

$$A \leftarrow \begin{bmatrix} \text{Fuc}_{i} \\ \text{GicNAc-Gal}_{al_{a}} \\$$

a-d, i, l, q-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-k (independently selected) = 0 or 1.

M = 0 to 20.

n, v-y = 0; z = 0 or 1;

R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 49A

```
CHO, BHK, 293 cells, Vero expressed Herceptin. a, c, i (independently selected) = 0 or 1; e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

galactosyltransferase, UPD-Gal
 CMP-SA-toxin, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1; R = toxin;
f, h, k, m, n, s, u - y = 0; q, z = 1;
v-y (independently selected) = 51,
when j, l (independently selected) is 1.
```

FIG. 49B

```
CHO, BHK, 293 cells, Vero or fungal expressed Herceptin.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;

q, z = 1.
```

 galactosyltransferase, UPD-Gal-Toxin

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t=1; f, h, j-m, n, s, u-y = 0;
q, z=1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = toxin.
```

FIG. 49C

Fungi expressed Herceptin. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- ▼ 3.. CMP-SA-radioisotope complex, ST3Gal3

a-m, r-z=0; q, n = 1; R'=-Gal-Sia-radioisotope complex.

FIG. 49D

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} \\ \operatorname{GlcNAc} \\ \operatorname{GlcNAc} \\ \operatorname{GlcNAc} \\ (\operatorname{GlcNAc})_{p} \end{bmatrix} \\ \mathbf{A} \leftarrow \begin{bmatrix} [\operatorname{GlcNAc} - (\operatorname{Gal})_{a}]_{e}^{-} \cdot (\operatorname{Sia})_{j}^{-} \cdot (R)_{v} \\ [\operatorname{GlcNAc} - (\operatorname{Gal})_{b}]_{f}^{-} \cdot (\operatorname{Sia})_{k}^{-} \cdot (R)_{w} \end{bmatrix}_{s} \\ \left[[\operatorname{GlcNAc} - (\operatorname{Gal})_{d}]_{g}^{-} \cdot (\operatorname{Sia})_{f}^{-} \cdot (R)_{y} \end{bmatrix}_{t} \\ \left[[\operatorname{GlcNAc} - (\operatorname{Gal})_{d}]_{h}^{-} \cdot (\operatorname{Sia})_{m}^{-} \cdot (R)_{y} \end{bmatrix}_{t} \right]$$

a-d, i, p-u, (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-m (independently selected) = 0 or 1.

y = 0; z = 0 or 1;

R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 50A

```
CHO, BHK, 293 cells, Vero expressed Synagis. a, c, i (independently selected) = 0 or 1; e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

galactosyltransferase, UPD-Gal
 CMP-SA-PEG, ST3Gal3

```
a, c, i, j, w, (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, k, m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when j, 1 (independently selected) is 1;
R = PEG.
```

FIG. 50B

```
CHO, BHK, 293 cells, Vero or filingal expressed Synagis. a, c, i (independently selected) = 0 or 1; e, g, r, t= 1; b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

 galactosyltransferase, UPD-Gal-PEG

```
a, c, i, w (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = PBG.
```

FIG. 50C

Fungi expressed Synagis. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

1. Endo-H
2. Galactosyltransferase, UDP-Gal
3.: CMP-SA-PEG, ST3Gal3

a-m, r-z=0; q, n = 1; R' = -Gal-Sia-PEG.

FIG. 50D

$$A \leftarrow \begin{bmatrix} (\operatorname{Fuc})_i \\ \operatorname{GlcNAc-\operatorname{Gal}}_b \end{bmatrix}_e - (\operatorname{Sia})_i - (\operatorname{R})_v \end{bmatrix}_r \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}}_b)_i - (\operatorname{Sia})_i - (\operatorname{R})_v \end{bmatrix}_r \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}}_b)_i - (\operatorname{Sia})_i - (\operatorname{R})_v \end{bmatrix}_r \right] \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}}_b)_i - (\operatorname{Sia})_i - (\operatorname{R})_v \end{bmatrix}_r \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}}_b)_i - (\operatorname{Sia})_i - (\operatorname{R})_v \end{bmatrix}_r \right] \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}}_b)_i - (\operatorname{Sia})_i - (\operatorname{R})_v \end{bmatrix}_r \right] \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}}_b)_i - (\operatorname{Sia})_i - (\operatorname{R})_v \end{bmatrix}_r \right] \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}}_b)_i - (\operatorname{Sia})_i - (\operatorname{R})_v \end{bmatrix}_r \right] \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}}_b)_i - (\operatorname{Sia})_i - (\operatorname{R})_v \end{bmatrix}_r \right] \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}}_b)_i - (\operatorname{Sia})_i - (\operatorname{R})_v \end{bmatrix}_r \right]$$

a-d, i, q-u, w (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 20.

n, v-y=0; z=0 or 1;

R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 51A

```
CHO, BHK, 293 cells, Vero expressed Remicade.
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;
q, z = 1.
```

```
    galactosyltransferase, UPD-Gal
    CMP-SA-PEG, ST3Gal3
```

```
\begin{split} &a,c,i,j,1 \text{ (independently selected)} = 0 \text{ or } 1;\\ &e,g,r,t=1; \ f,\ h,\ k,\ m,\ n,\ s,\ u-y=0;\\ &q,z=1;\ v-y \text{ (independently selected)} = 1,\\ &when\ j,1 \text{ (independently selected)} \text{ is } 1;\\ &R=PEG. \end{split}
```

FIG: 51B

```
CHO, BHK, 293 cells, Vero or fungal expressed Remicade. 
a, c, i (independently selected) = 0 or 1; 
e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0; 
q, z = 1.
```

galactosyltransferase,
 UPD-Gal-PEG

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = PEG.
```

FIG. 51C

Fungi expressed Remicade. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

Endo-H
 Galactosyltransferase, UDP-Gal
 CMP-SA-radioisotope complex, ST3Gal3

a-m, r-z=0; q, n = 1; R' = -Gal-Sia-radioisotope complex.

FIG. 51D

$$A \leftarrow \begin{bmatrix} (\operatorname{Fuc})_i \\ \operatorname{GlcNAc-Glc} \\ (\operatorname{R'})_n \end{bmatrix}_c \cdot (\operatorname{Sia})_i - (\operatorname{R})_v \end{bmatrix}_r \\ \operatorname{Man} \begin{bmatrix} [\operatorname{GlcNAc-(Gal)}_a]_c \cdot (\operatorname{Sia})_i - (\operatorname{R})_v \\ [\operatorname{GlcNAc-(Gal)}_c]_g \cdot (\operatorname{Sia})_i - (\operatorname{R})_w \end{bmatrix}_r \\ \operatorname{Man} \begin{bmatrix} [\operatorname{GlcNAc-(Gal)}_d]_h - (\operatorname{Sia})_m - (\operatorname{R})_y \end{bmatrix}_u \end{bmatrix}_u \\ \operatorname{Man} \begin{bmatrix} [\operatorname{GlcNAc-(Gal)}_d]_h - (\operatorname{Sia})_m - (\operatorname{R})_y \end{bmatrix}_u \end{bmatrix}_u$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 52A

CHO, BHK, 293 cells, Vero expressed Reopro. a-m, r-u (independently selected) = 0 or 1; n=0; v-y=0; z=1.

Sialidase
 CMP-SA-PEG, ST3Gal3

a-m, r-u (independently selected) = 0 or 1; v-y (independently selected) = 1, when j-m (independently selected) is 1; n=0; R=PEG; z=1.

FIG. 52B

Insect cell expressed Reopro. a-h, j-n, s-y = 0; i, r (independently selected) = 0 or 1; z = 1.

GNT's 1&2, UDP-GlcNAc-PEG

a-d, f, h, j-n, s, u, w, y = 0; e, g, i, r, t, v, x (independently selected) = 0 or 1; v, x (independently selected) = 1, when e, g (independently selected) is 1; z=1; R=PEG.

FIG. 52C

Yeast expressed Reopro. a-n=0; r-y (independently selected) = 0 to 1; z=1; R (branched or linear) = Man, oligomannose or polysaccharide.

- I. Endo-H
- 2. Galactosyltransferase, UDP-Gal-PEG

a-m, r-z= 0; n = 1; R' = -Gal-PEG.

FIG. 52D

$$\mathbf{B} \leftarrow \begin{pmatrix} (\mathrm{Sia})_b \\ -\mathrm{GalNAc-}(\mathrm{Gal})_a - (\mathrm{Sia})_c - (\mathrm{R})_d \end{pmatrix}_c$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer

FIG. 52E

CHO, BHK, 293 cells, Vero expressed Reopro-mucin fusion protein. a-c, e (independently selected) = 0 or 1; d=0

Sialidase
 CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 52F

Insect cell expressed Reopro-mucin fusion protein. a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 52G

E. coli expressed Reopro-mucin fusion protein. a-e=0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase
- c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 52H

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_b & & \\ -(\operatorname{GalNAc-(Gal)_a-(Sia)_c-(R)_d} \end{pmatrix}_c$$

 $\mathbb{C}^{\longleftarrow}(\mathbb{R}')_n$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer, linker.

FIG. 521

E. coli expressed Reopro-mucin fusion protein. a-e, n=0.

 GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 52J

E. coli expressed Reopro-mucin fusion protein. a-e, n=0.

 GalNAc Transferase, UDP-GalNAc-linker-SA-CMP
 ST3Gal3, asialo-transferrin

3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 52K

WO 2004/099231 PCT/US2004/011494

243/497

E. coli expressed Reopro(N)—no mucin peptide. a-e, n=0.

- 1. NHS-CO-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

a-e = 0; n = 1; R' = linker-transferrin.

FIG. 52L

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} \\ \operatorname{GlcNAc-(Gal)}_{a,l_{c}}^{-1} \cdot (\operatorname{Sia})_{j}^{-1} \cdot (R)_{v} \end{bmatrix}_{r} \\ \left[(\operatorname{GlcNAc-(Gal)}_{a,l_{c}}^{-1} \cdot (\operatorname{Sia})_{k}^{-1} \cdot (R)_{w} \right]_{s} \\ \left[(\operatorname{GlcNAc-(Gal)}_{a,l_{c}}^{-1} \cdot (\operatorname{Sia})_{k}^{-1} \cdot (R)_{w} \right]_{s} \\ \left[(\operatorname{GlcNAc-(Gal)}_{a,l_{c}}^{-1} \cdot (\operatorname{Sia})_{l_{c}}^{-1} \cdot (\operatorname{Sia})_{l_{c}}^{-1} \cdot (R)_{y} \right]_{s} \\ \left[(\operatorname{GlcNAc-(Gal)}_{a,l_{c}}^{-1} \cdot (\operatorname{Sia})_{l_{c}}^{-1} \cdot (\operatorname{Sia})_{l_{c}}^{-1} \cdot (R)_{y} \right]_{s} \\ \left[(\operatorname{GlcNAc-(Gal)}_{a,l_{c}}^{-1} \cdot (R)_{y} \cdot (R)_{y} \cdot (R)_{y} \right]_{s} \\ \left[(\operatorname{GlcNAc-(Gal)}_{a,l_{c}}^{-1} \cdot (R)_{y} \cdot (R)_{y} \cdot (R)_{y} \cdot (R)_{y} \cdot (R)_{y} \right]_{s} \\ \left[(\operatorname{GlcNAc-(Gal)}_{a,l_{c}}^{-1} \cdot (R)_{y} \cdot (R$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = polymer, toxin, radioisotope-complex, drug, glycoconjugate. R' = H, sugar, glycoconjugate.

FIG. 53A

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed Rituxan. a, c, i (independently selected) = 0 or 1; e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

```
1. galactosyltransferase, UPD-Gal
2. CMP-SA-toxin, ST3Gal3
```

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1;
f, h, k, m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 1,
when j, I (independently selected) is 1;
R = toxin.
```

FIG. 53B

```
CHO, BHK, 293 cells, Vero or fungal expressed Rituxan. a, c, e, g, i, r, t (independently selected) = 0 or 1; b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

```
    galactosyltransferase,
UPD-Gal-drug
```

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = toxin.
```

FIG. 53C

Fungi expressed Rituxan. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
 3. CMP-SA-radioisotope complex, ST3Gal3

a-m, r-z=0; q, n=1; R' = -Gal-Sia-radioisotope complex.

FIG. 53D

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} & & & \\ (\operatorname{GlcNAc-(Gal)}_{a})_{e^{-}} & (\operatorname{Sia})_{j^{-}} & (\operatorname{R})_{w} \end{bmatrix}_{r} \\ (\operatorname{GlcNAc-(Gal)}_{a})_{f^{-}} & & & \\ (\operatorname{GlcNAc-(Gal)}_{a})_{f^{-}} & (\operatorname{Sia})_{r} & (\operatorname{R})_{w} \end{bmatrix}_{r} \\ (\operatorname{GlcNAc-(Gal)}_{a})_{f^{-}} & & & \\ (\operatorname{GlcNAc-(Gal)}_{d})_{f^{-}} & & \\ (\operatorname{Glc$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = 0 polymer, toxin, radioisotope-complex, drug, glycoconjugate, mannose, oligo-mannose. R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 53E

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed Rituxan. 
 a, c, i (independently selected) = 0 or 1; 
 e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0; 
 q, z = 1.
```

galactosyltransferase, UPD-Gal
 CMP-SA-PEG, ST3Gal3

```
a, c, i, j, 1 (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, k, m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when j, 1 (independently selected) is 1;
R = PEG.
```

FIG. 53F

```
Fungi, yeast or CHO expressed Rituxan.
e, g, i, r, t, v, x (independently selected) = 0 or 1;
a-d, f, h, j-m, n, s, u, w, y = 0; q, z = 1;
R (independently selected) = mannose, oligomannose,
polymannose.
```

- 1. mannosidases (alpha and beta)
- GNT-I,II, UDP-GlcNAc
- ▼ 3. Galactosyltransferase, UDP-Gal-radioisotope

```
a-m, r-z=0; q, n = 1;
R' = -Gal-radioisotope complex.
```

FIG. 53G

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = mannose, polymer.

FIG. 54A

CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.

 Sialidase
 CMP-SA-PEG (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 1, when j-m (independently selected) is 1; R = PEG.

FIG. 54B

CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

 Sialidase
 CMP-SA-PEG (1.2 mol eq), ST3Gal3
 CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 54C

```
NSO expressed AT III.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h=1:
           v-y = 0;
Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase 2. Galactosyltransferase, UDP-Gal
- ↓ 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 1,
  when j-m (independently selected) is 1;
R = PEG.
```

FIG. 54D

```
CHO, BHK, 293 cells, Vero or
  transgenic animal expressed AT III.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h=1; v-y=0.
          1. Sialidase
          2. CMP-SA-PEG (16 mol eq),
             ST3Gal3
          3. CMP-SA, ST3Gal3
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1:
v-y (independently selected) = 0 or 1;
```

FIG. 54F

PCT/US2004/011494

252/497

CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

 CMP-SA-levulinate, ST3Gal3, buffer, salt
 H₄N₂-PEG

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 54F

CHO, BHK, 293 cells, Vero expressed AT III. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y=0.

1. CMP-SA, poly-α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 54G

a-d, i, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0 to 100. R = polymer, linker, mamose. R' = H, sugar, glycoconjugate.

FIG. 54H

```
Insect, yeast or fungi cell expressed AT III.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1;
p = 1.

1. GNT 1, UDP-GleNAc-PEG
```

```
\label{eq:continuous_selected} \begin{split} a, i, q, r, -u & (\text{independently selected}) = 0 \text{ or } 1; \\ b\text{-g}, j\text{-n}, s\text{-u}, w\text{-y} = 0; \ p = 1; \\ v & (\text{independently selected}) = 1, \\ \text{when a (independently selected) is } 1; \\ R = PEG. \end{split}
```

FIG. 541

```
Yeast expressed AT III.

a-n = 0; q-y (independently selected) = 0 to 1;

p = 1;

R (branched or linear) = Man, oligomannose.
```

```
    1. Endoglycanase
    2. Galactosyltransferase, UDP-Gal
    3. CMP-SA-PEG, ST3Gal3
```

```
a-m, p-y = 0;
n (independently selected) = 0 or 1;
R' = -Gal-Sia-PEG.
```

FIG. 54J

CHO, BHK, 293 cells, Vero expressed AT III. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y=0.

- CMP-SA-linker-Gal-UDP, ST3Gal3
- Galactosyltransferase, transferrin treated with endoglycanase

a-m, q-u (independently selected) = 0 or 1; p = 1; n = 0; v-y (independently selected) = 0 or 1; R = linker-transferrin.

FIG. 54K

a-d, i, n-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-m (independently selected) = 0 to 20.

R = polymer.

R', R" (independently selected) = sugar, glycoconjugate.

