo muestra el texto "Haga clic para ver el Total del primer trimestre del departamento":

=HIPERVINCULO("[http:// ejemplo@microsoft.com/informe/informe presupuestario.xls]Primer trimestre!TotalDept";"Haga clic para ver el Total del primer trimestre del departamento")

Para crear un hipervínculo a una ubicación específica en Microsoft Word, debe utilizar un marcador para definir la ubicación a la que desea saltar en el documento. En el siguiente ejemplo se crea un hipervínculo al marcador denominado BenefTrim en el documento denominado Informe anual.doc en el sitio ejemplo@microsoft.com:

HIPERVINCULO("[http://ejemplo@microsoft.com/Informe anual.doc]BenefTrim";"Informe de beneficios trimestrales")

En Excel para Windows, en el ejemplo siguiente se muestra el contenido de la celda D5 como el texto que va a saltarse en la celda y abre el archivo denominado 1trim.xls que se almacena en el servidor denominado FINANZAS en la carpeta compartida Facturas. En este ejemplo se utiliza la ruta CUN:

Profesor: WILSON A. PRIETO H.

=HIPERVINCULO("\\FINANZAS\Facturas\1trim.xls";D5)

Funciones de Excel

110

En el ejemplo siguiente se abre el archivo 1trim.xls en Excel para Windows que se almacena en un directorio denominado Finanzas en la unidad D y se muestra el valor numérico almacenado en la celda H10:

=HIPERVINCULO("D:\FINANZAS\1trim.xls";H10)

En Excel para Windows, el siguiente ejemplo crea un hipervínculo al área denominada Totales en otro libro (externo), Milibro.xls:

=HIPERVINCULO("[C:\Mis documentos\Milibro.xls]Totales")

En Microsoft Excel para Macintosh, el siguiente ejemplo muestra "Haga clic aquí" en la celda y abre el archivo denominado Primer trimestre almacenado en una carpeta denominada Informes presupuestarios en el disco duro denominado Macintosh HD:

=HIPERVINCULO("Macintosh HD:Informes presupuestarios:Primer trimestre";"Haga clic aquí")

Se pueden crear hipervínculos dentro de una hoja de cálculo para saltar de una celda a otra. Por ejemplo, si la hoja de cálculo activa es la hoja denominada Junio en el libro denominado Presupuesto, la siguiente fórmula crea un hipervínculo a la celda E56. El texto del vínculo es el valor de la celda E56.

=HIPERVINCULO("[Presupuesto]Junio!E56";E56)

Para saltar a otra hoja del mismo libro, cambie el nombre de la hoja en el vínculo. En el ejemplo anterior, para crear un vínculo a la celda E56 en la hoja septiembre, cambie la palabra "Junio" por "Septiembre".

HORA

Devuelve la hora de un valor de hora. La hora se expresa como número entero, comprendido entre 0 (12:00 a.m.) y 23 (11:00 p.m.).

Sintaxis

HORA(núm_de_serie)

Núm_de_serie es la hora que contiene la hora que desea buscar. Las horas pueden introducirse como cadenas de texto entre comillas (por ejemplo, "6:45 p.m."), como números decimales (por ejemplo, 0,78125, que representa las 6:45 p.m.), o bien como resultado de otras fórmulas o funciones, por ejemplo HORANUMERO("6:45 p.m.").

Observación

El sistema de fechas predeterminado de Microsoft Excel para Windows y Excel para Macintosh es distinto. Los valores de hora son parte de un valor de fecha y vienen representados por un número decimal (por ejemplo, 0.5 representa 12:00 p.m. porque es la mitad de un día).

Ejemplo

	A	
1	Hora	
2	03:30:30 a.m.	
3	15:30:30 a.m.	
4	15:30	
	Fórmula	Descripción (Resultado)
	=HORA(A2)	Hora de la primera hora (3)
	=HORA(A3)	Hora de la segunda hora (15)
	=HORA(A4)	Hora de la tercera hora (15)

HORANUMERO

Devuelve el número decimal de la hora representada por una cadena de texto. El número decimal es un valor comprendido entre 0 (cero) y 0, 99999999 que representa las horas entre 0:00:00 (12:00:00 a.m.) y 23:59:59 (11:59:59 p.m.).

Sintaxis

HORANUMERO(texto_de_hora)

Texto_de_hora es una cadena de texto que representa una hora en uno de los formatos de hora de Microsoft Excel, por ejemplo, las cadenas de texto entre comillas "6:45 p.m." y "18:45" representan la hora.

Observaciones

- Se pasa por alto la información de fecha del argumento texto de hora.
- Excel para Windows y Excel para Macintosh usan diferentes sistemas de fecha predeterminados. Los valores de hora son parte de un valor de fecha y se representan mediante un número decimal (por ejemplo, 0,5 representa 12:00 p.m. porque es la mitad de un día).

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	А	В
1	Fórmula	Descripción (Resultado)
2	=HORANUMERO("2:24 a.m.")	Parte decimal de un día de la hora (0,1)
3	=HORANUMERO("22-ago-2008 6:35 a.m.")	Parte decimal de un día para la hora (0,274305556)

Nota Para ver el número como una hora, seleccione la celda y haga clic en **Celdas** en el menú **Formato**. Haga clic en la ficha **Número** y, a continuación, en **Hora** en el cuadro **Categoría**.

HOY

Devuelve el número de serie de la fecha actual. El número de serie es el código de fecha-hora que Microsoft Excel usa para los cálculos de fecha y hora. Si el formato de celda era **General** antes de escribir la función, el resultado tendrá formato de fecha.

Sintaxis

HOY()

Observación

Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un <u>sistema de fechas predeterminado diferente</u>.

IGUAL

Compara dos cadenas de texto y devuelve VERDADERO si son exactamente iguales y FALSO si no lo son. IGUAL reconoce mayúsculas y minúsculas, pero pasa por alto las diferencias de formato. Use IGUAL para comprobar el texto que introduce en un documento.

Sintaxis

IGUAL(texto1;texto2)

Texto1 es la primera cadena de texto.

Texto2 es la segunda cadena de texto.

Ejemplo

	A	В
1	Primera cadena	Segunda cadena
2	palabra	palabra
3	Palabra	palabra
4	p alabra	palabra
	Fórmula	Descripción (Resultado)
	=IGUAL(A2;B2)	Comprueba si coinciden las cadenas de la primera fila (VERDADERO)
	=IGUAL(A3;B3)	Comprueba si coinciden las cadenas de la segunda fila (FALSO)
	=IGUAL(A4;B4)	Comprueba si coinciden las cadenas de la tercera fila (FALSO)

IMPORTARDATOSDINAMICOS

Devuelve los datos almacenados en un informe de tabla dinámica. Puede utilizar IMPORTARDATOSDINAMICOS para recuperar datos resumidos de un informe de tabla dinámica, si se ven los datos resumidos del informe.

Nota Puede insertar rápidamente una fórmula IMPORTARDATOSDINAMICOS sencilla escribiendo = en la celda a la que desea devolver el valor y, a continuación, haciendo clic en la celda del informe de tabla dinámica que contenga los datos que desee devolver.

Sintaxis

IMPORTARDATOSDINAMICOS(campo_datos,tabla_dinámica,campo1,elemento1,campo2,elemento2,...)

Campo_datos es el nombre, entre comillas, del campo de datos que contiene los datos que desea recuperar.

Tabla_dinámica es una referencia a cualquier celda, rango de celdas o rango de celdas con nombre en un informe de tabla dinámica. Esta información se utiliza para determinar qué informe de tabla dinámica contiene los datos que desea recuperar.

Campo1, Elemento1, Campo2, Elemento2 son entre uno y 14 parejas de nombre de campo y nombre de elemento que describen los datos que desea recuperar. Las parejas pueden estar en cualquier orden. Los nombres de campo y nombres de elemento que no sean fechas ni números van entre comillas. En el caso de los informes de tabla dinámica OLAP, los elementos pueden contener el nombre de origen de la dimensión, así como el nombre de origen del elemento. Una pareja de campo y elemento de una tabla dinámica OLAP puede tener el siguiente aspecto:

"[Producto]","[Producto].[Todos los productos].[Alimentos].[Bollería]"

Observaciones

- Los campos calculados o los elementos y los cálculos estándar se incluyen en los cálculos de IMPORTARDATOSDINAMICOS.
- Si tabla_dinámica es un rango que incluye dos o más informes de tabla dinámica, los datos se recuperarán del último informe creado en el rango.
- Si los argumentos de campo y elemento describen una sola celda, el valor de la celda se devuelve sin tener en cuenta si se trata de una cadena, un número, un error y así sucesivamente.
- Si un elemento contiene una fecha, el valor debe expresarse como un número de serie o rellenarse mediante la función FECHA para que se conserve si la hoja de cálculo se abre en otra región. Por ejemplo, un elemento que hace referencia a la fecha 5 de marzo de 1999 podría insertarse como 36224 o FECHA(1999,3,5). Las horas pueden insertarse como valores decimales o mediante la función HORA.
- Si tabla_dinámica no es un rango donde se encuentra un informe de tabla dinámica, IMPORTARDATOSDINAMICOS devuelve #iREF!
- Si los argumentos no describen un campo visible o incluyen un campo de página que no se muestra, IMPORTARDATOSDINAMICOS devuelve #iREF!

El rango que contiene el informe de tabla dinámica es:

	А	В	С	D	Е
2	Región	Norte 🔻			
3					
4	Suma de ventas		Producto		
5	Mes	Vendedor	Bebidas	Verduras	Total general
6	Marzo	Buchanan	3.522 \$	10.201 \$	13.723 \$
- 7		Davolio	8.725 \$	7.889 \$	16.614 \$
8	Total de marzo		12.247 \$	18.090 \$	30.337 \$
9	Abril	Buchanan	5.594 \$	7.265 \$	12.859 \$
10		Davolio	5.461 \$	668 \$	6.129 \$
11	Total de abril		11.055 \$	7.933 \$	18.988 \$
12	Total gen	eral	23.302 \$	26.023 \$	49.325 \$

IMPORTARDATOSDINAMICOS("Ventas",\$A\$4) devuelve el total general del campo Ventas, 49.325 \$.

IMPORTARDATOSDINAMICOS("Suma de ventas",\$A\$4) también devuelve el total general del campo Ventas, 49.325 \$; el nombre de campo puede insertarse tal como aparece en la hoja, o bien como su raíz (sin "Suma de," "Recuento de," etc.).

OBTENERDATOSDINAMICOS("Ventas",\$A\$4,"Mes","Marzo") devuelve el total general de marzo, 30.337 \$.

OBTENERDATOSDINAMICOS("Ventas", \$A\$4, "Mes", "Marzo", "Producto", "Verduras", "Vendedor", "Buchanan") devuelve 10.201 \$.

IMPORTARDATOSDINAMICOS("Ventas", \$A\$4, "Región", "Sur") devuelve #iREF! porque los datos de la región Sur no se encuentran disponibles.

IMPORTARDATOSDINAMICOS("Ventas", \$A\$4,"Producto", "Bebidas", "Vendedor", "Davolio") devuelve #iREF! porque no hay ningún valor total de ventas de bebidas para Davolio.

INDICE

Devuelve el valor de un elemento en una tabla o <u>matriz</u> seleccionado por los índices de número de fila y de columna.

La función INDICE tiene dos formas, referencia y matricial. La forma de referencia siempre devuelve una referencia y la forma matricial siempre devuelve un valor o una matriz de valores. Use la forma matricial si el primer argumento de INDICE es una constante matricial.

Sintaxis 1

Forma matricial

INDICE(matriz;núm_fila;núm_columna)

Matriz es un rango de celdas o una matriz de constantes.

• Si matriz contiene sólo una fila o columna, el argumento núm_fila o núm_columna que corresponde es opcional.

• Si matriz tiene más de una fila y más de una columna y sólo utiliza núm_fila o núm_columna, INDICE devuelve una matriz con toda una fila o columna.

Núm_fila selecciona, en el rango matriz, la fila desde la cual se devolverá un valor. Si se omite núm_fila, se requiere el argumento núm_columna.

Núm_columna selecciona, en el rango matriz, la columna desde la cual se devolverá un valor. Si se omite núm columna, se requiere el argumento núm fila.

Observaciones

- Si se utilizan ambos argumentos núm_fila y núm_columna, INDICE devuelve el valor en la celda de intersección de los argumentos núm_fila y núm_columna.
- Si se define núm_fila o núm_columna como 0 (cero), INDICE devuelve la matriz de valores de toda la columna o fila, respectivamente. Para utilizar valores devueltos como una matriz, introduzca la función INDICE como una <u>fórmula matricial</u> en un rango horizontal de celdas para una fila y en un rango vertical de celdas para una columna. Para introducir una fórmula matricial, presione CTRL+MAYÚS+ENTRAR.
- Los argumentos núm_fila y núm_columna deben indicar una celda contenida en matriz; de lo contrario, INDICE devuelve el valor de error #iREF!

Ejemplo 1

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Datos
2	Manzanas	Limones
3	Bananas	Peras
	Fórmula	Descripción (Resultado)
	=INDICE(A2:B3;2;2)	Valor en la intersección de la segunda fila y la segunda columna del rango (Peras)
	=INDICE(A2:B3;2;1)	Valor en la intersección de la segunda fila y la primera columna del rango (Plátanos)

Ejemplo 2

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

¿Cómo?

	A	В
1	Fórmula	Descripción (Resultado)
2	=INDICE({1;2\3;4};0;2)	Valor en la primera fila de la constante matricial (2)
3		Valor en la segunda fila, segunda columna de la constante matricial (4)

Nota La fórmula del ejemplo debe introducirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A2:A3 comenzando por la celda de la fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce como fórmula matricial, el resultado único es 2.

Funciones de Excel

116

INDIRECTO

Devuelve la referencia especificada por una cadena de texto. Las referencias se evalúan de inmediato para presentar su contenido. Use INDIRECTO cuando desee cambiar la referencia a una celda en una fórmula sin cambiar la propia fórmula.

Sintaxis

INDIRECTO(ref;a1)

Ref es una referencia a una celda que contiene una referencia de tipo A1 o L1C1, un nombre definido como referencia o una referencia a una celda como cadena de texto. Si ref no es una referencia de celda válida, INDIRECTO devuelve el valor de error #iREF!

• Si ref hace referencia a otro libro (una referencia externa), el otro libro debe estar abierto. Si el libro de origen no está abierto, INDIRECTO devolverá el valor de error #iREF!

A1 es un valor lógico que especifica el tipo de referencia que contiene la celda ref.

- Si a1 es VERDADERO o se omite, ref se interpreta como una referencia estilo A1.
- Si a1 es FALSO o se omite, ref se interpreta como una referencia estilo L1C1.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

▶ ¿Cómo?

	A	В
1	Datos	Datos
2	B2	1.333
3	В3	45
4	Marina	10
5	5	62
	Fórmula	Descripción (Resultado)
	=INDIRECTO(\$A\$2)	Valor de la referencia en la celda A2 (1,333)
	=INDIRECTO(\$A\$2)	Valor de la referencia en la celda A2 (1,333)

Cuando cree una fórmula que haga referencia a una celda, la referencia a la celda se actualizará si: (1) la celda se desplaza utilizando el comando **Cortar** para eliminarla, o (2) si la celda se desplaza porque se insertan o eliminan filas o columnas. Si desea que la fórmula siempre haga referencia a la misma fórmula sin tener en cuenta si se elimina o desplaza la fila sobre la celda, utilice la función de hoja de cálculo INDIRECTO. Por ejemplo, si desea que siempre se haga referencia a la celda A10, utilice la sintaxis siguiente:

=INDIRECTO("A10")

INFO

Devuelve información acerca del entorno operativo en uso.

Sintaxis

INFO(tipo)

Tipo es texto que especifica el tipo de información que desea obtener.

Si tipo es	Devuelve	
"directorio"	La ruta de acceso del directorio o carpeta en uso	
"memdisp"	La cantidad de memoria disponible, en bytes	
"memusada"	La cantidad de memoria utilizada para los datos	
"archivos"	El número de hojas de cálculo activas en los libros abiertos	
"origen"	La referencia absoluta al estilo A1, como texto, precedida de "\$A:" para asegurar la compatibilidad con Lotus 1-2-3 versión 3.x. Devuelve la referencia de celda de la primera celda visible en la ventana desde la parte superior izquierda, basada en la posición de desplazamiento actual.	
"versionso" (no lleva acento)	La versión del sistema operativo en uso en forma de texto	
"recalc"	El modo activo del cálculo; devuelve "Automático" o "Manual"	
"version"	Versión de Microsoft Excel, como texto.	
"sistema"	El nombre del entorno operativo:	
	Macintosh = "mac"	
	Windows = "pcdos"	
"memtot"	La cantidad de memoria utilizada para los datos	

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=INFO("archivos")	Número de hojas de cálculo activas (varía)
	=INFO("recalc")	Modo de repetición de cálculos para el libro (Automático o Manual)

INT.PAGO.DIR

Calcula el interés pagado durante un período específico de una inversión. Esta función se incluye para proporcionar compatibilidad con Lotus 1-2-3.

Sintaxis

INT.PAGO.DIR (tasa;período;núm_per;va)

Tasa es la tasa de interés de la inversión.

Período es el período cuyo interés desea averiguar y que debe estar comprendido entre 1 y el número total de períodos.

Núm_per es el número total de períodos de pago de la inversión.

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

Va es el valor actual de la inversión. Para un préstamo, va es la cantidad del préstamo.

Observaciones

- Mantenga uniformidad en el uso de las unidades con las que especifica los argumentos tasa y nper. Si realiza pagos mensuales de un préstamo de cuatro años con una tasa de interés anual del 12 por ciento, use 12%/12 para el argumento tasa y 4*12 para el argumento nper. Si realiza pagos anuales del mismo préstamo, use 12% para tasa y 4 para nper.
- Para todos los argumentos, el dinero que desembolse, como depósitos en una cuenta de ahorros u otros reintegrados, se representa con números negativos, mientras que el dinero que recibe, como cheques de dividendos y otros depósitos, se representa con números positivos.
- Para obtener más información acerca de las funciones financieras, vea la función VA.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	10%	Tasa de interés anual
3	1	Período
4	3	Número de años de la inversión
5	8000000	Importe del préstamo
	Fórmula	Descripción (Resultado)
	=INT.PAGO.DIR (A2/12;A3;A4*12;A5)	Interés abonado para el primer pago mensual de un préstamo con los términos anteriores (-64814,8)
	=INT.PAGO.DIR(A2;1;A4;A5)	Interés pagado en el primero año de un préstamo con los términos anteriores (-533333)

Nota La tasa de interés se divide por 12 para obtener una tasa mensual. El número de años de duración del préstamo se multiplica por 12 para obtener el número de pagos.

INTERSECCION.EJE

Calcula el punto en el que una línea intersecará el eje y utilizando los valores X e Y existentes. El punto de intersección se basa en el mejor ajuste de la línea de regresión trazado con los valores X y los valores Y. Utilice la función INTERSECCION.EJE para determinar el valor de la variable dependiente cuando la variable independiente es igual a 0 (cero). Por ejemplo, puede emplear la función INTERSECCION.EJE para predecir la resistencia eléctrica de un metal a 0 °C si los puntos de datos se han tomado a temperatura ambiente o superior.

Sintaxis

INTERSECCION.EJE(conocido_y;conocido_x)

Conocido_y es el conjunto de observaciones o datos dependientes.

Conocido_x es el conjunto de observaciones o datos independientes.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si los argumentos conocido_y y conocido_x contienen un número diferente de puntos de datos o no contienen ninguno, INTERSECCION.EJE devuelve el valor de error #N/A.
- La ecuación que representa la intersección de la línea de regresión es:

$$\alpha = \overline{Y} - b\overline{X}$$

donde la pendiente se calcula como:

$$b = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2}$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Valor de y conocido	Valor de x conocido
2	2	6
3	3	5
4	9	11
5	1	7
6	8	5
	Fórmula	Descripción (Resultado)
	=INTERSECCION.EJE (A2:A6;B2:B6)	El punto en el que una línea intersecará el eje y utilizando los valores anteriores de \times e y (0,0483871)

INTERVALO.CONFIANZA

Devuelve el intervalo de confianza para la media de una población. El intervalo de confianza es un rango en cualquiera de los lados de la media de una muestra. Por ejemplo, si ordena un producto por correo, puede determinar, con un determinado nivel de confianza, el tiempo máximo y mínimo que tardará en recibir dicho producto.

Sintaxis

INTERVALO.CONFIANZA(alfa;desv_estándar;tamaño)

Alfa es el nivel de significación utilizado para calcular el nivel de confianza. El nivel de confianza es igual a 100(1 - alfa)%, es decir, un alfa de 0,05 indica un nivel de confianza de 95%.

Desv_estándar es la desviación estándar de la población para el rango de datos y se presupone que es conocida.

Tamaño es el tamaño de la muestra.

Observaciones

- Si uno de los argumentos no es numérico, INTERVALO.CONFIANZA devuelve el valor de error #iVALOR!
- Si alfa ≤ 0 o alfa ≥ 1, INTERVALO.CONFIANZA devuelve el valor de error #iNUM!
- Si el argumento desv_estándar ≤ 0, INTERVALO.CONFIANZA devuelve el valor de error #iNUM!
- Si el argumento tamaño no es un entero, se trunca.
- Si el argumento tamaño < 1, INTERVALO.CONFIANZA devuelve el valor de error #iNUM!
- Si suponemos que el argumento alfa es igual a 0,05, se tendrá que calcular el área debajo de la curva normal estándar que es igual a (1 alfa) o 95%. Este valor es ± 1,96. Por lo tanto, el intervalo de confianza es:

$$\bar{x} \pm 1.96 \left(\frac{\sigma}{\sqrt{n}} \right)$$

Ejemplo

Supongamos que observa una muestra de 50 personas que realizan diariamente un trayecto, y que la duración media de dicho trayecto es de 30 minutos, con una desviación estándar de la población de 2,5. Puede tener una confianza del 95 por ciento de que la media de la población se encuentra en el intervalo:

$$30 \pm 1.96 \left(\frac{2.5}{\sqrt{50}} \right)$$

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	0,05	Nivel de significación
3	2,5	Desviación estándar de la población
4	50	Tamaño de la muestra
	Fórmula	Descripción (Resultado)
	=INTERVALO.CONFIANZA (A2;A3;A4)	Intervalo de confianza para la media de una población. En otras palabras, la longitud media de desplazamiento es 30 ± 0,692951 minutos, o de 29,3 a 30,7 minutos. (0,692951)

IZQUIERDA

También se aplica a:

IZQUIERDAB

IZQUIERDA devuelve el primer carácter o caracteres de una cadena de texto, según el número de caracteres que especifique el usuario.

IZQUIERDAB devuelve el primer carácter o caracteres de una cadena de texto, según el número de bytes que el usuario especifique. Esta función se utiliza con los caracteres de dos bytes.

Sintaxis

IZQUIERDA(texto;núm_de_caracteres)

IZQUIERDAB(texto,núm_bytes)

Texto es la cadena de texto que contiene los caracteres que desea extraer.

Núm_de_caracteres especifica el número de caracteres que desea extraer con IZQUIERDA.

- Núm de caracteres debe ser mayor o igual que cero.
- Si núm_de_caracteres es mayor que la longitud del texto, IZQUIERDA devolverá todo el texto.
- Si núm_de_caracteres se omite, se calculará como 1.

Núm_bytes especifica el número de caracteres que desea extraer con IZQUIERDAB, basados en bytes.

Ejemplo (IZQUIERDA)

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Ejemplo (IZQUIERDAB)

IZQUIERDAB(" 東京都渋谷区",4) equivale a " 東京"

JERARQUIA

Devuelve la jerarquía de un número en una lista de números. La jerarquía de un número es su tamaño en comparación con otros valores de la lista. (Si ordenara la lista, la jerarquía del número sería su posición.)

Sintaxis

JERARQUIA(número;referencia;orden)

Número es el número cuya jerarquía desea saber.

Referencia es una matriz de una lista de números o una referencia a una lista de números. Los valores no numéricos se pasan por alto.

Orden es un número que especifica cómo clasificar el argumento número.

- Si el argumento orden es 0 (cero) o se omite, Microsoft Excel determina la jerarquía de un número como si la lista definida por el argumento referencia fuese ordenada en forma descendente.
- Si el argumento orden es diferente de cero, Microsoft Excel determina la jerarquía de un número como si la lista definida por el argumento referencia se ordenara en forma ascendente.

Observaciones

La función JERARQUIA asigna la misma jerarquía a los números duplicados. Sin embargo, la presencia de números duplicados afecta la jerarquía de los números subsiguientes. Por ejemplo, en una lista de números enteros, si el número 10 aparece dos veces y tiene una jerarquía de 5, entonces el número 11 tendría una jerarquía de 7 (ningún número tendría jerarquía de 6).

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	7	
3	3,5	
4	3,5	
5	1	
6	2	
	Fórmula	Descripción (Resultado)
	=JERARQUIA(A3;A2:A6;1)	Jerarquía de 3,5 en la lista anterior (3)
	=JERARQUIA(A2;A2:A6;1)	Una jerarquía de 7 en la lista anterior (5)

K.ESIMO.MAYOR

Devuelve el k-ésimo mayor valor de un conjunto de datos. Esta función puede usarse para seleccionar un valor basándose en su posición relativa. Por ejemplo, se puede utilizar K.ESIMO.MAYOR para devolver el mayor valor de un resultado, el segundo resultado o el tercero.

Sintaxis

K.ESIMO.MAYOR(matriz;k)

Matriz es la matriz o rango de datos cuyo k-ésimo mayor valor desea determinar.

K representa la posición (a partir del mayor valor), dentro de la matriz o rango de celdas, de los datos que se van a devolver.

Observaciones

- Si el argumento matriz está vacío, K.ESIMO.MAYOR devuelve el valor de error #iNUM!
- Si el argumento ≤ 0 o si k es mayor que el número de puntos de datos, K.ESIMO.MAYOR devuelve el valor de error #iNUM!

Sea *n* el número de puntos de datos de un rango; la función K.ESIMO.MAYOR(matriz;1) devuelve el mayor valor de este rango y K.ESIMO.MAYOR(matriz;*n*) devuelve el menor valor.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	А	В
1	Datos	Datos
2	3	4
3	5	2
4	3	4
5	5	6
6	4	7
	Fórmula	Descripción (Resultado)
	=K.ESIMO.MAYOR(A2:B6;3)	Tercer número más alto de los anteriores (5)
	=K.ESIMO.MAYOR(A2:B6;7)	7º número más alto de los anteriores (4)

K.ESIMO.MENOR

Devuelve el k-ésimo menor valor de un conjunto de datos. Utilice esta función para devolver valores con una posición relativa específica dentro de un conjunto de datos.

