Matematisk Statistik

9. Forelæsning 02.03.2021

Estimation i klassisk statistik: punktestimatorernes egenskaber

- bias / centralitet,
- efficiens,
- ► MSE (mean square error),
- konsistens,
- omparametrisering, Jensens ulighed .

Definition

Bias af en estimator $\hat{\theta}$ til parameteren θ er givet ved

Bias
$$\hat{\theta} = E \hat{\theta} - \theta$$
.

Estimatoren $\hat{\theta}$ kaldes for **middelret** eller **central** (unbiased) hviss $E\hat{\theta} = \theta$, dvs, Bias $\hat{\theta} = 0$.

Betragt en Bernoulli eksperiment, bestående af n uafhængige stokastiske variabler $X_1, ..., X_n$, der antager værdien 1 med sandsynlighed p, og er lig 0 ellers.

Andelen \hat{p} af positive udfald i n uafængige Bernoulli eksperimenter,

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

er en estimator til andelen *p* i populationen.

Proposition 6.3.1 If X_1, X_2, \dots, X_n are Bernoulli random variables with parameter p, then $E[\hat{p}] = p$.

Proof. Let $X = \sum_{i=1}^{n} X_i$. Then

$$E[\hat{p}] = E\left[\frac{X}{n}\right] = \frac{np}{n} = p.$$

_

Theorem 6.3.2 Let X_1, X_2, \ldots, X_n be independent random variables from a distribution with unknown $\text{Var}[X_i] = \sigma^2 < \infty$. Then an unbiased estimator of σ^2 is $S^2 = (1/(n-1)) \sum_{i=1}^n (X_i - \overline{X})^2$.

Værktøj til beviset: (se side 164 MSRR)

- ► **Proposition A.2.1** $Var[X] = E[(X \mu)^2] = E[X^2] \mu^2$.
- ▶ **Theorem A.4.1** Let $X_1, X_2, ..., X_n$ be identically distributed random variables with mean μ and variance σ^2 .

Then $E[\overline{X}] = \mu$.

If, in addition, $X_1, X_2, ..., X_n$ are independent, then $\text{Var}[\overline{X}] = \sigma^2/n$.

samt identiteten

$$\sum_{i=1}^{n} (X_i - \overline{X})^2 = \left(\sum_{i=1}^{n} X_i^2\right) - n\overline{X}^2.$$
 (6.16)

(se også side 164 MSRR)

Definition

Lad $X_1, X_2, \dots X_n$ være uafhængige, identisk fordelte stokastiske variabler fra en fordeling med varians $\sigma^2 < \infty$. Stikprøvefunktionen

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - X)^{2}$$

kaldes **stikprøvevarians** (sample variance).

Stikprøvevariansen er en middelret estimator af σ^2 .

Eksempel: den uniforme fordeling

Example 6.12 Let $X_1, X_2, ..., X_n$ be i.i.d. from Unif[0, β]. We have already seen that the MLE of β is $\hat{\beta}_{\text{mle}} = X_{\text{max}}$.

With $f_{\text{max}}(x) = (n/\beta^n)x^{n-1}$ (see Corollary 4.2.2), we have

$$E[X_{\text{max}}] = \int_0^\beta x \, \frac{n}{\beta^n} x^{n-1} \, dx$$
$$= \frac{n}{n+1} \beta,$$

derfor er $\hat{\beta}_{\text{mle}} = X_{\text{max}}$ ikke middelret, men

$$\hat{\beta} = \frac{n+1}{n} X_{\text{max}}$$

er middelret.

En anden middelret estimator er den fra moment metoden,

$$\hat{\beta}_{\text{mom}} = 2\bar{X}.$$

Definition

En estimator $\hat{\theta}$ kaldes **asymptotisk middelret**, hvis

$$\lim_{n\to\infty} \mathbf{E}\hat{\theta}(X_1,\ldots,X_n) = \theta,$$

for uafhængige $\mathbf{X}_1, \mathbf{X}_2, \dots \sim F(., \theta)$.

Eksempler

▶ ML estimatoren til $N(\mu, \sigma^2)$ normalfordelingens varians er asymptotisk middelret:

$$\mathbf{E}\hat{\sigma}^2 = \frac{n-1}{n}\sigma^2 \xrightarrow[n \to \infty]{} \sigma^2.$$

ML estimator for parameter β i Unif[0, β]-fordelingen er X_{max} . Den er asymptotisk middelret:

$$\lim_{n\to\infty} E[X_{\max}] = \lim_{n\to\infty} \frac{n}{n+1} \beta = \beta$$

Efficiens (se bogen: 6.3.2)

Motivation

Tit findes mange middelrette estimatorer for den samme parameter

- hvilken skal så foretrækkes?

