

Data Sheet March 2004 FN3013.2

512 x 8 CMOS PROM

The HM-6642/883 is a 512 x 8 CMOS NiCr fusible link Programmable Read Only Memory in the popular 24 pin, byte wide pinout. Synchronous circuit design techniques combine with CMOS processing to give this device high speed performance with very low power dissipation.

On-chip address latches are provided, allowing easy interfacing with recent generation microprocessors that use multiplexed address/data bus structures, such as the 8085. The output enable controls, both active low and active high, further simplify microprocessor system interfacing by allowing output data bus control independent of the chip enable control. The data output latches allow the use of the HM-6642/883 in high speed pipelined architecture systems, and also in synchronous logic replacement functions.

Applications for the HM-6642/883 CMOS PROM include low power hand held microprocessor based instrumentation and communications systems, remote data acquisition and processing systems, processor control store, and synchronous logic replacement.

All bits are manufactured storing a logical "0" and can be selectively programmed for all logical "1" at any bit location

Ordering Information

PKG.	TEMP. RANGE (°C)	120ns	200ns	PKG. DWG.#
SBDIP	-55 to +125	HM1-6642B/883	HM1-6642/883	D24.6
SLIM SBDIP	-55 to +125	HM6-6642B/883	HM6-6642/883	D24.3
CLCC	-55 to +125	-	HM4-6642/883	J28.A

Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Power Standby and Operating Power

	- ICCSB	100µA
	- ICCOP	A at 1MHz
•	Fast Access Time	120/200ns

Wide Operating -55°C to +125°C

- · Temperature Range
- · Industry Standard Pinout
- · Single 5.0V Supply
- · CMOS/TTL Compatible Inputs
- · Field Programmable
- · Synchronous Operation
- · On-Chip Address Latches
- · Separate Output Enable

Pin Description

M / rin T	C S D SC LIPTION		
NC	No Connect		
A0-A8	Address Inputs		
Ē	Chip Enable		
Q	Data Output		
V _{CC}	Power (+5V)		
G1, G2, G3	Output Enable		
P (Note)	Program Enable		

NOTE: P should be hardwired to GND except during programming.

Pinouts

Functional Diagram

www.BDTIC.com/Intersil

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage	GND-0.3V to VCC+0.3V
Typical Derating Factor	. 5mA/MHz Increase in ICCOP
ESD Classification	

Operating Conditions

Operating Voltage Range	+4.5V to +5.5V
Operating Temperature Range	55°C to +125°C
Input Low Voltage	0.3V to +0.8V
Input High Voltage	2.4 to VCC+0.3V

Thermal Information

Thermal Resistance (Typical)	θ _{JA} (°C/W)	θ _{JC} (°C/W)
SBDIP Package	52	14
Slim SBDIP		19
CLCC Package	58	14
Maximum Storage Temperature Range		°C to +150°C
Maximum Junction Temperature		+175°C
Maximum Lead Temperature (Soldering 10	0s)	+300°C

Die Characteristics

Gate Count	
------------	--

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

TABLE 1. HM-6642/883 DC ELECTRICAL PERFORMANCE SPECIFICATIONS

Device Guaranteed and 100% Tested

PARAMETER	SYMBOL	(NOTES 1, 4) CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE (°C)	MIN	MAX	UNITS
High Level Output Voltage	VOH	VCC = 4.5V, IO = -1.0mA	1, 2, 3	$-55 \le T_A \le +125$	2.4	-	V
Low Level Output Voltage	VOL	VCC = 4.5V, IO = +3.2mA	1, 2, 3	-55 ≤ T _A ≤ +125	-	0.4	V
High Impedance Output Leakage Current	IIOZ	VCC = 5.5V, \overline{G} = 5.5V, VI/O = GND or VCC	1, 2, 3	-55 ≤ T _A ≤ +125	-1.0	1.0	μА
Input Leakage Current	II	VCC = 5.5V, VI = GND or VCC, P Not Tested	1, 2, 3	-55 ≤ T _A ≤ +125	-1.0	1.0	μА
Standby Supply Current	ICCSB	VI = VCC or GND, VCC = 5.5V, IO = 0mA	1, 2, 3	-55 ≤ T _A ≤ +125	-	100	μА
Operating Supply Current	VICCOP	VCC = 5.5 /, G = GND, G = \ CC, Note 3), f = MH; IO = 0mA, VI = VCC or GND	M ^{1,/2, 3}	7-5tet125	l i	20	mA
Functional Test	FT	VCC = 4.5V (Note 5)	7, 8A, 8B	$-55 \le T_A \le +125$	-	-	-