Sintaxis

K.ESIMO.MENOR(matriz;k)

Matriz es una matriz o un rango de datos numéricos cuyo k-ésimo menor valor desea determinar.

K es la posición, dentro de la matriz o del rango de datos, de los datos que se van a devolver, determinada a partir del menor de los valores.

Observaciones

- Si el argumento matriz esta vacío, K.ESIMO.MENOR devuelve el valor de error #iNUM!
- Si el argumento k ≤ 0 o si k es superior al número de puntos de datos, K.ESIMO.MENOR devuelve el valor de error #iNUM!
- Sea n el número de puntos de datos del argumento matriz, K.ESIMO.MENOR(matriz;1) devuelve el valor más pequeño y K.ESIMO.MENOR(matriz;n) el valor más grande.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Datos
2	3	1
3	4	4
4	5	8
5	2	3
6	3	7
7	4	12
8	6	54
9	4	8
10	7	23
	Fórmula	Descripción (Resultado)
	=K.ESIMO.MENOR(A2:A10;4)	4º menor número de la primera columna (4)
	=K.ESIMO.MENOR(B2:B10;2)	2º menor número de la segunda columna (3)

LARGO

También se aplica a:

LARGOB

LARGO devuelve el número de caracteres de una cadena de texto.

LARGOB devuelve el número de bytes utilizados para representar los caracteres de una cadena de texto. Esta función se utiliza con los caracteres de dos bytes.

Sintaxis

LARGO(texto)

LARGOB(texto)

Texto es el texto cuya longitud desea saber. Los espacios se cuentan como caracteres.

Ejemplo (LARGO)

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	Phoenix, AZ	_
3		_
4	Uno	
	Fórmula	Descripción (Resultado)
	Fórmula =LARGO(A2)	Descripción (Resultado) Longitud de la primera cadena (11)
	=LARGO(A2)	Longitud de la primera cadena (11)

Ejemplo (LARGOB)

=LARGOB("東京都") equivale a 6

LIMPIAR

Elimina caracteres que no se pueden imprimir. Use LIMPIAR en un texto importado de otras aplicaciones que contenga caracteres que posiblemente no se puedan imprimir en su sistema operativo. Por ejemplo, puede usar LIMPIAR para eliminar ciertos códigos de bajo nivel generalmente colocados por el sistema al inicio y al final de los archivos de datos y que no se puede imprimir.

Sintaxis

LIMPIAR(texto)

Texto es cualquier información en una hoja de cálculo de la que desea quitar caracteres no imprimibles.

Ejemplo

LN

Devuelve el logaritmo natural (neperiano) de un número. Los logaritmos naturales son logaritmos que se basan en la constante **e** (2,71828182845904).

Sintaxis

LN(número)

Número es el número real positivo cuyo logaritmo natural desea obtener.

Observación

LN es la función inversa de la función EXP.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=LN(86)	Logaritmo natural de 86 (4,454347)
3	=LN(2,7182818)	Logaritmo natural del valor de la constante e (1)
4	=LN(EXP(3))	Logaritmo natural de e elevado a la potencia de 3 (3)

LOG

Devuelve el logaritmo de un número en la base especificada.

Sintaxis

LOG(número;base)

Número es el número real positivo cuyo logaritmo desea obtener.

Base es la base del logaritmo. Si base se omite, el valor predeterminado es 10.

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=LOG(10)	Logaritmo de 10 (1)
3	=LOG(8, 2)	Logaritmo de 8 con base 2 (3)
4	=LOG(86, 2,7182818)	Logaritmo de 86 con base e (4,454347)

LOG₁₀

Devuelve el logaritmo en base 10 de un número.

Sintaxis

LOG10(número)

Número es el número real positivo cuyo logaritmo en base 10 desea obtener.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В	
1	Fórmula	Descripción (Resultado)	
2	=LOG10(86)	Logaritmo en base 10 de 86 (1,934498451)	
3	=LOG10(10)	Logaritmo en base 10 de 10 (1)	
4	=LOG10(1E5)	Logaritmo en base 10 de 1E5 (5)	
5	=LOG10(10^5)	Logaritmo en base 10 de 10^5 (5)	

MAX

Devuelve el valor máximo de un conjunto de valores.

Sintaxis

MAX(**número1**;número2; ...)

Número1, número2, ... son entre 1 y 30 números de los cuales desea encontrar el valor máximo.

Observaciones

- Puede especificar los argumentos que sean números, celdas vacías, valores lógicos o representaciones numéricas en texto. Los argumentos que sean valores de error o texto que no se pueda traducir a números causarán errores.
- Si un argumento es una matriz o referencia, sólo se usan los números de esa matriz o referencia. Las celdas vacías, valores lógicos o texto que se encuentren dentro de la matriz o referencia se pasan por alto. Utilice MAXA si no se deben pasar por alto los valores lógicos y el texto.
- Si el argumento no contiene números, MAX devuelve 0.

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A
1	Datos
2	10
3	7
4	9
5	27
6	2
	Fórmula
	=MAX(A2:A6)
	=MAX(A2:A6;30)

MAXA

Devuelve el mayor valor en una lista de argumentos. El texto y los valores lógicos como VERDADERO y FALSO se comparan como si fueran números.

MAXA es similar a MINA. Para obtener más información, vea los ejemplos de MINA.

Sintaxis

MAXA(ref1;ref2;...)

Ref1, ref2, ... son entre 1 y 30 valores de los que desea encontrar el mayor valor.

Observaciones

- Puede especificar los argumentos que sean números, celdas vacías, valores lógicos o representaciones numéricas en texto. Los argumentos que sean valores de error causarán errores. Si el cálculo no debe incluir texto o valores lógicos, utilice la función de hoja de cálculo MAX.
- Si el argumento es una matriz o referencia, sólo se utilizarán los valores en la matriz o en la referencia. Se pasarán por alto las celdas vacías y los valores de texto en la matriz o en la referencia.

- Los argumentos que contengan VERDADERO se evaluarán como 1; los argumentos que contengan texto o FALSO se evaluarán como 0 (cero).
- Si los argumentos no contienen valores, MAXA devolverá 0 (cero).

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

MAYUSC

Convierte el texto en mayúsculas.

Sintaxis

MAYUSC(texto)

Texto es el texto que desea convertir a mayúsculas. El argumento texto puede ser una referencia o una cadena de texto.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

MDETERM

Devuelve la matriz determinante de una matriz.

Sintaxis

MDETERM(matriz)

Matriz es una matriz numérica con el mismo número de filas y de columnas.

Observaciones

- Matriz se puede dar como un rango de celdas, por ejemplo A1:C3; como una constante matricial, por ejemplo {1;2;3\4;5;6\7;8;9} o como un nombre que se refiera a cualquiera de ellas.
- Si una de las celdas en la matriz contiene celdas vacías o con texto, MDETERM devuelve el valor de error #iVALOR!
- MDETERM también devolverá #iVALOR! si el argumento matriz no tiene un número igual de filas y de columnas.
- El determinante de una matriz es un número que se obtiene a partir de los valores en matriz. En una matriz de tres filas y de tres columnas, A1:C3, el determinante se define como:

- Los determinantes de matrices se usan generalmente para resolver sistemas de ecuaciones matemáticas que contienen varias variables.
- MDETERM tiene una exactitud de cálculo de 16 dígitos aproximadamente, lo que puede causar pequeños errores numéricos cuando el cálculo no está completo. Por ejemplo, el determinante de una matriz individual podría diferir de cero en 1E-16.

Ejemplo

	A	В	C	D
1	Datos	Datos	Datos	Datos
2	1	3	8	5
3	1	3	6	1
4	1	1	1	0
5	7	3	10	2
	Fórmula	Descripción (Resultado)		
	=MDETERM(A2:D5)	Determinante de la matriz anterior (88)		
	=MDETERM({3;6;1 \1;1;0\3;10;2})	Determinante de la matriz como constante matricial (1)		
	=MDETERM({3;6\1;1})	Determinante de la matriz en la constante matricial (-3)		
	=MDETERM({1;3;8;5 \1;3;6;1})	Devuelve un error porque la matriz no tiene un número igual de filas y de columnas (#iVALOR!).		

MEDIA.ACOTADA

Devuelve la media del interior del conjunto de datos. MEDIA.ACOTADA calcula la media de un conjunto de datos después de eliminar el porcentaje de los extremos inferior y superior de los puntos de datos. Puede utilizar esta función cuando desee excluir del análisis los valores extremos.

Sintaxis

MEDIA.ACOTADA(matriz;porcentaje)

Matriz es la matriz o el rango de valores que desea acotar y de los cuales se calculará la media.

Porcentaje es el número fraccionario de puntos de datos que se excluyen del cálculo. Por ejemplo, si porcentaje = 0.2, se eliminarán cuatro puntos de un conjunto de datos de 20 puntos (20×0.2), dos de la parte superior y dos de la parte inferior.

Observaciones

- Si porcentaje < 0 o si porcentaje > 1, MEDIA.ACOTADA devuelve el valor de error #iNUM!
- MEDIA.ACOTADA redondea el número de puntos de datos excluidos al múltiplo de 2 más próximo. Si porcentaje = 0,1, el 10 por ciento de 30 puntos de datos es igual a 3 puntos. Para lograr simetría, MEDIA.ACOTADA excluye un solo valor de cada extremo del conjunto de datos.

Ejemplo

	А		
1	Datos		
2	4		
3	5		-
4	6		
5	7		
6	2		
7	3		
8	4		
9	5		
10	1		
11	2		
12	3		
	Fórmula	Descripción (Resultado	Descripción (Resultado)
	=MEDIA.ACOTADA (A2:A12;0,2)	Media del interior del conju excluido del cálculo (3,777	Media del interior del conjunto de datos anterior, con el 20 por cier excluido del cálculo (3,777778)

MEDIA.ARMO

Devuelve la media armónica de un conjunto de datos. La media armónica es la inversa de la media aritmética de los valores recíprocos.

Sintaxis

MEDIA.ARMO(número1;número2;...)

Número1, número2, ... son de 1 a 30 argumentos cuya media desea calcular. También puede utilizar una matriz única o una referencia matricial en lugar de argumentos separados con punto y coma.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si uno de los puntos de datos ≤ 0, MEDIA.ARMO devuelve el valor de error #iNUM!
- La media armónica es siempre inferior a la media geométrica, que a su vez es siempre inferior a la media aritmética.
- La ecuación para la media armónica es:

Funciones de Excel

$$\frac{1}{H_{u}} = \frac{1}{n} \sum \frac{1}{Y_{i}}$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	4	
3	5	
4	8	
5		
	7	
6	11	
7	4	
8	3	
	Fórmula	
	=MEDIA.ARMO(A2:A8)	

MEDIA.GEOM

Devuelve la media geométrica de una matriz o de un rango de datos positivos. Por ejemplo, es posible utilizar la función MEDIA.GEOM para calcular la tasa de crecimiento promedio, dado un interés compuesto por tasas variables.

Sintaxis

MEDIA.GEOM(**número1**;número2; ...)

Número1, número2, ... son de 1 a 30 argumentos cuya media desea calcular. También puede utilizar una matriz única o una referencia matricial en lugar de argumentos separados con punto y coma.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.

Profesor: WILSON A. PRIETO H.

- Si uno de los puntos de datos ≤ 0, MEDIA.GEOM devuelve el valor de error #iNUM!
- La ecuación para la media geométrica es:

$$GM_{\bar{y}} = \sqrt[n]{y_1 y_2 y_3 \dots y_n}$$

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A
	^
1	Datos
2	4
3	5
4	8
5	7
6	11
7	
8	4
0	3
	Fórmula
	=MEDIA.GEOM(A2:A8)

MEDIANA

Devuelve la mediana de los números. La mediana es el número que se encuentra en medio de un conjunto de números, es decir, la mitad de los números es mayor que la mediana y la otra mitad es menor.

Sintaxis

MEDIANA(número1; número2; ...)

Número1, número2, ... son entre 1 y 30 números cuya mediana desea obtener.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números. Microsoft Excel examina todos los números en cada argumento matricial o de referencia.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si la cantidad de números en el conjunto es par, MEDIANA calcula el promedio de los números centrales. Vea la segunda fórmula del ejemplo.

Ejemplo

	A	
1	Datos	
2	1	
3	2	
4	3	
5	4	
6	5	
7	6	
	Fórmula	Descripción (Resultado)
	=MEDIANA(A2:A6)	La mediana de los 5 primeros números de la lista anterior (3)
	=MEDIANA(A2:A7)	La mediana de todos los números anteriores, o el promedio de 3 y 4 (3,5)

MES

Devuelve el mes de una fecha representada por un número de serie. El mes se expresa como número entero comprendido entre 1 (enero) y 12 (diciembre).

Sintaxis

MES(núm_de_serie)

Núm_de_serie es la fecha del mes que intenta buscar. Las fechas deben introducirse mediante la función FECHA o como resultados de otras fórmulas o funciones. Por ejemplo, utilice FECHA(2008;5;23) para el día 23 de mayo de 2008. Pueden producirse problemas si <u>las fechas se introducen como texto</u>.

Observaciones

Microsoft Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.

Los valores devueltos por las funciones AÑO, MES Y DIA serán valores gregorianos independientemente del formato de visualización del valor de fecha suministrado. Por ejemplo, si el formato de visualización de la fecha suministrada es <u>Hijri</u>, los valores devueltos para las funciones AÑO, MES Y DIA serán valores asociados con la fecha gregoriana equivalente.

Ejemplo

	A	
1	Fecha	
2	15 de abril de 2008	
	Fórmula	Descripción (Resultado)
	=MES(A2)	Mes de la fecha anterior (4)

MIN

Devuelve el valor mínimo de un conjunto de valores.

Sintaxis

MIN(número1; número2; ...)

Número1, número2, ... son entre 1 y 30 números de los que desea encontrar el valor mínimo.

Observaciones

- Puede especificar los argumentos que sean números, celdas vacías, valores lógicos o representaciones numéricas en texto. Los argumentos que sean valores de error o texto que no se pueda traducir a números causarán errores.
- Si un argumento es una matriz o referencia, sólo se usan los números de esa matriz o referencia. Las celdas vacías, valores lógicos o texto que se encuentren dentro de la matriz o referencia se pasan por alto. Si los valores lógicos o el texto no deben pasarse por alto, utilice la función MINA.
- Si los argumentos no contienen números, MIN devuelve 0.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A
1	Datos
2	10
3	7
4	9
5	27
6	2
	Fórmula
	=MIN(A2:A6)
	=MIN(A2:A6;0)

Profesor: WILSON A. PRIETO H.

MINA

Devuelve el valor menor en la lista de argumentos. El texto y los valores lógicos como VERDADERO y FALSO se comparan como si fueran números.

Sintaxis

MINA(ref1;ref2;...)

Ref1, ref2, ... son entre 1 y 30 valores de los que desea encontrar el menor.

Observaciones

- Puede especificar los argumentos que sean números, celdas vacías, valores lógicos o representaciones numéricas en texto. Los argumentos que sean valores de error causarán errores. Si el cálculo no debe incluir texto o valores lógicos, utilice la función de hoja de cálculo MIN.
- Si el argumento es una matriz o referencia, sólo se utilizarán los valores en la matriz o en la referencia. Se pasarán por alto las celdas vacías y los valores de texto en la matriz o en la referencia.
- Los argumentos que contengan VERDADERO se evaluarán como 1; los argumentos que contengan texto o FALSO se evaluarán como 0 (cero).
- Si los argumentos no contienen valores, MINA devolverá 0.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

MINUSC

Convierte todas las mayúsculas de una cadena de texto en minúsculas.

Sintaxis

MINUSC(texto)

Funciones de Excel

Profesor: WILSON A. PRIETO H.

Texto es el texto que desea convertir en minúsculas. MINUSC no cambia los caracteres de texto que no sean letras.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	E. E. García	_
3	Dep. 2B	_
	Fórmula	Descripción (Resultado)
	=MINUSC(A2)	La primera cadena en minúsculas (e. e. garcía)
	=MINUSC(A3)	La última cadena en minúsculas (dep. 2b)

MINUTO

Devuelve los minutos de un valor de hora. Los minutos se expresan como números enteros comprendidos entre 0 y 59.

Sintaxis

MINUTO(núm_de_serie)

Núm_de_serie es la hora que contiene los minutos que desea buscar. Las horas pueden introducirse como cadenas de texto entre comillas (por ejemplo, "6:45 p.m."), como números decimales (por ejemplo, 0,78125, que representa las 6:45 p.m.), o bien como resultado de otras fórmulas o funciones, por ejemplo HORANUMERO("6:45 p.m.").

Observaciones

El sistema de fechas predeterminado de Microsoft Excel para Windows y Microsoft Excel para Macintosh es distinto. Los valores de hora son parte de un valor de fecha y vienen representados por un número decimal (por ejemplo, 0,5 representa 12:00 p.m. ya que es la mitad de un día).

Ejemplo

MINVERSA

Devuelve la matriz inversa de la matriz almacenada en una matriz.

Sintaxis

MINVERSA(matriz)

Matriz es una matriz numérica con el mismo número de filas y de columnas.

Observaciones

- El argumento matriz puede expresarse como un rango de celdas, por ejemplo A1:C3; como una constante matricial, por ejemplo, {1;2;3\4;5;6\7;8;9} o como un nombre de cualquiera de éstas
- Si hay celdas vacías o celdas que contienen texto, MINVERSA devuelve el valor de error #iVALOR!
- MINVERSA también devuelve el valor de error #iVALOR! si el argumento matriz no tiene la misma cantidad de filas que de columnas.
- Las fórmulas que devuelven matrices deben introducirse como fórmulas matriciales.
- En general, las matrices inversas, así como las determinantes, se usan para resolver sistemas de ecuaciones matemáticas con distintas variables. El producto de una matriz y su inversa es la matriz de identidad (la matriz cuadrada en la que los valores diagonales equivalen a 1 y todos los demás valores equivalen a 0).
- Como ejemplo de como calcular una matriz de dos filas y dos columnas, supongamos que el rango A1:B2 contiene las letras a, b ,c y d que representan cuatro números diferentes. En la siguiente tabla se muestra la inversa de la matriz A1:B2.

	Columna A	Columna B
Fila 1	d/(a*d-b*c)	b/(b*c-a*d)
Fila 2	c/(b*c-a*d)	a/(a*d-b*c)

- El cálculo de MINVERSA tiene una exactitud de 16 dígitos aproximadamente, lo cual puede causar un pequeño error numérico cuando no se completa la cancelación.
- Algunas matrices cuadradas no se pueden invertir y devuelven el valor de error #iNUM! con MINVERSA. El determinante de una matriz no invertible es 0.

Ejemplo 1

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Datos
2	4	-1
3	2	0
	Fórmula	Fórmula
	=MINVERSA(A2:B3)	

Nota La fórmula del ejemplo debe introducirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A5:B6 comenzando por la celda de la fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce como fórmula matricial, el resultado único es 0.

Ejemplo 2

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В	С
1	Datos	Datos	Datos
2	1	2	1
3	3	4	-1
4	0	2	0
	Fórmula	Fórmula	Fórmula
	=MINVERSA(A2:C4)		

Nota La fórmula del ejemplo debe introducirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A6:C8 comenzando por la celda de la fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce como fórmula matricial, el resultado único es 0,25.

	A	В	С
1	Datos	Datos	Datos
2	1	2	1
3	3	4	-1
4	0	2	0
	Fórmula	Fórmula	Fórmula
	=MINVERSA(A2:C4)		

Nota La fórmula del ejemplo debe introducirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A6:C8 comenzando por la celda de la fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce como fórmula matricial, el resultado único es 0,25.

MMULT

Devuelve la matriz producto de dos matrices. El resultado es una matriz con el mismo número de filas que matriz1 y el mismo número de columnas que matriz2.

Sintaxis

MMULT(matriz1;matriz2)

Matriz1, matriz2 son las matrices que desea multiplicar.

Observaciones

- El número de columnas en matriz1 debe ser el mismo que el número de filas en matriz2 y ambas matrices sólo pueden contener números.
- Los argumentos matriz1 y matriz2 pueden expresarse como rangos de celdas, constantes matriciales o referencias.
- MMULT devuelve el valor de error #iVALOR! si hay celdas vacías o con texto, o si el número de columnas de matriz1 es diferente al número de filas de matriz2.
- La matriz producto a de dos matrices b y c es:

$$a_{ij} = \sum_{k=1}^{n} b_{ik} c_{kj}$$

- donde i es el número de fila y j es el número de columna.
- Las fórmulas que devuelven matrices deben introducirse como fórmulas matriciales.

Ejemplo 1

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

	А	В
1	Matriz 1	Matriz 1
2	1	3
3	7	2
4	Matriz 2	Matriz 2
5	2	0
6	0	2
	Fórmula	Fórmula

Nota La fórmula del ejemplo debe introducirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A8:B9 comenzando por la celda de la fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce como fórmula matricial, el resultado único es 2.

Ejemplo 2

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

A	В
Matriz 1	Matriz 1
3	0
2	0
Matriz 2	Matriz 2
2	0
0	2
Fórmula	Fórmula
=MMULT(A2:B3;A5:B6)	
	Matriz 1 3 2 Matriz 2 2 0 Fórmula

Nota La fórmula del ejemplo debe introducirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A8:89 comenzando por la celda de la fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce como fórmula matricial, el resultado único es 6.

MODA

Devuelve el valor que se repite con más frecuencia en una matriz o rango de datos. Al igual que MEDIANA, MODA es una medida de posición.

Sintaxis

MODA(número1; número2; ...)

Número1, número2, ... son de 1 a 30 argumentos cuya moda desea calcular. También puede utilizar una matriz única o una referencia matricial en lugar de argumentos separados con punto y coma.

Observaciones

- Los argumentos deben ser números, nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si el conjunto de datos no contiene puntos de datos duplicados, MODA devuelve el valor de error #N/A.

En un conjunto de valores, la moda es el valor que se repite con mayor frecuencia; la mediana es el valor central y la media es el valor promedio. Ninguna de estas medidas de la tendencia central tomada individualmente proporciona una imagen completa de los datos. Supongamos que los datos están agrupados en tres áreas, la mitad de las cuales es un valor bajo que se repite y la otra mitad consiste en dos valores elevados. Tanto PROMEDIO como MEDIANA devolverán un valor situado en una zona central relativamente vacía, y MODA devolverá el valor bajo dominante.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	5,6	
3	4	
4	4	
5	3	
6	2	
7	4	
	Fórmula	
	=MODA(A2:A7)	

MONEDA

La función descrita en este tema de Ayuda convierte un número a formato de texto y le aplica un símbolo de moneda. El nombre de la función (y el símbolo que aplica) depende de la configuración del idioma.

Esta función convierte un número en texto usando un formato de moneda, con el núm_de_decimales redondeado a la posición decimal especificada. El formato empleado es \$#.##0,00_);(\$#.##0,00).

Profesor: WILSON A. PRIETO H.

Sintaxis

MONEDA(**número**;núm_de_decimales)

Número es un número, una referencia a una celda que contiene un número o una fórmula que evalúa un número.

Núm_de_decimales es el número de dígitos a la derecha del separador decimal. Si núm_de_decimales es negativo, el argumento número se redondea hacia la izquierda del separador decimal. Si omite el argumento núm_de_decimales, su valor predeterminado es 2.

Observación

La principal diferencia entre dar formato a una celda que contiene un número con el comando **Celdas** del menú **Formato** y dar formato a un número directamente con la función MONEDA es que MONEDA convierte el resultado en texto. Un número al que se le da formato con el comando **Celdas** sigue siendo un número. Los números a los que se da formato con la función MONEDA pueden continuar usándose en fórmulas porque, al calcularlos, Microsoft Excel convierte los números introducidos como valores de texto en números.

Ejemplo

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	1234,567	
3	-1234,567	
4	-0,123	
5	99,888	
	Fórmula	Descripción (Resultado)
	=MONEDA (A2;2)	Muestra el primer número con un formato monetario, con 2 dígitos a la derecha del separador decimal $(1.234,57\ \$)$
	=MONEDA(A2;- 2)	Muestra el primer número con un formato monetario, con 2 dígitos a la izquierda del separador decimal (1.200 \$)
	=MONEDA(A3;- 2)	Muestra el segundo número con un formato monetario, con 2 dígitos a la izquierda del separador decimal ((1.200 \$))
	=MONEDA (A4;4)	Muestra el tercer número con un formato monetario, con 4 dígitos a la derecha del separador decimal((0,1230 \$))
	=MONEDA(A5)	Muestra el cuarto número con un formato monetario, con 2 dígitos a la izquierda del separador decimal (99,89 \$)

MULTIPLO.INFERIOR

Redondea un número al próximo múltiplo del argumento cifra_significativa, hacia abajo.

Sintaxis

MULTIPLO.INFERIOR(número; cifra_significativa)

Número es el valor numérico que desea redondear.

Cifra significativa es el múltiplo al que se desea redondear.

Observaciones

- Si cualquiera de los argumentos es un valor no numérico, MULTIPLO.INFERIOR devuelve el valor de error #iVALOR!
- Si los argumentos número y cifra_significativa tienen signos diferentes,
 MULTIPLO.INFERIOR devuelve el valor de error #iNUM!
- Independientemente del signo del argumento número, un valor siempre se redondea alejándolo de cero. Si el argumento número es un múltiplo exacto del argumento cifra_significativa, no se redondea.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=MULTIPLO.INFERIOR(2,5;1)	Redondea 2,5 hacia abajo al múltiplo de 1 más próximo (2)
3	=MULTIPLO.INFERIOR(-2,5;-2)	Redondea -2,5 hacia abajo al múltiplo de -2 más próximo (-2)
4 5	=MULTIPLO.INFERIOR(-2,5;2)	Devuelve un error porque -2,5 y 2 tienen signos diferentes (#iNUM!)
6	=MULTIPLO.INFERIOR(1,5;0,1)	Redondea 1,5 hacia abajo al múltiplo de 0,1 más próximo (1,5)
	=MULTIPLO.INFERIOR (0,234;0,01)	Redondea 0,234 hacia abajo al múltiplo de 0,01 más próximo (0,23)

MULTIPLO.SUPERIOR

Redondea un número al próximo múltiplo del argumento cifra_significativa, hacia arriba. Por ejemplo, si desea que los decimales de los precios de un producto sean siempre múltiplo de 5 y el precio del producto es 4,42 \$, utilice la fórmula =MULTIPLO.SUPERIOR(4,42;0,05) para redondear los precios al múltiplo de 5 más próximo.

Sintaxis

MULTIPLO.SUPERIOR(número; cifra significativa)

Número es el valor que desea redondear.

Cifra_significativa es el múltiplo al que se desea redondear.

