SYLLABUS CÁLCULO NUMÉRICO

Unidad académica responsable: Departamento de Ingeniería Matemática Carrera a la que se imparte: Ingeniería Civil (varias especialidades)

Módulo: No aplica.

I. Identificación

Nombre: Cálculo Numérico				
Código: 521230	Créditos: 4			
Prerequisitos: 503201; 521218; 521227				
Modalidad: Presencial	Calidad: Obligatoria	Duración: Semestral		
Trabajo Académico:				
Horas teóricas: 3	Horas prácticas: 0	Horas de laboratorio: 2		
Docentes responsables:	Leonardo Figueroa C. (coordinador)			
	Roberto Molina S.			
	Felipe Vargas M. (coordinador laboratorios)			
Duración:	15 semanas			

II. Descripción

Asignatura teórico-práctica que contiene los fundamentos de los algoritmos numéricos para resolver problemas de la Matemática Aplicada por medio del computador.

Esta asignatura contribuye a la formación de las siguientes competencias del perfil de egreso:

• Conocimientos sobre el área de estudios y la profesión.

III. RESULTADOS DE APRENDIZAJE ESPERADOS

Al completar en forma exitosa esta asignatura, los estudiantes serán capaces de:

- 1. Deducir algoritmos que se detallan en los contenidos.
- 2. Estimar cotas de errores de los resultados obtenidos.
- 3. Usar técnicas para demostrar propiedades sencillas relacionadas con los algoritmos.
- 4. Resolver modelos matemáticos sencillos por medio de algunos métodos computacionales.

IV. Contenidos

Los contenidos son los mismos pero en un orden distinto al de otros semestres.

- 1. Revision de conceptos básicos:
 - Normas.
 - Números de punto flotante.
 - Pérdida de cifras significativas.
- 2. Ecuaciones no lineales:
 - Métodos de convergencia garantizada: Bisección. Convergencia lineal.

- Métodos de convergencia veloz: Newton-Raphson. Condiciones de convergencia. Criterio de detención.
- Método de la secante.
- Sistemas de ecuaciones no lineales: Método de Newton.
- 3. Interpolación:
 - Interpolación polinomial, fórmula de Lagrange.
 - Interpolación por polinomios *splines*. Estimación del error.
- 4. Aproximación:
 - Cuadrados mínimos.
 - Las ecuaciones normales y factorización QR.
- 5. Integración Numérica:
 - Reglas del trapecio y de Simpson.
 - Fórmulas de tipo Gauss.
 - Estimación de errores. Integración multidimensional.
- 6. Ecuaciones diferenciales ordinarias:
 - Problemas de valores iniciales: Existencia y unicidad de solución. Sistemas de ecuaciones diferenciales.
 - Ecuaciones de orden superior.
 - Método de Euler. Error local de truncamiento. Error global.
 - Métodos de paso simple: Métodos de tipo Runge-Kutta: Euler-Cauchy, Euler mejorado, Estimación a posteriori del error. Control del paso de integración. Métodos Runge-Kutta-Fehlberg.
 - Métodos de paso múltiple: Métodos explícitos: Adams—Bashforth. Métodos implícitos: Adams—Moulton. Métodos predictor-corrector.
 - Ecuaciones stiff: Estabilidad de las ecuaciones y de los métodos numéricos.
 - Problemas de valores de contorno: Existencia y unicidad de solución. Método de shooting. Método de diferencias finitas. Método de elementos finitos.
- 7. Sistemas de Ecuaciones Lineales:
 - Algoritmos: eliminación de Gauss, factorización LU, Choleski, pivoteo.
 - Condicionamiento de matrices.
 - Normas de vectores y matrices. Cotas de errores.
 - Métodos Iterativos: El método iterativo general.
 - Algoritmos de Jacobi y de Gauss-Seidel.
 - Métodos de descenso.

V. Metodología

El curso se desarrolla con tres horas de clases teóricas semanales. Además de las clases teóricas el curso contempla un laboratorio computacional semanal, de dos horas, y al cual **la asistencia es obligatoria**. Los alumnos se deberán inscribir en los laboratorios a partir del mediodía del lunes 25 de marzo y hasta el mediodía del miércoles 27 de marzo mediante Internet, en la dirección electrónica:

http://www.ing-mat.udec.cl/numerico

La elección de laboratorios será estrictamente por orden de inscripción. Esta inscripción de laboratorio es independiente de la inscripción formal de la asignatura.

VI. EVALUACIÓN

- a. La evaluación en la asignatura se hará por medio de dos (2) certámenes y dos (2) tests de laboratorio.
- b. Los dos (2) certámenes consistirán en pruebas escritas. Cada una de estas evaluaciones tendrá una ponderación en la nota final de un 40 %. Los laboratorios serán evaluados por dos (2) tests de 45 minutos frente al computador; cada uno con una ponderación en la nota final de un 10 %.
- c. Al final del semestre habrá una (1) evaluación de recuperación global y que remplazará una evaluación parcial de manera que la nota final resultante sea la que favorezca más al alumno (modalidad b del artículo 17.º del Reglamento Interno de Docencia de Pregrado de la Facultad de Ciencias Físicas y Matemáticas).
- d. En las evaluaciones, así como en los tests, **se prohíbe estrictamente el uso de calculadoras y teléfonos celulares**.
- e. La no asistencia a un certamen significará obtener nota final NCR. No obstante, quien justifique su inasistencia a un certamen (ver letra g siguiente) se deberá presentar a una evaluación especial para regularizar su situación, a la cual se le citará oportunamente.
- f. La no asistencia a un test significará obtener la calificación NCR. Quien justifique su inasistencia por los canales oficiales (ver letra g siguiente), se podrá presentar a un test de recuperación. No existe un test de recuperación para mejorar nota.
- g. Quien deba justificar una inasistencia a una evaluación **deberá hacerlo dentro de los plazos** y de acuerdo a los procedimientos dispuestos en el Artículo 18.º del Reglamento Interno de Docencia de Pregrado de la Facultad de Ciencias Físicas y Matemáticas.
- h. La asistencia de un alumno a cualquiera de las evaluaciones consideradas en la asignatura no permite justificaciones posteriores, sean éstas de salud o de otra índole.

