Regression Analysis

```
import warnings
warnings.filterwarnings('ignore')
```

▼ I. 단일회귀분석

→ 1) Load Data

```
import pandas as pd

url = 'https://raw.githubusercontent.com/rusita-ai/pyData/master/Galton.txt'

DF = pd.read_table(url)

DF.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 898 entries, 0 to 897
Data columns (total 6 columns):
    Column Non-Null Count Dtype
0
   Family 898 non-null object
1 Father 898 non-null float64
2 Mother 898 non-null
                         float64
   Gender 898 non-null object
   Height 898 non-null float64
                          int64
    Kids
           898 non-null
dtypes: float64(3), int64(1), object(2)
memory usage: 42.2+ KB
```

DF.head()

	Family	Father	Mother	Gender	Height	Kids
0	1	78.5	67.0	М	73.2	4
1	1	78.5	67.0	F	69.2	4
2	1	78.5	67.0	F	69.0	4
3	1	78.5	67.0	F	69.0	4
4	2	75.5	66.5	М	73.5	4

▼ 2) 남자 데이터만 분리

```
DFS = DF.loc[DF.Gender == 'M', :]
DFS.head()
```

	Family	Father	Mother	Gender	Height	Kids
0	1	78.5	67.0	М	73.2	4
4	2	75.5	66.5	М	73.5	4
5	2	75.5	66.5	М	72.5	4
8	3	75.0	64.0	М	71.0	2
10	4	75.0	64.0	М	70.5	5

▼ 3) pearson 상관계수

```
from scipy import stats
stats.pearsonr(DFS.Father, DFS.Height)[0]
```

0.39131735814179

▼ 4) 회귀선 시각화

→ 5) Modeling

→ 6) Model Summary

- 잔차(residual) 검증
 - ∘ Prob(Omnibus) & Prob(JB): 0.05보다 크면 정규분포
 - ∘ 왜도(Skew): 정규분포는 '0', '0'보다 크면 오른쪽 자락이 길어짐
 - ∘ 첨도(Kurtosis): 정규분포는 '3'
 - Durbin-Watson: 잔차의 자기상관 체크 지표 '2' 전후

 $Model_{Im.summary(alpha = 0.05)}$

OLS Regression Results

Dep. Variable: R-squared: Height 0.153 Model: OLS Adj. R-squared: 0.151 Method: Least Squares F-statistic: 83.72 Date: Thu, 11 Mar 2021 Prob (F-statistic): 1.82e-18 Time: 00:42:40 Log-Likelihood: -1070.6 AIC: 2145.

 No. Observations: 465
 AIC:
 2145.

 Df Residuals:
 463
 BIC:
 2153.

Df Model: 1

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025 0.975]

 Intercept
 38.2589
 3.387
 11.297
 0.000
 31.604
 44.914

 Father
 0.4477
 0.049
 9.150
 0.000
 0.352
 0.544

 Omnibus:
 8.699
 Durbin-Watson:
 1.481

 Prob(Omnibus):
 0.013
 Jarque-Bera (JB):
 13.007

 Skew:
 -0.112
 Prob(JB):
 0.00150

 Kurtosis:
 3.788
 Cond. No.
 2.09e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.09e+03. This might indicate that there are

▼ II. 모델의 선형성

▼ 1) 예측값(fitted) 계산

```
fitted = Model_Im.predict(DFS.Father)
```

▼ 2) 잔차(residual) 계산

• 실제값과 예측값의 차이

```
residual = DFS.Height - fitted
```

▼ 3) 예측값과 잔차 비교

- 모든 예측값에서 잔차가 비슷하게 있어야 함
- 잔차의 추세 : 빨간실선
- 빨간실선이 회색점선을 크게 벗어난다면 예측값에 따라 잔차가 크게 달라지는 것을 의미

▼ III. 잔차분석

▼ 1) 잔차의 정규성

• 잔차가 정규분포를 따른다는 가정 검증

```
import scipy.stats
sr = scipy.stats.zscore(residual)
(x, y), _ = scipy.stats.probplot(sr)
```

• Q-Q 플롯

。 잔차가 정규분포를 띄면 Q-Q 플롯에서 점들이 점선을 따라 배치

```
sns.scatterplot(x, y)
plt.plot([-3, 3], [-3, 3], '--', color = 'grey')
plt.show()
```


• shapiro Test

- ∘ p값이 0.05보다 작아 잔차의 정규성을 따른다는 귀무가설을 기각
- 유의수준 5%에서 잔차의 정규성 위반

scipy.stats.shapiro(residual)[1]

0.04990636184811592

Residual Visualization

```
sns.distplot(residual)
plt.show()
```


▼ 2) 잔차의 등분산성

- 예측된 값이 크던 작던, 모든 값들에 대하여 잔차의 분산이 동일하다는 가정
 - 예측값(가로축)에 따라 잔차가 어떻게 달라지는지 시각화
 - 빨간실선이 수평선을 그리는 것이 이상적

3) 잔차의 독립성

- 회귀분석에서 잔차는 정규성, 등분산성 그리고 독립성을 가지는 것으로 가정
- 자료 수집 시 Random Sampling을 하였다면, 잔차의 독립성은 만족하는 것으로 봄

