SEMESTER III. MODULE 4 CO-3 *LGEBRAIC STRUCTURE

UNIT:4.1 INTRODUCTION TO ALGEBRAIC STRUCTURE

INTRODUCTION

- we will study, binary operation as a function
- Algebraic structures- monoid, semigroups, groups and rings, integral domains, field.
- They are called an algebraic structure because the operations on the set define a structure on the elements of that set

BINARY OPERATION

Let A be non-empty set.

A function $f: A \times A \rightarrow A$ is called a binary operation on a set A

Generally the binary operation on A is denoted by * then $a * b \in A \ \forall a, b \in A$.

This property is described as **Closure Property** or A is closed under *

Examples

Q. Is + binary operation on N (set of natural no)?

Ans: yes

Q. Is + binary operation on Z, (set of integers)?

Ans: yes

Q. Is - binary operation on N/Z^+ ?

Ans : No for N/Z^+

Q. Is - binary operation on Z/R?

Ans: yes

Q. Is a/b binary operation on Z, R, R*?

Ans: Only on R*

Associative property

Let A be non empty set and * is binary operation on A, then A is associative if $(a * b) * c = a * (b * c) \forall a, b, c \in A$ Examples

Q. Is + associative in Z/R?

Ans: yes

Q. Is - associative in Z/R?

Ans: No

Q. Is multiplication/Division associative in Z/R?

Ans: multiplication yes/Division No

Commutative property

Let A be non empty set and * is binary operation on A, then A is commutative if $(a * b) = (b * a) \forall a, b \in A$ Examples

Q. Is usual addition(+)/usual multiplication(x) commutative in Z/R?

Ans: yes

Q. Is usual subtraction(-)/usual division(/) commutative in Z/R?

Ans: No

Identity Property

Let A be non empty set and * is binary operation on A,

If $e \in A$ and $a * e = a \forall a \in A$, then e is the identity element of A with respect to *

Examples

Q. What is the identity element of R with respect to addition?

Ans: 0

Q. What is the identity element of R with respect to multiplication?

Ans: 1

Inverse property

Let A be non empty set and * is binary operation on A,

If for $a \in A$ there exist $b \in A$ such that a * b = e = b * a then 'b' is called an inverse of 'a' with respect to operation *

Example:

Q. What is the inverse of 3 in R with respect to addition?

Ans: -3

Q. What is the inverse of 3 in R/Z with respect to multiplication?

Ans: 1/3, Not available in Z

SEMIGROUP

A non-empty set S together with a binary operation * is called as a semigroup if binary operation * is associative.

we denote the semigroup by (S, *)

Commutative Semigroup

A semigroup (S, *) is said to be Commutative if * is commutative

Examples

(z, +) is a commutative semigroup

(z, .) is a commutative semigroup

Monoid

A non-empty set M together with a binary operation * defined on it, is called as monoid if i) binary operation * is associative ii) M has an identity with respect to *

Note: A semi group with an identity is a monoid If * is commutative, (M, *) is called commutative monoid

Examples

- (Z, +) is a monoid with identity 0
- (Z, .) is a monoid with identity 1
- (N, +) is a semigroup but not a monoid.

Group

A non-empty set G together with a binary operation * defined on it, is called a group if

- (i) binary operation * is closed
- (ii) binary operation * is associative
- (iii) G has an identity with respect to *
- (iv) Every element in G has an inverse in G, with respect to *

We denote the group by (G, *)

Commutative (Abelian) Group : A group (G, *) is said to be commutative if * is commutative.

Examples

- (Z, +) is an abelian group with identity 0 and —a as inverse of a
- (R, .) is a monoid but not a group (identity 1, No inverse for 0)
- (R-{0}/R*, .) is an abelian group with identity 1 and 1/a as inverse of a.
- (Q-{0}/Q*, .) is an abelian group with identity 1 and 1/a as inverse of a.
- Let $G = \{ M \mid M \text{ is } 2 \times 2 \text{ non-singular matrices} \}$ and a * b is usual Matrix multiplication then (G, *) is Non-abelian group.

