#### Philosophy 148 — Day 1: Introduction & Administration

- Administrative Stuff (*i.e.*, Syllabus)
  - Me & Raul (intros., personal data, office hours, etc.)
  - Prerequisites (Boolean logic, some simple algebra, no math phobia!)
  - Texts & Supplementary Readings (all online *via* website)
  - Requirements [Quiz (10), Assignments (30), Mid-Term (30), Final (30)]
  - Sections (determined this week, *via* index cards meet next week)
    - \* Index Cards: Name, email, section time ranking. The 8 possible times are: Tu or Th: 9–10, 10–11, 1–2, or 2–3. Give a *ranking* of those among the 8 that you *can* do. Indicate those you *cannot* do.
  - Website (main source of course information stay tuned!)
  - Tentative Schedule (somewhat loose, time-wise, but all readings set)
- Next: Brief Overview/Outline of the Course

# Philosophy 148 — Day 1: Fundamental Underlying Questions

- I am writing a book on inductive logic (*a.k.a.*, confirmation theory).
- My main focus is on "quantitative generalizations" of deductive logic.
- The notion of *validity* is the deductive ideal for "logical goodness".
- But, some invalid arguments seem "better"/"stronger" than others:

 $P_1$ . Someone is wise.  $P_2$ . Someone is either wise or unwise.

 $\therefore$   $C_1$ . Plato is wise.  $\therefore$   $C_2$ . Socrates is wise.

- The argument from  $P_1$  to  $C_1$  seems "better" than the one from  $P_2$  to  $C_2$ .
- Is there a satisfying *explication* of this "better than" concept?
- And, if so, is this best understood a *logical* concept or an *epistemic* one or a *pragmatic* one, *etc.*? Moreover, if there is a *logical* "better than", how is it related to *epistemology*? For that matter, how is *validity* related to epistemology? These are the sorts of questions in the air.

# Philosophy 148 — Day 1: Course Overview/Outline

- The precise timing of the course is not fixed. But all readings are up.
- The *order* of topics in the course is also (more or less) set:
  - Review of Boolean Logic and Boolean Algebra [12A review + FBAs]
    - \* Propositional Logic
    - \* Monadic Predicate Logic
    - \* Finite Boolean Algebras [general logical framework for course]
  - Introduction of the (formal) Probability Calculus
    - \* Axiomatic Treatments
    - \* Algebraic Treatments
  - "Personalistic" Interpretations/Kinds of Probability
    - \* Pragmatic: betting odds / betting quotients / rational dob's
    - \* Epistemic: degrees of *credence / justified* degrees of belief

- Confirmation Theory and Inductive Logic
  - \* Deductive Approaches to Confirmation
    - · Hempelian
    - Hypothetico-Deductive
  - \* Probabilistic Approaches to Confirmation
    - Logical (Carnapian)
    - Subjective/Personalistic ("Bayesian")
- The Paradoxes of Confirmation
  - \* The Raven Paradox
  - \* The Grue Paradox
- Other Problems for Confirmation Theory (mainly, for "Bayesian" CT)
  - \* Old Evidence/Logical Omniscience/maybe others
- Three *Psychological* Puzzles Involving Probability & Confirmation
  - \* The Base Rate Fallacy
  - \* The Conjunction Fallacy
  - \* The Wason Selection Task

### Syntax of Sentential Logic (SL)

- The syntax of SL is simple. Its lexicon contains the following symbols:
  - Upper-case letters 'A', 'B', ... which stand for *basic sentences*.
  - Five *sentential connectives* (or *sentential operators*):

| Operator        | Name         | <b>Logical Function</b> | Used to translate                 |
|-----------------|--------------|-------------------------|-----------------------------------|
| '~'             | tilde        | negation                | not, it is not the case that      |
| <b>'</b> &'     | ampersand    | conjunction             | and, also, moreover, but          |
| · ∨ '           | vee          | disjunction             | or, either or                     |
| <b>'→'('⊃')</b> | arrow        | conditional             | if $\dots$ then $\dots$ , only if |
| '↔' ('≡')       | double arrow | biconditional           | if and only if                    |

- Parentheses '(', ')', brackets '['. ']', and braces '{', '}' for grouping.
- If a string of symbols contains anything other than these, it is not an SL sentence. And, only certain strings of these symbols are SL sentences.
- I assume you all know which SL strings are sentences and which are not...

