Flight Delay

Members : Aryan, Hon Joo, Adrian

Team 10

Problem Formulation

What's the problem?

Our problem definition

Everyone hates delays, but why are delays caused in the first place? Can they be prevented and predicted?

Data Preparation

What dataset would be suitable? What are the characteristics of the dataset? Are there missing values? Are there categorical variables?

Dataset

- Dataset of flight data in 2018
- Contains delay data and type of delay (NAS, etc.).
- Other data like destination, elapsed time are provided

FL DATE OP CARRIER OP CARRIER FL NUM ORIGIN DEST CRS DEP TIME DEP TIME DEP DELAY TAXI OUT WHEELS OFF WHEELS ON TAXI_IN CRS ARR TIME ARR TIME ARR DELAY CANCELLED CANCELLATION CODE DIVERTED CRS ELAPSED TIME ACTUAL ELAPSED TIME AIR TIME DISTANCE CARRIER DELAY WEATHER DELAY NAS DELAY SECURITY DELAY LATE AIRCRAFT DELAY

Why a 2018 dataset?

- 2018 is the earliest year in which data is still reliable
- Flights in part of 2019 and 2020 onwards affected by COVID-19

On time and early flights

- Represented by zero and negative values in ARR_DELAY and DEP_DELAY
- Treat both cases as the same
- Set to zero for both cases
- Creation of DEP_DELAY_NEW and ARR_DELAY_NEW

	ARR_DELAY	ARR_DELAY_NEW	DEP_DELAY	DEP_DELAY_NEW
0	-23.0	0.0	-5.0	0.0
1	-24.0	0.0	-8.0	0.0
2	-13.0	0.0	-5.0	0.0
3	-2.0	0.0	6.0	6.0
4	14.0	14.0	20.0	20.0
5	-11.0	0.0	3.0	3.0
6	-16.0	0.0	-3.0	0.0
7	-19.0	0.0	-6.0	0.0
8	-2.0	0.0	13.0	13.0
9	-17.0	0.0	-2.0	0.0
10	-16.0	0.0	-5.0	0.0
11	129.0	129.0	121.0	121.0
12	-26.0	0.0	-3.0	0.0
13	-3.0	0.0	11.0	11.0
14	73.0	73.0	76.0	76.0
15	55.0	55.0	54.0	54.0
16	25.0	25.0	72.0	72.0
17	29.0	29.0	47.0	47.0
18	-18.0	0.0	-6.0	0.0
19	-21.0	0.0	9.0	9.0

Missing values

- Some columns contain missing values
- To clean the dataset, we remove these entries
- Visually represented using Missingno library

Missingno representation

Before and after removing missing delay values

Column	Non-Null	Count
FL_DATE	7213446	non-null
OP_CARRIER	7213446	non-null
OP_CARRIER_FL_NUM	7213446	non-null
ORIGIN	7213446	non-null
DEST	7213446	non-null
CRS_DEP_TIME	7213446	non-null
DEP_TIME	7101129	non-null
DEP_DELAY	7096212	non-null
DEP_DELAY_NEW	7096212	non-null
TAXI_OUT	7097616	non-null
WHEELS_OFF	7097617	non-null
WHEELS_ON	7094200	non-null
TAXI_IN	7094200	non-null
CRS_ARR_TIME	7213446	non-null
ARR_TIME	7094201	non-null
ARR_DELAY	7076406	non-null
ARR_DELAY_NEW	7076406	non-null
CANCELLED	7213446	non-null
CANCELLATION_CODE	116584 r	on-null
DIVERTED		non-null
CRS_ELAPSED_TIME		
ACTUAL_ELAPSED_TIME		
AIR_TIME		non-null
DISTANCE		non-null
CARRIER_DELAY	1352710	non-null
	1352710	
	1352710	
	1352710	
LATE_AIRCRAFT_DELAY	1352710	non-null

_		-
Column	Non-Null	Count
FL_DATE	7071818	non-null
OP_CARRIER	7071818	non-null
OP_CARRIER_FL_NUM	7071818	non-null
ORIGIN	7071818	non-null
DEST	7071818	non-null
CRS_DEP_TIME	7071818	non-null
DEP_TIME	7071818	non-null
DEP_DELAY	7071818	non-null
DEP DELAY NEW	7071818	non-null
TAXI OUT	7071818	non-null
WHEELS_OFF	7071818	non-null
WHEELS_ON	7071818	non-null
TAXI_IN	7071818	non-null
CRS_ARR_TIME	7071818	non-null
ARR_TIME	7071818	non-null
ARR_DELAY	7071818	non-null
ARR_DELAY_NEW	7071818	non-null
CANCELLED	7071818	non-null
CANCELLATION_CODE	0 non-nu	ull
DIVERTED	7071818	non-null
CRS_ELAPSED_TIME	7071818	non-null
ACTUAL_ELAPSED_TIME	7071817	non-null
AIR_TIME	7071817	non-null
DISTANCE	7071818	non-null
CARRIER_DELAY	1352375	non-null
WEATHER_DELAY	1352375	non-null
NAS_DELAY	1352375	non-null
SECURITY_DELAY	1352375	non-null
LATE_AIRCRAFT_DELAY	1352375	non-null

Encoding categorical data

- Columns like DEST and OP_CARRIER are categorical
- Encode them for easier machine learning
- Assign unique index to each carrier and airport

