

Air Force Institute of Technology

Educating the World's Best Air Force

COMPOSABLE SIMULATION RESEARCH AT THE AIR FORCE INSTITUTE OF TECHNOLOGY

MAJOR KARL S. MATHIAS
Deputy Head, Department of
Electrical and Computer
Engineering

I n t e g r i t y - S e r v i c e - E x c e l l e n c e

Introduction

- Problem: Need technology for rapidly specifying and building simulation scenarios
- Approach: Investigate visual languages for specification of simulation scenarios, develop advanced, intelligent component repositories
- Results:
 - Prototype extensions to UML that allow specification of simulation scenarios
 - Created repository that uses modern information retrieval techniques to store/extract scenario components

Overview

- The Air Force Institute of Technology
- Visual Languages for Simulation Modeling
 - Problems with Representation
 - What Makes a Good VL for Composable Sim?
 - Results/Future Work
- Intelligent Scenario Component Repositories
 - Problems with Building Scenarios
 - Using Info Retrieval Engines/Parser Generators/XML
 - Results/Future Work

- The Air Force's Graduate School
- Graduate 150 – 200 Students Per Year
 - Master's, PhD Programs
 - EE, Comp Sci, Ops Research, Physics, Aero, Environmental Research, Info Sys Mgt, etc.
 - Officers: Average rank O-2
 - Enlisted: Starting this fall, average rank E-7
- Focused on DoD, AF Research Problems
- Partnered with Industry when Possible

Visual Languages

Visual Languages

- Object-Oriented Analysis Design Languages
 - Can be traced back to the 1970's (Chen's ER diagrams)
 - By early 1990's, over 50 methods available
 - Major players: Booch, Rumbaugh, Jacobs, Coad & Yourdan
- Unified Modeling Language
 - Unification of Booch, Rumbaugh, Jacobson under one methodology
 - Structure, Behavior, Use Cases under one roof
 - Aimed at the world, but used almost exclusively for software engineering

What Makes a VL Good?

- Expressiveness – Can it express everything needed?
- Frequency of Errors – Does it avoid user mistakes?
- Redundancy – Does it avoid redundant specifications?
- Locality of Change – Do changes propagate and cause undesirable side-effects?
- Reusability – Does it promote component reuse?
- Reliability – Does it promote model consistency?
- Translatability – Can it be translated into a simulation?
- Compatibility – Does it favor one specific sim domain?

Why Not UML?

- Appears to be an 80% solution
 - Excellent ability to specify static architectures
 - Some behavior specification (interaction,S-T diagrams)
- Scenario specifications are UML “instance diagrams”
 - UML has limited facilities to support instance diagrams
 - Behavior must be thought of abstractly
 - Temporal behavior difficult to specify (“Unit 23 arrives at 1600 hrs”)
 - Scalability issues - can't design a component and then use it as a “black box” in other designs
 - Oriented toward engineers – not analysts

Approach

- Common Design Pattern: Most sim domains are composed of:
 - Components: (Logic Gates, Queues, Aircraft, Weapon)
 - Relations: (Cables, Links, Command Chain)
- Analysts:
 - Browse Components
 - Instantiate into Environment
 - Connect to Other Components
 - Invoke Model Consistency Check
 - Translate into Simulation Scenario Syntax

VL Elements

A_DataType

AnInt:int

AString:String

Analogous to “class”

- Grouping and Abstraction Mechanism

○ A_PortType

ADouble:double

ALong:long

- A special type of “class” that specifies a port type
- Interface of component

↔ A_RelationType

AChar:char

ABoolean:boolean

- Specifies a relation type in the modeling domain

□ A_ComponentType

AFloat:float

APortInstance:A_PortType

AnotherOne:A_PortType

- Specifies a component type in the modeling domain

VL Elements

Type Extension
→

- Analogous to “inheritance”

Composition
← →

- Analogous to “composition”
- Strong Coupling

Port Selection → Type

- Visualizes the port types that a relation type connects

Low-Level Design

Component Design

Component Design

What's Next?

