# Commutative Ring Theory

Kei Thoma

February 12, 2023

# Contents

| Ι         | Rings                                         | 5                                 |  |  |  |
|-----------|-----------------------------------------------|-----------------------------------|--|--|--|
| 1         | Rings and Homomorphisms                       |                                   |  |  |  |
| 2         | Ideals                                        |                                   |  |  |  |
| 3         | Anatomy of Rings 3.1 Exercises and Notes      | 15 17 19 23                       |  |  |  |
| 4         | Polynomial Rings                              | 15                                |  |  |  |
| 5         | Quotient                                      | 17                                |  |  |  |
| 6         | Localization                                  | 19                                |  |  |  |
| 8         | Hierarchy of Rings 7.1 Integral Domains       | 24<br>25<br>26<br>27<br><b>29</b> |  |  |  |
|           | 8.1 Definition and Theorems                   | 29                                |  |  |  |
| ΙΙ        | Modules 8.3 Exercises and Notes               |                                   |  |  |  |
| 9         | Tensor Product 9.1 Definition and Theorems    | 39                                |  |  |  |
| 10        | DExact Sequences 10.1 Definition and Theorems | 43                                |  |  |  |
| 11        | Noetherian Modules                            | 45                                |  |  |  |
| <b>12</b> | 2 Artinian Modules                            | <b>47</b>                         |  |  |  |

4 CONTENTS

Part I

Rings

# Rings and Homomorphisms

### **Definition and Theorems**

**Definition 1** (Ring). A ring is a set A equipped with two binary operations + (addition) and  $\cdot$  (multiplication) satisfying the following three sets of axioms, called the ring axioms.

- 1. (A, +) is an abelian group.
- 2.  $(A, \cdot)$  is a semigroup.
- 3. Multiplication is distributive with respect to addition, meaning that
  - $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$  for all  $a, b, c \in A$  (left distributivity).
  - $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$  for all  $a,b,c \in A$  (right distributivity).

A ring is called unitary if it contains the multiplicative identity and commutative if multiplication is commutative.

**Intuition.** A ring may be understood as the generalization of the integers. Another way to see rings is a less well behaved field where the theory of dividing is due to rings missing the multiplicative identity richer.

**Remark.** In this text, we will primarily be concerned with commutative unitary rings, and thus, for brevity sake, we simply write "ring" and mean a commutative unitary ring.

**Example 1.1.** Some important examples of rings include the following.

- 1. The prototypical example is the ring of integers  $\mathbb{Z}$  with the two operations being of addition and multiplication.
- 2. Any field is a ring. In particular, the rational numbers  $\mathbb{Q}$ , the real numbers  $\mathbb{R}$ , and the complex numbers  $\mathbb{C}$  are rings.
- 3. The zero ring or trivial ring is the unique ring consisting of one element 0 with the operations + and  $\cdot$  defined such that 0+0=0 and  $0\cdot 0=0$ . It is the unique ring in which the additive and the multiplicative identity coincide.
- 4. the set of polynomials
- 5. an example of a finite ring
- 6. If S is a set, then the power set  $\mathcal{P}(S)$  of S becomes a ring if we define addition to be the symmetric difference of sets and multiplication to be intersection.

**Example 1.2.** Moreover, we have some examples of rings that are non-commutative or non-unitary.

1. Matrix ring is non-commutative

**Example 1.3.** Counterexamples of rings include the following.

- 1. The set of natural numbers  $\mathbb{N}$  with the usual operations is not a ring, since  $(\mathbb{N}, +)$  is not even a group.
- 2. Trivially, the emptyset regardless of the operations is not a ring.

**Definition 2** (Ring Homomorphism). A homomorphism from ring  $(A, +, \cdot)$  to a ring  $(B, \boxplus, \boxdot)$  is a map  $\varphi$  from A to B that preserves the ring operations.

**Example 2.1.** examples of ring homomorphism.

**Definition 3** (Subring). A subset S of A is called a subring if any of the following equivalent conditions holds.

**Proposition 4.** Let A be a ring and R and S subrings of A.

- 1. (ANY?) intersection stable
- 2. cartesian product is again a ring

**Example 4.1.** 1. Complement, of course not.

- 2. union, of course not.
- 3. difference, of course not
- 4. symmetric difference, of course not

### **Ideals**

**Definition 5** (Ideal). Let A be a ring. A subset  $\mathfrak{a} \subset A$  is called an ideal if it satisfies the following two conditions.

- 1.  $(\mathfrak{a}, +)$  is a subgroup of (A, +).
- 2. For every  $r \in A$  and every  $x \in \mathfrak{a}$ , it is  $rx \in \mathfrak{a}$ .

Given a subset  $S \subset A$ , by the ideal (S) that S generates, we mean the smallest ideal containing S. If an ideal is generated by a subset  $S \subset A$ , then the elements of this subset are called generators.

An ideal that is generated by a single element is called principal.

If an ideal  $\mathfrak{a}$  is not the whole ring A, then the ideal is called proper.

**Definition 6** (Ideal Operation). Let  $\mathfrak{a}$  and  $\mathfrak{b}$  be ideals of a ring A.

1. The sum of two ideals  $\mathfrak a$  and  $\mathfrak b$  is defined by

$$\mathfrak{a} + \mathfrak{b} = \{ a + b \mid a \in \mathfrak{a} \text{ and } b \in \mathfrak{b} \} = (\mathfrak{a}, \mathfrak{b})$$

which is again an ideal. It is the smallest ideal in A that contains  $\mathfrak a$  and  $\mathfrak b$ .

- 2. The product of an ideal
- 3. The intersection of
- 4. The radical of an ideal  $\mathfrak{a}$  is defined by

$$\sqrt{\mathfrak{a}} = \left\{ x \in A \mid x^n \in \mathfrak{a} \text{ for some } n \in \mathbb{N}^+ \right\}$$

which is again an ideal.

5. The transporter

*Proof.* We verify the statements made in the definition.

1. (a) " $\mathfrak{a} + \mathfrak{b}$  is an ideal.":

**Example 6.1.** The union of two ideals is **not** an ideal in general. Consider (2) and (3) in  $\mathbb{Z}$ . If  $(2) \cup (3)$  was an ideal, then 3-2=1 would be contained in  $(2) \cup (3)$ . But  $1 \notin (2)$  and  $1 \notin (3)$ , thus  $1 \notin (2) \cup (3)$ .

