

Heart Disease Patients Classification

predictive model

Introduction

- Early heart disease detection is important for medical institutions
- Insurances, medical apps, fitness or nutrition professionals and individuals conscious about their health

 GOAL: Develop a predictive model to aid in early detection of heart disease and raise red flags during initial questionnaires

Methodology

- Data from the Behavioral Risk Factor Surveillance System, an annual survey that gathers information on the health status of U.S. residents
- Data from 319,000 individuals, including 19 factors (medical and lifestyle)
- **HeartDisease (target)**, BMI, Smoking, AlcoholDrinking, Stroke, PhysicalHealth, MentalHealth, DiffWalking, Sex, AgeCategory, Race, Diabetic, PhysicalActivity, GenHealth, SleepTime, Asthma, KidneyDisease, SkinCancer

Methodology

- Focus on achieving a high recall score (90%)
- To address class imbalance, techniques such as undersampling, class weights, and threshold adjustment were used
- Data preprocessing included converting categorical variables to dummy variables and dividing the data into train, validation, and test sets. Model tuning was done using RandomizedSearchCV

Results

Random Forest

 Highest precision and accuracy while maintaining a recall rate of 0.90

Conclusions/Recommendations

- The Random Forest model developed in this project has the potential to aid in early detection of heart disease
- Other considered models were showing similar performance
- Systematic preventive medical examination to decrease chance of heart decease and healthy life style
- Constructed models are ready base for similar searches

Future Work

- Further exploration of feature relationships through deeper EDA
- Fine-tuning of the Random Forest model
- Exploring the use of deep learning models for improved performance
- Development of a web app for easy access
- More data (next years update)

1 2 h

Thank you!

Questions?

Appendix

The data used for this project was sourced from Kaggle, from a dataset that
was initially cleaned by Kamil Pytlak. The dataset can be found at:
www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heartdisease