Probability

Madiba Hudson-Quansah

Contents

Chapter 1	-	Module 8: Introduction	Page 3
	1.1	Introduction To Probability	3
	1.2	Relative Frequency	3
Chapter 2		Module 9: Find the Probability of Events	Page 4
	2.1	Sample Spaces and Events	4
	2.2	Equally Likely Outcomes	4
	2.3	Probability Rules	4
		Rule 1: Probability is a Number Between 0 and 1 — $4 \bullet$ Rule 2: Addition Rule — $4 \bullet$ Rule 3: Co — $4 \bullet$ Rule 4: Addition Rule for Mutually Exclusive Events — $5 \bullet$ Rule 5: Multiplication Rule Events — $5 \bullet$ Rule 6: General Addition Rule — $5 \bullet$	•
Chapter 3		Module 10: Conditional Probability and Independence	Page 6
	3.1	Independence	6
	3.2	The General Multiplication Rule	6
	3.3	Probability Trees Bayes' Theorem — 6	6
Chapter 4]	Module 11: Random Variables	Page 7
•	4.1	Discrete Random Variables	7
	7.1	Notation — 7 • Probability Distribution — 7 • Key Words — 7 • Mean and Variance of a D Variable — 8 4.1.4.1 Mean	8
		4.1.4.2 Variance	
		4.1.4.3 Rules for Mean and Variance of Random Discrete Variables	
		4.1.4.3.1 Adding of Subtracting a Constant to a Random Variable	
		4.1.4.3.3 Multiplying a Random Variable by a Constant < 1	
		4.1.4.3.4 Linear Transformation of a Random Variable	
		4.1.4.3.5 Sum of Two Random Variables	9
	4.2	Continuous Random Variables	10
		Probability Distribution — 10 • Normal Random Variables — 10	4.0
		4.2.2.1 Finding Probabilities for Normal Random Variables	10

Module 8: Introduction

1.1 Introduction To Probability

Definition 1.1.1: Probability

A mathematical description of randomness and uncertainty / The likelihood of an event occurring. The notation for Probability is $\mathbb{P}(X)$ where X is the event. Probability is always between $0 \leq \mathbb{P}(X) \leq 1$ or $0\% \leq \mathbb{P}(X) \leq 100\%$.

There are two ways of determining probability:

- Theoretical / Classical Determined by the nature of the experiment
- Empirical / Observational Determined by the results of the experiment

1.2 Relative Frequency

Definition 1.2.1: Relative Frequency

Relative frequency is the number of times an event occurs divided by the total number of trials.

$$\mathbb{P}\left(X\right) = \frac{\text{Number of times event occurs}}{\text{Total number of trials}}$$

Theorem 1.2.1 The Law of Large Numbers

As the number of trials increases, the relative frequency of an event approaches the theoretical probability of the event.

Module 9: Find the Probability of Events

2.1 Sample Spaces and Events

Definition 2.1.1: Random Experiment

An experiment whose outcome is determined by chance.

Definition 2.1.2: Sample Space

The list of possible outcomes of a random experiment, denoted by S.

Definition 2.1.3: Event

A statement about the nature of the outcome after the experiment has been conducted, denoted by any capital letter except S.

2.2 Equally Likely Outcomes

$$\mathbb{P}(A) = \frac{\text{Number of outcomes in } A}{\text{Number of outcomes in } S}$$

Where A is an event and S is the sample space.

2.3 Probability Rules

2.3.1 Rule 1: Probability is a Number Between 0 and 1

For any event A, $0 \le \mathbb{P}(A) \le 1$.

2.3.2 Rule 2: Addition Rule

 $\mathbb{P}(S) = 1$, that is the sum of the probabilities of all possible outcomes is 1.

2.3.3 Rule 3: Complement Rule

 $\mathbb{P}(A') = 1 - \mathbb{P}(A)$, that is the probability of the complement of an event is 1 minus the probability the event occurs.

2.3.4 Rule 4: Addition Rule for Mutually Exclusive Events

Definition 2.3.1: Mutually Exclusive / Disjoint events

Events that cannot happen at the same time.

 $\mathbb{P}(A \text{ or } B) = \mathbb{P}(\text{ event } A \text{ occurs or event } B \text{ occurs or both occur})$

If A and B are mutually exclusive, then $\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B)$

2.3.5 Rule 5: Multiplication Rule for Independent Events

 $\mathbb{P}(A \text{ and } B) = \mathbb{P}(\text{ event } A \text{ occurs and event } B \text{ occurs })$

Definition 2.3.2: Independent Events

Two events A and B are said to be independent if the occurrence of one event does not affect the probability of the other event occurring.

Definition 2.3.3: Dependent Events

Two events A and B are said to be dependent if the occurrence of one event affects the probability of the other event occurring.

