Model Documentation of the Four-Bar Linkage

1 Nomenclature

1.1 Nomenclature for Model Equations

- s_1 center of gravity distance of first bar
- s_2 center of gravity distance of second bar
- s_3 center of gravity distance of third bar
- m_1 mass of first bar
- m_2 mass of second bar
- m_3 mass of third bar
- J_1 moment of inertia of first bar
- J_2 moment of inertia of second bar
- J_3 moment of inertia of third bar
- l_1 length of first bar
- l_2 length of second bar
- l_3 length of third bar
- l_4 length of fourth bar
- g acceleration due to gravity
- p_1 angle of between th bars of the two link mainpulator
- p_2 angle of one link manipulator
- p_2 angle of two link manipulator
- u_1 external force
- y array of angles
- \dot{y} array of angular velocities

2 Model Equations

DAE Variables and Input Vector:

$$\underline{x} = (x_1 \ x_2 \ x_3 \ \dot{x}_1 \ \dot{x}_2 \ \dot{x}_3 \ \lambda_1 \ \lambda_2)^T \qquad = (p_1 \ p_2 \ q_1 \ \dot{p}_1 \ \dot{p}_2 \ \dot{q}_1 \ \lambda_1 \ \lambda_2)^T$$

$$\underline{u} = u_1$$

Constraints:

$$l_1 \cos(x_3) + l_2 \cos(x_1 + x_3) - l_3 \cos(x_2) - l_4$$
 (1a)

$$l_1 \sin(x_3) + l_2 \sin(x_1 + x_3) - l_3 \sin(x_2)$$
 (1b)

System Equations:

$$J_{2}\ddot{x}_{1} + J_{2}\ddot{x}_{3} + gm_{2}s_{2}\cos(x_{1} + x_{3}) + l_{1}m_{2}\ddot{x}_{3}s_{2}\cos(x_{1}) + l_{1}m_{2}\dot{x}_{3}^{2}s_{2}\sin(x_{1})$$

$$+ l_{2}\lambda_{1}\sin(x_{1} + x_{3}) - l_{2}\lambda_{2}\cos(x_{1} + x_{3}) + m_{2}\ddot{x}_{1}s_{2}^{2} + m_{2}\ddot{x}_{3}s_{2}^{2}$$

$$J_{3}\ddot{x}_{2} + gm_{3}s_{3}\cos(x_{2}) - l_{3}\lambda_{1}\sin(x_{2}) + l_{3}\lambda_{2}\cos(x_{2}) + m_{3}\ddot{x}_{2}s_{3}^{2}$$

$$J_{1}\ddot{x}_{3} + J_{2}\ddot{x}_{1} + J_{2}\ddot{x}_{3} + gl_{1}m_{2}\cos(x_{3}) + gm_{1}s_{1}\cos(x_{3}) + gm_{2}s_{2}\cos(x_{1} + x_{3})$$

$$+ l_{1}^{2}m_{2}\ddot{x}_{3} + l_{1}\lambda_{1}\sin(x_{3}) - l_{1}\lambda_{2}\cos(x_{3}) + l_{1}m_{2}\ddot{x}_{1}s_{2}\cos(x_{1}) - l_{1}m_{2}\dot{x}_{1}^{2}s_{2}\sin(x_{1})$$

$$-2l_{1}m_{2}\dot{x}_{1}\dot{x}_{3}s_{2}\sin(x_{1}) + 2l_{1}m_{2}\ddot{x}_{3}s_{2}\cos(x_{1}) + l_{2}\lambda_{1}\sin(x_{1} + x_{3}) - l_{2}\lambda_{2}\cos(x_{1} + x_{3})$$

$$+ m_{1}\ddot{x}_{3}s_{1}^{2} + m_{2}\ddot{x}_{1}s_{2}^{2} + m_{2}\ddot{x}_{3}s_{2}^{2} - u_{1}$$

Parameters: s_1 s_2 s_3 m_1 m_2 m_3 J_1 J_2 J_3 l_1 l_2 l_3 l_4 g Outputs: y \dot{y}

2.1 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
center of gravity distance of first bar	s_1	0.5	m
center of gravity distance of second bar	s_2	0.5	\mathbf{m}
center of gravity distance of third bar	s_3	0.5	\mathbf{m}
mass of first bar	m_1	1	kg
mass of second bar	m_2	1	$_{ m kg}$
mass of third bar	m_3	3	$_{ m kg}$
moment of inertia	J_1	0.0833333333333333333333333333333333333	$\frac{kg}{m^2}$
moment of inertia	J_2	0.0833333333333333333333333333333333333	$\frac{kg}{m^2}$
moment of inertia	J_3	0.083333333333333333	$\frac{\frac{kg}{m^2}}{\frac{kg}{m^2}}$
length of first bar	l_1	0.8	m
length of second bar	l_2	1.5	\mathbf{m}
length of third bar	l_3	1.5	\mathbf{m}
length of fourth bar	l_4	2	\mathbf{m}
acceleration due to gravity	g	9.81	$\frac{m}{s^2}$

3 Derivation and Explanation

Not available

References

[1] Knoll, Carsten: Considered model: four-bar linkage (= two link manipulator + one link manipulator + rigid coupling), Jupyter Notebook published 2019