Observaciones

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

- Si uno de los argumentos es un valor no numérico, MULTIPLO.SUPERIOR devuelve el valor de error #iVALOR!
- Independientemente del signo de número, un valor se redondea hacia arriba. Si el argumento número es un múltiplo exacto del argumento cifra_significativa, no se redondea.
- Si los argumentos número y cifra_significativa tienen signos diferentes, MULTIPLO.SUPERIOR devuelve el valor de error #iNUM!

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=MULTIPLO.SUPERIOR(2,5;1)	Redondea 2,5 al múltiplo superior de 1 más próximo (3)
3	=MULTIPLO.SUPERIOR(-2,5)-2)	Redondea -2,5 al múltiplo superior de -2 más próximo (-4)
4 5	=MULTIPLO.SUPERIOR(-2,5;2)	Devuelve un error porque -2,5 y 2 tienen signos diferentes (#iNUM!).
6	=MULTIPLO.SUPERIOR(1,5;0,1)	Redondea 1,5 al múltiplo superior de 0,1 más próximo (1,5).
ī	=MULTIPLO.SUPERIOR (0,234;0,01)	Redondea 0,234 al múltiplo superior de 0,01 más próximo (0,24).

N

Devuelve un valor convertido en un número.

Sintaxis

N(valor)

Valor es el valor que desea convertir. N convierte los valores del siguiente modo:

Si valor se refiere a o es	N devuelve
Un número	Ese número
Una fecha, en uno de los formatos predeterminados de Microsoft Excel	El número de serie de esa fecha
VERDADERO	1
FALSO	0
Un valor de error, como #iDIV/0!	El valor de error
Otro valor	0

Observaciones

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

- Por lo general no es necesario usar la función N en una fórmula, ya que Excel convierte automáticamente los valores cuando es necesario. Esta función se proporciona por su compatibilidad con otros programas para hojas de cálculo.
- Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	7	
3	Par	
4	VERDADERO	
5	17-4-2008	
	Fórmula	Descripción (Resultado)
	=N(A2)	Puesto que A2 contiene un número, se devuelve (7).
	=N(A3)	Puesto que A3 contiene texto, se devuelve 0 (0, vea lo anterior).
	=N(A4)	Puesto que A4 es el valor lógico VERDADERO, se devuelve 1 (1, vea lo anterior).
	=N(A5)	Puesto que A5 es una fecha, se devuelve el número de serie, que varía según el siste de fechas utilizado.
	=N("7")	Puesto que "7" es texto, se devuelve 0 (0, vea lo anterior).

NEGBINOMDIST

Devuelve la distribución binomial negativa. NEGBINOMDIST devuelve la probabilidad de obtener un número de fracasos igual al argumento núm_fracasos antes de lograr el éxito determinado por el argumento núm_éxitos, cuando la probabilidad de éxito, definido por el argumento prob_éxito, es constante. Esta función es similar a la distribución binomial, con la excepción de que el número de éxitos es fijo y el número de ensayos es variable. Al igual que la distribución binomial, se supone que los ensayos son independientes.

Por ejemplo, supongamos que necesita encontrar 10 personas que dispongan de excelentes reflejos y sabe que la probabilidad de que un candidato tenga esta cualidad es 0,3. NEGBINOMDIST calcula la probabilidad de que entrevistará un número determinado de candidatos no calificados antes de encontrar los 10 candidatos buscados.

Sintaxis

NEGBINOMDIST(núm_fracasos;núm_éxitos;prob_éxito)

Funciones de Excel

149

Núm fracasos es el número de fracasos.

Núm_éxitos es el número límite de éxitos.

Prob_éxito es la probabilidad de obtener un éxito.

Observaciones

- Los argumentos núm_fracasos y núm_éxitos se truncan a enteros.
- Si uno de los argumentos no es numérico, NEGBINOMDIST devuelve el valor de error #iVALOR!
- Si el argumento prob_éxito < 0 o si probabilidad > 1, NEGBINOMDIST devuelve el valor de error #iNUM!.
- Si los argumentos (núm_fracasos + núm_éxitos 1) ≤ 0, la función NEGBINOMDIST devuelve el valor de error #iNUM!.
- La ecuación para la distribución binomial negativa es:

$$nb(x;r,p) = {x+r-1 \choose r-1} p'(1-p)^{s}$$

donde:

x es núm_fracasos, *r* es núm_éxitos y *p* es prob_éxito.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	10	Número de fracasos
3	5	Número límite de éxitos
4	0,25	Probabilidad de obtener un éxito
	Fórmula	Descripción (Resultado)
	=NEGBINOMDIST(A2;A3;A4)	Distribución binomial negativa para los términos anteriores (0,055049)

NO

Invierte el valor lógico del argumento. Use NO cuando desee asegurarse de que un valor no sea igual a otro valor específico.

Sintaxis

NO(valor_lógico)

Valor_lógico es un valor o expresión que puede evaluarse como VERDADERO o FALSO.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

Observación

Si valor_lógico es FALSO, NO devuelve VERDADERO; si valor_lógico es VERDADERO, NO devuelve FALSO.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=NO(FALSO)	Invierte FALSO (VERDADERO)
3	=NO(1+1=2)	Invierte una ecuación que se evalúa como VERDADERO (FALSO)

NOD

Devuelve el valor de error #N/A, que significa "no hay ningún valor disponible". Utilice #N/A para marcar las celdas vacías. Si escribe #N/A en las celdas donde le falta información, puede evitar el problema de la inclusión no intencionada de celdas vacías en los cálculos. (Cuando una fórmula hace referencia a una celda que contiene #N/A, la fórmula devuelve el valor de error #N/A.)

Sintaxis

NOD()

Observaciones

- Debe incluir paréntesis vacíos con el nombre de la función. De lo contrario no se reconocerá como función.
- También puede escribir el valor #N/A directamente en la celda. La función NOD se proporciona por compatibilidad con otros programas para hojas de cálculo.

NOMPROPIO

Vea también

Cambia a mayúscula la primera letra del argumento texto y cualquiera de las otras letras de texto que se encuentren después de un carácter que no sea una letra. Convierte todas las demás letras a minúsculas.

Sintaxis

NOMPROPIO(texto)

Texto es el texto entre comillas, una fórmula que devuelve texto o una referencia a una celda que contiene el texto al que desea agregar mayúsculas.

Ejemplo

Funciones de Excel

151

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

n Título)
vos)
uesto)

NORMALIZACION

Devuelve un valor normalizado de una distribución caracterizada por los argumentos media y desv estándar.

Sintaxis

NORMALIZACION(x;media;desv_estándar)

X es el valor que desea normalizar.

Media es la media aritmética de la distribución.

Desv_estándar es la desviación estándar de la distribución.

Observaciones

- Si desv_estándar ≤ 0, NORMALIZACION devuelve el valor de error #iNUM!
- La ecuación para el valor normalizado es:

$$Z = \frac{X - \mu}{\sigma}$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

	A	В
1	Datos	Descripción
2	42	Valor que desea normalizar
3	40	Media aritmética de la distribución
4	1,5	Desviación estándar de la distribución
	Fórmula	Descripción (Resultado)
	=NORMALIZACION(A2;A3;A4)	Valor normalizado de 42 para los términos anteriores (1,333333)

NPER

Devuelve el número de períodos de una inversión basándose en los pagos periódicos constantes y en la tasa de interés constante.

Sintaxis

NPER(tasa; pago; va; vf; tipo)

Para obtener una descripción más completa de los argumentos de NPER y más información acerca de las funciones de anualidades, vea VA.

Tasa es la tasa de interés por período.

Pago es el pago efectuado en cada período; debe permanecer constante durante la vida de la anualidad. Por lo general, pago incluye el capital y el interés, pero no incluye ningún otro arancel o impuesto.

Va es el valor actual o la suma total de una serie de futuros pagos.

Vf es el valor futuro o un saldo en efectivo que desea lograr después de efectuar el último pago. Si el argumento vf se omite, se asume que el valor es 0 (por ejemplo, el valor futuro de un préstamo es 0).

Tipo es el número 0 ó 1 e indica el vencimiento de los pagos.

Defina tipo como	Si los pagos vencen
0 u omitido	Al final del período
1	Al inicio del período

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	12%	Tasa de interés anual
3	-100	Pago efectuado en cada período
4	-1000	Valor actual
5	10000	Valor futuro
6 1		El pago vence al principio del período (vea lo anterior)
	Fórmula	Descripción (Resultado)
	=NPER (A2/12;A3;A4;A5;1)	Períodos de la inversión con los términos anteriores (60)
	=NPER (A2/12;A3;A4;A5)	Períodos de la inversión con los términos anteriores, salvo que los pagos se efectúan al principio del período (60)
	=NPER(A2/12;A3;A4)	Períodos de la inversión con los términos anteriores, pero con un valor futuro de 0 (-9,578)

NSHORA

Devuelve el número decimal de una hora determinada. Si el formato de celda era **General** antes de escribir la función, el resultado tendrá formato de fecha.

El número decimal que NSHORA devuelve es un valor comprendido entre 0 (cero) y 0, 99999999 que representa las horas entre 0:00:00 (00:00:00 a. m.) y 23:59:59 (11:59:59 p.m.).

Sintaxis

NSHORA(hora;minuto;segundo)

Hora es un número entre 0 (cero) y 32767 que representa las horas. Todo valor mayor de 23 se dividirá por 24 y el resto se considerará valor horario. Por ejemplo, HORA(27,0,0) = HORA(3,0,0) = .125 o 3:00 AM.

Minuto es un número entre 0 y 32767 que representa los minutos. Todo valor mayor de 59 se convertirá a horas y minutos. Por ejemplo, HORA(0,750,0) = HORA(12,30,0) = .520833 o 12:30 PM.

Segundo es un número entre 0 y 32767 que representa los segundos. Cualquier valor mayor que 59 será convertido en horas, minutos y segundos. Por ejemplo, HORA(0,0,2000) = HORA(0,33,22) = .023148 o 12:33:20 AM

Observación

El sistema de fechas predeterminado de Microsoft Excel para Windows y Microsoft Excel para Macintosh es distinto. Los valores de hora son parte de un valor de fecha y vienen representados por un número decimal (por ejemplo, 0.5 representa 12:00 p.m. porque es la mitad de un día).

Ejemplo

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

	A	В	C
1	Hora	Minuto	Segundo
2	12	0	0
3	16	48	10
	Fórmula	Descripción (Resultado)	
	=NSHORA(A2;B2;C2)	Parte decimal de un día para la primera hora anterior (0,5)	
		Parte decimal de un día para la segunda hora anterior (0,700115741)	

Nota Para ver la hora como un número decimal, seleccione la celda y haga clic en **Celdas** en el menú **Formato**. Haga clic en la ficha **Número** y, a continuación, en **General** o **Número** en el cuadro **Categoría**.

NUMERO.ROMANO

Convierte un número arábigo en número romano con formato de texto.

Sintaxis

NUMERO.ROMANO(**número**;forma)

Número es el número arábigo que desea convertir.

Forma es un número que especifica el tipo de número romano que desea. El estilo de número romano varía entre clásico y simplificado; cuanto más aumenta el valor del argumento forma, más conciso es el estilo devuelto. Vea los ejemplos siguientes.

Forma	Tipo
0 u omitido	Clásico
1	Más conciso. Vea el siguiente ejemplo.
2	Más conciso. Vea el siguiente ejemplo.
3	Más conciso. Vea el siguiente ejemplo.
4	Simplificado
VERDADERO	Clásico
FALSO	Simplificado

Observaciones

- Si el argumento número es negativo, la función devuelve el valor de error #iVALOR!
- Si el argumento número es mayor que 3999, la función devuelve el valor de error #iVALOR!

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=NUMERO.ROMANO(499;0)	Estilo de número romano clásico para 499 (CDXCIX)
3	=NUMERO.ROMANO(499;1)	Versión más concisa para 499 (LDVLIV)
4	=NUMERO.ROMANO(499;2)	Versión más concisa para 499 (XDIX)
5	=NUMERO.ROMANO(499;3)	Versión más concisa para 499 (VDIV)
6	=NUMERO.ROMANO(499;4)	Versión más concisa para 499 (ID)
7	=NUMERO.ROMANO(2013;0)	Estilo de número romano clásico para 2013 (MMXIII)

0

Devolverá VERDADERO si alguno de los argumentos es VERDADERO; devolverá FALSO si todos los argumentos son FALSO.

Sintaxis

O(valor_lógico1; valor_lógico2; ...)

Valor_lógico1;valor_lógico2,... son entre 1 y 30 condiciones que desea comprobar y que pueden ser VERDADERO o FALSO.

Observaciones

- Los argumentos deben evaluarse como valores lógicos, como VERDADERO O FALSO, o en matrices o referencias que contengan valores lógicos.
- Si un argumento matricial o de referencia contiene texto o celdas vacías, dichos valores se pasarán por alto.
- Si el rango especificado no contiene valores lógicos, O devolverá el valor de error #iVALOR!
- Puede utilizar la fórmula matricial O para comprobar si un valor aparece en una matriz. Para introducir una fórmula matricial, presione CTRL+MAYÚS+ENTRAR.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

	Α	В
1	Fórmula	Descripción (Resultado)
2	=O(VERDADERO)	Un argumento es VERDADERO (VERDADERO)
3	=0(1+1=1;2+2=5)	Todos los argumentos se evalúan como FALSO (FALSO).
4	=O(VERDADERO;FALSO;VERDADERO)	Al menos un argumento es VERDADERO (VERDADERO).

PAGO

Calcula el pago de un préstamo basándose en pagos constantes y en una tasa de interés constante.

Sintaxis

PAGO(tasa;nper;va;vf;tipo)

Para obtener una descripción más completa de los argumentos de PAGO, vea la función VA.

Tasa es el tipo de interés del préstamo.

Nper es el número total de pagos del préstamo.

Va es el valor actual o lo que vale ahora la cantidad total de una serie de pagos futuros, también se conoce como el principal.

Vf es el valor futuro o un saldo en efectivo que desea lograr después de efectuar el último pago. Si el argumento vf se omite, se asume que el valor es 0 (es decir, el valor futuro de un préstamo es 0).

Tipo es el número 0 (cero) ó 1 e indica el vencimiento de los pagos.

Defina tipo como	Si los pagos vencen
0 u omitido	Al final del período
1	Al inicio del período

Observaciones

- El pago devuelto por PAGO incluye el capital y el interés, pero no incluye impuestos, pagos en reserva ni los gastos que algunas veces se asocian con los préstamos.
- Mantenga uniformidad en el uso de las unidades con las que especifica los argumentos tasa y nper. Si realiza pagos mensuales de un préstamo de cuatro años con una tasa de interés anual del 12 por ciento, use 12%/12 para el argumento tasa y 4*12 para el argumento nper. Si efectúa pagos anuales del mismo préstamo, use 12 por ciento para el argumento tasa y 4 para el argumento nper.

Ejemplo 1

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	8%	Tasa de interés anual
3	10	Número de meses de pagos
4	10000	Importe del préstamo
	Fórmula	Descripción (Resultado)
	=PAGO(A2/12;A3;A4)	Pago mensual de un préstamo con los términos anteriores (-1.037,03)
	=PAGO (A2/12;A3;A4;0;1)	Pago mensual de un préstamo con los términos anteriores, salvo que los pagos vencen al principio del período (-1.030,16)

Ejemplo 2

Puede utilizar PAGO para determinar otros pagos anuales.

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	6%	Tasa de interés anual
3	18	Años de ahorro previstos
4	50.000	Cantidad que desea ahorrar en 18 años
	Fórmula	Descripción (Resultado)
	=PAGO (A2/12;A3*12;0;A4)	Cantidad que tendrá que ahorrar cada mes para disponer de 50.000 después de 18 años (-129,08)

Nota La tasa de interés se divide por 12 para obtener una tasa mensual. El número de años de duración del préstamo se multiplica por 12 para obtener el número de pagos.

PAGOINT

Devuelve el interés pagado en un período específico por una inversión basándose en pagos periódicos constantes y en una tasa de interés constante. Para obtener una descripción más completa de los argumentos de PAGOINT y más información acerca de las funciones de anualidades, vea VA.

Sintaxis

PAGOINT(tasa;período;nper;va;vf;tipo)

Tasa es la tasa de interés por período.

Período es el período para el que desea calcular el interés y que debe estar entre 1 y el argumento nper.

Nper es el número total de períodos de pago en una anualidad.

Va es el valor actual o la suma total de una serie de futuros pagos.

Vf es el valor futuro o un saldo en efectivo que desea lograr después de efectuar el último pago. Si el argumento vf se omite, se asume que el valor es 0 (por ejemplo, el valor futuro de un préstamo es 0).

Tipo es el número 0 ó 1 e indica el vencimiento de los pagos. Si tipo se omite, se calculará como 0.

Defina tipo como	Si los pagos vencen
0	Al final del período
1	Al inicio del período

Observaciones

- Mantenga uniformidad en el uso de las unidades con las que especifica los argumentos tasa y nper. Si realiza pagos mensuales de un préstamo de cuatro años con un interés anual del 12 por ciento, use 12%/12 para tasa y 4*12 para nper. Si realiza pagos anuales del mismo préstamo, use 12% para tasa y 4 para nper.
- En todos los argumentos el efectivo que paga, por ejemplo depósitos en cuentas de ahorros, se representa con números negativos; el efectivo que recibe, por ejemplo cheques de dividendos, se representa con números positivos.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	10%	Interés anual
3	1	Período para el cual desea calcular el interés
4	3	Años del préstamo
5	8000	Valor actual del préstamo
	Fórmula	Descripción (Resultado)
	=PAGOINT (A2/12;A3*3;A4;A5)	Interés que se pagará el primer mes para un préstamo con los términos anteriores (-22,41)
	=PAGOINT(A2;3;A4;A5)	Interés que se pagará el último año para un préstamo con los términos anteriores, cuyos pagos se efectúan de forma anual (-292,45)

Nota La tasa de interés se divide por 12 para obtener una tasa mensual. Los años de duración del préstamo se multiplican por 12 para obtener el número de pagos.

PAGOPRIN

Devuelve el pago sobre el capital de una inversión durante un período determinado basándose en pagos periódicos y constantes, y en una tasa de interés constante.

Sintaxis

PAGOPRIN(tasa; período; nper; va; vf; tipo)

Para obtener una descripción más completa de los argumentos de PAGOPRIN, vea la función VA.

Tasa es la tasa de interés por período.

Período especifica el período, que debe estar entre 1 y nper.

Nper es el número total de períodos de pago en una anualidad.

Va es el valor actual, es decir, el valor total que tiene actualmente una serie de pagos futuros.

Vf es el valor futuro o un saldo en efectivo que desea lograr después de efectuar el último pago. Si el argumento vf se omite, se asume que el valor es 0 (es decir, el valor futuro de un préstamo es 0).

Tipo es el número 0 ó 1 e indica el vencimiento de los pagos.

Defina tipo como	Si los pagos vencen
0 u omitido	Al final del período
1	Al inicio del período

Observación

Mantenga uniformidad en el uso de las unidades con las que especifica los argumentos tasa y nper. Si realiza pagos mensuales de un préstamo de cuatro años con un interés anual del 12 por ciento, use 12%/12 para tasa y 4*12 para nper. Si realiza pagos anuales del mismo préstamo, use 12% para tasa y 4 para nper.

Ejemplo 1

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción (Resultado)
2	10%	Tasa de interés anual
3	2	Número de años del préstamo
4	2000	Importe del préstamo
	Fórmula	Descripción (Resultado)
	=PAGOPRIN(A2/12;1;A3*12;A4)	Pago del principal para el primer mes del préstamo (-75,62)

Nota La tasa de interés se divide por 12 para obtener una tasa mensual. El número de años de duración del préstamo se multiplica por 12 para obtener el número de pagos.

Ejemplo 2

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción (Resultado)
2	8%	Tasa de interés anual
3	10	Número de años del préstamo
4	200.000	Importe del préstamo
	Fórmula	Descripción (Resultado)
	=PAGOPRIN (A2;A3;10;A4)	Pago del principal para el último año del préstamo con los términos anteriores (-27,598,05)

PEARSON

Devuelve el coeficiente de correlación producto o momento r de Pearson, *r*, un índice adimensional acotado entre -1,0 y 1,0 que refleja el grado de dependencia lineal entre dos conjuntos de datos.

Sintaxis

PEARSON(matriz1;matriz2)

Matriz1 es un conjunto de valores independientes.

Matriz2 es un conjunto de valores dependientes.

Observaciones

- Los argumentos deben ser números o nombres, constantes matriciales o de referencia que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.

- Si los argumentos matriz1 y matriz2 están vacíos o contienen un número diferente de puntos de datos, PEARSON devuelve el valor de error #N/A.
- El valor r de la línea de regresión es:

$$r = \frac{n(\Sigma XY) - (\Sigma X)(\Sigma Y)}{\sqrt{\left[n\Sigma X^2 - (\Sigma X)^2\right]\left[n\Sigma Y^2 - (\Sigma Y)^2\right]}}$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Valores independientes	Valores dependientes
3	9	10
4	7	6
5	5	1
6	3	5
	1	3
	Fórmula	Descripción (Resultado)
	=PEARSON (A2:A6;B2:B6)	Coeficiente de correlación del momento del producto Pearson para los conjuntos de datos anteriores (0,699379)

PENDIENTE

Devuelve la pendiente de una línea de regresión lineal creada con los datos de los argumentos conocido_x y conocido_y. La pendiente es la distancia vertical dividida por la distancia horizontal entre dos puntos cualquiera de la recta, lo que corresponde a la tasa de cambio a lo largo de la línea de regresión.

Sintaxis

PENDIENTE(conocido y;conocido x)

Conocido_y es una matriz o rango de celdas de puntos de datos numéricos dependientes.

Conocido_x es el conjunto de puntos de datos independientes.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

- Si los argumentos conocido_y y conocido_x están vacíos o contienen un número diferente de puntos de datos, PENDIENTE devuelve el valor de error #N/A.
- La ecuación para la pendiente de la línea de regresión es:

$$b = \frac{n\sum xy - \left(\sum x\right)\left(\sum y\right)}{n\sum x^2 - \left(\sum x\right)^2}$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Valor de y conocido	Valor de x conocido
2	2	6
3	3	5
4	9	11
5	1	7
6	8	5
7	7	4
8	5	4
	Fórmula	Descripción (Resultado)
	=PENDIENTE (A2:A8;B2:B8)	Pendiente de la regresión lineal a través de los puntos de datos anteriores (0,305556)

PERCENTIL

Devuelve el k-ésimo percentil de los valores de un rango. Esta función permite establecer un umbral de aceptación. Por ejemplo, podrá examinar a los candidatos cuya calificación sea superior al nonagésimo percentil.

Sintaxis

PERCENTIL(matriz;k)

Matriz es la matriz o rango de datos que define la posición relativa.

K es el valor de percentil en el intervalo de 0 a 1, inclusive.

Observaciones

- Si el argumento matriz está vacío o contiene más de 8.191 puntos de datos, PERCENTIL devuelve el valor de error #iNUM!
- Si el argumento k no es numérico, PERCENTIL devuelve el valor de error #iVALOR!
- Si k es < 0 o si k > 1, PERCENTIL devuelve el valor de error #iNUM!

Funciones de Excel

163

• Si k no es un múltiplo de 1/(n - 1), PERCENTIL interpola para determinar el valor en el k-ésimo percentil.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	1	
3	3	
4	2	
5	4	
	Fórmula	Descripción (Resultado)
	=PERCENTIL(A2:A5;0,3)	El percentil 30 de la lista anterior (1,9)

PERMUTACIONES

Devuelve el número de permutaciones para un número determinado de objetos que pueden seleccionarse a partir de un número de objetos determinado por el argumento número. Una permutación es un conjunto o subconjunto de objetos o de sucesos en el que el orden de los objetos es importante. Difiere en esto de las combinaciones en las que el orden de los elementos no es significativo. Utilice esta función para los cálculos de probabilidad tipo sorteos.

Sintaxis

PERMUTACIONES(número;tamaño)

Número es un número entero que describe el número de objetos.

Tamaño es un número entero que describe el número de objetos incluidos en cada permutación.

Observaciones

- Ambos argumentos se truncan a enteros.
- Si los argumentos número o tamaño no son numéricos, PERMUTACIONES devuelve el valor de error #iVALOR!
- Si número ≤ 0 o si tamaño < 0, PERMUTACIONES devuelve el valor de error #iNUM!
- Si número < tamaño, PERMUTACIONES devuelve el valor de error #iNUM!
- La ecuación para el número de permutaciones es:

$$P_{k,n} = \frac{n!}{(n-k)!}$$

Ejemplo

Supongamos que desee calcular la probabilidad de seleccionar un número ganador en un sorteo. Cada número del sorteo está compuesto por tres números comprendidos entre 0 (cero) y 99, inclusive. La siguiente función calcula el número de permutaciones posibles:

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	100	Número de objetos
3	3	Número de objetos en cada permutación
	Fórmula	Descripción (Resultado)
	=PERMUTACIONES(A2;A3)	Permutaciones posibles para los términos anteriores (970200)

PΙ

Devuelve el número 3,14159265358979, o la constante matemática pi, con una exactitud de 15 dígitos.

Sintaxis

PI()

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Radio	
2	3	_
	Fórmula	Descripción (Resultado)
	=PI()	Pi (3,14159265358979)
	=PI()/2	Pi/2 (1,570796327)
	=PI()*(A2^2)	Área de un círculo con el radio anterior (28,27433388)

POISSON

Devuelve la distribución de Poisson. Una de las aplicaciones comunes de la distribución de Poisson es la predicción del número de sucesos en un determinado período de tiempo, como por ejemplo, el número de automóviles que se presenta a una zona de peaje en el intervalo de un minuto.

Sintaxis

POISSON(x;media;acumulado)

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

X es el número de sucesos.

Media es el valor numérico esperado.

Acumulado es un valor lógico que determina la forma de la distribución de probabilidad devuelta. Si el argumento acumulado es VERDADERO, POISSON devuelve la probabilidad de Poisson de que un suceso aleatorio ocurra un número de veces comprendido entre 0 y x inclusive; si el argumento acumulado es FALSO, la función devuelve la probabilidad de Poisson de que un suceso ocurra exactamente x veces.

Observaciones

- Si el argumento x no es un entero, se trunca.
- Si los argumentos x o media no son numéricos, POISSON devuelve el valor de error #iVALOR!
- Si $x \le 0$, POISSON devuelve el valor de error #iNUM!
- Si media ≤ 0, POISSON devuelve el valor de error #iNUM!
- POISSON se calcula como:

Si el argumento acumulado = FALSO:

$$POISSON = \frac{e^{-\lambda} \lambda^{x}}{x!}$$
Si el argumento acumulado = VERDADERO:
$$CUMPOISSON = \sum_{k=0}^{x} \frac{e^{-\lambda} \lambda^{k}}{k!}$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	2	Número de sucesos
3	5	Media esperada
	Fórmula	Descripción (Resultado)
	Fórmula =POISSON (A2;A3;VERDADERO)	Descripción (Resultado) Probabilidad de Poisson acumulada con los términos anteriores (0,124652)

POTENCIA

Devuelve el resultado de elevar el argumento número a una potencia.

