Timoshenko Beam

Stiffness Matrix For Simple Cross-Section

```
\mathbf{Csimple} = \begin{array}{c} \mathbf{GAKx} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{GAKy} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{EA} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{EIxx} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{EIyy} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{GJ} \\ \end{array}
\mathbf{\Phi} = \begin{array}{c} \mathbf{u}' & \mathbf{0} & \mathbf{0} & \mathbf{0} & -\gamma & \mathbf{0} \\ \mathbf{0} & \mathbf{v}' & \mathbf{0} & \psi & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \psi' & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \gamma' & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \gamma' & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array}
```

Element Strain Energy Matrix

$K = MatrixForm[Simplify[Transpose[<math>\Phi$].Csimple. Φ]]

```
 \begin{pmatrix} \mathsf{GAKx} \; (\mathsf{u}')^2 & 0 & 0 & 0 & -\mathsf{GAKx} \; \gamma \; \mathsf{u}' & 0 \\ 0 & \mathsf{GAKy} \; (\mathsf{v}')^2 & 0 & \mathsf{GAKy} \; \psi \; \mathsf{v}' & 0 & 0 \\ 0 & 0 & \mathsf{EA} \; (\mathsf{w}')^2 & 0 & 0 & 0 & 0 \\ 0 & \mathsf{GAKy} \; \psi \; \mathsf{v}' & 0 & \mathsf{GAKy} \; \psi^2 + \mathsf{EIxx} \; (\psi')^2 & 0 & 0 \\ -\mathsf{GAKx} \; \gamma \; \mathsf{u}' & 0 & 0 & 0 & \mathsf{GAKx} \; \gamma^2 + \mathsf{EIyy} \; (\gamma')^2 & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathsf{GJ} \; (\phi')^2 \end{pmatrix}
```

Stiffness Matrix For Complex Cross-Sections

```
C11 C12 C13 C14 C15 C16
      C12 C22 C23 C24 C25 C26
      C13 C23 C33 C34 C35 C36
      C14 C24 C34 C44 C45 C46
      C15 C25 C35 C45 C55 C56
      C16 C26 C36 C46 C56 C66
Φ =
                              0
 u1'[x] u2'[x]
                                     0
                 0
                                            0
                                                  0
                                                       -\gamma 1[x] - \gamma 2[x]
         0
             v1'[x] v2'[x]
                              0
                                     0
                                          ψ1[x]
                                                 ψ2[x]
              0 0 w1'[x] w2'[x] 0
    0
                                                 0
                            0 0
                                         \psi 1'[x] \psi 2'[x]
    0
         0
                0
                             0
                                     0
                                         0
                                                  0
                                                       \gamma1'[x] \gamma2'[x]
                 0
                             0
                                     0
                                            0
                                                  0
```

Element Strain Energy Matrix

```
K1 = Expand[Simplify[Transpose[<math>\Phi].Cgen.\Phi];
(*MatrixForm[K1]*)
```

Initialize Shape Functions

Linear Shape Functions

$$N1[x_{-}] = \left(1 - \frac{x}{h}\right);$$

$$N2[x_{-}] = \frac{x}{h};$$

Substitute Shape Functions Into Strain/Displacement Matrix and Force Vector

```
Klint[x] =
                          \texttt{K1} \ / \ . \ \{ \texttt{u1'[x]} \ \to \ \texttt{N1'[x]} \ , \ \texttt{u2'[x]} \ \to \ \texttt{N2'[x]} \ , \ \texttt{v1'[x]} \ \to \ \texttt{N1'[x]} \ , \ \texttt{v2'[x]} \ \to \ \texttt{N2'[x]} \ , 
                                                  \texttt{w1'[x]} \rightarrow \texttt{N1'[x]} \;,\; \texttt{w2'[x]} \rightarrow \texttt{N2'[x]} \;,\; \psi \texttt{1'[x]} \rightarrow \texttt{N1'[x]} \;,\; \psi \texttt{2'[x]} \rightarrow \texttt{N2'[x]} \;,
                                                   \gamma1~^{\shortmid}[x] \rightarrow N1~^{\shortmid}[x]~,~\gamma2~^{\shortmid}[x] \rightarrow N2~^{\shortmid}[x]~,~\phi1~^{\shortmid}[x] \rightarrow N1~^{\shortmid}[x]~,~\phi2~^{\shortmid}[x] \rightarrow N2~^{\shortmid}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1~^{\backprime}[x]~,~\phi1
                                                   \psi1\left[\mathtt{x}\right] \ \rightarrow \ \mathsf{N1}\left[\mathtt{x}\right], \ \psi2\left[\mathtt{x}\right] \ \rightarrow \ \mathsf{N2}\left[\mathtt{x}\right], \ \gamma1\left[\mathtt{x}\right] \ \rightarrow \ \mathsf{N1}\left[\mathtt{x}\right], \ \gamma2\left[\mathtt{x}\right] \ \rightarrow \ \mathsf{N2}\left[\mathtt{x}\right]\};
  MatrixForm[Klint[x]]
                                                                                           vx N1[x]
                                                                                          vx N2[x]
                                                                                          vy N1 [x]
                                                                                          vy N2[x]
                                                                                          pz N1[x]
f[x_{-}] = pz N2[x]
                                                                                       mx N1[x]
                                                                                          mx N2[x]
                                                                                          my N1[x]
                                                                                          my N2[x]
                                                                                           tz N1[x]
                                                                                           tz N2[x]
                                                   Qx1
                                                   Qx2
                                                   Qy1
                                                   Qy2
                                                         P1
                                                     P2
Q = Mx1;
                                                  Mx2
                                                  My1
                                                  My2
                                                         T1
                                                         Т2
```

