PQS

Meeting 2022-02-07 1pm

Cory Aitchison

Approach

- Attempting to analytically solve the NLSE for a PQS
- Assume the effect of nonlinearity is only a change in propagation constant, not intensity
- Look for solutions of the form $u(z)\exp(i\mu z)$ satisfying

$$\mu u + \frac{|\beta_4|}{24} \frac{d^4 u}{d\tau^4} + \gamma u^3 = 0$$

$$\underbrace{u'''' + 4\sigma^4 u + \Gamma u^3}_{N} = 0, \qquad \sigma^4 := \frac{6\mu}{|\beta_4|}, \Gamma := \frac{24\gamma}{|\beta_4|}$$

Approach
$$u^{(0)} = A \frac{\cos \sigma x}{\cosh \sigma x} + B \frac{\sin \sigma x}{\sinh \sigma x}, \quad u^{(n)} = \sum_{k=0}^{2n+1} c_k \left(\frac{\cos \sigma x}{\cosh \sigma x}\right)^{2n+1-k} \left(\frac{\sin \sigma x}{\sinh \sigma x}\right)^k$$

- In the tails, $u^3 \ll u$, so consider a perturbation of the linear part of the ODE
- 1. Let $u^{(0)}$ be a solution to $L\left[u^{(0)}\right]=0$, up to first order of $1/\cosh 1/\sinh$
- 2. Then define $u^{(1)}$ such that $L\left[u^{(0)} + u^{(1)}\right] + N\left[u^{(0)}\right] = 0$ up to third orders of 1/cosh³,1/sinh³
- 3. Repeat for higher orders to (hopefully) converge to a closed-form solution

$$\underbrace{u'''' + 4\sigma^4 u + \Gamma u^3}_{N} = 0, \qquad \sigma^4 := \frac{6\mu}{|\beta_4|}, \Gamma := \frac{24\gamma}{|\beta_4|}$$

Coefficients of u1

$$c_0 = \frac{A}{4} - \left(2A^3 + 9A^2B + 6AB^2 + 9B^3\right) \varphi = 0.15371$$

$$c_1 = -\frac{B}{4} + 3\left(3A^3 + 2A^2B + 3AB^2 - 2B^3\right) \varphi = -0.253315$$

$$c_2 = \frac{A}{4} - 3\left(2A^3 + 3A^2B - 2AB^2 + 3B^3\right) \varphi = 0.137759$$

$$c_3 = -\frac{B}{4} + \left(9A^3 - 6A^2B + 9AB^2 - 2B^3\right) \varphi = -0.259133$$

where

$$\varphi := \frac{\Gamma}{1280\sigma^4}$$

We can find higher order solutions by solving

$$L\left[\sum_{j=0}^{n} u^{(j)}\right] + N\left[\sum_{j=0}^{n-1} u^{(j)}\right] \equiv 0$$

up to (2n + 1)th order.

Linear terms appear in most of the coefficients:

Function	$u^{(1)}$	$u^{(2)}$	$u^{(3)}$	$u^{(4)}$	$u^{(5)}$	$u^{(6)}$
Order	3	5	7	9	11	13
Coefficients	A/4	A/8	5A/64	7A/128	21A/512	33A/1024
	-B/4	-B/8	-5B/64	-7B/128	-21B/512	-33B/1024
	A/4		-A/64	-A/64	-7A/512	-3A/256
	-B/4		B/64	B/64	7B/512	3B/256
		-A/8	-A/64	•••	A/256	5A/1024
		B/8	B/64	•••	-B/256	-5B/1024
			5A/64	A/64	A/256	•••
			-5B/64	-B/64	-B/256	•••
				-7A/128	-7A/512	-5A/1024
				7B/128	7B/512	5B/1024
					21A/512	3A/256
					-21B/512	-3B/256
						-33A/1024
						33B/1024

Function	$u^{(1)}$	$u^{(2)}$	$u^{(3)}$	$u^{(4)}$	$u^{(5)}$	$u^{(6)}$
Order	3	5	7	9	11	13
Coefficients	A/4	A/8	5A/64	7A/128	21A/512	33A/1024

If we take the denominators to be increasing as 4^k , then the numerators are 1,2,5,14,42,132 which are **Catalan numbers**:

$$C(n) = \frac{(2n)!}{n!(n+1)!}$$

Coefficients:

$c[0] \rightarrow 0.157039$	$d[0] \rightarrow 0.0903383$	$e[0] \rightarrow 0.0609978$	$f[0] \rightarrow 0.0448517$	$g[0] \rightarrow 0.0348072$	$h[0] \rightarrow 0.0280441$
$c[1] \rightarrow -0.256215$	$d[1] \rightarrow -0.128514$	$e[1] \rightarrow -0.0804295$	$f[1] \rightarrow -0.0563353$	$g[\textbf{1}]\rightarrow-\textbf{0.0422631}$	$h[1] \rightarrow -0.0332103$
$c[2] \rightarrow 0.140487$	$d[2] \rightarrow 0.0271894$	$e[2] \rightarrow 0.00526498$	$f[2] \rightarrow -0.00152474$	$g[2] \rightarrow -0.00390647$	$h[2] \rightarrow -0.00469792$
$c[3] \rightarrow -0.262153$	$d[3] \rightarrow 0.00377046$	$e[3] \rightarrow 0.0168306$	$f[3] \rightarrow 0.0162891$	$g[3] \rightarrow 0.0141419$	$h[3] \rightarrow 0.0120898$
_	$d[4] \rightarrow -0.0630543$	$e[4]\rightarrow-0\boldsymbol{.}0190443$	$f[4] \rightarrow -0.00858966$	$g[4] \rightarrow -0.00390552$	$h[4] \rightarrow -0.0014936$
_	$d[5]\rightarrow \textbf{0.132236}$	$e[5]\rightarrow \textbf{0.0142077}$	$f[5] \rightarrow -0.000842331$	$g[5] \rightarrow -0.00440549$	$h[5] \rightarrow -0.00521731$
_	_	$e[6] \rightarrow 0.0366884$	$f[6] \rightarrow 0.0133825$	$g[6] \rightarrow 0.00733371$	$h[6] \rightarrow 0.00430593$
_	_	$e[7] \rightarrow -0.0830518$	$f[7] \rightarrow -0.015152$	$g[7] \rightarrow -0.00337559$	$h[7] \rightarrow 0.000378755$
_	_	_	$f[8] \rightarrow -0.0244042$	$g[8] \rightarrow -0.00985882$	$h[8] \rightarrow -0.00593467$
_	_	_	$f[9] \rightarrow 0.0583147$	$g[9] \rightarrow 0.0136075$	$h[9] \rightarrow 0.00456695$
_	_	_	_	$g[10] \rightarrow 0.0176156$	$h[10] \rightarrow 0.00757355$
_	_	_	_	$g[11] \rightarrow -0.0438274$	$h[11] \rightarrow -0.0118415$
	_	_	_	_	$h[12] \rightarrow -0.0134343$
	_	_	_	_	$h[13] \rightarrow 0.0344878$

Just the linear terms:

0.111352	0.055676	0.0347975	0.0243583	0.0182687	0.014354
-0.257043	-0.128521	-0.0803258	-0.056228	-0.042171	-0.0331344
0.111352	0	-0.0069595	-0.0069595	-0.00608956	-0.00521963
-0.257043	0	0.0160652	0.0160652	0.014057	0.0120489
_	-0.055676	-0.0069595	0	0.00173988	0.00217484
_	0.128521	0.0160652	0	-0.00401629	-0.00502036
_	_	0.0347975	0.0069595	0.00173988	0
_	_	-0.0803258	-0.0160652	-0.00401629	0
_	_	_	-0.0243583	-0.00608956	-0.00217484
_	_	_	0.056228	0.014057	0.00502036
_	_	_	_	0.0182687	0.00521963
_	_	_	_	-0.042171	-0.0120489
_	_	_	_	_	-0.014354
_	_	_	_	_	0.0331344

Higher estimates

Taylor expansion

Process

- 1. Substitute u0 + u1 into the DE
- 2. Taylor expand the result about
 0, to the order x^2
- 3. Equate the coefficients of x^0 and x^2 to 0 to solve for A, B

Result:

- {A -> 0.242423, B -> 0.898534}
- (Our current estimates are A -> 0.445408, B -> 1.02817

Plotting $\frac{d^4u}{dt^4}$, $4\sigma^4u$, Γu^3 for the visual estimates of A,B

u0+u1 remainders

80₁

60

Plotting $\frac{d^4u}{dt^4}$, $4\sigma^4u$, Γu^3 for the Taylor estimates of A,B

Calculate the squared area under the curve

$$I = \int_{\mathbb{R}} w(x') \left[D(x'; u^{(0)} + u^{(1)}, (A, B)) \right]^{2} dx'$$

Where $w(\cdot)$ is chosen so the w(x) = 0 for $|x| < \epsilon$ (to prevent divergence in the numeric integration)

$$(A, B) = \begin{cases} (0.445, 1.028) & \text{visual} \\ (0.0333, 1.15) & u^{(0)} \\ (0.242, 0.899) & \cdots + u^{(1)} \\ (0.335, 0.695) & \cdots + u^{(2)} + u^{(3)} \end{cases}$$

The \star is the visual estimate, the * is the Taylor estimate for $u^{(0)} + u^{(1)}$

Calculate the squared area under the curve
$$I = \int_{\mathbb{R}} w(x') \, \left[D \left(x'; \ u^{(0)} + \cdots + u^{(3)}, (A,B) \right) \right]^2 \mathrm{d}x'$$

Where $w(\cdot)$ is chosen so the w(x) = 0 for $|x| < \epsilon$ (to prevent divergence in the numeric integration)

$$(A,B) = \begin{cases} (0.445,1.028) & \text{visual} \\ (0.0333,1.15) & u^{(0)} \\ (0.242,0.899) & \cdots + u^{(1)} \\ (0.335,0.695) & \cdots + u^{(2)} + u^{(3)} \end{cases}$$

The \star is the visual estimate, the * is the Taylor **estimate** for $u^{(0)} + \cdots + u^{(3)}$

4.0

3.5

3.0

2.5

2.0