Лекція 1.

Первинний аналіз даних з Pandas

Pandas — це бібліотека мови програмування Python, що надає широкі можливості для аналізу даних й зазвичай використовується до інтелектуального аналізу даних (ІАД). Pandas дає змогу зручно завантажувати, обробляти й аналізувати табличні дані за SQL-подібними запитами. Поєднання Pandas разом із бібліотеками Matplotlib і Seaborn дає нагоду виконувати професійний візуальний аналіз табличних даних.

3mict

- 1. Демонстрація основних методів Pandas
 - Читання з файлу і первинний аналіз
 - Сортування
 - Індексування та вилучення даних
 - Використання спеціалізованих функцій
 - Групування даних
 - Зведені таблиці
 - Перетворення датафреймів
- 2. Перші спроби прогнозування відтоку
- 3. Корисні посилання

Спершу завантажимо потрібні нам бібліотеки:

Спершу завантажимо потрібні нам бібліотеки:

```
In [1]: import numpy as np
import pandas as pd

# Задамо графіки у форматі .svg, щоби вони мали кращу чіткість
# %config InlineBackend.figure_format = 'pdf'
```

Спершу завантажимо потрібні нам бібліотеки:

```
import numpy as np
import pandas as pd

# Задамо графіки у форматі .svg, щоби вони мали кращу чіткість
# %config InlineBackend.figure_format = 'pdf'
```

Дані, з якими працюють аналітики та інженери, зазвичай зберігаються у вигляді таблиць — наприклад, в форматах .csv, .tsv або .xlsx. Для того, щоб вилучати потрібні дані з таких файлів, відмінно підходить бібліотека Pandas.

Основними структурами даних в Pandas є класи Series і DataFrame . Перший — це одномірний індексований масив даних деякого фіксованого типу. Другий — це двомірна структура даних, що подана як таблиця, кожен стовпець якої містить дані одного типу. Можна представляти її, як словник об'єктів типу Series . Структура DataFrame відмінно підходить для подання реальних даних: рядки відповідають описам ознак окремих об'єктів, а стовпці — ознакам.

1.1. Демонстрація основних методів Pandas

Повернутися до змісту

Повернутися до змісту

Повернутися до змісту

Прочитаємо дані й переглянемо перші 5 рядків за допомогою методу head :

Повернутися до змісту

Прочитаємо дані й переглянемо перші 5 рядків за допомогою методу head :

```
In [2]: df = pd.read_csv('https://raw.githubusercontent.com/radiukpavlo/intelligent-da
```

Повернутися до змісту

Прочитаємо дані й переглянемо перші 5 рядків за допомогою методу head :

```
In [2]: df = pd.read_csv('https://raw.githubusercontent.com/radiukpavlo/intelligent-da
```

In [3]: df.head()

Out[3]:

	State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Tota day charge
0	KS	128	415	No	Yes	25	265.1	110	45.07
1	ОН	107	415	No	Yes	26	161.6	123	27.47
2	NJ	137	415	No	No	0	243.4	114	41.38
3	ОН	84	408	Yes	No	0	299.4	71	50.90
4	OK	75	415	Yes	No	0	166.7	113	28.34

До речі, за замовчуванням Pandas виводить всього 20 стовпців і 60 рядків, тому якщо ваш датафрейм більше, скористайтеся функцією set_option:

До речі, за замовчуванням Pandas виводить всього 20 стовпців і 60 рядків, тому якщо ваш датафрейм більше, скористайтеся функцією set_option:

```
In [4]: pd.set_option('display.max_columns', 100)
   pd.set_option('display.max_rows', 100)
```

До речі, за замовчуванням Pandas виводить всього 20 стовпців і 60 рядків, тому якщо ваш датафрейм більше, скористайтеся функцією set_option:

```
In [4]: pd.set_option('display.max_columns', 100)
   pd.set_option('display.max_rows', 100)
```

Також задамо значення параметра presicion рівним 2, щоб відображати два знака після коми (а не 6, як встановлено за замовчуванням).

