

Ткла: Інтерполювання функцій.

Мета: ознайомлення студентів з алгоритмом побудови першого та другого многочленів Ньютона, оцінкою похибки інтерполювання, алгоритмами сплайн-інтерполювання; набуття студентами практичних навичок побудови многочленів Ньютона, оцінки похибки наближення функції інтерполяційним многочленом та побудови лінійного і квадратичного інтерполяційних сплайнів (у тому числі - з використанням комп'ютера).

Завдання:

- 1. Опрацювати теоретичний матеріал та розв'язання типових прикладів
 - [1, cc. 233-237; cc. 264-266], [2, cc. 24-47; cc. 60-62; cc. 67-74],
 - [3, сс. 78-89 (85-96 у файлі); сс. 258-265 (265-271 у файлі)].
- 2. За табличними даними побудувати інтерполяційні многочлени Ньютона і з їх допомогою знайти значення функції у вказаних точках.
- **3.** За цими ж вхідними даними побудувати інтерполяційні сплайни лінійний та квадратичний; знайти значення функції у вказаних точках з допомогою побудованих сплайнів.
- 4. Зобразити в одній системі координат графіки (многочлена Ньютона та) обох сплайнів.

Singanypa:

- 1. Шахно С.М. Практикум з чисельних методів : Навч. посібник / С.М. Шахно, А.Т. Дудикевич, С.М. Левицька Львів : ЛНУ імені Івана Франка, 2013. 432 с.
- **2.** Крилик Л. В. Обчислювальна математика. Інтерполяція та апроксимація табличних даних : навчальний посібник / Л. В. Крилик, І. В. Богач, М. О. Прокопова. Вінниця : ВНТУ, 2013.-111 с.
- **3.** Численные методы на базе MathCad / С.В. Поршнев, И.В. Беленкова. СПб. : Бхв Петербург, 2005. 464 с.

1. Байрамов Алі Мірзабей-огли

x_i	0,235	1,035	1,835	2,635	3,435
$y_i = f(x_i)$	1,082	1,805	4,280	5,011	7,082

2. Беленчуқ Олеқсій Ігорович

$$\Box f(2,60) = ?$$

x_i	0,452	0,967	1,482	1,997	2,512
$y_i = f(x_i)$	1,252	2,015	4,342	5,752	6,911

3. Березний Ігор Васильович

\mathcal{X}_i	0,134	1,384	2,634	3,884	5,134
$y_i = f(x_i)$	2,156	3,348	3,611	4,112	4,171

4. Бужақ Андрій Васильович

x_i	0,234	2,034	3,834	5,634	7,434
$y_i = f(x_i)$	3,902	2,675	0,611	-3,256	-3,615

5. Бурле Павло Марчелович

x_i	0,132	0,957	2,482	4,007	5,532
$y_i = f(x_i)$	69,531	1,112	-1,672	-1,922	-1,925

6. Волощуқ Назарій Васильович

x_i	0,218	0,868	1,518	2,168	2,818
$y_i = f(x_i)$	0,511	0,982	2,411	3,115	4,561

7. Георгіян Євген Геннадійович

x_i	0,324	0,969	1,614	2,259	2,904
$y_i = f(x_i)$	-2,052	-1,597	-0.231	2,808	8,011

8. Григорчуқ В`ячеслав Валерійович

x_i	0,282	0,932	1,582	2,232	2,882
$y_i = f(x_i)$	6,324	-0.405	-1,114	-1,315	-1,469

9. Фенис Фенис Русланович

\checkmark	f(0)	(25)	=?
_	.) (,,,	•

x_i	0,015	0,565	1,115	1,665	2,215
$y_i = f(x_i)$	-2,417	-3,819	-0,642	0,848	2,815

10. Фручуқ Роман Олеқсандрович

\mathcal{X}_i	0,248	0,923	1,598	2,273	2,948
$y_i = f(x_i)$	-3,642	0,802	0,841	0,513	0,328

11. Дубець Василь Русланович

x_i	0,238	1,388	2,538	3,688	4,838
$y_i = f(x_i)$	0,092	0,672	2,385	3,108	2,938

12. Фуплава Олеқсандр Ігорович

x_i	0,234	0,959	1,684	2,409	3,134
$y_i = f(x_i)$	0,511	0,982	2,411	3,115	4,184

13. Жупниқ Евеліна Михайлівна

x_i	-0,345	0,405	1,155	1,905	2,655
$y_i = f(x_i)$	-1,221	-0,525	2,314	5,106	9,818

14. Івасюта Павло Сергійович

$$f(2,5) = ?$$

x_i	0,231	0,881	1,531	2,181	2,831
$y_i = f(x_i)$	-2,748	-3,225	-3,898	-5,908	-6,506

