MAP556 PC1 Exercice 1 Peng-Wei Chen

Question 1

On identifie la densité de X comme $\lambda e^{-\lambda x}\mathbb{1}_{x\geq 0}$. On montre qu'on peut appliquer la méthode de vraisemblance à cette question :

- 1. La densité de X_{λ} est strictement positive sur $[0, +\infty[$ par rapport à la mesure $\mu(dx) = dx$.
- 2. La fonction $(\lambda, x) \in]0, +\infty[\times \mathbb{R} \mapsto p(\lambda, x) = \lambda e^{-\lambda x} \mathbbm{1}_{x \geq 0}$ est continûment différentiable par rapport à λ avec $|\partial_{\lambda} p(\lambda, x)| = |(1 \lambda x) e^{-\lambda x}|$. On peut trouver une majoration intégrable de $|\partial_{\lambda} p(\lambda, x)|$ sur un voisinage de λ parce que c'est une fonction affine en x multipliée par $e^{-\lambda x}$.
- 3. Par la définition de F, F est measurable et bornée.

Ainsi, on a

$$f'(\lambda) = \partial_{\lambda} \mathbb{E} [F(X)] = \mathbb{E} [F(X)\partial_{\lambda} [log(p(\lambda, x)]|_{x=X}]$$
$$= \int_{0}^{+\infty} F(x) \left(\frac{1}{\lambda} - x\right) \lambda e^{-\lambda x} dx$$

Question 2

On peut écrire $X=-\frac{1}{\lambda}log(U)$ où U est une loi uniforme sur [0,1]. Alors,

$$\partial_{\lambda}X = \frac{1}{\lambda^2}log(U) = -\frac{1}{\lambda}X$$

On montre qu'on peut appliquer la méthode de dérivation à cette question :

- 1. La fonction $\lambda \mapsto -\frac{1}{\lambda}log(U)$ est C^1 p.s. Et $\partial_{\lambda}X < -\frac{4}{\lambda^2}log(U)$ sur le voisinage $]\frac{\lambda}{2}, 2\lambda[$ de λ . La majoration est intégrable sur ce voisinage aussi.
- 2. F est une fonction C^1 à dérivée bornée. (La question ne donne que D^1 , mais cela n'est pas suffisant)

Ainsi, on a

$$f'(\lambda) = \partial_{\lambda} \mathbb{E} [F(X)] = \mathbb{E} (\nabla F(X) \partial_{\lambda} X)$$

$$= \mathbb{E} \left(-F'(X) \frac{X}{\lambda} \right)$$

$$= \int_{0}^{+\infty} -F'(x) \frac{x}{\lambda} \lambda e^{-\lambda x} dx$$

$$= \int_{0}^{+\infty} -F'(x) x e^{-\lambda x} dx$$

Question 3

On va utiliser l'intégration par parties sur le résultat de la question 1. On prend f(x) = F(x), $g'_{\lambda}(x) = \left(\frac{1}{\lambda} - x\right) \lambda e^{-\lambda x} dx$. Ainsi, on a

$$g_{\lambda}(x) = xe^{-\lambda x}$$

et donc

$$\begin{split} &\int_0^{+\infty} F(x) \left(\frac{1}{\lambda} - x\right) \lambda e^{-\lambda x} dx \\ &= \left[F(x) x e^{-\lambda x} \right]_0^{+\infty} - \int_0^{+\infty} F'(x) x e^{-\lambda x} dx \\ &= - \int_0^{+\infty} F'(x) x e^{-\lambda x} dx \end{split}$$

où on retrouve le résultat de la question 2.