Análise LALR

Construção de compiladores I

Objetivos

Objetivos

• Apresentar o algoritmo de análise sintática LALR.

Introdução

Introdução

- Nas aulas anteriores, vimos o algorithm LR(1).
- Este algoritmo consegue realizar o parsing de construções de linguagens de programação.

Introdução

- Problema: o algoritmo LR(1) gera um número muito grande de estados
- Solução: combinar conjuntos de itens que diferem apenas pelos lookaheads.
 - Isso é o chamado analisador LALR.

Introdução

- Para combinar conjuntos de itens, é útil considerar o conceito de núcleo.
- O **núcleo** de um conjunto de itens é um subconjunto de itens utilizado para criar o conjunto.

Introdução

• Após criar os conjuntos LR(1), combinamos os conjuntos com o mesmo núcleo em um único.

Construção dos itens LALR

Construção dos itens LALR

- \bullet Fechamento de conjunto de itens I.
 - $I \subseteq closure(I).$
 - Para cada item $[A \to \alpha . B\beta, a]$ em I
 - * Para cada regra $B \to \gamma$ em G'
 - · Para cada $b \in first(\beta a)$
 - Adicione $[B \to .\gamma, b]$ em I
- \bullet Repita enquanto houver alterações em I.

Construção dos itens LALR

- Função de goto(I, X)
 - Inicialize J como \emptyset .
 - Para cada item $[A \to \alpha.X\beta, a]$ em I
 - * Adicione o item $[A \to \alpha X.\beta, a]$ ao conjunto J.
 - retorne closure(J)

Construção dos itens LALR

- ullet Função de construção de itens G'
 - inicializa C como closure({[S \rightarrow .S, \$]})
 - * Para cada conjunto $I \in C$
 - Para cada símbolo X de G'
 - · se $goto(I, X) \neq \emptyset \land goto(I, X) \notin C$
 - · Adicione goto(I, X) em C
 - repetir enquanto houver alterações em C.

Construção da tabela LALR

Construção da tabela LALR

- Se $[A \to \alpha.a\beta, b] \in I_i$ e $goto(I_i, a) = I_j$,
 - -A[i,a] = shift j.

Construção da tabela LALR

- Se $[A \to \alpha, a] \in I_i \in A \neq S'$
 - $-A[i,a] = reduce A \rightarrow \alpha$

Construção da tabela LALR

- $\bullet \ \operatorname{Se} \left[S' \to S., \, \$ \right] \in I_i$
 - A[i,\$] = accept

Construção da tabela LALR

- Seja $J = I_1 \cup \ldots \cup I_n$.
 - Núcleo de cada I_i é o mesmo.
- Seja K a união de todos os itens de goto $(I_{1,X})$.
 - Fazemos G[J,X] = K

Exemplo

Exemplo

- Construção da tabela LALR para a gramática
- $S \rightarrow (L) \mid x$
- $L \rightarrow L, S \mid S$

Construção eficiente da tabela

Construção eficiente da tabela

- O algoritmo LALR melhora o consumo de memória.
 - Combinar o número de itens.
- Porém, ainda precisamos computar o conjunto completo de itens.

Construção eficiente da tabela

- Ao invés de construir os itens LR(1), podemos construir apenas os núcleos de itens LR(0) e calcular os lookaheads.
- A partir do núcleo dos itens LR(1), calculamos a tabela.

Construção eficiente da tabela

- Determinando lookaheads para um núcleo K e um símbolo X.
- Repita os passos seguintes para cada item

$$-A \rightarrow \alpha . \beta \in K.$$

Construção eficiente da tabela

- $J \leftarrow closure(\{[A \rightarrow \alpha.\beta, \#]\})$
- Se $[B \to \gamma.X\delta, a] \in J \land a \neq \#$
 - a é gerado espontaneamente para goto(I,X).
- Se $[B \to \gamma.X\delta, \#] \in J$
 - Propague lookaheads de $A \to \alpha.\beta \in I$ para $B \to \gamma X.\delta$ em goto(I,X).

Exemplo

Exemplo

• Construção eficiente da tabela LALR para a gramática

$$\begin{array}{ccc} S & \rightarrow & (L) \,|\, x \\ L & \rightarrow & L, S \,|\, S \end{array}$$

Concluindo

Concluindo

- Nesta aula apresentamos dois algoritmos para a construção de tabelas LALR.
- Próxima aula: Geradores de analisadores LALR.

Exercícios

Exercícios

• Determine se a seguinte gramática possui conflitos, utilizando o algoritmo de construção de tabelas LALR.

$$\begin{array}{ccc} E & \rightarrow & T{+}E \,|\, T \\ T & \rightarrow & \mathbf{x} \end{array}$$