Tutorial 11: O() and $\Theta()$ Notation

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Informal definition

We have seen the formal definitions of

(a)
$$f(x) = O(g(x))$$
 and (b) $f(x) = \Theta(g(x))$.

Informally

$$f(x) = O(g(x))$$
 means that $f(x)$ grows no faster than $g(x)$

and

$$f(n) = \Theta(g(x))$$
 means that $f(x)$ grows like $g(x)$.

We will now see more about using this notation.

Formal definition of O()

Recall the definition:

```
Function f(x) = O(g(x)) read: f(x) is O of g(x)):

If (i) There is some positive x_0 \in R

(ii) There is some positive c \in R

such that

\forall x \geq x_0 \qquad f(x) \leq cg(x).
```

Some examples

$$4x^2$$

 $8x^2 + 2x - 3$
 $x^2/5 + \sqrt{x} - 10 \log x$
 $x(x-3)$
are all $O(x^2)$.

Statements like these can often be proven using simple tools;

It is NOT usually necessary to prove f(x) = O(g(x)) from scratch!

If $\exists x_0$ and $\exists c > 0$ such that

$$\forall x > x_0, f(x) \leq c$$

Then
$$f(x) = O(1)$$

This comes directly from definition of O(1).

Examples:

$$\sin(x) = O(1)$$

$$\sin(x) = O(1)$$
$$2 + \frac{1}{x} = O(1)$$

"Constants don't matter"

If
$$f(x) = O(g(x))$$
 then

$$\forall c > 0, f(x) = O(cg(x))$$

Proof: f(x) = O(g(x)) means that $\exists x_0, c'$ such that

$$\forall x > x_0, f(x) \leq c'g(x).$$

But then,

$$\forall x > x_0, f(x) \leq \frac{c'}{c} cg(x),$$

so
$$f(x) = O(cg(x))$$

Examples:

If
$$f(x) = O(\frac{1}{2}x^2)$$
 then $f(x) = O(x^2)$.
If $f(x) = O(5)$ then $f(x) = O(1)$.

If
$$f_1(x) = O(g_1(x))$$
 and $f_2(x) = O(g_2(x))$ then
$$f_1(x) + f_2(x) = O(g_1(x) + g_2(x))$$

Proof: By definition, there exist x_1, c_1, x_2, c_2 , such that

$$\forall x \geq x_1 \quad f_1(x) \leq c_1 g_1(x).$$

 $\forall x \geq x_2 \quad f_2(x) \leq c_2 g_2(x).$

Letting
$$c_3 = \max\{c_1, c_2\}$$
 and $x_3 = \max\{x_1, x_2\}$ gives $\forall x \ge x_3 \quad f_1(x) + f_2(x) \le c_3(g_1(x) + g_2(x)).$

Example:

$$f_1(x) = x^2 + 3x$$
 $f_1(x) = O(x^2).$
 $f_2(x) = 5x + 7$ $f_2(x) = O(x).$

Then $x^2 + 8x + 7 = f_1(x) + f_2(x) = O(x^2 + x) = O(x^2)$ The last equality is obtained by observation 2.

Suppose
$$f(x) = O(g(x) + h(x))$$
 and $h(x) = O(g(x))$. Then
$$f(x) = O(g(x))$$

This follows directly from the definition of O(g(x)).

Example:

Suppose
$$f(x) = O(x^2 + x)$$
. Since $x = O(x^2)$ we get
$$f(x) = O(x^2)$$

If
$$f_1(x)=O(g_1(x))$$
 and $f_2(x)=O(g_2(x))$ then
$$f_1(x)\cdot f_2(x)=O(g_1(x)\cdot g_2(x))$$

Proof: By definition, there exist x_1, c_1, x_2, c_2 , such that

$$\forall x \geq x_1 \qquad f_1(x) \leq c_1 g_1(x).$$

$$\forall x \geq x_2 \qquad f_2(x) \leq c_2 g_2(x).$$

Letting $c_3 = c1 \cdot c2$ and $x_3 = \max\{x_1, x_2\}$ gives

$$\forall x \geq x_3 \quad f_1(x) \cdot f_2(x) \leq c_3(g_1(x) \cdot g_2(x)).$$

Example 1:

$$f_1(x) = x^2 + 3x + 5$$
 $f_1(x) = O(x^2).$
 $f_2(x) = x + 7$ $f_2(x) = O(x).$

Then
$$(x^2 + 3x + 5)(x + 7) = O(x^2 \cdot x) = O(x^3)$$

Example 2:

In class we learnt that $\sum_{i=0}^{n-1} r^i = \left\{ egin{array}{l} O(r^n) & \text{if } r > 1 \\ O(1) & \text{if } r < 1 \end{array} \right.$ This implies that

$$n \sum_{i=0}^{n-1} 3^{i} = O(n3^{n})$$

$$n \sum_{i=0}^{n-1} \left(\frac{1}{2}\right)^{i} = O(n \cdot 1) = O(n)$$

Pulling it all together

Suppose an algorithm runs in time

$$T(n) = nT(1) + 4n\sum_{i=0}^{n-1} 3^{i}.$$

Using our observations (skipping some steps), this can be rewritten as

$$T(n) = O(n + n3^n)$$
$$= O(n3^n)$$

Pulling it all together

Suppose an algorithm runs in time

$$T(n) = nT(1) + 4n \sum_{i=0}^{\log_2 n - 1} 2^i.$$

First, recall that $2^{\log_2 n - 1} = \frac{1}{2}n$

Formal definition of $\Theta()$

Two functions f(x), g(x) have the same order of growth if f(x) = O(g(x)) and g(x) = O(f(x)).

