康普顿散射

Xuanyi, 复旦大学核科学与技术系

摘要: 本实验使用 ¹³⁷Ce 放射源和散射样品(Al 棒)以及多道分析器(MCA)测量了不同出射角度下的康普顿微分散射截面,验证了 Klein-Nishina 公式。

一、引言

康普顿散射是物质与射线相互作用的基本过程之一,它对于理解光子的粒子性和波动性质具有重要意义。本实验旨在通过使用 ¹³⁷Ce 放射源和散射样品(Al 棒),结合多道分析器(MCA)测量不同出射角度下的康普顿微分散射截面,从而验证 Klein-Nishina 公式。在实验中,我们将探索康普顿散射现象的能量和微分截面随散射角变化的关系,并通过实验结果与理论预期的对比来加深对康普顿散射过程的理解。通过本次实验,我们将深入探讨康普顿散射现象,加深对其基本原理的理解,并且掌握康普顿散射效应的测量技术,为进一步研究光子与物质相互作用提供基础。

二、实验目的

- 1. 了解并掌握 NaI(Tl) 闪烁谱仪的工作原理和使用;
- 2. 学会康普顿散射效应的测量技术;
- 3. 验证康普顿散射的能量和微分截面随散射角变化的关系。

三、实验原理

3.1 散射光子的能量和立体角的关系

根据能动量守恒,可以推出散射光子和反冲电子的能量和散射角的关系为

$$E_{\gamma}' = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m \cdot c^2} (1 - \cos \theta)} \tag{1}$$

$$E_{\rm e}' = \frac{E_{\gamma}}{1 + \frac{m_e c^2}{E_{\nu}(1 - \cos \theta)}}$$

散射光子能量和入射管子能量的比值的关系在图1中展示。

3.2 Compton 微分散射截面

Compton 的微分散射截面可以根据 Klein-Nishina ¹计算(下面的公式处于自然单位制中)

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2{\omega'}^2}{m_e^2\omega^2} \left(\frac{\omega'}{\omega} + \frac{\omega}{\omega'} - \sin^2\theta\right)$$
 (2)

其中 m_e 是电子质量, α 是电磁耦合常数, ω 是入射光子角频率, θ 是出射角度, ω' 是出射光子角频率,满足

$$\omega' = \left(\frac{1 - \cos \theta}{m_e} + \frac{1}{\omega}\right)^{-1} = \frac{\omega}{1 + \frac{\omega}{m_e}(1 - \cos \theta)}$$

康普顿散的微分截面在图2中展示。

Compton scattering differential cross-section

图 1 康普顿散射中散射光子的能量与入射 光子能量比值和出射角度的关系,不同的曲 线代表不同的入射光子能量

图 2 康普顿散射的微分散射截面,不同的曲线代表不同的入射光子能量

3.3 微分散射截面的测量方法

实验上, 微分散射截面的物理意义是

$$\frac{\mathrm{d}N(\Omega)}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}N_0N'$$

其中, N_0 是入射粒子总数(本实验中是入射光子数),N' 是样品中的参与散射的粒子数,本实验中是参与散射的电子数 N_e 。

实验上不可能真正的测量密度分布函数,只可能测量小区间上的分布。于是公式退 化为

$$\Delta N(\Omega) = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} N_0 N' \Delta\Omega$$

其中, $\Delta\Omega$ 是探测器的小立体角, $\Delta N(\Omega)$ 是该探测器所接收到的某种出射粒子数。

https://yzhxxzxy.github.io/teaching/1807_QFT.pdf

实验中不会测量样品的电子数 N_e 和入射总粒子数 N_0 ,只会测量相对截面的大小。 所以只有 $\Delta N(\Omega)$ 是需要有效测量的。

实验中使用探测器来测量 $\Delta N(\Omega)$,需要考虑探测器的全能峰效率 ϵ_f

$$\Delta N_{\mathrm{detect}}(\Omega) = \Delta N(\Omega) \varepsilon_f$$

探测效率取决于峰总比 R 和探测器本征探测效率 ϵ 以及空间因素(立体角)

$$\varepsilon_f = R\varepsilon, \eta = \frac{\Omega}{4\pi}\varepsilon$$
$$\Rightarrow \varepsilon_f = R\eta \frac{4\pi}{\Omega}$$

于是

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\Omega) = \frac{N(\Omega)}{R\eta 4\pi N_0 N_e} \tag{3}$$

式中 N_0 , N_e 无法准确知道, η , R 是探测器入射能量的函数,在不同角度下,需要根据全能峰位置确定。实验中,仅需测量相对值,于是并不需要知道 N_0 , N_e 的具体数值,取 Ω_0 作为参考值

