H8/3069F マイコンボードキット

512KBフラッシュROM内蔵、25MHz高速動作、AD/DA内蔵、16kB RAM内蔵、5V書き込み、 大容量16Mbit DRAM搭載

HITACHI H8/3069F 使用

H8-3069F マイコンボードキット

512kB フラッシュ ROM 内蔵、25MHz 高速動作、AD/DA 内蔵 16kB RAM 内蔵、5V 書き込み、大容量 16Mbit DRAM 搭載

ロH8/3067F 用のほとんどのソフトがそのまま 25MHz で動作します。(SCI 等も設定変更だけで OK)

0日立製 16 ビット CPU H8/3069F を使用したマイコンボードです。1 チップに ROM/RAM・周辺回路をすべて 内蔵しており、 ボードはシンプルかつ高性能です。

□内蔵アーキテクチャー32 ビットで25MHzの高速動作を実現しています。また、乗算・除算命令もサポートしています。1命令約79nS(加算命令@25MHz動作時)

 \Box 512k バイト大容量フラッシュメモリを CPU チップに内蔵しています。プログラムを 100 以上書き換え可能です。従来の CPU に不可欠な EP-ROM を取り付ける必要がなくなりました。メモリ空間は最大 16M バイトで大容量 $16\,\mathrm{M}\,\mathrm{b}\,\mathrm{i}\,\mathrm{t}\,\mathrm{DRAM}\,\mathrm{e}$ 搭載しています。

□高速・高分解能 AD/DA コンバータを内蔵しています。

□標準で 53 本の I/O ポートを装備しています。

□高速 RS232C ドライバーレシーバー IC を内蔵しており、パソコンや他のマイコンとの通信も容易に行えます。 □ボードは 16M ビット DRAM 装備で名刺サイズの半分です。ピンヘッダ付きで機器組み込みに最適です。 □書き込みは、5V 単一電源のため、容易にブートモード設定ができます。

■H8/3069F ボードの主な仕様■

メモリ	ROM	512k バイト	外部拡張可能		
	RAM	16kバイト	外部拡張可能		
	DRAM	2Mバイト	外部拡張		
周辺回路	DMAC	最大4チャンネル			
	16bit タイマ	3 チャンネル			
	8bit タイマ	4 チャンネル			
	TPC	6 チャンネルパルス出力			
	WDT	ウオッチドッグタイマー	インターバルタイマーとして使用可能		
	SCI	独立3チャンネル			
	A/D	10ビット分解能×8チャンネル			
	D/A	8ビット分解能×2チャンネル			
	I/O ポート	入出力端子 78 本(最大)			

■開発用ソフトウェア(アセンブラソフト、ライターソフト)について■

開発用ソフトウェア(CD-R)は、H8/3069F ボードのみのセットには、付属していません。H8/3069F 開発セットに付属しています。

- 1)アセンブラ、リンカー、コンバータは、CDの ASMフォルダの A38H、L38H、C38H です。 これらにソフトは、MS-DOS上または、WINDOWSの「ファイル名を指定して実行」で 使用します。マニュアルは ASMフォルダのH8 HMAN. TXTです。
- 2)ライター(書き込み)ソフトはCDのH8WTフォルダのH8ターボライターでブートモード7で書き込みます。H8ターボライターはH8WTフォルダのSETUPでパソコンにインストールされます。 使用方法は、インストール後にヘルプファイルをごらんください。
- 3)C コンパイラは、フリーの GCC です。インストール方法や、コンパイル方法はCDの、CYGWIN¥INDEX.HTML をごらんください。