### Semantics of Sentential Logic: Truth Tables I

- Sentential Logic is *truth-functional* because the truth value of a compound *S* is a function of the truth values of *S*'s *atomic parts*.
- All statement forms p are defined by *truth tables*, which tell us how to determine the truth value of p's from the truth values of p's parts.
- Truth-tables provide a precise way of thinking about *logical possibility*. Each row of a truth-table can be thought of as a *logical possibility*. And, the actual world falls into *exactly one* of these rows/logical possibilities.
- In this sense, truth-tables provide a way to "see" logical space.
- Once we have an understanding of all the logically possible truth-values that and SL sentence can have (which truth-tables provide for us), testing the validity of SL arguments is easy *inspection* of truth-tables!
- We just look for possible worlds (rows of the salient truth-table) in which all the premises are true and the conclusion is false.

### Semantics of Sentential Logic: Truth Tables II

• We begin with negations, which have the simplest truth functions. The truth table for negation is as follows (we use T and F for true and false):

- In words, this says that if p is true than  $\sim p$  is false, and if p is false, then  $\sim p$  is true. This is quite intuitive, and corresponds well to the English meaning of 'not'. So, SL negation is like English negation.
- Examples:
  - It is not the case that Wagner wrote operas. ( $\sim W$ )
  - It is not the case that Picasso wrote operas. ( $\sim P$ )
- ' $\sim$  W' is false, since 'W' is true, and ' $\sim$  P' is true, since 'P' is false (like English).

# Chapter 3 — Semantics of SL: Truth Tables III

| p | q | p & q |
|---|---|-------|
| Т | _ | Т     |
| Т | F | F     |
| F | Т | F     |
| F | F | F     |

- Notice how we have four (4) rows in our truth table this time (not 2). There are four possible ways of assigning truth values to p and q.
- The truth-functional definition of & is very close to the English 'and'. A SL conjunction is true if *both* conjuncts are true; it's false otherwise.
  - Monet and van Gogh were painters. (M & V)
  - Monet and Beethoven were painters. (M & B)
  - Beethoven and Einstein were painters. (B & E)
- '*M* & *V*' is true, since both '*M*' and '*V*' are true. '*M* & *B*' is false, since '*B*' is false. And, '*B* & *E*' is false, since '*B*' and '*E*' are both false (like English).

#### Semantics of Sentential Logic: Truth Tables IV

| p | q | $p \vee q$ |
|---|---|------------|
| Т | Т | T          |
| Τ | F | T          |
| F | Т | Т          |
| F | F | F          |

- The truth-functional definition of  $\vee$  is not as close to the English 'or'. A SL disjunction is true if *at least one* disjunct is true; it's false otherwise.
- In English, 'A or B' often implies that 'A' and 'B' are *not both true*. That is called *exclusive* or. In SL, ' $A \lor B$ ' is *not* exclusive; it is *inclusive* (it is true if both disjuncts are true). We *can* express exclusive or in SL. How?
  - Either Jane austen or René Descartes was novelist.  $(J \vee R)$
  - Either Jane Austen or Charlotte Bronte was a novelist.  $(J \vee C)$
  - Either René Descartes or David Hume was a novelist.  $(R \lor D)$
- The first two disjunctions are true since at least one their disjuncts is true. The third disjunction is false, since both of its disjuncts are false.

#### Semantics of Sentential Logic: Truth Tables V

$$\begin{array}{c|cccc} p & q & p \rightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

- The SL conditional (→) is farther from the English 'only if'. An SL conditional is false iff its antecedent is true and its consequent is false.
- Consider the following English conditionals. [M = the moon is made of green cheese, O = life exists on other planets, and E = life exists on Earth]
  - If the moon is made of green cheese, then life exists on other planets.
  - If life exists on other planets, then life exists on earth.
- The SL translations of these sentences are both true.
  - ' $M \rightarrow O$ ' is true because its antecedent 'M' is false.
  - ' $O \rightarrow E$ ' is true because its consequent 'E' is true.
- This does *not* capture the English 'if'. Remember:  $p \rightarrow q = p \lor q$ .

