Department of Mathematics

Calculus of Several Variables and Differential Geometry

Assignment-I

- 1. Let $n, k \geq 1$ and $T: \mathbb{R}^n \to \mathbb{R}^k$ be a linear map. Show that T is continuous.
- 2. Let $n \geq 2$. Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^n$ is differentiable and find the derivative df_x .
- 3. Use the series expansion of e^x and $e^{x+y} = e^x e^y$ for $x, y \in \mathbb{R}$ to show that the function $f(x) = e^x$ is differentiable. What is the derivative df_x of f?
- 4. Show that the following maps are differentiable and find the derivative in each case. Let $m, n \ge 2$ and $k \ge 1$.
 - (a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) := (e^x \cos y, e^x \sin y)$.
 - (b) Let $f: M(n, \mathbb{R}) \to M(n, \mathbb{R})$ be the map defined by $f(A) = A^k$.
 - (c) Let $f: \mathbb{R}^n \to \mathbb{R}$ be the map defined by $f(x) := \langle x, x \rangle$.
 - (d) Let $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be defined by $f(x, y) := \langle x, y \rangle$.
 - (e) Let $f: \mathbb{R}^n \to \mathbb{R}$ be the function defined by $f(x_1, x_2, \dots, x_n) := \prod_{i=1}^n x_i$.
 - (f) Let $A: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map and $f: \mathbb{R}^n \to \mathbb{R}$ be defined by $f(x) := \langle Ax, x \rangle$.
 - (g) Let $A: \mathbb{R}^m \to \mathbb{R}^n$ be linear and $f: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ be defined by $f(x,y) := \langle Ax, y \rangle$.
 - (h) Let $f, g: \mathbb{R}^n \to \mathbb{R}$ be two differentiable functions and $h: \mathbb{R}^n \to \mathbb{R}$ be defined by h(x) = f(x)g(x).
 - (i) Let f and g be as above and $h: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be defined by h(x,y) = f(x)g(y).
- 5. Let $n \geq 1$ and U be an open subset of \mathbb{R}^n . Let $f: U \to \mathbb{R}$ be a differentiable function. Show that f is continuous on U.
- 6. Let U be as above and $f: U \to \mathbb{R}$ be a differentiable function such that for all x in U, $f(x) \neq 0$. Show that the function $\frac{1}{f}: U \to \mathbb{R}$ defined by $\frac{1}{f(x)}$ is differentiable on U and find its derivative.
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that, for all $x \in \mathbb{R}$, we have $|f(x)| \leq x^2$. Is the function f differentiable at 0? If it is find the derivative of f at 0.
- 8. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that, for all $x \in \mathbb{R}$, we have $|f(x) f(y)| \le |x y|^2$. Find the pounts where the function f differentiable. If it is find the derivative of f.
- 9. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function such that for all x, y in \mathbb{R}^n , $|f(x) f(y)| \le ||x y||^2$. Is the function f differentiable? If it is, what is its derivative?
- 10. Let $f: \mathbb{R}^n \to \mathbb{R}^k$ be a function such that for all x, y in \mathbb{R}^n , $||f(x) f(y)|| \le ||x y||^2$. Is the function f differentiable? If it is, what is its derivative?
- 11. Check the continuity, existence of partial derivatives, directional derivatives and the differentiability of the following functions $f: \mathbb{R}^2 \to \mathbb{R}$.

(a)
$$f(x,y) := \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$$

(b) $f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$
(c) $f(x,y) := \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$

(b)
$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$$

(c)
$$f(x,y) := \begin{cases} \frac{x^2y}{x^4+y^2} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$$

- 12. Find the directional derivative of the functions
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}$ defined by f(x,y) := xy at x = (0,1) and $(\cos \alpha, \sin \alpha)$.
 - (b) $f: \mathbb{R}^3 \to \mathbb{R}$ defined by f(x, y, z) := xyz at x = (0, 1, 0) and $v = (\cos \alpha, \sin \alpha \cos \beta, \sin \alpha \sin \beta)$.
- 13. Find the Jacobian matrix of the differentiable functions
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $f(u, v) := (u^2 + v^2, uv, u^2 v^2)$.
 - (b) $f: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $f(u, v) := (u + v, u v, u^2 v^2)$.
 - (c) $g: \mathbb{R}^3 \to \mathbb{R}$ defined by $g(x, y, z) := x^2 + y^2 + z^2$.
 - (d) $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(x) := \langle Ax, x \rangle$ where $A: \mathbb{R}^n \to \mathbb{R}^n$ is linear.
- 14. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $f(u,v) := (u+v, u-v, u^2-v^2)$ and $g: \mathbb{R}^3 \to \mathbb{R}$ defined by $g(x,y,z) := x^2 + y^2 + z^2$. Show that $g \circ f$ is differentiable, find its derivative and the Jacobian matrix.
- 15. Show that the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = \sin(xy)$ is differentiable and find its derivative.