PCT/JP 2004/016077

日本国特許庁 JAPAN PATENT OFFICE

22.10.2004

REC'D 11 NOV 2004

WIPO PCT

別紙添付の曹類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 9月29日

出 願 番 号 Application Number:

特願2004-282952

[ST. 10/C]:

[JP2004-282952]

出 願 人
Applicant(s):

住友電気工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年10月13日

ページ:

【書類名】 特許願 【整理番号】 104I0357

【提出日】平成16年 9月29日【あて先】特許庁長官 殿【国際特許分類】C04B 35/58 102

CO4B 35/52 CO4B 35/56

【発明者】

【住所又は居所】 兵庫県伊丹市昆陽北一丁目1番1号 住友電気工業株式会社伊丹

製作所内

【氏名】 上野 友之

【発明者】

【住所又は居所】 兵庫県伊丹市昆陽北一丁目1番1号 住友電気工業株式会社伊丹

製作所内

【氏名】 吉村 雅司

【特許出願人】

【識別番号】 .000002130

【氏名又は名称】 住友電気工業株式会社

【代理人】

【識別番号】 100116713

【弁理士】

【氏名又は名称】 酒井 正己 【電話番号】 03-3586-8854

【連絡先】 担当

【選任した代理人】

【識別番号】 100078994

【弁理士】

【氏名又は名称】 小松 秀岳

【選任した代理人】

【識別番号】 100094709

【弁理士】

【氏名又は名称】 加々美 紀雄

【選任した代理人】

【識別番号】 100117145

【弁理士】

【氏名又は名称】 小松 純

【先の出願に基づく優先権主張】

【出願番号】 特願2003-368714 【出願日】 平成15年10月29日

【先の出願に基づく優先権主張】

【出願番号】 特願2003-368715 【出願日】 平成15年10月29日

【手数料の表示】

【予納台帳番号】 165251 【納付金額】 16,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1 【物件名】 要約書 1 【包括委任状番号】 0107279

【請求項1】

平均結晶粒径が3 µ m以下の、炭素を主成分とする相とセラミックス相(但し、炭素を除く)とからなることを特徴とするセラミックス複合材料。

【請求項2】

平均結晶粒径が30 nm以下の、炭素を主成分とする相とセラミックス相(但し、炭素を除く)とからなることを特徴とするセラミックス複合材料。

【請求項3】

上記炭素を主成分とする相の含有量が2~98wt%であることを特徴とする請求項1 又は2記載のセラミックス複合材料。

【請求項4】

研磨後表面のオープンポア率が1%以下であることを特徴とする請求項1~3のいずれかに記載のセラミックス複合材料。

【請求項5】

焼結体のビッカース硬度が10GPa以上であることを特徴とする請求項1~4のいずれかに記載のセラミックス複合材料。

【請求項6】

セラミックス相がA1, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo、Wの窒化物、炭化物、酸化物、複合窒化物、複合炭化物、複合酸化物、炭窒化物、酸窒化物、炭窒酸化物及び炭酸化物よりなる群から選ばれる少なくとも1種により構成されることを特徴とする請求項1~5のいずれかに記載のセラミックス複合材料。

【請求項7】

平均粒径が 3μ m以下の、セラミックス粉末(但し、炭素粉末を除く)と炭素粉末との混合粉末を成形し、得られた成形体を非酸化性雰囲気中で、焼結温度 $800\sim1500$ 、焼結圧力200 MP a 以上で焼結することを特徴とする、平均結晶粒径 3μ m以下の、炭素を主成分とする相とセラミックス相とからなる請求項1、 $3\sim6$ のいずれかに記載のセラミックス複合材料の製造方法。

【請求項8】

前記セラミックス粉末が、Al, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, Wo 空化物、炭化物、酸化物、複合窒化物、複合炭化物、複合酸化物、炭窒化物、酸窒化物、炭窒酸化物及び炭酸化物よりなる群から選ばれる少なくとも 1 種であることを特徴とする請求項 7 記載の平均結晶粒径 3 μ m以下の、炭素を主成分とする相とセラミックス相とからなるセラミックス複合材料の製造方法。

【請求項9】

混合粉末が更にAl, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, Wから選ばれる少なくとも1種の金属を含むことを特徴とする請求項7または8記載の平均結晶粒径 3μ m以下の、炭素を主成分とする相とセラミックス相とからなるセラミックス複合材料の製造方法。

【請求項10】

平均粒径が30 n m以下の、セラミックス粉末(但し、炭素粉末を除く)と炭素粉末との混合粉末を成形し、得られた成形体を非酸化性雰囲気中で、焼結温度 $800\sim1500$ C、焼結圧力200 MP a 以上で焼結することを特徴とする、請求項 $2\sim6$ のいずれかに記載の平均結晶粒径30 n m以下の、炭素を主成分とする相とセラミックス相とからなるセラミックス複合材料の製造方法。

【請求項11】

前記セラミックス粉末が、Al, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, Wから選ばれる少なくとも1種の金属の窒化物、炭化物及び酸化物、複合窒化物、複合炭化物、複合酸化物、炭窒化物、酸窒化物、炭窒酸化物及び炭酸化物よりなる群から選ばれる1種以上であることを特徴とする請求項10記載の平均結晶粒径30nm以下の、炭素を主成分とする相とセラミックス相とからなるセラミックス複合材料の製造方法。

ページ: 2/E

混合粉末が更にAl, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, Wから選ばれる少なくとも1種の金属を含むことを特徴とする請求項10または11記載の平均結晶粒径30n m以下の、炭素を主成分とする相とセラミックス相とからなるセラミックス複合材料の製造方法。

【書類名】明細書

【発明の名称】セラミックス複合材料およびその製造方法

【技術分野】

[0001]

本発明は、各種構造部材や切削工具, 摺動部材, モールド型材料等に使用される高耐摩耗・低摩擦のセラミック材料として、室温から中低温領域で優れた機械的特性を有するセラミックス複合材料及びその製造方法に関する。

【背景技術】

[0002]

従来、窒化ケイ素等のセラミックス材料にC等の固体潤滑性粒子を分散させ、摩擦係数や比摩耗量を改善した材料が知られている。

例えば、特許文献 1 には窒化ケイ素と窒化チタンならびに 0. $5\sim20$ w t %のグラファイト,カーボンの複合材料により、摩擦特性や耐摩耗特性に優れた材料が報告されている。しかし、特許文献 1 に記載の条件で粉末の焼結を試みた結果、SEMを用いて 2000倍で観察を行ったところオープンポア率が 3 %以上と大きく直径 20 μ m以上のポアが多数観察され、型として使用することは不可能であることが判明した。

[0003]

