Année universitaire 2023-2024

Université d'Artois Faculté des Sciences Jean Perrin Laboratoire de Mathématiques de Lens Licence 1 Maths-Info Semester I

Méthodologies et outils pour les mathématiques et l'informatique

1 Eléments de logique

Exercice 1.1 Parmi les propositions suivantes, lesquelles sont vraies, lesquelles sont fausses?

- (1) (2 < 3) et (3 divise 12).
- (2) (2 < 3) et (2 divise 5).
- (3) (2 < 3) ou (2 divise 5).
- (4) (2 < 3) et non(2 divise 5).
- (5) non(2 < 3) ou (2 divise 5).

Exercice 1.2 Soient P et Q deux propositions. On dit que la proposition "P ou exclusif Q" est vraie si P ou Q est vraie mais pas simultanément P et Q. Donner la table de vérité du connecteur logique "ou exclusif".

Exercice 1.3 Soient P, Q et R trois propositions. Montrer que les équivalences suivantes sont vraies :

- (1) non (non P) \iff P.
- (2) $(P \text{ et } P) \iff P$.
- (3) $(P \text{ ou } P) \iff P$.
- (4) non $(P \text{ ou } Q) \iff (\text{non } P) \text{ et } (\text{non } Q).$
- (5) non $(P \text{ et } Q) \iff (\text{non } P) \text{ ou } (\text{non } Q).$
- (6) P ou $(Q \text{ et } R) \iff (P \text{ ou } Q) \text{ et } (P \text{ ou } R)$.
- (7) $P \text{ et } (Q \text{ ou } R) \iff (P \text{ et } Q) \text{ ou } (P \text{ et } R).$
- (8) P et (Q et $R) \iff (P$ et Q) et R.
- (9) P ou (Q ou $R) \iff (P$ ou Q) ou R.
- $(10) (P \implies Q) \iff (\text{non } Q \implies \text{non } P).$

Exercice 1.4 Dire si l'implication $(1=2) \implies (2=3)$ est vraie ou fausse en justifiant votre réponse.

Exercice 1.5 (1) Soient P et Q deux propositions. Donner la négation et la contraposée de la proposition $P \implies Q$.

- (2) Donner la négation et la contraposée des propositions suivantes :
 - (a) Si tu échoues à tes examens, alors tu ne partiras pas en vacances.
 - (b) Si un entier naturel est pair, alors il est divisible par 4.

Exercice 1.6 Soient x et y deux nombres réels. Donner la contraposée de l'implication ci-dessous, puis montrer qu'elle est vraie :

$$(x \neq 2 \text{ et } y \neq 2) \implies 2x + 2y - xy - 2 \neq 2.$$

Exercice 1.7 Compléter les pointillés par le connecteur logique qui s'impose \implies , \iff , afin d'avoir une proposition vraie.

- (1) Pour x un réel, $x^2 = 4 \cdots x = 2$.
- (2) Pour x un réel, $x = \pi \cdots \sin(x) = 0$.
- (3) Pour n un entier naturel, n est impair \cdots n^2 est impair.

Exercice 1.8 Soient P, Q, R et S quatre propositions. Donner la négation des propositions suivantes :

- (1) P et (Q et R).
- $(2) (P ou Q) \Longrightarrow R.$
- (3) $(P \text{ et } Q) \implies (R \Longrightarrow S)$.

Exercice 1.9 Soient P et Q deux propositions. Quelle est la valeur de vérité de la proposition $(P \text{ et } Q) \Longrightarrow (\text{non } P \text{ ou } Q)$? Justifier votre réponse.

Exercice 1.10 Ecrire à l'aide des quantificateurs les propositions suivantes :

- (1) Le carré de tout réel est positif.
- (2) Certains réels sont strictement supérieurs à leurs carrés.
- (3) Aucun entier naturel n'est supérieur à tous les autres.
- (4) Il existe un entier naturel multiple de tous les autres.
- (5) Entre deux réels distincts, il existe un rationnel.
- (6) Etant donné trois nombres réels, il y en a au moins deux de même signe.

Exercice 1.11 Soit (u_n) une suite de nombres réels. Ecrire la négation des propositions suivantes :

- (1) $\forall x \in \mathbb{R} \quad \exists n \in \mathbb{N} \text{ tel que } x \leq n.$
- (2) $\forall \varepsilon > 0 \quad \exists q \in \mathbb{Q} \text{ tel que } 0 < q < \varepsilon.$
- (3) $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \text{ tel que } \forall n \geqslant N \ |u_n| < \varepsilon.$

Exercices supplémentaires

Exercice 1.12 Soient P et Q deux propositions. Montrer que $((P \implies Q) \text{ et } (Q \implies P))$ est logiquement équivalente à $P \iff Q$.

Exercice 1.13 Soient P, Q, R trois propositions. Montrer que les propositions suivantes sont vraies :

- $(1) (P \Longrightarrow Q \text{ et } Q \Longrightarrow R) \Longrightarrow (P \Longrightarrow R).$
- (2) $(P \iff Q \text{ et } Q \iff R) \implies (P \iff R)$

Exercice 1.14 Nier les propositions suivantes :

- (1) Dans toutes les écuries, tous les chevaux sont noirs.
- (2) Tous les habitants de la rue du Havre nés au mois de février gagneront au loto et prendront leur retraite avant 50 ans".
- (3) $\forall \varepsilon > 0 \quad \exists \alpha > 0 \text{ tel que } |x \frac{1}{2}| < \alpha \implies |2x 1| < \varepsilon.$

Exercice 1.15 Soient E l'ensemble des étudiants, S l'ensemble des jours de la semaine et pour un étudiant x, $h_j(x)$ l'heure de réveil de x le jour j. Soit P la proposition : "Tout étudiant se réveille au moins un jour de la semaine avant 8h".

- (1) Ecrire avec des quantificateurs la proposition P.
- (2) Ecrire la négation de P avec des quantificateurs, puis en français.

2 Ensembles

Exercice 2.1 Les notations \emptyset , $\{\emptyset\}$, $\{\{\emptyset\}\}$ désignent-elles le même ensemble? Justifier.

Exercice 2.2 Soient A et B deux parties d'un ensemble E. Ecrire avec des quantificateurs les assertions suivantes ainsi que leurs négations : $A \subset B$; $A \cap B = \emptyset$; $A \subset \mathbb{C}^B_E$; $A \setminus B = \emptyset$. Y en a-t-il qui sont équivalentes, lesquelles?

Exercice 2.3 Soient A, B et C trois ensembles. Montrer les égalités suivantes : $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ et $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Exercice 2.4 (1) Soient A et B des parties d'un ensemble E. Montrer qu'on a

$$\mathbb{C}_E^{A \cup B} = \mathbb{C}_E^A \cap \mathbb{C}_E^B \quad \text{ et } \quad \mathbb{C}_E^{A \cap B} = \mathbb{C}_E^A \cup \mathbb{C}_E^B.$$

(2) $G\acute{e}n\acute{e}ralisation :$ Soit $(A_i)_{i\in I}$ une famille de parties d'un ensemble E indexée par un ensemble I. Montrer qu'on a $\mathbb{C}_E^{\cap_{i\in I}A_i} = \cup_{i\in I}\mathbb{C}_E^{A_i} \quad \text{et} \quad \mathbb{C}_E^{\cup_{i\in I}A_i} = \cap_{i\in I}\mathbb{C}_E^{A_i}.$

Exercice 2.5 Soient A, B et C des parties d'un ensemble E. Montrer qu'on a :

- $(1)\ A\subset B\Longleftrightarrow \mathbb{C}^B_E\subset \mathbb{C}^A_E.$
- (2) $(A \cup C \subset A \cup B \text{ et } A \cap C \subset A \cap B) \Longrightarrow C \subset B$.
- (3) $(A \cup C = A \cup B \text{ et } A \cap C = A \cap B) \Longrightarrow C = B.$

Exercice 2.6 Soient A, B et C des parties d'un ensemble E. Montrer qu'on a :

- $(1) \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C).$
- $(2)\ A\setminus (B\cap C)=(A\setminus B)\cup (A\setminus C).$
- $(3) A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C).$

Exercice 2.7 Pour E un ensemble, on note $\mathcal{P}(E)$ l'ensemble de ses parties.

Donner les éléments de l'ensemble $\mathcal{P}(\{1,2,3\})$.

Exercice 2.8 Vrai ou faux? Justifier par une preuve ou un contre-exemple:

- (1) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
- (2) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.

Exercice 2.9 Soient A, B et C trois ensembles. Montrer :

- $(1) A \times (B \cap C) = (A \times B) \cap (A \times C).$
- $(2) A \times (B \cup C) = (A \times B) \cup (A \times C).$

Exercice 2.10 Soient A une partie d'un ensemble E et B une partie d'un ensemble F. Montrer qu'on a $\mathbb{C}_{E\times F}^{A\times B}=(\mathbb{C}_E^A\times F)\cup(E\times\mathbb{C}_F^B)$.

Exercice 2.11 Pour tout $k \in \mathbb{N}$, on pose $A_k = \{n \in \mathbb{N} \mid n \leq k\}$. Que valent $\cap_{k \in \mathbb{N}} A_k$ et $\cup_{k \in \mathbb{N}} A_k$, et leurs complémentaires dans \mathbb{N} ?

Exercice 2.12 Pour tout $k \in \mathbb{N}$, on pose $A_k = \{n \in \mathbb{N} \mid n \text{ est un multiple de } k\}$. Que valent $\cap_{k \in \mathbb{N}} A_k$ et $\cup_{k \in \mathbb{N}} A_k$?

Exercice 2.13 Soient A et B des parties d'un ensemble E.

- (1) (i) Trouver une condition nécessaire et suffisante pour qu'il existe une partie X de E tel que $A\cap X=B$.
- (ii) Trouver une condition nécessaire et suffisante pour qu'il existe une partie X de E tel que $A \cup X = B$.
- (2) Si la condition nécessaire et suffisante est vérifiée, trouver tous les X vérifiant l'égalité (dans chaque cas).

3 Applications

Exercice 3.1 Soient $E = \{a, b, c\}$ et $F = \{d, e\}$. Définir si possible une application f de E dans F telle que :

- (1) $\forall y \in F \quad \exists x \in E \text{ tel que } f(x) = y.$
- (2) $\exists x \in E \text{ tel que } \forall y \in F \ f(x) = y.$

Exercice 3.2 Soient E, F deux ensembles et f une application de E dans F. Ecrire avec des quantificateurs les assertions suivantes :

- (1) f est injective.
- (2) f n'est pas injective.
- (3) f est surjective.
- (4) f n'est pas surjective.

Exercice 3.3 Dire si f est injective, surjective, bijective. Si f est bijective, déterminer f^{-1} .

- (1) $f: \mathbb{R} \longrightarrow \mathbb{R}$ tel que $x \mapsto x^2$.
- (2) $f: \mathbb{N} \longrightarrow \mathbb{N}$ tel que $n \mapsto n+1$.
- (3) $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ tel que $n \mapsto n+1$.
- (4) $f: \mathbb{N} \setminus \{0\} \longrightarrow \mathbb{Z}$ qui à n associe n/2 si n est pair, (-n+1)/2 si n est impair.

Exercice 3.4 Soit $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \times \mathbb{R}$ l'application donnée par : f(x,y) = (x+y,x-y) pour tout $(x,y) \in \mathbb{R} \times \mathbb{R}$. Montrer que f est bijective et déterminer f^{-1} .

