Caleb Logemani James Rossmanith

Equation

Model

Numerical Method:

Generalized Shallow Wate Equations

Equations

Numerical Methods Results

References

Discontinuous Galerkin Method for Solving Thin Film and Shallow Water Equations

Caleb Logemann James Rossmanith

Mathematics Department, Iowa State University

logemann@iastate.edu

January 14, 2019

Overview

aleb Logemann James Rossmanith

Equation

Model

Numerical Method

Generalized Shallow Wate Equations

Numerical Methods Results

References

1 Thin Film Equation

- Model
- Numerical Methods
- Results

2 Generalized Shallow Water Equations

- Model
- Numerical Methods
- Results
- Future Work

Model Equations

Caleb Logemann James Rossmanith

Thin Film Equation Model

Numerical Method: Results

Generalized Shallow Water Equations

Numerical Methods Results

References

Incompressible Navier-Stokes Equation

$$u_x + w_z = 0$$

$$\rho(u_t + uu_x + wu_z) = -\rho_x + \mu \Delta u - \phi_x$$

$$\rho(w_t + uw_x + ww_z) = -\rho_z + \mu \Delta w - \phi_z$$

$$w = 0, u = 0 \qquad \text{at } z = 0$$

$$w = h_t + uh_x \qquad \text{at } z = h$$

$$\mathbf{T} \cdot \mathbf{n} = (-\kappa \sigma + \Pi)\mathbf{n} + \left(\frac{\partial \sigma}{\partial s} + \tau\right)\mathbf{t} \quad \text{at } z = h$$

Caleb Logema James Rossmanith

Thin Film Equation Model

Results

Generalized

Shallow Wate Equations

Numerical Method: Results

References

Nondimensionalize, integrate over Z, and simplify, gives

$$H_T + \left(\frac{1}{2}(\tau+\Sigma_X)H^2 - \frac{1}{3}\big(\left.\Phi\right|_{Z=H} - \Pi\big)_X H^3\right)_X = -\frac{1}{3}\bar{C}^{-1}\big(H^3H_{XXX}\big)_X$$

$$q_t + \left(q^2 - q^3\right)_x = -\left(q^3 q_{xxx}\right)_x$$

Method Overview

aleb Logemann, James Rossmanith

Equation

Model

Numerical Methods

Results

Generalized Shallow Water Equations

Numerical Methods Results

References

Simplified Model

$$q_t + (q^2 - q^3)_x = -(q^3 q_{xxx})_x$$
 $(0, T) \times \Omega$

Runge Kutta Implicit Explicit (IMEX)

$$q_t = F(q) + G(q)$$

- F evaluated explicitly
- G solved implicitly

$$F(q) = -(q^2 - q^3)_x$$
$$G(q) = (q^3 q_{xxx})_x$$

Notation

Caleb Logemann, James Rossmanith

Equation

Model

Numerical Methods

Results

Generalized Shallow Water Equations

Model
Numerical Metho

Results
Future Work

References

■ Partition the domain, [a, b] as

$$a = x_{1/2} < \cdots < x_{j-1/2} < x_{j+1/2} < \cdots < x_{N+1/2} = b$$

- $I_{j} = [x_{j-1/2}, x_{j+1/2}]$
- $x_j = \frac{x_{j+1/2} + x_{j-1/2}}{2}$
- $\Delta x_j = x_{j+1/2} x_{j-1/2}$
- $\Delta x_j = \Delta x \text{ for all } j.$

Convection

aleb Logemann James Rossmanith

Equation

Model

Numerical Methods

Results

Generalized Shallow Water Equations Model

Numerical Methods Results Future Work

References

Convection Equation

$$F(q) = f(q)_x = 0 \qquad (0, T) \times \Omega$$
$$f(q) = q^2 - q^3$$

Weak Form Find q such that

$$\int_{\Omega} (F(q)v - f(q)v_x) dx + \hat{f}v \Big|_{\partial\Omega} = 0$$

for all test functions v

Runge Kutta Discontinuous Galerkin

Caleb Logemanr James Rossmanith

Model
Numerical Methods

Generalized Shallow Water Equations

Numerical Methods Results

References

Find Q(t,x) such that for each time $t \in (0,T)$, $Q(t,\cdot) \in V_h = \left\{ v \in L^1(\Omega) : v|_{I_j} \in P^k(I_j) \right\}$

$$\begin{split} \int_{I_j} & F(Q) v \, \mathrm{d} x = \int_{I_j} & f(Q) v_x \, \mathrm{d} x \\ & - \left(\mathcal{F}_{j+1/2} v^-(x_{j+1/2}) - \mathcal{F}_{j-1/2} v^+(x_{j-1/2}) \right) \end{split}$$

for all $v \in V_h$

Rusanov/Local Lax-Friedrichs Numerical Flux

$$\mathcal{F}_{j+1/2} = \frac{1}{2} \left(f\left(Q_{j+1/2}^{-}\right) + f\left(Q_{j+1/2}^{+}\right) \right) + \frac{1}{2} \max_{q} \left\{ \left| f'(q) \right| \right\} \left(Q_{j+1/2}^{-} - Q_{j+1/2}^{+}\right)$$

