Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/019666

International filing date: 21 December 2004 (21.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-429088

Filing date: 25 December 2003 (25.12.2003)

Date of receipt at the International Bureau: 10 February 2005 (10.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

21.12.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月25日

出 願 番 号 Application Number:

特願2003-429088

[ST. 10/C]:

[JP2003-429088]

出 願 人
Applicant(s):

有限会社金沢大学ティ・エル・オー 独立行政法人科学技術振興機構

特言 Com Japan

特許庁長官 Commissioner, Japan Patent Office 2005年 1月28日

小 (*)

特許願 【書類名】 P03-1125 【整理番号】 平成15年12月25日 【提出日】 特許庁長官 殿 【あて先】 【国際特許分類】 C12N 5/06 A61K 35/34 GO1N 33/15 【発明者】 石川県金沢市緑が丘3-27 ダイアパレス緑が丘108号 【住所又は居所】 ▲高▼倉 伸幸 【氏名】 【発明者】 石川県金沢市彦三1-9-5-405 【住所又は居所】 【氏名】 山田 賢裕 【特許出願人】 803000023 【識別番号】 有限会社 金沢大学ティ・エル・オー 【氏名又は名称】 【特許出願人】 【識別番号】 503360115 独立行政法人科学技術振興機構 【氏名又は名称】 【代理人】 【識別番号】 100091096 【弁理士】 平木 祐輔 【氏名又は名称】 【選任した代理人】 100096183 【識別番号】 【弁理士】 石井 貞次 【氏名又は名称】 【選任した代理人】 【識別番号】 100118773 【弁理士】 【氏名又は名称】 藤田節 【選任した代理人】 100119183 【識別番号】 【弁理士】 松任谷 優子 【氏名又は名称】 【手数料の表示】 【予納台帳番号】 015244 【納付金額】 21,000円 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】

【書類名】特許請求の範囲

【請求項1】

哺乳動物の脂肪組織から単離された細胞を、牛血清を含む培養液中で培養することにより、心筋前駆細胞および/または心筋細胞に分化させる方法。

【請求項2】

EGF、TGF- α 、HB-EGF、FGF、HGFを含むEGFファミリー、TGF- β を含むTGF- β ファミリー、LIFを含むILファミリー、VEGF-Aを含むVEGFファミリー、PDGF-BBを含むPDGFファミリー、エフリンBを含むエフリンファミリー、およびSCFから選ばれる少なくとも 1 種類以上のサイトカインを培養液中に添加して培養を行う、請求項 1 記載の方法。

【請求項3】

前記サイトカインがLIFおよび/またはHB-EGFである、請求項2記載の方法。

【請求項4】

哺乳動物の脂肪組織から単離された細胞を、牛血清を含む培養液中で少なくとも1日間 以上培養する、請求項3記載の方法。

【請求項5】

脂肪組織から単離された細胞が、Lin陰性、c-Kit陰性~弱陽性、および β 1 インテグリン陽性である、請求項 $1\sim 4$ のいずれか 1 項に記載の方法。

【請求項6】

得られる心筋前駆細胞および心筋細胞が、sarcomeric actin陽性およびcardiac actin 陽性である、請求項1~5のいずれか1項に記載の方法。

【請求項7】

哺乳動物の脂肪組織から単離された細胞を哺乳動物の骨髄細胞に添加して、牛血清を含む培養液中で共培養することにより、該骨髄細胞を心筋前駆細胞および/または心筋細胞に分化させる方法。

【請求項8】

脂肪組織から単離された細胞と骨髄細胞の混合数比が、4:1である請求項7に記載の 方法。

【請求項9】

哺乳動物の脂肪組織から単離された細胞の培養上清を哺乳動物の骨髄細胞に添加して、 牛血清を含む培養液中で培養することにより、該骨髄細胞を心筋前駆細胞および/または 心筋細胞に分化させる方法。

【請求項10】

請求項 $1\sim9$ のいずれか1項に記載の方法で作製される心筋前駆細胞および/または心筋細胞。

【請求項11】

哺乳動物成体に移植可能なことを特徴とする、請求項10記載の心筋前駆細胞および/ または心筋細胞。

【請求項12】

請求項10記載の心筋前駆細胞および/または心筋細胞に被験物質を添加することにより、心筋前駆細胞および/または心筋細胞に対する該被験物質の効果を評価する方法。

【書類名】明細書

【発明の名称】哺乳動物の脂肪組織を利用した心筋細胞の誘導

【技術分野】

[0001]

本発明は、哺乳動物の脂肪組織を利用した心筋細胞の分化誘導技術に関する。

【背景技術】

[0002]

心筋細胞は成体になるとその増殖を停止するため、一度心筋梗塞に陥った心臓領域では 心筋細胞の回復は望めず、心臓は再生不可能な組織と考えられてきた。しかし、近年心臓 内に心筋細胞の前駆/幹細胞が存在し、その分裂や心筋細胞への分化も一部では認められ ることがわかってきた(例えば、非特許文献 1 参照)。また、心筋細胞に分化可能な異所 性の細胞を心筋細胞に分化誘導する技術が開発されれば、これまで困難とされてきた心筋 梗塞の治療が可能になる。

[0003]

胎児期の万能細胞である胚性幹細胞(ES細胞)は、容易に心筋細胞に分化可能である。 しかしながら、各患者のES細胞を作製することは倫理的に問題があり、また無差別に作製 されたES細胞から分化した心筋細胞は免疫拒絶を生じるため、実際の医療に使用すること はできない。

