

Computersysteme

Building Blocks

Markus Bader

06.03.2025

Introduction

- Introduction
- Arithmetic Circuits
- Number Systems
- Sequential Building Blocks
- Memory Arrays
- Logic Arrays

Digital Design and Computer Architecture, RISC-V Edition: RISC-V Edition

Introduction

- Digital building blocks:
 - Gates, multiplexers, decoders, registers, arithmetic circuits, counters, memory arrays, logic arrays
- Building blocks demonstrate hierarchy, modularity, and regularity:
- Hierarchy of simpler components
 - Well-defined interfaces and functions
 - Regular structure easily extends to different sizes
- We'll use these building blocks in Chapter 7 to build a microprocessor

Adder

1-Bit Adders

- Half Adder (HF)
 - t_{HF} ... time/delay to compute outputs
- Full Adder (FA)
 - t_{FA} ... time/delay to compute outputs

Half Adder (HA)

Α	В	C _{out}	S
0	0		
0	1		
1	0		
1	1		

Full Adder (FA)

C_{in}	Α	В	C_{out}	S
0	0	0		
0	0	1		
0	1	0	-	
0	1	1	-	-
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$$S = C_{out} =$$

Multibit Adders: CPAs

- Types of carry propagate adders (CPAs):
 - Ripple-carry (slow)
 - Carry-lookahead (fast)
 - **Prefix** (faster)
- Carry-lookahead and prefix adders faster for large adders but require more hardware

Ripple Carry Addition

DDCA Ch5 - Part 3: Ripple Carry Adders https://youtu.be/mSwJvYz8nOQ?si=JSPAAs5-yZapKihf

Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow

Ripple-Carry Adder Delay

- $t_{ripple} = Nt_{FA}$
 - t_{FA} is the delay of a 1 bit full adder

Carry Lookahead Addition

DDCA Ch5: Part 4 - Carry Lookahead Adders https://youtu.be/aD-qA-jEKV0?si=gLit6-VCBnjTKSgG

Carry-Lookahead Adder

- Compute C_{out} for k-bit blocks using generate and propagate signals
- Some definitions:
 - Column i produces a carry out by either generating a carry out or propagating a carry in to the carry out
 - Calculate generate (G_i) and propagate (P_i) signals for each column:
 - Generate: Column i will generate a carry out if A_i and B_i are both 1.

$$G_i = A_i B_i$$

• Propagate: Column i will propagate a carry in to the carry out if A_i or B_i is 1.

$$P_i = A_i + B_i$$

• Carry out: The carry out of column *i* (*Ci*) is:

$$C_i = A_i B_i + (A_i + B_i) C_{i-1} = G_i + P_i C_{i-1}$$

Full Adder (FA)

C_{in}	Α	В	C _{out}	S	G	Р	
0	0	0	0	0	0	0	
0	0	1	0	1	0	1	
0	1	0	0	1	0	1	
0	1	1	1	0	1	1	
1	0	0	0	1	0	0	
1	0	1	1	0	0	1	
1	1	0	1	0	0	1	
1	1	1	1	1	1	1	

Propagate and Generate Signals

• Examples: Column propagate and generate signals:

```
• Column propagate: P_i = A_i + B_i
```

• Column generate:
$$G_i = A_i B_i$$

$$C_i = G_i + P_i C_{i-1}$$

• Examples: Column propagate and generate signals:

• Column propagate: $P_i = A_i + B_i$

• Column generate: $G_i = A_i B_i$

$$C_i = G_i + P_i C_{i-1}$$

- Now use column Propagate and Generate signals to compute Block Propagate and Block Generate signals for k-bit blocks, i.e.:
 - Compute if a k-bit group will propagate a carry in (of the block) to the carry out (of the block)
 - Compute if a k-bit group will generate a carry out (of the block)
- Two Examples with 4-bit blocks

- Example: 4-bit blocks
 - Block propagate signal: $P_{3:0}$ (single-bit signal)
 - A carry-in would propagate through all 4 bits of the block:

$$P_{3:0} = P_3 P_2 P_1 P_0$$

- Block generate signal: $G_{3:0}$ (single-bit signal)
 - A carry is generated:
 - in column 3, or
 - in column 2 and propagated through column 3, or
 - in column 1 and propagated through columns 2 and 3, or
 - in column 0 and propagated through columns 1-3

$$G_{3:0} = G_3 + G_2P_3 + G_1P_2P_3 + G_0P_1P_2P_3$$

 $G_{3:0} = G_3 + P_3[G_2 + P_2(G_1 + P_1G_0)]$

- Example: 4-bit blocks
 - Block generate signal: $G_{3:0}$ (single-bit signal)

