Optimasi Sistem Usahatani Terintegrasi untuk Memaksimalkan Pendapatan Petani

I WAYAN BUDIASA^{1*)}
IGAA AMBARAWATI¹
I MADE MEGA²
I KETUT MANGKU BUDIASA³

Prodi Agribisnis Fakultas Pertanian Universitas Udayana
 Prodi Agroekoteknologi Fakultas Pertanian Universitas Udayana
 Prodi Peternakan Fakultas Peternakan Universitas Udayana
 *) Email: wba_sosek_unud@yahoo.com

ABSTRACT

Optimizing Integrated Farming System to Maximize Farmers' Income

This study aims to find out the optimal model of integrated farming system (SIMANTRI) development in farmers' group of SIMANTRI 074, Jemberana Regency. Primary data by using survey method collected from 20 farmers of the group and secondary data gathered from any sources were used to specify parameters of the model. Linear programming analysis by using software BLPX88 is to solve constrained optimization problem in the model. A small farmer, which his farm size is 0.48 hectare, was optimal in allocating resources to conduct many farm activities under the SIMANTRI indicated byfrom optimal solution of the model which conforms to observed behavior. The maximum farmers' income, generated from the optimizing process was Rp26,041,250 per annum.

Key words: optimization, integrated farming system, income

1. Pendahuluan

Kebutuhan optimasi pemanfaatan sumberdaya pertanian termasuk lahan sebagai salah satu upaya Revitalisasi Pertanian, Perikanan dan Kehutanan (RPPK) 2000-2025 didasarkan pada kenyataan bahwa konversi lahan sawah di Indonesia melebihi 110.000 ha per tahun telah menurunkan luas tanam pada lahan sawah secara signifikan, sehingga diprediksi penggunaan lahan kering akan menjadi tren di masa mendatang (Ibrahim, 2008). Provinsi Bali dengan luas wilayah 5.632,86 Km² memiliki sawah sekitar 81.144 ha (yang terorganisasi kedalam 1.559 *subak*) dan lahan kering (termasuk lahan kritis) berupa pekarangan, tegalan, penggembalaan, hutan negara, hutan rakyat, dan perkebunan seluas 481.611 ha. Sejak tahun 2009

kebijakan pertanian di Provinsi Bali adalah pengembangan SIMANTRI sebagai salah satu model pendekatan sistem pertanian berkelanjutan dan hingga tahun 2011 sudah dikembangkan 150 SIMANTRI pada 150 Gabungan Kelompok Tani (GAPOKTAN) di Bali, baik di lahan sawah maupun di lahan kering.

Sistem usahatani terintegrasi (*integrated farming system*) atau *crop-livestock system* (*CLS*) yang dikenal sebagai SIMANTRI di Bali menawarkan intensifikasi sistem produksi tanaman-ternak secara terintegrasi melalui pendaurulangan hara tanaman dalam bentuk pupuk kandang untuk memelihara kesuburan tanah. Ciriacy-Wantrup (Hayami & Ruttan, 1985) melalui karyanya "*Resource Conservation: Economics and Policies*", menegaskan bahwa teknologi *CLS* merupakan salah satu bentuk teknologi produksi sekaligus teknologi konservasi yang dapat digunakan sebagai salah satu upaya pencegahan atau mengurangi lahan kritis. Viaux (2007) mendefinisikan sistem usahatani terintegrasi sebagai sebuah sistem yang terintegrasi berdasarkan pendekatan holistik terhadap penggunaan tanah untuk produksi pertanian, yang bertujuan untuk mengurangi penggunaan input luar agribisnis (energi dan input kimia) dan sepenuhnya didasarkan pada penggunaan sumberdaya alam dan memaksimalkan proses pengendalian alam. Teknologi ini disamping secara teknis dapat memperkecil laju erosi tanah, diharapkan juga secara ekonomis bermanfaat dalam meningkatkan produktivitas dan pendapatan petani.

Gambar 1. Integrasi produksi tanaman dan ternak (dimodifikasi dari Edwards, 1990)

Dalam sistem usahatani terintegrasi (Gambar 1), hewan dipelihara untuk dipekerjakan, menghasilkan pupuk kandang, menghasilkan daging, dan produk lainnya; sedangkan proses produksi tanaman untuk menghasilkan bahan makanan dan serat serta limbahnya (*by-products*) digunakan untuk bahan pakan ternak dan pupuk kompos. Pupuk kandang dan kompos dari limbah tanaman digunakan dalam proses produksi tanaman. Sistem rotasi tanaman memberikan manfaat dalam pengelolaan struktur, kesuburan, dan erosi tanah sekaligus meningkatkan

pengendalian terhadap hama melalui pemutusan siklus hidup hama (Luna dan House, 1990).

