Chapter 4 Taylor Series

- 4.1 Taylor Polynomials
- 4.2 Taylor's Theorem
- 4.3 Sequences
- 4.4 Infinite Series
- 4.5 Tests for Series Convergence
- 4.6 Taylor Series
- 4.7 Power Series
- 4.8 Manipulation of Power Series

4.1 Taylor Polynomials

Many differentiable functions e.g., $\sin, \cosh, \log, \exp, ...$ etc, can be well approximated by polynomials:

$$f(x) \approx a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n = p_n(x).$$

The higher the degree n the better the approximation, provided we make good choices for a_0, a_1, \ldots Why would we do this?

- polynomials are easy to manipulate their derivatives and integrals are also polynomials.
- polynomials are easy to evaluate a finite number of additions and multiplications.
- polynomial approximations can be used to evaluate functions in computer packages and calculators.

Example 1 Find approximating polys for $y = e^x$ near x = 0.

SOLUTION: We already know a good approximation by a degree 1 poly: the tangent at x=0. So

$$p_1(x) = 1 + x \approx e^x$$

This p_1 has the same value as e^x at zero, and the same derivative: that's the definition of the tangent.

For p_2 the obvious thing to do is set the second derivatives the same at x = 0.

As the Notes point out, this leads us to

$$p_2(x) = 1 + x + \frac{1}{2}x^2 \approx e^x$$

Repeating the idea will give us $p_3(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3$. Is this any good?

Well, we can do some calculations, to see if the polys are getting better at finding, say $e^{0.1}$:

n	$p_n(x)$	$p_n(0.1)$	$ f(0.1) - p_n(0.1) $
1	1+x	1.1	5.17×10^{-3}
2	$1 + x + \frac{x^2}{2}$	1.105	1.71×10^{-4}
3	$1 + x + \frac{x^2}{2} + \frac{x^3}{6}$	1.10516	4.25×10^{-6}

This looks promising.

We can plot these approximations easily enough too...

This example has given us a method of determining the coefficients a_k in

$$f(x) \approx a_0 + a_1 x + a_2 x^2 + \dots a_n x^n$$

$$f(x) \approx a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \dots \Rightarrow f(0) \approx a_0$$

$$f'(x) \approx a_1 + 2a_2 x + 3a_3 x^2 + 4a_4 x^3 + \dots \Rightarrow f'(0) \approx a_1$$

$$f''(x) \approx 2a_2 + (3)(2)a_3 x + (4)(3)a_4 x^2 + \dots \Rightarrow f''(0) \approx 2a_2$$

$$f'''(x) \approx (3)(2)a_3 + (4)(3)(2)a_4 x + \dots \Rightarrow f'''(0) \approx 3!a_3$$

$$f^{(iv)}(x) \approx (4)(3)(2)a_4 + (5)(4)(3)(2)a_5 x + \dots \Rightarrow f^{(iv)}(0) \approx 4!a_4$$

$$\implies f^{(k)}(0) = k! a_k \quad \Rightarrow \quad a_k = \frac{f^{(k)}(0)}{k!}$$

Suppose that f(x) is n times differentiable at a then the nth Taylor polynomial of f about a is

$$p_n(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + \dots$$
$$\dots + \frac{1}{n!}f^{(n)}(a)(x - a)^n$$
$$= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x - a)^k$$

The above formula is merely a definition of the polynomials $p_n(x)$.

A priori, it is not known whether or in what sense $p_n(x)$ may be regarded as an approximation of f(x) near x=a, or it ever can.

Example 2 Find Taylor polynomials for sin(x) about 0.

