Computer Architecture

Xiaohong Jiang (姜晓红)

1st Lecture:

Introduction to the Course

Instructor:

- Jiang Xiaohong
 - Office: Room520, Bld. of CaoGuangBiao,
 - Mobile(short): 529114
 - Email: jiangxh@zju.edu.cn
 - Homepage:
 - http://mypage.zju.edu.cn/jiangxh
- Course Website
 - http://10.71.45.100
 - · User: studentID, Password: 123456

Course Objectives

- The objective of this course
 - systemically introduce the fundamental concepts and design approaches of computer architecture from the view of the whole computer system.
 - master the hardware design approaches and skillfully use <u>hardware design toolkits</u>.to learn how to <u>implement pipelined CPU.</u>

Textbook:

David A. Patterson, John L. Hennessy, "Computer Architecture

- A Quantitative Approach"
- 4th Edition. Sept.13, 2006.

Reference:

3rd Edition. Sept. 1, 2003.

Difference of 4th & 3rd edition

- Most significant change:
 - 1~3 edition focus on ILP(Inst-Level Parallelism)
 - =>Focus on TLP(Thread-level parallelism) and DLP(Data-level parallelism).
- Chapter adjustment:
 - Changing technology
 - =>More emphasize on Dependability and topics of Power
- Book size limitation:
 - More contents move to Appendix and CD

David A. Patterson (UC Berkeley)

- He led the design and implementation of RISC I (the foundation of the SPARC architecture)
- Inventor of RAID
- involved in the Network of Workstations (NOW) project
- Research Accelerator for Multiple Processors (RAMP)
- ACM <u>Eckert-Mauchly Award</u> in ISCA2008

Patterson received the Eckert-Mauchly Award on ISCA'2008

John L. Hennessy (Stanford)

- Is currently serving as the 10th
 President of Stanford University
- In 1981, Hennessy initiated a project at Stanford that focused on a simpler computer architecture known as RISC. During a sabbatical leave in 1984-85 he cofounded MIPS Computer Systems, now known as MIPS Technologies, which specializes in the production of microprocessors.
- Received <u>Eckert-Mauchly Award</u> in 2001

Prerequisite:

Computer Organization

Survey:

- Digital Logical Design
- Computer Organization
- Operating Systems
- Techniques of Compiling / Fundamentals of Compiling

Topics in CA:

Input/Output and Storage

Computer Architecture Topics

Shared Memory, Message Passing, Data Parallelism

Network Interfaces

Processor-Memory-Switch

Multiprocessors
Networks and Interconnections

Topologies, Routing, Bandwidth, Latency, Reliability

MCP: Multi-Core Processor (Chip level Processor)

Topics in this Class

Ch1. Basic concepts related to CA design life cycle Chpater1 (Quantitative principles)

Ch2. Instruction Set Architecture ChpaterB

(Classifying instruction set architecture)

Ch3. Pipelining: Basic and Intermediate Concepts ChpaterA

(How to implement a pipelined CPU)

Ch4. Memory Hierarchy Design

Chpater5.C

(How to improve cache and memory)

Ch5. I/O storage Chpater6

Ch6. Multiprocessor Chpater4

Ch7. high technologies in CA

Different from Organization

- Part & Whole
- Bottom up & Top down
- How & Why

Course Objectives

- The objective of this course
 - Introduce the fundamental techniques on which high-performance computing is based,
 - Develop the foundations for analyzing the benefits of design options in computer architecture.

How?

- Concepts, Ideas and Principles
- Quantitative approaches
- Hit the problem and right way to solve problem

As a man sows, so he shall reap.

一分耕耘一分收获

What we most care about?

- For the designer, need to know why?
 - Know the principle & the way to evaluate
 - make decision / make choice.
- For the designer, need to know universal approach
 - Investigate → problem→ solve, make decision
 →Implement → Evaluate

Grading Policy:

4%: participation

- 16%: written homework

8%: pop quiz

- 32%: Lab assignments

- 40%: Final exam

(close-book test with one A4 memo)

-10%: Bonus

Homeworks (16%)

- Total 4 times, once per chapter
- Submission deadline will be normally one week after assigned, and will be announced on course website.
- For doing homework, discussion is greatly encouraged, but every student is required to **Do** and **Submit** the homework individually on time.
- Submission Naming rule
 - StID_name_hw1.doc

Lab assignments (32%)

Objective

 Implement a pipelined CPU with 31 MIPS instructions via Verilog in Xilinx ISE on Spartan-3E board

How

- Do the lab by yourself and submit lab report to website.
- 5 lab assignments gradually, examine results each time
- 5 lab reports

Grading

- participation 4%
- Lab1-5: 4%, 6%, 5%, 5%, 8%

Submission Policy:

- All the homeworks and lab assignments are required to be submitted to the course website on time.
- Submission deadline will be announced on course website.
- All assignments in this course should be turned in by the specified due date. Late assignment will be penalized 10% every three days late. However, late assignment more than 6 days is NOT accepted.

Bonus (10%)

- Class performance Bonus (<=5%)</p>
 - Ask good questions
 - Answer questions correctly
 - 1% for each time
- Lab (10%)
 - If you select to do pipelining the LC3 in five Labs.

??