Penerapan SIMANTRI yang optimal dan memenuhi kriteria ramah lingkungan dan berkelanjutan akan sangat membantu dan berguna dalam upaya pencapaian Visi Pertanian Indonesia menuju 2025, yaitu "terwujudnya sistem pertanian industrial berkelanjutan yang berdaya saing dan mampu menjamin ketahanan pangan dan kesejahteraan petani" (Ibrahim, 2008). Model optimal SIMANTRI akan mengarahkan petani melakukan proses produksi tanaman dan ternak secara efisien sehingga komoditas yang dihasilkan mampu berdaya saing global, meningkatkan ketahanan pangan rumah-tangga petani karena adanya peningkatan produktivitas tanaman dan ternak, serta meningkatkan kesejahteraan petani jika fungsi tujuan dari optimasi tersebut adalah memaksimalkan pendapatan usahatani. Berdasarkan uraian di atas, maka tujuan penelitian adalah untuk mendapatkan model optimal pelaksanaan sistem usahatani terintegrasi melalui pendekatan analisis *linear programming* (LP) untuk memaksimalkan pendapatan petani.

2. Metode Penelitian

SIMANTRI 074 pada GAPOKTAN Sari Rahayu di Desa Gumbrih, Kecamatan Pekutatan, Kabupaten Jemberana dipilih secara purposif sebagai lokasi penelitian dengan pertimbangan memiliki limbah perkebunan yang berpotensi sebagai pakan ternak sapi bali. Sampel penelitian adalah petani anggota POKTAN pelaksana SIMANTRI 074 yang diambil secara sensus.

Data primer dari 20 sampel petani melalui survai usahatani dan data sekunder yang dari berbagai sumber digunakan untuk menspesifikasi parameter yang dibutuhkan dalam programasi linier. Analisis LP digunakan untuk analisis optimisasi pelaksanaan SIMANTRI dengan bantuan *software* BLPX88 (*Eastern Software Product, Inc.* 1984). Dasar pertimbangannya adalah petani dengan modal yang terbatas sering dihadapkan dengan fungsi produksi linier (Hartono[Antara, 2001]). Analisis LP merupakan sebuah teknik matematik formal yang menyeleksi kombinasi dan tingkat aktivitas, dari semua aktivitas yang layak, untuk mencapai fungsi tujuan tanpa mengabaikan ketersediaan sumberdaya dan kendala lainnya yang dispesifikasi (Barlow *et al.*, 1977; Gonzales, 1983). Secara matematis, masalah programasi linier umumnya dinyatakan sebagai berikut (Cohen dan Cyert, 1976):

maksimalkan:
$$z = \sum_{j=1}^{n} c_j x_j$$
 (1)

dengan kendala:
$$\sum_{j=1}^{n} a_{ij} x_{j} \{ \leq \geq \} b_{i}; i = 1, 2, ..., m$$
 (2)

$$x_i \ge 0$$
; $j = 1, 2, ..., n$. (3)

dimana z pada persamaan (1) adalah fungsi tujuan; x_j 's adalah aktivitas atau variabel keputusan; c_i 's adalah kontribusi dari aktivitas j^{th} terhadap nilai fungsi tujuan; a_i 's

adalah unit sumberdaya ke-i yang digunakan atau unit output ke-i yang diproduksi per unit aktivitas i^{th} ; dan b_i 's adalah tingkat sumberdaya yang tersedia atau kebutuhan minimal untuk setiap kendala. Persamaan (2) dan (3) masing-masing adalah set kendala dan kondisi non-negatif yang harus dipenuhi dalam proses optimasi.

3. Hasil dan Pembahasan

3.1 Karakteristik SIMANTRI 074

SIMANTRI 074 dikelola oleh POKTAN Subak Abian Merta Sari, salah satu dari enam POKTAN yang dibawahkan oleh GAPOKTAN Sari Rahayu. POKTAN Subak Abian Merta Sari terbentuk bulan November 2010 beranggotakan 20 orang dengan karakteristik petani seperti pada Tabel 1. Paket program SIMANTRI 074 ini dikucurkan oleh Pemda Bali pada Bulan Agustus 2011. Dari hasil observasi diketahui bahwa di antara 20 ekor induk sapi dengan rata-rata berat badan 250 Kg, terdapat satu ekor yang tidak subur, dan sudah ditukar dengan satu ekor induk subur yang baru. Sampai dengan penelitian ini dilaksanakan terdapat lima ekor induk yang telah beranak dan satu ekor anak di antaranya mengalami kematian.

