Linear Algebra homework2.7

本次作业参见第 116-120 页。

1 Find A^{\top} and A^{-1} and $(A^{-1})^{\top}$ and $(A^{\top})^{-1}$ for

$$A = \begin{bmatrix} 1 & 0 \\ 9 & 3 \end{bmatrix} \text{ and also } A = \begin{bmatrix} 1 & c \\ c & 0 \end{bmatrix}.$$

2 Verify that $(AB)^{\top}$ equals $B^{\top}A^{\top}$ but those are different from $A^{\top}B^{\top}$:

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \quad AB = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}.$$

show also that AA^{\top} is different from $A^{\top}A$. But both of those matrices are ____.

- 3 (a) The matrix $((AB)^{-1})^{\top}$ comes from $(A^{-1})^{\top}$ and $(B^{-1})^{\top}$. In what order?
 - (b) If U is upper triangular then $(U^{-1})^{\top}$ is _____ triangular.
- 4 Show that $A^2 = 0$ is possible but $A^{\top}A = 0$ is not possible (unless A = zero matrix).
- 5 (a) The row vector \boldsymbol{x}^{\top} times A times the column \boldsymbol{y} produces what number?

$$m{x}^{ op} A m{y} = egin{bmatrix} 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} egin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \underline{\qquad}.$$

- (b) This is the row $\boldsymbol{x}^{\top}A = \underline{\hspace{1cm}}$ times the column $\boldsymbol{y} = (0, 1, 0)$.
- (c) This is the row $\boldsymbol{x}^{\top} = \begin{bmatrix} 0 & 1 \end{bmatrix}$ times the column $A\boldsymbol{y} = \begin{bmatrix} 0 & 1 \end{bmatrix}$
- 6 The transpose of block matrix $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ is

 $M^{\top} =$ _____. Test an example. Under what conditions on A, B, C, D is the block matrix symmetric?

- 7 True or False:
 - (a) The block matrix $\begin{bmatrix} \mathbf{0} & A \\ A & \mathbf{0} \end{bmatrix}$ is automatically symmetric.
 - (b) If A and B are symmetric then their product AB is symmetric.
 - (c) If A is not symmetric then A^{-1} is not symmetric
 - (d) When A, B, C are symmetric, the transpose of ABC is CBA.
- 8 Why are there n! permutation matrices of order n?
- 9 If P_1 and P_2 are permutation matrices, so is P_1P_2 . This still has the rows of I in some order. Given examples with $P_1P_2 \neq P_2P_1$ and $P_3P_4 = P_4P_3$.
- 11 Which permutation makes PA upper triangular? Which permutations make P_1AP_2 lower triangular? Multiplying A on the right by P_2 exchanges the _____ of A.

$$A = \begin{bmatrix} 0 & 0 & 6 \\ 1 & 2 & 3 \\ 0 & 4 & 5 \end{bmatrix}.$$

- 12 Explain why the dot product of \boldsymbol{x} and \boldsymbol{y} equals the dot product of $P\boldsymbol{x}$ and $P\boldsymbol{y}$. Then $(P\boldsymbol{x})^{\top}(P\boldsymbol{y}) = \boldsymbol{x}^{\top}\boldsymbol{y}$ tells us that $P^{\top}P = I$ for any permutation. With $\boldsymbol{x} = (1,2,3)$ and $\boldsymbol{y} = (1,4,2)$ choose P to show that $P\boldsymbol{x} \cdot \boldsymbol{y}$ is not always $\boldsymbol{x} \cdot P\boldsymbol{y}$.
- 14 If P has 1's on the antidiagonal from (1, n) to

(n,1), describe PAP. Note $P=P^{\top}$.

- 15 All row exchange matrices are symmetric: $P^{\top} = P$. Then $P^{\top}P = I$ becomes $P^2 = I$. Other permutation matrices may or may not be symmetric.
 - (a) If P sends row 1 to row 4, then P^{\top} send row _____ to row _____. When $P^{\top} = P$ the row exchanges come in pairs with no overlap.
 - (b) Find a 4 by 4 example with $P^{\top} = P$ that moves all four rows.
- 16 If $A = A^{\top}$ and $B = B^{\top}$, which of these matrices are certainly symmetric?

