

Fig.2

F1g.5

F18.9

13/30

F1g. 14

S03P1324

16/30

STATE	DETERMINATION CRITERIA	CONTROL MODE
STABLE STATE UNDER LIGHT OF FLUORESCENT LAMP (REGULAR FLICKER)	THROUGHOUT A PLURALITY OF PAST FIELDS ym :ENERALLY CONSTANT GENERALLY CONSTANT GENERALLY CONSTANT :GENERALLY CONSTANT :GENERALLY CONSTANT :GENERALLY CONSTANT :GENERALLY CONSTANT :GENERALLY CONSTANT :GENERALLY CONSTANT :SCREEN LIGHTNESS VARYING EVERY :NFORMATION CONSTANT NUMBER OF PERIODS AWB CONTROL:DETERMINED ALMOST AS BEING UNDER :INFORMATION "LIGHT OF FLUORESCENT LAMP"	MODE A
STABLE STATE UNDER LIGHT OF NON-FLUORESCENT LAMP (FLICKERLESS)	• THROUGHOUT A PLURALITY OF PAST FIELDS ym (NOISE COMPONENT ONLY) (NOISE COMPONENT ONLY) Amn :RANDOMLY VARYING AE CONTROL NO PERIODICITY IN SCREEN LIGHTNESS INFORMATION AWB CONTROL: DETERMINED ALMOST AS BEING UNDER INFORMATION "LIGHT OF NON-FLUORE SCENT LAMP"	MODE B

Fig. 16

17/30

Fig.17A	I n' (x,y) = $[1 + \Gamma n(y)] * I n(x,y)$ WHERE $\Gamma n(y) = \sum_{m=1}^{\infty} \gamma m * \cos[m * (2 \pi / \lambda o) * y + \Phi mn]$	•••(1)
	$= \sum_{m=1}^{\infty} \gamma_m * \cos(m * \omega_0 * y + \Phi_{mn})$	•••(2)
	$\Delta \Phi mn = (-2 \pi / 3) * m$	•••(3)
Fig.17B	$F n(y) = \sum_{x} I n'(x,y) = \sum_{x} \{ [1 + \Gamma n(y)] * I n(x,y) \}$ $= \sum_{x} I n(x,y) + \Gamma n(y) \sum_{x} I n(x,y)$	
	$= \alpha n(y) + \alpha n(y) * \Gamma n(y)$ WHERE $\alpha n(y) = \sum_{y} I n(x,y)$	· · · (4)
	x	

18/30

$$A \ V \ E \ [F \ n(y)] = (1/3) \sum_{k=0}^{2} F \ n_{-k}(y)$$

$$= (1/3) \left\{ \sum_{k=0}^{2} \alpha \ n_{-k}(y) + \alpha \ n_{-k}(y) * \Gamma n_{-k}(y) \right\}$$

$$= (1/3) \sum_{k=0}^{2} \alpha \ n_{-k}(y) + (1/3) \sum_{k=0}^{2} \alpha \ n_{-k}(y) * \Gamma n_{-k}(y)$$

$$= \alpha \ n(y) + (1/3) * \alpha \ n(y) \sum_{k=0}^{2} \Gamma n_{-k}(y)$$

$$= \alpha \ n(y)$$

$$= \alpha \ n(y)$$

$$\cdots (6)$$

$$WHERE$$

$$\alpha \ n(y) \cong \alpha \ n_{-1}(y) \cong \alpha \ n_{-2}(y)$$

Fig.18B

Fig.18A

$$F n(y) - F n_1(y)$$

$$= \{ \alpha n(y) + \alpha n(y) * \Gamma n(y) \} - \{ \alpha n_1(y) + \alpha n_1(y) * \Gamma n_1(y) \}$$

$$= \alpha n(y) * \{ \Gamma n(y) - \Gamma n_1(y) \}$$

$$= \alpha n(y) \sum_{m=1}^{\infty} \gamma m * \{ \cos(m * \omega \circ * y + \Phi mn) - \cos(m * \omega \circ * y + \Phi mn_1) \}$$

$$- \cos(m * \omega \circ * y + \Phi mn_1) \}$$

$$\cdot \cdot \cdot (8)$$

• • (11b)