Example: Determine whether $A = Z-\{1\}$, the set of integers except 1 is a semigroup or a monoid with respect to * where a * b = a + b - ab

Closure Property: -

Let $a, b \in A = Z-\{1\}$, the set of integers except 1

- \therefore a, b are integers and a $\neq 1$, b $\neq 1$
- $\therefore a * b = a + b ab$ is integer

Assume $a * b = 1 \Rightarrow a+b-ab = 1 \Rightarrow a+(1-a)b=1$

$$\Rightarrow$$
0 = 1-a -(1-a)b \Rightarrow 0 = (1-a) (1-b)

- \Rightarrow a = 1 or b = 1 but given a \neq 1, b \neq 1
- \therefore Assumption a * b = 1 is wrong $\Rightarrow a*b \neq 1$
- a * b = a + b ab is integer and $a*b \neq 1 \Rightarrow a*b \in A= Z-\{1\}$
- $\therefore a * b \in A \ \forall a, b \in A.$
- so * is binary operation (Or * satisfies closure property)

Associative Property:

G1:
$$a*(b*c) = a*(b+c-bc) = a+(b+c-bc) - a(b+c+bc)$$

 $= a+b+c-bc-ab-ac-abc$
And $(a*b)*c = (a+b-ab)*c = (a+b-ab)+c-(a+b+ab)c$
 $= a+b+c-ab-ac-bc-abc$.
Hence, $a*(b*c) = (a*b)*c$. \therefore * is associative.

Hence (A, *) is Semi-Group

Existence of identity:

Let e be the identity element

$$a * e = a + e - ae = a$$

$$e(1-a) = 0$$

Either
$$e = 0$$
 or $a = 1$

e = 0 is the identity element

(Check for commutativity !!)

Hence (A, *) is commutative monoid

Check it is Not group (No inverse)

What if
$$A = R - \{1\}$$
?

Example: Prove that A is a group with respect to *

Where A = R-{1} the set of real numbers except 1

And a * b = a + b - ab

Closure, Associative, commutative and identity element:

Same arguments like last example, just replace integers (Z) by Real No (R)

Existence of Inverse:

Let b be the inverse of a then a * b = e = b * a

$$a + b - ab = 0$$

$$a + b(1-a) = 0$$

b = -a/(1-a) and -a/(1-a) is real number as $a \ne 1$

Hence Inverse of a with respect to * is $-a/(1-a) \in A$.

A is an abelian group with respect to *

(operation for infinite, Cayley table for upto 10 elements)

Example: Determine whether $S = \{1, 2, 3, 6, 12\}$ is a monoid, a semigroup with respect to * where a * b = G.C.D.(a, b)

Closure Property: Since all the elements of the table ∈ S, closure property is satisfied.

Associative Property : Since

$$a*(b*c) = a*(b*c) = a*GCD\{b,c\} = GCD\{a,b,c\}$$

And
$$(a * b) * c = GCD\{a, b\} * c = GCD\{a, b, c\}$$

$$\therefore a*(b*c) = (a*b)*c$$

- ∴ * is associative.
- ∴ (S, *) is a semigroup.

Existence of identity: From the table we observe that $12 \in S$ is the identity

∴ (S, *) is a monoid.

Example: Determine whether $S = \{1, 2, 3, 6, 12\}$ is a monoid, a semigroup with respect to * where a * b = G.C.D.(a, b)

Commutative: Since the table entries are symmetric, we will get a * b = b * a, Hence it is commutative.

(S, *) is commutative monoid.

Check that No inverse for any element. Since in any row or column the identity 12 is not appearing.

Example :Determine whether $S = \{1, 2, 3, 6, 9, 18\}$ is a semigroup, a monoid or commutative monoid with respect to * where a * b = L.C.M.(a, b)

*	1	2	3	6	9	18
1	1	2	3	6	9	18
2	2	2	6	6	18	18
3	3	6	3	6	9	18
6	6	6	6	6	18	18
9	9	18	9	18	9	18
18	18	18	18	18	18	18

Closure Property: Since all the elements of the table \in S, closure property is satisfied.

Associative Property: Since $a*(b*c) = a*LCM\{b,c\} = LCM\{a,b,c\}$

And
$$(a * b) * c = LCM\{a, b\} * c = LCM\{a, b, c\}$$

- ∴ a*(b*c) = (a*b)*c
- * is associative.
- ∴ (S,*) is a semigroup.