(a)
$$A^2 - B^2$$
 (b) $(A + B)(A - B)$
(c) ABA (d) $ABAB$.

- 18 (a) How many entries of S can be chosen independently, if $S = S^{\top}$ is 5 by 5?
 - (b) How do L and D (still 5 by 5) give the same number of choices in LDL^{\top} ?
 - (c) How many entries can be chosen if A is skew-symmetric? $(A^{\top} = -A)$.
- 19 Suppose A is rectangular (m by n) and S is symmetric (m by m).
 - (a) Transpose $A^{\top}SA$ to show its symmetry. What shape is this matrix?
 - (b) Show why $A^{\top}A$ has no negative numbers on its diagonal.
- 21 After elimination clears out column 1 below the first pivot, find the symmetric 2 by 2 matrix that appears in the lower right corner:

Start from
$$S = \begin{bmatrix} 2 & 4 & 8 \\ 4 & 3 & 9 \\ 8 & 9 & 0 \end{bmatrix}$$
 and $S = \begin{bmatrix} 1 & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$

24 Factor the following matrix into PA = LU. Factor it also into $A = L_1P_1U_1$ (hold the exchange of row 3 until 3 times row 1 is subtracted from

row 2):

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 8 \\ 2 & 1 & 1 \end{bmatrix}.$$

- 25 Prove that the identify matrix cannot be the product of three row exchanges (or five). It can be the product of two exchanges (or four).
- 27 If every row of a 4 by 4 matrix contains the numbers 0, 1, 2, 3 in some order, can the matrix be symmetric?
- 28 Prove that no reordering of rows and reordering of columns can transpose a typical matrix. (Watch the diagonal entries.)
- 29 Wires go between Boston, Chicago, and Seattle. Those cities are at voltages x_B, x_C, x_S . With unit resistances between cities, the currents between cities are in y:

$$m{y} = Am{x} ext{ is } egin{bmatrix} y_{BC} \\ y_{CS} \\ y_{BS} \end{bmatrix} = egin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix} egin{bmatrix} x_B \\ x_C \\ x_S \end{bmatrix}.$$

- (a) Find the total currents $A^{\top} y$ out of the three cities.
- (b) Verify that $(A\boldsymbol{x})^{\top}\boldsymbol{y}$ agrees with $\boldsymbol{x}^{\top}(A^{\top}\boldsymbol{y})$ —six terms in both.
- 32 The matrix P that multiplies (x, y, z) to give (z, x, y) is also a rotation matrix. Find P and P^3 . The rotation axis $\mathbf{a} = (1, 1, 1)$ doesn't move, it equals $P\mathbf{a}$. What is the angle of rotation from $\mathbf{v} = (2, 3, -5)$ to $P\mathbf{v} = (-5, 2, 3)$?
- $\mathbf{v}=(2,3,-5)$ to $P\mathbf{v}=(-5,2,3)$?

 33 Write $A=\begin{bmatrix}1&2\\4&9\end{bmatrix}$ as the product ES of an elementary row operation matrix E and a symmet-

mentary row operation matrix E and a symmetric matrix S.

34 Here is a new factorization of A into LS: trian-

gular (with 1's) times symmetric:

Start from
$$A = LDU$$
. The A equals $L(U^{\top})^{-1}$ times $S = U^{\top}DU$.

Why is $L(U^{\top})^{-1}$ triangular? Its diagonal is all 1's. Why is $U^{\top}DU$ symmetric?

中文翻译参考:

1 当:

$$A = \begin{bmatrix} 1 & 0 \\ 9 & 3 \end{bmatrix}$$
 以及 $A = \begin{bmatrix} 1 & c \\ c & 0 \end{bmatrix}$.

