(19) World Intellectual Property Organization International Bureau

" | HOURT BENEEN HOUSEN BOTT HER HOUSEN HOUSEN HOUSE HOUSEN HOUSEN HOUSEN HOUSEN

(43) International Publication Date 11 October 2001 (11.10.2001)

PCT

(10) International Publication Number WO 01/74901 A2

(51) International Patent Classification7:

. ----

C07K 14/475

- (21) International Application Number: PCT/US01/09555
- (22) International Filing Date: 23 March 2001 (23.03.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/193,548 09/809,545 31 March 2000 (31.03.2000) US 14 March 2001 (14.03.2001) US

- (71) Applicant (for all designated States except US): SCIOS INC. [US/US]; 749 North Mary Avenue, Sunnyvale, CA 94086 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): STANTON, Lawrence, W. [US/US]; 73 Turnsworth Avenue, Redwood

City, CA 94062 (US). WHITE, R., Tyler [US/US]; 41600 Marigold Drive, Fremont, CA 94539 (US).

- (74) Agent: ALTMAN, Daniel, E.; Knobbe, Martens, Olson And Bear, LLP, 16th Floor, 620 Newport Center Drive, Newport Beach, CA 92660 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

[Continued on next page]

(54) Title: SECRETED FACTORS

Regulated expression of Full-length novel clones

	Kidney					Heart										
m TD	Close(ID	PKD	Na +	Hyp 10w	,		L\	12w 19w	٠.	Spt (m. Re	17~1					
: 5	P00194_D11	_	_		=	₹	7	▼ -	=	= =	. *	7				
	PQ1185_011	_	_	•	•	_	_	▼ -	_			_				
5	P00198_D12	_	_	•	•	_	_		_			_				
*	P00188_E01	_	_	_	•	•	•	4 4	_		,					
,	P00194_GB1	_	_	_		•	_	A A	_			_				
	P00194_G05	_		_	_	_	٨	A A	_		,					
,,,	P00194_H19				_	•	_		_			_				
,	P00199_D08	_	_	_	•		_	- ▼	_			_				
ì	P00203_D04	•		▼	_	•	_		_			_				
10	P00203_E04	_	_	·	•	v	•	7 7	_			_				
11	P00200_F06			•	٨	_	•	4 4	_			_				
17	P00219_D02	_	_	_	_	_	_	A	`_			_				
13	F00219_F08	_	_	_		•	•	4	_			_				
14	P00220_H03	_	_	_	_	_	_	- 4				_				
15	P00222_G03			_	_	v	4	v -	_	v -		_				
rd.	P00223_F01				_	_	_		_		. <u>-</u> .	_				
17	P00225_C01			_	_	_	•	A A	_	- 4						
18.	P00227_D11			_	•	_	_		_	_ =		_				
10	P00228_F03				•	_	•	A Ā	_			_				
2Q*	P00233_H06			_	Ā	•	Ã	Ā Ā	_			_				
21	POURTE GOP	•	_	_	Ξ	_	Ĺ		_	-		_				
23.	P00239_C11	_	-		•	_	_	- •	•		. <u>.</u> .	_				
27 .	P00240_804	_	_	Ţ	_	_	_	v –	_	v -	· y -	_				
ю.	MODERN ECO				_	_	_		_		. <u>.</u> .	_				
25	PQ0241_E12	_	_	-	_	_	_	▼	•	v -		_				
8	P00243_D08	•	_	_	*	_	_		_		. <u>-</u> -	_				
27	P00246_D13			_	_	_	_		Ξ.	v -		-				
	P002-F7_F04			_	*	•	⊽	- •	_			_				
	P00348 B04			•	_	_	_	_ <u>-</u>	_			_				

			Heart											
en.	CloseID	PKD	Arre2	1177	2₩		LV Ju	12~	14	}	44	*	12~	1640
₩.	PHYSICIPA				-	•	4	•	•	_	-	1	4	•
330	ROOFSHIP AND			_	٨	٨	4	٨	•	_	-	-	_	_
17	PORTE STO			•	_	₹	_	_	-	_	_	_	_	-
30	street ign.			_	_	_	_	_	_	_	_	_	_	_
H	MASSES.	_	_	•	_	٨	_	٨	_	_	_	_	_	_
13.	100 ET 100			•	_	₹	_	▼	•	_	_	_	_	_
34	PO312_C04				_	_	٠	_	_	_	_	₹	_	_
37:	ALTERNATION OF THE PARTY OF THE				_	•	•	•	_	_	₹	₹	₹	₹
u	FORES IN	•	_	_	_	_	4	•	•	_	_	_	_	_
87	PORCH COM			_	_	•	-	_	▼	_	_	_	_	_
30	CO25:500													
	10067-300	_	_	•	_	_	_	_	_	_	_	_	_	_
	AMPLE TO													
-	P00687_C03	•	_	_	_	_	_	•	•	_	_	_	_	_

(57) Abstract: The invention concerns new secreted factors encoded by clones P00184 D11 (SEQ ID NO:1), P00185 D11(SEQ ID NO:3), P00188 D12 (SEQ ID NO:5), P00188 E01 (SEQ ID NO:7), P00194 G01 (SEQ ID NO:9), P00194 G05 (SEQ ID NO:11), P00194 H10 (SEQ ID NO:13), P00199 D08 (SEQ ID NO:15), P00203 D04 (SEQ ID NO:17), P00203 E06 (SEQ ID NO:19), P00209 F06 (SEQ ID NO:21), P00219 D02 (SEQ ID NO:23), P00219 F06 (SEQ ID NO:25), P00220 H05 (SEQ ID NO:27), P00222 G03 (SEQ ID NO:29), P00225 C01 (SEQ ID NO:32), P00227 D11 (SEQ ID NO:34), P00228 F03 (SEQ ID NO:36), P00233 H08 (SEQ ID NO:38), P00235 G08 (SEQ ID NO:40), P00239 C11 (SEQ ID NO:42), P00240 E05 (SEQ ID NO:45), P00247 A04 (SEQ ID NO:50), P00248 B04 (SEQ ID NO:52), P00249 F09 (SEQ ID NO:54), P00258 A10 (SEQ ID NO:56), P00262 C10 (SEQ ID NO:58), P00269 H08 (SEQ ID NO:62), P00628 H02 (SEQ ID NO:66), P00629 C08 (SEQ ID NO:68), P00641 G11 (SEQ ID NO:71), P00648 E12 (SEQ ID NO:73), P00697 C03 (SEQ ID NO:75), and other mammalian homologues and variants of such factor, as well as polynucleotides encoding them. The invention further concerns methods and means for producing such factors and their use in the diagnosis and treatment of various cardiac, renal or inflammatory diseases.

WO 01/74901 A2

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report

SECRETED FACTORS

I. FIELD OF THE INVENTION

5

10

15

20

25

30

35

The present invention concerns secreted factors encoded by genes differentially regulated in certain diseased tissues. More particularly, the invention concerns nucleic acid encoding novel secreted polypeptide factors, the encoded polypeptides, and compositions containing and methods and means for producing them. The invention further concerns methods based on the use of such nucleic acids and/or polypeptides in the diagnosis and treatment of various diseases, in particular cardiac, renal, or inflammatory diseases.

II. BACKGROUND OF THE INVENTION

Gene expression patterns, including changes in gene expression between normal and diseased tissues or tissues in various stages of disease progression provide valuable insight into the molecular determinants of normal and abnormal cellular physiology. Accordingly, genes that are differentially expressed in subjects suffering from a disease, such as cardiac, renal or inflammatory disease, relative to normal subjects, are useful targets for intervention to diagnose, prevent or treat such diseases.

Techniques have been developed to efficiently analyze the level of expression of specific genes in cells and tissues. Procedures that can be used to identify and clone differentially expressed genes include, for example, subtractive hybridization (Jiang and Fisher, Mol. Cell. Different. 1:285-299 [1993]; Jiang et al., Oncogene 10, 1855-1864 [1995]; Sagerstrom et al., Annu. Rev. Biochem. 66: 751-783 [1997]); differential RNA display (DDRT-PCR) (Watson et al., Developmental Neuroscience 15:77-86 [1993]; Liang and Pardee, Science 257:967-971 [1992]); RNA fingerprinting by arbitrarily primed PCR (RAP-PCR) (Ralph et al., Proc. Natl. Acad. Sci. USA 90:10710-10714 [1993]; McClelland and Welsh, PCR Methods and Applications 4:S66-81 [1994]); representational difference analysis (RDA) (Hubank and Schatz, Nucl. Acids Res. 22:5640-5648 [1994]); serial analysis of gene expression (SAGE) (Velculescu et al., Science 270:484-487 [1995]; Zhang et al., Science 276:1268-1272 [1997]); electronic subtraction (Wan et al., Nature Biotechnology14:1685-1691 [1996]); combinatorial gene matrix analyses (Schena et al., Science 270:467-470 [1995]), and various modifications and improvements of these and similar techniques.

A particularly attractive method for assessing gene expression is the DNA microarray technique. In this method, nucleotide sequences of interest are plated, or arrayed, on a porous or non-porous substrate that can be paper, nylon or other type of membrane, filter, chip, glass slide or any other suitable solid support. The arrayed sequences are then hybridized with specific DNA probes from cells or tissues of interest. Microarrays of biological materials have been described in a number of patents and patent

applications, including, for example, U.S. Patent Nos. 5,744,305; 5,800, 992; 5,807,522; 5,716,785; and European Patent No. 0 373 203.

The DNA microarray technique can be used to monitor the expression level of large numbers of genes simultaneously (to produce a transcript image), and to identify genetic variants, mutations and polymorphisms. This information may be used to determine gene function, understanding the genetic basis of disease, diagnosing disease, and developing and monitoring the activities of therapeutic agents.

5

10

15

20

25

30

35

An important application of the microarray method allows for the assessment of differential gene expression in pairs of mRNA samples from two different tissues, or in the same tissue comparing normal versus disease states or time progression of the disease. Microarray analysis allows one to analyze the expression of known genes of interest, or to discover novel genes expressed differentially in tissues of interest. Thus, an attractive application of this technology is as a fundamental discovery tool to identify new genes, and their corresponding expression products, which contribute to the pathogenesis of disease and related conditions.

Microarray technology has been successfully applied to large-scale analysis of human gene expression to identify cancer-specific genes and inflammatory-specific genes (DeRisi et al., Nat. Genet., 14(4):457-60 [1996]; Heller et al., Proc. Natl. Acad. Sci. USA, 94(6):2150-55 [1997]). DeRisi et al. examined a pre-selected set of 870 different genes for their expression in a melanoma cell line and a non-tumorigenic version of the same cell line. The microarray analysis revealed a decrease in expression for 15/870 (1.7%) and an increase in expression for 63/870 (7.3%) of the genes in non-tumorigenic relative to tumorigenic cells (differential expression values <0.52 or > 2.4 were deemed significant). Heller et al. employed microarrays to evaluate the expression of 1000 genes in cells taken from normal and inflamed human tissues. The results indicated that altered expression was evident in genes encoding inflammatory mediators such as IL-3, and a tissue metalloprotease. These results illustrate the utility of applying microarray technology to complex human diseases.

It would be beneficial to discover differentially expressed genes that are related to diseases or various disease states. It would further be beneficial to develop methods and compositions for the diagnostic evaluation and prognosis of conditions involving such diseases, for the identification of subjects exhibiting a predisposition to such conditions, for modulating the effect of these differentially expressed genes and their expression products, for monitoring patients undergoing clinical evaluation for the prevention and treatment of a disease, specifically cardiac, kidney or inflammatory disease, and for monitoring the efficacy of compounds used in clinical trials.

Secreted proteins mediate key biological processes including cell to cell interactions as well as important cellular functions such as cell growth and differentiation, and most protein-based drugs are secreted proteins including insulin, growth hormone, interferons, tissue plasminogen activator (tPA), and erythropoietin (EPO). It would, therefore, be particularly desirable to identify novel differentially expressed genes encoding secreted proteins.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

35

In one aspect, the present invention concerns an isolated nucleic acid molecule comprising a polyor oligonucleotide selected from the group consisting of:

- a polynucleotide encoding a polypeptide having at least about 80% sequence identity with amino acids selected from the group consisting of: 1 to 1203 of SEQ ID NO: 2, amino acids 1 to 193 of SEQ ID NO: 4, amino acids 1 to 236 of SEQ ID NO:6, amino acids 1 to 61 of SEQ ID NO: 8, amino acids 1 to 79 of SEQ ID NO:10, amino acids 1 to 92 of SEQ ID NO:12, amino acids 1 to 86 of SEQ ID NO:14, amino acids 1 to 36 of SEQ ID NO:16, amino acids 1 to 83 of SEQ ID NO:18, amino acids 1 to 82 of SEQ ID NO:20, amino acids 1 to 462 of SEQ ID NO:22, amino acids 1 to 170 of SEQ ID NO:24, amino acids -26 to 233 of Fig. 13 (amino acids 1 to 259 of SEQ ID NO:26), amino acids 1 to 30 of SEQ ID NO:28, amino acids 1 to 39 of SEQ ID NO:30, amino acids 1 to 541 of SEQ ID NO: 33, amino acids 1 to 30 of SEQ ID NO:35, amino acids 1 to 100 of SEQ ID NO:37, amino acids 1 to 65 of SEQ ID NO:39, amino acids 1 to 42 of SEQ ID NO:41, amino acids 1 to 46 of SEQ ID NO:43, amino acids 1 to 313 of SEQ ID NO:46, amino acids 1 to 58 of SEQ ID NO:51, amino acids -35 to 387 of Fig. 29 (amino acids 1 to 422 of SEQ ID NO:53), amino acids 1 to 58 of SEQ ID NO:55, amino acids 1 to 52 of SEQ ID NO:57, amino acids 1 to 245 of SEQ ID NO:59, amino acids 1 to 142 of SEQ ID NO:63, amino acids 1 to 49 of SEQ ID NO:67, amino acids 1 to 70 of SEQ ID NO:69, amino acids 1 to 113 of SEQ ID NO: 72, and amino acids 1 to 114 of SEQ ID NO:74, and amino acids 1 to 97 of SEQ ID NO:76; or a transmembrane domain (membrane spanning segment/region) deleted or inactivated variant thereof;
- (b) a polynucleotide encoding a polypeptide having at least about 80% sequence identity with amino acids 1 to 233 of SEQ ID NO: 26, or amino acids 1 to 387 of SEQ ID NO: 53;
- (c) a polynucleotide encoding amino acids selected from the group consisting of: 1 to 203 of SEQ ID NO: 2, amino acids 1 to 193 of SEQ ID NO: 4, amino acids 1 to 236 of SEQ ID NO:6, amino acids 1 to 61 of SEQ ID NO: 8, amino acids 1 to 79 of SEQ ID NO:10, amino acids 1 to 92 of SEQ ID NO:12, amino acids 1 to 86 of SEQ ID NO:14, amino acids 1 to 36 of SEQ ID NO:16, amino acids 1 to 83 of SEQ ID NO:18, amino acids 1 to 82 of SEQ ID NO:20, amino acids 1 to 462 of SEQ ID NO:22, amino acids 1 to 170 of SEQ ID NO:24, amino acids -26 to 233 of Fig. 13 (amino acids 1 to 259 of SEQ ID NO:26), amino acids 1 to 30 of SEQ ID NO:28, amino acids 1 to 39 of SEQ ID NO:30, amino acids 1 to 541 of SEQ ID NO: 33, amino acids 1 to 30 of SEQ ID NO:35, amino acids 1 to 100 of SEQ ID NO:37, amino acids 1 to 65 of SEQ ID NO:39, amino acids 1 to 42 of SEQ ID NO:41, amino acids 1 to 46 of SEQ ID NO:43, amino acids 1 to 313 of SEQ ID NO:46, amino acids 1 to 58 of SEQ ID NO:51, amino acids -35 to 387 of Fig. 29 (amino acids 1 to 422 of SEQ ID NO:53), amino acids 1 to 58 of SEQ ID NO:55, amino acids 1 to 52 of SEQ ID NO:57, amino acids 1 to 245 of SEQ ID NO:59, amino acids 1 to 142 of SEQ ID NO:63, amino acids 1 to 49 of SEQ ID NO:67, amino acids 1 to 70 of SEQ ID NO:69, amino acids 1 to 113 of SEQ ID NO:72, and amino acids 1 to 114 of SEQ ID NO:74, and amino acids 1 to 97 of SEQ ID NO:76; or a transmembrane domain (membrane spanning segment/region) deleted or inactivated variant thereof;

5

10

15

20

25

.30

35

(d) a polynucleotide selected from the group consisting of: a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 1, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00184_D11 (SEQ ID NO: 1), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 3, wherein said polynucleotide encodes a polyneptide having at least one biological activity of the polypeptide encoded by clone P00185 D11 (SEQ ID NO: 3); a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 5, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00188_D12 (SEQ ID NO: 5), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 7, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00188_E01 (SEQ ID NO: 7), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 9, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00194_G01 (SEQ ID NO: 9), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 11, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00194_G05 (SEQ ID NO: 11), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 13, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00194_H10 (SEQ ID NO:13), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 15, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00199_D08 (SEQ ID NO: 15), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEO ID NO: 17, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00203_D04 (SEQ ID NO: 17), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 19, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00203_E06 (SEQ ID NO: 19), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 21, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00209_F06 (SEQ ID NO: 21), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 23, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00219 D02 (SEQ ID NO: 23), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 25, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00219_F06 (SEQ ID NO: 25), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 27, wherein said polynucleotide encodes a polypeptide

5

10

15

20

25

30

35

having at least one biological activity of the polypeptide encoded by clone P00220 H05 (SEQ ID NO: 27), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 29, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00222_G03 (SEQ ID NO: 29), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 31 (clone P00223 F07), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 32, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00225 C01 (SEQ ID NO: 32), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 34, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00227_D11 (SEQ ID NO: 34), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 36, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00228 F03 (SEQ ID NO: 36), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 38, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00233 H08 (SEQ ID NO: 38), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 40, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00235_G08 (SEQ ID NO: 40), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 42, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00239 C11 (SEQ ID NO: 42), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 44 (clone P00240_B04), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 45, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00240_E05 (SEQ ID NO: 45), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 47 (clone P00241 E12), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 48 (clone P00245 D06), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 49 (clone P00246_D12), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 50, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00247 A04 (SEQ ID NO: 50), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 52, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00248_B04 (SEQ ID NO: 52), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 54, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00249_F09 (SEQ

5

10

15

20

25

30

35

ID NO: 54), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEO ID NO: 56, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00258_A10 (SEQ ID NO: 56), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 58, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00262 C10 (SEQ ID NO: 58), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 60 (clone P00263_ G06), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 61 (clone P00267 F08), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 62, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00269_H08 (SEQ ID NO: 62), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 64 (clone P00312_C04), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 65 (clone P00324_H02), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 66, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00628 H02 (SEQ ID NO: 66), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 68, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00629_C08 (SEQ ID NO: 68), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 70 (clone P00634_G11), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 71, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00641_G11 (SEQ ID NO: 71), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 73, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00648 E12 (SEQ ID NO: 73), and a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 75 wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00697_C03 (SEQ ID NO: 75);

(e) a polynucleotide encoding at least about 50 contiguous amino acids from amino acids selected from the group consisting of: amino acids 1 to 203 of SEQ ID NO: 2, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00184_D11 (SEQ ID NO: 1), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 193 of SEQ ID NO: 4, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00185_D11 (SEQ ID NO: 3); a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 236 of SEQ ID NO: 6, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by

5

10

15

20

25

30

35

clone P00188_D12 (SEQ ID NO: 5), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 61 of SEQ ID NO: 8, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00188_E01 (SEQ ID NO: 7), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 79 of SEQ ID NO: 10, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00194_G01 (SEQ ID NO: 9), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 92 of SEQ ID NO: 12, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00194_G05 (SEQ ID NO: 11), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 86 of SEQ ID NO: 14, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00194_H10 (SEQ ID NO:13), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 36 of SEQ ID NO: 16, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00199 D08 (SEQ ID NO: 15), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 83 of SEQ ID NO: 18, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00203_D04 (SEQ ID NO: 17), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 82 of SEQ ID NO: 20, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00203_E06 (SEQ ID NO: 19), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 462 of SEQ ID NO: 22, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00209 F06 (SEQ ID NO: 21), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 170 of SEQ ID NO: 24, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00219 D02 (SEQ ID NO: 23), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids -26 to 233 of Fig. 13 (amino acids 1 to 259 of SEQ ID NO:26), wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00219 F06 (SEQ ID NO: 25), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 30 of SEQ ID NO: 28, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00220_H05 (SEQ ID NO: 27), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 39 of SEQ ID NO: 30, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00222_G03 (SEQ ID NO: 29), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 541 of SEQ ID NO: 33, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00225_C01 (SEQ ID NO: 32), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 30 of SEQ ID NO: 35, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by

5

10

15

20

25

30

35

clone P00227_D11 (SEQ ID NO: 34), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 100 of SEQ ID NO: 37, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00228_F03 (SEQ ID NO: 36), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 65 of SEQ ID NO: 39, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00233 H08 (SEQ ID NO: 38), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 65 of SEQ ID NO: 39, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00235...G08 (SEQ ID NO: 40), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 46 of SEQ ID NO: 43, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00239 C11 (SEQ ID NO: 42), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 313 of SEQ ID NO: 46, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00240 E05 (SEQ ID NO: 45), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 58 of SEQ ID NO: 51, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00247 A04 (SEQ ID NO: 50), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids -35 to 387 of Fig. 29 (amino acids 1 to 422 of SEQ ID NO:53), wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00248_B04 (SEQ ID NO: 52), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 58 of SEQ ID NO: 55, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00249_F09 (SEQ ID NO: 54), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 52 of SEQ ID NO: 57, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00258_A10 (SEQ ID NO: 56), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 245 of SEQ ID NO: 59, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00262_C10 (SEQ ID NO: 58), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 142 of SEQ ID NO: 63, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00269 H08 (SEQ ID NO: 62), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 49 of SEQ ID NO: 67, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00628_H02 (SEQ ID NO: 66), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 70 of SEQ ID NO: 69, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00629 C08 (SEQ ID NO: 68), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 113 of SEQ ID NO: 72, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone

P00641_G11 (SEQ ID NO: 71), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 114 of SEQ ID NO: 74, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00648_E12 (SEQ ID NO: 73), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 97 of SEQ ID NO: 76, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00697 C03 (SEQ ID NO: 75);

- (f) a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to233 of SEQ ID NO: 26, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00219_F06 (SEQ ID NO: 25), and a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 387 of SEQ ID NO: 53, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00248_B04 (SEQ ID NO: 52);
- (g) a polynucleotide selected from the group consisting of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 45, 47, 48, 49, 50, 52, 54, 56, 58, 60, 61, 62, 64, 65, 66, 68, 70, 71, 73, and 75;
 - (h) the complement of a polynucleotide of (a) (g); and

5

10

15

20

25

30

35

(i) an antisense oligonucleotide capable of hybridizing with, and inhibiting the translation of, the mRNA encoded by a gene encoding a polypeptide selected from the group consisting of: SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, 76, and another mammalian (e.g. human) homologue thereof.

In another aspect, the invention concerns a vector comprising any of the poly- or oligonucleotides of (a) – (i) above.

In a further aspect, the invention concerns a recombinant host cell transformed with nucleic acid comprising any of the poly- or oligonucleotides of (a) - (i) above, or with a vector comprising any of the poly- or oligonucleotides of (a) - (i) above.

In a still further aspect, the invention concerns a recombinant method for producing a polypeptide by culturing a recombinant host cell transformed with nucleic acid comprising any of the polypucleotides of (a) - (g) above under conditions such that the polypeptide is expressed, and isolating the polypeptide.

In a different aspect, the invention concerns a polypeptide comprising:

(a) a polypeptide having at least about 80% identity with amino acids 1 to 203 of SEQ ID NO: 2, amino acids 1 to 193 of SEQ ID NO: 4, amino acids 1 to 236 of SEQ ID NO:6, amino acids 1 to 61 of SEQ ID NO: 8, amino acids 1 to 79 of SEQ ID NO:10, amino acids 1 to 92 of SEQ ID NO:12, amino acids 1 to 86 of SEQ ID NO:14, amino acids 1 to 36 of SEQ ID NO:16, amino acids 1 to 83 of SEQ ID NO:18, amino acids 1 to 82 of SEQ ID NO:20, amino acids 1 to 462 of SEQ ID NO:22, amino acids 1 to 170 of SEQ ID NO:24, amino acids -26 to 233 of Fig. 13 (amino acids 1 to 259 of SEQ ID NO:26), amino acids 1 to 30 of SEQ ID NO:28, amino acids 1 to 39 of SEQ ID NO:30, amino acids 1 to 541 of SEQ ID NO:33, amino acids 1 to 30 of SEQ ID NO: 35, amino acids 1 to 100 of SEQ ID NO:37, amino acids 1 to 65 of SEQ ID

NO:39, amino acids 1 to 42 of SEQ ID NO:41, amino acids 1 to 46 of SEQ ID NO:43, amino acids 1 to 313 of SEQ ID NO:46, amino acids 1 to 58 of SEQ ID NO:51, amino acids -35 to 387 of Fig. 29 (amino acids 1 to 422 of SEQ ID NO:53), amino acids 1 to 58 of SEQ ID NO:55, amino acids 1 to 52 of SEQ ID NO:57, amino acids 1 to 245 of SEQ ID NO:59, amino acids 1 to 142 of SEQ ID NO:63, amino acids 1 to 49 of SEQ ID NO:67, amino acids 1 to 70 of SEQ ID NO:69, amino acids 1 to 113 of SEQ ID NO:72, amino acids 1 to 114 of SEQ ID NO:74, amino acids 1 to 97 of SEQ ID NO:76; or a polypeptide encoded by nucleic acid hybridizing under stringent conditions with the complement of the coding region of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 45, 47, 48, 49, 50, 52 54, 56, 58, 60, 61, 62, 64, 65, 66, 68, 70, 71, 73, 75;

10

15

20

25

30

35

the polypeptides of (a) and (b) having at least one biological activity of the polypeptide encoded by clones P00184_D11 (SEQ ID NO:1), P00185_D11(SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00223_F07 (SEQ ID NO:31), P00225_C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239_C11 (SEQ ID NO:42), P00240_B04 (SEQ ID NO:44), P00240_E05 (SEQ ID NO:45), P00241_E12 (SEQ ID NO:47), P00245_D06 (SEQ ID NO:48), P00246_D12 (SEQ ID NO:49), P00247_A04 (SEQ ID NO:50), P00248_B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00263_G06 (SEQ ID NO:60), P00267_F08 (SEQ ID NO:61), P00269_H08 (SEQ ID NO:62), P00312_C04 (SEQ ID NO:64), P00324_H02 (SEQ ID NO:65), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00634_G11 (SEQ ID NO:75);

In another aspect, the invention concerns a composition comprising a polypeptide as hereinabove defined in admixture with a pharmaceutically acceptable carrier. In a specific embodiment, the composition is a pharmaceutical composition, preferably for the treatment of a cardiac, renal or inflammatory disease, comprising an effective amount of a polypeptide of the present invention.

In yet another aspect, the invention concerns an antibody specifically binding a polypeptide of the present invention (as hereinabove defined).

In a further aspect, the invention concerns an antagonist or agonist of a polypetide of the present invention.

In a still further aspect, the invention concerns a composition, preferably a pharmaceutical composition, comprising an effective amount of an antibody herein, in admixture with a pharmaceutically acceptable carrier.

The invention further concerns a composition, preferably a pharmaceutical composition, comprising an effective amount of an antagonist or agonist of the present invention, in admixture with a pharmaceutically acceptable carrier.

In a further aspect, the invention concerns a method for the treatment of a cardiac, renal or inflammatory disease, comprising administering to a patient in need an effective amount of a polypeptide of the present invention or an antagonist or agonist thereof.

5

10

15

20

25

30

35

In a different aspect, the invention concerns a method for the treatment of a cardiac, renal or inflammatory disease, comprising administering to a patient in need an effective amount of a poly- or oligonucleotide of the present invention (as hereinabove defined).

The invention also concerns a method for the treatment of a cardiac, renal or inflammatory disease, comprising administering to a patient in need an effective amount of an antibody specifically binding to a polypeptide of the present invention.

In a further aspect, the invention concerns a method for screening a subject for a cardiac, renal or inflammatory disease characterized by the differential expression of the endogenous homologue of the proteins of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, or 76 comprising the steps of:

measuring the expression in the subject of the endogenous homologue of the protein of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, or 76; and

determining the relative expression of such endogenous homologue in the subject compared to its expression in normal subjects, or compared to its expression in the same subject at an earlier stage of development of the cardiac, renal or inflammatory disease. The subject is preferably human and, accordingly, the endogenous protein is a human homologue of the rat proteins of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, or 76.

In a still further aspect, the invention concerns an array comprising one or more oligonucleotides complementary to reference RNA or DNA encoding a protein of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, or 76 or another mammalian (e.g. human) homologue thereof, where the reference DNA or RNA sequences are obtained from both a biological sample from a normal subject and a biological sample from a subject exhibiting a cardiac, renal, or inflammatory disease, or from biological samples taken at different stages of a cardiac, renal, or inflammatory disease.

In yet another aspect, the invention concerns a method for detecting cardiac, kidney, or inflammatory disease in a human patient comprising the steps of:

providing an array of oligonucleotides at known locations on a substrate, which array comprises oligonucleotides complementary to reference DNA or RNA sequences encoding a human homologue of the proteins of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51,

53, 55, 57, 59, 63, 67, 69, 72, 74, or 76, where the reference DNA or RNA sequences are obtained from both a biological sample from a normal patient and a biological sample from a patient potentially exhibiting cardiac, renal, or inflammatory disease, or from a patient exhibiting cardiac, renal, or inflammatory disease, taken at different stages of such disease (jointly referred to as "the test patient");

exposing the array, under hybridization conditions, to a first sample of cDNA probes constructed from mRNA obtained from a biological sample from a corresponding biological sample of a normal patient or from a test patient at a certain stage of the disease;

exposing the array, under hybridization conditions, to a second sample of cDNA probes constructed from mRNA obtained from a biological sample obtained from the test patient (if the first sample was taken at a certain stage of the disease, the second sample is taken at a different stage of the disease);

quantifying any hybridization between the first sample of cDNA probes and the second sample of cDNA probes with the oligonucleotide probes on the array; and

determining the relative expression of genes encoding the human homologue of the protein of SEQ ID NO: 2 in the biological samples from the normal patient and the test patient, or in the biological samples taken from the test patient at different stages of the disease.

The invention further concerns a diagnostic kit comprising an array herein (as defined above) for detecting and diagnosing a disease, specifically cardiac, kidney or inflammatory disease. This kit may comprise control oligonucleotide probes, PCR reagents and detectable labels. In addition, this kit may comprise biological samples taken from human subjects, said samples comprising blood or tissue, preferably cardiac tissue, more preferably left ventricle cells. Such diagnostic kits may also comprise antibodies (including poly- and monoclonal antibodies) to a polypeptide of the present invention, including the polypeptide of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, or 76 and further mammalian (e.g. human) homologues thereof.

BRIEF DESCRIPTION OF THE FIGURES

5

10

15

20

25

30

35

Figure 1 shows the nucleotide sequence (SEQ ID NO: 1) of the clone P0184_D11 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 2) enoded by the clone.

Figure 2 shows the nucleotide sequence (SEQ ID NO: 3) of the clone P0185_D11 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 4) enoded by the clone.

Figure 3 shows the nucleotide sequence (SEQ ID NO: 5) of the clone P0188_D12 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 6) enoded by the clone.

Figure 4 shows the nucleotide sequence (SEQ ID NO: 7) of the clone P0188_E01 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 8) enoded by the clone.

Figure 5 shows the nucleotide sequence (SEQ ID NO: 9) of the clone P0194_G01 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 10) enoded by the clone.

Figure 6 shows the nucleotide sequence (SEQ ID NO: 11) of the clone P0194_G05 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 12) enoded by the clone.

Figure 7 shows the nucleotide sequence (SEQ ID NO: 13) of the clone P0194_H10 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 14) enoded by the clone.

Figure 8 shows the nucleotide sequence (SEQ ID NO: 15) of the clone P0199_D08 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 16) enoded by the clone.

5

10

15

20

25

30

35

Figure 9 shows the nucleotide sequence (SEQ ID NO: 17) of the clone P0203_D04 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 18) enoded by the clone.

Figure 10 shows the nucleotide sequence (SEQ ID NO: 19) of the clone P0203_E06 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 20) enoded by the clone.

Figure 11 shows the nucleotide sequence (SEQ ID NO: 21) of the clone P0209_F06 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 22) enoded by the clone.

Figure 12 shows the nucleotide sequence (SEQ ID NO: 23) of the clone P0219_D02 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 24) enoded by the clone.

Figure 13 shows the nucleotide sequence (SEQ ID NO: 25) of the clone P0219_F06 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 26) enoded by the clone. The underlined amino acid residues at the N-terminal end represent a putative signal peptide.

Figure 14 shows the nucleotide sequence (SEQ ID NO: 27) of the clone P0220_H05 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 28) enoded by the clone.

Figure 15 shows the nucleotide sequence (SEQ ID NO: 29) of the clone P0222_G03 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 30) enoded by the clone.

Figure 16 shows the nucleotide sequence (SEQ ID NO: 31) of the clone P0184_D11.

Figure 17 shows the nucleotide sequence (SEQ ID NO: 32) of the clone P0225_C01 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 33) enoded by the clone.

Figure 18 shows the nucleotide sequence (SEQ ID NO: 34) of the clone P0227_D11 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 35) enoded by the clone.

Figure 19 shows the nucleotide sequence (SEQ ID NO: 36) of the clone P0228_F03 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 37) enoded by the clone.

Figure 20 shows the nucleotide sequence (SEQ ID NO: 38) of the clone P0233_H08 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 39) enoded by the clone.

Figure 21 shows the nucleotide sequence (SEQ ID NO: 40) of the clone P0235_G08 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 41) enoded by the clone.

Figure 22 shows the nucleotide sequence (SEQ ID NO: 42) of the clone P0239_C11 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 43) enoded by the clone.

Figure 23 shows the nucleotide sequence (SEQ ID NO: 44) of the clone P0184_D11.

Figure 24 shows the nucleotide sequence (SEQ ID NO: 45) of the clone P0240_E05 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 46) enoded by the clone.

Figure 25 shows the nucleotide sequence (SEQ ID NO: 47) of the clone P0241_E12.

Figure 26 shows the nucleotide sequence (SEQ ID NO: 48) of the clone P0245_D06.

Figure 27 shows the nucleotide sequence (SEQ ID NO: 49) of the clone P0246_D12.

5

10

15

20

25

30

35

Figure 28 shows the nucleotide sequence (SEQ ID NO: 50) of the clone P0247_A04 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 51) enoded by the clone.

Figure 29 shows the nucleotide sequence (SEQ ID NO: 52) of the clone P0248_B04 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 53) enoded by the clone. The underlined amino acid residues at the N-terminal end represent a putative signal peptide.

Figure 30 shows the nucleotide sequence (SEQ ID NO: 54 of the clone P0249_F09 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 55) enoded by the clone.

Figure 31 shows the nucleotide sequence (SEQ ID NO: 56) of the clone P0258_A10 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 57) enoded by the clone.

Figure 32 shows the nucleotide sequence (SEQ ID NO: 58) of the clone P0262_C10 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 59) enoded by the clone.

Figure 33 shows the nucleotide sequence (SEQ ID NO: 60) of the clone P0263 G06.

Figure 34 shows the nucleotide sequence (SEQ ID NO: 61) of the clone P0267_F08.

Figure 35 shows the nucleotide sequence (SEQ ID NO: 62) of the clone P0269_H08 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 63) enoded by the clone.

Figure 36 shows the nucleotide sequence (SEQ ID NO: 64) of the clone P0312_C04.

Figure 37 shows the nucleotide sequence (SEQ ID NO: 65) of the clone P0324_H02.

Figure 38 shows the nucleotide sequence (SEQ ID NO: 66) of the clone P0628_H02 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 67) enoded by the clone.

Figure 39 shows the nucleotide sequence (SEQ ID NO: 68) of the clone P0629_C08 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 69) enoded by the clone.

Figure 40 shows the nucleotide sequence (SEQ ID NO: 70) of the clone P0634_G11.

Figure 41 shows the nucleotide sequence (SEQ ID NO: 71) of the clone P0641_G11 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 72) enoded by the clone.

Figure 42 shows the nucleotide sequence (SEQ ID NO: 73) of the clone P0648_E12 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 74) enoded by the clone.

Figure 43 shows the nucleotide sequence (SEQ ID NO: 75) of the clone P0697_C03 and deduced amino acid sequence of the polypeptide (SEQ ID NO: 76) enoded by the clone.

Figure 44 shows the results of differential expression of clones P00184_D11, P00185_D11, P00188_D12, P00188_E01, P00194_G01, P00194_G05, P00194_H10, P00199_D08, P00203_D04, P00203_E06, P00209_F06, P00219_D02, P00219_F06, P00220_H05, P00222_G03, P00223_F07, P00225_C01, P00227_D11, P00228_F03, P00233_H08, P00235_G08, P00239_C11, P00240_B04, P00240_E05, P00241_E12, P00245_D06, P00246_D12, P00247_A04, P00248_B04, P00249_F09, P00258_A10, P00262_C10, P00263_G06, P00267_F08, P00269_H08, P00312_C04, P00324_H02,

P00628_H02, P00629_C08, P00634_G11, P00641_G11, P00648_E12, and P00697_C03 in various heart and kidney disease models in the rat.

DETAILED DESCRIPTION OF THE INVENTION

A. <u>Definitions</u>

5

10

15

20

25

30

35

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton *et al.*, Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, NY 1994), and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, NY 1992), provide one skilled in the art with a general guide to many of the terms used in the present application.

One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. Indeed, the present invention is in no way limited to the methods and materials described. For purposes of the present invention, the following terms are defined below.

The term "polynucleotide", when used in singular or plural, generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and doublestranded regions. In addition, the term "polynucleotide" as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term "polynucleotide" specifically includes DNAs and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotides" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, are included within the term "polynucleotides" as defined herein. In general, the term "polynucleotide" embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.

The term "oligonucleotide" refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNA:DNA hybrids and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other

methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.

5

10

15

20

25

30

35

The term "polypeptide", in singular or plural, is used herein to refer to any peptide or protein comprising two or more amino acids joined to each other in a linear chain by peptide bonds. As used herein, the term refers to both short chains, which also commonly are referred to in the art as peptides, oligopeptides and oligomers, and to longer chains, commonly referred to in the art as proteins. Polypeptides, as defined herein, may contain amino acids other than the 20 naturally occurring amino acids, and may include modified amino acids. The modification can be anywhere within the polypeptide molecule, such as, for example, at the terminal amino acids, and may be due to natural processes, such as processing and other post-translational modifications, or may result from chemical and/or enzymatic modification techniques which are well known to the art. The known modifications include, without limitation, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. Such modifications are well known to those of skill and have been described in great detail in the scientific literature, such as, for instance, Creighton, T. E., Proteins--Structure And Molecular Properties, 2nd Ed., W. H. Freeman and Company, New York (1993); Wold, F., "Posttranslational Protein Modifications: Perspectives and Prospects," in Posttranslational Covalent Modification of Proteins, Johnson, B. C., ed., Academic Press, New York (1983), pp. 1-12; Seifter et al., "Analysis for protein modifications and nonprotein cofactors," Meth. Enzymol. 182:626-646 (1990), and Rattan et al., Ann. N.Y Acad. Sci. 663:48-62 (1992).

Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. In fact, blockage of the amino or carboxyl group in a polypeptide, or both, by a covalent modification, is common in naturally occurring and synthetic polypeptides and such modifications may be present in polypeptides of the present invention, as well. For instance, the amino terminal residue of polypeptides made in E. coli, prior to proteolytic processing, almost invariably will be N-formylmethionine.

Modifications that occur in a polypeptide often will be a function of how the polypeptide is made. For polypeptides made by expressing a cloned gene in a host, for instance, the nature and extent of the modifications in large part will be determined by the host cell posttranslational modification capacity and the modification signals present in the polypeptide amino acid sequence. For instance, it is well known that glycosylation usually does not occur in certain bacterial hosts such as *E. coli*. Accordingly, when glycosylation is desired, a polypeptide is expressed in a glycosylating host, generally eukaryotic host cells.

Insect cells often carry out the same posttranslational glycosylations as mammalian cells and, for this reason, insect cell expression systems have been developed to express efficiently mammalian proteins having native patterns of glycosylation.

It will be appreciated that the same type of modification may be present in the same or varying degree at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications.

5

10

15

20

25

30

35

It will be appreciated that polypeptides are not always entirely linear. For instance, polypeptides may be branched as a result of ubiquitination, and they may be circular, with or without branching, generally as a result of posttranslational events, including natural processing and events brought about by human manipulation which do not occur naturally. Circular, branched and branched circular polypeptides may be synthesized by non-translation natural process and by entirely synthetic methods, as well. Such structures are within the scope of the polypeptides as defined herein.

The term "amino acid sequence variant" refers to molecules with some differences in their amino acid sequences as compared to a reference (e.g. native sequence) polypeptide. The amino acid alterations may be substitutions, insertions, deletions or any desired combinations of such changes in a native amino acid sequence.

Substitutional variants are those that have at least one amino acid residue in a native sequence removed and a different amino acid inserted in its place at the same position. The substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more amino acids have been substituted in the same molecule.

Insertional variants are those with one or more amino acids inserted immediately adjacent to an amino acid at a particular position in a native amino acid sequence. Immediately adjacent to an amino acid means connected to either the α -carboxy or α -amino functional group of the amino acid.

Deletional variants are those with one or more amino acids in the native amino acid sequence removed. Ordinarily, deletional variants will have one or two amino acids deleted in a particular region of the molecule.

The amino acid sequence variants within the scope of the present invention may contain amino acid alterations, including substitutions and/or insertions and/or deletions in any region of the polypeptide of SEQ ID NO: 1, including the N- and C-terminal regions. The amino acid sequence variants of the present invention show at least about 75%, more preferably at least about 85%, even more preferably at least about 90%, most preferably at least about 95% amino acid sequence identity with a polypeptide of SEQ ID NO: 1 or with a native homologue thereof in another mammalian species, including humans.

"Sequence identity" is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in a native polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. The % sequence identity values are generated by the NCBI BLAST2.0 software as defined by Altschul et al., (1997), "Gapped BLAST and

PSI-BLAST: a new generation of protein database search programs", <u>Nucleic Acids Res.</u>, <u>25</u>:3389-3402. The parameters are set to default values, with the exception of the Penalty for mismatch, which is set to -1.

"Stringent" hybridization conditions are sequence dependent and will be different with different environmental parameters (e.g., salt concentrations, and presence of organics). Generally, stringent conditions are selected to be about 5°C to 20°C lower than the thermal melting point (T_m) for the specific nucleic acid sequence at a defined ionic strength and pH. Preferably, stringent conditions are about 5°C to 10°C lower than the thermal melting point for a specific nucleic acid bound to a complementary nucleic acid. The T_m is the temperature (under defined ionic strength and pH) at which 50% of a nucleic acid (e.g., tag nucleic acid) hybridizes to a perfectly matched probe

5

10

15

20

25

30

35

"Stringent" wash conditions are ordinarily determined empirically for hybridization of each set of tags to a corresponding probe array. The arrays are first hybridized (typically under stringent hybridization conditions) and then washed with buffers containing successively lower concentrations of salts, or higher concentrations of detergents, or at increasing temperatures until the signal to noise ratio for specific to nonspecific hybridization is high enough to facilitate detection of specific hybridization. Stringent temperature conditions will usually include temperatures in excess of about 30° C, more usually in excess of about 37° C, and occasionally in excess of about 45° C. Stringent salt conditions will ordinarily be less than about 1000 mM, usually less than about 500 mM, more usually less than about 400 mM, typically less than about 300 mM, preferably less than about 200 mM, and more preferably less than about 150 mM. However, the combination of parameters is more important than the measure of any single parameter. See, e.g., Wetmur et al., J. Mol. Biol. 31:349-70 (1966), and Wetmur, Critical Reviews in Biochemistry and Molecular Biology 26(34):227-59 (1991). In a preferred embodiment, "stringent conditions" or "high stringency conditions," as defined herein, may be hybridization in 50% formamide, 5x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2x SSC (sodium chloride/sodium citrate) and 50% formamide at 55°C, followed by a highstringency wash consisting of 0.1x SSC containing EDTA at 55°C.

As used herein, the term "polynucleotide encoding a polypeptide" and grammatical equivalents thereof, encompass polynucleotides which include a sequence encoding a polypeptide of the present invention, including polynucleotides that comprise a single continuous region or discontinuous regions encoding the polypeptide (for example, interrupted by introns) together with additional regions, that also may contain coding and/or non-coding sequences.

"Antisense oligodeoxynucleotides" or "antisense oligonucleotides" (which terms are used interchangeably) are defined as nucleic acid molecules that can inhibit the transcription and/or translation of target genes in a sequence-specific manner. The term "antisense" refers to the fact that the nucleic acid is complementary to the coding ("sense") genetic sequence of the target gene. Antisense oligonucleotides hybridize in an antiparallel orientation to nascent mRNA through Watson-Crick base-pairing. By binding the target mRNA template, antisense oligonucleotides block the successful translation of the encoded

protein. The term specifically includes antisense agents called "ribozymes" that have been designed to induce catalytic cleavage of a target RNA by addition of a sequence that has natural self-splicing activity (Warzocha and Wotowiec, "Antisense strategy: biological utility and prospects in the treatment of hematological malignancies." <u>Leuk. Lymphoma 24</u>:267-281 [1997]).

5

10

15

20

25

30

35

The terms "vector", "polynucleotide vector", "construct" and "polynucleotide construct" are used interchangeably herein. A polynucleotide vector of this invention may be in any of several forms, including, but not limited to, RNA, DNA, RNA encapsulated in a retroviral coat, DNA encapsulated in an adenovirus coat, DNA packaged in another viral or viral-like form (such as herpes simplex, and adenoassociated virus (AAV)), DNA encapsulated in liposomes, DNA complexed with polylysine, complexed with synthetic polycationic molecules, conjugated with transferrin, complexed with compounds such as polyethylene glycol (PEG) to immunologically "mask" the molecule and/or increase half-life, or conjugated to a non-viral protein. Preferably, the polynucleotide is DNA. As used herein, "DNA" includes not only bases A, T, C, and G, but also includes any of their analogs or modified forms of these bases, such as methylated nucleotides, internucleotide modifications such as uncharged linkages and thioates, use of sugar analogs, and modified and/or alternative backbone structures, such as polyamides.

The term "antagonist" is used in the broadest sense and includes any molecule that partially or fully blocks, inhibits or neutralizes a biological activity exhibited by a polypeptide of the present invention. In a similar manner, the term "agonist" is used in the broadest sense and includes any molecule that mimics a biological activity exhibited by a polypeptide of the present invention, for example, by specifically changing the function or expression of such polypeptide, or the efficiency of signaling through such polypeptide, thereby altering (increasing or inhibiting) an already existing biological activity or triggering a new biological activity.

The term "recombinant" when used with reference to a cell, animal, or virus indicates that the cell, animal, or virus encodes a foreign DNA or RNA. For example, recombinant cells optionally express nucleic acids (e.g., RNA) not found within the native (non-recombinant) form of the cell.

The term "antibody" is used in the broadest sense and specifically covers monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies), polyclonal antibodies, multi-specific antibodies (e.g., bispecific antibodies), as well as antibody fragments. The monoclonal antibodies specifically include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 [1984]). The monoclonal antibodies further include "humanized" antibodies or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins

(recipient antibody) in which residues from a CDR of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv FR residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and maximize antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature, 321:522-525 (1986); and Reichmann et al., Nature, 332:323-329 (1988). The humanized antibody includes a PRIMATIZED@antibody wherein the antigen-binding region of the antibody is derived from an antibody produced by immunizing macaque monkeys with the antigen of interest.

