28. a	a. Show the operations of different branch and data transfer instructions used in PIC microcontroller with suitable examples.	10	2	3	1	
	(OR)					
t	b. Sketch the ARM NuvoTon Cortex (NUC140) block diagram and discuss the role of its major functional units.	10	2	3	1	
29. a	a. Explain the data transfer process involved in I2C communication protocol.	10	2	4	1	
	(OR) o. Interpret the role of sensors and communication protocol in IOT					
t	10	2	4	5		
30. a	a. Analyse the role of following in real time operating system					
	(i) Tasks and task states	5	2	5	1	
	(ii) Re-entrancy and re-entrancy rules	5	2	5	1	
	(OR)					
1	e. Explain the following with respect to RTOS.		2	-	1	
	(i) Message queues	5	2	5	1	
	(ii) Interrupt routine					

* * * * *

Reg. No.

B.Tech. DEGREE EXAMINATION, JUNE 2022

Sixth Semester

18EEC308J – EMBEDDED SYSTEM DESIGN

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note: (i) (ii)	Part - A should be answered in OMR sover to hall invigilator at the end of 40 th Part - B should be answered in answer by	sheet wit minute.	thin first 40 minutes and OMR shee		ld be	han	ded	
Time: 2½	Hours			Max.	Ma	rks:	75	
	PART – A (25 × 1 Answer ALL (Marks	BL	CO		
1.	When 8051 wakes up then 0×00 is lo (A) DPTR (C) PC	(B) (D)	SP	1	1	1	1	
2.	Because of the multiplexed data/add the (A) Chip is small and cheaper (C) Circuit becomes complex	(B) (D)	chip is smaller and costlier Address and data signals are transferred simultaneously	1	1	1	1	
3.	The content of the accumulator after MOV A,#3Ah	peration is	1	1	1	1		
	ORL A,#09h (A) 0011 1001 (C) 0011 1011	\ /	0000 1111 0110 0110					
4.	The range of unsigned int in embedd (A) -32768 to +32767 (C) -128 to +127	(B)	rogramming is 0 to 65535 0 to 255	I	1	1	5	
5.	For multi-way decision, the compa embedded C is(A) For loop (C) Do-while loop	(B)	native to ELSE-IF statement in While loop Switch case	1	1	1	5	
6.	What is the correct execution proces (A) Editor-preprocessor-compiler (C) Compiler-preprocessor-editor	(B)	Preprocessor –editor-compiler	1	1	2	5	
7.	What is the microcontroller used in (A) ATmega32114 (C) ATmega 2560	(B)	o UNO? AT915AM3×8E ATmega 328P	1	1	2	5	

		andrica bas a contra	an anhandiati-la	1	1	2	5	20 The 6-11-1-1-1-1 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1	1	A	5
8.		arduino board contains		1		٢	5	20. The following one is not the characteristics of IOT.	1	1	4	J
			(B) Arduino UNO					(A) Self-configuring (B) Dynamic and self-adapting				
	(C) Are	duino esplora	(D) Arduino due					(C) Unique identify (D) Standalone infrastructure				
	TT71 1 1 A	1 - 1 - 1 - 1 - 1	25(2)	- 1	1	2	5				4	
9.		Arduino board use the ATmeg		1	1	2	3	21. The problem of priority inversion can be solved by	1	1	5	1
			(B) Arduino nano and FiO					(A) Priority inheritance protocol (B) Priority inversion protocols				
	(C) Are	duino mega and mega ADK	(D) 'Arduino Uno and robot					(C) Priority selective protocol (D) Priority mask protocol				
10.	What is	the operating voltage of ATm	nega 328?	1	1	2	5	22Time required to synchronized switch from the context of one thread to the	1	1	5	1
			(B) 1.8 V to 5.5 V					context of another thread is called				
			(D) 12V to 9 V					(A) Threads fly-back time (B) Jitter	10			
	(0) 1.1	, 33 5 ,	(B) 12 (10) ((C) Context switch time (D) Latency				
1.1	In PIC	microcontroller real time	e clock design can be used for	1	1	3	1	(C) Context switch time (D) Latency				
11.	III TIC	applications.	e clock design can be used for					22 In a goal time contains the comments were the	1	1	5	1
	(A) D-		(D) D					23. In a real time system the computer results	1	1	J	1
		ta logging	(B) Process monitoring					(A) Must be produced within a (B) May be produced at any time				
	(C) Int	errupt handling	(D) Rebooting					specific deadline				E
								(C) May be correct (D) Depends on user input				
12	Which o	of the following is not the bit of	of STATUS register?	1	1	3	1					
	(A) DC		(B) CY					24. Antilock brake system, flight management, pacemakers are examples of	1	1	_ 5	1
	(C) RP	O	(D) FSR									
			10					(A) Safety critical system (B) Hard real time system				
13	The PIC	16C6X/7X has	program counter.	1	1	3	1	(C) Soft real time system (D) Safety critical system and hard				
	(A) 8 b		(B) 11 bit					real time system				
	(C) 12		(D) 13 bit					rear time system				
	(0) 12		(D) 15 oil					25 The amount of mamory in a real time avector is generally		1-	5	-1
1.4	ADM no	co coccon is a	device.	1	1	3	1	25. The amount of memory in a real time system is generally	1	•		
14		ocessor is a				=		(A) Less compared to PCs (B) High compared to PCs				
	(A) 8 b		(B) 16 bit					(C) Same as in PCs (D) They do not have any memory				
	(C) 4 b	it =	(D) 32 bit									
1.5	CEDIA.			1	1	2						
15		ogram counter is implement	nted usingin the ARM	ı	1	5	ı	$PART - B (5 \times 10 = 50 Marks)$	Marks	BL	CO	РО
	processo							Answer ALL Questions				
	(A) Ca		(B) Heaps									
	(C) Ge	neral purpose register	(D) Special purpose register					26. a.i. Point out the different arithmetic and logical instructions used in 8051	7	2	1	1
								microcontroller.				
16	The RS2	232 protocol is also known as		1	1	4	1					
	(A) UA	ART	(B) SPI					ii. Differentiate microprocessor and microcontroller.	3	2	1	1
	(C) Ph	ysical interface	(D) Electrical interface									
	()	,	(-)					(OR)				
17	Which d	of the following is the most	commonly used buffer in the serial	1	1	4	1	b. Breakdown the different functional statement used in embedded C	10	2	1	5
	porting?	_	commonly used ourself in the serial							_	-	_
	(A) LII		(B) FIFO					programming with suitable example.				
	` '					*			_	0		_
	(C) FII	20	(D) LILO					27. a.i. Survey the various applications of Arduino development board.	5	2	2	5
1.0	מין . דומי	D 4: C-11		1	1	4	1		77			
18		B device follows	_structure.	1	1	4	1	ii. Prioritize the use of Arduino shielding boards in the development board.	5	2	2	5
	(A) Lis		(B) Huffman									
	(C) Ha	sh	(D) Tree					(OR)				
								b. Appraise the features of following functions in Arduino programming.				
19	Which s	ignal is used to select the slav	ve in the serial peripheral interfacing?	1	1	4	1	(i) Advanced I/O functions	6	2	2	5
		ive select	(B) Master select					(ii) Analog and digital I/O	4	2	2	5
	` '	errupt	(D) Clock signal					(/				
		202	N 10 10 10 10 10 10 10 10 10 10 10 10 10									
	*											

Page 2 of 4