12 de setembro de 2013

F 429: Experimento II

Sumário

1	Intro	odução	2
2	Instr	rumentos e Componentes	2
	2.1	Medidas	2
		2.1.1 Impedância interna do gerador	2
		2.1.2 Indutor	3
		2.1.3 Resistência em série do indutor (R_L)	3
		2.1.4 Capacitor	3
		2.1.5 Resistor de 47Ω	3
		2.1.6 Resistor de 150Ω	3
3	Circ	uito RC	3
		3.0.7 Integrador	3
		3.0.8 Diferenciador	5
4	Circ	uito RLC	7
L	ista	de Figuras	
	1	Circuito representativo para medida da resistência interna do gerador	2
	2	Circuito integrador ou Filtro passa-baixa	3
	3	Circuito integrador $f_c \approx 120,51Hz$	4
	4	Circuito integrador f_c	4
	5	Circuito integrador $f_c \approx 192,80kHz$	5
	6	Circuito diferenciador ou Filtro passa-alta	5
	7	Circuito diferenciador $f_c \approx 120, 51Hz$	6
	8	Circuito diferenciador f_c	6
	9	Circuito diferenciador $f_c \approx 192,80kHz$	6
	10	Circuito RLC	7

Lista de Tabelas

1 Introdução

Este experimento propõe-se a estudar as experimentalmente e analizar as formas de onda dos circuitos integrador e diferenciador. Neste caso, são do tipo RC e compostos por uma fonte, um resistor e um capacitor ligados em série.

Analisamos também transientes em circuito ressonante série RLC. Os transientes podem ser estudados no laboratório excitando o circuito com uma onda quadrada de período muito maior que a constante de tempo do circuito.

2 Instrumentos e Componentes

Os instrumentos e componentes utilizados estão listados abaixo com seus respectivos valores nominais.

- Gerador de Funções Tektronix CFG 253.
- Osciloscópio digital Tektronix TDS1000.
- Resistências nominais de 47Ω e 150Ω .
- Resistência de décadas (10Ω a $10K\Omega$).
- Capacitor de 0.22μ F.
- Indutor de 50mH.

2.1 Medidas

2.1.1 Impedância interna do gerador

Para determinar a impedância interna do gerador de funções, começamos com a aproximação de que esta é puramente resistiva e independe da frequência, modo de onda ou corrente que fornece. Feita essa hipótese, podemos encontrar a resistência interna R_G do gerador montando o circuito como na figura abaixo. Primeiro medimos a tensão de saída do gerador de

Figura 1: Circuito representativo para medida da resistência interna do gerador

funções conectando-o diretamente ao osciloscópio. Após medir o pico V_0 , colocamos um resistor em paralelo ao circuito, e obtemos um valor para V. Com essas medidas podemos encontrar um valor para R_G , sabendo que temos um divisor de tensão e juntando a Lei de Ohm ^I. Logo,

$$R_G = R \cdot (\frac{V_0}{V} - 1) \text{ e } \Delta R_G = R_G \cdot \sqrt{(\frac{\Delta(\frac{V_0}{V})}{V})^2 + (\frac{\Delta R}{R})^2}, \text{ onde } \Delta \frac{V_0}{V} = \frac{V_0}{V} \cdot \sqrt{(\frac{\Delta V_0}{V_0})^2 + (\frac{\Delta V}{V})^2}.$$

Portanto, para
$$V_0 = 24.8V$$
 , $V = 12.2V$ $E_{0} = 24.8V$, $V_0 = 24.8V$, $V_0 = 12.2V$ $E_{0} = 24.8V$, $V_0 = 12.2V$ $V_0 = 12.2V$

2.1.2 Indutor

No experimento I, calculamos o valor do indutor utilizado nos experimentos. O resultado foi, $L=47,0311mH\pm4,0174mH$.

2.1.3 Resistência em série do indutor (R_L)

O cálculo de R_L foi apresentado no relatório I, resultando em $R_L = 46, 3\Omega \pm 0, 6\Omega$

2.1.4 Capacitor

No experimento anterior obtivemos $C = 0.2236\mu F \pm 0.0191\mu F$

2.1.5 Resistor de 47Ω

$$R_{47} = 47,8\Omega \pm 0,6\Omega$$

2.1.6 Resistor de 150 Ω

$$R_{150} = 148\Omega \pm 2,5\Omega$$

3 Circuito RC

3.0.7 Integrador

Um circuito integrador é um componente eletrônico contendo elementos, como fonte de tensão[2.1.1], resistor[2.1.6] e capacitor[2.1.4].

Figura 2: Circuito integrador ou Filtro passa-baixa

I Lei de Kirchoff: Aplicando a lei de Kirchoff para malhas teremos: $\varepsilon(t) = R \cdot i(t) + v_c(t)^{\mathrm{V}}$

II **Integrador**: No cálculo acima obtemos: $v(t) \approx v_0(t) + \frac{1}{RC} \int_{t_0}^t \varepsilon(t) dt$.

VLembrando que
$$I_c(t) = C \cdot \frac{\mathrm{d}V(t)}{\mathrm{d}t}$$

IIEscala: 5V

IIIEscala: 2V

^{IV}Dado obtido no experimento I

III **Passa-baixa**: A função de transferência de um passa-baixa VI é dada por $T(s) = \frac{K}{1+\frac{s}{s_{10}}}$.

Sabe-se que $s=j\cdot w$, onde $w=2\pi\cdot f$ e $\tau=\frac{1}{w_0}$ VII. Portanto, para um passa-baixa temos: $T(jw)=\frac{K}{1+j(\frac{w}{w_0})}$ e a frequência de corte $f_c=\frac{1}{\tau\cdot 2\pi}$.

