Plan de cours Micro-organismes 53

- ours 1. Microbiologie générale
- Cours 2. Nutrition bactéries
- Cours 3. Croissance bactérienne
- Cours 4. Métabolismes
- Cours 5. Taxonomie

12h de cours; 5TP et 1 TD

Taxonomie bactérienne

Plan de cours

- Définition
 - taxonomie
 - rangs taxonomiques
 - espèce
- Nomenclature
- Classification et identification
- Différentes approches taxonomiques
- Arbre phylogénétique

Définitions

Taxonomie: science de la classification biologique exemple: des bactéries en groupes (familles, genres, espèces...).

Identification

Nomenclature

Classification

Rangs taxonomiques

Espèces

- Le groupe de base en taxinomie microbienne
- Souche: population d'organismes qui descend d'un organisme unique ou d'un isolat de culture pure
- Un ensemble de souche qui ont en commun plusieurs propriétés stables et qui diffèrent de façon significative des autres groupes de souches

Cours 5 - Taxonomie

Exemple : souches de L. lactis

- L. lactis subsp. lactis ITAL 104
- L. lactis subsp. lactis ITAL 179
- L. lactis subsp. lactis ITAL 185
- L. lactis subsp. lactis ITAL 187
- L. lactis subsp. lactis ITAL 383
- L. lactis subsp. lactis ITAL 387
- L. lactis subsp. lactis ITAL 403
- L. lactis subsp. lactis ITAL 404
- L. lactis subsp. lactis ITAL 408
- L. lactis subsp. lactis ITAL 435
- L. lactis subsp. lactis ITAL 436
- L. lactis subsp. lactis ITAL 437
- L. lactis subsp. lactis ITAL 438

Nomenclature

- Tous les organismes vivants portent un nom scientifique (nomenclature binomiale)
- Composé de deux termes
 - Genre Débutant par une Majuscule
 - Espèce en minuscule
- s'écrit en Italique

Exemples:

Escherichia coli ou Saccharomyces cerevisiae

Escherichia coli

- O157: H7 (souche)
- coli (espèce)
- Escherichia (genre)
- Enterobacteriaceae (famille)
- Enterobacteriales (ordre)

Règles de nomenclature

Règne Bacteria

Classe

<u>Bacilli</u>

<u>Ordre</u>

Lactobacillales

<u>Famille</u>

Streptococcaceae

<u>Genre</u>

Lactococcus

Lactococcus lactis

Différentes approches taxonomiques

Approches phénotypique

- 1. Taxonomie phénotypique
- 2. Taxonomie numérique

Approches génétique

- 1. Détermination du (G
- + C)%
- 2. <u>Les hybridations</u> d'acides nucléiques
- 3. <u>Etude de diverses</u> <u>séquences génétiques</u>

Approches Chimiotaxonomie

<u> A - Taxonomie phénotypique</u>

- Morphologie de cellule
- Coloration de Gram
- Capacité de produire du gaz méthane
- Source nutritive
- Métabolisme

A - Taxonomie phénotypique

Caractères morphologiques: Forme, taille,...

Cours 5 - Taxonomie

mhchatain@isara.fr

A - Taxonomie phénotypique

Coloration différentielle: coloration gram

A - Taxonomie phénotypique

Épreuve biochimique: présence des enzymes permettant d'utiliser certains substrats (glucose, citrate, nitrate, ornithineé...)

Cours 5 - Taxonomie

<u>B - Taxonomie numérique</u>

Fig. 3.1 A hierarchic taxonomic tree (dendrogram) prepared from similarity matrix data. The broken lines X and Y indicate levels of similarity at which separation into genera and species might be possible.

