ЛАБОРАТОРНА РОБОТА № 4

Лінійна регресія. Метод найменших квадратів. Інтерполяція.

Mema: Опрацювати поняття «лінійна регресія» і дослідити метод найменших квадратів та набути навички роботи в середовищі Python.

Хід роботи

Завдання 2. Експериментально отримані N-значень величини Y при значеннях величини X. Відшукати параметри функції за методом найменших квадратів. Побудувати графіки, де в декартовій системі координат нанести експериментальні точки і графік апроксимуючої функції.

6	X	3,33	1	63	0,87	0,42	0,27
	Y	0,48	1,03	2,02	4,25	7,16	11,5

Лістинг програми:

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

# Дані X та Y з таблиці
X = np.array([3.33, 1, 63, 0.87, 0.42, 0.27])
Y = np.array([0.48, 1.03, 2.02, 4.25, 7.16, 11.5])

# Функція для апроксимації (наприклад, лінійна: Y = a * X + b)
def func(X, a, b):
    return a * X + b

# Використання методу найменших квадратів для знаходження параметрів a i b
params, covariance = curve_fit(func, X, Y)

# Отримуемо знайдені параметри a та b
a, b = params

# Побудова графіка
plt.scatter(X, Y, label="Експериментальні дані", color="red") # Експериментальні
точки
plt.plot(X, func(X, a, b), label=f"Аппроксимація: Y = {a:.2f}*X + {b:.2f}",
color="blue") # Лінія апроксимації

# Додаємо підписи та легенду
plt.xlabel('X') # Підпис осі X
plt.ylabel('Y') # Підпис осі X
plt.ylabel('Y') # Підпис осі Y
plt.legend() # Додаємо легенду на графік
plt.grid(True) # Включаємо сітку для кращої візуалізації
plt.title('Апроксимація методом найменших квадратів') # Заголовок графіка
```

					ДУ «Житомирська політехніка».24.122.06.000 — Л			
Змн.	Арк.	№ докум.	Підпис	Дата				
Розр	0 б.	Кайданович Б.Р.				Літ.	Арк.	Аркушів
Пере	евір.	Маєвський О.В.			2		1	
Керіс	зник				Звіт з	ФІКТ Гр. КН-21-1[1]		
Н. кс	нтр.				лабораторної роботи			
Зав.	каф.							

Відображення графіка

Виконання програми:

Завдання № 3: Виконати інтерполяцію функції, задану в табличній формі в п'яти точках (див. нижче). Розрахунки виконати в середовищі Python.

Вектори даних:

$$\mathbf{x} := \begin{pmatrix} 0.1 \\ 0.3 \\ 0.4 \\ 0.6 \\ 0.7 \end{pmatrix} \qquad \mathbf{y} := \begin{pmatrix} 3.2 \\ 3 \\ 1 \\ 1.8 \\ 1.9 \end{pmatrix}$$

Алгоритм розв'язку завдання № 3:

- 1. Заповнення матриці Х;
- 2. Отримання коефіцієнтів інтерполяційного полінома;
- 3. Визначення функції полінома (прийняти поліном степеню 4);
- 4. Побудова графіка функції для інтерполюючого полінома;

		Маєвський О.В.			ДУ
Змн.	Арк.	№ докум.	Підпис	Дата	

5. Визначити значення функції в проміжних точках зі значеннями 0,2 і 0,5 Для реалізації обчислювальних алгоритмів рекомендується використання онлайн середовищ тестування (наприклад repl.it, trinket, і.т.д.)

Лістинг програми:

```
import numpy as np
import matplotlib.pyplot as plt
X = np.array([0.1, 0.3, 0.4, 0.6, 0.7])
coefficients = np.polyfit(X, Y, 4)
polynomial = np.poly1d(coefficients)
X = mp.linspace(min(X), max(X), 200)
plt.plot(X_smooth, Y_smooth, label="Інтерполяційний поліном", color="blue") plt.scatter(X, Y, color="red", label="Експериментальні точки")
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Інтерполяція поліномом 4-го степеня')
plt.legend()
plt.grid(True)
plt.show()
y at 02 = polynomial(0.2)
y_at_05 = polynomial(0.5)
print(f"Значення полінома в точці X = 0.2: {y at 02}")
print(f"Значення полінома в точці X = 0.5: {y at 05}")
```

Виконання роботи:

		Маєвський О.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Посилання на ГітХаб: https://github.com/KaidanovychBohdan/SystemOfAI

Висновок: в ході виконання лабораторної роботи опрацював поняття «лінійна регресія» і дослідив метод найменших квадратів та набув навички роботи в середовищі Python.

		Маєвський О.В.		
Змн.	Арк.	№ докум.	Підпис	Дата