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\Omega) / \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\Omega_0) = \frac{N_p(\Omega)}{R(\Omega)\eta(\Omega)} / \frac{N_p(\Omega_0)}{R(\Omega_0)\eta(\Omega_0)} \tag{4}$$

3.4 γ-能谱分析

γ-能谱具有复杂的行为,考虑单能的 γ-射线入射,在多道分析器(MCA)中,我们除了期望看到的全能峰以外,还会看到其它的干扰信号,例如康普顿坪和背景散射峰等。

对于得到的 γ-能谱数据,需要先使用基线校正减除本底,然后在全能峰处寻峰得到峰位置,根据能量刻度的结果转化为能量值。然后求取全能峰下的总计数作为全能峰面积。

四、实验装置

试验台号: 3-1

- 5 mCi 密封的 ¹³⁷Cs 放射源, 1 个;
- 标准γ源,1套;
- 康普顿散射台, 1 套(散射样品中心到探测晶体表面的距离为226 mm);
- 散射样品 (Φ20 mm 铝棒), 1支;
- NaI(Tl) 探头 Φ40 × 40 mm, 1 台;
- BH1324型一体化多道分析器,1台;
- PC 机, 1台;

• 双踪示波器, TDS1001B-SC, 1台。

图 3 实验图

五、实验内容概要和预习思考题

5.1 实验内容

- 1. 调整 NaI(Tl) 闪烁谱仪系统,并作能量刻度;
- 2. 改变散射角,测量散射光子的能量 E'_{ν} ,并与理论值作比较;
- 3. 测量康普顿微分散射截面的相对值, 并与理论值作比较。

5.2 预习思考题

预习思考题 1. 如何确定探测器所加高压和放大器的倍数?

答. 使得在放射源信号的放大器的输出幅度为合适值即可

预习思考题 2. 如何确定每个角度处的测量时间?

答. 根据图微分截面的理论结果(2)可知,在100°处的散射截面相对较低,可以先在此条件下进行测量,确定达到所需计数的测量时间。

预习思考题 3. 如何去除全能峰处的本底?

答. 这种去除本底的方法在峰分析中称为基线校正 (Baseline Correct),实际上没有一种确定到方法。我使用的是 python 的包 peakutils.baseline,这是一种使用不同阶数的多项式拟合基线的方法,多项式阶数的选择没有详细约定,需要具体情况具体分析。

六、实验过程

1. 连接电路, 预热半小时。利用示波器观察前置放大器和主放大器的输出信号, 调整设备参数, 实验仪器的参数设置如表1所示;

- 2. 打开 MCA 分析软件, 本步骤中 MCA 下域设置为 1.0, 分别使用标准 ¹³⁷Cs 和 ²²Na 放射源进行能量定标, 即测量两者的全能峰位置。 ¹³⁷Cs 定标用时 695 s, ²²Na 定 标用时 193 s;
- 3. 设置采集定时 9 min,由于在实际测量过程中发现有效信号在下域一下,所以本步骤中 MCA 下域改设置为 1.0。分别在不同角度 20°,40°,60°,80°,100°,120°下,测量出射光子能谱。

表 1 仪器参数表:在能量定标(上述第二步)时下域设置为 2.0,而在测量微分截面时,下域设置为 1.0

参数仪器	参数名称	参数值
探测器	高压	500 V
	道址总数	512
MCA	放大倍数 (刻度值)	8.0
	上域	10.0
	下域 (能量刻度)	2.0
	下域 (截面测量)	1.0

七、实验结果和分析

7.1 能量刻度

本部分对应第六节的第 2 步,使用标准 22 Na(0.511 MeV) 和 137 Cs(0.662 MeV) 能谱的全能峰位置,确定道址和能量的线性关系。

由于下域的选择,前面的道址对应的定标结果为 0,原能谱在附录中,如图11所示。为了排除这部分对数据的影响,我们去除了前 90 道的信号。标准源的本底减除处理和 寻峰结果如图4所示,根据寻峰结果得到的能量刻度结果如图5以及表2所示。这里本底检出使用的方法是 peakutils.baseline,参数选择Na 源: deg=4, Cs 源: deg=3。