#### Semantics of Sentential Logic: Truth Tables VI

$$\begin{array}{c|cccc} p & q & p \leftrightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & T \end{array}$$

- The SL biconditional ↔ inherits similar problems. An SL biconditional is true iff both of its components have the same truth value.
- Consider these two biconditionals. [M = the moon is made of green cheese, U = there are unicorns, E = life exists on Earth, and S = the sky is blue]
  - The moon is made of green cheese if and only if there are unicorns.
  - Life exists on earth if and only if the sky is blue.
- The SL translations of these sentences are both true.
  - M ↔ U is true because M and U are false.
  - E ↔ S is true because E and S are true.
- This does *not* capture the English 'iff'.  $[p \leftrightarrow q \Rightarrow (p \& q) \lor (\sim p \& \sim q)]$

#### Semantics of Sentential Logic: Truth Tables VII

- With the truth-table definitions of the five connectives in hand, we can now construct truth tables for arbitrary compound SL statements.
- A non-trivial example:

| p | q | γ | ( <i>p</i> | & | $(q \vee r))$ | <b>→</b> | ((p & q) | V | (p&r)) |
|---|---|---|------------|---|---------------|----------|----------|---|--------|
| Т | Т | Т | Т          | Т | Т             | Т        | Т        | Т | Т      |
| Т | Т | F | T          | Т | Т             | Т        | Т        | Т | F      |
| Т | F | Τ | Т          | Т | Т             | Т        | F        | Т | Т      |
| Т | F | F | Т          | F | F             | Т        | F        | F | F      |
| F | Т | Т | F          | F | Т             | Т        | F        | F | F      |
| F | Т | F | F          | F | Т             | Т        | F        | F | F      |
| F | F | Т | F          | F | Т             | Т        | F        | F | F      |
| F | F | F | F          | F | F             | T        | F        | F | F      |

• Thus, " $(p \& (q \lor r)) \to ((p \& q) \lor (p \& r))$ " is a *tautology*.

#### Logical Truth, Logical Falsity, and Contingency: Definitions

• A statement is logically true (or tautologous) if it is true regardless of the truth-values of its components. Example:  $p \leftrightarrow p$  is a tautology.

$$\begin{array}{c|ccccc} p & p & \leftrightarrow & p \\ \hline T & T & T & T \\ \hline F & F & T & F \\ \end{array}$$

• A statement is logically false (or self-contradictory) if it is false regardless of the truth-values of its components. Example:  $p \& \sim p$ .

• A statement is contingent if its truth-value varies depending on the truth-values of its components. Example: *A* (or *any* atom) is contingent.

$$\begin{array}{c|c}
A & A \\
\hline
T & T \\
\hline
F & F
\end{array}$$

### Interpretations and Logical Equivalence

Philosophy 148 Lecture

- An *interpretation* of an SL formula p is an assignment of truth-values to all of the sentence letters in p.
- Each row of the truth-table of *p* is an *interpretation* of *p*. Sometimes, I will also refer to rows of SL truth-tables as (logically) *possible situations*, or *possible worlds*.
- A tautology (contradiction) is an SL sentence whose truth value is T (F) on *all* of its interpretations (*i.e.*, an SL sentence which is *true* (*false*) *in all* (*logically*) *possible worlds*).
- Two SL sentences are said to be *logically equivalent* iff they have the same truth-value on all (joint) interpretations.
- I'll abbreviate "p and q are logically equivalent" as "p = q" [i.e., p follows from q (q = p), and q follows from p (p = q)].

# Equivalence, Contradictoriness, Consistency, and Inconsistency

• Two statements are said to be equivalent (written p = q) if they have the same truth-value in all possible worlds (*i.e.*, in all rows of a simultaneous truth-table of both statements). For instance,  $A \rightarrow B = A \lor B$ :

| A | B | A | $\rightarrow$ | B | ~ | A | V | В |
|---|---|---|---------------|---|---|---|---|---|
| T | Т | Т | Т             | Т | F | Т | Т | T |
| T | F | Т | F             | F | F | Т | F | F |
| F | T | F | Т             | T | Т | F | Т | T |
| F | F | F | T             | F | Т | F | Т | F |

• Two statements are contradictory if they have opposite truth-values in all possible worlds (*i.e.*, in all rows of a simultaneous truth-table of both statements). For instance, A and  $\sim A$ :

| A | $\mid A \mid$ | ~ | A |
|---|---------------|---|---|
| T | Т             | F | T |
| F | F             | Т | F |

• Two statements are inconsistent (mutually exclusive) if they cannot both be true (*i.e.*, no row of their simultaneous truth-table has them both being T). E.g.,  $A \leftrightarrow B$  and  $A \& \sim B$  are inconsistent (but *not* contradictory!):

| A | B | A | $\leftrightarrow$ | B | A | & | ~ | В |
|---|---|---|-------------------|---|---|---|---|---|
| T | T | Т | T                 | Т | T | F | F | T |
| Т | F | Т | F                 | F | Т | Т | Т | F |
| F | Т | F | F                 | Т | F | F | F | T |
| F | F | F | Т                 | F | F | F | Т | F |

