Simple Linear Regression: Estimation

EC 320: Introduction to Econometrics

Amna Javed Winter 2020

Prologue

Housekeeping

Midterm:

- · Midterm 1 is on Wednesday January 29th
- · Will have extra office hours, announced through email

Where Are We?

Where we've been

High Concepts

- Reviewed core ideas from statistics
- Developed a framework for thinking about causality

Also, **R**.

Where Are We?

Where we're going

The Weeds!

- Learn the mechanics of how OLS works
- Interpret regression results (mechanically and critically)
- Extend ideas about causality to a regression context
- Think more deeply about statistical inference
- · Lay a foundation for more-sophisticated regression techniques.

Also, more R.

Simple Linear Regression

Addressing Questions

Example: Effect of police on crime

Policy Question: Do on-campus police reduce crime on campus?

• **Empirical Question:** Does the number of on-campus police officers affect campus crime rates? If so, by how much?

How can we answer these questions?

- Prior beliefs.
- Theory.
- · Data!

Let's "Look" at Data

Example: Effect of police on crime

		Search:
Police per 1	000 Students	Crimes per 1000 students
1	20.42	1.1
2	0.15	2
3	0.47	1.41
4	14.68	2.06
5	23.75	1.52
6	7.68	2.76
Showing 1 to 6 of 96 entries		Previous Next

Example: Effect of police on crime

"Looking" at data wasn't especially helpful.

Let's try using a scatter plot.

- Plot each data point in (X,Y) -space.
- \cdot Police on the X -axis.
- \cdot Crime on the Y -axis.

Example: Effect of police on crime

Example: Effect of police on crime

The scatter plot tells us more than the spreadsheet.

- · Somewhat weak *positive* relationship.
- · Sample correlation coefficient of 0.14 confirms this.

But our question was

Does the number of on-campus police officers affect campus crime rates? If so, by how much?

• The scatter plot and correlation coefficient provide only a partial answer.

Example: Effect of police on crime

Our next step is to estimate a **statistical model.**

To keep it simple, we will relate an **explained variable** Y to an **explanatory variable** X in a linear model.

We express the relationship between a **explained variable** and an **explanatory variable** as linear:

$$Y_i = \beta_1 + \beta_2 X_i + u_i.$$

- $\cdot \beta_1$ is the **intercept** or constant.
- $\cdot \beta_2$ is the slope coefficient.
- $\cdot u_i$ is an **error term** or disturbance term.

The **intercept** tells us the expected value of Y_i when $X_i=0$.

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

Usually not the focus of an analysis.

The **slope coefficient** tells us the expected change in Y_i when X_i increases by one.

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

"A one-unit increase in X_i is associated with a eta_2 -unit increase in Y_i ."

Under certain (strong) assumptions about the error term, β_2 is the effect of X_i on Y_i .

 \cdot Otherwise, it's the association of X_i with Y_i .

The **error term** reminds us that X_i does not perfectly explain Y_i .

$$Y_i = \beta_1 + \beta_2 X_i + \mathbf{u_i}$$

Represents all other factors that explain Y_i .

 \cdot Useful mnemonic: pretend that u stands for "unobserved" or "unexplained."

Take 3, continued

Example: Effect of police on crime

How might we apply the simple linear regression model to our question about the effect of on-campus police on campus crime?

• Which variable is X? Which is Y?

$$Crime_i = \beta_1 + \beta_2 Police_i + u_i$$
.

- $\cdot \beta_1$ is the crime rate for colleges without police.
- \cdot β_2 is the increase in the crime rate for an additional police officer per 1000 students.

Take 3, continued

Example: Effect of police on crime

How might we apply the simple linear regression model to our question?

$$\mathrm{Crime}_i = \beta_1 + \beta_2 \mathrm{Police}_i + u_i$$

 β_1 and β_2 are the population parameters we want, but we cannot observe them.

Instead, we must estimate the population parameters using our $data\ sample$.

$$Crime_i = b_1 + b_2 Police_i + e_i$$

But, is $b_1=eta_1$ and $b_2=eta_2$?

