Introducción a los Modelos Lineales: fundamentos teóricos y prácticos

Javier Fernández-López, Profesor Ayudante Doctor
Unidad de Matemática Aplicada
Departamento de Biodiversidad, Ecología y Evolución, UCM

DOKTOREGO ESKOLA ESCUELA DE DOCTORADO DOCTORAL SCHOOL Programas de doctorado:

Agrobiología Ambiental

Calidad y Seguridad Alimentaria

Biodiversidad, Funcionamiento y Gestión de Ecosistemas

Sobre mi...

hunting n-mixture
data-action glm nimble
regression retat abundance enetwild
binomial tungs
biogeography conservation occupancy
monitoring wildboar rabbit migration
connectivity models bayesian
biodiversity fox survey cartography netlogo
intheria deer maps carnivores

hierarchical-models abm iberconejo

Javier Fernández-López javfer05@ucm.es

REAL JARDÍN BOTÁNICO

Sobre vosotrxs...

¿Cómo de familiarizad@ estás con el lenguaje R?

Copiar gráfico

21 respuestas

Sobre vosotrxs...

¿Cómo de familiarizad@ estás con los modelos lineales (regresiones, GLM, etc.)?

21 respuestas

Sobre vosotrxs...

Grupo muy diverso (tres programas de doctorado):

50% BFGE

20% CSA

23.3% ABA

6.7% otros.

Muchas disciplinas diferentes: ganadería, agricultura, ecología, microbiología, calidad alimentaria, nutrición, botánica, zoología...

Reto, pero también oportunidad!

• Módulo 1 - Introducción a la modelización

(5 horas, 20 y 27 de octubre)

- Módulo 1 Introducción a la modelización
 (5 horas, 20 y 27 de octubre)
- Módulo 2 Modelos lineales generalizados (5 horas, 3 y 10? de noviembre)

- Módulo 1 Introducción a la modelización
 (5 horas, 20 y 27 de octubre)
- Módulo 2 Modelos lineales generalizados (5 horas, 3 y 10? de noviembre)
- Módulo 3 Modelos mixtos y otras extensiones
 (5 horas, 17 y 24 de noviembre)

• Dinámica. Teoría y práctica

- Dinámica. Teoría y práctica
- Presentaciones, material y grabación:

https://jabiologo.github.io/web/tutorials/estadisticaUPV.html

- Dinámica. Teoría y práctica
- Presentaciones, material y grabación:

https://jabiologo.github.io/web/tutorials/estadisticaUPV.html

• Dudas y preguntas: estadística (interrumpir?) y software (esperar?)

- Dinámica. Teoría y práctica
- Presentaciones, material y grabación:

https://jabiologo.github.io/web/tutorials/estadisticaUPV.html

- Dudas y preguntas: estadística (interrumpir?) y software (esperar?)
- Filosofía docente

Bloque 1: Introducción a la modelización

- El método científico y la estadística
- Diseños experimentales VS datos observacionales
- Concepto de modelo
- Las variables y las distribuciones de probabilidad
- Las simulaciones como un laboratorio
- Introducción al modelo lineal

Bloque 1: Introducción a la modelización

- El método científico y la estadística
- Diseños experimentales VS datos observacionales
- Concepto de modelo
- Las variables y las distribuciones de probabilidad
- Las simulaciones como un laboratorio
- Introducción al modelo lineal

El método científico

El método científico

- Población: Conjunto **total de individuos u observaciones** sobre los que queremos sacar conclusiones.
- Muestra: **Subconjunto representativo** de la población, seleccionado para su estudio.

- Población: Conjunto **total de individuos u observaciones** sobre los que queremos sacar conclusiones.
- Muestra: **Subconjunto representativo** de la población, seleccionado para su estudio.

Inferencia estadística

El proceso de usar los datos de una muestra para estimar o tomar decisiones sobre una población, reconociendo la incertidumbre del muestreo.

