0.1 Direction Cosine Matrix

The dot product can be thought as some form of projection of one vector onto another vector. Consider the dot product of two vectors \bar{a} and \bar{b} . Based on the definition of dot product,

$$\bar{a} \cdot \bar{b} = |a||b|\cos\theta$$

wherein θ is the angle between the vectors \bar{a} and \bar{b} . Let an arbitrary vector \bar{r} be represented in basis vectors \hat{i} , \hat{j} , and \hat{k} . Let these basis vectors be of mangitude 1. Let another set of basis vectors of magnitude 1 be defined as \hat{i}' , \hat{j}' , and \hat{k}' . The arbitrary vector \bar{r} could be expressed as a linear combination of these basis vectors.

$$\bar{r} = x\hat{i} + y\hat{j} + z\hat{k} = x'\hat{i}' + y'\hat{j}' + z'\hat{k}'$$

The vector component \bar{r} in the \hat{i}' direction is the summation of all the weighted basis vector components on the \hat{i}' direction. Since it was established earlier that this would mean taking the dot product,

$$x' = x(\hat{i} \cdot \hat{i}') + y(\hat{j} \cdot \hat{i}') + z(\hat{k} \cdot \hat{i}')$$

Let $\theta_{fg'}$ represent the angle between the f axis and the g' axis,

$$\hat{i} \cdot \hat{i}' = |\hat{i}||\hat{i}'|\cos\theta_{ii'}$$
, $\hat{j} \cdot \hat{i}' = |\hat{j}||\hat{i}'|\cos\theta_{ii'}$, $\hat{k} \cdot \hat{i}' = |\hat{k}||\hat{i}'|\cos\theta_{ki'}$

Using the earlier assumption that the magnitude of the basis vectors are all 1,

$$\hat{i} \cdot \hat{i}' = \cos \theta_{ii'}$$
 , $\hat{j} \cdot \hat{i}' = \cos \theta_{ji'}$, $\hat{k} \cdot \hat{i}' = \cos \theta_{ki'}$

Substituting the basis vector projections,

$$x' = x \cos \theta_{ii'} + y \cos \theta_{ji'} + z \cos \theta_{ki'}$$

Repeating similar operations for the \hat{j}' direction,

$$y' = x(\hat{i} \cdot \hat{j}') + y(\hat{j} \cdot \hat{j}') + z(\hat{k} \cdot \hat{j}')$$

$$\hat{i} \cdot \hat{j}' = |\hat{i}||\hat{j}'|\cos\theta_{ij'}$$
, $\hat{j} \cdot \hat{j}' = |\hat{j}||\hat{j}'|\cos\theta_{jj'}$, $\hat{k} \cdot \hat{j}' = |\hat{k}||\hat{j}'|\cos\theta_{kj'}$

Using the earlier assumption that the magnitude of the basis vectors are all 1,

$$\hat{i} \cdot \hat{j}' = \cos \theta_{ij'}$$
 , $\hat{j} \cdot \hat{j}' = \cos \theta_{jj'}$, $\hat{k} \cdot \hat{j}' = \cos \theta_{kj'}$

Substituting the basis vector projections,

$$y' = x \cos \theta_{ij'} + y \cos \theta_{ij'} + z \cos \theta_{kj'}$$

Repeating similar operations for the \hat{k}' direction,

$$z' = x(\hat{i} \cdot \hat{k}') + y(\hat{j} \cdot \hat{k}') + z(\hat{k} \cdot \hat{k}')$$

$$\hat{i} \cdot \hat{k}' = |\hat{i}| |\hat{k}'| \cos \theta_{ik'} \quad , \quad \hat{j} \cdot \hat{k}' = |\hat{j}| |\hat{k}'| \cos \theta_{jk'} \quad , \quad \hat{k} \cdot \hat{k}' = |\hat{k}| |\hat{k}'| \cos \theta_{kk'}$$

Using the earlier assumption that the magnitude of the basis vectors are all 1,

$$\hat{i} \cdot \hat{k}' = \cos \theta_{ik'}$$
 , $\hat{j} \cdot \hat{k}' = \cos \theta_{ik'}$, $\hat{k} \cdot \hat{k}' = \cos \theta_{kk'}$

Substituting the basis vector projections,

$$z' = x \cos \theta_{ik'} + y \cos \theta_{ik'} + z \cos \theta_{kk'}$$

Collecting the various expressions together,

$$x' = x \cos \theta_{ii'} + y \cos \theta_{ii'} + z \cos \theta_{ki'}$$

$$y' = x \cos \theta_{ij'} + y \cos \theta_{jj'} + z \cos \theta_{kj'}$$

$$z' = x\cos\theta_{ik'} + y\cos\theta_{ik'} + z\cos\theta_{kk'}$$

Re-arranging the expressions into matrix form,

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \theta_{ii'} & \cos \theta_{ji'} & \cos \theta_{ki'} \\ \cos \theta_{ij'} & \cos \theta_{jj'} & \cos \theta_{kj'} \\ \cos \theta_{ik'} & \cos \theta_{jk'} & \cos \theta_{kk'} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Hence, based on the problem definition,

$$\bar{r}' = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} \quad , \quad \bar{r} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad , \quad l = \begin{bmatrix} \cos \theta_{ii'} & \cos \theta_{ji'} & \cos \theta_{ki'} \\ \cos \theta_{ij'} & \cos \theta_{jj'} & \cos \theta_{kj'} \\ \cos \theta_{ik'} & \cos \theta_{jk'} & \cos \theta_{kk'} \end{bmatrix}$$

$$\bar{r}' = l\bar{r}$$

The figure below shows some of the angles referenced in the l matrix,