15. Качуровський Станіслав ПТарасович

\checkmark	f(2	(8)	=	?
--------------	-----	-----	---	---

x_i	2,119	3,844	5,569	7,294	9,019
$y_i = f(x_i)$	0,605	0,718	0,105	2,157	3,431

16. Клим Омитро Іванович

$$\square f(2,6) = ?$$

\mathcal{X}_{i}	0,079	0,754	1,429	2,104	2,779
$y_i = f(x_i)$	-4,308	-0,739	1,697	4,208	6,203

17. Козуб Миқола Миқолайович

\mathcal{X}_i	0,135	0,835	1,535	2,235	2,935
$y_i = f(x_i)$	2,382	-0.212	-1,305	-3,184	-4,365

18. Копадзе Олеқсандра Сергіївна

x_i	-0,135	0,715	1,565	2,415	3,265
$y_i = f(x_i)$	-2,132	-2,113	-1,613	-0,842	1,204

19. Қостюқ Віталій Іванович

x_i	0,351	1,176	2,001	2,826	3,651
$y_i = f(x_i)$	0,605	0,218	0,205	1,157	5,092

20. Қушніриқ Яна Олеқсандрівна

$$f(3,0) = ?$$

x_i	0,184	0,859	1,534	2,209	2,884
$y_i = f(x_i)$	-1,687	-2,542	-5,082	-7,042	-8,538

21. Луниқ Марія Михайлівна

\mathcal{X}_i	0,083	0,783	1,483	2,183	2,883
$y_i = f(x_i)$	-2,132	-2,013	-1,613	-0.842	2,973

22. Мақсименқо Михайло Сергійович

\checkmark	f	(1)	=	?

x_i	0,119	1,069	2,019	2,969	3,919
$y_i = f(x_i)$	-0,572	-2,015	-3,342	-6,752	-6,742

23. Мінтянський Андрій Петрович

x_i	0,357	0,932	1,507	2,082	2,657
$y_i = f(x_i)$	0,548	1,012	1,159	0,694	-0,503

24. Паращуқ Олеқсій Іванович

x_i	0,092	0,842	1,592	2,342	3,092
$y_i = f(x_i)$	3,161	1,357	-0,158	-0,129	-4,438

25. Сарай Богдан Васильович

x_i	0,172	0,992	1,812	2,632	3,452
$y_i = f(x_i)$	-7,057	-5,703	-0,132	1,423	2,832

26. Фецюк Фенис Мирославович

x_i	0,259	0,909	1,559	2,209	2,859
$y_i = f(x_i)$	0,018	-1,259	-1,748	-0,532	0,911

27. Хмелєвська Анастасія Олександрівна

\mathcal{X}_i	0,284	0,734	1,184	1,634	2,084
$y_i = f(x_i)$	-3,856	-3,953	-5,112	-7,632	-8,011

28. Чайқовський Станіслав Валерійович

x_i	0,847	1,372	1,897	2,422	2,947
$y_i = f(x_i)$	-1,104	1,042	0,029	-0,344	-0,449

x_i	-1,25	-0,5	0,25	1	1,75
$y_i = f(x_i)$	0,25	1,225	1,15	2,35	3,15

- 2. За табличними даними побудувати інтерполяційні многочлени Ньютона і з їх допомогою знайти значення функції у вказаних точках.
- **3.** За цими ж вхідними даними побудувати інтерполяційні сплайни лінійний та квадратичний; знайти значення функції у вказаних точках з допомогою побудованих сплайнів.
- 4. Зобразити в одній системі координат графіки многочлена Ньютона та обох сплайнів.
- ► <u>Розв'язання.</u> **2.** За табличними даними побудувати інтерполяційні многочлени Ньютона і з їх допомогою знайти значення функції у вказаних точках.

Для побудови многочленів Ньютона складемо таблицю скінченних різниць. Обчислимо:

☑ Скінченні різниці першого порядку

$$\Delta y_0 = y_1 - y_0 = 1,225 - 0,25 = 0,975$$
, $\Delta y_1 = y_2 - y_1 = 1,15 - 1,225 = -0,075$, $\Delta y_2 = y_3 - y_2 = 2,35 - 1,15 = 1,2$, $\Delta y_3 = y_4 - y_3 = 3,15 - 2,35 = 0,8$

☑ Скінченні різниці другого порядку

$$\Delta^2 y_0 = \Delta y_1 - \Delta y_0 = -0.075 - 0.975 = -1.05, \ \Delta^2 y_1 = \Delta y_2 - \Delta y_1 = 1.2 - (-0.075) = 1.275, \\ \Delta^2 y_2 = \Delta y_3 - \Delta y_2 = 0.8 - 1.2 = -0.4$$

