Juxtaposing Catalan classes with monotone ones

Jakub Sliačan (joint work with Robert Brignall)

Permutation Patterns 2017

View permutations as drawings

Enumerating permutation classes

Class

Collection of permutations closed under containment (if $\pi \in \mathcal{C}$, then all subpermutations $\sigma \subset \pi$ are also in \mathcal{C})

Enumeration

Determining the number of permutations of each length in ${\cal C}$

Goal: enumerate simple juxtaposition classes

Catalan class

A class of permutations that avoid one of the length 3 patterns: 123,132,213,231,312,321.

$$Av(abc|xy) = Cat \mathcal{M}$$

Let $\mathcal{C}_1, \mathcal{C}_2$ be permutation classes. Their juxtaposition $\mathcal{C} = \mathcal{C}_1 | \mathcal{C}_2$ is the class of all permutations that can be partitioned such that the left part is a pattern from \mathcal{C}_1 and the right part is the pattern from \mathcal{C}_2 .

Interested in: C_1 = Catalan class, C_2 = Monotone class.

Example: $2615743 \in Av(321|12)$, witnessed by the middle two partitions.

Today

Enumerated by Bevan and Miner, respectively

Enumerated (here)

Bijections θ, ψ, ϕ between underlined classes (given here)

Why these juxtapositions?

Because they show up, e.g.

- ▶ Bevan enumerated Av(231|12) (or its symmetry) as a step to enumerating Av(4213, 2143).
- ▶ Miner enumerated Av(123|21) (or its symmetry) as a step to enumerating Av(4123, 1243).

Because they are "simplest" grid classes

- Murphy, Vatter (2003)
- Albert, Atkinson, and Brignall (2011)
- ▶ Vatter, Watton (2011)
- Brignall (2012)
- ► Albert, Atkinson, Bouvel, Ruškuc, and Vatter (2013)
- ▶ Bevan (2016)

We can't enumerate this

Even if C_{ij} are permutation classes that we CAN enumerate

... or this

 ${\mathcal M}$ monotone classes, ${\mathcal C}$ non-monotone class

...actually, not even this

 ${\cal M}$ monotone classes But! we know their growth rates = (spectral radius)² of the row-column graph [Bev15a]. ...also ...

these have rational generating functions [AAB⁺13]

1	M	\mathcal{M}	\mathcal{M}	\mathcal{M}	_	\mathcal{M}
	\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}	_	\mathcal{M}
	\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}	• • • • • • • • • • • • • • • • • • • •	\mathcal{M}
Geom					_	
					_	
			:		٠	
	M M M M					\mathcal{M}

...and ...

generating functions conjectured for monotone increasing strips [Bev15b]

...and ...

generating functions conjectured for monotone increasing strips [Bev15b]

Idea: be less ambitious

So...

Enumerate juxtapositions of monotone and Catalan cells

We'll look at the blue parts

Dyck paths

Dyck path

A Dyck path of length 2n is a path on the integer grid from top right to bottom left. Each step is either Down (D) or Left (L) and the path stays below the diagonal.

Example

Context-free grammars

Definition

A context-free grammar (CFG) is a formal grammar that describes a language consisting of only those words which can be obtained from a starting string by repeated use of permitted production rules/substitutions.

Example: Catalan class by itself (as a CFG)

variables: C

▶ characters: ϵ, D, L

▶ relations: $C \rightarrow \epsilon \mid DCLC$

This gives the following equation:

$$c=1+zc^2.$$

Av(231|12) – gridline greedily right

 $\mathsf{griddable} \to \mathsf{gridded}$

Av(231|12) – decorating Dyck paths

- insert point sequences under vertical steps
- ► first sequence (from top) under first vertical step after a horizontal step occured first 12 occured

Av(231|12) – context-free grammar

- L left step
- D down step before any left steps occured
- D down step after left step already occured

We denote by ${\bf C}$ a Dyck path over letters L and ${\bf D}$, while C is a standard Dyck path over L and D.

$$\label{eq:spectrum} \begin{split} \mathbf{S} &\to \epsilon \mid \mathsf{DSLC} \\ \mathbf{C} &\to \epsilon \mid \mathbf{DCLC} \end{split}$$

$$s = 1 + zs\mathbf{c}$$
$$\mathbf{c} = 1 + tz\mathbf{c}^2$$

 $\mathrm{Av}(321|21)$ and $\mathrm{Av}(312|21)$ "similar".

Articulation point

common black part, unique red parts

Bijection $\theta : Av(231|12) \rightarrow Av(321|12)$

Idea

Choose a good bijection $\theta_0 : \operatorname{Av}(231) \to \operatorname{Av}(321)$. Then extend it to θ by preserving the RHS.

Bijection $\phi: Av(312|21) \rightarrow Av(312|12)$

Dyck paths \mathcal{P} representing Av(312).

Recipe

- 1. Decompose \mathcal{P} into excursions: $\mathcal{P}_1 \oplus \cdots \oplus \mathcal{P}_k$.
- 2. Identify *middle* part \mathcal{P}_i . Where pts on the RHS start.
- 3. Construct \mathcal{P}' as: $\mathcal{P}_{i+1} \oplus \cdots \oplus \mathcal{P}_n \oplus \mathcal{P}_i \oplus \mathcal{P}_1 \oplus \cdots \oplus \mathcal{P}_{i-1}$
- 4. Substitute \mathcal{P}'_i for \mathcal{P}_i , where the order of vertical steps in \mathcal{P}'_i is reversed (together with sequences of points on the RHS that go with those vertical steps).

Reversible and resulting Dyck path corresponds to a permutation from $\mathrm{Av}(312|12)$.

Summary

Next

- non-Catalan juxtaposed with monotone
- iterated juxtapositions of monotone
- 2-dim monotone grid classes without cycles

M. H. Albert, M. D. Atkinson, and R. Brignall.

The enumeration of permutations avoiding 2143 and 4231.

Pure Mathematics and Applications, 22:87–98, 2011.

M. H. Albert, M. D. Atkinson, M. Bouvel, N. Ruškuc, and V. Vatter.

Geometric grid classes of permutations.

Transactions of the American Mathematical Society, 365(11):5859–5881, 2013.

D. I. Bevan.

Growth rates of permutation grid classes, tours on graphs, and the spectral radius.

Transactions of the American Mathematical Society, 367(8):5863–5889, 2015.

D. I. Bevan.

On the growth of permutation classes.

PhD thesis, The Open University, 2015.

D. I. Bevan.

The permutation class Av(4213,2143). preprint, arXiv:1510.06328, 2016.

R. Brignall.

Grid classes and partial well order.

Journal of Combinatorial Theory. Series A, 119(1):99–116, 2012.

M. M. Murphy and V. Vatter.

Profile classes and partial well-order for permutations.

Electronic Journal of Combinatorics, 9(2), 2003.

V. Vatter and S. Waton.

On partial well-order for monotone grid classes of permutations.

Order, 28:193-199, 2011.