■新品表■

番号	部品名	数	備考
IC1	H8/3069F 25MHz	1	半田実装済
IC2	M5M417800	1	半田実装済、16Mbit DRAM
IC3	SP232(ADM232)	1	半田実装済、RS232C レベルコンバータ
IC4	48M05F	1	半田実装済、+5V レギュレータ
C1~5,C8,C9	0.1μF	7	積層セラミックコンデンサ
C6	10μ F	1	電解コンデンサ
C7	47μF	1	電解コンデンサ
C10,C11	15pF	2	セラミックコンデンサ
C12	lμF	1	半田実装済、チップ積層セラミックコンデンサ
C13	lμF	1	半田実装済、チップ積層セラミックコンデンサ
D1	小信号ダイオード	1	
RA1	4.7kΩ 抵抗アレイ	1	5素子コモン
RA2	47kΩ 抵抗アレイ	1	4素子コモン
SW	ディップスイッチ	1	5P
X1	クリスタル	1	25MHz 水晶
J1	DC ジャック	1	(半田実装済の場合有り)
その他	ピンソケット		CN1,CN2 用
その他	ピンヘッダ		CN1,CN2 用
その他	ピンヘッダ		COM0,COM1 用

■H8マイコン製作■

- CDのMAKEフォルダにJPG形式の写真がありますので、参考にごらんください。
 - 1)0.1 μ F(104)積層セラミックコンデンサを C1~5,C8,C9 に半田付けします。極性はありません。
 - 2)15pF セラミックコンデンサを C10,C11 に半田付けします。極性はありません。
 - 3)クリスタルを X1 に半田付けします。極性はありません。
 - 4)4.7kΩ5 素子抵抗アレイを RA1 に半田付けします。コモン端子(丸印)が1番になるようにしてください。
 - 5)47kΩ4素子抵抗アレイを RA2 に半田付けします。コモン端子(丸印)が1番になるようにしてください。
- 6)ディップスイッチをSWに半田付けします。1~5の数字が基板の端になるようにしてください。
- 7)ダイオードは立て付けで D1 に半田付けします。ダイオードは極性があります。ダイオードの黒い印のほうを RA1 側にしてください。
- **8)10\muF** の電解コンデンサを C6 に半田付けします。極性がありますので、基板の「+」の表示をよく見て取り付けてください。
- 9)47μFの電解コンデンサを C7 に半田付けします。極性がありますので、基板の「+」の表示をよく見て取り付けてください。
- 10)DC アダプタジャックを J1 に半田付けします。(半田実装済の場合があります。) CN2 から 5V 電源を供給する場合は、DC アダプタジャックをつけなくてもかまいません。
- 11)COM1 に 3 ピンヘッダを取り付けます。COM0 は必要に応じて取り付けてください。
- 12)CN1,CN2は、お客さまの用途にあわせて、ピンヘッダ、ピンソケットのどちらを取り付けてもかまいません。通常はピンヘッダを基板半田面に取り付けてください。

■DC アダプタジャック J 1 の極性■

- DC アダプタジャック J 1 の極性は芯線がプラス (+) です。
- DC アダプタジャック J 1 には 2. 1 mm φ の標準D C プラグが適合します。
- 当社発売中のACアダプタ NP12-1S0912などが、ご使用になれます。

■動作モード設定■

このボードは、16Mビット DRAMが装着されていますが、この他にメモリ、周辺ペリフェラル等を外部に拡張することが可能です。ディップスイッチで動作モードを設定できます。

通常は、モード7で書き込み、モード5で使用します。

■動作モード■ ディップスイッチSW1~SW5はON側で「1」逆側で「0」です。

動作モード	MD0	MD1		FWE	NMI	内蔵	内蔵	アドレス空間
	(SW1)	(SW2)	(SW3)	(SW4)	(SW5)	ROM	RAM	
モード1	0	1	. 0	0	0/1	無効	有効	1M バイト
モード2	0	1	0	0	0/1	無効	有効	1M バイト
モード3	1	1	0	0	0/1	無効	有効	16M バイト
モード4	0	0	1	0	0/1	無効	有効	16M バイト
モード 5	1	0	1	0	0/1	有効	有効	16M バイト
設定禁止	0	1	1	0	0/1			
モード 7	1	1	1	0	0/1	有効	有効	外部拡張不可
ブートモード 5	1	0	0	1	- 1			
設定禁止	0	1	0	1	0/1			
ブートモード 7	1	1	0	1	1		~	
ユーザブートモード 5	1	0	0	1	0			
ユーザブートモード 7	1	1	0	1	0			
設定禁止	0/1	0/1	1	1	0/1			