Diffusion

aleb Logemann James Rossmanith

Equation

Model

Numerical Methods

Results

Generalized Shallow Wate Equations

Numerical Methods Results

References

■ Diffusion Equation

$$G(q) = -(q^3 q_{xxx})_x \qquad (0, T) \times \Omega$$

Local Discontinuous Galerkin

$$r = q_x$$

$$s = r_x$$

$$u = s_x$$

$$G(q) = (q^3 u)_x$$

Local Discontinuous Galerkin

aleb Logemann James Rossmanith

I hin Film
Equation
Model
Numerical Methods
Results

Generalized Shallow Water Equations Model

Numerical Methods Results

References

Find
$$Q(t,x), R(x), S(x), U(x)$$
 such that for all $t \in (0,T)$ $Q(t,\cdot), R, S, U \in V_h = \left\{ v \in L^1(\Omega) : v|_{I_j} \in P^k(I_j) \right\}$
$$\int_{I_j} Rv \, \mathrm{d}x = -\int_{I_j} Qv_x \, \mathrm{d}x + \left(\hat{Q}_{j+1/2} v_{j+1/2}^- - \hat{Q}_{j-1/2} v_{j-1/2}^+ \right)$$

$$\int_{I_j} Sw \, \mathrm{d}x = -\int_{I_j} Rw_x \, \mathrm{d}x + \left(\hat{R}_{j+1/2} w_{j+1/2}^- - \hat{R}_{j-1/2} w_{j-1/2}^+ \right)$$

$$\int_{I_j} Uy \, \mathrm{d}x = -\int_{I_j} Sy_x \, \mathrm{d}x + \left(\hat{S}_{j+1/2} y_{j+1/2}^- - \hat{S}_{j-1/2} y_{j-1/2}^+ \right)$$

$$\int_{I_j} G(Q)z \, \mathrm{d}x = -\int_{I_j} Q^3 Uz_x \, \mathrm{d}x + \left(\hat{U}_{j+1/2} z_{j+1/2}^- - \hat{U}_{j-1/2} z_{j-1/2}^+ \right)$$

for all $I_j \in \Omega$ and all $v, w, y, z \in V_h$.

Numerical Fluxes

aleb Logemann James Rossmanith

Thin Film Equation Model Numerical Methods

Generalized Shallow Wate Equations

Equations

Model

Numerical Meth

Results
Future Work

IMEX Runge Kutta

aleb Logemann James Rossmanith

Equation

Model

Numerical Method

Generalized Shallow Water Equations

Numerical Methods Results

References

■ IMEX scheme

$$egin{aligned} q^{n+1} &= q^n + \Delta t \sum_{i=1}^s \left(b_i' F(t_i, u_i)
ight) + \Delta t \sum_{i=1}^s \left(b_i G(t_i, u_i)
ight) \ u_i &= q^n + \Delta t \sum_{j=1}^{i-1} \left(a_{ij}' F(t_j, u_j)
ight) + \Delta t \sum_{j=1}^{i} \left(a_{ij} G(t_j, u_j)
ight) \ t_i &= t^n + c_i \Delta t \end{aligned}$$

■ Double Butcher Tableaus

$$\frac{c' \mid a'}{\mid b'^T} \frac{c \mid a}{\mid b^T}$$

Caleb Logemar James Rossmanith

Equation

Model

Numerical Methods

Results

Generalized Shallow Water Equations

Equations Model

Numerical Methods Results

References

■ 1st Order — L-Stable SSP

$$\begin{array}{c|c}
0 & 0 \\
\hline
 & 1
\end{array}$$
 $\begin{array}{c|c}
1 & 1 \\
\hline
 & 1
\end{array}$

■ 2nd Order — SSP

$$\begin{array}{c|ccccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}$$

Caleb Logeman James Rossmanith

Thin Film
Equation
Model
Numerical Methods

Generalized Shallow Wate Equations

Equations Model

Results
Future Work

References

■ 3rd Order — L-Stable SSP

$$\begin{split} \alpha &= 0.24169426078821\\ \beta &= 0.06042356519705\\ \eta &= 0.1291528696059\\ \zeta &= \frac{1}{2} - \beta - \eta - \alpha \end{split}$$

Nonlinear Solvers

aleb Logemann James Rossmanith

Model

Numerical Methods

Results

Generalized Shallow Water Equations

Numerical Methods Results

References

Nonlinear System

$$u_i - a_{ii} \Delta t G(u_i) = b$$

■ Picard Iteration

$$\tilde{G}(q,u) = \left(q^3 u_{xxx}\right)_x$$

$$u_0 = q^n \qquad u_i^0 = u_{i-1}$$

$$u_i^j - a_{ii} \Delta t \tilde{G}(u_i^{j-1}, u_i^j) = b$$

Manufactured Solution

Caleb Logemann James Rossmanith

Thin Film
Equation
Model
Numerical Methods

Generalized Shallow Water Equations

Numerical Methods Results

References

$$\begin{split} q_t + \left(q^2 - q^3\right)_x &= - \left(q^3 q_{\text{xxx}}\right)_x + s \\ s &= \hat{q}_t + \left(\hat{q}^2 - \hat{q}^3\right)_x + \left(\hat{q}^3 \hat{q}_{\text{xxx}}\right)_x \\ \hat{q} &= 0.1 \times \sin(2\pi/20.0 \times (x - t)) + 0.15 \quad \text{for } (x, t) \in [0, 40] \times [0, 5.0] \end{split}$$

	1st Order		2nd Order		3rd Order	
n	error	order	error	order	error	order
20	0.136	_	7.33×10^{-3}	_	5.29×10^{-4}	_
40	0.0719	0.92	1.99×10^{-3}	1.88	5.38×10^{-5}	3.30
80	0.0378	0.93	5.60×10^{-4}	1.83	7.47×10^{-6}	2.85
160	0.0191	0.99	1.56×10^{-4}	1.85	9.97×10^{-7}	2.91
320	0.00961	0.99	3.98×10^{-5}	1.97	1.26×10^{-7}	2.98
640	0.00483	0.99	1.00×10^{-5}	1.99	1.58×10^{-8}	3.00
1280	0.00242	1.00	2.50×10^{-6}	2.00	1.98×10^{-9}	3.00

Table: Convergence table with a constant, linear, quadratic polynomial bases. CFL = 0.9, 0.2, 0.1 respectively.

aleb Logemann James Rossmanith

Thin Film Equation Model

Numerical Meth Results

Generalized Shallow Wate Equations

Numerical Method

Results

aleb Logemann James Rossmanith

Thin Film Equation _{Model}

Numerical Method Results

Generalized Shallow Water Equations

Numerical Method

Results

Caleb Logemani James Rossmanith

Thin Film Equation _{Model}

Numerical Method Results

Generalized Shallow Water Equations

Numerical Methods Results

Future Work

Caleb Logemani James Rossmanith

Thin Film Equation Model

Numerical Method Results

Generalized Shallow Water Equations

Numerical Methods Results

Future Work

 $q_r = 0.1 \qquad q_l = 0.3323 \qquad q_m = 0.6$ $q(x,0) = \begin{cases} \frac{q_m - q_l}{2} \tanh(x) + \frac{q_m + q_l}{2} & x < 10 \\ -\frac{q_m - q_r}{2} \tanh(x - 20) + \frac{q_m + q_r}{2} + q_r & x > 10 \end{cases}$