FIG. 54L

```
Yeast expressed AT III.
a-h, i-m, p, q = 0;
R (independently selected) = mannose,
oligomannose, polymannose;
r-u, v-y (independently selected) = 0 or 1;
n, o = 1.
```

```
    1. endoglycanase
    2. Galactosyltransferase, UDP-Gal-PEG
```

```
a-h, i-o, q, r-u, v-y = 0; p = 1.
R" = Gal-PEG.
```

FIG. 54M

```
Plant expressed AT III.

a-d, f-h, j-m, p, s-u, v-y = 0;

c, i, q, r (independently selected) = 0 or 1;

n, o = 1; R' = xylose.
```

 xylosidase
 Galactosyl transferase, UDP-Gal-PEG

```
b-d, f-h, j-m, p, q, s-u, w-y = 0;
a, e, i, r (independently selected) = 0 or 1;
n, o = 1; R = PEG.
```

FIG. 54N

WO 2004/099231 PCT/US2004/011494

258/497

CHO, BHK, 293 cells, Vero, transgenic animal expressed AT III.
a-h, i-o, r-u (independently selected) = 0 or 1; p, q, v-y = 0.

 CMP-SA-PEG, ST3Gal3

a-h, i-o, r-u (independently selected) = 0 or 1; p, q = 0; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 540

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. v-z = 0; R = polymer

FIG. 55A

WO 2004/099231 PCT/US2004/011494

260/497

CHO, BHK, 293 cells, insect cell, Veroexpressed hCG
a-g, n, q = 1; h = 1 to 3; j-m, i, o, p
(independently selected) = 0 to 1; r-u
(independently selected) = 0 to 1; v-z = 0

1. Sialidase
2. CMP-SA-PEG, ST3Gal3

a-g, n, q = 1; h = 1 to 3; i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; j-m, v-y (independently selected) = 0 or 1; R = PEG; z = 0.

FIG. 55B

Insect cell, yeast, fungi expressed hCG a-d, f, h, j-m, o, p, s, u, v-z = 0; e, g, i, n, q, r, t (independently selected) = 0 or 1.

1. GNT's 1&2, UDP-GlcNAc
2. Galactosyltransferase, UDP-Gal
2. CMP-SA-PEG, ST3Gal3

 $\label{eq:bounds} \begin{array}{l} b,\,d,\,f,\,h,\,k,\,m,\,o,\,p,\,s,\,u,\,w,\,y,\,z=0;\\ a,\,c,\,e,\,g,\,i,\,n,\,q,\,r,\,t \ \ \mbox{(independently selected)}\\ =0\ \mbox{or}\ 1;\\ j,\,l,\,v,\,x \ \mbox{(independently selected)}=0\ \mbox{or}\ 1;\\ R=PEG. \end{array}$

FIG. 55C

WO 2004/099231 PCT/US2004/011494

261/497

```
CHO, BHK, 293 cells, insect cell,
Vero expressed hCG
a-q, r-u (independently selected) = 0 or 1;
v-z = 0.
```

```
1. sialidase
2. CMP-SA, ST3Gal3
3. CMP-SA-PEG, ST3Gal1
```

```
a-h, i-o, q, r-u (independently selected) = 0 or 1;
v-y = 0; p, z = 0 or 1; R = PEG.
```

FIG. 55D

```
CHO, BHK, 293 cells, insect cell or

Vero expressed hCG
a-g, n, q = 1; h = 1 to 3;
j-m, i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 or 1; v-z = 0

1. CMP-SA-PÉG, ST3Gal3
```

```
a-g, n, q = 1; h = 1 to 3;
i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 to 1;
j-m, v-y (independently selected) = 0 or 1;
R = PEG; z = 0.
```

FIG. 55E

Insect cell, yeast or fungi expressed hCG a-d, f, h, j-m, o, p, s, u, v-z = 0; e, g, i, n, q, r, t (independently selected) = 0 or 1.

1. GNT's 1 and 2, UDP-GlcNAc-PEG

$$\label{eq:continuous_section} \begin{split} e,\,g,\,i,\,n,\,q,\,r,\,t,\,v,\,x \; (independently \; selected) \\ &= 0 \; or \; 1; \\ a\text{-d},\,f,\,b,\,j\text{-m},\,o,\,p,\,s,\,w,\,y,\,z = 0; \quad R = PEG. \end{split}$$

FIG. 55F

Insect cell, yeast or fungi expressed hCG a-d, f, h, j-m, o, p, s, u, v-z = 0; e, g, i, n, q, r, t (independently selected) = 0 or 1.

1. GNT-1, UDP-GlcNAc-PEG

 $\begin{array}{l} e,\,i,\,n,\,q,\,r,\,v\;(independently\;selected)=0\;\mathrm{or}\;1;\\ a\text{-}d,\,g,\,f,\,h,\,j\text{-}m,\,o,\,p,\,s,\,t,\,w\text{-}z=0; \end{array} \quad R=PEG.$

FIG. 55G

CHO, BHK, 293 cells, insect cell or Vero expressed hCG a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; v-z = 0

CMP-SA-PEG, ST3Gal3

 $\begin{array}{lll} a\text{-g}, n, q = 1; & h = 1 \text{ to } 3;\\ i, o & (independently selected) = 0 \text{ or } 1;\\ r\text{-u} & (independently selected) = 0 \text{ to } 1;\\ j\text{-m}, p, z & (independently selected) = 0 \text{ or } 1;\\ R = PEG; & v\text{-y} = 0. \end{array}$

FIG. 55H

CHO, BHK, 293 cells, Vero expressed hCG a-g, n, q = 1; h = 1 to 3; j-m, i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 or 1; v-z = 0

1. CMP-SA-PEG, a2,8-ST

a-g, n, q = 1; h = 1 to 3; i, o, p (independently selected) = 0 or 1; r-u (independently selected) = 0 to 1; j-m (independently selected) = 0 to 2; v-y (independently selected) = 1, when j-m (independently selected) is 2; R = PEG; z = 0.

FIG. 551

264/497

CHO, BHK, 293 cells, Vero expressed hCG
a-g, n, q = 1; h = 1 to 3;
j-m, i, o, p (independently selected) = 0 or 1;
r-u (independently selected) = 0 to 1; v-z = 0

1. 6.1.2. 51.3, poly 323,5 52

a-i, j-q, r-u, (independently selected) = 0 or 1; v-z (independently selected) = 0-100; R = Sia.

FIG. 55J

a-d, i, n, q^{-u} , z (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0 to 100; R = mannose, mannose-6-phosphate and mannose, polymer.

FIG. 56A

CHO, BHK, 293 cells, insect cells, Vero expressed and secreted alpha-galactosidase

a-h, i-m, q-u (independently selected) = 0 or 1;

z = 1; n, v-y = 0; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100;

R = mannose or mannose with mannose-6-phosphate.

Endo-H

2. Galactosyltransferase, UDP-Gal-PEG-transferrin

```
a-h, i-m, q-u (independently selected) = 0 or 1;

n, v-y = 0; z = 1; and when z = 0 and q = 1,

then n (independently selected) = 0 or 1;

R^{y} = Gal-PEG-transferrin.
```

FIG. 56B

CHO, BHK, 293 cells, Insect cells,

Vero expressed and secreted alpha-galactosidase
a-h, i-m, q-u (independently selected) = 0 or 1; z=1; n, v-y
= 0; and when a-n = 0, then r-u (independently selected) = 0
or 1; v-y (independently selected) = 0-100;
R = mannose or mannose with mannose-6-phosphate.

```
1. Sialidase
2. CMP-SA-linker-Mannose-6-phosphate
ST3Gal3
```

```
a-h, i-m, q-u, v-y (independently selected) = 0 or 1_1^1, n=0; z=1; R=mannose-6-phosphate; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100; <math>R=mannose or mannose with mannose-6-phosphate.
```

FIG. 56C

NSO expressed alpha-galactosidase.

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y=0;

Sia (independently selected) = Sia or Gal.

- 1. Sialidase and α-galactosidase
- 2. Galactosyltransferase, UDP-Gal
- CMP-SA-linker-mannose-6-phosphate sialyltransferase

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 1, when j-m (independently selected) is 1; R = mannose-6 phosphate

FIG. 56D

CHO, BHK, 293 cells, Insect cells, Vero expressed and secreted alpha-galactosidase

a-h, i-m, q-u (independently selected) = 0 or 1; z = 1; n, v-y = 0; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100; R = mannose or mannose with mannose-6-phosphate.

- 1. Sialidase
- 2. CMP-SA-PEG, sialyltransferase

a-h, i-m, q-u, v-y (independently selected) = 0 or 1; n = 0; z = 1; R = PEG; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y = 0-100; R = mannose or mannose with mannose-6-phosphate.

FIG. 56E

```
CHO, BHK, 293 cells, Insect cells, Vero, yeast, fungi expressed alpha-galactosidase.
a-i, v-y = 0; q (independently selected) = 0 or 1; z = 1; r-u (independently selected) = 0 or 1; j-m (independently selected) = 0-100; Sia = mannose or mannose with mannose-6-phosphate.
```

1. mannosyltransferase, GDP-mannose-linker-ApoE

```
  \begin{array}{ll} a-i=0; \ q \ (independently \ selected)=0 \ or \ 1; \ z=1; \\ r-u \ (independently \ selected)=0 \ or \ 1; \\ j-m \ (independently \ selected)=0 \ -100; \\ Sia=mannose \ or \ mannose \ with \ mannose-6-phosphate; \\ v-y \ (independently \ selected)=0 \ or \ 1; \\ R=mannose-linker-ApoE.   \end{array}
```

FIG. 56F

```
CHO, BHK, 293 cells, Insect cells, Vero, yeast, fungi expressed alpha-galactosidase.

a-i, v-y = 0; q (independently selected) = 0 or 1; z = 1; r-u (independently selected) = 0 or 1; j-m (independently selected) = 0-100; Sia = mamose or mannose with mamose-6-phosphate.
```

1. endo-H
 2. galactosyltransferase,
 UDP-Gal-linker-alpha2-macroglobulin

```
a-m, r-z=0; n, q (independently selected) = 0 or 1;
R' = galacotose-linker-alpha2-macroglobulin.
```

FIG 56G

```
Insect cell, yeast, fungi expressed alpha-galactosidase.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.

1. GNT-1,
UDP-GlcNAc-PEG-mannose-6-phosphate

e, i, q, r, v (independently selected) = 0 or 1;
a-d, f-h, j-n, s-u, w-y = 0; z = 1;
R = PEG-mannose-6-phosphate.
```

FIG. 56H

```
alpha-galactosidase.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.

1. GNT-1, UDP-GleNAc
2. galactosyltransferase,
UDP-Gal-PEG-transferrin

a, e, i, q, r, v (independently selected) = 0 or 1;
b-d, f-h, j-n, s-u, w-y = 0; z = 1;
R = PEG-transferrin
```

Insect cell, yeast, fungi expressed

FIG. 561

Insect cell, yeast, fungi expressed alpha-galactosidase.

a-d, \hat{f} , h, \hat{j} -m, s, u, v-y = 0;

e, g, i, q, r, t (independently selected) = 0 or 1.

1. GNT-1 and 2, UDP-GlcNAc

galactosyltransferase, UDP-Gal
 sialyltransferase,

CMP-SA-PEG-melanotransferrin

a, c, e, g, i, j, l, q, r, t, v, x (independently selected) = 0 or 1;

b, d, f, h, k, m, n, s, u, w, y = 0;

z = 1; R = PEG-melanotransferrin.

FIG. 56J

a-d, i, n, q-u, z (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0 to 100; R = mannose, mannose-6-phosphate and mannose, polymer.

FIG. 57A

CHO, BHK, 293 cells, Insect cells, Vero expressed and secreted alpha-iduronidase
a-h, i-m, q-u (independently selected) = 0 or 1; z = 1;
n, v-y = 0; and when a-n = 0, then r-u (independently selected) = 0 or 1;
v-y (independently selected) = 0-100;
R = mannose or mannose with mannose-6-phosphate.

```
1. Endo-H
2. Galactosyltransferase, UDP-Gal-PEG-transferrin
```

a-h, i-m, q-u (independently selected) = 0 or 1; n, v-y = 0; z = 1; and when z = 0 and q = 1, then n (independently selected) = 0 or 1; R' = Gal-PEG-transferrin.

FIG. 57B

CHO, BHK, 293 cells, Insect cells, Vero expressed and secreted alpha-iduronidase a-h, i-m, q-u (independently selected) = 0 or 1; z = 1; n, v-y = 0; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y (independently selected) = 0-100; R = mannose or mannose with mannose-6-phosphate.

```
    Sialidase
    CMP-SA-linker-Mannose-6-phosphate ST3Gal3
```

FIG 57C

```
NSO expressed alpha-iduronidase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y=0; Sia (independently selected) = Sia or Gal.
```

- Sialidase and α-galactosidase
- 2. Galactosyltransferase, UDP-Gal
- ↓ 3. CMP-SA-linker-mannose-6-phosphate sialyltransferase

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = mannose-6 phosphate
```

FIG. 57D

```
CHO, BHK, 293 cells, Insect cells, Vero expressed and secreted alpha-iduronidase
a-h, i-m, q-u (independently selected) = 0 or 1; z = 1;
n, v-y = 0; and when a-n = 0, then r-u (independently selected) = 0 or 1;
v-y (independently selected) = 0-100;
R = mannose or mannose with mannose-6-phosphate.
```

- Sialidase
- CMP-SA-PEG, sialyltransferase

```
a-h, i-m, q-u, v-y (independently selected) = 0 or 1; n = 0; z = 1; R = PEG; and when a-n = 0, then r-u (independently selected) = 0 or 1; v-y = 0-100; R = mannose or mannose with mannose-6-phosphate.
```

FIG. 57E

```
CHO, BHK, 293 cells, Insect cells, Vero, yeast, fungi expressed alpha-iduronidase.

a-i, v-y = 0; q (independently selected) = 0 or 1; z = 1; r-u (independently selected) = 0 or 1; j-m (independently selected) = 0-100; Sia = mannose or mannose with mannose-6-phosphate.
```

```
1. mannosyltransferase,
GDP-mannose-linker-ApoE
```

```
a·i = 0; q (independently selected) = 0 or 1; z = 1; r-u (independently selected) = 0 or 1; j-m (independently selected) = 0-100; Sia = mannose or mannose with mannose-6-phosphate; v-y (independently selected) = 0 or 1; R = mannose-linker-ApoE.
```

FIG. 57F

```
CHO, BHK, 293 cells, Insect cells, Vero, yeast, fungi expressed alpha-iduronidase.

a-i, v-y = 0; q (independently selected) = 0 or 1; z = 1; r-u (independently selected) = 0 or 1; j-m (independently selected) = 0-100; Sia = mannose or mannose with mannose-6-phosphate.
```

```
    1. endo-H
    2. galactosyltransferase,
    UDP-Gal-linker-alpha2-macroglobulin
```

```
a-m, r-z=0; n, q (independently selected) = 0 or 1; R' = galacotose-linker-alpha2-macroglobulin.
```

FIG. 57G

```
Insect cell, yeast, fungi expressed alpha-iduronidase.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.

1. GNT-1,
UDP-GlcNAc-PEG-mannose-6-phosphate
```

e, i, q, r, v (independently selected) = 0 or 1; a-d, f-h, j-n, s-u, w-y = 0; z = 1; R = PEG-mannose-6-phosphate.

FIG. 57H

```
Insect cell, yeast, fungi expressed alpha-iduronidase.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

GNT-1, UDP-GlcNAc
 galactosyltransferase,
 UDP-Gal-PEG-transferrin

a, e, i, q, r, v (independently selected) = 0 or 1; b-d, f-h, j-n, s-u, w-y = 0; z = 1; R = PEG-transferrin.

FIG. 571

Insect cell, yeast, fungi expressed alpha-iduronidase.
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.

- 1. GNT-1 and 2, UDP-GlcNAc
 2. galactosyltransferase, UDP-Gal
 3. sialyltransferase,
 CMP-SA-PEG-melanotransferrin
- a, c, e, g, i, j, l, q, r, t, v, x (independently selected) = 0 or 1; b, d, f, h, k, m, n, s, u, w, y = 0; z = 1; R = PEG-melanotransferrin.

