LOGIC AND PROPOSITIONAL LOGIC

Subhenur Latif

Logic

Propositional Logic

Connectives

Tautology

Contradiction

Contingency

LOGIC

- 1. Free of emotion
- 2. Tool that develops reasonable conclusions based on a given set of data

$$2+1=3$$
 (YES)

Man is mortal. President is a man. So, President is mortal.

"Man is Mortal"

"15 + 2 = 3 - 2"

"Perhaps I am wrong"

TRUE FALSE

Propositional logic

Propositional Logic is concerned with statements to which the truth values, "true" and "false", can be assigned.

Propositional logic

A is equal to 2

Not a Proposition.

It is because unless we give a specific value of A, we cannot say whether the statement is true or false.

Propositional logic

Let's Form the Definition

Definition- A proposition is a declarative statements that has either a truth value "true" or a truth value "false".

A proposition consists of propositional variables and connectives. Variables are denoted by letter p, q etc.

p: Two plus two equals four

Connectives

In propositional logic generally we use five connectives which are - OR (V), AND (\land), Negation/NOT (\neg), Implication / if-then (\rightarrow), If and only if (\Leftrightarrow).

Connectives

1. OR (V) – The OR operation of two propositions A and B (written as A V B) is true if at least any of the propositional variable A or B is true.

The truth table:

Α	В	ΑνΒ
True	True	True
True	False	True
False	True	True
False	False	False

Connectives

2. AND (Λ) – The AND operation of two propositions A and B (written as A Λ B) is true if both the propositional variable A and B is true. The truth table:

Α	В	AΛB
True	True	True
True	False	False
False	True	False
False	False	False

CONNECTIVES

3. Negation (\neg) – The negation of a proposition A (written as $\neg A$) is false when A is true and is true when A is false. The truth table:

Α	В	$A \rightarrow B$			
True	True	True			
True	False	False			
False	True	True			
False	False	True			

CONNECTIVES

4. Implication / if-then (?) - An implication $A \rightarrow B$ is False if A is true and B is false. The rest cases are true.

The truth table:

В	$A \rightarrow B$
True	True
False	False
	True
	True
	True

CONNECTIVES

- 5. If and only if (⇔) A⇔B is bi-conditional logical connective which is true when p and q are both false or both are true.
- The truth table:

Α	В	A ⇔ B
True	True	True
True	False	False
False	True	False
False	False	True

Α	В	$\mathbf{A} \to \mathbf{B}$	(A → B) ∧ A	$\textbf{[(A \rightarrow B) \land A] \rightarrow B}$
True	True	True	True	True
True	False	False	False	True
False	True	True	False	True
False	False	True	False	True

Tautologies

A Tautology is a formula which is always true for every value of its propositional variables.

As we can see every value of $[(A \rightarrow B) \land A] \rightarrow B$ is "True", it is a tautology.

What if it is opposite?

Α	В	AVB	¬A	¬В	(¬A) ∧ (¬B)	(A ∨ B) ∧ [(¬A) ∧
True	True	True	False	False	False	False
True	False	True	False	True	False	False
False	True	True	True	False	False	False
False	False	False	True	True	True	False

(¬B)]

Contradictions

 A Contradiction is a formula which is always false for every value of its propositional variables.

As we can see every value of $(A \lor B) \land [(\neg A) \land (\neg B)]$ is "False", it is a contradiction.

Hmm...What if both?

Α	В	AVB	¬A	(A ∨ B) ∧ (¬A)
True	True	True	False	False
True	False	True	False	False
False	True	True	True	True
False	False	False	True	False

Contingency

As we can see every value of (A \vee B) \wedge (\neg A) has both "True" and "False", it is a contingency.

A Contingency is a formula which has both some true and some false values for every value of its propositional variables.