A carry is: generated in column 3, or generated in column 2 and propagated through column 3, or ...

$$G_{3:0} = G_3 + G_2P_3 + G_1P_2P_3 + G_0P_1P_2P_3$$

Three Examples with 4-bit blocks

- Example: 4-bit blocks
 - Block propagate signal: $P_{3:0}$ (single-bit signal)
 - A carry-in would propagate through all 4 bits of the block:

$$P_{3:0} = P_3 P_2 P_1 P_0$$

- Block generate signal: $G_{3:0}$ (single-bit signal)
 - A carry is generated:
 - in column 3, or
 - in column 2 and propagated through column 3, or
 - in column 1 and propagated through columns 2 and 3, or
 - in column 0 and propagated through columns 1-3

$$G_{3:0} = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3$$

$$G_{3:0} = G_3 + P_3 [G_2 + P_2 (G_1 + P_1 G_0)]$$

$$C_3 = G_{3:0} + P_{3:0}C_{-1}$$

32-bit Carry-Lookahead Addition with 4-bit Blocks

32-bit Carry-Lookahead Addition with 4-bit Blocks

- Step 1: Compute G_i and P_i for all columns
 - $G_i = A_i B_i$
 - $\bullet \quad P_i = A_i + B_i$
- Step 2: Compute *G* and *P* for *k*-bit blocks
 - $P_{3:0} = P_3 P_2 P_1 P_0$
 - $G_{3:0} = G_3 + P_3[G_2 + P_2(G_1 + P_1G_0)]$
- Step 3: C_{in} propagates through each k-bit propagate/generate logic (meanwhile computing sums)

• Step 4: Compute $\sup_{B_{31:20}} \sup_{A_{31:20}} \sup_{B_{27:24}} \inf_{A_{27:24}} \sup_{B_{7:4}} \sup_{A_{7:4}} \sup_{B_{30}} \inf_{A_{3:0}} \lim_{B_{30}} \frac{1}{A_{3:0}}$

 $P_{3:0}$

19

06.03.2025 Computer Systems

32-bit Carry-Lookahead Addition (CLA) with 4-bit Blocks

For *N*-bit CLA with *k*-bit blocks:

• t_{CLA} ... time/delay to compute outputs

$$t_{CLA} = t_{PG} + t_{PG_{Block}} + \left(\frac{N}{k} - 1\right) t_{AND \& OR} + k t_{FA}$$

- t_{PG} ... delay to generate all P_i , G_i
- $t_{PG_{Block}}$... delay to generate all $P_{i:j}$, $G_{i:j}$
- $t_{AND\ \&\ OR}$... delay from C_{in} to C_{out} of final AND/OR gate in k-bit CLA block

 An N-bit carry-lookahead adder is generally much faster than a ripple-carry adder for N > 16

Prefix Addition

DDCA Ch5 - Part 5: Prefix Adders https://youtu.be/Ue5CjG31E-c?si=hdY1Fi5auqO0FPCD

• Computes carry in (C_{i-1}) for each column, then computes sum:

$$S_i = (A_i \oplus B_i) \oplus C_{i-1}$$

- It computes C_{i-1} by:
 - Computing G and P for 1-, 2-, 4-, 8-bit blocks, etc. until all G_i (carry in) known
 - $G_i = C_i$
- log₂N stages

- Carry out either generated in a column or propagated from a previous column.
- Column -1 holds C_{in} , so
 - $G_{-1} = C_{in}, P_{-1} = X (not used)$
- Carry in to column i = carry out of column i 1:
 - $C_{i-1} = G_{i-1:-1}$
 - $G_{i-1:-1}$... generate signal spanning columns i-1 to -1
- Sum equation:
 - $S_i = (A_i \oplus B_i) \oplus C_{i-1}$
- **Goal**: Quickly compute $G_{0:-1}$, $G_{1:-1}$, $G_{2:-1}$, $G_{3:-1}$, $G_{4:-1}$, $G_{5:-1}$, ... (called prefixes) (= C_0 , C_1 , C_2 , C_3 , C_4 , C_5 , ...)

