

ALTRO:

A Fast Solver For

Constrained Trajectory Optimization

Taylor Howell, Brian Jackson, Zachary Manchester {thowell, bjack205, zacmanchester}@stanford.edu

The Big Picture

Trajectory optimization is a versatile tool with many important applications in robotic motion planning. Solution methods for this problem are typically classified as:

Indirect Methods (e.g. iLQR)

- Fast
- Lightweight
- Anytime Dynamic Feasibility
- Limited Constraint Handling
- Difficult to Initialize

Direct Methods (e.g. DIRCOL)

- Numerically Robust
- Arbitrary Constraints
- Infeasible Initialization
- Typically Slow
- Large-scale sparse NLP solvers

ALTRO (Augmented Lagrangian TRajectory Optimizer) combines the best aspects of indirect and direct methods.

Active-set Projection Method

code: https://github.com/RoboticExplorationLab/TrajectoryOptimization.jl

paper: https://rexlab.stanford.edu/papers/altro-iros.pdf

Trajectory Optimization

uses Iterative LQR in Augmented Lagrangian framework to handle constraints solves and optimization problems of the form:

minimize
$$x_{0:N}, u_{0:N-1}$$
 $\ell_N(x_N) + \sum_{k=0}^{N-1} \ell_k(x_k, u_k, \Delta t)$
subject to
 $x_{k+1} = f_k(x_k, u_k, \Delta t),$
 $c_k(x_k, u_k) \{ \leq, = \} 0$

Examples

quadrotor maze

kuka obstacles

car escape

distributed team lift

Augmented Lagrangian

Framework for solving Iterative LQR with constraints.

This approach (right) is arguably better suited for obstacle avoidance than SQP (left) or interior point (center) methods.

Square-root Iterative LQR

Riccati recursion improves This numerical conditioning.

$$S_k \leftarrow \mathbf{QR} \left(\begin{bmatrix} \sqrt{(Q_{xx})_k} + \sqrt{(Q_{xx})_k}^{-T} (Q_{ux})_k^T K_k \\ \mathbf{DD}(\sqrt{(Q_{uu})_k}, \sqrt{(Q_{xx})_k}^{-T} (Q_{ux})_k^T) K_k \end{bmatrix} \right)$$

State Augmentation

Augmenting the state and controls enables initializing state trajectories and solving minimum time problems.

$$ilde{x}_{k+1} = egin{bmatrix} f_k(x_k, u_k, \sqrt{\Delta t_k}) + s_k \ \sqrt{\Delta t_k} \end{bmatrix} ilde{u}_k = egin{bmatrix} u_k \ s_k \ \sqrt{\Delta t_k} \end{bmatrix}$$

Active-set Projection Method

A coarse solution from iLQR is used to warm start an active-set method used for solution polishing. The search direction for the primals is iteratively projected onto the constraint manifold to ensure feasibility.

$$\delta z = H^{-1} \bar{c}_z^T (\bar{c}_z H^{-1} \bar{c}_z^T)^{-1} \bar{c}$$

$$0 \text{ in } 10^{-1} \text{ is } 10^{-1} \text{ in } 10^{-1}$$

Performance

ALTRO compared to DIRCOL SNOPT or Ipopt.

system	ALTRO	lpopt	SNOPT
block move	12 ms	26 ms	31 ms
parallel park	63 ms	138 ms	385 ms
pendulum	65 ms	213 ms	646 ms
car w/ 3 obs.	136 ms	935 ms	2.4 s
cartpole	661 ms	1.1 s	3.8 s
acrobot	1.2 s	11.9 s	6.1 s
car escape	1.2 s	9.2 s	37.2 s
quadrotor line	2.3 s	4.9 s	7.9 s
kuka w/ obs.	9.2 s	-	-
quadrotor maze	33.0 s	-	-