$$\begin{pmatrix} \frac{C11}{h^2} & -\frac{C11}{h^2} & \frac{C12}{h^2} & -\frac{C12}{h^2} & \frac{C13}{h^2} & -\frac{C13}{h^2} \\ -\frac{C11}{h^2} & \frac{C11}{h^2} & -\frac{C12}{h^2} & \frac{C12}{h^2} & -\frac{C12}{h^2} & \frac{C13}{h^2} \\ \frac{C12}{h^2} & -\frac{C12}{h^2} & \frac{C22}{h^2} & -\frac{C22}{h^2} & \frac{C23}{h^2} & -\frac{C23}{h^2} \\ -\frac{C12}{h^2} & \frac{C12}{h^2} & -\frac{C22}{h^2} & \frac{C22}{h^2} & -\frac{C23}{h^2} & \frac{C23}{h^2} \\ \frac{C13}{h^2} & -\frac{C13}{h^2} & \frac{C13}{h^2} & -\frac{C23}{h^2} & -\frac{C23}{h^2} & \frac{C33}{h^2} \\ \frac{C13}{h^2} & -\frac{C13}{h^2} & \frac{C23}{h^2} & -\frac{C23}{h^2} & -\frac{C33}{h^2} & -\frac{C33}{h^2} \\ \frac{C13}{h^2} & -\frac{C13}{h^2} & \frac{C13}{h^2} & -\frac{C23}{h^2} & -\frac{C23}{h^2} & -\frac{C33}{h^2} & -\frac{C33}{h^2} \\ \frac{C13}{h^2} & -\frac{C13}{h^2} & -\frac{C23}{h^2} & -\frac{C23}{h^2} & -\frac{C33}{h^2} & -\frac{C33}{h^2} \\ \frac{C13}{h^2} & -\frac{C13}{h^2} & -\frac{C13}{h^2} & -\frac{C24}{h^2} & -\frac{C22}{h^2} & -\frac{C23}{h^2} & -\frac{C33}{h^2} & -\frac{C33}{h^2} \\ \frac{C14}{h^2} & -\frac{C12}{h} & -\frac{C14}{h^2} & -\frac{C12}{h} & -\frac{C14}{h^2} & -\frac{C12}{h^2} & -\frac{C24}{h^2} & -\frac{C22}{h^2} & -\frac{C24}{h^2} & -\frac{C22}{h^2} & -\frac{C23}{h^2} & -\frac{C34}{h^2} & -\frac{C34}{h^2}$$

