1. ResNet (Residual Network)

Architecture

- Composed of basic residual blocks, where the output of a layer is added to its input.
- Each residual block consists of two convolutional layers, batch normalization, and ReLU activation.
- Structure:
 - Initial Conv layer.
 - o 4 stages of residual blocks (2 blocks per stage with increasing filters).
 - o Global Average Pooling (GAP) and Fully Connected (FC) layer.

Use Cases:

- Image classification tasks.
- Transfer learning on small to medium datasets.

group name	output size	block type = $B(3,3)$
conv1	32×32	$[3 \times 3, 16]$
conv2	32×32	$\left[\begin{array}{c} 3 \times 3, 16 \times k \\ 3 \times 3, 16 \times k \end{array}\right] \times N$
conv3	16×16	$\left[\begin{array}{c} 3 \times 3, 32 \times k \\ 3 \times 3, 32 \times k \end{array}\right] \times N$
conv4	8×8	$\left[\begin{array}{c} 3\times3, 64\times k \\ 3\times3, 64\times k \end{array}\right] \times N$
avg-pool	1×1	[8 × 8]

Resnent Paper

1. Advantages:

a. **Solves vanishing gradient problem**: The residual connections allow gradients to flow directly through the network, enabling the training of very deep networks (e.g., ResNet-50, ResNet-101).

- b. **Ease of optimization**: Residual blocks simplify training by making it easier for the optimizer to fine-tune.
- c. **Wide adoption**: ResNet is a general-purpose architecture, effective for image recognition, object detection, and segmentation tasks.
- d. **Scalability**: Can be scaled to extreme depths (e.g., ResNet-152) without significant degradation in performance.

Best for:

- a. Tasks requiring deep networks with a focus on accuracy.
- b. Applications where computational resources are moderately constrained.

2. DenseNet-121 (Densely Connected Convolutional Network)

Architecture:

- Organized into dense blocks, each containing several convolutional layers.
- Between dense blocks, **transition layers** (with 1x1 convolutions and pooling) reduce feature map size and improve efficiency.
- Structure:
 - Initial Conv layer.
 - o Dense blocks (with increasing growth rate of feature maps).
 - o Transition layers between dense blocks.
 - o GAP and FC layer.

Densnet Paper

Use Cases:

- Medical imaging tasks (e.g., cancer detection).
- Image classification for large datasets where feature reuse is beneficial.

3. Xception (Extreme Inception)

Architecture:

- Built entirely on depthwise separable convolutions:
 - o Depthwise convolutions filter each input channel separately.
 - o Pointwise convolutions combine filtered outputs.
- Includes residual connections for better gradient flow.
- Structure:
 - o Entry flow: Initial feature extraction.
 - o Middle flow: Deep feature learning with separable convolutions.
 - o Exit flow: Classification layers.

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264	
Convolution	112 × 112		7×7 cor	v, stride 2		
Pooling	56 × 56		3 × 3 max p	oool, stride 2		
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \end{bmatrix} \times 6$	
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	
Transition Layer	56 × 56		1 × 1	conv		
(1)	28 × 28		2 × 2 average	pool, stride 2		
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 12 \end{bmatrix}$	
(2)	26 × 26	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	
Transition Layer	28 × 28	1 × 1 conv				
(2)	14 × 14	2 × 2 average pool, stride 2				
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 24 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 48 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 64 \end{bmatrix}$	
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 24}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 32}$	3 × 3 conv	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 04}$	
Transition Layer	14 × 14		1 × 1	conv		
(3)	7 × 7		2 × 2 average	pool, stride 2		
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ - & - \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 48 \end{bmatrix}$	
(4)	/ × /	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 10$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 48}$	
Classification	1 × 1		7 × 7 global	average pool		
Layer			1000D 6-11	1000D fully-connected, softmax		

Xception Paper

Use Cases:

- High-performance image classification.
- Real-time object detection in resource-constrained environments.

Advantages:

- Depthwise separable convolutions: Replaces standard convolutions with depthwise separable convolutions, which reduce computational cost while improving performance.
- High model capacity: Offers strong representation power due to its unique architecture.
- Optimized for large-scale tasks: Performs particularly well on datasets with a high number of classes or complex patterns.
- Improved efficiency over Inception models: Xception improves on the Inception family by achieving better performance with fewer parameters.

Best for:

- High-performance applications requiring efficient computation and high accuracy, such as mobile vision tasks or large-scale image classification.
- Tasks where the computational complexity of DenseNet or ResNet may be prohibitive.

