Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Side 1 av 4

EKSAMEN I TMA4110/TMA4115 MATEMATIKK 3 Bokmål Opeder 11. opgust 2010

Onsdag 11. august 2010 Løsningsforslag

Sensur: 1. september 2010

Hvert av de følgende 12 punktene: 1,2a+2b,3a,3b,4a,4b,5,6,7a,7b,8,9, teller likt ved sensuren.

Oppgave 1

Vi setter z = x + iy inn i likningen: $(x + iy)^2 + i(x - iy) - 1/4 = 0$. Dette gir $x^2 - y^2 + 2ixy + ix + y - 1/4 = 0$. Så tar vi realdelen og imaginærdelen og får to (reelle) likninger $x^2 - y^2 + y - 1/4 = 0$ og 2xy + x = 0. Den andre likningen gir (1) x = 0 eller (2) y = -1/2.

I tilfelle (1) blir den første likningen til $-y^2+y-1/4=0$, ogsåy=1/2. I tilfelle (2) blir den $x^2-1=0$ eller $x=\pm 1$. Vi får følgende løsninger: $z_1=i/2$, $z_2=1-i/2$, $z_3=-1-i/2$.

Oppgave 2

- a) Hvis vi setter $y = xe^x$ inn i likningen y'' + ay' + b = 0, så får vi $(2e^x + xe^x) + a(e^x + xe^x) + bxe^x = 0$, eller $(2+a)e^x + (1+a+b)xe^x = 0$. De blir a = -2, b = 1.
- b) Bevegelsen er overdempet når den karakteristiske likningen har to reelle røtter, dette gir $4^2 > 4m$. m < 4.

Oppgave 3

- a) Den karakteristiske likningen er $\lambda^2 3\lambda + 2 = 0$, som har røtter $\lambda_1 = 1$ og $\lambda_2 = 2$. Generell løsning er $y(x) = c_1 e^x + c_2 e^{2x}$. Vi setter inn initialbetingelsene og får $c_1 + c_2 = 1$ og $c_1 + 2c_2 = 2$, dette gir $c_1 = 0$, $c_2 = 1$. $y = e^{2x}$.
- b) Vi finner en partikulær løsning først. I følge ubestemte koeffisienters metode har ligningen en partikulær løsning på formen $y(x) = Axe^x + B\sin x + C\cos x$. Innsetting gir

$$y'' - 3y' + 2y = -Ae^x + (B + 3C)\sin x + (C - 3B)\cos x.$$

Vi får $A=-1,\,B=-1/2$ og C=-3/2, også $y_p=-xe^x-1/2\sin x-3/2\cos x.$ Generell løsning har formen $y=y_p+y_h$ hvor y_h er generell løsning til den homogene ligningen. Svaret blir

$$y(x) = -xe^x - 3/2\cos x - 1/2\sin x + c_1e^x + c_2e^{2x}.$$

Oppgave 4

- a) Dette er en Euler-Cauchy ligning. Vi ser etter løsninger på formen $y = x^m$ hvor $m^2 + (-6-1)m + 12 = 0$. Den kvardatiske likninger har to røtter $m_1 = 4$ og $m_2 = 3$. Vi får to lineært uavhengige løsninger $y_1 = x^4$ og $y_2 = x^3$. Så regner vi ut Wronskideterminanten: $W(y_1, y_2) = y_1 y_2' y_1' y_2 = -x^6$.
- b) For å finne en partikulær løsning til den inhomogene ligningen bruker vi variasjon av parametre og får $y_p = uy_1 + vy_2$, hvor $u = -\int \frac{y_2r}{W}dx$ og $v = \int \frac{y_1r}{W}dx$. Vi setter inn $r(x) = x^4$, og fra 4a), $y_1 = x^4$, $y_2 = x^3$, $W = -x^6$. Da får vi $u = \int x dx = x^2/2$, $v = \int -x^2 dx = -x^3/3$ og $y_p = x^6/2 x^6/3 = x^6/6$. Generell løsnin blir $y = x^6/6 + c_1x^4 + c_2x^3$.

Oppgave 5

Gausseliminasjon gir

$$A = \begin{bmatrix} 0 & 1 & 2 & -3 \\ 1 & 2 & -1 & 0 \\ 2 & 5 & 0 & -3 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 2 & -3 \\ 2 & 5 & 0 & -3 \end{bmatrix} \xrightarrow{(-2)R_1 + R_3}$$

$$\begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 2 & -3 \\ 0 & 1 & 2 & -3 \end{bmatrix} \xrightarrow{(-)R_2 + R_3} \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix} = E$$

Kolonner til A som tilsvarer til de ledendevariabler danner en basis for Col(A), vi får: $\mathbf{v}_1 = (0, 1, 2), \mathbf{v}_2 = (1, 2, 5)$.