- Generate and propagate signals for a block spanning bits i: j
 - $G_{i:j} = G_{i:k} + P_{i:k}G_{k-1:j}$
 - $\bullet \quad P_{i:j} = P_{i:k} P_{k-1:j}$
- In words:
 - Generate: block i: j will generate a carry if:
 - upper part (i:k) generates a carry $(G_{i:k})$ or
 - upper part (i:k) propagates a carry $(P_{i:k})$ generated in lower part (k-1:j) $(G_{k-1:j})$
 - Propagate: block i:j will propagate a carry if both the upper and lower parts propagate the carry $(P_{i:k} \ AND \ P_{k-1:j})$

24

Prefix Adder Example

Step 1. Calculate P's and G's for **1-bit block**

3210-1 Column # 1010 A_{3:0} + 0111 B_{3:0}

Step 2. Calculate P's and G's for **2-bit blocks**

3210-1	Column #
1010	A _{3:0}
+ 0 1 1 1	B _{3:0}

$$P_{L:R} = P_L \bullet P_R$$

$$G_{L:R} = G_L + P_L G_R$$

0:-1 Block:

$$P_{0:-1} = X$$

$$G_{0:-1} = G_{0:0} + P_{0:0}G_{-1:-1}$$

$$= 0 + 1 \cdot 1$$

$$= 1$$

2:1 Block:

$$P_{2:1} = P_{2:2}P_{1:1} = 1 \cdot 1$$
 $G_{2:1} = G_{2:2} + P_{2:2}G_{1:1}$
 $= 0 + 1 \cdot 1$
 $= 1$

Step 3. Calculate P's and G's for **4-bit blocks**

$$P_{L:R} = P_L \bullet P_R$$

$$G_{L:R} = G_L + P_L G_R$$

2:-1 Block:

$$P_{2:-1} = X$$
 $G_{2:-1} = G_{2:1} + P_{2:1}G_{0:-1}$
 $= 1 + 1 \cdot 1$
 $= 1$

We calculate 3-bit spans too:

1:-1 Block:

$$P_{1:-1} = X$$
 $G_{1:-1} = G_{1:1} + P_{1:1}G_{0:-1}$
 $= 1 + 1 \cdot 1$
 $= 1$

Step 4. Continue to calculate P's and G's for larger blocks (8-bit, 16-bit, etc.)

Step 5. Use prefixes to calculate sums

$$C_{-1} = G_{-1:-1} = 1$$
 $C_0 = G_{0:-1} = 1$
 $C_1 = G_{1:-1} = 1$
 $C_2 = G_{2:-1} = 1$

$$S_i = A_i \oplus A_i \oplus C_{i-1}$$

Computer Systems 26

Prefix Adder (PA) Delay

For *N*-bit PA with *k*-bit blocks:

• t_{PA} ... time/delay to compute outputs

$$t_{PA} = t_{PG} + \log_2 N(t_{PG_{Prefix}}) + t_{xor}$$

- t_{PG} ... delay to produce Pi, Gi (AND or OR gate)
- $t_{PG_{Prefix}}$... delay of black prefix cell (AND-OR gate)

- Question: why not
 - $t_{PA} = t_{PG} + \log_2 N(t_{PG_{Prefix}}) + 2t_{xor}$

Adder Delay Comparisons

- Compare the delay of: 32-bit ripple-carry, CLA, and prefix adders
- CLA has 4-bit blocks
- 2-input gate delay = 100 ps; full adder delay = 300 ps
- $t_{ripple} = Nt_{FA}$

$$= 32(300 ps) = 9.6 ns$$

•
$$t_{CLA} = t_{PG} + t_{PG_{Block}} + \left(\frac{N}{k} - 1\right) t_{AND\&OR} + kt_{FA}$$

=
$$[100 + 600 + (7)200 + 4(300)] ps = 3.3 ns$$

•
$$t_{PA} = t_{PG} + \log_2 N \left(t_{PG_{Prefix}} \right) + t_{XOR}$$

=
$$[100 + \log_2 32(200) + 100] ps = 1.2 ns$$

Subtracters & Comparators

DDCA Ch5 - Part 6: Subtractors & Comparators https://youtu.be/ZbZ33tj-ncg?si=K-82X-BYVB-5omYP

30

$$A - B = A + \bar{B} + 1$$

Symbol

A B IN N N Y Y

Implementation

$$A == B$$

Symbol

Implementation

Comparator: Signed Less Than

A < B if A-B is negative Beware of overflow

ALU: Arithmetic Logic Unit

DDCA Ch5 - Part 7: ALUs https://youtu.be/WXMf0y4NoBw?si=hLaFhTAifuG7liVy

ALU: Arithmetic Logic Unit

ALU should perform:

- Addition
- Subtraction
- AND
- OR

ALUControl _{1:0}	Function
00	Add
01	Subtract
10	AND
11	OR

ALU: Arithmetic Logic Unit - OR

ALUControl _{1:0}	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A OR B $\text{ALUControl}_{1:0} = 11 \\ \text{Mux selects output of OR gate as Result, so:} \\ \text{Result} = \text{A OR B}$

ALU: Arithmetic Logic Unit - Add

ALUControl _{1:0}	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A + B $ALUControl_{1:0} = 00$ $ALUControl_{0} = 0, so:$ $C_{in} to adder = 0$ $2^{nd} input to adder is B$ Mux selects Sum as Result, so Result = A + B

ALU: Arithmetic Logic Unit - Subtract

ALUControl _{1:0}	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A - B $ALUControl_{1:0} = 01$ $ALUControl_{0} = 1, so:$ $C_{in} \text{ to adder } = 1$ $2^{nd} \text{ input to adder is inverse of B}$ Mux selects Sum as Result, so Result = A + not B + 1

Flag	Description
N	Result is Negative
Z	Result is Zero
С	Adder produces Carry out
V	Adder oVerflowed

N = 1 if:

Result is negative

So, N is connected to most significant bit of Result.

Z = 1 if:

• all of the bits of Result are 0

C = 1 if:

- C_{out} of Adder is 1
 AND
- ALU is adding or subtracting (ALUControl is 00 or 01)

V = 1 if:

 ALU is performing addition or subtraction (ALUControl1 = 0)
 AND

- A and Sum have opposite signs
 AND
- A and B have same signs for addition (ALUControl0 = 0)
 OR
- A and B have different signs for subtraction (ALUControl0 = 1)

Comparison based on Flags

Compare by subtracting and checking flags

Different for signed and unsigned

Comparison	Signed	Unsigned
==	Z	Z
!=	$ar{Z}$	$ar{Z}$
<	$N \oplus V$	\overline{C}
<=	$Z \vee (N \oplus V)$	$Z \vee \overline{C}$
>	$\bar{Z} \wedge (\overline{N \oplus V})$	$\bar{Z} \wedge C$
>=	$(\overline{N \oplus V})$	C

Other ALU Operations

- **Set Less Than** (also called Set if Less Than)
 - Sets Isb of result if A < B
 - Result = 0000...001 if A < B
 - Result = 0000...000 otherwise
 - Comes in signed and unsigned flavors
- XOR
 - Result = A XOR B

Fixing Overflow Error in SLT Logic

Counters & Shift Registers

DDCA Ch5 - Part 12: Counters & Shift Registers https://www.youtube.com/watch?v=okczOaycfqk

51

Counters

- Increments on each clock edge
- Used to cycle through numbers.
 - For example,
 000, 001, 010, 011, 100, 101, 110, 111, 000,
 001...
- Example uses:
 - Digital clock displays
 - Program counter: keeps track of current instruction executing

Symbol

Implementation

Divide-by-2N Counter

• Most significant bit of an N-bit counter toggles every 2^N cycles.

•
$$f_{out} = \frac{f_{clk}}{2^N}$$

- Useful for slowing a clock.
 - E.g.: blink an LED
- Example: 50 MHz clock, 24-bit counter
 - 50 MHz = 50000000Hz
 - $2^{24} = 16777216$
 - $\bullet \quad \frac{50000000Hz}{16777216} = 2.98 \, Hz$

Shift Registers

- Shift a new bit in on each clock edge
- Shift a bit out on each clock edge
- Serial-to-parallel converter: converts serial input (S_{in}) to parallel output $(Q_{0:N-1})$

Symbol

Implementation

Shift Register with Parallel Load

- When Load = 1, acts as a normal *N*-bit register
- When Load = 0, acts as a shift register
- Now can act as a serial-to-parallel converter (S_{in} to $Q_{0:N-1}$) or a parallel-to-serial converter ($D_{0:N-1}$ to S_{out})

Memory

DDCA Ch5 - Part 13: Memory Introduction https://www.youtube.com/watch?v=x2NfNfMbIJE