Sintaxis

Curso de Excel XP 2002

POTENCIA(número; potencia)

Número es el número base. Puede ser cualquier número real.

Potencia es el exponente al que desea elevar el número base.

Observación

Se puede utilizar el operador "^" en lugar de la función POTENCIA para indicar a qué potencia se eleva el número base, por ejemplo 5^2.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=POTENCIA(5,2)	5 al cuadrado (25)
3	=POTENCIA(98,6;3,2)	98,6 elevado a la potencia de 3,2 (2401077)
4	=POTENCIA(4;5/4)	4 elevado a la potencia de 5/4 (5,656854)

PROBABILIDAD

Devuelve la probabilidad de que los valores de un rango se encuentren entre dos límites. Si el argumento límite_sup no se proporciona, la función devuelve la probabilidad de que los valores del argumento rango_x sean iguales a límite_inf.

Sintaxis

PROBABILIDAD(rango_x;rango_probabilidad;límite_inf;límite_sup)

Rango x es el rango de valores numéricos de x con que se asocian las probabilidades.

Rango_probabilidad es un conjunto de probabilidades asociado con los valores de rango_x.

Límite_inf es el límite inferior del valor para el que desea una probabilidad.

Límite_sup es el límite superior opcional del valor para el que desea una probabilidad.

Observaciones

- Si uno de los valores de rango_probabilidad ≤ 0 o si uno de los valores de rango_probabilidad > 1, PROBABILIDAD devuelve el valor de error #iNUM!
- Si la suma de los valores de rango_probabilidad ☐ 1, PROBABILIDAD devuelve el valor de error #iNUM!
- Si el argumento límite_sup se omite, PROBABILIDAD devuelve la probabilidad de que sea igual a límite_inf.

• Si los argumentos rango_x y rango_probabilidad contienen un número diferente de puntos de datos, PROBABILIDAD devuelve el valor de error #N/A.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	×	Probabilidad
2	0	0,2
3	1	0,3
4	2	0,1
5	3	0,4
	Fórmula	Descripción (Resultado)
	=PROBABILIDAD(A2:A5;B2:B5;2)	Probabilidad de que x sea 2 (0,1)
	=PROBABILIDAD(A2:A5;B2:B5;1;3)	Probabilidad de que x sea entre 1 y 3 (0,8)

PRODUCTO

Multiplica todos los números que figuran como argumentos y devuelve el producto.

Sintaxis

PRODUCTO(**número1**; número2; ...)

Número1, número2, ... son de 1 a 30 números que desea multiplicar.

Observaciones

- Los argumentos que son números, valores lógicos o representaciones textuales de números se toman en cuenta; los argumentos que son valores de error o texto que no se puede convertir en números causan errores.
- Si un argumento es una matriz o una referencia, sólo se tomarán en cuenta los números de la matriz o de la referencia. Se pasan por alto las celdas vacías, valores lógicos, texto o valores de error en la matriz o en la referencia.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

	A	
1	Datos	
2	5	
3	15	
4	30	
	Fórmula	Descripción (Resultado)
	=PRODUCTO(A2:A4)	Multiplica los números anteriores (2250)
	=PRODUCTO(A2:A4;2)	Multiplica los números anteriores y 2 (4500)

PROMEDIO

Devuelve el promedio (media aritmética) de los argumentos.

Sintaxis

PROMEDIO(número1;número2;...)

Número1, número2, ... son entre 1 y 30 argumentos numéricos cuyo promedio desea obtener.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.

Cuando se esté calculando el promedio de celdas, tenga en cuenta la diferencia existente entre las celdas vacías, de manera especial si ha quitado la marca a la casilla **Valores cero** en la ficha **Ver** (comando **Opciones** en el menú **Herramientas**). Las celdas vacías no se cuentan pero sí los valores cero.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	10	
3	7	
4	9	
5	27	
6	2	
	Fórmula	Descripción (Resultado)
	=PROMEDIO(A2:A6)	Promedio de los números anteriores (11)
	=PROMEDIO(A2:A6;5)	Promedio de los números anteriores y 5 (10)

PROMEDIOA

Calcula el promedio (media aritmética) de los valores en la lista de argumentos. Además de números, se incluyen en el cálculo texto y valores lógicos como VERDADERO o FALSO.

Sintaxis

PROMEDIOA(ref1;ref2;...)

Ref1, ref2, ... son de 1 a 30 celdas, rangos de celdas o valores cuyo promedio se desea obtener.

Observaciones

- Los argumentos deben ser números, nombres, matrices o referencias.
- Los argumentos que sean matrices o referencias que contengan texto se evaluarán como 0 (cero). El texto vacío ("") se evaluará como 0 (cero). Si el cálculo no debe incluir valores de texto en el promedio, utilice la función PROMEDIO.
- Los argumentos que contengan VERDADERO se evaluarán como 1; los argumentos que contengan FALSO se evaluarán como 0 (cero).

Cuando se esté calculando el promedio de celdas, tenga en cuenta la diferencia existente entre las celdas vacías, de manera especial si ha quitado la marca a la casilla **Valores cero** en la ficha **Ver** (comando **Opciones** en el menú **Herramientas**). Las celdas vacías no se cuentan pero sí los valores cero.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Funciones de Excel

Profesor: WILSON A. PRIETO H.

	A	
	Datos	
	10	
	7	
1	9	
	2	
٠.	No disponible	
١.		
	Fórmula	
	=PROMEDIOA (A2:A6)	
	=PROMEDIOA (A2:A5;A7)	

PRONOSTICO

Calcula o pronostica un valor futuro a través de los valores existentes. La predicción del valor es un valor y teniendo en cuenta un valor x. Los valores conocidos son valores x y valores y existentes, y el nuevo valor se pronostica utilizando regresión lineal. Esta función se puede utilizar para realizar previsiones de ventas, establecer requisitos de inventario o tendencias de los consumidores.

Sintaxis

PRONOSTICO(x;conocido_y;conocido_x)

X es el punto de datos cuyo valor desea predecir.

Conocido_y es la matriz o rango de datos dependientes.

Conocido_x es la matriz o rango de datos independientes.

Observaciones

- Si x no es numérico, PRONOSTICO devuelve el valor de error #iVALOR!
- Si no se ha especificado ningún valor para conocido_y o conocido_x, o si contienen un número diferente de puntos de datos, PRONOSTICO devuelve el valor de error #N/A.
- Si la varianza de conocido_x es igual a cero, PRONOSTICO devuelve el valor de error #iDIV/0!
- La ecuación de la función PRONOSTICO es a + bx, donde:

$$a = \overline{Y} - b\overline{X}$$
y:
$$b = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2}$$

Curso de Excel XP 2002

170

Profesor: WILSON A. PRIETO H.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Y conocido	X conocido
2	6	20
3	7	28
4	9	31
5	15	38
6	21	40
	Fórmula	Descripción (Resultado)
	=PRONOSTICO(30;A2:A6;B2:B6)	Predice un valor para y dado un valor de 30 para x (10,60725)

PRUEBA.CHI

Devuelve la prueba de independencia. PRUEBA.CHI devuelve el valor de la distribución chi cuadrado (γ2) para la estadística y los grados de libertad apropiados. Las pruebas γ2 pueden utilizarse para determinar si un experimento se ajusta a los resultados teóricos.

Sintaxis

PRUEBA.CHI(rango_actual;rango_esperado)

Rango_actual es el rango de datos que contiene observaciones para probar frente a valores esperados.

Rango_esperado es el rango de datos que contiene la relación del producto de los totales de filas y columnas con el total global.

Observaciones

- Si rango_actual y rango_esperado tienen un número diferente de puntos de datos, PRUEBA.CHI devuelve el valor de error #N/A.
- La prueba γ2 primero calcula una estadística γ2 y después suma las diferencias entre los valores reales y los valores esperados. La ecuación para esta función es PRUEBA.CHI=p(X>γ2), donde:

$$\chi^2 = \sum_{j=1}^{r} \sum_{j=1}^{c} \frac{\left(A_{jj} - E_{jj}\right)^2}{E_{jj}}$$

y donde:

Aij = frecuencia actual en la iésima fila, jésima columna

Eij = frecuencia esperada en la iésima fila, jésima columna

r = número de filas

c = número de columnas

PRUEBA.CHI devuelve la probabilidad para una estadística y2 y grados de libertad, gl, donde gl = (r - 1)(c - 1).

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В	С
1	Hombres (Real)	Mujeres (Real)	Descripción
2	58	35	Están de acuerdo
3	11	25	Neutrales
4	10	23	No están de
5			acuerdo
6	Hombres (Esperado)	Mujeres (Esperado)	Descripción
7	45,35	47,65	Están de acuerdo
8	17,56	18,44	Neutrales
	16,09	16,91	No están de acuerdo
	Fórmula	Descripción (Resultado)	
	=PRUEBA.CHI (A2:B4;A6:B8)	La estadística $\gamma 2$ de los datos anteriores es 16,16957 con 2 grados de libertad (0,000308).	

PRUEBA.CHI.INV

Devuelve para una probabilidad dada, de una sola cola, el valor de la variable aleatoria siguiendo una distribución chi cuadrado. Si el argumento probabilidad = DISTR.CHI(x;...), entonces PRUEBA.CHI.INV(probabilidad,...) = x. Utilice esta función para comparar los resultados observados con los resultados esperados, a fin de decidir si la hipótesis original es válida.

Sintaxis

PRUEBA.CHI.INV(probabilidad;grados_de_libertad)

Probabilidad es una probabilidad asociada con la distribución chi cuadrado.

Grados_de_libertad es el número de grados de libertad.

Observaciones

- Si uno de los argumentos no es numérico, PRUEBA.CHI.INV devuelve el valor de error #iVALOR!
- Si probabilidad < 0 o si probabilidad > 1, PRUEBA.CHI.INV devuelve el valor de error #iNUM!
- Si el argumento grados_de_libertad no es un entero, se trunca.
- Si grados_de_libertad < 1 o si grados_de_libertad ≥ 10^10, PRUEBA.CHI.INV devuelve el valor de error #iNUM!

PRUEBA.CHI.INV usa una técnica iterativa para calcular la función. Dado un valor de probabilidad, PRUEBA.CHI.INV itera hasta que el resultado tenga una exactitud de \pm 3x10^-7. Si PRUEBA.CHI.INV no converge después de 100 iteraciones, la función devuelve el valor de error #N/A.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	0,05	Probabilidad asociada con la distribución chi cuadrado
3	10	Grados de libertad
	Fórmula	Descripción (Resultado)
	=PRUEBA.CHI.INV (A2;A3)	Inversa de la probabilidad de la distribución chi cuadrado de una sola cola (18,30703)

PRUEBA.F

Devuelve el resultado de una prueba F. Una prueba F devuelve la probabilidad de que las varianzas de los argumentos matriz1 y matriz2 no presenten diferencias significativas. Utilice esta función para determinar si las varianzas de dos muestras son diferentes. Por ejemplo, dados los resultados de los exámenes de escuelas públicas y privadas, puede comprobar si estas escuelas tienen márgenes de resultados diferentes.

Sintaxis

PRUEBA.F(matriz1;matriz2)

Matriz1 es la primera matriz o rango de datos.

Matriz2 es la segunda matriz o rango de datos.

Observaciones

 Los argumentos deben ser números o nombres, matrices o referencias que contengan números.

- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si el número de puntos de datos en matriz1 o matriz2 es menor que 2, o si la varianza de matriz1 o matriz2 es cero, PRUEBA.F devuelve el valor de error #iDIV/0!

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos1	Datos2
2	6	20
3	7	28
4	9	31
5	15	38
6	21	40
	Fórmula	Descripción (Resultado)
	=PRUEBA.F(A2:A6;B2:B6)	Prueba F de los conjuntos de datos anteriores (0,648318)

PRUEBA.FISHER.INV

Devuelve la función inversa de la transformación Fisher. Use esta transformación para analizar correlaciones entre rangos de matrices de datos. Si el argumento y = FISHER(x), entonces PRUEBA.FISHER.INV(y) = x.

Sintaxis

PRUEBA.FISHER.INV(y)

Y es el valor al que se realizará la inversa de la transformación.

Observaciones

- Si el argumento y no es numérico, PRUEBA.FISHER.INV devuelve el valor de error #iVALOR!
- La ecuación para la inversa de la transformación Fisher es:

$$\chi = \frac{e^{2y} - 1}{e^{2y} + 1}$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

	A	В
1	Fórmula	Descripción (Resultado)
2	=PRUEBA.FISHER.INV(0,972955)	Inversa de la transformación Fisher a 0,972955 (0,75)

PRUEBA.T

Devuelve la probabilidad asociada con la prueba t de Student. Utilice PRUEBA.T para determinar la probabilidad de que dos muestras puedan proceder de dos poblaciones subyacentes con igual media.

Sintaxis

PRUEBA.T(matriz1;matriz2;colas;tipo)

Matriz1 es el primer conjunto de datos.

Matriz2 es el segundo conjunto de datos.

Colas especifica el número de colas de la distribución. Si el argumento colas = 1, PRUEBA.T utiliza la distribución de una cola. Si colas = 2, PRUEBA.T utiliza la distribución de dos colas.

Tipo es el tipo de prueba t que se realiza.

Si tipo es igual a	La prueba se realiza
1	En observaciones por pares
2	En dos muestras con varianzas iguales (homoscedástica)
3	En dos muestras con varianzas diferentes (heteroscedástica)

Observaciones

- Si los argumentos matriz1 y matriz2 contienen un número de puntos de datos diferente y el argumento tipo = 1 (observaciones pareadas), PRUEBA.T devuelve el valor de error #N/A.
- Los argumentos colas y tipo se truncan a enteros.
- Si el argumento colas o si el argumento tipo no es numérico, PRUEBA.T devuelve el valor de error #iVALOR!
- Si el argumento colas es distinto de 1 ó 2, PRUEBA.T devuelve el valor de error #iNUM!

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	А	В
1	Datos 1	Datos 2
2	3	6
3	4	19
4	5	3
5	8	2
6	9	14
7	1	4
8	2	5
9	4	17
10	5	1
	Fórmula	Descripción (Resultado)
	=PRUEBA.T (A2:A10;B2:B10;2;1)	Probabilidad asociada con la prueba t de Student pareada con distribución de dos colas (0,196016)

PRUEBA.Z

Devuelve el valor P de dos colas de una prueba z. La prueba z genera una puntuación estándar de x para la serie de datos (matriz) y devuelve la probabilidad de dos colas de la distribución normal. Esta función permite evaluar la probabilidad de que una observación determinada provenga de una población específica.

Sintaxis

PRUEBA.Z(matriz;x;sigma)

Matriz es la matriz o rango de datos frente a los que se ha de comprobar x.

X es el valor que se va a comprobar.

Sigma es la desviación estándar (conocida) de la población. Si se omite, se utiliza la desviación estándar de la muestra.

Observaciones

- Si el argumento matriz está vacío, PRUEBA.Z devuelve el valor de error #N/A.
- PRUEBA.Z se calcula como:

PRUEBA.Z (matriz, x) = 1-DISTR.NORM.ESTAND
$$\left(\frac{\mu - x}{\sigma + \sqrt{n}}\right)$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A		
1	Datos		
2	3		
3	6		
4	7		
5	8		
6	6		
7	5		
8	4		
9	2		
10	1		
11	9		
	Fórmula	Descripción (Resultado)	Descripción (Resultado)
	=PRUEBA.Z (A2:A11,4)	El valor P de dos colas de una prueba z para el conjunto d el valor4 (0,090574)	El valor P de dos colas de una prueba z para el conjunto de datos anteriores el valor4 (0,090574)

RADIANES

Convierte grados en radianes.

Sintaxis

RADIANES(grados)

Grados es un ángulo en grados que desea convertir.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=RADIANES(270)	270 grados como radianes (4,712389 o 3n/2 radianes)

RAIZ

Devuelve la raíz cuadrada de un número.

Sintaxis

RAIZ(número)

Número es el número cuya raíz cuadrada desea obtener.

Observación

Si número es negativo, RAIZ devuelve el valor de error #iNUM!

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco

RAIZ2PI

Devuelve la raíz cuadrada de un número multiplicado por PI (número * pi).

Si esta función no está disponible y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

¿Cómo?

- 1. En el menú **Herramientas**, elija **Complementos**.
- 2. En la lista **Complementos disponibles**, seleccione el cuadro **Herramientas para análisis** y, a continuación, haga clic en **Aceptar**.
- 3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

RAIZ2PI(número)

Número es el número que se multiplicará por pi.

Observación

Si número < 0, RAIZ2PI devuelve el valor de error #iNUM!

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=RAIZ2PI(1)	Raíz cuadrada de pi (1,772454)
3	=RAIZ2PI(2)	Raíz cuadrada de 2 * pi (2,506628)

RANGO.PERCENTIL

Devuelve el rango de un valor en un conjunto de datos como un porcentaje del conjunto de datos. Esta función le permite evaluar la posición relativa de un valor en un conjunto de datos. Por ejemplo, puede utilizar RANGO.PERCENTIL para evaluar la posición del resultado de una prueba de aptitud entre los resultados de la prueba.

Sintaxis

RANGO.PERCENTIL(matriz;x;cifra_significativa)

Matriz es la matriz o rango de datos con valores numéricos que define la posición relativa.

X es el valor cuyo rango percentil desea conocer.

Cifra_significativa es un valor opcional que identifica el número de cifras significativas para el valor de porcentaje devuelto. Si se omite este argumento, RANGO.PERCENTIL utiliza tres dígitos (0,xxx).

Observaciones

- Si el argumento matriz está vacío, RANGO.PERCENTIL devuelve el valor de error #iNUM!
- Si el argumento cifra_significativa < 1, RANGO.PERCENTIL devuelve el valor de error #iNUM!
- Si el argumento x no coincide con uno de los valores del argumento matriz, RANGO.PERCENTIL interpola para devolver la jerarquía de porcentaje correcta.

Ejemplo

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

A		
Datos		
13		
12		
11		
8		
4		
3		
2		
1		
1		
1		

Fórmula	Descripción (Resultado)
=RANGO.PERCENTIL (A2:A11,2)	El rango percentil de 2 en la lista anterior (0.333, debido a que 3 valores del conjunto son menores que 2, y 6 son mayores que 2; 3/(3+6)=0.333)
=RANGO.PERCENTIL (A2:A11;4)	Rango percentil de 4 en la lista anterior (0,555)
=RANGO.PERCENTIL (A2:A11,8)	El rango percentil de 8 en la lista anterior (0.666)
=RANGO.PERCENTIL (A2:A11,5)	El rango percentil de 5 en la lista anterior (0.583, un cuarto de la distancia entre el RANGO.PERCENTIL de 4 y el RANGO.PERCENTIL de 8)

Nota Para ver el número como un porcentaje, seleccione la celda y haga clic en **Celdas** en el menú **Formato**. Haga clic en la ficha **Número** y, a continuación, en **Porcentaje** en el cuadro **Categoría**.

RTD

Recupera datos en tiempo real desde un programa compatible con la <u>automatización COM</u>

Sintaxis

=RTD(ID_prog,servidor,tema1,[tema2],...)

ID_prog el nombre del ID de programa de un <u>complemento</u> registrado de automatización COM instalado en el equipo local. Escriba el nombre entre comillas.

servidor nombre del servidor donde debe ejecutarse el complemento. Si no hay ningún servidor y el programa se ejecuta de forma local, deje el argumento en blanco. En caso contrario, escriba el nombre del servidor entre comillas (""). Al utilizar RTD dentro de <u>Visual Basic para Aplicaciones</u> (<u>VBA</u>), se requieren comillas dobles o la propiedad **NullString** de VBA para el servidor, incluso si éste se ejecuta de forma local.

tema1, tema2,... De 1 a 28 parámetros que representan conjuntamente una unidad única de datos en tiempo real.

Observaciones

- El complemento de automatización COM de RTD debe crearse y registrarse en un equipo local. No se suministran servidores RTD con Microsoft Office XP, de modo que si no ha instalado un servidor de datos en tiempo real, recibirá un mensaje de error en una celda si intenta utilizar la función RTD.
- Si el servidor se ha programado para actualizar los resultados de forma continua, a diferencia de otras funciones, las fórmulas RTD cambiarán mientras Microsoft Excel se encuentra en el modo de cálculo automático.

Fórmula	Descripción (Resultado)
=RTD("MiComplCom.ID_prog",,"LOREM_IPSUM","Precio")	Datos

REDOND.MULT

Redondea un número al múltiplo deseado.

Si esta función no está disponible y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

¿Cómo?

- 1. En el menú Herramientas, elija Complementos.
- 2. En la lista Complementos disponibles, seleccione el cuadro Herramientas para **análisis** y, a continuación, haga clic en **Aceptar**.
- 3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

REDOND.MULT(número; múltiplo)

Número es el valor que desea redondear.

Múltiplo es el múltiplo al que desea redondear el número.

Observación

REDOND.MULT redondea hacia valores positivos, hacia arriba, si el residuo de dividir número entre múltiplo es mayor o igual a la mitad del valor de múltiplo.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Profesor: WILSON A. PRIETO H.

	A	В
1	Fórmula	Descripción (Resultado)
2	=REDOND.MULT(10;3)	Redondea 10 al múltiplo de 3 más próximo (9).
3	=REDOND.MULT(-10;-3)	Redondea 10 al múltiplo de 3 más próximo (-9).
4	=REDOND.MULT(1,3;0,2)	Redondea 1,3 al múltiplo de 0,2 más próximo (1,4).
5	=REDOND.MULT(5;-2)	Devuelve un error porque -2 y 5 tienen signos diferentes (#iNUM!).

REDONDEA.IMPAR

Redondea un número hasta el próximo entero impar.

Sintaxis

REDONDEA.IMPAR(número)

Número es el valor que desea redondear.

Observaciones

- Si número no es un valor numérico, REDONDEA.IMPAR devuelve el valor de error #iVALOR!
- Independientemente del signo de número, un valor se redondea hacia arriba. Si número es un número entero impar, no se redondea.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=REDONDEA.IMPAR(1,5)	Redondea 1,5 al siguiente número impar entero (3)
3	=REDONDEA.IMPAR(3)	Redondea 3 al siguiente número impar entero (3)
4	=REDONDEA.IMPAR(2)	Redondea 2 al siguiente número impar entero (3)
5	=REDONDEA.IMPAR(-1)	Redondea -1 al siguiente número impar entero (-1)
6	=REDONDEA.IMPAR(-2)	Redondea -2 al siguiente número impar entero (-3)

REDONDEA.PAR

Vea también

Devuelve un número redondeado hasta el número entero par más próximo. Esta función puede usarse para procesar artículos que vienen en pares. Por ejemplo, un cajón de embalaje que

contiene filas de uno o dos artículos está lleno cuando el número de artículos, redondeado hasta el par más próximo, coincide con la capacidad del cajón.

Sintaxis

REDONDEA.PAR(número)

Número es el valor que desea redondear.

Observaciones

- Si el argumento número es un valor no numérico, REDONDEA.PAR devuelve el valor de error #iVALOR!
- Independientemente del signo de número, un valor se redondea hacia arriba. Si el argumento número es un entero par, no se redondea.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=REDONDEA.PAR(1,5)	Redondea 1,5 hacia arriba al número par entero más próximo(2).
3	=REDONDEA.PAR(3)	Redondea 3 hacia arriba al número par entero más próximo (4).
4	=REDONDEA.PAR(2)	Redondea 2 hacia arriba al número par entero más próximo (2).
5	=REDONDEA.PAR(-1)	Redondea -1 hacia arriba al número par entero más próximo (-2).

REDONDEAR

Redondea un número al número de decimales especificado.

Sintaxis

REDONDEAR(número;núm_decimales)

Número es el número que desea redondear.

Núm decimales especifica el número de dígitos al que desea redondear el argumento número.

Observaciones

- Si el argumento núm_decimales es mayor que 0 (cero), número se redondeará al número de lugares decimales especificado.
- Si el argumento núm_decimales es 0, número se redondeará al entero más próximo.
- Si el argumento núm_decimales es menor que 0, número se redondeará hacia la izquierda del separador decimal.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=REDONDEAR(2,15; 1)	Redondea 2,15 a una posición decimal (2,2)
3	=REDONDEAR(2,149; 1)	Redondea 2,149 a una posición decimal (2,1)
4	=REDONDEAR(-1,475; 2)	Redondea -1,475 a dos posiciones decimales (-1,48)
5	=REDONDEAR(21,5; -1)	Redondea 21,5 a una posición decimal a la izquierda del separador decimal (20)

REDONDEAR.MAS

Redondea un número hacia arriba, en dirección contraria a cero.

Sintaxis

REDONDEAR.MAS(número;núm_decimales)

Número es cualquier número real que desea redondear hacia arriba.

Núm decimales es el número de dígitos al que desea redondear número.

Observaciones

- La función REDONDEAR.MAS es similar a la función REDONDEAR, excepto que siempre redondea al número superior más próximo, alejándolo de cero.
- Si el argumento núm_decimales es mayor que 0 (cero), el número se redondea al valor superior (inferior para los números negativos) más próximo que contenga el número de lugares decimales especificado.
- Si núm decimales es 0, número se redondeará hacia arriba al entero más próximo.
- Si el argumento núm_decimales es menor que 0, el número se redondea al valor superior (inferior si es negativo) más próximo a partir de la izquierda de la coma decimal.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Profesor: WILSON A. PRIETO H.

	A	В
1	Fórmula	Descripción (Resultado)
2	=REDONDEAR.MAS(3,2; 0)	Redondea 3,2 hacia arriba a cero posiciones decimales (4)
3	=REDONDEAR.MAS(76,9; 0)	Redondea 76,9 hacia arriba a cero posiciones decimales (77)
4 5	=REDONDEAR.MAS(3,14159; 3)	Redondea 3,14159 hacia arriba a tres posiciones decimales (3,142)
5	=REDONDEAR.MAS(-3,14159; 1)	Redondea -3,14159 hacia arriba a una posición decimal (-3,2).
	=REDONDEAR.MAS (31415,92654; -2)	Redondea 31415,92654 hacia arriba a 2 posiciones decimales a la izquierda del separador decimal (31500)

REDONDEAR.MENOS

Redondea un número hacia abajo, en dirección hacia cero.

Sintaxis

REDONDEAR.MENOS (número; núm_decimales)

Número es cualquier número real que desea redondear hacia abajo.

Núm_decimales es el número de dígitos al que desea redondear número.

