声控电子摇篮控制电路

集成化声控电子摇篮控制电路如附图所示。整个 控制电路由声控放大器、定时器、方波信号发生器、 电磁快驱动电路、电源电路等构成。

静态时, V_1 截止, IC_2 的②脚为高电位,输出端 ③脚为低电位,由于 IC_3 的④脚与 IC_2 的③脚直接相连,使 IC_3 的④脚为低电位,故 IC_3 处于强迫复位状态。此时 IC_3 的③脚为低电位, V_2 截止,摆篮不工作。

当拾音器 MIC 拾得声频信号(包括小孩的哭声, 收录机等输出的声音,大人发出的摧眠声等)后,经 IC₁单向放大及 C_4 、 n_{bel} 微分后使 V_1 导通,给 IC_2 的 ②脚一个负的触发信号,IC₂的输出端(③脚)跳变为高电位。此时以 IC_3 为核心构成的超低频方波振荡器开始工作,方波振荡器输出的方波信号控制 V_2 工作。于开关状态, V_2 驱动电磁铁 Y 工作,带动摇篮工作。在摇篮开始工作的同时,以 IC_2 为核心构成的单稳电路工作,经约 1.1 R_6 Cs 延时后 IC_2 内部触发器复位,IC₂的③脚输出低电位,使 IC_3 的④脚为低电位,IC₃组成的方波振荡器停止荡,其③脚为低电位, V_2 截止,摇篮停止摇荡。此时若再收到声频信号,则重复上述动态过程,否则摇篮停止工作。

电路中,IC₁选用LM 358, IC₂、IC₃选用NE 555 等电路,亦可用NE 556 代替 IC₂和 IC₃。电磁铁的制作方法可参阅有关资料。

(胡大友)

压频变换器 AD 654

附图是用 AD 654 的低成本压频变换器(VFC)。只要按图连接必要元件 R_T 和 C_T ,就可成为 VFC 应用电路。电源电压可低至 4.5 V 仍能保证性能,保证性能至 16.5 V,<u>耗电流最大 3 mA (空载)。最高频率 520 kHz。输入电压范围限于 $0\sim4$ V。输入量程 $V_{\rm IN}$ 由电阻 R_T 决定,即 $V_{\rm IN}$ max/ R_T =1 mA。例如 $V_{\rm IN}$ =0 ~1 V 取用 R_T =1 kΩ, $V_{\rm IN}$ =0 ~5 V 选用 R_T = $\frac{5}{\rm k}\Omega$ 。输出对应频率范围由 C_T 决定, F_0 max=1/10 C_T ,频率单位 kHz, C_T 单位用 μ F。例如, C_T =0.1 μ F,则输出 频率 为 $0\sim1$ kHz; C_T =0.001 μ F,输出频率范围为 $0\sim100$ kHz。</u>

也可以做双电源使用,即 V^- 加负电源 $0\sim-15$ V 均可。但总电源电压 $V^+\sim V^-$ 不得超过 36 V。输出 $\mathbf{F_0}$ 端(① 脚)是集电极开路形式,可吸入电流 8 mA。输出波形是完全方波,并仍象其他 VFC 集成

附图 单电源 VFC

块波形为窄脉冲。这在某些场合是很有用的。

另外,AD 654 单电源供电时也可以做负压输入使用。这就从 $R_{\rm T}$ 电阻接地端(不再接地)输入负电压,④ IN 端接地。其余均不变。

还可以调零、调满度来实现更高精度。调零办法如同一般运放改变输入偏置。调满度就是改变 R_T 阻值。都很简单。不调整非线误差最大不超过 0.1%,比 AD/VFC 32 略差些,但价格低廉令一般 VFC 应用者优先选用。

(郝鸿安)

· 11 ·