SOLUTION: Calculating:

$$f^{(0)}(x) = \sin x \qquad f^{(0)}(0) = 0$$

$$f^{(1)}(x) = \cos x \qquad f^{(1)}(0) = 1$$

$$f^{(2)}(x) = -\sin x \qquad f^{(2)}(0) = 0$$

$$f^{(3)}(x) = -\cos x \qquad f^{(3)}(0) = -1$$

$$f^{(4)}(x) = \sin x \qquad f^{(4)}(0) = 0$$

The pattern repeats from here. So, for example,

$$p_3(x) = x - \frac{x^3}{3!},$$
 $p_4(x) = x - \frac{x^3}{3!},$ $p_5(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$

Note that all the Taylor polynomials around zero are odd – as is the sine.

Plotting:

Here we plot:

$$f(x) = \sin(x)$$

$$p_5(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

$$p_3(x) = x - \frac{x^3}{3!}$$

$$p_7(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$

Example 3 Find the Taylor polynomial $p_4(x)$ for $\ln(x)$ about x = 1.

SOLUTION: Note that we could not find the polynomials around x=0 as the log is not defined there. But

$$f^{(0)}(x) = \ln x \qquad f^{(0)}(1) = 0 \qquad \qquad f^{(1)}(x) = \frac{1}{x} \qquad f^{(1)}(1) = 1$$

$$f^{(2)}(x) = -\frac{1}{x^2} \qquad f^{(2)}(1) = -1 \qquad \qquad f^{(3)}(x) = \frac{2}{x^3} \qquad f^{(3)}(1) = 2$$

$$f^{(4)}(x) = -\frac{6}{x^4} \qquad f^{(4)}(1) = -6$$

So

$$p_4(x) =$$

Taylor Polynomials to Remember

(all around zero note)

$$\frac{1}{1-x} \rightarrow 1 + x + x^2 + x^3 + x^4 + \dots + x^n$$

$$\log(1-x) \rightarrow -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots - \frac{x^n}{n}$$

$$e^x \rightarrow 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!}$$

$$\sin x \rightarrow x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{\frac{1}{2}(n-1)} \frac{x^n}{n!} \qquad n \quad \text{odd}$$

$$\cos x \rightarrow 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^{\frac{1}{2}n} \frac{x^n}{n!} \qquad n \quad \text{even}$$

The sign of the last term in the polynomials for sine and cosine is chosen to fit the pattern of alternating signs.

Example 4 Prove
$$f(x) = \frac{1}{1-x}$$
 has Taylor polynomial $\sum_{k=0}^{n} x^k$

around 0.

SOLUTION: We need a formula for the derivatives of f. Calculating the first few:

$$f'(x) = \frac{1}{(1-x)^2}, \quad f''(x) = \frac{2}{(1-x)^3}, \quad f'''(x) = \frac{6}{(1-x)^4}...$$

suggests a pattern:

Clearly we'd prove this by induction.

The base case, k=0, fits this pattern, which is the first stage of the proof.

For the second stage, assume that, for some k,

$$f^{(k)}(x) =$$

$$f^{(k+1)}(x) =$$

the result follows by induction.

So $f^{(k)}(0) = k!$ for all k, and the Taylor polynomial of degree n is

$$\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (x-0)^k = \sum_{k=0}^{n} x^k$$

as required.

4.2 Taylor's Theorem

Taylor polynomials may provide good approximations to functions.

But how good are they?

What is the error?

Clearly it depends on the position x and the degree of the polynomial!

Theorem 4.1 (Taylor's Theorem) *If* f(x) *has* n + 1 *continuous derivatives on an open interval* I *containing* a *then for each* $x \in I$

$$f(x) = p_n(x) + R_{n+1}(x)$$

with

$$p_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k \qquad (Taylor polynomial)$$

where the **remainder** is

$$R_{n+1}(x) = \frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} dt.$$

The remainder is the error in approximating a function f(x) by a Taylor polynomial.

