

Introduction to Statistical Software Package (PSPP)

Chapter 2

Introduction to Statistical Software Package

- ▶ The statistical software package used PSPP v1.2.0
- ▶ GNU PSPP is a program for statistical analysis of sampled data. It is a <u>free as in freedom</u> replacement for the proprietary program SPSS, and appears very similar to it with a few exceptions..
- Compatible with the Windows environment, Mac OS and Linux.

- Defining variables (in Variable view):
 - Variable names
 - ▶ Labels (Variable and value)
 - Missing values
 - Variable types
 - Column format
 - Measurement level

Variable names

- Must begin with letter. The remaining can be letter, digit, period or the symbols @, #, _ or \$.
- Cannot end with period or underscore
- Blanks and special characters cannot be used (E.g.: !, ?, and *)
- Must be unique; Duplication is not allowed
- ▶ The length in one variable cannot exceed 64 characters
- Reserved keywords cannot be used as variable names (E.g.: ALL, AND, BY, EQ, GE, LE, LT, NE, NOT, OR, TO and WITH)
- Are not case sensitive

Labels

- Variable label is a full description of the variable name
- Optional
- It has a value label that can be in alphanumeric and numeric code

Variable name	Label	Variable name	Label
gender	optional	id	not applicable
age allday area	optional desire for 24-hour shopping facilities choice of shopping area amount spent on groceries per week	gender age allday	1 = female 2 = male not applicable 1 = would use 24-hour shopping
cost	Alphanumeric code	area cost	2 = would not use 24-hour shopping 1 = shop in suburb where living 2 = travel to next suburb to shop 3 = travel further to shop not applicable

Missing values

- ▶ How to deal with missing data Leave the cell blank or assign missing value codes
- ▶ Rules for assigning missing value codes:
 - Must be the same data type as they represent (E.g.: Missing numeric data must use numeric missing value code)
 - Missing value code cannot occur as data in the data set
 - By default, the choice of digit is usually 9

Variable types

- By default, PSPP assumes all new variables are numeric with two decimal places.
- Can be changed to other type (date, currency, etc) and have different number of decimal

4.1 Data Input

Column format

It is possible to adjust the width of the Data Editor columns and change the alignment of data in the column (left, centre or right)

Measurement level

Can be specified as nominal, ordinal, interval or ratio

- Specifically, in editing and viewing data and result in SPSS, it has seven different types of windows:
 - Data editor (Our focus)
 - Viewer and draft viewer (Output)
 - Pivot table editor
 - Chart editor
 - Text output editor
 - Syntax editor
 - Script editor

Data view

4.2 Data Editor

Variable view

- Menu-driven and has variety of pull-down menus.
- ▶ The main menu bar contains 10 menu:
 - File
 - ▶ Edit
 - View
 - Data
 - Transform
 - Analyze*
 - ▶ Graphs*
 - Utilities
 - Windows
 - Help

*Available in all windows (Easier to generate new output)

▶ Toolbar

- Exercise
- ▶ Enter the following case:

Exercise

Case	Id	Gender	Hometown	CGPA	Height	Age	Weight	Laptop
1	1	Female	Perlis	3.23	157	21	48.00	Yes
2	2	Female	Selangor	2.93	155	20	40.00	Yes
3	3	Male	Johor	3.40	158	21	44.00	Yes
4	4	Female	Kuala Lumpur	3.09	154	21	47.00	Yes
5	5	Female	Pulau Pinang	3.74	160	21	42.00	Yes
6	6	Female	Pulau Pinang	2.23	160	21	65.00	No
7	7	Female	Melaka	2.53	163	21	50.00	Yes
8	8	Female	Perak	2.41	158	21	56.00	Yes
9	9	Female	Johor	3.00	157	21	48.00	Yes
10	10	Female	Kuala Lumpur	2.90	161	21	86.00	Yes
11	11	Female	Pahang	3.26	157	21	45.00	Yes
12	12	Male	Sarawak	3.13	150	21	60.00	Yes
13	13	Male	Selangor	2.28	152	21	45.00	Yes
14	14	Male	Johor	2.91	163	21	63.00	No
15	15	Female	Negeri Sembilan	2.66	145	21	46.00	Yes

Exercise

▶ Key in the following case :

16	16	Female	Johor	3.55	155	21	48.00	Yes
17	17	Female	Pulau Pinang	2.50	173	21	90.00	Yes
18	18	Female	Pulau Pinang	2.82	160	21	53.00	Yes
19	19	Female	Pulau Pinang	2.48	165	21	80.00	Yes
20	20	Female	Kedah	2.46	156	21	63.00	Yes
21	21	Female	Pulau Pinang	2.96	160	21	45.00	Yes
22	22	Female	Perak	3.45	152	21	39.00	Yes
23	23	Female	Pulau Pinang	2.94	159	21	50.00	Yes
24	24	Male	Kuala Lumpur	3.63	171	22	83.00	Yes
25	25	Female	Selangor	3.30	156	21	80.00	Yes
26	26	Female	Kedah	2.94	168	21	51.00	Yes
27	27	Female	Perak	3.03	153	21	53.00	Yes
28	28	Female	Pulau Pinang	2.95	167	21	58.00	Yes

Data screening

- Objectives:
 - Making sure that data have been entered correctly (Pulau pinang / Pulau Pinang)
 - Making sure that the distributions are normal
- ▶ The importance of data screening
 - May affect the validity of the results that are produced
 - May assist in deciding; the need of data transformation, the usage of nonparametric techniques
- This subtopic will be demonstrated using data of work3.sav

Errors in data entry

- Error in data entry are common and therefore data files must be carefully screened
- Use Analyze > Descriptive Statistics > Frequecies... command
- Output example:

att1					
Value Label	Value	Frequency	Percent	Valid	Cum
				Percent	Percent
strongly agree	1	22	22.22	22.22	22.22
agree	2	31	31.31	31.31	53.54
neither agree nor	3	38	38.38	38.38	91.92
disagree					
disagree	4	3	3.03	3.03	94.95
strongly disagree	5	5	5.05	5.05	100.00
	Total	99	100.0	100.0	

atti		
N	Valid	99
	Missing	0
Mean		2.37
Std Dev		1.03
Minimum		1.00
Maximum		5.00

Assessing normality

- The assumption of normality is prerequisite of many inferential statistical techniques
- Normality can be explored using a combined assessment of graphic:
 - Histogram
 - Boxplot
 - Normal probability plot
 - Detrended normal plot
- And normality test:
 - Kolmogorov-Smirnov
 - Skewness
 - Kurtosis

- Assessing normality
 - Performed using the Explore command in Descriptive Statistics under Analyze
 - Histogram
 - □ Need to be Bell shaped /symmetry

Assessing normality

- Assessing normality
 - Skewness and Kurtosis
 - ☐ Their value need to be close to zero to be assumed normal

	ves		Statistic	Std. Error
Haiabt	Mann			
Height	Mean		158.74	1.18
	95% Confidence Interval for Mean	Lower Bound	156.31	
		Upper Bound	161.17	
	5% Trimmed Mean		158.66	
	Median		158.00	
	Variance		39.29	
	Std. Deviation		6.27	
	Minimum		145.00	
	Maximum		173.00	
	Range		28.00	
	Interquartile Range		7.50	
	Skewness		.36	.44
	Kurtosis		.41	.86

- Basically, the data of age can be assumed normal
 - There is no need for transformation
 - Data can be analyzed using parametric test