Estimadores: Comportamiento Asintótico de un Estimador Repasemos....

 $\mathbf{X}_n=(X_1\dots X_n) \text{ m.a. } X_i\sim F\text{, } F\in \mathcal{F}\text{, } \mathcal{F}=\{F(\cdot,\theta)\text{ },\theta\in\Theta\}.$ Queremos estimar $q(\theta).$

Sea $T_n = T(\mathbf{X}_n)$ un estimador de $q(\theta)$

- ullet $\mathbb{E}_{ heta}(T_n) \Rightarrow \operatorname{sesgo} \mathbb{B}_{ heta}(T_n) = \mathbb{E}_{ heta}(T_n) q(heta)$
- $ECM_{\theta}(T_n) = \mathbb{V}ar_{\theta}(T_n) + \mathbb{B}_{\theta}^2(T_n)$
- Error standard: $se(T_n) = \sqrt{\mathbb{V}ar_{\theta}(T_n)}$

Recordemos: Estimación de una proporción

Queremos estimar a p, la proporción de habitantes de Argentina que está a favor de las vacunas. Para ello, elegiremos n habitantes al azar y se les preguntará si están a favor de las vacunas o no. ¿Cómo estimamos a p?

$$X_i = \left\{ \begin{array}{l} 1 \text{ si el } i-\text{\'esimo encuestado dice que s\'i} \\ 0 \text{ si no} \end{array} \right.$$

- X_1, \ldots, X_n son variables aleatorias i.i.d. con distribuición B(1, p), siendo p la verdadera proporción que queremos estimar.
- Un estimador puntual (EMM o EMV) de p es $\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$
- ¿Por qué tomamos n=1000? ¿Sería más conveniente tomar n=2000? Si es mejor una elección que otra, ¿donde se ve?

•
$$se(\hat{p}_n) = \sqrt{\mathbb{V}ar_p(\hat{p}_n)} = \sqrt{\frac{p(1-p)}{n}}$$

Distribución de muestreo y error standard

- La distribución de T_n se llama distribución de muestreo (sample distribution).
- La desviación estandar de T_n se llama **error standard**, es por lo general desconocida y se utiliza un estimador del error estandar, lo notamos $\widehat{se}(T_n)$.

Consistencia

 $\mathcal{F} = \{F(\cdot, \theta), \theta \in \Theta\}$ una familia de distribuciones.

$$\mathbf{X}_n = (X_1 \dots X_n)$$
 m.a. $X_i \sim F$, $F \in \mathcal{F}$

 $T_n = T_n(\mathbf{X}_n)$ estimador de $q(\theta)$ basado en la muestra aleatoria de tamaño $n \ \mathbf{X}_n$.

 $\operatorname{\bf Def}$. T_n es una sucesión fuertemente consistente de estimadores de $q(\theta)$ si

$$\lim_{n \to \infty} T_n = q(\theta) \qquad c.t.p.$$

o sea si P_{θ} $(w \in \Omega : \lim_{n \to \infty} T_n = q(\theta)) = 1$ para todo $\theta \in \Theta$.

Notamos: $T_n \xrightarrow{c.s.} q(\theta)$

Consistencia

 $\mathcal{F} = \{F(\cdot, \theta), \theta \in \Theta\}$ una familia de distribuciones.

$$\mathbf{X}_n = (X_1 \dots X_n)$$
 m.a. $X_i \sim F$, $F \in \mathcal{F}$

 $T_n = T_n(\mathbf{X}_n)$ estimador de $q(\theta)$ basado en la muestra aleatoria de tamaño $n \ \mathbf{X}_n$.

Def. T_n es una sucesión débilmente consistente de estimadores de $q(\theta)$ si

$$T_n \xrightarrow{P} q(\theta)$$

o sea, si para todo $\varepsilon>0$ y $\theta\in\Theta$

$$\lim_{n\to\infty} P_{\theta}(|T_n - q(\theta)| > \varepsilon) = 0.$$

¿Quién puede ayudarnos? Ley de los Grandes Números

• Ley fuerte: Sean $\{X_n\}_{n\geq 1}$ variables aleatorias independientes tales que $E(X_j^2)<\infty$. Sea $(b_n)_{n\geq 1}$ una sucesión numérica tales que $b_n>0$, b_n es creciente y $\lim_{n\to\infty}b_n=+\infty$. Entonces

$$\sum_{n=1}^{\infty} \frac{V(X_n)}{b_n^2} < \infty \Longrightarrow \frac{1}{b_n} \sum_{j=1}^n (X_j - E(X_j)) \xrightarrow{c.s.} 0.$$

