Motor P

Christian Brunner, Andreas Kölbl, Ricardo Krause, Bernd Krupinski, Andreas Lackner, Michael Schleinkofer, Franz Welker

January 10, 2017

MotprXP

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI

MotrXP GU

Test und Analys

BLDC-Motor

Sensorik

Ansteuerung

Kommunikation

Regelung

Visualisierung

Test und Analyse

Projekt Start Projekt Start Phase

Projekt Start

Projekt Auftrag

- Projekt Plan
- Versionsverwaltung
- Kommunikation
- Dokumentenmanagement

Projekt Start Projekt Auftrag

Projekt Start

Sensorik

Kommunikatio

Regulation & GU

MotrXP GU

Projektauftrag - Gr. 3 - MotorXP

Projekttitel:	Entwicklung und Aufbau eines Motorexperimentierplatzes					
Projektnummer:	Gruppe 3					
Projektart:	Entwicklungsprojekt					
Projektleiter/in:	-					
Projektauftraggeber/in:	OTH Regensburg					
Projektkunde(n):	Prof. Roth					
Projektdauer:	Geplanter Beginn: 04.10.2016 Geplantes Ende: 28.01.2016					
Ausgangssituation / Problembeschreibung:	Die Studierten der Technischen Informatik müssen im 6.77. Semester ein Project im Rahmen der Vorlesung Daterweranbeitung in der Technik umsetzen. In diesem Project sollen im Studiern erterinat Techniken und in diesem Project sollen im Studiern erterinat Techniken und Das zu bearbeitende Project befasst sich mit der Konzeption, Implemenfeitung und Integnation einem Experimenterplatz 10° ELDC-Motoren. Actuell gibt ein von Erfahaltst Mit Anienn Experimenterplatz, Actuell gibt ein von Erfahaltst Mit seinen Experimenterplatz. Eine weitere Verwendung des Experimenterplatzes für die Lehre ist gegebensenfalls angedacht.					
Projektgesamtziel:	Das Ziel des Projektes ist die Entwicklung und der Aufbau eines Motorespreimerleipsitzes mit einem BLDC – Motor weicher mit verschiedenen Sensoren und Regelungen ausgestatiet werden kann um variertend Versuchsaubtaten ausgestatiet werden kann um variertend Versuchsaubtaten als Simulation zur Verfügung stehen um Vergleiche zwischen den erdachten Konzepten und den Reselen Aufbau zu erhalten. Darüber hinaus sollen die erfassten Sensordaten mittels einer Schnitistelle an einen PC gesendet und zusätzlich zu den Simulationen visualisiert werden. Es sollten teile des Projektes werden Konzen.					