Caleb Logemann James Rossmanith

Thin Film Equation

Numerical Metho Results

Generalized Shallow Water Equations

Model
Numerical Methy

Results

$$q_r = 0.1$$
 $q_l = 0.4$ $q(x,0) = (-\tanh(x-100)+1) \frac{q_l-q_r}{2} + q_r$

Caleb Logemanr James Rossmanith

Thin Film Equation

Numerical Method Results

Generalized Shallow Water Equations

Numerical Methods

Results

Generalized Shallow Water

Caleb Logemann James Rossmanith

Thin Film
Equation
Model
Numerical Metho

Generalized Shallow Water Equations

Model

Results
Future Work

$$\begin{aligned} & \div \mathbf{u} = 0 \\ & \mathbf{u}_t + \div * \mathbf{u} \mathbf{u} = -\frac{1}{\rho} \nabla \rho + \frac{1}{\rho} \div \sigma + \mathbf{g} \end{aligned}$$

$$(h_s)_t + [u(t, x, y, h_s), v(t, x, y, h_s)]^T \cdot \nabla h_s = w(t, x, y, h_s)$$

$$(h_b)_t + [u(t, x, y, h_b), v(t, x, y, h_b)]^T \cdot \nabla h_b = w(t, x, y, h_b)$$

aleb Logemann, James Rossmanith

nin Film Equation Model Numerical Method Results

Generalized Shallow Water Equations

Equations Model

Results
Future Work

Reference:

Characteristic Lengths

$$\varepsilon = \frac{H}{L}, \quad x = L\hat{x}, \quad y = L\hat{y}, \quad z = H\hat{z}$$

Characteristic Velocities

$$u = U\hat{u}, \quad v = U\hat{v}, \quad w = \varepsilon U\hat{w}$$

Characteristic Time

$$t = \frac{L}{U}\hat{t}$$

Characteristic Stresses

$$p = \rho g H \hat{p}, \quad \sigma_{xz/yz} = S \hat{\sigma}_{xz/yz}, \quad \sigma_{xx/xy/yy/zz} = \varepsilon S \hat{\sigma}_{xx/xy/yy/zz}$$

Caleb Logemann James Rossmanith

Equation

Model

Numerical Methods

Generalized Shallow Wate Equations

Model

Results
Future Work

References

Nondimensional Equations

$$\begin{split} \hat{u}_{\hat{x}} + \hat{v}_{\hat{y}} + \hat{w}_{\hat{z}} &= 0 \\ \varepsilon F^2 \Big(\hat{u}_{\hat{t}} + \left(\hat{u}^2 \right)_{\hat{x}} + \left(\hat{u} \hat{v} \right)_{\hat{y}} + \left(\hat{u} \hat{w} \right)_{\hat{z}} \Big) = -\varepsilon \hat{p}_{\hat{x}} \\ + G \Big(\varepsilon^2 (\hat{\sigma}_{xx})_{\hat{x}} + \varepsilon^2 (\hat{\sigma}_{xy})_{\hat{y}} + (\hat{\sigma}_{xz})_{\hat{z}} \Big) + e_x \\ \varepsilon F^2 \Big(\hat{v}_{\hat{t}} + \left(\hat{u} \hat{v} \right)_{\hat{x}} + \left(\hat{v}^2 \right)_{\hat{y}} + \left(\hat{v} \hat{w} \right)_{\hat{z}} \Big) = -\varepsilon \hat{p}_{\hat{y}} \\ + G \Big(\varepsilon^2 (\hat{\sigma}_{xy})_{\hat{x}} + \varepsilon^2 (\hat{\sigma}_{yy})_{\hat{y}} + (\hat{\sigma}_{yz})_{\hat{z}} \Big) + e_y \\ \varepsilon^2 F^2 \Big(\hat{w}_{\hat{t}} + \left(\hat{u} \hat{w} \right)_{\hat{x}} + \left(\hat{v} \hat{w} \right)_{\hat{x}} + \left(\hat{w}^2 \right)_{\hat{z}} \Big) = -\hat{p}_{\hat{z}} \\ + \varepsilon G \Big((\hat{\sigma}_{xz})_{\hat{x}} + (\hat{\sigma}_{yz})_{\hat{y}} + (\hat{\sigma}_{zz})_{\hat{z}} \Big) + e_z \\ F = \frac{U}{\sqrt{gH}} \approx 1, \quad G = \frac{S}{\rho gH} < 1 \end{split}$$

aleb Logemann James Rossmanith

Fhin Film Equation Model Numerical Methods Results

Generalized Shallow Water Equations

Model

Numerical Meth Results Future Work

i uture vvori

Drop ε^2 and εG terms

$$\hat{u}_{\hat{x}} + \hat{v}_{\hat{y}} + \hat{w}_{\hat{z}} = 0$$

$$\varepsilon F^{2} \Big(\hat{u}_{\hat{t}} + (\hat{u}^{2})_{\hat{x}} + (\hat{u}\hat{v})_{\hat{y}} + (\hat{u}\hat{w})_{\hat{z}} \Big) = -\varepsilon \hat{p}_{\hat{x}} + G(\hat{\sigma}_{xz})_{\hat{z}} + e_{x}$$

$$\varepsilon F^{2} \Big(\hat{v}_{\hat{t}} + (\hat{u}\hat{v})_{\hat{x}} + (\hat{v}^{2})_{\hat{y}} + (\hat{v}\hat{w})_{\hat{z}} \Big) = -\varepsilon \hat{p}_{\hat{y}} + G(\hat{\sigma}_{yz})_{\hat{z}} + e_{y}$$

