

Introduction to R and data visualization

Wenbin Guo Bioinformatics IDP, UCLA

> wbguo@ucla.edu 2024 Spring

Notation of the slides

- Code or Pseudo-Code chunk starts with " ➤ ", e.g.
 ➤ print("Hello world!")
- Link is underlined

- Important terminology is in **bold** font
- Practice comes with

Agenda

- Day 1: R basics
 - Environment setup
 - Variable, Operators
 - Data structure: Vector, Matrix, List, Data frame
- Day 2: R advanced topics
 - Flow control, Loops
 - Function, Packages, File Input/Output
 - Data wrangling with tidyverse toolkit
- Day 3: Data visualization with ggplot2
 - ggplot2 syntax, grammar, and elements
 - Basic plot types and customization

Day 3: R data visualization

Wenbin Guo Bioinformatics IDP, UCLA

> wbguo@ucla.edu 2024 Spring

Overview

Time

• 3-hour workshop (45min + 45min + 30min + practice/Q&A)

Topics

- ☐Getting started with ggplot2 visualization
- □Plot types and customization
- □Examples and practices

Variables: the container of data

- Naming rules
- □ Value assignment
- □ Variable classes
- ☐ Inspecting the variable
- ☐ Inspecting the workspace

Numbers

- Number representation
- □ Special numbers

Operators: the actions on variables

- ☐ Arithmetic
- □ Relational
- ☐ Logical
- ☐ Operator's precedence

Operator	Description
+	addition
-	subtraction
*	multiplication
1	division
^ or **	exponentiation
х %% у	modulus (x mod y) 5%%2 is 1
x %/% y	integer division 5%/%2 is 2

Operator	Description
<	less than
<=	less than or equal to
>	greater than
>=	greater than or equal to
==	exactly equal to
!=	not equal to
!x	Not x
x y	x OR y
х & у	x AND y
isTRUE(x)	test if X is TRUE

Precedence	Operator	Description			
18	:: :::	access variables in a namespace			
17	\$ @	component / slot extraction			
16	[] []]	indexing			
15	٨	Exponentiation operator (Right to Left)			
14	+a -a	Unary plus, Unary minus			
13	:	Sequence operator			
12	%% %*% %/% %in% %o% %x%	Special operators			
11	* /	Multiplication, Division			
10	+ -	Addition, Subtraction			
9	< <= > >=	Less than, Less than or equal, Greater than, and Greater than or equal			
	== !=	Equality and Inequality			
8	!	Logical NOT			
7	& &&	Logical AND			
6	1	Logical OR			
5	~	as in formulae			
4	-> ->>	Right assignment operator, Global right assignment operator			
3	<- <<-	Left assignment operator, Global left assignment operator (Right to Left)			
2	=	Left assignment operator (Right to Left)			
1	?	help (unary and binary)			

Top to bottom in **descending precedence**

R objects: data container

- Vectors
- ☐ String and Factor
- Matrix
- ☐ List
- □ Data frame

Operations on the R objects

- ☐ Create
- □ Indexing
- Update
- **...**

R programming basics

- ☐ Flows
 - ☐ if-else
 - switch
- ☐ Loops
 - ☐ for, while, repeat
 - □ apply family
- ☐ Functions
 - ☐ Built-in
 - ☐ Self-defined
- □ Packages
 - ☐ Install/update/remove
 - ☐ Load/unload

Building blocks for a complicated program

Data wrangling functions

Category	Function	Usage				
	filter()	keep rows that meet criterions				
Manipulate observations	arrange()	orders observations according to variables				
	bind_rows()	bind any number of data frames by row				
	select()	keep variables using their names or types				
Manipulate variables	mutate()	create new variables				
	*_join()	merge data frames by columns				
Pochano data	<pre>pivot_longer()</pre>	convert data frame from wide to long format				
Reshape data	<pre>pivot_wider()</pre>	convert data frame from long to wide format				
Summarize data	group_by()	group data frame by variable				
Summanze data	summarize()	summarize the grouped data frame				
pipe	%>%	chain operations together				