• Otra versión: Sean X_1, X_2, \ldots v.a. independientes de a pares e idénticamente distribuidas con $E|X_1| < \infty$. Si $E(X_1) = \mu$, entonces cuando $n \to \infty$

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{c.s.} \mu .$$

¿Quién puede ayudarnos? Ley de los Grandes Números

• Ley débil: Sean $\{X_n\}_{n\geq 1}$ variables aleatorias no correlacionadas, es decir $\mathbb{C}ov(X_i,X_j)=0$ para $i\neq j$, tales que $\mathbb{E}(X_j)=\mu_j$ y $\mathbb{V}ar(X_j)=\sigma_j^2$.

Denotemos $\overline{\mu}_n = \frac{1}{n} \sum_{i=1}^n \mu_j = \mathbb{E}(\overline{X}_n).$

Entonces, si $\lim_{n \to \infty} \frac{1}{n^2} \sum_{j=1}^n \sigma_j^2 = 0$, tenemos que

$$\overline{X}_n - \overline{\mu}_n \stackrel{p}{\longrightarrow} 0$$
.

Aplicación en Estadística

Dada una muestra aleatoria X_1, \ldots, X_n independientes, tenemos que:

• Primer momento: por la L.G.N. fuerte si $E|X_i|<\infty$, tenemos en forma directa un estimador consistente para $\mu=E(X_i)(=\mu_1)$, ya que si tomamos $\hat{\mu}=\bar{X}_n$, tenemos que $\bar{X}_n\stackrel{c.s.}{\longrightarrow}\mu$

y por lo tanto,

$$\bar{X}_n \stackrel{P}{\longrightarrow} \mu$$

• Segundo momento: también da un estimador consistente para, por ejemplo, $\theta=E(X_i^2)(=\mu_2)<\infty$, ya que como antes

$$\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i^2 \xrightarrow{P} E(X_i^2) = \theta$$

Recordemos algunas propiedades útiles

Algunas transformaciones preservan la convergencia casi segura y en probabilidad.

Si g es una función continua en μ , entonces

•
$$X_n \xrightarrow{c.s.} \mu \Rightarrow g(X_n) \xrightarrow{c.s.} g(\mu)$$

Además, si $X_n \xrightarrow{c.s.} X$ y $Y_n \xrightarrow{c.s.} Y$,

- $X_n \pm Y_n \xrightarrow{c.s.} X \pm Y$
- $\bullet X_n Y_n \xrightarrow{c.s.} XY$
- si además $\mathbb{P}(Y=0)=0$, $X_n/Y_n \xrightarrow{c.s.} X/Y$

Estos resultados también son válidos en probabilidad.

Estimación de $\sigma^2 = \mathbb{V}ar_F(X_i)$

- ¿Cómo estimamos σ^2 ?
- Un estimador posible es E.M.M.:

$$\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$$

Estimación de σ^2

- $\bullet \text{ Por la L.G.N., } \bar{X}_n \xrightarrow{c.s.} \mu \text{ y } \tfrac{1}{n} \sum_{i=1}^n X_i^2 \xrightarrow{c.s.} \mathbb{E}(X_1^2)$
- Como las funciones continuas preservan la convergencia c.s., $\bar{X}_n \xrightarrow{c.s.} \mathbb{E}(X_1)$, luego $\bar{X}_n^2 \xrightarrow{c.s.} \mathbb{E}^2(X_1)$ y en consecuencia

Estimación de σ^2

- Por la L.G.N., $\bar{X}_n \xrightarrow{c.s.} \mu$ y $\frac{1}{n} \sum_{i=1}^n X_i^2 \xrightarrow{c.s.} \mathbb{E}(X_1^2)$
- Como las funciones continuas preservan la convergencia c.s., $\bar{X}_n \xrightarrow{c.s.} \mathbb{E}(X_1)$, luego $\bar{X}_n^2 \xrightarrow{c.s.} \mathbb{E}^2(X_1)$ y en consecuencia

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}^2 \xrightarrow{c.s.} \mathbb{E}(X_1^2) - \mathbb{E}^2(X_1) = \mathbb{V}ar(X_1) = \sigma^2$$