5

10

15

20

25

30

35

"Antibody fragments" comprise a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab')₂, and Fv fragments; diabodies; linear antibodies (Zapata et al., Protein Eng. 8(10):1057-1062 (1995)); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.

The terms "differentially expressed gene," "differential gene expression" and their synonyms, which are used interchangeably, refer to a gene whose expression is activated to a higher or lower level in a subject suffering from a disease, specifically a cardiac, kidney or inflammatory disease state, relative to its expression in a normal or control subject. The terms also include genes whose expression is activated to a higher or lower level at different stages of the same disease. It is also understood that a differentially expressed gene may be either activated or inhibited at the nucleic acid level or protein level, or may be subject to alternative splicing to result in a different polypeptide product. Such differences may be evidenced by a change in mRNA levels, surface expression, secretion or other partitioning of a polypeptide, for example. Differential gene expression may include a comparison of expression between two or more genes, or a comparison of the ratios of the expression between two or more genes, or even a comparison of two differently processed products of the same gene, which differ between normal subjects and subjects suffering from a disease, specifically a cardiac, kidney or inflammatory disease state, or between various stages of the same disease. Differential expression includes both quantitative, as well as qualitative, differences in the temporal or cellular expression pattern in a gene or its expression products among, for example, normal and diseased cells, or among cells which have undergone different disease events or disease stages. For the purpose of this invention, "differential gene expression" is considered to be present when there is at least an about 1.4-fold, preferably at least about 1.8-fold, more preferably at least about 2.0-fold, most preferably at least about 2.5-fold difference between the expression of a given gene in normal and diseased subjects, or in various stages of disease development in a diseased subject.

"Cardiac disease" includes congestive heart failure, myocarditis, dilated congestive cardiomyopathy, hypertrophic cardiomyopathy, restrictive cardiomyopathy, mitral valve disease, aortic valve disease, tricuspid valve disease, angina pectoris, myocardial infarction, cardiac arrhythmia, pulmonary hypertension, arterial hypertension, renovascular hypertension, arteriosclerosis, atherosclerosis, and cardiac tumors, along with any disease or disorder that relates to the cardiovascular system and related disorders, as well as symptoms indicative of, or related to, cardiac disease and related disorders.

5

10

15

20

25

30

35

As used herein, "heart failure" refers to an abnormality of cardiac function where the heart does not pump blood at the rate needed for the requirements of metabolizing tissues. The heart failure can be caused by any number of factors, including ischemic, congenital, rheumatic, or idiopathic forms.

As used herein "congestive heart failure" refers to a syndrome characterized by left ventricular dysfunction, reduced exercise tolerance, impaired quality of life, and markedly shortened life expectancy. Decreased contractility of the left ventricle leads to reduced cardiac output with consequent systemic arterial and venous vasoconstriction. This vasoconstriction, which appears to be mediated, in part, by the renin-angiotensis system, promotes the vicious cycle of further reductions of stroke volume followed by an increased elevation of vascular resistance.

As used herein "infarct" refers to an area of necrosis resulting from an insufficiency of blood supply. "Myocardial infarction" refers to myocardial necrosis resulting from the insufficiency of coronary blood supply.

"Kidney disease" includes acute renal failure, glomerulonephritis, chronic renal failure, azotemia, uremia, immune renal disease, acute nephritic syndrome, rapidly progressive nephritic syndrome, nephrotic syndrome, Berger's Disease, chronic nephritic/proteinuric syndrome, tubulointerstital disease, nephrotoxic disorders, renal infarction, atheroembolic renal disease, renal cortical necrosis, malignant nephroangiosclerosis, renal vein thrombosis, renal tubular acidosis, renal glucosuria, nephrogenic diabetes insipidus, Bartter's Syndrome, Liddle's Syndrome, polycystic kidney disease, medullary cystic disease, medullary sponge kidney, hereditary nephritis, and nail-patella syndrome, along with any disease or disorder that relates to the renal system and related disorders, as well as symptoms indicative of, or related to, renal or kidney disease and related disorders.

The phrases "polycystic kidney disease" "PKD" and "polycystic renal disease" are used interchangeably, and refer to a group of disorders characterized by a large number of cysts distributed throughout dramatically enlarged kidneys. The resultant cyst development leads to impairment of kidney function and can eventually cause kidney failure. "PKD" specifically includes autosomal dominant polycystic kidney disease (ADPKD) and recessive autosomal recessive polycystic kidney disease (ARPKD), in all stages of development, regardless of the underlying cause.

"Inflammatory disease" includes myocarditis, asthma, chronic inflammation, autoimmune diabetes, tumor angiogenesis, rheumatoid arthritis (RA), rheumatoid spondylitis, osteoarthritis, gouty arthritis and other arthritic conditions, sepsis, septic shock, endotoxic shock, Gram-negative sepsis, toxic shock syndrome, asthma, adult respiratory distress syndrome, stroke, reperfusion injury, CNS injuries such

as neural trauma and ischemia, psoriasis restenosis, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcosis, bone resorption diseases such as osteoporosis, graft versus host reaction, Crohn's Disease, ulcerative colitis including inflammatory bowel disease (IBD), Alzheimer's disease, and pyresis, along with any disease or disorder that relates to inflammation and related disorders, as well as symptoms indicative of, or related to, inflammation and related disorders.

5

10

15

20

25

30

35

The terms "treat" or "treatment" refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. "Treatment" can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented.

"Chronic" administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the desired effect for an extended period of time.

"Intermittent" administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.

Administration "in combination with" one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.

An "individual" is a vertebrate, preferably a mammal, more preferably a human.

"Mammal" for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. Preferably, the mammal herein is human.

An "effective amount" is an amount sufficient to effect beneficial or desired therapeutic (including preventative) results. An effective amount can be administered in one or more administrations.

"Active" or "activity" means a qualitative biological and/or immunological property.

The phrase "immunological property" means immunological cross-reactivity with at least one epitope of the reference (native sequence) polypeptide molecule, wherein, "immunological cross-reactivity" means that the candidate polypeptide is capable of competitively inhibiting the qualitative biological activity of the reference (native sequence) polypeptide. The immunological cross-reactivity is preferably "specific", which means that the binding affinity of the immunologically cross-reactive molecule identified to the corresponding polypeptide is significantly higher (preferably at least about 2-times, more preferably at least about 4-times, most preferably at least about 6-times higher) than the binding affinity of that molecule to any other known native polypeptide.

"Carriers" as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations

employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN□, polyethylene glycol (PEG), and PLURONICS□.

B. Modes of Carrying Out the Invention

5

10

15

20

25

30

35

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry and immunology, which are within the skill of the art. Such techniques are explained fully in the literature, such as, "Molecular Cloning: A Laboratory Manual", 2nd edition (Sambrook et al., 1989); "Oligonucleotide Synthesis" (M.J. Gait, ed., 1984); "Animal Cell Culture" (R.I. Freshney, ed., 1987); "Methods in Enzymology" (Academic Press, Inc.); "Handbook of Experimental Immunology", 4th edition (D.M. Weir & C.C. Blackwell, eds., Blackwell Science Inc., 1987); "Gene Transfer Vectors for Mammalian Cells" (J.M. Miller & M.P. Calos, eds., 1987); "Current Protocols in Molecular Biology" (F.M. Ausubel et al., eds., 1987); "PCR: The Polymerase Chain Reaction", (Mullis et al., eds., 1994); and "Current Protocols in Immunology" (J.E. Coligan et al., eds., 1991).

1. <u>Identification of Differential Gene Expression and Further Characterization of Differentially Expressed Genes</u>

The present invention is based on the identification of genes that are differentially expressed in the left ventricle in the Myocardial Infarction Model, as described in the Examples. Such models of differential gene expression can be utilized, among other things, for the identification of genes which are differentially expressed in normal cells versus cells in a disease state, specifically cardiac, kidney or inflammatory disease state, in cells within different diseases, among cells within a single given disease state, in cells within different stages of a disease, or in cells within different time stages of a disease.

Once a particular differentially expressed gene has been identified through the use of one model, its expression pattern can be further characterized, for example, by studying its expression in a different model. A gene may be regulated one way, *i.e.*, the gene can exhibit one differential gene expression pattern, in a given model, but can be regulated differently in another model. The use, therefore, of multiple models can be helpful in distinguishing the roles and relative importance of particular genes in a disease, specifically cardiac, kidney or inflammatory disease.

a. In Vitro Models of Differential Gene Expression

A suitable model that can be utilized within the context of the present invention to discover differentially expressed genes is the *in vitro* specimen model. In a preferred embodiment, the specimen model uses biological samples from subjects, *e.g.*, peripheral blood, cells and tissues, including surgical and biopsy specimens. Such specimens can represent normal peripheral blood and tissue or peripheral blood and tissue from patients suffering from a disease, specifically cardiac, kidney or inflammatory disease, or having undergone surgical treatment for disorders involving a disease, such as, for example, coronary bypass surgery. Surgical specimens can be procured under standard conditions involving freezing and storing in liquid nitrogen (*see* Karmali *et al.*, <u>Br. J. Cancer 48</u>:689-96 [1983]). RNA from specimen cells is isolated by, for example, differential centrifugation of homogenized tissue, and analyzed for differential expression relative to other specimen cells, preferably using microarray analysis.

Cell lines can also be used to identify genes that are differentially expressed in a disease, specifically cardiac, kidney or inflammatory disease. Differentially expressed genes are detected, as described herein, by comparing the pattern of gene expression between the experimental and control conditions. In such models, genetically matched disease cell lines (e.g., variants of the same cell line) may be utilized. For example, the gene expression pattern of two variant cell lines can be compared, wherein one variant exhibits characteristics of one disease state while the other variant exhibits characteristics of another disease state.

Alternatively, two variant cell lines, both of which exhibit characteristics of the same disease, specifically cardiac, kidney or inflammatory disease, but which exhibit differing degrees of disease disorder severity may be used. Further, genetically matched cell lines can be utilized, one of which exhibits characteristics of a disease, specifically cardiac, kidney or inflammatory disease, state, while the other exhibits a normal cellular phenotype. In accordance with this aspect of the invention, the cell line variants are cultured under appropriate conditions, harvested, and RNA is isolated and analyzed for differentially expressed genes, as with the other models. In a preferred embodiment, microarray analysis is used.

25

30

35

5

10

15

20

b. In Vivo Models of Differential Gene Expression

In the *in vivo* model, animal models of a disease, specifically cardiac, kidney or inflammatory disease, and related disorders, can be utilized to discover differentially expressed gene sequences. The *in vivo* nature of such disease models can prove to be especially predictive of the analogous responses in living patients, particularly human patients. Animal models for a disease, specifically cardiac, kidney or inflammatory disease, which can be utilized for *in vivo* models include any of the animal models described below. In a preferred embodiment, RNA from both the normal and disease state model is isolated and analyzed for differentially expressed genes using microarray analysis.

As presented in the examples, three representative in vivo cardiac disease models, a representative kidney disease model, and a representative inflammatory disease model have been successfully utilized to identify differentially expressed genes, and are believed to be useful to further characterize the genes and polypeptides of the present invention. These genes are expressed at higher or lower levels in the disease

state, relative to the normal state, and preferably are expressed at least about a two-fold higher or lower level relative to the normal state at at least one time point.

Representative in vivo animal models for use in the present invention include the following: general inflammation - carrageenan-induced paw edema, arachidonic acid-induced ear inflammation; arthritis - adjuvant-induced polyarthritis, collagen-induced arthritis, streptococcal cell wall-induced arthritis; multiple sclerosis - experimental autoimmune encephalomyelitis (EAE); Systemic Lupus Erythematosis (SLE); NZB - spontaneous SLE mouse, DNA/anti-DNA immune complex-induced SLE; insulin-dependent diabetes mellitus - NOD spontaneous diabetes mouse; inflammatory bowel disease acetic acid or trinitrobenzene sulfonic (TNBS)-induced ulcerative colitis; respiratory disease - antigeninduced bronchoconstriction (asthma), lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS); analgesia - acetic acid-induced or phenylquinone-induced writhing, latency of tailwithdrawal (hot plate); transplant organ rejection - allograft rejection (kidney, lung, heart)-acute and chronic arteriolsclerosis; kidney disease - unilateral nephrectomy (acute renal failure), cyclosporin-induced nephropathy, accelerated crescentic anti-glomerular basement membrane (GBM) glomerulonephritis, soluble immune complex-induced nephritis (see generally Aziz, Bioassays 17:8 703-12 [1995]); and cardiac disease - spontaneous cardiomyopathic hamsters (heart failure), myocardial infarction (MI) model. pacing-induced model of failure (Riegger model), arrhythmias following myocardial infarction (Harris model), aconitine/chloroform-induced arrhythmisa, carotid artery injury (restenosis), balloon angioplasty (restenosis). One skilled in the art understands that the present invention is not limited to the in vivo models recited above and that any known models can be used within the context of the present invention.

c. Microarray Technique

5

10

15

20

25

30

35

In a preferred embodiment of the present invention, microarrays are utilized to assess differential expression of genes. In one aspect of the present invention, DNA microarrays are utilized to assess the expression profile of genes expressed in normal subjects and subjects suffering from a disease, specifically cardiac, kidney or inflammatory disease. Identification of the differentially expressed disease genes can be performed by: constructing normalized and subtracted cDNA libraries from mRNA extracted from the cells or tissue of healthy animals and an animal model of disease or of healthy patients and diseased patients, for example, using any of the *in vitro* or *in vivo* models described above; purifying the DNA of cDNA libraries of clones representing healthy and diseased cells or tissue, microarraying the purified DNA for expression analysis; and probing microarrays to identify the genes from the clones that are differentially expressed using labeled cDNA from healthy and diseased cells or tissues.

In a specific embodiment of the microarray technique, PCR amplified inserts of cDNA clones are applied to a substrate in a dense array. Preferably at least 10,000 nucleotide sequences are applied to the substrate. The microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest.

Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After stringent washing to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy. Quantitation of hybridization of each arrayed element allows for assessment of corresponding mRNA abundance. With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pairwise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et al., Proc. Natl. Acad. Sci. USA 93(20):106-49 [1996]).

10

15

20

25

30

35

In a specific embodiment, in vivo models of disease states are used to detect differentially expressed genes. By way of example, three representative cardiac disease models, a representative kidney disease model, and a representative inflammatory disease model were successfully utilized to identify specific differentially expressed genes. Summarizing the representative general protocol used for such in vivo models, separate DNA libraries were constructed from mRNA extracted from disease state tissue and normal tissue. From these libraries, at least 20,000 unidentified cDNA clones were preferably chosen for analysis and microarrayed on chips. Probes generated from normal and disease tissue, from multiple time points, were hybridized to the microarray. By this approach, genes, which are differentially expressed in normal and diseased tissue, were revealed and further identified by DNA sequencing. The analysis of the clones for differential expression reveal genes whose expression is elevated or decreased in association with a disease, specifically cardiac, kidney or inflammatory disease, in the specific in vivo model chosen.

d. Further characterization of differentially expressed genes

The differentially expressed genes of the present invention are screened to obtain more information about the biological function of such genes. This information can, in turn, lead to the designation of such genes or their gene products as potential therapeutic or diagnostic molecules, or targets for identifying such molecules.

The goal of the follow-up work after a differentially expressed gene has been identified is to identify its target cell type(s), function and potential role in disease pathology. To this end, the differentially expressed genes are screened to identify cell types responding to the gene product, to better understand the mechanism by which the identified cell types respond to the gene product, and to find known signaling pathways that are affected by the expression of the gene.

When further characterization of a differentially expressed gene indicates that a modulation of the gene's expression or a modulation of the gene product's activity can inhibit or treat a disease, specifically cardiac, kidney or inflammatory disease, the differentially expressed gene or its gene product becomes a

potential drug candidate, or a target for developing a drug candidate for the treatment of a cardiac, kidney or inflammatory disease, or may be used as a diagnostic.

Where further characterization of a differentially expressed gene reveals that modulation of the gene expression or gene product cannot retard or treat a target disease, the differentially expressed gene may still contribute to developing a gene expression diagnostic pattern correlative of a disease or its disorders. Accordingly, such genes may be useful as diagnostics.

5

10

15

20

25

30

35

A variety of techniques can be utilized to further characterize the differentially expressed genes after they are identified.

First, the nucleotide sequence of the identified genes, which can be obtained by utilizing standard techniques well known to those of skill in the art, can be used to further characterize such genes. For example, the sequence of the identified genes can reveal homologies to one or more known sequence motifs, which can yield information regarding the biological function of the identified gene product.

Second, an analysis of the tissue or cell type distribution of the mRNA produced by the identified genes can be conducted, utilizing standard techniques well known to those of skill in the art. Such techniques can include, for example, Northern analyses, microarrays, real time (RT-coupled PCR), and RNase protection techniques. In a preferred embodiment, transcriptional screening is used, which may be based on the transfection of cells with an inducible promoter-luciferase plasmid construct, real time PCR, or microarrays, the real time PCR and microarray approached being particularly preferred. Such analyses provide information as to whether the identified genes are expressed in further tissues expected to contribute to a disease, specifically cardiac, kidney or inflammatory disease. These techniques can also provide quantitative information regarding steady state mRNA regulation, yielding data concerning which of the identified genes exhibits a high level of regulation preferably in tissues which can be expected to contribute to a disease state. Additionally, standard in situ hybridization techniques can be utilized to provide information regarding which cells within a given tissue express the identified gene. Specifically, these techniques can provide information regarding the biological function of an identified gene relative to a disease, specifically cardiac, kidney or inflammatory disease, where only a subset of the cells within the tissue is thought to be relevant to the disorder.

Third, the sequences of the identified differentially expressed genes can be used, utilizing standard techniques, to place the genes onto genetic maps, e.g., mouse (Copeland et al., Trends in Genetics 7:113-18 (1991)) and human genetic maps (Cohen et al., Nature 266:698-701 [1993]). This mapping information can yield information regarding the genes' importance to human disease by identifying genes that map within genetic regions to which known genetic disease disorders map.

After the follow-up screening is completed, relevant, targeted in vivo and in vitro systems can be used to more directly assess the biological function of the identified genes. In vivo systems can include animal systems that naturally exhibit symptoms of a disease, specifically cardiac, kidney or inflammatory disease, or ones engineered to exhibit such symptoms. Animals of any species, including, but not limited to, mice, rats, rabbits, guinea pigs, pigs, micro-pigs, goats, and non-human primates, e.g., baboons, monkeys,

and chimpanzees, can be used to generate animal models of a disease, specifically cardiac, kidney or inflammatory disease. Any technique known in the art can be used to introduce a target gene transgene into animals to produce the founder lines of transgenic animals. Such techniques include, pronuclear microinjection (Hoppe et al., U.S. Patent No. 4,873,191 (1989)); retrovirus mediated gene transfer into germ lines (Van der Fatten et al., Proc. Natl. Acad. Sci. USA 82:6148-52 (1985)); gene targeting in embryonic stem cells (Thompson et al., Cell 56:313-21 (1989)); electroporation of embryos (Lo, Mol. Cell. Biol. 3:1803-14 (1983)); and sperm-mediated gene transfer (Lavitrano et al., Cell 57:717-23 (1989)). For a review of such techniques, see Gordon, Intl. Rev. Cytol. 115:171-229 (1989). Further techniques will be detailed below, in connection with the gene therapy applications of the polynucleotides of the present invention.

5

10

15

20

25

30

35

The present invention provides for transgenic animals that carry the transgene in all their cells, as well as animals which carry the transgene in some, but not all their cells, *i.e.*, mosaic animals. The transgene can be integrated, either as a single transgene or in concatamers, *e.g.*, head-to-head tandems or head-to-tail tandems. The transgene can also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko *et al.*, Proc. Natl. Acad. Sci. USA 89:6232-36 (1992). The regulatory sequences required for such a cell-type specific activation depends upon the particular cell type of interest, and will be apparent to those of skill in the art.

When it is desired that the transgene be integrated into the chromosomal site of the endogenous target gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous target gene of interest are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous target gene. The transgene can also be selectively introduced into a particular cell type, thus inactivating the endogenous gene of interest in only that cell type, by following the teaching of Gu et al. (Science 265:103-06 [1994]). The regulatory sequences required for such a cell-type specific inactivation depends upon the particular cell type of interest, and will be apparent to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant target gene and protein can be assayed using standard techniques. Initial screening can be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to assay whether integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals can also be assessed using techniques which include Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and RT-coupled PCR. Samples of target gene-expressing tissue can also be evaluated immunocytochemically using antibodies specific for the transgenic product of interest.

The transgenic animals that express target gene mRNA or target gene transgene peptide (detected immunocytochemically, using antibodies directed against target gene product epitopes) at easily detectable levels should then be further evaluated to identify those animals which display disease characteristics or symptoms. Additionally, specific cell types within the transgenic animals can be analyzed for cellular

phenotypes characteristic of a disease, specifically cardiac, kidney or inflammatory disease. Such cellular phenotypes can include, for example, differential gene expression characteristic of cells within a given disease state of interest. Further, such cellular phenotypes can include an assessment of a particular cell type diagnostic pattern of expression and its comparison to known diagnostic expression profiles of the particular cell type in animals exhibiting a disease, specifically cardiac, kidney or inflammatory disease. Such transgenic animals serve as suitable models. Once transgenic founder animals are produced, they can be bred, inbred, outbred, or crossbred to produce colonies of the particular animal.

The animal models described above and in the Examples, can be used to generate cell lines for use in cell-based *in vitro* assays to further characterize the differentially expressed genes of the invention and their gene products. Techniques that can be used to derive a continuous cell line from transgenic animals are disclosed, for example, by Small *et al.*, Mol. Cell Biol. 5:642-48 (1985).

Alternatively, cells of a cell type known to be involved in a cardiac, kidney or inflammatory disease can be transfected with sequences capable of increasing or decreasing the amount of target gene expression within the cell. For example, sequences of the differentially expressed genes herein can be introduced into, and overexpressed in, the genome of the cell of interest, or if endogenous target gene sequences are present, they can either be overexpressed or, be disrupted in order to underexpress or inactivate target gene expression.

The information obtained through such characterizations can suggest relevant methods for the treatment of a disease, specifically cardiac, kidney or inflammatory disease, involving the gene of interest. For example, treatment can include a modulation of gene expression or gene product activity. Characterization procedures such as those described herein can indicate where such modulation should involve an increase or a decrease in the expression or activity of the gene or gene product of interest.

2. <u>Production of Polynucleotides and Polypeptides</u>

5

10

15

20

25

30

35

The polypeptides of the present invention are preferably produced by techniques of recombinant DNA technology. DNA encoding a native polypeptide herein can be obtained from cDNA libraries prepared from tissue believed to possess the corresponding mRNA and to express it at a detectable level. For example, cDNA library can be constructed by obtaining polyadenylated mRNA from a cell line known to express the desired polypeptide, and using the mRNA as a template to synthesize double-stranded cDNA. In the present case, a suitable source for the desired mRNA may be heart tissue obtained from normal heart or from the Myocardial Infarction Model (MI model) mentioned above, and described in detail in the Examples. The polypeptide genes of the present invention can also be obtained from a genomic library, such as a human genomic cosmid library.

Libraries, either cDNA or genomic, are screened with probes designed to identify the gene of interest or the protein encoded by it. For cDNA expression libraries, suitable probes include monoclonal and polyclonal antibodies that recognize and specifically bind to a polypeptide of SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74,

and 76. For cDNA libraries, suitable probes include oligonucleotide probes (generally about 20-80 bases) that encode known or suspected portions of a polypeptide herein, from the same or different species, and/or complementary or homologous cDNAs or fragments thereof that encode the same or a similar gene. Appropriate probes for screening genomic libraries include, without limitation, oligonucleotides, cDNAs, or fragments thereof that encode the same or a similar gene, and/or homologous genomic DNAs or fragments thereof. Screening the cDNA and genomic libraries with the selected probe may be conducted using standard protocols as described, for example, in Chapters 10-12 of Sambrook et al., Molecular Cloning: A Laboratory Manual. New York, Cold Spring Harbor Laboratory Press (1989).

5

10

15

20

25

30

35

According to a preferred method, carefully selected oligonucleotide probes are used to screen cDNA libraries from various tissues, preferably from heart and/or kidney tissues. The oligonucleotide sequences selected as probes should be sufficient in length and sufficiently unique and unambiguous that false positives are minimized. The actual sequences can be designed based on regions of SEQ ID NO: 2 which have the least codon redundance. The oligonucleotides may be degenerate at one or more positions. The use of degenerate oligonucleotides is of particular importance where a library is screened from a species in which preferential codon usage is not known.

The oligonuleotides must be labeled such that they can be detected upon hybridization to DNA in the library screened. Preferably, the 5' end of the oligonucleotide is radiolabeled, using APT (e.g. $\dot{\gamma}^{32}$ P) and polynucleotide kinase. However, other labeling, e.g. biotinylation or enzymatic labeling are also suitable.

Alternatively, to obtain DNA encoding a homologue of rat polypeptides specifically disclosed herein in another mammalian species, e.g. in humans, one only needs to conduct hybridization screening with labeled rat DNA or fragments thereof, selected following the principles outlined above, in order to detect clones which contain homologous sequences in the cDNA libraries obtained from appropriate tissues (e.g. heart or kidney) of the particular animal, such as human (cross-species hybridization). Full-length clones can then be identified, for example, by restriction endonuclease analysis and nucleic acid sequencing. If full-length clones are not identified, appropriate fragments are recovered from the various clones and ligated at restriction sites common to the fragments to assemble a full-length clone.

cDNAs encoding the polypeptides of the present invention can also be identified and isolated by other known techniques, such as by direct expression cloning or by using the PCR technique, both of which are well known are described in textbooks, such as those referenced hereinbefore.

Once the sequence is known, the nucleic acid encoding a particular polypeptide of the present invention can also be obtained by chemical synthesis, following known methods, such as the phosphoramidite method (Beaucage and Caruthers, <u>Tetrahedron Letters 22</u>:1859 [1981]; Matteucci and Caruthers, <u>Tetrahedron Letters 21</u>:719 [1980]; and Matteucci and Caruthers, <u>J. Amer. Chem. Soc. 103</u>: 3185 [1981]), and the phosphotriester approach (Ito et al., <u>Nucleic Acids Res. 10</u>:1755-1769 [1982]).

The cDNA encoding the desired polypeptide of the present invention is inserted into a replicable vector for cloning and expression. Suitable vectors are prepared using standard techniques of recombinant DNA technology, and are, for example, described in the textbooks cited above. Isolated plasmids and

DNA fragments are cleaved, tailored, and ligated together in a specific order to generate the desired vectors. After ligation, the vector containing the gene to be expressed is transformed into a suitable host cell.

Host cells can be any eukaryotic or prokaryotic hosts known for expression of heterologous proteins.

5

10

15

20

25

30

35

The polypeptides of the present invention can be expressed in eukaryotic hosts, such as eukaryotic microbes (yeast), cells isolated from multicellular organisms (mammalian cell cultures), plants and insect cells.

While prokaryotic host provide a convenient means to synthesize eukaryotic proteins, when made this fashion, proteins usually lack many of the immunogenic properties, three-dimensional conformation, glycosylation, and other features exhibited by authentic eukaryotic proteins. Eukaryotic expression systems overcome these limitations.

Yeasts are particularly attractive as expression hosts for a number of reasons. They can be rapidly growth on inexpensive (minimal) media, the recombinant can be easily selected by complementation, expressed proteins can be specifically engineered for cytoplasmic localization or for extracellular export, and are well suited for large-scale fermentation.

Saccharomyces cerevisiae is the most commonly used among lower eukaryotic hosts. However, a number of other genera, species, and strains are also available and useful herein, such as Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol. 28:165-278 [1988]). Yeast expression systems are commercially available, and can be purchased, for example, from Invitrogen (San Diego, CA). Other yeasts suitable for VEGF expression include, without limitation, Kluyveromyces hosts (U.S. Pat. No. 4,943,529), e.g. Kluyveromyces lactis; Schizosaccharomyces pombe (Beach and Nurse, Nature 290:140 (1981); Aspergillus hosts, e.g. A. niger (Kelly and Hynes, EMBO J. 4:475-479 [1985]) and A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun. 112:284-289 [1983]), and Hansenula hosts, e.g. Hansenula polymorpha.

Preferably a methylotrophic yeast is used as a host in performing the methods of the present invention. Suitable methylotrophic yeasts include, but are not limited to, yeast capable of growth on methanol selected from the group consisting of the genera *Pichia* and *Hansenula*. A list of specific species which are exemplary of this class of yeasts may be found, for example, in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982). Presently preferred are methylotrophic yeasts of the genus *Pichia* such as the auxotrophic *Pichia pastoris* GS115 (NRRL Y-15851); *Pichia pastoris* GS190 (NRRL Y-18014) disclosed in U.S. Pat. No. 4,818,700; and *Pichia pastoris* PPF1 (NRRL Y-18017) disclosed in U.S. Pat. No. 4,812,405. Auxotrophic *Pichia pastoris* strains are also advantageous to the practice of this invention for their ease of selection. It is recognized that wild type *Pichia pastoris* strains (such as NRRL Y-11430 and NRRL Y-11431) may be employed with equal success if a suitable transforming marker gene is selected, such as the use of SUC2 to transform *Pichia pastoris* to a strain capable of growth on sucrose, or if an

antibiotic resistance marker is employed, such as resistance to G418. *Pichia pastoris* linear plasmids are disclosed, for example, in U.S. Pat. No. 5,665,600.

5

10

15

20

25

30

35

Suitable promoters used in yeast vectors include the promoters for 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem. 255:2073 [1980]); and other glycolytic enzymes (Hess et al., J. Adv. Enzyme Res. 7:149 [1968]; Holland et al., Biochemistry 17:4900 [1978]), e.g., enolase, glyceraldehyde-3phosphate dehydrogenase, hexokinase, pyvurate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate somerase, phosphoglucose isomerase, and glucokinase. In the constructions of suitable expression plasmids, the termination sequences associated with these genes are also ligated into the expression vector 3' of the sequence desired to be expressed to provide polyadenylation of the mRNA and termination. Other promoters that have the additional advantage of transcription controlled by growth conditions are the promoter regions for alcohol oxidase 1 (AOX1, particularly preferred for expression in *Pichia*), alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, and the aforementioned glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Any plasmid vector containing a yeast-compatible promoter and termination sequences, with or without an origin of replication, is suitable. Yeast expression systems are commercially available, for example, from Clontech Laboratories, Inc. (Palo Alto, California, e.g. pYEX 4T family of vectors for S. cerevisiae), Invitrogen (Carlsbad, California, e.g. pPICZ series Easy Select Pichia Expression Kit) and Stratagene (La Jolla, California, e.g. ESPTM Yeast Protein Expression and Purification System for S. pombe and pESC vectors for S. cerevisiae).

Cell cultures derived from multicellular organisms may also be used as hosts to practice the present invention. While both invertebrate and vertebrate cell cultures are acceptable, vertebrate cell cultures, particularly mammalian cells, are preferable. Examples of suitable cell lines include monkey kidney CV1 cell line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney cell line 293S (Graham et al, J. Gen. Virol. 36:59 [1977]); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary (CHO) cells (Urlaub and Chasin, Proc. Natl. Acad. Sci. USA 77:4216 [1980]; monkey kidney cells (CVI-76, ATCC CCL 70); African green monkey cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); human lung cells (W138, ATCC CCL 75); and human liver cells (Hep G2, HB 8065).

Suitable promoters used in mammalian expression vectors are often of viral origin. These viral promoters are commonly derived from cytomeagolavirus (CMV), polyoma virus, Adenovirus2, and Simian Virus 40 (SV40). The SV40 virus contains two promoters that are termed the early and late promoters. They are both easily obtained from the virus as one DNA fragment that also contains the viral origin of replication (Fiers et al., Nature 273:113 [1978]). Smaller or larger SV40 DNA fragments may also be used, provided they contain the approximately 250-bp sequence extending from the HindIII site toward the BgII site located in the viral origin of replication. An origin of replication may be obtained from an exogenous source, such as SV40 or other virus, and inserted into the cloning vector. Alternatively, the host cell

chromosomal mechanism may provide the origin of replication. If the vector containing the foreign gene is integrated into the host cell chromosome, the latter is often sufficient.

5

10

15

20

25

30

35

Eukaryotic expression systems employing insect cell hosts may rely on either plasmid or baculoviral expression systems. The typical insect host cells are derived from the fall army worm (Spodoptera frugiperda). For expression of a foreign protein these cells are infected with a recombinant form of the baculovirus Autographa californica nuclear polyhedrosis virus which has the gene of interest expressed under the control of the viral polyhedrin promoter. Other insects infected by this virus include a cell line known commercially as "High 5" (Invitrogen) which is derived from the cabbage looper (Trichoplusia ni). Another baculovirus sometimes used is the Bombyx mori nuclear polyhedorsis virus which infect the silk worm (Bombyx mori). Numerous baculovirus expression systems are commercially available, for example, from Invitrogen (Bac-N-BlueTM), Clontech (BacPAKTM Baculovirus Expression System), Life Technologies (BAC-TO-BACTM), Novagen (Bac Vector SystemTM), Pharmingen and Quantum Biotechnologies). Another insect cell host is common fruit fly, Drosophila melanogaster, for which a transient or stable plasmid based transfection kit is offered commercially by Invitrogen (The DESTM System).

Prokaryotes are the preferred hosts for the initial cloning steps, and are particularly useful for rapid production of large amounts of DNA, for production of single-stranded DNA templates used for site-directed mutagenesis, for screening many mutants simultaneously, and for DNA sequencing of the mutants generated. *E. coli* strains suitable for the production of the polypeptides of the present invention include, for example, BL21 carrying an inducible T7 RNA polymerase gene (Studier *et al.*, Methods Enzymol. 185:60-98 [1990]); AD494 (DE3); EB105; and CB (*E. coli* B) and their derivatives; K12 strain 214 (ATCC 31,446); W3110 (ATCC 27,325); X1776 (ATCC 31,537); HB101 (ATCC 33,694); JM101 (ATCC 33,876); NM522 (ATCC 47,000); NM538 (ATCC 35,638); NM539 (ATCC 35,639), etc. Many other species and genera of prokaryotes may be used as well. Prokaryotes, e.g. *E. coli*, produce the polypeptides of the present invention in an unglycosylated form.

Vectors used for transformation of prokaryotic host cells usually have a replication site, marker gene providing for phenotypic selection in transformed cells, one or more promoters compatible with the host cells, and a polylinker region containing several restriction sites for insertion of foreign DNA. Plasmids typically used for transformation of *E. coli* include pBR322, pUC18, pUC19, pUC118, pUC119, and Bluescript M13, all of which are commercially available and described in Sections 1.12-1.20 of Sambrook *et al.*, *supra*. The promoters commonly used in vectors for the transformation of prokaryotes are the T7 promoter (Studier *et al.*, *supra*); the tryptophan (*trp*) promoter (Goeddel *et al.*, Nature 281:544 [1979]); the alkaline phosphatase promoter (*phoA*); and the β-lactamase and lactose (*lac*) promoter systems. In *E. coli*, some polypeptides accumulate in the form of inclusion bodies, and need to be solubilized, purified, and refolded. These steps can be carried out by methods well known in the art.

Many eukaryotic proteins, including the polypeptide of SEQ ID NOS: 26 and 53 disclosed herein, contain an endogenous signal sequence as part of the primary translation product. This sequence targets the

protein for export from the cell via the endoplasmic reticulum and Golgi apparatus. The signal sequence is typically located at the amino terminus of the protein, and ranges in length from about 13 to about 36 amino acids. Although the actual sequence varies among proteins, all known eukaryotic signal sequences contain at least one positively charged residue and a highly hydrophobic stretch of 10-15 amino acids (usually rich in the amino acids leucine, isoleucine, valine and phenylalanine) near the center of the signal sequence. The signal sequence is normally absent from the secreted form of the protein, as it is cleaved by a signal peptidase located on the endoplasmic reticulum during translocation of the protein into the endoplasmic reticulum. The protein with its signal sequence still attached is often referred to as the preprotein, or the immature form of the protein, in contrast to the protein from which the signal sequence has been cleaved off, which is usually referred to as the mature protein. Proteins may also be targeted for secretion by linking a heterologous signal sequence to the protein. This is readily accomplished by ligating DNA encoding a signal sequence to the 5' end of the DNA encoding the protein, and expressing the fusion protein in an appropriate host cell. Prokaryotic and eukaryotic (yeast and mammalian) signal sequences may be used, depending on the type of the host cell. The DNA encoding the signal sequence is usually excised from a gene encoding a protein with a signal sequence, and then ligated to the DNA encoding the protein to be secreted. Alternatively, the signal sequence can be chemically synthesized. The signal must be functional, i.e. recognized by the host cell signal peptidase such that the signal sequence is cleaved and the protein is secreted. A large variety of eukaryotic and prokaryotic signal sequences is known in the art, and can be used in performing the process of the present invention. Yeast signal sequences include, for example, acid phosphatase, alpha factor, alkaline phosphatase and invertase signal sequences. Prokaryotic signal sequences include, for example LamB, OmpA, OmpB and OmpF, MalE, PhoA, and β lactamase.

5

10

15

20

25

30

35

Mammalian cells are usually transformed with the appropriate expression vector using a version of the calcium phosphate method (Graham et al., Virology 52:546 [1978]; Sambrook et al., supra, sections 16.32-16.37), or, more recently, lipofection. However, other methods, e.g. protoplast fusion, electroporation, direct microinjection, etc. are also suitable.

Yeast hosts are generally transformed by the polyethylene glycol method (Hinnen, <u>Proc. Natl. Acad, Sci. USA</u> 75:1929 [1978]). Yeast, e.g. *Pichia pastoris*, can also be transformed by other methodologies, e.g. electroporation.

Prokaryotic host cells can, for example, be transformed using the calcium chloride method (Sambrook et al., supra, section 1.82), or electroporation.

More recently, techniques have been developed for the expression of heterologous proteins in the milk of non-human transgenic animals. For example, Krimpenfort et al., Biotechnology 9:844-847 (1991) describes microinjection of fertilized bovine oocytes with genes encoding human proteins and development of the resulting embryos in surrogate mothers. The human genes were fused to the bovine alpha.S.sub.1 casein regulatory elements. This general technology is also described in PCT Application WO91/08216 published June 13, 1991. PCT application WO88/00239, published January 14, 1988, describes procedures for obtaining suitable regulatory DNA sequences for the products of the mammary glands of sheep,

including beta lactoglobulin, and the construction of transgenic sheep modified so as to secrete foreign proteins in milk. PCT publication WO88/01648, published March 10, 1988, generally describes construction of transgenic animals which secrete foreign proteins into milk under control of the regulatory sequences of bovine alpha lactalbumin gene. PCT application WO88/10118, published December 29, 1988, describes construction of transgenic mice and larger mammals for the production of various recombinant human proteins in milk. Thus, techniques for construction of appropriate host vectors containing regulatory sequences effective to produce foreign proteins in mammary glands and cause the secretion of said protein into milk are known in the art.

Among the milk-specific protein promoters are the casein promoters and the beta lactoglobulin promoter. The casein promoters may, for example, be selected from an alpha casein promoter, a beta casein promoter or a kappa casein promoter. Preferably, the casein promoter is of bovine origin and is an alpha S-1 casein promoter. Among the promoters that are specifically activated in mammary is the long terminal repeat (LTR) promoter of the mouse mammary tumor virus (MMTV). The milk-specific protein promoter or the promoters that are specifically activated in mammary tissue may be derived from either cDNA or genomic sequences. Preferably, they are genomic in origin.

Signal peptides that are useful in expressing heterologous proteins in the milk of transgenic mammals include milk-specific signal peptides or other signal peptides useful in the secretion and maturation of eukaryotic and prokaryotic proteins. Preferably, the signal peptide is selected from milk-specific signal peptides or the signal peptide of the desired recombinant protein product, if any. Most preferably, the milk-specific signal peptide is related to the milk-specific promoter used in the expression system of this invention.

The present invention includes amino acid sequence variants of the native rat polypeptides specifically disclosed herein or their analogues in any other animal, e.g. mammalian species, including humans. Such amino acid sequence variants can be produced by expressing the underlying DNA sequence in a suitable recombinant host cell, as described above, or by in vitro synthesis of the desired polypeptide. The nucleic acid sequence encoding a polypeptide variant of the present invention is preferably prepared by site-directed mutagenesis of the nucleic acid sequence encoding the corresponding native (e.g. human) polypeptide. Particularly preferred is site-directed mutagenesis using polymerase chain reaction (PCR) amplification (see, for example, U.S. Pat. No. 4,683,195 issued 28 July 1987; and Current Protocols In Molecular Biology, Chapter 15 (Ausubel et al., ed., 1991). Other site-directed mutagenesis techniques are also well known in the art and are described, for example, in the following publications: Current Protocols In Molecular Biology, supra, Chapter 8; Molecular Cloning: A Laboratory Manual., 2nd edition (Sambrook et al., 1989); Zoller et al., Methods Enzymol. 100:468-500 (1983); Zoller & Smith, DNA 3:479-488 (1984); Zoller et al., Nucl. Acids Res., 10:6487 (1987); Brake et al., Proc. Natl. Acad. Sci. USA 81:4642-4646 (1984); Botstein et al., Science 229:1193 (1985); Kunkel et al., Methods Enzymol. 154:367-82 (1987), Adelman et al., DNA 2:183 (1983); and Carter et al., Nucl. Acids Res., 13:4331 (1986). Cassette

mutagenesis (Wells et al., <u>Gene</u>, <u>34</u>:315 [1985]), and restriction selection mutagenesis (Wells et al., <u>Philos. Trans. R. Soc. London SerA</u>, <u>317</u>:415 [1986]) may also be used.

Amino acid sequence variants with more than one amino acid substitution may be generated in one of several ways. If the amino acids are located close together in the polypeptide chain, they may be mutated simultaneously, using one oligonucleotide that codes for all of the desired amino acid substitutions. If, however, the amino acids are located some distance from one another (e.g. separated by more than ten amino acids), it is more difficult to generate a single oligonucleotide that encodes all of the desired changes. Instead, one of two alternative methods may be employed. In the first method, a separate oligonucleotide is generated for each amino acid to be substituted. The oligonucleotides are then annealed to the single-stranded template DNA simultaneously, and the second strand of DNA that is synthesized from the template will encode all of the desired amino acid substitutions. The alternative method involves two or more rounds of mutagenesis to produce the desired mutant.

The amino acid sequence variants of the present invention include polypeptides in which the membrane spanning (transmembrane) region or regions are deleted or inactivated. Deletion or inactivation of these portions of the molecule yields soluble proteins, which are no longer capable of membrane anchorage. Inactivation may, for example, be achieved by deleting sufficient residues (but less than the entire transmembrane region) to produce a substantially hydrophilic hydropathy profile at this site, or by substituting with heterologous residues which accomplish the same result. For example, the transmembrane region(s) may be substituted by a random or predetermined sequence of about 5 to 50 serine, threonine, lysine, arginine, glutamine, aspartic acid and like hydrophilic residues, which altogether exhibit a hydrophilic hydropathy profile. Like the transmembrane region deletional variants, these variants are "soluble", i.e. secreted into the culture medium of recombinant hosts. Soluble variants of the native polypeptides of the present invention may be used to make fusions at their N- or C-terminus to immunogenic polypeptides, e.g. bacterial polypeptides such as beta-lactamase or an enzyme encoded by the E. coli trp locus, or yeast protein, and C-terminal fusions with proteins having a long half-life such as immunoglobulin regions (preferably immunoglobulin constant regions to yield immunoadhesins), albumin, or ferritin, as described in WO 89/02922 published on 6 Apr. 1989. For the production of immunoglobulin fusions see also U.S. Pat. No. 5,428,130 issued Jun. 27, 1995.

3. <u>Production of Antibodies</u>

5

10

15

20

25

30

35

The present invention includes antibodies that specifically bind a polypeptide of SEQ ID NO: 2 or another mammalian (e.g. human) homologue of such polypeptide. Such antibodies find utility as reagents used, for example, in analytical chemistry or process sciences, as diagnostic and/or therapeutics.

Methods of preparing polyclonal antibodies are known in the art. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. It may be useful to conjugate the immunizing agent to a protein

known to be immunogenic in the mammal being immunized, such as serum albumin, or soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM.

5

10

15

20

25

30

35

According to one approach, monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium.

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the particular polypeptide used, such as a rat polypeptide of SEQ ID NO: 2 or its human homologue. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980).

After the desired hybridoma cells are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods [Goding, <u>supra</u>]. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells may be grown *in vivo* as ascites in a mammal.

The monoclonal antibodies secreted by the subclones may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

Alternatively, monoclonal antibodies may be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The

hybridoma cells discussed above serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.

5

10

15

20

25

30

35

The antibodies, including antibody fragments, such as Fv, Fab, Fab', F(ab')₂ or other antigen-binding subsequences of antibodies, may be humanized. Humanized antibodies contain minimal sequence derived from a non-human immunoglobulin. More specifically, in humanized antibodies residues from a complementary determining region (CDR) of a human immunoglobulin (the recipient) are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are also replaced by corresponding non-human residues. Humanized antibodies may additionally comprise residues that are found neither in the recipient antibody nor in the imported CDR or framework sequences [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-329 (1988)].

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a non-human source. These nonhuman amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. In addition, human antibodies can be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)]. The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147(1):86-95 (1991)]. Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., Bio/Technology 10, 779-783 (1992); Lonberg et al., Nature 368 856-859 (1994); Morrison, Nature 368, 812-13 (1994); Fishwild et al., Nature Biotechnology 14, 845-51 (1996); Neuberger, Nature Biotechnology 14, 826 (1996); Lonberg and Huszar, Intern. Rev. Immunol. 13 65-93 (1995).

The antibodies may be bispecific, in which one specificity is for polypeptide of the present invention, and the other specificity for another protein, such as, a second polypeptide of the present invention or another polypeptide.

4. Uses

5

10

15

20

25

30

35

a. Polynucleotides

The differentially expressed genes identified in accordance with the present invention may be used to design specific oligonucleotide probes and primers. In certain preferred embodiments, the term "primer" as used here includes any nucleic acid capable of priming template-dependent synthesis of a nascent nucleic acid. In certain other embodiments, the nucleic acid may be able to hybridize a template, but not be extended for synthesis of nascent nucleic acid that is complementary to the template.

In certain embodiments of the present invention the term "template" may refer to a nucleic acid that is used in the creation of a complementary nucleic acid strand to the "template" strand. The template may be either RNA or DNA, and the complementary strand may also be RNA or DNA. In certain embodiments the complementary strand may comprise all or part of the complementary sequence to the template, or may include mutations so that it is not an exact, complementary strand to the template. Strands that are not exactly complementary to the template strand may hybridize specifically to the template strand in detection assays described here, as well as other assays known in the art, and such complementary strands that can be used in detection assays are part of the invention.

When used in combination with nucleic acid amplification procedures, these probes and primers enable the rapid analysis of cell, tissue, or peripheral blood samples. In certain aspects of the invention, the term "amplification" may refer to any method or technique known in the art or described herein for duplicating or increasing the number of copies or amount of a target nucleic acid or its complement. The term "amplicon" refers to the target sequence for amplification, or that part of a target sequence that is amplified, or the amplification products of the target sequence being amplified. In certain other embodiments, an "amplicon" may include the sequence of probes or primers used in amplification. This analysis assists in detecting and diagnosing a disease, specifically cardiac, kidney or inflammatory disease, and in determining optimal treatment courses for individuals at varying stages of disease progression.