Eksempel:

 $\mathbf{X} = (X_1, X_2, X_3)$, uafhængige og identisk fordelte variabler med middelværdi μ og varians σ^2 .

Både

$$\bar{X} = \frac{1}{3}(X_1 + X_2 + X_3)$$

og

$$Y = \frac{1}{6}X_1 + \frac{1}{3}X_2 + \frac{1}{2}X_3$$

er middelrette estimatorer for μ .

Men

$$\operatorname{Var} \bar{X} = \frac{1}{3}\sigma^2$$
 mens $\operatorname{Var} Y = \frac{7}{18}\sigma^2$.

mere efficient (se bogen: 6.3.2)

Definition

Hvis $\hat{\theta}_1$ og $\hat{\theta}_2$ både er middelrette estimatorer til samme parameter θ , men $\text{Var }\hat{\theta}_1 < \text{Var }\hat{\theta}_2$, så kaldes $\hat{\theta}_1$ for **mere efficient** end $\hat{\theta}_2$.

Den **relative efficiens** af middelrette estimatorer $\hat{\theta}_1$ og $\hat{\theta}_2$ defineres som

$$e(\hat{\theta}_1, \hat{\theta}_2) = \frac{\operatorname{Var} \hat{\theta}_1}{\operatorname{Var} \hat{\theta}_2}$$

To middelrette estimatorer til parameteren af en Unif $[0, \beta]$ -fordeling:

$$\hat{\beta}_{\text{mom}}(X_1,\ldots,X_n) = 2\bar{X}, \qquad \hat{\beta}_{\text{mle}}(X_1,\ldots,X_n) = \frac{n+1}{n}X_{\text{max}}$$

Experiment med R: til n = 25, stikprøvefordelingen

? hvilket histogram stammer fra $\hat{\beta}_{mom}$, hvilket fra $\hat{\beta}_{mle}$? hvilken af de to estimatorer er mere efficient?

Flere teoretiske statistikere udledte i 1940erne en **nedre grænse for variansen** af unbiased estimators. Denne grænse afhænger af fordelingen af de X_i .

If X_1, X_2, \ldots, X_n are a random sample from a distribution with continuous pdf $f(x;\theta)$ and f satisfies certain smoothness criteria, then any unbiased estimator $\hat{\theta}$ of θ satisfies

$$\operatorname{Var}[\hat{\theta}] \ge \frac{1}{n \operatorname{E}[(\partial/\partial\theta(\ln(f(X;\theta))))^2]}.$$

Udtrykket i nævneren kaldes for Fisher information,

$$\mathscr{I}(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log f(X; \theta)\right)^2\right]$$
 (MSRR: 6.17)

Det er variansen af score funktionen (fra ML estimationen).

Mere om Cramér-Rao uligheden: kandidatkurset "statistisk inferens".

Mean squared error kombinerer præcision og nøjagtighed i ét mål:

Definition (6.5)

Mean squared error af en estimator $\hat{\theta}$ er defineret som

$$MSE\hat{\theta} = E[(\hat{\theta} - \theta)^2].$$

Proposition 6.3.3:

$$MSE \hat{\theta} = Var \hat{\theta} + (Bias \hat{\theta})^2$$
.

Når man sammenligner "gode" estimatorer for samme parameter, ser man tit at enten varians eller bias er lille.

Der betragtes antal af success i n uafhængige Bernoulli eksperimenter, altså en stokastisk variabel $X \sim \text{Binom}(n, p)$, med n kendt og p ukendt.

ML estimator til successraten:

$$\hat{p}_1 = \frac{X}{n}$$
,
 $\hat{p}_1 = p$, $\text{Var } \hat{p}_1 = p(1-p)/n \Longrightarrow \text{MSE } \hat{p}_1 = \frac{p(1-p)}{n}$.

har stor MSE når *p* ligger i nærheden af 0.5.

Alternativ estimator: tilføj en succes og en flop til data

$$\hat{p}_2 = \frac{X+1}{n+2}.$$

$$E \,\hat{p}_2 = \frac{np+1}{n+2}, \quad \text{Var } \hat{p}_2 = \frac{np(1-p)}{(n+2)^2} \implies \text{MSE } \hat{p}_2 = \frac{np(1-p) + (1-2p)^2}{(n+2)^2}.$$

Den nye estimator er biased, men har mindre MSE for mellemstore værdier af p, som ikke ligger tæt ved 0 eller 1.

Figure 6.6 Mean square error against p, n = 16.

