OUVERTURES GÉNÉRALES

Comme nous l'avons suggéré précédemment, l'ouverture permet en fait une prise de recul et dans notre cas une clarification du cadre global. Nous proposons donc ici l'exercice de recension des travaux d'ouverture déjà menés, celle des problèmes ouverts par notre travail, et leur synthèse dans un projet de recherche à long terme.

PERSPECTIVES THÉMATIQUES ET GÉNÉRALES

Mise en perspective globale

Une relecture de la thèse à la lumière de l'articulation théorique proposée en 8.2 nous confirme que (i) l'approche morphogénétique était naturellement induite par la contrainte de niche écologique dans la définition de la co-évolution; (ii) la théorie évolutive des villes est ainsi précisée pour le cas précis de la co-évolution; (iii) les systèmes territoriaux doivent intrinsèquement induire de tels processus, puisqu'ils sont à la fois support et objets de ceux-ci. La question de la nécessité des réseaux pour représenter les systèmes territoriaux reste ouverte, et nous l'avons postulée dans notre construction théorique. Nos résultats suggèrent la pertinence de leur prise en compte, et ouvrent la question d'une démonstration de ce postulat.

Ensuite, une relecture par les domaines de connaissance permet de mieux comprendre l'articulation entre les différentes composantes : les constructions conceptuelles et empiriques de la première partie permettent une définition de la co-évolution, puis la mise en place de méthodes et de modèles en deuxième partie, qui en retour alimentent ces autres domaines en troisième partie. Nous proposons une analyse quantitative brève de ces dynamiques en F. Ainsi, l'interdépendance dans le cheminement, donnée par le diagramme en introduction (Encadré 1), est en fait bien plus complexe et pas forcément linéaire. Une deuxième lecture de notre monographie sera ainsi plus riche, par émergence des liens implicites. Nous proposons en Encadré 12 une relecture possible de l'organisation de notre travail, au regard de la problématique générale et des domaines de connaissance.

Notre travail peut également se placer dans une perspective plus large. Précisons la "méta-articulation" de notre travail, c'est-à-dire la structure implicite des divers développements et ouvertures et donc le cadre global dans lequel s'inscrit le coeur (trois premières parties). L'Encadré 13 schématise cette articulation. Le coeur, qui consiste en la réponse à la problématique, est constitué de trois axes en interac-

ENCADRÉ 12: Relecture de l'organisation à la lumière des domaines de connaissance. Nous plaçons au coeur le triptyque issu de la problématique générale de définition, caractérisation et modélisation de la co-évolution. Différentes composantes irriguent ses éléments qui sont indissociables, et soudés finalement par la conclusion et ouverture. Les sections sont placées à titre indicatif dans le domaine de connaissance qui leur correspond le plus (sachant qu'elles sont toutes à cheval sur plusieurs domaines). Les domaines de données et outils sont laissés de côté ici pour faciliter la lecture (et nécessiteraient un découpage plus précis du travail). Les relations entre composantes sont également données à titre indicatif et ne sont pas exhaustives, mais permettent de se rendre compte de la complexité de l'articulation globale.

tion forte : la définition, la caractérisation et la modélisation de la co-évolution des réseaux de transport et des territoires. Chacun appelle à sa manière des développements dans divers champs²² : des développements épistémologiques et en épistémologie quantitative, principalement liés à l'aspect de définition; des développements de cadres systémiques, induits par les problématiques liées à la modélisation; et des développements thématiques liés à la caractérisation.

Détaillons le contenu de chacun de ces développements, en les reliant au contenu correspondant principalement en Annexes :

