Introduction

• Rappel : fonction factorielle.

```
let rec fact n=match n with \mid 0 -> 1 \mid _ -> n* fact (n-1);;
```

Introduction

• Rappel : fonction factorielle.

- Analyse :
 - Terminaison : pas de suites à valeurs dans $\mathbb N$ strict. décroissante. Un appel récursif n'est fait que pour n>0 et sur une valeur dans $\mathbb N$ strictement inférieure
 - Correction : récurrence immédiate sur n que fact n calcule bien n!.
 - Complexité : C(n) complexité de fact n. On a

$$C(n) = \underbrace{C(n-1)}_{\text{appel rec.}} + \underbrace{O(1)}_{\text{hors appel rec.}} \implies C(n) = O(n)$$

Terminaison: relations d'ordre

Relation d'ordre

 (E, \preceq) . \preceq relation d'ordre si :

- réflexivité : $\forall x \in E, x \leq x$.
- transitivité : $\forall x, y, z \in E$, $x \leq y$ et $y \leq z \Rightarrow x \leq z$.
- antisymétricité : $\forall x, y \in E \quad x \leq y \text{ et } y \leq x \Rightarrow x = y$.

Ordre total

Si de plus $\forall x, y \quad x \leq y$ ou $y \leq x$, l'ordre est total.

Éléments minimaux, plus petit élément

- x élément minimal : $\forall y \quad y \leq x \Rightarrow x = y$;
- x plus petit élément : $\forall y \quad x \leq y$.

Terminaison: relations d'ordre

Relation d'ordre

 (E, \preceq) . \preceq relation d'ordre si :

- réflexivité : $\forall x \in E, x \leq x$.
- transitivité : $\forall x, y, z \in E$, $x \leq y$ et $y \leq z \Rightarrow x \leq z$.
- antisymétricité : $\forall x, y \in E \quad x \leq y \text{ et } y \leq x \Rightarrow x = y.$

Ordre total

Si de plus $\forall x, y \quad x \leq y$ ou $y \leq x$, l'ordre est total.

Éléments minimaux, plus petit élément

- x élément minimal : $\forall y \quad y \leq x \Rightarrow x = y$;
- x plus petit élément : $\forall y \quad x \leq y$.

Attention

Un plus petit élément est minimal, mais la réciproque n'est en général pas vrai si l'ordre n'est pas total.

Terminaison : ordre bien fondé

Def.

 (E, \preceq) bien fondé si pas de suite infinie strictement décroissante $x_0 \succ x_1 \succ \cdots x_i \succ \cdots$.

Si \leq total, on dit que (E, \leq) bien ordonné.

Ex.

 (\mathbb{N},\leq) bien ordonné, (\mathbb{Q}_+,\leq) ne l'est pas.

Ordres sur \mathbb{N}^2 :

- Ordre produit : $(a, b) \leq (c, d) \Leftrightarrow a \leq c$ et $b \leq d$ pas total, bien fondé.
- Ordre lexico : $(a, b) \leq (c, d) \Leftrightarrow a < c \text{ ou } (a = c \text{ et } b \leq d)$ bien ordonné (exo).
- Ordre lexico gradué : $(a,b) \leq (c,d) \Leftrightarrow a+c < b+d \text{ ou } (a+b=c+d \text{ et } a \leq c)$ bien ordonné.

Terminaison : caractérisation des ensembles bien ordonnés

Prop.

 (E, \preceq) bien ordonné \Leftrightarrow toute partie non vide admet un plus petit élément.

Preuve

- \Rightarrow . Se donner une partie non vide A, $x_0 \in A$. Si A n'a pas de ppe, construire une suite strictement décroissante.
- \Leftarrow . $\{x,y\}$ a un ppe \Rightarrow ordre total. S'il existait $x_0 \succ x_1 \succ \cdots$ infinie, $\{x_i \mid i \in \mathbb{N}\}$ sans ppe.

Def.

