## Optical Glass

**Data Sheets** 





#### **TABLE OF CONTENT**

| FK                                            | PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N-FK5 <sup>1)</sup><br>N-FK51A <sup>1)</sup>  | 3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PK                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N-PK51 1)                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N-PK52A <sup>1)</sup><br>P-PK53 <sup>1)</sup> | 6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PSK                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N-PSK3<br>N-PSK53A                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BK                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N-BK7                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-BK7HT                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-BK10                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| K<br>K7                                       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| K10                                           | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-K5<br>N-ZK7                                 | 15<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BAK                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N-BAK1                                        | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-BAK2<br>N-BAK4                              | 18<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SK                                            | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SK2                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SK4                                         | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SK5<br>N-SK11                               | 22<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N-SK14                                        | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SK16<br>P-SK57 <sup>1)</sup>                | 25<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| P-SK58A <sup>1)</sup>                         | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P-SK60 <sup>1)</sup>                          | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| KF<br>N-KF9                                   | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BALF                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N-BALF4                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-BALF5                                       | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SSK<br>N-SSK2                                 | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SSK5                                        | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SSK8                                        | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LAK<br>N-LAK7                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LAK8                                        | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LAK9<br>N-LAK10                             | 37<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N-LAK10<br>N-LAK12                            | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LAK14<br>N-LAK21                            | 40<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N-LAK21<br>N-LAK22                            | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LAK33A                                      | 43<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N-LAK34<br>P-LAK35 <sup>1)</sup>              | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LLF                                           | COLUMN TO THE PARTY OF THE PART |
| LLF1                                          | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BAF                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N-BAF4<br>N-BAF10                             | 47<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N-BAF51                                       | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-BAF52                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LF<br>LF5                                     | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LIJ                                           | JI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| F                                                 | PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F2                                                | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F2HT                                              | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F5                                                | 54<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N-F2                                              | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BASF                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N-BASF2                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-BASF64                                          | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LAF                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LAFN7                                             | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LAF2                                            | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LAF7                                            | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LAF21                                           | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LAF33 <sup>1)</sup>                             | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LAF34                                           | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LAF35<br>N-LAF36                                | 64<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N-LAF30                                           | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LASF                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N-LASF9                                           | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LASF31A                                         | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LASF40                                          | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LASF41<br>N-LASF43                              | 69<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N-LASF43<br>N-LASF44                              | 70<br>71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N-LASF45                                          | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-LASF46A                                         | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P-LASF47 <sup>1)</sup>                            | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P-LASF501)                                        | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P-LASF511)                                        | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SF                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N-SF1                                             | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SF2                                             | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SF4                                             | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SF5                                             | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SF6                                             | 81<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N-SF6HT<br>N-SF8                                  | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SF10                                            | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SF11                                            | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SF14                                            | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SF15                                            | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SF57                                            | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N-SF57HT<br>N-SF66                                | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P-SF8 <sup>1)</sup>                               | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P-SF67 <sup>1)</sup>                              | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P-SF681)                                          | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SF1                                               | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SF2                                               | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SF4<br>SF5                                        | 96<br>97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SF6                                               | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SF6HT                                             | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SF10                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SF56A                                             | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SF57 <sup>1)</sup>                                | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SF57HHT <sup>1)</sup>                             | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| KZFS                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| KZFS12                                            | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| KZFSN5                                            | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N-KZFS21)                                         | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N-KZFS4 <sup>1)</sup>                             | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N-KZFS5 <sup>1)</sup><br>N-KZFS8 <sup>1)</sup>    | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N-KZFS0 <sup>1</sup> /<br>N-KZFS11 <sup>1</sup> ) | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                   | The state of the s |
| Litho                                             | Halle Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LITHOSIL-Q<br>LITHOTEC-CAF2                       | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LITHUTEU-UAFZ                                     | HZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



#### N-FK5 487704.245

**SCHOTT** 

 $n_d$ = 1.48749  $v_d$ = 70.41  $n_e$ = 1.48914  $v_e$ = 70.23

 $v_d$ = 70.41  $n_F - n_C$  = 0.006924  $v_e$  = 70.23  $n_{F'} - n_{C'}$  = 0.006965

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.46181 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.46738 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.47312 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.47855 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.47912 |  |  |
| n <sub>s</sub>             | 852.1  | 1.48137 |  |  |
| n <sub>r</sub>             | 706.5  | 1.48410 |  |  |
| n <sub>C</sub>             | 656.3  | 1.48535 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.48569 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.48601 |  |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.48743 |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.48749 |  |  |
| n <sub>e</sub>             | 546.1  | 1.48914 |  |  |
| n <sub>F</sub>             | 486.1  | 1.49227 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.49266 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.49593 |  |  |
| n <sub>h</sub>             | 404.7  | 1.49894 |  |  |
| n <sub>i</sub>             | 365.0  | 1.50401 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.50939 |  |  |
| n <sub>312.6</sub>         | 312.6  | 1.51428 |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  | 1.51867 |  |  |
| n <sub>280.4</sub>         | 280.4  | 1.52415 |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal | Transmittance τ <sub>i</sub> |                       |  |
|----------|------------------------------|-----------------------|--|
| λ [nm]   | τ <sub>i</sub> (10mm)        | τ <sub>i</sub> (25mm) |  |
| 2500     | 0.679                        | 0.380                 |  |
| 2325     | 0.831                        | 0.630                 |  |
| 1970     | 0.971                        | 0.930                 |  |
| 1530     | 0.986                        | 0.965                 |  |
| 1060     | 0.999                        | 0.998                 |  |
| 700      | 0.998                        | 0.996                 |  |
| 660      | 0.998                        | 0.994                 |  |
| 620      | 0.997                        | 0.993                 |  |
| 580      | 0.998                        | 0.994                 |  |
| 546      | 0.998                        | 0.994                 |  |
| 500      | 0.997                        | 0.993                 |  |
| 460      | 0.997                        | 0.993                 |  |
| 436      | 0.997                        | 0.993                 |  |
| 420      | 0.997                        | 0.993                 |  |
| 405      | 0.998                        | 0.994                 |  |
| 400      | 0.998                        | 0.994                 |  |
| 390      | 0.998                        | 0.994                 |  |
| 380      | 0.996                        | 0.990                 |  |
| 370      | 0.997                        | 0.992                 |  |
| 365      | 0.997                        | 0.992                 |  |
| 350      | 0.995                        | 0.987                 |  |
| 334      | 0.989                        | 0.972                 |  |
| 320      | 0.971                        | 0.930                 |  |
| 310      | 0.941                        | 0.860                 |  |
| 300      | 0.867                        | 0.700                 |  |
| 290      | 0.693                        | 0.400                 |  |
| 280      | 0.397                        | 0.110                 |  |
| 270      | 0.070                        |                       |  |
| 260      |                              |                       |  |
| 250      |                              |                       |  |
|          |                              |                       |  |
|          |                              |                       |  |

| Constants of Dispersion |               |  |  |  |
|-------------------------|---------------|--|--|--|
| Formula                 |               |  |  |  |
| <b>B</b> <sub>1</sub>   | 0.844309338   |  |  |  |
| <b>B</b> <sub>2</sub>   | 0.344147824   |  |  |  |
| $\mathbf{B}_3$          | 0.910790213   |  |  |  |
| <b>C</b> <sub>1</sub>   | 0.00475111955 |  |  |  |
| <b>C</b> <sub>2</sub>   | 0.0149814849  |  |  |  |
| <b>C</b> <sub>3</sub>   | 97.8600293    |  |  |  |

|   | Color Code                   |       |
|---|------------------------------|-------|
|   | $\lambda_{80}/\lambda_{5}$   | 30/27 |
|   | $(*=\lambda_{70}/\lambda_5)$ |       |
| ٠ |                              |       |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| $\mathbf{D}_0$          | -7.24 · 10 <sup>-6</sup>  |  |
| <b>D</b> <sub>1</sub>   | 1.58 · 10 <sup>-8</sup>   |  |
| $D_2$                   | -9.51 · 10 <sup>-12</sup> |  |
| <b>E</b> <sub>0</sub>   | 3.51 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 4.61 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.156                     |  |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temperature Coefficients of Refractive Index |                                      |      |                                      |        |      |      |
|----------------------------------------------|--------------------------------------|------|--------------------------------------|--------|------|------|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |      | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]    |      |
| [°C]                                         | 1060.0                               | e    | g                                    | 1060.0 | е    | g    |
| -40/ -20                                     | -1.5                                 | -1.2 | -0.9                                 | -3.5   | -3.2 | -2.9 |
| +20/ +40                                     | -1.4                                 | -1.0 | -0.6                                 | -2.6   | -2.3 | -2.0 |
| +60/ +80                                     | -1.2                                 | -0.7 | -0.3                                 | -2.2   | -1.8 | -1.4 |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.3252 |  |
| P <sub>C,s</sub>            | 0.5740 |  |
| $\mathbf{P}_{d,C}$          | 0.3097 |  |
| <b>P</b> <sub>e,d</sub>     | 0.2388 |  |
| <b>P</b> <sub>g,F</sub>     | 0.5290 |  |
| $\mathbf{P}_{i,h}$          | 0.7319 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.3232 |  |
| P' <sub>C',s</sub>          | 0.6201 |  |
| P' <sub>d,C'</sub>          | 0.2584 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2374 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4704 |  |
| P' <sub>i,h</sub>           | 0.7276 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |        |  |
|---------------------------------------------------------------------|--------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0202 |  |
| ΔP <sub>C,s</sub>                                                   | 0.0070 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0001 |  |
| $\Delta P_{g,F}$                                                    | 0.0036 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | 0.0322 |  |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 9.2   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 10.0  |
| T~[°C]                                                                    | 466   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                               | 469   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 672   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.808 |
| λ [W/(m·K)]                                                               | 0.925 |
| AT [°C]                                                                   | 557   |
| ρ [g/cm <sup>3</sup> ]                                                    | 2.45  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 62    |
| μ                                                                         | 0.232 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.91  |
| HK <sub>0.1/20</sub>                                                      | 520   |
| HG                                                                        | 3     |
| HG-J                                                                      | 109   |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 2     |
| FR                                                                        | 1     |
| SR                                                                        | 4     |
| AR                                                                        | 2     |
| PR                                                                        | 2.3   |
| SR-J                                                                      | 5     |
| WR-J                                                                      | 4     |
|                                                                           |       |

#### N-FK51A 487845.368

 $n_d = 1.48656$  $v_{d}$  = 84.47  $n_e = 1.48794$ 

 $v_e = 84.07$ 

 $n_F - n_C = 0.005760$  $n_{F'}-n_{C'}=0.005804$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.46958 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.47271 |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.47608 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.47959 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.47999 |  |  |
| <b>n</b> <sub>s</sub>      | 852.1  | 1.48165 |  |  |
| n <sub>r</sub>             | 706.5  | 1.48379 |  |  |
| n <sub>C</sub>             | 656.3  | 1.48480 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.48508 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.48534 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.48651 |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.48656 |  |  |
| n <sub>e</sub>             | 546.1  | 1.48794 |  |  |
| n <sub>F</sub>             | 486.1  | 1.49056 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.49088 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.49364 |  |  |
| n <sub>h</sub>             | 404.7  | 1.49618 |  |  |
| n <sub>i</sub>             | 365.0  | 1.50046 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.50501 |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  | 1.50911 |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal | Transmittance τ <sub>i</sub> |                       |  |  |
|----------|------------------------------|-----------------------|--|--|
| λ [nm]   | τ <sub>i</sub> (10mm)        | τ <sub>i</sub> (25mm) |  |  |
| 2500     | 0.891                        | 0.750                 |  |  |
| 2325     | 0.933                        | 0.840                 |  |  |
| 1970     | 0.976                        | 0.940                 |  |  |
| 1530     | 0.992                        | 0.980                 |  |  |
| 1060     | 0.998                        | 0.994                 |  |  |
| 700      | 0.998                        | 0.995                 |  |  |
| 660      | 0.998                        | 0.995                 |  |  |
| 620      | 0.998                        | 0.996                 |  |  |
| 580      | 0.999                        | 0.997                 |  |  |
| 546      | 0.999                        | 0.997                 |  |  |
| 500      | 0.998                        | 0.996                 |  |  |
| 460      | 0.997                        | 0.993                 |  |  |
| 436      | 0.997                        | 0.992                 |  |  |
| 420      | 0.997                        | 0.992                 |  |  |
| 405      | 0.997                        | 0.993                 |  |  |
| 400      | 0.997                        | 0.993                 |  |  |
| 390      | 0.997                        | 0.992                 |  |  |
| 380      | 0.995                        | 0.988                 |  |  |
| 370      | 0.990                        | 0.976                 |  |  |
| 365      | 0.985                        | 0.963                 |  |  |
| 350      | 0.948                        | 0.875                 |  |  |
| 334      | 0.831                        | 0.630                 |  |  |
| 320      | 0.618                        | 0.300                 |  |  |
| 310      | 0.428                        | 0.120                 |  |  |
| 300      | 0.262                        | 0.035                 |  |  |
| 290      | 0.137                        | 0.010                 |  |  |
| 280      | 0.058                        |                       |  |  |
| 270      |                              |                       |  |  |
| 260      |                              |                       |  |  |
| 250      |                              |                       |  |  |
|          |                              |                       |  |  |
|          |                              |                       |  |  |

| Relative Partial Dispersion |        |  |  |  |
|-----------------------------|--------|--|--|--|
| P <sub>s,t</sub>            | 0.2879 |  |  |  |
| <b>P</b> <sub>C,s</sub>     | 0.5465 |  |  |  |
| $\mathbf{P}_{d,C}$          | 0.3062 |  |  |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2388 |  |  |  |
| $\mathbf{P}_{g,F}$          | 0.5359 |  |  |  |
| $\mathbf{P}_{i,h}$          | 0.7429 |  |  |  |
|                             |        |  |  |  |
| P' <sub>s,t</sub>           | 0.2858 |  |  |  |
| P' <sub>C',s</sub>          | 0.5909 |  |  |  |
| P' <sub>d,C'</sub>          | 0.2554 |  |  |  |
| P' <sub>e,d</sub>           | 0.2370 |  |  |  |
| P' <sub>g,F'</sub>          | 0.4759 |  |  |  |
| P' <sub>i,h</sub>           | 0.7373 |  |  |  |
|                             |        |  |  |  |
| Deviation of Relative       |        |  |  |  |
| Partial Dispersions ΔP      |        |  |  |  |
| from the "Normal Line"      |        |  |  |  |

| 280.4                     |            |      |     | 0.001 | 0.000 |  |
|---------------------------|------------|------|-----|-------|-------|--|
| <b>n</b> <sub>248.3</sub> | 248.3      |      | 320 | 0.618 | 0.300 |  |
|                           |            |      | 310 | 0.428 | 0.120 |  |
| Constants of Dispersion   |            |      | 300 | 0.262 | 0.035 |  |
| Formula                   |            |      | 290 | 0.137 | 0.010 |  |
| <b>B</b> <sub>1</sub>     | 0.9712478  | 17   | 280 | 0.058 |       |  |
| <b>B</b> <sub>2</sub>     | 0.21690141 | 17   | 270 |       |       |  |
| $\mathbf{B}_3$            | 0.90465166 | 66   | 260 |       |       |  |
| <b>C</b> <sub>1</sub>     | 0.00472301 | 1995 | 250 |       |       |  |
| <b>C</b> <sub>2</sub>     | 0.01535756 | 612  |     |       |       |  |
| <b>C</b> <sub>3</sub>     | 168.68133  | ·    |     |       |       |  |
|                           |            |      |     |       |       |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta \mathbf{P}_{C,t}$                                           | -0.1112 |  |
| $\Delta \mathbf{P}_{\mathrm{C,s}}$                                  | -0.0533 |  |
| $\Delta \mathbf{P}_{F,e}$                                           | 0.0110  |  |
| $\Delta \mathbf{P}_{g,F}$                                           | 0.0342  |  |
| $\Delta \mathbf{P}_{i,g}$                                           | 0.1675  |  |

Other Properties

| <b>Constants of Dispersion</b> |                           |  |
|--------------------------------|---------------------------|--|
| dn/dT                          |                           |  |
| <b>D</b> <sub>0</sub>          | -1.83 · 10 <sup>-5</sup>  |  |
| <b>D</b> <sub>1</sub>          | -7.89 · 10 <sup>-9</sup>  |  |
| <b>D</b> <sub>2</sub>          | -1.63 · 10 <sup>-12</sup> |  |
| <b>E</b> <sub>0</sub>          | 3.74 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>          | 3.46 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]           | 0.15                      |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 34/28 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Other Properties                               | <u> </u> |
|------------------------------------------------|----------|
| $\alpha_{-30/+70^{\circ}C}[10^{-6}/K]$         | 12.7     |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]  | 14.8     |
| T <sub>o</sub> [°C]                            | 464      |
| T <sub>10</sub> <sup>13.0</sup> [°C]           | 463      |
| T <sub>10</sub> <sup>7.6</sup> [°C]            | 527      |
| <b>c</b> <sub>p</sub> [J/(g·K)]                | 0.690    |
| λ [W/(m·K)]                                    | 0.760    |
| AT [°C]                                        | 503      |
| ρ [g/cm <sup>3</sup> ]                         | 3.68     |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]  | 73       |
| μ                                              | 0.302    |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N] | 0.70     |
| HK <sub>0.1/20</sub>                           | 345      |
| HG                                             | 6        |
| HG-J                                           | 528      |
| В                                              | 1        |
|                                                |          |
| CR                                             | 1        |
| FR                                             | 0        |
| SR                                             | 52.3     |
| AR                                             | 2.2      |
| PR                                             | 4.3      |
| SR-J                                           | 3        |
| WR-J                                           | 1        |
|                                                |          |

| Temperature Coefficients of Refractive Index |        |      |                                      |        |      |      |
|----------------------------------------------|--------|------|--------------------------------------|--------|------|------|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        |      | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |      |      |
| [°C]                                         | 1060.0 | Ф    | g                                    | 1060.0 | e    | g    |
| -40/ -20                                     | -4.9   | -4.6 | -4.3                                 | -6.9   | -6.6 | -6.4 |
| +20/ +40                                     | -6.0   | -5.7 | -5.3                                 | -7.3   | -7.0 | -6.7 |
| +60/ +80                                     | -6.5   | -6.2 | -5.8                                 | -7.5   | -7.2 | -6.9 |

#### **N-PK51** 529770.386

n<sub>d</sub>= 1.52855  $v_{d}$  = 76.98 n<sub>e</sub>= 1.53019  $v_e = 76.58$ 

 $n_F - n_C = 0.006867$  $n_{F'}-n_{C'}=0.006923$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
|                            | λ [nm] |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.50987 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.51312 |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.51665 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.52045 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.52089 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.52278 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.52527 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.52646 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.52680 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.52711 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.52849 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.52855 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.53019 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.53333 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.53372 |  |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.53704 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.54010 |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.54527 |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.55079 |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  | 1.55579 |  |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal | ternal Transmittance $\tau_i$ |                       |  |  |
|----------|-------------------------------|-----------------------|--|--|
| λ [nm]   | τ <sub>i</sub> (10mm)         | τ <sub>i</sub> (25mm) |  |  |
| 2500     | 0.919                         | 0.810                 |  |  |
| 2325     | 0.941                         | 0.860                 |  |  |
| 1970     | 0.976                         | 0.940                 |  |  |
| 1530     | 0.994                         | 0.985                 |  |  |
| 1060     | 0.998                         | 0.994                 |  |  |
| 700      | 0.997                         | 0.992                 |  |  |
| 660      | 0.996                         | 0.991                 |  |  |
| 620      | 0.997                         | 0.992                 |  |  |
| 580      | 0.998                         | 0.995                 |  |  |
| 546      | 0.998                         | 0.996                 |  |  |
| 500      | 0.997                         | 0.993                 |  |  |
| 460      | 0.995                         | 0.988                 |  |  |
| 436      | 0.994                         | 0.984                 |  |  |
| 420      | 0.994                         | 0.984                 |  |  |
| 405      | 0.994                         | 0.986                 |  |  |
| 400      | 0.994                         | 0.986                 |  |  |
| 390      | 0.994                         | 0.984                 |  |  |
| 380      | 0.989                         | 0.973                 |  |  |
| 370      | 0.982                         | 0.955                 |  |  |
| 365      | 0.976                         | 0.940                 |  |  |
| 350      | 0.933                         | 0.840                 |  |  |
| 334      | 0.815                         | 0.600                 |  |  |
| 320      | 0.601                         | 0.280                 |  |  |
| 310      | 0.398                         | 0.100                 |  |  |
| 300      | 0.209                         | 0.020                 |  |  |
| 290      | 0.063                         |                       |  |  |
| 280      | 0.010                         |                       |  |  |
| 270      | 0.001                         |                       |  |  |
| 260      |                               |                       |  |  |
| 250      |                               |                       |  |  |
|          |                               |                       |  |  |
|          | 1                             | ı                     |  |  |

| •   |  |
|-----|--|
| 92  |  |
| 91  |  |
| 92  |  |
| 95  |  |
| 96  |  |
| 93  |  |
| 88  |  |
| 84  |  |
| 84  |  |
| 86  |  |
| 86  |  |
| 84  |  |
| 73  |  |
| 55  |  |
| 40  |  |
| 340 |  |
| 00  |  |
| 280 |  |
| 00  |  |
| 20  |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |

| <b>Relative Partial Dispersion</b> |        |
|------------------------------------|--------|
| P <sub>s,t</sub>                   | 0.2750 |
| P <sub>C,s</sub>                   | 0.5360 |
| $\mathbf{P}_{d,C}$                 | 0.3046 |
| $\mathbf{P}_{e,d}$                 | 0.2387 |
| $\mathbf{P}_{g,F}$                 | 0.5401 |
| $\mathbf{P}_{i,h}$                 | 0.7535 |
|                                    |        |
| P' <sub>s,t</sub>                  | 0.2727 |
| P' <sub>C',s</sub>                 | 0.5797 |
| P' <sub>d,C'</sub>                 | 0.2540 |
| <b>P'</b> <sub>e,d</sub>           | 0.2367 |
| <b>P'</b> <sub>g,F'</sub>          | 0.4794 |
| P' <sub>i,h</sub>                  | 0.7473 |
|                                    | ·      |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | -0.0991 |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | -0.0463 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0088  |  |
| $\Delta P_{g,F}$                                                    | 0.0258  |  |
| $\Delta \mathbf{P}_{i,g}$                                           | 0.1203  |  |

| Other Properties                                                          |       |  |
|---------------------------------------------------------------------------|-------|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 12.4  |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 14.1  |  |
| T <sub>o</sub> [°C]                                                       | 487   |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 488   |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 568   |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.620 |  |
| λ [W/(m·K)]                                                               | 0.650 |  |
| AT [°C]                                                                   | 528   |  |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.86  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 74    |  |
| μ                                                                         | 0.295 |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 0.54  |  |
| HK <sub>0.1/20</sub>                                                      | 415   |  |
| HG                                                                        | 6     |  |
| HG-J                                                                      | 592   |  |
| В                                                                         | 1     |  |
|                                                                           |       |  |
| CR                                                                        | 1     |  |
| FR                                                                        | 0     |  |
| SR                                                                        | 52.3  |  |
| AR                                                                        | 3.3   |  |
| PR                                                                        | 4.3   |  |
| SR-J                                                                      | 3     |  |
| WR-J                                                                      | 1     |  |
|                                                                           |       |  |

| Constants of Dispersion             |            |  |
|-------------------------------------|------------|--|
| Formula                             |            |  |
| <b>B</b> <sub>1</sub> 1.15610775    |            |  |
| <b>B</b> <sub>2</sub> 0.153229344   |            |  |
| <b>B</b> <sub>3</sub> 0.785618966   |            |  |
| <b>C</b> <sub>1</sub> 0.00585597402 |            |  |
| <b>C</b> <sub>2</sub> 0.0194072416  |            |  |
| <b>C</b> <sub>3</sub>               | 140.537046 |  |

| Constants of Dispersion |                          |
|-------------------------|--------------------------|
| dn/dT                   |                          |
| <b>D</b> <sub>0</sub>   | -1.98 · 10 <sup>-5</sup> |
| <b>D</b> <sub>1</sub>   | -6.06 · 10 <sup>-9</sup> |
| <b>D</b> <sub>2</sub>   | 1.60 · 10 <sup>-11</sup> |
| <b>E</b> <sub>0</sub>   | 4.16 · 10 <sup>-7</sup>  |
| <b>E</b> <sub>1</sub>   | 5.01 · 10 <sup>-10</sup> |
| λ <sub>TK</sub> [μm]    | 0.134                    |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 34/29 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temper                               | Temperature Coefficients of Refractive Index |                                      |      |        |      |      |
|--------------------------------------|----------------------------------------------|--------------------------------------|------|--------|------|------|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |                                              | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |      | ]      |      |      |
| [°C]                                 | 1060.0                                       | e                                    | g    | 1060.0 | e    | g    |
| -40/ -20                             | -6.0                                         | -5.7                                 | -5.4 | -8.1   | -7.8 | -7.5 |
| +20/ +40                             | -7.1                                         | -6.7                                 | -6.4 | -8.4   | -8.1 | -7.7 |
| +60/ +80                             | -7.5                                         | -7.1                                 | -6.7 | -8.6   | -8.2 | -7.8 |

#### N-PK52A 497816.370

**SCHOTT** 

 $n_d$ = 1.49700  $v_d$ = 81.61  $v_e$ = 81.21

61  $n_F - n_C = 0.006090$ 21  $n_{F'} - n_{C'} = 0.006138$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
| λ [nm]                     |        |         |  |  |
|                            |        | 4 47000 |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.47966 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.48279 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.48616 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.48971 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.49012 |  |  |
| $\mathbf{n}_{\mathrm{s}}$  | 852.1  | 1.49184 |  |  |
| n <sub>r</sub>             | 706.5  | 1.49408 |  |  |
| n <sub>C</sub>             | 656.3  | 1.49514 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.49544 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.49571 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.49695 |  |  |
| n <sub>d</sub>             | 587.6  | 1.49700 |  |  |
| n <sub>e</sub>             | 546.1  | 1.49845 |  |  |
| n <sub>F</sub>             | 486.1  | 1.50123 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.50157 |  |  |
| n <sub>g</sub>             | 435.8  | 1.50450 |  |  |
| n <sub>h</sub>             | 404.7  | 1.50720 |  |  |
| n <sub>i</sub>             | 365.0  | 1.51175 |  |  |
| n <sub>334.1</sub>         | 334.1  | 1.51658 |  |  |
| n <sub>312.6</sub>         | 312.6  | 1.52096 |  |  |
| n <sub>296.7</sub>         | 296.7  | 1.52489 |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| <b>n</b> <sub>248.3</sub>  | 248.3  |         |  |  |

| Internal Transmittance $\tau_i$ |                       |                       |
|---------------------------------|-----------------------|-----------------------|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                            | 0.987                 | 0.967                 |
| 2325                            | 0.991                 | 0.978                 |
| 1970                            | 0.996                 | 0.990                 |
| 1530                            | 0.998                 | 0.994                 |
| 1060                            | 0.998                 | 0.994                 |
| 700                             | 0.997                 | 0.993                 |
| 660                             | 0.997                 | 0.993                 |
| 620                             | 0.998                 | 0.995                 |
| 580                             | 0.999                 | 0.997                 |
| 546                             | 0.999                 | 0.997                 |
| 500                             | 0.998                 | 0.996                 |
| 460                             | 0.997                 | 0.992                 |
| 436                             | 0.996                 | 0.990                 |
| 420                             | 0.996                 | 0.990                 |
| 405                             | 0.997                 | 0.992                 |
| 400                             | 0.997                 | 0.992                 |
| 390                             | 0.997                 | 0.992                 |
| 380                             | 0.996                 | 0.989                 |
| 370                             | 0.992                 | 0.980                 |
| 365                             | 0.988                 | 0.970                 |
| 350                             | 0.950                 | 0.880                 |
| 334                             | 0.831                 | 0.630                 |
| 320                             | 0.618                 | 0.300                 |
| 310                             | 0.428                 | 0.120                 |
| 300                             | 0.250                 | 0.040                 |
| 290                             | 0.120                 | 0.010                 |
| 280                             | 0.044                 |                       |
| 270                             | 0.014                 |                       |
| 260                             |                       |                       |
| 250                             |                       |                       |
|                                 |                       |                       |
|                                 |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{s,t}$          | 0.2819 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5417 |  |
| $\mathbf{P}_{d,C}$          | 0.3055 |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2388 |  |
| $\mathbf{P}_{g,F}$          | 0.5377 |  |
| $\mathbf{P}_{i,h}$          | 0.7470 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2797 |  |
| P' <sub>C',s</sub>          | 0.5858 |  |
| P' <sub>d,C'</sub>          | 0.2548 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2369 |  |
| P' <sub>g,F'</sub>          | 0.4774 |  |
| P' <sub>i,h</sub>           | 0.7412 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | -0.1084 |  |
| ΔP <sub>C,s</sub>                                                   | -0.0514 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0103  |  |
| $\Delta P_{g,F}$                                                    | 0.0311  |  |
| $\Delta \mathbf{P}_{i,g}$                                           | 0.1497  |  |

| Otle an Duamantina                                                        |       |  |
|---------------------------------------------------------------------------|-------|--|
| Other Properties                                                          |       |  |
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 13.0  |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 15.0  |  |
| T <sub>a</sub> [°C]                                                       | 467   |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 467   |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 538   |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.670 |  |
| λ [W/(m·K)]                                                               | 0.730 |  |
| AT [°C]                                                                   | 520   |  |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.70  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 71    |  |
| μ                                                                         | 0.298 |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 0.67  |  |
| HK <sub>0.1/20</sub>                                                      | 355   |  |
| HG                                                                        | 6     |  |
| HG-J                                                                      | 526   |  |
| В                                                                         | 1     |  |
|                                                                           |       |  |
| CR                                                                        | 1     |  |
| FR                                                                        | 0     |  |
| SR                                                                        | 52.3  |  |
| AR                                                                        | 3.3   |  |
| PR                                                                        | 4.3   |  |
| SR-J                                                                      | 4     |  |
| WR-J                                                                      | 1     |  |
|                                                                           |       |  |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.029607      |  |
| <b>B</b> <sub>2</sub>   | 0.1880506     |  |
| <b>B</b> <sub>3</sub>   | 0.736488165   |  |
| <b>C</b> <sub>1</sub>   | 0.00516800155 |  |
| <b>C</b> <sub>2</sub>   | 0.0166658798  |  |
| <b>C</b> <sub>3</sub>   | 138.964129    |  |

| Constants of Dispersion dn/dT |  |  |
|-------------------------------|--|--|
|                               |  |  |
| -1.97 · 10 <sup>-5</sup>      |  |  |
| -5.50 · 10 <sup>-9</sup>      |  |  |
| 5.28 · 10 <sup>-12</sup>      |  |  |
| 3.60 · 10 <sup>-7</sup>       |  |  |
| 2.45 · 10 <sup>-10</sup>      |  |  |
| 0.172                         |  |  |
|                               |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 34/28 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temperature Coefficients of Refractive Index |                                            |      |                  |                                      |      |      |
|----------------------------------------------|--------------------------------------------|------|------------------|--------------------------------------|------|------|
|                                              | Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K] |      | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]    |      |
| [°C]                                         | 1060.0                                     | e    | g                | 1060.0                               | e    | g    |
| -40/ -20                                     | -5.7                                       | -5.4 | -5.1             | -7.7                                 | -7.4 | -7.1 |
| +20/ +40                                     | -6.7                                       | -6.4 | -6.0             | -8.0                                 | -7.7 | -7.4 |
| +60/ +80                                     | -7.1                                       | -6.8 | -6.4             | -8.1                                 | -7.8 | -7.5 |

#### **P-PK53** 527662.283

n<sub>d</sub>= 1.52690  $v_{d}$  = 66.22  $n_e = 1.52880$ 

 $v_e = 65.92$ 

 $n_F - n_C = 0.007957$  $n_{F'}-n_{C'}=0.008022$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 |         |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.50808 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.51265 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.51738 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.51792 |  |  |
| n <sub>s</sub>             | 852.1  | 1.52017 |  |  |
| n <sub>r</sub>             | 706.5  | 1.52309 |  |  |
| n <sub>C</sub>             | 656.3  | 1.52447 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.52486 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.52522 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.52683 |  |  |
| n <sub>d</sub>             | 587.6  | 1.52690 |  |  |
| n <sub>e</sub>             | 546.1  | 1.52880 |  |  |
| n <sub>F</sub>             | 486.1  | 1.53243 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.53288 |  |  |
| n <sub>g</sub>             | 435.8  | 1.53673 |  |  |
| n <sub>h</sub>             | 404.7  | 1.54029 |  |  |
| n <sub>i</sub>             | 365.0  | 1.54633 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.55280 |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  | _       |  |  |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.468                 | 0.150                 |
| 2325     | 0.574                 | 0.250                 |
| 1970     | 0.787                 | 0.550                 |
| 1530     | 0.981                 | 0.954                 |
| 1060     | 0.998                 | 0.994                 |
| 700      | 0.997                 | 0.992                 |
| 660      | 0.997                 | 0.992                 |
| 620      | 0.998                 | 0.994                 |
| 580      | 0.998                 | 0.996                 |
| 546      | 0.999                 | 0.997                 |
| 500      | 0.998                 | 0.995                 |
| 460      | 0.996                 | 0.990                 |
| 436      | 0.995                 | 0.987                 |
| 420      | 0.994                 | 0.985                 |
| 405      | 0.994                 | 0.985                 |
| 400      | 0.994                 | 0.985                 |
| 390      | 0.990                 | 0.976                 |
| 380      | 0.980                 | 0.950                 |
| 370      | 0.959                 | 0.900                 |
| 365      | 0.941                 | 0.860                 |
| 350      | 0.815                 | 0.600                 |
| 334      | 0.515                 | 0.190                 |
| 320      | 0.181                 | 0.010                 |
| 310      | 0.039                 |                       |
| 300      | 0.003                 |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| <b>n</b> <sub>334.1</sub>                   | 334.1                    | 1.55280    | 370        | 0.959 | 0.900 |  |
|---------------------------------------------|--------------------------|------------|------------|-------|-------|--|
| <b>n</b> <sub>312.6</sub>                   | 312.6                    |            | 365        | 0.941 | 0.860 |  |
| <b>n</b> <sub>296.7</sub>                   | 296.7                    |            | 350        | 0.815 | 0.600 |  |
| <b>n</b> <sub>280.4</sub>                   | 280.4                    |            | 334        | 0.515 | 0.190 |  |
| <b>n</b> <sub>248.3</sub>                   | 248.3                    |            | 320        | 0.181 | 0.010 |  |
|                                             |                          |            | 310        | 0.039 |       |  |
| Constant                                    | ts of Disp               | ersion     | 300        | 0.003 |       |  |
| Formula                                     |                          |            | 290        |       |       |  |
| <b>B</b> <sub>1</sub>                       | 0.96031676               | 67         | 280        |       |       |  |
|                                             |                          |            |            |       |       |  |
| <b>B</b> <sub>2</sub>                       | 0.34043722               | 27         | 270        |       |       |  |
| <b>B</b> <sub>2</sub> <b>B</b> <sub>3</sub> | 0.34043722<br>0.77786559 |            | 270<br>260 |       |       |  |
|                                             |                          | 95         |            |       |       |  |
| <b>B</b> <sub>3</sub>                       | 0.77786559               | 95<br>2986 | 260        |       |       |  |

| <b>Relative Partial Dispersion</b> |        |  |
|------------------------------------|--------|--|
| $\mathbf{P}_{s,t}$                 | 0.2829 |  |
| P <sub>C,s</sub>                   | 0.5408 |  |
| $\mathbf{P}_{d,C}$                 | 0.3049 |  |
| $\mathbf{P}_{\mathrm{e,d}}$        | 0.2386 |  |
| $\mathbf{P}_{g,F}$                 | 0.5408 |  |
| $\mathbf{P}_{i,h}$                 | 0.7592 |  |
|                                    |        |  |
| P' <sub>s,t</sub>                  | 0.2806 |  |
| P' <sub>C',s</sub>                 | 0.5846 |  |
| P' <sub>d,C'</sub>                 | 0.2542 |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2366 |  |
| <b>P'</b> <sub>g,F'</sub>          | 0.4802 |  |
| P' <sub>i,h</sub>                  | 0.7530 |  |
|                                    |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta \mathbf{P}_{C,t}$                                           | -0.0354 |  |
| ΔP <sub>C,s</sub>                                                   | -0.0165 |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | 0.0030  |  |
| $\Delta \mathbf{P}_{g,F}$                                           | 0.0084  |  |
| $\Delta \mathbf{P}_{i,g}$                                           | 0.0375  |  |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 13.3  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 16.0  |
| T <sub>a</sub> [°C]                                                       | 383   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 390   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 453   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.770 |
| λ [W/(m·K)]                                                               | 0.640 |
| AT [°C]                                                                   | 418   |
| ρ [g/cm <sup>3</sup> ]                                                    | 2.83  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 59    |
| μ                                                                         | 0.271 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.06  |
| HK <sub>0.1/20</sub>                                                      | 335   |
| HG                                                                        | 6     |
| HG-J                                                                      | 977   |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 2     |
| FR                                                                        | 1     |
| SR                                                                        | 51    |
| AR                                                                        | 4.3   |
| PR                                                                        | 4.3   |
| SR-J                                                                      | 3     |
| WR-J                                                                      | 1     |
|                                                                           |       |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| <b>D</b> <sub>0</sub>         | -1.65 · 10 <sup>-5</sup>  |  |
| <b>D</b> <sub>1</sub>         | -5.14 · 10 <sup>-10</sup> |  |
| $D_2$                         | -2.02 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 4.11 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 4.17 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.208                     |  |

**C**<sub>1</sub> **C**<sub>2</sub>  $\mathbf{c}_{\underline{3}}$ 

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 36/31 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

#### Remarks suitable for precision molding, will become inquiry glass as of Jan 2014, not $recommended \, for \, new \, design \,$

| Temperature Coefficients of Refractive Index |                                            |      |      |                  |                                      |      |
|----------------------------------------------|--------------------------------------------|------|------|------------------|--------------------------------------|------|
|                                              | Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K] |      |      | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]    |
| [°C]                                         | 1060.0                                     | e    | g    | 1060.0           | е                                    | g    |
| -40/ -20                                     | -4.9                                       | -4.5 | -4.1 | -7.0             | -6.6                                 | -6.2 |
| +20/ +40                                     | -5.6                                       | -5.2 | -4.7 | -6.9             | -6.5                                 | -6.1 |
| +60/ +80                                     | -6.0                                       | -5.5 | -5.0 | -7.0             | -6.5                                 | -6.0 |

#### N-PSK3 552635.291

n<sub>d</sub>= 1.55232  $v_{d}$  = 63.46 n<sub>e</sub>= 1.55440

 $v_e$  = 63.23

 $n_F - n_C = 0.008704$  $n_{F'}-n_{C'}=0.008767$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
|                            | λ [nm] |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.52375 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.52954 |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.53558 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.54154 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.54218 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.54482 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.54811 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.54965 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.55008 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.55048 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.55224 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.55232 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.55440 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.55835 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.55885 |  |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.56302 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.56688 |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.57342 |  |  |  |
| n <sub>334.1</sub>         | 334.1  | 1.58041 |  |  |  |
| n <sub>312.6</sub>         | 312.6  | 1.58679 |  |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal <sup>*</sup> | Transmitta            | anceτ <sub>i</sub>    |
|-----------------------|-----------------------|-----------------------|
| λ [nm]                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                  | 0.648                 | 0.338                 |
| 2325                  | 0.809                 | 0.588                 |
| 1970                  | 0.949                 | 0.877                 |
| 1530                  | 0.991                 | 0.978                 |
| 1060                  | 0.999                 | 0.997                 |
| 700                   | 0.998                 | 0.995                 |
| 660                   | 0.997                 | 0.993                 |
| 620                   | 0.997                 | 0.992                 |
| 580                   | 0.997                 | 0.993                 |
| 546                   | 0.997                 | 0.993                 |
| 500                   | 0.996                 | 0.990                 |
| 460                   | 0.995                 | 0.987                 |
| 436                   | 0.994                 | 0.986                 |
| 420                   | 0.994                 | 0.986                 |
| 405                   | 0.995                 | 0.987                 |
| 400                   | 0.994                 | 0.986                 |
| 390                   | 0.993                 | 0.983                 |
| 380                   | 0.991                 | 0.977                 |
| 370                   | 0.988                 | 0.971                 |
| 365                   | 0.985                 | 0.964                 |
| 350                   | 0.967                 | 0.920                 |
| 334                   | 0.915                 | 0.800                 |
| 320                   | 0.770                 | 0.520                 |
| 310                   | 0.583                 | 0.260                 |
| 300                   | 0.325                 | 0.060                 |
| 290                   | 0.123                 |                       |
| 280                   | 0.026                 |                       |
| 270                   |                       |                       |
| 260                   |                       |                       |
| 250                   |                       |                       |
|                       |                       |                       |
|                       |                       |                       |

| Relative Partial Dispersion |        |  |  |
|-----------------------------|--------|--|--|
| P <sub>s,t</sub>            | 0.3023 |  |  |
| <b>P</b> <sub>C,s</sub>     | 0.5555 |  |  |
| $\mathbf{P}_{d,C}$          | 0.3069 |  |  |
| $\mathbf{P}_{e,d}$          | 0.2386 |  |  |
| $\mathbf{P}_{g,F}$          | 0.5365 |  |  |
| $\mathbf{P}_{i,h}$          | 0.7509 |  |  |
|                             |        |  |  |
| P' <sub>s,t</sub>           | 0.3001 |  |  |
| P' <sub>C',s</sub>          | 0.6002 |  |  |
| P' <sub>d,C'</sub>          | 0.2559 |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2369 |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4767 |  |  |
| P' <sub>i,h</sub>           | 0.7454 |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0118  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0047  |  |
| Δ <b>P</b> <sub>F,e</sub> -0.0005                                   |         |  |
| $\Delta \mathbf{P}_{g,F}$                                           | -0.0005 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | 0.0016  |  |

Other Properties

| n <sub>248.3</sub>      | 248.3     |      | l L | 320 | 0.770 | 0.520 |
|-------------------------|-----------|------|-----|-----|-------|-------|
|                         |           |      |     | 310 | 0.583 | 0.260 |
| Constants of Dispersion |           |      |     | 300 | 0.325 | 0.060 |
| Formula                 | 1         |      |     | 290 | 0.123 |       |
| <b>B</b> <sub>1</sub>   | 0.8872721 | 1    |     | 280 | 0.026 |       |
| <b>B</b> <sub>2</sub>   | 0.4895924 | 25   |     | 270 |       |       |
| <b>B</b> <sub>3</sub>   | 1.0486529 | 6    |     | 260 |       |       |
| <b>C</b> <sub>1</sub>   | 0.0046982 | 4067 |     | 250 |       |       |
| C <sub>2</sub>          | 0.0161818 | 463  |     |     |       |       |
| <b>C</b> <sub>3</sub>   | 104.37497 | 5    |     |     |       |       |
|                         |           |      | _   |     |       |       |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 33/28 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |
| Remarks                      |       |

|                  |                                      | 0.020 | Other Froperties                               |       |
|------------------|--------------------------------------|-------|------------------------------------------------|-------|
| 0.               | .583                                 | 0.260 | $\alpha_{-30/+70^{\circ}C}[10^{-6}/K]$         | 6.2   |
| 0.               | 325                                  | 0.060 | α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]  | 7.3   |
| 0.               | 123                                  |       | T <sub>q</sub> [°C]                            | 599   |
| 0.               | .026                                 |       | <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]    | 597   |
|                  |                                      |       | <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]     | 736   |
|                  |                                      |       | <b>c</b> <sub>p</sub> [J/(g·K)]                | 0.682 |
|                  |                                      |       | λ [W/(m·K)]                                    | 0.990 |
|                  |                                      |       |                                                |       |
|                  |                                      | _     | ρ [g/cm <sup>3</sup> ]                         | 2.91  |
| •                | •                                    |       | <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]  | 84    |
| ode              | •                                    |       | μ                                              | 0.226 |
|                  |                                      | 33/28 | <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N] | 2.48  |
| )                |                                      |       | HK <sub>0.1/20</sub>                           | 630   |
|                  |                                      |       | HG                                             | 2     |
| s                |                                      |       |                                                |       |
|                  |                                      |       | В                                              | 1     |
|                  |                                      |       |                                                |       |
|                  |                                      |       | CR                                             | 3     |
|                  |                                      |       | FR                                             | 0     |
| Inc              | dex                                  |       | SR                                             | 2.2   |
| ∆n <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /k | (]    | AR                                             | 2     |
| .0               | е                                    | g     | PR                                             | 2     |
| 6                | 1.0                                  | 1.5   |                                                |       |
| 7                | 1.6                                  | 2.1   |                                                |       |
| ,                | 22                                   | 27    |                                                |       |

| Constants of Dispersion |                          |  |  |
|-------------------------|--------------------------|--|--|
| dn/dT                   |                          |  |  |
| $\mathbf{D}_0$          | 2.03 · 10 <sup>-6</sup>  |  |  |
| <b>D</b> <sub>1</sub>   | 1.19 · 10 <sup>-8</sup>  |  |  |
| $D_2$                   | 2.46 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 3.14 · 10 <sup>-7</sup>  |  |  |
| E <sub>1</sub>          | 2.45 · 10 <sup>-10</sup> |  |  |
| λ <sub>TK</sub> [μm]    | 0.235                    |  |  |

| Temperature Coefficients of Refractive Index |                                      |     |     |                  |                                      |     |
|----------------------------------------------|--------------------------------------|-----|-----|------------------|--------------------------------------|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]                                         | 1060.0                               | e   | g   | 1060.0           | е                                    | g   |
| -40/ -20                                     | 2.6                                  | 3.1 | 3.6 | 0.6              | 1.0                                  | 1.5 |
| +20/ +40                                     | 2.5                                  | 3.0 | 3.5 | 1.2              | 1.6                                  | 2.1 |
| +60/ +80                                     | 2.7                                  | 3.2 | 3.8 | 1.7              | 2.2                                  | 2.7 |

#### N-PSK53A 618634.357

 $n_d = 1.61800$ n<sub>e</sub>= 1.62033  $v_{d}$  = 63.39  $v_e = 63.10$   $n_F - n_C = 0.009749$  $n_{F'}-n_{C'}=0.009831$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.59015 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.59528 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.60073 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.60641 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.60706 |  |  |
| n <sub>s</sub>             | 852.1  | 1.60979 |  |  |
| n <sub>r</sub>             | 706.5  | 1.61334 |  |  |
| n <sub>C</sub>             | 656.3  | 1.61503 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.61550 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.61595 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.61791 |  |  |
| n <sub>d</sub>             | 587.6  | 1.61800 |  |  |
| n <sub>e</sub>             | 546.1  | 1.62033 |  |  |
| n <sub>F</sub>             | 486.1  | 1.62478 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.62534 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.63007 |  |  |
| n <sub>h</sub>             | 404.7  | 1.63445 |  |  |
| n <sub>i</sub>             | 365.0  | 1.64190 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.64991 |  |  |
| n <sub>312.6</sub>         | 312.6  | 1.65724 |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  | 1.66390 |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal | Transmitt             | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.609                 | 0.290                 |
| 2325     | 0.764                 | 0.510                 |
| 1970     | 0.915                 | 0.800                 |
| 1530     | 0.982                 | 0.956                 |
| 1060     | 0.998                 | 0.994                 |
| 700      | 0.998                 | 0.994                 |
| 660      | 0.997                 | 0.993                 |
| 620      | 0.997                 | 0.992                 |
| 580      | 0.998                 | 0.994                 |
| 546      | 0.998                 | 0.995                 |
| 500      | 0.997                 | 0.992                 |
| 460      | 0.994                 | 0.986                 |
| 436      | 0.993                 | 0.982                 |
| 420      | 0.992                 | 0.979                 |
| 405      | 0.988                 | 0.970                 |
| 400      | 0.985                 | 0.964                 |
| 390      | 0.976                 | 0.940                 |
| 380      | 0.959                 | 0.900                 |
| 370      | 0.928                 | 0.830                 |
| 365      | 0.905                 | 0.780                 |
| 350      | 0.776                 | 0.530                 |
| 334      | 0.525                 | 0.200                 |
| 320      | 0.230                 | 0.030                 |
| 310      | 0.061                 |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| Relative Partial Dispersion |        |  |  |
|-----------------------------|--------|--|--|
| $\mathbf{P}_{\mathrm{s,t}}$ | 0.2797 |  |  |
| P <sub>C,s</sub>            | 0.5380 |  |  |
| $\mathbf{P}_{d,C}$          | 0.3044 |  |  |
| $\mathbf{P}_{e,d}$          | 0.2385 |  |  |
| $\mathbf{P}_{g,F}$          | 0.5424 |  |  |
| $\mathbf{P}_{i,h}$          | 0.7642 |  |  |
|                             |        |  |  |
| P' <sub>s,t</sub>           | 0.2774 |  |  |
| P' <sub>C',s</sub>          | 0.5816 |  |  |
| P' <sub>d,C'</sub>          | 0.2538 |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2365 |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4815 |  |  |
| P' <sub>i,h</sub>           | 0.7578 |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |                                   |  |  |  |  |
|---------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | -0.0279                           |  |  |  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | Δ <b>P</b> <sub>C,s</sub> -0.0127 |  |  |  |  |
| Δ <b>P</b> <sub>F,e</sub> 0.0020                                    |                                   |  |  |  |  |
| $\Delta P_{g,F}$                                                    | 0.0052                            |  |  |  |  |
| Δ <b>P</b> <sub>i,g</sub> 0.0208                                    |                                   |  |  |  |  |
|                                                                     |                                   |  |  |  |  |

|  | 280        |  |  |  |  |
|--|------------|--|--|--|--|
|  | 270        |  |  |  |  |
|  | 260        |  |  |  |  |
|  | 250        |  |  |  |  |
|  |            |  |  |  |  |
|  |            |  |  |  |  |
|  |            |  |  |  |  |
|  | Color Code |  |  |  |  |
|  |            |  |  |  |  |

| <b>Color Cod</b>             | е |       |  |  |
|------------------------------|---|-------|--|--|
| $\lambda_{80}/\lambda_{5}$   |   | 36/31 |  |  |
| $(*=\lambda_{70}/\lambda_5)$ |   |       |  |  |
|                              |   |       |  |  |
| Romarks                      |   |       |  |  |

| Other Properties                                                                                   |       |
|----------------------------------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                                       | 9.6   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                                                      | 10.8  |
| T <sub>g</sub> [°C]                                                                                | 606   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                                               | 609   |
| T <sub>g</sub> [°C]<br>T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 699   |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                                                                    | 0.590 |
| λ [W/(m·K)]                                                                                        | 0.640 |
|                                                                                                    |       |
| ρ [g/cm <sup>3</sup> ]                                                                             | 3.57  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                                                      | 76    |
| μ                                                                                                  | 0.288 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                                                     | 1.16  |
| HK <sub>0.1/20</sub>                                                                               | 415   |
| HG                                                                                                 | 6     |
|                                                                                                    |       |
| В                                                                                                  | 1     |
|                                                                                                    |       |
| CR                                                                                                 | 1     |
| FR                                                                                                 | 1     |
| SR                                                                                                 | 53.3  |
| AR                                                                                                 | 2.3   |
| PR                                                                                                 | 4.3   |
|                                                                                                    |       |
|                                                                                                    |       |
|                                                                                                    |       |

| Constants of Dispersion |                          |  |  |
|-------------------------|--------------------------|--|--|
| dn/dT                   |                          |  |  |
| <b>D</b> <sub>0</sub>   | -9.28 · 10 <sup>-6</sup> |  |  |
| <b>D</b> <sub>1</sub>   | 7.19 · 10 <sup>-9</sup>  |  |  |
| D <sub>2</sub>          | 1.45 · 10 <sup>-12</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 4.06 · 10 <sup>-7</sup>  |  |  |
| <b>E</b> <sub>1</sub>   | 3.17 · 10 <sup>-10</sup> |  |  |
| λ <sub>TK</sub> [μm]    | 0.19                     |  |  |

**Constants of Dispersion** 

1.38121836 0.196745645

0.886089205

0.00706416337

0.0233251345 97.4847345

**Formula** 

**B**<sub>1</sub>

 $\mathbf{B}_2$ 

 $\mathbf{C}_1$ 

 $C_2$ 

 $\mathbf{C}_3$ 

| Temperature Coefficients of Refractive Index |                                                                           |      |      |        |      |      |
|----------------------------------------------|---------------------------------------------------------------------------|------|------|--------|------|------|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |      |      | ]      |      |      |
| [°C]                                         | 1060.0                                                                    | Φ    | g    | 1060.0 | е    | g    |
| -40/ -20                                     | -2.6                                                                      | -2.1 | -1.6 | -4.7   | -4.3 | -3.8 |
| +20/ +40                                     | -2.9                                                                      | -2.4 | -1.8 | -4.3   | -3.8 | -3.3 |
| +60/ +80                                     | -2.9                                                                      | -2.3 | -1.8 | -4.0   | -3.5 | -2.9 |

#### N-BK7 517642.251

**SCHOTT** 

 $n_d$ = 1.51680  $v_d$ =  $n_e$ = 1.51872  $v_e$ =

 $v_d = 64.17$  $v_e = 63.96$   $n_F - n_C = 0.008054$  $n_{F'} - n_{C'} = 0.008110$ 

| Refract                    | Refractive Indices |         |  |  |
|----------------------------|--------------------|---------|--|--|
|                            | λ [nm]             |         |  |  |
| n <sub>2325.4</sub>        | 2325.4             | 1.48921 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1             | 1.49495 |  |  |
| n <sub>1529.6</sub>        | 1529.6             | 1.50091 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0             | 1.50669 |  |  |
| n <sub>t</sub>             | 1014.0             | 1.50731 |  |  |
| n <sub>s</sub>             | 852.1              | 1.50980 |  |  |
| n <sub>r</sub>             | 706.5              | 1.51289 |  |  |
| n <sub>C</sub>             | 656.3              | 1.51432 |  |  |
| n <sub>C'</sub>            | 643.8              | 1.51472 |  |  |
| n <sub>632.8</sub>         | 632.8              | 1.51509 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3              | 1.51673 |  |  |
| n <sub>d</sub>             | 587.6              | 1.51680 |  |  |
| n <sub>e</sub>             | 546.1              | 1.51872 |  |  |
| n <sub>F</sub>             | 486.1              | 1.52238 |  |  |
| n <sub>F'</sub>            | 480.0              | 1.52283 |  |  |
| n <sub>g</sub>             | 435.8              | 1.52668 |  |  |
| n <sub>h</sub>             | 404.7              | 1.53024 |  |  |
| n <sub>i</sub>             | 365.0              | 1.53627 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1              | 1.54272 |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6              | 1.54862 |  |  |
| n <sub>296.7</sub>         | 296.7              |         |  |  |
| n <sub>280.4</sub>         | 280.4              |         |  |  |
| n <sub>248.3</sub>         | 248.3              |         |  |  |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.665                 | 0.360                 |
| 2325     | 0.793                 | 0.560                 |
| 1970     | 0.933                 | 0.840                 |
| 1530     | 0.992                 | 0.980                 |
| 1060     | 0.999                 | 0.997                 |
| 700      | 0.998                 | 0.996                 |
| 660      | 0.998                 | 0.994                 |
| 620      | 0.998                 | 0.994                 |
| 580      | 0.998                 | 0.995                 |
| 546      | 0.998                 | 0.996                 |
| 500      | 0.998                 | 0.994                 |
| 460      | 0.997                 | 0.993                 |
| 436      | 0.997                 | 0.992                 |
| 420      | 0.997                 | 0.993                 |
| 405      | 0.997                 | 0.993                 |
| 400      | 0.997                 | 0.992                 |
| 390      | 0.996                 | 0.989                 |
| 380      | 0.993                 | 0.983                 |
| 370      | 0.991                 | 0.977                 |
| 365      | 0.988                 | 0.971                 |
| 350      | 0.967                 | 0.920                 |
| 334      | 0.905                 | 0.780                 |
| 320      | 0.770                 | 0.520                 |
| 310      | 0.574                 | 0.250                 |
| 300      | 0.292                 | 0.050                 |
| 290      | 0.063                 |                       |
| 280      |                       |                       |
| 270      |                       | _                     |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{\mathrm{s,t}}$ | 0.3098 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5612 |  |
| $\mathbf{P}_{d,C}$          | 0.3076 |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2386 |  |
| $\mathbf{P}_{g,F}$          | 0.5349 |  |
| $\mathbf{P}_{i,h}$          | 0.7483 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.3076 |  |
| P' <sub>C',s</sub>          | 0.6062 |  |
| P' <sub>d,C'</sub>          | 0.2566 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2370 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4754 |  |
| P' <sub>i,h</sub>           | 0.7432 |  |
|                             |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| ΔP <sub>C,t</sub>                                                   | 0.0216  |  |
| $\Delta \mathbf{P}_{\mathrm{C,s}}$                                  | 0.0087  |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | -0.0009 |  |
| ΔP <sub>g,F</sub>                                                   | -0.0009 |  |
| ΔP <sub>i,g</sub>                                                   | 0.0035  |  |

| Other Properties                                                         |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 7.1   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 8.3   |
| <b>T</b> <sub>α</sub> [°C]                                               | 557   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 557   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 719   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                           | 0.858 |
| λ [W/(m·K)]                                                              | 1.114 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 2.51  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 82    |
| μ                                                                        | 0.206 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 2.77  |
| HK <sub>0.1/20</sub>                                                     | 610   |
| HG                                                                       | 3     |
|                                                                          |       |
| В                                                                        | 0     |
|                                                                          |       |
| CR                                                                       | 1     |
| FR                                                                       | 0     |
| SR                                                                       | 1     |
| AR                                                                       | 2.3   |
| PR                                                                       | 2.3   |
|                                                                          |       |
|                                                                          |       |

| Constants of Dispersion Formula |               |  |
|---------------------------------|---------------|--|
| <b>B</b> <sub>1</sub>           | 1.03961212    |  |
| <b>B</b> <sub>2</sub>           | 0.231792344   |  |
| <b>B</b> <sub>3</sub>           | 1.01046945    |  |
| <b>C</b> <sub>1</sub>           | 0.00600069867 |  |
| C <sub>2</sub>                  | 0.0200179144  |  |
| C <sub>3</sub>                  | 103.560653    |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | 1.86 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.31 · 10 <sup>-8</sup>   |  |
| D <sub>2</sub>          | -1.37 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 4.34 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 6.27 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.17                      |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 33/29 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

## Remarks

| Temperature Coefficients of Refractive Index |                   |                          |     |                  |                                      |     |
|----------------------------------------------|-------------------|--------------------------|-----|------------------|--------------------------------------|-----|
|                                              | Δn <sub>rel</sub> | /ΔT[10 <sup>-6</sup> /K] |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]                                         | 1060.0            | e                        | g   | 1060.0           | е                                    | g   |
| -40/ -20                                     | 2.4               | 2.9                      | 3.3 | 0.3              | 0.8                                  | 1.2 |
| +20/ +40                                     | 2.4               | 3.0                      | 3.5 | 1.1              | 1.6                                  | 2.1 |
| +60/ +80                                     | 2.5               | 3.1                      | 3.7 | 1.5              | 2.1                                  | 2.7 |

#### **N-BK7HT** 517642.251

n<sub>d</sub>= 1.51680  $v_{d}$  = 64.17 n<sub>e</sub>= 1.51872

 $v_e = 63.96$ 

 $n_F - n_C = 0.008054$  $n_{F'}-n_{C'}=0.008110$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
| 1101140                    | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.48921 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.49495 |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.50091 |  |
| n <sub>1060.0</sub>        | 1060.0 | 1.50669 |  |
| n <sub>t</sub>             | 1014.0 | 1.50731 |  |
| n <sub>s</sub>             | 852.1  | 1.50980 |  |
| n <sub>r</sub>             | 706.5  | 1.51289 |  |
| n <sub>C</sub>             | 656.3  | 1.51432 |  |
| n <sub>C'</sub>            | 643.8  | 1.51472 |  |
| n <sub>632.8</sub>         | 632.8  | 1.51509 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.51673 |  |
| n <sub>d</sub>             | 587.6  | 1.51680 |  |
| n <sub>e</sub>             | 546.1  | 1.51872 |  |
| n <sub>F</sub>             | 486.1  | 1.52238 |  |
| n <sub>F'</sub>            | 480.0  | 1.52283 |  |
| n <sub>g</sub>             | 435.8  | 1.52668 |  |
| n <sub>h</sub>             | 404.7  | 1.53024 |  |
| n <sub>i</sub>             | 365.0  | 1.53627 |  |
| n <sub>334.1</sub>         | 334.1  | 1.54272 |  |
| n <sub>312.6</sub>         | 312.6  | 1.54862 |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal | Transmitta            | anceτ <sub>i</sub>    |  |
|----------|-----------------------|-----------------------|--|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |
| 2500     | 0.752                 | 0.490                 |  |
| 2325     | 0.845                 | 0.657                 |  |
| 1970     | 0.954                 | 0.888                 |  |
| 1530     | 0.995                 | 0.987                 |  |
| 1060     | 0.999                 | 0.999                 |  |
| 700      | 0.999                 | 0.998                 |  |
| 660      | 0.999                 | 0.997                 |  |
| 620      | 0.999                 | 0.997                 |  |
| 580      | 0.999                 | 0.998                 |  |
| 546      | 0.999                 | 0.998                 |  |
| 500      | 0.999                 | 0.997                 |  |
| 460      | 0.998                 | 0.996                 |  |
| 436      | 0.998                 | 0.996                 |  |
| 420      | 0.998                 | 0.996                 |  |
| 405      | 0.998                 | 0.996                 |  |
| 400      | 0.998                 | 0.996                 |  |
| 390      | 0.998                 | 0.994                 |  |
| 380      | 0.997                 | 0.992                 |  |
| 370      | 0.996                 | 0.989                 |  |
| 365      | 0.994                 | 0.985                 |  |
| 350      | 0.985                 | 0.964                 |  |
| 334      | 0.948                 | 0.875                 |  |
| 320      | 0.815                 | 0.600                 |  |
| 310      | 0.567                 | 0.242                 |  |
| 300      | 0.221                 | 0.023                 |  |
| 290      | 0.040                 |                       |  |
| 280      |                       |                       |  |
| 270      |                       |                       |  |
| 260      |                       |                       |  |
| 250      |                       |                       |  |
|          |                       |                       |  |
|          | i                     |                       |  |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{s,t}$          | 0.3098 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5612 |  |
| $\mathbf{P}_{d,C}$          | 0.3076 |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2386 |  |
| $\mathbf{P}_{g,F}$          | 0.5349 |  |
| $\mathbf{P}_{i,h}$          | 0.7483 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.3076 |  |
| P' <sub>C',s</sub>          | 0.6062 |  |
| P' <sub>d,C'</sub>          | 0.2566 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2370 |  |
| P' <sub>g,F'</sub>          | 0.4754 |  |
| P' <sub>i,h</sub>           | 0.7432 |  |
|                             |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta \mathbf{P}_{\mathrm{C,t}}$                                  | 0.0216  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0087  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0009 |  |
| $\Delta P_{g,F}$                                                    | -0.0009 |  |
| $\Delta P_{i,g}$                                                    | 0.0035  |  |

| Other Properties                                                          |       |  |
|---------------------------------------------------------------------------|-------|--|
| $\alpha_{-30/+70^{\circ}C}[10^{-6}/K]$                                    | 7.1   |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 8.3   |  |
| T_[°C]                                                                    | 557   |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 557   |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 719   |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.858 |  |
| λ [W/(m·K)]                                                               | 1.114 |  |
|                                                                           |       |  |
| ρ [g/cm <sup>3</sup> ]                                                    | 2.51  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 82    |  |
| μ                                                                         | 0.206 |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.77  |  |
| HK <sub>0.1/20</sub>                                                      | 610   |  |
| HG                                                                        | 3     |  |
|                                                                           |       |  |
| В                                                                         | 0     |  |
|                                                                           |       |  |
| CR                                                                        | 1     |  |
| FR                                                                        | 0     |  |
| SR                                                                        | 1     |  |
| AR                                                                        | 2.3   |  |
| PR                                                                        | 2.3   |  |
|                                                                           |       |  |
|                                                                           |       |  |
|                                                                           | I     |  |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.03961212    |  |
| <b>B</b> <sub>2</sub>   | 0.231792344   |  |
| <b>B</b> <sub>3</sub>   | 1.01046945    |  |
| <b>C</b> <sub>1</sub>   | 0.00600069867 |  |
| <b>C</b> <sub>2</sub>   | 0.0200179144  |  |
| <b>C</b> <sub>3</sub>   | 103.560653    |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | 1.86 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.31 · 10 <sup>-8</sup>   |  |
| <b>D</b> <sub>2</sub>   | -1.37 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 4.34 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 6.27 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.17                      |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 33/29 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |

| Temperature Coefficients of Refractive Index |                   |                          |     |                  |                                      |     |
|----------------------------------------------|-------------------|--------------------------|-----|------------------|--------------------------------------|-----|
|                                              | Δn <sub>rel</sub> | /ΔT[10 <sup>-6</sup> /K] |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]                                         | 1060.0            | е                        | g   | 1060.0           | е                                    | g   |
| -40/ -20                                     | 2.4               | 2.9                      | 3.3 | 0.3              | 0.8                                  | 1.2 |
| +20/ +40                                     | 2.4               | 3.0                      | 3.5 | 1.1              | 1.6                                  | 2.1 |
| +60/ +80                                     | 2.5               | 3.1                      | 3.7 | 1.5              | 2.1                                  | 2.7 |

#### **N-BK10** 498670.239

n<sub>d</sub>= 1.49782  $v_{d}$  = 66.95 n<sub>e</sub>= 1.49960

 $v_e$  = 66.78

 $n_F - n_C = 0.007435$  $n_{F'}-n_{C'}=0.007481$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
| Tron do                    | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.47060 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.47647 |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.48252 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.48827 |  |
| n <sub>t</sub>             | 1014.0 | 1.48887 |  |
| n <sub>s</sub>             | 852.1  | 1.49127 |  |
| n <sub>r</sub>             | 706.5  | 1.49419 |  |
| n <sub>C</sub>             | 656.3  | 1.49552 |  |
| n <sub>C'</sub>            | 643.8  | 1.49589 |  |
| n <sub>632.8</sub>         | 632.8  | 1.49623 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.49775 |  |
| n <sub>d</sub>             | 587.6  | 1.49782 |  |
| n <sub>e</sub>             | 546.1  | 1.49960 |  |
| n <sub>F</sub>             | 486.1  | 1.50296 |  |
| n <sub>F'</sub>            | 480.0  | 1.50337 |  |
| n <sub>g</sub>             | 435.8  | 1.50690 |  |
| n <sub>h</sub>             | 404.7  | 1.51014 |  |
| n <sub>i</sub>             | 365.0  | 1.51561 |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.52144 |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  | 1.52674 |  |
| n <sub>296.7</sub>         | 296.7  | 1.53151 |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal | Transmitt             | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.739                 | 0.470                 |
| 2325     | 0.872                 | 0.710                 |
| 1970     | 0.980                 | 0.950                 |
| 1530     | 0.992                 | 0.980                 |
| 1060     | 0.998                 | 0.996                 |
| 700      | 0.998                 | 0.995                 |
| 660      | 0.997                 | 0.993                 |
| 620      | 0.997                 | 0.992                 |
| 580      | 0.997                 | 0.993                 |
| 546      | 0.997                 | 0.993                 |
| 500      | 0.996                 | 0.991                 |
| 460      | 0.996                 | 0.990                 |
| 436      | 0.996                 | 0.989                 |
| 420      | 0.996                 | 0.989                 |
| 405      | 0.996                 | 0.990                 |
| 400      | 0.996                 | 0.990                 |
| 390      | 0.996                 | 0.989                 |
| 380      | 0.994                 | 0.985                 |
| 370      | 0.994                 | 0.986                 |
| 365      | 0.994                 | 0.986                 |
| 350      | 0.991                 | 0.978                 |
| 334      | 0.978                 | 0.947                 |
| 320      | 0.941                 | 0.860                 |
| 310      | 0.872                 | 0.710                 |
| 300      | 0.707                 | 0.420                 |
| 290      | 0.414                 | 0.110                 |
| 280      | 0.123                 |                       |
| 270      | 0.010                 |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

|      | 0.000 | 0.000 |
|------|-------|-------|
| 1530 | 0.992 | 0.980 |
| 1060 | 0.998 | 0.996 |
| 700  | 0.998 | 0.995 |
| 660  | 0.997 | 0.993 |
| 620  | 0.997 | 0.992 |
| 580  | 0.997 | 0.993 |
| 546  | 0.997 | 0.993 |
| 500  | 0.996 | 0.991 |
| 460  | 0.996 | 0.990 |
| 436  | 0.996 | 0.989 |
| 420  | 0.996 | 0.989 |
| 405  | 0.996 | 0.990 |
| 400  | 0.996 | 0.990 |
| 390  | 0.996 | 0.989 |
| 380  | 0.994 | 0.985 |
| 370  | 0.994 | 0.986 |
| 365  | 0.994 | 0.986 |
| 350  | 0.991 | 0.978 |
| 334  | 0.978 | 0.947 |
| 320  | 0.941 | 0.860 |
| 310  | 0.872 | 0.710 |
| 300  | 0.707 | 0.420 |
| 290  | 0.414 | 0.110 |
| 280  | 0.123 |       |
| 270  | 0.010 |       |
| 260  |       |       |
| 250  |       |       |
|      |       |       |
|      |       |       |
|      |       |       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{s,t}$          | 0.3224 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5716 |  |
| $\mathbf{P}_{d,C}$          | 0.3093 |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2387 |  |
| $\mathbf{P}_{g,F}$          | 0.5303 |  |
| $\mathbf{P}_{i,h}$          | 0.7360 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.3204 |  |
| P' <sub>C',s</sub>          | 0.6174 |  |
| P' <sub>d,C'</sub>          | 0.2580 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2373 |  |
| P' <sub>g,F'</sub>          | 0.4716 |  |
| P' <sub>i,h</sub>           | 0.7315 |  |
|                             |        |  |
| Deviation of Relative       |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | 0.0314  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0126  |  |
| $\Delta P_{F,e}$                                                    | -0.0012 |  |
| $\Delta P_{g,F}$                                                    | -0.0008 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | 0.0091  |  |

| Other Properties                                                         |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 5.8   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 6.6   |
| T <sub>q</sub> [°C]                                                      | 551   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 0     |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 753   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                          | 0.810 |
| λ [W/(m·K)]                                                              | 1.320 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 2.39  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 71    |
| μ                                                                        | 0.203 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 3.21  |
| HK <sub>0.1/20</sub>                                                     | 560   |
| HG                                                                       | 4     |
|                                                                          |       |
| В                                                                        | 1     |
|                                                                          |       |
| CR                                                                       | 1     |
| FR                                                                       | 0     |
| SR                                                                       | 1     |
| AR                                                                       | 1     |
| PR                                                                       | 1     |
|                                                                          |       |
|                                                                          |       |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| <b>D</b> <sub>0</sub>         | 3.32 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.72 · 10 <sup>-8</sup>   |  |
| <b>D</b> <sub>2</sub>         | -2.05 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 3.57 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 3.90 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.169                     |  |

**Constants of Dispersion** 

0.888308131

0.328964475 0.984610769

0.00516900822

0.0161190045

99.7575331

**Formula** 

**B**<sub>1</sub>

 $\mathbf{B}_2$ 

 $\mathbf{C}_1$ 

 $C_2$ 

 $\mathbf{C}_3$ 

| ( | Color Code                      |       |
|---|---------------------------------|-------|
| λ | λ <sub>80</sub> /λ <sub>5</sub> | 31/27 |
| ( | $*=\lambda_{70}/\lambda_5)$     |       |

| Remarks |  |  |  |  |
|---------|--|--|--|--|
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |

| Temperature Coefficients of Refractive Index |                                            |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K] |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                                     | Φ   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 2.7                                        | 3.1 | 3.5                                  | 0.7    | 1.1 | 1.4 |
| +20/ +40                                     | 2.9                                        | 3.4 | 3.8                                  | 1.6    | 2.1 | 2.5 |
| +60/ +80                                     | 3.1                                        | 3.7 | 4.1                                  | 2.1    | 2.6 | 3.1 |

#### K7 511604.253

**SCHOTT** 

n<sub>d</sub>= 1.51112 n<sub>e</sub>= 1.51314  $v_d$ = 60.41  $v_e$ = 60.15

 $n_F - n_C = 0.008461$  $n_{F'} - n_{C'} = 0.008531$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.48553 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.49046 |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.49565 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.50091 |  |
| n <sub>t</sub>             | 1014.0 | 1.50150 |  |
| n <sub>s</sub>             | 852.1  | 1.50394 |  |
| n <sub>r</sub>             | 706.5  | 1.50707 |  |
| n <sub>C</sub>             | 656.3  | 1.50854 |  |
| n <sub>C'</sub>            | 643.8  | 1.50895 |  |
| n <sub>632.8</sub>         | 632.8  | 1.50934 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.51105 |  |
| n <sub>d</sub>             | 587.6  | 1.51112 |  |
| n <sub>e</sub>             | 546.1  | 1.51314 |  |
| n <sub>F</sub>             | 486.1  | 1.51700 |  |
| n <sub>F'</sub>            | 480.0  | 1.51748 |  |
| n <sub>g</sub>             | 435.8  | 1.52159 |  |
| n <sub>h</sub>             | 404.7  | 1.52540 |  |
| n <sub>i</sub>             | 365.0  | 1.53189 |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.53891 |  |
| n <sub>312.6</sub>         | 312.6  | 1.54537 |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal <sup>*</sup> | Transmitta            | anceτ <sub>i</sub>    |
|-----------------------|-----------------------|-----------------------|
| λ [nm]                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                  | 0.650                 | 0.340                 |
| 2325                  | 0.758                 | 0.500                 |
| 1970                  | 0.910                 | 0.790                 |
| 1530                  | 0.992                 | 0.980                 |
| 1060                  | 0.998                 | 0.994                 |
| 700                   | 0.998                 | 0.996                 |
| 660                   | 0.998                 | 0.995                 |
| 620                   | 0.998                 | 0.995                 |
| 580                   | 0.998                 | 0.994                 |
| 546                   | 0.998                 | 0.994                 |
| 500                   | 0.997                 | 0.993                 |
| 460                   | 0.996                 | 0.990                 |
| 436                   | 0.996                 | 0.990                 |
| 420                   | 0.996                 | 0.990                 |
| 405                   | 0.996                 | 0.990                 |
| 400                   | 0.996                 | 0.990                 |
| 390                   | 0.995                 | 0.988                 |
| 380                   | 0.993                 | 0.983                 |
| 370                   | 0.990                 | 0.976                 |
| 365                   | 0.988                 | 0.971                 |
| 350                   | 0.976                 | 0.940                 |
| 334                   | 0.905                 | 0.780                 |
| 320                   | 0.707                 | 0.420                 |
| 310                   | 0.398                 | 0.100                 |
| 300                   | 0.090                 |                       |
| 290                   |                       |                       |
| 280                   |                       |                       |
| 270                   |                       |                       |
| 260                   |                       |                       |
| 250                   |                       |                       |
|                       |                       |                       |
|                       |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{\mathrm{s,t}}$ | 0.2880 |  |
| P <sub>C,s</sub>            | 0.5436 |  |
| $\mathbf{P}_{d,C}$          | 0.3049 |  |
| $\mathbf{P}_{e,d}$          | 0.2385 |  |
| $\mathbf{P}_{g,F}$          | 0.5422 |  |
| $\mathbf{P}_{i,h}$          | 0.7677 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2857 |  |
| P' <sub>C',s</sub>          | 0.5874 |  |
| P' <sub>d,C'</sub>          | 0.2542 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2365 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4814 |  |
| P' <sub>i,h</sub>           | 0.7614 |  |

| Partial Dispersions ΔP    |         |  |  |
|---------------------------|---------|--|--|
| from the "Normal Line"    |         |  |  |
| $\Delta \mathbf{P}_{C,t}$ | 0.0001  |  |  |
| $\Delta P_{C,s}$          | -0.0001 |  |  |
| $\Delta \mathbf{P}_{F,e}$ | 0.0000  |  |  |
| $\Delta \mathbf{P}_{g,F}$ | 0.0000  |  |  |
| $\Delta \mathbf{P}_{i,g}$ | -0.0001 |  |  |
|                           |         |  |  |
| Other Properties          |         |  |  |

**Deviation of Relative** 

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 8.4   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 9.7   |
| T <sub>a</sub> [°C]                                                       | 513   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                      | 0     |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 712   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           |       |
| λ [W/(m·K)]                                                               |       |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 2.53  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 69    |
| μ                                                                         | 0.214 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.95  |
| HK <sub>0.1/20</sub>                                                      | 520   |
| HG                                                                        | 3     |
|                                                                           |       |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 3     |
| FR                                                                        | 0     |
| SR                                                                        | 2     |
| AR                                                                        | 1     |
| PR                                                                        | 2.3   |
|                                                                           |       |
|                                                                           |       |

| <b>Constants of Dispersion</b> |               |  |
|--------------------------------|---------------|--|
| Formula                        |               |  |
| <b>B</b> <sub>1</sub>          | 1.1273555     |  |
| <b>B</b> <sub>2</sub>          | 0.124412303   |  |
| <b>B</b> <sub>3</sub>          | 0.827100531   |  |
| <b>C</b> <sub>1</sub>          | 0.00720341707 |  |
| <b>C</b> <sub>2</sub>          | 0.0269835916  |  |
| <b>C</b> <sub>3</sub>          | 100.384588    |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | -1.67 · 10 <sup>-6</sup>  |  |
| <b>D</b> <sub>1</sub>   | 8.80 · 10 <sup>-9</sup>   |  |
| D <sub>2</sub>          | -2.86 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 5.42 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 7.81 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.172                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 33/30 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |
|         |  |

| Temperature Coefficients of Refractive Index |        |     |                  |                                      |      |     |
|----------------------------------------------|--------|-----|------------------|--------------------------------------|------|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]    |     |
| [°C]                                         | 1060.0 | e   | g                | 1060.0                               | е    | g   |
| -40/ -20                                     | 1.0    | 1.6 | 2.1              | -1.0                                 | -0.4 | 0.1 |
| +20/ +40                                     | 0.9    | 1.6 | 2.2              | -0.4                                 | 0.2  | 0.9 |
| +60/ +80                                     | 0.8    | 1.6 | 2.3              | -0.2                                 | 0.6  | 1.2 |

#### K10 501564.252

**SCHOTT** 

 $n_d$ = 1.50137  $v_d$ = 56.41  $n_e$ = 1.50349  $v_e$ = 56.15

 $n_F - n_C = 0.008888$  $n_{F'} - n_{C'} = 0.008967$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
| λ [nm]                     |        |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.47507 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.48008 |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.48536 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.49076 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.49137 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.49389 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.49713 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.49867 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.49910 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.49950 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.50129 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.50137 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.50349 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.50756 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.50807 |  |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.51243 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.51649 |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.52350 |  |  |  |
| n <sub>334.1</sub>         | 334.1  | 1.53120 |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  | 1.53844 |  |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |  |  |
|--------------------------------------|-----------------------|-----------------------|--|--|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |  |
| 2500                                 | 0.770                 | 0.520                 |  |  |
| 2325                                 | 0.831                 | 0.630                 |  |  |
| 1970                                 | 0.937                 | 0.850                 |  |  |
| 1530                                 | 0.993                 | 0.983                 |  |  |
| 1060                                 | 0.998                 | 0.996                 |  |  |
| 700                                  | 0.999                 | 0.997                 |  |  |
| 660                                  | 0.998                 | 0.994                 |  |  |
| 620                                  | 0.997                 | 0.993                 |  |  |
| 580                                  | 0.997                 | 0.993                 |  |  |
| 546                                  | 0.997                 | 0.992                 |  |  |
| 500                                  | 0.996                 | 0.991                 |  |  |
| 460                                  | 0.996                 | 0.990                 |  |  |
| 436                                  | 0.995                 | 0.988                 |  |  |
| 420                                  | 0.995                 | 0.988                 |  |  |
| 405                                  | 0.995                 | 0.987                 |  |  |
| 400                                  | 0.994                 | 0.986                 |  |  |
| 390                                  | 0.993                 | 0.982                 |  |  |
| 380                                  | 0.989                 | 0.973                 |  |  |
| 370                                  | 0.986                 | 0.966                 |  |  |
| 365                                  | 0.983                 | 0.958                 |  |  |
| 350                                  | 0.963                 | 0.910                 |  |  |
| 334                                  | 0.877                 | 0.720                 |  |  |
| 320                                  | 0.626                 | 0.310                 |  |  |
| 310                                  | 0.370                 | 0.130                 |  |  |
| 300                                  | 0.140                 | 0.020                 |  |  |
| 290                                  |                       |                       |  |  |
| 280                                  |                       |                       |  |  |
| 270                                  |                       |                       |  |  |
| 260                                  |                       |                       |  |  |
| 250                                  |                       |                       |  |  |
|                                      |                       |                       |  |  |
|                                      |                       |                       |  |  |

| <b>Relative Partial Dispersion</b> |        |  |  |  |
|------------------------------------|--------|--|--|--|
| $\mathbf{P}_{s,t}$                 | 0.2835 |  |  |  |
| P <sub>C,s</sub>                   | 0.5385 |  |  |  |
| $\mathbf{P}_{d,C}$                 | 0.3037 |  |  |  |
| $\mathbf{P}_{e,d}$                 | 0.2382 |  |  |  |
| $\mathbf{P}_{g,F}$                 | 0.5475 |  |  |  |
| $\mathbf{P}_{i,h}$                 | 0.7888 |  |  |  |
|                                    |        |  |  |  |
| P' <sub>s,t</sub>                  | 0.2810 |  |  |  |
| P' <sub>C',s</sub>                 | 0.5817 |  |  |  |
| P' <sub>d,C'</sub>                 | 0.2531 |  |  |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2362 |  |  |  |
| <b>P'</b> <sub>g,F'</sub>          | 0.4860 |  |  |  |
| P' <sub>i,h</sub>                  | 0.7819 |  |  |  |
|                                    |        |  |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |  |
|---------------------------------------------------------------------|---------|--|--|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0094  |  |  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0041  |  |  |  |
| $\Delta P_{F,e}$ -0.0007                                            |         |  |  |  |
| $\Delta \mathbf{P}_{g,F}$                                           | -0.0015 |  |  |  |
| Δ <b>P</b> <sub>i,g</sub> -0.0048                                   |         |  |  |  |

| Other Properties                                                          |       |  |  |  |
|---------------------------------------------------------------------------|-------|--|--|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 6.5   |  |  |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 7.4   |  |  |  |
| T <sub>a</sub> [°C]                                                       | 459   |  |  |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 453   |  |  |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 691   |  |  |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.770 |  |  |  |
| λ [W/(m·K)]                                                               | 1.120 |  |  |  |
|                                                                           |       |  |  |  |
| ρ [g/cm <sup>3</sup> ]                                                    | 2.52  |  |  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 65    |  |  |  |
| μ                                                                         | 0.190 |  |  |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 3.12  |  |  |  |
| HK <sub>0.1/20</sub>                                                      | 470   |  |  |  |
| HG                                                                        | 4     |  |  |  |
|                                                                           |       |  |  |  |
| В                                                                         | 1     |  |  |  |
|                                                                           |       |  |  |  |
| CR                                                                        | 1     |  |  |  |
| FR                                                                        | 0     |  |  |  |
| SR                                                                        | 1     |  |  |  |
| AR                                                                        | 1     |  |  |  |
| PR                                                                        | 1.2   |  |  |  |
|                                                                           |       |  |  |  |
|                                                                           |       |  |  |  |

| Constants of Dispersion |               |  |  |  |
|-------------------------|---------------|--|--|--|
| Formula                 |               |  |  |  |
| <b>B</b> <sub>1</sub>   | 1.15687082    |  |  |  |
| <b>B</b> <sub>2</sub>   | 0.0642625444  |  |  |  |
| <b>B</b> <sub>3</sub>   | 0.872376139   |  |  |  |
| <b>C</b> <sub>1</sub>   | 0.00809424251 |  |  |  |
| C <sub>2</sub>          | 0.0386051284  |  |  |  |
| <b>C</b> <sub>3</sub>   | 104.74773     |  |  |  |

| Constants of Dispersion |                           |  |  |  |
|-------------------------|---------------------------|--|--|--|
| dn/dT                   |                           |  |  |  |
| <b>D</b> <sub>0</sub>   | 4.86 · 10 <sup>-6</sup>   |  |  |  |
| <b>D</b> <sub>1</sub>   | 1.72 · 10 <sup>-8</sup>   |  |  |  |
| D <sub>2</sub>          | -3.02 · 10 <sup>-11</sup> |  |  |  |
| <b>E</b> <sub>0</sub>   | 3.82 · 10 <sup>-7</sup>   |  |  |  |
| <b>E</b> <sub>1</sub>   | 4.53 · 10 <sup>-10</sup>  |  |  |  |
| λ <sub>TK</sub> [μm]    | 0.26                      |  |  |  |

| Color Code                   |       |  |  |
|------------------------------|-------|--|--|
| $\lambda_{80}/\lambda_{5}$   | 33/30 |  |  |
| $(*=\lambda_{70}/\lambda_5)$ |       |  |  |

| Remarks                    |
|----------------------------|
| lead containing glass type |
|                            |

| Temperature Coefficients of Refractive Index |                                      |     |     |                                      |     |     |
|----------------------------------------------|--------------------------------------|-----|-----|--------------------------------------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     |     |
| [°C]                                         | 1060.0                               | Φ   | g   | 1060.0                               | е   | g   |
| -40/ -20                                     | 3.3                                  | 3.9 | 4.5 | 1.3                                  | 1.8 | 2.4 |
| +20/ +40                                     | 3.6                                  | 4.2 | 4.9 | 2.3                                  | 2.9 | 3.6 |
| +60/ +80                                     | 3.8                                  | 4.5 | 5.2 | 2.8                                  | 3.4 | 4.2 |

#### N-K5 522595.259

n<sub>d</sub>= 1.52249  $v_{d}$  = 59.48 n<sub>e</sub>= 1.52458

 $v_e = 59.22$ 

 $n_F - n_C = 0.008784$  $n_{F'}-n_{C'}=0.008858$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.49656 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.50146 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.50664 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.51197 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.51257 |  |  |
| n <sub>s</sub>             | 852.1  | 1.51507 |  |  |
| n <sub>r</sub>             | 706.5  | 1.51829 |  |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.51982 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.52024 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.52064 |  |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.52241 |  |  |
| n <sub>d</sub>             | 587.6  | 1.52249 |  |  |
| n <sub>e</sub>             | 546.1  | 1.52458 |  |  |
| n <sub>F</sub>             | 486.1  | 1.52860 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.52910 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.53338 |  |  |
| n <sub>h</sub>             | 404.7  | 1.53734 |  |  |
| n <sub>i</sub>             | 365.0  | 1.54412 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.55145 |  |  |
| n <sub>312.6</sub>         | 312.6  | 1.55821 |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |
|--------------------------------------|-----------------------|-----------------------|
|                                      | 1                     |                       |
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                                 | 0.776                 | 0.530                 |
| 2325                                 | 0.847                 | 0.660                 |
| 1970                                 | 0.946                 | 0.870                 |
| 1530                                 | 0.994                 | 0.986                 |
| 1060                                 | 0.998                 | 0.995                 |
| 700                                  | 0.998                 | 0.994                 |
| 660                                  | 0.997                 | 0.992                 |
| 620                                  | 0.997                 | 0.993                 |
| 580                                  | 0.998                 | 0.995                 |
| 546                                  | 0.998                 | 0.995                 |
| 500                                  | 0.997                 | 0.993                 |
| 460                                  | 0.996                 | 0.991                 |
| 436                                  | 0.996                 | 0.991                 |
| 420                                  | 0.996                 | 0.991                 |
| 405                                  | 0.996                 | 0.989                 |
| 400                                  | 0.995                 | 0.988                 |
| 390                                  | 0.994                 | 0.984                 |
| 380                                  | 0.991                 | 0.977                 |
| 370                                  | 0.985                 | 0.962                 |
| 365                                  | 0.982                 | 0.956                 |
| 350                                  | 0.950                 | 0.880                 |
| 334                                  | 0.831                 | 0.630                 |
| 320                                  | 0.536                 | 0.210                 |
| 310                                  | 0.221                 | 0.020                 |
| 300                                  | 0.058                 |                       |
| 290                                  |                       |                       |
| 280                                  |                       |                       |
| 270                                  |                       |                       |
| 260                                  |                       |                       |
| 250                                  |                       |                       |
|                                      |                       |                       |
|                                      |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2843 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5404 |  |
| $\mathbf{P}_{d,C}$          | 0.3044 |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2384 |  |
| $\mathbf{P}_{g,F}$          | 0.5438 |  |
| $\mathbf{P}_{i,h}$          | 0.7717 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2819 |  |
| P' <sub>C',s</sub>          | 0.5839 |  |
| P' <sub>d,C'</sub>          | 0.2538 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2364 |  |
| P' <sub>g,F'</sub>          | 0.4828 |  |
| P' <sub>i,h</sub>           | 0.7653 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | -0.0025 |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | -0.0012 |  |
| Δ <b>P</b> <sub>F,e</sub> 0.0001                                    |         |  |
| $\Delta P_{g,F}$ 0.0000                                             |         |  |
| Δ <b>P</b> <sub>i,g</sub> -0.0019                                   |         |  |

| Other Properties                                                                                   |       |  |
|----------------------------------------------------------------------------------------------------|-------|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                                       | 8.2   |  |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                                            | 9.6   |  |
| T <sub>g</sub> [°C]                                                                                | 546   |  |
| T <sub>g</sub> [°C]<br>T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 540   |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                                         | 720   |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                                                    | 0.783 |  |
| λ [W/(m·K)]                                                                                        | 0.950 |  |
|                                                                                                    |       |  |
| ρ [g/cm <sup>3</sup> ]                                                                             | 2.59  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                                                      | 71    |  |
| μ                                                                                                  | 0.224 |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                                                     | 3.03  |  |
| HK <sub>0.1/20</sub>                                                                               | 530   |  |
| HG                                                                                                 | 3     |  |
|                                                                                                    |       |  |
| В                                                                                                  | 1     |  |
|                                                                                                    |       |  |
| CR                                                                                                 | 1     |  |
| FR                                                                                                 | 0     |  |
| SR                                                                                                 | 1     |  |
| AR                                                                                                 | 1     |  |
| PR                                                                                                 | 1     |  |
|                                                                                                    |       |  |
|                                                                                                    |       |  |
|                                                                                                    |       |  |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.08511833    |  |
| <b>B</b> <sub>2</sub>   | 0.199562005   |  |
| <b>B</b> <sub>3</sub>   | 0.930511663   |  |
| <b>C</b> <sub>1</sub>   | 0.00661099503 |  |
| <b>C</b> <sub>2</sub>   | 0.024110866   |  |
| <b>C</b> <sub>3</sub>   | 111.982777    |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | -4.13 · 10 <sup>-7</sup>  |  |
| <b>D</b> <sub>1</sub>   | 1.03 · 10 <sup>-8</sup>   |  |
| D <sub>2</sub>          | -3.40 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 4.73 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 5.19 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.213                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 34/30 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

# Remarks

| Temper   | Temperature Coefficients of Refractive Index |     |                                      |        |     |     |
|----------|----------------------------------------------|-----|--------------------------------------|--------|-----|-----|
|          | Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K]   |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]     | 1060.0                                       | Φ   | g                                    | 1060.0 | е   | g   |
| -40/ -20 | 1.5                                          | 2.1 | 2.6                                  | -0.6   | 0.0 | 0.5 |
| +20/ +40 | 1.4                                          | 2.1 | 2.7                                  | 0.1    | 0.7 | 1.4 |
| +60/ +80 | 1.4                                          | 2.1 | 2.8                                  | 0.4    | 1.1 | 1.8 |

