TEMA 1 – PARTE 5:

Representación de señales en el dominio del tiempo

¿Qué veremos?

- 12. Convolución de señales continuas (cont.)
- 13. Sistemas
- 14. Sistemas LTI

12

Convolución de señales continuas (cont.)

Convolución entre señales continuas

• Notación:
$$y(t) = x(t) * h(t)$$

• Expresión:
$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

- Es necesario invertir la señal h(t) para crear $h(-\tau)$ y desplazarla.
- En cada desplazamiento, se calculará la multiplicación con la señal x(t) y el área (integral). Es decir, para cada valor de t se obtiene un único valor de y(t).
- Es una operación conmutativa y(t) = x(t) * h(t) = h(t) * x(t)

Ejemplo 5

Convolución:

Reescribimos h(t) como $h(\tau)$ y la invertimos para crear $h(-\tau)$

2

 $\chi(\tau)$

El punto que antes estaba en 0 es el punto que ahora está en t.

Ejemplo 5 (cont.)

t < 0

No hay solapamiento para t < 0.

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = 0$$

0 < t < ???

Para t=0 empieza a haber solapamiento "creciente" hasta que t-1=0, es decir t=1.

Observamos que en 0 < t < 1, tenemos

$$y(t) = t$$

La parte solapada empieza en ${\tt 0}$ hasta t

Ejemplo 5 (cont.)

Observamos que en 1 < t < 2, tenemos

$$y(t) = 1$$

Siempre se solapa un rectángulo de base 1 y altura 1.

Observamos que el solapamiento es decreciente desde t=2 hasta t-1=2 (i.e., t=3).

→ Para 2 < t < 3, tenemos

$$y(t) = 2 - (t - 1) = 3 - t$$

Ejemplo 5 (resultado)

Señales originales:

Resultado de la integral de convolución:

Ejemplo 6

Señales originales

Trucos

Veamos algunos "trucos" para hacer la convolución de señales rectangulares con $T_1 < T_2$.

Resultado de la integral de convolución:

Demo de convolución continua

Convolution demo

https://phiresky.github.io/convolution-demo/

Vista directa (suma de señales)

Multitrayecto (convolución)

13

Sistemas

Sistemas

Paralelo

Sistema invertible

- Diversas definiciones:
- > "Un sistema es invertible si al observar la salida se puede determinar entrada"
- > "... cuando distintas entradas conducen a distintas salidas"

• Si un sistema es invertible, existe un sistema – que denominaremos inverso- tal que conectado en serie produce el sistema identidad.

Ejemplos

• Ejemplo 1:
$$y(t) = x(t-1)$$
 $\longrightarrow z(t) = y(t+1)$

• Ejemplo 2:
$$y(t) = x(t)^2$$
— No hay inverso porque la salida es la misma para $x(t)$ y para $-x(t)$

• Ejemplo 3:
$$y(t) = \cos(x(t))$$
 _____ No hay inverso porque la salida es la misma para $x(t)$ y para $x(t) + 2\pi$

Linealidad

• Un sistema es lineal si ante una combinación lineal de señales a su entrada, produce una combinación lineal de las salidas de cada señal (con los mismos pesos).

Ejemplo de sistema lineal

- Ley de Hooke: el alargamiento de un muelle es directamente proporcional a la fuerza aplicada
- x(t) es la fuerza aplicada
- y(t) es el alargamiento del muelle.

Ejemplo de sistema lineal (cont.)

$$y(t) = k x(t)$$

Determinamos la salida para cada señal y la combinación lineal de las salidas

$$y_l(t) = kx_l(t)$$
 $y(t) = \sum_l a_l y_l(t) = \sum_l a_l kx_l(t)$

2 Determinamos la salida para una combinación lineal de la entrada.

$$x(t) = \sum_{l} a_{l} x_{l}(t) \qquad \longrightarrow \qquad y(n) = T \left[\sum_{l} a_{l} x_{l}(t) \right] = k \sum_{l} a_{l} x_{l}(t)$$

Como son iguales, el sistema es lineal.

