

FCC/IC - TEST REPORT

Report Number : **68.950.17.0733.01** Date of Issue: **December 6, 2017**

Model : BT adaptor

Product Type : Bluetooth adaptor

Applicant : Widex A/S

Address : Nymoellevej 6, DK-3540 Lynge, Denmark

Production Facility : Widex A/S

Address : Nymoellevej 6, DK-3540 Lynge, Denmark

Test Result : n Positive O Negative

Total pages including

Appendices : 42

TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1	Tal	ble of Contents	2
2	De	etails about the Test Laboratory	3
3	De	escription of the Equipment Under Test	4
4	Su	mmary of Test Standards	5
5	Su	mmary of Test Results	6
6	Ge	eneral Remarks	7
7	Te	st Setups	8
8	Sy	stems test configuration	9
9	Te	chnical Requirement	10
9).1	Conducted Emission	10
9).2	Conducted peak output power	13
9	0.3	20 dB bandwidth and 99% Occupied Bandwidth	15
9).4	Carrier Frequency Separation	21
9).5	Number of hopping frequencies	24
9	9.6	Dwell Time	26
9).7	Spurious RF conducted emissions	29
9	8.0	Band edge testing	33
9	9.9	Spurious radiated emissions for transmitter	38
10	Te	st Equipment List	41
11	Sv	stem Measurement Uncertainty	42

2 Details about the Test Laboratory

Details about the Test Laboratory

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint

Road 2, Nanshan District

Shenzhen 518052

P.R. China

Telephone: 86 755 8828 6998 Fax: 86 755 828 5299

FCC Registration

No.:

514049

IC Registration

10320A

No.:

3 Description of the Equipment Under Test

Product: Bluetooth adaptor

Model no.: BT adaptor

FCC ID: TTY-BA

IC ID: 5676B-BA

Options and accessories: Nil

Rating: 5.0Vdc supplied by USB port

RF Transmission

Frequency:

2402MHz-2480MHz

No. of Operated Channel: 79

Modulation: GFSK, $\pi/4$ -DQPSK, 8-DPSK

Antenna Type: Integrated antenna

Antenna Gain: 0dBi

Description of the EUT: The Equipment Under Test (EUT) is a USB Dongle which support

Bluetooth function operated at 2.4GHz

4 Summary of Test Standards

	Test Standards
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES
10-1-2016 Edition	Subpart C - Intentional Radiators
RSS-Gen Issue 4	General Requirements and Information for the Certification of Radio
November 2014	Apparatus
RSS-247	Digital Transmission Systems (DTSS), Frequency Hopping Systems
Issue 2 February 2017	(FHSS) and License-Exempt Local Area Network (LE-LAN) Devices

All the test methods were according to Public Notice DA 00-705 -Frequency Hopper Spread Spectrum Test Procedure released by FCC on March 30, 2000 and ANSI C63.10-2013.

5 Summary of Test Results

	Technical Requirements		
	SS-247 Issue 2/RSS-Gen Issue 4		
Test Condition		Pages	Test Result
§15.207& RSS-Gen 8.8	Conducted emission AC power port	10	Pass
§15.247(b)(1) & RSS-247 5.4(b)	Conducted peak output power	13	Pass
§15.247(e) & RSS-247 5.2(b)	Power spectral density		N/A
§15.247(a)(2) & RSS-247 5.2(a) & RSS-Gen 6.6	6dB bandwidth and 99% Occupied Bandwidth		N/A
§15.247(a)(1) & RSS-247 5.1(a) & RSS-Gen 6.6	20dB bandwidth and 99% Occupied Bandwidth	15	Pass
§15.247(a)(1) & RSS-247 5.1(b)	Min. of Hopping Channel Carrier Frequency Separation	21	Pass
§15.247(a)(1)(iii) & RSS- 247 5.1(d)	Min number of hopping frequencies	24	Pass
§15.247(a)(1)(iii) & RSS- 247 5.1(d)	Dwell Time - Average Time of Occupancy	26	Pass
§15.247(d) & RSS-247 5.5	Spurious RF conducted emissions	29	Pass
§15.247(d) & RSS-247 5.5	Band edge	33	Pass
§15.247(d) & §15.209 & RSS-247 5.5 & RSS-Gen 6.13	Spurious radiated emissions for transmitter	38	Pass
§15.203 & RSS-Gen 8.3	Antenna requirement	See note 1	Pass

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an Integrated antenna, which gain is 0dBi. In accordance to §15.203 & RSS-Gen 8.3, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: TTY-BA, IC ID:5676B-BA, complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules and RSS-247, RSS-GEN.

SUMMARY:

All tests according to the regulations cited on page 5 were

- n Performed
- o Not Performed

The Equipment Under Test

- n Fulfills the general approval requirements.
- O Does not fulfill the general approval requirements.

Sample Received Date: October 25, 2017

Testing Start Date: November 20, 2017

Testing End Date: November 30, 2017

Reviewed by: Prepared by:

John Zhi

Johnshi

Project Manager

Alan Xiong Project Engineer

7 Test Setups

7.1 Radiated test setups Below 1GHz

Above 1GHz

7.2 Conducted RF test setups

7.3 AC Power Line Conducted Emission test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
Notebook	Lenovo	X220	

Test software: CRS test tool, which used to control the EUT in continues transmitting mode

The system was configured to hopping mode and non-hopping mode.

Hopping mode: typical working mode (normal hopping status)

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power

9 Technical Requirement

9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

M/N : BT adaptor

Operating Condition : Normal Working with Bluetooth transmit

Comment : AC 120V/60Hz

Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.182000	51.75		64.39	12.65	L1	10.2
0.238000	44.33		62.17	17.84	L1	10.2
1.534000	38.96	-	56.00	17.04	L1	10.2
1.926000	44.01		56.00	11.99	L1	10.3
3.282000	37.26	-	56.00	18.74	L1	10.3
3.998000	35.94		56.00	20.06	L1	10.3

Remark: Correct factor=cable loss + LISN factor

M/N : BT adaptor

Operating Condition : Normal Working with Bluetooth transmit

Comment : AC 120V/60Hz

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.178000	52.64		64.58	11.93	N	10.3
0.202000	49.93		63.53	13.60	N	10.3
0.302000	43.39		60.19	16.79	N	10.3
0.390000	39.15		58.06	18.91	N	10.3
2.009500		27.23	46.00	18.77	N	10.4
2.009500	39.25		56.00	16.75	N	10.4
3.794000	42.56		56.00	13.44	N	10.5

Remark: Correct factor=cable loss + LISN factor

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings:
 Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured, VBW≥RBW,
 Sweep = auto, Detector function = peak, Trace = max hold
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

Limits

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Conducted peak output power

Bluetooth Mode GFSK modulation Test Result

	Frequency MHz	Conducted Peak Output Power dBm	Result	
_	Low channel 2402MHz	2.64	Pass	_
	Middle channel 2441MHz	2.71	Pass	
	High channel 2480MHz	3.14	Pass	

Bluetooth Mode $\pi/4$ -DQPSK modulation Test Result

Frequency MHz	Output Power dBm	Result
Low channel 2402MHz	2.10	Pass
Middle channel 2441MHz	2.71	Pass
High channel 2480MHz	2.61	Pass

Bluetooth Mode 8DPSK modulation Test Result Conducted Peak

Frequency MHz	Output Power dBm	Result	
Low channel 2402MHz	2.46	Pass	-
Middle channel 2441MHz	3.09	Pass	
High channel 2480MHz	3.01	Pass	

9.3 20 dB bandwidth and 99% Occupied Bandwidth

Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

۰

Limit [kHz]
N/A

Bluetooth Mode GFSK Modulation test result

Frequency	20 dB Bandwidth	99% Bandwidth	Limit	Result
MHz	kHz	kHz	kHz	
2402	942.10	863.97		Pass
2441	946.50	868.31		Pass
2480	937.80	863.97		Pass

Low channel 2402MHz

Middle channel 2441MHz

Bluetooth Mode π/4-DQPSK Modulation test result

Frequency	20 dB Bandwidth	99% Bandwidth	Limit	Result
MHz	kHz	kHz	kHz	
2402	1237.3	1167.9		Pass
2441	1233.0	1411.0		Pass
2480	1224.3	1206.9		Pass

Bluetooth Mode 8DPSK Modulation test result

Frequency	20 dB Bandwidth	99% Bandwidth	Limit	Result
MHz	kHz	kHz	kHz	
2402	1259.0	1150.5		Pass
2441	1241.7	1276.4		Pass
2480	1241.7	1198.3		Pass

Low channel 2402MHz

9.4 Carrier Frequency Separation

Test Method

- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. By using the Max-Hold function record the separation of two adjacent channels.
- 3. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit		
kHz		
≥25KHz or 2/3 of the 20 dB bandwidth which is greater		

GFSK Modulation Limit

Frequency	2/3 of 20 dB Bandwidth
MHz	kHz
2402	575.98
2441	578.87
2480	578.87

Carrier Frequency Separation

Test result: The measurement was performed with the typical configuration (normal hopping status), here GFSK modulation mode was used to show compliance.

GFSK Modulation test result

Frequency	Carrier Frequency Separation	Result
MHz	kHz	
2402	1012.1	Pass
2441	1011.6	Pass
2480	1002.9	Pass

Low channel 2402MHz

Carrier Frequency Separation

9.5 Number of hopping frequencies

Test Method

- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. Set the spectrum analyzer on Max-Hold Mode, and then keep the EUT in hopping mode.
- 3. Record all the signals from each channel until each one has been recorded.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit	
number	
> 15	_

Number of hopping frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status), and the total hopping channels is constant for the all modulation mode according with the Bluetooth Core Specification. Here GFSK modulation mode was used to show compliance.

9.6 Dwell Time

Test Method

- 1. Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. Equipment mode: Spectrum analyzer
- 2. RBW: 1MHz; VBW: 1MHz; SPAN: Zero Span
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 4. Measure the Dwell Time by spectrum analyzer Marker function.
- 5. Repeat above procedures until all frequencies measured were complete.