Exercice 3.5 Soient E et F des ensembles, f une application de E dans F, A une partie de E et B une partie de F. Ecrire avec des quantificateurs :

- (1) $y \in f(A)$.
- (2) la négation de $y \in f(A)$.
- (3) $x \in f^{-1}(B)$.
- (4) la négation de $x \in f^{-1}(B)$.

Exercice 3.6 Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R} \longrightarrow \mathbb{R}$ les applications données par : f(x) = x - 1 et $g(x) = x^2 + 2x$ pour tout $x \in \mathbb{R}$.

- (1) Donner l'expression de $g \circ f(x)$ pour tout $x \in \mathbb{R}$.
- (2) Dire si $g \circ f$ est injective, surjective.
- (3) Déterminer $(g \circ f)([1,2])$ et $(g \circ f)^{-1}([-1,0])$.

Exercice 3.7 Soit f l'application de \mathbb{N} dans \mathbb{N} définie par : f(n) = n + 1 pour tout $n \in \mathbb{N}$.

- (1) Montrer qu'il existe des applications g de \mathbb{N} dans \mathbb{N} tel que $g \circ f = \mathrm{Id}_{\mathbb{N}}$.
- (2) Montrer qu'il n'existe aucune application h de \mathbb{N} dans \mathbb{N} tel que $f \circ h = \mathrm{Id}_{\mathbb{N}}$.

Exercice 3.8 Soit $f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ l'application donnée par : f(m,n) = m+n pour tout $(m,n) \in \mathbb{N} \times \mathbb{N}$.

- (1) L'application f est-elle injective? surjective? Justifier.
- (2) Déterminer $f(\mathbb{N} \times \{1\})$ et $f^{-1}(\{3\})$.

Exercice 3.9 Soit $f: \mathbb{N} \longrightarrow \mathbb{Z}$ l'application donnée par : $f(x) = -x^2 + 5$ pour tout $x \in \mathbb{N}$. Déterminer $f^{-1}(\mathbb{N})$ et $f^{-1}(\{-4,0,1,6\})$.

Exercice 3.10 On considère quatre ensembles A, B, C, D et des applications $f: A \to B, g: B \to C$, $h: C \to D$. Montrer que :

- (1) $g \circ f$ injective $\Rightarrow f$ injective.
- (2) $g \circ f$ surjective $\Rightarrow g$ surjective.
- (3) $(g \circ f \text{ et } h \circ g \text{ sont bijectives}) \Leftrightarrow (f, g \text{ et } h \text{ sont bijectives}).$

Exercices supplémentaires

Exercice 3.11 Soit $f: E \longrightarrow E$ une application tel que $f \circ f \circ f = f$. Montrer qu'on a :

f est injective \iff f est surjective.

Exercice 3.12 Soit $f: E \longrightarrow E$ une application telle que $f \circ f = f$. Montrer qu'on a :

 $(f \text{ est injective ou surjective}) \iff f = \mathrm{Id}_E.$

Exercice 3.13 Soient E et F deux ensembles et $f: E \to F$ une application. Démontrer que :

- $(1) \ \forall A, B \in \mathcal{P}(E), \quad A \subset B \Rightarrow f(A) \subset f(B).$
- $(2) \ \forall A, B \in \mathcal{P}(E), \quad f(A \cap B) \subset f(A) \cap f(B).$
- (3) $\forall A, B \in \mathcal{P}(E), \quad f(A \cup B) = f(A) \cup f(B).$
- $(4) \ \forall A, B \in \mathcal{P}(F), \quad f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B).$ $(5) \ \forall A \in \mathcal{P}(F), \quad f^{-1}(\mathbb{C}_F^A) = \mathbb{C}_E^{f^{-1}(A)}.$

Exercice 3.14 Soient E et F deux ensembles, f une application de E dans F. Montrer que les assertions suivantes sont équivalentes :

- (1) f est injective.
- (2) $\forall X \in \mathcal{P}(E), f^{-1}(f(X)) = X.$
- (3) $\forall P, Q \in \mathcal{P}(E), \quad f(P \cap Q) = f(P) \cap f(Q).$

Exercice 3.15 Soient E et F deux ensembles, f une application de E dans F. Montrer que les assertions suivantes sont équivalentes :

- (1) f est surjective.
- $(2) \ \forall \ Y \in \mathcal{P}(F) \quad f(f^{-1}(Y)) = Y.$

Exercice 3.16 (1) Soient a, b deux réels. Donner les conditions nécessaires et suffisantes sur α et β pour que l'équation $x^2 - \alpha x + \beta = 0$ ait pour zéros les réels a et b.

- (2) Soit $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \times \mathbb{R}$ l'application donnée par : f(x,y) = (x+y,xy) pour tout $(x,y) \in \mathbb{R} \times \mathbb{R}$.
- (i) Montrer que f n'est pas injective.
- (ii) Selon les valeurs de (α, β) dans $\mathbb{R} \times \mathbb{R}$, déterminer l'image réciproque par f de $\{(\alpha, \beta)\}$.
- (iii) f est-elle surjective?

Exercice 3.17 Soit A une partie d'un ensemble E. On appelle fonction caractéristique de A l'application f de E dans l'ensemble $\{0,1\}$ donnée par :

$$f(x) = \begin{cases} 0 & \text{si } x \notin A \\ 1 & \text{si } x \in A \end{cases}$$

Soit A et B deux parties de E, f et g leurs fonctions caractéristiques respectives.

- (1) Montrer que $A = B \Leftrightarrow f = g$.
- (2) Montrer que les fonctions suivantes sont les fonctions caractéristiques d'ensembles que l'on déterminera :
- (i) 1 f.
- (ii) fg.
- (iii) f + g fg.

Exercice 3.18 Soient E un ensemble et A, B deux parties de E. On désigne par $A \triangle B$ l'ensemble $(A \cup B) \setminus (A \cap B)$. Dans les questions ci-après il pourra être commode d'utiliser la notion de fonction caractéristique introduite dans l'exercices 3.17.

- (1) Démontrer que $A \triangle B = (A \setminus B) \cup (B \setminus A)$.
- (2) Démontrer que pour toutes parties A, B, C de E, on a $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.
- (3) Démontrer qu'il existe une unique partie X de E telle que pour toute partie A de E, on ait $A \triangle X = X \triangle A = A$.
- (4) Démontrer que pour toute partie A de E, il existe une partie A' de E et une seule telle que $A\triangle A'=A'\triangle A=X$. (X comme dans (3).)

Exercice 3.19 Soit $f:[0,1] \rightarrow [0,1]$ l'application donnée par :

$$f(x) = \begin{cases} x & \text{si } x \in [0, 1] \cap \mathbb{Q}, \\ 1 - x & \text{sinon.} \end{cases}$$

Démontrer que $f \circ f = \mathrm{Id}_{[0,1]}$.

Exercice 3.20 Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications. Montrer qu'on a :

- (1) $(g \circ f \text{ est surjective et } g \text{ est injective}) \implies f \text{ est surjective.}$
- (2) $(g \circ f)$ est injective et f est surjective) $\implies g$ est injective.

4 Relations d'ordre

Exercice 4.1 On considère sur $\mathbb{N} \setminus \{0\}$ la relation binaire \mathcal{R} définie par :

$$\forall m, n \in \mathbb{N} \setminus \{0\}, \quad m\mathcal{R}n \iff \exists k \in \mathbb{N} \setminus \{0\} \text{ tel que } n = m^k.$$

- (1) Montrer que \mathcal{R} est une relation d'ordre.
- (2) Donner le plus petit et le plus grand élément de $\{2, 4, 16\}$.
- (3) L'ensemble $\{2,3\}$ admet-il un majorant?

Exercice 4.2 On définit sur $\mathbb{N} \setminus \{0\}$ la relation binaire \mathcal{R} par :

$$\forall m, n \in \mathbb{N} \setminus \{0\}, m \mathcal{R} n \iff m \text{ divise } n.$$

- (1) Montrer que \mathcal{R} est une relation d'ordre sur $\mathbb{N} \setminus \{0\}$.
- (2) \mathcal{R} est-elle une relation d'ordre total?
- (3) Représenter le diagramme de Hasse de l'ensemble $\{2, 3, 6, 21, 42\}$.
- (4) $\mathbb{N} \setminus \{0\}$ muni de la relation d'ordre \mathcal{R} possède-t-il un plus petit élément? un plus grand élément?
- (5) Donner les éléments minimaux de $\mathbb{N} \setminus \{0, 1\}$.

Exercice 4.3 La relation "divise" est-elle une relation d'ordre sur $\mathbb{Z} \setminus \{0\}$?

Exercice 4.4 On considère sur $\mathbb{N} \times \mathbb{N}$ la relation binaire \mathcal{P} donnée par :

$$\forall (m,n), (p,q) \in \mathbb{N} \times \mathbb{N}, (m,n)\mathcal{P}(p,q) \iff m \leqslant p \text{ et } n \leqslant q.$$

- (1) Montrer que \mathcal{P} est une relation d'ordre. Est-ce une relation d'ordre total?
- (2) Donner un majorant et un minorant de l'ensemble $\{(3,1),(2,6),(2,2),(0,1),(7,0)\}$.

Exercice 4.5 On définit sur $\mathbb{R} \times \mathbb{R}$ la relation binaire \mathcal{S} par :

$$\forall (x,y), (x',y') \in \mathbb{R} \times \mathbb{R}, (x,y)\mathcal{S}(x',y') \iff |x'-x| \leqslant y'-y.$$

- (1) Montrer que S est une relation d'ordre sur $\mathbb{R} \times \mathbb{R}$.
- (2) L'ordre est-il total?

Exercice 4.6 (Ordre lexicographique) On considère sur $\mathbb{R} \times \mathbb{R}$ la relation binaire \mathcal{L} définie par :

$$\forall (x,y), (x',y') \in \mathbb{R} \times \mathbb{R}, (x,y)\mathcal{L}(x',y') \iff x < x' \text{ ou } (x=x' \text{ et } y \leqslant y').$$

- (1) Montrer que \mathcal{L} est une relation d'ordre total.
- (2) Déterminer l'ensemble des majorants du singleton $\{(x,y)\}$, et le représenter dans $\mathbb{R} \times \mathbb{R}$.

Exercice 4.7 On considère les ensembles $A = \{1, 2, 4, 7\}$ et $B = \{0, 3, 5\}$ munis de l'ordre usuel. Écrire les éléments de $A \times B$ dans l'ordre lexicographique.

Exercice 4.8 Soit E un ensemble muni d'une relation d'ordre \leq . On définit sur $\mathcal{P}(E) \setminus \{\emptyset\}$ la relation binaire \mathcal{R} donnée par :

$$\forall \ A, B \in \mathcal{P}(E) \setminus \{\emptyset\}, \ A \mathcal{R} B \iff \begin{cases} A = B \text{ ou} \\ \forall \ a \in A, \forall \ b \in B \ a \leqslant b. \end{cases}$$

Montrer que \mathcal{R} est une relation d'ordre sur $\mathcal{P}(E) \setminus \{\emptyset\}$.

