KO codes

Ashok Vardhan Makkuva (UIUC)

Outline

Motivation

Learning codes

KO codes

Future directions

Age of Information

How did it start?

How did it start?

The Bell System Technical Journal

Vol. XXVII

July, 1948

No. 3

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

THE recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist¹ and Hartley² on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information.

Mathematical model of communication

Communication codes

- Simple models: AWGN channel
 - Precise performance metrics

Challenge: Space of (encoders, decoders) very large

Information theory, Communication theory, Coding theory

Huge practical impact

Vision

- Discovery of codes
 - > Human eureka moments

Goal: Automate the discovery

Deep learning (DL)

DL success story

- Model deficiency
 - No analytical model
 - > AlexNet

- Algorithm deficiency
 - > Clear model
 - Space of algorithms large
 - > AlphaGo (Zero)

Breakthroughs of DL

Main goal

Can we automate the search for codes via DL?

Main goal

Main goal

Agenda

- New (deep learning) tools for classical problems
 - New state-of-the-art codes
 - Inherent practical value

- Insight into deep learning methods
 - Communication framework as a lens

Learning a new code

Learning a new code

Learning to decode

Vast literature

Supervised learning

- Nachmani et al., 2016
- Gruber et al. 2017
- > Cammerer et al., 2017
- Nachmani et al., 2018
- Kim et al., 2018a;b
- Vasic et al., 2018
- Teng et al., 2019
- > Nachmani & Wolf, 2019
- Buchberger et al., 2020
- Chen & Ye, 2021

Reinforcement learning

- Carpi et al., 2019
- Habib et al., 2020
- Doan et al., 2020

Learning to decode: summary

Fix the encoding

- DL decoders learn state-of-the-art decoders
 - Convolutional codes: Viterbi, BCJR, dynamic programming
 - Turbo codes: BCJR
 - RM & Polar codes: Successive Cancellation

- Clever architectural choices

Learning a new code

Code structure

Linear and binary: Classical codes

- Non-linear and real valued: Neural networks (NNs)
 - Fully connected NNs worse than repetition codes (Jiang et. al '19)
 - Still need a structure

Imparting structure

Capitalize on state-of-the-art codes

What class of codes?

Taxonomy of codes

Sequential codes

Eg. Convolutional and Turbo codes.

Graphical codes

Eg. LDPC codes.

Algebraic codes

Taxonomy of codes

Sequential codes

Eg. Convolutional and Turbo codes.

Graphical codes

Eg. LDPC codes.

Algebraic codes

Algebraic codes

Sequential codes

Eg. Convolutional and Turbo codes.

Graphical codes

Eg. LDPC codes.

Algebraic codes

Reed-Muller and Polar codes

Sequential codes

Eg. Convolutional and Turbo codes.

Graphical codes

Eg. LDPC codes.

Algebraic codes

Reed-Muller codes (RM)

Classical

- Muller, 1954
- > Efficient decoder by Reed, 1954

Recent Interest

- Polar codes
- RM codes are capacity achieving (very recent!)

Polar codes

Arikan, 2009

First codes proven to achieve capacity

Recent interest: 5G

RM and Polar

Common structure

Kronecker Operation on the Plotkin transform

Freezing the leaves

Structure: Kronecker Operation (KO)

More codes?

KO Codes

Encoding: RM and Polar

Plotkin mapping

KO neural network

KO encoder

Decoder

Matching decoder for KO encoder?

Dumer's decoder / Successive Cancellation (SC)

Plotkin revisited

$$(u, u \oplus v) \in \{0,1\}^{2n}$$

$$v \in \{0,1\}^n \quad u \in \{0,1\}^n$$

Decoding

SC decoder

Dumer, 2004-06 Arikan, 2009

SC decoder

First Decode *v*

Dumer, 2004-06 Arikan, 2009

SC decoder

First Decode v

Next Decode u

Dumer, 2004-06 Arikan, 2009

KO decoder

First Decode v

Next Decode u

KO decoder

KO (encoder, decoder)

Training KO Codes

Training KO Codes

Testing

Performance metrics

Reliability

Computational complexity

Baselines

KO codes vs. RM codes

KO codes vs. Polar codes

Setup

- Train and test on the same channel
 - > AWGN

- Robustness: Train and test on different channels
 - Rayleigh fading

Setup

- Train and test on the same channel
 - > AWGN

- Robustness: Train and test on different channels
 - Rayleigh fading

Setup #1: AWGN

Train and test on AWGN

KO codes beat RM

Code-dimension=46, Block length = 512

Signal-to-noise ratio(SNR) [dB]

KO codes beat RM

Code-dimension=37, Block length = 256

Signal-to-noise ratio(SNR) [dB]

KO beats Polar

Code-dimension=7, Block length = 64

Signal-to-noise ratio(SNR) [dB]

Setup

Train and test on the same channel

> AWGN

- Robustness: Train and test on different channels
 - Rayleigh fading

Setup #2: Robustness

Train on AWGN → Test under Rayleigh fading

Robustness: Fading channel

Signal-to-noise ratio(SNR) [dB]

Setup

- Train and test on the same channel
 - > AWGN

- Robustness: Train and test on different channels
 - Rayleigh fading

Complexity

- Computational complexity: O(n log n)
 - ➤ KO codes ≈ RM codes

- Number of operations
 - \triangleright RM codes (11k) \ll KO codes (550k)

Complexity

- Computational complexity: $O(n \log n)$
 - ➤ KO codes ≈ RM codes

- Number of operations
 - \triangleright RM codes (11k) \approx Tiny KO (44k) \ll KO codes (550k)

Why are KO codes good

Why are KO codes good

Surprising resemblance to Gaussian codes!

Gaussian like!

Code-dimension=46, Block length = 512

Pairwise distance between two codewords

- Training with complex decoding algorithms
 - Recursive Projection Aggregation (RPA)
 - > SC + list decoder

- Training with complex decoding algorithms
 - Recursive Projection Aggregation (RPA)
 - > SC + list decoder

Learning the frozen bits: Liao et al, 2020

- Training with complex decoding algorithms
 - Recursive Projection Aggregation (RPA)
 - > SC + list decoder

Learning the frozen bits: Liao et al, 2020

- Commercialization
 - Hardware implementation
 - Standardization (6G?)

- Discover new coding structures
 - Recursive: this work
 - Graph: LDPC
 - Sequential: convolutional
 - What is the best structure?

Theoretical analysis

Beyond point-to-point: Network coding

Collaborators

La Fin

Thank you!