Provided Information

Problem Statement

Estimation of the probability of losing an order(we are sending candidates back) on any given day

- Point estimation
- Interval estimation

P(losing an order on any given day) = P(no of candidates come > no of vaccines at time of opening on that day)

Possible cases are

No of vaccines at the time of opening	No of candidates come on that day
1	>1
2	>2
3	>3
4	>4

Note: Since no of vials potentially administered in a day will not be exceeding 2, we will be left with only the first case. Hence,

The required probability = P(no of vaccines at the time of opening = 1, no of candidates came = 2)

= P(no of vaccines at the time of opening = 1) * 0.25 [as these events will not depend on each other]

Markov Chain and Transition Probability Matrix

Define X(n) = no of vaccines available at the time of opening on nth day $\{X(n), n>=1\}$ will be an Markov Chain and X(n) = 1,2,3,4 and tpm,

	X (n+1)	1	2	3	4
	X (n)				
	1	0.5	0	0	0.5
P =					
	2	0.25	0.5	0	0.25
	3	0.25	0.25	0.5	0
	4	0	0.25	0.25	0.5

Here we will take X(0) = 4 as on the initial day we must have 4 vials and then by generating 1000 samples of the Markov Chain $\{X(1), X(2)....X(100)\}$, we will get P(no of vaccines at the time of opening = 1) for each sample and hence will get the estimations.

Point Estimation

Estd. P(no of vaccines at the time of opening = 1) = 0.212 Estd. P(losing an order on any given day) = 0.053

Diagrammatic Representation of TPM

Interval Estimation

95 % Confidence Interval:

Lower Bound = 0.0261

Upper Bound = 0.0792

Conclusion

Observations:

- In the given problem we encountered that each day no more than 2 vials will be administered which seems to be a bit rare event even though the fact that the vaccines have been developed within a very short time period.
- We needed to do some adjustments in the 4th column of matrix P to make it a tpm.

The estimated probability is around 0.053 which means we are not losing that much order mainly because of very low number of potential candidates interested to take vaccines.