Previsione di Sintomatologie Post-Dialisi

Studio e realizzazione di un sistema supervisionato di estrazione regole

Francesco Pontillo
Universitá degli Studi di Bari
Dipartimento di Informatica
Via E. Orabona, 4 - 70125 Bari, Italy
francescopontillo@gmail.com

ABSTRACT

Implementazione Prolog dell'algoritmo di Intelligenza Artificiale C4.5, con k-fold test e confronto con altri sistemi pre-esistenti di classificazione.

1. OBIETTIVO

Obiettivo del processo di Data Mining del sistema da sviluppare é di prevedere possibili sintomatologie successive ad una seduta di emodialisi. A partire da specifici dati registrati durante una dialisi, si vuole prevedere quali classi di sintomatologie il paziente potrá riscontrare dal momento in cui la dialisi termina al momento in cui esegue la seduta di dialisi successiva.

In questo modo, il medico puó confermare la possibilitá di occorrenza di una o piú problematiche suggerite, ed eventualmente prescrivere una opportuna terapia per contrastare la sua insorgenza.

2. SELEZIONE DEGLI ATTRIBUTI

I dati a disposizione nella base di dati da analizzare sono numerosi, e devono essere selezionati appropriatamente per evitare l'introduzione di attributi poco rilevanti con lo scopo del sistema.

Ogni seduta di dialisi memorizza (1) una **data** di svolgimento, (2) la **durata** della seduta stessa, (3) un identificativo del **paziente**, (4) altri **parametri** registrati durante la sessione e (5) eventuali **sintomatologie** riscontrate.

2.1 Dati del paziente

Le informazioni relative ai pazienti sono ricavate, anonimizzandole, dalla base di dati originale. Ai fini del processo di estrazione delle regole, é opportuno considerare il **sesso** del paziente e la sua **etá** al momento della seduta di dialisi in analisi¹.

2.2 Parametri della seduta di dialisi

I parametri più rilevanti di una seduta di dialisi, al fine di prevedere eventuali sintomatologie successive, sono divisi in più categorie [1] [2].

A. L'efficienza della rimozione dei prodotti di scarto é indotta dai valori dei parametri riportati in Tabella 1.

KT/V	indice di efficienza dialitica
QB	flusso di sangue trattato
WS	peso iniziale
WE	peso finale
PWE	peso finale ottimale
PT	durata ottimale
T	durata reale

Table 1: Parametri di efficienza eliminazione scarti

B. L'efficienza dell'eliminazione dell'acqua all'interno del corpo del paziente é indotta dai parametri in Tabella 2.

SPS	pressione sistolica iniziale
SPE	pressione sistolica finale
DPS	pressione diastolica iniziale
DPE	pressione diastolica finale
BV	volume ematico finale

Table 2: Parametri di efficienza eliminazione acqua

C. Altre tipologie di dati che potrebbero risultare utili a fornire previsioni significative sono riportati in Tabella 3.

	PBF	flusso sangue teorico
	BF	flusso sangue reale
	PUF	ultrafiltrazione media teorica
ĺ	UF	ultrafiltrazione media reale

Table 3: Altri parametri di efficienza dialitica

2.3 Attributi derivati

A partire dalle informazioni disponibili nella base di dati, risulta evidente la presenza di alcuni attributi "nascosti" che possono essere più utili ai fini dell'apprendimento.

In tabella 4 sono elencati gli attributi derivati dalle precedenti tabelle; ad esempio, ΔWL rappresenta la differenza so andando a considerare anche i dati relativi alle malattie pregresse del paziente ed eventuali comorbiditá registrate.

¹Ció non esclude la possibilitá di considerare altri dati relativi al paziente; l'algoritmo da realizzare potrebbe essere este-

fra la perdita di peso programmata e quella effettiva, a sua volta calcolata come differenza fra peso iniziale e peso finale.