[0004]

骨髄間質には多分化能を有する間葉系幹細胞が存在し、この間葉系幹細胞を用いた組織再生については、従来より多くの報告がなされてきた。例えば、骨髄由来の筋細胞を利用した骨格筋再生(例えば、非特許文献 2 参照)、心臓へのc-kit陽性骨髄幹細胞投与による心機能改善(例えば、非特許文献 3 参照)、骨髄由来細胞による心筋再生(例えば、特許文献 1 ~ 3 参照)等が知られている。この間葉系幹細胞に脱メチル化酵素を添加して、一度細胞をリセットすることにより、心筋細胞への分化が可能になることも報告されている(例えば、非特許文献 4 参照)。しかし、この方法で作製された心筋細胞は、脱メチル化という処理が施されているため、将来的に奇形発生の恐れがあるなど、臨床応用にはハードルが高い。

[0005]

一方で、間葉系幹細胞を用いた組織再生には、使用される骨髄の量的限界の問題があり、組織再生の材料してより豊富なソースが望まれている。脂肪組織は入手容易な組織であるが、最近、ヒト脂肪組織から多分化能を有する細胞が単離され、神経細胞への分化が確認された(例えば、非特許文献 5 および 6 参照)。また、マウスで心筋細胞に分化可能な筋芽細胞由来細胞株も単離されている(例えば、特許文献 4 および 5 参照)。しかしながら、特殊な細胞株であったり、分化誘導に複雑な培養工程を必要とするなど、いずれも現実的とはいえない。

[0006]

【特許文献1】特表2002-511094号公報

【特許文献2】国際公開パンフレットWO01/048151号

【特許文献3】特表2002-521493号公報

【特許文献4】特開2003-325169号公報

【特許文献5】特開2003-259863号公報

【非特許文献 1】Beltrami A.P., et al., "Adult Cardiac Stem Cells Are Multip otent and Support Myocardial Regeneration", Cell, Vol.114, p763-776, 2003,

【非特許文献 2】Ferrari G. et al., "Muscle regeneration by bone marrow-derived myogenic progenitors." Science. 1998, 279(5356):p1528-30.

【非特許文献 3】 Orlic D, et al., "Bone marrow cells regenerate infracted my ocardium", Nature Vol.410 No.5 2001 p701-705

【非特許文献 4】 Makino S. et al., "Cardiomyocytes can be generated from marr ow stromal cells in vitro", The Journal of Clinical Investigation 103:p697-

705 (1999)

【非特許文献 5 】 Zuk P.A. et al., "Multilineage Cells from Human Adipose Tis sue: Implications for Cell-Based Therapies", Tissue Engineering, Vol.7, No. 2, 2001, p211-228

【非特許文献 6 】 Zuk P.A. et al., "Human Adipose Tissue Is a Source of Multipotent Stem Cells" Molecular Biology of the Cell, Vol.13, p4279-4295, 2002,

【発明の開示】

【発明が解決しようとする課題】

[0007]

本発明の課題は、脂肪組織を利用することにより、in vitroで簡便に心筋細胞を分化誘導する技術を提供することにある。

【課題を解決するための手段】

[0008]

発明者らは、脂肪組織中の間葉系細胞を通常の牛血清を含む培養液中で心筋細胞に分化 誘導できる培養条件を見出した。また、脂肪組織の培養液中に、骨髄細胞を添加すること で、骨髄細胞を簡便に心筋細胞に分化誘導できることを見出した。

[0009]

すなわち、本発明は、哺乳動物の脂肪組織から単離された細胞を、牛血清を含む培養液中で培養することにより、心筋前駆細胞および/または心筋細胞に分化させる方法に関する。

[0010]

前記方法において、培養液中には分化増殖を促すサイトカインが含まれることが好ましい。そのようなサイトカインとしては、例えば、EGF、TGF- α 、HB-EGF、FGF、HGF等のEGFファミリー、TGF- β 等のTGF- β ファミリー、LIF等のILファミリー、VEGF-A等のVEGFファミリー、PDGF-BB等のPDGFファミリー、エフリンB等のエフリンファミリー、SCF(Stem ce l1 factor)などを挙げることができる。特に、サイトカインとしては、LIFおよび/またはHB-EGFが好ましく、LIFとHB-EGFの両方を含むことがさらに好ましい。

細胞の培養期間は特に限定されないが、少なくとも1日間は培養することが好ましい。

[0011]

脂肪組織から単離された細胞は、Lin陰性、c-Kit陰性〜弱陽性、および β 1インテグリン陽性である。一方、この細胞から分化した心筋前駆細胞および/または心筋細胞は、sarcomeric actin陽性およびcardiac actin陽性である。

$[0\ 0\ 1\ 2]$

本発明はまた、哺乳動物の脂肪組織から単離された細胞を哺乳動物の骨髄細胞に添加して、牛血清を含む培養液中で共培養することにより、該骨髄細胞を心筋前駆細胞および/または心筋細胞に分化させる方法を提供する。脂肪組織から単離された細胞と骨髄細胞の混合数の比は、4:1程度が好適である。

$[0\ 0\ 1\ 3]$

前記方法においては、哺乳動物の脂肪組織から単離された細胞に代えて、哺乳動物の脂肪組織から単離された細胞の培養上清を骨髄細胞に添加して培養してもよい。この方法においても、骨髄細胞を心筋前駆細胞および/または心筋細胞に分化させることができる。

