Evaluation (20 min): L'énergie des appareils en veille

Document : Puissance des appareils en veille pour un foyer

Appareil	Puissance (W)
Ordinateur en veille	13 W
Télévision en veille	11 000 mW
Sèche-Linge en veille	0,012 kW
Four en veille	$10 \times 10^{-6} MW$
Boxe en veille	7 W

Données: $\rightarrow 1$ kW. h = 3,6 × 10⁶J

- $\rightarrow 1MW = 1$ million de Watt
- → EDF facture 18 centimes d'euros par kilowattheure
- → La puissance mécanique en entrée de l'alternateur d'un réacteur nucléaire est 950 MW
- →Le rendement de l'alternateur de la centrale est 95%
- → Nombre de foyers en France : 30 millions

Toutes les réponses seront justifiées. Les formules seront rappelées avant de faire les applications numériques. Les questions 3 et 4 peuvent être traitées sans avoir réussi les questions 1 et 2.

- 1- Calculer l'énergie consommée par chaque appareil en veille pendant 1 an. On supposera que les appareils fonctionnent 24h/24 et 7J/7. (2 points).
- 2- Si ces appareils avaient été totalement éteins, de quel montant aurait diminué la facture EDF annuelle du foyer ? (2 points)
- 3- Si tous les foyers français débranchaient ces 5 appareils, combien de réacteurs nucléaires pourraient être éteins ? (2 points)
- 4- Discuter l'impact de l'énergie nucléaire sur le réchauffement climatique. Pourquoi cette énergie suscite -t-elle des débats ? (2 points)

Term. Ens. Scientifique

03/12/2020

Evaluation (20 min) : L'énergie des appareils en veille

Document : Puissance des appareils en veille pour un foyer

Appareil	Puissance (W)
Ordinateur en veille	13 W
Télévision en veille	11 000 mW
Sèche-Linge en veille	0,012 kW
Four en veille	$10 \times 10^{-6} MW$
Boxe en veille	7 W

Données : $\rightarrow 1$ kW. h = 3,6 × 10⁶ J

- $\rightarrow 1MW = 1$ million de Watt
- → EDF facture 18 centimes d'euros par kilowattheure
- → La puissance mécanique en entrée de l'alternateur d'un réacteur nucléaire est 950 MW
- →Le rendement de l'alternateur est 95%
- → Nombre de foyers en France : 30 millions

Toutes les réponses seront justifiées. Les formules seront rappelées avant de faire les applications numériques. Les questions 3 et 4 peuvent être traitées sans avoir réussi les questions 1 et 2.

- 1- Calculer l'énergie consommée par chaque appareil en veille pendant 1 an. On supposera que les appareils fonctionnent 24h/24 et 7J/7. (2 points).
- 2- Si ces appareils avaient été totalement éteins, de quel montant aurait diminué la facture EDF annuelle du foyer ? (2 points)
- 3- Si tous les foyers français débranchaient ces 5 appareils, combien de réacteurs nucléaires pourraient être éteins ? (2 points)
- 4- Discuter l'impact de l'énergie nucléaire sur le réchauffement climatique. Pourquoi cette énergie suscite -t-elle des débats ? (2 points)