- 1. Epistémologie quantitative : principalement en lien avec les méthodes et outils de revue systématique et d'exploration d'un paysage scientifique en 2, nous incluons le cas d'étude original qui a initié la méthode, le corpus du journal Cybergeo, en B.6, ainsi qu'une application à un corpus massif de brevets en C.5.
- 2. Epistémologie : la mise en contexte de l'étude de Cybergeo avec d'autres approches complémentaires permet une prise de recul épistémologique dans C.4; nous amorçons également une réflexion sur les liens entre économie et géographie en C.6.
- 3. Cadres systémiques : un cadre de connaissance, contribuant à organiser une connaissance complexe, a déjà été proposé en 8.3; un cadre formalisant le couplage des modèles des systèmes socio-techniques, suggérant des pistes de formalisation du cadre de connaissance, est développé dans B.5; un cadre pour l'étude de la robustesse des évaluations multi-attributs est développé dans B.4.
- 4. Thématique : les études de cas des systèmes de transport effectuées en 3.2 et en C.1 permettent en l'occurence une confirmation des échelles pertinentes; l'étude de la génération de données synthétiques, en lien avec la méthodologie développée en 3.1, est faite en B.3 pour la méthode et en C.3 pour un exemple d'application; la modélisation des dynamiques migratoires au sein du Delta de la Rivière des Perles ébauchée en C.2, introduit une piste de modèles multi-échelle et raffine les interactions entre villes au niveau des flux individuels.

Ces différents champs sont bien sûr à intersections non vides (le cadre de connaissance de 8.3 relève par exemple à la fois du cadre systémique et de l'épistémologie, ou l'étude des brevets est un important aspect thématique en lien avec la théorie évolutive des villes) et en interactions : les études d'épistémologie quantitative informent l'épistémologie, qui guide les études thématiques, qui peuvent être

²² Nous n'utilisons pas le terme domaine ici pour ne pas entrainer une confusion avec les domaines de connaissance, ceux-ci étant mobilisés différemment comme nous le verrons en Annexe F.

ENCADRÉ 13: **Mise en perspective du cadre global.** Le coeur de la problématique, la co-évolution, est composé de trois composantes qui appellent des extensions dans des champs divers (leurs intersections n'étant pas représentées pour faciliter la lecture). Nous y listons dans chaque les différentes ouvertures, menées principalement en Annexes.

mises en perspective dans les cadres systémiques, qui eux dépendent également du positionnement épistémologique.

Ainsi, nous mettons en évidence une structure plus globale pour notre travail, qui dessine en partie la structure d'un projet de recherche que nous détaillerons par la suite.

Questions ouvertes

Nous développons à présent des questions fondamentales qui ont été abordées ou ouvertes tout au long de notre travail, que nous classons en trois axes : pratique scientifique (épistémologie appliquée), modélisation, et fondements des systèmes complexes spatiaux.

Epistémologie appliquée

POUR UNE SCIENCE TOTALEMENT OUVERTE Un premier axe de développement crucial pour l'ensemble de l'écosystème de production de connaissance dans lequel nous nous inscrivons (voir chapitre 3) est la contribution à une ouverture maximale de la pratique scientifique, c'est-à-dire la combinaison de l'ensemble des approches résumées par [Fecher et Friesike, 2014], en particulier les aspects démocratique et public qui encouragent l'accès de tous à la production de connaissance et à ses résultats²³, et les aspects pragmatique et d'infrastructure qui appuient l'efficience augmentée dans un cadre ouvert.

La transparence et mise en disponibilité des données brutes ou au moins pré-traitées, et du code informatique produisant les sorties de simulation ou les figures, semble être plutôt l'exception que la règle en géographie. Comme le rappelle [Banos, 2013] qui y dédie l'un de ses principes, "le modélisateur n'est pas le gardien de la vérité prouvée", et comme rappelé en 3.2, une reproductibilité parfaite des résultats est nécessaire pour une reconnaissance d'une quelconque valeur par la communauté scientifique, comme une théorie qui ne fournit pas de possibilité de falsification ne peut être considérée comme scientifique au sens de POPPER. Des experiences de revue pour *Cybergeo* ont confirmé à l'unanimité ce problème fondamental. Rappelons que la revue *PNAS* exige les données brutes et tableau produisant toute figure, pour prévenir tout biais de visualisation qu'il soit volontaire (ce qui est rédhibitoire et conduit à un signalement) ou non.

