2018~2019 学年《高等数学 A》(上)试题解析

一、单项选择题(本题共有10道小题,每小题3分,满分30分),请将答案填在括号内.

1. 设f(x)为 $(-\infty, +\infty)$ 上不恒为零的奇函数,且f'(0)存在,则函数 $g(x) = \frac{f(x)}{x}$].

- (A) 有跳跃间断点x = 0;
- (B) 有可去间断点x = 0;
- (C) 在x = 0处左极限不存在; (D) 在x = 0处右极限不存在.

【答案】(B)

【解析】 显然 x = 0 为 g(x) 的间断点,且由 f(x) 为不恒等于零的奇函数知, f(0)=0.于是有 $\lim_{x\to 0} g(x) = \lim_{x\to 0} \frac{f(x)}{x} = \lim_{x\to 0} \frac{f(x) - f(0)}{x - 0} = f'(0)$ 存在,所以 **x** = **0** 是可去间断点.故选(**B**).

2. 设函数 $\varphi(x)$ 可微,则复合函数 $y = \varphi(\tan x)$ 的微分 $dy = \mathbf{I}$

- (A) $\varphi'(x) \frac{1}{1+x^2} dx$;
- (B) $\varphi'(\tan x) \frac{1}{1+x^2} dx$;
- (C) $\varphi'(\tan x) \sec^2 x \, dx$;
- (D) $\varphi'(\tan x) \sec^2 x$.

【答案】(C)

【解析】由复合函数的微分法得: $dy = \varphi'(\tan x) d \tan x = \varphi'(\tan x) \sec^2 x dx$.故选(C).

3. 设函数 $f(x) = |x^3 - 1| \varphi(x)$,其中 $\varphi(x)$ 在 x = 1 处连续,则 $\varphi(1) = 0$ 是 f(x) 在 x = 1 处可导的 1.

1

(A) 充分必要条件;

- (B) 必要但非充分条件:
- (C) 充分但非必要条件:
- (D) 既非充分也非必要条件.

【答案】(A)

【解析】 因为

$$\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{x^3 - 1}{x - 1} \cdot \varphi(x) = 3\varphi(1),$$

$$\lim_{x \to \Gamma} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to \Gamma} \frac{x^3 - 1}{x - 1} \cdot \varphi(x) = -3\varphi(1)$$

所以, f(x) 在 x = 1 处可导的充分必要条件是 $3\varphi(1) = -3\varphi(1)$, 即 $\varphi(1) = 0$. 故选(A).

- 4. 设函数 f(x) 有二阶连续导数且 f'(0)=0, $\lim_{x\to 0} \frac{f''(x)}{|x|}=1$,则【
 - (A) f(0) 不是函数 f(x) 的极值,(0, f(0)) 不是曲线 y = f(x) 的拐点;
 - **(B)** f(0)是函数 f(x) 的极小值;
 - (C) (0, f(0)) 是曲线 y = f(x) 的拐点;
 - (D) f(0) 是函数 f(x) 的极大值.

【答案】(B)

【解析】利用泰勒公式有 $f(x)-f(0)=\frac{1}{2}f''(\xi)x^2$,其中 ξ 介于x与零之间。由于

 $\lim_{x\to 0} \frac{f''(x)}{|x|} = 1 > 0$,由极限的保号性知,在 x=0 的某去心邻域内有 f''(x) > 0,因此在这个去心

邻域内, f(x)-f(0)>0,故 f(0)是函数 f(x) 的极小值,选(**B**).

- 5. $\lim_{n \to \infty} \sqrt[n]{n!} \sin \frac{1}{n} = []$.

- (A) 1; (B) 0; (C) e; (D) e^{-1} .

【答案】(**D**)

【解析】
$$\lim_{n\to\infty} \sqrt[n]{n!} \sin\frac{1}{n} = \lim_{n\to\infty} \frac{\sin\frac{1}{n}}{\frac{1}{n}} \cdot \frac{\sqrt[n]{n!}}{n}$$
,而

$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = \lim_{n \to \infty} (\frac{n!}{n^n})^{\frac{1}{n}} = \lim_{n \to \infty} (\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{n}{n})^{\frac{1}{n}} = \lim_{n \to \infty} e^{\frac{1}{n} \sum_{i=1}^{n} \frac{i}{n}} = e^{\int_0^1 \ln x \, dx} = \frac{1}{e}$$

故选(D).

6.
$$\frac{\mathrm{d}}{\mathrm{d}x}\int_0^x \sin(x-t)^2 \mathrm{d}t = [$$
].

- (A) $\sin x$;
- (B) 0; (C) $\sin x^2$; (D) $\cos x$.

【答案】(C)

【解析】令x-t=u,则 $\int_0^x \sin(x-t)^2 dt = -\int_x^0 \sin u^2 du$, 因此 $\frac{d}{dx} \int_0^x \sin(x-t)^2 dt = \sin x^2$,故选(C).

7. 反常积分 $\int_{-\infty}^{0} x e^{-3x^2} dx =$ 】.

