# CSCI-567: Machine Learning (Fall 2019)

Prof. Victor Adamchik

U of Southern California

Sep. 10, 2019

September 10, 2019 1 / 54 September 10, 2019

#### Outline

- 1 Linear regression
  - Classification and Regression
  - Motivation
  - Setup and Algorithm
  - Discussions
- Linear regression with nonlinear basis
- 3 Overfitting and Preventing Overfitting

#### Outline

- 1 Linear regression
- 2 Linear regression with nonlinear basis
- Overfitting and Preventing Overfitting

# Predictive modeling

Predictive modeling (i.e. supervised learning) is a process of creating a model using data to make a prediction on new data.



Predictive modeling is a problem of finding a mapping function f from training data  $(x \in \mathbb{R}^D)$  to output variables.

There are important differences between classification and regression problems.

- continuous vs discrete
- measure *prediction errors* differently.
- lead to quite different learning algorithms.

September 10, 2019 3 / 54 September 10, 2019 4

### Classification

Classification is a problem of finding a mapping function f from training data  $(x \in \mathbb{R}^{D})$  to *discrete* output variables  $(y \in C)$ .

- The output variables are called labels or classes or categories.
- The mapping function predicts the class for a given observation.
- The classification accuracy is computed as the percentage of correctly classified examples out of all examples.

Regression

Regression is a problem of finding a mapping function f from training data  $(x \in \mathbb{R}^{D})$  to a *continuous* output variable  $(y \in \mathbb{R})$ .

- The output variable is a continuous quantity; pricing optimization, sales forecasting, rating forecasting are some examples.
- Regression predictions can be evaluated using the *mean squared error*.

In some cases, a classification problem can be converted to a regression problem. Some algorithms do this by predicting a probability for each class.

Linear Regression: regression with linear models.

September 10, 2019

September 10, 2019

### Ex: Predicting the sale price of a house

#### Retrieve historical sales records (training data)



# Features used to predict



# Correlation between square footage and sale price



In linear regression, the goal is to predict y from x using a linear function.

54 September 10, 2019

# How to learn the unknown parameters?

#### How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
  - ▶ absolute error: | prediction sale price |
  - or *squared* error: (prediction sale price) $^2$  (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

- test set, ideal but we cannot use test set while training
- training set? (minimize the training error)

# Possibly linear relationship

Sale price  $\approx$  price\_per\_sqft  $\times$  square\_footage + fixed\_expense (slope) (intercept)



### Example

September 10, 2019

Predicted price =  $price_per_sqft \times square_footage + fixed_expense$ one model:  $price_per_sqft = 0.3K$ ,  $fixed_expense = 210K$ 

| sqft  | sale price (K) | prediction (K) | squared error                       |
|-------|----------------|----------------|-------------------------------------|
| 2000  | 810            | 810            | 0                                   |
| 2100  | 907            | 840            | $67^2$                              |
| 1100  | 312            | 540            | $228^{2}$                           |
| 5500  | 2,600          | 1,860          | $740^2$                             |
|       | • • •          |                |                                     |
| Total |                |                | $0 + 67^2 + 228^2 + 740^2 + \cdots$ |

Adjust **price\_per\_sqft** and **fixed\_expense** such that the total squared error is minimized.

September 10, 2019 11 / 54 September 10, 2019 12 / 5

# Formal setup for linear regression

**Input**:  $x \in \mathbb{R}^{D}$  (features, covariates, context, predictors, etc)

**Output**:  $y \in \mathbb{R}$  (responses, targets, outcomes, etc)

Training data:  $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$ 

Here  $x_{nd}$  represents the dth dimension of the nth sample  $\boldsymbol{x}_n$ 

**Linear model**:  $f: \mathbb{R}^{D} \to \mathbb{R}$ , with  $f(x) = w_0 + \sum_{d=1}^{D} w_d x_d$ 

Linear regression has been around for more than 200 years...

