What is claimed is:

1	1. A semiconductor package comprising:
2	a semiconductor die having a front side and an opposed backside;
3	a backside metallization layer formed on the backside of the die;
4 .	an integrated heat spreader, and
5	a thermal interface including a fluxlessly-capable solder portion deposited on a top
6	surface of the integrated heat spreader and bonded to said metallization layer under load and
7	heat.

- 1 2. The semiconductor package of claim 1, said backside metallization layer including three layers including an adhesion/barrier layer, a wetting layer, and a protection layer.
- 1 3. The semiconductor package of claim 2, said adhesion/barrier layer formed of a material selected from the group consisting of Ti, TiN, Ta, and TaN.
- 1 4. The semiconductor package of claim 2, said wetting layer formed of a material selected from the group consisting of NiV and Ni.
 - 5. The semiconductor package of claim 2, said protection layer formed of a material selected from the group consisting of Au, Pt and Pd.
- The semiconductor package of claim 1, said solder portion including AuSn solder.
- 7. The semiconductor package of claim 6 wherein said solder portion includes either separate Au and Sn layers or a single eutectic AuSn layer.
- 1 8. The semiconductor device of claim 7 wherein a thickness of Au layer and Sn 2 layer is formed so that an overall Au-to-Sn ratio by weight is 80 to 20.
- 9. The semiconductor package of claim 1, said thermal interface layer including a barrier layer disposed between the solder portion and the integrated heat spreader.

1	10.	The semiconductor package of claim 9 wherein said barrier layer is formed of		
2	Ni.			
1	11	The semiconductor package of claim 1, wherein said backside metallization		
2	layer includes an adhesion/barrier layer, a wetting layer, and a protection layer, and said thermal			
3 ·	interface laye	r includes a solder portion including gold (Au) and tin (Sn) together with a barrier		
4	layer formed of nickel (Ni) disposed between the solder portion and the integrated heat spreader			
1				
1	12.	A method for forming a semiconductor package having a semiconductor die		
2	coupled to an	integrated heat spreader, the method comprising:		
3	forming a metallization layer on a backside of the semiconductor die;			
4 .		ng a thermal interface portion on a topside of the integrated heat spreader, said		
. 5	thermal interface portion including a solder layer; and			
6	forcing together under load and heat the metallization layer and the solder layer			
7	without flux to bond the semiconductor die to the integrated heat spreader.			
1				
1	13.	The method of claim 12, further including heating the package to above 300°C		
2	for a package heating time of between about 1 and 30 minutes and ramping down the			
3	temperature lower than about 100°C per minute.			
1				
ı	. 14.	The method of claim 13, wherein the package heating time is between about 2		
2	and 3 minutes.			
1				
1	15.	The method of claim 13, wherein the temperature is ramped down approximately		
2	30°C per minute.			
ı				
1	16.	The method of claim 12 further including reacting the solder layer with the		
2	metallization layer to form bonded intermetallic layers.			
1	17.	The method of claim 16, wherein the solder layer includes gold (Au) and tin (Sn)		
2	and the metal	lization layer includes a protection layer formed of a material selected from the		
3	group consisting of gold (Au), Platinum (Pt), and Palladium (Pd) and a wetting layer formed of			

a material selected from the group consisting of nickel-vanadium (NiV) and nickel (Ni).

1	18.	The method of claim 17, wherein the solder layer reacts with the protection layer		
2	and wetting layer to form internetallics using a fluxless bonding approach.			
1	19.	The method of claim 18, wherein the solder layer includes gold (Au) and tin		
2	(Sn), the protection layer is gold (Au) and the wetting layer is nickel (Ni) where the intermetal			
3	formed is Au	-Sn-Ni.		
1	20.	The method of claim 12 wherein the metallization layer includes an		
2	adhesion/bar	rier layer, a wetting layer, and a protection layer.		
1 ·	21.	The method of claim 12, further including bonding the die of the semiconductor		
2	package onto	an organic printed circuit board substrate.		
1	22.	The method of claim 12 wherein forcing the metallization layer and fluxless		
2	solder layer to	ogether under load and heat includes placing the package within a reflow oven		
3 -	purged with I	N_2 .		
1	23.	The method of claim 12 wherein the step of forcing the metallization layer and		
2	fluxless solder layer together under load and heat further includes:			
3	resting the integrated heat spreader on a carrier with the fluxlessly-capable solder layer			
4 .	exposed;			
5	placing the die on top of the integrated heat spreader with the metallization layer in			
6	contact with the fluxlessly-capable solder layer;			
7	holding the die onto the integrated heat spreader using a downward force on the			
8	package; and			
9	heating the package within a reflow oven purged with N ₂ .			
0				
1	24.	The method of claim 23 wherein the downward force includes a clip holding the		
2	die onto the in	ntegrated heat.		
	-			

The method of claim 23 further including ramping down the heat applied to the

25.

package after heating the package.

1

- 1 26. The method of claim 23 wherein the reflow oven used for heating the package 2 includes multiple zones each with independent temperature controls.
- 27. The method of claim 26, said reflow oven multiple zones have a maximum temperature of 400°C.