Estimación de σ^2

- $\bullet \text{ Por la L.G.N., } \bar{X}_n \xrightarrow{c.s.} \mu \text{ y } \frac{1}{n} \sum_{i=1}^n X_i^2 \xrightarrow{c.s.} \mathbb{E}(X_1^2)$
- Como las funciones continuas preservan la convergencia c.s., $\bar{X}_n \stackrel{c.s.}{\longrightarrow} \mathbb{E}(X_1)$, luego $\bar{X}_n^2 \stackrel{c.s.}{\longrightarrow} \mathbb{E}^2(X_1)$ y en consecuencia

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}^2 \xrightarrow{c.s.} \mathbb{E}(X_1^2) - \mathbb{E}^2(X_1) = \mathbb{V}ar(X_1) = \sigma^2$$

• Varianza Muestral: $S_n^2 = \frac{n}{n-1} \hat{\sigma}_n^2$.

Como la sucesión $\frac{n}{n-1} \to 1$, S_n^2 también resulta consistente.

Error cuadrático medio y consistencia

Teorema Sea T_n un estimador de $q(\theta)$ basado en una muestra aleatoria de tamaño n. Si $ECM_{\theta}(T_n) \to 0$ cuando $n \to \infty$, entonces T_n es un estimador débilmente consistente de $q(\theta)$.

Demo:

Recordemos la **desigualdad de Markov:** Sean $h:\mathbb{R}\to\mathbb{R}^+$ tal que h es par y restringida a \mathbb{R}^+ es creciente y además Y una v.a. tal que $\mathbb{E}(h(Y))$ existe. Entonces, para todo $\epsilon>0$

$$\mathbb{P}(|Y| \ge \epsilon) \le \frac{\mathbb{E}[h(Y)]}{h(\epsilon)}$$

Error cuadrático medio y consistencia

Teorema Sea T_n un estimador de $q(\theta)$ basado en una muestra aleatoria de tamaño n. Si $ECM_{\theta}(T_n) \to 0$ cuando $n \to \infty$, entonces T_n es un estimador débilmente consistente de $q(\theta)$.

Demo:

Recordemos la **desigualdad de Markov:** Sean $h:\mathbb{R} \to \mathbb{R}^+$ tal que h es par y restringida a \mathbb{R}^+ es creciente y además Y una v.a. tal que $\mathbb{E}(h(Y))$ existe. Entonces, para todo $\epsilon>0$

$$\mathbb{P}(|Y| \ge \epsilon) \le \frac{\mathbb{E}[h(Y)]}{h(\epsilon)}$$

Dado $\epsilon > 0$, por la desigualdad de Markov tenemos

$$0 \le \mathbb{P}(|T_n - q(\theta)| \ge \varepsilon) \le \frac{1}{\varepsilon^2} \mathbb{E}_{\theta} \left[(|T_n - q(\theta)|)^2 \right] = \frac{1}{\varepsilon^2} ECM_{\theta}(T_n)$$

Corolario

Corolario. Sea $T_n = T_n(X_1, \dots, X_n)$ un estimador de $q(\theta)$ basado en una muestra aleatoria de tamaño n. Si cuando $n \to \infty$

- $\mathbb{E}_{\theta}(T_n) \to q(\theta)$,
- $\mathbb{V}ar_{\theta}(T_n) \to 0$

entonces T_n es débilmente consistente para $q(\theta)$.

Ejemplo: Modelo de posición con errores normales

Un investigador desea determinar cuanto vale cierta magnitud y para ello realiza \boldsymbol{n} mediciones.

Supone que

$$X_i = \theta + \epsilon_i, \ i = 1, \dots, n$$

donde $\epsilon_i \sim N(0,\sigma_o^2)$ independientes, con σ_o^2 conocida.

¿Cómo estimamos a θ ?

¿Cómo es la distribución de muestreo del estimador propuesto?

¿Y si σ_o^2 es desconocida?

Ejemplo: ¿y si los errores no son normales?

Supone que

$$X_i = \theta + \epsilon_i, i = 1, \dots, n$$

donde $\mathbb{E}(\epsilon_i) = 0$ y $\mathbb{V}ar(\epsilon_i) = \sigma^2$ e independientes.