If A and B are two independent events, then $\mathbb{P}(A \text{ and } B) = \mathbb{P}(A) \times \mathbb{P}(B)$

2.3.6 Rule 6: General Addition Rule

For any two events A and B, $\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \text{ and } B)$. If the event are mutually exclusive, then $\mathbb{P}(A \text{ and } B) = 0$, giving us $\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B)$, i.e. the addition rule for mutually exclusive events.

Module 10: Conditional Probability and Independence

Definition 3.0.1: Conditional Probability

The probability an event occurs as a result of another event. I.e. Probability of event B, given event event A is,

$$\mathbb{P}(B \mid A) = \frac{\mathbb{P}(A \text{ and } B)}{P(A)}$$

3.1 Independence

When two events are independent, the probability of one event occurring does not affect the probability of the other event, i.e.

$$\mathbb{P}(B \mid A) = \mathbb{P}(B)$$

$$\mathbb{P}(A \mid B) = \mathbb{P}(A)$$

$$\mathbb{P}(B \mid A) = \mathbb{P}(B \mid A')$$

$$\mathbb{P}(A \text{ and } B) = \mathbb{P}(A) \times \mathbb{P}(B)$$

3.2 The General Multiplication Rule

For any two dependent events A and B

$$\mathbb{P}(A \text{ and } B) = \mathbb{P}(A) \times \mathbb{P}(B \mid A)$$

3.3 Probability Trees

Definition 3.3.1: Probability Tree

A diagram that shows the sample space of a random experiment and the probability of each outcome.

3.3.1 Bayes' Theorem

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A) \times P(B \mid A)}{\mathbb{P}(A) \times \mathbb{P}(B \mid A) + \mathbb{P}(A') \times \mathbb{P}(B \mid A')}$$

Module 11: Random Variables

Definition 4.0.1: Random Variable

Assigns a unique numerical value to the outcome of a random experiment.

Definition 4.0.2: Discrete Random Variable

A random variable that can take on a finite number of values. Discrete random variables are usually counts.

Definition 4.0.3: Continuous Random Variable

A random variable that can take on an infinite number of values. Continuous random variables are usually measurements.

4.1 Discrete Random Variables

4.1.1 Notation

For a given event X, the probability of X is denoted by $\mathbb{P}(X)$. For a given value x, the probability of X is denoted by $\mathbb{P}(X=x)$, i.e. the probability that X takes on the value x.

4.1.2 Probability Distribution

Definition 4.1.1: Probability Distribution

The list of all possible values of a random variable and their corresponding probabilities.

Any probability distribution must satisfy the following two conditions:

- $0 \le \mathbb{P}(X = x) \le 1$ The probability of any value of X is between 0 and 1.
- $\Sigma_x \mathbb{P}(X=x) = 1$ The sum of the probabilities of all possible values of X is 1.

4.1.3 Key Words

- At least / No less than $x \ge$
- At most / No more than $x \le$
- Less than / fewer than x <
- More than / greater than x >

• Exactly - x =

4.1.4 Mean and Variance of a Discrete Random Variable

4.1.4.1 Mean

Definition 4.1.2: Mean / Expected value of a Discrete Random Variable

The average value of a random variable, denoted by μ .

For a given random variable X, the mean is given by

$$\mu_X = \sum_{i=1}^n x_i p_i$$

Where x_i is the value of X and p_i is the probability of X taking on the value x_i .

4.1.4.1.1 Applications of the Mean

- The mean of a random variable is the long-term average value of the random variable.
- The mean of a random variable is the centre of the probability distribution of the random variable.

4.1.4.2 Variance

Definition 4.1.3: Variance

The average of the squared differences between each value of a random variable and the mean of the random variable, denoted by σ^2 .

For a given random variable X, the variance is given by

$$\sigma_X^2 = \sum_{i=1}^n (x_i - \mu_X)^2 p_i$$

And standard deviation is given by

$$\sigma_X = \sqrt{\sigma_X^2}$$

8

Where x_i is the value of X and p_i is the probability of X taking on the value x_i .

4.1.4.3 Rules for Mean and Variance of Random Discrete Variables

4.1.4.3.1 Adding or Subtracting a Constant to a Random Variable

If
$$Y = X + c$$
, then $\mu_Y = \mu_X + c$, $\sigma_Y^2 = \sigma_X^2$ and $\sigma_Y = \sigma_X$.

If
$$Y = X - c$$
, then $\mu_Y = \mu_X - c$, $\sigma_Y^2 = \sigma_X^2$ and $\sigma_Y = \sigma_X$.

