Laboratorium Podstaw Fizyki

Nr ćwiczenia44a
Temat ćwiczenia Pomiar zależności oporu metali i półprzewodników od temperatury
Nazwisko i Imię prowadzącego kurs Trzmiel Justyna

Wykonawca:					
Imię i Nazwisko nr indeksu, wydział	Kacper Karkosz, 275495, W12N Aleksander Łyskawa, 275462, W12N				
Termin zajęć: dzień tygodnia, godzina	Wtorek, 15:15				
Numer grupy ćwiczeniowej	Grupa nr. 6				
Data oddania sprawozdania:	31.10.2023r.				
Ocena końcowa					

Zatwierdzam	wyniki pomiarów.
Data i podpis	prowadzącego zajęcia

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego sprawozdania

1 Cele ćwiczenia:

- Pomiar oporu elektrycznego metalu i półprzewodnika w funkcji temperatury.
- Wyznaczenie temperaturowego współczynnika oporu (rezystancji) metalu.
- Wyznaczenie szerokości pasma wzbronionego półprzewodnika (tzw. przerwy wzbronionej).

2 Metoda pomiarowa

- 1. Zmontowanie układu pomiarowego
- 2. Pomiar rezystancji próbek w temperaturze pokojowej
- 3. Stopniowe zwiększanie temperatury o $3^{\circ}C$
- 4. Ponowne pomiary rezystancji próbek w podwyższonej temperaturze
- 5. Zapisywanie wyników

3 Spis przyrządów

- Multimetr M3850
 - 1. Pomiar rezystancji $\Delta R = 0.5\% \cdot rdq + 1 \cdot dqt$
- Komora pomiarowa zawierająca: badane próbki (metalowe i półprzewodnikowe), grzejnik i wentylator
- Jednostka sterująca zawierająca: wyłącznik sieciowy, regulator temperatury, przełączniki podłączające wybraną próbkę do miernika oporu, wyłącznik wentylatora

4 Oznaczenia

- t temperatura wyrażona w °C
- T temperatura wyrażona w K
- R_m opór metalu
- a współczynnik kierunkowy regresji liniowej
- b wyraz wolny regresji liniowej
- α temperaturowy współczynnik oporu
- R_p opór półprzewodnika
- A współczynnik kierunkowy regresji liniowej (dla półprzewodnika)
- B -wyraz wolny regresji liniowej (dla półprzewodnika)
- k stała Boltzmanna
- E_q przerwa wzbroniona

5 Wyniki pomiarów

5.1 Tabele pomiarowe

Tabela 1: Wyniki pomiarów temperatury i oporu metalu oraz obliczeń współczynników linii prostej i temperaturowego współczynnika oporu oraz ich niepewności

	Т	u(T)	R _M	u(R _M)	a	u(a)	b	u(b)	α	u _c (α)		
l.p.	°C	°C	°C	°C	Ω/°C	Ω/°C	Ω/°C	Ω/°C	°C ⁻¹	°C ⁻¹		
1	21,40		112,10	0,38								
2	25,40		113,20	0,38								
3	28,40		114,30	0,39								
4	31,40		115,40	0,39								
5	34,40		116,10	0,39								
6	37,40		116,20	0,39								
7	40,40		117,70	0,40								
8	43,40		118,70	0,40								
9	46,40		119,70	0,40								
10	49,40		120,70	0,41								
11	52,40	0,58	58 122,10 0,41 0,438 0,015	100,75	0,83	0,00434	0,00015					
12	55,40		124,00	0,42								
13	58,40				125,80	0,42						
14	61,40		127,10	0,42								
15	64,40		128,50	0,43								
16	67,40		130,20	0,43								
17	70,40		131,60	0,44								
18	73,40		132,50	0,44								
19	76,40		134,10	0,44								
20	79,40		137,20	0,45								
21	82,40		139,60	0,46								

Tabela 2: Wyniki pomiarów temperatury i oporu półprzewodnika oraz obliczeń współczynnika kierunkowego prostej i szerokości przerwy wzbronionej oraz ich niepewności

l m	Т	u(T)	R _P	u(R _P)	1000/T	u _c (1000/	nR _P	u _c (InR _P)
l.p.	°C	°C	Ω	Ω	1/K	1/K	-	-
1	21,40		16,950	0,055	3,3950	0,0067	2,8303	0,0032
2	25,40		15,700	0,051	3,3495	0,0065	2,7537	0,0033
3	28,40		13,900	0,046	3,3162	0,0064	2,6319	0,0033
4	31,40		12,700	0,042	3,2835	0,0062	2,5416	0,0033
5	34,40		12,540	0,042	3,2515	0,0061	2,5289	0,0033
6	37,40		11,290	0,038	3,2201	0,0060	2,4239	0,0034
7	40,40		9,860	0,034	3,1893	0,0059	2,2885	0,0035
8	43,40		9,000	0,032	3,1591	0,0058	2,1972	0,0035
9	46,40		8,200	0,029	3,1294	0,0057	2,1041	0,0036
10	49,40	0,58	7,970	0,029	3,1003	0,0056	2,0757	0,0036
11	52,40		6,890	0,026	3,0717	0,0055	1,9301	0,0037
12	55,40		5,760	0,022	3,0437	0,0054	1,7509	0,0039
13	58,40		4,950	0,021	3,0161	0,0053	1,5994	0,0042
14	61,40		4,410	0,019	2,9891	0,0052	1,4839	0,0042
15	64,40		3,900	0,017	2,9625	0,0051	1,3610	0,0044
16	67,40		3,360	0,015	2,9364	0,0050	1,2119	0,0046
17	70,40		3,000	0,014	2,9108	0,0049	1,0986	0,0048
18	73,40		2,630	0,013	2,8856	0,0048	0,9670	0,0051
19	76,40		2,290	0,012	2,8608	0,0047	0,8286	0,0054
20	79,40		1,940	0,011	2,8365	0,0047	0,6627	0,0059
21	82,40		1,710	0,011	2,8125	0,0046	0,5365	0,0063
Eg	Eg		u(Eg)	А	u(A)		В	u(B)
J	eV		eV	K		K	K	K
1,10597E-3	19 0,69	00	0,026	4,01	0	,15	-10,54	0,46

