DFA:

- 1. Draw a DFA for the language accepting strings starting with '101' over input alphabets $\Sigma = \{0, 1\}$
- 2. Construct a DFA that accepts a language L over input alphabets $\Sigma = \{a, b\}$ such that L is the set of all strings starting with 'aa' or 'bb'.
- 3. Draw a DFA for the language accepting strings ending with '011' over input alphabets $\Sigma = \{0, 1\}$? Then draw the transition diagram for the DFA.

<u>NFA:</u>

1. Design a NFA for the transition table as given below:

Present State	0	1
→q0	q0, q1	q0, q2
q1	q3	ε
q2	q2, q3	q3
→q3	q3	q3

- 2. Design an NFA with Σ = {0, 1} accepts all string in which the third symbol from the right end is always 0.
- 3. Construct an NFA with $\Sigma = \{0, 1\}$, where each string must contain either "01" or "10".

4. Draw the Transition Table for the above NFA