On $\alpha-z$ -Rényi divergences in von Neumann algebras

Anna Jenčová

Mathematical Institute, Slovak Academy of Sciences

Joint work with Fumio Hiai

Granada, May 9, 2024

The α -z-Rényi divergences

For density operators ρ , σ on a finite dimensional Hilbert space:

$$D_{\alpha,z}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \frac{\text{Tr}\left(\rho^{\frac{\alpha}{2z}} \sigma^{\frac{1-\alpha}{z}} \rho^{\frac{\alpha}{2z}}\right)^z}{\text{Tr} \rho},$$

where $0 < \alpha \neq 1$ and z > 0.

For each z>0, $D_{\alpha,z}$ is a quantum extension of classical Rényi α -divergences for probability vectors p,q:

$$D_{\alpha}(p||q) = \frac{1}{\alpha - 1} \log(\sum_{i} p_i^{\alpha} q_i^{1 - \alpha}).$$

The α -z-Rényi divergences

Important special cases:

• Relative entropy:

$$\lim_{\alpha \to 1} D_{\alpha,z}(\rho \| \sigma) = D_1(\rho \| \sigma) = \frac{\operatorname{Tr}(\rho(\log \rho - \log \sigma))}{\operatorname{Tr} \rho}$$

• Petz-type (standard) Rényi divergence: z=1, $0<\alpha\neq 1$

$$D_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \frac{\text{Tr}(\rho^{\alpha} \sigma^{1 - \alpha})}{\text{Tr} \rho}$$

• Sandwiched Rényi divergence: $0 < z = \alpha \neq 1$

$$\tilde{D}_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \frac{\operatorname{Tr}\left(\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}}\right)}{\operatorname{Tr} \rho}$$

Data processing inequality (DPI)

For a quantum channel (CPTP map) Φ and any ho, σ :

$$D_{\alpha,z}(\Phi(\rho)\|\Phi(\sigma)) \le D_{\alpha,z}(\rho\|\sigma)$$

- not true for all values of α , z:
 - Petz-type: $\alpha \in (0,1) \cup (1,2]$;
 - sandwiched: $\alpha \in [1/2, 1) \cup (1, \infty]$;
 - general case:³

$$0 < \alpha < 1, \quad \max\{\alpha, 1 - \alpha\} \le z$$

or

$$\alpha > 1$$
, $\max{\{\alpha/2, \alpha - 1\}} \le z \le \alpha$.

¹Ando's convexity theorem, 1979

²S. Beigi, 2013; Frank and Lieb, 2013

³Carlen, Frank and Lieb, 2018; Zhang, 2020

Outline of this talk

- extension of $D_{\alpha,z}$ to the setting of von Neumann algebras
- DPI with respect to positive trace preserving maps (within the same bounds on parameters as in finite dimensions)
- equality in DPI implies sufficiency (reversibility) for 2-positive trace preserving maps

Our tools

- variational formula for $D_{\alpha,z}$
- known results in the sandwiched case
- properties of conditional expectations

von Neumann algebra extensions

The Rényi divergences were defined for normal positive functionals ψ, φ on a von Neumann algebra, using some technical tools:

- Araki relative entropy 4 : relative modular operator $\Delta_{\psi,arphi}$
- Petz-type (Petz quasi divergence) 5 : $\Delta_{\psi,\varphi}$
- \bullet sandwiched Rényi divergence: 6 Araki-Masuda or Kosaki $L^p\text{-}\mathsf{spaces}$
- general α -z Rényi divergences: Haagerup L^p -spaces

⁴Araki, 1976

⁵Petz, 1985

⁶Berta, Scholtz and Tomamichel, 2018; AJ, 2018; 2021

⁷Kato and Ueda, 2023; Kato, 2024

von Neumann algebras and Haagerup L^p -spaces

Let \mathcal{M} be a von Neumann algebra \mathcal{M} , with predual \mathcal{M}_* .

