ESTATÍSTICA NÃO PARAMÉTRICA

São extremamente interessantes para análises de dados qualitativos além dos quantitativos

- A aplicação dessas técnicas não exige suposições quanto à distribuição da população da qual se tenha retirado amostras para análises.
- Podem ser aplicadas a dados que se disponham simplesmente em ordem, ou mesmo para estudo de variáveis nominais. Contrariamente à estatística paramétrica, onde as variáveis são, na maioria das vezes, intervalares.
- Exigem poucos cálculos e são aplicáveis para análise de pequenas amostras.
- Independe dos parâmetros populacionais e amostrais (média, variância, desvio padrão).

TIPOS DE TESTE

- Qui-Quadrado
- Teste dos sinais
- Teste de Wilcoxon
- Teste de Mann-Whitney
- Teste da Mediana
- Teste de Kruskal-Wallis
- Teste Kolmogorov Smirnov
- Shapiro Wilk
- Teste Levene

QUI-QUADRADO (c²)

Restrições ao uso:

- Se o número de classes é k=2, a frequência esperada mínima deve ser ³ 5;
- Se k >2, o teste não deve ser usado se mais de 20% das freqüências esperadas forem abaixo de 5 ou se qualquer uma delas for inferior a 1.

ADEQUAÇÃO DOS DADOS

PROCEDIMENTO

- 1. Enunciar as hipóteses (Ho e H1);
- 2. Fixar a; escolher a variável c² com gl= (k-1). k é o número de eventos;
- 3. Com auxílio da tabela de c², determinar RA (região de aceitação de Ho) e RC (região de rejeição de Ho)

INDEPENDÊNCIA DE VARIÁVEIS

A representação das frequências observadas é dada por uma tabela de dupla entrada ou tabela de contingência.

PROCEDIMENTO

- Ho: as variáveis são independentes;
 - H1: as variáveis são dependentes;
- **2. Fixar a.** Escolher a variável qui-quadrado com **gl** = (L-1) x (C-1), onde L = número de linhas da tabela de contingência e C+ número de colunas.
- 3. Com auxílio da tabela calculam-se RA e RC

Exemplo de variável qualitativa nominal

- Um pesquisador está interessado em saber se existe uma predisposição racial para a ocorrência de sarna sarcóptica em cães. Foram selecionados 300 animais aleatoriamente num município sendo procedidos exames para verificar a presença de sarna. Nos animais selecionados identificau-se a presença de animais da raça paodle, cocker e SRD.
- H_o: A proporção de animais com sarna é igual nas diferentes raças
 H_i: A proporção de animais com sarna não é igual para as diferentes raças

	Sarna +	Sarna -	Total
Poodle	2	48	50
Coocker	3	67	70
SRD	40	140	180
Total	45	255	300

Teste de χ^2

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{k} \frac{\left(\theta_{ij} - F_{ij}\right)^{2}}{F_{ij}}$$

Sob H₀, pode-se mostrar que a distribuição amostral de quiquadrado tem distribuição aproximadamente qui-quadrada com gl =(r-1)(k-1) graus de liberdade

Teste de χ^2

0 bser vado	Sarna +	Sarna —	Total
Poodle	2	48	50
Cocker	3	67	70
SRD	40	140	180
Total	45	255	300

Esperado	Sarna +	Sarna —	Total
Poodle	7,5	42,5	50
Cocker	10,5	59,5	70
SRD	27	153	180
Total	45	255	300

Teste de χ²

$$\chi^{2} = \frac{(2-7.5)^{2}}{7.5} + \frac{(48-42.5)^{2}}{42.5} + \frac{(3-10.5)^{2}}{10.5} + \frac{(67-59.5)^{2}}{59.5} + \frac{(40-27)^{2}}{27} + \frac{(140-153)^{2}}{153}$$
$$\chi^{2} = 18.411$$

Teste de Kruskal-Wallis

Análise de variância por postos

- É uma alternativa não-paramétrica à análise que se faz por recorrência à estatística F.
- Pode ser usado para comparar várias amostras independentes O teste de Kruskal-Wallis não pode ser usada para testar diferenças em amostras pareadas
- É uma análise da variância que emprega posições (soma de filas)
 em lugar de mensurações como critério de avaliação.
- Dados devem ser ordinais, onde seja possível atribuir posições
- Exige amostras aleatórias independentes.
- O tamanho mínimo de cada amostra deve ser 6.

TESTE DE KRUSKALL-WALLIS

O teste de Kruskall-Wallis é uma generalização para k > 2 amostras, do teste de Mann-Whitney.

A estatística de teste baseia-se nos postos das observações e como tal, a variável em estudo (nos diferentes grupos) é uma variável ordinal.

Suponha-se então a existência de k populações X₁, X₂, ..., X_k das quais foram retiradas k amostras aleatórias

$$X_{11},\,X_{12},\,...,\,X_{ln_1}$$
 da população X_1 $X_{21},\,X_{22},\,...,\,X_{ln_2}$ da população X_2 ... $X_{k1},\,X_{k2},\,...,\,X_{ln_k}$ da população X_k

e que existe independência, não só entre os elementos de cada amostra mas também entre os elementos de amostras distintas.

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$
 H_1 : $\exists i, j$: $\mu_i \neq \mu_j$, sendo $\mu_i = E(X_i)$, $i = 1,2,...,k$

A estatística de teste baseia-se nos postos das observações:

- Ordenem-se as k amostras conjuntamente. A observação de mais baixo valor tomará o posto 1, a segunda o posto 2 e assim sucessivamente.
- Caso existam empates, será atribuído o mesmo posto às observações empatadas.
 Este é a média aritmética dos postos que lhe corresponderiam se tais empates não existissem.

Seja R(Xij) o posto atribuído a Xij e

$$R_i = \sum_{j=1}^{n_i} R(X_{ij})$$

a soma dos pontos das observações da i-ésima amostra (i=1,2,...,k).

Seja

$$N = \sum_{i=1}^{k} n_i$$

o número total de observações.

Següência do teste

- Converter cada observação em posições crescentes em uma única fila.
- Observar os empates e considerar a posição média.
- Contabilizar a soma de fila de cada amostra.
- Calcular a Estatística H e comparar.

$$H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{\left(R_{j}\right)^{2}}{n_{j}} - 3(N+1)$$
Estatística Teste

N = número total de observações

K = número de amostras

n_i = número de observações na j-ésima amostra

R_i = soma dos postos da j-ésima amostra

Comparar com os valores críticos

$$\chi^2_{crítico}(\alpha, gl = k - 1)$$

Se a hipótese nula de igualdade de médias, é verdadeira, os postos devem ficar bem dispersos entre as amostras. Os quadrados das somas de postos divididos pelos respectivos tamanhos amostrais devem ser aproximadamente iguais.

Verificar se o **número de empates é grande**, pois isto afetará o valor de H. Consequentemente, pode ser necessário ajustar o valor de H dividindo-o pela quantidade

$$1 - \frac{\sum \left(t^3 - t\right)}{N^3 - N}$$

onde t é o número de empates num grupo de empates

Exemplo (FSP – Profa. Maria do Rosário D O Latorre)

- Um pesquisador deseja comparar o valor do índice de massa corporal entre homens casados (grupo 1), solteiros (grupo 2) e viúvos ou separados (grupo 3). Para tanto analisou uma amostra de 19 indivíduos descritos abaixo.
- H₀: IMC são iguais para os três grupos
 H₁: IMC para os três grupos não são iguais

Indivíduo	IMC	Grupo	Posto	R1	R2	R3
1	26,5	1	8	8		
2	32,7	2	16		16	
3	20,4	3	2			2
4	31,6	2	14		14	
5	22,5	1	3	3		
6	25	1	5	5		
7	30,2	3	13			13
8	26,4	1	7	7		
9	19,3	2	1		1	
10	27,6	1	9	9		
11	31,7	3	15			15
12	28,1	1	10	10		
13	22,7	2	4		4	
14	36,5	3	18			18
15	36,9	3	19			19
16	25,1	2	6		6	
17	33,2	3	17			17
18	30,1	2	12		12	
19	28,7	3	11			11
			Soma	42	53	95

Saída do Minitab

13/11/2002 16:02:01

Welcome to Minitab, press F1 for help.

Kruskal-Wallis Test: IMC versus Grupo

Kruskal-Wallis Test on IMC

Grupo	И	Median	Ave Rank	Z
1	6	26,45	7,0	-1,58
Z	6	27,60	В,В	-0,61
3	7	31,70	13,6	2,11
Overall	19		10,0	

H = 4.78 DF = 2 (P = 0.092)

Uma companhia deseja comparar cinco máquinas diferentes (A, B, C, D e E), em um experimento projetado para determinar se existe diferença de desempenho entre as elas.

Cada um de cinco operários experientes trabalharam com as máquinas por períodos de tempo iguais. A tabela abaixo apresenta o número de unidades produzidas por cada máquina. Testar a hipótese de que não existe diferença entre as máquinas aos níveis de significância (a)0,05 e (b)0,01.

Α	68	72	77	42	53
В	72	53	63	53	48
C	60	82	64	75	72
D	48	61	57	64	50
E	64	65	70	68	53

Etapa 1: .

H0: Não existe diferença entre as máquinas

H1: Existe diferença entre as máquinas

Etapa 2: Estabelecendo o nível de significância: $\alpha = 0.05$ e $\alpha = 0.01$

Etapa 3: Estabelecendo a estatística de teste: H

Etapa 4: Estabelecendo os valores críticos

- Como existem cinco amostras (A, B, C, D e E), k = 5
- · Como cada amostra consiste de cinco valores temos

$$N_1 = N_2 = N_3 = N_4 = N_5 = 5$$
, resulta que $N = N_1 + N_2 + N_3 + N_4 + N_5 = 25$.

$$\chi^2$$
 crítico($\alpha = 0.05$ e gl = k-1 = 4) = 9,49

Etapa 5: O valor da Estatística Teste Ordenando-se todos os valores crescentemente e atribuindo-se postos apropriados aos empates.

	Soma dos Postos					
Α	17,5	21	24	1	6,5	70
В	21	6,5	12	6,5	2,5	48,5
С	10	25	14	23	21	93
D	2,5	11	9	14	4	40,5
Ε	14	16	19	17,5	6.5	73

$$R_1 = 70$$
, $R_2 = 48,5$, $R_3 = 93$, $R_4 = 40,5$ e $R_5 = 73$.

$$H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{(R_j)^2}{n_j} - 3(N+1)$$

$$H = \frac{12}{(25)(26)} \left[\frac{(70)^2}{5} + \frac{(48,5)^2}{5} + \frac{(93)^2}{5} + \frac{(40,5)^2}{5} + \frac{(73)^2}{5} \right] - 3(26) = 6,44$$

Etapa 6: Como $H < \chi^2$ crítico (6,44 < 9,49), não podemos rejeitar a hipótese da não existência de diferença entre as máquinas ao nível 0,05, e por esta razão, certamente também não podemos rejeitá-la ao nível 0,01.

Agora vamos resolver este problema fazendo uma correção para os empates

Observação	48	53	64	68	72	
Número de empates (t)	2	4	3	2	3	
t ³ -t	6	60	24	6	24	$\sum (t^3 - t) = 120$

$$\sum (t^3 - t) = 6 + 60 + 24 + 6 + 24 = 120$$

$$\sum (t^3 - t) = 6 + 60 + 24 + 6 + 24 = 120$$

$$1 - \frac{\sum (t^3 - t)}{N^3 - N} = 1 - \frac{120}{(25)^3 - 25} = 0,9923$$

$$H_c = \frac{6,44}{0,9923} = 6,49$$

Esta correção não é suficiente para alterar a decisão adotada anteriormente

Tempo	Lâmpada
73	Α
64	Α
67	Α
62	Α
70	Α
84	В
80	В
81	В
77	В
82	С
79	С
71	С
75	С

TESTE DE KRUSKAL-WALLIS

DADOS DO PROCESSO

Informação	Valor
Kruskal-Wallis qui-quadrado	8,403296703
Graus de Liberdade	2
P-valor	0,014970879

Fatores	Limite Inferior	Efeito	Limite Superior
А	63,06081601	67,2	71,33918399
В	75,87225162	80,5	85,12774838
С	72,12225162	76,75	81,37774838