☑ Скінченні різниці третього порядку

$$\Delta^3 y_0 = \Delta^2 y_1 - \Delta^2 y_0 = 1,275 - (-1,05) = 2,325,$$

$$\Delta^3 y_1 = \Delta^2 y_2 - \Delta^2 y_1 = -0,4 - (1,275) = -1,675$$

☑ Скінченні різниці четвертого порядку

$$\Delta^4 y_0 = \Delta^3 y_1 - \Delta^3 y_0 = -1,675 - 2,325 = -4$$

Таблиия 1

Скінченні різниці

i	x_i	$y_i = f(x_i)$	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$
0	-1,25	0,250	0,975	-1,050	2,325	-4,000 -4,000
1	-0,50	1,225	-0,075	1,275	-1,675	
2	0,25	1,150	1,200	-0,400		
3	1,00	2,350	0,800			
4	1,75	3,150				
	Σ		-	-0,175	0,650	-4,000
	S		-0,175	0,650	-4,000	

тут число -4,000 записано двічі, щоб можна було виділити його різними кольорами

Контроль правильності заповнення таблиці:

число Σ для кожного стовпця обчислюється як сума усіх елементів стовпця, а число S - як різниця останнього та першого елементів стовпця;

якщо таблиця заповнена правильно, то Σ наступного стовиця дорівнює S попереднього (у таблиці виділено кольоровими заливками: зеленою, жовтою та блакитною відповідно),

тобто

$$\begin{split} \Sigma_2 &= \sum_{i=0}^2 \Delta^2 y_i = \Delta y_3 - \Delta y_0 = S_1, \ \Sigma_3 &= \sum_{i=0}^1 \Delta^3 y_i = \Delta^2 y_2 - \Delta^2 y_0 = S_2, \\ \Sigma_4 &= \Delta^4 y_0 = \Delta^3 y_1 - \Delta^3 y_0 = S_3. \end{split}$$

$$N_n^1(t) = y_0 + \frac{t}{1!} \Delta y_0 + \frac{t(t-1)}{2!} \Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!} \Delta^3 y_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!} \Delta^n y_0$$

Маємо:

$$x_0 = -1,25$$
, $x_n = x_4 = 1,75$, $h = x_1 - x_0 = x_2 - x_1 = x_3 - x_2 = x_4 - x_3 = 0,75$.

Покладемо

$$t = \frac{x - x_0}{h} = \frac{x - (-1,25)}{0,75} = \frac{x + 1,25}{0,75}$$

і запишемо перший інтерполяційний многочлен Ньютона з n=4, адже у нас обчислені скінченні різниці до $\Delta^4 y_0$. Очевидно, що коефіцієнтами $\Delta^i y_0$ (i=0,1,2,3,4) цього многочлена будуть числа з першого рядка таблиці скінченних різниць (виділені червоним кольором):

$$N_{4}^{1}(t) = \underbrace{0.25}_{y_{0}} + \underbrace{\frac{t}{1!}}\underbrace{(0.975)}_{\Delta y_{0}} + \underbrace{\frac{t(t-1)}{2!}}_{2!}\underbrace{(-1.05)}_{\Delta^{2}y_{0}} + \underbrace{\frac{t(t-1)(t-2)}{3!}}_{3!}\underbrace{(2.325)}_{\Delta^{3}y_{0}} + \underbrace{\frac{t(t-1)(t-2)(t-3)}{4!}}_{4!}\underbrace{(-4)}_{\Delta^{4}y_{0}} = 0.25 + 0.975t - 0.525t(t-1) + 0.3875t(t-1)(t-2) - \underbrace{\frac{1}{6}t(t-1)(t-2)(t-3)}_{\Delta^{3}y_{0}}, \quad t = \underbrace{\frac{x+1.25}{0.75}}_{0.75}$$

При
$$x = -1$$
 значення $t = \frac{x+1,25}{0,75} = \left\{x = -1\right\} = \frac{-1+1,25}{0,75} = \frac{0,25}{0,75} = \frac{1}{3}$. Тоді

$$-\frac{1}{6} \cdot \frac{1}{3} \cdot \left(-\frac{2}{3}\right) \cdot \left(-\frac{5}{3}\right) \cdot \left(-\frac{8}{3}\right) = 0,25 + 0,975 \cdot \frac{1}{3} + 0,525 \cdot \frac{2}{9} + 0,3875 \cdot \frac{10}{27} + \frac{1}{6} \cdot \frac{80}{81} = 0,25 + 0,975 \cdot \frac{1}{3} + 0,525 \cdot \frac{2}{9} + 0,3875 \cdot \frac{10}{27} + \frac{1}{6} \cdot \frac{80}{81} = 0,25 + 0,975 \cdot \frac{1}{3} + 0,525 \cdot \frac{2}{9} + 0,3875 \cdot \frac{10}{27} + \frac{1}{6} \cdot \frac{80}{81} = 0,25 + 0,975 \cdot \frac{1}{3} + 0,525 \cdot \frac{2}{9} + 0,3875 \cdot \frac{10}{27} + \frac{1}{6} \cdot \frac{80}{81} = 0,25 + 0,2$$

$$=0,25+\frac{0,975}{3}+\frac{1,05}{9}+\frac{3,875}{27}+\frac{40}{243}\approx0,2500+0,3250+0,1167+0,1435+0,1646\approx0,9998$$

Таким чином, $f(-1) \approx N_4^1 \left(\frac{1}{3}\right) \approx 0,9998$.

 \square *Обчислимо* f(2). Оскільки $2 > 1,75 = x_4$, то це задача екстраполяції. Через те, що точка екстраполювання близька до правого кінця відрізка, який містить усі задані вузли, то слід записати другий інтерполяційний многочлен Ньютона

$$N_n^2(t) = y_n + \frac{t}{1!} \Delta y_{n-1} + \frac{t(t+1)}{2!} \Delta^2 y_{n-2} + \frac{t(t+1)(t+2)}{3!} \Delta^3 y_{n-3} + \dots + \frac{t(t+1)\dots(t+n-1)}{n!} \Delta^n y_0$$

де n=4, а $t=\frac{x-x_n}{h}=\frac{x-x_4}{h}=\frac{x-1,75}{0,75}$. Очевидно, що коефіцієнтами $\Delta^i y_{n-i}$

(i = 0,1,2,3,4) цього многочлена будуть останні елементи кожного стовпця таблиці скінченних різниць (виділені синім кольором). Маємо:

Скінченних різниць (видыен сины кольором). Илажо.
$$N_4^2(t) = y_4 + \frac{t}{1!} \Delta y_3 + \frac{t(t+1)}{2!} \Delta^2 y_2 + \frac{t(t+1)(t+2)}{3!} \Delta^3 y_1 + \frac{t(t+1)(t+2)(t+3)}{4!} \Delta^4 y_0 = \\ = \underbrace{3,15}_{y_4} + \underbrace{\frac{t}{1!}(0,8)}_{\Delta y_3} + \underbrace{\frac{t(t+1)}{2!}(-0,4)}_{2!} + \underbrace{\frac{t(t+1)(t+2)}{3!}(-1,675)}_{3!} + \underbrace{\frac{t(t+1)(t+2)(t+3)}{4!}(-4)}_{4!} = \\ = 3,15 + 0,8t - 0,2t(t+1) - 0,279t(t+1)(t+2) - \frac{1}{6}t(t+1)(t+2)(t+3)$$
 При $x = 2$ значення $t = \frac{x-1,75}{0,75} = \{x=2\} = \frac{2-1,75}{0,75} = \frac{0,25}{0,75} = \frac{1}{3}$. Тоді
$$f(2) \approx N_4^2 \left(\frac{1}{3}\right) = 3,15 + 0,8 \cdot \frac{1}{3} - 0,2 \cdot \frac{1}{3} \cdot \frac{2}{3} - 0,279 \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{5}{3} - \frac{1}{6} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{5}{3} \cdot \frac{8}{3} = \\ = 3,15 + \frac{0,8}{3} - \frac{0,4}{9} - \frac{2,79}{27} - \frac{80}{6 \cdot 81} \approx 3,15 + 0,2667 - 0,0444 - 0,1033 - 0,1646 = 3,1043$$
 Таким чином, $f(2) \approx N_4^2 \left(\frac{1}{3}\right) \approx 3,1043$.

Для побудови графіка многочлена Ньютона маємо повернутись від змінної t до змінної x, наприклад, у першому многочлені. Маємо:

$$N_4^1(t) = 0,25 + 0,975t - 0,525(t^2 - t) + \frac{2,325}{6}(t^3 - 3t^2 + 2t) - \frac{1}{6}(t^4 - 6t^3 + 11t^2 - 6t) = \dots =$$

$$= -\frac{1}{6}t^4 + \frac{111}{80}t^3 - \frac{169}{48}t^2 + \frac{131}{40}t + \frac{1}{4}.$$

Підставляючи в останній вираз $t = \frac{x+1,25}{0,75} = \frac{4}{3}(x+1,25)$, маємо

$$\begin{split} N_4^1(x) &= -\frac{1}{6} \left(\frac{4}{3}\right)^4 (x+1,25)^4 + \frac{111}{80} \left(\frac{4}{3}\right)^3 (x+1,25)^3 - \frac{169}{48} \left(\frac{4}{3}\right)^2 (x+1,25)^2 + \frac{131}{40} \left(\frac{4}{3}\right) (x+1,25) + \frac{1}{4} = \\ &= -\frac{128}{243} (x+1,25)^4 + \frac{148}{45} (x+1,25)^3 - \frac{169}{27} (x+1,25)^2 + \frac{131}{30} (x+1,25) + \frac{1}{4} \,. \end{split}$$

Далі можна перетворення не продовжувати, адже такого вигляду досить для побудови графіка.

