문) Meanshift 추적에 대해 (무엇인지, 장점, 단점 등) 정리하시오.

답)

Question	Answer
무엇인지	 관심영역(ROI: Region Of Interest) 객체의 데이터 집합의 밀도분포(특징점, 코너, 색상)를 기반하여 고속으로 추적하는 방법 사용 알고리즘: 평균 이동 알고리즘 : 영상에서 일정 반경 크기의 커널 윈도로 픽셀 값의 평균 값을 커널의 중심으로 바꿔서 이동하는 것을 반복해 그 주변의 가장 밀집한 곳(peak)을 찾는 방법 Mode seeking 알고리즘: 특정 데이터들이 중심(mean)으로 이동(shift) Hill Climb 탐색 방법의 일종
	- 기본 아이디어
	이 이 이 이 이 부 후 중신

 어떤 데이터 분포의 peak 또는 무게중심을 찾는 한 방법으로서, 현재 자신의 주변에서 가장 데이터가 밀집된 방향으로 이동
 그러다 보면 언젠가는 분포 중심을 찾을 수 있을 거라는 방법

- 추적하고자 하는 대상 물체에 대한 색상 히스토그램(histogram)과 현재 입력 영상의 히스토그램을 비교해서 가장 유사한 히스토그램을 갖는 윈도우 영역을 찾는 것

전	ᇸ
	771

절차	
Step	Process
히스토그램	- 색상 모델은 RGB, HSV, YCbCr 등 어느것을 써도 무방
구하기	- 또는 그레이(gray)를 사용하거나 HSV의 H(Hue)만 사용해도 됨
	- 히스토그램은 윈도우에 들어오는 픽셀들에 대해 각 색상별로 픽
	셀 개수를 센 다음에 확률적 해석을 위해 전체 픽셀수로 나눠줌
히스토그램	- 현재 입력 영상에 있는 픽셀 색상값이 추적하고자 하는 객체 모
백프로젝션	델에 얼마나 많이 포함되어 있는 색인지를 수치화하는 과정
	- 모델 히스토그램을 Hm, 입력 이미지 I의 픽셀 x에서의 색상값을
	l(x)라 하면 백프로젝션 값은 w(x) = Hm(l(x))
	- 보통은 현재 입력 영상에 대한 히스토그램 H를 구한 후
	w(x) = sqrt{Hm(I(x))/H(I(x))} 와 같이 모델 히스토그램 값을 현재
	영상 히스토그램 값으로 나누는 것이 일반적
Mean	- 히스토그램 백프로젝션을 통해 얻은
Shift 적용	w값들을 일종의 확률값처럼 생각하 $\sum_{w(oldsymbol{x}_i)} w(oldsymbol{x}_i) oldsymbol{x}_i K(r_i)$
	고 mean shift를 적용하는 것 $\mathbf{x}_{new} = \frac{\sum w(\mathbf{x}_i)\mathbf{x}_i K(r_i)}{\sum w(\mathbf{x}_i) K(r_i)}$ - 이전 영상 프레임(frame)에서의 물체
	- 이전 영상 프레임(frame)에서의 물체 $\sum w(\mathbf{x}_i)K(r_i)$ 의 위치를 초기 위치로 해서 다음과
	의 귀시할 오기 귀시도 에서 다음의 같이 mean shift를 적용
	- w를 가중치(weight)로 해서 현재 윈도우(window)내에 있는 픽셀
	작표들의 가중평균(무게중심) 위치를 구하는 것
	- 이렇게 구한 x _{new} 가 새로운 윈도우의 중심이 되도록 윈도우를 이
	동시킨 다음에 수렴할 때까지 이 과정을 반복
	- 커널함수는 배경의 영향을 줄이기 위한 목적으로 사용하는데, 윈
	도우 중심에서 가장 높은 값을 갖고 중심에서 멀어질수록 값이
	작아지는 방사형의 symmetric 함수가 주로 사용됨
	- 실제 커널 함수로는 Epanechnikov 함수가 주로 사용
	$K_{\mathcal{Z}}(\mathbf{x}) = \begin{cases} c\left(1 - \ \mathbf{x}\ ^2\right) & \ \mathbf{x}\ \le 1\\ 0 & \text{otherwise} \end{cases}$
	0 otherwise
치스트그래	드 취소트그램 내 (64 등의 보호 (64 등의 보이어 오보트트
히스토그램 유사도 측	11 11 11 11 11 11 11 11 11 11 11 11 11
유사도 득 정	보통 Bhattacharyya 계수(coefficient)를 이용해서 계산 -
0	Bhattacharyya(H_1,H_2)= $\sum \sqrt{p_i q_i}$
	$p_i = \sum_{i=1}^{n} \sqrt{p_i q_i}$
	Db-sta-sh-sware 게스트 드 취소드크레이 이번호 때 비디카 4 브
	- Bhattacharyya 계수는 두 히스토그램이 일치할 때 최대값 1, 상
무눼이 그	관성이 하나도 없으면 최소값 0
물체의 크 기(scale)	- mean shift로 위치를 찾은 다음에 윈도우의 크기를 조금씩 변경 시켜 보면서 모델 히스토그램과 현재 윈도우 영역에 대한 히스
기(scale) 결정	지거 오인지 오늘 이스도그림과 연재 윈도우 영역에 대한 이스 토그램을 비교
20	- Bhattacharyya 계수가 가장 큰 경우를 찾으면 됨
	Dilattacharyya / II / I / I O L OTE X = L T

