Lista 8 - Teoria Cinética

- 1) Um pneu de automóvel tem um volume de $1,64\times 10^{-2}\,m^3$ e contém ar à pressão manométrica (pressão acima da pressão atmosférica) de $165\,kPa$ quando a temperatura é $0,00\,^{\circ}C$. Qual é a pressão manométrica do ar no pneu quando a temperatura aumenta para $27,00\,^{\circ}C$ e o volume aumenta para $1,67\times 10^{-2}\,m^3$? Suponha que a pressão atmosférica seja $1,01\times 10^5\,Pa$.
- 2) Uma amostra de um gás ideal é submetida ao processo cíclico abca mostrado na figura abaixo. A escala do eixo vertical é definida por $p_b = 7,5\,kPa$ e $p_{ac} = 2,5\,kPa$. No ponto $a,\,T = 200\,^{\circ}C$.
 - a) Quantos mols de gás estão presentes na amostra?
 - b) Qual é a temperatura do gás no ponto b?
 - c) Qual é a temperatura do gás no ponto c?
 - d) Qual é a energia adicionada ao gás na forma de calor ao ser completado o ciclo?

- 3) Uma bolha de ar com $20\,cm^3$ de volume está no fundo de um lago com $40\,m$ de profundidade, onde a temperatura é $4,0\,^{\circ}C$. A bolha sobe até a superfície, que está à temperatura de $20\,^{\circ}C$. Considere a temperatura da bolha como sendo a mesma que a da água em volta. Qual é o volume da bolha no momento em que chega à superfície?
- 4) Um feixe de moléculas de hidrogênio (H_2) está direcionado para uma parede, fazendo um ângulo de 55° com a normal à parede. As moléculas do feixe tem velocidade de $1,0\,km/s$ e uma massa de $3,3\times10^{-24}\,g$. O feixe atinge a parede em uma área de $2,0\,cm^2$, a uma taxa de 10^{23} moléculas por segundo. Qual é a pressão do feixe sobre a parede?
- 5) A água a céu aberto a 32°C evapora por causa do escape de algumas moléculas da superfície. O calor de vaporização (539 cal/g) é aproximadamente igual a εn , onde ε é a energia média das moléculas que escapam e n é o número de moléculas por grama.
 - a) Determine ε .
- b) Qual é a razão entre ε e a energia cinética média das moléculas de H_2O , supondo que esta última está relacionada à temperatura da mesma forma nos gases?
- 6) O livre caminho médio das moléculas de nitrogênio a $0,0^{\circ}C$ e $1,0\,atm$ é $0,80\times10^{-5}\,cm$. Nestas condições de temperatura e pressão, existem $2,7\times10^{19}\,moléculas/cm^3$. Qual é o diâmetro das moléculas?
- 7) A figura abaixo mostra a distribuição de velocidades hipotética das N partículas de um gás [note que P(v) = 0 para qualquer velocidade $v > 2v_0$]. Qual é o valor de
 - a) av_0 ?
 - b) $v_{m\acute{e}d}/v_0$?
 - c) v_{rms}/v_0 ?
 - d) Qual a fração de partículas com velocidades entre $1,5v_0$ e $2,0v_0$?

- 8) A temperatura de 3,00 mols de um gás diatômico ideal é aumentada de $40,0^{\circ}C$ sem mudar a pressão do gás. As moléculas do gás giram, mas não oscilam.
 - a) Qual é a energia transferida para o gás na forma de calor?
 - b) Qual é a variação da energia interna do gás?
 - c) Qual é o trabalho realizado pelo gás?
 - d) Qual é o aumento da energia cinética de rotação do gás?
 - 9) Suponha que $12,0\,g$ de gás oxigênio (O_2) são aquecidos de $25^{\circ}C^{\checkmark}125^{\circ}C$ à pressão atmosférica.
 - a) Quantos mols de oxigênio estão presentes? (A massa molar do oxigênio está na Tabela 19.1).
 - b) Qual é a quantidade de calor transferida para o oxigênio? (As moléculas giram, mas não oscilam).
 - c) Que fração do calor é usada para aumentar a energia interna do oxigênio?
- 10) A figura abaixo mostra duas trajetórias que podem ser seguidas por um gás de um ponto inicial i até um ponto final f. A trajetória 1 consiste em uma expansão isotérmica (o módulo do trabalho é 50 J), uma expansão adiabática (o módulo do trabalho é 40J), uma compressão isotérmica (o módulo do trabalho é 30J) e uma compressão adiabática (o módulo do trabalho é 25 J). Qual é a variação da energia interna do gás quando vai do ponto i ao ponto f seguindo a trajetória 2?

RESPOSTAS:

- 1) $186 \, kPa$
- 2) (a) 1,5 mol (b) 1,8 \times 10 3 K (c) 6,0 \times 10 2 K (d) 5,0 kJ
- 3) $1,0 \times 10^2 \, \text{cm}^3$
- 4) 1,9kPa
- 5) (a) $6,76 \times 10^{-20} J$ (b) 10,7
- 6) $d = 3, 2 \times 10^{-8} \, cm = 0, 32 \, nm$
- 7) (a) 0,67 (b) 1,2 (c) 1,3 (d) 0,33
- 8) (a) 3,49 kJ (b) 2,49 kJ (c) 997 J (d) 1,00 kJ 9) (a) $n=0,375 \, mol$ (b) $Q=1,09\times 10^3 \, J$ (c) $\frac{\Delta E_{int}}{Q}=\frac{5}{7}\approx 0,714$
- 10) -15 J