EXERCICE 1:

Un radar de la gendarmerie nationale, installé sur une route où la vitesse est limitée à 90km/h, a relevé, dans un laps de temps précis, les vitesses de 200 véhicules dont la répartition est donnée dans le tableau ci-dessous.

1. Recopier et compléter le tableau ci-dessous

Vitesses x _i en km/h	[50 ;60[[60 ;70[[70 ;80[[80 ;90[[90 ;100[[100;110]
Nombre de véhicules n _i	8	27	88	60	13	4
Fréquences f _i						
Effectifs Cumulés Croissants						
Effectifs Cumulés Décroissants						

Arrondir les fréquences relatives au millième

- 2. Donner le pourcentage de véhicules roulant au-dessus de la vitesse autorisée.
- 3. Déterminer graphiquement une valeur approchée de la médiane après avoir représenté les polygones des effectifs cumulés. (*Unités : 1 cm pour 5 km/h en abscisses et 1 cm pour 20 véhicules en ordonnées*)
- 4. Déterminer, par le calcul, une valeur approchée, arrondie à 10⁻² près, de la médiane. *Le détail du raisonnement est demandé.*
- 5. Déterminer la moyenne \bar{x} de cette série statistique ainsi que son écart type σ au centième.

EXERCICE 2:

Résoudre les inéquations suivantes :

1.
$$-2x^2+7x-5 \le 0$$

$$2. \quad \frac{2x^2 + 5x + 3}{x^2 - 3x - 10} \le 0$$

$$3. \quad \frac{x-1}{3x-7} \le \frac{x-4}{x}$$

4.
$$(2x-3)(-2x^2+5x+3) \ge 0$$