Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features

Xu SUN (孙栩)

Peking University

xusun@pku.edu.cn

Motivation

■ Neural networks -> Good Performance

- CNN, RNN, LSTM...
- Sequence labelling, parsing, machine translation...

■ Neural networks -> Slow Training

- Large parameter space
- Dense feature
- Complex computation

Faster Training? -> Parallel Training

- Synchronous
- Asynchronous -> AsynGrad

Neural Networks

■ Many kinds

- Feed Forward Neural Networks
 - logistic regression

- Convolutional Neural Networks
 - image processing

- Recurrent Neural Networks
 - RNN, LSTM, GRU...
 - structured prediction

Recurrent Neural Network (RNN)

- □ Recurrent neural network (Elman, Cognitive Science 1990)
 - Model time series
 - Predict linear-chain structures
 - Conditioned on all previous input

$$h_t = f(Uh_{t-1} + Wx_t)$$

$$\hat{y}_t = softmax(W^{(s)}h_t)$$

Long Short-term Memory (LSTM)

- □ Long short-term memory (Hochreiter and Schmidhuber 1997)
 - A lasting linear memory
 - Capture long distance dependency
 - Three gates: input, forget and output gates
 - Control modification to the memory

Sequence-to-Sequence Model

- □ Sequence to sequence neural network (Sutskever et al., NIPS 2014)
 - Encoder & Decoder
 - The encoder information is stored in a fixed-length vector

- Popular for high-level task
 - Machine Translation
 - Summarization
 - ...

For Large-Scale Structured Prediction

□ Training large-scale neural networks is costly

- Numerous parameters
- Dense Feature
- Time-consuming

□ For example

- A NMT model may take weeks to train
- Days, even if with GPU clusters

■ How to accelerate training speed?

- Parallel training
- Especially, asynchronous (lock-free) parallel training

Basic operations in parallel training

□ Problem differs in

- Online vs. Mini-batch vs. Batch
- Synchronous parallel vs. Asynchronous parallel
- Dense feature model vs. Sparse feature model

Parallel Training

□ Synchronous (locked)

- Multiple threads
- Only one can modify model parameters at the same time

□ Asynchronous (lock-free)

- Multiple threads
- Each one can modify model parameters at the same time

Model Types

■ Sparse feature model

- e.g. HMM, CRF, Perceptron, MILA...
- features are sparse
- less read & write time

Dense feature model

- e.g. RNN, LSTM,Sequence-to-Sequence...
- features are dense
- more read & write time

feature space

sparse feature model

0 0 1 0 0

•••

0 1

dense feature model

•••

0.2 1.0

	Sparse	Dense
Sync.	?	?
Async.	?	?

Synchronous Online Parallel Training

Correctness

No problem at all!

□ Current approach: DSGD (round-robin)

- Langford et al, NIPS 2009
- Stochastic parallel learning by locking memory

Synchronous Online Parallel Training

Correctness

No problem at all!

Current approach:

- mini-batch based method
- Computing gradients in parallel
 - such as: parallel matrix operations via GPU

Asynchronous Online Parallel Training

Asynchronous parallel learning is very popular for traditional sparse feature models

2. This case is called Gradient Delay case

→ More complicated, but problem solved for sparse feature models (Niu et al. NIPS 2011)

Asynchronous Online Parallel Training

□ Current approach: HogWild! and variants

- Multiple threads updating parameters at the same time
- For sparse feature models

Advantage

- Actual parallel training
- Fast training speed with no performance loss

Asynchronous Online Parallel Learning

- **□ 3. Even more difficult case: Gradient Error Case**
 - Happens for dense feature models, like neural networks
 - Actions (R, G & W) are time-consuming
 - Read-overwrite and write-overwrite problems

R

→Not well studied before, how to deal with this problem?

■ How threads interact with each other?

AsynGrad aims to solve gradient error case

■ How threads interact with each other?

This is our proposal

Review of Gradient Error Case

□ Gradient error has two aspects

- How many of the gradients are wrong?
- How wrong are they?

Experimental Observations

Gradient error is very common in asynchronous training of neural networks in real-world tasks

Experimental Observations

☐ Gradient error is moderate in asynchronous training of neural networks in real-world tasks

Our Theoretical Analysis

Can training still converge with gradient errors?

Theorem 1 (AsynGrad convergence and convergence rate). With the conditions (4), (5), (6), (7), let $\epsilon > 0$ imum). Let

be a targe

 τ denote | Even though there are gradient errors, training still converges towards the optimum, when the gradient where ${\it w}$ errors are bounded.

 $s(w) = \mathbb{E}_{z}[s_{z}(w)]$. Let γ be a learning rate as

$$\gamma = \frac{c\epsilon - 2\tau q}{\beta q \kappa^2} \tag{9}$$

where we can set β as any value as far as $\beta \geq 1$. Let t be the number of updates as follows

$$t \doteq \frac{\beta q \kappa^2 \log (q a_0 / \epsilon)}{c(c \epsilon - 2\tau q)} \tag{10}$$

where \doteq means ceil-rounding of a real value to an integer, and a_0 is the initial distance such that $a_0 =$ $||\boldsymbol{w}_0 - \boldsymbol{w}^*||^2$. Then, after t updates of \boldsymbol{w} , AsynGrad converges towards the optimum such that $\mathbb{E}[f(\boldsymbol{w}_t) |f(\boldsymbol{w}^*)| \leq \epsilon$, as far as the gradient errors are bounded such that

bounded gradient errors

Our Theoretical Analysis

AsynGrad

- An asynchronous parallel learning solution for fast training of neural networks
 - Asynchronous Parallel Learning with <u>Gradient Error</u> (AsynGrad)
- Algorithm

```
Algorithm 1 AsynGrad: Asynchronous Parallel Learning with Gradient Error

Input: model weights w, training set S of m samples

Run k threads in parallel with share memory, and procedure of each thread is as follows: repeat

Get a sample z uniformly at random from S

Get the update term s_z(w), which is computed as \nabla f_z(w) but usually contains error Update w such that w \leftarrow w - \gamma s_z(w)

until Convergence return w
```

X. Sun. Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features. COLING 2016.

Experiments on LSTM

Experiments show a high gradient error rate

Experiments on LSTM

Experiments show that AsynGrad still converge even with a high gradient error rate

Experiments on LSTM

■ No loss on accuracy/F-score

AsynGrad

■ With substantially faster training speed

AsynGrad: A General-Purpose Solution

Also suitable for other dense feature models

Dense CRF -> moderate error rate

Experiments on Dense-CRF

■ No loss on accuracy/F-score

AsynGrad

With substantially faster training speed

AsynGrad

- □ Gradient errors are common and inevitable in asynchronous training of dense feature models
 - Such as neural networks

- AsynGrad survives with gradient errors
 - With substantial faster training speed
 - No loss at all on test accuracy
 - Theoretical justification

Thanks!