- Haagerup L^p -space $L^p(\mathcal{M})$, 0
- $\mathcal{M} = L^{\infty}(\mathcal{M}), \ \mathcal{M}_* \simeq L^1(\mathcal{M}), \ \varphi \mapsto h_{\varphi}, \ \operatorname{tr}(h_{\varphi}) = \varphi(1)$
- order isomorphism: $\mathcal{M}_*^+ \ni \varphi \mapsto h_{\varphi} \in L^1(\mathcal{M})^+$
- polar decomposition: for $0 , <math>k \in L^p(\mathcal{M})$, k = u|k|:

$$u\in\mathcal{M}$$
 partial isometry, $|k|=h_{\varphi}^{1/p}\in L^p(\mathcal{M})^+,\ \varphi\in\mathcal{M}_*^+$

von Neumann algebras and Haagerup L^p -spaces

For
$$0 , $k \in L^p(\mathcal{M})$, put $||k||_p = (\text{tr } |k|^p)^{1/p}$.$$

- For $1 , <math>||k||_p$ is a norm in $L^p(\mathcal{M})$, which is a reflexive Banach space, with dual $L^p(\mathcal{M})^* \simeq L^q(\mathcal{M})$, 1/p + 1/q = 1
- $||k||_p$ is a quasi norm for 0
- Hölder inequality: for 1/p+1/q=1/r, $0 < p,q,r \le \infty$, $h \in L^p(\mathcal{M})$, $k \in L^q(\mathcal{M})$:

$$hk \in L^r(\mathcal{M})$$
 and $||hk||_r \le ||h||_p ||k||_q$

$D_{\alpha,z}$ for von Neumann algebras

Let $0 < \alpha \neq 1$, 0 < z. For $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$, we define

$$D_{\alpha,z}(\psi \| \varphi) = \frac{1}{\alpha - 1} \log \frac{Q_{\alpha,z}(\psi \| \varphi)}{\psi(1)}$$

$$\alpha-1 \stackrel{\log}{\longrightarrow} \psi(1)$$
 where
$$Q_{\alpha,z}(\psi\|\varphi):=\begin{cases} \operatorname{tr}\left(h_{\varphi}^{\frac{1-\alpha}{2z}}h_{\psi}^{\frac{\alpha}{z}}h_{\varphi}^{\frac{1-\alpha}{2z}}\right)^{z}, & \text{if } 0<\alpha<1,\\ \|x\|_{z}^{z}, & \text{if } \alpha>1 \text{ and } h_{\psi}^{\frac{\alpha}{z}}=h_{\varphi}^{\frac{\alpha-1}{2z}}xh_{\varphi}^{\frac{\alpha-1}{2z}}\\ & \text{with } x\in s(\varphi)L^{z}(\mathcal{M})s(\varphi),\\ \infty, & \text{otherwise.} \end{cases}$$

Positive maps and the Petz dual

Let \mathcal{M}, \mathcal{N} be von Neumann algebras, $\gamma: \mathcal{N} \to \mathcal{M}$ positive unital normal map.

• The predual map: $\gamma_*:L^1(\mathcal{M})\to L^1(\mathcal{N})$,

$$\gamma_*(h_\omega) := h_{\omega \circ \gamma}, \quad \text{positive, trace preserving}$$

• Let $\rho \in \mathcal{M}_*^+$, $e:=s(\rho)$, $e_0:=s(\rho\circ\gamma)$. The Petz dual $\gamma_\rho^*:e\mathcal{M}e\to e_0\mathcal{N}e_0$ is determined by

$$(\gamma_{\rho}^*)_* (h_{\rho \circ \gamma}^{1/2} b h_{\rho \circ \gamma}^{1/2}) = h_{\rho}^{1/2} \gamma(b) h_{\rho}^{1/2}, \qquad b \in \mathcal{N}^+.$$

- positive, unital and normal,
- n-positive whenever γ is.

