1

Assignment 17

KUSUMA PRIYA EE20MTECH11007

Download codes from

https://github.com/KUSUMAPRIYAPULAVARTY/assignment17

1 QUESTION

Let \mathbb{F} be a field of characteristic zero and let \mathbf{V} be a finite dimensional vector space over \mathbb{F} . If $\alpha_1, \alpha_2, \ldots, \alpha_m$ are finitely many vectors in \mathbf{V} , each different from the zero vector, prove that there is a linear functional f on \mathbf{V} such that

$$f(\alpha_i) \neq 0, i = 1, 2, \dots, m$$
 (1.0.1)

2 Theorem

We will make use of the following theorem Let V be a finite dimensional vector space over the field \mathbb{F} and let $\{v_1, v_2, \ldots, v_n\}$ be a basis for V. Then there exists a unique dual basis $\{f_1, f_2, \ldots, f_n\}$ for V^* such that

$$f_i(\mathbf{v}_j) = \delta_{ij} \tag{2.0.1}$$

and V^* is the space of all linear functionals on V

3 Solution

PARAMETERS	DESCRIPTION	
F	Field	
V	Finite dimensional vector space over F	
$\alpha_1, \alpha_2, \ldots, \alpha_m$	non zero vectors in V	
$f: \mathbf{V} \to \mathbb{F}$	Linear functional on V	

TABLE 0:Input Parameters

PARAMETERS	MATRIX REPRESENTATION
Basis for V	$\mathbf{B} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{pmatrix}$
Basis for V*	$\mathbf{B} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{pmatrix}$ $\mathbf{B}^* = \begin{pmatrix} \mathbf{f}_1 & \mathbf{f}_2 & \dots & \mathbf{f}_n \end{pmatrix}$
$f_i(\mathbf{v}_j) = \delta_{ij}$	$(\mathbf{f}_i)^T \mathbf{v}_j = \delta_{ij}$
\mathbf{B}, \mathbf{B}^* are dual basis	$(\mathbf{B}^*)^T \mathbf{B} = \mathbf{I}$
$\alpha_i = \sum_{k=1}^n a_k \mathbf{v}_k, i \in [1, m]$	$\alpha_i = \mathbf{Ba} \text{ where } \mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, a_l \in \mathbb{F}, l \in [1, n]$
$\alpha_i \neq 0$	a ≠ 0
Any linear functional f over V	$\mathbf{f} = \mathbf{B}^* \mathbf{c}$, where $\mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$, $c_l \in \mathbb{F}$, $l \in [1, n]$
$f(lpha_i)$	$\mathbf{f}^{T}\alpha_{i}$ $= (\mathbf{B}^{*}\mathbf{c})^{T}\alpha_{i}$ $= \mathbf{c}^{T}(\mathbf{B}^{*})^{T}\mathbf{B}\mathbf{a}$ $= \mathbf{c}^{T}\mathbf{a}$
f with $c_l \neq 0 \forall l \in [1, n]$ lies in $\mathbf{V}^*, \mathbf{a} \neq 0$	$f(\alpha_i) = \mathbf{c}^T \mathbf{a} \neq 0, i = 1, 2, \dots, m$

TABLE 1:Proof