Deep RL Course documentation A Q-Learning example ~

A Q-Learning example

To better understand Q-Learning, let's take a simple example:

- You're a mouse in this tiny maze. You always start at the same starting point.
- The goal is to eat the big pile of cheese at the bottom right-hand corner and avoid the poison. After all, who doesn't like cheese?
- The episode ends if we eat the poison, eat the big pile of cheese, or if we take more than five steps.
- The learning rate is 0.1
- The discount rate (gamma) is 0.99

Example

- You always start at the same starting point.
- The goal: eat the big pile of cheese (at the bottom right-hand corner) and avoid the poison.
- The episode ends if we eat the poison, eat the big pile of cheese or if we spent more than 5 steps.
- Learning rate = 0.1
- Gamma = 0.99

The reward function goes like this:

- +0: Going to a state with no cheese in it.
- +1: Going to a state with a small cheese in it.
- +10: Going to the state with the big pile of cheese.
- -10: Going to the state with the poison and thus dying.
- +0 If we take more than five steps.

Example

- The reward function:
 - o 0: Going to a state with no cheese in it.
 - +1: Going to a state with a small cheese in it.
 - +10: Going to the state with the big pile of cheese.
 - -10: Going to the state with the poison and thus die.

To train our agent to have an optimal policy (so a policy that goes right, right, down), we will use the Q-Learning algorithm.

Step 1: Initialize the Q-table

Example, Step 1

Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$, and $Q(terminal-state, \cdot) = 0$)

	←	→	1	1
3-8	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0

We initialize the Q-Table

So, for now, our Q-table is useless; we need to train our Q-function using the Q-Learning algorithm.

Let's do it for 2 training timesteps:

Training timestep 1:

Step 2: Choose an action using the Epsilon Greedy Strategy

Because epsilon is big (= 1.0), I take a random action. In this case, I go right.

Step 3: Perform action At, get Rt+1 and St+1

By going right, I get a small cheese, so $R_{t+1}=1$ and I'm in a new state.

Step 4: Update Q(St, At)

We can now update $Q(S_t, A_t)$ using our formula.

Example, Step 4

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t))$$

Q(Initial state, Right) = 0 + 0.1 * [1 + 0.99 * 0 - 0]Q(Initial state, Right) = 0.1

	←	→	1	1
300	0	0.1	0	0
200	0	0	0	0
	0	0	0	0
	0	0	0	0
©	0	0	0	0
	0	0	0	0

Training timestep 2:

Step 2: Choose an action using the Epsilon Greedy Strategy

I take a random action again, since epsilon=0.99 is big. (Notice we decay epsilon a little bit because, as the training progress, we want less and less exploration).

I took the action 'down'. This is not a good action since it leads me to the poison.

Step 3: Perform action At, get Rt+1 and St+1

Because I ate poison, I $\operatorname{get} R_{t+1} = -10$, and I die.

Example, Step 4

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t))$$

Q(State 2, Down) = 0 + 0.1 * [-10 + 0.99 * 0 - 0]Q(State 2, Down) = -1

	←	→	1	1
9.8	0	0.1	0	0
	0	0	0	
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0

Because we're dead, we start a new episode. But what we see here is that, with two explorations steps, my agent became smarter.

As we continue exploring and exploiting the environment and updating Q-values using the TD target, the Q-table will give us a better and better approximation. At the end of the training, we'll get an estimate of the optimal Q-function.

← Introducing Q-Learning

Q-Learning Recap →