Sequence Listing

Seoul National University Industry Foundation <110> A Novel STAY-GREEN Gene and Method for Preparing Stay-green <120> Transgenic Plants PP-B0091 <130> <150> KR10-2004-0012026 2004-02-23 <151> <160> 58 <170> KopatentIn 1.71 <210> 825 <211> <212> DNA <213> Oryza sativa <400> atggetgetg ctacttegae catgtecetg ettecteeca teacceagea geageggtgg 60 cacgoogoog actooctogt ogtoctogoo tocogetgoo acaactotog cogoogoogo 120 cgctgccgct acgtcgtgcc gagggcgagg ctgttcgggc cggcgatctt cgaggcgtcg 180 240 aagetgaagg tgetgtteet gggggtggae gaggagaage accagcacce ggggaagetg ccgcggacgt acacgctgac gcacagcgac gtgacggcga ggctgacgct ggcggtgtcg 300 360 cacaccatca accgggcgca gctgcagggg tggtacaaca agctgcagcg ggacgaggtg 420 gtggcggagt ggaagaaggt gcagggccac atgtcgctgc acgtccactg ccacatctcc ggeggecaeg tecteetega ceteategee ggeeteeget actacatett eegeaaggag 480 ctccccgtgg ttctgaaggc gttcgtccac ggcgacggca acctgttcag ccggcacccg 540 gagetggagg aggecaeggt gtgggtetae ttecaeteca aceteceaeg etteaaeege 600

gtcgagtgct	ggggcccgct	ccgcgacgcc	ggagcgccgc	ccgaggaaga	cgacgccgtc		660
geegeegegg	cggccgagga	ggcggcggcg	gagcagatgc	ccgcggccgg	cgagtggccg		720
cggcggtgcc	cggggcagtg	cgactgctgc	ttcccgccat	acagcctcat	cccctggccg		78(
caccagcacg	acgtcgccgc	cgccgacggc	cagccgcagc	agtga		1	825
<210> 2							
<211> 84	16						
<212> DM	JA.						
<213> Ho	ordeum vulga	are					
<400> 2							
atggccatcg	cegetgeege	tggcgcctcc	accatgtccc	tgctccccat	ctcgcacctc		60
aagcagctgc	agctgcagcg	gegegegege	cccgggcggg	tgctcgtgct	cggccgccgg		120
aggcgacacg	tegtgeegag	ggcgcggctg	tttggtccgg	ccatcttcga	ggcgtccaag	:	180
ctcaaggtgc	tgttcgtggg	ggtggacgag	gagaagcacc	cggggaagct	gccccggacc	:	240
tacacgctca	cccacagcga	cgtgacggcg	cggctgacgc	tggccgtgtc	gcacaccatc	:	30
cacgccgcgc	agctgcaggg	ctggtacaac	cgcctgcagc	gggacgaggt	ggaggccgag	:	360
tggaagaagg	tgcagggcgc	catgtcgctg	cacgtccact	gccacatctc	cggcggccac		420
tteetgeteg	acctcatcgc	geegeteege	tactacatct	tccgcaagga	gctccccgtg		480
gttctgaagg	cgttcgtgca	cggcgacggc	agcctgttca	gccagcaccc	ggagctggag	!	540
gaggccacgg	tgtgggtcta	cttccactcg	aacaacccca	acttcaaccg	cgtcgagtgc	ı	600
tggggcccgc	tcagcgacgc	cgccgcgcca	tacgatgacg	aageegeegt	cgactcccca	I	660
gccgccgacg	cagccatggc	ggccacggcg	gtgaacacgg	ccgcggacga	gcaggcgacg		72
cgcgcgggcc	agtggccgcg	gcggagcccc	gggcagagcg	actgctgctt	cccgccggag		78

tgcctcatcc	cctggccgca	cgagcacgag	atggccgccg	acgccggcca	ggcgccgccg	840
cagtga						846
<210> 3						
<211> 79	98					
	AIA					
<213> T:	riticum aest	ivum				
<400> 3						
atggccaccg	cctccaccat	gtccctgctc	cccatctcgc	acctcaagca	gctgcagcag	60
						-
cagcggcgca	cgcggctcgc	cggcgcgggc	cccgggaagg	tgctcgtgct	cggccgccgg	120
adddadadada	tegtgeegag	aacacaacta	ttcaacccaa	ccatcttcga	ggcgtccaag	180
aggegaeaeg	ccgcgccgag	5505055			55-55	
ctcaaggtgc	tgttcgtggg	gatggacgag	gagaagcacc	cgggcaagct	gccccggacc	240
tacacgctca	cccacagcga	cgtgacggcg	cggctgacgc	tggcggtgtc	gcacaccatc	300
		ataataaaaa	aggetagaag	aaaaaaaat	aataaccass	360
cacgeegege	agctgcaggg	etggtaeaac	egeetgeage	gggacgaggt	ggrggergaa	200
tggaagaagg	tgcagggcgc	catgtcgctg	cacgtccact	gccacatctc	cggcggccac	420
ttaatgatag	acctcatcgc	gccgcttcgc	tactacatct	tccgcaagga	gctccccgtg	480
gttctgaagg	cgttcgtgca	cggcgacggc	agcetgttca	gccagcaccc	ggagctggag	540
aaaaccacaa	tgtgggtcta	tttccactcc	aacaccccaa	acttcaaccq	cqttcaqtqc	600
9499004099	0303330000	5555545555				
tggggcccgc	tcgcgaagcc	gcgggcccta	gacaacaaga	cgccgacgcg	gccgtgcccg	660
caaggcgacg	ccggggacaa	aaaggcaatg	gatcgggcag	cgccgcgggg	gtcccggggc	720
						~~
atggaatgtt	tttcccgccc	gaatcctatc	cctggcccaa	gaattcaaat	goococaccc	780
cgccaggccc	cccaataa					798
-gccaggccc	Journal			•		