3. За цими ж вхідними даними побудувати інтерполяційні сплайни — лінійний та квадратичний; знайти значення функції у вказаних точках з допомогою побудованих сплайнів.

☑ Побудуємо лінійний сплайн

$$S_{1}(x) = \begin{cases} a_{1}x + b_{1}, & x \in [-1,25;-0,5], \\ a_{2}x + b_{2}, & x \in [-0,5;0,25], \\ a_{3}x + b_{3}, & x \in [0,25;1], \\ a_{4}x + b_{4}, & x \in [1;1,75], \end{cases}$$

тобто з'єднаємо вузли інтерполювання відрізками прямих, отримавши кусково-лінійну функцію.

Невідомі коефіцієнти знайдемо з умов інтерполяції:

$$S_1(x_0) = y_0$$
, $S_1(x_1) = y_1$, $S_1(x_2) = y_2$, $S_1(x_3) = y_3$, $S_1(x_4) = y_4$.

Умова $S_1(x_0) = y_0$ рівносильна тому, що $S_1(x_0) = a_1x_0 + b_1 = y_0$, тобто

$$-1,25a_1 + b_1 = 0,25$$

Далі, умова $S_1(x_1)=y_1$ перепишеться $a_1x_1+b_1=y_1$ і $a_2x_1+b_2=y_1$, адже, у точці x_1 відрізки прямих мають з'єднатись, тобто

$$-0.5a_1 + b_1 = 1.225 \text{ i } -0.5a_2 + b_2 = 1.225;$$

аналогічно, умова $S_1(x_2)=y_2$ перепишеться $a_2x_2+b_2=y_2$ і $a_3x_2+b_2=y_2$, тобто $0.25a_2+b_2=1.15$ і $0.25a_3+b_3=1.15$;

умова $S_1(x_3)=y_3$ перепишеться $a_3x_3+b_3=y_3$ і $a_4x_3+b_4=y_3$, тобто $a_3+b_3=2{,}35$ і $a_4+b_4=2{,}35$;

умова $S_1(x_4)=y_4$ перепишеться $a_4x_4+b_4=y_4$, тобто $1{,}75a_4+b_4=3{,}15 \ .$

Таким чином, отримується система

$$\begin{cases} -1,25a_1 + b_1 = 0,25, \\ -0,5a_1 + b_1 = 1,225, \\ -0,5a_2 + b_2 = 1,225, \\ 0,25a_2 + b_2 = 1,15, \\ 0,25a_3 + b_3 = 1,15, \\ a_3 + b_3 = 2,35, \\ a_4 + b_4 = 2,35, \\ 1,75a_4 + b_4 = 3,15. \end{cases}$$

Розв'язуючи її, знаходимо

$$\begin{cases} a_1 = 1,3 \\ b_1 = 1,875 \end{cases} \begin{cases} a_2 = -0,1 \\ b_2 = 1,175 \end{cases} \begin{cases} a_3 = 1,6 \\ b_3 = 0,75 \end{cases} \begin{cases} a_4 = \frac{16}{15} \\ b_4 = \frac{77}{60} \end{cases}$$

Тоді лінійний сплайн задається формулою

$$S_{1}(x) = \begin{cases} 1,3x+1,875, & x \in [-1,25;-0,5], \\ -0,1x+1,175, & x \in [-0,5;0,25], \\ 1,6x+0,75, & x \in [0,25;1], \\ \frac{16}{15}x+\frac{77}{60}, & x \in [1;1,75]. \end{cases}$$

Знайдемо значення функції у заданих точках з допомогою побудованого лінійного сплайна:

$$f(-1) \approx S_1(-1) = (1,3x+1,875)\Big|_{x=-1} = 1,3(-1)+1,875 = 0,575,$$

$$f(2) \approx S_1(2) = \left(\frac{16}{15}x + \frac{77}{60}\right)\Big|_{x=2} = \frac{16}{15} \cdot 2 + \frac{77}{60} \approx 3,42.$$

\square Побудуємо квадратичний сплайн $S_2(x)$.

Геометрично побудова квадратичного сплайна означає, що ми з'єднуємо вузли інтерполювання фрагментами парабол.

Тут ϵ два підходи: простіший — якщо n=2m, то сплайн можна будувати, використовуючи m вузлів (через один) і не враховуючи гладкість сплайна (рівність перших похідних у некрайніх вузлах) та складніший — використовуючи усі вузли, але при цьому враховуючи гладкість рівність перших похідних у вузлах інтерполювання.

