## Week 2

Andrew Yao (姚期智)

2024-3-5

#### Random Variable and its Expectation

- A random variable X is a function X:  $U \rightarrow R$ , its expectation is defined as  $E(X) = \sum_{u \in U} p(u)X(u)$ .
  - \* An "event" is a simple case when X takes on value 0/1.

**Definition:** Sum of random variables

For real a, b, define Z=aX+bY by Z(u) = aX(u)+bY(u).

> Essential Probability Tool #3 Law of Linear Expectation:

If 
$$X=C_1X_1+C_2X_2+...C_nX_n$$
, then  $E(X)=\sum_i C_i E(X_i)$ 

Proof. 
$$E(X) = \sum_{u \in U} p(u)X(u) = \sum_{u \in U} p(u) \sum_i C_i X_i(u_i) = \sum_i C_i \sum_{u \in U} p(u)X_i(u)$$
.

Example 1. Throw n coins  $X_i$  each of bias b, that is,  $\Pr\{X_i = 1\} = b$ . Let  $X = \sum_i X_i$  (number of coins with outcome 1). By Linear Expectation,  $E(X) = \sum_i E(X_i) = bn$ 

#### Random Variable and its Expectation (continued)

- Note that Linear Expectation  $E(X) = \sum_i C_i E(X_i)$  holds even if the  $X_i$  are highly <u>correlated</u>: for example, when  $Pr\{X_i=1 \ \forall i\} = Pr\{X_i=0 \ \forall i\} = \frac{1}{2}$ . Such generality is very useful in the analysis of algorithms; we look at an example.
- $\triangleright$  A permutation  $\sigma$  of  $\{1, 2, ..., n\}$  can be represented in several different ways. For example, let n=5 and  $\sigma$  = (3 5 4 1 2):
- 1)  $\sigma$  as an array of length n, with  $\sigma$  [1]=3,  $\sigma$  [2] = 5 etc.
- 2)  $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$  as an 2 x n array 3)  $\sigma$  as a graph  $G_{\sigma}$ :



cycle representation: (2, 5) (3, 4, 1) is one such representation \* normal-form cycle representation (1,3,4) (2,5) is unique

#### What's the expected <u>number of cycles</u> in a permutation?

Example 2.  $\mathcal{P}$ =(U, p) where U is the set of all n! permutations, p( $\sigma$ )=1/|U| for all  $\sigma \in U$ . Let X be the random variable X( $\sigma$ )= # of cycles in  $\sigma$ 's cycle representation.

#### What is E(X)?

For each  $1 \le i \le n$ , let  $L_i(\sigma)$  = length of cycle containing i.

For example,  $\sigma$  = (3 5 4 1 2) has cycle representation (2, 5) (3, 4, 1), then L<sub>1</sub>( $\sigma$ ) = 3 and L<sub>5</sub>( $\sigma$ ) = 2

Note that 
$$\sum_{i=1}^{n} \frac{1}{L_i(\sigma)} = \frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 2$$
 (the # cycles in  $\sigma$ )

- $\triangleright$  That is,  $X = \sum_{i=1}^{n} 1/L_i$  as random variables.
- $\triangleright$  By linearity of expectation,  $E(X) = \sum_{i=1}^{n} E(1/L_i) = n E(1/L_1)$

Thus it remains to analyze  $E(1/L_1)$ .

#### Expected number of cycles in a permutation (continued)

Lemma Pr 
$$\{L_1 = s\} = \frac{1}{n}$$
 for any  $s \in \{1, ..., n\}$ .

Proof. Observe that for  $1 \le s \le n$ ,  $\Pr\{L_1 > s \mid L_1 > s-1\} = \frac{n-s}{n-s+1}$ 



By Chain rule, 
$$\Pr \{L_1 = s\} = \frac{n-1}{n} \cdot \frac{n-2}{n-1} \cdot \dots \cdot \frac{n-(s-1)}{n-(s-2)} \cdot \frac{1}{n-(s-1)} = \frac{1}{n}$$

Using the Lemma, we obtain

$$E(\frac{1}{L_{1}}) = \sum_{s=1}^{n} \Pr\{L_{1} = s\} \cdot \frac{1}{s} = \frac{1}{n} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) = \frac{1}{n} H_{n}$$
Harmonic number

► Hence the expected number of cycles  $E(X) = n E(1/L_1) = H_n$ . QED

#### Example 3: Finding my Pet

n pets (tagged) are put in n random rooms, how can an owner find his/her pet?