До речі, за замовчуванням Pandas виводить всього 20 стовпців і 60 рядків, тому якщо ваш датафрейм більше, скористайтеся функцією set_option:

```
In [4]: pd.set_option('display.max_columns', 100)
   pd.set_option('display.max_rows', 100)
```

Також задамо значення параметра presicion рівним 2, щоб відображати два знака після коми (а не 6, як встановлено за замовчуванням).

```
In [5]: pd.set_option('display.precision', 2)
```

Бачимо, що в таблиці є 3333 рядки й 20 стовпців. Виведемо назви стовпців:

```
In [6]: print(df.shape)

(3333, 20)

Бачимо, що в таблиці є 3333 рядки й 20 стовпців. Виведемо назви стовпців:

In [7]: print(df.columns)
```

Щоб подивитися загальну інформацію щодо датафрейму і всіма ознаками, скористаємося методом **info**:

Щоб подивитися загальну інформацію щодо датафрейму і всіма ознаками, скористаємося методом **info**:

```
In [8]: print(df.info())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3333 entries, 0 to 3332
Data columns (total 20 columns):
    Column
                          Non-Null Count
#
                                         Dtype
                                         object
0
    State
                          3333 non-null
    Account length
                                         int64
                          3333 non-null
    Area code
                          3333 non-null
                                         int64
    International plan 3333 non-null
                                         object
                     3333 non-null
    Voice mail plan
                                         object
    Number vmail messages 3333 non-null
                                         int64
                                         float64
    Total day minutes
                          3333 non-null
    Total day calls
                                         int64
                     3333 non-null
    Total day charge
                          3333 non-null
                                         float64
    Total eve minutes
                          3333 non-null
                                         float64
 10 Total eve calls
                                         int64
                        3333 non-null
 11
   Total eve charge
                          3333 non-null
                                         float64
                          3333 non-null
                                         float64
 12
   Total night minutes
   Total night calls
                          3333 non-null
                                         int64
 13
 14 Total night charge
                                         float64
                          3333 non-null
 15 Total intl minutes
                          3333 non-null
                                         float64
 16 Total intl calls
                          3333 non-null
                                         int64
   Total intl charge
                                         float64
                          3333 non-null
    Customer service calls 3333 non-null
                                         int64
 18
```

19 Churn 3333 non-null bool dtypes: bool(1), float64(8), int64(8), object(3)

memory usage: 498.1+ KB

None

bool, int64, float64 та object — це типи ознак. Бачимо, що 1 ознака має логічний тип (bool), 3 ознаки мають тип object і 16 ознак — числові.

Змінити тип колонки можна за допомогою методу astype . Застосуємо цей метод до ознаки Churn і переведемо його в int64 :

bool, int64, float64 та object — це типи ознак. Бачимо, що 1 ознака має логічний тип (bool), 3 ознаки мають тип object і 16 ознак — числові.

Змінити тип колонки можна за допомогою методу astype . Застосуємо цей метод до ознаки Churn і переведемо його в int64 :

```
In [9]: df['Churn'] = df['Churn'].astype('int64')
```

Метод **describe** показує основні статистичні характеристики даних щодо кожної числової ознаки (типи int64 і float64): кількість непропущених значень, середнє, стандартне відхилення, діапазон, медіана, 0.25 і 0.75 квартилі.

Метод **describe** показує основні статистичні характеристики даних щодо кожної числової ознаки (типи int64 і float64): кількість непропущених значень, середнє, стандартне відхилення, діапазон, медіана, 0.25 і 0.75 квартилі.

In [10]:

df.describe()

Out[10]:

	Account length	Area code	Number vmail messages	Total day minutes	Total day calls	Total day charge	Total eve minutes	Total eve calls
count	3333.00	3333.00	3333.00	3333.00	3333.00	3333.00	3333.00	3333.00
mean	101.06	437.18	8.10	179.78	100.44	30.56	200.98	100.11
std	39.82	42.37	13.69	54.47	20.07	9.26	50.71	19.92
min	1.00	408.00	0.00	0.00	0.00	0.00	0.00	0.00
25%	74.00	408.00	0.00	143.70	87.00	24.43	166.60	87.0C
50%	101.00	415.00	0.00	179.40	101.00	30.50	201.40	100.00
75%	127.00	510.00	20.00	216.40	114.00	36.79	235.30	114.00
max	243.00	510.00	51.00	350.80	165.00	59.64	363.70	170.00

Щоб подивитися статистику щодо нечислових ознак, потрібно явно вказати типи в параметрі include, що нас цікавлять. Можна також задати include = 'all', щоб вивести статистику щодо всіх наявних ознак.

Щоб подивитися статистику щодо нечислових ознак, потрібно явно вказати типи в параметрі include, що нас цікавлять. Можна також задати include = 'all', щоб вивести статистику щодо всіх наявних ознак.

