INF5050 - Protocols and routing in internet

Multiprotocol Label Switching (MPLS) / Generalized Multiprotocol Label Switching (GMPLS)

Khiem-Kim Ho Xuan – kkho@ifi.uio.no, Mattias Håheim Johnsen – mattiahj@ifi.uio.no

1. March 2013

Outline

- Background
- MPLS: Fundamentals
- MPLS: Terminology
- GMPLS
- GMPLS: Recovery techniques
- Summary
- Resources

What is MPLS?

- ▶ MPLS is a scalable data-carrying mechanism that directs data from one network node to the next based on short path labels rather than network addresses.
- Every network packet is assigned at least one label and packet-forwarding decisions are based on them exclusivly, rather than the content of the packets.
- Operates somewhere between layer 2 (data link layer) and layer 3 (network layer). Considered a "layer 2.5" protocol.
- Standardized by the IETF in 1996. Based on work done by Ipsilon Networks and Cisco.

Why MPLS?

- Avoids complex lookups in the routing table.
- Create end-to-end circuits using any protocol over any transport medium.
- Provide a highly scalable mechanism that was topology driven rather than flow driven.
- Load balance traffic to utilize network bandwidth efficiently.
- Allow core routers/networking devices to switch packets based on a simplified header.
- Remove the complexity and overhead of network managements (Assemble and reassemble IP packets).

MPLS was conceived, why?

- ▶ The shortest path routing protocols like IS-IS and OSPF
 - Did not take capacity characteristics into account while making the routing decisions
 - ► The outcome is, segmentation over the network which leads to congestion, while others remain under-utilized.
- MPLS reduces the complexity and redundancies by adding new network functionalities.

MPLS Fundamentals

- Main idea:
 - attach a short fixed-length label to packets at the ingress to an MPLS domain
 - the labels are used to make the forwarding decisions.
- MPLS consists of a forwarding and a control plane. Though they are decoupled and independent from each other.
- Supports explicit routed path.
- ▶ Provides Quality of Service (QoS) if it is implemented with Diff-Serv and Constraint-based routing.

Diff-Serv and Constraint-based routing

- Differentiated Services
 - ► A network architecture for classifying and managing network traffic and provide QoS on modern IP networks.
 - it is used to provide low-latency to critical network traffic. (Media, VOIP).
- Constraint-based routing
 - ▶ It is a routing technique where resource availability and traffic characterization are taken into account.

MPLS architecture

MPLS architecture

The planes are decoupled and independent of one another.

Fig. 2. Conceptual view of MPLS control plane and forwarding plane.

MPLS Fundamentals: Control Plane

- Collection of protocols that establish network level functionality in the MPLS networks.
 - ► The protocols themselves are implemented as software processes to communicate with each other across node boundaries using message passing.
- ► They facilitate the establishment of label switched paths in the MPLS networks.
- ► The control plane has to distribute and manage network topology and resource availability information using a routing protocol and perform signaling functions to establish or tear-down LSPs.
- ► The plane consist of the legacy IP routing and signaling protocols.

MPLS Fundamentals: Forwarding Plane

- Consists of the datapath within a network element through which user traffic traverses.
- ▶ The forwarding plne performs label swapping operations using lookup tables and miscellaneous packet treatment functions such as scheduling, queue management, rate shaping, policing and others.
- ▶ It is generally implemented in hardware due to high speed operation support.

Fig. 3. Functional view of control and forwarding planes.

MPLS: Terminology

- ▶ FEC (Forwarding Equivalence Class)
 - Group of IP packets which are forwarded in the same manner (e.g. over the same path, with the same priority and the same label)
- Label
 - Short fixed length identifier which is used to identify a FEC
- Label Swapping
 - Looking up the oncoming label to determine the outgoing label, encapsulation and port
- Label switched path (LSP)
 - Path through one or more LSR for a particular FEC
- Label switching router (LSR)
 - an MPLS capable router

What is a Label?

- an extra layer that "sits" between L2 and L3 layer known as header 2.5 (or "shim")
- don't need to lookup at the routing table, you use the label information to find the next hop
- creates a VPN rather than public networks
- isolates other traffics running on the network

What is a Label?

Header information

- ► Label value: the label itself for lookup in the MPLS forwarding table
- ► **EXP field:** gives Diffserv support on the MPLS network and carry the IP precedence value from the IP packet.
- Stack bit: Indicates the bottom of the MPLS header stack has been reached.
- ► **Time-To-Live:** prevents loop and path tracing in the MPLS network. This value decrements with each hop and packet discards occur at a zero value.

Figure: This is the initial phase

Figure: Ingress node makes a request to the nearest node for a given destination address

Figure: Route the message to the destination node

Figure: A label table is initialized with information that when it receives the given label id, it is for this router 47.1

Figure: Map its label id to the router that sent request

Figure: The router that receives the mapping data, adds it to its forwarding table and generates a "in" label______

Figure: When finished, the egress node sends the mapping date of which label will be added

Figure: When it has reached the Ingress node, it will map the given label for the given destination IP

Figure: Send message/packet to 47.1, the Ingress node makes a routing lookup and assigns the given label for the destination

Figure: When forwarded, you add label onto the packet, when it arrives to a node, it checks the label and replaces it to another one and forwards it

Figure: When reached to the egress node, it will then strip out the label and deliver to the specific destination

GMPLS

What is GMPLS?

- a protocol suite extending MPLS to manage further classes of interfaces and switching technologies other than packet interfaces and switching, such as time division multiplex, layer-2 switch, wavelength switch and fiber-switch.
- ► GMPLS advocates and promotes explicit separation of the control plane from the underlying data/forwarding plane.
- Gives the ability to let products from different vendors to inter-operate at a control level in different types of switched transport networks.

GMPLS

- Allows new and innovative ways to inter-connect various technologies and different layers, without restricting the way individual layers interwork with each other.
- ▶ It simplifies the design, deployment and operations management of heterogeneous networks consisting of an assortment of packet and circuit switched equipment from different manufacturers.
- consists of three main aspects: routing, signaling and link management.
- ▶ It also explicitly decouples the control channel from the transport or bearer channels.
- gives an important implications on the fault handling characteristics of the control plane.
- ► failure in the control plane does not imply failure of the transport plane.

GMPLS: Hierarchial LSP

- •

Summary

- ► MPLS
- ► GMPLS

Resources

- ► Generalized Multiprotocol Label Switching: An Overview of Signaling Enhancements and Recovery Techniques IEEE Communication Magazine, July 2001. A. Banerjee et. al.
- ▶ Internet Traffic Engineering Using Multi-Protocol Label Switching (MPLS). Computer Networks 40, Elsevier, 2002 D.O. Awduche and B. Jabbari.