1-31 odd

4.4 EXERCISES

 \searrow_1 . Let V be the first quadrant in the xy-plane; that is, let

$$V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x \ge 0, y \ge 0 \right\}$$

- a. If \mathbf{u} and \mathbf{v} are in V, is $\mathbf{u} + \mathbf{v}$ in V? Why?
- b. Find a specific vector \mathbf{u} in V and a specific scalar c such

that $c\mathbf{u}$ is *not* in V. (This is enough to show that V is *not* a vector space.)

- 2. Let W be the union of the first and third quadrants in the xyplane. That is, let $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \ge 0 \right\}$.
 - a. If \mathbf{u} is in W and c is any scalar, is $c\mathbf{u}$ in W? Why?

- b. Find specific vectors \mathbf{u} and \mathbf{v} in W such that $\mathbf{u} + \mathbf{v}$ is not in W. This is enough to show that W is not a vector space.
- 3. Let H be the set of points inside and on the unit circle in the xy-plane. That is, let $H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 \le 1 \right\}$. Find a specific example—two vectors or a vector and a scalar—to show that H is not a subspace of \mathbb{R}^2 .
- **4.** Construct a geometric figure that illustrates why a line in \mathbb{R}^2 *not* through the origin is not closed under vector addition.

In Exercises 5–8, determine if the given set is a subspace of \mathbb{P}_n for an appropriate value of n. Justify your answers.

- 5. All polynomials of the form $\mathbf{p}(t) = at^2$, where a is in \mathbb{R} .
- **6.** All polynomials of the form $\mathbf{p}(t) = a + t^2$, where a is in \mathbb{R} .
- 7. All polynomials of degree at most 3, with integers as coefficients.
- **8.** All polynomials in \mathbb{P}_n such that $\mathbf{p}(0) = 0$.
- 9. Let H be the set of all vectors of the form $\begin{bmatrix} s \\ 3s \\ 2s \end{bmatrix}$. Find a vector \mathbf{v} in \mathbb{R}^3 such that $H = \operatorname{Span} \{\mathbf{v}\}$. Why does this show that H is a subspace of \mathbb{R}^3 ?
- **10.** Let H be the set of all vectors of the form $\begin{bmatrix} 2t \\ 0 \\ -t \end{bmatrix}$. Show that H is a subspace of \mathbb{R}^3 . (Use the method of Exercise 9.)
- 11. Let W be the set of all vectors of the form $\begin{bmatrix} 5b + 2c \\ b \\ c \end{bmatrix}$, where b and c are arbitrary. Find vectors \mathbf{u} and \mathbf{v} such that $W = \operatorname{Span} \{\mathbf{u}, \mathbf{v}\}$. Why does this show that W is a subspace of \mathbb{R}^3 ?
- 12. Let W be the set of all vectors of the form $\begin{bmatrix} s+3t \\ s-t \\ 2s-t \\ 4t \end{bmatrix}$. Show that W is a subspace of \mathbb{R}^4 . (Use the method of Exercise 11.)
- 13. Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$.
 - a. Is w in $\{v_1, v_2, v_3\}$? How many vectors are in $\{v_1, v_2, v_3\}$?
 - b. How many vectors are in Span $\{v_1, v_2, v_3\}$?
 - c. Is w in the subspace spanned by $\{v_1, v_2, v_3\}$? Why?
 - **14.** Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be as in Exercise 13, and let $\mathbf{w} = \begin{bmatrix} 8 \\ 4 \\ 7 \end{bmatrix}$. Is \mathbf{w} in the subspace spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$? Why?

In Exercises 15–18, let W be the set of all vectors of the form shown, where a, b, and c represent arbitrary real numbers. In e_{ach} case, either find a set S of vectors that spans W or give an e_{xample} to show that W is *not* a vector space.

15.
$$\begin{bmatrix} 3a+b \\ 4 \\ a-5b \end{bmatrix}$$
16.
$$\begin{bmatrix} -a+1 \\ a-6b \\ 2b+a \end{bmatrix}$$
17.
$$\begin{bmatrix} a-b \\ b-c \\ c-a \\ b \end{bmatrix}$$
18.
$$\begin{bmatrix} 4a+3b \\ 0 \\ a+b+c \\ c-2a \end{bmatrix}$$

19. If a mass m is placed at the end of a spring, and if the mass is pulled downward and released, the mass—spring system will begin to oscillate. The displacement y of the mass from its resting position is given by a function of the form

$$y(t) = c_1 \cos \omega t + c_2 \sin \omega t \tag{5}$$

where ω is a constant that depends on the spring and the mass. (See the figure below.) Show that the set of all functions described in (5) (with ω fixed and c_1 , c_2 arbitrary) is a vector space.