DISEÑO EXPERIMENTAL VS DATOS OBSERVACIONALES

Control El investigador manipula una o más variables (tratamientos) y controla las condiciones. El investigador no manipula nada; solo observa y registra lo que ocurre naturalmente. Ejemplo		Diseño experimental	Estudio observacional
Ejemplo	Control	variables (tratamientos) y controla las	
	Ejemplo		

DISEÑO EXPERIMENTAL VS DATOS OBSERVACIONALES

Control	El investigador manipula una o más variables (tratamientos) y controla las condiciones.	El investigador no manipula nada; solo observa y registra lo que ocurre naturalmente.
Ejemplo	Ensayo clínico, experimento de laboratorio, cultivo en condiciones controladas.	Ecología de campo, estudios sociales, encuestas, registros médicos.
Fuentes de variabilidad		

DISEÑO EXPERIMENTAL VS DATOS OBSERVACIONALES

	Diseño experimental	Estudio observacional
Control	El investigador manipula una o más variables (tratamientos) y controla las condiciones.	El investigador no manipula nada; solo observa y registra lo que ocurre naturalmente.
Ejemplo	Ensayo clínico, experimento de laboratorio, cultivo en condiciones controladas.	Ecología de campo, estudios sociales, encuestas, registros médicos.
Fuentes de variabilidad	Pueden controlarse o aislarse (aleatorización, réplicas, bloqueos).	Difíciles de controlar: el entorno, el comportamiento, la historia previa

En experimentos, la estadística ayuda a diseñar los tratamientos, minimizar sesgos, y evaluar diferencias entre grupos. En estudios observacionales permite controlar confusores, modelar la variabilidad natural y extraer patrones sin control directo.

¿Qué es un modelo?

¿Qué es un modelo?

¿Qué es un modelo?

¿Qué es un modelo?

Un modelo es una **representación simplificada** de la realidad, elaborada con el fin de **explicar y/o predecir** ciertos aspectos de la misma

¿Qué es un modelo?

Un **modelo matemático** es la traducción de una hipótesis sobre la realidad a lenguaje matemático, de modo que pueda ponerse a prueba y contrastarse con datos.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \varepsilon_i$$

Sobre explicaciones y predicciones...

Un modelo es una **representación simplificada** de la realidad, elaborada con el fin de **explicar <u>y/o</u> predecir** ciertos aspectos de la misma

Sobre explicaciones y predicciones..

Un modelo es una **representación simplificada** de la realidad, elaborada con el fin de **explicar y/o predecir** ciertos aspectos de la misma

Tipos de variables (clasificación clásica)

Tipos de variables (clasificación clásica)

- Cuantitativas (se expresa mediante números, se puede operar)

Continuas (decimales)

Discretas (enteros)

Tipos de variables (clasificación clásica)

- Cuantitativas (se expresa mediante números, se puede operar)

Continuas (decimales)

Discretas (enteros)

- Semicuantitativas u ordinales (variable cualitativa que se puede ordenar)

Tipos de variables (clasificación clásica)

- Cuantitativas (se expresa mediante números, se puede operar)

Continuas (decimales)

Discretas (enteros)

- Semicuantitativas u ordinales (variable cualitativa que se puede ordenar)
- Cualitativas o nominales (describe un atributo o categoría)

Tipos de variables (clasificación clásica)

- Cuantitativas (se expresa mediante números, se puede operar)

Continuas (decimales)

Discretas (enteros)

- Semicuantitativas u ordinales (variable cualitativa que se puede ordenar)
- Cualitativas o nominales (describe un atributo o categoría)

¿Con qué variables trabajáis? ¿de qué tipo son?

Distribuciones de probabilidad

- Van a ser nuestros modelos, nuestra abstracción matemática, la representación simplificada de la realidad!

Distribuciones de probabilidad

- Van a ser nuestros modelos, nuestra abstracción matemática, la representación simplificada de la realidad!
- Cada una tiene unas características diferentes que hacen que sean más aptas para uno u otro tipos de datos.

Distribuciones de probabilidad

- Van a ser nuestros modelos, nuestra abstracción matemática, la representación simplificada de la realidad!
- Cada una tiene unas características diferentes que hacen que sean más aptas para uno u otro tipos de datos.
- Es necesario conocer las más importantes y sus principales características.