Exercice 4.9 Soit E un ensemble non vide muni d'une relation d'ordre \leq . On note \mathcal{E} l'ensemble des couples (A, f) tels que A soit une partie non vide de E et $f: A \longrightarrow E$ une application. On considère sur \mathcal{E} la relation binaire \mathcal{R} définie par :

$$\forall \ (A,f), (B,g) \in \mathcal{E}, \quad (A,f)\mathcal{R}(B,g) \iff \begin{cases} A \subset B \text{ et} \\ \forall \, x \in A, \, \, f(x) \leqslant g(x). \end{cases}$$

- (1) Montrer que \mathcal{R} est une relation d'ordre sur \mathcal{E} . L'ordre est-il total?
- (2) Soient (A, f), $(B, g) \in \mathcal{E}$. Trouver une condition nécessaire et suffisante pour que la partie $\{(A, f), (B, g)\}$ soit majorée?
- (3) Même question avec minorée.

5 Récurrence

Exercice 5.1 Montrer par récurrence les affirmations suivantes :

(1)
$$\forall n \in \mathbb{N} \setminus \{0\}, \quad \sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}.$$

(2)
$$\forall n \in \mathbb{N} \setminus \{0\}, \quad \sum_{k=1}^{n-1} k \times (k!) = (n+1)! - 1.$$

(3) $\forall n \in \mathbb{N}$, $3^{2n+1} + 2^{n+2}$ est divisible par 7.

$$(4) \ \forall \ n \in \mathbb{N} \setminus \{0\}, \quad \frac{n}{2} \leqslant \sum_{k=1}^{n} \frac{k}{k+1} \leqslant \frac{n^2}{n+1}.$$

(5)
$$\forall n \in \mathbb{N}, \ \forall q \in \mathbb{R} \setminus \{1\}, \ \sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}.$$

(6)
$$\forall n \in \mathbb{N} \setminus \{0\}, \quad \sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}.$$

(7) $\forall n \in \mathbb{N}$, $10^{6n+2} + 10^{3n+1} + 1$ est divisible par 111. (Utiliser que $10^3 = 9 \times 111 + 1$.)

(8)
$$\forall n \in \mathbb{N} \setminus \{0\}, \quad 1 + \frac{n}{2} \leqslant \sum_{k=1}^{2^n} \frac{1}{k}.$$

(9)
$$\forall n \in \mathbb{N} \setminus \{0\}, \quad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Exercice 5.2 Soit $f: \mathbb{N} \longrightarrow \mathbb{N}$ une application strictement croissante, c'est-à-dire, f(n) < f(m) lorsque n < m. Montrer que $f(n) \ge n$ pour tout $n \in \mathbb{N}$.

Exercice 5.3 Soit $f: \mathbb{N} \longrightarrow \mathbb{N}$ l'application donnée par : f(x) = 4x + 3 pour tout $x \in \mathbb{N}$. On pose $f^1, f^2, f^3, \dots, f^n$ les applications $f, f \circ f, f^2 \circ f, \dots, f^{n-1} \circ f$. Déterminer une formule donnant $f^n(x)$ pour tout $n \in \mathbb{N} \setminus \{0\}$ et $x \in \mathbb{N}$.

Exercice 5.4 Soit $f: \mathbb{N} \longrightarrow \mathbb{N}$ une application vérifiant $: \forall n \in \mathbb{N}, f(n) + f^2(n) + f^3(n) = 3n$.

- (1) Montrer que f est injective.
- (2) Montrer que $f = \mathrm{Id}_{\mathbb{N}}$.

Exercice 5.5 Soient $n \in \mathbb{N} \setminus \{0\}$ et $a_1, \dots, a_n \in [0, 1]$. Montrer que

$$1 - \left(\sum_{k=1}^{n} a_k\right) \leqslant \prod_{k=1}^{n} (1 - a_k).$$

Exercice 5.6 Montrer par récurrence les affirmations suivantes :

$$(1) \ \forall \ n \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{4} + \frac{1}{2^{n+1}} \leqslant \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{2^3}\right) \dots \left(1 - \frac{1}{2^n}\right).$$

(2)
$$\forall n \in \mathbb{N} \setminus \{0\}, \quad \sqrt{n} \leqslant \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leqslant 2\sqrt{n}.$$

Exercice 5.7 Soient
$$n \in \mathbb{N} \setminus \{0\}$$
 et $a_1, \dots, a_n \in \mathbb{R}$. Montrer que $\left(\sum_{k=1}^n a_k\right)^2 \leqslant n \left(\sum_{k=1}^n a_k^2\right)$.

Exercice 5.8 On se propose de déterminer toutes les applications f de $\mathbb N$ dans $\mathbb N$ vérifiant la propriété suivante :

$$\forall n \in \mathbb{N}, \quad f(n+1) > f(f(n)) \tag{P}$$

- (1) Donner un exemple d'une application $f: \mathbb{N} \longrightarrow \mathbb{N}$ vérifiant la propriété (P).
- (2) Soit $f: \mathbb{N} \longrightarrow \mathbb{N}$ une application vérifiant la propriété (P). Pour tout $n \in \mathbb{N}$, soit l'ensemble $I_n = \{k \in \mathbb{N} \mid k \geqslant n\}$.
- (a) Montrer par récurrence que $f(I_n) \subset I_n$ pour tout $n \in \mathbb{N}$.
- (b) Montrer que f est strictement croissante.
- (c) En déduire que $f = Id_{\mathbb{N}}$.

6 Arithmétique dans \mathbb{Z}

Exercice 6.1 Soient $a, b, c, d \in \mathbb{Z} \setminus \{0\}$. Dire si les propriétés suivantes sont vraies ou fausses, en justifiant votre réponse.

- (1) Si a divise b et c, alors $c^2 2b$ est multiple de a.
- (2) S'il existe u et v entiers tels que au + bv = d alors $\operatorname{pgcd}(a, b) = |d|$.
- (3) Si a et b sont premiers entre eux, alors a et b^3 sont premiers entre eux.
- (4) Si a divise b + c et b c, alors a divise b et a divise c.
- (5) Si 19 divise ab, alors 19 divise a ou 19 divise b.
- (6) Si a est multiple de b et si c est multiple de d, alors a + c est multiple de b + d.
- (7) Si 4 ne divise pas bc, alors b ou c est impair.
- (8) Si a divise b et b ne divise pas c, alors a ne divise pas c.
- (9) Si 5 divise b^2 , alors 25 divise b^2 .
- (10) Si 12 divise b^2 , alors 4 divise b.
- (11) Si 12 divise b^2 , alors 36 divise b^2 .
- (12) Si 91 divise ab, alors 91 divise a ou 91 divise b.

Exercice 6.2 Sachant que $24\,396\,465 = 6453 \times 3780 + 4125$, quel est le quotient de la division Euclidienne de $24\,396\,465$ par 3780.

Exercice 6.3 Dans la division Euclidienne de a par b, le quotient est q et le reste est r. On suppose que q = r = 37. Quel est la plus petite valeur possible que peut prendre a?

Exercice 6.4 Soit $n \in \mathbb{N}$ dont le reste de la division Euclidienne par 5 est 2 ou 3. Montrer que $n^2 + 1$ est divisible par 5.

Exercice 6.5 Soit $n \in \mathbb{N} \setminus \{0\}$. On divise 2003 par n le reste est égal à 8. On divise 3002 par n, le reste obtenu est 27. Que vaut n?

Exercice 6.6 Soit $n \in \mathbb{Z}$. Montrer que soit 8 divise n^2 , soit 8 divise $n^2 - 1$, soit 8 divise $n^2 - 4$. (Discuter sur la parité de n.)

Exercice 6.7 Montrer que $\sqrt{2} \notin \mathbb{Q}$.

Exercice 6.8 Trouver tous les entiers $n \in \mathbb{Z} \setminus \{1\}$ tel que n-1 divise n^2+1 . (Utiliser que $n^2+1=(n^2-1)+2$).

Exercice 6.9 Soit $p \in \mathbb{N} \setminus \{0,1\}$. Montrer que si p divise (p-1)! + 1, alors p est premier.

Exercice 6.10 (1) Pour $m, n \in \mathbb{N}$ tel que $1 < n \le m$, montrer que m! + n n'est pas premier. (2) Donner une liste de 100 entiers consécutifs non premiers.

Exercice 6.11 Soient $a, b \in \mathbb{Z} \setminus \{0\}$.

- (1) Montrer que s'il existe $q \in \mathbb{Z}$ tel que a = bq, alors $\operatorname{pgcd}(a, b) = |b|$.
- (2) Montrer que s'il existe $q \in \mathbb{Z}$ et $\exists r \in \mathbb{Z} \setminus \{0\}$ tels que a = bq + r, alors $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(b, r)$. (dans l'assertion (2) r n'est pas nécessairement le reste de la division Euclidienne de a par b.)

Exercice 6.12 (Application de l'exercice 6.11)

- (1) Déterminer pgcd(1306, 128) et trouver deux entiers $n, m \in \mathbb{Z}$ tels que 1306n + 128m = 4.
- (2) Déterminer $\operatorname{pgcd}(6n^2 + 4n + 9, 3n + 2)$ pour tout $n \in \mathbb{N}$.
- (3) Soient $a, b \in \mathbb{N} \setminus \{0\}$. Montrer que $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(17a + 5b, 7a + 2b)$.

Exercice 6.13 (1) Soient $a, b, c, d \in \mathbb{N} \setminus \{0\}$. On suppose que $\operatorname{pgcd}(c, d) = 1$ et que a divise bc et bd. Montrer que a divise b.

(2) Soient $a, b \in \mathbb{Z} \setminus \{0\}$ et $d \in \mathbb{N} \setminus \{0\}$ un diviseur commun à a et b. Montrer l'équivalence suivante :

$$d = \operatorname{pgcd}(a,b) \quad \Longleftrightarrow \quad \operatorname{pgcd}(\frac{a}{d},\frac{b}{d}) = 1.$$

(3) Soient $a, b, c \in \mathbb{Z} \setminus \{0\}$. Montrer qu'on a $\operatorname{pgcd}(ac, bc) = |c| \operatorname{pgcd}(a, b)$.

Exercice 6.14 On souhaite trouver tous les couples $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ vérifiant l'équation

$$325x + 299y = 39 \tag{E}$$

- (1) Déterminer pgcd(325, 299).
- (2) Déterminer deux entiers m et n tels que 325m + 299n = pgcd(325, 299).
- (3) Déterminer une solution particulière de l'équation (E).
- (4) Trouver toutes les solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ de l'équation (E).

Exercice 6.15 (1) Soient $a, b, c \in \mathbb{N} \setminus \{0\}$. Montrer que $a^b - 1$ divise $a^{bc} - 1$.

(2) En déduire que si $2^p - 1$ est premier pour $p \in \mathbb{N} \setminus \{0\}$, alors p est premier.

Exercice 6.16 Combien 15! admet-il de diviseurs positifs?

Exercice 6.17 Déterminer les couples d'entiers naturels de pgcd 18 et de somme 360. De même avec pgcd 18 et produit 6480.

Exercice 6.18 Soit S l'ensemble des couples (x, y) d'entiers naturels non nuls tels que : x < y et pgcd(x, y) = y - x.

- (1) Calculer le pgcd(363, 484). Le couple (363, 484) appartient-il à S?
- (2) Soit n un entier naturel non nul. Le couple (n, n+1) appartient-il à S? Justifier votre réponse.
- (3) (a) Montrer que (x, y) appartient à S si et seulement si il existe un entier naturel k non nul tel que x = k(y x) et y = (k + 1)(y x).
- (b) En déduire que pour tout couple (x, y) de S, on a : ppcm(x, y) = k(k+1)(y-x).
- (c) Déterminer les couples (x, y) de S tels que ppcm(x, y) = 30.