Par ailleurs, la communication scientifique est un aspect important de la science ouverte. Le mode actuel de publication scientifique est loin d'être idéal. Un article n'est pas un format compréhensible ni vraiment reproductible, et pousse au biais. L'écriture d'un article en répondant au normes de façon à être accepté peut être assimilé à "un jeu" dont les règles sont subtiles et qu'il faut maitriser pour faire

²³ Sachant que l'ouverture des produits de la connaissance est évidente dans une perspective complexe, puisque comme le souligne [Morin, 1991], nos idées prennent une certaine indépendance dans la noosphère et ne nous appartiennent pas.

carrière. Selon notre positionnement, un tel mode de communication est contraire à l'honnêteté et l'intégrité intellectuelle nécessaires à une science éthique et ouverte. Les initiatives se multiplient pour proposer des modèles alternatifs : la revue post-publication en est une, l'utilisation de systèmes de contrôle de version et de dépôts publics une autre, ou la publication éclair de pistes de recherche²⁴. Par exemple, [Michaël, Michael et McDowell, 2017] décrit une expérience d'articles dynamiques évalués de manière ouverte par la communauté, avec des métriques associées permettant de faire émerger les travaux jugés intéressants.

De la même façon, nous soutenons qu'une présentation linéaire d'un projet de recherche est trop fortement réducteur, et que l'invention de modes de communication alternatifs est un enjeu futur pour la science ouverte. On peut par exemple imaginer des réseaux interactifs, traduisant la structure de la connaissance sous-jacente, et dans lesquels le lecteur peut naviguer entre les concepts et les analyses, être renvoyé directement vers les données, modèles et analyses. Les grilles de lecture principales en accord avec l'argument que prendrait une explication linéaire peuvent alors être superposées au réseau pour revenir à un mode plus classique de lecture. Une communication par le jeu est également une alternative crédible, notamment dans le cas d'une communication pour le public, et nous en donnons une illustration pour un problème d'écologie en Annexe C.7.

POUR UNE SCIENCE EVIDENCE-BASED Nous postulons qu'une science entièrement *evidence-based*, quel que soit son objet, est possible et souhaitable en articulation avec la science ouverte. L'idée est de chercher à déconnecter la connaissance scientifique de tout dogmatisme, de tout a priori politique et de tout jugement de valeur²⁵. Dans le cas de l'étude de sujets en lien avec des individus ou des sociétés (c'est-à-dire les sciences humaines), un tel positionnement n'est possible selon [Morin, 1991] que par le passage par l'établissement d'un "méta-point de vue", c'est-à-dire par une certaine réflexivité qui permet au connaisseur de comprendre sa position et sa propre dé-

²⁴ Voir par exemple le *Journal of Brief Ideas* à http://beta.briefideas.org/about. Les descriptions courtes de pistes de recherche sont souvent reléguées à la discussion ou la conclusion des articles, qui s'écrivent de manière conventionnelle, souvent avec un biais pour justifier a posteriori l'intérêt de *sa nouvelle méthode* qu'il faut malheureusement vendre. On fait alors des plans sur la comète, propose des développements ayant peu de rapport, ou des domaines d'application *qui auront un impact* (lire qui sont à la mode ou qui reçoivent le plus de financements à la période de l'écriture). Ce manuscrit tombe bien évidemment partiellement sous ces critiques, comme les articles qui lui sont associés.

²⁵ Sachant que par ailleurs ceux-ci doivent être plus que jamais développés et réfléchis pour articuler la science avec la société, mais doivent le moins possible interférer avec le processus de production de connaissance en lui-même. Suivant [Morin, 2004], une éthique de la connaissance et une pensée complexe induit naturellement une éthique plus large, permettant l'autonomie de la connaissance scientifique sans la rendre inhumaine.

marche. Nous donnons des pistes pour la construction de tels points de vue, sous la forme de ce que nous appelons *perspectivisme appliqué*, en Annexe C.4 ainsi qu'en Annexe B.5 pour une piste de formalisation.

Cette problématique est directement reliée à la question récurrente de la dichotomie "qualitatif-quantitatif", que nous jugeons peu pertinente dans le cadre de sciences intégratives. En effet, si la dichotomie se base sur une différence entre objectif et subjectif, nous rappelons que toute connaissance est subjective, et que celles où le rôle du sujet est particulièrement déterminant peuvent "s'objectiver" par la prise du méta-point de vue, par exemple par le couplage avec d'autres approches, c'est-à-dire précisément par la prise d'une position intégrative. Si elle se base sur une question de nature des données, elle n'est que partiellement pertinente puisque la limite est floue : un texte d'interview peut très bien faire l'objet d'analyse textuelle alors qu'une régression doit être interprétée qualitativement. En fait, nous pensons qu'il existe différentes méthodes plus ou moins appropriées selon la connaissance à produire (voir par exemple [Gros, 2017] qui fustige l'utilisation de statistiques inférentielles pour un corpus ethnographique), mais qu'il n'y a pas "chasse gardée" de telle discipline sur telle méthode et que les couplages et transferts seront toujours plus nécessaires à l'avenir.