September 10, 2019

Goal

Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of w

$$RSS(\boldsymbol{w}) = \sum_{n=1}^{N} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n=1}^{N} (\boldsymbol{x}_n^{\mathrm{T}} \boldsymbol{w} - y_n)^2$$

- find  $w^* = \operatorname{argmin} \operatorname{RSS}(w)$
- minimize the Euclidean distance, or find the least squares solution
- reduce machine learning to optimization

#### Notation Convenience

**NOTE**: for notation convenience, we will

- append 1 to each  $x_n$  as the first feature:  $x = [1, x_1, x_2, \dots, x_D]^T$
- append  $w_0$  to weights:  $\mathbf{w} = [w_0, w_1, w_2, \dots, w_D]^T$

The model becomes

$$f: \mathbb{R}^{\mathsf{D}+1} \to \mathbb{R}$$

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{w}$$

So please pay attention to notations!

September 10, 2019

September 10, 2019

# Warm-up: D = 0

Only one parameter  $w_0$ : constant prediction  $f(x) = w_0$ 



f is a horizontal line, where should it be?

Use calculus to find the value of  $w_0$  that minimizes the RSS

September 10, 2019

# Warm-up: D = 0

#### Optimization objective becomes

$$RSS(w_0) = \sum_{n=1}^{N} (w_0 - y_n)^2$$

$$\frac{\partial RSS(w_0)}{\partial w_0} = 2\sum_{n=1}^{N} (w_0 - y_n) = 0$$

$$N w_0 - \sum_{n=1}^N y_n = 0$$

It follows that  $w_0 = \frac{1}{N} \sum_n y_n$ , i.e. the average

Exercise: what if we use absolute error instead of squared error?

September 10, 2019

17 / 54

### Warm-up: D = 1

#### **Optimization objective becomes**

$$RSS(\boldsymbol{w}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial RSS(\boldsymbol{w})}{\partial w_0} = 0\\ \frac{\partial RSS(\boldsymbol{w})}{\partial w_1} = 0 \end{cases} \Rightarrow \sum_{n} (w_0 + w_1 x_n - y_n) = 0\\ \sum_{n} (w_0 + w_1 x_n - y_n) x_n = 0$$

$$\Rightarrow \begin{array}{ll} Nw_0 + w_1 \sum_n x_n &= \sum_n y_n \\ w_0 \sum_n x_n + w_1 \sum_n x_n^2 &= \sum_n y_n x_n \end{array} \quad \text{(a linear system)}$$

$$\Rightarrow \left(\begin{array}{cc} N & \sum_{n} x_{n} \\ \sum_{n} x_{n} & \sum_{n} x_{n}^{2} \end{array}\right) \left(\begin{array}{c} w_{0} \\ w_{1} \end{array}\right) = \left(\begin{array}{c} \sum_{n} y_{n} \\ \sum_{n} x_{n} y_{n} \end{array}\right)$$

September 10, 2019

# Least square solution for D=1

Assuming the matrix is invertible:

$$\Rightarrow \left(\begin{array}{c} w_0^* \\ w_1^* \end{array}\right) = \left(\begin{array}{cc} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array}\right)^{-1} \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array}\right)$$

Are stationary points minimizers?

- not true in general
- yes for convex objectives



# General least square solution

#### **Objective**

$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{x}_{n}^{T} \boldsymbol{w} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\frac{1}{2}\nabla RSS(\boldsymbol{w}) = \sum_{n} \boldsymbol{x}_{n} (\boldsymbol{x}_{n}^{T} \boldsymbol{w} - y_{n}) = \left(\sum_{n} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{T}\right) \boldsymbol{w} - \sum_{n} \boldsymbol{x}_{n} y_{n}$$
$$= (\boldsymbol{X}^{T} \boldsymbol{X}) \boldsymbol{w} - \boldsymbol{X}^{T} \boldsymbol{y} = \boldsymbol{0}$$

where

$$oldsymbol{X} = \left(egin{array}{c} oldsymbol{x}_1^{
m T} \ oldsymbol{x}_2^{
m T} \ dots \ oldsymbol{x}_{
m N}^{
m T} \end{array}
ight) \in \mathbb{R}^{{\sf N} imes(D+1)}, \quad oldsymbol{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_{
m N} \end{array}
ight) \in \mathbb{R}^{{\sf N}}$$

