Universidade Federal da Paraíba Centro de Informática

Departamento de Informática

Aprendizado Profundo Redes Neurais Transformers (Material Baseado em @CodeEmporium)

Tiago Maritan (tiago@ci.ufpb.br)

Modelo Seq2Seq - Visão Alto Nível

Utiliza 2 RNNs separadas: Encoder e Decoder

Modelo Seq2Seq - Visão Alto Nível

Utiliza 2 RNNs separadas: Encoder e Decoder

Seq2Seq - Problema do Gargalo (Bootleneck Problem)

Seq2Seq - Problema do Gargalo (Bootleneck Problem)

- Attention: fornece uma solução para o problema do gargalo.
- Ideia principal: em cada passo do <u>Decoder</u>, ele foca num pedaço específico da sequência inicial.
- Ex: Em uma tradução automática:
 - Na 1a iteração, o Decoder foca mais na <u>1a palavra da</u> entrada (ou <u>1o estado do Encoder</u>),
 - Na 2a iteração, o Decoder foca mais na 2a palavra,
 - E assim por diante...

- Fazendo um paralelo com imagens
- Ex: Na imagem, uma garota arremessa um frisbee.

- Para gerar a legenda da imagem, não precisamos prestar atenção em todas as regiões (pixels) da imagem para gerar cada palavra da saída;
- Podemos focar no que é mais importante a cada passo do tempo

- É isso que o mecanismo de atenção faz!!!
- Aprende a <u>focar nas partes</u>

 <u>mais importantes da</u>
 <u>entrada</u>... "borrando" o
 resto (dando menos
 importância).

- A <u>atenção</u> seria maior na região da garota quando o decoder estiver gerando a saída da palavra "garota";
- A <u>atenção</u> seria maior na região do **frisbee** quando o decoder estiver gerando a saída "frisbee";

- Dá acesso ao <u>Decoder</u> a <u>todas as saídas do Encoder</u> (não apenas a última saída);
 - Interessante porque mostra como o Encoder evolui depois de ver cada novo token

- Contudo, não usa as saídas brutas do Encoder.
 - Calculamos pesos (attention weigths) que representam a <u>importância das saídas do Encoder</u> para <u>a decisão do Decoder na etapa t</u>.
- Decoder pode então <u>dinamicamente prestar mais</u> atenção a um subconjunto das saídas do Encoder;

- Os attention weigths são gerados por uma rede neural pequena chamada camada de atenção
- Treinada com o resto do modelo Encoder-Decoder
- Mecanismo de Atenção de Luong¹:
 - Similaridade entre as <u>saídas do Encoder</u> e o <u>estado oculto</u> <u>anterior do Decoder</u> é calculado usando o <u>produto escalar</u>
 - Produto escalar é uma boa medida de similaridade;

Atenção - Exemplo

Atenção - Exemplo

 Quanto <u>mais claro</u> o quadrado, <u>mais atenção (attention)</u> naquele elemento

Redes Neurais Transformers

Artigo: https://arxiv.org/abs/1706.03762

Motivação

- Redes recorrentes e LSTM são lentas para treinar;
- Dados precisam ser passados sequencialmente na rede, um após o outro
- Necessário que entradas do estado anterior sejam processadas para realizar operações no estado atual;
- Esse fluxo sequencial das LSTMs não explora bem o poder de processamento paralelo das GPUs

Como utilizar paralelização em dados sequenciais?

- Em 2017, foram criadas as Redes Neurais Transformers.
- Elas permitem que a sequência de entrada possa ser processada em paralelo
- Não existe o conceito de passo de tempo (time step) para os dados de entrada;
 - Ex: Numa tradução de sentenças, as palavras são passadas simultaneamente, e os words embeddings são determinados simultaneamente;

Redes Neurais Transformers

- Arquitetura do tipo Encoder-Decoder
 - Fortemente baseada no conceito de <u>Atenção</u>!!!
 - "Attention is all we need!"

Redes Transformers Output Probabilities Softmax

Redes Tran

Output

Decoder

6 camadas iguais

Consideremos, como exemplo, uma Rede para Traduzir Inglês->Francês...

Input Embedding + Positional Encoding

Na Rede Transformer, inicialmente a entrada passa por um processo de Input embedding (com Positional Encoding).