Ejemplo de sistema no lineal

Determinamos la salida para cada señal y la combinación lineal de las salidas

$$y_l(t) = (x_l(t))^2$$
 \longrightarrow $y(t) = \sum_l a_l y_l(t) = \sum_l a_l (x_l(t))^2$

2 Determinamos la salida para una combinación lineal de la entrada.

$$x(t) = \sum_{l} a_{l} x_{l}(t) \qquad \longrightarrow \qquad y(n) = T \left[\sum_{l} a_{l} x_{l}(t) \right] = \left(\sum_{l} a_{l} x_{l}(t) \right)^{2}$$

Como no son iguales, el sistema no es lineal.

Invarianza en tiempo

• Un sistema es invariante en tiempo si un desplazamiento en la entrada produce el mismo desplazamiento en la salida.

Ejemplo de sistema invariante en tiempo

- Ley de Hooke: el alargamiento de un muelle es directamente proporcional a la fuerza aplicada
- x(t) es la fuerza aplicada
- y(t) es el alargamiento del muelle

$$y(t) = k x(t)$$

1 Determinamos la salida para una señal y la desplazamos en tiempo

$$x(t) \rightarrow y(t) = k x(t) \rightarrow y(t - t_o) = k x(t - t_o)$$

2 Determinamos la salida para una señal desplazada en tiempo

$$x(t-t_0) \rightarrow T[x(t-t_0)] = k x(t-t_0)$$

Como son iguales, el sistema es invariante en tiempo.

Ejemplo de sistema no invariante en tiempo

1 Determinamos la salida para una señal y la desplazamos en tiempo

$$x(t) \rightarrow y(t) = x(2t) \rightarrow y(t - t_o) = x(2t - t_o)$$

2 Determinamos la salida para una señal desplazada en tiempo

$$x(t-t_o) \to T[x(t-t_o)] = x(2(t-t_o))$$

Como no son iguales, el sistema no es invariante en tiempo.

Causalidad

• Un sistema es causal o "físicamente realizable" cuando la salida en un instante de tiempo depende ÚNICAMENTE de valores de la entrada en instantes anteriores.

- Ejemplo 1: y(t) = x(t-1) Causal
- Ejemplo 2: y(t) = x(t+1) No causal

Causalidad

• Los sistemas no causales son anticipativos porque requieren conocer el futuro.

B.P. Lathi, "Linear Systems and Signals", Berkeley-Cambridge Press, 1992

Estabilidad

- Un sistema es estable si ante una entrada acotada en amplitud, produce una salida acotada en amplitud.
- Ejemplo: $y(t) = e^{x(t)}$

Es estable porque si $x(t) < \infty$ obtenemos $y(t) < \infty$

• Ejemplo: $y(n) = \int_{-\infty}^{t} x(t) dt$

No es estable. Por ejemplo, si x(t) = u(t) obtenemos y(t) = r(t)

14

Sistemas LTI

Sistemas LTI

- Muchos sistemas son Lineales e Invariantes al Tiempo (LTI).
- Lineal:

• Invariante en tiempo:

Conexiones de sistemas LTI

• Conmutativa: x(t) * h(t) = h(t) * x(t)

$$x(t) \longrightarrow h(t) \longrightarrow y(t) = x(t) * h(t)$$

$$h(t) \longrightarrow x(t) \longrightarrow y(t) = h(t) * x(t)$$

• Asociativa: $(x(t) * h_1(t)) * h_2(t) = x(t) * (h_1(t) * h_2(t))$

$$x(t)$$
 $h_1(t)$ $h_2(t)$ $y(t)$

$$x(t)$$
 $h_1(t) * h_2(t)$ $y(t)$

Conexiones de sistemas LTI

• Distributiva respecto a la suma:

$$x(t) * (h_1(t) + h_2(t)) = x(t) * h_1(t) + x(t) * h_2(t)$$

$$x(t) \longrightarrow h_1(t) + h_2(t) \longrightarrow y(t)$$

Respuesta al impulso de una habitación

- Para saber cómo se comportan, se pone a la entrada $\delta(t)$ y se "mide" la salida h(t).
- h(t) es la respuesta al impulso.

• Para cualquier entrada x(t) la salida es y(t) = x(t) * h(t)

https://www.youtube.com/watch?v=9gTYDJpiBzo

Room impulse response

Retoque de imágenes

Redes neuronales convolucionales

DEEP LEARNING

TEMA 1

Representación de señales en el dominio del tiempo