DPI in von Neumann algebra setting

For any $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$, and a positive unital normal map $\gamma: \mathcal{N} \to \mathcal{M}$:

$$D_{\alpha,z}(\psi \circ \gamma \| \varphi \circ \gamma) \le D_{\alpha,z}(\psi \| \varphi).$$

This was already proved for:

- Petz type: $\alpha \in (0,1) \cup (1,2]$, γ a Schwarz map⁸,
- sandwiched: $\alpha \in [1/2,1) \cup (1,\infty]$, γ completely positive⁹, γ positive¹⁰
- $D_{\alpha,z}$ with $0 < \alpha < 1$, $\max\{\alpha, 1 \alpha\} \le z$, γ positive¹¹

⁸Petz, 1985

⁹Berta, Scholz and Tomamichel, 2018

¹⁰AJ, 2018, 2021

¹¹Kato, 2024

DPI for sandwiched Rényi divergences, $\alpha>1$

Let $\tilde{D}_{\alpha}(\psi\|\varphi)=D_{\alpha,\alpha}(\psi\|\varphi)<\infty$. Then $h_{\psi}=h_{\varphi}^{\frac{\alpha-1}{2\alpha}}xh_{\varphi}^{\frac{\alpha-1}{2\alpha}}$ for some $x\in L^{\alpha}(\mathcal{M})^{+}$ and

$$\tilde{Q}_{\alpha}(\psi \| \varphi) = Q_{\alpha,\alpha}(\psi \| \varphi) = \|x\|_{\alpha}^{\alpha} = \|h_{\psi}\|_{\alpha,\varphi}^{\alpha}$$

Kosaki L^p -norm: complex interpolation between

$$\|h\|_1$$
 and $\|h_{arphi}^{rac{1}{2}}ah_{arphi}^{rac{1}{2}}\|_{\infty,arphi}=\|a\|.$

Since $\|\gamma_*(h)\|_1 \leq \|h\|_1$ and $\|\gamma_*(h_{\varphi}^{\frac{1}{2}}ah_{\varphi}^{\frac{1}{2}})\|_{\infty,\varphi\circ\gamma} = \|\gamma_{\varphi}^*(a)\| \leq \|a\|$,

$$\tilde{Q}_{\alpha}(\psi \circ \gamma \| \varphi \circ \gamma) = \|\gamma_*(h_{\psi})\|_{\alpha, \varphi \circ \gamma}^{\alpha} \le \|h_{\psi}\|_{\alpha, \varphi} = \tilde{Q}_{\alpha}(\psi \| \varphi), \quad \alpha > 1$$

by interpolation.

Variational expressions

Let $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$.

(i) Let $0 < \alpha < 1$, $\max\{\alpha, 1 - \alpha\} \le z$. Then

$$Q_{\alpha,z}(\psi||\varphi) = \inf_{a \in \mathcal{M}^{++}} \left\{ \alpha \operatorname{tr} \left(\left(h_{\psi}^{\frac{\alpha}{2z}} a h_{\psi}^{\frac{\alpha}{2z}} \right)^{\frac{z}{\alpha}} \right) + (1 - \alpha) \operatorname{tr} \left(\left(h_{\varphi}^{\frac{1-\alpha}{2z}} a^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right)^{\frac{z}{1-\alpha}} \right) \right\}.$$

(ii) Let $\alpha > 1$, $\max\{\alpha/2, \alpha - 1\} \le z$. Then

$$Q_{\alpha,z}(\psi \| \varphi) = \sup_{a \in \mathcal{M}^+} \left\{ \alpha \operatorname{tr} \left(\left(h_{\psi}^{\frac{\alpha}{2z}} a h_{\psi}^{\frac{\alpha}{2z}} \right)^{\frac{z}{\alpha}} \right) - (\alpha - 1) \operatorname{tr} \left(\left(h_{\varphi}^{\frac{\alpha - 1}{2z}} a h_{\varphi}^{\frac{\alpha - 1}{2z}} \right)^{\frac{z}{\alpha - 1}} \right) \right\}.$$

A useful inequality

 $\gamma: \mathcal{N} \to \mathcal{M}$ a normal positive unital map, $\rho \in \mathcal{M}_*^+$, $b \in \mathcal{N}^+$.

(1) If $p \in [1, \infty]$, then

$$\left\|h_{\rho\circ\gamma}^{\frac{1}{2p}}bh_{\rho\circ\gamma}^{\frac{1}{2p}}\right\|_p^p\geq \left\|h_\rho^{\frac{1}{2p}}\gamma(b)h_\rho^{\frac{1}{2p}}\right\|_p^p.$$

Proof.