■ブートモード(書き込みモード)と書き込み用パソコン接続■

の内蔵フラッシュ ROM に書き込むにはプートモード 7 で書き込みます。書き込み電圧は 5V です。 基板内の 3 端子レギュレータの 5V で書き込めます。

パソコンとの接続は、H8/3069F ボードの COM1 でパソコンのシリアルポート(COM ポート)に接続します。 ブートモード 7 にするには、ディップスイッチの MD 0 (SW 1)を ON、MD 1 (SW 2)を ON、MD 2 (SW 3)を OFF、FWE(SW 4)を ON、NMI(SW 5)を ON にして起動します。

メーカーの動作保証範囲は、2MHzー25MHzです。このキットは、25MHzのクリスタルが付属し、25MHzで動作します。

書き込みプログラムは25MHz用になっています。(書き込まれたプログラムは別の周波数でも動作します。)

■動作電源■

動作電源は、3 端子レギュレータ 48M05F による安定化回路がのっていますので、5.5V 以上で 200mA 以上供給できるものをご用意ください。

安定化された 5V がある場合は、3 端子レギュレータ(48M05F)IC4 の出力ピンを切りはなしてください。 Dc ジャックから 5V を供給する場合は、3 端子レギュレータ(48M05F)IC4 の両端のピンをつけるためのランドどうしを短絡させてください。

■AD コンバータ■

H8 マイコンには、AD コンバータが 8 チャンネル内蔵されています。AD コンバータのアナログ電源(AVCC) 及び基準電圧(AREF)は基板内の 5 V には接続されていません。アナログ電源や基準電圧を基板内の 5 V で使用する場合は、CN1 の 11 番(AVCC),12 番(AREF)を CN2 の 2 番(VCC=5V)に接続してください。

■コネクタ→ピン配置表■

■コイグク→にノ阳退衣■								
CN1	ピン番号	<i>号 名称</i>	CN2	ピン番	号 名称			
1	58	P60	1		GND			
2	59	P61	2		+5V			
3	60	P62	3	16	P94/-IRQ4			
4	61	P67	4	17	P95/-IRQ5			
5	64	NMI	5	18	P40/D0			
6	69	P63/-AS	6	19	P41/D1			
7	70	P64/-RD	7	20	P42/D2			
8	71	P65/-HWR	8	21	P43/D3			
9	72	P66/-LWR	9	23	P44/D4			
10	76	AVcc	10	24	P45/D5			
11	77	Vref	11	25	P46/D6			
12	78	P70/AN0	12	26	P47/D7			
13	79	P71/AN1	13	27	P30/D8			
14	80	P72/AN2	14	28	P31/D9			
15	81	P73/AN3	15	29	P32/D10			
16	82	P74/AN4	16	30	P33/D11			
17	83	P75/AN5	17	31	P34/D12			
18	84	P76/AN6/DA0	18	32	P35/D13			
19	85	P77/AN7/DA1	19	33	P36/D14			
20	87	P80/-IRQ0	20	34	P37/D15			
21	88	P81/-IRQ1/-CS3	21	36	P10/A0			
22	89	P82/-IRQ2/-CS2	22	37	P11/A1			
23	90	P83/-IRQ3/-CS1	23	38	P12/A2			
24	91	P84/-CS0	24	39	P13/A3			
25	93	PA0	25	40	P14/A4			
26	94	PA1	26	41	P15/A5			
27	95	PA2	27	42	P16/A6			
28	96	PA3	28	43	P17/A7			
29	97	PA4	29	45	P20/A8			
30	98	PA5	30	46	P21/A9			
31	99	PA6	31	47	P22/A10			
32	100	PA7	32	48	P23/A11			
33	2	PB0/-CS7	33	49	P24/A12			
34	3	PB1/-CS6	34	50	P25/A13			
35	4	PB2/-CS5	35	51	P26/A14			
36	5	PB3/-CS4	36	52	P27/A15			
37	6	PB4/-UCAS	37	53	P50/A16			
38	7	PB5/-LCAS	38	54	P51/A17			
39	8	PB6/TxD2	39	55	P52/A18			
40	9	PB7/RxD2	40	56	P53/A19			