Tingkat Jumlah Jumlah TK Keluarga Umur Pendidikan Anggota No Nama KK (Th) KK Keluarga (Orang) (Th) (Orang) L

Tabel 1. Karakteristik Petani pada SIMANTRI 074

Kering (Ha) IBN Putra Wintara 34 4 1 2 0.20 6 4 I Made Sama 55 6 1 2 I Komang Suryanto 40 12 4 1 0.23 2 Ketut Subagia 45 6 4 1 0.20 2 5 Wayan Suita 52 0 4 2 0.50 Nyoman Nastra 9 5 2 3 6 64 2.00 12 2 2 7 Made Rai 45 4 0.50 5 2 3 8 Nyoman Yasiarta 45 6 0.45 9 52 9 4 2 2 Ketut Suardika 0.20 12 4 2 10 40 2 Wayan Sujana 0.30 4 11 Ketut Bambang 33 15 1 0.80 4 12 Nyoman Suara 50 6 1 1.00 5 13 Made Mertayasa 47 12 1 0.30 5 14 Wayan Murdana 41 12 1 0.25 I Nyoman Kantra 60 0 4 2 15 0.05 5 16 Gede Suirnata 37 6 1 1 0.40 5 17 I Made Sudra 56 6 1 0.50 I Gede Seno 18 40 6 4 1 0.50 M Pasek Suryadi 41 12 4 1 1.00 19 12 4 20 I Gede Adnyana 33 0.27 20 29 Jumlah 910 165 86 9.65 Rata-rata 45.50 8.25 4.30 1.45 1.00 0.48

Karakteristik petani yang diamati meliputi umur, tingkat pendidikan, jumlah anggota keluarga, jumlah tenaga kerja petani yang tersedia dalam keluarga, dan luas lahan pertanian (Tabel 1). Rata-rata umur petani adalah 45,5 tahun (usia produkstif),

Lahan

rata-rata lama pendidikan petani mendekati tamat SMP (8,25 tahun), jumlah anggota keluarga 4,3 orang, sedangkan jumlah tenaga kerja (TK) petani 2,45 orang. Stok tenaga kerja tersebut setara dengan 2,2 HOK per hari atau 55 HOK per bulan dengan asumsi terdapat 25 hari kerja efektif dalam satu bulan kalender dengan tingkat upah pertanian sebesar Rp40.000/hari TK pria dan Rp30.000/hari TK perempuan. Rata-rata luas lahan garapan adalah 0,48 Ha dan semuanya merupakan lahan kering untuk usahatani campuran antara tanaman perkebunan dan ternak sapi bali.

Aktivitas pengolahan limbah peternakan meliputi produksi pupuk kandang sapi berkualitas dan *biourine*. Produksi pupuk kandang dan *biourine* dilaksanakan setiap Rabu dan Sabtu sore berturut-turut oleh masing-masing kelompok (beranggotakan 10 orang) selama lebih kurang satu jam kerja. Jumlah pupuk organik yang dihasilkan setiap 21 hari sebanyak 1,2 ton dengan harga komersial Rp700/Kg, namun untuk anggota dijual seharga Rp500/Kg. *Biourine* yang sangat laku pada saat musim hujan, dijual dengan harga komersial Rp5.000 dalam kemasan jerigen kecil (2 liter), sedangkan kepada anggota dijual Rp2.000.

3.2 Analisis Optimasi Sistem Usahatani Terintegrasi

Berdasarkan Tabel 2, terlihat bahwa pola usahatani pada SIMANTRI 074 adalah integrasi antara tanaman perkebunan (kakao, cengkeh, kelapa dalam, pisang), tanaman hijauan (rumput gajah), dan ternak sapi bali pada rata-rata luasan lahan kering 0,48 Ha.

