Структурированное ценообразование для взаимозаменяемых товаров.

Николай Савельев

Московский физико-технический институт Факультет управлени и прикладной математики Кафедра интеллектуальных систем

Научный руководитель д.ф.-м.н. В.В. Стрижов, Ю.В. Дорн

Постановка задачи

Дано:

- $\mathcal{B}(|\mathcal{B}| = k)$ множество взаимозаменяемых товаров;
- C (|C| = n)- множество клиентов;
- ullet $\{\mathcal{J}_t\}_{t=1}^T$ история заказов, где $\mathcal{J}_t = \{(d_{i,j,t},p_{i,t})\}_{i\in\mathcal{B},j\in\mathcal{C}},$ $d_{i,j,t}$ количество товара i купленное пользователем j в момент времени t по цене $p_{i,t}$.

Фактический спрос $d_{i,j,t}$ при цене $p_{i,t}$ можно считать і-й компонентой реализации случайной многозначной функции спроса $d_j(p_t)$ клиента j, которая нам неизвестна.

Задача: Построить алгоритм ценообразования, максимизирующий ожидаемый доход за период времени \mathcal{T} .

Метод решения

Персональный уровень цены агента (private value) - максимальное значение цены товара, при котором возможна покупка этого товара агентом.

Представление агента - вектор $q \in \mathbb{R}^k$ его персональных уровней цен на множество товаров \mathcal{B} .

Мультиагентная система

Неполное представление агента - вектор $\hat{q} \in \mathbb{R}^k$:

$$\hat{q}_i = \max\{p_{i,t} : (d_{i,t}, p_{i,t}) \in \{\mathcal{J}_t\}_{t=1}^T\}, \quad \max\{\emptyset\} = Null.$$

Максимизация дохода

Пусть $Q \in \mathbb{R}^{n imes k}_+$ - матрица представлений п агентов.

Введем целевую функцию дохода $Rev: \mathbb{R}^k o \mathbb{R}$,

$$Rev(p) = \sum_{j=1}^{k} p_j \sum_{i=1}^{n} \mathcal{I}(Q, p, i, j), \tag{1}$$

$$\mathcal{I}(Q, p, i, j) = \begin{cases} 1, \textit{if } \mathcal{S} := \{s : q_{is} \geq p_s\} \neq \emptyset \textit{ and } j = \operatorname*{argmax}_{s \in \mathcal{S}} q_{is} \\ 0, \textit{otherwise} \end{cases}$$

Тогда искомый вектор цен является решением оптимизационной задачи

$$Rev(p) o \max_{p}$$
 (2)

Утверждение. Для любой матрицы $Q \in \mathbb{R}_+^{n \times k}$, найдется такой набор индексов $i_1, \ldots i_k$, что вектор $(q_{i_11}, \ldots, q_{i_kk})^T$ является решением оптимизационной задачи (2).

Процедура clean

Процедура clean

- 1. Пусть $q_{i_1j_1}$ максимальный элемент матрицы Q. Тогда удаляем все элементы вида $q_{i_1j}:q_{i_1j}\leq q_{i_1j_1}$.
- 2. Пусть $q_{i_2j_2}$ следующий по убыванию элемент, имеющий другой второй индекс , первый индекс этого элемента тоже будет другой, так как иначе он был бы удален на предыдущем шаге. Удаляем элементы вида q_{i_2j} : $q_{i_2j_2} \le q_{i_2j_2}$.
 - 3. Повторяем шаг 3 для остальных вторых индексов.

Пример:

$$\begin{pmatrix} 3 & 5 & 1 \\ 2 & 4 & 6 \\ 7 & 0 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 5 & 1 \\ 2 & 4 & 6 \\ & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 5 \\ 2 & 4 & 6 \\ & 8 \end{pmatrix}$$

Теорема и следствие

Теорема (Савельев, 2021). Пусть $Q \in \mathbb{R}^{n \times k}_+, n \geq k$. Тогда функция

$$\mathit{Rev}(p) = \sum_{j=1}^k p_j \sum_{i=1}^n \mathit{I}(Q, p, i, j),$$

$$I(Q, p, i, j) = egin{cases} 1, \textit{if } S := \{s : q_{\textit{is}} \geq p_s\}
eq \textit{\emptyset} \ \textit{and } j = arg \max_{s \in S} q_{\textit{is}} \\ 0, \textit{otherwise} \end{cases}$$

достигает максимума на векторе вида $(q_{i_1},\ldots,q_{i_kk})^I$, где q_{ij} - это элемент матрицы Q, который не был удален процедурой clean.

Следствие (необходимое условие единственности максимума). Пусть $Q \in \mathbb{R}^{n \times k}_+$. Для того, чтобы точка максимума функции Rev(p) была единственна, необходимо выполнение неравенства $n \geq k$.

Исследование процедуры clean

В ходе эксперимента было сгенерированно 100 матриц представлений агентов размера 100 на 100. Элементы матриц являлись независимыми равномерно распределенными на отрезке [0,1] случайными величинами. С каждой матрицей была произведена процедура clean, далее строки матрицы были отсортированы по числу оставшихся элементов. Среднее число оставшихся элементов этих строк представлено на графике.