(A)
$$\frac{1}{6}$$
; (B) $-\frac{1}{6}$; (C) 0; (D) 6.

【答案】(B)

【解析】由凑微分法得 $\int_{-\infty}^{0} x e^{-3x^2} dx = \frac{-1}{6} \int_{-\infty}^{0} e^{-3x^2} d \left(-3x^2 \right) = \frac{-1}{6} e^{-3x^2} \Big|_{-\infty}^{0} = \frac{-1}{6},$ 故选(B).

8. 设 $M = \int_0^{\frac{\pi}{2}} \sin(\sin x) dx$, $N = \int_0^{\frac{\pi}{2}} \cos(\cos x) dx$, 则下列选项中正确的是【 】.

(A) M < 1 < N; (B) M < N < 1; (C) N < M < 1; (D) 1 < M < N.

【答案】(A)

【解析】 $\sin(\sin x),\cos(\cos x)$ 均在 $[0,\frac{\pi}{2}]$ 上连续,由 $\sin x \le x$ 可以得到 $\sin(\sin x) \le \sin x$,进一步

得到 $M = \int_0^{\frac{\pi}{2}} \sin(\sin x) dx < \int_0^{\frac{\pi}{2}} \sin(x) dx = 1$,令 $x = \frac{\pi}{2} - t$ 可以得到

 $N = \int_0^{\frac{\pi}{2}} \cos(\cos x) dx = \int_0^{\frac{\pi}{2}} \cos(\sin t) dt > \int_0^{\frac{\pi}{2}} \cos t dt = 1$. 所以选(A).

9. 微分方程 $(1+x^2)y' + 2xy = 1$ 的通解是【 】,其中 C 为任意常数.

(A)
$$y = \frac{x+C}{1+x^2}$$
; (B) $y = -\frac{x+C}{1+x^2}$;

(C)
$$y = \frac{2x+C}{1+x^2}$$
; (D) $y = -\frac{2x+C}{1+x^2}$.

【答案】(A)

【解析】原方程可化为 $\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2x}{1+x^2}y = \frac{1}{1+x^2}$,这是一阶线性非齐次微分方程,由求解公式可得通解为

$$y = e^{-\int \frac{2x}{1+x^2} dx} \left(\int \frac{1}{1+x^2} e^{\int \frac{2x}{1+x^2} dx} dx + C \right),$$

 $y = \frac{x+C}{1+x^2}$, 其中 C 为任意常数. 故选(**A**).

10. 已知 y = 1, y = x, $y = x^2$ 为二阶非齐次线性微分方程 y'' + p(x)y' + q(x)y = f(x) 的三个解,则 】(其中 C_1, C_2 ,为任意常数).

(A)
$$y = C_1 + C_2 x + x^2$$
;

(B)
$$y = C_1 x + C_2 x^2 + 1$$
;

(C)
$$y = C_1(x-1) + C_2(x^2-1) + 1$$
;

(C)
$$y = C_1(x-1) + C_2(x^2-1) + 1$$
; (D) $y = C_1(x-1) + C_2(x^2-1) + x^2 - x$.

【答案】(C)

【解析】因为 $\frac{x^2-1}{x-1}$ \neq 常数,所以,x-1, x^2-1 线性无关。因而,齐次线性微分方程的通解为

 $Y = C_1(x-1) + C_2(x^2-1)$,于是,二阶非齐次线性微分方程的通解为 $y = Y + y^*$

即
$$y = C_1(x-1) + C_2(x^2-1) + 1$$
, 故选(C).

二、(本题满分 10 分)求极限 $\lim_{x\to 0} \frac{\int_0^{x^2} t e^t \sin t dt}{x^6 e^x}$.

三、(本题满分 10 分) 设函数 y = y(x) 由参数方程 $\begin{cases} x = \ln(1+t^2), & \text{ multiple}, \\ y = t + \arctan t \end{cases}$ 所确定,求 $\frac{d^2y}{dx^2}.$

【详解】
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1 + \frac{1}{1 + t^2}}{\frac{2t}{1 + t^2}} = \frac{2 + t^2}{2t} = \frac{1}{t} + \frac{t}{2}$$
$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx}\right) \frac{dt}{dx} = \left(\frac{1}{t} + \frac{t}{2}\right)' \cdot \frac{t^2 + 1}{2t} = \frac{(t^2 + 1)(t^2 - 2)}{4t^3} = \frac{t^4 - t^2 - 2}{4t^3}$$

(本题满分 10 分)证明当 x > 0 时, $\arctan x + \frac{1}{x} > \frac{\pi}{2}$.

$$f'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} = \frac{-1}{x^2(1+x^2)} < 0$$
,所以 $f(x)$ 在 $(0,+\infty)$ 上单调递减.

