INTRODUCTION TO DATABASE SYSTEMS

CHAPTER 1. INTRODUCTION

Contents

- Data & Database
- Database Management Systems
- File Systems
- View of Data
- Data Models
- Data Languages
- Database Users
- Overall System Structure

What is a Database?

Data

- A formal description of
 - an entity, event, phenomena, or idea
 - that is worth recording

Database

- Andata
- representing the information of interest
- for various programs that compose the <u>computerized</u> information system of an organization.
- Data are separated from the programs that use them

DBMS

- Database Management System
 - A collection of program modules that store, process, and manage data
 - Abstraction

Database Management System (DBMS)

Database Management System (DBMS)

Database Management System (DBMS)

- DBMS provides an environment that is both convenient and efficient to use.
- Database Applications (Information Systems):
 - Banking: all transactions
 - Airlines: reservations, schedules
 - Universities: registration, grades
 - Sales: customers, products, purchases
 - Manufacturing: production, inventory, orders, supply chain
 - Human resources: employee records, salaries, tax deductions
- Databases touch all aspects of our lives
- Commercial Systems
 - DB2, Oracle, MS SQL Server, MySQL, Hana
 - MS Access

File Systems

- File System

 - Stores programs, data, documents, or anything
 - (in disk)
- In the early days, database applications were built on top of file systems
- Drawbacks of using file systems to store data:
 - Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
 - Difficulty in accessing data
 - Need to write a new program to carry out each new task
 - Integrity problems
 - Integrity constraints (e.g. account balance > 0) become part of program code
 - Hard to add new constraints or change existing ones

File Systems (cont.)

- Drawbacks of using file systems (cont.)
 - Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - E.g. transfer of funds from one account to another should either complete or not happen at all
 - Concurrent access by multiple users
 - Concurrent accessed needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - E.g. two people reading a balance and updating it at the same time
 - Security problems
- Database systems offer solutions to all the above problems

Levels of Abstraction

- Physical level describes how a record (e.g., customer) is stored in a physical device.
- Logical level describes data stored in database, and the relationships among the data.

- View level: application programs hide details of data types.
 - Views can also hide information (e.g., salary) for security purposes.

Data Independence

- ability to modify a schema in one level without affecting a schema definition in the next higher level
- physical data independence:
 - physical level conceptual level
- logical data independence:
 - conceptual level view level

Instances and Schemas

- Similar to types and variables in programming languages
- Schema
 - e.g., the database consists of information about a set of customers and accounts and the relationship between them)
 - Analogous to type information of a variable in a program
 - Physical schema: database design at the physical level
 - Logical schema: database design at the logical level
- Instance at a particular point in time
 - Analogous to the value of a variable

Instances and Schemas – Examples

Scheme (schema)

the skeletal structure of the data content

Customer

Account

No.	Туре	Balance
-----	------	---------

Instance

- the actual content of the data at a given time
- database status

2014/2/20/12:00 Customer

HS Kim	Seoul	323-3232
KS Lee	Busan	323-5454
PL Park	Seoul	553-3235

2014/3/3/12:00 Customer

HS Kim	Suwon	323-3232
KS Lee	Busan	323-5454
MH Choi	Seoul	553-3235
KH Na	Yongin	545-5488

Data Models

- A collection of tools for describing
 - data
 - data relationships
 - data semantics
 - data constraints
- Entity-Relationship model
- Relational model
- Other models:
 - object-oriented model
 - semi-structured data models
 - Older models: network model and hierarchical model

Entity-Relationship Model

Entity Relationship Model (cont.)

- E-R model of real world
 - E.g. customers, accounts, bank branch
 - E.g. Account A-101 is held by customer Johnson
 - Relationship set depositor associates customers with accounts
- Widely used for database design
 - Database design in E-R model usually converted to design in the relational model (coming up next)
 which is used for storage and processing

Relational Model

Represent data in a tabular form

customer-id	customer-name	customer-street	customer-city	
192-83-7465	Johnson	12 Alma St.	Palo Alto	_
019-28-3746	Smith	4 North St.	Rye	
677-89-9011	Hayes	3 Main St.	Harrison	
182-73-6091	Turner	123 Putnam Ave.	Stamford	
321-12-3123	Jones	100 Main St.	Harrison	
336-66-9999	Lindsay	175 Park Ave.	Pittsfield	
010 00 0047	0 1.1	72 North St.	Rve	

The custom

account-number	balance
A-101	500
A-215	700
A-102	400
A-305	350
A-201	900
A-217	750
A-222	700

(b)	The	account	table
-----	-----	---------	-------

customer-id	account-number
192-83-7465	A-101
192-83-7465	A-201
019-28-3746	A-215
677-89-9011	A-102
182-73-6091	A-305
321-12-3123	A-217
336-66-9999	A-222
019-28-3746	A-201

columns

-rows

⁽c) The depositor table

Database Languages

- Data Definition Language (DDL)
- create table
- drop column
- Data Manipulation Language (DML)
- Retrieve
- Insert
- Delete
- Change
- Query

 - query language: part of DML
 - sometimes "query language = DML"

SQL

The most widely used language

E.g. find the name of the customer with customer-id 192-83-7465

select customer.customer-name

from customer

where customer.customer-id = '192-83-7465'

E.g. find the balances of all accounts held by the customer with customer-id 192-83-7465

select account.balance **from** depositor, account

where depositor.customer-id = '192-83-7465' and

depositor.account-number = account.account-number

Database Users

- Users are differentiated by the way they expect to interact with the system
- Application programmers –
- Sophisticated users form requests in a database query language
- Specialized users write specialized database applications that do not fit into the traditional data processing framework
- invoke one of the permanent application programs that have been written previously
 - E.g. people accessing database over the web, bank tellers, clerical staff

Database Administrator

- Coordinates all the activities of the database system; the database administrator has a good understanding of the enterprise's information resources and needs.
- Database administrator's duties include:

 - Storage structure and access method definition
 - Schema and physical organization modification
 - Granting user authority to access the database
 - Specifying integrity constraints
 - Acting as liaison with users

Overall System Structure

END OF CHAPTER 1