• Two statements are consistent if they are both true in at least one possible world (*i.e.*, in at least one row of a simultaneous truth-table of both statements). For instance, A & B and  $A \lor B$  are consistent:

| A |   |   |   |   | A |   |   |
|---|---|---|---|---|---|---|---|
| Т | Т | Т | Т | Т | Т | Т | T |
| T |   |   |   |   | Т |   |   |
| F |   |   |   |   | F |   |   |
| F | F | F | F | F | F | F | F |

#### Logical Equivalence: Example #1

- I said that  $p \rightarrow q$  is logically equivalent to  $\sim p \vee q$ .
- The following truth-table establishes this equivalence:

$$p$$
 $q$ 
 $\sim p$ 
 $\vee$ 
 $q$ 
 $p \rightarrow q$ 

 T
 T
 F
 T
 T
 T

 T
 F
 F
 F
 F
 F

 F
 T
 T
 T
 T
 T

 F
 F
 T
 T
 T
 T

• The truth-tables of  $\sim p \vee q$  and  $p \rightarrow q$  are the same.

### Logical Equivalence: Example #2

- $p \leftrightarrow q$  is an abbreviation for  $(p \rightarrow q) \& (q \rightarrow p)$ .
- The following truth-table shows it is a *legitimate* abbreviation:

| p | q | $(p \rightarrow q)$ | & | $(q \rightarrow p)$ | $p \leftrightarrow q$ |
|---|---|---------------------|---|---------------------|-----------------------|
| Т | Т | Т                   | Т | Т                   | T                     |
| Т | F | F                   | F | Т                   | F                     |
| F | Т | Т                   | F | F                   | F                     |
| F | F | Т                   | T | Т                   | Т                     |

•  $p \leftrightarrow q$  and  $(p \rightarrow q) \& (q \rightarrow p)$  have the same truth-table.

### Some More Logical Equivalences

• Here is a simultaneous truth-table which establishes that

$$A \leftrightarrow B \Rightarrow (A \& B) \lor (\sim A \& \sim B)$$

| A | B | $\mid A$ | $\leftrightarrow$ | B | (A | & | B) | V | (~ | $\boldsymbol{A}$ | & | ~ | B) |
|---|---|----------|-------------------|---|----|---|----|---|----|------------------|---|---|----|
| T | Т | T        | Т                 | Т | Т  | Т | Т  | Т | F  | Т                | F | F | T  |
| Т | F | Т        | F                 | F | Т  | F | F  | F | F  | Т                | F | Т | F  |
|   |   |          |                   |   | F  |   |    |   |    |                  |   |   |    |
| F | F | F        | Т                 | F | F  | F | F  | Т | Т  | F                | Т | Т | F  |

• Can you prove the following equivalences with truth-tables?

$$- \sim (A \& B) \Rightarrow = \sim A \lor \sim B$$

$$- \sim (A \vee B) = -A \& \sim B$$

$$-A \Rightarrow \models (A \& B) \lor (A \& \sim B)$$

$$-A = A \otimes (B \rightarrow B)$$

$$-A = A = A \vee (B \& \sim B)$$

### Logical Equivalence, Contradictoriness, *etc.*: Relationships

• What are the relationships between "*p* and *q* are equivalent", "*p* and *q* are consistent", "*p* and *q* are contradictory", "*p* and *q* are inconsistent"?

Equivalent

Contradictory

 $\bigvee$ 

)



 $\Downarrow$ 



Consistent

**Inconsistent** 

- Answers:
  - 1. Equivalent  $\Rightarrow$  Consistent ( $p \& \sim p$  and  $q \& \sim q$ )
  - 2. Consistent  $\neq$  Equivalent  $(p \rightarrow q \text{ and } p \& q)$
  - 3. Contradictory  $\Rightarrow$  Inconsistent (*why*?)
  - 4. Inconsistent *⇒* Contradictory (example?)

