INTRODUCTION TO CALCULUS

Continuity

Intermediate Value Theorem

Squeeze Theorem

HOW TO EVALUATE LIMITS OF TRIGONOMETRIC FUNCTIONS?

 $= \sin x$

 $-\cos x$

 \blacksquare tan x

...

CALCULATE LIMITS BY "SQUEEZING" A FUNCTION

THE SQUEEZE THEOREM

THEOREM 2.7

The Squeeze Theorem

Let f(x), g(x), and h(x) be defined for all $x \neq a$ over an open interval containing a. If

$$f(x) \le g(x) \le h(x)$$

for all $x \neq a$ in an open interval containing a and

$$\lim_{x \to a} f(x) = L = \lim_{x \to a} f(x)$$

where *L* is a real number, then $\lim_{x \to a} (x) = L$.

defined for $x \neq a$

EXAMPLE ONE

$$\lim_{x\to 0}g(x)=?$$

 $-1 \le \sin x \le 1$

•
$$f(x) \le g(x) \le h(x)$$

$$\lim_{x \to 0} f(x) = 0$$

$$\lim_{x \to 0} h(x) = 0$$

EXAMPLE TWO

EXAMPLE TWO

 $\lim_{x\to 0} g(x) = ?$

EXAMPLE TWO

Evaluate the limit using the Squeeze Theorem

$$= \lim_{x \to 0} x \cos \frac{1}{x}.$$

EXERCISE ONE A

EXERCISE ONE B

Evaluate the limit using the Squeeze Theorem

EXERCISE TWO

Evaluate the limit using the Squeeze Theorem

 $\lim_{x \to 0} f(x), \text{ where } f(x) = \begin{cases} 0, & x \text{ rational} \\ x^2, & x \text{ irrational} \end{cases}$

THANKS TO THE SQUEEZE THEOREM, NOW WE CAN...

 $\lim_{x\to 0} \sin x$

 $= \lim_{x \to 0} \cos x$

....

EVALUATE $\lim_{x\to 0} \sin x$

For $0 < \theta < \frac{\pi}{2}$, $0 < \sin \theta < \theta$.

Use the squeeze theorem!

$$\lim_{\theta \to 0^+} 0 = \lim_{\theta \to 0^+} \theta = 0$$

$$\lim_{\theta \to 0^+} \sin \theta = 0$$

EVALUATE $\lim_{x\to 0} \sin x$

■ For
$$-\frac{\pi}{2} < \theta < 0, 0 < -\sin \theta < -\theta$$
.

Use the squeeze theorem!

$$\lim_{\theta \to 0^{-}} 0 = \lim_{\theta \to 0^{-}} -\theta = 0$$

$$\lim_{\theta \to 0^{-}} -\sin \theta = 0$$

$$\lim_{\theta \to 0^{-}} \sin \theta = 0$$

EVALUATE $\lim_{x\to 0} \sin x$

- $\lim_{\theta \to 0^+} \sin \theta = 0$
- $\lim_{\theta \to 0^{-}} \sin \theta = 0$
- $\lim_{\theta \to 0} \sin \theta = 0$

EVALUATE $\lim_{x\to 0} \cos x$

For
$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$
, $\cos \theta = \sqrt{1 - \sin^2 \theta}$.

$$\lim_{\theta \to 0} \cos \theta = \lim_{\theta \to 0} \sqrt{1 - \sin^2 \theta} = 1$$

EVALUATE $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$

- For $0 < \theta < \frac{\pi}{2}$, $0 < \sin \theta < \theta < \tan \theta$.
- Hence, $1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}$.
- That is, $\cos \theta < \frac{\sin \theta}{\theta} < 1$.
- $\lim_{\theta \to 0^+} \cos \theta = \lim_{\theta \to 0^+} 1 = 1$
- $\lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} = 1$

EVALUATE $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$

$$\lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} = 1$$

$$\lim_{\theta \to 0^{-}} \frac{\sin \theta}{\theta} = 1$$

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

EXERCISE ONE

Evaluate
$$\lim_{\theta \to 0} \frac{1-\cos\theta}{\theta}$$
.

Hint

 $\sin^2\theta + \cos^2\theta = 1$

EXERCISE ONE

Evaluate $\lim_{\theta \to 0} \frac{1-\cos \theta}{\theta}$.

$$\sin^2 \theta = 1 - \cos^2 \theta = (1 + \cos \theta)(1 - \cos \theta)$$

$$\frac{1-\cos\theta}{\theta} = \frac{(1+\cos\theta)(1-\cos\theta)}{\theta(1+\cos\theta)} = \frac{\sin^2\theta}{\theta(1+\cos\theta)} = \frac{\sin\theta}{\theta(1+\cos\theta)} = \frac{\sin\theta}{\theta(1+\cos\theta)$$

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \text{ and } \lim_{\theta \to 0} \frac{\sin \theta}{1 + \cos \theta} = 0$$

Hence,
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \frac{\sin \theta}{1 + \cos \theta} = \lim_{\theta \to 0} \frac{\sin \theta}{\theta}$$

$$\lim_{\theta \to 0} \frac{\sin \theta}{1 + \cos \theta} = 0$$

INTERMEDIATE VALUE THEOREM

- Functions that are continuous over intervals of the form [a, b], where a and b a re real numbers, exhibit many useful properties.
- Throughout our study of calculus, we will encounter many powerful theorems concerning such functions.

INTERMEDIATE VALUE THEOREM

The first of these theorems is the Intermediate Value Theorem.

THEOREM 2.11

The Intermediate Value Theorem

Let f be continuous over a closed, bounded interval [a, b]. If z is any real number between f(a) and f(b), then there is a number c in [a, b] satisfying f(c) = z in Figure 2.38.

INTERMEDIATE VALUE THEOREM

INTERMEDIATE VALUE THEOREM

- f is continuous over a closed,
 bounded interval [a, b].
- z is any real number between f(a) and f(b).
- There is a number c in [a, b], satisfying f(c) = z.

INTERMEDIATE VALUE THEOREM (MORE TO SAY)

APPLICATION ZERO

Show that $f(x) = x^3 + x^2 + 1$ has at least one zero.

Hint

- Find a closed, bounded interval [a, b].
- lacksquare 0 is a real number between f(a) and f(b).
- There is a number c in [a, b], satisfying f(c) = 0.

APPLICATION ONE

Show that $f(x) = e^x \sin x - 1$ has at least one zero.

Hint

- Find a **closed**, **bounded** interval [a, b].
- 0 is a real number **between** f(a) and f(b).
- There is a number c in [a, b], satisfying f(c) = 0.

Show that $f(x) = e^x \sin x - 1$ has at least one zero.

- Find a **closed**, **bounded** interval $[0, \frac{\pi}{2}]$.
- 0 is a real number **between** f(0) = -1 and $f\left(\frac{\pi}{2}\right) = e^{\frac{\pi}{2}} 1$.
- There is a number c in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, satisfying f(c) = 0.

APPLICATION ONE

APPLICATION TWO

When Can You Apply the Intermediate Value Theorem?

- For $f(x) = \tan x$, $f\left(\frac{\pi}{4}\right) = 1 > 0$ and $f\left(\frac{3\pi}{4}\right) = -1 < 0$.
- Can we conclude that f(x) has a zero in the interval $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$?

APPLICATION THREE

What Does the Intermediate Value Theorem tell us?

• If f(x) is continuous over [7,22], f(7) > 0 and f(22) > 0, can we use the Intermediate Value Theorem to conclude that f(x) has no zeros in the interval [7,22]?

APPLICATION THREE

