

Model selection

Overfitting

Model selection

- Necessary tools for selection:
 - Comparison between models
 - Cross-validation
 - Hypothesis testing
 - Uncertainty estimation
 - Confidence intervals

- Given data X
- Null-hypothesis and alternative hypothesis
- Test statistics
 - Some function of a sample
 - Various test statistics have various efficiency (power)
- Distribution of test statistics under H_0
- Decision making: unusual values of test statistics $\rightarrow H_0$ is rejected.
 - Two-sided and one-sided tests

- Data
- [1] 6.204793 5.868617 5.021237 3.179392 3.577037 4.862277 5.642055 4.007396 [9] 5.540461 5.596270
- Hypotheses:

$$- H_0: \mu = 4, X \sim N(\mu, \sigma^2)$$

$$-H_A: \mu \neq 4, X \sim N(\mu, \sigma^2)$$

Test statistics

$$-t = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \in t(n-1)$$

- Evaluate t for our sample $\rightarrow t_0$
- Check if t_0 is in the critical area \rightarrow reject H_0

- Monte Carlo Hypothesis testing
 - Use any test statistics
 - We do not need to know how it is distributed
- Hypotheses:

$$- H_0: \mu = 4, X \sim N(\mu, \sigma^2)$$

$$- H_A: \mu \neq 4, X \sim N(\mu, \sigma^2)$$

- Assume $t = \frac{\bar{X} \mu}{\frac{S}{\sqrt{n}}}$
- 1. For i = 1 to B
 - 1. Generate from $Y \sim N(\mu, \sigma^2) \rightarrow \text{get } Y_1, \dots Y_n$
 - 2. Compute t_i from Y
- 2. Use $t_1, \dots t_B \rightarrow$ build a histogram.
- 3. Use the histogram as the distribution of t under H_0

- How good is the test statistics? Power!
- Power = 1 Type II error

- How to compute Power?
 - Generate data samples that satisfy H_a
 - Compute percent of correct rejections

Source: grasshopper.com

```
s=var(X)
B=10000
n=10
t=numeric(B)
for (i in 1:B) {
    Y=rnorm(10,4,s)
    t[i]=(mean(Y)-4)/(sd(Y)/sqrt(10))
}
hist(t,50)
```


What to do if we don't know the distribution of the data? → permutation tests or bootstrap tests!

- Introduced by Fisher 1930's → not used in practice because computationally expensive
- Applicable to certain types of hypothesis testing
 - Equality of models, populations,...
- No assumptions on distributions
- Two-sample problem:
 - Two samples coming from distributions F and G
 - $H_0: F = G$
 - $-H_a$: $F \neq G$

- Example: mouse data
 - Control group
 - Treatment group
 - Group variable g
 - Values variable v

– Does the value differ in control and treatment groups?

• Main idea: if $F = G \rightarrow$ group label does not matter \rightarrow we can permute those and still get a valid sample from F (or G)

• Suggest test statistics T = S(g, v)

- For example $T = mean(v_i|g_i = z) - mean(v_i|g_i = y)$

Algorithm

- 1. Create permutations g_1^* , ... g_B of group variable
- 2. Evaluate test statistics on each permutation
 - All permutations are too many? \rightarrow Sample *n* elements
 without replacement from *g*
- 3. Evaluate p-value $\hat{p} = \#\{T(b) \ge T\}/B$
 - In two-sided test, $\hat{p} = \#\{|T(b)| \ge |T|\}/B$

Code

```
B=1000
stat=numeric(B)
n=dim(mouse)[1]
for(b in 1:B){
   Gb=sample(mouse$Group, n)
   stat[b]=mean(mouse$Value[Gb=='z'])-mean(
   (mouse$Value[Gb=='y']))
}
hist(stat,50)
stat0=mean(mouse$Value[mouse$Group=='z'])-mean(mean(mouse$Value[mouse$Group=='y']))
mean(stat>stat0)
```

Do we reject null hypothesis?

Histogram of stat


```
> stat0
[1] 30.63492
> mean(stat>stat0)
[1] 0.154
> |
```

The bootstrap: general principle

We want to determine uncertainty of T(D)

- 1. Generate many different D_i from their distribution
- 2. Use histogram of $T(D_i)$ to determine confidence limits \rightarrow unfortunately can not be done (distr of D is often unknown)

Instead: Generate many different D_i^* from the empirical distribution (histogram)

Nonparametric bootstrap

Observed data

Sampling with replacement

Resampled data

$$\overline{x}_1^*, \overline{x}_2^*, ..., \overline{x}_N^*$$

Nonparametric bootstrap

Given estimator $\widehat{w} = T(D)$

Assume $X \sim F(X, w)$, F and w are unknown

- 1. Estimate \widehat{w} from data $\mathbf{D} = (X_1, ..., X_n)$
- 2. Generate $D_1 = (X_1^*, ..., X_n^*)$ by sampling with replacement
- 3. Repeat step 2 *B* times
- 4. The distribution of w is given by $T(D_1)$, ... $T(D_B)$

Nonparametric bootstrap can be applied to any deterministic estimator, distribution-free

Parametric bootstrap

Given estimator $\widehat{w} = T(D)$

Assume $X \sim F(X, w)$, F is known and w is unknown

- 1. Estimate \widehat{w} from data $\mathbf{D} = (X_1, ..., X_n)$
- 2. Generate $\mathbf{D_1} = (X_1^*, ..., X_n^*)$ by generating from $F(X, \widehat{w})$
- 3. Repeat step 2 B times
- 4. The distribution of θ is given by $T(D_1)$, ... $T(D_B)$

Parametric bootstrap is **more** precise if the distribution form is correct

Example

Distribution of regression coefficient

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Distribution of beta by bootstrap

stat1<-function(data,n){ data1=data[n,]; res<-lm(Price~Area, data1) ret=res\$coefficients[2] return(ret) } res=boot(data,stat1,R=100) hist(res\$t,20)</pre>

Distribution of beta, theoretical (normal error)

- obtained from the distribution given by the bootstrap
 - R: boot.ci() for one variable, envelope() for many variables

```
boot.ci(res)
      > boot.ci(res)
      BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
      Based on 1000 bootstrap replicates
      CALL:
      boot.ci(boot.out = res)
      Intervals:
      Level
                Normal
                                   Basic
      95% (0.4569, 0.7595) (0.4665, 0.7631)
               Percentile
      Level
                                    BCa
      95% (0.4642, 0.7609) (0.4289, 0.7346)
      Calculations and Intervals on Original Scale
```

Uncertainty estimation

- 1. Get D_1 , ... D_R by bootstrap
- 2. Use $T(D_1)$, ... $T(D_B)$ to estimate the uncertainty
 - Boostrap percentile
 - Bootstrap-t
 - Bootstrap Bca
 - _ ...
- Bootstrap works for all distribution types but approximate
- Can be bad accuracy for small data sets n < 40 (empirical is far from true)
- Parametric bootstrap works even for small samples

• To estimate $100(1-\alpha)$ confidence interval for w

Bootstrap percentile method

- 1. Using bootstrap, compute $T(D_1)$, ... $T(D_B)$, sort in ascending order, get $w_1 \dots w_B$
- 2. Define A_1 =ceil(B α /2), A_2 =floor(B-B α /2)
- 3. Confidence interval is given by

$$\left(w_{A_1}, w_{A_2}\right)$$

Look at the plot...

Bootstrap-t method

- Done by analogy with t test

1. Using bootstrap, compute
$$T^{*1}=T$$
 ($\mathbf{D_1}$)... $T^{*B}=T(\mathbf{D_B})$
2. Compute $t_j = \frac{T^{*j} - T(\mathbf{D})}{se(T^{*j})}, j = 1...B$

- 3. Define A_1 =ceil(B $\alpha/2$), A_2 =floor(B-B $\alpha/2$)
- 4. Confidence interval is $(T(D) se(T) \cdot t_{A_1}, T(D) se(T) \cdot t_{A_1})$

Comments

- se is square root of estimated variance
- Estimation $se(T^{*j})$ typically requires second-level bootstrap -> bootstrap-t is computationally intensive
- Bootstrap-t is more accurate than percentile (coverage error)
- Bootstrap BC_a is a more advanced bootstrap CI method

Bootstrap hypothesis testing

- Bootstrap distribution $T^{*1}=T(\mathbf{D_1})...T^{*B}=T(\mathbf{D_B})$
- Assume H_0 : $T = T_0$ - For ex $\beta = 0$ in regression
- Compute P-value by checking the tail corresponding T_0
- Much more complicated bootstrap hypothesis testing methods exist

A p-value (shaded green area) is the probability of an observed (or more extreme) result arising by chance

Source: Wikipedia

Bootstrap tests vs permutation tests

- Permutation tests do sampling without replacement, bootstrap does sampling with replacement
- Permutation p-value is exact if all permutations considered, bootstrap is always approximate (becomes more exact as $n \to \infty$)
- Bootstrap histograms centered around T, permutation histograms around 0
- Bootstrap tests cover larger class of problems
- $sample_variance(T^{*b})$ has no meaning for permutation tests, but for bootstrap it is an estimate of variance of T.
- Both methods require no distributional assumptions
- For permutation test, the accuracy of p-value depends on B
 - 10% accuracy achived for p=0.05 if $B \approx 2000$

Permutation tests for model selection

- Given $X_0 = (X_a, X_b, Y)$, model M
- Test
 - H_0 : variables X_b should not be in M
 - H_a : all variables are significant
- Given test statistics T(M)

