

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYCH002 Chemistry Examination 2017-18

Examination Session Semester Two Time Allowed 2 Hours 40 minutes (including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A Answer ALL questions. This section carries 40% of the exam

SECTION B Answer 3 questions ONLY. This section carries 60% of the exam marks.

The marks for each question are indicated in square brackets [].

- Answers must not be written during the first 10 minutes.
- A data sheet is included in the front of the examination booklet.
- Graph paper will be provided.
- An approved calculator may be used in the examination.
- Show ALL workings in your answer booklet.
- Examination materials must not be removed from the examination room.

DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE INVIGILATOR

The Periodic Table of the Elements

The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

0	4.0 He Helium 2	20.2 Neon 10	39.9 Ar Argon	83.8 K Krypton 36	131.3 Xe Xenon Xenon 54	222.0 Rn Radon 86		175.0 Lu Lutetium 71	(260) Lr Lawrendium 103
=		19.0 F Fluorine	35.5 CI Chlorine 17	79.9 Bromine	126.9 – lodine 53	210.0 At Astatine 85		F	(259) No Nobelium 102
>		16.0 Oxygen 8	Sulphur	ΙE	127.6 Te Tellurium 52	210.0 Po Polonium 84			(258) Md Mendelevium 101
>		14.0 N Nitrogen 7	31.0 Phosphorus	74.9 As Arsenic 33	121.8 Sb Antimony 51	209.0 Bi Bismuth 83		167.3 Er Erbium 68	(257)
≥			28.1 Silicon 14	72.6 Ge Germanium 32	Sn Sn Tin 50	207.2 Pb Lead 82		164.9 Ho Holmium 67	(252) Es n Einsteinium 99
=		10.8 Boron 5	27.0 Al Aluminium 13	F	114.8 In Indium 49	204.4 TI Thallium 81		162.5 Dy Dysprosiur 66	247.1 252.1 (252) (252) (253) (258) (250) (260) Bk Cf Es Fm Md No Lr Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrendium 97 98 99 100 101 102 103
				65.4 Zn Zinc 30	112.4 Cd Cadmium 48	200.6 Hg Mercury 80		158.9 Tb Terbium 35	247.1 Bk Berkelium 97
				63.5 Cu Copper 29	107.9 Ag Silver 47	197.0 Au Gold 79		157.3 Gd Gadolinium 64	247.1 Cm Curium 96
				58.7 Nickel 28	106.4 Pd Palladiun	195.1 Pt Platinum 78		152.0 Eu Europium 63	243.1 Am Americium 95
					95.9 98.9 101.1 102.9 Rh Mo Tc Ru Rh Molybdenum Technetium Rhodium 42 43 44 45	192.2 F Iridium 77		140.9 144.2 144.9 150.4 152.0 157.3 1 Pr Nd Pm Sm Eu Gd Praseodymium Noodymium S9 Praseodymium Samarium Samarium S9 Eu Gadolirium S4 59 60 61 62 63 64 64	231.0 238.0 237.0 239.1 243.1 1 Pa U Np Pu Am Protectinium Uranium Neptunium Plutonium Americium 91 92 94 95 95
				55.8 Fe Iron 26	101.1 Ru n Ruthenium 44	190.2 Os Osmium 76		144.9 Pm Promethium 61	237.0 Np Neptunium 93
		6.9 Li Lithium		52.0 54.9 Mn Chromium Manganese 24 25	98.9 Tc m Technetium 43	186.2 Re Rhenium 75		144.2 Nd Neodymium 60	238.0 U Uranium 92
		ass		52.0 Cr Chromium 24	95.9 Mo Molybdenum 42	183.9 W Tungsten 74		140.9 Pr Praseodymium 59	231.0 Pa Protactinium 91
		relative atomic mass atomic number ——		Ë	92.9 Nb Niobium 41	180.9 Ta Tantalum 73		140.1 Ce Cerium 58	232.0 Th Thorium 90
	Key	relative a		47.9 T Trtanium 22	91.2 Zr Zirconium 40	178.5 Hf Hafnium 72			
				Scandium 21	88.9 Y Yttrium 39	138.9 178.5 La Hf Hafnium 57 * 72	227 Ac Actinium 89 †	ınides	ges
=		9.0 Be Beryllium 4		40.1 Ca Calcium 20	87.6 Strontium	137.3 Ba Barium 56	226.0 Ra Radium 88	* 58 – 71 Lanthanides	† 90 – 103 Actinides
-	1.0 H Hydrogen 1	6.9 Li Lithium 3	23.0 Na Sodium 11	39.1 K Potassium 19	85.5 Rb Rubidium 37	132.9 Cs Caesium 55	223.0 Fr Francium 87	* 58 – 7	+ 90 – 16

