slides

bollu

June 20, 2018

Outline

Proof outline

- ▶ Algbra of polyhedra, $P(\mathbb{Q}^d)$
- $\blacktriangleright []: \mathbb{Q}^d \to P(\mathbb{Q}^d)$
- ▶ Existence of $\mathcal{F}: P(\mathbb{Q}^d) \to \mathbb{C}(x)$, such that:
 - ▶ F is linear
 - ▶ P is a polyhedra, then $\mathcal{F}([P]) = \sum_{\vec{m} \in P \cap \mathbb{Z}^d} (x^{\vec{m}})$
 - $\mathcal{F}([line]) = 0$
- $ightharpoonup \mathcal{F}(P)(1) = \text{number of points in } P$
- reduction: F for cones gives full F
- reduction: F for simple cones gives F for cones

Caveats

- ▶ Do not understand subtleties of convergence arguments (how is evaluating at $\vec{1}$ correct?).
- ▶ No intuition for LLL, Lattice reduction.

Assuming \mathcal{F} for cones, derive full \mathcal{F} : Part 1 (Polytopes)

FIGURE 66. A polytope $P \subset \mathbb{R}^d$ and a cone $K \subset \mathbb{R}^{d+1}$ based on P.

- ▶ Write polytope as intersection of hyperplane + cone.
- $\mathcal{F}(\text{polytope}) = (\frac{d}{dx}\mathcal{F}(\text{cone}))(1)$

Assuming \mathcal{F} for cones, derive full \mathcal{F} : Part 2 (Lines)

- ► Line = cone + cone point.
- ▶ Since line can be translated, $\forall \vec{x} \in L, L = \vec{x} + L$
 - $\forall x \in L, \mathcal{F}(L) = \mathcal{F}(L) + \mathcal{F}(\vec{x})$
 - $\mathcal{F}(L)=0$

Assuming ${\mathcal F}$ for simple cone, derive for cone

▶ inclusion exclusion: decompose cone into simple cones.

References

- ► Lattice Points, Polyhedra, and Complexity: Alexander Barvinok
- ▶ Integer points in polyhedra: Alexander Barvinok