#### N-ZK7 508612.249

 $n_d = 1.50847$ n<sub>e</sub>= 1.51045

 $v_{d}$  = 61.19  $v_e$  = 60.98  $n_F - n_C = 0.008310$  $n_{F'}-n_{C'}=0.008370$ 

| Refractive Indices         |        |         |
|----------------------------|--------|---------|
|                            |        |         |
|                            | λ [nm] |         |
| <b>n</b> <sub>2325.4</sub> | 2325.4 | 1.48062 |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.48637 |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.49233 |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.49813 |
| n <sub>t</sub>             | 1014.0 | 1.49876 |
| n <sub>s</sub>             | 852.1  | 1.50129 |
| n <sub>r</sub>             | 706.5  | 1.50445 |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.50592 |
| n <sub>C'</sub>            | 643.8  | 1.50633 |
| n <sub>632.8</sub>         | 632.8  | 1.50671 |
| $\mathbf{n}_{D}$           | 589.3  | 1.50840 |
| $\mathbf{n}_{d}$           | 587.6  | 1.50847 |
| n <sub>e</sub>             | 546.1  | 1.51045 |
| $\mathbf{n}_{F}$           | 486.1  | 1.51423 |
| n <sub>F'</sub>            | 480.0  | 1.51470 |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.51869 |
| n <sub>h</sub>             | 404.7  | 1.52238 |
| n <sub>i</sub>             | 365.0  | 1.52865 |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.53538 |
| <b>n</b> <sub>312.6</sub>  | 312.6  | 1.54155 |
| n <sub>296.7</sub>         | 296.7  |         |
| n <sub>280.4</sub>         | 280.4  |         |
| n <sub>248.3</sub>         | 248.3  |         |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.657                 | 0.350                 |
| 2325     | 0.847                 | 0.660                 |
| 1970     | 0.971                 | 0.930                 |
| 1530     | 0.990                 | 0.976                 |
| 1060     | 0.998                 | 0.994                 |
| 700      | 0.998                 | 0.996                 |
| 660      | 0.998                 | 0.994                 |
| 620      | 0.998                 | 0.994                 |
| 580      | 0.998                 | 0.995                 |
| 546      | 0.998                 | 0.995                 |
| 500      | 0.997                 | 0.993                 |
| 460      | 0.995                 | 0.988                 |
| 436      | 0.994                 | 0.984                 |
| 420      | 0.992                 | 0.981                 |
| 405      | 0.991                 | 0.977                 |
| 400      | 0.990                 | 0.975                 |
| 390      | 0.987                 | 0.969                 |
| 380      | 0.982                 | 0.956                 |
| 370      | 0.976                 | 0.940                 |
| 365      | 0.971                 | 0.930                 |
| 350      | 0.941                 | 0.860                 |
| 334      | 0.852                 | 0.670                 |
| 320      | 0.686                 | 0.390                 |
| 310      | 0.492                 | 0.170                 |
| 300      | 0.221                 | 0.030                 |
| 290      | 0.032                 |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| <b>Relative Partial Dispersion</b> |        |  |
|------------------------------------|--------|--|
| $\mathbf{P}_{s,t}$                 | 0.3049 |  |
| P <sub>C,s</sub>                   | 0.5570 |  |
| $\mathbf{P}_{d,C}$                 | 0.3069 |  |
| $\mathbf{P}_{e,d}$                 | 0.2386 |  |
| $\mathbf{P}_{g,F}$                 | 0.5370 |  |
| $\mathbf{P}_{i,h}$                 | 0.7543 |  |
|                                    |        |  |
| P' <sub>s,t</sub>                  | 0.3027 |  |
| P' <sub>C',s</sub>                 | 0.6017 |  |
| P' <sub>d,C'</sub>                 | 0.2560 |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2369 |  |
| <b>P'</b> <sub>g,F'</sub>          | 0.4771 |  |
| P' <sub>i,h</sub>                  | 0.7488 |  |
|                                    |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0267  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0115  |  |
| Δ <b>P</b> <sub>F,e</sub> -0.0017                                   |         |  |
| $\Delta P_{g,F}$                                                    | -0.0039 |  |
| Δ <b>P</b> <sub>i,g</sub> -0.0129                                   |         |  |

| 310 | 0.432 | 0.170 |
|-----|-------|-------|
| 300 | 0.221 | 0.030 |
| 290 | 0.032 |       |
| 280 |       |       |
| 270 |       |       |
| 260 |       |       |
| 250 |       |       |
|     |       |       |
|     |       |       |
|     |       | ·     |

| L L                          | <u> </u> |
|------------------------------|----------|
| Color Code                   |          |
| $\lambda_{80}/\lambda_{5}$   | 34/29    |
| $(*=\lambda_{70}/\lambda_5)$ |          |
|                              |          |
| Remarks                      |          |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 4.5   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 5.2   |
| T <sub>a</sub> [°C]                                                       | 539   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                      | 0     |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 721   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.770 |
| λ [W/(m·K)]                                                               | 1.042 |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 2.49  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 70    |
| μ                                                                         | 0.214 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 3.63  |
| HK <sub>0.1/20</sub>                                                      | 530   |
| HG                                                                        | 4     |
|                                                                           |       |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 0     |
| SR                                                                        | 2     |
| AR                                                                        | 1.2   |
| PR                                                                        | 2.2   |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| $\mathbf{D}_0$                | 1.15 · 10 <sup>-5</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.73 · 10 <sup>-8</sup>   |  |
| $D_2$                         | -8.06 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 4.32 · 10 <sup>-7</sup>   |  |
| E <sub>1</sub>                | 7.05 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.179                     |  |

**Constants of Dispersion** 

1.07715032 0.168079109

0.851889892

0.00676601657

0.0230642817 89.0498778

**Formula** 

**B**<sub>1</sub>

 $\mathbf{B}_2$ 

 $\mathbf{C}_1$ 

 $C_2$ 

 $\mathbf{C}_3$ 

| Temperature Coefficients of Refractive Index |                   |                          |     |                  |                                      |     |
|----------------------------------------------|-------------------|--------------------------|-----|------------------|--------------------------------------|-----|
|                                              | Δn <sub>rel</sub> | /ΔT[10 <sup>-6</sup> /K] |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]                                         | 1060.0            | е                        | g   | 1060.0           | е                                    | g   |
| -40/ -20                                     | 5.9               | 6.5                      | 7.0 | 3.9              | 4.5                                  | 4.9 |
| +20/ +40                                     | 6.4               | 7.0                      | 7.6 | 5.1              | 5.7                                  | 6.3 |
| +60/ +80                                     | 6.4               | 7.2                      | 7.8 | 5.4              | 6.2                                  | 6.8 |

### N-BAK1 573576.319

**SCHOTT** 

 $n_d$ = 1.57250  $v_d$ =  $n_e$ = 1.57487  $v_e$ =

 $v_d = 57.55$  $v_e = 57.27$   $n_F - n_C = 0.009948$  $n_{F'} - n_{C'} = 0.010039$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.54556 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.55032 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.55543 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.56088 |  |
| n <sub>t</sub>             | 1014.0 | 1.56152 |  |
| n <sub>s</sub>             | 852.1  | 1.56421 |  |
| n <sub>r</sub>             | 706.5  | 1.56778 |  |
| n <sub>C</sub>             | 656.3  | 1.56949 |  |
| n <sub>C'</sub>            | 643.8  | 1.56997 |  |
| n <sub>632.8</sub>         | 632.8  | 1.57041 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.57241 |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.57250 |  |
| n <sub>e</sub>             | 546.1  | 1.57487 |  |
| n <sub>F</sub>             | 486.1  | 1.57943 |  |
| n <sub>F'</sub>            | 480.0  | 1.58000 |  |
| n <sub>g</sub>             | 435.8  | 1.58488 |  |
| n <sub>h</sub>             | 404.7  | 1.58941 |  |
| n <sub>i</sub>             | 365.0  | 1.59716 |  |
| n <sub>334.1</sub>         | 334.1  | 1.60554 |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  | 1.61326 |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |
|--------------------------------------|-----------------------|-----------------------|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                                 | 0.806                 | 0.584                 |
| 2325                                 | 0.877                 | 0.721                 |
| 1970                                 | 0.960                 | 0.903                 |
| 1530                                 | 0.994                 | 0.986                 |
| 1060                                 | 0.998                 | 0.996                 |
| 700                                  | 0.999                 | 0.997                 |
| 660                                  | 0.998                 | 0.995                 |
| 620                                  | 0.998                 | 0.995                 |
| 580                                  | 0.998                 | 0.995                 |
| 546                                  | 0.998                 | 0.995                 |
| 500                                  | 0.997                 | 0.992                 |
| 460                                  | 0.996                 | 0.990                 |
| 436                                  | 0.996                 | 0.989                 |
| 420                                  | 0.996                 | 0.990                 |
| 405                                  | 0.996                 | 0.990                 |
| 400                                  | 0.996                 | 0.990                 |
| 390                                  | 0.995                 | 0.988                 |
| 380                                  | 0.993                 | 0.983                 |
| 370                                  | 0.991                 | 0.977                 |
| 365                                  | 0.987                 | 0.969                 |
| 350                                  | 0.971                 | 0.930                 |
| 334                                  | 0.924                 | 0.820                 |
| 320                                  | 0.799                 | 0.570                 |
| 310                                  | 0.609                 | 0.290                 |
| 300                                  | 0.345                 | 0.070                 |
| 290                                  | 0.102                 |                       |
| 280                                  | 0.014                 |                       |
| 270                                  |                       |                       |
| 260                                  |                       |                       |
| 250                                  |                       |                       |
|                                      |                       |                       |
|                                      |                       |                       |

| Relative Partial Dispersion |        |  |  |
|-----------------------------|--------|--|--|
| P <sub>s,t</sub>            | 0.2712 |  |  |
| P <sub>C,s</sub>            | 0.5301 |  |  |
| $\mathbf{P}_{d,C}$          | 0.3029 |  |  |
| $\mathbf{P}_{e,d}$          | 0.2384 |  |  |
| $\mathbf{P}_{g,F}$          | 0.5472 |  |  |
| $\mathbf{P}_{i,h}$          | 0.7788 |  |  |
|                             |        |  |  |
| P' <sub>s,t</sub>           | 0.2687 |  |  |
| P' <sub>C',s</sub>          | 0.5730 |  |  |
| P' <sub>d,C'</sub>          | 0.2525 |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2362 |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4855 |  |  |
| P' <sub>i,h</sub>           | 0.7717 |  |  |
|                             |        |  |  |
| Deviation of Relative       |        |  |  |

| ) | Δ |
|---|---|
| ) | Δ |
| ) |   |
| ) | α |
| ) | α |
| ) | α |
|   | T |
|   | Т |
|   | Т |
|   | c |
|   | λ |
|   |   |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |
|---------------------------------------------------------------------|---------|--|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | -0.0167 |  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | -0.0069 |  |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | 0.0006  |  |  |
| $\Delta P_{g,F}$                                                    | 0.0002  |  |  |
| $\Delta P_{i,g}$                                                    | -0.0075 |  |  |
|                                                                     |         |  |  |

| Constants of Dispersion |               |  |  |
|-------------------------|---------------|--|--|
| Formula                 |               |  |  |
| <b>B</b> <sub>1</sub>   | 1.12365662    |  |  |
| <b>B</b> <sub>2</sub>   | 0.309276848   |  |  |
| <b>B</b> <sub>3</sub>   | 0.881511957   |  |  |
| <b>C</b> <sub>1</sub>   | 0.00644742752 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0222284402  |  |  |
| <b>C</b> <sub>3</sub>   | 107.297751    |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 33/29 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Other Properties                                                       |       |
|------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                           | 7.6   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                          | 8.6   |
| T <sub>g</sub> [°C]                                                    | 592   |
| $T_g[^{\circ}C]$ $T_{10}^{-13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 592   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                             | 746   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                        | 0.687 |
| λ [W/(m·K)]                                                            | 0.795 |
|                                                                        |       |
| ρ [g/cm <sup>3</sup> ]                                                 | 3.19  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                          | 73    |
| μ                                                                      | 0.252 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                         | 2.62  |
| HK <sub>0.1/20</sub>                                                   | 530   |
| HG                                                                     | 2     |
|                                                                        |       |
| В                                                                      | 1     |
|                                                                        |       |
| CR                                                                     | 2     |
| FR                                                                     | 1     |
| SR                                                                     | 3.3   |
| AR                                                                     | 1.2   |
| PR                                                                     | 2     |
|                                                                        |       |
|                                                                        |       |
|                                                                        |       |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| $\mathbf{D}_0$                | 1.86 · 10 <sup>-7</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.29 · 10 <sup>-8</sup>   |  |
| $D_2$                         | -1.87 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 5.25 · 10 <sup>-7</sup>   |  |
| E <sub>1</sub>                | 5.46 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.182                     |  |

| Tempera             | ature Coefficients of    | Refra | active Index |  |
|---------------------|--------------------------|-------|--------------|--|
|                     |                          |       |              |  |
| τ <sub>K</sub> [μm] | 0.182                    |       |              |  |
| 1                   | 5.46 · 10 <sup>-10</sup> |       |              |  |
| 0                   | 5.25 · 10 <sup>-7</sup>  |       |              |  |

Remarks

| Temper                               | Temperature Coefficients of Refractive Index |                                                             |     |        |     |     |
|--------------------------------------|----------------------------------------------|-------------------------------------------------------------|-----|--------|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |                                              | $\Delta$ n <sub>abs</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |     |        |     |     |
| [°C]                                 | 1060.0                                       | e                                                           | g   | 1060.0 | e   | g   |
| -40/ -20                             | 1.7                                          | 2.4                                                         | 3.0 | -0.4   | 0.2 | 0.8 |
| +20/ +40                             | 1.8                                          | 2.5                                                         | 3.2 | 0.4    | 1.2 | 1.8 |
| +60/ +80                             | 1.9                                          | 2.7                                                         | 3.5 | 0.9    | 1.7 | 2.4 |

#### N-BAK2 540597.286

n<sub>d</sub>= 1.53996 n<sub>e</sub>= 1.54212

 $v_{d}$  = 59.71  $v_e = 59.44$   $n_F - n_C = 0.009043$  $n_{F'}-n_{C'}=0.009120$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.51387 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.51871 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.52385 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.52919 |  |
| n <sub>t</sub>             | 1014.0 | 1.52980 |  |
| n <sub>s</sub>             | 852.1  | 1.53234 |  |
| n <sub>r</sub>             | 706.5  | 1.53564 |  |
| n <sub>C</sub>             | 656.3  | 1.53721 |  |
| n <sub>C'</sub>            | 643.8  | 1.53765 |  |
| n <sub>632.8</sub>         | 632.8  | 1.53806 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.53988 |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.53996 |  |
| n <sub>e</sub>             | 546.1  | 1.54212 |  |
| n <sub>F</sub>             | 486.1  | 1.54625 |  |
| n <sub>F'</sub>            | 480.0  | 1.54677 |  |
| n <sub>g</sub>             | 435.8  | 1.55117 |  |
| n <sub>h</sub>             | 404.7  | 1.55525 |  |
| n <sub>i</sub>             | 365.0  | 1.56221 |  |
| n <sub>334.1</sub>         | 334.1  | 1.56971 |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  | 1.57660 |  |
| n <sub>296.7</sub>         | 296.7  | 1.58287 |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.758                 | 0.500                 |
| 2325     | 0.831                 | 0.630                 |
| 1970     | 0.937                 | 0.850                 |
| 1530     | 0.994                 | 0.984                 |
| 1060     | 0.999                 | 0.997                 |
| 700      | 0.998                 | 0.996                 |
| 660      | 0.998                 | 0.995                 |
| 620      | 0.998                 | 0.994                 |
| 580      | 0.998                 | 0.995                 |
| 546      | 0.998                 | 0.995                 |
| 500      | 0.998                 | 0.994                 |
| 460      | 0.997                 | 0.992                 |
| 436      | 0.997                 | 0.992                 |
| 420      | 0.997                 | 0.993                 |
| 405      | 0.997                 | 0.993                 |
| 400      | 0.997                 | 0.993                 |
| 390      | 0.997                 | 0.992                 |
| 380      | 0.996                 | 0.990                 |
| 370      | 0.996                 | 0.989                 |
| 365      | 0.994                 | 0.986                 |
| 350      | 0.988                 | 0.971                 |
| 334      | 0.963                 | 0.910                 |
| 320      | 0.867                 | 0.700                 |
| 310      | 0.693                 | 0.400                 |
| 300      | 0.398                 | 0.100                 |
| 290      | 0.158                 |                       |
| 280      | 0.040                 |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| Relative Partial Dispersion |  |  |
|-----------------------------|--|--|
| 0.2810                      |  |  |
| 0.5382                      |  |  |
| 0.3042                      |  |  |
| 0.2385                      |  |  |
| 0.5437                      |  |  |
| 0.7695                      |  |  |
|                             |  |  |
| 0.2787                      |  |  |
| 0.5817                      |  |  |
| 0.2536                      |  |  |
| 0.2364                      |  |  |
| 0.4826                      |  |  |
| 0.7630                      |  |  |
|                             |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| ΔP <sub>C,t</sub>                                                   | -0.0089 |  |
| ΔP <sub>C,s</sub>                                                   | -0.0039 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0004  |  |
| $\Delta \mathbf{P}_{g,F}$                                           | 0.0004  |  |
| Δ <b>P</b> <sub>i,g</sub> -0.0027                                   |         |  |
|                                                                     |         |  |
| Other Properties                                                    |         |  |

|                         |               | L | 310 | 0.093 |
|-------------------------|---------------|---|-----|-------|
| Constants of Dispersion |               |   | 300 | 0.398 |
| Formula                 |               |   | 290 | 0.158 |
| <b>B</b> <sub>1</sub>   | 1.01662154    |   | 280 | 0.040 |
| <b>B</b> <sub>2</sub>   | 0.319903051   |   | 270 |       |
| $\mathbf{B}_3$          | 0.937232995   |   | 260 |       |
| <b>C</b> <sub>1</sub>   | 0.00592383763 |   | 250 |       |
| <b>C</b> <sub>2</sub>   | 0.0203828415  |   |     |       |
| <b>C</b> <sub>3</sub>   | 113.118417    |   |     |       |
|                         |               | _ |     | -     |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 32/28 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |
| Remarks                      |       |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 8.0   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 9.0   |
| <b>T</b> <sub>a</sub> [°C]                                                | 554   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                      | 550   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 727   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.690 |
| λ [W/(m·K)]                                                               | 0.920 |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 2.86  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 71    |
| μ                                                                         | 0.233 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.60  |
| HK <sub>0.1/20</sub>                                                      | 530   |
| HG                                                                        | 2     |
|                                                                           |       |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 2     |
| FR                                                                        | 0     |
| SR                                                                        | 1     |
| AR                                                                        | 1     |
| PR                                                                        | 2.3   |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |

| Constants of Dispersion  |  |  |
|--------------------------|--|--|
| dn/dT                    |  |  |
| -1.45 · 10 <sup>-6</sup> |  |  |
| 1.10 · 10 <sup>-8</sup>  |  |  |
| 4.89 · 10 <sup>-12</sup> |  |  |
| 5.16 · 10 <sup>-7</sup>  |  |  |
| 3.05 · 10 <sup>-10</sup> |  |  |
| 0.164                    |  |  |
|                          |  |  |

| Temperature Coefficients of Refractive Index |                                      |     |     |                                      |      |     |
|----------------------------------------------|--------------------------------------|-----|-----|--------------------------------------|------|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |      |     |
| [°C]                                         | 1060.0                               | е   | g   | 1060.0                               | е    | g   |
| -40/ -20                                     | 1.1                                  | 1.8 | 2.3 | -0.9                                 | -0.3 | 0.2 |
| +20/ +40                                     | 1.0                                  | 1.7 | 2.3 | -0.3                                 | 0.3  | 0.9 |
| +60/ +80                                     | 1.1                                  | 1.8 | 2.4 | 0.1                                  | 0.8  | 1.4 |

#### N-BAK4 569560.305

 $n_d = 1.56883$  $v_{d}$  = 55.98 n<sub>e</sub>= 1.57125

 $v_e = 55.70$ 

 $n_F - n_C = 0.010162$  $n_{F'}-n_{C'}=0.010255$ 

| Refractive Indices         |        |         |  |  |  |  |  |
|----------------------------|--------|---------|--|--|--|--|--|
| λ [nm]                     |        |         |  |  |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.54044 |  |  |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.54561 |  |  |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.55111 |  |  |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.55688 |  |  |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.55755 |  |  |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.56034 |  |  |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.56400 |  |  |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.56575 |  |  |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.56624 |  |  |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.56670 |  |  |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.56874 |  |  |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.56883 |  |  |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.57125 |  |  |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.57591 |  |  |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.57649 |  |  |  |  |  |
| n <sub>g</sub>             | 435.8  | 1.58149 |  |  |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.58614 |  |  |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.59415 |  |  |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |  |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |  |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |  |  |

| Internal Transmittance $\tau_{\rm i}$ |                                |       |  |  |
|---------------------------------------|--------------------------------|-------|--|--|
| λ [nm]                                | $\tau_i$ (10mm) $\tau_i$ (25m) |       |  |  |
| 2500                                  | 0.782                          | 0.540 |  |  |
| 2325                                  | 0.872                          | 0.710 |  |  |
| 1970                                  | 0.959                          | 0.900 |  |  |
| 1530                                  | 0.993                          | 0.982 |  |  |
| 1060                                  | 0.998                          | 0.995 |  |  |
| 700                                   | 0.999                          | 0.997 |  |  |
| 660                                   | 0.998                          | 0.995 |  |  |
| 620                                   | 0.998                          | 0.995 |  |  |
| 580                                   | 0.998                          | 0.996 |  |  |
| 546                                   | 0.998                          | 0.996 |  |  |
| 500                                   | 0.998                          | 0.994 |  |  |
| 460                                   | 0.996                          | 0.989 |  |  |
| 436                                   | 0.995                          | 0.988 |  |  |
| 420                                   | 0.995                          | 0.987 |  |  |
| 405                                   | 0.993                          | 0.983 |  |  |
| 400                                   | 0.992                          | 0.980 |  |  |
| 390                                   | 0.987                          | 0.967 |  |  |
| 380                                   | 0.976                          | 0.940 |  |  |
| 370                                   | 0.954                          | 0.890 |  |  |
| 365                                   | 0.933                          | 0.840 |  |  |
| 350                                   | 0.787                          | 0.550 |  |  |
| 334                                   | 0.345                          | 0.070 |  |  |
| 320                                   | 0.012                          |       |  |  |
| 310                                   |                                |       |  |  |
| 300                                   |                                |       |  |  |
| 290                                   |                                |       |  |  |
| 280                                   |                                |       |  |  |
| 270                                   |                                |       |  |  |
| 260                                   |                                |       |  |  |
| 250                                   |                                |       |  |  |
|                                       |                                |       |  |  |
|                                       |                                |       |  |  |

| <b>Relative Partial Dispersion</b> |        |  |  |  |
|------------------------------------|--------|--|--|--|
| P <sub>s,t</sub>                   | 0.2749 |  |  |  |
| P <sub>C,s</sub>                   | 0.5321 |  |  |  |
| P <sub>d,C</sub>                   | 0.3029 |  |  |  |
| P <sub>e,d</sub>                   | 0.2383 |  |  |  |
| $\mathbf{P}_{g,F}$                 | 0.5487 |  |  |  |
| $\mathbf{P}_{i,h}$                 | 0.7879 |  |  |  |
|                                    |        |  |  |  |
| P' <sub>s,t</sub>                  | 0.2724 |  |  |  |
| P' <sub>C',s</sub>                 | 0.5750 |  |  |  |
| P' <sub>d,C'</sub>                 | 0.2524 |  |  |  |
| P' <sub>e,d</sub>                  | 0.2361 |  |  |  |
| P' <sub>g,F'</sub>                 | 0.4869 |  |  |  |
| P' <sub>i,h</sub>                  | 0.7807 |  |  |  |

| ) |     |   |
|---|-----|---|
| ) |     | Δ |
| ) |     |   |
|   |     | ( |
|   |     | 0 |
|   |     | 0 |
|   |     | T |
|   |     | T |
|   |     | T |
|   |     | λ |
|   |     | λ |
|   | 1 1 |   |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |  |
|---------------------------------------------------------------------|---------|--|--|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | -0.0034 |  |  |  |
| ΔP <sub>C,s</sub>                                                   | -0.0013 |  |  |  |
| Δ <b>P</b> <sub>F,e</sub> -0.0001                                   |         |  |  |  |
| $\Delta P_{g,F}$                                                    | -0.0010 |  |  |  |
| Δ <b>P</b> <sub>i,g</sub> -0.0087                                   |         |  |  |  |

| Constants of Dispersion |               |  |  |  |
|-------------------------|---------------|--|--|--|
| Formula                 |               |  |  |  |
| <b>B</b> <sub>1</sub>   | 1.28834642    |  |  |  |
| <b>B</b> <sub>2</sub>   | 0.132817724   |  |  |  |
| <b>B</b> <sub>3</sub>   | 0.945395373   |  |  |  |
| <b>C</b> <sub>1</sub>   | 0.00779980626 |  |  |  |
| <b>C</b> <sub>2</sub>   | 0.0315631177  |  |  |  |
| <b>C</b> <sub>3</sub>   | 105.965875    |  |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 36/33 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 7.0   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                               | 7.9   |
| <b>T</b> <sub>g</sub> [°C]                                            | 581   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                           | 569   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 725   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.680 |
| λ [W/(m·K)]                                                           | 0.880 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 3.05  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 77    |
| μ                                                                     | 0.240 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 2.90  |
| HK <sub>0.1/20</sub>                                                  | 550   |
| HG                                                                    | 2     |
|                                                                       |       |
| В                                                                     | 0     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 0     |
| SR                                                                    | 1.2   |
| AR                                                                    | 1     |
| PR                                                                    | 1     |
|                                                                       |       |
|                                                                       |       |
|                                                                       | i     |

| Constants of Dispersion dn/dT                 |                           |  |  |  |
|-----------------------------------------------|---------------------------|--|--|--|
| <b>D</b> <sub>0</sub> 3.06 · 10 <sup>-6</sup> |                           |  |  |  |
| <b>D</b> <sub>1</sub> 1.44 · 10 <sup>-8</sup> |                           |  |  |  |
| $D_2$                                         | -2.23 · 10 <sup>-11</sup> |  |  |  |
| <b>E</b> <sub>0</sub>                         | 5.46 · 10 <sup>-7</sup>   |  |  |  |
| <b>E</b> <sub>1</sub>                         | 6.05 · 10 <sup>-10</sup>  |  |  |  |
| λ <sub>TK</sub> [μm]                          | 0.189                     |  |  |  |

| ΛΤΚ[μιτι]                                    | 0.109                                |     |                                                             |        |     |     |
|----------------------------------------------|--------------------------------------|-----|-------------------------------------------------------------|--------|-----|-----|
|                                              |                                      |     |                                                             |        |     |     |
| Temperature Coefficients of Refractive Index |                                      |     |                                                             |        |     |     |
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta$ n <sub>abs</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |        |     |     |
| [°C]                                         | 1060.0                               | e   | g                                                           | 1060.0 | е   | g   |
| -40/ -20                                     | 3.0                                  | 3.7 | 4.4                                                         | 0.9    | 1.5 | 2.2 |
| +20/ +40                                     | 3.1                                  | 3.9 | 4.7                                                         | 1.8    | 2.6 | 3.3 |

5.0

Remarks

2.2

3.1

3.9

3.3

4.2

+60/ +80

### N-SK2 607567.355

**SCHOTT** 

 $n_d = 1.60738$   $v_d = 1.60994$   $v_e = 1.60994$ 

 $v_d$  = 56.65  $v_e$  = 56.37

 $n_F - n_C = 0.010722$  $n_{F'} - n_{C'} = 0.010821$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
|                            | λ [nm] |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.57881 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.58378 |  |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.58914 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.59490 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.59558 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.59847 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.60230 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.60414 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.60465 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.60513 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.60729 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.60738 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.60994 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.61486 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.61547 |  |  |  |
| n <sub>g</sub>             | 435.8  | 1.62073 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.62562 |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.63398 |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.64304 |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |
| <b>n</b> <sub>248.3</sub>  | 248.3  |         |  |  |  |

| Internal Transmittance $\tau_i$ |                       |                       |
|---------------------------------|-----------------------|-----------------------|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                            | 0.815                 | 0.600                 |
| 2325                            | 0.896                 | 0.760                 |
| 1970                            | 0.971                 | 0.930                 |
| 1530                            | 0.995                 | 0.988                 |
| 1060                            | 0.998                 | 0.995                 |
| 700                             | 0.998                 | 0.995                 |
| 660                             | 0.998                 | 0.994                 |
| 620                             | 0.998                 | 0.994                 |
| 580                             | 0.998                 | 0.995                 |
| 546                             | 0.998                 | 0.995                 |
| 500                             | 0.996                 | 0.990                 |
| 460                             | 0.993                 | 0.983                 |
| 436                             | 0.993                 | 0.982                 |
| 420                             | 0.994                 | 0.984                 |
| 405                             | 0.994                 | 0.985                 |
| 400                             | 0.994                 | 0.984                 |
| 390                             | 0.992                 | 0.979                 |
| 380                             | 0.988                 | 0.970                 |
| 370                             | 0.976                 | 0.940                 |
| 365                             | 0.967                 | 0.920                 |
| 350                             | 0.905                 | 0.780                 |
| 334                             | 0.752                 | 0.490                 |
| 320                             | 0.504                 | 0.180                 |
| 310                             | 0.276                 | 0.040                 |
| 300                             | 0.102                 |                       |
| 290                             | 0.020                 |                       |
| 280                             |                       |                       |
| 270                             |                       |                       |
| 260                             |                       |                       |
| 250                             |                       |                       |
|                                 |                       |                       |
|                                 |                       |                       |

| <b>Relative Partial Dispersion</b> |        |  |
|------------------------------------|--------|--|
| $\mathbf{P}_{s,t}$                 | 0.2690 |  |
| <b>P</b> <sub>C,s</sub>            | 0.5285 |  |
| $\mathbf{P}_{d,C}$                 | 0.3027 |  |
| $\mathbf{P}_{\mathrm{e,d}}$        | 0.2384 |  |
| $\mathbf{P}_{g,F}$                 | 0.5477 |  |
| $\mathbf{P}_{i,h}$                 | 0.7802 |  |
|                                    |        |  |
| P' <sub>s,t</sub>                  | 0.2666 |  |
| P' <sub>C',s</sub>                 | 0.5713 |  |
| P' <sub>d,C'</sub>                 | 0.2523 |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2362 |  |
| P' <sub>g,F'</sub>                 | 0.4860 |  |
| P' <sub>i,h</sub>                  | 0.7730 |  |

| Deviation of Relative Partial Dispersions ΔP |         |  |
|----------------------------------------------|---------|--|
| from the "Normal Line"                       |         |  |
| $\Delta P_{C,t}$                             | -0.0162 |  |
| Δ <b>P</b> <sub>C,s</sub>                    | -0.0064 |  |
| ΔP <sub>F,e</sub>                            | 0.0003  |  |
| $\Delta P_{g,F}$                             | -0.0008 |  |
| Δ <b>P</b> <sub>i,g</sub> -0.0130            |         |  |
| -                                            |         |  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 6.0   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                         | 7.1   |
| T <sub>g</sub> [°C]                                                   | 659   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 659   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                            | 823   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.595 |
| λ [W/(m·K)]                                                           | 0.776 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 3.55  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 78    |
| μ                                                                     | 0.263 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 2.31  |
| HK <sub>0.1/20</sub>                                                  | 550   |
| HG                                                                    | 2     |
|                                                                       |       |
| В                                                                     | 0     |
|                                                                       |       |
| CR                                                                    | 2     |
| FR                                                                    | 0     |
| SR                                                                    | 2.2   |
| AR                                                                    | 1     |
| PR                                                                    | 2.3   |
|                                                                       |       |
|                                                                       |       |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 1.28189012   |  |
| <b>B</b> <sub>2</sub>   | 0.257738258  |  |
| <b>B</b> <sub>3</sub>   | 0.96818604   |  |
| <b>C</b> <sub>1</sub>   | 0.0072719164 |  |
| <b>C</b> <sub>2</sub>   | 0.0242823527 |  |
| <b>C</b> <sub>3</sub>   | 110.377773   |  |

| Constants of Dispersion dn/dT |                          |  |
|-------------------------------|--------------------------|--|
| $\mathbf{D}_0$                | 3.80 · 10 <sup>-6</sup>  |  |
| <b>D</b> <sub>1</sub>         | 1.41 · 10 <sup>-8</sup>  |  |
| $D_2$                         | 2.28 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 6.44 · 10 <sup>-7</sup>  |  |
| E <sub>1</sub>                | 8.03 · 10 <sup>-11</sup> |  |
| λ <sub>TK</sub> [μm]          | 0.108                    |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 35/30 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |

| Temperature Coefficients of Refractive Index |                                            |     |                  |                                      |     |     |
|----------------------------------------------|--------------------------------------------|-----|------------------|--------------------------------------|-----|-----|
|                                              | Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K] |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |     |
| [°C]                                         | 1060.0                                     | e   | g                | 1060.0                               | e   | g   |
| -40/ -20                                     | 3.7                                        | 4.6 | 5.3              | 1.5                                  | 2.4 | 3.1 |
| +20/ +40                                     | 3.6                                        | 4.5 | 5.3              | 2.3                                  | 3.1 | 3.9 |
| +60/ +80                                     | 4.0                                        | 4.9 | 5.7              | 2.9                                  | 3.8 | 4.5 |

#### N-SK4 613586.354

Relative Partial Dispersion

n<sub>d</sub>= 1.61272  $v_{d}$  = 58.63 n<sub>e</sub>= 1.61521  $v_e = 58.37$ 

 $n_F - n_C = 0.010450$  $n_{F'}-n_{C'}=0.010541$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
| λ [nm]                     |        |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.58282 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.58835 |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.59422 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.60032 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.60102 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.60393 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.60774 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.60954 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.61005 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.61052 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.61262 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.61272 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.61521 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.61999 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.62059 |  |  |  |
| n <sub>g</sub>             | 435.8  | 1.62568 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.63042 |  |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |  |
| n <sub>334.1</sub>         | 334.1  |         |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal | Transmitt             | ance $	au_{	ext{i}}$  |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.686                 | 0.390                 |
| 2325     | 0.826                 | 0.620                 |
| 1970     | 0.959                 | 0.900                 |
| 1530     | 0.991                 | 0.977                 |
| 1060     | 0.997                 | 0.993                 |
| 700      | 0.998                 | 0.996                 |
| 660      | 0.998                 | 0.995                 |
| 620      | 0.998                 | 0.995                 |
| 580      | 0.998                 | 0.995                 |
| 546      | 0.998                 | 0.995                 |
| 500      | 0.997                 | 0.992                 |
| 460      | 0.994                 | 0.985                 |
| 436      | 0.993                 | 0.983                 |
| 420      | 0.993                 | 0.983                 |
| 405      | 0.992                 | 0.979                 |
| 400      | 0.990                 | 0.975                 |
| 390      | 0.984                 | 0.960                 |
| 380      | 0.971                 | 0.930                 |
| 370      | 0.946                 | 0.870                 |
| 365      | 0.928                 | 0.830                 |
| 350      | 0.821                 | 0.610                 |
| 334      | 0.525                 | 0.200                 |
| 320      | 0.102                 |                       |
| 310      |                       |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| 0.998 | 0.996 |
|-------|-------|
| 0.998 | 0.995 |
| 0.998 | 0.995 |
| 0.998 | 0.995 |
| 0.998 | 0.995 |
| 0.997 | 0.992 |
| 0.994 | 0.985 |
| 0.993 | 0.983 |
| 0.993 | 0.983 |
| 0.992 | 0.979 |
| 0.990 | 0.975 |
| 0.984 | 0.960 |
| 0.971 | 0.930 |
| 0.946 | 0.870 |
| 0.928 | 0.830 |
| 0.821 | 0.610 |
| 0.525 | 0.200 |
| 0.102 |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |

| $\mathbf{P}_{s,t}$          | 0.2792 |  |  |
|-----------------------------|--------|--|--|
| <b>P</b> <sub>C,s</sub>     | 0.5366 |  |  |
| $\mathbf{P}_{d,C}$          | 0.3039 |  |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2384 |  |  |
| $\mathbf{P}_{g,F}$          | 0.5448 |  |  |
| $\mathbf{P}_{i,h}$          |        |  |  |
|                             |        |  |  |
| P' <sub>s,t</sub>           | 0.2768 |  |  |
| P' <sub>C',s</sub>          | 0.5799 |  |  |
| P' <sub>d,C'</sub>          | 0.2533 |  |  |
| P' <sub>e,d</sub>           | 0.2364 |  |  |
| P' <sub>g,F'</sub>          | 0.4835 |  |  |
| P' <sub>i,h</sub>           |        |  |  |
| <u> </u>                    |        |  |  |
| Deviation of Relative       |        |  |  |

| Deviation of Relative Partial Dispersions ΔP |         |  |
|----------------------------------------------|---------|--|
| from the "Nor                                |         |  |
| Δ <b>P</b> <sub>C,t</sub>                    | -0.0073 |  |
| ΔP <sub>C,s</sub>                            | -0.0030 |  |
| Δ <b>P</b> <sub>F,e</sub>                    | 0.0001  |  |
| $\Delta P_{g,F}$                             | -0.0004 |  |
| $\Delta \mathbf{P}_{i,g}$                    |         |  |

| Other Properties                                                                                   |       |
|----------------------------------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                                       | 6.5   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                                            | 7.4   |
| T <sub>g</sub> [°C]                                                                                | 658   |
| T <sub>g</sub> [°C]<br>T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 646   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                                         | 769   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                                                    | 0.570 |
| λ [W/(m·K)]                                                                                        | 0.830 |
|                                                                                                    |       |
| ρ [g/cm <sup>3</sup> ]                                                                             | 3.54  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                                                      | 84    |
| μ                                                                                                  | 0.261 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                                                     | 1.92  |
| HK <sub>0.1/20</sub>                                                                               | 580   |
| HG                                                                                                 | 3     |
|                                                                                                    |       |
| В                                                                                                  | 1     |
|                                                                                                    |       |
| CR                                                                                                 | 3     |
| FR                                                                                                 | 1     |
| SR                                                                                                 | 51.2  |
| AR                                                                                                 | 2     |
| PR                                                                                                 | 2     |
|                                                                                                    |       |
|                                                                                                    |       |
|                                                                                                    |       |

| Constants of Dispersion |               |  |  |
|-------------------------|---------------|--|--|
| Formula                 | Formula       |  |  |
| <b>B</b> <sub>1</sub>   | 1.32993741    |  |  |
| <b>B</b> <sub>2</sub>   | 0.228542996   |  |  |
| <b>B</b> <sub>3</sub>   | 0.988465211   |  |  |
| <b>C</b> <sub>1</sub>   | 0.00716874107 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0246455892  |  |  |
| <b>C</b> <sub>3</sub>   | 100.886364    |  |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| <b>D</b> <sub>0</sub>         | 7.96 · 10 <sup>-7</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.30 · 10 <sup>-8</sup>   |  |
| $D_2$                         | -1.31 · 10 <sup>-11</sup> |  |
| E <sub>0</sub>                | 4.36 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 6.01 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.179                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 36/32 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |

| Temperature Coefficients of Refractive Index |                                      |     |     |                                      |     |     |
|----------------------------------------------|--------------------------------------|-----|-----|--------------------------------------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     |     |
| [°C]                                         | 1060.0                               | e   | g   | 1060.0                               | e   | g   |
| -40/ -20                                     | 2.0                                  | 2.6 | 3.1 | -0.1                                 | 0.4 | 0.9 |
| +20/ +40                                     | 2.1                                  | 2.8 | 3.4 | 0.7                                  | 1.4 | 2.0 |
| +60/ +80                                     | 2.3                                  | 3.0 | 3.7 | 1.2                                  | 1.9 | 2.6 |

#### N-SK5 589613.330

n<sub>d</sub>= 1.58913 n<sub>e</sub>= 1.59142

 $v_{d}$  = 61.27  $v_e$  = 61.02  $n_F - n_C = 0.009616$  $n_{F'}-n_{C'}=0.009692$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.55966 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.56539 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.57140 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.57747 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.57815 |  |  |
| n <sub>s</sub>             | 852.1  | 1.58094 |  |  |
| n <sub>r</sub>             | 706.5  | 1.58451 |  |  |
| n <sub>C</sub>             | 656.3  | 1.58619 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.58666 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.58710 |  |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.58904 |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.58913 |  |  |
| n <sub>e</sub>             | 546.1  | 1.59142 |  |  |
| n <sub>F</sub>             | 486.1  | 1.59581 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.59635 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.60100 |  |  |
| <b>n</b> <sub>h</sub>      | 404.7  | 1.60530 |  |  |
| n <sub>i</sub>             | 365.0  | 1.61260 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.62043 |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  | 1.62759 |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal <sup>*</sup> | Transmittance τ <sub>i</sub> |                       |  |
|-----------------------|------------------------------|-----------------------|--|
| λ [nm]                | τ <sub>i</sub> (10mm)        | τ <sub>i</sub> (25mm) |  |
| 2500                  | 0.680                        | 0.380                 |  |
| 2325                  | 0.840                        | 0.640                 |  |
| 1970                  | 0.963                        | 0.910                 |  |
| 1530                  | 0.992                        | 0.980                 |  |
| 1060                  | 0.999                        | 0.997                 |  |
| 700                   | 0.998                        | 0.995                 |  |
| 660                   | 0.998                        | 0.994                 |  |
| 620                   | 0.997                        | 0.993                 |  |
| 580                   | 0.998                        | 0.995                 |  |
| 546                   | 0.998                        | 0.996                 |  |
| 500                   | 0.998                        | 0.994                 |  |
| 460                   | 0.996                        | 0.989                 |  |
| 436                   | 0.995                        | 0.987                 |  |
| 420                   | 0.994                        | 0.986                 |  |
| 405                   | 0.993                        | 0.983                 |  |
| 400                   | 0.992                        | 0.981                 |  |
| 390                   | 0.988                        | 0.971                 |  |
| 380                   | 0.984                        | 0.960                 |  |
| 370                   | 0.976                        | 0.940                 |  |
| 365                   | 0.971                        | 0.930                 |  |
| 350                   | 0.920                        | 0.820                 |  |
| 334                   | 0.800                        | 0.580                 |  |
| 320                   | 0.590                        | 0.270                 |  |
| 310                   | 0.400                        | 0.100                 |  |
| 300                   | 0.210                        | 0.020                 |  |
| 290                   | 0.090                        |                       |  |
| 280                   | 0.030                        |                       |  |
| 270                   |                              |                       |  |
| 260                   |                              |                       |  |
| 250                   |                              |                       |  |
|                       |                              |                       |  |
|                       |                              |                       |  |

| 0.998 | 0.994 |  |
|-------|-------|--|
| 0.996 | 0.989 |  |
| 0.995 | 0.987 |  |
| 0.994 | 0.986 |  |
| 0.993 | 0.983 |  |
| 0.992 | 0.981 |  |
| 0.988 | 0.971 |  |
| 0.984 | 0.960 |  |
| 0.976 | 0.940 |  |
| 0.971 | 0.930 |  |
| 0.920 | 0.820 |  |
| 0.800 | 0.580 |  |
| 0.590 | 0.270 |  |
| 0.400 | 0.100 |  |
| 0.210 | 0.020 |  |
| 0.090 |       |  |
| 0.030 |       |  |
|       |       |  |
|       |       |  |
|       |       |  |
|       |       |  |
|       |       |  |

| <b>Relative Partial Dispersion</b> |             |  |
|------------------------------------|-------------|--|
| <b>P</b> <sub>s,t</sub>            | 0.2904      |  |
| P <sub>C,s</sub>                   | 0.5460      |  |
| $\mathbf{P}_{d,C}$                 | 0.3055      |  |
| $\mathbf{P}_{e,d}$                 | 0.2386      |  |
| $\mathbf{P}_{g,F}$                 | 0.5400      |  |
| $\mathbf{P}_{i,h}$                 | 0.7591      |  |
|                                    |             |  |
| P' <sub>s,t</sub>                  | 0.2881      |  |
| P' <sub>C',s</sub>                 | 0.5901      |  |
| P' <sub>d,C'</sub>                 | 0.2547      |  |
| P' <sub>e,d</sub>                  | 0.2367      |  |
| P' <sub>g,F'</sub>                 | 0.4796      |  |
| P' <sub>i,h</sub>                  | 0.7531      |  |
|                                    | · · · · · · |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | 0.0008  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0003  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0002 |  |
| $\Delta P_{g,F}$                                                    | -0.0007 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0045 |  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 5.5   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                         | 6.5   |
| T <sub>g</sub> [°C]                                                   | 660   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 657   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                            | 791   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.560 |
| λ [W/(m·K)]                                                           | 0.990 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 3.30  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 84    |
| μ                                                                     | 0.256 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 2.16  |
| HK <sub>0.1/20</sub>                                                  | 590   |
| HG                                                                    | 3     |
|                                                                       |       |
| В                                                                     | 1     |
|                                                                       |       |
| CR                                                                    | 3     |
| FR                                                                    | 1     |
| SR                                                                    | 4.4   |
| AR                                                                    | 2     |
| PR                                                                    | 1.3   |
|                                                                       |       |
|                                                                       |       |
|                                                                       |       |

| Formula         B <sub>1</sub> 0.991463823         B <sub>2</sub> 0.495982121         B <sub>3</sub> 0.987393925         C <sub>4</sub> 0.00522730467 | Constants of Dispersion |               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|--|
| B2     0.495982121       B3     0.987393925                                                                                                           | Formula                 |               |  |
| <b>B</b> <sub>3</sub> 0.987393925                                                                                                                     | <b>B</b> <sub>1</sub>   | 0.991463823   |  |
| -3                                                                                                                                                    | <b>B</b> <sub>2</sub>   | 0.495982121   |  |
| C. 0.00522730467                                                                                                                                      | <b>B</b> <sub>3</sub>   | 0.987393925   |  |
| 0.00022700107                                                                                                                                         | <b>C</b> <sub>1</sub>   | 0.00522730467 |  |
| <b>C</b> <sub>2</sub> 0.0172733646                                                                                                                    | <b>C</b> <sub>2</sub>   | 0.0172733646  |  |
| <b>C</b> <sub>3</sub> 98.3594579                                                                                                                      | <b>C</b> <sub>3</sub>   | 98.3594579    |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | 3.50 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.22 · 10 <sup>-8</sup>   |  |
| D <sub>2</sub>          | 6.38 · 10 <sup>-11</sup>  |  |
| <b>E</b> <sub>0</sub>   | 2.46 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | -3.34 · 10 <sup>-11</sup> |  |
| λ <sub>TK</sub> [μm]    | 0.278                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 34/29 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

## Remarks

| Temper                                                      | Temperature Coefficients of Refractive Index |                                      |     |        |     |     |
|-------------------------------------------------------------|----------------------------------------------|--------------------------------------|-----|--------|-----|-----|
| $\Delta$ n <sub>rel</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |                                              | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     | ]      |     |     |
| [°C]                                                        | 1060.0                                       | Φ                                    | g   | 1060.0 | е   | g   |
| -40/ -20                                                    | 3.5                                          | 4.0                                  | 4.6 | 1.4    | 1.9 | 2.4 |
| +20/ +40                                                    | 3.2                                          | 3.7                                  | 4.3 | 1.9    | 2.3 | 2.9 |
| +60/ +80                                                    | 3.6                                          | 4.1                                  | 4.7 | 2.6    | 3.0 | 3.6 |

#### **N-SK11** 564608.308

n<sub>d</sub>= 1.56384  $v_{d}$  = 60.80 n<sub>e</sub>= 1.56605

 $v_{e}$  = 60.55

 $n_F - n_C = 0.009274$  $n_{F'}-n_{C'}=0.009349$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.53598 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.54131 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.54693 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.55266 |  |
| n <sub>t</sub>             | 1014.0 | 1.55330 |  |
| n <sub>s</sub>             | 852.1  | 1.55597 |  |
| n <sub>r</sub>             | 706.5  | 1.55939 |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.56101 |  |
| n <sub>C'</sub>            | 643.8  | 1.56146 |  |
| n <sub>632.8</sub>         | 632.8  | 1.56188 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.56376 |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.56384 |  |
| n <sub>e</sub>             | 546.1  | 1.56605 |  |
| n <sub>F</sub>             | 486.1  | 1.57028 |  |
| n <sub>F'</sub>            | 480.0  | 1.57081 |  |
| n <sub>g</sub>             | 435.8  | 1.57530 |  |
| n <sub>h</sub>             | 404.7  | 1.57946 |  |
| n <sub>i</sub>             | 365.0  | 1.58653 |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.59414 |  |
| n <sub>312.6</sub>         | 312.6  | 1.60110 |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal <sup>*</sup> | Transmitta            | anceτ <sub>i</sub>    |
|-----------------------|-----------------------|-----------------------|
| λ [nm]                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                  | 0.782                 | 0.540                 |
| 2325                  | 0.882                 | 0.730                 |
| 1970                  | 0.967                 | 0.920                 |
| 1530                  | 0.994                 | 0.984                 |
| 1060                  | 0.998                 | 0.995                 |
| 700                   | 0.998                 | 0.996                 |
| 660                   | 0.998                 | 0.995                 |
| 620                   | 0.998                 | 0.995                 |
| 580                   | 0.998                 | 0.996                 |
| 546                   | 0.999                 | 0.997                 |
| 500                   | 0.998                 | 0.994                 |
| 460                   | 0.996                 | 0.990                 |
| 436                   | 0.995                 | 0.988                 |
| 420                   | 0.994                 | 0.985                 |
| 405                   | 0.992                 | 0.980                 |
| 400                   | 0.990                 | 0.975                 |
| 390                   | 0.988                 | 0.970                 |
| 380                   | 0.985                 | 0.963                 |
| 370                   | 0.980                 | 0.950                 |
| 365                   | 0.976                 | 0.940                 |
| 350                   | 0.950                 | 0.880                 |
| 334                   | 0.872                 | 0.710                 |
| 320                   | 0.700                 | 0.410                 |
| 310                   | 0.480                 | 0.160                 |
| 300                   | 0.212                 | 0.020                 |
| 290                   | 0.058                 |                       |
| 280                   |                       |                       |
| 270                   |                       |                       |
| 260                   |                       |                       |
| 250                   |                       |                       |
|                       |                       |                       |
| , i                   |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{\mathrm{s,t}}$ | 0.2874 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5436 |  |
| $\mathbf{P}_{d,C}$          | 0.3051 |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2385 |  |
| $\mathbf{P}_{g,F}$          | 0.5411 |  |
| $\mathbf{P}_{i,h}$          | 0.7626 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2850 |  |
| P' <sub>C',s</sub>          | 0.5875 |  |
| P' <sub>d,C'</sub>          | 0.2544 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2366 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4805 |  |
| P' <sub>i,h</sub>           | 0.7564 |  |

| <b>n</b> <sub>248.3</sub> | 248.3       |        |     | 320 | 0 | .700 | 0.4 |
|---------------------------|-------------|--------|-----|-----|---|------|-----|
|                           |             |        |     | 310 | 0 | .480 | 0.  |
| Constan                   | ts of Disp  | ersion |     | 300 | 0 | .212 | 0.0 |
| Formula                   |             |        |     | 290 | 0 | .058 |     |
| <b>B</b> <sub>1</sub>     | 1.17963631  |        | 280 |     |   |      |     |
| <b>B</b> <sub>2</sub>     | 0.229817295 |        |     | 270 |   |      |     |
| <b>B</b> <sub>3</sub>     | 0.9357896   | 52     |     | 260 |   |      |     |
| <b>C</b> <sub>1</sub>     | 0.00680282  | 2081   |     | 250 |   |      |     |
| <b>C</b> <sub>2</sub>     | 0.02197372  | 205    |     |     |   |      |     |
| <b>C</b> <sub>3</sub>     | 101.513232  | 2      |     |     |   |      |     |

| Deviation of Relative Partial Dispersions ΔP        |                    |  |
|-----------------------------------------------------|--------------------|--|
| from the "No                                        |                    |  |
| $\Delta \mathbf{P}_{C,t}$ $\Delta \mathbf{P}_{C,s}$ | -0.0024<br>-0.0011 |  |
| ΔP <sub>C,s</sub>                                   | 0.0000             |  |
| $\Delta \mathbf{P}_{g,F}$                           | -0.0004            |  |
| $\Delta P_{i,q}$                                    | -0.0037            |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| 0.11.11.01.1                  |                           |  |
| $\mathbf{D}_0$                | 2.14 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.27 · 10 <sup>-8</sup>   |  |
| <b>D</b> <sub>2</sub>         | -7.21 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 3.51 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 5.41 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.238                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 34/29 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |

| <b>Other Properties</b>                                                  | •     |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 6.5   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 7.6   |
| T <sub>a</sub> [°C]                                                      | 610   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 601   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 760   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                           |       |
| $\lambda$ [W/(m·K)]                                                      |       |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 3.08  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 79    |
| μ                                                                        | 0.239 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 2.45  |
| HK <sub>0.1/20</sub>                                                     | 570   |
| HG                                                                       | 2     |
|                                                                          |       |
| В                                                                        | 1     |
|                                                                          |       |
| CR                                                                       | 2     |
| FR                                                                       | 0     |
| SR                                                                       | 2     |
| AR                                                                       | 1     |
| PR                                                                       | 2.3   |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |

| Temperature Coefficients of Refractive Index |                   |                          |     |                  |                                      |     |
|----------------------------------------------|-------------------|--------------------------|-----|------------------|--------------------------------------|-----|
|                                              | Δn <sub>rel</sub> | /ΔT[10 <sup>-6</sup> /K] |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]                                         | 1060.0            | e                        | g   | 1060.0           | е                                    | g   |
| -40/ -20                                     | 2.4               | 2.8                      | 3.4 | 0.3              | 0.7                                  | 1.2 |
| +20/ +40                                     | 2.6               | 3.2                      | 3.8 | 1.2              | 1.8                                  | 2.4 |
| +60/ +80                                     | 2.5               | 3.2                      | 3.9 | 1.5              | 2.1                                  | 2.8 |

### **N-SK14** 603606.344

 $n_d = 1.60311$  $v_{d}$  = 60.60  $n_e = 1.60548$ 

Internal Transmittanceτ<sub>i</sub>

 $v_{e}$  = 60.34

 $n_F - n_C = 0.009953$  $n_{F'}-n_{C'}=0.010034$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.57336 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.57903 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.58502 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.59113 |  |
| n <sub>t</sub>             | 1014.0 | 1.59182 |  |
| n <sub>s</sub>             | 852.1  | 1.59467 |  |
| n <sub>r</sub>             | 706.5  | 1.59834 |  |
| n <sub>C</sub>             | 656.3  | 1.60008 |  |
| n <sub>C'</sub>            | 643.8  | 1.60056 |  |
| n <sub>632.8</sub>         | 632.8  | 1.60101 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.60302 |  |
| n <sub>d</sub>             | 587.6  | 1.60311 |  |
| n <sub>e</sub>             | 546.1  | 1.60548 |  |
| n <sub>F</sub>             | 486.1  | 1.61003 |  |
| n <sub>F</sub>             | 480.0  | 1.61059 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.61542 |  |
| n <sub>h</sub>             | 404.7  | 1.61988 |  |
| n <sub>i</sub>             | 365.0  | 1.62748 |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.63564 |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| λ [nm] | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
|--------|-----------------------|-----------------------|
| 2500   | 0.679                 | 0.380                 |
| 2325   | 0.831                 | 0.630                 |
| 1970   | 0.959                 | 0.900                 |
| 1530   | 0.992                 | 0.980                 |
| 1060   | 0.998                 | 0.994                 |
| 700    | 0.998                 | 0.995                 |
| 660    | 0.998                 | 0.995                 |
| 620    | 0.998                 | 0.995                 |
| 580    | 0.998                 | 0.995                 |
| 546    | 0.998                 | 0.995                 |
| 500    | 0.997                 | 0.993                 |
| 460    | 0.995                 | 0.988                 |
| 436    | 0.994                 | 0.985                 |
| 420    | 0.993                 | 0.983                 |
| 405    | 0.991                 | 0.978                 |
| 400    | 0.990                 | 0.975                 |
| 390    | 0.988                 | 0.970                 |
| 380    | 0.981                 | 0.952                 |
| 370    | 0.971                 | 0.930                 |
| 365    | 0.963                 | 0.910                 |
| 350    | 0.910                 | 0.790                 |
| 334    | 0.770                 | 0.520                 |
| 320    | 0.546                 | 0.220                 |
| 310    | 0.345                 | 0.070                 |
| 300    | 0.160                 |                       |
| 290    | 0.040                 |                       |
| 280    |                       |                       |
| 270    |                       |                       |
| 260    |                       |                       |
| 250    |                       |                       |
|        |                       |                       |
| 1      |                       |                       |

| Relative Partial Dispersion |                                       |  |
|-----------------------------|---------------------------------------|--|
| P <sub>s,t</sub>            | 0.2864                                |  |
| P <sub>C,s</sub>            | 0.5427                                |  |
| P <sub>d,C</sub>            | 0.3049                                |  |
| P <sub>e,d</sub>            | 0.2385                                |  |
| $\mathbf{P}_{g,F}$          | 0.5415                                |  |
| $\mathbf{P}_{i,h}$          | 0.7631                                |  |
|                             |                                       |  |
| P' <sub>s,t</sub>           | 0.2841                                |  |
| P' <sub>C',s</sub>          | 0.5865                                |  |
| P' <sub>d,C'</sub>          | 0.2542                                |  |
| P' <sub>e,d</sub>           | 0.2366                                |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4808                                |  |
| P' <sub>i,h</sub>           | 0.7569                                |  |
|                             | · · · · · · · · · · · · · · · · · · · |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | -0.0033 |  |
| ΔP <sub>C,s</sub>                                                   | -0.0015 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0000  |  |
| $\Delta P_{g,F}$                                                    | -0.0003 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0044 |  |

| Other Properties                                                         |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 6.0   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                  | 7.3   |
| T <sub>a</sub> [°C]                                                      | 649   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                              | 638   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 773   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                          | 0.636 |
| λ [W/(m·K)]                                                              | 0.851 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 3.44  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 86    |
| μ                                                                        | 0.261 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 2.00  |
| HK <sub>0.1/20</sub>                                                     | 600   |
| HG                                                                       | 3     |
|                                                                          |       |
| В                                                                        | 1     |
|                                                                          |       |
| CR                                                                       | 4     |
| FR                                                                       | 2     |
| SR                                                                       | 51.3  |
| AR                                                                       | 2     |
| PR                                                                       | 2.3   |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 0.936155374   |  |
| <b>B</b> <sub>2</sub>   | 0.594052018   |  |
| <b>B</b> <sub>3</sub>   | 1.04374583    |  |
| <b>C</b> <sub>1</sub>   | 0.00461716525 |  |
| C <sub>2</sub>          | 0.016885927   |  |
| C <sub>3</sub>          | 103.736265    |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| $\mathbf{D}_0$          | 1.58 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.22 · 10 <sup>-8</sup>   |  |
| <b>D</b> <sub>2</sub>   | -8.04 · 10 <sup>-12</sup> |  |
| <b>E</b> <sub>0</sub>   | 4.46 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 5.22 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.15                      |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 35/29 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                               | Φ   | g                                    | 1060.0 | e   | g   |
| -40/ -20                                     | 2.5                                  | 3.0 | 3.5                                  | 0.3    | 0.8 | 1.3 |
| +20/ +40                                     | 2.4                                  | 3.1 | 3.7                                  | 1.1    | 1.7 | 2.3 |
| +60/ +80                                     | 2.6                                  | 3.3 | 4.0                                  | 1.5    | 2.2 | 2.8 |

#### **N-SK16** 620603.358

n<sub>d</sub>= 1.62041  $v_{d}$  = 60.32 n<sub>e</sub>= 1.62286  $v_e$  = 60.08  $n_F - n_C = 0.010285$  $n_{F'}-n_{C'}=0.010368$ 

| Refractive Indices         |        |         |
|----------------------------|--------|---------|
|                            | λ [nm] |         |
| n <sub>2325.4</sub>        | 2325.4 | 1.58919 |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.59523 |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.60157 |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.60799 |
| n <sub>t</sub>             | 1014.0 | 1.60871 |
| n <sub>s</sub>             | 852.1  | 1.61167 |
| n <sub>r</sub>             | 706.5  | 1.61548 |
| n <sub>C</sub>             | 656.3  | 1.61727 |
| n <sub>C'</sub>            | 643.8  | 1.61777 |
| n <sub>632.8</sub>         | 632.8  | 1.61824 |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.62032 |
| n <sub>d</sub>             | 587.6  | 1.62041 |
| n <sub>e</sub>             | 546.1  | 1.62286 |
| n <sub>F</sub>             | 486.1  | 1.62756 |
| n <sub>F'</sub>            | 480.0  | 1.62814 |
| n <sub>g</sub>             | 435.8  | 1.63312 |
| n <sub>h</sub>             | 404.7  | 1.63773 |
| n <sub>i</sub>             | 365.0  | 1.64559 |
| n <sub>334.1</sub>         | 334.1  | 1.65403 |
| n <sub>312.6</sub>         | 312.6  | 1.66178 |
| n <sub>296.7</sub>         | 296.7  |         |
| n <sub>280.4</sub>         | 280.4  |         |
| n <sub>248.3</sub>         | 248.3  |         |

| Internal Transmittance $\tau_i$ |                       |                       |
|---------------------------------|-----------------------|-----------------------|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                            | 0.583                 | 0.260                 |
| 2325                            | 0.782                 | 0.540                 |
| 1970                            | 0.950                 | 0.880                 |
| 1530                            | 0.989                 | 0.973                 |
| 1060                            | 0.998                 | 0.995                 |
| 700                             | 0.998                 | 0.996                 |
| 660                             | 0.998                 | 0.994                 |
| 620                             | 0.997                 | 0.993                 |
| 580                             | 0.998                 | 0.994                 |
| 546                             | 0.998                 | 0.994                 |
| 500                             | 0.996                 | 0.991                 |
| 460                             | 0.994                 | 0.984                 |
| 436                             | 0.992                 | 0.981                 |
| 420                             | 0.992                 | 0.979                 |
| 405                             | 0.990                 | 0.974                 |
| 400                             | 0.988                 | 0.970                 |
| 390                             | 0.982                 | 0.956                 |
| 380                             | 0.971                 | 0.930                 |
| 370                             | 0.954                 | 0.890                 |
| 365                             | 0.941                 | 0.860                 |
| 350                             | 0.867                 | 0.700                 |
| 334                             | 0.693                 | 0.400                 |
| 320                             | 0.414                 | 0.110                 |
| 310                             | 0.209                 | 0.020                 |
| 300                             | 0.063                 |                       |
| 290                             | 0.010                 |                       |
| 280                             |                       |                       |
| 270                             |                       |                       |
| 260                             |                       |                       |
| 250                             |                       |                       |
|                                 |                       |                       |
| , i                             |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{s,t}$          | 0.2885 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5443 |  |
| $\mathbf{P}_{d,C}$          | 0.3051 |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2385 |  |
| $\mathbf{P}_{g,F}$          | 0.5412 |  |
| $\mathbf{P}_{i,h}$          | 0.7633 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2861 |  |
| P' <sub>C',s</sub>          | 0.5882 |  |
| P' <sub>d,C'</sub>          | 0.2544 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2366 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4805 |  |
| P' <sub>i,h</sub>           | 0.7572 |  |

| Constants of Dispersion Formula |               |  |
|---------------------------------|---------------|--|
| B <sub>1</sub>                  | 1.34317774    |  |
| <b>B</b> <sub>2</sub>           | 0.241144399   |  |
| <b>B</b> <sub>3</sub>           | 0.994317969   |  |
| <b>C</b> <sub>1</sub>           | 0.00704687339 |  |
| <b>C</b> <sub>2</sub>           | 0.0229005     |  |
| <b>C</b> <sub>3</sub>           | 92.7508526    |  |

| 350 | 0.867 | 0.700 |
|-----|-------|-------|
| 334 | 0.693 | 0.400 |
| 320 | 0.414 | 0.110 |
| 310 | 0.209 | 0.020 |
| 300 | 0.063 |       |
| 290 | 0.010 |       |
| 280 |       |       |
| 270 |       |       |
| 260 |       |       |
| 250 |       |       |
|     |       |       |
|     |       |       |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| ΔP <sub>C,t</sub>                                                   | 0.0016  |  |
| $\Delta \mathbf{P}_{\mathrm{C,s}}$                                  | 0.0007  |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | -0.0003 |  |
| $\Delta \mathbf{P}_{g,F}$                                           | -0.0011 |  |
| ΔP <sub>i,g</sub>                                                   | -0.0067 |  |

| Constants of Dispersion   |  |  |
|---------------------------|--|--|
| dn/dT                     |  |  |
| -2.37 · 10 <sup>-8</sup>  |  |  |
| 1.32 · 10 <sup>-8</sup>   |  |  |
| -1.29 · 10 <sup>-11</sup> |  |  |
| 4.09 · 10 <sup>-7</sup>   |  |  |
| 5.17 · 10 <sup>-10</sup>  |  |  |
| 0.17                      |  |  |
|                           |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 36/30 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |

| Other Properties                                                         |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 6.3   |
| g [10 <sup>-6</sup> /K]                                                  | 7.3   |
| T <sub>g</sub> [°C]                                                      | 636   |
| T <sub>g</sub> [°C] T <sub>10</sub> <sup>13.0</sup> [°C]                 | 633   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 750   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                          | 0.578 |
| λ [W/(m·K)]                                                              | 0.818 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 3.58  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 89    |
| μ                                                                        | 0.264 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 1.90  |
| HK <sub>0.1/20</sub>                                                     | 600   |
| HG                                                                       | 4     |
|                                                                          |       |
| В                                                                        | 1     |
|                                                                          |       |
| CR                                                                       | 4     |
| FR                                                                       | 4     |
| SR                                                                       | 53.3  |
| AR                                                                       | 3.3   |
| PR                                                                       | 3.2   |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |

| Temperature Coefficients of Refractive Index |                                      |     |     |                                      |      |     |
|----------------------------------------------|--------------------------------------|-----|-----|--------------------------------------|------|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |      |     |
| [°C]                                         | 1060.0                               | e   | g   | 1060.0                               | е    | g   |
| -40/ -20                                     | 1.6                                  | 2.2 | 2.6 | -0.5                                 | -0.1 | 0.4 |
| +20/ +40                                     | 1.7                                  | 2.3 | 2.9 | 0.3                                  | 0.9  | 1.4 |
| +60/ +80                                     | 1.9                                  | 2.6 | 3.2 | 0.8                                  | 1.5  | 2.1 |

#### P-SK57 587596.301

**SCHOTT** 

 $n_d$ = 1.58700  $v_d$  $n_e$ = 1.58935  $v_e$ 

 $v_d = 59.60$  $v_e = 59.36$   $n_F - n_C = 0.009849$  $n_{F'} - n_{C'} = 0.009928$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
|                            |        |         |  |  |  |
|                            | λ [nm] |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.55688 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.56271 |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.56885 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.57507 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.57576 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.57862 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.58227 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.58399 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.58447 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.58492 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.58691 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.58700 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.58935 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.59384 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.59440 |  |  |  |
| n <sub>g</sub>             | 435.8  | 1.59917 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.60359 |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.61112 |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.61923 |  |  |  |
| n <sub>312.6</sub>         | 312.6  | 1.62669 |  |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal Transmittance τ <sub>i</sub> |                       |                       |  |  |
|---------------------------------------|-----------------------|-----------------------|--|--|
| λ [nm]                                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |  |
| 2500                                  | 0.693                 | 0.400                 |  |  |
| 2325                                  | 0.831                 | 0.630                 |  |  |
| 1970                                  | 0.954                 | 0.890                 |  |  |
| 1530                                  | 0.991                 | 0.978                 |  |  |
| 1060                                  | 0.999                 | 0.997                 |  |  |
| 700                                   | 0.999                 | 0.997                 |  |  |
| 660                                   | 0.999                 | 0.997                 |  |  |
| 620                                   | 0.999                 | 0.997                 |  |  |
| 580                                   | 0.999                 | 0.997                 |  |  |
| 546                                   | 0.999                 | 0.997                 |  |  |
| 500                                   | 0.998                 | 0.995                 |  |  |
| 460                                   | 0.996                 | 0.991                 |  |  |
| 436                                   | 0.996                 | 0.989                 |  |  |
| 420                                   | 0.995                 | 0.987                 |  |  |
| 405                                   | 0.994                 | 0.985                 |  |  |
| 400                                   | 0.994                 | 0.984                 |  |  |
| 390                                   | 0.992                 | 0.980                 |  |  |
| 380                                   | 0.989                 | 0.973                 |  |  |
| 370                                   | 0.984                 | 0.960                 |  |  |
| 365                                   | 0.980                 | 0.950                 |  |  |
| 350                                   | 0.946                 | 0.870                 |  |  |
| 334                                   | 0.821                 | 0.610                 |  |  |
| 320                                   | 0.480                 | 0.160                 |  |  |
| 310                                   | 0.123                 |                       |  |  |
| 300                                   |                       |                       |  |  |
| 290                                   |                       |                       |  |  |
| 280                                   |                       |                       |  |  |
| 270                                   |                       |                       |  |  |
| 260                                   |                       |                       |  |  |
| 250                                   |                       |                       |  |  |
|                                       |                       |                       |  |  |
|                                       |                       |                       |  |  |

| <b>Relative Partial Dispersion</b> |        |  |  |  |
|------------------------------------|--------|--|--|--|
| P <sub>s,t</sub>                   | 0.2902 |  |  |  |
| P <sub>C,s</sub>                   | 0.5454 |  |  |  |
| $\mathbf{P}_{d,C}$                 | 0.3053 |  |  |  |
| $\mathbf{P}_{\mathrm{e,d}}$        | 0.2385 |  |  |  |
| $\mathbf{P}_{g,F}$                 | 0.5412 |  |  |  |
| $\mathbf{P}_{i,h}$                 | 0.7644 |  |  |  |
|                                    |        |  |  |  |
| P' <sub>s,t</sub>                  | 0.2878 |  |  |  |
| P' <sub>C',s</sub>                 | 0.5894 |  |  |  |
| P' <sub>d,C'</sub>                 | 0.2545 |  |  |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2366 |  |  |  |
| <b>P'</b> <sub>g,F'</sub>          | 0.4806 |  |  |  |
| P' <sub>i,h</sub>                  | 0.7583 |  |  |  |
| ·                                  |        |  |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |
|---------------------------------------------------------------------|---------|--|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0079  |  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0036  |  |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | -0.0008 |  |  |
| $\Delta \mathbf{P}_{g,F}$                                           | -0.0024 |  |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0115 |  |  |
|                                                                     |         |  |  |

| Other Properties                                                          |       |  |  |
|---------------------------------------------------------------------------|-------|--|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 7.2   |  |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 8.9   |  |  |
| T <sub>a</sub> [°C]                                                       | 493   |  |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                      | 494   |  |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 593   |  |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.760 |  |  |
| λ [W/(m·K)]                                                               | 1.010 |  |  |
| AT [°C]                                                                   | 522   |  |  |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.01  |  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 93    |  |  |
| μ                                                                         | 0.249 |  |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.17  |  |  |
| HK <sub>0.1/20</sub>                                                      | 535   |  |  |
| HG                                                                        | 3     |  |  |
| HG-J                                                                      | 124   |  |  |
| В                                                                         | 1     |  |  |
|                                                                           |       |  |  |
| CR                                                                        | 4     |  |  |
| FR                                                                        | 3     |  |  |
| SR                                                                        | 52.3  |  |  |
| AR                                                                        | 2     |  |  |
| PR                                                                        | 3     |  |  |
| SR-J                                                                      | 4     |  |  |
| WR-J                                                                      | 1     |  |  |
| 1                                                                         | 1     |  |  |

| Constants of Dispersion Formula |               |  |  |
|---------------------------------|---------------|--|--|
| <b>B</b> <sub>1</sub>           | 1.31053414    |  |  |
| <b>B</b> <sub>2</sub>           | 0.169376189   |  |  |
| <b>B</b> <sub>3</sub>           | 1.10987714    |  |  |
| <b>C</b> <sub>1</sub>           | 0.00740877235 |  |  |
| C <sub>2</sub>                  | 0.0254563489  |  |  |
| C <sub>3</sub>                  | 107.751087    |  |  |

| Constants of Dispersion |                           |  |  |  |
|-------------------------|---------------------------|--|--|--|
| dn/dT                   |                           |  |  |  |
| $\mathbf{D}_0$          | 2.60 · 10 <sup>-6</sup>   |  |  |  |
| <b>D</b> <sub>1</sub>   | 9.40 · 10 <sup>-9</sup>   |  |  |  |
| $D_2$                   | -2.30 · 10 <sup>-11</sup> |  |  |  |
| <b>E</b> <sub>0</sub>   | 4.90 · 10 <sup>-7</sup>   |  |  |  |
| <b>E</b> <sub>1</sub>   | 5.96 · 10 <sup>-10</sup>  |  |  |  |
| λ <sub>TK</sub> [μm]    | 0.178                     |  |  |  |

| Color Code                   |       |  |  |
|------------------------------|-------|--|--|
| $\lambda_{80}/\lambda_{5}$   | 34/31 |  |  |
| $(*=\lambda_{70}/\lambda_5)$ |       |  |  |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |     |     |
| [°C]                                         | 1060.0                               | e   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 3.0                                  | 3.7 | 4.2                                  | 0.9    | 1.5 | 2.0 |
| +20/ +40                                     | 2.9                                  | 3.6 | 4.3                                  | 1.5    | 2.2 | 2.9 |
| +60/ +80                                     | 2.9                                  | 3.7 | 4.4                                  | 1.8    | 2.6 | 3.3 |

#### P-SK58A 589612.297



n<sub>d</sub>= 1.58913  $v_{d}$  = 61.15 n<sub>e</sub>= 1.59143

 $v_e = 60.93$ 

 $n_F - n_C = 0.009634$  $n_{F'}-n_{C'}=0.009707$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
| λ [nm]                     |        |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.55820 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.56439 |  |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.57086 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.57728 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.57799 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.58086 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.58449 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.58618 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.58665 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.58709 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.58904 |  |  |  |
| <b>n</b> <sub>d</sub>      | 587.6  | 1.58913 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.59143 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.59581 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.59636 |  |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.60100 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.60530 |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.61260 |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.62045 |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal Transmittance $\tau_i$ |                       |                       |
|---------------------------------|-----------------------|-----------------------|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                            | 0.546                 | 0.220                 |
| 2325                            | 0.746                 | 0.480                 |
| 1970                            | 0.924                 | 0.820                 |
| 1530                            | 0.984                 | 0.961                 |
| 1060                            | 0.996                 | 0.991                 |
| 700                             | 0.995                 | 0.988                 |
| 660                             | 0.995                 | 0.988                 |
| 620                             | 0.996                 | 0.989                 |
| 580                             | 0.997                 | 0.992                 |
| 546                             | 0.998                 | 0.994                 |
| 500                             | 0.997                 | 0.993                 |
| 460                             | 0.996                 | 0.989                 |
| 436                             | 0.995                 | 0.987                 |
| 420                             | 0.994                 | 0.986                 |
| 405                             | 0.994                 | 0.985                 |
| 400                             | 0.994                 | 0.984                 |
| 390                             | 0.991                 | 0.977                 |
| 380                             | 0.986                 | 0.965                 |
| 370                             | 0.980                 | 0.950                 |
| 365                             | 0.971                 | 0.930                 |
| 350                             | 0.924                 | 0.820                 |
| 334                             | 0.752                 | 0.490                 |
| 320                             | 0.364                 | 0.080                 |
| 310                             | 0.067                 |                       |
| 300                             | 0.002                 |                       |
| 290                             |                       |                       |
| 280                             |                       |                       |
| 270                             |                       |                       |
| 260                             |                       |                       |
| 250                             |                       |                       |
|                                 |                       |                       |
|                                 |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{s,t}$          | 0.2982 |  |
| P <sub>C,s</sub>            | 0.5519 |  |
| $\mathbf{P}_{d,C}$          | 0.3062 |  |
| $\mathbf{P}_{e,d}$          | 0.2386 |  |
| $\mathbf{P}_{g,F}$          | 0.5386 |  |
| $\mathbf{P}_{i,h}$          | 0.7578 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2959 |  |
| P' <sub>C',s</sub>          | 0.5963 |  |
| P' <sub>d,C'</sub>          | 0.2554 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2368 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4784 |  |
| P' <sub>i,h</sub>           | 0.7521 |  |
|                             |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | 0.0150  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0065  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0010 |  |
| $\Delta P_{g,F}$                                                    | -0.0023 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0080 |  |

| Other Properties                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| T <sub>a</sub> [°C]                                                       | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| λ [W/(m·K)]                                                               | 1.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| AT [°C]                                                                   | 551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| ρ [g/cm <sup>3</sup> ]                                                    | 2.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| μ                                                                         | 0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| HK <sub>0.1/20</sub>                                                      | 662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| HG                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| HG-J                                                                      | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| В                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CR                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| FR                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SR                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| AR                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| PR                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SR-J                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| WR-J                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                           | l The state of the |  |

| Constants of Dispersion |               |  |  |
|-------------------------|---------------|--|--|
| Formula                 |               |  |  |
| <b>B</b> <sub>1</sub>   | 1.3167841     |  |  |
| <b>B</b> <sub>2</sub>   | 0.171154756   |  |  |
| <b>B</b> <sub>3</sub>   | 1.12501473    |  |  |
| <b>C</b> <sub>1</sub>   | 0.00720717498 |  |  |
| C <sub>2</sub>          | 0.0245659595  |  |  |
| C <sub>3</sub>          | 102.739728    |  |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| $\mathbf{D}_0$          | 103.00 · 10 <sup>0</sup>  |  |
| <b>D</b> <sub>1</sub>   | 3.16 · 10 <sup>-6</sup>   |  |
| $D_2$                   | 1.23 · 10 <sup>-8</sup>   |  |
| E <sub>0</sub>          | -1.08 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>1</sub>   | 4.41 · 10 <sup>-7</sup>   |  |
| λ <sub>TK</sub> [μm]    | 3.2e-10                   |  |

| Color Code                   |       |  |
|------------------------------|-------|--|
| $\lambda_{80}/\lambda_{5}$   | 35/31 |  |
| $(*=\lambda_{70}/\lambda_5)$ |       |  |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temperature Coefficients of Refractive Index                |        |                                      |     |        |     |     |
|-------------------------------------------------------------|--------|--------------------------------------|-----|--------|-----|-----|
| $\Delta$ n <sub>rel</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |        | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     |        |     |     |
| [°C]                                                        | 1060.0 | e                                    | g   | 1060.0 | е   | g   |
| -40/ -20                                                    | 0.2    | 3.2                                  | 3.8 | 4.4    | 1.0 | 1.6 |
| +20/ +40                                                    | 2.2    | 3.2                                  | 3.8 | 4.4    | 1.8 | 2.4 |
| +60/ +80                                                    | 3.0    | 3.3                                  | 4.0 | 4.7    | 2.2 | 2.9 |

#### P-SK60 610579.308

 $n_d = 1.61035$  $v_{d}$  = 57.90 n<sub>e</sub>= 1.61286  $v_{e} = 57.66$ 

 $n_F - n_C = 0.010541$  $n_{F'}-n_{C'}=0.010628$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.57831 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.58450 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.59102 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.59762 |  |
| n <sub>t</sub>             | 1014.0 | 1.59836 |  |
| n <sub>s</sub>             | 852.1  | 1.60140 |  |
| n <sub>r</sub>             | 706.5  | 1.60530 |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.60714 |  |
| n <sub>C'</sub>            | 643.8  | 1.60765 |  |
| n <sub>632.8</sub>         | 632.8  | 1.60813 |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.61026 |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.61035 |  |
| n <sub>e</sub>             | 546.1  | 1.61286 |  |
| n <sub>F</sub>             | 486.1  | 1.61768 |  |
| n <sub>F'</sub>            | 480.0  | 1.61828 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.62340 |  |
| $\mathbf{n}_{h}$           | 404.7  | 1.62815 |  |
| $\mathbf{n}_{\mathrm{i}}$  | 365.0  | 1.63627 |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.64506 |  |
| n <sub>312.6</sub>         | 312.6  | 1.65317 |  |
| n <sub>296.7</sub>         | 296.7  | 1.66061 |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal | Transmittance τ <sub>i</sub> |                       |
|----------|------------------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm)        | τ <sub>i</sub> (25mm) |
| 2500     | 0.693                        | 0.400                 |
| 2325     | 0.891                        | 0.630                 |
| 1970     | 0.959                        | 0.900                 |
| 1530     | 0.993                        | 0.983                 |
| 1060     | 0.999                        | 0.998                 |
| 700      | 0.999                        | 0.997                 |
| 660      | 0.998                        | 0.996                 |
| 620      | 0.998                        | 0.996                 |
| 580      | 0.999                        | 0.998                 |
| 546      | 0.999                        | 0.998                 |
| 500      | 0.999                        | 0.997                 |
| 460      | 0.998                        | 0.995                 |
| 436      | 0.998                        | 0.994                 |
| 420      | 0.998                        | 0.994                 |
| 405      | 0.997                        | 0.993                 |
| 400      | 0.997                        | 0.992                 |
| 390      | 0.995                        | 0.988                 |
| 380      | 0.993                        | 0.983                 |
| 370      | 0.990                        | 0.974                 |
| 365      | 0.987                        | 0.967                 |
| 350      | 0.967                        | 0.920                 |
| 334      | 0.905                        | 0.780                 |
| 320      | 0.746                        | 0.480                 |
| 310      | 0.480                        | 0.160                 |
| 300      | 0.150                        | 0.005                 |
| 290      | 0.010                        |                       |
| 280      |                              |                       |
| 270      |                              |                       |
| 260      |                              |                       |
| 250      |                              |                       |
|          |                              |                       |
|          |                              |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{s,t}$          | 0.2887 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5438 |  |
| $\mathbf{P}_{d,C}$          | 0.3049 |  |
| $\mathbf{P}_{e,d}$          | 0.2384 |  |
| $\mathbf{P}_{g,F}$          | 0.5427 |  |
| $\mathbf{P}_{i,h}$          | 0.7702 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2863 |  |
| P' <sub>C',s</sub>          | 0.5876 |  |
| P' <sub>d,C'</sub>          | 0.2542 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2365 |  |
| P' <sub>g,F'</sub>          | 0.4819 |  |
| P' <sub>i,h</sub>           | 0.7639 |  |

| Constants of Dispersion Formula |               |  |
|---------------------------------|---------------|--|
| B <sub>1</sub>                  | 1.40790442    |  |
| <b>B</b> <sub>2</sub>           | 0.143381417   |  |
| <b>B</b> <sub>3</sub>           | 1.16513947    |  |
| <b>C</b> <sub>1</sub>           | 0.00784382378 |  |
| <b>C</b> <sub>2</sub>           | 0.0287769365  |  |
| <b>C</b> <sub>3</sub>           | 105.373397    |  |

| 365 | 0.987 | 0.967 |
|-----|-------|-------|
| 350 | 0.967 | 0.920 |
| 334 | 0.905 | 0.780 |
| 320 | 0.746 | 0.480 |
| 310 | 0.480 | 0.160 |
| 300 | 0.150 | 0.005 |
| 290 | 0.010 |       |
| 280 |       |       |
| 270 |       |       |
| 260 |       |       |
| 250 |       |       |
|     |       | ·     |
|     |       |       |
|     |       |       |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta \mathbf{P}_{C,t}$                                           | 0.0128  |  |
| $\Delta \mathbf{P}_{C,s}$                                           | 0.0059  |  |
| $\Delta \mathbf{P}_{F,e}$                                           | -0.0012 |  |
| $\Delta \mathbf{P}_{g,F}$                                           | -0.0037 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0177 |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | 105.00 · 10 <sup>0</sup>  |  |
| <b>D</b> <sub>1</sub>   | 2.41 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>2</sub>   | 9.52 · 10 <sup>-9</sup>   |  |
| <b>E</b> <sub>0</sub>   | -8.08 · 10 <sup>-12</sup> |  |
| <b>E</b> <sub>1</sub>   | 4.72 · 10 <sup>-7</sup>   |  |
| λ <sub>TK</sub> [μm]    | 6.22e-10                  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 33/29 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| <b>Other Properties</b>                                                     |       |
|-----------------------------------------------------------------------------|-------|
| $\alpha_{-30/+70^{\circ}C}[10^{-6}/K]$                                      | 7.1   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                     | 8.9   |
| T <sub>q</sub> [°C]                                                         | 507   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                                 | 509   |
| T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 606   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                              | 0.760 |
| $\lambda [W/(m\cdot K)]$                                                    | 1.130 |
| AT [°C]                                                                     | 547   |
| ρ [g/cm <sup>3</sup> ]                                                      | 3.08  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                               | 99    |
| μ                                                                           | 0.253 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                              | 2.04  |
| HK <sub>0.1/20</sub>                                                        | 601   |
| HG                                                                          |       |
| HG-J                                                                        | 86    |
| В                                                                           | 1     |
|                                                                             |       |
| CR                                                                          | 4     |
| FR                                                                          | 5     |
| SR                                                                          | 53.4  |
| AR                                                                          | 2.3   |
| PR                                                                          | 3.3   |
| SR-J                                                                        | 4     |
| WR-J                                                                        | 3     |
|                                                                             |       |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                               | e   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 0.2                                  | 3.0 | 3.7                                  | 4.3    | 0.9 | 1.5 |
| +20/ +40                                     | 2.1                                  | 2.9 | 3.6                                  | 4.3    | 1.5 | 2.3 |
| +60/ +80                                     | 2.9                                  | 2.9 | 3.8                                  | 4.5    | 1.8 | 2.7 |

#### N-KF9 523515.250

**SCHOTT** 

n<sub>d</sub>= 1.52346 n<sub>e</sub>= 1.52588  $v_d$  = 51.54  $v_e$  = 51.26

 $n_F - n_C = 0.010156$  $n_{F'} - n_{C'} = 0.010258$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.49608 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.50095 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.50616 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.51170 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.51234 |  |  |
| n <sub>s</sub>             | 852.1  | 1.51507 |  |  |
| n <sub>r</sub>             | 706.5  | 1.51867 |  |  |
| n <sub>C</sub>             | 656.3  | 1.52040 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.52089 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.52134 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.52337 |  |  |
| n <sub>d</sub>             | 587.6  | 1.52346 |  |  |
| n <sub>e</sub>             | 546.1  | 1.52588 |  |  |
| n <sub>F</sub>             | 486.1  | 1.53056 |  |  |
| n <sub>F</sub> '           | 480.0  | 1.53114 |  |  |
| n <sub>g</sub>             | 435.8  | 1.53620 |  |  |
| n <sub>h</sub>             | 404.7  | 1.54096 |  |  |
| n <sub>i</sub>             | 365.0  | 1.54925 |  |  |
| n <sub>334.1</sub>         | 334.1  |         |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  | -       |  |  |

| Internal <sup>*</sup> | Transmittance τ <sub>i</sub> |                       |  |
|-----------------------|------------------------------|-----------------------|--|
| λ [nm]                | τ <sub>i</sub> (10mm)        | τ <sub>i</sub> (25mm) |  |
| 2500                  | 0.618                        | 0.300                 |  |
| 2325                  | 0.713                        | 0.430                 |  |
| 1970                  | 0.887                        | 0.740                 |  |
| 1530                  | 0.992                        | 0.981                 |  |
| 1060                  | 0.998                        | 0.995                 |  |
| 700                   | 0.999                        | 0.997                 |  |
| 660                   | 0.998                        | 0.995                 |  |
| 620                   | 0.998                        | 0.994                 |  |
| 580                   | 0.998                        | 0.996                 |  |
| 546                   | 0.998                        | 0.996                 |  |
| 500                   | 0.998                        | 0.994                 |  |
| 460                   | 0.996                        | 0.990                 |  |
| 436                   | 0.995                        | 0.988                 |  |
| 420                   | 0.994                        | 0.985                 |  |
| 405                   | 0.990                        | 0.975                 |  |
| 400                   | 0.986                        | 0.965                 |  |
| 390                   | 0.976                        | 0.940                 |  |
| 380                   | 0.950                        | 0.880                 |  |
| 370                   | 0.901                        | 0.770                 |  |
| 365                   | 0.857                        | 0.680                 |  |
| 350                   | 0.536                        | 0.210                 |  |
| 334                   | 0.026                        |                       |  |
| 320                   |                              |                       |  |
| 310                   |                              |                       |  |
| 300                   |                              |                       |  |
| 290                   |                              |                       |  |
| 280                   |                              |                       |  |
| 270                   |                              |                       |  |
| 260                   |                              |                       |  |
| 250                   |                              |                       |  |
|                       |                              |                       |  |
|                       |                              |                       |  |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{s,t}$          | 0.2683 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5249 |  |
| $\mathbf{P}_{d,C}$          | 0.3012 |  |
| $\mathbf{P}_{e,d}$          | 0.2380 |  |
| $\mathbf{P}_{g,F}$          | 0.5558 |  |
| $\mathbf{P}_{i,h}$          | 0.8161 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2657 |  |
| P' <sub>C',s</sub>          | 0.5669 |  |
| P' <sub>d,C'</sub>          | 0.2509 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2356 |  |
| P' <sub>g,F'</sub>          | 0.4930 |  |
| P' <sub>i,h</sub>           | 0.8080 |  |

| <b>n</b> <sub>248.3</sub> | 248.3             | 320 |  |
|---------------------------|-------------------|-----|--|
|                           |                   | 310 |  |
| Consta                    | nts of Dispersion | 300 |  |
| Formula                   | a                 | 290 |  |
| B <sub>1</sub>            | 1.19286778        | 280 |  |
| <b>B</b> <sub>2</sub>     | 0.0893346571      | 270 |  |
| <b>B</b> <sub>3</sub>     | 0.920819805       | 260 |  |
| <b>C</b> <sub>1</sub>     | 0.00839154696     | 250 |  |
| <b>C</b> <sub>2</sub>     | 0.0404010786      |     |  |
| <b>C</b> <sub>3</sub>     | 112.572446        |     |  |

| Deviation of F<br>Partial Disper<br>from the "Nor | sions ΔP |
|---------------------------------------------------|----------|
| ΔP <sub>C,t</sub>                                 | 0.0038   |
| ΔP <sub>C,s</sub>                                 | 0.0018   |
| Δ <b>P</b> <sub>F,e</sub>                         | -0.0004  |
| $\Delta \mathbf{P}_{g,F}$                         | -0.0014  |
| $\Delta \mathbf{P}_{i,g}$                         | -0.0075  |

| Constan               | ts of Dispersion          |
|-----------------------|---------------------------|
| dn/dT                 |                           |
| $\mathbf{D}_0$        | -1.66 · 10 <sup>-6</sup>  |
| <b>D</b> <sub>1</sub> | 8.44 · 10 <sup>-9</sup>   |
| <b>D</b> <sub>2</sub> | -1.01 · 10 <sup>-11</sup> |
| <b>E</b> <sub>0</sub> | 6.10 · 10 <sup>-7</sup>   |
| <b>E</b> <sub>1</sub> | 6.96 · 10 <sup>-10</sup>  |
| λ <sub>TK</sub> [μm]  | 0.217                     |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/34 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |

| <b>Other Properties</b>                                                     |       |
|-----------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                | 9.6   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                               | 11.0  |
| T <sub>a</sub> [°C]                                                         | 476   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                                 | 476   |
| T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 640   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                              | 0.860 |
| $\lambda [W/(m\cdot K)]$                                                    | 1.040 |
|                                                                             |       |
| ρ [g/cm <sup>3</sup> ]                                                      | 2.50  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                               | 66    |
| μ                                                                           | 0.225 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                              | 2.74  |
| HK <sub>0.1/20</sub>                                                        | 480   |
| HG                                                                          | 1     |
|                                                                             |       |
| В                                                                           | 1     |
|                                                                             |       |
| CR                                                                          | 1     |
| FR                                                                          | 0     |
| SR                                                                          | 1     |
| AR                                                                          | 1     |
| PR                                                                          | 1     |
|                                                                             |       |
|                                                                             |       |
|                                                                             |       |

| Temper   | ature Co          | efficients               | s of Refra | active Ind       | dex                                  |     |
|----------|-------------------|--------------------------|------------|------------------|--------------------------------------|-----|
|          | Δn <sub>rel</sub> | /ΔT[10 <sup>-6</sup> /K] |            | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]     | 1060.0            | e                        | g          | 1060.0           | е                                    | g   |
| -40/ -20 | 1.1               | 1.9                      | 2.6        | -0.9             | -0.2                                 | 0.5 |
| +20/ +40 | 0.9               | 1.8                      | 2.6        | -0.4             | 0.4                                  | 1.3 |
| +60/ +80 | 0.9               | 1.8                      | 2.8        | -0.1             | 0.8                                  | 1.7 |

#### N-BALF4 580539.311

 $n_d = 1.57956$  $n_e$  = 1.58212  $v_{d}$  = 53.87  $v_{e} = 53.59$   $n_F - n_C = 0.010759$  $n_{F'}-n_{C'}=0.010863$ 

| Refractiv                  | ve Indices |         |
|----------------------------|------------|---------|
|                            | λ [nm]     |         |
| n <sub>2325.4</sub>        | 2325.4     | 1.55068 |
| <b>n</b> <sub>1970.1</sub> | 1970.1     | 1.55577 |
| n <sub>1529.6</sub>        | 1529.6     | 1.56124 |
| <b>n</b> <sub>1060.0</sub> | 1060.0     | 1.56707 |
| n <sub>t</sub>             | 1014.0     | 1.56776 |
| n <sub>s</sub>             | 852.1      | 1.57065 |
| n <sub>r</sub>             | 706.5      | 1.57447 |
| n <sub>C</sub>             | 656.3      | 1.57631 |
| n <sub>C'</sub>            | 643.8      | 1.57683 |
| n <sub>632.8</sub>         | 632.8      | 1.57731 |
| <b>n</b> <sub>D</sub>      | 589.3      | 1.57946 |
| n <sub>d</sub>             | 587.6      | 1.57956 |
| n <sub>e</sub>             | 546.1      | 1.58212 |
| n <sub>F</sub>             | 486.1      | 1.58707 |
| n <sub>F'</sub>            | 480.0      | 1.58769 |
| <b>n</b> <sub>g</sub>      | 435.8      | 1.59301 |
| $\mathbf{n}_{h}$           | 404.7      | 1.59799 |
| n <sub>i</sub>             | 365.0      | 1.60658 |
| <b>n</b> <sub>334.1</sub>  | 334.1      |         |
| <b>n</b> <sub>312.6</sub>  | 312.6      |         |
| <b>n</b> <sub>296.7</sub>  | 296.7      |         |
| <b>n</b> <sub>280.4</sub>  | 280.4      |         |
| n <sub>248.3</sub>         | 248.3      |         |

| Internal <sup>*</sup> | Transmitta            | anceτ <sub>i</sub>    |
|-----------------------|-----------------------|-----------------------|
| λ [nm]                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                  | 0.804                 | 0.580                 |
| 2325                  | 0.887                 | 0.740                 |
| 1970                  | 0.967                 | 0.920                 |
| 1530                  | 0.994                 | 0.984                 |
| 1060                  | 0.997                 | 0.993                 |
| 700                   | 0.999                 | 0.997                 |
| 660                   | 0.998                 | 0.995                 |
| 620                   | 0.998                 | 0.995                 |
| 580                   | 0.998                 | 0.996                 |
| 546                   | 0.998                 | 0.995                 |
| 500                   | 0.997                 | 0.993                 |
| 460                   | 0.994                 | 0.986                 |
| 436                   | 0.993                 | 0.983                 |
| 420                   | 0.992                 | 0.981                 |
| 405                   | 0.988                 | 0.970                 |
| 400                   | 0.985                 | 0.964                 |
| 390                   | 0.976                 | 0.940                 |
| 380                   | 0.959                 | 0.900                 |
| 370                   | 0.924                 | 0.820                 |
| 365                   | 0.891                 | 0.750                 |
| 350                   | 0.679                 | 0.380                 |
| 334                   | 0.158                 |                       |
| 320                   |                       |                       |
| 310                   |                       |                       |
| 300                   |                       |                       |
| 290                   |                       |                       |
| 280                   |                       |                       |
| 270                   |                       |                       |
| 260                   |                       |                       |
| 250                   |                       |                       |
|                       |                       |                       |

| Relative Parti              | al Dispersion |
|-----------------------------|---------------|
| $\mathbf{P}_{s,t}$          | 0.2687        |
| <b>P</b> <sub>C,s</sub>     | 0.5265        |
| $\mathbf{P}_{d,C}$          | 0.3019        |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2382        |
| $\mathbf{P}_{g,F}$          | 0.5520        |
| $\mathbf{P}_{i,h}$          | 0.7986        |
|                             |               |
| P' <sub>s,t</sub>           | 0.2661        |
| P' <sub>C',s</sub>          | 0.5689        |
| P' <sub>d,C'</sub>          | 0.2515        |
| <b>P'</b> <sub>e,d</sub>    | 0.2359        |
| <b>P'</b> <sub>g,F'</sub>   | 0.4897        |
| P' <sub>i,h</sub>           | 0.7909        |
| 1,11                        |               |

| Deviation of F<br>Partial Disper<br>from the "Nor | sions ΔP |
|---------------------------------------------------|----------|
| Δ <b>P</b> <sub>C,t</sub>                         | -0.0053  |
| Δ <b>P</b> <sub>C,s</sub>                         | -0.0019  |
| ΔP <sub>F,e</sub>                                 | -0.0001  |
| $\Delta P_{g,F}$                                  | -0.0012  |
| $\Delta P_{i,g}$                                  | -0.0114  |

| Ι. |                |
|----|----------------|
|    | C              |
|    | α              |
|    | α              |
|    | T              |
|    | Т              |
|    | Т              |
|    | c <sub>ι</sub> |
|    | λ              |
|    |                |
|    | ρ              |
|    | ρ<br><b>Ε</b>  |
|    | μ              |

| <b>C</b> <sub>1</sub>   | 0.0079659645            |
|-------------------------|-------------------------|
| <b>C</b> <sub>2</sub>   | 0.0330672072            |
| <b>C</b> <sub>3</sub>   | 109.19732               |
|                         |                         |
| Camatan                 | to of Diamonalan        |
| Constan                 | ts of Dispersion        |
| dn/dT                   | ts of Dispersion        |
|                         | 5.33 · 10 <sup>-6</sup> |
| dn/dT                   |                         |
| dn/dT<br>D <sub>0</sub> | 5.33 · 10 <sup>-6</sup> |