Dataset: Eminst letters

Description:

It contains handwritten English letters (26 classes)

Shape: 28, 28, grey scale

To be suitable for the models, should resizing it to 71,71, RGB

Comparison Of The Results Of The Three	Models
The loss and the accuracy of the three models resnet	densnet

Roc Curve

	precision	recall	f1-score	support	
0	0.97	0.93	0.95	254	
1	0.98	0.99	0.99	266	
2	0.98	0.97	0.97	258	
	0.95	0.95	0.95	244	
4	0.94	1.00	0.97	249	
	1.00	0.96	0.98	260	
	0.82	0.92	0.87	262	
7	0.95	0.97	0.96	270	
8	0.7 3	0.73	0.73	256	
	0.93	0.93	0.93	285	
10	1.00	0.96	0.98	276	
11	0.75	0.77	0.76	260	
12	1.00	0.99	0.99	253	
13	0.97	0.95	0.96	263	
14	0.96	0.99	0.97	260	
15	0.99	0.98	0.98	258	
16	0.92	0.83	0.87	251	
17	0.98	0.94	0.96	264	
18	0.98	0.97	0.98	242	
19	0.97	0.96	0.97	242	
20	0.89	0.97	0.93	237	
21	0.97	0.89	0.93	242	
22	0.96	1.00	0.98	263	
2 3	0.99	0.97	0.98	237	
24	0.94	0.98	0.96	257	
25	0.99	0.99	0.99	251	
accuracy			0.94	6660	
macro avg	0.94	0.94	0.94	6660	
weighted avg	0.94	0.94	0.94	6660	

Resnet

	precision	recall	f1-score	support
0	0.76	0.71	0.74	254
1	0.80	0.79	0.79	266
2	0.96	0.80	0.87	258
3	0.78	0.90	0.84	244
4	0.76	0.94	0.84	249
5	0.84	0.82	0.83	260
6	0.61	0.56	0.59	262
7	0.79	0.87	0.82	270
8	0.63	0.75	0.69	256
9	0.92	0.84	0.88	285
10	0.96	0.88	0.92	276
11	0.77	0.62	0.69	260
12	0.97	0.83	0.90	253
13	0.68	0.93	0.79	263
14	0.83	0.96	0.89	260
15	0.94	0.90	0.92	258
16	0.72	0.55	0.63	251
17	0.90	0.73	0.81	264
18	0.93	0.90	0.91	242
19	0.74	0.93	0.83	242
20	0.92	0.83	0.87	237
21	0.84	0.93	0.88	242
22	0.93	0.93	0.93	263
23	0.98	0.88	0.93	237
24	0.84	0.84	0.84	257
25	0.94	0.93	0.93	251
accuracy			0.8 3	6660
macro avg	0.84	0.83	0.83	6660
weighted avg	0.84	0.83	0.83	6660

Densnet

	precision	recall	f1-score	support	
0	0.97	0.91	0.94	254	
1	0.91	1.00	0.95	266	
2	0.99	0.96	0.97	258	
3	0.93	0.96	0.95	244	
4	0.96	0.99	0.98	249	
5	0.98	0.97	0.98	260	
6	0.97	0.71	0.82	262	
7	0.97	0.98	0.97	270	
8	0.69	0.84	0.76	256	
9	0.94	0.95	0.95	285	
10	1.00	0.99	0.99	276	
11	0.83	0.67	0.74	260	
12	1.00	1.00	1.00	253	
13	0.96	0.98	0.97	263	
14	0.98	0.98	0.98	260	
15	0.98	0.98	0.98	258	
16	0.81	0.97	0.88	251	
17	0.98	0.97	0.97	264	
18	0.99	0.98	0.99	242	
19	0.97	0.99	0.98	242	
20	0.92	0.97	0.94	237	
21	0.96	0.92	0.94	242	
22	0.98	0.99	0.98	263	
23	0.98	0.98	0.98	237	
24	0.98	0.95	0.96	257	
25	0.98	0.99	0.99	251	
2001102014			0.04	6660	
accuracy	0.05	0.04	0.94	6660	
macro avg	0.95	0.94	0.94	6660	
weighted avg	0.95	0.94	0.94	6660	

Xception

The accuracy of Each Model

Resnet	10) Epochs	94%
Densnet		10	83%
	Epochs		
Xception		10	94%
	Epochs		

Architecture

DenseNet

Pros

Highly efficient in parameters, improved gradient flow, compact representations

Cons

High computation and memory cost, potential overfitting on small datasets

ResNet

Pros

Stable training, widely supported, versatile, and effective for transfer learning

Cons

Computationally memory and intensive, diminishing returns with depth

Xception

Pros

Parameter-efficient, excellent performance, strong generalization

Cons

Computationally expensive, less adoption for transfer learning, more complex to implement

Rating models on emnist dataset:

Resnet: it performs well with little overfitting

Densenet: it doesn't perform well with overfitting

Xception: it performs well like Resnet with overfitting

models don't have the best performance because resizing and changing images from grey scale to RGB.

So if we want the best performance we can use simple CNN model .

If we want to choose from these models priority for : Resnet because it is less complex than Xception

while Densent is excluded as it has the least performance.