Integrate the to get 12 x 12 Stiffness Matrix and Force Vector for Straight Beam

$$\begin{pmatrix} \frac{\text{C11}}{\text{h}} & -\frac{\text{C11}}{\text{h}} & \frac{\text{C12}}{\text{h}} & -\frac{\text{C12}}{\text{h}} & \frac{\text{C12}}{\text{h}} & -\frac{\text{C13}}{\text{h}} & -\frac{\text{C13}}{\text{h}} & -\frac{\text{C12}}{2} + \frac{\text{C14}}{\text{h}} & -\frac{\text{C12}}{2} \\ -\frac{\text{C11}}{\text{h}} & \frac{\text{C11}}{\text{h}} & -\frac{\text{C12}}{\text{h}} & \frac{\text{C12}}{\text{h}} & -\frac{\text{C13}}{\text{h}} & \frac{\text{C13}}{\text{h}} & \frac{\text{C12}}{2} - \frac{\text{C14}}{\text{h}} & \frac{\text{C12}}{2} \\ \frac{\text{C12}}{\text{h}} & -\frac{\text{C12}}{\text{h}} & \frac{\text{C22}}{\text{h}} & -\frac{\text{C22}}{\text{h}} & \frac{\text{C23}}{\text{h}} & -\frac{\text{C23}}{\text{h}} & -\frac{\text{C23}}{\text{h}} & -\frac{\text{C23}}{2} + \frac{\text{C24}}{\text{h}} & -\frac{\text{C22}}{2} \\ -\frac{\text{C12}}{\text{h}} & \frac{\text{C12}}{\text{h}} & -\frac{\text{C12}}{\text{h}} & -\frac{\text{C22}}{\text{h}} & -\frac{\text{C23}}{\text{h}} & -\frac{\text{C23}}{\text{h}} & -\frac{\text{C23}}{\text{h}} & -\frac{\text{C23}}{2} + \frac{\text{C44}}{\text{h}} & -\frac{\text{C22}}{2} \\ -\frac{\text{C13}}{\text{h}} & -\frac{\text{C13}}{\text{h}} & -\frac{\text{C13}}{\text{h}} & -\frac{\text{C23}}{\text{h}} & -\frac{\text{C23}}{\text{h}} & -\frac{\text{C33}}{\text{h}} & -\frac{\text{C33}}{\text{h}} & -\frac{\text{C33}}{2} + \frac{\text{C34}}{\text{h}} & -\frac{\text{C2}}{2} \\ -\frac{\text{C13}}{\text{h}} & -\frac{\text{C13}}{\text{h}} & -\frac{\text{C12}}{2} + \frac{\text{C14}}{\text{h}} & -\frac{\text{C22}}{2} + \frac{\text{C24}}{\text{h}} & -\frac{\text{C23}}{2} + \frac{\text{C34}}{\text{h}} & -\frac{\text{C33}}{2} + \frac{\text{C33}}{\text{h}} & -\frac{\text{C33}}{2} - \frac{\text{C34}}{\text{h}} & -\frac{\text{C24}}{2} + \frac{\text{C44}}{\text{h}} + \frac{\text{C22}}{\text{h}} & -\frac{\text{C3}}{2} \\ -\frac{\text{C12}}{2} + \frac{\text{C14}}{\text{h}} & -\frac{\text{C12}}{2} + \frac{\text{C14}}{\text{h}} & -\frac{\text{C22}}{2} + \frac{\text{C24}}{\text{h}} & -\frac{\text{C23}}{2} - \frac{\text{C34}}{\text{h}} & -\frac{\text{C3}}{2} + \frac{\text{C34}}{\text{h}} & -\frac{\text{C24}}{\text{h}} + \frac{\text{C22}}{\text{h}} & -\frac{\text{C3}}{2} \\ -\frac{\text{C12}}{2} - \frac{\text{C14}}{\text{h}} & -\frac{\text{C12}}{2} + \frac{\text{C22}}{\text{h}} & -\frac{\text{C22}}{2} + \frac{\text{C24}}{\text{h}} & -\frac{\text{C23}}{2} - \frac{\text{C34}}{\text{h}} & -\frac{\text{C23}}{2} + \frac{\text{C34}}{\text{h}} & -\frac{\text{C24}}{\text{h}} + \frac{\text{C22}}{\text{h}} & -\frac{\text{C2}}{\text{L}} \\ -\frac{\text{C12}}{2} - \frac{\text{C14}}{\text{h}} & -\frac{\text{C12}}{2} - \frac{\text{C25}}{\text{h}} & -\frac{\text{C13}}{2} - \frac{\text{C35}}{2} - \frac{\text{C34}}{\text{h}} & -\frac{\text{C24}}{\text{h}} + \frac{\text{C22}}{\text{h}} & -\frac{\text{C24}}{\text{h}} \\ -\frac{\text{C12}}{2} - \frac{\text{C14}}{\text{h}} & -\frac{\text{C2}}{2} - \frac{\text{C24}}{\text{h}} & -\frac{\text{C2}}{2} - \frac{\text{C25}}{\text{h}} & -\frac{\text{C13}}{2} - \frac{\text{C35}}{\text{h}} & -\frac{\text{C13}}{2} - \frac{\text{C35}}{\text{h}} & -\frac{\text{C14}}{4} + \frac{\text{C25}}{2} - \frac{\text{C45}}{\text{h}} & -\frac{\text{C12}}{4} - \frac{\text{C2}}{4} \\ -\frac{\text{C12}}{\text{h}}$$

12 x 12 Element Stiffness Matrix for a beam with a Simple Cross-Section:

 $\texttt{MatrixForm} \, [\texttt{Ketmp} \ / \ . \ \{\texttt{C11} \rightarrow \texttt{GAKx} \, , \, \texttt{C12} \rightarrow \texttt{0} \, , \, \texttt{C13} \rightarrow \texttt{0} \, , \, \texttt{C14} \rightarrow \texttt{0} \, , \, \texttt{C15} \rightarrow \texttt{0} \, , \, \texttt{C16} \rightarrow \texttt{0} \, , \, \texttt{C16} \rightarrow \texttt{0} \, , \, \texttt{C18} \rightarrow \texttt{0} \, , \, \texttt{C19} \rightarrow \texttt{0} \, , \, \texttt{0} \, , \,$ $\texttt{C22} \rightarrow \texttt{GAKy}\,,\; \texttt{C23} \rightarrow \texttt{0}\,,\; \texttt{C24} \rightarrow \texttt{0}\,,\; \texttt{C25} \rightarrow \texttt{0}\,,\; \texttt{C26} \rightarrow \texttt{0}\,,\; \texttt{C33} \rightarrow \texttt{EA}\,,\; \texttt{C34} \rightarrow \texttt{0}\,,\; \texttt{C35} \rightarrow \texttt{0}\,,\; \texttt{C36} \rightarrow \texttt{0}\,,\; \texttt{C37} \rightarrow \texttt{C39} \rightarrow \texttt{C39}$ $\texttt{C36} \rightarrow \texttt{0} \text{, } \texttt{C44} \rightarrow \texttt{EIxx} \text{, } \texttt{C45} \rightarrow \texttt{0} \text{, } \texttt{C46} \rightarrow \texttt{0} \text{, } \texttt{C55} \rightarrow \texttt{EIyy} \text{, } \texttt{C56} \rightarrow \texttt{0} \text{, } \texttt{C66} \rightarrow \texttt{GJ} \} \big]$

