

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance

PSMA Industry Session, Semiconductors

30MHz 40MHz 50MHz 1MHz 10MHz 20MHz 30MHz 40MHz 50MHz 1MHz 10MHz 20MHz 30MHz 40MHz 50MHz 1MHz 10MHz

Dan Kinzer, CTO/COO

dan.kinzer@navitassemi.com
March 2017

Navitas GaN Power IC Navitas GaN Power

Power Electronics: Speed & Efficiency are Key

- Speed enables small size, low-cost and faster charging
- Efficiency enables energy savings
- With Silicon or Discrete GaN power devices, you can get one or the other
- With GaN power ICs, you get both at the same time with unequaled Speed & Efficiency

World's First AllGaN™ Power ICs

Fastest, most efficient GaN Power FETs

>20x faster than silicon >5x faster than cascoded GaN Proprietary design 15+ pending or issued patents

IDrive First & Fastest Integrated GaN Gate Drivers

>3x faster than any other gate driver Proprietary design 8+ pending patents

World's First AllGaN™ Power IC

Up to 40MHz switching, 5x higher density & 20% lower system cost

The Power of GaN Power ICs

... Unequaled Speed & Efficiency

Driver Circuits

Power Devices

Passive Components

Switching Frequency

Energy Efficiency

Silicon

85-90%

Discrete GaN

88-92%

GaN
Power ICs

90-95%

GaN Power IC – Fast & Efficient

- No overshoots, No spikes, No oscillations, S-curve' transitions,
- Zero Loss Turn-on (Soft switching) Zero Loss Turn-off (Integrated Gate Drive)

Speed & Integration -> Eliminate Turn-off Losses

External drivers

- Just 1-2 nH of gate loop inductance can cause unintended turn-on
- Gate resistors reduce spikes but create additional losses

Integrated GaN drivers (iDrive™)

- Eliminate the problem
- Negligible turn-off losses

GaN Power IC: Hi-Speed FET, Drivers & More

- Proprietary AllGaN™ technology
- Monolithic integration of GaN FET, GaN Driver, GaN Logic
- 650 V eMode
- 20x lower drive loss than silicon (<35 mW at 1 MHz)
- Driver impedance matched to power device
- Very fast (prop delay and turn-on/off of 10-20 ns)
- Zero inductance turn-off loop
- High dV/dt immunity (200 V/ns) with control
- Digital input
- Complete layout flexibility

Navitas

QFN 5x6mm

Fast Chargers ... going "GaN Fast" 3x Fast Charging with 50% Energy Savings

Existing Si-based 15W

100 kHz Up to 6.5 W/in³ 88% AllGaN™ 2016 25W

2x Faster Charging

300-500 kHz 11 W/in³ >92%

Smartphones & Tablets

45W Active Clamp Flyback & AllGaN Power ICs

NPCB

- 94.5% efficient at 220 V (94.2% at 120 V_{AC}, 93.1% at 90 V_{AC})
- 23.7 W/in³ density (uncased)
- 15.7 mm profile

45W CrCM ACF Operation

Magnetizing current (drawing)

- Inductor current merges with magnetizing current, achieves SR ZCS turn-off
- Switch-node voltage (V_{SW}) , SR FET voltage (V_{SR}) , leakage current (i_{LK}) and magnetizing current (I_{Lm})
- 120V_{AC}, 0.2A load, F_{SW} = 210kHz, Circulating Current minimized using Secondary Resonance

45 W ACF: High Efficiency, Cool Temperatures

AllGaN 2017: 1 MHz, 25 W ACF in 5W Size

MHz+ 25 W ACF Prototype Performance

Efficiency vs. Load

GaN Power ICs enable Hi-Density Adapters

3x Higher Density with 50% Energy Savings

100 kHz 5-10 W/in³ 88% AllGaN™ 2016 150W

2x Higher Density

300-500 kHz 17 W/in³ >93% AllGaN™ 2017 150W

3x Higher Density

>1 MHz 26.5 W/in³ >95%

Ultra-thin LED TV

Next-Gen
Gaming Consoles

150 W, 19 V: GaN Power IC vs. Si

Part#	Technology	V	Pack	$R_{DS(ON)} \ (typ. m\Omega)$	Q _G (typ. nC)	C _{OSS} (er) (typ. pF)	R x Q _G (mΩ.nC)	R x C _{OSS} (er) (mΩ.pF)
<u>STL34N65M5</u>	Si FET	650	8x8	99	62.5	63	6,187	6,237
<u>IPL60R199CP</u>	Si FET	600	8x8	180	32	69	5,760	12,420
<u>IPL60R299CP</u>	Si FET	600	8x8	270	22	46	5,940	12,420
NV6115	GaN Power IC	650	5x6	160	2.5	30	400	4,800
NV6117	GaN Power IC	650	5x6	110	4	45	440	4,950
GaN Benefit							14x	1.5-2.5x

Navitas GaN Power ICs (5x6mm QFN) PFC = 1x NV6117, LLC = 2x NV6115

Si FETs (8x8mm QFN)

a) PFC = 1x IPL60R299CP,

LLC = 2x IPL60R299CP

b) PFC = 1x IPL60R199CP,

LLC = 2x IPL60R299CP

Frequency-related Loss Kills Si

PFC = free-running 63-200 kHz, LLC = 300 kHz

Efficiency vs. Output Power, AC Line Voltage

Efficiency vs. AC Line Voltage (150W Full Load)

Navitas Navitas

CPES Center for Power Blactrones Systems

AllGaN 2017: MHz 150W Totem-pole + LLC

LLC V_{SW}

GaN-based Power Density = 35 W/in³

(Best commercial benchmark = 12W/in3)

1 MHz, 3.2 kW Server Supply – 70 W/in³

Multi-phase Totem-Pole CrCM + 2-phase Full-Bridge LLC

• Input : 220 V_{AC} (47-63 Hz)

Output : 48 V, 3.2 kW

Target Size: 200 x 80 x 41.5 mm (uncased)

Target Frequency:

• PFC = Variable frequency interleaving (500 kHz - 1.5 MHz)

• LLC = Fixed-frequency interleaved 1 MHz

Target Efficiency:

Quasi-Square Wave PFC Full-range ZVS Operation

- Totem Pole Configuration
- Current Mode Control
- Constant ZVS current point
- Simple rule: only change the current reference waveforms

V_{DC}=385V

V_{AC}=240V/RMS

R_{load}=102ohm

AllGaN Achieves Over 99% PFC Efficiency

3 GaN in Parallel, Vdd=6V

9.5uH, 7 Turns, Litz 46/660

Wireless Power ... Accelerated

Existing Silicon-based multi-stage wireless power

AC-DC Adapter 88% Efficiency DC-DC 94% Efficiency Power Amplifier 93% Efficiency

Wireless Transfer 90% Efficiency

Multi-stageEfficiency: 77%

GaN-enabled single stage: 90%

• 20% lower system cost

3x faster charging

Single-Stage Amplifier 90% Efficiency

- 650V GaN Power ICs
- 3-stages integrated in 1-stage
- 6.78MHz Operation
- High-Efficiency

AC-RF Single Stage, Efficient & Cost-effective

400V Phase-shifted Full Bridge with ZVS Coupled Inductors

GaN Phase-Shift vs. Load

Meets Key System
Requirements:
Constant output current
vs. load reactance

Cool AllGaN, No Chance for Silicon

Efficiency from AC line to Transmitter Coil

50W Prototype Board:

- a) Significant potential for further integration (control & GaN Power IC)
- b) Thermal performance (50W): Max GaN Power IC $T_{CASF} = 53^{\circ}C$

Device Speed

ZVS Current-Induced Loss

27 MHz, 40 MHz...

Class Phi-2 DC/AC converter

- 50% less loss than RF Si
- 16x smaller package
- Air-core inductors
- Minimal FET loss
- Negligible gate drive loss

Power Loss Breakdown (Active Components) Si 20 Si 15 10 5 GaN Total FET Loss Gate Drive Loss

Technology	V		Pack mm)	F _{SW} (MHz)	Eff. (%)	Power (W)
RF Si (ARF521) Microsemi. POWER PRODUCTS GROUP	500	M174 22x22	900	27.12	91%	150
(a) Navitas	650	QFN 5x6		27.12	96%	150
Navitas	030			40.00	93%	115

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance

PSMA Industry Session, Semiconductors

30MHz 40MHz 50MHz 1MHz 10MHz 20MHz 30MHz 40MHz 50MHz 1MHz 10MHz 20MHz 30MHz 40MHz 50MHz 1MHz 10MH.

Dan Kinzer, CTO/COO

dan.kinzer@navitassemi.com
March 2017

Navitas GaN Power IC Navitas GaN Power