Vi betragter den samme estimator $\hat{\theta}$ anvendt på stikprøver med forskellige stikprøvestørrelser n:

Lad X_1, X_2, \dots være i.i.d. fra en fordeling med ukendt parameter θ . Vi skriver:

$$\hat{\theta}_n := \hat{\theta}(X_1, \dots, X_n).$$

Hvad sker med voksende stikprøvestørrelse?

Definition 6.6 For a random sample of size n, let $\hat{\theta}_n$ denote an estimator of θ and let $\{\hat{\theta}_n\}_{n=0}^{\infty}$ be a sequence of estimators. The estimators are *consistent* for θ if and only if

$$\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| < \varepsilon) = 1 \tag{6.18}$$

for every
$$\varepsilon > 0$$
.

Denne type konvergens betegnes som konvergens i sandsynlighed.

Betragt $X_1, X_2, ..., X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, 1)$, og $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Så er $\bar{X}_n \sim N(\mu; \frac{1}{n})$.

Beregn

$$\begin{split} \lim_{n \to \infty} P(|\bar{X}_n - \mu| < \epsilon) &= \lim_{n \to \infty} P(\mu - \epsilon < \bar{X}_n < \mu + \epsilon) \\ &= \lim_{n \to \infty} P\bigg(\frac{\mu - \epsilon - \mu}{\sqrt{1/n}} < \frac{\bar{X}_n - \mu}{\sqrt{1/n}} < \frac{\mu + \epsilon - \mu}{\sqrt{1/n}}\bigg) \\ &= \lim_{n \to \infty} P\bigg(-\epsilon \sqrt{n} < Z < \epsilon \sqrt{n}\bigg), \quad Z \sim N(0, 1) \\ &= \lim_{n \to \infty} \Big(\Phi(\epsilon \sqrt{n}) - \Phi(-\epsilon \sqrt{n})\Big) \\ &= 1 - 0. \end{split}$$

Lad X være en stokastisk variabel, $X \ge 0$, og lad c > 0. Så gælder

$$P(X \ge c) \le \frac{\operatorname{E} X}{c}.$$

Bevis: på tavlen.

Lad X være en stokastisk variabel med endelig middelværdi μ og endelig varians σ^2 . Så gælder for alle k>0:

$$P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}.$$

Bevis: på tavlen.

Korollar (Ex. 6.17):

 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ er en konsistent estimator for $EX = \mu$, hvis både μ og VarX er endelige.

Lad $\hat{\theta}_n$ være en følge af estimatorer for θ , som opfylder

$$\lim_{n\to\infty} \mathsf{E}\,\hat{\theta}_n = \theta \quad \text{og} \quad \lim_{n\to\infty} \mathsf{Var}\,\hat{\theta}_n = 0.$$

Så er $\hat{\theta}_n$ en konsistent følge af estimatorer for θ .

Eksempel 6.17: Eks 6.16 igen

Betragt $X_1, X_2, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu, 1)$, og $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Så er $\overline{X}_n \sim N(\mu; \frac{1}{n})$.

Så gælder $\lim_{n\to\infty} \mathbb{E}[\bar{X}_n] = \mu$ og $\lim_{n\to\infty} \mathrm{Var}[\overline{X}_n] = \lim_{n\to\infty} \sigma^2/n = 0$.

Derved danner $\overline{X}_1, \overline{X}_2, \dots$ en konsistent følge af estimatorer for μ .

Standard Cauchy fordeling: lad $Y_1, Y_2 \stackrel{\text{i.i.d.}}{\sim} N(0, 1)$. Så er $X = Y_1/Y_2 \sim \text{Cauchy}(0, 1)$.

Tæthed af Cauchy(θ , λ)-fordelingen:

$$f(x;\theta,\lambda) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + (x-\theta)^2}.$$

Fordelingsfunktion:

$$F(x) = \int_{-\infty}^{x} f(u) du = \frac{1}{\pi} \arctan\left(\frac{x - \theta}{\lambda}\right) + \frac{1}{2}.$$

- Middelværdi og varians eksisterer ikke! (se opgave MSRR 2.11)
- Stikprøvegennemsnit \overline{X}_n har samme fordeling som X_1 $\Longrightarrow \overline{X}_n$ er ikke en konsistent estimator for θ .

► Heldigvis er fordelingen symmetrisk om θ . Altså er medianen egnet som estimator for θ :

$$\hat{\theta}_n = \operatorname{med}(X_1, \dots, X_n).$$

Kvartiler:

$$F(x) = \frac{1}{4} \implies \arctan\left(\frac{x-\theta}{\lambda}\right) = \frac{\pi}{4} \implies x = \theta - \lambda \qquad F(x) = \frac{3}{4} \implies x = \theta + \lambda$$

Estimator for λ : half the interquartile range,

$$\hat{\lambda} = IQR(X_1, \dots, X_n)/2.$$

Vi undersøger lige, hvordan fordelingen af $\hat{\theta}_n$ afhænger af n.

