O2 - Reproducibility and Version Control ml4econ, HUJI 2020

Itamar Caspi March 15, 2020 (updated: 2020-03-22)

Replicating this Presentation

R packages used to produce this presentation

```
library(tidyverse) # for data wrangling and plotting
library(tidymodels) # for modeling the tidy way
library(knitr) # for presenting tables
library(xaringan) # for rendering xaringan presentations
```

If you are missing a package, run the following command

```
install.packages("package_name")
```

Alternatively, you can just use the **pacman** package that loads and installs packages:

```
if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyvers, tidymodels, knitr, xaringan)
```

From Best Practices to Methodology

Best Practice	Methodology
High dimensional statistics	Machine learning
<pre># code annotation</pre>	Notebooks (R Markdown, Jupyter)
<pre>mydoc_1_3_new_final_23.docx</pre>	Version control
Ready to use tables (xlsx)	Generate tables (SQL, dplyr, pandas)
??	Reproducibility
Stata, SAS, EViews	R, Python, Julia
work solo	Interdisciplinary teams

Outline

- 1. Reproducibility
- 2. The Tidyverse
- 3. Version Control
- 4. GitHub

RStudio Projects

Reproducibility

- Reproducible research allows anyone to generate your exact same results.
- To make your project reproducible you'll need to:
 - document what you did (code + explanations).
 - o name the packages you used (including version numbers).
 - o describe your R environment (R version number, operating system, etc.)
- Being in a "reproducible" state-of-mind means putting yourself in the shoes of the consumers, rather than producers, of your code.

(In "consumers" I also include the future you!)

An Aside: renv

The renv package, by RSudio, helps you create reproducible environments for your R projects.

renv will make your R projects more (From the renv documentation):

- **Isolated**: Installing a new or updated package for one project won't break your other projects, and vice versa. That's because renv gives each project its own private package library.
- **Portable**: Easily transport your projects from one computer to another, even across different platforms. renv makes it easy to install the packages your project depends on.
- **Reproducible**: renv records the exact package versions you depend on, and ensures those exact versions are the ones that get installed wherever you go.

For further details, see this introduction.

An Aside: Docker

- **Docker** is a virtual computer inside your computer.
- Docker makes sure that anyone running your code will be able to perfectly reproduce your results.
- Docker solves a major predictability barrier: replicating your entire development environment (operating system, R versions, dependencies, etc.).
- For further details, see rOpenSci's tutorial.

RStudio Project Environment

- If your R script starts with setwd() or rm(list=ls()) then are doing something wrong!
- Instead:
 - 1. Use RStudio's project environment.
 - 2. Go to Tools -> Global Options -> General and set the "Save workspace to .RData on exit" to **NEVER**.

R Markdown

- R Markdown notebooks, by RStudio, are perhaps THE go-to tool for conducting reproducible research in R.
- The process of "knitting" an Rmd file starts with a clean slate.
- An R Markdown file integrates text, code, links, figures, tables, and all that is related to your research project.
- R Markdown is perfect for communicating research. One if its main advantages is that an *.Rmd file is a "meta-document" that can be exported as a:
 - o document (word, PDF, html, markdown).
 - o presentation (html, beamer, xaringan, power point)
 - website (blogdown).
 - o book (bookdown).
 - journal article (pagedown)
 - o dashboard (flexdashboards).

The Tidyverse

This is Not a Pipe

Prerequisite: %>% is a pipe

- The "pipe" operator %>% introduced in the magrittr package, is deeply rooted in the tidyverse.
- To understand what %>% does, try associating it with the word "then".
- Instead of y <- f(x), we type y <- x % f(). This might seen cumbersome at first, but consider the following two lines of code:

```
> y <- h(g(f(x), z))
> y <- x %>% f() %>% g(z) %>% h()
```

The second line of code should be read as: "take x, then put it through f(), then put the result through g(. , z), then put the result through h(), and finally, keep the result in y.

Base R vs. the Tidyverse

• Consider the following data frame:

• Can you guess what the following code chunk does?

```
df_new <- df[df$x > 0, c("x", "y")]
df_new$xx <- df_new$x^2</pre>
```

How about this one?

```
df_new <- df %>%
  select(x, y) %>%
  filter(x > 0) %>%
  mutate(xx = x^2)
```

How to read "piped" code?

```
df_new <- df %>%
  select(x, y) %>%
  filter(x > 0) %>%
  mutate(xx = x^2)
```

The above code chunk should be read as:

"generate a new dataframe df_{new} by taking df, then select x and y, then filter rows where x is positive, then mutate a new variable $xx = x^2$ "

Pros & cons

- Following a "tidy" approach makes your code more readable ⇒ more reproducible.
- I believe that there is a growing consensus in the #rstats community that we should **learn** the tidyverse first.
- Nevertheless, note that the tidyverse is "Utopian" in the sense that it strives toward perfection, and thus keeps changing. By contrast, base R was built to last.
- As usual, being proficient in both (base R and the tidyverse) will get you far...

