Analyse complexe

Chapitre 1 : Rappels

Lucie Le Briquer

1 Rappels de topologie

– **Définition 1** (ouvert) —

Dans \mathbb{C} un ouvert U est une union de disques ouverts $D(z_0, r) = \{z \in \mathbb{C} | |z - z_0| < r\}$ de façon équivalente $\forall z_0 \in U$ il existe r > 0 avec $D(z_0, r) \subset U$

- **Définition 2** (intérieur) -

Si $X\subset\mathbb{C},$ l'intérieur $\overset{\circ}{X}$ est l'union des disques ouverts contenus dans X ; c'est aussi le plus grand ouvert contenu dans X

Remarque.

L'adhérence de X notée \bar{X} est le plus petit fermé contenant X. La frontière de X est $\bar{X} - \overset{\circ}{X}$

– **Définition 3** (compact) —

 $X \subset \mathbb{C}$ est compact : si $X \subset \bigcup_{i \in I} U_i$ avec U_i ouvert alors $\exists J$ fini $\in I$ avec $X \subset \bigcup_{i \in J} U_i$

Critère. Compact ssi (fermé et borné)

Définition 4 (connexe, connexe par arc) —

- $X\subset \mathbb{C}$ est connexe si l'inclusion $X\subset U_1\cup U_2$ avec U_i ouverts disjoints entraı̂ne $X\subset U_1$ ou $X\subset U_2$
- X est connexe par arc si $\forall x_1, x_2 \in X$, $\exists \gamma_i : [0,1] \to X$ continue avec $\gamma(0) = x_1$ et $\gamma(1) = x_2$

Remarque.

- Connexe par arcs ⇒ connexe La réciproque est vraie pour un ouvert mais fausse en général.
- Un convexe, un ensemble étoilé est CPA
- Si f continue f(compact) = compact et f(connexe) = connexe

Définition 5 (homotopie) —

Une homotopie entre deux chemins γ_1 et γ_2 tq $\gamma_i(0)=x_1$ et $\gamma_i(1)=x_2$ est une application continue $H:[0,1]\times[0,1]\to X$ avec $H(0,t)=\gamma_1(t)$ $H(1,t)=\gamma_2(t)$ $H(s,0)=x_1$ $H(s,1)=x_2$

- **Définition 6** (simplement connexe) —

Un espace CPA X est simplement connexe si étant donnés deux chemis γ_1 et γ_2 de x_1 à x_2 il existe une homotopie de γ_1 à γ_2

Exemple.

Un disque, un convexe, un ensemble étoilé est simplement connexe

Remarque.

Pour un convexe : $H(s,t) = s\gamma_1(t) + (1-s)\gamma_2(t)$

2 Rappels sur les séries et suites

2.1 Produit de séries

- **Propriété 1** (produit de Cauchy) —

Si les deux séries de terme général a_n et b_n convergent absolument alors la série de droite converge absoluement et on a l'égalité :

$$(\sum_{n=0}^{+\infty} a_n)(\sum_{m=0}^{+\infty} b_m) = \sum_{l=0}^{+\infty} (\sum_{n+m=l} a_n b_m) \quad (1)$$

Remarque.

Si a_n, b_m sont des réels positifs alors (1) est toujours vrai avec éventuellement " $+\infty = +\infty$ "

2.2 Convergence uniforme de suites et séries de fonctions

Définition 7 (convergence uniforme) –

 $f_n:U\to\mathbb{C}$ converge uniformément sur $X\subset U$ s'il existe $g:X\to\mathbb{C}$ telle que

$$\forall \varepsilon > 0, \ \exists n_0, \ \forall n \ge n_0, \ \forall z \in X : |f_n(z) - g(z)| \le \varepsilon$$

- Propriété 2

- Une limite uniforme de fonction continue est continue
- Si U = [a, b] on a $\lim \int_a^b f_n(t) dt = \int_a^b g(t) dt$
- La plus utile : si $U_{\text{ouvert}} \subset \mathbb{C}$, f_n CVU sur tout compact contenu dans U

3 Similitude, homographie et sphère de Riemann

Théorème 3 —

Une similitude du plan complexe s'écrit f(z)=az+b ou $f(z)=a\bar{z}+b$ avec $a\in\mathbb{C}^*,b\in\mathbb{C}$

- **Définition 8** (homographie) —

$$f(z) = \frac{az+b}{cz+d} \quad \text{ avec } a,b,c,d \in \mathbb{C} \text{ et } ad-bc \neq 0 \quad \ f:\mathbb{C} - \{\frac{-d}{c}\} \longrightarrow \mathbb{C} - \{\frac{a}{c}\}$$

Formellement on peut étendre f en une bijection $\bar{f}: \begin{vmatrix} \mathbb{C} \cup \{\infty\} & \longrightarrow & \mathbb{C} \cup \{\infty\} \\ \frac{-d}{c} & \longmapsto & \infty \\ \infty & \longmapsto & \frac{a}{c} \end{vmatrix}$

On appelle $\mathbb{C} \cup \{\infty\}$ la sphère de Riemann ou la droite projective complexe notée $\mathbb{P}^1(\mathbb{C})$

$$\mathbb{P}^1(\mathbb{C}) = \{ \text{ droites vectorielles dans } \mathbb{C}^2 \} = \mathbb{C}^2 - \{(0,0)\}/_{\sim}$$

où $(z_1, z_2) \sim (z'_1, z'_2)$ si $\exists \alpha \in \mathbb{C}^* \text{ tq } z'_i = \alpha z_i$

Action de
$$GL(2,\mathbb{C})=\left\{\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in M_2(\mathbb{C}) \text{inversibles}\right\}$$

$$\begin{array}{ccc} GL(2,\mathbb{C})\times\mathbb{P}^1(\mathbb{C}) & \longrightarrow & \mathbb{P}^1(\mathbb{C}) \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix}\times[(z_1,z_2)] & \longmapsto & [(az_1+bz_2,cz_1+dz_2)] \end{array}$$

$$\mathbb{P}^1(\mathbb{C}) = U_1 \cup U_2 \quad \ U_1 = \{[(z_1,z_2)] \in \mathbb{P}^1(\mathbb{C}) | z_1 \neq 0\} \quad \text{ et } U_2 = \{[(z_1,z_2)] \in \mathbb{P}^1(\mathbb{C}) | z_2 \neq 0\}$$

Remarque.

$$U_{1} = \{ [(1, z)] \in \mathbb{P}^{1}(\mathbb{C}) | z \in \mathbb{C} \}$$

$$\exists \Phi_{1} : \begin{vmatrix} \mathbb{C} & \longrightarrow & U_{1} \\ z & \longmapsto & [(1, z)] \end{vmatrix} \qquad \exists \Phi_{2} : \begin{vmatrix} \mathbb{C} & \longrightarrow & U_{2} \\ z & \longmapsto & [(z, 1)] \end{vmatrix} \qquad \Phi_{2}^{-1} \circ \Phi_{1}(z) = \frac{1}{z}$$