22 Distributive Flow Lattices $^{\emptyset}$

Status: Unwritten

22.1 Pseudoflows and Circulations

Let Σ be a planar map. A *pseudoflow* in Σ is an antisymmetric function $\phi: D(\Sigma) \to \mathbb{R}$ from the darts of Σ to the reals; here antisymmetry means $\phi(d) = -\phi(\text{rev}(d))$ for every dart d.¹ Pseudoflows in Σ define a real vector space $C_1(\Sigma)$, unimaginatively called the *chain space* of Σ , whose dimension is equal to the number of *edges* of Σ . If we arbitrarily fix a *reference dart* e^+ for every edge e, then we can specify a unique 1-chain by assigning arbitrary values to the reference darts.

A *circulation* is a pseudoflow that obeys *Kirchhoff's current law*: For every vertex v, the values assigned to darts into v sum to zero. (We previously called circulations *closed discrete 1-forms*) More generally, the *boundary* $\partial \phi$ of any pseudoflow is the function $\partial \phi: V(\Sigma) \to \mathbb{R}$ defined by

$$\partial \phi(v) = \sum_{u \to v} \phi(u \to v) = \sum_{d : \text{head}(d) = v} \phi(v).$$

(At the risk of confusing the reader, I will use the first summation notation even when Σ has parallel edges.)

Fix a tree-cotree decomposition (T, C) of Σ . For any non-tree edge $e \in C$, the *fundamental cycle* cycle $_T(e^+)$ is the directed cycle consisting of the reference dart e^+ and the directed path in T from head (e^+) to tail (e^+) .

Lemma: Fix an arbitrary planar map Σ and an arbitrary tree-cotree decomposition (T, C) of Σ . Every circulation ϕ in Σ satisfies the identity

$$\phi = \sum_{e \in C} \phi(e^+) \cdot \operatorname{cycle}_T(e^+)$$

.

22.2 Aptly Named Sir Not

¹In the lecture on the Maxwell-Cremona correspondence, we used exactly the same definition for *discrete 1-forms* or *1-cochains*, but topologists should really think of pseudoflows as *1-chains*.