Tabel 2. Pola dan skala usahatani pada SIMANTRI 074

				Ukuraı	n Usahatani			TOTAL
No	Nama Responden	RG	KKO	CKH	KLP	PIS	SB(250	(Ha)
		(Ha)	(Pohon)	(Pohon)	(Pohon)	(Rumpun)	Kg BH)	(1111)
1	IBN Putra wintara	0.05	40		10	10	1.00	0.2
2	I Made Sama						1.14	
3	I Km Suryanto	0.1	60		20	10	1.43	0.23
4	Ketut Subagia		15		12		2.71	
5	Wayan Suita		115		-	75	2.29	
6	Nyoman Nastra	0.5	700	120	160		2.43	2
7	Made Rai	0.5	200		55	100	2.57	0.5
8	Nyoman Yasiarta	0.2	80		37	40	1.71	0.45
9	Ketut Suardika		50		25		1.71	0.2
10	Wayan Sujana		100	12	40		1.43	0.3
11	Ketut Bambang		480	40	100		1.71	0.8
12	Nyoman Suara	0.3	100	25	235		1.43	1
13	Made Mertayasa	0.3			32	50	1.71	1
14	Wayan Murdana	0.05			100	70	1.71	0.25
15	I Nyoman Kantra	0.05	30		103	6	2.43	0.05
16	Gede Suirnata		175			175	1.71	0.4
17	I made Sudra	0.2	250		40		1.71	0.5
18	I Gede Seno	0.06	20	10	23		1.71	0.5
19	M Pasek Suryadi		700		45	50	1.71	1
20	I Gede Adnyana		12	15	27		1.71	0.27
	Jumlah	2.31	3127	222	1064	586	36.00	9.65
	Rata-rata	0.12	156	11	53	29	1.80	0.48

Keterangan: RG = rumput gajah; KKO = kakao; CKH = cengkeh; KLP = kelapa dalam;

PIS = pisang; SB = sapi bali

Analisis optimisasi pelaksanaan SIMANTRI 074 dimulai dengan menyusun model aktivitas (Tabel 3) dan model kendala (Tabel 4) berdasarkan hasil survai dan observasi di lapang. Selanjutnya, dirumuskan model LP berbasis *software* BLPX88 (Lampiran 1). Setelah *entry* semua data sesuai model LP tersebut, kemudian di*run*, maka diperoleh solusi optimal model LP SIMANTRI 074 (Tabel 5 dan Tabel 6).

Tabel 3. Model Aktivitas SIMANTRI 074

No	Kode kolom	Deskripsi	Satuan
1	PRG	Produksi Rumput Gajah	На
2 3	PKKO	Produksi Kakao	Pohon
	PCKH	Produksi Cengkeh	Pohon
4	PKDAL	Produksi Kelapa Dalam	Pohon
5	PPIS	Produksi Pisang	Rumpun
6	PSB	Produksi Sapi Bali	250 Kg BH
7	MHPTS1	Mencari Hijauan Pakan Ternak Sapi MH	Kg
8	MHPTS2	Mencari Hijauan Pakan Ternak Sapi MK	Kg
9	BBRG1	Beli Bibit Rumput Gajah MH	Stek
10	BBPIS1	Beli Bibit Pisang MH	Batang
11	BISB1	Beli Induk Sapi Bali MH	250 Kg BH
12	BUR1	Beli Urea MH	Kg
13	BKCL1	Beli KCl MH	Kg
14	BNPK1	Beli NPK MH	Kg
15	BTSP1	Beli TSP MH	Kg
16	BPKAN1	Beli Pupuk Kandang MH	Kg
17	BPEST2	Beli Pestisida MK	Ml
18	BV&IB	Beli Vaksin dan IB untuk ternak sapi	Paket
19	STK10	Sewa Tenaga Kerja Bulan Oktober	HOK
20	STK08	Sewa Tenaga Kerja Bulan Agustus	HOK
21	STK09	Sewa Tenaga Kerja Bulan Sepember	HOK
22	JKKO1	Jual Hasil Produksi Kakao MH	Kg
23	JKKO2	Jual Hasil Produksi Kakao MK	Kg
24	JCKH	Jual Hasil Produksi Cengkeh	Kg
25	JKDAL1	Jual Hasil Kelapa Dalam MH	Butir
26	JKDAL2	Jual Hasil Kelapa Dalam MK	Butir
27	JPIS1	Jual Hasil Produksi Pisang MH	Kg
28	JPIS2	Jual Hasil Produksi Pisang MK	Kg
29	JTSB2	Jual Hasil Ternak Sapi Bali MK	250 Kg BH
30	JPKAN1	Jual Pupuk Kandang MH	Kg
31	JPKAN2	Jual Pupuk Kandang MK	Kg
32	JBURI1	Jual Biourine MH	Lt
33	JBURI2	Jual Biourine MK	Lt
34	AKAS1	Alokasi Kas MH	Rp000
35	AKAS2	Alokasi Kas MK	Rp000
36	TKAS12	Transfer Kas MH-MK	Rp000
37	TKAS2Z	Transfer Kas MK-Z	Rp000