TABLE 2. HM-6642/883 AC ELECTRICAL PERFORMANCE SPECIFICATIONS

Device Guaranteed and 100% Tested

			GROUP A		HM-664	12B/883	HM-66	42/883	
PARAMETER	SYMBOL	(NOTES 1, 2, 4) CONDITIONS	SUB- GROUPS	TEMPERATURE (°C)	MIN	MAX	MIN	MAX	UNITS
Address Access Time	TAVQV	VCC = 4.5V and 5.5V	9, 10, 11	$-55 \le T_A \le +125$	-	140	-	220	ns
Output Enable Access Time	TGVQV	VCC = 4.5V and 5.5V	9, 10, 11	$-55 \le T_A \le +125$	-	50	-	150	ns
Chip Enable Access Time	TELQV	VCC = 4.5V and 5.5V	9, 10, 11	$-55 \le T_A \le +125$	-	120	-	200	ns
Address Setup Time	TAVEL	VCC = 4.5V and 5.5V	9, 10, 11	$-55 \le T_A \le +125$	20	-	20	-	ns
Address Hold Time	TELAX	VCC = 4.5V and 5.5V	9, 10, 11	$-55 \le T_A \le +125$	25	-	60	-	ns
Chip Enable Low Width	TELEH	VCC = 4.5V and 5.5V	9, 10, 11	$-55 \le T_A \le +125$	120	-	200	-	ns
Chip Enable High Width	TEHEL	VCC = 4.5V and 5.5V	9, 10, 11	$-55 \le T_A \le +125$	40	-	150	-	ns
Read Cycle Time	TELEL	VCC = 4.5V and 5.5V	9, 10, 11	$-55 \le T_A \le +125$	160	-	350	-	ns

NOTES:

- 1. All voltages referenced to VSS.
- 2. A.C. measurements assume transition time < 5ns; input levels = 0.0V to 3.0V; timing reference levels = 1.5V; output load = 1TTL equivalent load and CL ≅ 50pF.
- 3. Typical derating = 5mA/MHz increase in ICCOP.
- 4. All tests performed with P hardwired to GND.
- 5. Tested as follows: f = 1MHz, VIH = 2.4V, VIL = 0.8V, IOH = -1mA, IOL = +1mA, VOH ≥ 1.5V, VOL ≤ 1.5V.

TABLE 3. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	100%/5004	-
Interim Test	100%/5004	1, 7, 9
PDA	100%/5004	1
Final Test	100%/5004	2, 3, 7, 8A, 8B, 10, 11
Group A	Samples/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11
Groups C & D	Samples/5005	1, 7, 9

Switching Waveform

NOTE: G has the same timing as \overline{G} except signal is inverted.

FIGURE 1. READ CYCLE

Test Load Circuit

FIGURE 2. TEST LOAD CIRCUIT

Burn-In Circuits

HM-6642/883 (0.300 INCH) SBDIP

HM-6642/883 (0.600 INCH) SBDIP

HM-6642/883 CLCC F 8 tersil WWW. 3 2 1 28 27 26 F5 -6 24 -**√√√** F12 F4 -23 22 -**///--** F0 F3 **-**₩ F2 -NC NC 12 13 14 15 16 17 18 vcc 2 1.5K 820 1.5K 820 W 820 ₩ W 1.5K 820 **^** W 1.5K 820 1.5K 820 ₩ W 1.5K 820 ₩ W 1.5K 820 \sim ₩

R2

NOTES:

- 1. F0 = 100kHz ± 10%.
- 2. All Resistors = $47k\Omega$.
- 3. Unless Otherwise Noted.
- 4. VCC = $5.5V \pm 0.5V$.
- 5. VIL = $4.5V \pm 10\%$.
- 6. $C = 0.01 \mu F \text{ Min.}$

R1

Die Characteristics

DIE DIMENSIONS:

136 x 168 x 19 \pm 1mils

METALLIZATION:

Type: Si - Al

Thickness: 11kÅ ± 15kÅ

GLASSIVATION:

Type: SiO₂

Thickness: 8kÅ ± 1kÅ

WORST CASE CURRENT DENSITY:

 $1.7 \times 10^5 \text{ A/cm}^2$

Metallization Mask Layout

HM-6642/883

Ceramic Leadless Chip Carrier Packages (CLCC)