Input Embedding

- Para ser processada por uma rede neural, as palavras são normalmente convertidas para um vetor numérico
 - Ex: Word2Vec, GloVe

Input Embedding

 Normalmente palavras com sentidos/contextos próximos possuem vetores com valores próximos

Input Embedding + Positional Encoding

Uma mesma palavra pode ter diferentes significados em sentenças diferentes.

Positional encoding: Gera um vetor que representa o contexto da palavra de acordo com a sua posição na sentença.

Input Embedding + Positional Encoding

Codificar a posição do token é importante porque tokens são alimentados simultaneamente em redes Transformers

Embedding de "dog"

Vetor que codifica da posição da palavra na sentença

Embedding de "dog" (com info de contexto)

Positional Encoding

- Embeddings posicionais poderiam ser aprendidos pelo modelo;
- Mas no artigo original, os autores preferiram usar <u>embeddings posicionais fixos</u>, calculado usando funções seno e cosseno de frequências diferentes

PE - matriz do embedding posicional

$$PE_{(pos,2i)} = \sin\left(rac{pos}{10000^{2i/512}}
ight)$$
 $PE_{(pos,2*i+1)} = \cos\left(rac{pos}{10000^{2i/512}}
ight)$

pos - posição da palavra na sentença i - dimensão dentro do vetor (diferencia posições pares de ímpares)

Positional Encoding

► Exemplo: P == PE

Positional Encoding Matrix for the sequence 'I am a robot'

Exemplo extraído de:

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/

Positional Encoding

Positional Encoding Matrix for the sequence 'I am a robot'

Exemplo extraído de:

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/

Encoder Block

- Estruturado em 2 unidades principais:
 - Multi-Head Attention
 - Feed Forward
- Utiliza <u>skip connections</u>
 em cada unidade

Encoder Block

- Estruturado em 2 unidades principais:
 - Multi-Head Attention
 - Feed Forward

Utiliza o conceito de Self-attention

- Aprende a <u>relação entre os elementos da própria sentença</u>.
- Quão relevante é a i-ésima palavra da sentença, com relação às outras palavras da sentença?
- Ajudam a capturar a <u>estrutura sintática</u> e <u>contextual da sentença</u>

Focus	Attention Vectors			
The big red dog	[0.71	0.04	0.07	$[0.18]^T$
big → The big red dog	[0.01	0.84	0.02	$[0.13]^T$
red → The big red dog	[0.09	0.05	0.62	$[0.24]^T$
dog → The big red dog	[0.03	0.03	0.03	$[0.91]^T$

- Inspira-se no funcionamento de um <u>sistema de recuperação de</u> <u>informações</u> (consulta chave-valor)
 - Exemplo: Suponha a busca de um vídeo no youtube.
 - Quando você Pesquisa (Query) um vídeo específico, o mecanismo de pesquisa calcula uma similaridade entre a Query e um conjunto de chaves (Keys) (ex: título do vídeo, descrição, etc.) associado a possíveis vídeos armazenados.
 - Em seguida, o algoritmo apresenta os vídeos (Valores or Values) com as melhores correspondências.

Inspira-se no funcionamento de um <u>sistema de recuperação de</u> <u>informações</u> (consulta chave-valor)

$$\operatorname{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \operatorname{softmax}\left(rac{\mathbf{Q}\mathbf{K}^{T}}{\sqrt{d_{-}k}}
ight)\mathbf{V}$$

- Q Matriz de Querys; K Matriz de Keys
- V Matriz de Values
- QK^T Contém um score de similaridade para para cada par <query, key>, baseado no <u>produto escalar</u>
- ▶ √d_k Reduz os scores de similaridade para evitar a saturação da função softmax

Self-Attention

- No Encoder, Q, K e V são iguais a lista de palavras na sentença
 - Assim cada palavra será comparada a todas as palavras na sentença, incluindo ela mesma

Focus -	Attention Vectors		
The big red dog	$[0.71 0.04 0.07 0.18]^T$		
big → The big red dog	$[0.01 0.84 0.02 0.13]^T$		
red \rightarrow The big red dog	$[0.09 0.05 0.62 0.24]^T$		
dog → The big red dog	$[0.03 0.03 0.03 0.91]^T$		

- Termo multi-head attention é usado porque são gerados 8
 vetores de atenção para cada palavra.
 - Esses 8 vetores são concatenados, formando um único vetor de dimensão maior.
 - Permite codificar múltiplas características diferentes da palavra

- Camada multi-head attention aplica diversas transformações lineares diferentes de Q, K e V
 - Possibilita que o modelo aplique projeções diferentes da representação da palavra em diferentes subespaços;
 - Ex: uma camada linear pode projetar a palavra com relação ao radical do verbo; outra camada pode projetar a palavra com relação ao tempo verbal (ex: passado, futuro).

