

**FIG. 1** PRIOR ART

0

OIDE OF



FIG. 2 PRIOR ART



F/G. 3



FIG. 4

SCHEMATIC FOR ENERGY BALANCE ON AN INFINITESIMAL GUIDE SECTION

atD(z)dz

**EFFECT OF USING A LINEAR SLOT PROFILE** 



LINEAR SLOT DISSIPATION PROFILE AS A FUNCTION OF STARTING SLOT HEIGHT ,



PLOTS OF THE RANGE OF CURVED-SLOT-COMPENSATED WAVEGUIDE AS A FUNCTION OF  $h_\sigma/b_\tau$ , THE RATIO OF THE STARTING SLOT HEIGHT TO THE GUIDE BREADTH. CURVES ARE DRAWN FOR DIFFERENT VALUES OF  $\epsilon r^* t$  IN METERS. THE VALUES OF  $\epsilon r^* t$  PLOTTED ARE LISTED BELOW. THE CURVES DROP TO LOWER VALUES AS  $\epsilon r^* t$  INCREASES.

| b=0.072                          | GUIDE BREADTH IN m |      | ر م                                                                                          |  |
|----------------------------------|--------------------|------|----------------------------------------------------------------------------------------------|--|
| f=2.45·10 <sup>9</sup>           | FREQUENCY IN Hz    |      | 5.10 <sup>-6</sup><br>5.10 <sup>-5</sup><br>5.10 <sup>-4</sup><br>5.10 <sup>-3</sup><br>0.05 |  |
| $\sin(\pi \cdot \min)^2 = 0.024$ |                    | εrt= | 5·10 <sup>-4</sup>                                                                           |  |
|                                  |                    |      | 5.10 <sup>-3</sup>                                                                           |  |
|                                  |                    |      | 0.05                                                                                         |  |

FIG. 6

THE SHAPE OF A SLOT CURVE FOR A GIVEN  $\epsilon r$ "t AND  $h_o/b$ 

ert := 10<sup>-4</sup> WEB IMAGINARY DIELECTRIC CONSTANT TIMES THICKNESS IN METERS

N := 1000 NUMBER OF DATA POINTS IN A SLOT CURVE PLOT

j :=0..N-1 ITERATION PARAMETER FOR RANGE PLOTS

homin := .15 STARTING RATIO OF h/b

$$zmax := \frac{b \cdot \left(\frac{1}{\sin(\pi \cdot homin)^2} - 1\right)}{2 \cdot \omega \cdot Z \cdot \epsilon_0 \cdot \epsilon rt} \quad MAXIMUM VALUE OF COMPENSATED z$$

 $z_{j} := .99 \cdot z_{max} \cdot \frac{j}{N-1}$  VALUES FOR SLOT HEIGHT PLOTS



HEIGHT OF THE SLOT DIVIDED BY THE GUIDE BREADTH AS A FUNCTION OF GUIDE LENGTH IN METERS

zmax = 14.443 RANGE OF COMPENSATION IN METERS

RATIO OF THE E FIELD INTENSITY AT THE GUIDE CENTER TO ITS INITIAL VALUE AS A FUNCTION OF z FOR THE SAME PARAMETERS AS IN THE SLOT SHAPE CURVE.

$$\text{EoS}_j := \left( 1 - 2 \cdot \omega \cdot Z \cdot \epsilon_o \cdot \frac{\epsilon rt}{b} \cdot z_j \cdot \sin(\pi \cdot \text{homin})^2 \right) \begin{array}{l} \text{THE RATIO OF Eo SQUARED} \\ \text{TO Eoo TO SQUARED AS A} \\ \text{FUNCTION OF Z}. \end{array}$$



PLOT OF THE RELATIVE CENTER GUIDE FIELD INTENSITY VERSUS GUIDE LENGTH FOR AN IMS OPTIMUM COMPENSATED SLOTTED WAVEGUIDE. THE z AXIS IS IN METERS AND THE y AXIS IS INTENSITY RATIOED TO ITS VALUE AT z=0.

εrt=1·10<sup>-4</sup> WEB IMAGINARY DIELECTRIC CONSTANT TIMES THICKNESS (m)

homin=0.15 INITIAL h/b zmax=14.443 RANGE OF COMPENSATION IN METERS

M :=4 NUMBER OF WEB RUNS

R=1.5 MAXIMUM RATIO OF εrt OPERATION TO εrt

DESIGNED

m=0..M-1 ITERATION PARAMETER





PLOTS OF THE WEB HEAT DISSIPATION RELATIVE TO THE HEAT DISSIPATION AT z=0 IN THE DESIGNED WAVEGUIDE AS A FUNCTION OF WAVEGUIDE LENGTH IN METERS. DIFFERENT CURVES HAVE DIFFERENT RATIOS OF  $\varepsilon rt$  OPERATING TO  $\varepsilon rt$  DESIGNED. THE ACTUAL RATIOS ARE LISTED BELOW AS r.

ert=1·10 -4 DESIGNED WEB IMAGINARY DIELECTRIC CONSTANT TIMES THICKNESS (m)

zmax=14.443 RANGE OF COMPENSATION IN METERS

homin=0.15 INITIAL h/b

#### TWO SERPENTINE MICROWAVE APPLICATOR CONFIGURATIONS: (a) SHORT AT TERMINATION END; (b) DUMMY LOAD AT TERMINATION END.



FIG. 10(a)



FIG. 10(b)

#### DEFINITION OF SLOT (AND PAPER) LOCATION WITHIN THE WAVEGUIDE.



FIG. 11



그의



IDEAL SLOT SHAPES to  $h_0/b = 0.1, 0.25, 0.4$ . **FIG. 13** 



FIG. 14



EFFICIENCY (AT IDEAL LENGTH) VS. INITIAL HEIGHT FIG. 15



NORMALIZED DRYING RATE FOR IDEAL LENGTH.

FIG. 16

# GOTTTO. THOTTOC



DEPENDS ON THE PAPER BASIS WEIGHT AND ITS MOISTURE CONTENT, THE SLOT HEIGHT PROFILE, h(z), WHICH GIVES UNIFORM DRYING

نړ نک THE OPTIMAL SLOT PROFILE IS

 $h(z) = (b/\pi) sin^{-1} [(1/sin^2(\pi h_0/b) - 2Z\omega \epsilon_0 \epsilon_r" tz/b)^{-1/2}]$ 

WHERE  $h_0$  REPRESENTS THE SLOT HEIGHT AT THE SOURCE SIDE OF THE WEB AND z IS THE DISTANCE ALONG THE WAVEGUIDE (CD).



PLOTS OF THE OPTIMAL SLOT HEIGHT DIVIDED BY THE WAVEGUIDE HEIGHT AS A FUNCTION OF DISTANCE IN METERS FROM A MICROWAVE SOURCE AT 2.45 GHz IN AN S-BAND WAVEGUIDE. THE SOLID LINE IS DESIGNED FOR A 200 g/m² BOARD AT 10% MOISTURE, WHEREAS THE SOLID LINE IS DOTTED LINE IS FOR 7% MOISTURE.



FIG. 19

Marie Control of the Control of the



FIG. 20A



FIG. 21A