G12: Devoir maison no 2.

À rendre le mardi 28 novembre

Exercice 1. Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes; pour tout $n \in \mathbb{N}^*$, X_n suit la loi de Poisson de paramètre $\lambda_n > 0$. On pose, pour $n \in \mathbb{N}^*$,

$$S_n = X_1 + \ldots + X_n, \qquad s_n = \lambda_1 + \ldots + \lambda_n.$$

- 1. Calculer la fonction caractéristique φ_n de S_n . Quelle est la loi de S_n ? sa moyenne? sa variance?
- 2. Montrer que $(S_n)_{n\in\mathbb{N}^*}$ converge presque sûrement vers une variable aléatoire S de $\overline{\mathbb{R}}_+$.
- 3. On suppose que $\sum_{n\geq 1} \lambda_n < +\infty$. Calculer $\lim_{n\to +\infty} \mathbb{E}[S_n]$. En déduire que S est finie presque sûrement et déterminer la loi de S.
- 4. On suppose désormais que $\sum_{n>1} \lambda_n = +\infty$.
 - (a) Montrer que, pour tout $r \in \mathbb{N}$, $\mathbb{P}(S > r) = 1$. Déterminer S.
- (b) Montrer que la suite de terme général $Y_n = (S_n s_n)/s_n$, $n \in \mathbb{N}^*$, converge presque sûrement vers 0 lorsque $n \to +\infty$. On pourra utiliser le lemme de Kronecker et l'inégalité $s_n^{-2} \lambda_n \leq s_{n-1}^{-1} s_n^{-1}$, $n \geq 2$.

Lemme de Kronecker : Soient $(b_n)_{n\geq 1}$ une suite croissante de réels strictement positifs telle que $\lim_{n\to +\infty}b_n=+\infty$ et $(x_n)_{n\geq 1}$ une suite de réels. Si $\sum_{n\geq 1}(x_n/b_n)$ converge dans \mathbf{R} , alors $\lim_{n\to +\infty}(\sum_{i=1}^n x_i)/b_n=0$.

(c) Déterminer la limite en loi de $(\sqrt{s_n} Y_n)_{n \in \mathbb{N}^*}$ lorsque $n \to +\infty$.

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles, indépendantes et identiquement distribuées, de carré intégrable, telle que $\mathbb{E}[X_1] = 0$ et $\mathbb{E}[X_1^2] = 1$.

Pour $n \ge 1$, on pose

$$S_n = X_1 + \ldots + X_n, \qquad R_n = \frac{|S_n|}{\sqrt{n}}.$$

1. Montrer que $(R_n)_{n\geq 1}$ converge en loi vers une variable aléatoire Z dont on déterminera la densité. Vérifier que $\mathbb{E}[Z] = \sqrt{2}/\sqrt{\pi}$.

Pour $l \ge 1$, on pose $\varphi_l(x) = \min(x, l) \mathbf{1}_{\mathbf{R}_+}(x)$.

- 2. (a) Justifier que, pour tout $l \ge 1$, $\lim_{n \to +\infty} \mathbb{E}[\varphi_l(R_n)] = \mathbb{E}[\varphi_l(Z)]$.
 - (b) Établir, pour $l \ge 1$ et $n \ge 1$, les quatre relations suivantes

$$\left| \mathbb{E}[R_n] - \mathbb{E}[\varphi_l(R_n)] \right| \le \mathbb{E}\left[R_n \mathbf{1}_{\{R_n \ge l\}} \right] \le \frac{1}{l} \mathbb{E}\left[R_n^2 \right] = \frac{1}{l}.$$

3. (a) Prouver que, pour tout $l \geq 1$,

$$\lim_{n \to +\infty} \sup_{n \to +\infty} \left| \mathbb{E}[R_n] - \sqrt{\frac{2}{\pi}} \right| \le \frac{1}{l} + \left(\mathbb{E}[Z] - \mathbb{E}[\varphi_l(Z)] \right).$$

(b) Conclure.