Отчет по лабораторной работе №6

Модель эпидемии - вариант 55

Чибуэла Маглуар Куэт НПИбд-02-18

Содержание

4	Выводы	11
3	Выполнение лабораторной работы 3.1 Теоретические сведения	6 6 7
2	Задание	5
1	Цель работы	4

List of Figures

3.1	Графики численности в случае $I(0) \leq I^*$	10
3.2	Графики численности в случае $I(0) > I^*$	10

1 Цель работы

Изучить модель эпидемии SIR

2 Задание

- 1. Изучить модель эпидемии
- 2. Построить графики изменения числа особей в каждой из трех групп. Рассмотреть, как будет протекать эпидемия в случае: $I(0) \leq I^*$, $I(0) > I^*$

3 Выполнение лабораторной работы

3.1 Теоретические сведения

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа – это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни. До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$rac{dS}{dt} = egin{cases} -lpha S & \mbox{,ecли } I(t) > I^* \ 0 & \mbox{,ecли } I(t) \leq I^* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится. Т.е.:

$$rac{dI}{dt} = egin{cases} lpha S - eta I & ext{,ecли } I(t) > I^* \ -eta I & ext{,ecли } I(t) \leq I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни):

$$\frac{dR}{dt} = \beta I$$

Постоянные пропорциональности α,β - это коэффициенты заболеваемости и выздоровления соответственно. Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$

3.2 Задача

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=9512) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=52, А число здоровых людей с иммунитетом к болезни R(0)=32. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае: $1. I(0) \leq I^*$ $2. I(0) > I^*$

import numpy as np
from scipy. integrate import odeint
import matplotlib.pyplot as plt

```
N = 9512
I0 = 52
R0 = 32
S0 = N-I0-R0
a = 0.12
b = 0.08
x0 = [S0, I0, R0]
def syst(y, t):
    y1, y2, y3 = y
    return [0, -b*y2, b*y2]
def syst2(y, t):
   y1, y2, y3 = y
    return [-a*y1, a*y1-b*y2, b*y2]
t = np.arange(0, 200, 0.01)
y1 = odeint(syst, x0, t)
y1s = y1[:,0]
y1i = y1[:,1]
y1r = y1[:,2]
fig = plt.figure(facecolor='white')
plt.plot(t, y1s, linewidth=2, label='S(t)')
```

import math

```
plt.plot(t, y1i, linewidth=2, label='I(t)')
plt.plot(t, y1r, linewidth=2, label='R(t)')
plt.ylabel("численность")
plt.xlabel("t")
plt.grid(True)
plt.legend()
plt.show()
fig.savefig('01.png', dpi = 600)
y2 = odeint(syst2, x0, t)
y2s = y2[:,0]
y2i = y2[:,1]
y2r = y2[:,2]
fig2 = plt.figure(facecolor='white')
plt.plot(t, y2s, linewidth=2, label='S(t)')
plt.plot(t, y2i, linewidth=2, label='I(t)')
plt.plot(t, y2r, linewidth=2, label='R(t)')
plt.ylabel("численность")
plt.xlabel("t")
plt.grid(True)
plt.legend()
plt.show()
fig2.savefig('02.png', dpi = 600)
```


Figure 3.1: Графики численности в случае $I(0) \leq I^*$

Figure 3.2: Графики численности в случае $I(0)>I^{st}$

4 Выводы

В ходе выполнения лабораторной работы была изучена модель эпидемии и построены графики.