また、特許文献 2 にはアルミナ、およびジルコニアの粉末に耐酸化性合金として C r、M o、W, A l, T i、N i e 0. 5 e 6 w t %含有する高靭性材料が報告されているが、C の含有量が 0 . 1 e 0 . 2 w t %と少なく、型としての潤滑性に欠ける。

[0004]

そして、特許文献 3 には炭化ケイ素に粒径 5 μ m以上の炭素を $2\sim5$ 0 w t %添加した材料が耐摩耗性に優れると報告されており、特許文献 4 には炭化チタンマトリックス中に平均結晶粒径 $3\sim6$ μ mのグラファイトを $3\sim3$ 0 w t %分散した材料が報告されている。しかし、炭素の平均結晶粒径が 3 μ m以上と大きく、所望の形状に加工した際に表面粗さが粒径の影響を受け、平均面粗さ 1 0 1 n m以下の鏡面形状を得ることが困難である。

[0005]

さらに、特許文献 5 には非酸化物系セラミックスにグラファイト, BNを分散させ境界層に鉄の化合物 (酸化物,ケイ化物等)を介在させた材料が報告されているが、鉄を含有するために酸化による劣化や、高温での安定性に欠ける等、型材としての使用には適さない。

[0006]

【特許文献1】特開2003-34580号公報

【特許文献2】特開昭60-100646号公報

【特許文献3】特開平09-87029号公報

【特許文献4】特開平05-301773号公報

【特許文献5】特開平10-231174号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

本発明は、上記の事情に鑑み、室温から中高温域で優れた機械的特性を有する他、ガラス, 樹脂, セラミックス等との高い離型性を有するセラミックス複合材料及びその製造方法を提供するものである。

【課題を解決するための手段】

[0008]

本発明者等は、検討を重ねた結果、炭素を主成分とする相を含有するセラミックス複合材料において、該セラミックス複合材料の平均結晶粒径を3μm以下好ましくは30nm以下とすることにより上記課題を解決することができることを見いだして本発明を完成したものである。

すなわち、本発明は次の構成を有する。

[0009]

- (1) 平均結晶粒径が3μm以下好ましくは30nm以下の、炭素を主成分とする相とセラミックス相(但し、炭素を除く)とからなることを特徴とするセラミックス複合材料。
- (2) 上記炭素を主成分とする相の含有量が2~98wt%であることを特徴とする上記
- (1) のセラミックス複合材料。
- (3)研磨後表面のオープンポア率が1%以下であることを特徴とする上記(1)、(2)のセラミックス複合材料。
- (4) 焼結体のビッカース硬度が10GPa以上であることを特徴とする上記(1)、(2) のセラミックス複合材料
- (5) セラミックス相がA1, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo、Wの窒化物、炭化物、酸化物、複合窒化物、複合炭化物、複合酸化物、炭窒化物、酸窒化物、炭窒酸化物及び炭酸化物よりなる群から選ばれる少なくとも1種により構成されることを特徴とする上記(1)~(4)のセラミックス複合材料。
- (6) 平均粒径が3μm以下好ましくは30nm以下の、セラミックス粉末(但し、炭素粉末を除く)と炭素粉末との混合粉末を成形し、得られた成形体を非酸化性雰囲気中で、焼結温度800~1500℃、焼結圧力200MPa以上で焼結することを特徴とする、平均結晶粒径3μm以下好ましくは30nm以下の、炭素を主成分とする相とセラミックス相とからなるセラミックス複合材料の製造方法。
- (7) 前記セラミックス粉末が、Al, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo、Wの窒化物、炭化物、酸化物、複合窒化物、複合炭化物、複合酸化物、炭窒化物、酸窒化物、炭窒酸化物及び炭酸化物よりなる群から選ばれる少なくとも1種であることを特徴とする請求項5記載の平均結晶粒径3μm以下好ましくは30nm以下の、炭素を主成分とする相とセラミックス相とからなるセラミックス複合材料の製造方法。
- (8) 混合粉末が更にAl, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W から選ばれる少なくとも 1 種の金属を含むことを特徴とする上記(6)、(7)の平均結晶粒径 3μ m以下好ましくは 30n m以下の炭素を主成分とする相と、セラミックス相とからなるセラミックス複合材料の製造方法。

【発明の効果】

[0010]

本発明のセラミックス複合材料は、耐摩耗性、低摩擦性に優れると共に、ガラス、樹脂 、セラミックスに対する高い離型性を有するという効果を奏する。

【発明を実施するための最良の形態】

[0011]

本発明は平均結晶粒径 3 μ m以下好ましくは 3 0 n m以下の、炭素を主成分とする相と セラミックス相とからなることを特徴とするセラミックス複合材料である。このセラミッ クス複合材料の内、炭素を主成分とする相がガラス、樹脂、セラミックス等と高い離型性 を示す。セラミックス複合材料の相の平均結晶粒径が 3 μ mを超える場合は、所望の形状 に加工した際に平均面粗さが大きく鏡面形状を得ることが出来ない。

[0012]

また、本発明における炭素とは構成物質が炭素からなるものであればよく、例えば、グラファイト(C),グラッシーカーボン(G C),ダイヤモンド,カーボンナノチューブ(C N T),フラーレン(C60),カーボンナノファイバー(C N F)等から適宜選択することができる。炭素の含有量は $2\sim9$ 8 w t %であることが望ましく、この含有量より少ない場合は離型性が低下するため好ましくなく、この含有量より多い場合は焼結しないため同様に好ましくない。この炭素の含有量は 3 0 \sim 8 0 w t %であることが好ましく、4 0 \sim 6 0 w t %であることが特に好ましい。炭素含有量がこの数値範囲にあれば、ガラス,樹脂,セラミックス等との離型性が一層向上する。

[0013]

本発明のセラミックス複合材料におけるセラミックス相は、Al, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, Wの窒化物、炭化物及び酸化物よりなる群から選ば

れる少なくとも1種によって形成されることが望ましい。また、セラミックス相は上記金属の複合窒化物、複合炭化物、複合酸化物であってもよく、また上記金属の炭窒化物、酸窒化物、炭窒酸化物、炭酸化物であってもよい。セラミックス相は成形される相手材によって1種類以上を適宜選択されその含有量は2~98 w t %であることが望ましい。また、必要に応じて焼結性をよくするために公知の焼結助剤を用いても良いが、酸化物系の焼結助剤の添加量を多くすると、炭素との反応が激しくなり、緻密な材料を製造しづらくなり機械的特性が低下するために好ましくない。

[0014]

