Dinámica (FIMCP-01271): Lección 05

Año: 2016-2017 Término: II Instructor: Luis I. Reyes Castro Paralelo: 02

COMPROMISO DE HONOR	
Yo, al firmar diseñada para ser resuelta de manera individual, que pur que solo puedo comunicarme con la persona responsable de comunicación que hubiere traído debo apagarlo. Tamb ni materiales didácticos adicionales a los que el instructor en me comprometo a desarrollar y presentar mis respuestas de	edo usar un lápiz o pluma y una calculadora científica, le la recepción de la lección, y que cualquier instrumento bién estoy conciente que no debo consultar libros, notas, atregue durante la lección o autorice a utilizar. Finalmente,
Firmo al pie del presente compromiso como constancia de haberlo leído y aceptado.	
Firma: N	Vúmero de matrícula:

Problema 5.1. En la figura de abajo, la velocidad del collarín B es de 400 mm/s hacia arriba. Con esto en mente:

- a. [2 Puntos] Escriba el vector de velocidad del punto D como función de la velocidad angular $\overline{\omega}_{DE} = \omega_{DE} \hat{k}$ de la manivela DE.
- b. [3 Puntos] Escriba el vector de velocidad del punto D como función de la velocidad angular $\overline{\omega}_{ABD} = \omega_{ABD} \hat{k}$ del brazo ABD.
- c. [2 Puntos] Construya un sistema de dos ecuaciones lineales en las incógnitas ω_{DE} y ω_{ABD} utilizando sus respuestas a los literales anteriores.
- d. [2 Puntos] Resuelva el sistema anterior para ω_{DE} y ω_{ABD} .
- e. [1 Punto] Encuentre la velocidad del punto A.

Problema 5.2. En la figura de abajo, el eslabón AB tiene una velocidad angular de 3 rad/s en sentido de las manecillas del reloj y una aceleración angular nula. Con esto en mente:

- a. [4 Puntos] Construya un sistema de dos ecuaciones lineales en las incógnitas ω_{BDE} y ω_{CD} . No lo resuelva todavía.
- b. [4 Puntos] Construya un sistema de dos ecuaciones lineales en las incógnitas α_{BDE} y α_{CD} . Nótese que como todavía no ha resuelto para ω_{BDE} y ω_{CD} , este sistema quedará

expresado en función de dichas velocidad angulares.

c. [2 Puntos] Resuelva los sistemas de ecuaciones de los dos literales anteriores para encontrar $\omega_{BDE},\,\omega_{CD},\,\alpha_{BDE}$ y $\alpha_{CD}.$

