自然数 n , p に対し , n^p を十進法で書いた時の 1 の位の数を $f_p(n)$ で表す . ただし , 自然数とは , $1,2,3,\cdots$ のことである .

- (1) n が自然数の全体を動く時 $f_2(n)$ のとる値を全部求めよ .
- (2) あらゆる自然数 n に対して , $f_5(n) = f_1(n)$ が成り立つことを証明せよ .
- (3) n が自然数の全体を動く時 $f_{100}(n)$ のとる値を全部求めよ .

[解] n=0 に対しても同様に $f_p(n)$ を定義できるので,以下 $n\geq 0$ で考える.合同式の法を10 とすると,

$$n^p \equiv f_p(n)$$

である.故に $k=0,1,2,\cdots,9$ および $i\in\mathbb{Z}_{\geq0}$ に対して

$$f_p(10i+k) = f_p(k)$$

が成り立つ.よって以下 $f_p(0),\cdots,f_p(9)$ についてのみ考えればよい.

(1) $(10-k)^2\equiv k^2$ ゆえ, $f_2(k)=f_2(10-k)$ である.故に k=0,1,2,3,4,5 についての み調べればよい.

$$f_2(0) = 0$$
 $f_2(1) = 1$
 $f_2(2) = 4$ $f_2(3) = 9$
 $f_2(4) = 6$ $f_2(5) = 5$

だから, 求める値は

$$f_2(n) = 0, 1, 4, 5, 6, 9$$

である.…(答)

(2) $n^5-n=n(n-1)(n+1)(n^2+1)$ は 2 連続整数の積を因数に含むから 2 の倍数である. 又,ここでのみ合同式の法を 5 とすると, $\forall n, n^5-n\equiv 0$ (実際に $n\equiv 0,\pm 1,\pm 2,3$ を代入すれば明らか) である.故に 5 の倍数である.

以上から, n^5-n は 2 かつ 5 の倍数,つまり 10 の倍数.よって

$$n^5 - n \equiv 0 \iff f_5(n) = f_1(n)$$

である.□

(3) (2) の結果から

$$n^{100} \equiv (n^4)^{25} \equiv n^4$$

であるから , f_4n の取り得る値だけを求めればよい . (1) と同様にして , k=0,1,2,3,4,5 のみ調べれば十分である .

$$f_4(0) = 0$$
 $f_4(1) = 1$
 $f_4(2) = 6$ $f_4(3) = 1$
 $f_4(4) = 6$ $f_4(5) = 5$

であるから, 求める値は

$$f_4(n) = 0, 1, 5, 6$$

である.…(答)