$$\hat{p}_{\hat{z}} = e_{z}$$

Solving for the hydrostatic pressure

$$\hat{p}(\hat{t},\hat{x},\hat{y}) = \left(\hat{h}_s(\hat{t},\hat{x},\hat{y}) - \hat{z}\right)e_z$$

aleb Logemann James Rossmanith

I hin Film Equation Model Numerical Methods Results

Generalized Shallow Water Equations

Model
Numerical Met
Results

References

Dimensional Variables

$$u_{x} + v_{y} + w_{z} = 0$$

$$u_{t} + (u^{2})_{x} + (uv)_{y} + (uw)_{z} = -\frac{1}{\rho}p_{x} + \frac{1}{\rho}(\sigma_{xz})_{z} + ge_{x}$$

$$v_{t} + (uv)_{x} + (v^{2})_{y} + (vw)_{z} = -\frac{1}{\rho}p_{y} + \frac{1}{\rho}(\sigma_{yz})_{z} + ge_{y}$$

$$p(t, x, y, z) = (h_{s}(t, x, y) - z)\rho ge_{z}$$

Kinematic Boundary Conditions

$$(h_s)_t + [u(t, x, y, h_s), v(t, x, y, h_s)]^T \cdot \nabla h_s = w(t, x, y, h_s)$$

$$(h_b)_t + [u(t, x, y, h_b), v(t, x, y, h_b)]^T \cdot \nabla h_b = w(t, x, y, h_b)$$

Mapping

Model

Transform from $z \rightarrow \zeta$, by

$$\zeta = \frac{z - h_b(t, x, y)}{h(t, x, y)},$$

or equivalently

$$z = h(t, x, y)\zeta + h_b(t, x, y)$$

where $h(t, x, y) = h_s(t, x, y) - h_h(t, x, y)$.

$$\tilde{\Psi}(t,x,y,\zeta) = \Psi(t,x,y,h(t,x,y)\zeta + h_b(t,x,y))$$

Mapping Continuity Equation

Model

$$u_x + v_v + w_z = 0$$

Map to new space

$$(h\tilde{u})_{x}-((\zeta h+h_{b})_{x}\tilde{u})_{\zeta}+(h\tilde{v})_{y}-\left((\zeta h+h_{b})_{y}\tilde{v}\right)_{\zeta}+(\tilde{w})_{\zeta}=0$$

Solve for vertical velocity, w,

$$\widetilde{w}(t,x,y,\zeta) = -\left(h\int_0^{\zeta} \widetilde{u} \,d\zeta'\right)_x - \left(h\int_0^{\zeta} \widetilde{v} \,d\zeta'\right)_y + (\zeta h + h_b)_x \widetilde{u}(t,x,y,\zeta) + (\zeta h + h_b)_y \widetilde{v}(t,x,y,\zeta)$$

Depth averaged equation

$$h_t + \left(h \int_0^1 \tilde{u} \, \mathrm{d}\zeta\right)_x + \left(h \int_0^1 \tilde{v} \, \mathrm{d}\zeta\right)_y = 0$$

Let u_m and v_m denote the mean velocity

$$h_t + (hu_m)_x + (hv_m)_v = 0$$

Mapping Momentum Equations

Caleb Logeman James Rossmanith

Thin Film Equation Model Numerical Method Results

Generalized Shallow Water Equations

Model

Numerical Methods Results Future Work

References

$$u_t + (u^2)_x + (uv)_y + (uw)_z = -\frac{1}{\rho}p_x + \frac{1}{\rho}(\sigma_{xz})_z + ge_x$$

 $v_t + (uv)_x + (v^2)_y + (vw)_z = -\frac{1}{\rho}p_y + \frac{1}{\rho}(\sigma_{yz})_z + ge_y$

$$\begin{split} \left(h\tilde{u}\right)_{t} + \left(h\tilde{u}^{2} + \frac{1}{2}ge_{z}h^{2}\right)_{x} + \left(h\tilde{u}\tilde{v}\right)_{y} + \left(h\tilde{u}\omega - \frac{1}{\rho}\tilde{\sigma}_{xz}\right)_{\zeta} &= gh\left(e_{x} - e_{z}(h_{b})_{x}\right) \\ \left(h\tilde{v}\right)_{t} + \left(h\tilde{u}\tilde{v}\right)_{x} + \left(h\tilde{v}^{2} + \frac{1}{2}ge_{z}h^{2}\right)_{y} + \left(h\tilde{v}\omega - \frac{1}{\rho}\tilde{\sigma}_{yz}\right)_{\zeta} &= gh\left(e_{x} - e_{z}(h_{b})_{y}\right) \end{split}$$

where

$$\omega = \frac{1}{h} \left(-\left(h \int_0^{\zeta} \tilde{u} - u_m \, d\zeta' \right)_x - \left(h \int_0^{\zeta} \tilde{v} - v_m \, d\zeta' \right)_y \right)$$

Mapped Reference System

Model

$$h_{t} + (hu_{m})_{x} + (hv_{m})_{y} = 0$$

$$(h\tilde{u})_{t} + \left(h\tilde{u}^{2} + \frac{1}{2}ge_{z}h^{2}\right)_{x} + (h\tilde{u}\tilde{v})_{y} + \left(h\tilde{u}\omega - \frac{1}{\rho}\tilde{\sigma}_{xz}\right)_{\zeta} = gh(e_{x} - e_{z}(h_{b})_{x})$$

$$(h\tilde{v})_{t} + (h\tilde{u}\tilde{v})_{x} + \left(h\tilde{v}^{2} + \frac{1}{2}ge_{z}h^{2}\right)_{y} + \left(h\tilde{v}\omega - \frac{1}{\rho}\tilde{\sigma}_{yz}\right)_{\zeta} = gh(e_{x} - e_{z}(h_{b})_{y})$$

$$\omega = \frac{1}{\rho}\left(-\left(h\int_{0}^{\zeta}\tilde{u}_{d}d\zeta'\right) - \left(h\int_{0}^{\zeta}\tilde{v}_{d}d\zeta'\right)\right)$$

