인공지능실습 (Python)

MLP

■ 로젠블라트의 퍼셉트론

- 다수의 신호를 입력으로 받아 하나의 신호를 출력
- 다중의 입력을 하나의 2진 값으로 출력

 $ext{output} \ = \left\{ egin{array}{ll} 0 & ext{if } \sum_j w_j x_j \leq ext{ threshold} \ 1 & ext{if } \sum_j w_j x_j > ext{ threshold} \end{array}
ight.$

■ 퍼셉트론의 학습

- 델타 규칙이라는 학습 규칙을 사용
 - 만일 어떤 신경세포의 활성이 다른 신경세포가 잘못된 출력을 내는데 공헌을 했다면,
 두 신경 세포간의 연결 가중치를 그것에 비례하게 조절
- 목적 패턴을 이용한 신경망의 학습을 인위로 제어

[그림 13-10] 퍼셉트론

퍼셉트론 신경망에 적용된 학습규칙

델타 규칙(Delta Rule)

인공지능

■ 델타 규칙

$$\mathbf{w}_{ij}^{new} = \mathbf{w}_{ij}^{old} + \alpha \mathbf{e}_{j} \mathbf{a}_{i} \tag{13.3}$$

$$\mathbf{e}_{\mathbf{j}} = \mathbf{t}_{\mathbf{j}} - \mathbf{b}_{\mathbf{j}} \tag{13.4}$$

 \mathbf{w}_{ij}^{new} : 신경세포 i, j 사이의 조절된 후 연결 가중치

 \mathbf{W}_{ij}^{old} : 신경세포 i, j 사이의 조절되기 전 연결 가중치

 α : 학습률 (0 〈 α \leq 1)

 $\mathbf{e}_{\mathbf{j}}$: 신경세포 \mathbf{j} 의 오차

 $\mathbf{a_i}$: 입력층 신경세포 \mathbf{i} 의 활성값

 $\mathbf{t_j}$: 목적 패턴의 출력층 신경세포 \mathbf{j} 에 대응하는 성분값

 $\mathbf{b}_{\mathbf{j}}$: 출력층 신경세포 \mathbf{j} 의 활성값

인공지능

■ 델타 규칙

델타 규칙을 사용하여 신경망을 학습하는 과정을 요약하면 다음과 같다.

- ① 입력층에 입력 패턴을 제시
- ② 신경망을 동작
- ③ 델타 규칙에 의해 연결 기중치를 조절

$$\mathbf{w}_{ij}^{\text{new}} = \mathbf{w}_{ij}^{\text{old}} + \alpha \mathbf{e}_{j} \mathbf{a}_{i}$$
 (13.5)

④ 신경망이 완전하게 학습될 때까지 과정 ①~③을 입력 패턴에 대해 반복

델타 규칙에 의한 학습 과정은 감독 학습 방법이 사용하는 일반적인 형태의 학습 과정과 동일 하다. 단지 과정 ③에서 연결 가중치 조절식만 다를 뿐이다.

델타 규칙에서 학습 완료 정도를 나타내는 오차는 헤브의 규칙에서와 같다. 앞서 (13.4)에서와 같이 신경망의 실제 출력 패턴의 목적 패턴의 차이에 의해 계산된다. 이 부분에서 중요한 것은 "잘못된 출력을 낸 신경세포들의 연결 가중치를 그 정도에 비례하여 조절한다"이다.

MNIST 데이터셋

- 머신러닝의 고전적인 문제
- 학습데이터 60000개, 테스트데이터 10000개
 - 또는 학습데이터 55000개, 검증데이터 5000개
- 0~9까지 필기 숫자들의 그레이스케일 28X28 픽셀 이미지를 보고 판별하는 문제


```
from tensorflow import keras

import numpy as np
import matplotlib.pyplot as plt

mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
```

2020-06-03 15:02:19.004027: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll Backend Qt5Agg is interactive backend. Turning interactive mode on.

