Maschinelles Lernen: Symbolische Ansätze

Wintersemester 2009/2010 Musterlösung für das 10. Übungsblatt

Aufgabe 1: Regressionsbäume

Gegeben sei folgende Beispielmenge:

A1	A2	A3	A4	Value
С	K	T	X	0.28
В	J	S	X	0.50
С	J	S	Z	0.35
В	I	R	Y	5.50
Α	J	T	Z	0.35
Α	K	S	Z	0.80
С	I	R	Y	5.10
Α	I	R	Y	5.70
С	I	S	Y	0.76
В	Ι	S	X	1.03
В	K	R	Y	0.46
С	K	T	Z	0.39
В	K	S	X	0.28
Α	K	R	X	1.10

a) Erzeugen Sie einen Regressionsbaum mittels des wie folgt modifizierten Verfahrens ID3, verwenden Sie hierzu das Maß Standard Deviation Reduction (SDR) zur Auswahl der Tests und den Mittelwert der Instanzen eines Blattes als Vorhersagewert. Hierbei soll ein Knoten, sobald er weniger als 3 Instanzen abdeckt, nicht weiter aufgeteilt und zu einem Blatt umgewandelt werden. Sollte bei einem Test ein Testausgang keine Instanzen abdecken, fließt er nicht in die Berechnung des SDRs ein und soll, da keine Daten für ihn vorhanden sind, als Blatt verwendet werden, das den Mittelwert seines Elternknotens vorhersagt. Im Falle zweier gleichwertiger Tests überlegen Sie sich, wie man diesen Konflikt lösen kann.

Lösung: Die Berechnung dieser Variante eines Regressionsbaumes erfolgt analog zur Berechnung eines mit ID3 erstellten Entscheidungbaumes. Wir bestimmen zuerst die Standardabweichung aller Trainingsdaten und die Standardabweichungen der möglichen Ausgänge eines Tests (analog zur Bestimmung der Entropien für die Berechnung des Maßes Information Gain).

Zur Erinnerung: die Standardabweichung einer Menge von Werten x_1, \dots, x_k mit dem Mittelwert \bar{x} berechnet sich wie folgt:

$$SD(x_1, \dots, x_k) = \sqrt{\frac{1}{k-1} \sum_{i=1}^k (x_i - \bar{x})^2}$$

Die Werte in der Formel sind genau wie im Skript definiert.

Die Berechung der Standard Deviation Reduction SDR

$$SDR(S,A) = SD(S) - \sum_{i} \frac{|S_i|}{|S|} SD(S_i)$$

werden wie in vorherigen Übungen nur für ausgewählte Knoten und jeweils nur für ein bestimmtes Testattribut ausführlich erläutern. Die übrigen Berechnungen werden wir nur tabellarisch angeben.

Beginnen wir nun mit der Bestimmung des Wurzelknotens. Die SDR des Attributes *A2* werden wir exemplarisch berechnen. Hierfür benötigen wir die SDs der Testausgänge *I*, *J* und *K*. Die SD von *I* ist

$$SD(S_I) \approx \sqrt{\frac{1}{4} \left((5, 5 - 3, 62)^2 + (5, 1 - 3, 62)^2 + (5, 7 - 3, 62)^2 + (0, 76 - 3, 62)^2 + (1.03 - 3, 62)^2 \right)}$$

 ≈ 2.5

mit dem Mittelwert

$$\bar{x}_I = \frac{5,5+5,1+5,7+0,76+1,03}{5} \approx 3,62.$$

Analog gilt für die Testausgänge J und K

$$SD(S_J) \approx 0.09$$

 $SD(S_K) \approx 0.33$

und für den gesamten Datensatz

$$SD(S) \approx 2,09$$

Somit haben wir alle zur Berechnung von SDR(S,A2) benötigten Werte bestimmt:

$$SDR(S,A2) = SD(S) - \frac{|S_I|}{|S|} \cdot SD(S_I) - \frac{|S_J|}{|S|} \cdot SD(S_J) - \frac{|S_K|}{|S|} \cdot SD(S_K)$$

$$= 2,09 - \frac{5}{14} \cdot 2,5 - \frac{3}{14} \cdot 0,09 - \frac{6}{14} \cdot 0,33$$

$$\approx 1,05$$

Entsprechend berechnen sich die SDRs der verbleibenden Tests.