Sequence Listing

<210>	4					
<211>	795					
<212>	DNA					
<213>	Triticum aest	ivum				
<400>	4					
atggccacc	g cctccaccat	gtecctgete	cccatctcgc	acctcaagca	gatgcagcag	60
cageggege	a cgcggctcgc	cggcgcgctc	cccgggaagg	tgctcgtgct	cggccgccgc	120
aggegeeae	g tegtgeegeg	ggcgcggctg	tttggtccgg	ccatcttcga	ggcgtccaag	180
ctcaaggtg	c tgttcgtggg	ggtggatgag	gagaagcacc	cgggcaagct	gccgcggacc	240
tacacgete	a cccacagcga	cgtgacggcg	cggctgacgc	tggcggtgtc	gcacaccatc	300
cacgccgcg	c agctgcaggg	ctggtacaac	cgcctgcagc	gggacgaggt	ggtggccgag	360
						100
tggaagaag	g tgcagggcgc	catgtcgctg	cacgtccact	gccacatete	cggcggccac	420
		~~~~	tastastst	taaaaaaaaa	aataaaaata	480
ttcctgctc	g acctcatcgc	geegeteege	tactacatct	ceegeaagga	gereeegrg	400
	g cgttcgtgca	aaaaaa.aaa	aggatattaa	accadesece	aasaataasa	540
gttetgaag	g egreegegea	cggcgacggc	agcccgccca	gecageacee	9949009949	540
aaaaccacc	g tgtgggtcta	ctttcactcc	aacaacccca	acttcaaccq	catcazatac	600
949900409	9 090999000				-555	
tagagagag	c tegegatgee	gegegeeeta	gacgacgaga	cqccacqcqa	ctcccaccgg	660
-33333		2 3 2				
cgacgcaco	g tgccactgca	cgacgacagc	cgtcgcgcgg	gcagtgcccc	gggggcccg	720
		-				
gcattggat	g gtgttccgca	aaatgctatc	cctggcgcgg	acccaattgc	cgccaaccgc	780
cagggccc	c aataa					795

<210> 5 <211> 846 <212> DNA <213> Zea mays

<400> 5						
atggccgccg	ccgcttctac	catgtccctg	ctcccgatct	cccagcccag	gaagcagcag	60
cagcaaggcg	cgggcgccgt	ggtcgtgttc	cagcggcggc	cctgggacgc	gcggcggagg	120
cgatacgtcg	tecegaegge	gaggctgttc	gggccggcga	tcttcgaggc	gtccaagctg	180
aaggtgctgt	tcctgggcgt	ggacgagggg	agcagcaagc	atctgcatgc	gcaccacccg	240
gegeeggege	cgctgctgcc	gcggacgtac	acgctgacgc	acagcgacgt	gacggccagc	300
ctgacgctcg	ccgtctccca	caccatcaac	cgcgcgcagc	tgcagggctg	gtacaaccgc	360
ctgcagcgcg	acgaggtggt	ggccgagtgg	aagaaggtgc	gcggccggat	gtcgctgcac	420
gtgcactgcc	acatctccgg	cggacacttg	ctcctggacc	tcatcgccgg	cctccgctac	480
tacatcttcc	gcaaggagct	ccccgtggtg	ctcgaggcgt	tcgtgcacgg	cgacggcgac	540
ctgttcagcc	gtcacccgga	gctggaggaa	gccacggtgt	gggtctactt	ccactccaac	600
ctggcccgct	tcaaccgcgt	cgagtgctgg	ggtccgctcc	gcgacgccgc	cgcccccgcg	660
cccgccgagg	acgactccac	cgcgccggcc	gccgcttcca	tegecatgga	gggccagatg	720
cccgtgggcg	agtggccgca	ccggtgtccc	cagcagtgcg	actgctgctt	cccgccgcac	780
agcctcatac	cctggccgaa	cgagcaagac	atggccgccg	ccgccggcca	ggtccgacag	840
cagtag						846
<210> 6	;					
<211> 8	125					
<212> I	ONA					
<213> 2	Zea mays					
<400>						
atggccgcag	g ccaccgccgc	cgcttccacc	atgtcgctgc	tcccgatctc	ccagctcagg	60

Sequence Listing

cagcagcacg	gegegggege	catgaggegg	cggccctggg	tegegeggeg	gaggcgatac	120
gtcgttccga	cggcgaggct	gttegggeeg	gcgatcttcg	aggcgtcgaa	gctgaaggtg	180
ctgttcctgg	gcgtggacga	cgaggcgggc	agcaagcagc	acgggccgct	gccgcggacg	240
tacacgctga	cgcacagcga	cgtgacggcc	aggetgaege	tegeegtete	gcacaccatc	300
aaccgcgcgc	agctgcaggg	ctggtacaac	cgcctgcagc	gcgacgaggt	ggtggccgag	360
tggaagaagg	tgcgcggccg	gatgtcgctg	cacgtgcact	gccacatctc	cggcggccac	420
ttcctgctcg	acctcatcgc	gggcctccgc	tacgtcattt	tccgcaagga	gctccccgtg	480
gtgctcaagg	cgttcgtgca	cggcgacggc	gacctgttca	gccggcaccc	ggagctggag	540
gaggccacgg	tgtgggtcta	cttccactcc	aacctggctc	gcttcaaccg	cgtggagtgc	600
tggggtccgc	tccgcgacgc	cgccgcgccc	gccgaggacg	actccaccgc	gccgcccgac	660
gcctccaact	ccaaggaggc	cggccagatg	atggccatgt	gcgagtggcc	gcaccggtgt	720
ccccagcagt	gcggctgctg	cttcccgccg	cacagcctca	teccetggee	gaacgagcac	780
gacatggccg	ccgcagatgc	ctccggctcc	gcccaacagc	agtag		825
<210> 7						
<211> 8	01					
<212> D	AN					
<213> S	orghum bico	lor				
<400> 7						
	ccactgccgc	egeegettet	accatgtccc	tgcccccgat	ctcccagctc	60
aggcagcagc	agcacggcgc	gggcgccgtg	gtcgtgttcc	ggcggcgggc	ccgggacgcg	120
cggcggaggc	gatacgtcgt	geegaeggeg	aggetgtteg	ggccggcgat	cttcgaggcg	180

tccaagctga	aggtgctgtt	cctgggcgtg	gacgaggaga	gcaacaacaa	gcacgggcac	240
ccgacgacgc	cgtcgccgac	ttccccgccg	ctgccgctac	tgccgcggac	gtacacgctg	300
acgcacagcg	acgtgacggc	cagcctgacg	ctggccgtgt	cccacaccat	caaccgcgcg	360
cagctgcaag	ggtggtacaa	ccgcctgcag	cgggacgagg	tggtggcgga	gtggaagaag	420
gtgcgcgggc	ggatgtcgct	gcacgtgctc	aaggctttcg	tgcacggcga	cggcgacctg	480
ttcagccggc	acccggagct	ggaggatgcc	ccggtgtggg	tctacttcca	ctccaacctg	540
acccgcttca	accgcgtcga	gtgctggggt	ccgctgcgcg	acgccgccgc	gccgccggcc	600
gaggacgact	ccaccgcgcc	ggccgccgcc	tccaacaagg	atgggcagat	gccgcccgtg	660
ggcgagtggc	cgtaccggtg	tccccagcag	tgcgactgct	gcttcccgcc	gcacagcctc	720
atcccctggc	cgaacgagcg	cgacatggcg	gccgccgccg	ccgatgcctc	ctccgccgcc	780
ggccaggccc	aacagcagta	a				801
<210> 8						
<211> 7	86					
<212> D	NA					
<213> G	lycine max					
<400> 8						
		tcctgtgctc	ccttctaagc	ttaacaagcc	ttcgctttct	60
ccgcaccaca	. attctctttt	tccctactgt	ggaagacggg	tcgggaagaa	gaacaaagca	120
atggttcctg	ttgcaaggtt	gttcgggcca	gccatatttg	aagcctcaaa	actgaaggtt	180
ttgttcttag	gagtggacga	aaataagcac	ccaggaaatc	tcccaaggac	ttatacgcta	240
acccatagtg	ı atataaccgc	taagctcacc	ttggcaatct	ctcaaaccat	aaataattct	300
an a a baar a c	, aataataa.	anantttan.	addacdaad	taataacece	ataaaaaaa	360

gtgaagggaa	ggatgtctct	gcacgttcac	tgccacatta	gtggaggtca	ttttctcttg	420
gatatattag	caaggttaag	atacttcatc	ttctgcaagg	agctaccagt	ggtgttgaag	480
geegtegtte	acggcgatga	aaacctattc	aacagctacc	cagaattgca	agatgccttg	540
gtttgggtct	actttcactc	aaacattcca	gaattcaaca	aggtggaatg	ttggggccca	600
ctgaaggaag	cgtcagcacc	cacaggtggg	gtccaggagg	aggggttggc	aattccacag	660
ccatgccaag	aagaatgcca	atgttgcttt	ccaccgctta	cgttgagccc	tattcagtgg	720
tctaaacaag	ttcccagccg	ccattacgaa	ccttgtgatg	ggattgggac	ccaacaaaat	780
ctataa						786
<210> 9	1					
<211> 8	16					
<212> I	ANC					
	lycine max					
<400>	•					
atgggtacto	: taacaactgt	teetgtgete	ccttctaagc	ttaacaagcc	ttcgctttct	60
ccgcgtcaca	attctcttt	tecctactac	ggaagacgcg	tcgggaagaa	gaacaaagca	120
atggttcctg	g ttgctaggtt	gttcgggcca	gccatatttg	aagcctcaaa	gcttaaggtt	180
ttattcttag	g gagtggacga	aaataaacac	ccaggaaatc	tcccaaggac	ttatactcta	240
acccatagto	g atataacege	taagctcacc	ttggcaatct	ctcaaaccat	aaataattct	300
cagttacagg	ggtggtacaa	cagattgcaa	agggacgaag	tggtggcaca	gtggaagaag	360
gtgaagggaa	a agatgtetet	gcacgtacac	tgccacatca	gtggtggtca	ttttctctta	420
		atacttcatc	ttatacaaaa	agctaccagt	aatattaaaa	480

Sequence Listing

gcggtggttc acggcgacga aaacctattc aacaactacc cagaattgca agatgccttg 540 gtttgggttt actttcactc aaacattcca gaattcaaca aggtggaatg ttggggccca 600 660 ctgaaggaag cgtcagcacc aataggtggg gccaaggaag agagtgagca agaaactctt ctaagtaagg agggcttggc aattccacag ccatgccaag aggaatgcga atgttgcttt 720 ccaccgctga cgttaagccc aattcagtgg tctcaacaag ttcccagcca ccattacgaa 780 ccttgtgatg ggattgagac ccaacaaagt ctataa 816 <210> 10 <211> <212> DNA Vitis vinifera <213> <400> 10 atggctactt tgactgctgc tcttgtgctt ccgtctgagc tcaaaccttc tttctctcaa 60 caccaaagtt ctctcttcgt ttgtcgaaga agaccaaaga agagtaaccc tgcttttcct 120 geegeaagge tgtttggtee tgeaatttte gaagetteaa agettaaggt tetgtttttg 180 ggagtggatg agaagaagca cccagggaag cttcctagaa cttacacgct tacgcatagt 240 gacataacat ctaaactcac tctggctata tctcaaacta taaacaactc tcagttgcag 300 360 gggtggtcca acagattaca aagagatgag gtggtggcac aatggaagaa agtgaaagac cagatgtctc tgcatgtgca ctgccacata agtggaggcc atttccttct agatttgtgc 420 gctaaactta gatacttcat cttctgcaaa gagcttccag tggttttgaa ggcttttgtt 480 catggagatg gcaacctgct caacaattac ccagaattac aggaagcttt ggtttgggtt 540 600 tactttcact cgaacctccc agaattcaat agagtagaat gctggggggc gctcaataat 660 gcagcggcgc ctcctcctcc tgccgccggt ggtggcggtg gtagggtgga ggcacaccag

gacatgaggc	aggtggaacc	atcaagcaaa	tgggagaggc	cggaagagcc	atgcatggag	720
aactgtacat	gttgcttccc	accaatgagc	ctcatcccat	ggtcacaaga	tetegeceat	780
gaaaatattc	atgataccca	aaagggatta	cagcagcaaa	cctga		825
<210> 11						
<211> 84						
<212> DN	TA.					
<213> La	ctuca sativ	<i>r</i> a				
<400> 11						
atggcttctc	tgatccttcc	cacaaagcaa	aaccctccat	cgtcttcgtt	tctgcatcaa	60
aatcatcaaa	acaatccgtt	ttttactaac	aaaagacgaa	agctcaagag	gaatcaagcc	120
ctagttcccg	ttgcaagatt	atttgggcct	tcgatctttg	aagcttcaaa	gttgaaggtt	180
ttgtttctag	gagttgacga	gaagaagcat	cctggaaaac	ttccaagaac	atatacactt	240
acacatagtg	atatcacgtc	taaattgact	ctggcaatct	ctcaaactat	caataattct	300
cagttgcagg	gttggtataa	ccaattatac	agagatgaag	tggtagcaga	gtggagaaaa	360
gtgaaaggga	atatgtetet	tcatgttcat	tgtcacataa	gtcgtggcca	ttttcttctt	420
gatttgtgtg	ctcgactcag	gttcttcatc	ttcaccaaag	aactccctct	ggtgttgaag	480
gcatttgctc	atggagatgg	gaatttgcta	aacagctacc	cggagttgca	ggaagetteg	540
gtttgggttt	actttcactc	aaacattcaa	gaattcaata	gggttgaatg	ttgggggcca	600
ctcagagaag	cagtgggacc	cttatccacc	accacttcat	catcatcatc	atcatcatta	660
tctgaatcca	ccattgctga	agctggagaa	ggatcaaaca	attgggagat	cccaaagcca	720
tgtctagaaq	catgtgcatg	ttgctttcca	ccgatgagtt	caatcccatg	gtcacatgat	780

cttgtgaag	a atcaagacga	tgatgatggt	gccacccacc	aagggttgca	acaaaaagct	.840
tga						843
<210>	12					
<211>	873					
<212>	DNA					
<213>	Pinus taeda					
<400>	12					
atggcggtg	g caagaatctc	tgcaggaaaa	acacagcact	gctactcctt	ctccccatct	60
gatgtacgg	a tttcgtctgc	accacagaat	tcacagtctc	agttcaaaag	gaaatcgaag	120
			•			
ataaagctt	t cctccaggtt	tetggecage	gagagcagct	ggaatggeet	ggtcgcgcat	180
cagttacag	t gcaataacag	acatcgaact	aatagcagct	tcccccgatc	caccagtcgt	240
ataataaca	a gattgtttgg	qcctqcaatc	ttccaqqcat	cqaaqctcaa	qqttctattt	300
3 33 33 3	3 5 55					
cttggaaca	c atgaagagaa	acatcctgcg	catcttccca	ggacttatac	gctcacacac	360
agcgacatc	a cggccaaatt	aacgctggct	ttttctcaaa	caatcaataa	agatcaggga	420
taatataaa	a ggttacagag	agacgaagtt	cttacacaat	ggaagaaatc	tcagggcaaa	480
cggcacaac	a ggccacagag	agacgaagee	cccgcgcagc	ggaagaaacc	coagggoada	100
atgtctctg	c acgttcactg	tcacatcagc	ggaggtcact	ggctcctgga	cgccattgct	540
agacttaga	t tttacatctt	ccgcaaggaa	ctgccggtgg	tgctggaggc	gttcagacat	600
~~~~	a stataattaa	~~~~~~~	asaataasas	accasatact	ttaaatatat	660
ggggaccgg	g ctctgcttga	gaagcaccca	gagccggaga	ccgcaccggc	ccgggcgcac	000
tttcattcc	a atgtcaaaga	attcaaacgt	gtggaatgtt	gggggtcttt	ggctgaagca	720
tgcaagggt	g cacctagcaa	tttgaacaag	gaattggacg	agctcgatgg	tggaaaattg	780
gagatgcct	a gtcattgcgc	agaaccatgt	agttgttgct	ttcctccctt	tagtgttctt	840
ctacgacca	g aagatgttga	acaatttagc	taa			873

## Sequence Listing

<210>	13					
<211>	816					
<212>	DNA					
<213>	Citrus sinens	sis				
<400>	13					
atggctagt	t tggttgctgc	tcttgggctt	ccctcaaagc	tcaaagcttc	cccctatgag	60
cagcaaaac	g cactctttgt	ttctagaaga	agatccaaga	aaaagaacca	atcttttgct	120
cctgtggca	a gattattcgg	accagccatt	tttgaagctt	caaagctgaa	ggtattgttt	180
ttgggggtg	g atgaagagaa	gcatccaggg	aagctgccaa	ggacttatac	acttacccat	240
agtgatata	a cctctaagct	tactttagct	atttctcaaa	ccataaataa	ttctcagctg	300
cagggatgg	t acaacaggtt	gcaaagggat	gaggttgtgg	cagagtggaa	gaaggtaaag	360
						400
ggaaagatg	t ctcttcatgt	tcactgtcac	ataagtggag	gccatttctt	attagacatt	420
						480
tgtgctaga	c ttagattctt	catcttctcc	aaggaactcc	cegtggttet	gaaggeattt	480
				+	+++aa+++aa	540
gttcatgga	g atggcaattt	grtaaacaat	cacceggaat	tacaggagge	tttggtttgg	540
		taataaatta	224222444	aataataaaa	tacactcasa	600
gtctattt	c attccaatat	teetgaarte	aacaaagccg	aacyccyyyy	cccacccaaa	000
	g ccggatcgag	tassactaca	adascedee	argagattag	gcaagaaact	660
gaggcagci	.g ccggaccgag	cgaageegge	9994666966	aogagaccag	504454440	
tasstasa	ca actgggaatt	accadaaccc	toccaggaaa	catacaacta	ttactttcct	720
Ccaacaage	a accyggaacc	accagaaccc	CgCCugguau	050300005		
ccaatgag	ct tgatcccgtg	atcagagaag	cttccccttc	aaaccgaaaa	tegtgggaee	780
coaacyay	or eguiceegry	50000000000			3-333	
cadddcca	ag aaagcttaca	gcaacaaacc	cgatga			816
2233564	-5 20050000					

<210> 14

<211> 792

<212> DNA

#### Sequence Listing

Medicago truncatula <213> <400> 14 atgggtactc taaccaccgc tectectect atgeteaett etaagtteaa acettetttt 60 tcacctcaac ataaacctct ttttccaaat agaagacggt tatggaagaa gaaccaatca 120 180 attgttcctg ttgctaggtt atttggaccg gctatatttg aagcatcaaa attgaaggtt ttgttcttag gaattgatga agacaaacat ccaggaaatc ttccaaggac ttatacgtta 240 acacataqtq atqtaacctc aaaactcact ttggcaattt ctcaaaccat taataactct 300 cagttgcagg gatggtataa tagattgcaa agggatgaag ttgtggcgca gtggaagaag 360 gtgaagggaa agatgtotot coatgttoat tgtoatatta gtggtggcoa ttttttgtta 420 480 gatatatttg ctagactaag atatttcatc ttctgcaaag agttacccgt ggtattgaag 540 gcttttgtac acggtgacgg caatttattc aacaactatc cggaattaca ggaagcattg gtttgggtat attttcattc aaagattcca gaattcaaca aggtagaatg ttggggtcca 600 660 ctaaaggagg cttcacaacc tactagtggg acccaaaaggg accaccaaaa tttgacccta cctgagccat gtcaagaaac ttgcgagtgc tgctttccac cgttgaagtt gagcccaatg 720 ccqtqctcta atgaggttca caatgatact tatgaaccta ttgatggaat tgaaactcaa 780 caatcactgt aa 792 <210> 15 <211> 819 <212> DNA <213> Solanum tuberosum <400> atgggaactt tgactgcttc tctagtggtt ccatctaagc tcaacaatga aaaacagagc 60