 ${\sf Pr\'edicat} \ {\sf sur} \ {\it E} \ : {\sf application} \ {\sf de} \ {\it E} \ {\sf vers} \ \{{\sf Vrai}, \ {\sf Faux}\}.$

Def.

Prédicat sur E: application de E vers $\{Vrai, Faux\}$.

Principe d'induction

Th. (E, \preceq) bien fondé, \mathcal{M} éléments minimaux. \mathcal{P} prédicat. Si :

- $\forall x \in \mathcal{M}, \quad \mathcal{P}(x),$
- $\forall x \in E \backslash \mathcal{M}$, $(\forall y \prec x, \mathcal{P}(y)) \Rightarrow \mathcal{P}(x)$

Alors, pour tout $x \in E$, $\mathcal{P}(x)$.

Def.

Prédicat sur E: application de E vers {Vrai, Faux}.

Principe d'induction

Th. (E, \preceq) bien fondé, \mathcal{M} éléments minimaux. \mathcal{P} prédicat. Si :

- $\forall x \in \mathcal{M}, \quad \mathcal{P}(x),$
- $\forall x \in E \backslash \mathcal{M}$, $(\forall y \prec x, \mathcal{P}(y)) \Rightarrow \mathcal{P}(x)$

Alors, pour tout $x \in E$, $\mathcal{P}(x)$.

Preuve

Supposer $\exists x_0 \in E$ t.q non $(P(x_0))$ et construire une suite infinie strictement décroissante.

Def.

Prédicat sur E: application de E vers {Vrai, Faux}.

Principe d'induction

Th. (E, \preceq) bien fondé, \mathcal{M} éléments minimaux. \mathcal{P} prédicat. Si :

- $\forall x \in \mathcal{M}, \quad \mathcal{P}(x),$
- $\forall x \in E \backslash \mathcal{M}$, $(\forall y \prec x, \mathcal{P}(y)) \Rightarrow \mathcal{P}(x)$

Alors, pour tout $x \in E$, $\mathcal{P}(x)$.

Preuve

Supposer $\exists x_0 \in E$ t.q non $(P(x_0))$ et construire une suite infinie strictement décroissante.

Rem.

Généralise la récurrence (forte) sur \mathbb{N} .

Terminaison: application du principe d'induction

Terminaison d'une fonction récursive

f définie sur \mathcal{A} . Si $\exists \varphi : \mathcal{A} \to (E, \preceq)$ bien fondé tq :

- f termine sur $\mathcal{M}_{\mathcal{A}} = \{x \mid \varphi(x) \in \mathcal{M}\}$ avec \mathcal{M} éléments minimaux de E;
- $\forall x \in \mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}$, l'appel f(x) ne fait qu'un nombre fini (éventuellement aucun) d'appels à f, sur des y t.q $\varphi(y) \prec \varphi(x)$, et la terminaison des f(y) entraîne celle de f(x).

Alors f(x) termine $\forall x \in A$

Terminaison: application du principe d'induction

Terminaison d'une fonction récursive

f définie sur \mathcal{A} . Si $\exists \varphi : \mathcal{A} \to (E, \preceq)$ bien fondé tq :

- f termine sur $\mathcal{M}_{\mathcal{A}} = \{x \mid \varphi(x) \in \mathcal{M}\}$ avec \mathcal{M} éléments minimaux de E;
- $\forall x \in \mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}$, l'appel f(x) ne fait qu'un nombre fini (éventuellement aucun) d'appels à f, sur des y t.q $\varphi(y) \prec \varphi(x)$, et la terminaison des f(y) entraîne celle de f(x).

Alors f(x) termine $\forall x \in A$

Preuve

Principe d'induction sur (E, \preceq) avec la propriété :

 $\mathcal{P}(z)$: $\forall x \in \mathcal{A}$ t.q $\varphi(x) = z, f(x)$ termine.