Observaciones

- La función REDONDEAR.MENOS es similar a la función REDONDEAR, excepto que siempre redondea un número acercándolo a cero.
- Si el argumento núm_decimales es mayor que 0 (cero), el número se redondea al valor inferior (superior para los números negativos) más próximo que contenga el número de lugares decimales especificado.
- Si núm_decimales es 0, número se redondeará al entero inferior más próximo.
- Si el argumento núm_decimales es menor que 0, el número se redondea al valor inferior (superior si es negativo) más próximo a partir de la izquierda de la coma decimal.

Ejemplo

	A	В
1	Fórmula	Descripción (Resultado)
2	=REDONDEAR.MENOS(3,2; 0)	Redondea 3,2 hacia abajo a cero posiciones decimales (3)
3	=REDONDEAR.MENOS(76,9; 0)	Redondea 76,9 hacia abajo a cero posiciones decimales (76)
4	=REDONDEAR.MENOS(3,14159; 3)	Redondea 3,14159 hacia abajo a tres posiciones decimales (3,141)
6	=REDONDEAR.MENOS(-3,14159; 1)	Redondea -3,14159 hacia abajo a una posición decimal (-3,1)
	=REDONDEAR.MENOS (31415,92654; -2)	Redondea 31415,92654 hacia abajo a 2 posiciones decimales a la izquierda del separador decimal (31400)

REEMPLAZAR

También se aplica a:

REEMPLAZARB

REEMPLAZAR reemplaza parte de una cadena de texto, en función del número de caracteres que especifique, con una cadena de texto diferente.

REEMPLAZARB reemplaza parte de una cadena de texto, en función del número de bytes que especifique, con una cadena de texto diferente. Esta función se utiliza con los caracteres de dos bytes.

Sintaxis

REEMPLAZAR(texto_original;núm_inicial;núm_de_caracteres;texto_nuevo)

REEMPLAZARB(texto_original;núm_inicial;núm_bytes;texto_nuevo)

Texto_original es el texto en el que desea reemplazar algunos caracteres.

Núm_inicial es la posición del carácter dentro de texto_original que desea reemplazar por texto_nuevo.

Núm_de_caracteres es el número de caracteres de texto_original que desea que REEMPLAZAR sustituya por texto_nuevo.

Núm_bytes es el número de bytes de texto_original que desea que REEMPLAZARB reemplace por texto nuevo.

Texto_nuevo es el texto que reemplazará los caracteres de texto_original.

Ejemplo (REEMPLAZAR)

	A	
1	Datos	
2	abcdefghijk	
3	2009	
4	123456	
	Fórmula	Descripción (Resultado)
	=REEMPLAZAR(A2;6;5;"*")	Reemplaza cinco caracteres a partir del sexto carácter (abcde*k)
	=REEMPLAZAR(A3;3;2;"10")	Reemplaza los últimos dos dígitos de 2009 por 10 (2010)
	=REEMPLAZAR(A4;1;3,;quot;@")	Reemplaza los tres primeros caracteres por @ (@456)

Ejemplo (REEMPLAZARB)

En el siguiente ejemplo, los tres primeros caracteres de dos bytes en la celda C4 se reemplazan con "東京都": =REEMPLAZARB (C4;1;6;"東京都")

RENDTO

Calcula el rendimiento en un valor bursátil que paga intereses periódicos. Utilice la función RENDTO para calcular el rendimiento de bonos.

Si esta función no está disponible y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

¿Cómo?

- 1. En el menú **Herramientas**, elija **Complementos**.
- 2. En la lista **Complementos disponibles**, seleccione el cuadro **Herramientas para análisis** y, a continuación, haga clic en **Aceptar**.
- 3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

RENDTO(liq;vencto;tasa;precio;valor_de_rescate;frec;base)

Importante Las fechas deben introducirse mediante la función FECHA o como resultado de otras fórmulas o funciones. Por ejemplo, utilice FECHA(2008;5;23) para el día 23 de mayo de 2008. Pueden producirse problemas si las fechas se introducen como texto.

Liq es la fecha de liquidación del valor bursátil. La fecha de liquidación del valor bursátil es la fecha posterior a la fecha de emisión en la que el comprador adquiere el valor bursátil.

Vencto es la fecha de vencimiento del valor bursátil. La fecha de vencimiento es cuando expira el valor bursátil.

Tasa es la tasa de interés nominal anual (interés en los cupones) de un valor bursátil.

Precio es el precio del valor bursátil por cada 100 \$ de valor nominal.

Valor_de_rescate es el valor de rescate del valor bursátil por cada 100 \$ de valor nominal.

Frec es el número de pagos de cupón al año. Para pagos anuales, frec = 1; para pagos semestrales, frec = 2; para pagos trimestrales, frec = 4.

Base determina en qué tipo de base deben contarse los días.

Base	Base para contar días
0 u omitido	US (NASD) 30/360
1	Real/real
2	Real/360
3	Real/365
4	Europea 30/360

Observaciones

- Microsoft Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.
- La fecha de liquidación es la fecha en que se compra el cupón, como un bono. La fecha de vencimiento es la fecha en que expira el cupón. Por ejemplo, supongamos que se emite un bono a treinta años el 1 de enero de 2008 y, seis meses más tarde, lo adquiere un comprador. La fecha de emisión será el 1 de enero de 2008, la de liquidación, el 1 de julio de 2008 y la de vencimiento, el 1 de enero de 2038, es decir, treinta años después del 1 de enero de 2008, fecha de emisión.
- Los argumentos liq, vencto, frec y base se truncan a enteros.
- Si los argumentos liq o vencto no son fechas válidas, RENDTO devuelve el valor de error #iVALOR!
- Si tasa < 0, RENDTO devuelve el valor de error #iNUM!
- Si precio ≤ 0 o si valor de rescate ≤ 0, RENDTO devuelve el valor de error #iNUM!
- Si el argumento frec es cualquier número distinto de 1, 2 ó 4, RENDTO devuelve el valor de error #iNUM!
- Si base < 0 o si base > 4, RENDTO devuelve el valor de error #iNUM!
- Si lig ≥ vencto, RENDTO devuelve el valor de error #iNUM!
- Si hay el equivalente a un período de cupón o menos hasta valor_de_rescate, RENDTO se calcula como:

$$RENDTO = \frac{(\frac{valor_de_rescate}{100} + \frac{tasa}{frec}) - (\frac{v_nominal}{100} + (\frac{A}{E} \times \frac{tasa}{frec}))}{\frac{v_nominal}{100} + (\frac{A}{E} \times \frac{tasa}{frec})} \times \frac{frec \times E}{DLV}$$

donde:

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

A = número de días comprendidos entre el principio del período del cupón hasta la fecha de liquidación (días acumulados).

DLV = número de días desde la fecha de liquidación hasta la fecha de rescate.

E = número de días en el período del cupón.

Si hay más de un período de cupón hasta valor_de_rescate, la función RENDTO se calcula
a través de cien iteraciones. La resolución utiliza el método de Newton basado en la
fórmula que se utiliza para la función PRECIO. La función hace variar el rendimiento hasta
que el precio estimado, según ese rendimiento, se aproxime al precio real.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	15 de febrero de 2008	Fecha de liquidación
3	15 de noviembre de 2016	Fecha de vencimiento
4	5,75%	Porcentaje de la tasa de interés nominal anual (del cupón)
5	95,04287	Precio
6	100 \$	Valor de rescate
7	2	La frecuencia es semestral (vea lo anterior)
8	0	Base de 30/360 (vea lo anterior)
	Fórmula	Descripción (Resultado)
	=RENDTO (A2;A3;A4;A5;A6;A7;A8)	Rendimiento de un bono con los términos anteriores (0,065 o el 6,5%)

Nota Para ver el número como un porcentaje, seleccione la celda y haga clic en **Celdas** en el menú **Formato**. Haga clic en la ficha **Número** y, a continuación, en **Porcentaje** en el cuadro **Categoría**.

RENDTO.DESC

Devuelve el rendimiento anual de un valor bursátil con descuento. Por ejemplo para una letra de tesorería (US Treasury bill).

Si no está disponible esta función y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

¿Cómo?

- 1. En el menú Herramientas, elija Complementos.
- 2. En la lista **Complementos disponibles**, seleccione el cuadro **Herramientas para análisis** y, a continuación, haga clic en **Aceptar**.

3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

RENDTO.DESC(lig;vencto;precio;valor_de_rescate;base)

Importante Las fechas deben introducirse utilizando la función FECHA o como resultados de otras fórmulas o funciones. Por ejemplo, utilice FECHA(23,5,2008) para el 23 de mayo de 2008. Pueden surgir problemas si las <u>fechas se escriben como texto</u>.

Liq es la fecha de liquidación del valor bursátil. La fecha de liquidación del valor bursátil es la fecha posterior a la fecha de emisión en la que el comprador adquiere el valor bursátil.

Vencto es la fecha de vencimiento del valor bursátil. La fecha de vencimiento es la fecha en que expira el valor bursátil.

Precio es el precio del valor bursátil por cada 100 \$ de valor nominal.

Valor de rescate es el valor de rescate del valor bursátil por cada 100 \$ de valor nominal.

Base determina en qué tipo de base deben ser contados los días.

Base	Base para contar días
0 u omitido	US (NASD) 30/360
1	Real/real
2	Real/360
3	Real/365
4	Europea 30/360

Observaciones

- Microsoft Excel almacena las fechas como números de serie secuenciales para que se puedan utilizar en cálculos. De manera predeterminada, la fecha 1 de enero de 1900 es el número de serie 1 y la fecha 1 de enero de 2008 es el número de serie 39448, porque es 39.448 días posterior al 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.
- La fecha de liquidación es la fecha en que se compra el cupón, por ejemplo, un bono. La fecha de vencimiento es la fecha en que expira el cupón. Por ejemplo, supongamos que se emite un bono a treinta años el 1 de enero de 2008 y, seis meses más tarde, lo adquiere un comprador. La fecha de emisión será el 1 de enero de 2008, la de liquidación el 1 de julio de 2008 y la de vencimiento, el 1 de enero de 2038, es decir, treinta años después del 1 de enero de 2008, la fecha de emisión.
- Los argumentos liq, vencto y base se truncan a enteros.
- Si el argumento liq o vencto no es una fecha válida, RENDTO.DESC devuelve el valor de error #iVALOR!.
- Si el argumento precio ≤ 0 o si el argumento valor_de_rescate ≤ 0, RENDTO.DESC devuelve el valor de error #iNUM!.

- Si el argumento base < 0 o si el argumento base > 4, RENDTO.DESC devuelve el valor de error #iNUM!.
- Si el argumento lig ≥ vencto, RENDTO.DESC devuelve el valor de error #iNUM!.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	16 de febrero de 2008	Fecha de liquidación
3	01.03.08	Fecha de vencimiento
4	99.795	Precio
5	\$100	Valor de rescate
6	2	Base: real/360
	Fórmula	Descripción (Resultado)
	=RENDTO.DESC (A2,A3,A4,A5,A6)	El rendimiento para el bono con las condiciones anteriores (0,052823 o 5,28%)

Nota Para ver el número como un porcentaje, seleccione la celda y haga clic en **Celdas** del menú **Formato**. Haga clic en la ficha **Número** y, a continuación, haga clic en **Porcentaje** del cuadro **Categoría**.

RENDTO.PER.IRREGULAR.1

Devuelve el rendimiento de un valor bursátil con un primer período irregular.

Si esta función no está disponible y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

- 1. En el menú **Herramientas**, elija **Complementos**.
- 2. En la lista **Complementos disponibles**, seleccione el cuadro **Herramientas para análisis** y, a continuación, haga clic en **Aceptar**.
- 3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

RENDTO.PER.IRREGULAR.1(liquidación; vencto; emisión; próx_cupón; tasa; precio; valor_de_rescate; frec; base)

Importante Las fechas deben introducirse mediante la función FECHA o como resultado de otras fórmulas o funciones. Por ejemplo, utilice FECHA(2008;5;23) para el día 23 de mayo de 2008. Pueden producirse problemas si <u>las fechas se introducen como texto</u>.

Liq es la fecha de liquidación del valor bursátil. La fecha de liquidación del valor bursátil es la fecha posterior a la fecha de emisión en la que el comprador adquiere el valor bursátil.

Funciones de Excel

192

Vencto es la fecha de vencimiento del valor bursátil. La fecha de vencimiento es cuando expira el valor bursátil.

Emisión es la fecha de emisión del valor bursátil.

Próx cupón es la fecha del primer cupón del valor bursátil.

Tasa es la tasa de interés del valor bursátil.

Precio es el precio del valor bursátil.

Valor_de_rescate es el valor de rescate del valor bursátil por cada 100 \$ de valor nominal.

Frec es el número de pagos de cupón al año. Para pagos anuales, frec = 1; para pagos semestrales, frec = 2; para pagos trimestrales, frec = 4.

Base determina en qué tipo de base deben contarse los días.

Base	Base para contar días
0 u omitido	US (NASD) 30/360
1	Real/real
2	Real/360
3	Real/365
4	Europea 30/360

Observaciones

- Microsoft Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.
- La fecha de liquidación es la fecha en que se compra el cupón, como un bono. La fecha de vencimiento es la fecha en que expira el cupón. Por ejemplo, supongamos que se emite un bono a treinta años el 1 de enero de 2008 y, seis meses más tarde, lo adquiere un comprador. La fecha de emisión será el 1 de enero de 2008, la de liquidación, el 1 de julio de 2008 y la de vencimiento, el 1 de enero de 2038, es decir, treinta años después del 1 de enero de 2008, fecha de emisión.
- Los argumentos liq, vencto, emisión, próx_cupón y base se truncan a enteros.
- Si liq, vencto, emisión o próx_cupón no son una fecha válida, RENDTO.PER.IRREGULAR.1 devuelve el valor de error #iVALOR!
- Si tasa < 0 o si precio ≤ 0, RENDTO.PER.IRREGULAR.1 devuelve el valor de error #iNUM!
- Si base < 0 o si base > 4, RENDTO.PER.IRREGULAR.1 devuelve el valor de error #iNUM!
- Las fechas deben satisfacer la siguiente condición; de lo contrario RENDTO.PER.IRREGULAR.1 devolverá el valor de error #iNUM!:

vencto > próx_cupón > liq > emisión

Excel utiliza una técnica iterativa para calcular RENDTO.PER.IRREGULAR.1. Esta función usa el método de Newton, basado en la fórmula que se usa para la función PRECIO.PER.IRREGULAR.1. Se cambia el rendimiento a través de 100 iteraciones hasta que el precio estimado con el rendimiento dado se acerque al precio. Vea PRECIO.PER.IRREGULAR.1 para obtener la fórmula que RENDTO.PER.IRREGULAR.1 utiliza.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción (Resultado)
2	11 de noviembre de 2008	Fecha de liquidación
3	1 de marzo de 2021	Fecha de vencimiento
4	15 de octubre de 2008	Fecha de emisión
5	1 de marzo de 2009	Fecha del primer cupón
6	5,75%	Porcentaje de la tasa de interés nominal anual (del cupón)
7	84,50	Precio
8	100	Valor de rescate
9	2	La frecuencia es semestral (vea lo anterior)
10	0	Base de 30/360 (vea lo anterior)
	Fórmula	Descripción (Resultado)
	=RENDTO.PER.IRREGULAR.1 (A2;A3;A4;A5;A6;A7;A8;A9;A10)	Rendimiento de un valor bursátil que tiene un primer período irregular (largo o corto) del bono con los términos anteriores (0,077245542 o 7,72%)

Nota Para ver el número como un porcentaje, seleccione la celda y haga clic en **Celdas** en el menú **Formato**. Haga clic en la ficha **Número** y, a continuación, en **Porcentaje** en el cuadro **Categoría**.

RENDTO.PER.IRREGULAR.2

Devuelve el rendimiento de un valor bursátil que tiene un último período irregular (largo o corto).

Si esta función no está disponible y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

- 1. En el menú Herramientas, elija Complementos.
- 2. En la lista **Complementos disponibles**, seleccione el cuadro **Herramientas para análisis** y, a continuación, haga clic en **Aceptar**.
- 3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

RENDTO.PER.IRREGULAR.2(liq; vencto; último_interés; tasa; precio; valor_de_rescate; frec; base)

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

Funciones de Excel

194

Importante Las fechas deben introducirse mediante la función FECHA o como resultado de otras fórmulas o funciones. Por ejemplo, utilice FECHA(2008;5;23) para el día 23 de mayo de 2008. Pueden producirse problemas si las fechas se introducen como texto.

Liq es la fecha de liquidación del valor bursátil. La fecha de liquidación del valor bursátil es la fecha posterior a la fecha de emisión en la que el comprador adquiere el valor bursátil.

Vencto es la fecha de vencimiento del valor bursátil. La fecha de vencimiento es cuando expira el valor bursátil.

Último interés es la fecha del último cupón.

Tasa es la tasa de interés del valor bursátil.

Precio es el precio del valor bursátil.

Valor de rescate es el valor de rescate del valor bursátil por cada 100 \$ de valor nominal.

Frec es el número de pagos de cupón al año. Para pagos anuales, frec = 1; para pagos semestrales, frec = 2; para pagos trimestrales, frec = 4.

Base determina en qué tipo de base deben contarse los días.

Base	Base para contar días
0 u omitido	US (NASD) 30/360
1	Real/real
2	Real/360
3	Real/365
4	Europea 30/360

Observaciones

- Microsoft Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.
- La fecha de liquidación es la fecha en que se compra el cupón, como un bono. La fecha de vencimiento es la fecha en que expira el cupón. Por ejemplo, supongamos que se emite un bono a treinta años el 1 de enero de 2008 y, seis meses más tarde, lo adquiere un comprador. La fecha de emisión será el 1 de enero de 2008, la de liquidación, el 1 de julio de 2008 y la de vencimiento, el 1 de enero de 2038, es decir, treinta años después del 1 de enero de 2008, fecha de emisión.
- Los argumentos liq, vencto, último_interés y base se truncan a enteros.
- Si liq, vencto o último_interés no son una fecha válida, RENDTO.PER.IRREGULAR.2 devuelve el valor de error #iVALOR!
- Si tasa < 0 o si precio ≤ 0, RENDTO.PER.IRREGULAR.2 devuelve el valor de error #iNUM!
- Si base < 0 o si base > 4, RENDTO.PER.IRREGULAR.2 devuelve el valor de error #iNUM!

Funciones de Excel

Profesor: WILSON A. PRIETO H.

195

 Las fechas deben satisfacer la siguiente condición; de lo contrario, RENDTO.PER.IRREGULAR.2 devolverá el valor de error #iNUM!

vencto > liq > último_interés

RENDTO.PER.IRREGULAR.2 se calcula como se indica a continuación:

$$\begin{split} \textit{RENDTO.PER.IRREGULAR2} = & \underbrace{ \begin{bmatrix} \left(\textit{valor_de_rescate} + \left(\left(\sum_{j=1}^{\textit{NC}} \frac{\textit{DC}_j}{\textit{NL}_j} \right) \times \frac{100 \times \textit{tasa}}{\textit{frec}} \right) \right) - \left(\textit{par} + \left(\left(\sum_{j=1}^{\textit{NC}} \frac{\textit{A}_j}{\textit{NL}_j} \right) \times \frac{100 \times \textit{tasa}}{\textit{frec}} \right) \right)}_{\textit{par} + \left(\left(\sum_{j=1}^{\textit{NC}} \frac{\textit{A}_j}{\textit{NL}_j} \right) \times \frac{100 \times \textit{tasa}}{\textit{frec}} \right) \\ \times \underbrace{ \begin{bmatrix} \textit{frec} \\ \sum_{j=1}^{\textit{NC}} \frac{\textit{DSC}_j}{\textit{NL}_j} \end{bmatrix}}_{\textit{Allow the partial parti$$

donde:

Ai = Número de días acumulados para el período iésimo o último del cuasi-cupón dentro del período irregular, contando hacia adelante desde la fecha del último interés hasta la fecha de rescate.

DCi = Número de días contados en cada período iésimo o último del cuasi-cupón según esté delimitado por la duración del período del cupón real.

NC = Número de períodos de cuasi-cupones que puede haber en un período irregular; si este número contiene una fracción se aumentará al número entero siguiente.

NLi = Duración normal en días del período iésimo o último del cuasi-cupón dentro del período irregular del cupón.

Ejemplo

	A	В
1	Datos	Descripción
2	20 de abril de 2008	Fecha de liquidación
3	15 de junio de 2008	Fecha de vencimiento
4	24 de diciembre de 2007	Fecha del último interés
5	3,75%	Porcentaje de la tasa de interés nominal anual (del cupón)
6	99.875 \$	Precio
7	100 \$	Valor de rescate
8	2	La frecuencia es semestral (vea lo anterior)
9	0	Base de 30/360 (vea lo anterior)
	Fórmula	Descripción (Resultado)
	=RENDTO.PER.IRREGULAR.2 (A2;A3;A4;A5;A6;A7;A8;A9)	Rendimiento de un valor bursátil que tiene un último período irregular (largo o corto) del bono con los términos anteriores (0,045192)

RENDTO.VENCTO

Devuelve el rendimiento anual de un valor bursátil que paga intereses al vencimiento.

Si no está disponible esta función y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

¿Cómo?

- 1. En el menú **Herramientas**, elija **Complementos**.
- 2. En la lista **Complementos disponibles**, seleccione el cuadro **Herramientas para análisis** y, a continuación, haga clic en **Aceptar**.
- 3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

RENDTO.VENCTO(liq;vencto;emisión;tasa;precio;base)

Importante Las fechas deben introducirse utilizando la función FECHA o como resultados de otras fórmulas o funciones. Por ejemplo, utilice FECHA(23,5,2008) para el 23 de mayo de 2008. Pueden surgir problemas si las <u>fechas se escriben como texto</u>.

Liq es la fecha de liquidación del valor bursátil. La fecha de liquidación del valor bursátil es la fecha posterior a la fecha de emisión en la que el comprador adquiere el valor bursátil.

Vencto es la fecha de vencimiento del valor bursátil. La fecha de vencimiento es la fecha en que expira el valor bursátil.

Emisiones la fecha de emisión del valor bursátil, expresada como número de serie.

Tasa es la tasa de interés en la fecha de emisión del valor bursátil.

Precio es el precio del valor bursátil por cada 100 \$ de valor nominal.

Base determina en qué tipo de base deben ser contados los días.

Base	Base para contar días
0 u omitido	US (NASD) 30/360
1	Real/real
2	Real/360
3	Real/365
4	Europea 30/360

Observaciones

- Microsoft Excel almacena las fechas como números de serie secuenciales para que se puedan utilizar en cálculos. De manera predeterminada, la fecha 1 de enero de 1900 es el número de serie 1 y la fecha 1 de enero de 2008 es el número de serie 39448, porque es 39.448 días posterior al 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.
- La fecha de liquidación es la fecha en que se compra el cupón, por ejemplo, un bono. La fecha de vencimiento es la fecha en que expira el cupón. Por ejemplo, supongamos que se emite un bono a treinta años el 1 de enero de 2008 y, seis meses más tarde, lo adquiere un comprador. La fecha de emisión será el 1 de enero de 2008, la de liquidación el 1 de julio de 2008 y la de vencimiento, el 1 de enero de 2038, es decir, treinta años después del 1 de enero de 2008, la fecha de emisión.
- Los argumentos liq, vencto, emisión y base se truncan a enteros.
- Si el argumento liq, vencto o emisión no es una fecha válida, RENDTO.VENCTO devuelve el valor de error #iVALOR!.
- Si el argumento tasa < 0 o si el argumento precio ≤ 0, RENDTO.VENCTO devuelve el valor de error #iNUM!.
- Si el argumento base < 0 o si el argumento base > 4, RENDTO.VENCTO devuelve el valor de error #iNUM!.
- Si el argumento liq ≥ vencto, RENDTO.VENCTO devuelve el valor de error #iNUM!.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

	A	В
1	Datos	Descripción
2	15.03.08	Fecha de liquidación
3	03.11.08	Fecha de vencimiento
4	08.11.07	Fecha de emisión
5	6.25%	Interés semestral
6	100.0123	Precio
7	0	Base 30/360 (vea anteriormente)
	Fórmula	Descripción (Resultado)
	=RENDTO.VENCTO (A2,A3,A4,A5,A6,A7)	El rendimiento para el bono con las condiciones anteriores (0,060954 o 6,09%)

Nota Para ver el número como un porcentaje, seleccione la celda y haga clic en **Celdas** del menú **Formato**. Haga clic en la ficha **Número** y, a continuación, haga clic en **Porcentaje** del cuadro **Categoría**.

REPETIR

Repite el texto un número determinado de veces. Use REPETIR para llenar una celda con una cadena de texto repetida un número determinado de veces.

Sintaxis

REPETIR(texto;núm_de_veces)

Texto es el texto que desea repetir.

Núm_de_veces es un número positivo que especifica el número de veces que debe repetirse el texto.

Observaciones

- Si el argumento núm_de_veces es 0 (cero), REPETIR devuelve "" (texto vacío).
- Si el argumento núm de veces no es un número entero, se trunca.
- El resultado de la función REPETIR no puede contener más de 32.767 caracteres; de lo contrario, la función devolverá el valor de error #iVALOR!

Ejemplo

	A	В
1	Fórmula	Descripción (Resultado)
2	=REPETIR("*-";3)	Muestra la cadena 3 veces (*-*-*-)
3	=REPETIR("-";10)	Muestra un guión 10 veces (*-*-*-)

RESIDUO

Devuelve el residuo o resto de la división entre número y núm_divisor. El resultado tiene el mismo signo que núm_divisor.

Sintaxis

RESIDUO(número;núm divisor)

Número es el número que desea dividir y cuyo residuo o resto desea obtener.

Núm_divisor es el número por el cual desea dividir el argumento número.

Observaciones

- Si núm_divisor es 0, RESIDUO devuelve el valor de error #iDIV/0!
- La función RESIDUO se puede expresar utilizando la función ENTERO:

$$MOD(n, d) = n - d*INT(n/d)$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=RESIDUO(3;2)	Residuo de 3/2 (1)
3	=RESIDUO(-3;2)	Residuo de -3/2. Lleva el mismo signo que el divisor (1).
4	=RESIDUO(3;-2)	Residuo de 3/-2. Lleva el mismo signo que el divisor (-1).
5	=RESIDUO(-3;-2)	Residuo de -3/-2. Lleva el mismo signo que el divisor (-1).

SEGUNDO

Devuelve los segundos de un valor de hora. El segundo se expresa como número entero comprendido entre 0 (cero) y 59.

Sintaxis

SEGUNDO(núm_de_serie)

Núm_de_serie es la hora que contiene los segundos que desea buscar. Las horas pueden introducirse como cadenas de texto entre comillas (por ejemplo, "6:45 p.m."), como números decimales (por ejemplo, 0,78125, que representa las 6:45 p.m.), o bien como resultado de otras fórmulas o funciones, por ejemplo HORANUMERO("6:45 p.m.").

