Homework 20 - MATH 791

Will Thomas

Throughout this assignment R denotes a commutative ring.

Problem 1:

An ideal $P \neq R$ is said to be a *prime ideal* if for $a, b \in R$, $ab \in P \Rightarrow a \in P$ or $b \in P$. Prove that P is a prime ideal iff R/P is an integral domain.

Solution:

Solution

Problem 2:

An ideal $M \neq R$ is a maximal ideal if whenever $J \subseteq R$ is an ideal satisfying $M \subseteq J \subseteq R$, then J = M or J = R. In other words, M is maximal among the proper ideals of R. It follows from Zorn's Lemma, that if $I \subset R$ is an ideal, then there exists a maximal ideal $M \subseteq R$ with $I \subseteq M$. In particular, every commutative ring has at least one maximal ideal. Prove that M is a maximal ideal iff R/M is a field. Conclude that every maximal ideal is a prime ideal, and give an example of a prime ideal that is not a maximal ideal.

Solution:

Solution

Problem 3:

Let R be a commutative ring. Ideals $I, J \subseteq R$ are said to be comaximal if I + J = R. Prove that I and J are comaximal iff there is no maximal ideal M containing both I and J.

Solution:

Solution

Problem 4:

Suppose I, J are comaximal ideals in the commutative ring R. Show that $I \cap J = IJ$.

Solution:

Solution

Problem 5:

For I and J as in 4, prove that the natural map $\phi: R \Rightarrow (R/I) \times (R/J)$ given by $\phi(r) = (r+I, r+J)$ is a surjective ring homomorphism whose kernel equals $I \cap J$. Conclude that $R/IJ \cong (R/I) \times (R/J)$. When $R = \mathbb{Z}$, this isomorphism is one version of the *Chinese Remainder Theorem*.

Solution:

Solution