

[2조] 7주차 결과보고서

Subject	임베디드 시스템 설계 및 실험
Professor	김원석
Major	정보컴퓨터공학부
Date	2022.10.31
Team Member	202055600 정홍빈
	201924617 끼앗띠퐁 유옌
	201824534 윤상호
	201824636 익강우

1. 실험 목적

블루투스 통신 기술을 활용한 핸드폰과의 양방향 통신과 납땜 기술 익히기

2. 실험 원리 및 이론

1) 블루투스

근거리 무선통신 기술, 스마트폰, 무선이어폰, 웨어러블 기기에서 데이터를 주고받는 기술.

[그림-1] 블루투스 통신 과정

MASTER와 SLAVE로 동작하며 MASTER가 Inquiry 나 Page 요청을 하면 Slave가 각각의 요구사항을 Scan 하는 방식으로 통신한다.

[그림-2] 블루투스 모듈

실험은 FB755AC 모듈을 사용하며 Bluetooth v2.1을 지원하고 최대 1:7 연결이 가능하며 AT 명령어를 이용해 조작할 수 있다. 고유의 용도가 존재하는 핀이 있고, 이 핀에 각각의 용도에 맞는 연결을 하면 블루투스 모듈이 동작한다.

[그림-3] 납땜이 완료된 만능기판

블루투스 모듈과 STM32보드가 장착될 만능기판으로 인두와 실 납을 이용해 제작한다. 주의사항으로는 전선을 느슨하거나 사선으로 납땜하지 말고, 수직으로 팽팽하게 해주어야 하다.

3. 실습 진행 과정

이번 실험은 남땜과 코드를 짜는 분야가 나누어진다. 코드 쪽 실험과정은 [**그림-4]**와 같이 이루어진다.

[그림-4] 실험 과정

저번 실험에서 사용했었던 UART1 통신을 이용해 PC의 Putty 데이터를 전송받으면 블루투스 모듈로 UART2로 전송하고 반대로 핸드폰에서 모듈로 전송받으면 역으로 PC의 Putty로 데이터를 전송받는 양방향 통신이 이루어진다.

[Source Code]

```
void RCC_Configure(void)
{
    // TODO: Enable the APB2 peripheral clock using the function 'RCC_APB2PeriphClockCmd'
    // USART2_TX: PA2, USART2_RX: PA3
    /* UART TX/RX port clock enable */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
    /* USART1 clock enable */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
    /* USART2 clock enable */
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
    /* Alternate Function IO clock enable */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
}
```

RCC_Configure함수를 이용해 실험에서 사용하는 TX, RX, USART1, USART2의 Clock을 활성화한다.

```
void GPIO Configure(void)
   GPIO_InitTypeDef GPIO_InitStructure;
  // TODO: Initialize the GPIO pins using the structure 'GPIO_InitTypeDef'
  // and the function 'GPIO_Init'
   /* UART pin setting */
   //TX 9 mode 01 open-drain
   GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
   GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
   GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
   GPIO_Init(GPIOA,&GPIO_InitStructure);
   //RX 10 mode 00 push-pull.
   GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
   GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
   GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
   GPIO_Init(GPIOA,&GPIO_InitStructure);
   /* USART2 Pin Setting */
   //TX PA2
   GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
   GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
   GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
   GPIO_Init(GPIOA,&GPIO_InitStructure);
   //RX PA3
   GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
   GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
   GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
   GPIO_Init(GPIOA,&GPIO_InitStructure);
```

GPIO Configuration을 통해 사용할 핀 (PortA 2번, 3번, 9번, 10번)과 상응하는 상태를 설정한다.


```
void USART1 Init(void)
   USART_InitTypeDef USART1_InitStructure;
   // Enable the USART1 peripheral
   //\ \mathsf{TODO:\ Initialize\ the\ USART\ using\ the\ structure\ 'USART\_Init\mathsf{TypeDef'}\ and\ the\ function\ 'USART\_Init'}
   USART1_InitStructure.USART_BaudRate = 9600;
   USART1_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
   USART1_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx
   USART1_InitStructure.USART_Parity = USART_Parity_No;
   USART1_InitStructure.USART_StopBits = USART_StopBits_1;
   USART1_InitStructure.USART_WordLength = USART_WordLength_8b;
   USART_Init(USART1, &USART1_InitStructure);
   // TODO: Enable the USART1 RX interrupts using the function 'USART_ITConfig' and the argument value 'Receive Data register not empty interrupt
   USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);
 void USART2 Init(void){
     USART_InitTypeDef USART2_InitStructure;
     // Enable the USART2 peripheral
     USART_Cmd(USART2, ENABLE);
     // TODO: Initialize the USART using the structure 'USART_InitTypeDef' and the function 'USART_Init'
     USART2_InitStructure.USART_BaudRate = 9600;
     USART2_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
     USART2_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
     USART2_InitStructure.USART_Parity = USART_Parity_No;
     USART2_InitStructure.USART_StopBits = USART_StopBits_1;
     USART2_InitStructure,USART_WordLength = USART_WordLength_8b;
     USART_Init(USART2, &USART2_InitStructure);
     // TODO: Enable the USART2 RX interrupts using the function 'USART_ITConfig' and the argument value 'Receive Data register not empty interrupt'
     USART_ITConfig(USART2,USART_IT_RXNE,ENABLE);
```