In light of the present disclosure, one skilled in the art may select segments from the identified genes for use in detection, diagnostic, or prognostic methods, vector constructs, antibody production, kits, or any of the embodiments described herein as part of the present invention. For example, in certain embodiments the sequences selected to design probes and primers may include repetitive stretches of adenine nucleotides (poly-A tails) normally attached at the ends of the RNA for the identified differentially expressed gene. In certain other embodiments, probes and primers may be specifically designed to not include these or other segments from the identified genes, as one of ordinary skill in the art may deem certain segments more suitable for use in the detection methods disclosed.

For example, where a genomic sequence is disclosed, one may use sequences that correspond to exon regions of the gene in most cases. One skilled in the art may select segments from the published exon sequences, or may assemble them into a reconstructed mRNA sequence that does not contain intronic sequences. Indeed, one skilled in the art may select or assemble segments from any of the

identified gene sequences into other useful forms, such as coding segment reconstructions of mRNA sequences from published genomic sequences of the identified differentially expressed genes, as part of the present invention. Such assembled sequences would be useful in designing probes and primers, as well as providing coding segments for protein translation and for detection, diagnosis, and prognosis embodiments of the invention described herein.

5

10

15

20

25

30

35

Primers can be designed to amplify transcribed portions of the differentially expressed genes of the present invention that would include any length of nucleotide segment of the transcribed sequences, up to and including the full length of each gene. It is preferred that the amplified segments of identified genes be an amplicon of at least about 50 to about 500 base pairs in length. It is more preferred that the amplified segments of identified genes be an amplicon of at least about 100 to about 400 base pairs in length, or no longer in length than the amplified segment used to normalize the quantity of message being amplified in the detection assays described herein. Such assays include RNA diagnosticing methods, however, differential expression may be detected by other means, and all such methods would fall within the scope of the present invention. The predicted size of the gene segment, calculated by the location of the primers relative to the transcribed sequence, would be used to determine if the detected amplification product is indeed the gene being amplified. Sequencing the amplified or detected band that matches the expected size of the amplification product and comparison of the band's sequence to the known or disclosed sequence of the gene would confirm that the correct gene is being amplified and detected.

The identified differentially expressed genes may also be used to identify and isolate full-length gene sequences, including regulatory elements for gene expression, from genomic human DNA libraries. The cDNA sequences or portions thereof, identified in the present disclosure may be used as hybridization probes to screen genomic human (or other mammalian) DNA libraries by conventional techniques. Once partial genomic clones have been identified, "chromosomal walking" may isolate full-length genes (also called "overlap hybridization"). See Chinault et al., Gene 5:111-26 (1979). Once a partial genomic clone has been isolated using a cDNA hybridization probe, nonrepetitive segments at or near the ends of the partial genomic clone may be used as hybridization probes in further genomic library screening, ultimately allowing isolation of entire gene sequences for the disease, specifically cardiac, kidney or inflammatory disease, state genes of interest. It will be recognized that full-length genes may be obtained using small ESTs via technology currently available and described in this disclosure (Sambrook et al., supra; Chinault et al., supra). Sequences identified and isolated by such means may be useful in the detection of disease genes using the detection and diagnostic methods described herein, and are part of the invention.

As described before, the identified rat gene may be used as a hybridization probe to screen human or other mammalian cDNA libraries by conventional techniques. Comparison of cloned cDNA sequences with known human or animal cDNA or genomic sequences may be performed using computer programs and databases known in the art.

The polynucleotides of the present invention are also useful in antisense-mediated gene inhibition, first introduced by Stephenson and Zamecnik (Proc. Natl. Acad. Sci. USA 75:285-288 [1978]; see also,

Zamecnik et al., Proc. Natl. Acad. Sci. USA 83, 4143-4146 [1986]). This technique is based on the discovery that synthetic DNA fragments can inhibit the transcription and/or translation of selected genes in a sequence-specific manner. Since its inception, the technique has found important diagnostic and clinical therapeutic applications in many fields of oncology, vascular and genetic diseases, and in the treatment of HIV and other virus infections. To date, two main antisense strategies have been employed: transfection of cells with antisense cDNA and treatment of cells with antisense oligodeoxynucleotides (ODNs), the use of ODNs derived from the translation initiation site, e.g., between the -10 and +10 regions of the target gene nucleotide sequence of interest being preferred. According to the present invention, molecules can be designed to reduce or inhibit either normal or, if appropriate, mutant target gene activity, using antisense technology. For further details see, for example, Wagner, "Gene inhibition using antisense oligodeoxynucleotides." 372:333-335 (1992);"Antisense Nature Tonkinson and Stein, oligodeoxynucleotides as clinical therapeutic agents." Cancer Invest. 14:54-65 (1996); Askari and McDonnell, "Antisense-oligonucleotide therapy." N. Engl. J. Med. 334:316-318 (1996); Redekop and Naus, "Transfection with bFGF sense and antisense cDNA resulting in modification of malignant glioma growth." J. Neurosurg. 82:83-90 (1997); Saleh et al., "Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence." Cancer Res. 56:393-401 (1996).

5

10

15

20

25

30

35

Oligodeoxynucleotides can be used for the inhibition of gene transcription in the form of triple helix structures. The base composition of these oligodeoxynucleotides must be designed to promote triple helix formation via Hoogsteen base pairing rules, which generally require sizeable stretches of either purines or pyrimidines to be present on one strand of a duplex. Nucleotide sequences can be pyrimidine-based, which will result in TAT and CGC+ triplets across the three associated strands of the resulting triple helix. The pyrimidine-rich molecules provide base complementarily to a purine-rich region of a single strand of the duplex, in a parallel orientation to that strand. In addition, nucleic acid molecules can be chosen that are purine-rich and, for example, contain a stretch of G residues. These molecules form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in GGC triplets across the three strands in the triplex. Alternatively, creating a "switchback" nucleic acid molecule can increase the potential sequences that can be targeted for triple helix formation. Switchback molecules are synthesized in an alternating 5'- 3', 3'-5' manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.

The invention also covers the use of ribozymes. Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA (Rossi, <u>Current Biology 4</u>:469-71 [1994]). The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by an endonucleolytic cleavage. The composition of ribozyme molecules must include one or more sequences complementary to the target gene mRNA and must include the well-known catalytic sequence responsible for mRNA cleavage. For this sequence, *see* U.S. Patent No. 5,093,246, which is incorporated by reference herein in its entirety. Within the scope of the present

invention are engineered hammerhead motif ribozyme molecules that specifically and efficiently catalyze endonucleolytic cleavage of RNA sequences encoding target gene proteins.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the molecule of interest for ribozyme cleavage sites which include the following sequences, GUA, GUU and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site can be evaluated for predicted structural features, such as secondary structure, that can render the oligonucleotide sequence unsuitable. The suitability of candidate sequences can also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays.

5

10

15

20

25

30

35

In instances where the antisense, ribozyme, or triple helix molecules are utilized to reduce or inhibit mutant gene expression, it is possible that the transcription or translation of mRNA produced by normal alleles is also reduced or inhibited. As a result, the concentration of normal gene product may be lower than is necessary for a normal phenotype. In such cases, to ensure that substantially normal levels of gene activity are maintained, nucleic acid molecules that encode and express the polypeptide encoded by the gene targeted, can be introduced into cells via gene therapy methods, such as those described below. The nucleic acid sequence used in gene therapy is selected such that it does not contain sequences susceptible to the antisense, ribozyme, or triple helix treatments utilized. Alternatively, where the target gene encodes an extracellular protein, it can be preferable to co-administer normal target gene protein into the cell or tissue in order to maintain the requisite level of cellular or tissue target gene activity.

The present invention also contemplates the use of "peptide nucleic acids" (PNAs). PNAs have a peptide-like backbone instead of the normal sugar and phosphate groups of DNA. PNAs may be used to turn on specific genes, by binding to a promoter region of a gene to initiate RNA transcription. This approach is particularly useful where a particular disease or disorder is characterized by the underexpression of a particular gene, or where the increased expression of an identified gene has a beneficial effect on the treatment of a disease, in particular cardiac, kidney or inflammatory disease. Chimeric molecules of PNA and DNA may also be considered. The DNA portion will allow enzymes attacking DNA-RNA hybrids to cut the RNA part of the complex into pieces (leading to dissociation of the drug molecule, which can then be reused), whereas the PNA portion will contribute stability and selectivity.

As noted before, the polynucleotides of the present invention can also be used in gene therapy. In gene therapy applications, genes are introduced into cells in order to achieve in vivo synthesis of a therapeutically effective genetic product, for example for replacement of a defective gene. Gene therapy includes both conventional gene therapy where a lasting effect is achieved by a single treatment, and the administration of gene therapeutic agents, which involves the one time or repeated administration of a therapeutically effective DNA or RNA.

There are a variety of techniques available for introducing nucleic acid into viable cells. The techniques differ depending upon whether the nucleic acid in transferred into cultured cells in vitro, or

in vivo in the cells of the intended host. Techniques suitable for the transfer of the nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate method, etc. The currently preferred in vivo gene transfer methods include transfection with viral (typically retroviral) vectors and viral coat protein-liposome mediated transfection (Dzau et al., Trends in Biotechnology 11, 205-210 [1993]). In some situations it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane protein or the target cells, a ligand for a receptor on the target cells, etc. Where liposomes are employed, proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular half-life. For review of gene marking and gene therapy protocols see Anderson et al, Science 256, 808-813 (1992).

5

10

15

20

25

30

35

The information provided by the present invention can also be used to detect genetic lesions in a differentially expressed gene of the present invention, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by differentially expressed gene expression or polypeptide activity. In preferred embodiments, the methods include detecting, in a biological sample from a subject, the presence or absence of a genetic lesion characterized by, for example, an alteration affecting the integrity of a gene encoding an polypeptide or the misexpression of the gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of: a deletion of one or more nucleotides from a gene; an addition of one or more nucleotides to a gene; a substitution of one or more nucleotides of a gene; a chromosomal rearrangement of a gene; an alteration in the level of a messenger RNA transcript of a gene; aberrant modification of a gene, such as of the methylation pattern of the genomic DNA; the presence of a non-wild type splicing pattern of a messenger RNA transcript of a gene; a non-wild type level of a gene protein; allelic loss of a gene; and inappropriate post-translational modification of a gene protein. As described herein, there are a large number of assay techniques known in the art that can be used for detecting lesions in a gene.

In certain embodiments, detection of a lesion may involve the use of a probe/primer in, such as anchor PCR or RACE PCR, or, alternatively, in LCR (see, e.g., Landegran et al., Science 241: 1077-80 [1988]; and Nakazawa et al., Proc. Natl. Acad. Sci. USA 91: 360-64 [1994]), the latter of which can be particularly useful for detecting point mutations in the cardiac gene (see Abravaya et al., Nucleic Acids Res. 23: 675-82 [1995]). This method can include the steps of collecting a biological sample from a subject, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to an differentially expressed gene under conditions such that hybridization and amplification of the cardiac gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample.

In an alternative embodiment, mutations in a differentially expressed gene from a sample can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see U.S. Patent No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.

The arrays of immobilized DNA fragments may also be used for genetic diagnostics. To illustrate, a microarray containing multiple forms of a mutated gene or genes can be probed with a labeled mixture of a subject DNA, which will preferentially interact with only one of the immobilized versions of the gene.

The detection of this interaction can lead to a medical diagnosis. Arrays of immobilized DNA fragments can also be used in DNA probe diagnostics. For example, the identity of a differentially expressed gene of the present invention can be established unambiguously by hybridizing a sample of a subject's DNA to an array comprising known differentially expressed DNA. Other molecules of genetic interest, such as cDNAs and RNAs can be immobilized on the array or alternately used as the labeled probe mixture that is applied to the array.

b. Polypeptides

10

15

20

25

30

35

The native polypeptides of the present invention, and their equivalents in other mammalian (e.g. human) species, can be used to identify interacting proteins and genes encoding such proteins. Interacting proteins and their genes may be part of the signaling pathway in which the differentially expressed genes identified herein participate, and thus are valuable diagnostic and therapeutic candidates or targets. Among the traditional methods employed are co-immunoprecipitation, cross-linking and co-purification through gradients or chromatographic columns. Using procedures such as these allows for the identification of interactive gene products. Once identified, an interactive gene product can be used, using standard techniques, to identify its corresponding interactive gene. For example, at least a portion of the amino acid sequence of the interactive gene product can be ascertained using techniques we'll known to those of skill in the art, such as the Edman degradation technique (see, e.g., Creighton, Proteins: Structures and Molecular Principles, W. H. Freeman & Co. (New York, NY [1983], pp. 34-49). The amino acid sequence obtained can be used as a guide for the generation of oligonucleotide mixtures that can be used to screen for interactive gene sequences. Screening can be accomplished, for example, by standard hybridization or PCR techniques. Techniques for the generation of oligonucleotide mixtures and the screening are well known.

Additionally, methods can be employed which result in the simultaneous identification of interactive genes that encode the protein interacting with a protein involved in a disease, specifically cardiac, kidney or inflammatory disease. These methods include, for example, probing expression libraries with a labeled protein known or suggested to be involved in a disease, using this protein in a manner similar to the well known technique of antibody probing of λ gtll libraries.

Û

A particularly suitable technique for studying protein-protein interactions is the yeast two-hybrid assay. Many transcriptional activators, such as yeast GALA, consist of two physically discrete modular domains, one acting as the DNA-binding domain, while the other one functioning as the transcription activation domain. The yeast two-hybrid system takes advantage of this property, and employs two hybrid proteins, one in which the target protein is fused to the DNA-binding domain of GALA, and another, in which candidate activating proteins are fused to the activation domain. The expression of a GAL1-calZ reporter gene under control of a GAL4-activated promoter depends on reconstitution of GAL4 activity via protein-protein interaction. Colonies containing interacting polypeptides are detected with a chromogenic substrate for β-galactosidase. A complete kit (MATCHMAKERTM) for identifying protein-protein interactions using the yeast two-hybrid technique is available from Clontech. For further details see e.g. Fields and Song, Nature (London) 340:245-246 (1989); Chien et al., Proc. Natl. Acad. Sci. USA 88:9578-9582 (1991); and Chevray and Nathans, Proc. Natl. Acad. Sci. USA 89:5789-5793 (1992).

5

10

15

20

25

30

35

Polypeptides of the present invention may also be used to generate antibodies, using well-known techniques, some of which have been detailed above.

The polypeptides of the present invention are also useful in assays for identifying lead compounds for therapeutically active agents for the treatment of cardiac, kidney or inflammatory diseases. Candidate compounds include, for example, peptides such as soluble peptides, including Ig-tailed fusion peptides (e.g. immunoadhesins) and members of random peptide libraries (see, e.g., Lam et al., Nature 354:82-84 (1991); Houghten et al., Nature 354:84-86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- or L- configuration amino acids; phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang et al., Cell 72:767-78 (1993); antibodies (e.g., polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, and single chain antibodies as well as Fab, F(ab')₂, Fab expression library fragments, and epitope-binding fragments of antibodies); and small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries).

Such screening assays are preferably amenable to high-throughput screening of chemical libraries, and are particularly suitable for identifying small molecule drug candidates. Small molecules, which are usually less than 10K molecular weight, are desirable as therapeutics since they are more likely to be permeable to cells, are less susceptible to degradation by various cellular mechanisms, and are not as apt to elicit immune response as proteins. Small molecules include but are not limited to synthetic organic or inorganic compounds, and peptides. Many pharmaceutical companies have extensive libraries of such molecules, which can be conveniently screened by using the assays of the present invention. the assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays, cell based assays, etc. Such assay formats are well known in the art.

In a preferred embodiment, the screening assays of the present invention involve contacting a biological sample obtained from a subject having a disease, specifically cardiac, kidney or inflammatory disease, characterized by the differential expression of a gene identified herein, with a candidate compound

or agent. The expression of the gene or the activity of the gene product is then determined in the presence and absence of the test compound or agent. When expression of differentially expressed gene mRNA or polypeptide is greater (preferably statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound may be identified as a stimulator of differentially expressed gene expression. Alternatively, when differentially expressed gene expression is less (preferably statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound may be identified as an inhibitor of differentially expressed gene expression. The level of differentially expressed gene expression in the cells can be determined by methods described herein for detecting differentially expressed gene mRNA or protein.

Compounds identified via assays such as those described herein can be useful, for example, in elaborating the biological function of the target gene product, and for treating a cardiac, kidney or inflammatory disease, or ameliorating symptoms of such disease. In instances when a disease state or disorder results from a lower overall level of target gene expression, target gene product, or target gene product activity in a cell involved in the disease, compounds that interact with the target gene product can include ones accentuating or amplifying the activity of the bound target gene protein. Such compounds would bring about an effective increase in the level of target gene activity, thus treating the disease, disorder or state, or ameliorating its symptoms. Where mutations within the target gene cause aberrant target gene proteins to be made, which have a deleterious effect that leads to a disease, compounds that bind target gene protein can be identified that inhibit the activity of the bound target gene protein.

20

25

30

35

5

10

15

5. Pharmaceutical Compositions

Pharmaceutical compositions of the present invention can comprise a polynucleotide of the present invention, a product of the genes identified herein, or other therapeutically active compounds, including organic small molecules, peptides, polypeptides, antibodies etc. identified with the aid of the differentially expressed genes identified herein.

Suitable forms, in part, depend upon the use or the route of entry, for example oral, transdermal, inhalation, or by injection. Such forms should allow the agent or composition to reach a target cell whether the target cell is present in a multicellular host or in culture. For example, pharmacological agents or compositions injected into the blood stream should be soluble. Other factors are known in the art, and include considerations such as toxicity and forms that prevent the agent or composition from exerting its effect.

The active ingredient, when appropriate, can also be formulated as pharmaceutically acceptable salts (e.g., acid addition salts) and/or complexes. Pharmaceutically acceptable salts are non-toxic at the concentration at which they are administered. Pharmaceutically acceptable salts include acid addition salts such as those containing sulfate, hydrochloride, phosphate, sulfanate, sulfate, acetate, citrate, lactate, tartrate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, cyclolexylsulfonate, cyclohexylsulfamate and quinate. Pharmaceutically acceptable salts can be obtained

from acids such as hydrochloric acid, sulfuric acid, phosphoric acid, sulfonic acid, sulfamic acid, acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfonic acid, cyclohexylsulfamic acid, and quinic acid. Such salts may be prepared by, for example, reacting the free acid or base forms of the product with one or more equivalents of the appropriate base or acid in a solvent or medium in which the salt is insoluble, or in a solvent such as water which is then removed *in vacuo* or by freeze-drying or by exchanging the ions of an existing salt for another ion on a suitable ion exchange resin.

5

10

15

20

25

30

35

Carriers or excipients can also be used to facilitate administration of the compound. Examples of carriers and excipients include calcium carbonate, calcium phosphate, various sugars such as lactose, glucose, or sucrose, or types of starch, cellulose derivatives, gelatin, vegetable oils, polyethylene glycols and physiologically compatible solvents. The compositions or pharmaceutical composition can be administered by different routes including, but not limited to, intravenous, intra-arterial, intraperitoneal, intrapericardial, intracoronary, subcutaneous, and intramuscular, oral, topical, or transmucosal.

The desired isotonicity of the compositions can be accomplished using sodium chloride or other pharmaceutically acceptable agents such as dextrose, boric acid, sodium tartrate, propylene glycol, polyols (such as mannitol and sorbitol), or other inorganic or organic solutes.

Pharmaceutical compositions can be formulated for a variety of modes of administration, including systemic and topical or localized administration. Techniques and formulations generally may be found in Remington's Pharmaceutical Sciences, 18th Edition, Mack Publishing Co., Easton, PA 1990. See, also, Wang and Hanson "Parenteral Formulations of Proteins and Peptides: Stability and Stabilizers", Journal of Parenteral Science and Technology, Technical Report No. 10, Supp. 42-2S (1988). A suitable administration format can best be determined by a medical practitioner for each patient individually.

For systemic administration, injection is preferred, e.g., intramuscular, intravenous, intra-arterial, intracoronary, intrapericardial, intraperitoneal, subcutaneous, intrathecal, or intracerebrovascular. For injection, the compounds of the invention are formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution. Alternatively, the compounds of the invention are formulated in one or more excipients (e.g., propylene glycol) that are generally accepted as safe as defined by USP standards. They can, for example, be suspended in an inert oil, suitably a vegetable oil such as sesame, peanut, olive oil, or other acceptable carrier. Preferably, they are suspended in an aqueous carrier, for example, in an isotonic buffer solution at pH of about 5.6 to 7.4. These compositions can be sterilized by conventional sterilization techniques, or can be sterile filtered. The compositions can contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH buffering agents. Useful buffers include for example, sodium acetate/acetic acid buffers. A form of repository or "depot" slow release preparation can be used so that therapeutically effective amounts of the preparation are delivered into the bloodstream over many hours or days following transdermal injection or delivery. In addition, the compounds can be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included.

Alternatively, certain compounds identified in accordance with the present invention can be administered orally. For oral administration, the compounds are formulated into conventional oral dosage forms such as capsules, tablets and tonics.

Systemic administration can also be by transmucosal or transdermal. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, bile salts and fusidic acid derivatives. In addition, detergents can be used to facilitate permeation. Transmucosal administration can be, for example, through nasal sprays or using suppositories.

5

10

15

20

25

30

35

For administration by inhalation, usually inhalable dry power compositions or aerosol compositions are used, where the size of the particles or droplets is selected to ensure deposition of the active ingredient in the desired part of the respiratory tract, e.g. throat, upper respiratory tract or lungs. Inhalable compositions and devices for their administration are well known in the art. For example, devices for the delivery of aerosol medications for inspiration are known. One such device is a metered dose inhaler that delivers the same dosage of medication to the patient upon each actuation of the device. Metered dose inhalers typically include a canister containing a reservoir of medication and propellant under pressure and a fixed volume metered dose chamber. The canister is inserted into a receptacle in a body or base having a mouthpiece or nosepiece for delivering medication to the patient. The patient uses the device by manually pressing the canister into the body to close a filling valve and capture a metered dose of medication inside the chamber and to open a release valve which releases the captured, fixed volume of medication in the dose chamber to the atmosphere as an aerosol mist. Simultaneously, the patient inhales through the mouthpiece to entrain the mist into the airway. The patient then releases the canister so that the release valve closes and the filling valve opens to refill the dose chamber for the next administration of medication. See, for example, U.S. Pat. No. 4,896,832 and a product available from 3M Healthcare known as Aerosol Sheathed Actuator and Cap.

Another device is the breath actuated metered dose inhaler that operates to provide automatically a metered dose in response to the patient's inspiratory effort. One style of breath actuated device releases a dose when the inspiratory effort moves a mechanical lever to trigger the release valve. Another style releases the dose when the detected flow rises above a preset threshold, as detected by a hot wire anemometer. See, for example, U.S. Pat. Nos. 3,187,748; 3,565,070; 3,814,297; 3,826,413; 4,592,348; 4,648,393; 4,803,978.

Devices also exist to deliver dry powdered drugs to the patient's airways (see, e.g. U.S. Pat. No. 4,527,769) and to deliver an aerosol by heating a solid aerosol precursor material (see, e.g. U.S. Pat. No. 4,922,901). These devices typically operate to deliver the drug during the early stages of the patient's inspiration by relying on the patient's inspiratory flow to draw the drug out of the reservoir into the airway or to actuate a heating element to vaporize the solid aerosol precursor.

Devices for controlling particle size of an aerosol are also known, see, for example, U.S. Pat. Nos. 4,790,305; 4,926,852; 4,677,975; and 3,658,059.

For topical administration, the compounds of the invention are formulated into ointments, salves, gels, or creams, as is generally known in the art.

If desired, solutions of the above compositions can be thickened with a thickening agent such as methyl cellulose. They can be prepared in emulsified form, either water in oil or oil in water. Any of a wide variety of pharmaceutically acceptable emulsifying agents can be employed including, for example, acacia powder, a non-ionic surfactant (such as a Tween), or an ionic surfactant (such as alkali polyether alcohol sulfates or sulfonates, e.g., a Triton).

Compositions useful in the invention are prepared by mixing the ingredients following generally accepted procedures. For example, the selected components can be mixed simply in a blender or other standard device to produce a concentrated mixture which can then be adjusted to the final concentration and viscosity by the addition of water or thickening agent and possibly a buffer to control pH or an additional solute to control tonicity.

The amounts of various compounds for use in the methods of the invention to be administered can be determined by standard procedures. Generally, a therapeutically effective amount is between about 100 mg/kg and 10⁻¹² mg/kg depending on the age and size of the patient, and the disease or disorder associated with the patient. Generally, it is an amount between about 0.05 and 50 mg/kg of the individual to be treated. The determination of the actual dose is well within the skill of an ordinary physician.

The invention is further illustrated in the following non-limiting examples.

20 EXAMPLES

5

10

15

25

30

35

Example 1

Identification of differentially expressed rat genes referred to by clone ID number

1. In vivo model of myocardial infarction

Genes P00184_D11 (SEQ ID NO:1), P00185_D11(SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00223_F07 (SEQ ID NO:31), P00225_C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239_C11 (SEQ ID NO:42), P00240_B04 (SEQ ID NO:44), P00240_E05 (SEQ ID NO:45), P00241_E12 (SEQ ID NO:47), P00245_D06 (SEQ ID NO:48), P00246_D12 (SEQ ID NO:49), P00247_A04 (SEQ ID NO:50), P00248_B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00263_G06 (SEQ ID NO:64), P00258_A10 (SEQ ID NO:61), P00269_H08 (SEQ ID NO:62), P00312_C04 (SEQ ID NO:64), P00324_H02 (SEQ ID NO:65), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00634_G11 (SEQ ID NO:75), were

identified by analysis of left ventricular heart tissue obtained from an *in vivo* model of left ventricle myocardial infarction (MI) (Pfeffer et al., Circ. Res. 57:84-95 [1985]). Specifically, male Sprague-Dawley rats at age 7-10 weeks were anesthetized with ketamine (80mg/kg IP) and xylazine (10mg/kg IP). The thorax and abdomen was shaved, after which the areas were scrubbed with providone-iodine and 70% isopropyl alcohol a minimum of three times, beginning at the incision line and continuing in a circular motion proceeding toward the periphery. The rats were intubated and placed on a respirator with room air at a rate of 55 breaths/min. A left thoracotomy was performed between the fourth and fifth ribs, after which the heart was exteriorized and the left anterior descending coronary artery (LAD) ligated with silk suture. The same surgical procedure was employed for sham-operated rats, however, the suture was passed through the left ventricular wall and the LAD was not occluded.

Following the surgical procedure, negative pressure in the thoracic was quickly reestablished and the wound closed with a purse-string suture using 3-0 non-absorbable suture material. Butorphanoll (0.1mg/kg. SQ) was provided post surgery as a prophylactic analgesic. The rats were extubated when they recovered their gag reflex and allowed recovering in a warming chamber. Seventy-five percent of the rats had large infarcts on their left ventricle free walls and perioperative mortality rate is about 50%, which is comparable to the published data.

Tissue was collected 2 week, 4 week, 8 week, 12 week and 16 week post-surgery. Blood was collected the day before surgery and the day before sacrifice for measurement of plasma atrial natriuretic peptide (ANP) level. On the day of necropsy, each heart was divided transversely into two halves so that the infarcted area is bisected. One half of the heart was used for histological evaluation, and the other for mRNA microarray analysis.

2. In vivo Model of Septum Myocardial Infarction

5

10

15

20

25

30

35

Septum tissue was obtained from diseased rat hearts obtained through the left ventricle rat MI model of Pfeffer et al., as described above. Poly A+ mRNA was prepared from each of these septums for assessment of differentially expressed genes in the disease state, using microarray analysis in a preferred embodiment.

3. Preparation of normalized cDNA libraries

Poly A+ mRNA was prepared from each of the animals, for assessment of differentially expressed genes in the disease state, using microarray analysis. Total RNA was isolated from homogenized tissue by acid phenol extraction (Chomczynski and Sacchi, <u>Anal. Biochem.</u> 162(1):156-9 [1987]). Poly A+ mRNA was selected from total RNA by oligo dT hybridization utilizing a polyA Spin mRNA Isolation Kit (New England BioLabs, Beverly, MA) according to manufacturers' protocols. A directionally cloned cDNA library was first generated by conventional methods. Briefly, double stranded cDNA was generated by priming first strand synthesis for reverse transcription using oligo dT primers which contain a Not I restriction site. After second strand synthesis, Xba I adapters were added to the 5' end of the cDNA, and

the cDNA size was selected for >500 bp and ligated into the corresponding restriction sites of phagemid vector pCR2.1 (Invitrogen, San Diego CA).

From the total cDNA library, a normalized library was generated as detailed elsewhere (see, e.g. Bonaldo et al., Genome Res. 6(9):791-806 [1996]) and described here briefly. Phagemid vector pCR2.1 contains an F1 origin of replication. Thus, the cDNA library can be propagated as single stranded phage with an appropriate helper virus. Single stranded, circular DNA was extracted from the phage library and served as "tester" DNA in the hybridization step of normalization. The other component of the hybridization, "driver" DNA, was generated from the library by PCR amplification using a set of the following primers specific for the region of the vector, which flanks the cloned inserts:

10

15

30

35

5

5'CGTATGTTGTGGAATTGTGAGCG	(SEQ ID NO: 77)
5'GATGTGCTGCAAGGCGATTAAGTTG	(SEQ ID NO: 78)

Purified tester DNA (50 ng) and driver DNA (0.5 µg) were combined in 120 mM NaCl, 50% formamide, 10 mM Tris (pH 8.0), 5 mM EDTA, and 1% SDS. A set of oligonucleotides (10 µg each), corresponding to polylinker sequence (same strand as tester DNA) which is present in the PCR product, was included in the hybridization reaction to block annealing of vector-specific sequences which are in common between tester and driver DNA. The oligonucleotide sequences were as follows:

20	5'GCCGCCAGTGTGCTGGAATTCGGCTAGC	(SEQ ID NO: 79)
	5'CGAATTCTGCAGATATCCATCACACTGG	(SEQ ID NO: 80)
	5'CTAGAGGGCCCAATTCGCCCTATAG	(SEQ ID NO: 81)
	5'TGAGTCGTATTACAATTCACTGGCC	(SEQ ID NO: 82)
	5'GCTCGGATCCACTAGTAACG	(SEQ ID NO: 83)
25	5'TTTTTTTTTTTTTTTT	(SEQ ID NO: 84)

The reaction mixture, under oil, was heated 3 min. at 80°C, and hybridization performed at 30°C for 24 hr (calculated Cot ~5). Single stranded circles were purified from the reaction mixture by hydroxylapatite (HAP) chromatography, converted to double strand DNA, and electroporated into bacteria to yield a normalized cDNA library representative of genes expressed in the left ventricle of rat. To evaluate the effectiveness of the normalization protocol, the frequency of a few clones (ANP, BNP, actin, and myosin) was assessed in both in the starting library and the normalized library. The frequency of abundant cDNAs (actin and myosin) was reduced and roughly equivalent to rarer cDNA clones (ANP and BNP). Clone frequency in the two libraries was determined with standard screening techniques by immobilizing colonies onto nylon membranes and hybridizing with radiolabeled DNA probes.

Certain genes, unexpressed in a normal tissue and turned on in diseased tissue, may be absent from the normalized cDNA library generated from normal tissue. To obtain disease-specific clones to include on

the microarray, one can repeat the normalization strategy using diseased tissue obtained from the appropriate disease model. However, since most genes are expressed commonly between normal and diseased tissue, microarraying normalized libraries from diseased and normal tissue may introduce significant redundancy, a subtracted library can be made using protocols similar to those used to generate normalized libraries. Again, the method of Bonaldo et al., supra, as described here briefly, is used.

To make a subtracted library, a total cDNA library is generated from the tissue obtained from the disease model (e.g., left ventricle taken from the MI Model). The cDNA library is directionally cloned in pCR2.1 vector and single stranded tester DNA derived as described above for library normalization. The driver DNA is generated by PCR amplification of cloned inserts from the total cDNA library prepared from the left ventricle of normal rat. Hybridization occurs between sequences, which are in common to normal and diseased hearts. For this subtracted library, the reaction is driven more thoroughly (calculated Cot ~27) than normalization by using more driver (1.5 μg vs. 0.5 μg) and longer hybridization time (48 hr vs. 24 hr). Purification of nonhybridized, single stranded circles by HAP chromatography, conversion to double strand DNA, and electroporation into bacteria yields a subtracted cDNA library enriched for genes which are expressed in diseased rat hearts. To test that the library is truly subtracted, colony hybridization is performed with probes for ANP, BNP, actin, and myosin. The subtracted library has a high frequency of ANP and BNP clones since they are elevated significantly in the hypertrophic rat heart. Actin and myosin clones are absent since they are expressed equally in normal and diseased left ventricle.

20 .

25

5

10

15

4. Microarray analysis

High quality DNA is important for the microarray printing process. A microtiter plate protocol for PCR amplification of DNA and its subsequent purification was established that provides acceptable quality and quantity of DNA for printing on microarrays. Specifically, the following PCR probes were synthesized that amplify insert DNA from the vector pCR2.1 that was used for library construction.:

5'CGTATGTTGTGGGAATTGTGAGCG (SEQ ID NO: 85) 5'GATGTGCTGCAAGGCGATTAAGTTG (SEQ ID NO: 86)

30

35

After 30 cycles of amplification each PCR product was passed over a gel filtration column to remove unincorporated primers and salts. To maintain robustness, the columns were packed in 96-well filter plates and liquid handling was performed using a robotic liquid handler (Biomek 2000, Beckman).

To test the quality of DNA prepared by this PCR method, 96 purified samples from a single microtiter plate were produced as a microarray. Using the robotic liquid handler, 85 µl of PCR reaction mixture was aliquoted into each well of a thin walled, 0.2 ml 96-well plate. The reaction mixture contained 0.2 mM each dNTP, 1.25 units of Taq polymerase, and 1X Taq buffer (Boehringer Mannheim). Primers, 1 µm each, are from vector regions, which flank the cloning site of pCR2.1 and include a 5' primary amine

with a 6-carbon linker to facilitate attachment of DNA product to the glass surface of the microarray chip. 1.0 μl of bacterial culture of individual cDNA clones was added to each well. PCR conditions were: 2 min., 95°C to denature, then 30 cycles of 95°C, 30 sec. / 65°C, 40 sec. / 72°C, 1 min. 30 sec., and a final extension of 72°C, 5 min. using a MJResearch PTC 100 thermocycler.

PCR products were purified by gel filtration over Sephacryl 400 (Sigma). Briefly, 400 µl of preswollen Sephacryl 400 was loaded into each well of a 96-well filter plate (PallBiosupport) and spun into a collection plate at 800g for 1 min. Wells were washed 5 times with 0.2x SSC. PCR reaction mixtures were loaded onto the column and purified DNA (flow-through) was collected at 800g for 1 min. Samples were dried down at 50° C overnight and arrayed.

5

10

15

20

25

30

35

Fluorescent probe pairs were synthesized by reverse transcription of poly A+ RNA using, separately, Cy3 dCTP and Cy5 dCTP (Amersham). In 16.5 µl, 1 µg poly A+ RNA and 2 µg of oligo dT 21mer, were denatured at 65°C, 5 min. and annealed at 25 °C, 10 min. Reverse transcription was performed for 2 hours at 37°C with Superscript RT (Life Technologies, Gaithersburg, MD) in 1x buffer, 10 units RNase block, 500 µM each dATP/dGTP/dTTP, 280 µM dCTP, 40 µM Cy5 or Cy3 dCTP, and 200 units RT. RNA is degraded in 0.1 M NaOH, 65°C for 10 min. Labeled cDNA was purified by successive filtration with Chroma Spin 30 spin columns (Clontech) following manufacturer's instructions. Samples were dried at room temperature in the dark using a covered Speed-Vac. Probes were applied to the test chip for hybridization and the data collected essentially as described in Schena *et al.*, cited above The intensity of hybridization signal at each element reflected the level of expression of the mRNA for each gene in the rat ventricle. Digitized signal data was stored and prepared for analysis.

A series of control DNA elements were included on each chip to ensure consistency in labeling and hybridization between experiments and to aid in balancing the signal when two fluorescence channels are used. For each element hybridized with dual labeled probes, absolute and relative intensity of signal was determined. The results from these and other experiments indicate that these methods for production of template DNA and labeled cDNA probes are suitable for generating high quality microarrays within a preferred embodiment of the methods of the present invention. The evaluation of tens of thousands of genes for expression generates a large amount of data that can be manipulated by commercially available software packages that facilitate handling this type and quantity of data. The expression data can be stored, analyzed, and sorted from each experiment using this software. In addition, expression of each clone can be tracked from experiment to experiment using known methodologies.

The novel secreted factor of the present invention was identified from expression data from the following experiments: A 10,000 clone microarray (10K) from a normalized normal rat left ventricle (LV) cDNA library was probed in duplicate. A 3,000 clone array, which included differentially expressed clones from the 10K library, was also probed in duplicate. Included on the microarray with the unidentified genes were a set of known clones. These known clones were included because they represent genes of particular interest and help evaluate the sensitivity of the microarray methodology. Indeed, any genes of particular interest may be included on such microarrays. By way of example, ANP, BNP, endothelin, β-myosin heavy

chain, and α -actin are genes that change expression levels in the LVH model, and thus they serve as useful positive controls in the *in vivo* model exemplified herein.

The intensity of hybridization signal at each element of the microarray reflected the level of expression of the mRNA for each gene. For each element hybridized with dual labeled probes, absolute and relative intensity of signal was determined, which translates into the relative expression levels of the subject genes. The numeric data obtained reflect the relative expression level of the gene in the disease state as compared to the expression level of the gene in the normal, or non-disease state. Positive numbers are indicative of genes expressed at higher levels in the diseased tissue relative to normal tissue, and negative values are indicative of lower expression in disease. Data are the average values from multiple experiments performed with separate DNA arrays (n=4 for MI left ventricle and septum). Array probes were generated from RNA pooled from multiple animals (n=4 for MI).

The data also reflect expression levels of genes in certain disease models over various time points. For example, gene expression in the myocardial infarction model was compared at 2, 4, 8, 12, and 16 weeks for the representative genes in the disease state versus the normal state. Indeed, such experimentation provides valuable data regarding the temporal relationship of gene expression levels in disease states and provides important insights regarding the treatment, diagnosis, and modulation of differentially expressed disease state genes, as discussed in detail *infra*.

One to two percent of the clones assayed on microarrays were found to be differentially expressed. Secondary chips may be used for more extensive hybridizations, including examination of individual animals, and more thorough evaluation of time points. In a preferred embodiment, clones that reproducibly scored in microarray analysis to be at least about 1.8-fold elevated or decreased were microarrayed on separate secondary chips and their expression levels determined. It is understood, however, that differentially expressed genes exhibiting less than about a two-fold change in expression, e.g., less than one, one-half, or one-quarter, or greater than about a two-fold change in expression, e.g., greater than three, five, ten, twenty, one hundred-fold, or one thousand-fold, are within the scope of the present invention.

5. Microarray results

5

10

15

20

25

30

35

Using the foregoing protocols, it was found that in the MI model, the expression level of the gene corresponding to the clones were differentially expressed in heart and kidney. This differential expression suggests the possible involvement of these genes in the development and/or progress of MI. The results are summarized in Figure 44.

6. Sequence analysis

The differentially expressed partial and full-length clones P00184_D11 (SEQ ID NO:1), P00185_D11(SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203 D04 (SEQ ID NO:17), P00203 E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21),

P00219_D02 (SEQ ID NO:23), P00219 F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00223_F07 (SEQ ID NO:31), P00225_C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239_C11 (SEQ ID NO:42), P00240_B04 (SEQ ID NO:44), P00240_E05 (SEQ ID NO:45), P00241_E12 (SEQ ID NO:47), P00245_D06 (SEQ ID NO:48), P00246_D12 (SEQ ID NO:49), P00247_A04 (SEQ ID NO:50), P00248_B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00263 G06 (SEQ ID NO:60), P00267 F08 (SEQ ID NO:61), P00269 H08 (SEQ ID NO:62), P00312_C04 (SEQ ID NO:64), P00324_H02 (SEQ ID NO:65), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00634_G11 (SEQ ID NO:70), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75) were sequenced (SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 45, 47, 48, 49, 50, 52, 54, 56, 58, 59, 60, 61, 62, 64, 65, 66, 68, 70, 71, 73, and 75), and the deduced amino acid sequence was determined (SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, and 76). Figures 1-43 show the deduced amino acid sequence of the polypeptide encoded by the clones as well as the nucleotide sequences.

The nucleotide sequences of the clones were compared with sequences in the public GenBank, EMBL, DDBJ, PDB and GENSEQ databases. The search was performed using the BLASTN 2.0.8 program with default parameters. Gap penalties: existence: 5; extension: 2. The search revealed no significant homology with sequences present in the searched databases.

7. Northern blot analysis

Northern blot analysis suggested that the clones are differentially expressed (see Figure 44).

25 Example 2

5

10

15

20

30

35

Identification of the human homologue of rat clone

The isolated differentially expressed rat gene sequence can be labeled and used to screen a cDNA library constructed from mRNA obtained from an organism of interest. Hybridization conditions will be of a lower stringency when the cDNA library was derived from an organism different from the type of organism from which the labeled sequence was derived. Alternatively, the labeled fragment can be used to screen a genomic library derived from the organism of interest, again, using appropriately stringent conditions. Such low stringency conditions will be well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, Sambrook et al., supra, and Ausubel et al., supra.

PCR technology can also be utilized to isolate full-length human cDNA sequences. For example, RNA can be isolated, following standard procedures, from an appropriate human cellular or tissue source. A reverse transcription reaction can be performed on the RNA using an oligonucleotide primer specific for

the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid can then be "tailed" with guanines using a standard terminal transferase reaction, the hybrid can be digested with RNase H, and second strand synthesis can then be primed with a poly-C primer. Thus, cDNA sequences upstream of the amplified fragment can easily be isolated. For a review of cloning strategies that can be used, see, e.g., Sambrook et al., supra, and Ausubel et al., supra.

Alternatively, the human homologue can be isolated using the CloneCapture cDNA selection Kit (Clontech, Palo Alto, CA): a RecA-based system for the rapid enrichment and isolation of cDNA clones of interest without library screening.

10 Example 3

5

Expression of the clones in E. coli

The P00184 D11 (SEQ ID NO:1), P00185 D11(SEQ ID NO:3), P00188 D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209 F06 (SEQ ID NO:21), P00219 D02 (SEQ ID NO:23), P00219 F06 (SEQ ID NO:25), P00220 H05 (SEQ ID NO:27), P00222 G03 (SEQ ID NO:29), P00225 C01 (SEQ ID NO:32), P00227 D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239_C11 (SEQ ID NO:42), P00240 E05 (SEQ ID NO:45), P00247_A04 (SEQ ID NO:50), P00248_B04 (SEQ ID NO:52), P00249 F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00269 H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75) DNA is initially amplified using selected PCR primers. The primers should contain restriction enzyme sites that correspond to the restriction enzyme sites on the selected expression vector. A variety of expression vectors may be employed. An example of a suitable vector is pBR322 (derived from E. coli; see Bolivar et al., Gene, 2:95 [1977]) which contains genes for ampicillin and tetracycline resistance, or a pBR322-based vector. Other, commercially available vectors include various pUC vectors and Bluescript M13. The vector is digested with restriction enzyme and dephosphorylated. The PCR amplified sequences are then ligated into the vector. The vector will preferably include sequences that encode an antibiotic resistance gene, a promoter, such as a T7 or tryptophan (trp) promoter, a polyhis leader (including the first six STII codons, polyhis sequence, and enterokinase cleavage site), the P00184 D11 (SEQ ID NO:1), P00185 D11 (SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199 D08 (SEQ ID NO:15), P00203 D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00225_C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228 F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239_C11 (SEQ ID NO:42), P00240_E05 (SEQ ID NO:45), P00247_A04 (SEQ ID NO:50), P00248 B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00269_H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75) coding region, lambda transcriptional terminator, and an argU gene.

10

15

20

25

30

35

The ligation mixture is then used to transform a selected *E. coli* strain using the methods described in Sambrook et al., *supra*. Transformants are identified by their ability to grow on LB plates and antibiotic resistant colonies are then selected. Plasmid DNA can be isolated and confirmed by restriction analysis and DNA sequencing.

Selected clones can be grown overnight in liquid culture medium such as LB broth supplemented with antibiotics. The overnight culture may subsequently be used to inoculate a larger scale culture. The cells are then grown to a desired optical density, during which the expression promoter is turned on.

After culturing the cells for several more hours, the cells can be harvested by centrifugation. The cell pellet obtained by the centrifugation can be solubilized using various agents known in the art, and the solubilized protein can then be purified using a metal chelating column under conditions that allow tight binding of the poly-his tagged protein.

Example 4

5

10

15

20

25

30

35

Expression of the clones in yeast

A yeast expression vector is constructed either for intracellular production or secretion of the protein encoded by P00184_D11 (SEQ ID NO:1), P00185_D11(SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203 E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00225_C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228 F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235 G08 (SEQ ID NO:40), P00239 C11 (SEQ ID NO:42), P00240_E05 (SEQ ID NO:45), P00247_A04 (SEQ ID NO:50), P00248 B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258 A10 (SEQ ID NO:56), P00262 C10 (SEQ ID NO:58), P00269_H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75), using an appropriate yeast promoter, such the promoter of 3-phosphoglycerate kinase, or the promoter regions for alcohol oxidase 1 (AOX1, particularly preferred for expression in Pichia), alcohol dehydrogenase 2, or isocytochrome C. For secretion, the P00184 D11 (SEQ ID NO:1), P00185 D11(SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00225_C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239_C11 (SEQ ID NO:42), P00240 E05 (SEQ ID NO:45), P00247 A04 (SEQ ID NO:50), P00248_B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00269_H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75) coding sequence is linked, at its 5'-end, to a mammalian or yeast signal (secretory leader) sequence, such as a yeast alpha-factor or invertase secretory signal. Alternatively, a commercially available yeast expression system

is used that can be purchased, for example, from Clontech Laboratories, Inc. (Palo Alto, California, e.g. pYEX 4T family of vectors for *Saccharomyces cerevisiae*), Invitrogen (Carlsbad, California, e.g. pPICZ series Easy Select Pichia Expression Kit) or Stratagene (La Jolla, California, e.g. ESPTM Yeast Protein Expression and Purification System for *S. pombe* and pESC vectors for *S. cerevisiae*).

Yeast cells, such as S. cerevisiae AB110 strain, or P. pastoris GS115 (NRRL Y-15851); GS190 (NRRL Y-18014) or PPF1 (NRRL Y-18017) are then transformed by known techniques, e.g. by the polyethylene glycol method (Hinnen, Proc. Natl. Acad, Sci. USA 75:1929 [1978]).

The recombinant protein is subsequently isolated and purified by removing the yeast cells from the fermentation medium by centrifugation and then concentrating the medium using selected cartridge filters. The concentrate containing the expressed protein may be further purified using selected column chromatography resins.

Example 5

5

10

15

20

25

30

35

Expression of the clones in mammalian host cells

The P00184 D11 (SEQ ID NO:1), P00185 D11(SEQ ID NO:3), P00188 D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194 G01 (SEQ ID NO:9), P00194 G05 (SEQ ID NO:11), P00194 H10 (SEQ ID NO:13), P00199 D08 (SEQ ID NO:15), P00203 D04 (SEQ ID NO:17), P00203 E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222 G03 (SEQ ID NO:29), P00225 C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233 H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239 C11 (SEQ ID NO:42), P00240 E05 (SEQ ID NO:45), P00247_A04 (SEQ ID NO:50), P00248_B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00269_H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75) genes are subjected to PCR using primers containing suitable restriction enzyme cleavage sites to allow ligation into a mammalian expression vector such as pCEP4 (Invitrogen). To facilitate the eventual recovery of the expressed protein, it is advisable to use the 3' PCR primer to extend the open reading frame of the cloned gene to include an affinity purification tag such as poly-His (E. Hochuli et al 1987, J. Chrom. 411, 177-184) or calmodulin binding peptide (Hathaway et al, J. Biol. Chem. 1981, 256(15):8183-9). Recovery of the PCR fragment may be followed by its cleavage at the new flanking restriction sites and ligation into a similarly cleaved pCEP4 preparation. Transformation of bacteria and preparation of plasmids from transformants is followed by verification of the plasmid structure by restriction analysis.