Terminaison: application du principe d'induction

Terminaison d'une fonction récursive

f définie sur \mathcal{A} . Si $\exists \varphi : \mathcal{A} \to (E, \preceq)$ bien fondé tq :

- f termine sur $\mathcal{M}_{\mathcal{A}} = \{x \mid \varphi(x) \in \mathcal{M}\}$ avec \mathcal{M} éléments minimaux de E;
- $\forall x \in \mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}$, l'appel f(x) ne fait qu'un nombre fini (éventuellement aucun) d'appels à f, sur des y t.q $\varphi(y) \prec \varphi(x)$, et la terminaison des f(y) entraîne celle de f(x).

Alors f(x) termine $\forall x \in A$

Preuve

Principe d'induction sur (E, \preceq) avec la propriété :

 $\mathcal{P}(z)$: $\forall x \in \mathcal{A}$ t.q $\varphi(x) = z, f(x)$ termine.

Def. cas terminal

Si f(x) ne fait aucun appel rec, on dit que x est un cas terminal.

Terminaison : exemples

En pratique...

 φ sera simple : identité, projection sur un argument de f , longueur d'une liste/tableau, etc...

Terminaison : exemples

En pratique...

 φ sera simple : identité, projection sur un argument de f , longueur d'une liste/tableau, etc...

factorielle

Prendre $\varphi = \operatorname{id} !$

Terminaison: exemples

En pratique...

 φ sera simple : identité, projection sur un argument de f , longueur d'une liste/tableau, etc...

factorielle

Prendre $\varphi = id!$

Parcours de liste

```
let rec parcours l=match 1 with  | [] \rightarrow () \\ | \_::q \rightarrow \text{parcours } q  ;;  \varphi: \ell \mapsto \text{nombre d'éléments de } \ell.
```

Terminaison : exemples

Calcul de $\binom{n}{p}$ pour $n, p \in \mathbb{N}$.

Propositions?

Terminaison: exemples

Calcul de $\binom{n}{p}$ pour $n, p \in \mathbb{N}$.

Propositions?

Calcul de $\binom{n}{p}$ pour $n, p \in \mathbb{N}$.

Propositions?

Terminaison : exemples

Fonction d'Ackermann

```
let rec ack n p=match (n,p) with | 0, -> p+1 | -, 0 -> ack (n-1) 1 | -> ack (n-1) (ack n (p-1));
```

Terminaison: exemples

Fonction d'Ackermann

Fonctions de Morris (ne termine pas)

Correction

C'est facile, une fois la terminaison montrée. Même cadre que pour la terminaison : f définie sur \mathcal{A} . $\varphi : \mathcal{A} \to (E, \preceq)$, qu'on suppose surjective.

Théorème

Considérons sur l'ensemble E le prédicat suivant : $\mathcal{P}(z)$: « les f(x) pour $\varphi(x)=z$ ont la bonne valeur ». Supposons que

- $\forall x \in \mathcal{M}_{\mathcal{A}}, \, \mathcal{P}(x)$.
- pour tout x dans $A \setminus \mathcal{M}_A$, le calcul de f(x) ne requiert qu'un nombre fini d'appels d'arguments $(y_i)_{1 \le i \le N}$ qui vérifient $\varphi(y_i) \prec \varphi(x)$ et

$$(\forall i \leq N, \mathcal{P}(\varphi(y_i))) \Longrightarrow \mathcal{P}(\varphi(x))$$

Alors pour tout $x \in \mathcal{A}$, $\mathcal{P}(x)$

Preuve immédiate par induction.

