Nr identyfikacyjny

 $SP FI - \dots - 2020/2021$

(numer porządkowy z kodowania)

Nr identyfikacyjny – wyjaśnienie - *symbol przedmiotu* np. BI – biologia, *numer porządkowy wynika z numeru stolika wylosowanego przez ucznia*

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z FIZYKI

organizowany przez Łódzkiego Kuratora Oświaty dla uczniów szkół podstawowych w roku szkolnym 2020/2021

TEST - ETAP SZKOLNY

•	Arkusz liczy 12 stron i zawiera 3 zadania, w tym brudnopis.	Czas pracy:
•	Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki,	Czas pracy.
	zgłoś je Komisji Konkursowej.	
•	Zadania czytaj uważnie i ze zrozumieniem.	60 min.
•	Odpowiedzi wpisuj długopisem bądź piórem, kolorem czarnym lub niebieskim.	00 111111.
•	Dbaj o czytelność pisma i precyzję odpowiedzi.	
•	W zadaniach zamkniętych zaznacz prawidłową odpowiedź, wstawiając znak X we właściwym	
	miejscu.	
•	Jeżeli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz znakiem X inną odpowiedź.	
•	Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.	
•	Do każdego numeru zadania podana jest maksymalna liczba punktów możliwa do uzyskania za prawidłową odpowiedź.	
	1 . 1	
•	Pracuj samodzielnie. Postaraj się udzielić odpowiedzi na wszystkie pytania.	
•	Nie używaj korektora. Jeśli pomylisz w zadaniach otwartych, przekreśl błędną odpowiedź i wpisz	
	poprawną.	
•	Korzystaj tylko z przyborów i materiałów określonych w regulaminie konkursu.	
	Powodzenia!	

Wypełnia Komisja Konkursowa po zakończeniu sprawdzenia prac

Imię	i nazwisk	o ucznia	
• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••

							Zada	nie I (6	0pkt.)							Zada	nie II (14 pkt.)
Zadanie	1	2	3	4a	4b	4c	4d	5	6	7	8	9	10	11	12	1	2	3
Punkty możliwe do uzyskania	5	4	3	3	3	4	4	4	2	4	4	3	10	3	4	5	4	5
Punkty uzyskane																		

	Zac					
1	2	3	4	5	6	Razem
3	2	4	7	4	6	100 pkt.

Podpisy członków komisji sprawdzających prace:

- 1. (imię i nazwisko).....(podpis)
- 2. (imię i nazwisko).....(podpis)

RUCH JEST POWSZECHNY

Zjawisko ruchu obserwujemy wszędzie wokół nas. Poruszają się planety, zwierzęta, pojazdy i my sami. Dla zdrowia człowieka ruch ma nieocenione znaczenie.

We wszystkich zadaniach przyjmij do obliczeń przyspieszenie ziemskie g=10 m/s².

Zadanie I. Sport zawodowy i amatorski (0- 60 pkt.)

1. Adam przejechał na rowerze 6 km jadąc na zachód. Następnie skręcił na południe i przejechał 8 km. Oblicz drogę, jaką przebył Adam oraz ustal jego odległość od punktu startu. Wykonaj rysunek, zaznacz na nim kierunki świata i odległość między punktem końcowym i początkowym Adama.

Odpowiedź.....

2. Oblicz średnią prędkość maratończyka, który dystans s = 42,195 km pokonał w czasie t=3 h. Wynik podaj w m/s. (0 - 4 pkt.)

Odpowiedź.....

3. Piechur poruszał się przez 15 min. ruchem jednostajnym z prędkością 1,5 m/s. **Oblicz** drogę, jaką pokonał piechur. (0 - 3 pkt.)

4. Wykres przedstawia zależność prędkości od czasu dla startującego sprintera o masie m=60 kg.

a) Oblicz przyspieszenie sprintera.

(0 - 3pkt.)

b) Oblicz drogę przebytą przez sprintera w czasie pierwszych 4 s ruchu.

(0 - 3pkt.)

c) Oblicz przyrost pędu sprintera w czasie pierwszych 4 s ruchu.

(0 - 4pkt.)

d) Oblicz przyrost energii kinetycznej sprintera w czasie pierwszych 2 s ruchu.

(0 - 4pkt.)

Wykres przedstawia zależność prędkości od czasu dla dwóch rowerzystów A i B.
 W kolejnych zdaniach opisujących wykresy zaznacz P - jeśli zdanie jest prawdziwe lub F - jeśli jest falszywe. (0 - 4 pkt.)

a. Rowerzysta A pokonał dłuższą drogę niż rowerzysta B

P F

b. Rowerzysta A w pierwszej części ruchu miał większe przyspieszenie od rowerzysty B.

P F

c. W drugiej części ruchu rowerzyści poruszali się z opóźnieniem o jednakowej wartości.