Distribuciones de probabilidad

- Van a ser nuestros modelos, nuestra abstracción matemática, la representación simplificada de la realidad!
- Cada una tiene unas características diferentes que hacen que sean más aptas para uno u otro tipos de datos.
- Es necesario conocer las más importantes y sus principales características.
- Hay muchísimas, pero me gustaría que te aprendieses sólo tres (+1): la **Normal**, la de **Poisson** y la **Binomial** (+Uniforme).

Distribuciones de probabilidad

Distribuciones de probabilidad: notación

 $X \sim Name(parameter_1, parameter_2)$

Distribuciones de probabilidad: notación

Temperatura media anual \sim Normal(media = 15, desviación estándar = 5)

Distribuciones de probabilidad: notación

Temperatura media anual ~ Normal(media = 15, desviación estándar = 5)

Temperatura media anual ~ Normal($\mu = 15$, $\sigma = 5$)

Temperatura media anual $\sim N(15, 5)$

Distribuciones de probabilidad: notación

Temperatura media anual ~ Normal(media = 15, desviación estándar = 5)

Temperatura media anual ~ Normal($\mu = 15$, $\sigma = 5$)

Temperatura media anual $\sim N(15, 5)$

Standard deviation

$$X \sim \mathcal{N}(\mu, \sigma)$$

Distribuciones de probabilidad: notación

Temperatura media anual ~ Normal(media = 15, desviación estándar = 5)

Temperatura media anual ~ Normal($\mu = 15$, $\sigma = 5$)

Temperatura media anual $\sim N(15, 5)$

Standard deviation

Variance

$$X \sim \mathcal{N}(\mu, \sigma)$$

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

Distribuciones de probabilidad: notación

Temperatura media anual \sim Normal(media = 15, desviación estándar = 5)

Temperatura media anual ~ Normal($\mu = 15$, $\sigma = 5$)

Temperatura media anual $\sim N(15, 5)$

$$X \sim \mathcal{N}(\mu, \sigma)$$

Variance

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

Precision $X \sim \mathcal{N}(\mu, au)$

$$=rac{1}{\sigma^2}$$

$$au=rac{1}{\sigma^2}$$

Distribuciones de probabilidad: notación

Temperatura media anual \sim Normal(media = 15, desviación estándar = 5)

Temperatura media anual ~ Normal(μ = 15, σ = 5)

Temperatura media anual $\sim N(15, 5)$

Standard deviation

$$X \sim \mathcal{N}(\mu, \sigma)$$

Variance

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

Precision

$$X \sim \mathcal{N}(\mu, au)$$

$$au = \frac{1}{\sigma}$$

$X \sim Normal(\mu, \sigma)$

Continuas

Support: $X \in (-\infty,\infty)$; $\mu \in (-\infty,\infty)$; $\sigma > 0$ (real)

Continuas

Support: $X\in (-\infty,\infty); \mu\in (-\infty,\infty); \sigma>0$ (real)

$X \sim Poisson(\lambda)$

Conteos

Support: $X \in (0,\infty)$ (natural); $\lambda \in (0,\infty)$ (real)

Conteos

Support: $X \in (0,\infty)$ (natural); $\lambda \in (0,\infty)$ (real)

$X \sim Binomial(n, p)$

Presencia/ausencia

Support: $X=\{0,1\}; n\in(0,\infty)$ (natural) $p\in(0,1)$

 $X \sim Binomial(n, p)$

Presencia/ausencia

Support: $X=\{0,1\}; n\in(0,\infty)$ (natural) $p\in(0,1)$

 $X \sim Binomial(n, p)$

Support: $X=\{0,1\}; n\in(0,\infty)$ (natural) $p\in(0,1)$

Presencia/ausencia

Bernoulli = Binomial(1,p)

 $X \sim Uniform(min, max)$

Support: $X\in (-\infty,\infty)$; $min\in (-\infty,\infty)$ (real); $max\in (-\infty,\infty)$ (real)

Relación entre distribuciones de probabilidad univariadas

Leemis & McQueston, American Satistician (2008)