表 2 标准源全能峰位置

放射源	峰值	半峰宽
Na	324	32.5
Cs	417	34.9

能量刻度的结果为

$$E(\text{MeV}) = 0.001624 \cdot i - 0.01506 \tag{5}$$

其中 E 是以 MeV 为单位的能量, i 则是道址编号。

图 4 标准源的能谱数据处理

图 5 能量刻度结果

7.2 效率校刻

根据讲义提供的测量数据,得到峰总比 R 以及源探测效率 η 随能量变化的如图6所示,我们使用的方法是三次样条插值。

图 6 效率校刻结果

7.3 能谱分析

本部分对应第六节的第 3 步,类似之前对标准源能谱的处理。原始能谱在附录中,如图12。

我们先去除了前,前先使用 peakutils.baseline 进行本底减除,本底减除的结果如图7, 寻峰以及峰积分的结果如图8所示。

图 7 微分散射截面能谱数据的极限校正

图 8 微分散射截面能谱数据的全能峰群峰以及峰积分

表 3 测量微分散射截面不同角度的入射能谱数据处理结果

角度	基线参数 deg	峰位值	峰面积	能量 (MeV)	峰总比 (×10 ⁻²)	源探测效率	相对计数值
20.0	2	391	9413.9	0.620	1.114	0.4150	1.000
40.0	4	314	8113.1	0.495	1.236	0.4953	0.651
60.0	4	253	5171.0	0.396	1.356	0.5926	0.316
80.0	4	196	5190.6	0.303	1.523	0.7188	0.233
100.0	5	158	5580.4	0.241	1.668	0.8159	0.201
120.0	3	137	7505.9	0.207	1.738	0.8719	0.243

7.3.1 出射能量分析

表3中的能量与按照式(1)的理论计算结果对比,得到图9和表4所示。

图 9 不同角度的能量测量值和理论值

角度	理论值 (MeV)	测量值 (MeV)	相对误差 (%)
20.0	0.614	0.620	0.94
40.0	0.508	0.495	2.61
60.0	0.402	0.396	1.50
80.0	0.320	0.303	5.18
100.0	0.263	0.241	8.06
120.0	0.225	0.207	7.80

表 4 不同角度的能量测量值和理论值及其误差

可以发现当角度较小时的测量值比较准确,而当测量值较大时,测量值误差较大。 这可能有如下原因

- 1. 小角度散射的微分散射截面较大(图1),从而计数大,对应的误差更小,测量值更为准确。;
- 2. 观察图7,可以发现角度大时峰位值向左偏,峰左侧的康普顿坪有部分被下域掩盖,于是所造成的不同长度的康普顿坪对基线和寻峰有一定的影响,这在120°的情况影响最大;
- 3. 测量仪器存在一定的误差。

为了获得更准确的结果,可以考虑使用测量更长的时间来增加计数值、或者使用针对 γ-能谱的峰分析算法,以减少康普顿坪造成的影响。

7.3.2 微分散射截面分析

表3中的相对微分截面与按照式(2)的理论计算结果对比,得到图10和表5所示。

图 10 不同角度的相对散射截面的 测量值和理论值

	. , ,,,,,,		
———— 角度	理论值	测量值	相对误差(%

表 5 不同角度的相对微分散射截面

角度	理论值	测量值	相对误差 (%)
20.0	1.000	1.000	0.00
40.0	0.601	0.651	8.42
60.0	0.341	0.316	7.32
80.0	0.227	0.233	2.46
100.0	0.189	0.201	6.81
120.0	0.180	0.243	35.25

从图10可以看出,微分散射截面的测量值大体上符合理论规律,存在一定的误差。 误差可能的来源同上一小节,可能是康普顿坪被下域掩盖,从而使得基线校正算法不理 想所致。

同样误差最大发生在120°处,此处出现了非常明显的上升,这和理论较为不符合。除了上面的问题,推测还有可能的原因如下

- 1. 此时的散射光子能量较低,探测器更容易捕获,从而实际探测到的全能峰(光电峰)面积更大。
- 2. 在散射材料中,单能 0.662 MeV γ-射线产生了次级能量更低的 γ 射线发散了康普顿散射,从图2可以看出,入射能量较低的康普顿散射微分散射截面会在大角度处产生回升。
- 3. 20° 可能不是一个合适的参考值,选择不同的参考值会对结果产生不同的影响。

八、实验结论

1. 使用 137 Cs 源产生的 γ -射线对 Al 材料进行散射, 在不同角度测量了散射 γ -能谱。

- 2. 根据能谱中的全能峰位置,验证了康普顿散射公式(1)
- 3. 根据能谱中的全能峰面积,验证了 Klein-Nishina 公式(2)

A、附录

图 11 标准源的全道址能谱数据

图 12 不同方向测量结果的全道址能谱数据