EPISTÉMOLOGIE QUANTITATIVE Les points précédents doivent être traités conjointement avec l'utilisation de méthodes d'épistémologie quantitative permettant une réflexivité accrue, comme par exemple la méthode par hyperréseau utilisée en 2.2, appliquée au corpus Cybergeo en B.6, à un corpus de brevets en C.5 et à notre propre travail en F. La plateforme CybergeoNetworks²⁶ est une collaboration dans cette direction, présentée en détails en C.4. Elle permet notamment la prise d'autonomie par les auteurs mais également par les journaux libres qui peuvent alors rivaliser avec les entreprises prédatrices d'édition qui valorisent à leur profit les analyses de corpus.

Modélisation

Sur le plan de la méthodologie de la modélisation, nous donnons des axes précis complémentaires à ceux mis en place par [Pumain et Reuillon, 2017e] (multi-modélisation, exploration des modèles).

COUPLAGE DES MODÈLES La définition du couplage de modèles ou d'approches, et notamment du degré de couplage (couplage fort ou couplage faible) dépend des cadres utilisés et n'a pas forcément de fondement théorique. La construction de théories permettant une telle définition qui serait par ailleurs opérationnelle est une question

²⁶ Accessible à http://shiny.parisgeo.cnrs.fr/cybergeonetworks/.

ouverte. Une approche possible utilise par exemple les rapports entre complexités de Kolmogorov des différents modèles concernés. Une approche formelle est donnée en B.5 pour le couplage de perspectives. Cette approche est profondément liée aux questions épistémologiques, puisqu'il pourrait s'agir d'une manière de formaliser la logique du cadre de connaissance.

La question du couplage de modèles hétérogènes est bien sûr liée : dans quelle mesure est-il pertinent de choisir tel ou tel type de modèle et comment les coupler? [Banos et al., 2015] l'illustrent pour un modèle épidémiologique, couplant un modèle classique par équations différentielles à un modèle de microsimulation. Le lien entre modèles agents et systèmes dynamiques peut être établi dans certaines configurations, comme nous l'avons fait pour le modèle de Simon et le modèle de Gibrat en B.1, mais la question de classes de problèmes pour lesquels des liens seraient systématiques ou non reste une question ouverte.

Enfin, la nécessité du benchmarking de modèles comparables a été soulevée depuis un certain temps [AXTELL et al., 1996], mais reste très peu appliquée : le développement d'outils et de méthodes facilitant de telles comparaisons est également un point important.

CONSTRUIRE DES OUTILS DE VALIDATION POUR LES MODÈLES DE SIMULATION L'essentiel de l'entreprise d'OpenMole est orientée dans ce but de construction d'outils et de méthodes pour la validation des modèles. Nous contribuons à cet effort dans notre travail, par exemple en 4.3 par la construction d'un critère de sur-ajustement, ou en B.4 par l'élaboration d'une mesure de la robustesse d'un modèle aux données manquantes. L'étude du comportement des modèles par rapport au sur-ajustement, notamment dans le cadre de la multi-modélisation, est un enjeu fondamental pour le développement futur de ces approches.

Fondements des systèmes complexes spatiaux

Certaines questions fondamentales ont été suggérées au sujet des systèmes complexes ayant une structure spatiale.

NON-STATIONNARITÉ, NON-ERGODICITÉ ET DÉPENDANCE AU CHE-MIN Le lien entre non-stationnarité spatiale et/ou temporelle et non-ergodicité, pouvant éclairer les propriétés de dépendance au chemin, n'a à notre connaissance pas été étudié systématiquement, au moins dans le cadre des systèmes territoriaux. Nous suggérons qu'un lien accru entre géosimulation, statistiques spatiales et économie géographique, contribuerait à la compréhension de ce type de question.