[0014]

さらに本発明は、上記のいずれかの方法で作製される心筋前駆細胞および/または心筋細胞を提供する。これらの心筋前駆細胞および/または心筋細胞は、材料となる脂肪組織や骨髄細胞として、移植すべき哺乳動物由来のものを用いれば、移植後の拒絶反応の危険性を抑えることができる。

[0015]

本発明はまた、心筋前駆細胞および/または心筋細胞に被験物質を添加することにより、心筋前駆細胞および/または心筋細胞に対する該被験物質の効果を評価する方法を提供する。この方法は、心筋細胞の薬剤感受性試験や心疾患治療薬のスクリーニングに利用す

ることができる。

【発明の効果】

[0016]

本発明によれば、脂肪組織あるいは脂肪組織と骨髄細胞から簡便に心筋細胞を得ることができる。得られる心筋細胞は、遺伝子操作を施していないため安全性が高く、心筋細胞に特徴的な遺伝子発現や表現形質を呈する。したがって、本発明で得られる心筋前駆細胞および心筋細胞は、心再生や心筋細胞に作用する薬剤の評価に利用することができる。

$[0\ 0\ 1\ 7]$

現在、心筋梗塞に対する虚血領域への血管再生医療は大量の骨髄液から得られた血管幹細胞の局所への移植により行なわれている。骨髄液採取は、全身麻酔下で行なわれ、高齢者においては、その手技自体にリスクがかかる行為である。脂肪組織の採取は皮膚の単純な局所麻酔で可能であり、生命を脅かすリスクは極めて稀である。したがって、本発明は医療業界に多大な貢献をもたらす。

【発明を実施するための最良の形態】

[0018]

1. 脂肪組織から単離された細胞を心筋細胞に分化させる方法

本発明は、脂肪組織中の間葉系細胞を通常の牛血清を含む培養液中で心筋細胞に分化誘導する方法を提供する。

[0019]

1. 1 脂肪組織から単離された細胞

本発明の方法で用いられる脂肪組織は、哺乳動物由来のものであれば特に限定されない。すなわち、哺乳動物の胎児、新生児、成体の任意の部位の脂肪組織を使用することができる。細胞は、例えば実体顕微鏡下で、正確に脂肪組織のみを回収し、機械的処理および/またはコラゲナーゼ処理やディスパーゼ処理等の酵素処理を施すことにより、個々の単一の細胞として単離することができる。

[0020]

こうして脂肪組織から単離された細胞中には、脂肪細胞、脂肪前駆細胞、体性幹細胞等も含まれるが、本発明で用いられる脂肪組織由来の細胞には、そのような細胞が含まれていてもよい。これらの細胞は、Lin陰性、c-Kit陰性 \sim 弱陽性、および β 1インテグリン陽性であることが確認されている。

[0021]

1. 2 培養条件

単離された細胞の培養液としては、DMEM培養液、MEM培養液、 α -MEM培養液、RPMI培養液、DMEM/F12培養液等、通常哺乳動物の脂肪細胞の培養に用いられる培養液に適量の牛血清を添加したものを使用する。添加される牛血清の量は、特に限定されず、細胞の起源や種類に応じて適宜設定される。好ましくは0%~20%、より好ましくは5%~10%程度の牛血清を添加するとよい。牛血清に代えて、ニュートリドーマ(Behringer製)、ヒト血清等を使用してもよい。

[0022]

培養は、市販の培養皿上を用いて2次元的に行う。温度やCO2等の条件は、用いる細胞の性質に応じて適宜設定されるが、一般に4~6%CO2、33~37℃、特に5%CO2、37℃程度で行われる。細胞の培養期間も特に限定されず、必要とされる心筋細胞の発現が認められるまで、適宜培地交換を行いながら培養を行えばよい。発明者らの実験結果では、培養開始から3日後より、ビーティングする心筋細胞が発現し、同時に球形の心筋前駆細胞(心筋幹細胞)の増殖が開始した。

[0023]

培養に際しては、細胞の分化増殖を促すサイトカインを適宜培養液に添加してもよい。そのようなサイトカインとしては、例えば、EGF、TGF- α 、HB-EGF、FGF、HGF等のEGFファミリー、TGF- β 等のTGF- β ファミリー、LIF等のILファミリー、VEGF-A等のVEGFファミリー、PDGF-BB等のPDGFファミリー、エフリンB等のエフリンファミリー、SCF(Stem cell f

actor) などを挙げることができる。特に、LIFおよび/またはHB-EGFが好ましく、LIF (Leukemia Inhibitory Factor)とHB-EGF(Heparin—Binding EGF-like growth factor)の両方を含むことがさらに好ましい。

[0024]

添加されるサイトカインの量は、用いるサイトカインや細胞の性質に応じて適宜設定される。マウスの脂肪組織から単離された細胞を用いた場合、LIFであれば $1000u/ml\sim5000u/ml$ 程度、HB-EGFであれば $100ng/ml\sim1~\mu~g/ml$ 程度添加するとよいが、これに限定されるものではない。

[0025]

2. 骨髄細胞の心筋細胞への分化誘導

本発明はまた、哺乳動物の脂肪組織から単離された細胞を骨髄細胞に添加して、牛血清を含む培養液中で共培養することにより、該骨髄細胞を心筋前駆細胞および/または心筋細胞に分化させる方法を提供する。あるいは、哺乳動物の脂肪組織から単離された細胞の培養上清を哺乳動物の骨髄細胞に添加して、牛血清を含む培養液中で培養することにより、該骨髄細胞を心筋前駆細胞および/または心筋細胞に分化させる方法を提供する。