**Constants of Dispersion** 

1.31004128 0.142038259

0.964929351

**Formula** 

**B**<sub>1</sub>

 $\mathbf{B}_2$ 

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/33 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

| <b>E</b> <sub>0</sub> | 5.75 · 10         | )/                       |           |                  |                                      |     |
|-----------------------|-------------------|--------------------------|-----------|------------------|--------------------------------------|-----|
| <b>E</b> <sub>1</sub> | 6.58 · 10         | ) <sup>-10</sup>         |           |                  |                                      |     |
| $\lambda_{TK}[\mu m]$ | 0.195             |                          |           |                  |                                      |     |
|                       |                   |                          |           |                  |                                      |     |
| Tempera               | ture Co           | efficients               | s of Refr | active Ind       | dex                                  |     |
|                       | Δn <sub>rel</sub> | /ΔT[10 <sup>-6</sup> /K] |           | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]                  | 1060.0            | е                        | g         | 1060.0           | е                                    | g   |
| -40/ -20              | 4.1               | 4.9                      | 5.6       | 2.0              | 2.7                                  | 3.4 |
| +20/ +40              | 4.2               | 5.1                      | 6.0       | 2.9              | 3.7                                  | 4.6 |
| +60/ +80              | 4.4               | 5.4                      | 6.4       | 3.4              | 4.3                                  | 5.3 |
| •                     | •                 |                          |           |                  |                                      |     |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 6.5   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 7.4   |
| T <sub>a</sub> [°C]                                                       | 578   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                      | 584   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 661   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                            | 0.690 |
| λ [W/(m·K)]                                                               | 0.850 |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.11  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 77    |
| μ                                                                         | 0.245 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 3.01  |
| HK <sub>0.1/20</sub>                                                      | 540   |
| HG                                                                        | 2     |
|                                                                           |       |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 0     |
| SR                                                                        | 1     |
| AR                                                                        | 1     |
| PR                                                                        | 1     |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |
|                                                                           | •     |

### N-BALF5 547536.261

**SCHOTT** 

 $n_d$ = 1.54739  $v_d$ = 53.63  $n_e$ = 1.54982  $v_e$ = 53.36

= 53.63  $n_F - n_C = 0.010207$ = 53.36  $n_{F'} - n_{C'} = 0.010303$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
| λ [nm]                     |        |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 |         |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 |         |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 |         |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.53529 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.53598 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.53885 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.54255 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.54430 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.54479 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.54525 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.54730 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.54739 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.54982 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.55451 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.55510 |  |  |  |
| n <sub>g</sub>             | 435.8  | 1.56016 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.56491 |  |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.618                 | 0.300                 |
| 2325     | 0.758                 | 0.500                 |
| 1970     | 0.919                 | 0.810                 |
| 1530     | 0.989                 | 0.973                 |
| 1060     | 0.996                 | 0.991                 |
| 700      | 0.998                 | 0.995                 |
| 660      | 0.997                 | 0.993                 |
| 620      | 0.997                 | 0.993                 |
| 580      | 0.998                 | 0.995                 |
| 546      | 0.998                 | 0.995                 |
| 500      | 0.997                 | 0.992                 |
| 460      | 0.995                 | 0.988                 |
| 436      | 0.994                 | 0.984                 |
| 420      | 0.991                 | 0.978                 |
| 405      | 0.986                 | 0.965                 |
| 400      | 0.983                 | 0.957                 |
| 390      | 0.967                 | 0.920                 |
| 380      | 0.937                 | 0.850                 |
| 370      | 0.872                 | 0.710                 |
| 365      | 0.815                 | 0.600                 |
| 350      | 0.439                 | 0.128                 |
| 334      | 0.006                 |                       |
| 320      |                       |                       |
| 310      |                       |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| Constants of Dispersion Formula    |               |  |  |
|------------------------------------|---------------|--|--|
| <b>B</b> <sub>1</sub>              | 1.28385965    |  |  |
| <b>B</b> <sub>2</sub>              | 0.0719300942  |  |  |
| <b>B</b> <sub>3</sub>              | 1.05048927    |  |  |
| <b>C</b> <sub>1</sub>              | 0.00825815975 |  |  |
| <b>C</b> <sub>2</sub> 0.0441920027 |               |  |  |
| <b>C</b> <sub>3</sub>              | 107.097324    |  |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| $\mathbf{D}_0$                | 1.14 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.29 · 10 <sup>-8</sup>   |  |
| D <sub>2</sub>                | -1.46 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 5.02 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 5.87 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.219                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/34 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

## Remarks

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                               | e   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 2.1                                  | 2.8 | 3.5                                  | 0.1    | 0.7 | 1.3 |
| +20/ +40                                     | 2.1                                  | 2.9 | 3.7                                  | 0.8    | 1.6 | 2.3 |
| +60/ +80                                     | 2.3                                  | 3.1 | 3.9                                  | 1.3    | 2.1 | 2.9 |

| <b>Relative Partial Dispersion</b> |        |  |  |  |
|------------------------------------|--------|--|--|--|
| $\mathbf{P}_{s,t}$                 | 0.2810 |  |  |  |
| P <sub>C,s</sub>                   | 0.5345 |  |  |  |
| $\mathbf{P}_{d,C}$                 | 0.3025 |  |  |  |
| $\mathbf{P}_{e,d}$                 | 0.2380 |  |  |  |
| $\mathbf{P}_{g,F}$                 | 0.5532 |  |  |  |
| $\mathbf{P}_{i,h}$                 |        |  |  |  |
|                                    |        |  |  |  |
| P' <sub>s,t</sub>                  | 0.2783 |  |  |  |
| P' <sub>C',s</sub>                 | 0.5771 |  |  |  |
| P' <sub>d,C'</sub>                 | 0.2520 |  |  |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2357 |  |  |  |
| <b>P'</b> <sub>g,F'</sub>          | 0.4909 |  |  |  |
| P' <sub>i,h</sub>                  |        |  |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | 0.0161  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0066  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0007 |  |
| $\Delta P_{g,F}$                                                    | -0.0004 |  |
| $\Delta \mathbf{P}_{i,g}$                                           |         |  |

| 7.3   |
|-------|
| 8.4   |
| 558   |
| 559   |
| 711   |
| 0.810 |
| 1.050 |
|       |
| 2.61  |
| 81    |
| 0.214 |
| 2.76  |
| 600   |
| 2     |
|       |
| 1     |
|       |
| 1     |
| 0     |
| 1     |
| 2     |
| 1     |
|       |
|       |
|       |
|       |

#### N-SSK2 622533.353

n<sub>d</sub>= 1.62229  $v_{d}$  = 53.27  $n_e = 1.62508$ 

 $v_e$  = 52.99

 $n_F - n_C = 0.011681$  $n_{F'}-n_{C'}=0.011795$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.59149 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.59685 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.60260 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.60880 |  |
| n <sub>t</sub>             | 1014.0 | 1.60953 |  |
| n <sub>s</sub>             | 852.1  | 1.61264 |  |
| n <sub>r</sub>             | 706.5  | 1.61678 |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.61877 |  |
| n <sub>C'</sub>            | 643.8  | 1.61933 |  |
| n <sub>632.8</sub>         | 632.8  | 1.61985 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.62219 |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.62229 |  |
| n <sub>e</sub>             | 546.1  | 1.62508 |  |
| n <sub>F</sub>             | 486.1  | 1.63045 |  |
| n <sub>F'</sub>            | 480.0  | 1.63112 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.63691 |  |
| $\mathbf{n}_{h}$           | 404.7  | 1.64232 |  |
| n <sub>i</sub>             | 365.0  | 1.65166 |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal Transmittanceτ, |                       |                       |
|--------------------------|-----------------------|-----------------------|
| λ [nm]                   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                     | 0.758                 | 0.500                 |
| 2325                     | 0.877                 | 0.720                 |
| 1970                     | 0.971                 | 0.930                 |
| 1530                     | 0.992                 | 0.981                 |
| 1060                     | 0.997                 | 0.992                 |
| 700                      | 0.998                 | 0.996                 |
| 660                      | 0.998                 | 0.994                 |
| 620                      | 0.997                 | 0.993                 |
| 580                      | 0.998                 | 0.995                 |
| 546                      | 0.998                 | 0.995                 |
| 500                      | 0.997                 | 0.992                 |
| 460                      | 0.994                 | 0.985                 |
| 436                      | 0.992                 | 0.980                 |
| 420                      | 0.990                 | 0.975                 |
| 405                      | 0.985                 | 0.963                 |
| 400                      | 0.981                 | 0.954                 |
| 390                      | 0.967                 | 0.920                 |
| 380                      | 0.941                 | 0.860                 |
| 370                      | 0.891                 | 0.750                 |
| 365                      | 0.852                 | 0.670                 |
| 350                      | 0.574                 | 0.250                 |
| 334                      | 0.084                 |                       |
| 320                      |                       |                       |
| 310                      |                       |                       |
| 300                      |                       |                       |
| 290                      |                       |                       |
| 280                      |                       |                       |
| 270                      |                       |                       |
| 260                      |                       |                       |
| 250                      |                       |                       |
|                          |                       |                       |
|                          | 1                     | 1                     |

| Relative Partial Dispersion |        |  |  |
|-----------------------------|--------|--|--|
| $\mathbf{P}_{s,t}$          | 0.2661 |  |  |
| <b>P</b> <sub>C,s</sub>     | 0.5246 |  |  |
| $\mathbf{P}_{d,C}$          | 0.3016 |  |  |
| $\mathbf{P}_{e,d}$          | 0.2381 |  |  |
| $\mathbf{P}_{g,F}$          | 0.5526 |  |  |
| $\mathbf{P}_{i,h}$          | 0.7997 |  |  |
|                             |        |  |  |
| P' <sub>s,t</sub>           | 0.2636 |  |  |
| P' <sub>C',s</sub>          | 0.5669 |  |  |
| P' <sub>d,C'</sub>          | 0.2513 |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2358 |  |  |
| P' <sub>g,F'</sub>          | 0.4902 |  |  |
| P' <sub>i,h</sub>           | 0.7920 |  |  |
|                             |        |  |  |

| <b>n</b> <sub>248.3</sub> | 248.3      |        | 320 |  |  |
|---------------------------|------------|--------|-----|--|--|
|                           |            |        | 310 |  |  |
| Constan                   | ts of Disp | ersion | 300 |  |  |
| Formula                   |            |        | 290 |  |  |
| <b>B</b> <sub>1</sub>     | 1.4306027  |        | 280 |  |  |
| <b>B</b> <sub>2</sub>     | 0.15315055 | 54     | 270 |  |  |
| <b>B</b> <sub>3</sub>     | 1.01390904 | 1      | 260 |  |  |
| <b>C</b> <sub>1</sub>     | 0.00823982 | 2975   | 250 |  |  |
| <b>C</b> <sub>2</sub>     | 0.03337368 | 341    |     |  |  |
| <b>C</b> <sub>3</sub>     | 106.870822 | 2      |     |  |  |
|                           |            |        |     |  |  |

| Deviation of Relative     |         |  |  |
|---------------------------|---------|--|--|
| Partial Dispersions ΔP    |         |  |  |
| from the "Normal Line"    |         |  |  |
| Δ <b>P</b> <sub>C,t</sub> | -0.0069 |  |  |
| ΔP <sub>C,s</sub>         | -0.0025 |  |  |
| ΔP <sub>F,e</sub>         | -0.0001 |  |  |
| $\Delta \mathbf{P}_{g,F}$ | -0.0016 |  |  |
| $\Delta P_{i,a}$          | -0.0146 |  |  |

Other Properties

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   |                           |  |  |
| <b>D</b> <sub>0</sub>   | 5.21 · 10 <sup>-6</sup>   |  |  |
| <b>D</b> <sub>1</sub>   | 1.34 · 10 <sup>-8</sup>   |  |  |
| D <sub>2</sub>          | -1.01 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 5.21 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 5.87 · 10 <sup>-10</sup>  |  |  |
| λ <sub>TK</sub> [μm]    | 0.199                     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/33 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
| ( 70 37                      |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |

| Other Froperties                                                         |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 5.8   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                  | 6.7   |
| $T_{\alpha}[^{\circ}C]$                                                  | 653   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                              | 655   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 801   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                           | 0.580 |
| $\lambda [W/(m\cdot K)]$                                                 | 0.810 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 3.53  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 82    |
| μ                                                                        | 0.261 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 2.51  |
| HK <sub>0.1/20</sub>                                                     | 570   |
| HG                                                                       | 3     |
|                                                                          |       |
| В                                                                        | 1     |
|                                                                          |       |
| CR                                                                       | 1     |
| FR                                                                       | 0     |
| SR                                                                       | 1.2   |
| AR                                                                       | 1     |
| PR                                                                       | 1     |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |

| Temper   | Temperature Coefficients of Refractive Index |     |     |                  |                                      |     |
|----------|----------------------------------------------|-----|-----|------------------|--------------------------------------|-----|
|          | $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |     |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]     | 1060.0                                       | e   | g   | 1060.0           | e                                    | g   |
| -40/ -20 | 4.2                                          | 5.0 | 5.8 | 2.1              | 2.8                                  | 3.5 |
| +20/ +40 | 4.3                                          | 5.2 | 6.1 | 2.9              | 3.8                                  | 4.6 |
| +60/ +80 | 4.5                                          | 5.5 | 6.4 | 3.5              | 4.4                                  | 5.3 |

### N-SSK5 658509.371

**SCHOTT** 

n<sub>d</sub>= 1.65844 n<sub>e</sub>= 1.66152  $v_d$  = 50.88  $v_e$  = 50.59

 $n_F - n_C = 0.012940$  $n_{F'} - n_{C'} = 0.013075$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
| λ [nm]                     |        |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.62581 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.63128 |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.63720 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.64371 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.64450 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.64785 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.65237 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.65455 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.65517 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.65574 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.65833 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.65844 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.66152 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.66749 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.66824 |  |  |  |
| n <sub>g</sub>             | 435.8  | 1.67471 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.68079 |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.69139 |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |  |  |
| <b>n</b> <sub>248.3</sub>  | 248.3  |         |  |  |  |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.727                 | 0.450                 |
| 2325     | 0.847                 | 0.660                 |
| 1970     | 0.963                 | 0.910                 |
| 1530     | 0.992                 | 0.980                 |
| 1060     | 0.996                 | 0.990                 |
| 700      | 0.997                 | 0.993                 |
| 660      | 0.997                 | 0.992                 |
| 620      | 0.997                 | 0.992                 |
| 580      | 0.997                 | 0.993                 |
| 546      | 0.996                 | 0.990                 |
| 500      | 0.993                 | 0.982                 |
| 460      | 0.987                 | 0.968                 |
| 436      | 0.982                 | 0.956                 |
| 420      | 0.976                 | 0.940                 |
| 405      | 0.963                 | 0.910                 |
| 400      | 0.959                 | 0.900                 |
| 390      | 0.941                 | 0.860                 |
| 380      | 0.896                 | 0.760                 |
| 370      | 0.804                 | 0.580                 |
| 365      | 0.727                 | 0.450                 |
| 350      | 0.336                 | 0.060                 |
| 334      | 0.017                 |                       |
| 320      |                       |                       |
| 310      |                       |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| 11 248.3              | 240.3      |        | 32 | U |  |
|-----------------------|------------|--------|----|---|--|
|                       |            |        | 31 | 0 |  |
| Constant              | ts of Disp | ersion | 30 | 0 |  |
| Formula               |            |        | 29 | 0 |  |
| <b>B</b> <sub>1</sub> | 1.59222659 | 9      | 28 | 0 |  |
| <b>B</b> <sub>2</sub> | 0.10352077 | 74     | 27 | 0 |  |
| $\mathbf{B}_3$        | 1.05174016 | 6      | 26 | 0 |  |
| <b>C</b> <sub>1</sub> | 0.00920284 | 4626   | 25 | 0 |  |
| <b>C</b> <sub>2</sub> | 0.04235300 | 072    |    |   |  |
| <b>C</b> <sub>3</sub> | 106.927374 | 1      |    |   |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| $\mathbf{D}_0$                | 7.29 · 10 <sup>-7</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.17 · 10 <sup>-8</sup>   |  |
| $D_2$                         | -1.50 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 6.08 · 10 <sup>-7</sup>   |  |
| E <sub>1</sub>                | 7.66 · 10 <sup>-10</sup>  |  |

0.189

 $\lambda_{TK}[\mu m]$ 

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 38/34 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| R | em | arı | KS |  |  |
|---|----|-----|----|--|--|
|   |    |     |    |  |  |
|   |    |     |    |  |  |
|   |    |     |    |  |  |

| Temperature Coefficients of Refractive Index |                                                                           |     |     |        |     |     |
|----------------------------------------------|---------------------------------------------------------------------------|-----|-----|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     |     |        |     | ]   |
| [°C]                                         | 1060.0                                                                    | Φ   | g   | 1060.0 | е   | g   |
| -40/ -20                                     | 2.2                                                                       | 3.0 | 3.9 | 0.0    | 0.8 | 1.6 |
| +20/ +40                                     | 2.2                                                                       | 3.2 | 4.2 | 0.8    | 1.8 | 2.7 |
| +60/ +80                                     | 2.4                                                                       | 3.5 | 4.5 | 1.2    | 2.3 | 3.4 |

| Relative Partial Dispersion |        |  |  |
|-----------------------------|--------|--|--|
| P <sub>s,t</sub>            | 0.2592 |  |  |
| <b>P</b> <sub>C,s</sub>     | 0.5181 |  |  |
| $\mathbf{P}_{d,C}$          | 0.3003 |  |  |
| $\mathbf{P}_{e,d}$          | 0.2380 |  |  |
| $\mathbf{P}_{g,F}$          | 0.5575 |  |  |
| $\mathbf{P}_{i,h}$          | 0.8192 |  |  |
|                             |        |  |  |
| P' <sub>s,t</sub>           | 0.2566 |  |  |
| P' <sub>C',s</sub>          | 0.5598 |  |  |
| P' <sub>d,C'</sub>          | 0.2502 |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2355 |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4944 |  |  |
| P' <sub>i,h</sub>           | 0.8108 |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | -0.0090 |  |
| ΔP <sub>C,s</sub>                                                   | -0.0034 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0001  |  |
| $\Delta P_{g,F}$                                                    | -0.0007 |  |
| $\Delta P_{i,g}$                                                    | -0.0081 |  |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 6.8   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 8.0   |
| T_[°C]                                                                    | 645   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 637   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 751   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.574 |
| λ [W/(m·K)]                                                               |       |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.71  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 88    |
| μ                                                                         | 0.278 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 1.90  |
| HK <sub>0.1/20</sub>                                                      | 590   |
| HG                                                                        | 5     |
|                                                                           |       |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 2     |
| FR                                                                        | 3     |
| SR                                                                        | 52.2  |
| AR                                                                        | 2.2   |
| PR                                                                        | 3.2   |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |

#### N-SSK8 618498.327

n<sub>d</sub>= 1.61773  $v_{d}$  = 49.83 n<sub>e</sub>= 1.62068

 $v_e = 49.54$ 

| $n_F - n_C = 0.012397$   |  |
|--------------------------|--|
| $n_{E'}-n_{C'}=0.012529$ |  |

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.58594 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.59137 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.59723 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.60360 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.60436 |  |  |
| n <sub>s</sub>             | 852.1  | 1.60759 |  |  |
| n <sub>r</sub>             | 706.5  | 1.61192 |  |  |
| n <sub>C</sub>             | 656.3  | 1.61401 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.61460 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.61515 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.61762 |  |  |
| n <sub>d</sub>             | 587.6  | 1.61773 |  |  |
| n <sub>e</sub>             | 546.1  | 1.62068 |  |  |
| n <sub>F</sub>             | 486.1  | 1.62641 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.62713 |  |  |
| n <sub>g</sub>             | 435.8  | 1.63335 |  |  |
| n <sub>h</sub>             | 404.7  | 1.63923 |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |
| n <sub>334.1</sub>         | 334.1  |         |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal | Transmitta            | ance $\tau_i$         |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.733                 | 0.460                 |
| 2325     | 0.847                 | 0.660                 |
| 1970     | 0.959                 | 0.900                 |
| 1530     | 0.992                 | 0.980                 |
| 1060     | 0.997                 | 0.993                 |
| 700      | 0.998                 | 0.994                 |
| 660      | 0.996                 | 0.991                 |
| 620      | 0.996                 | 0.990                 |
| 580      | 0.997                 | 0.992                 |
| 546      | 0.997                 | 0.992                 |
| 500      | 0.994                 | 0.984                 |
| 460      | 0.987                 | 0.969                 |
| 436      | 0.982                 | 0.955                 |
| 420      | 0.975                 | 0.938                 |
| 405      | 0.959                 | 0.900                 |
| 400      | 0.950                 | 0.880                 |
| 390      | 0.919                 | 0.810                 |
| 380      | 0.847                 | 0.660                 |
| 370      | 0.727                 | 0.450                 |
| 365      | 0.626                 | 0.310                 |
| 350      | 0.194                 | 0.010                 |
| 334      |                       |                       |
| 320      |                       |                       |
| 310      |                       |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
| 1        |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{\mathrm{s,t}}$ | 0.2606 |  |
| P <sub>C,s</sub>            | 0.5179 |  |
| $\mathbf{P}_{d,C}$          | 0.2999 |  |
| $\mathbf{P}_{e,d}$          | 0.2378 |  |
| $\mathbf{P}_{g,F}$          | 0.5602 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2579 |  |
| P' <sub>C',s</sub>          | 0.5594 |  |
| <b>P'</b> <sub>d,C'</sub>   | 0.2498 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2353 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4967 |  |
| P' <sub>i,h</sub>           |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |
|---------------------------------------------------------------------|---------|--|--|
| $\Delta P_{C,t}$                                                    | -0.0028 |  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | -0.0012 |  |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | 0.0001  |  |  |
| $\Delta \mathbf{P}_{g,F}$                                           | 0.0002  |  |  |
| $\Delta \mathbf{P}_{i,g}$                                           |         |  |  |

| Other Properties                                                                                   |       |  |
|----------------------------------------------------------------------------------------------------|-------|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                                       | 7.2   |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                                                      | 8.2   |  |
| T <sub>g</sub> [°C]                                                                                | 616   |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                                               | 604   |  |
| T <sub>g</sub> [°C]<br>T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 742   |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                                                    | 0.640 |  |
| λ [W/(m·K)]                                                                                        | 0.840 |  |
|                                                                                                    |       |  |
| ρ [g/cm <sup>3</sup> ]                                                                             | 3.27  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                                                      | 84    |  |
| μ                                                                                                  | 0.251 |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                                                     | 2.36  |  |
| HK <sub>0.1/20</sub>                                                                               | 570   |  |
| HG                                                                                                 | 3     |  |
|                                                                                                    |       |  |
| В                                                                                                  | 1     |  |
|                                                                                                    |       |  |
| CR                                                                                                 | 1     |  |
| FR                                                                                                 | 0     |  |
| SR                                                                                                 | 1     |  |
| AR                                                                                                 | 1.3   |  |
| PR                                                                                                 | 1     |  |
|                                                                                                    |       |  |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.44857867    |  |
| <b>B</b> <sub>2</sub>   | 0.117965926   |  |
| <b>B</b> <sub>3</sub>   | 1.06937528    |  |
| <b>C</b> <sub>1</sub>   | 0.00869310149 |  |
| <b>C</b> <sub>2</sub>   | 0.0421566593  |  |
| <b>C</b> <sub>3</sub>   | 111.300666    |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| $\mathbf{D}_0$                | 5.34 · 10 <sup>-7</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.27 · 10 <sup>-8</sup>   |  |
| $D_2$                         | -1.75 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 5.40 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 7.05 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.224                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 39/35 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

## Remarks

| Temperature Coefficients of Refractive Index |        |                                      |     |        |     |     |
|----------------------------------------------|--------|--------------------------------------|-----|--------|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     | ]      |     |     |
| [°C]                                         | 1060.0 | e                                    | g   | 1060.0 | е   | g   |
| -40/ -20                                     | 1.9    | 2.7                                  | 3.5 | -0.2   | 0.5 | 1.3 |
| +20/ +40                                     | 2.0    | 2.9                                  | 3.9 | 0.6    | 1.5 | 2.4 |
| +60/ +80                                     | 2.2    | 3.2                                  | 4.2 | 1.1    | 2.1 | 3.1 |

#### N-LAK7 652585.384

n<sub>d</sub>= 1.65160 n<sub>e</sub>= 1.65425

 $v_{d}$  = 58.52  $v_e$  = 58.26  $n_F - n_C = 0.011135$  $n_{F'}-n_{C'}=0.011229$ 

| Refractive Indices         |        |         |
|----------------------------|--------|---------|
|                            | λ [nm] |         |
| n <sub>2325.4</sub>        | 2325.4 | 1.61875 |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.62499 |
| n <sub>1529.6</sub>        | 1529.6 | 1.63156 |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.63828 |
| n <sub>t</sub>             | 1014.0 | 1.63904 |
| n <sub>s</sub>             | 852.1  | 1.64220 |
| n <sub>r</sub>             | 706.5  | 1.64628 |
| n <sub>C</sub>             | 656.3  | 1.64821 |
| n <sub>C'</sub>            | 643.8  | 1.64875 |
| n <sub>632.8</sub>         | 632.8  | 1.64925 |
| $\mathbf{n}_{D}$           | 589.3  | 1.65150 |
| $\mathbf{n}_{d}$           | 587.6  | 1.65160 |
| n <sub>e</sub>             | 546.1  | 1.65425 |
| n <sub>F</sub>             | 486.1  | 1.65934 |
| n <sub>F'</sub>            | 480.0  | 1.65998 |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.66539 |
| n <sub>h</sub>             | 404.7  | 1.67042 |
| n <sub>i</sub>             | 365.0  | 1.67897 |
| n <sub>334.1</sub>         | 334.1  | 1.68820 |
| n <sub>312.6</sub>         | 312.6  |         |
| n <sub>296.7</sub>         | 296.7  |         |
| n <sub>280.4</sub>         | 280.4  |         |
| n <sub>248.3</sub>         | 248.3  |         |

| Internal Transmittanceτ <sub>i</sub> |                       | anceτ <sub>i</sub>    |
|--------------------------------------|-----------------------|-----------------------|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                                 | 0.546                 | 0.220                 |
| 2325                                 | 0.764                 | 0.510                 |
| 1970                                 | 0.959                 | 0.900                 |
| 1530                                 | 0.992                 | 0.979                 |
| 1060                                 | 0.998                 | 0.995                 |
| 700                                  | 0.998                 | 0.995                 |
| 660                                  | 0.998                 | 0.995                 |
| 620                                  | 0.998                 | 0.994                 |
| 580                                  | 0.998                 | 0.995                 |
| 546                                  | 0.998                 | 0.996                 |
| 500                                  | 0.997                 | 0.993                 |
| 460                                  | 0.994                 | 0.985                 |
| 436                                  | 0.991                 | 0.977                 |
| 420                                  | 0.988                 | 0.970                 |
| 405                                  | 0.981                 | 0.952                 |
| 400                                  | 0.977                 | 0.943                 |
| 390                                  | 0.965                 | 0.915                 |
| 380                                  | 0.946                 | 0.870                 |
| 370                                  | 0.910                 | 0.790                 |
| 365                                  | 0.882                 | 0.730                 |
| 350                                  | 0.739                 | 0.470                 |
| 334                                  | 0.509                 | 0.185                 |
| 320                                  | 0.276                 | 0.040                 |
| 310                                  | 0.137                 | 0.010                 |
| 300                                  | 0.044                 |                       |
| 290                                  | 0.010                 |                       |
| 280                                  |                       |                       |
| 270                                  |                       |                       |
| 260                                  |                       |                       |
| 250                                  |                       |                       |
|                                      |                       |                       |
|                                      |                       | 1                     |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2835 |  |
| P <sub>C,s</sub>            | 0.5400 |  |
| P <sub>d,C</sub>            | 0.3044 |  |
| P <sub>e,d</sub>            | 0.2385 |  |
| $\mathbf{P}_{g,F}$          | 0.5433 |  |
| $\mathbf{P}_{i,h}$          | 0.7687 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2812 |  |
| P' <sub>C',s</sub>          | 0.5836 |  |
| P' <sub>d,C'</sub>          | 0.2538 |  |
| P' <sub>e,d</sub>           | 0.2365 |  |
| P' <sub>g,F'</sub>          | 0.4823 |  |
| P' <sub>i,h</sub>           | 0.7622 |  |
|                             |        |  |

| Constants of Dispersion |               |  |  |
|-------------------------|---------------|--|--|
| Formula                 |               |  |  |
| <b>B</b> <sub>1</sub>   | 1.23679889    |  |  |
| <b>B</b> <sub>2</sub>   | 0.445051837   |  |  |
| <b>B</b> <sub>3</sub>   | 1.01745888    |  |  |
| <b>C</b> <sub>1</sub>   | 0.00610105538 |  |  |
| C <sub>2</sub>          | 0.0201388334  |  |  |
| <b>C</b> <sub>3</sub>   | 90.638038     |  |  |

| 350 | 0.739 | 0.470 |
|-----|-------|-------|
| 334 | 0.509 | 0.185 |
| 320 | 0.276 | 0.040 |
| 310 | 0.137 | 0.010 |
| 300 | 0.044 |       |
| 290 | 0.010 |       |
| 280 |       |       |
| 270 |       |       |
| 260 |       |       |
| 250 |       |       |
|     |       |       |
|     |       |       |
|     | •     | •     |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta \mathbf{P}_{C,t}$                                           | 0.0010  |  |
| $\Delta \mathbf{P}_{\mathrm{C,s}}$                                  | 0.0007  |  |
| $\Delta \mathbf{P}_{F,e}$                                           | -0.0005 |  |
| $\Delta \mathbf{P}_{g,F}$                                           | -0.0021 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0140 |  |

| Constants of Dispersion dn/dT |                          |  |
|-------------------------------|--------------------------|--|
| D <sub>0</sub>                | -3.40 · 10 <sup>-6</sup> |  |
| <b>D</b> <sub>1</sub>         | 1.17 · 10 <sup>-8</sup>  |  |
| D <sub>2</sub>                | 2.38 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 4.96 · 10 <sup>-7</sup>  |  |
| <b>E</b> <sub>1</sub>         | 4.44 · 10 <sup>-10</sup> |  |
| λ <sub>TK</sub> [μm]          | 0.107                    |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/30 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |

| Other Properties                                                         |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 7.1   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 8.2   |
| T <sub>a</sub> [°C]                                                      | 618   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 626   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 716   |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                                          |       |
| λ [W/(m·K)]                                                              |       |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 3.84  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 90    |
| μ                                                                        | 0.277 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 1.65  |
| HK <sub>0.1/20</sub>                                                     | 600   |
| HG                                                                       | 5     |
|                                                                          |       |
| В                                                                        | 0     |
|                                                                          |       |
| CR                                                                       | 3     |
| FR                                                                       | 2     |
| SR                                                                       | 53.3  |
| AR                                                                       | 3.3   |
| PR                                                                       | 4.3   |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |

| Temperature Coefficients of Refractive Index |                                            |     |                                      |        |      |      |
|----------------------------------------------|--------------------------------------------|-----|--------------------------------------|--------|------|------|
|                                              | Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K] |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]    |      |
| [°C]                                         | 1060.0                                     | e   | g                                    | 1060.0 | е    | g    |
| -40/ -20                                     | 0.2                                        | 0.8 | 1.3                                  | -2.0   | -1.5 | -1.0 |
| +20/ +40                                     | 0.0                                        | 0.7 | 1.3                                  | -1.4   | -0.7 | -0.2 |
| +60/ +80                                     | 0.3                                        | 1.0 | 1.7                                  | -0.8   | -0.1 | 0.5  |

### N-LAK8 713538.375

**SCHOTT** 

 $n_d$ = 1.71300  $v_d$ = 53.83  $n_e$ = 1.71616  $v_e$ = 53.61

 $n_F - n_C = 0.013245$  $n_{F'} - n_{C'} = 0.013359$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.67294 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.68075 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.68890 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.69710 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.69802 |  |  |
| n <sub>s</sub>             | 852.1  | 1.70181 |  |  |
| n <sub>r</sub>             | 706.5  | 1.70668 |  |  |
| n <sub>C</sub>             | 656.3  | 1.70897 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.70962 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.71022 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.71289 |  |  |
| <b>n</b> <sub>d</sub>      | 587.6  | 1.71300 |  |  |
| n <sub>e</sub>             | 546.1  | 1.71616 |  |  |
| n <sub>F</sub>             | 486.1  | 1.72222 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.72297 |  |  |
| n <sub>g</sub>             | 435.8  | 1.72944 |  |  |
| n <sub>h</sub>             | 404.7  | 1.73545 |  |  |
| n <sub>i</sub>             | 365.0  | 1.74573 |  |  |
| n <sub>334.1</sub>         | 334.1  | 1.75687 |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.398                 | 0.100                 |
| 2325     | 0.707                 | 0.420                 |
| 1970     | 0.950                 | 0.880                 |
| 1530     | 0.992                 | 0.979                 |
| 1060     | 0.998                 | 0.994                 |
| 700      | 0.998                 | 0.996                 |
| 660      | 0.998                 | 0.995                 |
| 620      | 0.998                 | 0.994                 |
| 580      | 0.998                 | 0.994                 |
| 546      | 0.998                 | 0.995                 |
| 500      | 0.998                 | 0.994                 |
| 460      | 0.995                 | 0.987                 |
| 436      | 0.992                 | 0.979                 |
| 420      | 0.988                 | 0.970                 |
| 405      | 0.981                 | 0.952                 |
| 400      | 0.977                 | 0.943                 |
| 390      | 0.965                 | 0.915                 |
| 380      | 0.946                 | 0.870                 |
| 370      | 0.905                 | 0.780                 |
| 365      | 0.877                 | 0.720                 |
| 350      | 0.739                 | 0.470                 |
| 334      | 0.509                 | 0.185                 |
| 320      | 0.276                 | 0.040                 |
| 310      | 0.137                 | 0.010                 |
| 300      | 0.044                 |                       |
| 290      | 0.010                 |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| <b>Relative Partial Dispersion</b> |        |  |
|------------------------------------|--------|--|
| P <sub>s,t</sub>                   | 0.2861 |  |
| P <sub>C,s</sub>                   | 0.5408 |  |
| $P_{d,C}$                          | 0.3042 |  |
| P <sub>e,d</sub>                   | 0.2383 |  |
| $\mathbf{P}_{g,F}$                 | 0.5450 |  |
| $\mathbf{P}_{i,h}$                 | 0.7764 |  |
|                                    |        |  |
| P' <sub>s,t</sub>                  | 0.2836 |  |
| P' <sub>C',s</sub>                 | 0.5843 |  |
| P' <sub>d,C'</sub>                 | 0.2536 |  |
| P' <sub>e,d</sub>                  | 0.2363 |  |
| P' <sub>g,F'</sub>                 | 0.4838 |  |
| P' <sub>i,h</sub>                  | 0.7698 |  |

| 270.0                 |                  |     |
|-----------------------|------------------|-----|
|                       |                  | 310 |
| Constan               | ts of Dispersion | 300 |
| Formula               |                  | 290 |
| <b>B</b> <sub>1</sub> | 1.33183167       | 280 |
| <b>B</b> <sub>2</sub> | 0.546623206      | 270 |
| <b>B</b> <sub>3</sub> | 1.19084015       | 260 |
| <b>C</b> <sub>1</sub> | 0.00620023871    | 250 |
| <b>C</b> <sub>2</sub> | 0.0216465439     |     |
| <b>C</b> <sub>3</sub> | 82.5827736       |     |
|                       | •                |     |

| Partial Dispersions $\Delta P$ from the "Normal Line" |       |     |
|-------------------------------------------------------|-------|-----|
| $\Delta \mathbf{P}_{\mathrm{C,t}}$                    | 0.02  | 66  |
| $\Delta \mathbf{P}_{\mathrm{C,s}}$                    | 0.01  | 24  |
| $\Delta \mathbf{P}_{F,e}$                             | -0.00 | 26  |
| $\Delta \mathbf{P}_{g,F}$                             | -0.00 | 83  |
| $\Delta \mathbf{P}_{i,g}$                             | -0.04 | 28  |
|                                                       |       |     |
| Other Propert                                         | ties  |     |
| $\alpha_{-30/+70^{\circ}C}[10^{-6}/K]$                |       | 5.6 |
| ~ [10 <sup>-6</sup> /K]                               |       | 6.7 |

**Deviation of Relative** 

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| <b>D</b> <sub>0</sub>         | 4.10 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.25 · 10 <sup>-8</sup>   |  |
| D <sub>2</sub>                | -1.60 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 4.30 · 10 <sup>-7</sup>   |  |
| E <sub>1</sub>                | 6.29 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.213                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/30 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |

| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 5.6   |
|--------------------------------------------------------------------------|-------|
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 6.7   |
| T <sub>a</sub> [°C]                                                      | 643   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                     | 635   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 717   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                          | 0.620 |
| λ [W/(m·K)]                                                              | 0.840 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 3.75  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 115   |
| μ                                                                        | 0.289 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 1.81  |
| HK <sub>0.1/20</sub>                                                     | 740   |
| HG                                                                       | 2     |
|                                                                          |       |
| В                                                                        | 0     |
|                                                                          |       |
| CR                                                                       | 3     |
| FR                                                                       | 2     |
| SR                                                                       | 52.3  |
| AR                                                                       | 1     |
| PR                                                                       | 3.3   |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
| L                                                                        | •     |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |  |  |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|--|--|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |     |     |  |  |
| [°C]                                         | 1060.0                               | e   | g                                    | 1060.0 | е   | g   |  |  |
| -40/ -20                                     | 4.0                                  | 4.7 | 5.4                                  | 1.7    | 2.4 | 3.0 |  |  |
| +20/ +40                                     | 4.1                                  | 5.0 | 5.8                                  | 2.6    | 3.5 | 4.3 |  |  |
| +60/ +80                                     | 4.3                                  | 5.2 | 6.2                                  | 3.1    | 4.1 | 5.0 |  |  |

#### N-LAK9 691547.351

**SCHOTT** 

 $n_d$  = 1.69100  $v_d$  =  $n_e$  = 1.69401  $v_e$  =

Internal Transmittanceτ<sub>i</sub>

 $v_d = 54.71$  $v_e = 54.48$   $n_F - n_C = 0.012631$  $n_{F'} - n_{C'} = 0.012738$ 

| Refractive Indices         |        |         |
|----------------------------|--------|---------|
|                            | λ [nm] |         |
| n <sub>2325.4</sub>        | 2325.4 | 1.65294 |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.66032 |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.66804 |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.67584 |
| n <sub>t</sub>             | 1014.0 | 1.67672 |
| n <sub>s</sub>             | 852.1  | 1.68033 |
| n <sub>r</sub>             | 706.5  | 1.68497 |
| n <sub>C</sub>             | 656.3  | 1.68716 |
| n <sub>C'</sub>            | 643.8  | 1.68777 |
| n <sub>632.8</sub>         | 632.8  | 1.68834 |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.69089 |
| n <sub>d</sub>             | 587.6  | 1.69100 |
| n <sub>e</sub>             | 546.1  | 1.69401 |
| n <sub>F</sub>             | 486.1  | 1.69979 |
| n <sub>F'</sub>            | 480.0  | 1.70051 |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.70667 |
| n <sub>h</sub>             | 404.7  | 1.71239 |
| n <sub>i</sub>             | 365.0  | 1.72219 |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.73281 |
| n <sub>312.6</sub>         | 312.6  |         |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |
| n <sub>280.4</sub>         | 280.4  |         |
| n <sub>248.3</sub>         | 248.3  | _       |

| mitorna | - ransinitt           | 41100 t <sub>1</sub>  |
|---------|-----------------------|-----------------------|
| λ [nm]  | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500    | 0.492                 | 0.170                 |
| 2325    | 0.752                 | 0.490                 |
| 1970    | 0.959                 | 0.900                 |
| 1530    | 0.992                 | 0.980                 |
| 1060    | 0.998                 | 0.995                 |
| 700     | 0.998                 | 0.996                 |
| 660     | 0.998                 | 0.995                 |
| 620     | 0.998                 | 0.995                 |
| 580     | 0.998                 | 0.994                 |
| 546     | 0.998                 | 0.994                 |
| 500     | 0.997                 | 0.992                 |
| 460     | 0.994                 | 0.985                 |
| 436     | 0.991                 | 0.977                 |
| 420     | 0.988                 | 0.971                 |
| 405     | 0.983                 | 0.958                 |
| 400     | 0.980                 | 0.950                 |
| 390     | 0.971                 | 0.930                 |
| 380     | 0.954                 | 0.890                 |
| 370     | 0.928                 | 0.830                 |
| 365     | 0.906                 | 0.782                 |
| 350     | 0.787                 | 0.550                 |
| 334     | 0.556                 | 0.230                 |
| 320     | 0.276                 | 0.040                 |
| 310     | 0.123                 |                       |
| 300     | 0.044                 |                       |
| 290     | 0.010                 |                       |
| 280     |                       |                       |
| 270     |                       |                       |
| 260     |                       |                       |
| 250     |                       |                       |
|         |                       |                       |
|         |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{\mathrm{s,t}}$ | 0.2859 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5409 |  |
| $\mathbf{P}_{d,C}$          | 0.3043 |  |
| $\mathbf{P}_{e,d}$          | 0.2384 |  |
| $\mathbf{P}_{g,F}$          | 0.5447 |  |
| $\mathbf{P}_{i,h}$          | 0.7756 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2834 |  |
| P' <sub>C',s</sub>          | 0.5844 |  |
| P' <sub>d,C'</sub>          | 0.2536 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2363 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4835 |  |
| P' <sub>i,h</sub>           | 0.7690 |  |
| · ·                         | · ·    |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |        |  |
|---------------------------------------------------------------------|--------|--|
| $\Delta P_{C,t}$                                                    | 0.0223 |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0105 |  |
| $\Delta P_{F,e}$ -0.0023                                            |        |  |
| Δ <b>P</b> <sub>g,F</sub> -0.0071                                   |        |  |
| Δ <b>P</b> <sub>i,g</sub> -0.0367                                   |        |  |

| 04 5 4                                                                    |       |
|---------------------------------------------------------------------------|-------|
| Other Properties                                                          |       |
| $\alpha_{-30/+70^{\circ}C}[10^{-6}/K]$                                    | 6.3   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                   | 7.5   |
| $T_g[^{\circ}C]$                                                          | 656   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                               | 645   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 722   |
| $\mathbf{c}_{p}[J/(g\cdotK)]$                                             | 0.649 |
| λ [W/(m·K)]                                                               | 0.908 |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.51  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 110   |
| μ                                                                         | 0.285 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 1.83  |
| HK <sub>0.1/20</sub>                                                      | 700   |
| HG                                                                        | 3     |
|                                                                           |       |
| В                                                                         | 0     |
|                                                                           |       |
| CR                                                                        | 3     |
| FR                                                                        | 3     |
| SR                                                                        | 52    |
| AR                                                                        | 1.2   |
| PR                                                                        | 4.3   |
|                                                                           |       |

| Constants of Dispersion Formula |               |
|---------------------------------|---------------|
| <b>B</b> <sub>1</sub>           | 1.46231905    |
| <b>B</b> <sub>2</sub>           | 0.344399589   |
| <b>B</b> <sub>3</sub>           | 1.15508372    |
| <b>C</b> <sub>1</sub>           | 0.00724270156 |
| <b>C</b> <sub>2</sub>           | 0.0243353131  |
| C <sub>3</sub>                  | 85.4686868    |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | 2.11 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.11 · 10 <sup>-8</sup>   |  |
| D <sub>2</sub>          | 1.82 · 10 <sup>-12</sup>  |  |
| <b>E</b> <sub>0</sub>   | 4.74 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | -3.47 · 10 <sup>-10</sup> |  |
| λ <sub>TK</sub> [μm]    | 0.146                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/30 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

# Remarks

| Temper                                     | Temperature Coefficients of Refractive Index |                  |                                      |        |     |     |
|--------------------------------------------|----------------------------------------------|------------------|--------------------------------------|--------|-----|-----|
| Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K] |                                              | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]      |     |     |
| [°C]                                       | 1060.0                                       | e                | g                                    | 1060.0 | е   | g   |
| -40/ -20                                   | 3.0                                          | 3.9              | 4.6                                  | 0.8    | 1.6 | 2.3 |
| +20/ +40                                   | 2.9                                          | 3.7              | 4.4                                  | 1.5    | 2.2 | 2.9 |
| +60/ +80                                   | 3.1                                          | 3.8              | 4.4                                  | 2.0    | 2.7 | 3.3 |

### N-LAK10 720506.369

**SCHOTT** 

n<sub>d</sub>= 1.72003 n<sub>e</sub>= 1.72341  $v_d = 50.62$  $v_e = 50.39$   $n_F - n_C = 0.014224$  $n_{F'} - n_{C'} = 0.014357$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.67890 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.68670 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.69488 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.70324 |  |
| n <sub>t</sub>             | 1014.0 | 1.70419 |  |
| n <sub>s</sub>             | 852.1  | 1.70815 |  |
| n <sub>r</sub>             | 706.5  | 1.71328 |  |
| n <sub>C</sub>             | 656.3  | 1.71572 |  |
| n <sub>C'</sub>            | 643.8  | 1.71641 |  |
| n <sub>632.8</sub>         | 632.8  | 1.71705 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.71990 |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.72003 |  |
| n <sub>e</sub>             | 546.1  | 1.72341 |  |
| n <sub>F</sub>             | 486.1  | 1.72995 |  |
| n <sub>F</sub> '           | 480.0  | 1.73077 |  |
| n <sub>g</sub>             | 435.8  | 1.73779 |  |
| n <sub>h</sub>             | 404.7  | 1.74438 |  |
| n <sub>i</sub>             | 365.0  | 1.75578 |  |
| n <sub>334.1</sub>         | 334.1  |         |  |
| n <sub>312.6</sub>         | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal ' | Transmitta            | anceτ <sub>i</sub>    |
|------------|-----------------------|-----------------------|
| λ [nm]     | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500       | 0.428                 | 0.120                 |
| 2325       | 0.720                 | 0.440                 |
| 1970       | 0.950                 | 0.880                 |
| 1530       | 0.991                 | 0.977                 |
| 1060       | 0.998                 | 0.995                 |
| 700        | 0.999                 | 0.995                 |
| 660        | 0.998                 | 0.994                 |
| 620        | 0.998                 | 0.994                 |
| 580        | 0.997                 | 0.993                 |
| 546        | 0.998                 | 0.994                 |
| 500        | 0.995                 | 0.988                 |
| 460        | 0.991                 | 0.977                 |
| 436        | 0.985                 | 0.963                 |
| 420        | 0.976                 | 0.940                 |
| 405        | 0.963                 | 0.910                 |
| 400        | 0.959                 | 0.900                 |
| 390        | 0.937                 | 0.850                 |
| 380        | 0.901                 | 0.770                 |
| 370        | 0.831                 | 0.630                 |
| 365        | 0.770                 | 0.520                 |
| 350        | 0.442                 | 0.130                 |
| 334        | 0.026                 |                       |
| 320        |                       |                       |
| 310        |                       |                       |
| 300        |                       |                       |
| 290        |                       |                       |
| 280        |                       |                       |
| 270        |                       |                       |
| 260        |                       |                       |
| 250        |                       |                       |
|            |                       |                       |
| I          | I                     | I                     |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{\mathrm{s,t}}$ | 0.2779 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5328 |  |
| $\mathbf{P}_{d,C}$          | 0.3025 |  |
| $\mathbf{P}_{e,d}$          | 0.2381 |  |
| $\mathbf{P}_{g,F}$          | 0.5515 |  |
| $\mathbf{P}_{i,h}$          | 0.8015 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2753 |  |
| P' <sub>C',s</sub>          | 0.5755 |  |
| P' <sub>d,C'</sub>          | 0.2521 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2359 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4894 |  |
| P' <sub>i,h</sub>           | 0.7941 |  |
|                             |        |  |
| Deviation of Relative       |        |  |

| <b>n</b> <sub>248.3</sub> | 248.3      |      | 320 |  |
|---------------------------|------------|------|-----|--|
|                           |            |      | 310 |  |
| Constants of Dispersion   |            |      | 300 |  |
| Formula                   |            |      | 290 |  |
| <b>B</b> <sub>1</sub>     | 1.72878017 | 7    | 280 |  |
| <b>B</b> <sub>2</sub>     | 0.16925782 | 25   | 270 |  |
| <b>B</b> <sub>3</sub>     | 1.19386956 | 3    | 260 |  |
| <b>C</b> <sub>1</sub>     | 0.00886014 | 1635 | 250 |  |
| <b>C</b> <sub>2</sub>     | 0.03634165 | 509  |     |  |
| <b>C</b> <sub>3</sub>     | 82.9009069 | )    |     |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0256  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0119  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0024 |  |
| $\Delta P_{g,F}$                                                    | -0.0072 |  |
| $\Delta P_{i,q}$                                                    | -0.0354 |  |

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   |                           |  |  |
| <b>D</b> <sub>0</sub>   | 4.10 · 10 <sup>-6</sup>   |  |  |
| <b>D</b> <sub>1</sub>   | 1.23 · 10 <sup>-8</sup>   |  |  |
| <b>D</b> <sub>2</sub>   | -7.85 · 10 <sup>-12</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 5.08 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 5.76 · 10 <sup>-10</sup>  |  |  |
| λ <sub>TK</sub> [μm]    | 0.205                     |  |  |
| 11/11/11/11             |                           |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 39/34 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |

| <b>Other Properties</b>                                                     |       |
|-----------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                | 5.7   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                               | 6.8   |
| T <sub>a</sub> [°C]                                                         | 636   |
|                                                                             | 631   |
| T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 714   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                             | 0.640 |
| λ [W/(m·K)]                                                                 | 0.860 |
|                                                                             |       |
| ρ [g/cm <sup>3</sup> ]                                                      | 3.69  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                               | 116   |
| μ                                                                           | 0.286 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                              | 1.97  |
| HK <sub>0.1/20</sub>                                                        | 780   |
| HG                                                                          | 2     |
|                                                                             |       |
| В                                                                           | 0     |
|                                                                             |       |
| CR                                                                          | 2     |
| FR                                                                          | 2     |
| SR                                                                          | 52.3  |
| AR                                                                          | 1     |
| PR                                                                          | 3     |
|                                                                             |       |
|                                                                             |       |
|                                                                             |       |

| Temperature Coefficients of Refractive Index |                                      |     |     |                                      |     |     |
|----------------------------------------------|--------------------------------------|-----|-----|--------------------------------------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     |     |
| [°C]                                         | 1060.0                               | Φ   | g   | 1060.0                               | е   | g   |
| -40/ -20                                     | 4.1                                  | 5.0 | 5.8 | 1.8                                  | 2.6 | 3.4 |
| +20/ +40                                     | 4.2                                  | 5.1 | 6.1 | 2.7                                  | 3.6 | 4.6 |
| +60/ +80                                     | 4.4                                  | 5.4 | 6.5 | 3.2                                  | 4.3 | 5.3 |

#### N-LAK12 678552.410

n<sub>d</sub>= 1.67790  $v_{d}$  = 55.20 n<sub>e</sub>= 1.68083

 $v_e = 54.92$ 

 $n_F - n_C = 0.012281$  $n_{F'}-n_{C'}=0.012396$ 

| Defending hading           |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
| Refractive Indices         |        |         |  |  |  |
|                            | λ [nm] |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.64541 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.65107 |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.65713 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.66366 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.66443 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.66772 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.67209 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.67419 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.67478 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.67533 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.67779 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.67790 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.68083 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.68647 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.68717 |  |  |  |
| n <sub>g</sub>             | 435.8  | 1.69320 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.69882 |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.70842 |  |  |  |
| n <sub>334.1</sub>         | 334.1  | 1.71881 |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal Transmittance $\tau_i$ |                       |                       |
|---------------------------------|-----------------------|-----------------------|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                            | 0.592                 | 0.270                 |
| 2325                            | 0.764                 | 0.510                 |
| 1970                            | 0.937                 | 0.850                 |
| 1530                            | 0.990                 | 0.975                 |
| 1060                            | 0.997                 | 0.992                 |
| 700                             | 0.997                 | 0.993                 |
| 660                             | 0.996                 | 0.989                 |
| 620                             | 0.995                 | 0.988                 |
| 580                             | 0.996                 | 0.990                 |
| 546                             | 0.996                 | 0.991                 |
| 500                             | 0.994                 | 0.986                 |
| 460                             | 0.987                 | 0.968                 |
| 436                             | 0.983                 | 0.958                 |
| 420                             | 0.981                 | 0.952                 |
| 405                             | 0.977                 | 0.943                 |
| 400                             | 0.976                 | 0.940                 |
| 390                             | 0.967                 | 0.920                 |
| 380                             | 0.946                 | 0.870                 |
| 370                             | 0.910                 | 0.790                 |
| 365                             | 0.882                 | 0.730                 |
| 350                             | 0.733                 | 0.460                 |
| 334                             | 0.468                 | 0.150                 |
| 320                             | 0.152                 | 0.010                 |
| 310                             | 0.032                 |                       |
| 300                             |                       |                       |
| 290                             |                       |                       |
| 280                             |                       |                       |
| 270                             |                       |                       |
| 260                             |                       |                       |
| 250                             |                       |                       |
|                                 |                       |                       |
| 1                               | I                     | I                     |

| Relative Partial Dispersion |        |  |  |  |
|-----------------------------|--------|--|--|--|
| $\mathbf{P}_{s,t}$          | 0.2673 |  |  |  |
| <b>P</b> <sub>C,s</sub>     | 0.5269 |  |  |  |
| $\mathbf{P}_{d,C}$          | 0.3024 |  |  |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2383 |  |  |  |
| $\mathbf{P}_{g,F}$          | 0.5485 |  |  |  |
| $\mathbf{P}_{i,h}$          | 0.7818 |  |  |  |
|                             |        |  |  |  |
| P' <sub>s,t</sub>           | 0.2648 |  |  |  |
| P' <sub>C',s</sub>          | 0.5695 |  |  |  |
| P' <sub>d,C'</sub>          | 0.2521 |  |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2361 |  |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4866 |  |  |  |
| P' <sub>i,h</sub>           | 0.7746 |  |  |  |
|                             |        |  |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | -0.0126 |  |
| ΔP <sub>C,s</sub>                                                   | -0.0047 |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | -0.0001 |  |
| $\Delta \mathbf{P}_{g,F}$                                           | -0.0024 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0226 |  |

|   | Т             |
|---|---------------|
|   | T             |
|   | Т             |
|   | С             |
|   | c             |
|   |               |
|   | ρ             |
|   | <u></u> Θ   Ε |
|   | μ             |
| 1 | μ<br><b>Κ</b> |
|   | ш             |

| Constants of Dispersion |                          |  |
|-------------------------|--------------------------|--|
| dn/dT                   |                          |  |
| $\mathbf{D}_0$          | -5.67 · 10 <sup>-6</sup> |  |
| <b>D</b> <sub>1</sub>   | 8.27 · 10 <sup>-9</sup>  |  |
| $D_2$                   | 1.27 · 10 <sup>-12</sup> |  |
| <b>E</b> <sub>0</sub>   | 5.25 · 10 <sup>-7</sup>  |  |
| <b>E</b> <sub>1</sub>   | 6.30 · 10 <sup>-10</sup> |  |
| λ <sub>тκ</sub> [μm]    | 0.162                    |  |

**Constants of Dispersion** 

1.17365704

0.588992398 0.978014394

0.00577031797

0.0200401678

95.4873482

**Formula** 

**B**<sub>1</sub>

 $\mathbf{B}_2$ 

 $\mathbf{C}_1$ 

 $C_2$ 

 $c_3$ 

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/31 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

| $\mathbf{D}_2$        | 1.27 - 10             | ,                                    | Ke              | illarks          |                                      |                  |
|-----------------------|-----------------------|--------------------------------------|-----------------|------------------|--------------------------------------|------------------|
| <b>E</b> <sub>0</sub> | 5.25 · 10             | ) <sup>-7</sup>                      |                 |                  |                                      |                  |
| E <sub>1</sub>        | 6.30 · 10             | ) <sup>-10</sup>                     |                 |                  |                                      |                  |
| λ <sub>TK</sub> [μm]  | 0.162                 |                                      |                 |                  |                                      |                  |
|                       |                       |                                      |                 |                  |                                      |                  |
| Temper                | ature Co              | efficients                           | s of Refra      | active Ind       | dex                                  |                  |
|                       |                       |                                      |                 |                  |                                      |                  |
|                       | Δn <sub>rel</sub>     | /ΔT[10 <sup>-6</sup> /K]             |                 | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]                |
| [°C]                  | Δn <sub>rel</sub>     | /ΔT[10 <sup>-6</sup> /K]<br><b>e</b> | g               | Δn <sub>ab</sub> | s/ΔT[10 <sup>-6</sup> /K             | ]<br>g           |
| [°C]                  |                       |                                      |                 |                  | Ĭ                                    |                  |
|                       | 1060.0                | е                                    | g               | 1060.0           | е                                    | g                |
| -40/ -20              | <b>1060.0</b><br>-1.0 | <b>e</b><br>-0.3                     | <b>g</b><br>0.3 | 1060.0<br>-3.2   | <b>e</b><br>-2.6                     | <b>g</b><br>-2.0 |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 7.6   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 9.3   |
| T <sub>a</sub> [°C]                                                       | 614   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                      | 606   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 714   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           |       |
| λ [W/(m·K)]                                                               |       |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 4.10  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 87    |
| μ                                                                         | 0.288 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 1.44  |
| HK <sub>0.1/20</sub>                                                      | 560   |
| HG                                                                        | 6     |
|                                                                           |       |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 3     |
| FR                                                                        | 1     |
| SR                                                                        | 53.3  |
| AR                                                                        | 3.3   |
| PR                                                                        | 4.3   |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |

#### N-LAK14 697554.363

n<sub>d</sub>= 1.69680  $v_{d}$  = 55.41  $n_e = 1.69980$  $v_e = 55.19$ 

 $n_F - n_C = 0.012575$  $n_{F'}-n_{C'}=0.012679$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.65783 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.66554 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.67357 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.68157 |  |
| n <sub>t</sub>             | 1014.0 | 1.68246 |  |
| n <sub>s</sub>             | 852.1  | 1.68612 |  |
| n <sub>r</sub>             | 706.5  | 1.69077 |  |
| n <sub>C</sub>             | 656.3  | 1.69297 |  |
| n <sub>C'</sub>            | 643.8  | 1.69358 |  |
| n <sub>632.8</sub>         | 632.8  | 1.69415 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.69669 |  |
| n <sub>d</sub>             | 587.6  | 1.69680 |  |
| n <sub>e</sub>             | 546.1  | 1.69980 |  |
| n <sub>F</sub>             | 486.1  | 1.70554 |  |
| n <sub>F'</sub>            | 480.0  | 1.70626 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.71237 |  |
| n <sub>h</sub>             | 404.7  | 1.71804 |  |
| n <sub>i</sub>             | 365.0  | 1.72772 |  |
| n <sub>334.1</sub>         | 334.1  | 1.73819 |  |
| n <sub>312.6</sub>         | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |
|                            |        |         |  |

| internai | ıransmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.382                 | 0.090                 |
| 2325     | 0.672                 | 0.370                 |
| 1970     | 0.933                 | 0.840                 |
| 1530     | 0.984                 | 0.960                 |
| 1060     | 0.998                 | 0.995                 |
| 700      | 0.998                 | 0.995                 |
| 660      | 0.998                 | 0.994                 |
| 620      | 0.997                 | 0.992                 |
| 580      | 0.997                 | 0.993                 |
| 546      | 0.998                 | 0.995                 |
| 500      | 0.997                 | 0.992                 |
| 460      | 0.994                 | 0.984                 |
| 436      | 0.991                 | 0.977                 |
| 420      | 0.988                 | 0.971                 |
| 405      | 0.984                 | 0.960                 |
| 400      | 0.981                 | 0.953                 |
| 390      | 0.971                 | 0.930                 |
| 380      | 0.959                 | 0.900                 |
| 370      | 0.933                 | 0.840                 |
| 365      | 0.915                 | 0.800                 |
| 350      | 0.821                 | 0.610                 |
| 334      | 0.642                 | 0.330                 |
| 320      | 0.428                 | 0.120                 |
| 310      | 0.239                 | 0.040                 |
| 300      | 0.089                 |                       |
| 290      | 0.019                 |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| Internal | Transmitt             | anceτ <sub>i</sub>    | Re                     |
|----------|-----------------------|-----------------------|------------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) | P <sub>s,</sub>        |
| 2500     | 0.382                 | 0.090                 | P <sub>C</sub>         |
| 2325     | 0.672                 | 0.370                 | P <sub>d,</sub>        |
| 1970     | 0.933                 | 0.840                 | Pe                     |
| 1530     | 0.984                 | 0.960                 | P <sub>g,</sub>        |
| 1060     | 0.998                 | 0.995                 | $\mathbf{P}_{i,l}$     |
| 700      | 0.998                 | 0.995                 |                        |
| 660      | 0.998                 | 0.994                 | P's                    |
| 620      | 0.997                 | 0.992                 | P'                     |
| 580      | 0.997                 | 0.993                 | P'c                    |
| 546      | 0.998                 | 0.995                 | P',                    |
| 500      | 0.997                 | 0.992                 | P' <sub>9</sub>        |
| 460      | 0.994                 | 0.984                 | <b>P'</b> i,           |
| 436      | 0.991                 | 0.977                 |                        |
| 420      | 0.988                 | 0.971                 | De                     |
| 405      | 0.984                 | 0.960                 | Pa                     |
| 400      | 0.981                 | 0.953                 | fro                    |
| 390      | 0.971                 | 0.930                 | ΔΡ                     |
| 380      | 0.959                 | 0.900                 | ΔΡ                     |
| 370      | 0.933                 | 0.840                 | ΔΡ                     |
| 365      | 0.915                 | 0.800                 | ΔΡ                     |
| 350      | 0.821                 | 0.610                 | ΔΡ                     |
| 334      | 0.642                 | 0.330                 |                        |
| 320      | 0.428                 | 0.120                 | Ot                     |
| 310      | 0.239                 | 0.040                 | α3                     |
| 300      | 0.089                 |                       | α+2                    |
| 290      | 0.019                 |                       | T <sub>g</sub> [       |
| 280      |                       |                       | <b>T</b> <sub>10</sub> |
| 270      |                       |                       | <b>T</b> <sub>10</sub> |
| 260      |                       |                       | c <sub>p</sub> [       |
|          |                       |                       |                        |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2903 |  |
| P <sub>C,s</sub>            | 0.5447 |  |
| P <sub>d,C</sub>            | 0.3049 |  |
| P <sub>e,d</sub>            | 0.2384 |  |
| <b>P</b> <sub>g,F</sub>     | 0.5427 |  |
| <b>P</b> <sub>i,h</sub>     | 0.7701 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2880 |  |
| P' <sub>C',s</sub>          | 0.5885 |  |
| P' <sub>d,C'</sub>          | 0.2542 |  |
| P' <sub>e,d</sub>           | 0.2365 |  |
| P' <sub>g,F'</sub>          | 0.4819 |  |
| P' <sub>i,h</sub>           | 0.7638 |  |
|                             |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |
|---------------------------------------------------------------------|---------|
| $\Delta \mathbf{P}_{\mathrm{C,t}}$                                  | 0.0273  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0127  |
| ΔP <sub>F,e</sub>                                                   | -0.0026 |
| $\Delta P_{g,F}$                                                    | -0.0079 |
| $\Delta P_{i,g}$                                                    | -0.0386 |

|  | Ρ-              |
|--|-----------------|
|  | λ [W            |
|  |                 |
|  | ρ [g/           |
|  | <b>E</b> [10    |
|  | μ               |
|  | <b>K</b> [10    |
|  | HK <sub>0</sub> |
|  | HG              |
|  |                 |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| B <sub>1</sub>          | 1.50781212    |  |
| <b>B</b> <sub>2</sub>   | 0.318866829   |  |
| <b>B</b> <sub>3</sub>   | 1.14287213    |  |
| <b>C</b> <sub>1</sub>   | 0.00746098727 |  |
| C <sub>2</sub>          | 0.0242024834  |  |
| C <sub>3</sub>          | 80.9565165    |  |

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   | dn/dT                     |  |  |
| $\mathbf{D}_0$          | 2.68 · 10 <sup>-6</sup>   |  |  |
| <b>D</b> <sub>1</sub>   | 1.15 · 10 <sup>-8</sup>   |  |  |
| $D_2$                   | -1.44 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 3.72 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 5.53 · 10 <sup>-10</sup>  |  |  |
| λ <sub>TK</sub> [μm]    | 0.226                     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/30 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |

## Remarks

| Temper   | Temperature Coefficients of Refractive Index |                          |     |                  |                                      |     |
|----------|----------------------------------------------|--------------------------|-----|------------------|--------------------------------------|-----|
|          | Δn <sub>rel</sub>                            | /ΔT[10 <sup>-6</sup> /K] |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]     | 1060.0                                       | e                        | g   | 1060.0           | е                                    | g   |
| -40/ -20 | 3.2                                          | 3.8                      | 4.4 | 0.9              | 1.5                                  | 2.1 |
| +20/ +40 | 3.2                                          | 4.0                      | 4.7 | 1.8              | 2.5                                  | 3.2 |
| +60/ +80 | 3.4                                          | 4.2                      | 5.0 | 2.2              | 3.0                                  | 3.8 |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 5.5   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 6.9   |
| T <sub>a</sub> [°C]                                                       | 661   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                      | 653   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 734   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           |       |
| λ [W/(m·K)]                                                               |       |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.63  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 111   |
| μ                                                                         | 0.283 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 1.73  |
| HK <sub>0.1/20</sub>                                                      | 730   |
| HG                                                                        | 2     |
|                                                                           |       |
| В                                                                         | 0     |
|                                                                           |       |
| CR                                                                        | 3     |
| FR                                                                        | 2     |
| SR                                                                        | 52.3  |
| AR                                                                        | 1     |
| PR                                                                        | 3     |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |

#### N-LAK21 640601.374

**SCHOTT** 

 $n_d = 1.64049$   $v_d = 1.64304$   $v_e = 1.64304$ 

 $v_d$  = 60.10  $v_e$  = 59.86

 $n_F - n_C = 0.010657$  $n_{F'} - n_{C'} = 0.010743$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
|                            | λ [nm] |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.60776 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.61416 |  |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.62086 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.62759 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.62834 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.63143 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.63538 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.63724 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.63776 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.63825 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.64040 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.64049 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.64304 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.64790 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.64850 |  |  |  |
| n <sub>g</sub>             | 435.8  | 1.65366 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.65844 |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.66657 |  |  |  |
| n <sub>334.1</sub>         | 334.1  | 1.67532 |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |  |  |
|--------------------------------------|-----------------------|-----------------------|--|--|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |  |
| 2500                                 | 0.536                 | 0.210                 |  |  |
| 2325                                 | 0.752                 | 0.490                 |  |  |
| 1970                                 | 0.946                 | 0.870                 |  |  |
| 1530                                 | 0.988                 | 0.970                 |  |  |
| 1060                                 | 0.998                 | 0.994                 |  |  |
| 700                                  | 0.998                 | 0.994                 |  |  |
| 660                                  | 0.996                 | 0.991                 |  |  |
| 620                                  | 0.996                 | 0.990                 |  |  |
| 580                                  | 0.997                 | 0.992                 |  |  |
| 546                                  | 0.997                 | 0.992                 |  |  |
| 500                                  | 0.995                 | 0.988                 |  |  |
| 460                                  | 0.990                 | 0.976                 |  |  |
| 436                                  | 0.987                 | 0.969                 |  |  |
| 420                                  | 0.985                 | 0.963                 |  |  |
| 405                                  | 0.982                 | 0.955                 |  |  |
| 400                                  | 0.979                 | 0.950                 |  |  |
| 390                                  | 0.971                 | 0.930                 |  |  |
| 380                                  | 0.959                 | 0.900                 |  |  |
| 370                                  | 0.928                 | 0.830                 |  |  |
| 365                                  | 0.905                 | 0.780                 |  |  |
| 350                                  | 0.799                 | 0.570                 |  |  |
| 334                                  | 0.565                 | 0.240                 |  |  |
| 320                                  | 0.250                 | 0.040                 |  |  |
| 310                                  | 0.060                 |                       |  |  |
| 300                                  |                       |                       |  |  |
| 290                                  |                       |                       |  |  |
| 280                                  |                       |                       |  |  |
| 270                                  |                       |                       |  |  |
| 260                                  |                       |                       |  |  |
| 250                                  |                       |                       |  |  |
|                                      |                       |                       |  |  |
|                                      |                       |                       |  |  |

| Constants of Dispersion |               |  |  |
|-------------------------|---------------|--|--|
| Formula                 |               |  |  |
| <b>B</b> <sub>1</sub>   | 1.22718116    |  |  |
| <b>B</b> <sub>2</sub>   | 0.420783743   |  |  |
| <b>B</b> <sub>3</sub>   | 1.01284843    |  |  |
| <b>C</b> <sub>1</sub>   | 0.00602075682 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0196862889  |  |  |
| <b>C</b> <sub>3</sub>   | 88.4370099    |  |  |
|                         |               |  |  |

| Constants of Dispersion dn/dT |                          |  |
|-------------------------------|--------------------------|--|
| $\mathbf{D}_0$                | -2.36 · 10 <sup>-6</sup> |  |
| <b>D</b> <sub>1</sub>         | 1.15 · 10 <sup>-8</sup>  |  |
| $D_2$                         | 1.11 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 3.10 · 10 <sup>-7</sup>  |  |
| <b>E</b> <sub>1</sub>         | 2.78 · 10 <sup>-10</sup> |  |
| λ <sub>TK</sub> [μm]          | 0.234                    |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/31 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

## Remarks

| Temperature Coefficients of Refractive Index |                                            |     |                                      |        |      |      |
|----------------------------------------------|--------------------------------------------|-----|--------------------------------------|--------|------|------|
|                                              | Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K] |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]    |      |
| [°C]                                         | 1060.0                                     | e   | g                                    | 1060.0 | e    | g    |
| -40/ -20                                     | 0.6                                        | 1.1 | 1.6                                  | -1.6   | -1.2 | -0.7 |
| +20/ +40                                     | 0.5                                        | 1.0 | 1.6                                  | -0.9   | -0.4 | 0.1  |
| +60/ +80                                     | 0.7                                        | 1.3 | 1.9                                  | -0.4   | 0.1  | 0.7  |

| Relative Partial Dispersion |        |  |  |
|-----------------------------|--------|--|--|
| P <sub>s,t</sub>            | 0.2900 |  |  |
| <b>P</b> <sub>C,s</sub>     | 0.5453 |  |  |
| $\mathbf{P}_{d,C}$          | 0.3052 |  |  |
| $\mathbf{P}_{e,d}$          | 0.2385 |  |  |
| $\mathbf{P}_{g,F}$          | 0.5411 |  |  |
| $\mathbf{P}_{i,h}$          | 0.7630 |  |  |
|                             |        |  |  |
| P' <sub>s,t</sub>           | 0.2877 |  |  |
| P' <sub>C',s</sub>          | 0.5892 |  |  |
| P' <sub>d,C'</sub>          | 0.2545 |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2366 |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4804 |  |  |
| P' <sub>i,h</sub>           | 0.7569 |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0052  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0023  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0005 |  |
| $\Delta P_{g,F}$                                                    | -0.0017 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0090 |  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 6.8   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                               | 8.1   |
| <b>T</b> <sub>g</sub> [°C]                                            | 639   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 627   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                            | 716   |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                                       | 0.590 |
| λ [W/(m·K)]                                                           | 0.880 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 3.74  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 91    |
| μ                                                                     | 0.272 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 1.74  |
| HK <sub>0.1/20</sub>                                                  | 600   |
| HG                                                                    | 5     |
|                                                                       |       |
| В                                                                     | 0     |
|                                                                       |       |
| CR                                                                    | 4     |
| FR                                                                    | 2     |
| SR                                                                    | 53.2  |
| AR                                                                    | 4.3   |
| PR                                                                    | 4.3   |
|                                                                       |       |
|                                                                       |       |
|                                                                       |       |

#### N-LAK22 651559.377

n<sub>d</sub>= 1.65113  $v_{d}$  = 55.89 n<sub>e</sub>= 1.65391

 $v_{e} = 55.63$ 

 $n_F - n_C = 0.011650$  $n_{F'}-n_{C'}=0.011755$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.61915 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.62488 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.63100 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.63747 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.63823 |  |  |
| n <sub>s</sub>             | 852.1  | 1.64141 |  |  |
| <b>n</b> <sub>r</sub>      | 706.5  | 1.64560 |  |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.64760 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.64816 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.64868 |  |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.65103 |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.65113 |  |  |
| n <sub>e</sub>             | 546.1  | 1.65391 |  |  |
| n <sub>F</sub>             | 486.1  | 1.65925 |  |  |
| n <sub>F</sub>             | 480.0  | 1.65992 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.66562 |  |  |
| n <sub>h</sub>             | 404.7  | 1.67092 |  |  |
| n <sub>i</sub>             | 365.0  | 1.67997 |  |  |
| n <sub>334.1</sub>         | 334.1  | 1.68975 |  |  |
| n <sub>312.6</sub>         | 312.6  | 1.69876 |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.672                 | 0.370                 |
| 2325     | 0.826                 | 0.620                 |
| 1970     | 0.959                 | 0.900                 |
| 1530     | 0.991                 | 0.978                 |
| 1060     | 0.998                 | 0.994                 |
| 700      | 0.998                 | 0.994                 |
| 660      | 0.997                 | 0.992                 |
| 620      | 0.996                 | 0.991                 |
| 580      | 0.997                 | 0.993                 |
| 546      | 0.997                 | 0.993                 |
| 500      | 0.995                 | 0.988                 |
| 460      | 0.992                 | 0.980                 |
| 436      | 0.990                 | 0.975                 |
| 420      | 0.989                 | 0.973                 |
| 405      | 0.987                 | 0.968                 |
| 400      | 0.985                 | 0.964                 |
| 390      | 0.980                 | 0.950                 |
| 380      | 0.967                 | 0.920                 |
| 370      | 0.947                 | 0.873                 |
| 365      | 0.933                 | 0.840                 |
| 350      | 0.844                 | 0.655                 |
| 334      | 0.657                 | 0.350                 |
| 320      | 0.398                 | 0.100                 |
| 310      | 0.209                 | 0.020                 |
| 300      | 0.078                 |                       |
| 290      | 0.014                 |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          | I                     | I                     |

| Relative Partial Dispersion |        |  |  |
|-----------------------------|--------|--|--|
| P <sub>s,t</sub>            | 0.2729 |  |  |
| P <sub>C,s</sub>            | 0.5314 |  |  |
| $\mathbf{P}_{d,C}$          | 0.3031 |  |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2384 |  |  |
| $\mathbf{P}_{g,F}$          | 0.5467 |  |  |
| $\mathbf{P}_{i,h}$          | 0.7771 |  |  |
|                             |        |  |  |
| P' <sub>s,t</sub>           | 0.2704 |  |  |
| P' <sub>C',s</sub>          | 0.5744 |  |  |
| P' <sub>d,C'</sub>          | 0.2527 |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2362 |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4851 |  |  |
| P' <sub>i,h</sub>           | 0.7702 |  |  |
|                             |        |  |  |

| ) |   |
|---|---|
| 5 | Δ |
| ) |   |
| ) | 0 |
| ) | 0 |
|   | 0 |
|   | T |
|   | T |
|   | T |
|   | λ |
|   | λ |
|   |   |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |
|---------------------------------------------------------------------|---------|--|--|
| $\Delta \mathbf{P}_{\mathrm{C,t}}$                                  | -0.0058 |  |  |
| ΔP <sub>C,s</sub>                                                   | -0.0018 |  |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | -0.0005 |  |  |
| $\Delta \mathbf{P}_{g,F}$                                           | -0.0031 |  |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0236 |  |  |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.14229781    |  |
| <b>B</b> <sub>2</sub>   | 0.535138441   |  |
| <b>B</b> <sub>3</sub>   | 1.04088385    |  |
| <b>C</b> <sub>1</sub>   | 0.00585778594 |  |
| <b>C</b> <sub>2</sub>   | 0.0198546147  |  |
| <b>C</b> <sub>3</sub>   | 100.834017    |  |

| Constants of Dispersion Color Code |                           |                              |       |
|------------------------------------|---------------------------|------------------------------|-------|
| dn/dT                              |                           | $\lambda_{80}/\lambda_{5}$   | 36/30 |
| <b>D</b> <sub>0</sub>              | 1.36 · 10 <sup>-6</sup>   | $(*=\lambda_{70}/\lambda_5)$ |       |
| <b>D</b> <sub>1</sub>              | 1.49 · 10 <sup>-8</sup>   |                              |       |
| D <sub>2</sub>                     | -1.29 · 10 <sup>-11</sup> | Remarks                      |       |

| Other Properties                                                                                   |       |
|----------------------------------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                                       | 6.6   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                                            | 7.4   |
| T <sub>g</sub> [°C]                                                                                | 689   |
| T <sub>g</sub> [°C]<br>T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 673   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                                         | 0     |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                                                    | 0.550 |
| λ [W/(m·K)]                                                                                        |       |
|                                                                                                    |       |
| ρ [g/cm <sup>3</sup> ]                                                                             | 3.77  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                                                      | 90    |
| μ                                                                                                  | 0.266 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                                                     | 1.82  |
| HK <sub>0.1/20</sub>                                                                               | 600   |
| HG                                                                                                 | 4     |
|                                                                                                    |       |
| В                                                                                                  | 0     |
|                                                                                                    |       |
| CR                                                                                                 | 2     |
| FR                                                                                                 | 2     |
| SR                                                                                                 | 51.2  |
| AR                                                                                                 | 1     |
| PR                                                                                                 | 2.3   |
|                                                                                                    |       |
|                                                                                                    |       |
|                                                                                                    |       |

| $\mathbf{D}_0$        | 1.36 · 10 <sup>-6</sup>   |
|-----------------------|---------------------------|
| <b>D</b> <sub>1</sub> | 1.49 · 10 <sup>-8</sup>   |
| $D_2$                 | -1.29 · 10 <sup>-11</sup> |
| <b>E</b> <sub>0</sub> | 3.41 · 10 <sup>-7</sup>   |
| <b>E</b> <sub>1</sub> | 2.09 · 10 <sup>-10</sup>  |
| λ <sub>TK</sub> [μm]  | 0.262                     |
|                       |                           |
| Таманана              | tura Coefficiente e       |

| Temperature Coefficients of Refractive Index |                   |                          |     |                  |                                      |     |
|----------------------------------------------|-------------------|--------------------------|-----|------------------|--------------------------------------|-----|
| ·                                            | Δn <sub>rel</sub> | /ΔT[10 <sup>-6</sup> /K] |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]                                         | 1060.0            | е                        | g   | 1060.0           | е                                    | g   |
| -40/ -20                                     | 2.2               | 2.9                      | 3.6 | 0.0              | 0.6                                  | 1.3 |
| +20/ +40                                     | 2.4               | 3.1                      | 3.9 | 1.0              | 1.7                                  | 2.4 |
| +60/ +80                                     | 2.7               | 3.4                      | 4.2 | 1.6              | 2.3                                  | 3.1 |

#### N-LAK33A 754523.422

 $n_d = 1.75393$ n<sub>e</sub>= 1.75737

 $v_{d}$  = 52.27  $v_e$  = 52.04  $n_F - n_C = 0.014424$  $n_{F'}-n_{C'}=0.014554$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.71278 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.72047 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.72855 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.73690 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.73786 |  |  |
| n <sub>s</sub>             | 852.1  | 1.74186 |  |  |
| n <sub>r</sub>             | 706.5  | 1.74707 |  |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.74956 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.75025 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.75090 |  |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.75380 |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.75393 |  |  |
| n <sub>e</sub>             | 546.1  | 1.75737 |  |  |
| n <sub>F</sub>             | 486.1  | 1.76398 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.76481 |  |  |
| n <sub>g</sub>             | 435.8  | 1.77187 |  |  |
| n <sub>h</sub>             | 404.7  | 1.77845 |  |  |
| n <sub>i</sub>             | 365.0  | 1.78972 |  |  |
| n <sub>334.1</sub>         | 334.1  | 1.80195 |  |  |
| n <sub>312.6</sub>         | 312.6  | 1.81325 |  |  |
| n <sub>296.7</sub>         | 296.7  | 1.82361 |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |
|--------------------------------------|-----------------------|-----------------------|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                                 | 0.398                 | 0.100                 |
| 2325                                 | 0.686                 | 0.390                 |
| 1970                                 | 0.937                 | 0.850                 |
| 1530                                 | 0.990                 | 0.975                 |
| 1060                                 | 0.998                 | 0.995                 |
| 700                                  | 0.998                 | 0.996                 |
| 660                                  | 0.998                 | 0.995                 |
| 620                                  | 0.998                 | 0.994                 |
| 580                                  | 0.998                 | 0.995                 |
| 546                                  | 0.998                 | 0.996                 |
| 500                                  | 0.998                 | 0.994                 |
| 460                                  | 0.994                 | 0.986                 |
| 436                                  | 0.991                 | 0.978                 |
| 420                                  | 0.988                 | 0.970                 |
| 405                                  | 0.981                 | 0.953                 |
| 400                                  | 0.976                 | 0.940                 |
| 390                                  | 0.967                 | 0.920                 |
| 380                                  | 0.950                 | 0.880                 |
| 370                                  | 0.924                 | 0.820                 |
| 365                                  | 0.905                 | 0.780                 |
| 350                                  | 0.804                 | 0.580                 |
| 334                                  | 0.601                 | 0.280                 |
| 320                                  | 0.336                 | 0.060                 |
| 310                                  | 0.160                 |                       |
| 300                                  | 0.053                 |                       |
| 290                                  |                       |                       |
| 280                                  |                       |                       |
| 270                                  |                       |                       |
| 260                                  |                       |                       |
| 250                                  |                       |                       |
|                                      |                       |                       |
|                                      |                       |                       |

| Relative Partial Dispersion |        |  |  |  |
|-----------------------------|--------|--|--|--|
| $\mathbf{P}_{s,t}$          | 0.2770 |  |  |  |
| P <sub>C,s</sub>            | 0.5338 |  |  |  |
| $\mathbf{P}_{d,C}$          | 0.3032 |  |  |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2383 |  |  |  |
| $\mathbf{P}_{g,F}$          | 0.5473 |  |  |  |
| $\mathbf{P}_{i,h}$          | 0.7814 |  |  |  |
|                             |        |  |  |  |
| P' <sub>s,t</sub>           | 0.2746 |  |  |  |
| P' <sub>C',s</sub>          | 0.5769 |  |  |  |
| P' <sub>d,C'</sub>          | 0.2527 |  |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2362 |  |  |  |
| P' <sub>g,F'</sub>          | 0.4857 |  |  |  |
| P' <sub>i,h</sub>           | 0.7744 |  |  |  |
|                             |        |  |  |  |

| 0.780 |   |
|-------|---|
| 0.580 |   |
| 0.280 |   |
| 0.060 |   |
|       |   |
|       |   |
|       |   |
|       |   |
|       |   |
|       |   |
|       |   |
|       | Г |

| Deviation of I            | Deviation of Relative |  |  |
|---------------------------|-----------------------|--|--|
| Partial Dispersions ΔP    |                       |  |  |
| from the "Normal Line"    |                       |  |  |
| $\Delta \mathbf{P}_{C,t}$ | 0.0180                |  |  |
| ΔP <sub>C,s</sub>         | 0.0091                |  |  |
| ΔP <sub>F,e</sub>         | -0.0024               |  |  |
| $\Delta \mathbf{P}_{g,F}$ | -0.0086               |  |  |
| $\Delta P_{ig}$           | -0.0484               |  |  |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.44116999    |  |
| <b>B</b> <sub>2</sub>   | 0.571749501   |  |
| <b>B</b> <sub>3</sub>   | 1.16605226    |  |
| <b>C</b> <sub>1</sub>   | 0.00680933877 |  |
| <b>C</b> <sub>2</sub>   | 0.0222291824  |  |
| C <sub>3</sub>          | 80.9379555    |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 38/30 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

Remarks

|   | ρ [g        |
|---|-------------|
|   | <b>E</b> [1 |
|   | μ           |
| ) | <b>K</b> [1 |
|   | HK          |
|   | HG          |
|   |             |
|   | В           |
|   |             |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| <b>D</b> <sub>0</sub>         | 2.63 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.11 · 10 <sup>-8</sup>   |  |
| <b>D</b> <sub>2</sub>         | -3.92 · 10 <sup>-12</sup> |  |
| <b>E</b> <sub>0</sub>         | 5.02 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 5.08 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.188                     |  |

| Temperature Coefficients of Refractive Index                              |        |     |     |        |     |     |
|---------------------------------------------------------------------------|--------|-----|-----|--------|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$ $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |     | ]   |        |     |     |
| [°C]                                                                      | 1060.0 | e   | g   | 1060.0 | е   | g   |
| -40/ -20                                                                  | 3.4    | 4.3 | 5.1 | 1.1    | 1.9 | 2.7 |
| +20/ +40                                                                  | 3.4    | 4.4 | 5.3 | 1.9    | 2.9 | 3.7 |
| +60/ +80                                                                  | 3.6    | 4.7 | 5.6 | 2.4    | 3.5 | 4.4 |

| Other Properties                                                         |       |  |  |
|--------------------------------------------------------------------------|-------|--|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 5.8   |  |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 7.0   |  |  |
| T <sub>a</sub> [°C]                                                      | 669   |  |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                     | 667   |  |  |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 744   |  |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                          | 0.550 |  |  |
| λ [W/(m·K)]                                                              | 0.810 |  |  |
|                                                                          |       |  |  |
| ρ [g/cm <sup>3</sup> ]                                                   | 4.22  |  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 121   |  |  |
| μ                                                                        | 0.292 |  |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 1.49  |  |  |
| HK <sub>0.1/20</sub>                                                     | 740   |  |  |
| HG                                                                       | 2     |  |  |
|                                                                          |       |  |  |
| В                                                                        | 0     |  |  |
|                                                                          |       |  |  |
| CR                                                                       | 1     |  |  |
| FR                                                                       | 1     |  |  |
| SR                                                                       | 51    |  |  |
| AR                                                                       | 1     |  |  |
| PR                                                                       | 2     |  |  |
|                                                                          |       |  |  |
|                                                                          |       |  |  |
|                                                                          |       |  |  |
|                                                                          |       |  |  |

#### N-LAK34 729545.402

**SCHOTT** 

 $n_d$ = 1.72916  $v_d$ = 54.50  $n_e$ = 1.73235  $v_e$ = 54.27

 $v_d$ = 54.50  $n_F - n_C$  = 0.013379  $v_e$ = 54.27  $n_{F'} - n_{C'}$ = 0.013493

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.68925 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.69695 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.70500 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.71315 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.71407 |  |  |
| n <sub>s</sub>             | 852.1  | 1.71787 |  |  |
| n <sub>r</sub>             | 706.5  | 1.72277 |  |  |
| n <sub>C</sub>             | 656.3  | 1.72509 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.72574 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.72634 |  |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.72904 |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.72916 |  |  |
| n <sub>e</sub>             | 546.1  | 1.73235 |  |  |
| n <sub>F</sub>             | 486.1  | 1.73847 |  |  |
| n <sub>F</sub> '           | 480.0  | 1.73923 |  |  |
| n <sub>g</sub>             | 435.8  | 1.74575 |  |  |
| n <sub>h</sub>             | 404.7  | 1.75180 |  |  |
| n <sub>i</sub>             | 365.0  | 1.76214 |  |  |
| n <sub>334.1</sub>         | 334.1  | 1.77331 |  |  |
| n <sub>312.6</sub>         | 312.6  | 1.78359 |  |  |
| n <sub>296.7</sub>         | 296.7  | 1.79296 |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal | Transmittance τ <sub>i</sub> |                       |
|----------|------------------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm)        | τ <sub>i</sub> (25mm) |
| 2500     | 0.398                        | 0.100                 |
| 2325     | 0.672                        | 0.370                 |
| 1970     | 0.937                        | 0.850                 |
| 1530     | 0.984                        | 0.960                 |
| 1060     | 0.998                        | 0.995                 |
| 700      | 0.999                        | 0.997                 |
| 660      | 0.999                        | 0.997                 |
| 620      | 0.998                        | 0.996                 |
| 580      | 0.998                        | 0.995                 |
| 546      | 0.999                        | 0.997                 |
| 500      | 0.998                        | 0.994                 |
| 460      | 0.995                        | 0.987                 |
| 436      | 0.992                        | 0.979                 |
| 420      | 0.989                        | 0.972                 |
| 405      | 0.983                        | 0.959                 |
| 400      | 0.981                        | 0.952                 |
| 390      | 0.976                        | 0.940                 |
| 380      | 0.963                        | 0.910                 |
| 370      | 0.941                        | 0.860                 |
| 365      | 0.924                        | 0.820                 |
| 350      | 0.852                        | 0.670                 |
| 334      | 0.713                        | 0.430                 |
| 320      | 0.525                        | 0.200                 |
| 310      | 0.377                        | 0.070                 |
| 300      | 0.281                        | 0.030                 |
| 290      | 0.168                        | 0.010                 |
| 280      | 0.073                        |                       |
| 270      | 0.014                        |                       |
| 260      |                              |                       |
| 250      |                              |                       |
|          |                              |                       |
|          | I                            |                       |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.26661442    |  |
| <b>B</b> <sub>2</sub>   | 0.665919318   |  |
| <b>B</b> <sub>3</sub>   | 1.1249612     |  |
| <b>C</b> <sub>1</sub>   | 0.00589278062 |  |
| <b>C</b> <sub>2</sub>   | 0.0197509041  |  |
| <b>C</b> <sub>3</sub>   | 78.8894174    |  |

| Constants of Dispersion dn/dT |                          |  |
|-------------------------------|--------------------------|--|
| $\mathbf{D}_0$                | 1.96 · 10 <sup>-6</sup>  |  |
| <b>D</b> <sub>1</sub>         | 9.65 · 10 <sup>-9</sup>  |  |
| $D_2$                         | 4.40 · 10 <sup>-12</sup> |  |
| E <sub>0</sub>                | 4.91 · 10 <sup>-7</sup>  |  |
| <b>E</b> <sub>1</sub>         | 5.28 · 10 <sup>-10</sup> |  |
| λ <sub>TK</sub> [μm]          | 0.161                    |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/28 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                               | e   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 3.1                                  | 3.9 | 4.6                                  | 0.8    | 1.5 | 2.2 |
| +20/ +40                                     | 3.0                                  | 3.8 | 4.6                                  | 1.5    | 2.3 | 3.1 |
| +60/ +80                                     | 3.1                                  | 4.0 | 4.9                                  | 2.0    | 2.9 | 3.7 |

| Relative Partial Dispersion |        |  |  |
|-----------------------------|--------|--|--|
| $\mathbf{P}_{s,t}$          | 0.2841 |  |  |
| <b>P</b> <sub>C,s</sub>     | 0.5398 |  |  |
| $\mathbf{P}_{d,C}$          | 0.3042 |  |  |
| $\mathbf{P}_{e,d}$          | 0.2384 |  |  |
| $\mathbf{P}_{g,F}$          | 0.5443 |  |  |
| $\mathbf{P}_{i,h}$          | 0.7726 |  |  |
|                             |        |  |  |
| P' <sub>s,t</sub>           | 0.2817 |  |  |
| P' <sub>C',s</sub>          | 0.5833 |  |  |
| P' <sub>d,C'</sub>          | 0.2536 |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2364 |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4832 |  |  |
| P' <sub>i,h</sub>           | 0.7661 |  |  |

| Deviation of F<br>Partial Disper<br>from the "Nor | sions ΔP |
|---------------------------------------------------|----------|
| Δ <b>P</b> <sub>C,t</sub>                         | 0.0204   |
| ΔP <sub>C,s</sub>                                 | 0.0099   |
| Δ <b>P</b> <sub>F,e</sub>                         | -0.0024  |
| $\Delta P_{g,F}$                                  | -0.0079  |
| $\Delta P_{i,g}$                                  | -0.0423  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 5.8   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                               | 6.9   |
| <b>T</b> <sub>g</sub> [°C]                                            | 668   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                           | 668   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 740   |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                                       | 0.520 |
| λ [W/(m·K)]                                                           | 0.820 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 4.02  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 117   |
| μ                                                                     | 0.290 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 1.52  |
| HK <sub>0.1/20</sub>                                                  | 740   |
| HG                                                                    | 2     |
|                                                                       |       |
| В                                                                     | 0     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 0     |
| SR                                                                    | 52.3  |
| AR                                                                    | 1     |
| PR                                                                    | 3.3   |
|                                                                       |       |
|                                                                       |       |
|                                                                       |       |

