FONCTIONS PART3 E05

EXERCICE N°2 (Le corrigé)

On considère la fonction f définie sur [-2; 2] par $f(x)=x^3-0.75x^2-4.5x+3$.

1) Montrer que f'(x)=3(x+1)(x-1,5).

On sait que:

$$f(x)=x^3-0.75x^2-4.5x+3$$

d'où

$$f'(x)=3x^2-0.75\times 2x-4.5\times 1+0 = 3x^2-1.5x-4.5$$

Et:

$$3(x+1)(x-1,5) = 3(x^2-0.5x-1.5) = 3x^2-1.5x-4.5 = f'(x)$$

Remarque:

Toujours la même technique :

- 1) On dérive la forme développée réduite.
- 2) On développe la forme factorisée donnée dans l'exercice et on constate que c'est bien la même chose. (Et on n'écrit f'(x) qu'à la fin.
- 2) Étudier le signe de f'(x) et en déduire les variations de f sur [-2; 2].

Pour étudier le signe, on choisit (presque) toujours la forme forme factorisée.

Nous allons dresser un tableau de signe

- 3 > 0 est vrai pour toute valeur de x
- $x+1 \Leftrightarrow x > -1$
- $x-1.5 > 0 \Leftrightarrow x > 1.5$

х	-2		-1		1,5		2
3		+		+		+	
x+1		_		+	0	+	
x - 1,5		_		_	1	+	
f'(x)		+	0	_	0	+	

On en déduit que :

$$f'(x)$$
 est strictement positif sur $]-2;-1[\cup]1,5;2[$

$$f'(x)$$
 est strictement négatif sur $]-1$; 1,5[

et que
$$f'(x)$$
 vaut zéro sur $[-1; 1,5]$

3) $\underbrace{\text{Donner}}_{\mathbf{f}}$ les extremums de f, ainsi que les valeurs pour lesquelles ils sont atteints.

(= pas de justifications)

Pour identifier les extremums, on cherche les valeurs de x où la dérivée change de signe.

On regarde donc les zéros dans la dernière ligne du tableau de signes et on garde ceux entourés par des signes différents (+0- ou -0+ mais pas +0+ ni -0-).

On pense aussi à regarder les valeurs de f(-2) et f(2).

$$f(-2)=1$$
; $f(-1)=5.75$; $f(1.5)=-2.0625$ et $f(2)=-1$

f possède un minimum qui vaut -2,0625 et qui est atteint en 1,5

f possède un maximum qui vaut 5,75 et qui est atteint en -1