[0026]

2.1 脂肪組織から単離された細胞またはその培養上清

前記方法において、脂肪組織からの細胞の単離は、前項1にしたがって行えばよい。培養上清としては、単離された脂肪組織由来細胞を前項1と同様の条件で適当期間培養して得られる培養物の上清を用いることができる。培養期間は特に限定されないが、少なくとも1日以上培養した培養物の上清を用いることが好ましい。

[0027]

2. 2 骨髓細胞

前記方法で用いられる骨髄細胞は、哺乳動物由来のものであれば特に限定されない。すなわち、哺乳動物の胎児、新生児、成体の骨髄由来の任意の細胞を用いることができるが、骨髄間質細胞、特に間葉系幹細胞、あるいは造血幹細胞分画の細胞が好ましい。これら骨髄細胞の哺乳動物からの採取は、周知の方法にしたがって行われる。骨髄細胞としては初代培養細胞を用いることが好ましいが、凍結保存されている骨髄細胞を用いてもよい。

[0028]

前記骨髄細胞と脂肪組織は同じ種に由来するものであることが好ましい。つまり、マウス骨髄細胞にはマウス脂肪組織由来の細胞を使用し、ラット骨髄細胞にはラット脂肪組織由来の細胞を使用することが好ましい。

[0029]

2. 3 培養条件

細胞の培養液としては、DMEM培養液、MEM培養液、 α -MEM培養液、RPMI培養液、DMEM/F1 2培養液等、通常哺乳動物の細胞培養に用いられる培養液に適量の牛血清を添加したものを使用する。添加される牛血清の量は、特に限定されず、細胞の起源や種類に応じて適宜設定される。好ましくは0%~20%、より好ましくは5%~10%程度の牛血清を添加する。牛血清に代えて、ニュートリドーマ(Behringer製)、ヒト血清等を使用してもよい。

[0030]

培養は、脂肪組織から単離された細胞を骨髄細胞に添加して、市販の培養皿上で2次元的に共培養するか、あるいは両者の液性因子が往来できる環境下で共培養する。脂肪組織から単離された細胞と骨髄細胞を共培養する場合、両者の混合比は(細胞数比)として、10:1~1:1、特に4:1程度が好適である。

[0031]

脂肪組織由来細胞の培養上清を骨髄細胞に添加する場合は、上記したように適当期間、少なくとも1日以上培養した細胞の培養上清を骨髄細胞に加えて2次元的に共培養する。添加する培養上清の量は特に限定されないが、マウス骨髄細胞の場合であれば、骨髄細胞に対して1~10倍、好ましくは4倍の数の脂肪組織由来細胞を培養して得られる培養上清を用いることが好ましい。

[0032]

温度や CO_2 等の条件は、用いる細胞の性質に応じて適宜設定されるが、一般に $4\sim6\%CO_2$ 、 $33\sim37$ °C、特に $5\%CO_2$ 、37°C程度で行われる。培養期間も特に限定されず、必要とされる心筋細胞の発現が認められるまで、適宜培地交換を行いながら培養を行えばよい。発明者らの実験結果では、培養開始から7日後より、ビーティングする心筋細胞が発現し、同時に球形の心筋前駆細胞(心筋幹細胞)の増殖が開始した。さらに培養開始後 $1\sim2$ 週間の間には $20\sim60$ コロニーくらいの心筋細胞と思われるコロニーが生成した。

[0033]

培養に際しては、細胞の分化増殖を促すサイトカインを適宜培養液に添加してもよい。そのようなサイトカインとしては、例えば、EGF、TGF- α 、HB-EGF、FGF、HGF等のEGFファミリー、TGF- β 等のTGF- β ファミリー、LIF等のILファミリー、VEGF-A等のVEGFファミリー、PDGF-BB等のPDGFファミリー、エフリンB等のエフリンファミリー、SCF(Stem cell factor)などを挙げることができる。特に、LIFおよび/またはHB-EGFが好ましく、LIF(Leukemia Inhibitory Factor)とHB-EGF(Heparin—Binding EGF-like growth factor)の両方を含むことがさらに好ましい。

[0034]

添加されるサイトカインの量は、用いるサイトカインや細胞の性質に応じて適宜設定される。マウスの脂肪組織から単離された細胞を用いた場合、LIFであれば1000 μ 00 μ 1 ~5000 μ 1 ~1 μ 0 μ 0 / μ 1 程度、HB-EGFであれば100 μ 0 / μ 1 ~1 μ 0 / μ 1 程度添加するとよいが、これに限定されるものではない。

[0035]

3. 脂肪組織、骨髄細胞由来の心筋細胞

さらに本発明は、上記のいずれかの方法で作製される心筋前駆細胞および/または心筋 細胞を提供する。ここで心筋前駆細胞とは、心筋細胞に分化する能力をそなえた細胞であ って、心筋幹細胞を包含する。

[0036]

