CS - 425 Database Organization Homework 1 Fall 2023

Due Date: 10th September 2023 By 11:59 pm

Instructions

- 1. Try to answer all the questions using what you have learnt in class.
- 2. When writing a query, write the query in a way that it would work over all possible database instances and not just for the given example Instance!

Consider the following Employer database schema and example instance:

Customers

CustomerID	name	address	city
E1001	Tom, Smith	123 Main St.	Naperville
E1002	Ann, Chin	456 Market Ave.	NY
E1003	Perry, Lee	31st Street	Chicago

Orders

OrderID	CustomerID	OrderDate	TotalAmount
1	E1001	January 2020	4,800
2	E1002	June 2022	25,000
3	E1001	August 2022	50

OrderDetails

OrderID	ProductID	Quantity	
1	1	80	
1	2	15	
1	3	5	
2	3	250	
3	1	1	
4	2	2	
4	3	1	

Products

ProductID	Name	Category	Price
1	Product A	Electronics	50
2	Product B	Clothing	20
3	Product C	Jewelry	100
4	Product D	Books	10
5	Product E	Sports	30
6	Product F	Electronics	40

Part 1.1 Relational Algebra (Total: 54 Points)

Give an expression in the relational algebra to express each of the following queries:

Question 1.1.1 (6 Points)

a. For each relation, what is/are the appropriate primary key(s)?

```
Customers = CustomerID

Orders = OrderID

OrderDetails = no primary key

Products = ProductID
```

b. Given your choice of primary keys, identify appropriate foreign keys.

```
Customers = no foreign key
Orders = CustomerID
OrderDetails = OrderID, ProductID
Products = no foreign key
```

Question 1.1.2 (3 Points)

List the names of all customers.

 $\Pi_{\text{name}}(Customers)$

Question 1.1.3 (3 Points)

List the categories of all products.

 $\Pi_{\text{Category}}(\text{Products})$

Question 1.1.4 (3 Points)

List the names and the prices of all the products.

$\Pi_{\text{Name. Price}}(\text{Products})$

Question 1.1.5 (3 Points)

Find the name of the products with a price less than or equal to \$35.

```
\sigma (Price \leq 35)(Products)
```

Question 1.1.6 (3 Points)

Find all the products with a price between \$10 and \$100.

```
\sigma (Price >= 10 AND Price <= 100)(Products)
```

Question 1.1.7 (3 Points)

List the names of customers who made an order in March 2022.

 Π (name) ((Customers \bowtie (σ OrderDate = 'March 2022' (Orders))))

Question 1.1.8 (3 Points)

List names of customers who have made more than 2 orders.

 Π (name) (Customers \bowtie ((σ count \geq 2) γ (CustomerID; count \leftarrow COUNT(*) Orders)))

Question 1.1.9 (3 Points)

Find all information about customers who made an order with a total amount greater than \$300.

 Π (CustomerID, name, address, city) (Customers \bowtie (σ (TotalAmount > 300) Orders))

Question 1.1.10 (3 Points)

List the names of all customers who spent more than every customer on product 'Product A':

```
\Pi (name) (Customers \bowtie (\sigma(ProductID = 1) (OrderDetails \bowtie Orders)) \bowtie \gamma(CustomerID; total_amount \leftarrow SUM(TotalAmount)) (\sigma(ProductID = 1) (OrderDetails \bowtie Orders)))
```

Question 1.1.11 (3 Points)

Find the categories names of all products with price greater than \$100.

 Π (Category) (σ (Price > 100) Products)

Question 1.1.12 (3 Points)

Find all products located in every category of Electronics.

 Π (ProductID, Name) (Products $\bowtie \sigma$ (Category = 'Electronics') Products)

Question 1.1.13 (3 Points)

Find the product with the highest total sales amount.

 Π (Name) (Products \bowtie (σ (ProductID = MaxProductID) (γ ProductID; MaxProductID \leftarrow MAX(Quantity) (OrderDetails \bowtie Products))))

Question 1.1.14 (3 Points)

For each product, list the highest, lowest, and average order total amount.

 Π (ProductID, Name, MaxTotalAmount, MinTotalAmount, AvgTotalAmount) ((Products \bowtie (OrderDetails \bowtie Orders)) \bowtie γ ProductID; MaxTotalAmount \leftarrow MAX(TotalAmount), MinTotalAmount \leftarrow MIN(TotalAmount), AvgTotalAmount \leftarrow AVG(TotalAmount) (π ProductID, Name, TotalAmount (Products \bowtie (OrderDetails \bowtie Orders))))

Question 1.1.15 (3 Points)

Modify the database so that the customer with the name Smith now lives in Atlanta

```
UPDATE Customers
SET city = 'Atlanta'
WHERE name = 'Tom, Smith';
```

Question 1.1.16 (3 Points)

Give all orders in this database a 10 percent increase in total amount, unless the total amount would be greater than \$100,000. In such cases, give only a 5 percent increase.

```
UPDATE Orders

SET TotalAmount = CASE

WHEN TotalAmount * 1.10 > 100000 THEN TotalAmount * 1.05

ELSE TotalAmount * 1.10

END;
```

Question 1.1.17 (3 Points)

In February 2022, a new customer named "Manny Sammy" made an order. He lives in "Washington DC". Add the new customer and their order to the database.

```
INSERT INTO Customers (CustomerID, name, address, city) VALUES ('e1004', 'Manny Sammy', 'street address', 'Washington DC');
```

```
INSERT INTO Orders (OrderID, CustomerID, OrderDate, TotalAmount) VALUES (4, 'e1004', 'February 2022', 0);
```