# Statistical Inference Course Project

Veasna Kheng

23/07/2020

## Part 1: Means of 40 Exponential Distribution with $\lambda = 0.2$

This part reports the investigation of the distribution of averages of 40 exponentials and compare it with the Central Limit Theorem using R with a thousand of simulation. The probability density function of the exponential distribution is

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

The following simulation is based on lambda = 0.2. Thus, the population mean and standard deviation are

$$\mu = \sigma = 1/0.2 = 5$$

.

#### Sample Mean Versus Theoretical Mean

```
set.seed(111)
n <- 1000 # number of simulations
lambda \leftarrow 0.2
s_means <- NULL
for (i in 1:n) s_means = c(s_means, mean(rexp(40,lambda))) # 1000 simulation of sample mean
# sample mean (expectation of sample mean)
mubar <- mean(s_means)</pre>
mubar
## [1] 5.02562
# theoretical mean
mu <- 1/lambda
## [1] 5
library(ggplot2)
ggplot(data.frame(1:n, s_means), aes(x = s_means)) +
  geom_histogram(alpha = .40, binwidth=.3, col="black", fill = "white") +
  geom_vline(xintercept = mubar, col = "blue", size = 1) +
  geom_vline(xintercept = mu, col = "red") +
  labs(x ="Sample Means",y = "Frequency",title = "Histogram of sample means") +
  annotate("text", x = c(3.5, 6.5), y=150,
           label=c("Theoretical mean (red)", "Sample mean (blue)")) +
  theme bw()
```

### Histogram of sample means



#### Sample Variance Versus Theoretical Variance

```
# sample variance
var(s_means)

## [1] 0.6069798

# theoretical variance
1/lambda^2 / 40

## [1] 0.625
```

### The Central Limit Theorem (CLT)

The CLT states that the distribution of average of i.i.d variables becomes a normal distribution as the sample size increases. That is, the mean  $(\bar{\mu})$  of sample size n is approximately  $N(\mu, \sigma^2/n)$ . The following simulation and figure prove this point.

#### Distribution of the sample mean

# Distribution of the sample mean as sample size increases



We can see that as sample size increases, the distribution of sample mean becomes more like a bell shape, normal distribution.