Solusi optimal pada Tabel 5 mengindikasikan bahwa semua aktivitas pada penyelesian masalah primal, yaitu aktivitas: produksi tanaman (kakao, cengkeh, kelapa dalam, pisang, dan rumput gajah) dan ternak sapi bali; pembelian input usahatani; menyewa tenaga kerja; penjualan output usahatani; alokasi kas dan transfer kas merupakan aktivitas yang basis kecuali aktivitas mencari hijauan pakan ternak pada musim hujan, menyewa tenaga kerja bulan Oktober, dan menjual pupuk kandang pada musim hujan. Ini berarti, suplai hijauan pakan ternak sapi bali pada musim hujan sudah cukup tersedia dari produksi rumput gajah, limbah batang pisang, dan limbah pod kakao. Penyewaan tenaga kerja bulan Oktober untuk tenaga petik cengkeh menjadi tidak relevan karena dipandang cukup tersedia tenaga kerja yang

ISSN: 2301-6523

berasal dari dalam keluarga, untuk digunakan secara optimal. Demikian pula aktivitas penjualan pupuk kandang pada musin hujan menjadi tidak perlu karena masih digunakan untuk kebutuhan usahatani sendiri, yang memang diaplikasikan bila musim hujan tiba. Pendapatan usahatani terintegrasi maksimal pada skala usaha 0,48 Ha sebesar Rp26.041.250 per tahun, dengan suplai kas untuk memulai usahatani sebesar Rp7.400.000 pada musim hujan.

Tabel 4. Model Kendala SIMANTRI 074

No	Kode kolom	Deskripsi	Hub	Level	Unit
1	LAHAN	Lahan	<u>≤</u>	0.48	На
2	MLRG	Maksimal Lahan Rumput Gajah	<u> </u>	0,12	На
3	MPKKO	Maksimal Pohon Kakao	<u> </u>	156	Pohon
4	MPCKH	Maksimal Pohon Cengkeh	<u>−</u> ≤	11	Pohon
5	MPKDAL	Maksimal Pohon Kelapa Dalam	<u></u>	53	Pohon
6	MRPIS	Maksimal Rumpun Pisang	<u> </u>	29	Rumpun
7	MTSB	Maksimal Ternak Sapi Bali	<	2	250 Kg BH
8	SPTSB1	Stok Pakan Ternak Sapi Bali MH	=	0	Kg Kg
9	SPTSB2	Stok Pakan Ternak Sapi Bali MK	=	0	Kg
10	SBRG1	Stok Bibit Rumput Gajah MH	=	0	Stek
11	SBPIS1	Stok Bibit Pisang MH	=	0	Batang
12	SISB1	Stok Induk Sapi Bali MH	=	0	250 Kg BH
13	SUR1	Stok Pupuk Urea MH	=	0	Kg Kg BH
14	SKCL1	Stok Pupuk KCl MH	=	0	Kg
15	SNPK1	Stok Pupuk NPK MH	=	0	Kg
16	STSP1	Stok Pupuk TSP MH	=	0	Kg
17	SPEST2	Stok Pestisida MK	=	0	Lt
18	SV&IB	Stok Vaksin & IB Ternak Sapi Bali	=	0	Paket
19	STK10	Stok Vaksii & IB Teriak Sapi Baii Stok Tenaga Kerja Bulan Oktober	_ ≤	55	HOK
20	STK10	Stok Tenaga Kerja Bulan November	<u> </u>	55	HOK
21	STK11	Stok Tenaga Kerja Bulan November Stok Tenaga Kerja Bulan Desember		55	HOK
22	STK01	Ŭ Ÿ	<u>≤</u>	55	HOK
23	STK01	Stok Tenaga Kerja Bulan Januari Stok Tenaga Kerja Bulan Februari	<u> </u>	55	HOK
24		Ŭ Ÿ			
	STK03	Stok Tenaga Kerja Bulan Maret	<u>≤</u>	55	HOK
25	STK04	Stok Tenaga Kerja Bulan April	<u>≤</u>	55	HOK
26	STK05	Stok Tenaga Kerja Bulan Mei	<u>≤</u>	55	HOK
27	STK06	Stok Tenaga Kerja Bulan Juni		55 55	HOK
	STK07	Stok Tenaga Kerja Bulan Juli	≤		HOK
30	STK08	Stok Tenaga Kerja Bulan Agustus	<u> </u>	55 55	HOK
	STK09	Stok Tenaga Kerja Bulan September	<u>≤</u>		HOK
31	MTKS10	Maksimal TK sewaan Bulan Oktober	≤	22	HOK
32	MTKS08	Maksimal TK sewaan Bulan Agustus	<u> </u>	22	HOK
33	MTKS09	Maksimal TK sewaan Bulan September	≤	22	HOK
34	SKK01	Stok Hasil Produksi Kakao MH	=	0	Kg
35	SKKO2	Stok Hasil Produksi Kakao MK	=	0	Kg
36	SCKH	Stok Hasil Produksi Cengkeh	=	0	Kg
37	SKDAL1	Stok Hasil Produksi Kelapa Dalam MH	=	0	Butir
38	SKDAL2	Stok Hasil Produksi Kelapa Dalam MK	=	0	Butir
39	SPIS1	Stok Hasil Pisang MH	=	0	200 biji
40	SPIS2	Stok Hasil Pisang MK	=	0	200 biji
41	STSB2	Stok Ternak Sapi Bali MK	=	0	250 Kg BH
42	SPKAN1	Stok Pupuk Kandang Sapi MH	=	0	Kg
43	SPKAN2	Stok Pupuk Kandang Sapi MH	=	0	Kg
44	SBURI1	Stok Biourine MH	=	0	Lt
45	SBURI2	Stok Biourine MK	=	0	Lt
46	SKAS1	Suplai Kas MH	=	7400	Rp000
47	SKAS2	Suplai Kas MK	=	0	Rp000
48	KASK1	Kas Keluar MH	=	0	Rp000
49	KASK2	Kas Keluar MK	=	0	Rp000