WITH VISUALIZATIONS UNDERSTANDING LEVEL WITHOUT VISUALIZATIONS

Data visualization

Facts on how our brain reacts to visuals

"A picture may be worth a thousand words"

Example

But the visualization can be imprecise (e.g. the distance between planets)

The role and road of data visualization in science

As a scientist, we use data visualization techniques to explore and explain

Visualization is a core step in a data analysis project

Data visualization in science (example)

Terekhanova, et al. *Nature* (2023)

Idea behind ggplot2 visualization

Take scatter plot as an example

	₽ Filter										
^	manufacturer	model	displ	year [‡]	cyl [‡]	trans	drv	cty	hwy	fl [‡]	class
1	audi	a4	1.8	1999	4	auto(I5)	f	18	29	р	compact
2	audi	a4	1.8	1999	4	manual(m5)	f	21	29	р	compact
3	audi	a4	2.0	2008	4	manual(m6)	f	20	31	р	compact
4	audi	a4	2.0	2008	4	auto(av)	f	21	30	p	compact
5	audi	a4	2.8	1999	6	auto(I5)	f	16	26	p	compact
6	audi	a4	2.8	1999	6	manual(m5)	f	18	26	р	compact
7	audi	a4	3.1	2008	6	auto(av)	f	18	27	р	compact
8	audi	a4 quattro	1.8	1999	4	manual(m5)	4	18	26	р	compact
9	audi	a4 quattro	1.8	1999	4	auto(I5)	4	16	25	p	compact
10	audi	a4 quattro	2.0	2008	4	manual(m6)	4	20	28	р	compact
11	audi	a4 quattro	2.0	2008	4	auto(s6)	4	19	27	р	compact
12	audi	a4 quattro	2.8	1999	6	auto(I5)	4	15	25	р	compact
13	audi	a4 quattro	2.8	1999	6	manual(m5)	4	17	25	р	compact
14	audi	a4 quattro	3.1	2008	6	auto(s6)	4	17	25	p	compact
15	audi	a4 quattro	3.1	2008	6	manual(m6)	4	15	25	р	compact
nowing 1	to 16 of 234 entries,	11 total columns									

Idea behind ggplot2 visualization

Create a ggplot object

Create the initial plot object

```
pgplot(data = NULL, mapping = aes(), ...)
    data: dataset to use for plot
    mapping: list of aesthetic mappings to use for plot
    ...: other arguments
```

 ggplot() is usually followed by a plus sign (+) to add additional components/layers to the plot

Key components of a ggplot object

- The data
- A set of aesthetic mappings between variables and visual properties
- At least one layer describing how to render the observations


```
base = ggplot(data=mpg, aes(x=hwy, y=displ))
base
```



```
base = ggplot(data=mpg, aes(x=hwy, y=displ))
base +
  geom_point()
```



```
base = ggplot(data=mpg, aes(x=hwy, y=displ))
base +
  geom_point(aes(colour = drv))
```


The layered grammar of graphics

Leland Wilkinson (1944-2021)

The Grammar of Graphics (1999)

The layered grammar of graphics

Describes all the non-data ink

Plotting space for the data

Statistical models and summaries

Rows and columns of sub-plots

Shapes used to represent the data

Scales onto which data is mapped

The actual variables to be plotted

Aesthetics

Aesthetic mappings

Aesthetic mappings aes() describe how variables are mapped to visual properties or aesthetics. It takes aesthetic-variable pairs

 \triangleright aes(x = displ, y = hwy, colour = class)

Aesthetic	Description
х	x-axis position
У	y-axis position
colour	Color of points or outlines of other shapes
fill	Fill color
size	size of the point or thickness of line
alpha	Transparency of the shape
linetype	Line type such a solid, dashed, dotted
labels	Text on the plot
shape	Shape of the geometry