- > Allowed to open only n/2 doors! Hence success probability 1/2.
- But two owners can achieve better prob than 1/4 (without communication) using Cycle Search: Person j starts with door j, and trace out a cycle



Event A: Person 1 succeeds, i.e. cycle  $|C_1| \le n/2$ 

Event B:  $|C_2| \le n/2$ . Event T:  $C_1 = C_2$ 

ightharpoonup Then, Pr {A\cap B} = Pr {A\cap B\cap T} + Pr {A\cap B\cap \overline{T}}

#### Finding my Pet (continued)

Recall: Event A, B:  $|C_1|$ ,  $|C_2| \le n/2$ ; Event T:  $C_1 = C_2$ 

 $Pr \{A \cap B\} = Pr \{A \cap B \cap T\} + Pr \{A \cap B \cap \overline{T}\}$ 

1)  $Pr \{A \cap B \cap T\} = Pr \{A\} \cdot Pr \{B \cap T \mid A\}$ 

$$= \sum_{j=1}^{n/2} \Pr\{|C_1| = j\} \cdot \Pr\{2\epsilon C_1 \mid |C_1| = j\}$$

$$=\sum_{j=1}^{n/2} \frac{1}{n} \cdot \frac{j-1}{n-1}$$

$$=\frac{1}{n(n-1)}\cdot\frac{1}{2}\,\frac{n}{2}\left(\frac{n}{2}-1\right)$$

$$=\frac{1}{4(n-1)}\cdot\left(\frac{n}{2}-1\right)\approx\frac{1}{8}$$

2) Will show Pr 
$$\{A \cap B \cap \overline{T}\} \approx \frac{1}{4}$$



#### Finding my Pet (continued)

Recall: Event A, B:  $|C_1|$ ,  $|C_2| \le n/2$ ; Event T:  $C_1 = C_2$ 

2. 
$$Pr \{A \cap B \cap \overline{T}\} = Pr \{A\} \cdot Pr \{B \cap \overline{T} \mid A\}$$

$$= \sum_{j=1}^{n/2} \frac{1}{n} \Pr \{ 2 \notin C_1, |C_2| \le \frac{n}{2} \mid |C_1| = j \}$$

$$= \sum_{j=1}^{n/2} \frac{1}{n} \Pr \{2 \notin C_1\} \cdot \Pr \{|C_2| \le \frac{n}{2} \mid |C_1| = j, 2 \notin C_1\}$$

$$= \frac{1}{n} \sum_{j=1}^{n/2} \frac{n-j}{n-1} \frac{n/2}{n-j}$$

$$=\frac{1}{n(n-1)}\cdot\frac{n}{2}\cdot\frac{n}{2}$$

$$=\frac{1}{4}\frac{n^2}{n(n-1)}\approx \frac{1}{4}$$



Putting together 1) and 2), we obtain  $Pr \{A \cap B\} = \frac{3n-2}{8(n-1)}$ .

More generally, what's the probability  $r_n$  for all n people to find their pets?

Clearly, this happens iff permutation  $\sigma$  has no cycles of length > n/2.

 $\triangleright$  Let  $T_i$  be the event that the longest cycle of  $\sigma$  has length j. Then by <u>union bound</u>,

$$r_{n} = \sum_{j=n/2}^{n} \frac{1}{n} \Pr \{ T_{j} \} = \sum_{j=n/2}^{n} \frac{1}{n!} \binom{n}{j} (j-1)! (n-j)!$$

$$= \sum_{j=n/2}^{n} \frac{1}{n!} \frac{n!}{j!(n-j)!} (j-1)! (n-j)!$$

$$= \sum_{j=n/2}^{n} \frac{1}{j!} \frac{n!}{j!(n-j)!} (j-1)! (n-j)!$$

$$= \sum_{j=n/2}^{n} \frac{1}{j!} \frac{n!}{j!(n-j)!} (j-1)! (n-j)!$$

For large n,

$$r_n = H_n - H_{\lfloor n/2 \rfloor + 1} \approx \ln 2 \approx 38\%$$

What a surprise!