本発明のセラミックス複合材料は、平均粒径 3μ m以下好ましくは 30 n m以下の、A 1, S i, T i, Z r, H f, V, N b, T a, C r, M o, W o 空化物、炭化物及び酸化物の少なくとも 1 種類のセラミックス粉末と炭素粉末との混合粉末を成形し、得られた成形体を非酸化性雰囲気中で、焼結温度 $800\sim1500$ 、焼結圧力 200 M P a 以上で焼結することによって得られる。非酸化性雰囲気としては、真空雰囲気又は H_2 、N 2 、A r 等の不活性ガス雰囲気を選択することができるが、真空雰囲気が好ましい。また、上記混合粉末は更に A 1, S i, T i, Z r, H f, V, N b, T a, C r, M o, W o 、選ばれる少なくとも 1 種の金属を含んでいてもよい。これらの金属は混合粉末中の炭素と反応して炭化物を形成するか、又は、非酸化性雰囲気が N_2 であれば、 N_2 と反応して窒化物を形成する。また、一部は混合中にメカノケミカル反応により炭化物か窒化物等を形成する場合もある。

[0015]

焼結温度が800℃未満の場合は、焼結反応が促進されずにセラミックス複合材料を得ることが困難となる。また、1500℃を超える場合は、焼結反応が促進され過ぎて粒径が粗大化し機械的特性が低下する。焼結温度は1000~1400℃が特に好適である。 更に、焼結圧力が200MPa未満の場合は、焼結反応が促進されずにセラミックス複合材料を得ることができない。好適な圧力は、500MPa以上である。

[0016]

次に実施例を挙げて本発明を詳細に説明する。なお、以下では、wt%は内割を示す。 実施例において用いた測定方法は次の通りである。

- (1) 粉末の平均粒径の測定
 - TEM (透過電子顕微鏡:日立製 H-9000UHRIII) を用いた。
- TEMで得られた画像の任意のエリア内から、無作為に100個の粉末粒子を抜き取り、粒径を測定して、その平均を平均粉末粒径とした。
- (2) 平均結晶粒径の測定
- TEM(透過電子顕微鏡:日立製 H-9000UHRIII)を用いた。
- TEMで得られた画像の任意の場所において、粒子50個分を通る直線を引き、その長さを粒子数で割ることにより粒子径を求めた。この作業を任意の場所5個所で行い、その平均を平均結晶粒子径とした。
- (3) オープンポア率の測定

水銀ポロシメータ (島津製作所製 9420) を用いた。

ポアに水銀を圧入し、圧入された水銀の容積から細孔容積、細孔径を計算する。

(4)曲げ強度の測定

万能材料試験機(インストロン製 5585)を用いた。

3点曲げ試験のデータを [JIS R 1601] に準じて計算する。

【実施例1】

[0017]

市販の平均粒径 0.5μ mの Si_3N_4 粉末に、焼結助剤として2.5wt%の Y_2O_3 粉末と1wt%の Al_2O_3 粉末を加え、更に平均粒径 1μ mの金属Zr粉末を2Owt%, 平均粒径 5μ mのグラファイト粉末を4Owt%添加した粉末を0.1MPaの窒素雰囲気中において、 Si_3N_4 製ボールを用いたボールミル装置により加速度1OGで混合を行った。

得られた二次複合粒子粉末をXRDにて定性分析を行ったところ、 Si_3N_4 , ZrN, ZrCN、ZrCDびCのピークを確認することができた。また、この二次複合粒子粉末を透過電子顕微鏡で観察した結果、平均粒径は 3μ m以下であった。

[0019]

次に上記のようにして得られた二次複合粒子粉末を用いて、表1に示す条件で真空雰囲気中で焼結してセラミックス複合材料を得た。この際の温度測定は、ダイス表面の温度を 二色温度計で測定した。

[0020]

【表1】

焼結時に採用した	ニ温度·圧力条件
焼結温度	焼結圧力
800°C	200MPa
1150°C	500MPa
1500°C	1000MPa
1700°C*	5000MPa

*:比較例

[0021]

得られたセラミックス複合材料に対して研削、ラッピング処理を施した後、透過型電子 顕微鏡を用いて各セラミックス複合材料につき任意の10箇所について平均結晶粒径の測 定を実施した。また、水銀ポロシメーターを用いてオープンポア率の測定を実施した。更 にビッカース硬度計を用いてビッカース硬度の測定を実施した。以上の結果を表2に示す

【0022】 【表2】

K			•			_	焼結圧	力(MPa)					
\		200			500			1000			5000		
		平均結晶 粒径	オープン ホア率	ピッカース 硬度	平均結晶 粒径	オープン ホア率	ピッカース 硬度	平均結晶 粒径	オープン ホア率	ピッカース 硬度	平均結晶 粒径	オーフン ホア率	ピッカース 硬度
	800	2.1 μ m	0.7%	10GPa	1.8 μ m	0.6%	10GPa	1.4 μ m	0.4%	12GPa	1.0 μ m	0.3%	12GPa
) (၁)	1150	2.4 μ m	0.5%	10GPa	2.1 μ m	0.4%	11GPa	1.7 μ m	0.2%	12GPa	1.2 μ m	0.2%	13GPa
焼結温度(°C)	1500	2.8 μ m	0.4%	10GPa	2.4 μ m	0.2%	11GPa	2.0 μ m	0.1%	12GPa	1.4 μ m	0.1%	13GPa
概	1700*	8.5 μ m	3.2%	8GPa	6.9 μ m	2.7%	10GPa	5.7 μ m	2.1%	11GPa	5.5 μ m	1.9%	12GPa

*:比较例

[0023]

表2の結果より、焼結温度800~1500℃,焼結圧力200~5000MPaの条件を用いて得たセラミックス複合材料の平均結晶粒径は 3μ m以下であることが判明した。焼結温度が1700℃になると粒成長が著しく促進されて平均結晶粒径が 3μ mより大きくなり、セラミックス複合材料表面のラップ研磨面の面粗さが所望の精度を保つことができなかった。

表2の結果より、上記焼結条件を用いた焼結体のオープンポア率は1%未満と良好であることが判明した。オープンポア率が1%より大きくなると、例えばガラス成形型として

【実施例2】

[0024]

市販の平均粒径 0.5μ mの Si_3N_4 粉末に、焼結助剤として 2.5w t %の Y_2O_3 粉末と 1w t %の Al_2O_3 粉末を加え、更に平均粒径 1μ mの金属 Zr 粉末を 20w t %を加えた後に、平均粒径 5μ mの グラファイト粉末を表 3 に示す割合を加えて混合した粉末を、0.1MP a の窒素雰囲気中において、 Si_3N_4 製ボールを用いたボールミル装置により加速度 10G で混合を行った。

【0025】 【表3】

試験No.	焼結粉末中に添加した グラファイト量(wt%)
2-1*	1
2-2	2 ·
2-3	20
2-4	40
2-5	70
2-6	98
2-7*	99

*:比較例

[0026]

得られた二次複合粒子粉末をXRDにて定性分析を行ったところ、 Si_3N_4 , ZrN, ZrCN、ZrCDびCのピークを確認することができた。また、この二次複合粒子粉末を透過電子顕微鏡で観察した結果、平均粒径は 3μ m以下であった。

