

Analysis of Algorithms II

BLG 336E

Project 2 Report

Rengin Helin Yalçın yalcınr22@itu.edu.tr

Faculty of Computer and Informatics Engineering
Department of Computer Engineering
Date of submission: 09.04.2024

1. Implementation

1.1. Implementation of the Algorithms

- The code implements an algorithm to find the closest pair of points among a set of 2D points using divide and conquer approach, with a fallback to brute force for small sets.
- While the brute force approach is not the most efficient solution for finding the closest pair of points in general, it provides a simple and effective fallback strategy for handling small datasets in the context of the divide and conquer algorithm implemented in the code.

	Map 1	Мар 2	Мар 3	Мар 4	Мар 5
Divide-Conquer	113300 ns	114700 ns	3480900 ns	39387100 ns	248763000 ns
Brute Force	78100 ns	110100 ns	5208000 ns	247394500 ns	3647342100 ns

Table 1.1: Comparison on different maps.

- In general, the divide-and-conquer algorithm performs better in terms of execution time, especially on larger and more complex maps. However, for smaller maps with fewer points, the brute force approach may be slightly faster due to the overhead of recursion and sorting in the divide-and-conquer algorithm, as observed in maps 1 and 2.
- The test results confirm the theoretical expectations regarding the performance of both algorithms. The divide-and-conquer algorithm provides a more scalable and efficient solution for finding the closest pair of points, especially for larger datasets, while the brute force approach serves as a simpler but less efficient alternative,

1.1.1. Manhattan Distance

- Manhattan distance measures the distance between two points by summing the absolute differences between their coordinates while Euclidean distance is calculated as the square root of the sum of the squared differences between the coordinates of the points.
- Tables below compare the performance of Euclidean distance and Manhattan distance calculations using two different approaches: divide and conquer, and brute force.

	Map 1	Мар 2	Мар 3	Мар 4	Мар 5
Euclidean	113300 ns	114700 ns	3480900 ns	39387100 ns	248763000 ns
Manhattan	375100 ns	146700 ns	2406700 ns	37955400 ns	254171800 ns

Table 1.2: Comparison of performance with divide and conquer.

	Map 1	Мар 2	Мар 3	Map 4	Map 5
Euclidean	78100 ns	110100 ns	5208000 ns	247394500 ns	3647342100 ns
Manhattan	134900 ns	98100 ns	1788200 ns	60783700 ns	875261400 ns

Table 1.3: Comparison of performance with brute force approach.

- In the first table, both Euclidean and Manhattan distance calculations show an
 increase in time as the complexity of the map increases. The difference between
 the performances gets less observable as the complexity of the maps increase
 yet it can still be said that Manhattan performs slightly better.
- Similarly, in the second table, as the complexity of the maps increases, both Euclidean and Manhattan distances experience an increase in time. However, as the complexity of the maps increases, Manhattan approach shows much more efficient results.

1.2. Code

- The time complexity of the bruteForceClosestPair function is $O(n^2)$, where n is the number of points in the input vector. This is because there are two nested loops that iterate through all possible pairs of points in the input vector. The space complexity of the function is O(1) because it only uses a constant amount of extra space regardless of the size of the input vector.
- The time complexity of the closestPair function can be expressed as T(n) = 2T(n/2) + O(n). By using the Master Theorem, we can conclude that the time complexity of the closestPair function is O(nlogn).

As the function is recursive, space is allocated on the stack for each recursive call. The maximum depth of recursion in this function is logarithmic in terms of the number of points, which means it's O(logn). The algorithm may use additional space for storing intermediate data, such as the strip of points sorted by y-coordinate. The maximum size of this data structure is proportional to the number of points, so it's O(n). The total space complexity of the closestPair function is O(n) due to the dominant factor being the auxiliary data structures.

Algorithm 1 Divide and Conquer Algorithm

```
1: function closestPair(points, start, end)
        if end - start \leq 3 then
 2:
 3:
            return bruteForceClosestPair(points, start, end)
        end if
 4:
 5:
        mid \leftarrow (start + end)/2
 6:
        leftPair \leftarrow closestPair(points, start, mid)
        rightPair \leftarrow closestPair(points, mid, end)
 7:
        leftDist \leftarrow distance(leftPair.first, leftPair.second)
 8:
        rightDist \leftarrow \mathsf{distance}(rightPair.first, rightPair.second)
 9:
        minPair
10:
        minDist
11:
        if leftDist < rightDist then
12:
13:
            minPair \leftarrow leftPair
            minDist \leftarrow leftDist
14:
        else
15:
            minPair \leftarrow rightPair
16:
            minDist \leftarrow rightDist
17:
        end if
18:
        strip
19:
20:
        for i \leftarrow start to end do
            if |points[i].x - points[mid].x| < minDist then
21:
                push back(strip, points[i])
22:
            end if
23:
        end for
24:
        sort(strip.begin(), strip.end(), compareY)
25:
        for i \leftarrow 0 to strip.size() do
26:
27:
            for j \leftarrow i + 1 to strip.size() and (strip[j].y - strip[i].y) < minDist do
                dist \leftarrow distance(strip[i], strip[j])
28:
                if dist < minDist then
29:
                    minDist \leftarrow dist
30:
                    minPair \leftarrow \{strip[i], strip[j]\}
31:
                end if
32:
            end for
33:
34:
        end for
                                                                   \triangleright Time Complexity: O(nlogn)
        return minPair
35:
36: end function
```

Algorithm 2 Brute Force Algorithm

```
1: function bruteForceClosestPair(points, start, end)
        closest
        minDist \leftarrow numeric limits < double > :: max()
 3:
        for i \leftarrow start to end do
 4:
 5:
            for j \leftarrow i+1 to end do
                dist \leftarrow distance(points[i], points[j])
 6:
                if dist < minDist then
 7:
                     minDist \leftarrow dist
 8:
                     closest \leftarrow \{points[i], points[j]\}
 9:
                end if
10:
            end for
11:
        end for
12:
                                                                         \triangleright Time Complexity: O(n^2)
        return\ closest
13:
14: end function
```