Here is another useful formula for computing expectation.

For any random variable X and event T, define conditional expectation

$$E(X \mid T) = (\sum_{u \text{ in } T} p(u) X(u))/Pr\{T\} \text{ if } Pr(T)>0, \text{ and } 0 \text{ otherwise}$$

### Essential Probability Tools #4:

Distributive Law for Expectation (Law of Total Expectation)

X: random variable

Universe U is the disjoint union of W<sub>1</sub>,W<sub>2</sub>, ...,W<sub>m</sub>

Then 
$$E(X) = \sum_{i} Pr(W_i) E(X | W_i)$$

#### More essential concepts from probability theory

- $\triangleright$  For a random variables X, E(X) alone may not be sufficient to make decisions.
- ➤ Consider a lottery ticket costing 50 ¥, whose payoff is a random variable X.
- > Assume E(X)=100¥, is it reasonable to buy a ticket?

Scenario A: 
$$X = \begin{cases} 50 & with prob \\ 100 & with prob \\ 150 & with prob \end{cases}$$

In both scenarios, E(X)=100. In case A, the value distribution is concentrated <u>near</u> E(X), thus E(X) reflects the behavior of X pretty well.

In case B, the value distribution is  $\underline{far away}$  from E(X).

> The info E(X)=100 is not a good scientific basis to decide whether to buy a ticket.

#### More essential concepts from probability theory

➤ To help capture important information on X, besides E(X), we'd like to know how spread-out X is around the value E(X).

```
Definitions. Variance of X: Var(X) = E((X-E(X))^2)

Standard Deviation of X: \sigma(X) = \sqrt{Var(X)}

Fact: Var(X) = E(X^2) - (E(X))^2

proof. Var(X) = E(X^2 - 2 E(X) \cdot X + (E(X))^2)

= E(X^2) - 2 E(X) E(X) + (E(X))^2

= E(X^2) - (E(X))^2

QED
```

- $\triangleright$  Var(X), or equivalently  $\sigma(X)$ , provides valuable info regarding how spread-out X is around E(X), as expressed in Chebyshev's Inequality below.
- ➤ In fact, we discuss also two other inequalities of this nature, applicable in various situations.

#### Essential Probability Tools #5 Tail Estimates:

- -- Markov's, Chebyshev's and Chernoff's Inequalities
- Markov' Inequality:

Let X be a random variable taking on only non-negative values.

Then for any c > 0,  $Pr \{X > cE(X)\} < 1/c$ .

 $\triangleright$  Proof. If E(X) = 0, then X  $\equiv$  0, the inequality follows.

If 
$$E(X) > 0$$
, then  $E(X) = \sum_{s=1}^{n} p(u)X(u)$   
>  $Pr\{X > cE(X)\} \cdot cE(X)$ 

Cancelling out E(X), we obtain *Markov' Inequality.* QED

- $\triangleright$  Var(X), or equivalently the standard deviation  $\sigma(X)$ , is often regarded as the second most important feature (next to E(X)) about X. We have the following
- Chebyshev's Inequality:

For any c > 0,  $Pr\{|X - E(X)| > c \sigma(X)\} < 1/c^2$ .

#### Essential Probability Tools #5 Tail Estimates:

- -- Markov's, Chebyshev's and Chernoff's Inequalities
- Chebyshev's Inequality:

```
For any c > 0, Pr\{|X - E(X)| > c \sigma(X)\} < 1/c^2.
```

> Proof.  $Var(X) = E((X-E(X))^2)$ .

Applying Markov's Inequalities to  $((X-E(X))^2)$ , we obtain  $Pr\{(X-E(X))^2 > c^2 Var(X)\} < E((X-E(X))^2)/c^2 Var(X) = 1/c^2$ .

The left hand side is equal to  $Pr\{|X-E(X)| > c \sigma(X)\}$ .