- $\bullet \ \hat{\theta}_n = \bar{X}_n$
- $Var(\hat{\theta}_n) = \sigma^2/n \Rightarrow se(\hat{\theta}_n) = \sqrt{\sigma^2/n}$
- $\frac{\bar{X}_n \theta}{\sqrt{\sigma^2/n}} \sim ??$

Distribución Asintótica

Sea $T_n = T(\mathbf{X}_n) = T(X_1, \dots, X_n)$ un estimador de θ basado en la m.a. X_1, \dots, X_n .

Supongamos que para cierta sucesión numérica c_n tal que $c_n \to \infty$ y cierta variable aleatoria W, tenemos que cuando $n \to \infty$

$$c_n(T_n-\theta) \stackrel{\mathcal{D}}{\longrightarrow} W$$
,

entonces diremos que $\frac{T_n}{C_n}$ converge en distribución a W a tasa c_n .

Distribución Asintótica

Sea $T_n=T(\mathbf{X}_n)=T(X_1,\ldots,X_n)$ un estimador de θ basado en la m.a. X_1,\ldots,X_n .

Supongamos que para cierta sucesión numérica c_n tal que $c_n \to \infty$ y cierta variable aleatoria W, tenemos que cuando $n \to \infty$

$$c_n(T_n - \theta) \xrightarrow{\mathcal{D}} W$$
,

entonces diremos que T_n converge en distribución a W a tasa c_n . Típicamente, tenemos que $c_n=\sqrt{n}$, ¿por qué?

Ejemplo: ¿y si los errores no son normales?

Supone que

$$X_i = \theta + \epsilon_i, \ i = 1, \dots, n$$

donde $\mathbb{E}(\epsilon_i) = 0$ y $\mathbb{V}ar(\epsilon_i) = \sigma^2$ e independientes.

- $\bullet \ \hat{\theta}_n = \bar{X}_n$
- $Var(\hat{\theta}_n) = \sigma^2/n \Rightarrow se(\hat{\theta}_n) = \sqrt{\sigma^2/n}$
- por el T.C.L. tenemos que $\frac{\bar{X}_n \theta}{\sqrt{\sigma^2/n}} \xrightarrow{\mathcal{D}} N(0,1)$
- ¿Qué pasa si estimamos el $se(\hat{\theta}_n)$? Por ejemplo, ¿si usamos $\widehat{se}(\hat{\theta}_n)=\sqrt{S_n^2/n}$?

$$\frac{X_n - \mu}{\sqrt{S_n^2/n}} \xrightarrow{\mathcal{D}} ?$$

¿Quíen puede ayudarnos? Teorema de Slutsky

Sean $\{X_n\}_{n\geq 1}$ e $\{Y_n\}_{n\geq 1}$ sucesiones de variables aleatorias, tales que $X_n \stackrel{\mathcal{D}}{\longrightarrow} X$ e $Y_n \stackrel{P}{\longrightarrow} c$, entonces

- $\bullet \ X_n + Y_n \xrightarrow{\mathcal{D}} X + c$
- $\bullet \ X_n Y_n \xrightarrow{\mathcal{D}} X c$
- $\bullet \ X_n \cdot Y_n \stackrel{\mathcal{D}}{\longrightarrow} X \cdot c$
- Si $c \neq 0$, entonces $X_n/Y_n \xrightarrow{\mathcal{D}} X/c$

Supongamos que $\widehat{se}(\hat{\theta}_n)$ es un estimador consistente de $se(\hat{\theta}_n)$. Luego,

$$\frac{\hat{\theta}_n - \theta}{se(\hat{\theta}_n)} \xrightarrow{\mathcal{D}} N(0, 1) \Rightarrow \frac{\hat{\theta}_n - \theta}{\widehat{se}(\hat{\theta}_n)} \xrightarrow{\mathcal{D}} N(0, 1)$$

Supongamos que $\widehat{se}(\hat{\theta}_n)$ es un estimador consistente de $se(\hat{\theta}_n)$. Luego,

$$\frac{\hat{\theta}_n - \theta}{se(\hat{\theta}_n)} \xrightarrow{\mathcal{D}} N(0, 1) \Rightarrow \frac{\hat{\theta}_n - \theta}{\hat{se}(\hat{\theta}_n)} \xrightarrow{\mathcal{D}} N(0, 1)$$

Demo:

$$\frac{\hat{\theta}_n - \theta}{\hat{s}e(\hat{\theta}_n)} = \frac{se(\hat{\theta}_n)}{\hat{s}e(\hat{\theta}_n)} \frac{\hat{\theta}_n - \theta}{se(\hat{\theta}_n)}$$