Proof: (outline)

$$\begin{split} \int_0^x f'(t) \, dt &= f(x) - f(0) \\ \Rightarrow f(x) &= \underbrace{f(0)}_{p_0(x)} + \underbrace{\int_0^x f'(t) \, dt}_{R_1(x)} \quad \text{integration by parts} \\ &= f(0) + \int_0^x \underbrace{f'(t)}_{u(t)} \underbrace{\frac{1}{dv}}_{dt} \, dt \quad \text{choose v carefully} \\ &= f(0) + \underbrace{f'(t)}_{u(t)} \underbrace{(t-x)}_{v(t)} \Big|_0^x - \int_0^x \underbrace{(t-x)}_{v(t)} \underbrace{f''(t)}_{dt} \, dt \\ &= \underbrace{f(0) + xf'(0)}_{p_1(x)} + \underbrace{\int_0^x f''(t)(x-t) \, dt}_{R_2(x)_{\text{John Steele's Notes, 2018}} \underbrace{-p.5}_{p_1(x)} \end{split}$$

Theorem 4.2 (Lagrange Remainder) *If* f(x) *has* n + 1 *continuous derivatives on an open interval* I *containing* a *then for each* $x \in I$

$$f(x) = p_n(x) + R_{n+1}(x)$$

with

$$p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k \qquad (Taylor polynomial)$$

where the Lagrange formula for the remainder is

$$R_{n+1}(x) = \frac{f^{(n+1)}(\mathbf{c})}{(n+1)!}(x-a)^{n+1}.$$

where c is some real number between a and x.

Proof: The proof of the Lagrange formula is in the tutorial exercises: it's really a quite simple application of one of several mean value theorems for integrals.

Note: Taylor's theorem in the form

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

extends the mean value theorem.

Consider the n=0 case. Then,

$$f(x) = f(a) + f'(c)(x - a)$$

$$\Rightarrow f'(c) = \frac{f(x) - f(a)}{x - a} \qquad \text{MVT}$$

The Lagrange form is easier to remember, and more useful.

In particular, if we approximate a function by a Taylor polynomial then the remainder term provides the error in this approximation:

$$|f(x) - p_n(x)| = |R_{n+1}(x)| \equiv |f^{(n+1)}(c)| \left| \frac{(x-a)^{n+1}}{(n+1)!} \right|,$$

where c is between x and a.

It is usually not possible to find c but it is often possible to find an Upper Bound Error.

Suppose we are using $p_n(x)$ to approximate f(x) on some interval I=[a-b,a+b].

If we know that $|f^{(n+1)}(x)| \leq M$ on I, then

error
$$\leq \frac{M}{(n+1)!}b^{n+1}$$
 for all $x \in I$.

Example 5 *Consider* $f(x) = \exp x$ *on* [-0.1, 0.1].

We used the Taylor polynomials to approximate $e^{0.1}$ in example 1 and got $e^{0.1} \approx 1.105$.

We can use this to put a bound on the error in using the Taylor polynomials to approximate e^x on the interval [-0.1, 0.1]

The error is given by the remainder, so if $x \in [-0.1, 0.1]$, then the error in using the nth Taylor polynomial to calculate e^x is

$$R_n(x) = \frac{e^c}{(n+1)!} x^{n+1}$$

for some c between x and 0.

We don't know c, but

So looking at an upper bound on the error,

$$|R_n(x)| \le$$

for
$$x \in [-0.1, 0.1]$$
.

Our overestimate above gives us error for $p_3(x)$ less than

More generally, we see that in our interval [-0.1, 0.1], each extra term in the Taylor polynomial can be expected to give us at least one extra decimal place of accuracy — again, in line with what we saw in example 1.

4.2.1 Classifying Sationary Points

Taylor's theorem can be used to improve the classification of stationary points that you learnt in School:

Example 6 Examine the behaviour of $f(x) = e^{-x^3}$ near x = 0.

SOLUTION: Now $f'(x) = -3x^2e^{-x^3}$, so x = 0 is a stationary point (SP).