Expression of the P00184_D11 (SEQ ID NO:1), P00185_D11(SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23),

P00219 F06 (SEQ ID NO:25), P00220 H05 (SEQ ID NO:27), P00222 G03 (SEQ ID NO:29), P00225 C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228 F03 (SEQ ID NO:36), P00233 H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239 C11 (SEQ ID NO:42), P00240 E05 (SEQ ID NO:45), P00247 A04 (SEQ ID NO:50), P00248 B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262 C10 (SEQ ID NO:58), P00269_H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629 C08 (SEQ ID NO:68), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75) genes can be accomplished by transient expression in 293 human embryonic kidney cells. For use of vectors such as pCEP4 having the EBV viral origin of replication, 293EBNA cells that are permissive for replication can be used. Transfection is accomplished using a lipid transfection reagent such as Lipofectamine Plus (Life Technologies, Rockville, MD). Endotoxin-free plasmid DNA (100µg) is added to 200µl PLUS reagent and 10ml DMEM-21 serum free media to give Mix A. This is incubated at room temperature for 15 minutes. Mix B is prepared from 400 µl Lipofectamine and 10ml serum-free DMEM-21. The two mixes are then combined and incubated at room temperature for another 15 minutes. An 850cm² roller bottle containing the cells to be transfected at 70% confluence is rinsed with serum-free media and 100ml of serum-free DMEM-2 with 15mM HEPES pH 7.3 and the DNA-lipid transfection mixture is then added. The cells are then placed in a roller unit at 37 for 4 hours after which the volume of media is doubled by addition of DMEM-2 with 15mM HEPES pH 7.3, 5% FBS and the bottle returned to roller unit overnight. Collect conditioned media every 2-3 days for 2-3 collections.

Example 6

5

10

15

20

25

30

35

Expression of the clones in Baculovirus-infected insect cells

Baculovirus-based expression is performed using one of the commercially available baculovirus expression systems such as, for example, from Bac-N-Blue™ (Invitrogen), BacPAK™ Baculovirus Expression System (Clontech), BAC-TO-BAC™ (Life Technologies), or Bac Vector System™ (Novagen). Viral infection of insect cells (e.g. Spodoptera frugiperda ("Sf9") cells (ATCC CRL 1711)) and protein expression and purification are performed following manufacturers' instructions, or as described by O'Reilley et al., Baculovirus expression vectors: A Laboratory Manual, Oxford: Oxford University Press (1994). Optionally, the coding region of the P00184_D11 (SEQ ID NO:1), P00185_D11(SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:34), P00222_G03 (SEQ ID NO:29), P00225_C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239_C11 (SEQ ID NO:42), P00240_E05 (SEQ ID NO:45), P00247_A04 (SEQ ID NO:50), P00262_C10 (SEQ ID NO:58), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58),

P00269_H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75) sequence is fused upstream of an epitope tag contained within a baculovirus expression vector, such as a poly-His tag or an immunoglobulin (Ig) tag (like Fc regions of an IgG). The poly-His or Ig tag aids protein purification.

Example 7

5

10

15

20

25

30

35

Preparation of antibodies that bind the polypeptide encoded by P00184_D11 (SEQ ID NO:1), P00185_D11(SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00225_C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239_C11 (SEQ ID NO:42), P00240_E05 (SEQ ID NO:45), P00247_A04 (SEQ ID NO:50), P00248_B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00269_H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75)

This example illustrates preparation of monoclonal antibodies that specifically bind the polypeptide encoded by P00184_D11 (SEQ ID NO:1), P00185_D11(SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00225_C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239_C11 (SEQ ID NO:42), P00240_E05 (SEQ ID NO:45), P00247_A04 (SEQ ID NO:50), P00248_B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00269_H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75).

Techniques for producing the monoclonal antibodies are known in the art and are described, for instance, in Goding, <u>supra</u>. The immunogen may, for example, be purified protein encoded by the clone or recombinant host cells expressing P00184_D11 (SEQ ID NO:1), P00185_D11(SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23),

P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00225 C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239_C11 (SEQ ID NO:42), P00240 E05 (SEQ ID NO:45), P00247 A04 (SEQ ID NO:50), P00248 B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00269_H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75). Mice, such as Balb/c, are immunized with the immunogen emulsified in a selected adjuvant, for example Freund's adjuvant, and injected subcutaneously or intraperitoneally in an amount from 1-100 micrograms. Approximately 10 to 12 days later, the immunized mice are boosted with additional immunogen emulsified in the selected adjuvant. Thereafter, for several weeks, the mice may get additional boosts. Serum samples may be periodically obtained from the mice by retro-orbital bleeding for testing in ELISA assays to detect antibodies to the polypeptide encoded by P00184 D11 (SEQ ID NO:1), P00185 D11(SEQ ID NO:3), P00188 D12 (SEQ ID NO:5), P00188 E01 (SEQ ID NO:7), P00194 G01 (SEQ ID NO:9), P00194 G05 (SEQ ID NO:11), P00194 H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203 E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219 F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00225 C01 (SEQ ID NO:32), P00227 D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233 H08 (SEQ ID NO:38), P00235 G08 (SEQ ID NO:40), P00239 C11 (SEQ ID NO:42), P00240 E05 (SEQ ID NO:45), P00247 A04 (SEQ ID NO:50), P00248_B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00269_H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00641 G11 (SEQ ID NO:71), P00648 E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75).

5

10

15

20

25

30

35

After a suitable antibody titer has been detected, the animals "positive" for antibodies can be injected with a final intravenous injection of the immunogen. Three to four days later, the mice are sacrificed and the spleen cells are harvested. The spleen cells are then fused to a selected murine myeloma cell line such as P3X63AgU.1, available from ATCC, No. CRL 1597. The fusions generate hybridoma cells which can then be plated in 96 well tissue culture plates containing HAT (hypoxanthine, aminopterin, and thymidine) medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids.

The hybridoma cells will be screened in an ELISA for reactivity against the protein encoded by P00184_D11 (SEQ ID NO:1), P00185_D11(SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00225_C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38),

P00235_G08 (SEQ ID NO:40), P00239_C11 (SEQ ID NO:42), P00240_E05 (SEQ ID NO:45), P00247_A04 (SEQ ID NO:50), P00248_B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00269_H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75).

The positive hybridoma cells can be injected intraperitoneally into syngeneic Balb/c mice to produce ascites containing the antibodies. Antibodies are purified by ammonium sulfate precipitation, protein A or protein G chromatography or other techniques well known in the art.

Example 8

5

10

15

20

25

30

35

Further Animal Models

The biological function of the P00184_D11 (SEQ ID NO:1), P00185_D11(SEQ ID NO:3), P00188 D12 (SEQ ID NO:5), P00188 E01 (SEQ ID NO:7), P00194 G01 (SEQ ID NO:9), P00194 G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00223 F07 (SEQ ID NO:31), P00225 C01 (SEQ ID NO:32), P00227 D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239 C11 (SEQ ID NO:42), P00240_B04 (SEQ ID NO:44), P00240_E05 (SEQ ID NO:45), P00241_E12 (SEQ ID NO:47), P00245_D06 (SEQ ID NO:48), P00246_D12 (SEQ ID NO:49), P00247_A04 (SEQ ID NO:50), P00248_B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00263_G06 (SEQ ID NO:60), P00267_F08 (SEQ ID NO:61), P00269_H08 (SEQ ID NO:62), P00312 C04 (SEQ ID NO:64), P00324 H02 (SEQ ID NO:65), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00634 G11 (SEQ ID NO:70), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697 C03 (SEQ ID NO:75) genes and the encoded protein are further characterized in various animal models of heart, kidney and inflammatory disorders.

1. In vivo Model of Cardiac Hypertrophy

Rats with left ventricular hypertrophy (LVH) are produced essentially as described in Schunkert et al., J. Clin. Invest. 86(6):1913-20 (1990). LVH is induced by pressure overload as a result of constriction of the ascending aorta. A stainless steel clip of 0.6-mm internal diameter is placed on the aorta of anesthetized weanling rats. Control animals undergo thoractomy as a sham operation. Animals usually recover from surgery and appear healthy until about 20 weeks when a few animals may be in demise likely due to heart failure, which typically occurs at this point (Schunkert et al., 1990, supra). The animals are sacrificed and hearts examined 10 weeks and 20 weeks post-operation. Hypertrophy is evident at both time points as determined by changes in left ventricle weight and thickness. Aortic banded rats and sham

operated control animals are sacrificed and measured for heart weight, left ventricle (LV) weight, left ventricle thickness, and LV weight/body weight. Usually there are 6 animals per group. Data are expressed as average with standard deviation.

LVH rats are also examined for expression of ANP, BNP, cardiac α -actin, and/or β -myosin heavy chain mRNA, using Northern blot. Levels of these messages are expected to be elevated in the diseased animals, confirming that the banded rats were pressure overloaded and responded with cardiac hypertrophy. Poly A+ mRNA is prepared from each of the animals for assessment of differentially expressed genes in the disease state, using microarray analysis in a preferred embodiment.

2. In vivo Model of Viral Myocarditis

5

10

15

20

25

30

35

CVB3 infection in mice results in myocardial disease progression, which can be used as a model for examination of the pathogenesis of virus-induced human myocarditis. The virus is directly injurious to myocardial cells early following infection during the preinflammatory period as determined by light and electron microscopic cytological assessment (Arola et al., J. Med. Virol. 47: 251-259 [1995]; Chow et al., Lab. Invest. 64: 55-64 [1991]; McManus et al., Clin. Immunol. Immunopathol. 68:159-169 [1993]; Melnick et al., J. Expert. Med. 93: 247-266 [1951]). Beginning by day two post-infection cytopathic lesions are evident in ventricular myocytes, characterized by cell vacuolar changes, contraction bands and coagulation necrosis (McManus et al., supra). By day 5 post-infection this myocardial injury becomes obscured by inflammatory infiltrates, cellular calcification, and tissue edema.

In a typical protocol, A/J $(H-2^a)$ mice (Jackson Laboratories, Bar Harbor, Maine, 4 weeks of age) are acclimatised for one week prior to the onset of the experiment. Any mice that dies naturally during the course of the disease are not included in groups of mice to be used for RNA extraction. Mice are euthanized by CO_2 narcosis.

Myocarditic CVB3 (Dr. Charles J. Gauntt; University of Texas, San Antonio, Texas) is stored at -80°C. Virus is propagated in HeLa cells (American Type Tissue Culture Collection, Rockville, MD.) and is routinely titred before the onset of all experiments using the plaque assay method, with modifications as previously described (Anderson *et al.*, J. Virol. 70: 4632-4645 [1996]).

Adolescent A/J mice are infected with 1x10⁵ pfu of myocarditic CVB3 or PBS sham and euthanized on days 3, 9, and 30 post-infection. Ten to fifteen mice per group (CVB3 infected or sham injected) per time-point (days 3, 9, and 30) are euthanized and heart muscle is removed. Following a wash in sterile phosphate buffered saline, a small portion of the apex of the heart is removed and fixed in 4% paraformaldehyde. The remainder of the heart is flash frozen in liquid nitrogen and stored at -80°C for future RNA isolation.

Sections from the heart are fixed in fresh DPBS-buffered 4% paraformaldehyde overnight at 4°C. Fixed tissue is dehydrated in graded alcohols, cleared in xylene, embedded in paraffin, and sectioned for hematoxylin and eosin, and Masson's trichrome stains. Serial sections are also prepared for *in situ* hybridization and nick-end labelling stained. The extent and severity of virus-induced injury (including

coagulation necrosis, contraction band necrosis, and cytopathic effects), inflammation, and tissue fibrosis and calcification are evaluated and scored as previously described (Chow et al., supra).

In situ hybridization for CVB3 viral RNA localization is carried out as previously described (Anderson et al., supra; Hohenadl et al., Mol. Cell. Probes 5: 11-20 [1991]). Briefly, tissue sections are incubated overnight in hybridization mixture containing digoxigenin-labelled, CVB3 strand-specific riboprobes. Post-hybridization washing is followed by blocking with 2% normal lamb serum. A sheep anti-digoxigenin polyclonal antibody conjugated to alkaline phosphatase (Boehringer Mannheim PQ, Laval, Canada) is developed in Sigma-Fast nitroblue tetrazolium-BCIP [5-bromo-4-chloro-3-indolylphosphate tuluidinium] (Sigma Chemical Co.). The slides are counterstained in fresh carmalum and examined for reaction product by light microscopy. Poly A+ mRNA is prepared from each of the animals, as described herein, for assessment of differentially expressed genes in the disease states, using microarray.

3. In Vivo Model of Kidney Disease

5

10

15

20

In yet another representative example, an *in vivo* model of kidney disease is used to further characterize the differentially expressed genes of the present invention. For example, a rat model of an inherited form of autosomal dominant polycystic kidney disease (ADPKD) can be used, which develops in Han:SPRD rats (Kaspareit-Rittinghaus *et al.*, <u>Transplant Proc. 6</u>: 2582-3 [1990]; Cowley *et al.*, <u>Kidney Int. 43</u>:522-34 [1993]). Renal cysts and renal failure is evident in six months old male heterozygous rats (Cy/+), whereas control rats (+/+) show no sign of cysts or renal failure. Diseased (Cy/+) and normal (+/+) animals are sacrificed and the kidneys removed. For cDNA microarray analysis, poly A+ mRNA is prepared, as described previously, for assessment of differentially expressed genes in the disease state, using microarray analysis in a preferred embodiment.

All references cited throughout the specification, including the examples, are hereby expressly incorporated by reference.

CLAIMS:

5

10

15

20

25

30

35

1. An isolated nucleic acid molecule comprising a poly- or oligonucleotide selected from the group consisting of:

(a) a polynucleotide encoding a polypeptide having at least about 80% sequence identity with any amino acid sequence selected from the group consisting of: amino acids 1 to 193 of SEQ ID NO: 4, amino acids 1 to 236 of SEQ ID NO:6, amino acids 1 to 61 of SEQ ID NO: 8, amino acids 1 to 92 of SEQ ID NO:12, amino acids 1 to 86 of SEQ ID NO:14, amino acids 1 to 36 of SEQ ID NO:16, amino acids 1 to 83 of SEQ ID NO:18, amino acids 1 to 82 of SEQ ID NO:20, amino acids 1 to 462 of SEQ ID NO:22, amino acids 1 to 170 of SEQ ID NO:24, amino acids -26 to 233 of Fig. 13 (amino acids 1 to 259 of SEQ ID NO: 26), amino acids 1 to 30 of SEQ ID NO:28, amino acids 1 to 30 of SEQ ID NO:35, amino acids 1 to 100 of SEQ ID NO:37, amino acids 1 to 65 of SEQ ID NO:39, amino acids 1 to 46 of SEQ ID NO:43, amino acids 1 to 313 of SEQ ID NO:46, amino acids 1 to 58 of SEQ ID NO:51, amino acids -35 to 387 of Fig. 29 (amino acids 1 to 422 of SEQ ID NO: 53), amino acids 1 to 58 of SEQ ID NO:55, amino acids 1 to 52 of SEQ ID NO:57, amino acids 1 to 245 of SEQ ID NO:59, amino acids 1 to 142 of SEQ ID NO:63, amino acids 1 to 49 of SEQ ID NO:67, amino acids 1 to 70 of SEQ ID NO:69, amino acids 1 to 113 of SEQ ID NO:72, and amino acids 1 to 97 of SEQ ID NO:76; or a transmembrane domain (membrane spanning segment/region) deleted or inactivated variant thereof;

(b) a polynucleotide encoding a polypeptide of amino acids 1 to 233 of SEQ ID NO: 26, or amino acids 1 to 387 of SEQ ID NO: 53;

(c) a polynucleotide encoding amino acids 1 to 203 of SEQ ID NO: 2, amino acids 1 to 193 of SEQ ID NO: 4, amino acids 1 to 236 of SEQ ID NO:6, amino acids 1 to 61 of SEQ ID NO:8, amino acids 1 to 79 of SEQ ID NO:10, amino acids 1 to 92 of SEQ ID NO:12, amino acids 1 to 86 of SEQ ID NO:14, amino acids 1 to 36 of SEQ ID NO:16, amino acids 1 to 83 of SEQ ID NO:18, amino acids 1 to 82 of SEQ ID NO:20, amino acids 1 to 462 of SEQ ID NO:22, amino acids 1 to 170 of SEQ ID NO:24, amino acids -26 to 233 of Fig. 13 (amino acids 1 to 259 of SEQ ID NO:26), amino acids 1 to 30 of SEQ ID NO:28, amino acids 1 to 39 of SEQ ID NO:30, amino acids 1 to 541 of SEQ ID NO: 33, amino acids 1 to 30 of SEQ ID NO:35, amino acids 1 to 100 of SEQ ID NO:37, amino acids 1 to 65 of SEQ ID NO:39, amino acids 1 to 42 of SEQ ID NO:41, amino acids 1 to 46 of SEQ ID NO:43, amino acids 1 to 313 of SEQ ID NO:46, amino acids 1 to 58 of SEQ ID NO:51, amino acids -35 to 387 of Fig. 29 (amino acids 1 to 422 of SEQ ID NO:53), amino acids 1 to 58 of SEQ ID NO:55, amino acids 1 to 52 of SEQ ID NO:57, amino acids 1 to 245 of SEQ ID NO:59, amino acids 1 to 142 of SEQ ID NO:63, amino acids 1 to 49 of SEQ ID NO:67, amino acids 1 to 70 of SEQ ID NO:69, amino acids 1 to 113 of SEQ ID NO:72, and amino acids 1 to 114 of SEQ ID NO:74, and amino acids 1 to 97 of SEQ ID NO:76; or a transmembrane domain (membrane spanning segment/region) deleted or inactivated variant thereof.

(d) a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 1, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00184_D11 (SEQ ID NO: 1), a polynucleotide hybridizing

5

10

15

20

25

30

35

under stringent conditions with the complement of the coding region of SEQ ID NO: 3, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00185 D11 (SEQ ID NO: 3); a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 5, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00188_D12 (SEQ ID NO: 5), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 7, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00188_E01 (SEQ ID NO: 7), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 9, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00194_G01 (SEQ ID NO: 9), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 11, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00194_G05 (SEQ ID NO: 11), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 13, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00194 H10 (SEQ ID NO:13), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 15, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00199 D08 (SEQ ID NO: 15), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 17, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00203_D04 (SEQ ID NO: 17), a polynucleotide hybridizing under stringent conditions with the complement of the codin region of SEQ ID NO: 19, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00203 E06 (SEQ ID NO: 19), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 21, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00209 F06 (SEQ ID NO: 21), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 23, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00219_D02 (SEQ ID NO: 23), a polynucleotide hybridizing under stringent conditions with the complement of the codin region of SEQ ID NO: 25, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00219 F06 (SEQ ID NO: 25), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 27, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00220_H05 (SEQ ID NO: 27), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 29, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00222_G03 (SEQ ID NO: 29),

5

10

15

20

25

30

35

a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 31 (clone P00223 F07), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 32, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00225 C01 (SEQ ID NO: 32), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 34, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00227_D11 (SEQ ID NO: 34), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 36, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00228 F03 (SEQ ID NO: 36), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 38, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00233_H08 (SEQ ID NO: 38), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 40, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00235 G08 (SEQ ID NO: 40), a polypucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 42, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00239_C11 (SEQ ID NO: 42), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 44 (clone P00240 B04), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 45, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00240_E05 (SEQ ID NO: 45), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 47 (clone P00241_E12), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 48 (clone P00245_D06), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 49 (clone P00246 D12), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 50, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00247_A04 (SEQ ID NO: 50), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 52, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00248 B04 (SEQ ID NO: 52), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 54, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00249_F09 (SEQ ID NO: 54), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 56, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00258 A10 (SEQ ID NO: 56), a polynucleotide hybridizing under stringent conditions with the

5

10

15

20

25

30

35

complement of the coding region of SEQ ID NO: 58, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00262_C10 (SEQ ID NO: 58), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 60 (clone P00263 G06), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 61 (clone P00267_F08), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEO ID NO: 62, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00269 H08 (SEQ ID NO: 62), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 64 (clone P00312_C04), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 65 (clone P00324 H02), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEO ID NO: 66, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00628 H02 (SEQ ID NO: 66), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 68, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00629_C08 (SEQ ID NO: 68), a polynucleotide hybridizing under stringent conditions with the complement of the polynucleotide of SEQ ID NO: 70 (clone P00634_G11), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 71, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00641_G11 (SEQ ID NO: 71), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 73, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00648_E12 (SEQ ID NO: 73), a polynucleotide hybridizing under stringent conditions with the complement of the coding region of SEQ ID NO: 75, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00697_C03 (SEQ ID NO: 75);

(e) a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 148 of SEQ ID NO: 2, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00184_D11 (SEQ ID NO: 1), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 193 of SEQ ID NO: 4, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00185_D11 (SEQ ID NO: 3); a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 236 of SEQ ID NO: 6, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00188_D12 (SEQ ID NO: 5), a polynucleotide encoding at least about 50 contiguous amino acids 1 to 61 of SEQ ID NO: 8, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00188_E01 (SEQ ID NO: 7), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids from amino acids 1 to 79 of SEQ ID NO: 10, wherein said polynucleotide encodes

5

10

15

20

25

30

35

a polypeptide having at least one biological activity of the polypeptide encoded by clone P00194_G01 (SEQ ID NO: 9), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 92 of SEQ ID NO: 12, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00194_G05 (SEQ ID NO: 11), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 86 of SEQ ID NO: 14, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00194 H10 (SEQ ID NO:13), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 36 of SEQ ID NO: 16, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00199_D08 (SEQ ID NO: 15), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 83 of SEQ ID NO: 18, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00203 D04 (SEQ ID NO: 17), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 82 of SEQ ID NO: 20, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00203_E06 (SEQ ID NO: 19), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 462 of SEQ ID NO: 22, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00209 F06 (SEQ ID NO: 21), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 170 of SEQ ID NO: 24, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00219_D02 (SEQ ID NO: 23), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids -26 to 233 of Fig. 13 (amino acids 1 to 259 of SEQ ID NO: 26), wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00219_F06 (SEQ ID NO: 25), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 30 of SEQ ID NO: 28, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00220_H05 (SEQ ID NO: 27), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 39 of SEQ ID NO: 30, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00222 G03 (SEQ ID NO: 29), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 541 of SEQ ID NO: 33, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00225_C01 (SEQ ID NO: 32), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 30 of SEQ ID NO: 35, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00227_D11 (SEQ ID NO: 34), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 100 of SEQ ID NO: 37, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00228_F03 (SEQ ID NO: 36), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 65 of SEQ ID NO: 39, wherein said polynucleotide encodes

5

10

15

20

25

30

35

a polypeptide having at least one biological activity of the polypeptide encoded by clone P00233 H08 (SEQ ID NO: 38), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 41 of SEQ ID NO: 39, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00235 G08 (SEQ ID NO: 40), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 46 of SEQ ID NO: 43, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00239_C11 (SEQ ID NO: 42), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 313 of SEQ ID NO: 46, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00240 E05 (SEQ ID NO: 45), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 58 of SEQ ID NO: 51, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00247_A04 (SEQ ID NO: 50), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids -35 to 387 of Fig. 29 (amino acids 1 to 422 of SEQ ID NO: 53), wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00248_B04 (SEQ ID NO: 52), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 58 of SEQ ID NO: 55, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00249 F09 (SEQ ID NO: 54), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 52 of SEQ ID NO: 57, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00258_A10 (SEQ ID NO: 56), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 245 of SEQ ID NO: 59, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00262_C10 (SEQ ID NO: 58), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 142 of SEQ ID NO: 63, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00269 H08 (SEQ ID NO: 62), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 49 of SEO ID NO: 67, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00628_H02 (SEQ ID NO: 66), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 70 of SEQ ID NO: 69, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00629_C08 (SEQ ID NO: 68), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 113 of SEQ ID NO: 72, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00641_G11 (SEQ ID NO: 71), a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 114 of SEQ ID NO: 74, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00648_E12 (SEQ ID NO: 73), a polynucleotide encoding at least about 50 contiguous amino acids

from amino acids 1 to 97 of SEQ ID NO: 76, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00697_C03 (SEQ ID NO: 75);

- (f) a polynucleotide encoding at least about 50 contiguous amino acids from amino acids 1 to 23 of SEQ ID NO: 26, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00219_F06 (SEQ ID NO: 25) or amino acids 1 to 387 of SEQ ID NO: 53, wherein said polynucleotide encodes a polypeptide having at least one biological activity of the polypeptide encoded by clone P00248_B04 (SEQ ID NO: 52);
- (g) a polynucleotide of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 45, 47, 48, 49, 50, 52, 54, 56, 58, 60, 61, 62, 64, 65, 66, 68, 70, 71, 73, and 75;
- (i) an antisense oligonucleotide capable of hybridizing with, and inhibiting the translation of, the mRNA encoded by a gene encoding a polypeptide of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, 76, or another mammalian homologue thereof.
- 15 2. The polynucleotide of claim 1 encoding a polypeptide comprising amino acids 1 to 233 of SEQ ID NO: 26, amino acids 1 to 387 of SEQ ID NO: 53.
 - 3. The polynucleotide of claim 1 comprising the sequence selected from the group consisting of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 45, 47, 48, 49, 50, 52, 54, 56, 58, 60, 61, 62, 64, 65, 66, 68, 70, 71, 73, and 75.
 - 4. A vector comprising and capable of expressing a poly- or oligonucleotide of claim 1.
 - 5. A recombinant host cell transformed with nucleic acid comprising a poly- or oligonucleotide of claim 1.
 - 6. A recombinant host cell transformed with the vector of claim 5.
 - 7. A method for producing a polypeptide comprising culturing a recombinant host cell transformed with nucleic acid comprising any of the polynucleotides of claim 1(a) (g) under conditions such that the polypeptide is expressed, and isolating the polypeptide.
 - 8. A polypeptide comprising:

5

10

20

25

30

35

(a) a polypeptide having at least about 80% identity with amino acids selected from the group consisting of: amino acids 1 to 193 of SEQ ID NO: 4, amino acids 1 to 236 of SEQ ID NO:6, amino acids 1 to 61 of SEQ ID NO: 8, amino acids 1 to 92 of SEQ ID NO:12, amino acids 1 to 86 of SEQ ID NO:14, amino acids 1 to 36 of SEQ ID NO:16, amino acids 1 to 83 of SEQ ID NO:18, amino acids 1 to 82 of SEQ ID NO:20, amino acids 1 to 462 of SEQ ID NO:22, amino acids 1 to 170 of SEQ ID NO:24, amino acids 1 to 30 of SEQ ID NO:28, amino acids 1 to 30 of SEQ ID NO: 35, amino acids 1 to 100 of SEQ ID NO:37, amino acids 1 to 65 of SEQ ID NO:39, amino acids 1 to 46 of SEQ ID NO:43, amino acids 1 to 313 of SEQ ID NO:46, amino acids 1 to 58 of SEQ ID NO:51, amino acids 1 to 58 of SEQ ID NO:55, amino acids 1 to 52 of SEQ ID NO:57, amino acids 1 to 245 of SEQ ID NO:59, amino acids 1 to 142 of SEQ ID NO:63,

amino acids 1 to 49 of SEQ ID NO:67, amino acids 1 to 70 of SEQ ID NO:69, amino acids 1 to 113 of SEQ ID NO:72, and amino acids 1 to 97 of SEQ ID NO:76; or

- (b) a polypeptide encoded by nucleic acid hybridizing under stringent conditions with the complement of the coding region selected from the group consisting of: SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 45, 47, 48, 49, 50, 52, 54, 56, 58, 60, 61, 62, 64, 65, 66, 68, 70, 71, 73, and 75;
- (c) the polypeptides of (a) and (b) having at least one biological activity of the polypeptide encoded by clones P00184_D11 (SEQ ID NO:1), P00185_D11(SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID NO:15), P00203_D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00225_C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239_C11 (SEQ ID NO:42), P00240_E05 (SEQ ID NO:45), P00247_A04 (SEQ ID NO:50), P00248_B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00269_H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00641 G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), P00697_C03 (SEQ ID NO:75).
 - 9. A composition comprising a polypeptide which comprises:

5

10

15

20

25

30

- (a) a polypeptide having at least about 80% identity with amino acids selected from the group consisting of: amino acids 1 to 193 of SEQ ID NO: 4, amino acids 1 to 236 of SEQ ID NO:6, amino acids 1 to 61 of SEQ ID NO: 8, amino acids 1 to 92 of SEQ ID NO:12, amino acids 1 to 86 of SEQ ID NO:14, amino acids 1 to 36 of SEQ ID NO:16, amino acids 1 to 83 of SEQ ID NO:18, amino acids 1 to 82 of SEQ ID NO:20, amino acids 1 to 462 of SEQ ID NO:22, amino acids 1 to 170 of SEQ ID NO:24, amino acids 1 to 30 of SEQ ID NO:28, amino acids 1 to 30 of SEQ ID NO:35, amino acids 1 to 100 of SEQ ID NO:37, amino acids 1 to 65 of SEQ ID NO:39, amino acids 1 to 46 of SEQ ID NO:43, amino acids 1 to 313 of SEQ ID NO:46, amino acids 1 to 58 of SEQ ID NO:51, amino acids 1 to 58 of SEQ ID NO:55, amino acids 1 to 52 of SEQ ID NO:57, amino acids 1 to 245 of SEQ ID NO:59, amino acids 1 to 142 of SEQ ID NO:63, amino acids 1 to 49 of SEQ ID NO:67, amino acids 1 to 70 of SEQ ID NO:69, amino acids 1 to 113 of SEQ ID NO:72, and amino acids 1 to 97 of SEQ ID NO:76; or
- (b) a polypeptide encoded by nucleic acid hybridizing under stringent conditions with the complement of the coding region selected from the group consisting of: SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 45, 47, 48, 49, 50, 52, 54, 56, 58, 60, 61, 62, 64, 65, 66, 68, 70, 71, 73, and 75; wherein the polypeptides of (a) and (b) have at least one biological activity of the polypeptide respectively encoded by clones P00184_D11 (SEQ ID NO:1), P00185_D11(SEQ ID NO:3), P00188_D12 (SEQ ID NO:5), P00188_E01 (SEQ ID NO:7), P00194_G01 (SEQ ID NO:9), P00194_G05 (SEQ ID NO:11), P00194_H10 (SEQ ID NO:13), P00199_D08 (SEQ ID

NO:15), P00203_D04 (SEQ ID NO:17), P00203_E06 (SEQ ID NO:19), P00209_F06 (SEQ ID NO:21), P00219_D02 (SEQ ID NO:23), P00219_F06 (SEQ ID NO:25), P00220_H05 (SEQ ID NO:27), P00222_G03 (SEQ ID NO:29), P00225_C01 (SEQ ID NO:32), P00227_D11 (SEQ ID NO:34), P00228_F03 (SEQ ID NO:36), P00233_H08 (SEQ ID NO:38), P00235_G08 (SEQ ID NO:40), P00239_C11 (SEQ ID NO:42), P00240_E05 (SEQ ID NO:45), P00247_A04 (SEQ ID NO:50), P00248_B04 (SEQ ID NO:52), P00249_F09 (SEQ ID NO:54), P00258_A10 (SEQ ID NO:56), P00262_C10 (SEQ ID NO:58), P00269_H08 (SEQ ID NO:62), P00628_H02 (SEQ ID NO:66), P00629_C08 (SEQ ID NO:68), P00641_G11 (SEQ ID NO:71), P00648_E12 (SEQ ID NO:73), and P00697_C03 (SEQ ID NO:75), in admixture with a carrier.

- 10. The composition of claim 9 which is a pharmaceutical composition comprising an effective amount of said polypeptide in admixture with a pharmaceutically acceptable carrier.
 - 11. An antibody specifically binding a polypeptide of claim 8.

10

15

20

25

30

35

- 12. A composition comprising an antibody of claim 11 in admixture with a carrier.
- 13. The composition of claim 9 which is a pharmaceutical composition comprising an effective amount of said antibody in admixture with a pharmaceutically acceptable carrier.
 - 14. A composition comprising an antagonist or an agonist of a polypeptide of claim 8.
- 15. The composition of claim 11 which is a pharmaceutical composition comprising an effective amount of said antagonist or said agonist in combination with a pharmaceutically acceptable carrier.
- 16. A method for the treatment of a cardiac, renal or inflammatory disease, comprising administering to a patient in need an effective amount of a polypeptide of claim 8, or an antagonist or agonist thereof.
- 17. A method for the treatment of a cardiac, renal or inflammatory disease, comprising administering to a patient in need an effective amount of an antibody specifically binding to a polypeptide of the present invention.
- 18. A method for screening a subject for a cardiac, renal or inflammatory disease characterized by the differential expression of the polypeptide selected from the group consisting of: SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, and 76, or an endogenous homologue thereof, comprising the steps of:

measuring the expression in the subject of said polypeptide or said endogenous homologue; and determining the relative expression of said polypeptide or said endogenous homologue in the subject compared to its expression in normal subjects, or compared to its expression in the same subject at an earlier stage of development of the cardiac, renal or inflammatory disease.

- 19. The method of claim 15 wherein said subject is human and said endogenous homologue is a human homologue of the rat protein selected from the group consisting of: SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, and 76.
 - 20. An array comprising one or more oligonucleotides complementary to reference RNA or

DNA encoding a protein selected from the group consisting of: SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, and 76, or another mammalian (e.g. human) homologue thereof, where the reference DNA or RNA sequences are obtained from both a biological sample from a normal subject and a biological sample from a subject exhibiting a cardiac, renal, or inflammatory disease, or from biological samples taken at different stages of a cardiac, renal, or inflammatory disease.

21. A method for detecting cardiac, kidney, or inflammatory disease in a human test patient comprising the steps of:

providing an array of oligonucleotides at known locations on a substrate, which array comprises oligonucleotides complementary to reference DNA or RNA sequences encoding a human homologue of the protein selected from the group consisting of: SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, and 76 where the reference DNA or RNA sequences are obtained from both a biological sample from a normal patient and a biological sample from a patient potentially exhibiting cardiac, renal, or inflammatory disease, or from a test patient exhibiting cardiac, renal, or inflammatory disease;

exposing the array, under hybridization conditions, to a first sample of cDNA probes constructed from mRNA obtained from a biological sample from a corresponding biological sample of a normal patient or from a test patient at a certain stage of the disease;

exposing the array, under hybridization conditions, to a second sample of cDNA probes constructed from mRNA obtained from a biological sample obtained from the test;

quantifying any hybridization between the first sample of cDNA probes and the second sample of cDNA probes with the oligonucleotide probes on the array; and

determining the relative expression of genes encoding the human homologue of a protein selected from the group consisting of: SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, and 76 in the biological samples from the normal patient and the test patient, or in the biological samples taken from the test patient at different stages of the disease.

- 22. A diagnostic kit for the detection of a cardiac, kidney or inflammatory disease comprising an array of claim 20.
- 23. The diagnostic kit of claim 22 further comprising at least one of the following components:
 - (a) an oligonucleotide probe;
 - (b) a PCR reagent;

5

10

15

20

25

- (c) a detectable label;
- 35 (d) a biological sample taken from a human subject; and

(e) an antibody to a polypeptide of any one of the sequences selected from the group consisting of: SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 46, 51, 53, 55, 57, 59, 63, 67, 69, 72, 74, 76, and a further mammalian homologue thereof.

- 24. The diagnostic kit of claim 22 wherein said biological sample is from blood or a tissue.
 - 25. The diagnostic kit of claim 21 wherein said tissue is a cardiac tissue.
 - 26. The diagnostic kit of claim 22 wherein said cardiac tissue is a left ventricular tissue.

10	atgo	gcato actgt tata gacgo ctgca caatt	cct of the country of	gcaga ceged ageed ageed egted gtaaa	aatad cacad cacad caaca caaca aatat	ca concert accept accep	ggcco caaac caacc ccctt gatgt	ectea ettga ettet ecego etga etga	tco tco cacc gas g tto g att	ccat ctcct cgcca aaaca ccggg cattt	acac acac acac acag gatc atta gaca	gcgc caga agac aaaa caga atga	caga acgca acaa accto agcgo	aga o act o iga d gtc o igg o igg o	cacco cggao tgcco ccago acaaa ctcga	cccaga ggccag gcagag gccccg cccaag atgttt aaggga ctgcac atg Met	60 120 180 240 300 360 420 480 537
15															tta Leu		585
20															acg Thr		633
25															ggc		681
30															ccg Pro		729
35															cgt Arg 80		777
															cca Pro		825
40															aat Asn		873
45		_								-		_			acc Thr		921
50	gcc Ala 130	act Thr	gct Ala	gct Ala	gcc Ala	tac Tyr 135	agt Ser	gac Asp	agt Ser	tac Tyr	gga Gly 140	cga Arg	gtt Val	tat Tyr	gct Ala	gcc Ala 145	969
55															gtt Val 160		1017
	gcc	atg	aat	gct	ttt	gcg	ccc	ttg	acc	gat	gcc	aag	act	agg	agc	cat	1065

	FIGURE 1 (cont.)
5	Ala Met Asn Ala Phe Ala Pro Leu Thr Asp Ala Lys Thr Arg Ser His 165 170. 175
10	gct gat gat gtg ggt ctc gtt ctt tct tca ttg cag gct agt ata tac Ala Asp Asp Val Gly Leu Val Leu Ser Ser Leu Gln Ala Ser Ile Tyr 180 185 190
15	caa ggg gga tac aac cgt ttt gct cca tat taaatgataa aaccattaaa 116 Gln Gly Gly Tyr Asn Arg Phe Ala Pro Tyr 195 200
13	caaacaagca aaaaacaaaa caaaaacaaa aaaaccaacc
20	
25	
30	
35	
40	
45	
50	

5 10	ttgg gcct	acto	ac t	gcag	gact	g to	rcago igcgt	gaac	cac tga	tgto aato c at	caa ccg g gt t Va	gcat cago t go	cggg gtct ca ac	eg gg	atag gaaa gc ag	aagcc ggggc gatcc t ttg r Leu	60 120 180 235
10										gag	ttg	ctg Leu					283
15												tgg Trp 35					331
20												gag Glu					379
25												aag Lys					427
30												aaa Lys					475
35												gag Glu					523
55												gaa Glu 115					571
40												gtg Val					619
45					Phe	Lys	Gln	Glu	Ser	Cys	Ser	tgg Trp	Thr	Ser			667
50												ggc					715
55												aaa Lys					763
<i></i>				acg Thr								gga	ggaa	aaa a	acaa	ttaaag	816

185 190

FIGURE 2 (cont.)

5 gtccctaatg agtggctaac aaaaanaaaa nnnnnnnnn nnnnngcggn c 867

5	tcta	agcga	ac c	cctt	cggt	g ga	caga	acaç	, cct	gagt	cag		et Ly			c agg eu Arg 5	56
10						ttg Leu											104
15						gat Asp											152
20						gac Asp											200
						atc Ile											248
25						caa Gln 75											296
30						agc Ser											344
35						aca Thr											392
40						ccc Pro											440
						cag Gln											488
45						aac Asn 155											536
50						cat His											584
55						cat His											632
	ggt	ggc	aag	gct	aac	cag	ccc	cag	gga	aat	ggg	gcc	gga	ttc	cct	gca	680

FIGURE 3 (cont.)

5	Gly	Gly	Lys 200	Ala	Asn	Gln		Gln 205	Gly	Asn	Gly	Ala	Gly 210	Phe	Pro	Ala	
10			agc Ser					_	_		_						728
15	_	_	tgg Trp	_			Āla		agad	ctcgt	cc t		ccaa	ec aç	ggac	cette	782
	-		cct d	-	•		-	_	_	ataaa	actt	gaat	gtct	tt t	gcca	atctaa	842 874

FIGURE 4

5	tetagegaae ceettegage gaacecette ggeeagtace etgageeetg gteeeteetg gagetgeee acagetetga etgtggaetg agggatgtta ggeggateae etgageetee agaggeteae acta atg age ggg ege tet ett ett age eac tgt tge att	60 120 170
10	Met Ser Gly Arg Ser Leu Leu Ser His Cys Cys Ile 1 5 10	
	tgg ttt tca ttg act cct ggg cct cgt ttg agt gac act gtc ctt gtc Trp Phe Ser Leu Thr Pro Gly Pro Arg Leu Ser Asp Thr Val Leu Val 15 20 25	218
15	ttt tgt ttc aga gct ctc cca gtg tta gtg gac tca gat gag gaa att Phe Cys Phe Arg Ala Leu Pro Val Leu Val Asp Ser Asp Glu Glu Ile 30 35 40	266
20	atg acc aga tct gaa ata gct gaa aaa atg ttc tct tca gaa aag ata Met Thr Arg Ser Glu Ile Ala Glu Lys Met Phe Ser Ser Glu Lys Ile 45 50 55 60	314
25	atg tga tcagggcccc agtgggtcca gtgtgcatgg gagcgcggtc aggtgatggg Met *	370
30	aaaggcctgg ctctcgtcaa aactgacagc tgcgctatga tacatgtctc actttgttgt cttggagatc tgtgtatgca ggtgaagaac tcaagtgtgg gagggtctgc cgcctcagaa agccatctt gaaacggact cataagtca gttttgttgc cattaagttg cctgattttg gaaacaattt aagaagtgtt aaagacatgt gttcagatgc ctcttaggcg gcagccacag gcatgccagg ttgtgtccct cagttttctc cagacaaaag aatctgcagc tgggcgtggc	430 490 550 610
35	ggcacactac tggcagttga aagtctgtaa tttcaaggcc aagcctggtc tacatagttc caggacaacc agagagatct acatagtgag accctgcctc aaaacacaga aaccnnanna naaaaaaaa aaaaaaaag cggccgc	730 790 817

40

45

50

FIGURE 5

5	tetagegaae ceettegeae atgggtteet getgaeeaag gggaeatgge tetgaagatg atgaggetgg ttaeteagea ggagtagetg agetgagetg	60 120
	cctggagtag ggcccagg atg cag gtg cta atg tet atc ccc ggc get ett	171
	Met Gln Val Leu Met Ser Ile Pro Gly Ala Leu	
10	1 5 10	•
10	ctt ccc gac tct acc atg gga tgt aac tcc agg agc ccc tgc cat ctc	219
	Leu Pro Asp Ser Thr Met Gly Cys Asn Ser Arg Ser Pro Cys His Leu	247
	15 20 25	
		0.65
15	ccg tac caa aag act gtg gct tcc gtg tct act cag aaa tca gtt cta Pro Tyr Gln Lys Thr Val Ala Ser Val Ser Thr Gln Lys Ser Val Leu	267
	30 35 40	
	**	
	ctt cgt aaa cag tgt tta aaa cca gac tca ttt aat cag agt gaa gga	315
20	Leu Arg Lys Gln Cys Leu Lys Pro Asp Ser Phe Asn Gln Ser Glu Gly 45 50 55	
	45 50 55	
	ttg cag tcc att ggc ttc tta gca cag aag cag ctg ata aca caa gta	363
	Leu Gln Ser Ile Gly Phe Leu Ala Gln Lys Gln Leu Ile Thr Gln Val	
25	60 65 70 75	
	aac ccc agc cct tga gaggtagaag caagaggatc agaggttcaa gcgcatcctc	418
	Asn Pro Ser Pro *	
20		
30	ggctccatca caagttcaaa agccgcctgc accaaatggg agtccttgtc tcaaaaaaaa	478
	aaaaaaaaaa agcaaagaaa gcaaaggact cgatgacatg atttatagac aaaagcagtg	538
	ggagaaaata ctaaagcccc actgagctgc cagccaggtg tctgtgacta caggtctttt	598
	atctgctcat atatatttt acaaaaaatg aaattcatat tggtcgctat tttgctggct	658
35	getttgetee egateaacat gatttgeacg tttttteeat caataaatgt gecatgatat	718
	ttttaaaaaa aaaaaaaaaa aaaaaaaaaa gggcncc	755

FIGURE 6

5																	
	tcta	agcga	aac d	cctt	cgca	ag ct	ctct	gaco	tgo	cgtcg	gccg	ccg	ctct	ccg d	ctctt	gattt	60
10	cgcd	egtg											agc Ser				109
10				_			_		_		_		ttc Phe			-	157
15													gac Asp				205
20													tta Leu				253
25													aaa Lys 75				301
30	_			_				_	_	_	_	-	aaa Lys	_	tga *		346
	gaga	agcto cgcao	gag d gca d	cato	cctgt	ig ct	geet	cagao	g gaq act	gggg	ctct	ccg	tgtc; ctgc!	gac t	tttg: agaga	cgtgga gctcat agnggt atgata	406 466 526 586
35	tccc gagt gctt	cacci cct tacaa	cag t	tgtg:	gccgo ggaad nati	ca ca cc to ct gr	accaa gtcaq nttt	aaagg gegaa eeett	g cct a aad c ctd	ggad ccaar	cagg ncga ggtc	att agc	tcaca aaaa	agt o	gacto ctggo	caacct cttttg nctggc	64 6 70 6 76 6 80 6

40

45

50

FIGURE 7

5	ccgo ccto gcao	ccggt gata ggat	gg t gtc t gag t	tggct tactt tgccq	ggt cgc gaaa	gg co ca ac ca co g ato	cacgo cacgo g cao	atctt gegea cacct g gea	ggt a cag c gtt a aad	ggto gcgag gaag c tco	ectg ggcc gcac c tgc	atco tgta cago cago	ggggt aagaa ctnad c caq	ttg i	ctta ggtta gcgca c gta	gagcat agtctg gcggtt ccagga g atg	60 120 180 240 292
10						Met 1	: Glr	n Ala	a Ası	n Sei 5	Cys	s Ası	n Gli	n Thi	r Va:	L Met)	
15	-			gat Asp 15		_	_	_	_					_			340
20		-		atc Ile	_	_				_				_			388
20		_		aaa Lys			_								_	-	436
25				aag Lys													484
30				tgt Cys								taa *	ttg	ggan	gta		530
35	atgt cgga	tgaai	nac (catta	angni	ng ga	accca	aaaa	t gni	attt	ctt	gnt	ttga	act	gggg	cttaag cggacc aaaaaa	590 650 710 717

FIGURE 8

5	tctagcgaac cccttcgccc agctgctaga agccaggctg gcctggtgag gc atg agc Met Ser 1	58
10	atg aag atg aac cca ggt gac aag gac aag atg ttg ctc ttc tcc cca Met Lys Met Asn Pro Gly Asp Lys Asp Lys Met Leu Leu Phe Ser Pro 5 10 15	106
15	ccc ttt gac ccc tgt ctt cta agg cat cta gga agg aac cag tgt cct Pro Phe Asp Pro Cys Leu Leu Arg His Leu Gly Arg Asn Gln Cys Pro 20 25 30	154
	tgg tac tga tttacttaga ttcaacctaa gggtccagcc actgactaag Trp Tyr * 35	203
20	gccaaggcca tttttccata cctgggaggg tagagattca gggttgtggg taagtgggca ctaaacatgg atttgcaagg gaaaacgaca gggcatcgag ctaaatttga atttacatga aattctgaaa tgtacttgta tgaagaaact gttatctgaa acctaactta aatgggcatc ctgccttttg tctggtgaga aatgaaagtg atctacaata agtgtcaaag caacaaggcc	263 323 383 443
25	cctctggata tgtctaggcc aggatgagga tactaagtgc cttcaaagcg agagggaggc aggccaagaa cactgcccta ctgaaaggca ggcttggccg gctagggcct ccaaggccct gatccctgag gcaccacagc cacaacttgt gtaggcctgg cccaggtcag tgaataggtt ctaggcagtg gttctcaacc ttcctaatgc tgcaaccctt caatacagtt tctcctgttg	503 563 623 683 743
30	tagtaatccc caaccataaa attatttca ttgcgacttc ataactggac ttttgctact gttatgaatc ataatgtaaa tattttttgg agctagaggt ttaccaaggg ggttgtgagc cataggttga aaaccattgt tctaggaata gctccagggg tggtttctga ggccccgca aggtgggatc tatggggcag ggttggatct tctccaagag cccccaacag gatatatat tatatatata tatatatata tatatata	803 863 923 983
3 <i>5</i>	gaacgactgt ctcctgatac taaagggagc ttggaagaaa ccaaggctga gagaagttgt agagtgggaa ggtaggcgaa gggattgagg tgacacagtg atagcccctt cagggtgggg tctacccnag acagcagata aaggccttag gatgggagat tactctggct gctcagaggg gaacacaggg acacagcacc aataaaatct ctttctttc aaaaaaaaaa	1043 1103 1163 1223 1235