Supongamos que $\widehat{se}(\hat{\theta}_n)$ es un estimador consistente de $se(\hat{\theta}_n)$. Luego,

$$\frac{\hat{\theta}_n - \theta}{se(\hat{\theta}_n)} \xrightarrow{\mathcal{D}} N(0, 1) \Rightarrow \frac{\hat{\theta}_n - \theta}{\hat{se}(\hat{\theta}_n)} \xrightarrow{\mathcal{D}} N(0, 1)$$

Demo:

$$\frac{\hat{\theta}_n - \theta}{\hat{s}e(\hat{\theta}_n)} = \frac{se(\hat{\theta}_n)}{\hat{s}e(\hat{\theta}_n)} \frac{\hat{\theta}_n - \theta}{se(\hat{\theta}_n)}$$

Como

$$\frac{se(\hat{\theta}_n)}{\widehat{se}(\hat{\theta}_n)} \xrightarrow{P} 1 \text{ y } \frac{\hat{\theta}_n - \theta}{se(\hat{\theta}_n)} \xrightarrow{D} N(0, 1)$$

Supongamos que $\widehat{se}(\hat{\theta}_n)$ es un estimador consistente de $se(\hat{\theta}_n)$. Luego,

$$\frac{\hat{\theta}_n - \theta}{se(\hat{\theta}_n)} \xrightarrow{\mathcal{D}} N(0, 1) \Rightarrow \frac{\hat{\theta}_n - \theta}{\hat{se}(\hat{\theta}_n)} \xrightarrow{\mathcal{D}} N(0, 1)$$

Demo:

$$\frac{\hat{\theta}_n - \theta}{\hat{s}e(\hat{\theta}_n)} = \frac{se(\hat{\theta}_n)}{\hat{s}e(\hat{\theta}_n)} \frac{\hat{\theta}_n - \theta}{se(\hat{\theta}_n)}$$

Como

$$\frac{se(\hat{\theta}_n)}{\widehat{se}(\hat{\theta}_n)} \stackrel{P}{\longrightarrow} 1 \text{ y } \frac{\hat{\theta}_n - \theta}{se(\hat{\theta}_n)} \stackrel{D}{\longrightarrow} N(0, 1)$$

por Slutzky, se llega a lo que queríamos probar:

$$\frac{\hat{\theta}_n - \theta}{\widehat{se}(\hat{\theta}_n)} = \frac{se(\hat{\theta}_n)}{\widehat{se}(\hat{\theta}_n)} \frac{\hat{\theta}_n - \theta}{se(\hat{\theta}_n)} \xrightarrow{D} N(0, 1)$$

Consistencia de los Estimadores de Momentos

- Sea X_1,\ldots,X_n una muestra aleatoria de una distribución perteneciente a la familia $\mathcal{F}=\{F_\theta,\;\theta\in\Theta\subset\mathbb{R}\}$,
- g(x) una función continua con valores en $\mathbb R$
- Supongamos que $M(\theta) = \mathbb{E}_{\theta}(g(X_1))$ es, como función de θ , continua y estrictamente monótona.

Sea el estimador de momentos $\widehat{\theta}_n$ definido como la solución de

$$\frac{1}{n}\sum_{i=1}^{n}g(X_{i})=M(\widehat{\theta}_{n})$$
(1)

Luego con probabilidad 1 existe n_0 tal que para todo $n \geq n_0$ la ecuación (1) tiene una solución, $\widehat{\theta}_n$, y $\widehat{\theta}_n$ es fuertemente consistente para θ .

Consistencia de los Estimadores de Máxima Verosimilitud

Sea X_1, \ldots, X_n i.i.d. $X_i \sim f(x, \theta_0)$ con $\theta_0 \in \Theta$, donde Θ es un intervalo abierto de \mathbb{R} . Supongamos que:

- R0. $f(x, \theta)$ es derivable respecto de θ
- R1. el conjunto $S = \{x : f(x, \theta) \neq 0\}$ es independiente de θ .
- R2. $\theta_1 \neq \theta_2$ implica que $f(x, \theta_1) \neq f(x, \theta_2)$.

Sea $\widehat{\theta}_n$ el estimador de máxima verosimilitud de θ_0 , que es la única solución de

$$\sum_{i=1}^{n} \frac{\partial \log f(x_i, \widehat{\theta}_n)}{\partial \theta} = 0$$

Entonces,

$$\widehat{\theta}_n \xrightarrow{c.s.} \theta_0.$$

Veamos un esbozo de la demostración.

