Hvilket af nedenstående svar gælder for følgende rekursionsligning?

$$T(n) = T(n/4) + 1$$

Selected Answer: (3 [None Given]

Answers:

$$T(n) = \Theta(\log n).$$

$$T(n) = \Theta(n^{1/4}).$$

$$T(n) = \Theta(n).$$

$$T(n) = \Theta(n \log n).$$

$$T(n) = \Theta(n^4).$$

Rekursionsligningen kan ikke løses med Master Theorem.

Hvilket af nedenstående svar gælder for følgende rekursionsligning?

$$T(n) = 3T(n/6) + n^{1/2}$$

Selected Answer: 🔞 [None Given]

Answers:

$$T(n) = \Theta(\log n).$$

$$T(n) = \Theta(n^{1/2}).$$

$$T(n) = \Theta(n^{1/2} \log n).$$

 $T(n) = \Theta(n^{\alpha}) \text{ med } \alpha = \log_6(3).$

$$T(n) = \Theta(n).$$

$$T(n) = \Theta(n \log n).$$

$$T(n) = \Theta(n^{\alpha}) \text{ med } \alpha = \log_3(6).$$

$$T(n) = \Theta(n^2).$$

Rekursionsligningen kan ikke løses med Master Theorem.

Hvilket af nedenstående svar gælder for følgende rekursionsligning?

$$T(n) = 3T(n/3) + n\log n$$

Selected Answer: (3 [None Given]

Answers:

$$T(n) = \Theta(\log n).$$

$$T(n) = \Theta(n^{1/3}).$$

$$T(n) = \Theta(n)$$
.

$$T(n) = \Theta(n \log n).$$

$$T(n) = \Theta(n \log^3 n).$$

$$T(n) = \Theta(n^3).$$

Rekursionsligningen kan ikke løses med Master Theorem.

Vi ser på en hashtabel H, der bruger linear probing og funktionen $h'(x) = (x+2) \mod 7$ som auxiliary hashfunktion. Hashtabellen har allerede nedenstående indhold.

Vi indsætter nu værdien 73. Hvilket af nedenstående svar angiver udseendet af H efter indsættelsen?

Vi ser på en hashtabel H, der bruger double hashing og funktionerne $h'(x) = (x+2) \mod 7$ og $h''(x) = (x \mod 6) + 1$ som auxiliary hashfunktioner. Hashtabellen har allerede nedenstående indhold.

Vi indsætter nu værdien 33. Hvilket af nedenstående svar angiver udseendet af H efter indsættelsen?

Hvor lan	g tid tager søgning (TREE-SEARCH) i et ubalanceret søgetræ?	
Selected Answer: Answers:	[None Given]	
	O(1)	
	$O(\log n)$	
	\circ $O(n)$	
n 7		
	1 po	i
Hvor lan	ig tid tager søgning (Tree-Search) i et rød-sort træ?	
• O	3 [None Given]	
	O(1)	
	$O(\log n)$	
	O(n)	

Hvor lang tid tager et inorder gennemløb (INORDER-TREE-WALK) i et rødsort træ?

På hvor mange forskellige måder kan knuderne i nedenstående træ farves, så træet bliver til et lovligt rød-sort træ?

Selected Answer: Answers:	3	[None Given]
		På ingen måder.
		På én måde.
	Ø	På to måder.
		På tre måder.
		På fire måder.
		På fem måder.

Følgende kode har til formål at beregne 2^n .

$$ToPotens(n)$$

$$x = n$$

$$r = 1$$
while $x > 0$

$$r = 2r$$

$$x = x - 1$$
return r

 Er

$$x \geq r$$

en løkke-invariant for algoritmen ToPotens (dvs. er altid sandt, når testen i starten af **while**-løkken udføres) for alle input, der er heltal $n \ge 0$?

Selected Answer:	0	[None Given]
Answers:		Sandt
	9	Falsk

- F -----

 Er

 $x \ge 0$

en løkke-invariant for algoritmen ToPotens (dvs. er altid sandt, når testen i starten af **while**-løkken udføres) for alle input, der er heltal $n \ge 0$?

$$r2^{x} = 2^{n}$$

en løkke-invariant for algoritmen TOPOTENS (dvs. er altid sandt, når testen i starten af **while**-løkken udføres) for alle input, der er heltal $n \ge 0$?

For et optimeringsproblem (som her ikke beskrives nærmere) er input givet ved en omkostning (dvs. et tal) c_i for alle heltal i. Det oplyses, at en løsning l(i) til optimeringsproblemet kan beskrives med denne rekursionsligning:

$$l(i) = \begin{cases} 0 & \text{hvis } i = 0 \\ \max\{c_k + l(i-k) \mid 1 \le k \le i\} & \text{hvis } i > 0 \text{ og } i \text{ er lige} \\ \min\{c_k + l(i-k) \mid 1 \le k \le i\} & \text{hvis } i > 0 \text{ og } i \text{ er ulige} \end{cases}$$

Hvis l(n) findes via dynamisk programmering baseret på ovenstående rekursionsligning, hvilken af nedenstående køretider opnås?

Selected Answer:	[None Given]	
Answers:	$\Theta(1)$	
	$\Theta(n)$	
	$\Theta(n^2)$	
	$\Theta(n^3)$	

Hvis l(n) findes via dynamisk programmering baseret på ovenstående rekursionsligning, hvad er det mindste pladsforbrug, som kan opnås? Selected Answer: $\Theta(1)$ $\Theta(n)$ $\Theta(n^2)$ $\Theta(n^3)$