- Behavior Specification!
 - Is a common representation possible?
 - Can we still check consistency of the model?
- Thinking Out Loud ...
 - How do we handle temporal events?
 - State-Transition Diagrams?
 - Petri-Nets?
 - How do we make them usable by “Joe/Jane Analyst?”
 - Do these concepts apply to components created by programmers as well as those created by scenario simulation grammars?

Intelligent Repositories

Current Process

- Manual Integration of Other Models and Sources
- Reuse Limited to Same Formats
- Use “vi” in Development and Searching
- Bottom Line: Manually Intensive

TRW: JIMM GUI TLD

Desired Process

- Central Repository for Simulation Entities
- Use Information Retrieval (IR) to Search
- Automatic Format Conversion
- Direct Input to Scenario Development

Methodology

1. Parsing

- Files to Java Objects

2. Modeling

- Data and Metadata
- Index and Repository Architecture

3. Information Retrieval

- Scoring and Retrieval of Documents Based on Query

4. Presentation

- Transformations, Editors, and Export Functions
- User Interface

Design

AST - Abstract Syntax Tree

JavaCC - Java Compiler Compiler

JIMM - Joint Integrated Mission Model

MIX - Metadata In XML

ROSE - Repository Of Simulation Entities

SDB - Scenario Database

SMART - Simulation Model Analysis, Retrieval, and Transformation

TDB - Type Database

XML - eXtensible Markup Language

1. Parsing

- Why?
 - Convert large text files into more manageable objects
- What's different
 - JavaCC - Higher level of abstraction than customized parsers
- Advantages:
 - Language Specifications translate naturally to grammar definitions
 - Improves Program Understanding
 - Ease of maintenance
- Disadvantage:
 - Creates one enormous parser file → JIMM TDB broke JVM

2. Data Modeling

- Metadata: descriptions about actual data
- Why?
 - Work with metadata instead of actual data object
 - IR models access metadata
 - Feeds index processor
- Advantages:
 - Faster
 - More Flexible
 - Source left uncontaminated
- Disadvantage:
 - Another layer of abstraction

MIX Design

- Metadata in XML (MIX)
- Data Independent
 - User Defined Actions
- Highly Extensible
 - New Sim Model
 - New Content Handler
- Universal Data Treatment
 - IR point of view
 - Repository

Repository

- Repository: Storage for heterogeneous data objects
- Why?
 - Need to handle various simulation models and source documents
- Design Features
 - OODBMS
 - Single, Integrated
- Advantages:
 - OO: Direct storage of objects; relationships maintained directly
 - DBMS: Manages Index, Caching, Transactions, etc.
- Disadvantage:
 - Adds complexity to accommodate OODBMS

ROSE Design

ROSE: Repository Of Simulation Entities

* note: not all possible lines drawn

3. Information Retrieval

- Information Retrieval (IR):
 - Ranked list of documents relevant to query terms
 - *Similarity* score between query and document
- Data Retrieval:
 - Structured Query Language (SQL) returns unordered list of boolean rated documents (go/no-go) Query: *jet planes*

IR Models

- Boolean

$$sim(q, d_j) = \begin{cases} 1 & \text{if } \exists q_{cc} | (q_{cc} \in q_{dnf}) \wedge (\forall k_i, g_i(d_j) = g_i(q_{cc})) \\ 0 & \text{otherwise} \end{cases}$$

- Extended Boolean

$$sim(q_{and}, d_j) = \left\| \frac{(1 - x_1)^p + (1 - x_2)^p + \dots + (1 - x_m)^p}{m} \right\|^{\frac{1}{p}}, \text{ where } x_i = \frac{freq}{\max.freq} \cdot \frac{idf}{\max.idf}$$

- Vector Model

$$sim(d_j, q) = \frac{\sum_{i=1}^t w_{ij} \times w_{iq}}{\sqrt{\sum_{i=1}^t w_{ij}^2} \times \sqrt{\sum_{i=1}^t w_{iq}^2}}, \quad \text{where } w_{ij} = \frac{freq_j}{\max.freq_j} \times \log \frac{N}{n_i}$$