Attribut	Wert	\bar{x}_i	$SD(S_i)$	$SDR(S,S_i)$
Verteilun	g	1,61	2,09	
A1	Α	1,99	2,49	-0,163
	В	1,55	2,22	
	C	1,38	2,09	
A2	I	3,62	2,50	1,038
	J	0,40	0,09	
	K	0,55	0,33	
A3	R	3,57	2,57	1,036
	S	0,62	0,29	
	T	0,34	0,06	
A4	X	0,64	0,40	0,937
	Y	3,50	2,65	
	Z	0,47	0,22	

Der Tabelle entnehmen wir, daß der Test A2 optimal ist. Da keiner seiner Testausgänge weniger als 3 Beispiel abdeckt, müssen alle drei Teilmengen weiter untersucht werden.

Zuerst betrachten wir die Teilmenge für A2 = I:

Attribut	Wert	\bar{x}_i	$SD(S_i)$	$SDR(S,S_i)$
A2=I		3,62	2,50	
A1	A	5,7	0,00	0,005
	В	3,27	3,16	
	C	5,1	3,07	
A3	R	5,43	0,31	2,237
	S	0,9	0,19	
	T	0	0,00	
A4	X	1,03	0,00	0,617
	Y	4,27	2,35	
	Z	0	0,00	

Diesmal ist der Test A3 optimal. Dabei treffen wir aber auf ein Problem für den Testausgang T sind keine Werte bekannt. Dieses Problem lösen wir, indem wir dem Testausgang den Mittelwert der Instanzen des inneren Knoten zu weisen. Also wird für T ein Blatt mit Regressionswert 3,62 erzeugt.

Da für den Testausgang *S* weniger als drei Beispiele abgedeckt werden, können wir auch hier ein Blatt mit dem Wert 0,9 erstellen. Für den Testausgang *R* müssen wir jedoch noch weitere Tests bestimmen:

Attribut	Wert	\bar{x}_i	$SD(S_i)$	$SDR(S,S_i)$
A2=I, A3=R		5,43	0,31	
A1	A	5,7	0,00	0,306
	В	5,5	0,00	
	C	5,1	0,00	
A4	X	0	0,00	0,000
	Y	5,43	0,00	
	Z	0	0,00	

Der optimale Test A1 stellt eine perfekte Trennung der verbleibenden Beispiele dar. Aus diesem Grund sind keine weiteren Tests nötig.

Gehen wir nun wieder zurück in den Wurzelknoten (den ersten Test auf A2) und betrachten den Testausgang J:

Attribut	Wert	\bar{x}_i	$SD(S_i)$	$SDR(S, S_i)$
A2=J		0,4	0,09	
A1	A	0,35	0	0,087
	В	0,5	0	
	C	0,35	0	
A3	R	0	0	0,016
	S	0,43	0,11	
	T	0,35	0	
A4	X	0,5	0	0,087
	Y	0	0	
	Z	0,35	0	

Der Test *A1* ist optimal. Da die drei abgedeckten Beispiele auf die 3 Testausgänge verteilt werden, werden keine weiteren Test benötigt.

Berechnen wir nun den letzten Testausgang des Wurzelknotens K: Wiederum ist der Test A1 der optimale Test.

Attribut	Wert	\bar{x}_i	$SD(S_i)$	$SDR(S, S_i)$
A2=K		0,55	0,33	
A1	A	0,95	0,21	0,191
	В	0,37	0,13	
	C	0,34	0,08	
A3	R	0,78	0,45	0,030
	S	0,54	0,37	
	T	0,34	0,08	
A4	X	0,55	0,47	0,068
	Y	0,46	0	
	Z	0,6	0,08	

Diesmal erhält jeder Testausgang 2 Instanzen, demnach sind keine weiteren Tests nötig.

b) Zeichen Sie den eben erzeugten Baum.

Lösung:

- c) Bestimmen Sie den Mean-Squared-Error des Baumes
 - auf den Trainingsdaten
 - auf den folgenden Testdaten:

A1	A2	А3	A4	Value
В	J	T	Z	0.51
C	K	R	Y	1.90
В	J	R	X	0.90
A	J	S	Y	0.47
Α	K	T	Z	0.54

und vergleichen Sie diese Fehlerabschätzungen mit dem durchschnittlichen Fehler auf den Trainingsdaten, d.h. dem Mean-Squared-Error der Vorhersage des Mittelwerts des Datensatzes.

