Algebraic lattices in cryptography

Alice Pellet-Mary

Université de Bordeaux

Journées d'inauguration de la fédération MARGAUx La Rochelle

Motivation: cryptography

Cryptographic primitives

public key signature homomorphic encryption encryption

error correcting codes lattices isogenies

factoring discrete logarithm ...

(Supposedly intractable) algorithmic problems

Motivation: cryptography

```
Cryptographic primitives

public key signature homomorphic encryption ...
```

```
error correcting codes lattices isogenies

-factoring -discrete logarithm · · · ·

(Supposedly intractable) algorithmic problems
in a quantum world
```

Motivation: cryptography

```
Cryptographic primitives

public key signature homomorphic ...
encryption encryption
```

```
error correcting codes lattices isogenies

-factoring -discrete logarithm · · · ·

(Supposedly intractable) algorithmic problems
in a quantum world
```

Lattices

Lattices

- ▶ $L = \{Bx \mid x \in \mathbb{Z}^n\}$ is a lattice
- ullet $B\in \mathrm{GL}_n(\mathbb{R})$ is a basis
- \triangleright n is the dimension of L

Algorithmic problems

Algorithmic problems

approx-SVP: Shortest Vector Problem

approx-CVP: Closest Vector Problem

Algorithmic problems

approx-SVP : Shortest Vector Problem

approx-CVP : Closest Vector Problem

Supposedly hard to solve when n is large (input: a bad basis of L)

- even with a quantum computer
- even with a small approximation factor (poly(n))

Hardness of SVP and CVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):

BKZ algorithm [Sch87,SE94]

[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS.

[SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Mathematical programming.

Hardness of SVP and CVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):

BKZ algorithm [Sch87,SE94]

[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS.

[SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Mathematical programming.

$$pk = (B_p, x)$$
$$sk = B_s$$

message: $m \in \{0,1\}$

$$pk = (B_p, x)$$
$$sk = B_s$$

message: $m \in \{0,1\}$

Encryption (m, pk):

- ightharpoonup sample random $v \in L$
- ightharpoonup sample small $e \in \mathbb{R}^n$
- return $c = v + e + m \cdot x$

$$pk = (B_p, x)$$
$$sk = B_s$$

message: $m \in \{0, 1\}$

Encryption (m, pk):

- ightharpoonup sample random $v \in L$
- ightharpoonup sample small $e \in \mathbb{R}^n$
- return $c = v + e + m \cdot x$

Decryption (c, sk):

- $find w \in L closest to c$
- if c is very close to w, return m = 0
- ightharpoonup otherwise return m=1

Structured lattices

Why?

Motivation

Schemes using lattices are usually not efficient

```
(storage: n^2, matrix-vector mult: n^2)
```

⇒ improve efficiency using structured lattices

Why?

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

⇒ improve efficiency using structured lattices

Two examples: (submitted to the NIST post-quantum standardization process)

	Frodo	Kyber
	(unstructured lattices)	(structured lattices)
secret key size (in Bytes)	19 888	1 632
public key size (in Bytes)	9 616	800

Structured lattices: example

$$M_{a} = \begin{pmatrix} a_{1} & -a_{n} & \cdots & -a_{2} \\ a_{2} & a_{1} & \cdots & -a_{3} \\ \vdots & \ddots & \ddots & \vdots \\ a_{n} & a_{n-1} & \cdots & a_{1} \end{pmatrix}$$

basis of a special case of ideal lattice

Structured lattices: example

$$M_{\mathsf{a}} = \begin{pmatrix} a_1 & -a_n & \cdots & -a_2 \\ a_2 & a_1 & \cdots & -a_3 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n-1} & \cdots & a_1 \end{pmatrix}$$

basis of a special case of ideal lattice

basis of a special case of module lattice of rank m

Structured lattices: example

$$M_{a} = \begin{pmatrix} a_{1} & -a_{n} & \cdots & -a_{2} \\ a_{2} & a_{1} & \cdots & -a_{3} \\ \vdots & & \vdots & \vdots \\ a_{n} & a_{n-1} & \cdots & a_{1} \end{pmatrix}$$

basis of a special case of ideal lattice

basis of a special case of module lattice of rank m

Is SVP still hard when restricted to ideal/module lattices?

SVP in modules and ideals

 $\begin{array}{l} \mathsf{Modules} \\ (\mathsf{rank} \geq 2) \end{array}$

ideals (in cyclotomic fields)

 $\begin{array}{c} \text{ideals} \\ \text{(with 2}^{O(\textit{n})} \text{ pre-processing)} \end{array}$

SVP in modules and ideals

Modules $(rank \ge 2)$

ideals (with $2^{O(n)}$ pre-processing)

Impact on cryptography

 $\begin{array}{l} \mathsf{Modules} \\ (\mathsf{rank} \geq 2) \end{array}$

ideals (in cyclotomic fields)

 $\begin{array}{c} \text{ideals} \\ \text{(with 2}^{O(n)} \text{ pre-processing)} \end{array}$

Impact on cryptography

Algorithms for ideal lattices

[RBV04]: principal ideals in small dimension

[[]RBV04] G. Rekaya, J.-C. Belfiore, E. Viterbo. A very efficient lattice reduction tool on fast fading channels. ISITA.