#### P-LAK35 693532.385

 $n_d = 1.69350$  $v_{d}$  = 53.20  $n_e = 1.69661$ 

 $v_e = 52.95$ 

 $n_F - n_C = 0.013036$  $n_{F'}-n_{C'}=0.013156$ 

**Relative Partial Dispersion** 

0.2723 0.5304 0.3028 0.2383 0.5482 0.7832

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.65762 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.66411 |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.67100 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.67824 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.67909 |  |  |
| n <sub>s</sub>             | 852.1  | 1.68264 |  |  |
| n <sub>r</sub>             | 706.5  | 1.68732 |  |  |
| n <sub>C</sub>             | 656.3  | 1.68955 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.69018 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.69077 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.69338 |  |  |
| <b>n</b> <sub>d</sub>      | 587.6  | 1.69350 |  |  |
| n <sub>e</sub>             | 546.1  | 1.69661 |  |  |
| n <sub>F</sub>             | 486.1  | 1.70259 |  |  |
| n <sub>F</sub>             | 480.0  | 1.70334 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.70974 |  |  |
| n <sub>h</sub>             | 404.7  | 1.71569 |  |  |
| n <sub>i</sub>             | 365.0  | 1.72590 |  |  |
| n <sub>334.1</sub>         | 334.1  | 1.73698 |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.546                 | 0.220                 |
| 2325     | 0.758                 | 0.500                 |
| 1970     | 0.946                 | 0.870                 |
| 1530     | 0.992                 | 0.981                 |
| 1060     | 0.999                 | 0.999                 |
| 700      | 0.997                 | 0.993                 |
| 660      | 0.997                 | 0.992                 |
| 620      | 0.997                 | 0.992                 |
| 580      | 0.997                 | 0.993                 |
| 546      | 0.998                 | 0.994                 |
| 500      | 0.997                 | 0.992                 |
| 460      | 0.994                 | 0.985                 |
| 436      | 0.992                 | 0.980                 |
| 420      | 0.991                 | 0.977                 |
| 405      | 0.989                 | 0.973                 |
| 400      | 0.988                 | 0.970                 |
| 390      | 0.984                 | 0.960                 |
| 380      | 0.976                 | 0.940                 |
| 370      | 0.962                 | 0.907                 |
| 365      | 0.950                 | 0.880                 |
| 350      | 0.887                 | 0.740                 |
| 334      | 0.746                 | 0.480                 |
| 320      | 0.536                 | 0.210                 |
| 310      | 0.353                 | 0.060                 |
| 300      | 0.158                 | 0.005                 |
| 290      | 0.026                 |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          | I                     |                       |

| P <sub>C,s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.53                                                      | 04                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------|
| <b>P</b> <sub>d,C</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.30                                                      | 28                              |
| P <sub>e,d</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.23                                                      | 83                              |
| $\mathbf{P}_{g,F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.54                                                      | 82                              |
| $\mathbf{P}_{i,h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.78                                                      | 32                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |                                 |
| P' <sub>s,t</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.26                                                      | 98                              |
| P' <sub>C',s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.57                                                      | 32                              |
| P' <sub>d,C'</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.25                                                      | 24                              |
| P' <sub>e,d</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.23                                                      | 61                              |
| P' <sub>g,F'</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.48                                                      | 64                              |
| P' <sub>i,h</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77                                                      | 61                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |                                 |
| Deviation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Relati                                                    | ve                              |
| Deviation of<br>Partial Dispe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                           |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ersion                                                    | sΔP                             |
| Partial Dispe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ersion                                                    | s ΔP<br>Line"                   |
| Partial Dispe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ersions                                                   | s ΔP<br>Line"<br><sup>53</sup>  |
| Partial Dispersion the "No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ormal 0.00                                                | s ΔP<br>Line"<br>53<br>34       |
| Partial Dispersion the "No ΔP <sub>C,t</sub> ΔP <sub>C,s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ormal 0.00                                                | s ΔP<br>Line"<br>53<br>34       |
| Partial Dispersion the "Non- $\Delta P_{C,t}$ $\Delta P_{C,s}$ $\Delta P_{F,e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00<br>0.00<br>0.00                                      | s ΔP<br>Line"<br>53<br>34<br>15 |
| Partial Dispersion the "No $\Delta P_{C,t}$ $\Delta P_{C,s}$ $\Delta P_{F,e}$ $\Delta P_{g,F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00<br>0.00<br>-0.00<br>-0.00                            | s ΔP<br>Line"<br>53<br>34<br>15 |
| Partial Dispersion the "No $\Delta P_{C,t}$ $\Delta P_{C,s}$ $\Delta P_{F,e}$ $\Delta P_{g,F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00<br>0.00<br>0.00<br>-0.00<br>-0.00                    | s ΔP<br>Line"<br>53<br>34<br>15 |
| Partial Dispersion the "Notation the "Notat | 0.00<br>  0.00<br>  0.00<br>  -0.00<br>  -0.00<br>  -0.03 | s ΔP<br>Line"<br>53<br>34<br>15 |

| Constants of Dispersion |               |  |  |
|-------------------------|---------------|--|--|
| Formula                 |               |  |  |
| <b>B</b> <sub>1</sub>   | 1.3932426     |  |  |
| <b>B</b> <sub>2</sub>   | 0.418882766   |  |  |
| <b>B</b> <sub>3</sub>   | 1.043807      |  |  |
| <b>C</b> <sub>1</sub>   | 0.00715959695 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0233637446  |  |  |
| <b>C</b> <sub>3</sub>   | 88.3284426    |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 36/29 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Constants of Dispersion |                          |  |
|-------------------------|--------------------------|--|
| dn/dT                   |                          |  |
| <b>D</b> <sub>0</sub>   | 88.30 · 10 <sup>0</sup>  |  |
| <b>D</b> <sub>1</sub>   | -1.90 · 10 <sup>-6</sup> |  |
| <b>D</b> <sub>2</sub>   | 7.99 · 10 <sup>-9</sup>  |  |
| <b>E</b> <sub>0</sub>   | 7.76 · 10 <sup>-12</sup> |  |
| <b>E</b> <sub>1</sub>   | 5.64 · 10 <sup>-7</sup>  |  |
| λ <sub>TK</sub> [μm]    | 6.57e-10                 |  |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temperature Coefficients of Refractive Index |        |                                      |     |        |      |      |
|----------------------------------------------|--------|--------------------------------------|-----|--------|------|------|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     | ]      |      |      |
| [°C]                                         | 1060.0 | Ф                                    | g   | 1060.0 | e    | g    |
| -40/ -20                                     | 0.2    | 1.1                                  | 1.9 | 2.7    | -1.2 | -0.4 |
| +20/ +40                                     | 0.3    | 0.8                                  | 1.7 | 2.6    | -0.7 | 0.2  |
| +60/ +80                                     | 1.1    | 0.9                                  | 1.9 | 2.9    | -0.3 | 0.7  |

| Other Properties                                                            |       |
|-----------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                | 8.1   |
| g [10 <sup>-6</sup> /K]                                                     | 9.7   |
| T <sub>g</sub> [°C]                                                         | 508   |
| T <sub>g</sub> [°C] T <sub>10</sub> <sup>13.0</sup> [°C]                    | 511   |
| T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 598   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                              | 0.630 |
| $\lambda [W/(m\cdot K)]$                                                    | 0.720 |
| AT [°C]                                                                     | 544   |
| ρ [g/cm <sup>3</sup> ]                                                      | 3.85  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                               | 101   |
| μ                                                                           | 0.289 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                              | 1.76  |
| HK <sub>0.1/20</sub>                                                        | 616   |
| HG                                                                          |       |
| HG-J                                                                        | 119   |
| В                                                                           | 0     |
|                                                                             |       |
| CR                                                                          | 2     |
| FR                                                                          | 5     |
| SR                                                                          | 53.3  |
| AR                                                                          | 1.3   |
| PR                                                                          | 4.3   |
| SR-J                                                                        | 4     |
| WR-J                                                                        | 3     |
|                                                                             |       |
|                                                                             |       |

#### LLF1 548458.294

n<sub>d</sub>= 1.54814  $v_{d}$  = 45.75  $n_e = 1.55099$ 

Internal Transmittanceτ<sub>i</sub>

 $v_e = 45.47$ 

 $n_F - n_C = 0.011981$  $n_{F'}-n_{C'}=0.012118$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.51865 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.52354 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.52884 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.53470 |  |
| n <sub>t</sub>             | 1014.0 | 1.53541 |  |
| n <sub>s</sub>             | 852.1  | 1.53845 |  |
| n <sub>r</sub>             | 706.5  | 1.54256 |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.54457 |  |
| n <sub>C'</sub>            | 643.8  | 1.54513 |  |
| n <sub>632.8</sub>         | 632.8  | 1.54566 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.54803 |  |
| n <sub>d</sub>             | 587.6  | 1.54814 |  |
| n <sub>e</sub>             | 546.1  | 1.55099 |  |
| n <sub>F</sub>             | 486.1  | 1.55655 |  |
| n <sub>F'</sub>            | 480.0  | 1.55725 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.56333 |  |
| $\mathbf{n}_{h}$           | 404.7  | 1.56911 |  |
| n <sub>i</sub>             | 365.0  | 1.57932 |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.59092 |  |
| n <sub>312.6</sub>         | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| λ [nm] | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
|--------|-----------------------|-----------------------|
| 2500   | 0.758                 | 0.500                 |
| 2325   | 0.821                 | 0.610                 |
| 1970   | 0.933                 | 0.840                 |
| 1530   | 0.996                 | 0.990                 |
| 1060   | 0.998                 | 0.996                 |
| 700    | 0.999                 | 0.997                 |
| 660    | 0.998                 | 0.996                 |
| 620    | 0.998                 | 0.996                 |
| 580    | 0.999                 | 0.997                 |
| 546    | 0.999                 | 0.997                 |
| 500    | 0.998                 | 0.996                 |
| 460    | 0.998                 | 0.996                 |
| 436    | 0.998                 | 0.996                 |
| 420    | 0.998                 | 0.995                 |
| 405    | 0.998                 | 0.994                 |
| 400    | 0.997                 | 0.993                 |
| 390    | 0.997                 | 0.992                 |
| 380    | 0.995                 | 0.988                 |
| 370    | 0.994                 | 0.984                 |
| 365    | 0.992                 | 0.981                 |
| 350    | 0.982                 | 0.955                 |
| 334    | 0.919                 | 0.810                 |
| 320    | 0.618                 | 0.300                 |
| 310    | 0.240                 | 0.010                 |
| 300    | 0.024                 |                       |
| 290    | 0.002                 |                       |
| 280    |                       |                       |
| 270    |                       |                       |
| 260    |                       |                       |
| 250    |                       |                       |
|        |                       |                       |
|        |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2537 |  |
| P <sub>C,s</sub>            | 0.5108 |  |
| P <sub>d,C</sub>            | 0.2983 |  |
| P <sub>e,d</sub>            | 0.2376 |  |
| $\mathbf{P}_{g,F}$          | 0.5660 |  |
| $\mathbf{P}_{i,h}$          | 0.8520 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2508 |  |
| P' <sub>C',s</sub>          | 0.5516 |  |
| P' <sub>d,C'</sub>          | 0.2484 |  |
| P' <sub>e,d</sub>           | 0.2349 |  |
| P' <sub>g,F'</sub>          | 0.5017 |  |
| P' <sub>i,h</sub>           | 0.8424 |  |

| 84 | 4 |
|----|---|
| 81 | 1 |
| 55 | 1 |
| 10 |   |
| 00 | _ |
| 10 | ~ |
|    | ( |
|    | • |
|    | - |
|    | • |
|    | • |
|    | 7 |
|    |   |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | 0.0025  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0012  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0003 |  |
| $\Delta P_{g,F}$                                                    | -0.0009 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0062 |  |

| Constants of Dispersion |               |  |  |
|-------------------------|---------------|--|--|
| Formula                 |               |  |  |
| <b>B</b> <sub>1</sub>   | 1.21640125    |  |  |
| <b>B</b> <sub>2</sub>   | 0.13366454    |  |  |
| <b>B</b> <sub>3</sub>   | 0.883399468   |  |  |
| <b>C</b> <sub>1</sub>   | 0.00857807248 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0420143003  |  |  |
| <b>C</b> <sub>3</sub>   | 107.59306     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 33/31 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 33/31 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |
| Remarks                      |       |

lead containing glass type

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 8.1   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 9.2   |
| T <sub>a</sub> [°C]                                                       | 431   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 426   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 628   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.650 |
| λ [W/(m·K)]                                                               |       |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 2.94  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 60    |
| μ                                                                         | 0.208 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 3.05  |
| HK <sub>0.1/20</sub>                                                      | 450   |
| HG                                                                        | 3     |
|                                                                           |       |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 0     |
| SR                                                                        | 1     |
| AR                                                                        | 2     |
| PR                                                                        | 1     |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| <b>D</b> <sub>0</sub>         | 3.25 · 10 <sup>-7</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.74 · 10 <sup>-8</sup>   |  |
| $D_2$                         | -6.12 · 10 <sup>-11</sup> |  |
| E <sub>0</sub>                | 6.53 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 2.58 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.233                     |  |

| Temper   | Temperature Coefficients of Refractive Index |                          |     |                  |                                      |     |
|----------|----------------------------------------------|--------------------------|-----|------------------|--------------------------------------|-----|
|          | Δn <sub>rel</sub>                            | /ΔT[10 <sup>-6</sup> /K] |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]     | 1060.0                                       | e                        | g   | 1060.0           | е                                    | g   |
| -40/ -20 | 1.5                                          | 2.4                      | 3.4 | -0.6             | 0.3                                  | 1.3 |
| +20/ +40 | 1.9                                          | 2.9                      | 3.9 | 0.6              | 1.5                                  | 2.5 |
| +60/ +80 | 2.0                                          | 3.0                      | 4.1 | 1.0              | 2.0                                  | 3.0 |

#### N-BAF4 606437.289

 $n_d = 1.60568$  $v_{d}$  = 43.72  $n_e = 1.60897$ 

 $v_e = 43.43$ 

 $n_F - n_C = 0.013853$  $n_{F'}-n_{C'}=0.014021$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.57092 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.57685 |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.58323 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.59016 |  |
| n <sub>t</sub>             | 1014.0 | 1.59099 |  |
| n <sub>s</sub>             | 852.1  | 1.59452 |  |
| n <sub>r</sub>             | 706.5  | 1.59926 |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.60157 |  |
| n <sub>C'</sub>            | 643.8  | 1.60222 |  |
| n <sub>632.8</sub>         | 632.8  | 1.60282 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.60556 |  |
| n <sub>d</sub>             | 587.6  | 1.60568 |  |
| n <sub>e</sub>             | 546.1  | 1.60897 |  |
| n <sub>F</sub>             | 486.1  | 1.61542 |  |
| n <sub>F'</sub>            | 480.0  | 1.61624 |  |
| n <sub>g</sub>             | 435.8  | 1.62336 |  |
| n <sub>h</sub>             | 404.7  | 1.63022 |  |
| n <sub>i</sub>             | 365.0  |         |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |  |  |
|--------------------------------------|-----------------------|-----------------------|--|--|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |  |
| 2500                                 | 0.707                 | 0.420                 |  |  |
| 2325                                 | 0.837                 | 0.640                 |  |  |
| 1970                                 | 0.954                 | 0.890                 |  |  |
| 1530                                 | 0.991                 | 0.977                 |  |  |
| 1060                                 | 0.998                 | 0.994                 |  |  |
| 700                                  | 0.998                 | 0.994                 |  |  |
| 660                                  | 0.996                 | 0.991                 |  |  |
| 620                                  | 0.996                 | 0.990                 |  |  |
| 580                                  | 0.997                 | 0.992                 |  |  |
| 546                                  | 0.997                 | 0.992                 |  |  |
| 500                                  | 0.994                 | 0.985                 |  |  |
| 460                                  | 0.988                 | 0.971                 |  |  |
| 436                                  | 0.983                 | 0.959                 |  |  |
| 420                                  | 0.976                 | 0.940                 |  |  |
| 405                                  | 0.959                 | 0.900                 |  |  |
| 400                                  | 0.946                 | 0.870                 |  |  |
| 390                                  | 0.901                 | 0.770                 |  |  |
| 380                                  | 0.804                 | 0.580                 |  |  |
| 370                                  | 0.601                 | 0.280                 |  |  |
| 365                                  | 0.442                 | 0.130                 |  |  |
| 350                                  | 0.012                 |                       |  |  |
| 334                                  |                       |                       |  |  |
| 320                                  |                       |                       |  |  |
| 310                                  |                       |                       |  |  |
| 300                                  |                       |                       |  |  |
| 290                                  |                       |                       |  |  |
| 280                                  |                       |                       |  |  |
| 270                                  |                       |                       |  |  |
| 260                                  |                       |                       |  |  |
| 250                                  |                       |                       |  |  |
| I                                    | I                     | I                     |  |  |

| Relative Partial Dispersion |  |  |  |
|-----------------------------|--|--|--|
| 0.2545                      |  |  |  |
| 0.5089                      |  |  |  |
| 0.2972                      |  |  |  |
| 0.2372                      |  |  |  |
| 0.5733                      |  |  |  |
|                             |  |  |  |
|                             |  |  |  |
| 0.2515                      |  |  |  |
| 0.5491                      |  |  |  |
| 0.2473                      |  |  |  |
| 0.2344                      |  |  |  |
| 0.5081                      |  |  |  |
|                             |  |  |  |
|                             |  |  |  |

| <b>n</b> <sub>280.4</sub> | 280.4             | 334 |  |
|---------------------------|-------------------|-----|--|
| <b>n</b> <sub>248.3</sub> | 248.3             | 320 |  |
|                           |                   | 310 |  |
| Consta                    | nts of Dispersion | 300 |  |
| Formul                    | a                 | 290 |  |
| B <sub>1</sub>            | 1.42056328        | 280 |  |
| <b>B</b> <sub>2</sub>     | 0.102721269       | 270 |  |
| <b>B</b> <sub>3</sub>     | 1.14380976        | 260 |  |
| <b>C</b> <sub>1</sub>     | 0.00942015382     | 250 |  |
| <b>C</b> <sub>2</sub>     | 0.0531087291      |     |  |
| <b>C</b> <sub>3</sub>     | 110.278856        |     |  |

| Deviation of Relative     |           |  |
|---------------------------|-----------|--|
| Partial Dispersions ΔP    |           |  |
| from the "Nor             | mal Line" |  |
| ΔP <sub>C,t</sub>         | 0.0110    |  |
| ΔP <sub>C,s</sub>         | 0.0041    |  |
| Δ <b>P</b> <sub>F,e</sub> | 0.0002    |  |
| $\Delta \mathbf{P}_{g,F}$ | 0.0030    |  |
| $\Delta \mathbf{P}_{i,g}$ |           |  |

| <b>Constants of Dispersion</b> |  |  |
|--------------------------------|--|--|
|                                |  |  |
| 9.39 · 10 <sup>-7</sup>        |  |  |
| 1.24 · 10 <sup>-8</sup>        |  |  |
| -9.00 · 10 <sup>-12</sup>      |  |  |
| 6.17 · 10 <sup>-7</sup>        |  |  |
| 8.42 · 10 <sup>-10</sup>       |  |  |
| 0.242                          |  |  |
|                                |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 39/35 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |

| <b>Other Properties</b>                                                                            | ; <u> </u> |
|----------------------------------------------------------------------------------------------------|------------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                                       | 7.2        |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                                            | 8.3        |
| T <sub>g</sub> [°C]                                                                                | 580        |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                                               | 580        |
| T <sub>g</sub> [°C]<br>T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 709        |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                                                    | 0.740      |
| λ [W/(m·K)]                                                                                        | 1.020      |
|                                                                                                    |            |
| ρ [g/cm <sup>3</sup> ]                                                                             | 2.89       |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                                                      | 85         |
| μ                                                                                                  | 0.231      |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                                                     | 2.58       |
| HK <sub>0.1/20</sub>                                                                               | 610        |
| HG                                                                                                 | 3          |
|                                                                                                    |            |
| В                                                                                                  | 1          |
|                                                                                                    |            |
| CR                                                                                                 | 1          |
| FR                                                                                                 | 0          |
| SR                                                                                                 | 1          |
| AR                                                                                                 | 1.2        |
| PR                                                                                                 | 1.3        |
|                                                                                                    |            |
|                                                                                                    |            |
|                                                                                                    |            |
|                                                                                                    |            |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                               | Φ   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 2.2                                  | 3.1 | 4.1                                  | 0.1    | 0.9 | 1.9 |
| +20/ +40                                     | 2.2                                  | 3.3 | 4.5                                  | 0.9    | 1.9 | 3.0 |
| +60/ +80                                     | 2.4                                  | 3.6 | 4.9                                  | 1.3    | 2.5 | 3.8 |

#### N-BAF10 670471.375

n<sub>d</sub>= 1.67003 n<sub>e</sub>= 1.67341

 $v_{d}$  = 47.11  $v_e$  = 46.83

 $n_F - n_C = 0.014222$  $n_{F'}-n_{C'}=0.014380$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.63524 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.64094 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.64714 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.65404 |  |
| n <sub>t</sub>             | 1014.0 | 1.65488 |  |
| n <sub>s</sub>             | 852.1  | 1.65849 |  |
| n <sub>r</sub>             | 706.5  | 1.66339 |  |
| n <sub>C</sub>             | 656.3  | 1.66578 |  |
| n <sub>C'</sub>            | 643.8  | 1.66645 |  |
| n <sub>632.8</sub>         | 632.8  | 1.66708 |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.66990 |  |
| n <sub>d</sub>             | 587.6  | 1.67003 |  |
| n <sub>e</sub>             | 546.1  | 1.67341 |  |
| n <sub>F</sub>             | 486.1  | 1.68000 |  |
| n <sub>F'</sub>            | 480.0  | 1.68083 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.68801 |  |
| n <sub>h</sub>             | 404.7  | 1.69480 |  |
| n <sub>i</sub>             | 365.0  |         |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal Transmittance $\tau_i$ |                       |                       |
|---------------------------------|-----------------------|-----------------------|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                            | 0.727                 | 0.450                 |
| 2325                            | 0.857                 | 0.680                 |
| 1970                            | 0.967                 | 0.920                 |
| 1530                            | 0.992                 | 0.980                 |
| 1060                            | 0.998                 | 0.994                 |
| 700                             | 0.998                 | 0.994                 |
| 660                             | 0.996                 | 0.990                 |
| 620                             | 0.996                 | 0.991                 |
| 580                             | 0.996                 | 0.990                 |
| 546                             | 0.996                 | 0.990                 |
| 500                             | 0.992                 | 0.981                 |
| 460                             | 0.987                 | 0.967                 |
| 436                             | 0.981                 | 0.954                 |
| 420                             | 0.976                 | 0.940                 |
| 405                             | 0.959                 | 0.900                 |
| 400                             | 0.950                 | 0.880                 |
| 390                             | 0.915                 | 0.800                 |
| 380                             | 0.847                 | 0.660                 |
| 370                             | 0.720                 | 0.440                 |
| 365                             | 0.626                 | 0.310                 |
| 350                             | 0.176                 | 0.010                 |
| 334                             |                       |                       |
| 320                             |                       |                       |
| 310                             |                       |                       |
| 300                             |                       |                       |
| 290                             |                       |                       |
| 280                             |                       |                       |
| 270                             |                       |                       |
| 260                             |                       |                       |
| 250                             |                       |                       |
|                                 |                       |                       |
|                                 |                       |                       |

| Relative Parti            | al Dispersion |  |
|---------------------------|---------------|--|
| P <sub>s,t</sub>          | 0.2539        |  |
| P <sub>C,s</sub>          | 0.5122        |  |
| $\mathbf{P}_{d,C}$        | 0.2989        |  |
| $\mathbf{P}_{e,d}$        | 0.2377        |  |
| $\mathbf{P}_{g,F}$        | 0.5629        |  |
| $\mathbf{P}_{i,h}$        |               |  |
|                           |               |  |
| P' <sub>s,t</sub>         | 0.2511        |  |
| P' <sub>C',s</sub>        | 0.5533        |  |
| P' <sub>d,C'</sub>        | 0.2489        |  |
| <b>P'</b> <sub>e,d</sub>  | 0.2351        |  |
| <b>P'</b> <sub>g,F'</sub> | 0.4990        |  |
| P' <sub>i,h</sub>         |               |  |
|                           |               |  |
| Dovintion of Polativo     |               |  |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.5851495     |  |
| <b>B</b> <sub>2</sub>   | 0.143559385   |  |
| <b>B</b> <sub>3</sub>   | 1.08521269    |  |
| <b>C</b> <sub>1</sub>   | 0.00926681282 |  |
| <b>C</b> <sub>2</sub>   | 0.0424489805  |  |
| <b>C</b> <sub>3</sub>   | 105.613573    |  |

| 350 | 0.176 | 0.010 |
|-----|-------|-------|
| 334 |       |       |
| 320 |       |       |
| 310 |       |       |
| 300 |       |       |
| 290 |       |       |
| 280 |       |       |
| 270 |       |       |
| 260 |       |       |
| 250 |       |       |
|     |       |       |
|     |       |       |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta \mathbf{P}_{C,t}$                                           | -0.0024 |  |
| $\Delta \mathbf{P}_{\mathrm{C,s}}$                                  | -0.0005 |  |
| $\Delta \mathbf{P}_{F,e}$                                           | -0.0003 |  |
| $\Delta \mathbf{P}_{g,F}$                                           | -0.0016 |  |
| $\Delta \mathbf{P}_{i,g}$                                           |         |  |

6.2

Other Properties α<sub>-30/+70°C</sub>[10<sup>-6</sup>/K]

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| <b>D</b> <sub>0</sub>         | 3.79 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.28 · 10 <sup>-8</sup>   |  |
| D <sub>2</sub>                | -1.42 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 5.84 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 7.60 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.22                      |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 39/35 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |
|         |  |

| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 7.0   |
|---------------------------------------------------------------------------|-------|
| T <sub>a</sub> [°C]                                                       | 660   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                               | 652   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 790   |
| $\mathbf{c}_{p}[J/(g\cdotK)]$                                             | 0.560 |
| $\lambda [W/(m\cdot K)]$                                                  | 0.780 |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.75  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 89    |
| μ                                                                         | 0.271 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.37  |
| HK <sub>0.1/20</sub>                                                      | 620   |
| HG                                                                        | 4     |
|                                                                           |       |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 0     |
| SR                                                                        | 4.3   |
| AR                                                                        | 1.3   |
| PR                                                                        | 1     |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                               | Φ   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 3.7                                  | 4.7 | 5.6                                  | 1.5    | 2.4 | 3.3 |
| +20/ +40                                     | 3.8                                  | 4.9 | 6.0                                  | 2.4    | 3.5 | 4.5 |
| +60/ +80                                     | 4.0                                  | 5.2 | 6.4                                  | 2.9    | 4.1 | 5.3 |

#### **N-BAF51** 652450.333

n<sub>d</sub>= 1.65224  $v_{d}$  = 44.96  $n_e = 1.65569$ 

 $v_e = 44.67$ 

 $n_F - n_C = 0.014507$  $n_{F'}-n_{C'}=0.014677$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.61873 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.62390 |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.62961 |  |  |
| n <sub>1060.0</sub>        | 1060.0 | 1.63619 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.63701 |  |  |
| n <sub>s</sub>             | 852.1  | 1.64059 |  |  |
| n <sub>r</sub>             | 706.5  | 1.64551 |  |  |
| n <sub>C</sub>             | 656.3  | 1.64792 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.64860 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.64924 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.65211 |  |  |
| n <sub>d</sub>             | 587.6  | 1.65224 |  |  |
| n <sub>e</sub>             | 546.1  | 1.65569 |  |  |
| n <sub>F</sub>             | 486.1  | 1.66243 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.66328 |  |  |
| n <sub>g</sub>             | 435.8  | 1.67065 |  |  |
| n <sub>h</sub>             | 404.7  | 1.67766 |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |  |  |
|--------------------------------------|-----------------------|-----------------------|--|--|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |  |
| 2500                                 | 0.746                 | 0.480                 |  |  |
| 2325                                 | 0.831                 | 0.630                 |  |  |
| 1970                                 | 0.946                 | 0.870                 |  |  |
| 1530                                 | 0.992                 | 0.980                 |  |  |
| 1060                                 | 0.997                 | 0.993                 |  |  |
| 700                                  | 0.997                 | 0.993                 |  |  |
| 660                                  | 0.996                 | 0.990                 |  |  |
| 620                                  | 0.996                 | 0.990                 |  |  |
| 580                                  | 0.997                 | 0.992                 |  |  |
| 546                                  | 0.996                 | 0.991                 |  |  |
| 500                                  | 0.994                 | 0.985                 |  |  |
| 460                                  | 0.988                 | 0.970                 |  |  |
| 436                                  | 0.982                 | 0.956                 |  |  |
| 420                                  | 0.976                 | 0.940                 |  |  |
| 405                                  | 0.963                 | 0.910                 |  |  |
| 400                                  | 0.954                 | 0.890                 |  |  |
| 390                                  | 0.924                 | 0.820                 |  |  |
| 380                                  | 0.862                 | 0.690                 |  |  |
| 370                                  | 0.739                 | 0.470                 |  |  |
| 365                                  | 0.642                 | 0.330                 |  |  |
| 350                                  | 0.209                 | 0.020                 |  |  |
| 334                                  |                       |                       |  |  |
| 320                                  |                       |                       |  |  |
| 310                                  |                       |                       |  |  |
| 300                                  |                       |                       |  |  |
| 290                                  |                       |                       |  |  |
| 280                                  |                       |                       |  |  |
| 270                                  |                       |                       |  |  |
| 260                                  |                       |                       |  |  |
| 250                                  |                       |                       |  |  |
|                                      |                       |                       |  |  |

| <b>Relative Partial Dispersion</b> |        |  |  |
|------------------------------------|--------|--|--|
| P <sub>s,t</sub>                   | 0.2463 |  |  |
| P <sub>C,s</sub>                   | 0.5055 |  |  |
| P <sub>d,C</sub>                   | 0.2977 |  |  |
| P <sub>e,d</sub>                   | 0.2376 |  |  |
| $\mathbf{P}_{g,F}$                 | 0.5670 |  |  |
| $\mathbf{P}_{i,h}$                 |        |  |  |
|                                    |        |  |  |
| P' <sub>s,t</sub>                  | 0.2435 |  |  |
| P' <sub>C',s</sub>                 | 0.5460 |  |  |
| P' <sub>d,C'</sub>                 | 0.2479 |  |  |
| P' <sub>e,d</sub>                  | 0.2349 |  |  |
| P' <sub>g,F'</sub>                 | 0.5024 |  |  |
| P' <sub>i,h</sub>                  |        |  |  |

| <b>n</b> <sub>248.3</sub> | 248.3      |        | 320 |  |
|---------------------------|------------|--------|-----|--|
|                           |            |        | 310 |  |
| Constan                   | ts of Disp | ersion | 300 |  |
| Formula                   |            |        | 290 |  |
| <b>B</b> <sub>1</sub>     | 1.51503623 | 3      | 280 |  |
| <b>B</b> <sub>2</sub>     | 0.15362195 | 58     | 270 |  |
| $\mathbf{B}_3$            | 1.15427909 | 9      | 260 |  |
| <b>C</b> <sub>1</sub>     | 0.00942734 | 1715   | 250 |  |
| <b>C</b> <sub>2</sub>     | 0.04308265 | 5      |     |  |
| <b>C</b> <sub>3</sub>     | 124.889868 | 3      |     |  |

| Deviation of Relative     |         |  |  |  |
|---------------------------|---------|--|--|--|
| Partial Dispersions ΔP    |         |  |  |  |
| from the "Normal Line"    |         |  |  |  |
| ΔP <sub>C,t</sub>         | -0.0064 |  |  |  |
| ΔP <sub>C,s</sub>         | -0.0022 |  |  |  |
| Δ <b>P</b> <sub>F,e</sub> | -0.0001 |  |  |  |
| $\Delta \mathbf{P}_{g,F}$ | -0.0012 |  |  |  |
| ΔP <sub>i,g</sub>         |         |  |  |  |

| Constants of Dispersion dn/dT |                           |  |  |
|-------------------------------|---------------------------|--|--|
| <b>D</b> <sub>0</sub>         | -2.84 · 10 <sup>-7</sup>  |  |  |
| <b>D</b> <sub>1</sub>         | 1.04 · 10 <sup>-8</sup>   |  |  |
| D <sub>2</sub>                | -1.80 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>         | 7.01 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>         | 8.47 · 10 <sup>-10</sup>  |  |  |
| λ <sub>TK</sub> [μm]          | 0.219                     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 39/34 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |

| Other Properties                                                                                   |       |
|----------------------------------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                                       | 8.4   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                                                      | 9.5   |
| T <sub>g</sub> [°C]                                                                                | 569   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                                                        | 574   |
| T <sub>g</sub> [°C]<br>T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 712   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                                                    | 0.840 |
| λ [W/(m·K)]                                                                                        | 0.670 |
|                                                                                                    |       |
| ρ [g/cm <sup>3</sup> ]                                                                             | 3.33  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                                                      | 91    |
| μ                                                                                                  | 0.262 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                                                     | 2.22  |
| HK <sub>0.1/20</sub>                                                                               | 560   |
| HG                                                                                                 | 5     |
|                                                                                                    |       |
| В                                                                                                  | 1     |
|                                                                                                    |       |
| CR                                                                                                 | 2     |
| FR                                                                                                 | 0     |
| SR                                                                                                 | 5.4   |
| AR                                                                                                 | 1.3   |
| PR                                                                                                 | 1     |
|                                                                                                    |       |
|                                                                                                    |       |
|                                                                                                    |       |
|                                                                                                    |       |

| Temperature Coefficients of Refractive Index |                                      |     |                                                             |        |     |     |
|----------------------------------------------|--------------------------------------|-----|-------------------------------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta$ n <sub>abs</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |        | ]   |     |
| [°C]                                         | 1060.0                               | e   | g                                                           | 1060.0 | е   | g   |
| -40/ -20                                     | 1.7                                  | 2.8 | 3.8                                                         | -0.5   | 0.5 | 1.5 |
| +20/ +40                                     | 1.7                                  | 2.9 | 4.1                                                         | 0.3    | 1.5 | 2.7 |
| +60/ +80                                     | 1.8                                  | 3.1 | 4.4                                                         | 0.7    | 2.0 | 3.3 |

#### N-BAF52 609466.305

**SCHOTT** 

 $n_d$ = 1.60863  $v_d$ = 46.60  $n_e$ = 1.61173  $v_e$ = 46.30

6.60  $n_F - n_C = 0.013061$ 6.30  $n_{F'} - n_{C'} = 0.013211$ 

| Refract                   | Refractive Indices |         |  |  |  |
|---------------------------|--------------------|---------|--|--|--|
|                           | λ [nm]             |         |  |  |  |
| n <sub>2325.4</sub>       | 2325.4             | 1.57475 |  |  |  |
| n <sub>1970.1</sub>       | 1970.1             | 1.58067 |  |  |  |
| n <sub>1529.6</sub>       | 1529.6             | 1.58702 |  |  |  |
| n <sub>1060.0</sub>       | 1060.0             | 1.59381 |  |  |  |
| n <sub>t</sub>            | 1014.0             | 1.59461 |  |  |  |
| n <sub>s</sub>            | 852.1              | 1.59801 |  |  |  |
| n <sub>r</sub>            | 706.5              | 1.60254 |  |  |  |
| n <sub>C</sub>            | 656.3              | 1.60473 |  |  |  |
| n <sub>C'</sub>           | 643.8              | 1.60535 |  |  |  |
| n <sub>632.8</sub>        | 632.8              | 1.60593 |  |  |  |
| <b>n</b> <sub>D</sub>     | 589.3              | 1.60852 |  |  |  |
| n <sub>d</sub>            | 587.6              | 1.60863 |  |  |  |
| n <sub>e</sub>            | 546.1              | 1.61173 |  |  |  |
| n <sub>F</sub>            | 486.1              | 1.61779 |  |  |  |
| n <sub>F'</sub>           | 480.0              | 1.61856 |  |  |  |
| n <sub>g</sub>            | 435.8              | 1.62521 |  |  |  |
| n <sub>h</sub>            | 404.7              | 1.63157 |  |  |  |
| n <sub>i</sub>            | 365.0              |         |  |  |  |
| <b>n</b> <sub>334.1</sub> | 334.1              |         |  |  |  |
| <b>n</b> <sub>312.6</sub> | 312.6              |         |  |  |  |
| n <sub>296.7</sub>        | 296.7              |         |  |  |  |
| n <sub>280.4</sub>        | 280.4              |         |  |  |  |
| n <sub>248.3</sub>        | 248.3              |         |  |  |  |

| Internal Transmittance $\tau_i$ |                       |                       |  |
|---------------------------------|-----------------------|-----------------------|--|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |
| 2500                            | 0.686                 | 0.390                 |  |
| 2325                            | 0.831                 | 0.630                 |  |
| 1970                            | 0.954                 | 0.890                 |  |
| 1530                            | 0.990                 | 0.975                 |  |
| 1060                            | 0.998                 | 0.994                 |  |
| 700                             | 0.997                 | 0.993                 |  |
| 660                             | 0.996                 | 0.990                 |  |
| 620                             | 0.996                 | 0.989                 |  |
| 580                             | 0.996                 | 0.990                 |  |
| 546                             | 0.996                 | 0.989                 |  |
| 500                             | 0.992                 | 0.980                 |  |
| 460                             | 0.987                 | 0.967                 |  |
| 436                             | 0.981                 | 0.954                 |  |
| 420                             | 0.975                 | 0.938                 |  |
| 405                             | 0.959                 | 0.900                 |  |
| 400                             | 0.950                 | 0.880                 |  |
| 390                             | 0.915                 | 0.800                 |  |
| 380                             | 0.842                 | 0.650                 |  |
| 370                             | 0.672                 | 0.370                 |  |
| 365                             | 0.536                 | 0.210                 |  |
| 350                             | 0.048                 |                       |  |
| 334                             |                       |                       |  |
| 320                             |                       |                       |  |
| 310                             |                       |                       |  |
| 300                             |                       |                       |  |
| 290                             |                       |                       |  |
| 280                             |                       |                       |  |
| 270                             |                       |                       |  |
| 260                             |                       |                       |  |
| 250                             |                       |                       |  |
|                                 |                       |                       |  |

| ļ | Ρ              |
|---|----------------|
|   | Р              |
|   | Р              |
|   | Р              |
|   | Р              |
|   |                |
|   | Р              |
|   | Ρ              |
|   | Р              |
|   | Р              |
|   | Р              |
|   | Р              |
|   |                |
|   | D              |
|   | Р              |
|   | fr             |
|   | Δ              |
|   | Δ              |
|   | Δ              |
|   | Δ              |
|   | Δ              |
|   |                |
|   | 0              |
|   | α              |
|   | α.             |
|   | Tç             |
|   | т              |
|   | T <sub>1</sub> |
|   | _              |

| <b>Relative Partial Dispersion</b> |        |  |  |  |
|------------------------------------|--------|--|--|--|
| P <sub>s,t</sub>                   | 0.2600 |  |  |  |
| P <sub>C,s</sub>                   | 0.5147 |  |  |  |
| $P_{d,C}$                          | 0.2985 |  |  |  |
| P <sub>e,d</sub>                   | 0.2374 |  |  |  |
| <b>P</b> <sub>g,F</sub>            | 0.5678 |  |  |  |
| $\mathbf{P}_{i,h}$                 |        |  |  |  |
|                                    |        |  |  |  |
| P' <sub>s,t</sub>                  | 0.2571 |  |  |  |
| P' <sub>C',s</sub>                 | 0.5555 |  |  |  |
| P' <sub>d,C'</sub>                 | 0.2485 |  |  |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2348 |  |  |  |
| <b>P'</b> <sub>g,F'</sub>          | 0.5035 |  |  |  |
| P' <sub>i,h</sub>                  |        |  |  |  |
|                                    |        |  |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |        |  |
|---------------------------------------------------------------------|--------|--|
| $\Delta \mathbf{P}_{C,t}$                                           | 0.0087 |  |
| ΔP <sub>C,s</sub>                                                   | 0.0031 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0002 |  |
| $\Delta P_{g,F}$                                                    | 0.0024 |  |
| $\Delta P_{i,g}$                                                    |        |  |

| Other Properties                                                                                   |       |
|----------------------------------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                                       | 6.9   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                                                      | 7.8   |
| T <sub>g</sub> [°C]                                                                                | 594   |
| T <sub>g</sub> [°C]<br>T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 596   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                                         | 716   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                                                    | 0.680 |
| λ [W/(m·K)]                                                                                        | 0.960 |
|                                                                                                    |       |
| ρ [g/cm <sup>3</sup> ]                                                                             | 3.05  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                                                      | 86    |
| μ                                                                                                  | 0.237 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                                                     | 2.42  |
| HK <sub>0.1/20</sub>                                                                               | 600   |
| HG                                                                                                 | 3     |
|                                                                                                    |       |
| В                                                                                                  | 1     |
|                                                                                                    |       |
| CR                                                                                                 | 1     |
| FR                                                                                                 | 0     |
| SR                                                                                                 | 1     |
| AR                                                                                                 | 1.3   |
| PR                                                                                                 | 1     |
|                                                                                                    |       |
|                                                                                                    |       |
|                                                                                                    |       |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.43903433    |  |
| <b>B</b> <sub>2</sub>   | 0.0967046052  |  |
| <b>B</b> <sub>3</sub>   | 1.09875818    |  |
| <b>C</b> <sub>1</sub>   | 0.00907800128 |  |
| <b>C</b> <sub>2</sub>   | 0.050821208   |  |
| C <sub>3</sub>          | 105.691856    |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| <b>D</b> <sub>0</sub>         | 1.15 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.27 · 10 <sup>-8</sup>   |  |
| <b>D</b> <sub>2</sub>         | -5.08 · 10 <sup>-12</sup> |  |
| <b>E</b> <sub>0</sub>         | 5.64 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 6.38 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.238                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 39/35 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

| Temper   | Temperature Coefficients of Refractive Index                              |     |     |        |     |     |
|----------|---------------------------------------------------------------------------|-----|-----|--------|-----|-----|
|          | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     |     |        |     |     |
| [°C]     | 1060.0                                                                    | e   | g   | 1060.0 | е   | g   |
| -40/ -20 | 2.3                                                                       | 3.1 | 4.0 | 0.2    | 0.9 | 1.8 |
| +20/ +40 | 2.3                                                                       | 3.3 | 4.3 | 0.9    | 1.9 | 2.9 |
| +60/ +80 | 2.5                                                                       | 3.6 | 4.7 | 1.4    | 2.5 | 3.6 |

#### LF5 581409.322

n<sub>d</sub>= 1.58144  $v_{d}$  = 40.85 n<sub>e</sub>= 1.58482

 $v_e = 40.57$ 

 $n_F - n_C = 0.014233$  $n_{F'}-n_{C'}=0.014413$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.54966 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.55445 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.55975 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.56594 |  |
| n <sub>t</sub>             | 1014.0 | 1.56672 |  |
| n <sub>s</sub>             | 852.1  | 1.57014 |  |
| n <sub>r</sub>             | 706.5  | 1.57489 |  |
| n <sub>C</sub>             | 656.3  | 1.57723 |  |
| n <sub>C'</sub>            | 643.8  | 1.57789 |  |
| n <sub>632.8</sub>         | 632.8  | 1.57851 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.58132 |  |
| n <sub>d</sub>             | 587.6  | 1.58144 |  |
| n <sub>e</sub>             | 546.1  | 1.58482 |  |
| n <sub>F</sub>             | 486.1  | 1.59146 |  |
| n <sub>F'</sub>            | 480.0  | 1.59231 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.59964 |  |
| n <sub>h</sub>             | 404.7  | 1.60668 |  |
| n <sub>i</sub>             | 365.0  | 1.61926 |  |
| n <sub>334.1</sub>         | 334.1  | 1.63380 |  |
| n <sub>312.6</sub>         | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |
|--------------------------------------|-----------------------|-----------------------|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                                 |                       |                       |
| 2325                                 | 0.847                 | 0.660                 |
| 1970                                 | 0.946                 | 0.870                 |
| 1530                                 | 0.997                 | 0.992                 |
| 1060                                 | 0.999                 | 0.998                 |
| 700                                  | 0.999                 | 0.998                 |
| 660                                  | 0.999                 | 0.998                 |
| 620                                  | 0.999                 | 0.998                 |
| 580                                  | 0.999                 | 0.997                 |
| 546                                  | 0.999                 | 0.997                 |
| 500                                  | 0.998                 | 0.996                 |
| 460                                  | 0.998                 | 0.995                 |
| 436                                  | 0.998                 | 0.994                 |
| 420                                  | 0.997                 | 0.993                 |
| 405                                  | 0.997                 | 0.992                 |
| 400                                  | 0.997                 | 0.992                 |
| 390                                  | 0.994                 | 0.984                 |
| 380                                  | 0.989                 | 0.973                 |
| 370                                  | 0.984                 | 0.961                 |
| 365                                  | 0.981                 | 0.954                 |
| 350                                  | 0.950                 | 0.880                 |
| 334                                  | 0.799                 | 0.570                 |
| 320                                  | 0.320                 | 0.040                 |
| 310                                  | 0.040                 |                       |
| 300                                  |                       |                       |
| 290                                  |                       |                       |
| 280                                  |                       |                       |
| 270                                  |                       |                       |
| 260                                  |                       |                       |
| 250                                  |                       |                       |
|                                      |                       |                       |
|                                      |                       |                       |

| 0.997 | 0.992 |
|-------|-------|
| 0.999 | 0.998 |
| 0.999 | 0.998 |
| 0.999 | 0.998 |
| 0.999 | 0.998 |
| 0.999 | 0.997 |
| 0.999 | 0.997 |
| 0.998 | 0.996 |
| 0.998 | 0.995 |
| 0.998 | 0.994 |
| 0.997 | 0.993 |
| 0.997 | 0.992 |
| 0.997 | 0.992 |
| 0.994 | 0.984 |
| 0.989 | 0.973 |
| 0.984 | 0.961 |
| 0.981 | 0.954 |
| 0.950 | 0.880 |
| 0.799 | 0.570 |
| 0.320 | 0.040 |
| 0.040 |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |

| <b>Relative Partial Dispersion</b> |  |  |  |
|------------------------------------|--|--|--|
| 0.2401                             |  |  |  |
| 0.4981                             |  |  |  |
| 0.2959                             |  |  |  |
| 0.2373                             |  |  |  |
| 0.5748                             |  |  |  |
| 0.8836                             |  |  |  |
|                                    |  |  |  |
| 0.2371                             |  |  |  |
| 0.5378                             |  |  |  |
| 0.2462                             |  |  |  |
| 0.2343                             |  |  |  |
| 0.5091                             |  |  |  |
| 0.8726                             |  |  |  |
|                                    |  |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | -0.0006 |  |
| ΔP <sub>C,s</sub>                                                   | 0.0000  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0001 |  |
| $\Delta P_{g,F}$                                                    | -0.0003 |  |
| $\Delta P_{i,g}$                                                    | -0.0037 |  |

| Other Properties                                                                                   |       |
|----------------------------------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                                       | 9.1   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                                            | 10.6  |
| T <sub>g</sub> [°C]                                                                                | 419   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                                                        | 411   |
| T <sub>g</sub> [°C]<br>T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 585   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                                                    | 0.657 |
| λ [W/(m·K)]                                                                                        | 0.866 |
|                                                                                                    |       |
| ρ [g/cm <sup>3</sup> ]                                                                             | 3.22  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                                                      | 59    |
| μ                                                                                                  | 0.223 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                                                     | 2.83  |
| HK <sub>0.1/20</sub>                                                                               | 450   |
| HG                                                                                                 | 2     |
|                                                                                                    |       |
| В                                                                                                  | 1     |
|                                                                                                    |       |
| CR                                                                                                 | 2     |
| FR                                                                                                 | 0     |
| SR                                                                                                 | 1     |
| AR                                                                                                 | 2.3   |
| PR                                                                                                 | 2     |
|                                                                                                    |       |
|                                                                                                    |       |
|                                                                                                    |       |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| B <sub>1</sub>          | 1.28035628    |  |
| <b>B</b> <sub>2</sub>   | 0.163505973   |  |
| <b>B</b> <sub>3</sub>   | 0.893930112   |  |
| <b>C</b> <sub>1</sub>   | 0.00929854416 |  |
| C <sub>2</sub>          | 0.0449135769  |  |
| <b>C</b> <sub>3</sub>   | 110.493685    |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | -2.27 · 10 <sup>-6</sup>  |  |
| <b>D</b> <sub>1</sub>   | 9.71 · 10 <sup>-9</sup>   |  |
| <b>D</b> <sub>2</sub>   | -2.83 · 10 <sup>-11</sup> |  |
| E <sub>0</sub>          | 8.36 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 9.95 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.228                     |  |

| Color Code                   |       |  |
|------------------------------|-------|--|
| $\lambda_{80}/\lambda_{5}$   | 34/31 |  |
| $(*=\lambda_{70}/\lambda_5)$ |       |  |

| Remarks                    |
|----------------------------|
| lead containing glass type |
|                            |

| Temperature Coefficients of Refractive Index |                                            |     |                  |                                      |      |     |
|----------------------------------------------|--------------------------------------------|-----|------------------|--------------------------------------|------|-----|
|                                              | Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K] |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]    |     |
| [°C]                                         | 1060.0                                     | e   | g                | 1060.0                               | e    | g   |
| -40/ -20                                     | 0.8                                        | 1.9 | 3.1              | -1.3                                 | -0.2 | 0.9 |
| +20/ +40                                     | 0.8                                        | 2.0 | 3.4              | -0.6                                 | 0.7  | 2.0 |
| +60/ +80                                     | 0.8                                        | 2.2 | 3.7              | -0.3                                 | 1.1  | 2.6 |

#### **F2** 620364.360

n<sub>d</sub>= 1.62004  $v_{d}$  = 36.37 n<sub>e</sub>= 1.62408

 $v_e = 36.11$ 

 $n_F - n_C = 0.017050$  $n_{F'}-n_{C'}=0.017284$ 

| Potroctive Indiana         |        |         |  |  |
|----------------------------|--------|---------|--|--|
| Refractive Indices         |        |         |  |  |
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.58465 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.58958 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.59513 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.60190 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.60279 |  |  |
| n <sub>s</sub>             | 852.1  | 1.60671 |  |  |
| n <sub>r</sub>             | 706.5  | 1.61227 |  |  |
| n <sub>C</sub>             | 656.3  | 1.61503 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.61582 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.61656 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.61989 |  |  |
| n <sub>d</sub>             | 587.6  | 1.62004 |  |  |
| n <sub>e</sub>             | 546.1  | 1.62408 |  |  |
| n <sub>F</sub>             | 486.1  | 1.63208 |  |  |
| n <sub>F</sub>             | 480.0  | 1.63310 |  |  |
| <b>n</b> g                 | 435.8  | 1.64202 |  |  |
| n <sub>h</sub>             | 404.7  | 1.65064 |  |  |
| n <sub>i</sub>             | 365.0  | 1.66623 |  |  |
| n <sub>334.1</sub>         | 334.1  | 1.68455 |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal ' | Transmitta            | anceτ <sub>i</sub>    |
|------------|-----------------------|-----------------------|
| λ [nm]     | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500       | 0.809                 | 0.589                 |
| 2325       | 0.859                 | 0.685                 |
| 1970       | 0.949                 | 0.876                 |
| 1530       | 0.996                 | 0.989                 |
| 1060       | 0.999                 | 0.998                 |
| 700        | 0.999                 | 0.998                 |
| 660        | 0.999                 | 0.997                 |
| 620        | 0.999                 | 0.998                 |
| 580        | 0.999                 | 0.998                 |
| 546        | 0.999                 | 0.998                 |
| 500        | 0.999                 | 0.997                 |
| 460        | 0.998                 | 0.994                 |
| 436        | 0.997                 | 0.993                 |
| 420        | 0.996                 | 0.991                 |
| 405        | 0.995                 | 0.987                 |
| 400        | 0.994                 | 0.985                 |
| 390        | 0.991                 | 0.977                 |
| 380        | 0.985                 | 0.963                 |
| 370        | 0.975                 | 0.940                 |
| 365        | 0.968                 | 0.921                 |
| 350        | 0.905                 | 0.780                 |
| 334        | 0.537                 | 0.211                 |
| 320        | 0.080                 |                       |
| 310        |                       |                       |
| 300        |                       |                       |
| 290        |                       |                       |
| 280        |                       |                       |
| 270        |                       |                       |
| 260        |                       |                       |
| 250        |                       |                       |
|            |                       |                       |
| ,          |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2301 |  |
| P <sub>C,s</sub>            | 0.4882 |  |
| $\mathbf{P}_{d,C}$          | 0.2938 |  |
| $\mathbf{P}_{e,d}$          | 0.2370 |  |
| $\mathbf{P}_{g,F}$          | 0.5828 |  |
| $\mathbf{P}_{i,h}$          | 0.9142 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2270 |  |
| P' <sub>C',s</sub>          | 0.5270 |  |
| P' <sub>d,C'</sub>          | 0.2443 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2338 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5159 |  |
| P' <sub>i,h</sub>           | 0.9018 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |        |  |  |
|---------------------------------------------------------------------|--------|--|--|
| $\Delta P_{C,t}$                                                    | 0.0008 |  |  |
| Δ <b>P</b> <sub>C,s</sub> 0.0005                                    |        |  |  |
| Δ <b>P</b> <sub>F,e</sub> 0.0000                                    |        |  |  |
| $\Delta P_{g,F}$                                                    | 0.0002 |  |  |
| $\Delta \mathbf{P}_{i,g}$                                           | 0.0006 |  |  |

Other Properties

| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 8.2   |
|---------------------------------------------------------------------------|-------|
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 9.2   |
| T <sub>a</sub> [°C]                                                       | 434   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 430   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 594   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.557 |
| λ [W/(m·K)]                                                               | 0.780 |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.60  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 57    |
| μ                                                                         | 0.220 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.81  |
| HK <sub>0.1/20</sub>                                                      | 420   |
| HG                                                                        | 2     |
|                                                                           |       |
| В                                                                         | 0     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 0     |
| SR                                                                        | 1     |
| AR                                                                        | 2.3   |

PR

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.34533359    |  |
| <b>B</b> <sub>2</sub>   | 0.209073176   |  |
| <b>B</b> <sub>3</sub>   | 0.937357162   |  |
| <b>C</b> <sub>1</sub>   | 0.00997743871 |  |
| <b>C</b> <sub>2</sub>   | 0.0470450767  |  |
| C <sub>3</sub>          | 111.886764    |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | 1.51 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.56 · 10 <sup>-8</sup>   |  |
| D <sub>2</sub>          | -2.78 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 9.34 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 1.04 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]    | 0.25                      |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 35/32 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                    |  |
|----------------------------|--|
| lead containing glass type |  |
|                            |  |
| lead containing glass type |  |

| Temper                                 | Temperature Coefficients of Refractive Index |                                      |     |        |     |     |
|----------------------------------------|----------------------------------------------|--------------------------------------|-----|--------|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$   |                                              | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     |        |     |     |
| [°C]                                   | 1060.0                                       | Ф                                    | g   | 1060.0 | e   | g   |
| -40/ -20                               | 2.4                                          | 3.9                                  | 5.5 | 0.3    | 1.6 | 3.2 |
| +20/ +40                               | 2.7                                          | 4.4                                  | 6.3 | 1.3    | 3.0 | 4.8 |
| <b>+60/+80</b> 3.0 4.8 6.8 1.9 3.7 5.7 |                                              |                                      |     |        | 5.7 |     |

1.3

#### F2HT 620364.360

**SCHOTT** 

 $n_d = 1.62004$   $v_d$  $n_e = 1.62408$   $v_d$ 

 $v_d$  = 36.37  $v_e$  = 36.11

 $n_F - n_C = 0.017050$  $n_{F'} - n_{C'} = 0.017284$ 

| Refractive Indices         |        |         |
|----------------------------|--------|---------|
|                            | λ [nm] |         |
| <b>n</b> <sub>2325.4</sub> | 2325.4 | 1.58465 |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.58958 |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.59513 |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.60190 |
| n <sub>t</sub>             | 1014.0 | 1.60279 |
| n <sub>s</sub>             | 852.1  | 1.60671 |
| n <sub>r</sub>             | 706.5  | 1.61227 |
| n <sub>C</sub>             | 656.3  | 1.61503 |
| n <sub>C'</sub>            | 643.8  | 1.61582 |
| n <sub>632.8</sub>         | 632.8  | 1.61656 |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.61989 |
| n <sub>d</sub>             | 587.6  | 1.62004 |
| n <sub>e</sub>             | 546.1  | 1.62408 |
| n <sub>F</sub>             | 486.1  | 1.63208 |
| n <sub>F'</sub>            | 480.0  | 1.63310 |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.64202 |
| n <sub>h</sub>             | 404.7  | 1.65064 |
| n <sub>i</sub>             | 365.0  | 1.66623 |
| n <sub>334.1</sub>         | 334.1  | 1.68455 |
| n <sub>312.6</sub>         | 312.6  |         |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |
| n <sub>280.4</sub>         | 280.4  |         |
| n <sub>248.3</sub>         | 248.3  |         |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.874                 | 0.714                 |
| 2325     | 0.912                 | 0.795                 |
| 1970     | 0.968                 | 0.921                 |
| 1530     | 0.998                 | 0.994                 |
| 1060     | 0.999                 | 0.998                 |
| 700      | 0.999                 | 0.998                 |
| 660      | 0.999                 | 0.997                 |
| 620      | 0.999                 | 0.998                 |
| 580      | 0.999                 | 0.998                 |
| 546      | 0.999                 | 0.998                 |
| 500      | 0.999                 | 0.997                 |
| 460      | 0.998                 | 0.995                 |
| 436      | 0.998                 | 0.994                 |
| 420      | 0.997                 | 0.994                 |
| 405      | 0.997                 | 0.992                 |
| 400      | 0.996                 | 0.991                 |
| 390      | 0.995                 | 0.988                 |
| 380      | 0.993                 | 0.982                 |
| 370      | 0.988                 | 0.971                 |
| 365      | 0.983                 | 0.957                 |
| 350      | 0.927                 | 0.828                 |
| 334      | 0.565                 | 0.240                 |
| 320      | 0.080                 |                       |
| 310      |                       |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| <b>Relative Partial Dispersion</b> |        |  |
|------------------------------------|--------|--|
| $\mathbf{P}_{s,t}$                 | 0.2301 |  |
| <b>P</b> <sub>C,s</sub>            | 0.4882 |  |
| $\mathbf{P}_{d,C}$                 | 0.2938 |  |
| $\mathbf{P}_{\mathrm{e,d}}$        | 0.2370 |  |
| $\mathbf{P}_{g,F}$                 | 0.5828 |  |
| $\mathbf{P}_{i,h}$                 | 0.9142 |  |
|                                    |        |  |
| P' <sub>s,t</sub>                  | 0.2270 |  |
| P' <sub>C',s</sub>                 | 0.5270 |  |
| P' <sub>d,C'</sub>                 | 0.2443 |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2338 |  |
| P' <sub>g,F'</sub>                 | 0.5159 |  |
| P' <sub>i,h</sub>                  | 0.9018 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |        |  |
|---------------------------------------------------------------------|--------|--|
| $\Delta P_{C,t}$                                                    | 0.0008 |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0005 |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | 0.0000 |  |
| $\Delta P_{g,F}$                                                    | 0.0002 |  |
| $\Delta P_{i,g}$                                                    | 0.0006 |  |

Other Properties

| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 8.2   |
|--------------------------------------------------------------------------|-------|
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 9.2   |
| T <sub>g</sub> [°C]                                                      | 434   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 430   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 594   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                          | 0.557 |
| λ [W/(m·K)]                                                              | 0.780 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 3.60  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 57    |
| μ                                                                        | 0.220 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 2.81  |
| HK <sub>0.1/20</sub>                                                     | 420   |
| HG                                                                       | 2     |
|                                                                          |       |
| В                                                                        | 0     |
|                                                                          |       |
| CR                                                                       | 1     |
| FR                                                                       | 0     |
| SR                                                                       | 1     |
| AR                                                                       | 23    |

PR

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.34533359    |  |
| <b>B</b> <sub>2</sub>   | 0.209073176   |  |
| <b>B</b> <sub>3</sub>   | 0.937357162   |  |
| <b>C</b> <sub>1</sub>   | 0.00997743871 |  |
| <b>C</b> <sub>2</sub>   | 0.0470450767  |  |
| <b>C</b> <sub>3</sub>   | 111.886764    |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
|                               | 1.51 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>0</sub>         | 1.51 · 10 ·               |  |
| <b>D</b> <sub>1</sub>         | 1.56 · 10 <sup>-8</sup>   |  |
| $D_2$                         | -2.78 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 9.34 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 1.04 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]          | 0.25                      |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 35/32 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Temperature Coefficients of Refractive Index |                   |                          |     |                  |                                      |     |
|----------------------------------------------|-------------------|--------------------------|-----|------------------|--------------------------------------|-----|
|                                              | Δn <sub>rel</sub> | /ΔT[10 <sup>-6</sup> /K] |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]                                         | 1060.0            | Φ                        | g   | 1060.0           | е                                    | g   |
| -40/ -20                                     | 2.4               | 3.9                      | 5.5 | 0.3              | 1.6                                  | 3.2 |
| +20/ +40                                     | 2.7               | 4.4                      | 6.3 | 1.3              | 3.0                                  | 4.8 |
| +60/ +80                                     | 3.0               | 4.8                      | 6.8 | 1.9              | 3.7                                  | 5.7 |

1.3

#### F5 603380.347

n<sub>d</sub>= 1.60342  $v_{d}$  = 38.03 n<sub>e</sub>= 1.60718

 $v_e = 37.77$ 

 $n_F - n_C = 0.015867$  $n_{F'}-n_{C'}=0.016078$ 

| Defractive Indiana         |        |         |  |
|----------------------------|--------|---------|--|
| Refractive Indices         |        |         |  |
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.56934 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.57427 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.57979 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.58636 |  |
| n <sub>t</sub>             | 1014.0 | 1.58721 |  |
| <b>n</b> <sub>s</sub>      | 852.1  | 1.59093 |  |
| n <sub>r</sub>             | 706.5  | 1.59616 |  |
| n <sub>C</sub>             | 656.3  | 1.59875 |  |
| n <sub>C'</sub>            | 643.8  | 1.59948 |  |
| n <sub>632.8</sub>         | 632.8  | 1.60017 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.60328 |  |
| n <sub>d</sub>             | 587.6  | 1.60342 |  |
| n <sub>e</sub>             | 546.1  | 1.60718 |  |
| n <sub>F</sub>             | 486.1  | 1.61461 |  |
| n <sub>F</sub>             | 480.0  | 1.61556 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.62381 |  |
| n <sub>h</sub>             | 404.7  | 1.63176 |  |
| n <sub>i</sub>             | 365.0  | 1.64606 |  |
| n <sub>334.1</sub>         | 334.1  | 1.66276 |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |  |
|--------------------------------------|-----------------------|-----------------------|--|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |
| 2500                                 | 0.787                 | 0.550                 |  |
| 2325                                 | 0.842                 | 0.650                 |  |
| 1970                                 | 0.941                 | 0.860                 |  |
| 1530                                 | 0.995                 | 0.987                 |  |
| 1060                                 | 0.999                 | 0.998                 |  |
| 700                                  | 0.999                 | 0.997                 |  |
| 660                                  | 0.998                 | 0.996                 |  |
| 620                                  | 0.998                 | 0.995                 |  |
| 580                                  | 0.998                 | 0.995                 |  |
| 546                                  | 0.998                 | 0.995                 |  |
| 500                                  | 0.998                 | 0.994                 |  |
| 460                                  | 0.996                 | 0.991                 |  |
| 436                                  | 0.996                 | 0.990                 |  |
| 420                                  | 0.995                 | 0.988                 |  |
| 405                                  | 0.994                 | 0.985                 |  |
| 400                                  | 0.993                 | 0.982                 |  |
| 390                                  | 0.989                 | 0.973                 |  |
| 380                                  | 0.984                 | 0.960                 |  |
| 370                                  | 0.971                 | 0.930                 |  |
| 365                                  | 0.963                 | 0.910                 |  |
| 350                                  | 0.896                 | 0.760                 |  |
| 334                                  | 0.618                 | 0.300                 |  |
| 320                                  | 0.080                 |                       |  |
| 310                                  |                       |                       |  |
| 300                                  |                       |                       |  |
| 290                                  |                       |                       |  |
| 280                                  |                       |                       |  |
| 270                                  |                       |                       |  |
| 260                                  |                       |                       |  |
| 250                                  |                       |                       |  |
|                                      |                       |                       |  |
| I                                    | 1                     | ı                     |  |

| Relative Partial Dispersion |        |  |  |
|-----------------------------|--------|--|--|
| $\mathbf{P}_{s,t}$          | 0.2346 |  |  |
| P <sub>C,s</sub>            | 0.4925 |  |  |
| $\mathbf{P}_{d,C}$          | 0.2946 |  |  |
| $\mathbf{P}_{e,d}$          | 0.2371 |  |  |
| $\mathbf{P}_{g,F}$          | 0.5795 |  |  |
| $\mathbf{P}_{i,h}$          | 0.9015 |  |  |
|                             |        |  |  |
| P' <sub>s,t</sub>           | 0.2315 |  |  |
| P' <sub>C',s</sub>          | 0.5317 |  |  |
| P' <sub>d,C'</sub>          | 0.2451 |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2340 |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5131 |  |  |
| P' <sub>i,h</sub>           | 0.8897 |  |  |
|                             |        |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta \mathbf{P}_{C,t}$                                           | 0.0017  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0009  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0001 |  |
| $\Delta P_{g,F}$                                                    | -0.0003 |  |
| $\Delta P_{i,g}$                                                    | -0.0028 |  |
|                                                                     |         |  |
| Other Properties                                                    |         |  |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.3104463     |  |
| <b>B</b> <sub>2</sub>   | 0.19603426    |  |
| <b>B</b> <sub>3</sub>   | 0.96612977    |  |
| <b>C</b> <sub>1</sub>   | 0.00958633048 |  |
| C <sub>2</sub>          | 0.0457627627  |  |
| C <sub>3</sub>          | 115.011883    |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| D <sub>0</sub>          | 2.13 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.65 · 10 <sup>-8</sup>   |  |
| <b>D</b> <sub>2</sub>   | -6.98 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 1.02 · 10 <sup>-6</sup>   |  |
| <b>E</b> <sub>1</sub>   | 6.56 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.208                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 35/32 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                    |
|----------------------------|
| lead containing glass type |
|                            |

| Temperature Coefficients of Refractive Index                              |        |     |     |        |     |     |
|---------------------------------------------------------------------------|--------|-----|-----|--------|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$ $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |     |     |        |     |     |
| [°C]                                                                      | 1060.0 | e   | g   | 1060.0 | е   | g   |
| -40/ -20                                                                  | 2.5    | 4.0 | 5.5 | 0.4    | 1.8 | 3.3 |
| +20/ +40                                                                  | 3.0    | 4.6 | 6.2 | 1.6    | 3.2 | 4.8 |
| +60/ +80                                                                  | 3.1    | 4.8 | 6.5 | 2.0    | 3.7 | 5.4 |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 8.0   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                               | 8.9   |
| <b>T</b> <sub>g</sub> [°C]                                            | 438   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                           | 425   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 608   |
| $\mathbf{c}_{p}[J/(g\cdotK)]$                                         |       |
| $\lambda [W/(m\cdot K)]$                                              |       |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 3.47  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 58    |
| μ                                                                     | 0.220 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 2.92  |
| HK <sub>0.1/20</sub>                                                  | 450   |
| HG                                                                    | 3     |
|                                                                       |       |
| В                                                                     | 0     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 0     |
| SR                                                                    | 1     |
| AR                                                                    | 2.3   |
| PR                                                                    | 2     |
|                                                                       |       |
|                                                                       |       |
|                                                                       |       |
|                                                                       | •     |

#### N-F2 620364.265

**SCHOTT** 

 $n_d$ = 1.62005  $v_d$ = 36.43  $n_e$ = 1.62408  $v_e$ = 36.16

 $n_F - n_C = 0.017020$  $n_{F'} - n_{C'} = 0.017258$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
|                            | λ [nm] |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.58136 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.58744 |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.59410 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.60167 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.60261 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.60667 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.61229 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.61506 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.61584 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.61658 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.61990 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.62005 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.62408 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.63208 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.63310 |  |  |  |
| n <sub>g</sub>             | 435.8  | 1.64209 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.65087 |  |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal Transmittanceτ |                       |                       |  |  |
|-------------------------|-----------------------|-----------------------|--|--|
| λ [nm]                  | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |  |
| 2500                    | 0.746                 | 0.480                 |  |  |
| 2325                    | 0.837                 | 0.640                 |  |  |
| 1970                    | 0.950                 | 0.880                 |  |  |
| 1530                    | 0.991                 | 0.977                 |  |  |
| 1060                    | 0.998                 | 0.996                 |  |  |
| 700                     | 0.997                 | 0.992                 |  |  |
| 660                     | 0.996                 | 0.990                 |  |  |
| 620                     | 0.996                 | 0.991                 |  |  |
| 580                     | 0.997                 | 0.993                 |  |  |
| 546                     | 0.997                 | 0.992                 |  |  |
| 500                     | 0.994                 | 0.984                 |  |  |
| 460                     | 0.989                 | 0.973                 |  |  |
| 436                     | 0.985                 | 0.963                 |  |  |
| 420                     | 0.980                 | 0.950                 |  |  |
| 405                     | 0.959                 | 0.900                 |  |  |
| 400                     | 0.946                 | 0.870                 |  |  |
| 390                     | 0.891                 | 0.750                 |  |  |
| 380                     | 0.764                 | 0.510                 |  |  |
| 370                     | 0.480                 | 0.160                 |  |  |
| 365                     | 0.276                 | 0.040                 |  |  |
| 350                     | 0.096                 |                       |  |  |
| 334                     |                       |                       |  |  |
| 320                     |                       |                       |  |  |
| 310                     |                       |                       |  |  |
| 300                     |                       |                       |  |  |
| 290                     |                       |                       |  |  |
| 280                     |                       |                       |  |  |
| 270                     |                       |                       |  |  |
| 260                     |                       |                       |  |  |
| 250                     |                       |                       |  |  |
|                         |                       |                       |  |  |

| Relative Parti              | al Dispersion |
|-----------------------------|---------------|
| $\mathbf{P}_{\mathrm{s,t}}$ | 0.2389        |
| P <sub>C,s</sub>            | 0.4925        |
| $\mathbf{P}_{d,C}$          | 0.2935        |
| $\mathbf{P}_{e,d}$          | 0.2366        |
| $\mathbf{P}_{g,F}$          | 0.5881        |
| $\mathbf{P}_{i,h}$          |               |
|                             |               |
| P' <sub>s,t</sub>           | 0.2356        |
| <b>P'</b> <sub>C',s</sub>   | 0.5312        |
| P' <sub>d,C'</sub>          | 0.2440        |
| <b>P'</b> <sub>e,d</sub>    | 0.2334        |
| P' <sub>g,F'</sub>          | 0.5208        |
| P' <sub>i,h</sub>           |               |
|                             |               |

| Deviation of Relative     |        |  |  |  |
|---------------------------|--------|--|--|--|
| Partial Dispersions ΔP    |        |  |  |  |
| from the "Normal Line"    |        |  |  |  |
| Δ <b>P</b> <sub>C,t</sub> | 0.0137 |  |  |  |
| Δ <b>P</b> <sub>C,s</sub> | 0.0047 |  |  |  |
| ΔP <sub>F,e</sub>         | 0.0006 |  |  |  |
| $\Delta P_{g,F}$          | 0.0056 |  |  |  |
| $\Delta P_{i,g}$          |        |  |  |  |
|                           |        |  |  |  |

Other Properties

| •                                                                     |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 7.8   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                         | 9.1   |
| T <sub>g</sub> [°C]                                                   | 569   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                  | 567   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 686   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.810 |
| λ [W/(m·K)]                                                           | 1.050 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 2.65  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 82    |
| μ                                                                     | 0.228 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 3.03  |
| HK <sub>0.1/20</sub>                                                  | 600   |
| HG                                                                    | 2     |
|                                                                       |       |
| В                                                                     | 1     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 0     |
| SR                                                                    | 1     |
| AR                                                                    | 1     |
| PR                                                                    | 1     |
|                                                                       |       |
|                                                                       |       |

| Constants of Dispersion |               |  |  |
|-------------------------|---------------|--|--|
| Formula                 |               |  |  |
| <b>B</b> <sub>1</sub>   | 1.39757037    |  |  |
| <b>B</b> <sub>2</sub>   | 0.159201403   |  |  |
| <b>B</b> <sub>3</sub>   | 1.2686543     |  |  |
| <b>C</b> <sub>1</sub>   | 0.00995906143 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0546931752  |  |  |
| <b>C</b> <sub>3</sub>   | 119.248346    |  |  |

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   |                           |  |  |
| <b>D</b> <sub>0</sub>   | 4.62 · 10 <sup>-7</sup>   |  |  |
| <b>D</b> <sub>1</sub>   | 1.17 · 10 <sup>-8</sup>   |  |  |
| D <sub>2</sub>          | -2.35 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 7.47 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 9.81 · 10 <sup>-10</sup>  |  |  |
| λ <sub>TK</sub> [μm]    | 0.263                     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 39/36 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

## Remarks

| Temperature Coefficients of Refractive Index |        |     |                  |                                      |     |     |
|----------------------------------------------|--------|-----|------------------|--------------------------------------|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |     |
| [°C]                                         | 1060.0 | e   | g                | 1060.0                               | е   | g   |
| -40/ -20                                     | 2.0    | 3.2 | 4.6              | -0.1                                 | 1.0 | 2.3 |
| +20/ +40                                     | 2.1    | 3.5 | 5.1              | 0.7                                  | 2.0 | 3.6 |
| +60/ +80                                     | 2.2    | 3.7 | 5.5              | 1.1                                  | 2.6 | 4.4 |

#### N-BASF2 664360.315

**SCHOTT** 

n<sub>d</sub>= 1.66446 n<sub>e</sub>= 1.66883

 $v_d$  = 36.00  $v_e$  = 35.73

 $n_F - n_C = 0.018457$  $n_{F'} - n_{C'} = 0.018720$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
| Rondon                     | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.62552 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.63109 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.63734 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.64484 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.64581 |  |  |
| n <sub>s</sub>             | 852.1  | 1.65007 |  |  |
| n <sub>r</sub>             | 706.5  | 1.65607 |  |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.65905 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.65990 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.66070 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.66430 |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.66446 |  |  |
| n <sub>e</sub>             | 546.1  | 1.66883 |  |  |
| n <sub>F</sub>             | 486.1  | 1.67751 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.67862 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.68838 |  |  |
| n <sub>h</sub>             | 404.7  | 1.69792 |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |
| n <sub>334.1</sub>         | 334.1  |         |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  | -       |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal Transmittance τ <sub>i</sub> |                                                                                                                                   |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| τ <sub>i</sub> (10mm)                 | τ <sub>i</sub> (25mm)                                                                                                             |  |  |
| 0.857                                 | 0.680                                                                                                                             |  |  |
| 0.896                                 | 0.760                                                                                                                             |  |  |
| 0.971                                 | 0.930                                                                                                                             |  |  |
| 0.994                                 | 0.985                                                                                                                             |  |  |
| 0.999                                 | 0.997                                                                                                                             |  |  |
| 0.996                                 | 0.990                                                                                                                             |  |  |
| 0.994                                 | 0.985                                                                                                                             |  |  |
| 0.994                                 | 0.985                                                                                                                             |  |  |
| 0.995                                 | 0.987                                                                                                                             |  |  |
| 0.994                                 | 0.985                                                                                                                             |  |  |
| 0.988                                 | 0.971                                                                                                                             |  |  |
| 0.980                                 | 0.951                                                                                                                             |  |  |
| 0.971                                 | 0.930                                                                                                                             |  |  |
| 0.954                                 | 0.890                                                                                                                             |  |  |
| 0.915                                 | 0.800                                                                                                                             |  |  |
| 0.891                                 | 0.750                                                                                                                             |  |  |
| 0.804                                 | 0.580                                                                                                                             |  |  |
| 0.634                                 | 0.320                                                                                                                             |  |  |
| 0.325                                 | 0.060                                                                                                                             |  |  |
| 0.158                                 |                                                                                                                                   |  |  |
|                                       |                                                                                                                                   |  |  |
|                                       |                                                                                                                                   |  |  |
|                                       |                                                                                                                                   |  |  |
|                                       |                                                                                                                                   |  |  |
|                                       |                                                                                                                                   |  |  |
|                                       |                                                                                                                                   |  |  |
|                                       |                                                                                                                                   |  |  |
|                                       |                                                                                                                                   |  |  |
|                                       |                                                                                                                                   |  |  |
|                                       |                                                                                                                                   |  |  |
|                                       |                                                                                                                                   |  |  |
|                                       | τ <sub>i</sub> (10mm) 0.857 0.896 0.971 0.994 0.999 0.996 0.994 0.995 0.994 0.988 0.980 0.971 0.954 0.915 0.891 0.804 0.634 0.325 |  |  |

|                         | Relative Partial Dispersion |        |  |
|-------------------------|-----------------------------|--------|--|
| C,s 0.4869              | $\mathbf{P}_{s,t}$          | 0.2309 |  |
|                         | P <sub>C,s</sub>            | 0.4869 |  |
| O.2929                  | $\mathbf{P}_{d,C}$          | 0.2929 |  |
| P <sub>e,d</sub> 0.2367 | $\mathbf{P}_{\mathrm{e,d}}$ | 0.2367 |  |
| 0.5890                  | $\mathbf{P}_{g,F}$          | 0.5890 |  |
|                         | $\mathbf{P}_{i,h}$          |        |  |
|                         |                             |        |  |
| o.2277                  | P' <sub>s,t</sub>           | 0.2277 |  |
| C',s 0.5253             | P' <sub>C',s</sub>          | 0.5253 |  |
| 0.2435                  | P' <sub>d,C'</sub>          | 0.2435 |  |
| o.2333                  | <b>P'</b> <sub>e,d</sub>    | 0.2333 |  |
| 0.5214                  | P' <sub>g,F'</sub>          | 0.5214 |  |
|                         | P' <sub>i,h</sub>           |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |        |  |  |
|---------------------------------------------------------------------|--------|--|--|
| $\Delta P_{C,t}$                                                    | 0.0021 |  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0001 |  |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | 0.0010 |  |  |
| $\Delta P_{g,F}$                                                    | 0.0057 |  |  |
| $\Delta \mathbf{P}_{\mathrm{i,g}}$                                  |        |  |  |

| Other Properties                                                         |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 7.1   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 8.1   |
| <b>T</b> <sub>α</sub> [°C]                                               | 619   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                     | 622   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 766   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                          | 0.660 |
| λ [W/(m·K)]                                                              | 0.940 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 3.15  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 84    |
| μ                                                                        | 0.247 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 3.04  |
| HK <sub>0.1/20</sub>                                                     | 580   |
| HG                                                                       | 3     |
|                                                                          |       |
| В                                                                        | 1     |
|                                                                          |       |
| CR                                                                       | 1     |
| FR                                                                       | 0     |
| SR                                                                       | 1     |
| AR                                                                       | 1     |
| PR                                                                       | 1     |
|                                                                          |       |
|                                                                          |       |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 1.53652081   |  |
| <b>B</b> <sub>2</sub>   | 0.156971102  |  |
| <b>B</b> <sub>3</sub>   | 1.30196815   |  |
| <b>C</b> <sub>1</sub>   | 0.0108435729 |  |
| C <sub>2</sub>          | 0.0562278762 |  |
| <b>C</b> <sub>3</sub>   | 131.3397     |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| $\mathbf{D}_0$                | 1.89 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.22 · 10 <sup>-8</sup>   |  |
| $D_2$                         | -1.61 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 7.77 · 10 <sup>-7</sup>   |  |
| E <sub>1</sub>                | 9.96 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.256                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 41/36 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |     |     |
| [°C]                                         | 1060.0                               | e   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 2.8                                  | 4.1 | 5.6                                  | 0.6    | 1.9 | 3.3 |
| +20/ +40                                     | 2.9                                  | 4.4 | 6.2                                  | 1.5    | 3.0 | 4.7 |
| +60/ +80                                     | 3.1                                  | 4.8 | 6.7                                  | 2.0    | 3.6 | 5.5 |

#### N-BASF64 704394.320

**SCHOTT** 

n<sub>d</sub>= 1.70400 n<sub>e</sub>= 1.70824  $v_d$  = 39.38  $v_e$  = 39.12

 $n_F - n_C = 0.017875$  $n_{F'} - n_{C'} = 0.018105$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.66373 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.66988 |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.67667 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.68453 |  |
| n <sub>t</sub>             | 1014.0 | 1.68551 |  |
| n <sub>s</sub>             | 852.1  | 1.68982 |  |
| n <sub>r</sub>             | 706.5  | 1.69578 |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.69872 |  |
| $\mathbf{n}_{\mathrm{C'}}$ | 643.8  | 1.69955 |  |
| n <sub>632.8</sub>         | 632.8  | 1.70033 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.70384 |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.70400 |  |
| n <sub>e</sub>             | 546.1  | 1.70824 |  |
| n <sub>F</sub>             | 486.1  | 1.71659 |  |
| n <sub>F'</sub>            | 480.0  | 1.71765 |  |
| n <sub>g</sub>             | 435.8  | 1.72690 |  |
| n <sub>h</sub>             | 404.7  | 1.73581 |  |
| n <sub>i</sub>             | 365.0  | 1.75184 |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| n <sub>312.6</sub>         | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| <b>n</b> <sub>248.3</sub>  | 248.3  |         |  |

| Internal Transmittance $\tau_i$ |                       |                       |
|---------------------------------|-----------------------|-----------------------|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                            | 0.727                 | 0.450                 |
| 2325                            | 0.852                 | 0.670                 |
| 1970                            | 0.959                 | 0.900                 |
| 1530                            | 0.988                 | 0.970                 |
| 1060                            | 0.994                 | 0.985                 |
| 700                             | 0.988                 | 0.970                 |
| 660                             | 0.982                 | 0.955                 |
| 620                             | 0.979                 | 0.949                 |
| 580                             | 0.979                 | 0.949                 |
| 546                             | 0.980                 | 0.950                 |
| 500                             | 0.976                 | 0.940                 |
| 460                             | 0.967                 | 0.920                 |
| 436                             | 0.959                 | 0.900                 |
| 420                             | 0.950                 | 0.880                 |
| 405                             | 0.933                 | 0.840                 |
| 400                             | 0.924                 | 0.820                 |
| 390                             | 0.891                 | 0.750                 |
| 380                             | 0.821                 | 0.610                 |
| 370                             | 0.672                 | 0.370                 |
| 365                             | 0.546                 | 0.220                 |
| 350                             | 0.090                 |                       |
| 334                             |                       |                       |
| 320                             |                       |                       |
| 310                             |                       |                       |
| 300                             |                       |                       |
| 290                             |                       |                       |
| 280                             |                       |                       |
| 270                             |                       |                       |
| 260                             |                       |                       |
| 250                             |                       |                       |
|                                 |                       |                       |

| Relative Parti            | al Dispersion |
|---------------------------|---------------|
| P <sub>s,t</sub>          | 0.2408        |
| P <sub>C,s</sub>          | 0.4979        |
| <b>P</b> <sub>d,C</sub>   | 0.2956        |
| <b>P</b> <sub>e,d</sub>   | 0.2372        |
| <b>P</b> <sub>g,F</sub>   | 0.5769        |
| P <sub>i,h</sub>          | 0.8970        |
|                           |               |
| P' <sub>s,t</sub>         | 0.2377        |
| P' <sub>C',s</sub>        | 0.5375        |
| P' <sub>d,C'</sub>        | 0.2459        |
| P' <sub>e,d</sub>         | 0.2342        |
| <b>P'</b> <sub>g,F'</sub> | 0.5110        |
| P' <sub>i,h</sub>         | 0.8856        |
| · ·                       |               |

| <b>n</b> <sub>280.4</sub> | 280.4             | 334 |  |
|---------------------------|-------------------|-----|--|
| <b>n</b> <sub>248.3</sub> | 248.3             | 320 |  |
|                           |                   | 310 |  |
| Consta                    | nts of Dispersion | 300 |  |
| Formula                   | a                 | 290 |  |
| <b>B</b> <sub>1</sub>     | 1.65554268        | 280 |  |
| <b>B</b> <sub>2</sub>     | 0.17131977        | 270 |  |
| <b>B</b> <sub>3</sub>     | 1.33664448        | 260 |  |
| <b>C</b> <sub>1</sub>     | 0.0104485644      | 250 |  |
| <b>C</b> <sub>2</sub>     | 0.0499394756      |     |  |
| <b>C</b> <sub>3</sub>     | 118.961472        |     |  |

| Deviation of Relative     |         |  |
|---------------------------|---------|--|
| Partial Dispersions ΔP    |         |  |
| from the "Normal Line"    |         |  |
| $\Delta \mathbf{P}_{C,t}$ | 0.0069  |  |
| $\Delta \mathbf{P}_{C,s}$ | 0.0032  |  |
| $\Delta \mathbf{P}_{F,e}$ | -0.0004 |  |
| $\Delta \mathbf{P}_{g,F}$ | -0.0006 |  |
| $\Delta P_{i,a}$          | 0.0012  |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | 1.60 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.02 · 10 <sup>-8</sup>   |  |
| $D_2$                   | -2.68 · 10 <sup>-11</sup> |  |
| E <sub>0</sub>          | 7.87 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 9.65 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.229                     |  |
| -                       |                           |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 40/35 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |
|         |  |  |

| Other Properties                                                            |       |
|-----------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                | 7.3   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                               | 8.7   |
| T <sub>q</sub> [°C]                                                         | 582   |
|                                                                             | 585   |
| T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 712   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                              |       |
| $\lambda [W/(m\cdot K)]$                                                    |       |
|                                                                             |       |
| ρ [g/cm <sup>3</sup> ]                                                      | 3.20  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                               | 105   |
| μ                                                                           | 0.264 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                              | 2.38  |
| HK <sub>0.1/20</sub>                                                        | 650   |
| HG                                                                          | 4     |
|                                                                             |       |
| В                                                                           | 0     |
|                                                                             |       |
| CR                                                                          | 1     |
| FR                                                                          | 0     |
| SR                                                                          | 3.2   |
| AR                                                                          | 1.2   |
| PR                                                                          | 1     |
|                                                                             |       |
|                                                                             |       |
|                                                                             |       |

| Temperature Coefficients of Refractive Index |        |                                      |     |        |     |     |
|----------------------------------------------|--------|--------------------------------------|-----|--------|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     | ]      |     |     |
| [°C]                                         | 1060.0 | Φ                                    | g   | 1060.0 | е   | g   |
| -40/ -20                                     | 2.8    | 4.1                                  | 5.5 | 0.6    | 1.8 | 3.1 |
| +20/ +40                                     | 2.8    | 4.3                                  | 5.9 | 1.4    | 2.8 | 4.4 |
| +60/ +80                                     | 2.9    | 4.5                                  | 6.3 | 1.8    | 3.4 | 5.1 |

#### LAFN7 750350.438

**SCHOTT** 

 $\begin{array}{ll} n_d \! = \! 1.74950 & \nu_d \! = \! 34.95 \\ n_e \! = \! 1.75458 & \nu_e \! = \! 34.72 \end{array}$ 

 $n_F - n_C = 0.021445$  $n_{F'} - n_{C'} = 0.021735$ 

| Refract                    | ive Indice | s       |
|----------------------------|------------|---------|
| 11011010                   | λ [nm]     |         |
| n <sub>2325.4</sub>        | 2325.4     | 1.70211 |
| <b>n</b> <sub>1970.1</sub> | 1970.1     | 1.70934 |
| n <sub>1529.6</sub>        | 1529.6     | 1.71726 |
| <b>n</b> <sub>1060.0</sub> | 1060.0     | 1.72642 |
| n <sub>t</sub>             | 1014.0     | 1.72758 |
| n <sub>s</sub>             | 852.1      | 1.73264 |
| n <sub>r</sub>             | 706.5      | 1.73970 |
| n <sub>C</sub>             | 656.3      | 1.74319 |
| n <sub>C'</sub>            | 643.8      | 1.74418 |
| n <sub>632.8</sub>         | 632.8      | 1.74511 |
| <b>n</b> <sub>D</sub>      | 589.3      | 1.74931 |
| n <sub>d</sub>             | 587.6      | 1.74950 |
| n <sub>e</sub>             | 546.1      | 1.75458 |
| n <sub>F</sub>             | 486.1      | 1.76464 |
| n <sub>F'</sub>            | 480.0      | 1.76592 |
| n <sub>g</sub>             | 435.8      | 1.77713 |
| n <sub>h</sub>             | 404.7      | 1.78798 |
| n <sub>i</sub>             | 365.0      | 1.80762 |
| <b>n</b> <sub>334.1</sub>  | 334.1      |         |
| <b>n</b> <sub>312.6</sub>  | 312.6      |         |
| <b>n</b> <sub>296.7</sub>  | 296.7      |         |
| <b>n</b> <sub>280.4</sub>  | 280.4      |         |
| n <sub>248.3</sub>         | 248.3      |         |

| Internal <sup>*</sup> | Transmitta            | anceτ <sub>i</sub>    |
|-----------------------|-----------------------|-----------------------|
| λ [nm]                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                  | 0.382                 | 0.090                 |
| 2325                  | 0.700                 | 0.410                 |
| 1970                  | 0.937                 | 0.850                 |
| 1530                  | 0.984                 | 0.960                 |
| 1060                  | 0.998                 | 0.996                 |
| 700                   | 0.998                 | 0.996                 |
| 660                   | 0.998                 | 0.995                 |
| 620                   | 0.998                 | 0.995                 |
| 580                   | 0.998                 | 0.995                 |
| 546                   | 0.998                 | 0.994                 |
| 500                   | 0.998                 | 0.994                 |
| 460                   | 0.993                 | 0.982                 |
| 436                   | 0.986                 | 0.965                 |
| 420                   | 0.976                 | 0.940                 |
| 405                   | 0.950                 | 0.880                 |
| 400                   | 0.937                 | 0.850                 |
| 390                   | 0.905                 | 0.780                 |
| 380                   | 0.842                 | 0.650                 |
| 370                   | 0.693                 | 0.400                 |
| 365                   | 0.546                 | 0.220                 |
| 350                   | 0.125                 | 0.010                 |
| 334                   |                       |                       |
| 320                   |                       |                       |
| 310                   |                       |                       |
| 300                   |                       |                       |
| 290                   |                       |                       |
| 280                   |                       |                       |
| 270                   |                       |                       |
| 260                   |                       |                       |
| 250                   |                       |                       |
|                       |                       |                       |
|                       |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2360 |  |
| P <sub>C,s</sub>            | 0.4921 |  |
| $\mathbf{P}_{d,C}$          | 0.2941 |  |
| $\mathbf{P}_{e,d}$          | 0.2369 |  |
| $\mathbf{P}_{g,F}$          | 0.5825 |  |
| $\mathbf{P}_{i,h}$          | 0.9160 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2329 |  |
| P' <sub>C',s</sub>          | 0.5311 |  |
| P' <sub>d,C'</sub>          | 0.2446 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2338 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5158 |  |
| P' <sub>i,h</sub>           | 0.9037 |  |
|                             |        |  |
| Deviation of Relative       |        |  |
| Partial Dispersions AP      |        |  |

| Partial Dispersions ΔP from the "Normal Line" |         |  |
|-----------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub> 0.0174              |         |  |
| Δ <b>P</b> <sub>C,s</sub>                     | 0.0078  |  |
| Δ <b>P</b> <sub>F,e</sub>                     | -0.0011 |  |
| $\Delta P_{g,F}$                              | -0.0025 |  |
| Δ <b>P</b> <sub>i,g</sub> -0.0093             |         |  |
|                                               |         |  |

| Other Properties                                                                                   |                       |  |  |
|----------------------------------------------------------------------------------------------------|-----------------------|--|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                                       | 5.3                   |  |  |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                                            | 6.4                   |  |  |
| T <sub>g</sub> [°C]                                                                                | 500                   |  |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                                               | 481                   |  |  |
| T <sub>g</sub> [°C]<br>T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 573                   |  |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                                                    |                       |  |  |
| λ [W/(m·K)]                                                                                        | 0.770                 |  |  |
|                                                                                                    |                       |  |  |
| ρ [g/cm <sup>3</sup> ]                                                                             | 4.38                  |  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                                                      | 80                    |  |  |
| μ                                                                                                  | 0.280                 |  |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                                                     | 1.77                  |  |  |
| HK <sub>0.1/20</sub>                                                                               | 520                   |  |  |
| HG                                                                                                 | 3                     |  |  |
|                                                                                                    |                       |  |  |
| В                                                                                                  | 0                     |  |  |
|                                                                                                    |                       |  |  |
| CR                                                                                                 | 3                     |  |  |
| FR                                                                                                 | 1                     |  |  |
| SR                                                                                                 | 53.3                  |  |  |
| AR                                                                                                 | 2.2                   |  |  |
| PR                                                                                                 | 4.3                   |  |  |
|                                                                                                    |                       |  |  |
|                                                                                                    |                       |  |  |
| CR<br>FR<br>SR<br>AR                                                                               | 3<br>1<br>53.3<br>2.2 |  |  |

| Constants of Dispersion |              |  |  |
|-------------------------|--------------|--|--|
| Formula                 |              |  |  |
| <b>B</b> <sub>1</sub>   | 1.66842615   |  |  |
| <b>B</b> <sub>2</sub>   | 0.298512803  |  |  |
| <b>B</b> <sub>3</sub>   | 1.0774376    |  |  |
| <b>C</b> <sub>1</sub>   | 0.0103159999 |  |  |
| C <sub>2</sub>          | 0.0469216348 |  |  |
| C <sub>3</sub>          | 82.5078509   |  |  |

| Constants of Dispersion dn/dT |                           |  |  |
|-------------------------------|---------------------------|--|--|
| un/un                         |                           |  |  |
| $\mathbf{D}_0$                | 7.27 · 10 <sup>-6</sup>   |  |  |
| <b>D</b> <sub>1</sub>         | 1.31 · 10 <sup>-8</sup>   |  |  |
| $D_2$                         | -3.32 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>         | 8.88 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>         | 9.32 · 10 <sup>-10</sup>  |  |  |
| λ <sub>TK</sub> [μm]          | 0.248                     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 40/35 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                    |
|----------------------------|
| lead containing glass type |
|                            |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                               | e   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 6.0                                  | 7.8 | 9.7                                  | 3.7    | 5.4 | 7.2 |
| +20/ +40                                     | 6.3                                  | 8.3 | 10.4                                 | 4.8    | 6.7 | 8.9 |
| +60/ +80                                     | 6.5                                  | 8.6 | 10.9                                 | 5.3    | 7.4 | 9.7 |