これらの細胞は、その起源となる脂肪組織から単離された細胞や骨髄細胞とは異なり、心筋細胞に特徴的な形態的特性、タンパク発現、遺伝子発現を示す。例えば、電子顕微鏡下、心筋細胞はミトコンドリアに富み、ANP顆粒を含有し、Z帯を有し、倒立顕微鏡下、ビーティングする紡錘形をした細胞で、徐々に集合してシートを形成し、同調してビーティングする細胞として観察される。また、心筋前駆細胞はそれよりも丸い球形の細胞で、徐々に紡錘形となり、ビーティングする細胞として観察される。一方、タンパク発現においては、心筋細胞に特徴的なsarcomeric actin(α -Sarcomeric Muscular Actin(Sr-1)) およびcardiac actinの発現がみられ、遺伝子発現では心筋細胞に特徴的な α , β -MHC、MLC-2a, 2v、BNPの発現や、転写因子GATA-4やNKX2.5の発現がみられる。これらの特徴から、分化誘導された細胞は心筋細胞または心筋前駆細胞であることが確認できる。

[0037]

4. 脂肪組織、骨髄細胞由来の心筋細胞の用途

4.1 再生医療への応用

本発明において、脂肪組織、骨髄細胞から得られる心筋細胞および心筋前駆細胞は、電子顕微鏡下、それぞれ心筋細胞および心筋前駆細胞の特徴を有し、遺伝子やタンパクの発現も心筋細胞および心筋前駆細胞と一致する。したがってこれら心筋前駆細胞または心筋細胞を心筋梗塞のモデルラットに移植すると、移植された宿主の中で、宿主の心筋細胞と同調して機能する心筋細胞として組み込まれる。特に、材料となる脂肪組織や骨髄細胞として、移植すべき哺乳動物個体のものを用いれば、当該哺乳動物において拒絶反応を起こすことなく移植可能な心筋前駆細胞や心筋細胞を得ることができる。すなわち、本発明の方法で得られる心筋前駆細胞および心筋細胞は、心再生に好適に利用することができる。

[0038]

現在、心筋梗塞に対する虚血領域への血管再生医療は大量の骨髄液から得られた血管幹細胞の局所への移植により行なわれている。骨髄液採取は全身麻酔下で行なわれ、高齢者

においては、その手技自体にリスクがかかる行為である。脂肪組織の採取は皮膚の単純な局所麻酔で可能であり、生命を脅かすリスクは極めて稀である。しかも材料として豊富に存在する。したがって、本発明による心再生は医療業界に対する多大な貢献をもたらす。

[0039]

4. 2 スクリーニング系への応用

本発明において、脂肪組織、骨髄細胞から得られる心筋細胞および心筋前駆細胞は、電子 顕微鏡下、それぞれ心筋細胞および心筋前駆細胞の特徴を有し、遺伝子やタンパクの発現 も心筋細胞および心筋前駆細胞と一致する。したがって、これら心筋前駆細胞および/ま たは心筋細胞に被験物質を添加して培養し、生じる表現上の変化(形態やタンパク発現の 変化)あるいは遺伝的変化(遺伝子発現の変化)を、非添加の場合と比較することにより 、心筋細胞の当該被験物質に対する感受性や、当該被験物質の心筋細胞に対する効果を評 価することができる。この評価系は薬剤感受性試験や、心疾患治療薬のスクリーニングに 利用することができる。

【実施例】

[0040]

実施例1:脂肪組織からの心筋細胞の分化

マウスおよびラットの頚部あるいは腹部の脂肪組織約1.5mlを眼科手術用ハサミで細切し、3.7%、1.5%、 $1\,ml$ のディスパーゼ液に浸透して、細胞をほぐす。ついで、細胞を4.0ミクロンのナイロンメッシュに通し、1.x $10^6/ml$ の濃度で播種し、DMEM+10%FCSの培地を用いて、 $5\%CO_2$ 、37%Cにて24 well culture dish(直径約1.3cm)上で2次元培養を行なう。

[0041]

マウス脂肪細胞の培養結果を図1に示す。3日後より、ビーティングする心筋細胞様の細胞が発現し、同時に球形の心筋前駆/幹細胞様細胞の増殖開始が認められた。心筋細胞は、実体顕微鏡下、ミトコンドリアに富み、ANP顆粒を含有し、Z帯を有し、倒立顕微鏡下、ビーティングする紡錘形をした細胞という形態的特徴から識別することができる。培養開始から約1週間後には紡錘形の細胞が出現し、2~3週間後にはシート構造が観察された。培養1週間目で1wellあたり200~300くらいの心筋細胞と思われるコロニー(集団)を形成された。

[0042]

実施例2:免疫染色

実施例 1 で得られた細胞が心筋細胞の特徴を備えていることを確認するために、蛍光ラベルしたanti-sarcomeric actin (α -Sarcomeric Muscular Actin (Sr-1)) 抗体 (DAKO製) およびanti-cardiac actin (MBL製) を用いた免疫染色を行った。なお、sarcomeric actinおよびcardiac actinは、いずれも心筋細胞に特徴的な発現が認められているタンパクである。

[0043]

免疫染色は、実施例 1 と同様の方法でマウス脂肪組織細胞を 1 4 日間培養した後、 $1\mu g$ /mlの抗体を添加することにより行った。結果を図 2 に示す。図 2 から明らかなように、培養後の細胞は緑色で蛍光ラベルされ、sarcomeric actinおよびcardiac actin陽性であることが確認された。

