### Bierproductie

A management system for brewing machines



Bachelor of Engineering, Software Technology Semesterproject 3. semester, ST3-PRO

Project Period: 31.08.2020 - 19.12.2020

Hand in date: 19.12.2020

#### Group 06:

Jakob Rasmussen, jakra19@student.sdu.dk Kenneth M. Christiansen kechr19@student.sdu.dk Kevin K. M. Petersen, kepet19@student.sdu.dk Kristian N. Jakobsen, kjako19@student.sdu.dk Simon Jørgensen, sijo819@student.sdu.dk

Supervisor: Parisa Niloofar, parni@mmmi.sdu.dk

University of Southern Denmark
The Faculty of Engineering
The Mærsk Mc-Kinney Møller Institute
Campusvej 55, 5230 Odense M

Title: Bierproductie

**Institution:** University of Southern Denmark

The Faculty of Engineering, The Mærsk Mc-Kinney Møller Institute

Campusvej 55, 5230 Odense M

Education: Bachelor of Engineering, Software Technology

Semester: 3. Semester

Course Title: Industrial 4.0 cyber-physical software systems

Internal Course Code: ST3-PRO

**Project Period:** 31.08.2020 - 19.12.2020

ECTS: 10 ECTS

Supervisor: Parisa Niloofar

Project group: 06

Kakob Rasmussen, jakra19@student.sdu.dk

Menneth Munh

Kenneth M. Christiansen, kechr19@student.sdu.dk

Kevin K. M. Petersen, kepet19@student.sdu.dk

Kristian W. Jakobsen, kjako19@student.sdu.dk

Simon

Simon Jørgensen, sijo819@student.sdu.dk

Pages: 10 Appendix: 0

By signing this document, each group member confirms that everyone have participated equally to this project, and everyone is thus collectively responsible for the content of the report.

# I Summary

# II Table of Contents

# III Editorial

# IV List of Figures

# 1 Introduction

# 2 Background

3 Problem analysis

# 4 Theory & Methods

### 5 Requirements

### 5.1 Overall Requirements Specification

#### 5.1.1 Problem Statement

In the table 1, the finished problem, the problem statement and related questions are listed.

| Problem           | The current production line is not effecient enough to keep up                                                                 |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
|                   | with the demand of the beer, while still maintaining a quality                                                                 |  |  |
|                   | product                                                                                                                        |  |  |
| Problem State-    | How to control and optimise the brewing machine, to maximise                                                                   |  |  |
| ment              | the production of high quality beer                                                                                            |  |  |
| Related questions |                                                                                                                                |  |  |
|                   | • How can we optimise the production?                                                                                          |  |  |
|                   | • How can we utilise calculus and linear algebra to provide a meaningful overview of the production line, based on statistics? |  |  |
|                   | • How can we create a web based frontend for the MES?                                                                          |  |  |
|                   | How can we separate the different aspects of the system (separation of concerns)                                               |  |  |

**Table 1:** Problem statement showcase

#### 5.1.2 Summary of requirements

The group's proposed solution will adhere to the requirements given by the brewery Refslevbæk Bryghus A/S.

The manufacturing execution system, MES, must be able to control the brewery's production. It must be able to start and stop the production line, as well as monitor the production and collect data from the production line. The data must be stored for further analysis. The MES must be able to keep track of the batches that the new machine is producing, as well as collect various data from the machine that is associated with the current batch number. After a finished batch production, the MES must be able to produce a batch report. The report must contain the following.

- This Batch ID
- Product type
- Amount of products (total, defect and acceptable)
- Amount of time used in the different states
- Logging of temperature over the production time
- Logging of humidity over the production time

The MES/SCADA (Supervisory control and data acquisition) system must be able to monitor the production and display live relevant data from the machine. The documentation of the system must contain an illustration that defines the different components in the setup, in relation to the ISA88^1213 Part 1 Physical Hierarchy model. The system must have a visualisation that can be accessed and used to display production data. The system must be able to collect the necessary data from the machine and calculate the overall equipment effectiveness, OEE^131516, of the machine. The OEE must be available to be displayed by the system. The system must be able to estimate the error function associated with the different products. The system must be able to find the optimal production speed for each product type, based on an error simulation and the appertaining graph upon which the error simulation is built.

#### 5.1.3 List of requirements

Below is a list of the above requirements. These requirements have been prioritised using the MoSCoW method, where M is for Must have, S is for Should have, C is for could have, and W is for Won't have.

| ID  | Name                     | Description                                                                                                                                                 | Prio |
|-----|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| R01 | Control production line  | Control the brewery's production                                                                                                                            | М    |
| R02 | Control production line  | Start/stop production line                                                                                                                                  | М    |
| R03 | Monitor production       | Monitor data from the production line                                                                                                                       | M    |
| R04 | Monitor production       | Store the collected data for further analysis                                                                                                               | M    |
| R05 | Administer batches       | Keep track of produced batches (batch ID)                                                                                                                   | M    |
| R06 | Store batch info         | Collect various data associated with current batch number from the machine                                                                                  | М    |
| R07 | Batch report             | Produce a batch report (PDF/dashboard style format)                                                                                                         | М    |
| R08 | Live data                | Monitor and display live relevant data from the machine                                                                                                     | М    |
| R09 | Documentation            | Documentation must contain an illustration that defines the different components in the setup in relation to the ISA88^1213 Part 1 Physical Hierarchy model | M    |
| R10 | Visualisation            | Visualisation that can be accessed and used to display the production data                                                                                  | М    |
| R11 | OEE                      | Collect necessary data from the machine and calculate the OEE. OEE must be available to be displayed by the system                                          | M    |
| R12 | Estimate error function  | Estimate the error function associated with the products                                                                                                    | S    |
| R13 | Optimal Production speed | Estimate the optimal production speed for each product type                                                                                                 | М    |

Table 2: List of requirements

### 5.2 Selected Detailed Requirements

- ${\bf 5.2.1}\quad {\bf Functional\ \&\ Non-Functional\ Requirements}$
- 5.2.2 The Physical Setup (The Brewery Machine)
- 5.2.3 The Simulator
- 5.3 Use Cases
- 5.3.1 Actor List
- 5.3.2 Detailed Use Cases

From project description

### 5.3.3 Use Case Diagram

## 6 Analysis

- 6.1 Use Case analysis
- 6.1.1 Class Candidates
- 6.1.2 Description of Classes
- 6.1.3 UML Analysis Diagram
- 6.2 Use Case Realisation
- 6.2.1 Sequence Diagrams
- 6.2.2 Operation Contracts
- 6.2.3 Updated UML Class Diagram

## 7 Architecture

# 8 Design

# 9 Implementation

# 10 Verification & Validation

# 11 Evaluation

## 12 conclusion