Algorithm

- 1. Get \hat{X} by permuting columns X_a and fit model $Y = M(\hat{X}, X_b)$
- 2. Compute test statistics for this model
- 3. Repeat steps 1-2 B times and get a distribution of T
- 4. Use it and $T(M(X_o))$ to compute p-value

Bootstrap bias corrections

Theory shows

$$T_1 = 2T(P_n) - \mathbf{E}\left(T\left(P_n^{(1)}\right) \mid P_n\right)$$

- The last term is computed by
 - 1. Using observation set $\mathbf{D}=(X_1,...X_n)$, sample with replacement and get bootstrap sample $\mathbf{D_1}=(X_1^*,...X_n^*)$,
 - 2. Repeat step 1 B times
 - 3. Take the mean of $T(\mathbf{D_1})$... $T(\mathbf{D_B})$
- The first term is the 2T(D)

Bootstrap variance estimation

Using bootstrap, compute T*1=T(D₁)... T*m= T(D_B)

$$\widehat{V}(T) = \frac{1}{m-1} \sum_{j=1}^{m} (T^{*j} - \overline{T}^*)^2$$

Jackknife methods

- Idea: similar to CV, but used in statistical inference
 - Bias estimation
 - Variance estimation

"Jackknife methods make use of systematic partitions of a dataset to estimate properties of an estimator computed from the full sample"

• Suppose, we are given a random sample $Y = (Y_1, ..., Y_n)$ and some estimator T(Y)

Jackknife methods

First-order jackknife

- 1. Obtain $\mathbf{Y}_{(-i)}$ by dropping group of observations j from \mathbf{Y}
- 2. For each j, compute $T_{(-j)} = T(Y_{(-j)})$
- 3. Compute pseudovalues and J(T), called jackknifed T:

$$\overline{T}_{(\bullet)} = \frac{1}{r} \sum_{j=1}^{r} T_{(-j)}$$

$$T_j^* = rT - (r-1)T_{(-j)}$$

$$J(T) = \frac{1}{r} \sum_{j=1}^{r} T_j^* = \overline{T}^*$$

• Equivalently, $J(T) = rT - (r-1)\overline{T}_{(\bullet)}$

Jackknife variance estimate

- We can use $T_{(-j)}$ or pseudovalues as estimates of T for different samples (both give equivalent expression).
- Variance becomes

$$\widehat{V(T)}_{J} = \frac{\sum_{j=1}^{r} (T_j^* - J(T))^2}{r(r-1)}$$

Sometimes, one takes $\frac{\sum_{j=1}^{r} (T_j^* - T)^2}{r(r-1)}$

!The variance is often overestimated

Jackknife bias correction

First-order jackknife

• The bias reduced to order n⁻¹ (we take r=n)

$$Bias(T) = E(T) - \theta = \sum_{q=1}^{\infty} \frac{a_q}{n^q}$$

$$Bias(J(T)) = E(J(T)) - \theta$$

$$= n(E(T) - \theta) - \frac{n-1}{n} \sum_{j=1}^{n} E(T_{(-j)} - \theta)$$

$$= n \sum_{q=1}^{\infty} \frac{a_q}{n^q} - (n-1) \left(\sum_{q=1}^{\infty} \frac{a_q}{(n-1)^q} \right)$$

$$= a_2 \left(\frac{1}{n} - \frac{1}{n-1} \right) + a_3 \left(\frac{1}{n^2} - \frac{1}{(n-1)^2} \right) + \dots$$

$$= -a_2 \left(\frac{1}{n(n-1)} \right) + a_3 \left(\frac{1}{n^2} - \frac{1}{(n-1)^2} \right) + \dots$$

Jackknife estimation of bias

We see that

$$\mathrm{E}(\mathrm{J}(T)) - \theta \ = \ \mathrm{E}(T) - \theta + (n-1) \left(\mathrm{E}(T) - \frac{1}{n} \sum_{j=1}^n \mathrm{E}(T_{(-j)}) \right)$$

• Hence, bias is

$$B_{\rm J} = (n-1) \left(\overline{T}_{(\bullet)} - T \right)$$

Higher-order jackknife

The order of the bias can be further reduced

Second-order jackknife

$$J^{2}(T) = \frac{n^{2}J(T) - (n-1)^{2} \sum_{j=1}^{n} J(T)_{(-j)}/n}{n^{2} - (n-1)^{2}}$$

• Higer order jackkifes –combining jackknifes of lower orders: $T_1 = wT_2$

 $T_w = \frac{T_1 - wT_2}{1 - w}$

Higher-order jackknife

Comments

High order jackknifes reduce the bias but they increase the variance

 Delete-1 jackknife is not always appropriate (median). Use delete-k