FIG. 57J

FIG. 58A

FIG. 58B

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Cln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gln Leu Gln Pro Ala Phe Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Gln Pro

278/497 FIG. 59A

GCGCCTCTTATGTACCCACAAAAATCTATTTTCAAAAAAGTTGCTCTA AGAATATAGTTATCAAGTTAAGTAAAATGTCAATAGCCTTTTAATTTA ATTTTTAATTGTTTTATCATTCTTTGCAATAATAAAACATTAACTTTAT ACTTTTTAATTTAATGTATAGAATAGAGATATACATAGGATATGTAAA TAGATACACAGTGTATATGTGATTAAAATATAATGGGAGATTCAATC AATAATGAAAAAAATGTGGTGAGAAAAACAGCTGAAAACCCATGTA AAGAGTGTATAAAGAAAGCAAAAAGAGAAGTAGAAAGTAACACAGG GGCATTTGGAAAATGTAAACGAGTATGTTCCCTATTTAAGGCTAGGC ACAAAGCAAGGTCTTCAGAGAACCTGGAGCCTAAGGTTTAGGCTCAC CCATTTCAACCAGTCTAGCAGCATCTGCAACATCTACAATGGCCTTGA CCTTTGCTTTACTGGTGCCCTCCTGGTGCTCAGCTGCAAGTCAAGCT GCTCTGTGGGCTGTGATCTGCCTCAAACCCACAGCCTGGGTAGCAGG AGGACCTTGATGCTCCTGGCACAGATGAGGAGAATCTCTCTTTTCTCC TGCTTGAAGGACAGACATGACTTTGGATTTCCCCAGGAGGAGTTTGG CAACCAGTTCCAAAAGGCTGAAACCATCCCTGTCCTCCATGAGATGA TCCAGCAGATCTTCAATCTCTTCAGCACAAAGGACTCATCTGCTGCTT GGGATGAGACCCTCCTAGACAAATTCTACACTGAACTCTACCAGCAG CTGAATGACCTGGAAGCCTGTGTGATACAGGGGGTGGGGGTGACAGA GACTCCCCTGATGAAGGAGGACTCCATTCTGGCTGTGAGGAAATACT TCCAAAGAATCACTCTCTATCTGAAAGAGAAGAAATACAGCCCTTGT GCCTGGGAGGTTGTCAGAGCAGAAATCATGAGATCTTTTTCTTTGTCA ACAAACTTGCAAGAAAGTTTAAGAAGTAAGGAATGAAAACTGGTTCA ACATGGAAATGATTTCATTGATTCGTATGCCAGCTCACCTTTTTATG ATCTGCCATTTCAAAGACTCATGTTTCTGCTATGACCATGACACGATT TAAATCTTTTCAAATGTTTTTAGGAGTATTAATCAACATTGTATTCAG ATCTATTTAAATATTTTTAAAATATTATTTATTTAACTATTTATAAAAAC AACTTATTTTTGTTCATATTATGTCATGTGCACCTTTGCACAGTGGTTA CATTGAACTTTTGCTATGGAACTTTTGTACTTGTTTATTCTTTAAAATG AAATTCCAAGCCTAATTGTGCAACCTGATTACAGAATAACTGGTACA TTTCTGTAAACCAAGTTGTATGTTGTACTCAAGATAACAGGGTGAACC TAACAAATACAATTCTGCTCTCTTGTGTATTTGATTTTTGTATGAAAA AAACTAAAAATGGTAATCATACTTAATTATCAGTTATGGTAAATGGT ATGA AGA GA AGA AGGA ACG

FIG. 59B

279/497

Met Ala Leu Thr Phe Ala Leu Leu Val Ala Leu Leu Val Leu Ser Cys Lys Ser Ser Cys Ser Val Giy Cys Asp Leu Pro Gin Thr His Ser Leu Giy Ser Arg Arg Thr Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Giy Phe Pro Gin Glu Glu Phe Giy Asn Gln Phe Gin Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Gln Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu

FIG. 59C

FIG. 59D

Met Ala Leu Leu Phe Pro Leu Leu Ala Ala Leu Val Met Thr Ser Tyr Ser Pro Val Gly Ser Leu Gly Cys Asp Leu Pro Gln Asn His Gly Leu Leu Ser Arg Asn Thr Leu Val Leu Leu His Gln Met Arg Arg Ile Ser Pro Phe Leu Cys Leu Lys Asp Arg Arg Asp Phe Arg Phe Pro Gln Glu Met Val Lys Gly Ser Gln Leu Gln Lys Ala His Val Met Ser Val Leu His Glu Met Leu Gln Gln Ile Phe Ser Leu Phe His Thr Glu Arg Ser Ser Ala Ala Trp Asn Met Thr Leu Leu Asp Gln Leu His Thr Gly Leu

FIG. 60A

ATGACCAACAAGTGTCTCCCCAAATTGCTCTCCTGTTGTGCTTCTCC ACTACAGCTCTTTCCATGAGCTACAACTTGCTTGGATTCCTACAAAGA AGCAGCAATTTTCAGTGTCAGAAGCTCCTGTGGCAATTGAATGGGAG GCTTGAATATTGCCTCAAGGACAGGATGAACTTTGACATCCCTGAGG AGATTAAGCAGCTGCAGCAGTTCCAGAAGGAGGACGCCGCATTGACC ATCTATGAGATGCTCCAGAACATCTTTGCTATTTTCAGACAAGATTCA TCTAGCACTGGCTGGAATGAGACTATTGTTGAGAACCTCCTGGCTAA TGTCTATCATCAGATAAACCATCTGAAGACAGTCCTGGAAGAAAAAC TGGAGAAAGAAGATTTTACCAGGGGAAAACTCATGAGCAGTCTGCAC CTGAAAAGATATTATGGGAGGATTCTGCATTACCTGAAGGCCAAGGA GTACAGTCACTGTGCCTGGACCATAGTCAGAGTGGAAATCCTAAGGA ACTTTTACTTCATTAACAGACTTACAGGTTACCTCCGAAACTGAAGAT CTCCTAGCCTGTCCCTCTGGGACTGGACAATTGCTTCAAGCATTCTTC AACCAGCAGATGCTGTTTAAGTGACTGATGGCTAATGTACTGCAAAT GAAAGGACACTAGAAGATTTTGAAATTTTTATTAAATTATGAGTTATT TTTATTTAT TTAAATTTTATTTTGGAAAATAAATTATTTTTGGTGC

FIG. 60B

Met Thr Asn Lys Cys Leu Leu Gin Ile Ala Leu Leu Leu Cys Phe Ser Thr Thr Ala Leu Ser Met Ser Tyr Asn Leu Leu Gly Phe Leu Gin Arg Ser Ser Asn Phe Gin Cys Gin Lys Leu Leu Trp Gin Leu Asn Gly ArgLeu Gin Tyr Cys Leu Lys Asp Arg Met Asn Phe Asp Ile Pro Giu Giu Ile Lys Gin Leu Gin Gin Phe Gin Lys Glu Asp Ala Leu Thr Ile Tyr Giu Met Leu Gin Asn Ile Phe Ala Ile Phe Arg Gin Asp Ser Ser Ser Thr Gly Trp Asn Glu Thr Ile Val Glu Asn Leu Leu Ala Asn Val Tyr His Gin Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu Lys Glu Asp Phe Thr Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser His Cys Ala Trp Thr Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr Phe Ile Asn Arg Leu Thr Gly Tyr Leu Arg Asn

FIG. 61A

ATGGTCTCCCAGGCCCTCAGGCTCCTCTGCCTTCTGCTTGGGCTTCAG GGCTGCCTGGCTGCAGTCTTCGTAACCCAGGAGGAAGCCCACGGCGT CCTGCACCGGCGCGCGCGCCAACGCGTTCCTGGAGGAGCTGCGGC CGGGCTCCCTGGAGAGGAGTGCAAGGAGGAGCAGTGCTCCTTCGA GGAGGCCCGGGAGATCTTCAAGGACGCGGAGAGGACGAAGCTGTTC TGGATTTCTTACAGTGATGGGGACCAGTGTGCCTCAAGTCCATGCCA GAATGGGGGCTCCTGCAAGGACCAGCTCCAGTCCTATATCTGCTTCT GCCTCCCTGCCTTCGAGGGCCGGAACTGTGAGACGCACAAGGATGAC CAGCTGATCTGTGAACGAGAACGGCGGCTGTGAGCAGTACTGCAG TGACCACACGGGCACCAAGCGCTCCTGTCGGTGCCACGAGGGGTACT CTCTGCTGGCAGACGGGGTGTCCTGCACACCCACAGTTGAATATCCA TGTGGAAAAATACCTATTCTAGAAAAAAGAAATGCCAGCAAACCCCA AGGCCGAATTGTGGGGGGCAAGGTGTCCCCAAAGGGGAGTGTCCA TGGCAGGTCCTGTTGTTGGTGAATGGAGCTCAGTTGTGTGGGGGGAC CCTGATCAACACCATCTGGGTGGTCTCCGCGGCCCACTGTTTCGACAA AATCAAGAACTGGAGGAACCTGATCGCGGTGCTGGGCGAGCACGAC CTCAGCGAGCACGACGGGGATGAGCAGAGCCGGCGGGTGGCGCAGG GCGCTGCTCCGCCTGCACCAGCCCGTGGTCCTCACTGACCATGTGGTG CCCCTCTGCCTGCCCGAACGGACGTTCTCTGAGAGGACGCTGGCCTTC GTGCGCTTCTCATTGGTCAGCGGCTGGGGCCAGCTGCTGGACCGTGG CGCCACGGCCTGGAGCTCATGGTGCTCAACGTGCCCCGGCTGATGA CCCAGGACTGCCTGCAGCAGTCACGGAAGGTGGGAGACTCCCCAAAT ATCACGGAGTACATGTTCTGTGCCGGCTACTCGGATGGCAGCAAGGA CTCCTGCAAGGGGACAGTGGAGGCCCACATGCCACCCACTACCGGG GCACGTGGTACCTGACGGGCATCGTCAGCTGGGGCCAGGGCTGCGCA ACCGTGGGCCACTTTGGGGTGTACACCAGGGTCTCCCAGTACATCGA GTGGCTGCAAAAGCTCATGCGCTCAGAGCCACGCCCAGGAGTCCTCC TGCGAGCCCCATTTCCC

FIG. 61B

Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Leu Gly Leu Gln Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val Leu His Arg Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu Gln Cys Ser Phe Glu Glu Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala Asp Gly Val Ser Cys Thr Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile Pro Ile Leu Glu Lys Arg Asn Ala Ser Lys Pro Gln Gly Arg Ile Val Gly Gly Lys Val Cys Pro Lys Gly Glu Cys Pro Trp Gln Val Leu Leu Val Asn Gly Ala Gln Leu Cys Gly Gly Thr Leu Ile Asn Thr Ile Trp Val Val Ser Ala Ala His Cys Phe Asp Lys Ile Lys Asn Trp Arg Asn Leu Ile Ala Val Leu Gly Glu His Asp Leu Ser Glu His Asp Gly Asp Glu Gln Ser Arg Arg Val Ala Gln Val Ile Ile Pro Ser Thr Tyr Val Pro Gly Thr Thr Asn His Asp lle Ala Leu Leu Arg Leu His Gln Pro Val Val Leu Thr Asp His Val Val Pro Leu Cys Leu Pro Glu Arg Thr Phe Ser Glu Arg Thr Leu Ala Phe Val Arg Phe Ser Leu Val Ser Gly Trp Gly Gln Leu Leu Asp Arg Gly Ala Thr Ala Leu Glu Leu Met Val Leu Asn Val Pro Arg Leu Met Thr Gln Asp Cys Leu Gln Gln Ser Arg Lys Val Gly Asp Ser Pro Asn Ile Thr Glu Tyr Met Phe Cys Ala Gly Tyr Ser Asp Gly Ser Lys Asp Ser Cys Lys Gly Asp Ser Gly Gly Pro His Ala Thr His Tyr Arg Gly Thr Trp Tyr Leu Thr Gly Ile Val Ser Trp Gly Gln Gly Cys Ala Thr Val Gly His Phe Gly Val Tyr Thr Arg Val Ser Gln Tyr Ile Glu Trp Leu Gln Lys Leu Met Arg Ser Glu Pro Arg Pro Gly Val Leu Leu Arg Ala Pro Phe Pro

FIG. 62A

ATGCAGCGCGTGAACATGATCATGGCAGAATCACCAAGCCTCATCAC CATCTGCCTTTTAGGATATCTACTCAGTGCTGAATGTACAGTTTTTCTT GATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAA GTATGGAAGAAAGTGTAGTTTTGAAGAACCACGAGAAGTTTTTGAA AACACTGAAAAGACAACTGAATTTTGGAAGCAGTATGTTGATGGAGA TCAGTGTGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGATG ACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGAAAGA ACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAG CAGTTTTGTAAAAATAGTGCTGATAACAAGGTGGTTTGCTCCTGTACT GAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGT GCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCAC CCGTGCTGAGGCTGTTTTTCCTGATGTGGACTATGTAAATCCTACTGA AGCTGAAACCATTTTGGATAACATCACTCAAGGCACCCAATCATTTA ATGACTTCACTCGGGTTGTTGGTGGAGAAGATGCCAAACCAGGTCAA TTCCCTTGGCAGGTTGTTTTGAATGGTAAAGTTGATGCATTCTGTGGA GGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCCACTGTGTT GAAACTGGTGTTAAAATTACAGTTGTCGCAGGTGAACATAATATTGA GGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTCGAGCAATT ATTCCTCACCACAACTACAATGCAGCTATTAATAAGTACAACCATGA CATTGCCCTTCTGGAACTGGACGAACCCTTAGTGCTAAACAGCTACG TTACACCTATTTGCATTGCTGACAAGGAATACACGAACATCTTCCTCA AATTTGGATCTGGCTATGTAAGTGGCTGGGCAAGAGTCTTCCACAAA GGGAGATCAGCTTTAGTTCTTCAGTACCTTAGAGTTCCACTTGTTGAC CGAGCCACATGTCTTCGATCTACAAAGTTCACCATCTATAACAACAT GTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTCATGTCAAGGAG ATAGTGGGGGACCCCATGTTACTGAAGTGGAAGGGACCAGTTTCTTA ACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATA TGGAATATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAA AAACAAAGCTCACTTAATGAAAGATGGATTTCCAAGGTTAATTCATT GGAATTGAAAATTAACAG

FIG. 62B

Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Ser Leu Ile Thr Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe LeuAsp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys Met Glu Glu Lys Cys Ser Phe Glu Glu Pro Arg Glu Val Phe Glu Asn Thr Glu Lys Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Pro Thr Glu Ala Glu Thr Ile Leu Asp Asn Ile Thr Gln Gly Thr Gln Ser Phe Asn Asp Phe Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu His Thr Glu Gln Lys Arg Asn Val Ile Arg Ala Ile Ile Pro His His Asn Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu Glu Leu Asp Glu Pro Leu Val Leu Asp Ser Tyr Val Thr Pro Ile Cys Ile Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly Tyr Val Ser Gly Trp Ala Arg Val Phe His Lys Gly Arg Ser Ala Leu Val Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu Arg Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cvs Ala Gly Phe His Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His Val Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp Gly Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val Ser Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr

285/497

FIG. 63A

FIG. 63B

Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser

286/497

FIG. 63C

FIG. 63D

Met Lys Thr Leu Gin Phe Phe Phe Leu Phe Cys Cys Trp Lys Ala Ile Cys Cys Asn Ser Cys Giu Leu Thr Asn Ile Thr Ile Ala Ile Glu Lys Glu Glu Cys Arg Phe Cys Ile Ser Ile Asn Thr Thr Trp Cys Ala Gly Tyr Cys Tyr Thr Arg Asp Leu Val Tyr Lys Asp Pro Ala Arg Pro Lys Ile Gln Lys Thr Cys Thr Phe Lys Glu Leu Val Tyr Glu Thr Val Arg Val Pro Gly Cys Ala His His Ala Asp Ser Leu Tyr Thr Tyr Pro Val Ala Thr Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys Thr Val Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys Glu

287/497

FIG. 64A

CCCGGAGCCGGGCCACCGCGCCCGCTCTGCTCCGACACCGC GCCCCTGGACAGCCGCCCTCTCCTCCAGGCCCGTGGGGCTGGCCCT GCACCGCGAGCTTCCCGGGATGAGGGCCCCCGGTGTGGTCACCCGG CGCGCCCAGGTCGCTGAGGGACCCCGGCCAGGCGCGAGATGGGG GTGCACGAATGTCCTGCCTGGCTGTGGCTTCTCCTGTCCCTGCTGTCG CTCCCTCTGGGCCTCCCAGTCCTGGGCGCCCCACCACGCCTCATCTGT GACAGCCGAGTCCTGGAGAGGTACCTCTTGGAGGCCAAGGAGGCCG AGAATATCACGACGGGCTGTGCTGAACACTGCAGCTTGAATGAGAAT ATCACTGTCCCAGACACCAAAGTTAATTTCTATGCCTGGAAGAGGAT GGAGGTCGGGCAGCAGGCCGTAGAAGTCTGGCAGGGCCTGGCCCTG CTGTCGGAAGCTGTCCTGCGGGGCCAGGCCCTGTTGGTCAACTCTTCC CAGCCGTGGGAGCCCCTGCAGCTGCATGTGGATAAAGCCGTCAGTGG CCTTCGCAGCCTCACCACTCTGCTTCGGGCTCTGCGAGCCCAGAAGG AAGCCATCTCCCCTCCAGATGCGGCCTCAGCTGCTCCACTCCGAACA ATCACTGCTGACACTTTCCGCAAACTCTTCCGAGTCTACTCCAATTTC CTCCGGGGAAAGCTGAAGCTGTACACAGGGGAGGCCTGCAGGACAG GGGACAGATGACCAGGTGTGTCCACCTGGGCATATCCACCACCTCCC TCACCAACATTGCTTGTGCCACACCCTCCCCGCCACTCCTGAACCCC GTCGAGGGGCTCTCAGCTCAGCGCCAGCCTGTCCCATGGACACTCCA GTGCCAGCAATGACATCTCAGGGGCCAGAGGAACTGTCCAGAGAGC AACTCTGAGATCTAAGGATGTCACAGGGCCAACTTGAGGGCCCAGAG CAGGAAGCATTCAGAGAGCAGCTTTAAACTCAGGGACAGAGCCATG CTGGGAAGACGCCTGAGCTCACTCGGCACCCTGCAAAATTTGATGCC AGGACACGCTTTGGAGGCGATTTACCTGTTTTCGCACCTACCATCAGG GACAGGATGACCTGGAGAACTTAGGTGGCAAGCTGTGACTTCTCCAG GTCTCACGGGCATGGGCACTCCCTTGGTGGCAAGAGCCCCCTTGACA CCGGGGTGGTGGGAACCATGAAGACAGGATGGGGGCTGGCCTCTGG CTCTCATGGGGTCCAAGTTTTGTGTATTCTTCAACCTCATTGACAAGA ACTGAAACCACCAAAAAAAAAAAAAA

