Advanced Computer Communications

G54ACC

Lecture 1

richard.mortier@nottingham.ac.uk

The Internet Hourglass

Outline

Taking IP as the starting point, we will...

- Head down to the physical layer and work back upwards, seeing a range of technologies that support IP
- Head upwards from IP, taking in several core Internet protocols
- Finish with higher layer concerns, including applications

Content

Number	Date	Topic	Number	Date	Topic
1	Jan 31	Introduction	10	Mar 13	Routing
2	Feb 02	IP Networks	11	Mar 15	Transport
3	Feb 07	Multiplexing	12	Mar 20	Reliability
_	Feb 09	_	13	Mar 22	Connecting
4	Feb 14	Physical Layer	_	Mar 27	_
5	Feb 16	Optical Networks	14	Mar 29	Applications
6	Feb 21	Ethernets	15	May 01	Management
7	Feb 23	ATM/ADSL	16	May 03	Programming
_	Feb 28	_	17	May 08	Security
_	Mar 01	_	18	May 10	Revision
8	Mar 06	Switching	19	May 14	?
9	Mar 08	Revision	20	May 17	?

NB. This is probably optimistic, and likely to be updated

Schedule

- Tuesday 1500—1600, JC-EXCHANGE C.LT2
- Tuesday 1600—1700, CompSci A32 (lab)
- Thursday 1100—1200, JC-EXCHANGE B.LT1
- There will be no lecture on:
 - Thursday February 9th (probably)
 - Tuesday February 28th
 - Thursday March 1st (probably)
 - Tuesday March 27th

Material

- Check my web pages!
 - http://cs.nott.ac.uk/~rmm/teaching/2011-g54acc/
 - Will be updated as the course progresses
 - Links to external matter (papers &c) are included for background, context, detail, breadth
- Read books!
 - No specific text will be followed directly
 - A selection of the many good books that exist is listed on the web pages
 - The catalogue claims at least several of these are available through the university library

Assessment

- One exam paper, answer 3 questions of 5
 - There is no assessed coursework
- You have lab sessions timetabled use them!
 - There are practical exercises on the webpages
 - There will be questions at the end of every lecture
 - There are past exam questions from last year
- I am also happy to answer questions by email
 - richard.mortier@nottingham.ac.uk

Pop Quiz

Can anyone give some examples of protocols?

- What's an IP address?
- Why does TCP have port numbers?
- How does ping work?
- What is ATM?
- How are OpenID and Oauth different?

A Word of Warning

- This module has a pre-requisite, G52CCN
 - Second year, Computer Communication Networks
- Its material really is a pre-requisite!
 - The experience following last year's exam is that you are unlikely to do well if you aren't reasonably familiar with the material from G52CCN
- Please come and talk to me afterwards if you've questions about this!

Connectivity

- What do computer networks do?
 - Transfer data between hosts (computers)
- What does the Internet do?
 - Transfer data between networks
- Increasingly, we rely on network connectivity
 - Other networks
 - Fixed and mobile devices
 - Wired and wireless access
 - Cloud services

Network Constraints

- Design, throughput, capacity
 - Bottleneck resource: the most constrained
- Latency: c, the speed of light
- Standards compliance
- Market conditions, economic sustainability
- Future proofing: times change

Network Resources

- Reliability
 - How much data is lost in transfer?
- Latency
 - How long does it take to get there?
- Bandwidth
 - How fast can data be transferred?
- Bandwidth vs. Throughput vs. Goodput
 - Raw signal
 - vs. Impact of encoding
 - vs. Impact of loss

Internet Performance Variability

Loss

- Generally zero until something goes wrong
- Loss due to overload vs. error

Latency

- Speed of light, switching, queuing
- San Francisco—New York, Transatlantic ~ 75ms
- Bandwidth http://bit.ly/u6lzpQ
 - -2G = 14.4 kb/s; 2.5G = 57.6 kb/s; 3G = 384 kb/s
 - ADSL ~ 8 Mb/s; Cable modem (DOCSIS) ~ 50 Mb/s
 - Wireless Ethernet = 2 600 Mb/s
 - Wired Ethernet = 100 Mb/s 100 Gb/s
 - Disk ~ 3 Gb/s; HDMI = 10.2 Gb/s; RAM ~ 256 Gb/s

Networks

- A hierarchy of providers
- Local Area Network (LAN)
 - School, University
- Metropolitan Area Network (MAN)
 - University, EMMAN
- Wide Area Network (WAN)
 - National: JANET
 - International: Sprint, AT&T

IP is about Internetworking

- IP interconnects heterogeneous networks
- Everyday examples include:
 - Ethernet
 - WiFi
 - GPRS/3G
 - ADSL
 - Cable
 - Fibre optic
- Hundreds of types!
- Standardization via the IETF RFCs (<u>ietf.org</u>)

Why 100s? The Non-technical

- Fundamentalist principles
 - Telephone companies (bellheads)
 vs. computer networking (netheads)
 www.wired.com/wired/archive/4.10/atm.html (1996)
- Proprietary technologies
 - IBM Token Ring/DECNET LAT/CISCO ISL
 - Protectionism
 - Customer lock-in
- Monitoring

Why? The Technical

- Different media have different characteristics
 - Radio (free space and wave guides)
 - Optical (free space and fibre)
 - Electrical
 - Broadcast & point-to-point
- How far?
 - Bluetooth vs. NASA deep space network
- The real world, e.g.,
 - Vacuum cleaners → radio noise
 - Installation → photons fall out if you bend fibre too much
 - Cost → cheap connectors mean poor electrical signal

Layering

- Use of abstraction to contain complexity
- IP sits at layer 3
 - OSI vs. TCP/IP
- Approximates a fullyconnected network abstraction
- IP packets are hop-byhop routed by storeand-forward devices

Encapsulation

- Data comes down from higher layer in chunks
- Packetize to generate suitable sized chunks
- Encapsulate by prepending header
- Example: IP header

Questions?

http://cs.nott.ac.uk/ ~rmm/teaching/ 2011-g54acc/

mailto:

<u>richard.mortier@</u> <u>nottingham.ac.uk</u>