tctatttttg	tacacaaaac	tagaagaaaa	tccaagaaga	atcaatccat	agtacctgtg	120
gcaaggttat	ttgggccagc	tatatttgaa	gcttcaaagt	tgaaggtact	ttttttggga	180
gttgatgagg	aaaagcatcc	aggaaagttg	ccaagaacat	atacactgac	tcatagtgat	240
attacttcta	aacttacttt	ggctatctct	caaaccatca	ataactctca	gttgcaaggt	300
tggtataata	gacttcaaag	agatgaagtt	gttgcagaat	ggaagaaagt	taaagggaag	360
atgtcacttc	atgtccattg	ccacataagt	ggaggccatt	ttatgttaga	cttatttgct	420
agactcagaa	actatatett	ctgcaaagaa	ctccctgtgg	ttctgaaggc	ttttgttcat	480
ggagatgaga	atttattaaa	gaataatcca	gagttacaag	aagctttagt	ttgggtatat	540
tttcattcaa	acattcaaga	attcaacaaa	gtagaatgtt	ggggtccact	caaagatgca	600
acctccccct	catcttcttc	tagtggggta	ggtggggtga	agagtacaag	ttttacaagc	660
aatagtaaca	acaagtggga	gttaccaaaa	ccttgtgaag	aggettgtge	atgttgcttt	720
ccccaatga	gtgttatgcc	ttggccttct	tcaaatcttg	atgggatagg	tgaggaaaat	780
gggaccatcc	aacaaggctt	gcaagagcag	caaagttga			819
<210> 1	6					
	10					
	NA	. 1 -				
<213> P	opulus trem	uIa				
<400> 1	6					
atgggctctc	tggcaattgc	tccctttctt	ccttcaaagc	taagaccctc	tatacttgat	60
caaaatagct	ctctcttcc	ttcaaagaaa	aaactcaaga	ggaagaacca	atctatcagt	120
cctgtggcaa	ggttatttgg	gccatctatt	tttgaggcat	caaaactgaa	ggtgttgttt	180
ttaggggttg	atgagaagaa	acatccaggg	aatctgccaa	ggacttatac	actaacacat	240

agtgatatta dagotaaact tactttagod atotoacaaa coatcaacaa ttotoagttg	300
cagggatggt ccaacaaatt gtacagagat gaagtggtgg cagagtggaa gaaagtaaag	360
ggaaagatgt ctctccatgt tcactgccat ataagtggag gccattttct cctagattta	420
tgttgtagac ttagatattt catcttccgc aaagaacttc ctgtggtatt gaaggccttc	480
tttcatggag atgggaattt gtttagcagc tatcctgaat tgcaggaggc tttagtttgg	540
gtttactttc attccaacat tccagaattc aacaaggtag agtgctgggg tccactcaag	600
catgccgcag caccttatac tgctgcatct ggcggggccc ctgagaacaa ggagcaagca	660
accgactgga acttgcctga gccatgccaa gagaactgtc agtgttgctt tccaccaatg	720
agettgatee eatggteega aatggtteee caagagaaca agaataatee aageaceeag	780
cagacettte aacaagetea acaaceetaa	810
<210> 17	
<211> 813	
<212> DNA	
<213> Populus tremula	
<400> 17	
atgggttett tggeagttge teeetttett eesteaaage caagaceete tetetttgat	60
caacacaget coetettte tecaagtaca aageteaaga ggaagaacca atetateage	120
cctgtggcaa ggttatttgg gccatctatt tttgaggcat caaagctgaa ggtgctgttc	180
ttaggggttg atgagaagga gcatccaggg aatctgccaa ggacttatac tctaacacac	240
agtgatatga cagctaagct tactttagcc atctcacaga ccataaacaa ttctcagttg	300

ggaaagatgt	ctcttcatgt	tcattgccat	ataagtggag	gccattttct	tttagattgg	420
tgctgcagac	tcagatattt	catcttccgc	agagaactcc	ctgtggtatt	gaaggccttt	480
tttcatggcg	atgggagctt	gttgagcaac	tatcctgaat	tacaggaggg	tttagtttgg	540
gtttactttc	attcaaacat	tccggaattc	agcaaggtcg	agtgctgggg	tccactcaag	600
gatgctgctg	cgccttctac	ttctgaaact	ggtgggtcca	atgagaccga	ggagctagca	660
aaccaatcaa	gcaactggga	cttgcccgag	ccatgccaag	aggagaattg	tagctgttgc	720
tttccaccaa	tgagcttgat	cccatggtct	aaaatggttc	cgttggagga	caaaaataat	780
ccaagcaccc	cacagaacct	tcaacagccc	taa			813
<210> 18	В					
<211> 8	61					
<212> Di	NA					
	esembryanthe	emum crysta:	llinum			
<400> 1	8					
atgggcactt	tgactgcctc	tatgttgctc	ccatcaaagc	tcaaaccttc	agtctttgaa	60
gatcaatcct	ctgtttattt	taaaagatca	tgcagaggac	ttcccaagct	caacaaggcc	120
aaatctttt	cacctgtgat	gagattgttt	gggccagcaa	tatttgaagc	atcaaagttg	180
aaggtgttgt	tcttgggagt	ggataaagag	aagcacccag	ggaagttgcc	tagaacttat	240
actcttactc	atagtgatat	cacttccaag	ctcactttgg	ccatctctca	aactattaac	300
aattcccagt	tacaagggtg	gtacaaccaa	ctacagagag	atgaagtggt	ggcagaatgg	360
aagaaagtga	aagggaagat	gtcactccat	gttcattgtc	acataagtgg	tggccatatc	420
ctcttagact	tatttgctaa	gcttagattc	tacatctttt	gcaaggaact	ccctgtggta	480
ttgaaggcat	ttatacataa	ggatgagaat	ttqttcaaca	actacccaga	actacaagag	540

gcaatggtgt	gggtatactt	ccattcaaac	cttgaagaat	tcaacaaaat	cgagtgctgg	600
ggcccgctca	aggatgccgt	ggcacgcaac	tcgaagaaaa	acaagaacaa	gaacaagata	660
gatttcaagt	taagtttcaa	agaagaggat	gattcaccag	ataacgagtt	ggagatacca	720
gagacttgca	aggaaccctg	tacctgttgc	tttcctccca	ctagtgtcat	cccttggtct	780
cattcagcat	tgtcacaggg	tgatgatctt	catctctctg	gtgggaccca	ccaaggcttg	840
gagcagcagc	agcaaacttg	a				861
<210> 19	e					
<211> 80	07					
<212> Di	NA.					
<213> A	rabidopsis t	chaliana				
<400> 15	Э					
atgtgtagtt	tgtcggcgat	tatgttgtta	ccaacgaagc	tgaaaccagc	ttattcagac	60
aaacggagta	acagtagcag	cagcagctca	ctcttcttca	acaatagaag	atccaagaag	120
aagaaccaat	cgattgttcc	cgttgcaagg	ttgtttggac	cggcgatttt	cgaatcatcc	180
aaattgaaag	tactcttctt	aggggttgat	gagaagaagc	atccttcaac	gctccctagg	240
acttacacac	tcactcacag	tgacattaca	gctaaactaa	ccttagctat	ttctcaatcc	300
ataaacaact	ctcagttgca	aggatgggca	aataggctat	accgggatga	agttgtggca	360
gaatggaaga	aagtgaaagg	gaaaatgtcg	cttcacgttc	attgtcacat	aagcggtggc	420
catttccttt	tagatetett	tgcaaagttt	cgatatttca	tcttttgcaa	agaactacct	480
gtggtgttga	aggcttttgt	gcatggagat	gggaacttgt	tgaacaacta	tcctgagcta	540
caagaagctc	ttgtttgggt	ctatttccat	tctaatgtca	atgagttcaa	caaagtcgag	600

tgttggggt	c c	egetttggga	agctgtttcg	cctgatggtc	acaagactga	gactcttccc	660
gaggctcgg	jt s	gtgcggacga	gtgtagttgt	tgttttccaa	cegttagete	gattccatgg	720
tctcatagt	a t	ttagtaatga	aggtgtaaat	ggttactctg	ggactcagac	tgagggaatt	780
gctactcca	ıa a	atccggagaa	actctag				807
<210>	20						
<211>	81	6					
<212>	DNZ	A					
<213>	Ara	abidopsis t	chaliana				
<400>	20						
atgtgtagt	t t	tggctacaaa	tctgttacta	ccatcgaaga	tgaaaccagt	ttttccagag	60
aaactgago	ca ·	ctagctcact	ctgtgtcacc	actagaagat	ctaagatgaa	gaaccgatct	120
attgttcct	g ·	ttgcaagatt	gtttggaccg	gcgatttttg	aagcctccaa	attgaaagtg	180
ttattctta	ag :	gagttgatga	gaagaagcat	ccagcaaaac	ttccaagaac	ttacactctt	240
actcacagt	tg .	acataaccgc	taaattaact	ttagctatat	ctcaatccat	taataactct	300
cagttgcaa	ag	gatgggcaaa	taaattgttc	cgggacgaag	tagtgggcga	gtggaagaaa	360
gtgaaaggt	ta	aaatgtcgct	tcatgttcat	tgccacatta	gcggaggcca	cttcttcttg	420
aatctcato	cg	cgaagcttcg	gtactacatc	ttttgcaaag	aattacctgt	ggtactggaa	480
gcttttgc	cc	atggagatga	gtatttgtta	aataatcacc	cegagetaca	agaatctcct	540
gtttgggt	tt	atttccattc	caacatcccg	gagtacaaca	aggtcgaatg	ttggggaccg	600
ctttgggag	99	ccatgtcgca	gcaccagcac	gacggaagga	cccacaagaa	gagtgaaact	660
ctaccgga	gc	taccttgtcc	tgatgagtgc	aagtgttgct	ttccgacggt	tagcacgatt	72
ccataata	tc	atcorcatta	tcaacatacc	acaacaaata	agaatgttgc	ggatggcctg	78

ttggaaata	c ctaaccctgg	gaaatcaaag	ggatag			816
	21					
<211>	662					
<212>	DNA					
<213>	Lycopersicon	esculentum				
<400>	21					
atgggaact	t tgactacttc	tctagtggtt	ccatctaagc	tcaacaatga	acaacagagc	60
tctatttt	a tacacaaaac	tagaaggaaa	tgcaagaaga	atcaatccat	agtacctgtg	120
gcaaggtta	at ttggaccagc	tatatttgaa	gcttcaaaat	tgaaggtact	ttttttggga	180
gttgatgaa	ag aaaagcatcc	aggaaagttg	ccaagaacat	atacactgac	tcatagtgat	240
attacttct	a aacttacttt	ggctatctcc	caaaccatca	ataattctca	gttgcaaggt	300
		33				
tootataao	ca gacttcaaag	agatgaagtt	attacaaaat	ggaagaaagt	aaaaqqqaaq	360
cggcacaa	<b>34 34000</b>		333	33 3 3	333 2	
ababaaatt	c atgtccattg	ccacattact	ggagggatt	ttatgttaga	cttatttqct	420
acyceaeci	ic acgeecateg	ccacaccage	9949900400	coacgacaga	0000000000	
			atasstatas	ttatassaaa	ttttattat	486
agactcaga	aa actacatctt	etgcaaagaa	eceeecgcgg	ccccaagge	cccgccac	40.
						54
ggagatgag	ga atttactaag	gaattateea	gagttacaag	aagetttagt	ttgggtatat	241
tttcattca	aa acattcaaga	attcaacaaa	gtagaatgtt	ggggtccact	cagagatgca	60
acttcccc	ct catcttcttc	tggtggggta	ggtggggtga	agagtacaag	ttttacaagc	66
ca						66:
<210>	22					
<211>	334					
<212>	DNA					
<213>	Beta vulgari	S				

<400> 22					
cccggaatta caagaagctt	cagtatgggt	atacttccat	tcaagcattc	ctgaatttaa	60
caaagtagag tgctggggcc	cattgaccga	cgccgtggat	ccgccgtcga	aaaataagaa	120
gaggatgatg atgataaatg	atgagcagga	taaagaagaa	gaagaagaag	caagtagctc	180
aaaatgggag atgttagttc	cttgcacgaa	accatgtaga	tgttgctttc	cacctacaag	240
tttgattcct tggactcctt	cactatcaca	agaacagcaa	caagagcaac	aacttcctgg	300
agacgtttcg atcccgccac	ctgggactcg	ctag			334
<210> 23					
<211> 564					
<212> DNA					
<213> Zoysia japon:	ica				
<400> 23					
acgtacacgc ttactcacag	cgacgtcacg	gccaagctca	cgctggcggt	ctcccacacc	60
•					
atccacgccg cgcagctgca	ggggtggtac	aaccgcctgc	agcgggacga	ggtggtggcc	120
gagtggagga aggtgcgcgg	gaacatgtcg	ctgcacgtcc	actgccacat	ctccggcgga	180
3-5-55-55					
cacttcctcc gcgacctcat	cacaccactc	cqctactaca	tetteegeaa	ggagetecce	240
Jagana and	3 3 3		_		
gtggttctca aggcgttcgt	acacaacaac	ggcagcctgt	tcaqcaqcca	cccggagttg	300
3033000100 0330301031	3 233	333	5 5		
gaggaggcca cggtgtgggt	ctacttccac	tccaacctgc	cccgcttcaa	ccgcgtcgag	360
3~33~33~~~ -33-3-333-					
tgctggggtc ctctctgcga	caccaccaca	cccqtcqaqq	aggagggca	gcagaatgac	420
-55555	3 2 2 3	0 0 00			
gatcggttgc ccgcgggcga	ataaccacaa	cggtgcccc	agcagtgcga	gtgetgette	480
J JJ J	2 23 3 33				
ccgccgcaca gtctcatccc	ctqqcccaac	gagcacgaca	tggctcccac	cgacgccccc	540
55 5	-55	5 55			
accactaacc agacacaaca	ataa				564