4. Presentation

- Transformations
 - N^2 Possibilities (Model to Model')
 - JIMM SDB to JIMM SDB
 - JIMM SDB to JIMM TDB
 - JIMM SDB to SUPPRESSOR SDB
 - and so on...
- Visitor Design Pattern
 - Incremental Development
 - Customizable

SMART Tool :: Analyst's Perspective: JIMM

File Edit View Options Database Help

Repository View: Extended Boolean, p = 100 Advanced Search Clear Search

Repository Of Simulation Entities (ROSE)

- RoseRoot
 - SDB :: final_battle_sam.sdb
 - TDB :: final_battle_sam.tdb
 - GROUP-STRUCTURE message_users
 - PLAYER-STRUCTURE long_sam
 - TACTIC long_sam_tactics
 - SUSCEPTIBILITY long_sam_sig
 - CAPABILITY long_sam_telar_data
 - CAPABILITY for rdr search_pc_data

Advanced Search Window Open.
Enter query in Advanced Search Window.

Entity Info
You selected:
PLAYER-STRUCTURE long_sam

Query Results: Transform Selected Query Result

- PLAYER-STRUCTURE long_sam_missile
- PLAYER: 1 long_sam_missile
- PLAYER: 13 long_sam_missile
- PLAYER: 25 long_sam_missile
- PLAYER: 37 long_sam_missile
- PLAYER-STRUCTURE cntrl_close_sam
- PLAYER-STRUCTURE long_sam
- PLAYER: 4 long_sam
- PLAYER: 4 long_sam

Statistics:

Query Completed using Extended Boolean Model,
p = 100.0.
Query Text: "long sam missile"
Found in 46 document(s)
out of 138 documents.
Query Time: 0.17 seconds

Exportable Code: Preview Clear Code

```
PLAYER: __ long_sam_missile LEVEL: __  
$ comment line  
PLATFORM: 1 long_sam_missile_enroute  
ELEMENT: 11 long_sam_missile_ele DISCRETE QUANTITY: 1  
  
SNR-RCVR 116 long_sam_missile_rx ON  
SNR-XMTR 117 long_sam_missile_tx ON
```

Action Successful. Transformed to: JIMM Model Format

What's Next?

- Unification of repository technology with visual language tool
- Transitioning to non-simulation work
 - Imagery collections for ATR research
 - Imagery collections for intelligence communities
- Areas to investigate:
 - Distributed, collaborative repositories
 - Agent technologies
 - New IR models
 - Storing non-text components (binary executable components)
 - Transform techniques for other information sources

Questions

Background Slides

IR Model Modifications

A. Dynamic Document Level (DDL) Algorithm

- Takes Advantage of Hierarchical Structure

B. Global vs Local Analysis

- Normalization Factors
- Affects Score and Query Execution Time

C. Analyst's Point of View Factor

- Better Interpret User's Query

A. Dynamic Document Level

- Books → Chapters → Paragraphs → Sentences → Words

- Return results at each granularity level
- Affects how term weights are calculated
- Dynamically apply IR Models
- Calculated on the fly per query submitted

A. Dynamic Document Level

JIMM HIERARCHICAL STRUCTURE

- (S)TDB → Players → Platforms → Elements

...