Betragt en fordelingsfamilie med parameter θ .

I nogle situationer udtrykkes samme familien vha en anden parameter $\rho = h(\theta)$, hvor h er en **bijektiv** funktion.

Eksempel (R):

rgamma(n, shape, rate = 1, scale = 1/rate).
Parameteren "scale" kan bruges alternativt for "rate".

$$h(\Theta) = \{23, 45, 33, 39, 36\}$$

Proposition 6.3.5: Estimatorer kan genbruges i omparametriserede modeller.

$$\hat{\theta}$$
 er $\begin{cases} \text{ML-estimator} \\ \text{moment-estimator} \end{cases}$ af $\theta \implies \hat{\rho} = h(\hat{\theta})$ er $\begin{cases} \text{ML-estimator} \\ \text{moment-estimator} \end{cases}$ af ρ

Omparametrisering og ML estimatorer: eksempler

Normalfordelingen kan parametriseres ved (μ, σ) frem for (μ, σ^2) — se den måde R gør det på, fx rnorm(n, mean = μ , sd = σ).

ML estimatorer til σ^2 og σ er givet ved

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \implies \widehat{\sigma} = \sqrt{\widehat{\sigma^2}} = \left(\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2\right)^{1/2}$$

Eksponentialfordelingen parametriseres nogle gange med skala $\beta = 1/\lambda$ frem for rate λ .

Så skrives tætheden

$$f(x;\lambda) = \lambda e^{-\lambda x}$$
 som $\tilde{f}(x;\beta) = \frac{1}{\beta} e^{-x/\beta}$.

ML estimator til λ og $\beta = 1/\lambda$:

$$\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} x_i} \implies \hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Hvis $\hat{\theta}$ er ML-estimator for θ , så er $g(\hat{\theta})$ også ML estimator for $g(\theta)$.

Hvis $\hat{\theta}$ er moment-estimator for θ , så er $g(\hat{\theta})$ også moment estimator for $g(\theta)$.

MEN..

Hvis $\hat{\theta}$ er en middelret estimator for θ , så er $g(\hat{\theta})$ generelt set *ikke* middelret for $g(\theta)$.

Jensens ulighed^a

Lad g være en streng konveks funktion og X en ikke degenereret stokastisk variabel b . Så er

$$g(EX) < Eg(X)$$
.

^aJohan Jensen, 1908

 $[^]b{\rm en}$ stok. variabel kaldes degenereret, hvis den kun antager 1 værdi

Jensens ulighed betyder for en unbiased estimator $\hat{\theta}$, hvis g er streng konveks:

$$E g(\hat{\theta}) > g(\theta).$$

Eksempel (MSRR, side 166): For Unif $[0, \beta]$ fordelingen er $\hat{\beta} = 2\bar{X}$ middelret. Men $(\hat{\beta})^2 = 4\bar{X}^2$ er ikke middelret for β^2 :

$$E[4\bar{X}^2] = 4E[\bar{X}^2] = 4(\text{Var}[\bar{X}] + E[\bar{X}]^2)$$
$$= 4\left(\frac{\beta^2}{12n} + \left(\frac{\beta}{2}\right)^2\right) = \beta^2 + \frac{\beta^2}{3n}$$

Altså $E[\hat{\beta}^2] > \beta^2$.

Theorem 6.3.6:

maksimum likelihood estimatorer ofte er de bedste blandt alle centrale (= middelrette) estimatorer, i det de antager den minimale varians givet ved Cramér-Rao ulighed,

$$\operatorname{Var}(\hat{\theta}_n) \ge \frac{1}{n \mathcal{I}(\theta)}, \quad \mathcal{I}(\theta) = \operatorname{E} \frac{\partial (\ln(f(X;\theta)))}{\partial \theta}.$$

For store n må man desuden antage, at $\hat{\theta}_n$ er approksimativt normalfordelt.

Eksempel 6.19

Lad $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} f \mod f(x; \theta) = \theta x^{\theta - 1}$, hvor $\theta > 0$, 0 < x < 1.

$$\log f(x;\theta) = \log \theta + (\theta - 1)\log x$$

MLE estimator er $\hat{\theta}_n = -\frac{n}{\sum_{i=1}^n \ln(x_i)}$.

For store n er $\hat{\theta}_n \sim N(\theta, \theta^2/n)$.