장점	- 고속 추적이 가능한 알고리즘
	- 히스토그램의 특성상 위치정보는 고려하지 않기 때문에 물체의 형태가 변해도 추적이 가
	능
	- 단순한 환경(공장자동화 응용, 배경도 단색, 물체도 단색)에서는 최고의 tracker
단점	- 효과적이기는 하지만 local minimum에 빠지기 쉬움
	- 초기위치(출발위치)에 따라서 최종적으로 수렴하는 위치가 달라질 수 있음
	- 탐색 윈도우(탐색 반경)의 크기를 정하는 것이 쉽지 않음
	(특히 영상 추적의 경우 대상 물체의 크기, 형태 변화에 따라 탐색 윈도우의 크기나 형태
	를 적절히 변경해 주어야 하는데 이게 적절히 변경되지 않으면 추적 성능에 많은 영향을
	끼치게 됨)
	- 색상을 기반으로 하므로 추적하려는 객체의 색상이 주변과 비슷하거나 여러가지 색상으
	로 이루어진 경우 효과를 보기 어려움
	- 객체의 크기와 방향과는 상관없이 항상 같은 윈도를 반환
	- 더 많은 밀도를 가진 지역이 있어도 윈도 중심에 머물러 원하는 대로 추적되지 않을 수
	있음
	- 히스토그램의 특성상 위치정보는 고려하지 않기 때문에 색이 배치된 위치정보를 잃어버
	리기 때문에 물체의 색 구성이 배경과 유사한 경우에는 추적에 실패하기 쉬움
OpenCV	retval, window = cv.meanshift(problmage, window, creteria)
라이브러리	
	problmage: 검색할 히스토그램의 역투영 결과
	window: 검색 시작 위치, 검색 결과 위치(x, y, w, h)
	creteria: 검색 중지 요건, 튜플 객체로 전달
	type
	cv2.TERM_CRETERIA_EPS: 정확도가 epsilon 보다 작으면
	cv2.TERM_CRETERIA_MAX_ITER: max_iter 횟수를 채우면
	cv2.TERM_CRETERIA_COUNT: MAX_ITER와 동일
	max_iter: 최대 반복 횟수
	epsilon: 최소 정확도
	retval: 수렴한 반복 횟수
출처	[도서] 파이썬으로 만드는 OpenCV 프로젝트
	https://techlog.gurucat.net/146 https://darkpgmr.tistory.com/