Computational Mechanics by Isogeometric Analysis Dr. L. Dedè. A.Y. 2015/16

Exercises April 26, 2016: Solutions

NURBS-based Isogeometric Analysis: Galerkin method. III

1. a) We start by solving an advection–diffusion problem for which we set the following data: $\mathbf{b} = 10^2 (1,1)^T$, $\sigma = 0$, and g = 1 on Γ_{D1} , where $\Gamma_{D1} := \{\mathbf{x} = (\mathbf{x}, \mathbf{y})^T \in \Gamma_D : \mathbf{x} = 0 \text{ and } y < 1/3, \text{ or } \mathbf{y} = 0\}$, and g = 0 on $\Gamma_D \setminus \Gamma_{D1}$. The problem is advection dominated since the global Péclet number is larger than one, i.e. $\mathbb{P}e_g := \frac{\|\mathbf{b}\|_{L^{\infty}(\Omega)}L}{2\mu} = 50$, where L = 1 is the characteristic length size.

We solve the problem by considering p=1 globally C^0 -continuous and p=2 globally C^1 -continuous B-splines basis functions for different mesh sizes h ($h=h_e$ for all the mesh elements Ω_e). In particular, we firstly consider the case for which the local Péclet number in each mesh element, say $\mathbb{P}e_e:=\frac{\|\mathbf{b}\|_{L^{\infty}(\Omega_e)}h_e}{2\mu}$, is larger than 1 ($\mathbb{P}e_e>1$), possibly leading to numerical instabilities; then we consider the case $\mathbb{P}e_e<1$, yielding numerically stable results. The Dirichlet boundary conditions are strongly imposed and the "interpolation at the control points" technique is used. The examples are illustrated in the following figures.

B-splines basis p = 1 (C^0 -continuous), $\mathbf{b} = 10^2 (1,1)^T$, $\sigma = 0$

0.75 0.5 0.25

0.75 0.5 0.25

 $h = 1/10, \mathbb{P}e_e = 5 > 1$

 $h = 1/60, \mathbb{P}e_e = 5/6 < 1$

B-splines basis p = 2 (C¹-continuous), $\mathbf{b} = 10^2 (1,1)^T$, $\sigma = 0$

$$h = 1/10, \mathbb{P}e_e = 5 > 1$$

$$h = 1/60, \mathbb{P}e_e = 5/6 < 1$$

We observe for the case p=1 limited "overshooting" effects on the numerical solution appear even if $\mathbb{P}e_e=5/6<1$, while for p=2 the "overshooting" effects are negligible.

See the MATLAB file ex8_1a.m for reference.

b) We solve a diffusion–reaction problem by setting $\mathbf{b} = \mathbf{0}$, $\sigma = 2 \cdot 10^4$, and g as at point 1a). The problem is reaction dominated with the global Péclet number $\mathbb{P}e_g := \frac{\|\sigma\|_{L^2(\Omega)}L^2}{6\,\mu} = 1/3\cdot 10^4$. We solve the problem with B–splines basis functions of degree p=2 and globally C^1 –continuous. Firstly, we set h=1/10 yielding the local Péclet number $\mathbb{P}e_e := \frac{\|\sigma\|_{L^\infty(\Omega_e)}h_e^2}{6\,\mu} = 1/3\cdot 10^4 \gg 1$ for which we obtain the numerical solution reported in the following and exhibiting numerical instabilities.

B-splines basis p=2 (C¹-continuous), $\mathbf{b}=\mathbf{0}$, $\sigma=2\cdot 10^4$, h=1/10

We then set h=1/80 yielding a numerical solution without numerical instabilities since the local Péclet number is $\mathbb{P}e \simeq 0.5208 < 1$.

B-splines basis p=2 (C¹-continuous), $\mathbf{b}=\mathbf{0}$, $\sigma=2\cdot 10^4$, h=1/80

See the MATLAB file ex8_1b.m for reference.

- 2. We consider two different choices of the Dirichlet data g (the "interpolation at the control points" technique is used). For both the cases we consider NURBS basis functions of degree p=2 and globally C^1 -continuous with a meshes comprised of 20×50 elements.
 - a) We set g=1 on Γ_{D1} and g=0 on $\Gamma_D\backslash\Gamma_{D1}$, where the subset $\Gamma_{D1}:=\left\{\mathbf{x}=(\mathbf{x},\mathbf{y})^T\in\Gamma_D: \mathbf{x}=0 \text{ and } y>3/2, \text{ or } \sqrt{\mathbf{x}^2+\mathbf{y}^2}=2\right\}$. We obtain the result reported in the following for which we remark that the problem is diffusion dominated since the global Péclet number is $\mathbb{P}e_g=0.5<1$.

b) We set g = 1 on Γ_{D1} and g = 0 on $\Gamma_D \setminus \Gamma_{D1}$, where $\Gamma_{D1} := \{ \mathbf{x} = (\mathbf{x}, \mathbf{y})^T \in \Gamma_D : \mathbf{x} = 0 \}$. We obtain the following result, which highlights that the problem is diffusion dominated since $\mathbb{P}e_g = 0.5 < 1$.

If we set $\mu = 10^{-2}$ we obtain an advection dominated problem with $\mathbb{P}e_g = 50 \gg 1$. The corresponding numerical solution is reported in the following.

See the MATLAB file ex8_2.m for reference