GAKx h	$-\frac{GAKx}{h}$	0	0	0	0	0	0	GAKx 2	GAKx 2	(
$-\frac{GAKx}{h}$	GAKx h	0	0	0	0	0	0	$-\frac{GAKx}{2}$	$-\frac{GAKx}{2}$	(
0	0	GAKy h	$-\frac{\text{GAKy}}{h}$	0	0	$-\frac{\text{GAKy}}{2}$	$-\frac{\text{GAKy}}{2}$	0	0	(
0	0	$-\frac{GAKy}{h}$	GAKy h	0	0	GAKy 2	GAKy 2	0	0	(
0	0	0	0	EA h	$-\frac{EA}{h}$	0	0	0	0	(
0	0	0	0	$-\frac{EA}{h}$	$\frac{EA}{h}$	0	0	0	0	(
0	0	$-\frac{\text{GAKy}}{2}$	GAKy 2	0	0	$\frac{\text{EIxx}}{h} + \frac{\text{GAKy h}}{4}$	$-\frac{\text{EIxx}}{h} + \frac{\text{GAKy h}}{4}$	0	0	(
0	0	$-\frac{\text{GAKy}}{2}$	GAKy 2	0	0	$-\frac{\text{EIxx}}{\text{h}} + \frac{\text{GAKy h}}{4}$	$\frac{\text{EIxx}}{h} + \frac{\text{GAKy h}}{4}$	0	0	(
GAKx 2	$-\frac{GAKx}{2}$	0	0	0	0	0	0	$\frac{\text{Elyy}}{h} + \frac{\text{GAKx h}}{4}$	$-\frac{\text{EIyy}}{h} + \frac{\text{GAKx h}}{4}$	(
GAKx 2	$-\frac{\text{GAKx}}{2}$	0	0	0	0	0	0	$-\frac{\text{Elyy}}{h} + \frac{\text{GAKx h}}{4}$	$\frac{\text{Elyy}}{h} + \frac{\text{GAKx h}}{4}$	(
0	0	0	0	0	0	0	0	0	0	<u>G</u> :
0	0	0	0	0	0	0	0	0	0	_

Geometric Stiffness Matrix

Strain Energy for Ritz type formulation:

```
0 0 0 0 0
    wx'
     0 0 0 0 0 0'
        0 0 0 0 0
         0 0 0 0 0
      P 0 0 0 0 0
      0 P 0 0 0 0
      0 0 0 0 0 0
Pmat =
      0 0 0 0 0 0'
      0 0 0 0 0 0
      0 0 0 0 0 0
```

$Kg = MatrixForm[PSimplify[\Phi g. Transpose[\Phi g]]]$

```
P(wx')^2
             0 0 0 0
  0 P(wy')^2 0 0 0 0
  0 0 0 0 0
       0 0 0 0 0 0 0 0 0 0 0 0
       0 0 0 0 0,
```

Strain Energy for Finite Element formulation:

	N1'[x]	N2'[x]	0	0	0	0	0	0	0	0	0	0
	0	0	N1'[x]	N2'[x]	0	0	0	0	0	0	0	0
.	0	0	0	0	0	0	0	0	0	0	0	0
 gg =	0	0	0	0	0	0	0	0	0	0	0	0 '
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0

 $MatrixForm[Simplify[Transpose[\Phi g].Pmat.\Phi g]]$ $Kgint[x] = Simplify[Transpose[\Phi g].Pmat.\Phi g];$

Generate Geometrix Stiffness Matrix and Integrate

Kgtmp = Integrate[Kgint[x], {x, 0, h}]; MatrixForm[Kgtmp]

