

Eselliti

1)
$$f = \sqrt{x^3-1}$$
 $D = x^2+2x \neq 0$ per $x(x+z)\neq 0$

$$\begin{cases} x \neq 0 \\ x+2 \neq 0 \end{cases} \begin{cases} x \neq 0 \\ x \neq -2 \end{cases}$$

$$= 0 \times 3 - 1 \ge 0 \quad \text{per} \quad \times^3 \ge 1 = 0 \times \ge 1$$

Intersezione
$$-2$$
 0 $x \neq 0 \ 0 \times x \neq -2$

Radice

Quindi:
$$D = \{x \in |R| \times > 1\}$$

2)
$$f = \frac{\log_3(x^2+9)}{e^x(2\sin x-1)}$$
 a) Denominatori

$$|e^{x}(2\sin x-1)|$$
 $|e^{x}(2\sin x-1)\neq 0$

b) logaritmi

L'avgomento e
$$x^2+9$$
,

quinoli Sempre positivo

per Sin $x \neq \frac{1}{2} = D$
 $x_1 \neq \frac{11}{6} + 2KTI$
 $x_2 \neq \frac{5}{6}TI + 2KTI$

3) $f = \log_2 \left(\log_{\frac{1}{2}} x \right) \cdot e^{3in(2x)}$ 3) $f = log_2(log_{\frac{1}{2}}x) \cdot e^{3in(2x)}$ a) $log_{\frac{1}{2}}x > 0$ perocx < Li) $log_{\frac{1}{2}}x > 0$ perocx < Lii) x > 0quindi $e^{i} > 0$ quoudo il

toterse zi one

1 Quindi D = { XER \ O< X< 1

Funzioni pari e dispari Esercizi

1)
$$f = \sin x + \frac{1}{4 \sin x}$$
Dispari = Dispari calcolismo $f(-x)$
 $f(-x) = -\sin x - \frac{1}{4 \sin x}$
 $f(-x) = -f(x) = 0$

Funzione Dispari = Dispari calcolismo $f(-x)$
 $f(-x) = -\sin x - \frac{1}{4 \sin x}$
 $f(-x) = -f(x) = 0$

Funzione Dispari = Dispari calcolismo $f(-x)$

Periodica? Ancho in questo caso possiono fare il ragionamento che periodica + periodica = periodica.

Dim:

 $f(x+2\pi) = \sin(x+2\pi) + \frac{1}{4 \sin(x+2\pi)}$
 $f(x+2\pi) = \sin(x+2\pi) + \frac{1}{4 \sin(x+2\pi)}$
 $f(x+2\pi) = \sin(x+2\pi) + \frac{1}{4 \sin(x+2\pi)}$
 $f(x) = 0$

Periodica con $f(x) = 0$
 $f(x) = 0$

Periodica

2) Per quali valori a eb $f(x) = 0$
 $f(x) = 0$

Periodica

2) Per quali valori a eb $f(x) = 0$
 $f($

