1 Probability

1.1 Probability Space

- Sample space Ω is the collection of all possible outcomes.
- An event A is a subset of Ω .
- A σ -field, denoted by \mathcal{F} , is a collection of events such that: (i) $\emptyset \in \mathcal{F}$; (ii) if an event $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$; (iii) if $A_i \in \mathcal{F}$ for $i \in \mathbb{N}$, then $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{F}$.
- (Ω, \mathcal{F}) is called a measure space.
- A function $\mu : \mathcal{F} \mapsto [0, \infty]$ is called a *measure* if it satisfies (i) $\mu(A) \geq 0$ for all $A \in \mathcal{F}$; (ii) if $A_i \in \mathcal{F}$, $i \in \mathbb{N}$, are mutually disjoint, then $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i)$
- If $\mu(\Omega) = 1$, we call μ a probability measure. A probability measure is often denoted as P.
- (Ω, \mathcal{F}, P) is called a *probability space*.

1.2 Random Variable

- A function $X : \Omega \to \mathbb{R}$ is $(\Omega, \mathcal{F}) \setminus (\mathbb{R}, \mathcal{R})$ measurable if $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}$ for any $B \in \mathcal{R}$, where \mathcal{R} is the Borel σ -field on the real line. Random variable is an alternative name for a measurable function.
- Discrete random variable: the set $\{X(\omega) : \omega \in \Omega\}$ is finite or countable.
- Continuous random variable: the set $\{X(\omega) : \omega \in \Omega\}$ is uncountable.
- $P_X : \mathcal{R} \mapsto [0,1]$ is also a probability measure if defined as $P_X(B) = P(X^{-1}(B))$ for any $B \in \mathcal{R}$. This P_X is called the probability measure *induced* by the measurable function X.

1.3 Distribution Function

• (Cumulative) distribution function

$$F(x) = P(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x\}).$$

• Properties of CDF: $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$, non-decreasing, and right-continuous

$$\lim_{y \to x^{+}} F(y) = F(x).$$

• Probability density function (PDF): if there exists a function f such that for all x,

$$F(x) = \int_{-\infty}^{x} f(y) \, dy,$$

then f is called the PDF of X.

• Properties: $f(x) \ge 0$. $\int_a^b f(x) dx = F(b) - F(a)$

1.4 Examples

- Binary, Poisson, uniform, normal, χ^2 , t, F.
- Parametric distribution verses nonparametric distribution.
- Implementation in R: d for density, p for probability, q for quantile, and r for random variable. For instance, dnorm, pnorm, qnorm, and rnorm.