Projet Circuits Intégrés Radiofréquence Conception d'un LNA à 2.45 GHz en Technologie 0.35 μm AMS

Mohamed Hage Hassan Clément Cheung

12 Décembre 2017

Table des matières

Introduction			2	
1	1.1	Calcul de la charge		
2	Par 2.1 2.2 2.3 2.4 2.5 2.6	Simulation DC du transistor seul Adaptation de la partie réelle de l'impédance d'entrée Polarisation Gain Adaptation de la partie imaginaire de l'impédance d'entrée du LNA Facteur de bruit	4 4 4	
\mathbf{C}	Conclusion		5	
\mathbf{R}	Références			

Introduction

1 Conception du LNA - Partie théorique

On essaye de concevoir l'amplificateur faible bruit (figure. 1)

Figure 1: Schéma de l'amplificateur faible bruit[1]

Le schéma comporte : Explication ::

- 1. Circuit de polarization
- 2. Inductance de shock L_i
- 3. Étage cascode avec l'adaptation
- 4. Circuit résonant parallèle RLC

Le LNA doit respecter un cahier de charge bien défini :

- Gv = 20(26db), F = 1.5(1.76db), IIP3 = -10dbm
- $F_0 = 2.45GHz$
- $\gamma = 0.82$
- $C_{ox} = 5 \times 10^{-3} pF/\mu m^2$, $k_n = 80\mu A/V^2$
- Courant de polarization : $I_{DS0} = 1.5mA$
- $Q_e = 2$

1.1 Calcul de la charge

On cherche L_L pour résoner à 2.45GHz : Pour un circuit RLC parallèle, la fréquence de résonance est donnée par :

$$\omega_0 = \frac{1}{\sqrt{L_L C_L}} \implies L_L = \frac{1}{(2\pi F_0)^2 C_L}$$

Pour $F_0 = 2.45GHz$ et $C_L = 1pF$, on a $L_L = 4.21nH$.

Calcul de g_m :

Connaissant L_L et le facteur de bruit F, on cherche à retrouver la transductance g_m :

$$F = 1 + \frac{\gamma}{50gm} \frac{1}{Q_e^2}$$

$$\implies gm = \frac{\gamma}{50(F-1)Q_e^2}$$

Ce qui nous donne $g_m = 8.2 \times 10^{-3} \Omega^{-1}$, pour $Q_e = 2$, F = 1.5 et $\gamma = 0.82$.

Calcul de R_L :

Pour $G_v = 20$, $g_m = 8.2 \times 10^{-3} \Omega^{-1}$, et $Q_e = 2$, on a :

$$G_v = g_m R_L Q_e \implies R_L = \frac{G_v}{g_m Q_e} = 1.219 k\Omega$$

1.2 Dimensionnement du transistor et calcul du réseau d'entrée

Capacité totale C_i // C_{gs} :

Le coefficient de qualité Q_e pour un circuit RC série :

$$Q_e = \frac{||X||}{R} \qquad X = \frac{1}{\omega_0 C_{tot}}$$

$$\implies C_{tot} = \frac{1}{\omega_0 Q_e 50} = 0.64 pF$$

Pour la partie suivante, on ne considère que le transistor M_1 :

La transductance g_m d'un MOSFET séxprime par :

$$g_m = 2\sqrt{K_n \left(\frac{W}{L}\right)_{(M_1)} I_{DS0}}$$

$$\implies \left(\frac{W}{L}\right)_{(M_1)} = \frac{g_m^2}{4k_n I_{DS0}} = 140.08$$

Pour la technologie AMS 0.35 μ m, où $L=L_{min}=0.35 \mu$ m, on retrouve $W=49.02 \mu$ m.

Connaissant W, c'est possible de calculer la capacité parasite C_{gs} entre la source et le gate.

$$C_{gs} = \frac{1}{2}C_{ox}WL = 42.89fF$$

Calcul de C_i , L_S :

Sachant que C_{tot} de l'entrée est formée par C_i et la capacité parasite C_{gs} , on a :

$$C_i = C_{tot} - C_{qs} = 0.64 \times 10^{-12} - 42.89 \times 10^{-15} = 0.597 \times 10^{-12} pF$$

En se basant sur [2], on sait que l'élement L_S du circuit d'adaptation en entrée doit être adapté à 50Ω :

$$L_S \omega_T = 50 \implies L_S = \frac{50}{\omega_T} = \frac{50}{(g_m)_{M_1}} C_{gs} = 0.26nH$$

3

Calcul de la tension de dépassage V_{OD} , L_i : La transductance du MOSFET possède plusieurs expressions :

$$g_m = 2\sqrt{K_n \left(\frac{W}{L}\right)_{(M_1)} I_{DS0}} = \frac{2I_{DS0}}{V_{gs} - V_t}$$

On peut remonter à la tension de dépassage : $V_{OD} = V_{gs} - V_/t$:

$$V_{gs} - V_t = \frac{2I_{DS0}}{g_m} = 0.36V$$

Pour L_i , on a

$$\omega_0 = \frac{1}{\sqrt{(L_g + L_s)C_{gs}}} \implies L_g + L_S = \frac{1}{\omega_0^2 C_{gs}}$$

Ce qui nous donne :

$$L_i = L_g = \frac{1}{\omega_0^2 C_{qs}} - L_S = 98.2nH$$

2 Partie pratique

- 2.1 Simulation DC du transistor seul
- 2.2 Adaptation de la partie réelle de l'impédance d'entrée
- 2.3 Polarisation
- 2.4 Gain
- 2.5 Adaptation de la partie imaginaire de l'impédance d'entrée du LNA
- 2.6 Facteur de bruit

Conclusion

Références

- [1] Conception d'un LNA à 2.45 GHz en Technologie 0.35 μm AMS Énoncé de TP Institut Polytechnique de Grenoble Phelma
- [2] Radio Frequency Integrated Circuits Course
 Sylvain Bourdel, Florence Podevin, Institut Polytechnique de Grenoble Phelma
- [3] Conception d'un circuit en L à l'aide de l'abaque de Smith http://f5zv.pagesperso-orange.fr/RADIO/RM/RM23/RM23p/RM23p03.html
- [4] Design of Analog CMOS Integrated Circuits, 2nd Edition Behzad Razavi, McGraw-Hill Education
- [5] Conception de circuits intégrés analogique Laurent Aubard, Institut Polytechnique de Grenoble - Phelma