Universidade Federal de Minas Gerais Instituto de Ciências Exatas – ICEx Departamento de Matemática

Álgebra A Trabalho Prático 1: Aritmética

Questão 1. Implemente o algoritmo de Euclides estendido: Dados números a e b, sua função deve computar números x, y e g tais que mdc(a,b) = g e ax + by = g.

Valor de retorno Não há.

Assinatura void mdc_estendido(mpz_t g, mpz_t x, mpz_t y, const mpz_t a, const mpz_t b)

	Nome	Tipo	Descrição
Entrada	a	mpz_t	
	b	$\mathtt{mpz_t}$	
Saída	g	mpz_t	O maior divisor comum de a e b.
	X	$\mathtt{mpz_t}$	Inteiro tal que $ax + by = g$.
	У	$\mathtt{mpz_t}$	Inteiro tal que $ax + by = g$.

Como testar: Só existe um valor de g correto, que você pode conferir com a função mpz_gcd(mpz_t g, mpz_t a, mpz_t b). Quanto a (x,y), existe a função mpz_gcdext, com mesma assinatura da função mdc_estendido, mas é fato que existem vários pares (x,y) válidos. Você pode facilmente verificar se a equação ax + by = g é satisfeita pelos seus números.

Questão 2. Use a questão anterior para implementar uma função que calcula o inverso modular de um número. Sua função deve retornar um inteiro que indica se o número tem inverso modular; caso o número tenha inverso modular, sua função deve preencher o argumento r com o valor.

Valor de retorno 1 se o inverso modular existe e foi calculado,

0 se o inverso modular não existe.

Assinatura int inverso_modular(mpz_t r,

const mpz_t a,
const mpz_t n)

	Nome	Tipo	Descrição
Entrada	a	mpz_t	
	n	$\mathtt{mpz_t}$	
Saída	r	mpz_t	Um número tal que $ar \equiv 1 \pmod{n}$, caso exista.

Como testar: Você pode comparar sua resposta com a função mpz_invert, que tem mesma assinatura.

Questão 3. Implemente o algoritmo de exponenciação rápida visto em sala, usando que

$$b^e = \begin{cases} \left(b^{e/2}\right)^2 & \text{se } e \text{ for par} \\ b \cdot \left(b^{\lfloor e/2 \rfloor}\right)^2 & \text{se } e \text{ for impar.} \end{cases}$$

O número de chamadas à função mpz_mul deverá ser proporcional ao número de bits do argumento e.

Como vimos em sala, tanto a versão recursiva quanto a versão iterativa dessa função são razoavelmente simples. Se você preferir, pode implementar essa função iterativamente; isso irá acelerar sua função descriptografa do TP 3.

```
Valor de retorno Não há.

Assinatura void exp_binaria(mpz_t r,
const mpz_t b,
const mpz_t e,
const mpz_t n)
```

	Nome	Tipo	Descrição
Entrada	Ъ	mpz_t	
	е	mpz_t	
	n	mpz_t	
Saída	r	mpz_t	Um número tal que $b^e \equiv r \pmod{n} e \ 0 \leqslant r < n$.

Como testar: Você pode comparar sua resposta com a função mpz_powm, que tem mesma assinatura.