- **20.** The set of all continuous real-valued functions defined on a closed interval [a,b] in \mathbb{R} is denoted by C[a,b]. This set is a subspace of the vector space of all real-valued functions defined on [a,b].
 - a. What facts about continuous functions should be proved in order to demonstrate that C[a,b] is indeed a subspace as claimed? (These facts are usually discussed in a calculus class.)
 - b. Show that $\{\mathbf{f} \text{ in } C[a,b] : \mathbf{f}(a) = \mathbf{f}(b)\}$ is a subspace of C[a,b].

For fixed positive integers m and n, the set $M_{m \times n}$ of all $m \times n$ matrices is a vector space, under the usual operations of addition of matrices and multiplication by real scalars.

- **21.** Determine if the set H of all matrices of the form $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ is a subspace of $M_{2\times 2}$.
- 22. Let F be a fixed 3×2 matrix, and let H be the set of all matrices A in $M_{2\times 4}$ with the property that FA = 0 (the zero matrix in $M_{3\times 4}$). Determine if H is a subspace of $M_{2\times 4}$.

- 23. a. If **f** is a function in the vector space V of all real-valued functions on \mathbb{R} and if $\mathbf{f}(t) = 0$ for some tfunctions on \mathbb{R} and if $\mathbf{f}(t) = 0$ for some t, then \mathbf{f} is the
 - b. A vector is an arrow in three-dimensional space.
 - c. A subset H of a vector space V is a subspace of V if the
 - d. A subspace is also a vector space.
 - e. Analog signals are used in the major control systems for the space shuttle, mentioned in the introduction to the
- 24. a. A vector is any element of a vector space.
 - b. If \mathbf{u} is a vector in a vector space V, then $(-1)\mathbf{u}$ is the same
 - c. A vector space is also a subspace.
 - d. \mathbb{R}^2 is a subspace of \mathbb{R}^3 .
 - e. A subset H of a vector space V is a subspace of V if the following conditions are satisfied: (i) the zero vector of Vis in H, (ii) \mathbf{u} , \mathbf{v} , and \mathbf{u} + \mathbf{v} are in H, and (iii) c is a scalar

Exercises 25–29 show how the axioms for a vector space V can be used to prove the elementary properties described after the definition of a vector space. Fill in the blanks with the appropriate axiom numbers. Because of Axiom 2, Axioms 4 and 5 imply, respectively, that $\mathbf{0} + \mathbf{u} = \mathbf{u}$ and $-\mathbf{u} + \mathbf{u} = \mathbf{0}$ for all \mathbf{u} .

- 25. Complete the following proof that the zero vector is unique. Suppose that \mathbf{w} in V has the property that $\mathbf{u} + \mathbf{w} = \mathbf{w} + \mathbf{u} = \mathbf{u}$ for all \mathbf{u} in V. In particular, $\mathbf{0} + \mathbf{w} = \mathbf{0}$. But 0 + w = w, by Axiom _____. Hence w = 0 + w = 0.
- **26.** Complete the following proof that $-\mathbf{u}$ is the *unique vec*tor in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$. Suppose that \mathbf{w} satisfies $\mathbf{u} + \mathbf{w} = \mathbf{0}$. Adding $-\mathbf{u}$ to both sides, we have

$$(-\mathbf{u}) + [\mathbf{u} + \mathbf{w}] = (-\mathbf{u}) + \mathbf{0}$$

$$[(-\mathbf{u}) + \mathbf{u}] + \mathbf{w} = (-\mathbf{u}) + \mathbf{0}$$

$$0+w=(-u)+0$$

$$\mathbf{w} = -\mathbf{u}$$

27. Fill in the missing axiom numbers in the following proof that $0\mathbf{u} = \mathbf{0}$ for every \mathbf{u} in V.

$$0\mathbf{u} = (0+0)\mathbf{u} = 0\mathbf{u} + 0\mathbf{u}$$

Add the negative of 0u to both sides:

$$0\mathbf{u} + (-0\mathbf{u}) = [0\mathbf{u} + 0\mathbf{u}] + (-0\mathbf{u})$$

$$0\mathbf{u} + (-0\mathbf{u}) = 0\mathbf{u} + [0\mathbf{u} + (-0\mathbf{u})]$$

$$\mathbf{0} = 0\mathbf{u} + \mathbf{0}$$

$$\mathbf{0} = 0\mathbf{u}$$

28. Fill in the missing axiom numbers in the following proof that

$$c\mathbf{0} = c(\mathbf{0} + \mathbf{0})$$

$$=c\mathbf{0}+c\mathbf{0}$$

Add the negative of $c\mathbf{0}$ to both sides:

$$c\mathbf{0} + (-c\mathbf{0}) = [c\mathbf{0} + c\mathbf{0}] + (-c\mathbf{0})$$

$$c\mathbf{0} + (-c\mathbf{0}) = [c\mathbf{0} + c\mathbf{0}] + (-c\mathbf{0})$$

$$c0 + (-c0) = c0 + [c0 + (-c0)]$$

$$0 = c0 + 0$$

$$0 - a$$

$$0 = c0$$

- **29.** Prove that $(-1)\mathbf{u} = -\mathbf{u}$. [Hint: Show that $\mathbf{u} + (-1)\mathbf{u} = \mathbf{0}$. Use some axioms and the results of Exercises 26 and 27.]
- 30. Suppose $c\mathbf{u} = \mathbf{0}$ for some nonzero scalar c . Show that $\mathbf{u} = \mathbf{0}$. Mention the axioms or properties you use.
- 31. Let \mathbf{u} and \mathbf{v} be vectors in a vector space V, and let H be any subspace of V that contains both $\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$. Explain why Halso contains Span $\{u,v\}.$ This shows that Span $\{u,v\}$ is the smallest subspace of V that contains both \mathbf{u} and \mathbf{v} .
- **32.** Let H and K be subspaces of a vector space V. The **intersection** of H and K, written as $H \cap K$, is the set of \mathbf{v} in V that belong to both H and K. Show that $H \cap K$ is a subspace of V. (See the figure.) Give an example in \mathbb{R}^2 to show that the union of two subspaces is not, in general, a subspace.

33. Given subspaces H and K of a vector space V, the sum of H and K, written as H + K, is the set of all vectors in Vthat can be written as the sum of two vectors, one in H and the other in K; that is,

$$H + K = \{ \mathbf{w} : \mathbf{w} = \mathbf{u} + \mathbf{v} \text{ for some } \mathbf{u} \text{ in } H \}$$

and some $\mathbf{v} \text{ in } K \}$

- a. Show that H + K is a subspace of V.
- b. Show that H is a subspace of H + K and K is a subspace
- **34.** Suppose $\mathbf{u}_1, \dots, \mathbf{u}_p$ and $\mathbf{v}_1, \dots, \mathbf{v}_q$ are vectors in a vector space V, and let

$$H = \operatorname{Span} \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$$
 and $K = \operatorname{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_q\}$

Show that
$$H + K = \operatorname{Span} \{\mathbf{u}_1, \dots, \mathbf{u}_p, \mathbf{v}_1, \dots, \mathbf{v}_q\}$$

208 **CHAPTER 4** Vector Spaces

In Exercises 3-6, find an explicit description of Nul A by listing vectors that span the null space.

$$\mathbf{3.} \ \ A = \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{bmatrix}$$

4.
$$A = \begin{bmatrix} 1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

5.
$$A = \begin{bmatrix} 1 & -2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -9 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & -4 & -3 & 1 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

wi

In Exercises 7–14, either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.

In Exerc statemei

7.
$$\left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b+c=2 \right\}$$
 8.
$$\left\{ \begin{bmatrix} r \\ s \\ t \end{bmatrix} : 5r-1=s+2t \right\}$$

9.
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{l} a-2b=4c \\ 2a=c+3d \end{array} \right\}$$
 10.
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{l} a+3b=c \\ b+c+a=d \end{array} \right\}$$

9.
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a - 2b = 4c \\ 2a = c + 3d \right\}$$
 10.
$$\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a + 3b = c \\ b + c + a = d \right\}$$

e. '

11.
$$\left\{ \begin{bmatrix} b-2d \\ 5+d \\ b+3d \\ d \end{bmatrix} : b,d \text{ real} \right\}$$
 12.
$$\left\{ \begin{bmatrix} b-5d \\ 2b \\ 2d+1 \\ d \end{bmatrix} : b,d \text{ real} \right\}$$

13.
$$\left\{ \begin{bmatrix} c - 6d \\ d \\ c \end{bmatrix} : c, d \text{ real} \right\}$$
 14.
$$\left\{ \begin{bmatrix} -a + 2b \\ a - 2b \\ 3a - 6b \end{bmatrix} : a, b \text{ real} \right\}$$

b. '

e. 7

In Exercises 15 and 16, find A such that the given set is Col A. 15. $\begin{cases} \begin{vmatrix} 2s + 3t \\ r + s - 2t \\ 4r + s \\ 3r - s - t \end{vmatrix} : r, s, t \text{ real}$

16.
$$\begin{cases}
\begin{bmatrix}
b-c \\
2b+c+d \\
5c-4d \\
d
\end{bmatrix} : b, c, d \text{ real}$$

27. It ca
$$x_2 =$$
secti
and
$$make$$

x

 $-2x_1$

For the matrices in Exercises 17–20, (a) find
$$k$$
 such that Nul A is a subspace of \mathbb{R}^k , and (b) find k such that Col A is a subspace of

$$-x_1$$
 28. Cons

$$\frac{2}{1}$$
 -6