Observación

El sistema de fechas predeterminado de Microsoft Excel para Windows y Microsoft Excel para Macintosh es distinto. Los valores de hora son parte de un valor de fecha y vienen representados por un número decimal (por ejemplo, 0,5 representa 12:00 p.m. porque es la mitad de un día).

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

SENO

Devuelve el seno de un ángulo determinado.

Sintaxis

SENO(número)

Número es el ángulo en radianes cuyo seno desea obtener.

Observación

Si el argumento se expresa en grados, multiplíquelo por PI()/180 o utilice la función RADIANES para convertirlo en radianes.

Ejemplo

	A	В
1	Fórmula	Descripción (Resultado)
2	=SENO(PI())	Seno de pi radianes (0, aproximadamente)
3	=SENO(PI()/2)	Seno de pi/2 radianes (1)
4	=SENO(30*PI()/180)	Seno de 30 grados (0,5)
5	=SENO(RADIANES(30))	Seno de 30 grados (0,5)

SENOH

Devuelve el seno hiperbólico de un número.

Sintaxis

SENOH(número)

Número es cualquier número real.

Observación

La fórmula para el seno hiperbólico es:

$$SENOH(z) = \frac{e^{z} - e^{-z}}{2}$$

Ejemplo 1

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=SENOH(1)	Seno hiperbólico de 1 (1,175201194)
3	=SENOH(-1)	Seno hiperbólico de -1 (-1,175201194)

Ejemplo 2

Puede usar la función seno hiperbólico para aproximar una distribución acumulativa de probabilidades. Supongamos que un ensayo de laboratorio varía entre 0 y 10 segundos. Un análisis empírico de los antecedentes de los experimentos muestra que la probabilidad de obtener un resultado x menor de t segundos, se puede aproximar por medio de la siguiente ecuación:

$$P(x < t) = 2,868 * SENOH(0,0342 * t), donde 0 < t < 10$$

Para calcular la probabilidad de obtener un resultado inferior a 1,03 segundos, sustituya 1,03 por t.

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=2,868*SENOH(0,0342*1,03)	Probabilidad de obtener un resultado inferior a 1,03 segundos (0,101049063)

Puede esperar que este resultado ocurra aproximadamente 101 veces de cada 1000 experimentos.

SI

Devuelve un valor si la condición especificada es VERDADERO y otro valor si dicho argumento es FALSO.

Utilice SI para realizar pruebas condicionales en valores y fórmulas.

Sintaxis

SI(prueba_lógica;valor_si_verdadero;valor_si_falso)

Prueba_lógica es cualquier valor o expresión que pueda evaluarse como VERDADERO o FALSO. Por ejemplo, A10=100 es una expresión lógica; si el valor de la celda A10 es igual a 100, la expresión se evalúa como VERDADERO. De lo contrario, la expresión se evalúa como FALSO. Este argumento puede utilizar cualquier operador de comparación.

Valor_si_verdadero es el valor que se devuelve si el argumento prueba_lógica es VERDADERO. Por ejemplo, si este argumento es la cadena de texto "Dentro de presupuesto" y el argumento prueba_lógica se evalúa como VERDADERO, la función SI muestra el texto "Dentro de presupuesto". Si el argumento prueba_lógica es VERDADERO y el argumento valor_si_verdadero está en blanco, este argumento devuelve 0 (cero). Para mostrar la palabra VERDADERO, utilice el valor lógico VERDADERO para este argumento. Valor_si_verdadero puede ser otra fórmula.

Valor_si_falso es el valor que se devuelve si el argumento prueba_lógica es FALSO. Por ejemplo, si este argumento es la cadena de texto "Presupuesto excedido" y el argumento prueba_lógica se evalúa como FALSO, la función SI muestra el texto "Presupuesto excedido". Si el argumento prueba_lógica es FALSO y se omite valor_si_falso, (es decir, después de valor_si_verdadero no hay ninguna coma), se devuelve el valor lógico FALSO. Si prueba_lógica es FALSO y valor_si_falso está en blanco (es decir, después de valor_si_verdadero hay una coma seguida por el paréntesis de cierre), se devuelve el valor 0 (cero). Valor_si_falso puede ser otra fórmula.

Observaciones

- Es posible anidar hasta siete funciones SI como argumentos valor_si_verdadero y valor_si_falso para construir pruebas más elaboradas. Vea el último de los ejemplos siguientes.
- Cuando los argumentos valor_si_verdadero y valor_si_falso se evalúan, la función SI devuelve el valor devuelto por la ejecución de las instrucciones.
- Si uno de los argumentos de la función SI es una <u>matriz</u>, cada elemento de la matriz se evaluará cuando se ejecute la instrucción SI.
- Microsoft Excel proporciona funciones adicionales que pueden utilizarse para analizar los datos basándose en una condición. Por ejemplo, para contar el número de veces que aparece una cadena de texto o un número dentro de un rango de celdas, utilice la función de hoja de cálculo CONTAR.SI. Para calcular una suma basándose en una cadena de texto o un número dentro de un rango, utilice la función SUMAR.SI. Obtenga información sobre calcular un valor basado en una condición.

Ejemplo 1

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

Ejemplo 2

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Gastos reales	Gastos previstos
2	1500	900
3	500	900
4	500	925
	Fórmula	Descripción (Resultado)
	=SI(A2>B2;"Presupuesto excedido";"Aceptar")	Comprueba si la primera fila sobrepasa el presupuesto (Presupuesto excedido)
	=SI(A3>B3;"Presupuesto excedido";"Aceptar")	Comprueba si la segunda fila sobrepasa el presupuesto (Aceptar)

Ejemplo 3

	A
1	Puntuación
2	45
3	90
4	78

Fórmula	Descripción (Resultado)
=SI(A2>89,"A",SI(A2>79;"B";SI(A2>69;"C";SI (A2>59;"D";"F"))))	Asigna una puntuación de una letra al primer resultado (F)
=SI(A3>89;"A";SI(A3>79;"B";SI(A3>69;"C";SI (A3>59;"D";"F"))))	Asigna una puntuación de una letra al segundo resultado (A)
=SI(A4>89;"A";SI(A4>79;"B";SI(A4>69;"C";SI (A4>59;"D";"F"))))	Asigna una puntuación de una letra al tercer resultado (C)

En el ejemplo anterior, la segunda instrucción SI representa también el argumento valor_si_falso de la primera instrucción SI. De manera similar, la tercera instrucción SI es el argumento valor_si_falso de la segunda instrucción SI. Por ejemplo, si el primer argumento prueba_lógica (Promedio>89) es VERDADERO, se devuelve el valor "A". Si el primer argumento prueba_lógica es FALSO, se evalúa la segunda instrucción SI y así sucesivamente.

Las letras de puntuación se asignan a números utilizando la siguiente clave.

Si la puntuación es	La función devuelve
Mayor que 89	<u>A</u>
De 80 a 89	В
De 70 a 79	С
De 60 a 69	D
Menor que 60	F

SIGNO

Devuelve el signo de un número. Devuelve 1 si el argumento número es positivo, 0 si el argumento número es 0 y -1 si el argumento número es negativo.

Sintaxis

SIGNO(número)

Número es cualquier número real.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

	A	В
1	Fórmula	Descripción (Resultado)
2	=SIGNO(10)	Signo de un número positivo (1)
3	=SIGNO(4-4)	Signo de cero (0)
4	=SIGNO(-0,00001)	Signo de un número negativo (-1)

SLN

Devuelve la depreciación por método directo de un bien en un período dado.

Sintaxis

SLN(costo;valor_residual;vida)

Costo es el costo inicial del bien.

Valor residual es el valor al final de la depreciación.

Vida es el número de períodos durante los cuales se produce la depreciación del bien (también conocido como la vida útil del bien).

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	30.000	Costo
3	7.500	Valor residual
4	10	Años de vida útil
	Fórmula	Descripción (Resultado)
	=SLN(A2;A3;A4)	Depreciación permitida para cada año (2.250)

SUBTOTALES

Devuelve un subtotal en una lista o base de datos. Generalmente es más fácil crear una lista con subtotales utilizando el comando **Subtotales** del menú **Datos**. Una vez creada la lista de subtotales, puede cambiarse modificando la fórmula SUBTOTALES.

Sintaxis

SUBTOTALES(núm_función;ref1,ref2,...)

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

Núm_función es un número de 1 a 11 que indica qué función debe utilizarse para calcular los subtotales dentro de una lista.

Núm_función	Función
1	PROMEDIO
2	CONTAR
3	CONTARA
4	MAX
5	MIN
6	PRODUCTO
7	DESVEST
8	DESVESTP
9	SUMA
10	VAR
11	VARP

Ref1, Ref2, son de 1 a 29 rangos o referencias para los cuales desea calcular el subtotal.

Observaciones

- Si hay otros subtotales dentro de ref1 (o subtotales anidados), estos subtotales anidados se pasarán por alto para no repetir los cálculos.
- La función SUBTOTALES pasa por alto las filas ocultas. Esto es importante cuando sólo desea obtener el subtotal de los datos visibles que resulta de una lista filtrada.
- Si alguna de las referencias es una referencia 3D, SUBTOTALES devolverá el valor de error #iVALOR!

Ejemplo

A	
Datos	
120	
10	
150	
23	
Fórmula	Descripción (Resultado)
=SUBTOTAL(9;A2:A5)	Subtotal de la columna anterior obtenido con la función SUMA (303)
=SUBTOTAL(1;A2:A5)	Subtotal de la columna anterior obtenido con la función PROMEDIO (75,75

SUMA

Suma todos los números de un rango.

Sintaxis

SUMA(**número1**;número2; ...)

Número1;número2;... son de 1 a 30 argumentos cuyo valor total o suma desea obtener.

Observaciones

- Se toman en cuenta números, valores lógicos y representaciones de números que escriba directamente en la lista de argumentos. Consulte los dos primeros ejemplos.
- Si un argumento es una matriz o referencia, sólo se considerarán los números en esa matriz o referencia. Se pasan por alto las celdas vacías, valores lógicos, texto o valores de error en la matriz o en la referencia. Vea el tercer ejemplo a continuación.
- Los argumentos que sean valores de error o texto que no se pueda traducir a números causarán errores.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	-5	
3	15	
4	30	
5	'5	
6	VERDADERO	
	Fórmula	Descripción (Resultado)
	=SUMA(3;2)	Suma 3 y 2 (5)
	=SUMA(3;2) =SUMA ("5";15;VERDADERO)	Suma 3 y 2 (5) Suma 5, 15 y 1, ya que los valores de texto se traducen como números y el valor lógico VERDADERO se traduce como 1 (21).
	=SUMA	Suma 5, 15 y 1, ya que los valores de texto se traducen como números y el valor lógico
	=SUMA ("5";15;VERDADERO)	Suma 5, 15 y 1, ya que los valores de texto se traducen como números y el valor lógico VERDADERO se traduce como 1 (21).

SUMA.CUADRADOS

Devuelve la suma de los cuadrados de los argumentos.

Sintaxis

SUMA.CUADRADOS(número1; número2; ...)

Número1, número2, ... son de 1 a 30 argumentos de los cuales desea calcular la suma de los cuadrados. También puede utilizar una matriz única o una referencia matricial en lugar de argumentos separados con punto y coma.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=SUMA.CUADRADOS(3;4)	Suma de los cuadrados de 3 y 4 (25)

SUMA.SERIES

Devuelve la suma de potencias basadas en la fórmula:

SERIES
$$(x, n, m, a) = a_1 x^n + a_2 x^{(n+m)} + a_3 x^{(n+2m)} + \dots + a_n x^{(n+(i-1)m)}$$

Muchas funciones se pueden aproximar con una expansión de una serie exponencial.

Si esta función no está disponible y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

¿Cómo?

- 1. En el menú **Herramientas**, elija **Complementos**.
- 2. En la lista **Complementos disponibles**, seleccione el cuadro **Herramientas para análisis** y, a continuación, haga clic en **Aceptar**.
- 3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

SUMA.SERIES(x;n;m;coeficientes)

- X es la variable que se utiliza como base en la serie exponencial.
- N es el exponente inicial al cual desea elevar la base x.
- M es el paso que incrementa el valor de n para cada término de la serie.

Coeficientes es un grupo de coeficientes por el que se multiplica cada exponente sucesivo de x. El número de valores en el argumento coeficientes determina el número de términos de la serie

exponencial. Por ejemplo, si hay tres valores en coeficientes, habrá tres términos en la serie exponencial.

Observación

Si alguno de los argumentos no es numérico, la función SUMA.SERIES devuelve el valor de error #iVALOR!

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	А	
l	Coeficientes	
2	=PI()/4	
3	1	
4	=-1/FACT(2)	
5	=1/FACT(4)	
6	=-1/FACT(6)	
	Fórmula	Descripción (Resultado)
	=SUMA.SERIES(A2;0;2;A3:A6)	Aproximación al coseno de Pi/4 radianes, o 45 grados (0,70710

SUMAPRODUCTO

Multiplica los componentes correspondientes de las matrices suministradas y devuelve la suma de esos productos.

Sintaxis

SUMAPRODUCTO(matriz1;matriz2;matriz3; ...)

Matriz1, matriz2, matriz3, ... son de 2 a 30 matrices cuyos componentes desea multiplicar y después sumar.

Observaciones

- Los argumentos matriciales deben tener las mismas dimensiones. De lo contrario, SUMAPRODUCTO devuelve el valor de error #iVALOR!
- SUMAPRODUCTO considera las entradas matriciales no numéricas como 0.

Ejemplo

	A	В	C	D
1	Matriz 1	Matriz 1	Matriz 2	Matriz 2
2	3	4	2	7
3	8	6	6	7
4	1	9	5	3
	Fórmula	Descripción (Resultado)		
	=SUMAPRODUCTO (A2:B4;C2:D4)	Multiplica todos los componentes de las dos matrices y después suma los productos , es decir, $3*2+4*7+8*6+6*7+1*5+9*3$ (156).		

Observación

El ejemplo anterior devuelve el mismo resultado que la fórmula SUMA(A2:B4*C2:D4) introducida como una matriz. El uso de matrices proporciona una solución más general para realizar operaciones similares a SUMAPRODUCTO. Por ejemplo, puede calcular la suma de los cuadrados de los elementos de A2:B4 utilizando la fórmula =SUMA(A2:B4^2) y presionando CTRL+MAYÚS+ENTRAR.

SUMAR.SI

Suma las celdas en el rango que coinciden con el argumento criterio.

Sintaxis

SUMAR.SI(rango;criterio;rango suma)

Rango es el rango de celdas que desea evaluar.

Criterio es el criterio en forma de número, expresión o texto, que determina las celdas que se van a sumar. Por ejemplo, los criterios pueden expresarse como 32, "32" ">32", "manzanas".

Rango_suma son las celdas que se van a sumar.

Observaciones

- Las celdas contenidas en rango_suma se suman sólo si las celdas correspondientes del rango coinciden con el criterio.
- Si rango_suma se omite, se suman las celdas contenidas en el argumento rango.
- Microsoft Excel proporciona funciones adicionales que pueden utilizarse para analizar los datos basándose en una condición. Por ejemplo, para contar el número de veces que aparece una cadena de texto o un número dentro de un rango de celdas, utilice la función CONTAR.SI. Para hacer que una fórmula devuelva uno de dos valores basados en una condición, como una bonificación por ventas basada en un importe de ventas especificado, utilice la función SI.

Ejemplo

	A	В
1	Valor de propiedad	Comisión
2	100.000	7.000
3	200.000	14.000
4	300.000	21.000
5	400.000	28.000
	Fórmula	Descripción (Resultado)
	=SUMAR.SI (A2:A5;">160000";B2:B5)	Suma de las comisiones para los valores de propiedad superiores a 160000 (63.000)

SUMAX2MASY2

Devuelve el sumatorio de la suma de cuadrados entre los valores correspondientes en dos matrices. El sumatorio de la suma de cuadrados es un término común en muchas operaciones estadísticas.

Sintaxis

SUMAX2MASY2(matriz_x;matriz_y)

Matriz_x es la primera matriz o rango de valores.

Matriz_y es la segunda matriz o rango de valores.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si los argumentos matriz_x y matriz_y tienen un número diferente de valores, SUMAX2MASY2 devuelve el valor de error #N/A.
- La ecuación para el sumatorio de la suma de cuadrados es:

$$SUMAX2MASY2 = \sum (x^2 + y^2)$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

	A	В
1	Primera matriz	Segunda matriz
2	2	6
3	3	5
4	9	11
5	1	7
6	8	5
7	7	4
8	5	4
	Fórmula	Descripción (Resultado)
	=SUMAX2MASY2(A2:A8;B2:B8)	Suma de la suma de los cuadrados de las dos matrices anteriores (521)
	=SUMAX2MASY2({2;3;9;1;8;7;5}; {6;5;11;7;5;4;4})	Suma de la suma de los cuadrados de las dos constantes matriciales (521)

SUMAX2MENOSY2

Devuelve el sumatorio de la diferencia de cuadrados entre los valores correspondientes en dos matrices.

Sintaxis

SUMAX2MENOSY2(matriz_x;matriz_y)

Matriz_x es la primera matriz o el primer rango de valores.

Matriz_y es la segunda matriz o el segundo rango de valores.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si los argumentos matriz_x y matriz_y tienen un número diferente de valores, SUMAX2MENOSY2 devuelve el valor de error #N/A.
- La ecuación para la suma de la diferencia de cuadrados es:

SUMAX2MENOSY2 =
$$\sum (x^2 - y^2)$$

Ejemplo

	A	В
1	Primera matriz	Segunda matriz
2	2	6
3	3	5
4	9	11
5	1	7
6	8	5
7	7	4
8	5	4
	Fórmula	Descripción (Resultado)
	=SUMAX2MENOSY2(A2:A8;B2:B8)	Suma de la diferencia de los cuadrados de las dos matrices anteriores (-55)
	=SUMAX2MENOSY2({2;3;9;1;8;7;5}; {6;5;11;7;5;4;4})	Suma de la diferencia de los cuadrados de las dos constantes matriciales (-55)

SUMAXMENOSY2

Devuelve el sumatorio de los cuadrados de las diferencias entre los valores correspondientes en dos matrices.

Sintaxis

SUMAXMENOSY2(matriz_x;matriz_y)

Matriz_x es la primera matriz o rango de valores.

Matriz_y es la segunda matriz o rango de valores.

Observaciones

- Los argumentos deben ser números o nombres, matrices o referencias que contengan números.
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.
- Si los argumentos matriz_x y matriz_y tienen un número de valores, SUMAXMENOSY2 devuelve el valor de error #N/A.
- La ecuación para la suma de la diferencia de cuadrados es:

SUMAXMENOSY2 =
$$\sum (x - y)^2$$

Ejemplo

	A	В
1	Primera matriz	Segunda matriz
2	2	6
3	3	5
4	9	11
5	1	7
6	8	5
7	7	4
8	5	4
	Fórmula	Descripción (Resultado)
	=SUMAXMENOSY2(A2:A8;B2:B8)	Suma de los cuadrados de las diferencias de las dos matrices anteriores (79)
	=SUMAXMENOSY2({2;3;9;1;8;7;5}; {6;5;11;7;5;4;4})	Suma de los cuadrados de las diferencias de las dos constantes matriciales (79)

SUSTITUIR

Sustituye texto_nuevo por texto_original dentro de una cadena de texto. Use SUSTITUIR cuando desee reemplazar texto específico en una cadena de texto; use REEMPLAZAR cuando desee reemplazar cualquier texto que aparezca en una ubicación específica dentro de una cadena de caracteres.

Sintaxis

SUSTITUIR(texto;texto_original;texto_nuevo; núm_de_ocurrencia)

Texto es el texto o la referencia a una celda que contiene texto en el que desea sustituir caracteres.

Texto_original es el texto que desea reemplazar.

Texto nuevo es el texto por el que desea reemplazar texto original.

Núm_de_ocurrencia especifica la instancia de texto_original que desea reemplazar por texto_nuevo. Si especifica el argumento núm_de_ocurrencia, sólo se remplazará esa instancia de texto_original. De lo contrario, todas las instancias de texto_original en texto se sustituirán con texto_nuevo.

Ejemplo

	A	
1	Datos	
2	Datos de ventas	
3	Trimestre 1, 2008	
4	Trimestre 1, 2011	
	Fórmula	Descripción (Resultado)
	=SUSTITUIR(A2; "Ventas"; "Costo")	Sustituye Ventas por Costo (Datos de costo)
	=SUSTITUIR(A3; "1"; "2"; 1)	Sustituye la primera instancia de "1" por "2" (Trimestre 2, 2008)
	=SUSTITUIR(A4; "1"; "2"; 3)	Sustituye la tercera instancia de "1" por "2" (Trimestre 2, 2012)

SYD

Devuelve la depreciación por suma de dígitos de los años de un bien durante un período específico.

Sintaxis

SYD(costo;valor_residual;vida;período)

Costo es el costo inicial del bien.

Valor_residual es el valor al final de la depreciación.

Vida es el número de períodos durante los cuales se produce la depreciación del bien (también conocido como la vida útil del bien).

Período es el período, que debe utilizar las mismas unidades que el argumento vida.

Observación

• SYD se calcula como:

$$SYD = \underbrace{(costo - valor_residual) * (vida - período + 1) * 2}_{(vida)(vida + 1)}$$

Ejemplo

	A	В
1	Datos	Descripción
2	30.000	Costo inicial
3	7,500	Valor residual
4	10	Vida en años
	Fórmula	Descripción (Resultado)
	=SYD(A2;A3;A4;1)	Depreciación anual permitida para el primer año (4.090,91)
	=SYD(A2;A3;A4;10)	Depreciación anual permitida para el décimo año (409,09)

т

Devuelve el texto al que se refiere el argumento valor.

Sintaxis

T(valor)

Valor es el valor que desea probar.

Observaciones

- Si el argumento valor se refiere o es texto, T devuelve valor. Si valor no se refiere a texto, T devuelve "" (texto vacío).
- Generalmente no necesita usar la función T en una fórmula, ya que Microsoft Excel convierte automáticamente los valores según se requiera. Esta función se proporciona por su compatibilidad con otros programas para hojas de cálculo.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
	Lluvia	
}	19	
ļ	VERDADERO	
	Fórmula	Descripción (Resultado)
	=T(A2)	Puesto que el primer valor es de texto, se devuelve texto (Lluvia)
	=T(A3)	Puesto que el segundo valor es un número, se devuelve texto vacío ()
	=T(A4)	Puesto que el tercer valor es un valor lógico, se devuelve texto vacío ()

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

217

TAN

Devuelve la tangente del ángulo dado.

Sintaxis

TAN(número)

Número es el ángulo en radianes cuya tangente desea obtener.

Observación

Si el argumento se expresa en grados, multiplíquelo por PI()/180 o utilice la función RADIANES para convertirlo en radianes.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=TAN(0,785)	Tangente de 0,785 radianes (0,99920)
3	=TAN(45*PI()/180)	Tangente de 45 grados (1)
4	=TAN(RADIANES(45))	Tangente de 45 grados (1)

TANH

Devuelve la tangente hiperbólica de un número.

Sintaxis

TANH(número)

Número es cualquier número real.

Observación

La fórmula para la tangente hiperbólica es:

$$TANH(z) = \frac{SENOH(z)}{COSH(z)}$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В	
1	Fórmula	Descripción (Resultado)	
2	=TANH(-2)	Tangente hiperbólica de -2 (-0,96403)	
3	=TANH(0)	Tangente hiperbólica de 0 (0)	
4	=TANH(0,5)	Tangente hiperbólica de 0,5 (0,462117)	

TASA

Devuelve la tasa de interés por período de una anualidad. TASA se calcula por iteración y puede tener cero o más soluciones. Si los resultados sucesivos de TASA no convergen dentro de 0,0000001 después de 20 iteraciones, TASA devuelve el valor de error #iNUM!

Sintaxis

TASA(**nper**;**pago**;**va**;vf;tipo;estimar)

Vea la función VA para obtener una descripción completa de los argumentos nper; pago; va; vf y tipo.

Nper es el número total de períodos de pago en una anualidad.

Pago es el pago efectuado en cada período, que no puede variar durante la vida de la anualidad. Generalmente el argumento pago incluye el capital y el interés, pero no incluye ningún otro arancel o impuesto. Si se omite el argumento pago, deberá incluirse el argumento vf.

Va es el valor actual, es decir, el valor que tiene actualmente una serie de pagos futuros.

Vf es el valor futuro o un saldo en efectivo que desea lograr después de efectuar el último pago. Si el argumento vf se omite, se asume que el valor es 0 (por ejemplo, el valor futuro de un préstamo es 0).

Tipo es el número 0 ó 1 e indica el vencimiento de los pagos.

Defina tipo como	Si los pagos vencen
0 u omitido	Al final del período
1	Al inicio del período

Estimar es la estimación de la tasa de interés.

- Si el argumento estimar se omite, se supone que es 10 por ciento.
- Si TASA no converge, trate de usar diferentes valores para el argumento estimar. TASA generalmente converge si el argumento estimar se encuentra entre 0 y 1.

Observación

Mantenga uniformidad en el uso de las unidades con las que especifica los argumentos estimar y nper. Si realiza pagos mensuales sobre un préstamo de 4 años con un interés anual del 12 por ciento, use 12%/12 para el argumento estimar y 4*12 para el argumento nper. Si realiza pagos anuales sobre el mismo préstamo, use 12% para el argumento estimar y 4 para el argumento nper.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В	
1	Datos	Descripción	
2	4	Años del préstamo	
3	-200	Pago mensual	
4	8000	Importe del préstamo	
	Fórmula	Descripción (Resultado)	
	=TASA(A2*12;A3;A4) Tasa mensual del préstamo con los términos anteriores (1%) =TASA(A2*12;A3;A4)*12 Tasa anual del préstamo con los términos anteriores (0,09241767 ó 9,24%)		

Nota El número de años del préstamo se multiplica por 12 para obtener el número de meses.

TASA.DESC

Devuelve la tasa de descuento de un valor bursátil.

Si esta función no está disponible y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

¿Cómo?

- 1. En el menú **Herramientas**, elija **Complementos**.
- 2. En la lista **Complementos disponibles**, seleccione el cuadro **Herramientas para análisis** y, a continuación, haga clic en **Aceptar**.
- 3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

TASA.DESC(liq;vencto;precio;valor_de_rescate;base)

Importante Las fechas deben introducirse mediante la función FECHA o como resultado de otras fórmulas o funciones. Por ejemplo, utilice FECHA(2008;5;23) para el día 23 de mayo de 2008. Pueden producirse problemas si <u>las fechas se introducen como texto</u>.

Liq es la fecha de liquidación del valor bursátil. La fecha de liquidación del valor bursátil es la fecha posterior a la fecha de emisión en la que el comprador adquiere el valor bursátil.