A. DDL Benefits

- Returned documents isolated to analyst's needs
 - e.g. Player only returned
- Increased Precision rates
 - Eliminates "noise"
 - Specific level returned

Query Results:	Transform Selected Query Result	Statistics:
PLAYER: 1 long_sam_missile		<p>Query Completed using Extended Boolean Model, $p = 100.0$.</p> <p>Query Text: "long sam"</p> <p>Found in 48 document(s) out of 48 documents.</p> <p>Query Time: 0.13 seconds</p>

B. Global vs Local Analysis

- Global - Documents in the entire collection
- Local - Documents retrieved from query terms
- $\text{Max Freq}_{i,j}$
 - Global
 - Terms NOT in query affects document score
 - Local
 - More correct interpretation
 - Slight additional overhead to query execution time
- Max IDF_i
 - Global and Local results in same relative ranking
 - Local
 - Faster Query Execution Time

C. Point of View Factor

- Analyst's Point of View Factor
 - Biased Ranking - towards desired simulation model
 - Based on relative similarity of simulation models
- Preliminary Factors Used

	JIMM	SUPPRESSOR	MSFD
JIMM	1.0	0.8	0.6
SUPPRESSOR	0.8	1.0	0.6
MSFD	0.6	0.6	1.0

IR Evaluations

- Based on Precision at 100% Recall
 - Precision – number of non-relevant documents retrieved
 - Recall – number of relevant documents retrieved
 - Precision at 100% Recall – how much “noise” in system
- Extended Boolean performed the best

Query: *player: long_sam radio* at No Preference

IR Model	Precision at 100% Recall (%)		Relevant Documents
	NP =	Player =	
Boolean	$\frac{675}{4 / 9} = 44$	$5 / 7 = 71$	PLAYER: 4 long_sam ; score : 0.3071 *PLAYER-STRUCTURE long_sam; score : 0.3052
EB, p = 2	$\frac{44}{44} = 100$	$5 / 5 = 100$	PLAYER: 9 long_sam ; score : 0.2893
EB, p = 100	$\frac{44}{44} = 100$	$5 / 5 = 100$	PLAYER: 6/345 long_sam ; score : 0.2474
Vector	$\frac{44}{44} = 100$	$5 / 19 = 26$	PLAYER: 7/345 long_sam ; score : 0.2474 * TDB player level

IR Evaluations

- Based on Precision at 100% Recall
 - Precision – number of non-relevant documents retrieved
 - Recall – number of relevant documents retrieved
 - Precision at 100% Recall – how much “noise” in system
- Extended Boolean performed the best

Query: *long_sam radio* at Player Level

IR Model	Precision at 100% Recall (%)		Relevant Documents
	NP =	Player =	
Boolean	$\frac{675}{49} =$	$\frac{44}{57} = 71$	PLAYER: 4 long_sam ; score : 0.3071 *PLAYER-STRUCTURE long_sam; score : 0.3052
EB, p = 2	$\frac{44}{44} =$	$\frac{5}{5} =$	PLAYER: 9 long_sam ; score : 0.2893
EB, p = 100	$\frac{44}{44} =$	$\frac{100}{55} =$	PLAYER: 6/345 long_sam ; score : 0.2474
Vector	$\frac{44}{44} =$	$\frac{100}{19} =$	PLAYER: 7/345 long_sam ; score : 0.2474 * TDB player level

What's New?

- Problem Domain
 - IR for Combat Simulation Databases
 - IR for Structured Data
- Combined Modern Tools
 - JavaCC → Parser
 - XML → Metadata
 - ObjectStore OODBMS → Repository
 - Java → Portable Program and User Interface

What Else is New?

- Extensible Methodology
 - Parser Development and Maintenance
 - Metadata and Index Processing for Storage
 - Versatile Repository Architecture
 - Information Retrieval Process
 - Transformations

Impact

- Big Step Towards the Ultimate Process
 - Extensible Methodology – defined steps for parsing, indexing, repository, IR, and transforms
 - Scalable Architecture – accommodate other simulation models and improvements
 - Modular Design – ease of maintenance and expansion
 - Usable Tool to Assist Current Needs
- Solid Foundation for Future Research

Future Work

- Research Areas in Information Retrieval
 - User Relevance Feedback
 - Other IR Models, i.e. Probabilistic
 - Query Expansion Techniques
- Extend SMART System
 - Incorporate Other Simulation Models
 - Develop Additional Transformations
 - Adjust IR Ranking Models
 - Distributed and Multi-user Support
 - Convert to Server of Simulation Information