[RBV04]: principal ideals in small dimension

[CGS14]: principal ideals in cyclotomic fields (without analysis)

[[]CGS14]: P. Campbell, M. Groves, and D. Shepherd. Soliloguy: a cautionary tale.

```
[RBV04]: principal ideals in small dimension
```

[CGS14]: principal ideals in cyclotomic fields

(without analysis)

[CDPR16]: analysis of [CGS14]

 $\Rightarrow 2^{O(\sqrt{n})}$ approximation factor in quantum poly time

[[]CDPR16] R. Cramer, L. Ducas, C. Peikert and O. Regev. Recovering short generators of principal ideals in cyclotomic rings. Eurocrypt.

```
[RBV04]: principal ideals in small dimension
```

[CGS14]: principal ideals in cyclotomic fields (without analysis)

[CDPR16]: analysis of [CGS14]

 \Rightarrow 2^{O(\sqrt{n})} approximation factor in quantum poly time

[CDW17]: any ideal in cyclotomic fields

[[]CDW17] R. Cramer, L. Ducas, B. Wesolowski. Short stickelberger class relations and application to ideal-SVP. Eurocrypt.

```
    [RBV04]: principal ideals in small dimension
    [CGS14]: principal ideals in cyclotomic fields
        (without analysis)
    [CDPR16]: analysis of [CGS14]
        ⇒ 2<sup>O(√n)</sup> approximation factor in quantum poly time
```

[PHS19]: more trade-offs but exponential pre-processing

(any ideal, any number field)

[CDW17]: any ideal in cyclotomic fields

[[]PHS19] A. Pellet-Mary, G. Hanrot, D. Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.

```
[RBV04]: principal ideals in small dimension
```

[CGS14]: principal ideals in cyclotomic fields (without analysis)

[CDPR16]: analysis of [CGS14]

 \Rightarrow 2^{O(\sqrt{n})} approximation factor in quantum poly time

[CDW17]: any ideal in cyclotomic fields

[PHS19]: more trade-offs but exponential pre-processing (any ideal, any number field)

[[]PHS19] A. Pellet-Mary, G. Hanrot, D. Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.

Math background

Notation

$$K = \mathbb{Q}[X]/(X^n + 1)$$
, with $n = 2^k$

(or any cyclotomic field)

Math background

Notation

$$K=\mathbb{Q}[X]/(X^n+1)$$
, with $n=2^k$ (or any cyclotomic field) $O_K=\mathbb{Z}[X]/(X^n+1)$

▶ Units: $O_K^{\times} = \{a \in O_K \mid \exists b \in O_K, ab = 1\}$

Math background

Notation

$$K=\mathbb{Q}[X]/(X^n+1)$$
, with $n=2^k$ (or any cyclotomic field) $O_K=\mathbb{Z}[X]/(X^n+1)$

- ▶ Units: $O_K^{\times} = \{a \in O_K \mid \exists b \in O_K, ab = 1\}$
- Principal ideals: $\langle g \rangle = \{ gr \mid r \in O_{\mathcal{K}} \}$
 - ightharpoonup g is a generator of $\langle g \rangle$
 - lack { generators of $\langle g \rangle$ } = { $gu \mid u \in O_{\kappa}^{\times}$ }

Why is $\langle g \rangle$ a lattice?

O_{κ} is a lattice

$$O_K = \mathbb{Z}[X]/(X^n + 1) \rightarrow \mathbb{C}^n$$

 $r(X) \mapsto (r(\alpha_1), r(\alpha_2), \dots, r(\alpha_n)),$

where $\alpha_1, \ldots, \alpha_n$ are the roots of $X^n + 1$ in $\mathbb C$

Why is $\langle g \rangle$ a lattice?

O_K is a lattice

$$O_K = \mathbb{Z}[X]/(X^n + 1) \rightarrow \mathbb{C}^n$$

$$r(X) \mapsto (r(\alpha_1), r(\alpha_2), \dots, r(\alpha_n)),$$

where $\alpha_1, \ldots, \alpha_n$ are the roots of $X^n + 1$ in $\mathbb C$

$$\begin{cases} \langle g \rangle \subseteq O_K \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{ideal lattice}$$

Objective: Given a basis of $\langle g \rangle$, find a (somehow) small element $gr \in \langle g \rangle$

Objective: Given a basis of $\langle g
angle$, find a (somehow) small element $gr \in \langle g
angle$

Idea: Maybe g is a somehow small element of $\langle g \rangle$

Objective: Given a basis of $\langle g
angle$, find a (somehow) small element $gr \in \langle g
angle$

Idea: Maybe g is a somehow small element of $\langle g \rangle$

▶ If n = 1: e.g. $\langle 2 \rangle \Rightarrow 2$ and -2 are the smallest elements.

$$-6 -4 -2 0 2 4 6$$

Objective: Given a basis of $\langle g
angle$, find a (somehow) small element $gr \in \langle g
angle$

ldea: Maybe g is a somehow small element of $\langle g \rangle$

▶ If n = 1: e.g. $\langle 2 \rangle \Rightarrow 2$ and -2 are the smallest elements.