Using our estimates, we can make predictions:

- \cdot \hat{eta}_1 and \hat{eta}_2 generate predictions of Crime_i called Crime_i .
- · We call the predictions of the dependent variable fitted values.
- \cdot Together, these trace a line: $\hat{\mathrm{Crime}}_i = \hat{eta}_1 + \hat{eta}_2 \hat{\mathrm{Police}}_i$.

Take 3, attempted

Example: Effect of police on crime

Guess: $\hat{eta_1}=60$ and $\hat{eta_2}=-7$.

Example: Effect of police on crime

Guess: $\hat{eta_1}=30$ and $\hat{eta_2}=0$.

Example: Effect of police on crime

Guess: $\hat{eta}_1=15.6$ and $\hat{eta}_2=7.94$.

Using \hat{eta}_1 and \hat{eta}_2 to make \hat{Y}_i generates misses called **residuals**:

$$\hat{u}_i = Y_i - \hat{Y}_i.$$

 \cdot Sometimes called e_i .

Example: Effect of police on crime

Using $\hat{eta}_1=15.6$ and $\hat{eta}_2=7.94$ to make $\hat{\mathrm{Crime}}_i$ generates **residuals**.

We want an estimator that makes fewer big misses.

Why not minimize $\sum_{i=1}^{n} \hat{u}_i$?

• There are positive and negative residuals \implies no solution (can always find a line with more negative residuals).

Alternative: Minimize the sum of squared residuals a.k.a. the **residual sum of squares** (RSS).

· Squared numbers are never negative.

Example: Effect of police on crime

RSS gives bigger penalties to bigger residuals.

Minimizing RSS

We could test thousands of guesses of \hat{eta}_1 and \hat{eta}_2 and pick the pair that minimizes RSS.

• Or we just do a little math and derive some useful formulas that give us RSS-minimizing coefficients without the guesswork.

Ordinary Least Squares (OLS)

OLS

The **OLS estimator** chooses the parameters $\hat{\beta}_1$ and $\hat{\beta}_2$ that minimize the **residual sum of squares (RSS)**:

$$\min_{\hat{eta}_1,\,\hat{eta}_2} \quad \sum_{i=1}^n \hat{u}_i^2$$

This is why we call the estimator ordinary least squares.

Deriving the OLS Estimator

Outline

Step 1. Replace $\sum_{i=1}^n \hat{u}_i^2$ with an equivalent expression involving \hat{eta}_1 and \hat{eta}_2 .

Step 2. Take partial derivatives of our RSS expression with respect to $\hat{\beta}_1$ and $\hat{\beta}_2$ and set each one equal to zero (first-order conditions).

Step 3. Use the first-order conditions to solve for \hat{eta}_1 and \hat{eta}_2 in terms of data on Y_i and X_i

Step 4. Check second-order conditions to make sure we found the $\hat{\beta}_1$ and $\hat{\beta}_2$ that minimize RSS.

OLS Formulas

For details, see the handout posted on Canvas.

Slope coefficient

$${\hat eta}_2 = rac{\sum_{i=1}^n (Y_i - ar{Y})(X_i - ar{X})}{\sum_{i=1}^n (X_i - ar{X})^2}$$

Intercept

$${\hat eta}_1 = ar Y - {\hat eta}_2 ar X$$

Slope coefficient

The slope estimator is equal to the sample covariance divided by the sample variance of $\it X$:

$$\hat{\beta}_{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \bar{Y})(X_{i} - \bar{X})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

$$= \frac{\frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \bar{Y})(X_{i} - \bar{X})}{\frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

$$= \frac{S_{XY}}{S_{X}^{2}}.$$

Example: Effect of police on crime

Using the OLS formulas, we get $\hat{\beta}_1$ = 18.41 and $\hat{\beta}_2$ = 1.76.

Coefficient Interpretation

Example: Effect of police on crime

Using OLS gives us the fitted line

$$\hat{\text{Crime}}_i = \hat{\beta}_1 + \hat{\beta}_2 \text{Police}_i.$$

What does $\hat{\beta}_1$ = 18.41 tell us?

What does $\hat{\beta}_2$ = 1.76 tell us?

Gut check: Does this mean that police *cause* crime?

Probably not. Why?

Outliers

Example: Association of police with crime

Outliers

Example: Association of police with crime

Fitted line without outlier. Fitted line with outlier.