# General least square solution

# $(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})\boldsymbol{w} - \boldsymbol{X}^{\mathrm{T}}\boldsymbol{u} = \boldsymbol{0} \quad \Rightarrow \quad \boldsymbol{w}^* = (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{u}$

assuming  $X^TX$  (called a covariance matrix) is invertible for now.

Again by convexity  $w^*$  is the minimizer of RSS.

#### Verify the solution when D = 1:

$$\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

when 
$$D = 0$$
:  $(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1} = \frac{1}{N}$ ,  $\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} = \sum_{n} y_{n}$ 

September 10, 2019

### Another approach

#### RSS is the Euclidean norm squared:

$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{T} \boldsymbol{x}_{n} - y_{n})^{2} = \|\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y}\|_{2}^{2}$$

$$= (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y})^{T} (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y})$$

$$= (\boldsymbol{w}^{T} \boldsymbol{X}^{T} - \boldsymbol{y}^{T}) (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y})$$

$$= \boldsymbol{y}^{T} \boldsymbol{y} - \boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{w} - \boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{y} + \boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}$$

$$= \boldsymbol{y}^{T} \boldsymbol{y} - 2 \boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{w} + \boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}$$

Note:  $\mathbf{y}^{\mathrm{T}} \mathbf{X} \mathbf{w} = (\mathbf{w}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{y})^{\mathrm{T}}$ 

September 10, 2019

#### Multivariate Calculus

### RSS is given by

$$RSS(\boldsymbol{w}) = \boldsymbol{y}^{\mathrm{T}} \boldsymbol{y} - 2 \boldsymbol{y}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{w} + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{w}$$

$$\nabla RSS(\boldsymbol{w}) = \nabla \left( \boldsymbol{y}^{\mathrm{T}} \boldsymbol{y} - 2 \boldsymbol{y}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{w} + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{w} \right)$$

$$= 0 - 2 \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y} + \nabla \left( \boldsymbol{w}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{w} \right)$$

$$= -2 \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y} + 2 \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{w} \qquad (prove it !)$$

It follows

$$(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})\boldsymbol{w} - \boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \boldsymbol{w}^{*} = (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}$$

### Multivariate Calculus

#### Is it a minimizer?

$$\boldsymbol{w}^* = (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}$$

We will use a second derivative (the Hessian matrix)

$$\nabla^2 \text{RSS}(\boldsymbol{w}) = \nabla \left( -2\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} + 2\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\boldsymbol{w} \right) = 2\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}$$

A symmetric matrix M is said to be a **positive semi-definite** (PSD) if  $u^{\mathrm{T}}Mu \geq 0$  for any vector u.

Note: 
$$u^{\mathrm{T}}(\mathbf{X}^{\mathrm{T}}\mathbf{X})u = (\mathbf{X}u)^{\mathrm{T}}\mathbf{X}u = \|\mathbf{X}u\|_2^2 \ge 0$$
 and is  $0$  if  $u = 0$ .

The Hessian matrix of a convex function is positive semi-definite.

September 10, 2019

# Computational complexity

**Bottleneck** of computing

$$oldsymbol{w}^* = \left( oldsymbol{X}^{\mathrm{T}} oldsymbol{X} 
ight)^{-1} oldsymbol{X}^{\mathrm{T}} oldsymbol{y}$$

is to invert the matrix  ${m X}^{\rm T}{m X} \in \mathbb{R}^{({\sf D}+1) imes ({\sf D}+1)}$ 

- $\bullet \ \ {\rm naively \ need} \ {\cal O}({\rm D}^3) \ {\rm time} \\$
- there are many faster approaches (such as conjugate gradient)

September 10, 2019 25

25 / 54

# What if $oldsymbol{X}^{\mathrm{T}}oldsymbol{X}$ is not invertible

#### Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

**Example:** D = N = 1

| sqft | sale price |
|------|------------|
| 1000 | 500K       |

September 10, 2019

Any line passing through this single point is a minimizer of RSS.