Transmissão DC: Em uma transmisao DC, ou seja, f = 0Hz(w = 0), temos T(jw) = K.

- IV **Metodologia**: Montamos o circuito conforme a figura acima, monitorando a V_1 e V_2 no osciloscópio, variando as formas de onda VIII e a frequência ($\frac{f_c}{40}$, f_c , $40f_c$). Modificamos, também, o nível DC entre -1V e +1V e observamos o efeito provocado.
 - V **Resultados e Discussões**: Dado em III, combinando com 2.1.4 e 2.1.6, temos $f_c \approx 4,8881Hz$. Para V, ou seja, frequências aquém de f_c , temos que $V_1 \approx V_2$ visto que o circuito é um passa-

Figura 3: Circuito integrador $f_c \approx 120, 51 Hz$

Figura 4: Circuito integrador f_c

^{VI}Sedra Smith, microeletronics circuits 5th edition , tabela 1.2: Resposta em frequência de redes STC

VII frequência 3-dB

VIII quadrada, triângular e senoíde

Figura 5: Circuito integrador $f_c \approx 192,80kHz$

baixa $[III]^{IX}$. Entretanto, para frequência próximas de f_c observamos pequenas distorções em V_2 e para frequência muito além $(40f_c)$ temos um integrador, visto que, a integral de uma constante é uma reta.

A variação do sinal DC resultou em uma descida/subida mais abrupta, já que teremos T(jw)=K=1, paraf=0.

3.0.8 Diferenciador

O circuito RC diferenciador assemelha-se ao integrador, apenas alteramos a configuração entre o resistor 2.1.6 e o capacitor 2.1.4.

Figura 6: Circuito diferenciador ou Filtro passa-alta

I **Lei de Kirchoff**: Aplicando a lei de Kirchoff para malhas teremos: $\varepsilon(t) = \frac{t}{C} + v(t)$.

- II **Diferenciador**: No cálculo acima obtemos: $v(t) \approx \frac{1}{RC} \frac{d\varepsilon(t)}{dt}$
- III **Passa-alta**: A função de transferência de um passa-alta^X é dada por $T(s) = \frac{Ks}{s+w_0}$. Sabe-se que $s = j \cdot w$, onde $w = 2\pi \cdot f$ e $\tau = \frac{1}{w_0}$ XI. Portanto, para um passa-alta temos: $T(jw) = \frac{K}{1-j(\frac{w_0}{w})}$ e a frequência de corte $f_c = \frac{1}{\tau \cdot 2\pi}$.

Transmissão DC: Em uma transmisao DC, ou seja, f=0Hz(w=0), temos T(jw)=0.

IV **Metodologia**: Montamos o circuito conforme a figura acima, monitorando a V_1 e V_2 no osciloscópio, variando as formas de onda^{XII} e a frequência ($\frac{f_c}{40}$, f_c , $40f_c$). Modificamos,

^{IX}Nota-se no diagrama de Bode do experimento I para um circuito RC

^XSedra Smith, microeletronics circuits 5th edition , tabela 1.2: Resposta em frequência de redes STC

XI frequência 3-dB

XII quadrada, triângular e senoíde

também, o nível DC entre -1V e +1V e observamos o efeito provocado.

V **Resultados e Discussões**: Dado para um filtro passa-alta III, combinando com o capacitor 2.1.4 e resistor 2.1.6, temos: Para V, ou seja, frequências aquém de f_c , temos um circuito

Figura 7: Circuito diferenciador $f_c \approx 120,51 Hz$

Figura 8: Circuito diferenciador f_c

Figura 9: Circuito diferenciador $f_c \approx 192,80kHz$

integrador, conforme observado na figura V, na qual para a onda triângular, fica claro que, a derivada de uma reta é uma constante. Já para frequência bem próxima a f_c temos uma distorção na saída, e para $f >> f_c$, ouseja, $f \approx 40 f_c$ temos $V_1 \approx V_2$, visto que temos um filtro passa-alta. A variação do sinal DC não modificou a saída V_2 , uma vez que, o capacitor carrega-se rápidamente em tensão/corrente DC e, diferentemente de uma onda variável no tempo, o capacitor não se descarregará.

4 Circuito RLC

Neste experimento, montamos um circuito RLC, de acordo com a figura abaixo. Onde $R_L[2.1.3]$ é a resistência inerente ao indutor, L[2.1.2] o indutor, C[2.1.4] o capacitor e R_D é a resistência de década. R_g é a resistência interna do gerador. A resistência interna do gerador

Figura 10: Circuito RLC

foi determinada medindo a voltagem de circuito aberto e a voltagem quando conectado a um resistor de 47 ohms, já a RL foi medida com um multímetro. O valor da capacitância e da indutância foi determinada com o método da figura de Lissajous.

Com as medidas em mãos iniciamos nosso experimento com o procedimento descrito abaixo:

- I O osciloscópio configurado para monitorar a voltagem no gerador e a corrente, ou seja no canal 2 está a resistência de décadas.
- II Ligamos o gerador de forma a alimentar o circuito com o formato de onda senoidal.
- III Determinamos a frequencia de ressonância f_0 pelo método de Lissajous.
- IV Variamos a resistência de décadas para verificarmos que f0 NÃO depende de R_d .
- V Após isso, aliementamos o circuito com ondas quadradas e ajustamos a frequência do gerador de forma a garantir que a corrente zera a casa semiciclo ($T < 10 \cdot \tau$), onde T é o periodo de onda e $\tau = \frac{2L}{R}$.
- VI Variando a resistência de década pudemos observar a mudança dos regimes de amortecimento.