南 大 学 考 试 卷 (A卷) 东

课程代码 <u>B07M4010</u> 课程名称 复变函数 考试学期 <u>22-23-1</u>

适用专业选学复变函数各专业 考试形式 闭卷 考试时长 120分钟

题目	 =	三	四	五.	六	总分
得分						
批阅人						

$$A = 2$$

$$B. \ 1 + \sqrt{3}i$$

$$C. 1 - \sqrt{3}i$$

$$D. \ \sqrt{3} + i$$

$$A$$
.

$$C$$
. 2

$$D$$
. 5

$$A. \ \forall z \in \mathbb{C} \setminus \{0\}, \ \overline{\operatorname{Ln}z} = \operatorname{Ln}\overline{z}$$

$$B. \ \forall z \in \mathbb{C} \setminus \{0\}, \ \alpha_1, \ \alpha_2 \in \mathbb{C}, \ (z^{\alpha_1})^{\alpha_2} = z^{\alpha_1 \alpha_2}$$

$$C. f(z) = e^{\overline{z}}$$
 是 z 的解析函数

$$D. w = z^2$$
 是 \mathbb{C} 到 \mathbb{C} 的共形映射.

$$A$$
. 绝对收敛 B . 条件收敛 C . 发散 D . 敛散性不能确定

5. 设 f(z)在圆环域 $H: R_1 < |z-z_0| < R_2$ 内的洛朗展开式为: $f(z) = \sum_{n=-\infty}^{+\infty} C_n (z-z_0)^n$,

A.
$$2\pi iC_{-}$$

$$B. 2\pi i C_1$$

$$C. \quad 2\pi i C_2$$

$$D. 2\pi i f'(z_0)$$

二. 填空 (4分×7=28分)

1.
$$\mbox{if } z = \frac{(3+i)(1-3i)}{2i}, \mbox{if } \mbox{Im} z = \underline{\qquad}.$$

- **2.** 方程 $|z+i|+|z-i|=2\sqrt{2}$ 表示的曲线的直角坐标方程是 ______.
- 3. 设 f(z)是以调和函数 v(x,y)=x+y 为虚部的解析函数, 且 f(0)=0, 则 f(z)=0
- **4.** Res $[z^2 e^{-\frac{1}{z}}, 0] = \underline{\qquad}$.
- **6.** $\mbox{if } f(z) = \oint_{|\xi|=2} \frac{\xi^2 + \xi + 1}{\xi z} d\xi, \ \mbox{if } f'(1+i) = \underline{\hspace{1cm}}.$
- 三. 1. (6分) 解方程 $\sin z + i \cos z = 4i$.

2. (8分) 讨论函数 $f(z) = x^3 - y^3 + 2ix^2y^2$ 的可导性和解析性, 并求出 f(z) 在可导点处的导数.

四. (16分) 1. 将函数 $f(z) = \frac{1}{z^2+1}$ 分别在 0 < |z+i| < 2 和 $1 < |z| < +\infty$ 内展开 成洛朗级数.

2. 求函数 $f(z) = \frac{z^3(z-2)^4}{(1-\cos\pi z)^2}$ 在扩充复平面上的所有孤立奇点并判断其类型. 若是极点, 指出极点的级.

五.
$$(16分)$$
 计算积分
1.
$$\int_{-\infty}^{+\infty} \frac{x \cos x}{x^2 - 2x + 10} dx.$$

2. $\oint_C \frac{z^{10}}{(z^4+2)^2(z-2)^3} dz$, 其中 C: |z|=R>0, $R \neq \sqrt[4]{2}$, 2, 取逆时针方向.

六. (6分) 设 f(z) 在 $|z| \le 1$ 上解析,且在 |z| = 1 上,有 $|f(z) - z| \le |z|$,试证: $|f'(\frac{1}{2})| \le 8$.