Relación entre distribuciones de probabilidad univariadas

Leemis & McQueston, American Satistician (2008)

Principales funciones vínculo para GLM

Las funciones vínculo (link functions) sirven para enlazar los parámetros de las distribuciones de probabilidad con la ecuación general del modelo lineal, conviertendo el modelo lineal general en generalizado. Los parámetros de algunas distribuciones no pueden tomar cualquier valor, por lo que se utilizan las funciones vínculo para adaptar los resultados de la ecuación del modelo lineal a los requerimientos del parámetro. En teoría (matemáticamente) es posible emplear cualquier función vínculo con cualquier distribución siempre que nuestros datos lo permitan. Sin embargo, en la práctica se suelen utilizar unas pocas funciones con cada una de las distribuciones de probabilidad. En la tabla se muestran las más comunes para las distribuciones estudiadas. Nótese que algunas distribuciones no se muestran con su parametrización más habitual.

Distribución	Links	Fórmula	Inversa
Gaussiana (μ, σ)	Identidad	$\mu = \beta X$	$\mu = \beta X$
$Beta(\mu, \sigma)$	$\mathbf{Logit},\mathrm{probit},\mathrm{cloglog}$	$\log(\tfrac{\mu}{1-\mu}) = \beta X$	$\mu = \frac{e^{(eta X)}}{1 + e^{(eta X)}}$
$Gamma(\mu, \sigma)$	Log	$log(\mu) = \beta X$	$\mu=e^{(\beta X)}$
$Poisson(\lambda)$	Log	$log(\lambda) = \beta X$	$\lambda = e^{(\beta X)}$
Bernoulli(p)	$\mathbf{Logit},\mathrm{probit},\mathrm{cloglog}$	$log(\tfrac{p}{1-p}) = \beta X$	$p = rac{e^{(eta X)}}{1 + e^{(eta X)}}$
Binomial(n,p)	Logit, probit, cloglog	$log(\frac{p}{1-p}) = \beta X$	$p = \frac{e^{(SX)}}{1 + e^{(SX)}}$

¿Con qué distribuciones de probabilidad habéis trabajado?

¿Qué otras distribuciones de probabilidad conocéis?

Matt Bognar website:

https://homepage.divms.uiowa.edu/~mbognar/

https://jabiologo.github.io/web/tutorials/prob_dist_links_merged.pdf

Las simulaciones en el proceso de aprendizaje

REALIDAD

Las simulaciones en el proceso de aprendizaje

realidad (ser honestos, cura de humildad).

Nuestros modelos...

$$weight(kg) \sim Normal(mean = 27, sd = 3)$$

$$weight(kg) \sim Normal(mean = 27, sd = 3)$$
 $Y \sim Normal(\mu, \sigma)$ $Y \sim Normal(27, 3)$

$$weight(kg) \sim Normal(mean = 27, sd = 3)$$
 $Y \sim Normal(\mu, \sigma)$ $Y \sim Normal(27, 3)$

El modelo lineal (o cuando "la media se mueve")

i	peso	latitud
1	27	40
2	35	51
3	42	59
•••		•••
n	50	65

i	peso	latitud
1	27	40
2	35	51
3	42	59
•••		•••
n	50	65

$$weight_i \sim Normal(\mu_i, \sigma)$$
 $\mu_i = eta_0 + eta_1 X_i$

i	peso	latitud
1	27	40
2	35	51
3	42	59
•••		•••
n	50	65

$$weight_i \sim Normal(\mu_i, \sigma) \ \mu_i = eta_0 + eta_1 X_i \ \mu_i = eta_0 + eta_1 Latitude_i$$

El modelo lineal (o cuando "la media se mueve")

$$\mu_i = \beta_0 + \beta_1 Latitude_i$$

El modelo lineal (o cuando "la media se mueve")

$$\mu_i = \beta_0 + \beta_1 Latitude_i$$

El modelo lineal (o cuando "la media se mueve")

$$\mu_i = eta_0 + eta_1 Latitude_i$$

$$\mu_i = \beta_0 + \beta_1 Latitude_i$$