We try the second derivative test:

$$f''(x) = -6xe^{-x^3} + 9x^4e^{-x^3} = (9x^4 - 6x)e^{-x^3}$$
 so $f''(0) = 0$

and the 2nd derivative test has failed.

Note however that

$$f'''(x) = (36x^3 - 6)e^{-x^3} - 3x^2(9x^4 - 6x)e^{-x^3}$$
 so $f'''(0) = -6$

Now Taylor's theorem tells us that

$$f(x) = f(0) + \frac{1}{3!}(-6)x^3 + \frac{1}{4!}f^{(iv)}(c)x^4 = 1 - x^3 + \frac{1}{24}f^{(iv)}(c)x^4$$

for some $c \in (0, x)$.

We don't need to write the fourth derivative down to see that it will be e^{-c^3} times some polynomial in c.

Thus the remainder term will be x^4 times a polynomial in c < x times e^{-c^3} , and so for small x will be small in comparison to $1-x^3$.

Thus f ought to behave like $1-x^3$ near zero, that is it should have a point of inflection.

This is in fact the case, as we could see by noting that the derivative is never positive.

We can generalise the previous example:

Theorem 4.3 Suppose that f is n times differentiable at a and f'(a) = 0. Then, if $k \le n$ and

$$f''(a) = f'''(a) = \dots = f^{(k-1)}(a) = 0$$
 but $f^{(k)}(a) \neq 0$

we have

a local minimum at a if k is even and $f^{(k)}(a) > 0$

a local maximum at a if k is even and $f^{(k)}(a) < 0$ an inflection point at a if k is odd

Proof: See Notes

Example 7 Show that $f(x) = \sin(x^4)$ has a local minimum at x = 0.

SOLUTION: Clearly $f'(x) = 4x^3 \cos(x^4)$ and so f'(0) = 0, hence zero is a SP.

Higher derivatives will need the product rule:

$$f''(x) =$$

Applying our theorem with a=0,

Remark. The previous example shows that we need to address the following two big questions:

• Given the Taylor polynomials p_n of a function f about a, can we make sense of

$$p_{\infty}(x) := \lim_{n \to \infty} p_n(x)?$$

 If so, under what circumstances is a function represented by its Taylor series, that is

$$f(x) = p_{\infty}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^{k} ?$$

4.3 Sequences

A **sequence** is a function

$$f: \mathbb{N} \to \mathbb{R}$$

whose domain is \mathbb{N} and codomain is \mathbb{R} .

Notation:

- We usually use a, b etc rather than f and g.
- We usually write a_n instead of a(n) etc.
- We usually denote a sequence by $\{a_n\}_{n=0}^{\infty}$ or $\{a_n\}$.
- A sequence does not have to start at n = 0, e.g. $\{a_n\}_{n \ge 1}$

Examples – closed form

a)
$$a_n = n, \{0, 1, 2, \ldots\}$$

b)
$$a_n = n^2$$
, $\{0, 1, 4, 9, \ldots\}$

c)
$$a_n = \frac{1}{n+1}$$
, $\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$

d)
$$a_n = \frac{(-1)^n}{n+1}, \qquad \left\{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots\right\}$$

Examples – recursion or sum

a)
$$a_0 = 1$$
, $a_n = \frac{a_{n-1}}{n}$, $n \ge 1$

b)
$$a_n = a_{n-1}^2 + \frac{1}{a_{n-2}}, \quad a_0 = 1, \ a_1 = 1$$

c)
$$a_n = \begin{cases} 1 & \text{if } n = 1, 2 \\ a_{n-1} + a_{n-2} & \text{if } n \ge 3 \end{cases}$$

d)
$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$$

4.3.1 Limiting behaviour of sequences

We want to know how a sequence $\{a_n\}$ behaves as $n \to \infty$.

Does it settle down; or grow without bound; or oscillate?

Definition: A number L is the **limit** of $\{a_n\}$ if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|a_n - L| < \epsilon$ whenever $n \geq N$. In other words, the members of the sequence get close to L and stay close to L as n gets large.