Geometric Stiffness Matrix

Mass Matrix For a Ritz Method Formulation:

```
m
               0
                             0
                                           -mym
        0
                     0
                             0
                                    0
                                            m xm
              m
                           m ym
                                 -m xm
                                             0
M =
        0
               0
                           Ixx
                                 - Ixy
                                             0
                    m ym
                   -mxm -Ixy
        0
                                  Іуу
                     0
                            0
                                    0
                                         Ixx + Iyy
     -mym mxm
     M11
                  0
                         0
                                     M16
           M11
                         0
                                     M26
                 M11
                       -M16 - M26
M =
                -M16
                       M44
                               M45
                               M55
                                       0
            0
                -M26
                       M45
                                     M66
     M16 M26
                  0
                         0
                                0
                     0
                                     0
  u1[x] u2[x]
                             0
                                             0
                                                             0
                                                                                              0
                                     0
                                                             0
     0
             0
                   v1[x] v2[x]
                                             0
                                                     0
                                                                      0
                                                                             0
     0
             0
                     0
                             0
                                  w1[x] w2[x]
                                                     0
                                                             0
                                                                             0
                                                                                              0
     0
                     0
                             0
                                                                      0
                                                                                      0
                                                                                              0
                                     0
                                             0
                                                   \psi 1[x] \quad \psi 2[x]
     0
             0
                     0
                                     0
                                                     0
                                                             0
                                                                   \gamma 1[x] \quad \gamma 2[x]
                                                                                      0
                     0
                             0
                                     0
                                                     0
                                                             0
                                                                      0
                                                                             0
                                                                                   \phi 1[x] \phi 2[x]
```

$Mmat = Expand[Simplify[Transpose[\Phi].M.\Phi]];$ MatrixForm[Mmat]

```
M11 u1[x]^2
                   M11 u1[x] u2[x]
                                                                  0
                                                                                      0
                                              0
                      M11 u2[x]^2
M11 u1[x] u2[x]
        0
                           0
                                         M11 v1[x]^2
                                                         M11 v1[x] v2[x]
        0
                           0
                                      M11 v1[x] v2[x]
                                                            M11 v2 [x]^2
        0
                           0
                                                                  0
                                                                                M11 w1[x]^2
                                                                                                  M11 v
                                              0
        0
                           0
                                                                  0
                                                                             M11 w1[x] w2[x]
                                              0
                                                                                                     M1
        0
                                                                  0
                                                                             -M16 w1[x] \psi 1[x] -M16
        0
                           0
                                              0
                                                                  0
                                                                             -M16 w1[x] \psi2[x] -M16
        0
                                              0
                                                                  0
                                                                             -M26 w1[x] \gamma1[x] -M26
        0
                           0
                                              0
                                                                  0
                                                                             -M26 w1[x] \gamma 2[x] -M26
M16 u1 [x] \phi1 [x] M16 u2 [x] \phi1 [x] M26 v1 [x] \phi1 [x] M26 v2 [x] \phi1 [x]
M16 u1[x] \phi2[x] M16 u2[x] \phi2[x] M26 v1[x] \phi2[x] M26 v2[x] \phi2[x]
```

Substitute Shape Functions Into Strain/Displacement Matrix and Force Vector

```
\texttt{Mint[x\_] = Mmat /. \{u1[x] \rightarrow N1[x], u2[x] \rightarrow N2[x], v1[x] \rightarrow N1[x],}
                                                                                                    \texttt{v2}\,[\,\texttt{x}\,]\,\rightarrow\,\texttt{N2}\,[\,\texttt{x}\,]\,\,,\,\,\texttt{w1}\,[\,\texttt{x}\,]\,\rightarrow\,\texttt{N1}\,[\,\texttt{x}\,]\,\,,\,\,\texttt{w2}\,[\,\texttt{x}\,]\,\rightarrow\,\texttt{N2}\,[\,\texttt{x}\,]\,\,,\,\,\psi\texttt{1}\,[\,\texttt{x}\,]\,\rightarrow\,\texttt{N1}\,[\,\texttt{x}\,]\,\,,
                                                                                                    \psi2\left[\mathtt{x}\right]\to\mathrm{N2}\left[\mathtt{x}\right],\; \forall1\left[\mathtt{x}\right]\to\mathrm{N1}\left[\mathtt{x}\right],\; \forall2\left[\mathtt{x}\right]\to\mathrm{N2}\left[\mathtt{x}\right],\; \phi1\left[\mathtt{x}\right]\to\mathrm{N1}\left[\mathtt{x}\right],\; \phi2\left[\mathtt{x}\right]\to\mathrm{N2}\left[\mathtt{x}\right],\; \psi2\left[\mathtt{x}\right],\; \psi2\left[\mathtt{x}\right]\to\mathrm{N2}\left[\mathtt{x}\right],\; \psi2\left[\mathtt{x}\right],\; \psi2\left[\mathtt{x}\right]
                                                                                                    \psi1\left[\mathtt{x}\right] \ \rightarrow \ \mathrm{N1}\left[\mathtt{x}\right], \ \psi2\left[\mathtt{x}\right] \rightarrow \mathrm{N2}\left[\mathtt{x}\right], \ \gamma1\left[\mathtt{x}\right] \rightarrow \mathrm{N1}\left[\mathtt{x}\right], \ \gamma2\left[\mathtt{x}\right] \rightarrow \mathrm{N2}\left[\mathtt{x}\right]\right\};
MatrixForm[
```

Mint[

x]]

