Media de una Distribución Normal (Varianza Conocida)

¿Cuándo se usa?

Cuando la población es normal y la varianza poblacional σ² es conocida (caso teórico o procesos muy controlados).

Estadístico de prueba

$$Z_0 = rac{ar{X} - \mu_0}{\sigma/\sqrt{n}}$$
 Probabilidad de de caiga dentro de aceptación dado

Error tipo II

Probabilidad de que el estadístico caiga dentro de la región de

Media de una Distribución Normal (Varianza Desconocida)

+ Info

¿Cuándo se usa? Cuando la población es normal y

σ² es desconocida. Este es el caso más

común.

Estadístico de prueba

Error tipo II

Probabilidad de que el estadístico caiga dentro de la región de aceptación tener en cuenta que se esta usando la distribución t

La Varianza y la Desviación Estándar de una Distribución Normal

¿Cuándo se usa? Aquí la hipótesis es sobre σ². El estadístico sigue una chi-cuadrado con n-1

Estadístico de prueba

Error tipo II

Probabilidad de que χ_0^2 quede

PRUEBAS DE HIPÓTESIS PARA Zona de rechazo - Normal (bilateral, α =0.05) 0.40 0.35 0.30 Me 0.25 Nor 0.20 05 👚 0.15 Cuand 0.10 pobla 0.05 proce 0.00 Esta $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ prue CO $|Z_0| > z_{\alpha/2}$ de Z_0 Zona de rechazo - Normal (unilateral derecha, α =0.05) 0.40 0.35 0.30 0.25 0.20 0.15 ás 0.10 0.05 0.00 Error Proba μ_0 caiga $H_0: \mu \leq \mu_0$ vs. $H_1: \mu > \mu_0$ acept se es $Z_0 > z_\alpha$ La Varianza y la Desviación Estándar Zona de rechazo - Normal (unilateral izquierda, α=0.05) O5 👚 Aquí la 0.35 sigue 0.30 0.25 0.20 Es 0.15 pri 0.10 iede 0.05 0.00 $H_0: \mu \ge \mu_0$ vs. $H_1: \mu < \mu_0$ $Z_0 < -z_\alpha$

Media de una Distribución Normal (Varianza Conocida)

¿Cuándo se usa?

Cuando la población es normal y la varianza poblacional σ² es conocida (caso teórico o procesos muy controlados).

Estadístico de prueba

$$Z_0 = rac{ar{X} - \mu_0}{\sigma/\sqrt{n}}$$
 caiga dentro de la región de aceptación dado

Error tipo II

Probabilidad de que el estadístico

Media de ui Normal (Varia)

+ Info

Error tipo II

Probabilidad de que el estadís caiga dentro de la región aceptación tener en cuenta se esta usando la distribución 1

La Varianza y la de una Dist

¿Cuándo se usa? Aquí la hipótesis es sobre σ² .El sigue una chi-cuadrado con n-

Calcular el Error tipo II

$$\beta = \Phi\left(z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}\right) - \Phi\left(-z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}\right)$$

Calcular el Power

$$1-\beta$$

Ecuación para hallar el posible n

$$n \simeq rac{(z_{lpha/2} + z_{eta})^2 \sigma^2}{\delta^2}$$

Estadístico de prueba

$$\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2} \stackrel{\text{Probabilidad de que } \chi}{\text{ado que } \sigma^2 = \sigma_1^2}.$$

Error tipo II

Probabilidad de que χ_0^2 quede

Media de una Distribución Normal (Varianza Conocida)

¿Cuándo se usa? Cuando la población es normal y la varianza poblacional σ² es conocida (caso teórico o procesos muy controlados). + Info

Estadístico de prueba

 $ar{oldsymbol{v}}$

Error tipo II

Probabilidad de que el estadístico caiga dentro de la región de ción dado

Calcular el Error tipo II

Para poder calcular el valor del Error tipo II se van a usar las gráficar proporcionadas por el Libro Montgomery 7th Edition Pag. 515 en adelante

Calcular el Power

$$1-\beta$$

istribución **)esconocida)**

se usa? oblación es normal y ocida. Este es el caso más

Estadístico de prueba

 $t_0 = \frac{X - \mu_0}{S/\sqrt{n}}$

se Usta usando la distribución t

La Varianza y la Desviación Estándar de una Distribución Normal

 \leftarrow ¿Cuándo se usa? Aquí la hipótesis es sobre σ^2 .El estadístico sigue una chi-cuadrado con n-1

Estadístico de prueba

$$\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

Error tipo II

Probabilidad de que χ_0^2 quede χ_2^2 entre los límites críticos, dado que $\sigma^2 = \sigma_1^2$.

UEBAS DE HIPOTESIS PARA Zona de rechazo - Chi-cuadrado (bilateral, α=0.05, gl=10) 0.10 Chi-cuadrado (gl=10) Zona de rechazo (α=0.05) 0.08 Me 0.06 Nor 05 🍅 Cuand 0.02 pobla proce prus $H_0: \sigma^2 = \sigma_0^2$ vs. $H_1: \sigma^2 \neq \sigma_0^2$ vs. $\chi_0^2 < \chi_{\alpha/2,n-1}^2$ vs. $\chi_0^2 > \chi_{1-\alpha/2,n-1}^2$ Cola derecha 0.10 0.06 0.06 Densidad 0.04 ás 0.02 0.00 $H_0: \overset{\circ}{\sigma^2} \leq \overset{\circ}{\sigma_0^2} \overset{\circ}{\text{vs.}} H_1: \overset{\circ}{\sigma^2} > \overset{\circ}{\sigma_0^2}$ Proba acep $\chi_0^2 > \chi_{1-\alpha, n-1}^2$ La Varianza y la Desviación Estándar Cola izquierda 0.10 Oʻs 👚 Aquí la 0.08 sigue 0.06 Densidad 0.04 0.06 pr 0.02 iede $\chi_0^2 H_0: \overset{\circ}{\sigma^2} \ge \overset{\circ}{\sigma_0}^2 \text{ vs. } H_1: \overset{\circ}{\sigma^2} < \overset{\circ}{\sigma_0}^2$ $\chi_0^2 < \chi_{\alpha,n-1}^2$

Media de una Distribución Normal (Varianza Conocida)

¿Cuándo se usa?

Cuando la población es normal y la varianza poblacional σ^2 es conocida (caso teórico o procesos muy controlados).

Estadístico de prueba

$$Z_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

Error tipo II

Probabilidad de que el estadístico caiga dentro de la región de aceptación dado

Media de una Distribución Normal (Varianza Desconocida)

+ Info

¿Cuándo se usa?
Cuando la población es normal y σ² es desconocida. Este es el caso más común.
Estadístico de

nrueha

Error tipo II

Probabilidad de que el estadísti caiga dentro de la región aceptación tener en cuenta q se esta usando la distribución t

La Varianza y la [de una Distr

 \leftarrow ¿Cuándo se usa? Aquí la hipótesis es sobre σ^2 .El ϵ sigue una chi-cuadrado con n-1

Calcular el Error tipo II

Para poder calcular el valor del Error tipo II se van a usar las gráficar proporcionadas por el Libro Montgomery 7th Edition Pag. 515 en adelante

Calcular el Power

$$1-\beta$$

Estadístico de prueba

$$\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2}^{\frac{\text{entre 10S lillilles Cliticos,}}{\text{dado que }\sigma^2 = \sigma_1^2.}}$$