Exemple : tri par sélection

```
let mini q=
 let rec aux m reste p=match p with
  | [] -> m, reste
   | x::r \text{ when } m \le x -> aux m (x::reste) r
  | x::r -> aux x (m::reste) r
 in aux (List.hd q) (List.tl q)
;;
let tri_selection q=match q with
 | [] -> []
 | _ -> let m,p=mini q in m::(tri_selection p)
;;
```

Complexité : introduction

• résoudre une récurrence de la forme $C(n) = \underbrace{\sum_{\text{coût appels rec.}} C(n_i)}_{\text{coût appels rec.}} + \underbrace{O(f(n))}_{\text{coût hors appels rec.}}$

Complexité : introduction

• résoudre une récurrence de la forme

$$C(n) = \sum_{\text{coût appels rec.}} C(n_i) + \underbrace{O(f(n))}_{\text{coût hors appels rec.}}$$

- Exemples :
 - factorielle : C(n) = C(n-1) + O(1);
 - tri par sélection récursif : C(n) = C(n-1) + O(n);
 - tri fusion : $C(n) = C(\lfloor n/2 \rfloor) + C(\lceil n/2 \rceil) + O(n)$;
 - Hanoi : C(n) = 2C(n-1) + O(1).

Premiers résultats

Prop (remplacer un terme par un terme plus simple)

Soit $(b_n), (b'_n)$ deux suites réelles positives. Si $b_n = O(b'_n)$ alors $\sum_{k=0}^n b_k = O\left(\sum_{k=0}^n b'_k\right)$.

Preuve : distinguer les cas $\sum_{k=0}^{+\infty} b_k' < +\infty$ et $\sum_{k=0}^{+\infty} b_k' = +\infty$.

Premiers résultats

Prop (remplacer un terme par un terme plus simple)

Soit $(b_n), (b'_n)$ deux suites réelles positives. Si $b_n = O(b'_n)$ alors $\sum_{k=0}^n b_k = O\left(\sum_{k=0}^n b'_k\right)$.

Preuve : distinguer les cas $\sum_{k=0}^{+\infty} b'_k < +\infty$ et $\sum_{k=0}^{+\infty} b'_k = +\infty$.

Sommations classiques

Soient
$$\alpha > 0$$
, $q > 1$. Alors $\sum_{k=0}^{n} k^{\alpha} = \Theta(n^{\alpha+1})$, $\sum_{k=0}^{n} q^k = \Theta(q^n)$.

Preuve:

- $\sum_{k=0}^{n} k^{\alpha} \leq \int_{0}^{n+1} t^{\alpha} dt$
- $\bullet \ \sum_{k=0}^n q^k = \frac{q^{n+1}-1}{q-1} = \Theta(q^n).$

Applications:

• Factorielle : $\forall n > 0$, C(n) = C(n-1) + O(1). On télescope :

$$C(n) = \sum_{k=1}^{n} (\underbrace{C(k) - C(k-1)}_{O(1)}) + \underbrace{C(0)}_{O(1)} = O(n)$$

Applications:

• Factorielle : $\forall n > 0$, C(n) = C(n-1) + O(1). On télescope :

$$C(n) = \sum_{k=1}^{n} \underbrace{C(k) - C(k-1)}_{O(1)} + \underbrace{C(0)}_{O(1)} = O(n)$$

• Tri sélection récursif : $\forall n > 0$, C(n) = C(n-1) + O(n). On télescope :

$$C(n) = \sum_{k=1}^{n} (\underbrace{C(k) - C(k-1)}_{O(k)}) + \underbrace{C(0)}_{O(1)} = O(n^{2})$$

Applications:

• Factorielle : $\forall n > 0$, C(n) = C(n-1) + O(1). On télescope :

$$C(n) = \sum_{k=1}^{n} \underbrace{(C(k) - C(k-1))}_{O(1)} + \underbrace{C(0)}_{O(1)} = O(n)$$

• Tri sélection récursif : $\forall n > 0$, C(n) = C(n-1) + O(n). On télescope :

$$C(n) = \sum_{k=1}^{n} (\underbrace{C(k) - C(k-1)}_{O(k)}) + \underbrace{C(0)}_{O(1)} = O(n^{2})$$

• Plus généralement, $C(n) = C(n-1) + O(n^{\alpha}) \Rightarrow C(n) = O(n^{\alpha+1})$, pour $\alpha \geq 0$.

