

常见的哈希函数

好的哈希函数?

哈希函数

- 一般来说,一个好的哈希函数应满足下列两个条件:
 - (1) 计算简单
 - (2) 冲突少

哈希函数

常见的哈希函数构造方法有:

- 直接哈希函数
- 数字分析法
- 平方取中法
- 折叠法
- 除留余数法
- 随机数法

解放后每年出生人数的统计:

哈希地址						
出生年份	1949	1950	1951	••••	1970	•••••
出生人数	××××	××××	××××	••••	××××	•••••

$$H (key) = key + (-1948)$$

直接哈希函数:

- 取关键字本身或关键字的某个线性函数值作为哈希地址,
- 即: H (key) = key
- 或 H (key) = a* key+b (a, b为常数)。

解放后每年出生人数的统计:

哈希地址						
出生年份	1949	1950	1951	••••	1970	•••••
出生人数	××××	××××	××××	••••	××××	•••••

$$H (key) = key + (-1948)$$

◎数据结构与算法 | Data Structures and Algorithms

8	1	3	4	6	5	3	2
8	1	3	7	2	2	4	2
8	1	3	8	7	4	2	2
8	1	3	0	1	3	6	7
8	1	3	2	2	8	1	7
8	1	3	3	8	9	6	7
8	1	3	5	4	1	5	7
8	1	3	6	8	5	3	7
8	1	4	1	9	3	5	5
.							

1, 2, 3, 8位分布不均匀,不能取。可取第 4、6两位组成的2位十进制数作为每个数据的哈希地址,则图中列出的关键字的哈希地址分别为:

45, 72, 84, 03, 28, 39, 51, 65, 13

2. 数字分析法

•设 n 个 d 位数的关键字,由 r 个不同的符号组成,此 r 个符号在关键字各位出现的频率不一定相同,可能在某些位上均匀分布,即每个符号出现的次数都接近于 n / r 次,而在另一些位上分布不均匀。则选择其中分布均匀的s位作为哈希地址,即H (key) = "key中数字均匀分布的s位"

```
8 1 3 4 6 5 3 2
8 1 3 7 2 2 4 2
8 1 3 8 7 4 2 2
8 1 3 0 1 3 6 7
8 1 3 2 2 8 1 7
8 1 3 3 8 9 6 7
8 1 3 5 4 1 5 7
8 1 3 6 8 5 3 7
8 1 4 1 9 3 5 5
```

```
n=80,d=8,r=10,s=2
```

1, 2, 3, 8位分布不均匀,不能取。可取第4、6两位组成的2位十进制数作为每个数据的哈希地址,则图中列出的关键字的哈希地址分别为:

45, 72, 84, 03, 28, 39, 51, 65, 13

◎数据结构与算法 | Data Structures and Algorithms

题目:请为BASIC源程序中的标识符建立一个哈希表。假设BASIC语言中允许的标识符为一个字母,或一个字母加一个汉字。取标识符在计算机中的八进制数为它的关键字。

数据	关键字	
A	0100	
Ι	1100	
J	1200	
I0	1160	
P1	2061	
P2	2062	
Q1	2161	
Q2	2162	
Q3	2163	

解: 标识符数量为

26+26*10=286

需要的存储空间为3位8进制或者9位二进制。表中的关键字没有均匀分布,采用平方后的中间3位均匀发布,可以作为哈希地址

3. 平方取中法

•取关键字平方后的中间几位作为哈希地址,即哈希函数为: H (key) = "key²的中间几位", 其中,所取的位数由哈希表的大小确定

数据	关键字	(关键字)2	哈希地址(217~29)
A	0100	0 <u>010</u> 000	010
I	1100	1 <u>210</u> 000	210
J	1200	1 <u>440</u> 000	440
10	1160	1 <u>370</u> 400	370
P1	2061	4 <u>310</u> 541	310
P2	2062	4 <u>314</u> 704	314
Q1	2161	4 <u>734</u> 741	734
Q2	2162	4 <u>741</u> 304	741
Q3	2163	4 <u>745</u> 651	745

平方取中法思想

以关键字的平方值的中间几位作为存储地址。求"关键字的平方值"的目的是"扩大差别"和"贡献均衡"。

即:关键字的各位都在平方值的中间几位有所贡献,Hash

值中应该有各位影子。

关键字位数特别多, 怎么办?

4. 折叠法

- •关键字位数较长时,可将关键字分割成位数相等的几部分(最后一部分位数可以不同),取这几部分的叠加和(舍去高位的进位)作为哈希地址。位数由存储地址的位数确定。叠加时有两种方法:
 - 移位叠加法, 即将每部分的最后一位对齐, 然后相加;
 - 边界叠加法,即把关键字看作一纸条,从一端向另一端沿边界逐次折叠,然后对齐相加。

$$d_r \cdots d_2 \ d_1 \ d_{2r} \cdots d_{2r+2} \ d_{r+1} \ d_{r+1} \cdots d_{2r-1} d_{2r} \ +) \ d_{3r} \cdots d_{2r+2} \ d_{2r+1} \ S_r \cdots S_2 \ S_1 \ S_r \cdots S_2 \ S_1 \ (b) 边界叠加法$$

此方法适合于: 关键字的数字位数特别多。

5.除留余数法

取关键字被某个不大于哈希表长度m的数p除后的余数作为哈希地址,即:

H (key) = key MOD
$$p(p \le m)$$

其中p的选择很重要,如果选得不好会产生很多冲突。 比如关键字都是10的倍数,而p=10

6. 随机数法

- 选择一个随机函数, 取关键字的随机函数值作为哈希地址,
- 即: H (key) = random (key)
- 其中random为随机函数。

实际工作中需根据不同的情况采用不同的哈希函数。通常需要考虑 的因素有:

> 计算哈希函数所需时间; 关键字的长度; 哈希表的大小; 关键字的分布情况;

记录的查找频率。

我有一个电话号码本,怎么根据姓名建立哈希表呢?