Example :Determine whether $S = \{1, 2, 3, 6, 9, 18\}$ is a semigroup, a monoid, commutative monoid with respect to * where a * b = L.C.M.(a, b)

Existence of identity: From the table we observe that $1 \in S$ is the identity.

∴ (S, *) is a monoid.

Commutative property: Since LCM $\{a, b\} = LCM\{b, a\}$ we have a*b=b*a. Hence * is commutative.

Therefore A is commutative monoid.

No inverse for any element.

Results

If G is a group.

- (i) Then its identity element is unique.
- (ii) each a in G has unique inverse

Example: Consider $G = Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$. Then Prepare table for addition modulo n in G. Hence find identity element and inverse of 2,3,6. Is G group under addition modulo n?

	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Now Check for properties !! Identity is 0 and inverse of a is 7 - a

Example: Prepare table for multiplication modulo n for $G=Z_7-\{0\}$ Hence find identity element and inverse of 2,3,6

*	1 2 3 4 5 6	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

From the table we observe that $1 \in G$ is identity.

From the table we get
$$2^{-1} = 4$$
, $3^{-1} = 5$, $6^{-1} = 6$

Ring

- (R, \oplus, \otimes) is said to be ring if
- (i) (R, \oplus) is a commutative group
- (ii) (R, \otimes) is a semigroup
- (iii) a \otimes (b \oplus c)= (a \otimes b) \oplus (a \otimes c) (\otimes distributes over \oplus)

Field

- (R, \oplus, \otimes) is said to be field if
- (i) (R, \oplus) is a commutative group
- (ii) $(R-\{0\}, \otimes)$ is a commutative group, where 0 is identity w.r.t. \oplus
- (iii) a \otimes (b \oplus c)= (a \otimes b) \oplus (a \otimes c) (\otimes distributes over \oplus)

Example: Prove that $(Z_5,+,..)$ is field

Answer: To prove $(Z_5, +) \& (Z_5 - \{0\}, .)$ are commutative groups

+	0	1	2	3	4	
0	0	1	2	3	4	
1	1	1 2 3 4 0	3	4	0	
2	2	3	4	0	1	
3	3	4	0	1	2	
4	4	0	1	2	3	

X	0	1	2	3	4
0	0	0 1 2 3 4	0		0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Example: Prove that set $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ is a commutative ring modulo 10.

Does not have identity for x

Commutative Ring

- (R, \oplus, \otimes) is said to be commutative ring if
- (i) (R, \oplus, \otimes) is a ring
- (ii) \otimes is commutative

Ring with unity

- (R, \oplus, \otimes) is said to be ring with unity if
- (i) (R, \oplus, \otimes) is a ring
- (ii) Identity w.r.t. ⊗ exists in R

Definition: Integral Domain

- (R, \oplus, \otimes) is said to be Integral Domain if
- (i) (R, \oplus, \otimes) is commutative ring with unity
- (ii) R has no zero divisors

Zero divisors

 (R, \oplus, \otimes) is ring if $a \otimes b = 0$ (0 is identity w.r.t. \oplus) but $a \neq 0 \& b \neq 0$ then a & b are said to be zero divisors

Example

Find zero divisors in ring $(Z_6,+,.)$

$$2.3 = 0$$
 but $2 \neq 0$, $3 \neq 0$

$$4.3 = 0$$
 but $4 \neq 0$, $3 \neq 0$

2 & 3, 4 & 3 are zero divisors of Field Z₆

Definition: Units

 (R, \oplus, \otimes) is ring and 1 is identity w.r.t. \otimes if $b \in R$ is inverse of 'a' w.r.t. \otimes then a & b are called units of ring R

Example:

Find units in ring $(Z_9,+,.)$

2.5 = 1

Then 2 & 5 are units of Z_9 Find other units of Z_9 .

Definition: Integral Domain

- (R, \oplus, \otimes) is said to be Integral Domain if
- (i) (R, \oplus, \otimes) is commutative ring with unity
- (ii) R has no zero divisors

Example: Prove that Ring $(Z_5,+,.)$ is Integral Domain Is Ring $(Z_6,+,.)$ Integral Domain?

Note:

Ring $(Z_p,+,.)$ is Integral Domain and field if p is prime In Z_n , a is unit if G.C.D (a,n) = 1 In Z_n , a is zero divisor if G.C.D $(a,n) \neq 1$