> In cases when  $\sigma(X) << |E(X)|$  (e.g. the value distribution of X is clustered around E(X) within a narrow band of  $6\sigma(X)$ ), then 误差  $1/6^2 \sim 3\%$  Let's look at an example.

<u>Example</u>: Throw n independent coins  $X_1, X_2, ..., X_n$  of bias 0<br/>b<1, that is,

Pr  $\{X_i = 1\} = b$ , Pr  $\{X_i = 0\} = 1 - b$ . Let  $X = \sum_{i=1}^{n} X_i = \#$  of 1's among all the outcomes.

$$E(X) = \sum_{i=1}^{n} E(X_i) = nb$$

Var (X) = E(X<sup>2</sup>) - (E(X))<sup>2</sup>  
= E((X<sub>1</sub> ... + X<sub>n</sub>)<sup>2</sup>) - b<sup>2</sup>n<sup>2</sup>  
= E(
$$\sum_{i} X_{i}^{2} + \sum_{i \neq j} X_{i} X_{j}$$
) - b<sup>2</sup>n<sup>2</sup>  
= n E(X<sub>1</sub><sup>2</sup>) + n(n-1)E(X<sub>1</sub>X<sub>2</sub>) - b<sup>2</sup>n<sup>2</sup>

As  $X_1^2 = X_1$ , and  $X_1$ ,  $X_2$  are independent, we have

Var(X) = n E(
$$X_1$$
) + n(n-1)E( $X_1$ ) E( $X_2$ ) – b<sup>2</sup>n<sup>2</sup>  
= nb+ n(n-1) b<sup>2</sup> – b<sup>2</sup>n<sup>2</sup>  
= b(1-b) n

$$\sigma(X) = \sqrt{b(1-b) n}$$

#### Essential Probability Tools #5 Tail Estimates (continued)

Chebyshev's Inequality: For any c > 0,  $Pr\{|X - E(X)| > c \sigma(X)\} < 1/c^2$ .

Very general, but often not tight:

For example, toss a fair coin=10,000 times, E(X)=5000,  $\sigma(X) = \frac{1}{2}\sqrt{n}$  =50.

Here Chebyshev's Inequality only says  $Pr \{|X - 5000| > 500\} \le 1/10^2 = 1\%$ ,

But it can actually be shown that this probability < 2 e<sup>-17</sup>

We now introduce a powerful method for establishing the above bound, known as the *Chernoff Bound* 

#### Essential Probability Tools #5 Tail Estimates (continued)

Let  $X_1, X_2, ..., X_n$  be independent coin tosses, and  $X = \sum_{i=1}^n X_i$  where

$$\begin{cases} \Pr(X_i = 1) = b_i \\ \Pr(X_i = 0) = 1 - bi \end{cases}$$

Note  $E(X) = \sum_{i=1}^{n} b_i = \mu$ 

Theorem (Chernoff's Bound)  $\Pr\{X \geq (1+\delta)\mu\} \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \quad \text{for } \delta > 0,$  (1)

$$\Pr\{X \leq (1-\delta)\mu\} \leq \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\overline{\mu}} \quad \text{for } 0 \leq \delta < 1. \tag{2}$$

Corollary1:

$$\Pr\{X \ge (1+\delta)\mu\} \le e^{-\frac{1}{3}\delta^2\mu} \text{ for } \delta > 0,$$
  
 $\Pr\{X \le (1-\delta)\mu\} \le e^{-\frac{1}{2}\delta^2\mu} \text{ for } 0 \le \delta < 1.$ 

Corollary2:  $\Pr\{X > c\} \le 2^{-c} \text{ if } c > 7E(X)$ 

#### **Proof of Chernoff's Bound**

- > We only prove (1)  $\Pr\{X \geq (1+\delta)\mu\} \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$  for  $\delta > 0$ , (2) will be left as exercise.
  - Recall  $E(X) = \sum_{i=1}^{n} b_i = \mu$
- ➤ Let t > 0 be a parameter. As the *exponential function* is monotone, we have
  - (\*)  $\Pr\{X > (1+\delta)\mu\} = \Pr\{e^{tX} > e^{t(1+\delta)u}\} \le \frac{E(e^{tX})}{e^{t(1+\delta)\mu}}$  by Markov Inequality.

