UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA ELÉTRICA

Henrique Santos de Lima-11811ETE016

Tensões, Corrente e Potências em Circuito Série, Fator de Potência e Corrente Alternada Senoidal

Experimental de Circuitos Elétricos II

Prof.: Wellington Maycon Santos Bernardes

Sumário

Objetivos	3
Introdução	3
Experimento:	4
Análise sobre segurança	5
Dados obtidos:	5
Questões	11
Simulação	12
Conclusão	16

Objetivos

Este experimento propõe a estabelecer conceitos sobre a configuração do equipamento KRON, a utilização do wattímetro analógico e realizar medições de tensões, correntes, impedâncias, fator de potência e potencias utilizando os devidos equipamentos. Para analisa-los e compará-los com os valores teóricos.

Introdução

Circuitos RLC são comuns, como por exemplo um motor e um banco de capacitores para alimentar o reativo consumido pelo motor. A análise deste tipo de circuito é importante para diminuir projetar alterações no circuito visando a diminuição de potencia reativa consumida da fonte.

Potencia reativa e a ativa são diferentes, a potencia ativa é a que faz trabalho e a reativa é a que alimenta campo elétrico e campo magnético. Sendo a potencia reativa representado como a parte imaginaria da potência aparente, a mesma é o modulo entre o complexo potência ativa + potência reativa. Para determinar a potência que está sendo consumida de uma fonte é feito o cálculo de da tensão vezes a Corrente que saem da fonte, este dará a potência aparente. Para obter a potência ativa multiplicasse a potência aparente pelo cosseno do ângulo entre a tensão e corrente e para obter potencia reativa multiplicasse pelo seno do ângulo.

Experimento:

Materiais e ferramentas

- 1. KROM Mult K
- 2. Voltímetro analógico
- 3. Miliamperímetro analógico
- 4. Wattímetro analógico
- 5. Indutor 136mH
- 6. Capacitor
- 7. Reostato
- 8. Varivolt
- 9. Óculos de proteção

Montagem:

Montagem para configuração do KRON e utilização do Wattímetro:

Figura 1 – Circuito para a configuração do KRON e utilização do Wattímetro

Montagem para realização do experimento:

Figura 2 – Circuito para o experimento

Figura 3 – montagem realizada

Análise sobre segurança

Antes de montar o experimento é importante o uso de equipamentos de proteção, estar com calça, sapatos fechados, sem acessórios metálicos e se o cabelo for grande, este deve estar preso.

A bancada deve estar desenergizada durante a montagem. Durante o experimento não ter contato com nenhum fio ou elemento energizado do circuito além do risco de choque elétrico, alguns componentes do circuito (como o reostato) esquentam muito podendo causar queimaduras.

Ao energizar o circuito deve-se estar atento a variação do amperímetro e multímetro, em caso de pico desligar o sistema e verificar um possível curto, assim não danificando equipamentos.

Dados obtidos:

Caso a:

A resistência do reostato foi ajustada a 100Ω e a tensão de saída do varivolt foi ajustada a 100V

Caso b:

A resistência do reostato foi ajustada a 20Ω e a tensão de saída do varivolt foi ajustada a 50V

CASO	$R(\Omega)$	C(µF)	L(mH)	$RL(\Omega)$	V(V)	f(Hz)
a	100	45,9	136	3,8	100	60
b	20	45,9	136	3,8	50	60

Tabela 1 - valores de cada elemento do circuito

	Medições								
valores	Vef	I	cos o	Vr	Vc	V(L+rL)	P	S	Q
	[V]	[A]	[fp]	[V]	[V]	[V]	[W]	[VA]	[Var]
	Caso a								
Medidos	100,0	0,96	0,989	94,5	55,79	70,3	94,65	96,8	13,9
Caso b									
Medidos	50	1,809	0,876	33,94	101,8	129,2	78,18	89,35	43,23

Tabela 2 – medições

Análise:

Figura 4 – circuito do experimento (o varivolt foi substituído por uma fonte)

