

Graph Theory

内容提要

- 1. 图的基本概念
- 2. 图的连通性
- 3. 图的矩阵表示
- 4. 欧拉图与哈密顿图
- 5. 无向树与根树
- 6. 平面图

内容提要

- 1. 图的基本概念
- 2. 图的连通性
- 3. 图的矩阵表示
- 4. 欧拉图与哈密顿图
- 5. 无向树与根树
- 6. 平面图

1、图的基本概念

概念:

无向图、有向图、关联与相邻、简单图、完全图、 正则图、子图、补图,握手定理,图的同构

图的定义

预备知识

- (1) 多重集合——元素可以重复出现的集合
- (2) 无序积—— $A&B=\{(x,y) \mid x \in A \land y \in B\}$

无向图

 $G = \langle V, E \rangle$,其中

- (1) *V*≠∅为顶点集,元素称为顶点;
- (2) E为V&V的多重集,其元素称为无向边,简称边。

例:

设

$$V = \{v_1, v_2, v_3, v_4, v_5\},$$
 $E = \{(v_1, v_1), (v_1, v_2), (v_2, v_3), (v_2, v_3), (v_2, v_5), (v_1, v_5), (v_4, v_5)\}$
则 $G = \langle V, E \rangle$ 为一无向图。

有向图

D=<V,E>, 只需注意E是V>V的多重子集。

例:下图表示的是一个有向图,D=<V,E>。

 $V = \{a,b,c,d\}, E = \{\langle a,a \rangle,\langle a,b \rangle,\langle a,b \rangle,\langle a,d \rangle,\langle c,c,d \rangle,\langle c,b \rangle\}$

图的相关概念

图的相关概念

- 1. *n* 阶图: 顶点个数为n。
- 2. 零图: 边的个数为0。
 - n 阶零图记为 N_n
 - 平凡图: 1 阶零图N₁
- 4. 空图——∅。
- 5. 标定图与非标定图: 依据顶点和边是否命名标识。
- 6. 有向图的基图: 有向边改为无向边后的图。

点与边的相关概念

用 e_k 表示无向边或有向边。

- 1. 顶点与边的关联关系 e_k = (v_i, v_j)
 - ① 关联: e_k 与 v_i , v_i 关联;
 - ② 关联次数: 0(不关联), $1(v_i \neq v_j)$, $2(v_i = v_j)$;
 - ② 环:与同一顶点关联次数为2的边;
 - ③ 孤立点:不与任何边关联的顶点。
- 2. 顶点相邻:两个顶点之间有边。
- 3. 边相邻:两条边有公共端点。
- 4. 平行边: 关联的端点相同的两条边。

邻域与关联集

 $v \in V(G)$ (G为无向图)

$$v$$
的邻域
$$N(v) = \{u \mid u \in V(G) \land (u,v) \in E(G) \land u \neq v\}$$

$$v$$
的闭邻域
$$\overline{N}(v) = N(v) \cup \{v\}$$

$$v$$
的关联集
$$I(v) = \{e \mid e \in E(G) \land e \vdash v \neq \emptyset\}$$

v∈ *V*(*D*) (*D*为有向图)

$$v$$
的后继元集
$$\Gamma_D^+(v) = \{u \mid u \in V(D) \land < v, u > \in E(D) \land u \neq v\}$$

$$v$$
的先驱元集
$$\Gamma_D^-(v) = \{u \mid u \in V(D) \land < u, v > \in E(D) \land u \neq v\}$$

$$v$$
的邻域
$$N_D(v) = \Gamma_D^+(v) \cup \Gamma_D^-(v)$$

$$\overline{N}_D(v) = N_D(v) \cup \{v\}$$

多重图与简单图

多重图: 含平行边的图;

简单图:即不含平行边又不含环的图。

图的运算

删除顶点及删除边

G-v ——从G中将v及关联的边去掉

G-V'——从G中删除V'中所有的顶点

G-e ——将e从G中去掉

G-E'——删除E'中所有边

顶点的度数与握手定理

顶点的度数

- (1) 设G=<V,E>为无向图, $\forall v$ ∈V,d(v) ——v的度数, 简称度。
- (2) 设D=<V,E>为有向图, $\forall v$ ∈V,
 - *d*⁺(*v*) ——*v*的出度
 - *d*⁻(*v*) ——*v*的入度
 - *d*(*v*) ——*v*的度或度数
- (3) 最大度 $\Delta(G)$,最小度 $\delta(G)$
- $(4) \Delta^{+}(D), \delta^{+}(D), \Delta^{-}(D), \delta^{-}(D), \Delta(D), \delta(D)$
- (5) 奇顶点度与偶度顶点

握手定理

定理 (1) 设G=<V,E>为任意无向图, $V=\{v_1,v_2,...,v_n\},|E|=m$,则

$$\sum_{i=1}^{n} d(v_i) = 2m$$

(2) 设D=<V,E>为任意有向图, $V=\{v_1,v_2,...,v_n\}$,|E|=m,则

$$\sum_{i=1}^{n} d(v_{i}) = 2m, \quad \coprod \quad \sum_{i=1}^{n} d^{+}(v_{i}) = \sum_{i=1}^{n} d^{-}(v_{i}) = m$$

推论 任何图 (无向或有向) 中, 奇度顶点的个数是偶数.

握手定理应用例

无向图G有16条边,3个4度顶点,4个3度顶点,其余顶点度数均小于3,试求G的阶数n。

解: 本题的关键是应用握手定理。

设除3度与4度顶点外,还有x个顶点 $v_1, v_2, ..., v_x$,则

$$d(v_i) \le 2$$
, $i = 1, 2, ..., x$,

于是得不等式

$$32 \le 24 + 2x$$

得 $x \ge 4$ 。

因此 阶数 *n* ≥ 4+4+3=11。

图的度数列

- 1. $V=\{v_1, v_2, ..., v_n\}$ 为无向图G的顶点集,称 $d(v_1), d(v_2), ..., d(v_n)$ 为G的度数列。
- 2. $V=\{v_1, v_2, ..., v_n\}$ 为有向图D的顶点集,

D的度数列: $d(v_1), d(v_2), ..., d(v_n)$

D的出度列: $d^+(v_1), d^+(v_2), ..., d^+(v_n)$

D的入度列: $d^-(v_1), d^-(v_2), ..., d^-(v_n)$

- 3. 非负整数列 $d=(d_1, d_2, ..., d_n)$ 可图化的,可简单图化。
- 定理 (1) 非负整数列 $d=(d_1, d_2, ..., d_n)$ 是可图化的当且仅当 $\sum_{i=1}^n d_i$ 为偶数。
 - (2) 设G为任意n阶无向简单图,则 $\Delta(G) \leq n-1$ 。

例: 判断下列度数列是否可图化? 可简单图化?

- (2, 4, 6, 8, 10)
- (1, 3, 3, 3, 4)
- (2, 2, 3, 4, 5)
- (3, 3, 3, 4)

- (2, 4, 6, 8, 10)是可图化的。
- (1, 3, 3, 3, 4) 是可图化的, 也是可简单图化的。
- (2, 2, 3, 4, 5) 是可图化的,但不是可简单图化的。
- (3, 3, 3, 4)不 是可图化的。