

Facultad de Ciencias

Licenciatura en Ciencias de la Computación

Cómputo Evolutivo

Metaheurísticas de Trayectoria

M. en C. Oscar Hernández Constantino (constantino92@ciencias.unam.mx)

Contenido de la Presentación

1. Esquema general

- 2. Componentes
 - 2.1 Solución Inicial
 - 2.2 Vecindades
 - 2.3 Evaluación
 - 2.4 Criterios de Término

Diseño de Metaheurísticas

Conceptos Comunes

- Representación
- Función Objetivo

Métodos basados en una solución

- Solución Inicial
- Vecindad
- Evaluación
- · Condición de término

Métodos basados en poblaciones

- Población Inicial
- Operadores
 (recombinación y mutación)
- Estrategias de Selección
- Condición de término

Esquema general

Metaheurísticas de Trayectoria

Desde una solución inicial s_0 se genera la secuencia s_1, s_2, \ldots, s_k

- $s_{i+1} \in N(s_i), \forall i \in [0, k-1]$
- $f(s_{i+1}) < f(s_i), \forall i \in [0, k-1]$

Componentes

Componentes

> Solución Inicial

Generación de Solución Inicial

Tipos de inicialización

- Generación Aleatoria
- Generación mediante heurística
- Soluciones Parciales o Completas
- Entre más grande sea la vecindad, menos impacto tiene la inicialización de la solución

Componentes

> Vecindades

Vecindades

Definción de Vecindad

Una función de **vecindad** es un mapeo $N: S \to 2^S$ que asigna a cada solución $s \in S$ un conjunto de soluciones $N(s) \subset S$.

Vecindades en espacios continuos

La vecindad N(s) de una solución s en un **espacio continuo** es la bola con centro s y radio igual a $\epsilon > 0$.

$$N(s) = \{ s' \in \mathbb{R} \mid ||s' - s|| < \epsilon \}$$

¿Tamaño de la vecindad? Depende de la representación utilizada

Ejemplo vecindad en espacio continuo

Vecindades II

Vecindades en espacios discretos

En un problema de optimización discreto, la vecindad N(s) de una solución s es:

$$N(s) = \{ s' \mid d(s', s) \le \epsilon \}$$

donde *d* representa una medida de distancia que está relacionada con el operador de movimiento.

- La vecindad depende fuertemente de la representación utilizada
- Una medida común para representaciones binarias es la distancia de Hamming:

$$d(s, s') = |\{i \mid s_i \neq s'_i\}|$$

Ejemplo de Vecindad en Representaciones Binarias

¿Tamaño de la vecindad?

$$|N(s)| = |s| = n$$

Ejemplo de Vecindad en Representaciones con Permutaciones

Operador de Intercambio

¿Tamaño de la vecindad?

$$|N(s)| = {|s| \choose 2} = \frac{n \times (n-1)}{2}, \ O(n^2), n = |s|$$

Operador de Inserción 6

¿Tamaño de la vecindad?

$$|N(s)| = \frac{|s| \times (|s|-1)}{2} = \frac{n(n-1)}{2}$$
, $O(n^2)$

Vecindades grandes

Diseño de Metaheurísticas

Conceptos Comunes

- Representación
- Función Objetivo

Métodos basados en una solución

- Solución Inicial
- Vecindad
- Evaluación
- Condición de término

Métodos basados en poblaciones

- Población Inicial
- Operadores (recombinación y mutación)
- Estrategias de Selección
- Condición de término

Componentes

> Evaluación

Tipos de Evaluación

Evaluación Exacta

Se evalua la función objetivo, o bien, se calcula la evaluación del movimiento utilizando alguna propiedad

Evaluación por Estimación

Se obtiene una estimación que podría o no coincidir con la evaluación real.

Evaluación Incremental

- Una forma más eficiente de evaluar a las soluciones candidatas es calculando la diferencia que se produce después de aplicar el movimiento m a la solución actual s, δ(s, m)
- Se puede utilizar en combinación con una representación de soluciones parciales para obtener una evaluación temporal

Componentes

> Criterios de Término

Criterios de Término I

Llegar al resultado deseado

$$f(s) \leq L$$

- LB (Lower Bound) : Mejor cota inferior conocida, f(s) ≥ LB,
 s mejor solución conocida
- UB (Upper Bound): Mejor cota superior conocida, f(s) ≤ LB, s mejor solución conocida
- BKS (Best Know Solution): Mejor solución conocida, f(s) ≤ LB, s mejor solución conocida
- OPT : Solución óptima global, f(s) = OPT, $s = s^*$, solución óptima global.

Error Absoluto Error Relativo $|f(s) - f(s^*)| \le L$ $\left| \frac{f(s) - f(s^*)}{f(s^*)} \right| \le L$

Criterios de Término II

Número de Iteraciones

$$t \leq max_iteraciones$$

Máximo número de iteraciones sin mejora

$$Sif(s) \ge f(s') : t_{sin_mejora} + +$$

 $t_{sin_mejora} \le max_iteraciones_sin_mejora$

Es el único criterio que podría garantizar llegar a un óptimo local

Criterios de Término III

Número de evaluaciones de función
 Con cada llamada a f(s): num_evaluaciones + +

 $num_evaluaciones \le max_evaluaciones$

• Tiempo total de ejecución Al inicio de la ejecución : $t_{ini} = now()$ Al inicio o al final de cada iteración : $t_{act} = now()$

$$(t_{act} - t_{ini}) < max_tiempo$$

¿ Preguntas ?