Manage a farm with Reinforcement Learning

Elisa Stabilini

October 31, 2024

Università degli Studi di Milano - Department of Physics

Table of contents

- 1. Environment definition
- 2. Agents definition
- 3. Results
- 4. Further improvements

Environment definition

Problem definition

- Initial budget: 2000 €
- Cost of growing wheat: 20 €
- Wool selling profit: 10 €
- Wheat selling profit: 50 €
- Storm probability: 30%
- Sheep population with binomial distribution

$$N_t = N_0 (1.15)^t$$

Figure 1: Problem model

Environment key features

- · observation space: budget, sheep, year
- Reward definition r = current_budget initial_budget
- Normalized reward: norm_reward = (reward min_reward) /
 (max_reward min_reward) where
 - min_reward = -self.initial_budget describes the worst case, losing all money
 - max_reward = self.max_budget self.initial_budget describes the best case, reaching the max budget
- State normalization to improve learning stability [4]:
 - norm_budget = budget/max_budget with max_budget = 200000
 - norm_sheep = sheep_count/max_sheep with max_sheep = 70

Agents definition

Deep Q-Learning algorithm

Value function approximation (VFA):

$$\hat{Q}(s, a, \mathbf{w}) \rightarrow \mathbf{x}(s, a)^{\mathsf{T}}\mathbf{w}$$

· Update rule for Q-learning:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]$$

- \cdot Deep Q-Learning: uses deep neural network instead of linear approximation for \hat{Q}
- · DQN update rule:

$$\Delta(\mathbf{w}) = \alpha \left[r_t + \gamma \max_{a_{t+1}} \hat{Q}(\mathbf{s}_{t+1}, a_{t+1}, \mathbf{w}) - \hat{Q}(\mathbf{s}_t, a_t, \mathbf{w}) \right] \nabla_{\mathbf{w}} \hat{Q}(\mathbf{s}_t, a_t, \mathbf{w})$$

Deep Q-Learning agent

- training & target network
- ϵ -greedy strategy
- ϵ -decay over time
- experience replay

Figure 2: Training and target network architecture

REINFORCE algorithm

Policy gradient methods:

- Parameterized policy $\pi_{\theta}(\mathsf{s},a) = \mathbb{P}(a|\mathsf{s};\theta)$
- Parameters update: $\theta_{t+1} = \theta_t + \alpha \nabla \mathcal{J}(\theta_t)$ (gradient ascent)
- · Goal: update of a parameterized policy to maximize the expected total return

$$abla_{ heta} \mathbb{E}_{\pi_{ heta}} \mathit{G}(au) =
abla_{ heta_{ heta}} \sum_{ au} \mathit{P}(au | heta) \mathit{G}(au)$$

REINFORCE: Monte-Carlo Policy Gradient Control with update step

$$\theta \leftarrow \theta + \alpha \gamma^t G \nabla_\theta \log(\pi(a_t|a_t;\theta))$$

REINFORCE agent

Figure 3: Policy network architecture

- Policy network outputs a probability distribution over all possible actions for a given state
- Action randomly chosen according to probability distribution

Results

DQN (experience replay) training

Figure 4: Normalized rewards across episodes

Figure 5: Comparison between raw rewards across different episodes

REINFORCE training

Figure 6: Normalized rewards across episodes

Figure 7: Comparison between raw rewards across different episodes

REINFORCE vs DQN training

Figure 8: Normalized rewards across episodes comparison

Figure 9: Average errors across episodes comparison

Errors evaluation REINFORCE vs DQN

Figure 10: Average errors for DQN training

Figure 11: Average errors for REINFORCE training

Algorithms comparison

Figure 12: Algorithm comparison over different trainings

Further improvements

Possible improvements & developments - I

Learning strategy:

- Use REINFORCE with advantage
- · Use REINFORCE with baseline
- · Test actor-critic methods
- Test dueling architecture
- Test Prioritized experience replay

Possible improvements & developments - II

Environment setting:

- Test pseudo-tabular method (e.g. setting reward between -1 and 1 with bins related to the profit percentage)
- Adaptive reward normalization [7]
- More training (to study convergence)

Algorithmic efficiency:

- Hyperparameters optimization using optuna
- Improving performance with parallelization

Learning evaluation:

• Test different metrics for more objective learning evaluation

Thanks for your attention

Training example without experience replay

Figure 13: Rewards in DQN training without experience replay

Figure 14: TD error in DQN training without experience replay

15 / 23 Environment definition Agents definition Results Further improvements Backup slides

Tabular Q Learning example

Figure 15: Rewards during training with tabular QLearning

Agent initialization examples

· Deep Q Learning agent:

· REINFORCE agent:

```
def __init__(self, env, learning_rate=0.01, gamma=0.99)
```

Data organization - I

```
TrainedDQLearning/

Data/

env_history_<timestamp>.npz

episode_info_<timestamp>.pkl

episode_length_<timestamp>.npy

rewards_<timestamp>.npy

training_errors_<timestamp>.npz
```

Data organization - II

Error calculation

Error calculation for DQN algorithm:

· Single step error:

$$\Delta_t = (r_t + \gamma \max_{a'} Q_{target}(s_{t+1}, a')) - Q(s_t, a_t)$$

• Episode error: $Err_{episode} = \frac{1}{N} \sum_{t=1}^{N} \Delta_t$

Error calculation for REINFORCE algorithm:

$$L(\theta) = -\sum_{t=0}^{T} G_t \cdot \log \pi_{\theta}(a_t|s_t)$$

20 / 23 Environment definition Agents definition Results Further improvements Backup slides

Packages and libraries references i

François Chollet et al.

Keras.

https://github.com/fchollet/keras, 2015.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.

Array programming with NumPy.

Nature, 585(7825):357–362, September 2020.

Packages and libraries references ii

J. D. Hunter.

Matplotlib: A 2d graphics environment.

Computing in Science & Engineering, 9(3):90-95, 2007.

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, James Martens, Hado van Hasselt, Razvan Pascanu, and Will Dabney.

Normalization and effective learning rates in reinforcement learning, 2024.

Richard S Sutton and Andrew G Barto.

Reinforcement Learning.

Adaptive Computation and Machine Learning series. Bradford Books, Cambridge, MA, 2 edition, November 2018.

22 / 23 Environment definition Agents definition Results Further improvements Backup slides

Packages and libraries references iii

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis.

Gymnasium. March 2023.

Hado van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David Silver. Learning values across many orders of magnitude, 2016.

Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software, 6(60):3021, 2021.

23 / 23 Environment definition Agents definition Results Further improvements Backup slide