MNIST 샘플 데이터 보기

```
plt.rcParams['toolbar'] = 'None'

fg1 = plt.figure(1, figsize=(3, 3))
fg1.canvas.window().statusBar().setVisible(False)
ax1 = fg1.add_axes([0, 0, 1, 1])
ax1.imshow(train_images[0], cmap='gray', aspect='auto')
ax1.axis('off')
ax1.text(1, 1, "Label : {}".format(train_labels[0]), fontsize=10, color='white')

fg2 = plt.figure(2, figsize=(3, 3))
fg2.canvas.window().statusBar().setVisible(False)
ax2 = fg2.add_axes([0, 0, 1, 1])
ax2.imshow(test_images[0], cmap='gray', aspect='auto')
ax2.axis('off')
ax2.text(1, 1, "Label : {}".format(test_labels[0]), fontsize=10, color='white')
```


■ 데이터 정규화(normalize)

- 머신러닝 알고리즘은 데이터가 가진 특징(feature)들을 비교하여 데이터의 패턴을 찾음
- 데이터가 가진 특징들의 스케일이 심하게 차이가 나는 경우 문제

```
#% normalize
train_input = 정규화된 train_images
test_input = 정규화된 test_images
```


인공지능 MLP 구현 8

One-hot encoding/vector

- 데이터를 쉽게 중복 없이 표현할 때 사용하는 형식
- discrete representation

```
#%% target to one-hot vector
train_target = keras.utils.to_categorical(train_labels)
test_target = keras.utils.to_categorical(test_labels)
```

0	1	2	3	4	5	6	7	8	9
0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	0.00000	0.00000	0.00000	0.00000
1.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.00000	0.00000	0.00000	0.00000	1.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.00000	1.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000
0.00000	0.00000	1.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.00000	1.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.00000	0.00000	0.00000	1.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.00000	1.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

■ 분류를 위한 모델 (Multi Layer Perceptron)

```
#%% define network
model = keras.Sequential(
    layers=[
        keras.layers.Flatten(input_shape=(28, 28), name='Input'),
        keras.layers.Dense(128, activation='sigmoid', name='Hidden_1'),
        keras.layers.Dense(128, activation='sigmoid', name='Hidden_2'),
        keras.layers.Dense(128, activation='sigmoid', name='Hidden_3'),
        keras.layers.Dense(10, activation='sigmoid', name='Output')
    ],
    name="MNIST_Classifer"
)
model.summary()
```

 -ayer (type)	Output Shap	oe	Param #
 Input (Flatten)	(None, 784)	========)	======= 0
Hidden_1 (Dense)	(None, 128))	100480
Hidden_2 (Dense)	(None, 128))	16512
Hidden_3 (Dense)	(None, 128))	16512
Dutput (Dense)	(None, 10)		1290
Total params: 134,794 Trainable params: 134,794 Non-trainable params: 0			

■ 분류를 위한 모델 (Multi Layer Perceptron)

■ 학습 방법: 확률적 경사 하강법

■ 에러(손실): 평균제곱오차

▶ 성능 평가 척도 : 분류 정확도

■ 분류기 학습

• 학습 반복 횟수(epoch): 20회

```
#%% fit model to train data
model.fit(train_input, train_target, epochs=20, verbose=2)
```

```
Epoch 17/20

60000/60000 - 2s - loss: 0.0414 - accuracy: 0.7585

Epoch 18/20

60000/60000 - 2s - loss: 0.0384 - accuracy: 0.7837

Epoch 19/20

60000/60000 - 2s - loss: 0.0357 - accuracy: 0.8023

Epoch 20/20

60000/60000 - 2s - loss: 0.0331 - accuracy: 0.8173
```

인공지능 MLP 구현 11

■ 학습한 모델 테스트

- 테스트 정확도와 학습 정확도의 비교
- 오버피팅 / 언더피팅

```
10000/10000 - 0s - loss: 0.0374 - accuracy: 0.7817

Test accuracy: 0.7817
```

```
#%% evaluate model by test data
test_loss, test_acc = model.evaluate(test_input, test_target, verbose=2)
print('\nTest accuracy:', test_acc)
predictions = model.predict(test_input)
```

■ 샘플 데이터 테스트

```
sample_pred = model.predict(test_sample)
sample result = np.argmax(sample pred)
```