Перший спосіб. Оскільки вузлів інтерполювання задано n+1=5, то n=2m=4, отже, візьмемо вузли через один

$$S_2(x) = \begin{cases} a_1 x^2 + b_1 x + c_1, & x \in [x_0, x_2], \\ a_2 x^2 + b_2 x + c_2, & x \in [x_2, x_4] \end{cases}$$

Коефіцієнти квадратичних тричленів будемо шукати з умов інтерполяції

$$S_2(x_0) = y_0$$
, $S_2(x_1) = y_1$, $S_2(x_2) = y_2$, $S_2(x_3) = y_3$, $S_2(x_4) = y_4$,

враховуючи те, що у некрайніх вузлах параболи з'єднуються між собою. Ці умови дають нам таку СЛАР

$$\begin{cases} a_1 x_0^2 + b_1 x_0 + c_1 = y_0, \\ a_1 x_1^2 + b_1 x_1 + c_1 = y_1, \\ a_1 x_2^2 + b_1 x_2 + c_1 = y_2, \end{cases}$$

$$\begin{cases} a_2 x_2^2 + b_2 x_2 + c_2 = y_2, \\ a_2 x_2^2 + b_2 x_3 + c_2 = y_3, \\ a_2 x_4^2 + b_2 x_4 + c_2 = y_4. \end{cases}$$

Підставляючи вхідні дані, маємо:

$$\begin{cases} \begin{cases} a_1(-1,25)^2 + b_1(-1,25) + c_1 = 0,25, \\ a_1(-0,5)^2 + b_1(-0,5) + c_1 = 1,225, \\ a_1 \cdot 0,25^2 + b_1 \cdot 0,25 + c_1 = 1,15, \end{cases} \Leftrightarrow \begin{cases} \begin{cases} 1,5625a_1 - 1,25b_1 + c_1 = 0,25, \\ 0,25a_1 - 0,5b_1 + c_1 = 1,225, \\ 0,0625a_1 + 0,25b_1 + c_1 = 1,15, \end{cases} \\ \begin{cases} a_2 \cdot 0,25^2 + b_2 \cdot 0,25 + c_2 = 1,15, \\ a_2 \cdot 1^2 + b_2 \cdot 1 + c_2 = 2,35, \\ a_2 \cdot 1,75^2 + b_2 \cdot 1,75 + c_2 = 3,15. \end{cases} \Leftrightarrow \begin{cases} \begin{cases} 1,5625a_1 - 1,25b_1 + c_1 = 0,25, \\ 0,25a_1 - 0,5b_1 + c_1 = 1,225, \\ 0,0625a_1 + 0,25b_1 + c_1 = 1,15, \end{cases} \\ \begin{cases} 0,0625a_1 + 0,25b_1 + c_1 = 1,15, \\ a_2 + b_2 + c_2 = 2,35, \\ 3,0625a_2 + 1,75b_2 + c_2 = 3,15. \end{cases} \end{cases}$$

Розв'язавши останню систему, одним з відомих методів, знаходимо коефіцієнти

$$a_1 = -\frac{14}{15}$$
, $b_1 = -\frac{1}{3}$, $c_1 = \frac{31}{24}$; $a_2 = -\frac{16}{45}$, $b_2 = \frac{92}{45}$, $c_2 = \frac{119}{180}$.

Тоді квадратичний сплайн, побудований через один вузол має такий аналітичний вигляд:

$$S_2(x) = \begin{cases} -\frac{14}{15}x^2 - \frac{1}{3}x + \frac{31}{24}, & x \in [-1, 25; 0, 25], \\ -\frac{16}{45}x^2 + \frac{92}{45}x + \frac{119}{180}, & x \in [0, 25; 1, 75]. \end{cases}$$

Обчислимо з допомогою даного сплайна f(-1), f(2):

$$f(-1) \approx S_2(-1) = -\frac{14}{15} \cdot (-1)^2 - \frac{1}{3} \cdot (-1) + \frac{31}{24} \approx 0,692$$
.

Обчислення f(2) - це екстраполювання, адже, точка $x=2 \notin [-1,25;1,75]$, тому ми припускаємо, що правіше від останнього вузла $x_4=1,75$ сплайн задається тією ж формулою, що й на останньому відрізку, тобто $S_2(x)=-\frac{16}{45}x^2+\frac{92}{45}x+\frac{119}{180}$. Тоді

$$f(2) \approx S_2(2) = -\frac{16}{45} \cdot 2^2 + \frac{92}{45} \cdot 2 + \frac{119}{180} \approx 3,328.$$

*Byznu inmepnorhobanna — niniänuä cnraän $S_2(x)$
** kbadpamurnuä cnraän $S_2(x)$
** kbadpamurnuä cnraän $S_2(x)$ (repez odun byzon)

1.44 -0.96 -0.48 0.96 1.44 1.92 2.4 2.88 3.36 3.84 4.32 4.8

1.92 -1.44 -1.92 -2.4 2.88 3.36 3.84 4.32 4.8

Рис. 1. Лінійний сплайн та квадратичний сплайн, побудований через один вузол

Другий спосіб. Використаємо усі вузли інтерполювання

$$S_{2}(x) = \begin{cases} S_{2,1} = a_{1}x^{2} + b_{1}x + c_{1}, & x \in [x_{0}, x_{1}], \\ S_{2,2} = a_{2}x^{2} + b_{2}x + c_{2}, & x \in [x_{1}, x_{2}], \\ S_{2,3} = a_{3}x^{2} + b_{3}x + c_{3}, & x \in [x_{2}, x_{3}], \\ S_{2,4} = a_{4}x^{2} + b_{4}x + c_{4}, & x \in [x_{3}, x_{4}]. \end{cases}$$

