

Fachpraktikum (Bachelor)

6G Hardwarelabor - Design und Implementierung eines HF Transceivers

Versuch 2: Auslegung eines HF-Verstärkers

Protokollführer

Lukas Müller

Erik Zimmermann

Farhad Valizada

Betreuer

Simon Haussmann

Eingereicht

May 15, 2025

Inhaltsverzeichnis

A	Abkürzungsverzeichnis 3							
1	Ein	Einleitung(Farhad)						
	1.1	Ziel des Versuchs	4					
	1.2	Relevanz und Anwendungsbereiche von HF-Verstärkern	4					
2	Theoretische Grundlagen(Lukass) 5							
	2.1	Funktion eines HF-Verstärkers	5					
	2.2	Arbeitspunkeinstellung	5					
	2.3	Bedeutung der S-Parameter	5					
	2.4	(rolle kopplungskodensator)	5					
3	HF-Simulation(Charhad) 6							
	3.1	Inbetriebnahme von Keysight Advanced Design System (ADS)	6					
		3.1.1 Installation von ADS	6					
	3.2	DC-Simulation	6					
		3.2.1 Erstellen eines neuen Projekts	6					
	3.3	Analyse des Datenblattes zu Transistor BFR181W	7					
	3.4	S-Parameter Simulation	7					
4	Technische Umsetzung(Erik)							
	4.1	Platinen Aufbau	8					
	4.2	DC-Pegel Verifizieren	8					
	4.3	Kalibrierung	8					
	4.4	Vergleich zur Simulation	8					
5	Diskussion der Ergebnisse(GangBang)							
	5.1	Vergleich von Theorie und Praxis	9					
	5.2	Erklärung von Abweichungen	9					
6	Fazit(Jeder)							
	6.1	Zusammenfassung der wichtigsten Erkenntnisse	10					
	6.2	Reflexion und mögliche Verbesserungen	10					
	6.3	Eigene Reflexion	10					
		6.3.1 Erik	10					
		6.3.2 Farhad	10					
		6.3.3 Lukas	10					

7	Lite	Literaturverzeichnis 1					
	7.1	Quelle	en	. 11			
		7.1.1	Literaturverzeichnis	. 11			

Abkürzungsverzeichnis

ADS Advanced Design System

HF Hochfrequenz

6G Sixth Generation

SMA SubMiniature version A

PCB Printed Circuit Board

Einleitung(Farhad)

1.1 Ziel des Versuchs

blabla test

1.2 Relevanz und Anwendungsbereiche von HF-Verstärkern

blabla

Theoretische Grundlagen(Lukass)

- 2.1 Funktion eines HF-Verstärkers
- 2.2 Arbeitspunkeinstellung
- 2.3 Bedeutung der S-Parameter
- 2.4 (rolle kopplungskodensator)

blabla

HF-Simulation(Charhad)

3.1 Inbetriebnahme von Keysight Advanced Design System (ADS)

3.1.1 Installation von ADS

Die Software Advanced Design System (ADS) dient zur Simulation von Schaltungen verschiedener Komplexitätsgrade. In diesem Versuch wird die Software verwendet, um eine Hochfrequenzschaltung zu simulieren und zu analysieren. Die Software bietet eine Vielzahl von Funktionen, darunter die Möglichkeit, Schaltungen zu entwerfen, S-Parameter zu simulieren und verschiedene Analysewerkzeuge zu verwenden.

3.2 DC-Simulation

3.2.1 Erstellen eines neuen Projekts

Die Software ist auf den Rechnern im Labor bereits installiert gewesen. Nach dem Start der Software wird ein neues Projekt aus den bereits zur Verfügung stehenden Workspaces erstellt. Diese sind auf der ILIAS-Seite des Praktikums in dem Dateiarchiv TransmitterAmpDesign 2024.zip hinterlegt. Die Datei wird entpackt und in der Software geöffnet. Außerdem werden die benötigten Bibliotheken aus dem Dateiarchiv Infineon-RFTransistor-Keysight ADS Design Kit-SM-v02 10-EN.zip geladen, diese stehen ebenfalls auf der ILIAS-Seite zur Verfügung.

3.3 Analyse des Datenblattes zu Transistor BFR181W

Die maximal zulässige Kollektorstrom $I_{C,\mathrm{max}}$ beträgt $20\,\mathrm{mA}.$

3.4 S-Parameter Simulation

blabla

Technische Umsetzung(Erik)

- 4.1 Platinen Aufbau
- 4.2 DC-Pegel Verifizieren
- 4.3 Kalibrierung
- 4.4 Vergleich zur Simulation

Diskussion der Ergebnisse(GangBang)

- 5.1 Vergleich von Theorie und Praxis
- 5.2 Erklärung von Abweichungen

bla bla

Fazit(Jeder)

- 6.1 Zusammenfassung der wichtigsten Erkenntnisse
- 6.2 Reflexion und mögliche Verbesserungen
- 6.3 Eigene Reflexion
- 6.3.1 Erik
- 6.3.2 Farhad
- **6.3.3** Lukas

bla bla

Literaturverzeichnis

- 7.1 Quellen
- 7.1.1 Literaturverzeichnis