56

Memory Arrays

- Efficiently store large amounts of data
- M-bit data value read/written at each unique N-bit address
- 3 common types:
 - Dynamic random access memory (DRAM)
 - Static random access memory (SRAM)
 - Read only memory (ROM)

Memory Arrays

- 2-dimensional array of bit cells
- Each bit cell stores one bit
- N address bits and M data bits:
 - 2^N rows and M columns
 - Depth: number of rows (number of words)
 - Width: number of columns (size of word)
 - Array size: depth \times width = $2^N \times M$
- Example

$$N=2$$
, $M=3$, Array Size?

$$2^2 \times 3 = 12$$
 bits

Memory Array Example

- $2^2 \times 3$ -bit array
- Number of words: 4
- Word size: 3-bits
- For example, the 3-bit word stored at address 10 is 100

Memory Array Bit Cells

• One Bit Cell

- Reading a One Bit Cell
 - Open Collector ?
 - Tri-State?

Memory Array

• Wordline:

- like an enable
- single row in memory array read/written
- corresponds to unique address
- only one wordline HIGH at once

Connecting Outputs / Tri-State

- Two logical States
 - HIGH, LOW
- Three physical States
 - HIGH (H), LOW (L), OPEN (Z)
- OPEN-State is normally reachable via ENABLE-Signal

Α	В	EN	Y
L	L	Н	L
L	Н	Н	L
Н	L	Н	L
Н	Н	Н	Н
X	X	L	Z

Connecting Outputs / Open-Collector

Wired Logic

In this example, 5V is considered HIGH (true), and 0V is LOW (false). This gate can be easily extended with more inputs.

Active-high wired AND connection

Inputs		Output
Α	В	A AND B
LOW	LOW	LOW
LOW	HIGH	LOW
HIGH	LOW	LOW
HIGH	HIGH	HIGH

Active-high wired OR connection

Inputs		Output
А	В	A OR B
LOW	LOW	LOW
LOW	HIGH	HIGH
HIGH	LOW	HIGH
HIGH	HIGH	HIGH

Types of Memory

• Random access memory (RAM): volatile

• Read only memory (ROM): nonvolatile

Kanaanitischer Sprache:

"Möge dieser Stoßzahn die Läuse in Haar und Bart ausrotten", steht auf dem Fundstück. Es wird auf etwa 1700 Jahre vor Christus datiert.

https://www.tagesschau.de/wissen/forschung/israel-laeusekamm-elfenbeininschrift-ieruslaem-101.html

A500 512Kb RAM-Speicherkarte mit Echtzeit-Uhr für Commodore Amiga 500

RAM (Random Access Memory)

DDCA Ch5 - Part 14: RAM https://www.youtube.com/watch?v=CqZW44iWwYk

Types of RAM

- **DRAM** (Dynamic random access memory)
- **SRAM** (Static random access memory)
- Differ in how they store data:
 - DRAM uses a capacitor
 - SRAM uses cross-coupled inverters

Robert Dennard, 1932 -

- Invented DRAM in 1966 at IBM
- Others were skeptical that the idea would work
- By the mid-1970's DRAM in virtually all computers

- Data bits stored on capacitor
- Dynamic because the value needs to be **refreshed** (rewritten) **periodically** and after read:
 - Charge leakage from the capacitor degrades the value
 - Reading destroys the stored value

Memory Arrays Review

• DRAM

• SRAM

ROMs (Read Only Memories)

DDCA Ch5 - Part 15: ROMs (Read Only Memories) https://www.youtube.com/watch?v=KBLery-6LKU

73

Fujio Masuoka, 1944 -

- Developed memories and high speed circuits at Toshiba, 1971-1994
- Invented Flash memory as an unauthorized project pursued during nights and weekends in the late 1970's
- The process of erasing the memory reminded him of the flash of a camera
- Toshiba slow to commercialize the idea;
 Intel was first to market in 1988
- Flash has grown into a \$25 billion per year market

•
$$Data_2 = A_1 \oplus A_0$$

•
$$Data_1 = \overline{A_1} + A_0$$

•
$$Data_0 = \overline{A_1 + A_0}$$

Example: Logic with ROMs

• Implement the following logic functions using a $2^2 \times 3$ -bit ROM:

•
$$X = AB$$

- $\bullet \ Y = A + B$
- $Z = A \bar{B}$

Logic with Any Memory Array

•
$$Data_2 = A_1 \oplus A_0$$

•
$$Data_2 = A_1 \oplus A_0$$

• $Data_1 = \overline{A_1} + A_0$
• $Data_0 = \overline{A_1 + A_0}$

•
$$Data_0 = \overline{A_1 + A_0}$$

Logic with Memory Arrays

•
$$X = AB$$

$$\bullet \ Y = A + B$$

•
$$Z = A \bar{B}$$

Multi-ported Memories

- Port: address/data pair
- 3-ported memory
 - 2 read ports (A1/RD1, A2/RD2)
 - 1 write port (A3/WD3, WE3 enables writing)
- Register file: small multi-ported memory

Logic Arrays: PLAs & FPGAs

DDCA Ch5 - Part 17: Logic Arrays https://www.youtube.com/watch?v=fP-oQ7vz_4c

Logic Arrays: PLAs & FPGAs

- **PLAs** (Programmable logic arrays)
 - AND array followed by OR array
 - Combinational logic only
 - Fixed internal connections

- **FPGAs** (Field programmable gate arrays)
 - Array of Logic Elements (LEs)
 - Combinational and sequential logic
 - Programmable internal connections

PLAs: Programmable Logic Arrays

- AND array followed by OR array
 - → SOP (sum of products)

•
$$X = \bar{A}\bar{B}C + AB\bar{C}$$

• $Y = A\overline{B}$

PLAs: Programmable Logic Arrays

- AND array followed by OR array
 - → SOP (sum of products)

•
$$X = \bar{A}\bar{B}C + AB\bar{C}$$

• $Y = A\overline{B}$

FPGAs: Field Programmable Gate Arrays

- FPGAs are composed of:
 - **LEs** (Logic elements): perform logic
 - **IOEs** (Input/output elements): interface with outside world
 - Programmable interconnection: connect LEs and IOEs
 - Some FPGAs include other building blocks such as multipliers and RAMs

LE: Logic Element

LEs are composed of:

- LUTs (lookup tables): perform combinational logic
- Flip-flops: perform sequential logic
- Multiplexers: connect LUTs and flip-flops

Altera Cyclone IV LE

The Altera Cyclone IV LE has:

- 1 four-input **LUT**
- 1 registered output
- 1 combinational output

LE Configuration Example

• Show how to configure a Cyclone IV LE to perform the following functions:

•
$$X = \bar{A}\bar{B}C + AB\bar{C}$$

•
$$Y = A\overline{B}$$

(A)	(B)	(C)	1	(X)
data 1	data 2	data 3	data 4	LUT output
0	0	0	Χ	0
0	0	1	Χ	1
0	1	0	Χ	0
0	1	1	Χ	0
1	0	0	Χ	0
1	0	1	Χ	0
1	1	0	Χ	1
1	1	1	Χ	0

(A)	(B)		ı	(Y)
data 1	data 2	data 3	data 4	LUT output
0	0	Χ	Χ	0
0	1	X	Χ	0
1	0	X	Χ	1
1	1	Χ	X	0

Logic Elements Example 1

How many Cyclone IV LEs are required to build

$$Y = A1 \oplus A2 \oplus A3 \oplus A4 \oplus A5 \oplus A6$$

Solution:

- 2 LEs
- First computes $Y1 = A1 \oplus A2 \oplus A3 \oplus A4$ (function of 4 variables)
- Second computes $Y = Y1 \oplus A5 \oplus A6$ (function of 3 variables)

Logic Elements Example 2

How many Cyclone IV LEs are required to build

32-bit 2:1 multiplexer

Solution:

- 32 LEs
- A 1-bit mux is a function of 3 variables and fits in one LE
- A 32-bit mux requires 32 copies

Logic Elements Example 3

How many Cyclone IV LEs are required to build

Arbitrary FSM with 2 bits of state, 2 inputs, 3 outputs

Solution:

- 5 LEs
- One LE can hold a bit of state and the next state logic, which is a function of 4 variables (2 inputs, 2 bits of state)
- One LE can compute a bit of output, which is a function of 2 variables (2 bits of state)
- Thus 2 LEs are needed for state and 3 LEs for outputs

FPGA Design Flow

Using a CAD tool (such as Altera's Quartus II)

- Enter the design using schematic entry or an HDL
- **Simulate** the design
- Synthesize design and map it onto FPGA
- Download the configuration onto the FPGA
- **Test** the design

About these Notes

Digital Design and Computer Architecture Lecture Notes

© 2021 Sarah Harris and David Harris

These notes may be used and modified for educational and/or non-commercial purposes so long as the source is attributed.