FIG. 64B

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Leu Ser Leu Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Gly Ala Pro Pro Arg Leu Ile Cys Asp Ser Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Arg Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg

FIG. 65

Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp

289/497

FIG. 66A

FIG. 66B

Met Trp Leu Gin Ser Leu Leu Leu Leu Gly Thr Val Ala Cys Ser Ile Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gin Pro Trp Glu His Val Asn Ala Ile Gin Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp Thr Ala Ala Glu Met Asn Glu Thr Val Giu Val Ile Ser Glu Met Phe Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys Asp Phe Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu

FIG. 67A

ATGAAATATACAAGTTATATCTTGGCTTTTCAGCTCTGCATCGTTTTG
GGTTCTCTTGGCTGTTACTGCCAGGACCCATATGTAAAAGAAGCAGA
AAACCTTAAGAAATAATTTAATGCAGGTCATTCAGATGTAAGAGGGATA
ATGGAACTCTTTTCTTAGGCATTTTGAAGAATTGGAAAGAGGAGG
GACAGAAAAATAATGCAGAGCCCAAATTGTCTCCTTTTACTTCAAACT
TTTTAAAAACTTTAAAGATGACCAGAGCATCCAAAAGAGTGTGGAGA
CCATCAAGGAAGACATGAATGTCAAGTTTTTCAATAGCAACAAAAAA
AAACGAGATGACTTCGAAAAGCTGACTAATTATTCGGTAACTGACTT
GAATGTCCAACGCAAAGCAATACATGAACTCATCCAAGTGATGGCTG
AACTGTCGCCAGCAGCTAAAAACAGGGAACCGAAAAAAGGAGTCAGAT
GCTGTTTCGAGGTCGAAGAGCATCCCAGTAA

FIG. 67B

Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gin Leu Cys Ile Val Leu Gly Ser Leu Gly Cys Tyr Cys Gin Asp Pro Tyr Val Lys Gin Ala Giu Asn Leu Lys Lys Tyr Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn Gly Thr Leu Phe Leu Gly Ile Leu Lys Asn Trp Lys Glu Giu Ser Asp Arg Lys Ile Met Gin Ser Gin Ile Val Ser Phe Tyr Phe Lys Leu Phe Lys Asn Phe Lys Asp Asp Gin Ser Ile Gin Lys Ser Val Glu Thr Ile Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys Lys Arg Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val Gin Arg Lys Ala Ile His Giu Leu Ile Gin Val Met Ala Glu Leu Ser Pro Ala Ala Lys Thr Giy Lys Arg Lys Arg Lys Arg Lys Arg Lys Arg Ser Gin Met Leu Phe Arg Gly Arg Arg Ala Ser Gin

FIG. 68A

CTGGGACAGTGAATCGACAATGCCGTCTTCTGTCTCGTGGGGCATCCT CCTGCTGGCAGGCCTGTGCTGCCTGGTCCCTGTCTCCCTGGCTGAGGA TCCCCAGGGAGATGCTGCCCAGAAGACAGATACATCCCACCATGATC AGGATCACCCAACCTTCAACAAGATCACCCCCAACCTGGCTGAGTTC GCCTTCAGCCTATACCGCCAGCTGGCACACCAGTCCAACAGCACCAA TATCTTCTCCCCCAGTGAGCATCGCTACAGCCTTTGCAATGCTCTC CCTGGGGACCAAGGCTGACACTCACGATGAAATCCTGGAGGGCCTGA ATTTCAACCTCACGGAGATTCCGGAGGCTCAGATCCATGAAGGCTTC GACCACCGGCAATGGCCTGTTCCTCAGCGAGGGCCTGAAGCTAGTGG ATAAGTTTTTGGAGGATGTTAAAAAGTTGTACCACTCAGAAGCCTTC ACTGTCAACTTCGGGGACACCGAAGAGGGCCAAGAAACAGATCAACG ATTACGTGGAGAAGGGTACTCAAGGGAAAATTGTGGATTTGGTCAAG GAGCTTGACAGAGACACAGTTTTTGCTCTGGTGAATTACATCTTCTTT AAAGGCAAATGGGAGAGACCCTTTGAAGTCAAGGACACCGAGGAAG AGGACTTCCACGTGGACCAGGTGACCACCGTGAAGGTGCCTATGATG AAGCGTTTAGGCATGTTTAACATCCAGCACTGTAAGAAGCTGTCCAG CTGGGTGCTGATGAAATACCTGGGCAATGCCACCGCCATCTTCT TCCTGCCTGATGAGGGGAAACTACAGCACCTGGAAAATGAACTCACC CACGATATCATCACCAAGTTCCTGGAAAATGAAGACAGAAGGTCTGC CAGCTTACATTTACCCAAACTGTCCATTACTGGAACCTATGATCTGAA GAGCGTCCTGGGTCAACTGGGCATCACTAAGGTCTTCAGCAATGGGG CTGACCTCTCCGGGGTCACAGAGGAGGCACCCCTGAAGCTCTCCAAG GCCGTGCATAAGGCTGTGCTGACCATCGACGAGAAAGGGACTGAAGC TGCTGGGGCCATGTTTTTAGAGGCCATACCCATGTCTATCCCCCCGA GGTCAAGTTCAACAAACCCTTTGTCTTCTTAATGATTGAACAAAATAC AACTGCCTCTCGCTCCTCAACCCCTCCCTCCATCCCTGGCCCCCTCC CTGGATGACATTAAAGAAGGGTTGAGCTGG

FIG. 68B

Met Pro Ser Ser Val Ser Trp Gly Ile Leu Leu Leu Ala Gly Leu Cys Cys Leu Val Pro Val Ser Leu Ala Glu Asp Pro Gln Gly Asp Ala Ala Gln Lys Thr Asp Thr Ser His His Asp Gln Asp His Pro Thr Phe Asn Lys Ile Thr Pro Asn Leu Ala Glu Phe Ala Phe Ser Leu Tyr Arg Gln Leu Ala His Gln Ser Asn Ser Thr Asn Ile Phe Phe Ser Pro Vai Ser Ile Ala Thr Ala Phe Ala Met Leu Ser Leu Gly Thr Lys Ala Asp Thr His Asp Glu Ile Leu Glu Gly Leu Asn Phe Asn Leu Thr Glu Ile Pro Glu Ala Gin Ile His Glu Gly Phe Gin Glu Leu Leu Arg Thr Leu Asn Gin Pro Asp Ser Gin Leu Gin Leu Thr Thr Gly Asn Gly Leu Phe Leu Ser Glu Gly Leu Lys Leu Val Asp Lys Phe Leu Glu Asp Val Lys Lys Leu Tyr His Ser Glu Ala Phe Thr Val Asn Phe Gly Asp Thr Glu Glu Ala Lys Lys Gln Ile Asn Asp Tyr Val Glu Lys Gly Thr Gln Gly Lys Ile Val Asp Leu Val Lys Glu Leu Asp Arg Asp Thr Val Phe Ala LeuVal Asn Tyr Ile Phe Phe Lys Gly Lys Trp Glu Arg Pro Phe Glu Val Lys Asp Thr Glu Glu Glu Asp Phe His Val Asp Gln Val Thr Thr Val Lys Val Pro Met Met Lys Arg Leu Gly Met Phe Asn Ile Gln His Cys Lys Lys Leu Ser Ser Trp Val Leu Leu Met Lys Tyr Leu Gly Asn Ala Thr Ala Ile Phe Phe Leu Pro Asp Glu Gly Lys Leu Gln His Leu Glu Asn Glu Leu Thr His Asp Ile Ile Thr Lys Phe Leu Glu Asn Glu AspArg Arg Ser Ala Ser Leu His Leu Pro Lvs Leu Ser Ile Thr Gly Thr Tyr Asp Leu Lys Ser Val Leu Gly Gln Leu Gly Ile Thr Lys Val Phe Ser Asn Gly Ala Asp Leu Ser Gly Val Thr Glu Glu Ala Pro Leu Lys Leu Ser Lys Ala Val His Lys Ala Val Leu Thr Ile Asp Glu Lys Gly Thr Glu Ala Ala Gly Ala Met Phe Leu Glu Ala Ile Pro Met Ser Ile Pro Pro Glu Val Lys Phe Asn Lys Pro Phe Val Phe Leu Met Ile Glu Gln Asn Thr Lys Ser Pro Leu Phe Met Gly Lys Val Val Asn Pro Thr Gln Lys

293/497 FIG. 69A-1

GCTAACCTAGTGCCTATAGCTAAGGCAGGTACCTGCATCCTTGTTTTT GTTTAGTGGATCCTCTATCCTTCAGAGACTCTGGAACCCCTGTGGTCT TCTCTTCATCTAATGACCCTGAGGGGATGGAGTTTTCAAGTCCTTCCA AGCCTCACAGGTTTGCTTCTACTTCAGGCAGTGTCGTGGGCATCAGGT GCCCGCCCTGCATCCCTAAAAGCTTCGGCTACAGCTCGGTGGTGTGT GTCTGCAATGCCACATACTGTGACTCCTTTGACCCCCCGACCTTTCCT GCCCTTGGTACCTTCAGCCGCTATGAGAGTACACGCAGTGGGCGACG GATGGAGCTGAGTATGGGGCCCATCCAGGCTAATCACACGGGCACAG GCCTGCTACTGACCCTGCAGCCAGAACAGAAGTTCCAGAAAGTGAAG GGATTTGGAGGGGCCATGACAGATGCTGCTGCTCTCAACATCCTTGCC CTGTCACCCCTGCCCAAAATTTGCTACTTAAATCGTACTTCTCTGAA GAAGGAATCGGATATAACATCATCCGGGTACCCATGGCCAGCTGTGA CTTCTCCATCCGCACCTACACCTATGCAGACACCCCTGATGATTTCCA GTTGCACAACTTCAGCCTCCCAGAGGAAGATACCAAGCTCAAGATAC CCCTGATTCACCGAGCCCTGCAGTTGGCCCAGCGTCCCGTTTCACTCC TTGCCAGCCCTGGACATCACCCACTTGGCTCAAGACCAATGGAGCG GTGAATGGGAAGGGGTCACTCAAGGGACAGCCCGGAGACATCTACC ACCAGACCTGGGCCAGATACTTTGTGAAGTTCCTGGATGCCTATGCTG AGCACAAGTTACAGTTCTGGGCAGTGACAGCTGAAAATGAGCCTTCT GCTGGGCTGTTGAGTGGATACCCCTTCCAGTGCCTGGGCTTCACCCCT GAACATCAGCGAGACTTCATTGCCCGTGACCTAGGTCCTACCCTCGCC AACAGTACTCACCACAATGTCCGCCTACTCATGCTGGATGACCAACGC TTGCTGCTGCCCCACTGGGCAAAGGTGGTACTGACAGACCCAGAAGC AGCTAAATATGTTCATGGCATTGCTGTACATTGGTACCTGGACTTTCT GGCTCCAGCCAAAGCCACCCTAGGGGAGACACACCGCCTGTTCCCCA ACACCATGCTCTTTGCCTCAGAGGCCTGTGTGGGCTCCAAGTTCTGGG AGCAGAGTGTGCGGCTAGGCTCCTGGGATCGAGGGATGCAGTACAGC CACAGCATCATCACGAACCTCCTGTACCATGTGGTCGGCTGGACCGAC TGGAACCTTGCCCTGAACCCCGAAGGAGGACCCAATTGGGTGCGTAA CTTTGTCGACAGTCCCATCATTGTAGACATCACCAAGGACACGTTTTA CAAACAGCCCATGTTCTACCACCTTGGCCACTTCAGCAAGTTCATTCC TGAGGGCTCCCAGAGAGTGGGGCTGGTTGCCAGTCAGAAGAACGACC TGGACGCAGTGGCACTGATGCATCCCGATGGCTCTGCTGTTGTGGTCG TGCTAAACCGCTCCTCTAAGGATGTGCCTCTTACCATCAAGGATCCTG CTGTGGGCTTCCTGGAGACAATCTCACCTGGCTACTCCATTCACACCT ACCTGTGGCATCGCCAGTGATGGAGCAGATACTCAAGGAGGCACTGG GCTCAGCCTGGGCATTAAAGGGACAGAGTCAGCTCACACGCTGTCTG TGACTAAAGAGGGCACAGCAGGGCCAGTGTGAGCTTACAGCGACGT

294/497

FIG. 69A-2

FIG. 69B

Met Glu Phe Ser Ser Pro Ser Arg Glu Glu Cys Pro Lys Pro Leu Ser Arg Val Ser Ile Met Ala Gly Ser Leu Thr Gly Leu Leu Leu Leu Gln Ala Val Ser Trp Ala Ser Gly Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly Tyr Ser Ser Val Val Cys Val Cys Asn Ala Thr Tyr Cys Asp Ser Phe Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr Phe Ser Arg Tvr Glu Ser Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly Pro Ile Gln Ala Asn His Thr Gly Thr Gly Leu Leu Leu Thr Leu Gln Pro Glu Gln Lys Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala Ala Leu Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu Leu Lys Ser Tyr Phe Ser Glu Glu Gly Ile Gly Tyr Asn Ile Ile Arg Val Pro Met Ala Ser Cys Asp Phe Ser Ile Arg Thr Tyr Thr Tyr Ala Asp Thr Pro Asp Asp Phe Gln Leu His Asn Phe Ser Leu Pro Glu Glu Asp Thr Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu Ala Gln Arg Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu Lys Thr Asn Gly Ala Val Asn Gly Lys Gly Ser Leu Lys Gly Gln Pro Gly Asp Ile Tyr His Gln Thr Trp Ala Arg Tyr Phe Val Lys Phe Leu Asp Ala Tyr Ala Glu His Lys Leu Gln Phe Trp Ala Val Thr Ala Glu Asn Glu Pro Ser Ala Gly Leu Leu Ser Gly Tyr Pro Phe Gln Cys Leu Gly Phe Thr Pro Glu His Gln Arg Asp Phe Ile Ala Arg Asp Leu Gly Pro Thr Leu Ala Asn Ser Thr His His Asn Val Arg Leu Leu Met Leu Asp Asp Gln Arg Leu Leu Leu Pro His Trp Ala Lys Val Val Leu Thr Asp Pro Glu Ala Ala Lys Tyr Val His Gly Ile Ala Val His Trp Tyr Leu Asp Phe Leu Ala Pro Ala Lys Ala Thr Leu Gly Glu Thr His Arg Leu Phe Pro Asn Thr Met Leu Phe Ala Ser Glu Ala Cys Val Gly Ser Lys Phe Trp Glu Gln Ser Val Arg Leu Gly Ser Trp Asp Arg Gly Met Gln Tyr Ser His Ser Ile Ile Thr Asn Leu Leu Tyr His Val Val Gly Trp Thr Asp Trp Asn Leu Ala Leu Asn Pro Glu Gly Gly Pro Asn Trp Val Arg Asn Phe Val Asp Ser Pro Ile Ile Val Asp Ile Thr Lys Asp Thr Phe Tyr Lys Gln Pro Met Phe Tyr His Leu Gly His Phe Ser Lys Phe Ile Pro Glu Gly Ser Gln Arg Val Gly Leu Val Ala Ser Gln Lys Asn Asp Leu Asp Ala Val Ala Leu Met His Pro Asp Gly Ser Ala Val Val Val Val Leu Asn Arg Ser Ser Lys Asp Val Pro Leu Thr Ile Lys Asp Pro Ala Val Gly Phe Leu Glu Thr Ile Ser Pro Gly Tvr Ser Ile His Thr Tyr Leu Trp His Arg Gln