Encoder Block

- Estruturado em 2 unidades principais:
 - Multi-Head Attetion
 - Feed-Forward

Feed Forward

- Aplica uma rede densa para o vetor de cada palavra;
- Rede densa com duas camadas de neurônios
 - A primeira camada usando função de ativação ReLU;
 - A segunda camada com função de ativação linear;
- Saída é um conjunto de vetores, um para cada palavra

Feed Forward

- Cada rede densa é independente da outra.
 - Com isso é possível <u>paralelizar</u>!
 - Passar todas as palavras ao mesmo tempo no bloco Encoder

- Estruturado em 3 unidades principais:
 - Masked Multi-Head Attention
 - Multi-Head Attention
 - Feed Forward

 Também utiliza skip connections em cada unidade

 Duas unidades semelhantes ao Encoder (Multi-Head Attention e Feed Forward)

 Durante o treinamento, o Decoder é também alimentado com a "sentença em francês"

- Inicialmente, passa-se a <u>sentença em</u> <u>francês</u> pelo processo de **Embedding** + Positional Encoding
 - Gerando <u>vetores de embedding</u>
 <u>posicional</u> da sentença em Francês.
- Em seguida, esses vetores são encaminhados ao Decoder.

- Estruturado em 3 unidades principais:
 - Masked Multi-Head Attention
 - Multi-Head Attention
 - Feed Forward

Masked Multi-Head Attention

- O Masked Multi-Head Attention (10 bloco de atenção) gera vetores de atenção para cada palavra em francês
 - Similar ao Multi-Head Attention do Encoder;

Masked Multi-Head Attention

- Porque ele é chamado de Masked attention block?
 - Enquanto tentamos prever a próxima palavra em francês, podemos usar todas as palavras em inglês, mas apenas palavras anteriores em francês.
 - Ex: para prever a 3a palavra da saída, podemos usar apenas a 1a e a 2a palavra em francês.
 - Para permitir paralelização, o bloco <u>mascara os vetores das</u>
 <u>palavras posteriores em francês com zeros</u>
 - Caso contrário a rede de atenção não poderia utilizá-la.

Masked Multi-Head Attention

- Nesse caso, Q, K e V são iguais a lista de palavras na sentença-alvo (ex: francês), mas usando a máscara
 - Para evitar que as palavras se comparem com palavras localizadas depois dela

- Estruturado em 3 unidades principais:
 - Masked Multi-Head Attention
 - Multi-Head Attention
 - Feed Forward

Multi-Head Attention (20 Bloco de Atenção do Decoder)

Tenta determinar <u>quanto os vetores de atenção</u> <u>inglês-francês estão relacionados</u> entre si.

Multi-Head Attention (20 Bloco de Atenção do Decoder)

- Realiza o <u>mapeamento entre palavras em inglês e francês</u>
- Nesta unidade:
 - Q representa a codificação de palavras geradas pelo Decoder
 - K e V representam a codificação de palavras geradas pelo Encoder
- Cada vetor da saída representa a relação com outras palavras em ambas as línguas.

- Estruturado em 3 unidades principais:
 - Masked Multi-Head Attention
 - Multi-Head Attention
 - Feed-forward

Feed Forward

Similar ao bloco Feed Forward do Encoder

- Rede densa com duas camadas de neurônios
 - A primeira camada usando função de ativação ReLU;
 - A segunda camada com função de ativação linear;

Camada Linear + Softmax

- A parte final da rede possui uma camada
 <u>Linear</u> com a função de ativação <u>softmax</u>
 - Transforma a saída da camada Linear em uma distribuição de probabilidade
 - Palavra gerada na saída é aquela que possui a probabilidade mais alta.

- Geralmente, o <u>Decoder prediz a próxima palavra</u>
 - Ele é executado em múltiplos passos até o token de fim de sentença ser gerado.

Universidade Federal da Paraíba Centro de Informática

Departamento de Informática

Aprendizado Profundo Redes Neurais Transformers (Material Baseado em @CodeEmporium)

Tiago Maritan (tiago@ci.ufpb.br)