P F

d. Czas ruchu obu rowerzystów był taki sam

P F

6. Spadochroniarz z otwartym spadochronem spada ruchem jednostajnym. **W oparciu o** znane Ci prawa wyjaśnij w jakiej sytuacji jest to możliwe.

(0 - 2 pkt.)

7. Podczas dużego wysiłku sportowiec spocił się i jego włosy "pozlepiały się". **Podaj** nazwę sił, które o tym decydują. Wymień elementy, pomiędzy którymi te siły działają.

(0 - 4 pkt.)

8. Wykres przedstawia zależność szybkości piłki rzuconej pionowo do góry od czasu trwania jej lotu.

Odczytaj z wykresu i zapisz:

a. szybkość, z jaką wyrzucono piłkę do góry.

(0 - 1 pkt.)

b. czas od chwili wyrzucenia piłki do osiągnięcia przez nią maksymalnej wysokości. (0 - 1 pkt.)

- c. czas spadania piłki. (0 1 pkt.)
- d. szybkość, z jaką piłka uderzyła w podłoże. (0 1 pkt.)
 - 9. Opisz przemiany energii mechanicznej huśtawki wykonującej ruch wahadłowy.

10. Marcin wsiadł na rower i rozpoczął jazdę. Najpierw przez 0,5 min jechał z górki ze stałym przyspieszeniem a=0,1 m/s². Następnie przez 2 minuty jechał po płaskiej drodze ze stałą prędkością, jaką uzyskał po zjechaniu z górki. **Oblicz średnią szybkość Marcina na całej drodze.** (0 - 10 pkt.)

()d	lpowied	lź.	 	•••	 	 	 	 • • • •	 	• • • •

	11	. K	Coła	a ro)WC	eru	m	ają	pı	on	niei	'nr	=3	33,5	5 c	m.	Pr	ędk	κοś	ć r	ow	eru	l W	yn	osi	4,	2 1	m/s	. ()bl	icz
		C	zęs	tot	liw	oś	ć ol	bro	tu	ko	ła 1	rov	ver	u.														(0	- 3	Bpkt	t.)

(0 - 4 pkt.)

3.	Koń ciągnie wóz siłą F = 600 N. Prędkość konia z wozem jest stała i wyn-	osi
	v=1,25 m/s. Oblicz moc tego konia.	(0

(0 - 5 pkt.)

_																

Odpowiedź	
-----------	--

Zadanie III. ZMIERZ SIĘ Z RUCHEM (0- 26 pkt.)

1. Uczniowie podzieleni na trzy grupy zmierzyli długość boiska do piłki siatkowej. Pomiary zapisali w tabeli:

Nr	Długość boiska
pomiaru	(m)
1	17,99
2	18,02
3	17,97

Oblicz długość boiska. Wynik zapisz z niepewnością pomiaru.

Odpowiedź.....

2. Oblicz wartość siły F2, którą należy przyłożyć do dźwigni dwustronnej, aby pozostała w równowadze. (0 - 2 pkt.)

3. Uczniowie wyznaczali przyspieszenie wózka o stałej masie m₁ pod działaniem sił o różnych wartościach. Następnie powtórzyli doświadczenie z wózkiem o stałej masie m₂. Wyniki pomiarów przedstawili na wykresie zależności przyspieszenia ciała od działającej na nie siły.

a. Posługując się wykresem ustal, który z wózków ma większą masę. Odpowiedź uzasadnij. (0 - 2 pkt.)

b. Na wykresie powyżej naszkicuj wykres dla masy m3 większej zarówno od masy m1 jak i od m2. Zapisz jednym słowem, w jaki sposób zmienia się kąt nachylenia wykresu α jeśli masa wózka rośnie. (0 - 2 pkt.)

4. Uczeń upuścił gumową piłeczkę z wysokości h₁=120 cm. Piłeczka uderzyła w podłogę i odbiła się. Po odbiciu wzniosła się na wysokość h₂=90 cm. **Oblicz, jaką część całkowitej energii mechanicznej straciła piłeczka w zderzeniu z podłogą.**

5. Masz do dyspozycji: wagę, wodę, cylinder z podziałką oraz tabelę gęstości metali. Na wyścigach kolarskich zdobyłeś złoty medal. **Wymień kolejne czynności i zapisz obliczenia jakie należy wykonać, aby sprawdzić czy medal jest wykonany ze złota.**(0-4 pkt)

6. Masz do dyspozycji: ławkę, równię pochyłą o wysokości h, samochodzik, metrową linijkę. Z części przyrządów zbudowałeś układ pomiarowy jak na rys.

Z wysokości h puszczamy samochodzik, który zatrzymuje się po przebyciu poziomej drogi s. Zapisz obliczenia jakie należy wykonać w celu wyznaczenia współczynnika tarcia kół samochodziku o ławkę (poziomą powierzchnię. Wymień wielkości fizyczne, które należy zmierzyć, aby obliczyć współczynnik tarcia.

(0-6 pkt)

BRUDNOPIS