7 Nombres complexes

Exercice 7.1 Soient les nombres complexes z = 1 - 2i et z' = 3 + 4i.

- (1) Calculer z + z' et zz'.
- (2) Donner la forme algébrique de $\frac{z}{z'}$.

Exercice 7.2 Pour chacun des complexes ci-dessous, déterminer le module, un argument puis donner la forme trigonométrique :

$$1+i, \ \sqrt{3}-i, \ (1+i)(\sqrt{3}-i), \ \frac{1+i}{\sqrt{3}-i}, \ \left(\frac{1+i}{\sqrt{3}-i}\right)^n \text{ pour } n \in \mathbb{N}.$$

Exercice 7.3 Soit $z \in \mathbb{C}$. Montrer que si |2z - 1| = |z - 2|, alors |z| = 1.

Exercice 7.4 Soient
$$z, z' \in \mathbb{C}$$
 tels que $zz' \neq -1$ et $|z| = |z'| = 1$. Montrer que $\frac{z+z'}{1+zz'}$ est un réel.

Exercice 7.5 Déterminer et représenter graphiquement dans le plan complexe les points M_z dont l'affixe z vérifie :

- $(1) z + \overline{z} = 1.$
- (2) |z-1| = |z-i|.
- (3) $|z-1| \leq |z-i|$.

- Exercice 7.6 Soit z un nombre complexe différent de 1. (1) Montrer qu'on a $\operatorname{Re}\left(\frac{1+z}{1-z}\right) = \frac{1-|z|^2}{|1-z|^2}$ et $\operatorname{Im}\left(\frac{1+z}{1-z}\right) = \frac{2\operatorname{Im}(z)}{|1-z|^2}$.
- (2) En déduire que z est de module 1 si et seulement si il existe un réel t tel que $z = \frac{-1+it}{1+it}$.

Exercice 7.7 Soient $z, z' \in \mathbb{C}$. Montrer qu'on a $|z+z'|^2 + |z-z'|^2 = 2(|z|^2 + |z'|^2)$. Donner une interprétation géométrique de cette égalité.

Exercice 7.8 Déterminer z pour que z, z-1 et $\frac{1}{z}$ aient le même module.

Exercice 7.9 Résoudre dans $\mathbb C$ les équations suivantes :

- (1) $X^2 = 3 + 4i$ et $-X^2 + (5 14i)X + 2(5i + 12) = 0$.
- (2) Factoriser l'expression $-X^2 + (5 14i)X + 2(5i + 12)$.

Exercice 7.10 (1) Linéariser les expressions suivantes : $\cos^4 x$ et $\sin^3 x \cos^5 x$.

(2) Écrire $\cos(5x)$ et $\sin(3x)$ en fonction de $\cos x$ et $\sin x$.

Exercice 7.11 Soit $\alpha \in]-\pi,\pi[$ et $z=\frac{1-i}{1+\cos\alpha+i\sin\alpha}$. Donner en fonction de α le module et un argument de z.

(Penser à écrire $\sin \alpha = 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}$ et $1 + \cos \alpha = ...$).

Exercices supplémentaires

Exercice 7.12 Soit $z_0 = 2(1+i)$.

- (1) Calculer z_0^{-1} , le module et un argument de z_0 , et déterminer les racines carrés de z_0 .
- (2) Résoudre dans $\mathbb C$ l'équation : $X^2+(1+i)X-\frac{1}{2}=0$. (3) Décrire l'ensemble des complexes $z\in\mathbb C$ tels que $|z-z_0|=2$.

Exercice 7.13 On rappelle que pour tout nombre complexe $u \in \mathbb{C}$ différent de 1, on a $\sum_{k=0}^{n} u^k = \frac{u^{n+1}-1}{u-1}$ (voir la question (6) de l'exercice 5.1).

Soit $\theta \in \mathbb{R}$. Calculer les sommes $\sum_{k=0}^{n} \cos(k\theta)$ et $\sum_{k=0}^{n} \sin(k\theta)$.

Exercice 7.14 Un entier naturel n est "somme de deux carrés" s'il existe deux entiers naturels a et b tels que $n=a^2+b^2$. Montrer qu'un produit fini de tels entiers est encore somme de deux carrés.

Exercice 7.15 (1) Soit ABCD un carré dans le plan complexe. Montrer que si A et B ont des coordonnées entières, il en est de même de C et D.

(2) Peut-on trouver un triangle équilatéral dont les trois sommets ont des coordonnées entières?

Exercice 7.16 (1) (Formule du binôme de Newton) Soient $u, v \in \mathbb{C}$. Montrer par récurrence que pour tout $n \in \mathbb{N}$ on a la formule :

$$(u+v)^n = \sum_{k=0}^n C_n^k u^k v^{n-k},$$

où $C_n^k = \frac{n!}{k! \times (n-k)!}$ pour tout $0 \le k \le n$.

- (2) Quel est le coefficient du terme $a^2b^3c^5$ dans le développement de $(a+b+c)^{10}$?
- (3) En utilisant la formule du binôme de Newton, calculer les sommes suivantes :

$$S_1 = \sum_{i=0}^n C_n^i$$
 $S_2 = \sum_{i=0}^n (-1)^i C_n^i$ $S_3 = \sum_{0 \le i \le \frac{n}{2}} C_n^{2i}$.

8 Polynômes

On désigne par \mathbb{K} l'ensemble \mathbb{Q} , \mathbb{R} ou \mathbb{C} .

Exercice 8.1 Soient $P(X) = X^4 - 2X^2 + X - 1$ et $Q(X) = X^3 - X + 2$. Calculer P + Q, 3P - 2Q et PQ.

Exercice 8.2 Déterminer les polynômes de degré au plus 2 tels que P(0) = 1 et P(1) = 0 et P(-1) = -2.

Exercice 8.3 Effectuer la division Euclidienne du polynôme P par le polynôme Q dans les cas suivants :

- (1) $P(X) = X^5 + 2X^4 X^3 + X 2$ et $Q(X) = X^3 + 4X^2 3X + 1$ dans $\mathbb{R}[X]$.
- (2) $P(X) = X^3 + iX^2 + (2i 1)X 2i$ et $Q(X) = iX^2 + 1$ dans $\mathbb{C}[X]$.

Exercice 8.4 Soit le polynôme $X^3 + aX + b \in \mathbb{C}[X]$. Déterminer a et b pour que $X^2 + iX + 1 + i$ divise P(X).

Exercice 8.5 Soit $P \in \mathbb{K}[X]$ tel que P(X+1) = P(X).

- (1) On pose Q(X) = P(X) P(0). Montrer que, pour tout $n \in \mathbb{N}$, Q(n) = 0.
- (2) En déduire que P est constant.

Exercice 8.6 Soit P(X) un polynôme tel que pour tout réel x, $P(x) = P(\sin x)$. Que peut-on dire de P? (considérer le polynôme Q(X) = P(X) - P(0)).

Exercice 8.7 Pour $n \ge 1$ un entier, soit $P_n(X) = \sum_{k=0}^n \frac{X^k}{k!}$. Montrer que $P_n(X)$ n'a pas de racine multiple.

Exercice 8.8 Déterminer la multiplicité de la racine α du polynôme P(X) dans les cas suivants :

- (1) $\alpha = 2$ et $P(X) = X^{n+2} 4X^{n+1} + 4X^n$.
- (2) $\alpha = 3$ et $P(X) = X^3 3X^2 9X + 27$.
- (3) $\alpha = 2$ et $P(X) = nX^{n+2} (4n+1)X^{n+1} + 4(n+1)X^n 4X^{n-1}$.

Exercice 8.9 Soit $P(x) \in \mathbb{K}[X]$ et a, b deux éléments de \mathbb{K} distincts. Sachant que le reste de la division Euclidienne de P(X) par X - a est 1, et que le reste de la division Euclidienne de P(X) par X - b est -1, donner le reste de la division Euclidienne de P(X) par (X - a)(X - b).

Exercise 8.10 Soit $P(X) = a_n X^n + \cdots + a_1 X + a_0 \in \mathbb{R}[X]$.

- (1) Montrer que si z est un nombre complexe racine de P(X), alors le conjugué \overline{z} de z est aussi une racine de P(X).
- (2) On suppose que $P(X) = X^4 X^3 X^2 + 4X 2$.
 - (a) Vérifier que 1+i est une racine de P(X).
 - (b) Factoriser P(X).

Exercice 8.11 Donner le pgcd puis le ppcm des deux polynômes suivants :

$$P(X) = (X^2 + 3)^2 (X^2 - 1)^3 (X^2 + 1)^4$$
 et $Q(X) = (X^2 + 3)^3 (X + 1)^4 (X + 2)$.

Exercice 8.12 En utilisant l'algorithme d'Euclide, déterminer le pgcd D des polynômes P et Q cidessous, et donner deux polynômes U, V tels que D = PU + QV:

- (1) $P(X) = X^5 + 3X^4 + 2X^3 X^2 3X 2$ et $Q(X) = X^4 + 2X^3 + 2X^2 + 7X + 6$.
- (2) $P(X) = X^6 2X^5 + 2X^4 3X^3 + 3X^2 2X$ et $Q(X) = X^4 2X^3 + X^2 X + 1$.

Exercice 8.13 Factoriser dans $\mathbb{R}[X]$ et $\mathbb{C}[X]$ les polynômes suivants :

$$X^3 + 3X^2 - 5X + 1$$
, $X^3 - 3$, $X^6 + 1$, $X^9 + X^6 + X^3 + 1$, $X^2 - 2\cos\theta X + 1$ où $\theta \in \mathbb{R}$.

Exercices supplémentaires.

Exercice 8.14 Soient $P(X) \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$. On note P'(X) le polynôme dérivé de P(X).

- (1) Montrer que $P(\alpha)$ est le reste de la division Euclidienne de P(X) par $X \alpha$.
- (2) Soit Q(X) le quotient de la division Euclidienne de P(X) par $X \alpha$.
 - (a) Montrer que $P'(\alpha) = Q(\alpha)$.
 - (b) En déduire que $P'(\alpha)(X \alpha) + P(\alpha)$ est le reste de la division Euclidienne de P(X) par $(X \alpha)^2$.

Exercice 8.15 (1) Soient m et n deux entiers naturels non nuls. Montrer que le polynôme $X^m - 1$ divise le polynôme $X^{mn} - 1$.

- (2) Soient a, b deux entiers naturels (avec $b \leq a$) et r le reste de la division Euclidienne de a par b.
 - (a) Montrer que X^r-1 est le reste de la division Euclidienne de X^a-1 par X^b-1 . (Utiliser la question (1).)
 - (b) Quel est alors le $pgcd(X^a 1, X^b 1)$.
- (3) Soient $P(X), Q(X) \in \mathbb{K}[X]$. Notons $R(X) \in \mathbb{K}[X]$ le reste de la division Euclidienne de P(X) par Q(X).
 - (a) Montrer que pour tout polynôme $S(X) \in \mathbb{K}[X]$ de degré ≥ 1 , le polynôme composé R(S(X)) est le reste de la division Euclienne de A(S(X)) par B(S(X)).
 - (b) En déduire le pgcd(A(S(X)), B(S(X))).
 - (c) Donner le $pgcd(X^8 2X^4 + 2X^2 1, X^6 + 4X^2 + 3)$.
- (4) Soient $m, n \ge 1$ des entiers et $\alpha \in \mathbb{K}$ no nul. Donner le $\operatorname{pgcd}(X^m \alpha^m, X^n \alpha^n)$. (Aide : penser à combiner les questions (2) et (3).