Потрібно знайти 12 невідомих коефіцієнтів квадратичних тричленів. Їх будемо шукати з:

 $S_{2,3}(x_2) = y_2$, $S_{2,3}(x_3) = y_3$, $S_{2,4}(x_3) = y_3$, $S_{2,4}(x_4) = y_4$

☑ умов інтерполяції

$$S_2(x_0)=y_0,\ S_2(x_1)=y_1,\ S_2(x_2)=y_2,\ S_2(x_3)=y_3,\ S_2(x_4)=y_4,$$
 які перепишуться у $2n=2\cdot 4=8$ лінійних рівнянь
$$S_{2,1}(x_0)=y_0,\ S_{2,1}(x_1)=y_1, S_{2,2}(x_1)=y_1,\ S_{2,2}(x_2)=y_2,$$

11

 \square умови гладкості (рівність перших похідних у точках «склеювання» парабол - x_1 , x_2 , x_3) — три рівняння:

$$S'_{2,1}(x_1) = S'_{2,2}(x_1), \ S'_{2,2}(x_2) = S'_{2,3}(x_2), \ S'_{2,3}(x_3) = S'_{2,4}(x_3).$$

(таким чином, утворилося 11 рівнянь для знаходження 12 параметрів. В якості додаткового рівняння задають додаткову умову на одному з кінців відрізку інтерполювання).

 \square додаткової умови на вузлі x_0 інтерполювання, наприклад,

$$S_2'(x_0) = S_{2,1}'(x_0) = 0$$
.

Таким чином, маємо 12 лінійних рівнянь для знаходження 12 невідомих коефіцієнтів:

$$\begin{cases} 2a_1x_0 + b_1 = 0 & (y\text{moba} \ S_2'(x_0) = S_{2,1}'(x_0) = 0) \\ a_1x_0^2 + b_1x_0 + c_1 = y_0 \ (y\text{moba} \ S_{2,1}(x_0) = y_0) \\ a_1x_1^2 + b_1x_1 + c_1 = y_1 \ (y\text{moba} \ S_{2,1}(x_1) = y_1) \end{cases}$$

$$\begin{cases} a_2x_1^2 + b_2x_1 + c_2 = y_1 \ (y\text{moba} \ S_{2,2}(x_1) = y_1) \\ a_2x_2^2 + b_2x_2 + c_2 = y_2 \ (y\text{moba} \ S_{2,2}(x_2) = y_2) \\ 2a_2x_1 + b_2 = 2a_1x_1 + b_1 \ (y\text{moba} \ S_{2,2}'(x_1) = S_{2,1}'(x_1)) \end{cases}$$

$$\begin{cases} a_3x_2^2 + b_3x_2 + c_3 = y_2 \ (y\text{moba} \ S_{2,3}(x_2) = y_2) \\ a_3x_3^2 + b_3x_3 + c_3 = y_3 \ (y\text{moba} \ S_{2,3}(x_2) = y_3) \\ 2a_3x_2 + b_3 = 2a_2x_2 + b_2 \ (y\text{moba} \ S_{2,3}'(x_2) = S_{2,2}'(x_2)) \end{cases}$$

$$\begin{cases} a_4x_3^2 + b_4x_3 + c_4 = y_3 \ (y\text{moba} \ S_{2,4}(x_3) = y_3) \\ a_4x_4^2 + b_4x_4 + c_4 = y_4 \ (y\text{moba} \ S_{2,4}(x_4) = y_4) \\ 2a_4x_3 + b_4 = 2a_3x_3 + b_3 \ (y\text{moba} \ S_{2,4}'(x_3) = S_{2,3}'(x_3)) \end{cases}$$

Підставляючи вхідні дані, маємо:

$$\begin{cases} 2a_1x_0 + b_1 = 0 \\ a_1x_0^2 + b_1x_0 + c_1 = y_0 \\ a_1x_1^2 + b_1x_1 + c_1 = y_1 \end{cases} \Leftrightarrow \begin{cases} 2a_1(-1,25) + b_1 = 0 \\ a_1(-0,5)^2 + b_1(-1,25) + c_1 = 0,25 \\ a_1(-0,5)^2 + b_1(-0,5) + c_1 = 1,225 \end{cases} \Leftrightarrow \begin{cases} -2,5a_1 + b_1 = 0 \\ 1,5625a_1 - 1,25b_1 + c_1 = 0,25 \\ 0,25a_1 - 0,5b_1 + c_1 = 1,225 \end{cases}$$