## Truth-Tables and Deductive Validity I

• Remember, an argument is valid if it is *impossible* for its premises to be true while its conclusion is false. Let  $p_1, \ldots, p_n$  be the premises of a SL argument, and let q be the conclusion of the argument. Then, we have:

 $\begin{array}{c} p_1 \\ \vdots \\ p_n \\ \hline \vdots \\ q \end{array}$  is valid if and only if there is no row in the simultaneous

truth-table (*interpretation*) of  $p_1, \ldots, p_n$ , and q which looks like:

atoms premises conclusion

### Truth-Tables and Deductive Validity II

A  $A \rightarrow B \text{ is } valid:$  B

| ato | ms |               | pren          | nises    |               | conclusion |
|-----|----|---------------|---------------|----------|---------------|------------|
| A   | B  | $\mid A \mid$ | $\mid A \mid$ | <b>→</b> | $\mid B \mid$ | В          |
| Т   | Т  | Т             | Τ             | Т        | Т             | Т          |
| Т   | F  | Т             | Т             | F        | F             | F          |
| F   | Т  | F             | F             | Т        | Т             | Т          |
| F   | F  | F             | F             | Т        | F             | F          |

B  $A \rightarrow B$  is *in*valid:
∴ A



01/22/08

#### Finite Propositional Boolean Algebras I

- A *finite propositional Boolean algebra* is a finite set of *propositions* which is *closed* under the logical operations and satisfies the laws of SL.
- *Propositions* are the things expressed by sentences (abstract entities, distinct from sentences). If two sentences are logically equivalent, then they express the same proposition. *E.g.*, " $A \rightarrow B$ " and " $\sim A \vee B$ ".
- A set *S* is *closed* under logical operations if applying a logical operation to a member (or pair of members) of *S* always yields a member of *S*.
- Example: consider a sentential language with three atomic letters "X", "Y", and "Z". The set of propositions expressible using the logical connectives and these three atomic letters forms a finite Boolean algebra.
- This Boolean algebra has  $2^3 = 8$  atomic propositions or states (i.e., rows of a 3-sentence truth-table!). Question: How many propositions does it contain in total? Answer:  $2^8 = 256$  (255 plus the contradiction). Why?

#### Finite Propositional Boolean Algebras II

- A *literal* is either an atomic sentence or the negation of an atomic sentence (*e.g.*, "A" and " $\sim A$ " are literals involving the atom "A").
- A *state* of a Boolean algebra  $\mathcal{B}$  is a proposition expressed by a *maximal* conjunction of literals in a language  $\mathcal{L}_{\mathcal{B}}$  describing  $\mathcal{B}$  ("maximal": "containing exactly one literal for each atomic sentence in  $\mathcal{B}$ ").
- Consider an algebra  $\mathcal{B}$  described by a 3-atom language  $\mathcal{L}_{\mathcal{B}}$  ("X", "Y", "Z"). The states of  $\mathcal{B}$  are described by the  $2^3 = 8$  *state descriptions* of  $\mathcal{L}_{\mathcal{B}}$ :
- $(s_1) X \& Y \& Z$
- $(s_2) X \& Y \& \sim Z$
- $(s_3) X \& \sim Y \& Z$
- $(s_4) X \& \sim Y \& \sim Z$
- $(s_5) \sim X \& Y \& Z$
- $(s_6) \sim X \& Y \& \sim Z$
- $(s_7) \sim X \& \sim Y \& Z$
- $(s_8) \sim X \& \sim Y \& \sim Z$

• We can "visualize" the states of  ${\mathcal B}$  using a truth table or a Venn Diagram.

| X | Y | $\mid Z \mid$ | States                |
|---|---|---------------|-----------------------|
| Т | Т | T             | $s_1$                 |
| T | Т | F             | <i>S</i> <sub>2</sub> |
| Т | F | Т             | <i>S</i> <sub>3</sub> |
| T | F | F             | <i>S</i> <sub>4</sub> |
| F | Т | Т             | <i>S</i> <sub>5</sub> |
| F | Т | F             | <i>s</i> <sub>6</sub> |
| F | F | Т             | <i>S</i> 7            |
| F | F | F             | <i>S</i> <sub>8</sub> |



- Everything that can be expressed in the sentential language  $\mathcal{L}_{\mathcal{B}}$  can be expressed as a *disjunction of state descriptions* (think about why).
- Thus, every proposition expressible in  $\mathcal{L}_{\mathcal{B}}$  can be "visualized" simply by shading combinations of the 8 state-regions of the Venn Diagram of  $\mathcal{B}$ . It because of this that we can use Venn Diagrams to establish Boolean Laws.
- $p \models q$  (in  $\mathcal{B}$ ) iff every shaded region in the Venn Diagram representation of p (in  $\mathcal{B}$ ) is also shaded in the Venn Diagram representation of q (in  $\mathcal{B}$ ).