10-605 Machine Learning With Large Datasets

Linear Algebra Review

Fall 2022

Carnegie Mellon University

Linear Equations

• Set of linear equations (two equations, two unknowns)

$$4x_1 - 5x_2 = -13$$
$$-2x_1 + 3x_2 = 9$$

• Can represent compactly in matrix notation

$$Ax = b$$

with

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

1

Basic notation

• A matrix with real-valued entires, m rows and n columns:

$$A \in \mathbb{R}^{m \times n}$$

 A_{ij} denotes the entry in the *i*th row and *j*th column

• A (column) vector with *n* real-valued entries

$$x \in \mathbb{R}^n$$

 x_i denotes the *i*th entry

Transpose

 The transpose operator A[⊤] switches the rows and columns of a matrix:

$$A_{ij} = (A^{\top})_{ji}$$

- For a vector $x \in \mathbb{R}^n, x^\top \in \mathbb{R}^{1 \times n}$ represents a row vector
- Properties
 - $(A^{\top})^{\top} = A$
 - $(A + B)^{\top} = A^{\top} + B^{\top}$
 - $(AB)^{\top} = B^{\top}A^{\top}$
 - $(A^{-1})^{\top} = (A^{\top})^{-1}$

Elements of a matrix

• Can write a matrix in terms of its columns:

$$A = \begin{bmatrix} | & | & | \\ a_1 & a_2 & \dots & a_n \\ | & | & | \end{bmatrix}$$

• Note: a_i here corresponds to an entire vector $a_i \in \mathbb{R}^m$, not an element of a vector

Elements of a matrix

• Similarly, can write in terms of rows:

$$A = \begin{bmatrix} - & a_1^\top & - \\ - & a_2^\top & - \\ & \vdots \\ - & a_m^\top & - \end{bmatrix}$$

• Note: $a_i \in \mathbb{R}^n$ here and $a_i \in \mathbb{R}^m$ on previous slide are not the same vector

Matrix addition

• For two matrices of the same size and type, $A, B \in \mathbb{R}^{m \times n}$, addition is just the sum of the corresponding elements:

$$A + B = C \in \mathbb{R}^{m \times n} \iff C_{ij} = A_{ij} + B_{ij}$$

Addition is undefined for matrices of different sizes

Matrix multiplication

• For two matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, their product is:

$$AB = C \in R^{m \times p} \iff C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

- Multiplication is undefined with the number of columns in A doesn't equal the number of rows in B (unless in case: cA where $c \in \mathbb{R}$ is a scalar)
- Special cases:
 - Inner product: $x, y \in \mathbb{R}^n$, $x^\top y \in \mathbb{R} = \sum_{i=1}^n x_i y_i$
 - Matrix-vector product: $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n \iff Ax \in \mathbb{R}^m$

$$A = \begin{bmatrix} | & | & & | \\ a_1 & a_2 & \dots & a_n \\ | & | & & | \end{bmatrix}, Ax \in \mathbb{R}^m = \sum_{i=1}^n a_i x_i$$

7

Important properties

- Associative: A(BC) = (AB)C
- Distributive: A(B+C) = AB + AC
- *Not* Commutative: $AB \neq BA$
- Transpose: $(AB)^{\top} = B^{\top}A^{\top}$

Special matrices

• Identity matrix:

$$I_n \in \mathbb{R}^{n \times n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Has the property that for any $A \in \mathbb{R}^{m \times n}$

$$AI_n = A = I_m A$$

- Ones vector: $1 \in \mathbb{R}^n = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}^\top$. Useful, e.g., to represent sums: $a \in \mathbb{R}^n$, $1^\top a = \sum_{i=1}^n a_i$
- Symmetric matrix: $A \in \mathbb{R}^{n \times n}$ where $A = A^{\top}$
- Diagonal matrix: $diag(d) \in \mathbb{R}^{n \times n} = dI_n$

9

Norms

- A vector norm is any function $f: \mathbb{R}^n \to \mathbb{R}$ with
 - $f(x) \ge 0$ and $f(x) = 0 \iff x = 0$
 - f(ax) = |a|f(x) for $a \in \mathbb{R}$
 - $f(x+y) \leq f(x) + f(y)$
- e.g., ℓ_2 norm: $||x||_2 = \sqrt{x^\top x} = \sqrt{\sum_{i=1}^n x_i^2}$
- e.g., ℓ_1 norm: $\|x\|_1 = \sum_{i=1}^n |x_i|$

Matrix Inverse

• The *inverse* of a matrix $A \in \mathbb{R}^{n \times n}$ is a matrix $A^{-1} \in \mathbb{R}^{n \times n}$ such that:

$$AA^{-1} = A^{-1}A = I_n$$

- If A^{-1} exists, then A is called invertible or non-singular
- Otherwise, A is called singular
- A matrix A is invertible iff $det(A) \neq 0$

Eigenvalues and Eigenvectors

• For $A \in \mathbb{R}^{n \times n}$, λ is an eigenvalue and $x \neq 0$ is an eigenvector if:

$$Ax = \lambda x$$

- $det(A \lambda I_n)$ is called the **characteristic equation** of the matrix A
- Eigenvalues of A are the roots of the characteristic equation
- Associated eigenvectors of A are non-zero solutions to the equation $(A \lambda I_n)x = 0$.

Singular value decomposition (SVD)

Every matrix has the following decomposition:

SVD

Let $X \in \mathbb{R}^{n \times m}$ then

$$X = U\Sigma V^{\top}$$
,

where $U \in \mathbb{R}^{n \times n}$, $V \in \mathbb{R}^{m \times m}$ are orthogonal matrices (i.e. $U^{\top} = U^{-1}$) and $\Sigma \in \mathbb{R}^{n \times m}$ is a diagonal matrix with singular values of X denoted by σ_i appearing by non-increasing order: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min(m,n)} \geq 0$.

• The square singular values of X are the eigenvalues of the matrix XX^{\top} or $X^{\top}X$, i.e., $\sigma_i(X) = \sqrt{\lambda_i(XX^{\top})} = \sqrt{\lambda_i(X^{\top}X)}$

PCA by Covariance Matrix

Steps to perform PCA using covariance matrix

- X is $n \times k$ raw data
- Z = X P is $n \times r$ (reduced representation)
- P is $k \times r$ (columns contain r principal components)
- $C_X = U \Lambda U^T$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_k \end{bmatrix}$$

where Eigen values of C_X are ordered $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$

- U is $k \times k$ (columns are eigenvectors)
- Choose P as the first r columns of U
- This captures the r directions of maximum variance

PCA by SVD

Proof:

- $C_X = \frac{1}{n}X^TX = \frac{1}{n}\mathsf{WDW}^T$ (covariance matrix is symmetric so it can be diagonalized)
- Apply SVD on X, $X = U\Sigma V^T$
- Then we have $\frac{1}{n}X^TX = \frac{1}{n}(U\Sigma V^T)^T(U\Sigma V^T) = \frac{1}{n}(V\Sigma U^T)(U\Sigma V^T)$
- Since U is orthogonal matrix $(U^T U = I)$ then we have
- $C_X = \frac{1}{n} X^T X = \frac{1}{n} V \Sigma^2 V^T$

SVD

The singular values are related to the eigenvalues of covariance matrix via $\lambda_i = \sigma_i^2$. Columns $U\Sigma$ are reduced representation ("scores").

Kernel

- A Kernel maps an input vector in a lower dimension to a feature vector in higher dimensional space
- This is often used in SVMs as well as other machine learning methods to make the data linearly separable