Data Sheet

Infrared spectroscopy: Characteristic absorptions for functional groups			
Bond	Wave number / cm ⁻¹		
C-Br	500 - 600		
C-Cl	650 - 800		
C-O	1000 - 1300		
C=C	1620 - 1670		
C=O	1650 - 1750		
C=N	2100 - 2250		
C-H	2800 - 3100		
O-H	2500 - 3550		
N-H	3300 – 3500		

Section A Answer ALL questions. This section carries 40 marks.

Question A1

What is the bond angle in the molecule H_2O ? [1]

- a) 109.5°
- b) 107°
- c) 104.5°
- d) 90°

Question A2

How many neutrons are there in an atom of ⁸¹Br? [1]

- a) 35
- b) 45
- c) 46
- d) 81

Question A3

What is the correct electronic structure for sulphur? [1]

- a) $1s^22s^22p^63s^23p^6$
- b) $1s^22s^22p^63s^2$
- c) $1s^22s^22p^63s^23p^2$
- d) $1s^22s^22p^63s^23p^4$

Question A4

What is the correct electronic structure for a chromium ion, Cr³⁺? [1]

- a) $1s^22s^22p^63s^23p^64s^23d^4$
- b) $1s^22s^22p^63s^23p^63d^3$
- c) $1s^22s^22p^63s^23p^64s^23d^1$
- d) $1s^22s^22p^63s^23p^63d^4$

Question A5

What is the trend in solubility of the group 2 metal hydroxides and sulphates as group 2 is descended? [1]

- Hydroxides become less soluble, sulphates become less soluble. a)
- Hydroxides become less soluble, sulphates become more soluble. b)
- c) Hydroxides become more soluble, sulphates become more soluble.
- d) Hydroxides become more soluble, sulphates become less soluble.

Question A6

Which of the following elements has the highest first ionisation energy?

[1]

- Aluminium a)
- b) Silicon
- Phosphorus c)
- d) Sulphur

Question A7

If bromine water is added to an alkene, what colour change, if any, is observed?

[1]

- a) Orange to green
- b) Green to orange
- c) Colourless to orange
- Orange to colourless d)

Question A8

Which of the following is a covalent compound?

[1]

- Sodium chloride a)
- b) Magnesium bromide
- Sulphur dioxide c)
- d) Calcium oxide

Question A9

The table below contains enthalpy of formation data for the reactants and products in the following reaction. What is the enthalpy change for the reaction?

[1]

$$C_2H_4 + H_2 \rightarrow C_2H_6$$

	ΔH _f / kJmol ⁻¹
C ₂ H ₄	52.5
H ₂	0
C₂H ₆	-83.7

- a) -136.2kJmol⁻¹
- b) +136.2kJmol⁻¹
- c) -31.2kJmol⁻¹
- d) +31.2kJmol⁻¹

Question A10

What are the optimum conditions for the elimination reaction of halogenoalkanes to form alkenes? [1]

- a) Dilute aqueous NaOH
- b) Concentrated ethanolic NaOH
- c) Concentrated aqueous NaOH
- d) Dilute ethanolic NaOH

[3]

Question A11

This question is about molarity and reacting masses.

1.64g of hydrated sodium carbonate Na₂CO₃.xH₂O is dissolved in water and made up to 250cm³ in a volumetric flask. 25.0cm³ of this solution required exactly 13.7cm³ of 0.150moldm⁻³ HCl solution to be neutralised.