求相应的 A^{\top} , A^{-1} , $(A^{-1})^{\top}$ 和 $(A^{\top})^{-1}$ 。

2 己知:

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \quad AB = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}.$$

验证 $(AB)^{\top}$ 等于 $B^{\top}A^{\top}$ 但是不等于 $A^{\top}B^{\top}$ 。 证明 AA^{\top} 不同于 $A^{\top}A$,但是这两个矩阵都是

- 3 (a) 矩阵 $((AB)^{-1})^{\top}$ 是 $(A^{-1})^{\top}$ 和 $(B^{-1})^{\top}$ 的乘积. 它们的顺序是什么?
- (b) 如果 U 是上三角矩阵,那么 $(U^{-1})^{\top}$ 是 ____ 三角矩阵.
- 4 证明 $A^2 = 0$ 是可能的,但是 $A^{T}A = 0$ 是不可能的 (除非 A 是零矩阵).
- 5 (a) 行向量 x^{T} 乘矩阵 A 乘列向量 y 等于多少?

$$m{x}^{ op} A m{y} = egin{bmatrix} 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} egin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \underline{\qquad}.$$

- (b) 等价于行向量 $\boldsymbol{x}^{\top}A = \underline{\hspace{1cm}}$ 乘列向量 $\boldsymbol{y} = (0, 1, 0)$.
- (c) 等价于行向量 $\boldsymbol{x}^{\top} = \begin{bmatrix} 0 & 1 \end{bmatrix}$ 乘列向量 $A\boldsymbol{y} =$

6 分块矩阵
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 的转置是 $M^{\top} = \underline{\qquad}$

并举一个例子说明. A,B,C,D 满足什么条件时分块矩阵是对称的?

7 判断对错:

(a) 分块矩阵
$$\begin{bmatrix} \mathbf{0} & A \\ A & \mathbf{0} \end{bmatrix}$$
 是对称矩阵。

- (b) 如果 A 和 B 是对称矩阵,那么它们的乘积 AB 也是对称的。
- (c) 如果 A 不对称,那么 A^{-1} 也不对称。
- (d) 当 A,B,C 是对称的时, ABC 的转置是 CBA.
- 8 为什么 n 阶矩阵有 n! 个排列矩阵?
- 9 如果 P_1 和 P_2 是排列矩阵, 那么 P_1P_2 也是排列矩阵。它的行仍然是单位阵 I 的行按某种顺序排列。举例即找出相应的排列矩阵 P_1, P_2, P_3, P_4 满足 $P_1P_2 \neq P_2P_1$ 以及 $P_3P_4 = P_4P_3$ 。
- 11 已知矩阵:

$$A = \begin{bmatrix} 0 & 0 & 6 \\ 1 & 2 & 3 \\ 0 & 4 & 5 \end{bmatrix}.$$

当排列矩阵 P 是多少时使得 PA 变成上三角矩阵? 当排列矩阵 P_1, P_2 为多少时,使得 P_1AP_2 成为下三角矩阵。在 A 的右侧乘 P_2 会交换 A 的

- 12 解释为什么 x 和 y 的点积等于 Px 和 Py 的点积? 那么由 $(Px)^{\top}(Py) = x^{\top}y$,告诉我们对于任意排列矩阵有: $P^{\top}P = I$ 。当 x = (1,2,3),y = (1,4,2),选择一个矩阵 P,证明 $Px \cdot y$ 不等于 $x \cdot Py$ 。
- 14 如果 P 在反 (斜) 对角线上从 (1,n) 到 (n,1) 位置都是 1,描述 PAP 是何矩阵。注意 $P = P^{T}$.
- 15 所有的行交换矩阵都是对称的: $P^{\top} = P$,那么 $P^{\top}P = I$ 变成 $P^2 = I$ 。其他的排列矩阵可能是 对称的也可能不是对称的。
 - (a) 如果 P 把矩阵的第1行交换到第4行,那么

 P^{\top} 把矩阵的第 ____ 行交换到第 ____ 行。 当 $P^{\top} = P$,行交换会成对出现,并且没有 重叠。

- (b) 求一个 4×4 的矩阵 P,满足 $P^{\top} = P$,会 移动全部 4 个行。
- 16 如果 $A = A^{\mathsf{T}}$, $B = B^{\mathsf{T}}$, 下面哪些矩阵一定对称?

