Oblig 1b-fasit

- 1. Læreboka: Kapittel 3, oppgave 3c. Se bokfasit
- 2. **Terningdropp-oppgavene:** Her er det egne data, så det viktigste er prosedyrene, og at svarene ikke er helt på jordet.
 - (a) Eksempel-tabell:

k	x (dropphøyde)	y (sprettlengde)	z (terningverdi)
1	20	34.0	2
2	50	103.5	3
3	30	44.5	4
4	45	59.0	1
5	10	43.0	6
6	25	54.5	5
7	32	70.0	3
8	47	80.0	2
9	26	50.5	4
10	6	17.5	3
11	43	66.0	6
12	50	96.0	6
13	40	59.0	2
14	30	66.0	1
15	20	33.5	3
16	10	25.5	1
17	46	62.0	4
18	35	79.5	3
19	24	43.0	3
20	15	32.0	1

- (b) Korrelasjonene vil høyst sannsynlig være slik: $\rho_{xy}>0.5$ og $\rho_{xz}\approx0$. For dataene over er $\rho_{xy}=0.8715413$, og $\rho_{xz}=0.1429109$.
- (c) Dataene for høyde v
s lengde har regresjonslinje y=13.122317+1.418135x
- (d) Illustrasjon:

(e) Dataene for høyde v
s utfall har regresjonslinje z=2.63876+0.01693x Illustrasjon:

3. Forskjellen ytrer seg på mange måter, inkludert korrelasjon, avstand mellom data og linje, R^2 , og s_e .