The Tidyverse

Tidyverse Packages

Which packages come with tidyverse?

```
tidyverse_packages()
```

```
"crayon"
    [1] "broom"
                     "cli"
                                                 "dplyr"
                                                              "dbplyr"
##
                                   "haven"
                                                 "hms"
                                                              "httr"
    [6] "forcats" "ggplot2"
## [11] "jsonlite"
                     "lubridate"
                                  "magrittr"
                                                "modelr"
                                                              "purrr"
## [16] "readr"
                     "readxl\n(>=" "reprex"
                                                "rlang"
                                                              "rstudioapi"
                     "stringr"
                                   "tibble"
                                                 "tidvr"
                                                              "xm12"
## [21] "rvest"
## [26] "tidyverse"
```

Note that not all these packages are loaded by default (e.g., lubrudate.)

We now briefly introduce one the tidyvers flagships: dplyr.

dplyr: The grammar of data manipulation

dplyr is THE go-to tool for data manipulation

- Key "verbs":
 - filter() selects observations (rows).
 - select() selects variables (columns).
 - mutate() generate new variables (columns).
 - arrange() sort observations (rows).
 - summarise() summary statistics (by groups).
- Other useful verbs:
 - group_by() groups observations by variables.
 - sample_n() sample rows from a table.
- And much more (see dplyr documentation)

The tidymodels package

• Tidymodels extends the tidyverse "grammar" philosophy to modelling tasks.

```
tidymodels::tidymodels_packages()
```

```
"cli"
                                          "crayon"
                                                           "dials"
        "broom"
                         "ggplot2"
                                          "infer"
                                                           "magrittr"
##
    [5] "dplyr"
    [9] "parsnip"
                         "pillar"
                                          "purrr"
                                                           "recipes"
## [13] "rlang"
                         "rsample"
                                          "rstudioapi"
                                                           "tibble"
## [17] "tidytext"
                         "tidypredict"
                                          "tidyposterior" "tune"
## [21] "workflows"
                         "yardstick"
                                          "tidymodels"
```

For further details, visit the tidymodels GitHub repo.

Resources

- 1. R for Data Science (r4ds) by Garrett Grolemund and Hadley Wickham.
- 2. Data wrangling and tidying with the "Tidyverse" by Grant McDerrmot.
- 3. Getting used to R, RStudio, and R Markdown by Chester Ismay and Patrick C. Kennedy.
- 4. Data Visualiztion: A practical introduction by Kieran Healy.

Version Control

Version Control

Git

- Git is a distributed version control system.
- Huh?!
- Sorry. Think of MS Word "track changes" for code projects.
- Git has established itself as the defacto standard for version control and software collaboration.

GitHub

- GitHub is a web-based hosting service for version control using Git.
- OK, OK! Think of "Dropbox" for git projects. On steroids. And then some.
- GitHub is where and how a large share of open-source projects (e.g., R packages) are being developed.

Resources

- 1. Happy Git and GitHub for the useR by Jenny Bryan.
- 2. Version Control with Git(Hub) by Grant McDerrmot.
- 3. Pro Git.

Let's Practice!

Suggested workflow for starting a new (desktop) R project

RStudio:

- 1. Open RStudio.
- 2. File -> New Project -> New Directory -> New Project.
- 3. Name your project under "Directory name:". Make sure to check "Create git repository".

GitHub Desktop:

- 1. Open GitHub Desktop.
- 2. File -> Add local repository.
- 3. Set "Local path" to your RStudio project's folder.
- 4. Publish local git repo on GitHub (choose private or public repo).

Suggested workflow for starting a new RStudio Cloud project

- 1. Login to RStudio Cloud.
- 2. Choose workspace (e.g., ml4econ-2020).
- 3. Click on "New Project" (optional from GitHub).
- 4. Set up Git: Tools -> Version Control -> Project Setup -> set "Version Control System" to "Git" and restart session.
- 5. Introduce yourself to Git

```
install.packages("usethis")

library(usethis)

use_git_config(
    scope = "project",
    user.name = "Jane",
    user.email = "jane@example.org"
)
```

(6. Some extra steps are needed in order to publish and sync this new project with GitHub.)

Suggested Git Workflow

The **pull -> stage -> commit -> push** workflow:

- 1. Open GitHub Desktop.
- 2. Change "Current repository" to the cloned repo.
- 3. Click "Fetch origin" and **pull** any changes made to the GitHub repo.
- 4. Open your project.
- 5. Make changes to one or more of your files.
- 6. Save.
- 7. **stage** or unstage changed files.
- 8. write a summary (and description) of your changes.
- 9. Click "Commit to master".
- 10. Update remote: Click "Push origin" (Ctrl + P).

Clone and Sync a Remote GitHub Repository

Cloning:

- 1. Open GitHub Desktop.
- 2. Open the remote repository.
- 3. Click on "Clone or download".
- 4. Set the local path of your cloned repo (e.g., "C:/Documents/CLONED_REPO".

Syncing:

- 1. Open GitHub Desktop.
- 2. Change "Current repository" to the cloned repo.
- 3. Click the "Fetch origin" button.
- 4. Pull any changes made on the remote repo.

Your Mission

- 1. Login to RStudio Cloud.
- 2. Create your first R project.
- 3. Initiate Git.¹
- 4. Create a new RMarkdown file.
- 5. Commit.

¹ RStudio automatically generates a .gitignore file that tells git which files to ignore (duh!). Click here for further details on how to configure what to ignore.

slides %>% end()

Source code