40

45

50

FIGURE 9

5	tata ttti cca	acago tttt ctgao	cct to tc t gct a	cgct tttc aaatc	tgaa ettt eccca	at ac t tt aa cc	egegt ettge eccte	ctga gagct gttgt	a agt	tato ggaco gtttt	gctt gaa aaa	tgto ccca taao	gttgt agggd gtctd	etg to	gggt gttg ctgt	tgaat ttttt gctcta ccatt	60 120 180 240 300
10							ato	gta	a gca	cat	: gat	ggt	gat	: ttt	cgg	ttata g ggg g Gly 10	360 412
15				tgc Cys													460
20				gga Gly 30													508
25				cct Pro													556
30				ttc Phe													604
				gat Asp						tc							633

FIGURE 10

5	tgaq atci	ggcaq	gee a	attco gctga	ctgca aatta	ag ca	agcgo ctcao g ato Met	etego ecegt	g ccq ttc	ggtga ccati t gaq	aagg cetg g cea 1 Pro	gcc tgt a cc	gaaci gcaco c cci	ga d cag a	cgcct aaato t tat	acgggc cctag ctgaga cca Pro	60 120 180 232
10							1				5					10	
15					-		cta Leu	_		_		_		_			280
15				_			cca Pro	_		_	_					_	328
20							att Ile										376
25							ggt Gly 65										424
30							aaa Lys			ataa	anaar	ngg a	aggga	attc	ga		471
35	aaaa		aaa a	aaaa	aaaa											aaaaa aaaaa	531 591 607

5	tcta	ıgcga	ac c	cctt	cgca	ia aç	jt ect	aago	ctt			aga a Arg I					53	3
10				att Ile 10													10:	1
15				aga Arg													149	9
20				cgc Arg													19	7
20				gag Glu													24	5
25				ccc Pro													29	3
30				gaa Glu 90													34	1
35				ctc Leu													38	9
40				gaa Glu													43	7
40				gag Glu													48	5
45				caa Gln													53	3
50				agt Ser 170													58	1
55				act Thr													62	9
	tcc	gaa	att	gac	gtt	caa	acc	agt	act	aaa	gaa	atg	aat	aag	gaa	att	67	7

		200	Ile	_		Gln	Thr 205	Ser	Thr	Lys	Glu	Met 210	Asn	Lys	Glu	Ile	
5															gtg Val		725
10															gta Val 245		773
15															caa Gln		821
20															aat Asn		869
20															aca Thr		917
25															gac Asp		965
30															ctg Leu 325		1013
35			-	_			_	_							agg Arg		1061
40				_	_					_				-	ctt Leu	_	1109
-10															gat Asp		1157
45															aga Arg		1205
50															ttc Phe 405		1253
55										Leu					cag Gln		1301
	gaa	gca	gat	tca	aat	aaa	agt	ggc	ctt	aaa	aca	ttt	cag	aca	ctg	tta	1349

			4.25			Lys '	Ser	Gly 430	Leu	Lys	Thr	Phe	Gln 435	Thr	Leu	Leu	
	FIG	JRE 1	l1 (c	cont.	.)											•	
5	aat Asn	att Ile 440	gct Ala	ccg Pro	gtg Val	tgg Trp	ctg Leu 445	ata Ile	agt Ser	gag Glu	gag Glu	aaa Lys 450	aga Arg	gaa Glu	tat Tyr	gga Gly	1397
10			gtt Val							aaaa	aata	aaa a	aaaa	aaaa	aa		1444
	aaa	agcg	gcg r	nc													1456
15																	
20																	
25																	
30																	
35																	
40																	
40																	
45																	
50																	
55																	

16/59

5	atgi	aagaq ccca caact atg	gga d cag a cgc a gct t	cagat agcct accaa act q	ctaa ttgc agcac gca	ac co ca ct gt gg gag t	ctaga gcctag cctag	actga gaaca cca ggt g	a ggo a gto g toa gaa o	cegga cacco accto gac o	aggc etga etge eca a	ctgo tcca tgao tgt o	gacca aacc gctct cat q	aat t caa q ctg q gtg q	cacct gtaaa		60 120 180 240 287
15		acg									ctc				cat His 30	ccg	335
20															aac Asn		383
20															act Thr		431
25															gtc Val		479
30															caa Gln		527
35															caa Gln 110		575
40															ttc Phe		623
40															gga Gly		671
45															gtc Val		719
50	aag Lys 160	gca Ala	gcg Ala	cct Pro	cct Pro	ctc Leu 165	cag Gln	tca Ser	ctt Leu	ctt Leu	gct Ala 170	tag *	atta	acat	gtt		765
55	tgc ggg	ccaa gggt cgaa	cct t gat d ttt t	tetga getea tetga	ageto acaca tgtto	ec co ac aq ga to	ccgg gact gctt	gtace catte tgtt	g cti g taa t tto	tgca attca ggta	ccgt accg ctaa	agad ttt: aaca	cgct tacc agna	gag : tta	gtgc aagg tctt	tcatga gcaccg gggggg ttgaat cctttg	825 885 945 1005 1065

		<pre>aaacttgatg atttgtttct (cont.)</pre>					1125 1185
5	tttaaacagg cagcaaggac	tttgagtttg cttatcagag acacagtata tttacctcga	ttgcacactt ggtaacatac	tgtcctaggc tgcttatcgt	agggcaaagg acgcttttcc	aatagacgcc cacaaagcat	1245 1305 1365 1425
10	ctctctgtgc acaggatgca gtaagcattg aatcacaaat	aaaataaacc ttactaaata cactgcttta gaaaaatatg gctgtaaagt	gatgetegee ttteaatett tgtagtetta ttgtgegeae	ctgctaatgc cctcttttt tctttctata cagaatggag	ttgccctctt tcttggtttc agacgatttt gctaacttca	gaaagaagaa accagtgagc aataaactaa taaacattgt	1485 1545 1605 1665 1725
15	aaccgctttt cagtggaagg acggtggctt	tattcctaaa gaaaaatctg attacctcat tgtttttcct aagtaaacac	tcctcgtgag tgagacgttt tctagactat	ctcactcagt ccgtgtcctc tcaaacatgt	ttctgtcgga ttcaactcca agataagtta	cttttagaga cagggtcttg tatttttctt	1785 1845 1905 1965 2023
20			•				

PCT/US01/09555 WO 01/74901

		-99				5-5	5-0			ને/<		- 55	<i></i>				- , ,
55	tae	160 taa	atc	tee	cct	ata	165 gat	tca	ata	cta	tcc	170 taa	gga	cct	tac	cta	6 7 7
55		Gln			atc Ile		Cys					Val					629
50					gct Ala												581
45	cat His	aaa Lys	gaa Glu	ttc Phe 130	cag Gln	acg Thr	gtt Val	ccg Pro	ttc Phe 135	tac Tyr	att Ile	ttc Phe	tca Ser	gaa Glu 140	tcc Ser	tac Tyr	533
70					gac Asp 115												485
40					gtg Val												437
35					gcc Ala												389
30					cct Pro												341
25	tgg Trp	ctt Leu	cag Gln	ggt Gly 50	ggt Gly	cca Pro	ggt Gly	ggt Gly	tct Ser 55	agc Ser	act Thr	gga Gly	ttt Phe	gga Gly 60	aac Asn	ttt Phe	293
20					cct Pro 35												245
20					gtt Val												197
15					ctc Leu												149
10					tgg Trp												101
5	tcta	ıgcga	ac c	cctt	cggg	gg gt	tttc	eatc							att Ile -20		53
									_								

	Ser Trp Ile 175 FIGURE 13	1	Val Asp Ser 180	Val Leu Ser 185	Trp Gly Pro Tyr Leu 190	
5					gct gag gtg tcc gac Ala Glu Val Ser Asp 205	725
10					ctt cta caa gga agc Leu Leu Gln Gly Ser 220	773
15		a Val Gly		aat gat cat Asn Asp His	tga aaagaacacc *	819
20	agcctcgagt caaggagacg cctgacgacg ttcatgaagc gtgtacaatg aagctgaagt	tcttccggag ccttaagtca tctcctgggg ctgtcatcga ggcagctgga ggccacagc	g ccccttagtt a gctcatgaad g agcccagtcg a catcgtggat a tctcattgtg t gtccagattd	c cgtctctgtc c ggtcccatca g tcctccgtct c acgttgctgg g gacaccatag c aatcagctaa	ccgacacctc tatggagtcg agcgccacgt gagacaccta aaaagaagct caaaattatc tcataagcat ggaagaggac aactcggggt caatgtgact gtcaggagtc ctgggttcag aatggaaggc cctgtacacc atgagaacct agcgttctac	879 939 999 1059 1119 1179 1239
25	tggatcctaa atgaggctgg cctggagtag tctaccatgg	aggcgggtca ttactcagca ggcccaggat gatgtaactc	a catggttcct a ggagtagctg t gcaggtgcta c caggagccc	gctgaccaag g agctgagctg a atgtctatcc c tgccatctcc	gggacatggc tctgaagatg gccctggagg ccctggaggc ccggcgctct tcttcccgac cgtaccaaaa gactgtggct gtttaaaacc agactcattt	1359 1419 1479 1539 1599
30	aatcagagtg gtaaacccca	aaggattgca gcccttgaga agttcaaaaa	a gtccattggo a ggtagaagco g ccgcctgcao	ttcttagcac a agaggatcag	agaagcagct gataacacaa aggttcaagc gcatcctcgg tccttgtctc aaaaaaaaaa	1659 1719 1779 1802

FIGURE 14

5	tctagcgaac cccttcgcga aggggttcgc taggttgcgt ttgtggagaa aaatctgttc tacctcaggg ctgtgagaac ggcactcctg atg tct gag aaa gag aaa caa gat Met Ser Glu Lys Glu Lys Gln Asp 1 5	60 114
10	tgg ctg aag gat cct ccg ttc ctt cag aga cct ggg tgg aga gca tta Trp Leu Lys Asp Pro Pro Phe Leu Gln Arg Pro Gly Trp Arg Ala Leu 10 15 20	162
15	ggg aca cga aga aca gag tag cggaagaaga gttcttaagt aataagttta Gly Thr Arg Arg Thr Glu * 25 .	213
20	cctcctgact ggctcacatc actgccttac tctgtagaaa gcaggtcatc tcatggattt ccccctccca ccccccage tggatcattt tttgactcag ggaaaataat taaattattg tccaactgtt agtgttgatc ggtaacagca gaaaggcaga aagttcctga taatctcaat attatctttt caaaagtatt ttcctggaat gttgtttgct ttggcattac aaagttctgt actcttaaaa atattttgac ttgctgggca tggaggtcac acctttaatc cagaggcagg catggatcca caggagttca aggccgcctg gctacaaagc gagttcaagg gcagccaggg ctacacagag agaccttgtc tcntnaccnn tnannaaaaa acnaaaaagc cggccgc	273 333 393 453 513 573 630
25		

FIGURE 15

5	tctagcgaac cccttcggta tagtctttag gtagtggctt agtccctgga agctctggtt gcttggcatt tcaacgtgct tcttaaataa ctgttttatt agtcagtaca ag atg ctt Met Leu 1	60 118
10	tgt ata tca gat ctg aaa tat ctt aaa att atc act tgc att gta aat Cys Ile Ser Asp Leu Lys Tyr Leu Lys Ile Ile Thr Cys Ile Val Asn 5 10 15	166
15	tac tat tcc ttt cgc aga aat aat gaa tgc ttc aag aaa aaa aaa agc Tyr Tyr Ser Phe Arg Arg Asn Asn Glu Cys Phe Lys Lys Lys Ser 20 25 30	214
20	tgt ttg tat tgg gtt taa aacgtttcca aacaccaatt attctttact Cys Leu Tyr Trp Val * 35	262
25	taagtcatcc gatctagtta ttaaattatt attactgcct tcacactatc aaagatggta aatatctgat agaatcatat tcaaaatact tctgtttcac atttcttgag aaagtactga ctgtctgagt tctttctcaa gaaatgtgaa acagaagtat tttgaatcga aggggttcgc tag	322 382 442 445

FIGURE 16

5	tctagcgaac	cccttcggaa	gaactgtata	tttgtgcctt	gttctgcaag	ttaaaaagct	60
	ggtccagaca	gtgtcataga	attaactttt	catttctgta	ttaattttag	gactgcaaaa	120
	atcccaaagc	tgtatactta	gattggattc	aataaaaagt	ttaagtttac	tnaanaaaaa	180
	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaanaaaaa	aaaaaaagg	240
	aaaaaaaaa	ncggncnnaa	aaaaggnggc	cgc			273
10							
							•

5 10	gcgg	rtcto gcaa	igg t	ccca agga	cctc	ec to gg ga a ato	etget ageg g get	ttcg gaaag ggg	g cac g cat g gca	cctt atco a att	gaa taa ata	gttt aaca a gaa	tgga ttta aac	gc a ct t c ato	accad aaaq g ago	gegeee ggaaaa ggagga c aee Thr	60 120 180 232
				tgc Cys 15													280
15				gtg Val													328
20				gca Ala													376
25				ctg Leu													424
30				gaa Glu													472
35				cac His .95													520
<i></i>				ctg Leu													568
40				aga Arg													616
45	Tyr	Arg	Asp	gat Asp	Met	Phe	Ser	Glu	Trp	Thr	Glu	Met					664
50				aaa Lys													712
55				cgt Arg 175													760
				gct Ala													808

190 195 200

FIGURE 17 (cont.)

	FIG	JRE I	L7 (c	cont.	.)												
5					aaa Lys												856
10					atc Ile												904
15					ttc Phe 240												952
20					atc Ile												1000
					gcc Ala												1048
25					tcc Ser												1096
30					cag Gln												1144
35					ggc Gly 320												1192
40					tgg Trp												1240
					ttt Phe												1288
45					atc Ile												1336
50					gtg Val												1384
55					gta Val 400												1432
	tct	agc	ctc	cca	gcc	atg	agc	aaa	gtc	cgg	agg	ctg	cac	tat	gag	ggt	1480

25/59

	Ser	Ser	Leu	Pro 415	Ala	Met	Ser	Lys	Val 420	Arg	Arg	Leu	His	Tyr 425	Glu	Gly	
	FIGURE 17 (cont.)																
5		att Ile															1528
10		atg Met 445															1576
15		aaa Lys															1624
20		atc Ile															1672
20		gca Ala															1720
25		ggt Gly															1768
30		gta Val 525															1816
35		gag Glu	tag *	tag	gctai	egg (catto	catco	et ca	aggg	caggt	: gat	gaa	gcca			1865
40	tttt tat	ttato	cct o	gtcad tttta	egtti atati	ta ca	aagaa :gtga	acati ataa	tci a aca	tgaca	atgc	atad	egtti	tac t	ttt	ggatca accatg gaagca	1925 1985 2045 2077

5	FIGURE 18	
J	tctaacgaac cccttcggag cgatgga atg aga aag gcc cag aat gtg tta agt Met Arg Lys Ala Gln Asn Val Leu Ser 1 5	54
10	ctg tgc agg gga agt gtc ctg agg gga ggg tct ttg gga ggg tcg aag Leu Cys Arg Gly Ser Val Leu Arg Gly Gly Ser Leu Gly Gly Ser Lys 10 15 20 25	102
15	gcc agg atg gca aag tga aggtagctga ggttgcagtc ttgggtgccc Ala Arg Met Ala Lys * 30	150
20 25	actgctgtgc atctgtctgg ttatctaccc ctactttggg ctgacaactg cagggttggg tgtaggctgt ctcactgcat gccgggaagc tggagaagct ccacgggaac attgagggcc atggctttga gacactgcag agcatccttg gtctctgtaa ccacgtcacc taaccctgac aattccagac ccttcttcca ttgtccttgt gaaccatttg ggcttatctt tccctcttag tcgcaagggt caaaccaagg gtcagtcaag tagatgactg tcaccttggg cctccccaga ctctgctgcc ggggttggga gaccaaagta gaaactgcca ctacaaggcc ccaggatgag gtctctgttc tgtggacctg ctccccagat acaggcctca gacccatagg acgtggccgg tgctcaggg cacccaatcc ccggcctcac tccatcgagt actgactct ttctctagtg ccttgggggt ctccatcctt cagttatggt atgaagaatc tatgcaaact gtataagctt	210 270 330 390 450 510 630 690
. 30	ctgctcacca ataaacgctt tatttaaagc ttannnnnnn nnnannnnn nnnnnaagcg gncgc	750 755

· 35

40

45

50

5	tctagcgaac cccttcgcag aaacccaaag ttacagacca gaccctaccc aacatccagt cagcaatcca gctggagaaa cgcttgag atg aca agg gac ttt cag aag caa Met Thr Arg Asp Phe Gln Lys Gln 1 5	60 112
10	gcc ttg ata aga cag gaa aag cag aat tct aat aaa gat atg agg aaa Ala Leu Ile Arg Gln Glu Lys Gln Asn Ser Asn Lys Asp Met Arg Lys 10 15 20	160
15	aat gac atg ggc ctt caa cct ctg cct gta ggg aag gac gca cac agt Asn Asp Met Gly Leu Gln Pro Leu Pro Val Gly Lys Asp Ala His Ser 25 30 35 40	208
20	gca cca gga gtg aca gtc tct ggg aaa aac cac aaa aga act cag gca Ala Pro Gly Val Thr Val Ser Gly Lys Asn His Lys Arg Thr Gln Ala 45 50 55	256
25	cct gac aag aaa cag aga att gat gtt tgt cta gaa agc cag gac ttt Pro Asp Lys Lys Gln Arg Ile Asp Val Cys Leu Glu Ser Gln Asp Phe 60 65 70	304
23	cta atg aag aca aat act tcc aag gag tta aaa atg gca atg gag agg Leu Met Lys Thr Asn Thr Ser Lys Glu Leu Lys Met Ala Met Glu Arg 75 80 85	352
30	tcc ttt aat cca gtc aac ctt tcc ctg act gtg gtg taa aagaaaatga Ser Phe Asn Pro Val Asn Leu Ser Leu Thr Val Val * 90 95 100	401
35	ggacgccctt ctctccatct teccetectt ettetectte caattgegte atetgaaatt gaattteete tecteeteea ecacetataa tgetgtgeet gaaaaaaatg agttteetee etcateaece acagagaagt caagggetga acttgagage etcecaaece tgeetettee tecaceaeca ggagatgaga aatetgatea ggaatgteta ecaaeateee taceteetee eceteecaea getecateee aaceageaea tettetttee teetetgtte tagaacatea	461 521 581 641 701
40	cagtgaagca tttttacaac agtattcccg aaaagaaacc ttggactctc atcggcttca ctcacaggct aaaatcctaa caggaaaatc accacccca acactcccca aacccaaact tcccgagaga atcaaagcta agatgagcca ggattcacca agcggtgaat tggaaagatc tctgtcagat gtggaaatta aaactaccct ctcaaaggat cagaaaagtt cgctggtggc	761 821 881 941
45	agaaagccgt gagcacacag aggccaagca agaagtattc cgaaaaagcc ttggaagaaa acagctgtcc attagctctg caaactccct ctctcagaca gttccagaaa tcccagcacc caaggaaaaa cagacagcac cccttgttaa atctcactca ttcccatcag gttcagaaca acaaagtcct aagccttaca tgagaaaatt taagacaccc ttaatgattg cggaagaaaa atacagacaa caaagggaag agcttgagaa acagagacgg gagagttctt gccatagcat catcaaaaca gaaacccagc accgcagctt atcaaanntt aaaaaaaaaa aaaannnagc ggncgccg	1001 1061 1121 1181 1241 1301 1310
50		

FIGURE 20

5 10	atta gttg aata	aatgg gatct attt	ggg q cgt a	ggaag aatta tttgg	gtate atte gttt	gt tt et ag gg at	atgt gtagt ctta	ggga ctct actta	ttt tag	tatco gagtt catat	cact ctt tgt	tctt agaa ttc	ttaq agcat cttac	gat t tgc t ctc t	teted tgtta tett	ctattt ctacct accgct cttcat c atg Met	60 120 180 240 299
15															gtt Val		347
20															gtt Val		395
20															gaa Glu		443
25	tgg Trp 50	gag Glu	gag Glu	gga Gly	agg Arg	tgg Trp 55	ctg Leu	ttg Leu	ata Ile	ggt Gly	att Ile 60	ttg Leu	aga Arg	cac His	tct Ser	att Ile 65	491
30	tga *	gtc	ctac	aca (acac	tccc	cc ct	taca	ccca	a ac	catt [.]	ttta	tgt	ctat	tga		544
35	aag ata	tcaa agct	gag ctg	gaaa ttag	ctta caga	tt t	ttga [.] ctgt:	taat nnga	g ac	tcat gcan	tgaa gaag	gat gaa	gttt ntgt	tga ttg	aaat	tgtaac ttaaaa ttanat	664

FIGURE 21

5	tetagegaac ceettegega aggggttege egaaggggtt egetteagga gttaatgtag acttgactta agcateetga tttaaccaag a atg gtg gca cac aac ttt aac Met Val Ala His Asn Phe Asn 1 5	60 112
10	ccc cat gct ggg gaa gca gag gca cac tta atc tgt gtg agt ccc agg Pro His Ala Gly Glu Ala Glu Ala His Leu Ile Cys Val Ser Pro Arg 10 15 20	160
15	cca tcc agg gat acc gta gta gtg aga ccc tgt ctc aca aaa caa aga Pro Ser Arg Asp Thr Val Val Val Arg Pro Cys Leu Thr Lys Gln Arg 25 30 35	208
20	atg gga att tag ggctggtggg gctcagcatg caactgtgcc tgttacctag Met Gly Ile * 40	260
	tctggcctga gttcaattcc caagactcaa tgtatgagga gagaaacgat ttctgaactc attcattgat ctccaaatgt gtggtatagg tgcccttccc ttaaataaaa caaacaaaca aaaaacaaca aaaacaaca aaacaac	320 380 440
25	tgggcatggt acttcacatc tacagttacg acattctaga ggctcaggcc tgggaattgc tatgaatttg aggccagtct gggttagagt gacttctcat ctaggcagga ctacgtaata agtctttgcc caaaaataaa cagcaaccca aataagagca acaagaattc tccctccaaa tagtaacctg ggcctggaga gacagcttag caactgagtg cttgccgagc catcgaggac	500 560 620 .680
30	tggagtetgg attecageae eegtgtgaea gacaagetgg gegtteaete atgetgatga acceeaagge tgaggagaea etgaetette tetggeeetg tteatgetgt ceacaggtge ecaagtagea gttaagtaga etgteagaea acatggetgg ettttaage aagaacagta actgaagaaa tacaettttg aagtaetgtt aattttgett aaaaettggt agggagetgg aggatggete agtggttaag ageaetgaet getetteeag aggteetgag tteaatteee	740 800 860 920 980
35	agcaaccaca tggtggctca caaccatctg taatgagctc tgatgccctc tttttggtgt gtctgaagac agcgacagtg tactcatata aaataaaata	1040 1100 1160 1220 1259

40

45

50

FIGURE 22

5	tctagcgaac cccttcgtct cctcttaaac atcttaagac aagctgttat catctacact gctcttagta ctgttctttt ctaagattct tctaatatga cacattaaga ctttcttaaa atgtacaact gctacgctga tctaaacatt caaagtgcac acatttcgct atgaagccac gtgaccagag tcctggggac taatttctgt cttagtcaga ttcctattgc tatatgaaga	120 180 240
10	aatacc atg ata gtg tca act ttt ata aag aaa aag tat tcc ttt ggg Met Ile Val Ser Thr Phe Ile Lys Lys Lys Tyr Ser Phe Gly 1 5 10	288
15	aat agt tta aag gat cag agg gtt agt gca tta tca tca cag cag gaa Asn Ser Leu Lys Asp Gln Arg Val Ser Ala Leu Ser Ser Gln Gln Glu 15 20 25 30	336
20	gcg tgg cag tgg gag ccc aga ttt cta tat cca gat ttt cat gaa gca Ala Trp Gln Trp Glu Pro Arg Phe Leu Tyr Pro Asp Phe His Glu Ala 35 40 45	384
	tga cgagagetee tgggeetgge gegagettet gaaacetgaa agtgacatat *	437
25	ttcttccaat aaggccacaa ctactgctat aaggccacat ctcctaactg tgtcactatc tatgagcctg tacagtctat ttcttttaca ccactgcatc atctaagagc tgatacccgt taagttagtc atgaaaatat tcaacttcta gggttctgtt ttcttctcta taaaatattg aaaatgataa ttaatgtata ctttacagaa ctgtatttga agtacaactt gatggacata aatcaccaca gttgggtcaa aattgtatat atatatatat atatatatat	497 557 617 677
30	atatatcaaa aaaaaaaaaa aaaaaaaaaa aagggggggg	77

FIGURE 23

5	tctagcgaac	cccttcgtac	atttcaccct	agaaataaat	agaccttcta	gctctgacag	60
		ttgcctagga		_	_		120
		aaggcttgtt					180
		cactaagtct					240
		cctcacccag					300
10	gatacacttg	agcaactggt	gcagaaaacc	cgacttctaa	attattaagg	aacaggataa	360
	_	caataattag		-			420
	acctttcccc	ccccaaatat	taataattcc	aactaaatcc	tctggggccc	ttccagtttc	480
	cacaacggaa	agagcctaac	gtattctaaa	gactgggcat	attttttt	tccagattag	540
	tgagtgttca	tgagctatta	agaggccaag	tgttttttca	agatggtgtc	atttcattct	600
15	aacatatcta	acatgcaaag	gacttaaaaa	aataatttgc	aaaataatct	gtttcaagtc	660
		ctgaagagcc					720
	gaagaagaga	tagtggagga	agaggaggag	gaggaggtgc	ccccgcccag	aggtacagcc	780
	gctttgatga	gttcagcatt	ccaaagcctt	ggtgctgctg	gaccctactc	attagccata	840
	tactttcctg	gaagcacagc	cacgaggcct	ggagggtgca	cactcgtaat	gactggagct	900
20	ttgtgggcct	ttcctttccc	ctaacgtttc	ctccttcccc	gcaatctgac	cataaatgag	960
	gagattttt	ttttctctta	ctacactttt	tgcaatccta	gtttgcaatc	ctcagtgtgg	1020
	ctggctttca	gttcaaatgc	tggagaacca	tgtatctgtg	tggtgagagc	attcattttc	1080
	aagactaatt	cttaaaccgc	ttatccccgg	agacagaaac	cgtggcagag	ttgctatcct	1140
	ctgagctggg	gtggtcatga	tgatcagtta	ggttactaac	atcttcctaa	atgaatcggt	1200
25	gttttgtgtt	gctctgtttt	catttggatg	acagggtgtt	gttctgttta	atgcgtgtgg	1260
	gtttttccaa	catgtccgta	aaaatatctt	ttaagcacca	gangtagtga	agaaagctgt	1320
	gcaaacagca	cccgctcctg	tccccaagaa	awccgaggcg	ccccccaaa	ggtatatc	1378

FIGURE 24

5	gcgt	aact	gc d	tcat	tcta	ig ga	igtgg g gc	gacto ca ac	ic co	ggaag gt gg	gaca ga ta	gcag ic ct	gacac g ca	ac c	catca ic ct	gacaga agggag ag ctg aeu Leu 10	60 120 173
10				gga Gly 15													221
15				gca Ala													269
20				ata Ile													317
25				ttt Phe													365
30				agc Ser													413
				tgc Cys 95													461
35				atc Ile													509
40				agt Ser													557
45				gtg Val													605
50				gat Asp													653
				gag Glu 175													701
55				gct Ala													749

	_		_	aat cont.	_	ctc	agt	ctg	gtc	aga	gcc	aac	cct	cgc	cta	gaa	79
5	Gln	His 205	Met	Asn	Ala	Leu	Ser 210	Leu	Val	Arg	Ala	Asn 215	Pro	Arg	Leu	Glu	
10															caa Gln		84
15															atg Met 250		893
13															ctc Leu		94
20															gaa Glu		98
25															gag Glu		103
30	gag Glu 300	gag Glu	aag Lys	cta Leu	Gly	gag Glu 305	ctc Leu	atg Met	aaa Lys	ttc Phe	tac Tyr 310	gag Glu	aca Thr	atc Ile	tga *		108
35	ggga caaa ggga ctc	gaggi acata agtga aaaa ccca	tag o agt o aga o ttg o tct o	ggacı gtgga tcca aaatı gagcı	catgo aggo ctggo ctano catto	ga go ct go ag co ac ta gg aa	gtgci ttga ctga aacc	tgtta atgaa gacsa atgga ccaca	a gaa a caa a gga a aaa	aggae carca gacca aaage acaca	gagc aggt agag gcag aaac	tara gate ttte caga	actadagga gtgc: cgaaa agaga	cag tgg tgc aga aaa	tcage agcae aagae ctage agtg	atctgg gtccga gtggat gggact aaaacc tgtgct gcatca	120 126 132 138 144
40				ttcc												a	155

45

50

FIGURE 25

5101520	taatcttcag tcttcggtaa ttatagttac ctttgcttat ttgtgggggg aagcctggaa cctccaacgt aacctcccg caacccaact ctcattcttt ggnncccng atngggnggg aggncctnan agatttnaaa ggngcccaan atatntgagt	cccttcggct ttgtgtctct agccaacttt aaggttgcct gtgtaaattt gattgttttg tttactgtgt gttgcaattg tcgaagccc aagtttaat ttnnagatnc gnggggnttt gtataaaagt ttnccncca nccncctgtn gttncccacc tntgacctnt atgttttqnc	ggaactcaac cttacacata tcgaaacact cacagtaatg ttgttgttgt catcccaggt caggagtaac accaccatag aaaaaagaa agggctcncc tttncnttgn nttancnggc ganaactaga cacaganana ctgtagagng attctttact	aaagaacgca tttcgggaag gctctaaatg caatagagaa ttgagataaa agcttcaaac ctaccacatc aaaccaattt aaacaaaaca tagttttnaa gccncntngc anatgnnctn nanctntngc gaancttana ggnccccaaa acnacgcntt	ttttatgaaa taattaacta tgtctcgtgt agggtgtttg gcttcattct tggtgcctat ctgcagctac gcattaagtt agatttaaat caaaacagtn ancccacccn ggngcanacc atagtanang tagaaaantc ancngccncc gagagaatat	tatacagctg caatttggac tggggtgcta tgggtgtggc gtagccagga cctgcctcag agtgatctag ttagaattcc cattctttcc ngcagngnng cccaggengg caagtntatc cccntgtgn aaatattn aganagcnng tntgntggg	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080
20					•		
	ccctanccac	atgttttgnc	ccaagantgt	aaanccactt	naannctgng	ggatatctcn	1080
	ctgcanacag	aagtgcccng	cgggatttta	aaaaaaaaa	taaaaaaaaa	aaaggngccn	1140
	cc						1142
25							

FIGURE 26

tctagcgaac	cccttcgtgg	agactgtgga	agttatgtat	gaataggaga	gtgtgtgttg	60
tgtaacacag	acagaaggac	attggatcat	gttgaacccg	cacccccaac	tatgagtgat	120
ggtatggaaa	gaatgcgaac	atttaaactg	cgccaatgcg	gcggccatct	tggtggagaa	180
gttcctagcc	gagctttgat	gtgattttt	tgatggtaca	atgcagcgag	catggccacg	240
ggagctttga	atccagccga	cagctccgag	atttgccctt	ccagtgctct	tgcctaccgt	300
agagaggact	gctgagatgg	gattccttgt	gacaagccta	cttaccttta	actgccagca	360
tttgtaaggt	gcaatcttgt	gtattggttt	tttattttga	cagttttgaa	aacatgtttg	420
ntgntcttgg	tgtttttcca	gtaaaagtaa	tcacaaagga	aaaaaaatt	aaaaaaaaa	480
aaaaaaaaa	aaaagcggcc	дс				502
	tgtaacacag ggtatggaaa gttcctagcc ggagctttga agagaggact tttgtaaggt ntgntcttgg	tgtaacacag acagaaggac ggtatggaaa gaatgcgaac gttcctagcc gagctttgat ggagctttga atccagccga agagaggact gctgagatgg tttgtaaggt gcaatcttgt ntgntcttgg tgtttttcca	tgtaacacag acagaaggac attggatcat ggtatggaaa gaatgcgaac atttaaactg gttcctagcc gagctttgat gtgattttt ggagctttga atccagccga cagctccgag agagaggact gctgagatgg gattccttgt tttgtaaggt gcaatcttgt gtattggttt	tgtaacacag acagaaggac attggatcat gttgaacccg ggtatggaaa gaatgcgaac atttaaactg cgccaatgcg gttcctagcc gagctttgat gtgattttt tgatggtaca ggagctttga atccagccga cagctccgag atttgccctt agagaggact gctgagatgg gattccttgt gacaagccta tttgtaaggt gcaatcttgt gtattggttt tttattttga ntgntcttgg tgttttcca gtaaaagtaa tcacaaagga	tgtaacacag acagaaggac attggatcat gttgaacccg caccccaac ggtatggaaa gaatgcgaac atttaaactg cgccaatgcg gcggccatct gttcctagcc gagctttgat gtgattttt tgatggtaca atgcagcgag ggagctttga atccagccga cagctccgag atttgccctt ccagtgctct agagaggact gctgagatgg gattccttgt gacaagccta cttaccttta tttgtaaggt gcaatcttgt gtattggttt tttattttga cagttttgaa ntgntcttgg tgttttcca gtaaaagtaa tcacaaagga aaaaaaaatt	tctagcgaac cccttcgtgg agactgtgga agttatgtat gaataggaga gtgtgtgttg tgtaacacag acagaaggac attggatcat gttgaacccg caccccaac tatgagtgat ggtatggaaa gaatgcgaac atttaaactg cgccaatgcg gcggccatct tggtggagaa gttcctagcc gagctttgat gtgatttttt tgatggtaca atgcagcgag catggccacg ggagctttga atccagccga cagctccgag atttgccctt ccagtgctct tgcctaccgt agagaggact gctgagatgg gattccttgt gacaagccta cttaccttta actgccagca tttgtaaggt gcaatcttgt gtattggttt tttattttga cagttttgaa aacatgtttg ntgntcttgg tgttttcca gtaaaagtaa tcacaaagga aaaaaaaat aaaaaaaaa aaaagcggcc gc

36/59

FIGURE 27

5	tctagcgaac	cccttcgcct	tcatatggtt	ttacactqta	tocatctcac	cacaacccaa	60
		ctcatcccaa		_	_		120
		atttgtgctg				_	180
	tcctgggtga	ccccaacagg	cctttgatcc	tctgtctctc	cccgcttgat	ctttcttacc	240
	ttatgcttcc	ccaagtgcag	ctgagggact	acacagtggc	tcccgcccca	ctccaaacac	300
10	aggaaatcaa	tctcagggag	aggagataag	aagtgaggag	aagccaagat	tcaaccaata	360
	gatggtaatt	gctcctggga	ccgcccccc	aagcatcatt	tccataggaa	ggactgagtt	420
		agcccagtgg					480
		tccagaaacc					540
		aactttccat				_	600
15		ggtcaaaagt					660
		aaacctcctg	-		_		720
		ktgactttat					780
		aatgatagca					840
		ccaaccagag		_			900
20		ttctgagatt			_		960
		acgttaccta					1020
		ctttggactt					1080
		atataagcat					1140
		gcacaagttg					1200
25		ttaaagaaaa					1260
		tctaccagga					1320
		tgatggtaag				tngactaggt	1380
	taactntgct	tnaaaaaaaa	aaaaaaaaa	aaaaaaagg	ggngcc		1426

FIGURE 28

5		_	atg aca	tca tca	agg aca	tgacttccta acg agc cca Thr Ser Pro	ata aca	60 111
10				_	_	gca ccc cag Ala Pro Gin 25	Ser Thr	159
15	Arg Val G		_	-	-	acc ctt tca Thr Leu Ser 40		207
20						acc tca ctg Thr Ser Leu 55		255
	tatcaccggg	g cttactat	ct tatata	ctgg ct	ttcctctt	ctcccaccac	gttcctgaag	315 375
25	cagagacaga gactgggtgd ggctgtgtgt ttcgagggad	a gttgcaga c gagggccc t gaaagggg c aagaacct	at gaggga tt ggcaca ga aaaaga gg ctaaaa	agace cad aggae to acaag at aggea ge	gcccgagg acatctgg tgccaggc agccctgc	tttgtggcta gacgccattg gctgttcagc agggctgttg tgttcttttt gctctggcac	ctgggaggta ttgacccgaa tttttgtggc ctcctctgtc	435 495 555 615 675 735
30	tatttcccto cctctgcago aaagttgta	c ctggcttc g ggtgggct a aagtggta a ggctgaac	ca aacaaq tc attctc gg agtgca	geeet et eeget gg ageta ge	gtggacat tccctgta cacaggtt	catcaagca gccttcctgg ctccttttcc aaaaaaaaaa	tggataaccc acacagggtg catctcagtc	795 855 915 975 985
در								

FIGURE 29

5																ggctgg cttgac	60 120
																cacta	180
				ccto													238
				cga													286
10				Arg													
	-35		<u> </u>			-30			 -		-25			-1		-20	
	cct	cca	act	cta	agc	acc	ctc	act	ctc	cta	cta	ctc	ctc	tat	σσα	cag	334
				Leu													
15					-15					-10	·				-5		
	gct	cac	tcc	cag	tgc	aaq	atc	ctc	cgc	tgc	aat	gcc	gag	tac	gtc	tcg	382
				Gln													
20				1	-	-		5		-			10	•			
	tcc	act	ctq	agc	ctt	cqq	qqa	aaa	ggc	tca	ccq	gac	acq	cca	cat	qqa	430
				Ser													
25	aac	aac	cat	ggt	aaa	cca	acc	tca	aat	aac	tta	tat	cac	acc	cta	cac	478
				Gly													
	30	-		- 4	-	35			3	•	40	.4				45	
	tcc	tac	act	ctc	tac	acq	caa	cac	acc	qcc	cqc	acc	tgc	cqc	aaa	gac	526
30				Leu													
		-			50		J	J		55	_		-		60	•	
	ctc	gct	ttc	cac	tcc	gcg	gtg	cat	ggc	ata	gag	gac	ctg	atg	atc	cag	574
	Leu	Äla	Phe	His	Ser	Ala	Val	His	Gly	Ile	Glu	Asp	Leu	Met	Ile	Gln	
35				65					70					75			
	cac	aac	tgc	tca	cgc	cag	ggt	ccc	acg	gcc	tcg	ccc	ccg	gcc	cgg	ggt	622
	His	Asn	Cys	Ser	Arg	Gln	Gly	Pro	Thr	Ala	Ser	Pro	Pro	Ala	Arg	Gly	
			80					85					90				
40																	
				ccc													670
	Pro		Leu	Pro	GŢĀ	Ala		Pro	Ala	Pro	Leu		Pro	Asp	Pro	Суз	
		95					100					105					
45				gcc													718
	Asp	Tyr	Glu	Ala	Arg	Phe	Ser	Arg	Leu	Hìs	Gly	Arg	Thr	Pro	Gly	Phe	
	110					115					120					125	
	ttg	cat	tgt	gct	tcc	ttt	gga	gac	ccc	cat	gtg	cgc	agc	ttc	cac	aat	766
50				Ăla													
			-		130		-	-		135		_			140		
	cac	ttt	cac	aca	tạc	cgc	gtc	caa	gga	gct	taa	ccc	cta	cta	gat	aac	814
				Thr													
55				145	-				150		-			155	_		
	gac	ttc	ctc	ttt	gtc	caa	gcc	acc	agc	tcc	ccg	gta	gca	tcg	gga	gcc	862

	_		160	Phe cont.	•	Gln	Ala	Thr 165	Ser	Ser	Pro	Val	Ala 170	Ser	Gly	Ala	
5				acc Thr													910
10				gac Asp													958
15				gaa Glu													1006
20				tcc Ser 225													1054
20				tac Tyr													1102
25				ttc Phe													.1150
30				cag Gln													1198
35				tct Ser													1246
40				aga Arg 305													1294
10				tcc Ser													1342
45				gca Ala													1390
50		Āsp	_	gag Glu		_					_	_					1438
55				gcc Ala		Cys											1486
	ctg	tgg	ttt	tgc	att	cag	taa	gta	ggcc	agc	aacc	cgtg	ac t	agtt	tgga	a	1537

Leu Trp Phe Cys Ile Gln * 385 FIGURE 29 (cont.)