# Sequence Listing

<210>	24					
<211>	284					
<212>	DNA					
<213>	Lotus cornicu	ılatus var.	japonicus			
<400>	24					
actacccas	ga attgcaggat	gcattggttt	gggtatactt	tcactcaaag	attccagagt	60
tcaacaagg	gt acagtgttgg	ggaccactga	aggaggcggc	tgcaccgtca	ggtgggtccc	120
cggagaaaq	ga aggtgaaggg	gtgaagatgc	cggatccgtg	tccagaagaa	tgtgagtgtt	180
gctttcct	cc tccaccggca	ttggatccaa	tcccatggtc	tgaagaagtt	ccctctcccc	240
attatgaag	gc ttttgatggg	gttgggaccc	gaccaaactt	gtag		284
<210>	25					
<211>	326					
<212>	DNA					
<213>	Lotus cornicu	ılatus var.	japonicus			
<400>	25					
tagatctal	tg tgctaagcta	agatacttca	tcttctgcaa	agagcttcca	gtggtattga	60
aggccttca	at tcacggcgat	gaaaatttgt	tcaacaacta	cccggagttg	gaggaatcat	120
tggtttgg	gt ttactttcac	tcaaacatct	cagaattcaa	caaggtggag	tgttggggtc	18
cacttaag	ga tgcttgtgca	acatcaattg	ggtcctactc	ctatgacaag	ggtatgcctc	24
aaactcag	cc atgccaacaa	aactgcgagt	gttgctttac	accgatgagc	tcaagtgatt	30
ggattgga	ac ccaacaaaaa	ttgtga				32
~210×	26					

<210> 26 <211> 415 <212> DNA

#### Sequence Listing

<213> Saccharum officinarum <400> 26 cacgaggete gaceteateg eeggeeteeg etactacate tteegeaagg ageteeeegt 60 120 ggtgctcaag gcgttcgtgc acggcgacgg cgacctgttc agccggcacc cggagctgga qqatqccacq qtqtqqqtct acttccactc caacctgacc cgcttcaacc gcgtcgagtg 180 ctggggteeg eteegegaeg eegeeggee geeggeegag gaagaeteea eegegeegge 240 300 cgcctccaac tccaaggagg ggcagatgcc gcccgtgggc gagtggccgt accggtgtcc ccagcagtgc gactgctgct tcccgcccca cagcctcatc ccctggccga acgagcacga 360 catggetgee geegeegeeg atgecacege egetggeeag geecaacage agtag 415 <210> 27 <211> 481 <212> DNA <213> Picea <400> 27 aatcaataaa gatcagttgc agggatggta taacaggtta cagagagacg aagtgattgc 60 120 ccagtggaag aaatctcagg gcaaaatgtc tctgcacgtt cactgtcata tcagcggagg 180 tcattggctt ctggacgcca tcgcgagact tagattttac atcttccgca aggaactgcc ggtggtgctg gaggcgttca ggcatggaga tcgggctctg cttgacaagc acccagagct 240 agagaccgct ctggtttggg tgtatttcca ctccaatgtc agagagttca aacgcgtgga 300 gtgttggggt tctttggctg aggcatgcaa gggtgcccct agcaatttgg agaaggaatt 360 ggacgaggag tttaatggtg aaaaattgga gatgcctagt cattgctcag aaccatgcaa 420 ttgttgcttt cctccattta gcgtccttct acgaccagaa gatgctgaac aatttattta 480

a						481
<210>	28					
<210>	632					
<212>	DNA					
	Brassica napu	ເຮ				
	•					
<400>	28					
atgtgtagt	t tggcaacaaa	tctcttactc	ccatcgacga	tgaaaccagc	ttttacagag	60
aaacagaa	ca ctaactcact	ctttcttaca	aataaaagat	ccttgatgca	gaacagatct	120
actgttcci	g tteetgttge	aagattgtta	gaaccggcga	tttttgaagc	ctccaaattg	180
aaagtatc	gt tettaggagt	tgatgagaag	aagcatccat	caaagctccc	aagaacttac	240
actcttact	cc acagtgacat	aacagctaag	ttaactttag	ctatctccca	atctatcaat	300
aattctca	gt tgcagggatg	ggctaataga	ttatttcggg	acgaagtagt	ggccgagtgg	360
						420
aagaaagt	ga agggtaaaat	grecerreae	gttcattgcc	acattagegg	aggeeaecce	420
atttaan	tc tcatagcgaa	actteaatee	tacatatttt	gcaaggaatt	accogtogta	480
Cttttgga	cc ccacagegaa	gccccggcac	cacacacccc	goddggdacc	4009909904	200
ttgaaagg	tt ttgttcatgg	ggatgggaac	ttottoaata	gttaccctga	۱ qctacaaqaa	540
coguaago	20 2030000033	33353		J		
teteetat	tt gggtttattc	cattcaaaca	tccccgagta	caataaggtt	gaatgttggg	600
_	333					
ggccgctt	tg ggaggccacg	cagcacaaac	ac			632
<210>	29					
<211>	291					
<212>	DNA					
<213>	Brassica nap	ıs				
<400>	29					
atgtgtag	tt tgtcagcgaa	catgttgtta	ccgacaaagc	tgaaaccagc	ttattcagac	60

120

180

240

291

### Sequence Listing

aaacgggg	rta atag	tacgaa c	tcacttc	tt gt	ctcca	ata	caag	gatco	aa g	gagga	aagaac
caatccgt	tg ttcc	tatggc a	.agattgt	tt gg	accgg	ıcga	tttt	.cgaa	tc a	atcca	aagttg
aaagtatt	gt ttct	aggtgt t	gatgaca	ag aa	gcato	cac	caac	gctt	cc a	aagga	acttac
actctcac	tc acag	tgacat t	acagcta	ag ct	aactt	tag	ctat	ttct	ca d	c	
<210>	30										
<211>	274										
<212>	PRT										
<213>	Oryza	sativa									
<400>	30										
Met Ala	Ala Ala	Thr Ser	Thr Me	t Ser	Leu	Leu	Pro	Pro	Ile	Thr	Gln
1		5			10					15	
Gln Gln	Arg Trp	His Ala	ı Ala As	p Ser	Leu	Val	Val	Leu		Ser	Arg
	20			25					30		
		_		_	_	_	_			_	_
Cys His		Arg Arg			Cys	Arg	Tyr		vaı	Pro	Arg
	35		4	U				45			
77- 7	7 Db-	Glas Dans	רד בוא	a Dha	g].,	7. T. ~	g.~~	Tara	Lon	Tara	17-7
Ala Arg	Leu Pne	GIY PIC		e Pile	GIU	ALG	60	пуъ	Бец	пур	Vai
50			55				00				
Leu Phe	Leu Gly	Val Asr	Glu Gl	u Lvs	His	Gln	His	Pro	Glv	Lvs	Leu
65		70		2		75			2	-1	80
0.5											
Pro Arg	Thr Tyr	Thr Let	Thr Hi	s Ser	Asp	Val	Thr	Ala	Arg	Leu	Thr
_		85			90					95	
Leu Ala	Val Ser	His Th	: Ile As	n Arg	Ala	Gln	Leu	Gln	Gly	Trp	Tyr
	100			105					110		
Asn Lys	Leu Gln	Arg Ası	Glu Va	l Val	Ala	Glu	Trp	Lys	Lys	Val	Gln
	115		12	0				125			

Gly His Met Ser Leu His Val His Cys His Ile Ser Gly Gly His Val

### Sequence Listing

135 140 130 Leu Leu Asp Leu Ile Ala Gly Leu Arg Tyr Tyr Ile Phe Arg Lys Glu 150 155 145 Leu Pro Val Val Leu Lys Ala Phe Val His Gly Asp Gly Asn Leu Phe 170 165 Ser Arg His Pro Glu Leu Glu Glu Ala Thr Val Trp Val Tyr Phe His 185 Ser Asn Leu Pro Arg Phe Asn Arg Val Glu Cys Trp Gly Pro Leu Arg 195 200 Asp Ala Gly Ala Pro Pro Glu Glu Asp Asp Ala Val Ala Ala Ala Ala 215 Ala Glu Glu Ala Ala Glu Gln Met Pro Ala Ala Gly Glu Trp Pro 235 Arg Arg Cys Pro Gly Gln Cys Asp Cys Cys Phe Pro Pro Tyr Ser Leu 250 245 Ile Pro Trp Pro His Gln His Asp Val Ala Ala Ala Asp Gly Gln Pro 265 270 Gln Gln <210> 31 281 <211> <212> PRT <213> Hordeum vulgare <400> Met Ala Ile Ala Ala Ala Gly Ala Ser Thr Met Ser Leu Leu Pro

Ile Ser His Leu Lys Gln Leu Gln Leu Gln Arg Arg Ala Arg Pro Gly

			20					25					30		
Arg	Val	Leu 35	Val	Leu	Gly	Arg	Arg 40	Arg	Arg	His	Val	Val 45	Pro	Arg	Ala
Arg	Leu 50	Phe	Gly	Pro	Ala	Ile 55	Phe	Glu	Ala	Ser	Lys 60	Leu	Lys	Val	Leu
Phe 65	Val	Gly	Val	Asp	Glu 70	Glu	ГЛв	His	Pro	Gly 75	Lys	Leu	Pro	Arg	Thr 80
Tyr	Thr	Leu	Thr	His 85	Ser	Asp	Val	Thr	Ala 90	Arg	Leu	Thr	Leu	Ala 95	Val
Ser	His	Thr	Ile 100	His	Ala	Ala	Gln	Leu 105	Gln	Gly	Trp	Tyr	Asn 110	Arg	Leu
Gln	Arg	Asp 115	Glu	Val	Val	Ala	Glu 120	Trp	Lys	Lys	Val	Gln 125	Gly	Ala	Met
Ser	Leu 130	His	Val	His	Сув	His 135	Ile	Ser	Gly	Gly	His 140	Phe	Leu	Leu	Asp
Leu 145	Ile	Ala	Pro	Leu	Arg 150	Tyr	Tyr	Ile	Phe	Arg 155	Lys	Glu	Leu	Ser	Val 160
Val	Leu	Lys	Ala	Phe 165	Val	His	Gly	Asp	Gly 170	Ser	Leu	Phe	Ser	Gln 175	His
Pro	Glu	Leu	Glu 180	Glu	Ala	Thr	Val	Trp 185	Val	Tyr	Phe	His	Ser 190	Asn	Asn
Pro	Asn	Phe 195	Asn	Arg	Val	Glu	Cys 200	Trp	Gly	Pro	Leu	Ser 205	Asp	Ala	Ala
Ala	Pro 210	Tyr	Asp	Asp	Glu	Ala 215	Ala	Val	Asp	Ser	Pro 220	Ala	Ala	Asp	Ala
Ala 225	Met	Ala	Ala	Thr	Ala 230	Val	Asn	Thr	Ala	Ala 235	Asp	Glu	Gln	Ala	Thr 240

### Sequence Listing

Arg Ala Gly Gln Trp Pro Arg Arg Cys Pro Gly Gln Cys Asp Cys Cys 250 Phe Pro Pro Glu Cys Leu Ile Pro Trp Pro His Glu His Glu Met Ala 265 270 260 Ala Asp Ala Gly Gln Ala Pro Pro Gln 280 <210> 32 <211> 266 <212> PRT <213> Triticum aestivum <400> Met Ala Thr Ala Ser Thr Met Ser Leu Leu Pro Ile Ser His Leu Lys Gln Met Gln Gln Gln Arg Arg Thr Arg Leu Ala Gly Ala Leu Pro Gly Lys Val Leu Val Leu Gly Arg Arg Arg His Val Val Pro Arg Ala 40 35 Arg Leu Phe Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu 50 55 Phe Val Gly Val Asp Glu Glu Lys His Pro Gly Lys Leu Pro Arg Thr 75 70 65 Tyr Thr Leu Thr His Ser Asp Val Thr Ala Arg Leu Thr Leu Ala Val 90 Ser His Thr Ile His Ala Ala Gln Leu Gln Gly Trp Tyr Asn Arg Leu 105 100 Gln Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Gln Gly Ala Met

120

115

125

Ser	Leu 130	His	Val	His	Cys	His 135	Ile	Ser	Gly	Gly	His 140	Phe	Leu	Leu	Asp
Leu 145	Ile	Ala	Pro	Leu	Arg 150	Tyr	Tyr	Ile	Phe	Arg 155	ГÀв	Glu	Leu	Pro	Val 160
Val	Leu	Lys	Ala	Phe 165	Val	His	Gly	Asp	Gly 170	ser	Leu	Phe	Ser	Gln 175	His
Pro	Glu	Leu	Glu 180	Glu	Ala	Thr	Val	Trp 185	Val	Tyr	Phe	His	Ser 190	Asn	Asn
Pro	Asn	Phe 195	Asn	Arg	Val	Glu	Cys 200	Trp	Gly	Pro	Leu	Arg 205	Glu	Ala	Ala
Ala	Pro 210	Tyr	qaA	Asn	Lys	Thr 215	Pro	Thr	Arg	Pro	Cys 220	Pro	Gln	Gly	Asp
Ala 225	Gly	Asp	Lys	Lys	Ala 230	Met	Asp	Arg	Ala	Ala 235	Pro	Arg	Gly	Ser	Arg 240
Gly	Met	Glu	Сув	Phe 245	Ser	Arg	Pro	Asn	Pro 250	Ile	Pro	Gly	Pro	Arg 255	Ile
Gln	Met	Pro	Pro 260	Pro	Arg	Gln	Ala	Pro 265	Gln						
<210 <210		33 26	1												
<212		PR'													
<21				um a	esti	<b>vu</b> m									
<400	0 >	33													
			Ala	Ser	Thr	Met	Ser	Leu	Leu	Pro	Ile	Ser	His	Leu	Lys
1				5					10					15	
Gln	Met		Gln 20		Arg	Arg		Arg 25		Ala	Gly	Ala	Leu 30	Pro	Gly