In [11]: df.describe(include=['object', 'bool'])

Out[11]:		State	International plan	Voice mail plan
	count	3333	3333	3333
	unique	51	2	2
	top	WV	No	No
	frea	106	3010	2411

Для категоріальних (тип object) і булевих (тип bool) ознак можна скористатися методом value_counts. Подивимося на розподіл нашої цільової змінної - Churn: Для категоріальних (тип object) і булевих (тип bool) ознак можна скористатися методом value_counts. Подивимося на розподіл нашої цільової змінної - Churn:

```
In [12]: df['Churn'].value_counts()
```

Out[12]: 0 2850 1 483

Name: Churn, dtype: int64

2850 користувачів з 3333 - лояльні, значення змінної Churn у них - 0.

Подивимося на розподіл користувачів за змінною Area code . Зазначимо значення параметра normalize=True , щоб подивитися не абсолютні частоти, а відносні.

2850 користувачів з 3333 - лояльні, значення змінної Churn у них - 0.

Подивимося на розподіл користувачів за змінною Area code . Зазначимо значення параметра normalize=True , щоб подивитися не абсолютні частоти, а відносні.

```
In [13]: df['Area code'].value_counts(normalize=True)
```

Out[13]: 415 0.50 510 0.25 408 0.25

Name: Area code, dtype: float64

1.1.2. Сортування

Повернутися до змісту

1.1.2. Сортування

Повернутися до змісту

DataFrame можна відсортувати за значенням однієї з ознак. В нашому випадку, наприклад, за Total day charge (ascending=False для сортування за спаданням):

1.1.2. Сортування

Повернутися до змісту

DataFrame можна відсортувати за значенням однієї з ознак. В нашому випадку, наприклад, за Total day charge (ascending=False для сортування за спаданням):

Out[14]:

		State	Account	count Area ength code	International plan	Voice mail	Number vmail	lotal day	lotal day	1
			length			plan	messages	minutes	calls	chi
	365	СО	154	415	No	No	0	350.8	75	5
	985	NY	64	415	Yes	No	0	346.8	55	5
	2594	ОН	115	510	Yes	No	0	345.3	81	5
	156	ОН	83	415	No	No	0	337.4	120	5
	605	МО	112	415	No	No	0	335.5	77	5

Сортувати можна і за групою стовпців:

Out[15]:

		State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	T cha
	688	MN	13	510	No	Yes	21	315.6	105	5
5	2259	NC	210	415	No	Yes	31	313.8	87	5
	534	LA	67	510	No	No	0	310.4	97	5
	575	SD	114	415	No	Yes	36	309.9	90	5
	2858	AL	141	510	No	Yes	28	308.0	123	5

Повернутися до змісту

Повернутися до змісту

DataFrame можна індексувати різним чином. Розглянемо різні способи індексування та вилучення потрібних нам даних з датафрейма на прикладі простих питань.

Для вилучення окремого стовпця можна використовувати конструкцію виду DataFrame['Name']. Скористаємося цим для відповіді на питання: яка частка нелояльних користувачів присутня в нашому датафреймі?

Повернутися до змісту

DataFrame можна індексувати різним чином. Розглянемо різні способи індексування та вилучення потрібних нам даних з датафрейма на прикладі простих питань.

Для вилучення окремого стовпця можна використовувати конструкцію виду DataFrame['Name']. Скористаємося цим для відповіді на питання: яка частка нелояльних користувачів присутня в нашому датафреймі?

```
In [16]: df['Churn'].mean()
```

Out[16]: 0.1449144914492

Повернутися до змісту

DataFrame можна індексувати різним чином. Розглянемо різні способи індексування та вилучення потрібних нам даних з датафрейма на прикладі простих питань.

Для вилучення окремого стовпця можна використовувати конструкцію виду DataFrame['Name']. Скористаємося цим для відповіді на питання: яка частка нелояльних користувачів присутня в нашому датафреймі?

```
In [16]: df['Churn'].mean()
```

Out[16]: 0.1449144914491

14,5% — досить поганий показник для компанії, з таким відсотком відтоку можна і розоритися :-(.

Дуже зручним є логічне індексування DataFrame за одним стовпцем. Виглядає вона так: df[P(df['Name'])], де P - це деяка логічне умова, що перевіряється для кожного елемента стовпця Name . Підсумком такого індексування є DataFrame , що складається тільки з рядків, що задовольняють умові P за стовпцем Name .

