Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

Montrer que les polynômes 1, X, X(X-1), X(X-1)(X-2) forment une base de $\mathbb{R}_3[X]$.

Calculer la somme de la série $\sum_{n=1}^{\infty} \frac{n^3}{n!}$.

EXERCICE 2 [Indication] [Correction]

Pour quelles valeurs de a et b la série de terme général $u_n = \sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2}$ est-elle convergente? Calculer alors la somme de cette série.

EXERCICE 3 [Indication] [Correction]

Nature et somme de la série $\sum_{n=1}^{\infty} u_n$, avec $u_n = \frac{1}{n} \Big(\mathbb{E} \left(\sqrt{n+1} \right) - \mathbb{E} \left(\sqrt{n} \right) \Big)$.

EXERCICE 4 [Indication] [Correction]

Sachant que
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \ln 2$$
, calculer $\sum_{n=1}^{\infty} \frac{1}{n(2n-1)}$.

EXERCICE 5 [Indication] [Correction]

Somme de la série de terme général $u_n = \frac{1}{n^3 - n}$, avec $n \ge 2$.

EXERCICE 6 [Indication] [Correction]

Nature et somme de la série $\sum u_n$, où $u_n = \arctan \frac{1}{n^2 + n + 1}$

Sommes de séries à termes réels positifs (II)

Indications, résultats

Indications ou résultats

INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

Utiliser le fait que 1, X, X(X-1), X(X-1)(X-2) sont à degrés échelonnés.

Vérifier que
$$x^3 = x + 3x(x-1) + x(x-1)(x-2)$$
.

En déduire
$$\sum_{n=1}^{\infty} \frac{n^3}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} + 3 \sum_{n=0}^{\infty} \frac{1}{n!} + \sum_{n=0}^{\infty} \frac{1}{n!} = 5e$$
.

INDICATION POUR L'EXERCICE 2 [Retour à l'énoncé]

Montrer que
$$u_n = \sqrt{n} \left(1 + a + b + \left(\frac{a}{2} + b \right) \frac{1}{n} + O\left(\frac{1}{n^2} \right) \right).$$

En déduire que $\sum u_n$ converge $\Leftrightarrow a = -2$ et b = 1.

En cas de convergence, montrer que $\sum_{n=0}^{N} u_n = \frac{1}{\sqrt{N+2} + \sqrt{N+1}} - 1$.

Indication pour l'exercice 3 [Retour à l'énoncé]

Vérifier que $E(\sqrt{n+1}) > E(\sqrt{n}) \Leftrightarrow n = k^2 - 1$, avec $k \ge 2$.

En déduire
$$S(N^2 - 1) = \frac{3}{4} - \frac{1}{2N} - \frac{1}{2(N+1)}$$
 puis $\sum_{n=1}^{\infty} u_n = \lim_{N \to \infty} S(N^2 - 1) = \frac{3}{4}$.

INDICATION POUR L'EXERCICE 4 [Retour à l'énoncé]

Vérifier l'égalité
$$\frac{1}{n(2n-1)} = \frac{2}{2n-1} - \frac{1}{n}$$
.

En déduire
$$\sum_{n=1}^{\infty} \frac{1}{n(2n-1)} = 2 \ln 2$$
.

INDICATION POUR L'EXERCICE 5 [Retour à l'énoncé]

Décomposer $\frac{1}{n^3-n}$ en éléments simples.

En déduire
$$\sum_{n=2}^{N} u_n = \frac{1}{4} + \frac{1}{2} \left(\frac{1}{N+1} - \frac{1}{N} \right)$$
.

INDICATION POUR L'EXERCICE 6 [Retour à l'énoncé]

Montrer que
$$\frac{1}{n^2+n+1} = \tan(\theta_{n+1} - \theta_n)$$
, avec $\theta_n = \arctan n$.

En déduire
$$\sum_{n=0}^{\infty} \arctan \frac{1}{n^2+n+1} = \frac{\pi}{2}$$
.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigés des exercices

Corrigé de l'exercice 1 [Retour à l'énoncé]

1, X, X(X-1), X(X-1)(X-2) sont à degrés échelonnés, donc linéairement indépendants. Puisqu'ils sont quatre et qu'ils appartiennent à $\mathbb{R}_3[X]$ (qui est de dimension 4), ils en constituent une base.

