Seat No.:	Enrolment No.

BE- SEMESTER-IV (NEW) EXAMINATION – WINTER 2020

Subject Code:3140707 Date:15/02/2021

Subject Name: Computer Organization & Architecture

Time:02:30 PM TO 04:30 PM Total Marks:56

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	What is PSW? Explain each bit of it	03
	(b)	<u>•</u>	04
	(c)	List and explain Memory reference instructions in detail	07
Q.2	(a)	Design a digital circuit for 4-bit binary adder	03
	(b)	1	04
	(c)	Draw and briefly explain flowchart for second pass of assembler.	07
Q.3	(a)	Explain any three register reference instruction in detail.	03
	(b)	<u> •</u>	04
	(c)	Draw and explain micro program sequencer circuit with diagram.	07
Q.4	(a)	State the differences between hardwired control and micro programmed control.	03
	(b)	Explain hardware implementation of common bus system using three- State buffers. Mention assumptions if required.	04
	(c)	Explain delay load and delay branch with respect to RISC pipeline.	07
Q.5	(a)	Draw and briefly explain flowchart for first pass of assembler	03
	(b)	ž	04
	(c)	Elaborate 4-segment instruction pipeline with neat sketches.	07
Q.6	(a)	State the major characteristics of CISC processor	03
	(b)	• • • • • • • • • • • • • • • • • • • •	04
	(c)	What is virtual memory? Explain relation between address space and memory space in virtual memory system.	07
Q.7	(a)	Briefly explain source initiated transfer using handshaking.	03
	(b)		04
	(c)	Write a short note on associative memory.	07
Q.8	(a)	How main memory is useful in computer system? Explain the memory address map of RAM and ROM.	03
	(b)	Explain daisy chain priority interrupt	04
	(c)	Explain CPU-IOP communication with diagram.	07

G . 3.T	T 1 . NT
Seat No.:	Enrolment No.

•	et Co	ge - SEMESTER-IV (NEW) EXAMINATION – WINTER 2021 ode:3140707 Date:03/01/	2022
_	10:3	me:Computer Organization & Architecture 0 AM TO 01:00 PM Total Mark	ks: 70
-	1. At 2. M 3. Fi	ttempt all questions. Take suitable assumptions wherever necessary. gures to the right indicate full marks. mple and non-programmable scientific calculators are allowed.	
			Marks
Q.1	(a)	•	03
	(b) (c)	•	04 07
Q.2	(a)	Differentiate assembly language and machine language.	03
	(b)	What is the need of common bus? Draw common bus cycle.	04
	(c)	, , , , ,	07
		is prime or not. OR	
	(c)		
Q.3	(a)	Define followings: 1. Control Memory 2. Control Word 3. Control Address Register	03
	(b)	_	04
	(c)		07
0.0		OR	0.2
Q.3	(a)		03
	(b) (c)		04 07
Q.4	(a)	Enlist the characteristics of RISC.	03
	(b)		04
	(c)		07
		OR	
Q.4	(a)	, 11	03
	(b) (c)		04 07

(a) What is the importance of virtual memory?

interconnection structures in multiprocessors.

(b) Explain multiport memory and crossbar switch with reference to

Q.5

03

04

(c)	Assume a computer system uses 5 bit (1 sign + 4 Magnitude) registers and 2's complement representation. Perform multiplication of number 10 with the smallest number in this system using booth algorithm	07
	, , , , , , , , , , , , , , , , , , ,	
	OR	
(a)	What is cache coherence? Describe.	03
(b)	A 4-way set-associative cache memory unit with a capacity of 16 KB is built using a block size of 8 words. The word length is 32 bits. The size of the physical address space is 4 GB. How many bits for the will be required for TAG field?	04
(c)	Which are the different ways to transfer data to and from peripheral devices? Explain any one of them in detail.	07
	(a) (b)	and 2's complement representation. Perform multiplication of number 10 with the smallest number in this system using booth algorithm. Show step-by-step multiplication process. OR (a) What is cache coherence? Describe. (b) A 4-way set-associative cache memory unit with a capacity of 16 KB is built using a block size of 8 words. The word length is 32 bits. The size of the physical address space is 4 GB. How many bits for the will be required for TAG field? (c) Which are the different ways to transfer data to and from peripheral

Seat No.:	Enrolment No.

