Lab 9: Multipath Propagation and Equalization

Wadhwani Electronics Lab

Department of Electrical Engineering Indian Institute of Technology, Bombay.

Aim of the experiment

- To study the effect of multipath propagation using a suitable multipath model.
- 2. To understand working of an equalizer when the signal propagates through a multipath environment.
- 3. To use an adaptive equalizer for equalization of a signal with unknown multipath transfer function.

Pre-lab Work

- Make sure that you have read the supporting material uploaded along with this document.
- For additional information about equalizers, refer Adaptive Filter Theory, Simon Haykin.

Part 1: Multipath model

- Generate a QPSK and BPSK constellation using the blocks available in GNU Radio.
 - For this use the "Random Source" (generating bytes with min=0, max=2). Send the output to "Chunks to Symbols" block with 2 constellation points (equally separated on an unit on x-axis). This output goes to the pulse shaping filter implemented by raised root cosine filter i.e. expt 8.
 - Observe the output constellation.
- Design the transmitter as in expt 8 and continue.
- Make a multi-path model (H(z)) with tap coefficients 1 and 0.5 (such that
 coefficient of 1 corresponds to direct line-of-sight reception and coefficient of
 0.5 corresponds to a signal reflected from an object and received after one
 symbol period delay (use the "delay" block in Gnu radio :– one delay count
 corresponds to one sample delay).

Part 2: Equalizer design

- Design the reciever containing IQ demodulator, followed by match filtering and then add the equalizer.
- Calculate feed forward coefficients of 4-tap equalizer
- Connect the output of the matched filter (make sure to decrease the sps to 1) to the input of the equalizer and observe the equalizer output constellation.

Polyphase Arbitrary Resampler

• This block is used in building the Transmitter

• tx taps are the Root Raised Cosine FIR filter tap coefficients generated by the FIR design utility.

tx_taps =

firdes.root_raised_cosine(gain,sps*symb_rate,symb_rate,excess_bw,ntaps)

Experiment 9 Dept. of EE, IIT-Bombay 6

Polyphase Clock Sync

This block is used in building the receiver

- **timing bw** is 2*pi/100 (normalised loop bandwidth for Polyphase Clock Synchronizer) and **nfilts** is equal to 32.
- rx_taps = firdes.root_raised_cosine(gain,nfilts*sps*symb_rate,symb_rate,excess_bw,ntaps)

Part 3:Implementing the model

• Implement the model using polyphase arbitary resampler and polyphase clock sync (inbuilt GNU blocks) with added Multipath and Equalization blocks by applying a random source as input

Part 4: Equalizer design

- Pass the generated QPSK constellation through the multipath model after adding Gaussian noise (using noise source) with amplitude (0.05 in between 0 and 1). Can you still observe the constellation with distinct clusters of points.
- Implementing a feed forward 4-tap equalizer with adjustable coefficients.
 - Implementing a feed forward 4-tap equalizer with adjustable coefficients.
 - Connect the output of the multipath model designed in the previous part to the input of the equalizer and observe the equalizer output constellation as you adjust the coefficents.

... Equalizer design

• Generate the error magnitude from the equalizer output (y) as the absolute value of

•
$$e = |y|^2 - 1$$

- To observe this error output, send it through a low pass filter implemented by the "IIR Filter" block (with feedforward taps = [0.001], feedback taps = [1, 0.98], "Old Style of Taps" = "True"), followed by a Scope Sink.
- Adjust the taps manually to reduce the error (starting with the first coefficient first). Observe that reducing error improves the constellation. Try to minimize the error by adjusting coefficients.

Experiment 9 Dept. of EE, IIT-Bombay 10 / 14

Part 5: Equalizer for known multipath model

- Now invert H(z) analytically to find the first four tap coefficients of E(z) = 1/H(z)
 - Set the slider values corresponding to the obtained coefficients.
- Observed constellation should be very good.

Part 6: CMA Equalizer for multipath model

- For GNU Radio version 3.10, you might not find this block. To complete this task join with other students who have GNU radio version 3.9 or below.
- Use the in-built CMA Equalizer in GNU Radio to observe the desired constellation.
 - Tweak the gain of the Equalizer.
- Observed constellation and compare with o/p of previously designed equalizer.

Message Transfer

 Try to send and receive the a text file (Original.txt) as done in previous experiment in the presence of multi-path and noisy channel. (This part is optional)

Constellation decoder

This block is used for symbol coding

This block requires constellation object

 Ensure that constellation points are same as symbol table value given at input (at transmitter)