

# Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

#### Домашнее задание №\_1\_

по курсу

«Сжижение природного газа»

Вариант 2(9)

Группа: Э4-111

Выполнил студент:

Жалялетдинов Р.Х.

Проверил:

Семенов В.Ю.

Москва 2020 г.

#### Условие (вариант 2):

Рассчитать параметры в характерных точках установки СПГ с дроссель-эжектором и предварительным охлаждением, работающей по циклу высокого давления.

Теплопритоками из окружающей среды пренебречь, адиабатный КПД компрессора принять равным 0.8, использовать рекомендованный к ожижению состав газа без содержания гелия и водорода.

#### Исходные данные (вариант 9):

давление сжатия  $p_{np}$ =25  $M\Pi a$  температура окружающей среды  $T_{o.c}$ =300 K температура предварительного охлаждения  $T_{np.oxn}$ =213 K

#### Дополнительные исходные данные:

давление всасывания в компрессор  $p_{sc}=1.25~M\Pi a$  давление в хранилище СПГ  $p_{sc}=0.35~M\Pi a$  неполнота рекуперации теплоты в теплообменнике № 1 на уровне температуры окружающей среды (величина недогрева обратного потока)  $\Delta T_I = 10~K$  неполнота рекуперации теплоты в теплообменнике № 3 на уровне температуры предварительного охлаждения  $\Delta T_3 = 5~K$ 

В задании должны быть представлены схемы и изображения цикла в T-s и q-T - диаграммах, параметры основных точек цикла должны быть сведены в таблицу. Должны быть также определены коэффициент ожижения и удельные затраты электроэнергии.

#### 1. Технологическая схема цикла:



### 2. Таблица параметров основных точек:

|                    | Material Streams |        |             |        |             |             |             |             |             |        |             |        |             |
|--------------------|------------------|--------|-------------|--------|-------------|-------------|-------------|-------------|-------------|--------|-------------|--------|-------------|
|                    |                  | 2      | 3           | 4      | 5           | 6           | 7           | 8           | 9           | 13     | 14          | 15     | 10          |
| Vapour Fraction    |                  | 1,0000 | 1,0000      | 1,0000 | 1,0000      | 1,0000      | 1,0000      | 1,0000      | 0,0000      | 1,0000 | 1,0000      | 1,0000 | 0,0000      |
| Temperature        | K                | 389,5  | 300,0       | 398,0  | 300,0       | 396,4       | 300,0       | 263,7       | 213,0       | 198,2  | 290,0       | 290,0  | 193,3       |
| Pressure           | MPa              | 3,393  | 3,393       | 9,210  | 9,210       | 25,00       | 25,00       | 25,00       | 25,00       | 1,250  | 1,250       | 1,250  | 25,00       |
| Molar Flow         | kgmole/h         | 569,6  | 569,6       | 569,6  | 569,6       | 569,6       | 569,6       | 569,6       | 569,6       | 350,7  | 350,7       | 349,9  | 569,6       |
| Mass Flow          | kg/s             | 2,856  | 2,856       | 2,856  | 2,856       | 2,856       | 2,856       | 2,856       | 2,856       | 1,861  | 1,861       | 1,856  | 2,856       |
| Liquid Volume Flow | m3/h             | 28,80  | 28,80       | 28,80  | 28,80       | 28,80       | 28,80       | 28,80       | 28,80       | 17,10  | 17,10       | 17,07  | 28,80       |
| Heat Flow          | kW               | -9468  | -1,002e+004 | -9490  | -1,016e+004 | -9640       | -1,039e+004 | -1,070e+004 | -1,117e+004 | -5793  | -5482       | -5470  | -1,135e+004 |
|                    |                  | 16     | LNG         | 18     | 17          | 11          | 12          | 20          | 21          | 0      | 1           | 19     |             |
| Vapour Fraction    |                  | 0,0000 | 0,0000      | 1,0000 | 0,1921      | 0,5644      | 1,0000      | 0,5054      | 1,0000      | 1,0000 | 1,0000      | 1,0000 |             |
| Temperature        | K                | 147,0  | 125,8       | 125,8  | 125,8       | 147,0       | 147,0       | 146,5       | 188,4       | 300,0  | 294,0       | 188,4  |             |
| Pressure           | MPa              | 1,250  | 0,3500      | 0,3500 | 0,3500      | 1,250       | 1,250       | 1,250       | 1,250       | 1,250  | 1,250       | 1,250  |             |
| Molar Flow         | kgmole/h         | 270,7  | 218,7       | 51,99  | 270,7       | 621,4       | 350,7       | 569,6       | 51,77       | 219,7  | 569,6       | 51,99  |             |
| Mass Flow          | kg/s             | 1,258  | 0,9945      | 0,2639 | 1,258       | 3,119       | 1,861       | 2,856       | 0,2627      | 1,000  | 2,856       | 0,2639 |             |
| Liquid Volume Flow | m3/h             | 14,29  | 11,69       | 2,603  | 14,29       | 31,39       | 17,10       | 28,80       | 2,592       | 11,74  | 28,80       | 2,603  |             |
| Heat Flow          | kW               | -6308  | -5343       | -965,1 | -6308       | -1,229e+004 | -5977       | -1,135e+004 | -935,4      | -4531  | -1,000e+004 | -939,1 |             |