▶ For larger n: one of the generators is somehow small

 $\mathsf{Log}: O_{\mathcal{K}} o \mathbb{R}^n$ (take the log of every coordinate)

Let
$$1=(1,\cdots,1)$$
 and $H=1^{\perp}$.

 $\mathsf{Log}: O_{\mathsf{K}} o \mathbb{R}^n$ (take the log of every coordinate)

Let
$$1=(1,\cdots,1)$$
 and $H=1^{\perp}$.

Properties $(r \in O_K)$

 $\text{Log } r = h + a \cdot 1$, with $h \in H$

$$\bullet \ \mathsf{Log}(r_1 \cdot r_2) = \mathsf{Log}(r_1) + \mathsf{Log}(r_2)$$

 $\mathsf{Log}: O_{\mathcal{K}} o \mathbb{R}^n$ (take the log of every coordinate)

Let
$$1=(1,\cdots,1)$$
 and $H=1^{\perp}$.

Properties $(r \in O_K)$

 $\text{Log } r = h + a \cdot 1$, with $h \in H$

- a > 0

 $\mathsf{Log}: O_{\mathcal{K}} o \mathbb{R}^n$ (take the log of every coordinate)

Let
$$1=(1,\cdots,1)$$
 and $H=1^{\perp}$.

Properties $(r \in O_K)$

 $\text{Log } r = h + a \cdot 1$, with $h \in H$

- a > 0
- a = 0 iff r is a unit

 $\mathsf{Log}: O_{\mathcal{K}} o \mathbb{R}^n$ (take the log of every coordinate)

Let
$$1=(1,\cdots,1)$$
 and $H=1^{\perp}$.

Properties $(r \in O_K)$

 $\text{Log } r = h + a \cdot 1$, with $h \in H$

- a > 0
- a = 0 iff r is a unit

The Log unit lattice

 $\Lambda := \operatorname{Log}(O_{\kappa}^{\times})$ is a lattice in H.

 $\mathsf{Log}: O_{\mathcal{K}} o \mathbb{R}^n$ (take the log of every coordinate)

Let
$$1=(1,\cdots,1)$$
 and $H=1^{\perp}$.

Properties $(r \in O_K)$

 $\text{Log } r = h + a \cdot 1$, with $h \in H$

- a > 0
- a = 0 iff r is a unit
- $||r|| \simeq \exp(||\operatorname{Log} r||_{\infty})$

The Log unit lattice

 $\Lambda := \operatorname{Log}(O_{\kappa}^{\times})$ is a lattice in H.

What does $\mathsf{Log}\langle g \rangle$ look like?

What does $Log\langle g \rangle$ look like?

What does $Log\langle g \rangle$ look like?

- ightharpoonup Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum poly time

- ightharpoonup Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum poly time

- ightharpoonup Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum poly time
- Solve CVP in Λ

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum poly time
- Solve CVP in Λ

- ightharpoonup Find a generator g_1 of $\langle g
 angle$.
 - ▶ [BS16]: quantum poly time
- Solve CVP in Λ
 - Good basis of Λ (cyclotomic field)
 - \Rightarrow CVP in poly time
 - $\Rightarrow \|h\| \leq \widetilde{O}(\sqrt{n})$

- ightharpoonup Find a generator g_1 of $\langle g
 angle$.
 - ▶ [BS16]: quantum poly time
- Solve CVP in Λ
 - Good basis of Λ (cyclotomic field)
 - \Rightarrow CVP in poly time
 - $\Rightarrow \|h\| \leq \widetilde{O}(\sqrt{n})$

$$\|ug_1\| \leq 2^{\widetilde{O}(\sqrt{n})} \cdot \lambda_1$$

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum poly time
- Solve CVP in Λ
 - Good basis of Λ (cyclotomic field)
 - \Rightarrow CVP in poly time
 - $\Rightarrow \|h\| \leq \widetilde{O}(\sqrt{n})$

$$\|ug_1\| \leq 2^{\widetilde{O}(\sqrt{n})} \cdot \lambda_1$$

Heuristic

Cyclotomic fields

[[]BS16]: J.-F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

Conclusion

Are there some number fields stronger than others?

(are cyclotomic fields particularly weak?)

- Are there some number fields stronger than others? (are cyclotomic fields particularly weak?)
- Are modules of rank ≥ 2 really safer than ideals?

- Are there some number fields stronger than others? (are cyclotomic fields particularly weak?)
- Are modules of rank ≥ 2 really safer than ideals?
- Are there some better structured lattices?

- Are there some number fields stronger than others? (are cyclotomic fields particularly weak?)
- Are modules of rank ≥ 2 really safer than ideals?
- Are there some better structured lattices?

Thank you