PWL	perdita peso programmata
RWL	perdita peso reale
ΔWL	differenza perdita peso
ΔT	differenza durata trattamento
SPA	pressione sistolica media
DPA	pressione diastolica media
ΔBF	differenza flusso sangue
ΔUF	differenza UF medio

Table 4: Parametri derivati

2.4 Sintomatologie

Il sistema verrá addestrato con istanze di esempio pre-classificate. La classificazione consiste nell'assegnazione, ad ogni esempio, di una o piú categorie di sintomi, ad esempio: aritmia sintomatica, aritmia asintomatica, astenia, brividi, brividi e dispnea, cefalea, collasso (PA <30% inizio), conati di vomito, crampi, depressione, ansia, diarrea, dispnea e molti altri.

Inoltre, é prevista la classe 'asintomatico', che definisce una sintomatologia assente corrispondente ad un esempio negativo dal punto di vista della classificazione.

3. SELEZIONE DEI DATI

Le informazioni sottoposte all'algoritmo di apprendimento sono state selezionate a partire da una base dati molto ricca² e sono stati sottoposti ad una serie di passaggi³.

3.1 Creazione dei valori derivati

Per poter istanziare i valori degli attributi definiti in 2.3, é stata eseguita una query di tipo SELECT che preleva informazioni dalla tabella di origine ed effettua semplici calcoli di trasformazione.

In questo modo, alla fine del processo di trasformazione, gli attributi per ogni seduta di dialisi sono:

- SESSION_ID, l'ID della seduta di dialisi, utile per identificare la seduta in ogni momento
- SESSION_DATE, la data di esecuzione
- KTV, il valore di KT/V
- QB, il valore di QB
- PROG_WEIGHT_LOSS, la perdita peso programmata
- REAL_WEIGHT_LOSS, la perdita peso reale
- DELTA_WEIGHT, la differenza fra la perdita di peso reale e quella programmata
- PROG_DURATION, la durata programmata della dialisi
- REAL_DURATION, la durata effettiva della dialisi

- DELTA_DURATION, la differenza fra la durata reale e quella programmata
- SAP_START, la pressione sistolica arteriosa prima della seduta
- SAP_END, la pressione sistolica arteriosa dopo la seduta
- AVG_SAP, la pressione sistolica arteriosa media
- $\bullet\,$ DAP_START, la pressione dia stolica arteriosa prima della seduta
- DAP_END, la pressione diastolica arteriosa dopo la seduta
- AVG_DAP, la pressione diastolica arteriosa media
- BLOOD_VOLUME, il volume di sangue trattato
- DELTA_BLOOD_FLOW, la differenza fra flusso di sangue teorico ed effettivo
- DELTA_UF, la differenza dell'ultrafiltrazione media reale e teorica

Come si nota, sono stati eliminati alcuni attributi originali: il flusso di sangue teorico e reale e l'ultrafiltrazione media teorica e reale.

3.2 Associazione con sintomatologie

Nel programma che genera i dati, le sintomatologie vengono comunicate e quindi inserite, dal medico o dall'infermiere, qualche momento prima della dialisi successiva del paziente. Per poter mettere a confronto i dati della seduta di dialisi, di cui sopra, con i dati della sintomatologia rilevata, é stato necessario eseguire una query molto complessa per mettere in correlazione:

- il paziente
- la data di dialisi
- la data di dialisi minore fra quelle successive alla data di riferimento della seduta originaria

3.3 Associazione con dati del paziente

Infine, il dato della sintomatologia singola è stato associato univocamente con il paziente di riferimento, tramite l'apposito identificativo.

Tutte queste operazioni sono state eseguite staticamente, ovvero andando a creare una copia dei record in altre tabelle; ció si é reso necessario in quanto, anche utilizzando macchine potenti, una selezione di circa 1000 righe impiegava interi minuti per completare, soprattutto a causa dell'associazione poco ottimizzata con le date (cfr. 3.2).

