Homework sobre agrupamento usando o algoritmo K-means

1) Usando a distância Euclidiana, realize o agrupamento dos 8 vetores bidimensionais abaixo a partir do algoritmo K-means. Com o mesmo, encontre K = 2 centróides (médias) para representar estes dados e mostre estas centróides em um gráfico Cartesiano:

Para CI	Pora C2
	(2,0) ?2
(0,2) P5	(4, -4) P3
(2, 1) 66	(4, 3) py
(-5,3) 98	(3,-1) P7
Médiax = (-3+0+2-5)/4	mediax = (2+4+4+3)/4
média y = (4+2+1+3)/4	media y - (0+(-4)+3-5)/4
No vo sentroide C1= (-45, 2.5)	Novo Ca = (2.75, -0.5)
#Agora temos que recalcular as d	estáncias com base messes
moros centraides. Para varifia	car se saá mudança na proximidado
dos pentos em relaçõis a esses Movio	s centraisles.
	# Para Co
e1-091= 2.12=0 (s	(2 + P1 = 7.3
C1+0 P2 = 4.3	62 + Po = 0.9 = E2
C1 + P3 = 8.51	(2+) P3= 3.73 => 82
C1-284 = 5.52	(A -0 P4 = 3.73 => 60
11-0P5 = 3.58 => Ex	(2-0 P5 = 3.71
C1-0P6= 3.80	(2-0P6-1:67 =0 12
C1 -> P7= 4.30	227 P7= 3.82 =0 (2)
L1-18= 3.53 => 82	eg-108-8.5
2710 -10 -10	1000.00
# Common time and a consideration of the P/	
a média dos centraides	as cluster de C2, temos que recalalas
	2
Para C1:	Para Co:
P3 (-3,4)	P2(2,0) média x = 0+4+4+2+1)/5
P5(0, 2)	P3(4,-4) media y (0-4+3+1-5)/5
P8(-5,3)	P4(4,3) C2=(2.6,-0.2)
médiax=(-3+0-5)/3	P6(2,3)
media y=14+2+3)/3	P7(+1,-1)
Nous sentraide (1= (-2.66, 3)	
	transias com hass mans
# Agiora tennos que recalcular os dis centraides para verificar re é adicionado algum duster.	algum nevo ponto a BÃO DOMINODA
a garage	

2) Um problema sério do uso do KNN na prática é quando o conjunto de treino é muito grande, e fazer a busca pelo vizinho mais próximo, ou mesmo armazenar o conjunto de treino em memória RAM pode ser proibitivo. Uma solução para isso é usar, antes do KNN, um algoritmo de agrupamento como o K-means (https://en.wikipedia.org/wiki/K-means_clustering) para diminuir o conjunto de dados que o KNN irá manipular. Note que o KNN é um algoritmo de aprendizado supervisionado. Já algoritmos de agrupamento como o K-means são tipicamente "não-supervisionados" (não exigem rótulo para cada exemplo). Mas neste problema usaremos o K-means de forma independente para cada classe (rótulo) do conjunto de treino: executaremos um K-means apenas para os exemplos com rótulo "0" e outro K-means para os exemplos com rótulo "1". Usando esses dois agrupamentos, converta seu conjunto de treino em um novo conjunto com apenas dois vetores (chamados "centróides"), um representando a classe "0" e outro a classe "1". Depois o KNN deve ser usado com base neste conjunto de centróides para classificar o seu conjunto de teste.

Observe que o K-means é um algoritmo iterativo. Ele é implementado no Matlab / Octave como kmeans e no Scikit-learn: https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.KMeans.html. Mas nós não precisaremos usar estas implementações pois assumiremos que a distância é Euclideana e queremos apenas 1 centróide. Daí esta centróide pode simplesmente ser obtida como a média aritmética dos vetores com os quais estamos lidando, e não precisamos de iterações extras do K-means.

Por exemplo, assuma que há 2 classes em um dado conjunto de treino com 6 exemplos no total:

```
1000,0,2,0
0,1,-4,0
2,2,2,0
-6000,-4,-1,1
0,-1,-4,1
-3000,-6,-1,1
```

O vetor de entrada x possui 3 elementos, e os organizando para as classes 0 e 1, e retirando a média aritmética (o que equivale a executar o K-means neste caso),encontra-se as centróides desejadas. No Octave isso pode ser feito com os comandos (note que não usamos o label "0" e "1" ao compor X0 e X1):

Daí você comporia o equivalente a um novo conjunto de treino para o KNN com estes dois vetores:

```
334, 1, 0, 0
-3000.0000, -3.6667, -2.0000, 1
e classificaria seu conjunto de teste usando KNN com K=1 para estes dois vetores.
```

Observação: como você é curioso, caso queira aprender a usar o Kmeans no Octave (Matlab e Python é parecido), seque um exemplo abaixo (mas não é requerido o executar):

Carregue primeiro o pacote que contém o kmeans

pkg load statistics

```
e execute os comandos:
```

K=1;