# How about the following?

$$\mathsf{D}=1, \mathsf{N}=2$$

| sqft | sale price |
|------|------------|
| 1000 | 500K       |
| 1000 | 600K       |

Any line passing the average is a minimizer of RSS.

$$D = 2, N = 3$$
?

| sqft | #bedroom | sale price |
|------|----------|------------|
| 1000 | 2        | 500K       |
| 1500 | 3        | 700K       |
| 2000 | 4        | 800K       |

Again *infinitely many minimizers*. How to resolve this issue?

# Eigendecomposition

The decomposition of a square matrix A into matrices composed of its eigenvectors and eigenvalues is called eigendecomposition.

$$A = U\Lambda U^{-1}$$

where  $\Lambda$  is a diagonal matrix of eigenvalues of A, and each column of U is an eigenvector of A.

If A is symmetric  $U^{\mathrm{T}}U=\mathbf{\emph{I}}$ , then

$$A = U\Lambda U^{-1} = U\Lambda U^{\mathrm{T}} = U^{\mathrm{T}}\Lambda U$$

and its inverse

$$A^{-1} = U^{\mathrm{T}} \Lambda^{-1} U$$

September 10, 2019 27 / 54 September 10, 2019

#### How to resolve this issue?

#### **Eigendecomposition**:

$$m{X}^{\mathrm{T}}m{X} = m{U}^{\mathrm{T}} \left[ egin{array}{cccc} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} \end{array} 
ight] m{U}$$

where  $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$  are eigenvalues.

#### Inverse:

$$(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \frac{1}{\lambda_{\mathsf{D}}} & 0 \\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathsf{D}+1}} \end{bmatrix} \boldsymbol{U}$$

September 10, 2019

29 / 54

# How to solve this problem?

Non-invertible  $\Rightarrow$  some eigenvalues are 0.

One natural fix: add something positive

$$\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where  $\lambda > 0$  and  $\boldsymbol{I}$  is the identity matrix. Now it is invertible:

$$(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1} + \lambda} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_{2} + \lambda} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \frac{1}{\lambda_{\mathsf{D}} + \lambda} & 0 \\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathsf{D}+1} + \lambda} \end{bmatrix} \boldsymbol{U}$$

# Solution

The solution becomes

$$\boldsymbol{w}^* = \left( \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}$$

not a minimizer of the original RSS

 $\lambda$  is a *hyper-parameter*, can be tuned by cross-validation.

How do we predict?

$$f(\boldsymbol{x}) = \boldsymbol{w}^{*\mathrm{T}} \boldsymbol{x}$$

# Comparison to NNC

Parametric versus non-parametric

- Parametric methods: the size of the model does not grow with the size of the training set N.
  - e.g. linear regression, Naive Bayes
- Non-parametric methods: the size of the model grows with the size of the training set.
  - NNC, Decision Trees

### Outline

- 1 Linear regression
- 2 Linear regression with nonlinear basis

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data



September 10, 2019

September 10, 2019

September 10, 2019

# Solution: nonlinearly transformed features

#### 1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).



# Regression with nonlinear basis

**Model:**  $f(x) = w^{\mathrm{T}} \phi(x)$  where  $w \in \mathbb{R}^M$ 

**Objective:** 

$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n})^{2}$$

Similar least square solution:

$$m{w}^* = \left(m{\Phi}^{\mathrm{T}}m{\Phi}
ight)^{-1}m{\Phi}^{\mathrm{T}}m{y} \quad ext{where} \quad m{\Phi} = \left(egin{array}{c} m{\phi}(m{x}_1)^{\mathrm{T}} \ m{\phi}(m{x}_2)^{\mathrm{T}} \ dots \ m{\phi}(m{x}_N)^{\mathrm{T}} \end{array}
ight) \in \mathbb{R}^{N imes M}$$