#### N-LAF2 744449.430

 $n_d = 1.74397$  $v_{d}$  = 44.85 n<sub>e</sub>= 1.74791

 $v_e = 44.57$ 

 $n_F - n_C = 0.016588$  $n_{F'}-n_{C'}=0.016780$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.70582 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.71169 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.71816 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.72563 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.72656 |  |  |
| n <sub>s</sub>             | 852.1  | 1.73064 |  |  |
| n <sub>r</sub>             | 706.5  | 1.73627 |  |  |
| n <sub>C</sub>             | 656.3  | 1.73903 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.73981 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.74054 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.74383 |  |  |
| n <sub>d</sub>             | 587.6  | 1.74397 |  |  |
| n <sub>e</sub>             | 546.1  | 1.74791 |  |  |
| n <sub>F</sub>             | 486.1  | 1.75562 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.75659 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.76500 |  |  |
| n <sub>h</sub>             | 404.7  | 1.77298 |  |  |
| n <sub>i</sub>             | 365.0  | 1.78703 |  |  |
| n <sub>334.1</sub>         | 334.1  |         |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| n <sub>248.3</sub>    | 248.3                   |     |  |  |
|-----------------------|-------------------------|-----|--|--|
|                       |                         |     |  |  |
| Constan               | Constants of Dispersion |     |  |  |
| Formula               |                         |     |  |  |
| <b>B</b> <sub>1</sub> | 1.80984227              | 7   |  |  |
| <b>B</b> <sub>2</sub> | 0.15729555              | 5   |  |  |
| <b>B</b> <sub>3</sub> | 1.0930037               |     |  |  |
| <b>C</b> <sub>1</sub> | 0.01017116              | 622 |  |  |
| C <sub>2</sub>        | 0.04424317              | 765 |  |  |
| <b>C</b> <sub>3</sub> | 100.687748              | 3   |  |  |
|                       |                         |     |  |  |

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   |                           |  |  |
| <b>D</b> <sub>0</sub>   | -3.64 · 10 <sup>-6</sup>  |  |  |
| <b>D</b> <sub>1</sub>   | 9.20 · 10 <sup>-9</sup>   |  |  |
| D <sub>2</sub>          | -6.00 · 10 <sup>-12</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 6.43 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 6.11 · 10 <sup>-10</sup>  |  |  |
| λ <sub>TK</sub> [μm]    | 0.22                      |  |  |

| Internal | Internal Transmittance τ <sub>i</sub> |                       |  |  |
|----------|---------------------------------------|-----------------------|--|--|
| λ [nm]   | τ <sub>i</sub> (10mm)                 | τ <sub>i</sub> (25mm) |  |  |
| 2500     | 0.693                                 | 0.400                 |  |  |
| 2325     | 0.862                                 | 0.690                 |  |  |
| 1970     | 0.971                                 | 0.930                 |  |  |
| 1530     | 0.996                                 | 0.990                 |  |  |
| 1060     | 0.999                                 | 0.997                 |  |  |
| 700      | 0.998                                 | 0.996                 |  |  |
| 660      | 0.997                                 | 0.993                 |  |  |
| 620      | 0.997                                 | 0.992                 |  |  |
| 580      | 0.997                                 | 0.993                 |  |  |
| 546      | 0.998                                 | 0.994                 |  |  |
| 500      | 0.993                                 | 0.983                 |  |  |
| 460      | 0.985                                 | 0.962                 |  |  |
| 436      | 0.976                                 | 0.940                 |  |  |
| 420      | 0.965                                 | 0.915                 |  |  |
| 405      | 0.944                                 | 0.865                 |  |  |
| 400      | 0.933                                 | 0.840                 |  |  |
| 390      | 0.896                                 | 0.760                 |  |  |
| 380      | 0.831                                 | 0.630                 |  |  |
| 370      | 0.713                                 | 0.430                 |  |  |
| 365      | 0.626                                 | 0.310                 |  |  |
| 350      | 0.229                                 | 0.025                 |  |  |
| 334      |                                       |                       |  |  |
| 320      |                                       |                       |  |  |
| 310      |                                       |                       |  |  |
| 300      |                                       |                       |  |  |
| 290      |                                       |                       |  |  |
| 280      |                                       |                       |  |  |
| 270      |                                       |                       |  |  |
| 260      |                                       |                       |  |  |
| 250      |                                       |                       |  |  |
|          |                                       |                       |  |  |
|          |                                       |                       |  |  |

| Color Code                   |     |
|------------------------------|-----|
| $\lambda_{80}/\lambda_{5}$   | 40/ |
| $(*=\lambda_{70}/\lambda_5)$ | -   |
|                              |     |
| Remarks                      |     |
|                              |     |
|                              |     |

| Temperature Coefficients of Refractive Index |                                                                           |     |     |        |      |      |
|----------------------------------------------|---------------------------------------------------------------------------|-----|-----|--------|------|------|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     |     |        | ]    |      |
| [°C]                                         | 1060.0                                                                    | e   | g   | 1060.0 | e    | g    |
| -40/ -20                                     | 0.0                                                                       | 1.0 | 2.1 | -2.3   | -1.3 | -0.3 |
| +20/ +40                                     | -0.1                                                                      | 1.0 | 2.3 | -1.6   | -0.5 | 0.7  |
| +60/ +80                                     | -0.1                                                                      | 1.2 | 2.5 | -1.2   | 0.0  | 1.3  |

| <b>Relative Partial Dispersion</b> |        |  |
|------------------------------------|--------|--|
| P <sub>s,t</sub>                   | 0.2459 |  |
| <b>P</b> <sub>C,s</sub>            | 0.5057 |  |
| $\mathbf{P}_{d,C}$                 | 0.2979 |  |
| $\mathbf{P}_{e,d}$                 | 0.2377 |  |
| $\mathbf{P}_{g,F}$                 | 0.5656 |  |
| $\mathbf{P}_{i,h}$                 | 0.8470 |  |
|                                    |        |  |
| P' <sub>s,t</sub>                  | 0.2431 |  |
| P' <sub>C',s</sub>                 | 0.5464 |  |
| P' <sub>d,C'</sub>                 | 0.2481 |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2350 |  |
| <b>P'</b> <sub>g,F'</sub>          | 0.5012 |  |
| P' <sub>i,h</sub>                  | 0.8373 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | -0.0061 |  |
| ΔP <sub>C,s</sub>                                                   | -0.0017 |  |
| ΔP <sub>F,e</sub>                                                   | -0.0004 |  |
| $\Delta P_{g,F}$                                                    | -0.0027 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0202 |  |

| Other Properties                                                                                   |       |  |  |
|----------------------------------------------------------------------------------------------------|-------|--|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                                       | 8.1   |  |  |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                                            | 9.1   |  |  |
| T <sub>g</sub> [°C]                                                                                | 653   |  |  |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                                                        | 645   |  |  |
| T <sub>g</sub> [°C]<br>T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 742   |  |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                                                    | 0.510 |  |  |
| λ [W/(m·K)]                                                                                        | 0.670 |  |  |
|                                                                                                    |       |  |  |
| ρ [g/cm <sup>3</sup> ]                                                                             | 4.30  |  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                                                      | 94    |  |  |
| μ                                                                                                  | 0.288 |  |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                                                     | 1.42  |  |  |
| HK <sub>0.1/20</sub>                                                                               | 530   |  |  |
| HG                                                                                                 | 6     |  |  |
|                                                                                                    |       |  |  |
| В                                                                                                  | 1     |  |  |
|                                                                                                    |       |  |  |
| CR                                                                                                 | 2     |  |  |
| FR                                                                                                 | 3     |  |  |
| SR                                                                                                 | 52.2  |  |  |
| AR                                                                                                 | 1     |  |  |
| PR                                                                                                 | 2.2   |  |  |
|                                                                                                    |       |  |  |
|                                                                                                    |       |  |  |
|                                                                                                    |       |  |  |

#### N-LAF7 749348.373

n<sub>d</sub>= 1.74950 n<sub>e</sub>= 1.75459

 $v_{d}$ = 34.82  $v_e = 34.56$   $n_F - n_C = 0.021525$  $n_{F'}-n_{C'}=0.021833$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.70344 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.71021 |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.71772 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.72659 |  |
| n <sub>t</sub>             | 1014.0 | 1.72773 |  |
| n <sub>s</sub>             | 852.1  | 1.73272 |  |
| n <sub>r</sub>             | 706.5  | 1.73972 |  |
| n <sub>C</sub>             | 656.3  | 1.74320 |  |
| n <sub>C'</sub>            | 643.8  | 1.74419 |  |
| n <sub>632.8</sub>         | 632.8  | 1.74511 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.74931 |  |
| <b>n</b> <sub>d</sub>      | 587.6  | 1.74950 |  |
| n <sub>e</sub>             | 546.1  | 1.75459 |  |
| n <sub>F</sub>             | 486.1  | 1.76472 |  |
| n <sub>F'</sub>            | 480.0  | 1.76602 |  |
| n <sub>g</sub>             | 435.8  | 1.77741 |  |
| n <sub>h</sub>             | 404.7  | 1.78854 |  |
| n <sub>i</sub>             | 365.0  |         |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |
| <b>n</b> <sub>248.3</sub>  | 248.3  |         |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |
|--------------------------------------|-----------------------|-----------------------|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                                 | 0.679                 | 0.380                 |
| 2325                                 | 0.867                 | 0.700                 |
| 1970                                 | 0.976                 | 0.940                 |
| 1530                                 | 0.996                 | 0.990                 |
| 1060                                 | 0.998                 | 0.996                 |
| 700                                  | 0.997                 | 0.992                 |
| 660                                  | 0.995                 | 0.988                 |
| 620                                  | 0.994                 | 0.985                 |
| 580                                  | 0.992                 | 0.980                 |
| 546                                  | 0.988                 | 0.970                 |
| 500                                  | 0.971                 | 0.930                 |
| 460                                  | 0.937                 | 0.850                 |
| 436                                  | 0.901                 | 0.770                 |
| 420                                  | 0.857                 | 0.680                 |
| 405                                  | 0.782                 | 0.540                 |
| 400                                  | 0.752                 | 0.490                 |
| 390                                  | 0.657                 | 0.350                 |
| 380                                  | 0.515                 | 0.190                 |
| 370                                  | 0.302                 | 0.050                 |
| 365                                  | 0.170                 | 0.012                 |
| 350                                  |                       |                       |
| 334                                  |                       |                       |
| 320                                  |                       |                       |
| 310                                  |                       |                       |
| 300                                  |                       |                       |
| 290                                  |                       |                       |
| 280                                  |                       |                       |
| 270                                  |                       |                       |
| 260                                  |                       |                       |
| 250                                  |                       |                       |
|                                      |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{s,t}$          | 0.2317 |  |
| <b>P</b> <sub>C,s</sub>     | 0.4870 |  |
| $\mathbf{P}_{d,C}$          | 0.2928 |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2366 |  |
| $\mathbf{P}_{g,F}$          | 0.5894 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2284 |  |
| P' <sub>C',s</sub>          | 0.5254 |  |
| P' <sub>d,C'</sub>          | 0.2434 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2333 |  |
| P' <sub>g,F'</sub>          | 0.5218 |  |
| P' <sub>i,h</sub>           |        |  |
|                             |        |  |

|   | ΔΡ                      |
|---|-------------------------|
|   | ΔΡ                      |
|   |                         |
|   | Ot                      |
|   | α3                      |
|   | α+2                     |
|   | <b>T</b> g[             |
|   | <b>T</b> <sub>10</sub>  |
|   | <b>T</b> <sub>10</sub>  |
|   | <b>c</b> <sub>p</sub> [ |
| · | λ [V                    |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |        |  |
|---------------------------------------------------------------------|--------|--|
| $\Delta P_{C,t}$                                                    | 0.0085 |  |
| ΔP <sub>C,s</sub>                                                   | 0.0029 |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | 0.0005 |  |
| $\Delta \mathbf{P}_{g,F}$                                           | 0.0042 |  |
| $\Delta \mathbf{P}_{i,g}$                                           |        |  |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 1.74028764   |  |
| <b>B</b> <sub>2</sub>   | 0.226710554  |  |
| <b>B</b> <sub>3</sub>   | 1.32525548   |  |
| <b>C</b> <sub>1</sub>   | 0.010792558  |  |
| <b>C</b> <sub>2</sub>   | 0.0538626639 |  |
| <b>C</b> <sub>3</sub>   | 106.268665   |  |

| Constants of Dispersion |                           |   | Color C                      |
|-------------------------|---------------------------|---|------------------------------|
| dn/dT                   |                           |   | $\lambda_{80}/\lambda_{5}$   |
| <b>D</b> <sub>0</sub>   | 9.21 · 10 <sup>-7</sup>   | ] | $(*=\lambda_{70}/\lambda_5)$ |
| <b>D</b> <sub>1</sub>   | 1.10 · 10 <sup>-8</sup>   | 1 |                              |
| D <sub>2</sub>          | -1.75 · 10 <sup>-11</sup> | ] | Remark                       |
| F.                      | 7.67 · 10 <sup>-7</sup>   | ] |                              |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 46/36 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |

| <b>E</b> <sub>0</sub> | 7.67 · 10                            | ) <sup>-7</sup> |           |                                                             |     |     |
|-----------------------|--------------------------------------|-----------------|-----------|-------------------------------------------------------------|-----|-----|
| <b>E</b> <sub>1</sub> | 1.10 · 10                            | ) <sup>-9</sup> |           |                                                             |     |     |
| λ <sub>TK</sub> [μm]  | 0.264                                |                 |           |                                                             |     |     |
|                       |                                      |                 |           |                                                             |     |     |
| Temper                | ature Co                             | efficient       | s of Refr | active Ind                                                  | dex |     |
|                       | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |                 |           | $\Delta$ n <sub>abs</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |     |     |
| [°C]                  | 1060.0                               | е               | g         | 1060.0                                                      | е   | g   |
| -40/ -20              | 2.5                                  | 3.9             | 5.6       | 0.2                                                         | 1.5 | 3.1 |
| +20/ +40              | 2.6                                  | 4.3             | 6.3       | 1.1                                                         | 2.7 | 4.7 |
| +60/ +80              | 2.7                                  | 4.6             | 6.8       | 1.6                                                         | 3.4 | 5.6 |
|                       |                                      | •               |           |                                                             |     | •   |
|                       |                                      |                 |           |                                                             |     |     |

| Other Properties                               |       |
|------------------------------------------------|-------|
| $\alpha_{-30/+70^{\circ}C}[10^{-6}/K]$         | 7.3   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$        | 8.4   |
| T <sub>a</sub> [°C]                            | 568   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]    | 563   |
| T <sub>10</sub> <sup>7.6</sup> [°C]            | 669   |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                | 0.620 |
| λ [W/(m·K)]                                    | 0.830 |
|                                                |       |
| ρ [g/cm <sup>3</sup> ]                         | 3.73  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]  | 96    |
| μ                                              | 0.271 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N] | 2.57  |
| HK <sub>0.1/20</sub>                           | 530   |
| HG                                             | 5     |
|                                                |       |
| В                                              | 1     |
|                                                |       |
| CR                                             | 1     |
| FR                                             | 2     |
| SR                                             | 51.3  |
| AR                                             | 1.2   |
| PR                                             | 1.2   |
|                                                |       |
|                                                |       |
|                                                |       |
|                                                | -     |

#### N-LAF21 788475.428

**SCHOTT** 

 $n_d$ = 1.78800  $v_d$ = 47.49  $n_e$ = 1.79195  $v_e$ = 47.25

 $n_F - n_C = 0.016593$  $n_{F'} - n_{C'} = 0.016761$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.74419 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.75191 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.76014 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.76892 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.76995 |  |  |
| n <sub>s</sub>             | 852.1  | 1.77434 |  |  |
| n <sub>r</sub>             | 706.5  | 1.78019 |  |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.78301 |  |  |
| $\mathbf{n}_{\mathrm{C'}}$ | 643.8  | 1.78380 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.78454 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.78785 |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.78800 |  |  |
| n <sub>e</sub>             | 546.1  | 1.79195 |  |  |
| n <sub>F</sub>             | 486.1  | 1.79960 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.80056 |  |  |
| n <sub>g</sub>             | 435.8  | 1.80882 |  |  |
| n <sub>h</sub>             | 404.7  | 1.81657 |  |  |
| n <sub>i</sub>             | 365.0  | 1.83002 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal | Transmitta            | ance $	au_{	ext{i}}$  |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.455                 | 0.140                 |
| 2325     | 0.752                 | 0.490                 |
| 1970     | 0.954                 | 0.890                 |
| 1530     | 0.992                 | 0.981                 |
| 1060     | 0.998                 | 0.995                 |
| 700      | 0.998                 | 0.996                 |
| 660      | 0.998                 | 0.996                 |
| 620      | 0.998                 | 0.995                 |
| 580      | 0.998                 | 0.994                 |
| 546      | 0.998                 | 0.994                 |
| 500      | 0.995                 | 0.988                 |
| 460      | 0.989                 | 0.973                 |
| 436      | 0.983                 | 0.958                 |
| 420      | 0.976                 | 0.940                 |
| 405      | 0.959                 | 0.900                 |
| 400      | 0.950                 | 0.880                 |
| 390      | 0.924                 | 0.820                 |
| 380      | 0.882                 | 0.730                 |
| 370      | 0.804                 | 0.580                 |
| 365      | 0.746                 | 0.480                 |
| 350      | 0.480                 | 0.160                 |
| 334      | 0.130                 |                       |
| 320      |                       |                       |
| 310      |                       |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| Constants of Dispersion |              |  |  |
|-------------------------|--------------|--|--|
| Formula                 |              |  |  |
| <b>B</b> <sub>1</sub>   | 1.87134529   |  |  |
| <b>B</b> <sub>2</sub>   | 0.25078301   |  |  |
| <b>B</b> <sub>3</sub>   | 1.22048639   |  |  |
| <b>C</b> <sub>1</sub>   | 0.0093332228 |  |  |
| C <sub>2</sub>          | 0.0345637762 |  |  |
| <b>C</b> <sub>3</sub>   | 83.2404866   |  |  |

| Color Code                   |       |  |  |
|------------------------------|-------|--|--|
| $\lambda_{80}/\lambda_{5}$   | 40/33 |  |  |
| $(*=\lambda_{70}/\lambda_5)$ |       |  |  |

| Constants of Dispersion dn/dT |                           |  |  |  |
|-------------------------------|---------------------------|--|--|--|
| <b>D</b> <sub>0</sub>         | 3.11 · 10 <sup>-6</sup>   |  |  |  |
| <b>D</b> <sub>1</sub>         | 1.13 · 10 <sup>-8</sup>   |  |  |  |
| $D_2$                         | -2.07 · 10 <sup>-11</sup> |  |  |  |
| <b>E</b> <sub>0</sub>         | 5.88 · 10 <sup>-7</sup>   |  |  |  |
| <b>E</b> <sub>1</sub>         | 6.32 · 10 <sup>-10</sup>  |  |  |  |
| λ <sub>TK</sub> [μm]          | 0.199                     |  |  |  |

| 10 <sup>-11</sup> | Remarks |
|-------------------|---------|
| 10 <sup>-7</sup>  |         |
| 10 <sup>-10</sup> |         |
|                   |         |
|                   | •       |

| Temperature Coefficients of Refractive Index |                                      |     |     |                                            |     |     |
|----------------------------------------------|--------------------------------------|-----|-----|--------------------------------------------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     |     | Δn <sub>abs</sub> /ΔT[10 <sup>-6</sup> /K] |     |     |
| [°C]                                         | 1060.0                               | e   | g   | 1060.0                                     | e   | g   |
| -40/ -20                                     | 3.8                                  | 4.8 | 5.8 | 1.4                                        | 2.4 | 3.3 |
| +20/ +40                                     | 3.9                                  | 5.1 | 6.2 | 2.3                                        | 3.5 | 4.6 |
| +60/ +80                                     | 4.0                                  | 5.3 | 6.5 | 2.8                                        | 4.1 | 5.3 |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2646 |  |
| P <sub>C,s</sub>            | 0.5222 |  |
| P <sub>d,C</sub>            | 0.3009 |  |
| P <sub>e,d</sub>            | 0.2380 |  |
| $\mathbf{P}_{g,F}$          | 0.5555 |  |
| $\mathbf{P}_{i,h}$          | 0.8106 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2619 |  |
| P' <sub>C',s</sub>          | 0.5641 |  |
| P' <sub>d,C'</sub>          | 0.2507 |  |
| P' <sub>e,d</sub>           | 0.2356 |  |
| P' <sub>g,F'</sub>          | 0.4927 |  |
| P' <sub>i,h</sub>           | 0.8025 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0165  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0086  |  |
| $\Delta P_{F,e}$                                                    | -0.0024 |  |
| $\Delta P_{g,F}$                                                    | -0.0084 |  |
| $\Delta P_{i,g}$                                                    | -0.0481 |  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 6.0   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                         | 7.1   |
| T <sub>g</sub> [°C]                                                   | 653   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 659   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                            | 729   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.550 |
| λ [W/(m·K)]                                                           | 0.830 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 4.28  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 124   |
| μ                                                                     | 0.295 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 1.46  |
| HK <sub>0.1/20</sub>                                                  | 730   |
| HG                                                                    | 2     |
|                                                                       |       |
| В                                                                     | 1     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 1     |
| SR                                                                    | 51.3  |
| AR                                                                    | 1     |
| PR                                                                    | 1.3   |
|                                                                       |       |
|                                                                       |       |
|                                                                       |       |

#### N-LAF33 786441.436

**SCHOTT** 

 $n_d$ = 1.78582  $v_d$ = 44.05  $n_e$ = 1.79007  $v_e$ = 43.80

 $n_F - n_C = 0.017839$  $n_{F'} - n_{C'} = 0.018038$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.74262 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.74968 |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.75732 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.76584 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.76689 |  |  |
| n <sub>s</sub>             | 852.1  | 1.77138 |  |  |
| n <sub>r</sub>             | 706.5  | 1.77751 |  |  |
| n <sub>C</sub>             | 656.3  | 1.78049 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.78134 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.78213 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.78567 |  |  |
| n <sub>d</sub>             | 587.6  | 1.78582 |  |  |
| n <sub>e</sub>             | 546.1  | 1.79007 |  |  |
| n <sub>F</sub>             | 486.1  | 1.79833 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.79937 |  |  |
| n <sub>g</sub>             | 435.8  | 1.80837 |  |  |
| n <sub>h</sub>             | 404.7  | 1.81687 |  |  |
| n <sub>i</sub>             | 365.0  | 1.83175 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal Transmittance $\tau_{\rm i}$ |                       |                       |  |
|---------------------------------------|-----------------------|-----------------------|--|
| λ [nm]                                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |
| 2500                                  | 0.468                 | 0.150                 |  |
| 2325                                  | 0.746                 | 0.480                 |  |
| 1970                                  | 0.941                 | 0.860                 |  |
| 1530                                  | 0.988                 | 0.970                 |  |
| 1060                                  | 0.998                 | 0.994                 |  |
| 700                                   | 0.998                 | 0.994                 |  |
| 660                                   | 0.997                 | 0.993                 |  |
| 620                                   | 0.997                 | 0.992                 |  |
| 580                                   | 0.997                 | 0.992                 |  |
| 546                                   | 0.997                 | 0.992                 |  |
| 500                                   | 0.994                 | 0.985                 |  |
| 460                                   | 0.987                 | 0.967                 |  |
| 436                                   | 0.980                 | 0.950                 |  |
| 420                                   | 0.973                 | 0.933                 |  |
| 405                                   | 0.962                 | 0.908                 |  |
| 400                                   | 0.957                 | 0.895                 |  |
| 390                                   | 0.941                 | 0.860                 |  |
| 380                                   | 0.910                 | 0.790                 |  |
| 370                                   | 0.857                 | 0.680                 |  |
| 365                                   | 0.815                 | 0.600                 |  |
| 350                                   | 0.601                 | 0.280                 |  |
| 334                                   | 0.246                 | 0.030                 |  |
| 320                                   | 0.017                 |                       |  |
| 310                                   |                       |                       |  |
| 300                                   |                       |                       |  |
| 290                                   |                       |                       |  |
| 280                                   |                       |                       |  |
| 270                                   |                       |                       |  |
| 260                                   |                       |                       |  |
| 250                                   |                       |                       |  |
|                                       |                       |                       |  |

| Relative Partial Dispersion |  |  |  |  |
|-----------------------------|--|--|--|--|
| 0.2520                      |  |  |  |  |
| 0.5107                      |  |  |  |  |
| 0.2988                      |  |  |  |  |
| 0.2378                      |  |  |  |  |
| 0.5626                      |  |  |  |  |
| 0.8339                      |  |  |  |  |
|                             |  |  |  |  |
| 0.2492                      |  |  |  |  |
| 0.5518                      |  |  |  |  |
| 0.2488                      |  |  |  |  |
| 0.2351                      |  |  |  |  |
| 0.4987                      |  |  |  |  |
| 0.8247                      |  |  |  |  |
|                             |  |  |  |  |
|                             |  |  |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |
|---------------------------------------------------------------------|---------|--|--|
| $\Delta P_{C,t}$                                                    | 0.0088  |  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0052  |  |  |
| Δ <b>P</b> <sub>F,e</sub> -0.0018                                   |         |  |  |
| $\Delta P_{g,F}$                                                    | -0.0071 |  |  |
| Δ <b>P</b> <sub>i,g</sub> -0.0443                                   |         |  |  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 5.6   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                         | 6.7   |
| T <sub>g</sub> [°C]                                                   | 600   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                           | 585   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 673   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.570 |
| λ [W/(m·K)]                                                           | 0.800 |
| AT [°C]                                                               | 628   |
| ρ [g/cm <sup>3</sup> ]                                                | 4.36  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 111   |
| μ                                                                     | 0.301 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 2.21  |
| HK <sub>0.1/20</sub>                                                  | 730   |
| HG                                                                    | 1     |
| HG-J                                                                  |       |
| В                                                                     | 0     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 2     |
| SR                                                                    | 52.2  |
| AR                                                                    | 1     |
| PR                                                                    | 3     |
| SR-J                                                                  | 6     |
| WR-J                                                                  | 1     |
|                                                                       |       |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.79653417    |  |
| <b>B</b> <sub>2</sub>   | 0.311577903   |  |
| <b>B</b> <sub>3</sub>   | 1.15981863    |  |
| <b>C</b> <sub>1</sub>   | 0.00927313493 |  |
| <b>C</b> <sub>2</sub>   | 0.0358201181  |  |
| <b>C</b> <sub>3</sub>   | 87.3448712    |  |

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   |                           |  |  |
| <b>D</b> <sub>0</sub>   | 8.17 · 10 <sup>-6</sup>   |  |  |
| <b>D</b> <sub>1</sub>   | 1.24 · 10 <sup>-8</sup>   |  |  |
| D <sub>2</sub>          | -1.65 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 7.11 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 8.59 · 10 <sup>-10</sup>  |  |  |
| λ <sub>TK</sub> [μm]    | 0.21                      |  |  |

| Color Code                   |       |  |  |
|------------------------------|-------|--|--|
| $\lambda_{80}/\lambda_{5}$   | 39/32 |  |  |
| $(*=\lambda_{70}/\lambda_5)$ |       |  |  |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temperature Coefficients of Refractive Index |        |     |                                      |        |     |     |
|----------------------------------------------|--------|-----|--------------------------------------|--------|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |     |     |
| [°C]                                         | 1060.0 | e   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 6.8    | 8.1 | 9.4                                  | 4.4    | 5.7 | 7.0 |
| +20/ +40                                     | 7.0    | 8.5 | 10.0                                 | 5.5    | 6.9 | 8.4 |
| +60/ +80                                     | 7.2    | 8.9 | 10.5                                 | 6.0    | 7.6 | 9.3 |

#### N-LAF34 773496.424

n<sub>d</sub>= 1.77250  $v_{d}$  = 49.62 n<sub>e</sub>= 1.77621

 $v_{e} = 49.38$ 

 $n_F - n_C = 0.015568$  $n_{F'}-n_{C'}=0.015719$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.73085 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.73824 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.74610 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.75447 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.75546 |  |  |
| n <sub>s</sub>             | 852.1  | 1.75962 |  |  |
| n <sub>r</sub>             | 706.5  | 1.76515 |  |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.76780 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.76855 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.76924 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.77236 |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.77250 |  |  |
| n <sub>e</sub>             | 546.1  | 1.77621 |  |  |
| n <sub>F</sub>             | 486.1  | 1.78337 |  |  |
| n <sub>F</sub> '           | 480.0  | 1.78427 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.79196 |  |  |
| n <sub>h</sub>             | 404.7  | 1.79915 |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |
| n <sub>334.1</sub>         | 334.1  |         |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |  |  |
|--------------------------------------|-----------------------|-----------------------|--|--|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |  |
| 2500                                 | 0.442                 | 0.130                 |  |  |
| 2325                                 | 0.733                 | 0.460                 |  |  |
| 1970                                 | 0.946                 | 0.870                 |  |  |
| 1530                                 | 0.990                 | 0.975                 |  |  |
| 1060                                 | 0.998                 | 0.995                 |  |  |
| 700                                  | 0.998                 | 0.996                 |  |  |
| 660                                  | 0.998                 | 0.995                 |  |  |
| 620                                  | 0.998                 | 0.995                 |  |  |
| 580                                  | 0.998                 | 0.995                 |  |  |
| 546                                  | 0.998                 | 0.995                 |  |  |
| 500                                  | 0.996                 | 0.991                 |  |  |
| 460                                  | 0.992                 | 0.980                 |  |  |
| 436                                  | 0.987                 | 0.967                 |  |  |
| 420                                  | 0.981                 | 0.953                 |  |  |
| 405                                  | 0.971                 | 0.930                 |  |  |
| 400                                  | 0.967                 | 0.920                 |  |  |
| 390                                  | 0.950                 | 0.880                 |  |  |
| 380                                  | 0.919                 | 0.810                 |  |  |
| 370                                  | 0.867                 | 0.700                 |  |  |
| 365                                  | 0.831                 | 0.630                 |  |  |
| 350                                  | 0.634                 | 0.320                 |  |  |
| 334                                  | 0.250                 | 0.030                 |  |  |
| 320                                  | 0.010                 |                       |  |  |
| 310                                  |                       |                       |  |  |
| 300                                  |                       |                       |  |  |
| 290                                  |                       |                       |  |  |
| 280                                  |                       |                       |  |  |
| 270                                  |                       |                       |  |  |
| 260                                  |                       |                       |  |  |
| 250                                  |                       |                       |  |  |
|                                      |                       |                       |  |  |
|                                      |                       |                       |  |  |

| Constants of Dispersion |               |  |
|-------------------------|---------------|--|
| Formula                 |               |  |
| <b>B</b> <sub>1</sub>   | 1.75836958    |  |
| <b>B</b> <sub>2</sub>   | 0.313537785   |  |
| <b>B</b> <sub>3</sub>   | 1.18925231    |  |
| <b>C</b> <sub>1</sub>   | 0.00872810026 |  |
| <b>C</b> <sub>2</sub>   | 0.0293020832  |  |
| <b>C</b> <sub>3</sub>   | 85.1780644    |  |
|                         | ·             |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| $\mathbf{D}_0$          | 3.89 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.02 · 10 <sup>-8</sup>   |  |
| $D_2$                   | -1.91 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 5.88 · 10 <sup>-7</sup>   |  |
| E <sub>1</sub>          | 7.57 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.181                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 39/32 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

| Temper                                     | Temperature Coefficients of Refractive Index |                  |                                      |        |     |     |
|--------------------------------------------|----------------------------------------------|------------------|--------------------------------------|--------|-----|-----|
| Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K] |                                              | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]      |     |     |
| [°C]                                       | 1060.0                                       | e                | g                                    | 1060.0 | е   | g   |
| -40/ -20                                   | 4.2                                          | 5.2              | 6.2                                  | 1.9    | 2.8 | 3.7 |
| +20/ +40                                   | 4.3                                          | 5.4              | 6.5                                  | 2.7    | 3.9 | 4.9 |
| +60/ +80                                   | 4.4                                          | 5.6              | 6.8                                  | 3.2    | 4.4 | 5.5 |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{s,t}$          | 0.2674 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5256 |  |
| $\mathbf{P}_{d,C}$          | 0.3018 |  |
| $\mathbf{P}_{e,d}$          | 0.2382 |  |
| $\mathbf{P}_{g,F}$          | 0.5518 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2648 |  |
| P' <sub>C',s</sub>          | 0.5679 |  |
| P' <sub>d,C'</sub>          | 0.2515 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2359 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4895 |  |
| P' <sub>i,h</sub>           |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| ΔP <sub>C,t</sub>                                                   | 0.0126  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0070  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0023 |  |
| $\Delta P_{g,F}$                                                    | -0.0085 |  |
| $\Delta P_{i,g}$                                                    |         |  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 5.8   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                         | 7.0   |
| T <sub>g</sub> [°C]                                                   | 668   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 659   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                            | 745   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.800 |
| λ [W/(m·K)]                                                           | 0.560 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 4.24  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 123   |
| μ                                                                     | 0.292 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 1.44  |
| HK <sub>0.1/20</sub>                                                  | 770   |
| HG                                                                    | 2     |
|                                                                       |       |
| В                                                                     | 0     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 1     |
| SR                                                                    | 51.3  |
| AR                                                                    | 1     |
| PR                                                                    | 1     |
|                                                                       |       |
|                                                                       |       |
|                                                                       |       |
|                                                                       |       |

## N-LAF35 743494.412

n<sub>d</sub>= 1.74330  $v_{d}$  = 49.40 n<sub>e</sub>= 1.74688

 $v_e$  = 49.16

 $n_F - n_C = 0.015047$  $n_{F'}-n_{C'}=0.015194$ 

| Refractive Indices         |        |         |
|----------------------------|--------|---------|
|                            | λ [nm] |         |
| n <sub>2325.4</sub>        | 2325.4 |         |
| <b>n</b> <sub>1970.1</sub> | 1970.1 |         |
| <b>n</b> <sub>1529.6</sub> | 1529.6 |         |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.72588 |
| n <sub>t</sub>             | 1014.0 | 1.72683 |
| n <sub>s</sub>             | 852.1  | 1.73086 |
| n <sub>r</sub>             | 706.5  | 1.73620 |
| n <sub>C</sub>             | 656.3  | 1.73876 |
| n <sub>C'</sub>            | 643.8  | 1.73948 |
| n <sub>632.8</sub>         | 632.8  | 1.74015 |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.74317 |
| n <sub>d</sub>             | 587.6  | 1.74330 |
| n <sub>e</sub>             | 546.1  | 1.74688 |
| n <sub>F</sub>             | 486.1  | 1.75381 |
| n <sub>F'</sub>            | 480.0  | 1.75467 |
| n <sub>g</sub>             | 435.8  | 1.76212 |
| n <sub>h</sub>             | 404.7  | 1.76908 |
| n <sub>i</sub>             | 365.0  |         |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |
| n <sub>312.6</sub>         | 312.6  |         |
| n <sub>296.7</sub>         | 296.7  |         |
| n <sub>280.4</sub>         | 280.4  |         |
| n <sub>248.3</sub>         | 248.3  |         |

| Internal ' | Transmitta            | anceτ <sub>i</sub>    |
|------------|-----------------------|-----------------------|
| λ [nm]     | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500       | 0.398                 | 0.100                 |
| 2325       | 0.713                 | 0.430                 |
| 1970       | 0.937                 | 0.850                 |
| 1530       | 0.988                 | 0.970                 |
| 1060       | 0.998                 | 0.995                 |
| 700        | 0.998                 | 0.996                 |
| 660        | 0.998                 | 0.996                 |
| 620        | 0.998                 | 0.994                 |
| 580        | 0.998                 | 0.994                 |
| 546        | 0.998                 | 0.995                 |
| 500        | 0.997                 | 0.992                 |
| 460        | 0.994                 | 0.985                 |
| 436        | 0.990                 | 0.976                 |
| 420        | 0.987                 | 0.967                 |
| 405        | 0.980                 | 0.950                 |
| 400        | 0.976                 | 0.940                 |
| 390        | 0.966                 | 0.920                 |
| 380        | 0.948                 | 0.880                 |
| 370        | 0.918                 | 0.810                 |
| 365        | 0.898                 | 0.760                 |
| 350        | 0.788                 | 0.550                 |
| 334        | 0.592                 | 0.270                 |
| 320        | 0.348                 | 0.200                 |
| 310        | 0.152                 | 0.080                 |
| 300        | 0.026                 |                       |
| 290        |                       |                       |
| 280        |                       |                       |
| 270        |                       |                       |
| 260        |                       |                       |
| 250        |                       |                       |
|            |                       |                       |
|            |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{s,t}$          | 0.2674 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5253 |  |
| $\mathbf{P}_{d,C}$          | 0.3017 |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2381 |  |
| $\mathbf{P}_{g,F}$          | 0.5523 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2648 |  |
| P' <sub>C',s</sub>          | 0.5676 |  |
| P' <sub>d,C'</sub>          | 0.2514 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2358 |  |
| P' <sub>g,F'</sub>          | 0.4899 |  |
| P' <sub>i,h</sub>           |        |  |
|                             |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | 0.0134  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0072  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0022 |  |
| $\Delta P_{g,F}$                                                    | -0.0084 |  |
| $\Delta P_{i,g}$                                                    |         |  |
|                                                                     |         |  |
| Other Preparties                                                    |         |  |

| Other Properties                                                         |       |  |  |
|--------------------------------------------------------------------------|-------|--|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 5.3   |  |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 6.4   |  |  |
| T <sub>a</sub> [°C]                                                      | 589   |  |  |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 585   |  |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 669   |  |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                          | 0.570 |  |  |
| λ [W/(m·K)]                                                              | 0.800 |  |  |
|                                                                          |       |  |  |
| ρ [g/cm <sup>3</sup> ]                                                   | 4.12  |  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 109   |  |  |
| μ                                                                        | 0.301 |  |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 2.29  |  |  |
| HK <sub>0.1/20</sub>                                                     | 660   |  |  |
| HG                                                                       | 2     |  |  |
|                                                                          |       |  |  |
| В                                                                        | 0     |  |  |
|                                                                          |       |  |  |
| CR                                                                       | 2     |  |  |
| FR                                                                       | 1     |  |  |
| SR                                                                       | 52.3  |  |  |
| AR                                                                       | 1     |  |  |
| PR                                                                       | 3.3   |  |  |
|                                                                          |       |  |  |
|                                                                          |       |  |  |

| Constants of Dispersion |               |  |  |
|-------------------------|---------------|--|--|
| Formula                 |               |  |  |
| <b>B</b> <sub>1</sub>   | 1.51697436    |  |  |
| <b>B</b> <sub>2</sub>   | 0.455875464   |  |  |
| <b>B</b> <sub>3</sub>   | 1.07469242    |  |  |
| <b>C</b> <sub>1</sub>   | 0.00750943203 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0260046715  |  |  |
| C <sub>3</sub>          | 80.5945159    |  |  |

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   |                           |  |  |
| $\mathbf{D}_0$          | 8.98 · 10 <sup>-6</sup>   |  |  |
| <b>D</b> <sub>1</sub>   | 1.26 · 10 <sup>-8</sup>   |  |  |
| $D_2$                   | -1.23 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 6.24 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 6.86 · 10 <sup>-10</sup>  |  |  |
| λ <sub>TK</sub> [μm]    | 0.194                     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 38/30 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

| Temper                                                                    | Temperature Coefficients of Refractive Index |     |      |     |     |     |
|---------------------------------------------------------------------------|----------------------------------------------|-----|------|-----|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$ $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |                                              |     |      | ]   |     |     |
| [°C]                                                                      | 1060.0 e g 1060.0 e                          |     |      |     | g   |     |
| -40/ -20                                                                  | 7.0                                          | 8.1 | 9.2  | 4.7 | 5.7 | 6.7 |
| +20/ +40                                                                  | 7.1                                          | 8.4 | 9.6  | 5.6 | 6.9 | 8.0 |
| +60/ +80                                                                  | 7.3                                          | 8.7 | 10.0 | 6.2 | 7.5 | 8.8 |

#### N-LAF36 800424.443

**SCHOTT** 

 $n_d$ = 1.79952  $v_d$ = 42.37  $n_e$ = 1.80400  $v_e$ = 42.12

42.37  $n_F - n_C = 0.018871$ 42.12  $n_{F'} - n_{C'} = 0.019090$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
| λ [nm]                     |        |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.75555 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.76246 |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.77001 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.77862 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.77969 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.78435 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.79076 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.79390 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.79478 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.79561 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.79935 |  |  |  |
| <b>n</b> <sub>d</sub>      | 587.6  | 1.79952 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.80400 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.81277 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.81387 |  |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.82345 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.83252 |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.84848 |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  | _       |  |  |  |

| Internal | Transmittance τ <sub>i</sub> |                       |  |  |
|----------|------------------------------|-----------------------|--|--|
| λ [nm]   | τ <sub>i</sub> (10mm)        | τ <sub>i</sub> (25mm) |  |  |
| 2500     | 0.480                        | 0.160                 |  |  |
| 2325     | 0.770                        | 0.520                 |  |  |
| 1970     | 0.950                        | 0.880                 |  |  |
| 1530     | 0.992                        | 0.980                 |  |  |
| 1060     | 0.998                        | 0.994                 |  |  |
| 700      | 0.998                        | 0.994                 |  |  |
| 660      | 0.998                        | 0.994                 |  |  |
| 620      | 0.997                        | 0.992                 |  |  |
| 580      | 0.997                        | 0.992                 |  |  |
| 546      | 0.996                        | 0.990                 |  |  |
| 500      | 0.992                        | 0.980                 |  |  |
| 460      | 0.985                        | 0.962                 |  |  |
| 436      | 0.976                        | 0.940                 |  |  |
| 420      | 0.967                        | 0.920                 |  |  |
| 405      | 0.954                        | 0.890                 |  |  |
| 400      | 0.946                        | 0.870                 |  |  |
| 390      | 0.919                        | 0.810                 |  |  |
| 380      | 0.872                        | 0.710                 |  |  |
| 370      | 0.793                        | 0.560                 |  |  |
| 365      | 0.733                        | 0.460                 |  |  |
| 350      | 0.455                        | 0.140                 |  |  |
| 334      | 0.068                        |                       |  |  |
| 320      |                              |                       |  |  |
| 310      |                              |                       |  |  |
| 300      |                              |                       |  |  |
| 290      |                              |                       |  |  |
| 280      |                              |                       |  |  |
| 270      |                              |                       |  |  |
| 260      |                              |                       |  |  |
| 250      |                              |                       |  |  |
|          |                              |                       |  |  |
| 1        | I                            |                       |  |  |

| Formula         B <sub>1</sub> 1.85744228         B <sub>2</sub> 0.294098729         B <sub>3</sub> 1.16615417         C <sub>1</sub> 0.00982397191         C <sub>2</sub> 0.0384309138         C <sub>3</sub> 89.3984634 | Constan               | ts of Dispersion |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|
| B2       0.294098729         B3       1.16615417         C1       0.00982397191         C2       0.0384309138                                                                                                             | Formula               |                  |
| B <sub>3</sub> 1.16615417         C <sub>1</sub> 0.00982397191         C <sub>2</sub> 0.0384309138                                                                                                                        | <b>B</b> <sub>1</sub> | 1.85744228       |
| C <sub>1</sub> 0.00982397191       C <sub>2</sub> 0.0384309138                                                                                                                                                            | <b>B</b> <sub>2</sub> | 0.294098729      |
| <b>C</b> <sub>2</sub> 0.0384309138                                                                                                                                                                                        | <b>B</b> <sub>3</sub> | 1.16615417       |
| - 2                                                                                                                                                                                                                       | <b>C</b> <sub>1</sub> | 0.00982397191    |
| <b>C</b> <sub>3</sub> 89.3984634                                                                                                                                                                                          | <b>C</b> <sub>2</sub> | 0.0384309138     |
|                                                                                                                                                                                                                           | <b>C</b> <sub>3</sub> | 89.3984634       |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| $\mathbf{D}_0$                | 8.72 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.12 · 10 <sup>-8</sup>   |  |
| $D_2$                         | -1.38 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 7.81 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 9.48 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.212                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 40/33 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

# Remarks will become inquiry glass as of Jan 2014, not recommended for new design

| Temperature Coefficients of Refractive Index                              |        |     |      |        |     |      |
|---------------------------------------------------------------------------|--------|-----|------|--------|-----|------|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$ $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |     |      |        | ]   |      |
| [°C]                                                                      | 1060.0 | e   | g    | 1060.0 | е   | g    |
| -40/ -20                                                                  | 7.3    | 8.8 | 10.3 | 4.9    | 6.4 | 7.8  |
| +20/ +40                                                                  | 7.4    | 9.1 | 10.8 | 5.9    | 7.6 | 9.2  |
| +60/ +80                                                                  | 7.6    | 9.5 | 11.3 | 6.4    | 8.2 | 10.1 |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2467 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5059 |  |
| $\mathbf{P}_{d,C}$          | 0.2979 |  |
| $\mathbf{P}_{e,d}$          | 0.2377 |  |
| $\mathbf{P}_{g,F}$          | 0.5659 |  |
| $\mathbf{P}_{i,h}$          | 0.8455 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2439 |  |
| P' <sub>C',s</sub>          | 0.5465 |  |
| P' <sub>d,C'</sub>          | 0.2480 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2349 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5014 |  |
| P' <sub>i,h</sub>           | 0.8358 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0067  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0043  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0016 |  |
| $\Delta P_{g,F}$                                                    | -0.0067 |  |
| $\Delta P_{i,g}$                                                    | -0.0424 |  |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 5.7   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 6.8   |
| T_[°C]                                                                    | 579   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 582   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 670   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.540 |
| λ [W/(m·K)]                                                               | 0.790 |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 4.43  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 110   |
| μ                                                                         | 0.305 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.25  |
| HK <sub>0.1/20</sub>                                                      | 680   |
| HG                                                                        | 1     |
|                                                                           |       |
| В                                                                         | 0     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 2     |
| SR                                                                        | 52.3  |
| AR                                                                        | 1     |
| PR                                                                        | 3.3   |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |
| _                                                                         |       |

#### N-LASF9 850322.441



 $n_d = 1.85025$  $v_{d}$ = 32.17  $n_e = 1.85650$ 

 $v_e = 31.93$ 

 $n_F - n_C = 0.026430$  $n_{F'}-n_{C'}=0.026827$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.80058 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.80659 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.81364 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.82293 |  |
| n <sub>t</sub>             | 1014.0 | 1.82420 |  |
| n <sub>s</sub>             | 852.1  | 1.82997 |  |
| n <sub>r</sub>             | 706.5  | 1.83834 |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.84255 |  |
| n <sub>C'</sub>            | 643.8  | 1.84376 |  |
| n <sub>632.8</sub>         | 632.8  | 1.84489 |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.85002 |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.85025 |  |
| n <sub>e</sub>             | 546.1  | 1.85650 |  |
| n <sub>F</sub>             | 486.1  | 1.86898 |  |
| n <sub>F'</sub>            | 480.0  | 1.87058 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.88467 |  |
| $\mathbf{n}_{h}$           | 404.7  | 1.89845 |  |
| n <sub>i</sub>             | 365.0  |         |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal | l Transmittanceτ <sub>i</sub> |                       |  |
|----------|-------------------------------|-----------------------|--|
| λ [nm]   | τ <sub>i</sub> (10mm)         | τ <sub>i</sub> (25mm) |  |
| 2500     | 0.857                         | 0.680                 |  |
| 2325     | 0.915                         | 0.800                 |  |
| 1970     | 0.978                         | 0.947                 |  |
| 1530     | 0.996                         | 0.991                 |  |
| 1060     | 0.998                         | 0.996                 |  |
| 700      | 0.995                         | 0.987                 |  |
| 660      | 0.994                         | 0.984                 |  |
| 620      | 0.993                         | 0.982                 |  |
| 580      | 0.992                         | 0.981                 |  |
| 546      | 0.990                         | 0.975                 |  |
| 500      | 0.980                         | 0.950                 |  |
| 460      | 0.959                         | 0.900                 |  |
| 436      | 0.933                         | 0.840                 |  |
| 420      | 0.901                         | 0.770                 |  |
| 405      | 0.831                         | 0.630                 |  |
| 400      | 0.799                         | 0.570                 |  |
| 390      | 0.693                         | 0.400                 |  |
| 380      | 0.525                         | 0.200                 |  |
| 370      | 0.270                         | 0.040                 |  |
| 365      | 0.137                         |                       |  |
| 350      |                               |                       |  |
| 334      |                               |                       |  |
| 320      |                               |                       |  |
| 310      |                               |                       |  |
| 300      |                               |                       |  |
| 290      |                               |                       |  |
| 280      |                               |                       |  |
| 270      |                               |                       |  |
| 260      |                               |                       |  |
| 250      |                               |                       |  |
|          |                               |                       |  |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2181 |  |
| P <sub>C,s</sub>            | 0.4762 |  |
| P <sub>d,C</sub>            | 0.2912 |  |
| P <sub>e,d</sub>            | 0.2366 |  |
| $\mathbf{P}_{g,F}$          | 0.5934 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2149 |  |
| P' <sub>C',s</sub>          | 0.5140 |  |
| P' <sub>d,C'</sub>          | 0.2420 |  |
| P' <sub>e,d</sub>           | 0.2330 |  |
| P' <sub>g,F'</sub>          | 0.5250 |  |
| P' <sub>i,h</sub>           |        |  |

| n <sub>280.4</sub>        | 280.4      |        | 334 |   |   |
|---------------------------|------------|--------|-----|---|---|
| <b>n</b> <sub>248.3</sub> | 248.3      |        | 320 |   |   |
|                           |            |        | 310 |   |   |
| Constan                   | ts of Disp | ersion | 300 |   |   |
| Formula                   |            |        | 290 |   |   |
| <b>B</b> <sub>1</sub>     | 2.00029547 | 7      | 280 |   |   |
| <b>B</b> <sub>2</sub>     | 0.29892688 | 36     | 270 |   |   |
| $\mathbf{B}_3$            | 1.80691843 | 3      | 260 |   |   |
| <b>C</b> <sub>1</sub>     | 0.01214260 | )17    | 250 |   |   |
| <b>C</b> <sub>2</sub>     | 0.05387362 | 236    |     |   |   |
| <b>C</b> <sub>3</sub>     | 156.530829 | )      |     |   |   |
|                           | •          |        | •   | - | • |

| Deviation of Relative     |         |  |
|---------------------------|---------|--|
| Partial Dispersions ΔP    |         |  |
| from the "Normal Line"    |         |  |
| ΔP <sub>C,t</sub>         | -0.0032 |  |
| ΔP <sub>C,s</sub>         | -0.0016 |  |
| Δ <b>P</b> <sub>F,e</sub> | 0.0008  |  |
| ΔP <sub>g,F</sub>         | 0.0037  |  |
| $\Delta \mathbf{P}_{i,g}$ |         |  |

Other Properties

| 1.05 · 10 <sup>-6</sup>   |
|---------------------------|
| 1.02 · 10 <sup>-8</sup>   |
| -2.38 · 10 <sup>-11</sup> |
| 9.19 · 10 <sup>-7</sup>   |
| 1.18 · 10 <sup>-9</sup>   |
| 0.257                     |
|                           |

| Color Code                   |        |
|------------------------------|--------|
| $\lambda_{80}/\lambda_{5}$   | 41/36* |
| $(*=\lambda_{70}/\lambda_5)$ |        |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |

| Other Froperties                                                         |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 7.4   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                  | 8.4   |
| T <sub>g</sub> [°C]                                                      | 683   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                              | 700   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 817   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                           | 0.530 |
| λ [W/(m·K)]                                                              | 0.790 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 4.41  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 109   |
| μ                                                                        | 0.288 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 1.72  |
| HK <sub>0.1/20</sub>                                                     | 515   |
| HG                                                                       | 4     |
|                                                                          |       |
| В                                                                        | 1     |
|                                                                          |       |
| CR                                                                       | 1     |
| FR                                                                       | 0     |
| SR                                                                       | 2     |
| AR                                                                       | 1     |
| PR                                                                       | 1     |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |

| Temperature Coefficients of Refractive Index |                                      |                       |     |                                      |     |     |  |
|----------------------------------------------|--------------------------------------|-----------------------|-----|--------------------------------------|-----|-----|--|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |                       |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     |     |  |
| [°C]                                         | 1060.0                               | 1060.0 e g 1060.0 e g |     |                                      |     |     |  |
| -40/ -20                                     | 2.8                                  | 4.7                   | 6.9 | 0.4                                  | 2.2 | 4.3 |  |
| +20/ +40                                     | 2.9                                  | 5.1                   | 7.7 | 1.4                                  | 3.5 | 6.0 |  |
| +60/ +80                                     | 3.1                                  | 5.5                   | 8.2 | 1.8                                  | 4.2 | 6.9 |  |

#### N-LASF31A 883408.551

n<sub>d</sub>= 1.88300  $v_{d}$  = 40.76 n<sub>e</sub>= 1.88815

 $v_e = 40.52$ 

 $n_F - n_C = 0.021663$  $n_{F'}-n_{C'}=0.021921$ 

| Refractive Indices         |        |         |  |  |  |  |  |
|----------------------------|--------|---------|--|--|--|--|--|
| λ [nm]                     |        |         |  |  |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.83590 |  |  |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.84267 |  |  |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.85026 |  |  |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.85937 |  |  |  |  |  |
| $\mathbf{n}_{t}$           | 1014.0 | 1.86054 |  |  |  |  |  |
| $\mathbf{n}_{\mathrm{s}}$  | 852.1  | 1.86572 |  |  |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.87298 |  |  |  |  |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.87656 |  |  |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.87757 |  |  |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.87853 |  |  |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.88281 |  |  |  |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.88300 |  |  |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.88815 |  |  |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.89822 |  |  |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.89950 |  |  |  |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.91050 |  |  |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.92093 |  |  |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.93920 |  |  |  |  |  |
| n <sub>334.1</sub>         | 334.1  |         |  |  |  |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |  |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |  |  |

| internai | i ransmittanceτ <sub>i</sub> |                       |  |
|----------|------------------------------|-----------------------|--|
| λ [nm]   | τ <sub>i</sub> (10mm)        | τ <sub>i</sub> (25mm) |  |
| 2500     | 0.634                        | 0.320                 |  |
| 2325     | 0.826                        | 0.620                 |  |
| 1970     | 0.959                        | 0.900                 |  |
| 1530     | 0.992                        | 0.980                 |  |
| 1060     | 0.996                        | 0.991                 |  |
| 700      | 0.996                        | 0.989                 |  |
| 660      | 0.995                        | 0.988                 |  |
| 620      | 0.994                        | 0.986                 |  |
| 580      | 0.995                        | 0.988                 |  |
| 546      | 0.994                        | 0.986                 |  |
| 500      | 0.988                        | 0.970                 |  |
| 460      | 0.974                        | 0.937                 |  |
| 436      | 0.963                        | 0.910                 |  |
| 420      | 0.950                        | 0.880                 |  |
| 405      | 0.933                        | 0.840                 |  |
| 400      | 0.924                        | 0.820                 |  |
| 390      | 0.891                        | 0.750                 |  |
| 380      | 0.842                        | 0.650                 |  |
| 370      | 0.764                        | 0.510                 |  |
| 365      | 0.707                        | 0.420                 |  |
| 350      | 0.468                        | 0.150                 |  |
| 334      | 0.123                        |                       |  |
| 320      | 0.001                        |                       |  |
| 310      |                              |                       |  |
| 300      |                              |                       |  |
| 290      |                              |                       |  |
| 280      |                              |                       |  |
| 270      |                              |                       |  |
| 260      |                              |                       |  |
| 250      |                              |                       |  |
|          |                              |                       |  |
|          |                              |                       |  |

| Interna | I Transmitt           | anceτ <sub>i</sub>    | R                     |
|---------|-----------------------|-----------------------|-----------------------|
| λ [nm]  | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) | P                     |
| 2500    | 0.634                 | 0.320                 | P                     |
| 2325    | 0.826                 | 0.620                 | P                     |
| 1970    | 0.959                 | 0.900                 | P                     |
| 1530    | 0.992                 | 0.980                 | P                     |
| 1060    | 0.996                 | 0.991                 | P                     |
| 700     | 0.996                 | 0.989                 |                       |
| 660     | 0.995                 | 0.988                 | P'                    |
| 620     | 0.994                 | 0.986                 | P'                    |
| 580     | 0.995                 | 0.988                 | P'                    |
| 546     | 0.994                 | 0.986                 | P'                    |
| 500     | 0.988                 | 0.970                 | P'                    |
| 460     | 0.974                 | 0.937                 | P'                    |
| 436     | 0.963                 | 0.910                 |                       |
| 420     | 0.950                 | 0.880                 | D                     |
| 405     | 0.933                 | 0.840                 | P                     |
| 400     | 0.924                 | 0.820                 | fr                    |
| 390     | 0.891                 | 0.750                 | ΔΙ                    |
| 380     | 0.842                 | 0.650                 | ΔΙ                    |
| 370     | 0.764                 | 0.510                 | ΔΙ                    |
| 365     | 0.707                 | 0.420                 | ΔΙ                    |
| 350     | 0.468                 | 0.150                 | ΔΙ                    |
| 334     | 0.123                 |                       |                       |
| 320     | 0.001                 |                       | O                     |
| 310     |                       |                       | α_                    |
| 300     |                       |                       | α,                    |
| 290     |                       |                       | <b>T</b> g            |
| 280     |                       |                       | <b>T</b> <sub>1</sub> |
| 270     |                       |                       | <b>T</b> <sub>1</sub> |
|         |                       |                       |                       |

| <b>Relative Partial Dispersion</b> |        |  |  |  |
|------------------------------------|--------|--|--|--|
| $\mathbf{P}_{s,t}$                 | 0.2391 |  |  |  |
| <b>P</b> <sub>C,s</sub>            | 0.5004 |  |  |  |
| $\mathbf{P}_{d,C}$                 | 0.2972 |  |  |  |
| $\mathbf{P}_{e,d}$                 | 0.2377 |  |  |  |
| $\mathbf{P}_{g,F}$                 | 0.5667 |  |  |  |
| $\mathbf{P}_{i,h}$                 | 0.8436 |  |  |  |
|                                    |        |  |  |  |
| P' <sub>s,t</sub>                  | 0.2363 |  |  |  |
| P' <sub>C',s</sub>                 | 0.5407 |  |  |  |
| P' <sub>d,C'</sub>                 | 0.2475 |  |  |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2349 |  |  |  |
| <b>P'</b> <sub>g,F'</sub>          | 0.5021 |  |  |  |
| P' <sub>i,h</sub>                  | 0.8337 |  |  |  |
|                                    |        |  |  |  |

| Deviation of Relative Partial Dispersions ΔP |        |  |  |  |
|----------------------------------------------|--------|--|--|--|
| from the "Normal Line"                       |        |  |  |  |
| Δ <b>P</b> <sub>C,t</sub>                    | 0.0012 |  |  |  |
| Δ <b>P</b> <sub>C,s</sub>                    | 0.0025 |  |  |  |
| Δ <b>P</b> <sub>F,e</sub> -0.0019            |        |  |  |  |
| Δ <b>P</b> <sub>g,F</sub> -0.0085            |        |  |  |  |
| Δ <b>P</b> <sub>i,g</sub> -0.0575            |        |  |  |  |
| •                                            |        |  |  |  |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 6.7   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 7.7   |
| T_[°C]                                                                    | 719   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 720   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 830   |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                                           | 0.440 |
| λ [W/(m·K)]                                                               | 0.790 |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 5.51  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 126   |
| μ                                                                         | 0.301 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 1.18  |
| HK <sub>0.1/20</sub>                                                      | 650   |
| HG                                                                        | 2     |
|                                                                           |       |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 0     |
| SR                                                                        | 2.3   |
| AR                                                                        | 1     |
| PR                                                                        | 1     |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |

| Constants of Dispersion |                                   |  |  |  |
|-------------------------|-----------------------------------|--|--|--|
| Formula                 |                                   |  |  |  |
| B <sub>1</sub>          | 1.96485075                        |  |  |  |
| <b>B</b> <sub>2</sub>   | <b>B</b> <sub>2</sub> 0.475231259 |  |  |  |
| <b>B</b> <sub>3</sub>   | <b>B</b> <sub>3</sub> 1.48360109  |  |  |  |
| <b>C</b> <sub>1</sub>   | 0.00982060155                     |  |  |  |
| <b>C</b> <sub>2</sub>   | 0.0344713438                      |  |  |  |
| <b>C</b> <sub>3</sub>   | 110.739863                        |  |  |  |

| Constants of Dispersion                         |                         |  |  |  |
|-------------------------------------------------|-------------------------|--|--|--|
| dn/dT                                           |                         |  |  |  |
| <b>D</b> <sub>0</sub>                           | 1.67 · 10 <sup>-6</sup> |  |  |  |
| <b>D</b> <sub>1</sub>                           | 8.90 · 10 <sup>-9</sup> |  |  |  |
| <b>D</b> <sub>2</sub> -8.73 · 10 <sup>-12</sup> |                         |  |  |  |
| <b>E</b> <sub>0</sub> 7.47 · 10 <sup>-7</sup>   |                         |  |  |  |
| <b>E</b> <sub>1</sub> 7.46 · 10 <sup>-10</sup>  |                         |  |  |  |
| λ <sub>TK</sub> [μm]                            | 0.207                   |  |  |  |

| Color Code                   |        |
|------------------------------|--------|
| $\lambda_{80}/\lambda_{5}$   | 38/33* |
| $(*=\lambda_{70}/\lambda_5)$ |        |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

| Temperature Coefficients of Refractive Index |                                      |                       |     |                  |                                      |     |
|----------------------------------------------|--------------------------------------|-----------------------|-----|------------------|--------------------------------------|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |                       |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]                                         | 1060.0                               | 1060.0 e g 1060.0 e g |     |                  |                                      |     |
| -40/ -20                                     | 3.4                                  | 4.8                   | 6.3 | 0.9              | 2.3                                  | 3.7 |
| +20/ +40                                     | 3.3                                  | 4.9                   | 6.6 | 1.7              | 3.3                                  | 4.9 |
| +60/ +80                                     | 3.4                                  | 5.2                   | 6.9 | 2.2              | 3.9                                  | 5.6 |

#### N-LASF40 834373.443

**SCHOTT** 

n<sub>d</sub>= 1.83404 n<sub>e</sub>= 1.83935

 $v_d = 37.30$  $v_e = 37.04$   $n_F - n_C = 0.022363$  $n_{F'} - n_{C'} = 0.022658$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.78600 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.79298 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.80074 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.80999 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.81118 |  |  |
| n <sub>s</sub>             | 852.1  | 1.81643 |  |  |
| n <sub>r</sub>             | 706.5  | 1.82380 |  |  |
| n <sub>C</sub>             | 656.3  | 1.82745 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.82849 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.82946 |  |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.83385 |  |  |
| n <sub>d</sub>             | 587.6  | 1.83404 |  |  |
| n <sub>e</sub>             | 546.1  | 1.83935 |  |  |
| n <sub>F</sub>             | 486.1  | 1.84981 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.85114 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.86275 |  |  |
| n <sub>h</sub>             | 404.7  | 1.87393 |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal <sup>*</sup> | Internal Transmittance τ <sub>i</sub> |                       |  |
|-----------------------|---------------------------------------|-----------------------|--|
| λ [nm]                | τ <sub>i</sub> (10mm)                 | τ <sub>i</sub> (25mm) |  |
| 2500                  | 0.565                                 | 0.240                 |  |
| 2325                  | 0.810                                 | 0.590                 |  |
| 1970                  | 0.963                                 | 0.910                 |  |
| 1530                  | 0.993                                 | 0.982                 |  |
| 1060                  | 0.998                                 | 0.995                 |  |
| 700                   | 0.998                                 | 0.996                 |  |
| 660                   | 0.998                                 | 0.994                 |  |
| 620                   | 0.997                                 | 0.993                 |  |
| 580                   | 0.997                                 | 0.992                 |  |
| 546                   | 0.995                                 | 0.988                 |  |
| 500                   | 0.987                                 | 0.969                 |  |
| 460                   | 0.973                                 | 0.933                 |  |
| 436                   | 0.954                                 | 0.890                 |  |
| 420                   | 0.937                                 | 0.850                 |  |
| 405                   | 0.905                                 | 0.780                 |  |
| 400                   | 0.891                                 | 0.750                 |  |
| 390                   | 0.842                                 | 0.650                 |  |
| 380                   | 0.764                                 | 0.510                 |  |
| 370                   | 0.601                                 | 0.280                 |  |
| 365                   | 0.468                                 | 0.150                 |  |
| 350                   | 0.044                                 |                       |  |
| 334                   |                                       |                       |  |
| 320                   |                                       |                       |  |
| 310                   |                                       |                       |  |
| 300                   |                                       |                       |  |
| 290                   |                                       |                       |  |
| 280                   |                                       |                       |  |
| 270                   |                                       |                       |  |
| 260                   |                                       |                       |  |
| 250                   |                                       |                       |  |
|                       |                                       |                       |  |

| Relative Partial Dispersion |        |  |  |  |
|-----------------------------|--------|--|--|--|
| $\mathbf{P}_{\mathrm{s,t}}$ | 0.2346 |  |  |  |
| <b>P</b> <sub>C,s</sub>     | 0.4929 |  |  |  |
| $\mathbf{P}_{d,C}$          | 0.2948 |  |  |  |
| $\mathbf{P}_{e,d}$          | 0.2371 |  |  |  |
| $\mathbf{P}_{g,F}$          | 0.5786 |  |  |  |
| $\mathbf{P}_{i,h}$          |        |  |  |  |
|                             |        |  |  |  |
| P' <sub>s,t</sub>           | 0.2315 |  |  |  |
| P' <sub>C',s</sub>          | 0.5321 |  |  |  |
| P' <sub>d,C'</sub>          | 0.2453 |  |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2340 |  |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5124 |  |  |  |
| P' <sub>i,h</sub>           |        |  |  |  |
|                             |        |  |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta \mathbf{P}_{C,t}$                                           | 0.0055  |  |
| $\Delta \mathbf{P}_{\mathrm{C,s}}$                                  | 0.0030  |  |
| $\Delta \mathbf{P}_{F,e}$                                           | -0.0007 |  |
| $\Delta \mathbf{P}_{g,F}$                                           | -0.0024 |  |
| $\Delta \mathbf{P}_{i,g}$                                           |         |  |

Other Properties

| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]   | 5.8   |
|------------------------------------------------|-------|
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]  | 6.9   |
| T <sub>a</sub> [°C]                            | 590   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]    | 591   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]     | 677   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                | 0.550 |
| λ [W/(m·K)]                                    | 0.810 |
|                                                |       |
| ρ [g/cm <sup>3</sup> ]                         | 4.43  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]  | 111   |
| μ                                              | 0.304 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N] | 2.19  |
| HK <sub>0.1/20</sub>                           | 580   |
| HG                                             | 1     |
|                                                |       |
| В                                              | 0     |
|                                                |       |
| CR                                             | 1     |
| FR                                             | 1     |
| SR                                             | 51.2  |
| AR                                             | 1     |
| PR                                             | 1.3   |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 1.98550331   |  |
| <b>B</b> <sub>2</sub>   | 0.274057042  |  |
| <b>B</b> <sub>3</sub>   | 1.28945661   |  |
| <b>C</b> <sub>1</sub>   | 0.010958331  |  |
| C <sub>2</sub>          | 0.0474551603 |  |
| C <sub>3</sub>          | 96.9085286   |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| $\mathbf{D}_0$          | 8.10 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.25 · 10 <sup>-8</sup>   |  |
| $D_2$                   | -1.73 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 8.27 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 1.08 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]    | 0.238                     |  |

| Color Code                   |        |  |
|------------------------------|--------|--|
| $\lambda_{80}/\lambda_{5}$   | 39/35* |  |
| $(*=\lambda_{70}/\lambda_5)$ |        |  |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

| Temperature Coefficients of Refractive Index                |        |     |                  |                                      |     |      |
|-------------------------------------------------------------|--------|-----|------------------|--------------------------------------|-----|------|
| $\Delta$ n <sub>rel</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |        |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |      |
| [°C]                                                        | 1060.0 | Φ   | g                | 1060.0                               | е   | g    |
| -40/ -20                                                    | 7.1    | 8.8 | 10.6             | 4.6                                  | 6.3 | 8.0  |
| +20/ +40                                                    | 7.3    | 9.3 | 11.4             | 5.7                                  | 7.7 | 9.8  |
| +60/ +80                                                    | 7.6    | 9.7 | 12.0             | 6.3                                  | 8.5 | 10.8 |

#### N-LASF41 835431.485

**SCHOTT** 

n<sub>d</sub>= 1.83501 n<sub>e</sub>= 1.83961

 $v_d$  = 43.13  $v_e$  = 42.88

 $n_F - n_C = 0.019361$  $n_{F'} - n_{C'} = 0.019578$ 

| Defractive Indiana         |        |         |  |  |
|----------------------------|--------|---------|--|--|
| Refractive Indices         |        |         |  |  |
|                            | λ [nm] |         |  |  |
| <b>n</b> <sub>2325.4</sub> | 2325.4 | 1.78859 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.79608 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.80423 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.81338 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.81450 |  |  |
| <b>n</b> <sub>s</sub>      | 852.1  | 1.81936 |  |  |
| n <sub>r</sub>             | 706.5  | 1.82599 |  |  |
| n <sub>C</sub>             | 656.3  | 1.82923 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.83014 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.83100 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.83484 |  |  |
| n <sub>d</sub>             | 587.6  | 1.83501 |  |  |
| n <sub>e</sub>             | 546.1  | 1.83961 |  |  |
| n <sub>F</sub>             | 486.1  | 1.84859 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.84972 |  |  |
| n <sub>g</sub>             | 435.8  | 1.85949 |  |  |
| n <sub>h</sub>             | 404.7  | 1.86872 |  |  |
| n <sub>i</sub>             | 365.0  | 1.88486 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal <sup>*</sup> | Transmitta            | anceτ <sub>i</sub>    |
|-----------------------|-----------------------|-----------------------|
| λ [nm]                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                  | 0.480                 | 0.160                 |
| 2325                  | 0.764                 | 0.510                 |
| 1970                  | 0.950                 | 0.880                 |
| 1530                  | 0.993                 | 0.983                 |
| 1060                  | 0.998                 | 0.995                 |
| 700                   | 0.998                 | 0.995                 |
| 660                   | 0.998                 | 0.994                 |
| 620                   | 0.997                 | 0.993                 |
| 580                   | 0.998                 | 0.994                 |
| 546                   | 0.997                 | 0.993                 |
| 500                   | 0.994                 | 0.984                 |
| 460                   | 0.985                 | 0.962                 |
| 436                   | 0.976                 | 0.940                 |
| 420                   | 0.967                 | 0.920                 |
| 405                   | 0.954                 | 0.890                 |
| 400                   | 0.948                 | 0.876                 |
| 390                   | 0.928                 | 0.830                 |
| 380                   | 0.891                 | 0.750                 |
| 370                   | 0.831                 | 0.630                 |
| 365                   | 0.787                 | 0.550                 |
| 350                   | 0.592                 | 0.270                 |
| 334                   | 0.292                 | 0.040                 |
| 320                   | 0.040                 |                       |
| 310                   |                       |                       |
| 300                   |                       |                       |
| 290                   |                       |                       |
| 280                   |                       |                       |
| 270                   |                       |                       |
| 260                   |                       |                       |
| 250                   |                       |                       |
|                       |                       |                       |
| , i                   |                       |                       |

| P <sub>s,t</sub> 0.2508         P <sub>C,s</sub> 0.5098         P <sub>d,C</sub> 0.2986         P <sub>e,d</sub> 0.2378         P <sub>s,E</sub> 0.5629 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| P <sub>d,C</sub> 0.2986           P <sub>e,d</sub> 0.2378                                                                                               |
| <b>P</b> <sub>e,d</sub> 0.2378                                                                                                                          |
| •                                                                                                                                                       |
| 0.5620                                                                                                                                                  |
| <b>P</b> <sub>g,F</sub> 0.5629                                                                                                                          |
| <b>P</b> <sub>i,h</sub> 0.8338                                                                                                                          |
|                                                                                                                                                         |
| <b>P'</b> <sub>s,t</sub> 0.2480                                                                                                                         |
| <b>P'</b> <sub>C',s</sub> 0.5507                                                                                                                        |
| <b>P'</b> <sub>d,C'</sub> 0.2487                                                                                                                        |
| <b>P'</b> <sub>e,d</sub> 0.2351                                                                                                                         |
| <b>P'</b> <sub>g,F'</sub> 0.4989                                                                                                                        |
| <b>P'</b> <sub>i,h</sub> 0.8245                                                                                                                         |

| Constants of Dispersion |               |  |  |
|-------------------------|---------------|--|--|
| Formula                 |               |  |  |
| <b>B</b> <sub>1</sub>   | 1.86348331    |  |  |
| <b>B</b> <sub>2</sub>   | 0.413307255   |  |  |
| <b>B</b> <sub>3</sub>   | 1.35784815    |  |  |
| <b>C</b> <sub>1</sub>   | 0.00910368219 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0339247268  |  |  |
| <b>C</b> <sub>3</sub>   | 93.3580595    |  |  |

|       | 1 1 | 1,0                                          |      |
|-------|-----|----------------------------------------------|------|
| 0.550 |     | $\Delta \mathbf{P}_{g,F}$                    | -0.0 |
| 0.270 |     | $\Delta \mathbf{P}_{i,g}$                    | -0.0 |
| 0.040 |     |                                              |      |
|       |     | Other Propert                                | ies  |
|       |     | α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K] |      |
|       |     | $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$      |      |
|       |     | T <sub>g</sub> [°C]                          |      |
|       |     | T <sub>10</sub> <sup>13.0</sup> [°C]         |      |
|       |     | <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]   |      |
|       |     | <b>c</b> <sub>p</sub> [J/(g⋅K)]              |      |
|       |     | λ [W/(m·K)]                                  |      |
|       |     |                                              |      |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | 0.0110  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0063  |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | -0.0021 |  |
| $\Delta \mathbf{P}_{g,F}$                                           | -0.0083 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0520 |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| <b>D</b> <sub>0</sub>         | 3.03 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.04 · 10 <sup>-8</sup>   |  |
| $D_2$                         | -1.30 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 6.62 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 7.82 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.209                     |  |

| Color Code                   |        |
|------------------------------|--------|
| $\lambda_{80}/\lambda_{5}$   | 37/32* |
| $(*=\lambda_{70}/\lambda_5)$ |        |
|                              |        |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |

| Other Freperties                               |       |
|------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]   | 6.2   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$        | 7.3   |
| <b>T</b> <sub>g</sub> [°C]                     | 651   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]    | 658   |
| T <sub>10</sub> <sup>7.6</sup> [°C]            | 739   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                 | 0.490 |
| $\lambda \left[W/(m\cdot K)\right]$            | 0.790 |
|                                                |       |
| ρ [g/cm <sup>3</sup> ]                         | 4.85  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]  | 124   |
| μ                                              | 0.294 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N] | 1.57  |
| HK <sub>0.1/20</sub>                           | 760   |
| HG                                             | 2     |
|                                                |       |
| В                                              | 0     |
|                                                |       |
| CR                                             | 1     |
| FR                                             | 1     |
| SR                                             | 4     |
| AR                                             | 1     |
| PR                                             | 1     |
|                                                |       |
|                                                |       |
|                                                |       |
|                                                |       |

| Temperature Coefficients of Refractive Index                |        |     |                  |                                      |     |     |
|-------------------------------------------------------------|--------|-----|------------------|--------------------------------------|-----|-----|
| $\Delta$ n <sub>rel</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |        |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |     |
| [°C]                                                        | 1060.0 | Φ   | g                | 1060.0                               | е   | g   |
| -40/ -20                                                    | 4.0    | 5.2 | 6.4              | 1.5                                  | 2.7 | 3.9 |
| +20/ +40                                                    | 4.0    | 5.4 | 6.8              | 2.4                                  | 3.8 | 5.2 |
| +60/ +80                                                    | 4.2    | 5.7 | 7.2              | 2.9                                  | 4.5 | 6.0 |

#### N-LASF43 806406.426

 $n_d = 1.80610$  $v_{d}$  = 40.61 n<sub>e</sub>= 1.81081  $v_e = 40.36$ 

 $n_F - n_C = 0.019850$  $n_{F'}-n_{C'}=0.020089$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.75901 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.76662 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.77488 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.78413 |  |
| n <sub>t</sub>             | 1014.0 | 1.78527 |  |
| n <sub>s</sub>             | 852.1  | 1.79018 |  |
| n <sub>r</sub>             | 706.5  | 1.79691 |  |
| n <sub>C</sub>             | 656.3  | 1.80020 |  |
| n <sub>C'</sub>            | 643.8  | 1.80113 |  |
| n <sub>632.8</sub>         | 632.8  | 1.80200 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.80593 |  |
| <b>n</b> <sub>d</sub>      | 587.6  | 1.80610 |  |
| n <sub>e</sub>             | 546.1  | 1.81081 |  |
| n <sub>F</sub>             | 486.1  | 1.82005 |  |
| n <sub>F'</sub>            | 480.0  | 1.82122 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.83137 |  |
| n <sub>h</sub>             | 404.7  | 1.84106 |  |
| n <sub>i</sub>             | 365.0  |         |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  | -       |  |

| Internal <sup>*</sup> | Transmitta            | anceτ <sub>i</sub>    |
|-----------------------|-----------------------|-----------------------|
| λ [nm]                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                  | 0.398                 | 0.100                 |
| 2325                  | 0.713                 | 0.430                 |
| 1970                  | 0.937                 | 0.850                 |
| 1530                  | 0.984                 | 0.960                 |
| 1060                  | 0.998                 | 0.994                 |
| 700                   | 0.998                 | 0.995                 |
| 660                   | 0.998                 | 0.995                 |
| 620                   | 0.997                 | 0.993                 |
| 580                   | 0.996                 | 0.991                 |
| 546                   | 0.995                 | 0.988                 |
| 500                   | 0.990                 | 0.975                 |
| 460                   | 0.980                 | 0.950                 |
| 436                   | 0.967                 | 0.920                 |
| 420                   | 0.954                 | 0.890                 |
| 405                   | 0.933                 | 0.840                 |
| 400                   | 0.919                 | 0.810                 |
| 390                   | 0.882                 | 0.730                 |
| 380                   | 0.821                 | 0.610                 |
| 370                   | 0.707                 | 0.420                 |
| 365                   | 0.618                 | 0.300                 |
| 350                   | 0.221                 | 0.020                 |
| 334                   |                       |                       |
| 320                   |                       |                       |
| 310                   |                       |                       |
| 300                   |                       |                       |
| 290                   |                       |                       |
| 280                   |                       |                       |
| 270                   |                       |                       |
| 260                   |                       |                       |
| 250                   |                       |                       |
|                       |                       |                       |
|                       | 1                     | 1                     |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{\mathrm{s,t}}$ | 0.2476 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5049 |  |
| $\mathbf{P}_{d,C}$          | 0.2972 |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2374 |  |
| $\mathbf{P}_{g,F}$          | 0.5703 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2446 |  |
| P' <sub>C',s</sub>          | 0.5452 |  |
| P' <sub>d,C'</sub>          | 0.2473 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2346 |  |
| P' <sub>g,F'</sub>          | 0.5053 |  |
| P' <sub>i,h</sub>           |        |  |
|                             |        |  |

| Deviation of F<br>Partial Disper<br>from the "Nor | sions ΔP |
|---------------------------------------------------|----------|
| $\Delta P_{C,t}$                                  | 0.0149   |
| Δ <b>P</b> <sub>C,s</sub>                         | 0.0073   |
| $\Delta P_{F,e}$                                  | -0.0016  |
| $\Delta P_{g,F}$                                  | -0.0052  |
| $\Delta \mathbf{P}_{i,g}$                         |          |

| Constan               | ts of Dispersion |   | 300 |  |
|-----------------------|------------------|---|-----|--|
| Formula               |                  |   | 290 |  |
| B <sub>1</sub>        | 1.93502827       |   | 280 |  |
| <b>B</b> <sub>2</sub> | 0.23662935       |   | 270 |  |
| $\mathbf{B}_3$        | 1.26291344       |   | 260 |  |
| <b>C</b> <sub>1</sub> | 0.0104001413     |   | 250 |  |
| <b>C</b> <sub>2</sub> | 0.0447505292     |   |     |  |
| <b>C</b> <sub>3</sub> | 87.437569        |   |     |  |
|                       |                  | _ |     |  |

| 42/34 |
|-------|
|       |
|       |

| Other Properties                                                                             |       |
|----------------------------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                                 | 5.5   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                                                | 6.7   |
| T <sub>g</sub> [°C]                                                                          | 614   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                                         | 615   |
| T <sub>g</sub> [°C] T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 699   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                                              | 0.550 |
| λ [W/(m·K)]                                                                                  | 0.810 |
|                                                                                              |       |
| ρ [g/cm <sup>3</sup> ]                                                                       | 4.26  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                                                | 114   |
| μ                                                                                            | 0.290 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                                               | 1.92  |
| HK <sub>0.1/20</sub>                                                                         | 720   |
| HG                                                                                           | 2     |
|                                                                                              |       |
| В                                                                                            | 1     |
|                                                                                              |       |
| CR                                                                                           | 1     |
| FR                                                                                           | 1     |
| SR                                                                                           | 51.3  |
| AR                                                                                           | 1     |
| PR                                                                                           | 2     |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |

70 | Overview

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| $\mathbf{D}_0$          | 4.77 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.14 · 10 <sup>-8</sup>   |  |
| $D_2$                   | -2.68 · 10 <sup>-12</sup> |  |
| <b>E</b> <sub>0</sub>   | 6.62 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 8.84 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.234                     |  |

| Temper   | ature Co          | efficient                | s of Refra | active Ind       | dex                                  |     |
|----------|-------------------|--------------------------|------------|------------------|--------------------------------------|-----|
|          | Δn <sub>rel</sub> | /ΔT[10 <sup>-6</sup> /K] |            | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]     | 1060.0            | е                        | g          | 1060.0           | е                                    | g   |
| -40/ -20 | 4.9               | 6.2                      | 7.6        | 2.5              | 3.8                                  | 5.0 |
| +20/ +40 | 5.0               | 6.5                      | 8.1        | 3.4              | 4.9                                  | 6.4 |
| +60/ +80 | 5.2               | 6.9                      | 8.6        | 4.0              | 5.6                                  | 7.4 |

Remarks

#### N-LASF44 804465.444

**SCHOTT** 

 $n_d$ = 1.80420  $v_d$ = 46.50  $n_e$ = 1.80832  $v_e$ = 46.25

 $v_d$ = 46.50  $n_F - n_C$  = 0.017294  $v_e$ = 46.25  $n_{F'} - n_{C'}$ = 0.017476

| Refracti                   | ive Indices | s       |
|----------------------------|-------------|---------|
| - TOTALO                   | λ [nm]      |         |
| n <sub>2325.4</sub>        | 2325.4      | 1.76070 |
| <b>n</b> <sub>1970.1</sub> | 1970.1      | 1.76801 |
| n <sub>1529.6</sub>        | 1529.6      | 1.77590 |
| <b>n</b> <sub>1060.0</sub> | 1060.0      | 1.78455 |
| n <sub>t</sub>             | 1014.0      | 1.78560 |
| n <sub>s</sub>             | 852.1       | 1.79006 |
| n <sub>r</sub>             | 706.5       | 1.79609 |
| n <sub>C</sub>             | 656.3       | 1.79901 |
| n <sub>C'</sub>            | 643.8       | 1.79983 |
| n <sub>632.8</sub>         | 632.8       | 1.80060 |
| <b>n</b> <sub>D</sub>      | 589.3       | 1.80405 |
| n <sub>d</sub>             | 587.6       | 1.80420 |
| n <sub>e</sub>             | 546.1       | 1.80832 |
| n <sub>F</sub>             | 486.1       | 1.81630 |
| n <sub>F'</sub>            | 480.0       | 1.81731 |
| <b>n</b> <sub>g</sub>      | 435.8       | 1.82594 |
| n <sub>h</sub>             | 404.7       | 1.83405 |
| n <sub>i</sub>             | 365.0       |         |
| n <sub>334.1</sub>         | 334.1       |         |
| n <sub>312.6</sub>         | 312.6       |         |
| n <sub>296.7</sub>         | 296.7       |         |
| n <sub>280.4</sub>         | 280.4       |         |
| n <sub>248.3</sub>         | 248.3       |         |

| Internal <sup>*</sup> | Transmitta            | anceτ <sub>i</sub>    |
|-----------------------|-----------------------|-----------------------|
| λ [nm]                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                  | 0.468                 | 0.150                 |
| 2325                  | 0.739                 | 0.470                 |
| 1970                  | 0.946                 | 0.870                 |
| 1530                  | 0.990                 | 0.975                 |
| 1060                  | 0.998                 | 0.995                 |
| 700                   | 0.998                 | 0.996                 |
| 660                   | 0.998                 | 0.995                 |
| 620                   | 0.998                 | 0.995                 |
| 580                   | 0.998                 | 0.995                 |
| 546                   | 0.998                 | 0.995                 |
| 500                   | 0.996                 | 0.989                 |
| 460                   | 0.991                 | 0.977                 |
| 436                   | 0.986                 | 0.965                 |
| 420                   | 0.980                 | 0.950                 |
| 405                   | 0.967                 | 0.920                 |
| 400                   | 0.963                 | 0.910                 |
| 390                   | 0.946                 | 0.870                 |
| 380                   | 0.911                 | 0.793                 |
| 370                   | 0.860                 | 0.685                 |
| 365                   | 0.823                 | 0.615                 |
| 350                   | 0.658                 | 0.351                 |
| 334                   | 0.378                 | 0.088                 |
| 320                   | 0.152                 |                       |
| 310                   | 0.068                 |                       |
| 300                   | 0.029                 |                       |
| 290                   |                       |                       |
| 280                   |                       |                       |
| 270                   |                       |                       |
| 260                   |                       |                       |
| 250                   |                       |                       |
|                       |                       |                       |
| , i                   |                       |                       |

| Relative Parti              | al Dispersion |
|-----------------------------|---------------|
| $\mathbf{P}_{s,t}$          | 0.2582        |
| <b>P</b> <sub>C,s</sub>     | 0.5171        |
| $\mathbf{P}_{d,C}$          | 0.3002        |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2380        |
| $\mathbf{P}_{g,F}$          | 0.5572        |
| $\mathbf{P}_{i,h}$          |               |
|                             |               |
| P' <sub>s,t</sub>           | 0.2555        |
| P' <sub>C',s</sub>          | 0.5588        |
| P' <sub>d,C'</sub>          | 0.2501        |
| <b>P'</b> <sub>e,d</sub>    | 0.2355        |
| P' <sub>g,F'</sub>          | 0.4941        |
| P' <sub>i,h</sub>           |               |
|                             |               |

| Deviation of F<br>Partial Disper<br>from the "Nor | sions ΔP |
|---------------------------------------------------|----------|
| $\Delta P_{C,t}$                                  | 0.0098   |
| Δ <b>P</b> <sub>C,s</sub>                         | 0.0058   |
| Δ <b>P</b> <sub>F,e</sub>                         | -0.0021  |
| $\Delta \mathbf{P}_{g,F}$                         | -0.0084  |
| $\Delta \mathbf{P}_{i,g}$                         |          |

| 1.78897105      | 280      |     |  |
|-----------------|----------|-----|--|
| 0.38675867      | 270      |     |  |
| 1.30506243      | 260      |     |  |
| 0.00872506277   | 250      |     |  |
| 0.0308085023    |          |     |  |
| 92.7743824      |          |     |  |
|                 |          |     |  |
| e of Dienoreion | Color Co | nde |  |

Remarks

| 10/31 |
|-------|
|       |
|       |

| Other Properties                                                      |       |  |  |
|-----------------------------------------------------------------------|-------|--|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 6.2   |  |  |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                               | 7.4   |  |  |
| T <sub>g</sub> [°C]                                                   | 655   |  |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                  | 659   |  |  |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 742   |  |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.530 |  |  |
| λ [W/(m·K)]                                                           | 0.820 |  |  |
|                                                                       |       |  |  |
| ρ [g/cm <sup>3</sup> ]                                                | 4.44  |  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 124   |  |  |
| μ                                                                     | 0.293 |  |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 1.41  |  |  |
| HK <sub>0.1/20</sub>                                                  | 770   |  |  |
| HG                                                                    | 2     |  |  |
|                                                                       |       |  |  |
| В                                                                     | 0     |  |  |
|                                                                       |       |  |  |
| CR                                                                    | 1     |  |  |
| FR                                                                    | 1     |  |  |
| SR                                                                    | 4     |  |  |
| AR                                                                    | 1     |  |  |
| PR                                                                    | 1     |  |  |
|                                                                       |       |  |  |
|                                                                       |       |  |  |
|                                                                       |       |  |  |

| Constants of Dispersion |                           |  |  |  |
|-------------------------|---------------------------|--|--|--|
| dn/dT                   |                           |  |  |  |
| $\mathbf{D}_0$          | 3.32 · 10 <sup>-6</sup>   |  |  |  |
| <b>D</b> <sub>1</sub>   | 1.12 · 10 <sup>-8</sup>   |  |  |  |
| $D_2$                   | -8.52 · 10 <sup>-12</sup> |  |  |  |
| <b>E</b> <sub>0</sub>   | 5.88 · 10 <sup>-7</sup>   |  |  |  |
| <b>E</b> <sub>1</sub>   | 7.13 · 10 <sup>-10</sup>  |  |  |  |
| λ <sub>TK</sub> [μm]    | 0.209                     |  |  |  |

**Constants of Dispersion** 

**Formula** 

**B**<sub>1</sub>

 $\mathbf{B}_2$ 

 $\mathbf{C}_1$ 

**C**<sub>2</sub>

 $\mathbf{C}_3$ 

| Temperature Coefficients of Refractive Index |                   |                          |     |                  |                                      |     |
|----------------------------------------------|-------------------|--------------------------|-----|------------------|--------------------------------------|-----|
|                                              | Δn <sub>rel</sub> | /ΔT[10 <sup>-6</sup> /K] |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]                                         | 1060.0            | е                        | g   | 1060.0           | е                                    | g   |
| -40/ -20                                     | 4.0               | 5.1                      | 6.1 | 1.6              | 2.6                                  | 3.6 |
| +20/ +40                                     | 4.0               | 5.3                      | 6.5 | 2.5              | 3.7                                  | 4.9 |
| +60/ +80                                     | 4.2               | 5.6                      | 6.9 | 3.0              | 4.4                                  | 5.7 |

