My awesome presentation

A 15 minute LaTeX Beamer extravaganza

Bc. Jožko Mrkvička

Classic itemized list

This is some normal text with some items:

- List item one,
- List item two,
- and list item three.

And some more text.

Blocks

You can also highlight information in a so-called block

This is a block

Some information worth remembering.

Code and fragile frames

Beamer does not like code listings very much, so you will need to use the **fragile** modifier. This is an example of some Arduino code:

```
void setup() {
       // Pin D13 out
3
  void loop() {
       // turn LED on
6
       // wait 1 s
7
      // turn LED off
      // wait 1 s
10
```

Columns

Sometimes it is a good idea to divide the frame into two columns. You can use other environments in frames:

This is the content in the first (left) column.

Yet more information.

Chicken, chicken, chicken.

This is the content in the second (right) column.

Yet more information.

Chicken, chicken, chicken.

Part I

Parts

This is a stand-alone page separating parts. Use it sparingly, only for long presentations or lectures (>30-45 min).

Figures work the same exact way as in any other LATEXdocument:

This of course includes the subfigure environment.

References

You can and should use references. References are cited like in any other LATEX document, so we have [Takács et al., 2016] or [Asato et al., 2015, Stark et al., 2015] etc. References are inserted at the end of the presentation, are automatically broken up to frames and are not numbered.

Pauses

Pauses serve to gradually reveal parts of your frame. This will create more pages in the PDF (without advancing the frame counter) thereby achieving the desired result.

- Then you can go on the next portion of the information..
- ...and the next one

Pauses

Pauses serve to gradually reveal parts of your frame. This will create more pages in the PDF (without advancing the frame counter) thereby achieving the desired result.

- Then you can go on the next portion of the information...
- ...and the next one

Pauses

Pauses serve to gradually reveal parts of your frame. This will create more pages in the PDF (without advancing the frame counter) thereby achieving the desired result.

- Then you can go on the next portion of the information...
- ...and the next one

Combine the above tricks to create visually engaging presentations!

```
void setup() {
       // Pin D13 out
  void loop() {
       // turn LED on
       // wait 1 s
7
       // turn LED off
8
       // wait 1 s
10
```

Important information

Very important information

- List item one
- List item two
- List item three

Prezentácia záverečnej práce (BP/DP) I

- Dĺžka prezentácie je 15 min ani o minútu dlhšie.
- Počet strán cca. 1-2 na minútu, odporúčané je teda 10-20.
- Premietaná prezentácia slúži pre audienciu nie pre Vás. Spolu s tým čo hovoríte tvorí celok.
- Neprepĺňajte slide informáciami. (Ako napríklad tu.) Je absolútne dovolené mať jednu vetu resp. jednu fotku na slide a potom slovne vysvetliť všetko ostatné.
- Úvodná strana obsahuje názov práce a Vaše meno
- Žiadne úvody o všeobecnej teórii
- Musíte vysvetliť motiváciu. Motiváciu na napísanie BP/DP a motiváciu pre komisiu prečo dávať pozor
- Prezentujte hlavne svoj prínos, vlastnú prácu a vlastné výsledky
- Z prezentácie musí byť jasné čo ste robili vy, čo už ste mali dané, atď.
- Fotografie reálnych výstupov sú vysoko vítané...

Prezentácia záverečnej práce (BP/DP) II

- Začínajte s tím prečo ste robili to čo robíte, potom aké boli východiská, ďalej ako ste samotný problém riešili a na záver zhodnoťte dosiahnuté ciele, prípadne dajte ešte krátku víziu čo by sa dalo robiť do budúcnosti (ak tam je potenciál - samozrejme).
- Posledná snímka (slide) Poďakovanie za pozornosť...
- Po poďakovaní čakajte na vyzvanie a potom bude prezentácia pokračovať vopred pripravenými odpoveďami na otázky oponenta.
 Štýlom Otázka oponenta a pod ňou Vaša odpoveď... Môžete vložiť pár slideov až po poďakovaní kde uvediete otázky oponenta a Vaše odpovede na nich
- Ak máte videá z prezentácie dajte ich na záver svojej prezentácie, môže byť aj ako externý zdroj.

Prezentácia záverečnej práce (Dizertačná páca)

Okrem všeobecne platných princípov pre dizertačnú prácu platí

- Uvediete podstatný obsah svojej práce a jej výsledky
- v rozsahu najviac 25 min, skôr 20 min.
- Po závere a ešte pred poďakovaním vložíte tézy svojej práce.
- Tézy sú testovateľné vedecké hypotézy nie "zadania"!

Prezentácia záverečnej práce (Dizertačná páca)

Okrem všeobecne platných princípov pre dizertačnú prácu platí

- Uvediete podstatný obsah svojej práce a jej výsledky
- splnenie cieľov zadania
- prínos práce
- v rozsahu najviac 25 min, skôr 20 min.

Thank you for your attention!

Please feel free to contact me any time at jozko.mrkvicka@stuba.sk

References I

Asato, K., Nagado, T., and Tamaki, S. (2015).

Development of low cost educational material for learning fundamentals of mechatronics.

In 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), page 454-456.

Stark, B., Li, Z., Smith, B., and Chen, Y. (2015).

Take-home mechatronics control labs: a low-cost personal solution and educational assessment.

ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Volume 4: 18th Design for Manufacturing and the Life Cycle Conference; 2013

ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, pages 1-9.

Takács, G., Zometa, P., Findeisen, R., and Rohal-Ilkiv, B. (2016).

Embedded model predictive vibration control on low-end 8-bit microcontrollers via automatic code generation.

In ICSV 23: Proceedings of the 23rd International Congress on Sound and Vibrattion. Athens, Greece, 10-14 July, 2016, pages 266/1-266/8, Athens, Greece.