On cherche à écrire x^3 sous la forme $x^3 = a + bx + cx(x-1) + dx(x-1)(x-2)$.

On trouve a = 0 (se placer en x = 0) et d = 1 (considérer les coefficients dominants.)

Avec
$$x = 1$$
 et $x = 2$, on trouve $\begin{cases} 1 = a + b \\ 8 = a + 2b + 2c \end{cases}$ et donc $\begin{cases} b = 1 \\ c = 3 \end{cases}$

On en déduit :

$$\sum_{n=1}^{\infty} \frac{n^3}{n!} = \sum_{n=1}^{\infty} \frac{1}{n!} (n + 3n(n-1) + n(n-1)(n-2))$$

$$= \sum_{n=1}^{\infty} \frac{n}{n!} + 3 \sum_{n=1}^{\infty} \frac{n(n-1)}{n!} + \sum_{n=1}^{\infty} \frac{n(n-1)(n-2)}{n!}$$

$$= \sum_{n=1}^{\infty} \frac{1}{(n-1)!} + 3 \sum_{n=2}^{\infty} \frac{1}{(n-2)!} + \sum_{n=3}^{\infty} \frac{1}{(n-3)!}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} + 3 \sum_{n=0}^{\infty} \frac{1}{n!} + \sum_{n=0}^{\infty} \frac{1}{n!} = 5e$$

Corrigé de l'exercice 2 [Retour à l'énoncé]

Pour tout
$$n \ge 1$$
, $u_n = \sqrt{n} \left(1 + a \left(1 + \frac{1}{n} \right)^{1/2} + b \left(1 + \frac{2}{n} \right)^{1/2} \right)$

A l'origine, on a $(1+x)^m = 1 + mx + O(x^2)$ et en particulier $\sqrt{1+x} = 1 + \frac{1}{2}x + O(x^2)$.

On en déduit
$$\left(1 + \frac{1}{n}\right)^{1/2} = 1 + \frac{1}{2n} + O\left(\frac{1}{n}\right)$$
 et $\left(1 + \frac{2}{n}\right)^{1/2} = 1 + \frac{1}{n} + O\left(\frac{1}{n}\right)$.

Ainsi
$$u_n = \sqrt{n} \left(1 + a + b + \left(\frac{a}{2} + b \right) \frac{1}{n} + O\left(\frac{1}{n^2} \right) \right).$$

La série
$$\sum u_n$$
 converge $\Leftrightarrow 1 + a + b = \frac{a}{2} + b = 0 \Leftrightarrow \begin{cases} a = -2 \\ b = 1 \end{cases}$.

De cette manière
$$u_n = O\left(\frac{1}{n\sqrt{n}}\right)$$
.

On a alors, pour tout
$$n \ge 0$$
: $u_n = \sqrt{n} - 2\sqrt{n+1} + \sqrt{n+2} = v_{n+1} - v_n$ avec $v_n = \sqrt{n+1} - \sqrt{n}$.

Ainsi
$$\sum_{n=0}^{N} u_n = \sum_{n=0}^{N} (v_{n+1} - v_n) = v_{N+1} - v_0 = \sqrt{N+2} - \sqrt{N+1} - 1 = \frac{1}{\sqrt{N+2} + \sqrt{N+1}} - 1.$$

On fait tendre N vers
$$+\infty$$
 et on trouve $\sum_{n=1}^{\infty} u_n = -1$.

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

CORRIGÉ DE L'EXERCICE 3 [Retour à l'énoncé]

Pour tout entier k, $\mathrm{E}(\sqrt{n}) = k \Leftrightarrow k^2 \leq n < (k+1)^2$.

Les seuls entiers $n \ge 1$ tes que $\mathrm{E}\left(\sqrt{n+1}\right) > \mathrm{E}\left(\sqrt{n}\right)$ sont donc les $n = k^2 - 1$, avec $k \ge 2$.

