Chapter 2 Nombres entiers, itérations

Exercice 1 (2.1)

Soit (u_n) une suite réelle à valeurs positives et a > 0. On suppose

$$\forall n\in\mathbb{N}, u_{n+1}\leq au_n.$$

Montrer que pour tout $n \in \mathbb{N}$, on a

$$u_n \leq a^n u_0$$
.

Exercice 2 (2.1)

Soit la suite $(x_n)_{n\in\mathbb{N}}$ définie par

$$x_0 = 4$$
 et $x_{n+1} = \frac{2x_n^2 - 3}{x_n + 2}$.

1. Montrer : $\forall n \in \mathbb{N}, x_n > 3$.

2. Montrer: $\forall n \in \mathbb{N}, x_{n+1} - 3 > \frac{3}{2}(x_n - 3).$

3. Montrer: $\forall n \in \mathbb{N}, x_n \geqslant \left(\frac{3}{2}\right)^n + 3$.

4. La suite $(x_n)_{n\in\mathbb{N}}$ est-elle convergente ?

Exercice 3 (2.1)

Soit (u_n) la suite donnée par $u_0 = 2$, $u_1 = 3$ et

$$\forall n \in \mathbb{N}, u_{n+2} = 3u_{n+1} - 2u_n.$$

Montrer par récurrence que pour tout $n \in \mathbb{N}$, on a $u_n = 2^n + 1$.

Exercice 4 (2.1)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$u_0 = 7, u_1 = -\frac{1}{10}$$
, et $\forall n \in \mathbb{N}, u_{n+2} = \frac{1}{10}u_{n+1} + \frac{1}{5}u_n$.

Montrer par récurrence : $\forall n \in \mathbb{N}, |u_n| \le 7 \cdot \left(\frac{1}{2}\right)^n$.

Exercice 5 (2.1)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite de nombres réels définie par $u_0=1, u_1=1$ et pour tout n positif,

$$u_{n+2} = u_{n+1} + \frac{2}{n+2}u_n.$$

Montrer:

$$\forall n \in \mathbb{N}^*, 1 \le u_n \le n^2.$$

Exercice 6 (2.1)

Définissons une suite par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2}u_n + n - 1$.

- 1. Démontrer que pour tout $n \ge 3$, u_n est positif. En déduire que pour tout $n \ge 4$, on a $u_n \ge n 2$. En déduire la limite de la suite.
- 2. Définissons maintenant la suite $v_n = 4u_n 8n + 24$. Montrer que la suite (v_n) est une suite géométrique, donner son premier terme et sa raison. Montrer que pour tout $n \in \mathbb{N}$, $u_n = 7\left(\frac{1}{2}\right)^n + 2n 6$. Remarquer que u_n est la somme d'une suite géométrique et d'une suite arithmétique dont on précisera les raisons et les premiers termes. En déduire une formule pour la quantité $u_0 + u_1 + ... + u_n$ en fonction de l'entier n.

Exercice 7 (2.1)

Démontrer par récurrence que, pour tout naturel n, $9^n - 1$ est multiple de 8.

Exercice 8 (2.1)

Soit $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ tel que $\alpha + \frac{1}{\alpha} \in \mathbb{Q}$. Montrer

$$\forall n \in \mathbb{N}, \alpha^n + \frac{1}{\alpha^n} \in \mathbb{Q}.$$

Exercice 9 (2.2)

Soit une suite géométrique (u_n) . Déterminer les éléments caractéristiques (premier terme u_0 et raison q) de la suite (u_n) à partir des données suivantes.

1.
$$u_6 = 96$$
 et $q = 2$;

2.
$$u_1 = 72$$
 et $u_4 = -8/3$;

3. $u_3 = 40$ et $u_7 = 640$.

Exercice 10 (2.2)

La suite $(a_n)_{n\in\mathbb{N}}$ est définie par $a_0=4$ et

$$\forall n \in \mathbb{N}, a_{n+1} = \frac{3a_n + 2}{a_n + 4}.$$

1. Montrer que la suite $(b_n)_{n\in\mathbb{N}}$ définie, pour tout $n\in\mathbb{N}$, par

$$b_n = \frac{a_n - 1}{a_n + 2}$$

est une suite géométrique.

- **2.** Calculer b_n pour tout $n \in \mathbb{N}$.
- **3.** En déduire une expression de a_n en fonction de n.

Exercice 11 (2.2)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite de nombres réels définie par $u_0=0$ et pour tout n positif, $u_{n+1}=2u_n+1$. Calculer u_n en fonction de n.

Exercice 12 (2.2)

Soit $p_0 = 10000$ une population initiale de lapins. On suppose que le taux de reproduciton annuel est de 3 par couple (tous les individus se reproduisent et font partie d'un unique couple). De plus, à la fin de chaque année, la population est diminuée par la vente d'une quantité fixe de 1000 individus. Déterminer la population au bout de 50 ans.

9