5	acggtttgag	gagagaggtt	gatgtgagaa	aacacaaaga	tgtgccaaag	gaaacagtgg	1597
		caacgacctt					1657
	ctagaataaa	gattctgaga	cagggttttg	cactccagac	cttggtatgg	gctccccatg	1717
		ttagtgattt					1777
		aggctagaga					1837
10		aaggcagaaa					1897
		tgggaattta					1957
		cccagetect					2010

FIGURE 30

5	tctagcgaac cccttcgtgg ggattaaggt tctctatagc taagcctgtc nga atg Met 1	56
10	aca aca ccc aga gat ctc acc tgg ggt ggt ggg agc act ctc tgt ctt Thr Thr Pro Arg Asp Leu Thr Trp Gly Gly Gly Ser Thr Leu Cys Leu 5 10 15	104
15	gag gga aca tgt acc tac tct ctc ctt cca caa gag cca cat aca ctt Glu Gly Thr Cys Thr Tyr Ser Leu Leu Pro Gln Glu Pro His Thr Leu 20 25 30	152
20	aga agt tcc agt gaa gat cta tgt gct tca gaa gag agg gga ctt gga Arg Ser Ser Ser Glu Asp Leu Cys Ala Ser Glu Glu Arg Gly Leu Gly 35 40 45	200
20	ggt gaa agg ggg agt ggg ggg gct tga ggacctanct gaaagatttt Gly Glu Arg Gly Ser Gly Arg Gly Ala * 50 55	250
25	angetgaaag aactteettg atteaaagae atatgteagt ngaeceaaca atgagaatga atatgaggge caggaaaact tgtgggaate agteteaaga engaaaenga gaaagaaaga aaagtggnta ggaeteanat tggggaaeet gggtagaeag gagtggenag ggaagaaagg gatettgggt tnteeacagt ttgagaeaca teeggngnte gaecetatte eengaageen cannanatgt tgetteeeen tenntnnaat gggeetggng gteetnetee etttneeeng	310 370 430 490 550
30	gacatgaaaa ngtnttctgc nnanataacc cccntctttc ctcccccttn antntgtccc taccnttttg tcccttttn ttttnaaaaa annaaaataa aggggnncnn tnttcccttn	610 670 705

FIGURE 31

5		cccttcgcga a gatttagagg a	tact atg g	at tcc aca		agc ata	60 112
10		ttg aaa aat D Leu Lys Asr 15	Asp Arg V		_		160
15		t aag gaa toa y Lys Glu Ser 30					208
20		a tta ttt act 1 Leu Phe Thi 45	Cys Leu A		taa attccca *	etc .	254
	atggatgacg	cttctaattt c tgacaaaact t tccaaggcat c	ccacgagtt	aagaattctc	cacctctgat	ctcatcgcag	314 374 434
25	ctgtctctag aaagtctaaa ttaacagcca acagatgagt	atttggatcc catatctgat aggtatttga gagtcctaca catgaagg	catteteeta attgeaaaet gacagaggtt atgggaggag	aatatctcac tttctggtca tcaacagcat ggaaggtggc	catgcatgtg aaacattttg tcctggagga tgttgatagg	cagatattct gatgagccat gacacaaagg tattttgaga	494 554 614 674 734
30	tgtctattga aattgtaaca aatttaaaaa	cctttcctct a agtcaagagg a taagctcttg t	gtcatacag aacttattt aagcagaag	ggacattcac ttgataatga tctgtgagaa	agttacctac ctcattgaag aagcaagaag	aaagaaccag atgttttgaa gaattgtttg	794 854 914 968

FIGURE 32

5	cttc cago caaa	tgaa tctg tggg	gt g gta g gtg c g aa et Ly	racat rctgt rggct ra cc	gtco gcaa ccaa a ga	t go ig ct ic to ia aa	gggg gctg c tg n Cy	raaag racto raggo rc tt	tcc caa aca c ac	ccac gato gccc g at	gtg gtg aat c ac	ggtg atag ctcc g ag	tttc ccgt taga c tc	ca c tg t aa t c tt	cacc caac tggc	accetg sactgt gtgtgg gagcag gg cca cp Pro 15	60 120 180 240 290
15				cct Pro													338
20				ctg Leu 35													386
20				ctg Leu													434
25				gag Glu													482
30				gct Ala													530
35				ttt Phe													578
40				cac His 115													626
				caa Gln													674
45				gtg Val													722
50				gac Asp													770
55				cac His													818
	cag	tta	tgt	ctg	tgg	gac	caa	caa	gaa	agc	cag	gtt	tct	tgt	tgg	ttt	866

				195		Asp	Gln	Gln	Glu 200	Ser	Gln	Val	Ser	Cys 205	Trp	Phe	
	FIGU	JRE :	32 (0	cont.	.)								·				
5															tcc Ser		914
10															tca Ser	aag Lys ·	962
15			gtc Val		Ala		tag *	gaat	tgaa	aca ç	gaaca	agttt	c ct	gatt	gaat	:	1013
20	tcca	actaa	atc t	ggat	tttt	g tt	ccc	tggt	gto		catc	actt	taat	tt q		cctct gaaaaa	1073 1133 1183

FIGURE 33

5	tctagcgaac	cccttcgcgc	aagatggccg	cttcccagac	cgctccgcgg	catcttcaag	60
		agaacgtgca					120
	agcctaccct	tcctaggagt	tggaggaggg	aaagctagat	tcgattaaga	gcaaaaaatt	180
	gttccagcag	cagagcagct	gtccaaggaa	gtatccaaag	gaactgcacc	tcagtaaact	240
	cctggcaagt	cttaggatat	gacaaagggc	acaggatgca	ttatgagaaa	ggaaggctaa	300
10	ggttttcaag	aacacagatt	tacatcaaac	ttgcgttctg	aattaatctt	tgagaatact	360
	ggactgtgag	ctagacattg	agtaagaggt	ttgttatatc	aagaatgtga	tctaaaaaaa	420
	aaacattcat	atcttcctcc	cacaagagga	tattttgaaa	ctgtgggtca	aagtcagact	480
	acaggagagc	cctcaaatat	gccaaatgtg	acagacagca	ggattttgaa	aatatagtgg	540
	gagtatgtga	agatgttcca	gtcaaagaga	cattgtttcc	aaaggaaaga	aagtccagtc	600
15	gcctcacagg	aattgtgtat	tccctggtag	taatgcaaat	ggaccacata	tggctttctt	660
	ctttaaagag	aatacctaat	tttagctaca	gagtaaaatg	ctgatgatac	aaaccgtgac	720
	aagtggaggg	acaagaaagt	aaatggactg	atggtgccat	tgtggactgg	gagggtaaaa	780
	gctgtacatt	tgtgaacaaa	aagatttcct	tgttatggtc	agccatgatt	ctaactgcta	840
	aatggaggca	gtaacaacat	gacctaaaga	gtaaacatcc	agagatggaa	tgttctcaat	900
20	gtctgaaaag	gagcagatat	ctggtgtatg	tgaatgtatg	ctagagattt	tttacaagcc	960
	tgtggtgaat	tagtaattgt	attttattt	gaaagttaaa	caggtaatta	gaaaccccaa	1020
	222222222	aataaaaaaa	aageggeege	C			1051

FIGURE 34

5	tctagcgaac	cccttcgctg	aaaccaccgt	tcacacggga	aacctgggtt	aggcttttgt	60
	cctcagtgac	acagaggatg	tagtccacag	ctaggtagaa	atgtcaggtt	cccaacacta	120
	ctccagctgt	gactttgatg	cttgggggat	ggggtcgcag	gctattttct	ctgctttaac	180
	agttcataga	atttaacaga	taagagttag	tgtctttcat	gtggcctcac	tctggagtta	240
	tgagaacata	cacacggttt	acagcttttc	aatatncctt	tccctggcca	tcaagtattt	300
10	tgaaagtgtg	ccacctttta	acctttgcgc	tttattttt	tttcttttt	taaagntgaa	360
	ggtgataatt	cttctatata	tgatgaaact	caatgtctac	tgaaataagt	gtaaccttag	420
	ctatncacgt	ttatntttta	aaaccacgct	atggagatat	taccccgagt	tctgtcnttt	480
	ngcaagattt	acagnacctt	cccnccccc	cttttagcat	tnaataaaaa	natattgggg	540
	agcncnntna	aaaaaaaaa	aatnaanaaa	agcggc			576
15							

47/59

FIGURE 35

5	gtt	gcto	gca g	gcato	cccc	ca to	gtct	tgto	: tga	aggto	jtcc	tgto	gacto aca	ga d gaa	ctctt agt	etccgt ccagaa gtg Val 5	60 120 17 5
10															gaa Glu 20		223
15															cag Gln		271
20															ctg Leu		319
25															gag Glu		367
30															cag Gln		415
															gaa Glu 100		463
35															aac Asn		511
40															ttc Phe		559
45	_			ctt Leu	_					a							587

50

FIGURE 36

5	tctagcgaac	cccttcggtt	ctgttggcta	cacagetgea	gagccatggc	tgaccgttca	60
	ctgtcagggg	cacatgttac	actaagcttc	atgacagtga	tgtaataatg	ttacacattt	120
	gtcttgtagt	tatgtattga	agtttctgtc	ctgttttgtg	taaaaatgta	tccactcttg	180
	tatatattta	gacttgaaac	taccacacaa	atattggaac	ggtttgcttt	atgaagttaa	240
	aagtatcctt	ccgaatggaa	ctaacttgct	ttgtgctcag	acatatacta	tgctgatgta	300
10	ttttgcaata	tactatctta	aattaaatct	ggtcactttg	ttgccttttt	aaaaagtgtg	360
	gtatttcaag	tagagttatt	ttcctgaaat	atatttgcaa	actcaagctg	ctttataatc	420
	aaggaatatt	tttattgatt	gaagaaaatg	actgctgcaa	ttcaaaagtg	aacttatttt	480
	attatataga	tgatttctta	aaagctattt	ataccatgat	acaaaatcat	gtagtgatcc	540
	_	tagttcttcc	-	_			600
15	ccaacactga	agttattttg	ggtgaaaacc	gtcgttctgn	cctgtttagc	tggggattat	660
	taaatccata	taatgtatgt	gcttatgtat	gctacatgtg	caagttaggt	gtttcctttg	720
	tgttctgctt	attaaatgtc	attcagattc	acttcctgaa	ttctaataaa	gagggaagct	780
	attogaaaaa	ataaaaaaaa	222222222	acaaccacc			819

FIGURE 37

-							
5		cccttcggtg					60
		gcagcagcgc					120
		ttttttgtgt		_	-		180
		ctatggaggc					240
		ccaatctgag					300
10	tgctcttaac	tatcaggcca	cctctccagc	actattttat	tttattttat	ttgtggagat	360
	agggtctctc	tctctgtatc	ctagtctaac	ttaaaacata	aagaatattc	tgtatcagta	420
	tccttgagta	ctaggattct	aggcacctgt	cattatgcct	agatttttaa	cagtgtgtgt	480
	taattctaca	taaaaatgaa	tttcattatt	acattttcac	acttgtgaag	aatatacttt	540
	gatcatattc	ccttctcctg	atacttttc	ctatccttcc	tccccactcc	attagttccc	600
15	ttcttctttt	cagagtctac	cttctacttt	ttactttgat	ttttttcccc	ccacattctg	660
	tggttgagag	aatgcatatt	acagttgtat	ttctgaatct	ggctaggtac	attcacttaa	720
	cataattaat	gatcctgggc	gagcgaaggg	gttcncctan	cnaacccctt	cggttcaata	780
	ccatttcaga	gatgggcatt	tccctcaatg	aaatacacaa	gtaaacattc	cgacattgtc	840
	tttaggagtg	tttgttaaaa	aaaaaaaaa	aaaaaaccan	ancccaaaan	caaaaaaaa	900
20	aaagctttgc	accttgcaaa	agtggtcctg	gcgtgggtag	attgctgtta	atcctttatc	960
	aataacgttc	tatagagaat	atataaatat	atatataatt	atatctccta	gtccctgcct	1020
	cttaagagcc	gaaaatgcat	gggtgttgta	gacattcggt	tgcactaaat	tectetetga	1080
	attttggctg	ctgaagccgt	tcatttagca	actgtttata	ggtggttgat	gaatggttcc	1140
	ttatctccat	ttcttcctat	gtagcttaag	ccgcttcctt	cacagaatct	aataatctcg	1200
25	tctaggccat	tagccctgcc	ctttcttaac	attcttgtat	ttgttgaatt	tggcctcctc	1260
	gaaagcaata	gcaactgggt	ggcccaccca	agttttaacg	cccctgattc	catctatggc	1320
	atttgtacca	aatataagtt	ggatgcattt	attttagaca	caaagcttta	ttttttcgac	1380
	atcgtgtttc	aagaaaaaaa	acaaatagaa	taacaataac	tatgactttg	aggccaatca	1440
		tgtgtttgaa					1500
30		tatgtaacgt					1560
		gcactatgta					1620
	_	aaaaaaaaa	_				1648

FIGURE 38

5	cccactgcat	gctgcagca	a ggcagtcca	g tgtggaggtc	cacggtcggt ggctggatac atcaatctgc tcactgagta	60 120
	caaaagtagt	gtggagcag	g cactcctgc	ccatgaaggt	getettgage tegetgetee ecacetgete ttteteaget	180 240
10	ctgccgcttg	tgtgtccgg	a agtgcttgg		tca tca agc cat cta Ser Ser Ser His Leu 5	294
15					cct ctt ata cca ata Pro Leu Ile Pro Ile 20	342
20		Met Leu			ata tac aca ttc agt Ile Tyr Thr Phe Ser 35	390
20				ctg ctt acc Leu Leu Thr	taa ttagaataaa *	436
25	gagataacca gatggaaaat gtccgcattt	gaaaccttt aataatcta tgnatactg	c aagtttta t ttttggata g atagacaca	a ctcttggtaa a ttcaaggacc c acacaggtag	gttaggttaa tggntgccaa tttaaaatca aactgaaata cttcagtatc tggggctggg gatanggtaa atnaactact aggtngnggt ttcctaaaat	496 556 616 676
30				а аааааааааа		782

FIGURE 39

5	acco ccct taaa	agat ggtç gctc	tt d gaa t	cttca cgato aggaa	agcca gccta ataga	aa aa ac aa aa at	agtct agact tcct	caga ctto gaag	a cto ago g gga	gagaa gccco acaga	acg ccgt atta	gtto gago tago	ctcgg cagag aacag	gag a gga d gac a	aagca ctata agtca	tgtcc attcga atcttc agttcc gag	60 120 180 240 290
10				Met 1	: Glu	ı Ile	e Asr	ı Glu 5	ı Lys	s Lev	ı Ala	a Asp	P Ala 10		s Sei	Glu	
15															aaa Lys		338
20		_	_				_	_		_			_		gaa Glu		386
	_	_	-					_	_						gaa Glu 60	_	434
25	_		_	tta Leu 65	_	_					ttg	ctaa	ctt a	aaag	gttta	aa	484
30	aaat	caaac	ett 1	tgtai	ttc	tt ca	annnı	nnai	וחת ה	nnanı	nntn	nnn	nagc	ggc	cgcc		538

FIGURE 40

5	tctagcgaac	cccttcgcga	aggggttcgc	ttcttaccct	gtggagaaag	gggcaggagg	60
	aacctcctgt	gttaggagga	agctggagct	taccactgtg	agaggacaga	tgtggactga	120
	gaattttctt	agtgctcagt	ggcacttccc	aaggactccc	ctccccttgt	gctctgtgcg	180
	gtttttagga	cagctaagat	gactgccacc	tgttgtggca	ggcccgattt	gtcttgttct	240
	ccccttactg	taccccgata	taatctctgt	tgatcaacag	gactacccca	agaatccaca	300
10	tgttctcccc	cgtaaccagg	cagctgtctg	gttcatgcct	tcttcccttc	aaacccaacc	360
	cagcgccctt	gttagtgaag	aggtggtcca	tggactgatg	acaagttatt	agcactggat	420
			cctatacctc				480
	gcttcagtat	cctcccagct	cagttttatt	agatcaaagc	tgcccttggg	caccatgttg	540
	gccacctcaa	tcaccagcca	aaatggtcgc	tttgtccacc	agaggtcaag	ccatctttct	600
15	ggcgctgtag	ttcccagctc	cttctaggga	acaggaagtt	gatattgcca	tgggggaggt	660
	ggcggggtgt	ggccgtcacc	tcaatagttt	tactgtaaaa	gggaaatttg	aacaagaaca	720
	acaacaaaaa	aaaaaaaaa	acaaagaaaa	aaataaaaaa	ctttaaaagt	tgaaaaaaaa	780
		aaaaaaaqcq					805

FIGURE 41

5	tcta ctgt	gggd	aac d ctc i	ccctt	eget agege	g gg et gt	gacco :ggct	egcaa aac	atg	gca	ccc	aaa	aag	aag	ectac act Thr		60 113
10				aaa Lys												gac Asp	161
15				aac Asn													209
20				agc Ser													257
25				ctg Leu 60													305
23				gtc Val													353
30				gct Ala													. 401
35				aaa Lys							tat	cgnc	ect '	ttag	ggct	ac	451
40	cate tete etge	catti gatco cttga cgaci	tct cga aaa tcc	gctgo gagat aatgo gaaco	ctgte tcag cgaaa aatt	gt acting the desired controls the desired controls to the desired control to the desired cont	cete tgaga aacga gaaga	cagat aacto geeeo etga	t cca g ca a ga c gt	acac tgta aatt ttga	tctt tgtt tatc acag	gtg gtt cgg att	aaga aaca gata aatg	tgt tgg act agc	gcage ctga: tcat ttct	aggaag cgactt aacata tgaatt cataga gataga	511 571 631 691 751 811
45	atte cate tga cace	caac ctct ttgt gttg	caa gca cat caa	aaga caaga aaaci tcta	gagte accte tgct ^e ggcge	ga ac gg to tg to ga co	gcac caat ggat aaga	gctgo tacgi gctai attao	c gg t tc t ga g ag	atct aaac acta gcgg	ttta cgta ccac ctgc	agc ccg tta cgg	aata agaa ctac gttc	ttc tga ctt tga	gctt tgca atca tcac	tggtac agacgc tcaaaa tgtcgg cctgaa	871 931 991 1051 1111
50	aat atg aag ggg	ggate gatge catge cage	gga gat cag atg	gcaa tcct tcag	gctt: ttat: caat: agaa:	ac ac gt ac tt co gc gc	gaaa gcag tgca tacg	tgcci gtgg ggta cact	a gc t ga c cg t ca	caag ggac atcc gcct	agtt caga ccgc gagc	tca atg ttc gtg	atca atgc aaca ttca	gtg gag cgt acg	tgtg aaac ggat ggct	gctgtg caagcc ccacct cctgta	1171 1231 1291 1351 1407

FIGURE 42

5	totagogaac coettoggac actgocagoa tagacagoag cocotgotac tgtoccacca ctgtaccoca gagococogac tagoagt atg cog gga gog coa ggg cot ggg cot Met Pro Gly Ala Pro Gly Pro Gly Pro 1 5	60 114
10	gag gtg gct gca gcc ttt gag gaa cgg ttg agt cag gca cta cag gaa Glu Val Ala Ala Ala Phe Glu Glu Arg Leu Ser Gln Ala Leu Gln Glu 10 15 20 25	162
15	ctg cag gca gtg gct gaa gca ggc cgg tca gcg gtg acc cag gca gct Leu Gln Ala Val Ala Glu Ala Gly Arg Ser Ala Val Thr Gln Ala Ala 30 35 40	210
20	gat gca gcc cta gcc act gta gag cca gtg gct cag gca tct gaa gag Asp Ala Ala Leu Ala Thr Val Glu Pro Val Ala Gln Ala Ser Glu Glu 45 50 55	258
25	ctt cgg gcc gag aca gcc ctg agc cgg cgg ctg gat gcc ctg acc Leu Arg Ala Glu Thr Ala Ala Leu Ser Arg Arg Leu Asp Ala Leu Thr 60 65 70	306
	agg cag gtg gag gtg ctg agc cta cgg ctg ggt gtt cca ctc gtg ccg Arg Gln Val Glu Val Leu Ser Leu Arg Leu Gly Val Pro Leu Val Pro 75 80 85	354
30	gac ctg gag tcc gag cta gag ccc agc gag ctg ttg ctg gct gcc Asp Leu Glu Ser Glu Leu Glu Pro Ser Glu Leu Leu Leu Ala Ala 90 95 100 105	402
35	gac cet gag gee etc tte eag gea age tga ggatgetggg acceeegtgg Asp Pro Glu Ala Leu Phe Gln Ala Ser * 110	452
40	ccaccegcet geetttagea ecegeegeag etettetgeg ggeeeetete gaageageag teteatggag ecegateeag eagageece etetgeeaea gtggaageag etaatggaae agageagaet etggaeaaag tgaacaaagg eceagagggg eggageece tgagtgeaga ggagetgatg geeattgagg aegaaggaat eetggaeaag atgetggaee aggetaegaa etttgaagag eggaagetea teegggetge geteegtgag eteegaeaa gaaagagaga	512 572 632 692 752
45	ccagagggac aaggaacgag aacggcggct acgagaggca cgggcccggc caggcgagag ccgaagcaat atggctacta cagagaccac caccaggcac aagccagagg gcggctgatg gctcggcggt cagcacagtt accaaaactg agcgggtcgt ccactccaat gacggcacgc agactgcgcg caccaccaca gtggagtcga gtttcgtgag gcgctcggag aatggcagca gcaagcaagc agcagcacca cggtccaaac caagaccttt tcctcttcct cttcctcatc	812 872 932 992 1052
50	caaaaaaatg ggcagtatet tegacegaga ggaceaaace ageteaegtt etggcageet ggeggeeete gaaaaaegee aggeagagaa gaagaaagag eteatgaagg eacagagtet geceaagace taagegteee aageaegeaa ggeeatgatt gagaaaetag agaaggaagg etetteggge agteetggea eaceeegtae ageggtaeag egttetaeea getteggagt	1112 1172 1232 1292 1352
55	ccccaacgcc aacagcatca agcagatgtt gctggactgg tgccgagcca agacccgtgg ctacgagcac gtggacatcc agaacttctc tccagctgga gtgatgggat ggctttctgt gccctggtgc acaatttctt ccctgaggct tttgactatg gacagcttag cccacaaaac cggcgccaga actttgaaat ggccttctca tctgctgaga cccatgcgga ctgcccgcag ctcctggata cagaggacat ggtgcggctt cgagagcctg actggaagtg cgtgtacacg tacatccagg agttctaccg ctgtctggtc cagaaggggc tggtaaaaac caaaaagtcc	1412 1472 1532 1592 1652

	taacccctgc gacatgatga FIGURE 42	ttggggcccc tcatgggcaa (cont.)	acggatgctg aaagccagac	gtggactgtg cctaagtgcg	taccettggt tettcaceta	ggaggtggag cgtgcaatcg	1712 1772
5	ctcacaccgc	acctgcggcg ctgcgctgca gntgcccgtn gntttnaaca	ggctgctgtc tgtcgaaaca	ccacgccccc	aacaccggnc tgtcacacgc	cctncagtgn agngntttga	1832 1892 1952 2004
10							
15							
20							
25							
30							
35							
40							
45							
50							
55							

FIGURE 43

5							ca at	g go	et a	ac ga	aa g	ct a	ac c	ct to	gc co	cattag ca tgt ro Cys 10	60 113
10				cac His													161
15				atc Ile 30													209
20				att Ile													257
25				atg Met													305
23				tct Ser													353
30				tcc Ser				tga *	aato	caag	aaa ⁺	tgaa	agaa	aa a	tcaad	ccgag	407
35	tggg gagg acco	gette egggg caace tgate	ggt gtt gca	ctggg gtctg gttt gaagg	gggggggteta gtcti atcti cttaa	gt a at g ct g aa g	ttgte gtate cagaa aacae	ggtgo catca aaato ctgca	c accar a gad g atcar a tac	cacg gatte gctg gtta	tgat ctga tgat atta	gac aga tcc cca	gacat tgttt actt agtt	tat d tat d gag d aag d	ccaga aatti caggi acati	gcattg aagtca tgaaga tttcta tttctg aaccct	467 527 587 647 707 767
40	acat	ttga	gga		agga	gg a	atcto	catco	g aa	tggc	tgaa	caa	gtata	att ·	taaca	agcact	827 881

FIGURE 44

Regulated expression of Full-length novel clones:

		Kid	ney						Hea	rt							7
Soc ID	CloneID	PKD	Na + Ang2	Hyp 10w	2w		LV &w	12w	16w	2w		Spt 8w	12w	16w			
Sed ID	P00184 D175	<u> </u>	Aligz			4	₹	4				_	¥	8	··		7
	120018510118			•	4	_	_	8	_		_	_	_				
337	P00188-D12		_	₩	8		_	_				_					
£45	P00188_E01	_		_	A	A		A	A		_		_	٨			
77.00	P00194_G01	_		·	Δ	Δ		A	A			_	<u> </u>	_			Ì
267	P00194 G05	_				_	•	A	A								
1372	200194 H10;					A	—		_		_	_		_			
PIET	F00199.1008	_	-		8	8	_	—	\blacksquare			_	_	_			-
1999	P00203/D04	A	A	₩.		A	_		_		_	_	_	_			
10	P00203_E06		_	8	8	∇	₹	V	A				-				1
100	P00209-F06			A	A		•	A	A		_			_			
124	P00219 D02	_					_	A	_		_	_		_			
143%	P00219-F08		_	_	A	A	A		_		_	_		_			
F145	P00220\H05			_	_		_	_	A	A			-				
515 9	P00222_G03		•		_	8	7	8		_	\blacksquare						ļ
160	P002232 F075			8					—		_						į
198	R00225 C01-				_	_	A	A	A		_		A	A			
130	P002276-D111.									·			_	_			
DE.	P002282F08			A	A	_	A	A	A			_		_			1
3203	.P00238919080	-		_	A			A		_							İ
23.0	P00235-608	A	_				_		_		8		A	_			
22	(P00239/CFH)	 -			A	_	_		•	•	_	_	_	_	•		ļ
223	F00240 B04			\$				abla		_	8	_	8	_			
松	150059 E95			4	_		· —		—					_			
125%	•	_	_		_		_	8	-	A	8	. —	•	_			ļ
認認		A	-	-	A	_			· —					_			
1 200	是00246260富			. —			_		-	_	8	_	• 🕸	_			Ì
282	T0024733404				₩	V	V		. 🛦			_		_			
<u>125</u>	P00248#B04F			₩												 	!

Figure 44 (cont.)

[Kid	ney					•	Hea	rt						
			Na+	Нур	Hyp LV							Spt				
Seq ID	CloneID	PKD	Ang2	10w	2w	4w	8w	12w	16w	2w	4w	8w	12w	16w		
REE.	19002492-1909				A	A	A	A	•		A	_		A		
335	FORFIELD			 .		A		Δ	A	<u> </u>		. —	_			
趣廻	P00262 E10				·—-	8		_		_		. —	_		•	
	PODZG NEOG			A				-			_	_		-		
	P00267615088	_		8					_		_		-	_		
题差	P002691 1083			A	_	\blacksquare	_	7	4							
7364	P00312 C04						8	_		_		8		_		
短便	P00324 H02			•		8	A	\blacksquare	_		A	8	∇	4		
287	P006284H02	A	<u>:</u>	_	_		A	₩	4					_		
1891	P00629 608			_	_	8	_	<u> </u>	₩	_						
Mos							•									
	7.7		_	A		٠		_				-	· —	·—		
72																
1489	P00697 C03	₩*		<u> </u>				V	₩							

SEQUENCE LISTING

<110> Scios Inc.

Stanton, Lawrence W. White, Tyler, R.	
<120> SECRETED FACTORS	
<130> SCIOS.017VPC	
<150> US 60/193,548 US (application no. unknown)	
<151> 2000-03-31 2001-03-14	
<160> 70	
<170> FastSEQ for Windows Version 4.0	
<210> 1	
<211> 1340	
<212> DNA	
<213> Rattus norvegicus .	
<220>	
<221> CDS	
<222> (195)(674)	
<400> 1	
	60
geggeegeee etgacacaat ggeteagett atgeeteage geagtteget eeaceceaga	60 120
atggcatect geagaataca eggeeetea teeceateee gegeeagaga caceggeeag	120
atggcatect geagaataca eggeeeetea teeceateee gegeeagaga eaceggeeag	120 180
atggcatect geagaataca eggeeeetea teeceateee gegeeagaga eaceggeeag eccaetgtee eegeeacaca ttaaacttga teeteetaca eagaegeact eggageagag egettataca ageg eac age egt ete egg eac ege eac aca gae aga tga	120
atggcatect geagaataca eggeeeetea teeceateee gegeeagaga eaceggeeag	120 180
atggcatect geagaataca eggeeectea teeccatece gegeeagaga caceggeeag ceeactgtee eegeeacaca ttaaacttga teeteetaca eagacgeact eggageagag egettataca ageg cac age egt ete egg cac ege cac aca gac aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 1 5 10 tge ege eee gac ega egg eea gee eea gac aca ace tte tga aaa cac	120 180
atggcatcot gcagaataca cggcccctca tccccatccc gcgccagaga caccggccag cccactgtcc ccgccacaca ttaaacttga tcctcctaca cagacgcact cggagcagag cgcttataca agcg cac agc cgt ctc cgg cac cgc cac aca gac aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 1 5 10 tgc cgc ccc gac cga cgg cca gcc cca gac aca acc ttc tga aaa cac Cys Arg Pro Asp Arg Arg Pro Ala Pro Asp Thr Thr Phe * Lys His	120 180 230
atggcatcot gcagaataca cggcccctca tccccatccc gcgccagaga caccggccag cccactgtcc ccgccacaca ttaaacttga tcctcctaca cagacgcact cggagcagag cgcttataca agcg cac agc cgt ctc cgg cac cgc cac aca gac aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 1 5 10 tgc cgc ccc gac cga cgg cca gcc cca gac aca acc ttc tga aaa cac Cys Arg Pro Asp Arg Pro Ala Pro Asp Thr Thr Phe * Lys His 15 20 25	120 180 230 278
atggcatcot gcagaataca cggcccctca tccccatccc gcgccagaga caccggccag cccactgtcc ccgccacaca ttaaacttga tcctcctaca cagacgcact cggagcagag cgcttataca agcg cac agc cgt ctc cgg cac cgc cac aca gac aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 1 5 10 tgc cgc ccc gac cga cgg cca gcc cca gac aca acc ttc tga aaa cac Cys Arg Pro Asp Arg Pro Ala Pro Asp Thr Thr Phe * Lys His 15 20 25 aga aaa caa gtc cca gcc caa gcg gct gca tgt gtc caa cat ccc ctt	120 180 230
atggcatcct gcagaataca cggcccctca tccccatccc gcgccagaga caccggccag cccactgtcc ccgccacaca ttaaacttga tcctcctaca cagacgcact cggagcagag cgcttataca agcg cac agc cgt ctc cgg cac cgc cac aca gac aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 1 5 10 tgc cgc ccc gac cga cgg cca gcc cca gac aca acc ttc tga aaa cac Cys Arg Pro Asp Arg Pro Ala Pro Asp Thr Thr Phe * Lys His 15 20 25 aga aaa caa gtc cca gcc caa gcg gct gca tgt gtc caa cat ccc ctt Arg Lys Gln Val Pro Ala Gln Ala Ala Ala Cys Val Gln His Pro Leu	120 180 230 278
atggcatcot gcagaataca cggcccctca tccccatccc gcgccagaga caccggccag cccactgtcc ccgccacaca ttaaacttga tcctcctaca cagacgcact cggagcagag cgcttataca agcg cac agc cgt ctc cgg cac cgc cac aca gac aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 1	120 180 230 278
atggcatcot gcagaataca cggcccctca tccccatccc gcgccagaga caccggccag cccactgtcc ccgccacaca ttaaacttga tcctcctaca cagacgcact cggagcagag cgcttataca agcg cac agc cgt ctc cgg cac cgc cac aca gac aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 1	120 180 230 278
atggcatcot gcagaataca cggcccctca tccccatccc gcgccagaga caccggccag cccactgtcc ccgccacaca ttaaacttga tcctcctaca cagacgcact cggagcagag cgcttataca agcg cac agc cgt ctc cgg cac cgc cac aca gac aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 10 tgc cgc ccc gac cga cgg cca gcc cca gac aca acc ttc tga aaa cac Cys Arg Pro Asp Arg Pro Ala Pro Asp Thr Thr Phe * Lys His 15	120 180 230 278
atggcatect geagaataca eggeeetea teeceatece gegeeagaga caceggeeag eccactgtee eegeeacaca ttaaacttga teeteetaca eagacgeact eggageagag egettataca ageg cac age egt ete egg cac ege cac aca gac aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 1 5 10 tge ege eee ega egg egg eea gee eea gac aca ace tte tga aaa eac eege egg Arg Pro Asp Arg Pro Ala Pro Asp Thr Thr Phe * Lys His 15 20 25 aga aaa eaa gte eea gee eaa geg get gea tgt gte eaa eat eee ett Arg Lys Gln Val Pro Ala Gln Ala Ala Ala Cys Val Gln His Pro Leu 30 35 40 ceg gtt eeg gga tee aga eet eeg aca aat gtt tgg eea att tgg taa Pro Val Pro Gly Ser Arg Pro Pro Thr Asn Val Trp Pro Ile Trp * 45 50 55	120 180 230 278 326
atggcatcct gcagaataca cggcccctca tccccatcc gcgccagaga caccggccag cccactgtcc ccgccacaca ttaaacttga tcctcctaca cagacgcact cggagcagag cgcttataca agcg cac agc cgt ctc cgg cac cgc cac aca gac aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 10 tgc cgc ccc gac cga cgg cca gcc cca gac aca acc ttc tga aaa cac Cys Arg Pro Asp Arg Arg Pro Ala Pro Asp Thr Thr Phe * Lys His 15 20 25 aga aaa caa gtc cca gcc caa gcg gct gca tgt gtc caa cat ccc ctt Arg Lys Gln Val Pro Ala Gln Ala Ala Ala Cys Val Gln His Pro Leu 30 35 40 ccg gtt ccg gga tcc aga cct ccg aca aat gtt tgg cca att tgg taa Pro Val Pro Gly Ser Arg Pro Pro Thr Asn Val Trp Pro Ile Trp * 50 55 aat att aga tgt tga aat tat ttt taa tga gcg ggg ctc gaa ggg att	120 180 230 278
atggcatect geagaataca eggeeetea teeceatece gegeeagaga caceggeeag eccactgtee eegeeacaca ttaaacttga teeteetaca eagacgeact eggageagag egettataca ageg cac age egt ete egg cac ege cac aca gac aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 1 5 10 tge ege eee ega egg egg eea gee eea gac aca ace tte tga aaa eac eege egg Arg Pro Asp Arg Pro Ala Pro Asp Thr Thr Phe * Lys His 15 20 25 aga aaa eaa gte eea gee eaa geg get gea tgt gte eaa eat eee ett Arg Lys Gln Val Pro Ala Gln Ala Ala Ala Cys Val Gln His Pro Leu 30 35 40 ceg gtt eeg gga tee aga eet eeg aca aat gtt tgg eea att tgg taa Pro Val Pro Gly Ser Arg Pro Pro Thr Asn Val Trp Pro Ile Trp * 45 50 55	120 180 230 278 326
atggcatect geagaataea eggeeetea teeceateee gegeeagaga caceggeeag eceaetgtee eegeeacaea ttaaaettga teeteetaea eagaegaet eggageagag egettataea ageg eae age egt ete egg eae ege eae aca gae aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 1	120 180 230 278 326
atggcatect geagaataea eggeeectea teeccatece gegeeagaga caceggeeag eccactgtee eegeeacaea ttaaacttga teeteetaea cagaegeact eggageagag egettataea ageg eac age egt ete egg eac ege eac aca gac aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 1	120 180 230 278 326 374
atggcatect geagaataea eggeeetea teeceateee gegeeagaga caceggeeag eceaetgtee eegeeacaea ttaaaettga teeteetaea eagaegaet eggageagag egettataea ageg eae age egt ete egg eae ege eae aca gae aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 1	120 180 230 278 326 374
atggcatect geagaataea eggeeeetea teeceateee gegeeagaga caceggeeag eccaetgtee eegeeacaea ttaaacttga teeteetaea cagacgeact eggageagag egettataea agee eac age egt ete egg eac ege cac aca gac aga tga His Ser Arg Leu Arg His Arg His Thr Asp Arg * 1	120 180 230 278 326 374

Glu Ile Ala Arg	Tyr Arg Gly 90	Arg Gly Pro * 95	Asn Arg Gly * *										
tgc gac agc acg of Cys Asp Ser Thr 2			cgt gaa ccc cta cac Arg Glu Pro Leu His 110	566									
caa tgg ctg gaa Gln Trp Leu Glu 1 115	att aaa tcc Ile Lys Ser	agt tgt ggg cgc Ser Cys Gly Arg 120	ggt cta cag ccc cga Gly Leu Gln Pro Arg 125	614									
			caa cca gga ggg atc Gln Pro Gly Gly Ile 140	662									
ttc cat gta cag Phe His Val Gln 145	tggccccagt t	cacttgtat atactt	ctgc aatgeetgge	714									
tttccatatc cggccgccac tgctgcagct gcataccgag gggctcacct tcgaggccgt ggtcgcaccg tgtacaacac cttcagagct gcggcgccc caccccaat cccggcctat ggcggagtag tgtatcaaga gccagtgtat ggcaataaat tgctacaggg tggttacgct gcataccgct acgcccagcc cacccctgcc actgctgctg cctacagtga cagttacgga cgagtttatg ctgccgaccc ctaccaccac acacttgctc cagccccac ctaccggcgtt ggtgccatga atgcttttgc gcccttgacc gatgccaaga ctaggagcca tgctgatgat gtgggtccg ttcttcttc attgcaggct agtatatacc aagggggata caaccgtttt gctccatatt aaatgataaa accattaaac aaacaagcaa aaaacaaaac													
1	5	10	Cys Arg Pro Asp Arg 15										
Arg Pro Ala Pro 20	Asp Thr Thr	Phe Lys His Arg 25	Lys Gln Val Pro Ala 30										
	Cys Val Gln		Val Pro Gly Ser Arg 45										
	Val Trp Pro	'	Arg Cys Asn Tyr Phe										
		Phe Arg Asn Phe	Arg Lys Cys Gly Cys										
	· -		Gly Arg Gly Pro Asn 95										
Arg Gly Cys Asp		• •	Arg Glu Pro Leu His										
Gln Trp Leu Glu	Ile Lys Ser	Ser Cys Gly Arg	Gly Leu Gln Pro Arg										
115	_	120	125										
115 Leu Leu Cys Arg 130		120 Val Val Pro Gly	125 Gln Pro Gly Gly Ile 140										

<212	> 86 > DN	IA	nor	vegi	.cus											
	.> CE		(7	196)												
<222	?> (1	.)	eatu (867 T,C		;											
ttgg	gega acto gect	cac t	gcag	gact ccct	g to	gcago igcgt	ggaac ctgc	cad g tga	ctgto aaato cc at Me	ccaa cccg cg gt	gcat cago t go	egge egtet ea ac	gct a ag g ag gg	ataq gaaa gc ag Ly Se	gaagcc gggggc ggatcc gt ttg er Leu	60 120 180 235
					gcc Ala											283
					cta Leu											331
					aac Asn 45											379
					ttg Leu											427
					aag Lys											475
					ctg Leu											523
					cac His											571
					gtg Val 125											619
					aag Lys											667
gac	ttc	ttc	ttt	agc	gga	ggt	cgc	ttc	tcg	tcg	ggc	ctt	aag	cga	act	715

```
Asp Phe Phe Phe Ser Gly Gly Arg Phe Ser Ser Gly Leu Lys Arg Thr
            155
                                160
ctg atc ctc agc tcg gga ttt cga ctt gtt aag aaa aaa ctg tac tct
                                                                      763
Leu Ile Leu Ser Ser Gly Phe Arg Leu Val Lys Lys Leu Tyr Ser
        170
                            175
ctg att gga acg aca gtc att gag gag tgc tga ggaggaaaaa acaattaaag
                                                                      816
Leu Ile Gly Thr Thr Val Ile Glu Glu Cys *
    185
                        190
gtccctaatg agtggctaac aaaaanaaaa nnnnnnnnn nnnnngcggn c
                                                                      867
<210> 4
<211> 193
<212> PRT
<213> Rattus norvegicus
<400> 4
Met Val Ala Thr Gly Ser Leu Ser Ser Lys Asn Thr Ala Ser Ile Ser
1
Glu Leu Leu Asp Gly Gly Ser His Pro Gly Ser Leu Leu Ser Asp Phe
Asp Tyr Trp Asp Tyr Val Val Pro Glu Pro Asn Leu Asn Glu Val Val
Phe Glu Glu Thr Thr Cys Gln Asn Leu Val Lys Met Leu Glu Asn Cys
Leu Ser Lys Ser Lys Gln Thr Lys Leu Gly Cys Ser Lys Val Leu Val
Pro Glu Lys Leu Thr Gln Arg Ile Ala Gln Asp Val Leu Arg Leu Ser
Ser Thr Glu Pro Cys Gly Leu Arg Gly Cys Val Met His Val Asn Leu
                                105
Glu Ile Glu Asn Val Cys Lys Lys Leu Asp Arg Ile Val Cys Asp Ala
                            120
Ser Val Val Pro Thr Phe Glu Leu Thr Leu Val Phe Lys Gln Glu Ser
                        135
                                            140
Cys Ser Trp Thr Ser Leu Lys Asp Phe Phe Phe Ser Gly Gly Arg Phe
                    150
                                        155
Ser Ser Gly Leu Lys Arg Thr Leu Ile Leu Ser Ser Gly Phe Arg Leu
                                    170
                165
Val Lys Lys Leu Tyr Ser Leu Ile Gly Thr Thr Val Ile Glu Glu
            180
                                185
Cys
<210> 5
<211> 874
<212> DNA
<213> Rattus norvegicus
<220>
<221> CDS
<222> (42)...(752)
<400> 5
tctagcgaac cccttcggtg gacagaacag cctgagtcag g atg aaa gct ctc agg
```

Met Lys Ala Leu Arg

						_	-		•	
		atc Ile 10								104
		ggc Gly								152
		gat Asp								200
		atg Met								248
		tgc Cys								296
		tcc Ser 90								344
		gac Asp								392
		cag Gln								440
		tgc Cys								488
		cac His								536
		aga Arg 170								584.
		act Thr								632
		aac Asn								680
		ttt Phe								728

```
agt ctg tgg gca tca ggg gcc taa agactcgtcc tcccccaacc aggacccttc
                                                                      782
Ser Leu Trp Ala Ser Gly Ala *
230
agcettteet ceetgacaac cagetteaga gaataaactt gaatgtettt tgeeatetaa
                                                                      842
aaaaaaaaa aaaaaaaaa aaagcggccg cc
                                                                      874
<210> 6
<211> 236
<212> PRT
<213> Rattus norvegicus
<400> 6
Met Lys Ala Leu Arg Ala Val Leu Leu Ile Leu Leu Ser Gly Gln
Pro Gly Ser Ser Trp Ala Gln Glu Ala Gly Asp Val Asp Leu Glu Leu
                                25
Glu Arg Tyr Ser Tyr Asp Asp Asp Gly Asp Asp Asp Asp Asp Asp Asp
                            40
Glu Glu Glu Glu Glu Glu Thr Asn Met Ile Pro Gly Ser Arg Asp
                        55
Arg Ala Pro Pro Leu Gln Cys Tyr Phe Cys Gln Val Leu His Ser Gly
                    70
Glu Ser Cys Asn Glu Thr Gln Arg Cys Ser Ser Ser Lys Pro Phe Cys
Ile Thr Val Ile Ser His Gly Lys Thr Asp Thr Gly Val Leu Thr Thr
                                105
Tyr Ser Met Trp Cys Thr Asp Thr Cys Gln Pro Ile Val Lys Thr Val
                            120
Asp Ser Thr Gln Met Thr Gln Thr Cys Cys Gln Ser Thr Leu Cys Asn
                        135
                                            140
Ile Pro Pro Trp Gln Ser Pro Gln Ile His Asn Pro Leu Gly Gly Arg
                    150
                                         155
Ala Asp Ser Pro Leu Lys Gly Gly Thr Arg His Pro Gln Gly Asp Arg
                165
                                    170
Phe Ser His Pro Gln Val Val Lys Val Thr His Pro Gln Ser Asp Gly
                                185
Ala His Leu Ser Lys Gly Gly Lys Ala Asn Gln Pro Gln Gly Asn Gly
                            200
Ala Gly Phe Pro Ala Gly Trp Ser Lys Phe Gly Asn Val Val Leu Leu
                        215
                                            220
Leu Thr Phe Leu Thr Ser Leu Trp Ala Ser Gly Ala
225
                    230
                                         235
<210> 7
<211> 817
<212> DNA
<213> Rattus norvegicus
<220>
<221> CDS
<222> (135)...(320)
<221> misc_feature
<222> (1)...(817)
<223> n = A, T, C or G
<400> 7
```

tctagcgaac cccttcgagc gaaccccttc ggccagtacc ctgagccctg gtccctcctg gagctgcccc acagctctga ctgtggactg agggatgtta ggcggatcac ctgagcctcc agaggctcac acta atg agc ggg cgc tct ctt ctt agc cac tgt tgc att Met Ser Gly Arg Ser Leu Leu Ser His Cys Cys Ile 1 5 10	60 120 170
tgg ttt tca ttg act cct ggg cct cgt ttg agt gac act gtc ctt gtc Trp Phe Ser Leu Thr Pro Gly Pro Arg Leu Ser Asp Thr Val Leu Val 15 20 25	218.
ttt tgt ttc aga gct ctc cca gtg tta gtg gac tca gat gag gaa att Phe Cys Phe Arg Ala Leu Pro Val Leu Val Asp Ser Asp Glu Glu Ile 30 35 40	266
atg acc aga tct gaa ata gct gaa aaa atg ttc tct tca gaa aag ata Met Thr Arg Ser Glu Ile Ala Glu Lys Met Phe Ser Ser Glu Lys Ile 45 50 55 60	314
atg tga tcagggcccc agtgggtcca gtgtgcatgg gagcgcggtc aggtgatggg Met *	370
aaaggcctgg ctctcgtcaa aactgacagc tgcgctatga tacatgtctc actttgttgt cttggagatc tgtgtatgca ggtgaagaac tcaagtgtgg gagggtctgc cgcctcagaa agccatcttt gaaacggact cataaagtca gttttgttgc cattaagttg cctgattttg gaaacaattt aagaagtgtt aaagacatgt gttcagatgc ctcttaggcg gcagccacag gcatgccagg ttgtgtccct cagttttctc cagacaaaaag aatctgcagc tgggcgtggc ggcacactac tggcagttga aagtctgtaa tttcaaggcc aagcctggtc tacatagttc caggacaaca agagagatct acatagtgag accctgcctc aaaacacaga aaccnnanna naaaaaaaaa cggccgc <210> 8 <211> 61 <212> PRT <213> Rattus norvegicus	430 490 550 610 670 730 790 817
<400> 8 Met Ser Gly Arg Ser Leu Leu Ser His Cys Cys Ile Trp Phe Ser Leu	
1 5 10 15 Thr Pro Gly Pro Arg Leu Ser Asp Thr Val Leu Val Phe Cys Phe Arg 20 25 30	
Ala Leu Pro Val Leu Val Asp Ser Asp Glu Glu Ile Met Thr Arg Ser 35 40 45 Glu Ile Ala Glu Lys Met Phe Ser Ser Glu Lys Ile Met 50 55 60	
<210> 9 <211> 755 <212> DNA <213> Rattus norvegicus	
<220> <221> CDS <222> (139)(378)	
<221> misc_feature <222> (1)(755) <223> n = A,T,C or G	

<400> 9				
tctagcgaac cccttcgc atgaggctgg ttactcag cctggagtag ggcccagg	ca ggagtagc , atg cag gt	tg agctgagctg g cta atg tct	gccctggagg d	ecctggagge 120 gct ctt 171
ctt ccc gac tct acc Leu Pro Asp Ser Thr 15				
ccg tac caa aag act Pro Tyr Gln Lys Thr 30		r Val Ser Thr		
ctt cgt aaa cag tgt Leu Arg Lys Gln Cys 45				
ttg cag tcc att ggc Leu Gln Ser Ile Gly 60			Leu Ile Thr	
aac ccc agc cct tga Asn Pro Ser Pro *	ı gaggtagaag	caagaggatc a	igaggttcaa gco	gcatcctc 418
ggctccatca caagttca aaaaaaaaaa agcaaaga ggagaaaata ctaaagca atctgctcat atatattt gctttgctcc cgatcaac ttttaaaaaa aaaaaaaa	aaa gcaaagga ccc actgagct ctt acaaaaaa cat gatttgca	ct cgatgacato gc cagccaggto tg aaattcatat cg tttttccat	g atttatagac a g tetgtgacta d : tggtegetat t	aaaagcagtg 538 caggtetttt 598 cttgetgget 658
<210> 10 <211> 79 <212> PRT <213> Rattus norveg	jicus			
<400> 10				
Met Gln Val Leu Met 1 5	: Ser Ile Pr	o Gly Ala Lei 10	ı Leu Pro Asp	Ser Thr 15
Met Gly Cys Asn Ser 20	: Arg Ser Pr	o Cys His Leu 25	Pro Tyr Gln	Lys Thr
Val Ala Ser Val Ser 35	Thr Gln Ly		Leu Arg Lys 45	Gln Cys
Leu Lys Pro Asp Ser				Ile Gly
Phe Leu Ala Gln Lys		e Thr Gln Val. 75		Pro
<210> 11 <211> 806 <212> DNA <213> Rattus norveg	gicus			

8

<220>

```
<221> CDS
<222> (68)...(346)
<221> misc feature
<222> (1)...(806)
<223> n = A, T, C or G
<400> 11
tctagcgaac cccttcgcag ctctctgacc tgcgtcgccg ccgctctccg ctcttgattt
                                                                       60
cgccgtg atg tcg acc gca atg aac ttc ggg acc aaa agc ttc cag ccg
                                                                      109.
        Met Ser Thr Ala Met Asn Phe Gly Thr Lys Ser Phe Gln Pro
         1
cgg ccc cca gac aaa ggc agc ttc ccg cta gac cac ttc ggt gag tgt
                                                                      157
Arg Pro Pro Asp Lys Gly Ser Phe Pro Leu Asp His Phe Gly Glu Cys
15
                     20
aaá agc ttt aag gaa aaa ttc atg aag tgt ctc cgc gac aag aac tat
                                                                      205
Lys Ser Phe Lys Glu Lys Phe Met Lys Cys Leu Arg Asp Lys Asn Tyr
                 35
                                      40
gaa aat gct ctg tgc aga aat gaa tct aaa gag tat tta atg tgc agg
                                                                      253
Glu Asn Ala Leu Cys Arg Asn Glu Ser Lys Glu Tyr Leu Met Cys Arg
             50
atg caa agg cag ctg atg gca cca gaa cca cta gag aaa ctc ggc ttt
                                                                      301
Met Gln Arg Gln Leu Met Ala Pro Glu Pro Leu Glu Lys Leu Gly Phe
         65
                             70
                                                  75
aga gac ata atg gag gag aaa ccg gag gca aag gac aaa tgt tga
                                                                      346
Arg Asp Ile Met Glu Glu Lys Pro Glu Ala Lys Asp Lys Cys
     80
                         85
gaatcactgg gctgtgtccc cctacctgga gcagagctga gcccttctgc ccaccgtgga
                                                                      406
gagagetgag ceatectgtg etgeecagag gaggggetet eegtgtegae tttggeteat
                                                                      466
ccctgcagca cagaccaaac tgctttctct actgaccaca cttctgcttc agagagnggt
                                                                      526
ttctcctgtc tgngtgtggc acaggatctg ctcanggctg aacactgatg tgatatgata
                                                                      586
tcccacctag tgtggccgca caccaaaagg cctggacagg atttcacagt gactcaacct
                                                                      646
gagtecteae acceggaace tgteagegaa aaccaanega agcaaaatgn etggettttg
                                                                      706
gettacaaac eccatnattt gnttteeett etettgggte tttgttttga caaanetgge
                                                                      766
                                                                      806
atacaaagtn ggaagggga aataaaaaaa aaaaaaaaa
<210> 12
<211> 717
<212> DNA
<213> Rattus norvegicus
<220>
<221> CDS
<222> (260)...(520)
<221> misc feature
<222> (1)...(717)
<223> n = A,T,C or G
<400> 12
tetagegaac ceettenega aggggttege egagaggtgg gageeaaaag gatggageat
                                                                        60
ccgccggtgg tggctggtgg ccgcaatctt ggtggtcctg atcggggttg tcttagtctg
                                                                      120
```

cctgatagtc tacttcgcca acgcagcgca cagcgaggcc tgtaagaacg ggttgcggtt gcaggatgag tgccgaaaca ccacgcacct gttgaagcac cagctnaccc gcgcccagga cagcctgctg cagacggag atg cag gca aac tcc tgc aac cag acc gtg atg Met Gln Ala Asn Ser Cys Asn Gln Thr Val Met 1 5 10	180 240 292
gac ctt cgg gat tcc ctg aag aag gtg tct naa acc cag gag caa Asp Leu Arg Asp Ser Leu Lys Lys Lys Val Ser Xaa Thr Gln Glu Gln 15 20 25	340
can gcc cgc atc aag gaa ctt gag aat aag atc gag agg ctg aac caa Xaa Ala Arg Ile Lys Glu Leu Glu Asn Lys Ile Glu Arg Leu Asn Gln 30 35 40	388
gag ctg gag aaa ttt gag gac cca aaa gga aat ttc tac cac agt gca Glu Leu Glu Lys Phe Glu Asp Pro Lys Gly Asn Phe Tyr His Ser Ala 45 50 55	436
ngt gaa ctc aag cgg gtt cgt ggt ggn ctt can cct act tgt gct ttg Xaa Glu Leu Lys Arg Val Arg Gly Gly Leu Xaa Pro Thr Cys Ala Leu 60 65 70 75	484
tgg cgg gac tgt tct nca ctt ttt ang acc caa taa ttgggangta Trp Arg Asp Cys Ser Xaa Leu Phe Xaa Thr Gln * 80 85	530
<pre>caaacctgtg taggcattgn nggtngtaat ggcttttgag ggggtcctgg cacccttaag atgtgaanac cattangnng gacccaaaat gnntttctt gntttgaact gggggggacc cggagtgggg ggcnggaaat aanntattnn ggnnggaaan aaaaaaaaaa</pre>	590 650 710 717
<220> <221> CDS <222> (53) (163)	
<221> misc_feature <222> (1)(1235) <223> n = A,T,C or G	
<pre><400> 13 tctagcgaac cccttcgccc agctgctaga agccaggctg gcctggtgag gc atg agc</pre>	58
atg aag atg aac cca ggt gac aag gac aag atg ttg ctc ttc tcc cca Met Lys Met Asn Pro Gly Asp Lys Asp Lys Met Leu Leu Phe Ser Pro 5 10 15	106
ccc ttt gac ccc tgt ctt cta agg cat cta gga agg aac cag tgt cct Pro Phe Asp Pro Cys Leu Leu Arg His Leu Gly Arg Asn Gln Cys Pro 20 25 30	154
tgg tac tga tttacttaga ttcaacctaa gggtccagcc actgactaag	203