 $e^{\mu(e^{t}-1)-t(1+\delta)u}$ 

- We take two steps:
  - Step 1: Get an explicit expression for  $E(e^{t X})$
  - Step 2: Choose t optimally to get best (i.e. smallest) upper bound.
- > Step 1:  $E(e^{tx}) = E(e^{t\sum_i X_i}) = \prod_i E(e^{tX_i})$  $= \prod_i (1 + b_i(e^t - 1)) \le \prod_i (e^{b_i(e^t - 1)})$   $= (e^{(e^t - 1)\sum_i b_i}) \le e^{\mu(e^t - 1)}$

#### Proof of Chernoff's Bound (continued)

Step 2: Pick 
$$\mathbf{t} = \mathbf{t}_0$$
 to minimize  $\mathbf{f}(\mathbf{t}) \equiv \mu (e^{t-1}) - t(1+\delta)u$   
Answer:  $\mathbf{t}_0 = \ln(1+\delta)$  (homework problem)  
[satisfying  $\mathbf{f}'(\mathbf{t}_0) = 0$ ,  $\mathbf{f}''(\mathbf{t}_0) \geq 0$ ]  
 $\mathbf{f}(\mathbf{t}_0) = \mu (e^{\ln(1+\delta)} - 1) - \mu (\ln(1+\delta)) (1+\delta)$ 

$$f(t_0) = \mu (e^{\ln(1+\delta)} - 1) - \mu (\ln(1+\delta)) (1+\delta)$$
$$= \mu \delta - \mu (1+\delta) (\ln(1+\delta))$$

> Thus, 
$$\Pr\{X > (1+\delta)\mu\} \le e^{f(t_0)} = \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$$
 QED

<u>Hoeffding's Inequality:</u> If value of  $X_i \in (a, b)$ ,

$$\Pr\{ |\Sigma X_i - E(X)| \ge t \} \le exp(\frac{-2t^2}{n(b-a)^2})$$

For Xi i.i.d. and 
$$t=\varepsilon n$$
:  $\leq exp\left(\frac{-2\varepsilon^2 n}{(b-a)^2}\right)$ 

- > We have finished presenting some essential tools of probability theory.
- > Will look at some interesting research results obtained with these tools.

#### Greedy Clique Algorithm A

Input: a random graph G=(V, E), V={1, 2, ..., n} and E a set of edges.

```
Step 1. S \leftarrow \{1\}

Step 2. \underline{\text{for }} i = 2 \underline{\text{ to }} n:

\underline{\text{if }} \{i, j\} \in E \text{ for all } j \in S

\underline{\text{then }} S \leftarrow S \cup \{i\}

i \leftarrow i+1
```



Output: Clique A(G) = S

A outputs {1,3,4}, but max clique is {1,4,5,6}

Theorem For an input random graph on n vertices, the greedy algorithm returns a clique A(G) of size  $log_2n - log_2log_2n \le |A(G)| \le log_2n + log_2log_2n$  with probability 1– o(1).

<sup>\*</sup> Notation: o(1) stands for a function f(n) such that  $f(n) \to 0$  as  $n \to \infty$ .

 $\triangleright$  We first prove the upper bound for |A(G)|.

Upper bound  $Pr\{|A(G)| > log_2n + log_2log_2n\} = o(1)$ 

proof. Let  $K = \log_2 n + \log_2 \log_2 n$ . For  $2 \le i \le n$ , let  $T_i$  be the event that the greedy algorithm selects vertex i as the K-th vertex to join S. Then by distributive law,  $\Pr\{|S|>K\} = \sum_{2 \le i \le n} \Pr\{T_i\} \cdot \Pr\{|S|>K \mid T_i\}$ 

As only n-i vertices are available to extend S by 1, we have for each i by union bound

$$\Pr{|S|>K | T_i} \le (n-i) \frac{1}{2^K} \le \frac{n}{2^K}$$

We have thus

$$\Pr\{|S| > K\} \le \frac{n}{2^K} \sum_{2 \le i \le n} \Pr\{|Ti|\} \le \frac{n}{2^{\ln n + \ln \ln n}} = \frac{1}{\ln n}$$
$$= o(1)$$