Beachten Sie bitte, daß sich der Mean-Squared-Error folgendermaßen berechnet:

$$MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - r_j)^2$$

Lösung:

• auf den Trainingsdaten:

A1	A2	A3	A4	Value	Tree	(Value – Reg) ²
С	K	T	X	0,28	0,34	0,0036
В	J	S	X	0,50	0,5	0,0000
С	J	S	Z	0,35	0,35	0,0000
В	I	R	Y	5,50	5,5	0,0000
Α	J	T	Z	0,35	0,35	0,0000
Α	K	S	Z	0,80	0,95	0,0225
С	I	R	Y	5,10	5,1	0,0000
Α	I	R	Y	5,70	5,7	0,0000
C	I	S	Y	0,76	0,9	0,0196
В	I	S	X	1,03	0,9	0,0169
В	K	R	Y	0,46	0,37	0,0081
C	K	T	Z	0,39	0,34	0,0025
В	K	S	X	0,28	0,37	0,0081
Α	K	T	X	1,10	0,95	0,0225
MSI	$E = \sum_{i=1}^{n} e_i$	0,0074				

• auf den Testdaten:

A1	A2	A3	A4	Value	Tree	(Value – Reg) ²
В	J	T	Z	0,51	0,50	0,0001
С	K	R	Y	1,90	0,34	2,4336
В	J	R	X	0,90	0,50	0,1600
Α	J	S	Y	0,47	0,35	0,0144
Α	K	T	Z	0,54	0,95	0,1681
$MSE = \sum (Value - Tree)^2/5$						0,5552

Aufgabe 2: Reduced Error Pruning

Gegeben sei der folgende Entscheidungsbaum

der auf der Trainingsmenge

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No
D15	Sunny	Mild	Normal	Weak	No

gelernt wurde und die folgende Pruning-Menge (Validierungsmenge):

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D16	Sunny	Mild	High	Strong	No
D17	Rain	Hot	Normal	Weak	Yes
D18	Overcast	Cool	High	Strong	No
D19	Overcast	Mild	Normal	Strong	Yes
D20	Sunny	Cool	High	Strong	No

Wenden Sie Reduced-Error Pruning (Entscheidungsbaum-Lernen, Folie 46) auf den Entscheidungsbaum an. Benutzen Sie als Evaluierungsmaß die Anzahl der korrekt klassifizierten Beispiele der Pruning-Menge.

Lösung: Beim Reduced-Error Pruning ersetzt man sukzessive Knoten durch Blätter, die dann die Majority-Klasse anhand der Trainingsmenge im jeweiligen Knoten vorhersagen (die Trainingsmenge, auf der der Baum gelernt wurde, ist die aus der ersten Übung). Dieser Vorgang wiederholt sich so lange, bis keine Verbesserung mehr erreicht wird, wobei mit Verbesserung auch kein Genauigkeitsverlust gemeint ist (≥), da sonst nicht die kleinste Version des Baumes erzeugt werden würde.

Die Genauigkeit des ursprünglichen Baumes liegt bei 3/5. Wir beginnen mit dem Test des Wurzelknotens *outlook*: Die Majority-Klasse ist "yes" (9 mal "yes" und 6 mal "no"). Sagt man also immer "yes" vorher, erreicht man auf der Pruning-Menge eine Genauigkeit von 2/5 < 3/5.

Als nächstes ersetzen wir den Knoten *wind*, bei welchem "yes" die Majority-Klasse ist. Mit dieser Ersetzung erreicht der Baum eine Genauigkeit von ³/₅.

Nun prunen wir den Knoten *temperature*, in welchem "no" die Majority-Klasse ist. Es ergibt sich eine Genauigkeit von $4/5 \ge 3/5$.

Als letztes wird noch im rechten Teilbaum der Knoten *wind* ersetzt. Das Blatt sagt "no" vorher und der Baum erreicht eine Genauigkeit von ³/₅.

Nun suchen wir den kleinsten Baum, der mindestens eine Genauigkeit von 3/5 aufweist (Zeile 'as long as the error on the pruning set does not increase'). Daher prunen wir den Knoten *temperature* zu einem Blatt welches die Klasse "no" vorhersagt. Des weiteren können wir ohne einen Verlust an Genauigkeit den Knoten *wind* ebenfalls in ein Blatt verwandeln, das die Klasse "yes" vorhersagt. Der geprunte Baum hat eine Genauigkeit von 4/5 und sieht dann wie folgt aus:

