迈克耳孙干涉仪的搭建与应用

陈依皓

(北京师范大学 物理学系, 北京 100875)

摘 要:本次实验的目的是:加深理解光的干涉以及光源的相干性; 学习利用分立元件搭建迈克耳孙干涉仪的方法; 学习利用迈克耳孙干涉仪测量微小物理量(波长、空气折射率等)的方法。

关键词:干涉,迈克尔逊干涉仪,测量微小物理量

中图分类号: 0xx

文献识别码: A

文章编号: 1000-0000(0000)00-0000-00

1 引言

光的干涉指的是两列相干的光波叠加,总光强会因它们的相位差而改变的现象。设。两列光波干涉形成的光强

$$I = I_1 + I_2 + \sqrt{I_1 I_2} \cos \Delta \varphi$$

相位差 $\Delta \varphi$ 在空间各点不同,导致总光强呈现亮暗分布的图样,即干涉条纹。

两列光波初相位相同时,相位差 $\Delta \varphi$ 与光程

差 Δs 的关系是

$$\Delta \varphi = 2\pi \frac{\Delta s}{\lambda}$$

由于 λ 很短,微小的位移或折射率变化就可以产生可观的干涉条纹变化,因此光的干涉经常用干精密测量。

2 实验原理

2.1 迈克耳孙干涉仪

2.1.1 常见干涉仪

在实验室观察光的干涉需要将来自同一光源的光分成两路,让它们经过不同路径后再汇合。Mach – Zehnder干涉仪与Michelson干涉仪光路图如图所示

2.1.2 等倾干涉

为了观察到等倾干涉条纹,M1,M2的取向需要相对分束膜镜像对称。两路光的光程差就是从S出发,经M1 和M2/反射到R的两条光

线的光程差。

$$\Delta s = 2dn_0cos\theta$$

2.2 利用干涉仪进行测量

2.2.1 基本原理

对于单色光产生的等倾干涉,中心点条纹的 级次为

$$l = \frac{\Delta s}{\lambda} = \frac{2dn_0}{\lambda}$$

移动镜M1 的位置,通过直线拟合可以测量光的波长。

2. 2. 2 测量空气折射率

空气的折射率相对真空折射率的增加量与 空气的密度成正比

$$n-1=\alpha P$$

在一条光路中放置一个上下底面都安装有平面玻璃窗的圆柱体气室,使光束垂直穿过玻璃窗,使气室的压强改变 ΔP ,则光程改变

$$\delta S = 2L\Delta n = 2L\alpha\Delta P$$

这会引起等倾干涉条纹移动

$$\Delta l = \frac{\delta s}{\lambda} = \frac{2L\alpha}{\lambda} \Delta P$$

可得到 α ,联立理想气体状态方程

$$n_s = 1 + \frac{T}{T_0} \alpha P_0$$

2.2.3 白光干涉法测量薄膜折射率

调节动镜位置找到白光干涉。然后在一条光路中放入待测透明薄膜并使光垂直穿过,引入额外的光程差为

$$\delta = 2(n - n_0)d$$

这时白光干涉条纹消失。要再次出现白光干涉条纹,需要改变一个反射镜的位置补偿光

程差的改变,移动量 $\Delta = \frac{\delta}{2n_0}$,因此得

$$n = n_0(1 + \frac{\Delta}{d})$$

2.2.4 斜入射法测量材料折射率

将一块透明平板插入迈克耳孙光路,引入的 额外光程差为

$$\delta s(\theta) = 2(nL - n_0 L_0)$$

由几何关系

$$\delta s(\theta) = 2d(\frac{n}{\cos\phi} - \frac{n_0\cos(\theta - \phi)}{\cos\phi})$$

从垂直入射开始旋转平板改变光程差,如果 转到 θ 时总共移动了k个条纹

$$n = n_0 + \frac{\left(n_0 cos\theta + \frac{\epsilon}{2}\right)\epsilon}{n_0(1 - cos\theta) - \epsilon} \quad \epsilon = k\lambda/2d$$

3 实验内容

3.1 搭建迈克耳孙干涉仪,观察等倾干涉 条纹。

搭建迈克尔逊干涉仪有以下反思:

1. 首先保证激光器接近水平状态,并不需要严格的水平,因为我们只需要让两路光线相干,可以通过调节反射镜的角度来抵消微小的倾斜。保持激光器水平可以使调节反射镜光路的工作更轻松。

- 2. 加入扩束镜使激光扩束前,调节反射镜, 尽量让光程差相近,使其在光屏上所成 激光点聚焦于一点。此时已经可以在光 屏上观察到微小的干涉条纹。
- 3. 加入扩束镜后再对反射镜进行调节,使 等倾干涉条纹出现在中心位置。

3.2 利用等倾干涉测量激光的波长。

第一次测量每 "涌出" 20 个条纹记录一次动 镜的位置d

实验数据如表

变化条纹个数m	动镜位置d(10 ⁻⁵ m)	
0	7.571	
20	8.269	
40	8.933	
60	9.560	
80	10.119	
100	10.799	
120	11.595	
140	12.265	
180	13.059	

线性拟合如图

方程	$d = \alpha m + \beta$	
截距	7.54111 ± 0.04554	
斜率	$0.03375 \pm 4.26508E - 4$	
Pearson's r	0.99936	
R 平方(COD)	0.99872	

由

$$\lambda = 2n_0\alpha$$

得

$$\lambda = 0.03375 \times 2 \times 10^{-5} \text{m} = 675.0 \text{nm}$$

取

$$\lambda_{\underline{\pi}} = 632.8nm$$

相对误差

$$\Delta \lambda = \frac{\left|\lambda - \lambda_{\underline{\beta}}\right|}{\lambda_{\underline{\beta}}} \times 100\% = 6.67\%$$

