

ECEN 758 Data Mining and Analysis: Lecture 7, Representative Clustering II

Joshua Peeples, Ph.D.

Assistant Professor

Department of Electrical and Computer Engineering

Announcements

- Assignment #1 solutions available on Canvas
- Assignment #2 will be released next Wednesday (09/18)
 - Please upload submission as single PDF
 - Please upload Python code (.py, ipynb)
 - Do not include screenshots of code in submission

Last Lecture

Representative Clustering I

Gif from: D. Sheehan, Clustering with Scikit with GIFs

Today

- Representative Clustering II
- Reading: MMDS Chapter 7
- Supplemental reading: ZM Chapter 13 and 17

Unsupervised Learning: Clustering

Clustering Overview

- Clustering:
 - Unsupervised learning just data, no labels
 - Similarity/Dissimilarity in the data
 - Can provide insights when we have no preconception of data

Clustering Overview

- We will discuss several variants of clustering
 - Representative-based Clustering
 - Hierarchical Clustering
 - Density-Based Clustering

Representative-based Clustering

Representative-based Clustering

- Goal: partition data into k groups or clusters
- Clusters:
 - Representative of data points in group (also called centroid)
 - Common choice is mean
- Brute force solution not ideal
 - Generate all possible partitions

$$\mathbf{D} = \begin{pmatrix} X_1 & X_2 & \cdots & X_d \\ x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{pmatrix}$$

$$\mathcal{C} = \{C_1, C_2, \dots, C_k\}$$

$$\boldsymbol{\mu}_i = \frac{1}{n_i} \sum_{x_j \in C_i} \boldsymbol{x}_j$$

k-Means Clustering Review

k-Means Algorithm: Objective

- Sum of squared errors (SSE) objective function
- Goal: find clustering to minimize SSE
- Greedy iterative approach
 - Can converge to a local optima
- Two steps to achieve minima

$$SSE(C) = \sum_{i=1}^{k} \sum_{\mathbf{x}_j \in C_i} \|\mathbf{x}_j - \boldsymbol{\mu}_i\|^2$$

$$C^* = \arg\min_{C} \{SSE(C)\}$$

Phase I: Update Assignments

- For each point, re-assign to closest mean: $a_{ij} = \underset{k}{argmin\ dist}(x_i, c_k)$
- Choose among $[c_1, \ldots c_k]$ the mean which minimizes the distance between x_i and c_k , and assign that value of [1..k] to a_{ij}

Phase II: Update Means

- Move each mean to the average of its assigned points:
- Select the points which are assigned to the mean point c_k (i.e. those with $a_{ij}=k$.) Average these points and assign that new value to c_k

$$c_k = \frac{1}{|\{i: a_{ij} = k\}|} \sum_{i: a_{ij} = k} x_i$$

What are disadvantages of k-means?

- Linear boundaries between clusters
- Only uses Euclidean distance
 - Assumes spherical clusters
 - Sensitive to outliers
- Non-symmetrical clusters
- Initialization
- Batch processing (not ideal for large datasets)
- Selecting number of clusters (k)
- "Crisp"/Hard clustering

- Linear boundaries between clusters
- Only uses Euclidean distance
 - Assumes spherical clusters
 - Sensitive to outliers
- Non-symmetrical clusters
- Initialization
- Batch processing
- Selecting number of clusters (k)
- "Crisp"/Hard clustering

k-Means Disadvantage: Linear Boundaries

- Linear boundaries between clusters
- Only uses Euclidean distance
 - Assumes spherical clusters
 - Sensitive to outliers
- Non-symmetrical clusters
- Initialization
- Batch processing
- Selecting number of clusters (k)
- "Crisp"/Hard clustering

k-Means Disadvantage: Euclidean Distance

- Spherical cluster assumption:
 - Radius equal to the distance between the centroid and the furthest data point
- Sensitive to points far away (i.e., outliers)

