CPA - Parallel Computing

Degree in Computer Science

T0. Parallel Computing

J. M. Alonso, P. Alonso, F. Alvarruiz, I. Blanquer, J. Ibáñez, E. Ramos, J. E. Román

Departament de Sistemes Informàtics i Computació Universitat Politècnica de València

Year 2024/25

1

Data of the Course

- Name: Parallel Computing (11549)
- Credits: 4.5
 - 1.5 for theory in classroom
 - 1.5 for seminars
 - 1.5 for sessions in laboratory
- Module: Parallel Computing
- Semester 3A

Bibliography

Book of theory:

Introducción a la Programación Paralela

F. Almeida et al.

Ed. Paraninfo, 2008

Book of exercises:

Ejercicios de Programación Paralela con OpenMP y MPI

J. E. Roman *et al.* Ed. UPV, 2018

Complementary bibliography:

General: [Grama et al. 2003], [Wilkinson, Allen 1998]

OpenMP: [Chapman et al. 2008], [Chandra et al. 2001]

■ MPI: [Gropp et al. 1999], [Pacheco 1997]

3

Syllabus - Theory

1	Introduction to parallel computing	T1. Introduction
2	Shared memory model	T2. Shared
3	Task dependency graph	memory
4	Fundamentals of algorithm design	
5	Performance evaluation (I)	
6	Task decomposition	
7	Message passing model	T3. Message
8	Point-to-point communication	passing
9	Algorithmic schemes	
10	Performance evaluation (II)	
11	Task assignment	
12	Static assignment: domain decomposition	

Syllabus - Seminars

1	Programming in C	S1. Introduction
2	Basic concepts	S2. Programming
3	Paralelization of loops	with OpenMP
4	Optimization of loops	
5	Parallel regions	
6	Sections	
7	Synchronization	
8	Basic concepts	S3. Programming
9	Point-to-point communication (I)	with MPI
10	Point-to-point communication (II)	
11	Collective communication (I)	
12	Collective communication (II)	
13	Derived datatypes	
14	Exercises	

Syllabus - Laboratory

1	Basic exercises	P1. Parallelization
2	Image processing	with OpenMP
3	Prime numbers	
4	Advanced OpenMP (I)	P2. Advanced
5	Advanced OpenMP (II)	OpenMP
6	Basic exercises	P3. Parallelization
7	Point-to-point communication	with MPI
8	Collective communication	
9	Derived datatypes	
10	Exam P3	

٤

Grading

70% Written exams

- Exam block 1 (35%, mid-semester)
- Exam block 2 (35%, end of semester January)

30% Laboratory

- P2, OpenMP (15%, academic work)
- P3, MPI (15%, questionnaire in the lab)

Minimum grade and repetitions:

- Exams: minimum grade of 1.4 over 3.5
- Second chance per block, repetition at end of semester
- Rest of evaluation acts do not have minimum grade nor a second chance

7