Ikkenullradene i
$$E$$
 gir en basis for $\text{Row}(A), \boxed{\mathbf{r}_1=(1,2,-1,0),\,\mathbf{r}_2=(0,1,2,-3).}$

Vi finner alle løsningene til ligningen A**x** = 0. Med $x_3 = s$ og $x_4 = t$ får vi $x_2 = -2s + 3t$ og $x_1 = 5s - 6t$. Generell løsning blir $(x_1, x_2, x_3, x_4) = (5, -2, 1, 0)s + (-6, 3, 0, 1)t$. Da er $\boxed{\mathbf{u}_1 = (5, -2, 1, 0), \mathbf{u}_2 = (-6, 3, 0, 1)}$ en basis for Null(A).

Oppgave 6 Vektorene $\mathbf{v}_1 = (1, -3, a), \ \mathbf{v}_2 = (0, 1, a) \text{ og } \mathbf{v}_3 = (a, 2, 0) \text{ er lineært avhengige}$ hvis og bare hvis $\begin{vmatrix} 1 & -3 & a \\ 0 & 1 & a \\ a & 2 & 0 \end{vmatrix} = 0$. Vi får likningen $4a^2 + 2a = 0$ som gir $\boxed{a = 0 \text{ og } a = -0.5}$.

Oppgave 7

a) Gausseliminasjon gir

$$A = \begin{bmatrix} 2 & 0 & 2 \\ 1 & -2 & -1 \\ -1 & 6 & 5 \end{bmatrix} \xrightarrow{1/2R_1} \begin{bmatrix} 1 & 0 & 1 \\ 1 & -2 & -1 \\ -1 & 6 & 5 \end{bmatrix} \xrightarrow{(-)R_1 + R_2} \xrightarrow{R_1 + R_3}$$
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & -2 & -2 \\ 0 & 6 & 6 \end{bmatrix} \xrightarrow{\frac{3R_2 + R_3}{-R_2/2}} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Ved tilbakesubstitusjon får vi $x_3 = s$, $x_2 = -s$, $x_1 = -s$ og $\mathbf{x} = (-1, -1, 1)s$.

- b) Vi løser den karakteristiske likningen $\det(A \lambda I) = 0$. Vi har $\det(A \lambda I) = (2 \lambda)(\lambda^2 3\lambda 4) + 2(4 \lambda) = -\lambda^3 + 5\lambda^2 4\lambda$ og egenverdiene er $\lambda_1 = 0$, $\lambda_2 = 4$ og $\lambda_3 = 1$. Vi finner tilsvarende egenvektorer:
 - for $\lambda_1 = 0$, har vi fra 6a) $v_1 = (-1, -1, 1)$;
 - for $\lambda_2 = 4$ løser vi likningen $(A 4I)\mathbf{v} = 0$; $A 4I = \begin{bmatrix} -2 & 0 & 2 \\ 1 & -6 & -1 \\ -1 & 6 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ og $\mathbf{v}_2 = (1, 0, 1)$;
 - for $\lambda_3 = 1$ løser vi likningen $(A I)\mathbf{v} = 0$; $A 4I = \begin{bmatrix} 1 & 0 & 2 \\ 1 & -3 & -1 \\ -1 & 6 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ og $\mathbf{v}_3 = (-2, -1, 1)$.

Oppgave 8

For å finne standardformen til likningen, diagonaliserer vi matrisen $A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$. Vi har $\det(A - \lambda I) = (3 - \lambda)(-7 - \lambda) - 16 = \lambda^2 - 25$ og egenverdiene er $\lambda_1 = 5$ og $\lambda_2 = -5$. Vi finner tilsvarende egenvektorer:

$$A - 5I = \begin{bmatrix} -2 & 4 \\ 4 & -8 \end{bmatrix}, \quad A + 5I = \begin{bmatrix} 8 & 4 \\ 4 & 2 \end{bmatrix}$$

og $\mathbf{u}_1 = s(2,1)$, $\mathbf{u}_2 = t(-1,2)$. For å få en ortogonal matrise $P = [\mathbf{u}_1, \mathbf{u}_2]$ med determinant 1, velger vi $s = t = 1/\sqrt{5}$.

Vi skifter koordinater $\mathbf{x} = P\mathbf{x}'$ og får likningen i det nye koordinatsystemet

$$5x'^2 - 5y'^2 = 10,$$

eller $x'^2 - y'^2 = 2$, dette er ligningen til en hyperbel $x'^2 - y'^2 = 2$. En skisse ser sånn ut:

Oppgave 9 Vi har $A = PDP^{-1}$, $A^4 = PD^4P^{-1}$ og $A = A^4$. Da får vi $D^4 = P^{-1}A^4P = P^{-1}AP = D$, hvor D er en diagonal matrise. Hvis $D = \text{diag}(d_1, ..., d_n)$ så er $D^4 = \text{diag}(d_1^4, ..., d_n^4)$ og vi har $d_j^4 = d_j$ for alle j = 1, ..., n. Dette medfører at $d_j = 0$ eller $d_j = 1$ for hver j. Følgelig er $d_j^2 = d_j$ og $D^2 = D$. Endelig får vi $A^2 = PD^2P^{-1} = PDP^{-1} = A$.