Vencto es la fecha de vencimiento del valor bursátil. La fecha de vencimiento es cuando expira el valor bursátil.

Precio es el precio del valor bursátil por cada 100 \$ de valor nominal.

Valor_de_rescate es el valor de rescate del valor bursátil por cada 100 \$ de valor nominal.

Base determina en qué tipo de base deben contarse los días.

Base	Base para contar días
0 u omitido	US (NASD) 30/360
1	Real/real
2	Real/360
3	Real/365
4	Europea 30/360

Observaciones

- Microsoft Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.
- La fecha de liquidación es la fecha en que se compra el cupón, como un bono. La fecha de vencimiento es la fecha en que expira el cupón. Por ejemplo, supongamos que se emite un bono a treinta años el 1 de enero de 2008 y, seis meses más tarde, lo adquiere un comprador. La fecha de emisión será el 1 de enero de 2008, la de liquidación, el 1 de julio de 2008 y la de vencimiento, el 1 de enero de 2038, es decir, treinta años después del 1 de enero de 2008, fecha de emisión.
- Los argumentos liq, vencto y base se truncan a enteros.
- Si los argumentos liq o vencto no son una fecha de serie válida, TASA.DESC devuelve el valor de error #iVALOR!
- Si el argumento precio ≤ 0 o si valor_de_rescate ≤ 0, TASA.DESC devuelve el valor de error #iNUM!
- Si base < 0 o si base > 4, TASA.DESC devuelve el valor de error #iNUM!
- Si el argumento lig ≥ vencto, TASA.DESC devuelve el valor de error #iNUM!
- TASA.DESC se calcula como:

$$\textit{TASA.DESC} = \frac{\textit{valor_de_rescate} - \textit{v_nominal}}{\textit{v_nominal}} \times \frac{B}{DSM}$$

•

B = número de días en un año, dependiendo de la base anual que se use.

DSM = Número de días entre los argumentos liq y vencto.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

	A	В
1	Datos	Descripción
2	25 de enero de 2007	Fecha de liquidación
3	15 de junio de 2007	Fecha de vencimiento
4	97.975	Precio
5	100	Valor de rescate
6	1	Base real/360 (vea lo anterior)
	Fórmula	Descripción (Resultado)
	=TASA.DESC(A2;A3;A4;A5;A6)	Tasa de descuento de un bono con los términos anteriores (0,052420213 ó 5,24%)

Nota Para ver el número como un porcentaje, seleccione la celda y haga clic en **Celdas** en el menú **Formato**. Haga clic en la ficha **Número** y, a continuación, en **Porcentaje** en el cuadro **Categoría**.

TASA.INT

Devuelve la tasa de interés para la inversión total en un valor bursátil.

Si esta función no está disponible y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

¿Cómo?

- 1. En el menú **Herramientas**, elija **Complementos**.
- 2. En la lista **Complementos disponibles**, seleccione el cuadro **Herramientas para análisis** y, a continuación, haga clic en **Aceptar**.
- 3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

TASA.INT(liq; vencto; inversión; valor_de_rescate; base)

Importante Las fechas deben introducirse mediante la función FECHA o como resultado de otras fórmulas o funciones. Por ejemplo, utilice FECHA(2008;5;23) para el día 23 de mayo de 2008. Pueden producirse problemas si las fechas se introducen como texto.

Liq es la fecha de liquidación del valor bursátil. La fecha de liquidación del valor bursátil es la fecha posterior a la fecha de emisión en la que el comprador adquiere el valor bursátil.

Vencto es la fecha de vencimiento del valor bursátil. La fecha de vencimiento es cuando expira el valor bursátil.

Inversión es la cantidad de dinero que se ha invertido en el valor bursátil.

Valor de rescate es el valor que se recibirá en la fecha de vencimiento.

Base determina en qué tipo de base deben contarse los días.

Base	Base para contar días
0 u omitido	US (NASD) 30/360
1	Real/real
2	Real/360
3	Real/365
4	Europea 30/360

Observaciones

- Microsoft Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.
- La fecha de liquidación es la fecha en que se compra el cupón, como un bono. La fecha de vencimiento es la fecha en que expira el cupón. Por ejemplo, supongamos que se emite un bono a treinta años el 1 de enero de 2008 y, seis meses más tarde, lo adquiere un comprador. La fecha de emisión será el 1 de enero de 2008, la de liquidación, el 1 de julio de 2008 y la de vencimiento, el 1 de enero de 2038, es decir, treinta años después del 1 de enero de 2008, fecha de emisión.
- Los argumentos liq, vencto y base se truncan a enteros.
- Si los argumentos liq o vencto no son fechas válidas, TASA.INT devuelve el valor de error #iVALOR!
- Si el argumento inversión ≤ 0 o si valor_de_rescate ≤ 0, TASA.INT devuelve el valor de error #iNUM!
- Si base < 0 o si base > 4, TASA.INT devuelve el valor de error #iNUM!
- Si el argumento lig ≥ vencto, TASA.INT devuelve el valor de error #iNUM!
- TASA.INT se calcula como se indica a continuación:

$$TASA.INT = \frac{valor_de_rescate - inversión}{inversión} \times \frac{B}{DIM}$$

donde:

B = número de días en un año, dependiendo de la base anual que se use.

DIM = Número de días entre el argumento liq y el argumento vencto.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

	А	В	
1	Datos	Descripción	
2	15 de febrero de 2008	Fecha de liquidación	
3	15 de mayo de 2008	Fecha de vencimiento	
4	1.000.000	Inversión	
5	1.014.420	Valor de rescate	
6	2	Base real/360 (vea lo anterior)	
	Fórmula	Descripción (Resultado)	
	=TASA.INT(A2;A3;A4;A5;A6)	Tasa de descuento para los términos del valor bursátil anterior (0,05768 ó 5,77%)	

Nota Para ver el número como un porcentaje, seleccione la celda y haga clic en **Celdas** en el menú **Formato**. Haga clic en la ficha **Número** y, a continuación, en **Porcentaje** en el cuadro **Categoría**.

TASA.NOMINAL

Devuelve la tasa de interés nominal anual si se conocen la tasa efectiva y el número de períodos de interés compuesto por año.

Si esta función no está disponible y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

¿Cómo?

- 1. En el menú **Herramientas**, elija **Complementos**.
- 2. En la lista **Complementos disponibles**, seleccione el cuadro **Herramientas para análisis** y, a continuación, haga clic en **Aceptar**.
- 3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

TASA.NOMINAL(tasa_efectiva; núm_per)

Tasa_efectiva es la tasa de interés efectiva.

Núm_per es el número de períodos de interés compuesto por año.

Observaciones

- El argumento núm per se trunca a entero.
- Si alguno de los argumentos no es numérico, TASA.NOMINAL devuelve el valor de error #iVALOR!
- Si tasa_efectiva ≤ 0 o si núm_per < 1, TASA.NOMINAL devuelve el valor de error #iNUM!
- TASA.NOMINAL está relacionado con INT.EFECTIVO como se indica a continuación:

$$INT.EFECTIVO = \left(1 + \frac{Tasa_nominal}{Num_per}\right)^{Num_per} - 1$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	5,3543%	Tasa de interés efectiva
3	4	Número de períodos de interés compuesto por año
	Fórmula	Descripción (Resultado)
=TASA.NOMINAL(A2;A3) Tasa de interés nominal con los términos anteriores (0,0525 o el		Tasa de interés nominal con los términos anteriores (0,0525 o el 5,25 por ciento)

TENDENCIA

Devuelve valores que resultan de una tendencia lineal. Ajusta una recta (calculada con el método de mínimos cuadrados) a los valores de las matrices definidas por los argumentos conocido_y y conocido_x. Devuelve, a lo largo de esa recta, los valores y correspondientes a la matriz definida por el argumento nueva_matriz_x especificado.

Sintaxis

TENDENCIA(**conocido_y**;conocido_x;nueva_matriz_x;constante)

Conocido y es el conjunto de valores de y que se conocen en la relación y = mx+b.

- Si la matriz definida por el argumento conocido_y ocupa una sola columna, cada columna de conocido x se interpreta como una variable separada.
- Si la matriz definida por el argumento conocido_y ocupa una sola fila, cada fila de conocido x se interpreta como una variable separada.

Conocido_x es un conjunto opcional de valores x en la relación y = mx+b.

- La matriz conocido_x puede incluir uno o varios conjuntos de variables. Si se usa una sola variable, conocido_y y conocido_x pueden ser rangos con cualquier forma, siempre y cuando sus dimensiones sean iguales. Si se usa más de una variable, conocido_y tiene que ser un vector (es decir, un rango compuesto por una fila o por una columna).
- Si se omite conocido_x, se asume que ésta es la matriz {1;2;3;...} que tiene el mismo tamaño que conocido_y.

Nueva_conocido_x son nuevos valores de x para los cuales se desea que TENDENCIA devuelva los valores de y correspondientes.

• El argumento nueva_matriz_x debe incluir una columna (o una fila) para cada variable independiente, como ocurre con el argumento conocido x. Por consiguiente, si conocido y

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

ocupa una sola columna, conocido_x y nueva_matriz_x deben tener el mismo número de columnas. Si conocido_y ocupa una sola fila, conocido_x y nueva_matriz_x deben tener el mismo número de filas.

- Si se omite nueva_matriz_x, se asume que es la misma que conocido_x.
- Si se omite conocido_x y nueva_matriz_x, se asume que son la matriz {1;2;3;...} que tiene el mismo tamaño que conocido y.

Constante es un valor lógico que especifica si se ha de forzar a la constante *b* a ser igual a 0.

- Si el argumento constante es VERDADERO o se omite, *b* se calcula normalmente.
- Si el argumento constante es FALSO, b se establece como igual a 0 y los valores m se ajustan de manera que y = mi.

Observaciones

- Para obtener información sobre cómo Microsoft Excel ajusta una línea recta a sus datos, vea ESTIMACION.LINEAL.
- Puede utilizar TENDENCIA para ajustar una curva polinómica calculando la regresión respecto a una misma variable elevada a potencias diferentes. Por ejemplo, supongamos que la columna A contiene valores y y la columna B contiene valores x. Podría escribir x^2 en la columna C, x^3 en la columna D y así sucesivamente, y después calcular la regresión entre las columnas B y D en contraposición a la columna A.
- Las fórmulas que devuelven matrices deben insertarse como fórmulas matriciales.
- Cuando introduzca una constante matricial para un argumento como conocido_x, utilice punto y coma para separar los valores de una misma fila y barra inversa para separar las filas.

Ejemplo

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

¿Cómo?

- 1. Cree un libro o una hoja de cálculo en blanco.
- 2. Seleccione el ejemplo en el tema de Ayuda. No seleccione los encabezados de fila o de columna.

Seleccionar un ejemplo de la Ayuda

- 3. Presione CTRL+C.
- 4. En la hoja de cálculo, seleccione la celda A1 y presione CTRL+V.
- 5. Para alternar entre ver los resultados y ver las fórmulas que devuelven los resultados, presione CTRL+` (acento grave) o, en el menú **Herramientas**, elija **Auditoría de fórmulas** y, a continuación, haga clic en **Modo de auditoría de fórmulas**.

La primera fórmula muestra los valores correspondientes a los conocidos. La segunda fórmula pronostica los valores del mese siguiente, si continúa la tendencia lineal.

	A	В	С
1	Mes	Costo	Fórmula (Costo correspondiente)
2	1	\$133,890	=TENDENCIA(B2:B13; A2:A13)
3	2	\$135,000	
4	3	\$135,790	
5	4	\$137,300	
6	5	\$138,130	
7	6	\$139,100	
8	7	\$139,900	
9	8	\$141,120	
10	9	\$141,890	
11	10	\$143,230	
12	11	\$144,000	
13	12	\$145,290	
	Mes	Fórmula (Costo pronosticado)	
	13	=TENDENCIA(B2:B13; A2:A13;A15:A19)	
	14		
	15		
	16		
	17		

Nota La fórmula del ejemplo debe escribirse como fórmula matricial. Una vez copiado el ejemplo en una hoja de cálculo en blanco, seleccione el rango C2:C13 o B15:B19 comenzando por la celda de la fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce en formato matricial, los resultados sencillos son 133953,3333 y 146171,5152.

TEXTO

Convierte un valor en texto, con un formato numérico específico.

Sintaxis

TEXTO(valor; formato)

Valor es un valor numérico, una fórmula que evalúa un valor numérico o una referencia a una celda que contenga un valor numérico.

Formato es un formato de número, en forma de texto, indicado en el cuadro **Categoría** en la ficha **Número** del cuadro de diálogo **Formato de celdas**.

Observaciones

El argumento formato no puede contener un asterisco (*).

• Al dar formato a una celda con la ficha **Número** (que se obtiene con el comando **Celdas** del menú **Formato**) sólo cambiará el formato y no el valor. La función TEXTO convierte un valor en texto con formato, el cual ya no se calculará como un número.

Ejemplo

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

	A	В
1	Vendedor	Ventas
2	Buchanan	2800
3	Dodsworth	40%
	Fórmula	Descripción (Resultado)
	=A2&" vendió unidades por valor de "&TEXTO (B2;"0,00 \$")&"."	Combina el contenido anterior en una frase (Buchanan vendió unidades por valor de \$2800,00.)
	=A3&" vendió "&TEXTO(B3,"0%")&" de las ventas totales."	Combina el contenido anterior en una frase (Dodsworth vendió el 40% de las ventas totales.)

TEXTOBAHT

Convierte un número a texto tailandés y agrega un sufijo de "Baht."

En Microsoft Excel para Windows, puede cambiar el formato de Baht a un estilo distinto utilizando **Configuración regional** u **Opciones regionales** en el **Panel de control**.

En Excel para Macintosh, puede cambiar el formato de número de Baht a un estilo diferente utilizando el **Panel de control para números**.

Sintaxis

BAHTTEXT(número)

Número es un número que desea convertir a texto, o una referencia a una celda que contiene un número, o una fórmula que da como resultado un número.

Ejemplo

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

TIPO

Devuelve el tipo de valor. Utilice TIPO cuando el comportamiento de otra función dependa del tipo de valor de una celda especificada.

Sintaxis

TIPO(valor)

Valor puede ser cualquier valor de Microsoft Excel, por ejemplo, un número, texto, un valor lógico, etc.

Si valor es	TIPO devolverá
Número	1
Texto	2
Un valor lógico	4
Un valor de error	16
Matriz	64

Observaciones

- TIPO es especialmente útil cuando se usan funciones que aceptan tipos de datos diferentes; por ejemplo, las funciones ARGUMENTO e INTRODUCIR. Utilice TIPO para conocer el tipo de dato devuelto por la función.
- No se puede utilizar TIPO para determinar si una celda contiene una fórmula. TIPO sólo determina el tipo del valor resultante o mostrado. Si el valor es un referencia a una celda que contiene una fórmula, TIPO devuelve el tipo del valor resultante de la fórmula.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
l	Datos	
2	Méndez	
	Fórmula	Descripción (Resultado)
	=TIPO(A2)	Comprueba el tipo del valor anterior (2)
	=TIPO("Sr. "&A2)	Comprueba el tipo de "Sr. Méndez" (2)
	=TIPO(2+A2)	Comprueba el tipo de la fórmula, que devuelve el error #iVALOR! (16)
	=TIPO({1;2\3;4})	Comprueba el tipo de una constante matricial (64)

TIPO.DE.ERROR

Devuelve un número que corresponde a uno de los valores de error de Microsoft Excel o devuelve el error #N/A si no existe ningún error. Use TIPO.DE.ERROR en una función SI para determinar el tipo de error y devolver una cadena de texto, como un mensaje, en vez de un valor de error.

Sintaxis

TIPO.DE.ERROR(valor_de_error)

Valor_de_error es el valor de error cuyo número identificador desea buscar. Aunque valor_de_error puede ser el valor de error actual, por lo general es una referencia a una celda que contiene la fórmula que se desea probar.

Si valor_de_error es	TIPO.DE.ERROR devuelve
#iNULO!	1
#iDIV/0!	2
#IVALOR!	3
#iREF!	4
#¿NOMBRE?	5
#iNÚM!	6
#N/A	7
Otro valor	#N/A

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	#iNULO!	
3	=1/0	
	Fórmula	Descripción (Resultado)
	=TIPO.DE.ERROR(A2)	Número del error #iNULO! (1)

TIR

Devuelve la tasa interna de retorno de los flujos de caja representados por los números del argumento valores. Estos flujos de caja no tienen por que ser constantes, como es el caso en una anualidad. Sin embargo, los flujos de caja deben ocurrir en intervalos regulares, como meses o años. La tasa interna de retorno equivale a la tasa de interés producida por un proyecto de inversión con pagos (valores negativos) e ingresos (valores positivos) que ocurren en períodos regulares.

Sintaxis

TIR(valores; estimar)

Valores es una matriz o una referencia a celdas que contienen los números para los cuales desea calcular la tasa interna de retorno.

- El argumento valores debe contener al menos un valor positivo y uno negativo para calcular la tasa interna de retorno.
- TIR interpreta el orden de los flujos de caja siguiendo el orden del argumento valores. Asegúrese de introducir los valores de los pagos e ingresos en el orden correcto.
- Si un argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, esos valores se pasan por alto.

Estimar es un número que el usuario estima que se aproximará al resultado de TIR.

- Microsoft Excel utiliza una técnica iterativa para el cálculo de TIR. Comenzando con el argumento estimar, TIR reitera el cálculo hasta que el resultado obtenido tenga una exactitud de 0,00001%. Si TIR no llega a un resultado después de 20 intentos, devuelve el valor de error #iNUM!
- En la mayoría de los casos no necesita proporcionar el argumento estimar para el cálculo de TIR. Si se omite el argumento estimar, se supondrá que es 0,1 (10%).
- Si TIR devuelve el valor de error #iNUM!, o si el valor no se aproxima a su estimación, realice un nuevo intento con un valor diferente de estimar.

Observaciones

TIR está íntimamente relacionado a VNA, la función valor neto actual. La tasa de retorno calculada por TIR es la tasa de interés correspondiente a un valor neto actual 0 (cero). La fórmula siguiente demuestra la relación entre VNA y TIR:

VNA(TIR(B1:B6),B1:B6) es igual a 3,60E-08 [Dentro de la exactitud del cálculo TIR, el valor 3,60E-08 es en efecto 0 (cero).]

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	А	В
1	Datos	Descripción
2	-70.000	Costo inicial de un negocio
3	12.000	Ingresos netos del primer año
4	15.000	Ingresos netos del segundo año
5	18.000	Ingresos netos del tercer año
6	21.000	Ingresos netos del cuarto año
7	26.000	Ingresos netos del quinto año
	Fórmula	Descripción (Resultado)
	=TIR(A2:A6)	Tasa interna de retorno de la inversión después de cuatro años (-2%)
=TIR(A2:A7) Tasa interna de retorno después de cinco años (9%) =TIR(A2:A4;- 10%) Para calcular la tasa interna de retorno de la inversión después de dos años, to una estimación (-44%)		Tasa interna de retorno después de cinco años (9%)
		Para calcular la tasa interna de retorno de la inversión después de dos años, tendrá que incluir una estimación (-44%)

TIR.NO.PER

Devuelve la tasa interna de retorno para un flujo de caja que no es necesariamente periódico. Para calcular la tasa interna de retorno de una serie de flujos de caja periódicos, utilice la función TIR.

Si esta función no está disponible y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

- 1. En el menú Herramientas, elija Complementos.
- 2. En la lista **Complementos disponibles**, seleccione el cuadro **Herramientas para análisis** y, a continuación, haga clic en **Aceptar**.
- 3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

TIR.NO.PER(valores; fechas; estimar)

Valores es una serie de flujos de caja que corresponde a un calendario de pagos determinado por el argumento fechas. El primer pago es opcional y corresponde al costo o pago en que se incurre al principio de la inversión. Si el primer valor es un costo o un pago, debe ser un valor negativo.

Profesor: WILSON A. PRIETO H.

Todos los pagos sucesivos se descuentan basándose en un año de 365 días. La serie de valores debe incluir al menos un valor positivo y un valor negativo.

Fechas es un calendario de fechas de pago que corresponde a los pagos del flujo de caja. La primera fecha de pago indica el principio del calendario de pagos. El resto de las fechas deben ser posteriores a ésta, pero pueden ocurrir en cualquier orden. Las fechas deben introducirse mediante la función FECHA o como resultados de otras fórmulas o funciones. Por ejemplo, utilice FECHA(2008;5;23) para el día 23 de mayo de 2008. Pueden producirse problemas si <u>las fechas se</u> introducen como texto.

Estimar es un número que el usuario estima que se aproximará al resultado de TIR.NO.PER.

Observaciones

- Microsoft Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.
- Los números del argumento fechas se truncan a enteros.
- TIR.NO.PER espera al menos un flujo de caja positivo y otro negativo. De lo contrario, TIR.NO.PER devuelve el valor de error #iNUM!
- Si alguno de los números del argumento fechas no es una fecha válida, TIR.NO.PER devuelve el valor de error #iVALOR!
- Si alguno de los números del argumento fechas precede a la fecha de inicio, TIR.NO.PER devuelve el valor de error #iNUM!
- Si valores y fechas contienen un número distinto de valores, TIR.NO.PER devuelve el valor de error #iNUM!
- En la mayoría de los casos no es necesario proporcionar el argumento estimar para el cálculo de TIR.NO.PER. Si se omite el argumento estimar, se supone que es 0,1 (10%).
- TIR.NO.PER está intimamente relacionada con VNA.NO.PER, función del valor neto actual.
 La tasa de retorno calculada por TIR.NO.PER es la tasa de interés que corresponde a VNA.NO.PER = 0.
- Excel utiliza una técnica iterativa para el cálculo de TIR.NO.PER. Utilizando una tasa variable (comenzando con el argumento estimar), TIR.NO.PER reitera el cálculo hasta que el resultado obtenido tenga una exactitud del 0,000001%. Si TIR.NO.PER no llega a un resultado después de 100 intentos, devuelve el valor de error #iNUM! La tasa cambia hasta:

$$0 = \sum_{j=1}^{N} \frac{P_{j}}{(1 + tasa)^{\frac{(-d_{j} - d_{j})}{365}}}$$

donde:

di = es la iésima o última fecha de pago.

d1 = es la fecha de pago 0.

Pi = es el iésimo o último pago.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Valores	Fechas
2	-10.000	1 de enero de 2008
3	2.750	1 de marzo de 2008
4	4.250	30 de octubre de 2008
5	3.250	15 de febrero de 2009
6	2.750	1 de abril de 2009
	Fórmula	Descripción (Resultado)
	=TIR.NO.PER(A2:A6;B2:B6;0,1)	Tasa interna de retorno (0,373362535 ó 37,34%)

Nota Para ver el número como un porcentaje, seleccione la celda y haga clic en **Celdas** en el menú **Formato**. Haga clic en la ficha **Número** y, a continuación, en **Porcentaje** en el cuadro **Categoría**.

TIRM

Devuelve la tasa interna de retorno modificada para una serie de flujos de caja periódicos. TIRM toma en cuenta el costo de la inversión y el interés obtenido por la reinversión del dinero.

Sintaxis

TIRM(valores; tasa financiamiento; tasa reinversión)

Valores es una matriz o una referencia a celdas que contienen números. Estos números representan una serie de pagos (valores negativos) e ingresos (valores positivos) que se realizan en períodos regulares.

- El argumento valores debe contener por lo menos un valor positivo y uno negativo para poder calcular la tasa interna de retorno modificada. De lo contrario, TIRM devuelve el valor de error #iDIV/0!
- Si el argumento matricial o de referencia contiene texto, valores lógicos o celdas vacías, estos valores se pasan por alto; sin embargo, se incluirán las celdas con el valor cero.

Tasa_financiamiento es la tasa de interés que se paga por el dinero utilizado en los flujos de caja.

Tasa reinversión es la tasa de interés obtenida por los flujos de caja a medida que se reinvierten.

Observaciones

- TIRM usa el orden de valores para interpretar el orden de los flujos de caja. Asegúrese de introducir los valores de los pagos e ingresos en el orden deseado y con los signos correctos (valores positivos para ingresos en efectivo y valores negativos para pagos en efectivo).
- Si n es el número de flujos de caja en valores, tasaf es la tasa_financiamiento y tasar es la tasa_reinversión, la fórmula de TIRM es:

$$\left(\frac{-\text{VNA}(tasar, valores[positivo])*(1+tasar)^{n}}{\text{VNA}(tasaf, valores[negativo])*(1+tasaf)}\right)^{\frac{1}{n-1}}-1$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	-120.000 \$	Coste inicial
3	39.000	Rendimiento del primer año
4	30.000	Rendimiento del segundo año
5	21.000	Rendimiento del tercer año
6	37.000	Rendimiento del cuarto año
7	46.000	Rendimiento del quinto año
8	10,00%	Tasa de interés anual del préstamo de 120.000
9	12,00%	Tasa de interés anual de los beneficios reinvertidos
	Fórmula	Descripción (Resultado)
	=TIRM(A2:A7;A8;A9)	Tasa de retorno modificada de la inversión después de cinco años (13%)
	=TIRM(A2:A5;A8;A9) Tasa de retorno modificada después de tres años (-5%)	
=TIRM Tasa de retorno modificada después de cinco años basada en una tasa de rein (A2:A7;A8;14%) 14 por ciento (14%)		Tasa de retorno modificada después de cinco años basada en una tasa de reinversión del 14 por ciento (14%)

TRANSPONER

Devuelve un rango de celdas vertical como un rango horizontal o viceversa. TRANSPONER debe introducirse como una <u>fórmula matricial</u> en un rango que tenga el mismo número de filas y columnas, respectivamente, que el número de columnas y filas en una <u>matriz</u>. Utilice TRANSPONER para cambiar la orientación vertical y horizontal de una matriz en una hoja de cálculo.

Sintaxis

TRANSPONER(matriz)

Matriz es una matriz o un rango de celdas de una hoja de cálculo que desea transponer. La traspuesta de una matriz se crea utilizando la primera fila de la matriz como primera columna de la nueva matriz, la segunda fila de la matriz como segunda columna de la nueva matriz, etc.

Ejemplo 1

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В	C
1	Datos	Datos	Datos
2	1	2	3
	Fórmula	Descripción (Resultado)	
	=TRANSPONER(\$A\$2:\$C\$2)	Valor de la primera columna (1)	
		Valor de la segunda columna (2)	
		Valor de la tercera columna (3)	

Nota La fórmula del ejemplo debe introducirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A5:A7 comenzando por la celda de la fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce como fórmula matricial, el resultado único es 1.

Ejemplo 2

Algunas funciones, como ESTIMACION.LINEAL, devuelven matrices horizontales. ESTIMACION.LINEAL devuelve una matriz horizontal de la pendiente y una intersección con Y de una línea. La siguiente fórmula devuelve una matriz vertical de la pendiente y una intersección con Y obtenidas con ESTIMACION.LINEAL.