MODÈLES MULTI-ÉCHELLE Comme nous l'avons déjà amplement répété, il existe très peu de modèles des systèmes territoriaux effec-

tivement multi-échelle, et leur développement à des échelles pertinentes et à un degré de complexité raisonnable, est également un défi futur important.

STANDARDS MÉTHODOLOGIQUES Enfin, un effort considérable doit être fait, particulièrement en géographie, pour respecter des standards méthodologiques a minima : par exemple utilisation de classifications de séries temporelles appropriées [Liao, 2005], ajustement de loi puissances sur des données empiriques selon la méthode standard de [Clauset, Shalizi et Newman, 2009] et non une simple régression des moindres carrés, utilisation de modèles non-linéaires si besoin.

* *

*

VERS UN PROGRAMME DE RECHERCHE

Pour une géographie intégrée

Comme déjà souligné en 3.3, les bouleversements techniques et méthodologiques qu'une discipline peut subir sont souvent accompagnés de profondes mutations épistémologiques, voire de la nature même de la discipline. Il est impossible de juger si l'état actuel des connaissances est transitoire, et s'il l'est quelle est le régime stable qui terminerait la transition s'il en existe un.

La spéculation est le seul moyen de lever partiellement le voile, sachant que celle-ci sera nécessairement auto-réalisatrice : proposer des visions ou des programmes de recherche oriente les moyens et questions. L'incomplétude théorique en physique, lorsqu'il s'agit par exemple de lier relativité générale et physique quantique, c'est-à-dire le microscopique stochastique au macroscopique déterministe, oriente les visions du futur de la discipline qui elle-même conditionnent les actions concrètes qui dans ce domaine sont indispensables (financement du CERN ou de l'interféromètre d'ondes gravitationnelles spatial LISA).

En géographie, même si les investissements techniques sont incomparables, ceux-ci existent (accès aux moyens de calcul, financement de laboratoires intégrés, etc.) et sont déterminés également par les perspectives pour la discipline. Nous proposons ici une vision et un manifeste d'une nouvelle géographie, qui est déjà en train de se faire et dont les bases sont solidement construites petit à petit. L'aventure de l'ERC Geodivercity [Pumain et Reuillon, 2017e] en est l'allégorie,

d'autant plus qu'elle a confirmé la plupart des directions proposées par [Banos, 2017]. L'intégration de la théorie, de l'empirique, de la modélisation, mais aussi de la technique et de la méthode, n'a jamais été aussi creusée et renforcée que dans les divers développements du projet. Sans l'accès à la grille de calcul et aux nouveaux algorithmes d'exploration permis par OpenMole, les connaissances tirées du modèle SimpopLocal auraient été moindres, mais les développements techniques ont aussi été conduits par la demande thématique.

Nous appuyons le fait que le cadre de connaissance proposé en 8.3 est particulièrement favorable à une application à la continuité contemporaine de la géographie théorique et quantitative. Ce cadre permet en effet de répondre aux contraintes suivantes : (i) transcender les frontières artificielles entre quantitatif et qualitatif; (ii) ne pas favoriser de composante particulière parmi les moyens de production de connaissance (aussi divers que l'ensemble des méthodes qualitatives et quantitatives classiques, les méthodes de modélisation, les approches théoriques, les données, les outils), mais bien le développement conjoint de chaque composante.

Nous rappelons que le cadre étend celui de [Livet et al., 2010], qui consacre le triptyque des domaines empiriques, conceptuels et de la modélisation, en y ajoutant les domaines à part entière que sont les méthodes, les outils (qu'on peut voir comme des proto-méthodes) et les données. Toute démarche de production de connaissance, vue comme une *perspective* au sens de [Giere, 2010c], est alors une combinaison complexe des six domaines, les fronts de connaissance dans chacun étant en co-évolution.

Nous postulons que l'application de notre cadre de connaissance est de mise avec l'émergence d'une *géographie intégrée*, que nous nommons ainsi pour souligner à la fois l'intégration des différents domaines mais aussi des connaissances qualitatives et quantitatives, puisque les deux se fondent dans chacun des domaines.