Aesthetic mappings

Aesthetic mappings aes() describe how variables are mapped to visual properties or aesthetics. It takes aesthetic-variable pairs

 \triangleright aes(x = displ, y = hwy, colour = class)

Check available options

vignette("ggplot2-specs")

linetype		sha						
	solid	Outline	0	1	<u>2</u>	3	4 ×	
	dashed		5	6	7 ⊠	8 **	9	
	dotted		10	11 XX	12 	13	14	
	dotdash		⊕	XX	Ш	Ø		
	longdash	Fill	15	16 •	17	18 ♦	19	2
	twodash		21	22	23	24	25	

Description
x-axis position
y-axis position
Color of points or outlines of other shapes
Fill color
size of the point or thickness of line
Transparency of the shape
Line type such a solid, dashed, dotted
Text on the plot
Shape of the geometry

Map an aesthetic to a variable when the appearance is governed by a variable

```
> ggplot(mpg) + geom_point(aes(displ, hwy, colour = "blue"))
```

Set the aesthetic atrribute to a single value in the layer parameters

```
p ggplot(mpg) + geom_point(aes(displ, hwy), colour = "blue")
```

Geometry

Geometric objects

Geometric objects geoms control plot type

Function	Usgae
<pre>geom_blank()</pre>	display nothing.
<pre>geom_segment()</pre>	draw a line segment, specified by start and end position
<pre>geom_abline()</pre>	draw a straight line, specified by slope and intercept
<pre>geom_path()</pre>	connect observations in order of the data
<pre>geom_line()</pre>	connect observation in order of the variables on x axis
<pre>geom_rect()</pre>	draw rectangles
<pre>geom_ribbon()</pre>	draw ribbons, a path with vertical thickness

One variable

• Discrete:

• geom_bar(): display count distribution of discrete variable

Continuous:

- geom_histogram(): bin and count continuous variable, display with bars
- geom_density(): smoothed density estimate

Two variables

Both continuous:

geom_point(): scatterplot

• geom_smooth(): smoothed line of best fit

geom_rug(): marginal rug plots

One continuous, one discrete:

• geom_boxplot(): boxplots

• geom_violin(): show density of values in each group

• geom_jitter(): randomly jitter overlapping points

Choose geometry based on visualization goal

Scales

Scale settings

Syntax: scale_<aesthetic>_<type>

Aesthetics: position, color, fill, size, shape, alpha, linetype

Type: continuous, discrete

Example:

aes() maps the color attribute to a variable in data scale* maps the color value to the variable value

Position scales

```
syntax: scale_<axis>_<type>
```

axis: x, y

type: discrete, continuous

arguments: name, limits, breaks, labels

Position scales

Name:

```
> scale_x_continuous(names = "x")
```

Limits:

```
➤ scale_x_continuous(limits=c(1,7))
```

Breaks:

```
> scale_x_continuous(breaks = c(50, 75, 100))
```

Labels:

```
> scale_x_continuous(labels = c(1/2, 3/4, 1))
```


Color scales

syntax: scale_<aes>_<type>

aes: fill, color

type: discrete, continuous, gradient, manual...

use fill as an example

Color scales (continuous)

Set color palettes

scale_fill_gradient(): produces a 2 colour gradient
 > scale_fill_gradient(low = "grey", high = "brown")

scale_fill_gradient2(): produces a 3 colour gradient with midpoint
 scale_fill_gradient2(low = "grey", mid = "white", high = "brown", midpoint = .02)

• scale_fill_gradientn(): produces an n-colour gradient

Color scales (discrete)

Brewer scales

- > scale_fill_brewer(palette="Set1")
- > scale_fill_brewer(palette="Set2")

Manually set color

Use a vector

```
> scale_fill_manual(values = c("grey", "black", "grey", "grey"))
```

Use a named vector

Facet

3 types of facet

- facet_null(): a single plot, the default.
- facet_wrap(): "wraps" a 1d ribbon of panels into 2d.
- facet_grid(): produces a 2d grid of panels defined by variables which form the rows and columns.

