BINF2111 - Introduction to Bioinformatics Computing

BASH 101 - Bash around and find out?

Richard Allen White III, PhD
RAW Lab

Lecture 8 - Thursday Sep 15th, 2022

Learning Objectives

- Review quiz and bonus
- Bash variables review
- Bash variables strings
- Sting formats bioinfomatics (fasta, fasta-like files)
- Bash Arrays
- Quiz 8

printf '#!/bin/bash\n# This is my first comment\n' >script.sh

Output is:

#!/bin/bash

This is my first comment

T or F

printf '#!/bin/bash\n# This is my first comment\n' >script.sh

Output is:

#!/bin/bash

This is my first comment

T or F

printf '#!/bin/bash\n# This is my first comment\n' >script.sh

Output is:

#!/bin/bash

This is my first comment

There is no output you pushed it to a script!

printf '#!/bin/bash\n# This is my first comment\n' >script.sh

Output of the command to the script:

#!/bin/bash

This is my first comment

T or F

printf '#!/bin/bash\n# This is my first comment\n' >script.sh

Output of the command to the script:

#!/bin/bash
This is my first comment

Bonus 7

- Write a bash script that states 150 kg at 178 cm is overweight?

ENJOY!

Bonus 7

- Write a bash script that states 150 kg at 178 cm is overweight?

```
1 #!/bin/bash
 3 # This script prints a message about your weight if you give it
  your
 5 # weight in kilos and height in centimeters.
 6
 7 weight="$1"
8 height="$2"
 9 idealweight=$[$height - 110]
10 if [ Sweight -le Sidealweight ] ; then
11 echo "You should eat a bit more food."
12 else
13 echo "You should eat a bit less food."
14 fi
```

bash -x weight.sh 130 178

BASH Reserved words

! - Pipelines 11 - Conditional Constructs } - Command Grouping break - Looping Constructs case - Conditional Constructs continue - Looping Constructs do - Looping Constructs done - Looping Constructs elif - Conditional Constructs else - Conditional Constructs esac - Conditional Constructs fi - Conditional Constructs for - Looping Constructs **function - Shell Functions**

if - Conditional Constructs
 in - Conditional Constructs
 select - Conditional Constructs
 then - Conditional Constructs
 time - Pipelines
 until - Looping Constructs
 while - Looping Constructs

Similar from UNIX

https://www.gnu.org/software/bash/manual/html_node/Reserved-Word-Index.html

BASH Variables (By content)

Apart from dividing variables in local and global variables, we can also divide them in categories according to the sort of content the variable contains.

In this respect, variables come in 4 types:

- String variables
- Integer variables
- Constant variables
- Array variables

Sequence files are in a variety of formats commonly called FASTA format is a text-based format for representing either nucleotide sequences or amino acid (protein) sequences, as single letter codes.

Sequence files are in a variety of formats commonly called FASTA format is a text-based format for representing either nucleotide sequences or amino acid (protein) sequences, as single letter codes.

Nucleotides (5 single letters)

A, T, C, G, U

Guanine (G), adenine (A), cytosine (C) and thymine (T) for DNA.

For RNA, uracil (U) (rarely used)

2-amino-2'-deoxyadenosine-5'-triphosphate (2-amino adenine)

Sequence files - .fa, .fasta, .ffn, .fna

BEST - .fna (fasta nucleotide file - contigs/reads)
.ffa - fasta feature nucleotide (nucleotide for protein ORFs)

Sequence files - .fa, .fasta, .ffn, .fna

BEST - .fna (fasta nucleotide file - contigs/reads)
.ffa - fasta feature nucleotide (nucleotide for protein ORFs)

fna example

```
>Illumina_Single_End_Adapter1
GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG
>Illumina_Single_End_Adapter2
CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT
>Illumina_Single_End_PCR_Primer1
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
>Illumina_Single_End_PCR_Primer2
CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT
```

Sequence files - .fa, .fasta, .ffn, .fna

CGTCGTCGAGCGCC

BEST - .fna (fasta nucleotide file - contigs/reads)
.ffa - fasta feature nucleotide (nucleotide for protein ORFs)

ffa example

```
>CP001157.1_1 # 101 # 1537 # 1 #
ID=1_1;partial=00;start_type=GTG;rbs_motif=GGAG/GAGG;rbs_spacer=5-
10bp;gc_cont=0.630
GTGTCCGTGGAACTTTGGCAGCAGTGCGTCGAGCTGCTGCGCGACGAGCTGCCCG
>CP001157.1_2 # 1566 # 2669 # 1 # ID=1_2;partial=00;start_type=ATG;rbs_motif=GGA/GAGG;rbs_spacer=5-10bp;gc_cont=0.627
```

ATGCATTCACCATTCAACGCGAAGCCCTGCTGAAACCGCTGCAACTGGTCGCTGG

Sequence files - .fq, fastq, fasta/qual (rare)

This is the fasta plus the quality encoded (raw/trim reads)

fastq example

```
@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCC
ATTTGTTCAACTCACAGTTT
+
!"*((((***+))%%%++)(%%%%).1***
+*"))**55CCF>>>>>CCCCCCC65
```

Sequence files - .fq, fastq, fasta/qual (rare)

This is the fasta plus the quality encoded (raw/trim reads)