(a)
$$A^2 - B^2$$
 (b) $(A + B)(A - B)$
(c) ABA (d) $ABAB$.

- 18 (a) 如果 5×5 的矩阵 S 满足: $S = S^{\top}$,那么 S 中有多少元素可以独立选择(一个元素的取 值不影响其他元素)?
 - (b) L 和 D (仍然是 5×5 矩阵) 满足什么条件, 矩阵 LDL^{T} 跟 (a) 有一样的结果?
 - (c) 如果 A 是反对称的,即 $A^{\top} = -A$,那么 A 有多少元素可以独立选取?
- 19 假设 A 是矩形矩阵 $(m \times n)$, 矩阵 S 是对称的 $(m \times m)$ 。
 - (a) 证明 $A^{T}SA$ 是对称的。该矩阵是什么形状?
 - (b) 证明 $A^{T}A$ 对角线上的元素都是非负的。
- 21 使用消元法将第一个轴元下的元素都变成 0 后, 求出现在右下角的 2 × 2 的对称矩阵。

$$3 \times 3$$
 矩阵 $S = \begin{bmatrix} 2 & 4 & 8 \\ 4 & 3 & 9 \\ 8 & 9 & 0 \end{bmatrix}$ 和 $S = \begin{bmatrix} 1 & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$

24 分解下面的矩阵得到: PA = LU(L, U) 分别为下、上三角矩阵,P 是排列矩阵)。同时分解矩阵得到: $A = L_1P_1U_1$ (第 3 行保持不变,直到第 2 行减去 3 乘第 1 行):

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 8 \\ 2 & 1 & 1 \end{bmatrix}.$$

25 证明单位矩阵不会是 3 个(或 5 个)行交换矩阵的乘积,可能是 2 个(或 4 个)行交换矩阵的乘积。

- 27 如果一个 4×4 矩阵的每一行都包含 0,1,2,3 (顺序不同),这个矩阵可以是对称的吗?如果可以试着求出其中一个。
- 28 证明对一个典型矩阵的行或列进行重新排列,不能得到它的的转置矩阵(注意对角线上的元素)。
- 29 在波士顿,芝加哥和西雅图之间铺设电缆。这三个城市的电压分别是 x_B, x_C, x_S ,城市与城市之间是单位电阻,城市之间的电流 \boldsymbol{u} 是:

$$m{y} = Am{x} \; m{y} egin{bmatrix} y_{BC} \ y_{CS} \ y_{BS} \end{bmatrix} = egin{bmatrix} 1 & -1 & 0 \ 0 & 1 & -1 \ 1 & 0 & -1 \end{bmatrix} egin{bmatrix} x_B \ x_C \ x_S \end{bmatrix}.$$

- (a) 求途经三个城市的总电流 $A^{\mathsf{T}} y$ 。
- (b) 验证 $(Ax)^{\top}y$ 和 $x^{\top}(A^{\top}y)$ 一致---两者都有 6 项。
- 32 矩阵 P 乘 (x,y,z) 得到 (z,x,y),因而 P 也叫 旋转矩阵。求 P 和 P^3 。旋转轴 $\mathbf{a}=(1,1,1)$ 不会移动,它等于 $P\mathbf{a}$ 。求从 $\mathbf{v}=(2,3,-5)$ 到 $P\mathbf{v}=(-5,2,3)$ 的旋转角?
- 33 将矩阵 $A = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$ 写成 ES 乘积的形式(即求 E, S,使 A = ES)。其中 E 是一个初等行运算 矩阵,S 是一个对称矩阵。
- 34 现有一种新的矩阵分解: A = LS, 即: 三角形矩阵 L (对角线元素是 1) 乘对称矩阵 S:

$$A = LDU$$
. A 等于 $L(U^{\top})^{-1}$ 乘 $S = U^{\top}DU$.

为什么 $L(U^{\top})^{-1}$ 是三角形矩阵? 对角线上的元素都是 1。为什么矩阵 $U^{\top}DU$ 是对称的?