J28.A MIL-STD-1835 CQCC1-N28 (C-4) 28 PAD CERAMIC LEADLESS CHIP CARRIER PACKAGE

	INC	HES	MILLIMETERS			
SYMBOL	MIN	MAX	MIN	MIN MAX		
Α	0.060	0.100	1.52	2.54	6, 7	
A1	0.050	0.088	1.27	2.23	-	
В	-	-	-	-	-	
B1	0.022	0.028	0.56	0.71	2, 4	
B2	0.072	REF	1.83	REF	-	
В3	0.006	0.022	0.15	0.56	-	
D	0.442	0.460	11.23	11.68	-	
D1	0.300	BSC	7.62	BSC	-	
D2	0.150	BSC	3.81	BSC	-	
D3	-	0.460	-	11.68	2	
Е	0.442	0.460	11.23	11.68	-	
E1	0.300	BSC	7.62	BSC	-	
E2	0.150	BSC	3.81	BSC	-	
E3	-	0.460	-	11.68	2	
е	0.050	BSC	1.27	BSC	-	
e1	0.015	-	0.38	-	2	
h	0.040	REF	1.02	REF	5	
j	0.020	REF	0.51	REF	5	
L/	0.045	0.055	1.14	1.40	-	
L1	C.045	0.0 58	3.14	1.40	-	
L2	0.075	0.095	1.90	2.41	-	
L3	0.003	0.015	0.08	0.038	-	
ND	7	7		7	3	
NE	7	7		7	3	
N	2	8	2	28	3	

Rev. 0 5/18/94

NOTES:

- Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
- Unless otherwise specified, a minimum clearance of 0.015 inch (0.38mm) shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
- 3. Symbol "N" is the maximum number of terminals. Symbols "ND" and "NE" are the number of terminals along the sides of length "D" and "E", respectively.
- The required plane 1 terminals and optional plane 2 terminals (if used) shall be electrically connected.
- 5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
- Chip carriers shall be constructed of a minimum of two ceramic layers.
- 7. Dimension "A" controls the overall package thickness. The maximum "A" dimension is package height before being solder dipped.
- 8. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 9. Controlling dimension: INCH.

Ceramic Dual-In-Line Metal Seal Packages (SBDIP)

NOTES:

- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plain and finish tock news.
- 4. Corner leads (1/1/, 1/1/, and N/2+1 may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. Dimension Q shall be measured from the seating plane to the base plane.
- 6. Measure dimension S1 at all four corners.
- 7. Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
- 8. N is the maximum number of terminal positions.
- 9. Braze fillets shall be concave.
- 10. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 11. Controlling dimension: INCH.

D24.3 MIL-STD-1835 CDIP4-T24 (D-9, CONFIGURATION C) 24 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE

	INC	HES	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	1.280	-	32.51	-
Е	0.220	0.310	5.59	7.87	-
е	0.100 BSC		2.54 BSC		-
eA	0.300 BSC		7.62 BSC		-
eA/2	0.150	BSC	3.81 BSC		-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	5
S1	0.005	-	0.13	-	6
S2	0.005	-	0.13	-	7
α	90°	105 ⁰	90°	105 ⁰	-
aaa	-	0.015		0.38	-
bbb	nt	2.030	C	0.76	-
coc	- t	0.010	3 -I	0.25	-
М	-	0.0015	-	0.038	2
N	2	4	24		8

Rev. 0 4/96

Ceramic Dual-In-Line Metal Seal Packages (SBDIP)

NOTES:

- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plann and finish thickness.
- Corner leads (1 N, N/J, and N/2+1) play be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. Dimension Q shall be measured from the seating plane to the base plane.
- 6. Measure dimension S1 at all four corners.
- Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
- 8. N is the maximum number of terminal positions.
- 9. Braze fillets shall be concave.
- 10. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 11. Controlling dimension: INCH.

D24.6 MIL-STD-1835 CDIP2-T24 (D-3, CONFIGURATION C) 24 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.225	-	5.72	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	1.290	-	32.77	-
Е	0.500	0.610	12.70	15.49	-
е	0.100 BSC		2.54 BSC		-
eA	0.600 BSC		15.24 BSC		-
eA/2	0.300 BSC		7.62 BSC		-
L	0.120	0.200	3.05	5.08	-
Q	0.015	0.075	0.38	1.91	5
S1	0.005	-	0.13	-	6
S2	0.005	-	0.13	-	7
α	90°	105 ⁰	90°	105 ⁰	-
aaa	-	0.015	-	0.38	-
pbbb	nt	2.030	C	0.76	-
coc	- t	0.010	3 -I	0.25	-
М	-	0.0015	-	0.038	2
N	24		24		8

Rev. 0 4/94

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com