

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/614,363	07/12/2000	John M. Airey	15-4-632.51	2211
28393	7590	01/11/2005	EXAMINER	
STERNE, KESSLER, GOLDSTEIN & FOX P.L.L.C. 1100 NEW YORK AVE., N.W. WASHINGTON, DC 20005			WANG, JIN CHENG	
			ART UNIT	PAPER NUMBER
			2672	

DATE MAILED: 01/11/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	09/614,363	AIREY ET AL.	
	Examiner	Art Unit	
	Jin-Cheng Wang	2672	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 02 December 2004.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-3, 5-13, 22, 26-33, 35-37 and 45-56 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-3, 5-13, 22, 26-33, 35-37, and 45-56 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
 Paper No(s)/Mail Date 12/02/2004.
- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date. _____.
 5) Notice of Informal Patent Application (PTO-152)
 6) Other: _____.

DETAILED ACTION

Response to Amendment

A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 11/02/2004 has been entered. Claims 4, 14-21, 23-25, 34, and 38-44 have been canceled. Claims 1-3, 5-13, 22, 26-33, 35-37, and 45-56 are pending in the application. Applicant's arguments with respect to claim 1 and similar claims have been considered but are moot in view of the new ground(s) of rejection.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

Claims 1-3, 5-13, 22, 26-33, 35-37, and 45-56 are rejected under 35 U.S.C. 103(a) as being unpatentable over Rossin et al. (US Patent No. 5,862,066) in view of Marc Olano, "A Programmable Pipeline for Graphics Hardware", PhD Dissertation, Department of Computer Science, University of North Carolina, Chapel Hill, April 1998 (hereinafter Olano).

Re claims 1 and 45, Rossin teaches a rasterization circuit coupled to the processor that rasterizes the primitive according to a rasterization process which operates using a floating point format (col. 7, lines 18-41; col. 3. lines 1-19), a frame buffer coupled to the rasterization circuit for storing a plurality of image values and a display screen coupled to the frame buffer for displaying an image according to the image values stored in the frame buffer (col. 2, lines 12-41. col. 3. lines 20-32). In other words, Rossin teaches a typical computer graphics system include a geometry accelerator, a rasterizer and a frame buffer. The output from the geometry accelerator, referred to as rendering data, is used by the rasterizer (and optional texture mapping hardware) to compute final screen space coordinates and R, G, B color values for each pixel constituting the primitives. The pixel data is stored in the frame buffer for display on a display screen. In that the geometry accelerator may be required to perform on the order of hundreds of millions of floating point calculations per second per chip. Functions of the geometry accelerator may include three-dimensional transformation, lighting, clipping, and perspective divide operations as well as plane equation generation, performed in floating point format. Geometry accelerator functions result in rendering data which is sent to the frame buffer subsystem for rasterization, and thereby the rasterization process which operates using a floating point format.

Rossin fails to explicitly teach “a floating point frame buffer.”

Olano teaches a floating point frame buffer and a rasterization process, PixelFlow, which operates on the floating point format (See Olano Fig. 2.1, 3.1, 3.2, 3.4, 5.2 and Page 68-79, 102-104). Therefore, having the combined teaching of Rossin and Olano as a whole, one of ordinary skill in the art would have found it obvious to modify the frame buffer of Rossin to achieve floating point precision (Olano Page 70) wherein the floating point frame buffer generates a

marked improvement in the rendered image quality (Olano Fig. 4.7 and Page 59) with more expensive computation load (Olano Page 69).

Rossin fails to explicitly teach a processor for performing geometric calculations on a plurality of vertices of a primitive. On the other hand, Olano teaches a pixel processor for performing geometric calculations on a plurality of vertices of a primitive (See Olano Fig. 2.1, 3.1, 3.2, 3.4, 5.2 and Page 68-75, 102-104). He teaches pixel processor receives geometry primitive data and performs either floating point or fixed point operations on the received geometry data. He discloses a graphics rendering pipeline mapped to the so called PixelFlow including a SIMD system of pixel processors performing modeling, transformation, primitive and interpolation, shading, lighting, atmospheric shading and image warping. In that the PixelFlow includes shaders for determining the shading and color variations across each surface wherein the shaders are executed sequentially including performing the surface shader to perform a certain class of texture lookups in which detailed surface geometry may be rendered using texture maps wherein the texture maps (Olano Page 31-32) are used to get different effects. In that he also teaches handling a floating point or fixed point frame buffer which is a portion of the rasterization pipeline within the graphics rendering pipeline. The color values received by the pipeline are represented in a floating point format which includes a mantissa portion and an exponent portion (Page 100). Therefore, having the combined teaching of Rossin and Olano as a whole, one of ordinary skill in the art would have found it obvious to modify the rasterization process of Rossin which acts on the floating point color values that incorporates a processor in a graphics pipeline of Olano for performing geometric calculations on a plurality of vertices of a primitive. Doing so would enable the color values being represented more efficiently resulting in

increased performance and accuracy (See Olano Fig. 4.7) for the graphics pipeline (See Olano Fig. 2.1, 3.1, 3.2, 3.4, 5.2 and Page 59, 68-79, 102-104) wherein the pipeline executing on the floating point values generates a marked improvement in the rendered image quality over the pipeline executing on the fixed point values (Olano Fig. 4.7 and Page 59) with more expensive computation load (Olano Page 69).