Sommations plus complexes

Théorème

Soit (u_n) vérifiant $u_n=au_{n-1}+b_n$, avec $b_n>0$, a>0, $u_0\geq 0$. Si $b_n=O(b^n)$, on a suivant les cas :

- si b < a, alors $u_n = O(a^n)$;
- si b = a, alors $u_n = O(na^n)$;
- si b > a, alors $u_n = O(b^n)$.

Sommations plus complexes

Théorème

Soit (u_n) vérifiant $u_n=au_{n-1}+b_n$, avec $b_n>0$, a>0, $u_0\geq 0$. Si $b_n=O(b^n)$, on a suivant les cas :

- si b < a, alors $u_n = O(a^n)$;
- si b = a, alors $u_n = O(na^n)$;
- si b > a, alors $u_n = O(b^n)$.

Preuve à savoir faire!

- On écrit $\frac{u_n}{a^n} = \frac{u_{n-1}}{a^{n-1}} + \frac{b_n}{a^n}$. On peut alors télescoper : $\frac{u_n}{a^n} = \sum_{k=1}^{n-1} (u_k u_{k-1}) + u_0 = \sum_{k=1}^{n-1} \frac{b_k}{a^k} + u_0$. D'où $u_n = O\left(a^n \sum_{k=1}^{n-1} \frac{b_k}{a^k}\right)$.
- Avec $b_k = O(b^k)$, on discute facilement suivant les cas.

Sommations plus complexes

Théorème

Soit (u_n) vérifiant $u_n=au_{n-1}+b_n$, avec $b_n>0$, a>0, $u_0\geq 0$. Si $b_n=O(b^n)$, on a suivant les cas :

- si b < a, alors $u_n = O(a^n)$;
- si b = a, alors $u_n = O(na^n)$;
- si b > a, alors $u_n = O(b^n)$.

Preuve à savoir faire!

- On écrit $\frac{u_n}{a^n} = \frac{u_{n-1}}{a^{n-1}} + \frac{b_n}{a^n}$. On peut alors télescoper : $\frac{u_n}{a^n} = \sum_{k=1}^{n-1} (u_k u_{k-1}) + u_0 = \sum_{k=1}^{n-1} \frac{b_k}{a^k} + u_0$. D'où $u_n = O\left(a^n \sum_{k=1}^{n-1} \frac{b_k}{a^k}\right)$.
- Avec $b_k = O(b^k)$, on discute facilement suivant les cas.

Tours de Hanoï

$$C(n) = 2C(n-1) + O(1) \Rightarrow C(n) = O(2^n)$$
 (premier cas ici).

À résoudre

$$u_n=au_{\left\lfloor rac{n}{2}
ight
floor}+bu_{\left\lceil rac{n}{2}
ight
ceil}+b_n$$
 pour $n\geq 2$, $a,b\in\mathbb{N}$ non tous deux nuls.

À résoudre

$$u_n=au_{\left\lfloor rac{n}{2}
ight
floor}+bu_{\left\lceil rac{n}{2}
ight
ceil}+b_n$$
 pour $n\geq 2$, $a,b\in\mathbb{N}$ non tous deux nuls.

Tri fusion

$$a = b = 1$$
, $b_n = O(n)$.

À résoudre

$$u_n=au_{\left\lfloor rac{n}{2}
ight
floor}+bu_{\left\lceil rac{n}{2}
ight
ceil}+b_n$$
 pour $n\geq 2$, $a,b\in\mathbb{N}$ non tous deux nuls.

Tri fusion

$$a = b = 1, b_n = O(n).$$

Simplication

Si u'_n la même suite définie avec (b'_n) à la place de (b_n) , $b'_n > 0$, $b_n = O(b'_n)$, alors $u_n = O(u'_n)$.