Скористаємося цим для відповіді на питання: якими є середні значення числових ознак серед нелояльних користувачів?

Дуже зручним є логічне індексування DataFrame за одним стовпцем. Виглядає вона так: df[P(df['Name'])], де P - це деяка логічне умова, що перевіряється для кожного елемента стовпця Name . Підсумком такого індексування є DataFrame , що складається тільки з рядків, що задовольняють умові P за стовпцем Name .

Скористаємося цим для відповіді на питання: якими є середні значення числових ознак серед нелояльних користувачів?

```
In [17]:
       df[df['Churn'] == 1].mean(numeric only=True)
       Account length
                              102.66
Out[17]:
        Area code
                              437.82
        Number vmail messages
                             5.12
        Total day minutes 206.91
        Total day calls
                       101.34
        Total day charge 35.18
        Total eve minutes 212.41
        Total eve calls 100.56
        Total eve charge 18.05
        Total night minutes 205.23
        Total night calls
                         100.40
        Total night charge
                              9.24
        Total intl minutes
                             10.70
        Total intl calls
                           4.16
                              2.89
        Total intl charge
        Customer service calls 2.23
                                1.00
        Churn
        dtype: float64
```

```
In [18]: df[df['Churn'] == 1]['Total day minutes'].mean()
Out[18]: 206.91407867494823
```

```
In [18]: df[df['Churn'] == 1]['Total day minutes'].mean()
Out[18]: 206.91407867494823
```

Яка максимальна тривалість міжнародних дзвінків поміж лояльних користувачів (Churn == 0), що не користуються послугою міжнародного роумінгу ('International plan' == 'No')?

```
In [18]: df[df['Churn'] == 1]['Total day minutes'].mean()
Out[18]: 206.91407867494823
```

Яка максимальна тривалість міжнародних дзвінків поміж лояльних користувачів (Churn == 0), що не користуються послугою міжнародного роумінгу ('International plan' == 'No')?

```
In [19]: df[(df['Churn'] == 0) & (df['International plan'] == 'No')]['Total intl minute
Out[19]: 18.9
```

Датафрейми можна індексувати як за назвою стовпця або рядка, так і за порядковим номером. Для індексування **за назвою** використовується метод **loc**, **за номером** — **iloc**.

У першому випадку ми говоримо «передай нам значення для ід рядків від 0 до 5 і для стовпців від State до Area code», а в другому — «передай нам значення перших п'яти рядків в перших трьох стовпцях».

У випадку iloc зріз працює як зазвичай, проте в разі loc враховуються і початок, і кінець зрізу. Незручно, і на жаль, викликає плутанину.

Датафрейми можна індексувати як за назвою стовпця або рядка, так і за порядковим номером. Для індексування **за назвою** використовується метод **loc**, **за номером** — **iloc**.

У першому випадку ми говоримо «передай нам значення для ід рядків від 0 до 5 і для стовпців від State до Area code», а в другому — «передай нам значення перших п'яти рядків в перших трьох стовпцях».

У випадку iloc зріз працює як зазвичай, проте в разі loc враховуються і початок, і кінець зрізу. Незручно, і на жаль, викликає плутанину.

In [20]: df.loc[0:5, 'State':'Area code']

Out[20]:

	State	Account length	Area code
0	KS	128	415
1	ОН	107	415
2	NJ	137	415
3	ОН	84	408
4	OK	75	415
5	AL	118	510

In [21]: df.iloc[0:5, 0:3]

Out[21]:

	State	Account length	Area code
0	KS	128	415
1	ОН	107	415
2	NJ	137	415
3	ОН	84	408
4	OK	75	415

In [21]: df.iloc[0:5, 0:3]

Out[21]:

	State	Account length	Area code
0	KS	128	415
1	ОН	107	415
2	NJ	137	415
3	ОН	84	408
4	OK	75	415

Метод іх індексує і за назвою, і за номером, але він викликає плутанину, і тому був оголошений застарілим (deprecated).