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} (\arctan x + \frac{1}{x} - \frac{\pi}{2}) = 0 , \quad \text{Mfff} \ f(x) > 0 , \quad \text{We arctan } x + \frac{1}{x} > \frac{\pi}{2}.$$

五、(本题满分 10 分) 设函数 f(x) 在 $(-\infty, +\infty)$ 上连续且满足方程

$$\int x f(x) dx = \sqrt{1 - x^2} + \int x^2 \sin x dx + C, 其中 C 为任意常数, 求 \int f(x) dx$$

【详解】 对方程两边求导得 $x f(x) = -\frac{2x}{2\sqrt{1-x^2}} + x^2 \sin x$

$$f(x) = -\frac{1}{\sqrt{1-x^2}} + x \sin x,$$

$$\int f(x) dx = -\int \frac{1}{\sqrt{1-x^2}} dx + \int x \sin x dx,$$

$$= -\arcsin x + \int x \, d(-\cos x) = -\arcsin x - x \cos x + \sin x + C ,$$

 $= \arccos x - x \cos x + \sin x + C$, 其中 C 为任意常数.

- 六、(本题满分 10 分)过抛物线 $y=x^2$ 上的一点 $P(a,a^2)$ 作切线,问 a 为何值时所作切线与抛物线 $y=-x^2+4x-1$ 所围成的图形面积最小,并求出最小面积.
- 【详解】 过抛物线 $y = x^2$ 上一点 $P(a, a^2)$ 的切线方程为 $y a^2 = 2a(x a)$,即 $y = 2ax a^2$

该切线与抛物线
$$y = -x^2 + 4x - 1$$
 的交点
$$\begin{cases} y = 2ax - a^2 \\ y = -x^2 + 4x - 1 \end{cases}$$

$$x^2 + (2a - 4)x + 1 - a^2 = 0$$
,交点的横坐标为 $x_1, x_2, x_1 < x_2$,

则由韦达定理知, $x_1 + x_2 = 4 - 2a$, $x_1 x_2 = 1 - a^2$

$$x_1, -x_1 = 2\sqrt{2a^2 - 4a + 3}$$
,于是所求图形面积为

$$S = \int_{x_1}^{x_2} (-x^2 + 4x - 1 - 2ax + a^2) dx = \frac{1}{3} (x_1^3 - x_2^3) - (a - 2)(x_2^2 - x_1^2) + (a^2 - 1)(x_2 - x_1)$$

$$=\frac{4}{3}(2a^2-4a+3)^{\frac{3}{2}},$$

$$\frac{dS}{da} = 8(2a^2 - 4a + 3)^{\frac{1}{2}}(a - 1)$$
, 令 $\frac{dS}{da} = 0$ 得 $a = 1$ 唯一的驻点.

故当a=1时所围图形有最小值 $S=\frac{4}{3}$.

七、(本题满分 10 分)设连续函数 y = f(x)满足微分方程 $y'' - 3y' + 2y = 2e^x$,其图形在 (0,1) 处的切线与曲线 $y = x^2 - x + 1$ 在该点处的切线重合,求函数 y = f(x) 的表达式.

【详解】 特征方程为 $r^2-3r+2=0$,解得特征根为r=1,r=2,所以其对应的齐次方程的通解为 $Y=C_1e^x+C_2e^{2x}$.

令 $y'' - 3y' + 2y = 2e^x$ 的特解为 $y^* = Axe^x$,代入方程组得到 A = -2,故特解为 $y^* = -2xe^x$,则 通解为 $y = C_1e^x + C_2e^{2x} - 2xe^x$

由题意知f(0) = 1, f'(0) = -1, 得到 $C_1 = 1$, $C_2 = 0$,

故所求函数为 $y = e^x - 2xe^x = (1-2x)e^x$.

八、(本题满分 10 分)设函数 f(x) 在闭区间[0,1]上连续,在开区间(0,1)内可导,且满足 $f(1)=3\int_0^{\frac{1}{3}}e^{1-x^2}f(x)\,\mathrm{d}x\,,\,\,\,\mathrm{试证}\colon\,\, 存在\,\xi\in(0,1)\,,\,\,\,$ 使得 $f'(\xi)=2\xi\,f(\xi)$.

【证明】 由积分中值定理,得 $f(1)=e^{1-\xi_1^2}f(\xi_1)$, $\xi_1\in\left[0,\frac{1}{3}\right]$,

即
$$f(1)e^{-1}=e^{-\xi_1^2}f(\xi_1)$$
, 令 $\varphi(x)=e^{-x^2}f(x)$,

则 $\varphi(x)$ 在 $[\xi_1,1]$ 上连续,在 $(\xi_1,1)$ 内可导,且

$$\varphi(1)=f(1)e^{-1}=e^{-\xi_1^2}f(\xi_1)=\varphi(\xi_1),$$

由罗尔中值定理知,在 $(\xi_1,1)$ 内至少存在一点 ξ ,使得 $\varphi'(\xi)=0$,

$$\mathbb{P} \varphi'(\xi) = e^{-\xi^2} \left[f'(\xi) - 2\xi f(\xi) \right] = 0,$$

于是
$$f'(\xi) = 2\xi f(\xi)$$
, $\xi \in (\xi_1, 1) \subset (0, 1)$.