该结果的误差较大,原因可能是条纹变化过程中的计数错误,实际涌出的条纹大于 20 个引入的误差较多。如图中第 5,6,9 个数据点明显偏离直线。

为减小实验误差,第二次测量每"涌出"10个条纹记录一次动镜的位置d实验数据如表

变化条纹个数m	动镜位置d(10 ⁻⁵ m)	
0	14.039	
10	14.340	
20	14.660	
30	14.970	
40	15.260	
50	15.595	
60	15.885	
70	16.220	
80	16.540	
90	16.840	

线性拟合如图

コエングロンジロコ			
方程	$d = \alpha m + \beta$		
截距	14.03065 ± 0.00658		
斜率	$0.03121 \pm 1.23255E - 4$		
Pearson's r	0.99994		
R 平方(COD)	0.99988		

得

 $\lambda = 0.03121 \times 2 \times 10^{-5} \text{m} = 624.2 \text{nm}$ 相对误差

$$\Delta \lambda = \frac{\left|\lambda - \lambda_{\underline{\beta}}\right|}{\lambda_{\pm}} \times 100\% = 1.35\%$$

该结果的误差在可接受范围内, 实验结果较 为成功。

3.3 利用等倾干涉测量空气的折射率。

利用气室改变其中任意一路光线的光程 实验结果如表中所示

条纹变化数 量Δ <i>l</i>	压强改变量 ΔP(kPa)	$\Delta l/\Delta P(kPa)$
5	8.1	0.6173
5	7.8	0.6410
6	9.6	0.6250
6	9.3	0.6452
5	8.1	0.6173
6	9.5	0.6316
5	8.2	0.6098
5	8.2	0.6098

$$\overline{\left(\frac{\Delta l}{\Delta P}\right)} = 0.6246 \text{kPa}^{-1}$$

由

$$\alpha = \frac{\lambda}{2L} \frac{\Delta l}{\Delta P}$$

得

$$\alpha = \frac{624.2 \text{nm}}{2 \times 80.36 mm} \times 0.6246 \text{kPa}^{-1}$$

由

$$n_s = 1 + \frac{T}{T_0} \alpha P_0$$

T取(25 + 273.15)K 计算得

$$n_s = 1.000268$$

4 复习思考题

1. 在迈克耳孙干涉仪中,当两束光相消干涉时,是否违反能量守恒定律?

宏观上:

干涉光场中任意一点的光强可以写为

$$I = I_1 + I_2 + \sqrt{I_1 I_2} \cos \Delta \phi$$

由于干涉项全空间积分为0,故光强全空间积分后为 I_1+I_2

在相消干涉的区域,两束光的振幅相互抵消,导致光强的减弱。在其他区域,光强增强。 在这个过程中,并没有发生能量的净损失,整个系统的能量守恒。

微观上[2]:量子力学允许存在涨落。

电磁波能量子,它的波矢k并不是确定值,而总是有一个展宽 Δk ,不存在完全单色的光。涨落效应使得两列波的相干长度并不是无穷远,而是有限值,在某区间能量是单个四倍,而在另一些地方能量却是零。

如此一来,在全空间全时间的平均上看,能量总是守恒的,只是在空间中通过能流,从"零区间"流到"四倍区间",或说从低于平均值的区间流到高于平均值的区间。这只是便于理解。实际上光子的波动性让能量在时域上的平均就是两倍。

2. 调节干涉仪反射镜的位置如何影响等倾 干涉条纹的特征?

- 1. 调节其中一个或两个反射镜的位置,会改变两个光路的光程差。等倾条纹的间距改变。
- 2. 调整反射镜的角度会影响干涉条纹在光屏上的位置,等倾干涉的圆心位置会移动。

3. 如何利用迈克耳孙干涉仪验证偏振方向 互相垂直的两束光无法干涉?

安装迈克耳孙干涉仪后,在两路光路上插入 偏振片,调整偏振片的角度,利用光功率计 确定两者消光,保证两束光的偏振方向互相 垂直。观察此时的干涉条纹。

旋转其中一条光路上的偏振片, 观察干涉条 纹的变化。

若消光时,未观察到明显的干涉条纹;旋转偏振片时出现了明显的干涉条纹;旋转180°

干涉条纹再次消失,则说明偏振方向互相垂 直的两束光无法干涉。

4. 用 LED 做光源,而且将迈克耳孙干涉仪 调至接近等光程点,此时干涉光的光谱分布 会有什么表现?说明原因。

干涉光的光谱分布表现为不连续的彩色条纹。

LED 光源是一种宽谱光源,包含多个波长的 光。当这样的光源通过迈克耳孙干涉仪时, 不同波长的光波发生干涉,产生一系列彩色 条纹。

由于 LED 的光谱较宽,导致在干涉条纹中可能观察到相对较宽的彩色条带。

参考文献

[1] 北京师范大学物理实验教学中心. 普通物理实验讲义 II, 2023

[2]Celestial.

https://www.zhihu.com/question/32531153 3/answer/690174389

Construction and Application of Michelson interferometer

CHEN Yi-hao

(Department of Physics, Beijing Normal University, Beijing 100875, China)

Abstract: The purpose of this experiment is to deepen the understanding of the interference of light and the coherence of light source; Learning the method of constructing Michelson interferometer with discrete elements; Learn how to measure small physical quantities (wavelength, refractive index of air, etc.) with Michelson interferometer.

Key words: Interference, Michelson interferometer, measures small physical quantities