Boolean Algebra

ACSL Contest #3

What is Boolean Algebra and why does it matter?

 Boolean algebra is the branch of algebra in which the values of variables and constants have exactly two values: true and false, usually denoted 1 and 0 respectively.

```
s = 0
x = 1
while (s < 100):
    if (x % 2 == 0) and (x % 3 != 0)
        then s = s + x
x = x + 1</pre>
```

It's the basis for digital circuits that make up a computer's hardware.

Operators Overview

- Basic operators: AND, OR, and NOT
- Secondary operators: XOR (eXclusive OR) and XNOR (eXclusive NOR).
 - Secondary operators are secondary in the sense that they can be composed of basic operators.

AND Operator

 The AND of two values is true only whenever both values are true. It's notated as xy or x * y.

X	у	xy
0	0	0
0	1	0
1	0	0
1	1	1

OR Operator

 The OR of two values is true whenever either or both values are true. It is written as x + y.

X	у	x + y
0	0	0
0	1	1
1	0	1
1	1	1

NOT Operator

- The NOT of a value is its opposite;
 that is, the not of a true value is
 false whereas the not of a false value is true.
- It is written as \overline{x} or $\neg x$

$\boldsymbol{\mathcal{X}}$	$\frac{1}{x}$	
0	1	
1	0	

XOR Operator

- The XOR of two values is true whenever the values are different.
- It uses the \bigoplus operator and can be built from the basic operators:

$$x \oplus y = x\overline{y} + \overline{x}y$$

X	У	$x \oplus y$	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

XNOR Operator

- The XNOR of two values is true whenever the values are the same.
 - It is the NOT of the XOR function.
- It uses the operator:

$$x \odot y = \overline{x \oplus y}$$

• Can be built from:

$$x \odot y = xy + \overline{xy}$$

x	у	$x \odot y$	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Laws

- A law of boolean algebra is an identity such as x+(y+z) = (x+y)+z between two boolean terms.
- A boolean term is an expression built up from variables, the constants 0 and 1, and operations and, or, not, xor, and xnor.
- As in ordinary algebra, parentheses are used to group terms.
- NOT AND is OR and NOT OR is AND
- When a not is represented with an overhead horizontal line, there is an implicit grouping of the terms under the line:

$$x \cdot \overline{y+z}$$
 is evaluated as if it were written $x \cdot (y+z)$

Order of Precedence

- 1. NOT
- 2. AND
- 3. XOR and XNOR
- 4. OR

Operators with the same level of precedence are evaluated from left to right.

Fundamental Identities

Commutative Law – The order of application of two separate terms is not important.	x + y = y + x	$x \cdot y = y \cdot x$
Associative Law – Regrouping of the terms in an expression doesn't change the value of the expression.	(x+y) + z = x + (y+z)	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$
Idempotent Law – A term that is or'ed or and'ed with itself is equal to that term.	x + x = x	$x \cdot x = x$
Annihilator Law – A term that is or' ed with 1 is 1; a term and' ed with 0 is 0.	x + 1 = 1	$x \cdot 0 = 0$
Identity Law – A term or ed 0 or and ed with a 1 will always equal that term.	x + 0 = x	$x \cdot 1 = x$
Complement Law – A term or ed with its complement equals 1 and a term and ed with its complement equals 0. $x + \bar{x} = 1$		
Absorptive Law – Complex expressions can be reduced to a simpler ones by absorbing like terms.	$x + xy = x$ $x + \overline{x}y = x + y$ $x(x + y) = x$	
Distributive Law – It's OK to multiply or factor-out an expression.	$x \cdot (y+z) = xy + xz$ $(x+y) \cdot (p+q) = xp + xq + yp + yq$ $(x+y)(x+z) = x + yz$	
DeMorgan's Law - An or (and) expression that is negated is equal to the and (or) of the negation of each term.	$\overline{x+y} = \overline{x} \cdot \overline{y}$	$\overline{x \cdot y} = \overline{x} + \overline{y}$
Double Negation – A term that is inverted twice is equal to the original term.	$\frac{\overline{x}}{x} = x$	
Relationship between XOR and XNOR $x \odot y = \overline{x \oplus y} = x \oplus \overline{y} = x \oplus \overline{y}$		

Absorptive Law Proof via Truth Table

Prove using truth table: $A + \bar{A} \cdot B = A + B$

Solved Example

Example Problem 1

Simplify the following expression as much as possible: $\overline{A(A+B)} + B\overline{A}$

Solution:

The simplification proceeds as follows:

$$\overline{A(A+B)} + B\overline{A}$$

$$= \left(\overline{\overline{A(A+B)}}\right) \cdot \left(\overline{B}\overline{A}\right) \quad \text{(DeMorgan's Law)}$$

$$= (A(A+B)) \cdot \left(\overline{B} + \overline{A}\right) \quad \text{(Double Negation; DeMorgan's Law)}$$

$$= A \cdot \left(\overline{B} + A\right) \qquad \text{(Absorption; Double Negation)}$$

$$= A \qquad \text{(Absorption)}$$

Example Problem 2: Question

Find all orderd pairs (A, B) that make the following expression $true: \overline{(A + B)} + \overline{A}B$

- There are typically two approaches to solving this type of problem.
 - One approach is to simplify the expression as much as possible, until it's obvious what the solutions are.
 - The other approach is to create a truth table of all possible inputs, with columns for each subexpression.