Lys	Val	Leu 35	Val	Leu	Gly	Arg	Arg 40	Arg	Arg	His	Val	Val 45	Pro	Arg	Ala
Arg	Ьеи 50	Phe	Gly	Pro	Ala	Ile 55	Phe	Glu	Ala	Ser	Eys	Leu	Lys	Val	Leu
Phe 65	Val	Gly	Val	Asp	Glu 70	Glu	Lys	His	Pro	Gly 75	Lys	Leu	Pro	Arg	Thr 80
Tyr	Thr	Leu	Thr	His 85	Ser	Asp	Val	Thr	Ala 90	Arg	Leu	Thr	Leu	Ala 95	Val
Ser	His	Thr	Ile 100	His	Ala	Ala	Gln	Leu 105	Gln	Gly	Trp	Tyr	Asn 110	Arg	Leu
Gln	Arg	Asp 115	Glu	Val	Val	Ala	Glu 120	Trp	Lys	Lys	Val	Gln 125	Gly	Ala	Met
Ser	Leu 130	His	Val	His	Cys	His 135	Ile	Ser	Gly	Gly	His 140	Phe	Leu	Leu	Asp
Leu 145	Ile	Ala	Pro	Leu	Arg 150	Tyr	Tyr	Ile	Phe	Arg 155	Lys	Glu	Leu	Pro	Val 160
Val	Leu	Lys	Ala	Phe 165	Val	His	Gly	Asp	Gly 170	Ser	Leu	Phe	Ser	Gln 175	His
Pro	Glu	Leu	Glu 180	Glu	Ala	Thr	Val	Trp 185	Val	Tyr	Phe	His	Ser 190	Asn	Asn
Pro	Asn	Phe 195		Arg	Val	Glu	Cys 200	Trp	Gly	Pro	Leu	Ala 205	Met	Pro	Arg
Ala	Leu 210		Asp	Glu	Thr	Pro 215	Arg	Asp	Ser	His	Arg 220	Arg	Arg	Thr	Val
Pro		His	Asp	Asp	Ser 230		Arg	Ala	Gly	Ser 235	Ala	Pro	Gly	Ala	Pro 240

### Sequence Listing

Ala Leu Asp Gly Val Pro Gln Asn Ala Ile Pro Gly Ala Asp Pro Ile 245 250 255

Ala Ala Asn Arg Gln Gly Pro Gln 260

<210> 34 <211> 281 <212> PRT

<213> Zea mays

<400> 34

Met Ala Ala Ala Ala Ser Thr Met Ser Leu Leu Pro Ile Ser Gln Pro 1 5 10 15

Arg Lys Gln Gln Gln Gly Ala Gly Ala Val Val Phe Gln Arg 20 25 30

Arg Pro Trp Asp Ala Arg Arg Arg Tyr Val Val Pro Thr Ala Arg 35 40 45

Leu Phe Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe
50 55 60

Leu Gly Val Asp Glu Gly Ser Ser Lys His Leu His Ala His His Pro
65 70 75 80

Ala Pro Ala Pro Leu Leu Pro Arg Thr Tyr Thr Leu Thr His Ser Asp
85 90 95

Val Thr Ala Ser Leu Thr Leu Ala Val Ser His Thr Ile Asn Arg Ala
100 105 110

Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp Glu Val Val Ala 115 120 125

Glu Trp Lys Lys Val Arg Gly Arg Met Ser Leu His Val His Cys His
130 135 140

#### Sequence Listing

Ile Ser Gly Gly His Leu Leu Leu Asp Leu Ile Ala Gly Leu Arg Tyr 150 155 Tyr Ile Phe Arg Lys Glu Leu Pro Val Val Leu Glu Ala Phe Val His 170 Gly Asp Gly Asp Leu Phe Ser Arg His Pro Glu Leu Glu Glu Ala Thr 185 180 Val Trp Val Tyr Phe His Ser Asn Leu Ala Arg Phe Asn Arg Val Glu 200 Cys Trp Gly Pro Leu Arg Asp Ala Ala Ala Pro Ala Pro Ala Glu Asp 215 Asp Ser Thr Ala Pro Ala Ala Ala Ser Ile Ala Met Glu Gly Gln Met 225 230 Pro Val Gly Glu Trp Pro His Arg Cys Pro Gln Gln Cys Asp Cys Cys 255 250 245 Phe Pro Pro His Ser Leu Ile Pro Trp Pro Asn Glu Gln Asp Met Ala 265 270 260 Ala Ala Gly Gln Val Arg Gln Gln 280 275 35 <210> <211> 274 <212> PRT <213> Zea mays <400> Met Ala Ala Ala Thr Ala Ala Ala Ser Thr Met Ser Leu Leu Pro Ile 10 Ser Gln Leu Arg Gln Gln His Gly Ala Gly Ala Met Arg Arg Pro 20 25

Trp	Val		Arg	Arg	Arg	Arg		Val	Val	Pro	Thr		Arg	Leu	Phe
		35					40					45			
Gly	Pro 50	Ala	Ile	Phe	Glu	Ala 55	Ser	Lys	Leu	Lys	Val 60	Leu	Phe	Leu	Gly
Val 65	Asp	Asp	Glu	Ala	Gly 70	Ser	Lys	Gln	His	Gly 75	Pro	Leu	Pro	Arg	Thr 80
Tyr	Thr	Leu	Thr	His 85	Ser	Asp	Val	Thr	Ala 90	Arg	Leu	Thr	Leu	Ala 95	Val
Ser	His	Thr	Ile 100	Asn	Arg	Ala	Gln	Leu 105	Gln	Gly	Trp	Tyr	Asn 110	Arg	Leu
Gln	Arg	Asp 115	Glu	Val	Val	Ala	Glu 120	Trp	Lys	Lys	Val	Arg 125	Gly	Arg	Met
Ser	Leu 130	His	Val	His	Cys	His 135	Ile	Ser	Gly	Gly	His 140	Phe	Leu	Leu	Asp
Leu 145	Ile	Ala	Gly	Leu	Arg 150	Tyr	Val	Ile	Phe	Arg 155	Lys	Glu	Leu	Pro	Val
Val	Leu	Lys	Ala	Phe 165	Val	His	Gly	Asp	Gly 170	Asp	Leu	Phe	Ser	Arg 175	His
Pro	Glu	Leu	Glu 180	Glu	Ala	Thr	Val	Trp 185	Val	Tyr	Phe	His	Ser 190	Asn	Leu
Ala	Arg	Phe 195		Arg	Val	Glu	Cys 200	Trp	Gly	Pro	Leu	Arg 205		Ala	Ala
Ala	Pro 210		Glu	. Asp	qaA	Ser 215		Ala	Pro	Pro	Asp 220		Ser	Asn	Ser
Lys 225	Glu	Ala	Gly	Gln	Met 230		Ala	Met	Cys	Glu 235		Pro	His	Arg	Cys
Pro	G3 n	Gln	Cvs	Glv	Cvs	Cvs	Phe	Pro	Pro	His	Ser	Leu	Ile	Pro	Trp

#### Sequence Listing

255 245 250 Pro Asn Glu His Asp Met Ala Ala Ala Asp Ala Ser Gly Ser Ala Gln 265 260 Gln Gln <210> 36 266 <211> <212> PRT <213> Sorghum bicolor <400> Met Ala Ala Ala Thr Ala Ala Ala Ala Ser Thr Met Ser Leu Pro Pro Ile Ser Gln Leu Arg Gln Gln Gln His Gly Ala Gly Ala Val Val Phe Arg Arg Arg Ala Arg Asp Ala Arg Arg Arg Arg Tyr Val Val Pro 40 35 Thr Ala Arq Leu Phe Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys 50 Val Leu Phe Leu Gly Val Asp Glu Glu Ser Asn Asn Lys His Gly His 70 65 Pro Thr Thr Pro Ser Pro Thr Ser Pro Pro Leu Pro Leu Pro Arg 90 85 Thr Tyr Thr Leu Thr His Ser Asp Val Thr Ala Ser Leu Thr Leu Ala 100 105 Val Ser His Thr Ile Asn Arg Ala Gln Leu Gln Gly Trp Tyr Asn Arg 125 115 120

Leu Gln Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Arg Gly Arg

140

### Sequence Listing

Met Ser Leu His Val Leu Lys Ala Phe Val His Gly Asp Gly Asp Leu 155 145 150 Phe Ser Arg His Pro Glu Leu Glu Asp Ala Pro Val Trp Val Tyr Phe 165 170 His Ser Asn Leu Thr Arg Phe Asn Arg Val Glu Cys Trp Gly Pro Leu 185 180 Arg Asp Ala Ala Ala Pro Pro Ala Glu Asp Asp Ser Thr Ala Pro Ala 200 Ala Ala Ser Asn Lys Asp Gly Gln Met Pro Pro Val Gly Glu Trp Pro 215 210 Tyr Arg Cys Pro Gln Gln Cys Asp Cys Cys Phe Pro Pro His Ser Leu 235 230 Ile Pro Trp Pro Asn Glu Arg Asp Met Ala Ala Ala Ala Ala Asp Ala 245 Ser Ser Ala Ala Gly Gln Ala Gln Gln Gln 260 <210> 37 <211> 261 <212> PRT <213> Glycine max <400> 37 Met Cys Thr Leu Thr Thr Val Pro Val Leu Pro Ser Lys Leu Asn Lys 10 5 Pro Ser Leu Ser Pro His His Asn Ser Leu Phe Pro Tyr Cys Gly Arg 20 25

Arg Val Gly Lys Lys Asn Lys Ala Met Val Pro Val Ala Arg Leu Phe

135

130

		35					40					45			
Gly	Pro 50	Ala	Ile	Phe	Glu	Ala 55	Ser	Lys	Leu	Lys	Val 60	Leu	Phe	Leu	Gly
Val 65	Asp	Glu	Asn	Lys	His 70	Pro	Gly	Asn	Leu	Pro 75	Arg	Thr	Tyr	Thr	Leu 80
Thr	His	ser	Asp	Ile 85	Thr	Ala	Lys	Leu	Thr 90	Leu	Ala	Ile	Ser	Gln 95	Thr
Ile	Asn	Asn	Ser 100	Gln	Leu	Gln	Gly	Trp 105	Tyr	Asn	Arg	Phe	Gln 110	Arg	Asp
Glu	Val	Val 115	Ala	Gln	Trp	Lys	Lys 120	Val	Lys	Gly	Arg	Met 125	Ser	Leu	His
Val	His 130	Cys	His	Ile	Ser	Gly 135	Gly	His	Phe	Leu	Leu 140	Asp	Ile	Leu	Ala
Arg 145	Leu	Arg	Tyr	Phe	Ile 150	Phe	Сув	Lys	Glu	Leu 155	Pro	Val	Val	Leu	Lys 160
Ala	Val	Val	His	Gly 165	Asp	Glu	Asn	Leu	Phe 170	Asn	Ser	Tyr	Pro	Glu 175	Leu
Gln	Asp	Ala	Leu 180	Val	Trp	Val	Tyr	Phe 185	His	Ser	Asn	Ile	Pro 190	Glu	Phe
Asn	Lys	Val 195	Glu	Cys	Trp	Gly	Pro 200	Leu	Lys	Glu	Ala	Ser 205	Ala	Pro	Thr
Gly	Gly 210	Val	Gln	Glu	Glu	Gly 215	Leu	Ala	Ile	Pro	Gln 220	Pro	Cys	Gln	Glu
Glu 225	Cys	Gln	Cys	Cys	Phe 230	Pro	Pro	Leu	Thr	Leu 235	Ser	Pro	Ile	Gln	Trp 240
Ser	Lys	Gln	Val	Pro 245	Ser	Arg	His	Tyr	Glu 250		Cys	Asp	Gly	Ile 255	Gly

### Sequence Listing

Thr Gln Gln Asn Leu 260

<210> 38
<211> 271
<212> PRT
<213> Glycine max

<400>

Met Gly Thr Leu Thr Thr Val Pro Val Leu Pro Ser Lys Leu Asn Lys

1 5 10 15

Pro Ser Leu Ser Pro Arg His Asn Ser Leu Phe Pro Tyr Tyr Gly Arg
20 25 30

Arg Val Gly Lys Lys Asn Lys Ala Met Val Pro Val Ala Arg Leu Phe 35 40 45

Gly Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly 50 55 60

Val Asp Glu Asn Lys His Pro Gly Asn Leu Pro Arg Thr Tyr Thr Leu 65 70 75 80

Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala Ile Ser Gln Thr 85 90 95

