

Санкт-Петербургский государственный университет Кафедра информационно-аналитических систем

Определение стиля библиографической записи с помощью машинного обучения

Артём Юрьевич Копань, группа 21.Б10

Научный руководитель: ассистент кафедры ИАС Г. А. Чернышев

Санкт-Петербург 2023

Введение

- MAP¹ сервис для автоматизированной проверка текстов курсовых и ВКР на стилистические ошибки
- Проверка стиля списка литературы на соответствие ГОСТ
- Определение конкретного библиографического стиля по тексту библиографической записи

¹https://github.com/Darderion/map

Постановка задачи

Целью работы является разработка алгоритма для предсказания стиля библиографической записи по тексту записи **Задачи**:

- Выявить признаки, по которым различаются библиографические стили, и составить список их основных разновидностей
- Найти существующие алгоритмы, решающие поставленную задачу, описать их достоинства и недостатки
- Найти достаточное количество файлов стилей и библиографий и сформировать датасет
- Разработать и реализовать алгоритм выделения и предобработки значимых признаков в библиографических записях
- Провести экспериментальное исследование и сделать вывод, какой алгоритм машинного обучения лучше справляется с поставленной залачей

Обзор — библиографические стили

- Библиографический стиль это набор правил, регулирующих внешний вид текста библиографической записи в РЕТЕХ
- Декларирует порядок следования имени автора, названия статьи, издательства и т.д., вид ссылки на источник в тексте
- Пример: ugost2008s
 [1] Alander Jarmo, Moghadampour Ghodrat, Ylinen Jari. Comparison of elevator allocation methods // Proceedings of the Second Nordic Workshop on Genetic Algorithms and their Applications (2NWGA) / Ed. by Jarmo T. Alander. Proceedings of the University of Vaasa, Nro. 13. Vaasa (Finland): University of Vaasa, 1996. 19.—23. . P. 211—214.

Обзор — существующие решения

- Инструмент² от Dominika Tkaczyk (Crossref) решает поставленную задачу с точностью до 94% с использованием линейной регрессии
- Недостатки:
 - Алгоритм выделения признаков не учитывает расстановку пробелов
 - ▶ Используется всего 17 библиографических стилей

Артём Копань (СПбГУ)

²https://gitlab.com/crossref/citation_style_classifier

Создание датасета

- Файлы библиографий (bib) и стилей (bst) скачаны из открытых источников^{3, 4}, всего 91 стиль, 301 bib файл
- PDF-файлы генерировались автоматически с помощью заранее созданного LATEX-шаблона и скрипта на Bash
- Перебор всех bib и bst файлов производился Python-скриптом
- Было сгенерировано более 19 тысяч PDF-файлов с 6 млн библиографических записей

³Библиографии: http://dblp.org/

⁴Стили: http://ctan.org/

Выделение признаков (первый способ)

- Библиотека PDFium для парсинга сгенерированных PDF
- В каждом файле выделялись отдельные библиографические записи, а затем для них подсчитывались числовые и категориальные признаки
- Признаки, типы:
 - количество различных знаков пунктуации
 - доля больших букв
 - ▶ наличие слов "Abstract", "Key", "[s.n.]" и т.д.
 - ► тип ссылки на запись ([1], [TrD90], [Ski(2022)], [SDD, 99]) (всего 22 признака)
- Подсчитанные признаки были сохранены в CSV-файле

Выделение признаков (второй способ)

Векторизация

- Конкретные слова заменяются на токены:
 - ▶ слово с большой буквы, слово в верхнем регистре, другое слово
 - большая буква, маленькая буква
 - ▶ год
 - число
 - пробел
 - знаки пунктуации остаются
- К преобразованному тексту применяется векторизация, т.е. выделение n-грамм с помощью CountVectorizer
- N-грамма последовательность слов длины N. N-граммы используются в качестве новых признаков

Модели машинного обучения

Для эксперимента были выбраны самые распространённые модели классификаторов

- Линейная классификация SGDClassifier
- Наивная байесовская классификация GaussianNB*, MultinomialNB**
- Случайный лес RandomForestClassifier
- Дерево решений CatBoostClassifier

Метрики

• Доля правильных ответов алгоритма (accuracy score):

$$\mathtt{accuracy}(y, \hat{y}) := \frac{1}{n_{\mathsf{samples}}} \sum_{i=0}^{n_{\mathsf{samples}}-1} \mathbb{1}(\hat{y}_i = y_i)$$

Точность (precision):

$$P(A,B) := \frac{|A \cap B|}{|B|}$$

Полнота (recall):

$$R(A,B) := \frac{|A \cap B|}{|A|}$$

F₁:

$$F_1(A,B) := \frac{2 \times P(A,B) \times R(A,B)}{P(A,B) + R(A,B)}$$

Результаты экспериментального исследования

Таблица: Результаты на первом варианте предобработки признаков

Алгоритм	Accuracy	Precision	Recall	F_1
Линейная классификация	0.41	0.41	0.40	0.37
Наивная байесовская классификация**	0.36	0.42	0.37	0.33
Случайный лес	0.54	0.55	0.52	0.50
Дерево решений	0.62	0.60	0.61	0.60

Таблица: Результаты на втором варианте предобработки признаков

Алгоритм	Accuracy	Precision	Recall	F_1
Линейная классификация	0.66	0.65	0.62	0.61
Наивная байесовская классификация*	0.55	0.58	0.55	0.55
Случайный лес	0.68	0.67	0.65	0.64
Дерево решений	0.84	0.83	0.82	0.82

Результаты

- Составлен список основных разновидностей библиографических стилей LATEX с примерами
- Проведён обзор существующих решений поставленной задачи, выявлены их достоинства и недостатки
- Сформирован датасет для обучения моделей машинного обучения
- Разработаны и реализованы два различных способа выделения и предобработки признаков
- Проведено экспериментальное исследование, выяснено, что наилучшую точность классификации обеспечивает алгоритм дерева решений, оптимизированный градиентным бустингом

Реализацию и использованные данные можно найти в репозитории 5 GitHub.

https://github.com/ArtyomKopan/Practical_Training_1