Let $\omega \in \mathcal{N}_*^+$, $h_\omega = h_{\rho \circ \gamma}^{\frac{1}{2}} b h_{\rho \circ \gamma}^{\frac{1}{2}}$.

$$\begin{split} \left\| h_{\rho}^{\frac{1}{2p}} \gamma(b) h_{\rho}^{\frac{1}{2p}} \right\|_{p}^{p} &= Q_{p,p}(\omega \circ \gamma_{\rho}^{*} \| \rho) = Q_{p,p}(\omega \circ \gamma_{\rho}^{*} \| \rho \circ \gamma \circ \gamma_{\rho}^{*}) \\ &\leq \frac{12}{2} Q_{p,p}(\omega \| \rho \circ \gamma) = \left\| h_{\rho \circ \gamma}^{\frac{1}{2p}} b h_{\rho \circ \gamma}^{\frac{1}{2p}} \right\|_{p}^{p} \end{split}$$

DPI in the von Neumann algebra setting

Let $0 < \alpha < 1$, $\max\{\alpha, 1 - \alpha\} \le z$. We have

$$Q_{\alpha,z}(\psi\|\varphi) = \inf_{a \in \mathcal{M}^{++}} \left\{ \alpha \left\| h_{\psi}^{\frac{1}{2p}} a h_{\psi}^{\frac{1}{2p}} \right\|_{p}^{p} + (1-\alpha) \left\| h_{\varphi}^{\frac{1}{2r}} a^{-1} h_{\varphi}^{\frac{1}{2r}} \right\|_{r}^{r} \right\},$$

with $p:=rac{z}{lpha}$, $r:=rac{z}{1-lpha}.$ In the above bounds, $p,r\geq 1.$

By the inequality (1) and the Choi inequality:

$$\gamma(b)^{-1} \le \gamma(b^{-1}),$$

we get

$$Q_{\alpha,z}(\psi \circ \gamma \| \varphi \circ \gamma) \ge Q_{\alpha,z}(\psi \| \varphi).$$

A useful inequality

 $\gamma: \mathcal{N} \to \mathcal{M}$ a normal positive unital map, $\rho \in \mathcal{M}_*^+$, $b \in \mathcal{N}^+$.

(2) If $p \in [1/2, 1)$, then

$$\left\|h_{\rho\circ\gamma}^{\frac{1}{2p}}bh_{\rho\circ\gamma}^{\frac{1}{2p}}\right\|_p^p\leq \left\|h_\rho^{\frac{1}{2p}}\gamma(b)h_\rho^{\frac{1}{2p}}\right\|_p^p.$$

Proof.

Let $\omega \in \mathcal{N}_*^+$, $h_\omega = h_{\rho \circ \gamma}^{\frac{1}{2}} b h_{\rho \circ \gamma}^{\frac{1}{2}}$.

$$\begin{split} \left\| h_{\rho}^{\frac{1}{2p}} \gamma(b) h_{\rho}^{\frac{1}{2p}} \right\|_{p}^{p} &= Q_{p,p}(\omega \circ \gamma_{\rho}^{*} \| \rho) = Q_{p,p}(\omega \circ \gamma_{\rho}^{*} \| \rho \circ \gamma \circ \gamma_{\rho}^{*}) \\ &\geq {}^{13} Q_{p,p}(\omega \| \rho \circ \gamma) = \left\| h_{\rho \circ \gamma}^{\frac{1}{2p}} b h_{\rho \circ \gamma}^{\frac{1}{2p}} \right\|_{p}^{p} \end{split}$$

DPI in the von Neumann algebra setting

Let $\alpha > 1$, $\max\{\alpha/2, \alpha - 1\} \le z \le \alpha$. We have

$$Q_{\alpha,z}(\psi\|\varphi) = \sup_{a \in \mathcal{M}^+} \left\{ \alpha \left\| h_{\psi}^{\frac{1}{2p}} a h_{\psi}^{\frac{1}{2p}} \right\|_p^p - (\alpha - 1) \left\| h_{\varphi}^{\frac{1}{2q}} a h_{\varphi}^{\frac{1}{2q}} \right\|_q^q \right\},$$

with $p:=rac{z}{\alpha}$, $q:=rac{z}{\alpha-1}$. In the above bounds, $p\in[1/2,1)$, $q\geq 1$.