#### N-LASF45 801350.363

 $n_d = 1.80107$  $v_{d} = 34.97$  $n_e = 1.80650$  $v_e = 34.72$   $n_F - n_C = 0.022905$  $n_{F'}-n_{C'}=0.023227$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
|                            | λ [nm] |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.75487 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.76104 |  |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.76809 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.77689 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.77805 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.78325 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.79066 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.79436 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.79541 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.79640 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.80087 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.80107 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.80650 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.81726 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.81864 |  |  |  |
| n <sub>g</sub>             | 435.8  | 1.83068 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.84237 |  |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |  |
|--------------------------------------|-----------------------|-----------------------|--|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |
| 2500                                 | 0.852                 | 0.670                 |  |
| 2325                                 | 0.928                 | 0.830                 |  |
| 1970                                 | 0.985                 | 0.962                 |  |
| 1530                                 | 0.997                 | 0.992                 |  |
| 1060                                 | 0.997                 | 0.993                 |  |
| 700                                  | 0.997                 | 0.992                 |  |
| 660                                  | 0.995                 | 0.987                 |  |
| 620                                  | 0.994                 | 0.984                 |  |
| 580                                  | 0.994                 | 0.986                 |  |
| 546                                  | 0.993                 | 0.982                 |  |
| 500                                  | 0.983                 | 0.958                 |  |
| 460                                  | 0.965                 | 0.915                 |  |
| 436                                  | 0.946                 | 0.870                 |  |
| 420                                  | 0.924                 | 0.820                 |  |
| 405                                  | 0.877                 | 0.720                 |  |
| 400                                  | 0.857                 | 0.680                 |  |
| 390                                  | 0.787                 | 0.550                 |  |
| 380                                  | 0.672                 | 0.370                 |  |
| 370                                  | 0.576                 | 0.150                 |  |
| 365                                  | 0.336                 | 0.060                 |  |
| 350                                  | 0.012                 |                       |  |
| 334                                  |                       |                       |  |
| 320                                  |                       |                       |  |
| 310                                  |                       |                       |  |
| 300                                  |                       |                       |  |
| 290                                  |                       |                       |  |
| 280                                  |                       |                       |  |
| 270                                  |                       |                       |  |
| 260                                  |                       |                       |  |
| 250                                  |                       |                       |  |
|                                      |                       |                       |  |

| Relative P                                                                                    | artial Dispersion                             |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------|
| P <sub>s,t</sub>                                                                              | 0.2268                                        |
| P <sub>C,s</sub>                                                                              | 0.4849                                        |
| P <sub>d,C</sub>                                                                              | 0.2930                                        |
| P <sub>e,d</sub>                                                                              | 0.2368                                        |
| $\mathbf{P}_{g,F}$                                                                            | 0.5859                                        |
| P <sub>i,h</sub>                                                                              |                                               |
|                                                                                               |                                               |
| P' <sub>s,t</sub>                                                                             | 0.2237                                        |
| P' <sub>C',s</sub>                                                                            | 0.5235                                        |
| P' <sub>d,C'</sub>                                                                            | 0.2437                                        |
| <b>P'</b> <sub>e,d</sub>                                                                      | 0.2336                                        |
| <b>P'</b> <sub>g,F'</sub>                                                                     | 0.5186                                        |
| P' <sub>i,h</sub>                                                                             |                                               |
|                                                                                               |                                               |
|                                                                                               |                                               |
|                                                                                               | of Relative                                   |
|                                                                                               | of Relative<br>spersions ΔP                   |
| Partial Dis                                                                                   |                                               |
| Partial Dis                                                                                   | spersions ΔP                                  |
| Partial Dis                                                                                   | spersions ΔP<br>'Normal Line"                 |
| Partial Dis<br>from the "<br>ΔP <sub>C,t</sub>                                                | Spersions ΔP Normal Line"  0.0009             |
| Partial Dis<br>from the " $\Delta P_{C,t}$ $\Delta P_{C,s}$                                   | Spersions ΔP   Normal Line"   0.0009   0.0005 |
| Partial District from the " $\Delta P_{C,t}$ $\Delta P_{C,s}$ $\Delta P_{F,e}$                | Normal Line   0.0009                          |
| Partial Dis<br>from the " $\Delta P_{C,t}$ $\Delta P_{C,s}$ $\Delta P_{F,e}$ $\Delta P_{g,F}$ | Normal Line   0.0009                          |

| Constants of Dispersion |              |  |  |
|-------------------------|--------------|--|--|
| Formula                 |              |  |  |
| <b>B</b> <sub>1</sub>   | 1.87140198   |  |  |
| <b>B</b> <sub>2</sub>   | 0.267777879  |  |  |
| <b>B</b> <sub>3</sub>   | 1.73030008   |  |  |
| <b>C</b> <sub>1</sub>   | 0.011217192  |  |  |
| <b>C</b> <sub>2</sub>   | 0.0505134972 |  |  |
| <b>C</b> <sub>3</sub>   | 147.106505   |  |  |

| 44/35 |
|-------|
|       |
|       |

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   |                           |  |  |
| <b>D</b> <sub>0</sub>   | 2.78 · 10 <sup>-6</sup>   |  |  |
| <b>D</b> <sub>1</sub>   | 8.73 · 10 <sup>-9</sup>   |  |  |
| D <sub>2</sub>          | -2.65 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 8.24 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 1.15 · 10 <sup>-9</sup>   |  |  |
| λ <sub>TK</sub> [μm]    | 0.255                     |  |  |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

| Temperature Coefficients of Refractive Index |                                      |     |     |                                      |     |     |
|----------------------------------------------|--------------------------------------|-----|-----|--------------------------------------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     |     |
| [°C]                                         | 1060.0                               | е   | g   | 1060.0                               | е   | g   |
| -40/ -20                                     | 3.8                                  | 5.4 | 7.3 | 1.4                                  | 3.0 | 4.7 |
| +20/ +40                                     | 3.8                                  | 5.7 | 7.9 | 2.3                                  | 4.1 | 6.2 |
| +60/ +80                                     | 3.8                                  | 5.9 | 8.3 | 2.6                                  | 4.7 | 7.0 |

| Other Properties                                                          | _     |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 7.4   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 8.6   |
| T <sub>a</sub> [°C]                                                       | 647   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                               | 652   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 773   |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                                           | 0.660 |
| λ [W/(m·K)]                                                               | 1.020 |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.63  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 116   |
| μ                                                                         | 0.281 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.01  |
| HK <sub>0.1/20</sub>                                                      | 630   |
| HG                                                                        | 3     |
|                                                                           |       |
| В                                                                         | 0     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 0     |
| SR                                                                        | 3.2   |
| AR                                                                        | 1     |
| PR                                                                        | 1     |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |
|                                                                           | •     |

#### **N-LASF46A** 904313.445

 $n_d = 1.90366$  $v_{d}$  = 31.32 n<sub>e</sub>= 1.91048  $v_e = 31.09$   $n_F - n_C = 0.028853$  $n_{F'}-n_{C'}=0.029287$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.84576 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.85364 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.86255 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.87353 |  |
| n <sub>t</sub>             | 1014.0 | 1.87498 |  |
| n <sub>s</sub>             | 852.1  | 1.88143 |  |
| n <sub>r</sub>             | 706.5  | 1.89064 |  |
| n <sub>C</sub>             | 656.3  | 1.89526 |  |
| n <sub>C'</sub>            | 643.8  | 1.89657 |  |
| n <sub>632.8</sub>         | 632.8  | 1.89781 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.90341 |  |
| <b>n</b> <sub>d</sub>      | 587.6  | 1.90366 |  |
| n <sub>e</sub>             | 546.1  | 1.91048 |  |
| n <sub>F</sub>             | 486.1  | 1.92411 |  |
| n <sub>F'</sub>            | 480.0  | 1.92586 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.94129 |  |
| n <sub>h</sub>             | 404.7  | 1.95645 |  |
| n <sub>i</sub>             | 365.0  |         |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| n <sub>312.6</sub>         | 312.6  |         |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal | Transmittance τ <sub>i</sub> |                       |
|----------|------------------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm)        | τ <sub>i</sub> (25mm) |
| 2500     | 0.556                        | 0.230                 |
| 2325     | 0.793                        | 0.560                 |
| 1970     | 0.954                        | 0.890                 |
| 1530     | 0.991                        | 0.977                 |
| 1060     | 0.999                        | 0.997                 |
| 700      | 0.996                        | 0.989                 |
| 660      | 0.994                        | 0.985                 |
| 620      | 0.993                        | 0.983                 |
| 580      | 0.993                        | 0.982                 |
| 546      | 0.991                        | 0.978                 |
| 500      | 0.980                        | 0.950                 |
| 460      | 0.959                        | 0.900                 |
| 436      | 0.937                        | 0.850                 |
| 420      | 0.905                        | 0.780                 |
| 405      | 0.847                        | 0.660                 |
| 400      | 0.815                        | 0.600                 |
| 390      | 0.707                        | 0.420                 |
| 380      | 0.504                        | 0.180                 |
| 370      | 0.181                        | 0.014                 |
| 365      | 0.050                        |                       |
| 350      |                              |                       |
| 334      |                              |                       |
| 320      |                              |                       |
| 310      |                              |                       |
| 300      |                              |                       |
| 290      |                              |                       |
| 280      |                              |                       |
| 270      |                              |                       |
| 260      |                              |                       |
| 250      |                              |                       |
|          |                              |                       |
| 1        | ı                            | ı                     |

| 1970 | 0.954 | 0.890 |
|------|-------|-------|
| 1530 | 0.991 | 0.977 |
| 1060 | 0.999 | 0.997 |
| 700  | 0.996 | 0.989 |
| 660  | 0.994 | 0.985 |
| 620  | 0.993 | 0.983 |
| 580  | 0.993 | 0.982 |
| 546  | 0.991 | 0.978 |
| 500  | 0.980 | 0.950 |
| 460  | 0.959 | 0.900 |
| 436  | 0.937 | 0.850 |
| 420  | 0.905 | 0.780 |
| 405  | 0.847 | 0.660 |
| 400  | 0.815 | 0.600 |
| 390  | 0.707 | 0.420 |
| 380  | 0.504 | 0.180 |
| 370  | 0.181 | 0.014 |
| 365  | 0.050 |       |
| 350  |       |       |
| 334  |       |       |
| 320  |       |       |
| 310  |       |       |
| 300  |       |       |
| 290  |       |       |
| 280  |       |       |
| 270  |       |       |
| 260  |       |       |
| 250  |       |       |
|      |       |       |
|      |       |       |

| Color Code                   |        |
|------------------------------|--------|
| $\lambda_{80}/\lambda_{5}$   | 41/37* |
| $(*=\lambda_{70}/\lambda_5)$ |        |
| _                            |        |
| Remarks                      |        |

| <b>Constants of Dispersion</b> |                           |  |  |
|--------------------------------|---------------------------|--|--|
| dn/dT                          | dn/dT                     |  |  |
| <b>D</b> <sub>0</sub>          | 3.53 · 10 <sup>-6</sup>   |  |  |
| <b>D</b> <sub>1</sub>          | 1.24 · 10 <sup>-8</sup>   |  |  |
| <b>D</b> <sub>2</sub>          | -1.87 · 10 <sup>-11</sup> |  |  |
| E <sub>0</sub>                 | 8.39 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>          | 1.04 · 10 <sup>-9</sup>   |  |  |
| λ <sub>TK</sub> [μm]           | 0.275                     |  |  |

**Constants of Dispersion** 

2.16701566

0.319812761 1.66004486

0.0123595524

0.0560610282

107.047718

**Formula** 

**B**<sub>1</sub>

 $\mathbf{B}_2$ 

 $\mathbf{C}_1$ 

 $C_2$ 

 $\mathbf{c}_3$ 

| E <sub>0</sub>                               | 8.39 · 10 <sup>-7</sup> |  |  |
|----------------------------------------------|-------------------------|--|--|
| Ε <sub>1</sub>                               | 1.04 · 10 <sup>-9</sup> |  |  |
| λ <sub>TK</sub> [μm]                         | 0.275                   |  |  |
|                                              |                         |  |  |
| Temperature Coefficients of Refractive Index |                         |  |  |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                               | e   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 4.4                                  | 6.4 | 8.8                                  | 1.9    | 3.8 | 6.1 |
| +20/ +40                                     | 4.7                                  | 7.0 | 9.8                                  | 3.1    | 5.3 | 8.1 |
| +60/ +80                                     | 5.0                                  | 7.4 | 10.5                                 | 3.7    | 6.1 | 9.2 |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2236 |  |
| P <sub>C,s</sub>            | 0.4793 |  |
| P <sub>d,C</sub>            | 0.2912 |  |
| $\mathbf{P}_{e,d}$          | 0.2364 |  |
| $\mathbf{P}_{g,F}$          | 0.5953 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2203 |  |
| P' <sub>C',s</sub>          | 0.5170 |  |
| P' <sub>d,C'</sub>          | 0.2420 |  |
| P' <sub>e,d</sub>           | 0.2329 |  |
| P' <sub>g,F'</sub>          | 0.5268 |  |
| P' <sub>i,h</sub>           |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |        |  |
|---------------------------------------------------------------------|--------|--|
| $\Delta P_{C,t}$                                                    | 0.0094 |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0034 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0005 |  |
| $\Delta P_{g,F}$                                                    | 0.0042 |  |
| $\Delta P_{i,g}$                                                    |        |  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 6.0   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                         | 7.2   |
| T <sub>g</sub> [°C]                                                   | 638   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                  | 639   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 733   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.540 |
| λ [W/(m·K)]                                                           | 0.910 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 4.45  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 124   |
| μ                                                                     | 0.298 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 1.64  |
| HK <sub>0.1/20</sub>                                                  | 666   |
| HG                                                                    | 1     |
|                                                                       |       |
| В                                                                     | 0     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 0     |
| SR                                                                    | 3     |
| AR                                                                    | 1     |
| PR                                                                    | 1     |
|                                                                       |       |
|                                                                       |       |
|                                                                       |       |

#### P-LASF47 806409.454

 $n_d = 1.80610$  $v_{d}$  = 40.90  $n_e = 1.81078$ 

 $v_e = 40.66$ 

 $n_F - n_C = 0.019709$  $n_{F'}-n_{C'}=0.019941$ 

| Refractive Indices         |        |         |
|----------------------------|--------|---------|
|                            | λ [nm] |         |
| <b>n</b> <sub>2325.4</sub> | 2325.4 | 1.76040 |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.76755 |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.77538 |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.78432 |
| n <sub>t</sub>             | 1014.0 | 1.78544 |
| n <sub>s</sub>             | 852.1  | 1.79028 |
| n <sub>r</sub>             | 706.5  | 1.79696 |
| n <sub>C</sub>             | 656.3  | 1.80023 |
| n <sub>C'</sub>            | 643.8  | 1.80116 |
| n <sub>632.8</sub>         | 632.8  | 1.80203 |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.80593 |
| n <sub>d</sub>             | 587.6  | 1.80610 |
| n <sub>e</sub>             | 546.1  | 1.81078 |
| n <sub>F</sub>             | 486.1  | 1.81994 |
| n <sub>F'</sub>            | 480.0  | 1.82110 |
| n <sub>g</sub>             | 435.8  | 1.83112 |
| n <sub>h</sub>             | 404.7  | 1.84064 |
| n <sub>i</sub>             | 365.0  | 1.85739 |
| n <sub>334.1</sub>         | 334.1  | 1.87632 |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |
| n <sub>296.7</sub>         | 296.7  |         |
| n <sub>280.4</sub>         | 280.4  |         |
| <b>n</b> <sub>248.3</sub>  | 248.3  |         |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |
|--------------------------------------|-----------------------|-----------------------|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                                 | 0.525                 | 0.200                 |
| 2325                                 | 0.776                 | 0.530                 |
| 1970                                 | 0.950                 | 0.880                 |
| 1530                                 | 0.992                 | 0.981                 |
| 1060                                 | 0.999                 | 0.998                 |
| 700                                  | 0.998                 | 0.996                 |
| 660                                  | 0.998                 | 0.995                 |
| 620                                  | 0.998                 | 0.995                 |
| 580                                  | 0.998                 | 0.994                 |
| 546                                  | 0.998                 | 0.994                 |
| 500                                  | 0.995                 | 0.988                 |
| 460                                  | 0.990                 | 0.975                 |
| 436                                  | 0.985                 | 0.963                 |
| 420                                  | 0.980                 | 0.950                 |
| 405                                  | 0.971                 | 0.930                 |
| 400                                  | 0.967                 | 0.920                 |
| 390                                  | 0.954                 | 0.890                 |
| 380                                  | 0.928                 | 0.830                 |
| 370                                  | 0.877                 | 0.720                 |
| 365                                  | 0.842                 | 0.650                 |
| 350                                  | 0.657                 | 0.350                 |
| 334                                  | 0.250                 | 0.030                 |
| 320                                  | 0.012                 |                       |
| 310                                  |                       |                       |
| 300                                  |                       |                       |
| 290                                  |                       |                       |
| 280                                  |                       |                       |
| 270                                  |                       |                       |
| 260                                  |                       |                       |
| 250                                  |                       |                       |
|                                      |                       |                       |
|                                      |                       |                       |

| <b>Constants of Dispersion</b> |              |  |  |  |
|--------------------------------|--------------|--|--|--|
| Formula                        |              |  |  |  |
| <b>B</b> <sub>1</sub>          | 1.85543101   |  |  |  |
| <b>B</b> <sub>2</sub>          | 0.315854649  |  |  |  |
| $\mathbf{B}_3$                 | 1.28561839   |  |  |  |
| <b>C</b> <sub>1</sub>          | 0.0100328203 |  |  |  |
| <b>C</b> <sub>2</sub>          | 0.0387095168 |  |  |  |
| <b>C</b> <sub>3</sub>          | 94.5421507   |  |  |  |

| Constants of Dispersion dn/dT |                                               |  |  |
|-------------------------------|-----------------------------------------------|--|--|
| $\mathbf{D}_0$                | 7.87 · 10 <sup>-6</sup>                       |  |  |
| <b>D</b> <sub>1</sub>         | 1.09 · 10 <sup>-8</sup>                       |  |  |
| $D_2$                         | -1.56 · 10 <sup>-11</sup>                     |  |  |
| <b>E</b> <sub>0</sub>         | <b>E</b> <sub>0</sub> 7.58 · 10 <sup>-7</sup> |  |  |
| <b>E</b> <sub>1</sub>         | 8.92 · 10 <sup>-10</sup>                      |  |  |
| λ <sub>TK</sub> [μm]          | 0.218                                         |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 39/33 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temperature Coefficients of Refractive Index |                                            |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K] |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                                     | e   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 6.8                                        | 8.3 | 9.8                                  | 4.5    | 5.9 | 7.3 |
| +20/ +40                                     | 6.9                                        | 8.6 | 10.3                                 | 5.4    | 7.0 | 8.7 |
| +60/ +80                                     | 7.1                                        | 8.9 | 10.8                                 | 5.9    | 7.7 | 9.5 |

| <b>Relative Partial Dispersion</b> |        |  |  |
|------------------------------------|--------|--|--|
| P <sub>s,t</sub>                   | 0.2459 |  |  |
| P <sub>C,s</sub>                   | 0.5049 |  |  |
| P <sub>d,C</sub>                   | 0.2976 |  |  |
| P <sub>e,d</sub>                   | 0.2376 |  |  |
| $\mathbf{P}_{g,F}$                 | 0.5671 |  |  |
| $\mathbf{P}_{i,h}$                 | 0.8502 |  |  |
|                                    |        |  |  |
| P' <sub>s,t</sub>                  | 0.2430 |  |  |
| P' <sub>C',s</sub>                 | 0.5453 |  |  |
| P' <sub>d,C'</sub>                 | 0.2478 |  |  |
| P' <sub>e,d</sub>                  | 0.2348 |  |  |
| P' <sub>g,F'</sub>                 | 0.5025 |  |  |
| P' <sub>i,h</sub>                  | 0.8403 |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |
|---------------------------------------------------------------------|---------|--|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0117  |  |  |
| Δ <b>P</b> <sub>C,s</sub> 0.0066                                    |         |  |  |
| Δ <b>P</b> <sub>F,e</sub> -0.0021                                   |         |  |  |
| $\Delta P_{g,F}$                                                    | -0.0079 |  |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0482 |  |  |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 6.0   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 7.3   |
| T <sub>a</sub> [°C]                                                       | 530   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                               | 532   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 627   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                            | 0.550 |
| λ [W/(m·K)]                                                               | 0.850 |
| AT [°C]                                                                   | 580   |
| ρ [g/cm <sup>3</sup> ]                                                    | 4.54  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 120   |
| μ                                                                         | 0.298 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.39  |
| HK <sub>0.1/20</sub>                                                      | 620   |
| HG                                                                        | 2     |
| HG-J                                                                      | 70    |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 1     |
| SR                                                                        | 51.4  |
| AR                                                                        | 1     |
| PR                                                                        | 2.2   |
| SR-J                                                                      | 3     |
| WR-J                                                                      | 1     |
|                                                                           |       |

#### P-LASF50 809405.454

 $n_d = 1.80860$  $v_{d}$  = 40.46  $n_e = 1.81335$ 

 $v_e$  = 40.22

 $n_F - n_C = 0.019985$  $n_{F'}-n_{C'}=0.020223$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.76261 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.76975 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.77759 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.78657 |  |
| n <sub>t</sub>             | 1014.0 | 1.78770 |  |
| n <sub>s</sub>             | 852.1  | 1.79259 |  |
| n <sub>r</sub>             | 706.5  | 1.79934 |  |
| n <sub>C</sub>             | 656.3  | 1.80266 |  |
| n <sub>C'</sub>            | 643.8  | 1.80359 |  |
| n <sub>632.8</sub>         | 632.8  | 1.80447 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.80842 |  |
| n <sub>d</sub>             | 587.6  | 1.80860 |  |
| n <sub>e</sub>             | 546.1  | 1.81335 |  |
| n <sub>F</sub>             | 486.1  | 1.82264 |  |
| n <sub>F</sub>             | 480.0  | 1.82382 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.83399 |  |
| n <sub>h</sub>             | 404.7  | 1.84367 |  |
| n <sub>i</sub>             | 365.0  |         |  |
| n <sub>334.1</sub>         | 334.1  |         |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  | _       |  |

| Internal | Transmitta            | anceτ:                |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.525                 | 0.200                 |
| 2325     | 0.776                 | 0.530                 |
| 1970     | 0.950                 | 0.880                 |
| 1530     | 0.992                 | 0.981                 |
| 1060     | 0.999                 | 0.998                 |
| 700      | 0.998                 | 0.995                 |
| 660      | 0.997                 | 0.993                 |
| 620      | 0.997                 | 0.992                 |
| 580      | 0.997                 | 0.992                 |
| 546      | 0.997                 | 0.992                 |
| 500      | 0.995                 | 0.987                 |
| 460      | 0.990                 | 0.975                 |
| 436      | 0.985                 | 0.963                 |
| 420      | 0.980                 | 0.950                 |
| 405      | 0.971                 | 0.930                 |
| 400      | 0.967                 | 0.920                 |
| 390      | 0.954                 | 0.890                 |
| 380      | 0.928                 | 0.830                 |
| 370      | 0.877                 | 0.720                 |
| 365      | 0.842                 | 0.650                 |
| 350      | 0.657                 | 0.350                 |
| 334      | 0.292                 | 0.030                 |
| 320      | 0.032                 |                       |
| 310      |                       |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| Relative Partial Dispersion |        |  |  |
|-----------------------------|--------|--|--|
| P <sub>s,t</sub>            | 0.2448 |  |  |
| P <sub>C,s</sub>            | 0.5037 |  |  |
| $\mathbf{P}_{d,C}$          | 0.2973 |  |  |
| $\mathbf{P}_{e,d}$          | 0.2376 |  |  |
| $\mathbf{P}_{g,F}$          | 0.5680 |  |  |
| $\mathbf{P}_{i,h}$          |        |  |  |
|                             |        |  |  |
| P' <sub>s,t</sub>           | 0.2419 |  |  |
| P' <sub>C',s</sub>          | 0.5441 |  |  |
| P' <sub>d,C'</sub>          | 0.2475 |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2348 |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5032 |  |  |
| P' <sub>i,h</sub>           |        |  |  |
|                             |        |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta P_{C,t}$                                                    | 0.0116  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0065  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0020 |  |
| $\Delta P_{g,F}$                                                    | -0.0078 |  |
| $\Delta \mathbf{P}_{i,g}$                                           |         |  |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 5.9   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 7.3   |
| T <sub>a</sub> [°C]                                                       | 527   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                      | 526   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 660   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.560 |
| λ [W/(m·K)]                                                               | 0.950 |
| AT [°C]                                                                   | 571   |
| ρ [g/cm <sup>3</sup> ]                                                    | 4.54  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 119   |
| μ                                                                         | 0.298 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.41  |
| HK <sub>0.1/20</sub>                                                      | 655   |
| HG                                                                        |       |
| HG-J                                                                      |       |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        |       |
| FR                                                                        |       |
| SR                                                                        |       |
| AR                                                                        |       |
| PR                                                                        |       |
| SR-J                                                                      |       |
| WR-J                                                                      |       |
| 1                                                                         | 1     |

| <b>Constants of Dispersion</b> |               |  |  |
|--------------------------------|---------------|--|--|
| Formula                        |               |  |  |
| <b>B</b> <sub>1</sub>          | 1.84910553    |  |  |
| <b>B</b> <sub>2</sub>          | 0.329828674   |  |  |
| <b>B</b> <sub>3</sub>          | 1.30400901    |  |  |
| <b>C</b> <sub>1</sub>          | 0.00999234757 |  |  |
| C <sub>2</sub>                 | 0.0387437988  |  |  |
| C <sub>3</sub>                 | 95.8967681    |  |  |

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   |                           |  |  |
| $\mathbf{D}_0$          | 8.04 · 10 <sup>-6</sup>   |  |  |
| <b>D</b> <sub>1</sub>   | 1.20 · 10 <sup>-8</sup>   |  |  |
| $D_2$                   | -2.19 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 8.20 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 9.08 · 10 <sup>-10</sup>  |  |  |
| λ <sub>TK</sub> [μm]    | 0.209                     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 39/32 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

## Remarks suitable for precision molding

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                               | Φ   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 6.9                                  | 8.5 | 10.0                                 | 4.5    | 6.0 | 7.5 |
| +20/ +40                                     | 7.1                                  | 8.9 | 10.6                                 | 5.5    | 7.3 | 9.0 |
| +60/ +80                                     | 7.3                                  | 9.2 | 11.1                                 | 6.1    | 8.0 | 9.9 |

#### P-LASF51 810409.458

 $n_d = 1.81000$  $v_d$ = 40.93 n<sub>e</sub>= 1.81470

Internal Transmittanceτ<sub>i</sub> τ<sub>i</sub> (10mm)

0.525

0.776

0.950

0.992

λ [nm]

2500

2325

1970

1530

 $v_e$  = 40.68

 $\tau_i \; (25mm)$ 

0.200

0.530

0.880

0.981

 $n_F - n_C = 0.019792$  $n_{F'}-n_{C'}=0.020025$ 

| Refractive Indices         |        |         |  |  |  |  |
|----------------------------|--------|---------|--|--|--|--|
|                            | λ [nm] |         |  |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.76437 |  |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.77145 |  |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.77923 |  |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.78815 |  |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.78927 |  |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.79413 |  |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.80082 |  |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.80411 |  |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.80504 |  |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.80591 |  |  |  |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.80983 |  |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.81000 |  |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.81470 |  |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.82390 |  |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.82506 |  |  |  |  |
| n <sub>g</sub>             | 435.8  | 1.83512 |  |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.84467 |  |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.86148 |  |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.88043 |  |  |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |  |

| 1060 | 0.999 | 0.998 |
|------|-------|-------|
| 700  | 0.998 | 0.995 |
| 660  | 0.997 | 0.993 |
| 620  | 0.997 | 0.992 |
| 580  | 0.997 | 0.992 |
| 546  | 0.997 | 0.992 |
| 500  | 0.995 | 0.987 |
| 460  | 0.990 | 0.975 |
| 436  | 0.985 | 0.963 |
| 420  | 0.980 | 0.950 |
| 405  | 0.971 | 0.930 |
| 400  | 0.967 | 0.920 |
| 390  | 0.954 | 0.890 |
| 380  | 0.928 | 0.830 |
| 370  | 0.877 | 0.720 |
| 365  | 0.842 | 0.650 |
| 350  | 0.657 | 0.350 |
| 334  | 0.250 | 0.030 |
| 320  | 0.012 |       |
| 310  |       |       |
| 300  |       |       |
| 290  |       |       |
| 280  |       |       |
| 270  |       |       |
| 260  |       |       |
| 250  |       |       |
|      |       |       |

| Constants of Dispersion Formula |               |  |  |
|---------------------------------|---------------|--|--|
| <b>B</b> <sub>1</sub>           | 1.84568806    |  |  |
| <b>B</b> <sub>2</sub>           | 0.3390016     |  |  |
| <b>B</b> <sub>3</sub>           | 1.32418921    |  |  |
| <b>C</b> <sub>1</sub>           | 0.00988495571 |  |  |
| C <sub>2</sub>                  | 0.0378097402  |  |  |
| <b>C</b> <sub>3</sub>           | 97.841543     |  |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | 7.79 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.10 · 10 <sup>-8</sup>   |  |
| <b>D</b> <sub>2</sub>   | -2.03 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 7.86 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 8.78 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.215                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 39/33 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temper                                                      | Temperature Coefficients of Refractive Index |     |                                            |        |     |     |
|-------------------------------------------------------------|----------------------------------------------|-----|--------------------------------------------|--------|-----|-----|
| $\Delta$ n <sub>rel</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |                                              |     | Δn <sub>abs</sub> /ΔT[10 <sup>-6</sup> /K] |        |     |     |
| [°C]                                                        | 1060.0                                       | e   | g                                          | 1060.0 | е   | g   |
| -40/ -20                                                    | 6.8                                          | 8.3 | 9.9                                        | 4.4    | 5.9 | 7.3 |
| +20/ +40                                                    | 6.9                                          | 8.7 | 10.4                                       | 5.4    | 7.1 | 8.8 |
| +60/ +80                                                    | 7.1                                          | 8.9 | 10.8                                       | 5.9    | 7.7 | 9.6 |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{s,t}$          | 0.2453 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5045 |  |
| $\mathbf{P}_{d,C}$          | 0.2976 |  |
| $\mathbf{P}_{e,d}$          | 0.2376 |  |
| $\mathbf{P}_{g,F}$          | 0.5670 |  |
| $\mathbf{P}_{i,h}$          | 0.8491 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2425 |  |
| P' <sub>C',s</sub>          | 0.5450 |  |
| P' <sub>d,C'</sub>          | 0.2477 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2348 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5024 |  |
| P' <sub>i,h</sub>           | 0.8392 |  |

| Deviation of Relative              |         |  |
|------------------------------------|---------|--|
| Partial Dispersions ΔP             |         |  |
| from the "Normal Line"             |         |  |
| $\Delta \mathbf{P}_{C,t}$          | 0.0107  |  |
| $\Delta \mathbf{P}_{\mathrm{C,s}}$ | 0.0062  |  |
| $\Delta \mathbf{P}_{F,e}$          | -0.0021 |  |
| $\Delta \mathbf{P}_{g,F}$          | -0.0080 |  |
| $\Delta \mathbf{P}_{i,g}$          | -0.0494 |  |

| Other Properties                               | _     |
|------------------------------------------------|-------|
| $\alpha_{-30/+70^{\circ}C}[10^{-6}/K]$         | 6.0   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]  | 7.4   |
| T <sub>a</sub> [°C]                            | 526   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]    | 534   |
| T <sub>10</sub> <sup>7.6</sup> [°C]            | 629   |
| $\mathbf{c}_{p}[J/(g\cdotK)]$                  | 0.560 |
| $\lambda [W/(m\cdot K)]$                       | 0.870 |
| AT [°C]                                        | 570   |
| ρ [g/cm <sup>3</sup> ]                         | 4.58  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]  | 119   |
| μ                                              | 0.299 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N] | 2.32  |
| HK <sub>0.1/20</sub>                           | 722   |
| HG                                             |       |
| HG-J                                           | 66    |
| В                                              | 1     |
|                                                |       |
| CR                                             | 1     |
| FR                                             | 1     |
| SR                                             | 51.3  |
| AR                                             | 1     |
| PR                                             | 2.2   |
| SR-J                                           | 3     |
| WR-J                                           | 1     |
|                                                |       |
|                                                |       |

#### N-SF1 717296.303

n<sub>d</sub>= 1.71736 n<sub>e</sub>= 1.72308

 $v_{d}$ = 29.62  $v_{e} = 29.39$   $n_F - n_C = 0.024219$  $n_{F'}-n_{C'}=0.024606$ 

| Refract                    | ive Indice | S       |
|----------------------------|------------|---------|
|                            | λ [nm]     |         |
| n <sub>2325.4</sub>        | 2325.4     | 1.67021 |
| <b>n</b> <sub>1970.1</sub> | 1970.1     | 1.67641 |
| n <sub>1529.6</sub>        | 1529.6     | 1.68350 |
| <b>n</b> <sub>1060.0</sub> | 1060.0     | 1.69240 |
| n <sub>t</sub>             | 1014.0     | 1.69358 |
| n <sub>s</sub>             | 852.1      | 1.69889 |
| n <sub>r</sub>             | 706.5      | 1.70651 |
| n <sub>C</sub>             | 656.3      | 1.71035 |
| n <sub>C'</sub>            | 643.8      | 1.71144 |
| n <sub>632.8</sub>         | 632.8      | 1.71247 |
| <b>n</b> <sub>D</sub>      | 589.3      | 1.71715 |
| n <sub>d</sub>             | 587.6      | 1.71736 |
| n <sub>e</sub>             | 546.1      | 1.72308 |
| n <sub>F</sub>             | 486.1      | 1.73457 |
| n <sub>F'</sub>            | 480.0      | 1.73605 |
| n <sub>g</sub>             | 435.8      | 1.74919 |
| n <sub>h</sub>             | 404.7      | 1.76224 |
| n <sub>i</sub>             | 365.0      |         |
| <b>n</b> <sub>334.1</sub>  | 334.1      |         |
| <b>n</b> <sub>312.6</sub>  | 312.6      |         |
| <b>n</b> <sub>296.7</sub>  | 296.7      |         |
| n <sub>280.4</sub>         | 280.4      |         |
| n <sub>248.3</sub>         | 248.3      |         |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |
|--------------------------------------|-----------------------|-----------------------|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                                 | 0.733                 | 0.460                 |
| 2325                                 | 0.804                 | 0.580                 |
| 1970                                 | 0.937                 | 0.850                 |
| 1530                                 | 0.989                 | 0.973                 |
| 1060                                 | 0.998                 | 0.995                 |
| 700                                  | 0.996                 | 0.990                 |
| 660                                  | 0.994                 | 0.986                 |
| 620                                  | 0.995                 | 0.987                 |
| 580                                  | 0.996                 | 0.990                 |
| 546                                  | 0.994                 | 0.986                 |
| 500                                  | 0.987                 | 0.968                 |
| 460                                  | 0.976                 | 0.940                 |
| 436                                  | 0.963                 | 0.910                 |
| 420                                  | 0.946                 | 0.870                 |
| 405                                  | 0.896                 | 0.760                 |
| 400                                  | 0.867                 | 0.700                 |
| 390                                  | 0.770                 | 0.520                 |
| 380                                  | 0.574                 | 0.250                 |
| 370                                  | 0.252                 | 0.030                 |
| 365                                  | 0.096                 |                       |
| 350                                  |                       |                       |
| 334                                  |                       |                       |
| 320                                  |                       |                       |
| 310                                  |                       |                       |
| 300                                  |                       |                       |
| 290                                  |                       |                       |
| 280                                  |                       |                       |
| 270                                  |                       |                       |
| 260                                  |                       |                       |
| 250                                  |                       |                       |
|                                      |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2190 |  |
| P <sub>C,s</sub>            | 0.4733 |  |
| P <sub>d,C</sub>            | 0.2895 |  |
| P <sub>e,d</sub>            | 0.2360 |  |
| $\mathbf{P}_{g,F}$          | 0.6037 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2156 |  |
| P' <sub>C',s</sub>          | 0.5103 |  |
| P' <sub>d,C'</sub>          | 0.2405 |  |
| P' <sub>e,d</sub>           | 0.2323 |  |
| P' <sub>g,F'</sub>          | 0.5340 |  |
| P' <sub>i,h</sub>           |        |  |

|  | 4 |
|--|---|
|  | 4 |
|  |   |
|  |   |
|  | ( |
|  | ( |
|  | • |
|  | · |
|  | • |
|  |   |
|  | , |
|  |   |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |        |  |
|---------------------------------------------------------------------|--------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0068 |  |
| ΔP <sub>C,s</sub>                                                   | 0.0013 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0016 |  |
| $\Delta P_{g,F}$                                                    | 0.0097 |  |
| $\Delta \mathbf{P}_{i,g}$                                           |        |  |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 1.60865158   |  |
| <b>B</b> <sub>2</sub>   | 0.237725916  |  |
| <b>B</b> <sub>3</sub>   | 1.51530653   |  |
| <b>C</b> <sub>1</sub>   | 0.0119654879 |  |
| <b>C</b> <sub>2</sub>   | 0.0590589722 |  |
| <b>C</b> <sub>3</sub>   | 135.521676   |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 41/36 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Color Code                      |       |
|---------------------------------|-------|
| λ <sub>80</sub> /λ <sub>5</sub> | 41/36 |
| $(*=\lambda_{70}/\lambda_5)$    | •     |
|                                 |       |
| Remarks                         |       |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 9.1   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                               | 10.5  |
| T <sub>g</sub> [°C]                                                   | 553   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                  | 554   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 660   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.750 |
| λ [W/(m·K)]                                                           | 1.000 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 3.03  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 90    |
| μ                                                                     | 0.250 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 2.72  |
| HK <sub>0.1/20</sub>                                                  | 540   |
| HG                                                                    | 5     |
|                                                                       |       |
| В                                                                     | 1     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 0     |
| SR                                                                    | 1     |
| AR                                                                    | 1     |
| PR                                                                    | 1     |
|                                                                       |       |
|                                                                       |       |
|                                                                       |       |

| Constants of Dispersion dn/dT |                           |  |  |
|-------------------------------|---------------------------|--|--|
| $\mathbf{D}_0$                | -3.72 · 10 <sup>-6</sup>  |  |  |
| <b>D</b> <sub>1</sub>         | 8.05 · 10 <sup>-9</sup>   |  |  |
| D <sub>2</sub>                | -1.71 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>         | 8.98 · 10 <sup>-7</sup>   |  |  |
| E <sub>1</sub>                | 1.34 · 10 <sup>-9</sup>   |  |  |
| λ <sub>TK</sub> [μm]          | 0.276                     |  |  |

| Temperature Coefficients of Refractive Index |        |     |                                      |        |      |     |
|----------------------------------------------|--------|-----|--------------------------------------|--------|------|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |      |     |
| [°C]                                         | 1060.0 | e   | g                                    | 1060.0 | е    | g   |
| -40/ -20                                     | 0.1    | 1.7 | 3.6                                  | -2.2   | -0.7 | 1.2 |
| +20/ +40                                     | 0.0    | 1.8 | 4.2                                  | -1.5   | 0.3  | 2.7 |
| +60/ +80                                     | 0.0    | 2.1 | 4.8                                  | -1.1   | 0.9  | 3.5 |

#### N-SF2 648338.272

**SCHOTT** 

 $\begin{array}{ll} n_d \! = \! 1.64769 & \nu_d \! = \! 33.82 \\ n_e \! = \! 1.65222 & \nu_e \! = \! 33.56 \end{array}$ 

3.82  $n_F - n_C = 0.019151$ 3.56  $n_{F'} - n_{C'} = 0.019435$ 

| Refractive Indices         |        |         |  |  |  |  |  |
|----------------------------|--------|---------|--|--|--|--|--|
| λ [nm]                     |        |         |  |  |  |  |  |
| <b>n</b> <sub>2325.4</sub> | 2325.4 | 1.60661 |  |  |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.61268 |  |  |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.61944 |  |  |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.62738 |  |  |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.62839 |  |  |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.63282 |  |  |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.63902 |  |  |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.64210 |  |  |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.64298 |  |  |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.64380 |  |  |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.64752 |  |  |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.64769 |  |  |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.65222 |  |  |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.66125 |  |  |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.66241 |  |  |  |  |  |
| n <sub>g</sub>             | 435.8  | 1.67265 |  |  |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.68273 |  |  |  |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |  |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |  |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |  |  |

| Internal Transmittance $\tau_i$ |                       |                       |  |  |
|---------------------------------|-----------------------|-----------------------|--|--|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |  |
| 2500                            | 0.852                 | 0.670                 |  |  |
| 2325                            | 0.896                 | 0.760                 |  |  |
| 1970                            | 0.971                 | 0.930                 |  |  |
| 1530                            | 0.994                 | 0.984                 |  |  |
| 1060                            | 0.999                 | 0.997                 |  |  |
| 700                             | 0.995                 | 0.987                 |  |  |
| 660                             | 0.994                 | 0.984                 |  |  |
| 620                             | 0.994                 | 0.984                 |  |  |
| 580                             | 0.995                 | 0.987                 |  |  |
| 546                             | 0.994                 | 0.986                 |  |  |
| 500                             | 0.990                 | 0.975                 |  |  |
| 460                             | 0.984                 | 0.961                 |  |  |
| 436                             | 0.979                 | 0.949                 |  |  |
| 420                             | 0.970                 | 0.926                 |  |  |
| 405                             | 0.944                 | 0.865                 |  |  |
| 400                             | 0.928                 | 0.830                 |  |  |
| 390                             | 0.857                 | 0.680                 |  |  |
| 380                             | 0.693                 | 0.400                 |  |  |
| 370                             | 0.325                 | 0.060                 |  |  |
| 365                             | 0.132                 | 0.007                 |  |  |
| 350                             | 0.001                 |                       |  |  |
| 334                             |                       |                       |  |  |
| 320                             |                       |                       |  |  |
| 310                             |                       |                       |  |  |
| 300                             |                       |                       |  |  |
| 290                             |                       |                       |  |  |
| 280                             |                       |                       |  |  |
| 270                             |                       |                       |  |  |
| 260                             |                       |                       |  |  |
| 250                             |                       |                       |  |  |
|                                 |                       |                       |  |  |

| Relative Partial Dispersion |        |  |  |  |
|-----------------------------|--------|--|--|--|
| P <sub>s,t</sub>            | 0.2311 |  |  |  |
| P <sub>C,s</sub>            | 0.4848 |  |  |  |
| $\mathbf{P}_{d,C}$          | 0.2918 |  |  |  |
| $\mathbf{P}_{e,d}$          | 0.2364 |  |  |  |
| $\mathbf{P}_{g,F}$          | 0.5950 |  |  |  |
| $\mathbf{P}_{i,h}$          |        |  |  |  |
|                             |        |  |  |  |
| P' <sub>s,t</sub>           | 0.2277 |  |  |  |
| P' <sub>C',s</sub>          | 0.5228 |  |  |  |
| P' <sub>d,C'</sub>          | 0.2425 |  |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2329 |  |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5267 |  |  |  |
| P' <sub>i,h</sub>           |        |  |  |  |
|                             |        |  |  |  |
| Deviation of Relative       |        |  |  |  |
| Dantial Diamondiana AD      |        |  |  |  |

| Partial Dispersions ΔP             |        |  |  |  |  |
|------------------------------------|--------|--|--|--|--|
| from the "Normal Line"             |        |  |  |  |  |
| $\Delta \mathbf{P}_{\mathrm{C,t}}$ | 0.0106 |  |  |  |  |
| ΔP <sub>C,s</sub>                  | 0.0031 |  |  |  |  |
| ΔP <sub>F,e</sub>                  | 0.0012 |  |  |  |  |
| Δ <b>P</b> <sub>g,F</sub> 0.0081   |        |  |  |  |  |
| ΔP <sub>i,g</sub>                  |        |  |  |  |  |
|                                    |        |  |  |  |  |
| Other Dreparties                   |        |  |  |  |  |

| Other Properties                                                         |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 6.7   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 7.8   |
| T <sub>a</sub> [°C]                                                      | 608   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 607   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 731   |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                                          | 0.790 |
| λ [W/(m·K)]                                                              | 1.140 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 2.72  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 86    |
| μ                                                                        | 0.231 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 3.06  |
| HK <sub>0.1/20</sub>                                                     | 539   |
| HG                                                                       |       |
|                                                                          |       |
| В                                                                        | 1     |
|                                                                          |       |
| CR                                                                       | 1     |
| FR                                                                       | 0     |
| SR                                                                       | 1     |
| AR                                                                       | 1.2   |
| PR                                                                       | 1     |
|                                                                          |       |
|                                                                          |       |

| Constants of Dispersion            |              |  |  |
|------------------------------------|--------------|--|--|
| Formula                            |              |  |  |
| <b>B</b> <sub>1</sub>              | 1.47343127   |  |  |
| <b>B</b> <sub>2</sub>              | 0.163681849  |  |  |
| <b>B</b> <sub>3</sub>              | 1.36920899   |  |  |
| <b>C</b> <sub>1</sub>              | 0.0109019098 |  |  |
| <b>C</b> <sub>2</sub> 0.0585683687 |              |  |  |
| C <sub>3</sub>                     | 127.404933   |  |  |

| Constants of Dispersion |                          |  |  |  |
|-------------------------|--------------------------|--|--|--|
| dn/dT                   |                          |  |  |  |
| $\mathbf{D}_0$          | 1.55 · 10 <sup>-6</sup>  |  |  |  |
| <b>D</b> <sub>1</sub>   | -6.39 · 10 <sup>-9</sup> |  |  |  |
| $D_2$                   | 3.05 · 10 <sup>-10</sup> |  |  |  |
| <b>E</b> <sub>0</sub>   | 7.31 · 10 <sup>-7</sup>  |  |  |  |
| <b>E</b> <sub>1</sub>   | 1.53 · 10 <sup>-9</sup>  |  |  |  |
| λ <sub>TK</sub> [μm]    | 0.273                    |  |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 40/36 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

| Temperature Coefficients of Refractive Index |                                            |     |                                      |     |     |     |
|----------------------------------------------|--------------------------------------------|-----|--------------------------------------|-----|-----|-----|
|                                              | Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K] |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     |     |     |
| [°C]                                         | 1060.0 e g 1060.0                          |     |                                      |     | е   | g   |
| -40/ -20                                     | 4.7                                        | 6.0 | 7.4                                  | 2.6 | 3.7 | 5.1 |
| +20/ +40                                     | 2.6                                        | 4.0 | 5.9                                  | 1.1 | 2.6 | 4.4 |
| +60/ +80                                     | 3.2                                        | 4.9 | 7.0                                  | 2.1 | 3.8 | 5.9 |

#### N-SF4 755274.315

**SCHOTT** 

n<sub>d</sub>= 1.75513 n<sub>e</sub>= 1.76164

 $v_d$  = 27.38  $v_e$  = 27.16

 $n_F - n_C = 0.027583$  $n_{F'} - n_{C'} = 0.028044$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
| Retractiv                  |        | S       |  |  |
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.70434 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.71052 |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.71773 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.72717 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.72846 |  |  |
| <b>n</b> <sub>s</sub>      | 852.1  | 1.73432 |  |  |
| n <sub>r</sub>             | 706.5  | 1.74286 |  |  |
| n <sub>C</sub>             | 656.3  | 1.74719 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.74842 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.74959 |  |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.75489 |  |  |
| n <sub>d</sub>             | 587.6  | 1.75513 |  |  |
| n <sub>e</sub>             | 546.1  | 1.76164 |  |  |
| n <sub>F</sub>             | 486.1  | 1.77477 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.77647 |  |  |
| n <sub>g</sub>             | 435.8  | 1.79158 |  |  |
| n <sub>h</sub>             | 404.7  | 1.80668 |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal <sup>*</sup> | Transmitta            | anceτi                |
|-----------------------|-----------------------|-----------------------|
| λ [nm]                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                  | 0.901                 | 0.770                 |
| 2325                  | 0.924                 | 0.820                 |
| 1970                  | 0.976                 | 0.940                 |
| 1530                  | 0.997                 | 0.993                 |
| 1060                  | 0.999                 | 0.997                 |
| 700                   | 0.995                 | 0.988                 |
| 660                   | 0.993                 | 0.983                 |
| 620                   | 0.993                 | 0.983                 |
| 580                   | 0.993                 | 0.983                 |
| 546                   | 0.990                 | 0.976                 |
| 500                   | 0.978                 | 0.945                 |
| 460                   | 0.959                 | 0.900                 |
| 436                   | 0.933                 | 0.840                 |
| 420                   | 0.896                 | 0.760                 |
| 405                   | 0.821                 | 0.610                 |
| 400                   | 0.787                 | 0.550                 |
| 390                   | 0.672                 | 0.370                 |
| 380                   | 0.455                 | 0.140                 |
| 370                   | 0.152                 |                       |
| 365                   | 0.044                 |                       |
| 350                   |                       |                       |
| 334                   |                       |                       |
| 320                   |                       |                       |
| 310                   |                       |                       |
| 300                   |                       |                       |
| 290                   |                       |                       |
| 280                   |                       |                       |
| 270                   |                       |                       |
| 260                   |                       |                       |
| 250                   |                       |                       |
|                       |                       |                       |

| Relative Partial Dispersion |        |  |  |  |
|-----------------------------|--------|--|--|--|
| <b>P</b> <sub>s,t</sub>     | 0.2123 |  |  |  |
| <b>P</b> <sub>C,s</sub>     | 0.4666 |  |  |  |
| $\mathbf{P}_{d,C}$          | 0.2880 |  |  |  |
| $\mathbf{P}_{e,d}$          | 0.2358 |  |  |  |
| $\mathbf{P}_{g,F}$          | 0.6096 |  |  |  |
| $\mathbf{P}_{i,h}$          |        |  |  |  |
|                             |        |  |  |  |
| P' <sub>s,t</sub>           | 0.2088 |  |  |  |
| P' <sub>C',s</sub>          | 0.5030 |  |  |  |
| P' <sub>d,C'</sub>          | 0.2392 |  |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2319 |  |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5390 |  |  |  |
| P' <sub>i,h</sub>           |        |  |  |  |
|                             |        |  |  |  |
| Deviation of Relative       |        |  |  |  |
| Dantial Diamondiana AD      |        |  |  |  |

| <b>11</b> 280.4           | 200.4      |            | 334 |  |
|---------------------------|------------|------------|-----|--|
| <b>n</b> <sub>248.3</sub> | 248.3      |            | 320 |  |
|                           |            |            | 310 |  |
| Constan                   | ts of Disp | ersion     | 300 |  |
| Formula                   |            |            | 290 |  |
| <b>B</b> <sub>1</sub>     | 1.67780282 | 2          | 280 |  |
| <b>B</b> <sub>2</sub>     | 0.28284989 | 93         | 270 |  |
| <b>B</b> <sub>3</sub>     | 1.63539276 | ć          | 260 |  |
| <b>C</b> <sub>1</sub>     | 0.01267934 | <b>1</b> 5 | 250 |  |
| <b>C</b> <sub>2</sub>     | 0.06020384 | 119        |     |  |
| <b>C</b> <sub>3</sub>     | 145.760496 | 6          |     |  |
|                           |            |            |     |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| ΔP <sub>C,t</sub>                                                   | 0.0040  |  |
| ΔP <sub>C,s</sub>                                                   | -0.0002 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0022  |  |
| ΔP <sub>g,F</sub>                                                   | 0.0118  |  |
| $\Delta \mathbf{P}_{i,g}$                                           |         |  |

Other Properties

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   |                           |  |  |
| $\mathbf{D}_0$          | -4.88 · 10 <sup>-6</sup>  |  |  |
| <b>D</b> <sub>1</sub>   | 6.57 · 10 <sup>-9</sup>   |  |  |
| $D_2$                   | -2.72 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 9.67 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 1.48 · 10 <sup>-9</sup>   |  |  |
| λ <sub>TK</sub> [μm]    | 0.282                     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 44/37 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]   | 9.5   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                     | $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$        | 10.9  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                      | T <sub>α</sub> [°C]                            | 570   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                      | T <sub>10</sub> <sup>13.0</sup> [°C]           | 559   |
| λ [W/(m·K)]       0.950         ρ [g/cm³]       3.15         E [10³N/mm²]       90         μ       0.256         K [10⁻⁶ mm²/N]       2.76         HK 0.1/20       520         HG       6         B       1         CR       1         FR       0         SR       1.3         AR       1 | <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]     | 661   |
| ρ [g/cm³] 3.15  E[10³N/mm²] 90  μ 0.256  K[10⁻⁶mm²/N] 2.76  HK <sub>0.1/20</sub> 520  HG 6  B 1  CR 1  FR 0  SR 1.3  AR 1                                                                                                                                                                 | <b>c</b> <sub>p</sub> [J/(g·K)]                | 0.760 |
| E[10 <sup>3</sup> N/mm <sup>2</sup> ] 90 μ 0.256 K[10 <sup>-6</sup> mm <sup>2</sup> /N] 2.76 HK <sub>0.1/20</sub> 520 HG 6  B 1  CR 1 FR 0 SR 1.3 AR 1                                                                                                                                    | λ [W/(m·K)]                                    | 0.950 |
| E[10 <sup>3</sup> N/mm <sup>2</sup> ] 90 μ 0.256 K[10 <sup>-6</sup> mm <sup>2</sup> /N] 2.76 HK <sub>0.1/20</sub> 520 HG 6  B 1  CR 1 FR 0 SR 1.3 AR 1                                                                                                                                    |                                                |       |
| μ 0.256  K[10 <sup>-6</sup> mm <sup>2</sup> /N] 2.76  HK <sub>0.1/20</sub> 520  HG 6  B 1  CR 1  FR 0  SR 1.3  AR 1                                                                                                                                                                       |                                                | 3.15  |
| K[10 <sup>-6</sup> mm²/N]       2.76         HK <sub>0.1/20</sub> 520         HG       6         B       1         CR       1         FR       0         SR       1.3         AR       1                                                                                                  | <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]  | 90    |
| HK <sub>0.1/20</sub> 520 HG 6  B 1  CR 1 FR 0 SR 1.3  AR 1                                                                                                                                                                                                                                | -                                              | 0.256 |
| HG 6  B 1  CR 1  FR 0  SR 1.3  AR 1                                                                                                                                                                                                                                                       | <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N] | 2.76  |
| B 1  CR 1  FR 0  SR 1.3  AR 1                                                                                                                                                                                                                                                             | HK <sub>0.1/20</sub>                           | 520   |
| CR 1 FR 0 SR 1.3 AR 1                                                                                                                                                                                                                                                                     | HG                                             | 6     |
| CR 1 FR 0 SR 1.3 AR 1                                                                                                                                                                                                                                                                     |                                                |       |
| FR 0 SR 1.3 AR 1                                                                                                                                                                                                                                                                          | В                                              | 1     |
| FR 0 SR 1.3 AR 1                                                                                                                                                                                                                                                                          |                                                |       |
| SR         1.3           AR         1                                                                                                                                                                                                                                                     | CR                                             | 1     |
| <b>AR</b> 1                                                                                                                                                                                                                                                                               | FR                                             | 0     |
|                                                                                                                                                                                                                                                                                           | SR                                             | 1.3   |
| PR 1                                                                                                                                                                                                                                                                                      | AR                                             | 1     |
|                                                                                                                                                                                                                                                                                           | PR                                             | 1     |
|                                                                                                                                                                                                                                                                                           |                                                |       |
|                                                                                                                                                                                                                                                                                           |                                                |       |
|                                                                                                                                                                                                                                                                                           |                                                |       |

| Temper                                                      | Temperature Coefficients of Refractive Index |     |                                            |        |      |     |
|-------------------------------------------------------------|----------------------------------------------|-----|--------------------------------------------|--------|------|-----|
| $\Delta$ n <sub>rel</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |                                              |     | Δn <sub>abs</sub> /ΔT[10 <sup>-6</sup> /K] |        |      |     |
| [°C]                                                        | 1060.0                                       | e   | g                                          | 1060.0 | е    | g   |
| -40/ -20                                                    | -0.5                                         | 1.2 | 3.5                                        | -2.9   | -1.2 | 1.0 |
| +20/ +40                                                    | -0.7                                         | 1.4 | 4.2                                        | -2.2   | -0.1 | 2.6 |
| +60/ +80                                                    | -0.8                                         | 1.6 | 4.7                                        | -1.9   | 0.4  | 3.5 |

#### N-SF5 673323.286

n<sub>d</sub>= 1.67271  $v_{d}$ = 32.25 n<sub>e</sub>= 1.67763

 $v_e = 32.00$ 

 $n_F - n_C = 0.020858$  $n_{F'}-n_{C'}=0.021177$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.62935 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.63554 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.64249 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.65080 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.65188 |  |  |
| <b>n</b> <sub>s</sub>      | 852.1  | 1.65661 |  |  |
| n <sub>r</sub>             | 706.5  | 1.66330 |  |  |
| n <sub>C</sub>             | 656.3  | 1.66664 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.66759 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.66848 |  |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.67253 |  |  |
| n <sub>d</sub>             | 587.6  | 1.67271 |  |  |
| n <sub>e</sub>             | 546.1  | 1.67763 |  |  |
| n <sub>F</sub>             | 486.1  | 1.68750 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.68876 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.69998 |  |  |
| n <sub>h</sub>             | 404.7  | 1.71106 |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| <b>n</b> <sub>248.3</sub>  | 248.3  |         |  |  |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.758                 | 0.500                 |
| 2325     | 0.831                 | 0.630                 |
| 1970     | 0.950                 | 0.880                 |
| 1530     | 0.990                 | 0.975                 |
| 1060     | 0.998                 | 0.994                 |
| 700      | 0.996                 | 0.989                 |
| 660      | 0.995                 | 0.987                 |
| 620      | 0.995                 | 0.988                 |
| 580      | 0.996                 | 0.991                 |
| 546      | 0.995                 | 0.988                 |
| 500      | 0.990                 | 0.976                 |
| 460      | 0.982                 | 0.956                 |
| 436      | 0.973                 | 0.935                 |
| 420      | 0.963                 | 0.910                 |
| 405      | 0.928                 | 0.830                 |
| 400      | 0.905                 | 0.780                 |
| 390      | 0.826                 | 0.620                 |
| 380      | 0.642                 | 0.330                 |
| 370      | 0.276                 | 0.040                 |
| 365      | 0.116                 |                       |
| 350      |                       |                       |
| 334      |                       |                       |
| 320      |                       |                       |
| 310      |                       |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |

| Relative Parti              | al Dispersion |
|-----------------------------|---------------|
| $\mathbf{P}_{s,t}$          | 0.2270        |
| <b>P</b> <sub>C,s</sub>     | 0.4807        |
| $\mathbf{P}_{d,C}$          | 0.2910        |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2362        |
| $\mathbf{P}_{g,F}$          | 0.5984        |
| $\mathbf{P}_{i,h}$          |               |
|                             |               |
| P' <sub>s,t</sub>           | 0.2236        |
| P' <sub>C',s</sub>          | 0.5184        |
| P' <sub>d,C'</sub>          | 0.2418        |
| P' <sub>e,d</sub>           | 0.2327        |
| P' <sub>g,F'</sub>          | 0.5295        |
| P' <sub>i,h</sub>           |               |
|                             |               |

|  | 4 |
|--|---|
|  | 7 |
|  |   |
|  | ( |
|  | C |
|  | 1 |
|  | 7 |
|  | ٦ |
|  | 7 |
|  | 7 |
|  | ) |
|  |   |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |        |  |
|---------------------------------------------------------------------|--------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0097 |  |
| ΔP <sub>C,s</sub>                                                   | 0.0027 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0014 |  |
| $\Delta P_{g,F}$                                                    | 0.0088 |  |
| $\Delta \mathbf{P}_{i,g}$                                           |        |  |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 1.52481889   |  |
| <b>B</b> <sub>2</sub>   | 0.187085527  |  |
| <b>B</b> <sub>3</sub>   | 1.42729015   |  |
| <b>C</b> <sub>1</sub>   | 0.011254756  |  |
| <b>C</b> <sub>2</sub>   | 0.0588995392 |  |
| <b>C</b> <sub>3</sub>   | 129.141675   |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 40/36 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

|  | Color Code                   |
|--|------------------------------|
|  | $\lambda_{80}/\lambda_{5}$   |
|  | $(*=\lambda_{70}/\lambda_5)$ |
|  |                              |
|  | Remarks                      |
|  |                              |
|  |                              |

| Other Properties                                                      |       |  |
|-----------------------------------------------------------------------|-------|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 7.9   |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                         | 9.2   |  |
| T <sub>g</sub> [°C]                                                   | 578   |  |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 576   |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                            | 693   |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.770 |  |
| λ [W/(m·K)]                                                           | 1.000 |  |
|                                                                       |       |  |
| ρ [g/cm <sup>3</sup> ]                                                | 2.86  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 87    |  |
| μ                                                                     | 0.237 |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 2.99  |  |
| HK <sub>0.1/20</sub>                                                  | 620   |  |
| HG                                                                    | 3     |  |
|                                                                       |       |  |
| В                                                                     | 1     |  |
|                                                                       |       |  |
| CR                                                                    | 1     |  |
| FR                                                                    | 0     |  |
| SR                                                                    | 1     |  |
| AR                                                                    | 1     |  |
| PR                                                                    | 1     |  |
|                                                                       |       |  |
|                                                                       |       |  |
|                                                                       |       |  |

| Constants of Dispersion dn/dT |                           |
|-------------------------------|---------------------------|
| $\mathbf{D}_0$                | -2.51 · 10 <sup>-7</sup>  |
| <b>D</b> <sub>1</sub>         | 1.07 · 10 <sup>-8</sup>   |
| D <sub>2</sub>                | -2.40 · 10 <sup>-11</sup> |
| <b>E</b> <sub>0</sub>         | 7.85 · 10 <sup>-7</sup>   |
| E <sub>1</sub>                | 1.15 · 10 <sup>-9</sup>   |
| λ <sub>TK</sub> [μm]          | 0.278                     |

| Temperature Coefficients of Refractive Index |        |                  |                                      |        |     |     |
|----------------------------------------------|--------|------------------|--------------------------------------|--------|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]      |     |     |
| [°C]                                         | 1060.0 | e                | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 1.8    | 3.1              | 4.8                                  | -0.5   | 0.8 | 2.5 |
| +20/ +40                                     | 1.8    | 3.4              | 5.5                                  | 0.4    | 2.0 | 4.0 |
| +60/ +80                                     | 1.9    | 3.7              | 6.0                                  | 0.8    | 2.5 | 4.8 |

#### N-SF6 805254.337

**SCHOTT** 

 $n_d$ = 1.80518  $v_d$ = 25.36  $n_e$ = 1.81266  $v_e$ = 25.16

 $6 n_F - n_C = 0.031750$   $6 n_{F'} - n_{C'} = 0.032304$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
| λ [nm]                     |        |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.74895 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.75541 |  |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.76307 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.77341 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.77486 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.78144 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.79114 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.79608 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.79749 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.79883 |  |  |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.80491 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.80518 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.81266 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.82783 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.82980 |  |  |  |
| $\mathbf{n}_{g}$           | 435.8  | 1.84738 |  |  |  |
| $\mathbf{n}_{h}$           | 404.7  | 1.86506 |  |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal Transmittance |                       | anceτ <sub>i</sub>    |
|------------------------|-----------------------|-----------------------|
| λ [nm]                 | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                   | 0.776                 | 0.530                 |
| 2325                   | 0.810                 | 0.590                 |
| 1970                   | 0.941                 | 0.860                 |
| 1530                   | 0.991                 | 0.978                 |
| 1060                   | 0.998                 | 0.996                 |
| 700                    | 0.993                 | 0.983                 |
| 660                    | 0.991                 | 0.977                 |
| 620                    | 0.991                 | 0.978                 |
| 580                    | 0.992                 | 0.980                 |
| 546                    | 0.989                 | 0.972                 |
| 500                    | 0.977                 | 0.943                 |
| 460                    | 0.961                 | 0.905                 |
| 436                    | 0.946                 | 0.870                 |
| 420                    | 0.919                 | 0.810                 |
| 405                    | 0.857                 | 0.680                 |
| 400                    | 0.821                 | 0.610                 |
| 390                    | 0.700                 | 0.410                 |
| 380                    | 0.480                 | 0.160                 |
| 370                    | 0.158                 | 0.010                 |
| 365                    | 0.040                 |                       |
| 350                    |                       |                       |
| 334                    |                       |                       |
| 320                    |                       |                       |
| 310                    |                       |                       |
| 300                    |                       |                       |
| 290                    |                       |                       |
| 280                    |                       |                       |
| 270                    |                       |                       |
| 260                    |                       |                       |
| 250                    |                       |                       |
|                        |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2074 |  |
| P <sub>C,s</sub>            | 0.4610 |  |
| $\mathbf{P}_{d,C}$          | 0.2867 |  |
| <b>P</b> <sub>e,d</sub>     | 0.2356 |  |
| $\mathbf{P}_{g,F}$          | 0.6158 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2039 |  |
| P' <sub>C',s</sub>          | 0.4969 |  |
| P' <sub>d,C'</sub>          | 0.2380 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2315 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5443 |  |
| P' <sub>i,h</sub>           |        |  |
| <u> </u>                    |        |  |
| Doviation of Polativo       |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |
|---------------------------------------------------------------------|---------|--|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0031  |  |  |
| ΔP <sub>C,s</sub>                                                   | -0.0010 |  |  |
| ΔP <sub>F,e</sub>                                                   | 0.0027  |  |  |
| $\Delta P_{g,F}$                                                    | 0.0146  |  |  |
| $\Delta \mathbf{P}_{i,g}$                                           |         |  |  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 9.0   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                         | 10.3  |
| T <sub>g</sub> [°C]                                                   | 589   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 590   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                            | 683   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.690 |
| λ [W/(m·K)]                                                           | 0.960 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 3.37  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 93    |
| μ                                                                     | 0.262 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 2.82  |
| HK <sub>0.1/20</sub>                                                  | 550   |
| HG                                                                    | 4     |
|                                                                       |       |
| В                                                                     | 0     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 0     |
| SR                                                                    | 2     |
| AR                                                                    | 1     |
| PR                                                                    | 1     |
|                                                                       |       |
|                                                                       |       |
|                                                                       |       |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 1.77931763   |  |
| <b>B</b> <sub>2</sub>   | 0.338149866  |  |
| <b>B</b> <sub>3</sub>   | 2.08734474   |  |
| <b>C</b> <sub>1</sub>   | 0.0133714182 |  |
| <b>C</b> <sub>2</sub>   | 0.0617533621 |  |
| <b>C</b> <sub>3</sub>   | 174.01759    |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | -4.93 · 10 <sup>-6</sup>  |  |
| <b>D</b> <sub>1</sub>   | 7.02 · 10 <sup>-9</sup>   |  |
| <b>D</b> <sub>2</sub>   | -2.40 · 10 <sup>-11</sup> |  |
| E <sub>0</sub>          | 9.84 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 1.54 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]    | 0.29                      |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 45/37 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Temperature Coefficients of Refractive Index                |        |     |                  |                                      |      |     |
|-------------------------------------------------------------|--------|-----|------------------|--------------------------------------|------|-----|
| $\Delta$ n <sub>rel</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |        |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]    |     |
| [°C]                                                        | 1060.0 | e   | g                | 1060.0                               | e    | g   |
| -40/ -20                                                    | -0.7   | 1.2 | 3.9              | -3.0                                 | -1.2 | 1.3 |
| +20/ +40                                                    | -0.8   | 1.5 | 4.8              | -2.3                                 | 0.0  | 3.1 |
| +60/ +80                                                    | -0.8   | 1.8 | 5.4              | -2.0                                 | 0.6  | 4.1 |

#### N-SF6HT 805254.337

**SCHOTT** 

n<sub>d</sub>= 1.80518 n<sub>e</sub>= 1.81266  $v_d$  = 25.36  $v_e$  = 25.16

 $n_F - n_C = 0.031750$  $n_{F'} - n_{C'} = 0.032304$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.74895 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.75541 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.76307 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.77341 |  |
| n <sub>t</sub>             | 1014.0 | 1.77486 |  |
| n <sub>s</sub>             | 852.1  | 1.78144 |  |
| n <sub>r</sub>             | 706.5  | 1.79114 |  |
| n <sub>C</sub>             | 656.3  | 1.79608 |  |
| n <sub>C'</sub>            | 643.8  | 1.79749 |  |
| n <sub>632.8</sub>         | 632.8  | 1.79883 |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.80491 |  |
| n <sub>d</sub>             | 587.6  | 1.80518 |  |
| n <sub>e</sub>             | 546.1  | 1.81266 |  |
| n <sub>F</sub>             | 486.1  | 1.82783 |  |
| n <sub>F'</sub>            | 480.0  | 1.82980 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.84738 |  |
| n <sub>h</sub>             | 404.7  | 1.86506 |  |
| n <sub>i</sub>             | 365.0  |         |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |
|--------------------------------------|-----------------------|-----------------------|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                                 | 0.793                 | 0.560                 |
| 2325                                 | 0.826                 | 0.620                 |
| 1970                                 | 0.946                 | 0.870                 |
| 1530                                 | 0.992                 | 0.980                 |
| 1060                                 | 0.999                 | 0.997                 |
| 700                                  | 0.994                 | 0.984                 |
| 660                                  | 0.991                 | 0.978                 |
| 620                                  | 0.992                 | 0.979                 |
| 580                                  | 0.992                 | 0.981                 |
| 546                                  | 0.990                 | 0.975                 |
| 500                                  | 0.980                 | 0.950                 |
| 460                                  | 0.966                 | 0.917                 |
| 436                                  | 0.954                 | 0.890                 |
| 420                                  | 0.937                 | 0.850                 |
| 405                                  | 0.901                 | 0.770                 |
| 400                                  | 0.877                 | 0.720                 |
| 390                                  | 0.793                 | 0.560                 |
| 380                                  | 0.592                 | 0.270                 |
| 370                                  | 0.170                 | 0.020                 |
| 365                                  | 0.040                 |                       |
| 350                                  |                       |                       |
| 334                                  |                       |                       |
| 320                                  |                       |                       |
| 310                                  |                       |                       |
| 300                                  |                       |                       |
| 290                                  |                       |                       |
| 280                                  |                       |                       |
| 270                                  |                       |                       |
| 260                                  |                       |                       |
| 250                                  |                       |                       |
|                                      |                       |                       |

|  | Р                     |
|--|-----------------------|
|  | Р                     |
|  | Р                     |
|  | Р                     |
|  | Р                     |
|  |                       |
|  | Р                     |
|  | Р                     |
|  | Р                     |
|  | Р                     |
|  | Р                     |
|  | Р                     |
|  |                       |
|  | D                     |
|  | Р                     |
|  |                       |
|  | fı                    |
|  | fı<br>∆               |
|  | fı<br>△               |
|  | fi<br>Δ<br>Δ          |
|  | Δ<br>Δ<br>Δ           |
|  | ^                     |
|  | Δ                     |
|  | Δ                     |
|  | Δ                     |
|  | Δ<br>Δ<br>α           |
|  | Δ<br>Δ<br>α<br>α      |
|  | Δ<br>Δ<br>α<br>α<br>τ |
|  | Δ<br>Δ<br>α<br>α      |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2074 |  |
| P <sub>C,s</sub>            | 0.4610 |  |
| <b>P</b> <sub>d,C</sub>     | 0.2867 |  |
| P <sub>e,d</sub>            | 0.2356 |  |
| $\mathbf{P}_{g,F}$          | 0.6158 |  |
| P <sub>i,h</sub>            |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2039 |  |
| P' <sub>C',s</sub>          | 0.4969 |  |
| P' <sub>d,C'</sub>          | 0.2380 |  |
| P' <sub>e,d</sub>           | 0.2315 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5443 |  |
| P' <sub>i,h</sub>           |        |  |
|                             |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0031  |  |
| ΔP <sub>C,s</sub>                                                   | -0.0010 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0027  |  |
| $\Delta P_{g,F}$                                                    | 0.0146  |  |
| $\Delta P_{i,g}$                                                    |         |  |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 9.0   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 10.3  |
| T <sub>a</sub> [°C]                                                       | 589   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                      | 590   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 683   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.690 |
| λ [W/(m·K)]                                                               | 0.960 |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.37  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 93    |
| μ                                                                         | 0.262 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.82  |
| HK <sub>0.1/20</sub>                                                      | 550   |
| HG                                                                        | 4     |
|                                                                           |       |
| В                                                                         | 0     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 0     |
| SR                                                                        | 2     |
| AR                                                                        | 1     |
| PR                                                                        | 1     |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 1.77931763   |  |
| <b>B</b> <sub>2</sub>   | 0.338149866  |  |
| <b>B</b> <sub>3</sub>   | 2.08734474   |  |
| <b>C</b> <sub>1</sub>   | 0.0133714182 |  |
| C <sub>2</sub>          | 0.0617533621 |  |
| <b>C</b> <sub>3</sub>   | 174.01759    |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| $\mathbf{D}_0$                | -4.93 · 10 <sup>-6</sup>  |  |
| <b>D</b> <sub>1</sub>         | 7.02 · 10 <sup>-9</sup>   |  |
| $D_2$                         | -2.40 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 9.84 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 1.54 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]          | 0.29                      |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 44/37 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Temperature Coefficients of Refractive Index |        |     |                  |                                      |      |     |
|----------------------------------------------|--------|-----|------------------|--------------------------------------|------|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]    |     |
| [°C]                                         | 1060.0 | e   | g                | 1060.0                               | e    | g   |
| -40/ -20                                     | -0.7   | 1.2 | 3.9              | -3.0                                 | -1.2 | 1.3 |
| +20/ +40                                     | -0.8   | 1.5 | 4.8              | -2.3                                 | 0.0  | 3.1 |
| +60/ +80                                     | -0.8   | 1.8 | 5.4              | -2.0                                 | 0.6  | 4.1 |

#### N-SF8 689313.290

 $n_d = 1.68894$  $v_{d}$  = 31.31 n<sub>e</sub>= 1.69413

 $v_e$  = 31.06

 $n_F - n_C = 0.022005$  $n_{F'}-n_{C'}=0.022346$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
| 110110101                  | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.64448 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.65060 |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.65753 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.66600 |  |
| n <sub>t</sub>             | 1014.0 | 1.66711 |  |
| n <sub>s</sub>             | 852.1  | 1.67203 |  |
| n <sub>r</sub>             | 706.5  | 1.67904 |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.68254 |  |
| n <sub>C'</sub>            | 643.8  | 1.68354 |  |
| n <sub>632.8</sub>         | 632.8  | 1.68448 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.68874 |  |
| n <sub>d</sub>             | 587.6  | 1.68894 |  |
| n <sub>e</sub>             | 546.1  | 1.69413 |  |
| n <sub>F</sub>             | 486.1  | 1.70455 |  |
| n <sub>F'</sub>            | 480.0  | 1.70589 |  |
| n <sub>g</sub>             | 435.8  | 1.71775 |  |
| n <sub>h</sub>             | 404.7  | 1.72948 |  |
| n <sub>i</sub>             | 365.0  |         |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |  |
|--------------------------------------|-----------------------|-----------------------|--|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |
| 2500                                 | 0.746                 | 0.480                 |  |
| 2325                                 | 0.815                 | 0.600                 |  |
| 1970                                 | 0.946                 | 0.870                 |  |
| 1530                                 | 0.988                 | 0.970                 |  |
| 1060                                 | 0.997                 | 0.993                 |  |
| 700                                  | 0.995                 | 0.987                 |  |
| 660                                  | 0.993                 | 0.983                 |  |
| 620                                  | 0.993                 | 0.983                 |  |
| 580                                  | 0.994                 | 0.986                 |  |
| 546                                  | 0.993                 | 0.983                 |  |
| 500                                  | 0.985                 | 0.963                 |  |
| 460                                  | 0.976                 | 0.940                 |  |
| 436                                  | 0.965                 | 0.914                 |  |
| 420                                  | 0.950                 | 0.880                 |  |
| 405                                  | 0.919                 | 0.810                 |  |
| 400                                  | 0.901                 | 0.770                 |  |
| 390                                  | 0.831                 | 0.630                 |  |
| 380                                  | 0.672                 | 0.370                 |  |
| 370                                  | 0.345                 | 0.070                 |  |
| 365                                  | 0.158                 |                       |  |
| 350                                  |                       |                       |  |
| 334                                  |                       |                       |  |
| 320                                  |                       |                       |  |
| 310                                  |                       |                       |  |
| 300                                  |                       |                       |  |
| 290                                  |                       |                       |  |
| 280                                  |                       |                       |  |
| 270                                  |                       |                       |  |
| 260                                  |                       |                       |  |
| 250                                  |                       |                       |  |
|                                      |                       |                       |  |

| P <sub>s,t</sub> 0.2236         P <sub>C,s</sub> 0.4778         P <sub>d,C</sub> 0.2905         P <sub>e,d</sub> 0.2362         P <sub>g,F</sub> 0.5999         P <sub>i,h</sub> 0.2202 | Relative Partial Dispersion |        |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|--|
| P <sub>d,C</sub> 0.2905         P <sub>e,d</sub> 0.2362         P <sub>g,F</sub> 0.5999         P <sub>i,h</sub> 0.5999                                                                 | P <sub>s,t</sub>            | 0.2236 |  |
| P <sub>e,d</sub> 0.2362         P <sub>g,F</sub> 0.5999         P <sub>i,h</sub> 0.5999                                                                                                 | <b>P</b> <sub>C,s</sub>     | 0.4778 |  |
| P <sub>g,F</sub> 0.5999                                                                                                                                                                 | $\mathbf{P}_{d,C}$          | 0.2905 |  |
| P <sub>i,h</sub>                                                                                                                                                                        | $\mathbf{P}_{\mathrm{e,d}}$ | 0.2362 |  |
| P <sub>i,h</sub>                                                                                                                                                                        | $\mathbf{P}_{g,F}$          | 0.5999 |  |
| P' 0.2202                                                                                                                                                                               |                             |        |  |
| P' 0.2202                                                                                                                                                                               |                             |        |  |
| - S,l                                                                                                                                                                                   | P' <sub>s,t</sub>           | 0.2202 |  |
| <b>P'</b> <sub>C',s</sub> 0.5152                                                                                                                                                        | P' <sub>C',s</sub>          | 0.5152 |  |
| <b>P'</b> <sub>d,C'</sub> 0.2413                                                                                                                                                        | P' <sub>d,C'</sub>          | 0.2413 |  |
| <b>P'</b> <sub>e,d</sub> 0.2326                                                                                                                                                         | <b>P'</b> <sub>e,d</sub>    | 0.2326 |  |
| <b>P'</b> <sub>g,F'</sub> 0.5308                                                                                                                                                        | P' <sub>g,F'</sub>          | 0.5308 |  |
| P' <sub>i,h</sub>                                                                                                                                                                       |                             |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |        |  |
|---------------------------------------------------------------------|--------|--|
| ΔP <sub>C,t</sub>                                                   | 0.0080 |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0019 |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | 0.0014 |  |
| $\Delta P_{g,F}$                                                    | 0.0087 |  |
| $\Delta \mathbf{P}_{i,g}$                                           |        |  |

| Other Properties                                                         |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 8.6   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 9.9   |
| T <sub>g</sub> [°C]                                                      | 567   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 564   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 678   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                          | 0.770 |
| λ [W/(m·K)]                                                              | 1.030 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 2.90  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 88    |
| μ                                                                        | 0.245 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 2.95  |
| HK <sub>0.1/20</sub>                                                     | 600   |
| HG                                                                       | 4     |
|                                                                          |       |
| В                                                                        | 1     |
|                                                                          |       |
| CR                                                                       | 1     |
| FR                                                                       | 0     |
| SR                                                                       | 1     |
| AR                                                                       | 1     |
| PR                                                                       | 1     |
|                                                                          |       |
|                                                                          |       |

| Constants of Dispersion |              |  |  |
|-------------------------|--------------|--|--|
| Formula                 |              |  |  |
| <b>B</b> <sub>1</sub>   | 1.55075812   |  |  |
| <b>B</b> <sub>2</sub>   | 0.209816918  |  |  |
| <b>B</b> <sub>3</sub>   | 1.46205491   |  |  |
| <b>C</b> <sub>1</sub>   | 0.0114338344 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0582725652 |  |  |
| <b>C</b> <sub>3</sub>   | 133.24165    |  |  |

| <b>Constants of Dispersion</b> |                           |  |
|--------------------------------|---------------------------|--|
| dn/dT                          |                           |  |
| $\mathbf{D}_0$                 | -1.94 · 10 <sup>-6</sup>  |  |
| <b>D</b> <sub>1</sub>          | 9.70 · 10 <sup>-9</sup>   |  |
| $D_2$                          | -2.34 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>          | 8.32 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>          | 1.15 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]           | 0.276                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 41/36 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                               | e   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 1.0                                  | 2.4 | 4.2                                  | -1.3   | 0.1 | 1.8 |
| +20/ +40                                     | 0.9                                  | 2.6 | 4.8                                  | -0.5   | 1.2 | 3.3 |
| +60/ +80                                     | 1.0                                  | 2.9 | 5.3                                  | -0.1   | 1.7 | 4.1 |

#### **N-SF10** 728285.305

n<sub>d</sub>= 1.72828  $v_{d}$  = 28.53 n<sub>e</sub>= 1.73430

 $v_e$  = 28.31

 $n_F - n_C = 0.025524$  $n_{F'}-n_{C'}=0.025941$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.67981 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.68597 |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.69308 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.70217 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.70340 |  |  |
| n <sub>s</sub>             | 852.1  | 1.70891 |  |  |
| n <sub>r</sub>             | 706.5  | 1.71688 |  |  |
| n <sub>C</sub>             | 656.3  | 1.72091 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.72206 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.72314 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.72806 |  |  |
| n <sub>d</sub>             | 587.6  | 1.72828 |  |  |
| n <sub>e</sub>             | 546.1  | 1.73430 |  |  |
| n <sub>F</sub>             | 486.1  | 1.74643 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.74800 |  |  |
| n <sub>g</sub>             | 435.8  | 1.76191 |  |  |
| n <sub>h</sub>             | 404.7  | 1.77578 |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.847                 | 0.660                 |
| 2325     | 0.896                 | 0.760                 |
| 1970     | 0.971                 | 0.930                 |
| 1530     | 0.994                 | 0.985                 |
| 1060     | 0.996                 | 0.990                 |
| 700      | 0.993                 | 0.983                 |
| 660      | 0.990                 | 0.976                 |
| 620      | 0.991                 | 0.977                 |
| 580      | 0.991                 | 0.978                 |
| 546      | 0.989                 | 0.973                 |
| 500      | 0.978                 | 0.945                 |
| 460      | 0.963                 | 0.910                 |
| 436      | 0.946                 | 0.870                 |
| 420      | 0.924                 | 0.820                 |
| 405      | 0.867                 | 0.700                 |
| 400      | 0.837                 | 0.640                 |
| 390      | 0.727                 | 0.450                 |
| 380      | 0.525                 | 0.200                 |
| 370      | 0.176                 |                       |
| 365      | 0.058                 |                       |
| 350      |                       |                       |
| 334      |                       |                       |
| 320      |                       |                       |
| 310      |                       |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |

| Relative Partial Dispersion |        |  |  |  |
|-----------------------------|--------|--|--|--|
| $\mathbf{P}_{s,t}$          | 0.2160 |  |  |  |
| <b>P</b> <sub>C,s</sub>     | 0.4701 |  |  |  |
| $\mathbf{P}_{d,C}$          | 0.2888 |  |  |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2359 |  |  |  |
| $\mathbf{P}_{g,F}$          | 0.6066 |  |  |  |
| $\mathbf{P}_{i,h}$          |        |  |  |  |
|                             |        |  |  |  |
| P' <sub>s,t</sub>           | 0.2125 |  |  |  |
| P' <sub>C',s</sub>          | 0.5068 |  |  |  |
| P' <sub>d,C'</sub>          | 0.2398 |  |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2321 |  |  |  |
| P' <sub>g,F'</sub>          | 0.5365 |  |  |  |
| P' <sub>i,h</sub>           |        |  |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |        |  |  |  |
|---------------------------------------------------------------------|--------|--|--|--|
| $\Delta P_{C,t}$                                                    | 0.0057 |  |  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0007 |  |  |  |
| $\Delta P_{F,e}$                                                    | 0.0019 |  |  |  |
| $\Delta P_{g,F}$                                                    | 0.0108 |  |  |  |
| $\Delta \mathbf{P}_{i,g}$                                           |        |  |  |  |

| Other Properties                                                         |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 9.4   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 10.8  |
| T <sub>a</sub> [°C]                                                      | 559   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                     | 549   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 652   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                           | 0.740 |
| $\lambda [W/(m\cdot K)]$                                                 | 0.960 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 3.05  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 87    |
| μ                                                                        | 0.252 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 2.92  |
| <b>HK</b> <sub>0.1/20</sub>                                              | 540   |
| HG                                                                       | 5     |
|                                                                          |       |
| В                                                                        | 1     |
|                                                                          |       |
| CR                                                                       | 1     |
| FR                                                                       | 0     |
| SR                                                                       | 1     |
| AR                                                                       | 1     |
| PR                                                                       | 1     |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |

| Constants of Dispersion Formula |              |  |  |  |
|---------------------------------|--------------|--|--|--|
| B <sub>1</sub>                  | 1.62153902   |  |  |  |
| <b>B</b> <sub>2</sub>           | 0.256287842  |  |  |  |
| <b>B</b> <sub>3</sub>           | 1.64447552   |  |  |  |
| <b>C</b> <sub>1</sub>           | 0.0122241457 |  |  |  |
| C <sub>2</sub>                  | 0.0595736775 |  |  |  |
| C <sub>2</sub>                  | 147.468793   |  |  |  |

| Constants of Dispersion |                           |  |  |  |
|-------------------------|---------------------------|--|--|--|
| dn/dT                   |                           |  |  |  |
| <b>D</b> <sub>0</sub>   | -4.68 · 10 <sup>-6</sup>  |  |  |  |
| <b>D</b> <sub>1</sub>   | 7.41 · 10 <sup>-9</sup>   |  |  |  |
| D <sub>2</sub>          | -1.89 · 10 <sup>-11</sup> |  |  |  |
| <b>E</b> <sub>0</sub>   | 9.49 · 10 <sup>-7</sup>   |  |  |  |
| <b>E</b> <sub>1</sub>   | 1.42 · 10 <sup>-9</sup>   |  |  |  |
| λ <sub>TK</sub> [μm]    | 0.279                     |  |  |  |

| Color Code                   |       |  |  |
|------------------------------|-------|--|--|
| $\lambda_{80}/\lambda_{5}$   | 42/36 |  |  |
| $(*=\lambda_{70}/\lambda_5)$ |       |  |  |

| Temperature Coefficients of Refractive Index |                   |                          |     |                  |                                      |     |
|----------------------------------------------|-------------------|--------------------------|-----|------------------|--------------------------------------|-----|
|                                              | Δn <sub>rel</sub> | /ΔT[10 <sup>-6</sup> /K] |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]                                         | 1060.0            | e                        | g   | 1060.0           | е                                    | g   |
| -40/ -20                                     | -0.4              | 1.3                      | 3.4 | -2.7             | -1.1                                 | 1.0 |
| +20/ +40                                     | -0.5              | 1.5                      | 4.1 | -2.0             | -0.1                                 | 2.5 |
| +60/ +80                                     | -0.5              | 1.7                      | 4.6 | -1.7             | 0.5                                  | 3.4 |

#### N-SF11 785257.322

**SCHOTT** 

 $n_d$ = 1.78472  $v_d$ = 25.68  $n_e$ = 1.79192  $v_e$ = 25.47

 $v_d$ = 25.68  $n_F - n_C$  = 0.030558  $v_e$ = 25.47  $n_{F'} - n_{C'}$ = 0.031088

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
|                            |        |         |  |  |  |
|                            | λ [nm] |         |  |  |  |
| <b>n</b> <sub>2325.4</sub> | 2325.4 | 1.72937 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.73600 |  |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.74377 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.75401 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.75542 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.76182 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.77119 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.77596 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.77732 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.77860 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.78446 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.78472 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.79192 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.80651 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.80841 |  |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.82533 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.84235 |  |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |  |
| n <sub>334.1</sub>         | 334.1  |         |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal Transmittance $\tau_i$ |                       |                       |  |
|---------------------------------|-----------------------|-----------------------|--|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |
| 2500                            | 0.826                 | 0.620                 |  |
| 2325                            | 0.867                 | 0.700                 |  |
| 1970                            | 0.965                 | 0.915                 |  |
| 1530                            | 0.994                 | 0.985                 |  |
| 1060                            | 0.999                 | 0.998                 |  |
| 700                             | 0.994                 | 0.985                 |  |
| 660                             | 0.992                 | 0.981                 |  |
| 620                             | 0.992                 | 0.981                 |  |
| 580                             | 0.994                 | 0.984                 |  |
| 546                             | 0.991                 | 0.978                 |  |
| 500                             | 0.981                 | 0.953                 |  |
| 460                             | 0.967                 | 0.920                 |  |
| 436                             | 0.946                 | 0.870                 |  |
| 420                             | 0.919                 | 0.810                 |  |
| 405                             | 0.852                 | 0.670                 |  |
| 400                             | 0.815                 | 0.600                 |  |
| 390                             | 0.686                 | 0.390                 |  |
| 380                             | 0.428                 | 0.120                 |  |
| 370                             | 0.083                 | 0.002                 |  |
| 365                             |                       |                       |  |
| 350                             |                       |                       |  |
| 334                             |                       |                       |  |
| 320                             |                       |                       |  |
| 310                             |                       |                       |  |
| 300                             |                       |                       |  |
| 290                             |                       |                       |  |
| 280                             |                       |                       |  |
| 270                             |                       |                       |  |
| 260                             |                       |                       |  |
| 250                             |                       |                       |  |
|                                 |                       |                       |  |

| <b>Relative Partial Dispersion</b> |        |  |
|------------------------------------|--------|--|
| P <sub>s,t</sub>                   | 0.2095 |  |
| P <sub>C,s</sub>                   | 0.4625 |  |
| P <sub>d,C</sub>                   | 0.2868 |  |
| P <sub>e,d</sub>                   | 0.2355 |  |
| $\mathbf{P}_{g,F}$                 | 0.6156 |  |
| $\mathbf{P}_{i,h}$                 |        |  |
|                                    |        |  |
| P' <sub>s,t</sub>                  | 0.2059 |  |
| P' <sub>C',s</sub>                 | 0.4984 |  |
| P' <sub>d,C'</sub>                 | 0.2381 |  |
| P' <sub>e,d</sub>                  | 0.2315 |  |
| P' <sub>g,F'</sub>                 | 0.5442 |  |
| P' <sub>i,h</sub>                  |        |  |
|                                    |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0052  |  |
| ΔP <sub>C,s</sub>                                                   | -0.0003 |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | 0.0027  |  |
| $\Delta P_{g,F}$                                                    | 0.0150  |  |
| $\Delta \mathbf{P}_{i,g}$                                           |         |  |

| Other Properties                                                          |       |  |
|---------------------------------------------------------------------------|-------|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 8.5   |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 9.9   |  |
| T <sub>a</sub> [°C]                                                       | 592   |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                      | 590   |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 688   |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.710 |  |
| λ [W/(m·K)]                                                               | 0.950 |  |
|                                                                           |       |  |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.22  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 92    |  |
| μ                                                                         | 0.257 |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.94  |  |
| HK <sub>0.1/20</sub>                                                      | 615   |  |
| HG                                                                        | 4     |  |
|                                                                           |       |  |
| В                                                                         | 1     |  |
|                                                                           |       |  |
| CR                                                                        | 1     |  |
| FR                                                                        | 0     |  |
| SR                                                                        | 1     |  |
| AR                                                                        | 1     |  |
| PR                                                                        | 1     |  |
|                                                                           |       |  |
|                                                                           |       |  |

| Constants of Dispersion Formula |              |  |
|---------------------------------|--------------|--|
| <b>B</b> <sub>1</sub>           | 1.73759695   |  |
| <b>B</b> <sub>2</sub>           | 0.313747346  |  |
| <b>B</b> <sub>3</sub>           | 1.89878101   |  |
| <b>C</b> <sub>1</sub>           | 0.013188707  |  |
| <b>C</b> <sub>2</sub>           | 0.0623068142 |  |
| C <sub>2</sub>                  | 155.23629    |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| $\mathbf{D}_0$          | -3.56 · 10 <sup>-6</sup>  |  |
| <b>D</b> <sub>1</sub>   | 9.20 · 10 <sup>-9</sup>   |  |
| $D_2$                   | -2.10 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 9.65 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 1.44 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]    | 0.294                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 44/37 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Temperature Coefficients of Refractive Index |                                            |     |                                      |        |      |     |
|----------------------------------------------|--------------------------------------------|-----|--------------------------------------|--------|------|-----|
|                                              | Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K] |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]    |     |
| [°C]                                         | 1060.0                                     | e   | g                                    | 1060.0 | e    | g   |
| -40/ -20                                     | 0.1                                        | 2.0 | 4.6                                  | -2.3   | -0.5 | 2.1 |
| +20/ +40                                     | 0.1                                        | 2.4 | 5.6                                  | -1.4   | 0.8  | 4.0 |
| +60/ +80                                     | 0.2                                        | 2.7 | 6.3                                  | -1.0   | 1.5  | 5.1 |

#### **N-SF14** 762265.312

n<sub>d</sub>= 1.76182  $v_{d}$  = 26.53  $n_e = 1.76859$ 

 $v_e$  = 26.32

 $n_F - n_C = 0.028715$  $n_{F'}-n_{C'}=0.029204$ 

| Refractive Indices        |        |         |  |
|---------------------------|--------|---------|--|
|                           | λ [nm] |         |  |
| n <sub>2325.4</sub>       | 2325.4 | 1.70954 |  |
| n <sub>1970.1</sub>       | 1970.1 | 1.71581 |  |
| n <sub>1529.6</sub>       | 1529.6 | 1.72315 |  |
| n <sub>1060.0</sub>       | 1060.0 | 1.73284 |  |
| n <sub>t</sub>            | 1014.0 | 1.73417 |  |
| n <sub>s</sub>            | 852.1  | 1.74022 |  |
| n <sub>r</sub>            | 706.5  | 1.74907 |  |
| n <sub>C</sub>            | 656.3  | 1.75356 |  |
| n <sub>C'</sub>           | 643.8  | 1.75485 |  |
| n <sub>632.8</sub>        | 632.8  | 1.75606 |  |
| <b>n</b> <sub>D</sub>     | 589.3  | 1.76157 |  |
| n <sub>d</sub>            | 587.6  | 1.76182 |  |
| n <sub>e</sub>            | 546.1  | 1.76859 |  |
| n <sub>F</sub>            | 486.1  | 1.78228 |  |
| n <sub>F'</sub>           | 480.0  | 1.78405 |  |
| n <sub>g</sub>            | 435.8  | 1.79986 |  |
| n <sub>h</sub>            | 404.7  | 1.81570 |  |
| n <sub>i</sub>            | 365.0  |         |  |
| n <sub>334.1</sub>        | 334.1  |         |  |
| n <sub>312.6</sub>        | 312.6  |         |  |
| <b>n</b> <sub>296.7</sub> | 296.7  |         |  |
| n <sub>280.4</sub>        | 280.4  |         |  |
| n <sub>248.3</sub>        | 248.3  |         |  |

| Internal Transmittance $\tau_i$ |                       |                       |
|---------------------------------|-----------------------|-----------------------|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                            | 0.799                 | 0.570                 |
| 2325                            | 0.837                 | 0.640                 |
| 1970                            | 0.950                 | 0.880                 |
| 1530                            | 0.992                 | 0.980                 |
| 1060                            | 0.999                 | 0.998                 |
| 700                             | 0.994                 | 0.985                 |
| 660                             | 0.991                 | 0.978                 |
| 620                             | 0.992                 | 0.980                 |
| 580                             | 0.994                 | 0.984                 |
| 546                             | 0.992                 | 0.981                 |
| 500                             | 0.984                 | 0.960                 |
| 460                             | 0.971                 | 0.930                 |
| 436                             | 0.963                 | 0.910                 |
| 420                             | 0.946                 | 0.870                 |
| 405                             | 0.910                 | 0.790                 |
| 400                             | 0.891                 | 0.750                 |
| 390                             | 0.821                 | 0.610                 |
| 380                             | 0.642                 | 0.330                 |
| 370                             | 0.276                 | 0.040                 |
| 365                             | 0.095                 | 0.004                 |
| 350                             |                       |                       |
| 334                             |                       |                       |
| 320                             |                       |                       |
| 310                             |                       |                       |
| 300                             |                       |                       |
| 290                             |                       |                       |
| 280                             |                       |                       |
| 270                             |                       |                       |
| 260                             |                       |                       |
| 250                             |                       |                       |
|                                 |                       |                       |

| <b>Relative Partial Dispersion</b> |        |  |
|------------------------------------|--------|--|
| P <sub>s,t</sub>                   | 0.2107 |  |
| P <sub>C,s</sub>                   | 0.4646 |  |
| P <sub>d,C</sub>                   | 0.2875 |  |
| <b>P</b> <sub>e,d</sub>            | 0.2357 |  |
| $\mathbf{P}_{g,F}$                 | 0.6122 |  |
| $\mathbf{P}_{i,h}$                 |        |  |
|                                    |        |  |
| P' <sub>s,t</sub>                  | 0.2072 |  |
| P' <sub>C',s</sub>                 | 0.5008 |  |
| P' <sub>d,C'</sub>                 | 0.2387 |  |
| P' <sub>e,d</sub>                  | 0.2318 |  |
| P' <sub>g,F'</sub>                 | 0.5413 |  |
| P' <sub>i,h</sub>                  |        |  |
|                                    |        |  |

| from the "Nor                                 | mal l | Line |
|-----------------------------------------------|-------|------|
| ΔP <sub>C,t</sub>                             | 0.00  | 44   |
| ΔP <sub>C,s</sub>                             | -0.00 | 02   |
| Δ <b>P</b> <sub>F,e</sub>                     | 0.00  | 24   |
| $\Delta \mathbf{P}_{g,F}$                     | 0.01  | 30   |
| $\Delta \mathbf{P}_{i,g}$                     |       |      |
|                                               |       |      |
| Other Propert                                 | ties  |      |
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]  |       | 9.4  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K] |       | 10.9 |