Projet de recherche

Nous détaillons finalement un projet de recherche à long terme qui (i) s'inscrit dans la continuité de cette monographie; (ii) s'inscrit dans le cadre d'une géographie intégrée, et plus généralement d'une intégration verticale et horizontale, mais aussi des domaines et des types de connaissance; (iii) s'attaque à un certain nombre de questions ouvertes mentionnées ci-dessus; et (iv) est intrinsèquement réflexif et complexe.

Le couplage multi-échelle des modèles urbains suggéré en 8.1 peut en fait se projeter dans une problématique plus globale. L'idée serait d'aborder un problème géographique multi-échelle, qui est de comprendre comment et quand les interdépendances entre les villes ont conduit à l'émergence de systèmes régionaux de villes, et d'identifier le scenario le plus probable de leur fusion potentielle comme conséquence des processus de globalisation. Ces questions abstraites ont des implications directes pour la mesure des inégalités globales et locales et la gestion de la croissance urbaine.

Cette question trouve sa source dans la nature multi-échelle des systèmes territoriaux. Des résultats convergents suggèrent une certaine indépendance du développement historique des systèmes urbains régionaux tout autour du monde, et une interdépendance accrue entre ceux-ci dans les processus de globalisation. Est-il possible de déjà les identifier à différentes échelles? De quelle manière le couplage et l'ouverture des sous-systèmes s'opère, et quelles sont ses conséquences les plus plausibles, de la convergence des dynamiques à l'augmentation des inégalités inter et intra système?

Nous postulons qu'une entrée puissante pour cette question de recherche est la construction de ponts entre les théories géographiques des systèmes territoriaux dans l'esprit de la théorie évolutive des villes [Pumain, 1997] et de la théorie du Scaling [West, 2017]. La première appuie les particularités des entités territoriales tandis que la seconde se concentre sur des lois universelles, et chacune fournit des explications crédibles aux lois d'échelles urbaines. Une stratégie pour répondre à la question tout en combinant les deux théories consisterait en : (i) la mise en évidence empirique de décompositions modulaires des systèmes territoriaux et des échelles correspondantes, et la quantification de leur universalité par le scaling intra- et intersystème; (ii) la modélisation de ce système multi-échelle par le couplage de modèles de croissance urbaine, qui seraient validés par les propriétés de scaling. Les modèles que nous avons développé ici sont de bons candidats comme sous-modèles, puisque la co-évolution au sein et entre les échelles est une caractéristiques des systèmes urbains complexes, comme nous l'avons montré.

Deux axes de recherches sous-jacents apparaissent alors comme nécessaires à la cohérence globale du projet. Le premier consiste en l'exploration des relations potentielles entre les systèmes territoriaux et l'intelligence artificielle. Celui-ci vient comme corollaire et enrichit la question principale pour au moins deux raisons très différentes. La première est plutôt pratique et liée à l'émergence de l'information et du calcul omniprésents dans les villes, qui peuvent être compris comme participant à l'émergence des smart cities [BATTY, 2018] : les jeux de données massifs nouvellement disponibles se sont révélés être des outils efficaces comme en témoigne la quantité de travaux récents des physiciens sur la ville par exemple, et ces nouveaux comportements urbains peuvent probablement induire des changement de régime en partie à cause de leur nature auto-réalisatrice. La seconde est plus difficile à saisir : l'importance que nous avons donné à la morphogenèse et la possibilité d'appliquer ce concept à différents niveaux, notamment celui de la production de connaissance. La morphogenèse peut être utilisée pour conceptualiser à la fois l'évolution des territoires et des idées : dans quelle mesure l'émergence des territoires contient-elle une intelligence endogène? L'utilisation du modèle de slime mould en 7.1, qui est par ailleurs doté de capacités de calcul, et un autre indice d'une connexion possible. Nous notons également la contribution de White rapportée en C.6 qui suggère la construction de modèles intelligents et autonomes comme le futur de la modélisation des systèmes territoriaux.

