

User Cancellation Modelling:

on Clustering of Customer Behaviours

Victor Wang

Supervisors: Andrew Mellor, Junaid Mubeen

Agenda

- Motivation and Goal
- Background Business Settings at Whizz
- Model
 - Customer Journey
 - ☐ Methodology
- Result
 - Clusters
 - ☐ Feature Analysis
- Conclusion

Motivation and Goal

Motivation

Retained customers create *higher revenues*

Making a sell to a new customer *costs up to 5 times more*.

Customer retention strategies targeting on high risk customers

Motivation and Goal

Motivation

Retained customers create *higher revenues*

Making a sell to a new customer *costs up to 5 times more*.

Customer retention strategies targeting on *high risk customers*

Goal – *Churn* (Cancellation) modelling

- ✓ Identify customers most prone to cancel subscription
- ✓ Assess likelihood

- ✓ Analyse critical reason triggering cancellation
- ✓ Make bespoke retention policy

Business Settings at Whizz

Cancellation Mechanism

Contractual

 Pupils subscribe to access Whizz products on a 1-month or 1-year contract

Voluntary

 Subscribers make the choice to leave the service at the end of the subscription; otherwise auto-rolled

Business Settings at Whizz

Cancellation Mechanism

Contractual

 Pupils subscribe to access Whizz products on a 1-month or 1-year contract

Voluntary

 Subscribers make the choice to leave the service at the end of the subscription; otherwise auto-rolled

Data Records

Time period: 2014-Jan-01 – 2018-Apr-20

Business Settings at Whizz

Cancellation Mechanism

E.

Contractual

 Pupils subscribe to access Whizz products on a 1-month or 1-year contract

Voluntary

 Subscribers make the choice to leave the service at the end of the subscription; otherwise auto-rolled

Data Records

Customer Journey

Pupils' activities are split into monthly time periods with each **customer-month** represented by *features*.

Customer Journey

Pupils' activities are split into monthly time periods with each **customer-month** represented by *features*.

Customer Journey

Pupils' activities are split into monthly time periods with each **customer-month** represented by *features*.

We assume the cancellation to be **ONLY** dependent on the current month.

- ✓ The assumption holds since we observe statistically constant churn rate over customer month.
- ✓ The assumption enables us to treat activities in different customer months indifferently.

Key Assumptions

✓ Churners and non-churners exhibit different behaviours generated by some **states**

States

Key Assumptions

✓ Churners and non-churners exhibit different behaviours generated by some **states**

Key Assumptions

- ✓ Churners and non-churners exhibit different behaviours generated by some states.
- ✓ Generative process: State → Cluster

Key Assumptions

- ✓ Churners and non-churners exhibit different behaviours generated by some states.
- ✓ Generative process: State → Cluster → Behaviour observations

Key Assumptions

- ✓ Churners and non-churners exhibit different behaviours generated by some states.
- ✓ Generative process: State → Cluster → Behaviour observations

Mixture Model

$$f(\mathbf{X}) = \sum_{k=1}^{K} \pi_k f_k(\mathbf{X} \mid \boldsymbol{\theta_k})$$

Markov State Transition probability

$$A = (a_{ij})$$

$$a_{ij} = P(s_{t+1} = S_i | s_t = S_j)$$

Key Assumptions

- ✓ Churners and non-churners exhibit different behaviours generated by some states.
- ✓ Generative process: State → Cluster → Behaviour observations
- ✓ Customers' behaviours are independent from others'

Mixture Model

$$f(X) = \sum_{k=1}^{K} \pi_k f_k(X \mid \boldsymbol{\theta_k})$$

Markov State Transition probability

$$A = (a_{ij})$$

$$a_{ij} = P(s_{t+1} = S_i | s_t = S_j)$$

Key Assumptions

- ✓ Churners and non-churners exhibit different behaviours generated by some states.
- ✓ Generative process: State → Cluster → Behaviour observations
- ✓ Customers' behaviours are independent from others'

Mixture Model

$$f(\mathbf{X}) = \sum_{k=1}^{K} \pi_k f_k(\mathbf{X} \mid \boldsymbol{\theta_k})$$

Markov State Transition probability

$$A = (a_{ij})$$

$$a_{ij} = P(s_{t+1} = S_i | s_t = S_j)$$

Key Assumptions

- ✓ Churners and non-churners exhibit different behaviours generated by some states.
- ✓ Generative process: State → Cluster → Behaviour observations
- ✓ Customers' behaviours are independent from others'

Pipeline

Key Assumptions

- ✓ Churners and non-churners exhibit different behaviours generated by some states.
- ✓ Generative process: State → Cluster → Behaviour observations
- ✓ Customers' behaviours are independent from others'

Pipeline

Feature Extraction

Feature Distributional Modelling

Clustering

Analytics and Prediction

Extract features to represent customers within a specific customer month.

Assess distributions, correlations, etc.

