altran

Ex 4. Round 1: Center is undestinal Cluster 1: A Cluster 2: B	red
Clustes 3: C D, E, F, G, H Round 2: Clustes 1: A	
Cluster2: B, C Cluster3: (7.5,6), D,E,F,G,H Round 3:	
(lustes 2: (3,3.5), C (lustes 2: (3,5.5), DE, F, G, H	
Round 4: Clustes 1: (2.5, M.S), A,B	same as in Round 3
(luster3: (8.5,5.6), DIE, F, G, H L> Alg.,	dolesmines
b) 12 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	L is mean of cludes 1: (2.5, M.5) C is mean of cludes 2: (3,8) K is mean of cludes 3: (8.5,5.6)

altran

b)
$$\|(x_1, f(x)) - L\| = \|(x_1 f(x)) - C\|$$
 $= \|(x_1 - f(x)) - L\| = \|(x_1 f(x)) - C\|$
 $= \|(x_1 - f(x)) - L_2\|^2 = \|(x_1 - f(x) - f(x))\|$
 $= \|(x_1 - f(x)) - L_2\|^2 = \|(x_1 - f(x) - f(x))\|$
 $= \|(x_1 - f(x)) - L_2\|^2 + \|f(x) - L_2\|^2 = \|(x_1 - f(x))^2 + \|f(x) - f(x)\|^2$
 $= \|(x_1 - f(x)) - L_2\|^2 - \|f(x) - f(x)\|^2 + \|f(x) - f(x)\|^2$
 $= \|(x_1 - f(x)) - L_2\|^2 - \|f(x) - f(x)\|^2 + \|f(x) - f(x)\|^2 - \|f(x) - f(x)\|^2 + \|f(x)\|^2 + \|f(x)\|^2$

O With the computations with the new centraids it leads to the following The center's undestined. clustess: Cluster 1. (2,667, 10, 333), A,B,C Cluster 2: (6,333,4), D, E, F Clastes 3: (4,5,8), G, A So the clusters are the same as in the round before. So the algorithm stopps So we got a different set of final clustess as in a) d) 11A-G11=4-151 11 B-A11= 12 113-611=158 The shortest distance of all the points to each other is the distance between A and B. So A and B has to be an a cluster except A and B are Centers of one cluster. But then the distance between A and G is longer then B and G. \$ G would be in the cluster of B. So it is impossible that the K-mean Algorithm returns [A, G] as a cluster