- Linear boundaries between clusters
- Only uses Euclidean distance
 - Assumes spherical clusters
 - Sensitive to outliers
- Non-symmetrical clusters
- Initialization
- Batch processing
- Selecting number of clusters (k)
- "Crisp"/Hard clustering

k-Means Disadvantage: Non-symmetrical clusters A Engineering

 Difficulty with clustering data of different sizes and density

- Linear boundaries between clusters
- Only uses Euclidean distance
 - Assumes spherical clusters
 - Sensitive to outliers
- Non-symmetrical clusters
- Initialization
- Batch processing
- Selecting number of clusters (k)
- "Crisp"/Hard clustering

k-Means Disadvantage: Initialization

- Non-deterministic approach
- May get stuck in local optima

- Linear boundaries between clusters
- Only uses Euclidean distance
 - Assumes spherical clusters
 - Sensitive to outliers
- Non-symmetrical clusters
- Initialization
- Batch processing
- Selecting number of clusters (k)
- "Crisp"/Hard clustering

Batch Training

- Batching relies on accumulating errors over multiple training observations ("batch") prior to updating model parameters
- Batching is controlled by an additional hyperparameter (e.g., batch size)
- Three batch modes:
 - Online (one training sample)
 - Batch (all training samples)
 - Mini-batch (subset of training samples)

k-Means Disadvantage: Batch Processing

- Batch size = All training data
- Advantage: "Smoother" training
- Disadvantage:
 Usually converges to local optima,
 computationally
 expensive (memory)

- Linear boundaries between clusters
- Only uses Euclidean distance
 - Assumes spherical clusters
 - Sensitive to outliers
- Non-symmetrical clusters
- Initialization
- Batch processing
- Selecting number of clusters (k)
- "Crisp"/Hard clustering

k-Means Disadvantage: Choosing k

- k is hyperparameter to determine number of clusters
- Results heavily dependent on k
- Selecting k
 - Try different values and look at change in average distance to centroid
 - Average falls rapidly until right k, then changes little ("elbow method")

- Linear boundaries between clusters
- Only uses Euclidean distance
 - Assumes spherical clusters
 - Sensitive to outliers
- Non-symmetrical clusters
- Initialization
- Batch processing
- Selecting number of clusters (k)
- "Crisp"/Hard clustering

k-Means Disadvantage: "Crisp"/Hard Clustering

- Points can only "belong" to one cluster
- Different applications may require "soft" clustering
 - Points may belong to more than one group

Input Image

(h) FLICM Cluster 1

(k) K-Means Cluster 1

(i) FLICM Cluster 2

(1) K-Means Cluster 2

(j) FLICM Cluster 3

(m) K-Means Cluster 3

- k-Means++
- Kernel k-Means
- Mini-batch k-Means
- Bradley-Fayyad-Reina (BFR) Algorithm
- Clustering Using Representatives
- Alternative representative clustering approaches
 - k-Mediods, Affinity Propagation, Gaussian Mixture Models

- k-Means++
- Kernel k-Means
- Mini-batch k-Means
- Bradley-Fayyad-Reina (BFR) Algorithm
- Clustering Using Representatives (CURE)
- Alternative representative clustering approaches
 - k-Mediods, Affinity Propagation, Gaussian Mixture Models

k-Means++

- Used to improve initialization
- Pick centroids far from one another
- Steps:
 - Select initial center from data point at random
 - Select next center based on proximity
 - Repeat until k centers are chosen
 - Apply standard k-Means algorithm

$$\frac{D(x')^2}{\sum_{x \in \mathcal{X}} D(x)^2}$$

- k-Means++
- Kernel k-Means
- Mini-batch k-Means
- Bradley-Fayyad-Reina (BFR) Algorithm
- Clustering Using Representatives (CURE)
- Alternative representative clustering approaches
 - k-Mediods, Affinity Propagation, Gaussian Mixture Models

Kernel Trick

 General idea: the original feature space can always be mapped to some higherdimensional feature space where the training set is separable:

[Source: Ray Mooney, UT]

Kernel k-Means

- Use "kernel trick" on data to extract nonlinear boundaries
- Can rewrite objective in terms of kernel function

$$\min_{C} SSE(C) = \sum_{i=1}^{k} \sum_{\mathbf{x}_{j} \in C_{i}} \left\| \phi(\mathbf{x}_{j}) - \boldsymbol{\mu}_{i}^{\phi} \right\|^{2} = \sum_{j=1}^{n} K(\mathbf{x}_{j}, \mathbf{x}_{j}) - \sum_{i=1}^{k} \frac{1}{n_{i}} \sum_{\mathbf{x}_{a} \in C_{i}} \sum_{\mathbf{x}_{b} \in C_{i}} K(\mathbf{x}_{a}, \mathbf{x}_{b})$$

- k-Means++
- Kernel k-Means
- Mini-batch k-Means
- Bradley-Fayyad-Reina (BFR) Algorithm
- Clustering Using Representatives (CURE)
- Alternative representative clustering approaches
 - k-Mediods, Affinity Propagation, Gaussian Mixture Models

Mini-batch k-Means

- Batch size = selected by user
- Trade off between online and batch learning
- Smaller batches = more randomness
- Large batches = "smoother" training

- k-Means++
- Kernel k-Means
- Mini-batch k-Means
- Bradley-Fayyad-Reina (BFR) Algorithm
- Clustering Using Representatives (CURE)
- Alternative representative clustering approaches
 - k-Mediods, Affinity Propagation, Gaussian Mixture Models

Bradley-Fayyad-Reina (BFR) Algorithm

- Extension to k-means to large data
- Clusters assumed to be normally distributed
- Three data points:
 - Discard set
 - Compression set
 - Retained set

Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

Bradley-Fayyad-Reina (BFR) Algorithm

42

- Use Mahalanobis distance to decide "closeness"
- High likelihood of the point belonging to current nearest centroid

$$(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

Bradley-Fayyad-Reina (BFR) Algorithm

- k-Means++
- Kernel k-Means
- Mini-batch k-Means
- Bradley-Fayyad-Reina (BFR) Algorithm
- Clustering Using Representatives (CURE)
- Alternative representative clustering approaches
 - k-Mediods, Affinity Propagation, Gaussian Mixture Models

Clustering Using Representatives (CURE)

- BFR/k-Means assume normally distributed clusters in each dimension
- CURE algorithm
 - Assumes Euclidean distance
 - Allows for cluster of any shape
 - Use collection of representative points to represent cluster

- k-Means++
- Kernel k-Means
- Mini-batch k-Means
- Bradley-Fayyad-Reina (BFR) Algorithm
- Clustering Using Representatives (CURE)
- Alternative representative clustering approaches
 - k-Mediods, Affinity Propagation, Gaussian Mixture Models

k-Mediods

- "Partitioning Around Mediod" (PAM)
- Mediod is point with minimal dissimilarity with all other points in cluster (exemplars)
- Can use any distance measure
- More robust to outliers

k-Mediods

- "Partitioning Around Mediod" (PAM)
- Mediod is point with minimal dissimilarity with all other points in cluster (exemplars)
- Can use any distance measure
- More robust to outliers

Affinity Propagation

- Cluster centers are data points (exemplars)
- Do not need to specify number of clusters!
 - Still must set two hyperparameters: preference and damping
- Uses three matrices:
 - Similarity
 - Availability
 - Responsibility

Affinity Propagation

- Cluster centers are data points (exemplars)
- Do not need to specify number of clusters!
 - Still must set two hyperparameters: preference and damping
- Uses three matrices:
 - Similarity
 - Availability
 - Responsibility
- Deterministic

Next class

Gaussian Mixture Models

Supplemental Slides

Useful Links

- Clustering Algorithms Overview
- Sklearn Clustering
- Kernel k-Means implementation