Re claims 2 and 46, Rossin and Olano disclose rasterization circuit performs scan conversion on vertices having floating point values (Rossin col. 2, lines 12-67). In other words, Rossin and Olano teach three-dimensional transformation, texture mapping, lighting, clipping, and perspective divide operations as well as plane equation generation performed in floating point format (Rossin col. 2, lines 12-67 and Olano Fig. 2.1, 3.1, 3.2, 3.4, 5.2 and Page 68-79, 102-104).

Re claims 3 and 47, Olano discloses a texture circuit coupled to the rasterization circuit with the graphics pipeline that applies a texture to the primitive, wherein the texture is specified by floating point values and a texture memory coupled to the texture circuit that stores a plurality of textures in floating point values (See Olano Fig. 2.1, 3.1, 3.2, 3.4, 5.2 and Page 68-75, 102-104).

Re claims 5 and 48, Rossin and Olano disclos the floating point format is comprised of sixteen bits (Rossin col. 1, lines 32-44 and Olano Fig. 2.1, 3.1, 3.2, 3.4, 5.2 and Page 68-79, 102-104).

Rossin and Olano disclose floating point values have 16 bits (Olano Fig. 2.1, 3.1, 3.2, 3.4, 5.2 and Page 68-79, 102-104)

Re claims 7 and 50, Rossin and Olano disclose a lighting circuit coupled to the rasterization circuit for performing a lighting function, wherein the lighting function executes on floating point values (Rossin col. 2, lines 42-67 and Olano Fig. 2.1, 3.1, 3.2, 3.4, 5.2 and Page 68-79, 102-104).

Re claims 6, 8-13 and 22, 49, and 51-56, the limitations of claims 6, 8-13, 22, 49 and 51-56 are analyzed as discussed with respect to claim 1.

Re claim 26, Olano discloses the steps of writing, storing, and reading the data in the frame buffer in the floating point format are further comprised of specifying the floating point format according to a specification, wherein the specification corresponds to a level of range and precision (See Olano Fig. 2.1, 3.1, 3.2, 3.4, 5.2 and Page 68-79, 102-104).

Re claim 31, Rossin and Olano disclose a computer system comprising a raster subsystem for performing a rasterization process, the rasterization process performed in a floating point format and a floating point frame buffer coupled to the raster subsystem for storing a plurality of floating point color values (Rossin col. 2, lines 12-67 and Olano Fig. 2.1, 3.1, 3.2, 3.4, 5.2 and Page 68-75, 102-104). In other words, Rossin and Olano teach a typical computer graphics system include a geometry accelerator, a rasterizer and a frame buffer in a graphics pipeline.

The output from the geometry accelerator, referred to as rendering data, is used by the rasterizer (and optional texture mapping hardware) to compute final screen space coordinates and R, G, B color values for each pixel constituting the primitives. The pixel data is stored in the frame buffer for display on a display screen. In that the geometry accelerator may be required to perform on the order of hundreds of millions of floating point calculations per second per chip. Functions of the geometry accelerator may include three-dimensional transformation, lighting,

clipping, and perspective divide operations as well as plane equation generation, performed in floating point format. Geometry accelerator functions result in rendering data which is sent to the frame buffer subsystem for rasterization.

Re claims 32-33 and 35, Olano discloses the floating point color values are written to, read from (for display purposes), and stored in the frame buffer (See Olano Fig. 2.1, 3.1, 3.2, 3.4, 4.7, 5.2 and Page 59, 68-79, 102-104).

Re claims 36-37, Olano discloses the floating point color values are comprised of 16 bits of data and the data are comprised of one sign bit, ten mantissa bits, and five exponent bits (See Olano Fig. 2.1, 3.1, 3.2, 3.4, 4.7, 5.2 and Page 59, 68-79, 102-104).

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jin-Cheng Wang whose telephone number is (703) 605-1213. The examiner can normally be reached on 8:00 - 6:30 (Mon-Thu).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Mike Razavi can be reached on (703) 305-4713. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Art Unit: 2672

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

jcw

MICHAEL RAZAVI
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2600