| Compositions              |        |        |        |        |        |        |        |        |        |        |        |        |
|---------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                           | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 13     | 14     | 15     | 10     |
| Comp Mole Frac (Methane)  | 0,8349 | 0,8349 | 0,8349 | 0,8349 | 0,8349 | 0,8349 | 0,8349 | 0,8349 | 0,7447 | 0,7447 | 0,7447 | 0,8349 |
| Comp Mole Frac (Ethane)   | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0000 | 0,0000 | 0,0000 | 0,0004 |
| Comp Mole Frac (CO2)      | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0001 | 0,0001 | 0,0001 | 0,0004 |
| Comp Mole Frac (Nitrogen) | 0,1633 | 0,1633 | 0,1633 | 0,1633 | 0,1633 | 0,1633 | 0,1633 | 0,1633 | 0,2552 | 0,2552 | 0,2552 | 0,1633 |
| Comp Mole Frac (i-Butane) | 0,0006 | 0,0006 | 0,0006 | 0,0006 | 0,0006 | 0,0006 | 0,0006 | 0,0006 | 0,0000 | 0,0000 | 0,0000 | 0,0006 |
| Comp Mole Frac (Propane)  | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0004 | 0,0000 | 0,0000 | 0,0000 | 0,0004 |
|                           | 16     | LNG    | 18     | 17     | 11     | 12     | 20     | 21     | 0      | 1      | 19     |        |
| Comp Mole Frac (Methane)  | 0,9477 | 0,9795 | 0,8137 | 0,9477 | 0,8331 | 0,7447 | 0,8349 | 0,8140 | 0,9784 | 0,8349 | 0,8137 |        |
| Comp Mole Frac (Ethane)   | 0,0008 | 0,0010 | 0,0000 | 0,0008 | 0,0004 | 0,0000 | 0,0004 | 0,0000 | 0,0010 | 0,0004 | 0,0000 |        |
| Comp Mole Frac (CO2)      | 0,0008 | 0,0010 | 0,0000 | 0,0008 | 0,0004 | 0,0001 | 0,0004 | 0,0000 | 0,0010 | 0,0004 | 0,0000 |        |
| Comp Mole Frac (Nitrogen) | 0,0486 | 0,0158 | 0,1863 | 0,0486 | 0,1652 | 0,2552 | 0,1633 | 0,1860 | 0,0170 | 0,1633 | 0,1863 |        |
| Comp Mole Frac (i-Butane) | 0,0013 | 0,0016 | 0,0000 | 0,0013 | 0,0006 | 0,0000 | 0,0006 | 0,0000 | 0,0016 | 0,0006 | 0,0000 |        |
| Comp Mole Frac (Propane)  | 0,0008 | 0,0010 | 0,0000 | 0,0008 | 0,0004 | 0,0000 | 0,0004 | 0,0000 | 0,0010 | 0,0004 | 0,0000 |        |

| Energy Streams |    |       |       |       |       |       |       |        |       |  |
|----------------|----|-------|-------|-------|-------|-------|-------|--------|-------|--|
|                |    | q-1   | lk-1  | lk-2  | q-2   | lk-3  | q-3   | q(R22) | lk-4  |  |
| Heat Flow      | kW | 551,3 | 532,4 | 529,9 | 665,8 | 515,7 | 745,9 | 469,1  | 26,02 |  |

# 3. Таблица с удельными затратами электроэнергии и коэффициентом ожижения:

| 532,4 kW        |
|-----------------|
| 529,9 kW        |
| 515,7 kW        |
| 469,1 kW        |
| 2047 kW         |
| 1,028e+004 kg/h |
| 3580 kg/h       |
| 0,3482          |
| 0,5718          |
|                 |

# 4. Q-Т диаграммы теплообменных аппаратов:



# 5. Т-S диаграмма цикла:

