Comparison of vestibular input statistics during natural activities and while piloting an aircraft

Running title: Vestibular inputs in natural activities and while piloting

Authors: Roques, A.^{1,2,3}, James, Y³, Bargiotas, I.¹, Keriven Serpollet D.¹, Vayatis, N.¹, Vidal, P.-P. ^{4,1*}.

¹Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, ENS Paris Saclay, Université Paris Cité, 75006 Paris, France

²Laboratoire GBCM, EA7528, CNAM, Hesam Université, 75003 Paris, France

³Thales AVS, 95520 Osny, France

⁴Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China

Effect of experience & scenario

Supplementary Figure 4: **A**: Power spectra of the head angular velocity in the LARP, RALP and YAW planes with corresponding 95% confidence interval (shaded areas) during the simulated flight for all pilots. **B**: Population-averaged power spectra of the head angular velocity in the LARP, RALP and YAW planes with corresponding 95% confidence interval (shaded areas) during the simulated flight in the two scenarios.

Despite different backgrounds and expertise, pilots showed similar power spectra (Supplementary Figure 4, A). Both scenarios elicited quasi-identical head movements in terms of frequency content (Supplementary Figure 4, B).