Problem 2: Solutions

The simplification approach is as following:

$$\overline{(A+B)} + \overline{AB}$$

$$= \overline{A+B} \cdot \overline{AB}$$

$$= (A+B) \cdot (\overline{A} + \overline{B})$$

$$= (A+B) \cdot (A+\overline{B})$$

$$= (A+B) \cdot (A+\overline{B})$$

$$= AA + A\overline{B} + BA + B\overline{B}$$

$$= A + A(\overline{B} + B) + 0$$

$$= A + A(1)$$

$$= A + A$$

$$= A$$

This means that all inputs are valid whenever A is true: (1,0) and (1,1)

The truth table approach is as following. Each column is the result of a basic operation on two other columns.

#1	#2	#3	#4	#5	#6	#7	#8
		OR of Col#1, Col#2	NOT of Col#3	NOT of Col#1	ADD of Col#1, Col#2	OR of Col#4, Col#6	NOT of Col#7
A	В	A + B	$\overline{A+B}$	\overline{A}	$\overline{A}B$	$\overline{A+B} + \overline{A}B$	$\overline{\overline{A+B}} + \overline{\overline{A}B}$
0	0	0	1	1	0	1	0
0	1	1	0	1	1	1	0
1	0	1	0	0	0	0	1
1	1	1	0	0	0	0	1

The rightmost column is the expression we are solving; it is *true* for the 3rd and 4th rows, where the inputs are (1,0) and (1,1).

Past Contest Senior

1. Boolean Algebra

Simplify the following Boolean expression:

$$\overline{A}(B + \overline{A}) + A\overline{B} + B(A + \overline{A}B)$$

1. Boolean Algebra

$$\overline{A}(B+\overline{A}) + A\overline{B} + B(A+\overline{A}B) = \overline{A}B + \overline{A}\overline{A} + A\overline{B} + BA + B\overline{A}B$$

$$= \overline{A}B + \overline{A} + A\overline{B} + AB + \overline{A}B = \overline{A}(B+1) + A(\overline{B}+B)$$

$$= \overline{A} + A = 1$$

1. 1

Past Contest Senior

2. Boolean Algebra

How many ordered triples make the following Boolean expression TRUE?

$$\overline{A(\overline{B}+\overline{\overline{C}})}$$

2. Boolean Algebra

$$\overline{A(\overline{B}+\overline{C})} = \overline{A} + \overline{\overline{B}+\overline{C}} = \overline{A} + B + \overline{C}$$

 $\overline{A} + B + \overline{C} = 0$ only when each term is 0.

This only happens for (1, 0, 1).

Therefore 7 ordered triples make the expression TRUE.

2. 7

Past Contest Intermediate

1. Boolean Algebra

Simplify the following Boolean algebra expression:

$$A(\overline{A}+B)+\overline{B}(A+B)$$

1. Boolean Algebra

$$A(\overline{A} + B) + \overline{B}(A + B) = A\overline{A} + AB + \overline{B}A + \overline{B}B$$
$$= 0 + AB + \overline{B}A + 0$$
$$= A(B + \overline{B}) = A$$

1. A

Past Contest Intermediate

2. Boolean Algebra

How many ordered triples make the following Boolean expression FALSE?

$$A \overline{B} + \overline{B} \overline{C} + \overline{A} \overline{C} + \overline{B} \overline{C}$$

2. Boolean Algebra

Boolean Algebra
$$A \, \overline{B} + \overline{B} \, \overline{C} + \overline{A} \, \overline{C} + \overline{B} \, \overline{C} = A \, \overline{B} + \overline{B} + \overline{C} + \overline{A} \, \overline{C} + \overline{B} \, \overline{C}$$

$$= \overline{B}(A+1) + \overline{C}(1+\overline{A}+\overline{B})$$

$$= \overline{B} + \overline{C}$$
If $\overline{B} + \overline{C} = 0$, then $\overline{B} = 0 \land \overline{C} = 0$.
Therefore $\overline{B} = 0 \rightarrow B = 1 \land \overline{C} = 0 \rightarrow C = 1$. (*, 1, 1)

2. 2