7 On the Move

7.1 Speed and Velocity

- Displacement is distance in a given direction.
- **Speed** is defined as change of distance per unit time.
- **Velocity** is defined as change of displacement per unit time velocity is speed in a given direction.

The unit of speed and velocity is the metre per second ms⁻¹.

Distance-time Graph

A distance-time graph is a graph of distance against time.

For motion at constant speed, its distance-time graph is a straight line with a constant gradient.

speed
$$v = \frac{s}{t} = \text{gradient of line}$$

For motion at changing speed that travels a distance s in time t

average speed =
$$\frac{\Delta s}{\Delta t}$$

The gradient of the line at any point can be found by drawing a **tangent to the line** and then measuring the gradient of the tangent.

The delta Δ notation means a change of something.

An object moving at **constant velocity** moves at the same speed without changing its direction of motion.

 If an object changes its direction of motion or its speed or both, its velocity changes.

7.2 Acceleration

Acceleration is defined as change of velocity per unit time.

• The unit of acceleration is the metre per second per second

$$\rm ms^{-2}$$

•

• Deceleration values are negative and signify that velocity decreases with respect to time.

Uniform acceleration is where the velocity of an object moving along a straight line changes at a $\underline{\text{constant rate}}$ - the acceleration is constant.

Non-uniform acceleration is where the direction of motion of an object changes, or its speed changes.

Acceleration = gradient of the line on the velocity-time graph

7.3 Motion Along a Straight Line at Constant Acceleration

1. From $a = \frac{v - u}{t}$

$$v = u + at$$

2. From $s = \bar{v}t$

$$s = \frac{(u+v)t}{2}$$

3. Substitute (1) to (2):

$$s = ut + \frac{1}{2}at^2$$

4. Multiply $a = \frac{v - u}{t}$ and $s = \frac{(u+v)t}{2}$

$$v^2 + u^2 + 2as$$

displacement = area under the line of a velocity-time graph

7.4 Free Fall

Investigate the free fall of a ball

- 1. Make a **video clip** of the ball's flight as it falls after being released from rest.
- 2. For each frame of the ball in the video, the **time of descent** of the ball and the **distance fallen** by the ball can be measured.
- 3. Use the equation $s = ut + \frac{1}{2}at^2$, plot a graph of s against t^2 . Then the acceleration is $2 \times$ gradient.

The acceleration of free fall is the value of acceleration when there are $\underline{\text{no external forces}}$ acting on the object apart from the force of gravity, and is represented by the symbol g.

$$q \approx 9.8 \text{ms}^{-2}$$

7.5 Motion Graphs

- Displacement-time graph: the gradient of the line represents the velocity of the object.
- Velocity-time graph: the gradient of the line represents the object's Acceleration.
 - The area under the line represents the **displacement** of the object from its starting position.

7.6 Projectile Motion 1

A projectile is any object acted upon only be the force of gravity.

- The acceleration of the object is **always downwards** and **equal to g** because the force of gravity acts downwards.
- Horizontal velocity of the object is constant because the acceleration of the object does not have a horizontal component.
- The motion in the horizontal and vertical direction are **independent** of each other.

$$v = u - gt$$
$$y = ut - \frac{1}{2}gt^2$$

Horizontal Projection

If the initial project of a stone off a cliff is horizontal.

- Its path through air becomes steeper as it drops.
- The faster it is projected, the further away it will fall into the sea.
- The time taken for it to fall into the sea does not depend on how fast it is projected.
 - The downward acceleration for each speed is g.

A camera can be used to record the motion of projectiles. Where A is released from rest and B was given an initial horizontal projection.

- The **horizontal position** of B change by equal distance per unit time.
 - The horizontal component of B is constant.
- At any instant, A is at the same level as B.
 - A and B have the same vertical component of velocity at any instant.

7.7 Projectile Motion 2

Any form of motion where an object experiences a constant acceleration in a different direction to its velocity will be like projectile motion.

- A ball rolling across an **inclined board** will be a projectile path.
- A beam of electrons directed between two oppositely charged parallel plates.

The path of a projectile is **parabolic**.

Drag Force

A projectile moving in air experiences a **drag force** because of the resistance of air it passes through.

- Acts in the **opposite direction** to the direction of motion of the projectile
- Increases as the projectile's speed increases.
- Has a **horizontal component** that reduces horizontal speed and the range.
- Has a **vertical component** that reduces maximum height and makes its descent **steeper than its ascent**.

The **shape of the projectile** affects the drag force and may cause a **lift force** on the projectile.