M11 (1 -	$\frac{x}{h}$) ² $\frac{M11 \times (1 - \frac{x}{h})}{h}$	0	0	0	0	0	0
$\frac{\text{M11 x (1-)}}{\text{h}}$	$\frac{\frac{x}{h}}{h}$ $\frac{M11 x^2}{h^2}$	0	0	0	0	0	0
0	0	M11 $\left(1-\frac{x}{h}\right)^2$	$\frac{\text{M11} \times \left(1 - \frac{x}{h}\right)}{h}$	0	0	0	0
0	0	$\frac{\text{M11} \times \left(1 - \frac{x}{h}\right)}{h}$	$\frac{\text{M11 } x^2}{h^2}$	0	0	0	0
0	0	0	0			$-M16 \left(1-\frac{x}{h}\right)^2$	-
0	0	0	0	$\frac{\text{M11 x } \left(1-\frac{x}{h}\right)}{h}$	$\frac{\text{M11 } x^2}{h^2}$	$-\frac{\text{M16} \times \left(1-\frac{x}{h}\right)}{h}$	$-\;\frac{\text{Ml}\mathfrak{\ell}}{h}$
0	0	0	0	$-M16 \left(1-\frac{x}{h}\right)^2$	$=\frac{\text{M16} \times \left(1-\frac{x}{h}\right)}{h}$	$M44 \left(1-\frac{x}{h}\right)^2$	$\frac{\text{M44} \times (}{\text{h}}$
0	0	0	0	$-\frac{\text{M16} \times \left(1-\frac{x}{h}\right)}{h}$	$-\frac{\text{M16 } \text{x}^2}{\text{h}^2}$	$\frac{M44 \times \left(1 - \frac{x}{h}\right)}{h}$	$\frac{\text{M44}}{\text{h}^2}$
0	0	0	0	$-M26 \left(1 - \frac{x}{h}\right)^2$	$=\frac{\text{M26} \times \left(1-\frac{x}{h}\right)}{h}$	M45 $\left(1-\frac{x}{h}\right)^2$	$\frac{\text{M45 x (}}{\text{h}}$
0	0	0	0	$-\frac{M26 \times \left(1-\frac{x}{h}\right)}{h}$	$-\frac{M26 x^2}{h^2}$	$\frac{M45 \times \left(1 - \frac{x}{h}\right)}{h}$	$\frac{\text{M45}}{\text{h}^2}$
,	$\left(\frac{x}{h}\right)^2 = \frac{M16 \times \left(1 - \frac{x}{h}\right)}{h}$, 11 ,	11	0	0	0	0
$\frac{\text{M16 x (1-)}}{\text{h}}$	$\frac{\frac{x}{h}}{h}$ $\frac{\text{M16 } x^2}{h^2}$	$\frac{M26 \times \left(1 - \frac{x}{h}\right)}{h}$	$\frac{\text{M26 x}^2}{\text{h}^2}$	0	0	0	0

Integrate the to get 12 x 12 Mass Matrix Straight Beam

$$Metmp = \int_0^h Mint[x] dx;$$

MatrixForm[Metmp]

h M11 3	h M11 6	0	0	0	0	0	0	0	0	h M16	h M16
h M11 6	h M11	0	0	0	0	0	0	0	0	h M16	h M16 3
0	0	h M11 3	h M11	0	0	0	0	0	0	h M26	h M26
0	0	h M11 6	h M11 3	0	0	0	0	0	0	h M26	h M26 3
0	0	0	0	h M11 3	h M11 6	$- \frac{\text{h M16}}{3}$	$-\ \frac{\text{h Ml 6}}{\text{6}}$	$-\ \frac{\text{h M26}}{3}$	$-\ \frac{\text{h}\ \text{M26}}{\text{6}}$	0	0
0	0	0	0	h M11 6	h M11 3	$-\ \frac{\text{h M16}}{\text{6}}$	$-\ \frac{\text{h M16}}{3}$	$-\ \frac{\text{h M26}}{6}$	$-\ \frac{\text{h}\ \text{M26}}{3}$	0	0
0	0	0	0	$-\frac{hM16}{3}$	$-\ \frac{\text{h Ml 6}}{6}$	h M44 3	h M44 6	h M45 3	h M45	0	0
0	0	0	0	$-\;\frac{\mathrm{h}\;\mathrm{M16}}{\mathrm{6}}$	$-\ \frac{\text{h M16}}{3}$	h M44 6	h M44 3	h M45 6	h M45	0	0
0	0	0	0	$- \frac{\text{h}\text{M26}}{3}$	$-\ \frac{\text{h M26}}{6}$	h M45	h M45 6	h M55 3	h M55 6	0	0
0	0	0	0	$- \frac{\text{h M26}}{\text{6}}$	$-\ \frac{\text{h}\ \text{M26}}{3}$	h M45	h M45 3	h M55 6	h M55 3	0	0
$\frac{\text{hM16}}{3}$	h M16	h M26 3	h M26	0	0	0	0	0	0	h M66 3	h M66 6
h M16	h M16 3	h M26	h M26	0	0	0	0	0	0	h M66 6	h M66 3