Cálculos

$$V = V_R + V_c + V_L + V_r$$

$$V = I * R + \frac{I}{j\omega * c} + I * j\omega * L + I * r$$

$$V = I(R - \frac{j}{\omega * c} + j\omega * L + r)$$

$$I = \frac{V}{(R - \frac{j}{\omega * c} + j\omega * L + r)}$$

$$I = \frac{V}{(R - \frac{j}{2\pi 60 * c} + j2\pi 60 * L + r)}$$

Para o caso a

$$I = \frac{100 \angle 0^{\circ}}{(100 - \frac{j}{2\pi 60*45.9E - 6} + j2\pi 60*0.136 + 3.8)}$$
$$I = 0.9615 \angle 3.594^{\circ}$$

Para o caso b

$$I = \frac{50 \angle 0^{\circ}}{(20 - \frac{j}{2\pi 60*45.9E - 6} + j2\pi 60*0.136 + 3.8)}$$

$$I = 1,999 \angle 17,87^{\circ}$$

Tendo a tensão e corrente é possível determinas a tensão em cada componente.

$$V_R = R * I$$

$$V_c = -\frac{1}{2\pi f c} j * I$$

$$V_L + V_r = (r + 2\pi f L j) * I$$

Calculo
$$\theta$$

$$\theta = \arccos(fp)$$

Para o caso a

$$\theta = \arccos(0.989)$$

$$\theta = 8.51^{\circ}$$

Para o caso b

$$\theta = \arccos(0.876)$$

$$\theta = 28.84^{\circ}$$

Calculo de S

$$S = V * I$$

Para o caso a

$$S = 100.6 * 0.96$$

$$S = 96,576$$

Para o caso b

$$S = 50 * 1.809$$

$$S = 90.45$$

Calculo de Q

$$Q^2 = S^2 - P^2$$

$$Q = \sqrt{S^2 - P^2}$$

Para o caso a

$$Q = \sqrt{(96.8)^2 - (94.65)^2}$$

$$Q=20.288$$

Para o caso b

$$Q = \sqrt{(89.35)^2 - (95.13)^2}$$

$$Q=30.664$$

	Medições										
valores	Vef	I	cos o	Vr	Vc	V(L+rL)	P	S	Q		
	[V]	[A]	[fp]	[V]	[V]	[V]	[W]	[VA]	[Var]		
	Caso a										
Medidos	100,6	0,960	0,989	94,500	55,790	70,300	94,650	96,800	13,900		
Calculados	100,0	0,962	0,998	96,150	55,570	52,980	95,808	96,200	6,018		
Erros (%)	0,60	0,21	0,91	1,75	0,39	24,64	1,22	0,62	56,71		
	Caso b										
Medidos	50	1,809	0,876	33,94	101,800	129,200	78,180	89,350	43,230		
Calculados	<u>50</u>	1,999	0,952	39,98	133,500	88,680	95,130	99,950	30,670		
Erros (%)	0,000	10,50	8,68	17,80	31,14	31,36	21,68	11,86	29,05		

Tabela 3 – medições e valores calculados

	Cálculos						
valores	θ	S	Q				
	[°]	[VA]	[Var]				
	Caso a						
Medidos	8,510	96,576	20,288				
Calculados	3,624	96,200	8,676				
Erros (%)	57,41	0,389	57,238				
	Caso b						
Medidos	28,840	90,450	43,259				
Calculados	17,820	99,950	30,664				
Erros (%)	38,21	10,503	29,115				