ISSN: 2301-6523

Tabel 5. Penyelesaian Masalah Primal pada Solusi Optimal SIMANTRI 074

C:WBAS074	SOLUTION	IS OPTIMAL		DATE	11-30-2012	TIME	18:01:19
MAXIMUM		ENTERS:		BASIS	X: 34	VARIABLE	s: 50
PIVOTS:	40	LEAVES:		BASIS		SLACKS:	22
LAST INV:	0)	Z	26041.25	CONSTRAI	
•		IS MAXIMUM		Z	26041.25		11-30-2012
C:WDASU/4		OBLEM SOLU	TON	4	26041.25	TIME	
VARIABLE	STATUS	VALUE	LOWER	UPPER	Z	VALUE	NET
PRG	BASIS	.12	NONE	NONE	0	0	0
PKKO	BASIS	129.2446		NONE	Ö	0	0
PCKH	BASIS	11	NONE	NONE	0	0	0
PKDAL	BASIS	8.421169		NONE	0	0	0
PPIS	BASIS	29	NONE	NONE	0	0	0
PSB	BASIS	.9736944	NONE	NONE	0	0	0
MHPTS1	NONBASIS	0	NONE	NONE	0	1.31885	9 -1.318859
MHPTS2	BASIS	1381.625	NONE	NONE	0	0	0
BBRG1	BASIS	9600	NONE	NONE	0	0	0
BBPIS1	BASIS	0	NONE	NONE	0	0	0
BISB1	BASIS	.9736944	NONE	NONE	0	0	0
BUR1	BASIS	44.07241	NONE	NONE	0	0	0
BKCL1	BASIS	29.59702	NONE	NONE	0	0	0
BNPK1	BASIS	51.65453	NONE	NONE	0	0	0
BTSP1	BASIS	6.203741	NONE	NONE	0	0	0
BPKAN1	BASIS	1400.475	NONE	NONE	0	0	0
BPEST2	BASIS	4.148752	NONE	NONE	0	0	0
BV&IB	BASIS	0	NONE	NONE	0	0	0
STK10	NONBASIS	0	NONE	NONE	0	40	-40
STK08	BASIS	4.272432	NONE	NONE	0	0	0
STK09	BASIS	3.625	NONE	NONE	0	0	0
JKK01	BASIS	180.9425	NONE	NONE	0	0	0
JKKO2	BASIS	77.54677	NONE	NONE	0	0	0
JCKH	BASIS	55	NONE	NONE	0	0	0
JKDAL1	BASIS	303.1621		NONE	0	0	0
JKDAL2	BASIS	303.1621		NONE	0	0	0
JPIS1	BASIS	23.2	NONE	NONE	0	0	0
JPIS2	BASIS	23.2	NONE	NONE	0	0	0
JTSB2	BASIS	1.75265	NONE	NONE	0	0	0
JPKAN1	NONBASIS	0	NONE	NONE	0	0	0
JPKAN2	BASIS	701.06	NONE	NONE	0	0	0
JBURI1	BASIS	876.325	NONE	NONE	0	0	0
JBURI2	BASIS	876.325	NONE	NONE	0	0	0
AKAS1	BASIS	20396.64		NONE	0	0	0
AKAS2	BASIS	11737.85		NONE	0	0	0
TKAS12	BASIS	14780.51		NONE	0	0	0
TKAS2Z	BASIS	26041.25	NONE	NONE	1	1	0

