Course: CSC707, Automata, Computability and Computational Theory

Group Problem: Clique \propto Independent Set.

Students: kshakya, dsen, dbao

Graded by: Xusheng Xiao, Ling Chen, Xi Ge

Minus Points: -19

Input: A graph G = (V,E), an integer $k \leq |V|$

Output: If there is a subset S of k vertices in G such that no pair of vertices in S is connected by an edge in G?

Decision Problem:

 $IS = \{ \langle G, k \rangle : Graph G \text{ has a Independent set of size k } \}$

Step 1:

We need to show that Independent Set (IS) \in NP. Suppose we have been given a set of vertices V'. We can verify that V' is IS of Graph G as follows:

- 1. Verify |V'| = k. This is O(1).
- 2. For each edge $(u,v) \in E(G)$, we check whether $u \in V'$ and $v \in V'$. If none of the edge satisfies this relation, then V' is IS of G, otherwise it is not. This is $O(k^2 |E|)$.

So the verification step is polynomial. Hence IS is in NP.

Step2:

Given the Clique problem is NP-Complete, we show that Clique \propto IS. Given an instance of Clique problem < G, k>, following steps reduces it to IS problem.

- 1. We compute the complement \overline{G} of given Graph. This take $O(n^2)O(|V|^2)$. -2
- 2. Calculate k' = k.

The output of reduction algorithm is an instance $\langle \overline{G}, k' \rangle$ of IS problem.

Graph G has Clique $V' \subset VG$ has a clique of size k iff \overline{G} has IS $V'\overline{G}$ has IS of size k. -1

 \rightarrow

Suppose G has Clique $V'\subset V$. If (u,v) be an edge in G and $u\in V'$ and $v\in V'$, then by definition of Clique and Complement, $(u,v)\notin \overline{E}$. Since u,v were chosen arbitrarily, the vertices that forms a clique in G forms IS in \overline{G} . -8

Consider any two vertices $u, v \in Clique(G)$, suppose that edge $(u, v) \in \overline{G}$. By the definition of complement graph, $(u, v) \notin G$, which goes contradict with that $u, v \in Clique(G)$. Therefore for $\forall u, v \in Clique(G)$, $(u, v) \notin \overline{E}$. \overline{G} has a IS of size k.

 \leftarrow

Suppose G has IS $V' \subset V$. Take any two verices u,v in G such that $u \in V'$ and $v \in V'$, then $(u,v) \notin E$ by defition of Independent Set. This implies that $(u,v) \in \overline{E}$. Since u,v were chosen arbitrarily, the vertices that forms a IS in G forms a Clique of same size in \overline{G} . -8

Suppose \overline{G} has an IS $V' \subset V, |V'| = k, u \in V', v \in V', \Rightarrow (u, v) \notin \overline{E}$. By the definition of complement graph, $(u, v) \in E$. Therefore, V' is an Clique of $G \Rightarrow G$ has a clique of size k.

This proves that IS is NP-Complete problem.