Fit mixture model;
Define states

Interpret clusters

Key Assumptions

- ✓ Churners and non-churners exhibit different behaviours generated by some states.
- ✓ Generative process: State → Cluster → Behaviour observations
- ✓ Customers' behaviours are independent from others'

Pipeline

Feature Extraction

Feature Distributional Modelling

Clustering

Analytics and Prediction

Extract features to represent customers within a specific customer month.

Assess distributions, correlations, etc.

Fit mixture model; Define states Interpret clusters

Key Assumptions

- ✓ Churners and non-churners exhibit different behaviours generated by some states.
- ✓ Generative process: State → Cluster → Behaviour observations
- ✓ Customers' behaviours are independent from others'

Pipeline

Feature Extraction

Feature
Distributional
Modelling

Clustering

Analytics and Prediction

Extract features to represent customers within a specific customer month.

Assess distributions, correlations, etc.

Fit mixture model; Define states Interpret clusters

Key Assumptions

- ✓ Churners and non-churners exhibit different behaviours generated by some states.
- ✓ Generative process: State → Cluster → Behaviour observations
- ✓ Customers' behaviours are independent from others'

Pipeline

Key Assumptions

- ✓ Churners and non-churners exhibit different behaviours generated by some **states**
- ✓ Generative process: State → Cluster → Behaviour observations
- ✓ Customers' behaviours are independent from others'

Pipeline

Different users have different **data available**. For example, inactive users will have no records in features like marks, pass rates, etc.

Rather than interpolating missing information, we divide customers by activity level.

Different users have different **data available**. For example, inactive users will have no records in features like marks, pass rates, etc.

Rather than interpolating missing information, we divide customers by activity level.

G1 Inactive Inactive No activity G2 No-assess There's activity but no assessment G3 Most Active Complete Info There's activity and

assessment taken

Different users have different **data available**. For example, inactive users will have no records in features like marks, pass rates, etc.

Rather than interpolating missing information, we divide customers by activity level.

			Churn Rate
	Inactive	G1 Inactive No activity	22.99% (6417)
		G2 No-assess There's activity but no assessment	16.94% (425)
	Most Active	G3 Complete Info	10.21%
		There's activity and assessment taken	(11019)

Different users have different **data available**. For example, inactive users will have no records in features like marks, pass rates, etc.

Rather than interpolating missing information, we divide customers by activity level.

Identified Clusters: Size

Identified Clusters: Size and Churn Rate

Identified Clusters: Size and Churn Rate

Observations:

- ✓ The purely behaviour based model infer many clusters:
 - ☐ the corresponding churn rate ranges from 0% to 100%.
- It is more challenging to identify users of extreme high/low churn probability:
 - ☐ the cluster size tends to be much smaller for those extreme high/low churn rate.

Identified Clusters: Size and Churn Rate

Observations:

- ✓ The purely behaviour based model infer many clusters:
 - the corresponding churn rate ranges from 0% to 100%.
- ✓ It is more challenging to identify users of extreme high/low churn probability:
 - ☐ the cluster size tends to be much smaller for those extreme high/low churn rate.

From Cluster Churn Rate to Churn Probability of Individual Pupil

Identified Clusters: Size and Churn Rate

Observations:

- ✓ The purely behaviour based model infer many clusters:
 - the corresponding churn rate ranges from 0% to 100%.
- ✓ It is more challenging to identify users of extreme high/low churn probability:
 - the cluster size tends to be much smaller for those extreme high/low churn rate.

From Cluster Churn Rate to Churn Probability of Individual Pupil

Identified Clusters: Size and Churn Rate

Observations:

- ✓ The purely behaviour based model infer many clusters:
 - ☐ the corresponding churn rate ranges from 0% to 100%.
- It is more challenging to identify users of extreme high/low churn probability:
 - the cluster size tends to be much smaller for those extreme high/low churn rate.

From Cluster Churn Rate to Churn Probability of Individual Pupil

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling

Feature Analysis (Why)

The mixture model methodology, by its nature, is designed for identifying clusters, but not explicitly for analysing feature importance.

However, by counting frequencies of components of **risky** and **safe** clusters, we can see how feature impacts churn outcome.

Risky cluster: churn rate > 50%

Safe cluster: churn rate < 5%

We can look at the component each cluster falls in for features.

Observations:

- ✓ Subscribers having many incomplete lesson records are most likely to churn.
- ✓ Subscribers taking few assessment are most likely to churn

Prediction Workflow

How does Whizz use this model to predict the risk of churn for a set of subscribers?

Prediction Workflow

How does Whizz use this model to predict the risk of churn for a set of subscribers?

Prediction Workflow

How does Whizz use this model to predict the risk of churn for a set of subscribers?

- / Discount offers
- ✓ Reminder of engagement
- ✓ Etc.

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling

Conclusion

Conclusion

Conclusion

Appendix

Customer Month Independence

We assume the cancellation to be **ONLY** dependent on the current month.