	•	BE - SEMESTER- IV EXAMINATION - SUMMER 2020	
Subject	Coc	de: 3140707 Date:27/10/20)20
Subject	Nar	ne: Computer Organization & Architecture	
		AM TO 01:00 PM Total Marks	: 70
Instructio		omnt all avactions	
		empt all questions. ke suitable assumptions wherever necessary.	
		ures to the right indicate full marks.	
			Marks
Q.1	(a)	Enlist register reference instructions and explain any one of them in detail.	03
	(b)	What is combinational circuit? Explain multiplexer in detail. How many NAND gates are needed to implement 4 x 1 MUX?	04
	(c)	Draw the flowchart for instruction cycle and explain.	07
Q.2	(a)	What is RAM and ROM?	03
~	(b)	One hypothetical basic computer has the following specifications:	04
		Addressing Mods = 16	
		Total Instruction Types = 4 (IT1, IT2, IT3, IT4)	
		Each of the instruction type has 16 different instructions. Total General-Purpose Register = 8	
		Size of Memory = 8192 X 8 bits	
		Maximum number of clock cycles required to execute one instruction = 32	
		Each instruction of the basic computer has one memory operand and	
		one register operand in addition to other required fields.	
		a. Draw the instruction word format and indicate the number of	
		bits in each part.b. Draw the block diagram of control unit.	
		b. Draw the block diagram of control unit.	
	(c)	Write an assembly language program to find the Fibonacci series up to the given number.	07
		OR	
	(c)	Write an assembly language program to find average of 15 numbers stored at consecutive location in memory.	
Q.3	(a)	Which are different pipeline conflicts. Describe.	03
Z	(b)	What is assembler? Draw the flowchart of second pass of the	04
	` /	assembler.	
	(c)	Write a note on arithmetic pipeline.	07
		OR	

Design a simple arithmetic circuit which should implement the

Add: A+B, Add with Carry: A+B+1, Subtract: A+B', Subtract with Borrow: A+B'+1, Increment A: A+1, Decrement A: A-1, Transfer A:

following operations: Assume A and B are 3 bit registers.

(a) What is address sequencing? Explain.

Q.3

Α

03

04

	(c)	Explain how addition and subtraction of signed data is performed if a computer system uses signed magnitude representation.	07
Q.4	(a)	Enlist different status bit conditions.	03
	(b)	What is addressing mode? Explain direct and indirect addressing mode with example.	04
	(c)	What is cache memory address mapping? Which are the different memory mapping techniques? Explain any one of them in detail.	07
		OR	
Q.4	(a)	Differentiate isolated I/O and memory mapped I/O.	03
	(b)	Compare and contrast RISC and CISC.	04
	(c)	Explain booth's multiplication algorithm with example.	07
Q.5	(a)	What is associative memory? Explain.	03
	(b)	Differentiate between paging and segmentation techniques used in virtual memory.	04
	(c)	Write a note on asynchronous data transfer.	07
	(-)	OR	
Q.5	(a)	Write about Time-shared common bus interconnection structure.	03
-	(b)	Explain the working of Direct Memory Access (DMA).	04
	(c)	Write a note on interprocess communication and synchronization.	07
	\ · /	1	

Seat No.:	Enrolment No.