USART1과 2를 BaudRate 9,600과 MODE, Parity bit, Stopbit, WordLength등을 저번실험과 마찬가지로 초기화해준다.

```
void sendDataUART1(uint16_t data) {
  USART_SendData(USART1, data);
}
void sendDataUART2(uint16_t data) {
  USART_SendData(USART2, data);
}
```

일련의 양방향 통신 과정이 빠르게 이루어지려면 UART의 SendData() 함수의 TC 데이터를 기다리는 While 문을 삭제해준다.


```
void USART1_IRQHandler() {
   uint16 t word;
   if(USART_GetITStatus(USART1,USART_IT_RXNE)!=RESET){
      // the most recent received data by the USART1 peripheral
       word = USART_ReceiveData(USART1);
       sendDataUART2(word);
       // clear 'Read data register not empty' flag
      USART_ClearITPendingBit(USART1,USART_IT_RXNE);
}
void USART2_IRQHandler() {
   uint16_t word;
   if(USART_Get|TStatus(USART2.USART_IT_RXNF)!=RESET){
      // the most recent received data by the USART2 peripheral
       word = USART ReceiveData(USART2);
       sendDataUART1(word);
       // clear 'Read data register not empty' flag
      USART_ClearITPendingBit(USART2,USART_IT_RXNE);
}
```

각각의 IRQHandler 함수를 이용해 인터럽트를 통해 Data가 들어오면 양방향 통신을 구현하기 위해 [그림-4]와 같이 근접한 USART로 바로 전송할 수 있게 함수를 작성한다.

```
void NVIC_Configure(void) {
   NVIC_InitTypeDef NVIC_InitStructure;
   // TODO: fill the arg you want
   NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);
   // TODO: Initialize the NVIC using the structure 'NVIC_InitTypeDef' and the function 'NVIC_Init'
   // UART1
   // 'NVIC_EnableIRQ' is only required for USART setting
   NVIC_EnableIRQ(USART1_IRQn);
   NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
   NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; // TODO
   NVIC_InitStructure.NVIC_IRQChannelSubPriority = 4; // TODO
   NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
   NVIC_Init(&NVIC_InitStructure);
   // UART2
   // 'NVIC_EnableIRQ' is only required for USART setting
   NVIC EnableIRQ(USART2 IRQn);
   NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;
   NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; // TODO
   NVIC_InitStructure.NVIC_IRQChannelSubPriority = 4; // TODO
   NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
   NVIC_Init(&NVIC_InitStructure);
```

NVIC configure은 우선순위를 설정해주는 함수로, 이번 실험에서 UART의 우선순위는 지정할 필요가 없으므로, 같은 우선순위로 설정해주었다.

[블루투스 모듈 설정]

[그림-5] 블루투스와 모듈 연결(이론)

[그림-6] 블루투스 모듈 STM32보드 연결 (실습)

[그림-5]와 같이 STM32보드와 블루투스 모듈을 연결해 준다. 실습에서는 STM32보드에 연결할 전선이 부족해 브레드보드를 이용하였다. 첫 시도에 연결은 잘했지만 블루투스 모듈이 불량품이라 동작하지 않았다. 조교님이 정상 제품으로 교환하고 연결하니 정상적으로 동작하였다.

4. 실험결과

[그림-7] Putty 초기화면

Config SELECT 에 3v3을 연결 후 전원을 껐다 키면 [그림-7]과 같이 화면이 출력된다.

```
==== TOP MENU ===
0 => DEVICE NAME
                         : Team 02
                          : DISABLE PINCODE[5555]
1 => AUTHENTICATION
2 => REMOTE BD ADDRESS
                         : EC2E98E0D474
    LOCAL BD ADDRESS
                         : 00189A24DCB7
                          : CNT MODE4
 => CONNECTION MODE
 => OTHER PARAMETER
                          : E,D,5,2B,2,D
                          : 9600,8,n,1
5 => UART CONFIG
6 => ROLE
                          : SLAVE
7 => OPERATION MODE
                          : OP MODE0
 Back Spcae : Input data Cancel
[ t : Move top menu
    ======= AUTHENTICATION SUB MENU =
1 => AUTHENTICATION
                        : DISABLED
2 => PIN CODE (PASS KEY)
3 => ENCRYPTION
                          : DISABLED
 Back Spcae : Input data Cancel
 t : Move top menu
```

[그림-8] Putty 초기 설정 완료

Device name, 블루투스 연결 비밀번호에 쓰일 Pincode, Connection mode와 Uart config를 PPT에 나와 있는 대로 설정한다.

[그림-9] 블루투스 모듈 연결 후 양방향 통신

AT- BTSCAN모드로 돌입하면 스마트폰과 블루투스 연결 후 휴대전화와 Putty로 서로 통신이 가능하다.

[그림-10] 기판과 결합한 블루투스 모듈과 STM32보드

[결론]

이번 실험에서 코드를 작성하는 데는 저번 실험의 코드를 일부 쓰기도 하고 개념 자체가 어렵지 않아 그렇게 오래 걸리지 않았는데, 블루투스 모듈과 STM32보드를 연결하는 데 모듈의 문제가 있어 해결하는 데 시간이 걸렸고, 컴퓨터 전공자에게는 생소할 수 있는 납땜 과정이 있어 납땜하는 데 애를 먹었다. 휴대전화나 노트북을 이용해 블루투스 이어폰이나 블루투스 마우스를 연결하는 것을 당연하게만 생각해 왔는데, 직접 블루투스와 접속을 하고 통신해보니 실제 생활에도 응용할 수 있겠다는 생각이 들었다. 텀 프로젝트 과제에서 유용하게 쓸 수 있다고 본다.