Reorder All Matricies for Easier Global Assembly

Reorder Vector:

reorder = {1, 3, 5, 7, 9, 11, 2, 4, 6, 8, 10, 12};

12 x 12 RIE Timoshenko Beam Stiffness Matrix:

```
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
 \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
0 0 0 0 0 0 0 0 0 0 0 0 7
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
```

 $Do[Do[Ke[[i,j]] = Expand[Ketmp[[reorder[[i]], reorder[[j]]]]]], {i, 12}], {j, 12}]$ Do[Fe[[i]] = Fetmp[[reorder[[i]]]], {i, 12}] MatrixForm[Ke]

MatrixForm[Fe]

$$\begin{pmatrix} Qx1 + \frac{h vx}{2} \\ Qy1 + \frac{h vy}{2} \\ P1 + \frac{h pz}{2} \\ \frac{h mx}{2} + Mx1 \\ \frac{h my}{2} + My1 \\ T1 + \frac{h tz}{2} \\ Qx2 + \frac{h vx}{2} \\ Qy2 + \frac{h vx}{2} \\ P2 + \frac{h pz}{2} \\ \frac{h mx}{2} + Mx2 \\ \frac{h mx}{2} + My2 \\ T2 + \frac{h tz}{2}$$

12 x 12 RIE Timoshenko Beam Geometric Stiffness Matrix:

```
 \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
 \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
 \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
 \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
000000000000
 \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
 \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
 \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
 \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
```

 $Do[Do[Keg[[i, j]] = Expand[Kgtmp[[reorder[[i]], reorder[[j]]]]]], {i, 12}], {j, 12}]$ MatrixForm[Keg]

12 x 12 Timoshenko Beam Mass Matrix:

0 0 0 0 0 0 0 0 0 0 0 $\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0$ $\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0$ $\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0$ $\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0$ 000000000000 $\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0$ 0 0 0 0 0 0 0 0 0 0 0 $\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0$ $\ \ \, 0\ \ \, 0\ \ \, 0\ \ \, 0\ \ \, 0\ \ \, 0\ \ \, 0\ \ \, 0\ \ \, 0$

$Do[Do[Me[[i,j]] = Expand[Metmp[[reorder[[i]], reorder[[j]]]]], \{i, 12\}], \{j, 12\}]$ MatrixForm[Me]

$\left(\begin{array}{c} \frac{h}{2} \end{array}\right)$	3 M11	0	0	0	0	$\frac{\text{h M16}}{3}$	h M11 6	0	0	0	0	h M16 6
	0	h M11 3	0	0	0	h M26	0	h M11	0	0	0	h M26 6
	0	0	h M11 3	$-\;\frac{{\tt h\;M16}}{3}$	$-\;\frac{h\;M26}{3}$	0	0	0	h M11 6	$-\ \frac{\text{h}\text{M16}}{\text{6}}$	$-\;\frac{{\rm h}\;{\rm M26}}{6}$	0
	0	0	$-\frac{hM16}{3}$	h M44 3	h M45	0	0	0	$-\frac{\text{h M16}}{6}$	h M44 6	h M45	0
	0	0	$-\;\frac{h\;M26}{3}$	h M45	h M55	0	0	0	$=\frac{\text{h M26}}{6}$	h M45	h M55	0
h	3 M16	h M26 3	0	0	0	h M66 3	h M16	h M26	0	0	0	h M66 6
h	6 M11	0	0	0	0	h M16	h M11 3	0	0	0	0	h M16 3
	0	h M11	0	0	0	h M26	0	h M11 3	0	0	0	h M26 3
	0	0	h M11 6	$-\;\frac{{\tt h\;M16}}{6}$	$-\;\frac{h\;M26}{6}$	0	0	0	h M11 3	$-\ \frac{\text{h}\ \text{M16}}{3}$	$-\ \frac{h\ M26}{3}$	0
	0	0	$-\;\frac{{\tt h\;M16}}{6}$	h M44 6	h M45	0	0	0	$-\;\frac{h\;M16}{3}$	h M44 3	$\frac{\text{h M45}}{3}$	0
	0	0	$-\;\frac{h\;M26}{6}$	h M45	h M55	0	0	0	$=\frac{hM26}{3}$	h M45	$\frac{\text{h M55}}{3}$	0
h	1 M1 6	h M26	0	0	0	h M66	h M16	h M26	0	0	0	h M66 3