- ✓ The assumption holds since we observe statistically constant churn rate over customer month.
- ✓ The assumption enables us to treat activities in different customer months indifferently.

Data Transformation

Distributional Modelling – I

Distributional Modelling – II

Dirichlet Process Mixture – I

DP mixture model

Use DP as prior for θ

$$x|\theta \sim f(\cdot |\theta)$$

$$x|\theta \sim f(\cdot |\theta), \qquad \theta|G \sim G(\cdot), \qquad G \sim DP(\cdot |G_0, \alpha)$$

Definitions A Dirichlet Process (DP) is a distribution of a random measure. Let G_0 be a base distribution (measure) for our cluster density parameter $\theta \in \Theta$, a measurable space, and let α be a positive, real-valued scalar. A random measure G is then distributed according to *Dirichlet Process* with scaling parameter α and base measure G_0 :

$$G \sim \mathrm{DP}(\cdot|G_0, \alpha),$$
 (16a)

if for all $K \in \mathbb{N}$, and all $\{\Theta_1, \ldots, \Theta_K\}$ finite partitions of Θ :

$$(G(\theta_1), \dots, G(\theta_K)) \sim \text{Dir}\left(\alpha G_0(\theta_1), \dots, \alpha G_0(\theta_K)\right),$$
 (16b)

where $Dir(\cdot)$ denotes the *Dirichlet distribution*. The Dirichlet distribution is a distribution of the standard K-1 simplex. Let $\boldsymbol{\pi} = \{\pi_k\}_{k=1}^K$ with $\sum_{k=1}^K \pi_k = 1$ and $\forall k : \pi_k \geq 0$, and let $\alpha = (\alpha_1, \ldots, \alpha_K)$ with $\alpha_1, \ldots, \alpha_K \geq 0$. Then

$$\mathbb{P}(\boldsymbol{\pi}|\boldsymbol{\alpha}) = \operatorname{Dir}(\alpha_1, \dots, \alpha_K) = \frac{1}{\operatorname{Beta}(\boldsymbol{\alpha})} \prod_{k=1}^K \pi_k^{\alpha_k - 1} = \frac{\Gamma(\sum_k \alpha_k)}{\prod_k \Gamma(\alpha_k)} \prod_{k=1}^K \pi_k^{\alpha_k - 1}, \quad (16c)$$

where Beta(\cdot) is the beta function, $\Gamma(\cdot)$ is the gamma function.

Dirichlet Process Mixture - II

Clustering Effect We use DP as a prior to distribution of cluster parameter θ :

$$\theta | G \sim G(\cdot) \quad \text{and} \quad G \sim \mathrm{DP}(\cdot | G_0, \alpha).$$
 (17)

This model exhibits a "clustering effect" which enables us to infer number of clusters from data rather than pre-defining it. Suppose we independently draw n random values $\theta^{(j)}$ from G under the model (17), then Blackwell and MacQueen's urn representation theorem [I] states that, marginalising out the random measure G, the joint distribution of the collection of variables $\{\theta^{(1)}, \ldots, \theta^{(n)}\}$ exhibits a clustering effect:

$$\mathbb{P}\left(\theta^{(j)}|\theta^{(1)},\dots,\theta^{(j-1)}\right) \propto \alpha G_0(\theta^{(j)}) + \sum_{l=1}^{j-1} \delta_{\theta^{(l)}}(\theta^{(j)}), \tag{18}$$

where $\delta_{\theta^{(l)}}(\cdot)$ is a Dirac delta at $\theta^{(l)}$. Thus the variables $\{\theta^{(1)}, \ldots, \theta^{(n)}\}$ are randomly partitioned according to which variables are equal to the same value. Moreover, let $\{\theta_1, \ldots, \theta_K\}$ denote the distinct values of the drawn samples $\{\theta^{(1)}, \ldots, \theta^{(j-1)}\}$, let $\{\kappa_1, \ldots, \kappa_{j-1}\}$ be the assignment variables such that $\theta^{(l)} = \theta_{\kappa_l}$. Then,

$$\mathbb{P}\left(\theta^{(j)}|\theta^{(1)},\dots,\theta^{(j-1)}\right) \propto \frac{\alpha}{j-1+\alpha}G_0(\theta^{(j)}) + \sum_{k=1}^K \frac{|\{l:\kappa_l=k\}|}{j-1+\alpha}\delta_{\theta^{(l)}}(\theta^{(j)}). \tag{19}$$

Temporal Transition of States

- S2 is the largest destination state, which makes sense as S2 represents a "normal" state in which the churn probability is approximately the same as population average.
- ✓ Barely pupils transit from other states to S4 (the riskiest state). This seems imply that the reason for strong intention of churn might be purely external and irrelevant to customer experience at Whizz, since there is little chance of transiting to S4.

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling

Overfitting

0.2

(e) Train Pct = 90%

0.4

0.6

Test

1.0

8.0

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling

0.6

0.2

(f) Train Pct = 95%

0.4

0.0

Test

1.0

8.0