Formalizing Bias Variance Trade-Off

[try it out: https://floswald.shinyapps.io/bias variance/l

Expected test MSE

$$F\left(v_{\alpha} - \hat{f}(v_{\alpha})\right)^{2} - Var\theta$$

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon)$$

expected MSE at \mathcal{X}_0 if we repeatedly estimated f(x)with different training sets

Formalizing Bias Variance Trade-Off

Expected test MSE

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon)$$

expected MSE at x_0 if we repeatedly estimated f(x) with different training sets

irreducible error

Formalizing Bias Variance Trade-Off

Expected test MSE

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon)$$