Berdasarkan penyelesaian masalah dual pada Tabel 6, ternyata seluruh lahan telah digunakan secara optimal. Hal ini diindikasikan oleh status kendala lahan yang habis terpakai (*binding*) tanpa ada sisa (*slack*). Namun, tidak semua kendala jumlah tanaman bersifat *binding*, seperti tanaman kakao, yang berdasarkan rata-rata survai terdapat 156 pohon, hanya direkomendasikan sebanyak 129 pohon. Demikian pula untuk tanaman kelapa dalam, dari 53 pohon yang tersedia akan menguntungkan diusahakan sebanyak 8 pohon.

Tabel 6. Penyelesaian Masalah Dual pada Solusi Optimal SIMANTRI 074

C:WBAS074	SOLUTION IS		Z	26041.25	DATE 11-30-2012 TIME 18:01:30	
ROW ID	STATUS	DUAL VALUE	RHS VALUE	USAGE	SLACK	
LAHAN	BINDING	9400	.48	.48	0	
MLRG	BINDING	7670.072	.12	.12	0	
MPKKO	NONBINDING	0	156	129.2446	26.75539	
MPCKH	BINDING	12.09216	11	11	0	
MPKDAL	NONBINDING	0	53	8.421169	44.57883	
MRPIS	BINDING	81.16	29	29	0	
MTSB	NONBINDING	0	2	0	2	
SPTSB1	BINDING	-1.318859	0	0	0	
SPTSB2	BINDING	2.436862	0	0	0	
SBRG1	BINDING	.1	0	0	0	
SBPIS1	BINDING	5	0	0	0	
SISB1	BINDING	3500	0	0	0	
SUR1	BINDING	2	0	0	0	
SKCL1	BINDING	2.4	0	0	0	
SNPK1	BINDING	1.9	0	0	0	
STSP1	BINDING	1.7	0	0	0	
SPEST2	BINDING	115	0	0	0	
SV&IB	BINDING	166.5	Ö	0	0	
STK10	NONBINDING	0	55	30.61344	24.38656	
STK11	NONBINDING	0	55	19.18077	35.81923	
STK12	NONBINDING	0	55	12.61183	42.38817	
STK01	NONBINDING	0	55	11.68433	43.31567	
STK02	NONBINDING	0	55	15.96969	39.03031	
STK03	NONBINDING	0	55	19.35469	35.64531	
STK04	NONBINDING	0	55	33.24	21.76	
STK05	NONBINDING	0	55	33	22	
STK06	NONBINDING	0	55	33.24	21.76	
STK07	BINDING	114.9489	55	55	0	
STK08	BINDING	40	55	55	0	
STK09	BINDING	40	55	55	0	
MTKS10	NONBINDING	0	22	0	22	
MTKS08	NONBINDING	0	22	4.272432	17.72757	
MTKS09	NONBINDING	0	22	3.625	18.375	
SKK01	BINDING	20	0	0	0	
SKKO2	BINDING	20	0	0	0	
SCKH	BINDING	100	0	0	0	
SKDAL1	BINDING	1.5	0	0	0	
SKDAL2	BINDING	1.5	0	0	0	
SPIS1	BINDING	72	0	0	0	
SPIS2	BINDING	72	0	0	0	
STSB2	BINDING	3500	0	0	0	
SPKAN1	BINDING	.7	0	0	0	
SPKAN1 SPKAN2	BINDING	.7	0	0	0	
SBURI1	BINDING	2	0	0	0	
SBURI2	BINDING	2	0	0	0	
SKAS1		1	7400	7400	0	
SKAS1 SKAS2	BINDING BINDING	1	0	7400	0	
KASK1		1	0	0	0	
	BINDING				•	
KASK2	BINDING	1	0	0	0	

