I. Phương pháp chia đôi:

- Lấy c=(a+b)/2
- Nếu f(c)*f(a)<0 thì b=c còn a=c;
- thì ta được khoảng phân ly mới tiến dần đến nghiệm của phương trình. Khi khoảng cách a,b cực nhỏ |a-b|<ε thì hoặc a hoặc b là nghiệm gần đúng của phương trình hoặc c=(a+b)/2 là nghiệm gần đúng của phương trình

Ta có sơ đồ khối:

Ví dụ: cho f(x)=x³ - x - 1 a=1; b=2 thì f(a)*f(b)<0

II. Phương pháp dây cung:

- Lấy
 c=(a*f(b)-b*f(a))/(f(b)-f(a))
- Nếu f(c)*f(a)<0 thì b=c còn a=c;
- thì ta được khoảng phân ly mới tiến dần đến nghiệm của phương trình. Khi khoảng cách a,b cực nhỏ |a-b|<ε thì hoặc a hoặc b là nghiệm gần đúng của phương trình hoặc c là nghiệm gần đúng của phương trình

Ta có sơ đồ khối:

Ví dụ:

cho $f(x)=x^3 - x - 1$ a=1; b=2thì f(a)*f(b)<0

III. Phương pháp tiếp tuyến:

- Lấy giá trị ban đầu
 x₀∈ (a,b)
- tiếp theo lấy $x_1=x_0-f(x_0)/f'(x_0)$
- cứ như thế tiếp tục ta được dãy số nếu hội tụ thì hội tụ tới nghiệm của phương trình f(x)=0

IV. Phương pháp lặp:

- Ta đưa phương trình về dạng x=f(x)+x.
- Lấy giá trị ban đầu x₀∈ (a,b)
- tiếp theo lấy
 x₁=x₀ + f(x₀)
- cứ như thế tiếp tục ta được dãy số nếu hội tụ thì hội tụ tới nghiệm của phương trình f(x)=0