**Deviation of Relative** Partial Dispersions  $\Delta P$ 

| <b>C</b> <sub>2</sub> | 0.061369188               |
|-----------------------|---------------------------|
| <b>C</b> <sub>3</sub> | 149.517689                |
|                       |                           |
| Constan               | ts of Dispersion          |
| dn/dT                 |                           |
| <b>D</b> <sub>0</sub> | -5.56 · 10 <sup>-6</sup>  |
| <b>D</b> <sub>1</sub> | 7.09 · 10 <sup>-9</sup>   |
| D <sub>2</sub>        | -1.09 · 10 <sup>-11</sup> |
| <b>E</b> <sub>0</sub> | 9.85 · 10 <sup>-7</sup>   |
|                       |                           |

**Constants of Dispersion** 

1.69022361 0.288870052

1.7045187

0.0130512113

**Formula** 

**B**<sub>1</sub>

 $B_2$ 

 $\mathbf{C}_1$ 

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 42/36 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| E <sub>1</sub>       | 1.39 · 10           | -9                       |           |                  |                                      |     |
|----------------------|---------------------|--------------------------|-----------|------------------|--------------------------------------|-----|
| λ <sub>TK</sub> [μm] | 0.287               |                          |           |                  |                                      |     |
|                      |                     |                          |           |                  |                                      |     |
| Tempera              | ature Co            | efficients               | s of Refr | active Inc       | dex                                  |     |
|                      | Δn <sub>rel</sub> / | /ΔT[10 <sup>-6</sup> /K] |           | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]                 | 1060.0              | е                        | g         | 1060.0           | е                                    | g   |
| -40/ -20             | -0.9                | 0.9                      | 3.4       | -3.2             | -1.5                                 | 0.9 |
| +20/ +40             | -1.1                | 1.1                      | 4.1       | -2.6             | -0.4                                 | 2.5 |
| +60/ +80             | -1.1                | 1.4                      | 4.7       | -2.2             | 0.2                                  | 3.4 |
| •                    |                     |                          |           | •                |                                      |     |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 9.4   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 10.9  |
| T <sub>a</sub> [°C]                                                       | 566   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                      | 562   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 657   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.750 |
| λ [W/(m·K)]                                                               | 1.000 |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.12  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 88    |
| μ                                                                         | 0.259 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.89  |
| HK <sub>0.1/20</sub>                                                      | 515   |
| HG                                                                        | 5     |
|                                                                           |       |
| В                                                                         | 0     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 0     |
| SR                                                                        | 1     |
| AR                                                                        | 1     |
| PR                                                                        | 1     |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |

#### **N-SF15** 699302.292

 $n_d = 1.69892$  $v_{d}$  = 30.20  $n_e = 1.70438$ 

 $v_{e}$  = 29.96

 $n_F - n_C = 0.023142$  $n_{F'}-n_{C'}=0.023511$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.65267 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.65899 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.66616 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.67494 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.67609 |  |  |
| n <sub>s</sub>             | 852.1  | 1.68122 |  |  |
| n <sub>r</sub>             | 706.5  | 1.68854 |  |  |
| n <sub>C</sub>             | 656.3  | 1.69222 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.69326 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.69425 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.69872 |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.69892 |  |  |
| n <sub>e</sub>             | 546.1  | 1.70438 |  |  |
| n <sub>F</sub>             | 486.1  | 1.71536 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.71677 |  |  |
| n <sub>g</sub>             | 435.8  | 1.72933 |  |  |
| n <sub>h</sub>             | 404.7  | 1.74182 |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| <b>n</b> <sub>248.3</sub> | 248.3        |        |  |  |
|---------------------------|--------------|--------|--|--|
|                           |              |        |  |  |
| Constant                  | ts of Disp   | ersion |  |  |
| Formula                   |              |        |  |  |
| <b>B</b> <sub>1</sub>     | 1.57055634   |        |  |  |
| <b>B</b> <sub>2</sub>     | 0.218987094  |        |  |  |
| <b>B</b> <sub>3</sub>     | 1.50824017   |        |  |  |
| <b>C</b> <sub>1</sub>     | 0.0116507014 |        |  |  |
| <b>C</b> <sub>2</sub>     | 0.0597856897 |        |  |  |
| <b>C</b> <sub>3</sub>     | 132.709339   |        |  |  |
|                           |              |        |  |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | -7.15 · 10 <sup>-7</sup>  |  |
| <b>D</b> <sub>1</sub>   | 1.04 · 10 <sup>-8</sup>   |  |
| $D_2$                   | -2.62 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 8.56 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 1.29 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]    | 0.281                     |  |

| Internal | Transmitt             | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.764                 | 0.510                 |
| 2325     | 0.837                 | 0.640                 |
| 1970     | 0.954                 | 0.890                 |
| 1530     | 0.990                 | 0.976                 |
| 1060     | 0.998                 | 0.996                 |
| 700      | 0.995                 | 0.988                 |
| 660      | 0.993                 | 0.983                 |
| 620      | 0.994                 | 0.984                 |
| 580      | 0.994                 | 0.986                 |
| 546      | 0.994                 | 0.985                 |
| 500      | 0.988                 | 0.970                 |
| 460      | 0.977                 | 0.943                 |
| 436      | 0.964                 | 0.912                 |
| 420      | 0.941                 | 0.860                 |
| 405      | 0.887                 | 0.740                 |
| 400      | 0.857                 | 0.680                 |
| 390      | 0.746                 | 0.480                 |
| 380      | 0.525                 | 0.200                 |
| 370      | 0.158                 | 0.010                 |
| 365      | 0.044                 |                       |
| 350      |                       |                       |
| 334      |                       |                       |
| 320      |                       |                       |
| 310      |                       |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 42/37 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |
| Remarks                      |       |
|                              |       |
|                              |       |

| Temper   | Temperature Coefficients of Refractive Index |     |                  |                                      |     |     |
|----------|----------------------------------------------|-----|------------------|--------------------------------------|-----|-----|
|          | Δn <sub>rel</sub> /ΔT[10 <sup>-6</sup> /K]   |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |     |
| [°C]     | 1060.0                                       | е   | g                | 1060.0                               | е   | g   |
| -40/ -20 | 1.6                                          | 3.1 | 5.0              | -0.7                                 | 0.8 | 2.6 |
| +20/ +40 | 1.6                                          | 3.4 | 5.8              | 0.2                                  | 2.0 | 4.3 |
| +60/ +80 | 1.7                                          | 3.7 | 6.4              | 0.6                                  | 2.6 | 5.2 |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2216 |  |
| <b>P</b> <sub>C,s</sub>     | 0.4751 |  |
| $\mathbf{P}_{d,C}$          | 0.2897 |  |
| $\mathbf{P}_{e,d}$          | 0.2360 |  |
| $\mathbf{P}_{g,F}$          | 0.6038 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2181 |  |
| P' <sub>C',s</sub>          | 0.5122 |  |
| P' <sub>d,C'</sub>          | 0.2406 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2323 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5341 |  |
| P' <sub>i,h</sub>           |        |  |

| Deviation of Relative                         |          |  |
|-----------------------------------------------|----------|--|
| Partial Dispersions ΔP from the "Normal Line" |          |  |
| from the Nor                                  | mai Line |  |
| $\Delta \mathbf{P}_{C,t}$                     | 0.0085   |  |
| ΔP <sub>C,s</sub>                             | 0.0018   |  |
| ΔP <sub>F,e</sub>                             | 0.0018   |  |
| $\Delta P_{g,F}$                              | 0.0108   |  |
| $\Delta \mathbf{P}_{i,g}$                     |          |  |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 8.0   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 9.3   |
| T <sub>o</sub> [°C]                                                       | 580   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 578   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 692   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.760 |
| λ [W/(m·K)]                                                               | 1.040 |
|                                                                           |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 2.92  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 90    |
| μ                                                                         | 0.243 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 3.04  |
| HK <sub>0.1/20</sub>                                                      | 610   |
| HG                                                                        | 3     |
|                                                                           |       |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 0     |
| SR                                                                        | 1     |
| AR                                                                        | 1     |
| PR                                                                        | 1     |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |

#### **N-SF57** 847238.353

n<sub>d</sub>= 1.84666  $v_{d}$  = 23.78  $n_e = 1.85504$  $v_e$  = 23.59

 $n_F - n_C = 0.035604$  $n_{F'}-n_{C'}=0.036247$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
| Rondo                      | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.78502 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.79190 |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.80011 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.81138 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.81296 |  |  |
| $\mathbf{n}_{\mathrm{s}}$  | 852.1  | 1.82023 |  |  |
| n <sub>r</sub>             | 706.5  | 1.83099 |  |  |
| n <sub>C</sub>             | 656.3  | 1.83650 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.83807 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.83956 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.84635 |  |  |
| n <sub>d</sub>             | 587.6  | 1.84666 |  |  |
| n <sub>e</sub>             | 546.1  | 1.85504 |  |  |
| n <sub>F</sub>             | 486.1  | 1.87210 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.87432 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.89423 |  |  |
| n <sub>h</sub>             | 404.7  | 1.91440 |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |
| n <sub>334.1</sub>         | 334.1  |         |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal | Transmittance τ <sub>i</sub> |                       |  |  |
|----------|------------------------------|-----------------------|--|--|
| λ [nm]   | τ <sub>i</sub> (10mm)        | τ <sub>i</sub> (25mm) |  |  |
| 2500     | 0.842                        | 0.650                 |  |  |
| 2325     | 0.872                        | 0.710                 |  |  |
| 1970     | 0.963                        | 0.910                 |  |  |
| 1530     | 0.994                        | 0.985                 |  |  |
| 1060     | 0.999                        | 0.997                 |  |  |
| 700      | 0.991                        | 0.977                 |  |  |
| 660      | 0.987                        | 0.969                 |  |  |
| 620      | 0.988                        | 0.971                 |  |  |
| 580      | 0.990                        | 0.975                 |  |  |
| 546      | 0.986                        | 0.965                 |  |  |
| 500      | 0.971                        | 0.930                 |  |  |
| 460      | 0.949                        | 0.877                 |  |  |
| 436      | 0.919                        | 0.810                 |  |  |
| 420      | 0.872                        | 0.710                 |  |  |
| 405      | 0.782                        | 0.540                 |  |  |
| 400      | 0.733                        | 0.460                 |  |  |
| 390      | 0.574                        | 0.250                 |  |  |
| 380      | 0.302                        | 0.050                 |  |  |
| 370      | 0.063                        | 0.001                 |  |  |
| 365      | 0.003                        |                       |  |  |
| 350      |                              |                       |  |  |
| 334      |                              |                       |  |  |
| 320      |                              |                       |  |  |
| 310      |                              |                       |  |  |
| 300      |                              |                       |  |  |
| 290      |                              |                       |  |  |
| 280      |                              |                       |  |  |
| 270      |                              |                       |  |  |
| 260      |                              |                       |  |  |
| 250      |                              |                       |  |  |
|          |                              |                       |  |  |

| ιi   | Relative Faiti                                           | ם ום |
|------|----------------------------------------------------------|------|
| imm) | P <sub>s,t</sub>                                         | 0.2  |
| )    | P <sub>C,s</sub>                                         | 0.4  |
| )    | P <sub>d,C</sub>                                         | 0.2  |
| )    | P <sub>e,d</sub>                                         | 0.2  |
| i    | <b>P</b> <sub>g,F</sub>                                  | 0.6  |
| ,    | P <sub>i,h</sub>                                         |      |
| ,    | ·                                                        |      |
| )    | P' <sub>s,t</sub>                                        | 0.2  |
|      | P' <sub>C',s</sub>                                       | 0.4  |
| ;    | P' <sub>d,C'</sub>                                       | 0.2  |
| i    | P' <sub>e,d</sub>                                        | 0.2  |
| )    | P' <sub>g,F'</sub>                                       | 0.5  |
| ,    | P' <sub>i,h</sub>                                        |      |
| )    | ,                                                        |      |
| )    | <b>Deviation of F</b>                                    | Rela |
| )    | Partial Disper                                           | sio  |
| )    | from the "Nor                                            |      |
| )    | $\Delta P_{C,t}$                                         | 0.0  |
| )    | ΔP <sub>C,s</sub>                                        | -0.0 |
|      | ΔP <sub>F,e</sub>                                        | 0.0  |
|      | $\Delta P_{g,F}$                                         | 0.0  |
|      | $\Delta P_{i,g}$                                         |      |
|      |                                                          |      |
|      | Other Propert                                            | ies  |
|      | α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]             |      |
|      | \( \sigma_{-30/+70°C} \) \( \cdot \) \( \cdot \)         |      |
|      | $\alpha_{-30/+70^{\circ}C}[10^{-6}/K]$                   |      |
|      | $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$ $T_g[^{\circ}C]$ |      |
|      | $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$ $T_g[^{\circ}C]$ |      |
|      | $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$ $T_g[^{\circ}C]$ |      |
|      | $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                  |      |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2042 |  |
| P <sub>C,s</sub>            | 0.4568 |  |
| <b>P</b> <sub>d,C</sub>     | 0.2855 |  |
| <b>P</b> <sub>e,d</sub>     | 0.2353 |  |
| $\mathbf{P}_{g,F}$          | 0.6216 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2005 |  |
| P' <sub>C',s</sub>          | 0.4922 |  |
| P' <sub>d,C'</sub>          | 0.2369 |  |
| P' <sub>e,d</sub>           | 0.2311 |  |
| P' <sub>g,F'</sub>          | 0.5493 |  |
| P' <sub>i,h</sub>           |        |  |
|                             |        |  |

| Deviation of Relative Partial Dispersions ΔP |         |  |  |  |
|----------------------------------------------|---------|--|--|--|
| from the "Normal Line"                       |         |  |  |  |
| $\Delta P_{C,t}$                             | 0.0032  |  |  |  |
| ΔP <sub>C,s</sub>                            | -0.0015 |  |  |  |
| ΔP <sub>F,e</sub>                            | 0.0033  |  |  |  |
| $\Delta P_{g,F}$                             | 0.0178  |  |  |  |
| $\Delta \mathbf{P}_{i,g}$                    |         |  |  |  |

| Othor Froportios                                                         |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 8.5   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 9.9   |
| T <sub>a</sub> [°C]                                                      | 629   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 616   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 716   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                          | 0.660 |
| λ [W/(m·K)]                                                              | 0.990 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 3.53  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 96    |
| μ                                                                        | 0.260 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 2.78  |
| HK <sub>0.1/20</sub>                                                     | 520   |
| HG                                                                       | 4     |
|                                                                          |       |
| В                                                                        | 0     |
|                                                                          |       |
| CR                                                                       | 1     |
| FR                                                                       | 0     |
| SR                                                                       | 1     |
| AR                                                                       | 1     |
| PR                                                                       | 1     |
|                                                                          |       |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 1.87543831   |  |
| <b>B</b> <sub>2</sub>   | 0.37375749   |  |
| <b>B</b> <sub>3</sub>   | 2.30001797   |  |
| <b>C</b> <sub>1</sub>   | 0.0141749518 |  |
| <b>C</b> <sub>2</sub>   | 0.0640509927 |  |
| C <sub>3</sub>          | 177.389795   |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| <b>D</b> <sub>0</sub>         | -4.51 · 10 <sup>-6</sup>  |  |
| <b>D</b> <sub>1</sub>         | 8.73 · 10 <sup>-9</sup>   |  |
| <b>D</b> <sub>2</sub>         | -1.64 · 10 <sup>-11</sup> |  |
| E <sub>0</sub>                | 1.07 · 10 <sup>-6</sup>   |  |
| <b>E</b> <sub>1</sub>         | 1.57 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]          | 0.295                     |  |

| Color Code                   |        |
|------------------------------|--------|
| $\lambda_{80}/\lambda_{5}$   | 42/37* |
| $(*=\lambda_{70}/\lambda_5)$ |        |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

| Temperature Coefficients of Refractive Index |                                                             |     |                                      |        |      |     |
|----------------------------------------------|-------------------------------------------------------------|-----|--------------------------------------|--------|------|-----|
|                                              | $\Delta$ n <sub>rel</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]    |     |
| [°C]                                         | 1060.0                                                      | Ф   | g                                    | 1060.0 | e    | g   |
| -40/ -20                                     | -0.5                                                        | 1.7 | 4.9                                  | -2.9   | -0.8 | 2.3 |
| +20/ +40                                     | -0.5                                                        | 2.2 | 6.0                                  | -2.1   | 0.6  | 4.3 |
| +60/ +80                                     | -0.4                                                        | 2.6 | 6.9                                  | -1.6   | 1.3  | 5.6 |

#### N-SF57HT 847238.353

**SCHOTT** 

n<sub>d</sub>= 1.84666 n<sub>e</sub>= 1.85504  $v_d$  = 23.78  $v_e$  = 23.59

 $n_F - n_C = 0.035604$  $n_{F'} - n_{C'} = 0.036247$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
|                            | λ [nm] |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.78502 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.79190 |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.80011 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.81138 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.81296 |  |  |  |
| <b>n</b> <sub>s</sub>      | 852.1  | 1.82023 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.83099 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.83650 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.83807 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.83956 |  |  |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.84635 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.84666 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.85504 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.87210 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.87432 |  |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.89423 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.91440 |  |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |
| <b>n</b> <sub>248.3</sub>  | 248.3  |         |  |  |  |

| Internal Transmittance $\tau_i$ |                       |                       |  |
|---------------------------------|-----------------------|-----------------------|--|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |
| 2500                            | 0.867                 | 0.700                 |  |
| 2325                            | 0.891                 | 0.750                 |  |
| 1970                            | 0.971                 | 0.930                 |  |
| 1530                            | 0.995                 | 0.988                 |  |
| 1060                            | 0.999                 | 0.998                 |  |
| 700                             | 0.992                 | 0.979                 |  |
| 660                             | 0.988                 | 0.971                 |  |
| 620                             | 0.989                 | 0.973                 |  |
| 580                             | 0.991                 | 0.977                 |  |
| 546                             | 0.987                 | 0.967                 |  |
| 500                             | 0.972                 | 0.932                 |  |
| 460                             | 0.951                 | 0.883                 |  |
| 436                             | 0.928                 | 0.830                 |  |
| 420                             | 0.896                 | 0.760                 |  |
| 405                             | 0.831                 | 0.630                 |  |
| 400                             | 0.793                 | 0.560                 |  |
| 390                             | 0.657                 | 0.350                 |  |
| 380                             | 0.382                 | 0.090                 |  |
| 370                             | 0.063                 | 0.001                 |  |
| 365                             | 0.003                 |                       |  |
| 350                             |                       |                       |  |
| 334                             |                       |                       |  |
| 320                             |                       |                       |  |
| 310                             |                       |                       |  |
| 300                             |                       |                       |  |
| 290                             |                       |                       |  |
| 280                             |                       |                       |  |
| 270                             |                       |                       |  |
| 260                             |                       |                       |  |
| 250                             |                       |                       |  |
|                                 |                       |                       |  |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2042 |  |
| P <sub>C,s</sub>            | 0.4568 |  |
| $\mathbf{P}_{d,C}$          | 0.2855 |  |
| $\mathbf{P}_{e,d}$          | 0.2353 |  |
| $\mathbf{P}_{g,F}$          | 0.6216 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2005 |  |
| P' <sub>C',s</sub>          | 0.4922 |  |
| P' <sub>d,C'</sub>          | 0.2369 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2311 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5493 |  |
| P' <sub>i,h</sub>           |        |  |
|                             |        |  |
| Deviation of Relative       |        |  |

| <b>11</b> 280.4           | 200.7      |        | 004 |  |
|---------------------------|------------|--------|-----|--|
| <b>n</b> <sub>248.3</sub> | 248.3      |        | 320 |  |
|                           |            |        | 310 |  |
| Constant                  | ts of Disp | ersion | 300 |  |
| Formula                   |            |        | 290 |  |
| <b>B</b> <sub>1</sub>     | 1.8754383  |        | 280 |  |
| <b>B</b> <sub>2</sub>     | 0.37375749 | )      | 270 |  |
| $\mathbf{B}_3$            | 2.30001797 | 7      | 260 |  |
| <b>C</b> <sub>1</sub>     | 0.01417495 | 518    | 250 |  |
| <b>C</b> <sub>2</sub>     | 0.06405099 | 927    |     |  |
| <b>C</b> <sub>3</sub>     | 177.389795 | 5      |     |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| ΔP <sub>C,t</sub>                                                   | 0.0032  |  |
| ΔP <sub>C,s</sub>                                                   | -0.0015 |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | 0.0033  |  |
| $\Delta \mathbf{P}_{g,F}$                                           | 0.0178  |  |
| $\Delta \mathbf{P}_{i,g}$                                           |         |  |

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   | dn/dT                     |  |  |
| <b>D</b> <sub>0</sub>   | -4.51 · 10 <sup>-6</sup>  |  |  |
| <b>D</b> <sub>1</sub>   | 8.73 · 10 <sup>-9</sup>   |  |  |
| <b>D</b> <sub>2</sub>   | -1.64 · 10 <sup>-11</sup> |  |  |
| E <sub>0</sub>          | 1.07 · 10 <sup>-6</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 1.57 · 10 <sup>-9</sup>   |  |  |
| λ <sub>TK</sub> [μm]    | 0.295                     |  |  |

| Color Code                   |        |
|------------------------------|--------|
| $\lambda_{80}/\lambda_{5}$   | 41/37* |
| $(*=\lambda_{70}/\lambda_5)$ |        |

| Remarks |  |
|---------|--|
|         |  |
|         |  |
|         |  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 8.5   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                               | 9.9   |
| T <sub>g</sub> [°C]                                                   | 629   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                  | 616   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 716   |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                                       | 0.660 |
| λ [W/(m·K)]                                                           | 0.990 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 3.53  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 96    |
| μ                                                                     | 0.260 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 2.78  |
| HK <sub>0.1/20</sub>                                                  | 520   |
| HG                                                                    | 4     |
|                                                                       |       |
| В                                                                     | 0     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 0     |
| SR                                                                    | 1     |
| AR                                                                    | 1     |
| PR                                                                    | 1     |
|                                                                       |       |
|                                                                       |       |
|                                                                       |       |

| Temper                                                                    | Temperature Coefficients of Refractive Index |                      |     |      |      |     |
|---------------------------------------------------------------------------|----------------------------------------------|----------------------|-----|------|------|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$ $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |                                              |                      |     |      | ]    |     |
| [°C]                                                                      | 1060.0                                       | 060.0 e g 1060.0 e g |     | g    |      |     |
| -40/ -20                                                                  | -0.5                                         | 1.7                  | 4.9 | -2.9 | -0.8 | 2.3 |
| +20/ +40                                                                  | -0.5                                         | 2.2                  | 6.0 | -2.1 | 0.6  | 4.3 |
| +60/ +80                                                                  | -0.4                                         | 2.6                  | 6.9 | -1.6 | 1.3  | 5.6 |

#### N-SF66 923209.400

n<sub>d</sub>= 1.92286  $v_{d}$ = 20.88 n<sub>e</sub>= 1.93322

 $v_e$  = 20.70

 $n_F - n_C = 0.044199$  $n_{F'}-n_{C'}=0.045076$ 

| Refract                    | ive Indice: | S       |
|----------------------------|-------------|---------|
|                            | λ [nm]      |         |
| <b>n</b> <sub>2325.4</sub> | 2325.4      | 1.84839 |
| <b>n</b> <sub>1970.1</sub> | 1970.1      | 1.85665 |
| <b>n</b> <sub>1529.6</sub> | 1529.6      | 1.86650 |
| <b>n</b> <sub>1060.0</sub> | 1060.0      | 1.87999 |
| n <sub>t</sub>             | 1014.0      | 1.88189 |
| n <sub>s</sub>             | 852.1       | 1.89064 |
| n <sub>r</sub>             | 706.5       | 1.90368 |
| n <sub>C</sub>             | 656.3       | 1.91039 |
| n <sub>C'</sub>            | 643.8       | 1.91232 |
| n <sub>632.8</sub>         | 632.8       | 1.91414 |
| <b>n</b> <sub>D</sub>      | 589.3       | 1.92248 |
| n <sub>d</sub>             | 587.6       | 1.92286 |
| n <sub>e</sub>             | 546.1       | 1.93322 |
| n <sub>F</sub>             | 486.1       | 1.95459 |
| n <sub>F'</sub>            | 480.0       | 1.95739 |
| <b>n</b> <sub>g</sub>      | 435.8       | 1.98285 |
| $\mathbf{n}_{h}$           | 404.7       |         |
| n <sub>i</sub>             | 365.0       |         |
| n <sub>334.1</sub>         | 334.1       |         |
| n <sub>312.6</sub>         | 312.6       |         |
| n <sub>296.7</sub>         | 296.7       |         |
| n <sub>280.4</sub>         | 280.4       |         |
| n <sub>248.3</sub>         | 248.3       |         |

| Internal | Transmittanceτ <sub>i</sub> |                       |  |
|----------|-----------------------------|-----------------------|--|
| λ [nm]   | τ <sub>i</sub> (10mm)       | τ <sub>i</sub> (25mm) |  |
| 2500     | 0.793                       | 0.560                 |  |
| 2325     | 0.837                       | 0.640                 |  |
| 1970     | 0.947                       | 0.873                 |  |
| 1530     | 0.989                       | 0.973                 |  |
| 1060     | 0.996                       | 0.991                 |  |
| 700      | 0.991                       | 0.977                 |  |
| 660      | 0.987                       | 0.968                 |  |
| 620      | 0.983                       | 0.958                 |  |
| 580      | 0.976                       | 0.940                 |  |
| 546      | 0.963                       | 0.910                 |  |
| 500      | 0.928                       | 0.830                 |  |
| 460      | 0.887                       | 0.740                 |  |
| 436      | 0.831                       | 0.630                 |  |
| 420      | 0.758                       | 0.500                 |  |
| 405      | 0.592                       | 0.270                 |  |
| 400      | 0.504                       | 0.180                 |  |
| 390      | 0.250                       | 0.020                 |  |
| 380      | 0.040                       |                       |  |
| 370      | 0.001                       |                       |  |
| 365      |                             |                       |  |
| 350      |                             |                       |  |
| 334      |                             |                       |  |
| 320      |                             |                       |  |
| 310      |                             |                       |  |
| 300      |                             |                       |  |
| 290      |                             |                       |  |
| 280      |                             |                       |  |
| 270      |                             |                       |  |
| 260      |                             |                       |  |
| 250      |                             |                       |  |
|          |                             |                       |  |
| ı        |                             |                       |  |

| i   | F      |
|-----|--------|
| mm) | P      |
|     | P      |
|     | F      |
|     | F      |
|     | F      |
|     | F      |
|     |        |
|     | F      |
|     | F      |
|     | F      |
|     | F      |
|     | F      |
|     | F      |
|     |        |
|     |        |
|     | F      |
|     | f      |
|     | Δ      |
|     | Δ      |
|     | Δ      |
|     | Δ      |
|     | Δ      |
|     |        |
|     | C      |
|     | α      |
|     |        |
|     | α<br>T |
|     |        |
|     | T      |
|     | Т      |
|     | С      |

| Relative Partial Dispersion |          |  |
|-----------------------------|----------|--|
| P <sub>s,t</sub>            | 0.1980   |  |
| P <sub>C,s</sub>            | 0.4467   |  |
| <b>P</b> <sub>d,C</sub>     | 0.2822   |  |
| <b>P</b> <sub>e,d</sub>     | 0.2345   |  |
| $\mathbf{P}_{g,F}$          | 0.6394   |  |
| $\mathbf{P}_{i,h}$          |          |  |
|                             |          |  |
| P' <sub>s,t</sub>           | 0.1941   |  |
| P' <sub>C',s</sub>          | 0.4808   |  |
| P' <sub>d,C'</sub>          | 0.2339   |  |
| P' <sub>e,d</sub>           | 0.2299   |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5647   |  |
| P' <sub>i,h</sub>           |          |  |
| - 1,11                      | <u> </u> |  |

|  | 1 |
|--|---|
|  | Δ |
|  | Δ |
|  |   |
|  | α |
|  | α |
|  | α |
|  | Т |
|  | Т |
|  | Т |
|  | С |
|  |   |

| Deviation of Relative              |         |  |
|------------------------------------|---------|--|
| Partial Dispersions ΔP             |         |  |
| from the "Normal Line"             |         |  |
| $\Delta P_{C,t}$                   | 0.0007  |  |
| ΔP <sub>C,s</sub>                  | -0.0048 |  |
| Δ <b>P</b> <sub>F,e</sub>          | 0.0059  |  |
| $\Delta \mathbf{P}_{g,F}$          | 0.0307  |  |
| $\Delta \mathbf{P}_{\mathrm{i,g}}$ |         |  |
| -                                  |         |  |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 2.0245976    |  |
| <b>B</b> <sub>2</sub>   | 0.470187196  |  |
| <b>B</b> <sub>3</sub>   | 2.59970433   |  |
| <b>C</b> <sub>1</sub>   | 0.0147053225 |  |
| <b>C</b> <sub>2</sub>   | 0.0692998276 |  |
| <b>C</b> <sub>3</sub>   | 161.817601   |  |

| Color Code                   |        |
|------------------------------|--------|
| $\lambda_{80}/\lambda_{5}$   | 45/39* |
| $(*=\lambda_{70}/\lambda_5)$ |        |

| Color Code                   |        |
|------------------------------|--------|
| $\lambda_{80}/\lambda_{5}$   | 45/39* |
| $(*=\lambda_{70}/\lambda_5)$ |        |
|                              |        |
| Remarks                      |        |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 5.9   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                               | 6.8   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 710   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                           | 711   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                            | 806   |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                                       | 0.540 |
| λ [W/(m·K)]                                                           | 0.800 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 4.00  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 95    |
| μ                                                                     | 0.259 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 2.86  |
| HK <sub>0.1/20</sub>                                                  | 440   |
| HG                                                                    | 3     |
|                                                                       |       |
| В                                                                     | 1     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 0     |
| SR                                                                    | 1     |
| AR                                                                    | 1     |
| PR                                                                    | 1     |
|                                                                       |       |
|                                                                       |       |
|                                                                       |       |

| Constants of Dispersion |                          |  |
|-------------------------|--------------------------|--|
| dn/dT                   |                          |  |
| $\mathbf{D}_0$          | -4.30 · 10 <sup>-6</sup> |  |
| <b>D</b> <sub>1</sub>   | 1.15 · 10 <sup>-8</sup>  |  |
| $D_2$                   | 4.31 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 9.62 · 10 <sup>-7</sup>  |  |
| <b>E</b> <sub>1</sub>   | 1.62 · 10 <sup>-9</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.322                    |  |

| Temperature Coefficients of Refractive Index                              |        |     |     |        |      |     |
|---------------------------------------------------------------------------|--------|-----|-----|--------|------|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$ $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |     | ]   |        |      |     |
| [°C]                                                                      | 1060.0 | e   | g   | 1060.0 | е    | g   |
| -40/ -20                                                                  | -0.4   | 1.9 | 5.8 | -2.9   | -0.7 | 3.1 |
| +20/ +40                                                                  | -0.5   | 2.4 | 7.3 | -2.1   | 0.8  | 5.5 |
| +60/ +80                                                                  | 0.1    | 3.4 | 8.9 | -1.2   | 2.1  | 7.5 |

#### P-SF8 689313.290

**SCHOTT** 

 $\begin{array}{ll} n_d \! = \! 1.68893 & \nu_d \! = \! 31.25 \\ n_e \! = \! 1.69414 & \nu_e \! = \! 31.01 \end{array}$ 

 $n_{F} - n_{C} = 0.022046$   $n_{F'} - n_{C'} = 0.022386$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.64480 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.65079 |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.65760 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.66598 |  |
| n <sub>t</sub>             | 1014.0 | 1.66708 |  |
| n <sub>s</sub>             | 852.1  | 1.67200 |  |
| n <sub>r</sub>             | 706.5  | 1.67901 |  |
| n <sub>C</sub>             | 656.3  | 1.68252 |  |
| n <sub>C'</sub>            | 643.8  | 1.68353 |  |
| n <sub>632.8</sub>         | 632.8  | 1.68447 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.68874 |  |
| n <sub>d</sub>             | 587.6  | 1.68893 |  |
| n <sub>e</sub>             | 546.1  | 1.69414 |  |
| n <sub>F</sub>             | 486.1  | 1.70457 |  |
| n <sub>F'</sub>            | 480.0  | 1.70591 |  |
| n <sub>g</sub>             | 435.8  | 1.71778 |  |
| n <sub>h</sub>             | 404.7  | 1.72950 |  |
| n <sub>i</sub>             | 365.0  |         |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal Transmittance $\tau_i$ |                       |                       |
|---------------------------------|-----------------------|-----------------------|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                            | 0.727                 | 0.450                 |
| 2325                            | 0.799                 | 0.570                 |
| 1970                            | 0.937                 | 0.850                 |
| 1530                            | 0.991                 | 0.977                 |
| 1060                            | 0.999                 | 0.997                 |
| 700                             | 0.995                 | 0.988                 |
| 660                             | 0.994                 | 0.984                 |
| 620                             | 0.994                 | 0.984                 |
| 580                             | 0.995                 | 0.987                 |
| 546                             | 0.994                 | 0.986                 |
| 500                             | 0.989                 | 0.972                 |
| 460                             | 0.980                 | 0.950                 |
| 436                             | 0.971                 | 0.930                 |
| 420                             | 0.959                 | 0.900                 |
| 405                             | 0.937                 | 0.850                 |
| 400                             | 0.924                 | 0.820                 |
| 390                             | 0.872                 | 0.710                 |
| 380                             | 0.746                 | 0.480                 |
| 370                             | 0.468                 | 0.150                 |
| 365                             | 0.260                 | 0.040                 |
| 350                             | 0.001                 |                       |
| 334                             |                       |                       |
| 320                             |                       |                       |
| 310                             |                       |                       |
| 300                             |                       |                       |
| 290                             |                       |                       |
| 280                             |                       |                       |
| 270                             |                       |                       |
| 260                             |                       |                       |
| 250                             |                       |                       |
| İ                               |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| <b>P</b> <sub>s,t</sub>     | 0.2229 |  |
| P <sub>C,s</sub>            | 0.4776 |  |
| $\mathbf{P}_{d,C}$          | 0.2905 |  |
| $\mathbf{P}_{e,d}$          | 0.2362 |  |
| $\mathbf{P}_{g,F}$          | 0.5991 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2195 |  |
| P' <sub>C',s</sub>          | 0.5150 |  |
| P' <sub>d,C'</sub>          | 0.2414 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2326 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5301 |  |
| P' <sub>i,h</sub>           |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |        |  |
|---------------------------------------------------------------------|--------|--|
| $\Delta P_{C,t}$                                                    | 0.0072 |  |
| ΔP <sub>C,s</sub>                                                   | 0.0018 |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | 0.0013 |  |
| $\Delta P_{g,F}$                                                    | 0.0079 |  |
| $\Delta \mathbf{P}_{i,g}$                                           |        |  |

| Other Properties                                                          |       |  |
|---------------------------------------------------------------------------|-------|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 9.4   |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 11.1  |  |
| T <sub>a</sub> [°C]                                                       | 524   |  |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 531   |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 629   |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.790 |  |
| λ [W/(m·K)]                                                               | 1.020 |  |
| AT [°C]                                                                   | 580   |  |
| ρ [g/cm <sup>3</sup> ]                                                    | 2.90  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 86    |  |
| μ                                                                         | 0.253 |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.73  |  |
| HK <sub>0.1/20</sub>                                                      | 533   |  |
| HG                                                                        |       |  |
| HG-J                                                                      | 200   |  |
| В                                                                         | 1     |  |
|                                                                           |       |  |
| CR                                                                        | 1     |  |
| FR                                                                        | 0     |  |
| SR                                                                        | 1     |  |
| AR                                                                        | 1.2   |  |
| PR                                                                        | 1     |  |
| SR-J                                                                      | 1     |  |
| WR-J                                                                      | 1     |  |
|                                                                           | 1     |  |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 1.55370411   |  |
| <b>B</b> <sub>2</sub>   | 0.206332561  |  |
| <b>B</b> <sub>3</sub>   | 1.39708831   |  |
| <b>C</b> <sub>1</sub>   | 0.011658267  |  |
| <b>C</b> <sub>2</sub>   | 0.0582087757 |  |
| <b>C</b> <sub>3</sub>   | 130.748028   |  |

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   | dn/dT                     |  |  |
| $\mathbf{D}_0$          | -4.27 · 10 <sup>-6</sup>  |  |  |
| <b>D</b> <sub>1</sub>   | 8.16 · 10 <sup>-9</sup>   |  |  |
| $D_2$                   | -2.00 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 9.02 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 1.22 · 10 <sup>-9</sup>   |  |  |
| λ <sub>TK</sub> [μm]    | 0.272                     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 40/36 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temper   | Temperature Coefficients of Refractive Index |                          |     |                  |                                      |     |
|----------|----------------------------------------------|--------------------------|-----|------------------|--------------------------------------|-----|
|          | ∆n <sub>rel</sub>                            | /ΔT[10 <sup>-6</sup> /K] |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |
| [°C]     | 1060.0                                       | e                        | g   | 1060.0           | е                                    | g   |
| -40/ -20 | -0.2                                         | 1.3                      | 3.2 | -2.4             | -1.0                                 | 0.8 |
| +20/ +40 | -0.3                                         | 1.5                      | 3.7 | -1.7             | 0.0                                  | 2.2 |
| +60/ +80 | -0.3                                         | 1.7                      | 4.1 | -1.4             | 0.5                                  | 3.0 |

#### P-SF67 907214.424

 $n_d = 1.90680$  $v_{d}$ = 21.40 n<sub>e</sub>= 1.91675

 $v_e$  = 21.23

 $n_F - n_C = 0.042374$  $n_{F'}-n_{C'}=0.043191$ 

| Refract                    | Refractive Indices |         |  |
|----------------------------|--------------------|---------|--|
|                            | λ [nm]             |         |  |
| n <sub>2325.4</sub>        | 2325.4             | 1.83479 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1             | 1.84280 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6             | 1.85235 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0             | 1.86543 |  |
| n <sub>t</sub>             | 1014.0             | 1.86727 |  |
| n <sub>s</sub>             | 852.1              | 1.87574 |  |
| n <sub>r</sub>             | 706.5              | 1.88833 |  |
| n <sub>C</sub>             | 656.3              | 1.89480 |  |
| n <sub>C'</sub>            | 643.8              | 1.89666 |  |
| n <sub>632.8</sub>         | 632.8              | 1.89841 |  |
| <b>n</b> <sub>D</sub>      | 589.3              | 1.90644 |  |
| $\mathbf{n}_{d}$           | 587.6              | 1.90680 |  |
| n <sub>e</sub>             | 546.1              | 1.91675 |  |
| n <sub>F</sub>             | 486.1              | 1.93717 |  |
| n <sub>F'</sub>            | 480.0              | 1.93985 |  |
| n <sub>g</sub>             | 435.8              | 1.96401 |  |
| n <sub>h</sub>             | 404.7              |         |  |
| n <sub>i</sub>             | 365.0              |         |  |
| <b>n</b> <sub>334.1</sub>  | 334.1              |         |  |
| <b>n</b> <sub>312.6</sub>  | 312.6              |         |  |
| <b>n</b> <sub>296.7</sub>  | 296.7              |         |  |
| n <sub>280.4</sub>         | 280.4              |         |  |
| n <sub>248.3</sub>         | 248.3              |         |  |

| Internal Transmittance τ <sub>i</sub> |                       |                       |  |
|---------------------------------------|-----------------------|-----------------------|--|
| λ [nm]                                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |
| 2500                                  | 0.933 0.840           |                       |  |
| 2325                                  | 0.946                 | 0.870                 |  |
| 1970                                  | 0.984                 | 0.960                 |  |
| 1530                                  | 0.994                 | 0.985                 |  |
| 1060                                  | 0.994                 | 0.985                 |  |
| 700                                   | 0.983                 | 0.958                 |  |
| 660                                   | 0.981                 | 0.952                 |  |
| 620                                   | 0.978                 | 0.946                 |  |
| 580                                   | 0.971                 | 0.930                 |  |
| 546                                   | 0.954                 | 0.890                 |  |
| 500                                   | 0.901                 | 0.770                 |  |
| 460                                   | 0.810                 | 0.590                 |  |
| 436                                   | 0.707                 | 0.420                 |  |
| 420                                   | 0.574                 | 0.250                 |  |
| 405                                   | 0.364                 | 0.080                 |  |
| 400                                   | 0.276                 | 0.040                 |  |
| 390                                   | 0.090                 |                       |  |
| 380                                   | 0.011                 |                       |  |
| 370                                   |                       |                       |  |
| 365                                   |                       |                       |  |
| 350                                   |                       |                       |  |
| 334                                   |                       |                       |  |
| 320                                   |                       |                       |  |
| 310                                   |                       |                       |  |
| 300                                   |                       |                       |  |
| 290                                   |                       |                       |  |
| 280                                   |                       |                       |  |
| 270                                   |                       |                       |  |
| 260                                   |                       |                       |  |
| 250                                   |                       |                       |  |
|                                       |                       |                       |  |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{s,t}$          | 0.1998 |  |
| P <sub>C,s</sub>            | 0.4498 |  |
| $\mathbf{P}_{d,C}$          | 0.2832 |  |
| $\mathbf{P}_{e,d}$          | 0.2348 |  |
| $\mathbf{P}_{g,F}$          | 0.6334 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.1960 |  |
| P' <sub>C',s</sub>          | 0.4843 |  |
| P' <sub>d,C'</sub>          | 0.2349 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2303 |  |
| P' <sub>g,F'</sub>          | 0.5595 |  |
| P' <sub>i,h</sub>           |        |  |
|                             | ·      |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |
|---------------------------------------------------------------------|---------|--|--|
| $\Delta P_{C,t}$                                                    | 0.0031  |  |  |
| ΔP <sub>C,s</sub>                                                   | -0.0030 |  |  |
| Δ <b>P</b> <sub>F,e</sub> 0.0049                                    |         |  |  |
| $\Delta P_{g,F}$                                                    | 0.0256  |  |  |
| $\Delta P_{i,g}$                                                    |         |  |  |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 6.2   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 7.4   |
| T <sub>a</sub> [°C]                                                       | 539   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 546   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 663   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.530 |
| λ [W/(m·K)]                                                               | 0.790 |
| AT [°C]                                                                   | 601   |
| ρ [g/cm <sup>3</sup> ]                                                    | 4.24  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 90    |
| μ                                                                         | 0.248 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 2.96  |
| HK <sub>0.1/20</sub>                                                      | 440   |
| HG                                                                        | 3     |
| HG-J                                                                      | 309   |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 0     |
| SR                                                                        | 1     |
| AR                                                                        | 1.3   |
| PR                                                                        | 1     |
| SR-J                                                                      | 1     |
| WR-J                                                                      | 1     |
| 1                                                                         | i     |

| <b>Constants of Dispersion</b> |              |  |  |  |
|--------------------------------|--------------|--|--|--|
| Formula                        |              |  |  |  |
| <b>B</b> <sub>1</sub>          | 1.97464225   |  |  |  |
| <b>B</b> <sub>2</sub>          | 0.467095921  |  |  |  |
| <b>B</b> <sub>3</sub>          | 2.43154209   |  |  |  |
| <b>C</b> <sub>1</sub>          | 0.0145772324 |  |  |  |
| <b>C</b> <sub>2</sub>          | 0.0669790359 |  |  |  |
| <b>C</b> <sub>3</sub>          | 157.444895   |  |  |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| $\mathbf{D}_0$                | 4.82 · 10 <sup>-7</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.15 · 10 <sup>-8</sup>   |  |
| $D_2$                         | -9.95 · 10 <sup>-12</sup> |  |
| <b>E</b> <sub>0</sub>         | 1.15 · 10 <sup>-6</sup>   |  |
| <b>E</b> <sub>1</sub>         | 1.65 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]          | 0.315                     |  |

| Color Code                   |        |
|------------------------------|--------|
| $\lambda_{80}/\lambda_{5}$   | 48/39* |
| $(*=\lambda_{70}/\lambda_5)$ |        |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temper                                                                    | Temperature Coefficients of Refractive Index |     |      |        |     |      |
|---------------------------------------------------------------------------|----------------------------------------------|-----|------|--------|-----|------|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$ $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |                                              |     |      | ]      |     |      |
| [°C]                                                                      | 1060.0                                       | Φ   | g    | 1060.0 | е   | g    |
| -40/ -20                                                                  | 2.6                                          | 5.5 | 10.1 | 0.1    | 2.9 | 7.4  |
| +20/ +40                                                                  | 2.8                                          | 6.3 | 11.7 | 1.2    | 4.6 | 10.0 |
| +60/ +80                                                                  | 3.1                                          | 7.0 | 13.0 | 1.9    | 5.7 | 11.7 |

#### **P-SF68** 005210.619

 $n_d = 2.00520$  $v_{d}$ = 21.00  $n_e = 2.01643$ 

 $v_e$  = 20.82

 $n_F - n_C = 0.047867$  $n_{F'}-n_{C'}=0.048826$ 

| Defractive Indiana         |        |         |  |  |
|----------------------------|--------|---------|--|--|
| Refractive Indices         |        |         |  |  |
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.93381 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.93968 |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.94732 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.95970 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.96160 |  |  |
| <b>n</b> <sub>s</sub>      | 852.1  | 1.97063 |  |  |
| n <sub>r</sub>             | 706.5  | 1.98449 |  |  |
| n <sub>C</sub>             | 656.3  | 1.99171 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.99380 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.99576 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 2.00479 |  |  |
| <b>n</b> <sub>d</sub>      | 587.6  | 2.00520 |  |  |
| n <sub>e</sub>             | 546.1  | 2.01643 |  |  |
| n <sub>F</sub>             | 486.1  | 2.03958 |  |  |
| n <sub>F</sub>             | 480.0  | 2.04262 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 2.07018 |  |  |
| n <sub>h</sub>             | 404.7  |         |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |
| n <sub>334.1</sub>         | 334.1  |         |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal <sup>*</sup> | Transmitta            | anceτi                |
|-----------------------|-----------------------|-----------------------|
| λ [nm]                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                  | 0.793                 | 0.560                 |
| 2325                  | 0.905                 | 0.780                 |
| 1970                  | 0.976                 | 0.940                 |
| 1530                  | 0.996                 | 0.990                 |
| 1060                  | 0.999                 | 0.998                 |
| 700                   | 0.997                 | 0.993                 |
| 660                   | 0.996                 | 0.989                 |
| 620                   | 0.994                 | 0.985                 |
| 580                   | 0.989                 | 0.973                 |
| 546                   | 0.976                 | 0.940                 |
| 500                   | 0.905                 | 0.780                 |
| 460                   | 0.758                 | 0.500                 |
| 436                   | 0.574                 | 0.250                 |
| 420                   | 0.302                 | 0.050                 |
| 405                   | 0.036                 |                       |
| 400                   | 0.007                 |                       |
| 390                   |                       |                       |
| 380                   |                       |                       |
| 370                   |                       |                       |
| 365                   |                       |                       |
| 350                   |                       |                       |
| 334                   |                       |                       |
| 320                   |                       |                       |
| 310                   |                       |                       |
| 300                   |                       |                       |
| 290                   |                       |                       |
| 280                   |                       |                       |
| 270                   |                       |                       |
| 260                   |                       |                       |
| 250                   |                       |                       |
|                       |                       |                       |
|                       |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{s,t}$          | 0.1885 |  |
| <b>P</b> <sub>C,s</sub>     | 0.4406 |  |
| $\mathbf{P}_{d,C}$          | 0.2817 |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2346 |  |
| $\mathbf{P}_{g,F}$          | 0.6392 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.1848 |  |
| P' <sub>C',s</sub>          | 0.4746 |  |
| P' <sub>d,C'</sub>          | 0.2336 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2300 |  |
| P' <sub>g,F'</sub>          | 0.5644 |  |
| P' <sub>i,h</sub>           |        |  |

| 200.4                     |            |        |     | 1 |  |
|---------------------------|------------|--------|-----|---|--|
| <b>n</b> <sub>248.3</sub> | 248.3      |        | 320 |   |  |
|                           |            |        | 310 |   |  |
| Constan                   | ts of Disp | ersion | 300 |   |  |
| Formula                   |            |        | 290 |   |  |
| <b>B</b> <sub>1</sub>     | 2.3330067  |        | 280 |   |  |
| <b>B</b> <sub>2</sub>     | 0.45296139 | 96     | 270 |   |  |
| <b>B</b> <sub>3</sub>     | 1.25172339 | )      | 260 |   |  |
| <b>C</b> <sub>1</sub>     | 0.01688384 | 119    | 250 |   |  |
| <b>C</b> <sub>2</sub>     | 0.07160863 | 325    |     |   |  |
| <b>C</b> <sub>3</sub>     | 118.707479 | 9      |     |   |  |

| Deviation of Relative                         |         |  |
|-----------------------------------------------|---------|--|
| Partial Dispersions ΔP from the "Normal Line" |         |  |
| ΔP <sub>C,t</sub>                             | -0.0156 |  |
| ΔP <sub>C,s</sub>                             | -0.0113 |  |
| Δ <b>P</b> <sub>F,e</sub>                     | 0.0063  |  |
| $\Delta \mathbf{P}_{g,F}$                     | 0.0308  |  |
| $\Delta \mathbf{P}_{i,g}$                     |         |  |

Other Properties

| Constants of Dispersion   |  |  |  |
|---------------------------|--|--|--|
| dn/dT                     |  |  |  |
| 1.55 · 10 <sup>-5</sup>   |  |  |  |
| 2.30 · 10 <sup>-8</sup>   |  |  |  |
| -3.46 · 10 <sup>-11</sup> |  |  |  |
| 2.76 · 10 <sup>-6</sup>   |  |  |  |
| 2.93 · 10 <sup>-9</sup>   |  |  |  |
| 0.297                     |  |  |  |
|                           |  |  |  |

| Color Code                   |        |
|------------------------------|--------|
| $\lambda_{80}/\lambda_{5}$   | 49/41* |
| $(*=\lambda_{70}/\lambda_5)$ |        |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Gallot i Toportio                                                        |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 8.4   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                  | 9.7   |
| T <sub>g</sub> [°C]                                                      | 428   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                              | 430   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 504   |
| $\mathbf{c}_{p}[J/(g\cdotK)]$                                            | 0.370 |
| λ [W/(m·K)]                                                              | 0.650 |
| AT [°C]                                                                  | 468   |
| ρ [g/cm <sup>3</sup> ]                                                   | 6.19  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 79    |
| μ                                                                        | 0.275 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 1.61  |
| HK <sub>0.1/20</sub>                                                     |       |
| HG                                                                       |       |
| HG-J                                                                     | 298   |
| В                                                                        |       |
|                                                                          |       |
| CR                                                                       | 1     |
| FR                                                                       | 5     |
| SR                                                                       | 53.3  |
| AR                                                                       | 2.3   |
| PR                                                                       | 2.3   |
| SR-J                                                                     | 4     |
| WR-J                                                                     | 1     |
|                                                                          |       |
|                                                                          |       |

| Temperature Coefficients of Refractive Index |                                      |      |      |                                                          |      |      |
|----------------------------------------------|--------------------------------------|------|------|----------------------------------------------------------|------|------|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |      |      | $\Gamma[10^{-6}/K]$ $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |      |      |
| [°C]                                         | 1060.0                               | e    | g    | 1060.0                                                   | е    | g    |
| -40/ -20                                     | 13.7                                 | 21.5 | 32.3 | 11.1                                                     | 18.8 | 29.5 |
| +20/ +40                                     | 15.2                                 | 24.1 | 36.5 | 13.5                                                     | 22.3 | 34.6 |
| +60/ +80                                     | 16.2                                 | 25.8 | 39.1 | 15.4                                                     | 25.3 | 39.2 |

#### SF1 717295.446

**SCHOTT** 

n<sub>d</sub>= 1.71736 n<sub>e</sub>= 1.72310  $v_d$ = 29.51  $v_e$ = 29.29

 $n_F - n_C = 0.024307$  $n_{F'} - n_{C'} = 0.024687$ 

| Refractiv                  | <u>re Indices</u> | ı       |
|----------------------------|-------------------|---------|
|                            | λ [nm]            |         |
| n <sub>2325.4</sub>        | 2325.4            | 1.67352 |
| <b>n</b> <sub>1970.1</sub> | 1970.1            | 1.67855 |
| <b>n</b> <sub>1529.6</sub> | 1529.6            | 1.68449 |
| <b>n</b> <sub>1060.0</sub> | 1060.0            | 1.69258 |
| n <sub>t</sub>             | 1014.0            | 1.69371 |
| <b>n</b> <sub>s</sub>      | 852.1             | 1.69888 |
| n <sub>r</sub>             | 706.5             | 1.70647 |
| n <sub>C</sub>             | 656.3             | 1.71031 |
| n <sub>C'</sub>            | 643.8             | 1.71141 |
| n <sub>632.8</sub>         | 632.8             | 1.71245 |
| $\mathbf{n}_{D}$           | 589.3             | 1.71715 |
| n <sub>d</sub>             | 587.6             | 1.71736 |
| n <sub>e</sub>             | 546.1             | 1.72310 |
| n <sub>F</sub>             | 486.1             | 1.73462 |
| n <sub>F'</sub>            | 480.0             | 1.73610 |
| <b>n</b> <sub>g</sub>      | 435.8             | 1.74916 |
| n <sub>h</sub>             | 404.7             | 1.76201 |
| n <sub>i</sub>             | 365.0             | 1.78580 |
| <b>n</b> <sub>334.1</sub>  | 334.1             |         |
| <b>n</b> <sub>312.6</sub>  | 312.6             |         |
| n <sub>296.7</sub>         | 296.7             |         |
| n <sub>280.4</sub>         | 280.4             |         |
| n <sub>248.3</sub>         | 248.3             |         |

| Internal <sup>*</sup> | rnal Transmittanceτ <sub>i</sub> |                       |  |  |
|-----------------------|----------------------------------|-----------------------|--|--|
| λ [nm]                | τ <sub>i</sub> (10mm)            | τ <sub>i</sub> (25mm) |  |  |
| 2500                  | 0.842                            | 0.650                 |  |  |
| 2325                  | 0.882                            | 0.730                 |  |  |
| 1970                  | 0.959                            | 0.900                 |  |  |
| 1530                  | 0.994                            | 0.985                 |  |  |
| 1060                  | 0.998                            | 0.996                 |  |  |
| 700                   | 0.998                            | 0.996                 |  |  |
| 660                   | 0.998                            | 0.995                 |  |  |
| 620                   | 0.998                            | 0.995                 |  |  |
| 580                   | 0.998                            | 0.996                 |  |  |
| 546                   | 0.998                            | 0.996                 |  |  |
| 500                   | 0.997                            | 0.993                 |  |  |
| 460                   | 0.994                            | 0.984                 |  |  |
| 436                   | 0.990                            | 0.976                 |  |  |
| 420                   | 0.984                            | 0.961                 |  |  |
| 405                   | 0.971                            | 0.930                 |  |  |
| 400                   | 0.967                            | 0.920                 |  |  |
| 390                   | 0.946                            | 0.870                 |  |  |
| 380                   | 0.910                            | 0.790                 |  |  |
| 370                   | 0.837                            | 0.640                 |  |  |
| 365                   | 0.758                            | 0.500                 |  |  |
| 350                   | 0.300                            | 0.030                 |  |  |
| 334                   |                                  |                       |  |  |
| 320                   |                                  |                       |  |  |
| 310                   |                                  |                       |  |  |
| 300                   |                                  |                       |  |  |
| 290                   |                                  |                       |  |  |
| 280                   |                                  |                       |  |  |
| 270                   |                                  |                       |  |  |
| 260                   |                                  |                       |  |  |
| 250                   |                                  |                       |  |  |
|                       |                                  |                       |  |  |
|                       |                                  |                       |  |  |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{\mathrm{s,t}}$ | 0.2127 |  |
| <b>P</b> <sub>C,s</sub>     | 0.4705 |  |
| $\mathbf{P}_{d,C}$          | 0.2899 |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2364 |  |
| $\mathbf{P}_{g,F}$          | 0.5983 |  |
| $\mathbf{P}_{i,h}$          | 0.9791 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2094 |  |
| P' <sub>C',s</sub>          | 0.5078 |  |
| P' <sub>d,C'</sub>          | 0.2409 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2327 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5292 |  |
| P' <sub>i,h</sub>           | 0.9640 |  |

|                       |                  | 310 |
|-----------------------|------------------|-----|
| Constan               | ts of Dispersion | 300 |
| Formula               |                  | 290 |
| <b>B</b> <sub>1</sub> | 1.55912923       | 280 |
| <b>B</b> <sub>2</sub> | 0.284246288      | 270 |
| <b>B</b> <sub>3</sub> | 0.968842926      | 260 |
| <b>C</b> <sub>1</sub> | 0.0121481001     | 250 |
| <b>C</b> <sub>2</sub> | 0.0534549042     |     |
| <b>C</b> <sub>3</sub> | 112.174809       |     |

| Deviation of Relative Partial Dispersions ΔP |           |  |
|----------------------------------------------|-----------|--|
| from the "Nor                                | mal Line" |  |
| ΔP <sub>C,t</sub>                            | -0.0018   |  |
| ΔP <sub>C,s</sub>                            | -0.0012   |  |
| Δ <b>P</b> <sub>F,e</sub>                    | 0.0009    |  |
| ΔP <sub>g,F</sub>                            | 0.0042    |  |
| $\Delta \mathbf{P}_{i,g}$                    | 0.0307    |  |

Other Properties

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   |                           |  |  |
| <b>D</b> <sub>0</sub>   | 4.84 · 10 <sup>-6</sup>   |  |  |
| <b>D</b> <sub>1</sub>   | 1.70 · 10 <sup>-8</sup>   |  |  |
| <b>D</b> <sub>2</sub>   | -4.52 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>   | 1.38 · 10 <sup>-6</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 1.26 · 10 <sup>-9</sup>   |  |  |
| λ <sub>TK</sub> [μm]    | 0.259                     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 39/34 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                    |
|----------------------------|
| lead containing glass type |
|                            |

| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 8.1   |
|--------------------------------------------------------------------------|-------|
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 8.8   |
| T <sub>a</sub> [°C]                                                      | 417   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 415   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 566   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                           |       |
| λ [W/(m·K)]                                                              |       |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 4.46  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 56    |
| μ                                                                        | 0.232 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 1.80  |
| HK <sub>0.1/20</sub>                                                     | 390   |
| HG                                                                       | 1     |
|                                                                          |       |
| В                                                                        | 1     |
|                                                                          |       |
| CR                                                                       | 2     |
| FR                                                                       | 1     |
| SR                                                                       | 3.2   |
| AR                                                                       | 2.3   |
| PR                                                                       | 3     |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |

| Temperature Coefficients of Refractive Index |        |                                      |      |        |     |      |
|----------------------------------------------|--------|--------------------------------------|------|--------|-----|------|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |      | ]      |     |      |
| [°C]                                         | 1060.0 | e                                    | g    | 1060.0 | е   | g    |
| -40/ -20                                     | 4.5    | 7.0                                  | 10.1 | 2.2    | 4.7 | 7.7  |
| +20/ +40                                     | 5.0    | 7.9                                  | 11.3 | 3.6    | 6.4 | 9.8  |
| +60/ +80                                     | 5.3    | 8.4                                  | 12.1 | 4.2    | 7.3 | 10.9 |

#### SF2 648339.386

**SCHOTT** 

 $\begin{array}{ll} n_d \! = \! 1.64769 & \nu_d \! = \! 33.85 \\ n_e \! = \! 1.65222 & \nu_e \! = \! 33.60 \end{array}$ 

 $n_F - n_C = 0.019135$  $n_{F'} - n_{C'} = 0.019412$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
| λ [nm]                     |        |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.61003 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.61494 |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.62055 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.62766 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.62861 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.63289 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.63902 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.64210 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.64297 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.64379 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.64752 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.64769 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.65222 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.66123 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.66238 |  |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.67249 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.68233 |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.70027 |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |  |

| Internal ' | Transmitta            | anceτ;                |
|------------|-----------------------|-----------------------|
| λ [nm]     | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500       | 0.826                 | 0.620                 |
| 2325       | 0.872                 | 0.710                 |
| 1970       | 0.950                 | 0.880                 |
| 1530       | 0.994                 | 0.985                 |
| 1060       | 0.998                 | 0.996                 |
| 700        | 0.998                 | 0.996                 |
| 660        | 0.998                 | 0.994                 |
| 620        | 0.998                 | 0.995                 |
| 580        | 0.998                 | 0.995                 |
| 546        | 0.998                 | 0.995                 |
| 500        | 0.997                 | 0.993                 |
| 460        | 0.995                 | 0.988                 |
| 436        | 0.993                 | 0.982                 |
| 420        | 0.990                 | 0.975                 |
| 405        | 0.985                 | 0.962                 |
| 400        | 0.981                 | 0.954                 |
| 390        | 0.967                 | 0.920                 |
| 380        | 0.946                 | 0.870                 |
| 370        | 0.910                 | 0.790                 |
| 365        | 0.877                 | 0.720                 |
| 350        | 0.672                 | 0.370                 |
| 334        | 0.110                 |                       |
| 320        |                       |                       |
| 310        |                       |                       |
| 300        |                       |                       |
| 290        |                       |                       |
| 280        |                       |                       |
| 270        |                       |                       |
| 260        |                       |                       |
| 250        |                       |                       |
|            |                       |                       |

| Relative Partial Dispersion |        |  |  |
|-----------------------------|--------|--|--|
| $\mathbf{P}_{s,t}$          | 0.2233 |  |  |
| <b>P</b> <sub>C,s</sub>     | 0.4813 |  |  |
| $\mathbf{P}_{d,C}$          | 0.2923 |  |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2367 |  |  |
| $\mathbf{P}_{g,F}$          | 0.5886 |  |  |
| P <sub>i,h</sub>            | 0.9376 |  |  |
|                             |        |  |  |
| P' <sub>s,t</sub>           | 0.2201 |  |  |
| P' <sub>C',s</sub>          | 0.5196 |  |  |
| P' <sub>d,C'</sub>          | 0.2430 |  |  |
| P' <sub>e,d</sub>           | 0.2334 |  |  |
| P' <sub>g,F'</sub>          | 0.5209 |  |  |
| P' <sub>i,h</sub>           | 0.9242 |  |  |
|                             | •      |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | -0.0009 |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | -0.0005 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0004  |  |
| $\Delta P_{g,F}$                                                    | 0.0017  |  |
| $\Delta \mathbf{P}_{i,g}$                                           | 0.0112  |  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 8.4   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                         | 9.2   |
| T <sub>a</sub> [°C]                                                   | 441   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 428   |
| T <sub>10</sub> <sup>7.6</sup> [°C]                                   | 600   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.498 |
| λ [W/(m·K)]                                                           | 0.735 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 3.86  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 55    |
| μ                                                                     | 0.227 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 2.62  |
| HK <sub>0.1/20</sub>                                                  | 410   |
| HG                                                                    | 2     |
|                                                                       |       |
| В                                                                     | 0     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 0     |
| SR                                                                    | 2     |
| AR                                                                    | 2.3   |
| PR                                                                    | 2     |
|                                                                       |       |
|                                                                       |       |
|                                                                       | I     |

| Constants of Dispersion |              |  |  |
|-------------------------|--------------|--|--|
| Formula                 |              |  |  |
| <b>B</b> <sub>1</sub>   | 1.40301821   |  |  |
| <b>B</b> <sub>2</sub>   | 0.231767504  |  |  |
| <b>B</b> <sub>3</sub>   | 0.939056586  |  |  |
| <b>C</b> <sub>1</sub>   | 0.0105795466 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0493226978 |  |  |
| <b>C</b> <sub>3</sub>   | 112.405955   |  |  |

| Constants of Dispersion dn/dT |                           |  |  |
|-------------------------------|---------------------------|--|--|
| $\mathbf{D}_0$                | 1.10 · 10 <sup>-6</sup>   |  |  |
| <b>D</b> <sub>1</sub>         | 1.75 · 10 <sup>-8</sup>   |  |  |
| $D_2$                         | -1.29 · 10 <sup>-11</sup> |  |  |
| <b>E</b> <sub>0</sub>         | 1.08 · 10 <sup>-6</sup>   |  |  |
| <b>E</b> <sub>1</sub>         | 1.03 · 10 <sup>-9</sup>   |  |  |
| λ <sub>TK</sub> [μm]          | 0.249                     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/33 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                    |
|----------------------------|
| lead containing glass type |
|                            |
|                            |

| Temperature Coefficients of Refractive Index |        |                                      |     |        |     |     |
|----------------------------------------------|--------|--------------------------------------|-----|--------|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     |        |     |     |
| [°C]                                         | 1060.0 | e                                    | g   | 1060.0 | е   | g   |
| -40/ -20                                     | 2.3    | 4.0                                  | 6.0 | 0.1    | 1.8 | 3.7 |
| +20/ +40                                     | 2.7    | 4.6                                  | 6.9 | 1.3    | 3.2 | 5.4 |
| +60/ +80                                     | 3.1    | 5.2                                  | 7.6 | 2.0    | 4.1 | 6.4 |

#### SF4 755276.479

n<sub>d</sub>= 1.75520  $v_{d}$ = 27.58 n<sub>e</sub>= 1.76167

 $v_e = 27.37$ 

 $n_F - n_C = 0.027383$  $n_{F'}$ - $n_{C'}$ = 0.027829

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.70789 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.71294 |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.71904 |  |  |
| n <sub>1060.0</sub>        | 1060.0 | 1.72765 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.72888 |  |  |
| n <sub>s</sub>             | 852.1  | 1.73456 |  |  |
| n <sub>r</sub>             | 706.5  | 1.74300 |  |  |
| n <sub>C</sub>             | 656.3  | 1.74730 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.74853 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.74969 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.75496 |  |  |
| n <sub>d</sub>             | 587.6  | 1.75520 |  |  |
| n <sub>e</sub>             | 546.1  | 1.76167 |  |  |
| n <sub>F</sub>             | 486.1  | 1.77468 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.77636 |  |  |
| n <sub>g</sub>             | 435.8  | 1.79121 |  |  |
| n <sub>h</sub>             | 404.7  | 1.80589 |  |  |
| n <sub>i</sub>             | 365.0  | 1.83330 |  |  |
| n <sub>334.1</sub>         | 334.1  |         |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |  |  |
|--------------------------------------|-----------------------|-----------------------|--|--|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |  |
| 2500                                 | 0.847                 | 0.660                 |  |  |
| 2325                                 | 0.887                 | 0.740                 |  |  |
| 1970                                 | 0.963                 | 0.910                 |  |  |
| 1530                                 | 0.996                 | 0.989                 |  |  |
| 1060                                 | 0.998                 | 0.996                 |  |  |
| 700                                  | 0.998                 | 0.996                 |  |  |
| 660                                  | 0.998                 | 0.995                 |  |  |
| 620                                  | 0.998                 | 0.995                 |  |  |
| 580                                  | 0.998                 | 0.996                 |  |  |
| 546                                  | 0.998                 | 0.996                 |  |  |
| 500                                  | 0.996                 | 0.991                 |  |  |
| 460                                  | 0.992                 | 0.980                 |  |  |
| 436                                  | 0.987                 | 0.967                 |  |  |
| 420                                  | 0.980                 | 0.950                 |  |  |
| 405                                  | 0.963                 | 0.910                 |  |  |
| 400                                  | 0.954                 | 0.890                 |  |  |
| 390                                  | 0.924                 | 0.820                 |  |  |
| 380                                  | 0.862                 | 0.690                 |  |  |
| 370                                  | 0.727                 | 0.450                 |  |  |
| 365                                  | 0.601                 | 0.280                 |  |  |
| 350                                  | 0.090                 |                       |  |  |
| 334                                  |                       |                       |  |  |
| 320                                  |                       |                       |  |  |
| 310                                  |                       |                       |  |  |
| 300                                  |                       |                       |  |  |
| 290                                  |                       |                       |  |  |
| 280                                  |                       |                       |  |  |
| 270                                  |                       |                       |  |  |
| 260                                  |                       |                       |  |  |
| 250                                  |                       |                       |  |  |
| 1                                    |                       |                       |  |  |

| Relative Partial Dispersion |        |  |  |
|-----------------------------|--------|--|--|
| P <sub>s,t</sub>            | 0.2076 |  |  |
| P <sub>C,s</sub>            | 0.4650 |  |  |
| P <sub>d,C</sub>            | 0.2886 |  |  |
| P <sub>e,d</sub>            | 0.2361 |  |  |
| $\mathbf{P}_{g,F}$          | 0.6036 |  |  |
| $\mathbf{P}_{i,h}$          | 1.0012 |  |  |
|                             |        |  |  |
| P' <sub>s,t</sub>           | 0.2042 |  |  |
| P' <sub>C',s</sub>          | 0.5018 |  |  |
| P' <sub>d,C'</sub>          | 0.2398 |  |  |
| P' <sub>e,d</sub>           | 0.2323 |  |  |
| P' <sub>g,F'</sub>          | 0.5337 |  |  |
| P' <sub>i,h</sub>           | 0.9851 |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |
|---------------------------------------------------------------------|---------|--|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | -0.0032 |  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | -0.0022 |  |  |
| Δ <b>P</b> <sub>F,e</sub> 0.0014                                    |         |  |  |
| Δ <b>P</b> <sub>g,F</sub> 0.0062                                    |         |  |  |
| Δ <b>P</b> <sub>i,g</sub> 0.0443                                    |         |  |  |
|                                                                     |         |  |  |

| Other Properties                                                      |       |  |  |
|-----------------------------------------------------------------------|-------|--|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 8.0   |  |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                         | 8.9   |  |  |
| T <sub>g</sub> [°C]                                                   | 420   |  |  |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 415   |  |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                            | 552   |  |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.410 |  |  |
| λ [W/(m·K)]                                                           | 0.650 |  |  |
|                                                                       |       |  |  |
| ρ [g/cm <sup>3</sup> ]                                                | 4.79  |  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 56    |  |  |
| μ                                                                     | 0.241 |  |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 1.36  |  |  |
| HK <sub>0.1/20</sub>                                                  | 390   |  |  |
| HG                                                                    | 1     |  |  |
|                                                                       |       |  |  |
| В                                                                     | 1     |  |  |
|                                                                       |       |  |  |
| CR                                                                    | 1     |  |  |
| FR                                                                    | 2     |  |  |
| SR                                                                    | 4.3   |  |  |
| AR                                                                    | 2.3   |  |  |
| PR                                                                    | 3.3   |  |  |
|                                                                       |       |  |  |
|                                                                       |       |  |  |
|                                                                       |       |  |  |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 1.61957826   |  |
| <b>B</b> <sub>2</sub>   | 0.339493189  |  |
| <b>B</b> <sub>3</sub>   | 1.02566931   |  |
| <b>C</b> <sub>1</sub>   | 0.0125502104 |  |
| <b>C</b> <sub>2</sub>   | 0.0544559822 |  |
| C <sub>2</sub>          | 117.652222   |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | 5.60 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.70 · 10 <sup>-8</sup>   |  |
| <b>D</b> <sub>2</sub>   | -5.27 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 1.54 · 10 <sup>-6</sup>   |  |
| <b>E</b> <sub>1</sub>   | 1.46 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]    | 0.266                     |  |

| Color Code                   |       |  |
|------------------------------|-------|--|
| $\lambda_{80}/\lambda_{5}$   | 40/35 |  |
| $(*=\lambda_{70}/\lambda_5)$ |       |  |

| Remarks                    |  |
|----------------------------|--|
| lead containing glass type |  |
|                            |  |

| Temperature Coefficients of Refractive Index |                                      |     |      |                                      |     |      |
|----------------------------------------------|--------------------------------------|-----|------|--------------------------------------|-----|------|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     |      | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     | ]    |
| [°C]                                         | 1060.0                               | Φ   | g    | 1060.0                               | е   | g    |
| -40/ -20                                     | 5.1                                  | 8.1 | 11.8 | 2.8                                  | 5.7 | 9.4  |
| +20/ +40                                     | 5.7                                  | 9.2 | 13.3 | 4.3                                  | 7.7 | 11.8 |
| +60/ +80                                     | 6.0                                  | 9.7 | 14.2 | 4.9                                  | 8.5 | 13.0 |

#### SF5 673322.407

**SCHOTT** 

 $n_d$ = 1.67270  $v_d$ = 32.21  $n_e$ = 1.67764  $v_e$ = 31.97

 $n_F - n_C = 0.020885$  $n_{F'} - n_{C'} = 0.021195$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.63289 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.63785 |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.64359 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.65104 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.65206 |  |  |
| n <sub>s</sub>             | 852.1  | 1.65664 |  |  |
| n <sub>r</sub>             | 706.5  | 1.66327 |  |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.66661 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.66756 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.66846 |  |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.67252 |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.67270 |  |  |
| n <sub>e</sub>             | 546.1  | 1.67764 |  |  |
| n <sub>F</sub>             | 486.1  | 1.68750 |  |  |
| n <sub>F</sub>             | 480.0  | 1.68876 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.69986 |  |  |
| n <sub>h</sub>             | 404.7  | 1.71069 |  |  |
| n <sub>i</sub>             | 365.0  | 1.73056 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal Transmittanceτ |                       |                       |  |  |
|-------------------------|-----------------------|-----------------------|--|--|
| λ [nm]                  | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |  |
| 2500                    | 0.847                 | 0.660                 |  |  |
| 2325                    | 0.887                 | 0.740                 |  |  |
| 1970                    | 0.959                 | 0.900                 |  |  |
| 1530                    | 0.995                 | 0.987                 |  |  |
| 1060                    | 0.998                 | 0.996                 |  |  |
| 700                     | 0.998                 | 0.996                 |  |  |
| 660                     | 0.998                 | 0.995                 |  |  |
| 620                     | 0.998                 | 0.995                 |  |  |
| 580                     | 0.998                 | 0.996                 |  |  |
| 546                     | 0.998                 | 0.996                 |  |  |
| 500                     | 0.997                 | 0.993                 |  |  |
| 460                     | 0.995                 | 0.988                 |  |  |
| 436                     | 0.993                 | 0.982                 |  |  |
| 420                     | 0.989                 | 0.973                 |  |  |
| 405                     | 0.983                 | 0.959                 |  |  |
| 400                     | 0.980                 | 0.950                 |  |  |
| 390                     | 0.967                 | 0.920                 |  |  |
| 380                     | 0.950                 | 0.880                 |  |  |
| 370                     | 0.915                 | 0.800                 |  |  |
| 365                     | 0.882                 | 0.730                 |  |  |
| 350                     | 0.626                 | 0.310                 |  |  |
| 334                     | 0.200                 |                       |  |  |
| 320                     |                       |                       |  |  |
| 310                     |                       |                       |  |  |
| 300                     |                       |                       |  |  |
| 290                     |                       |                       |  |  |
| 280                     |                       |                       |  |  |
| 270                     |                       |                       |  |  |
| 260                     |                       |                       |  |  |
| 250                     |                       |                       |  |  |
|                         |                       |                       |  |  |
|                         |                       |                       |  |  |

| <b>11</b> 248.3       | 240.3      |        | L |
|-----------------------|------------|--------|---|
|                       |            |        |   |
| Constan               | ts of Disp | ersion | ſ |
| Formula               |            |        |   |
| B <sub>1</sub>        | 1.4614188  | 5      |   |
| <b>B</b> <sub>2</sub> | 0.2477130  | 19     |   |
| $\mathbf{B}_3$        | 0.94999583 | 32     |   |
| <b>C</b> <sub>1</sub> | 0.0111826  | 126    |   |
| <b>C</b> <sub>2</sub> | 0.05085946 | 669    |   |
| <b>C</b> <sub>3</sub> | 112.041888 | 3      |   |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/33 |
| $(*=\lambda_{70}/\lambda_5)$ |       |
|                              |       |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | 2.59 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.76 · 10 <sup>-8</sup>   |  |
| D <sub>2</sub>          | -2.03 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 1.17 · 10 <sup>-6</sup>   |  |
| <b>E</b> <sub>1</sub>   | 1.09 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]    | 0.255                     |  |

| Remarks                    |
|----------------------------|
| lead containing glass type |
|                            |
|                            |

| Temper   | Temperature Coefficients of Refractive Index                |     |                                                             |        |     |     |
|----------|-------------------------------------------------------------|-----|-------------------------------------------------------------|--------|-----|-----|
|          | $\Delta$ n <sub>rel</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |     | $\Delta$ n <sub>abs</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |        | ]   |     |
| [°C]     | 1060.0                                                      | e   | g                                                           | 1060.0 | е   | g   |
| -40/ -20 | 3.1                                                         | 5.1 | 7.4                                                         | 0.9    | 2.8 | 5.1 |
| +20/ +40 | 3.5                                                         | 5.8 | 8.4                                                         | 2.1    | 4.4 | 6.9 |
| +60/ +80 | 3.9                                                         | 6.4 | 9.2                                                         | 2.8    | 5.2 | 8.0 |

| <b>Relative Partial Dispersion</b> |        |  |
|------------------------------------|--------|--|
| P <sub>s,t</sub>                   | 0.2194 |  |
| <b>P</b> <sub>C,s</sub>            | 0.4775 |  |
| $\mathbf{P}_{d,C}$                 | 0.2915 |  |
| $\mathbf{P}_{e,d}$                 | 0.2366 |  |
| $\mathbf{P}_{g,F}$                 | 0.5919 |  |
| $\mathbf{P}_{i,h}$                 | 0.9513 |  |
|                                    |        |  |
| P' <sub>s,t</sub>                  | 0.2162 |  |
| P' <sub>C',s</sub>                 | 0.5153 |  |
| P' <sub>d,C'</sub>                 | 0.2423 |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2331 |  |
| <b>P'</b> <sub>g,F'</sub>          | 0.5237 |  |
| P' <sub>i,h</sub>                  | 0.9374 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |
|---------------------------------------------------------------------|---------|--|--|
| $\Delta \mathbf{P}_{\mathrm{C,t}}$                                  | -0.0010 |  |  |
| ΔP <sub>C,s</sub>                                                   | -0.0005 |  |  |
| $\Delta \mathbf{P}_{F,e}$                                           | 0.0005  |  |  |
| $\Delta \mathbf{P}_{g,F}$                                           | 0.0023  |  |  |
| $\Delta P_{i,g}$                                                    | 0.0160  |  |  |

| 8.2   |
|-------|
| 9.0   |
| 425   |
| 421   |
| 580   |
|       |
|       |
|       |
| 4.07  |
| 56    |
| 0.233 |
| 2.28  |
| 410   |
| 2     |
|       |
| 1     |
|       |
| 1     |
| 1     |
| 2     |
| 2.3   |
|       |
| 3     |
| 3     |
| 3     |
|       |

#### SF6 805254.518

n<sub>d</sub>= 1.80518  $v_{d}$ = 25.43 n<sub>e</sub>= 1.81265

 $v_e$  = 25.24

 $n_F - n_C = 0.031660$  $n_{F'}-n_{C'}=0.032201$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.75302 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.75813 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.76444 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.77380 |  |
| n <sub>t</sub>             | 1014.0 | 1.77517 |  |
| n <sub>s</sub>             | 852.1  | 1.78157 |  |
| n <sub>r</sub>             | 706.5  | 1.79117 |  |
| n <sub>C</sub>             | 656.3  | 1.79609 |  |
| n <sub>C'</sub>            | 643.8  | 1.79750 |  |
| n <sub>632.8</sub>         | 632.8  | 1.79884 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.80491 |  |
| n <sub>d</sub>             | 587.6  | 1.80518 |  |
| n <sub>e</sub>             | 546.1  | 1.81265 |  |
| n <sub>F</sub>             | 486.1  | 1.82775 |  |
| n <sub>F</sub>             | 480.0  | 1.82970 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.84707 |  |
| n <sub>h</sub>             | 404.7  | 1.86436 |  |
| n <sub>i</sub>             | 365.0  | 1.89703 |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| n <sub>312.6</sub>         | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |
| <b>n</b> <sub>248.3</sub>  | 248.3  |         |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |
|--------------------------------------|-----------------------|-----------------------|
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                                 | 0.887                 | 0.740                 |
| 2325                                 | 0.910                 | 0.790                 |
| 1970                                 | 0.971                 | 0.930                 |
| 1530                                 | 0.996                 | 0.991                 |
| 1060                                 | 0.999                 | 0.999                 |
| 700                                  | 0.999                 | 0.997                 |
| 660                                  | 0.998                 | 0.996                 |
| 620                                  | 0.998                 | 0.995                 |
| 580                                  | 0.999                 | 0.996                 |
| 546                                  | 0.998                 | 0.996                 |
| 500                                  | 0.996                 | 0.991                 |
| 460                                  | 0.991                 | 0.978                 |
| 436                                  | 0.982                 | 0.955                 |
| 420                                  | 0.967                 | 0.920                 |
| 405                                  | 0.933                 | 0.840                 |
| 400                                  | 0.915                 | 0.800                 |
| 390                                  | 0.847                 | 0.660                 |
| 380                                  | 0.720                 | 0.440                 |
| 370                                  | 0.442                 | 0.130                 |
| 365                                  | 0.246                 | 0.030                 |
| 350                                  |                       |                       |
| 334                                  |                       |                       |
| 320                                  |                       |                       |
| 310                                  |                       |                       |
| 300                                  |                       |                       |
| 290                                  |                       |                       |
| 280                                  |                       |                       |
| 270                                  |                       |                       |
| 260                                  |                       |                       |
| 250                                  |                       |                       |
| İ                                    |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2020 |  |
| P <sub>C,s</sub>            | 0.4588 |  |
| P <sub>d,C</sub>            | 0.2871 |  |
| P <sub>e,d</sub>            | 0.2359 |  |
| $\mathbf{P}_{g,F}$          | 0.6102 |  |
| $\mathbf{P}_{i,h}$          | 1.0316 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.1986 |  |
| P' <sub>C',s</sub>          | 0.4950 |  |
| P' <sub>d,C'</sub>          | 0.2384 |  |
| P' <sub>e,d</sub>           | 0.2319 |  |
| P' <sub>g,F'</sub>          | 0.5393 |  |
| P' <sub>i,h</sub>           | 1.0143 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| ΔP <sub>C,t</sub>                                                   | -0.0048 |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | -0.0033 |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | 0.0020  |  |
| $\Delta P_{g,F}$                                                    | 0.0092  |  |
| Δ <b>P</b> <sub>i,g</sub> 0.0669                                    |         |  |
|                                                                     |         |  |

| Other Properties                                                         |       |
|--------------------------------------------------------------------------|-------|
| Other Properties                                                         | T     |
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 8.1   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                  | 9.0   |
| $T_g[^{\circ}C]$                                                         | 423   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 410   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 538   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                           | 0.389 |
| $\lambda [W/(m \cdot K)]$                                                | 0.673 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 5.18  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 55    |
| μ                                                                        | 0.244 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 0.65  |
| HK <sub>0.1/20</sub>                                                     | 370   |
| HG                                                                       | 1     |
|                                                                          |       |
| В                                                                        | 0     |
|                                                                          |       |
| CR                                                                       | 2     |
| FR                                                                       | 3     |
| SR                                                                       | 51.3  |
| AR                                                                       | 2.3   |
| PR                                                                       | 3.3   |
|                                                                          |       |

| Constants of Dispersion |              |  |  |
|-------------------------|--------------|--|--|
| Formula                 |              |  |  |
| <b>B</b> <sub>1</sub>   | 1.72448482   |  |  |
| <b>B</b> <sub>2</sub>   | 0.390104889  |  |  |
| <b>B</b> <sub>3</sub>   | 1.04572858   |  |  |
| <b>C</b> <sub>1</sub>   | 0.0134871947 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0569318095 |  |  |
| <b>C</b> <sub>3</sub>   | 118.557185   |  |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| $\mathbf{D}_0$          | 6.69 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.78 · 10 <sup>-8</sup>   |  |
| $D_2$                   | -3.36 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 1.77 · 10 <sup>-6</sup>   |  |
| <b>E</b> <sub>1</sub>   | 1.70 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]    | 0.269                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 42/36 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Temper                                                                                                                  | Temperature Coefficients of Refractive Index |      |        |     |      |      |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|--------|-----|------|------|
| $\Delta$ n <sub>rel</sub> / $\Delta$ T[10 <sup>-6</sup> /K] $\Delta$ n <sub>abs</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |                                              |      | ]      |     |      |      |
| [°C]                                                                                                                    | 1060.0 e g                                   |      | 1060.0 | е   | g    |      |
| -40/ -20                                                                                                                | 6.1                                          | 9.9  | 14.5   | 3.7 | 7.4  | 11.9 |
| +20/ +40                                                                                                                | 6.8                                          | 11.1 | 16.2   | 5.3 | 9.5  | 14.6 |
| +60/ +80                                                                                                                | 7.3                                          | 11.8 | 17.4   | 6.1 | 10.6 | 16.1 |

#### SF6HT 805254.518

**SCHOTT** 

 $n_d$ = 1.80518  $v_d$ = 25.43  $n_e$ = 1.81265  $v_e$ = 25.24

 $n_F - n_C = 0.031660$  $n_{F'} - n_{C'} = 0.032201$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.75302 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.75813 |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.76444 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.77380 |  |
| n <sub>t</sub>             | 1014.0 | 1.77517 |  |
| n <sub>s</sub>             | 852.1  | 1.78157 |  |
| n <sub>r</sub>             | 706.5  | 1.79117 |  |
| n <sub>C</sub>             | 656.3  | 1.79609 |  |
| n <sub>C'</sub>            | 643.8  | 1.79750 |  |
| n <sub>632.8</sub>         | 632.8  | 1.79884 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.80491 |  |
| n <sub>d</sub>             | 587.6  | 1.80518 |  |
| n <sub>e</sub>             | 546.1  | 1.81265 |  |
| n <sub>F</sub>             | 486.1  | 1.82775 |  |
| n <sub>F'</sub>            | 480.0  | 1.82970 |  |
| n <sub>g</sub>             | 435.8  | 1.84707 |  |
| n <sub>h</sub>             | 404.7  | 1.86436 |  |
| n <sub>i</sub>             | 365.0  | 1.89703 |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal <sup>*</sup> | Transmitta            | anceτ <sub>i</sub>    |  |
|-----------------------|-----------------------|-----------------------|--|
| λ [nm]                | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |
| 2500                  | 0.887                 | 0.740                 |  |
| 2325                  | 0.910                 | 0.790                 |  |
| 1970                  | 0.971                 | 0.930                 |  |
| 1530                  | 0.996                 | 0.991                 |  |
| 1060                  | 0.999                 | 0.999                 |  |
| 700                   | 0.999                 | 0.997                 |  |
| 660                   | 0.998                 | 0.996                 |  |
| 620                   | 0.998                 | 0.995                 |  |
| 580                   | 0.999                 | 0.996                 |  |
| 546                   | 0.998                 | 0.996                 |  |
| 500                   | 0.996                 | 0.991                 |  |
| 460                   | 0.992                 | 0.981                 |  |
| 436                   | 0.987                 | 0.967                 |  |
| 420                   | 0.977                 | 0.943                 |  |
| 405                   | 0.954                 | 0.890                 |  |
| 400                   | 0.941                 | 0.860                 |  |
| 390                   | 0.891                 | 0.750                 |  |
| 380                   | 0.770                 | 0.520                 |  |
| 370                   | 0.504                 | 0.180                 |  |
| 365                   | 0.302                 | 0.050                 |  |
| 350                   |                       |                       |  |
| 334                   |                       |                       |  |
| 320                   |                       |                       |  |
| 310                   |                       |                       |  |
| 300                   |                       |                       |  |
| 290                   |                       |                       |  |
| 280                   |                       |                       |  |
| 270                   |                       |                       |  |
| 260                   |                       |                       |  |
| 250                   |                       |                       |  |
|                       |                       |                       |  |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2020 |  |
| P <sub>C,s</sub>            | 0.4588 |  |
| $\mathbf{P}_{d,C}$          | 0.2871 |  |
| $\mathbf{P}_{e,d}$          | 0.2359 |  |
| $\mathbf{P}_{g,F}$          | 0.6102 |  |
| $\mathbf{P}_{i,h}$          | 1.0316 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.1986 |  |
| P' <sub>C',s</sub>          | 0.4950 |  |
| P' <sub>d,C'</sub>          | 0.2384 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2319 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5393 |  |
| P' <sub>i,h</sub>           | 1.0143 |  |

| •• 280.4                  | 200.7      |        | 007 |  |
|---------------------------|------------|--------|-----|--|
| <b>n</b> <sub>248.3</sub> | 248.3      |        | 320 |  |
|                           |            | -      | 310 |  |
| Constan                   | ts of Disp | ersion | 300 |  |
| Formula                   |            |        | 290 |  |
| <b>B</b> <sub>1</sub>     | 1.72448482 | 2      | 280 |  |
| <b>B</b> <sub>2</sub>     | 0.39010488 | 39     | 270 |  |
| <b>B</b> <sub>3</sub>     | 1.04572858 | 3      | 260 |  |
| <b>C</b> <sub>1</sub>     | 0.01348719 | 947    | 250 |  |
| <b>C</b> <sub>2</sub>     | 0.05693180 | 095    |     |  |
| <b>C</b> <sub>3</sub>     | 118.557185 | 5      |     |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| $\Delta \mathbf{P}_{\mathrm{C,t}}$                                  | -0.0048 |  |
| ΔP <sub>C,s</sub>                                                   | -0.0033 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0020  |  |
| ΔP <sub>g,F</sub>                                                   | 0.0092  |  |
| $\Delta \mathbf{P}_{i,g}$                                           | 0.0669  |  |

Other Properties

| <b>Constants of Dispersion</b> |                           |  |
|--------------------------------|---------------------------|--|
| dn/dT                          |                           |  |
| $\mathbf{D}_0$                 | 6.69 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>          | 1.78 · 10 <sup>-8</sup>   |  |
| <b>D</b> <sub>2</sub>          | -3.36 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>          | 1.77 · 10 <sup>-6</sup>   |  |
| <b>E</b> <sub>1</sub>          | 1.70 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]           | 0.269                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 41/36 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                    |
|----------------------------|
| lead containing glass type |
|                            |

| Other i roperties                                                        |       |
|--------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 8.1   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                  | 9.0   |
| $T_{\alpha}[^{\circ}C]$                                                  | 423   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                              | 410   |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 538   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                          | 0.389 |
| λ [W/(m·K)]                                                              | 0.673 |
|                                                                          |       |
| ρ [g/cm <sup>3</sup> ]                                                   | 5.18  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 55    |
| μ                                                                        | 0.244 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 0.65  |
| HK <sub>0.1/20</sub>                                                     | 370   |
| HG                                                                       | 1     |
|                                                                          |       |
| В                                                                        | 0     |
|                                                                          |       |
| CR                                                                       | 2     |
| FR                                                                       | 3     |
| SR                                                                       | 51.3  |
| AR                                                                       | 2.3   |
| PR                                                                       | 3.3   |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          | •     |

| Temperature Coefficients of Refractive Index |        |                                      |      |        |      |      |
|----------------------------------------------|--------|--------------------------------------|------|--------|------|------|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |      | ]      |      |      |
| [°C]                                         | 1060.0 | e                                    | g    | 1060.0 | е    | g    |
| -40/ -20                                     | 6.1    | 9.9                                  | 14.5 | 3.7    | 7.4  | 11.9 |
| +20/ +40                                     | 6.8    | 11.1                                 | 16.2 | 5.3    | 9.5  | 14.6 |
| +60/ +80                                     | 7.3    | 11.8                                 | 17.4 | 6.1    | 10.6 | 16.1 |