[0027]

次に前記二次複合粒子粉末を用いて、焼結温度1150℃/焼結圧力1000MPaの 条件で真空雰囲気中で焼結してセラミックス複合材料を得た。温度測定は、ダイス表面の 温度を二色温度計で測定した。

[0028]

得られたセラミックス複合材料に対して研削、ラッピング処理を施した後、平均結晶粒径,オープンポア率,曲げ強度評価を実施した。また、光学ガラスを型成形した際の離型性を確認するために、Hellma社製Pyrexガラスを用いて評価を行った。評価方法は、 $\phi20$ mmに切り出したのち面粗さ0.02 μ m(Ra)に表面ラップ研磨を施した本セラミックス複合材料を型に用いて、 $\phi10$ mmの上記Pyrexガラスを成形温度720 $\mathbb C$,成形圧力10MPa条件で60秒プレスした。100回のガラス成形試験を行い、以下の内容で離型性の評価を行った。まず成形終了後にPyrexガラスが外力を加えずに型と分離し、そのPyrexガラスの外観検査において欠け、割れ、くもりがなく、成形後のPyrexガラスの転写面の面粗さが 0.03μ m(Ra)以下のものを良品と判断した。良品数を成形試験回数で割った百分率の数値を離型性(%)と定義する。例えば、100回の成形試験で良品が50個得られれば離型性は50%となる。以上の結果を表4に示す。

[0029]

試験No.	グラファイト量 (wt%)	オープンホプ平 (%)	平均粒径 (μm)	曲げ強度	Pyrexガラスの 離型性(%)
2-1*	1	2.3	4.7	1120	18
2-2	2	0.8	2.8	1100	59
2-3	20	0.3	2.1	918	97
2-4	40	0.2	1.7	717	100
2-5	70	0.3	1.9	414	100
2-6	98	0.9	2.6	112	91
2-7*	99	焼結せず	焼結せず	焼結せず	焼結せず

Pyrexがラスの : 720℃/10MPaの加圧条件で、60secプレスした。 テスト回数n=100 離型性試験

[0030]

表4の結果より、グラファイト含有量2~98wt%のセラミックス複合材料の場合、 オープンポア率 1 %未満、平均結晶粒径 3 μ m以下を満たした。更に P y r e x ガラスと の離型性もグラファイト含有率20~98wt%では90%以上と非常に良好であり、含 有率2%でも離型性が60%に近く、型として十分使用できる結果が得られた。またグラ ファイト含有量1wt%の場合は、離型性が非常に悪化した。またグラファイト含有量9 0 w t %を超えると焼結が困難となり、含有量 9 8 w t %では数回に 1 回は焼結体を製造 できるが、含有量99wt%を超えると全く焼結体を得ることが不可能となる。

【実施例3】

[0031]

表 5 に示すように 4 0 w t %の平均粒径 0 . 5 μ mのセラミックス粉末(1)と、平均粒 径 0. 5μ mの 2 0 w t %のセラミックス粉末(2)と、残部の平均粒径 5μ m以下のカー ボン粉末と、必要に応じて加える焼結助剤とを表5に示す組成で配合し、ボールミルを用 いて加速度10Gで混合し、混合粉末を得た。

[0032]

【表 5】

 試験No.	セラミックス粉末(1)	セラミックス粉末(2)	カーボン	焼結助剤
3-1	SiC	ZrCN	С	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃
3-2	Si ₃ N ₄	TiCN	GC	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃
3-3	AIN	CrN	С	0.6wt%Y ₂ O ₃
3-4	Al ₂ O ₃	MoO ₂	С	_
3-5	3Y-ZrO ₂ *	wc	GC	-
3-6	siC	VN	GC	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃
3-7	Si ₃ N ₄	TiCO	С	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃
3-8	スピネル	NbHfC	C ₆₀	0.6wt%Y ₂ O ₃
3-9	βーサイアロン	TaNbC	CNT	-
3-10	ムライト	TaNbN	Cブラック	-

*) 3Y-ZrO₂: 3wt%のY₂O₃で安定化したZrO₂

[0034]

次に前記二次複合粒子粉末を用いて焼結温度1150℃/焼結圧力1000MPaの条件で真空雰囲気中で焼結してセラミックス複合材料を製造した。この際の温度測定は、ダイス表面の温度を二色温度計で測定した。

[0035]

得られたセラミックス複合材料について研削,ラッピング処理を施した後、オープンポア率,平均結晶粒径,曲げ強度評価を実施した。また、光学ガラスを型成形した際の転写精度と離型性を確認するために、Hellma社製Pyrexガラスを用いて実施例2と同様に100回の成形試験を行って離型性を評価した。以上の結果を表6に示す。

[0036]

【表6】

試験No.	オープンポア率 (%)	平均粒径 (μm)	曲げ強度 (MPa)	Pyrexがうスの 離型性(%)*
3-1	0.3	1.4	433	100
3-2	0.2 .	1.7	720	100
3-3	0.4	1.8	428	100
3-4	0.5	2.3	287	100
3-5	0.2	1.6	686	100
3-6	0.2	1.6	728	100
3-7	0.3	1.7	720	100
3-8	0.4	1.7	402	100
3-9	0.4	2.2	416	100
3-10	0.2	1.7	337	100

*:720℃/10MPaの加圧条件DE,60secプレスする。

テスト回数n=100

【実施例4】

[0037]

表 7 に示すように平均粒径 0.5 μ mのセラミックス粉末を用いて、残部を平均粒径 5 μ m以下のカーボン粉末とし、これに焼結助剤を必要に応じて加えて表 7 に示す組成で配合し、ボールミル装置を用いて加速度 10 G で混合し、混合粉末を得た。

[0038]

【表7】

セラミックス粉ま	末と用いた焼結助剤	グラファイト量(wt%)				
セラミックス粉末	焼結助剤	クラフアイト風 (Wt%)				
SiC	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃	1*				
Si ₃ N ₄	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃	2				
AIN	0.6wt%Y ₂ O ₃	10				
Al ₂ O ₃	-	20				
3Y-ZrO ₂	_	40				
*) 3Y-ZrO ₂ : 3wt%0	*) 3Y-ZrO ₂ : 3wt%のY ₂ O ₃ で安定化したZrO ₂					
		90				

*:比較例

98 99*

[0039]

[0040]

得られたセラミックス複合材料に研削,ラッピング処理を施した後、オープンポア率,平均結晶粒径,曲げ強度評価を実施した。また、光学ガラスを型成形した際の転写精度と離型性を確認するために、Hellma社製Pyrexガラスを用いて実施例2と同様に100回の成形試験を行って離型性を評価した。以上の結果を表8に示す。

[0041]