BE - SEMESTER-IV (NEW) EXAMINATION – SUMMER 2021

Subject Code:3140707 Date:06/09/2021

Subject Name: Computer Organization & Architecture

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			Marks
Q.1	(a)	State differences between hardwired control unit and	03
	(b)	microprogrammed control unit. Explain register stack and memory stack.	04
	(c)	Show the contents of registers E, AC, BR, QR and SC during the process of multiplying 11111 with 10101.	07
Q.2	(a)	Write down RTL statements for the fetch and decode operation of basic computer.	03
	(b)	Define pipelining. For arithmetic operation (Ai *Bi + Ci) with a stream of seven numbers (i=1 to 7). Specify a pipeline configuration to carry out this task.	04
	(c)	Write a program to evaluate the arithmetic statement: A*B+C*D+E i. Using an accumulator type computer. ii. Using a stack organized computer.	07
		OR	0=
	(c)	A non-pipeline system takes to process a task. The same task can be processed in a six segment pipeline with a clock cycle of 10ns. Determine the speedup ratio of the pipeline for 100 tasks. What is the maximum speed up that can be achieved?	07
Q.3	(a)	List down six major characteristics of RISC processors.	03
	(b)	Explain how (r-1)'s complement is calculated. Calculate 9's complement of 546700.	04
	(c)	Elaborate CPU-IOP communication.	07
		OR	
Q.3	(a) (b)	List and explain major instruction pipeline conflicts. Define RTL. Give block diagram and timing diagram of transfer of R1 to R2 when P=1.	03 04
	(c)	Elaborate content addressable memory (CAM).	07
Q.4	(a)	Explain memory hierarchy in brief.	03
	(b)	Draw and explain flowchart for first pass of assembler.	04
	(c)	Explain using a flowchart how address of control memory is selected in microprogrammed control unit.	07
0.4		OR	0.2
Q.4	(a)	Briefly explain DMA.	03
	(b)	Write assembly level program to subtract two given numbers. Write the symbolic microprogram routine for the BSA	04
	(c)	Write the symbolic microprogram routine for the BSA instruction. Use the microinstruction format of basic microprogrammed control unit.	07

Q.5	.5 (a) How many AND gates and Adders will be required to multiply a		03	
		5 bit number with a 3 bit number? Also say size of adder (bits).		
	How many bits will be there in the result?			
	(b)			
		memory in computer systems.		
	(c)	(c) Discuss multistage switching network with neat diagrams.		
		OR		
Q.5	(a)	Explain the non-restoring methods for dividing two numbers.	03	
	(b)	Discuss source-initiated transfer using handshaking in asynchronous data transfer.	04	
	(c)	Elaborate cache coherence problem with its solutions.	07	

Seat No.:	Enrolment No.

BE - SEMESTER-IV (NEW) EXAMINATION – SUMMER 2022

Subj	ect (Code:3140707 Date:29-0	6-2022
Subj	ect]	Name:Computer Organization & Architecture	
Time	:10	:30 AM TO 01:00 PM Total Mai	rks: 70
Instru	ction	ns:	
	2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
	т.	Simple and non-programmable scientific calculators are anowed.	MARK
Q.1	(a) (b)	*	03 04
	(c)	List and explain Memory reference instructions in detail.	07
Q.2	(a)	-	03
	(b) (c)		04 07
	(c)	State and Explain any seven logic micro operation.	07
Q.3	(a)	<u>.</u>	03
	(b) (c)		04 07
Q.3	(a)	<u> </u>	03
	(b)	· · · · · · · · · · · · · · · · · · ·	04
	(c)	Explain any four input output reference instruction.	07
Q.4	(a)	Draw flowchart of first pass assembler.	03
	(b)	Write assembly language program to add two numbers.	04
	(c)	Write assembly language program to multiply two numbers. OR	07
Q.4		What is address sequencing?	03
	(b)	Write assembly language program to subtract one number from other number.	04
	(c)	Explain booth's multiplication algorithm with example.	07
Q.5	(a)	Explain register stack.	03
	(b)		04
	(c)	Write a note on asynchronous data transfer. OR	07
Q.5	(a)	What is difference between direct and indirect addressing mode?	03
	(b)		04
	(c)	Write a short note on virtual memory.	07