 $\omega = \frac{1}{h} \left(-\left(h \int_0^{\zeta} \tilde{u}_d \, \mathrm{d}\zeta' \right)_{\zeta} - \left(h \int_0^{\zeta} \tilde{v}_d \, \mathrm{d}\zeta' \right)_{\zeta} \right)$

with

$$\tilde{u}_d = \tilde{u} - u_m \quad \tilde{v}_d = \tilde{v} - v_m$$

Newtonian Flow

aleb Logemann James Rossmanith

Thin Film Equation Model

Results Generalized

Generalized Shallow Water Equations

Equations Model

Results
Future Work

References

Newtonian Stree Tensor

$$\sigma_{xz} = \mu u_z \quad \sigma_{yz} = \mu v_z$$

Kinematic Viscosity

$$\nu = \frac{\mu}{\rho}$$

Mapped stress tensor

$$rac{1}{
ho} ilde{\sigma}_{\mathsf{x}\mathsf{z}} = rac{
u}{h} ilde{u}_{\zeta} \quad rac{1}{
ho} ilde{\sigma}_{\mathsf{y}\mathsf{z}} = rac{
u}{h} ilde{v}_{\zeta}$$

Boundary Conditions

aleb Logemann, James Rossmanith

Equation

Model

Numerical Methods

Generalized Shallow Water Equations

Model
Numerical Methods
Results

References

Stree Free Condition at surface

$$0 = \left. u_z \right|_{z=h_s} \qquad 0 = \left. v_z \right|_{z=h_s}$$

Mixed Slip Condition at bottom topography

$$0 = \left. u - \frac{\lambda}{\mu} \sigma_{xz} \right|_{z=h_b} \qquad 0 = \left. v - \frac{\lambda}{\mu} \sigma_{yz} \right|_{z=h_b}$$

Mapped with Newtonian Stress

$$0 = \left. \tilde{u}_{\zeta} \right|_{\zeta=1} \qquad 0 = \left. \tilde{v}_{\zeta} \right|_{\zeta=1}$$

and

$$0 = \tilde{u} - \frac{\lambda}{h} \tilde{u}_{\zeta} \bigg|_{\zeta=0} \qquad 0 = \tilde{v} - \frac{\lambda}{h} \tilde{v}_{\zeta} \bigg|_{\zeta=0}$$

Mapped Reference System

Caleb Logemanr James Rossmanith

Equation

Model

Numerical Methods

Generalized Shallow Water Equations

Model

Numerical Met Results Future Work

Reference

$$\begin{split} h_t + \left(hu_m\right)_x + \left(hv_m\right)_y &= 0 \\ \left(h\tilde{u}\right)_t + \left(h\tilde{u}^2 + \frac{1}{2}ge_zh^2\right)_x + \left(h\tilde{u}\tilde{v}\right)_y + \left(h\tilde{u}\omega - \frac{\nu}{h}\tilde{u}_\zeta\right)_\zeta &= gh\big(e_x - e_z(h_b)_x\big) \\ \left(h\tilde{v}\right)_t + \left(h\tilde{u}\tilde{v}\right)_x + \left(h\tilde{v}^2 + \frac{1}{2}ge_zh^2\right)_y + \left(h\tilde{v}\omega - \frac{\nu}{h}\tilde{v}_\zeta\right)_\zeta &= gh\big(e_x - e_z(h_b)_y\big) \end{split}$$

Boundary Conditions

$$0 = \tilde{u}_{\zeta}|_{\zeta=1}$$
 $0 = \tilde{v}_{\zeta}|_{\zeta=1}$

and

$$0 = \tilde{u} - \frac{\lambda}{h} \tilde{u}_{\zeta} \Big|_{\zeta=0} \qquad 0 = \tilde{v} - \frac{\lambda}{h} \tilde{v}_{\zeta} \Big|_{\zeta=0}$$

Moment Closure

Caleb Logemann James Rossmanith

Equation Model Numerical Method

Generalized Shallow Water Equations

Model

Results

References

Depth Averaged Momentum Equations

$$(hu_m)_t + \left(h \int_0^1 \tilde{u}^2 d\zeta + \frac{1}{2} g e_z h^2\right)_x + \left(h \int_0^1 \tilde{u} \tilde{v} d\zeta\right)_y$$
$$+ \frac{\nu}{\lambda} \left(u|_{\zeta=0} = hg(e_x - e_z(h_b)_x)\right)$$
$$(hv_m)_t + \left(h \int_0^1 \tilde{u} \tilde{v} d\zeta\right)_y + \left(h \int_0^1 \tilde{v}^2 d\zeta + \frac{1}{2} g e_z h^2\right)_y$$
$$+ \frac{\nu}{\lambda} \left(v|_{\zeta=0} = hg(e_x - e_z(h_b)_y)\right)$$

Polynomial Ansatz

aleb Logemann James Rossmanith

Equation Model Numerical Methods

Generalized Shallow Water Equations

Model

Results

Reterence

$$\begin{split} \tilde{u}(t,x,y,\zeta) &= u_m(t,x,y) + u_d(t,x,y,\zeta) \\ &= u_m(t,x,y) + \sum_{j=1}^N \left(\alpha_j(t,x,y)\phi_j(\zeta)\right) \\ \tilde{v}(t,x,y,\zeta) &= v_m(t,x,y) + v_d(t,x,y,\zeta) \\ &= v_m(t,x,y) + \sum_{j=1}^N \left(\beta_j(t,x,y)\phi_j(\zeta)\right) \end{split}$$

Orthogonality Condition

$$\int_0^1 \phi_j(\zeta)\phi_i(\zeta) \,\mathrm{d}\zeta = 0 \quad \text{for } j \neq i$$

$$\phi_0(\zeta) = 1$$
, $\phi_1(\zeta) = 1 - 2\zeta$, $\phi_2(\zeta) = 1 - 6\zeta + 6\zeta^2$