12 x 12 Timoshenko Beam Rotation Matrix Testing

```
\texttt{KetmpRot} = \texttt{Ke} \ / \ \{\texttt{C11} \rightarrow \texttt{GAKx}, \ \texttt{C12} \rightarrow \texttt{0} \ , \ \texttt{C13} \rightarrow \texttt{0} \ , \ \texttt{C14} \rightarrow \texttt{0} \ , \ \texttt{C15} \rightarrow \texttt{0} \ , \ \texttt{C16} \rightarrow \texttt{0} \ ,
         \texttt{C22} \rightarrow \texttt{GAKy}\,,\; \texttt{C23} \rightarrow \texttt{0}\,,\; \texttt{C24} \rightarrow \texttt{0}\,,\; \texttt{C25} \rightarrow \texttt{0}\,,\; \texttt{C26} \rightarrow \texttt{0}\,,\; \texttt{C33} \rightarrow \texttt{EA}\,,\; \texttt{C34} \rightarrow \texttt{0}\,,\; \texttt{C35} \rightarrow \texttt{0}\,,\;
         \texttt{C36} \rightarrow \texttt{0} \text{, } \texttt{C44} \rightarrow \texttt{EIxx} \text{, } \texttt{C45} \rightarrow \texttt{0} \text{, } \texttt{C46} \rightarrow \texttt{0} \text{, } \texttt{C55} \rightarrow \texttt{EIyy} \text{, } \texttt{C56} \rightarrow \texttt{0} \text{, } \texttt{C66} \rightarrow \texttt{GJ} \} \text{;}
P1 = \{0, 0, 0\};
P2 = \{0, 0, 1\};
nuVec = {0, 1, 0};
zVec = (P2 - P1) / Norm[P2 - P1]
yVec = Cross[zVec, nuVec] / Norm[Cross[zVec, nuVec]]
xVec = Cross[yVec, zVec] / Norm[Cross[yVec, zVec]]
Lambda = Transpose[{xVec, yVec, zVec}]
MatrixForm[Lambda]
              \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
              \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
             0 0 0 0 0 0 0 0 0 0 0
             0 0 0 0 0 0 0 0 0 0 0
              \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
            0 0 0 0 0 0 0 0 0 0 0
rot = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7
              \  \  \, 0\  \  \, 0\  \  \, 0\  \  \, 0\  \  \, 0\  \  \, 0\  \  \, 0\  \  \, 0\  \  \, 0
              \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
              \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
              \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
              \  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0\  \, 0
rot[[1;; 3, 1;; 3]] = Lambda;
rot[[4;;6,4;;6]] = Lambda;
rot[[7;; 9, 7;; 9]] = Lambda;
rot[[10;; 12, 10;; 12]] = Lambda;
MatrixForm[rot]
MatrixForm[Transpose[rot].KetmpRot.rot]
{0,0,1}
\{-1, 0, 0\}
{0, 1, 0}
\{\{0, -1, 0\}, \{1, 0, 0\}, \{0, 0, 1\}\}
  (0 -1 0 V
  1 0 0
```

1	GAKy h	0	0	0	GAKy 2	0	$-\frac{\text{GAKy}}{\text{h}}$	0	0	0	$\frac{\text{GAKy}}{2}$
	0	GAKx h	0	$-\frac{GAKx}{2}$	0	0	0	$-\;\frac{\text{GAKx}}{\text{h}}$	0	$-\frac{GAKx}{2}$	0
	0	0	$\frac{\text{EA}}{\text{h}}$	0	0	0	0	0	$-\frac{EA}{h}$	0	0
	0	$-\frac{GAKx}{2}$	0	$\frac{\text{Elyy}}{h} + \frac{\text{GAKx h}}{4}$	0	0	0	GAKx 2	0	$-\frac{\text{Elyy}}{h} + \frac{\text{GAKx } h}{4}$	0
	$\frac{\text{GAKy}}{2}$	0	0	0	$\frac{\text{EIxx}}{h} + \frac{\text{GAKy h}}{4}$	0	$-\frac{\text{GAKy}}{2}$	0	0	0	$-\frac{\text{EIxx}}{h} + \frac{\text{GAK}!}{4}$
	0	0	0	0	0	GJ h	0	0	0	0	0
	$- \frac{\text{GAKy}}{h}$	0	0	0	$-\frac{\text{GAKy}}{2}$	0	$\frac{\text{GAKy}}{h}$	0	0	0	$-\frac{\text{GAKy}}{2}$
	0	$-\frac{GAKx}{h}$	0	GAKx 2	0	0	0	GAKx h	0	$\frac{\text{GAKx}}{2}$	0
	0	0	$- \frac{\text{EA}}{\text{h}}$	0	0	0	0	0	EA h	0	0
	0	$-\frac{GAKx}{2}$	0	$-\frac{\text{Elyy}}{h} + \frac{\text{GAKx h}}{4}$	0	0	0	GAKx 2	0	$\frac{\text{EIyy}}{h} + \frac{\text{GAKx } h}{4}$	0
	$\frac{\text{GAKy}}{2}$	0	0	0	$-\frac{\text{EIxx}}{h} + \frac{\text{GAKy h}}{4}$	0	$-\frac{\text{GAKy}}{2}$	0	0	0	$\frac{\text{EIxx}}{\text{h}} + \frac{\text{GAKy}}{4}$
(0	0	0	0	0	$-\frac{GJ}{h}$	0	0	0	0	0