$[0\ 0\ 4\ 4]$

脂肪組織を実施例 1 と同様に分散させ、Lin抗体(CD4, CD8, Gr-1, Mac-1, TER119抗体を混和したもの;成熟した血液細胞を認識できる組み合わせ。いずれもPharmingen製)と、c-Kit抗体(Pharmingen製)あるいは β 1 インテグリン抗体(Pharmingen製)で染色し、フローサイトメトリー法により自動蛍光細胞回収装置(Epics Artra; Coulter製)を用いて細胞を分画回収し、得られた細胞を各々 10^4 個ずつを10% 牛血清を含むDMEM培養液に混和し、24 穴の培養皿に実施例 1 と同様に培養した。その結果、Lin陰性c-Kit陰性~弱陽性、あるいはLin陰性 β 1 インテグリン陽性細胞(図 3 に示す細胞集団)から効率良く実施例 1 と同様のsarcomeriactin陽性の心筋細胞が発生することが確認された(図 3)。

[0045]

実施例3:遺伝子発現解析

実施例 1 で得られた細胞が心筋細胞であることを確認するために、RT-PCRによる遺伝子発現解析を行った。まず、実施例 1 と同様の方法でマウス脂肪組織細胞を 1 4 日間培養した後、RNeasy Mini Kit (Qiagen製)を用いてTotal RNAを抽出し、PCR Kit (Clontech製)を用いてcDNAに逆転写した。次いで、Advantage polymerase Mix (Clontech製)を利用し、以下に示す α , β -MHC、 α -skeletal A、 α -cardiac A、MLC-2a, 2v、BNP検出用PCRプライマーによるRT-PCRを行った。

[0046]

- α-MHC-S 5'-tgt ctg ctc tcc acc ggg aaa atc t-3' (配列番号 1)
- α-MHC-AS 5'-cat ggc caa ttc ttg act ccc atg a-3' (配列番号 2)
- β-MHC-S 5'-aac cca ccc aag ttc gac aag atc g-3'(配列番号3)
- β-MHC-AS 5'-cca act ttc ctg ttg ccc caa aat g-3' (配列番号 4)
- α-skeletal A-S 5'-gga gat tgt gcg cga cat caa aga g-3' (配列番号5)
- α-skeletal A-AS 5'-tgg tga tcc aca tct gct gga agg t-3'(配列番号6)
- α-cardiac A-S 5'-gac cac cgc ttt ggt gtg tga caa t-3' (配列番号7)
- α-cardiac A-AS 5'-gcc aga atc cag aac aat gcc tgt g-3'(配列番号8)
- MLC-2a-S 5'-agc agg cac aac gtg gct ctt cta a-3'(配列番号9)
- MLC-2a-AS 5'-cct ggg tca tga gaa gct gct tga a-3'(配列番号10)
- MLC-2v-S 5'-atg gca cct ttg ttt gcc aag aag c-3'(配列番号11)
- MLC-2v-AS 5'-ccc tcg gga tca aac acc ttg aat g-3' (配列番号 1 2)
- BNP-S 5' -aaa agt cgg agg aaa tgg ccc aga g-3' (配列番号 1 3)
- BNP-AS 5'-tgc ctg agg gga aat gct cag aac t-3' (配列番号14)

(S:sense primer, AS:anti-sense primer)

[0047]

結果を図4に示す。図中各ラインは、1:採取したばかりの脂肪組織、2:培養後の細胞、3:マウスの心臓由来心筋細胞、4:水を示す。図4 から明らかなように、培養後の細胞では、心筋細胞特異的な α , β – MHC、 α – skeletal A、 α – cardiac A、MLC–2a, 2v、BNPの発現が認められた。

[0048]

実施例4:核内転写因子の解析

次に、心筋細胞特異的な核内転写因子GATA-4、およびNKX2.5遺伝子の発現解析を行った。解析は、実施例 3 にしたがってcDNAを取得し、以下に示すGATA-4、およびNKX2.5検出用 PCRプライマーを用いたRT-PCRにより行った。

[0049]

Nkx2.5-S 5'-tct ggt tcc aga acc gtc gct aca a-3'(配列番号15)

Nkx2.5-AS 5'-atc gcc ctt ctc cta aag gtg gga gt-3'(配列番号16)

GATA4-S 5'-gag tgt gtc aat tgt ggg gcc atg t-3'(配列番号17)

GATA4-AS 5'-tgc tgc tag tgg cat tgc tgg agt t-3'(配列番号18)

(S:sense primer, AS:anti-sense primer)

[0050]

結果を図5に示す。図中各ラインは、1:採取したばかりの脂肪組織、2:培養後の細胞、3、マウスの心臓由来心筋細胞、4:水を示す。図5から明らかなように、培養後の細胞では、心筋細胞特異的転写因子GATA-4、およびNKX2.5遺伝子の発現が確認された。

[0051]

実施例5:培養条件の最適化(脂肪組織からの心筋細胞分化)

DMEM+10%FCSの培養液に、それぞれLIF (leukemia inhibitory factor) 2000U/ml HB-EG F 0.5μg/ml、LIF2000U/ml+HB-EGF0.5μg/mlを添加し、実施例 1 と同様にして培養を行った。培養後の細胞をα-sarcomeric actinおよびcardiac actinに対する抗体を用いて実施例 2 と同様の方法で免疫染色し、その蛍光強度から心筋細胞の発現数を蛍光顕微鏡(1x

70、01ympus)を用いて未添加の場合と比較評価した(各々4サンプル)。

[0052]

その結果、LIF単独では心筋細胞の分化は促進傾向にはあったが、添加しない場合と比較して有意差は認められなかった。一方、HB-EGF単独では、添加しない場合と比較してp <0.05の有意差で心筋細胞の分化が促進された。さらに、LIF+HB-EGFでは、p<0.05の有意差で、最も心筋細胞の分化が促進された。

