UNIDAD IV DERIVADAS

- Tema 1: Definición y propiedades
- Tema 2: Derivadas inmediatas
- Tema 3: Regla de la cadena
- Tema 4: Derivación implícita y logarítmica
- Tema 5: Interpretación geométrica de la derivada
- Tema 6: Máximos,
 mínimos y gráfica de función

TASA DE VARIACIÓN MEDIA

La tasa de variación media (T.V.M) de una función $f_{(x)}$ en un intervalo [a,b] es el cociente:

$$T.V.M[a,b] = \frac{f_{(b)} - f_{(a)}}{b - a}$$

La T.V.M. de una función en un intervalo mide el aumento o la disminución de dicha función en ese intervalo. Su valor coincide con el valor de la pendiente de la recta que une los puntos $(a, f_{(a)})$ y $(b, f_{(b)})$.

Con frecuencia en la T.V.M. se considera el intervalo [a, a + h] donde h indica la longitud del intervalo.

DERIVADA DE UNA FUNCIÓN EN UN PUNTO

La derivada de una función $f_{(x)}$ en un punto de abscisa "a" se denota por $f'_{(a)}$, y es el valor del siguiente límite, si existe y es finito:

$$f'_{(a)} = \lim_{x \to a} \frac{f_{(x)} - f_{(a)}}{x - a}$$
 Si hacemos $x = a + h$, la fórmula

Si hacemos x = a + h, la fórmula anterior es equivalente a:

$$f'_{(a)} = \lim_{h \to 0} \frac{f_{(a+h)} - f_{(a)}}{h}$$

Siendo h el incremento.

EJEMPLOS

- Calcula la derivada de la función $f_{(x)} = x^2 3$ en el punto x = 2
- o Calcula la derivada de la función $f_{(x)} = \frac{1}{x^2 3}$ en el punto x = 1

FUNCIÓN DERIVADA

La función derivada de una función $f_{(x)}$ es una función, representada mediante $f'_{(x)}$, que asocia a cada punto x la derivada de $f_{(x)}$ en ese punto.

$$f'_{(x)} = \lim_{h \to 0} \frac{f_{(x+h)} - f_{(x)}}{h}$$

Para todos los \boldsymbol{x} para los que el límite existe.

No se debe confundir la derivada de una función en un punto con la función derivada, ya que la primera es un número real y la segunda es una función. Es habitual hablar de derivada para referirse a la función derivada.

DERIVADAS DE FUNCIONES ELEMENTALES Y OPERACIONES

Para hallar la derivada de algunas funciones no es necesario utilizar la definición de derivada, pues existen reglas que facilitan el cálculo.

La derivada de la función constante es 0.	$y = k \rightarrow y' = 0$
La derivada de la función identidad es 1.	$y = x \rightarrow y' = 1$
Derivada de la multiplicación de un número por una función	Función simple: $y = kx \rightarrow y' = k$ Función compuesta: $y = k \cdot u(x) \rightarrow y' = k \cdot u'(x)$
Derivada de una función potencial	Función simple: $y = x^n \rightarrow y' = nx^{n-1}$ Función compuesta: $y = u^n(x) \rightarrow y' = nu^{n-1}(x) \cdot u'(x)$
Derivada de una suma de funciones	$y = u(x) + v(x) \rightarrow y' = u'(x) + v'(x)$
Derivada de una multiplicación de funciones	$y = u(x) \cdot v(x) \rightarrow y' = u(x) \cdot v'(x) + v(x) \cdot u'(x) $
Derivada de una división de funciones	$y = \frac{u(x)}{v(x)} \rightarrow y' = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{v^2(x)} \bullet$

EJEMPLOS

Calcula la derivada de las siguientes funciones:

$$y = \frac{1}{2}x^4 - \frac{4}{x^2} + \frac{1}{2}$$

$$y = \sqrt{x} \left(\frac{1}{x^2} + 2x \right)$$

$$y = \frac{x^4 - x - 3}{x^2 + 7}$$

PRÁCTICA #4

de
$$f_{(x)} = \frac{1}{\sqrt{x}}$$
 en el punto $x = \frac{1}{4}$

 Utilizando propiedades, calcula la derivada de las siguientes funciones :

$$y = \sqrt{x} \left(\frac{1}{x^2} + 3x + \frac{1}{\sqrt{x}} \right)$$
$$y = \frac{x^2 - x + 3}{x^3}$$