Tle Asn Asn Ser Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp

100 105 110

Glu Val Val Ala Gln Trp Lys Lys Val Lys Gly Lys Met Ser Leu His 115 120 125

Val His Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Ile Leu Ala 130 135 140

Arg Leu Arg Tyr Phe Ile Phe Cys Arg Glu Leu Pro Val Val Leu Lys
145 150 155 160

## Sequence Listing

Ala Val Val His Gly Asp Glu Asn Leu Phe Asn Asn Tyr Pro Glu Leu 165 Gln Asp Ala Leu Val Trp Val Tyr Phe His Ser Asn Ile Pro Glu Phe 190 180 185 Asn Lys Val Glu Cys Trp Gly Pro Leu Lys Glu Ala Ser Ala Pro Ile 205 195 200 Gly Gly Ala Lys Glu Glu Ser Glu Gln Glu Thr Leu Leu Ser Lys Glu 215 210 Gly Leu Ala Ile Pro Gln Pro Cys Gln Glu Glu Cys Glu Cys Cys Phe 235 230 225 Pro Pro Leu Thr Leu Ser Pro Ile Gln Trp Ser Gln Gln Val Pro Ser 245 250 His His Tyr Glu Pro Cys Asp Gly Ile Glu Thr Gln Gln Ser Leu 260 265

<210> 39 <211> 274 <212> PRT <213> Vitis vinifera

<400> 39

Met Ala Thr Leu Thr Ala Ala Leu Val Leu Pro Ser Glu Leu Lys Pro

1 5 10 15

Ser Phe Ser Gln His Gln Ser Ser Leu Phe Val Cys Arg Arg Pro

Lys Lys Ser Asn Pro Ala Phe Pro Ala Ala Arg Leu Phe Gly Pro Ala 35 40 45

Ile	Phe	Glu	Ala	Ser	Lys	Leu	Lys	Val	Leu	Phe	Leu	Gly	Val	qaA	Glu
	50					55					60				
Lys 65	Lys	His	Pro	Gly	Lys 70	Leu	Pro	Arg	Thr	Tyr 75	Thr	Leu	Thr	His	Ser 80
Asp	Ile	Thr	Ser	Lys 85	Leu	Thr	Leu	Ala	Ile 90	Ser	Gln	Thr	Ile	Asn 95	Asn
Ser	Gln	Leu	Gln 100	Gly	Trp	Ser	Asn	Arg 105	Leu	Gln	Arg	Asp	Glu 110	Val	Val
Ala	Gln	Trp 115	Lys	ГЛЗ	Val	Lys	Asp 120	Gln	Met	Ser	Leu	His 125	Val	His	Cys
His	Ile 130	Ser	Gly	Gly	His	Phe 135	Leu	Leu	Asp	Leu	Cys 140	Ala	Lys	Leu	Arg
Tyr 145	Phe	Ile	Phe	Cys	Lув 150	Glu	Leu	Pro	Val	Val 155	Leu	Lys	Ala	Phe	Val 160
His	Gly	Asp	Gly	Asn 165	Leu	Leu	Asn	Asn	Tyr 170	Pro	Glu	Leu	Gln	Glu 175	Ala
Leu	Val	Trp	Val	Tyr	Phe	His	Ser	Asn 185	Leu	Pro	Glu	Phe	Asn 190	Arg	Val
Glu	Cys	Trp 195	Gly	Ala	Leu	Asn	Asn 200	Ala	Ala	Ala	Pro	Pro 205	Pro	Pro	Ala
Ala	Gly 210	Gly	Gly	Gly	Gly	Arg 215	Val	Glu	Ala	His	Gln 220	Asp	Met	Arg	Gln
Val 225	Glu	Pro	Ser	Ser	Lуs 230	Trp	Glu	Arg	Pro	Glu 235	Glu	Pro	Cys	Met	Glu 240
Asn	Cys	Thr	Cys	Cys 245	Phe	Pro	Pro	Met	Ser 250		Ile	Pro	Trp	Ser 255	Gln
Asp	Leu	Ala	His	Glu	Asn	Ile	His	Asp	Thr	Gln	Lys	Gly	Leu	Gln	Gln

## Sequence Listing

260 265 270

Gln Thr

<210> 40 <211> 280

<212> PRT

<213> Lactuca sativa

<400> 40

Met Ala Ser Leu Ile Leu Pro Thr Lys Gln Asn Pro Pro Ser Ser Ser 1 5 10 15

Phe Leu His Gln Asn His Gln Asn Asn Pro Phe Phe Thr Asn Lys Arg
20 25 30

Arg Lys Leu Lys Arg Asn Gln Ala Leu Val Pro Val Ala Arg Leu Phe 35 40 45

Gly Pro Ser Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly 50 55 60

Val Asp Glu Lys Lys His Pro Gly Lys Leu Pro Arg Thr Tyr Thr Leu 65 70 75 80

Thr His Ser Asp Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr 85 90 95

Ile Asn Asn Ser Gln Leu Gln Gly Trp Tyr Asn Gln Leu Tyr Arg Asp 100 105 110

Glu Val Val Ala Glu Trp Arg Lys Val Lys Gly Asn Met Ser Leu His 115 120 125

Val His Cys His Ile Ser Arg Gly His Phe Leu Leu Asp Leu Cys Ala 130 135 140

Arg Leu Arg Phe Phe Ile Phe Thr Lys Glu Leu Pro Leu Val Leu Lys

## Sequence Listing

155 150 145 Ala Phe Ala His Gly Asp Gly Asn Leu Leu Asn Ser Tyr Pro Glu Leu 165 170 Gln Glu Ala Ser Val Trp Val Tyr Phe His Ser Asn Ile Gln Glu Phe 185 180 Asn Arg Val Glu Cys Trp Gly Pro Leu Arg Glu Ala Val Gly Pro Leu 200 Ser Thr Thr Thr Ser Ser Ser Ser Ser Ser Leu Ser Glu Ser Thr 220 215 Ile Ala Glu Ala Gly Glu Gly Ser Asn Asn Trp Glu Ile Pro Lys Pro 230 235 Cys Leu Glu Ala Cys Ala Cys Cys Phe Pro Pro Met Ser Ser Ile Pro 250 Trp Ser His Asp Leu Val Lys Asn Gln Asp Asp Asp Gly Ala Thr 265 260 His Gln Gly Leu Gln Gln Lys Ala <210> 41 <211> 290 PRT <212> <213> Pinus taeda <400> Met Ala Val Ala Arg Ile Ser Ala Gly Lys Thr Gln His Cys Tyr Ser 10 Phe Ser Pro Ser Asp Val Arg Ile Ser Ser Ala Pro Gln Asn Ser Gln 20 25 Ser Gln Phe Lys Arg Lys Ser Lys Ile Lys Leu Ser Ser Arg Phe Leu

		35					40					45			
Ala	Ser 50	Glu	Ser	Ser	Trp	Asn 55	Gly	Leu	Val	Ala	His 60	Gln	Leu	Gln	Cys
Asn 65	Asn	Arg	His	Arg	Thr 70	Asn	Ser	Ser	Phe	Pro 75	Arg	Ser	Thr	Ser	Arg 80
Val	Val	Ala	Arg	Leu 85	Phe	Gly	Pro	Ala	Ile 90	Phe	Gln	Ala	Ser	Lys 95	Leu
Lys	Val	Leu	Phe 100	Leu	Gly	Thr	His	Glu 105	Glu	Lys	His	Pro	Ala 110	His	Leu
Pro	Arg	Thr 115	Tyr	Thr	Leu	Thr	His 120	Ser	Asp	Ile	Thr	Ala 125	Lys	Leu	Thr
Leu	Ala 130	Phe	Ser	Gln	Thr	Ile 135	Asn	Lys	Asp	Gln	Gly 140	Trp	Tyr	Asn	Arg
Leu 145	Gln	Arg	Asp	Glu	Val 150	Leu	Ala	Gln	Trp	Lуs 155	Lys	Ser	Gln	Gly	Lys 160
Met	Ser	Leu	His	Val 165	His	Cys	His	Ile	Ser 170	Gly	Gly	His	Trp	Leu 175	Leu
Asp	Ala	Ile	Ala 180	Arg	Leu	Arg	Phe	Tyr 185	Ile	Phe	Arg	Lys	Glu 190	Leu	Pro
Val	Val	Leu 195	Glu	Ala	Phe	Arg	His 200	Gly	Asp	Arg	Ala	Leu 205	Leu	Glu	Lys
His	Pro 210	Glu	Leu	Glu	Thr	Ala 215	Leu	Val	Trp	Val	Tyr 220	Phe	His	Ser	Asn
Val 225	Lys	Glu	Phe	Lys	Arg 230	Val	Glu	Cys	Trp	Gly 235	Ser	Leu	Ala	Glu	Ala 240
Cys	Lys	Gly	Ala	Pro 245	Ser	Asn	Leu	Asn	Lys 250	Glu	Leu	Asp	Glu	Leu 255	Asp

#### Sequence Listing

Gly Gly Lys Leu Glu Met Pro Ser His Cys Ala Glu Pro Cys Ser Cys 265 260 Cys Phe Pro Pro Phe Ser Val Leu Leu Arg Pro Glu Asp Val Glu Gln 285 280 Phe Ser 290 <210> 42 <211> 271 <212> PRT <213> Citrus sinensis <400> Met Ala Ser Leu Val Ala Ala Leu Gly Leu Pro Ser Lys Leu Lys Ala 10 Ser Pro Tyr Glu Gln Gln Asn Ala Leu Phe Val Ser Arg Arg Arg Ser 25 Lys Lys Lys Asn Gln Ser Phe Ala Pro Val Ala Arg Leu Phe Gly Pro 40 Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp 55 60 Glu Glu Lys His Pro Gly Lys Leu Pro Arg Thr Tyr Thr Leu Thr His 70 75 65 Ser Asp Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn 85 Asn Ser Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp Glu Val 100 105 110 Val Ala Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His Val His

120

115

#### Sequence Listing

Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Ile Cys Ala Arg Leu 135 130 Arg Phe Phe Ile Phe Ser Lys Glu Leu Pro Val Val Leu Lys Ala Phe 160 Val His Gly Asp Gly Asn Leu Leu Asn Asn His Pro Glu Leu Gln Glu 165 170 Ala Leu Val Trp Val Tyr Phe His Ser Asn Ile Pro Glu Phe Asn Lys 190 185 180 Val Glu Cys Trp Gly Pro Leu Lys Glu Ala Val Ala Gly Ser Ser Glu 205 195 200 Ala Gly Gly Thr Arg His Glu Ile Arg Gln Glu Thr Ser Ile Ser Asn 215 210 Trp Glu Leu Pro Glu Pro Cys Gln Glu Thr Cys Asn Cys Cys Phe Pro 235 230 Pro Met Ser Leu Ile Pro Trp Ser Glu Lys Leu Pro Leu Gln Thr Glu 245 250 Asn Arg Gly Thr Gln Gly Gln Glu Ser Leu Gln Gln Gln Thr Arg 265 260

<210> 43
<211> 263
<212> PRT
<213> Medicago truncatula
<400> 43
Met Gly Thr Leu Thr Thr Ala Pro Pro Pro Met Leu Thr Ser Lys Phe
 1 5 10 15

Lys	Pro	Ser	Phe	Ser	Pro	Gln	His	ГЛЗ	Pro	Leu	Phe	Pro		Arg	Arg
			20					25					30		
<b>3</b>	T	TT	T ***	Lazo	7.55	Cl n	Ser	TIO	Wa I	Dro	T = T	Δla	Ara	Len	Dhe
arg	ьeu	35	гув	пуъ	ASII	GTII	40	TTE	var	PLO	vaı	45	my	БСИ	FIIC
		33					-20								
Gly	Pro	Ala	Ile	Phe	Glu	Ala	Ser	Lys	Leu	Lys	Val	Leu	Phe	Leu	Gly
_	50					55		_			60				
Ile	Asp	Glu	Asp	Lys	His	Pro	Gly	Asn	Leu	Pro	Arg	Thr	Tyr	Thr	Leu
65					70					75					80
														_	
Thr	His	Ser	Asp		Thr	Ser	Lys	Leu		Leu	Ala	Ile	Ser		Thr
				85					90					95	
TIO	7 an	λcn	Cor	G] n	T.011	Gl n	Gly	Trn	Tur	Δsn	Ara	Len	Gln	Ara	Asp
TTE	ASII	Abii	100	GIII	neu	GIII	Gry	105	-7-	11011	****9		110		
Glu	Val	Val	Ala	Gln	Trp	Lys	Lys	Val	Lys	Gly	Lys	Met	Ser	Leu	His
		115					120					125			
Val	His	Cys	His	Ile	Ser	Gly	Glу	His	Phe	Leu	Leu	Asp	Ile	Phe	Ala
	130					135					140				
													<b>_</b>		_
_	Leu	Arg	Tyr	Phe		Phe	Cys	Lys	Glu		Pro	Val	Val	Leu	
145					150					155					160
<b>Δ</b> Ι2	Dhe	Val	Hic	Glv	Asn	Glv	Asn	Leu	Phe	Asn	Asn	Tvr	Pro	Glu	Leu
HLU	1110	****		165	***E				170			-1-		175	
Gln	Glu	Ala	Leu	Val	Trp	Val	Tyr	Phe	His	Ser	Lys	Ile	Pro	Glu	Phe
			180					185					190		
Asn	Lys	Val	Glu	Cys	Trp	Gly	Pro	Leu	Lys	Glu	Ala	Ser	Gln	Pro	Thr
		195					200					205			
_	<b>~</b> 1	m1-	<b>a</b> 1.		3	*** =	al-	7	T	mh	Loss	Dro	<i>c</i> 1	Dwo	Cvra
ser	_	Thr	GIn	Arg	Asp	115 215	Gln	ASN	ren	THE	ьец 220	PLO	GIU	PT.O	cys
	210					213					220				
Gln	Glu	Thr	Cys	Glu	Сув	Cys	Phe	Pro	Pro	Leu	Lys	Leu	Ser	Pro	Met
			-			-									