Cours 5 - Taxonomie

C - Chimiotaxonomie

Étude basée sur les constituants cellulaires

- Paroi:
 - Acides gras, acides aminés, sucres
- Membrane cellulaire
 - lipides
- ◆ Cellule:
 - protéines

Bactéries Gram négatif

Cours 5 - Taxonomie

mhchatain@isara.fr

Bactéries gram positif

Cellules

Protéines cellulaires:

 Détermination des profils électrophorétiques de l'ensemble des protéines. Possibilité de révéler ensuite certaines protéines particulières (zymogrammes pour les enzymes, Western-Blot pour les antigènes)

Caractéristiques chimiotaxonomiques

	ACIDES MYCOLIQUES	ACIDES AMINES	ARABINO- GALACTANNE	MENAQUINONES	ACIDES GRAS CELLULAIRES
Corynebacterium ^a	V (C22-38)	meso-DAP	+	MK-8 (H2), MK-9 (H2)	18:1, 16:0, 18:0
Dietzia	+(C34-38)	meso-DAP	+	MK-8(H2)	16:0, 18:1
Gordonia	+(C48-66)	meso-DAP	+	MK-9(H2)	16:0, 18:1
Rhodococcus	+(C34-64)	meso-DAP	+	MK-8(H2)	16:0, 18: 1
Actinomyces	_	L-lys/L-Om	_	MK-10 (H4)	16:0, 18:1 (ωC9) 18:0
Arcanobacterium	_	L-lys	_	MK-9(H4)	16:0, 18:1 (ωC9) 18:0
Arthrobacter	_	L-lys	_	MK-8, MK-9, MK-9 (H2)	15:0 ai, 17:0 ai, 15:0 i
Brevibacterium	_	meso-DAP	_	MK-8 (H2) MK-7 (H2)	15:0 ai, 17:0 ai, 16:0 ai
Cellulomonas	_	L-Om	_	MK-9(H4)	15:0 ai, 16:0
Dermabacter	_	meso-DAP	_	MK-9, MK-8, MK-7	17:0 ai, 15:0 ai, 16:0 i
Microbacterium	_	L-lys	_	MK-12, MK-11, MK-10	15:0 ai, 17:0 ai, 16:0 i
<i>Oerskovia</i>	_	L-Om	_	MK-9(H4)	15:0 ai, 15:0 i, 17:0 ai
Leifsonia	_	DL-DAB	_	MK-11, MK-10	17:0 ai, 15:0 ai, 16:0 i
Propionibacterium	_	LL-DAP	_	MK-9 (H4)	15:0, 15:0 ai, 16:0
Rothia	_	L-lys	_	MK- 7	15:0 ai, 17:0 ai, 16:0
Turicella	_	meso-DAP	+	MK-10 (H2) MK-11 (H2)	18:1, 16:0, 18:0

a: C. amycolatum et C. kroppenstedtii ne contiennent pas d'acides mycoliques

D-Taxonomie moléculaire (génomique)

- ◆ Détermination G+C %
- Hybridation ADN/ADN total
- Séquençage de gènes

1) Détermination G+C % de l'ADN

$$G+C\% = \frac{(G+C)}{(G+C+A+T)} \times 100$$

- Détemination:
 - Densité de l'ADN
 - ◆ Température de demi-dénaturation (Tm)
 - Chromatographie des nucléotides après hydrolyse complète de l'ADN: CCM, HPLC, électrophorèse capillaire

Détermination G+C % de l'ADN par HPLC

G + C % valeurs

Tableau I. Valeurs du G+C % pour quelques bactéries rencontrées en microbiologie clinique

Treponema pallidum	52		
Pseudomonas aeruginosa	67		
Legionella pneumophila	39		
Neisseria gonorrhoeae	50-52		
Kingella kingae	notheuridia 47 osaling (1 mo)		
Brucella melitensis	accepte général 77 les se		
Escherichia coli K12	52 0 0.00 <		
Klebsiella pneumoniae	56-58		
Proteus vulgaris	ahi 39 an 68 <		
Morganella morganii	M 50 W (889)		
Yersinia pseudotuberculosis	17008 to 46 to 9 800KL		
Vibrio cholerae	48		
Eikenella corrodens	57		
Staphylococcus aureus	32-36		
Streptococcus agalactiae	34 Wester 34		
Bacillus subtilis	42-46		
Clostridium perfringens	24-27		
Listeria monocytogenes	36-38		

Variation entre 25 et 75 % entre les espèces

Différence > de 5 % = pas même espèce.

Différence > de 10 % = pas même genre.

(G+C) % identique = pas forcement les bactéries proches

2) Hybridations ADN/ADN

- Détermination des espèces.
- Estimation de la similarité de deux ADN en attendant le séquençage rapide de génomes
 - → même espèce: > 70 %
 - → même genre: 1 à 60%
 - → genres différents: < à 5 %
 </p>

Hybridation des chaînes complémentaires d'ADN et/ou d'ARN

3) Étude de diverses séquences génétiques

Retenue repose essentiellement sur les séquences des ADNr 165.

Pour trois raisons principales:

- présence dans toutes les cellules
- structure bien conservée
- faciles à purifier.

Méthodologie basée sur l'ARNr 165

Extraction de l'ADN total

Amplification des ADNr 165 par PCR

dénaturation (94°C, 1 min)

hybridation (60°C, 1 min)

<u>élongation (72°C, 2 min)</u>

Animation:

Séquençage de gène

```
taxon 1 ACCAG-TCGTACTGCCAGTAC-CTGACATGCCAGTCAGA
taxon 2 ACCAG-TCGTGCTGCC-CAT--CTGACATGACA-TCAGA
taxon 3 ACCTG-TCGTGCAGCCGCGT--CTGTCCTGCCAGTCGGA
taxon 4 ACCTGGTCGTACTGCC-CATA-CTGGCCTGTCAGTCAGA
taxon 5 ACTTG-TCGTACTGCCGTCGAACTGGCCTGTCAGTCAGA

zone variable qui sera exclue des
insertion analyses car l'homologie des délétion
sites est impossible à déterminer
```

Stratégie d'identification bactérienne

Souche inconnue

Séquence ARN 165, interrogation Internet

<mark>98</mark>, 5%

Identification acceptée

< 98,5%

pas d'identification nouvelle espèce?

Stratégie taxonomique

Taxon connu mais très hétérogène phénotypiquement

Plusieurs groupes par taxonomie numérique

Confirmation de ces groupes par hybridation ADN/ADN

Séquence ARN165 des représentants de ces groupes

>98,5%

Mêmes espèces?

< 98,5 %

nouvelles espèces

Interprétation des séquences

- Niveau d'homologies des séquences: exprimés en % d'homologie ou en % de divergences.
- Actuellement, les seuls critères taxonomiques concernent la comparaison des gènes de l'ARN 165:
 - Plus de 97,5 % d'homologie, même genre mais seulement possibilité de même espèce, faire des hybridations ADN/ADN.
 - Entre 90 et 97,5%: espèces différentes, a priori même genre, à conforter par chimiotaxonomie.
 - Moins de 90%: a priori genres différents
- Pour les autres gènes:
 - étude phylogénétique
 - études taxonomiques pour des genres dont l'ARN 165 est très similaire

Arbre phylogénétique

Un arbre phylogénétique est un <u>arbre</u> qui montre les relations de parentés entre des entités supposées avoir un ancêtre commun.

Méthodes de reconstruction phylogénétique

méthodes de distances

Choix d'un critère de distance puis calcul d'un indice de similitude globale entre les groupes (ou espèces) pris(es) deux à deux

méthode **UPGMA** ou **Neighbour Joining**

méthodes de caractères

 $(séquences \rightarrow arbre phylogénétique)$

- ·méthodes de parcimonie (maximum parcimonie)
- méthodes probabilistes (maximum de vraisemblance, inférence bayesienne)

Exemple: méthode <u>UPGMA</u>

Regroupe ensemble les séquences les plus proches.