#### **Proposition 7.** Let $\mathfrak{a}$ be an ideal of A.

- 1.  $\mathfrak{a} = A$  if and only if  $1 \in \mathfrak{a}$  if and only if  $\mathfrak{a}$  contains an unit.
- 2.  $\mathfrak{a}^2 \subset \mathfrak{a}$ .
- 3.  $a \cdot b \subset a \cap b \subset a + b$ .
- 4.  $\mathfrak{a} \subset \mathfrak{a} + \mathfrak{b}$  and  $\mathfrak{b} \subset \mathfrak{a} + \mathfrak{b}$ .

#### **Proposition 8.** Let $\mathfrak{a}$ and $\mathfrak{b}$ be two ideals of a ring A.

- 1.  $\mathfrak{a} \subset \sqrt{\mathfrak{a}}$ .
- 2.  $\sqrt{\sqrt{\mathfrak{a}}} = \sqrt{\mathfrak{a}}$ .
- 3. If  $\mathfrak{a} \subset \mathfrak{b}$ , then  $\sqrt{\mathfrak{a}} \subset \sqrt{\mathfrak{b}}$ .
- 4.  $\sqrt{\mathfrak{a}} = A$  if and only if  $\mathfrak{a} = A$ .
- 5.  $\sqrt{\mathfrak{a} \cdot \mathfrak{b}} = \sqrt{\mathfrak{a} \cap \mathfrak{b}} = \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$ .
- 6.  $\sqrt{\mathfrak{a} + \mathfrak{b}} = \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$ .
- 7. If  $\mathfrak{a} = \mathfrak{p}^n$  for some prime ideal  $\mathfrak{p}$  and  $n \in \mathbb{N}^+$ , then  $\sqrt{\mathfrak{a}} = \mathfrak{p}$ .

#### *Proof.* We verify each statement.

- 1. Let  $x \in \mathfrak{a}$ , then trivially,  $x^1 \in \mathfrak{a}$ , so  $x \in \sqrt{\mathfrak{a}}$ .
- 2. Since  $\sqrt{\sqrt{\mathfrak{a}}} \supset \sqrt{\mathfrak{a}}$  from above, it suffices to verify the other inclusion. Let  $x \in \sqrt{\sqrt{\mathfrak{a}}}$ , then  $x^n \in \sqrt{\mathfrak{a}}$  and in turn,  $(x^n)^m \in \mathfrak{a}$ . Thus,  $x^{nm} \in \mathfrak{a}$ , therefore,  $x \in \sqrt{\mathfrak{a}}$ .
- 3. Suppose  $\mathfrak{a} \subset \mathfrak{b}$  and let  $x \in \sqrt{\mathfrak{a}}$ . Then,  $x^n \in \mathfrak{a}$  for some  $n \in \mathbb{N}^+$ , thus  $x^n \in \mathfrak{b}$ . It follows that  $x \in \sqrt{\mathfrak{b}}$ .
- 4. " $\Rightarrow$ ": Let  $\sqrt{\mathfrak{a}} = A$ , then for all  $x \in A$ , we have that  $x^n \in \mathfrak{a}$  for some  $n \in \mathbb{N}^+$ . In particular,  $1^n \in \mathfrak{a}$ , but  $1^n = 1$  for all  $n \in \mathbb{N}^+$ . Thus,  $\mathfrak{a} = A$ .
  - " $\Leftarrow$ ": On the other hand, let  $\mathfrak{a}=A$ . In general, it is  $\mathfrak{a}\subset\sqrt{\mathfrak{a}}$ , therefore  $A\subset\sqrt{\mathfrak{a}}$  which immediately yields the desired equality  $A=\sqrt{\mathfrak{a}}$ .
- 5. " $\sqrt{\mathfrak{a} \cdot \mathfrak{b}} \subset \sqrt{\mathfrak{a} \cap \mathfrak{b}}$ ": If  $x \in \sqrt{\mathfrak{a} \cdot \mathfrak{b}}$ , then  $x^n \in \mathfrak{a} \cdot \mathfrak{b}$  for some  $n \in \mathbb{N}^+$ . Since  $\mathfrak{a} \cdot \mathfrak{b} \subset \mathfrak{a} \cap \mathfrak{b}$ , we have  $x^n \in \mathfrak{a} \cap \mathfrak{b}$ , and it follows that  $x \in \sqrt{\mathfrak{a} \cap \mathfrak{b}}$ .
  - " $\sqrt{\mathfrak{a} \cdot \mathfrak{b}} \supset \sqrt{\mathfrak{a} \cap \mathfrak{b}}$ ": Let  $x \in \sqrt{\mathfrak{a} \cap \mathfrak{b}}$ , then  $x^n \in \mathfrak{a} \cap \mathfrak{b}$  for some  $n \in \mathbb{N}^+$ . Hence it is  $x^n \in \mathfrak{a}$  and  $x^n \in \mathfrak{b}$ , therefore  $x^n \cdot x^n = x^{2n} \in \mathfrak{a} \cdot \mathfrak{b}$ . Conclude  $x \in \sqrt{\mathfrak{a} \cdot \mathfrak{b}}$ .
  - " $\sqrt{\mathfrak{a} \cap \mathfrak{b}} \subset \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$ ": If  $x \in \sqrt{\mathfrak{a} \cap \mathfrak{b}}$ , then  $x^n \in \mathfrak{a} \cap \mathfrak{b}$ , thus  $x^n \in \mathfrak{a}$  and  $x^n \in \mathfrak{b}$ . We may write  $x \in \sqrt{\mathfrak{a}}$  and  $x \in \sqrt{\mathfrak{b}}$ , therefore  $x \in \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$ .
  - " $\sqrt{\mathfrak{a} \cap \mathfrak{b}} \supset \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$ ": Finally, let  $x \in \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$ . Then,  $x\sqrt{\mathfrak{a}}$  and  $x\sqrt{\mathfrak{b}}$ , so  $x^n \in \mathfrak{a}$  and  $x^m \in \mathfrak{b}$  for some  $n, m \in \mathbb{N}^+$ . Say  $n \geq m$ , then  $x^n \in \mathfrak{b}$ . This yields  $x^n \in \mathfrak{a} \cap \mathfrak{b}$ , thus  $x \in \sqrt{\mathfrak{a} \cap \mathfrak{b}}$ .
- 6. " $\sqrt{\mathfrak{a} + \mathfrak{b}} \subset \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$ ": Let  $x \in \sqrt{\mathfrak{a} + \mathfrak{b}}$ , then  $x^n \in \mathfrak{a} + \mathfrak{b}$  for some  $n \in \mathbb{N}^+$ . By definition of sum of ideals, we have that  $x^n = a + b$  for some  $a \in \mathfrak{a}$  and  $b \in \mathfrak{b}$ . Since  $\mathfrak{a} \subset \sqrt{\mathfrak{a}}$  and  $\mathfrak{b} \subset \sqrt{\mathfrak{b}}$ , we have  $x^n \in \sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}$ , thus  $x \in \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$ .
  - " $\sqrt{\mathfrak{a} + \mathfrak{b}} \supset \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$ ": Now let  $x \in \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$ , then  $x^n \in \sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}$  for some  $n \in \mathbb{N}^+$ . Hence there exists  $a \in \sqrt{\mathfrak{a}}$  and  $b \in \sqrt{\mathfrak{b}}$  such that  $x^n = a + b$ . We have that  $a^p \in \mathfrak{a}$  and  $b^q \in \mathfrak{b}$

for some  $p, q \in \mathbb{N}^+$ . Consider

$$(x^n)^{(p+q-1)} = (a+b)^{(p+q-1)}$$
$$= \sum_{k=0}^{p+q-1} {p+q-1 \choose k} a^k \cdot b^{p+q-1-k}.$$

For each  $k \in \{0, 1, \dots, p+q-1\}$ , we have  $a^k \in \mathfrak{a}$  or  $b^{p+q-1} \in \mathfrak{b}$ . Thus, the whole sum lies in  $\mathfrak{a} + \mathfrak{b}$  or in other words  $x^{n(p+q-1)} \in \mathfrak{a} + \mathfrak{b}$ . Conclude  $x \in \sqrt{\mathfrak{a} + \mathfrak{b}}$ .

7. " $\sqrt{\mathfrak{a}} \subset \mathfrak{p}$ ": Let  $x \in \sqrt{\mathfrak{a}}$ , then  $x^m \in \mathfrak{a}$  for some  $m \in \mathbb{N}^+$ . Because  $\mathfrak{a} = \mathfrak{p}^n$ , we have  $x^m \in \mathfrak{p}^n$ . We also have  $\mathfrak{p}^n \subset \mathfrak{p}$ , thus  $x^m \in \mathfrak{p}$  and since  $\mathfrak{p}$  is prime,  $x \in \mathfrak{p}$ .

" $\sqrt{\mathfrak{a}} \supset \mathfrak{p}$ ": On the other hand, if  $x \in \mathfrak{p}$ , then  $x^n \in \mathfrak{p}^n = \mathfrak{a}$ , therefore  $x \in \sqrt{\mathfrak{a}}$ .

**Proposition 9.** 1.  $\mathfrak{a} \subset (\mathfrak{a} : \mathfrak{b})$ .

**Example 9.1.** Does  $\sqrt{\mathfrak{a}^2} = \mathfrak{a}$  hold?

**Proposition 10.** Let  $A_1, \ldots, A_n$  be rings for  $n \in \mathbb{N}^+$  and denote  $A := A_1 \times \cdots \times A_n$ . The ideals in A are exactly in the form  $\mathfrak{a}_1 \times \cdots \times \mathfrak{a}_n$  where  $\mathfrak{a}_i$  is an ideal in  $A_i$  for  $1 \le i \le n$ , i.e.

$$\{ \text{ ideals in } A \} = \prod_{i=1}^{n} \{ \text{ ideals in } A_i \}$$

Add stuff for spectrums XXX.

**Proposition 11.** In a finite ring, every prime ring is maximal, i.e. if A is a finite ring, then

$$\operatorname{Spec}(A) = \operatorname{Spm}(A).$$

Proof.

# **Anatomy of Rings**

**Definition 12** (Nilpotent Element and Nilradical). An element x of a ring A is called nilpotent if there exists some positive integer  $n \in \mathbb{N}^+$ , called the index or the degree, such that  $x^n = 0$ .

The set of all nilpotent elements is called the nilradical of the ring and is denoted by Nil(A).

**Definition 13** (Reduced Ring). A ring A is called reduced ring if it has no non-zero nilpotent elements.

**Proposition 14.** Let A and B be two rings and  $A' \subset A$  be a subring of A.

- 1. If A is reduced, then A' is also reduced.
- 2. If A and B are reduced, then  $A \times B$  is also reduced.

  (XXX DOES THIS ALSO HOLD FOR ARBITARY MANY PRODUCTS?)

### 3.1 Exercises and Notes

**Example 14.1.** Let *K* be a field and  $A = K[X,Y]/(X - XY^2, Y^3)$ .

1. Compute the nilradical Nil(A).

Solution. Denote  $(X - XY^2, Y^3) =: \mathfrak{a}$ .

$$\begin{split} X+\mathfrak{a}&=XY^2+\mathfrak{a} & \text{because } X-XY^2\Rightarrow X\sim XY^2.\\ &=XY^2Y^2+\mathfrak{a} & \text{because } XY^2-XY^2Y^2=Y^2(X-XY^2)=0\Rightarrow XY^2\sim XY^2Y^2\\ &=XY\cdot Y^3+\mathfrak{a}\\ &=XY\cdot 0+\mathfrak{a}\\ &=0+\mathfrak{a}. \end{split}$$

Thus,  $X \in (X-XY^2,Y^3)$ . We have therefore the isomorphism  ${}^{K[X,Y]}/(X-XY^2,Y^3) \simeq {}^{K[Y]}/(Y^3)$ . [I WANT A ELEGANT REASON FOR THIS. PROBABLY ISOMORPHISM THEOREM.]

Clearly,  $Y \in \text{Nil}(A)$  or in other words  $(Y) \subset \text{Nil}(A)$ . But we also have that K[Y]/(Y) = K which is a field, therefore (Y) is a maximal ideal. Because  $1 \notin \text{Nil}(A)$  conclude Nil(A) = (Y).

# Polynomial Rings

# Quotient

### Localization

#### **Definition and Theorems**

Multiplicative Subsets

**Definition 15** (Multiplicative Subset). A subset S of a ring A is called a multiplicative subset if the following conditions hold.

- 1.  $1 \in S$ .
- 2. For all  $x, y \in S$  it is  $xy \in S$ .

**Example 15.1.** Let A be a ring. Trivially, the following subsets of A are multiplicative subsets.

- 1. A itself is a multiplicative subset.
- 2. {1} is a multiplicative subset.
- 3.  $\{0,1\}$  is a multiplicative subset.

**Example 15.2.** Let A be a ring. Important examples of a multiplicative subset include the following.

- 1. The set of units  $A^{\times}$  is a multiplicative subset.
- 2. The set of non-zero-divisors  $A \setminus \mathrm{ZD}(A)$  is a multiplicative subset.

*Proof.* Let A be a ring.

1. We show  $A^{\times}$  is a multiplicative subset. Clearly, 1 is a unit and thus lies in  $A^{\times}$ . Let x and y be units in A, then there are some  $x^{-1}$  and  $y^{-1}$  in A with  $x \cdot x^{-1} = 1$  and  $y \cdot y^{-1}$ . Then,  $xy \cdot x^{-1} \cdot y^{-1} = xx^{-1} \cdot yy^{-1} = 1$ , so xy is a unit and  $A^{\times}$  is multiplicatively closed.

**Example 15.3.** Let A be a ring. Other examples of multiplicative subsets are the following.

- 1. Let S be a multiplicative subset. Then,  $S \cup \{0\}$  is also multiplicative subset.
- 2. For any element  $x \in A$ , the set generated by its power  $\{1, x, x^2, x^3, \dots\}$  is a multiplicative subset.
- 3. For any ideal  $\mathfrak{a} \subset A$ , the set  $1 + \mathfrak{a}$  is a multiplicative subset.

**Lemma 16.** An ideal  $\mathfrak{p}$  of a ring A is prime if and only if its complement  $A \setminus \mathfrak{p}$  is a multiplicative subset.

*Proof.* Let A be a ring and  $\mathfrak{p}$  be an ideal in A.

" $\Rightarrow$ ": Suppose  $\mathfrak p$  is prime. By definition,  $1 \not\in \mathfrak p$ , hence 1 lies in the complement  $A \setminus \mathfrak p$ . Now let  $x,y \in A \setminus \mathfrak p$  and assume  $xy \not\in A \setminus \mathfrak p$ . In this case,  $xy \in \mathfrak p$  and since  $\mathfrak p$  is prime, we must have  $x \in \mathfrak p$  or  $x \in \mathfrak p$  both of which are contradictions.

"\(\infty\)": On the other hand, let  $A \setminus \mathfrak{p}$  be a multiplicative subset. Fix a  $xy \in \mathfrak{p}$  and assume  $x, y \notin \mathfrak{p}$ . We have that  $x, y \in A \setminus \mathfrak{p}$  and since  $A \setminus \mathfrak{p}$  is a multiplicative subset, it is  $xy \in A \setminus \mathfrak{p}$ . This implies  $xy \notin \mathfrak{p}$  which is a contradiction.

**Remark.** The lemma does not imply that any complement of a multiplicative subset is a prime ideal. Only if the complement of a multiplicative subset is already an ideal it is prime. Thus, constructing multiplicative subsets through complements of primitive ideals are not exhaustive.

**Example 16.1.** Consider  $\mathbb{Z}$  and the multiplicative subset  $\{1\}$ . The complement  $\mathbb{Z} \setminus \{1\}$  is not an ideal.

**Proposition 17.** intersection is again multiplicative cartesian product?

Example 17.1. subsets? unions symmetric difference

#### Localization

**Definition 18** (Localization).  $S^{-1}A$  is again a ring.

**Lemma 19.** Let A be a ring and S a multiplicative subset, then the following are equivalent.

- 1.  $S^{-1}A = 0$ .
- 2. S contains a nilpotent element.
- 3.  $0 \in S$ .

*Proof.* "1.  $\Rightarrow$  2.": Let  $S^{-1}A = 0$ , then for all  $x \in A$  and  $s \in S$  it is  $(x, s) \sim (0, 1)$ , thus  $x \cdot u = 0$  for some  $u \in S$ . In particular, this holds for x = 1, therefore  $1 \cdot u = 0$ . Since a unit can never be a zero divisor, we must have u = 0 which is nilpotent and lies in S.

"1.  $\Leftarrow$  2.": On the other hand, let  $x \in S$  be nilpotent, i.e.  $x^n = 0$  for some  $n \in \mathbb{N}^+$ . Because S is multiplicatively closed  $x^n = 0$  lies in S. Fix an element  $(y,s) \in S^{-1}A$ , then  $y \cdot 1 \cdot 0 = 0 \cdot s \cdot 0$ . Hence  $(y,s) \sim (0,1)$  and we have  $S^{-1}A = 0$ .

"2.  $\Rightarrow$  3.": Again, let  $x \in S$  be nilpotent, thus  $x^n = 0$  for some  $n \in \mathbb{N}^+$ . S is multiplicatively closed and we have  $x^n = 0 \in S$ .

"2.  $\Leftarrow$  3.": If  $0 \in S$ , then S simply contains a nilpotent element because 0 is nilpotent.

**Example 19.1.** Some concrete examples of localization include the following.

1.

**Proposition 20.** Let A be a ring. A is reduced if and only if all its localizations  $A_{\mathfrak{p}}$  at  $\mathfrak{p} \in \operatorname{Spec} A$  is reduced.

*Proof.* " $\Rightarrow$ ": We prove the statement by contrapositive. Let  $A_{\mathfrak{p}}$  be not reduced for all  $\mathfrak{p} \in \operatorname{Spec} A$ . Thus, in all  $A_{\mathfrak{p}}$ , there is an element, say x/s that is nilpotent and not zero, i.e.  $(x/s)^n = 0$  for some  $n \in \mathbb{N}^+$ . By the definition of localization, we get  $x^n \cdot u = 0$  for some  $u \in A \setminus \mathfrak{p}$ . Now,  $u \in A \setminus \mathfrak{p}$  cannot be zero, because if it was,  $A_{\mathfrak{p}} = 0$  which is reduced. Thus, x is nilpotent and A is not reduced.

**Proposition 21.** Let A be a ring and  $S \subset A$  be a multiplicative subset that does not contain 0.

- 1. A is an integral domain if and only if  $S^{-1}A$  is an integral domain.
- 2. A is a unique factorization domain if and only if  $S^{-1}A$  is a unique factorization domain.

*Proof.* " $\Rightarrow$ ": Let A be an integral domain. Since S does not contain 0, the localization  $S^{-1}A$  is a nonzero ring (see EXAMPLE). Let  $(x,s) \in S^{-1}A \setminus \{0\}$  be a nonzero element and suppose there is a  $(y,t) \in S^{-1}A$  with  $(x,s) \cdot (y,t) = 0$ . It is (xy,st) = (0,1) and thus  $xy \cdot u = 0$  for some  $u \in S$ . Because x was nonzero and S does not contain 0 we must have y = 0. Hence  $S^{-1}A$  is an integral domain.

"\(\infty\)": On the other hand, let  $S^{-1}A$  be an integral domain. JUST USE THE CANONIC MAPPING  $\varphi_S: A \longrightarrow S^{-1}A$ .

**Remark.** In the lemma above, the condition  $0 \notin S$  is required because if S contains 0, then  $S^{-1}A = 0$  and by definition, an integral domain is a nonzero ring.

#### Exercises and Notes

**Example 21.1.** Let  $A_1$  and  $A_2$  be rings. Consider  $A = A_1 \times A_2$  and set  $S := \{ (1,1), (1,0) \}$ . Prove  $A_1 \simeq S^{-1}A$ .

Solution. I don't understand the solution?

**Example 21.2.** Find all intermediate rings  $\mathbb{Z} \subset A \subset \mathbb{Q}$ , and describe each A as a localization of  $\mathbb{Z}$ . As a starter, prove  $\mathbb{Z}\left[\frac{2}{3}\right] = S_3^{-1}\mathbb{Z}$  where  $S_3 := \left\{3^i \mid i \in \mathbb{N}^+\right\}$ .

# Hierarchy of Rings

### 7.1 Integral Domains

### **Definitions and Theorems**

**Definition 22** (Integral Domains). An integral domain A is a nonzero ring satisfying the following equivalent conditions.

- 1. The product of two nonzero elements is nonzero, i.e. for all a and b in A it is  $ab \neq 0$ .
- 2. The zero ideal (0) is a prime ideal.
- 3. Every nonzero element is cancellable under multiplication, i.e. ab = ac implies b = c.

**Lemma 23.** Let A be a ring and  $\mathfrak{p}$  an ideal. Then,  $\mathfrak{p}$  is a prime ideal if and only if  $A/\mathfrak{p}$  is an integral domain.

**Proposition 24.** Any finite integral domain is a field.

Proof.

### 7.2 Unique Factorization Domains

**Definitions and Theorems** 

### 7.3 Principal Ideal Domains

### **Definitions and Theorems**

**Definition 25** (Principal Ideal Domains). A principal ideal domain is an integral domain in which every ideal is principal.

**Lemma 26.** In a principal ideal domain, all nonzero prime ideals are maximal and are generated by a prime element, i.e. if A is a principal ideal domain, then

 $\operatorname{Spec}(A) = \operatorname{Spm}(A) \cup \{(0)\} = \{ (p) \mid p \text{ is a prime element in } A \}.$ 

**Lemma 27.** Let A be a principal ideal domain and  $\mathfrak{a}$  be an ideal in A. The quotient  $A/\mathfrak{a}$  is a principal ideal ring.

**Remark.** In the above lemma, the quotient  $A/\mathfrak{a}$  need not be an principal ideal domain because  $A/\mathfrak{a}$  is not even be an integral domain if  $\mathfrak{a}$  is not a prime ideal.

**Example 27.1.**  $\mathbb{Z}/6\mathbb{Z}$  is a principal ideal ring, but not a principal ideal domain.

**Proposition 28.** Let A be a principal ideal domain and (x) an ideal in A. The proper ideals in A/(x) are in the form (a) where  $a \mid x$ .

### 7.4 Euclidean Domains

**Definitions and Theorems** 

# Classification of Rings

### 8.1 Definition and Theorems

### 8.1.1 Noetherian Ring

Lemma 29. All principal ideal domains are Noetherian.

Remark. By the lemma above, it follows that any

- 1. Euclidean domains
- 2. fields

are Noetherian.

### Example 29.1.

### Example 29.2.

**Theorem 30** (Hilbert's Basis Theorem). If A is a Noetherian ring, then the polynomial ring with finitely many variables  $A[X_1, \ldots, X_n]$  is Noetherian. In particular, if A is Noetherian, so is A[X].

Corollary 1. If A is Noetherian, the power series ring A[[X]] is Noetherian.

**Remark.** The polynomial ring with infinitely many variables  $A[X_1, X_2, \ldots]$  is never Noetherian.

### 8.2 Artinian Rings

#### **Definition and Theorems**

Definition 31 (Artinian Rings).

**Example 31.1.** 1. Any field is Artinian.

2. Any finite ring is Artinian.

**Proposition 32.** 1. A quotient of an Artinian ring is Artinian.

2. A localization of an Artinian ring is Artinian.

Lemma 33. An integral domain is Artinian if and only if it is a field.

*Proof.* Let A be an integral domain.

" $\Rightarrow$ ": Since A is an Artinian, the descending chain

$$(x) \supset (x^2) \supset \cdots \supset (x^n) \supset (x^{n+1}) \supset \cdots$$

becomes stationary, that is  $(x^n) = (x^{n+1})$  for some  $n \in \mathbb{N}^+$ . It follows that there is a  $b \in A$  such that  $x^n = bx^{n+1}$ . We have

$$x^{n} = bx^{n+1} \iff 0 = bx^{n+1} - x^{n}$$
$$\iff 0 = bx^{n}(x-1)$$

Since A is an integral domain,  $bx^n$  cannot be zero, thus x - 1 = 0 or in other words x is a unit. Hence A is a field.

" $\Leftarrow$ ": All fields are already Artinian.

**Proposition 34.** Let A be an Artinian ring. Then, we have the following

- 1. The spectrum  $\operatorname{Spec}(A)$  of A and the maximal spectrum  $\operatorname{Spm}(A)$  of A are both finite.
- 2. It is Spec(A) = Spm(A).
- 3. For some  $n \in \mathbb{N}^+$ , it is  $(\operatorname{Jac}(A))^n = 0$ .
- 4. There are maximal ideals  $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$  in  $\mathrm{Spm}(A)$  such that  $\prod_{i=1}^n \mathfrak{m}_i = 0$ .
- 5. A is Noetherian.
- 6. A has finite rank.

*Proof.* 1. Let  $(\mathfrak{m}_k)_{i\in\mathbb{N}^+}$  be a sequence of maximal ideals and set

$$I_k = \prod_{i=1}^k \mathfrak{m}_i.$$

Since A is Artinian, the chain  $I_0 \supset I_1 \supset \cdots \supset I_k \supset I_{k+1} \supset \cdots$  becomes stationary. Hence  $I_k = I_{k+1}$  for some  $k \in \mathbb{N}^+$ .

8.2. ARTINIAN RINGS 31

2. Since  $\operatorname{Spec}(A) \supset \operatorname{Spm}(A)$  is immediately clear, we show the other direction of the inclusion. Let  $\mathfrak p$  be a prime ideal and consider  $A/\mathfrak p$ . It is an integral domain because  $\mathfrak p$  is a prime ideal and it is also Artinian because a quotient of an Artinian ring is Artinian. Therefore,  $A/\mathfrak p$  is a field, hence  $\mathfrak p$  is a maximal ideal.

**Lemma 35.** A ring is Artinian if and only if it is Noetherian and Spec(A) = Spm(A).

Theorem 36.

### Exercise and Notes

**Example 36.1.** Given a prime  $p \in \mathbb{Z}$ , find all Artinian rings A with  $p^2$  elements (up to isomorphisms).

*Proof.* Let A be an Artinian ring with  $p^2$  elements where  $p \in \mathbb{Z}$  is prime. By the structure theorem of Artinian rings, we have that A is a product of local Artinian rings. Since  $p^2$  has two prime factors, this product can involve at most two factors. Thus, we have two cases.

Case 1: In this case,  $A = A_1 \times A_2$  for two local Artinian rings  $A_1$  and  $A_2$  with both having exactly p elements. A ring with p elements is isomorphic to  $\mathbb{F}_p$ . We may conclude  $A = \mathbb{F}_p \times \mathbb{F}_p$ .

**Case 2:** If A has only one factor, A must be a local ring, i.e. it has a unique maximal ideal  $\mathfrak{m}$  with  $\mathfrak{m}^n = 0$  for some  $\mathbb{N}^+$ . Choose such n to be minimal and consider the chain  $R \supset \mathfrak{m} \supset \mathfrak{m}^2 \supset 0$ . Taking the quotient at each step we obtain

# Part II Modules

Definition 37 (Module).

**Example 37.1.** 1. If A is a field, then an A-module is a vector space.

2. A Z-module is just an abelian group.

**Definition 38.** An A-module is finitely generated if there exists a finite set  $\{m_1, \ldots, m_n\}$  with  $n \in \mathbb{N}^+$  in M such that for any x in M, there exists  $\lambda_1, \ldots, \lambda_n$  in A with

$$x = \lambda_1 m_1 + \dots + \lambda_n m_n$$

**Lemma 39.** An A-module is finitely generated if and only if there exists a surjective A-module homomorphism

$$A^n \longrightarrow M$$

for some  $n \in \mathbb{N}^+$ .

**Definition 40.** Let M be an A-module. A set  $B \subset M$  is a basis of M if

- 1. B is a generating set for M
- 2. B is linearly independent

A free module is a module with a basis.

**Remark.** An A-module being free does **not** imply the module being finitely generated. Similary, an A-module being finitely generated does **not** imply the module being free.

**Example 40.1.** Two examples to illustrate the remark above.

- 1. As an  $\mathbb{Z}$ -module,  $\mathbb{Z}/2\mathbb{Z}$  is finitely generated but is not free.
- 2. As an  $\mathbb{Z}$ -module,  $\bigoplus_{\mathbb{N}} \mathbb{Z}$  is free, but is not finitely generated.

*Proof.* 1.  $\{1\}$  is a generating set of  $\mathbb{Z}/2\mathbb{Z}$  since  $1 \cdot 1 = 1$  and  $2 \cdot 1 = 0$ . However,  $\{1\}$  and ...

**Proposition 41.** Let M and N be an A-module, and  $\varphi:M\to N$  be an A-module homomorphism.

- 1.  $\operatorname{im}(\varphi)$  is a submodule of M.
- 2.  $ker(\varphi)$  is a submodule of N.
- 3. For any submodule N' of N, its preimage  $\varphi^{-1}(N')$  is a submodule of M.

Definition 42 (Annihilator).

Definition 43 (Radical).

**Definition 44** (Simple Modules). Let A be a ring. A nonzero A-module M is called simple if the only submodules are  $\{0\}$  and M itself.

**Example 44.1.** If M is a simple A-module, then any  $f \in \text{Hom}_A(M, M) \setminus \{0\}$  is an isomorphism.

*Proof.* Fix an  $f \in \text{Hom}_A(M, M) \setminus \{0\}$ . Since  $\ker(f)$  is a submodule of M, it must be either  $\{0\}$  or whole M. But  $\ker(f) = M$  would mean that f = 0 which was explicitly excluded, thus  $\ker(f) = \{0\}$ . By the isomorphism theorem, we also have  $\operatorname{im}(f) \cong M/\ker(f) \cong M$ . Therefore, f is bijective.

**Definition 45** (Indecomposable). Let A be a ring. A nonzero A-module M is called indecomposable if it cannot be written as a direct sum of two non-zero submodules.

**Proposition 46.** Every simple module is indecomposable.

**Example 46.1.** Not all indecomposable modules are simple. For example,  $\mathbb{Z}$  is indecomposable, but is not simple.

#### 8.3 Exercises and Notes

**Example 46.2.** Let  $f: M \to N$  be a surjective homomorphism of two finitely generated A-modules.

1. If  $N \cong A^n$  is a free A-module, show that  $M \cong \ker(f) \oplus N$ .

*Proof.* Since N is finitely generated, let 
$$(e_1, \ldots, e_n)$$
 be a set of generators.

**Example 46.3.** Let A be a ring,  $\mathfrak{a}$  and  $\mathfrak{b}$  ideals, M and N A-modules. Set

$$\Gamma_{\mathfrak{a}}(M) := \left\{ m \in M \mid \mathfrak{a} \subset \sqrt{\operatorname{Ann}(m)} \right\}.$$

Prove the following statements.

1. If  $\mathfrak{a} \supset \mathfrak{b}$ , then  $\Gamma_{\mathfrak{a}}(M) \subset \Gamma_{\mathfrak{b}}(M)$ .

*Proof.* The proof is a matter of verification. Let  $m \in \Gamma_{\mathfrak{a}}(M)$ . It is

$$m \in \Gamma_{\mathfrak{a}}(M) \Rightarrow \mathfrak{a} \subset \sqrt{\operatorname{Ann}(m)}$$
  
 $\Rightarrow$  For all  $a \in \mathfrak{a}$  there is a  $n \in \mathbb{N}^+$  such that  $a^n \in \operatorname{Ann}(m)$ .  
 $\Rightarrow$  For all  $a \in \mathfrak{a}$  there is a  $n \in \mathbb{N}^+$  such that  $a^n \cdot m = 0$ .

Since  $\mathfrak{a} \supset \mathfrak{b}$ , the last statement is true for all  $a \in \mathfrak{b}$ . We have

$$\Rightarrow$$
 For all  $a \in \mathfrak{b}$  there is a  $n \in \mathbb{N}^+$  such that  $a^n \cdot m = 0$ .  
 $\Rightarrow$  For all  $a \in \mathfrak{b}$  there is a  $n \in \mathbb{N}^+$  such that  $a^n \in \text{Ann}(m)$ .  
 $\Rightarrow \mathfrak{b} \subset \sqrt{\text{Ann}(m)}$   
 $\Rightarrow m \in \Gamma_{\mathfrak{b}}(M)$ 

Thus, 
$$\Gamma_{\mathfrak{a}}(M) \subset \Gamma_{\mathfrak{b}}(M)$$
.

2. If  $M \subset N$ , then  $\Gamma_{\mathfrak{a}}(M) = \Gamma_{\mathfrak{a}}(N) \cap M$ .

*Proof.* Again, the proof is a matter of verification.

" $\subset$ ":  $M \subset N$  implies  $\Gamma_{\mathfrak{a}}(M) \subset \Gamma_{\mathfrak{a}}(N)$ . Moreover, it is  $\Gamma_{\mathfrak{a}}(M) \subset M$ . Thus,  $\Gamma_{\mathfrak{a}}(M) \subset \Gamma_{\mathfrak{a}}(N) \cap M$ .

"\\colon": Let  $m \in \Gamma_{\mathfrak{a}}(N) \cap M$ . It is

$$m \in \Gamma_{\mathfrak{a}}(N) \cap M \Rightarrow \mathfrak{a} \subset \sqrt{\operatorname{Ann}(m)} \text{ and } m \in M.$$
  
$$\Rightarrow m \in \Gamma_{\mathfrak{a}}(M).$$

Hence, 
$$\Gamma_{\mathfrak{a}}(N) \cap M \subset \Gamma_{\mathfrak{a}}(M)$$
.

- 3. In general, it is  $\Gamma_{\mathfrak{a}}(\Gamma_{\mathfrak{b}}(M)) = \Gamma_{\mathfrak{a}+\mathfrak{b}}(M) = \Gamma_{\mathfrak{a}}(M) \cap \Gamma_{\mathfrak{b}}(M)$ .
- 4. In general, it is  $\Gamma_{\mathfrak{a}}(M) = \Gamma_{\sqrt{\mathfrak{a}}}(M)$ .
- 5. If a is finitely generated, then

$$\Gamma_{\mathfrak{a}}(M) = \bigcup_{n \geq 1} \left\{ \, m \in M \mid \mathfrak{a}^n m = 0 \, \right\}.$$

**Example 46.4.** Let A be a ring, M a module,  $x \in \text{Rad}(M)$ , and  $m \in M$ . If (1+x)m = 0, then m = 0.

 ${\it Proof.}$  By definition of radical of a module, it is

$$\operatorname{Rad}(A/\operatorname{Ann}(M)) = \operatorname{Rad}(M)/\operatorname{Ann}(M).$$

Thus, if  $x \in \operatorname{Rad}(M)$ , then its residue  $x' := x + \operatorname{Ann}(M)$  lies in  $\operatorname{Rad}(A/\operatorname{Ann}(M))$  which means x' is nilpotent. SOME THEOREM yields (1 + x') is an unit in  $A/\operatorname{Ann}(M)$ .

### Tensor Product

#### 9.1 Definition and Theorems

**Definition 47.** Let M and N be A-modules. Their tensor product is a pair  $(M \otimes_A N, \theta)$  where

- 1.  $M \otimes_A N$  is an A-module.
- 2.  $\theta: M \times N \to M \otimes_A N$  is an A-bilinear mapping.

satisfying the universal property, for every pair  $(P, \omega)$  of an A-module and an A-bilinear mapping  $\omega: M \times N \to P$ , there exists a unique A-module homomorphism  $f: M \otimes_A N \to P$  with  $\omega = f \circ \theta$ .

**Definition 48.** Let M and N be A-modules. Their tensor product is the pair  $(M \otimes_A N, \theta)$ , where

1.  $M \otimes_A N$  is the quotient of the free A-module  $A^{M \times N}$  on the direct product  $M \times N$ , by the submodule generated by the set of elements of the form:

$$(\lambda m_1 + m_2, n) - \lambda(m_1, n) - (m_2, n)$$
  
 $(m, \lambda n_1 + n_2) - \lambda(m, n_1) - (m, n_2)$ 

for  $m, m_1, m_2 \in M$ ;  $n, n_1, n_2 \in N$ ; and  $\lambda \in A$ , where we denote (m, n) for its image under the canonical mapping  $M \times N \to A^{(M \times N)}$ .

2.  $\theta: M \times N \to M \otimes_A N$  is the composition of the canonical mapping  $M \times N \to A^{(M \times N)}$  with the quotient module homomorphism  $A^{(M \times N)} \to M \otimes_A N$ .

**Example 48.1.** It is  $\mathbb{Z}/2\mathbb{Z} \otimes \mathbb{Z}/3\mathbb{Z} = 0$ .

*Proof.* Let's show this in multiple concrete ways.

Method 1: I want to do this conretely. First, we have

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} = \{ (0,0); (0,1); , (0,2); (1,0); (1,1); (1,2) \}.$$

Thus, the elements of  $\mathbb{Z}^{(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z})}$  are in the form

$$(x_{(0,0)}, x_{(0,1)}, x_{(0,2)}, x_{(1,0)}, x_{(1,1)}, x_{(1,2)})$$

where  $x_{(i,j)} \in \mathbb{Z}$  with  $i \in \{0,1\}$  and  $j \in \{0,1,2\}$ .

Now, we want to find the submodule generated by the rules in the definition.

1. Set  $m_1 = m_2 = n = \lambda = 0$ , then

$$(0 \cdot 0 + 0, 0) + 0 \cdot (0, 0) - (0, 0) = (0, 0) = 1 \cdot (0, 0) \rightarrow (1, 0, 0, 0, 0, 0).$$

2. Set  $m = n_2 = 0$ ,  $n_1 = 1$ , and  $\lambda = 2$ , then

$$\begin{aligned} (0,2\cdot 1+0) - 2\cdot (0,1) - (0,0) &= (0,2) - (2\cdot 0,1) \\ &= (0,2) - (0,1) \\ &= (0,1) \\ &= 1\cdot (0,1) \\ &\to (0,1,0,0,0,0) \end{aligned}$$

3. I think the rest is clear for now.

We may conclude that the submodule generated by the rules defined is the whole module, thus  $\mathbb{Z}/2\mathbb{Z}\otimes\mathbb{Z}/3\mathbb{Z}=0$ .

Method 2: https://www.math.brown.edu/reschwar/M153/tensor.pdf

**Proposition 49.** Let A be a ring, and M, N and P be A-modules.

- 1. (identity)  $A \otimes_A M = M$ .
- 2. (commutative law)  $M \otimes_A N = N \otimes_A M$ .

*Proof.* As in the proposition, let A be a ring, and M, N and P be A-modules.