4.1.4.3.2 Multiplying a Random Variable by a Constant > 1

If
$$Y=cX\,,c>1,$$
 then $\mu_Y=c\mu_X,\,\sigma_Y^2=c^2\sigma_X^2$ and $\sigma_Y=c\sigma_X$

4.1.4.3.3 Multiplying a Random Variable by a Constant < 1

If
$$Y=cX\,,c<1,$$
 then $\mu_Y=c\mu_X,\,\sigma_Y^2=c^2\sigma_X^2$ and $\sigma_Y=c\sigma_X$

4.1.4.3.4 Linear Transformation of a Random Variable

If Y=a+bX, then $\mu_Y=a+b\mu_X$, $\sigma_Y^2=b^2\sigma_X^2$ and $\sigma_Y=|b|\sigma_X$

4.1.4.3.5 Sum of Two Random Variables

If Z=X+Y, then $\mu_Z=\mu_X+\mu_Y$, $\sigma_Z^2=\sigma_X^2+\sigma_Y^2$ and $\sigma_Z=\sqrt{\sigma_X^2+\sigma_Y^2}$. Only if X and Y are independent.

4.1.5 Binomial Random Variables

Definition 4.1.4: Binomial Random Variable

A random variable that counts the number of successes in a fixed number of independent trials, denoted by $X \sim \text{Bin}(n, p)$. Where n is the number of trials and p is the probability of success.

Definition 4.1.5: Binomial Experiment

Random experiments that satisfy the following conditions:

- A fixed number of trials, denoted by n.
- Each trial is independent of the others.
- There are only two possible outcomes for each trial, success or failure.
- There is a constant probability of success, denoted by p, for each trial, which can be expressed as the complement of the probability of failure, q = 1 p.

Note:-

The number (X) of success in a sample of size n taken without replacement from a population with proportion p of successes is approximately binomial with n and p as long as the sample size is at most 10% of the population size (N). I.e.

$$n \leq 0.1N$$

Or

$$N \ge 10n$$

To calculate the probability of a binomial random variable, we use the formula

$$\mathbb{P}(X = x) = \binom{n}{x} p^x q^{n-x}$$
, where $x = 0, 1, 2, ..., n$

Where n is the number of trials, x is the number of successes, p is the probability of success and q is the probability of failure.

If X is Binomial with parameters n and p, then

$$\mu_X = np$$

And

$$\sigma_X^2 = np (1-p)$$

$$\sigma_X = \sqrt{np (1-p)}$$

4.2 Continuous Random Variables

4.2.1 Probability Distribution

For a continuous random variable X, the probability distribution is given by the *probability density function*, whose properties are

- $f(x) \ge 0$ for all x.
- $\int_{-\infty}^{\infty} f(x) dx = 1$
- ullet The probability that X takes on a value between a and b is given by

$$\mathbb{P}(a \leqslant X \leqslant b) = \int_{a}^{b} f(x) \ dx$$

Note:-

- The probability that a continuous random variable takes on a specific value is always 0.
- The strictness of the inequality does not matter, i.e. $\mathbb{P}(X \ge a) = \mathbb{P}(X > a)$

4.2.2 Normal Random Variables

Definition 4.2.1: Normal Random Variable

A random variable that has a bell-shaped probability distribution, denoted by $X \sim N(\mu, \sigma^2)$.

For a normally distributed random variable X:

- There is a 68% chance that X takes on a value within one standard deviation of the mean, i.e. $0.68 = \mathbb{P}(\mu \sigma < X < \mu + \sigma)$
- There is a 95% chance that X takes on a value within two standard deviations of the mean, i.e. $0.95 = \mathbb{P}(\mu 2\sigma < X\mu + 2\sigma)$
- There is a 99.7% chance that X takes on a value within three standard deviations of the mean, i.e. $0.997 = \mathbb{P}(\mu 3\sigma < X\mu + 3\sigma)$

4.2.2.1 Finding Probabilities for Normal Random Variables

4.2.2.1.1 Standardizing Values

Definition 4.2.2: z-score

The number of standard deviations a value is from the mean of a normal random variable, denoted by z.

To standardize a normal random variable X, we must find its z-score, given by

$$z - \frac{x - \mu}{\sigma}$$

4.2.2.1.2 Finding Probabilities with the z-score

Definition 4.2.3: Normal Table

A table that shows the probability that a standard normal random variable takes on a value less than a given z-score.

Using the z-score we can find the probability that a normal random variable takes on a value less than a given value x, by tracing the z-score to the normal table.

$$\mathbb{P}(X < x) = \mathbb{P}(Z < z)$$

On a standard normal table z-score are written to two decimal places as row headers and for additional precision the column headers are the first two decimal places of the z-score.

4.2.3 Uniform Distribution

Definition 4.2.4: Uniform Distribution

, denoted by $X \sim U(a,b)$

For a random variable X, if is uniformly distributed over the interval a and b then its probability distribution density function is given by

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \text{otherwise} \end{cases}$$

The mean and variance of a uniformly distributed random variable is given by

$$\mu_X = \frac{a+b}{2}$$

$$\sigma_X^2 = \frac{(b-a)^2}{12}$$

$$\sigma_X = \sqrt{\frac{(b-a)^2}{12}}$$