▼ 4) 극단값

- · Cook's distance
 - 극단값을 나타내는 지표

from statsmodels.stats.outliers_influence import OLSInfluence

cd, _ = ULSInfluence(Model_Im).cooks_distance

• 59번자료가 예측에서 많이 벗어남을 확인

868 0.02393017 0.020738

125 0.019052 dtype: float64

▼ IV. 다중회귀분석

→ 1) Load Data

import seaborn as sns

DF2 = sns.load_dataset('iris')

DF2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	species	150 non-null	object
حب بالجام	· fl+C1/1)	abiaa+(1)	

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

DF2.head()

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

▼ 2) pearson 상관계수

DF2.corr()

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.117570	0.871754	0.817941
sepal_width	-0.117570	1.000000	-0.428440	-0.366126
petal_length	0.871754	-0.428440	1.000000	0.962865
petal_width	0.817941	-0.366126	0.962865	1.000000

→ 3) Visualization

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.pairplot(hue = 'species', data = DF2)
plt.show()
```


4) Modeling

▼ 5) Model Summary

 $Model_mr.summary(alpha = 0.05)$

OLS Regression Results

Dep. Variable: sepal_length R-squared: 0.859 Model: OLS Adj. R-squared: 0.856 Method: F-statistic: Least Squares 295.5 Date: Thu, 11 Mar 2021 Prob (F-statistic): 8.59e-62 Time: 00:42:50 Log-Likelihood: -37.321 No. Observations: 150 AIC: 82.64

Df Residuals: 146 **BIC:** 94.69

Df Model: 3

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t| [0.025 0.975]

 Intercept
 1.8560 0.251 7.401 0.000 1.360 2.352

 sepal_width
 0.6508 0.067 9.765 0.000 0.519 0.783

 petal_length
 0.7091 0.057 0.128 0.000 0.597 0.821

 petal_width
 -0.5565 0.128 0.128 0.000 0.000 0.509 0.304

 Omnibus:
 0.345
 Durbin-Watson:
 2.060

 Prob(Omnibus):
 0.842
 Jarque-Bera (JB):
 0.504

 Skew:
 0.007
 Prob(JB):
 0.777

 Kurtosis:
 2.716
 Cond. No.
 54.7

Warnings:

▼ V. 다중공선성(Multicollinearity)

- 공선성(Collinearity): 독립변수가 다른 독립변수로 잘 예측되는 경우
 - 또는 서로 상관이 높은 경우
- 다중공선성(Multicollinearity): 독립변수가 다른 여러 개의 독립변수들로 잘 예측되는 경우

from statsmodels.stats.outliers_influence import variance_inflation_factor

▼ 1) 독립변수 확인

Model.exog_names

['Intercept', 'sepal_width', 'petal_length', 'petal_width']

▼ 2) 다중공선성 진단

- 분산팽창계수(VIF:Variance Inflation Factor)
 - 엄밀한 기준은 없으나 보통 10보다 크면 다중공선성이 있다고 판단
 - 5를 기준으로 하기도 함
- 'sepal_width'의 VIF

variance_inflation_factor(Model.exog, 1)

1.270814929344654

• 'petal_length'의 VIF

variance_inflation_factor(Model.exog, 2)

15.097572322915717

• 'petal_width'의 VIF

variance_inflation_factor(Model.exog, 3)

14.234334971742083

pearson 상관계수

DF2.corr()

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.117570	0.871754	0.817941
sepal_width	-0.117570	1.000000	-0.428440	-0.366126
petal_length	0.871754	-0.428440	1.000000	0.962865
petal_width	0.817941	-0.366126	0.962865	1.000000

▼ 3) 다중공선성 해결

- VIF가 큰 독립변수를 제거 후 모델링
 - ∘ 'petal_width' 제거

• 다중공선성 처리 후

```
Model_VIF.summary()
```

```
OLS Regression Results
```

Dep. Variable: sepal_length R-squared: 0.840 Model: OLS Adj. R-squared: 0.838 Method: Least Squares F-statistic: 386.4 Date: Thu, 11 Mar 2021 **Prob (F-statistic):** 2.93e-59 Time: 00:42:50 Log-Likelihood: -46.513 No. Observations: 150 AIC: 99.03

 No. Observations: 150
 AIC:
 99.03

 Df Residuals:
 147
 BIC:
 108.1

Df Model: 2

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025 0.975]

 Intercept
 2.2491 0.248
 9.070 0.000 1.759 2.739

 sepal_width
 0.5955 0.069 8.590 0.000 0.459 0.733

petal_length 0.4719 0.017 27.569 0.000 0.438 0.506

 Omnibus:
 0.164
 Durbin-Watson:
 2.021

 Prob(Omnibus):
 0.921
 Jarque-Bera (JB):
 0.319

 Skew:
 -0.044
 Prob(JB):
 0.853

 Kurtosis:
 2.792
 Cond. No.
 48.3

Warnings:

111 Chandard Frence accume that the covariance matrix of the arrors is correctly specified

#

#

#

The End

#

#

#