19/30

$$gn(y) = \{Fn(y) - Fn_1(y)\} / AVE[Fn(y)]$$

$$= \sum_{m=1}^{\infty} \gamma m * \{\cos(m * \omega_0 * y + \Phi_{mn}) - \cos(m * \omega_0 * y + \Phi_{mn_1})\}$$

$$= \sum_{m=1}^{\infty} (-2) \gamma m \{\sin[m * \omega_0 * y + (\Phi_{mn} + \Phi_{mn_1})/2] + \sin[(\Phi_{mn} - \Phi_{mn_1})/2]\}$$

$$\cdot \cdot \cdot (9)$$

Fig.19A

$$gn(y) = \sum_{m=1}^{\infty} (-2) \gamma m * sin(m * \omega_0 * y + \Phi_{mn} + m * \pi / 3)$$

$$= \sum_{m=1}^{\infty} 2 * \gamma m * cos(m * \omega_0 * y + \Phi_{mn} + m * \pi / 3 - \pi / 2)$$

$$= \sum_{m=1}^{\infty} 2 * \gamma m * sin(m * \pi / 3)$$

$$= \sum_{m=1}^{\infty} 2 * \gamma m * sin(m * \pi / 3)$$

$$* cos(m * \omega_0 * y + \Phi_{mn} + m * \pi / 3 - \pi / 2)$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |Am| * cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{$$

Fig.19B

Fig.20A	$\gamma = \Lambda m / [2 * \sin(m * \pi / 3)] $ $\Phi mn = \theta m - m * \pi / 3 + \pi / 2 $ $\cdot \cdot \cdot (12a)$ $\cdot \cdot \cdot (12b)$
Fig.20B	DFT[gn(y)] = Gn(m) = $\sum_{i=0}^{L-1}$ gn(i) *W ^m *i(13) WHERE W=exp[-j*2 π /L](14)
Fig.20C	$ Am = 2* Gn(m) /L \qquad \cdots (15a)$ $\theta = \tan^{-1}\{Im[Gn(m)]/Re[Gn(m)]\} \qquad \cdots (15b)$ WHERE $Im[Gn(m)]: MAG NARY: PART$ $Re[Gn(m)]: REAL PART$
Fig.20D	$\gamma m = Gn(m) /[L *sin(m*\pi/3)]$ $\Phi mn = tan^{-1} \{ I m [Gn(m)]/R e [Gn(m)] \} - m*\pi/3 + \pi/2$ $\cdot \cdot \cdot (16b)$
Fig.20E	$I n(x,y) = I n'(x,y) / [1 + \Gamma n(y)]$ •••(17)

21/30

Fig.21A

$$gn(y) = Fn(y) / A V E [Fn(y)]$$

$$= 1 + \sum_{m=1}^{\infty} \gamma m * cos(m * \omega o * y + \Phi mn)$$
• • • (18)

Fig.21B

$$g n(y) - 1 = \sum_{m=1}^{\infty} \gamma_m * \cos(m * \omega_0 * y + \Phi_{mn})$$

$$= \sum_{m=1}^{\infty} |A_m| * \cos(m * \omega_0 * y + \theta_m)$$

$$\cdot \cdot \cdot (19)$$

Fig.21C

$$\gamma = 2 * |Gn(m)| / L$$
 ... (20a)
$$\Phi mn = tan^{-1} \{ I m [Gn(m)] / R e [Gn(m)] \}$$
 ... (20b)
$$WHERE$$

$$I m [Gn(m)] : |MAGINARY PART$$

Re[Gn(m)]:REAL PART

Fig.23

24/30

25/30

27/30

Fig.30

Fig.31