The byte representing quality runs from 0x21 (lowest quality; '!' in ASCII) to 0x7e (highest quality; '~' in ASCII). Here are the quality value characters in left-to-right increasing order of quality (ASCII):

```
!"#$%&'()*+,-./0123456789:;<=>
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvw
xyz{|}~
```

American Standard Code for Information Interchange (ASCII)

A quality value Q is an integer mapping of p (i.e., the probability that the corresponding base call is incorrect). Two different equations have been in use. The first is the standard Sanger variant to assess reliability of a base call, otherwise known as Phred quality score:

$$\mathbf{Q}$$
 sanger = -10 $\log_{10} p$

Illumina (solexa) Genome Analyzer earlier used a different mapping, encoding the odds p/(1-p) instead of the probability p:

Q solexa (prior to 1.3v) = -10
$$\log_{10} p / 1 - p$$

String Variables – fastq (Phred scores)

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Sequence files are in a variety of formats commonly called FASTA format is a text-based format for representing either nucleotide sequences or amino acid (protein) sequences, as single letter codes.

Amino Acids (20 single letters, 3 nucleotide = 1 codon) R, H, K, D, E, S, T, N, Q, C, G, P, A, V, I, L, M, F, Y, W

22 possible (hydroxyproline and selenomethionine rare)

Sequence files are in a variety of formats commonly called FASTA format is a text-based format for representing either nucleotide sequences or amino acid (protein) sequences, as single letter codes.

Amino Acids (20 single letters, 3 nucleotide = 1 codon) R, H, K, D, E, S, T, N, Q, C, G, P, A, V, I, L, M, F, Y, W

22 possible (hydroxyproline and selenomethionine rare)

	Т		С		A		G		
	TTT	Phe	TCT	Ser	TAT	Туг	TGT	Cys	Т
	TTC	Phe	TCC	Ser	TAC	Туг	TGC	Cys	C
T	TTA	Leu	TCA	Ser	TAA	STOP	TGA	STOP	A
	TTG	Leu	TCG	Ser	TAG	STOP	TGG	Trp	G
	CTT	Leu	CCT	Pro	CAT	His	CGT	Arg	Т
	CTC	Leu	CCC	Pro	CAC	His	CGC	Arg	C
C	CTA	Leu	CCA	Pro	CAA	Gin	CGA	Arg	A
	CTG	Leu	CCG	Pro	CAG	Gln	CGG	Arg	G
	ATT	Ile	ACT	Thr	AAT	Asn	AGT	Ser	Т
	ATC	Ile	ACC	Thr	AAC	Asn	AGC	Ser	C
A	ATA	Ile	ACA	Thr	AAA	lys	AGA	Arg	A
	ATG	Met*	ACG	Thr	AAG	Lys	AGG	Arg	G
	GTT	Val	GCT	Ala	GAT	Asp	GGT	Gly	Т
G	GTC	Val	GCC	Ala	GAC	Asp	GGC	Gly	C
	GTA	Val	GCA	Ala	GAA	Glu	GGA	Gly	A
	GTG	Val	GCG	Ala	GAG	Glu	GGG	Gly	G

^{*}When within gene; at beginning of gene. ATG signals start of translation.

	U	С	А	G	
U	UUU Phenylalanine (Phe) UUA Leucine UUG (Leu)	UCU UCC Serine (Ser)	UAU Tyrosine UAC (Tyr) UAA Stop UAG Stop	UGU Cysteine UGC (Cys) UGA Stop UGG Tryptophan (Trp)	U C A G
С	CUU CUC Leucine (Leu)	CCU CCC CCA CCG Proline (Pro)	CAU Histidine (His) CAA Glutamine (Gln)	CGU CGC CGA CGG	U C A G
A	AUU AUC AUA AUG Isoleucine (Ile) Methionine (Met)	ACU ACC ACA ACA ACG Threonine (Thr)	AAU Asparagine (Asn) AAA Lysine (Lys)	AGU Serine (Ser) AGA Arginine (Arg)	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG Alanine (Ala)	GAU Aspartic acid (Asp) GAA Glutamic acid (Glu)	GGU GGC GGA GGG	U C A G

[©] Copyright, 2014. University of Waikato, All rights reserved. www.biotechlearn.org.nz

Thr

ACT, ACC, ACA, ACG

AAA, AAG

TCT, TCC, TCA, TCG, AGT, AGC

Cys TGT, TGC

CAA, CAG

AAT, AAC

String Variables – faa (amino acids)

>CP001157.1 3 # 2688

Sequence files are in a variety of formats commonly called FASTA format is a text-based format for representing either nucleotide sequences or amino acid (protein) sequences, as single letter codes.

Example (.faa)

```
>CP001157.1_1 # 101
MSVELWQQCVELLRDELPAQQFNTWIRPLQVEADGDEL*
>CP001157.1_2 # 1566
MKFPDYERVLPRGGDKKVLGDRQLLREAFSRTAILSNEK
*
```

Array Variables in Bash

An array is a variable containing multiple values. Any variable may be used as an array.

There is no maximum limit to the size of an array, nor any requirement that member variables be indexed or assigned contiguously.

Arrays are zero-based: the first element is indexed with the number 0.

E

Quiz 8

- On canvas now