Notation:

$$\lim_{n\to\infty}a_n=L\quad\text{or}\quad a_n\to L\quad\text{as}\quad n\to\infty$$

A sequence that has a limit is said to **converge** or be **convergent**.

Geometrically, the definition looks like this:

Example 8 Prove that $\lim_{n\to\infty} \frac{n-1}{n+1} = 1$.

SOLUTION: Let
$$a_n = \frac{n-1}{n+1}$$
.

As with functions, we begin with

$$|a_n - L| = \left| \frac{n-1}{n+1} - 1 \right| =$$

Given any $\epsilon > 0$, we want $|a_n - L| < \epsilon$, and we can achieve this by making

Or in other words,

So take
$$N = n$$
, and if $n > N$ then $|a_n - 1| < \epsilon$.

A sequence that does not converge diverges, or is divergent.

There are several ways a sequence can diverge.

- (i) a_n diverges to ∞ if $a_n \to \infty$ as $n \to \infty$. (For every $M \in \mathbb{R}$ there exists an $N \in \mathbb{N}$ such that $a_n > M$ whenever $n \geq N$.)
- (ii) a_n diverges to $-\infty$ if $a_n \to -\infty$ as $n \to \infty$.
- (iii) a_n is **boundedly divergent** if $\{a_n\}$ remains bounded $(|a_n| < K \text{ for every } n)$ but does not approach a limit.
- (iv) a_n is **unboundedly divergent** if diverges but not as in i), ii) or iii).

Examples

a)
$$a_n = n^2$$

b)
$$a_n = -n$$

c)
$$a_n = (-1)^n$$

d)
$$a_n = (-1)^n n$$

e)
$$\sin(n) \left(1 + \frac{1}{n}\right)^{3n}$$

4.3.2 Calculating limits of sequences

Suppose $a_n \to L$ and $b_n \to \ell$ as $n \to \infty$. Then

Rule 1 $a_n + b_n \to L + \ell$ unless $L + \ell$ has the form $\infty - \infty$

Rule 2 $a_n b_n \to L\ell$ unless $L\ell$ has the form $0 \cdot (\pm \infty)$

Rule 3 $\frac{a_n}{b_n} o \frac{L}{\ell}$ unless $\frac{L}{\ell}$ has the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$

Rule 4 $\alpha a_n \rightarrow \alpha L$ for all real α .

Summary: limits of sequences behave nicely under the usual arithmetic operations.

Example 9 Find
$$\lim_{n\to\infty} \sqrt{n^2 + 3n} - n$$

SOLUTION:

$$\lim_{n \to \infty} \sqrt{n^2 + 3n} - n = \lim_{n \to \infty} \frac{(\sqrt{n^2 + 3n} - n)(\sqrt{n^2 + 3n} + n)}{(\sqrt{n^2 + 3n} + n)}$$

John Steele's Notes, 2018

Theorem 4.4 Let f be a function which is continuous at a and $\{a_n\}$ be a sequence with the following properties:

i) a_n lies in the domain of f for all n,

ii)
$$a_n \to a$$
 as $n \to \infty$

Then
$$f(a_n) \to f(a)$$
 as $n \to \infty$.

This is a very useful result: it can best be remembered as saying that if f is continuous then

$$f\left(\lim_{n\to\infty}a_n\right) = \lim_{n\to\infty}f(a_n)$$

i.e. we can swap the limit and the function.

The commonest use of this result is with the exponential and log.

Example 10 Find $\lim_{n\to\infty} \alpha^{\frac{1}{n}}$ for $\alpha>0$.

