$$S_{p} = \frac{1}{10} \quad \text{in of ferm 5 old}$$

$$N_{1} = \frac{1}{4} \left(1 - \frac{1}{5} \right) \left(1 - \frac{1}{7} \right) \quad N_{2} = \frac{1}{4} \left(1 - \frac{1}{5} \right) \left(1 - \frac{1}{7} \right)$$

$$N_{3} = \frac{1}{4} \left(1 + \frac{1}{5} \right) \left(1 + \frac{1}{7} \right) \quad N_{4} = \frac{1}{4} \left(1 - \frac{1}{5} \right) \left(1 + \frac{1}{7} \right)$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right] \left[1 - \frac{1}{7} \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) - \left(1 + \frac{1}{7} \right) \right]$$

$$= \frac{1}{4} \left[-\left(1 - \frac{1}{7} \right) - \left(1 + \frac{$$

$$\begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial x} \end{bmatrix} = \begin{bmatrix} -1 & -1 & \frac{\partial v}{\partial x} \\ \frac{\partial v}{\partial x}$$

$$\mathcal{E}_{x} = -\frac{1}{\lambda} \mathcal{Q}_{1}$$

$$\mathcal{E}_{y} = 0$$

$$\mathcal{A}_{y} = -\frac{1}{\lambda} \mathcal{Q}_{2}$$

$$B = \begin{bmatrix} \frac{3M}{3x} & \frac{3M}{3x} & \frac{3M}{3x} \\ \frac{3M}{3x} & \frac{3R}{3x} & \frac{3M}{3x} & \frac{3R}{3x} & \frac{3R}{3x} \\ \frac{1}{3} & \frac{3R}{3x} & \frac{3R}{3x} & \frac{3R}{3x} & \frac{3R}{3x} & \frac{3R}{3x} \\ \frac{1}{3} & (1-\frac{1}{3}) & (\frac{1}{3} - \frac{1}{3}) &$$

None it which can be simplified further, Any numerical solution is an approximation

	For	N, F	1					
	100	N.	t	W	NFW			
	0.11	0,97	0,11 a	5 9	0,06 9			
	まし	0.5	± 9	8	0,22 9			
	0.891	0.03	0.899	3 9	0.029			
	54m 0,30 a							
Ī					10150			

F = 0,300 J= 0.15 aL

For No		1	
100	Nof	MFW	
0,112	0.0191	0.0196	
0.5 L	0.06 aL	0.0 aL	
0.89 L	0.01 aL	0,0 aL	(0,0053)
	Sug	0.06 a1	
	Sum		

TF2 = 0,039 L2 (actual 0.033aL3)

For Nz

loc	N3 F	Nafw	
0.112	0.04.4	0,000 0	
0.501	0.259	0,22 a	0.70aL
0.891	0.86 a	0.48 a	
	TF.	3=0.35 aL	

For Ny Nyf Nyfw 0.11 L -0.01 al -0.000 al 0.50 L -0.00 al -0,055al -0.04 al 0.89L -0.06 aL 1 Fy -0,05 aL