À résoudre

$$u_n=au_{\left\lceil rac{n}{2}
ight
ceil}+bu_{\left\lceil rac{n}{2}
ight
ceil}+b_n$$
 pour $n\geq 2$, $a,b\in\mathbb{N}$ non tous deux nuls.

Tri fusion

$$a = b = 1, b_n = O(n).$$

Simplication

Si u'_n la même suite définie avec (b'_n) à la place de (b_n) , $b'_n > 0$, $b_n = O(b'_n)$, alors $u_n = O(u'_n)$.

Croissance

Si (b_n) croissante, alors (u_n) croissante.

Théorème « Diviser pour régner »

Théorème

À résoudre $u_n=au_{\left\lfloor\frac{n}{2}\right\rfloor}+bu_{\left\lceil\frac{n}{2}\right\rceil}+b_n$, avec $a,b\in\mathbb{N}$, non tous deux nuls, $u_1\geq 0$. On pose $\alpha=\log_2(a+b)$. Si $(b_n)_{n\geq 1}$ strictement positive vérifiant $b_n=O(n^\beta)$, on a :

- $\beta < \alpha$, $u_n = O(n^{\alpha})$.
- $\beta = \alpha$, $u_n = O(n^{\alpha} \log(n))$.
- $\beta > \alpha$, $u_n = O(n^{\beta})$.

Théorème « Diviser pour régner »

Théorème

À résoudre $u_n=au_{\left\lfloor\frac{n}{2}\right\rfloor}+bu_{\left\lceil\frac{n}{2}\right\rceil}+b_n$, avec $a,b\in\mathbb{N}$, non tous deux nuls, $u_1\geq 0$. On pose $\alpha=\log_2(a+b)$. Si $(b_n)_{n\geq 1}$ strictement positive vérifiant $b_n=O(n^\beta)$, on a :

- $\beta < \alpha$, $u_n = O(n^{\alpha})$.
- $\beta = \alpha$, $u_n = O(n^{\alpha} \log(n))$.
- $\beta > \alpha$, $u_n = O(n^{\beta})$.

Preuve

- On peut étudier $b_n = n^{\beta}$ exactement.
- On montre le résultat pour n puissance de 2, on conclut par croissance de (u_n) (si $n \le t \le 2n$, et $u_n = O(n^\alpha)$ pour n puissance de 2, alors $u_t = O(u_{2n}) = O((2n)^\alpha) = O(n^\alpha) = O(t^\alpha)$, de même pour les autres cas).
- Sur les puissances de 2, cas précédent : $v_p = u_{2^p}$, $v_p = (a+b)v_{p-1} + b_{2^p} = (a+b)v_{p-1} + O(2^{p\beta})$. Comparer (a+b) et 2^{β} revient à comparer $\log_2(a+b)$ et β .

Preuve ad-hoc pour le tri fusion

À savoir faire!

- $C(n) = C(\lfloor n/2 \rfloor) + C(\lceil n/2 \rceil) + O(n)$, on résout pour n une puissance de 2.
- Pour $p \ge 1$, on a donc $C(2^p) = 2C(2^{p-1}) + O(2^p)$. On divise par 2^p .
- $\frac{C(2^p)}{2^p} = \frac{C(2^{p-1})}{2^{p-1}} + O(1)$ pour $p \ge 1$. On télescope.

•
$$\frac{C(2^p)}{2^p} = \sum_{k=1}^p \underbrace{\left(\frac{C(2^k)}{2^k} - \frac{C(2^{k-1})}{2^{k-1}}\right)}_{O(1)} + \underbrace{C(1)}_{O(1)} = O(p).$$

- D'où $C(2^p) = O(p2^p)$. Avec $n = 2^p$, $p = \log_2(n)$.
- Ainsi $C(n) = O(n \log n)$ pour n puissance de 2.
- En admettant la croissance de C, on a pour $n \le t \le 2n$ et n une puissance de 2:

$$C(t) \leq C(2n) = O(2n\log(2n)) = O(n\log n) = O(t\log t).$$

En image...