Якщо нам потрібен перший або останній рядок датафрейма, використовуємо конструкцію df[:1] або df[-1:]:

Якщо нам потрібен перший або останній рядок датафрейма, використовуємо конструкцію df[:1] або df[-1:]:

In [22]: df[-1:]

Out[22]:

		State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	dav	Total day calls	T chi
•	3332	TN	74	415	No	Yes	25	234.4	113	3

1.1.4. Використання спеціалізованих функцій

Повернутися до змісту

1.1.4. Використання спеціалізованих функцій

Повернутися до змісту

Застосування функції до кожного стовпця:

1.1.4. Використання спеціалізованих функцій

Повернутися до змісту

Застосування функції до кожного стовпця:

In [23]:	<pre>df.apply(np.max)</pre>		
Out[23]:	State	WY	
	Account length	243	
	Area code	510	
	International plan	Yes	
	Voice mail plan	Yes	
	Number vmail messages	51	
	Total day minutes	350.8	
	Total day calls	165	
	Total day charge	59.64	
	Total eve minutes	363.7	
	Total eve calls	170	
	Total eve charge	30.91	
	Total night minutes	395.0	
	Total night calls	175	
	Total night charge	17.77	
	Total intl minutes	20.0	
	Total intl calls	20	
	Total intl charge	5.4	
	Customer service calls	9	

Churn dtype: object

Метод apply можна використовувати і для того, щоб застосувати функцію до кожного рядка. Для цього потрібно вказати axis = 1.

Метод apply можна використовувати і для того, щоб застосувати функцію до кожного рядка. Для цього потрібно вказати axis = 1.

Застосування функції до кожної комірки стовпця

Нехай за певної причини нас цікавлять всі люди зі штатів, назви яких починаються на 'W'. Загалом таку операцію можна виконати по-різному, але найбільшу свободу дає зв'язка функцій apply - lambda — застосування функції до всіх значень в стовпці.

Метод apply можна використовувати і для того, щоб застосувати функцію до кожного рядка. Для цього потрібно вказати axis = 1.

Застосування функції до кожної комірки стовпця

Нехай за певної причини нас цікавлять всі люди зі штатів, назви яких починаються на 'W'. Загалом таку операцію можна виконати по-різному, але найбільшу свободу дає зв'язка функцій apply - lambda — застосування функції до всіх значень в стовпці.

In [24]: df[df['State'].apply(lambda state: state[0] == 'W')].head()

Out[24]:

	State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Tot da charg
9	WV	141	415	Yes	Yes	37	258.6	84	43.9
26	WY	57	408	No	Yes	39	213.0	115	36.2
44	WI	64	510	No	No	0	154.0	67	26.1
49	WY	97	415	No	Yes	24	133.2	135	22.6
54	WY	87	415	No	No	0	151.0	83	25.€

Метод мар можна використовувати і для **заміни значень у стовпці**, передавши йому словник виду {old_value: new_value} як аргумент:

Метод мар можна використовувати і для **заміни значень у стовпці**, передавши йому словник виду {old_value: new_value} як аргумент:

```
In [25]: d = {'No' : False, 'Yes' : True}
    df['International plan'] = df['International plan'].map(d)
    df.head()
```

Out[25]:

	State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Tota day charge
0	KS	128	415	False	Yes	25	265.1	110	45.07
1	ОН	107	415	False	Yes	26	161.6	123	27.47
2	NJ	137	415	False	No	0	243.4	114	41.38
3	ОН	84	408	True	No	0	299.4	71	50.90
4	OK	75	415	True	No	0	166.7	113	28.34

Аналогічну операцію можна виконати за допомогою методу replace:

Аналогічну операцію можна виконати за допомогою методу replace:

```
In [26]: df = df.replace({'Voice mail plan': d})
    df.head()
```

Out[26]:

	State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Tota day charge
0	KS	128	415	False	True	25	265.1	110	45.07
1	ОН	107	415	False	True	26	161.6	123	27.47
2	NJ	137	415	False	False	0	243.4	114	41.38
3	ОН	84	408	True	False	0	299.4	71	50.90
4	OK	75	415	True	False	0	166.7	113	28.34

1.1.5. Групування даних

Повернутися до змісту

1.1.5. Групування даних

Повернутися до змісту

Загалом групування даних в Pandas виглядає так:

```
df.groupby(by=grouping columns)[columns to show].function()
```

- 1. До датафрейму застосовується метод **groupby**, який розділяє дані за grouping_columns ознакою або набором ознак.
- 2. Індексуємо за потрібними нам стовпцями (columns_to_show).
- 3. До отриманих груп застосовується функція або декілька функцій.

Групування даних з огляду на значення ознаки Churn та виведення статистик за трьома стовпцями в кожній групі.