Limit

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Dwell Time

Dwell time

The maximum dwell time shall be 0.4 s.

According to the Bluetooth Core Specification, the worse result (DH5 mode) was reported to show compliance.

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows: The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 79 [ch] = 31.6 [s*ch];

The burst width, which is directly measured, refers to the duration on one channel hop.

The maximum number of hopping channels in 31.6s for DH5=1600 / 6 / 79 *31.6=106.67

Test Result

Modulation	Mode	Reading (us)	Total Hops	Test Result (ms)	Limit (ms)	Result
GFSK	DH5	2942	106.67	313.82	< 400	Pass
π/4-DQPSK	2DH5	2942	106.67	313.82	< 400	Pass
8-DPSK	3DH5	2956.5	106.67	315.37	< 400	Pass

GFSK Modulation

Dwell Time

π/4-DQPSK Modulation

2DH5

8-DPSK Modulation

9.7 Spurious RF conducted emissions

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Spurious RF conducted emissions

Only the worst case (which is subject to the maximum EIRP, GFSK mode) test result is listed in the report.

BT3.0 GFSK Modulation:

Spurious RF conducted emissions

Spurious RF conducted emissions

9.8 Band edge testing

Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section. .
- 4 Repeat the test at the hopping off and hopping on mode, submit all the plots.

Limit:

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

GFSK mode: Hopping off

GFSK mode: Hopping on

8DPSK mode: Hopping off

8DPSK mode: Hopping on

9.9 Spurious radiated emissions for transmitter

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW ≥ RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW ≥ RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

- 1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.
- 3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).
- 4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

Spurious radiated emissions for transmitter

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (which is subject to the maximum EIRP, GFSK mode) test result is listed in the report.

Transmitting spurious emission test result as below:

GFSK Modulation 2402MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
	626.310	30.42	Н	46	QP	15.58	26.6	Pass
30-	959.44	35.17	Н	46	QP	10.83	31.5	Pass
1000MHz	300.81	27.84	V	46	QP	18.16	19.4	Pass
	941.50	35.72	V	46	QP	10.28	31.6	Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV			Pass

GFSK Modulation 2441MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV	-		Pass

GFSK Modulation 2480MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV			Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

10 Test Equipment List

List of Test Instruments

Radiated Emission Test

Description	Manufacturer	Model no.	Serial no.	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2018-7-14
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2018-7-14
Horn Antenna	Rohde & Schwarz	HF907	102294	2018-7-14
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2018-7-14
Signal Generator	Rohde & Schwarz	SMY01	839369/005	2018-7-7
Attenuator	Agilent	8491A	MY39264334	2018-7-7
3m Semi-anechoic chamber	TDK	9X6X6		2020-7-7
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

Conducted Emission Test

Description	Manufacturer	Model no.	Serial no.	cal. due date	
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2018-7-14	
LISN	Rohde & Schwarz	ENV4200	100249	2018-7-14	
LISN	Rohde & Schwarz	ENV432	101318	2018-7-14	
LISN	Rohde & Schwarz	ENV216	100326	2018-7-14	
ISN	Rohde & Schwarz	ENY81	100177	2018-7-14	
ISN	Rohde & Schwarz	ENY81-CA6	101664	2018-7-14	
High Voltage Probe	Rohde & Schwarz	TK9420(VT94 20)	9420-584	2018-7-14	
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2018-7-14	
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2018-7-7	
Test software Rohde & Schwarz		EMC32	Version9.15.00	N/A	

TS8997 Test System

Occor Tool Cycloni				
Description	Description Manufacturer		Serial no.	cal. due date
Signal Generator	Signal Generator Rohde & Schwarz		108272	2018-7-7
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2018-7-7
Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2018-7-7
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157	101226/100851	2018-7-7
Power Splitter	Weinschel	1580	SC319	2018-7-7
10dB Attenuator	Weinschel	56-10	58764	2018-7-14
10dB Attenuator	R&S	DNF	DNF-001	2018-7-14
10dB Attenuator	R&S	DNF	DNF-002	2018-7-14
10dB Attenuator	R&S	DNF	DNF-003	2018-7-14
10dB Attenuator R&S		DNF	DNF-004	2018-7-14
Test software	Rohde & Schwarz	EMC32	Version 9.26.01	N/A

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty				
Test Items	Extended Uncertainty			
Uncertainty for Conducted Emission 150kHz-30MHz (for test using High Voltage Probe TK9420(VT9420))	2.92 dB			
Uncertainty for Radiated Spurious Emission 25MHz-	Horizontal: 4.98dB;			
3000MHz	Vertical: 5.06dB;			
Uncertainty for Radiated Spurious Emission 3000MHz-	Horizontal: 4.95dB;			
18000MHz	Vertical: 4.94dB;			
Uncertainty for Radiated Spurious Emission	Horizontal: 5.14dB;			
18000MHz-40000MHz	Vertical: 5.12dB;			
Uncertainty for Conducted RF test with TS 8997	Power level test involved: 2.06dB Frequency test involved: 1.16×10 ⁻⁷			