BM-101

MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The questions are of equal value.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

		(Multiple	GROUP A Choice Type Questi	ons)	
1.	Answer any ten qu	estions.			$10\times1=10$
(i)	An element x in a ring R is a zero divisor if				
	$(\mathbf{A}) x \cdot b = 0$				
	(B) $x \cdot b = 0$, for some non zero element in R				
	(C) $x \cdot b \neq 0$, for all elements b in R				
	(D) none of these				
(ii)	If $A = \{2, 4, 6\}$ and $B = \{1, 3, 5, 7\}$ then $A \cup B$ is				
	(A) {0}		(B) {1, 2, 3, 4, 5,	6, 7}	
	(C) {1, 2, 4, 5, 6,	7}	(D) {0, 2}		
(iii)	The polar form of the equation $x^2 + y^2 - 8y = 0$ is				
	$(A) r = 8\cos\theta$	(B) $r = 8\sin\theta$	$(C) r^2 = 8\cos\theta$	(D) none of these	
(iv)	The diagonal elements of a real skew symmetric matrix are				
	(A) 1	(B) -1	(C) 2	(D) 0	•
(v)	If α, β, γ are the ro	oots of the equation	$x^3 - 3x^2 + 6x - 2 = 0$	then, $\alpha + \beta + \gamma$ is	
	(A) 0	(R) 1	(C) 3	(D) - 2	

CS/BCA/Odd/Sem-1st/BM-101/2014-15

- (vi) The value of t for which the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 5 & t & 3 \\ 0 & 3 & 1 \end{bmatrix}$ is singular is
 - (A) $\frac{-3}{2}$ (B) $\frac{3}{2}$
- (C)2
- (D) -2

- (vii) The function f(x) = |x| then
 - (A) continuous and differentiable at x = 0
 - (B) continuous everywhere but differentiable at x = 0
 - (C) discontinuous and not differentiable at x = 0
 - (D) none of these
- (viii) Which of the following function obeys Rolle's theorem in $[0,\pi]$
 - (A) x
- (B) $\sin x$
- (C) $\cos x$
- (D) $\tan x$
- (ix) By 3rd order Maclaurin's theorem we have $\sin x = f(x) \frac{x^3}{6} \cos \theta x$, then f(x)equal to
 - $(A) x^2$
- (B) $-x^2$
- (C) x

- (x) If $f(x,y) = x^2y$ then df equal to
 - (A) $2x^2 dx + dy$ (B) x 2 dy
- (C) x + dy
- $(D) 2xy dx + x^2 dy$

- (xi) f(x, y) = |x| + |y| then $f_x(0, 0)$ equal to
 - (A) 0

- (C) does not exist (D) none of these
- (xii) The value of $\int_1^2 \frac{e^{\log x}}{x} dx$
 - (A) 1
- (B) 1
- (C) 2
- (D) 0

CS/BCA/Odd/Sem-1st/BM-101/2014-15

GROUP B (Short Answer Type Questions)

Answer any three questions.

 $3 \times 5 = 15$

- 2. If α , β are the roots of the equation $x^2 px + q = 0$ then find the equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
- 3. Solve the following equations by matrix inversion method

$$x + y + z = 2$$
, $x - y + 2z = 6$, $3x + 5y + 7z = 14$

- 4. Give the definition of commutative group and show that $\{1, \omega, \omega^2\}$ where $\omega^3 = 1$ forms a commutative group w.r.t. multiplication.
- 5. If $y = \cos(m \sin^{-1}x)$ then prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$
- 6. If $u = \tan^{-1} \frac{x^2 y^2}{x y}$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \sin 2u$.

GROUP C (Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

7

5

- 7. (a) In a class of 50 students, 15 read Physics, 20 read Chemistry and 20 read Mathematics, 3 read Physics and Chemistry, 6 read Chemistry and Mathematics and 5 read Physics and Mathematics, 7 read none of the subjects. How many students read all the subjects?
 - (b) Discuss the nature of the conic represented by $3x^2 8xy 3y^2 + 10x 13y + 8 = 0$ by reducing to its canonical form.
- 8. (a) Apply Descarte's rule of sign to show that the equation $x^4 + 2x^2 7x 5 = 0$ has two real roots and two non real roots.
 - (b) Verify Rolle's theorem for the function $f(x) = |x|, -1 \le x \le 1$

[Turn over]

1008

CS/BCA/Odd/Sem-1st/BM-101/2014-15

- (c) Discuss the continuity of the following function f(x) = x [x], where [x] denotes the greatest integer not greater than x.
- 5
- 9. (a) Using the mean value theorem prove the following inequalities $x < \sin^{-1}x < \frac{x}{\sqrt{1 x^2}}$ if 0 < x < 1
- 6.
- (b) Show that $z = \log\{(x-a)^2 + (y-b)^2\}$ satisfies the relation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ except at (a, b)
- 6

(c) Evaluate $\int \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}$

-

10.(a) Solve $x^3 - 9x + 28 = 0$ using Cardan's method.

6

(b) Evaluate $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$

4

(c) Find the nature of the conic $\frac{8}{r} = 4 - 5\cos\theta$

5

11.(a) Find $\frac{dy}{dx}$ when $x = y \log(xy)$

- 5
- (b) Give the definition of a ring with two binary composition. Let H be the set of all matrices $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad bc = 1 \right\}$
- 5
- Prove that H forms a non-commutative group with respect to matrix multiplication.
- 5
- (c) If by a transformation of motion of co-ordinate axis, the expression $ax^2 + 2hxy + by^2$ changes into $a'x'^2 + 2h'x'y' + b'y'^2$ then show that a + b = a' + b'