【表8】

オー	プンポア率	グラファイト含有量(%)										
	(%)	1*	2	10	20	40	70	.90	98	99*		
₩	SIC	3.0	0.9	0.6	0.3	0.3	0.4	0.6	0.8	焼結せず		
7人粉末	Si ₃ N ₄	2.5	0.8	0.5	0.3	0.2	0.3	0.6	0.9	焼結せず		
1	AIN	2.8	0.9	0.6	0.4	0.3	0.4	0.6	1	焼結せず		
たころ	Al ₂ O ₃	3.2	0.9	0.7	0.5	0.3	0.4	0.5	0.8	焼結せず		
ti	3Y-ZrO2	3.1	0.9	0.6	0.4	0.3	0.4	0.6	0.9	焼結せず		
							*			*: 比較例		

2	P均粒径	グラファイト含有量(%)									
	(µ m)	1*	2	10	20	40	70	90	98	99*	
₩	SiC	4.8	2.8	2.6	2.3	2	2.1	2.4	2.8	焼結せず	
ス粉末	Si ₃ N ₄	5.1	3	2.7	2.5	2.1	2.2	2.4	2.9	焼桔せず	
Ū	AIN	5.6	3	2.8	2.6	2.3	2.3	2.7	3	焼結せず	
セラミッ	Al ₂ O ₃	5.5	2,9	2.8	2.6	2.2	2,3	2.6	2.9	焼結せず	
نة	3Y-ZrO2	5.2	2.8	2.7	2.5	2.1	2.2	2.3	2.7	焼結せず	
	·		·				 	<u> </u>		*: 比較係	

ğ	由げ強度	グラファイト含有量(%)										
	(MPa)	1*	2	10	. 20	40	70	90	98	99*		
₩	SIC	715	703·	654	592	469	285	162	101	焼結せす		
(粉末	Si3N4	1030	1012	938	845	660	383	198	106.	焼結せず		
741	AIN	415	409	383	352	288	193	130	98	焼粕せず		
セラミッ	Al2O9	.620	610	568	516	412	256	152	100	焼箱せず		
ند	3Y-ZrO2	. 980	962	892	804	629	365	190	102	焼結せず		
		·			·····	7,	*************************************			* 14 184		

Ру	rexがうえの	グラファイト合有量(%)										
離	型性(%)	1*	1* 2	10	20	40	70	90	98	99*		
₩	SiC	21	62	83	96	100	100	94	89	焼結せず		
ス粉末	Si3N4	19	56	80	97	100	100	92	86	焼結せず		
12	AIN	17	59	78	94	100	100	93	87	焼結せず		
ラミック	Al ₂ O ₃	12	51	72	90	100	100	89	82	焼結せず		
4	3Y-ZrO2	18	61	81	92	100	100	94	88	焼結せず		

*:比較例

Pyrexがうえの 離型性試験 : 720°C/10MPaの加圧条件で、60secプレスした。

テスト回数n=100

【実施例5】

[0042]

市販の平均粒径 0.5μ mの Si C 粉末に、焼結助剤として 2.5w t %の Y_2 O_3 粉末と 1w t %の Al_2 O_3 粉末を加え、更に平均粒径 3μ mの金属 Cr N 粉末を 20w t %, 平均粒径 5μ mの グラファイト粉末を 40w t %添加した粉末を 0.1MPa の 窒素雰囲気中において、 Si C 製ボールを用いたボールミル装置により加速度 10G で混合を行った。

[0043]

得られた二次複合粒子粉末をXRDにて定性分析を行ったところ、SiC,CrN,CrCN,CrC及びCのピークを確認することができた。また、この二次複合粒子粉末を

ページ: 10/

透過電子顕微鏡で観察した結果、平均結晶粒径は3μm以下であった。

[0044]

次に前記二次複合粒子粉末を表9に示す条件で真空雰囲気中で焼結してセラミックス複 合材料を得た。焼結した。この際の温度測定は、ダイス表面の温度を二色温度計で測定し た。

[0045]【表9】

焼結時に採用	用した温度・圧力条件
焼結温度	焼結圧力
400°C*	100MPa*
600°C*	200MPa
800°C	500MPa
1150℃	1000MPa
1500°C	5000MPa
1700°C*	*:比較例

[0046]

得られたセラミックス複合材料に研削,ラッピング処理を施した後、光学ガラスを型成 形した際の形状転写精度と離型性を確認するために、Hellma社製Pyrexガラス を用いて実施例2と同様に100回の成形試験を行って離型性を評価した。以上の結果を 表10に示す。

[0047]

【表10】

	exがうえの		娐	結圧力(MPa)	
離	型性(%)	100*	200	500	1000	5000
	400*	焼結せず	焼結せず	焼結せず	破損	破損
ည်	600*	破損	破損 86	破損	37	61
本文	800	破損		91	99	100
新祐龍	1150	15	89	94	100	100
選	1500	14	93	91	100	100
	1700*	11	17	14	19	18

*: 比較例

Pyrexがラスの : 720℃/10MPaの加圧条件で、60secプレスした。

離型性試験 テスト回数n=100

[0048]

表10の結果より、焼結温度800~1500℃,焼結圧力200MPa以上の条件を 用いて得た焼結体とPyrexガラスとの離型性は良好であることが判明した。しかし焼 結温度1700℃になると、粒成長が促進されて離型性が著しく低下する。また、焼結温 度600℃で焼結圧力1000MPa以上の場合は離型性を示すが、それ以下の焼結圧力 で得られたセラミックス複合材料を用いると、成形中の加圧力に型が耐えられず破損した 。そして焼結温度400℃となると焼結体を得ることが困難となった。

【実施例6】

市販の平均粒径 0.5μ mの Si_3N_4 粉末に、焼結助剤として 2.5wt %の Y_2O_3 粉末と 1wt %の Al_2O_3 粉末を加え、更に平均粒径 0.5μ mの金属 Ti 粉末を 30wt %,平均粒径 5μ mのグラファイト粉末を 40wt %添加した粉末を 0.1MPa の窒素雰囲気中において、 Si_3N_4 製ボールを用いたボールミル装置により加速度 150 Gで 12 時間かけて混合を行った。

[0050]

得られた二次複合粒子粉末をXRDにて定性分析を行ったところ、 Si_3N_4 , TiN, TiCN, TiCO00プロードなピークを確認することができた。また、この二次複合粒子粉末を透過電子顕微鏡で観察した結果、平均粒径は30nm以下であった。

[0051]

次に上記のようにして得られた二次複合粒子粉末を用いて、表11に示す条件で真空雰囲気中で焼結してセラミックス複合材料を得た。この際の温度測定は、ダイス表面の温度を二色温度計で測定した。

[0052]