In this case recall that we say

$$f(x) = \Theta(g(x))$$

which is the same as

$$g(x) = \Theta(f(x))$$

Observation 1'

If $\exists x_0$ and $\exists c_1, c_2 > 0$ such that

$$\forall x > x_0, \quad c_1 \leq f(x) \leq c_2$$

Then $f(x) = \Theta(1)$

Example:

$$2+\frac{1}{x}=\Theta(1)$$

but

$$sin(x) \neq \Theta(1)$$

The reason is that sin(x) is not bounded from below by a positive constant. It can approach arbitrarily close to 0.

Observation 2'

"Constants don't matter" $\mbox{If } f(x) = \Theta(g(x)) \mbox{ then}$ $\mbox{$\forall c>0, f(x)=\Theta(cg(x))$}$

Examples:

If
$$f(x) = \Theta(\frac{1}{2}x^2)$$
 then $f(x) = \Theta(x^2)$.
If $f(x) = \Theta(5)$ then $f(x) = \Theta(1)$.

Observation 3'

If
$$f_1(x)=\Theta(g_1(x))$$
 and $f_2(x)=\Theta(g_2(x))$ then
$$f_1(x)+f_2(x)=\Theta(g_1(x)+g_2(x))$$

Example:

$$f_1(x) = x^2 + 3x$$
 $f_1(x) = \Theta(x^2).$
 $f_2(x) = 5x^2 + 7$ $f_2(x) = \Theta(x^2).$

Then

$$6x^{2} + 3x + 7 = f_{1}(x) + f_{2}(x) = \Theta(x^{2} + x^{2})$$
$$= \Theta(x^{2})$$

The last equality is obtained by observation 2'.

Observation 4'

Suppose
$$f(x) = \Theta(g(x) + h(x))$$
 and $h(x) = O(g(x))$. Then
$$f(x) = \Theta(g(x))$$

NOTE: It is only required that h(x) = O(g(x)). We do NOT need $h(x) = \Theta(g(x))!$

Example:

Suppose
$$f(x) = \Theta(x^2 + x)$$
. Since $x = O(x^2)$ we get
$$f(x) = \Theta(x^2)$$

Observation 5'

If
$$f_1(x)=\Theta(g_1(x))$$
 and $f_2(x)=\Theta(g_2(x))$ then
$$f_1(x)\cdot f_2(x)=\Theta(g_1(x)\cdot g_2(x))$$

Example:

$$f_1(x) = x^2 + 3x + 5$$
 $f_1(x) = \Theta(x^2)$
 $f_2(x) = x + 7$ $f_2(x) = \Theta(x)$

So

$$(x^2 + 3x + 5)(x + 7) = \Theta(x^2 \cdot x) = \Theta(x^3).$$

Pulling it all together

Suppose an algorithm runs in time

$$T(n) = nT(1) + 4n \sum_{i=0}^{\log_2 n-1} 2^i.$$

First, recall that

$$\rightarrow \sum_{i=0}^{\log_2 n-1} 2^i = 2^{\log_2 n} - 1 = n - 1 = \Theta(n)$$

$$\rightarrow T(n) = \Theta(nT(1) + 4n \cdot n) = \Theta(n^2)$$

Logs and O() and $\Theta()$ -notation

Recall that there is really no such function as $\log n$. A log is determined by its base, e.g., $\log_2 n$ or $\log_{10} n$. We also write $\ln n$ to denote $\log_2 n$.

When using O() and $\Theta()$ notation, people frequently don't write the base of the logarithm. For example, they might write $\Theta(n \log n)$ instead of $\Theta(n \log_3 n)$.

The reason this doesn't cause confusion is that, $\forall a, b > 0$

$$\log_a n = (\log_a b) \log_b n$$

e.g.,

$$\log_2 n = \log_2 4 \cdot \log_4 n = 2\log_4 n$$

Logs and O() and $\Theta()$ -notation

Since, $\forall a, b > 0$

$$\log_a n = (\log_a b) \log_b n$$

we see that

$$\log_a n = \Theta(\log_b n).$$

In particular, this implies that it doesn't really matter which base of the log we write in the O() or $\Theta()$ notation equation. So the base is unimportant.

For example, since $\log_a n = \Theta(\log_b n)$,

$$f(n) = \Theta(n \log_a n)$$
 and $f(n) = \Theta(n \log_b n)$

are equivalent statements (since each implies the other).

So, some people would just write $f(n) = O(n \log n)$.