Групування даних з огляду на значення ознаки Churn та виведення статистик за трьома стовпцями в кожній групі.

```
In [27]: columns_to_show = ['Total day minutes', 'Total eve minutes', 'Total night min
    df.groupby(['Churn'])[columns_to_show].describe(percentiles=[])
```

Out[27]:		Total day minutes									Total eve		
		count	mean	std	min	50%	max	count	mean	std	min	50	
	Churn												
	0	2850.0	175.18	50.18	0.0	177.2	315.6	2850.0	199.04	50.29	0.0	199	
	1	483.0	206.91	69.00	0.0	217.6	350.8	483.0	212.41	51.73	70.9	211	

Виконаємо ту ж операцію, але трохи по-іншому, передавши в agg список функцій:

```
In [28]: columns_to_show = ['Total day minutes', 'Total eve minutes', 'Total night minutes', 'Total of.groupby(['Churn'])[columns_to_show].agg([np.mean, np.std, np.min, np.max])
```

Out[28]:		Total day minutes							Total eve minutes			
		mean	std	amin	amax	mean	std	amin	amax	mean	std	aı
	Churn											
	0	175.18	50.18	0.0	315.6	199.04	50.29	0.0	361.8	200.13	51.11	
	1	206.91	69.00	0.0	350.8	212.41	51.73	70.9	363.7	205.23	47.13	

1.1.6. Зведені таблиці

Повернутися до змісту

1.1.6. Зведені таблиці

Повернутися до змісту

Нехай ми хочемо подивитися, як спостереження в нашій вибірці розподілені щодо двох ознак - Churn і Customer service calls. Для цього ми можемо побудувати таблицю пов'язаності з використанням методу crosstab:

1.1.6. Зведені таблиці

Повернутися до змісту

Нехай ми хочемо подивитися, як спостереження в нашій вибірці розподілені щодо двох ознак - Churn і Customer service calls. Для цього ми можемо побудувати таблицю пов'язаності з використанням методу crosstab:

```
In [29]: pd.crosstab(df['Churn'], df['International plan'])
```

Out[29]:	International plan	False	True
	Churn		
	0	2664	186
	1	346	137

```
In [30]: pd.crosstab(df['Churn'], df['Voice mail plan'], normalize=True)
```

Out[30]:	Voice mail plan	False	True
	Churn		
	0	0.60	0.25
	1	0.12	0.02

```
In [30]: pd.crosstab(df['Churn'], df['Voice mail plan'], normalize=True)
```

Out[30]:	Voice mail plan	False	True
	Churn		
	0	0.60	0.25
	1	0.12	0.02

Бачимо, що здебільшого користувачі — лояльні і користуються додатковими послугами (міжнародного роумінгу / голосової пошти).

Досвідчені користувачі Excel напевно згадають про таку ознаку електронних таблиці, як **зведені таблиці** (pivot tables). В Pandas за зведені таблиці відповідає метод **pivot_table**, який приймає аргументи:

- values список змінних, за якими потрібно розрахувати потрібні статистики;
- index список змінних, за якими потрібно згрупувати дані;
- aggfunc те, що потрібно порахувати за групами сума, середнє, максимум, мінімум тощо.

Давайте переглянемо середнє число денних, вечірніх та нічних дзвінків для різних Area code: Досвідчені користувачі Excel напевно згадають про таку ознаку електронних таблиці, як **зведені таблиці** (pivot tables). В Pandas за зведені таблиці відповідає метод **pivot_table**, який приймає аргументи:

- values список змінних, за якими потрібно розрахувати потрібні статистики;
- index список змінних, за якими потрібно згрупувати дані;
- aggfunc те, що потрібно порахувати за групами сума, середнє, максимум, мінімум тощо.

Давайте переглянемо середнє число денних, вечірніх та нічних дзвінків для різних Area code:

	Total day calls	Total eve calls	Total night calls
Area code			
408	100.50	99.79	99.04
415	100.58	100.50	100.40
510	100.10	99.67	100.60

1.1.7. Перетворення датафреймів

Повернутися до змісту

Out[31]:

1.1.7. Перетворення датафреймів

Повернутися до змісту

Подібно до багатьох інших речей, додавати стовпці в DataFrame можна кількома способами.

1.1.7. Перетворення датафреймів

Повернутися до змісту

Подібно до багатьох інших речей, додавати стовпці в DataFrame можна кількома способами.