■回路図■

■付属 DRAM の使いかた■

付属 DRAMは、モード5で使用します。

電源 ON の状態では、正しく付属 DRAM を使うことができません。以下のように設定します。

P1DDR ← FFH

P2DDR ← 07H

P8DDR - 06H

RTCOR - 10

RTMCSR - 30H

DRCRB - 90H

DRCRA - 3CH

付属 DRAM のアドレスは、400000H-5FFFFFH までとなります。

■NMIの使い方と注意■

NMI は、ユーザーブートモード設定と兼用です。

この基板ではNMIは右図の回路になっています。

NMIは、立上り、または、立ち下がりで割り込み

が発生します

デイップスイッチのSW5をONからOFFにする ことで NMI 割り込みをかけることができます。

注意

デイップスイッチのSW5がONの時に右の様な回 路で基板外部から NMI 割り込みをかけてはいけません。・ VCC(5V)がGNDにショートします。

■キット附属CD■

data

₹ CN1(5) M

この基板のNMI回路 VCC(5V)

CN1(5)

₹

禁止回路(使用してはいけない)

CDの index.html がこのCDのメニューです。このメニューは次の様になっています。

ASM

H8/300Hアセンブラソフト (a38h.exeなどアセンブラソフト)

各種ドキュメント集 (H8マイコンのソフトウエアマニュアル、ハードウエアマニュアル)

cygwin フリーの C コンパイラ集 gcc (cygwin のインストールマニュアル)

h8 os Hマイコンの基本ソフト H8/OS (H8/OS のドキュメント、サンプルプログラム)

linux Linux 関連の開発ツール

メニュー以外に次のものがあります。

MAKEフォルダ 基板製作参考用の写真(JPG形式)

H8WTフォルダ ライター(書き込み)ソフトのH8ターボライター

■RAM転送ソフト PUT. EXE■

CD内の h8_os フォルダにRAM転送ソフト PUT. EXEが入っています。このソフトは、ユーザーが 製作したデバック用RAM実行ファイルをH8マイコンのRAMに転送するためのパソコンソフトです。 MS-DOS上または、WINDOWSの「ファイル名を指定して実行」で動作します。

例 PUT. EXE blink. mot

H8マイコンには、CD内 h8_os フォルダの「plus3068-25.mot」を書き込んでおく必要があります パソコンとの接続コネクタ、接続ケーブルは3項の書き込み用ケーブルと同じです。

H8/OS を使ったソフトウェアの作りかた

(以下の説明はCDのH8OSフォルダにテキスト形式ファイルH8OS. TXTでございますので、 ソースファイル部や、gccのコマンドをコピーしてご利用ください。) 1. ヘッダーファイル

C 言語から H8/OS のシステムコールを使う場合は、コンパイルに必ず gcc を使い、C ソースファイルのなかで <h8/syscall.h>のヘッダ定義を必ずしてください。

また、各H8チップごとにヘッダーファイルが用意されていますので、使用すると便利でしょう。

```
<h8/reg3067.h> H8/3067F、H8/3068F、H8/3069F 用(I/O ポート定義)
```

<h8/reg3048.h> H8/3048F、H8/3052F 用(I/O ポート定義)