Trp Tyr * 35

gccaaggcca tttttccata cctgggaggg tagagattca gggttgtggg taagtgggca ctaaacatgg attgcaagg gaaaacgaca gggcatcgag ctaaatttga attacatga aattctgaaa tgtacttgta tgaagaact gttatctgaa acctaactta aatgggcatc ctgccttttg tctggtgaga aatgaaagtg atctacaata agtgtcaaag caacaaggcc cctctggata tgtctaggcc aggatgagga tactacaata agtgtcaaagg agagggaggc aggccaagaa cactgccta ctgaaaggca ggcttggccg gctagggcct ccaaggccct gatccctgag gcaccacagc cacaacttgt gtaggcctgg cccaggtcag tgaataggtt ctaggcagtg gttctcaacc ttcctaatgc tgcaaccctt caatacagtt tctcctgttg tagtaatccc caaccataaa attatttca ttgcgacttc ataactggac ttttgctact gtatgaatc ataatgtaaa tattttttgg agctagaggt ttaccaaggg ggttgtgagc cataggttga aaaccattgt tctaggaata gctccagggg tggtttctga ggcccccgca aggtgggatc tatggggcag ggttggatct tctccaagag cccccaacag gatatatata tatatatata tactttggcg gggggggggg	263 323 383 443 503 563 623 683 743 803 863 923 983 1043 1103 1163 1223
<210> 14 <211> 633 <212> DNA <213> Rattus norvegicus	
<220> <221> CDS <222> (359)(631)	
<pre><400> 14 tctagcgaac cccttcgatt ttattagctc ttgcttctcc attcctcata atttatgaat tatacagcct tcgcttgaat acgcgtctga agttatgctt tgtgttgttg tgggtttttt ttttttttc ttttctttt ttttggagct ggggaccgaa cccagggcct tgttgctcta ccactgagct aaatccccaa cccctgttgt gtgttttaaa taagtctctt actgtccatt ttgtaattag tgttgttacc ttgtaataat agacatcata caaagtttcc tctttttgt gccagtgctg agaacatgag aaacatttaa tgagtatttg tttgttaaat aatattta taa cgg cta gaa tgg cag aca cac atg gta gca cat gat ggt gat tt * Arg Leu Glu Trp Gln Thr His Met Val Ala His Asp Gly Asp Phe 1 5 10 15</pre>	60 120 180 240 300 358 406
cgg ggg cct ttt gtt tgc tca gag ctg gta atc tct gcc ggt tgg ttt Arg Gly Pro Phe Val Cys Ser Glu Leu Val Ile Ser Ala Gly Trp Phe 20 25 30	454
gct ttg cct ggt ctg gga cta acc tca cat ttt ctc act ctt gct ttc Ala Leu Pro Gly Leu Gly Leu Thr Ser His Phe Leu Thr Leu Ala Phe 35 40 45	502
cga gag att agt cat cct tcc tgt cct act ggg ctc tcg ata gcg ctc Arg Glu Ile Ser His Pro Ser Cys Pro Thr Gly Leu Ser Ile Ala Leu 50 55 60	550
atc agc ata ctġ cat ttc aat ccc agc gaa ggg gtt cgc cga agg ggt Ile Ser Ile Leu His Phe Asn Pro Ser Glu Gly Val Arg Arg Arg Gly 65 70 75	598

tcg cta ggc cag tgt gat gga tat ctg cag aat tc Ser Leu Gly Gln Cys Asp Gly Tyr Leu Gln Asn 80 85 90	633
<210> 15 <211> 607 <212> DNA <213> Rattus norvegicus	
<220> <221> CDS <222> (203)(451)	
<221> misc_feature <222> (1)(607) <223> n = A,T,C or G	
<pre><400> 15 tctagcgaac cccttcgcct ttctccaaag ccttcccgtt tcctcttgac agctacgggc tgaggcagcc attcctgcag cagcgctcgg ccggtgaagg gccgaactga cgcctcctag atctgtctcg gctgaattac tctcacccgt ttccattctg tgtgcaccag aaatctgaga tccaggagta tcaacagcaa ag atg tct aat gag cca ccc cct cct tat cca</pre>	60 120 180 232
gga ggg cct aca gcc cca cta ctg gag gaa aaa agt gga gcc cca cat Gly Gly Pro Thr Ala Pro Leu Leu Glu Glu Lys Ser Gly Ala Pro His 15 20 25	280
acc cca ggc cga acc ttt cca gct gtg atg cag cca cca cca ggc atg Thr Pro Gly Arg Thr Phe Pro Ala Val Met Gln Pro Pro Pro Gly Met 30 35 40	328
cca ctg ccc tct gtt gac att gcc ccc ccg ccc tat gag ccg cct ggc Pro Leu Pro Ser Val Asp Ile Ala Pro Pro Pro Tyr Glu Pro Pro Gly 45 50 55	376
cat cca ggg cct aag cct ggt ttw atg ccc ccc acn tta cca cac att His Pro Gly Pro Lys Pro Gly Xaa Met Pro Pro Thr Leu Pro His Ile 60 65 70	424
cna ana acc ttn ntn tgt aaa agt taa ataanaangg agggattcga Xaa Xaa Thr Xaa Xaa Cys Lys Ser * 75 80	471
ncccctnca acnggtttca agccaattty mtaaccattt tgttttttc wtttaaaaaa aaaaaaaaaa aaaaaaaaa aaaaaaaa	531 591 607
<210> 16 <211> 1456 <212> DNA <213> Rattus norvegicus	
<220> <221> CDS <222> (36)(1424)	

<221> misc_feature <222> (1)...(1456) <223> n = A,T,C or G

<400> 16 tctagcgaac	cccttcgcaa a	gtcctaagc ct		aaa ttt aag Lys Phe Lys 5	
		gaa aaa tac Glu Lys Tyr 15			
	Arg Arg Glu	agt tct tgc Ser Ser Cys 30			
		tca gag aaa Ser Glu Lys 45		Thr Glu Leu	
		tcc act ccc Ser Thr Pro			
		gaa cct aaa Glu Pro Lys			Ser
		ctc tct aca Leu Ser Thr 95	Ala Ser Ala		
	Leu Gln His	gtt cta gcc Val Leu Ala 110			
		cag aac tca Gln Asn Ser 125		Leu Gln Ser	
		cag agt cac Gln Ser His			
aca ttt gag Thr Phe Glu	g caa cac gto Gln His Val 155	gag aag ttg . Glu Lys Leu	ccc ttc ccc Pro Phe Pro 160	caa acc aaa Gln Thr Lys 165	Pro
		gtg aaa act Val Lys Thr 175	Ile Arg Leu		
	ı Thr Glu Thı	gat ctc agt Asp Leu Ser 190			

			caa Gln								677
			agc Ser 220								725
			tta Leu								773
			gca Ala								821
			gga Gly								869
			aaa Lys								917
			gtt Val 300								965
			gtc Val								1013
			ttt Phe								1061
			tcc Ser								1109
			caa Gln								1157
_			caa Gln 380					_	-		1205
			gaa Glu								1253
			cta Leu								1301
			aaa Lys							•	1349

425 430 435 aat att gct ccg gtg tgg ctg ata agt gag gag aaa aga gaa tat gga 1397 Asn Ile Ala Pro Val Trp Leu Ile Ser Glu Glu Lys Arg Glu Tyr Gly 1444 Val Arg Val Ala Met Glu Asn Asn * aaaagcggcg nc 1456 <210> 17 <400> 17 000 <210> 18 <211> 2023 <212> DNA <213> Rattus norvegicus <220> <221> CDS <222> (243)...(755) <221> misc_feature <222> (1)...(2023) <223> n = A, T, C or G<400> 18 gaattgtaat acgactcact atagggcgaa ttgggcccct agcgaacccc ttcgacaaca 60 tcaaagagga cagatctaac cctagactga ggccggaggc ctggaccaat tacctgaggg 120 atgtccacag agcetttgca etgetgaaca gtcaceetga tecaaaceaa gtaaatggga 180 ctccaactgc accaagcagt ggcctcccag tcacctctgc tgagetcttg gtgccggcag 240 ag atg gct tct gca gag tca ggt gaa gac cca agt cat gtg gtt ggg 287 Met Ala Ser Ala Glu Ser Gly Glu Asp Pro Ser His Val Val Gly 1 gaa acg cet cet ttg acc ttg cca gcc aac ctc caa acc ctg cat ccg 335 Glu Thr Pro Pro Leu Thr Leu Pro Ala Asn Leu Gln Thr Leu His Pro 20 aac aga cca acg ttg agt cca gag aga aaa ctt qaa tqq aat aac qac 383 Asn Arg Pro Thr Leu Ser Pro Glu Arg Lys Leu Glu Trp Asn Asn Asp att cca gaa gtg aat cgt ttg aat tct gaa cac tgg aga aaa act gag 431 Ile Pro Glu Val Asn Arg Leu Asn Ser Glu His Trp Arg Lys Thr Glu gag cag cca gga cgg ggg gag gtg ctt ctc ccc gaa ggt gac gtc agt 479 Glu Gln Pro Gly Arg Gly Glu Val Leu Leu Pro Glu Gly Asp Val Ser 70 ggc aac ggt atg aca gag ctg ttg ccc atc ggt cgg cac caa caa aag 527 Gly Asn Gly Met Thr Glu Leu Leu Pro Ile Gly Arg His Gln Gln Lys 85 90

cgt ccc cac gat gcg ggg cca gag gac cat gct ttt gaa gat caa ttg Arg Pro His Asp Ala Gly Pro Glu Asp His Ala Phe Glu Asp Gln Leu 100 105 110	575
cat cct ctc gtc cac tct gac aga act ccc gtt cat cgg gtg ttc gat His Pro Leu Val His Ser Asp Arg Thr Pro Val His Arg Val Phe Asp 115 120 125	623
gtg tcc cac ttg gag cag cct gtt cac tcc agc cac gtg gaa gga atg Val Ser His Leu Glu Gln Pro Val His Ser Ser His Val Glu Gly Met 130 135 140	671
ttg gcc aag atg gag ggg atg gca caa agg agt ggg cac caa gtc tcg Leu Ala Lys Met Glu Gly Met Ala Gln Arg Ser Gly His Gln Val Ser 145 150 155	719
aag gca gcg cct cct ctc cag tca ctt ctt gct tag attacatgtt Lys Ala Ala Pro Pro Leu Gln Ser Leu Leu Ala * 160 165 170	765
gcctaacaat gtttcttcc atgtttgat tagtaaacta actcgtggtg gcaatcatga ctcccaacct tctgagctcc cccgggtacg cttgcaccgt agacgctcat gtgcgcaccg tgcgggtgat gctcacacac agactcattg taattcaccg ttttaccgag aaggggggg gggcgaattt tctgtgtta tagttttat tagttaggga catgagtata taaagtctat ccagtcaaaa tggctagaat tgngcctttg taattctaccg ttttaccgag aagggggggg taagtttgaagttta acaactgatg cccacatgag tctgtgagca catnttccc gcctgcctaa cggagttgga atttgttct aaccactgta attctcaac atcatcacct ttggttcagt gattttgcac tttgagttt gatactgtgt ctgcttggt ggtagtgta gtattttct tttaaacagg ctatcagag ttgcacactt tggtcctaggc agggcaaagg aacaagaac acacagtata ttgcacactt tggtcagac acacagtata tttacctcga cgtgctaaag ttgattagca ttggtggtaaaaatacacacacacacacacacacacacac	825 885 945 1005 1065 1125 1185 1245 1365 1425 1485 1665 1725 1785 1965 2023
<400> 19 Arg Leu Glu Trp Gln Thr His Met Val Ala His Asp Gly Asp Phe Arg	
1 5 10 15 Gly Pro Phe Val Cys Ser Glu Leu Val Ile Ser Ala Gly Trp Phe Ala	
20 25 30 Leu Pro Gly Leu Gly Leu Thr Ser His Phe Leu Thr Leu Ala Phe Arg 35 40 45	
Glu Ile Ser His Pro Ser Cys Pro Thr Gly Leu Ser Ile Ala Leu Ile 50 55 60	
Ser Ile Leu His Phe Asn Pro Ser Glu Gly Val Arg Arg Gly Ser	

65 Leu	Gly	Gln	Cys		Gly	Tyr	Leu	Gln	Asn 90	75					80	
<210 <211 <212 <213	> 18 > DN	02 IA	nor	vegi	.cus											
<220 <221 <222	> CD		. (80	9)												
			ptic .(10													
	> 20 Igcga		cctt	.cggq	gg gt	tttc	catc						cgg Arg			53
													ggc Gly -5			101
													gaa Glu			149
													tgg Trp			197
													ctg Leu			245
													gga Gly 60			293
				_	_			_	_	_	_		aac Asn			341
													gtg Val			389
													gac Asp			437
													ttt Phe			485
cat	aaa	gaa	ttc	cag	acg	gtt	ccg	ttc	tac	att	ttc	tca	gaa	tcc	tac	533

```
His Lys Glu Phe Gln Thr Val Pro Phe Tyr Ile Phe Ser Glu Ser Tyr
                               135
           130
gga gga aag atg gct gct ggc atc agt tta gaa ctt cac aag gct att
                                                                    581
Gly Gly Lys Met Ala Ala Gly Ile Ser Leu Glu Leu His Lys Ala Ile
                           150
       145
cag caa ggg acc atc aag tgc aac ttc tct ggg gtt gct ttg ggt gac
                                                                    629
Gln Gln Gly Thr Ile Lys Cys Asn Phe Ser Gly Val Ala Leu Gly Asp
                                           170
                        165
    160
                                                                    677
tcc tgg atc tcc cct gtg gat tca gtg ctg tcc tgg gga cct tac ctg
Ser Trp Ile Ser Pro Val Asp Ser Val Leu Ser Trp Gly Pro Tyr Leu
175
                   180
tac age gtg tet etc ett gat aat aaa gge ttg get gag gtg tee gae
                                                                    725
Tyr Ser Val Ser Leu Leu Asp Asn Lys Gly Leu Ala Glu Val Ser Asp
               195
att gcg gag caa gtc ctc aat gaa aaa caa ggg ctt cta caa gga agc
                                                                    773
Ile Ala Glu Gln Val Leu Asn Glu Lys Gln Gly Leu Leu Gln Gly Ser
            210
cac tca gct gtg ggg gaa agc aga aat gat cat tga aaagaacacc
                                                                    819
His Ser Ala Val Gly Glu Ser Arg Asn Asp His
                            230
gacggggtaa acttetataa catettaact aaaagcacce ccgacaccte tatggagtcg
                                                                    879
                                                                    939
agcctcgagt tcttccggag ccccttagtt cgtctctgtc agcgccacgt gagacaccta
                                                                    999
caaggagacg ccttaagtca gctcatgaac ggtcccatca aaaagaagct caaaattatc
cctgacgacg tctcctgggg agcccagtcg tcctccgtct tcataagcat ggaagaggac
                                                                   1059
                                                                   1119
ttcatgaagc ctgtcatcga catcgtggat acgttgctgg aactcggggt caatgtgact
gtgtacaatg ggcagctgga tctcattgtg gacaccatag gtcaggagtc ctgggttcag
                                                                   1179
aagctgaagt ggccacagct gtccagattc aatcagctaa aatggaaggc cctgtacacc
                                                                   1239
gatoctaagt cttcagaaac atctgcattt gtcaagtcct atgagaacct agcgttctac
                                                                   1299
tggatcctaa aggcgggtca catggttcct gctgaccaag gggacatggc tctgaagatg
                                                                   1359
atgaggetgg ttactcagca ggagtagetg agetgagetg geeetggagg ceetggagge
                                                                   1419
cctggagtag ggcccaggat gcaggtgcta atgtctatcc ccggcgctct tcttcccgac
                                                                   1479
tctaccatgg gatgtaactc caggagcccc tgccatctcc cgtaccaaaa gactgtggct
                                                                   1539
                                                                   1599
tccgtgtcta ctcagaaatc agttctactt cgtaaacagt gtttaaaacc agactcattt
aatcagagtg aaggattgca gtccattggc ttcttagcac agaagcagct gataacacaa
                                                                   1659
gtaaacccca gcccttgaga ggtagaagca agaggatcag aggttcaagc gcatcctcgg
                                                                   1719
1779
                                                                    1802
aaaaaaaaa aaaaagcggc cgc
<210> 21
<211> 82
<212> PRT
<213> Rattus norvegicus
<220>
<221> VARIANT
<222> (1) ... (82)
<223> Xaa = Any Amino Acid
<400> 21
Met Ser Asn Glu Pro Pro Pro Pro Tyr Pro Gly Gly Pro Thr Ala Pro
```

red red Gra	Giu bys 20	ser	GTA	АТА	25	птэ	TIII	FIO	стх	30	1111	rne	
Pro Ala Val 1		Pro	Pro	Pro 40		Met	Pro	Leu	Pro 45	Ser	Val	Asp	
Ile Ala Pro 1	Pro Pro	Tyr	Glu 55	Pro	Pro	Gly	His	Pro 60	Gly	Pro	Lys	Pro	
Gly Xaa Met 1 65 Lys Ser	Pro Pro	Thr 70	Leu	Pro	His	Ile	Xaa 75	Xaa	Thr	Xaa	Xaa	Cys 80	
				•									
<210> 22 <211> 630 <212> DNA <213> Rattus	norvegi	icus											
· <220>	,												
<221> misc_f <222> (1) <223> n = A,	(630)	3											
<221> CDS <222> (91)	. (183)												
<400> 22 tctagcgaac c tacctcaggg c					g ato Mo	g tc	t gag	gaaa	a gaq ys G	g aa	a ca		60 114
tgg ctg aag Trp Leu Lys 1													162
ggg aca cga Gly Thr Arg 25			tag *	cgga	aaga	aga (gttci	ttaaq	gt a	ataa	gttt	a	213
cctcctgact g													273 333
tccaactgtt a attatcttt c	gtgttga	tc go	gtaad	cagca	a ga	aagg	caga	aag	ttcc	tga	taat	ctcaat	393 453
actcttaaaa a	tattttg	ac .tt	gct	gggc	a tg	gagg.	tcac	acc	ttta	atc	caga	ggcagg	513
catggatcca c ctacacagag a													573 630
<210> 23 <211> 445 <212> DNA <213> Rattus	: norveg:	icus											
<220>													
<221> CDS <222> (113).	(232)												
<400> 23		.	- حدم		~1			عدي يو	~~-+	~~-		a+ ~~++	60
tctagcgaac c													118

Met Leu tgt ata tca gat ctg aaa tat ctt aaa att atc act tgc att gta aat 166 Cys Ile Ser Asp Leu Lys Tyr Leu Lys Ile Ile Thr Cys Ile Val Asn tac tat tee ttt ege aga aat aat gaa tge tte aag aaa aaa age 214 Tyr Tyr Ser Phe Arg Arg Asn Asn Glu Cys Phe Lys Lys Lys Ser 20 30 25 tgt ttg tat tgg gtt taa aacgtttcca aacaccaatt attctttact 262 Cys Leu Tyr Trp Val 35 taagtcatcc gatctagtta ttaaattatt attactgcct tcacactatc aaagatggta 322 aatatetgat agaateatat teaaaataet tetgttteae atttettgag aaagtaetga 382 442 ctgtctgagt tctttctcaa gaaatgtgaa acagaagtat tttgaatcga aggggttcgc 445 tag <210> 24 <211> 273 <212> DNA <213> Rattus norvegicus <220> <221> misc feature <222> (1)...(273) <223> n = A, T, C or G<400> 24 tctagcgaac cccttcggaa gaactgtata tttgtgcctt gttctgcaag ttaaaaagct 60 ggtccagaca gtgtcataga attaactttt catttctgta ttaattttag gactgcaaaa 120 atoccaaago tgtatactta gattggatto aataaaaagt ttaagtttac tnaanaaaaa 180 240 aaaaaaaaa ncggncnnaa aaaaggnggc cgc 273 <210> 25 <211> 170 <212> PRT <213> Rattus norvegicus <400> 25 Met Ala Ser Ala Glu Ser Gly Glu Asp Pro Ser His Val Val Gly Glu 10 Thr Pro Pro Leu Thr Leu Pro Ala Asn Leu Gln Thr Leu His Pro Asn 20 Arg Pro Thr Leu Ser Pro Glu Arg Lys Leu Glu Trp Asn Asn Asp Ile 35 Pro Glu Val Asn Arg Leu Asn Ser Glu His Trp Arg Lys Thr Glu Glu 55 . 60 Gln Pro Gly Arg Gly Glu Val Leu Leu Pro Glu Gly Asp Val Ser Gly 70 75 Asn Gly Met Thr Glu Leu Leu Pro Ile Gly Arg His Gln Gln Lys Arg Pro His Asp Ala Gly Pro Glu Asp His Ala Phe Glu Asp Gln Leu His 100 105 Pro Leu Val His Ser Asp Arg Thr Pro Val His Arg Val Phe Asp Val

Ser	His 130	115 Leu	Glu	Gln	Pro	Val 135	120 His	Ser	Ser	His	Val 140	125 Glu	Gly	Met	Leu	-
		Met	Glu	Gly			Gln	Arg	Ser	Gly		Gln	Val	Ser	Lys	
145 Ala	Ala	Pro	Pro	Leu 165	150 Gln	Ser	Leu	Leu	Ala 170	155			٠		160	
<210> 26 <211> 2077 <212> DNA <213> Rattus norvegicus																
)> L> CI 2> (2		(1	1825)	i											
tcta gcgg gagg	gtcto ggcaa	agg d	ccca agga	accto agago	ec to gg ga a ato	etget ageg g get	ttc gaaag ggg	g cad g cat g gca	ccctt catco a att	gaa ctaa ata	gtt: aaca a gaa	ttgga attta a aad	age a act t c atq	accad aaaq g ago	gegeee ggaaaa ggagga e ace r Thr	60 120 180 232
										ctg Leu						280
										gca Ala						328
										cgg Arg						376
										aag Lys 70						424
										gaa Glu						472
										gag Glu						520
										att Ile						568
										atg Met						616
tac	cgt	gat [.]	gat	atg	ttt	tct	gag	tgg	act	gaa	atg	gcg	cac	gaa	aga	664

Tyr 140	Arg	Asp	Asp	Met	Phe 145	Ser	Glu	Trp	Thr	Glu 150	Met	Ala	His	Glu	Arg 155	
					aga Arg											712
					tat Tyr											760
					aag Lys											808
					atc Ile											856
					cac His 225											904
					ctc Leu											952
					acc Thr											1000
					ctt Leu											1048
					att Ile											1096
				Gln	ggc Gly 305	Ile			Ala		Leu					1144
					gag Glu											1192
					aag Lys											1240
					gac Asp											1288
					tgg Trp											1336

gct ttc atc att gtg gca ggt atc tgc ctc tgc ctc tac ttc ctg ttt Ala Phe Ile Ile Val Ala Gly Ile Cys Leu Cys Leu Tyr Phe Leu Phe 380 395 390	1384
ctg tgt ttc atg gta ttt caa gta ttc aga aac atc agt ggg aaa cag Leu Cys Phe Met Val Phe Gln Val Phe Arg Asn Ile Ser Gly Lys Gln 400 405 410	1432
tct agc ctc cca gcc atg agc aaa gtc cgg agg ctg cac tat gag ggt Ser Ser Leu Pro Ala Met Ser Lys Val Arg Arg Leu His Tyr Glu Gly 415 420 425	1480
ctg att ttc agg ttc aag ttc ctc atg ctg atc acc ttg gct tgt gct Leu Ile Phe Arg Phe Lys Phe Leu Met Leu Ile Thr Leu Ala Cys Ala 430 435 440	1528
gcc atg act gtt atc ttc ttc att gtt agt cag gtg aca gaa ggc cat Ala Met Thr Val Ile Phe Phe Ile Val Ser Gln Val Thr Glu Gly His 445 450 455	1576
tgg aaa tgg ggt ggg gtc aca gtt caa gtg agc agt gct ttc ttc act Trp Lys Trp Gly Gly Val Thr Val Gln Val Ser Ser Ala Phe Phe Thr 460 465 470 475	1624
gga atc tat ggg atg tgg aac ctg tat gtc ttt gct ttg atg ttc ttg Gly Ile Tyr Gly Met Trp Asn Leu Tyr Val Phe Ala Leu Met Phe Leu 480 485 490	1672
tat gca cca tcc cat aag aac tat ggg gaa gac cag tct aat ggt gac Tyr Ala Pro Ser His Lys Asn Tyr Gly Glu Asp Gln Ser Asn Gly Asp 495 500 505	1720
ctg ggt gtc cac agc ggg gaa gaa ctg cag ctc act acc aca atc acc Leu Gly Val His Ser Gly Glu Glu Leu Gln Leu Thr Thr Thr Ile Thr 510 515 520	1768
cat gta gat gga ccg act gag atc tac aag ttg acc cgt aaa gaa gca His Val Asp Gly Pro Thr Glu Ile Tyr Lys Leu Thr Arg Lys Glu Ala 525 530 535	1816
cag gag tag taggctatgg cattcatect cagggcaggt gatgaageca Gln Glu * 540	1865
titttateet gteaegtita caagaacatt tetgacatge atacgtttae tittaeeatg tattagttae tittatattt etgtgataaa acaccatgag aaatacaatt tacagaagea	1925 1985 2045 2077

<212> PRT

<213> Rattus norvegicus

<220> <221> SIGNAL <222> (1)...(26)

```
<400> 27
Met Glu Leu Ser Arg Arg Ile Cys Leu Val Arg Leu Trp Leu Leu
                        -20
                                             -15
Leu Ser Phe Leu Leu Gly Phe Ser Ala Gly Ser Ala Leu Asn Trp Arg
                    -5
Glu Gln Glu Gly Lys Glu Val Trp Asp Tyr Val Thr Val Arg Glu Asp
            10
                                15
Ala Arg Met Phe Trp Trp Leu Tyr Tyr Ala Thr Asn Pro Cys Lys Asn
                            30
Phe Ser Glu Leu Pro Leu Val Met Trp Leu Gln Gly Gly Pro Gly Gly
                        45
                                            50
Ser Ser Thr Gly Phe Gly Asn Phe Glu Glu Ile Gly Pro Leu Asp Thr
                    60
                                        65
Arg Leu Lys Pro Arg Asn Thr Trp Leu Gln Trp Ala Ser Leu Leu
                75
                                    80
Phe Val Asp Asn Pro Val Gly Thr Gly Phe Ser Tyr Val Asn Thr Thr
                                95
Asp Ala Tyr Ala Lys Asp Leu Asp Thr Val Ala Ser Asp Met Met Val
                            110
Leu Leu Lys Ser Phe Phe Asp Cys His Lys Glu Phe Gln Thr Val Pro
                        125
                                            130
Phe Tyr Ile Phe Ser Glu Ser Tyr Gly Gly Lys Met Ala Ala Gly Ile
                    140
                                        145
Ser Leu Glu Leu His Lys Ala Ile Gln Gln Gly Thr Ile Lys Cys Asn
                155
                                    160
                                                         165
Phe Ser Gly Val Ala Leu Gly Asp Ser Trp Ile Ser Pro Val Asp Ser
            170
                                175
Val Leu Ser Trp Gly Pro Tyr Leu Tyr Ser Val Ser Leu Leu Asp Asn
                            190
Lys Gly Leu Ala Glu Val Ser Asp Ile Ala Glu Gln Val Leu Asn Glu
                        205
Lys Gln Gly Leu Leu Gln Gly Ser His Ser Ala Val Gly Glu Ser Arg
215
                    220
                                                             230
Asn Asp His
<210> 28
<211> 755
<212> DNA
<213> Rattus norvegicus
<220>
<221> misc feature
<222> (1)...(755)
<223> n = A, T, C or G
<221> CDS
<222> (30)...(122)
<400> 28
tctaacgaac cccttcggag cgatggaat gag aaa ggc cca gaa tgt gtt aag
                                Glu Lys Gly Pro Glu Cys Val Lys
tet gtg cag ggg aag tgt eet gag ggg agg gte ttt ggg agg gte gaa
                                                                   101
Ser Val Gln Gly Lys Cys Pro Glu Gly Arg Val Phe Gly Arg Val Glu
                         15
```

					Val 30		gcag	ccya	gg c	cyca	geee	c gg	gcgc	.ccac		132	
tagg ggct ttcc gcaa ctgc ctct ctca ttgg	ctgt ttga agac gggt tgcc gttc ggga	ct c ga c cc t ca a gg g tg t	actg actg tctt acca gttg ggac ccaa	catg caga ccat aggg ggag ctgc tccc	g ca g ca t gt t ca a cc t cg sa gt	ggaa tcct cctt gtca aaag ccag cctc	gctg tggt gtga agta taga acto gtat	gag ctc acc gat aac agg cat	aago tgta attt gact tgcc cctc cgag	tcc acc ggg gtc act aga tac	acgg acgt ctta acct acaa ccca tgac	gaac cacc tett tggg ggcc tagg ttet aact	at to concern to conce	gagg accct cccc aggat gtggc ctcta	gggtg gccat gacaa tagtc agact gaggt cggtg gtgcc cttct gcggn	272 332 392 452 512 572 632 692	
<211 <212)> 29 .> 13 !> DN !> Ra	10 A	nor	vegi	.cus												
<222	> mi !> (1	.)	eatu (131 T,C		3												
	.> CE ?> (8		.(39	91)													
tcta		ac c					ag a	itg a	ca a	agg g	gac t	tt c	cag a	aacat aag c Lys G			60 112
gcc Ala	ttg Leu 10	ata Ile	aga Arg	cag Gln	gaa Glu	aag Lys 15	cag Gln	aat Asn	tct Ser	aat Asn	aaa Lys 20	gat Asp	atg Met	agg Arg	aaa Lys		160
														cac His			208
														cag Gln 55			256
														gac Asp			304
cta Leu	atg Met	aag Lys 75	aca Thr	aat Asn	act Thr	tcc Ser	aag Lys 80	gag Glu	tta Leu	aaa Lys	atg Met	gca Ala 85	atg Met	gag Glu	agg Arg		352
tcc Ser	ttt Phe	aat Asn	cca Pro	gtc Val	aac Asn	ctt Leu	tcc Ser	ctg Leu	act Thr	gtg Val	gtg Val	taa *	aag	aaaat	tga		401

100

95

90

ggacgccctt ctctccatct tcccctcctt cttctccttc caattgcgtc atctgaaatt 461 gaattteete teeteeteea eeacetataa tgetgtgeet gaaaaaaatg agttteetee 521 ctcatcaccc acagagaagt caagggctga acttgagagc ctcccaaccc tgcctcttcc 581 tecaccacca ggagatgaga aatetgatea ggaatgteta ecaacatece taceteetee 641 coctoccaca getocatece aaccagcaca tettetttee teetetgtte tagaacatea 701 cagtgaagca tttttacaac aqtattcccq aaaaqaaacc ttggactctc atcggcttca 761 ctcacaggct aaaatcctaa caggaaaatc accaccccca acactcccca aacccaaact 821 tcccgagaga atcaaagcta agatgagcca ggattcacca agcggtgaat tggaaagatc 881 tctgtcagat gtggaaatta aaactaccct ctcaaaggat cagaaaagtt cgctggtggc 941 agaaagccgt gagcacacag aggccaagca agaagtattc cgaaaaagcc ttggaagaaa 1001 acagetqtee attagetetq caaacteect eteteaqaca gtteeaqaaa teecaqeace 1061 caaggaaaaa cagacagcac cccttgttaa atctcactca ttcccatcag gttcagaaca 1121 acaaagtcct aagccttaca tgagaaaatt taagacaccc ttaatgattg cggaagaaaa 1181 atacagacaa caaagggaag agcttgagaa acagagacgg gagagttctt gccatagcat 1241 catcaaaaca gaaacccagc accgcagctt atcaaanntt aaaaaaaaaa aaaannnagc 1301 ggncgcccg 1310 <210> 31 <211> 774 <212> DNA <213> Rattus norvegicus <220> <221> misc feature <222> (1)...(774) <223> n = A, T, C or G<221> CDS <222> (297)...(494) <400> 31 tctagegaae ecettegett ttttttttt ttttttttt tttttet tttteeceee ttteetattt 60 120 attaatgggg ggaagtatgt ttatgtggga tttatccact tcttttagat tctcctacct gttgatctgt aattattcct agtagtctct tagagttctt agaagcatgc tgttaccgct 180 aatatttcct tttggtttgg atcttactta aacatattgt ttccttactc tctttttcat 240 cccagcttgt ctaactgaaa ggccagaccc aacttgatct atccctttaa aacttc atg 299 Met 1 tot tgg cot gtt gat tto tot get coa ggt gtc acc gaa ggg gtt cgc 347 Ser Trp Pro Val Asp Phe Ser Ala Pro Gly Val Thr Glu Gly Val Arg 10 cta gcg aac ccc ttc gta aca gcc aag gtt ttt gag aca gag gtt tca 395 Leu Ala Asn Pro Phe Val Thr Ala Lys Val Phe Glu Thr Glu Val Ser 25 443 aca gca ttc ctg gag gag aca caa agg aca gat gag tca cat gaa gga Thr Ala Phe Leu Glu Glu Thr Gln Arg Thr Asp Glu Ser His Glu Gly 40 tgg gag gag gga agg tgg ctg ttg ata ggt att ttg aga cac tct att 491 Trp Glu Glu Gly Arg Trp Leu Leu Ile Gly Ile Leu Arg His Ser Ile 55 tga gtcctacaca acactccccc ctccccccaa accattttta tgtctattga 544

cctttcctct agtcatacag ggaaattcac agttacctac aaagaaccac taattgtaac 604 aagtcaagag gaaacttatt tttgataatg actcattgaa gatgttttga aaatttaaaa 664 ataaqctctq ttaqcaqaaq tctqtnnqaa aagcanqaaq gaantqtttq tttattanat 724 774 <210> 33 <211> 1259 <212> DNA <213> Rattus norvegicus <220> <221> CDS <222> (92)...(220) <400> 33 tetagegaac ceettegega aggggttege egaaggggtt egetteagga gttaatgtag 60 acttgactta agcatcctga tttaaccaag a atg gtg gca cac aac ttt aac 112 Met Val Ala His Asn Phe Asn ccc cat gct ggg gaa gca gag gca cac tta atc tgt gtg agt ccc agg 160 Pro His Ala Gly Glu Ala Glu Ala His Leu Ile Cys Val Ser Pro Arg 10 15 cca tcc agg gat acc gta gta gtg aga ccc tgt ctc aca aaa caa aga 208 Pro Ser Arg Asp Thr Val Val Val Arg Pro Cys Leu Thr Lys Gln Arg 25 30 atg gga att tag ggctggtggg gctcagcatg caactgtgcc tgttacctag 260 Met Gly Ile 40 tctggcctga gttcaattcc caagactcaa tgtatgagga gagaaacgat ttctgaactc 320 attcattgat ctccaaatgt gtggtatagg tgcccttccc ttaaataaaa caaacaaaca 380 aaaaacaaca aaaacaacaa acccccaata aatgtatatt taattttaaa agactgtact 440 tgggcatggt acttcacatc tacagttacg acattctaga ggctcaggcc tgggaattgc 500 tatgaatttg aggccagtct gggttagagt gacttctcat ctaggcagga ctacgtaata 560 agtotttgcc caaaaataaa cagcaaccca aataagagca acaagaatto tocotocaaa 620 tagtaacctg ggcctggaga gacagcttag caactgagtg cttgccgagc catcgaggac 680 tggagtctgg attccagcac ccgtgtgaca gacaagctgg gcgttcactc atgctgatga 740 accccaagge tgaggagaca etgaetette tetggeeetg tteatgetgt ceacaggtge 800 ccaagtagca gttaagtaga ctgtcagaca acatggctgg ctttttaagc aagaacagta 860 actgaagaaa tacacttttg aagtactgtt aattttgctt aaaacttggt agggagctgg 920 aggatggctc agtggttaag agcactgact gctcttccag aggtcctgag ttcaattccc 980 agcaaccaca tggtggctca caaccatctg taatgagctc tgatgccctc tttttggtgt 1040 1100 gaaatttgtc agagatatgg caggaagggt atatttttac ctatttacct ggtgggctaa 1160 tcctggtatt tttttcaaaa ttaagatact atataggagc cgcgaagggg tcgctaggcc 1220 agtgtgatgg atatctgcag aattcggtta gccgaattc 1259 <210> 34 <211> 541

<212> PRT

<213> Rattus norvegicus

<400> 34 Met Ala Gly Ala Ile Ile Glu Asn Met Ser Thr Lys Lys Leu Cys Ile 10 Val Gly Gly Ile Leu Leu Val Phe Gln Ile Val Ala Phe Leu Val Gly 25 Gly Leu Ile Ala Pro Ala Pro Thr Thr Ala Val Ser Tyr Val Ala Ala 40 Lys Cys Val Asp Val Arg Lys Asn His His Lys Thr Arg Trp Leu Met 55 Pro Trp Gly Pro Asn Lys Cys Asn Lys Ile Asn Asp Phe Glu Glu Ala 75 Ile Pro Arq Glu Ile Glu Ala Asn Asp Ile Val Phe Ser Val His Ile 90 Pro Leu Pro Ser Met Glu Met Ser Pro Trp Phe Gln Phe Met Leu Phe 105 Ile Leu Gln Ile Asp Ile Ala Phe Lys Leu Asn Asn Gln Ile Arg Glu 120 Asn Ala.Glu Val Ser Met Asp Val Ser Leu Gly Tyr Arg Asp Asp Met 135 140 Phe Ser Glu Trp Thr Glu Met Ala His Glu Arg Val Pro Arg Lys Leu 150 155 Arg Cys Thr Phe Thr Ser Pro Lys Thr Pro Glu His Glu Gly Arg His 170 165 Tyr Glu Cys Asp Val Leu Pro Phe Met Glu Ile Gly Ser Val Ala His 185 180 Lys Tyr Tyr Leu Leu Asn Ile Arg Leu Pro Val Asn Glu Lys Lys Lys 200 205 Ile Asn Val Gly Ile Gly Glu Ile Lys Asp Ile Arg Leu Val Gly Ile 215 220 His Gln Asn Gly Gly Phe Thr Lys Val Trp Phe Ala Met Lys Thr Phe 230 235 Leu Thr Pro Ser Ile Phe Ile Ile Met Val Trp Tyr Trp Arg Arg Ile 250 Thr Met Met Ser Arg Pro Pro Val Leu Leu Glu Lys Val Ile Phe Ala 265 270 Leu Gly Ile Ser Met Thr Phe Ile Asn Ile Pro Val Glu Trp Phe Ser 280 Ile Gly Phe Asp Trp Thr Trp Met Leu Leu Phe Gly Asp Ile Arg Gln 295 Gly Ile Phe Tyr Ala Met Leu Leu Ser Phe Trp Ile Ile Phe Cys Gly 315 310 Glu His Met Met Asp Gln His Glu Arg Asn His Ile Ala Gly Tyr Trp 330 325 Lys Gln Val Gly Pro Ile Ala Val Gly Ser Phe Cys Leu Phe Ile Phe 350 340 345 Asp Met Cys Glu Arg Gly Val Gln Leu Thr Asn Pro Phe Tyr Ser Ile 360 365 Trp Thr Thr Asp Val Gly Thr Glu Leu Ala Met Ala Phe Ile Ile Val 375 380 Ala Gly Ile Cys Leu Cys Leu Tyr Phe Leu Phe Leu Cys Phe Met Val 395 390 Phe Gln Val Phe Arg Asn Ile Ser Gly Lys Gln Ser Ser Leu Pro Ala 405 410 Met Ser Lys Val Arg Arg Leu His Tyr Glu Gly Leu Ile Phe Arg Phe 420 425 Lys Phe Leu Met Leu Ile Thr Leu Ala Cys Ala Ala Met Thr Val Ile 440 Phe Phe Ile Val Ser Gln Val Thr Glu Gly His Trp Lys Trp Gly Gly

```
450
                       455
Val Thr Val Gln Val Ser Ser Ala Phe Phe Thr Gly Ile Tyr Gly Met
                                       475
                   470
Trp Asn Leu Tyr Val Phe Ala Leu Met Phe Leu Tyr Ala Pro Ser His
                                   490
               485
                                                       495
Lys Asn Tyr Gly Glu Asp Gln Ser Asn Gly Asp Leu Gly Val His Ser
                               505
           500
Gly Glu Glu Leu Gln Leu Thr Thr Ile Thr His Val Asp Gly Pro
                           520
Thr Glu Ile Tyr Lys Leu Thr Arg Lys Glu Ala Gln Glu
    530
<210> 35
<211> 777
<212> DNA
<213> Rattus norvegicus
<220>
<221> CDS
<222> (247)...(387)
<400> 35
tctagcgaac cccttcgtct cctcttaaac atcttaagac aagctgttat catctacact
                                                                    60
                                                                    120
getettagta etgttettt etaagattet tetaatatga eacattaaga etttettaaa
atgtacaact gctacgctga tctaaacatt caaagtgcac acatttcgct atgaagccac
                                                                    180
gtgaccagag tcctggggac taatttctgt cttagtcaga ttcctattgc tatatgaaga
                                                                    240
aatacc atg ata gtg tca act ttt ata aag aaa aag tat tcc ttt ggg
                                                                    288
       Met Ile Val Ser Thr Phe Ile Lys Lys Lys Tyr Ser Phe Gly
aat agt tta aag gat cag agg gtt agt gca tta tca tca cag cag gaa
                                                                    336
Asn Ser Leu Lys Asp Gln Arg Val Ser Ala Leu Ser Ser Gln Glu
 15
                                                                    384
gcg tgg cag tgg gag ccc aga ttt cta tat cca gat ttt cat gaa gca
Ala Trp Gln Trp Glu Pro Arg Phe Leu Tyr Pro Asp Phe His Glu Ala
                 35
tga cgagagetee tgggeetgge gegagettet gaaacetgaa agtgacatat
                                                                    437
                                                                    497
ttcttccaat aaggccacaa ctactgctat aaggccacat ctcctaactg tgtcactatc
tatgagectg tacagtetat ttettttaca ceaetgeate atetaagage tgataceegt
                                                                    557
taagttagtc atgaaaatat tcaacttcta gggttctgtt ttcttctcta taaaatattg
                                                                    617
                                                                    677
aaaatgataa ttaatgtata ctttacagaa ctgtatttga agtacaactt gatggacata
                                                                    737
777
atatatcaaa aaaaaaaaa aaaaaaaaa aagcggccgc
<210> 36
<211> 31
<212> PRT
<213> Rattus norvegicus
<400> 36
Glu Lys Gly Pro Glu Cys Val Lys Ser Val Gln Gly Lys Cys Pro Glu
                                    10
Gly Arg Val Phe Gly Arg Val Glu Gly Gln Asp Gly Lys Val Lys
```

20 25 30 <210> 37 <211> 1378 <212> DNA <213> Rattus norvegicus <220> <221> misc_feature <222> (1) ... (1378) <223> n = A, T, C or G<400> 37 tctagcgaac cccttcgtac atttcaccct agaaataaat agaccttcta gctctgacag 60 aaagtagtgc ttgcctagga ggaqctgggc tggccagttc ctccttcttg cacacttagc 120 ctgtttgctg aaggettgtt tcaatggaaa actgaaatgg acccactaat gtctcgattc 180 ttctctcctt cactaagtct gtgaagtcat cagcgttttg tcttttgtgt gtgaataccg 240 aggagaattt cctcacccag tqccttcagg agccatgatg qctqcctcag aataagcaca 300 gatacacttq agcaactgqt qcaqaaaacc cqacttctaa attattaaqq aacaqqataa 360 ttgcttgtta caataattag aataatgtaa ttaggataat tgcttttaaa aaatcttccc 420 acctttcccc ccccaaatat taataattcc aactaaatcc tctggggccc ttccagtttc 480 cacaacggaa agagcctaac gtattctaaa gactgggcat atttttttt tccagattag 540 tgagtgttca tgagctatta agaggccaag tgttttttca agatggtgtc atttcattct 600 660 aacatatcta acatgcaaag gacttaaaaa aataatttgc aaaataatct gtttcaagtc tatgaggaag ctgaagagcc tactccggag gaaactccag aagagcctcc tagcatagag 720 780 gaagaagaga tagtggagga agaggaggag gaggaggtgc ccccgcccag aggtacagcc getttgatga gttcagcatt ccaaagcett ggtgctgetg gaccetacte attagccata 840 900 tactttcctg gaagcacagc cacgaggcct ggagggtgca cactcgtaat gactggagct ttgtgggcct ttcctttccc ctaacgtttc ctccttcccc gcaatctgac cataaatgag 960 gagatttttt ttttctctta ctacactttt tgcaatccta gtttgcaatc ctcagtgtgg 1020 ctggctttca gttcaaatgc tggagaacca tgtatctgtg tggtgagagc attcattttc 1080 aagactaatt cttaaaccgc ttatccccgg agacagaaac cgtggcagag ttgctatcct 1140 ctgagctggg gtggtcatga tqatcagtta ggttactaac atcttcctaa atgaatcggt 1200 gttttgtgtt gctctgtttt catttggatg acagggtgtt gttctgttta atgcgtgtgg 1260 gtttttccaa catgtccgta aaaatatctt ttaagcacca gangtagtga agaaagctgt 1320 gcaaacagca cccgctcctg tccccaagaa awccgaggcg ccccccaaa ggtatatc 1378 <210> 38 <211> 1554 <212> DNA <213> Rattus norvegicus <220> <221> misc_feature <222> (1)...(1554) <223> n = A, T, C or G<221> CDS <222> (141)...(1082) <400> 38

Met Ala Ser Arg Gly Tyr Leu His His Leu Leu

60

120

173

tctagcgaac cccttcgcga accccttcgc tgcatcctca taaagctacc tcaagacaga

gcgtaactgc ctcattctag gagtggactc ggggaagaca gcagacacac catcagggag

cccctgggta tctccagaac atg gca agc cgt gga tac ctg cat cac ctg ctg

					tgg Trp											221
					gcc Ala											269
					gaa Glu											317
					aaa Lys 65											365
					ctc Leu											413
					gtc Val											461
gcc Ala	tcc Ser	gac Asp 110	atc Ile	ctg Leu	aac Asn	atc Ile	ttt Phe 115	ggt Gly	ctc Leu	ttt Phe	ctg Leu	gca Ala 120	cct Pro	gag Glu	tca Ser	509
					gtg Val											557
					aat Asn 145											605
					gtc Val											653
					gct Ala											701
					aga Arg											749
					ctc Leu											797
gaa Glu 220	gat Asp	gcc Ala	agg Arg	gcc Ala	ctc Leu 225	atc Ile	aat Asn	gca Ala	ggt Gly	agc Ser 230	atc Ile	cct Pro	gcc Ala	caa Gln	cgg Arg 235	845
					gcc Ala											893

