MATH 222 Assignment 1

Sterling Laird - V00834995January 24, 2019 1. Let n_2 and n_2 be the number of vertices in G of degree 2 and 3 respectively.

We know that the sum of the degrees of all vertices is twice the number of edges so:

$$\sum_{v \in V} deg(v) = 2|E|$$

$$5 \cdot 11 + 4 \cdot 14 + 3n_3 + 2n_2 = 2 \cdot 78$$

$$3n_3 + 2n_2 = 45$$
(1)

We can also sum the total number of vertices:

$$11 + 14 + n_3 + n_2 = 45$$

$$n_2 = 20 - n_3 \tag{2}$$

Using (1) and (2) we get:

$$3n_3 + 2(20 - n_3) = 45$$
$$n_3 = 5$$

- \therefore There are 5 vertices in G with degree 3.
- 2. Since K_n is a complete graph, all vertices are adjacent to all other vertices so a path of length p is isomorphic to any order p subgraph of K_n , provided $n \geq p$.

Since there are $\binom{n}{p}$ order p sub-graphs of K_n , there will be $\binom{7}{4} = 35$ sub-graphs of K_7 that are isomorphic to P_4 .

3. Assume the graph G is not connected.

Therefore there is at least 2 distinct connected subgraphs G_1, G_2 of order n_1, n_2 .

It follows that $\forall v \in G_1, deg(v) \leq n_1 - 1$ and $\forall v \in G_2, deg(v) \leq n_2 - 1$. If we choose vertices $x \in G_1$ and $y \in G_2$ then:

$$deg(x) + deg(y) \ge 17$$

$$n_1 - 1 + n_2 - 1 \ge 17$$

$$n_1 + n_2 - 2 \ge 17$$

$$18 - 2 \ge 17$$

$$16 \ge 17$$
(3)

But $16 \le 17$, so (3) is a contradiction. $\therefore G$ must be connected.

- 4. a) Trivially for $v = \{1\}$ the only u s.t. $v \cup u = S$ is the complete set S and $S \setminus \{1\}$.
 - $\therefore deg(\{1\}) = 2$
 - b) More generally for v = a subset of S, v is adjacent to all $u = S \setminus w$ $\forall w \subseteq S$.

Therefore v is adjacent to $2^{|v|}$ vertices when $v \neq S$ and $2^{|v|} - 1$ vertices when v = S. This is to stop the self loop on v when v = S so that G remains a graph.

- $deg(\{1,2\}) = 2^2 = 4$
- c) Since:

$$\sum_{v \in V} deg(v) = 2|E| \tag{4}$$

And because there are $\binom{|S|}{i}$ with the same degree $\forall i \in \mathbb{N}$ where $i \leq |S|$:

$$\sum_{v \in V} deg(v) = \left(\sum_{i=0}^{|S|-1} \binom{|S|}{i} \cdot 2^i\right) + 2^{|v|} - 1 \tag{5}$$

Using (4) and (5):

$$1 + 12 + 60 + 160 + 240 + 192 + 63 = 2|E|$$

 $|E| = 364$

5. a) A bipartite graph G on 5 vertices must have one partition that contains 3 vertices that are not adjacent.

Since the 3 vertices on that partition are not adjacent, \overline{G} will have those 3 vertices be all adjacent.

Since these 3 vertices are adjacent in \overline{G} , for \overline{G} to be bipartite, 2 of these vertices will be in the same partition, but since all 3 are adjacent, there will be an edge within the partition.

... There cannot be a graph G on 5 vertices s.t. G and \overline{G} are both bipartite.

b) Because the complement of G contains all edges in K_n that are not in E(G):

$$|E(G)| = \frac{|E(K_n)|}{2}$$
 $|E(G)| = \frac{n(n-1)}{4}$ (6)

Since |E(G)| must be an integer, from (6) we can see that n(n-1) must be divisible by 4.

It can easily be seen that this is only possible when either n=4k or $n-1=4k \iff n=4k+1$ for some positive integer k.

6. As G is a connected graph, and H is not, G and H cannot be isomorphic.

 \therefore If G and H have the same number of vertices and the same number of edges and both are 2-regular, G and H are not necessarily isomorphic.

7. Lets assume that G does not have a cycle. Therefore we can start a path from any vertex and never repeat a vertex without repeating an edge.

Because every vertex has a degree greater than 2, and G does not have any cycles, there will always be an un-traversed edge to a new vertex at every vertex in the path.

This implies that the G must be infinite.// Since G is a graph and we consider graphs to be finite, G must contain a cycle if every vertex of G has degree of at least 2.

8. a) Since $K_{m,n}$ is bipartite, for it to have a Hamiltonian cycle each vertex in the cycle must take a path to a node in the other partition before returning to the original vertex in the starting partition. It is clear that this requires that m = n for this to occur because if $m \neq n$ the not all vertices could be in the cycle.

Since $K_{m,n}$ has an Euler circuit, we know that every vertex has even degree.

For this to be true both m and n must be even as all vertices in $K_{m,n}$ will have either degree m or n.

- \therefore If $K_{m,n}$ has both a Euler circuit and a Hamilton cycle, then m=n and n is even.
- b) As we can draw a graph that contains a Euler circuit but not a Hamiltonian cycle, the proposition is disproven.

c) The proposition is false as shown in (a), $K_{3,3}$ has a Hamiltonian cycle but no Euler circuit because m = n, but n is not even.