Calcolatori Multicore

м

Prestazioni hardware

- I microprocessori hanno visto una crescita esponenziale delle prestazioni
 - □ Miglioramento della organizzazione
 - □ Incremento della frequenza di clock
- Crescita del parallelismo
 - Pipeline
 - □ Pipeline parallele (superscalari)
 - □ superscalari + replicazione banco registri → Multithreading simultaneo (SMT)

Problemi

- Maggiore complessità richiede logica più complessa
- Aumento dell'area del chip per supportare il parallelismo
 - Più difficile da progettare, realizzare e verificare (debug)

Organizzazioni alternative del chip

(a) Superscalar

(b) Simultaneous multithreading

Tendenze Hardware Intel

Incremento in complessità

- La potenza cresce esponenzialmente con la densità del chip e la frequenza del clock
 - □ Rimedio: usare più spazio per la cache
 - Meno densa
 - Richiede molta meno potenza (ordini di magnitudine)
- Nel 2015
 - □ 100 miliardi di transistor in 300mm² sul "die" (chip)
 - Cache di 100MB
 - 1 miliardo di transistor per la logica
- Regola di Pollack:
 - Le prestazioni sono all'incirca proporzionali alla radice quadrata dell'incremento in complessità
 - Il raddoppio in complessità restituisce il 40% in più di prestazione
- Architetture multicore hanno il potenziale per ottenere un miglioramento quasi lineare
- Improbabile che un core possa utilizzare efficacemente tutta la memoria cache

re.

Considerazioni sulla potenza e sulla memoria

Utilizzo dei Transistor

Prestazioni del Software

- I vantaggi prestazionali dipendono dallo sfruttamento efficace delle risorse parallele
- Anche una piccola quantità di codice seriale ha un impatto significativo sulle prestazioni
 - □ Il 10% di codice intrinsecamente seriale eseguito su un sistema a 8 processori dà un incremento di prestazioni di solo 4,7 volte
- Overhead dovuto alla comunicazione, distribuzione del lavoro e mantenimento della coerenza della cache
- Alcune applicazioni effettivamente sfruttano i processori multicore

Prestazioni del Software

percentuale codice inerentemente sequenziale

Organizzazione Multicore

- Numero di core per chip
- Numero di livelli di cache per chip
- Quantità di cache condivisa

Possibili alternative

(a) Dedicated L1 cache

(c) Shared L2 cache

(b) Dedicated L2 cache

(d) Shared L3 cache

M

Vantaggi di una Cache L2 condivisa

- Riduzione (accidentale) del numero di miss totali
- Dati condivisi da più core non sono replicati a livello di cache (a livello 2, ma possibile replicazione a livello 1)
- Con appropriati algoritmi di sostituzione dei blocchi, la quantità di cache dedicata ad ogni core è dinamica
 - Thread con minore località possono utilizzare più spazio di cache
- Comunicazione fra processi (anche in esecuzione su core diversi) facilitata dall'utilizzo della memoria condivisa
- Problema della coerenza della cache confinata al L1
- Cache L2 dedicate danno però un accesso alla memoria più rapido
 - □ Migliori prestazioni per thread con forte località
- Anche una cache L3 condivisa può migliorare le prestazioni

Intel Core Duo

- 2006
- core superscalari
- cache L2 condivisa
- cache L1 dedicata
- unità di controllo termico
- controllori di interruzioni programmabili (APIC)
- logica di controllo della potenza
- Interfaccia bus

Front-Side Bus

Intel Core i7

- Novembre 2008
- core SMT
- cache L3 condivisa
- cache L1, L2 dedicate
- controllore memorie DDR3 sul chip
- Logica di connessione con controllo di coerenza della cache molto efficiente e veloce (banda totale di 25.6GB/s)

Prestazioni dei processori multicore

percentuale codice inerentemente sequenziale