3.4 Migrazione dei dati

Per una gestione più libera dei dati, si é scelto di migrare le tabelle create da Microsoft SQL Server a ${\rm MySQL}^4$, anche in ottica futura (cfr. 6).

 $^{^2\}mathrm{Circa}$ dal 1999 ai primi mesi del 2014.

³Tutte le trasformazioni e selezioni di dati descritte in questa sezione sono codificate nel scripts/01-sql-servertables.sql.

⁴Lo script di migrazione é presente in scripts/02-mysql-migration-script.sql e viene richiamato in automatico, tramite appositi parametri di connessione, dal file batch 03-mysql-copy-migrated-tables.cmd.

4. PULIZIA DEI DATI

Una volta spostati i dati su un database MySQL, si é scelto di eliminare alcuni record e mantenerne altri piú rilevanti⁵. La base dati originaria, infatti, contiene 185476 record.

4.1 Calcolo dello score

Ad ogni riga di rilevazione sintomo é stato associato un punteggio, o *score*, che permetta di capire quanto quella riga é completa (e quindi piú o meno rilevante rispetto alle altre).

Fissato il numero degli attributi (di dialisi) a 15, un record con score piú elevato sará selezionato con piú probabilitá per avviare il processo di apprendimento.

4.2 Pazienti rilevanti

Inoltre, lo *score* é stato utilizzato anche per poter eliminare, dai record giá selezionati, tutti quelli che appartengono a pazienti che hanno meno di 5 rilevazioni di sintomi con uno *score* percentuale piú basso dell'80%.

Tutti i dati selezionati fino a questo punto, quindi, appartengono a pazienti che hanno almeno 5 rilevazioni di sintomi ottimali.

4.3 Gestione dei valori nulli

I valori nulli sono stati gestiti "staticamente", ovvero per ogni paziente sono state calcolate le medie dei valori di ogni attributo (ignorando quindi i valori nulli); in un passo successivo, sono stati scansionati tutti i record e, qualora fosse rilevato un valore nullo, é stato inserito il valore medio relativo al paziente associato.

Tutto ció, tuttavia, ha portato comunque a mantenere alcuni valori nulli all'interno della base dati. Ad esempio, poche rilevazioni di sintomatologia contengono valori effettivi di KTV, probabilmente perché si tratta di una misura di difficile calcolo da parte dei medici.

Alcuni record, inoltre, non contenevano l'ID del sintomo target rilevato, e si é pertanto assunto che l'utente avesse erroneamente cancellato (dall'interfaccia del sistema) la dicitura "asintomatico", aggiungendo comunque una sintomatologia nulla (con ID uguale a 1).

5. APPRENDIMENTO DI REGOLE IN PRO-LOG

Per apprendere regole utili a classificare appositamente una seduta di dialisi si é scelto di utilizzare l'algoritmo C4.5 di Ross Quinlan [3].

6. SVILUPPI FUTURI

- Migliore gestione dei valori nulli (a runtime, tramite misura dell'information gain)
- Gestione multi-classe dell'albero di decisione
- Aggregazione dati ottimi da piú database italiani e non (quando disponibili)

7. REFERENCES

- [1] R. Bellazzi, C. Larizza, P. Magni, R. Bellazzi, and S. Cetta. Intelligent data analysis techniques for quality assessment of hemodialysis services. In *Proc. of the* Workshop on Intelligent Data Analysis and Pharmacology, 2001.
- [2] A. Kusiak, B. Dixon, and S. Shah. Predicting survival time for kidney dialysis patients: a data mining approach. *Comput. Biol. Med.*, 35(4):311–327, May 2005.
- [3] S. Salzberg. C4.5: Programs for machine learning by j. ross quinlan. morgan kaufmann publishers, inc., 1993. *Machine Learning*, 16(3):235–240, 1994.

⁵Gli script rilevanti sono contenuti nel file scripts/04-mysql-scores.sql.