[~,centroide_0] = kmeans (X0, K, 'distance', 'sqeuclidean')

[~,centroide_1] = kmeans (X1, K, 'distance', 'sqeuclidean')

2	e) Dar	naz e cal	ounts	5 do 3	varias?		testo
6 P	see tra	in	Smire		tec	-ter	J
100	X Y	label			×	Y	Polish
	000	0		-4	000	2	0
300	-			1 40	00	3	0
100		1		C		0	Sal Date and all
100		-			000	-1	3 1) 10 10 10 10 10 10 10 10 10 10 10 10 10
600				1-51	000	-6	11
-300	0		tub an	<u> </u>	# 0	0	1920 101 = 3 03 11
-200							
-300 -200							cahallan or sharpfies w
	Domale	zamabe e	s dade	s m	abmac	0	min-mor Scaling
D=	mox-m	in	AT) 0000)	Allen	000	orks.	The care of the sage
to sit				-		1	vator i a d
1216-	train	0 0 0				-	e a a a a a a a a a a a a a a a a a a a
X		lahel		X ON		1	ledal
S -3	0.75	0 000	Ps 0		0.5	-	0
6 -1	0.375	0 0/	P2 1.	11	1,125		0
0.55	1	0	P3 0.	66	0.75	1	\$
0.77	0.75	0	P4 0.	33	0.625		3
0	0.5	7	PS 0.	11	0	1	Δ
0.66	0.75	1					
0.33	0.125	1					
0.44	0	1					
14.00	0 - '	1.	- (. +			2 2 2
# 1º Pars	o divi	our o co	atringer	ent eb	cimo s	m	label o label & encontrar
seus re	ribuge	os centr	reides.				
# Johel o						1	# label 1
X=[1,0.75							
1,0.375	DC	entroide = (. 22 02	101			X, [0, 0,5
	7 0	- 0 - K	1.00,0.1	181			0.66, 0.75 => cenhaide (0.3575,0.
_0,55; \$	7						0.33, 0.125
0.77, 0.75	1	1 1	1				0.44,07
manufacture of the part of the						- Income	

		distancio	ended
c abnoprilille #	etect test a and 9, 1-4 mes, max	70	
10.0 60	H Pora Cs	- 01	
60-5P1 = 0,64	(1 +) P3 = 0.2 +> C1		
Con 12=0.49 \$ (0	11-012= 1.08	1	
Com P3 = 0.19 = 0 Co	C1 -5 P3 = 0.5	01	
Con Py = 0.5	(n-bly = 0.28 +C)	0.00	
60 PS = 3.03	(1-0 PS = 0.42 = PS from ma duster ex		
P1 -D lolul	# Co represents so clusters com closse o	1 10	
P2+0	# es representa o cluster com closse 1.	State of the	
P3 -> 3	entaire		
Py -> S	Co => Pa, P3 -> Jerro, Jaceto		
PS-D J	C+ P1, P9, P5 + 1 eno, 2 acertos		
	Tosca de Imo: 40%		
	60% de aceilo.		

3) Quando o K-means foi inventado e quais foram suas primeiras aplicações? O que são K-medoides?

R=O termo "k-means" foi usado pela primeira vez por James MacQueen em 1967. O algoritmo padrão foi proposto pela primeira vez por Stuart Lloyd do Bell Labs em 1957 como uma técnica para modulação por código de pulso. O k-means clustering é um método de quantização vetorial, originário do processamento de sinais, que visa particionar n observações em k clusters em que cada observação pertence ao cluster com a média mais próxima (cluster centers ou cluster centroid), servindo como um protótipo de o aglomerado.

O que são medoides?

Medoids são objetos representativos de um conjunto de dados ou um cluster dentro de um conjunto de dados cuja soma das distâncias para outros objetos no cluster é mínima. Lembre-se que para K-Means, estávamos trabalhando com centroides. A relação entre centroides e medoides é semelhante à relação entre médias e medianas. Medoides e medianas sempre serão uma das observações nos dados, enquanto isso não é necessariamente o caso de centroides e médias.

O K-Means é sensível a valores discrepantes, mas o K-Medoids atenuou essa sensibilidade por não depender de centroides

4) Como as árvores K-d são usadas no scikit-learn para acelerar o agrupamento K-means? R=

Ao usar a árvore para acelerar a etapa de atribuição, as informações resumidas coletadas nos permitem podar rapidamente centróides candidatos de grupos de pontos mantidos em nós internos. Quando um grupo de pontos tem apenas um candidato a centróide restante, determinamos que o candidato é o centroide mais próximo para todo o grupo e não precisa mais continuar percorrendo o subárvore. Isso elimina muitos cálculos de distância e comparações em comparação com outras implementações de k-means. Como a árvore é construída apenas uma vez, o algoritmo é melhor otimizado desde que a sobrecarga de tempo de construção da árvore seja menor do que o tempo economizado usando a árvore.