[0053]

実施例6:心筋梗塞モデルラットへの移植実験

雄性SDラット(N=19)は動脈結紮により心筋梗塞を誘導し、心筋梗塞モデルラットを作製した。実施例 1 にしたがいラット脂肪組織由来の細胞を単離し、10% FCSを含むDMEM培養液にて培養して脂肪組織由来心筋細胞を得た。得られた脂肪組織由来心筋細胞($2x10^6$ 個/ml濃度の細胞を0.1ml ずつ 5 ヶ所)を心筋梗塞モデルラット(N=9)の心筋梗塞巣に注入し、試験群とした。また、比較群および対象群として、それぞれPBSを注入した心筋梗塞モデルラット(N=10)、および梗塞処置を施していないシャムオペレーションラット(N=6)を用意した。それぞれの群について、注入 2 8 日後の心機能の改善を心超音波検査にて解析し、その結果、PBSを注入した比較群では正常ラットの約 1/5 まで心機能の低下が認められたが、脂肪組織由来心筋細胞を注入した試験群では、正常ラットの約 4/5 までしか心機能の低下は認められなかった。

[0054]

実施例7:脂肪組織由来細胞と骨髄由来細胞の共培養

実施例 1 にしたがって単離したマウス脂肪組織の細胞 $1x10^6$ 個をPKH67 Green Fluoresce nt cell Linker Kit(SIGMA製)で蛍光標識した骨髄細胞 $1x10^5$ 個 $^{/m1}$ と混合し、DMEM+10%FCS の培養液1m1中に混和し、24 well culture dish(直径約1.3cm)上で培養した。比較として、PKH67で蛍光標識した骨髄細胞を同様の条件で単独培養した。

[0055]

結果を図 6 に示す。心筋組織の細胞と共培養を行った骨髄細胞では、培養開始後 $1\sim2$ 週間の間に $2~0\sim6~0$ コロニーくらいの心筋細胞と思われるコロニーが生成した。この心筋細胞コロニーにはPKH67で蛍光標識された骨髄由来の細胞が含まれていた(図 6~A)。一方、単独培養した骨髄細胞では、心筋細胞への分化は認められなかった(図 6~B)。

[0056]

実施例8:共培養条件の最適化

 $1x10^6$ 脂肪組織の細胞に対して、共培養する骨髄由来の細胞数を $5x10^4$ 、 $1x10^5$ 、 $2.5x10^5$ 、 $5x10^5$ 、 $1x10^6$ と変化させ、その影響を検討した。結果を図7に示す。図7から明らかなように、 $2.5x10^5$ 個の骨髄細胞を混合した場合、つまり、脂肪組織:骨髄細胞=4:1の割合で共培養した場合に、最も多くのPKH67で蛍光標識された骨髄細胞由来心筋細胞が得られることがわかった。

[0057]

実施例9:骨髄細胞の分化に影響を与える因子

次に、骨髄細胞の分化に影響を与える因子を検討するために、脂肪組織の細胞と骨髄細胞を0.4ミクロンのポアを有する膜(Cell culture insert:FALCON製)で隔てて、実施例8と同様に培養を行った。その結果、細胞間の接着が抑制され、液性成分のみが作用し合う条件下においても、骨髄細胞の心筋細胞への分化が認められることが確認された。このことは、脂肪組織の心筋細胞への分化培養系から得られる培養上清中に、骨髄細胞を心筋細胞に分化誘導する液性分子が含まれていることを意味する。

【産業上の利用可能性】

[0058]

本発明で得られる心筋細胞および心筋前駆細胞は、表現的形質にも遺伝的形質も心筋細胞と一致する。したがって、これら細胞は、心臓領域の再生医療に好適に利用することができる。また心筋細胞の薬剤感受性評価や心疾患治療薬のスクリーニング系等に利用できる。

【図面の簡単な説明】

[0059]

【図1】図1は、脂肪組織の培養結果(心筋細胞への分化)を示す画像である。図中、左上:培養開始時、右上:培養7日後、左下:培養14日後、右上:培養28日後を示す。

【図2】図2は、培養脂肪組織の免疫染色結果を示す画像である。左はanti-sarcome ric protein抗体、右はanti-caridiac actin抗体で染色した結果である。

【図3】図3は、フローサイトメトリーでの分画(左)と、これら分画回収した細胞を試験管内で培養して得られた心筋細胞の写真(右)を示す。

【図4】図4は、脂肪組織から分化した細胞の遺伝子発現解析結果を示す。

【図5】図5は、脂肪組織から分化した細胞の核内転写遺伝子解析結果を示す。

【図6】図6は、脂肪組織由来の細胞と骨髄細胞との共培養結果を示す画像である。 Aは脂肪組織由来細胞と骨髄細胞との共培養結果、Bは骨髄細胞の単独培養結果を示す。

【図7】図7は、脂肪組織由来の細胞に対して、共培養する骨髄由来の細胞数を変化させたときの、得られる心筋細胞コロニー数の変化を示すグラフである。

【配列表フリーテキスト】

[0060]

配列番号1-人工配列の説明:プライマー (α-MHC-S) 配列番号 2 - 人工配列の説明:プライマー (α-MHC-AS) 配列番号3-人工配列の説明:プライマー (β-MHC-S) 配列番号 4 - 人工配列の説明:プライマー (β-MHC-AS) 配列番号 5 - 人工配列の説明:プライマー (α-skeletal A-S) 配列番号 6 - 人工配列の説明:プライマー (α-skeletal A-AS) 配列番号 7 - 人工配列の説明: プライマー (α-cardiac A-S) 配列番号 8 - 人工配列の説明:プライマー(α-cardiac A-AS) 配列番号 9 - 人工配列の説明:プライマー(MLC-2a-S) 配列番号 1 0 - 人工配列の説明:プライマー (MLC-2a-AS) 配列番号11-人工配列の説明:プライマー (MLC-2v-S) 配列番号12-人工配列の説明:プライマー(MLC-2v-AS) 配列番号13-人工配列の説明:プライマー(BNP-S) 配列番号14-人工配列の説明:プライマー (BNP-AS) 配列番号 1 5 - 人工配列の説明:プライマー(Nkx2.5-S) 配列番号16-人工配列の説明:プライマー(Nkx2.5-AS) 配列番号17-人工配列の説明:プライマー(GATA4-S) 配列番号18-人工配列の説明:プライマー (GATA4-AS)

【配列表】

SEQUENCE LISTING

- <110> Kanazawa University Technology Licensing Organization Japan Science and Technology Corporation
- <120> Induction of cardiomyocyte by using mammalian adipocyte
- <130> P03-1125
- <140>
- <141>
- <160> 18
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 25
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Inventor: Takakura, Nobuyuki; Yamada, Yoshihiro
- <220>
- <223> Description of Artificial Sequence:primer (alpha-MHC-S)
- <400> 1
- tgtctgctct ccaccgggaa aatct
- <210> 2
- <211> 25
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence:primer (alpha-MHC-AS)
- <400> 2
- catggccaat tcttgactcc catga

25

25

- <210> 3
- <211> 25
- <212> DNA
- <213> Artificial Sequence

出証特2005-3003981

2/

```
<220>
<223> Description of Artificial Sequence:primer (beta-MHC-S)
<400> 3
aacccaccca agttcgacaa gatcg
                                                                    25
<210> 4
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer (beta-MHC-AS)
<400> 4
ccaactttcc tgttgcccca aaatg
                                                                    25
<210> 5
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer (alpha-skeletal A-S)
<400> 5
                                                                    25
ggagattgtg cgcgacatca aagag
<210> 6
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:primer (alpha-skeletal A-AS)
<400> 6
tggtgatcca catctgctgg aaggt
                                                                    25
<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer (alpha-cardiac A-S)
```

```
<400> 7
                                                                     25
gaccaccgct ttggtgtgtg acaat
<210> 8
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer (alpha-cardiac A-AS)
<400> 8
                                                                     25
gccagaatcc agaacaatgc ctgtg
<210> 9
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer (MLC-2a-S)
<400> 9
                                                                     25
agcaggcaca acgtggctct tctaa
<210> 10
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer (MLC-2a-AS)
<400> 10
cctgggtcat gagaagctgc ttgaa
                                                                     25
<210> 11
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer (MLC-2v-S)
<400> 11
```


atggcacctt	tgtttgccaa	gaagc

<210> 12 <211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer (MLC-2v-AS)

<400> 12

ccctcgggat caaacacctt gaatg

25

25

<210> 13

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer (BNP-S)

<400> 13

aaaagtcgga ggaaatggcc cagag

25

<210> 14

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer (BNP-AS)

<400> 14

tgcctgaggg gaaatgctca gaact

25

<210> 15

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer (Nkx2.5-S)

<400> 15

tctggttcca gaaccgtcgc tacaa

25

<210> 16 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer (Nkx2.5-AS)	
<400> 16 atcgcccttc tcctaaaggt gggagt	26
<210> 17 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer (GATA4-S)	
<400> 17 gagtgtgtca attgtggggc catgt	25
<210> 18 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer (GATA4-AS)	
<400> 18 tgctgctagt ggcattgctg gagtt	25

図2】

Immunestaining of CMFA cells

anti-sarcomeric

anti-cardiac actin

day14

【図3】

【図4】

【図5】

【図6】

【図7】

【書類名】要約書

【要約】

【課題】 脂肪組織を利用することにより、in vitroで簡便に心筋細胞を分化誘導する技術を提供すること。

【解決手段】 哺乳動物の脂肪組織から単離された細胞を、牛血清を含む培養液中で培養することにより、心筋前駆細胞および/または心筋細胞に分化させる。あるいは、哺乳動物の脂肪組織から単離された細胞またはその培養上清ともに、哺乳動物の骨髄細胞を培養することにより、該骨髄細胞を心筋前駆細胞および/または心筋細胞に分化させる。

【選択図】 図1

1

特願2003-429088

出 願 人 履 歴 情 報

識別番号

[803000023]

1. 変更年月日 [変更理由] 住 所 氏 名

2003年 9月 3日 住所変更 石川県金沢市角間町ヌ7番地金沢大学内 有限会社金沢大学ティ・エル・オー

特願2003-429088

出 願 人 履 歴 情 報

識別番号

[503360115]

1. 変更年月日 [変更理由] 住 所 氏 名

2003年10月 1日 新規登録 埼玉県川口市本町4丁目1番8号 独立行政法人 科学技術振興機構

2. 変更年月日 [変更理由] 住 所 氏 名

2004年 4月 1日 名称変更 埼玉県川口市本町4丁目1番8号 独立行政法人科学技術振興機構