$$\begin{cases} a_1 = \frac{26}{15}, b_1 = \frac{13}{3}, c_1 = \frac{71}{24} \end{cases}$$

$$\begin{cases} a_2x_1^2 + b_2x_1 + c_2 = y_1 \\ a_2x_2^2 + b_2x_2 + c_2 = y_2 \\ 2a_2x_1 + b_2 = 2a_1x_1 + b_1 \end{cases} \Leftrightarrow \begin{cases} a_2(-0,5)^2 + b_2(-0,5) + c_2 = 1,225 \\ a_2 \cdot 0,25^2 + b_2 \cdot 0,25 + c_2 = 1,15 \\ 2a_2(-0,5) + b_2 = 2a_1(-0,5) + b_1 \end{cases} \Leftrightarrow \begin{cases} 0,25a_2 - 0,5b_2 + c_2 = 1,225 \\ 0,0625a_2 + 0,25b_2 + c_2 = 1,15 \\ -a_2 + b_2 = -\frac{26}{15} + \frac{13}{3} \end{cases}$$

$$a_2 = \frac{10}{3}, b_2 = \frac{11}{15}, c_2 = \frac{91}{120}$$

$$\begin{cases} a_3x_2^2 + b_3x_2 + c_3 = y_2 \\ a_3x_3^2 + b_3x_3 + c_3 = y_3 \\ 2a_3x_2 + b_3 = 2a_2x_2 + b_2 \end{cases} \Leftrightarrow \begin{cases} a_3 \cdot 0,25^2 + b_3 \cdot 0,25 + c_3 = 1,15 \\ a_3 \cdot 1^2 + b_3 \cdot 1 + c_3 = 2,35 \\ 2a_3 \cdot 0,25 + b_3 = 2a_2 \cdot 0,25 + b_2 \end{cases} \Leftrightarrow \begin{cases} 0,0625a_3 + 0,25b_3 + c_3 = 1,15 \\ a_3 + b_3 + c_3 = 2,35 \\ 0,5a_3 + b_3 = \frac{5}{3} + \frac{11}{15} \end{cases}$$

$$a_3 = -\frac{16}{15}, \ b_3 = \frac{44}{15}, \ c_3 = \frac{29}{60}$$

$$\begin{cases} a_4x_3^2 + b_4x_3 + c_4 = y_3 \\ a_4x_4^2 + b_4x_4 + c_4 = y_4 \\ 2a_4x_3 + b_4 = 2a_3x_3 + b_3 \end{cases} \Leftrightarrow \begin{cases} a_4 \cdot 1^2 + b_4 \cdot 1 + c_4 = 2,35 \\ a_4 \cdot 1,75^2 + b_4 \cdot 1,75 + c_4 = 3,15 \\ 2a_4 \cdot 1 + b_4 = 2a_3 \cdot 1 + b_3 \end{cases} \Leftrightarrow \begin{cases} a_4 + b_4 + c_4 = 2,35 \\ 3,0625a_4 + 1,75b_4 + c_4 = 3,15 \\ 2a_4 + b_4 = -\frac{32}{15} + \frac{44}{15} \end{cases}$$

$$a_4 = \frac{112}{45}, \ b_4 = -\frac{52}{9}, \ c_4 = \frac{203}{36}.$$

аналітичне зображення:

Таким чином, квадратичний сплайн, побудований за усіма вузлами має таке аналітичне зображення:
$$S_{2,1} = \frac{26}{15}x^2 + \frac{13}{3}x + \frac{71}{24}, x \in [-1,25;-0,5],$$

$$S_{2,2} = \frac{10}{3}x^2 + \frac{11}{15}x + \frac{91}{120}, x \in [-0,5;0,25],$$

$$S_{2,3} = -\frac{16}{15}x^2 + \frac{44}{15}x + \frac{29}{60}, x \in [0,25;1],$$

$$S_{2,4} = \frac{112}{45}x^2 - \frac{52}{9}x + \frac{203}{36}, x \in [1;1,75].$$

Рис. 2. Лінійний сплайн та квадратичний сплайн, побудований за усіма вузлами

Значення f(-1) та f(2) обчислимо з допомогою отриманого сплайна, міркуючи, як у першому способі:

$$f(-1) \approx S_2(-1) = S_{2,1}(-1) = \frac{26}{15}(-1)^2 + \frac{13}{3}(-1) + \frac{71}{24} \approx 0,358,$$

$$f(2) \approx S_2(2) = S_{2,4}(2) = \frac{112}{45} \cdot 2^2 - \frac{52}{9} \cdot 2 + \frac{203}{36} \approx 4,039.$$

4. Зобразити в одній системі координат графіки многочлена Ньютона та побудованих інтерполяційних сплайнів.

Рис. 3. Усі сплайни та многочлен Ньютона ■