### Sequence Listing

240 230 235 225 Pro Cys Ser Asn Glu Val His Asn Asp Thr Tyr Glu Pro Ile Asp Gly 245 250 Ile Glu Thr Gln Gln Ser Leu 260 44 <210> 272 <211> <212> PRT Solanum tuberosum <213> Met Gly Thr Leu Thr Ala Ser Leu Val Val Pro Ser Lys Leu Asn Asn Glu Lys Gln Ser Ser Ile Phe Val His Lys Thr Arg Arg Lys Ser Lys 20 25 Lys Asn Gln Ser Ile Val Pro Val Ala Arg Leu Phe Gly Pro Ala Ile 35 40 Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp Glu Glu 55 50 Lys His Pro Gly Lys Leu Pro Arg Thr Tyr Thr Leu Thr His Ser Asp 70 65 Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn Asn Ser 90 85 Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp Glu Val Val Ala 110 100 105 Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His Val His Cys His 120 125 115

Ile Ser Gly Gly His Phe Met Leu Asp Leu Phe Ala Arg Leu Arg Asn

### Sequence Listing

135 140 130 Tyr Ile Phe Cys Lys Glu Leu Pro Val Val Leu Lys Ala Phe Val His 150 155 Gly Asp Glu Asn Leu Leu Lys Asn Asn Pro Glu Leu Gln Glu Ala Leu 165 170 Val Trp Val Tyr Phe His Ser Asn Ile Gln Glu Phe Asn Lys Val Glu 180 185 Cys Trp Gly Pro Leu Lys Asp Ala Thr Ser Pro Ser Ser Ser Ser 200 Gly Val Gly Gly Val Lys Ser Thr Ser Phe Thr Ser Asn Ser Asn Asn 215 210 Lys Trp Glu Leu Pro Lys Pro Cys Glu Glu Ala Cys Ala Cys Cys Phe 230 235 Pro Pro Met Ser Val Met Pro Trp Pro Ser Ser Asn Leu Asp Gly Ile 250 Gly Glu Glu Asn Gly Thr Ile Gln Gln Gly Leu Gln Glu Gln Gln Ser 265 260 <210> <211>

<210> 45
<211> 269
<212> PRT
<213> Populus tremula
<400> 45
Met Gly Ser Leu Ala Ile Al

Met Gly Ser Leu Ala Ile Ala Pro Phe Leu Pro Ser Lys Leu Arg Pro 1 5 10 15

Ser Ile Leu Asp Gln Asn Ser Ser Leu Phe Pro Ser Lys Lys Leu 20 25 30

Lys	Arg	<b>Lys</b> 35	Asn	Gln	Ser	Ile	Ser 40	Pro	Val	Ala	Arg	Leu 45	Phe	Gly	Pro
Ser	Ile 50	Phe	Glu	Ala	Ser	Lys 55	Leu	Lys	Val	Leu	Phe 60	Leu	Gly	Val	Asp
Glu 65	Lys	Lys	His	Pro	Gly 70	Asn	Leu	Pro	Arg	Thr 75	Tyr	Thr	Leu	Thr	His 80
Ser	Asp	Ile	Thr	Ala 85	Lys	Leu	Thr	Leu	Ala 90	Ile	Ser	Gln	Thr	Ile 95	Asn
Asn	Ser	Gln	Leu 100	Gln	Gly	Trp	Ser	Asn 105	Lys	Leu	Tyr	Arg	Asp 110	Glu	Val
Val	Ala	Glu 115	Trp	Lys	Lys	Val	Lys 120	Gly	Lys	Met	Ser	Leu 125	His	Val	His
Cys	His 130	Ile	Ser	Gly	Gly	His 135	Phe	Leu	Leu	Asp	Leu 140	Cys	Сув	Arg	Leu
Arg 145	Tyr	Phe	Ile	Phe	Arg 150	ГĀЗ	Glu	Leu	Pro	Val 155	Val	Leu	Lys	Ala	Phe 160
Phe	His	Gly	Asp	Gly 165	Asn	Leu	Phe	Ser	Ser 170	Tyr	Pro	Glu	Leu	Gln 175	Glu
Ala	Leu	Val	Trp 180	Val	Tyr	Phe	His	Ser 185	Asn	Ile	Pro	Glu	Phe 190	Asn	Lys
Val	Glu	Cys	Trp	Gly	Pro	Leu	Lys 200	His	Ala	Ala	Ala	Pro 205	Tyr	Thr	Ala
Ala	Ser 210		Gly	Ala	Pro	Glu 215	Asn	Lys	Glu	Gln	Ala 220	Thr	Asp	Trp	Asn
Leu 225		Glu	Pro	Cys	Gln 230	Glu	Asn	Cys	Gln	Сув 235	Cys	Phe	Pro	Pro	Met 240

#### Sequence Listing

Ser Leu Ile Pro Trp Ser Glu Met Val Pro Gln Glu Asn Lys Asn Asn 245 250 255

Pro Ser Thr Gln Gln Thr Phe Gln Gln Ala Gln Gln Pro
260 265

<210> 46

<211> 270

<212> PRT

<213> Populus tremula

<400> 46

Met Gly Ser Leu Ala Val Ala Pro Phe Leu Pro Ser Lys Pro Arg Pro 1 5 10 15

Ser Leu Phe Asp Gln His Ser Ser Leu Phe Ser Pro Ser Thr Lys Leu 20 25 30

Lys Arg Lys Asn Gln Ser Ile Ser Pro Val Ala Arg Leu Phe Gly Pro 35 40 45

Ser Ile Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp
50 60

Glu Lys Glu His Pro Gly Asn Leu Pro Arg Thr Tyr Thr Leu Thr His
65 70 75 80

Ser Asp Met Thr Ala Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn 85 90 95

Asn Ser Gln Leu Gln Gly Trp Ser Asn Lys Leu Tyr Arg Asp Glu Val

Val Ala Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His Val His
115 120 125

Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Trp Cys Cys Arg Leu 130 135 140

#### Sequence Listing

Arg Tyr Phe Ile Phe Arg Arg Glu Leu Pro Val Val Leu Lys Ala Phe 150 155 145 Phe His Gly Asp Gly Ser Leu Leu Ser Asn Tyr Pro Glu Leu Gln Glu 165 170 Gly Leu Val Trp Val Tyr Phe His Ser Asn Ile Pro Glu Phe Ser Lys 185 Val Glu Cys Trp Gly Pro Leu Lys Asp Ala Ala Ala Pro Ser Thr Ser 200 Glu Thr Gly Gly Ser Asn Glu Thr Glu Glu Leu Ala Asn Gln Ser Ser 215 Asn Trp Asp Leu Pro Glu Pro Cys Gln Glu Glu Asn Cys Ser Cys Cys 235 240 230 225 Phe Pro Pro Met Ser Leu Ile Pro Trp Ser Lys Met Val Pro Leu Glu 245 Asp Lys Asn Asn Pro Ser Thr Pro Gln Asn Leu Gln Gln Pro 265 260 270 <210> 47 <211> 286 <212> PRT <213> Mesembryanthemum crystallinum <400> Met Gly Thr Leu Thr Ala Ser Met Leu Leu Pro Ser Lys Leu Lys Pro Ser Val Phe Glu Asp Gln Ser Ser Val Tyr Phe Lys Arg Ser Cys Arg 25 Gly Leu Pro Lys Leu Asn Lys Ala Lys Ser Phe Ser Pro Val Met Arg 35 40

Leu	Phe 50	Gly	Pro	Ala	Ile	Phe 55	Glu	Ala	Ser	Lys	Leu 60	Lys	Val	Leu	Phe
Leu 65	Gly	Val	Asp	Lys	Glu 70	Lys	His	Pro	Gly	Lуs 75	Leu	Pro	Arg	Thr	Туr 80
Thr	Leu	Thr	His	Ser 85	Asp	Ile	Thr	ser	90 PÀS	Leu	Thr	Leu	Ala	Ile 95	Ser
Gln	Thr	Ile	Asn 100	Asn	Ser	Gln	Leu	Gln 105	Gly	Trp	Tyr	Asn	Gln 110	Leu	Gln
Arg	Ąsp	Glu 115	Val	Val	Ala	Glu	Trp 120	ьуз	Lys	Val	Lys	Gly 125	Lys	Met	Ser
Leu	His 130	Val	His	Cys	His	Ile 135	Ser	Gly	Gly	His	Ile 140	Leu	Leu	Asp	Leu
Phe 145	Ala	Lys	Leu	Arg	Phe 150	Tyr	Ile	Phe	Cys	Lys 155	Glu	Leu	Pro	Val	Val 160
Leu	Lys	Ala	Phe	Val 165	His	Gly	Asp	Glu	Asn 170	Leu	Phe	Asn	Asn	Tyr 175	Pro
Glu	Leu	Gln	Glu 180	Ala	Met	Val	Trp	Val 185	Tyr	Phe	His	Ser	Asn 190	Leu	Glu
Glu	Phe	Asn 195	Lys	Ile	Glu	Cys	Trp 200	Gly	Pro	Leu	Lys	Asp 205	Ala	Val	Ala
Arg	Asn 210	Ser	Lys	Lys	Asn	Lys 215	Asn	Lys	Asn	Lys	Ile 220	Asp	Phe	Lys	Leu
Ser 225	Phe	Lys	Glu	Glu	Asp 230	Asp	Ser	Pro	Asp	Asn 235		Leu	Glu	Ile	Pro 240
Glu	Thr	Cys	Lys	Glu 245	Pro	Cys	Thr	Суз	Cys 250	Phe	Pro	Pro	Thr	Ser 255	Val
Ile	Pro	Trp	Ser	His	Ser	Ala	Leu	Ser	Gln	Gly	Asp	Asp	Leu	His	Leu

#### Sequence Listing

270 260 265 Ser Gly Gly Thr His Gln Gly Leu Glu Gln Gln Gln Gln Thr 280 <210> <211> <212> PRT <213> Arabidopsis thaliana <400> Met Cys Ser Leu Ser Ala Ile Met Leu Leu Pro Thr Lys Leu Lys Pro 5 10 Ala Tyr Ser Asp Lys Arg Ser Asn Ser Ser Ser Ser Ser Ser Leu Phe Phe Asn Asn Arg Arg Ser Lys Lys Lys Asn Gln Ser Ile Val Pro Val 40 Ala Arg Leu Phe Gly Pro Ala Ile Phe Glu Ser Ser Lys Leu Lys Val 55 Leu Phe Leu Gly Val Asp Glu Lys Lys His Pro Ser Thr Leu Pro Arg 65 70 Thr Tyr Thr Leu Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala Ile Ser Gln Ser Ile Asn Asn Ser Gln Leu Gln Gly Trp Ala Asn Arg 105 110 100 Leu Tyr Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Lys Gly Lys 115 125 Met Ser Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Leu

130

135

140

#### Sequence Listing

Asp Leu Phe Ala Lys Phe Arg Tyr Phe Ile Phe Cys Lys Glu Leu Pro 145 Val Val Leu Lys Ala Phe Val His Gly Asp Gly Asn Leu Leu Asn Asn 170 165 Tyr Pro Glu Leu Gln Glu Ala Leu Val Trp Val Tyr Phe His Ser Asn 180 Val Asn Glu Phe Asn Lys Val Glu Cys Trp Gly Pro Leu Trp Glu Ala 200 195 Val Ser Pro Asp Gly His Lys Thr Glu Thr Leu Pro Glu Ala Arg Cys 220 215 Ala Asp Glu Cys Ser Cys Cys Phe Pro Thr Val Ser Ser Ile Pro Trp 230 235 225 Ser His Ser Leu Ser Asn Glu Gly Val Asn Gly Tyr Ser Gly Thr Gln 245 250 Thr Glu Gly Ile Ala Thr Pro Asn Pro Glu Lys Leu 260 265 <210> <211> 271 <212> PRT <213> Arabidopsis thaliana <400> Met Cys Ser Leu Ala Thr Asn Leu Leu Pro Ser Lys Met Lys Pro 15 Val Phe Pro Glu Lys Leu Ser Thr Ser Ser Leu Cys Val Thr Thr Arg 20 Arg Ser Lys Met Lys Asn Arg Ser Ile Val Pro Val Ala Arg Leu Phe 40