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	А	В
1	Valor de y conocido	Valor de x conocido
2	1	0
3	9	4
4	5	2
5	7	3
	Fórmula	Descripción (Resultado)
	=TRANSPONER(ESTIMACION.LINEAL(A2:A5;B2:B5;FALSO))	Pendiente (2)
		Intersección con Y (1)

Nota La fórmula del ejemplo debe introducirse como fórmula matricial. Después de copiar el ejemplo en una hoja de cálculo en blanco, seleccione el rango A7:A8 comenzando por la celda de la fórmula. Presione F2 y, a continuación, CTRL+MAYÚS+ENTRAR. Si la fórmula no se introduce como fórmula matricial, el resultado único es 2.

TRUNCAR

Trunca un número a un entero, suprimiendo la parte fraccionaria de dicho número.

Sintaxis

TRUNCAR(**número**; núm_decimales)

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

Número es el número que desea truncar.

Núm_decimales es un número que especifica la precisión al truncar. El valor predeterminado del argumento núm_decimales es 0.

Observación

TRUNCAR y ENTERO son similares, ya que ambos devuelven enteros. TRUNCAR suprime la parte fraccionaria del número. ENTERO redondea los números al entero menor más próximo, según el valor de la porción fraccionaria del número. ENTERO y TRUNCAR son diferentes solamente cuando se usan números negativos: TRUNCAR(-4,3) devuelve -4, pero ENTERO(-4,3) devuelve -5, ya que -5 es el número entero menor más cercano.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=TRUNCAR(8,9)	Parte entera de 8,9 (8)
3	=TRUNCAR(-8,9)	Parte entera de -8,9 (-8)
4	=TRUNCAR(PI())	Parte entera de pi (3)

VA

Devuelve el valor actual de una inversión. El valor actual es el valor que tiene actualmente la suma de una serie de pagos que se efectuarán en el futuro. Por ejemplo, cuando pide dinero prestado, la cantidad del préstamo es el valor actual para el prestamista.

Sintaxis

VA(tasa;nper;pago;vf;tipo)

Tasa es la tasa de interés por período. Por ejemplo, si obtiene un préstamo para un automóvil con una tasa de interés anual del 10 por ciento y efectúa pagos mensuales, la tasa de interés mensual será del 10%/12 o 0,83%. En la fórmula escribiría 10%/12, 0,83% o 0,0083 como tasa.

Nper es el número total de períodos de pago en una anualidad. Por ejemplo, si obtiene un préstamo a cuatro años para comprar un automóvil y efectúa pagos mensuales, el préstamo tendrá 4*12 (ó 48) períodos. La fórmula tendrá 48 como argumento nper.

Pago es el pago efectuado en cada período, que no puede variar durante la anualidad. Generalmente el argumento pago incluye el capital y el interés, pero no incluye ningún otro arancel o impuesto. Por ejemplo, los pagos mensuales sobre un préstamo de 10.000 \$ a cuatro años con una tasa de interés del 12 por ciento para la compra de un automóvil, son de 263,33 \$. En la fórmula escribiría -263,33 como el argumento pago. Si se omite el argumento pago, deberá incluirse el argumento vf.

Vf es el valor futuro o un saldo en efectivo que desea lograr después de efectuar el último pago. Si el argumento vf se omite, se asume que el valor es 0 (por ejemplo, el valor futuro de un préstamo es 0). Si desea ahorrar 50.000 \$ para pagar un proyecto especial en 18 años, 50.000 \$ sería el valor futuro. De esta forma, es posible hacer una estimación conservadora a cierta tasa de interés y determinar la cantidad que deberá ahorrar cada mes. Si se omite el argumento vf, deberá incluirse el argumento pago.

Tipo es el número 0 ó 1 e indica el vencimiento de los pagos.

Defina tipo como	Si los pagos vencen
0 u omitido	Al final del período
1	Al inicio del período

Observaciones

- Mantenga uniformidad en el uso de las unidades con las que especifica los argumentos tasa y nper. Si realiza pagos mensuales de un préstamo de cuatro años con un interés anual del 12 por ciento, use 12%/12 para tasa y 4*12 para nper. Si realiza pagos anuales del mismo préstamo, use 12% para tasa y 4 para nper.
- Las siguientes funciones se aplican a anualidades:

PAGO.PRINC.ENTRE	PAGOPRIN
PAGOPRIN	VA
VF	TASA
PAGO	VF.PLAN
PAGOINT	VNA.NO.PER
AMORT	

- Una anualidad es una serie de pagos constantes en efectivo que se realiza durante un período continuo. Por ejemplo, un préstamo para comprar un automóvil o una hipoteca constituye una anualidad. Para obtener más información, consulte la descripción de cada función de anualidades.
- En las funciones de anualidades, el efectivo que paga, por ejemplo, depósitos en cuentas de ahorros, se representa con números negativos; el efectivo que recibe, por ejemplo, cheques de dividendos, se representa con números positivos. Por ejemplo, un depósito de 1.000 \$ en el banco, se representaría con el argumento -1000 si usted es el depositario y con el argumento 1000 si usted es el banco.
- Microsoft Excel resuelve un argumento financiero en función de otros. Si el argumento tasa no es 0, entonces:

$$va * (1+tasa)^{nper} + pago (1+tasa * tipo) *$$

$$\left(\frac{(1+tasa)^{nper} - 1}{tasa}\right) + vf = 0$$

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

• Si el argumento tasa es 0, entonces:

$$(pago * nper) + va + vf = 0$$

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	500	Dinero pagado por una póliza de seguros al final de cada mes
3	8%	Interés ganado por el dinero pagado
4	20	Número de años durante los cuales se efectuarán los pagos
	Fórmula	Descripción (Resultado)
	=VA(A3/12; 12*A4; A2; ; 0)	Valor actual de una anualidad con los términos anteriores (-59.777,15)

El resultado es negativo porque representa el dinero que se pagaría, un flujo de caja saliente. Si le piden (60.000) para la anualidad, determinará que ésta no es una buena inversión, puesto que el valor actual de la anualidad (59.777,15) es inferior a lo que tendría que pagar.

Nota La tasa de interés se divide por 12 para obtener una tasa mensual. Los años de duración del préstamo se multiplican por 12 para obtener el número de pagos.

VALOR

Convierte una cadena de texto que representa un número en un número.

Sintaxis

VALOR(texto)

Texto es el texto entre comillas o una referencia a una celda que contiene el texto que desea convertir.

Observaciones

- El argumento texto puede tener cualquiera de los formatos de número constante, fecha u hora reconocidos por Microsoft Excel. Si no tiene uno de estos formatos, VALOR devuelve el valor de error #iVALOR!
- Por lo general, no es necesario utilizar la función VALOR en las fórmulas, ya que Excel convierte el texto en números automáticamente. Esta función se proporciona por su compatibilidad con otros programas para hojas de cálculo.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

	A	В
1	Fórmula	Descripción (Resultado)
2	=VALOR("1.000 \$")	Equivalente numérico de la cadena (1000)
3	=VALOR("16:48:00")-VALOR ("12:00:00")	El número de serie equivalente a 4 horas y 48 minutos, que es "16:48:00"- "12:00:00" (0,2 o 4:48)

Nota Para ver el número como una hora, seleccione la celda y haga clic en **Celdas** en el menú **Formato**. Haga clic en la ficha **Número** y, a continuación, en **Hora** en el cuadro **Categoría**.

VAR

Calcula la varianza en función de una muestra.

Sintaxis

VAR(número1; número2; ...)

Número1, número2, ... son de 1 a 30 argumentos numéricos correspondientes a una muestra de una población.

Observaciones

- La función VAR parte de la hipótesis de que los argumentos representan una muestra de la población. Si sus datos representan la población total, utilice VARP para calcular la varianza.
- Se pasan por alto los valores lógicos, como VERDADERO y FALSO, y el texto. Si los valores lógicos y el texto no se deben pasar por alto, utilice la función de hoja de cálculo VARA.
- VAR utiliza la fórmula siguiente:

$$\frac{n\sum x^2 - (\sum x)^2}{n(n-1)}$$

Ejemplo

Supongamos que 10 herramientas forjadas en las misma máquina durante el mismo proceso de producción son elegidas como una muestra aleatoria y medimos su resistencia a la ruptura.

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Resistencia	
2	1345	
3	1301	
4	1368	
5	1322	
6	1310	
7	1370	
8	1318	
9	1350	
10	1303	
11	1299	
	Fórmula	Descripción (Resultado)
	=VAR(A2:A11)	Varianza de la resistencia a la rotura de las herramientas (754,2666667)

VARA

Calcula la varianza en función de una muestra. Además de números, se incluyen en el cálculo texto y valores lógicos como VERDADERO o FALSO.

Sintaxis

VARA(ref1;ref2;...)

Valor1, valor2, ... son de 1 a 30 argumentos de valor correspondientes a una muestra de una población.

Observaciones

- VARA asume que los argumentos son una muestra de población. Si los datos representan toda la población, debe calcular la varianza utilizando VARPA.
- Los argumentos que contengan VERDADERO se evaluarán como 1; los argumentos que contengan texto o FALSO se evaluarán como 0 (cero). Si el cálculo no debe incluir texto o valores lógicos, utilice la función de hoja de cálculo VAR.
- VARA utiliza la fórmula siguiente:

$$\frac{n\sum x^2 - (\sum x)^2}{n(n-1)}$$

	А	
1	Resistencia	
2	1345	
3	1301	
4	1368	
5	1322	
6	1310	
7	1370	
8	1318	
9	1350	
10	1303	
11	1299	
	Fórmula	
	=VARA(A2:A11)	

VARP

Calcula la varianza en función de toda la población.

Sintaxis

VARP(**número1**;número2; ...)

Número1, número2, ... son de 1 a 30 argumentos numéricos correspondientes a una población.

Observaciones

- VARP parte de la hipótesis de que los argumentos representan la población total. Si sus datos representan una muestra de la población, utilice VAR para calcular la varianza.
- La ecuación de VARP es:

$$\frac{n\sum x^2 - \left(\sum x\right)^2}{n^2}$$

• Se pasan por alto los valores lógicos como VERDADERO y FALSO y el texto. Si los valores lógicos y el texto no se deben pasar por alto, utilice la función de hoja de cálculo VARPA.

Ejemplo

Supongamos que se eligen las 10 herramientas elaboradas en la misma máquina durante un proceso de producción y se mide su resistencia a la rotura.

×

242

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A						
1	Resistencia						
2	1345						
3	1301						
4	1368						
5	1322						
6	1310						
7	1370						
8	1318						
9	1350						
10	1303						
11	1299						
	Fórmula	Descripción (Descripción (Resultado)	Descripción (Resultado)	Descripción (Resultado)	Descripción (Resultado)	Descripción (Resultado)
	=VARP (A2:A11)	Varianza de la 10 herramienta	Varianza de la resistencia a la r 10 herramientas (678,84)	Varianza de la resistencia a la rotura de todas la 10 herramientas (678,84)	Varianza de la resistencia a la rotura de todas las herramientas, 10 herramientas (678,84)	Varianza de la resistencia a la rotura de todas las herramientas, suponiendo que 10 herramientas (678,84)	Varianza de la resistencia a la rotura de todas las herramientas, suponiendo que sólo se fabri 10 herramientas (678,84)

VARPA

Calcula la varianza en función de toda la población. Además de números, se incluyen en el cálculo texto y valores lógicos como VERDADERO o FALSO.

Sintaxis

VARPA(ref1;ref2;...)

Ref1, Ref2, ... son de 1 a 30 argumentos de valor correspondientes a una población.

Observaciones

- VARPA asume que los argumentos son toda la población. Si los datos representan una muestra de la población, debe calcular la varianza utilizando VARA.
- Los argumentos que contengan VERDADERO se evaluarán como 1; los argumentos que contengan texto o FALSO se evaluarán como 0 (cero). Si el cálculo no debe incluir texto o valores lógicos, utilice la función de hoja de cálculo VARP.
- La ecuación para VARPA es:

$$\frac{n\sum x^2 - \left(\sum x\right)^2}{n^2}$$

Ejemplo

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

243

Supongamos que se eligen las 10 herramientas elaboradas en la misma máquina durante un proceso de producción y se mide su resistencia a la rotura.

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A				
1	Resistencia				
2	1345	_	_	_	
3	1301	_	_		
4	1368				
5	1322		_	_	
6	1310	-		-	
7	1370				
8	1318				
9	1350				
10	1303				
11	1299	-	•	-	
	Fórmula	Descripción (Resulta	Descripción (Resultado)	Descripción (Resultado)	Descripción (Resultado)
	=VARPA (A2:A11)	Varianza de la resistenci 10 herramientas (678,84	Varianza de la resistencia a la rotura de todas 10 herramientas (678,84)	Varianza de la resistencia a la rotura de todas las herramientas, supoi 10 herramientas (678,84)	Varianza de la resistencia a la rotura de todas las herramientas, suponiendo que sólo se f 10 herramientas (678,84)

VERDADERO

Devuelve el valor lógico VERDADERO.

Sintaxis

VERDADERO()

Observación

El valor VERDADERO puede introducirse directamente en las celdas y fórmulas sin necesidad de usar esta función. La función VERDADERO se proporciona principalmente por su compatibilidad con otros programas para hojas de cálculo.

VF

Devuelve el valor futuro de una inversión basándose en pagos periódicos constantes y en una tasa de interés constante.

Sintaxis

VF(tasa;nper;pago;va;tipo)

Curso de Excel XP 2002

Profesor: WILSON A. PRIETO H.

244

Para obtener una descripción más completa de los argumentos de VF y más información acerca de las funciones para anualidades, vea VA.

Tasa es la tasa de interés por período.

Nper es el número total de períodos de pago en una anualidad.

Pago es el pago que se efectúa cada período y que no puede cambiar durante la vigencia de la anualidad. Generalmente, el argumento pago incluye el capital y el interés pero ningún otro arancel o impuesto. Si se omite el argumento pago, se deberá incluir el argumento va.

Va es el valor actual o el importe total de una serie de pagos futuros. Si el argumento va se omite, se considerará 0 (cero) y se deberá incluir el argumento pago.

Tipo es el número 0 ó 1 e indica cuándo vencen los pagos. Si tipo se omite, se calculará como 0.

Defina tipo como	Si los pagos vencen
0	Al final del período
1	Al inicio del período

Observaciones

- Mantenga uniformidad en el uso de las unidades con las que especifica los argumentos tasa y nper. Si realiza pagos mensuales sobre un préstamo de 4 años con un interés anual del 12 por ciento, use 12%/12 para el argumento tasa y 4*12 para el argumento nper. Si realiza pagos anuales sobre el mismo préstamo, use 12 por ciento para el argumento tasa y 4 para el argumento nper.
- En todos los argumentos el efectivo que paga, por ejemplo depósitos en cuentas de ahorros, se representa con números negativos; el efectivo que recibe, por ejemplo cheques de dividendos, se representa con números positivos.

Ejemplo 1

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

	A	В
1	Datos	Descripción
2	6%	Tasa de interés anual
3	10	Número de pagos
4	-200	Importe del pago
5	-500	Valor actual
6	1	El pago vence al principio del período (vea lo anterior)
	Fórmula	Descripción (Resultado)
	=VF(A2/12;A3;A4;A5;A6)	Valor futuro de una inversión con los términos anteriores (2581,40)

Nota La tasa de interés anual se divide por 12 porque se capitaliza mensualmente.

Ejemplo 2

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2 12% Tasa de interés anual		Tasa de interés anual
3	12	Número de pagos
4 -1000 Importe del pago		Importe del pago
	Fórmula	Descripción (Resultado)
	=VF(A2/12;A3;A4)	Valor futuro de una inversión con los términos anteriores (12.682,50)

Nota La tasa de interés anual se divide por 12 porque se capitaliza mensualmente.

Ejemplo 3

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	11%	Tasa de interés anual
3	35	Número de pagos
4	-2000	Importe del pago
5	1	El pago vence al principio del año (vea lo anterior)
	Fórmula	Descripción (Resultado)
	=VF(A2/12;A3;A4;A5)	Valor futuro de una inversión con los términos anteriores (82.846,25)

Nota La tasa de interés anual se divide por 12 porque se capitaliza mensualmente.

Ejemplo 4

El ejemplo puede resultar más fácil si lo copia en una hoja de cálculo en blanco.

A	В
Datos	Descripción
6%	Tasa de interés anual
12	Número de pagos
-100	Importe del pago
-1000	Valor actual
1 El pago vence al principio del año (vea lo anterior)	
Fórmula	Descripción (Resultado)
=VF(A2/12;A3;A4;A5;A6)	Valor futuro de una inversión con los términos anteriores (2301,40)
	Datos 6% 12 -100 -1000 1 Fórmula

Nota La tasa de interés anual se divide por 12 porque se capitaliza mensualmente.

VF.PLAN

Devuelve el valor futuro de un capital inicial después de aplicar una serie de tasas de interés compuesto. Utilice VF.PLAN para calcular el valor futuro de una inversión con una tasa variable o ajustable.

Si esta función no está disponible y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

¿Cómo?

- 1. En el menú Herramientas, elija Complementos.
- 2. En la lista **Complementos disponibles**, seleccione el cuadro **Herramientas para análisis** y, a continuación, haga clic en **Aceptar**.
- 3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

VF.PLAN(capital;plan_serie_de_tasas)

Capital es el valor actual.

Plan_serie_de_tasas es una matriz con las tasas de interés que se aplican.

Observación

Los valores del argumento plan_serie_de_tasas pueden ser números o celdas en blanco; cualquier otro valor generará el valor de error #iVALOR! para VF.PLAN. Las celdas en blanco se interpretan como ceros (sin interés).

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=VF.PLAN (1;{0,09;0,11;0,1})	Futuro valor de 1 con tasas de interés compuesto de 0,09, 0,11, 0,1 (1,33089)

VNA

Calcula el valor neto presente de una inversión a partir de una tasa de descuento y una serie de pagos futuros (valores negativos) e ingresos (valores positivos).

Sintaxis

VNA(tasa; valor1; valor2; ...)

Tasa es la tasa de descuento a lo largo de un período.

Valor1, valor2, ... son de 1 a 29 argumentos que representan los pagos e ingresos.

- Valor1; valor2; ... deben tener la misma duración y ocurrir al final de cada período.
- VNA usa el orden de valor1; valor2; ... para interpretar el orden de los flujos de caja. Asegúrese de introducir los valores de los pagos y de los ingresos en el orden adecuado.
- Los argumentos que consisten en números, celdas vacías, valores lógicos o representaciones textuales de números se cuentan; los argumentos que consisten en valores de error o texto que no se puede traducir a números se pasan por alto.
- Si un argumento es una matriz o referencia, sólo se considerarán los números en esa matriz o referencia. Se pasan por alto las celdas vacías, valores lógicos, texto o valores de error en la matriz o en la referencia.

Observaciones

• La inversión VNA comienza un período antes de la fecha del flujo de caja de valor1 y termina con el último flujo de caja de la lista. El cálculo VNA se basa en flujos de caja

futuros. Si el primer flujo de caja ocurre al inicio del primer período, el primer valor se deberá agregar al resultado VNA, que no se incluye en los argumentos valores. Para obtener más información, vea los ejemplos a continuación.

• Si n es el número de flujos de caja de la lista de valores, la fórmula de VNA es:

$$VNA = \sum_{j=1}^{n} \frac{valores_{j}}{(1 + tasa)^{j}}$$

- VNA es similar a la función VA (valor actual). La principal diferencia entre VA y VNA es que VA permite que los flujos de caja comiencen al final o al principio del período. A diferencia de los valores variables de flujos de caja en VNA, los flujos de caja en VA deben permanecer constantes durante la inversión. Para obtener más información acerca de anualidades y funciones financieras, vea VA.
- VNA también está relacionado con la función TIR (tasa interna de retorno). TIR es la tasa para la cual VNA es igual a cero: VNA(TIR(...), ...) = 0.

Ejemplo 1

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Datos	Descripción
2	10%	Tasa anual de descuento
3	-10,000	Costo inicial de la inversión un año después de la fecha actual
4	3.000	Rendimiento del primer año
5	4.200	Rendimiento del segundo año
6	6.800	Rendimiento del tercer año
	Fórmula	Descripción (Resultado)
	=VNA(A2;A3;A4;A5;A6)	Valor neto actual de esta inversión (1.188,44)

En el ejemplo anterior se incluye el costo inicial de 10.000 \$ como uno de los valores porque el pago ocurre al final del primer período.

Ejemplo 2

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

Curso de Excel XP 2002 Profesor: WILSON A. PRIETO H.

	A	В	
1	Datos	Descripción	
2	8%	Tasa anual de descuento. Esto puede representar la tasa de inflación o la tasa de interés de una inversión de la competencia.	
,	-40,000	Costo inicial de la inversión	
5 6 7 8	8.000	Rendimiento del primer año	
	9.200	Rendimiento del segundo año	
	10.000	Rendimiento del tercer año	
	12.000	Rendimiento del cuarto año	
	14.500	Rendimiento del quinto año	
	Fórmula	Descripción (Resultado)	
	=VNA(A2;A4:A8)+A3	Valor neto actual de esta inversión (1.922,06)	
	=VNA(A2;A4:A8;- 9000)+A3	Valor neto actual de esta inversión, con una pérdida en el sexto año de 9000 (-3.749,47)	

En el ejemplo anterior no se incluye el costo inicial de 40.000 \$ como uno de los valores porque el pago ocurre al principio del primer período.

VNA.NO.PER

Devuelve el valor neto actual para un flujo de caja que no es necesariamente periódico. Para calcular el valor neto actual de una serie de flujos de caja periódicos, utilice la función VNA.

Si esta función no está disponible y devuelve el error #¿NOMBRE?, instale y cargue el programa de complementos Herramientas para análisis.

¿Cómo?

- 1. En el menú Herramientas, elija Complementos.
- 2. En la lista **Complementos disponibles**, seleccione el cuadro **Herramientas para análisis** y, a continuación, haga clic en **Aceptar**.
- 3. Si es necesario, siga las instrucciones del programa de instalación.

Sintaxis

VNA.NO.PER(tasa; valores; fechas)

Tasa es la tasa de descuento que se aplica a los flujos de caja.

Valores es una serie de flujos de caja que corresponde a un calendario de pagos determinado por el argumento fechas. El primer pago es opcional y corresponde al costo o pago en que se incurre al principio de la inversión. Si el primer valor es un costo o un pago, debe ser un valor negativo. Todos los pagos sucesivos se descuentan basándose en un año de 365 días. La serie de valores debe incluir al menos un valor positivo y un valor negativo.

Profesor: WILSON A. PRIETO H.

250

Fechas es un calendario de fechas de pago que corresponde a los pagos del flujo de caja. La primera fecha de pago indica el principio del calendario de pagos. El resto de las fechas deben ser posteriores a ésta, pero pueden ocurrir en cualquier orden.

Observaciones

- Microsoft Excel almacena las fechas como números de serie secuenciales para que puedan utilizarse en los cálculos. De forma predeterminada, el 1 de enero de 1900 es el número de serie 1 y el 1 de enero de 2008 es el número de serie 39448 porque viene 39.448 días después del 1 de enero de 1900. Microsoft Excel para Macintosh utiliza un sistema de fechas predeterminado diferente.
- Los números del argumento fechas se truncan a enteros.
- Si alguno de los argumentos no es numérico, VNA.NO.PER devuelve el valor de error #iVALOR!
- Si alguno de los números del argumento fechas no es una fecha válida, VNA.NO.PER devuelve el valor de error #iVALOR!
- Si alguno de los números del argumento fechas precede a la fecha de inicio, VNA.NO.PER devuelve el valor de error #iNUM!
- Si los argumentos valores y fechas contienen un número distinto de valores, VNA.NO.PER devuelve el valor de error #iNUM!
- VNA.NO.PER se calcula como sigue:

$$VNA.NO.PER = \sum_{j=1}^{M} \frac{P_{j}}{(1 + tasa)^{\frac{(d_{j} - d_{1})}{365}}}$$

donde:

di = es la iésima o última fecha de pago.

d1 = es la fecha de pago 0.

Pi = es el iésimo o último pago.

Ejemplo

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Valores	Fechas
2	-10.000	1 de enero de 2008
3	2.750	1 de marzo de 2008
4	4.250	30 de octubre de 2008
5	3.250	15.02.09
6	2.750	1 de abril de 2009
	Fórmula	Descripción (Resultado)
	=VNA.NO.PER (0,09;A2:A6;B2:B6)	Valor neto actual de una inversión con el costo y el retorno anteriores. Los flujos de caja se descuentan al 9 por ciento (2086,6476 ó 2086,65).

Y

Devuelve VERDADERO si todos los argumentos son VERDADERO; devuelve FALSO si uno o más argumentos son FALSO.

Sintaxis

Y(valor_lógico1; valor_lógico2; ...)

Valor_lógico1, Valor_lógico2, ... son entre 1 y 30 condiciones que se desea comprobar y que pueden ser VERDADERO o FALSO.

Observaciones

- Los argumentos deben evaluarse como valores lógicos, como VERDADERO o FALSO, o los argumentos deben ser <u>matrices</u> o referencias que contengan valores lógicos.
- Si un argumento matricial o de referencia contiene texto o celdas vacías, dichos valores se pasarán por alto.
- Si el rango especificado no contiene valores lógicos, la función Y devuelve el valor de error #iVALOR!

Ejemplo 1

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	В
1	Fórmula	Descripción (Resultado)
2	=Y(VERDADERO;VERDADERO)	Todos los argumentos son VERDADERO (VERDADERO)
3	=Y(VERDADERO;FALSO)	Un argumento es FALSO (FALSO)
4	=Y(2+2=4;2+3=5)	Todos los argumentos se evalúan como VERDADERO (VERDADERO)

Ejemplo 2

252

El ejemplo puede resultar más fácil de entender si lo copia en una hoja de cálculo en blanco.

	A	
1	Datos	
2	50	
3	104	
	Fórmula	Descripción (Resultado)
	=Y(1 <a2;a2<100)< th=""><th>Porque 50 es un número entre 1 y 100 (VERDADERO)</th></a2;a2<100)<>	Porque 50 es un número entre 1 y 100 (VERDADERO)
	=SI(Y(1 <a3; "el<br="" a3;="" a3<100);="">valor queda fuera del rango.")</a3;>	Muestra el segundo número de la expresión anterior si se trata de un número entre 1 y 100; en caso contrario, muestra un mensaje (El valor queda fuera del rango.)
	=SI(Y(1 <a2; "el<br="" a2;="" a2<100);="">valor queda fuera del rango.")</a2;>	Muestra el primer número de la expresión anterior, si está comprendido entre 1 y 100; en caso contrario, muestra un mensaje (50)