- a) Calculate the number of moles of HCl in 13.7cm³ of the 0.150moldm⁻³ HCl solution. [1]
- b) Hence deduce the number of moles of Na₂CO₃.xH₂O in 25.0cm³ of the Na₂CO₃.xH₂O solution. Use your answer to calculate the number of moles of Na₂CO₃.xH₂O in the 250cm³ volumetric flask.
- c) Use the number of moles you have calculated in (b) and the mass of Na₂CO₃.xH₂O to calculate the Mr of Na₂CO₃.xH₂O. Give your answer to 1 decimal place. [2]
- d) Calculate the Mr of Na_2CO_3 using the periodic table at the beginning of this paper. [1]
- e) Use your answers from (c) and (d) to find the value of x. [3]

Question A12

This question is about alkenes and isomerism.

- a)

 i. Draw the structure of pent-1-ene.
 ii. Draw and name two isomers of pent-1-ene.
 j. What is the major product when HBr is added to pent-1-ene?
 j. Explain why this product is the major product.
- c) Name a functional group isomer of pent-1-ene. [1]
- d) Some alkenes exhibit geometrical (E/Z or cis-trans) isomerism. What is the structural feature that gives rise to this kind of isomerism? [1]

Question A13

This question is about redox chemistry.

Define the term 'oxidation' in terms of electrons. [1] a) ii. State the oxidation number of phosphorus in each of the following compounds: Ι PCI₃ [1] II Ca₃P₂ [1] III P_4O_{10} [1] b) When solid sodium iodide is added to concentrated sulphuric acid, the acid reacts with iodide ions to form sulphur dioxide, sulphur, hydrogen sulphide and iodine. Write a half equation to show how hydrogen sulphide is formed i. [1] from sulphuric acid. ii. Write a half equation to show how iodine is formed from iodide [1] ions. iii. Combine the half equations to give the overall redox equation for [1] the reaction of iodide ions with sulphuric acid to form hydrogen sulphide and iodine. c) Explain why iodide ions are stronger reducing agents than bromide ions. [3]

Section B Answer <u>3</u> questions. This section carries 60 marks.

Question B1

This question is about metals and transition metal complexes.

a)	Exp	lain what is meant by a "complex ion".	[2]		
b)	When cobalt (II) chloride is dissolved in concentrated hydrochloric acid a blue solution forms.				
	i.	Draw a diagram to show the crystal field splitting in the d orbitals of the complex ion formed when cobalt (II) chloride is dissolved in concentrated hydrochloric acid.	[2]		
	ii.	Use your diagram to explain why the solution is coloured.	[3]		
c)	If excess water is added to the cobalt (II) chloride solution described in part b, the colour of the solution changes from blue to pink.				
	i.	Explain this colour change.	[2]		
	ii.	Analysis of the cobalt complex ion from the solution described in part c)i. gives the composition as 35.3% cobalt, 7.2% hydrogen, with the remainder being oxygen. Calculate the empirical formula of this			
		complex ion.	[3]		
	iii.	Draw the three dimensional structure of this complex ion, given that its formula is the same as the empirical formula.	[2]		
d)	i.	Draw a diagram to show how the particles are arranged in a metallic structure. Your diagram should include a minimum of six particles. Show the charges on the particles.	[2]		
	ii.	Use your diagram to explain why metals can be stretched into wires.	[2]		
	iii.	Explain why metals are good conductors of electricity.	[2]		

a)	i.	Define the term "electronegativity".	[2]
	ii.	State the trend in electronegativity across period 2. Explain this trend.	[3]
b)	i.	Define the term "first ionisation energy".	[2]
	ii.	State the general trend in first ionisation energies across period 2. Explain this trend.	[3]
	iii.	There is an exception to this general trend between groups 2 and 3. Explain this exception to the general trend.	[2]
	iv.	Explain why there is also an exception to this general trend between groups 5 and 6.	[2]
c)	i.	Describe the structure and bonding in silicon dioxide.	[2]
	ii.	Describe the structure and bonding in sulphur dioxide.	[2]
	iii.	Explain why silicon dioxide and sulphur dioxide have such different melting and boiling points.	[2]

- a) i. Write an equation for the dissociation of propanoic acid including state symbols. [2]
 - ii. Use the equation to explain what is meant by the term **weak acid**. [1]
 - iii. Write an expression for the acid dissociation constant, K_a , for propanoic acid. $\cite{2}$
- b) Propanoic acid can be manufactured by reacting ethene, water and carbon monoxide in the following process:

$$CH_2CH_2(g) + H_2O(g) + CO(g) \implies CH_3CH_2COOH(g) \quad \Delta H = -167kJmol^{-1}$$

If equimolar quantities of CH_2CH_2 , H_2O and CO are added together in the gaseous phase at $190^{\circ}C$ and left to reach equilibrium at a pressure of 44.0 atmospheres, the partial pressure of propanoic acid is found to be 17.5 atmospheres when equilibrium is reached.

- i. Write an expression for the equilibrium constant K_p . [1]
- ii) Calculate the partial pressures of CH₂CH₂, H₂O and CO at equilibrium. [2]
- iii) Calculate the value of K_p for this reaction at 190°C. Give your answer to 3 significant figures. Include the units in your answer. [3]
- c) Ammonia can be manufactured by reacting nitrogen and hydrogen in the following process:

$$N_2(g) + 3H_2(g) \implies 2NH_3(g) \quad \Delta H = -92kJmol^{-1}$$

- i. How should the temperature of the reaction be changed to increase the equilibrium yield of ammonia? Use le Chatelier's principle to explain your answers.
- ii. How should the pressure of the reaction be changed to increase the equilibrium yield of ammonia? Use le Chatelier's principle to explain your answers.[3]
- iii. Name three changes which will increase the rate at which this equilibrium is reached. [3]

This question is about organic compounds.

a)	i.		the data sheet to identify the characteristic absorptions in the IR ctrum of ethanoic acid.	[4]
	ii.	I	How many peaks would be seen in the ${}^{1}\mathrm{H}$ NMR of ethanoic acid?	[1]
		II	Describe the splitting pattern of the peaks in the $^1\mbox{H}$ NMR of ethanoic acid.	[1]
b)	i.	Write an overall equation for the chlorination of ethane and state the conditions required for the reaction to occur.		
	ii.	eac	overall reaction can be broken down into three steps. Name h step of the reaction. Write equations for each step of the ction.	[5]
c)	Exp	olain t	the terms chiral and optical activity.	[2]
d)	Use		mechanism for the reaction of propanal with hydrogen cyanide. mechanism to explain why a mixture of chiral products is I.	[5]

a)	i.	A sample of gold found on a meteorite was found to contain 6.3% ¹⁹⁵ Au and 93.7% ¹⁹⁷ Au. Calculate the relative atomic mass of this sample of gold. Give your answer to one decimal place.	[3]		
	ii.	Give two reasons why samples must be ionised in the mass spectrometer.	[2]		
b)	Benzene reacts with concentrated nitric acid in the presence of concentrated sulphuric acid to form nitrobenzene and water.				
	i.	Write the overall equation for this reaction.	[1]		
	ii.	Concentrated nitric acid reacts with concentrated sulphuric acid to form the species that reacts with benzene. Name this species and write an equation to show how it is formed.	[2]		
	iii.	Write a mechanism to show the reaction of this species with benzene.	[3]		
	iv.	Sulphuric acid is reformed during this reaction. Write an equation to show how sulphuric acid is reformed.	[1]		
	٧.	What is the role of the sulphuric acid in this reaction?	[1]		
c)	i.	Calculate the pH of a 0.150moldm^{-3} solution of benzoic acid if the pK _a of benzoic acid is 4.20.	[5]		
	ii.	Benzoic acid is insoluble in water. Ethanoic acid is soluble in water. Explain this difference in solubility.	[2]		

This is the end of the examination.

Blank Page

Blank Page

Blank Page