SOLUTION: We apply a standard trick: $a_n = \exp(\ln(a_n))$. As the exponential is continuous everywhere:

$$\lim_{n \to \infty} \alpha^{\frac{1}{n}} = \exp\left(\lim_{n \to \infty} \frac{1}{n} \ln \alpha\right)$$

_

Theorem 4.5 Given a sequence f(n) for $n \in \mathbb{N}$, if one can extend the sequence to a function $f : \mathbb{R} \to \mathbb{R}$ with

$$\lim_{x \to \infty} f(x) = L$$

then

$$\lim_{n \to \infty} f(n) = L.$$

Notes:

- a) This theorem enables us to calculate limits of sequences in a similar fashion to limits of functions.
- b) In particular, it allows us to call on L'Hôpital's Rule.
- c) Note that $\lim_{n\to\infty} f(n)$ might converge but $\lim_{x\to\infty} f(x)$ diverge, for example $f(x) = x\sin(\pi x)$.

Example 11 Find $\lim_{n\to\infty} \frac{\ln n}{n}$.

SOLUTION: Let
$$f(x) = \frac{\ln x}{x}$$
, so that $a_n = \frac{\ln n}{n} = f(n)$.

It is a routine application of L'Hôpital's rule to find $\lim_{x\to\infty} f(x)$:

Let
$$g(x) = \ln x$$
 and $h(x) = x$, so that $f(x) = \frac{g(x)}{h(x)}$.

Both g and h are differentiable and

$$\lim_{x \to \infty} \frac{g'(x)}{h'(x)} =$$

so by L'Hôpital's rule, $\lim_{x\to\infty}f(x)=$

Hence
$$\lim_{n\to\infty}\frac{\ln n}{n}=$$

Example 12 Find $\lim_{n\to\infty} n^{\frac{1}{n}}$.

SOLUTION:

The Notes prove the important result

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

which you must know.

Pay careful attention to the method of proof.

They also quote the useful:

Theorem 4.6 (Pinching Theorem) Suppose that $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are sequences and that for some positive integer N the inequality

$$a_n \le b_n \le c_n$$

is satisfied whenever n > N.

If
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$$
 then $\lim_{n\to\infty} b_n = L$.

Example 13 Let $a_n = \frac{n!}{n^n}$. Find $\lim_{n \to \infty} a_n$, if it exists.

SOLUTION: We have

$$a_n = \frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdot \dots \cdot \frac{n}{n}$$

$$\leq \frac{1}{n} \cdot \frac{n}{n} \cdot \frac{n}{n} \cdot \dots \cdot \frac{n}{n} = \frac{1}{n}$$

whenever $n \geq 1$.

On the other hand, a_n is always positive.

Thus

$$0 \le a_n \le \frac{1}{n}.$$

As $n \to \infty$ we conclude that $a_n \to 0$ by the pinching theorem.

Which is the biggest of them all?

a_n	growth as $n \to \infty$
1	constant
$\ln n$	slow growth
n^k $(k>0)$	faster for larger k
$c^n (c > 1)$	faster for larger c
n!	rapid
n^n	very rapid

Theorem 4.7 *i)* Let a_n be an increasing sequence that is bounded above, i.e.,

$$a_0 \le a_1 \le \ldots \le a_{n-1} \le a_n \le \ldots \le K.$$

Then, a_n converges to some real number $L \leq K$.

ii) Let a_n be a decreasing sequence that is bounded below, i.e.,

$$a_0 \ge a_1 \ge \ldots \ge a_{n-1} \ge a_n \ge \ldots \ge K$$

Then, a_n converges to some real number $L \geq K$.

Sequences in this theorem are called monotonic.

The proof of this result depends crucially on a deep property of the real numbers.

If the sequence is rational then the limit may not be rational.

Example 14 Define the sequence a_n by $a_0 = 3$, and

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{3}{a_n} \right)$$
 for $n \ge 1$.

Show that $a_n \ge \sqrt{3}$ for all n, that $\{a_n\}$ is decreasing and find its limit.