Projekt Start Projekt Auftrag

Projekt Start

	Name	Dauer	Start	Ende	Ressourcen	s
1	□Projektvorbereitung	6 tage	04.10.16	11.10.16		5
2	Projektauftrag erstellen	0,125 tage	04.10.16 0	04.10.16	Ricardo Krause	
3	Projektolan erstellen	0.188 tage	04.10.16 0	04.10.16	Ricardo Krausef 50% 1:Andreas Lacknerf 50% 1	
- 4	GITHubeinrichten	0,125 tage	04.10.16 0	04.10.16	Ricardo Krause	
5	VM Workspace einrichten	0,375 tage	04.10.16 0	04.10.16	Andreas Koelbi	
6	Dropboxeinrichten	0,125 tage	04.10.16 0	04.10.16	Ricardo Krause	
7	Dokumentenvorlagen erstellen	0,5 tage	04.10.16 0	04.10.16	Ricardo Krause	
8	Slackeinrichten	0,25 tage	04.10.16 0	04.10.16	Ricardo Krause	
9	Plakat erstellen	1 tag	11.10.16 0	11.10.16	BerndKrupinski	
10	Logo erstellen	1 tag	11.10.16 0	11.10.16	BerndKrupinski	
11	SimulationsUmgebungeinrichten	0,25 tage	04.10.16 0	04.10.16	Franz Welker	
12	⊟Analysephase	7,5 tage	04.10.16	13.10.16		
13	Anforderungsanalyse erstel		04.10.16			
14	Motor anforderungen	2 tage	04.10.16 0	05.10.16	Andreas Koelbl; Christian Brunner	
15	Sensor anforderungen	2 tage	04.10.16 0	05.10.16	Andreas Lackner; Christian Brunner	
16	Regelung und Leitsystem anfo		04.10.16 0	05.10.16	BerndKrupinski	
17	Kommunikations anforderungen		04.10.16 0		MichaelSchleinkofer	
18	Benutzeroberfläche anforderu		04.10.16 0		Ricardo Krause	
19	Simulationanforderungen	2 tage	04.10.16 0	05.10.16	Franz Welker	
20	ESchnittstellen definieren		12.10.16			
21	Motor	1 tag	12.10.16 0	12.10.16	Andreas Koelbi	
22	Sensor	1 tag	12.10.16 0	12.10.16	Andreas Lackner	
23	Regelung und Leitsystem	1 tag	12.10.16 0	12.10.16	BerndKrupinski	
24	Kommunikation	1 tag	12.10.16 0	12.10.16	MichaelSchleinkofer	
25	Benutzeroberfläche	1 tag	12.10.16 0	12.10.16	Ricardo Krause	
26	Simulation	1,5 tage	12.10.16 0	13.10.16	Franz Welker	
27	FEntwurfsphase	2 tage	13.10.16	17.10.16		
28	⊟Architektur entwurf	1 tag	13.10.16	14.10.16		
29	Motor		13.10.16 1		Andreas Koelbl; Christian Brunner	
30	Sensor		13.10.16 1		Andreas Lackner; Christian Brunner	
31	Regelung und Leitsystem		13.10.16 1		BerndKrupinski	
32	Kommunikation		13.10.16 1		MichaelSchleinkofer	
33	Benutzeroberfläche	1 tag	13.10.16 1	14.10.16	Ricardo Krause	_

Projekt Start

Projekt Start

Sensorik

Kommunikation

Regulation & GU

MotrXP GU

Test und Analyse

Projekt Start

Projekt Start

Sensorik

Kommunikation

Regulation & GU Controls

MotrXP GU

Test und Analyse

Projekt Start Dropbox

Projekt Start

Sensorik

Kommunikation

Regulation & GU

MotrXP GU

Test und Analys

C. I...

Name	Änderungsdatum	Тур	Größe
0100_AktuelleVersion	04.01.2017 18:00	Dateiordner	
0200_Projektplan	26.11.2016 22:01	Dateiordner	
0300_Anforderungen	04.01.2017 18:02	Dateiordner	
0400_Projekt_Vorbereitung	04.01.2017 18:01	Dateiordner	
3 0500_Material_Sammlung	04.01.2017 09:48	Dateiordner	
0600_Präsentationen	04.01.2017 18:01	Dateiordner	
0700_Dokumentation	04.01.2017 09:48	Dateiordner	

Sensorik Anforderungen

Projekt Sta

Sensorik

Kommunikatio

Regulation & GU Controls

MotrXP GU

Test und Analys

- Welche Daten brauchen wir?
 - Kommutierungszeitpunkt
 - Umdrehungsgeschwindigkeit
 - Drehwinkel
 - Temperatur
- Welche Sensoren stehen zur Verfügung?
 - Drei Hall-Sensoren
 - Inkrementalgeber
 - NTC Temperatursensor

Sensorik Sensor Interface

Projekt Star

Sensorik

Kommunikatio

Regulation & GU

MotrXP GI

Simulation

- Kapselung in ein eigenes Softwaremodul
- Zugriff auf Sensorwerte über ein definiertes Interface
 - Geringer Integrationsaufwand
 - Gute Portierbarkeit