Constant Moments

aleb Logemanı James Rossmanith

Equation

Model

Numerical Methods

Generalized Shallow Water Equations

Model

Results Future Work

$$\begin{split} \left(hu_{m}\right)_{t} + \left(h\left(u_{m}^{2} + \sum_{j=1}^{N} \frac{\alpha_{j}^{2}}{2j+1}\right) + \frac{1}{2}ge_{z}h^{2}\right)_{x} \\ + \left(h\left(u_{m}v_{m} + \sum_{j=1}^{N} \frac{\alpha_{j}\beta_{j}}{2j+1}\right)\right)_{y} = -\frac{\nu}{\lambda}\left(u_{m} + \sum_{j=1}^{N} \alpha_{j}\right) + hg\left(e_{x} - e_{z}(h_{b})_{x}\right) \\ \left(hv_{m}\right)_{t} + \left(h\left(v_{m}^{2} + \sum_{j=1}^{N} \frac{\alpha_{j}\beta_{j}}{2j+1}\right) + \frac{1}{2}ge_{z}h^{2}\right)_{y} \\ + \left(h\left(u_{m}v_{m} + \sum_{j=1}^{N} \frac{\alpha_{j}\beta_{j}}{2j+1}\right)\right)_{x} = -\frac{\nu}{\lambda}\left(v_{m} + \sum_{j=1}^{N} \beta_{j}\right) + hg\left(e_{y} - e_{z}(h_{b})_{y}\right) \end{split}$$

Higher Order Moments

Caleb Logemanr James Rossmanith

Fhin Film Equation Model Numerical Method Results

Generalized Shallow Water Equations

Model
Numerical Metho
Results

References

Moment Equation

$$\begin{split} \int_{0}^{1} \phi_{i} \bigg(\left(h \tilde{u} \right)_{t} + \left(h \tilde{u}^{2} + \frac{1}{2} g e_{z} h^{2} \right)_{x} + \left(h \tilde{u} \tilde{v} \right)_{y} + \left(h \tilde{u} \omega - \frac{1}{\rho} \tilde{\sigma}_{xz} \right)_{\zeta} \bigg) \, \mathrm{d}\zeta \\ &= \int_{0}^{1} \phi_{i} (g h (e_{x} - e_{z} (h_{b})_{x})) \, \mathrm{d}\zeta \end{split}$$

Simplified gives

$$(h\alpha_{i})_{t} + \left(2hu_{m}\alpha_{i} + h\sum_{j,k=1}^{N} A_{ijk}\alpha_{j}\alpha_{k}\right)_{x}$$

$$+ \left(hu_{m}\beta_{i} + hv_{m}\alpha_{i} + h\sum_{j,k=1}^{N} A_{ijk}\alpha_{j}\beta_{k}\right)_{y}$$

$$= u_{m}D_{i} - \sum_{i,k=1}^{N} B_{ijk}D_{j}\alpha_{k} - (2i+1)\frac{\nu}{\lambda}\left(u_{m} + \sum_{i=1}^{N} \left(1 + \frac{\lambda}{h}C_{ij}\right)\alpha_{j}\right)$$

Higher Order Moments

Caleb Logemanr James Rossmanith

Equation

Model

Numerical Methods

Generalized Shallow Water Equations

Model

Results Future Work

$$\begin{split} \left(h\beta_{i}\right)_{t} + \left(hu_{m}\beta_{i} + hv_{m}\alpha_{i} + h\sum_{j,k=1}^{N}A_{ijk}\alpha_{j}\beta_{k}\right)_{x} + \left(2hv_{m}\beta_{i} + h\sum_{j,k=1}^{N}A_{ijk}\beta_{j}\beta_{k}\right)_{y} \\ = v_{m}D_{i} - \sum_{j,k=1}^{N}B_{ijk}D_{j}\beta_{k} - (2i+1)\frac{\nu}{\lambda}\left(v_{m} + \sum_{j=1}^{N}\left(1 + \frac{\lambda}{h}C_{ij}\right)\beta_{j}\right) \\ A_{ijk} = (2i+1)\int_{0}^{1}\phi_{i}\phi_{j}\phi_{k}\,\mathrm{d}\zeta \\ B_{ijk} = (2i+1)\int_{0}^{1}\phi_{i}'\left(\int_{0}^{\zeta}\phi_{j}\,\mathrm{d}\hat{\zeta}\right)\phi_{k}\,\mathrm{d}\zeta \\ C_{ij} = \int_{0}^{1}\phi_{i}'\phi_{j}'\,\mathrm{d}\zeta \\ D_{i} = (h\alpha_{i})_{x} + (h\beta_{i})_{y} \end{split}$$

Example Systems

Caleb Logemann James Rossmanith

Thin Film Aquation Model Numerical Method: Results

Generalized Shallow Water Equations

Model
Numerical Method
Results

References

1D model with h_b constant, $e_x=e_y=0$, and $e_z=1$ Constant System

$$\begin{bmatrix} h \\ h u_m \end{bmatrix}_t + \begin{bmatrix} h u_m \\ h u_m^2 + \frac{1}{2}gh^2 \end{bmatrix}_x = -\frac{\nu}{\lambda} \begin{bmatrix} 0 \\ u_m \end{bmatrix}$$

Flux Jacobian Eigenvalues, $u_m \pm \sqrt{gh}$ Linear System, $\tilde{u} = u_m + s\phi_1$, $s = \alpha_1$

$$\begin{bmatrix} h \\ hu_m \\ hs \end{bmatrix}_t + \begin{bmatrix} hu_m \\ hu_m^2 + \frac{1}{2}gh^2 + \frac{1}{3}hs^2 \\ 2hu_ms \end{bmatrix}_x = Q \begin{bmatrix} h \\ hu_m \\ hs \end{bmatrix}_x - P$$

$$Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & u_m \end{bmatrix} \quad P = \frac{\nu}{\lambda} \begin{bmatrix} 0 \\ u_m + s \\ 3(u_m + s + 4\frac{\lambda}{b}s) \end{bmatrix}$$