FIG. 70A

ATGGATGCAATGAAGAGAGGGCTCTGCTGTGTGCTGCTGTGTGG AGCAGTCTTCGTTTCGCCCAGCCAGGAAATCCATGCCCGATTCAGAA GAGGAGCCAGATCTTACCAAGTGATCTGCAGAGATGAAAAAACGCA GATGATATACCAGCAACATCAGTCATGGCTGCGCCCTGTGCTCAGAA GCAACCGGGTGGAATATTGCTGGTGCAACAGTGGCAGGGCACAGTGC CACTCAGTGCCTGTCAAAAGTTGCAGCGAGCCAAGGTGTTTCAACGG GGGCACCTGCCAGCAGGCCCTGTACTTCTCAGATTTCGTGTGCCAGTG CCCGAAGGATTTGCTGGGAAGTGCTGTGAAATAGATACCAGGGCCA CGTGCTACGAGGACCAGGGCATCAGCTACAGGGGCACGTGGAGCAC AGCGGAGAGTGGCGCCGAGTGCACCAACTGGAACAGCAGCGCGTTG GCCCAGAAGCCCTACAGCGGGCGGAGGCCAGACGCCATCAGGCTGG GCCTGGGGAACCACAACTACTGCAGAAACCCAGATCGAGACTCAAA GCCCTGGTGCTACGTCTTTAAGGCGGGGAAGTACAGCTCAGAGTTCT GCAGCACCCCTGCCTGCTCTGAGGGAAACAGTGACTGCTACTTTGGG AATGGGTCAGCCTACCGTGGCACGCACAGCCTCACCGAGTCGGGTGC CTCCTGCCTCCCGTGGAATTCCATGATCCTGATAGGCAAGGTTTACAC AGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGGGCAAACATAATT ACTGCCGGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTGCTG AAGAACCGCAGGCTGACGTGGGAGTACTGTGATGTGCCCTCCTGCTC CACCTGCGGCCTGAGACAGTACAGCCAGCCTCAGTTTCGCATCAAAG GAGGGCTCTTCGCCGACATCGCCTCCCACCCCTGGCAGGCTGCCATCT TTGCCAAGCACAGGAGGTCGCCGGGAGAGCGGTTCCTGTGCGGGGGC ATACTCATCAGCTCCTGCTGGATTCTCTCTGCCGCCCACTGCTTCCAG GAGAGGTTTCCGCCCCACCACCTGACGGTGATCTTGGGCAGAACATA CCGGGTGGTCCCTGGCGAGGAGGAGCAGAAATTTGAAGTCGAAAAA TACATTGTCCATAAGGAATTCGATGATGACACTTACGACAATGACAT TGCGCTGCTGCAGCTGAAATCGGATTCGTCCCGCTGTGCCCAGGAGA GCAGCGTGGTCCGCACTGTGTGCCTTCCCCCGGCGGACCTGCAGCTG CCGGACTGGACGGAGTGTGAGCTCTCCGGCTACGGCAAGCATGAGGC CTTGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTCATGTCAGACT GTACCCATCCAGCCGCTGCACATCACAACATTTACTTAACAGAACAG TCACCGACAACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGGCCC CAGGCAAACTTGCACGACGCCTGCCAGGGCGATTCGGGAGGCCCCCT GGTGTGTCTGAACGATGGCCGCATGACTTTGGTGGGCATCATCAGCT GGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGTGTGTACACCAAG GTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCGTGACC AGGAACACCCGACTCCTCAAAAGCAAATGAGATCC

296/497

FIG. 70B

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg Arg Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln Met Ile Tyr Gln Gln His Gin Ser Trp Leu Arg Pro Val Leu Arg Ser Asn Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His Ser Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly Thr Cys Gin Gin Ala Leu Tyr Phe Ser Asp Phe Vai Cys Gin Cys Pro Glu Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys Tyr Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu Ser Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys Pro Tyr Ser Gly Arg Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn His Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr Val Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala Cys Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys Phe Gin Glu Arg Phe Pro Pro His His Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu Pro Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met Arg Pro

297/497

FIG. 71A

ATCACTCTCTTTAATCACTACTCACATTAACCTCAACTCCTGCCACAA TGTACAGGATGCAACTCCTGTCTTGCATTGCACTAATTCTTGCACTTG ACACAGCTACAACTGGAGCATTTACTGCTGGATTTACAGATGATTTTG AATGGAATTAATAATTACAAGAATCCCAAACTCACCAGGATGCTCAC ATTTAAGTTTTACATGCCCAAGAAGGCCACAGAACTGAAACAGCTTC AGTGTCTAGAAGAAGAACTCAAACCTCTGGAGGAAGTGCTGAATTTA GCTCAAAGCAAAAACTTTCACTTAAGACCCAGGGACTTAATCAGCAA TATCAACGTAATAGTTCTGGAACTAAAGGGATCTGAAACAACATTCA TGTGTGAATATGCAGATGAGACAGCAACCATTGTAGAATTTCTGAAC AGATGGATTACCTTTTGTCAAAGCATCATCTCAACACTAACTTGATAA AATATTTAAATTTTATTTTATTGTTGAATGTATGGTTGCTACCTATTG TAACTATTATTCTTAATCTTAAAACTATAAATATGGATCTTTTATGAT CAAAAATATTTATTATTATGTTGAATGTTAAATATAGTATCTATGTAG AAACAAAAAAAAAA

FIG. 71B

Met Tyr Arg Met Gin Leu Leu Ser Cys Ile Ala Leu Ile Leu Ala Leu Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Lys Lys Thr Gin Leu Gin Leu Gin His Leu Leu Leu Asp Leu Gin Met Ile Leu Asn Giy Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Giu Leu Lys Gin Leu Gin Cys Leu Giu Glu Glu Glu Leu Lys Pro Leu Giu Glu Val Leu Asn Leu Ala Gin Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Giu Leu Lys Gily Ser Giu Thr Thr Phe Met Cys Giu Tyr Ala Asp Giu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Cys Gin Ser Ile Ile Ser Thr Leu Thr

FIG. 72A-1

298/497

ATGCAAATAGAGCTCTCCACCTGCTTCTTTCTGTGCCTTTTGCGATTCT GCTTTAGTGCCACCAGAAGATACTACCTGGGTGCAGTGGAACTGTCA TGGGACTATATGCAAAGTGATCTCGGTGAGCTGCCTGTGGACGCAAG ATTTCCTCCTAGAGTGCCAAAATCTTTTCCATTCAACACCTCAGTCGT GTACAAAAAGACTCTGTTTGTAGAATTCACGGATCACCTTTTCAACAT CGCTAAGCCAAGGCCACCCTGGATGGGTCTGCTAGGTCCTACCATCC AGGCTGAGGTTTATGATACAGTGGTCATTACACTTAAGAACATGGCT TCCCATCCTGTCAGTCTTCATGCTGTTGGTGTATCCTACTGGAAAGCT TCTGAGGGAGCTGAATATGATGATCAGACCAGTCAAAGGGAGAAAG AAGATGATAAAGTCTTCCCTGGTGGAAGCCATACATATGTCTGGCAG GTCCTGAAAGAGAATGGTCCAATGGCCTCTGACCCACTGTGCCTTAC CTACTCATATCTTTCTCATGTGGACCTGGTAAAAGACTTGAATTCAGG CCTCATTGGAGCCCTACTAGTATGTAGAGAAGGGAGTCTGGCCAAGG AAAAGACACAGACCTTGCACAAATTTATACTACTTTTTGCTGTATTTG ATGAAGGGAAAAGTTGGCACTCAGAAACAAAGAACTCCTTGATGCA GGATAGGGATGCTGCATCTGCTCGGGCCTGGCCTAAAATGCACACAG TCAATGGTTATGTAAACAGGTCTCTGCCAGGTCTGATTGGATGCCACA GGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCACTCCTGAA GTGCACTCAATATTCCTCGAAGGTCACACATTTCTTGTGAGGAACCAT CGCCAGGCGTCCTTGGAAATCTCGCCAATAACTTTCCTTACTGCTCAA ACACTCTTGATGGACCTTGGACAGTTTCTACTGTTTTGTCATATCTCTT CCCACCAACATGATGGCATGGAAGCTTATGTCAAAGTAGACAGCTGT CCAGAGGAACCCCAACTACGAATGAAAAATAATGAAGAAGCGGAAG ACTATGATGATGATCTTACTGATTCTGAAATGGATGTGGTCAGGTTTG ATGATGACAACTCTCCTTCCTTTATCCAAATTCGCTCAGTTGCCAAGA AGCATCCTAAAACTTGGGTACATTACATTGCTGCTGAAGAGGAGGAC TGGGACTATGCTCCCTTAGTCCTCGCCCCGATGACAGAAGTTATAAA AGTCAATATTTGAACAATGGCCCTCAGCGGATTGGTAGGAAGTACAA AAAAGTCCGATTTATGGCATACACAGATGAAACCTTTAAGACTCGTG AAGCTATTCAGCATGAATCAGGAATCTTGGGACCTTTACTTTATGGGG TCAAGGAGATTACCAAAAGGTGTAAAACATTTGAAGGATTTTCCAAT TCTGCCAGGAGAAATATTCAAATATAAATGGACAGTGACTGTAGAAG ATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTA GTTTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTC TCCTCATCTGCTACAAAGAATCTGTAGATCAAAGAGGAAACCAGATA ATGTCAGACAAGAGGAATGTCATCCTGTTTTCTGTATTTGATGAGAAC CGAAGCTGGTACCTCACAGAGAATATACAACGCTTTCTCCCCAATCCA GCTGGAGTGCAGCTTGAGGATCCAGAGTTCCAAGCCTCCAACATCAT GCACAGCATCAATGGCTATGTTTTTGATAGTTTGCAGTTGTCAGTTTG TTTGCATGAGGTGGCATACTGGTACATTCTAAGCATTGGAGCACAGA CTGACTTCCTTTCTCTCTCTCTGGATATACCTTCAAACACAAAAT

FIG. 72A-2 299/497

GGTCTATGAAGACACACTCACCCTATTCCCATTCTCAGGAGAAACTGT CTTCATGTCGATGGAAAACCCAGGTCTATGGATTCTGGGGTGCCACA ACTCAGACTTTCGGAACAGAGGCATGACCGCCTTACTGAAGGTTTCT AGTTGTGACAAGAACACTGGTGATTATTACGAGGACAGTTATGAAGA TATTTCAGCATACTTGCTGAGTAAAAACAATGCCATTGAACCAAGAA GCTTCTCCCAGAATTCAAGACACCGTAGCACTAGGCAAAAGCAATTT AATGCCACCACAATTCCAGAAAATGACATAGAGAAGACTGACCCTTG GTTTGCACACAGAACACCTATGCCTAAAATACAAAATGTCTCCTCTA GTGATTTGTTGATGCTCTTGCGACAGAGTCCTACTCCACATGGGCTAT CCTTATCTGATCTCCAAGAAGCCAAATATGAGACTTTTTCTGATGATC CATCACCTGGAGCAATAGACAGTAATAACAGCCTGTCTGAAATGACA CACTTCAGGCCACAGCTCCATCACAGTGGGGACATGGTATTTACCCC TGAGTCAGGCCTCCAATTAAGATTAAATGAGAAACTGGGGACAACTG CAGCAACAGAGTTGAAGAAACTTGATTTCAAAGTTTCTAGTACATCA AATAATCTGATTTCAACAATTCCATCAGACAATTTGGCAGCAGGTACT GATAATACAAGTTCCTTAGGACCCCCAAGTATGCCAGTTCATTATGAT AGTCAATTAGATACCACTCTATTTGGCAAAAAGTCATCTCCCCTTACT GAGTCTGGTGGACCTCTGAGCTTGAGTGAAGAAAATAATGATTCAAA GTTGTTAGAATCAGGTTTAATGAATAGCCAAGAAAGTTCATGGGGAA AAAATGTATCGTCAACAGAGAGTGGTAGGTTATTTAAAGGGAAAAGA GCTCATGGACCTGCTTTGTTGACTAAAGATAATGCCTTATTCAAAGTT AGCATCTCTTTGTTAAAGACAAACAAAACTTCCAATAATTCAGCAACT AATAGAAAGACTCACATTGATGGCCCATCATTATTAATTGAGAATAG TCCATCAGTCTGGCAAAATATATTAGAAAGTGACACTGAGTTTAAAA AAGTGACACCTTTGATTCATGACAGAATGCTTATGGACAAAAATGCT ACAGCTTTGAGGCTAAATCATATGTCAAATAAAACTACTTCATCAAA AAACATGGAAATGGTCCAACAGAAAAAAGAGGGCCCCATTCCACCA GATGCACAAAATCCAGATATGTCGTTCTTTAAGATGCTATTCTTGCCA GAATCAGCAAGGTGGATACAAAGGACTCATGGAAAGAACTCTCTGAA CTCTGGGCAAGGCCCCAGTCCAAAGCAATTAGTATCCTTAGGACCAG AAAAATCTGTGGAAGGTCAGAATTTCTTGTCTGAGAAAAACAAAGTG GTAGTAGGAAAGGGTGAATTTACAAAGGACGTAGGACTCAAAGAGA TGGTTTTTCCAAGCAGCAGAAACCTATTTCTTACTAACTTGGATAATT TACATGAAAATAATACACACAATCAAGAAAAAAAAATTCAGGAAGA AATAGAAAAGAAGGAAACATTAATCCAAGAGAATGTAGTTTTGCCTC AGATACATACAGTGACTGGCACTAAGAATTTCATGAAGAACCTTTTC TTACTGAGCACTAGGCAAAATGTAGAAGGTTCATATGACGGGGCATA TGCTCCAGTACTTCAAGATTTTAGGTCATTAAATGATTCAACAAATAG AACAAAGAAACACACAGCTCATTTCTCAAAAAAAGGGGAGGAAGAA AACTTGGAAGGCTTGGGAAATCAAACCAGCAAATTGTAGAGAAATAT GCATGCACCACAAGGAATATCTCCTAATACAAGCCAGCAGAATTTTG TCACGCAACGTAGTAAGAGAGCTTTGAAACAATTCAGACTCCCACTA

FIG. 72A-3 300/497

GAAGAACAGAACTTGAAAAAAGGATAATTGTGGATGACACCTCAAC CCAGTGGTCCAAAAACATGAAACATTTGACCCCGAGCACCCTCACAC AGATAGACTACAATGAGAAGGAGAAAGGGGCCATTACTCAGTCTCCC TTATCAGATTGCCTTACGAGGAGTCATAGCATCCCTCAAGCAAATAGA TCTCCATTACCCATTGCAAAGGTATCATCATTTCCATCTATTAGACCTA TATATCTGACCAGGGTCCTATTCCAAGACAACTCTTCTCATCTTCCAG CAGCATCTTATAGAAAGAAAGATTCTGGGGTCCAAGAAAGCAGTCAT TTCTTACAAGGAGCCAAAAAAAAAAAACCTTTCTTTAGCCATTCTAACC TTGGAGATGACTGGTGATCAAAGAGAGGTTGGCTCCCTGGGGACAAG TGCCACAAATTCAGTCACATACAAGAAAGTTGAGAACACTGTTCTCCC GAAACCAGACTTGCCCAAAACATCTGGCAAAGTTGAATTGCTTCCAA AAGTTCACATTTATCAGAAGGACCTATTCCCTACGGAAACTAGCAATG GGTCTCCTGGCCATCTGGATCTCGTGGAAGGGAGCCTTCTTCAGGGAA CAGAGGGAGCGATTAAGTGGAATGAAGCAAACAGACCTGGAAAAGT GCTATTGGATCCTCTTGCTTGGGATAACCACTATGGTACTCAGATACC AAAAGAAGAGTGGAAATCCCAAGAGAAGTCACCAGAAAAAAACAGCT TTTAAGAAAAAGGATACCATTTTGTCCCTGAACGCTTGTGAAAGCAAT CATGCAATAGCAGCAATAAATGAGGGACAAAATAAGCCCGAAATAG AAGTCACCTGGGCAAAGCAAGGTAGGACTGAAAGGCTGTGCTCTCAA AACCCACCAGTCTTGAAACGCCATCAACGGGAAATAACTCGTACTAC TCTTCAGTCAGATCAAGAGGAAATTGACTATGATGATACCATATCAGT TGAAATGAAGAAGGAAGATTTTGACATTTATGATGAGGATGAAAATC AGAGCCCCCGCAGCTTTCAAAAGAAAACACGACACTATTTTATTGCTG CAGTGGAGAGGCTCTGGGATTATGGGATGAGTAGCTCCCCACATGTT CTAAGAAACAGGGCTCAGAGTGGCAGTGTCCCTCAGTTCAAGAAAGT TGTTTTCCAGGAATTTACTGATGGCTCCTTTACTCAGCCCTTATACCGT GGAGAACTAAATGAACATTTGGGACTCCTGGGGCCATATATAAGAGC AGAAGTTGAAGATAATATCATGGTAACTTTCAGAAATCAGGCCTCTC GTCCCTATTCCTTCTATTCTAGCCTTATTTCTTATGAGGAAGATCAGAG GCAAGGAGCAGAACCTAGAAAAAACTTTGTCAAGCCTAATGAAACCA AAACTTACTTTTGGAAAGTGCAACATCATATGGCACCCACTAAAGAT GAGTTTGACTGCAAAGCCTGGGCTTATTTCTCTGATGTTGACCTGGAA AAAGATGTGCACTCAGGCCTGATTGGACCCCTTCTGGTCTGCCACACT AACACACTGAACCCTGCTCATGGGAGACAAGTGACAGTACAGGAATT TGCTCTGTTTTTCACCATCTTTGATGAGACCAAAAGCTGGTACTTCACT GAAAATATGGAAAGAAACTGCAGGGCTCCCTGCAATATCCAGATGGA CATAATGGATACACTACCTGGCTTAGTAATGGCTCAGGATCAAAGGA TTCGATGGTATCTGCTCAGCATGGGCAGCAATGAAAACATCCATTCT TAAAATGGCACTGTACAATCTCTATCCAGGTGTTTTTTGAGACAGTGGA

