The Sidelnikov-Shestakov's Attack applied to the Chor-Rivest Cryptosystem

Sylvain Colin & Gaspard Férey

February 12, 2014

Contents

1	Introduction 1.1 Our Work	1 1
2	Preliminaries 2.1 A cryptosystem based on Reed-Solomon codes	
3	Attack of Sidelnikov-Shestakov	2
4	Application to the Chor-Rivest Cryptosystem	2
5	Conclusions	2

Abstract

In this article, we discuss about the Sidelnikov-Shestakov Attack on cryptosystems based on Reed-Solomon codes. Then we describe how this algorithm can be used to attack the Chor-Rivest Cryptosystem.

1 Introduction

1.1 Our Work

2 Preliminaries

sec:defnot

sec:intro

2.1 A cryptosystem based on Reed-Solomon codes

We study here the public-key cryptosystem introduced by Niederreiter [1] applied to the generalized Reed-Solomon codes. Let \mathbb{F}_q be a finite field with $q = p^h$ elements and $\mathbb{F} = \mathbb{F}_q \cup \{\infty\}$, where ∞ has natural properties ($1/\infty = 0$, etc). We call \mathfrak{A} the following matrix:

$$\mathfrak{A}(\alpha_{1}, \ldots, \alpha_{n}, z_{1}, \ldots, z_{n}) := \begin{pmatrix} z_{1}\alpha_{1}^{0} & z_{2}\alpha_{2}^{0} & \cdots & z_{n}\alpha_{n}^{0} \\ z_{1}\alpha_{1}^{1} & z_{2}\alpha_{2}^{1} & \cdots & z_{n}\alpha_{n}^{1} \\ & & \ddots & \\ z_{1}\alpha_{1}^{k-1} & z_{2}\alpha_{2}^{k-1} & \cdots & z_{n}\alpha_{n}^{k-1} \end{pmatrix} \in \mathcal{M}_{\mathbb{F}_{q}}(k, n)$$

2.2 Equivalence between Reed-Solomon codes

Sidelnikov and Shestakov show [2] that for all $a \in \mathbb{F}_q - \{0\}$ and $b \in \mathbb{F}_q$, there exists $H_1, H_2, H_3 \in \mathcal{M}_{F_q}(k, k)$ invertible such that

$$H_{1}\mathfrak{A}(a \cdot \alpha_{1} + b, \dots, a \cdot \alpha_{n} + b, c_{1}z_{1}, \dots, c_{n}z_{n}) = \mathfrak{A}(\alpha_{1}, \dots, \alpha_{n}, z_{1}, \dots, z_{n})$$

$$H_{2}\mathfrak{A}\left(\frac{1}{\alpha_{1}}, \dots, \frac{1}{\alpha_{n}}, d_{1}z_{1}, \dots, d_{n}z_{n}\right) = \mathfrak{A}(\alpha_{1}, \dots, \alpha_{n}, z_{1}, \dots, z_{n})$$

$$H_{3}\mathfrak{A}(\alpha_{1}, \dots, \alpha_{n}, a \cdot z_{1}, \dots, a \cdot z_{n}) = \mathfrak{A}(\alpha_{1}, \dots, \alpha_{n}, z_{1}, \dots, z_{n})$$

This means that for any cryptosystem $M = H\mathfrak{A}(\alpha_1, \ldots, \alpha_n, z_1, \ldots, z_n)$, for any birationnal transformation

$$\phi: x \mapsto \frac{ax+b}{cx+d}$$

 $M = H_{\phi}\mathfrak{A}(\phi(\alpha_1), \ldots, \phi(\alpha_n), z'_1, \ldots, z'_n)$ and by using the unique transformation ϕ that maps $(\alpha_1, \alpha_2, \alpha_3)$ to $(0, 1, \infty)$, we get that for any cryptosystem $M = H\mathfrak{A}(\alpha_1, \ldots, \alpha_n, z_1, \ldots, z_n)$, M can be uniquely written

$$M=H'\mathfrak{A}(0,1,\infty,\alpha_4',\ \dots\ ,\alpha_n',1,z_2',\ \dots\ ,z_n')$$

with H' invertible, $z'_i \neq 0$ and α_i distincts elements of $\mathbb{F}_q - \{0, 1, \infty\}$.

- 3 Attack of Sidelnikov-Shestakov
- 4 Application to the Chor-Rivest Cryptosystem
- 5 Conclusions

References

NiederH86

[1] H. Niederreiter. Knapstack-type cryptosystems and algebraic coding theory. *Probl. Control and Inform. Theory*, 15:19–34, 1986.

idelShes92

[2] V. M. Sidelnikov and S. O. Shestakov. On insecurity of cryptosystems based on generalized reed-solomon codes. *Discrete Math. Appl.*, 2(4).