1. Define  $\beta: A \times M \to M$  by  $\beta(x, m) := xm$ . Clearly,  $\beta$  is bilinear.

#### 9.2 Exercises and Notes

**Example 49.1.** Let  $A \to B \to C$  be ring homomorphisms and M and N be A-modules. Show the following.

1.  $(M \otimes_A B) \otimes_B C \cong M \otimes_A C$ 

*Proof.* It is

$$(M \otimes_A B) \otimes_B C \cong M \otimes_A (B \otimes_B C)$$
$$\cong M \otimes_A C$$

2.  $(M \otimes_A N) \otimes_A B \cong (M \otimes_A B) \otimes_B (N \otimes_A B)$ 

Proof. trivial

#### **Example 49.2.** Let A be a ring.

1. If M, N are A-modules, then  $\operatorname{Hom}_A(M, N)$  may be viewed as an A-module via

$$a \cdot \varphi := (m \mapsto a \cdot \varphi(m))$$

for  $a \in A$  and  $\varphi \in \text{Hom}_A(M, N)$ .

*Proof.* this is trivial  $\Box$ 

2. If M, N, L are A-modules, then there exists a natural isomorphism of A-modules

$$\operatorname{Hom}_A(L \otimes_A M, N) \cong \operatorname{Hom}_A(L, \operatorname{Hom}_A(M, N))$$

**Example 49.3.** Let A be a ring,  $\mathfrak{a}$  an ideal of A, and M an A-module.

1. Show that  $M/\mathfrak{a}M \cong M \otimes_A A/\mathfrak{a}$ .

*Proof.* Define  $\varphi: M \otimes_A A/\mathfrak{a} \to M/\mathfrak{a}M$  by

$$m \otimes_A \overline{x} \mapsto x \cdot m + \mathfrak{a}M.$$

 $\varphi$  is an homomorphism because

(a) 
$$\varphi((m_1 \otimes_A \overline{x_1}) + (m_2 \otimes_A \overline{x_2})) =$$

## **Exact Sequences**

#### 10.1 Definition and Theorems

**Definition 50.** Exact at, exact sequence, short exact sequence

**Example 50.1.** Let M and N be A-modules. Then, the sequence

$$0 \to M \to M \oplus N \to N \to 0$$

is short exact.

**Lemma 51.** If  $0 \to M \to N \to P \to 0$  is exact, and M and P are finitely presented, then N is finitely presented.

Proof.

**Proposition 52.** Let M be an A-module,  $m_{\lambda}$  with  $\lambda \in \Lambda$  a set of generators. Then there is an exact sequence  $0 \to K \to A^{\oplus \Lambda} \to M \to 0$ 

#### 10.2 Notes and Exercises

## Noetherian Modules

**Definition 53.** An A-module M is called Noetherian if one of the following equivalent conditions hold.

- 1. Its submodules satisfies the asending chain condition, i.e. MISSING.
- 2. All submodules of M are finitely generated.

*Proof.* " $\Rightarrow$ ": Let M be an A-module that satisfies the ascending chain condition and assume a submodule N is not finitely generated. In this case, we may construct a chain of submodules

$$N_1 \subset N_2 \subset \cdots \setminus N_i \subset \cdots$$

where  $N_i = (n_1, n_2, \dots, n_{i-1})$  with  $n_i \in N$  and  $n_i \notin N_i$  for all  $i \in \mathbb{N}^+$ . This chain never stabilizes, thus N must be finitely generated.  $\square$ 

**Lemma 54.** Let  $0 \to M \to N \to P \to 0$  be an exact sequence of A-modules. Then N is Noetherian if and only if M and P are Noetherian.

*Proof.* Let  $0 \to M \to N \to P \to 0$  be an exact sequence of A-modules. " $\Rightarrow$ ": Let N be Noetherian.

- 1. We show that M is Noetherian by verifying all its submodules are finitely generated. Let M' be a submodule of M. In that case,  $\alpha(M')$  is a submodule of N and thus finitely generated.  $\alpha$  restricted
- 2. We show that P is Noetherian by verifying all its submodules are finitely generated. Let P' be a submodule of P. Since  $\beta$  is surjective, we have  $P' = \beta \left(\beta^{-1}(P')\right)$ .  $\beta^{-1}(P')$  is a submodule of N and it is finitely generated because N is Noetherian.

**Proposition 55.** The property Noetherian is stable under intersection, direct sum, addition, and localization. Let M be an A-module,  $N_1$  and  $N_2$  submodules of M.

1. If  $N_1$  and  $N_1$  are Noetherian, so is  $N_1 \cap N_2$ ,  $N_1 \oplus N_2$ , and  $N_1 + N_2$ .

*Proof.* 1. Since all submodules of a Noetherian module is again Noetherian,  $N_1 \cap N_2$  is Noetherian because it is a submodule of M which is Noetherian.

2. Consider the sequence  $0 \to N_1 \to N_1 \oplus N_2 \to N_2 \to 0$ .

3.

**Example 55.1.** Let M be an A-module, and  $N_1$  and  $N_2$  submodules of M. In general,  $N_1 \otimes N_2$  is not Noetherian.

# **Artinian Modules**

#### 12.1 Definition and Theorems

Definition 56 (Artinian Module).

**Example 56.1** (Examples of Artinian Modules). 1. For  $n \in \mathbb{N}^+$ ,  $\mathbb{Z}/n\mathbb{Z}$  is Artinian.

**Example 56.2** (Counterexamples of Artinian Modules). 1.  $\mathbb{Z}$  is not Artinian.

**Lemma 57.** Let  $0 \to M \to N \to P \to 0$  be an exact sequence of A-modules. Then N is Artinian if and only if M and P are Artinian.

**Proposition 58.** The property of Artinian is stable under intersection, direct sum, addition, localization,

Unorganized

**Example 58.1.** Let A be a local ring with maximal ideal  $\mathfrak{m}$ .

1. What do the simple A-module look like?

*Proof.* Let M be a simple A-module. Since M is simple, the only proper submodule is the zero-module.  $\Box$ 

#### Length

**Example 58.2.** Let M be an A-module.

1. If M is simple, then any nonzero element  $m \in M$  generates M.

*Proof.* Fix an element  $m \in M$  and assume m does not generate whole M. In that case, there must be a  $m' \in M$  such that  $m \neq \lambda m'$  for all  $\lambda \in A$ . Then, (m) is non-zero, but also not whole M which is a contradiction.

2. M is simple if and only if  $M \cong A/\mathfrak{m}$  for some maximal ideal  $\mathfrak{m}$ , and if so, then  $\mathfrak{m} = Ann(M)$ .

*Proof.* We first show that M is simple if and only if  $M \cong A/\mathfrak{m}$  for some maximal ideal  $\mathfrak{m}$ . " $\Rightarrow$ ": Let M be simple. By the statement above, M is cyclic.

**Example 58.3.** Let k be a field. Is X = Spec(k[X,Y]/(xy-1)) with the Zariski-topology connected?