Sensor.h

Sensorik Sensor Interface

Projekt Star

Sensorik

Kommunikation

Regulation & GU Controls

MotrXP GUI

Test und Analyse

```
void Sensor Init();
void Sensor StartAll(void);
void Sensor StopAll(void);
void Sensor SetDirection(MotorDirection t direction);
Std ReturnType Sensor RegisterHallCallback(Sensor HallCallbackType callback);
Std ReturnType Sensor GetCurrentHallPattern(Sensor HallPattern t* pattern);
Std ReturnType Sensor GetVelocity(double* velocity);
Std ReturnType Sensor_GetAngle(double* angle);
Std ReturnType Sensor GetTemperature(int* temperature);
```

Sensorik Hall-Sensoren

Projekt Star

Sensorik

Kommunikatio

Regulation & GU

MotrXP GU

Test und Analys

Simulation

Digitale Hall-Sensoren zur Messung von Magnetfeldern

Sensorik Hall-Sensoren

Projekt Star

Sensorik

Kommunikatio

Regulation & GU Controls

MotrXP GU

rest und Analysi

- Messung des Hall-Patterns mit POSIF
- Zwei mögliche Events
 - Correct-Hall-Event
 - Wrong-Hall-Event
- Ermittlung des motorspezifischen Hall-Patterns

Sensorik Inkrementalgeber

Motor P

Projekt Star

Sensorik

Kommunikation

Regulation & GUI

MotrVD CII

WOLLXI GOL

- Messung Umdrehungsgeschwindigkeit
- Messung Drehwinkel der Welle
- Drei Signalleitungen
 - Indexleitung
 - Phase A
 - Phase B

Sensorik Inkrementalgeber

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI

MotrXP GUI

Test und Analys

- Mögliche Implementierungsstrategien
 - POSIF + CCU
 - Zwei CCU Slices

Sensorik

Temperatursensor

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI
Controls

MotrXP GU

Test und Analys

- NTC Widerstand
 - Sinkender Widerstand bei steigender Temperatur
- Temperaturermittlung durch Datenblatt
- Widerstand nicht direkt messbar
 - Messung durch Spannungsteiler

Sensorik Temperatursensor

Sensorik

Berechnung des Widerstands

$$U_2 = \frac{U_{\text{ges}}}{R_1 + R_2} * R_2 \tag{1}$$

Umstellen auf R2 durch Äguivalenzumformung

$$R_2 = \frac{U_2 * R_1}{U_{\text{ges}} - U_2} \tag{2}$$

Sensorik Ausblick

Projekt Star

Sensorik

Kommunikatio

Regulation & GU

MotrXP GU

Test und Analyse

C.

- Portierung auf anderen Controller
- Nutzung des Inkrementalsgebers als Basis für die Kommutierung

Kommunikation

Anforderungen

Projekt Star

Sensorik

Kommunikation

Regulation & GUI

MotrXP GU

Test und Analys

- Controller -> PC
 - Sensordaten
 - Wiederholt
 - Erweiterbarkeit
- PC -> Controller
 - Regelungsparameter
 - Sporadisch

Kommunikation Entwurf

Projekt Star

Sensorik

Kommunikation

Regulation & GU

MotrXP GU

Test und Analyse

- Physical Layer
 - UART-Baustein des μ -Controllers via USB
 - DAVE APP zur Parametrierung
- Data Link Layer
 - Eigens definiertes Frame-Format

Kommunikation Entwurf

Projekt Star

Sensorik

Kommunikation

Regulation & GU

MotrXP GUI

Test und Analys

- Restliche Layer
 - Keine Adressierung, da genau zwei Teilnehmer
 - Keine Sessions
 - Keine Flusskontrolle
- Payload: Protocol Buffer Nachricht
 - Flexibilität und Erweiterbarkeit
 - Performance

Kommunikation Entwurf

Motor P

Projekt Star

Sensorik

Kommunikation

Regulation & GU

MotrXP GU

Test und Analyse

Simulation

Sensordaten

Parameter

```
//defining the parameter message
message RegParams{
    uint32 target = 1;
    float paraP = 2;
    float paraI = 3;
    float paraD = 4;
    float tgtVal = 5;
}
```

