

Scoring matrices

Sylvain.legrand@univ-lille.fr

Introduction

Definitions

- Homology: Property of two sequences that have a shared ancestor → Homology is true or false
- % Identity: Percentage of identical residues in an alignment →
 Used for amino acids or nucleotides
- **% Similarity**: Percentage of amino acid residues in an alignment with a positive substitution score → Not used for DNA

Scoring matrix

- DNA and an amino-acid scoring matrices are 4x4 and 20x20 tables, respectively
- The position X,Y in the table gives the score of aligning nucleotide/amino-acid X with nucleotide/ amino-acid Y
- Involved in all the analyses of comparison of sequences (DNA/proteins)
- Alignments are matrix-dependent
- Implicitly represent a theory of evolution (protein matrices)
- Understanding a matrix enables a good choice of matrix

DNA matrices

DNA scoring matrices

- Ad hoc matrix is often given by the software
- The identity matrix is the most often used for scoring DNA sequence alignments

	Α	С	G	Т
Α	1			
С	-1	1		
G	-1	-1	1	
Т	-1	-1	-1	1

 Not all nucleotide substitutions are equally likely: transitions occur about twice as often as transversions

	Λ	<u></u>	<u> </u>	_
	Α	С	G	Τ
Α	1			
С	-2	1		
G	-1	-2	1	
Т	-2	-1	-2	1

Why are so many DNA scoring matrices?

- Each scoring scheme is to optimize alignment scoring to a specific sequence similarity
- Ex: the match/mismatch score 1/-4 optimizes the scoring for 100% identical sequences; 1/-1 for 75% identical sequences
- So, you should choose the scoring scheme that is close to your desired sequence identity
- See: <u>https://bioinformaticshome.com/online_software/evaluateDNAscoring.html</u>
- There are numerous possibilities to customize scoring depending on what your goal is: example, for sequence assembly, you would like to find 100% identical sequences

How to obtain DNA scoring schemes?

Use of log odds ratio

$$Odds~for~match = rac{P_{Match}}{P_{Random}} \hspace{1cm} Match = \log_2 igg(rac{P_{Match}}{P_{Random}}igg) \hspace{1cm} \ Odds~for~mismatch = rac{P_{Mismatch}}{P_{Random}} \hspace{1cm} Mismatch = \log_2 igg(rac{P_{Match}}{P_{Random}}igg)$$

- P_{Match}: The probability that two identical nucleotides are aligned by descent
- P_{Random}: The probability that these are aligned by chance
- Example:
 - Match A against AMatch(A-A)=P(A-A)/P(A)xP(A)
 - Mismatch A against CMismatch(A-C)=P(A-C)/P(A)xP(C)

How to obtain DNA scoring schemes?

- Example with 75% identity
 - P_{Match} : the total match probability is 0.75; so the probability for a specific base: 0.75/4=0.1875
 - $P_{Mismatch}$: the total mismatch probability is 1-0.75=0.25 Probability for a specific mismatch : 0.25/12=0.0208333 (mismatches for A : A-C; A-G; A-T)
 - P_{Random} : we assume an equal random probability for each base, then the probability of a random base is 0.25 and the probability of a base pair matching is 0.0625 (0.25x0.25)
 - Odds match= $0.1875/0.0625=3 \rightarrow Match=log_2(3)=1.6$
 - Odds mismatch= $0.333333 \rightarrow Mismatch=log_2(0.333333)=-1.6$

Source

https://bioinformaticshome.com/bioinformatics_tutorials/sequence_alignment/DNA_scoring_matrices.html

Protein matrices

Different kind of matrices

- Identity matrix: Exact matches receive one score and non-exact matches a different score
- Mutation data matrix: a scoring matrix compiled based on observation of protein mutation rates → some mutations are observed more often then other (PAM, BLOSUM)
- Physical properties matrix: amino acids with with similar biophysical properties receive high score
- Genetic code matrix: amino acids are scored based on similarities in the coding triple

BLOSUM62

```
# Matrix made by matblas from blosum62.iij
# * column uses minimum score
# BLOSUM Clustered Scoring Matrix in 1/2 Bit Units
# Blocks Database = /data/blocks_5.0/blocks.dat
# Cluster Percentage: >= 62
# Entropy = 0.6979, Expected = -0.5209
               QEGH
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1
                  0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1
                        1 -3 -3
               0 2 -1 -1 -3 -4 -1 -3 -3 -1
 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4
Q -1 1 0 0 -3 5
                  2 -2 0 -3 -2 1 0 -3 -1
                                          0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1
                                          0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4
                             2 -3 1 0 -3 -2 -1 -3 -1
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2
                            4 - 2
                                  2 0 -3 -2 -1 -2 -1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1
M -1 -1 -2 -3 -1 0 -2 -3 -2
                          1
                             2 -1
F -2 -3 -3 -3 -2 -3 -3 -1 0
                            0 -3
                                  0
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4
                     0 -1 -2 -2 0 -1 -2 -1
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1
                                    1 -4 -3 -2 11
                                     3 -3 -2 -2 2
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3
                          3
                               -2
                                 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4
B -2 -1 3 4 -3 0 1 -1
                       0 -3 -4 0 -3 -3 -2
                                          0 -1 -4 -3 -3 4
Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1
                                          0 -1 -3 -2 -2
X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -4
```