Tabela 4 – valores calculados do angulo, potência aparente e potência reativa

Questões

- A potência ativa lida no mediador KRON Mult K apresenta informação incorreta em relação ao wattímetro analógico. Aponte as possíveis causas.
 R: Os parâmetros do KRON podem não estar ajustados corretamente, o wattímetro pode não estar ajustado corretamente ou um dos equipamentos estão com defeito.
- 2) Por que dependendo do tipo da ligação do wattímetro, seu ponteiro indicador deflete em sentido "negativo"?
 - R: A ponteira de tensão possui lado de magnetização.
- 3) Quais as vantagens da utilização do mediador KRON Mult K frente aos medidores analógicos? Discuta a respeito de espaço físico empregado para a utilização dos equipamentos bem como o tempo de montagem. Pesquise também sobre custos para aquisição.
 - R: substitui vários equipamentos assim ocupando um menor espaço, agilizando a montagem pois não será necessário fazer a ligação de vários equipamentos.
- 4) Considerando que a escala percentual do reostato esteja correta, qual é o efeito físico no amperímetro, multímetro e wattímetro se o usuário excursiona de 25% para 50% da resistência nominal?
 - R: $P = V^2/Req$ se desconsiderar as outras resistências ao dobrar a resistência do reostato a Potência devem ser diminuídas aproximadamente pela metade.
- 5) Explique a importância do transformador de potencial e de corrente no medidor KRON Mult K.
 - R: É importante para usar o mesmo equipamento em circuitos trifásicos e monofásicos, tendo que configura-lo para cada tipo de circuito.
- 6) Qual é a importância de AAUX e VAUX? Neste roteiro, é necessária a permanência constante desses medidores ou podem ser eliminados sem prejuízo? Se sim, em qual momento?
 - R: É útil para em detectar se o circuito está em curto, pois ao energiza-lo se a corrente tiver uma variação muito alta com uma pequena variação de tensão é um forte indicativo de que o circuito está em curto. Também são uteis para definição dos parâmetros do KRON.
 - Podem ser eliminados, desde que tenha certeza de que o circuito não está em curto e que os equipamentos KRON esteja corretamente configurado.
- 7) Nota-se que muitos medidores analógicos possuem um espelho logo abaixo da escala graduada. Explique o motivo.
 - R: Este espelho reflete a agulha para que a medição não dependa da perspectiva do observador.

Simulação

Caso a

Figura 4 – Circuito para simulação do caso a no software Multisim[1].

Figura 5 – Gráfico Tensão em verde, corrente em azul

Figura 6 – Gráfico de tensões e corrente do circuito

Caso b

Figura 7 – Circuito para simulação do caso b no software Multisim[1].

Figura 8- Gráfico Tensão em verde, corrente em azul

Figura 9- Gráfico de tensões e corrente do circuito

	Medições								
valores	Vef	I	cos o	Vr	Vc	V(L+rL)	P	S	Q
	[V]	[A]	[fp]	[V]	[V]	[V]	[W]	[VA]	[Var]
	Caso a								
Medidos	100,6	0,960	0,989	94,500	55,790	70,300	94,650	96,800	13,900
Simulado	100,0	0,961	0,998	96,100	55,360	49,570	95,908	95,908	6,075
Erros (%)	0,60	0,10	0,91	1,69	0,77	29,49	1,33	0,92	56,30
	Caso b								
Medidos	50	1,809	0,876	33,94	101,800	129,200	78,180	89,350	43,230
Simulado	<u>50</u>	2,034	0,965	40,67	117,100	104,600	98,090	98,278	6,075
Erros (%)	0,000	12,44	10,10	19,83	15,03	19,04	25,47	9,99	85,95

 $Tabela \ 5-valores \ de \ corrente, \ tens\~oes \ e \ potencias \ medidos \ e \ simulados$

Conclusão

É importante para todo profissional ter domínio e conhecimento dos equipamentos da sua área, com este experimento foi possível aprender a configurar e utilizar o equipamento KRON e a utilizar o Wattímetro analógico.

Ao mudar o valor da resistência obtém um circuito com comportamento diferente, visto pela mudança do fator de potência, isso ocorre devido a relação do triangulo das impedâncias, onde mantem-se a impedância reativa e diminui a resistência assim diminuindo o fator de potência.

Os dados medidos, calculados e simulados apresentaram pequena diferença. Essa diferença está relacionada por não considerar fatores físicos que a priori não afetam tanto os resultados finais, tais como resistência do fio, variação da resistência devido a temperatura. Também está relacionada a precisão limitada dos equipamentos. Os dados obtidos analiticamente e através da simulação reforçam essa hipótese, pois os mesmos apresentaram pouca diferença.

Referencias

[1] Multisim https://www.multisim.com/

ALEXANDER, C.K.; SADIKU, M.N. Fundamentos de Circuitos Elétricos. 5ª ed. Porto Alegre: Mc Graw-Hill, 2015.