September 10, 2019

# Example

Polynomial basis functions for  $\mathsf{D}=1$ 

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

**General case:** 

$$m{\phi}(x) = \left[\prod_{i=1}^D x_i^{a_i} \quad ext{, s.t.} \quad \sum_{i=1}^D a_i \leq M
ight]$$

Learning a linear model in the new space

= learning an M-degree polynomial model in the original space

September 10, 2019 37 / 54

#### 15 01 / 01

### Example

Fitting a sine function with a polynomial (M = 0, 1, or 3):





M=9: overfitting



September 10, 2019

38 / 54

# Why nonlinear?

Can I use a fancy linear feature map? For example,

$$m{\phi}(m{x}) = \left[egin{array}{c} x_1 - x_2 \ 3x_4 - x_3 \ 2x_1 + x_4 + x_5 \ dots \end{array}
ight] = m{A}m{x} \quad ext{ for some } m{A} \in \mathbb{R}^{\mathsf{M} imes \mathsf{D}}$$

No, it basically does nothing since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left( \boldsymbol{w}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w}' \in \mathsf{Im}(\boldsymbol{A}^{\mathsf{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left( \boldsymbol{w'}^{\mathsf{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

We will see more nonlinear mappings soon.

### Outline

- 1 Linear regression
- 2 Linear regression with nonlinear basis
- Overfitting and Preventing Overfitting

September 10, 2019 39 / 54 September 10, 2019 40

# Should we use a very complicated mapping?

#### Ex: fitting a sine function with a polynomial:



# **Underfitting and Overfitting**

 $M \leq 2$  is *underfitting* the data

- large training error
- large test error

 $M \ge 9$  is *overfitting* the data

- small training error
- large test error



More complicated models ⇒ larger gap between training and test error

How to prevent overfitting?

September 10, 2019

42 / 54

# Method 1: use more training data

#### The more, the merrier. We increase N - the number of training points.







More data ⇒ smaller gap between training and test error

# Method 2: control the model complexity

For polynomial basis, the  $\operatorname{\mathbf{degree}}\ M$  controls the complexity

|       | M = 0 | M = 1 | M = 3  | M = 9       |
|-------|-------|-------|--------|-------------|
| $w_0$ | 0.19  | 0.82  | 0.31   | 0.35        |
| $w_1$ |       | -1.27 | 7.99   | 232.37      |
| $w_2$ |       |       | -25.43 | -5321.83    |
| $w_3$ |       |       | 17.37  | 48568.31    |
| $w_4$ |       |       |        | -231639.30  |
| $w_5$ |       |       |        | 640042.26   |
| $w_6$ |       |       |        | -1061800.52 |
| $w_7$ |       |       |        | 1042400.18  |
| $w_8$ |       |       |        | -557682.99  |
| $w_9$ |       |       |        | 125201.43   |
|       |       |       |        |             |

Intuitively, *large weights* ⇒ *more complex model* 

Use cross-validation to pick hyperparameter  ${\cal M}$ 

Are there still other ways to control complexity?

