Regelungstechnik 2

FS 24 Prof. Dr. Lukas Ortmann

Autoren:

Simone Stitz, Laurin Heitzer

Version: 1.0.20240531

 $\underline{https:/\!/github.com/P4ntomime/regelungstechnik-2}$

Inhaltsverzeichnis

Implementierung digitaler Regler		2	2	Anhang	2
	Aufbau digitale Regler			2.1 Bodediagramm eines Integrators	2
1.2	Signale in digitalem Regler	2			
	Entwurfsverfahren			2.2 Bodediagramm mit Nullstelle bei omega = 0	2
1 4	Vorgehen: Diskretisjerung eines Reglers	2		2.3 z-Transformation	2

1 Implementierung digitaler Regler

1.1 Aufbau digitale Regler

1.2 Signale in digitalem Regler

1.3 Entwurfsverfahren

1.3.1 Approximationen

1.4 Vorgehen: Diskretisierung eines Reglers

- Übertragungsfunktion des Reglers in j ω aufstellen: $G_R(j\omega) = ...$
- Wahl der Abtastzeit T_S und einer Diskretisierungsmethode
- (typischerweise Tustin, weil am genausten)
- Substitution aller j ω in der UTF durch Approximation in $z^{-1} \Rightarrow G_{R, \text{diskret}}(z) = ...$ - Tustin: $j\omega = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}$
- Umformen, damit Doppelbrüche verschwinden
- Ansatz: $G_{R, \, \text{diskret}}(z) = \frac{U(z)}{E(z)}$ sortieren nach U(z) und E(z)• Differenzengleichung durch inverse Z-Transformation bestimmen

Beispiel: PI-Regler diskretisieren

Gegeben sei die Übertragungsfunktion $G_R(j\omega)$ eines **kontinuierlichen** Reglers. Daraus soll die zu implementierende Differenzengleichung ermittelt werden.

$$\begin{split} G_R(\mathbf{j}\omega) &= K_R \cdot \frac{1 + T_N \mathbf{j}\omega}{T_N \mathbf{j}\omega} \\ G_{R,\, diskret}(z) &= K_R \cdot \frac{1 + T_N \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}}{T_N \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}} = K_R \cdot \frac{T(1 + z^{-1}) + 2T_N(1 - z^{-1})}{2T_N(1 - z^{-1})} = \frac{U(z)}{E(z)} \\ U(z)(1 - z^{-1}) &= \frac{K_R}{2T_N} \cdot E(z) \Big(T(1 + z^{-1}) + 2T_N(1 - z^{-1}) \Big) \\ u(k) - u(k - 1) &= \frac{K_R}{2T_N} \Big[T \cdot e(k) + T \cdot e(k - 1) + 2T_N \cdot e(k) - 2T_N \cdot e(k - 1) \Big] \\ u(k) &= u(k - 1) + \frac{K_R}{2T_N} \Big[e(k) \cdot (T + 2T_N) + e(k - 1) \cdot (T - 2T_N) \Big] \end{split}$$

1.4.1 Z-Transformation mit Matlab

s = tf('s'); $_{2}$ G_R = K_R * (1 + s * T_N) / (s * T_N); % UTF Regler sysd = $c2d(G_R, T_S, 'tustin')$ % T_S : sampling time

1.4.2 Optimierung des Speicherplatzes

2 Anhang

2.1 Bodediagramm eines Integrators

Ein Integrator mit $G(s) = \frac{K}{s}$ hat seine Polstelle bei der Frequenz $\omega = 0$. Im Bodediagramm wird der Integrator so dargestellt, dass bei Frequenz $\omega = 1$ die Verstärkung $20 \, \mathrm{dB} \cdot \log_{10}(K)$ erreicht ist.

2.2 Bodediagramm mit Nullstelle bei $\omega = 0$

Ein System mit $G(s) = K \cdot s$ wird im Bodediagramm so dargestellt, dass bei bei Frequenz $\omega = 0$ die Verstärkung 20 dB · $\log_{10}(K)$ erreicht ist. Im Gegensatz zu Abschnitt 2.1 beträgt die Steigung der Amplitude +20 dB/Dek und die Phase ist konstant bei $\varphi = \frac{\pi}{2}$

2.3 z-Transformation

Die z-Transformation wird verwendet, um diskrete Signale in den Frequenzbereich zu transformieren.