Resultado previo (Video 1)

Lema: Sean p y q dos densidades o dos funciones de probabilidad distintas con soporte común. Entonces,

$$\mathbb{E}_p\Big(\ln\frac{q(X)}{p(X)}\Big) < 0$$

Resultado previo (Video 1)

Lema: Sean p y q dos densidades o dos funciones de probabilidad distintas con soporte común. Entonces,

$$\mathbb{E}_p\Big(\ln\frac{q(X)}{p(X)}\Big) < 0$$

Caso continuo. Es claro que no puede ocurrir que q(X)/p(X)=k c.t.p., si fuera así, entonces $\mathbb{E}_p(q(X)/p(X))=k$ y

$$\int_{-\infty}^{+\infty} \frac{q(x)}{p(x)} p(x) dx = k \Rightarrow \int_{-\infty}^{+\infty} q(x) dx = k$$

luego, k=1 pues q(x) es una densidad, contradice la hipótesis pues $p\neq q$. Además, $h(x)=-\ln(x)$ es una función estrictamente convexa ya que $\frac{d^2(-\ln x)}{dx^2}=\frac{1}{x^2}>0 \;.$ Aplicando la desigualdad de Jensen,

$$\mathbb{E}_p\left[-\ln\frac{q(X)}{p(X)}\right] > -\ln\left[\mathbb{E}_p\frac{q(X)}{p(X)}\right] = -\ln\int_{-\infty}^{+\infty}\frac{q(x)}{p(x)}p(x)dx = -\ln 1 = 0.$$

Bosquejo de la demo de la consistencia del EMV (Video 1)

- Log-verosimilitud: $\ell_n(\mathbf{X}_n, \theta) = \ell_n(X_1, \dots, X_n, \theta) = \frac{1}{n} \sum_{i=1}^n \log f(X_i, \theta)$
- $\widehat{\theta}_n$ satisface $\ell_n(\mathbf{X}_n, \widehat{\theta}_n) = \max_{\theta \in \Theta} \ell_n(\mathbf{X}_n, \theta)$ y $\frac{\partial \ell_n(\mathbf{X}_n, \widehat{\theta}_n)}{\partial \theta} = 0$.
- Además, se tiene

$$\ell_n(\mathbf{X}_n, \theta_0 + \delta) - \ell_n(\mathbf{X}_n, \theta_0) = \frac{1}{n} \sum_{i=1}^n \log \left(\frac{f(X_i, \theta_0 + \delta)}{f(X_i, \theta_0)} \right)$$

$$\ell_n(\mathbf{X}_n, \theta_0 - \delta) - \ell_n(\mathbf{X}_n, \theta_0) = \frac{1}{n} \sum_{i=1}^n \log \left(\frac{f(X_i, \theta_0 - \delta)}{f(X_i, \theta_0)} \right)$$

Aplicando el Lema resulta que

$$\mathbb{E}_{\theta_0}\left(\log\left[\frac{f(X_1,\theta_0+\delta)}{f(X_1,\theta_0)}\right]\right)<0\;\text{y}\;\mathbb{E}_{\theta_0}\left(\log\left[\frac{f(X_1,\theta_0-\delta)}{f(X_1,\theta_0)}\right]\right)<0$$

Por la Ley Fuerte, con probabilidad 1 existe un n_0 tal que si $n > n_0$

$$\ell_n(\mathbf{X}_n, \theta_0 + \delta) < \ell_n(\mathbf{X}_n, \theta_0)$$

$$\ell_n(\mathbf{X}_n, \theta_0 - \delta) < \ell_n(\mathbf{X}_n, \theta_0)$$

Bosquejo de la demo de la consistencia del EMV (Video 1)

Luego, para $n>n_0$ en $(\theta_0-\delta,\theta_0+\delta)$ existe un máximo relativo, digamos θ_n^* , que satisface

$$\frac{\partial \ell_n(\mathbf{X}_n, \theta_n^*)}{\partial \theta} = 0 ,$$

Como hemos supuesto que $\widehat{\theta}_n$ era el único que satisfacía esta igualdad, resulta $\widehat{\theta}_n=\theta_n^*$ y por lo tanto

$$\widehat{\theta}_n \in (\theta_0 - \delta, \theta_0 + \delta)$$