Exercice 8.16 Soit $n \ge 1$ un entier.

- (1) Factoriser dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ le polynôme $X^n 1$.
- (2) Déterminer les nombres complexes z vérifiant $(z+1)^n = (z-1)^n$.
- (3) Factoriser dans $\mathbb{R}[X]$ le polynôme $(X+1)^n (X-1)^n$.

Exercice 8.17 Donner tous les polynômes $P(X) \in \mathbb{C}[X]$ tels que P'(X) divise P(X).

(Aide : Si P(X) n'est pas nul et P'(X) divise P(X), alors P(X) = P'(X)Q(X) pour Q(X) de degré 1. Montrer alors que la racine de Q(X) est l'unique racine de P(X) avec une multiplicité donnée.)

Correction (Ensembles)

Exercice 2.1 : Non. En effet, \emptyset est l'ensemble vide, l'ensemble $\{\emptyset\}$ est formé d'un seul élément qui est \emptyset , et l'ensemble $\{\{\emptyset\}\}$ est formé d'un seul élément qui est $\{\emptyset\}$.

Exercice 2.2:

- $-A \subset B \iff \forall x \in A \ x \in B.$
- $-A \not\subset B \iff \exists x \in A \ x \not\in B.$
- $-A \cap B = \emptyset \iff \forall x \in A \ x \notin B.$
- $-A\subset \complement^B_E\iff \forall\,x\in A\ x\not\in B.$
- $-A \setminus B = \emptyset \iff \forall x \in A \ x \in B.$

On voit bien qu'on $a: A \subset B \iff A \setminus B = \emptyset$, et $A \cap B = \emptyset \iff A \subset \mathcal{C}_E^B$.

Exercice 2.3:

(1) Montrons que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. On procède par équivalences :

$$x \in (A \cup B) \cap (A \cup C) \iff (x \in A \cup B) \text{ et } (x \in A \cup C)$$

$$\iff (x \in A \text{ ou } x \in B) \text{ et } (x \in A \text{ ou } x \in C)$$

$$\iff x \in A \text{ ou } (x \in B \text{ et } x \in C)$$

$$\iff x \in A \text{ ou } (x \in B \cap C)$$

$$\iff x \in A \cup (B \cap C).$$

Ceci montre que les ensembles $(A \cup B) \cap (A \cup C)$ et $A \cup (B \cap C)$ sont égaux.

(2) Montrons que $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. On a :

$$x \in A \cap (B \cup C) \iff x \in A \text{ et } x \in B \cup C$$

$$\iff x \in A \text{ et } (x \in B \text{ ou } x \in C)$$

$$\iff (x \in A \text{ et } x \in B) \text{ ou } (x \in A \text{ et } x \in C)$$

$$\iff x \in A \cap B \text{ ou } x \in A \cap C$$

$$\iff x \in (A \cap B) \cup (A \cap C).$$

Ainsi, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Exercice 2.4 : (1) Montrons que $\mathbb{C}_E^{A \cup B} = \mathbb{C}_E^A \cap \mathbb{C}_E^B$. On a :

$$\begin{aligned} x \in \mathbb{C}_E^{A \cup B} &\iff & x \in E \text{ et } x \not \in A \cup B \\ &\iff & x \in E \text{ et } (x \not \in A \text{ et } x \not \in B) \\ &\iff & (x \in E \text{ et } x \not \in A) \text{ et } (x \in E \text{ et } x \not \in B) \\ &\iff & x \in \mathbb{C}_E^A \text{ et } x \in \mathbb{C}_E^B \\ &\iff & x \in \mathbb{C}_E^A \cap \mathbb{C}_E^B. \end{aligned}$$

Ainsi, $\mathcal{C}_E^{A \cup B} = \mathcal{C}_E^A \cap \mathcal{C}_E^B$.

(2) Montrons que $\mathbb{C}_E^{\cup_{i\in I}A_i}=\cap_{i\in I}\mathbb{C}_E^{A_i}.$ On a :

$$\begin{array}{lll} x \in \mathbb{C}_E^{\cup_{i \in I} A_i} & \iff & x \in E \text{ et } x \not \in \cup_{i \in I} A_i \\ & \iff & x \in E \text{ et } (\forall i \in I \ x \not \in A_i) \\ & \iff & \forall i \in I \ x \in E \text{ et } x \not \in A_i \\ & \iff & \forall i \in I \ x \in \mathbb{C}_E^{A_i} \\ & \iff & x \in \cap_{i \in I} \mathbb{C}_E^{A_i}. \end{array}$$

Ainsi,
$$\mathsf{C}_E^{\cup_{i\in I}A_i} = \cap_{i\in I}\mathsf{C}_E^{A_i}.$$

On procède de la même façon pour montrer que $\mathcal{C}_E^{\cap_{i\in I}A_i}=\cup_{i\in I}\mathcal{C}_E^{A_i}$.

Exercice 2.5:

(2) Montrons l'implication $(A \cup C \subset A \cup B \ et \ A \cap C \subset A \cap B) \implies C \subset B$, c'est-à-dire, supposons que $(A \cup C \subset A \cup B \ et \ A \cap C \subset A \cap B)$ et montrons que $C \subset B$.

Soit $x \in C$. Comme $C \subset A \cup C$, on obtient que $x \in A \cup C$. Par conséquent, $x \in A \cup B$ car $A \cup C \subset A \cup B$. Ainsi, $x \in A$ ou $x \in B$. Si $x \in B$ c'est ce qu'on cherche. Si $x \in A$, alors $x \in A \cap C$. Ce qui implique que $x \in A \cap B$ car $A \cap C \subset A \cap B$. En particulier, $x \in B$. Par conséquent, $C \subset B$.

(3) Appliquer (2).

Exercice 2.6:

(1) Montrons que $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$. On a :

$$\begin{array}{lll} x \in A \setminus (B \cup C) & \iff & x \in A \text{ et } x \not \in B \cup C \\ & \iff & x \in A \text{ et } [x \not \in B \text{ et } x \not \in C] \\ & \iff & [x \in A \text{ et } x \not \in B] \text{ et } [x \in A \text{ et } x \not \in C] \\ & \iff & x \in A \setminus B \text{ et } x \in A \setminus C \\ & \iff & x \in (A \setminus B) \cap (A \setminus C). \end{array}$$

Ainsi, $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Donner une preuve de (2) et (3).

Exercice 2.7: On a huit éléments : \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, ...

Exercice 2.8:

- (1) Vrai.
- (2) Faux.

Exercice 2.11:

On a $\cap_{k \in \mathbb{N}} A_k = \{0\}$ et $\cup_{k \in \mathbb{N}} A_k = \mathbb{N}$.

Exercice 2.12:

On a $\cap_{k\in\mathbb{N}} A_k = \{0\}$ et $\cup_{k\in\mathbb{N}} A_k = \mathbb{N}$.

Exercice 2.13:

- (1)(i) Une condition nécessaire et suffisante pour qu'il existe X tel que $A \cap X = B$ est que B soit inclus dans A. En effet, si $B \subset A$, alors on a $A \cap X = B$ pour X = B. Réciproquement, s'il existe X tel que $A \cap X = B$, alors $B \subset A$.
- (ii) Une condition nécessaire et suffisante pour qu'il existe X tel que $A \cup X = B$ est que A soit inclus dans B. Justifier.
- (2) (i) Supponons qu'on ait $B \subset A$. Alors, tout ensemble X vérifiant $A \cap X = B$ doit contenir B, et il ne doit pas contenir des éléments de \mathcal{C}_A^B , c'est-à-dire, $X = B \cup B'$ où $B' \subset \mathcal{C}_E^A$.
- (ii) De même, supposons qu'on ait $A \subset B$. Alors, tout ensemble X vérifiant $A \cup X = B$ doit être inclus dans B, et il doit contenir \mathcal{C}_B^A , c'est-à-dire, $X = \mathcal{C}_B^A \cup B''$ où $B'' \subset A$.

Correction (Applications)

Exercice 3.1:

- (1) Par exemple, on peut prendre $f: E \longrightarrow F$ donnée par : f(a) = d, f(b) = d et f(c) = e.
- (2) On ne peut pas définir une application car chaque élément de E doit être envoyé sur un unique élément de F.

Exercice 3.2:

- (1) f injective \iff $(\forall x, x' \in E \ x \neq x' \implies f(x) \neq f(x')).$
- (2) f n'est pas injective \iff $(\exists x, x' \in E \text{ tel que } x \neq x' \text{ et } f(x) = f(x')).$
- (3) f surjective \iff $(\forall y \in F \exists x \in E \text{ tel que } f(x) = y).$
- (4) f n'est pas surjective \iff $(\exists y \in F \text{ tel que } \forall x \in E \text{ } f(x) \neq y).$

Exercice 3.3:

- (1) Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ tel que $f(x) = x^2$.
- f n'est pas injective car $1 \neq -1$ et f(1) = f(-1).
- f n'est pas surjective car il n'existe aucun réel x tel que f(x) = -1.
- (2) Soit $f: \mathbb{N} \longrightarrow \mathbb{N}$ tel que f(n) = n + 1.
- f est injective car pour tous $n, m \in \mathbb{N}$, si f(n) = f(m), alors n + 1 = m + 1, ce qui donne n = m.
- f n'est pas surjective car il n'existe pas d'entier $n \in \mathbb{N}$ tel que f(n) = 0.
- (3) Soit $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ tel que f(n) = n + 1.
- f est injective (même justification que dans (2)).
- f est surjective, car pour tout $n \in \mathbb{Z}$, on a $n-1 \in \mathbb{Z}$ et f(n-1) = n.

Ainsi, f est bijective. Trouvons la réciproque de f. Pour tous $n, m \in \mathbb{Z}$, on sait que

$$f^{-1}(n) = m \iff n = f(m)$$

 $\iff n = m + 1$
 $\iff m = n - 1.$

Ainsi, $f^{-1}: \mathbb{Z} \longrightarrow \mathbb{Z}$ est définie par : $f^{-1}(n) = n - 1$ pour tout $n \in \mathbb{Z}$.

- (4) Soit $f: \mathbb{N} \setminus \{0\} \longrightarrow \mathbb{Z}$ qui à n assoice n/2 si n est pair, (-n+1)/2 si n est impair.
- f est injective. En effet, soient $n, m \in \mathbb{N} \setminus \{0\}$ tels que f(n) = f(m). Montrons que n = m. L'hypothèse f(n) = f(m) implique l'une des conditions suivantes :

 $\lfloor n/2 = m/2 \rfloor$ ou $\lfloor (-n+1)/2 = (-m+1)/2 \rfloor$ ou $\lfloor (-n+1)/2 = m/2 \rfloor$ ou $\lfloor n/2 = (-m+1)/2 \rfloor$.

Si on a l'une des deux premières possibilités, alors clairement n=m. Si on a l'une des deux dernières possibilités, alors on obtient n+m=1, ce qui n'est pas possible car l'hypothèse $n,m\in\mathbb{N}\setminus\{0\}$ implique $n+m\geqslant 2$. Par conséquent, f(n)=f(m) implique nécessairement n=m.

