cnot.md 9/9/2021

CNOT Gate

If $q_0 = \text{0} = \text{0}$

 $q_1q_0 = \text{10} = \text{1$

 $a_{00} = 0$, $a_{01} = 0$, $a_{10} = 1$, $a_{11} = 0$, so

likewise,

 $\star 11 = \text{1} \cot \{1\} = \left(1\} = \left(1\} - \left(1\} = \left(1\} - \left(1) - \left(1\} - \left(1\} - \left(1\} - \left(1\} - \left(1) - \left(1\right) -$

But please note: a_{00} , a_{10} , a_{11} may be any combination of real numbers that satisfies $a_{00}^2 + a_{01}^2 + a_{11}^2 = 1$. (Each qubit may be in different superposition states.)

Elton Huang