Facet wrap

facet_wrap() makes a long ribbon of panels (generated by any number of variables) and wraps it into 2d

Parameters

- ncol, nrow: controls how many rows/columns in the 2d panel
- dir: controls the direction of wrap: horizontal or vertical.

Facet grid

- facet_grid() lays out plots in a 2d grid
 - facet_grid(. ~ a): spreads the values of a across the columns
 - facet_grid(b ~ .): spreads the values of b down the rows
 - o facet_grid(b ~ a): b ~ a spreads a across columns and b down rows

Controlling panel scales

control whether the position scales are the same in all panels (fixed) or allowed to vary between panels (free) with the scales parameter:

- scales = "fixed": x and y scales are fixed across all panels.
- scales = "free_x": the x scale is free, and the y scale is fixed.
- scales = "free y": the y scale is free, and the x scale is fixed.
- scales = "free": x and y scales vary across panels.

Plot customization

Plot title

Change the title:

This is the caption

themes in ggplot2

Applying theme for a plot at a time >plot + theme_bw()

Use theme_set() to change the default theme for all plots

> theme_set(theme_bw())

Save plots

Figure file format

Vector graphics describe a plot as sequence of operations:

- draw a line from (x1, y1) to (x2, y2)
- draw a circle at (x3, x4) with radius r

This means that they are effectively 'infinitely' zoomable; there is no loss of detail. Widely-used vector graphic formats are pdf and svg

Raster graphics store plot as an array of pixel colours and have a fixed optimal viewing size. Widely-used raster graphic format are png and jpg

Fig. 8.1 The schematic difference between raster (left) and vector (right) graphics

Save plots to file

 pdf()/png(): the standard R approach where you open a graphics device, generate the plot, then close the device

```
>pdf("output.pdf", width = 6, height = 6)
>ggplot(mpg, aes(displ, cty)) + geom_point()
>dev.off()
```

• ggsave(): save the ggplot plot to a file, it can automatically select the graphics device based on the file extension

```
> plot = ggplot(mpg, aes(displ, cty)) + geom_point()
> ggsave("output.pdf", plot)
```

Parameters

- width and height: control the output size, specified in inches. If left blank, they'll use
 the size of the on-screen graphics device.
- dpi: control the resolution of plots for raster graphics
- plot: ggplot object. If omitted, it will save the last plot

ggplot2 visualization summary

Syntax of ggplot2

ggplot2 visualization summary

- Data
- ☐ Aesthetic mappings
- ☐ Geometry
- □ Scale
- □ Facet
- Themes

For advanced usage of ggplot2, check the previous workshop: https://github.com/wbvguo/qcbio-DataViz w ggplot2.git

MAKING A GRAPH WITH GGPLOT2

Additional resources

R basics cheatsheet

R data wrangling cheatsheet

ggplot2 visualization cheatsheet

R tutorials

Practice makes perfect

Where to get help?

https://forum.posit.co/

https://education.rstudio.com/

https://www.google.com

https://stackoverflow.com

https://chat.openai.com/

Bonus time: 2048 in R!

Code logic:

- ✓ Initialize a 4 x 4 matrix with 2 random cells with value 2
- ✓ Program waits for and records user input
 - o Direction signals
 - Exit signal ("q")
 - Other signals

- ✓ React to user input
 - Direction signals: Merge blocks according to the direction, and randomly pop up a value of 2 in an empty cell. Update the matrix
 - Exit signal: terminate the program
 - Other signals: ignore
- ✓ Visualize the results using ggplot2
- ✓ Check if the program should terminate
 - 2048 is achieved (success)
 - o no empty cell exists and no action can be performed (failed)