QED

- $\triangleright$  We next prove the lower bound for |A(G)|.
- <u>Lower bound</u>  $Pr\{|A(G)| \ge K^{\sim}\} = 1 o(1) \text{ where } K^{\sim} = \log_2 n \log_2 \log_2 n.$
- <u>proof.</u> For the purpose of analysis, consider running the greedy algorithm on an infinite sequence of vertices  $\{1, 2, 3, ...\}$ . Let  $X_m(G)$  be the m-th vertex of G selected to join the clique.
- ► It turns out easy to characterize  $Y_m \equiv X_{m+1} X_m$ , the <u>gap</u> that happens between two successive vertices chosen for the clique.
- 1 2 3 4 5 6 X X X
- Observe: for any  $j \ge 1$ ,  $Y_j$  is an independent geometric random variable with parameter  $b_j = \frac{1}{2^j}$ . That is,  $Pr\{Y_j = t\} = (1 b_j)^{t-1} b_j$  for all integers  $t \ge 1$ .
- <u>Lemma 1</u>  $X_m = 1 + \sum_{1 \le j \le m-1} Y_j$  for all  $m \ge 2$ .
- ▶ Note that  $A(G) \ge K^{\sim}$  if and only if  $X_{K^{\sim}}(G) \le n$ . Hence our lower bound is to prove  $Pr\{X_{K^{\sim}}(G) \le n\} = 1 o(1)$ . Suffices to show  $Pr\{\sum_{1 \le j \le K^{\sim}} Y_j \le n 1\} = 1 o(1)$ .

- ▶ Prove lower bound K<sup>~</sup> for |A(G)| by showing Pr  $\{\sum_{1 \le j \le K^{\sim}} Y_j \le n-1\} = 1 o(1)$ .
- ▶ Denote  $\sum_{1 \le i \le K_{\sim}} Y_i$  by X', and estimate E(X') and Var(X'):

Lemma 2 
$$E(X') \le \frac{2 n}{\log_2 n}$$

<u>proof.</u> Each geometric distribution  $Y_j$  satisfies  $E(Y_j) = \frac{1}{b_j} = 2^j$ . By Linear

Expectation, 
$$E(X') = \sum_{1 \le j \le K^{\sim}} 2^{j} = 2^{1+K^{\sim}} - 2 \le \frac{2n}{\log_2 n}$$
.

Lemma 3 
$$Var(X') \le 2 \left(\frac{n}{\log_2 n}\right)^2$$

<u>proof.</u> It is well known  $Var(Y_j) = \frac{1}{b_j^2} - \frac{1}{b_j} = 4^j - 2^j$ . As  $Y_j$ 's are independent,

$$Var(X') = \sum_{1 \le j \le K^{\sim}} Var(Y_j) = \sum_{1 \le j \le K^{\sim}} (4^{j} - 2^{j}) = \frac{4}{3} (4^{K^{\sim}} - 1) - (2^{1 + K^{\sim}} - 2) \le 2 \left( \frac{n}{\log_2 n} \right)^2.$$

➤ We are now ready to plug the above estimates for E(X') and Var(X') into Chebyshev's inequality. ► If X' > n-1, then X'- E(X') > n - 1 -  $\frac{2n}{\log_2 n}$  >  $\frac{n}{2}$  by Lemma 2. It implies that  $Pr\{X' > n-1\} \le Pr\{X' - E(X') > \frac{n}{2}\}$ 

> On the other hand, Chebyshev's inequality tells us

$$\Pr\left\{X' - E(X') > \frac{n}{2}\right\} \le \frac{\text{Var}(X')}{\left(\frac{n}{2}\right)^2} \le 8 \frac{1}{(\log_2 n)^2} \quad \text{by Lemma 3.}$$
 (2)

It follows from (1) and (2) that

$$\Pr\{X' > n-1\} \le 8 \frac{1}{(\log_2 n)^2} = o(1)$$
 This proves the lower bound. QED

Open Problem: Design an efficient algorithm (i.e. polynomial running time) that, For a random n-vertex graph G, outputs a clique of size  $> c \log_2 n$  with prob. 1-o(1) where c > 1.

# End