Наприклад, нехай ми хочемо порахувати загальну кількість дзвінків для всіх користувачів. Для цього створимо об'єкт total_calls за типом Series й вставимо його в датафрейм:

In [32]: total_calls = df['Total day calls'] + df['Total eve calls'] + \ df['Total night calls'] + df['Total intl calls'] df.insert(loc=len(df.columns), column='Total calls', value=total_calls) # Loc - номер стовичика, після якого потрібно вставити даний Series # ми вказали len(df.columns), щоби вставити його в кінці df.head()

Out[32]:

	State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Tota day charge
0	KS	128	415	False	True	25	265.1	110	45.07
1	ОН	107	415	False	True	26	161.6	123	27.47
2	NJ	137	415	False	False	0	243.4	114	41.38
3	ОН	84	408	True	False	0	299.4	71	50.90
4	OK	75	415	True	False	0	166.7	113	28.34

Додати стовпець з наявних можна і простіше без створення проміжних Series :

Додати стовпець з наявних можна і простіше без створення проміжних Series :

Out[33]:

_		State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Tota day charge
	0	KS	128	415	False	True	25	265.1	110	45.07
	1	ОН	107	415	False	True	26	161.6	123	27.47
	2	NJ	137	415	False	False	0	243.4	114	41.38
	3	ОН	84	408	True	False	0	299.4	71	50.90
	4	OK	75	415	True	False	0	166.7	113	28.34

Для того, щоб видалити стовпці або рядки, скористаємося методом drop, передаючи за аргумент потрібні індекси й необхідне значення параметра axis (1, якщо видаляєте стовпці, і нічого або 0, якщо видаляєте рядки):

Для того, щоб видалити стовпці або рядки, скористаємося методом drop, передаючи за аргумент потрібні індекси й необхідне значення параметра axis (1, якщо видаляєте стовпці, і нічого або 0, якщо видаляєте рядки):

```
In [34]: # викидуємо щойно створені стовпці
df = df.drop(['Total charge', 'Total calls'], axis=1)

# видаляємо рядки
df.drop([1, 2]).head()
```

Out[34]:

	State	Account length	Area code	International plan	Voice mail plan	Number vmail messages	Total day minutes	Total day calls	Tota day charge
0	KS	128	415	False	True	25	265.1	110	45.07
3	ОН	84	408	True	False	0	299.4	71	50.90
4	OK	75	415	True	False	0	166.7	113	28.34
5	AL	118	510	True	False	0	223.4	98	37.98
6	MA	121	510	False	True	24	218.2	88	37.09

1.2. Перші спроби прогнозування відтоку

Повернутися до змісту

Давайте подивимося, як відтік користувачів пов'язаний з ознакою "Підключення міжнародного роумінгу" (International plan). Виконаємо цей запит за допомогою зведеної таблиці crosstab, а також через ілюстрацію з Seaborn. Ми навчимося будувати такі рисунки й аналізувати з їхньою допомогою графіки у наступній лекції.

Давайте подивимося, як відтік користувачів пов'язаний з ознакою "Підключення міжнародного роумінгу" (International plan). Виконаємо цей запит за допомогою зведеної таблиці crosstab, а також через ілюстрацію з Seaborn. Ми навчимося будувати такі рисунки й аналізувати з їхньою допомогою графіки у наступній лекції.

```
In [35]: # треба додатково встановити (команда в терміналі)
# щоб рисунки малювалися в notebook
# !conda install seaborn
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams['figure.figsize'] = (8, 6)
```

In [36]: pd.crosstab(df['Churn'], df['International plan'], margins=True)

Out[36]:	International plan	False	True	All
	Churn			
	0	2664	186	2850
	1	346	137	483
	All	3010	323	3333

```
In [37]: sns.countplot(x='International plan', hue='Churn', data=df);
plt.gcf().set_dpi(300)
# plt.savefig('int_plan_and_churn.png', dpi=600)
```



```
In [37]: sns.countplot(x='International plan', hue='Churn', data=df);
plt.gcf().set_dpi(300)
# plt.savefig('int_plan_and_churn.png', dpi=600)
```


3 рисунку вище бачимо, що коли роумінг підключений, частка відтоку набагато вища — **цікаве спостереження!** Можливо, великі та погано контрольовані витрати в

Далі переглянемо ще одну важливу ознаку — "Число звернень до сервісного центру" (Customer service calls). Також побудуємо зведену таблицю й візуалізуємо результат.