【表11】

焼結時に採用した	焼結時に採用した温度・圧力条件							
焼結温度	焼結圧力							
800°C	200MPa							
1000°C	500MPa							
1200°C	1000MPa							
1400°C	5000MPa							
1500°C	10000MPa							
1600°C*								

*:比較例

[0053]

得られたセラミックス複合材料に研削,ラッピング処理を施した後、透過型電子顕微鏡を用いて各セラミックス複合材料につき任意の10箇所について平均結晶粒径の測定を実施した。また、水銀ポロシメータを用いてオープンポア率の測定を実施した。以上の結果を表12に示す。

[0054]

_					焼絲	i圧力(MF	Pa)				
			200			500		1000			
		平均結晶	オープン	ピッカース 硬度	平均結晶 粒径	オープン ポア率	ピッカース 硬度	平均結晶 粒径	オープン ホア率	ピッカース 硬度	
		<u>粒径</u> 17nm	<u>ポア率</u> 0.4%	10GPa	15nm	0.4%	10GPa	10nm	0.3%	12GPa	
	800		0.3%	10GPa	15nm	0.2%	10GPa	11nm	0.2%	12GPa	
(၁)	1000	18nm		10GPa	17nm	0.2%	11GPa	14nm	0.1%	13GPa	
麼	1200	21nm	0.2%		18nm	0.2%	11GPa	15nm	0.1%	13GPa	
統結過	1400	24nm	0.2%	10GPa		0.4%	11GPa	22nm	0.4%	13GPa	
無	1500	29nm	0.5%	10GPa	25nm			81nm	1.9%	12GPa	
1	1600*	103nm	2.2%	9GPa	96nm	2.1%	10GPa	l o i nm	1.5%	1,20,0	

*:比較例

			焼結圧力(MPa)										
			5000			10000							
		平均結晶 粒径	オープン ポア率	ピッカース 硬度	平均結晶 粒径	オープン ポア率	ピッカース 硬度						
┝╾┑	800	7nm	0.2%	13GPa	6nm	0.2%	13GPa						
	1000	9nm	0.2%	14GPa	7nm	0.1%	15GPa						
မွ	1200	11nm	0.1%	15GPa	9nm	0.1%	15GPa						
■	1400	14nm	0.1%	14GPa	13nm	0.1%	14GPa						
焼結温度(°C)		19nm	0.3%	13GPa	16nm	0.3%	14GPa						
整	1500	60nm	1.8%	13GPa	47nm	1.7%	13Gpa						

*: 比較例

[0055]

表12の結果より、焼結温度800~1500℃,焼結圧力200~5000MPaの 条件を用いて得たセラミックス複合材料の平均結晶粒径は30 n m以下であることが判明 した。焼結温度が1600℃を超えると粒成長が著しく促進されて平均結晶粒径が30 n mより大きくなり、セラミックス複合材料表面のラップ研磨面の平均面粗さが所望の精度 を保つことができなかった。

[0056]

また、表12の結果より、上記焼結条件を用いた焼結体のオープンポア率は1%未満と 良好であることが判明した。オープンポア率が1%より大きくなると、例えばガラス成形 型として使用した場合に、ガラスがポア部分に入り込み離型性や転写面に突起が発生する 等の問題が発生する。

【実施例7】

[0057]

市販の平均粒径 0. 5 μ mの S i 3 N 4 粉末に、焼結助剤として 2. 5 w t %の Y 2 O 3 粉末と 1 w t %のA 1 2 O 3 粉末を加え、更に平均粒径 0 . 5 μ mの金属 T i 粉末を 3 0 w t %を加えた後に、平均粒径 5 μ mのグラファイト粉末を表 1 3 に示す割合を加えて 混合した粉末を、0.1MPaの窒素雰囲気中において、Si3N4製ボールを用いたボ ールミル装置により加速度150Gで12時間かけて混合を行った。

[0058]

【表13】

試験No.	焼結粉末中に添加した グラファイト量(wt%)
7-1*	1
7-2	2
7-3	20
7-4	40
7-5	60
7-6	80
7-7	98
7-8*	99

*:比較例

[0059]

[0060]

次に前記二次複合粒子粉末を用いて、焼結温度1200℃/焼結圧力1000MPaの条件で真空雰囲気中で焼結してセラミックス複合材料を得た。この際の温度測定は、ダイス表面の温度を二色温度計で測定した。

[0061]

得られたセラミックス複合材料に対して研削、ラッピング処理を施した後、平均結晶粒径,オープンポア率,曲げ強度評価を実施した。また、光学ガラスを型成形した際の離型性を確認するために、Hellma社製Pyrexガラスを用いて評価を行った。評価方法は、 ϕ 20mmに切り出したのち面粗さ0.02 μ m(Ra)に表面ラップ研磨を施した本セラミックス複合材料を型に用いて、 ϕ 10mmの上記Pyrexガラスを成形温度720 $\mathbb C$,成形圧力10MPa条件で60秒プレスした。500回のガラス成形試験を行い、以下の内容で離型性の評価を行った。まず成形終了後にPyrexガラスが外力を加えずに型と分離し、そのPyrexガラスの外観検査において欠け,割れ,くもりがなく、成形後のPyrexガラスの転写面の面粗さが0.03 μ m(Ra)以下のものを良品、成形後のPyrexガラスの転写面の面粗さが0.03 μ m(Ra)以下のものを良品と判断した。良品数を成形試験回数で割った百分率の数値を離型性(%)と定義する。例えば、500回の成形試験で良品が50個得られれば離型性は10%となる。以上の結果を表14に示す。

[0062]

【表14】

試験No.	グラファイト量 (wt%)	オープンホア率 (%)	平均粒径 (nm)	曲げ強度 (MPa)	Pyrexがラスの 離型性(%)
7-1*	1	1.4	53	1350	23
7-2	2	0.4	28	1326	64
7-3	20	0.2	19	1107	99
7-4	40	0.1	14	863	100
7-5	60	0.2	15	620	100
7-6	80	0.3	15	377	98
7-7	98	0.6	17	134	96
7-8*	99	焼結せず	焼結せず	焼結せず	焼結せず

Pyrexがうえの : 720℃/10MPaの加圧条件で、60secプレスした。 テスト回数n=500 離型性試験

[0063]

表14の結果より、グラファイト含有量2~98wt%のセラミックス複合材料の場合 、オープンポア率1%未満、平均粒径30nm以下を満たした。更にPyrexガラスと の離型性もグラファイト含有率20~98wt%では95%以上と非常に良好であり、含 有率2%でも離型性が60%以上であり、型として十分使用できる結果が得られた。また グラファイト含有量1wt%の場合は、離型性が非常に悪化した。またグラファイト含有 量90wt%を超えると焼結が困難となり、含有量98wt%では数回に1回は焼結体が 製造できるが、含有量99wt%を超えると全く焼結体を得ることが不可能となる。

【実施例8】

[0064]