	240	245	250	
			ggg gtc acc ctc ttg Gly Val Thr Leu Leu 265	941
		n Glu Ser Lys	cag ttg tac gaa ggg Gln Leu Tyr Glu Gly 280	989
			ctg gct cag gag ctg Leu Ala Gln Glu Leu 295	1037
gag gag aag cta Glu Glu Lys Leu 300			gag aca atc tga Glu Thr Ile *	1082
acagaggtag ggace gggacatagt gtgga caaagtgaga tccae gggaaaattg aaate ctccccatct gagee ctctaaacaa gtcg	catgga ggtgctgtt aggcct gtttgatga ctggag cctgagacs ctanac taaacatgg cattgg aaaccccac tggccc ccagttccc atttca aaaaaaaa	ca gaaggagagc aa cacarcaggt sa gggaccagag ga aaaaaggcag ca aaacacaaac cc agcccactcc	catcanggaa gaggatctgg aagactacag tcaggtccga taraggatgg agcagtggat gatgtgctgc aagagggact tttcgaaaga ctagaaaacc cagagagaaa agtgtgtgct caccctcagg ggtggcatca aaaagcggcc gc	1142 1202 1262 1322 1382 1442 1502 1554
<220> <221> misc_feat <222> (1)(11 <223> n = A,T,C	ure 42)			
taatcttcag ttgtc tcttcggtaa agccc ttatagttac aaggc ctttgcttat gtgtc ttgtgggggg gattc aagcctggaa tttac cctccaacgt gtggc aacctccccg tcgac caacccaact aaag ctcattcttt ttnn ggnnccccng gnggc atngggnggg gtatc aggncctnan ttnc agatttnaaa nccnc ggngcccaan gttnc atatntgagt tntgc ccctanccac atgt	gtotot ggaactcaa aacttt cttacacat ttgcct tcgaaacac aaattt cacagtaat gttttg ttgttgttg ctgtgt catcccage caattg caggagtaa agccc accaccata tttaat aaaaaaaga agatnc agggctcnc ggnttt tttncnttg aaaagt nttancngg cnccca ganaactag cctgtn cacaganar cccacc ctgtagagr acctnt attcttac tttgnc ccaagantg	ac aaagaacgca ta tttcgggaag tt gctctaaatg tg caatagagaa gt ttgagataaa gt agcttcaaac ac ctaccacatc aaaccaattt aa aacaaaaca tagttttnaa gc cncntngc gc anatgnnctn ga nanctntngc na gaancttana ng ggnccccaaa at acnacgcntt gt aaanccactt	aaatggccat atttgcttga ttttatgaaa tatacagctg taattaacta caatttggac tgtctcgtgt tgggtgtgca agggtgtttg tgggtgtggc gcttcattct gtagccagga tggtgcctat cctgcctcag ctgcagctac agtgatctag gcattaagtt tagaattcc agatttaaat cattcttcc caaaacagtn ngcagngnng ancccaccen cccaggcngg ggngcanacc caagtntatc atagtanang ccccntgtgn tagaaaantc aaaatatttn ancngccncc gagagaatat ntgntgggg naannctgng ggatatctcn taaaaaaaaa aaaggngccn	60 120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080 1140 1142

```
<210> 41
 <211> 502
 <212> DNA
 <213> Rattus norvegicus
<220>
 <221> misc feature
 <222> (1)...(502)
<223> n = A, T, C or G
 <400> 41
 tctagcgaac cccttcgtgg agactgtgga agttatgtat gaataggaga gtgtgtgttg
                                                                       60
 tgtaacacag acagaaggac attggatcat gttgaacccg cacccccaac tatgagtgat
                                                                      120
 ggtatggaaa gaatgcgaac atttaaactg cgccaatgcg gcggccatct tggtggagaa
                                                                      180
 gttcctagcc gagctttgat gtgatttttt tgatggtaca atgcagcgag catggccacg
                                                                      240
                                                                      300
 ggagetttga atccageega eageteegag atttgeeett ceagtgetet tgeetaeegt
 agagaggact gctgagatgg gattccttgt gacaagccta cttaccttta actgccagca
                                                                      360
 tttgtaaggt gcaatcttgt gtattggttt tttattttga cagttttgaa aacatgtttg
                                                                      420
                                                                      480
 502
 aaaaaaaaa aaaagcggcc gc
 <210> 42
 <211> 1426
 <212> DNA
 <213> Rattus norvegicus
 <220>
 <221> misc feature
 <222> (1)...(1426)
 <223> n = A, T, C or G
 <400> 42
                                                                        60
 tctagcgaac cccttcgcct tcatatggtt ttacactgta tgcatctcac cgcggcccgg
                                                                       120
 aacctttctt ctcatcccaa tcctgtttga ggggacgggg ggcagggacg gacaacccaa
 gacaagggat atttgtgctg tgggtattgc atcttatgga gggctgtagc taactgggac
                                                                      180
 tcctgggtga ccccaacagg cctttgatcc tctgtctctc cccgcttgat ctttcttacc
                                                                      240
                                                                      300
 ttatgcttcc ccaagtgcag ctgagggact acacagtggc tcccgcccca ctccaaacac
                                                                      360
 aggaaatcaa totcagggag aggagataag aagtgaggag aagccaagat tcaaccaata
                                                                       420
 gatggtaatt geteetggga eegeeeeee aageateatt teeataggaa ggaetgagtt
                                                                       480
 tggctcctga agcccagtgg agtacctttc tctgcctgaa ttctgttgtg atccctggcc
                                                                       540
 aagtoctott tocagaaaco coacotttaa aaccagotga gaaggacott ottototatg
                                                                       600
 tttaataggt aactttccat agcttagctt ccctgcagtc tcccgagtgc ccagttaaaa
 ttctqccata qqtcaaaagt qqqqttqaga qqtqaagtca gaggccatgc atggagctca
                                                                       660
                                                                       720
 qaacqtttct aaacctcctq tqattcattq aqtaqcccct agactctaga aggctcagat
 qccaaaaaqq ktqactttat aatttcttaq qqtcttctca tqqqatcqkt ttcagaqtqq
                                                                       780
 qcattcacta aatgatagca agtttattaa ttgtttccca gygcctgatc tctttatttn
                                                                       840
 cccagggctt ccaaccagag cccttggttg aaagtctccc acccacccc caccctgaga
                                                                       900
                                                                       960
 cttggtggnt ttctgagatt ccccagggat ggcaaaattg gcattcttac agggagccct
 gacttctagc acgttaccta gattttttac cctgctctct ctgcctattt tactatggga
                                                                      1020
                                                                      1080
 tcactgntct ctttggactt aaggaaccac cttgaagtag agtgaggtga ccacgtgttg
 gtggcgaaga atataagcat tggtccttaa aagagaactt ctatgaagtc aggctgcaag
                                                                      1140
                                                                      1200
 ctttaacatg gcacaagttg caccttactg gctgctaagt ctggatgtca accaaaggtc
                                                                      1260
 aactctntaa ttaaagaaaa gcaagggaga aganaggtgg aagnggcttn cataaacttt
                                                                      1320
 attcaaaatg tctaccagga atggtggtga caccaataat cccacatgtt ggatgtngag
                                                                      1380
 qcaggaagaa tgatggtaag gggcatcctc actacataat gagttgaggc tngactaggt
                                                                      1426
 taactntgct tnaaaaaaaa aaaaaaaaaa aaaaaaaagg ggngcc
```

```
<210> 43
<211> 985
<212> DNA
<213> Rattus norvegicus
<220>
<221> CDS
<222> (79)...(255)
<400> 43
tctagcgaac cccttcgcaa gaactcagac tgctcctgcc tgacttccta ggtgtcatag
                                                                     60
ctctcttctg ccgccagt atg aca tca tca agg aca acg agc cca ata aca
                                                                    111
                   Met Thr Ser Ser Arg Thr Thr Ser Pro Ile Thr
aca agg aaa aaa cca aga gtg cat cag aga cca gca ccc cag agc acc
                                                                    159
Thr Arg Lys Lys Pro Arg Val His Gln Arg Pro Ala Pro Gln Ser Thr
            15
                                20
                                                    25
agg gtg ggg gtc tcc tcc gaa gca aga tat gaa acc ctt tca gtg ctt
                                                                    207
Arg Val Gly Val Ser Ser Glu Ala Arg Tyr Glu Thr Leu Ser Val Leu
        30
                                                                    255
get etg age age tea gaa gta gaa tge gag agg ace tea etg tte tga
Ala Leu Ser Ser Glu Val Glu Cys Glu Arg Thr Ser Leu Phe *
    45
                        50
cgatgattgt ccaacacac teeggeeete teegtgtete eteecaceae eatettetee
                                                                    315
tatcaccggg cttactatct tctctcctgg ctttcctctt tctgatggcg gttcctgaag
                                                                    375
cctccaacta acccctaact cggggagcgc ctcgacagtg tttgtggcta aggctacact
                                                                    435
cagagacaga gttgcagaat gagggagacc cagcccgagg gacgccattg ctgggaggta
                                                                    495
gactgggtgc gagggccctt ggcacaggac tcacatctgg gctgttcagc ttgacccgaa
                                                                    555
ggctgtgtgt gaaaggggga aaaagacaag attgccaggc agggctgttg tttttgtggc
                                                                    615
ttcgagggac aagaacctgg ctaaaaggca gcagccctgc tgttcttttt ctcctctgtc
                                                                    675
ctgtttccta ccttacaaga agtccatgca accaaccggg gctctggcac ttttcttgtt
                                                                    735
                                                                    795
tatttccctc ctggcttcca aacaagccct ctgtgqacat catcaaagca tggataaccc
cctctgcagg ggtgggcttc attctccgct ggtccctgta gccttcctgg acacagggtg
                                                                    855
aaagttgtaa aagtggtagg agtgcagcta gccacaggtt ctccttttcc catctcagtc
                                                                    915
975
                                                                    985
aagcggccgc
<210> 44
<211> 2010
<212> DNA
<213> Rattus norvegicus
<220>
<221> CDS
<22.2> (239)...(1507)
<221> sig peptide
<222> (239)...(343)
<400> 44
totagogaac coottogogg ggacagacat ggagaaggag atggaggacc cootggotgg
                                                                     60
aqcaqaccaa cagaataggc aactatggct ggagaaccqq gtatcagagt aatgcttgac
                                                                   . 120
ctcqqqaaac accaaatttc ttcttccqat cgcaqaaqta qtactcggcg aaattcacta
                                                                    180
                                                                    238
ggtaggaggc tecteatetg ggaagaaceg gtgeetgggg ggaeetgget ggataggt
```

									Gly ggc			286
									gga Gly -5			334
									gtc Val			382
									cat His			430
									ctg Leu			478
									60 GJA aaa			526
									atc Ile			574
									cgg Arg			622
-	_		-			_		-	ccc Pro	_	٠	670
							Arg		ggt Gly			718
									cac His 140			766
									gat Asp			814
									gga Gly			862
	Thr								atg Met			910
									ctt Leu			958

190	195	200		205
gca gcc ttt gaa Ala Ala Phe Glu	gat ggt tct Asp Gly Ser 210	gtc aat ggg ggc Val Asn Gly Gly 215	gac cga cct ggg Asp Arg Pro Gly 220	ggc 1006 Gly
		gct aac ctt ggg Ala Asn Leu Gly 230		
		act ata atc gtt Thr Ile Ile Val 245		
		gta gcg gag gat Val Ala Glu Asp		
		ctg tgt gtt ggg Leu Cys Val Gly 280		
cag cga ctc tct Gln Arg Leu Ser	cgc tca gag Arg Ser Glu 290	cgc aat cgc cgt Arg Asn Arg Arg 295	ggg gcg ata gcc Gly Ala Ile Ala 300	ata 1246 Ile
		aag gaa ggg ctt Lys Glu Gly Leu 310		
		gat gtt tca gtc Asp Val Ser Val 325		
		gct ctg gac gat Ala Leu Asp Asp		
		ctt ttc cca gta Leu Phe Pro Val 360		
		gtc cgg ctt ctt Val Arg Leu Leu 375		
ctg tgg ttt tgc Leu Trp Phe Cys 385		gtaggccagc aacco	egtgac tagtttggaa	a 1537
ggacaggaga caac ctagaataaa gatto aatttcccca ttag cactcctgca aggc agatatctta aaggo aagaggggtt tggg	gacctt actcaa ctgaga cagggt tgattt cccact tagaga ttgtga cagaaa ctagaa aattta gctcag	gagaa aacacaaaga atcac acgaggttgc tttg cactccagac ttgta gtgaaattct agagc gctaagggcc aaagg ggaaaccatg gtggt agagcacttg	agtccagggc tgaaa cttggtatgg gctcc actctctgta cacct agcaaaacat taaaa attatctata agaaa cctagcaagc gcaaa	atgacc 1657 eccatg 1717 egatat 1777 gggetg 1837 aatcaa 1897

```
<210> 45
<211> 705
<212> DNA
<213> Rattus norvegicus
<220>
<221> misc_feature
<222> (1)...(705)
<223> n = A, T, C or G
<221> CDS
<222> (54)...(230)
<400> 45
                                                                       56
tctagcgaac cccttcgtgg ggattaaggt tctctatagc taagcctgtc nga atg
                                                            Met
                                                             1
aca aca coc aga gat ctc acc tgg ggt ggt ggg agc act ctc tgt ctt
                                                                      104
Thr Thr Pro Arg Asp Leu Thr Trp Gly Gly Gly Ser Thr Leu Cys Leu
gag gga aca tgt acc tac tct ctc ctt cca caa gag cca cat aca ctt
                                                                      152
Glu Gly Thr Cys Thr Tyr Ser Leu Leu Pro Gln Glu Pro His Thr Leu
         20
                             25
aga agt tcc agt gaa gat cta tgt gct tca gaa gag agg gga ctt gga
                                                                      200
Arg Ser Ser Ser Glu Asp Leu Cys Ala Ser Glu Glu Arg Gly Leu Gly
     35
                                                                      250
ggt gaa agg ggg agt ggg ggt tga ggacctanct gaaagatttt
Gly Glu Arg Gly Ser Gly Arg Gly Ala
                     55
50
                                                                      310
angctgaaag aacttccttg attcaaagac atatgtcagt ngacccaaca atgagaatga
atatgagggc caggaaaact tgtgggaatc agtctcaaga cngaaacnga gaaagaaaga
                                                                      370
aaagtggnta ggactcanat tggggaacct gggtagacag gagtggcnag ggaagaaagg
                                                                      430
gatettgggt thtecacagt ttgagacaca teeggngnte gacectatte eengaageen
                                                                      490
cannanatgt tgetteccen tenntnnaat gggeetggng gteetnetee etttneeeng
                                                                      550
gacatgaaaa ngtnttctgc nnanataacc ccentctttc ctcccccttn antntgtccc
                                                                      610
taccnttttg tccctttttn ttttnaaaaa annaaaataa aggggnncnn tnttcccttn
                                                                      670
gaaaaaaaa aaaaaaaaa aaaaaaccgc ccncc
                                                                      705
<210> 46
<211> 968
<212> DNA
<213> Rattus norvegicus
<220>
<221> misc_feature
<222> (1)...(968)
<223> n = A, T, C or G
<221> CDS
<222> (86)...(244)
<400> 46
```

tctagcgaac cccttcgcga aggggttcgc ttacattcac gcttaagcat attaactgta catattaact gatttagagg atact atg gat tcc aca tct tcc ctg agc ata Met Asp Ser Thr Ser Ser Leu Ser Ile 1 5	60 112
ggg att gat ttg aaa aat gac agg gtt ggc tgt cga ccc cca tcg gag Gly Ile Asp Leu Lys Asn Asp Arg Val Gly Cys Arg Pro Pro Ser Glu 10 15 20 25	160
gaa gca ggt aag gaa tca ctt agg aga act gat ctc aac att ctt cag Glu Ala Gly Lys Glu Ser Leu Arg Arg Thr Asp Leu Asn Ile Leu Gln 30 35 40	208
ttc ttt cta tta ttt act tgt tta gcc tgg agt taa attcccactc Phe Phe Leu Phe Thr Cys Leu Ala Trp Ser * 45 50	254
cttgtgagca cttctaattt gaaaatccac tttctcaat attttcgaaa tttaaaactg atggatgacg tgacaaaact tccacgagtt aagaattctc cacctctgat ctcatcgcag cagggcacaa tccaaggcat gtgaattgac ttccaggttt atgtgacata taaatgaatt ctgtctctag atttggatcc cattctccta aatactcac catgcatgtg cagatattct aaagtctaaa aatactgat attgcaaact tttctggtca atcctgagggggggggg	314 374 434 494 554 614 674 734 794 854 914 968
<pre><400> 47 tctagcgaac cccttcggca gacagcatcc ctcccaaggc tactcagggt ttaaaccctg cttctgaagt gacatgtcct gcaaagaaag tccccacgtg ggtgtttcca ccaccactgt cagctctgta gctgtgcaag ctggggactc caagatcgtg atagccgttg tcaagtgtgg caaatgggtg cggctccaac tggctgaggc acagcccaat ctcctagaaa ttgggagcag tcaag atg aaa cca gaa aac tgc ttc acg atc acg agc tcc ttc tgg cca</pre>	60 120 180 240 290
agc tta agg cct tgg aag atc gtg tgt ggg gac tct tac agg aag cag Ser Leu Arg Pro Trp Lys Ile Val Cys Gly Asp Ser Tyr Arg Lys Gln 20 25 30	338
aca gga cgg ctg aag caa aca agg agc aaa gtg agg tgt cga tgc cat Thr Gly Arg Leu Lys Gln Thr Arg Ser Lys Val Arg Cys Arg Cys His	386

			35					40					45			
					gaa Glu											434
					ctc Leu											482
					aaa Lys 85											530
					agt Ser											578
					aaa Lys											626
					ctc Leu											674
					tct Ser											722
					ctc Leu 165											770
					cag Gln											818
					gac Asp											866
					gat Asp											914
					tta Leu											962
	aga Arg				gtt Val 245	tag *	gaat	tgaa	aca 🤉	gaaca	agtti	te et	tgati	tgaat	Ė	1013
tocactaato tggatttttg ttoccetggt gtgccacato actttaattt gaaagaaaaa 11											1073 1133 1183					

```
<210> 48
<211> .1051
<212> DNA
<213> Rattus norvegicus
<400> 48
totagogaac cocttogogo aagatggoog cttoccagac cgctocgogg catottoaag
                                                                        60
                                                                       120
atgcgcgaga agaacgtgca atctcgcgag atcaggctcg ctcgcgggca gtctgctcgc
                                                                       180
agcctaccct tcctaggagt tggaggaggg aaagctagat tcgattaaga gcaaaaaatt
                                                                       240
gttccagcag cagagcagct gtccaaggaa gtatccaaag gaactgcacc tcagtaaact
                                                                       300
cctggcaaqt cttaggatat gacaaagggc acaggatgca ttatgagaaa ggaaggctaa
ggttttcaag aacacagatt tacatcaaac ttqcgttctg aattaatctt tqagaatact
                                                                       360
ggactgtgag ctagacattg agtaagaggt ttgttatatc aagaatgtga tctaaaaaaa
                                                                       420
aaacattcat atcttcctcc cacaagagga tattttgaaa ctgtgggtca aagtcagact
                                                                       480
acaggagagc cctcaaatat gccaaatgtg acagacagca ggattttgaa aatatagtgg
                                                                       540
gagtatgtga agatgttcca gtcaaagaga cattgtttcc aaaggaaaga aagtccagtc
                                                                       600
gcctcacagg aattgtgtat tccctggtag taatgcaaat ggaccacata tggctttctt
                                                                       660
ctttaaagag aatacctaat tttagctaca gagtaaaatg ctgatgatac aaaccgtgac
                                                                       720
aagtggaggg acaagaaagt aaatggactg atggtgccat tgtggactgg gagggtaaaa
                                                                       780
                                                                       840
gctgtacatt tgtgaacaaa aagatttcct tgttatggtc agccatgatt ctaactgcta
                                                                       900
aatggaggca gtaacaacat gacctaaaga gtaaacatcc agagatggaa tgttctcaat
                                                                       960
gtctgaaaag gagcagatat ctggtgtatg tgaatgtatg ctagagattt tttacaagcc
tgtggtgaat tagtaattgt attttatttt gaaagttaaa caggtaatta gaaaccccaa
                                                                      1020
aaaaaaaaa aataaaaaaa aagcggccgc c
                                                                      1051
<210> 49
<211> 576
<212> DNA
<213> Rattus norvegicus
<220>
<221> misc_feature
<222> (1)...(576)
<223> n = A, T, C or G
<400> 49
tctagcgaac cccttcgctg aaaccaccgt tcacacggga aacctgggtt aggcttttgt
                                                                         60
cctcagtgac acagaggatg tagtccacag ctaggtagaa atgtcaggtt cccaacacta
                                                                        120
                                                                       180
ctccagctgt gactttgatg cttgggggat ggggtcgcag gctattttct ctgctttaac
                                                                       240
agttcataga atttaacaga taagagttag tgtctttcat gtggcctcac tctggagtta
                                                                        300
tgagaacata cacacggttt acagcttttc aatatncctt tccctggcca tcaagtattt
                                                                       360
tgaaagtgtg ccacctttta acctttgcgc tttatttttt tttcttttt taaagntgaa
ggtgataatt cttctatata tgatgaaact caatgtctac tgaaataagt gtaaccttag
                                                                        420
                                                                       480
ctatncacgt ttatntttta aaaccacgct atggagatat taccccgagt tctgtcnttt
                                                                        540
ngcaagattt acagnacctt cccnccccc cttttagcat tnaataaaaa natattgggg
                                                                        576
agcncnntna aaaaaaaaaa aatnaanaaa agcggc
<210> 50
<211> 587
<212> DNA
<213> Rattus norvegicus
<220>
<221> misc_feature
<222> (1)...(587)
<223> n = A,T,C or G
<221> CDS
```

<222> (161)...(586) <400> 50 tctagcgaac cccttcgcgt gatctgatcc gagctgagac ttggggagct ctgqctccqt gttggctgca gcatccccca tggtcttgtc tgaggtgtcc tgtgactcga ctcttcagaa 120 ctcaatgaag tagatgactt gactacaatg tggaaacatc atg aca gaa agt gtg 175 Met Thr Glu Ser Val gtt tgt acc ggg gcc gtc agc act gta aag gaa gtc tgg gaa gaa aga 223 Val Cys Thr Gly Ala Val Ser Thr Val Lys Glu Val Trp Glu Glu Arq ata aag aaa cat cat gaa gat gtg aaa cga gag aag gaa ttt cag caa 271 Ile Lys Lys His His Glu Asp Val Lys Arg Glu Lys Glu Phe Gln Gln aag cta gtg cgg atc tgg gaa gac cga gtg agt tta act aag ctg aaa 319 Lys Leu Val Arg Ile Trp Glu Asp Arg Val Ser Leu Thr Lys Leu Lys gag aag gtg acc agg gaa gat gga aga atc att cta agg ata gag aaa 367 Glu Lys Val Thr Arg Glu Asp Gly Arg Ile Ile Leu Arg Ile Glu Lys gag gaa tgg aag act ctc cct tct tcc tta ctg aaa ctg aat cag cta 415 Glu Glu Trp Lys Thr Leu Pro Ser Ser Leu Leu Lys Leu Asn Gln Leu 70 75 cag gag tgg caa ctt cat agg acc gga ttg ttg aaa att cct gaa ttc 463 Gln Glu Trp Gln Leu His Arg Thr Gly Leu Leu Lys Ile Pro Glu Phe att gga aga ttc cag cat ctc att ggt cta gac tta tct cgg aac aca 511 Ile Gly Arg Phe Gln His Leu Ile Gly Leu Asp Leu Ser Arg Asn Thr 110 115 att tea gag ate eec eeg agg eat tgg act gnt eac tta gae tte aag 559 Ile Ser Glu Ile Pro Pro Arg His Trp Thr Xaa His Leu Asp Phe Lys 120 125 gaa ctg att ctt agc tac aca aaa tca a 587 Glu Leu Ile Leu Ser Tyr Thr Lys Ser 135 140 <210> 51 <211> 819 <212> DNA <213> Rattus norvegicus <220> <221> misc_feature <222> (1)...(819) <223> n = A, T, C or G<400> 51

60

tctagcgaac cccttcggtt ctgttggcta cacagctgca gagccatggc tgaccgttca

```
ctgtcagggg cacatgttac actaagcttc atgacagtga tgtaataatg ttacacattt
                                                                   120
                                                                   180
gtcttgtagt tatgtattga agtttctgtc ctgttttgtg taaaaatgta tccactcttg
tatatattta gacttqaaac taccacacaa atattqqaac qqtttqcttt atqaaqttaa
                                                                   240
aagtateett eegaatggaa etaaettget ttgtgeteag acatataeta tgetgatgta
                                                                   300
ttttgcaata tactatctta aattaaatct ggtcactttg ttgccttttt aaaaagtgtg
                                                                   360
gtatttcaag tagagttatt ttcctgaaat atatttgcaa actcaagctg ctttataatc
                                                                   420
aaggaatatt tttattgatt gaagaaaatg actgctgcaa ttcaaaagtg aacttatttt
                                                                   480
attatataga tgatttetta aaagetattt ataccatgat acaaaatcat gtagtgatee
                                                                   540
tgggagtetg tagttettee tgttaataac atteaacact gtatgetaga ggeageaatg
                                                                   600
ccaacactga agttattttg ggtgaaaacc gtcgttctgn cctgtttagc tggggattat
                                                                   660
                                                                   720
taaatccata taatgtatgt gettatgtat getacatgtg caagttaggt gttteetttg
tgttctgctt attaaatgtc attcagattc acttcctgaa ttctaataaa gagggaagct
                                                                   780
attggaaaaa ataaaaaaaa aaaaaaaaaa gcggccgcc
                                                                   819
<210> 52
<211> 1648
<212> DNA
<213> Rattus norvegicus
<220>
<221> misc_feature
<222> (1)...(1648)
<223> n = A, T, C or G
<400> 52
tctagcgaac cccttcggtg gcgcacgccg gtaggatttg ccacgcaaat gctggaatta
                                                                     60
aagacatgca gcagcagcgc cctgtggttt tggtttttta tttgattgct tatttttatc
                                                                    120
taatttttaa ttttttgtgt atgaacgttt tatctgcatt tatgtctctg taccacattc
                                                                   180
gtgcctggtg ctatggaggc caaaaaagga ttttaggccc gagattgtag ttatagatgg
                                                                    240
ttgtgggctg ccaatctgag tgctgaaaat taaacctggg tactctgaaa gaccagccag
                                                                    300
360
agggtctctc tctctgtatc ctagtctaac ttaaaacata aagaatattc tgtatcagta
                                                                    420
tccttgagta ctaggattct aggcacctgt cattatgcct agatttttaa cagtgtgtgt
                                                                    480
taattotaca taaaaatgaa tttoattatt acattttoac acttgtgaag aatatacttt
                                                                    540
gatcatattc cetteteetg atactttttc ctateettee tececaetee attagtteee
                                                                    600
ttcttctttt cagagtctac cttctacttt ttactttgat ttttttcccc ccacattctg
                                                                    660
tggttgagag aatgcatatt acagttgtat ttctgaatct ggctaggtac attcacttaa
                                                                   720
cataattaat gatcctgggc gagcgaaggg gttcncctan cnaacccctt cggttcaata
                                                                   780
ccatttcaga gatgggcatt tccctcaatg aaatacacaa gtaaacattc cgacattgtc
                                                                    840
900
aaagctttgc accttgcaaa agtggtcctg gcgtgggtag attgctgtta atcctttatc
                                                                    960
aataacgttc tatagagaat atataaatat atatataatt atatctccta gtccctgcct
                                                                   1020
cttaagagcc gaaaatgcat gggtgttgta gacattcggt tgcactaaat tcctctctga
                                                                   1080
attttggctg ctgaagccgt tcatttagca actgtttata ggtggttgat gaatggttcc
                                                                   1140
ttatctccat ttcttcctat gtagcttaag ccgcttcctt cacagaatct aataatctcg
                                                                   1200
totaggecat tagecetgee etteettaae attettgtat ttgttgaatt tggeeteete
                                                                   1260
gaaagcaata gcaactgggt ggcccaccca agttttaacg cccctgattc catctatggc
                                                                   1320
atttgtacca aatataagtt ggatgcattt attttagaca caaagcttta ttttttcgac
                                                                   1380
atcgtgtttc aagaaaaaaa acaaatagaa taacaataac tatgactttg aggccaatca
                                                                   1440
tttttaggtg tgtgtttgaa gcatagaacg tctnttaaac tctcaatggt tccttcaaat
                                                                   1500
gatgagttag tatgtaacgt aaatagcagt ttctctctct ctctctct ttttattttt
                                                                   1560
tccanataga gcactatgta aatttagcat atcaataata caggaactat ccnccaaaaa
                                                                   1620
aaaaaaaaa gcggccgc
                                                                   1648
<210> 53
<211> 782
<212> DNA
```

<213> Rattus norvegicus

```
<220>
<221> misc_feature
<222> (1)...(782)
<223> n = A, T, C or G
<221> CDS
<222> (277)...(426)
<400> 53
tctagcgaac cccttcgtag aactaggagc cagtgttgac cacggtcggt ggctggatac
                                                                        60
cccactgcat gctgcagcaa ggcagtccag tgtggaggtc atcaatctgc tcactgagta
                                                                      120
tggggctaac ctgaaactca gaaactcgca gggcaaaagt gctcttgagc tcgctgctcc
                                                                      180
caaaagtagt gtggagcagg cactcctgct ccatgaaggt ccacctgctc tttctcagct
                                                                      240
ctgccgcttg tgtgtccgga agtgcttggg ccgcac atg tca tca agc cat cta
                                                                      294
                                         Met Ser Ser Ser His Leu
                                                                       342
cgc act agg tct gcc aga acc cct gga aaa att cct ctt ata cca ata
Arg Thr Arg Ser Ala Arg Thr Pro Gly Lys Ile Pro Leu Ile Pro Ile
                                  15
gtt gga aac atg ttg cct gct gta gga cac tta ata tac aca ttc agt
                                                                       390
Val Gly Asn Met Leu Pro Ala Val Gly His Leu Ile Tyr Thr Phe Ser
ggc tta acc cac tat cct aaa aat ctg ctt acc taa ttagaataaa
                                                                       436
Gly Leu Thr His Tyr Pro Lys Asn Leu Leu Thr *
                         45
gccttcataa atccaaatac ttgcgttgaa caaactcctg gttaggttaa tggntgccaa
                                                                       496
gagataacca gaaacctttc aagtttttaa ctcttggtaa tttaaaatca aactgaaata
                                                                       556
gatggaaaat aataatctat ttttggataa ttcaaggacc cttcagtatc tggggctggg
                                                                       616
gtccgcattt tgnatactgg atagacacac acacaggtag gatanggtaa atnaactact
                                                                       676
taaagaatgg cctgggattt aagtcctcca gatatttttt aggtngnggt ttcctaaaat
                                                                       736
aaaattctgg agtgccaaaa aaaaaaaaaa aaaaaaaaag cgggcc
                                                                       782
<210> 54
<211> 538
<212> DNA
<213> Rattus norvegicus
<220>
<221> misc feature
<222> (1)...(538)
<223> n = A, T, C or G
<221> CDS
<222> (252)...(464)
<400> 54
gtctagcgaa ccccttcggg aaacttcaac aaaggtacca gcaactacag cgccttgtcc
                                                                        60
acccagattt cttcagccaa aagtctcaga ctgagaaacg gttctcggag aagcattcga
                                                                       120
ccctggtgaa tgatgcctac aagactcttc aggcccccgt gagcagagga ctatatcttc
                                                                       180
taaagctcca aggaatagaa attcctgaag ggacagatta tagaacagac agtcagttcc
                                                                       240
ttgtggaaat c atg gaa atc aat gaa aaa ctc gca gac gcc aaa agt gag
                                                                       290
             Met Glu Ile Asn Glu Lys Leu Ala Asp Ala Lys Ser Glu
```

														aaa Lys			338
														gaa Glu		; •	386
														gaa Glu 60			434
			tta Leu 65							ttg	ctaa	ctt a	aaag	gttt	aa		484
aaat	caaac	ctt 1	tgtat	tttct	t c	annnı	nnnaı	n nni	nnanı	nntn	nnn	nagc	ggc	cgcc			538
<21: <21: <21:)> 55 L> 8(2> Di 3> Ra)5 NA attu:	s no:	rvegi	icus												
tcta	agcga	aac (aggagg		60
															gactga tgtgcg		120 180
															tgttct		240
															tccaca		300
															ccaaco		360 420
															gctgct		480
															átgťt		540
															ctttct		600
															ggaggt agaaca		660 720
		_					_		_				-		aaaaaa		780
aaa	aaaa	aaa	aaaa	aaag	cg g	ccgc											805
<210	0> 5	6															
	1> 1																
	2> DI																
<21.	3> R	attu	s no	rveg:	cus												
<22	0>																
			feat														
			.(14), T, C		C.												
~~ ~.	<i>5</i> - 11	- 11	, - , 0	<u> </u>	•												
	1> C		(4	311													
\2 2.	27 (.	30).	(4	J1)	•												
	0> 5											_					
														ccta , act	ggtga	3	60 113
crg	-999		Lyac	~9C9	oc y	-ggc	caac							Thr			
								1			-	5	_				

```
aag aag aac aaa ccc gag atc aat gag atg acc atc atc gtg gaa gac
                                                                      161
Lys Lys Asn Lys Pro Glu Ile Asn Glu Met Thr Ile Ile Val Glu Asp
age eec eta aac aag etg aat get eta aat ggg ete etg ggg gga gaa
                                                                      209
Ser Pro Leu Asn Lys Leu Asn Ala Leu Asn Gly Leu Leu Gly Glu Glu
                     30
                                         35
aac agc ctt agc tgt gtt tct ttc gaa cta aca gac act tct tat ggt
                                                                      257
Asn Ser Leu Ser Cys Val Ser Phe Glu Leu Thr Asp Thr Ser Tyr Gly
ccc.aac ctc ctg gaa ggt tta agt aaa atg cgt caa gag agc ttt cta
                                                                      305
Pro Asn Leu Leu Glu Gly Leu Ser Lys Met Arg Gln Glu Ser Phe Leu
                                                                      353
tgt gac ttg gtc atc ggt cca aaa cca agt cct ttg atg tcc ata agt
Cys Asp Leu Val Ile Gly Pro Lys Pro Ser Pro Leu Met Ser Ile Ser
         75
                             80
caa gtg atg gct tcc tgc agc gag tct tct ata ata tcc tta aaa cga
                                                                      401
Gln Val Met Ala Ser Cys Ser Glu Ser Ser Ile Ile Ser Leu Lys Arg
     90
                         95
tcc atc gac aaa aag ggt aga cct caa tga tatcgnccct ttagggctac
                                                                      451
Ser Ile Asp Lys Lys Gly Arg Pro Gln
105
                    110
caccgtgata gcatatgcat acacnggaaa gctgcccttt ctttatacac aataaggaag
                                                                      511
catcatttct gctgctgtgt acctccagat ccacactctt gtgaagatgt gcagcgactt
                                                                      571
tctgatccga gagatcagtg ttgagaactg catgtatgtt gttaacatgg ctgaaacata
                                                                      631
ctgcttgaaa aatgcgaaag caacggccca gaaatttatc cgggataact tcattgaatt
                                                                      691
tgccgactcc gaacaattta tgaagctgac gtttgaacag attaatgagc ttctcataga
                                                                      751
tgatgacttg cagttgcctt ctgagctggt agcattccag attgcaatga aatggataga
                                                                      811
attcaaccaa aagagagtga agcacgctgc ggatctttta agcaatattc gctttggtac
                                                                      871
catctctgca caaqacctgg tcaattacgt tcaaaccgta ccgagaatga tgcaagacgc
                                                                      931
tgattgtcat aaactgcttg tggatgctat gaactaccac ttactacctt atcatcaaaa
                                                                      991
                                                                     1051
cacqttqcaa tctaggcgga caagaattag aggcggctgc cgggttctga tcactgtcgg
gggacgccct ggcctgactg agaagtccct tagtagagac gtttatatag agaccctgaa
                                                                     1111
aatggatgga gcaagettac agaaatgcca gccaagagtt tcaatcagtg tgtggctgtg
                                                                     1171
atggatggat tcctttatgt agcaggtggt gaggaccaga atgatgcgag aaaccaagcc
                                                                     1231
aagcatgcag tcagcaattt ctgcaggtac cgatccccgc ttcaacacgt ggatccacct
                                                                     1291
gggcagcatg aaccagaage gcacgcactt cagcetgage gtgttcaacg ggcteetgta
                                                                     1351
                                                                     1407
cgccggtggn gggcnccagt gnganggata tctgcagaat tcggctagcc gaattc
<210> 57
<211> 2004
<212> DNA
<213> Rattus norvegicus
<220>
<221> misc_feature
<222> (1)...(2004)
<223> n = A, T, C or G
<221> CDS
<222> (88)...(432)
```

geetgeeact gntgeeegtn tgtegaaaca cetnteecet tgteacaege agngntttga taaattattt gntttnaaca aaaaaaaaaa aaaaaaaaa aaaageggee ge	1952 2004
<210> 58 <211> 881 <212> DNA <213> Rattus norvegicus	
<220> <221> CDS <222> (84)(377)	
<400> 58 tctagcgaac cccttcgctc cagggcgttt gcctcctgct gacttgctct tcaccattag acaagcctga cgtcaagacc cca atg gct aac gaa gct aac cct tgc cca tgt Met Ala Asn Glu Ala Asn Pro Cys Pro Cys 1 5 10	60 113
gac att ggt cac agg cta gac tat ggt ggc atg ggc cag gaa gtt cag Asp Ile Gly His Arg Leu Asp Tyr Gly Gly Met Gly Gln Glu Val Gln 15 20 25	161
gtt gag cac atc aag gca tat gtc acc cgg tcc cct gtg gat gca ggc Val Glu His Ile Lys Ala Tyr Val Thr Arg Ser Pro Val Asp Ala Gly 30 35 40	209
aaa gct gtg att gtt gtc cag gat ata ttt ggc tgg cag ctg tcc aac Lys Ala Val Ile Val Val Gln Asp Ile Phe Gly Trp Gln Leu Ser Asn 45 50 55	257
acc agg tat atg gct gac atg att gct gga aat gga tac aca act att Thr Arg Tyr Met Ala Asp Met Ile Ala Gly Asn Gly Tyr Thr Thr Ile 60 65 70	305
gcc cag act tct ttg tgg gtc aag agc cat ggg acc cgg ctg gtg att Ala Gln Thr Ser Leu Trp Val Lys Ser His Gly Thr Arg Leu Val Ile 75 80 85 90	353
ggt cca cct tcc ctg agt ggt tga aatcaagaaa tgccagaaaa atcaaccgag Gly Pro Pro Ser Leu Ser Gly * 95	407
aggitgatge tgtettgagg tatetgaaac aacagigica tgcecagaag atiggeatig tgggettetg etggggggt atigtgggg accaegigat gacgacatat ecagaagica gagegggggt gtetgtetat ggtateatea gagattetga agatgittat aatitgaaga acceaacgit gittatetit geagaaaatg atgetggat tecaetigag eaggitteta taetgateea gaagettaaa gaacaetgea tagitaatta ecaagitaag acaittietg ggeaaaetea tggettigig eateggaaga gagaagaetg eteceetgea gaeaaaeeet acaitgagga agegaggagg aateteateg aatggetgaa eaagitaati taacageaet eaageacaaa tittgaataa ttaaattgae eegaataati aaattgaeee gaat	467 527 587 647 707 767 827 881
<210> 59 <211> 97 <212> PRT <213> Rattus norvegicus	

```
Met Ala Asn Glu Ala Asn Pro Cys Pro Cys Asp Ile Gly His Arg Leu
Asp Tyr Gly Gly Met Gly Gln Glu Val Gln Val Glu His Ile Lys Ala
Tyr Val Thr Arg Ser Pro Val Asp Ala Gly Lys Ala Val Ile Val Val
                            40
Gln Asp Ile Phe Gly Trp Gln Leu Ser Asn Thr Arg Tyr Met Ala Asp
Met Ile Ala Gly Asn Gly Tyr Thr Thr Ile Ala Gln Thr Ser Leu Trp
Val Lys Ser His Gly Thr Arg Leu Val Ile Gly Pro Pro Ser Leu Ser
Gly
<210> 60
<211> 245
<212> PRT
<213> Rattus norvegicus
<400> 60
Met Lys Pro Glu Asn Cys Phe Thr Ile Thr Ser Ser Phe Trp Pro Ser
Leu Arg Pro Trp Lys Ile Val Cys Gly Asp Ser Tyr Arg Lys Gln Thr
Gly Arg Leu Lys Gln Thr Arg Ser Lys Val Arg Cys Arg Cys His Gly
Gln Thr Leu Gly Glu Ala Trp Ala Thr Leu Val Phe Met Leu Glu Arg
Arg Arg Glu Leu Leu Gly Leu Thr Ser Glu Phe Phe Gln Ser Ala Leu
Glu Phe Ala Ile Lys Ile Asp Gln Ala Glu Asp Phe Leu Gln Asn Pro
                                    90
His Glu Phe Glu Ser Ala Glu Ala Leu Gln Ser Leu Leu Leu His
                                105
Asp Arg His Ala Lys Glu Leu Leu Glu Arg Ser Leu Val Leu Leu Asn
                            120.
Lys Ser Gln Gln Leu Thr Asp Phe Ile Glu Lys Phe Lys Cys Asp Gly
                        135
Ser Pro Val Asn Ser Glu Leu Ile Gln Gly Ala Gln Ser Ser Cys Leu
                    150
Lys Ile Asp Ser Leu Leu Glu Leu Leu Gln Asp Arg Arg Gln Leu
                                    170
Asp Lys His Leu Gln Gln Gln Arg Gln Glu Leu Ser Gln Val Leu Gln
                                185
Leu Cys Leu Trp Asp Gln Glu Ser Gln Val Ser Cys Trp Phe Gln
                            200
Lys Thr Ile Arg Asp Leu Gln Glu Gln Ser Leu Gly Ser Ser Leu Ser
                                           220
                       215
Asp Asn Lys Glu Leu Ile Arg Lys His Glu Asp Leu Pro Ser Lys Gln
                                        235
Arg Val Pro Ala Val
               245
<210> 65
```

<211> 142

<212> PRT

<213> Rattus norvegicus

```
<220>
<221> VARIANT
<222> (1)...(142)
<223> Xaa = Any Amino Acid
<400> 65
Met Thr Glu Ser Val Val Cys Thr Gly Ala Val Ser Thr Val Lys Glu
Val Trp Glu Glu Arg Ile Lys Lys His His Glu Asp Val Lys Arg Glu
Lys Glu Phe Gln Gln Lys Leu Val Arg Ile Trp Glu Asp Arg Val Ser
       35
                            40
Leu Thr Lys Leu Lys Glu Lys Val Thr Arg Glu Asp Gly Arg Ile Ile
Leu Arg Ile Glu Lys Glu Glu Trp Lys Thr Leu Pro Ser Ser Leu Leu
                    70
Lys Leu Asn Gln Leu Gln Glu Trp Gln Leu His Arg Thr Gly Leu Leu
               85
                                    90
Lys Ile Pro Glu Phe Ile Gly Arg Phe Gln His Leu Ile Gly Leu Asp
                                105
Leu Ser Arg Asn Thr Ile Ser Glu Ile Pro Pro Arg His Trp Thr Xaa
      115
                           120
                                                125
His Leu Asp Phe Lys Glu Leu Ile Leu Ser Tyr Thr Lys Ser
                        135
<210> 69
<211> 49
<212> PRT
<213> Rattus norvegicus
<400> 69
Met Ser Ser Ser His Leu Arg Thr Arg Ser Ala Arg Thr Pro Gly Lys
                                    10
Ile Pro Leu Ile Pro Ile Val Gly Asn Met Leu Pro Ala Val Gly His
                                25
Leu Ile Tyr Thr Phe Ser Gly Leu Thr His Tyr Pro Lys Asn Leu Leu
Thr
<210> 71
<211> 70
<212> PRT
<213> Rattus norvegicus
<400> 71
Met Glu Ile Asn Glu Lys Leu Ala Asp Ala Lys Ser Glu Ala Ala Met
Glu Glu Val Glu Ala Thr Val Arg Ala Lys Gln Lys Glu Phe Thr Asp
Asn Ile Asn Arg Ala Phe Glu Gln Gly Asp Phe Glu Lys Ala Lys Glu
Leu Leu Thr Lys Met Arg Tyr Phe Ser Asn Ile Glu Glu Lys Ile Lys
Leu Ser Lys Asn Pro Leu
```

```
<210> 74
<211> 113
<212> PRT
<213> Rattus norvegicus
Met Ala Pro Lys Lys Lys Thr Leu Lys Lys Asn Lys Pro Glu Ile Asn
                                    10
Glu Met Thr Ile Ile Val Glu Asp Ser Pro Leu Asn Lys Leu Asn Ala
                                25
Leu Asn Gly Leu Leu Gly Gly Glu Asn Ser Leu Ser Cys Val Ser Phe
Glu Leu Thr Asp Thr Ser Tyr Gly Pro Asn Leu Leu Glu Gly Leu Ser
Lys Met Arg Gln Glu Ser Phe Leu Cys Asp Leu Val Ile Gly Pro Lys
Pro Ser Pro Leu Met Ser Ile Ser Gln Val Met Ala Ser Cys Ser Glu
               8.5
                                    90
Ser Ser Ile Ile Ser Leu Lys Arg Ser Ile Asp Lys Lys Gly Arg Pro
                                105
Gln
<210> 76
<211> 114
<212> PRT
<213> Rattus norvegicus
<400> 76
Met Pro Gly Ala Pro Gly Pro Gly Pro Glu Val Ala Ala Ala Phe Glu
Glu Arg Leu Ser Gln Ala Leu Gln Glu Leu Gln Ala Val Ala Glu Ala
Gly Arg Ser Ala Val Thr Gln Ala Ala Asp Ala Ala Leu Ala Thr Val
                            40
Glu Pro Val Ala Gln Ala Ser Glu Glu Leu Arg Ala Glu Thr Ala Ala
                        55
Leu Ser Arg Arg Leu Asp Ala Leu Thr Arg Gln Val Glu Val Leu Ser
                    70
                                        75
Leu Arg Leu Gly Val Pro Leu Val Pro Asp Leu Glu Ser Glu Leu Glu
                85
                                    90
Pro Ser Glu Leu Leu Ala Ala Ala Asp Pro Glu Ala Leu Phe Gln
                                105
Ala Ser
<210> 77
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Primer specific for vector to produce "Driver
      DNA".
<400> 77
```

cgtatgttgt gtggaattgt gagcg

<210> / <211> 2 <212> D <213> A	25	
	Primer specific for vector to produce "Driver DNA".	
<400> 7		25
<210> 7 <211> 2 <212> E <213> F	28	
<220> <223> 0	Oligos corresponding to polylinker sequence.	
<400> 7		28
<210> 8 <211> 2 <212> 1 <213> F	28	
<220> <223> 0	Oligos corresponding to polylinker sequence.	
<400> 8		28
<210> 8 <211> 2 <212> 1 <213> 2	25	
<220> <223> 0	Oligos corresponding to polylinker sequence.	
<400> 8		25
<210> 8 <211> 2 <212> 1 <213> 2	25	
<220> <223> (Oligos corresponding to polylinker sequence.	
<400> tgagtco		25
<210> (<211>)		

<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligos corresponding to polylinker sequence.	
<400>		
gctcgg	gatec actagtaacg	20
<210>	84	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligos corresponding to polylinker sequence.	
<400>	84	
tttttt	ctttt ttttttt	18