针对无约束最优化问题,通常做法就是对f(X)求导,并令 $\frac{\partial}{\partial X}f(X)=0$,求解可以得到最优值。如果f(X)为凸函数,则可以保证结果为全局最优解。

针对有等式约束的最优化问题,采用**拉格朗日乘数法**(Lagrange Multiplier)^[2]进行求解:通过拉格朗日系数 $A = [a_1, a_2 \dots a_n]^T \in \mathbb{R}^n$ 把等式约束和目标函数组合成为一个式子,对该式子进行最优化求解:

$$X = arg \min_{X} [f(X) + A^T H(X)]$$

其中, $H(X) = [h_1(X), h_2(X) \dots h_n(X)]^T \in \mathbb{R}^n$,相当于将有等式约束的最优化问题转换成了 无约束最优化求解问题,解决方法依旧是对 $f(X) + A^T H(X)$ 的各个参数(X,A)求偏导,并 令其等于 0,联立等式求解。

针对有不等式约束的最优化问题,常用的方法是 KKT 条件(Karush-Kuhn-Tucker Conditions)^[3]:同样地,把所有的不等式约束、等式约束和目标函数全部写为一个式子:

$$L(X, A, B) = f(X) + A^{T}H(X) + B^{T}G(X)$$

KKT 条件是说最优值必须满足以下条件:

$$\frac{\partial}{\partial X}L(X, A, B) = 0$$
$$H(X) = 0$$
$$B^{T}G(X) = 0$$

其中, $B = [b_1, b_2 \dots b_m]^T \in \mathbb{R}^m$, $G(X) = [g_1(X), g_2(X) \dots g_m(X)]^T \in \mathbb{R}^m$ 。KKT 条件是求解最优值 X^* 的必要条件,要使其成为充分必要条件,还需要f(X)为凸函数才行。

在 KKT 条件中, $B^TG(X) = 0$ 这个条件最有趣,因为 $g_l(X) \le 0$,如果要满足这个等式,需要 $b_l = 0$ 或者 $g_l(X) = 0$ 。在我们后面的推导中会用到这个性质。

注:

- 无约束优化: 直接对f(x)求导;
- 有等式约束的最优化问题:采用拉格朗日乘数法(Lagrange Multiplier)进行求解;
- 针对有不等式约束约束的最优化问题,采用KKT条件(Karush-Kuhn-Trcker Conditions);