

Bivas Bhattacharya

Department of

Electronics and Communication Engineering

Multiple access link and protocol

Bivas Bhattacharya

Department of Electronics and Communication Engineering

Multiple access link and protocol

PES UNIVERSITY ONLINE

Access Links

- Two types of network links:
 - ❖ point-to-point links
 - ❖ broadcast links
- A point-to-point link consists of a single sender at one end of the link and a single receiver at the other end of the link
- A broadcast link, can have multiple sending and receiving nodes all connected to the same, single, shared broadcast channel.
- The term broadcast is used because when any one node transmits a frame, each of the other nodes receives a copy

Multiple access link and protocol

- How to coordinate the access of multiple sending and receiving nodes to a shared broadcast channel—the multiple access problem
- When more than two nodes transmit frames at the same time, the transmitted frames collide at all of the receivers
- Clearly, if many nodes want to transmit frames frequently, and much of the bandwidth of the broadcast channel will be wasted
- In order to ensure that the broadcast channel performs useful work when multiple nodes are active, we need multiple access protocols

Multiple access link and protocol

Shared wireless (for example, WiFi)

Satellite

Cocktail party

Multiple access link and protocol

PES UNIVERSITY ONLINE

Access methods

- Access methods depends on network topology
- Access methods depends on presence of central controller
- Access methods can be classified as
 - Guaranteed access
 - Random access
- Criteria for evaluating access methods
 - Amount of message overhead
 - ❖ Algorithmic complexity
 - ❖ Total access delay
 - Link utilization (or throughput)

Multiple access link and protocol

Types of access methods

- Guaranteed access
 - ❖ Time division multiplexing
 - Frequency division multiplexing
 - Code division multiplexing
 - Space division multiplexing
 - Orthogonal frequency division multiplexing
 - ❖ Polling methods
- Random access techniques
 - ❖ Pure Aloha, Slotted Aloha
 - CSMA/CD and CSMA/CA
 - ❖ IEEE 802.3, IEEE 802.11, IEEE 802.15, IEEE 802.16 protocols

Multiple access link and protocol

PES UNIVERSITY ONLINE

Pure ALOHA

- Immediately transmit when a packet is generated
- Users randomly wait before retransmission
- Waiting time is an integral multiple of the transmission delay
- How is the performance?

Multiple access link and protocol

PES UNIVERSITY ONLINE

Slotted ALOHA

- Time is divided into equal length slots
 - Slot length equals transmission delay
- Users can transmit at the start of a slot
- If collision occurs then retransmit with probability p in the subsequent slots

Multiple access link and protocol

PES UNIVERSITY ONLINE

CSMA/CD

- Listen before talking increases efficiency than ALOHA
- A sender listens to channel for busy/idle status
- Sends the frame if channel is sensed idle
- If collisions are heard during transmission, then the transmission is aborted
- A retransmission occurs after channel is sensed idle and a random waiting time elapsed
- The waiting time is chosen by first picking a random value (say x) from {0,...,2ⁿ-1} and then multiplying the random number x with W
 ❖ Here n is the collision round
- In Ethernet, W = 512 bit times (approximately 0.01μs for 100Mbps)

Multiple access link and protocol

PES UNIVERSITY ONLINE

CSMA versus CSMA/CD

Multiple access link and protocol

PES UNIVERSITY ONLINE

CSMA/CD efficiency

- As d_{trans} increases, the efficiency approaches 1
- As d_{prop} decreases, the efficiency approaches 1

Efficiency =
$$\frac{1}{1 + 5d_{\text{prop}}/d_{\text{trans}}}$$

THANK YOU

Bivas Bhattacharya

Department of

Electronics and Communication Engineering

bivas@pes.edu