5.2 Wykorzystane wzory oraz przykładowe obliczenia

5.2.1 Niepewność pomiaru temperatury

$$u(T) = \frac{1}{\sqrt{3}} = 0,5773... \approx 0,58 \,[^{\circ}C]$$
 (1)

5.2.2 Niepewność pomiaru rezystancji

$$u(R) = \frac{0.5\% \cdot \text{rdg} + 1 \cdot \text{dgt}}{\sqrt{3}} = \frac{0.5\% \cdot 112.1 + 1 \cdot 0.1}{\sqrt{3}} = 0.38135... \approx 0.39 \,[\Omega]$$
 (2)

5.2.3 Temperaturowy współczynnik oporu α

$$\alpha = \frac{a}{b} = \frac{0,438}{100,75} = 0,004341... \approx 0,434 \left[\frac{1}{\circ C} \right]$$
 (3)

5.2.4 Niepewność całkowita współczynnika α

$$u_c(\alpha) = \sqrt{\left(\frac{\partial \alpha}{\partial a} \cdot u(a)\right)^2 + \left(\frac{\partial \alpha}{\partial b} \cdot u(b)\right)^2} = \sqrt{\frac{1}{b^2} \cdot u^2(a) + \left(\frac{-\alpha}{b^2}\right)^2 \cdot u^2(b)}$$
(4)

$$u_c(\alpha) = \sqrt{\frac{1}{(100,75)^2} \cdot (0,015)^2 + \left(\frac{0,00434}{(100,75)^2}\right)^2 \cdot (0,83)^2} = 0,0001495... \approx 0,00015 \left[\frac{1}{\circ C}\right]$$
 (5)

5.2.5 Niepewność całkowita odwrotności temperatury w Kelwinach, pomnożonej przez 1000

$$u_c\left(\frac{1000}{T}\right) = \sqrt{\left[\frac{\partial \frac{1000}{T}}{\partial T} \cdot u(T)\right]^2} = -\frac{1000}{T^2} \cdot u(T) \tag{6}$$

$$u_c\left(\frac{1000}{T}\right) = -\frac{1000}{(21,4)^2} \cdot 0,58 = 0,00667... \approx 0,0067 \left[\frac{1}{K}\right]$$
 (7)

5.2.6 Niepewność całkowita logarytmu z R_p

$$u_c(ln(R_p)) = \sqrt{\left[\frac{\partial ln(R_p)}{\partial R_p} \cdot u(R_p)\right]^2} = \frac{1}{R_p} \cdot u(R_p)$$
(8)

$$u_c(ln(R_p)) = \frac{1}{16,95} \cdot 0,055 = 0,00319... \approx 0,0032[-]$$
 (9)

5.2.7 Przerwa wzbroniona

$$E_g = 2000 \cdot k \cdot A = 2000 \cdot 1,38065 \cdot 10^{-23} \cdot 4,01 = 1,10597 \cdot 10^{-19} [J] = 0,6903 \approx 0,690 [eV]$$
 (10)

5.2.8 Niepewność całkowita przerwy wzbronionej

$$u_c(E_g) = \sqrt{\left[\frac{\partial E_g}{\partial A} \cdot u(A)\right]^2} = 2000 \cdot k \cdot u(A) = 2000 \cdot 1,38065 \cdot 10^{-23} \cdot 0,15 = 4,13 \cdot 10^{-23} \left[J\right] = 0,026 \left[eV\right] (11)$$

6 Wnioski

- Opór metalu rośnie wraz ze wzrostem temperatury.
- Wyznaczona wartość temperaturowego współczynnika rezystancji α badanego metalu (próbka nr 1) wynosi $4,34\cdot 10^{-3}(0,15\cdot 10^{-3})\frac{1}{\circ C}$, co jest wartością zbliżoną do tablicowej wartości tego współczynnika dla glinu (Al), która wynosi $4,4\cdot 10^{-3}\frac{1}{\circ C}$
- Opór półprzewodnika maleje wraz ze wzrostem temperatury.
- Wyznaczona wartość przerwy wzbronionej badanego półprzewodnika (próbka nr. 3) wynosi 0,690(0,026)eV. Jest to wartość zbliżona do tablicowej wartości przerwy wzbronionej germanu (Ge), wynoszącej 0,67eV.