• f est surjective. En effet, soit $n \in \mathbb{Z}$. Si n > 0, alors $2n \in \mathbb{N} \setminus \{0\}$ est pair et f(2n) = n. Si $n \leq 0$, alors $-2n \in \mathbb{N}$. Par conséquent, l'entier $-2n + 1 \in \mathbb{N} \setminus \{0\}$ est impair et f(-2n + 1) = n.

Ainsi, f est bijective. L'expression de f^{-1} se déduit de la preuve de la surjectivité de f. On a f^{-1} : $\mathbb{Z} \longrightarrow \mathbb{N} \setminus \{0\}$ qui à n associe 2n si n > 0, -2n + 1 si $n \leq 0$.

Exercice 3.5:

- $-y \in f(A) \iff \exists x \in A \text{ tel que } y = f(x).$
- $-y \notin f(A) \iff \forall x \in A \ y \neq f(x).$
- $-x \in f^{-1}(B) \iff \exists y \in B \text{ tel que } y = f(x).$
- $-x \notin f^{-1}(B) \iff \forall y \in B \ y \neq f(x).$

Exercice 3.6:

- (1) Pour tout $x \in \mathbb{R}$, on a : $g \circ f(x) = g(f(x)) = g(x-1) = (x-1)^2 + 2(x-1) = x^2 1$.
- (2) f n'est ni injective ni surjective. Justifier.
- (3) On trouve (justifier):

$$(g \circ f)([1,2]) = [0,3]$$
 et $(g \circ f)^{-1}([-1,0]) = [-1,0[\cup]0,1]$.

Exercice 3.7:

Soit $f \in \mathbb{N} \longrightarrow \mathbb{N}$ une application définie par : f(n) = n + 1 pour tout $n \in \mathbb{N}$.

- (1) Soit $g: \mathbb{N} \longrightarrow \mathbb{N}$ l'application qui envoie 0 sur 0, et tout entier $n \in \mathbb{N} \setminus \{0\}$ sur n-1. Alors, on a $g \circ f = \mathrm{Id}_{\mathbb{N}}$. En effet, pour tout $n \in \mathbb{N}$, on a $g \circ f(n) = g(f(n)) = g(n+1) = (n+1) 1 = n$ (car $n+1 \in \mathbb{N} \setminus \{0\}$). Ceci signifie que $g \circ f = \mathrm{Id}_{\mathbb{N}}$.
- (2) Supposons qu'il existe une application $h: \mathbb{N} \longrightarrow \mathbb{N}$ telle que $f \circ h = \mathrm{Id}_{\mathbb{N}}$. Alors, pour tout $n \in \mathbb{N}$, on a $f \circ h(n) = \mathrm{Id}_{\mathbb{N}}(n)$, ce qui signifie que f(h(n)) = n, c'est-à-dire, h(n) + 1 = n. En particulier, pour n = 0, on doit avoir h(0) + 1 = 0, une contradiction puisque $h(0) \in \mathbb{N}$ donne $h(0) + 1 \geqslant 1$.

Exercice 3.11:

Supposons qu'on ait $f \circ f \circ f = f$. Montrons l'équivalence : f est injective $\iff f$ est surjective.

 \implies : Supposons que f soit injective. Montrons que f est surjective. Soit $y \in E$. Puisque $f \circ f \circ f = f$, on obtient $f \circ f \circ f(y) = f(y)$, c'est-à-dire, $f(f \circ f(y)) = f(y)$. Puisque f est injective, on déduit que $f \circ f(y) = y$. Ainsi, y = f(x) où x = f(y).

 \Leftarrow : Supposons que f soit surjective. Montrons que f est injective. Soient $x, x' \in E$ tels que f(x) = f(x'). Montrons que x = x'. Puisque f est surjective, il existe $a, a' \in E$ tels que x = f(a) et x' = f(a'). Ainsi, f(f(a)) = f(f(a')). Puisque f est une application, on obtient f(f(f(a))) = f(f(f(a'))). Par conséquent, f(a) = f(a') (car, par hypothèse, $f \circ f \circ f = f$), c'est-à-dire, x = x'.

Exercice 3.13:

(1) Supposons que $A \subset B$ et montrons que $f(A) \subset f(B)$.

$$\begin{array}{cccc} y \in f(A) & \Longrightarrow & \exists \, x \in A \ \, \text{tel que} \ \, y = f(x) \\ & \Longrightarrow & \exists \, x \in B \ \, \text{tel que} \ \, y = f(x) & (\operatorname{car} A \subset B) \\ & \Longrightarrow & y \in f(B) \end{array}$$

- (2) Montrons que $f(A \cap B) \subset f(A) \cap f(B)$. Comme $A \cap B \subset A$ et $A \cap B \subset B$, il resute de l'assertion
- (1) que $f(A \cap B) \subset f(A)$ et $f(A \cap B) \subset f(B)$. Ainsi, $f(A \cap B) \subset f(A) \cap f(B)$.
- (3) Montrons que $f(A \cup B) = f(A) \cup f(B)$. On va montrer la double inclusion.
- \supset : Comme $A \subset A \cup B$ et $B \subset A \cup B$, on déduit de l'assertion (1) que $f(A) \subset f(A \cup B)$ et $f(B) \subset f(A \cup B)$. Par conséquent, $f(A) \cup f(B) \subset f(A \cup B)$.
- \subset : Soit $y \in f(A \cup B)$. Alors, il existe $x \in A \cup B$ tel que y = f(x). Donc, $y \in f(A)$ ou $y \in f(B)$ suivant que $x \in A$ ou $x \in B$. Par conséquent, $y \in f(A) \cup f(B)$. Ainsi, $f(A \cup B) \subset f(A) \cup f(B)$.
- (4) Montrons que $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$. On procède par équivalences :

$$\begin{array}{lll} x \in f^{-1}(A \cup B) & \Longleftrightarrow & f(x) \in A \cup B \\ & \Longleftrightarrow & f(x) \in A \quad \text{ou} \quad f(x) \in B \\ & \Longleftrightarrow & x \in f^{-1}(A) \quad \text{ou} \quad x \in f^{-1}(B) \\ & \Longleftrightarrow & x \in f^{-1}(A) \cup f^{-1}(B). \end{array}$$

(5) Montrons que $f^{-1}(\mathbb{C}^A_F)=\mathbb{C}^{f^{-1}(A)}_E$. Soit $x\in E,$ on a alors les équivalences :

$$x \in \mathbb{C}_E^{f^{-1}(A)} \quad \Longleftrightarrow \quad x \not\in f^{-1}(A) \\ \iff \quad f(x) \not\in A \\ \iff \quad f(x) \in \mathbb{C}_F^A \\ \iff \quad x \in f^{-1}(\mathbb{C}_F^A).$$

Exercice 3.14:

(1) \Longrightarrow (2) Supposons que f soit injective. Montrons que $f^{-1}(f(X)) = X$ pour toute partie X de E. Soit X une partie de E. On a : $x \in X \implies f(x) \in f(X) \implies x \in f^{-1}(f(X))$. Ainsi, $X \subset f^{-1}(f(X))$. Réciproquement, $x' \in f^{-1}(f(X)) \implies f(x') \in f(X) \implies \exists x'' \in X \text{ tel que } f(x') = f(x'') \implies x' = x'' \in X \text{ (car } f \text{ est injective)}$. Ainsi, $f^{-1}(f(X)) \subset X$.

(2) \Longrightarrow (1) Supposons que $f^{-1}(f(X)) = X$ pour toute partie X de E. Montrons que f est injective. Soient $x, x' \in X$ tels que f(x) = f(x'). Montrons que x = x'. On a :

$$\begin{split} f(x) &= f(x') &\implies f(x') \in \{f(x)\} \\ &\implies f(x') \in f(\{x\}) \\ &\implies x' \in f^{-1}(f(\{x\})) \\ &\implies x' \in \{x\} \quad (\text{car, par hypothèse, } f^{-1}(f(\{x\})) = \{x\}) \\ &\implies x = x'. \end{split}$$

 $(1) \Longrightarrow (3)$ Supposons que f soit injective. Montrons que $f(P \cap Q) = f(P) \cap f(Q)$ pour toutes parties P et Q de E.

Soient P,Q des parties de E. D'après l'assertion (2) de l'exercice 3.13, on a que $f(P \cap Q) \subset f(P) \cap f(Q)$. Réciproquement, $y \in f(P) \cap f(Q)$ implique qu'il existe $x \in P$ et $x' \in Q$ tels que y = f(x) = f(x'). Puisque f est injective, on obtient x = x'. Par conséquent, $x \in P \cap Q$ et $y = f(x) \in f(P \cap Q)$. Ainsi, $f(P) \cap f(Q) \subset f(P \cap Q)$.

(3) \Longrightarrow (1) Supposons que $f(P\cap Q)=f(P)\cap f(Q)$ pour toutes parties P et Q de E. Montrons que f est injective.

Soient $x, x' \in E$ tels que f(x) = f(x'). Montrons que x = x'. On a :

$$f(x) = f(x') \implies \{f(x)\} = \{f(x')\}$$

$$\implies f(\{x\}) = f(\{x'\})$$

$$\implies f(\{x\}) \cap f(\{x'\}) = f(\{x\})$$

$$\implies f(\{x\} \cap \{x'\}) = f(\{x\}) \quad \text{(car, par hypothèse, } f(\{x\}) \cap f(\{x'\}) = f(\{x\} \cap \{x'\}))$$

$$\implies f(\{x\} \cap \{x'\}) \neq \emptyset$$

$$\implies \{x\} \cap \{x'\} \neq \emptyset$$

$$\implies x = x'.$$

Ainsi, on a montré les équivalences $(1) \iff (2) \iff (3)$.

Exercice 3.15:

(1) \Longrightarrow (2) Supposons que f soit surjective. Montrons que $f(f^{-1}(Y)) = Y$ pour toute partie Y de F. Soit Y une partie de F. Si $y \in f(f^{-1}(Y))$, alors il existe $x \in f^{-1}(Y)$ tel que y = f(x). Mais, $x \in f^{-1}(Y)$ implique que $f(x) \in Y$. Ainsi, $y \in Y$. Par conséquent, $f(f^{-1}(Y)) \subset Y$. Réciproquement, si $y' \in Y$, alors il existe $x' \in E$ tel que $f(x') = y' \in Y$ (car f est surjective). Ainsi, $x' \in f^{-1}(Y)$. Par conséquent, $y' = f(x') \in f(f^{-1}(Y))$. D'où, $Y \subset f(f^{-1}(Y))$.

(2) \Longrightarrow (1) Supposons que $f(f^{-1}(Y)) = Y$ pour tout Y une partie de F. Montrons que f est surjective. Soit $y \in F$. Comme $\{y\}$ est une partie de F, on déduit par hypothèse $f(f^{-1}(\{y\})) = \{y\}$. Par conséquent, $f^{-1}(\{y\}) \neq \emptyset$, c'est-à-dire, il existe $x \in E$ tel que f(x) = y.