Далі переглянемо ще одну важливу ознаку— "Число звернень до сервісного центру" (Customer service calls). Також побудуємо зведену таблицю й візуалізуємо результат.

in [38]:	pd.crosstab(df['Churn	'], d	f['Cus	tomer	serv	ice c	alls	'],	mar	gin	s=T	rue)
	Customer service calls											All
	Churn											
	0	605	1059	672	385	90	26	8	4	1	0	2850
	1	92	122	87	44	76	40	14	5	1	2	483
	All	697	1181	759	429	166	66	22	9	2	2	3333

```
In [39]: sns.countplot(x='Customer service calls', hue='Churn', data=df)
plt.gcf().set_dpi(300)
# plt.savefig('serv_calls__and_churn.png', dpi=300)
```



```
In [39]: sns.countplot(x='Customer service calls', hue='Churn', data=df)
plt.gcf().set_dpi(300)
# plt.savefig('serv_calls__and_churn.png', dpi=300)
```


Можливо, що за зведеною таблицею це не так добре видно (або скучно проводити поглядом по рядках з цифрами). Проте рисунок вище відмінно ілюструє, що частка

відтоку сильно зростає від 4-ох дзвінків в сервісний центр.

Тепер додамо до нашого DataFrame бінарну ознаку — результат порівняння Customer service calls > 3. Давайте ще раз глянемо, як він пов'язаний з відтоком.

Тепер додамо до нашого DataFrame бінарну ознаку — результат порівняння Customer service calls > 3. Давайте ще раз глянемо, як він пов'язаний з відтоком.

```
In [40]: df['Many_service_calls'] = (df['Customer service calls'] > 3).astype('int')
    pd.crosstab(df['Many_service_calls'], df['Churn'], margins=True)
```

•	Churn	0	1	All
	Many_service_calls			
	0	2721	345	3066
	1	129	138	267
	All	2850	483	3333

Out[40]

```
In [41]: sns.countplot(x='Many_service_calls', hue='Churn', data=df)
plt.gcf().set_dpi(300)
# plt.savefig('many_serv_calls__and_churn.png', dpi=300)
```


Об'єднаємо розглянуті вище умови та побудуємо зведену таблицю для цього об'єднання й відтоку.

Об'єднаємо розглянуті вище умови та побудуємо зведену таблицю для цього об'єднання й відтоку.

Об'єднаємо розглянуті вище умови та побудуємо зведену таблицю для цього об'єднання й відтоку.

19

True

Отже, прогнозуючи відтік клієнта тоді, коли кількість дзвінків в сервісний центр більше 3-ох і підключений роумінг (і прогнозуючи лояльність — в іншому випадку), можна очікувати близько 85.8% правильних влучень (помиляємося всього 464 + 9 разів). Ці 85.8%, які ми отримали за допомогою дуже простих міркувань — це непоганий початок (так званий baseline) для подальших моделей ІАД, які ми надалі будемо будувати.

Загалом до появи інтелектуального складника процес традиційного аналізу даних виглядав приблизно так. Зробимо висновки:

- 1. Частка лояльних клієнтів у вибірці 85.5%. Найбільш наївна та проста модель, відповідь якої "Клієнт завжди лояльний" на подібних даних буде вгадувати близько в 85,5% випадків. Тобто значення частки правильних відповідей (accuracy) подібних моделей повинні бути як мінімум не менші, а краще, значно вищі цієї цифри.
- 2. За допомогою простого прогнозу, який умовно можна виразити такою формулою: "International plan = True & Customer Service calls > 3 => Churn = 1, else Churn = 0", можна очікувати частку вгадувань 85.8%, що ще трохи вище 85.5%.
- 3. Ці два бейзлайна ми отримали без використання яких-небудь елементів ІАД, і вони слугують початком для майбутнього моделювання. Якщо виявиться, що ми збільшуємо частку правильних відповідей всього лише, скажімо, на 0.5%, але завдяки значним зусиллям, то певно, ми щось робимо не так, і тому варто обмежитися простою моделлю з цих двох умов.
- 4. Перед побудовую й навчанням складних моделей рекомендується трохи покрутити дані та перевірити прості гіпотези. Більш того, в бізнес-застосунках ІАД найчастіше починають саме з простих рішень, а потім експериментують з їхнім ускладненням.

1.3. Корисні посилання

Повернутися до змісту

1.3. Корисні посилання

Повернутися до змісту

- Official Pandas documentation
- 10 minutes to pandas
- Pandas cheatsheet PDF
- GitHub repos: Pandas exercises and "Effective Pandas"
- scipy-lectures.org tutorials on pandas, numpy, matplotlib and scikit-learn