Dynamical Systems For Engineers Test 1

School I&C, Master Course

NAME and First name:

If a page is unstapled, please mark your name on it. There is a total of 9 pages. Your answers must be clear, precise and complete.

The notation \dot{x} stands for dx/dt.

Maximum: 20 points

Question 1 (4 points)

Consider a continuous-time dynamical system, with state $(x_1, x_2) \in \mathbb{R}^2$, whose state equation is the set of nonlinear ordinary differential equations

$$\begin{array}{rcl}
\dot{x}_1 & = & x_1 x_2 \\
\dot{x}_2 & = & 1.
\end{array}$$

1. (1pt) Find a solution $(x_1(t), x_2(t))$ with initial condition $(x_1(0), x_2(0)) = (1, 0)$.

2. (1pt) Is this solution unique? Justify your answer.

3. (1pt) Does the solution with initial condition $(x_1(0), x_2(0)) = (1, 0)$ have a non-empty ω -lim	it
set? If so, which one; if not, justify your answer.	

4. (1pt) Does this dynamical system have an attractor? If so, which one? Justify your answer.

Question 2 (8 points)

Consider the autonomous linear system

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = \alpha x_1(t),$$

where $\alpha \in \mathbb{R}$ is a parameter.

1. (2 pts) Characterize the stability (i.e. asymptotic stable, stable, weakly unstable, strongly unstable) of the system, as a function of α (i.e., specify the corresponding range of values α for which your answer is valid). Justify rigorously your answer.

2. (3 pts) Characterize all the types of equilibrium (i.e. stable focus, saddle node, etc) that this system have, as a function of α (i.e. for each type of equilibrium, precise the corresponding range of values α for which your answer is valid). Draw the phase portrait in \mathbb{R}^2 of this system as accurately as possible, for each of the type of equilibrium that the system can have.

3. (3 pts) Let $(x_1(t), x_2(t))$ be the solution with initial condition $(x_1(0), x_2(0)) = (-\sqrt{|\alpha|}, 1)$. For which range(s) of values of $\alpha \in \mathbb{R}$, if any, does this solution have a non-empty ω -limit set? For the value(s) of of α such that your answer is positive, specify the non-empty ω -limit set of the solution. For the value(s) of of α such that your answer is negative, explain why the ω -limit set of the solution is empty.

Question 3 (4 points)

We consider the third-order autonomous linear system

$$\dot{x}_1(t) = -3x_1(t) - x_2(t)$$

$$\dot{x}_2(t) = -x_1(t) - 3x_2(t)$$

$$\dot{x}_3(t) = -2x_3(t).$$

1. (1pt) Characterize the stability of the system.

2. (3pts) Find the solution $x(t) = (x_1(t), x_2(t), x_3(t))$ of the system subject to the initial condition $(x_1(0), x_2(0), x_3(0)) = (1, 1, 1)$.

.

Question 4 (4 points)

The state and output equations of a non-autonomous linear system are

$$\dot{x}_1(t) = -4x_1(t) + \alpha x_2(t)
\dot{x}_2(t) = -2x_1(t) + \beta x_2(t) + u(t)
y(t) = x_2(t)$$

where $\alpha, \beta \in \mathbb{R}$ are two parameters, where u(t) is the input signal and y(t) is the output response. The initial condition of the system is $(x_1(0), x_2(0)) = (0, 0)$. et U(s) (respectively, Y(s)) denote the Laplace transforms of u(t) (resp., of y(t)): you measure that the transfer function H(s) = Y(s)/U(s) of this system is

$$H(s) = \frac{1}{s+1}. (1)$$

1. (1pt) Does the knowledge of the transfer function H(s) given by (1) give you an indication on the value(s) of the parameters $\alpha, \beta \in \mathbb{R}$? If so, give the (range of) values of $\alpha, \beta \in \mathbb{R}$ for which the system has indeed the transfer function H(s) given by (1). If not, explain why.

	(1pt) istify.	For	the	value	s of a	$\alpha, \beta \in$	\mathbb{R}	obtair	ned i	n qu	estion	3.1	, is t	he sy	stem	B.I.B.0). s	stable?
3	(1pt)	For t	the v	alues	of α	$\beta \in \mathbb{R}$	[®] obt	tained	l in c	nuesti	ion 3 1	l is	the s	vstem	n obse	ervable'	? .Iı	ustify
·	(100)		VIII V	araes	or a,	ρ C 1				14050	0.1	, 10		<i>y</i> 50011	1 0 0 0 0			asony.
4.	(1pt)	For t	the v	alues	of α ,	$eta \in \mathbb{R}$	R obt	ained	in q	Įuesti	on 3.1	, is	the sy	ystem	cont	rollable	e? J	Justify