Kommunikation

Implementierung

Projekt Start

Sensorik

Kommunikation

Regulation & GU

MotrXP GU

Test und Analys

Simulatio

Frameaufbau für Sensordaten erweitert

- PC: C#-Bibliothek
 - SerialPort-Objekt
- Controller: C-Funktionen
 - DAVE APP f
 ür UART
 - DAVE APP f
 ür CRC

Regulation & GUI Controls Regulation

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI Controls

MotrXP GU

Test und Analyse

- Regeln des Motors über Sensor und Zielwerte
- GUI Custom Controls

Regulation & GUI Controls

Regulation - PID Regler

float regSum; // for I regulator.
float lastDifferenceValue; // for d regulator.

Projekt Star

Sensorik

Kommunikation

Regulation & GUI Controls

MotrXP GUI

Test und Analyse

Regulation & GUI Controls

Regulation - Main loop

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI Controls

MotrXP GU

Test und Analys

Regulation & GUI Controls Gauge Control

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI Controls

MotrXP GU

Test und Analys

```
| Indicated | Indi
```

Regulation & GUI Controls

Gauge Control - Drehfunktion

Projekt Star

Sensorik

Kommunikation

Regulation & GUI Controls

MotrXP GUI

Fest und Analyse

```
#**references | Benedix #diss/sep | isubox_change
private void Rotatelecelle() {
    if (_needleCanvas == null) return;

var percent = ((Value - Hinvalue) / (MaxValue - MinValue));
    var angle = MinAngle + (MaxValue) - MinAngle) * percent;
    angle -= Math.Pl / 2; // adjust by 90 degrees (since we did the same thing in GetPoint, so that 0 = straight up)
    var centerY = _needleCanvas.ActualEvight / 2;
    var centerX = _needleCanvas.ActualEvight / 2;
    var centerX = _needleCanvas.ActualEvight / 2;
    var cotateTransform = new RotateTransform(angle / Nath.PI * 180, centerX, centerY);
    __needleCanvas.RenderTransform = rotateTransform;
}
```

Regulation & GUI Controls LineChart Control

Projekt Start

Sensorik

Kommunikatio

Regulation & GUI Controls

MotrXP GUI

Test und Analys

Cimanianian

Regulation & GUI Controls LineChart Control - Mehr Pixel als Sample 1

Regulation & GUI Controls LineChart Control - Mehr Pixel als Sample 2

Regulation & GUI Controls

LineChart Control - Mehr Sample als Pixel

Projekt Start

Sensorik

Kommunikation

Regulation & GUI Controls

MotrXP GU

Test und Analys

Regulation & GUI Controls LineChart Control - Mittelwert Rechnung 1

Regulation & GUI Controls LineChart Control - Mittelwert Rechnung 2

Regulation & GUI Controls LineChart Control - Mittelwert Rechnung 3

Regulation & GUI Controls LineChart Control - Min/Max Rechnung 1

Regulation & GUI Controls

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI Controls

MotrXP GU

Test und Analy

Motor P Das Projektziel ist die Entwicklung und der Aufbau eines Motorexperimentierplatzes für BLDC - Motoren. Features - Simulation mit Simulink - Verschiedene Regelalgorithmen - Serielle Kommunikation - Parametervisualisierung Messung - Drebzahl - Drehmoment - Drehwinkel Controller Sensorik - Infineon XMC - Infinenn XF167 Sensoren - Hall Sensor - Drehzahl Encoder . Drehmomenteenen - Texas Instruments DRV8301-HC-C2-KIT

MotrXP GUI Anforderungen

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI

MotrXP GUI

Test und Analy

Simulation

Funktionale Anforderungen:

- Anzeige der Sensordaten
- Regelung der Drehgeschwindigkeit
- Einstellung des PID Reglers

Nicht-Funktionale Anforderungen:

- Modulares erweiterbares System
- Modernes Metro Design

MotrXP GUI

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI

MotrXP GUI

Test und Analys

Simulation

 Drei Schichten Architektur

- DatenStrukturen
- Datenstrukturer
- Mockup

MotrXP GUI Implementierung

Projekt Star

Sensorik

Kommunikatio

Regulation & GU Controls

MotrXP GUI

Test und Analys

- MVVM-Light Framework
- MahApps Metro UI Toolkit
- Custom Controls

MotrXP GUI

Proiekt Start

Sensorik

Kommunikatio

Regulation & GUI

MotrXP GUI

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI

MotrXP GU

Test und Analyse

- Spannungssignal
- Hall-Sensoren
- XMC 4700 Relax Kit
- Steuerung BLDC

Test und Analyse Spannungsmessung Fremderregung

Projekt Start

Sensorik

Kommunikatio

Regulation & GU

MotrXP GU

Test und Analyse

Test und Analyse Analyse Spannungsmessung Fremderregung

Test und Analyse

Analyse Spannungsmessung Fremderregung mit Störsignalen

Projekt Star

Sensorik

Kommunikatio

Regulation & GU

MotrXP GU

Test und Analyse

Hall-Sensoren in Verbindung mit dem XMC 4700 Relax Kit 5V

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI Controls

MotrXP GU

Test und Analyse

- XMC 4700 Relax Kit 5V
 - Vorbereitet f
 ür Arduino Shields (5V)
 - Pegelwandler (5V \leftrightarrow 3.3V)
 - Störempfindlich gegenüber längeren Messleitungen (\approx 20 cm)

Hall-Sensoren in Verbindung mit dem XMC 4700 Relax Kit 5V

Projekt Star

Sensorik

Kommunikatio

Regulation & GU Controls

MotrXP GU

Test und Analyse

Hall-Sensoren in Verbindung mit dem XMC 4700 Relax Kit 5V

Projekt Sta

Sensorik

Kommunikatio

Regulation & GU Controls

MotrXP GU

Test und Analyse

- XMC 4700 Relax Kit 5V
 - Vorbereitet f
 ür Arduino Shields (5V)
 - Pegelwandler (5V \leftrightarrow 3.3V)
 - Störempfindlich gegenüber längeren Messleitungen (\approx 20 cm)
- → Messleitung verkürzen
- ullet Pegelwandler austauschen/entfernen

Test und Analyse Steuerung BLDC - Schaltung

Motor P

Projekt Start

Sensorik

Kommunikatio

Regulation & GU

MotrXP GU

Test und Analyse

Steuerung BLDC - Steuersignal

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI

MotrXP GUI

Test und Analyse

Stantal and a second

Steuerung BLDC - Texas Instrument

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI

MotrXP GU

Test und Analyse

Simulation

Zwei Ausgänge gleichzeitig HIGH

Simulation

Anforderungen

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI

MotrXP GU

Test und Analys

- Kommunikation mit GUI
- Simulation in Echtzeit
- Kommunikation mittels serieller Schnittstelle

Simulation

Continuous

Ideal Switch powergui

Entwurfsphase und Implementierung I

Projekt Start

Sensorik

Kommunikatio

Regulation & GU

MotrXP GII

Test und Analys

Simulation

Permanent Magnet Synchronous Machine

Simulation Analysephase II

Motor**X**P

Projekt Start

Sensorik

Kommunikatio

Regulation & GU

MotrXP GU

Test und Analys

Simulation

Bewertung

Projekt Star

Sensorik

Kommunikatio

Regulation & GU

MotrXP GU

Tost und Analy

Simulation

Resultierendes Spulenfeld

$$\sum_{1}^{28} V_{res_i} = \sum_{1}^{28} (V_i + R_i) = \sum_{1}^{28} V_i + \sum_{1}^{28} R_i$$

Simulation Bewertung

Projekt Start

Sensorik

Kommunikation

Regulation & GUI

MotrXP GUI

Test und Analyse

Abschluss

Projekt Star

Sensorik

Kommunikatio

Regulation & GUI

MotrXP GUI

rest und Analyse

Simulation

Vielen Dank