

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

PROBLEMS.

18. Proposed by ALFRED HUME, C. E., D. Sc., Professor of Mathematics, University of Mississippi, University, Mississippi.

An elliptic paraboloid whose equation is $\frac{y^2}{a} + \frac{x^2}{b} = 2z$ has its axis ventical and vertex downward. If μ be the co-efficient of friction, prove that a heavy particle will rest at any point of the surface below its intersection with the cylinder $\frac{y^2}{a^2} + \frac{x^2}{b^2} = \mu^2$.

19. Proposed by H. C. WHITAKER, B. So., M. E., Professor of Mathematics, Manual Training School. Philadelphia, Pennsylvania.

"There was an old woman tossed up in a basket, Ninety times as high as the moon."

What was her initial velocity, the resistance of the air being neglected?

DIOPHANTINE ANALYSIS.

Cenducted by J. M. COLAW, Monterey, Va. All contributions to this department should be sent to him.

SOLUTIONS TO PROBLEMS.

- 15. Proposed by M. A. GRUBER, M. A., War Department, Washington, D. C.
- (a) The difference of two odd squares is always divisible by 8. Corollary: Every odd square is of the form 8a+1
 - (b) The sum of two odd squares is two times an odd number.
- I. Solution by ARTEMAS MARTIN, LL. D., U. S. Coast and Geodetic Survey Office, Washington, D. C.
- (a) Every odd number is either of the form 4m+1 or of the form 4m+3.

$$(4m+1)^{2} = 16m^{2} + 8m + 1 = 8(2m^{2} + m) + 1;$$

 $(4m+3)^{2} = 16m^{2} + 24m + 1 = 8(2m^{2} + 3m) + 1.$

Hence every odd square is of the form 8a+1, and any two odd squares may be represented by 8p+1 and 8p+1; their difference is 8p-8q=8(p-q).

(b)
$$(8p+1)+(8q+1)=8p+8q+2=2(4p+4q+1)$$

= $2[2(2p+2q)+1]=2[4(p+q)+1].$