Un deuxième axe complémentaire est l'étude théorique et appliquée de la production de connaissance sur les systèmes complexes. Cet axe est nécessaire, d'une part pour continuer à favoriser la réflexivité et l'interdisciplinarité par le développement des méthodes et outils d'épistémologie quantitative comme des outils plus élaborés de fouille de textes complets et de méta-analyse, et dans un second temps, précisément grâce à la réflexivité, parce que des cas d'étude potentiels comme l'évolution culturelle (pouvant être étudiée par l'intermédiaire de l'innovation technologique dans la continuité de C.5, ou de l'évolution du langage sur laquelle une collaboration est en cours) s'appliquent aux systèmes territoriaux dont les principales composantes sont des agents cognitifs.

L'élaboration fortement couplée de ces trois différentes composantes, c'est-à-dire leur co-évolution, dans l'esprit de tout ce qui a été accompli jusque là, est nécessaire pour le caractère intégré du projet et l'atteinte de son objectif de production de théories intégratives des systèmes territoriaux.

* *

*

*

Cet hiver a des airs de printemps Des peuples ou de l'esprit, au diable l'âme. Le vent se lève, ça faisait longtemps Triste de s'enfermer pour quelques grammes.

Cet avenir des airs de passé S'il fallait juste trouver le régime, Assassinée la complexité Maintes perspectives se cachent en les crimes.

> Pour une morphogenèse politique Adieu le coron, ses tristes briques Murs qui s'érigent tuent votre espérance.

Perle de la mer, sirène hante la crique Du haut des tours s'amuser du cirque L'hiver d'idées qui peuple la France.

* *

*

Explorer sans relâche les systèmes géographiques...

- Arnaud Banos

Notre thèse est un système complexe qui exhibe une finalité auxiliaire déterministe : cette conclusion par un adage de Banos. Les principes de son contexte, simples mais efficaces et profonds, traversent en effet ce travail : les "9 principes de Banos" sont implicitement présents dans la majorité des travaux menés et perspectives ouvertes. Même si une application idéale de ces principes relèverait d'un "Démon de Banos", à l'instar du Démon de Laplace ou de Maxwell, qui serait capable d'articuler interdisciplinaire et disciplinaire sans se perdre tout en respectant l'ensemble des principes, leur appréhension comme utopie scientifique, naturellement réflexive donc évolutive et adaptive, nous semble une entrée puissante pour de nouvelles approches intégratives des systèmes territoriaux.

Notre contribution épistémologique, méthodologique en lien avec ces points est essentielle, même si celle ci est difficile à expliciter et nécessitera un certain recul pour être effectivement cernée. D'une certaine manière, nous avons apporté une brique supplémentaire comme proof-of-concept du système de principes banosien, mais également comme implémentation et approfondissement de celui-ci sur certains points. Nous avons montré que leur application est loin d'être simple, et que toujours guette le risque de sombrer dans le réductionnisme malgré ces principes fondamentalement complexes. Le dixième commandement serait-il alors : S'efforcer à appliquer ces principes en ne perdant jamais de vue la complexité et le rôle de la réflexivité?

Notre contribution thématique n'est pas forcément facile à situer et nécessitera un recul considérable pour appréhender ses implications. Avons-nous résolu le noeud gordien de la co-évolution? L'avons-nous tranché? La réponse la plus fidèle serait que nous en avons tranché une partie, celle naïve comprenant la définition dont nous sommes parti en introduction ou les positionnement de type "poule-et-oeuf" typique des débats des effets structurants, mais que nous avons noué un autre bien plus considérable, en révélant la complexité de ce concept et de ses manifestations.

Revenant à notre problématique fondatrice, nous rappelons que (i) nous avons donné une définition de la co-évolution propre aux systèmes territoriaux ainsi qu'une méthode opérationnelle de caractérisation; (ii) nous avons exploré des pistes de modélisation à différentes échelles, qui s'accordent avec un cadre théorique global. Répondre à

cette problématique nous a permis par ailleurs de progressivement dégager un cadre plus large et de vastes perspectives de recherche.

Notre modeste mission est accomplie, et un fantastique voyage commence tout juste. L'accomplissement passager devient les fondations de ceux à venir. La cumulativité des connaissances ne s'improvise pas, et nous espérons que le tissu complexe dont nous avons cousu les premières mailles sera assez robuste pour s'y insérer. la route est longue mais la voie est libre.

* *

*