Before and after encoding

	FL_DATE	OP_CARRIER	OP_CARRIER_FL_NUM	ORIGIN	DEST	CRS_DEP_TIME	DEP_TIME	DEP_DELAY
0	2018-01- 01	UA	2429	EWR	DEN	1517	1512.0	-5.0
1	2018-01- 01	UA	2427	LAS	SFO	1115	1107.0	-8.0
2	2018-01-	UA	2426	SNA	DEN	1335	1330.0	-5.0

	FL_DATE	OP_CARRIER	OP_CARRIER_FL_NUM	ORIGIN	DEST	CRS_DEP_TIME	DEP_TIME	DEP_DELAY
0	2018-01- 01	0	2429	7	0	1517	1512.0	-5.0
1	2018-01- 01	0	2427	5	1	1115	1107.0	-8.0
2	2018-01- 01	0	2426	52	0	1335	1330.0	-5.0

Exploratory Data Analysis

What is the mean departure delay experienced? How is the departure delay distributed? Are there outliers?

Choosing predictors with high correlation

 After using heatmap, we observed that some correlation are too low or NULL which we do not need

Arrival and Departure delay

Based on the observation, we can see that DEP_DELAY_NEW and ARR_DELAY_NEW are highly correlated.

Outliers

	ARR_DELAY_NEW	DEP_DELAY_NEW
count	7.071818e+06	7.071818e+06
mean	1.342195e+01	1.313459e+01
std	4.348008e+01	4.352941e+01
min	0.000000e+00	0.000000e+00
25%	0.000000e+00	0.000000e+00
50%	0.000000e+00	0.000000e+00
75%	8.000000e+00	7.000000e+00
max	2.692000e+03	2.710000e+03

Applying formula to remove outliers

	ARR_DELAY_NEW	DEP_DELAY_NEW
count	3.670944e+06	3.670944e+06
mean	1.144973e+00	1.398853e+00
std	3.228388e+00	3.481568e+00
min	0.000000e+00	0.000000e+00
25%	0.000000e+00	0.000000e+00
50%	0.000000e+00	0.000000e+00
75%	0.000000e+00	0.000000e+00
max	2.000000e+01	1.700000e+01

Departure Delay

- Delays are mostly negative
- Convert all those negative delays to zeros
- Change to DEP_DELAY_NEW

Heatmap (After removing outliers)

NAS delay is now highly correlated !!!

Corr : 0.29-> -0.87

Airline

TOP 5 Airlines with highest Delay Count

- 1) United Airlines
- 2) Alaska Airlines
- 3) Endeavor Air
- 4) JetBlue Airways
- 5) Express]et

Origin (Cities)

Top 5 States with highest delay count

- 1) Denver
- 2) San Francisco
- 3) O'Hare Airport (Chicago)
- 4) Albany International Airport (New York)
- 5) Omaha (Eppley Airfield)

Machine Learning

How can we predict the departure delay? What models would be suitable for this task? How do we evaluate different models?

Formulating the Prediction Problem

Response Variable: DEP_DELAY_NEW

Predictors: (NAS_DELAY, ORIG, DEST, LATE_AIRCRAFT_DELAY, CARRIER_DELAY, OP_CARRIER)

Loss Function: Mean Squared Error

Metric: Explained Variance, Mean Squared Error

Dataset: 80-20 split of both datasets: Missing Value Removed and Missing Value Imputed

Models for Regression

- Linear Regression: capture linear trends in the data, if any.
- Support Vector Machine: capture complex non-linear trends in the data, if any.
- Dense Neural Network: capture complex non-linear trends and linear trends present in data, if any, by making use of linear and non-linear activations like Rectified Linear Units.
- GridSearch: tune important hyperparameters of SVM.
- XGBoost: apply Gradient Boosting techniques

RESULTS

Which models had the lowest loss? Which generalized the best?

0

Linear Regression Performance

	Missing Value Imputed Training	Missing Value Removed Training	Missing Value Imputed Validation	Missing Value Removed Validation
Explained Variance	0.044	0.815	0.040	0.814
Mean Squared Error	11.59	7.29	11.61	7.3

SVM Regression Performance

	Missing Value Imputed Training	Missing Value Removed Training	Missing Value Imputed Validation	Missing Value Removed Validation
Explained Variance	-0.17	0.78	-0.18	0.78
Mean Squared Error	14.3	8.44	14.28	8.5

Neural Network Performance

XGBoost Regression Performance

	Missing Value Removed Training	Missing Value Removed Validation
Mean Squared Error	4.79	5.77

SLIGHT OVERFITTING!

	Train Loss	Validation Loss
XGBoost	4.79	5.77
Deep Neural Network	6.3061	6.3209
Support Vector Machine	8.445	8.536
Linear Regression	7.294507	7.317763

Recommendations and Insights

What really causes the delay? Can a passenger choose to do something to avoid the delay?

Origin (Cities)

TOP 5 cities with highest average delay time

- 1) STL (St. Louis)
- 2) OAK (Oakland)
- 3) BUR (Burbank)
- 4) LAS (Las vegas)
- 5) BWI (Baltimore/D.C)

Airline

TOP 5 Airlines with highest average delay time

- 1) Southwest Airlines
- 2) Frontier Airlines
- 3) PSA Airlines
- 4) JetBlue Airways
- 5) Allegiant Air

THANK YOU AND HAVE A SAFE FLIGHT!