Zn-IV-nitrides for integration in electronic and photonic devices

Nicholas L. Adamski

Department of Electrical and Computer Engineering, University of California, Santa Barbara

Darshana Wickramaratne

United States Naval Research Laboratory

Chris G. Van de Walle

Materials Department, University of California, Santa Barbara

This work was supported by the U.S. Army Research Office (ARO).

II-IV-Nitrides: Expanding the nitride design space

GaN

- Integrate II-IV-nitrides with III-nitrides
- Similar range of band gaps and lattice parameters
- Need information about
 - Band alignments
 - n and p type doping

II-IV-Nitrides: Devices and applications

Can be grown high quality (MOCVD)

M. R. Karim et al., Cryst. Growth Des. 19, 4661 (2019)

Accurate knowledge of band offsets critical for optical devices

- Enhanced active region in quantum wells
 - Zn-IV-Nitride/InGaN emitters
- Barrier layers for UV emitters
- Solar absorbers over a range of band gaps

- More options, more control
- 2DEGs and 2DHGs
 - Increased charges for power devices
- Zero-polarization interfaces
 - Reduced Stark effect for optical devices

M. R. Karim et al., J. Appl. Phys. **124**, 034303 (2019)

R. Chaudhuri et al., Science 365, 1454 (2019).

Point Defects: Formation Energy

Density functional theory with the HSE hybrid functional.

- J. Heyd et al., J. Chem. Phys. 118, 8207 (2003); ibid. 124, 219906(E) (2006).
- Implementation in Vienna Ab initio Simulation Package.

N. L. Adamski et al., J. Appl. Phys. **122**, 195701 (2017).

ZnGeN₂: Donors

ZnGeN₂: Acceptors

- Al_{zn} is a shallow donor and will compensate Al_{Ge} acceptors.
- Charge balance will require equal concentrations.
- Fermi level pinned near mid gap.

N. L. Adamski et al., Appl. Phys. Lett. 114, 032101 (2019).

ZnGeN₂: Acceptors

- Al_{Zn} is a shallow donor and will compensate Al_{Ge} acceptors.
- Charge balance will require equal concentrations.
- Fermi level pinned near mid gap.
- H_i will reduce Al_{Ge} formation energy.
- H suppresses Al_{zn} formation.
- Possible to remove H post growth.

N. L. Adamski et al., Appl. Phys. Lett. 114, 032101 (2019).

Zn-IV-Nitrides: Band structure

	ZnSiN ₂	ZnGeN ₂	ZnSnN ₂
E _g (eV)	indirect: 4.83, direct: 5.18	3.19	1.40

Zn-IV-Nitrides: Band alignments

- Align the electrostatic potential to the vacuum energy level using calculations on slabs
- Determine band alignments

- CBM of ZnGeN₂ is 0.6 eV below that of GaN
- Staggered gap

ZnSnN₂ alignment in agreement with T. Wang et al., Phys. Rev. B **95**, 205205 (2017).

Zn-IV-Nitrides: Polarization

- Polarization calculated with the modern theory of polarization
 R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993)
- Measured referenced to layered, centrosymmetric structure

	ZnSiN ₂	ZnGeN ₂	ZnSnN ₂	AIN	GaN	InN
$P_{SP,3}$	1.433	1.333	1.184	1.351	1.312	1.026

C. Dreyer *et al.*, Phys. Rev. X **6**, 021038 (2016).

Bound charges at strained interfaces

$$\sigma_b = (P_{SP}^m - P_{SP}^n) - \epsilon_1 \left(e_{31}^n - e_{33} \frac{C_{13}^n}{C_{33}} \right) - \epsilon_2 \left(e_{32}^n - e_{33} \frac{C_{23}^n}{C_{33}} \right)$$

In_xGa_{1-x}N / ZnGeN₂ polarization charge goes to zero near 14% In

Issue: confinement

Bound charges at strained interfaces

$$\sigma_b = (P_{SP}^m - P_{SP}^n) - \epsilon_1 \left(e_{31}^n - e_{33} \frac{C_{13}^n}{C_{33}} \right) - \epsilon_2 \left(e_{32}^n - e_{33} \frac{C_{23}^n}{C_{33}} \right)$$

In_xGa_{1-x}N / ZnGeN₂ polarization charge goes to zero near 14% In

- Issue: confinement
- Use ZnGe_{1-x}Si_xN₂ alloys to increase CB offset

In_{0.25}Ga_{0.75}N / ZnGe_{0.9}Si_{0.1}N₂ polarization charge 40% less than for InGaN/GaN interfaces

AlGaN/ZnGeN₂ interfaces

- AlGaN/ZnGeN₂ interfaces have increased polarization charge compared to AlGaN/GaN interfaces
- Type-II offset increases ΔCBM offsets by 0.5 eV

Conclusions

- II-IV-Nitrides can be integrated with III-Nitrides
- ZnGeN₂ can be dopable n or p type
- ZnGeN₂ has a type-II band offset with GaN
- Polarization engineering possible with heterostructures between III-Nitrides and II-IV-Nitrides