Pour ces entiers, on a $E(\sqrt{n}) = k - 1$ et $E(\sqrt{n+1}) = k$. Posons $S(N) = \sum_{n=1}^{N} u_n$.

Puisque les u_n sont ≥ 0 , il suffit de calculer par exemple $\lim_{N\to\infty} S(N^2-1)$.

Or:
$$S(N^2 - 1) = \sum_{k=2}^{N} \frac{1}{k^2 - 1} = \sum_{k=2}^{N} \left(\frac{1}{2(k-1)} - \frac{1}{2(k+1)} \right) = \sum_{k=1}^{N-1} \frac{1}{2k} - \sum_{k=3}^{N+1} \frac{1}{2k} = \frac{3}{4} - \frac{1}{2N} - \frac{1}{2(N+1)} = \sum_{k=2}^{N} \frac{1}{2(N-1)} = \sum_$$

Par passage à la limite, on en déduit la convergence de $\sum u_n$ et $\sum_{n=1}^{\infty} u_n = \lim_{N \to \infty} S(N^2 - 1) = \frac{3}{4}$.

CORRIGÉ DE L'EXERCICE 4 [Retour à l'énoncé]

On effectue une décomposition en éléments simples : $\frac{1}{n(2n-1)} = \frac{2}{2n-1} - \frac{1}{n}$.

Ainsi
$$\sum_{n=1}^{N} \frac{1}{n(2n-1)} = 2 \sum_{n=1}^{N} \left(\frac{1}{2n-1} - \frac{1}{2n} \right) = 2 \sum_{n=1}^{2N} \frac{(-1)^{n-1}}{n}.$$

On fait tendre N vers $+\infty$ et on trouve $\sum_{n=1}^{\infty} \frac{1}{n(2n-1)} = 2\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 2\ln 2$.

Corrigé de l'exercice 5 [Retour à l'énoncé]

On décompose en éléments simples : $\frac{1}{n^3-n} = \frac{1}{n(n-1)(n+1)} = \frac{a}{n} + \frac{b}{n-1} + \frac{c}{n+1}$.

On trouve $a=-1,\,b=c=\frac{1}{2}.$ On en déduit :

$$S_N = \sum_{n=2}^N u_n = \sum_{n=2}^N \left(-\frac{1}{n} + \frac{1}{2(n-1)} + \frac{c}{2(n+1)} \right) = -\sum_{n=2}^N \frac{1}{n} + \frac{1}{2} \sum_{n=2}^N \frac{1}{n-1} + \frac{1}{2} \sum_{n=2}^N \frac{1}{n+1}$$

$$= -\sum_{n=2}^N \frac{1}{n} + \frac{1}{2} \sum_{n=1}^{N-1} \frac{1}{n} + \frac{1}{2} \sum_{n=3}^{N+1} \frac{1}{n} = \left(-\frac{1}{2} - \frac{1}{N} \right) + \frac{1}{2} \left(1 + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{N} + \frac{1}{N+1} \right)$$

$$= \frac{1}{4} + \frac{1}{2} \left(\frac{1}{N+1} - \frac{1}{N} \right).$$

On fait tendre N vers $+\infty$ et on trouve : $\sum_{n=2}^{\infty} \frac{1}{n^3 - n} = \frac{1}{4}$.

Corrigé de l'exercice 6 [Retour à l'énoncé]

Le terme u_n est équivalent à $\frac{1}{n^2}$ quand $n \to \infty$. On en déduit la convergence de $\sum u_n$.

D'autre part : $\forall n \in \mathbb{N}, \frac{1}{n^2+n+1} = \frac{(n+1)-n}{1+(n+1)n} = \tan(\theta_{n+1} - \theta_n), \text{ avec } \theta_n = \arctan n.$

On en déduit $u_n = \theta_{n+1} - \theta_n$, puis $\sum_{n=0}^{N} u_n = \theta_{N+1} - \theta_0 = \theta_{N+1} = \arctan(N+1)$.

En faisant tendre N vers $+\infty$, on trouve $\sum_{n=0}^{\infty} \arctan \frac{1}{n^2+n+1} = \frac{\pi}{2}$.