September 10, 2019 43 / 54 September 10, 2019 44 / 5

### How to make w small?

Regularized linear regression: new objective

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find  $w^* = \operatorname{argmin}_w \mathcal{E}(w)$ 

- ullet  $R: \mathbb{R}^{\mathsf{D}} o \mathbb{R}^+$  is the *regularizer* 
  - lacktriangleright measure how complex the model w is
  - common choices:  $\|\boldsymbol{w}\|_2^2$ ,  $\|\boldsymbol{w}\|_1$ , etc.
- $\lambda > 0$  is the regularization coefficient
  - $\lambda = 0$ , no regularization
  - $\lambda \to +\infty$ ,  $\boldsymbol{w} \to \operatorname{argmin}_{\boldsymbol{w}} R(\boldsymbol{w})$
  - ▶ i.e. control **trade-off** between training error and complexity

September 10, 2019 45 / 5

#### september 10, 2019

### The effect of $\lambda$

#### when we increase regularization coefficient $\lambda$

|                  | $\ln \lambda = -\infty$ | $\ln \lambda = -18$ | $\ln \lambda = 0$ |
|------------------|-------------------------|---------------------|-------------------|
| $\overline{w_0}$ | 0.35                    | 0.35                | 0.13              |
| $w_1$            | 232.37                  | 4.74                | -0.05             |
| $w_2$            | -5321.83                | -0.77               | -0.06             |
| $w_3$            | 48568.31                | -31.97              | -0.06             |
| $w_4$            | -231639.30              | -3.89               | -0.03             |
| $w_5$            | 640042.26               | 55.28               | -0.02             |
| $w_6$            | -1061800.52             | 41.32               | -0.01             |
| $w_7$            | 1042400.18              | -45.95              | -0.00             |
| $w_8$            | -557682.99              | -91.53              | 0.00              |
| $w_9$            | 125201.43               | 72.68               | 0.01              |

September 10, 2019

46 / 54

### The trade-off

When we increase regularization coefficient  $\lambda$ , overfitting decreases:









# How to choose the right amount of regularization?

Can we tune  $\lambda$  on the training dataset?

 $\it No$ : as this will set  $\lambda$  to zero, i.e., without regularization, defeating our intention to use it to control model complexity and to gain better generalization.

 $\boldsymbol{\lambda}$  is a hyperparameter. To tune it,

- We can use a development/holdout dataset independent of training and testing dataset.
- We can use cross-validation.

The procedure is similar to choose K in the nearest neighbor classifiers.

September 10, 2019 47 / 54 September 10, 2019 48

# The root of overfitting

Dealing with over and underfitting is really about dealing with bias and variance.

Mathematically, the expected prediction error can be decomposed into bias and variance components.

Simpler models have a smaller variance but a larger bias.

Complex models have a larger variance but a smaller bias.

Thus, we balance bias and variance by choosing  $\lambda$ .

Regularization reduces variance (because they lead to simpler models) but then increase the bias.

September 10, 2019

### How to solve the new objective?

Simple for  $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$ :

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

Note the same form as in the fix when  $X^TX$  is not invertible!

For other regularizers, as long as it's convex, standard optimization algorithms can be applied.

September 10, 2019

# Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where  $\beta$  is some hyperparameter.

Finding the solution becomes a *constrained optimization problem*.

Choosing either  $\lambda$  or  $\beta$  can be done by cross-validation.

# Summary

Linear regression summarized:

$$egin{aligned} oldsymbol{w}^* &= \left( oldsymbol{X}^{\mathrm{T}} oldsymbol{X} 
ight)^{-1} oldsymbol{X}^{\mathrm{T}} oldsymbol{y} \ oldsymbol{w}^* &= \left( oldsymbol{A}^{\mathrm{T}} oldsymbol{A} + \lambda oldsymbol{I} 
ight)^{-1} oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{y} \ oldsymbol{w}^* &= \left( oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{\Phi} + \lambda oldsymbol{I} 
ight)^{-1} oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{y} \end{aligned}$$

It is important to understand the derivation.

**Overfitting**: small training error but large test error.

**Preventing Overfitting**: more data and/or regularization.

# Typical steps

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train an ML model with training data to learn from.
- Evaluate it using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

September 10, 2019 53 / 54

# General idea to provide ML algorithms

- 1. Pick a set of models  $\mathcal{F}$ 
  - ullet e.g.  $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
  - ullet e.g.  $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{ ext{T}}oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

ML becomes optimization

September 10, 2019 54