TERCEIRA LISTA DE EXERCÍCIO

Professor: Agostinho Brito Aluna: Samara Revoredo

QUESTÃO 1) Acerca dos problemas envolvidos no cálculo de fluxo óptico, descreva:

(a) Quais são as DUAS premissas para que um algoritmo de cálculo de fluxo óptico funcione corretamente.

- 1 Os pixels ou as regiões de pixels rastreadas não podem mudar drasticamente entre um quadro e outro pois possivelmente o algoritmo irá falhar, logo, as intensidades de cor de um pixel ou grupo de pixels não podem variar consideravelmente entre dois quadros da sequência.
 - 2 A vizinhança do pixel tem que ter uma movimentação similar pois

(b) Em que consiste o problema da abertura?

O problema da abertura acontece quando uma câmera não consegue detectar um movimento que o objeto está fazendo devido à falta de informação do entorno desse mesmo objeto, por exemplo, um objeto pode deslocar-se para baixo e para direita e a câmera só detectar que está indo para a direita. Assim, o problema da abertura é a situação que ocorre quando o observador avalia o movimento de um objeto por uma janela de pequena abertura.

(c) Descreva o princípio de funcionamento de um algoritmo de cálculo de fluxo óptico de sua escolha.

Fluxo óptico esparso - método de Harris-Shi-Tomasi: Propõe uma técnica para detecção de cantos utilizando o cálculo da matriz Hessiana da autocorrelação das imagens das derivadas segundas em uma pequena janela. A matriz de autocorrelação possui autovalores elevados naqueles pontos com arestas detectáveis por derivadas segundas em pelo menos duas direções. Harris propôs que se tomar o determinante dessa matriz e subtrair do traço, pode-se comparar essa diferença com um limiar pré-determinado, Shi e Tomasi propõe que tomando o menor dos dois autovalores e comparando com um limiar pré-estabelecido e suficiente para determinar se o ponto é rastreável (ponto de esquina).

$$H(p) \simeq \begin{bmatrix} \sum_{-K \le i, j \le K} I_x^2(x+i, y+j) & \sum_{-K \le i, j \le K} I_x(x+i, y+j) I_x(x+i, y+j) \\ \sum_{-K \le i, j \le K} I_x(x+i, y+j) I_x(x+i, y+j) & \sum_{-K \le i, j \le K} I_x^2(x+i, y+j) \end{bmatrix}$$

QUESTÃO 2) Sobre o tema de Morfologia Matemática, responda o que se pede:

(a) Para que servem as operações de abertura e fechamento morfológico?

Abertura:

- 1. Suaviza contornos
- 2. Quebra canais
- 3. Elimina saliências finas
- 4. Remover pequenas regiões

Fechamento:

- 1. Suaviza contornos
- 2. Funde descontinuidades estreitas
- 3. Elimina pequenos buracos
- 4. Preenche lacunas em um contorno

(b) Fundamente MATEMATICAMENTE as duas operações. Meras descrições serão desconsideradas.

A operação de abertura é uma erosão seguida de uma dilatação, na erosão irá corroer todos os contornos dos objetos, sua fórmula é dado por:

$$A \ominus B = \{z \mid (B)_z \subseteq A\}$$

Na dilatação, irá expandir as fronteiras dos conjuntos, sua fórmula é dada por:

$$A \oplus B = \{z \mid (\hat{B})_z \cap A \neq \emptyset\}$$

Logo a fórmula da abertura será:

$$A \circ B = (A \ominus B) \oplus B$$

Já o fechamento é uma dilatação seguida de uma erosão, portanto a fórmula do fechamento será:

$$A \bullet B = (A \oplus B) \ominus B$$

(c) Dê exemplos de uso de APENAS UMA DELAS.

Exemplo de abertura: Elimina o ruído externo do quadrado branco na figura abaixo:

- Original:

- Após abertura:

QUESTÃO 3) Descreva o funcionamento de um compressor de imagens, detalhando a operação de cada um dos seguintes blocos:

Comprimir imagens significa utilizar técnicas para reduzir a quantidade de bytes necessários para armazenar imagens, baseando-se na informação redundante presente nas imagens.

(a) Mapeador

Converte a imagem para uma representação alternativa, visando reduzir a redundância inter-pixel.

(b) Quantizador

Reduz a qualidade do resultado do mapeador, de acordo com um critério de fidelidade, é irreversível. Em técnicas de compressão sem perdas, o quantizador não é usado.

(c) Codificador de Símbolos

Codifica os símbolos gerados pelo quantizador visando minimizar redundâncias.

QUESTÃO 4) Descreva, em linhas gerais, os princípios de funcionamento do algoritmo de compressão JPEG.

O algoritmo jpeg é uma compressão com perdas em que a imagem é subdividida em blocos de 8x8 pixels, os valores dos pixels dos blocos são deslocados em -128 níveis, é calculado a Transformada Discreta de Cossenos (DCT) direta da matriz, após isso é realizado a normalização dos dados usando uma matriz especial Z, e por fim, a sequência é recuperada em zigzag e codificada usando Huffman. Exemplo:

Algoritmo JPEG - Exemplo

55	52	61	66	70	61	64	73
63	59	66	90	109	85	69	72
62	59	68	113	144	104	66	73
63	58	71	122	154	106	70	69
67	61	68	104	126	88	68	70
79	65	60	70	77	68	58	75
85	71	64	59	55	61	65	83
87	79	69	68	65	76	78	94

Bloco 8 × 8

-76	-73	-67	-62	-58	-67	-64	-55
-65	-69	-62	-38	-19	-43	-59	-56
-66	-69	-60	-15	16	-24	-62	-55
-65	-70	-57	-6	26	-22	-58	-59
-61	-67	-60	-24	-2	-40	-60	-58
-49	-63	-68	-58	-51	-65	-70	-53
-43	-57	-64	-69	-73	-67	-63	-45
-41	-49	-59	-60	-63	-52	-50	-34

Deslocamento de -128

-415	-29	-62	25	55	-20	-1	3
7	-21	-62	9	11	-7	-6	6
-46	8	77	-25	-30	10	7	-5
-50	13	35	-15	-9	6	0	3
11	-8	-13	-2	-1	1	-4	1
-10	1	3	-3	-1	0	2	-1
-4	-1	2	-1	2	-3	1	-2
-1	-1	-1	-2	-1	-1	0	-1

DCT

	16	11	10	16	24	40	51	61
Γ	12	12	14	19	26	58	60	55
Γ	14	13	16	24	40	57	69	56
	14	17	22	29	51	87	80	62
	18	22	37	56	68	109	103	77
	24	35	55	64	8	104	113	92
	49	64	78	87	103	121	120	101
	72	92	95	95	98	100	103	99

Matriz de Normalização

QUESTÃO 5) Descreva uma técnica de representação e descrição externa da sua escolha

Polígono de perímetro mínimo - É um polígono que consegue ligar regiões ao redor de um objeto utilizando o menor comprimento possível, portanto, percorre-se a fronteira procurando vértices côncavos (Pretos) ou convexos (Brancos). Todo vértice convexo é um vértice branco, mas nem todo vértice branco pertence ao polígono, assim também, todo vértice côncavo espelhado do MPP é um vértice preto, mas nem todo vértice preto pertence ao MPP. Os vértices pretos estão no MPP ou fora dele e os vértices brancos estão no MPP ou dentro dele. A figura abaixo exemplifica o funcionamento dessa técnica.

QUESTÃO 6) Descreva uma técnica de representação e descrição interna da sua escolha

<u>Momentos estatísticos</u> - Nesta técnica faz-se uma análise sobre como é a distribuição de tons que uma determinada figura tem, uma das maneiras de fazer isso é analisando um histograma. Assim, para um determinado Histograma (p) O n-ésimo momento de z em torno da média é dado por

$$\mu_n(z) = \sum_{i=0}^{L-1} (z_i - m)^n p(z_i)$$

Em que μ_2 é a variância e fornece medida de contraste presente na região. O terceiro momento $\mu_3(z)$ mede a assimetria do histograma e o quarto momento $\mu_4(z)$ mede o quão este é plano.

Outra medida é a suavidade relativa, que é inversamente proporcional a variância e sua medida é dada por

$$R(z) = 1 \frac{1}{1 + \mu_2^2(z)}$$

R(z) = 0 para regiões de intensidade constante. R(z) é próximo de 1 para regiões com muita variação de tons.

A medida da uniformidade vai dizer se o histograma tem valores de uniformidade parecidos ao longo da sequência e é dada por

$$U(z) = \sum_{i=0}^{L-1} p^2(z_i)$$

A medida da entropia é uma medida de desorganização, quanto maior, mais desorganizado é o grupo de pontos. Sua fórmula é dada por

$$e(z) = -\sum_{i=0}^{L-1} p(z_i) log_2 p(z_i)$$

Dessa forma, a partir do cálculo dessas informações podemos fazer uma análise da distribuição dos tons na figura do histograma.