<h8/reg3667.h> H8/3664F 用(I/O ポート定義)

<h8/reg704x.h> SH/7045F 用(I/O ポート定義)

2. プログラム作成例

H8/OS の機能を使ったプログラムの作成例として、H8/3069F で I/O ポート PB0 を 1 秒ごとに"H"と"L"を繰り返すプログラム"blink.c"を作成してみます。

sleepは、H8/OSのシステムコールです。

3. ROM 化用の実行ファイルの作成

まず、以下のようにして中間ファイルを作成します。

h8300-hms-gcc -O -mh -mint32 -T rom3068.x -o blink.coff -nostartfiles 30xxcrt0.s blink.c -lc

gcc のオプションで同じソースから ROM、RAM ターゲットの実行ファイルが作成できます。gcc のオプションの意味の概略は以下のとおりです。

- (1)-O:最適化する
- (2)-mh: H8/300H 用でコンパイル、省略時は H8/300 用でコンパイル
- (3)-mint32: int型を 32 ビットにする、省略時の int型は 16 ビット
- (4)-Trom3068.x:メモリ定義ファイルの指定。H8/3069FのROM化用には"rom3068.x"を指定。
- (5) -o blink.coff: 中間ファイルのファイル名を指定する。
- (6) -nostartfiles:組み込みマイコンの場合は必ず指定する。
- (7) 30xxcrt0.s: H8/300H 用の ROM 化プログラム用のスタートアップルーチン

- (8) blink.c: C ソースファイル名。
- (9) C ライブラリを使う場合に指定。

次に中間ファイルからモトローラ S 形式(mot ファイル)に変換すると ROM 化用の実行ファイルができあがります。

h8300-hms-objcopy -O srec blink.coff blink.mot

使いかたは以下のとおりです。

h8300-hms-objcopy -O srec [中間ファイル名] [mot ファイル名] copy kern3068.mot+[mot ファイル名] [ROM 化ファイル名]

ボードをブートモードに設定して内蔵 ROM に転送します。 転送が終了したら、通常モードで起動すれば、ROM 化したプログラムが起動します。

4. デバッグ用 RAM 実行ファイルの作成

デバッグ用 RAM 実行ファイルを実行するには、あらかじめ、コマンドインタープリタ付きの H8/OS を内蔵 ROM に書き込んでおきます。

例えば、H8-3069F 25MHz では、plus3068-25.mot がそれに該当します。

ROM 化用の実行ファイルとデバッグ用 RAM 実行ファイルにする場合のソースプログラムは共通です。 まず、以下のようにして中間ファイルを作成します。

h8300-hms-gcc -O -mh -mint32 -T ram3068.x -o blink.coff -nostartfiles ramcrt0.s blink.c -lc

gccのオプションの意味の概略は以下のとおりです。

- (1) -T ram3068.x: メモリ定義ファイルの指定。H8/3069F の RAM 用には"ram3068.x"を指定。
- (2) ramcrt0.s: RAM 用プログラムのスタートアップルーチン

次に中間ファイルからモトローラ S 形式(mot ファイル)に変換するとデバッグ用 RAM 実行ファイルができあがります。

h8300-hms-objcopy -O srec blink.coff blink.mot

デバッグ用 RAM 実行ファイルを H8 に転送するには、以下のようにします。 転送するには、シリアルポートを使うので、必ず、ターミナルソフトの通信を切断してください。

put blink.mot

転送が終了したら、適当なハイパーターミナルなどの通信ソフトで H8 の操作ができるようにします。 通信条件は、以下のようにします。

- (1)通信速度 57600[bps]
- (2)ビット長8ビット
- (3)パリティーなし
- (4)ストップビット1ビット
- (5)ハードウェアフロー なし

ターミナル上で転送したプログラムを実行するには、H8/OSのプロンプト上で以下のようにします。

H8/OS> exec ffd940