Exercice 3.16:

- (1) Les réels a, b sont des racines de $x^2 \alpha x + \beta = 0$ si et seulement si $(x a)(x b) = x^2 \alpha x + \beta$ si et seulement si $a + b = \alpha$ et $ab = \beta$.
- (2) (i) f n'est pas injective, par exemple, on a $(1,0) \neq (0,1)$ et f(1,0) = f(0,1).
- (ii) On a:

$$\begin{array}{lll} (a,b) \in f^{-1}\{(\alpha,\beta)\} & \iff & f(a,b) = (\alpha,\beta) \\ & \iff & (a+b,ab) = (\alpha,\beta) \\ & \iff & a+b=\alpha \text{ et } ab=\beta \\ & \iff & a,b \text{ sont des racines de l'équation } x^2-\alpha x+\beta=0. \end{array}$$

Soit $\triangle = \alpha^2 - 4\beta$ le discriminant de l'équation $x^2 - \alpha x + \beta = 0$. On a trois cas :

- Si $\triangle < 0$, alors l'équation $x^2 \alpha x + \beta = 0$ n'a pas de racine dans \mathbb{R} . Ainsi, $f^{-1}\{(\alpha, \beta)\} = \emptyset$.
- Si $\triangle = 0$, alors l'équation $x^2 \alpha x + \beta = 0$ admet une racine double r dans \mathbb{R} . Ainsi, $f^{-1}\{(\alpha, \beta)\} = \{(r, r)\}.$
- Si $\triangle > 0$, alors l'équation $x^2 \alpha x + \beta = 0$ admet deux racines distinctes r et s dans \mathbb{R} . Ainsi, $f^{-1}\{(\alpha,\beta)\} = \{(r,s),(s,r)\}.$

Exercice 3.19:

Montrons que $f \circ f = \mathrm{Id}_{[0,1]}$. Soit $x \in [0,1]$.

- Si $x \in \mathbb{Q}$, alors f(x) = x. Ainsi, $f \circ f(x) = f(f(x)) = f(x) = x$.
- Si $x \notin \mathbb{Q}$. Alors, $1 x \in [0, 1]$ mais $1 x \notin \mathbb{Q}$. Ainsi, f(x) = 1 x et f(1 x) = 1 (1 x) = x. Par conséquent, $f \circ f(x) = f(f(x)) = f(1 x) = x$.

Ainsi, $f \circ f(x) = x$ pour tout $x \in [0, 1]$, c'est-à-dire, $f \circ f = \mathrm{Id}_{[0, 1]}$.

Correction (Récurrence)

Exercice 5.1:

- (3) Pour $n \in \mathbb{N}$, soit P(n) la propriété : 7 divise $3^{2n+1} + 2^{n+2}$.
- -P(0) est vraie car 7 divise $7 = 3^{2 \times 0 + 1} + 2^{0 + 2}$.
- Supposons que P(n) soit vraie, et montrons que P(n+1) est vraie. On a

$$3^{2(n+1)+1} + 2^{(n+1)+2} = 9 \times 3^{2n+1} + 2 \times 2^{n+2} = 7 \times 3^{2n+1} + 2 \times (3^{2n+1} + 2^{n+2}).$$

Comme $3^{2n+1} + 2^{n+2}$ est divisible par 7 (car P(n) est vraie), et $7 \times 3^{2n+1}$ est divisible par 7, on déduit que $3^{2(n+1)+1} + 2^{(n+1)+2}$ est divisible par 7.

Par conséquent, P(n) est vraie pour tout $n \in \mathbb{N}$, c'est-à-dire, $3^{2n+1} + 2^{n+2}$ est divisible par 7 pour tout entier $n \in \mathbb{N}$.

(4) Pour
$$n \in \mathbb{N} \setminus \{0\}$$
, soit $P(n)$ la propriété : $\frac{n}{2} \leqslant \sum_{k=1}^{n} \frac{k}{k+1} \leqslant \frac{n^2}{n+1}$.

$$-P(1)$$
 est vraie car $\frac{1}{2} \leqslant \sum_{k=1}^{1} \frac{k}{k+1} = \frac{1}{2} \leqslant \frac{1^2}{1+1} = \frac{1}{2}$.

- Supposons que P(n) soit vraie, et montrons que P(n+1) est vraie.

Puisque P(n) est vraie, on a $\frac{n}{2} \leqslant \sum_{k=1}^{n} \frac{k}{k+1} \leqslant \frac{n^2}{n+1}$. Par conséquent :

$$\frac{n}{2} + \frac{n+1}{n+2} \le \left(\sum_{k=1}^{n} \frac{k}{k+1}\right) + \frac{n+1}{n+2} \le \frac{n^2}{n+1} + \frac{n+1}{n+2}.$$

Un simple calcul montre que $\frac{n+1}{2} \le \frac{n}{2} + \frac{n+1}{n+2}$ et $\frac{n^2}{n+1} + \frac{n+1}{n+2} \le \frac{(n+1)^2}{n+2}$.

Par conséquent, $\frac{n}{2} \leqslant \sum_{k=1}^{n} \frac{k}{k+1} \leqslant \frac{n^2}{n+1}$ pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 5.2 : Pour $n \in \mathbb{N}$, soit P(n) la propriété : $f(n) \ge n$

- -P(0) est vraie car $f(0) \in \mathbb{N}$ implique que $f(0) \ge 0$.
- Supposons que P(n) soit vraie, et montrons que P(n+1) est vraie.

Puisque f est strictement croissante, on a f(n+1) > f(n). Ainsi, $f(n+1) > f(n) \ge n$ (car P(n) est vraie). Donc, f(n+1) > n. Comme f(n) et n sont des entiers naturels, la condition f(n+1) > n implique $f(n+1) \ge n+1$, c'est-à-dire, P(n+1) est vraie.

Par conséquent, P(n) est vraie pour tout $n \in \mathbb{N}$, c'est-à-dire, $f(n) \ge n$ pour tout $n \in \mathbb{N}$.

Exercice 5.3 : On commence par déterminer f^n pour $n = 1, 2, 3 \cdots$, ce qui va nous orienter vers une formule générale.

- (a) Cas où n = 1: On a $f^1(x) = f(x) = 4x + 3 \ \forall x \in \mathbb{R}$.
- (b) Cas où n=2: $f^2(x)=f\circ f(x)=f(f(x))=4(4x+3)+3=4^2x+15=4^2x+4^2-1 \ \forall x\in\mathbb{R}$.
- (c) Cas où $n=3: f^3(x)=f^2\circ f(x)=f^2(f(x))=4^2(4x+3)+4^2-1=4^3x+4^3-1 \ \forall x\in\mathbb{R}.$

Montrons par récurrence qu'on la propriété P(n): $f^n(x) = 4^n x + 4^n - 1$ pour tout $x \in \mathbb{R}$.

- Le cas (a) montre que P(1) est vraie.
- Supposons que P(n) soit vraie et montrons que P(n+1) est vraie.

Pour tout $x \in \mathbb{R}$, on a $f^{n+1}(x) = f^n \circ f(x) = f^n(f(x)) = f^n(4x+3) = 4^n(4x+3) + 4^n - 1 = 4^{n+1}x + 4^n \times 3 + 4^n - 1 = 4^{n+1}x + 4^{n+1} - 1$.

Ainsi, $f^n(x) = 4^n x + 4^n - 1$ pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$.

Exercice 5.4: (1) Soient $n, m \in \mathbb{N}$ tels que f(n) = f(m). Montrons que n = m.

Puisque f(n) = f(m), alors f(f(n)) = f(f(m)) (car f une application), c'est-à-dire, $f^2(n) = f^2(m)$. De même, $f^2(n) = f^2(m)$ implique que $f^3(n) = f^3(m)$. Ainsi,

$$f(n) + f^{2}(n) + f^{3}(n) = f(m) + f^{2}(m) + f^{3}(m).$$

Par conséquent, 3n = 3m, ce qui implique n = m.

(2) Pour $n \in \mathbb{N}$, soit P(n) la propriété : f(n) = n.

On va montrer que P(n) est vraie pour tout $n \in \mathbb{N}$ en utilisant le second principe de récurrence.

- -P(0) est vraie car $f(0) + f^{2}(0) + f^{3}(0) = 3 \times 0 = 0$ implique que f(0) = 0.
- Soit $n \in \mathbb{N} \setminus \{0\}$ tel que P(k) soit vraie pour tout k < n. Montrons que P(n) est vraie.

Puisque f(k)=k pour tout k< n et que f est injective, on a nécessairement que $f(n)\not\in\{0,1,\cdots,n-1\}$. La même remarque implique aussi que $f^2(n)\not\in\{0,1,\cdots,n-1\}$ et $f^3(n)\not\in\{0,1,\cdots,n-1\}$. Ainsi, $f(n)\geqslant n$, $f^2(n)\geqslant n$ et $f^3(n)\geqslant n$. Comme $f(n)+f^2(n)+f^2(n)=3n$, on a nécessairement que $f(n)=f^2(n)=f^3(n)=n$, en particulier, f(n)=n.

Ainsi, f(n) = n pour tout $n \in \mathbb{N}$, c'est-à-dire, $f = \mathrm{Id}_{\mathbb{N}}$.

Exercice 5.5: Pour $n \in \mathbb{N}$, soit P(n) la propriété : $\prod_{k=1}^{n} (1-a_k) \ge 1 - \sum_{k=1}^{n} a_k$ pour tout $a_1, \dots, a_k \in [0,1]$.

- -P(1) est vraie car $\prod_{k=1}^{1}(1-a_k)=1-a_1\geqslant 1-a_1=1-\sum_{k=1}^{1}a_k$.
- Supposons que P(n) soit vraie et montrons que P(n+1) est vraie. Soient $a_1, \dots, a_{n+1} \in [0,1]$.

$$P(n) \implies \prod_{k=1}^{n} (1 - a_k) \geqslant 1 - \sum_{k=1}^{n} a_k$$

$$\implies (\prod_{k=1}^{n} (1 - a_k)) \times (1 - a_{n+1}) \geqslant (1 - \sum_{k=1}^{n} a_k) \times (1 - a_{n+1}) \quad (\text{car } 1 - a_{n+1} \geqslant 0).$$

$$\implies \prod_{k=1}^{n+1} (1 - a_k) \geqslant (1 - \sum_{k=1}^{n+1} a_k) + a_{n+1}(\sum_{k=1}^{n} a_k)$$

$$\implies \prod_{k=1}^{n+1} (1 - a_k) \geqslant 1 - \sum_{k=1}^{n+1} a_k \quad (\text{car } a_{n+1}(\sum_{k=1}^{n} a_k) \geqslant 0)$$

$$\implies P(n+1).$$

Ainsi, $\prod_{k=1}^{n} (1 - a_k) \ge 1 - \sum_{k=1}^{n} a_k$ pour tout $a_1, \dots, a_n \in [0, 1]$.

Exercice 5.7 : Pour $n \in \mathbb{N} \setminus \{0\}$, soit P(n) la propriété : $(\sum_{k=1}^n a_k)^2 \leq n(\sum_{k=1}^n a_k^2)$ pour tout $a_1, \ldots, a_n \in \mathbb{R}$.

- Il est clair que P(1) est vraie.
- Supposons que P(n) soit vraie et montrons que P(n+1) est vraie. Soient $a_1, \dots, a_{n+1} \in \mathbb{R}$.

Rappelons que

$$2ab - a^2 \leqslant b^2 \qquad (\star)$$

pour tout $a, b \in \mathbb{R}$ (car $a^2 - 2ab + b^2 = (a - b)^2 \ge 0$).

