Assorted Topics (3)

CS772A: Probabilistic Machine Learning
Piyush Rai

Plan today

- A method for distribution-free uncertainty quantification
 - Conformal Prediction

- Getting uncertainty estimates that we can trust (e.g., if model is overconfident)
 - Model Calibration

CS772A: PML

Conformal Prediction

- A simple technique to easily obtain confidence intervals
 - In classification, such an interval may refer to the <u>set</u> of highly likely classes for a test input

- For more difficult test inputs, the set would typically be larger
- In a way, conformal prediction gives predictive uncertainty
 - However, unlike Bayesian ML, we don't get model uncertainty
 - Only one model is learned in the standard way and we construct the set of likely classes
 - It's like a black-box method; no change to training procedure for the model

Assume it's a classification model which produces softmax scores

Conformal prediction can be used for regression problems too*

- Assume we already have a trained model \hat{f} using some labelled data
- lacktriangle Suppose we get a test input X_{test} whose true (unknown) label is Y_{test}
- lacktriangle Use \hat{f} and a calibration set of n examples to generate a prediction set $\mathcal{C}(X_{test})$ s.t.

$$lpha$$
 is a user chosen error rate $1-\alpha \leq p(Y_{test} \in \mathcal{C}(X_{test})) \leq 1-\alpha + rac{1}{n+1}$

■ To construct the set, we first compute, for each example in the calibration set

Probability/score of the correct class y_i of the input x_i $s_i = \hat{f}(x_i)_{y_i}$ $s_i = \hat{f}(x_i)_{y_i}$ $s_i = \hat{f}(x_i)_{y_i}$ $s_i = \hat{f}(x_i)_{y_i}$

ullet Use the calibration set scores s_1, s_2, \dots, s_n to compute their lpha quantile

lacktriangle Assume the lpha (say 0.1) quantile of the calibration set scores is equal to \hat{q}

Probability of true class

- Assuming n is very large, roughly (1-lpha) fraction of inputs will have score higher than \hat{q}
- \blacksquare Given a test input X_{test} , whose label is is unknown, we compute the class probabilities

lacktriangle Define the prediction set for X_{test} as

Report all the classes whose probability is large enough (the "large enough" value is given by the α quantile \hat{q})

$$C(X_{test}) = \{y : \hat{f}(X_{test})_y \ge \hat{q}\}$$

CS772A: PML

- A generic black-box method
- Can be easily applied to any already trained classifier
- Predicted set has some nice guarantees

$$1 - \alpha \le p(Y_{test} \in \mathcal{C}(X_{test})) \le 1 - \alpha + \frac{1}{n+1}$$

- Does not make any assumptions on the distribution of the data
 - Thus considered a "distribution-free" approach to uncertainty quantification
- Can also be applied to regression problems*

Model Calibration

Calibration

- A model called calibrated if predicted class probabilities match empirical frequencies
- Example: For binary classification, if for all test examples for which the model predicts p(y=1|x)=0.8, about 80% have true label = 1, then this model is well-calibrated
- Expected Calib. Error (ECE) is a popular measure of model calibration
- Suppose $f(x)_c = p(y = c | x)$, $\hat{y}_n = \operatorname{argmax}_{c = \{1, 2, \dots, C\}} f(x_n)_c$, $\hat{p}_n = \operatorname{max}_{c = \{1, 2, \dots, C\}} f(x_n)_c$
- \blacksquare Suppose predicted probabilities are divided into B bins
- Assume \mathcal{B}_b as set of samples whose predicted probabilities fall in $I_b = (\frac{b-1}{B}, \frac{b}{B}]$

$$\operatorname{acc}(\mathcal{B}_b) = \frac{1}{|\mathcal{B}_b|} \sum_{n \in \mathcal{B}_b} \mathbb{I}(\hat{y}_n = y_n) \operatorname{conf}(\mathcal{B}_b) = \frac{1}{|\mathcal{B}_b|} \sum_{n \in \mathcal{B}_b} \hat{p}_n \left[\operatorname{ECE}(f) = \sum_{b=1}^B \frac{|\mathcal{B}_b|}{B} |\operatorname{acc}(\mathcal{B}_b) - \operatorname{conf}(\mathcal{B}_b)| \right]$$

Difference between confidence and accuracy

Calibration

A reliability diagram is often used as a visual indicator of calibration

Reliability diagram of the same model after applying calibration post-processing via temperature scaling method

- Several approaches to improve a model's calibration
- A simple calibration approach for binary classifiers is Platt scaling
 - Rescale the logits z where $p = \sigma(z)$ as az + b
 - Learn a, b by doing MLE on a validation set
 - lacktriangle Calibrated probabilities will be $\hat{p} = \sigma(z)$
 - Can be extended to multi-class case as well

Calibration

Temperature scaling is another simple and popular calibration method

"Temperature scaling" of softmax outputs as softmax(a/T) is a popular and simple approach to reduce overconfidence (for figure on right, a = [3,0,1])

- Histogram Binning, Label Smoothing, etc are also popular,
- All these methods can be applied as post-processing step to the outputs of Bayesian/non-Bayesian methods to improve calibration
- Bayesian methods are usually better calibrated but can still have poor calibration if test data is from a different distribution

Proper Scoring Rules and Calibration

- Assume a predictive distribution $p_{\theta}(y|x)$
- Define score of p_{θ} on an example $(x,y) \sim p^*(x,y) = p^*(x)p^*(y|x)$ as $s(p_{\theta},(x,y))$
- The expected score of p_{θ} will be $s(p_{\theta}, p^*) = \int p^*(x) p^*(y|x) s(p_{\theta}, (x, y)) dy dx$
- A scoring rule is said to be a "proper scoring rule" if $s(p_{\theta}, p^*) \leq s(p^*, p^*)$
- The log-likelihood $s(p_{\theta},(x,y)) = \log p_{\theta}(y|x)$ is a proper scoring rule because

$$S(p_{\boldsymbol{\theta}}, p^*) = \mathbb{E}_{p^*(\boldsymbol{x})p^*(y|\boldsymbol{x})} \left[\log p_{\boldsymbol{\theta}}(y|\boldsymbol{x}) \right] \le \mathbb{E}_{p^*(\boldsymbol{x})p^*(y|\boldsymbol{x})} \left[\log p^*(y|\boldsymbol{x}) \right]^{\boldsymbol{\zeta}}$$

- Optimizing a proper scoring rule (e.g., NLL) should do the "right thing"
- Another proper scoring rule is the Brier score (lower is better)

$$S(p_{\boldsymbol{\theta}}, (y, \boldsymbol{x})) \triangleq \frac{1}{C} \sum_{i=1}^{C} (p_{\boldsymbol{\theta}}(y = c | \boldsymbol{x}) - \mathbb{I}(y = c))^2$$
 will match true probabilities and be well-calibrated

Can use Brier score (and also NLL) as a way to measure calibration of a model

Squared error of predictive distribution as compared to one-hot vector

If using such loss

functions, the model

Holds because of Gibbs inequality entropy less than or equal to cross-entropy

But doesn't happen in practice due to optimization related issues, training set characteristics, etc

CS772A: PML