Venn diagram of amino acid properties

https://96954219-a-62cb3a1a-s-sites.googlegroups.com/site/apodtele/

Genetic code

Mutation data matrices

log odds ratio matrices

$$S_{ij} = \log \frac{q_{ij}}{p_i p_j}$$

- expresses the ratio between:
 - The frequency that two residuals *i* and *j* are aligned by descent
 - The probability that these are aligned by chance
- Explanation:
 - qij = the frequency that the alignment of i and j is observed in homologous sequences
 - pi and pj= the frequency of occurrence of i and j, respectively
 - a score is > 0 if the probability of a significant match is > to the probability of a random match
- ⇒ **PAM** and **BLOSUM** matrices

PAM matrices

- In 1978, Margret Dayhoff performed global protein sequence alignments (71 protein groups of closely related proteins (85% identities), and counts the number of substitutions between each pair of amino acids
- She obtained the counts shown in the matrix below

 Then she used this count matrix to derive "point matrices accepted mutations" (PAM)

Scores are calculated as log-odds

$$S_{ij} = \log \frac{q_{ij}}{p_i p_j}$$

- Positive values reflect frequent substitutions ("accepted by natural selection"), i.e. substitutions observed more frequently than expected by chance
- Negative values reflects rare mutations, i.e. those that are observed less frequently than expected by chance
- The diagonal reflects residue conservation

	C	S	Т	Р	Α	G	
С	11.5						
S	0.1	2.2					
Т	-0.5	1.5	2.5				
Р	-3.1	0.4	0.1	7.6			
Α	0.5	1.1	0.6	0.3	2.4		
G	-2.0	0.4	-1.1	-1.6	0.5	1.6	

PAM matrices

- The alignments carried out by Margret Dayhoff in 1978 had an average identity of ~85%
- However, the frequency of substitutions depends on the degree of divergence between sequences, as the number of substitutions increases over time.
- To account for the rate of divergence, Margret Dayhoof calculated a series of score matrices, each reflecting a certain substitution rate
 - **PAM001** substitution rate between amino acids at the end of an evolutionary time resulting in $\sim 1\%$ substitutions per position.
 - **PAM050** idem with 50% mutations /position
 - **PAM250** idem with 250% mutations/position (note: the same position can be subject to several successive mutations)
- When making an alignment, one must choose one of the matrices
 of this series, taking into account the rate of difference between the
 two sequences that one wants to align.

BLOSUM matrices

- Henikoff and Henikoff (1992) analysed the frequencies of substitutions in blocks from multiple alignments generated from a large number of protein families (blocks)
- They derived the "BLOSUM" series of matrices, which correspond to different rates of evolutionary conservation between sequences.

BLOSUM matrices

- Examples
 - The **BLOSUM62** matrix was calculated from blocks of ≥62% identity
 - The **BLOSUM80** matrix was calculated from blocks of ≥80% identity
- When aligning sequences, the most appropriate matrix should always be chosen, based on the percentage of similarity
- The problem is that before the alignment is carried out, this percentage is not known. How can this circularity be resolved?
 - A first alignment is carried out with a "medium" matrix (BLOSUM62).
 - The % identity is observed in this alignment
 - The matrix whose index is closest to this % is then chosen.
 - Alignment is redone with the new matrix

Summary

- Different substitution scoring matrices have been established
 - Residue categories (Phylip)PAM (Dayhoff, 1979).
 - PAM means "Percent Accepted Mutations"
 - BLOSUM (Henikoff & Henikoff, 1992) BLOSUM means "Block sum"
- Substitution matrices allow to detect similarities between more distant proteins than what would be detected with the simple identity of residues
- The matrix must be chosen carefully, depending on the expected rate of conservation between the sequences to be aligned

Summary

- With PAM matrices, the score indicates the percentage of substitution per position -> higher numbers are appropriate for more distant proteins
- With BLOSUM matrices, the score indicates the percentage of conservation -> higher numbers are appropriate for more conserved proteins

	% ≠ observé	dist. évolutive PAM
BLOSUM-80	1	1
PAM-1	5	5
faible divergence	10	11
	15	17
	20	23
	25	30
	30	38
BLOSUM-62	34	47
PAM-120	40	56
	45	67
	50	80
	55	94
	60	112
	65	133
BLOSUM-45	70	159
PAM-250	75	195
forte divergence	80	246
	85	328

References

Published in final edited form as:

Curr Protoc Bioinformatics. 2013; 43: 3.5.1-3.5.9. doi:10.1002/0471250953.bi0305s43.

Selecting the Right Similarity-Scoring Matrix

William R. Pearson¹

¹University of Virginia School of Medicine, Charlottesville, VA

https://bioinformaticshome.com/bioinformatics_tutorials/sequence_alignment/DNA_scoring_matrices.html

Course from Jacques Van Helden:

http://pedagogix-tagc.univ-

mrs.fr/courses/bioinfo_intro/pdf_files/03.01.matrices_de_substitution_fr_6ppf.pdf

http://tbb.bio.uu.nl/BDA/2017/20170221_quantifying_sequence_similarity.pdf

PAM

NIH-PA Author N

Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. (1978). A model of evolutionary change in proteins. Atlas of Protein Sequence and Structure 5, 345--352.

BLOSUM

Henikoff, S. & Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89, 10915-9

Sylvain Legrand
Maître de Conférences
UMR CNRS 8198 EVO-ECO-PALEO
Evolution, Ecologie et Paléontologie
Université de Lille - Faculté des Sciences et Technologies
Bât SN2, bureau 208 - 59655 Villeneuve d'Ascq

sylvain.legrand@univ-lille.fr | http://eep.univ-lille.fr/ Tél. +33 (0)3 20 43 40 16