FIG. 72A-4

301/497

AATGTTACCATCCAAAGCTGGAATTTGGCGGGTGGAATGCCTTATTGG CGAGCATCTACATGCTGGGATGAGCACACTTTTTCTGGTGTACAGCAA TAAGTGTCAGACTCCCCTGGGAATGGCTTCTGGACACATTAGAGATTT TCAGATTACAGCTTCAGGACAATATGGACAGTGGGCCCCAAAGCTGG CCAGACTTCATTATTCCGGATCAATCAATGCCTGGAGCACCAAGGAG CCCTTTTCTTGGATCAAGGTGGATCTGTTGGCACCAATGATTATTCAC GGCATCAAGACCCAGGGTGCCCGTCAGAAGTTCTCCAGCCTCTACAT CTCTCAGTTTATCATCATGTATAGTCTTGATGGGAAGAAGTGGCAGA CTTATCGAGGAAATTCCACTGGAACCTTAATGGTCTTCTTTGGCAATG TGGATTCATCTGGGATAAAACACAATATTTTTAACCCTCCAATTATTG CTCGATACATCCGTTTGCACCCAACTCATTATAGCATTCGCAGCACTC TTCGCATGGAGTTGATGGGCTGTGATTTAAATAGTTGCAGCATGCCAT TGGGAATGGAGAGTAAAGCAATATCAGATGCACAGATTACTGCTTCA TCCTACTTTACCAATATGTTTGCCACCTGGTCTCCTTCAAAAGCTCGA CTTCACCTCCAAGGGAGGAGTAATGCCTGGAGACCTCAGGTGAATAA TCCAAAAGAGTGGCTGCAAGTGGACTTCCAGAAGACAATGAAAGTCA CAGGAGTAACTACTCAGGGAGTAAAATCTCTGCTTACCAGCATGTAT GTGAAGGAGTTCCTCATCTCCAGCAGTCAAGATGGCCATCAGTGGAC TCTCTTTTTCAGAATGGCAAAGTAAAGGTTTTTCAGGGAAATCAAGA CTCCTTCACACCTGTGGTGAACTCTCTAGACCCACCGTTACTGACTCG CTACCTTCGAATTCACCCCCAGAGTTGGGTGCACCAGATTGCCCTGAG GATGGAGGTTCTGGGCTGCGAGGCACAGGACCTCTACTGAGGGTGGC CACTGCAGCACCTGCCACTGCCGTCACCTCTCCCTCCAGCTCCAGG GCAGTGTCCCTCCCTGGCTTGCCTTCTACCTTTGTGCTAAATCCTAGC AGACACTGCCTTGAAGCCTCCTGAATTAACTATCATCAGTCCTGCATT TCTTTGGTGGGGGCCAGGAGGGTGCATCCAATTTAACTTAACTCTTA AGGCAAAAAGAAGTGAGGAGAAACCTGCATGAAAGCATTCTTCCCTG AAAAGTTAGGCCTCTCAGAGTCACCACTTCCTCTGTTGTAGAAAAACT ATGTGATGAAAACTTTGAAAAAGATATTTATGATGTTAACATTTCAGGT TAAGCCTCATACGTTTAAAATAAAACTCTCAGTTGTTTATTATCCTGA TCAAGCATGGAACAAAGCATGTTTCAGGATCAGATCAATACAATCTT GGAGTCAAAAGGCAAATCATTTGGACAATCTGCAAAATGGAGAGAA TACAATAACTACTACAGTAAAGTCTGTTTCTGCTTCCTTACACATAGA TATAATTATGTTATTTAGTCATTATGAGGGGCACATTCTTATCTCCAA AACTAGCATTCTTAAACTGAGAATTATAGATGGGGTTCAAGAATCCC TAAGTCCCCTGAAATTATATAAGGCATTCTGTATAAATGCAAATGTGC ATTTTTCTGACGAGTGTCCATAGATATAAAGCCATTTGGTCTTAATTCT GACCAATAAAAAAATAAGTCAGGAGGATGCAATTGTTGAAAGCTTTG AAATGATGA

FIG. 72B-1

302/497

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asp Ser Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile Phe Lys Asp Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser Leu Gin Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe

FIG. 72B-2

Arg Asn Arg Gly Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp Ile Glu Lys Thr Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys Ile Gln Asn Val Ser Ser Ser Asp Leu Leu Met Leu Leu Arg Gin Ser Pro Thr Pro His Gly Leu Ser Leu Ser Asp Leu Gin Glu Ala Lys Tyr Giu Thr Phe Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn Ser Leu Ser Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly Asp Met Val Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu Lys Leu Gly Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys Val Ser Ser Thr Ser Asn Asn Leu lle Ser Thr Ile Pro Ser Asp Asn Leu Ala Ala Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met Pro Val His Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn Asn Asp Ser Lys Leu Clu Ser Gly Leu Met Asn Ser Gln Glu Ser Ser Trp Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe Lys Gly Lys Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala Leu Phe Lys Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu Ser Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro Ser Pro Lys Gin Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu Gly Gin Asn Phe Leu Ser Glu Lys Asn Lys Val Val Val Gly Lys Gly Glu Phe Thr Lys Asp Val Gly Leu Lys Glu Met Val Phe Pro Ser Ser Arg Asn Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu Asn Asn Thr His Asn Gln Glu Lys Lys Ile Gln Glu Glu Ile Glu Lys Lys Glu Thr Leu Ile Gln Glu Asn Val Val Leu Pro Gln Ile His Thr Val Thr Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu Leu Ser Thr Arg Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr Ala Pro Val Leu Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn Arg Thr Lys Lys His Thr Ala His Phe Ser Lys Lys Gly Glu Glu Asn Leu Glu Gly Leu Gly Asn Gln Thr Lys Gln Ile Val Glu Lys Tyr Ala Cys Thr Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln Asn Phe Val Thr Gln Arg Ser Lys Arg Ala Leu Lys Gln Phe Arg Leu Pro Leu Glu Glu Thr Glu Leu Glu Lys Arg Ile Ile Val Asp Asp Thr Ser Thr Gln Trp Ser Lys Asn Met Lys His Leu Thr Pro Ser Thr Leu Thr Gln Ile Asp Tyr Asn Glu Lys Glu Lys Gly Ala Ile Thr Gln Ser Pro Leu Ser Asp Cys Leu Thr Arg Ser His Ser Ile Pro Gln Ala Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser Ser Phe Pro Ser Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe Gln Asp Asn Ser Ser His Leu Pro

FIG. 72B-3

304/497

Ala Ala Ser Tyr Arg Lys Lys Asp Ser Gly Val Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys Lys Asn Asn Leu Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly Asp Gln Arg Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser Val Thr Tyr Lys Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp Leu Pro Lys Thr Ser Gly Lys Val Glu Leu Leu Pro Lys Val His Ile Tyr Gln Lys Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser Pro Gly His Leu Asp Leu Val Glu Gly Ser Leu Leu Gln Gly Thr Glu Gly Ala Ile Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val Pro Phe Leu Arg Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser Lys Leu Leu Asp Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys Thr Ala Phe Lys Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys Glu Ser Asn His Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys Pro Glu Ile Glu Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg Leu Cys Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly Met Ser Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser Gly Ser Val Pro Gin Phe Lys Lys Val Val Phe Gin Glu Phe Thr Asp Gly Ser Phe Thr Gin Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Met Val Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Glv Ser Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gin Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn Val Asp Ser Ser Gly Ile

FIG. 72B-4

Lys His Asn Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys Glu Ala Gln Asp Leu Tyr

306/497

FIG. 73A

TCCACCTGTCCCCGCAGCGCCGGCTCGCGCCCTCCTGCCGCAGCCACC GAGCCGCCGTCTAGCGCCCCGACCTCGCCACCATGAGAGCCCTGCTG GCGCGCCTGCTTCTCTGCGTCCTGGTCGTGAGCGACTCCAAAGGCAGC A ATGAACTTCATCAAGTTCCATCGAACTGTGACTGTCTAAATGGAGGA ACATGTGTGTCCAACAAGTACTTCTCCAACATTCACTGGTGCAACTGC CCAAAGAAATTCGGAGGGCAGCACTGTGAAATAGATAAGTCAAAAAC CTGCTATGAGGGGAATGGTCACTTTTACCGAGGAAAGGCCAGCACTG ACACCATGGGCCGGCCCTGCCTGCCCTGGAACTCTGCCACTGTCCTTC AGCAAACGTACCATGCCCACAGATCTGATGCTCTTCAGCTGGGCCTGG GGAAACATAATTACTGCAGGAACCCAGACAACCGGAGGCGACCCTGG TGCTATGTGCAGGTGGGCCTAAAGCCGCTTGTCCAAGAGTGCATGGT GCATGACTGCGCAGATGGAAAAAAGCCCTCCTCTCCCAGAAGAAT TAAAATTTCAGTGTGGCCAAAAGACTCTGAGGCCCCGCTTTAAGATTA TTGGGGGAGAATTCACCACCATCGAGAACCAGCCCTGGTTTGCGGCC ATCTACAGGAGGCACCGGGGGGGCTCTGTCACCTACGTGTGTGGAGG CAGCCTCATCAGCCCTTGCTGGGTGATCAGCGCCACACACTGCTTCAT TGATTACCCAAAGAAGGAGGACTACATCGTCTACCTGGGTCGCTCAA GGCTTAACTCCAACACGCAAGGGGAGATGAAGTTTGAGGTGGAAAAC CTCATCCTACACAAGGACTACAGCGCTGACACGCTTGCTCACCACAAC GACATTGCCTTGCTGAAGATCCGTTCCAAGGAGGGCAGGTGTGCGCA GCCATCCCGGACTATACAGACCATCTGCCTGCCTCGATGTATAACGA TCCCCAGTTTGGCACAAGCTGTGAGATCACTGGCTTTGGAAAAGAGA ATTCTACCGACTATCTCTATCCGGAGCAGCTGAAGATGACTGTTGTGA AGCTGATTTCCCACCGGGAGTGTCAGCAGCCCCACTACTACGGCTCTG A A GTC A CCACCA A A A TGCTGTGTGTGCTGCTGACCCACAGTGGAAAACA GATTCCTGCCAGGGAGACTCAGGGGGACCCCTCGTCTGTTCCCTCCAA GGCCGCATGACTTTGACTGGAATTGTGAGCTGGGGCCGTGGATGTGC CCTGAAGGACAAGCCAGGCGTCTACACGAGAGTCTCACACTTCTTAC CCTGGATCCGCAGTCACCCAAGGAAGAGAATGGCCTGGCCCTCTGA GGGTCCCCAGGGAGGAAACGGGCACCACCCGCTTTCTTGCTGGTTGTC ATTTTTGCAGTAGAGTCATCTCCATCAGCTGTAAGAAGAGACTGGGA AGAT

307/497

FIG. 73B

Met Arg Ala Leu Leu Ala Arg Leu Leu Leu Cys Val Leu Val Val Ser Asp Ser Lvs Gly Ser Asn Glu Leu His Gln Val Pro Ser Asn Cvs Asp Cys Leu Asn Gly Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile His Trp Cys Asn Cys Pro Lys Lys Phe Gly Gly Gln His Cys Glu Ile Asp Lys Ser Lys Thr Cys Tyr Glu Gly Asn Gly His Phe Tyr Arg Gly Lys Ala Ser Thr Asp Thr Met Gly Arg Pro Cys Leu Pro Tro Asn Ser Ala Thr Val Leu Gln Gln Thr Tyr His Ala His Arg Ser Asp Ala Leu Gln Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Asn Arg Arg Arg Pro Trp Cys Tyr Val Gln Val Gly Leu Lys Pro Leu Val Gln Glu Cys Met Val His Asp Cys Ala Asp Gly Lys Lys Pro Ser Ser Pro Pro Glu Glu Leu Lys Phe Gln Cys Gly Gln Lys Thr Leu Arg Pro Arg Phe Lys Ile Ile Gly Gly Glu Phe Thr Thr Ile Glu Asn Gln Pro Trp Phe Ala Ala Ile Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val Cys Gly Gly Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly Arg Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val Glu Asn Leu Ile Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His His Asn Asp Ile Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys Glu Asn Ser Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val Val Lys Leu Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly Ser Glu Val Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gin Trp Lys Thr Asp Ser Cys Gin Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu Gln Gly Arg Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys Ala Leu Lys Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu Pro Trp Ile Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu

308/497

FIG.74A

TCCTGCACAGGCAGTGCCTTGAAGTGCTTCTTCAGAGACCTTTCTTCA TAGACTACTTTTTTTTTTTAAGCAGCAAAAGGAGAAAATTGTCATCA AGGATATTCCAGATTCTTGACAGCATTCTCGTCATCTCTGAGGACATC ACCATCATCTCAGGATGAGGGGCATGAAGCTGCTGGGGGGCGCTGCTG GCACTGGCGGCCCTACTGCAGGGGGCCGTGTCCCTGAAGATCGCAGC CTTCAACATCCAGACATTTGGGGAGACCAAGATGTCCAATGCCACCCT CGTCAGCTACATTGTGCAGATCCTGAGCCGCTATGACATCGCCCTGGT CCAGGAGGTCAGAGACAGCCACCTGACTGCCGTGGGGAAGCTGCTGG ACAACCTCAATCAGGATGCACCAGACACCTATCACTACGTGGTCAGT GAGCCACTGGGACGGAACAGCTATAAGGAGCGCTACCTGTTCGTGTA CAGGCCTGACCAGGTGTCTGCGGTGGACAGCTACTACTACGATGATG GTCAGGTTCTTCTCCCGGTTCACAGAGGTCAGGGAGTTTGCCATTGTT CCCCTGCATGCGGCCCCGGGGGACGCAGTAGCCGAGATCGACGCTCT CTATGACGTCTACCTGGATGTCCAAGAGAAATGGGGCTTGGAGGACG TCATGTTGATGGGCGACTTCAATGCGGGCTGCAGCTATGTGAGACCCT CCCAGTGGTCATCCATCCGCCTGTGGACAAGCCCCACCTTCCAGTGGC TGATCCCCGACAGCGCTGACACCACAGCTACACCCACGCACTGTGCCT ATGACAGGATCGTGGTTGCAGGGATGCTGCTCCGAGGCGCCGTTGTTC CCGACTCGGCTCTTCCCTTTAACTTCCAGGCTGCCTATGGCCTGAGTG ACCAACTGGCCCAAGCCATCAGTGACCACTATCCAGTGGAGGTGATG CTGAAGTGAGCAGCCCCTCCCCACACCAGTTGAACTGCAG

309/497

FIG. 74B

Met Arg Gly Met Lys Leu Leu Gly Ala Leu Leu Ala Leu Ala Ala Leu Leu Gln Gly Ala Val Ser Leu Lys Ile Ala Ala Phe Asn Ile Gin Thr Phe Gly Glu Thr Lys Met Ser Asn Ala Thr Leu Val Ser Tyr Ile Val Gln Ile Leu Ser Arg Tyr Asp Ile Ala Leu Val Gin Glu Val Arg Asp Ser His Leu Thr Ala Val Gly Lys Leu Leu Asp Asn Leu Asn Gln Asp Ala Pro Asp Thr Tyr His Tyr Val Val Ser Glu Pro Leu Gly Arg Asn Ser Tyr Lys Glu Arg Tyr Leu Phe Val Tyr Arg Pro Asp Gln Val Ser Ala Val Asp Ser Tyr Tyr Tyr Asp Asp Gly Cys Glu Pro Cys Gly Asn Asp Thr Phe Asn Arg Glu Pro Ala Ile Val Arg Phe Phe Ser Arg Phe Thr Glu Val Arg Glu Phe Ala Ile Val Pro Leu His Ala Ala Pro Gly Asp Ala Val Ala Glu Ile Asp Ala Leu Tyr Asp Val Tyr Leu Asp Val Gin Giu Lys Trp Gly Leu Glu Asp Val Met Leu Met Gly Asp Phe Asn Ala Gly Cys Ser Tyr Val Arg Pro Ser Gln Trp Ser Ser Ile Arg Leu Trp Thr Ser Pro Thr Phe Gln Trp Leu Ile Pro Asp Ser Ala Asp Thr Thr Ala Thr Pro Thr His Cys Ala Tyr Asp Arg Ile Val Val Ala Gly Met Leu Leu Arg Gly Ala Val Val Pro Asp Ser Ala Leu Pro Phe Asn Phe Gln Ala Ala Tyr Gly Leu Ser Asp Gln Leu Ala Gln Ala Ile Ser Asp His Tyr Pro Val Glu Val Met Leu Lys

310/497

FIG. 75A

FIG. 75B

Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu Trp Gly Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gin Val Glu Leu Gly Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn

FIG. 76A

ATGGGAGGTTGGTCTTCCAAACCTCGACAAGGCATGGGGACGAATCT TTCTGTTCCCAATCCTCTGGGATTCTTTCCCGATCACCAGTTGGACCCT GCGTTCGGAGCCAACTCAAACAATCCAGATTGGGACTTCAACCCCAA CAAGGATCACTGGCCAGAGGCAATCAAGGTAGGAGCGGGAGACTTC GGGCCAGGGTTCACCCCACCACACGGCGGTCTTTTGGGGTGGAGCCC TCAGGCTCAGGGCATATTGACAACAGTGCCAGCAGCGCCTCCTCCTG TTTCCACCAATCGGCAGTCAGGAAGACAGCCTACTCCCATCTCTCCAC CTCTAAGAGACAGTCATCCTCAGGCCATGCAGTGGAACTCCACAACA TTCCACCAAGCTCTGCTAGATCCCAGAGTGAGGGGCCTATATTTTCCT GCTGGTGGCTCCAGTTCCGGAACAGTAAACCCTGTTCCGACTACTGTC TCACCCATATCGTCAATCTTCTCGAGGACTGGGGACCCTGCACCGAAC ATGGAGAGCACAACATCAGGATTCCTAGGACCCCTGCTCGTGTTACA GGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCACAGAGTCT AGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAGCACCCACGTG TTGTCCTCCAATTTGTCCTGGTTATCGCTGGATGTCTCTGCGGCGTTTT ATCATATTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTC TTCTGGACTACCAAGGTATGTTGCCCGTTTGTCCTCTACTTCCAGGAA CATCAACTACCAGCACGGGACCATGCAAGACCTGCACGATTCCTGCT CAAGGAACCTCTATGTTTCCCTCTTGTTGCTGTACAAAACCTTCGGAC GGAAACTGCACTTGTATTCCCATCCCATCATCCTGGGCTTTCGCAAGA TTCCTATGGGAGTGGGCCTCAGTCCGTTTCTCCTGGCTCAGTTTACTA GTGCCATTTGTTCAGTGGTTCGCAGGGCTTTCCCCCACTGTTTGGCTTT CAGTTATATGGATGATGTGGTATTGGGGGCCAAGTCTGTACAACATCT TGAGTCCCTTTTTACCTCTATTACCAATTTTCTTTTGTCTTTGGGTATAC ATTTGA

312/497

FIG. 76B

Met Gly Gly Trp Ser Ser Lys Pro Arg Gln Gly Met Gly Thr Asn Leu Ser Val Pro Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro Ala Phe Gly Ala Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Asn Lys Asp His Trp Pro Glu Ala Ile Lys Val Gly Ala Gly Asp Phe Gly Pro Gly Phe Thr Pro Pro His Gly Gly Leu Leu Gly Trp Ser Pro Gln Ala Gln Gly Ile Leu Thr Thr Val Pro Ala Ala Pro Pro Pro Val Ser Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu Arg Asp Ser His Pro Gln Ala Met Gln Trp Asn Ser Thr Thr Phe His Gln Ala Leu Leu Asp Pro Arg Val Arg Gly Leu Tyr Phe Pro Ala Gly Gly Ser Ser Ser Gly Thr Val Asn Pro Val Pro Thr Thr Val Ser Pro Ile Ser Ser Ile Phe Ser Arg Thr Gly Asp Pro Ala Pro Asn Met Glu Ser Thr Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser Tro Tro Thr Ser Leu Asn Phe Leu Gly Gly Ala Pro Thr Cys Pro Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser Pro Thr Ser Cys Pro Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Leu Pro Gly Thr Ser Thr Thr Ser Thr Gly Pro Cys Lys Thr Cys Thr Ile Pro Ala Gln Gly Thr Ser Met Phe Pro Ser Cys Cys Cys Thr Lys Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Ala Arg Phe Leu Trp Glu Trp Ala Ser Val Arg Phe Ser Trp Leu Ser Leu Leu Val Pro Phe Val Gln Trp Phe Ala Gly Leu Ser Pro Thr Val Trp Leu Ser Val Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu Tyr Asn Ile Leu Ser Pro Phe Leu Pro Leu Leu Pro Ile Phe Phe Cys Leu Trp Val Tyr Ile

313/497

FIG. 77A

CGAACCACTCAGGGTCCTGTGGACAGCTCACCTAGCTGCAATGGCTA CCTGGCTTCAAGAGGGCAGTGCCTTCCCAACCATTCCCTTATCCAGGC CTTTTGACAACGCTATGCTCCGCGCCCATCGTCTGCACCAGCTGGCCT TTGACACCTACCAGGAGTTTGAAGAAGCCTATATCCCAAAGGAACAG AAGTATTCATTCCTGCAGAACCCCCAGACCTCCCTCTGTTTCTCAGAG TCTATTCCGACACCCTCCAACAGGGAGGAAACACAACAGAAATCCAA CCTAGAGCTGCTCCGCATCTCCCTGCTGCTCATCCAGTCGTGGCTGGA GCCCGTGCAGTTCCTCAGGAGTGTCTTCGCCAACAGCCTGGTGTACGG CGCCTCTGACAGCAACGTCTATGACCTCCTAAAGGACCTAGAGGAAG GCATCCAAACGCTGATGGGGAGGCTGGAAGATGGCAGCCCCCGGACT GGGCAGATCTTCAAGCAGACCTACAGCAAGTTCGACACAAACTCACA CAACGATGACGCACTACTCAAGAACTACGGGCTGCTCTACTGCTTCAG GAAGGACATGGCAAGGTCGAGACATTCCTGCGCATCGTGCAGTGCCG CTCTGTGGAGGGCAGCTGTGGCTTCTAGCTGCCCGGGTGGCATCCCTG TGACCCCTCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGT GCCCACCAGCCTTGTCCTAATAAAATTAAGTTGCATC

FIG. 77B

Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu Ser Arg Pro Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Gliu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp Leu Gln Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln CysArg Ser Val Glu Gly Ser Cys Gly Phe

FIG. 78A

TTATCTTTTGTCCTTGCTGCTCATTGGCTTCTGGGACTGCGTGACCTGT CACGGGAGCCCTGTGGACATCTGCACAGCCAAGCCGCGGGACATTCC CATGAATCCCATGTGCATTTACCGCTCCCCGGAGAAGAAGGCAACTG AGGATGAGGGCTCAGAACAGAAGATCCCGGAGGCCACCAACCGGCG TGTCTGGGAACTGTCCAAGGCCAATTCCCGCTTTGCTACCACTTTCTA TCAGCACCTGGCAGATTCCAAGAATGACAATGATAACATTTTCCTGTC ACCCCTGAGTATCTCCACGGCTTTTGCTATGACCAAGCTGGGTGCCTG TAATGACACCCTCCAGCAACTGATGGAGGTATTTAAGTTTGACACCAT ATCTGAGAAAACATCTGATCAGATCCACTTCTTTTTGCCAAACTGAA CTGCCGACTCTATCGAAAAGCCAACAAATCCTCCAAGTTAGTATCAGC CAATCGCCTTTTTGGAGACAAATCCCTTACCTTCAATGAGACCTACCA GGACATCAGTGAGTTGGTATATGGAGCCAAGCTCCAGCCCCTGGACT TCAAGGAAAATGCAGAGCAATCCAGAGCGGCCATCAACAAATGGGTG TCCAATAAGACCGAAGGCCGAATCACCGATGTCATTCCCTCGGAAGC CATCAATGAGCTCACTGTTCTGGTGCTGGTTAACACCATTTACTTCAA TGTTCTACAAGGCTGATGGAGAGTCGTGTTCAGCATCTATGATGTACC AGGAAGGCAAGTTCCGTTATCGGCGCGTGGCTGAAGGCACCCAGGTG CTTGAGTTGCCCTTCAAAGGTGATGACATCACCATGGTCCTCATCTTG CCCAAGCCTGAGAAGAGCCTGGCCAAGGTGGAGAAGGAACTCACCCC AGAGGTGCTGCAGGAGTGGCTGGATGAATTGGAGGAGATGATGCTGG TGGTCCACATGCCCCGCTTCCGCATTGAGGACGGCTTCAGTTTGAAGG AGCAGCTGCAAGACATGGGCCTTGTCGATCTGTTCAGCCCTGAAAAG TCCAAACTCCCAGGTATTGTTGCAGAAGGCCGAGATGACCTCTATGTC TCAGATGCATTCCATAAGGCATTTCTTGAGGTAAATGAAGAAGGCAG TGAAGCAGCTGCAAGTACCGCTGTTGTGATTGCTGGCCGTTCGCTAAA CCCCAACAGGGTGACTTTCAAGGCCAACAGGCCTTTCCTGGTTTTTAT AAGAGAAGTTCCTCTGAACACTATTATCTTCATGGGCAGAGTAGCCA ACCCTTGTGTTAAGTAA

315/497

FIG. 78B

Met Tyr Ser Asn Val Ile Gly Thr Val Thr Ser Gly Lys Arg Lys Val Tyr Leu Leu Ser Leu Leu Leu Ile Gly Phe Trp Asp Cys Val Thr Cys His Gly Ser Pro Val Asp He Cvs Thr Ala Lvs Pro Arg Asp He Pro Met Asn Pro Met Cys He Tyr Arg Ser Pro Glu Lys Lys Ala Thr Glu Asp Glu Gly Ser Glu Gln Lys Ile Pro Glu Ala Thr Asn Arg Arg Val Trp Glu Leu Ser Lys Ala Asn Ser Arg Phe Ala Thr Thr Phe Tyr Gln His Leu Ala Asp Ser Lys Asn Asp Asn Asp Asn Ile Phe Leu Ser Pro Leu Ser Ile Ser Thr Ala Phe Ala Met Thr Lys Leu Gly Ala Cys Asn Asp Thr Leu Gln Gln Leu Met Glu Val Phe Lys Phe Asp Thr Ile Ser Glu Lys Thr Ser Asp Gln Ile His Phe Phe Phe Ala Lys Leu Asn Cys Arg Leu Tyr Arg Lys Ala Asn Lys Ser Ser Lys Leu Val Ser Ala Asn Arg Leu Phe Gly Asp Lys Ser Leu Thr Phe Asn Glu Thr Tyr Gln Asp Ile Ser Glu Leu Val Tyr Gly Ala Lys Leu Gln Pro Leu Asp Phe Lys Glu Asn Ala Glu Gln Ser Arg Ala Ala Ile Asn Lys Trp Val Ser Asn Lys Thr Giu Gly Arg Ile Thr Asp Val Ile Pro Ser Glu Ala Ile Asn Glu Leu Thr Val Leu Val Leu Val Asn Thr Ile Tyr Phe Lys Gly Leu Trp Lys Ser Lys Phe Ser Pro Glu Asn Thr Arg Lys Glu Leu Phe Tyr Lys Ala Asp Gly Glu Ser Cys Ser Ala Ser Met Met Tyr Gln Glu Gly Lys Phe Arg Tyr Arg Arg Val Ala Glu Gly Thr Gln Val Leu Glu Leu Pro Phe Lys Gly Asp Asp Ile Thr Met Val Leu Ile Leu Pro Lys Pro Glu Lys Ser Leu Ala Lys Val Glu Lys Glu Leu Thr Pro Glu Val Leu Gln Glu Trp Leu Asp Glu Leu Glu Glu Met Met Leu Val Val His Met Pro Arg Phe Arg Ile Glu Asp Gly Phe Ser Leu Lys Glu Gln Leu Gln Asp Met Gly Leu Val Asp Leu Phe Ser Pro Glu Lys Ser Lys Leu Pro Gly Ile Val Ala Glu Gly Arg Asp Asp Leu Tyr Val Ser Asp Ala Phe His Lys Ala Phe Leu Glu Val Asn Glu Glu Gly Ser Glu Ala Ala Ala Ser Thr Ala Val Val Ile Ala Gly Arg Ser Leu Asn Pro Asn Arg Val Thr Phe Lys Ala Asn Arg Pro Phe Leu Val Phe Ile Arg Glu Val Pro Leu Asn Thr He He Phe Met Glv Arg Val Ala Asn Pro Cys Val Lys

FIG. 79A

ATGGATTACTACAGAAAATATGCAGCTATCTTTCTGGTCACATTGTCG
GTGTTTCTGCATGTTCCATTCCGCTCCTGATGTGCAGGATTGCCCAG
AATGCACGCTACAGGAAAACCCATTCTTCTCCCAGCCGGGTGCCCCA
ATACTTCAGTGCATGGGCTGCTTCTCTCTAGAGCATATCCCACTCCA
CTAAGGTCCAAGAAGACGATGTTGGTCCAAAAGAACGTCACCTCAGA
GTCCACTTGCTGTGTAGCTAAATCATATAACAGGGTCACAGTAATGGG
GGGTTTCAAAGTGGAGAACCACACGGCGTGCCACTGCAGTACTTGTT
ATTATCACAAAATCTTAA

FIG. 79B

Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gin Asp Cys Pro Giu Cys Thr Leu Gin Giu Asn Pro Phe Phe Ser Gin Pro Giy Ala Pro Ile Leu Gin Cys Met Giy Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu Val Gin Lys Asn Val Thr Ser Giu Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Giy Giy Phe Lys Val Giu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser

FIG. 79C

ATGGAGATGTTCCAGGGGCTGCTGCTGCTGCTGAGCATGGGC
GGGACATGGGCATCCAAGGAGCCGCTTCGGCCACGGTGCCGCCCCAT
CAATGCCACCCTGGCTGTGGAGAAGGAGGGCTGCCCCCAT
CCGTCAACACCACCATCTGTGCCGGCTACTGCCCACCATGACCCGC
TGCTGCAGGGGTCCTGCCGGCCCTGCCTCAGGTGGTGTGCAACTACC
GCGATGTGCGCTTCGAGTCCATCCGGCTCCTGGCTGCCCGCGCGGGG
TGAACCCCGTGGTCCTACGCCGCTCCTGCTGCCCCCCGCGGCG
TGAACCCCGTGCTCCAAGCCCATGACTGCAGGACCACCCC
TTGACCTGTGATGACCCCCGGTTCCAGGACTCCTTCCAAAGGCC
CCTCCCCCAGCCTTCCAAGCCCATCCCGACTCCCGGGGGCCTCGGAC
ACCCCGATCCTC CACAATAA

FIG. 79D

Met Glu Met Phe Gln Gly Leu Leu Leu Leu Leu Leu Leu Ser Met Gly Gly Thr Trp Ala Ser Lys Glu Fro Leu Arg Pro Arg Cys Arg Pro Ile Asn Ala Thr Leu Ala Val Glu Lys Glu Gly Cys Pro Val Cys Ile Thr Val Asn Thr Thr Ile Cys Ala Gly Tyr Cys Pro Thr Met Thr Arg Val Leu Gln Gly Val Leu Pro Ala Leu Pro Gln Val Val Cys Asn Tyr Arg Asp Val Arg Phe Glu Ser Ile Arg Leu Pro Gly Cys Pro Arg Gly Val Asn Pro Val Val Ser Tyr Ala Val Ala Leu Ser Cys Gln Cys Ala Leu Cys Arg Arg Ser Thr Thr Asp Cys Gly Gly Pro Lys Asp His Pro Leu Thr Cys Asp Asp Pro Arg Phe Gln Asp Ser Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Gln

FIG. 80A

318/497

ATGCGTCCCCTGCGCCCCCGCGCCGCGCTGCTGGCCTCCTGGCCTCG CTCCTGGCCGCGCCCCGGTGGCCCCGGCCGAGGCCCCGCACCTGGT GCAGGTGGACGCGCCCCGCGCGCTGTGGCCCCTGCGGCGCTTCTGGA GGAGCACAGGCTTCTGCCCCCCGCTGCCACACAGCCAGGCTGACCAG TACGTCCTCAGCTGGGACCAGCAGCTCAACCTCGCCTATGTGGGCGCC GTCCCTCACCGCGCATCAAGCAGGTCCGGACCCACTGGCTGCTGGA GCTTGTCACCACCAGGGGGTCCACTGGACGGGCCTGAGCTACAACT TCACCCACCTGGACGGGTACTTGGACCTTCTCAGGGAGAACCAGCTCC TCCCAGGGTTTGAGCTGATGGGCAGCGCCTCGGGCCACTTCACTGACT TTGAGGACAAGCAGCAGGTGTTTGAGTGGAAGGACTTGGTCTCCAGC CTGGCCAGGAGATACATCGGTAGGTACGGACTGGCGCATGTTTCCAA GTGGAACTTCGAGACGTGGAATGAGCCAGACCACCACGACTTTGACA ACGTCTCCATGACCATGCAAGGCTTCCTGAACTACTACGATGCCTGCT GGCGACTCCTTCCACACCCCACCGCGATCCCCGCTGAGCTGGGGCCTC CTGCGCCACTGCCACGACGGTACCAACTTCTTCACTGGGGAGGCGGG CGTGCGGCTGGACTACATCTCCCTCCACAGGAAGGGTGCGCGCAGCT CCATCTCCATCCTGGAGCAGGAGAAGGTCGTCGCGCAGCAGATCCGG CAGCTCTTCCCCAAGTTCGCGGACACCCCCATTTACAACGACGAGGCG GACCCGCTGGTGGGCTGGTCCCTGCCACAGCCGTGGAGGGCGGACGT GACCTACGCGCCATGGTGGTGAAGGTCATCGCGCAGCATCAGAACC TGCTACTGGCCAACACCACCTCCGCCTTCCCCTACGCGCTCCTGAGCA ACGACAATGCCTTCCTGAGCTACCACCCGCACCCCTTCGCGCAGCGCA CAGCTGTTGCGCAAGCCGGTGCTCACGGCCATGGGGCTGCTGGCGCT GCTGGATGAGGAGCAGCTCTGGGCCGAAGTGTCGCAGGCCGGGACCG TCCTGGACAGCAACCACGGTGGGCGTCCTGGCCAGCGCCCACCGC CCCCAGGCCCGCCGACGCCTGGCGCGCGCGCGTGCTGATCTACGC GAGCGACGACCCCGCGCCCCACCCCAACCGCAGCGTCGCGGTGACCC TGCGGCTGCGCGGGTGCCCCCCGGCCCGGCCTGGTCTACGTCACG CGCTACCTGGACAACGGGCTCTGCAGCCCCGACGGCGAGTGGCGGCG CCTGGGCCGGCCGTCTTCCCCACGGCAGAGCAGTTCCGGCGCATGC GCGCGGCTGAGGACCCGGTGGCCGCGCGCCCCCCCTTACCCGCC GGCGGCCGCCTGACCCTGCGCCCCGCGCTGCGGCTGCCGTCGCTTTTG CTGGTGCACGTGTGTGCGCGCCCCGAGAAGCCGCCCGGGCAGGTCAC GCGGCTCCGCCCCTGCCCCTGACCCAAGGGCAGCTGGTTCTGGTCTG GTCGGATGAACACGTGGGCTCCAAGTGCCTGTGGACATACGAGATCC AGTTCTCTCAGGACGGTAAGGCGTACACCCCGGTCAGCAGGAAGCCA TCGACCTTCAACCTCTTTGTGTTCAGCCCAGACACAGGTGCTGTCTCT GGCTCCTACCGAGTTCGAGCCCTGGACTACTGGGCCCGACCAGGCCC CTTCTCGGACCCTGTGCCGTACCTGGAGGTCCCTGTGCCAAGAGGGCC CCCATCCCCGGGCAATCCAT GA