4. Kesimpulan

Penerapan sistem usahatani terintegrasi (SIMANTRI) 074 di Kabupaten Jemberana oleh petani berdasarkan sumberdaya yang tersedia dan tingkat teknologi yang ada telah berjalan secara optimal. Dalam kondisi optimal tersebut petani memperoleh pendapatan maksimal sebesar Rp26.041.250/tahun. Temuan ini sejalan dengan hasil penelitian Schultz (Hayami & Ruttan, 1985), yang menyatakan bahwa petani kecil dan miskin di negara sedang berkembang, secara ekonomi, rasional dalam mengalokasikan sumberdaya pada ketersediaan sumberdaya dan teknologi yang ada. Petani disarankan untuk melakukan penjarangan tanaman kakao dan

ISSN: 2301-6523

kelapa dalam sampai pada batas kendala optimal, dengan tetap memberikan hasil maksimal. Penelitian lanjutan mengenai optimasi pelaksanaan SIMANTRI yang mengintegrasikan komponen keberlanjutan sistem usahatani baik di lahan kering maupun di lahan sawah diperlukan untuk menjamin keberlanjutan teknologi pangan SIMANTRI di Bali.

Daftar Pustaka

- Antara, M. 2001. Perilaku Petani dalam Pengalokasian Suberdaya untuk Mencapai Pendapatan Maksimum di Kabupaten Tabanan: Analisis Programasi Linier. Disertasi tidak Dipublikasikan. Universitas Gadjah Mada, Yogyakarta.
- Barlow, C., S. Jayasuriya, V. Cordova, L. Yambo, C. Bantilan, C. Maranan and N. Roxas. 1977. *On Measuring The Ecoomic Benefits of New Technologies to Small Rice Farmers*. IRRI paper: 1-49.
- Cohen, K. J. and R. M. Cyert. 1976. *Theory of the Firm: Resource Allocation in a Market Economy*. New Delhi: Prentice-Hall of India Private Limited (2nd): 358-389
- Eastern Software Product, Inc. 1984. *BLP88 User's Guide*. Linear Programming with Bounded Variables for The IBM PC. Alexandria, Virginia.
- Edwards, C.A. 1990. The Importance of Integration in Sustainable Agricultural System. In Edwards, C.A; R. Lal; P, Madden; R.H. Miller and G. House (Eds.). *Sustainable Agricultural System*. Soil and Water Conservation Society: 249-264.
- Gonzales, C.M., 1983. Simplified and Linear Programming in Evaluating Cropping Patterns. IRRI paper: 176-187.
- Hayami, Yujiro & Vernon W. Ruttan. 1985. *Agricultural Development*. An International Perspective. Johns Hopkin University Press. Baltimore and London.
- Ibrahim, H. 2008. Revitalisasi Pertanian, Ketahanan pangan, dan Penyediaan SDM Pertanian yang Handal. Paper dipresentasikan pada Lokakarya Nasional FKPT-PI Ke-8 Tahun 2008 "Restrukturisasi Perguruan Tinggi Pertanian Indonesia Menuju Pencapaian Kompetensi Pertanian Modern". Jambi, Mei 2008.
- Luna, J.M and G.J. House. 1990. Pest Management in Sustainable Agricultural System. In Edwards, C.A; R. Lal; P, Madden; R.H. Miller and G. House (Eds.). Sustainable Agricultural System. Soil and Water Conservation Society. In Edwards, C.A; R. Lal; P, Madden; R.H. Miller and G. House (Eds.). Sustainable Agricultural System. Soil and Water Conservation Society:157-173.
- Viaux, P. 2007. Integrated Farming Systems: A Form of Low Input Farming, In Biala, K; J-M Terres; P. Pointereau; dan M.L. Paracchini (eds) *Low Input Farming Systems: an Opportunity to Develop Sustainable Agriculture*. Proceedings of the JRC Summer University.