SOLUTION: The am/gm inequality says that for positive numbers \boldsymbol{x} and \boldsymbol{y}

$$\frac{1}{2}(x+y) \ge \sqrt{xy}$$

(proof: EXERCISE). Applying this to the formula for a_{n+1} gives

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{3}{a_n} \right) \ge \sqrt{3}$$

proving the first part.

For the second part

$$a_{n+1} - a_n = \frac{1}{2} \left(\frac{3}{a_n} - a_n \right) = \frac{1}{2a_n} (3 - a_n^2) \le 0$$

by what we have just proved.

So $\{a_n\}$ is a decreasing bounded sequence and hence converges.

Now

$$\lim_{n \to \infty} a_{n+1} = \frac{1}{2} \left(\lim_{n \to \infty} a_n + \frac{3}{\lim_{n \to \infty} a_n} \right).$$

If the limit is L, we have

$$L = \frac{1}{2} \left(L + \frac{3}{L} \right)$$
 i.e. $L^2 = 3$

and as $L \ge \sqrt{3}$ we must have $L = \sqrt{3}$.

4.3.3 Suprema and Infima

Suppose that $\{a_n\}_{n=0}^{\infty}$ is a sequence of real numbers.

- M is an upper bound if $a_n \leq M$ for all $n \in \mathbb{N}$.
- M is a lower bound if $a_n > M$ for all $n \in \mathbb{N}$.
- K is the least upper bound or supremum if K is an upper bound and $K \leq M$ for any other upper bound M. (supremum is latin for the greatest)
- K is the greatest lower bound or infimum if K is a lower bound and $K \ge M$ for any other lower bound M. (infimum is latin for lowest part)

Notation

Suppose that $\{a_n\}_{n=0}^{\infty}$ is a sequence of real numbers.

The least upper bound or supremum is written as

$$\sup_{n>0} a_n \qquad \bullet$$

 $\sup a_n \qquad \text{or} \qquad \sup \left\{ a_n : n \ge 0 \right\}$

The greatest lower bound or infimum is written as

$$\inf_{n>0} a_n$$

$$\inf_{n>0} a_n \qquad \text{or} \qquad \inf\left\{a_n : n \ge 0\right\}$$

Notes

- Every non-empty set of reals bounded from above has a unique supremum.
- Every non-empty set of reals bounded from below has a unique infimum.
- The supremum is like the largest element of a set.
 The infimum is like the smallest element of a set.
- The supremum and infimum do not need to be elements of the set.
- If the set has a maximum then the maximum is the supremum.
- If the set has a minimum then the minimum is the infimum.

Example 15 Let
$$A = (-1, 1)$$
 and $B = \left\{ \frac{1}{n}, n = 1, 2, \dots \right\}$.

Find sup A, sup B, inf A and inf B.

SOLUTION: It is easy to see that $\sup A = 1$: 1 is an upper bound for A and no number less that 1 is an upper bound.

Similarly, $\inf A = -1$.

Note that neither $\sup A$ nor $\inf A$ are in A.

Since $B=\left\{1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\dots\right\}$, 1 is the maximum element of B and so $\sup B=1$.

All elements of B are positive, so 0 is a lower bound for B.

In fact, $0 = \inf B$: for any number $\epsilon > 0$, let $N = \lceil \epsilon^{-1} \rceil + 1$.

Then $\epsilon > \frac{1}{N} \in B$, so ϵ is not a lower bound for B.

Hence $0 = \inf B$.

Example 16 Find $\sup\{a_n : n \ge 1\}$ and $\inf\{a_n : n \ge 1\}$ given that

$$a_n = \frac{n^2 + (-1)^n n + 1}{n^2 + (-1)^{n+1} n + 2}$$

$$\sup\{a_n\} = a_2 = \frac{7}{4}$$

$$\inf\{a_n\} = a_1 = \frac{1}{4}$$

To prove this show that $\{a_{2k}\}$ is a decreasing sequence bounded below by 1 and $\{a_{2k+1}\}$ is an increasing sequence bounded above by 1.