Wtorki 16:50 Grupa I3 Kierunek Informatyka Wydział Informatyki Politechnika Poznańska

Algorytmy i struktury danych Sprawozdanie z zadania w zespołach nr. 4 prowadząca: dr hab. inż. Małgorzata Sterna, prof PP

Algorytmy z powracaniem

autorzy:

Piotr Więtczak nr indeksu 132339 Tomasz Chudziak nr indeksu 136691

21 maja 2018

1 Opis implementacji

Do implementacji algorytmów poszukujących cyklu Eulera (E), pojedynczego cyklu Hamiltona (H1) i wszystkich cykli Hamiltona użyliśmy języka C++. Do pomiarów czasu wykorzystaliśmy klasę std::chrono::high_resolution_clock z biblioteki chrono. Do reprezentacji grafu zastosowaliśmy macierz sąsiedztwa, ze względu na TU MI SIE TŁUMACZ CZEMU MACIERZ SĄSIEDZ-TWA

2 Czasy działania algorytmów

Tabela przedstawiająca czasy działania algorytmów

Liczba	t_E dla	t _{H1} dla	t _{HA} dla
wierzchołków	d = 0.6 [ms]	d = 0.6 [ms]	d = 0.6 [ms]
5	0.001	0.003	0.003
6	0.001	0.007	0.021
7	0.002	0.025	0.030
8	0.002	0.007	0.128
9	0.002	0.005	0.447
10	0.003	0.011	7.294
11	0.003	3.803	29.501
12	0.003	0.016	224.566
13	0.004	0.019	1278.080
14	0.006	3.103	5713.350
20	0.007	0.014	_
25	0.010	0.050	_
30	0.015	0.032	_
35	0.021	0.343	_
40	0.024	17.451	_
45	0.031	0.299	_
50	0.040	0.124	_
55	0.052	17.520	_
60	0.055	5.455	_
65	0.067	0.386	_
70	0.075	0.288	_
75	0.089	0.353	_
80	0.102	0.846	_
85	0.106	0.606	_
90	0.127	6.412	_
95	0.151	1.350	_
100	0.151	3.751	_

Wykres przedstawiający czasy działania algorytmów dla d = 0.6

Liczba wierzchołków

Wykres przedstawiający czasy działania algorytmów dla d=0.6 skala logarytmiczna

Liczba wierzchołków

Problemy znajdowania cyklu Eulera i cyklu Hamiltona dotyczą przeszukiwania grafu.

Znajdowanie cyklu Eulera należy do klasy problemów łatwych (P), czyli takich dla których potrafimy znaleźć algorytm rozwiązujący ten problem w czasie wielomianowym.

Znajdowanie cyklu Hamiltona należy do problemów NP-zupełnych, które są podklasą problemów trudnych (NP), dla problemów które należą do klasy NP nie znamy rozwiązań działających w czasie wielomianowym lub mniejszym, czyli są to zadania o o złożoności co najmniej wykładniczej. Do problemów NP-zupełnych transformują się wielomianowo wszystkie problem z klasy NP. Rozwiązując problem NP-zupełny rozwiązujemy wszyst-

kie problemy z tej podklasy, dlatego znajdując rozwiązanie jednego takiego problemu w czasie wielomianowym, znajdziemy rozwiązanie wielomianowe dla wszystkich problemów NP-zupełnych.

Złożoność obliczeniowa algorytmu znajdowania cyklu Eulera wynosi O(m), gdzie m - liczba krawędzi, ponieważ podczas przeszukiwania grafu trzeba przejść po wszystkich krawędziach.

Złożoność obliczeniowa algorytmu znajdowania pojedynczego cyklu Hamiltona wynosi O(n!), gdzie n - liczba wierzchołków, ponieważ w najgorszym przypadku należy sprawdzić wszystkie możliwe permutacje, a dla wszystkich cykli $O(n \cdot n!)$.

3 Czasy poszukiwania cyklu Eulera dla różnych wartości d

Tabela przedstawiająca T_E dla różnych wartości d

Liczba	t _E dla	a	t _E dla		
wierzchołków	d = 0.2	[ms]	d = 0.6	[ms]	

Wykres przedstawiający T_E dla różnych wartości d

Liczba wierzchołków

Metoda poszukiwania cyklu Eulera oparta jest na algorytmie DFS (przeszukiwanie w głąb), z tą różnicą że przegląda krawędzi zamiast wierzchołków. Do przedstawienia grafu użyto macierzy sąsiedztwa TU MI SIE TŁUMACZ CZEMU MACIERZ SĄSIEDZ-TWA I CZY REPREZENTACJA MA WPŁYW NA ZŁOŻONOŚĆ OBLICZONIOWĄ METODY TUTAJ POPROSZĘ OPIS DZIAŁANIA AL-GORYTMII ZGODZNIE Z IMPLEMENTA-

CJĄ (MOZESZ UDAWAĆ ŻE TAKA BYŁA IMPLEMENTAJA) PRZYPOMNĘ TYLKO ŻE CHODZI O POSZUKIWANIE CYKLU EULERA, A NIE JAKIEGOŚ LOSOWEGO JAKOSTATNIO

Warunek konieczny i dostateczny istnienia cyklu Eulera w grafie:

- graf jest spójny,
- dla grafu nieskierowanego, wszystkie wierzchołki są stopnia parzystego,
- dla grafu skierowanego, taka sama liczba krawędzi wchodzących i wychodzących dla każdego wierzchołka.

W testowanych grafach istniał cykl Eulera ponieważ zostały one wygenerowane odpowiednią metodą. Opierała się ona na tworzeniu klik o rozmiarze 3, po stworzeniu pierwszej wybierany był losowy należący do grafu wierzchołek, oraz losowano dwa nie należące do grafu wierzchołki, z tych trzech wierzchołków do grafu dołączana była nowa klika. Dołączanie nowych klik trwało aż do osiągnięcia pożądanej gęstości.

zachowanie

4 Czasy poszukiwania pojedynczego i wszystkich cykli Hamiltona dla różnych wartości *d*

Tabela prezentująca t_{H1} i t_{HA} dla różnych wartości d

Liczba	d = 0.2			d = 0.6				
wierzchołków	t_{H1}	[ms]	t_{HA}	[ms]	t_{H1}	[ms]	t_{HA}	[ms]

Wykres przedstawiający t_{H1} dla różnych wartości d

Czas działania w misekundach

Czas działania w misekundach

Liczba wierzchołków

Tabela prezentująca t_{HA} dla różnych wartości d

Liczba wierzchołków

Tabela prezentująca liczbę cykli Hamiltona dla różnych wartości d

Liczba	Liczba cykli	Liczba cykli		
wierzchołków	Hamiltona dla $d = 0.2$	Hamiltona dla $d = 0.6$		

Spis treści

1	Opis implementacji	1
2	Czasy działania algorytmów	1
3	Czasy poszukiwania cyklu Eulera dla różnych wartości \boldsymbol{d}	3
4	Czasy poszukiwania pojedynczego i wszystkich cykli Hamiltona dla różnych wartości d	4