FIG. 80B

Met Arg Pro Leu Arg Pro Arg Ala Ala Leu Leu Ala Leu Leu Ala Ser Leu Leu Ala Ala Pro Pro Val Ala Pro Ala Glu Ala Pro His Leu Val Gin Val Asp Ala Ala Arg Ala Leu Trp Pro Leu Arg Arg Phe Trp Arg Ser Thr Gly Phe Cys Pro Pro Leu Pro His Ser Gln Ala Asp Gln Tyr Val Leu Ser Trp Asp Gln Gln Leu Asn Leu Ala Tyr Val Gly Ala Val Pro His Arg Gly Ile Lys Gln Val Arg Thr His Trp Leu Leu Glu Leu Val Thr Thr Arg Gly Ser Thr Gly Arg Gly Leu Ser Tyr Asn Phe Thr His Leu Asp Gly Tyr Leu Asp Leu Leu Arg Glu Asn Gln Leu Leu Pro Gly Phe Glu Leu Met Gly Ser Ala Ser Gly His Phe Thr Asp Phe Glu Asp Lys Gln Gln Val Phe Glu Trp Lys Asp Leu Val Ser Ser Leu Ala Arg Arg Tyr Ile Gly Arg Tyr Gly Leu Ala His Val Ser Lys Trp Asn Phe Glu Thr Trp Asn Glu Pro Asp His His Asp Phe Asp Asn Val Ser Met Thr Met Gln Gly Phe Leu Asn Tyr Tyr Asp Ala Cys Ser Glu Gly Leu Arg Ala Ala Ser Pro Ala Leu Arg Leu Gly Gly Pro Gly Asp Ser Phe His Thr Pro Pro Arg Ser Pro Leu Ser Trp Gly Leu Leu Arg His Cys His Asp Gly Thr Asn Phe Phe Thr Gly Glu Ala Gly Val Arg Leu Asp Tyr Ile Ser Leu His Arg Lys Gly Ala Arg Ser Ser Ile Ser Ile Leu Glu Gln Glu Lys Val Val Ala Gln Gin Ile Arg Gin Leu Phe Pro Lys Phe Ala Asp Thr Pro Ile Tyr Asn Asp Glu Ala Asp Pro Leu Val Gly Trp Ser Leu Pro Gln Pro Trp Arg Ala Asp Val Thr Tyr Ala Ala Met Val Val Lys Val Ile Ala Gln His Gln Asn Leu Leu Leu Ala Asn Thr Thr Ser Ala Phe Pro Tyr Ala Leu Leu Ser Asn Asp Asn Ala Phe Leu Ser Tyr His Pro His Pro Phe Ala Gln Arg Thr Leu Thr Ala Arg Phe Gln Val Asn Asn Thr Arg Pro Pro His Val Gln Leu Leu Arg Lys Pro Val Leu Thr Ala Met Gly Leu Leu Ala Leu Leu Asp Glu Glu Gln Leu Tro Ala Glu Val Ser Gln Ala Gly Thr Val Leu Asp Ser Asn His Thr Val Gly Val Leu Ala Ser Ala His Arg Pro Gln Gly Pro Ala Asp Ala Trp Arg Ala Ala Val Leu Ile Tyr Ala Ser Asp Asp Thr Arg Ala His Pro Asn Arg Ser Val Ala Val Thr Leu Arg Leu Arg Gly Val Pro Pro Gly Pro Gly Leu Val Tyr Val Thr Arg Tyr Leu Asp Asn Gly Leu Cys Ser Pro Asp Gly Glu Trp Arg Arg Leu Gly Arg Pro Val Phe Pro Thr Ala Glu Gln Phe Arg Arg Met Arg Ala Ala Glu Asp Pro Val Ala Ala Ala Pro Arg Pro Leu Pro Ala Gly Gly Arg Leu Thr Leu Arg Pro Ala Leu Arg Leu Pro Ser Leu Leu Leu Val His Val Cvs Ala Arg Pro Glu Lys Pro Pro Gly Gln Val Thr Arg Leu Arg Ala Leu Pro Leu Thr Gln Gly Gln Leu Val Leu Val Trp Ser Asp Glu His Val Gly Ser Lys Cys Leu Trp Thr Tyr Glu Ile Gln Phe Ser Gln Asp Gly Lys Ala Tyr Thr Pro Val Ser Arg Lys Pro Ser Thr Phe Asn Leu Phe Val Phe Ser Pro Asp Thr Gly Ala Val Ser Gly Ser Tyr Arg Val Arg Ala Leu Asp Tyr Trp Ala Arg Pro Gly Pro Phe Ser Asp Pro Val Pro Tyr Leu Glu Val Pro Val Pro Arg Gly Pro Pro Ser Pro Gly Asn Pro

320/497

FIG. 81A

ATGCAGCTGAGGAACCCAGAACTACATCTGGGCTGCGCGCTTGCGCT TCGCTTCCTGGCCCTCGTTTCCTGGGACATCCCTGGGGCTAGAGCACT AGCGCTTCATGTGCAACCTTGACTGCCAGGAAGAGCCAGATTCCTGC ATCAGTGAGAAGCTCTTCATGGAGATGGCAGAGCTCATGGTCTCAGA AGGCTGGAAGGATGCAGGTTATGAGTACCTCTGCATTGATGACTGTTG GATGGCTCCCCAAAGAGATTCAGAAGGCAGACTTCAGGCAGACCCTC AGCGCTTTCCTCATGGGATTCGCCAGCTAGCTAATTATGTTCACAGCA AAGGACTGA'AGCTAGGGATTTATGCAGATGTTGGAAATAAAACCTGC GCAGGCTTCCCTGGGAGTTTTGGATACTACGACATTGATGCCCAGACC TTTGCTGACTGGGGAGTAGATCTGCTAAAATTTGATGGTTGTTACTGT GACAGTTTGGAAAATTTGGCAGATGGTTATAAGCACATGTCCTTGGCC CTGAATAGGACTGGCAGAAGCATTGTGTACTCCTGTGAGTGGCCTCTT TATATGTGGCCCTTTCAAAAGCCCAATTATACAGAAATCCGACAGTAC TGCAATCACTGGCGAAATTTTGCTGACATTGATGATTCCTGGAAAAGT ATAAAGAGTATCTTGGACTGGACATCTTTTAACCAGGAGAGAATTGTT GATGTTGCTGGACCAGGGGGTTGGAATGACCCAGATATGTTAGTGAT TGGCAACTTTGGCCTCAGCTGGAATCAGCAAGTAACTCAGATGGCCCT CTGGGCTATCATGGCTGCTCCTTTATTCATGTCTAATGACCTCCGACA CATCAGCCCTCAAGCCAAAGCTCTCCTTCAGGATAAGGACGTAATTGC CATCAATCAGGACCCCTTGGGCAAGCAAGGGTACCAGCTTAGACAGG GAGACAACTTTGAAGTGTGGGAACGACCTCTCTCAGGCTTAGCCTGG GCTGTAGCTATGATAAACCGGCAGGAGATTGGTGGACCTCGCTCTTAT ACCATCGCAGTTGCTTCCCTGGGTAAAGGAGTGGCCTGTAATCCTGCC TGCTTCATCACACAGCTCCTCCCTGTGAAAAGGAAGCTAGGGTTCTAT GAATGGACTTCAAGGTTAAGAAGTCACATAAATCCCACAGGCACTGT TTTGCTTCAGCTAGAAAATACAATGCAGATGTCATTAAAAGACTTACT TTAA

321/497

FIG. 81B

Met Gln Leu Arg Asn Pro Glu Leu His Leu Gly Cys Ala Leu Ala Leu Arg Phe Leu Ala Leu Val Ser Trp Asp Ile Pro Gly Ala Arg Ala Leu Asp Asn Gly Leu Ala Arg Thr Pro Thr Met Gly Trp Leu His Trp Glu Arg Phe Met Cys Asn Leu Asp Cys Gln Glu Glu Pro Asp Ser Cys Ile Ser Glu Lys Leu Phe Met Glu Met Ala Glu Leu Met Val Ser Glu Gly Trp Lys Asp Ala Gly Tyr Glu Tyr Leu Cys Ile Asp Asp Cys Trp Met Ala Pro Gln Arg Asp Ser Glu Gly Arg Leu Gln Ala Asp Pro Gln Arg Phe Pro His Gly Ile Arg Gln Leu Ala Asn Tyr Val His Ser Lys Gly Leu Lys Leu Gly Ile Tyr Ala Asp Val Gly Asn Lys Thr Cys Ala Gly Phe Pro Gly Ser Phe Gly Tyr Tyr Asp Ile Asp Ala Gln Thr Phe Ala Asp Trp Gly Val Asp Leu Leu Lys Phe Asp Gly Cys Tyr Cys Asp Ser Leu Glu Asn Leu Âla Asp Gly Tyr Lys His Met Ser Leu Ala Leu Asn Arg Thr Gly Arg Ser Ile Val Tyr Ser Cys Glu Trp Pro Leu Tyr Met Trp Pro Phe Gln Lys Pro Asn Tyr Thr Glu Ile Arg Gln Tyr Cys Asn His Trp Arg Asn Phe Ala Asp Ile Asp Asp Ser Trp Lys Ser Ile Lys Ser Ile Leu Asp Trp Thr Ser Phe Asn Gln Glu Arg Ile Val Asp Val Ala Gly Pro Gly Gly Trp Asn Asp Pro Asp Met Leu Val Ile Gly Asn Phe Gly Leu Ser Trp Asn Gln Gln Val Thr Gln Met Ala Leu Trp Ala Ile Met Ala Ala Pro Leu Phe Met Ser Asn Asp Leu Arg His Ile Ser Pro Gln Ala Lys Ala Leu Leu Gln Asp Lys Asp Val Ile Ala Ile Asn Gln Asp Pro Leu Gly Lys Gln Gly Tyr Gln Leu Arg Gln Gly Asp Asn Phe Glu Val Trp Glu Arg Pro Leu Ser Gly Leu Ala Trp Ala Val Ala Met Ile Asn Arg Gin Glu Ile Gly Gly Pro Arg Ser Tyr Thr Ile Ala Val Ala Ser Leu Gly Lys Gly Val Ala Cys Asn Pro Ala Cys Phe Ile Thr Gln Leu Leu Pro Val Lys Arg Lys Leu Gly Phe Tyr Glu Trp Thr Ser Arg Leu Arg Ser His Ile Asn Pro Thr Gly Thr Val Leu Leu Gln Leu Glu Asn Thr Met Gln Met Ser Leu Lys Asp Leu Leu

WO 2004/099231

322/497

FIG. 82A

ATGGCGCCGTCGCCGTCTGGGCCGCCGTCGGACTGGAGCT CTGGGCTGCGGCGCACGCCTTGCCCGCCCAGGTGGCATTTACACCCTA · CGCCCGGAGCCCGGGAGCACATGCCGGCTCAGAGAATACTATGACC AGACAGCTCAGATGTGCTGCAGCAAATGCTCGCCGGGCCAACATGCA AAAGTCTTCTGTACCAAGACCTCGGACACCGTGTGTGACTCCTGTGAG GACAGCACATACACCCAGCTCTGGAACTGGGTTCCCGAGTGCTTGAG CTGTGGCTCCCGCTGTAGCTCTGACCAGGTGGAAACTCAAGCCTGCAC TCGGGAACAGAACCGCATCTGCACCTGCAGGCCCGGCTGGTACTGCG CGCTGAGCAAGCAGGAGGGGTGCCGGCTGTGCGCGCCGCTGCGCAAG TGCCGCCCGGGCTTCGGCGTGGCCAGACCAGGAACTGAAACATCAGA CGTGGTGTGCAAGCCCTGTGCCCCGGGGACGTTCTCCAACACGACTTC ATCCACGGATATTTGCAGGCCCCACCAGATCTGTAACGTGGTGGCCAT CCCTGGGAATGCAAGCATGGATGCAGTCTGCACGTCCACGTCCCCCA CCCGGAGTATGGCCCEAGGGGCAGTACACTTACCCCAGCCAGTGTCC ACACGATCCCAACACACGCAGCCAACTCCAGAACCCAGCACTGCTCC AAGCACCTCCTTCCTGCTCCCAATGGGCCCCAGCCCCCCAGCTGAAGG GAGCACTGGCGACTTCGCTCTTCCAGTTGGACTGATTGTGGGTGTGAC AGCCTTGGGTCTACTAATAATAGGAGTGGTGAACTGTGTCATCATGAC CCAGGTGAAAAAGAAGCCCTTGTGCCTGCAGAGAGAAGCCAAGGTGC CTCACTTGCCTGCCGATAAGGCCCGGGGTACACAGGGCCCCGAGCAG CAGCACCTGCTGATCACAGCGCCGAGCTCCAGCAGCAGCTCCCTGGA GAGCTCGGCCAGTGCGTTGGACAGAAGGGCGCCCACTCGGAACCAGC CACAGGCACCAGGCGTGGAGGCCAGTGGGGCCGGGGAGGCCCGGGC CAGCACCGGGAGCTCAGATTCTTCCCCTGGTGGCCATGGGACCCAGG TCAATGTCACCTGCATCGTGAACGTCTGTAGCAGCTCTGACCACAGCT CACAGTGCTCCTCCCAAGCCAGCTCCACAATGGGAGACACAGATTCC AGCCCCTCGGAGTCCCCGAAGGACGAGCAGGTCCCCTTCTCCAAGGA GGAATGTGCCTTTCGGTCACAGCTGGAGACGCCAGAGACCCTGCTGG GGAGCACCGAAGAGAAGCCCCTGCCCCTTGGAGTGCCTGATGCTGGG ATGAAGCCCAGTTAACCAGGCCGGTGTGGGCTGTGTCGTAGCCAAGG TGGGCTGAGCCCTGGCAGGATGACCCTGCGAAGGGGCCCTGGTCCTT CCAGGC

FIG. 82B

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly Leu Leu Ile Ile Gly Val Val Asn Cys Val lle Met Thr Gln Val Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu Ile Thr Ala Pro Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser

FIG. 83A

Asp Ile Gin Met Thr Gin Ser Pro Ser Ser Leu Ser Ala Ser Val Giy Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gin Asp Val Asn Thr Ala Val Ala Trp Tyr Gin Gin Lys Pro Giy Lys Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Phe Leu Tyr Ser Giy Val Pro Ser Arg Phe Ser Giy Ser Arg Ser Giy Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Giu Asp Phe Ala Thr Tyr Tyr Cys Gin Gin His Tyr Thr Thr Pro Pro Thr Phe Giy Gin Giy Thr Lys Val Giu Ile Lys

FIG. 83B

Giu Val Gin Leu Val Giu Ser Giy Gly Gly Leu Val Gin Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys Asp Thr Tyr Ile His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

325/497

FIG. 84A.

Gih Val Tir Leu Arg Giu Ser Gly Pro Ala Leu Val Lys Pro Thr Gin Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser Gly Met Ser Val Gly Tri le Arg Gin Pro Ser Gly Lys Ala Leu Glu Trp Leu Ala Asp Ile Trp Trp Asp Asp Lys Lys Asp Tyr Asn Pro Ser Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asp Gin Val Val Leu Lys Val Thr Asn Met Asp Pro Ala Asp Thr Ala Thr Try Tyr Cys Ala Arg Ser Met Ile Thr Asn Trp Tyr Phe Asp Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ser

FIG. 84B

Asp Ile Gin Met Thr Gin Ser Pro Ser Thr Leu Ser Ala Ser Val Giy Asp Arg Val Thr Ile Thr Cys Lys Cys Gin Leu Ser Val Giy Tyr Met His Trp Tyr Gin Gin Lys Pro Giy Lys Ala Pro Lys Leu Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Giy Val Pro Ser Arg Phe Ser Giy Ser Giy Ser Giy Thr Giv Phe Thr Leu Thr Ile Ser Ser Leu Gin Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Phe Gin Giy Ser Giy Tyr Pro Phe Thr Phe Giy Giy Giy Thr Lys Leu Giu Ile Lys