By the inequalities (1) and (2) we get

$$Q_{\alpha,z}(\psi \circ \gamma \| \varphi \circ \gamma) \le Q_{\alpha,z}(\psi \| \varphi).$$

DPI in the von Neumann algebra setting

Theorem

Let $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$ and let $\gamma: \mathcal{N} \to \mathcal{M}$ be a normal positive unital map.

Assume either of the following conditions:

- (i) $0 < \alpha < 1$, $\max\{\alpha, 1 \alpha\} \le z$,
- (ii) $\alpha > 1$, $\max\{\alpha/2, \alpha 1\} \le z \le \alpha$.

Then we have

$$D_{\alpha,z}(\psi \circ \gamma \| \varphi \circ \gamma) \le D_{\alpha,z}(\psi \| \varphi).$$

Sufficient channels and equality in DPI

A channel is a 2-positive unital normal map $\gamma: \mathcal{N} \to \mathcal{M}$.

Let $\psi, \varphi \in \mathcal{M}_*^+$. We say that γ is sufficient with respect to $\{\psi, \varphi\}$ if there exists a recovery channel $\beta : \mathcal{M} \to \mathcal{N}$ such that

$$\psi \circ \gamma \circ \beta = \psi, \qquad \varphi \circ \gamma \circ \beta = \varphi.$$

Petz theorem: Assume that $D_1(\psi \| \varphi) < \infty$. Then γ is sufficient with respect to $\{\psi, \varphi\}$ if and only if

$$D_1(\psi \circ \gamma \| \varphi \circ \gamma) = D_1(\psi \| \varphi).$$

A similar result holds for the transition probability $(D_{\frac{1}{2},1})$.

Known results on equality in DPI

Characterization of sufficient channels:

- Petz-type: $D_{\alpha,1}$, $\alpha \in (0,1) \cup (1,2)^{14}$
- sandwiched: $D_{\alpha,\alpha}$, $\alpha \in (1/2,1) \cup (1,\infty)^{15}$

Other equality conditions for $D_{\alpha,z}$ were found in finite dimensions¹⁶

- no clear relation to sufficiency of channels (apart from some special cases) 17

¹⁴AJ and Petz, 2006; Hiai et al, 2011; Hiai and Mosonyi 2017; Hiai, 2018

¹⁵AJ, 2018, 2021

¹⁶Leditzky, Rouzé and Datta, 2017; Zhang 2020

¹⁷Hiai and Mosonyi, 2017

Universal recovery channel

The Petz dual γ_{φ}^{*} is a universal recovery channel:

- $\varphi \circ \gamma \circ \gamma_{\varphi}^* = \varphi$
- Let $\psi \in \mathcal{M}_*^+$ be such that $s(\psi) \leq s(\varphi)$. Then γ is sufficient with respect to $\{\psi, \varphi\}$ if and only if

$$\psi \circ \gamma \circ \gamma_{\varphi}^* = \psi.$$

• Equivalently, $\psi \circ \mathcal{E} = \psi$ for the conditional expectation $\mathcal{E}: \mathcal{M} \to \mathcal{M}$ onto the fixed points of $\gamma \circ \gamma_{\varphi}^*$.

Sufficient channels and equality in DPI for $D_{lpha,z}$

Theorem

Let $0 < \alpha < 1$, $\max\{\alpha, 1 - \alpha\} \le z$.

Let $\psi, \varphi \in \mathcal{M}_*^+$ and let $\gamma: \mathcal{N} \to \mathcal{M}$ be a channel. Assume that

$$\alpha < z \text{ and } s(\varphi) \leq s(\psi) \quad \text{ or } \quad 1 - \alpha < z \text{ and } s(\psi) \leq s(\varphi).$$

Then γ is sufficient with respect to $\{\psi,\varphi\}$ if and only if

$$D_{\alpha,z}(\psi \circ \gamma \| \varphi \circ \gamma) = D_{\alpha,z}(\psi \| \varphi).$$

Sufficient channels and equality in DPI for $D_{lpha,z}$

Theorem

Let $\alpha > 1$, $\max{\{\alpha/2, \alpha - 1\}} \le z \le \alpha < z + 1$.