Flux Jacobian Eigenvalues, $u_m \pm \sqrt{gh + s^2}$, u_m

Numerical Methods

Caleb Logemann James Rossmanith

| hin Film Equation Model Numerical Method Results

Generalized Shallow Water Equations

Numerical Methods Results Future Work

References

Model Equation

$$\mathbf{q}_t + \mathbf{f}(\mathbf{q})_x = Q(\mathbf{q})\mathbf{q}_x - \mathbf{P}(\mathbf{q})$$
 for $(x, t) \in [a, b] \times [0, T]$

Weak Form, find q such that

$$\int_{a}^{b} \mathbf{q}_{t} v \, dx + \int_{a}^{b} \mathbf{f}(\mathbf{q})_{x} v \, dx = \int_{a}^{b} Q(\mathbf{q}) \mathbf{q}_{x} v \, dx - \int_{a}^{b} \mathbf{P}(\mathbf{q}) v \, dx$$

for all
$$v \in L^2([a,b] \times [0,T])$$

Notation

Caleb Logemann, James Rossmanith

Equation Model Numerical Methods Results

Generalized Shallow Water Equations

Numerical Methods Results Future Work

References

■ Partition the domain, [a, b] as

$$a = x_{1/2} < \cdots < x_{j-1/2} < x_{j+1/2} < \cdots < x_{N+1/2} = b$$

- $I_{j} = [x_{j-1/2}, x_{j+1/2}]$
- $x_j = \frac{x_{j+1/2} + x_{j-1/2}}{2}$
- $\Delta x_j = x_{j+1/2} x_{j-1/2}$
- $\Delta x_j = \Delta x \text{ for all } j.$

Discontinuous Galerkin Space

Caleb Logemann James Rossmanith

I hin Film Equation Model Numerical Method: Results

Generalized Shallow Water Equations

Numerical Methods Results Future Work Finite Dimensional DG Space

$$V^k = \left\{ v \in L^2([a,b]) \middle| v|_{I_j} \in P^k(I_j) \right\}$$

Basis for V^k

$$\left\{\phi_j^\ell\right\} \text{ where } \left.\phi_j^\ell(x)\right|_{I_j} = \phi^\ell(\xi_j(x)) \text{ and } \left.\phi_j^\ell(x)\right|_{\bar{I_j}} = 0$$

for $j=1,\ldots,N$ and $\ell=1,\ldots k$.

Legendre Polynomials

$$\phi^k \in P^k([-1,1])$$
 with $\frac{1}{2} \int_{-1}^1 \phi^k(\xi) \phi^\ell(\xi) \,\mathrm{d}\xi = \delta_{k\ell}$

and

$$\xi_j(x) = \frac{2}{\Delta x_i}(x - x_j)$$

Numerical Methods

Caleb Logeman James Rossmanith

Equation

Model

Numerical Metho

Results

Generalized Shallow Water Equations

Numerical Methods Results Future Work

D-f----

Find
$$\mathbf{q}_h \in V^k$$
 such that
$$\int_{I_j} (\mathbf{q}_h)_t \phi_j^\ell(x) \, \mathrm{d}x = \int_{I_j} \mathbf{f}(\mathbf{q}_h)_x \phi_j^\ell \, \mathrm{d}x$$
$$- F_{j+1/2} \phi_j^\ell(x_{j+1/2}) + F_{j-1/2} \phi_j^\ell(x_{j-1/2})$$
$$+ \int_{I_j} Q(\mathbf{q}_h)(\mathbf{q}_h)_x \phi_j^\ell \, \mathrm{d}x - \int_{I_j} \mathbf{P}(\mathbf{q}_h) \phi_j^\ell \, \mathrm{d}x$$

for all ϕ_j^{ℓ} . Local Lax-Friedrichs Flux

$$\mathbf{q}_{h}^{+} = \lim_{x \to x_{j+1/2}^{+}} (\mathbf{q}_{h}(x))$$

$$\mathbf{q}_{h}^{-} = \lim_{x \to x_{j+1/2}^{-}} (\mathbf{q}_{h}(x))$$

$$a = \max_{\mathbf{q} \in [\mathbf{q}_{h}^{-}, \mathbf{q}_{h}^{+}]} \{ \rho(\mathbf{f}'(\mathbf{q}) - Q(\mathbf{q})) \}$$

$$F_{j+1/2} = \frac{1}{2} (\mathbf{f}(\mathbf{q}_{h}^{+}) + \mathbf{f}(\mathbf{q}_{h}^{-})) - \frac{1}{2} a(\mathbf{q}_{h}^{+} - \mathbf{q}_{h}^{-})$$

Nonconservative Flux

aleb Logemann James Rossmanith

Thin Film Equation Model Numerical Methods Results

Generalized Shallow Water Equations

Numerical Methods Results

References

Need to evaluate

$$\int^{I_j} Q \mathbf{q}_x \phi_j^\ell \, \mathrm{d}x$$

$$\left.\mathbf{q}
ight|_{I_j} = \sum_{\ell=1}^k \left(Q_j^\ell \phi_j^\ell(x)
ight), \quad \left.\mathbf{q}_x
ight|_{I_j} = \sum_{\ell=1}^k \left(Q_x^\ell \phi_j^\ell(x)
ight)$$

where

$$\begin{bmatrix} Q_{x}^{1} \\ Q_{x}^{2} \\ Q_{x}^{3} \\ Q_{x}^{4} \\ Q_{x}^{5} \end{bmatrix} = \frac{1}{2\Delta x} \begin{bmatrix} \Delta Q^{1} - 2\sqrt{5}\Delta Q^{3} + 78\Delta Q^{5} \\ \Delta Q^{2} - \frac{10}{3}\sqrt{3}\sqrt{7}\Delta Q^{4} \\ \Delta Q^{3} - 14\sqrt{5}\Delta Q^{5} \\ \Delta Q^{4} \\ \Delta Q^{5} \end{bmatrix}$$

$$\Delta Q^{\ell} = Q^{\ell}_{i+1} - Q^{\ell}_{i-1}$$

Inviscid Example

aleb Logemanr James Rossmanith

Thin Film Equation

Numerical Methods Results

Generalized Shallow Water Equations

N.