On a :

$$\left(\sum_{k=1}^{n+1} a_k\right)^2 = \left(\sum_{k=1}^n a_k\right)^2 + a_{n+1}^2 + \sum_{k=1}^n (2a_k a_{n+1}).$$

Puisque P(n) est vraie, on obtient :

$$\left(\sum_{k=1}^{n+1} a_k\right)^2 \leqslant n \left(\sum_{k=1}^n a_k^2\right) + a_{n+1}^2 + \sum_{k=1}^n (2a_k a_{n+1}).$$

On ajoute et on retranche na_{n+1}^2 , on obtient :

$$\left(\sum_{k=1}^{n+1} a_k\right)^2 \leqslant n \left(\sum_{k=1}^{n} a_k^2\right) + (n+1)a_{n+1}^2 + \sum_{k=1}^{n} (2a_k a_{n+1} - a_{n+1}^2).$$

Par l'inégalité (\star) , on déduit que :

$$\left(\sum_{k=1}^{n+1} a_k\right)^2 \leqslant n \left(\sum_{k=1}^n a_k^2\right) + (n+1)a_{n+1}^2 + \sum_{k=1}^n a_k^2.$$

Ainsi, on a:

$$\left(\sum_{k=1}^{n+1} a_k\right)^2 \le (n+1) \left(\sum_{k=1}^{n+1} a_k^2\right).$$

Par conséquent, P(n) est vraie pour tout entier $n \in \mathbb{N} \setminus \{0\}$.

Correction (Arithmétique dans \mathbb{Z})

Exercice 6.1:

- (1) Oui.
- (2) Non. Par exemple, $4 \times 2 + 3 \times (-2) = 2$ mais $pgcd(4,3) = 1 \neq 2$.
- (3) Oui. Supposons que $pgcd(a, b^3) \neq 1$. Alors, il existe un nombre premier p qui divise a et b^3 . Par conséquent, p divise a et b, ce qui n'est pas possible car pgcd(a, b) = 1. Ainsi, $pgcd(a, b^3) = 1$.
- (4) Non. Par exemple, 2 divise 5+3 et 5-3, mais 2 ne divise ni 5 ni 3.
- (5) Oui.
- (6) Non.
- (7) Oui.
- (8) Non.
- (9) Oui. En effet, si 5 divise b^2 , alors 5 divise b car 5 est premier. Soit $c \in \mathbb{Z}$ tel que b = 5c. Ainsi, $b^2 = 25c^2$ est divisible par 25.
- (10) Non. Par exemple, 12 divise $6^2 = 36$ mais 4 ne divise pas 6.
- (11) Oui. En effet, comme 2 et 3 divisent 12, et 12 divise b^2 , alors 2 et 3 divisent b^2 . Par conséquent, 2 et 3 divisent b (car 2 et 3 sont des nombres premiers). Ainsi, 6 divisent b, et par conséquent $36 = 6^2$ divise b^2 .
- (12) Non. Par exemple, 91 divise $91 = 13 \times 7$, mais 91 ne divise ni 13 ni 7.

Exercice 6.2:

Comme 4125 = 3780 + 345, on déduit que $24396465 = 6454 \times 3780 + 345$. Puisque 345 < 3780, on déduit que 6454 est le quotient de la division Euclidienne de 24396465 par 378.

Exercice 6.4:

Par hypothèse, n = 5q + r avec r = 2 ou 3 et $q \in \mathbb{N}$.

- Si r = 2, alors $n^2 + 1 = 25q^2 + 20q + 5 = 5(5q^2 + 4q + 1)$.
- Si r = 3, alors $n^2 + 1 = 25q^2 + 30q + 10 = 5(5q^2 + 6q + 2)$.

Donc, 5 divise $n^2 + 1$.

Exercice 6.6:

Soit $n \in \mathbb{Z}$. On va discuter sur la parité de n.

- Supposons que n soit pair. Il existe $k \in \mathbb{Z}$ tel que n=2k. Alors, suivant que k est pair ou impair, on a n=4l ou n=4l+2 pour un certain $l \in \mathbb{Z}$. Ainsi, $n^2=8(2l^2)$ ou $n^2=8(2l^2+2l)+4$. Donc, 8 divise n^2 ou n^2-4 .
- Supposons que n soit impair. Il existe $r \in \mathbb{Z}$ tel que n=2r+1. Alors, suivant que r est pair ou impair, on a n=4s+1 ou n=4s+3 pour un certain $s \in \mathbb{Z}$. Ainsi, $n^2-1=8(2s^2+s)$ ou $n^2-1=8(2s^2+3s+1)$. Donc, 8 divise n^2-1 .

Exercice 6.7:

Supposons que $\sqrt{2} \in \mathbb{Q}$. On écrit $\sqrt{2} = \frac{a}{b}$ avec $a, b \in \mathbb{N}$, $b \neq 0$ et $\operatorname{pgcd}(a, b) = 1$. On a $2b^2 = a^2$. Comme 2 est premier divisant a^2 , on déduit que 2 divise a. Posons a = 2c avec $c \in \mathbb{N}$. Alors, on déduit que $b^2 = 2c^2$. Comme 2 divise b^2 , on déduit que 2 divise b, ce qui n'est pas possible car $\operatorname{pgcd}(a, b) = 1$. Donc, $\sqrt{2} \notin \mathbb{Q}$.

Exercice 6.8:

Soit $n \in \mathbb{Z} \setminus \{1\}$ tel que n-1 divise n^2+1 . Puisque $n^2+1=(n^2-1)+2$ et que n-1 divise n^2-1 , on déduit que n-1 divise 2. Ainsi, $n-1 \in \{-2,-1,1,2\}$. Par conséquent, $n \in \{-1,0,2,3\}$. Réciproquement, on vérifie que si $n \in \{-1,0,2,3\}$, alors n-1 divise n^2+1 .

Exercice 6.9:

Soit $p \in \mathbb{N} \setminus \{0,1\}$ tel que p divise (p-1)! + 1. Montrons que p est premier.

Supposons que p ne soit pas premier. Alors, il existe $u \in \mathbb{N}$ tel que 1 < u < p et u divise p. Comme p divise (p-1)!+1, alors u divise (p-1)!+1. De plus, l'hypothèse u < p implique que u divise (p-1)!. Ainsi, u divise ((p-1)!+1)-(p-1)!=1, ce qui donne que u=1, une contradiction car u>1. Par conséquent, p est premier.

Exercice 6.10:

- (1) Soient $m, n \in \mathbb{N}$ tels que $1 < n \le m$. Puisque $n \le m$, on déduit que n divise m!, et par conséquent n divise m! + n. De plus, 1 < n < m! + n (car $n \le m < m! + n$). Par conséquent, m! + n n'est pas premier.
- (2) On considère les entiers $\alpha_n := (101)! + n$ avec $1 < n \le 101$. Par la question (1), les entiers $\alpha_2, \alpha_3, \dots, \alpha_{101}$ ne sont pas premiers. De plus, ces entiers sont consécutifs et en nombre de 100.

Exercice 6.11 : Soient $a, b \in \mathbb{Z} \setminus \{0\}$. Posons $d = \operatorname{pgcd}(a, b)$.

- (1) Supposons qu'il existe $q \in \mathbb{Z}$ tel que a = bq. Montrons que d = |b|. Comme b divise a et b, on déduit que b divise d (car $d = \operatorname{pgcd}(a, b)$). En particulier, |b| divise d. De plus, d divise b implique que d divise |b|. D'où, d = |b|.
- (2) Supposons qu'il existe $q \in \mathbb{Z}$ et $r \in \mathbb{Z} \setminus \{0\}$ tels que a = bq + r. Montrons que $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(b, r)$. Posons $d' = \operatorname{pgcd}(b, r)$.
- Comme d divise a et b, alors d divise r = a bq et b. Par conséquent, d divise d'.
- De même, d' divise b et r implique que d' divise a = bq + r et b. Ainsi, d' divise d. D'où, d = d'.

Exercice 6.12: (1) En effectuant des divisions Euclidiennes successives, on obtient :

- (div. 1) $1306 = 128 \times 10 + 26$
- (div. 2) $128 = 26 \times 4 + 24$
- (div. 3) $26 = 24 \times 1 + 2$
- (div. 4) $24 = 2 \times 12 + 0$.

En appliquant l'exercice 6.11 à ces divisions, on déduit que :

$$pgcd(1306, 128) = pgcd(128, 26) = pgcd(26, 24) = pgcd(24, 2) = 2.$$

Reste à trouver deux entiers $m, n \in \mathbb{Z}$ tels que 1306m + 128n = 4.

Par (div. 3), on a 2 = 26 - 24. On utilise (div. 2) pour avoir $2 = 26 - (128 - 26 \times 4) = 26 \times 5 - 128$. Puis (div. 1) donne $2 = (1306 - 128 \times 10) \times 5 - 128$. Ainsi, $2 = 1306 \times 5 + 128 \times (-51)$. Par conséquent, $1306 \times 10 + 128 \times (-102) = 4$. On peut prendre m = 10 et n = -102.

- (2) On a $6n^2 + 4n + 9 = (3n+2) \times 2n + 9$. Ainsi, $\operatorname{pgcd}(6n^2 + 4n + 9, 3n + 2) = \operatorname{pgcd}(3n + 2, 9)$. Comme 3 ne divise pas 3n + 2, et que les diviseurs positifs de 9 sont 1, 3 et 9, on déduit que 1 est le seul diviseur positif commun à 3n + 2 et 9. D'où, $\operatorname{pgcd}(3n + 2, 9) = 1$.
- (3) Par l'exercice 6.11, on obtient :

$$17a + 5b = (7a + 2b) \times 2 + 3a + b \implies \operatorname{pgcd}(17a + 5b, 7a + 2b) = \operatorname{pgcd}(7a + 2b, 3a + b).$$

 $7a + 2b = (3a + b) \times 2 + a \implies \operatorname{pgcd}(7a + 2b, 3a + b) = \operatorname{pgcd}(3a + b, a).$
 $3a + b = 3a + b \implies \operatorname{pgcd}(3a + b, a) = \operatorname{pgcd}(a, b).$

D'où, pgcd(17a + 5b, 7a + 2b) = pgcd(a, b).

Exercice 6.14:

(1) On a:

(div. 1)
$$325 = 299 \times 1 + 26$$

(div. 2)
$$299 = 26 \times 11 + 13$$

(div. 3)
$$26 = 13 \times 2 + 0$$
.

En appliquant l'exercice 6.11 à ces divisions, on déduit que :

$$pgcd(325, 299) = pgcd(299, 26) = pgcd(299, 26) = pgcd(26, 13) = 13.$$

(2) Par (div. 2) on a $13 = 299 - 26 \times 11$. Par (div. 1) on déduit que

$$13 = 299 - (325 - 299) \times 11 = 325 \times (-11) + 299 \times 12.$$

Ainsi, on peut prendre m = -11 et n = 12.

(3) On vient d'avoir par (2) l'égalité $13 = 325 \times (-11) + 299 \times 12$. En la multipliant par 3, on obtient

$$39 = 325 \times (-33) + 299 \times (36).$$

Ainsi, (-33, 36) est une solution particulière de (E).

(4) Les solutions dans $\mathbb{Z} \times \mathbb{Z}$ de (E) sont les couples (-33 + 23k, 36 - 25k) où k décrit \mathbb{Z} (le prouver).