Let $\psi, \varphi \in \mathcal{M}_*^+$ be such that $D_{\alpha,z}(\psi \| \varphi) < \infty$. A channel $\gamma : \mathcal{N} \to \mathcal{M}$ is sufficient with respect to $\{\psi, \varphi\}$ if and only if

$$D_{\alpha,z}(\psi \circ \gamma \| \varphi \circ \gamma) = D_{\alpha,z}(\psi \| \varphi).$$

A sketch of proof for $\alpha > 1$

Put $\psi_0:=\psi\circ\gamma$, $\varphi_0:=\varphi\circ\gamma$, $p=\frac{z}{\alpha}$, $q=\frac{z}{\alpha-1}>1$.

- By the assumptions, $D_{\alpha,z}(\psi_0\|\varphi_0) \leq D_{\alpha,z}(\psi\|\varphi) < \infty$.
- In this case, for some $x \in L^z(\mathcal{M})^+$, $x_0 \in L^z(\mathcal{N})^+$:

$$h_{\psi}^{\frac{1}{p}} = h_{\varphi}^{\frac{1}{2q}} x h_{\varphi}^{\frac{1}{2q}}, \qquad h_{\psi_0}^{\frac{1}{p}} = h_{\varphi_0}^{\frac{1}{2q}} x_0 h_{\varphi_0}^{\frac{1}{2q}}$$

Variational expression:

$$Q_{\alpha,z}(\psi||\varphi) = \sup_{w \in L^q(\mathcal{M})^+} \left\{ \alpha \operatorname{tr}\left((x^{\frac{1}{2}} w x^{\frac{1}{2}})^p \right) - (\alpha - 1) \operatorname{tr}\left(w^q \right) \right\},$$

uniquely attained at $\bar{w} := x^{\alpha-1} \in L^q(\mathcal{M})^+$.

• Similarly for ψ_0 , φ_0 , $\bar{w}_0 := x_0^{\alpha-1} \in L^q(\mathcal{N})^+$.

A sketch of proof for $\alpha > 1$

• Let $\omega \in \mathcal{M}_*^+$, $\omega_0 \in \mathcal{N}_*^+$ be such that

$$h_{\omega} = h_{\varphi}^{\frac{q-1}{2q}} \bar{w} h_{\varphi}^{\frac{q-1}{2q}}, \qquad h_{\omega_0} = h_{\varphi_0}^{\frac{q-1}{2q}} \bar{w}_0 h_{\varphi_0}^{\frac{q-1}{2q}}.$$

Then

$$D_{q,q}(\omega_0 \| \varphi_0) = D_{\alpha,z}(\psi_0 \| \varphi_0) = D_{\alpha,z}(\psi \| \varphi) = D_{q,q}(\omega \| \varphi).$$

- By the variational formula and uniqueness, we get $\omega_0 = \omega \circ \gamma$.
- By known properties of $D_{q,q}$, q>1, γ is sufficient with respect to $\{\omega,\varphi\}$, so that

$$\omega \circ \mathcal{E} = \omega$$
.

• Extensions of $\mathcal E$ to the L^p -spaces and their properties 18 give us $\psi \circ \mathcal E = \psi$.

¹⁸Junge and Xu, 2003

Further results on $D_{\alpha,z}$

- Monotonicity in $z: z \mapsto D_{\alpha,z}(\psi \| \varphi)$ is
 - increasing on $(0, \infty)$ for $0 < \alpha < 1$,
 - decreasing on $[\alpha/2, \infty)$ for $\alpha > 1$.
- Monotonicity in α : $\alpha \mapsto D_{\alpha,z}(\psi \| \varphi)$ is
 - increasing on (0,1) for all z>0,
 - increasing on (1,2z] for z>1/2.
- The limits $\alpha \to 1$:
 - $\lim_{\alpha \nearrow 1} D_{\alpha,z}(\psi \| \varphi) = D_1(\psi \| \varphi)$ for z > 0,
 - $\lim_{\alpha\searrow 1}D_{\alpha,z}(\psi\|\varphi)=D_1(\psi\|\varphi)$ for z>1/2 if
 - $D_{\alpha,z}(\psi \| \varphi) < \infty$ for some $\alpha \in (1,2z]$.

Thank you for your attention.