VII. BIBLIOGRAFÍA Y MATERIAL DE APOYO

Textos básicos u obligatorios.

- 1. Kendall E. Atkinson, An introduction to numerical analysis, Wiley, New York, 1978.
- 2. S. Grossman, Análisis numérico y visualización gráfica con MATLAB, Prentice—Hall Hispanoamericana, México, 1997.

Textos complementarios.

- 1. H. Alder & E. Figueroa, *Introducción al Análisis Numérico*, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, 1995.
- 2. K. Atkinson, Elementary Numerical Analysis, John Wiley and Sons, 1993.
- 3. R. L. Burden & J. D. Faires, Análisis Numérico, Thomson, 1998.
- S. C. Chapra & R. P. Canale, Métodos Numéricos para Ingenieros, McGraw-Hill, 1999.
- 5. G. Hämmerlin & K.-H. Hoffmann, *Numerical Mathematics*, Springer-Verlag, 1991.
- 6. D. R. Kincaid & W. Cheney, Análisis Numérico: las Matemáticas del Cálculo Científico, Addison-Wesley Iberoamericana, 1994.

- 7. A. QUARTERONI & F. SALERI, Scientific Computing with MATLAB, Springer-Verlag, 2003.
- 8. H. R. Shwartz, Numerical Analysis. A Comprehensive Introduction, John Wiley and Sons, 1989.
- 9. J. Stoer & R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, 1993.
- 10. L.N. Trefethen & D. Bau, Numerical linear algebra, SIAM, 1997.

VIII. PLANIFICACIÓN

Planificación de clases.

De nuevo notamos que el orden de los contenidos es distinto al de otros semestres.

Fecha	Contenido		
Lun 18 Mar	Presentación; Conceptos básicos		
Mié 20 Mar	(cont.)		
Lun~25~Mar	(cont.); Ecuaciones no lineales		
Mié 27 Mar	(cont.)		
${\rm Lun}\ 01\ {\rm Abr}$	(cont.); Interpolación		
Mié 03 Abr	(cont.); Cuadrados mínimos		
Lun 08 Abr	(cont.)		
Mié 10 Abr	(cont.); Integración I		
Lun 15 Abr	(cont.); Integración II		
Mié 17 Abr	(cont.)		
Lun 22 Abr	(cont.); EDO I		
Mié 24 Abr	(cont.)		
Lun 29 Abr	(cont.)		
Mié 01 May	Feriado		
Lun 06 May	(cont.); EDO II		
Mié 08 May	(cont.)		
Lun 13 May	(cont.); EDO III		
Mié 15 May	(cont.)		
Lun 20 May	Feriado universitario		
Mié 22 May	(cont.)		
Lun 27 May	(cont.)		
Mar 28 May	Evaluación 1		
Mié 29 May	(cont.); Sistemas de Ecuaciones lineales I		
Lun 03 Jun	(cont.); Sistemas de Ecuaciones lineales II		
Mié 05 Jun	(cont.)		
Lun 10 Jun	(cont.); Sistemas de Ecuaciones lineales III		
Mié 12 Jun	(cont.); Sistemas de Ecuaciones lineales IV		
Lun 17 Jun	(cont.); Sistemas de Ecuaciones lineales V		
Mié 19 Jun	(cont.)		
Lun 24 Jun	(cont.); Sistemas de Ecuaciones lineales VI		
Mié 26 Jun	(cont.)		
Mié 10 Jul	Evaluación II		

Fecha Contenido Vie 02 Ago Evaluación de recuperación

Planificación de laboratorios.

Semana	Fecha Lab.	Actividad de Laboratorio
1	20–21 de marzo	Semana sin actividades
2	27– 28 de marzo	Inscripción de laboratorios en línea
3	3-4 de abril	Lab. 1: Introducción a Octave I
4	10– 11 de abril	Lab. 2: Introducción a Octave II
5	17– 18 de abril	Lab. 3: Ecuaciones No Lineales
6	24-25 de abril	Lab. 4: Interpolación
7	1-2 de mayo	No habrá laboratorio (feriado 1 de mayo)
8	8-9 de mayo	Lab. 5: Mínimos Cuadrados
9	15– 16 de mayo	Laboratorio Complementario
10	22-23 de mayo	Test 1
11	2930 de mayo	Lab. 6: Integración
12	5–6 de junio	Lab. 7: EDO (Problemas de Valores Iniciales)
13	12– 13 de junio	Lab. 8: EDO (Problemas de Valores de Contorno)
14	19–20 de junio	Lab. 9: Sistemas de Ecuaciones Lineales
15	26-27 de junio	Laboratorio Complementario
16	3–4 de julio	Test 2
17	10–11 de julio	Muestra Test 1 y 2