Results

D-f----

$$x \in [-1, 1]$$
 $t \in [0, 2.0]$
 $h(t = 0, x) = 1 + e^{3\cos(\pi(x+0.5))-4}$
 $\tilde{u}(t = 0, x, \zeta) = \begin{cases} 0.25 & \text{constant} \\ 0.5\zeta & \text{linear} \end{cases}$
 $u_m = 0.25$
 $s = -0.25$

Inviscid Example

James
Rossmanith

Thin Film Equation

Numerical Method

Generalized Shallow Wate Equations

Model

Results

Future Wor

Higher Moment Equations

Caleb Logemanr James Rossmanith

Fhin Film Equation Model Numerical Method: Results

Generalized Shallow Water Equations Model

Numerical Methods Results

Future Work

1 dimensional with h_b constant, $e_x=e_y=0$, and $e_z=1$ Quadratic Vertical Profile, $\tilde{u}=u_m+s\phi_1+\kappa\phi_2$

$$\begin{bmatrix} h \\ hu \\ hs \\ h\kappa \end{bmatrix}_{t} + \begin{bmatrix} hu \\ hu^{2} + \frac{1}{2}gh^{2} + \frac{1}{3}hs^{2} + \frac{1}{5}h\kappa^{2} \\ 2hus + \frac{4}{5}hs\kappa \\ 2hu\kappa + \frac{2}{3}hs^{2} + \frac{2}{7}h\kappa^{2} \end{bmatrix}_{x} = Q \begin{bmatrix} h \\ hu \\ hs \\ h\kappa \end{bmatrix}_{x} - P$$

Flux Jacobian Eigenvalues, $u_m \pm c\sqrt{gh}$

$$c^{4} - \frac{10\kappa}{7}c^{3} - \left(1 + \frac{6\kappa^{2}}{35} + \frac{6s^{2}}{5}\right)c^{2} + \left(\frac{22\kappa^{3}}{35} - \frac{6\kappa s^{2}}{35} + \frac{10\kappa}{7}\right)c - \frac{\kappa^{4}}{35} - \frac{6\kappa^{2}s^{2}}{35} - \frac{3\kappa^{2}}{7} + \frac{s^{4}}{5} + \frac{s^{2}}{5} = 0$$

Future Work

aleb Logemann James Rossmanith

Equation Model Numerical Methods

Generalized Shallow Water Equations

Numerical Methods

Future Work

leferences

- Higher Order Numerical Methods
- Slope Limiters
- Two Dimensional Meshes
- Icosahedral Spherical Mesh
- Positivity Preserving Limiters

Icosahedral Mesh

Future Work

Subdivide each edge Project onto sphere

Spherical Test Cases

Caleb Logemann James Rossmanith

Thin Film Equation Model

Generalized Shallow Wate Equations

Numerical Method

Future Work

Reterences

Spherical Test Cases

Caleb Logeman James Rossmanith

Thin Film Equation Model

Numerical Metho

Generalized Shallow Wate Equations

Numerical Metho

Future Work

Spherical Test Cases

Caleb Logemann, James Rossmanith

Thin Film Equation

Numerical Metho

Generalized Shallow Wate Equations

Model

Numerical Meth

Future Work

Bibliography I

Caleb Logemann James Rossmanith

I hin Film Equation Model Numerical Method Results

Generalized
Shallow Water
Equations
Model
Numerical Methor
Results

- [1] Andrea L Bertozzi, Andreas Münch, and Michael Shearer. "Undercompressive shocks in thin film flows". In: *Physica D: Nonlinear Phenomena* 134.4 (1999), pp. 431–464.
- [2] Bernardo Cockburn and Chi-Wang Shu. "The local discontinuous Galerkin method for time-dependent convection-diffusion systems". In: SIAM Journal on Numerical Analysis 35.6 (1998), pp. 2440–2463.
- [3] Bernardo Cockburn and Chi-Wang Shu. "The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems". In: *Journal of Computational Physics* 141.2 (1998), pp. 199–224.
- [4] Y. Ha, Y.-J. Kim, and T.G. Myers. "On the numerical solution of a driven thin film equation". In: *J. Comp. Phys.* 227.15 (2008), pp. 7246–7263.

Bibliography II

Caleb Logemann James Rossmanith

hin Film quation Model Numerical Method Results

Shallow Water Equations Model Numerical Method Results

- [5] Julia Kowalski and Manuel Torrilhon. "Moment Approximations and Model Cascades for Shallow Flow". In: arXiv preprint arXiv:1801.00046 (2017).
- [6] Randall J LeVeque et al. Finite volume methods for hyperbolic problems. Vol. 31. Cambridge university press, 2002.
- [7] T.G. Myers and J.P.F. Charpin. "A mathematical model for atmospheric ice accretion and water flow on a cold surface". In: Int. J. Heat and Mass Transfer 47.25 (2004), pp. 5483–5500.
- [8] Tim G Myers. "Thin films with high surface tension". In: *SIAM* review 40.3 (1998), pp. 441–462.
- [9] NASA. URL: http://icebox.grc.nasa.gov/gallery/images/C95_03918.html.
- [10] Alexander Oron, Stephen H Davis, and S George Bankoff. "Long-scale evolution of thin liquid films". In: Reviews of modern physics 69.3 (1997), p. 931.

Bibliography III

Caleb Logemann
James
Rossmanith

Fhin Film Equation Model Numerical Methods Results

Generalized Shallow Water Equations Model

Numerical Methods Results Future Work

- [11] J.A. Rossmanith. DoGPACK. Available from http://www.dogpack-code.org/.
- [12] James A Rossmanith. "A wave propagation method for hyperbolic systems on the sphere". In: *Journal of Computational Physics* 213.2 (2006), pp. 629–658.
- [13] David L Williamson et al. "A standard test set for numerical approximations to the shallow water equations in spherical geometry". In: *Journal of Computational Physics* 102.1 (1992), pp. 211–224.