#### **SF10** 728284.428

n<sub>d</sub>= 1.72825  $v_{d}$ = 28.41 n<sub>e</sub>= 1.73430

 $v_e = 28.19$ 

 $n_F - n_C = 0.025633$  $n_{F'}-n_{C'}=0.026051$ 

| Refractive Indices         |        |         |
|----------------------------|--------|---------|
|                            | λ [nm] |         |
| n <sub>2325.4</sub>        | 2325.4 | 1.68218 |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.68750 |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.69378 |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.70227 |
| n <sub>t</sub>             | 1014.0 | 1.70345 |
| n <sub>s</sub>             | 852.1  | 1.70887 |
| n <sub>r</sub>             | 706.5  | 1.71681 |
| n <sub>C</sub>             | 656.3  | 1.72085 |
| n <sub>C'</sub>            | 643.8  | 1.72200 |
| n <sub>632.8</sub>         | 632.8  | 1.72309 |
| $\mathbf{n}_{D}$           | 589.3  | 1.72803 |
| n <sub>d</sub>             | 587.6  | 1.72825 |
| n <sub>e</sub>             | 546.1  | 1.73430 |
| n <sub>F</sub>             | 486.1  | 1.74648 |
| n <sub>F'</sub>            | 480.0  | 1.74805 |
| n <sub>g</sub>             | 435.8  | 1.76198 |
| n <sub>h</sub>             | 404.7  | 1.77579 |
| n <sub>i</sub>             | 365.0  |         |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |
| n <sub>312.6</sub>         | 312.6  |         |
| n <sub>296.7</sub>         | 296.7  |         |
| n <sub>280.4</sub>         | 280.4  |         |
| n <sub>248.3</sub>         | 248.3  |         |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.862                 | 0.690                 |
| 2325     | 0.896                 | 0.760                 |
| 1970     | 0.967                 | 0.920                 |
| 1530     | 0.995                 | 0.987                 |
| 1060     | 0.999                 | 0.997                 |
| 700      | 0.998                 | 0.995                 |
| 660      | 0.997                 | 0.993                 |
| 620      | 0.997                 | 0.993                 |
| 580      | 0.998                 | 0.995                 |
| 546      | 0.998                 | 0.995                 |
| 500      | 0.996                 | 0.989                 |
| 460      | 0.991                 | 0.978                 |
| 436      | 0.984                 | 0.961                 |
| 420      | 0.967                 | 0.920                 |
| 405      | 0.910                 | 0.790                 |
| 400      | 0.862                 | 0.690                 |
| 390      | 0.672                 | 0.370                 |
| 380      | 0.360                 | 0.060                 |
| 370      | 0.080                 |                       |
| 365      | 0.020                 |                       |
| 350      |                       |                       |
| 334      |                       |                       |
| 320      |                       |                       |
| 310      |                       |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |

|  | 1 |
|--|---|
|  | P |
|  | P |
|  |   |
|  | P |
|  | F |
|  | F |
|  | F |
|  | P |
|  | P |
|  |   |
|  |   |
|  | F |
|  | f |
|  | Δ |
|  | Δ |
|  | Δ |
|  | Δ |
|  | Δ |
|  |   |
|  | C |
|  | α |
|  | α |
|  | Т |
|  | Т |
|  | Т |
|  | С |
|  | λ |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2111 |  |
| P <sub>C,s</sub>            | 0.4674 |  |
| P <sub>d,C</sub>            | 0.2888 |  |
| P <sub>e,d</sub>            | 0.2361 |  |
| $\mathbf{P}_{g,F}$          | 0.6046 |  |
| $\mathbf{P}_{i,h}$          |        |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2077 |  |
| P' <sub>C',s</sub>          | 0.5042 |  |
| P' <sub>d,C'</sub>          | 0.2399 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2323 |  |
| P' <sub>g,F'</sub>          | 0.5346 |  |
| P' <sub>i,h</sub>           |        |  |
|                             |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | -0.0012 |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | -0.0017 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0017  |  |
| $\Delta P_{g,F}$                                                    | 0.0085  |  |
| $\Delta \mathbf{P}_{i,g}$                                           |         |  |

| Other Properties                                                            |       |
|-----------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                | 7.5   |
| α [10 <sup>-6</sup> /K]                                                     | 8.4   |
| T <sub>g</sub> [°C]                                                         | 454   |
| T <sub>g</sub> [°C] T <sub>10</sub> <sup>13.0</sup> [°C]                    | 445   |
| T <sub>10</sub> <sup>13.0</sup> [°C]<br>T <sub>10</sub> <sup>7.6</sup> [°C] | 595   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                              | 0.465 |
| λ [W/(m·K)]                                                                 | 0.741 |
|                                                                             |       |
| ρ [g/cm <sup>3</sup> ]                                                      | 4.28  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                               | 64    |
| μ                                                                           | 0.232 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                              | 1.95  |
| HK <sub>0.1/20</sub>                                                        | 430   |
| HG                                                                          | 1     |
|                                                                             |       |
| В                                                                           | 0     |
|                                                                             |       |
| CR                                                                          | 1     |
| FR                                                                          | 0     |
| SR                                                                          | 1     |
| AR                                                                          | 1.2   |
| PR                                                                          | 2     |
|                                                                             |       |
|                                                                             |       |
|                                                                             |       |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 1.61625977   |  |
| <b>B</b> <sub>2</sub>   | 0.259229334  |  |
| <b>B</b> <sub>3</sub>   | 1.07762317   |  |
| <b>C</b> <sub>1</sub>   | 0.0127534559 |  |
| <b>C</b> <sub>2</sub>   | 0.0581983954 |  |
| <b>C</b> <sub>3</sub>   | 116.60768    |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| $\mathbf{D}_0$                | 5.31 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.59 · 10 <sup>-8</sup>   |  |
| $D_2$                         | -4.07 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 1.28 · 10 <sup>-6</sup>   |  |
| <b>E</b> <sub>1</sub>         | 1.32 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]          | 0.27                      |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 41/37 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                    |
|----------------------------|
| lead containing glass type |
|                            |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |      |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|------|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |      |
| [°C]                                         | 1060.0                               | e   | g                                    | 1060.0 | е   | g    |
| -40/ -20                                     | 4.8                                  | 7.3 | 10.3                                 | 2.5    | 4.9 | 7.9  |
| +20/ +40                                     | 5.3                                  | 8.1 | 11.6                                 | 3.8    | 6.6 | 10.0 |
| +60/ +80                                     | 5.6                                  | 8.6 | 12.4                                 | 4.4    | 7.4 | 11.1 |

#### SF56A 785261.492

**SCHOTT** 

 $n_d$ = 1.78470  $v_d$ = 26.08  $n_e$ = 1.79180  $v_e$ = 25.87

= 26.08  $n_F - n_C = 0.030092$ = 25.87  $n_{F'} - n_{C'} = 0.030603$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.73406 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.73925 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.74559 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.75473 |  |
| n <sub>t</sub>             | 1014.0 | 1.75606 |  |
| n <sub>s</sub>             | 852.1  | 1.76220 |  |
| n <sub>r</sub>             | 706.5  | 1.77136 |  |
| n <sub>C</sub>             | 656.3  | 1.77605 |  |
| n <sub>C'</sub>            | 643.8  | 1.77740 |  |
| n <sub>632.8</sub>         | 632.8  | 1.77866 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.78444 |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.78470 |  |
| n <sub>e</sub>             | 546.1  | 1.79180 |  |
| n <sub>F</sub>             | 486.1  | 1.80615 |  |
| n <sub>F'</sub>            | 480.0  | 1.80800 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.82449 |  |
| n <sub>h</sub>             | 404.7  | 1.84092 |  |
| n <sub>i</sub>             | 365.0  |         |  |
| n <sub>334.1</sub>         | 334.1  |         |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal | ternal Transmittanceτ <sub>i</sub> |                       |  |  |
|----------|------------------------------------|-----------------------|--|--|
| λ [nm]   | τ <sub>i</sub> (10mm)              | τ <sub>i</sub> (25mm) |  |  |
| 2500     | 0.867                              | 0.700                 |  |  |
| 2325     | 0.896                              | 0.760                 |  |  |
| 1970     | 0.967                              | 0.920                 |  |  |
| 1530     | 0.996                              | 0.989                 |  |  |
| 1060     | 0.999                              | 0.997                 |  |  |
| 700      | 0.998                              | 0.995                 |  |  |
| 660      | 0.997                              | 0.993                 |  |  |
| 620      | 0.998                              | 0.994                 |  |  |
| 580      | 0.998                              | 0.994                 |  |  |
| 546      | 0.998                              | 0.994                 |  |  |
| 500      | 0.996                              | 0.989                 |  |  |
| 460      | 0.990                              | 0.974                 |  |  |
| 436      | 0.980                              | 0.950                 |  |  |
| 420      | 0.959                              | 0.900                 |  |  |
| 405      | 0.896                              | 0.760                 |  |  |
| 400      | 0.857                              | 0.680                 |  |  |
| 390      | 0.700                              | 0.410                 |  |  |
| 380      | 0.398                              | 0.100                 |  |  |
| 370      | 0.120                              | 0.010                 |  |  |
| 365      | 0.040                              |                       |  |  |
| 350      |                                    |                       |  |  |
| 334      |                                    |                       |  |  |
| 320      |                                    |                       |  |  |
| 310      |                                    |                       |  |  |
| 300      |                                    |                       |  |  |
| 290      |                                    |                       |  |  |
| 280      |                                    |                       |  |  |
| 270      |                                    |                       |  |  |
| 260      |                                    |                       |  |  |
| 250      |                                    |                       |  |  |
|          |                                    |                       |  |  |

| Relative Partial Dispersion |        |  |  |  |
|-----------------------------|--------|--|--|--|
| P <sub>s,t</sub>            | 0.2040 |  |  |  |
| P <sub>C,s</sub>            | 0.4605 |  |  |  |
| P <sub>d,C</sub>            | 0.2874 |  |  |  |
| P <sub>e,d</sub>            | 0.2359 |  |  |  |
| $\mathbf{P}_{g,F}$          | 0.6098 |  |  |  |
| P <sub>i,h</sub>            |        |  |  |  |
|                             |        |  |  |  |
| P' <sub>s,t</sub>           | 0.2006 |  |  |  |
| P' <sub>C',s</sub>          | 0.4967 |  |  |  |
| P' <sub>d,C'</sub>          | 0.2387 |  |  |  |
| P' <sub>e,d</sub>           | 0.2319 |  |  |  |
| P' <sub>g,F'</sub>          | 0.5390 |  |  |  |
| P' <sub>i,h</sub>           |        |  |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |
|---------------------------------------------------------------------|---------|--|--|
| $\Delta P_{C,t}$                                                    | -0.0042 |  |  |
| ΔP <sub>C,s</sub>                                                   | -0.0032 |  |  |
| ΔP <sub>F,e</sub>                                                   | 0.0021  |  |  |
| $\Delta P_{g,F}$                                                    | 0.0098  |  |  |
| $\Delta \mathbf{P}_{i,g}$                                           |         |  |  |

| Other Properties                                                         |       |  |
|--------------------------------------------------------------------------|-------|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 7.9   |  |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                  | 8.8   |  |
| T <sub>n</sub> [°C]                                                      | 429   |  |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 426   |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 556   |  |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                                          |       |  |
| λ [W/(m·K)]                                                              |       |  |
|                                                                          |       |  |
| ρ [g/cm <sup>3</sup> ]                                                   | 4.92  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 57    |  |
| μ                                                                        | 0.239 |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 1.10  |  |
| HK <sub>0.1/20</sub>                                                     | 380   |  |
| HG                                                                       | 1     |  |
|                                                                          |       |  |
| В                                                                        | 1     |  |
|                                                                          |       |  |
| CR                                                                       | 1     |  |
| FR                                                                       | 1     |  |
| SR                                                                       | 3.2   |  |
| AR                                                                       | 2.2   |  |
| PR                                                                       | 3.2   |  |
|                                                                          |       |  |
|                                                                          |       |  |

| Constants of Dispersion |              |  |  |
|-------------------------|--------------|--|--|
| Formula                 |              |  |  |
| <b>B</b> <sub>1</sub>   | 1.70579259   |  |  |
| <b>B</b> <sub>2</sub>   | 0.344223052  |  |  |
| <b>B</b> <sub>3</sub>   | 1.09601828   |  |  |
| <b>C</b> <sub>1</sub>   | 0.0133874699 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0579561608 |  |  |
| C <sub>3</sub>          | 121.616024   |  |  |

| <b>Constants of Dispersion</b> |                           |  |
|--------------------------------|---------------------------|--|
| dn/dT                          |                           |  |
| <b>D</b> <sub>0</sub>          | 6.02 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>          | 1.70 · 10 <sup>-8</sup>   |  |
| $D_2$                          | -2.61 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>          | 1.63 · 10 <sup>-6</sup>   |  |
| <b>E</b> <sub>1</sub>          | 1.59 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]           | 0.269                     |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 42/37 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                    |  |
|----------------------------|--|
| lead containing glass type |  |
|                            |  |
| lead containing glass type |  |

| Temperature Coefficients of Refractive Index |                                      |      |                                      |        |     |      |
|----------------------------------------------|--------------------------------------|------|--------------------------------------|--------|-----|------|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |      | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |     |      |
| [°C]                                         | 1060.0                               | e    | g                                    | 1060.0 | е   | g    |
| -40/ -20                                     | 5.6                                  | 9.0  | 13.1                                 | 3.3    | 6.6 | 10.6 |
| +20/ +40                                     | 6.2                                  | 10.0 | 14.7                                 | 4.7    | 8.5 | 13.1 |
| +60/ +80                                     | 6.6                                  | 10.7 | 15.8                                 | 5.5    | 9.5 | 14.5 |

#### **SF57** 847238.551

n<sub>d</sub>= 1.84666  $v_{d}$  = 23.83  $n_e = 1.85504$ 

Internal Transmittanceτ<sub>i</sub>

 $\tau_i$  (10mm)

λ [nm]

 $v_e = 23.64$ 

 $\tau_i$  (25mm)

 $n_F - n_C = 0.035536$  $n_{F'}-n_{C'}=0.036166$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.79026 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.79539 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.80187 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.81185 |  |  |
| <b>n</b> <sub>t</sub>      | 1014.0 | 1.81335 |  |  |
| n <sub>s</sub>             | 852.1  | 1.82038 |  |  |
| <b>n</b> <sub>r</sub>      | 706.5  | 1.83102 |  |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.83650 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.83808 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.83957 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.84636 |  |  |
| n <sub>d</sub>             | 587.6  | 1.84666 |  |  |
| n <sub>e</sub>             | 546.1  | 1.85504 |  |  |
| n <sub>F</sub>             | 486.1  | 1.87204 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.87425 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.89393 |  |  |
| $\mathbf{n}_{h}$           | 404.7  | 1.91366 |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| 2500 | 0.891 | 0.750 |
|------|-------|-------|
| 2325 | 0.910 | 0.790 |
| 1970 | 0.971 | 0.930 |
| 1530 | 0.996 | 0.991 |
| 1060 | 0.999 | 0.997 |
| 700  | 0.998 | 0.996 |
| 660  | 0.998 | 0.994 |
| 620  | 0.998 | 0.994 |
| 580  | 0.998 | 0.994 |
| 546  | 0.998 | 0.994 |
| 500  | 0.994 | 0.986 |
| 460  | 0.987 | 0.968 |
| 436  | 0.971 | 0.930 |
| 420  | 0.941 | 0.860 |
| 405  | 0.882 | 0.730 |
| 400  | 0.847 | 0.660 |
| 390  | 0.727 | 0.450 |
| 380  | 0.523 | 0.198 |
| 370  | 0.160 | 0.010 |
| 365  | 0.040 |       |
| 350  |       |       |
| 334  |       |       |
| 320  |       |       |
| 310  |       |       |
| 300  |       |       |
| 290  |       |       |
| 280  |       |       |
| 270  |       |       |
| 260  |       |       |
| 250  |       |       |
|      |       |       |

| Relative Partial Dispersion |        |  |  |  |
|-----------------------------|--------|--|--|--|
| <b>P</b> <sub>s,t</sub>     | 0.1976 |  |  |  |
| P <sub>C,s</sub>            | 0.4539 |  |  |  |
| $\mathbf{P}_{d,C}$          | 0.2859 |  |  |  |
| $\mathbf{P}_{\mathrm{e,d}}$ | 0.2356 |  |  |  |
| $\mathbf{P}_{g,F}$          | 0.6160 |  |  |  |
| $\mathbf{P}_{i,h}$          |        |  |  |  |
|                             |        |  |  |  |
| P' <sub>s,t</sub>           | 0.1942 |  |  |  |
| P' <sub>C',s</sub>          | 0.4895 |  |  |  |
| P' <sub>d,C'</sub>          | 0.2373 |  |  |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2315 |  |  |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5443 |  |  |  |
| P' <sub>i,h</sub>           |        |  |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |
|---------------------------------------------------------------------|---------|--|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | -0.0065 |  |  |
| ΔP <sub>C,s</sub>                                                   | -0.0046 |  |  |
| ΔP <sub>F,e</sub>                                                   | 0.0026  |  |  |
| $\Delta P_{g,F}$                                                    | 0.0123  |  |  |
| $\Delta \mathbf{P}_{i,g}$                                           |         |  |  |

| Other Properties                                                                             |       |
|----------------------------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                                                 | 8.3   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                                      | 9.2   |
| T <sub>g</sub> [°C]                                                                          | 414   |
| T <sub>g</sub> [°C] T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 391   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                                   | 519   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                                              | 0.360 |
| λ [W/(m·K)]                                                                                  | 0.620 |
| AT [°C]                                                                                      | 449   |
| ρ [g/cm <sup>3</sup> ]                                                                       | 5.51  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                                                | 54    |
| μ                                                                                            | 0.248 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                                               | 0.02  |
| HK <sub>0.1/20</sub>                                                                         | 350   |
| HG                                                                                           | 1     |
| HG-J                                                                                         | 344   |
| В                                                                                            | 0     |
|                                                                                              |       |
| CR                                                                                           | 2     |
| FR                                                                                           | 5     |
| SR                                                                                           | 52.3  |
| AR                                                                                           | 2.3   |
| PR                                                                                           | 4.3   |
| SR-J                                                                                         | 6     |
| WR-J                                                                                         | 1     |
| ·                                                                                            |       |

| Constants of Dispersion |              |  |  |
|-------------------------|--------------|--|--|
| Formula                 |              |  |  |
| <b>B</b> <sub>1</sub>   | 1.81651371   |  |  |
| <b>B</b> <sub>2</sub>   | 0.428893641  |  |  |
| <b>B</b> <sub>3</sub>   | 1.07186278   |  |  |
| <b>C</b> <sub>1</sub>   | 0.0143704198 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0592801172 |  |  |
| <b>C</b> <sub>3</sub>   | 121.419942   |  |  |

| Constants of Dispersion |                           |  |  |  |
|-------------------------|---------------------------|--|--|--|
| dn/dT                   |                           |  |  |  |
| <b>D</b> <sub>0</sub>   | 7.26 · 10 <sup>-6</sup>   |  |  |  |
| <b>D</b> <sub>1</sub>   | 1.88 · 10 <sup>-8</sup>   |  |  |  |
| D <sub>2</sub>          | -5.14 · 10 <sup>-11</sup> |  |  |  |
| <b>E</b> <sub>0</sub>   | 1.96 · 10 <sup>-6</sup>   |  |  |  |
| <b>E</b> <sub>1</sub>   | 1.79 · 10 <sup>-9</sup>   |  |  |  |
| λ <sub>TK</sub> [μm]    | 0.276                     |  |  |  |

| Color Code                   |        |  |  |
|------------------------------|--------|--|--|
| $\lambda_{80}/\lambda_{5}$   | 40/37* |  |  |
| $(*=\lambda_{70}/\lambda_5)$ |        |  |  |

| Remarks                                                    |
|------------------------------------------------------------|
| lead containing glass type, suitable for precision molding |
|                                                            |

| Temperature Coefficients of Refractive Index |                                      |      |                                      |        |      |      |
|----------------------------------------------|--------------------------------------|------|--------------------------------------|--------|------|------|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |      | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |      |      |
| [°C]                                         | 1060.0                               | Φ    | g                                    | 1060.0 | e    | g    |
| -40/ -20                                     | 6.6                                  | 11.1 | 16.7                                 | 4.2    | 8.6  | 14.1 |
| +20/ +40                                     | 7.6                                  | 12.5 | 18.9                                 | 6.0    | 10.9 | 17.2 |
| +60/ +80                                     | 8.0                                  | 13.4 | 20.1                                 | 6.8    | 12.1 | 18.8 |

#### SF57HHT 847238.551

**SCHOTT** 

n<sub>d</sub>= 1.84666 n<sub>e</sub>= 1.85504

 $v_d$  = 23.83  $v_e$  = 23.64

 $n_F - n_C = 0.035536$  $n_{F'} - n_{C'} = 0.036166$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.79026 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.79539 |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.80187 |  |  |
| n <sub>1060.0</sub>        | 1060.0 | 1.81185 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.81335 |  |  |
| n <sub>s</sub>             | 852.1  | 1.82038 |  |  |
| n <sub>r</sub>             | 706.5  | 1.83102 |  |  |
| n <sub>C</sub>             | 656.3  | 1.83650 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.83808 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.83957 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.84636 |  |  |
| n <sub>d</sub>             | 587.6  | 1.84666 |  |  |
| n <sub>e</sub>             | 546.1  | 1.85504 |  |  |
| n <sub>F</sub>             | 486.1  | 1.87204 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.87425 |  |  |
| n <sub>g</sub>             | 435.8  | 1.89393 |  |  |
| n <sub>h</sub>             | 404.7  | 1.91366 |  |  |
| n <sub>i</sub>             | 365.0  |         |  |  |
| n <sub>334.1</sub>         | 334.1  |         |  |  |
| n <sub>312.6</sub>         | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal <sup>-</sup> | Transmittanceτ <sub>i</sub> |                       |  |
|-----------------------|-----------------------------|-----------------------|--|
| λ [nm]                | τ <sub>i</sub> (10mm)       | τ <sub>i</sub> (25mm) |  |
| 2500                  | 0.914                       | 0.798                 |  |
| 2325                  | 0.930                       | 0.835                 |  |
| 1970                  | 0.980                       | 0.951                 |  |
| 1530                  | 0.998                       | 0.994                 |  |
| 1060                  | 0.999                       | 0.999                 |  |
| 700                   | 0.999                       | 0.998                 |  |
| 660                   | 0.999                       | 0.997                 |  |
| 620                   | 0.999                       | 0.997                 |  |
| 580                   | 0.999                       | 0.997                 |  |
| 546                   | 0.999                       | 0.997                 |  |
| 500                   | 0.996                       | 0.990                 |  |
| 460                   | 0.991                       | 0.978                 |  |
| 436                   | 0.985                       | 0.962                 |  |
| 420                   | 0.971                       | 0.930                 |  |
| 405                   | 0.941                       | 0.860                 |  |
| 400                   | 0.924                       | 0.820                 |  |
| 390                   | 0.831                       | 0.630                 |  |
| 380                   | 0.621                       | 0.304                 |  |
| 370                   | 0.250                       | 0.029                 |  |
| 365                   | 0.100                       |                       |  |
| 350                   |                             |                       |  |
| 334                   |                             |                       |  |
| 320                   |                             |                       |  |
| 310                   |                             |                       |  |
| 300                   |                             |                       |  |
| 290                   |                             |                       |  |
| 280                   |                             |                       |  |
| 270                   |                             |                       |  |
| 260                   |                             |                       |  |
| 250                   |                             |                       |  |
|                       |                             |                       |  |

| <b>Relative Partial Dispersion</b> |        |  |
|------------------------------------|--------|--|
| P <sub>s,t</sub>                   | 0.1976 |  |
| P <sub>C,s</sub>                   | 0.4539 |  |
| $\mathbf{P}_{d,C}$                 | 0.2859 |  |
| $\mathbf{P}_{e,d}$                 | 0.2356 |  |
| $\mathbf{P}_{g,F}$                 | 0.6160 |  |
| $\mathbf{P}_{i,h}$                 |        |  |
|                                    |        |  |
| P' <sub>s,t</sub>                  | 0.1942 |  |
| P' <sub>C',s</sub>                 | 0.4895 |  |
| P' <sub>d,C'</sub>                 | 0.2373 |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2315 |  |
| <b>P'</b> <sub>g,F'</sub>          | 0.5443 |  |
| P' <sub>i,h</sub>                  |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | -0.0065 |  |
| ΔP <sub>C,s</sub>                                                   | -0.0046 |  |
| ΔP <sub>F,e</sub>                                                   | 0.0026  |  |
| $\Delta P_{g,F}$                                                    | 0.0123  |  |
| $\Delta \mathbf{P}_{i,g}$                                           |         |  |

| Other Properties                                                         |       |  |
|--------------------------------------------------------------------------|-------|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 8.3   |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 9.2   |  |
| T <sub>a</sub> [°C]                                                      | 414   |  |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 391   |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 519   |  |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                           | 0.360 |  |
| $\lambda$ [W/(m·K)]                                                      | 0.620 |  |
| AT [°C]                                                                  | 449   |  |
| ρ [g/cm <sup>3</sup> ]                                                   | 5.51  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 54    |  |
| μ                                                                        | 0.248 |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 0.02  |  |
| HK <sub>0.1/20</sub>                                                     | 350   |  |
| HG                                                                       | 1     |  |
| HG-J                                                                     | 344   |  |
| В                                                                        | 0     |  |
|                                                                          |       |  |
| CR                                                                       | 2     |  |
| FR                                                                       | 5     |  |
| SR                                                                       | 52.3  |  |
| AR                                                                       | 2.3   |  |
| PR                                                                       | 4.3   |  |
| SR-J                                                                     | 6     |  |
| WR-J                                                                     | 1     |  |
|                                                                          |       |  |

| Constants of Dispersion |              |  |
|-------------------------|--------------|--|
| Formula                 |              |  |
| <b>B</b> <sub>1</sub>   | 1.81651371   |  |
| <b>B</b> <sub>2</sub>   | 0.428893641  |  |
| <b>B</b> <sub>3</sub>   | 1.07186278   |  |
| <b>C</b> <sub>1</sub>   | 0.0143704198 |  |
| <b>C</b> <sub>2</sub>   | 0.0592801172 |  |
| <b>C</b> <sub>3</sub>   | 121.419942   |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | 7.26 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.88 · 10 <sup>-8</sup>   |  |
| <b>D</b> <sub>2</sub>   | -5.14 · 10 <sup>-11</sup> |  |
| E <sub>0</sub>          | 1.96 · 10 <sup>-6</sup>   |  |
| <b>E</b> <sub>1</sub>   | 1.79 · 10 <sup>-9</sup>   |  |
| λ <sub>TK</sub> [μm]    | 0.276                     |  |

| Color Code                   |        |
|------------------------------|--------|
| $\lambda_{80}/\lambda_{5}$   | 39/36* |
| $(*=\lambda_{70}/\lambda_5)$ |        |

# Remarks lead containing glass type, suitable for precision molding

| Temper                                                      | Temperature Coefficients of Refractive Index |                                      |      |        |      |      |
|-------------------------------------------------------------|----------------------------------------------|--------------------------------------|------|--------|------|------|
| $\Delta$ n <sub>rel</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |                                              | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |      | ]      |      |      |
| [°C]                                                        | 1060.0                                       | Φ                                    | g    | 1060.0 | е    | g    |
| -40/ -20                                                    | 6.6                                          | 11.1                                 | 16.7 | 4.2    | 8.6  | 14.1 |
| +20/ +40                                                    | 7.6                                          | 12.5                                 | 18.9 | 6.0    | 10.9 | 17.2 |
| +60/ +80                                                    | 8.0                                          | 13.4                                 | 20.1 | 6.8    | 12.1 | 18.8 |

#### KZFS12 696363.384

**SCHOTT** 

 $n_d$ = 1.69600  $v_d$ = 30  $n_e$ = 1.70055  $v_e$ = 30

 $v_d$ = 36.29  $n_F - n_C$  = 0.019179  $v_e$ = 36.06  $n_{F'} - n_{C'}$ = 0.019425

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            |        |         |  |  |
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.64970 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.65749 |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.66580 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.67488 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.67598 |  |  |
| <b>n</b> <sub>s</sub>      | 852.1  | 1.68071 |  |  |
| n <sub>r</sub>             | 706.5  | 1.68717 |  |  |
| n <sub>C</sub>             | 656.3  | 1.69033 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.69122 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.69206 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.69583 |  |  |
| n <sub>d</sub>             | 587.6  | 1.69600 |  |  |
| n <sub>e</sub>             | 546.1  | 1.70055 |  |  |
| n <sub>F</sub>             | 486.1  | 1.70951 |  |  |
| n <sub>F</sub>             | 480.0  | 1.71065 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.72059 |  |  |
| n <sub>h</sub>             | 404.7  | 1.73017 |  |  |
| n <sub>i</sub>             | 365.0  | 1.74746 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal | Transmitta            | ance $	au_{:}$        |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.276                 | 0.040                 |
| 2325     | 0.618                 | 0.300                 |
| 1970     | 0.919                 | 0.810                 |
| 1530     | 0.976                 | 0.940                 |
| 1060     | 0.998                 | 0.994                 |
| 700      | 0.997                 | 0.993                 |
| 660      | 0.997                 | 0.992                 |
| 620      | 0.997                 | 0.992                 |
| 580      | 0.996                 | 0.991                 |
| 546      | 0.996                 | 0.991                 |
| 500      | 0.994                 | 0.986                 |
| 460      | 0.988                 | 0.971                 |
| 436      | 0.977                 | 0.944                 |
| 420      | 0.963                 | 0.910                 |
| 405      | 0.933                 | 0.840                 |
| 400      | 0.919                 | 0.810                 |
| 390      | 0.877                 | 0.720                 |
| 380      | 0.804                 | 0.580                 |
| 370      | 0.679                 | 0.380                 |
| 365      | 0.574                 | 0.250                 |
| 350      | 0.109                 | 0.004                 |
| 334      |                       |                       |
| 320      |                       |                       |
| 310      |                       |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          | 1                     | 1                     |

| Constants of Dispersion |              |  |  |
|-------------------------|--------------|--|--|
| Formula                 |              |  |  |
| <b>B</b> <sub>1</sub>   | 1.55624873   |  |  |
| <b>B</b> <sub>2</sub>   | 0.239769276  |  |  |
| <b>B</b> <sub>3</sub>   | 0.947887658  |  |  |
| <b>C</b> <sub>1</sub>   | 0.0102012744 |  |  |
| <b>C</b> <sub>2</sub>   | 0.0469277969 |  |  |
| <b>C</b> <sub>3</sub>   | 69.8370722   |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 40/35 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| <b>D</b> <sub>0</sub>   | 4.36 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.32 · 10 <sup>-8</sup>   |  |
| D <sub>2</sub>          | -1.81 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>   | 6.86 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 6.81 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.253                     |  |

| lead containing glass type, will become |
|-----------------------------------------|
| inquiry glass as of Jan 2012, not       |
| recommended for new design              |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                               | e   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 4.1                                  | 5.4 | 6.8                                  | 1.9    | 3.1 | 4.4 |
| +20/ +40                                     | 4.3                                  | 5.7 | 7.3                                  | 2.8    | 4.2 | 5.8 |
| +60/ +80                                     | 4.5                                  | 6.0 | 7.8                                  | 3.4    | 4.9 | 6.6 |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2468 |  |
| P <sub>C,s</sub>            | 0.5013 |  |
| P <sub>d,C</sub>            | 0.2957 |  |
| P <sub>e,d</sub>            | 0.2371 |  |
| $\mathbf{P}_{g,F}$          | 0.5778 |  |
| $\mathbf{P}_{i,h}$          | 0.9012 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2436 |  |
| P' <sub>C',s</sub>          | 0.5409 |  |
| P' <sub>d,C'</sub>          | 0.2460 |  |
| P' <sub>e,d</sub>           | 0.2341 |  |
| P' <sub>g,F'</sub>          | 0.5118 |  |
| P' <sub>i,h</sub>           | 0.8898 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0309  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0138  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0021 |  |
| $\Delta P_{g,F}$                                                    | -0.0050 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0189 |  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 5.2   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                               | 6.2   |
| <b>T</b> <sub>g</sub> [°C]                                            | 492   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                           | 476   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 549   |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                                       | 0.540 |
| λ [W/(m·K)]                                                           | 0.710 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 3.84  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 66    |
| μ                                                                     | 0.279 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 2.35  |
| HK <sub>0.1/20</sub>                                                  | 440   |
| HG                                                                    | 4     |
|                                                                       |       |
| В                                                                     | 1     |
|                                                                       |       |
| CR                                                                    | 4     |
| FR                                                                    | 1     |
| SR                                                                    | 53.3  |
| AR                                                                    | 4.3   |
| PR                                                                    | 4.3   |
|                                                                       |       |
|                                                                       |       |
|                                                                       |       |

#### **KZFSN5** 654396.346

Relative Partial Dispersion

n<sub>d</sub>= 1.65412  $v_{d}$  = 39.63  $v_e = 39.40$  $n_e = 1.65803$ 

 $n_F - n_C = 0.016507$  $n_{F'}-n_{C'}=0.016701$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.61108 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.61880 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.62692 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.63548 |  |
| n <sub>t</sub>             | 1014.0 | 1.63649 |  |
| n <sub>s</sub>             | 852.1  | 1.64075 |  |
| n <sub>r</sub>             | 706.5  | 1.64644 |  |
| <b>n</b> <sub>C</sub>      | 656.3  | 1.64920 |  |
| n <sub>C'</sub>            | 643.8  | 1.64998 |  |
| n <sub>632.8</sub>         | 632.8  | 1.65070 |  |
| $\mathbf{n}_{D}$           | 589.3  | 1.65397 |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.65412 |  |
| n <sub>e</sub>             | 546.1  | 1.65803 |  |
| n <sub>F</sub>             | 486.1  | 1.66571 |  |
| n <sub>F</sub>             | 480.0  | 1.66668 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.67512 |  |
| n <sub>h</sub>             | 404.7  | 1.68319 |  |
| n <sub>i</sub>             | 365.0  | 1.69759 |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |
| n <sub>312.6</sub>         | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal Transmittanceτ <sub>i</sub> |                       |                       |  |
|--------------------------------------|-----------------------|-----------------------|--|
|                                      |                       |                       |  |
| λ [nm]                               | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |  |
| 2500                                 | 0.246                 | 0.030                 |  |
| 2325                                 | 0.565                 | 0.240                 |  |
| 1970                                 | 0.901                 | 0.770                 |  |
| 1530                                 | 0.967                 | 0.920                 |  |
| 1060                                 | 0.999                 | 0.997                 |  |
| 700                                  | 0.998                 | 0.996                 |  |
| 660                                  | 0.998                 | 0.996                 |  |
| 620                                  | 0.998                 | 0.996                 |  |
| 580                                  | 0.998                 | 0.996                 |  |
| 546                                  | 0.998                 | 0.995                 |  |
| 500                                  | 0.997                 | 0.992                 |  |
| 460                                  | 0.994                 | 0.985                 |  |
| 436                                  | 0.991                 | 0.978                 |  |
| 420                                  | 0.987                 | 0.968                 |  |
| 405                                  | 0.980                 | 0.950                 |  |
| 400                                  | 0.976                 | 0.940                 |  |
| 390                                  | 0.963                 | 0.911                 |  |
| 380                                  | 0.937                 | 0.850                 |  |
| 370                                  | 0.887                 | 0.740                 |  |
| 365                                  | 0.842                 | 0.650                 |  |
| 350                                  | 0.515                 | 0.190                 |  |
| 334                                  | 0.130                 |                       |  |
| 320                                  |                       |                       |  |
| 310                                  |                       |                       |  |
| 300                                  |                       |                       |  |
| 290                                  |                       |                       |  |
| 280                                  |                       |                       |  |
| 270                                  |                       |                       |  |
| 260                                  |                       |                       |  |
| 250                                  |                       |                       |  |
|                                      |                       |                       |  |
|                                      |                       |                       |  |

| P <sub>s,t</sub>         | 0.2581 |  |
|--------------------------|--------|--|
| P <sub>C,s</sub>         | 0.5120 |  |
| <b>P</b> <sub>d,C</sub>  | 0.2978 |  |
| $\mathbf{P}_{e,d}$       | 0.2374 |  |
| $\mathbf{P}_{g,F}$       | 0.5700 |  |
| $\mathbf{P}_{i,h}$       | 0.8727 |  |
|                          |        |  |
| P' <sub>s,t</sub>        | 0.2551 |  |
| P' <sub>C',s</sub>       | 0.5525 |  |
| P' <sub>d,C'</sub>       | 0.2479 |  |
| <b>P'</b> <sub>e,d</sub> | 0.2346 |  |
| <b>P'</b> g,F'           | 0.5053 |  |
| P' <sub>i,h</sub>        | 0.8625 |  |
|                          |        |  |
| Deviation of Relative    |        |  |
| Destini Diamento de AD   |        |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| ΔP <sub>C,t</sub>                                                   | 0.0371  |  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0167  |  |
| Δ <b>P</b> <sub>F,e</sub>                                           | -0.0027 |  |
| $\Delta P_{g,F}$                                                    | -0.0071 |  |
| $\Delta P_{i,g}$                                                    | -0.0302 |  |
|                                                                     |         |  |

| Other Properties                                                         |       |  |
|--------------------------------------------------------------------------|-------|--|
| $\alpha_{-30/+70^{\circ}C}[10^{-6}/K]$                                   | 4.5   |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 5.7   |  |
| T <sub>a</sub> [°C]                                                      | 501   |  |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 479   |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 0     |  |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                                          |       |  |
| λ [W/(m·K)]                                                              |       |  |
|                                                                          |       |  |
| ρ [g/cm <sup>3</sup> ]                                                   | 3.46  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 65    |  |
| μ                                                                        | 0.275 |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 2.89  |  |
| HK <sub>0.1/20</sub>                                                     | 460   |  |
| HG                                                                       | 5     |  |
|                                                                          |       |  |
| В                                                                        | 1     |  |
|                                                                          |       |  |
| CR                                                                       | 3     |  |
| FR                                                                       | 2     |  |
| SR                                                                       | 52.3  |  |
| AR                                                                       | 4.3   |  |
| PR                                                                       | 4.3   |  |
|                                                                          |       |  |
|                                                                          |       |  |
|                                                                          |       |  |

| <b>Constants of Dispersion</b> |               |  |
|--------------------------------|---------------|--|
| Formula                        |               |  |
| <b>B</b> <sub>1</sub>          | 1.47727858    |  |
| <b>B</b> <sub>2</sub>          | 0.191686941   |  |
| <b>B</b> <sub>3</sub>          | 0.897333608   |  |
| <b>C</b> <sub>1</sub>          | 0.00975488335 |  |
| <b>C</b> <sub>2</sub>          | 0.0450495404  |  |
| <b>C</b> <sub>3</sub>          | 67.8786495    |  |

| Constants of Dispersion |                           |  |
|-------------------------|---------------------------|--|
| dn/dT                   |                           |  |
| $\mathbf{D}_0$          | 5.51 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>   | 1.48 · 10 <sup>-8</sup>   |  |
| <b>D</b> <sub>2</sub>   | -2.21 · 10 <sup>-11</sup> |  |
| E <sub>0</sub>          | 6.22 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>   | 7.05 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]    | 0.23                      |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/34 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

#### Remarks lead containing glass type, will become inquiry glass as of Jan 2011, not recommended for new design

| Temperature Coefficients of Refractive Index |        |                                      |     |        |     |     |
|----------------------------------------------|--------|--------------------------------------|-----|--------|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |     | ]      |     |     |
| [°C]                                         | 1060.0 | e                                    | g   | 1060.0 | е   | g   |
| -40/ -20                                     | 4.4    | 5.5                                  | 6.6 | 2.2    | 3.2 | 4.3 |
| +20/ +40                                     | 4.7    | 5.9                                  | 7.1 | 3.3    | 4.4 | 5.6 |
| +60/ +80                                     | 4.9    | 6.2                                  | 7.6 | 3.8    | 5.1 | 6.4 |

#### N-KZFS2 558540.255

**SCHOTT** 

 $n_d$ = 1.55836  $v_d$ = 54.01  $n_e$ = 1.56082  $v_e$ = 53.83

 $n_F - n_C = 0.010338$  $n_{F'} - n_{C'} = 0.010418$ 

| Refractive Indices         |        |         |  |
|----------------------------|--------|---------|--|
|                            | λ [nm] |         |  |
| <b>n</b> <sub>2325.4</sub> | 2325.4 | 1.52239 |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.53011 |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.53798 |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.54546 |  |
| n <sub>t</sub>             | 1014.0 | 1.54625 |  |
| n <sub>s</sub>             | 852.1  | 1.54944 |  |
| n <sub>r</sub>             | 706.5  | 1.55337 |  |
| n <sub>C</sub>             | 656.3  | 1.55519 |  |
| n <sub>C'</sub>            | 643.8  | 1.55570 |  |
| n <sub>632.8</sub>         | 632.8  | 1.55617 |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.55827 |  |
| n <sub>d</sub>             | 587.6  | 1.55836 |  |
| n <sub>e</sub>             | 546.1  | 1.56082 |  |
| n <sub>F</sub>             | 486.1  | 1.56553 |  |
| n <sub>F'</sub>            | 480.0  | 1.56612 |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.57114 |  |
| n <sub>h</sub>             | 404.7  | 1.57580 |  |
| n <sub>i</sub>             | 365.0  | 1.58382 |  |
| n <sub>334.1</sub>         | 334.1  | 1.59259 |  |
| n <sub>312.6</sub>         | 312.6  |         |  |
| n <sub>296.7</sub>         | 296.7  |         |  |
| n <sub>280.4</sub>         | 280.4  |         |  |
| n <sub>248.3</sub>         | 248.3  |         |  |

| Internal Transmittance $\tau_i$ |                       |                       |
|---------------------------------|-----------------------|-----------------------|
| λ [nm]                          | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500                            | 0.276                 | 0.040                 |
| 2325                            | 0.583                 | 0.260                 |
| 1970                            | 0.915                 | 0.800                 |
| 1530                            | 0.976                 | 0.940                 |
| 1060                            | 0.996                 | 0.991                 |
| 700                             | 0.998                 | 0.996                 |
| 660                             | 0.998                 | 0.994                 |
| 620                             | 0.998                 | 0.994                 |
| 580                             | 0.998                 | 0.994                 |
| 546                             | 0.998                 | 0.994                 |
| 500                             | 0.997                 | 0.992                 |
| 460                             | 0.995                 | 0.987                 |
| 436                             | 0.992                 | 0.981                 |
| 420                             | 0.990                 | 0.975                 |
| 405                             | 0.987                 | 0.967                 |
| 400                             | 0.985                 | 0.963                 |
| 390                             | 0.980                 | 0.950                 |
| 380                             | 0.971                 | 0.930                 |
| 370                             | 0.963                 | 0.910                 |
| 365                             | 0.954                 | 0.890                 |
| 350                             | 0.915                 | 0.800                 |
| 334                             | 0.810                 | 0.590                 |
| 320                             | 0.565                 | 0.240                 |
| 310                             | 0.246                 | 0.030                 |
| 300                             | 0.012                 |                       |
| 290                             |                       |                       |
| 280                             |                       |                       |
| 270                             |                       |                       |
| 260                             |                       |                       |
| 250                             |                       |                       |
|                                 |                       |                       |
|                                 |                       |                       |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| $\mathbf{P}_{\mathrm{s,t}}$ | 0.3080 |  |
| P <sub>C,s</sub>            | 0.5568 |  |
| $\mathbf{P}_{d,C}$          | 0.3061 |  |
| $\mathbf{P}_{e,d}$          | 0.2383 |  |
| $\mathbf{P}_{g,F}$          | 0.5419 |  |
| $\mathbf{P}_{i,h}$          | 0.7758 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.3056 |  |
| <b>P'</b> <sub>C',s</sub>   | 0.6011 |  |
| P' <sub>d,C'</sub>          | 0.2552 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2365 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4814 |  |
| P' <sub>i,h</sub>           | 0.7699 |  |

| <b>n</b> <sub>280.4</sub> | 280.4      |        | 334 | 0.810 | 0.590 |  |
|---------------------------|------------|--------|-----|-------|-------|--|
| n <sub>248.3</sub>        | 248.3      |        | 320 | 0.565 | 0.240 |  |
|                           |            | -      | 310 | 0.246 | 0.030 |  |
| Constan                   | ts of Disp | ersion | 300 | 0.012 |       |  |
| Formula                   |            |        | 290 |       |       |  |
| B <sub>1</sub>            | 1.23697554 | 4      | 280 |       |       |  |
| <b>B</b> <sub>2</sub>     | 0.15356937 | 76     | 270 |       |       |  |
| <b>B</b> <sub>3</sub>     | 0.90397627 | 72     | 260 |       |       |  |
| <b>C</b> <sub>1</sub>     | 0.00747170 | 0505   | 250 |       |       |  |
| <b>C</b> <sub>2</sub>     | 0.0308053  | 556    |     |       |       |  |
| <b>C</b> <sub>3</sub>     | 70.1731084 | 4      |     |       |       |  |

| Deviation of Relative                         |          |  |
|-----------------------------------------------|----------|--|
| Partial Dispersions ΔP from the "Normal Line" |          |  |
| from the Nor                                  | mai Line |  |
| ΔP <sub>C,t</sub>                             | 0.0636   |  |
| ΔP <sub>C,s</sub>                             | 0.0280   |  |
| Δ <b>P</b> <sub>F,e</sub>                     | -0.0044  |  |
| $\Delta \mathbf{P}_{g,F}$                     | -0.0111  |  |
| $\Delta \mathbf{P}_{i,g}$                     | -0.0440  |  |

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   | dn/dT                     |  |  |
| <b>D</b> <sub>0</sub>   | 6.77 · 10 <sup>-6</sup>   |  |  |
| <b>D</b> <sub>1</sub>   | 1.31 · 10 <sup>-8</sup>   |  |  |
| <b>D</b> <sub>2</sub>   | -1.23 · 10 <sup>-11</sup> |  |  |
| E <sub>0</sub>          | 3.84 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 5.51 · 10 <sup>-10</sup>  |  |  |
| λ <sub>TK</sub> [μm]    | 0.196                     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 34/30 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 4.4   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 5.4   |
| T <sub>g</sub> [°C]                                                       | 491   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 488   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 600   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.830 |
| λ [W/(m·K)]                                                               | 0.810 |
| AT [°C]                                                                   | 533   |
| ρ [g/cm <sup>3</sup> ]                                                    | 2.55  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 66    |
| μ                                                                         | 0.266 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 4.02  |
| HK <sub>0.1/20</sub>                                                      | 490   |
| HG                                                                        | 3     |
| HG-J                                                                      | 70    |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 4     |
| SR                                                                        | 52.3  |
| AR                                                                        | 4.3   |
| PR                                                                        | 4.2   |
| SR-J                                                                      | 6     |
| WR-J                                                                      | 6     |
|                                                                           |       |

| Temperature Coefficients of Refractive Index |                                      |     |                                      |        |     |     |
|----------------------------------------------|--------------------------------------|-----|--------------------------------------|--------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        | ]   |     |
| [°C]                                         | 1060.0                               | Ф   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 4.6                                  | 5.2 | 5.7                                  | 2.5    | 3.0 | 3.5 |
| +20/ +40                                     | 4.7                                  | 5.3 | 5.9                                  | 3.3    | 3.9 | 4.5 |
| +60/ +80                                     | 4.8                                  | 5.5 | 6.2                                  | 3.8    | 4.5 | 5.1 |

#### N-KZFS4 613445.300

 $v_{d}$  = 44.49  $n_d = 1.61336$ n<sub>e</sub>= 1.61664

Internal Transmittance  $\tau_i$ τ<sub>i</sub> (10mm)

0.556

0.793

0.965

λ [nm]

2500

2325

1970

 $v_e = 44.27$ 

 $\tau_i \; (25mm)$ 

0.230

0.560

0.915

 $n_F - n_C = 0.013785$  $n_{F'}-n_{C'}=0.013929$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.57535 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.58233 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.58971 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.59739 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.59828 |  |  |
| n <sub>s</sub>             | 852.1  | 1.60199 |  |  |
| n <sub>r</sub>             | 706.5  | 1.60688 |  |  |
| n <sub>C</sub>             | 656.3  | 1.60922 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.60987 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.61049 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.61324 |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.61336 |  |  |
| n <sub>e</sub>             | 546.1  | 1.61664 |  |  |
| n <sub>F</sub>             | 486.1  | 1.62300 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.62380 |  |  |
| n <sub>g</sub>             | 435.8  | 1.63071 |  |  |
| n <sub>h</sub>             | 404.7  | 1.63723 |  |  |
| n <sub>i</sub>             | 365.0  | 1.64865 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  |         |  |  |
| n <sub>280.4</sub>         | 280.4  |         |  |  |
| <b>n</b> <sub>248.3</sub>  | 248.3  |         |  |  |

| 1530 | 0.988 | 0.970 |
|------|-------|-------|
| 1060 | 0.998 | 0.996 |
| 700  | 0.998 | 0.994 |
| 660  | 0.997 | 0.993 |
| 620  | 0.997 | 0.993 |
| 580  | 0.997 | 0.993 |
| 546  | 0.997 | 0.992 |
| 500  | 0.995 | 0.987 |
| 460  | 0.990 | 0.976 |
| 436  | 0.987 | 0.968 |
| 420  | 0.984 | 0.961 |
| 405  | 0.981 | 0.952 |
| 400  | 0.979 | 0.948 |
| 390  | 0.971 | 0.930 |
| 380  | 0.963 | 0.910 |
| 370  | 0.941 | 0.860 |
| 365  | 0.924 | 0.820 |
| 350  | 0.815 | 0.600 |
| 334  | 0.468 | 0.150 |
| 320  | 0.040 |       |
| 310  |       |       |
| 300  |       |       |
| 290  |       |       |
| 280  |       |       |
| 270  |       |       |
| 260  |       |       |
| 250  |       |       |
|      |       |       |

| Constants of Dispersion |              |  |  |  |
|-------------------------|--------------|--|--|--|
| Formula                 |              |  |  |  |
| <b>B</b> <sub>1</sub>   | 1.35055424   |  |  |  |
| <b>B</b> <sub>2</sub>   | 0.197575506  |  |  |  |
| <b>B</b> <sub>3</sub>   | 1.09962992   |  |  |  |
| <b>C</b> <sub>1</sub>   | 0.0087628207 |  |  |  |
| <b>C</b> <sub>2</sub>   | 0.0371767201 |  |  |  |
| <b>C</b> <sub>3</sub>   | 90.3866994   |  |  |  |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| $\mathbf{D}_0$                | 1.81 · 10 <sup>-6</sup>   |  |
| <b>D</b> <sub>1</sub>         | 1.16 · 10 <sup>-8</sup>   |  |
| $D_2$                         | -7.99 · 10 <sup>-12</sup> |  |
| E <sub>0</sub>                | 6.20 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 7.94 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.205                     |  |

| Color Code                   |       |  |  |
|------------------------------|-------|--|--|
| $\lambda_{80}/\lambda_{5}$   | 36/32 |  |  |
| $(*=\lambda_{70}/\lambda_5)$ |       |  |  |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temperature Coefficients of Refractive Index |                                      |     |     |                                            |     |     |
|----------------------------------------------|--------------------------------------|-----|-----|--------------------------------------------|-----|-----|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |     |     | Δn <sub>abs</sub> /ΔT[10 <sup>-6</sup> /K] |     |     |
| [°C]                                         | 1060.0                               | e   | g   | 1060.0                                     | е   | g   |
| -40/ -20                                     | 2.7                                  | 3.5 | 4.4 | 0.5                                        | 1.3 | 2.2 |
| +20/ +40                                     | 2.7                                  | 3.7 | 4.7 | 1.3                                        | 2.3 | 3.2 |
| +60/ +80                                     | 2.8                                  | 3.9 | 5.0 | 1.7                                        | 2.8 | 3.9 |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2694 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5240 |  |
| $\mathbf{P}_{d,C}$          | 0.3006 |  |
| $\mathbf{P}_{e,d}$          | 0.2378 |  |
| $\mathbf{P}_{g,F}$          | 0.5590 |  |
| $\mathbf{P}_{i,h}$          | 0.8284 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2666 |  |
| P' <sub>C',s</sub>          | 0.5657 |  |
| P' <sub>d,C'</sub>          | 0.2503 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2353 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.4958 |  |
| P' <sub>i,h</sub>           | 0.8199 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0373  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0173  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0033 |  |
| $\Delta P_{g,F}$                                                    | -0.0100 |  |
| $\Delta P_{i,g}$                                                    | -0.0496 |  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 7.3   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                         | 8.2   |
| <b>T</b> <sub>g</sub> [°C]                                            | 536   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                           | 541   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 664   |
| <b>c</b> <sub>p</sub> [J/(g⋅K)]                                       | 0.760 |
| λ [W/(m·K)]                                                           | 0.840 |
| AT [°C]                                                               | 597   |
| ρ [g/cm <sup>3</sup> ]                                                | 3.00  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 78    |
| μ                                                                     | 0.241 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 3.90  |
| HK <sub>0.1/20</sub>                                                  | 520   |
| HG                                                                    | 3     |
| HG-J                                                                  | 130   |
| В                                                                     | 1     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 1     |
| SR                                                                    | 3.4   |
| AR                                                                    | 1.2   |
| PR                                                                    | 1     |
| SR-J                                                                  | 6     |
| WR-J                                                                  | 4     |
|                                                                       |       |

#### N-KZFS5 654397.304

**SCHOTT** 

 $\begin{array}{ll} n_{\, d} \! = \! 1.65412 & \nu_{\, d} \! = \! 39.70 \\ n_{\, e} \! = \! 1.65803 & \nu_{\, e} \! = \! 39.46 \end{array}$ 

9.70  $n_F - n_C = 0.016477$ 9.46  $n_{F'} - n_{C'} = 0.016675$ 

| Refractive Indices         |        |         |  |  |
|----------------------------|--------|---------|--|--|
|                            | λ [nm] |         |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.61392 |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.62058 |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.62780 |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.63577 |  |  |
| n <sub>t</sub>             | 1014.0 | 1.63673 |  |  |
| n <sub>s</sub>             | 852.1  | 1.64087 |  |  |
| n <sub>r</sub>             | 706.5  | 1.64649 |  |  |
| n <sub>C</sub>             | 656.3  | 1.64922 |  |  |
| n <sub>C'</sub>            | 643.8  | 1.65000 |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.65072 |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.65398 |  |  |
| $\mathbf{n}_{d}$           | 587.6  | 1.65412 |  |  |
| n <sub>e</sub>             | 546.1  | 1.65803 |  |  |
| n <sub>F</sub>             | 486.1  | 1.66570 |  |  |
| n <sub>F'</sub>            | 480.0  | 1.66667 |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.67511 |  |  |
| n <sub>h</sub>             | 404.7  | 1.68318 |  |  |
| n <sub>i</sub>             | 365.0  | 1.69756 |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  |         |  |  |
| n <sub>296.7</sub>         | 296.7  |         |  |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  |         |  |  |
| n <sub>248.3</sub>         | 248.3  |         |  |  |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.657                 | 0.350                 |
| 2325     | 0.826                 | 0.620                 |
| 1970     | 0.963                 | 0.910                 |
| 1530     | 0.988                 | 0.970                 |
| 1060     | 0.999                 | 0.998                 |
| 700      | 0.998                 | 0.994                 |
| 660      | 0.997                 | 0.992                 |
| 620      | 0.997                 | 0.992                 |
| 580      | 0.997                 | 0.993                 |
| 546      | 0.997                 | 0.992                 |
| 500      | 0.994                 | 0.985                 |
| 460      | 0.990                 | 0.974                 |
| 436      | 0.986                 | 0.965                 |
| 420      | 0.983                 | 0.958                 |
| 405      | 0.978                 | 0.946                 |
| 400      | 0.976                 | 0.940                 |
| 390      | 0.967                 | 0.920                 |
| 380      | 0.950                 | 0.880                 |
| 370      | 0.928                 | 0.830                 |
| 365      | 0.910                 | 0.790                 |
| 350      | 0.793                 | 0.560                 |
| 334      | 0.372                 | 0.080                 |
| 320      | 0.017                 |                       |
| 310      |                       |                       |
| 300      |                       |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| <b>n</b> <sub>248.3</sub> | 248.3      |        |
|---------------------------|------------|--------|
|                           |            |        |
| Constant                  | ts of Disp | ersion |
| Formula                   |            |        |
| <b>B</b> <sub>1</sub>     | 1.47460789 | )      |
| <b>B</b> <sub>2</sub>     | 0.19358448 | 38     |
| <b>B</b> <sub>3</sub>     | 1.26589974 | 1      |
| <b>C</b> <sub>1</sub>     | 0.00986143 | 8816   |
| $\mathbf{c}_2$            | 0.04454775 | 583    |
| <b>C</b> <sub>3</sub>     | 106.436258 | 3      |
|                           |            |        |

| Constants of Dispersion dn/dT |                          |
|-------------------------------|--------------------------|
| $\mathbf{D}_0$                | 4.54 · 10 <sup>-6</sup>  |
| <b>D</b> <sub>1</sub>         | 1.19 · 10 <sup>-8</sup>  |
| $D_2$                         | 2.93 · 10 <sup>-12</sup> |
| E <sub>0</sub>                | 6.89 · 10 <sup>-7</sup>  |
| E <sub>1</sub>                | 8.60 · 10 <sup>-10</sup> |
| λ <sub>TK</sub> [μm]          | 0.23                     |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 37/32 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temperature Coefficients of Refractive Index                              |        |     |     |        |     |     |
|---------------------------------------------------------------------------|--------|-----|-----|--------|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$ $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |     | ]   |        |     |     |
| [°C]                                                                      | 1060.0 | Φ   | g   | 1060.0 | e   | g   |
| -40/ -20                                                                  | 4.2    | 5.3 | 6.5 | 2.0    | 3.1 | 4.2 |
| +20/ +40                                                                  | 4.2    | 5.5 | 6.8 | 2.8    | 4.0 | 5.4 |
| +60/ +80                                                                  | 4.4    | 5.8 | 7.3 | 3.3    | 4.7 | 6.1 |

| Relative Partial Dispersion |        |  |
|-----------------------------|--------|--|
| P <sub>s,t</sub>            | 0.2511 |  |
| <b>P</b> <sub>C,s</sub>     | 0.5070 |  |
| $\mathbf{P}_{d,C}$          | 0.2972 |  |
| $\mathbf{P}_{e,d}$          | 0.2374 |  |
| $\mathbf{P}_{g,F}$          | 0.5710 |  |
| $\mathbf{P}_{i,h}$          | 0.8729 |  |
|                             |        |  |
| P' <sub>s,t</sub>           | 0.2481 |  |
| P' <sub>C',s</sub>          | 0.5473 |  |
| P' <sub>d,C'</sub>          | 0.2474 |  |
| <b>P'</b> <sub>e,d</sub>    | 0.2345 |  |
| <b>P'</b> <sub>g,F'</sub>   | 0.5060 |  |
| P' <sub>i,h</sub>           | 0.8625 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |
|---------------------------------------------------------------------|---------|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0248  |
| ΔP <sub>C,s</sub>                                                   | 0.0115  |
| $\Delta P_{F,e}$ -0.0021                                            |         |
| $\Delta P_{g,F}$                                                    | -0.0060 |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0286 |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 6.4   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 7.4   |
| T~[°C]                                                                    | 584   |
| <b>T</b> <sub>10</sub> <sup>13.0</sup> [°C]                               | 593   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 739   |
| $\mathbf{c}_{p}[J/(g\cdot K)]$                                            | 0.730 |
| λ [W/(m·K)]                                                               | 0.950 |
| AT [°C]                                                                   | 648   |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.04  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 89    |
| μ                                                                         | 0.243 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 3.57  |
| HK <sub>0.1/20</sub>                                                      | 555   |
| HG                                                                        |       |
| HG-J                                                                      | 122   |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 0     |
| SR                                                                        | 1     |
| AR                                                                        | 1     |
| PR                                                                        | 1     |
| SR-J                                                                      | 1     |
| WR-J                                                                      | 1     |
|                                                                           |       |

#### N-KZFS8 720347.320

n<sub>d</sub>= 1.72047  $v_{d}$ = 34.70  $n_e = 1.72539$ 

 $\tau_i$  (10mm)  $\tau_i$  (25mm)

0.510

Internal Transmittanceτ<sub>i</sub>

0.764

λ [nm]

2500

 $n_F - n_C = 0.020763$  $v_e = 34.47$  $n_{F'}-n_{C'}=0.021046$ 

| Refractive Indices         |        |         |
|----------------------------|--------|---------|
|                            | λ [nm] |         |
| n <sub>2325.4</sub>        | 2325.4 | 1.67524 |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.68193 |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.68939 |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.69816 |
| n <sub>t</sub>             | 1014.0 | 1.69927 |
| n <sub>s</sub>             | 852.1  | 1.70416 |
| n <sub>r</sub>             | 706.5  | 1.71099 |
| n <sub>C</sub>             | 656.3  | 1.71437 |
| n <sub>C'</sub>            | 643.8  | 1.71532 |
| n <sub>632.8</sub>         | 632.8  | 1.71622 |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.72029 |
| $\mathbf{n}_{d}$           | 587.6  | 1.72047 |
| n <sub>e</sub>             | 546.1  | 1.72539 |
| n <sub>F</sub>             | 486.1  | 1.73513 |
| n <sub>F'</sub>            | 480.0  | 1.73637 |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.74724 |
| n <sub>h</sub>             | 404.7  | 1.75777 |
| n <sub>i</sub>             | 365.0  | 1.77690 |
| <b>n</b> <sub>334.1</sub>  | 334.1  |         |
| n <sub>312.6</sub>         | 312.6  |         |
| n <sub>296.7</sub>         | 296.7  |         |
| n <sub>280.4</sub>         | 280.4  |         |
| n <sub>248.3</sub>         | 248.3  |         |

| <b>n</b> <sub>248.3</sub> | 248.3      |        |  |
|---------------------------|------------|--------|--|
|                           |            |        |  |
| Constan                   | ts of Disp | ersion |  |
| Formula                   |            |        |  |
| <b>B</b> <sub>1</sub>     | 1.62693651 | 1      |  |
| <b>B</b> <sub>2</sub>     | 0.24369876 | 6      |  |
| $\mathbf{B}_3$            | 1.62007141 | 1      |  |
| <b>C</b> <sub>1</sub>     | 0.01088086 | 33     |  |
| <b>C</b> <sub>2</sub>     | 0.04942077 | 753    |  |
| <b>C</b> <sub>3</sub>     | 131.009163 | 3      |  |

 $\mathbf{C}_3$ 

| Constants of Dispersion |                           |
|-------------------------|---------------------------|
| dn/dT                   |                           |
| <b>D</b> <sub>0</sub>   | 7.93 · 10 <sup>-7</sup>   |
| <b>D</b> <sub>1</sub>   | 6.47 · 10 <sup>-9</sup>   |
| D <sub>2</sub>          | -5.00 · 10 <sup>-12</sup> |
| <b>E</b> <sub>0</sub>   | 7.71 · 10 <sup>-7</sup>   |
| <b>E</b> <sub>1</sub>   | 1.01 · 10 <sup>-9</sup>   |
| λ <sub>TK</sub> [μm]    | 0.254                     |

| 2500 | 0.704 | 0.510 |
|------|-------|-------|
| 2325 | 0.867 | 0.700 |
| 1970 | 0.967 | 0.920 |
| 1530 | 0.993 | 0.983 |
| 1060 | 0.999 | 0.999 |
| 700  | 0.998 | 0.996 |
| 660  | 0.998 | 0.995 |
| 620  | 0.998 | 0.995 |
| 580  | 0.998 | 0.995 |
| 546  | 0.997 | 0.993 |
| 500  | 0.994 | 0.985 |
| 460  | 0.988 | 0.971 |
| 436  | 0.982 | 0.955 |
| 420  | 0.976 | 0.940 |
| 405  | 0.967 | 0.920 |
| 400  | 0.963 | 0.910 |
| 390  | 0.946 | 0.870 |
| 380  | 0.924 | 0.820 |
| 370  | 0.887 | 0.740 |
| 365  | 0.857 | 0.680 |
| 350  | 0.665 | 0.360 |
| 334  | 0.141 | 0.010 |
| 320  | 0.042 |       |
| 310  |       |       |
| 300  |       |       |
| 290  |       |       |
| 280  |       |       |
| 270  |       |       |
| 260  |       |       |
| 250  |       |       |
|      |       |       |
|      |       |       |

| Color Code                   |      |
|------------------------------|------|
| $\lambda_{80}/\lambda_{5}$   | 38/3 |
| $(*=\lambda_{70}/\lambda_5)$ |      |
|                              |      |
| Remarks                      |      |
| suitable for precision moldi | ng   |
|                              |      |
|                              |      |

| Temper                                                               | Temperature Coefficients of Refractive Index |     |                  |                                      |     |     |
|----------------------------------------------------------------------|----------------------------------------------|-----|------------------|--------------------------------------|-----|-----|
| $\Delta$ n <sub>rel</sub> / $\Delta$ T[10 <sup>-6</sup> /K] $\Delta$ |                                              |     | Δn <sub>ab</sub> | <sub>s</sub> /ΔT[10 <sup>-6</sup> /K | ]   |     |
| [°C]                                                                 | 1060.0                                       | e   | g                | 1060.0                               | е   | g   |
| -40/ -20                                                             | 2.7                                          | 4.1 | 5.6              | 0.4                                  | 1.7 | 3.2 |
| +20/ +40                                                             | 2.4                                          | 4.0 | 5.8              | 0.9                                  | 2.5 | 4.2 |
| +60/ +80                                                             | 2.4                                          | 4.1 | 6.1              | 1.2                                  | 2.9 | 4.9 |

| Relative Partial Dispersion |        |
|-----------------------------|--------|
| P <sub>s,t</sub>            | 0.2353 |
| P <sub>C,s</sub>            | 0.4916 |
| P <sub>d,C</sub>            | 0.2940 |
| P <sub>e,d</sub>            | 0.2369 |
| $\mathbf{P}_{g,F}$          | 0.5833 |
| $\mathbf{P}_{i,h}$          | 0.9212 |
|                             |        |
| P' <sub>s,t</sub>           | 0.2322 |
| P' <sub>C',s</sub>          | 0.5305 |
| P' <sub>d,C'</sub>          | 0.2445 |
| P' <sub>e,d</sub>           | 0.2337 |
| P' <sub>g,F'</sub>          | 0.5165 |
| P' <sub>i,h</sub>           | 0.9088 |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |
|---------------------------------------------------------------------|---------|
| $\Delta P_{C,t}$                                                    | 0.0173  |
| ΔP <sub>C,s</sub>                                                   | 0.0078  |
| ΔP <sub>F,e</sub>                                                   | -0.0011 |
| $\Delta P_{g,F}$                                                    | -0.0021 |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0048 |

| Other Properties                                                       |       |
|------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                           | 7.8   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                                | 9.4   |
| T <sub>g</sub> [°C]                                                    | 509   |
| T <sub>10</sub> <sup>13.0</sup> [°C]                                   | 515   |
| $T_g[^{\circ}C]$ $T_{10}^{-13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 635   |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                        | 0.760 |
| λ [W/(m·K)]                                                            | 1.050 |
| AT [°C]                                                                | 561   |
| ρ [g/cm <sup>3</sup> ]                                                 | 3.20  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                          | 103   |
| μ                                                                      | 0.248 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                         | 2.94  |
| HK <sub>0.1/20</sub>                                                   | 570   |
| HG                                                                     | 4     |
| HG-J                                                                   | 152   |
| В                                                                      | 1     |
|                                                                        |       |
| CR                                                                     | 1     |
| FR                                                                     | 0     |
| SR                                                                     | 1     |
| AR                                                                     | 1     |
| PR                                                                     | 1     |
| SR-J                                                                   | 1     |
| WR-J                                                                   | 1     |
|                                                                        |       |

#### N-KZFS11 638424.320

n<sub>d</sub>= 1.63775  $v_{d}$  = 42.41 n<sub>e</sub>= 1.64132

 $v_e$  = 42.20

 $n_F - n_C = 0.015038$  $n_{F'}-n_{C'}=0.015198$ 

| Refractive Indices         |        |         |
|----------------------------|--------|---------|
|                            |        |         |
|                            | λ [nm] |         |
| n <sub>2325.4</sub>        | 2325.4 | 1.59699 |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.60439 |
| n <sub>1529.6</sub>        | 1529.6 | 1.61223 |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.62044 |
| n <sub>t</sub>             | 1014.0 | 1.62139 |
| n <sub>s</sub>             | 852.1  | 1.62540 |
| n <sub>r</sub>             | 706.5  | 1.63069 |
| n <sub>C</sub>             | 656.3  | 1.63324 |
| n <sub>C'</sub>            | 643.8  | 1.63395 |
| n <sub>632.8</sub>         | 632.8  | 1.63462 |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.63762 |
| n <sub>d</sub>             | 587.6  | 1.63775 |
| n <sub>e</sub>             | 546.1  | 1.64132 |
| n <sub>F</sub>             | 486.1  | 1.64828 |
| n <sub>F'</sub>            | 480.0  | 1.64915 |
| n <sub>g</sub>             | 435.8  | 1.65670 |
| n <sub>h</sub>             | 404.7  | 1.66385 |
| n <sub>i</sub>             | 365.0  | 1.67636 |
| n <sub>334.1</sub>         | 334.1  | 1.69037 |
| n <sub>312.6</sub>         | 312.6  |         |
| n <sub>296.7</sub>         | 296.7  |         |
| n <sub>280.4</sub>         | 280.4  |         |
| n <sub>248.3</sub>         | 248.3  |         |

| Internal | Transmitta            | anceτ <sub>i</sub>    |
|----------|-----------------------|-----------------------|
| λ [nm]   | τ <sub>i</sub> (10mm) | τ <sub>i</sub> (25mm) |
| 2500     | 0.507                 | 0.183                 |
| 2325     | 0.779                 | 0.535                 |
| 1970     | 0.965                 | 0.914                 |
| 1530     | 0.991                 | 0.977                 |
| 1060     | 0.999                 | 0.999                 |
| 700      | 0.998                 | 0.994                 |
| 660      | 0.997                 | 0.992                 |
| 620      | 0.997                 | 0.992                 |
| 580      | 0.997                 | 0.992                 |
| 546      | 0.997                 | 0.993                 |
| 500      | 0.996                 | 0.989                 |
| 460      | 0.993                 | 0.982                 |
| 436      | 0.991                 | 0.978                 |
| 420      | 0.990                 | 0.975                 |
| 405      | 0.988                 | 0.971                 |
| 400      | 0.987                 | 0.968                 |
| 390      | 0.983                 | 0.957                 |
| 380      | 0.976                 | 0.940                 |
| 370      | 0.963                 | 0.910                 |
| 365      | 0.950                 | 0.880                 |
| 350      | 0.882                 | 0.730                 |
| 334      | 0.727                 | 0.450                 |
| 320      | 0.468                 | 0.150                 |
| 310      | 0.230                 | 0.020                 |
| 300      | 0.048                 |                       |
| 290      |                       |                       |
| 280      |                       |                       |
| 270      |                       |                       |
| 260      |                       |                       |
| 250      |                       |                       |
|          |                       |                       |
|          |                       |                       |

| <b>Relative Partial Dispersion</b> |        |  |
|------------------------------------|--------|--|
| $\mathbf{P}_{s,t}$                 | 0.2664 |  |
| P <sub>C,s</sub>                   | 0.5212 |  |
| $\mathbf{P}_{d,C}$                 | 0.3000 |  |
| $\mathbf{P}_{\mathrm{e,d}}$        | 0.2377 |  |
| $\mathbf{P}_{g,F}$                 | 0.5605 |  |
| $\mathbf{P}_{i,h}$                 | 0.8319 |  |
|                                    |        |  |
| P' <sub>s,t</sub>                  | 0.2636 |  |
| P' <sub>C',s</sub>                 | 0.5627 |  |
| P' <sub>d,C'</sub>                 | 0.2499 |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2352 |  |
| P' <sub>g,F'</sub>                 | 0.4971 |  |
| P' <sub>i,h</sub>                  | 0.8232 |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |
|---------------------------------------------------------------------|---------|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0415  |
| Δ <b>P</b> <sub>C,s</sub>                                           | 0.0194  |
| ΔP <sub>F,e</sub>                                                   | -0.0039 |
| $\Delta P_{g,F}$                                                    | -0.0120 |
| $\Delta \mathbf{P}_{i,g}$                                           | -0.0617 |
|                                                                     |         |

| Other Properties                                                          |       |
|---------------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                              | 6.6   |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                             | 7.6   |
| T <sub>a</sub> [°C]                                                       | 551   |
| T <sub>10</sub> <sup>13.0</sup> [°C]  T <sub>10</sub> <sup>7.6</sup> [°C] | 554   |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                                | 0     |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                           | 0.690 |
| λ [W/(m·K)]                                                               | 0.810 |
| AT [°C]                                                                   |       |
| ρ [g/cm <sup>3</sup> ]                                                    | 3.20  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                             | 79    |
| μ                                                                         | 0.251 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                            | 4.21  |
| HK <sub>0.1/20</sub>                                                      | 530   |
| HG                                                                        | 3     |
| HG-J                                                                      | 74    |
| В                                                                         | 1     |
|                                                                           |       |
| CR                                                                        | 1     |
| FR                                                                        | 1     |
| SR                                                                        | 3.4   |
| AR                                                                        | 1     |
| PR                                                                        | 1     |
| SR-J                                                                      |       |
| WR-J                                                                      |       |
|                                                                           |       |

| Constants of Dispersion |              |
|-------------------------|--------------|
| Formula                 |              |
| <b>B</b> <sub>1</sub>   | 1.3322245    |
| <b>B</b> <sub>2</sub>   | 0.28924161   |
| <b>B</b> <sub>3</sub>   | 1.15161734   |
| <b>C</b> <sub>1</sub>   | 0.0084029848 |
| <b>C</b> <sub>2</sub>   | 0.034423972  |
| <b>C</b> <sub>3</sub>   | 88.4310532   |

| Constants of Dispersion |                           |  |  |
|-------------------------|---------------------------|--|--|
| dn/dT                   |                           |  |  |
| $\mathbf{D}_0$          | 3.34 · 10 <sup>-6</sup>   |  |  |
| <b>D</b> <sub>1</sub>   | 1.16 · 10 <sup>-8</sup>   |  |  |
| <b>D</b> <sub>2</sub>   | -1.80 · 10 <sup>-11</sup> |  |  |
| E <sub>0</sub>          | 6.32 · 10 <sup>-7</sup>   |  |  |
| <b>E</b> <sub>1</sub>   | 7.21 · 10 <sup>-10</sup>  |  |  |
| λ <sub>TK</sub> [μm]    | 0.206                     |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 36/30 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks                        |
|--------------------------------|
| suitable for precision molding |
|                                |

| Temperature Coefficients of Refractive Index                |        |     |                                      |        |     |     |
|-------------------------------------------------------------|--------|-----|--------------------------------------|--------|-----|-----|
| $\Delta$ n <sub>rel</sub> / $\Delta$ T[10 <sup>-6</sup> /K] |        |     | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |     |     |
| [°C]                                                        | 1060.0 | e   | g                                    | 1060.0 | е   | g   |
| -40/ -20                                                    | 3.5    | 4.4 | 5.4                                  | 1.3    | 2.2 | 3.1 |
| +20/ +40                                                    | 3.5    | 4.6 | 5.7                                  | 2.1    | 3.1 | 4.2 |
| +60/ +80                                                    | 3.6    | 4.8 | 6.0                                  | 2.5    | 3.7 | 4.8 |

#### LITHOSIL-Q 458678.220

**SCHOTT** 

n<sub>d</sub>= 1.45844 n<sub>e</sub>= 1.46005  $v_d$  = 67.83  $v_e$  = 67.68

 $n_F - n_C = 0.006759$  $n_{F'} - n_{C'} = 0.006798$ 

| Refractive Indices         |        |         |  |  |  |
|----------------------------|--------|---------|--|--|--|
| λ [nm]                     |        |         |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.43291 |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.43850 |  |  |  |
| n <sub>1529.6</sub>        | 1529.6 | 1.44425 |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.44966 |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.45022 |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.45244 |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.45512 |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.45634 |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.45668 |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.45699 |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.45838 |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.45844 |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.46005 |  |  |  |
| n <sub>F</sub>             | 486.1  | 1.46310 |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.46348 |  |  |  |
| n <sub>g</sub>             | 435.8  | 1.46667 |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.46959 |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.47451 |  |  |  |
| <b>n</b> <sub>334.1</sub>  | 334.1  | 1.47974 |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  | 1.48447 |  |  |  |
| n <sub>296.7</sub>         | 296.7  | 1.48871 |  |  |  |
| n <sub>280.4</sub>         | 280.4  | 1.49400 |  |  |  |
| n <sub>248.3</sub>         | 248.3  | 1.50838 |  |  |  |

| Internal | Transmittanceτ <sub>i</sub> |                       |  |  |
|----------|-----------------------------|-----------------------|--|--|
| λ [nm]   | τ <sub>i</sub> (10mm)       | τ <sub>i</sub> (25mm) |  |  |
| 2500     | 0.783                       | 0.543                 |  |  |
| 2325     | 0.913                       | 0.797                 |  |  |
| 1970     | 0.994                       | 0.986                 |  |  |
| 1530     | 0.999                       | 0.999                 |  |  |
| 1060     | 0.999                       | 0.999                 |  |  |
| 700      | 0.999                       | 0.999                 |  |  |
| 660      | 0.999                       | 0.999                 |  |  |
| 620      | 0.999                       | 0.999                 |  |  |
| 580      | 0.999                       | 0.999                 |  |  |
| 546      | 0.999                       | 0.999                 |  |  |
| 500      | 0.999                       | 0.999                 |  |  |
| 460      | 0.999                       | 0.999                 |  |  |
| 436      | 0.999                       | 0.999                 |  |  |
| 420      | 0.999                       | 0.999                 |  |  |
| 405      | 0.999                       | 0.999                 |  |  |
| 400      | 0.999                       | 0.999                 |  |  |
| 390      | 0.999                       | 0.999                 |  |  |
| 380      | 0.999                       | 0.999                 |  |  |
| 370      | 0.999                       | 0.999                 |  |  |
| 365      | 0.999                       | 0.999                 |  |  |
| 350      | 0.999                       | 0.999                 |  |  |
| 334      | 0.999                       | 0.999                 |  |  |
| 320      | 0.999                       | 0.999                 |  |  |
| 310      | 0.999                       | 0.999                 |  |  |
| 300      | 0.999                       | 0.999                 |  |  |
| 290      | 0.999                       | 0.999                 |  |  |
| 280      | 0.999                       | 0.999                 |  |  |
| 270      | 0.999                       | 0.999                 |  |  |
| 260      | 0.999                       | 0.999                 |  |  |
| 250      | 0.999                       | 0.999                 |  |  |
|          |                             |                       |  |  |
|          |                             |                       |  |  |

| <b>Relative Partial Dispersion</b> |        |  |  |
|------------------------------------|--------|--|--|
| P <sub>s,t</sub>                   | 0.3288 |  |  |
| <b>P</b> <sub>C,s</sub>            | 0.5770 |  |  |
| $\mathbf{P}_{d,C}$                 | 0.3102 |  |  |
| $\mathbf{P}_{\mathrm{e,d}}$        | 0.2388 |  |  |
| $\mathbf{P}_{g,F}$                 | 0.5276 |  |  |
| $\mathbf{P}_{i,h}$                 | 0.7283 |  |  |
|                                    |        |  |  |
| P' <sub>s,t</sub>                  | 0.3269 |  |  |
| P' <sub>C',s</sub>                 | 0.6233 |  |  |
| P' <sub>d,C'</sub>                 | 0.2588 |  |  |
| P' <sub>e,d</sub>                  | 0.2375 |  |  |
| P' <sub>g,F'</sub>                 | 0.4693 |  |  |
| P' <sub>i,h</sub>                  | 0.7241 |  |  |
|                                    |        |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |
|---------------------------------------------------------------------|---------|--|
| Δ <b>P</b> <sub>C,t</sub>                                           | 0.0390  |  |
| ΔP <sub>C,s</sub>                                                   | 0.0160  |  |
| ΔP <sub>F,e</sub>                                                   | -0.0017 |  |
| $\Delta P_{g,F}$                                                    | -0.0021 |  |
| $\Delta \mathbf{P}_{i,g}$                                           | 0.0054  |  |

| Other Properties                                                      |       |
|-----------------------------------------------------------------------|-------|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                          | 0.5   |
| $\alpha_{+20/+300^{\circ}C}[10^{-6}/K]$                               | 0.6   |
| T <sub>g</sub> [°C]                                                   | 980   |
| $T_g[^{\circ}C]$ $T_{10}^{13.0}[^{\circ}C]$ $T_{10}^{7.6}[^{\circ}C]$ | 1080  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                            | 1600  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                       | 0.790 |
| λ [W/(m·K)]                                                           | 1.310 |
|                                                                       |       |
| ρ [g/cm <sup>3</sup> ]                                                | 2.20  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                         | 72    |
| μ                                                                     | 0.170 |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                        | 3.40  |
| HK <sub>0.1/20</sub>                                                  | 580   |
| HG                                                                    |       |
|                                                                       |       |
| В                                                                     | 0     |
|                                                                       |       |
| CR                                                                    | 1     |
| FR                                                                    | 0     |
| SR                                                                    | 1     |
| AR                                                                    | 1     |
| PR                                                                    | 1     |
|                                                                       |       |
|                                                                       |       |
|                                                                       | i     |

| Constants of Dispersion dn/dT |                           |  |
|-------------------------------|---------------------------|--|
| <b>D</b> <sub>0</sub>         | 2.06 · 10 <sup>-5</sup>   |  |
| <b>D</b> <sub>1</sub>         | 2.51 · 10 <sup>-8</sup>   |  |
| D <sub>2</sub>                | -2.47 · 10 <sup>-11</sup> |  |
| <b>E</b> <sub>0</sub>         | 3.12 · 10 <sup>-7</sup>   |  |
| <b>E</b> <sub>1</sub>         | 4.22 · 10 <sup>-10</sup>  |  |
| λ <sub>TK</sub> [μm]          | 0.16                      |  |

**Constants of Dispersion** 

0.67071081

0.433322857 0.877379057

0.00449192312

0.0132812976

95.8899878

**Formula** 

**B**<sub>1</sub>

 $\mathbf{B}_2$ 

 $\mathbf{C}_1$ 

 $C_2$ 

 $\mathbf{C}_3$ 

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 17/16 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Temperature Coefficients of Refractive Index |        |      |                                      |        |     |     |
|----------------------------------------------|--------|------|--------------------------------------|--------|-----|-----|
| $\Delta n_{rel}/\Delta T[10^{-6}/K]$         |        |      | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |        |     |     |
| [°C]                                         | 1060.0 | e    | g                                    | 1060.0 | е   | g   |
| -40/ -20                                     | 8.8    | 9.3  | 9.7                                  | 6.9    | 7.3 | 7.7 |
| +20/ +40                                     | 9.4    | 9.9  | 10.4                                 | 8.1    | 8.6 | 9.0 |
| +60/ +80                                     | 9.8    | 10.4 | 10.9                                 | 8.8    | 9.4 | 9.8 |

#### LITHOTEC-CAF2 434952.318

 $n_d = 1.43385$  $v_{d}$  = 95.23 n<sub>e</sub>= 1.43494

 $v_e = 94.69$ 

 $n_F - n_C = 0.004556$  $n_{F'}-n_{C'}=0.004593$ 

| Refractive Indices         |        |                    |  |  |  |  |  |  |
|----------------------------|--------|--------------------|--|--|--|--|--|--|
| λ [nm]                     |        |                    |  |  |  |  |  |  |
| n <sub>2325.4</sub>        | 2325.4 | 1.42212            |  |  |  |  |  |  |
| <b>n</b> <sub>1970.1</sub> | 1970.1 | 1.42402            |  |  |  |  |  |  |
| <b>n</b> <sub>1529.6</sub> | 1529.6 | 1.42613            |  |  |  |  |  |  |
| <b>n</b> <sub>1060.0</sub> | 1060.0 | 1.42851            |  |  |  |  |  |  |
| n <sub>t</sub>             | 1014.0 | 1.42880            |  |  |  |  |  |  |
| n <sub>s</sub>             | 852.1  | 1.43003            |  |  |  |  |  |  |
| n <sub>r</sub>             | 706.5  | 1.43167            |  |  |  |  |  |  |
| n <sub>C</sub>             | 656.3  | 1.43246            |  |  |  |  |  |  |
| n <sub>C'</sub>            | 643.8  | 1.43268            |  |  |  |  |  |  |
| n <sub>632.8</sub>         | 632.8  | 1.43289            |  |  |  |  |  |  |
| <b>n</b> <sub>D</sub>      | 589.3  | 1.43381            |  |  |  |  |  |  |
| n <sub>d</sub>             | 587.6  | 1.43385            |  |  |  |  |  |  |
| n <sub>e</sub>             | 546.1  | 1.43494<br>1.43702 |  |  |  |  |  |  |
| n <sub>F</sub>             | 486.1  |                    |  |  |  |  |  |  |
| n <sub>F'</sub>            | 480.0  | 1.43727            |  |  |  |  |  |  |
| <b>n</b> <sub>g</sub>      | 435.8  | 1.43947            |  |  |  |  |  |  |
| n <sub>h</sub>             | 404.7  | 1.44149            |  |  |  |  |  |  |
| n <sub>i</sub>             | 365.0  | 1.44489            |  |  |  |  |  |  |
| n <sub>334.1</sub>         | 334.1  | 1.44849            |  |  |  |  |  |  |
| <b>n</b> <sub>312.6</sub>  | 312.6  | 1.45173            |  |  |  |  |  |  |
| <b>n</b> <sub>296.7</sub>  | 296.7  | 1.45464            |  |  |  |  |  |  |
| <b>n</b> <sub>280.4</sub>  | 280.4  | 1.45824            |  |  |  |  |  |  |
| n <sub>248.3</sub>         | 248.3  | 1.46792            |  |  |  |  |  |  |

| Internal | Transmittanceτ <sub>i</sub> |                       |  |
|----------|-----------------------------|-----------------------|--|
| λ [nm]   | τ <sub>i</sub> (10mm)       | τ <sub>i</sub> (25mm) |  |
| 2500     | 0.999                       | 0.999                 |  |
| 2325     | 0.999                       | 0.999                 |  |
| 1970     | 0.999                       | 0.999                 |  |
| 1530     | 0.999                       | 0.999                 |  |
| 1060     | 0.999                       | 0.999                 |  |
| 700      | 0.999                       | 0.999                 |  |
| 660      | 0.999                       | 0.999                 |  |
| 620      | 0.999                       | 0.999                 |  |
| 580      | 0.999                       | 0.999                 |  |
| 546      | 0.999                       | 0.999                 |  |
| 500      | 0.999                       | 0.999                 |  |
| 460      | 0.999                       | 0.998                 |  |
| 436      | 0.999                       | 0.998                 |  |
| 420      | 0.999                       | 0.998                 |  |
| 405      | 0.999                       | 0.998                 |  |
| 400      | 0.999                       | 0.998                 |  |
| 390      | 0.999                       | 0.998                 |  |
| 380      | 0.999                       | 0.998                 |  |
| 370      | 0.999                       | 0.998                 |  |
| 365      | 0.999                       | 0.998                 |  |
| 350      | 0.999                       | 0.998                 |  |
| 334      | 0.999                       | 0.998                 |  |
| 320      | 0.999                       | 0.998                 |  |
| 310      | 0.999                       | 0.998                 |  |
| 300      | 0.999                       | 0.998                 |  |
| 290      | 0.999                       | 0.998                 |  |
| 280      | 0.999                       | 0.998                 |  |
| 270      | 0.999                       | 0.998                 |  |
| 260      | 0.999                       | 0.998                 |  |
| 250      | 0.999                       | 0.998                 |  |
|          |                             |                       |  |
|          |                             |                       |  |

| i   | Ι |
|-----|---|
| mm) |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     | ı |
|     | 1 |
|     | 4 |
|     |   |
|     | 4 |
|     | - |
|     | _ |
|     |   |
|     | ( |
|     | • |
|     | ( |
|     |   |
|     | - |
|     |   |
|     |   |
|     |   |
|     | - |

| <b>Relative Partial Dispersion</b> |        |  |  |  |
|------------------------------------|--------|--|--|--|
| $\mathbf{P}_{s,t}$                 | 0.2698 |  |  |  |
| P <sub>C,s</sub>                   | 0.5333 |  |  |  |
| $\mathbf{P}_{d,C}$                 | 0.3046 |  |  |  |
| $\mathbf{P}_{e,d}$                 | 0.2388 |  |  |  |
| $\mathbf{P}_{g,F}$                 | 0.5388 |  |  |  |
| $\mathbf{P}_{i,h}$                 | 0.7462 |  |  |  |
|                                    |        |  |  |  |
| P' <sub>s,t</sub>                  | 0.2676 |  |  |  |
| P' <sub>C',s</sub>                 | 0.5770 |  |  |  |
| P' <sub>d,C'</sub>                 | 0.2541 |  |  |  |
| <b>P'</b> <sub>e,d</sub>           | 0.2369 |  |  |  |
| <b>P'</b> <sub>g,F'</sub>          | 0.4782 |  |  |  |
| P' <sub>i,h</sub>                  | 0.7401 |  |  |  |
|                                    |        |  |  |  |

| Deviation of Relative Partial Dispersions ΔP from the "Normal Line" |         |  |  |  |
|---------------------------------------------------------------------|---------|--|--|--|
| Δ <b>P</b> <sub>C,t</sub> -0.1935                                   |         |  |  |  |
| ΔP <sub>C,s</sub>                                                   | -0.0915 |  |  |  |
| Δ <b>P</b> <sub>F,e</sub> 0.0183                                    |         |  |  |  |
| Δ <b>P</b> <sub>g,F</sub> 0.0552                                    |         |  |  |  |
| Δ <b>P</b> <sub>i,g</sub> 0.2636                                    |         |  |  |  |

| Other Properties                                                         |       |  |
|--------------------------------------------------------------------------|-------|--|
| α <sub>-30/+70°C</sub> [10 <sup>-6</sup> /K]                             | 18.4  |  |
| α <sub>+20/+300°C</sub> [10 <sup>-6</sup> /K]                            | 21.3  |  |
| T <sub>a</sub> [°C]                                                      |       |  |
| T <sub>10</sub> <sup>13.0</sup> [°C] T <sub>10</sub> <sup>7.6</sup> [°C] | 0     |  |
| <b>T</b> <sub>10</sub> <sup>7.6</sup> [°C]                               | 0     |  |
| <b>c</b> <sub>p</sub> [J/(g·K)]                                          | 0.854 |  |
| λ [W/(m·K)]                                                              | 9.710 |  |
|                                                                          |       |  |
| ρ [g/cm <sup>3</sup> ]                                                   | 3.18  |  |
| <b>E</b> [10 <sup>3</sup> N/mm <sup>2</sup> ]                            | 76    |  |
| μ                                                                        | 0.260 |  |
| <b>K</b> [10 <sup>-6</sup> mm <sup>2</sup> /N]                           | 1.77  |  |
| HK <sub>0.1/20</sub>                                                     | 158   |  |
| HG                                                                       | 6     |  |
|                                                                          |       |  |
| В                                                                        | 1     |  |
|                                                                          |       |  |
| CR                                                                       | 1     |  |
| FR                                                                       | 0     |  |
| SR                                                                       | 4.5   |  |
| AR                                                                       | 2.3   |  |
| PR                                                                       | 1.3   |  |
|                                                                          |       |  |
|                                                                          |       |  |

| Constants of Dispersion |  |  |  |  |
|-------------------------|--|--|--|--|
| Formula                 |  |  |  |  |
| 0.617617011             |  |  |  |  |
| 0.421117656             |  |  |  |  |
| 3.79711183              |  |  |  |  |
| 0.00275381936           |  |  |  |  |
| 0.0105900875            |  |  |  |  |
| 1182.67444              |  |  |  |  |
|                         |  |  |  |  |

| Constants of Dispersion dn/dT |                          |  |  |  |
|-------------------------------|--------------------------|--|--|--|
| $\mathbf{D}_0$                | -3.18 · 10 <sup>-5</sup> |  |  |  |
| <b>D</b> <sub>1</sub>         | -2.31 · 10 <sup>-8</sup> |  |  |  |
| $D_2$                         | 4.13 · 10 <sup>-11</sup> |  |  |  |
| <b>E</b> <sub>0</sub>         | 3.35 · 10 <sup>-7</sup>  |  |  |  |
| <b>E</b> <sub>1</sub>         | 1.91 · 10 <sup>-10</sup> |  |  |  |
| λ <sub>TK</sub> [μm]          | 0.192                    |  |  |  |

| Color Code                   |       |
|------------------------------|-------|
| $\lambda_{80}/\lambda_{5}$   | 14/12 |
| $(*=\lambda_{70}/\lambda_5)$ |       |

| Remarks |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

| Temperature Coefficients of Refractive Index |                                      |       |                                      |       |       |       |
|----------------------------------------------|--------------------------------------|-------|--------------------------------------|-------|-------|-------|
|                                              | $\Delta n_{rel}/\Delta T[10^{-6}/K]$ |       | $\Delta n_{abs}/\Delta T[10^{-6}/K]$ |       | ]     |       |
| [°C]                                         | 1060.0                               | e     | e g 1060.0 e g                       |       |       |       |
| -40/ -20                                     | -8.6                                 | -8.4  | -8.1                                 | -10.5 | -10.3 | -10.1 |
| +20/ +40                                     | -10.4                                | -10.2 | -9.9                                 | -11.6 | -11.4 | -11.2 |
| +60/ +80                                     | -11.2                                | -11.0 | -10.7                                | -12.2 | -12.0 | -11.7 |

Advanced Optics SCHOTT AG

Hattenbergstraße 10 55122 Mainz Germany

Phone: +49 (0)6131/66-1812 Fax: +49 (0)3641/2888-9047

info.optics@schott.com

www.schott.com/advanced\_optics

SCHOTT Glass (Malaysia) SDN. BHD.

2024 Tinkat Perusahaan 6 Zon Perindustrian Bebas 2 13600 Perai/Penang

Malaysia
Phone: +60 4-3898100
Fax: +60 4-3993861
schott.mypen@schott.com

**SCHOTT Glass Technologies** 

(Suzhou) Co., Ltd

79 Huoju Road

Science &Technology Industrial Park 215009 Suzhou New District

China

Phone: +86 (0)512 68058312 Fax: +86 (0)512 68058317

technicalcenter.china@schott.com.cn

**SCHOTT Nippon K.K.** 

7, Honshio-cho, Shinjuku-ku Tokyo 160-0003

Japan

Phone: +81 (0)35366-2491 Fax: +81 (0)35366-2481 sn.info@schott.com/japan www.schott.com/japan