Gly	Pro 50	Ala	Ile	Phe	Glu	Ala 55	Ser	Lys	Leu	Lys	Val 60	Leu	Phe	Leu	GIÀ
Val 65	Asp	Glu	Lys	Lys	His 70	Pro	Ala	Lys	Leu	Pro 75	Arg	Thr	Tyr	Thr	Leu 80
Thr	His	Ser	Asp	11e 85	Thr	Ala	Lys	Leu	Thr 90	Leu	Ala	Ile	Ser	Gln 95	Ser
Ile	Asn	Asn	Ser 100	Gln	Leu	Gln	Gly	Trp 105	Ala	Asn	ГÀа	Leu	Phe 110	Arg	Asp
Glu	Val	Val 115	Gly	Glu	Trp	ГÀЗ	Lys 120	Val	Lys	Gly	Lys	Met 125	Ser	Leu	His
Val	His 130	Сув	His	Ile	Ser	Gly 135	Gly	His	Phe	Phe	Leu 140	Asn	Leu	Ile	Ala
Lys <b>14</b> 5	Leu	Arg	Tyr	Tyr	Ile 150	Phe	Cys	Lys	Glu	ьеи 155	Pro	Val	Val	Leu	Glu 160
Ala	Phe	Ala	His	Gly 165	Asp	Glu	Tyr	Leu	Leu 170	Asn	Asn	His	Pro	Glu 175	Leu
Gln	Glu	Ser	Pro 180	Val	Trp	Val	Tyr	Phe 185	His	Ser	Asn	Ile	Pro 190	Glu	Tyr
Asn	Lys	Val 195	Glu	Сув	Trp	Gly	Pro 200	Leu	Trp	Glu	Ala	Met 205	Ser	Gln	His
Gln	His 210	Asp	Gly	Arg	Thr	His 215	Lys	Lys	Ser	Glu	Thr 220	Leu	Pro	Glu	Leu
Pro 225	Cys	Pro	Asp	Glu	Сув 230	Lys	Cys	Cys	Phe	Pro 235	Thr	Val	Ser	Thr	Ile 240
Pro	Trp	Ser	His	Arg 245	His	Tyr	Gln	His	Thr 250	Ala	Ala	Asp	Glu	Asn 255	Val

### Sequence Listing

Ala Asp Gly Leu Leu Glu Ile Pro Asn Pro Gly Lys Ser Lys Gly
260 265 270

50 <210> 221 <211> PRT <212> Lycopersicon esculentum <213> <400> Met Gly Thr Leu Thr Thr Ser Leu Val Val Pro Ser Lys Leu Asn Asn Glu Gln Gln Ser Ser Ile Phe Ile His Lys Thr Arg Arg Lys Cys Lys Lys Asn Gln Ser Ile Val Pro Val Ala Arg Leu Phe Gly Pro Ala Ile 40 35 Phe Glu Ala Ser Lys Leu Lys Val Leu Phe Leu Gly Val Asp Glu Glu 55 50 Lys His Pro Gly Lys Leu Pro Arg Thr Tyr Thr Leu Thr His Ser Asp 75 80 65 70 Ile Thr Ser Lys Leu Thr Leu Ala Ile Ser Gln Thr Ile Asn.Asn Ser , 90 Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp Glu Val Val Ala 100 105 Glu Trp Lys Lys Val Lys Gly Lys Met Ser Leu His Val His Cys His 120 115 Ile Ser Gly Gly His Phe Met Leu Asp Leu Phe Ala Arg Leu Arg Asn 130 135 140

Tyr Ile Phe Cys Lys Glu Leu Pro Val Val Leu Lys Ala Phe Val His

#### Sequence Listing

155 160 150 145 Gly Asp Glu Asn Leu Leu Arg Asn Tyr Pro Glu Leu Gln Glu Ala Leu 165 170 Val Trp Val Tyr Phe His Ser Asn Ile Gln Glu Phe Asn Lys Val Glu 185 Cys Trp Gly Pro Leu Arg Asp Ala Thr Ser Pro Ser Ser Ser Gly 200 Gly Val Gly Gly Val Lys Ser Thr Ser Phe Thr Ser His 215 <210> 51 <211> <212> PRT Beta vulgaris <213> <400> Pro Glu Leu Gln Glu Ala Ser Val Trp Val Tyr Phe His Ser Ser Ile Pro Glu Phe Asn Lys Val Glu Cys Trp Gly Pro Leu Thr Asp Ala Val 25 Asp Pro Pro Ser Lys Asn Lys Lys Arg Met Met Met Ile Asn Asp Glu 35 40 Gln Asp Lys Glu Glu Glu Glu Glu Ala Ser Ser Lys Trp Glu Met 50 55 60 Leu Val Pro Cys Thr Lys Pro Cys Arg Cys Cys Phe Pro Pro Thr Ser 65 75 Leu Ile Pro Trp Thr Pro Ser Leu Ser Gln Glu Gln Gln Gln Gln Gln 85 90

#### Sequence Listing

Gln Leu Pro Gly Asp Val Ser Ile Pro Pro Pro Gly Thr Arg

<210> 52

<211> 187

<212> PRT

<213> Zoysia japonica

<400> 52

Thr Tyr Thr Leu Thr His Ser Asp Val Thr Ala Lys Leu Thr Leu Ala
1 5 10 15

Val Ser His Thr Ile His Ala Ala Gln Leu Gln Gly Trp Tyr Asn Arg
20 25 30

Leu Gln Arg Asp Glu Val Val Ala Glu Trp Arg Lys Val Arg Gly Asn
35 40 45

Met Ser Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Arg

Asp Leu Ile Ala Pro Leu Arg Tyr Tyr Ile Phe Arg Lys Glu Leu Pro 65 70 75 80

Val Val Leu Lys Ala Phe Val His Gly Asp Gly Ser Leu Phe Ser Ser
. 85 90 95

His Pro Glu Leu Glu Glu Ala Thr Val Trp Val Tyr Phe His Ser Asn 100 105 110

Leu Pro Arg Phe Asn Arg Val Glu Cys Trp Gly Pro Leu Cys Asp Ala 115 120 125

Ala Ala Pro Val Glu Glu Glu Gly Gln Gln Asn Asp Asp Arg Leu Pro 130 135 140

Ala Gly Glu Trp Pro Arg Arg Cys Pro Gln Gln Cys Glu Cys Cys Phe 145 150 155 160

### Sequence Listing

Pro Pro His Ser Leu Ile Pro Trp Pro Asn Glu His Asp Met Ala Pro 165 170 175

Thr Asp Ala Pro Ala Ala Gly Gln Thr Gln Gln

180

185

<210> 53

<211> 93

<212> PRT

<213> Lotus corniculatus var. japonicus

<400> 53

Tyr Pro Glu Leu Gln Asp Ala Leu Val Trp Val Tyr Phe His Ser Lys

1 5 10 15

Ile Pro Glu Phe Asn Lys Val Gln Cys Trp Gly Pro Leu Lys Glu Ala 20 25 30

Ala Ala Pro Ser Gly Gly Ser Pro Glu Lys Glu Gly Glu Gly Val Lys
35 40 45

Met Pro Asp Pro Cys Pro Glu Glu Cys Glu Cys Cys Phe Pro Pro Pro 50 55 60

Pro Ala Leu Asp Pro Ile Pro Trp Ser Glu Glu Val Pro Ser Pro His 65 70 75 80

Tyr Glu Ala Phe Asp Gly Val Gly Thr Arg Pro Asn Leu 85 90

<210> 54

<211> 107

<212> PRT

<213> Lotus corniculatus var. japonicus

<400> 54

Asp Leu Cys Ala Lys Leu Arg Tyr Phe Ile Phe Cys Lys Glu Leu Pro

#### Sequence Listing

10 Val Val Leu Lys Ala Phe Ile His Gly Asp Glu Asn Leu Phe Asn Asn 20 . 25 Tyr Pro Glu Leu Glu Glu Ser Leu Val Trp Val Tyr Phe His Ser Asn 40 Ile Ser Glu Phe Asn Lys Val Glu Cys Trp Gly Pro Leu Lys Asp Ala Cys Ala Thr Ser Ile Gly Ser Tyr Ser Tyr Asp Lys Gly Met Pro Gln 70 Thr Gln Pro Cys Gln Gln Asn Cys Glu Cys Cys Phe Thr Pro Met Ser 90 Ser Ser Asp Trp Ile Gly Thr Gln Gln Lys Leu 100 <210> <211> <212> Saccharum officinarum <213> <400> Thr Arg Leu Asp Leu Ile Ala Gly Leu Arg Tyr Tyr Ile Phe Arg Lys 10 5 Glu Leu Pro Val Val Leu Lys Ala Phe Val His Gly Asp Gly Asp Leu 25 Phe Ser Arg His Pro Glu Leu Glu Asp Ala Thr Val Trp Val Tyr Phe 35 His Ser Asn Leu Thr Arg Phe Asn Arg Val Glu Cys Trp Gly Pro Leu 55 50 Arg Asp Ala Ala Ala Pro Pro Ala Glu Glu Asp Ser Thr Ala Pro Ala

### Sequence Listing

70 65 Ala Ser Asn Ser Lys Glu Gly Gln Met Pro Pro Val Gly Glu Trp Pro 85 90 Tyr Arg Cys Pro Gln Gln Cys Asp Cys Cys Phe Pro Pro His, Ser Leu 105 Ile Pro Trp Pro Asn Glu His Asp Met Ala Ala Ala Ala Ala Asp Ala 120 Thr Ala Ala Gly Gln Ala Gln Gln Gln 130 135 <210> <211> 159 PRT <212> <213> Picea <400> Ile Asn Lys Asp Gln Leu Gln Gly Trp Tyr Asn Arg Leu Gln Arg Asp 10 15 Glu Val Ile Ala Gln Trp Lys Lys Ser Gln Gly Lys Met Ser Leu His 25 20 Val His Cys His Ile Ser Gly Gly His Trp Leu Leu Asp Ala Ile Ala 40 35 Arg Leu Arg Phe Tyr Ile Phe Arg Lys Glu Leu Pro Val Val Leu Glu 50 Ala Phe Arg His Gly Asp Arg Ala Leu Leu Asp Lys His Pro Glu Leu 65 Glu Thr Ala Leu Val Trp Val Tyr Phe His Ser Asn Val Arg Glu Phe 90 85 Lys Arg Val Glu Cys Trp Gly Ser Leu Ala Glu Ala Cys Lys Gly Ala

#### Sequence Listing

110 100 105 Pro Ser Asn Leu Glu Lys Glu Leu Asp Glu Glu Phe Asn Gly Glu Lys 120 115 Leu Glu Met Pro Ser His Cys Ser Glu Pro Cys Asn Cys Cys Phe Pro 135 140 Pro Phe Ser Val Leu Leu Arg Pro Glu Asp Ala Glu Gln Phe Ile 145 <210> <211> 210 <212> PRT <213> Brassica napus <400> Met Cys Ser Leu Ala Thr Asn Leu Leu Pro Ser Thr Met Lys Pro 1 Ala Phe Thr Glu Lys Gln Asn Thr Asn Ser Leu Phe Leu Thr Asn Lys 25 20 Arg Ser Leu Met Gln Asn Arg Ser Thr Val Pro Val Pro Val Ala Arg 35 Leu Leu Glu Pro Ala Ile Phe Glu Ala Ser Lys Leu Lys Val Ser Phe 50 55 Leu Gly Val Asp Glu Lys Lys His Pro Ser Lys Leu Pro Arg Thr Tyr 75 70 65 Thr Leu Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala Ile Ser Gln Ser Ile Asn Asn Ser Gln Leu Gln Gly Trp Ala Asn Arg Leu Phe

Arg Asp Glu Val Val Ala Glu Trp Lys Lys Val Lys Gly Lys Met Ser

100

105

## Sequence Listing

115 120 125 Leu His Val His Cys His Ile Ser Gly Gly His Phe Leu Leu Asp Leu 135 130 140 Ile Ala Lys Leu Arg Tyr Tyr Ile Phe Cys Lys Glu Leu Pro Val Val 155 150 Leu Lys Ala Phe Val His Gly Asp Gly Asn Leu Leu Asn Ser Tyr Pro 170 Glu Leu Gln Glu Ser Pro Val Trp Val Tyr Ser Ile Gln Thr Ser Pro 180 185 Ser Thr Ile Arg Leu Asn Val Gly Gly Arg Phe Gly Arg Pro Arg Ser 200 205 Thr Asn 210 <210> 58 <211> 97 <212> <213> Brassica napus <400> Met Cys Ser Leu Ser Ala Asn Met Leu Leu Pro Thr Lys Leu Lys Pro 1 5 10 Ala Tyr Ser Asp Lys Arg Gly Asn Ser Thr Asn Ser Leu Leu Val Ser 25 20 Asn Thr Arg Ser Lys Arg Lys Asn Gln Ser Val Val Pro Met Ala Arg 35 Leu Phe Gly Pro Ala Ile Phe Glu Ser Ser Lys Leu Lys Val Leu Phe 50 55 60 Leu Gly Val Asp Asp Lys Lys His Pro Pro Thr Leu Pro Arg Thr Tyr

## Sequence Listing

65 70 75 80

Thr Leu Thr His Ser Asp Ile Thr Ala Lys Leu Thr Leu Ala Ile Ser 85 90 95

His