表 1 5 に示すように 4 0 w t % の平均粒径 0 . 5 μ mのセラミックス粉末(1)、 2 0 w t %の平均粒径 0. 5 μ mのセラミックス粉末(2)、残部の平均粒径 5 μ m以下のカーボ ン粉末及び必要に応じて加える焼結助剤を表15に示す組成で配合し、ボールミルを用い て加速度150Gで12時間かけて混合し、混合粉末を得た。

[0065]

【表15】

武験No.	セラミックス粉末(1)	セラミックス粉末(2)	カーボン	焼結助剤
8-1	SiC	ZrCN	С	1wt%Al ₂ O ₃
8-2	Si ₃ N ₄	TICN	GC	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃
8-3	AIN	GrN	С	0.6wt%Y2O3
8-4	Al ₂ O ₃	MoO2	С	_
8-5	3Y-ZrO2	wc	GC	_
8-6	SiC	VN	GC	1wt%Al ₂ O ₃
8-7	Si3N4	TiCO	C	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃
8-8	スピネル	NbHfC	C60	0.6wt%Y ₂ O ₃
8-9	β-サイアロン	TaNbC	CNT	-
8-10	ムライト	TaNbN	Cブラック	
8—11	Si ₃ N ₄	TiCN	CNF	

[0066]

得られた二次複合粒子粉末を透過電子顕微鏡で観察した結果、平均粒径は30nm以下 であった。

[0067]

次に前記二次複合粒子粉末を用いて焼結温度1200℃/焼結圧力1000MPaの条 件で真空雰囲気中で焼結してセラミックス複合材料を製造した。この際の温度測定は、ダ イス表面の温度を二色温度計で測定した。

得られたセラミックス複合材料に研削,ラッピング処理を施した後、オープンポア率, 平均粒径,曲げ強度評価を実施した。更にHellma社製Pyrex光学ガラスを型成 形した際の離型性評価を確認するため、Pyrexガラスを720℃/10MPaの条件 でプレスした後の離型状態を実施例7と同様に500回の成形試験を行い評価した。以上 の結果を表16に示す。

[0068]

【表16】

試験No.	オープンポア率 (%)	平均粒径 (nm)	曲げ強度 (MPa)	Pyrexがうスの 離型性(%)
8-1	0.2	15	514	100
8-2	0.1	14	860	100
8-3	0.2	16	508	100
8-4	0.1	20	341	100
8-5	0.1	14	815	100
8-6	0.1	13	508	100
8-7	0.1	16	860	100
8-8	0.2	15	61	100
8-9	0.2	21	547	100
8-10	0.1	18	39	100
8-11	0.2	20	800	100

Pyrexがうスの:720℃/10MPaの加圧条件で、60secプレスした。

離型性試験 テスト回数n=500

【実施例9】

[0069]

表 17に示すような平均粒径 0.5μ mのセラミックス粉末を用い、残部を平均粒径 5μ m以下のカーボン粉末とし、これに必要に応じて焼結助剤を加えて表 17に示す組成の配合とし、ボールミル装置を用いて加速度 150 Gで 12 時間かけて混合し、混合粉末を得た。

得られた二次複合粒子粉末を透過電子顕微鏡で観察した結果、平均粒径は30 n m以下であった。

[0070]

【表17】

セラミックス粉え	Rと用いた焼結助剤	グラファイト量(wt%)
セラミックス粉末	焼結助剤	クラファイト重(WL90)
SiC	1wt%Al ₂ O ₃	1*
Si ₃ N ₄	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃	2
AIN	0.6wt%Y ₂ O ₃	10
Al ₂ O ₃	-	20
3Y-ZrO ₂	-	40
	のY2O3で安定化したZrO2	60
· •		80
	[90
	ľ	98
	ì	99*

*:比較例

[0071]

次に前記複合粉末を焼結温度1200℃/焼結圧力1000MPaの条件で、セラミックス粉末がSi₃N4、AlNの場合はN2ガス雰囲気中で、また、セラミックス粉末がSiC、Al2O3、3Y-ZrO2(3wt%のY2O3で安定化したZrO2)の場合はAr

ガス雰囲気中でそれぞれ焼結してセラミックス複合材料を得た。この際の温度測定は、ダ イス表面の温度を二色温度計で測定した。

[0072]

得られたセラミックス複合材料に研削,ラッピング処理を施した後、オープンポア率, 平均粒径,曲げ強度評価を実施した。また、光学ガラスを型成形した際の転写精度と離型 性を確認するために、Hellma社製Pyrexガラスを用いて実施例7と同様に50 0回の成形試験を行って評価した。以上の結果を表18に示す。

[0073]

【表18】

オ ー	ブンポア卑		グラファイト含有量(%)											
(%)		1*	2	10	20	40	60	80	90	98	99*			
セラミックス粉末	SiC	1.4	0.5	0.2	0.1	0.1	0.1	0.2	0.3	0.7	焼精せず			
	Si3N4	1.4	0.4	0.2	0.1	0.1	0.1	0.2	0.2	0.6	焼結せず			
	AIN	1.6	0.6	0.3	0.2	0.2	0.2	0.3	0.3	0.7	焼結せず			
	Al ₂ O ₃	1.5	0.6	0.3	0.2	0.1	0.1	0.2	0.2	0.8	焼箱せず			
4	3Y-ZrO2	1.4	0.4	0.2	0.1	0.1	0.1	0.2	0.3	0.6	焼精せす			

	P均粒径	グラファイト含有量(%)									
'	(nm)	1*	2	10	20	40 -	60	80	90	98	99*
11/	SiC	52	26	20	17	15	16	17	19	21	焼結せず
安米	SisN4	54	24	18	15	14	14	15	17	20	焼箱せず
77	AIN	62	27	19	17	16	16	17	17	22	焼結せず
73%	Al ₂ O ₃	60	30	21	18	17	17	18	18	24	. 焼結せず
t)	3Y-ZrO2	56	26	19	16	14	14	15	16	21	焼箱せず
	0.2.02					L	L.,	'			*:比较多

グラファイト含有量(%) 曲げ強度 99* (MPa) 90 98 80 10 20 40 60 1* 2 260 195 130 焼箱せず 650 520 390 715 SIC 780 767 セラミックス粉末 364 252 139. 焼結せず 589 815 1265 1242 1152 1040 SiaN4 166 126 焼粕せず 207 449 368 288 522 490 530 AIN 260 711 · 646 517 389 195 131 焼結せず 762 775 eOslA 焼箱せす 243 136 351 995 780 566 1189 1103 3Y-ZrO2 1210

