Register Allocation

TEACHING ASSISTANT: DAVID TRABISH

Control Flow Graph

- Create a node for each IR instruction
- Create an edge between an instruction and it's next instruction
- If the instruction is a **branch**:
 - Connect it to the instruction the comes after the target label

Control Flow Graph

```
a = x * (y - z)
if (a) {
  a = a + 1;
}
b = a
```

```
t1 = x
t4 = sub t2, t3
t5 = mult, t1, t4
a = t5
t6 = a
bne t6, 1, end
t8 = 1
t9 = add t7, t8
a = t9
end:
t10 = a
b = t10
```

t1 = x

t2 = y

t3 = z

t4 = sub t2, t3

t5 = mult t1, t4

a = t5

t6 = a

bne t6, 1, end

t7 = a

t8 = 1

t9 = add t7, t8

a = t9

t10 = a

b = t10

Liveness Analysis

• TODO

Liveness Analysis

First Iteration...

Liveness Analysis

Second Iteration...

- Use liveness analysis to construct the interference graph
- Create a node for each IR register (t1, t2, ...)
- If t1 and t2 appear together in one of the liveness sets:
 - Create an edge between t1 and t2

```
{ t1 }
{t2,t1}
                                        t2
                                                     t5
{t2,t3,t1}
{t1,t4}
{ t5 }
                                                     t6
                                                                                t10
                           t3
                                        t4
                                                                   t8
{ t6 }
{ t7 }
{t7,t8}
{ t9 }
{t10}
```

```
{ t1 }
{t2,t1}
                                        t2
                                                     t5
{t2,t3,t1}
{t1,t4}
{ t5 }
                                                     t6
                                                                                t10
                           t3
                                        t4
                                                                   t8
{ t6 }
{ t7 }
{t7,t8}
{ t9 }
{t10}
```

```
{ t1 }
{t2,t1}
                                        t2
                                                     t5
                                                                  t7
                          t1
{t2,t3,t1}
{t1,t4}
{ t5 }
                                                     t6
                                                                               t10
                           t3
                                        t4
                                                                  t8
{ t6 }
{ t7 }
{t7,t8}
{ t9 }
{t10}
```

```
{ t1 }
{t2,t1}
                            t1
                                          t2
{t2,t3,t1}
{t1,t4}
{ t5 }
                            t3
                                                       t6
                                          t4
{ t6 }
{ t7 }
{t7,t8}
{ t9 }
{t10}
```

t7

t8

```
{ t1 }
{t2,t1}
                            t1
                                          t2
{t2,t3,t1}
{t1,t4}
{ t5 }
                            t3
                                                       t6
                                          t4
{ t6 }
{ t7 }
{t7,t8}
{ t9 }
{t10}
```

t7

t8

```
{ t1 }
{t2,t1}
                            t1
                                          t2
{t2,t3,t1}
{t1,t4}
{ t5 }
                            t3
                                                       t6
                                          t4
{ t6 }
{ t7 }
{t7,t8}
{ t9 }
{t10}
```

t7

t8

```
{ t1 }
{t2,t1}
                            t1
                                          t2
{t2,t3,t1}
{t1,t4}
{ t5 }
                            t3
                                                        t6
                                          t4
{ t6 }
{ t7 }
{t7,t8}
{ t9 }
{t10}
```


t8

```
{ t1 }
{t2,t1}
                            t1
{t2,t3,t1}
{t1,t4}
{ t5 }
                            t3
{ t6 }
{t7}
{t7,t8}
{ t9 }
{t10}
```



```
{ t1 }
{t2,t1}
                             t1
                                            t2
{t2,t3,t1}
{t1,t4}
{ t5 }
                             t3
                                            t4
{ t6 }
{ t7 }
{ t7, t8 }
{ t9 }
{t10}
```



```
{ t1 }
{t2,t1}
                            t1
                                          t2
                                                       t5
{t2,t3,t1}
{t1,t4}
{ t5 }
                            t3
                                                       t6
                                          t4
{ t6 }
{ t7 }
{t7,t8}
{ t9 }
{t10}
```

t7

t8

```
{ t1 }
{t2,t1}
                            t1
                                          t2
                                                       t5
{t2,t3,t1}
{t1,t4}
{ t5 }
                            t3
                                                       t6
                                          t4
{ t6 }
{ t7 }
{t7,t8}
{ t9 }
{t10}
```

t7

t8

Graph Coloring

Chaitin's Algorithm:

• TODO

R1 R2 R3

R1 R2 R3

R1 R2 R3

R1 R2 R3

t6

R1 R2 R3

t10

t9

t6

t7

t10

t9

t6

t5

R1 R2 R3

R1 R2 R3

t8 t7 t10 t9 t6 t5

R1 R2 R3

t4 t8 t7 t10 t9 t6 t5

R1 R2 R3

t1 t4 t8 t7 t10 t9 t6 t5

R1 R2 R3

t2 t1 t4 t8 t7 t10 t9 t6 t5

R1 R2 R3

t3 t2 t1 t4 t8 t7 t10 t9 t6 t5

Pop nodes and assign colors...

R1 R2 R3

t2 t1 t4 t8 t7 t10 t9 t6 t5

R1 R2 R3

t2 t1 t4 t8 t7 t10 t9 t6 t5

R1 R2 R3

t1 t4 t8 t7 t10 t9 t6 t5

R1 R2 R3

t1 t4 t8 t7 t10 t9 t6 t5

R1 R2 R3

t4 t8 t7 t10 t9 t6 t5

R1 R2 R3

t4 t8 t7 t10 t9 t6 t5

t8

t7

t10

t9

t6

t5

t8

t7

t10

t9

t6

t5

t7

t10

t9

t6

t5

t7

t10

t9

t6

t5

R1 R2 R3

t10

t9

t6

R2

R1

R3

t10 t9 t6 t5

t6

t6

Register allocation

According to the coloring, our register allocation is:

IR Register	Color	MIPS Register
t1	R3	t2
t2	R2	t1
t3	R1	tO
t4	R1	tO
t5	R1	tO
t6	R1	tO
t7	R2	t1
t8	R1	tO
t9	R1	tO
t10	R1	tO

Register allocation

```
t1 = x
t2 = y
t4 = sub t2, t3
t5 = mult, t1, t4
a = t5
t6 = a
bne t6, 1, end
t7 = a
t.8 = 1
t9 = add t7, t8
a = t9
end:
t10 = a
b = t10
```

IR Register	MIPS Register
t1	t2
t2	t1
t3	tO
t4	tO
t5	tO
t6	tO
t7	t1
t8	tO
t9	tO
t10	tO

```
lw $t2, 8($fp)
lw $t1, 12($fp)
lw $t0, 16($fp)
sub $t0, $t1, $t0
mul $t0, $t2, $t0
sw $t0, -4($fp)
lw $t0, -4 ($fp)
bne $t0, 1, end
lw $t1, -4 ($fp)
li $t0, 1
add $t0, $t1, $t0
sw $t0, -4($fp)
end:
lw $t0, -4 ($fp)
sw $t0, -8($fp)
```