Basic Electrical Engineering (TEE 101)

Lecture 41:
Transformer on NO - Load

Content

This lecture covers:

Transformer on NO - Load

Phasor Diagram of Transformer on NO - Load

Numerical Examples

Introduction

A transformer is said to be on *no-load* if its secondary side is open and primary is connected to a sinusoidal alternating voltage V_1 .

Under No-Load condition, a low (about 2% to 5% of the rated primary current) current flows through the primary winding. It is denoted as I_0

This primary input current (I_0) under no-load conditions is responsible for :

- (i) Iron losses in the core (i.e., hysteresis loss and eddy current loss).
- (ii) A very small amount of copper losses in primary (there being no copper loss in the secondary as it is open).

Phasor Diagram

Figure 1 represents the phasor diagram of transformer under NO - Load condition.

- (i) Active component I_w . This component is in phase with V_I and mainly supplies the iron loss plus small quantity of primary copper loss. It is the wattful or active component of the primary no-load current. $I_w = I_0 \cos \varphi_0 ...(i)$
- (ii) Reactive component I_{μ} or I_{m} This component lags V_{1} by 90° and its function is to sustain the alternating flux in the core. It is wattles component of the primary no-load current. It is also known as magnetizing component. $I_{m} = I_{0} \sin \varphi_{0} ...(ii)$

Also
$$I_0 = \sqrt{I_w^2 + I_m^2}$$
 ...(iii)

Thus I_0 is not at 90° behind V_1 , but lags it by an angle $\varphi_0 < 90^\circ$.

No-load power input, $P_0 = V_1 I_0 \cos \varphi_0$

where $\cos \varphi_0 = \text{primary power factor under no-load conditions.}$

By: Dr. Parvesh Saini

Figure 2:. No-load vector diagram

Example 1. A 3300/300 V single-phase transformer gives 0.6 A and 60 W as ammeter and wattmeter readings when supply is given to the low voltage winding and high voltage winding is kept open, find:

(i) Power factor of no-load current. (ii) Magnetizing component. (iii) Iron loss component.

Solution. No-load losses,
$$P_0 = 60 \text{ W}$$

No-load current, $I_0 = 0.6 \text{ A}$
(i) $P_0 = VI_0 \cos \phi_0$
 \vdots $60 = 300 \times 0.6 \times \cos \phi_0$
 $\cos \phi_0 = \frac{60}{300 \times 0.6} = 0.33 \text{ (lagging)}$

Hence, power factor of no-load current = 0.33. (Ans.)

(ii) Magnetising component,
$$I_m = I_0 \sin \phi_0 = 0.6 \sqrt{1-\cos^2 \phi_0} = 0.6 \sqrt{1-(0.33)^2} = 0.566 \text{ A}$$

$$I_m = 0.566 \text{ A. (Ans.)}$$

(iii) Iron loss component,
$$I_w = I_0 \cos \phi_0 = 0.6 \times 0.33 = \textbf{0.198 A.} \quad \textbf{(Ans.)}$$

$$I_w = \sqrt{I_0^{\ 2} - I_m^{\ 2}} = \sqrt{(0.6)^2 - (0.566)^2} = 0.198 \, \text{A}.$$

By: Dr. Parvesh Saini

Example 2. Find (i) active and reactive components of no-load current; and (ii) no-load current of a 440/220 V single-phase transformer if the power input on no-load to the high voltage winding is 80 W and power factor of no-load current is 0.3 lagging.

Solution. Primary, $E_1 = 440 \text{ V}$ $E_2 = 220 \text{ V}$ Secondary, Power factor, $\cos \phi_0 = 0.3 \text{ (lagging)}$ No-load losses, $P_0 = 80 \text{ W}$ (i) Active component (or wattful component), $I_w = (I_0 \cos \phi_0) = \frac{P_0}{V_1} = \frac{80}{440} = 0.182 \text{ A.} \quad \text{(Ans.)}$ $\cos \phi_0 = 0.3$; $\phi_0 = \cos^{-1}(0.3) = 72.54^\circ$ $\tan \phi_0 = 3.18$ Reactive component (or magnetising components) $I_m = I_w \tan \phi_0 = 0.182 \times 3.18 = 0.578 \text{ A.}$ (Ans.) (ii) $I_m = I_0 \cos \phi_0$ $I_0 = \frac{I_w}{\cos \phi_0} = \frac{0.182}{0.3} = 0.606.$ (Ans.) $I_0 = \sqrt{I_{...}^2 + I_{...}^2} = \sqrt{(0.182)^2 + (0.578)^2} = 0.606 \text{ A}.$

By: Dr. Parvesh Saini

or

Example 3. A 3300/220 V, 30 kVA, single-phase transformer takes a no-load current of 1.5 A when the low voltage winding is kept open. The iron loss component is equal to 0.4 A find:

- (i) No-load input power.
- (ii) Magnetizing component and power factor of no-load current.

Solution. Rating of transformer = 30 kVA

Primary,	$E_{\star} = 3300 \text{ V}$
	—1

Secondary,
$$E_2 = 220 \text{ V}$$

No-load current,
$$I_0 = 1.5 \text{ A}$$

Iron loss component,
$$I_m = 0.4 \text{ A}$$

(i) No-load input power,

$$P_0 = V_1 I_0 \cos \phi_0 = V_1 I_w$$
 (:: $I_w = I_0 \cos \phi_0$)
= 3300 × 0.4 = **1320 W.** (Ans.)

(ii) Magnetising component,

$$I_m = \sqrt{I_0^2 - I_w^2} = \sqrt{1.5^2 - 0.4^2} = 1.44 \text{ A.}$$
 (Ans.)

No-load power factor,

$$\cos \phi_0 = \frac{I_w}{I_0} = \frac{0.4}{1.5} = 0.267.$$
 (Ans.)

By: Dr. Parvesh Saini

Thank You