*: 比較例

Pv	rexがうえの		グラファイト含有量(%)													
	型性(%)	1*	1*	1*	1*	1*	1*	2	10	20	40	60	80	90	98	99*
JE	SiC	24	65	84	98	100	100	100	100	93	焼箱せず					
粉末	SisN4	20	61	81	99	100	100	100	100	95	焼結せず					
グス	AIN	21	63	79	93	100	100	100	98	91	焼結せず					
JE.	Al ₂ O ₃	18	60	75	90	100	100	99	96	90	焼結せず					
Ę⊋	3Y-ZrO2	22	63	83	94	100	100	100	100	92	焼箱せず					

*: 比較例

Pyrexがうえの: 720℃/10MPaの加圧条件で、60secプレスし 離型性試験 た。

【実施例10】

[0074]

市販の平均粒径 0. 5 μ mの S i C 粉末に、焼結助剤として 2. 5 w t %の Y 2 O 3 粉 出証特2004-3091812

[0075]

得られた二次複合粒子粉末をXRDにて定性分析を行ったところ、SiC、CrN、CrCN、CrC及びCのブロードなピークを確認することができた。また、この二次複合粒子粉末を透過電子顕微鏡で観察した結果、平均粒径は30nm以下であった。

[0076]

次に前記二次複合粒子粉末を表19に示す条件で真空雰囲気中で焼結してセラミックス 複合材料を得た。この際の温度測定は、ダイス表面の温度を二色温度計で測定した。

【0077】 【表19】

焼結時に採用	引した温度・圧力条件			
焼結温度	焼結圧力			
400°C*	100MPa*			
600°C*	200MPa			
800°C	500MPa			
1000°C	1000MPa			
1200°C	5000MPa			
1400°C	10000MPa			
1500°C	*:比較例			
1600°C*				

[0078]

得られたセラミックス複合材料に研削、ラッピング処理を施した後、Hellma社製Pyrex光学ガラスを型成形した際の離型性評価を確認するため、<math>Pyrexガラスを720 C/10 MPaの条件でプレスした後の離型状態を実施例7と同様に500回の成形試験を行って評価した。以上の結果を表20に示す。

[0079]

【表20】

Pyrexかうスの 離型性(%)		焼結圧力(MPa)							
		100*	200	500	1000	5000	10000		
400*		焼結せず	焼結せず	焼結せず	破損	破損	破損		
	600*	破損	破損	破損	43	. 66	69		
at	800	破損	90	95	100	100	100		
度(°C)	1000	13	91	96	100	100	100		
頭	1200	15	93	97	100	100	100		
焼結温	1400	16	92	99	100	100	100		
	1500	17	92	99	100	100	100		
	1600*	15	18	16	22	21	23		

*:比較例

離型性試験

Pyrexかうスの : 720℃/10MPaの加圧条件で、60secプレスした。

テスト回数n=500

[0080]

表20の結果より、焼結温度800~1500℃,焼結圧力200MPa以上の条件を 用いて得た焼結体とPyrexガラスとの離型性は良好であることが判明した。しかし焼 結温度1600℃になると、粒成長が促進されて離型性が著しく低下する。また、焼結温 度600℃で焼結圧力1000MPa以上の場合は離型性を示すが、それ以下の焼結圧力 で得られた焼結体を用いると、成形中の加圧力に型が耐えられず破損した。そして焼結温 度400℃となると焼結体を得ることが困難となる。

【実施例11】

[0081]

市販の平均粒径 0. 5 μ mの S i C粉末に、焼結助剤を添加せず、平均粒径 5 μ mのグ ラファイト粉末を表21に示す割合を加えて混合した粉末を、0.1MPaの窒素雰囲気 中において、Si3N4製ボールを用いたボールミル装置により加速度150Gで12時 間かけて混合を行った。

[0082]

【表21】

セラミックス (SiC) (重量部)	グラファイト (重量部)				
99	1 2 10 20 40 60 80				
98					
90					
80					
60					
40					
20					
10	90				
2					
1	99				

[0083]

得られた二次複合粒子粉末をXRDにて定性分析を行ったところ、SiC及びCのブロードなピークを確認することができた。また、この二次複合粒子粉末を透過電子顕微鏡で観察した結果、平均粒径は30nm以下であった。

[0084]

次に前記二次複合粒子粉末を用いて、焼結温度1200℃/焼結圧力1000MPaの条件で真空雰囲気中で焼結してセラミックス複合材料を得た。この際の温度測定は、ダイス表面の温度を二色温度計で測定した。

[0085]

得られたセラミックス複合材料を用いて、ZnSセラミックスを型焼結した際の離型性を確認するために、市販のZnS粉末を用いて評価を行った。評価方法は、 $\phi20$ mmに切り出したのち面粗さ0.02 μ m(Ra)に表面ラップ研磨を施した本セラミックス複合材料を型に用いて、 $\Phi20$ mmの上記ZnSセラミックスを焼結温度1000C,成形圧力50MPaの条件でプレスした。100回の成形試験を行い、以下の内容で離型性の評価を行った。まず成形終了後にZnSセラミックスが外力を加えずに型と分離し、成形後のZnSセラミックスに欠け、割れ、変色がなく、成形後のZnSセラミックスの転写面の面粗さが0.03 μ m(Ra)以下のものを良品と判断した。良品数を成形試験回数で割った百分率の数値を離型性(%)と定義する。例えば、100回の成形試験で良品が50

[0086]

【表22】

Til LL ded	グラファイト 含有量 (重量部)	1	2	10	20	40	60	80	98	99
型材料	SiC 含有量 (重量部)	99	98	90	80	60	40	20	2	1
評価結果	離型性(%)	0	0	12	86	100	100	100	67*	型破損

*68回目で型が破損した

焼結条件 1200℃ 1000MPa

【産業上の利用可能性】

[0087]

本発明のセラミックス複合材料は優れた耐摩耗性、低摩擦性及びガラス、樹脂、セラミックス等との高い離型性を有するため、切削工具、摺動部材、モールド型材料としての利用性が高い。

【書類名】要約書

【要約】

切削工具、摺動部材、モールド型材料等に適した髙耐摩耗・低摩擦のセラミッ 【課題】 ク材料を提供すること。

【解決手段】 平均結晶粒径 3 µ m以下好ましくは 3 0 n m以下の、炭素を主成分とする 相とセラミックス相(但し、炭素を除く)とからセラミックス複合材料を構成する。セラ ミックス相は、Al, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo、Wの窒化 物、炭化物、酸化物、複合窒化物、複合炭化物、複合酸化物、炭窒化物、酸窒化物、炭窒 酸化物及び炭酸化物よりなる群から選ばれる少なくとも1種である。この複合材料は、原 料粉末を焼結温度800~1500℃、焼結圧力200MPa以上で焼結することによっ て得られる。

【選択図】 なし

特願2004-282952

出願人履歴情報

識別番号

[000002130]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住所氏名

大阪府大阪市中央区北浜四丁目5番33号

住友電気工業株式会社