

IN THE CLAIMS

RECEIVED
 CENTRAL FAX CENTER
 NOV 03 2006

1. (currently amended) A compound of formula 1

wherein

 R^1

- (i) is $-C_{1-10}$ -alkyl, straight-chain or branched-chain, optionally mono- or polysubstituted by $-OH$, $-SH$,
 $-NH_2$, $-NHC_{1-6}$ -alkyl, $-N(C_{1-6}$ -alkyl)₂, $-NHC_{6-14}$ -aryl,
 $-N(C_{6-14}$ -aryl)₂, $-N(C_{1-6}$ -alkyl)(C_{6-14} -aryl), $-NO_2$,
 $-CN$, $-F$, $-Cl$, $-Br$, $-I$, $-O-C_{1-6}$ -alkyl, $-O-C_{6-14}$ -aryl, $-S-C_{1-6}$ -alkyl, $-S-C_{6-14}$ -aryl, $-SO_3H$,
 $-SO_2C_{1-6}$ -alkyl,
 $-SO_2C_{6-14}$ -aryl, $-OSO_2C_{1-6}$ -alkyl, $-OSO_2C_{6-14}$ -aryl,
 $-COOH$, $-(CO)C_{1-5}$ -alkyl, $-COO-C_{1-5}$ -alkyl, $-O(CO)C_{1-5}$ -alkyl, by a mono-, bi- or tricyclic saturated or mono- or polyunsaturated carbocycle heterocycles with 3-14 ring members ~~or and by mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles with 5-15 ring members and 1-6 heteroatoms, which are preferably N, O and S,~~

where the C₆₋₁₄-aryl groups and the carbocyclic and heterocyclic substituents in turn may optionally be substituted at least once one or more times by -C₁₋₆-alkyl, -OH, -NH₂, -NHC₁₋₆-alkyl, -N(C₁₋₆-alkyl)₂, -NO₂, -CN, -F, -Cl, -Br, -I, -O-C₁₋₆-alkyl, -S-C₁₋₆-alkyl, -SO₃H, -SO₂C₁₋₆-alkyl, -OSO₂C₁₋₆-alkyl, -COOH, -(CO)C₁₋₅-alkyl, -COO-C₁₋₅-alkyl or and -O(CO)C₁₋₅-alkyl, and wherein where the alkyl groups on the carbocyclic and heterocyclic substituents in turn may optionally be substituted one or more times at least once by -OH, -SH, -NH₂, -F, -Cl, -Br, -I, -SO₃H or and -COOH, or

(ii) is -C₂₋₁₀-alkenyl, mono- or polyunsaturated, straight-chain or branched-chain, optionally mono- or polysubstituted by at least one of -OH, -SH, -NH₂, -NHC₁₋₆-alkyl, -N(C₁₋₆-alkyl)₂, -NHC₆₋₁₄-aryl, -N(C₆₋₁₄-aryl)₂, -N(C₁₋₆-alkyl)(C₆₋₁₄-aryl), -NO₂, -CN, -F, -Cl, -Br, -I, -O-C₁₋₆-alkyl, -O-C₆₋₁₄-aryl, -S-C₁₋₆-alkyl, -S-C₆₋₁₄-aryl, -SO₃H, -SO₂C₁₋₆-alkyl, -SO₂C₆₋₁₄-aryl, -OSO₂C₁₋₆-alkyl, -OSO₂C₆₋₁₄-aryl, -COOH, -(CO)C₁₋₅-alkyl, -COO-C₁₋₅-alkyl or and -O(CO)C₁₋₅-alkyl, by mono-, bi- or tricyclic saturated or mono- or a polyunsaturated carbocycle ~~carboycles~~ with 3-14 ring members or and by mono-, bi- or tricyclic saturated or mono- or polyunsaturated heterocycles with 5-15 ring members and ~~1-6 heteroatoms~~, which are preferably N, O and S,

where the C₆₋₁₄-aryl groups and the carbocyclic and heterocyclic substituents in turn may optionally be substituted at least once one or more times by -C₁₋₆-alkyl, -OH, -NH₂, -NHC₁₋₆-alkyl, -N(C₁₋₆-alkyl)₂, -NO₂, -CN, -F, -Cl, -Br, -I, -O-C₁₋₆-alkyl, -S-C₁₋₆-alkyl, -SO₃H, -SO₂C₁₋₆-alkyl, -OSO₂C₁₋₆-alkyl, -COOH, -(CO)C₁₋₅-alkyl, -COO-C₁₋₅-alkyl or and -O(CO)C₁₋₅-alkyl,

and where the alkyl groups on the carbocyclic and heterocyclic substituents in turn may optionally be substituted at least once one or more times by -OH, -SH, -NH₂, -F, -Cl, -Br, -I, -SO₃H or and -COOH,

R² is hydrogen or -C₁₋₃-alkyl,

R³ is a hydroxyl group, and wherein

R⁴ and R⁵ may be identical or different and are hydrogen, -C₁₋₆-alkyl, -OH, -SH, -NH₂, -NHC₁₋₆-alkyl, -N(C₁₋₆-alkyl)₂, -NO₂, -CN, -SO₃H, -SO₃-C₁₋₆-alkyl, -COOH, -COO-C₁₋₆-alkyl, -O(CO)-C₁₋₅-alkyl, -F, -Cl, -Br, -I, -O-C₁₋₆-alkyl, -S-C₁₋₆-alkyl, or -phenyl or -pyridyl, where the phenyl substituent or pyridyl substituents in turn may optionally be substituted at least once one or more times by -C₁₋₃-alkyl, -OH, -SH, -NH₂, -NHC₁₋₃-alkyl, -N(C₁₋₃-alkyl)₂, -NO₂, -CN, -SO₃H, -SO₃C₁₋₃-alkyl, -COOH, -COOC₁₋₃-alkyl, -F, -Cl, -Br, -I, -O-C₁₋₃-alkyl, -S-C₁₋₃-alkyl, or -O(CO)C₁₋₃-alkyl, and where the alkyl substituents in turn may optionally be substituted at least once one or more times by -OH, -SH, -NH₂, -F, -Cl, -Br, -I, -SO₃H, -SO₃C₁₋₃-alkyl, -COOH, -COOC₁₋₃-alkyl, -O-C₁₋₃-alkyl, -S-C₁₋₃-alkyl or or and -O(CO)-C₁₋₃-alkyl, or a salt thereof thereof.

2. (previously presented) A compound as claimed in claim 1, having at least one asymmetric carbon atom in the D form, the L form and D,L mixtures, and in the case of a plurality of asymmetric carbon atoms also the diastereomeric forms.

3. (previously presented) A compound as claimed in claim 1, wherein R² is hydrogen or a methyl group.

4. (canceled)

5. (currently amended) A compound as claimed in claim 1, selected from the group consisting of:

N-(3,5-dichloro-1-oxopyridin-4-yl)-[1-(4-fluorobenzyl)-5-hydroxyindol-3-yl]glyoxylamide;

N-(3,5-dichloro-1-oxopyridin-4-yl)-[1-(4-chlorobenzyl)-5-hydroxyindol-3-yl]glyoxylamide;

N-(1-oxopyridin-4-yl)-[1-(4-fluorobenzyl)-5-hydroxyindol-3-yl]glyoxylamide;

N-(3,5-dichloro-1-oxopyridin-4-yl)-[1-(2,4-dichlorobenzyl)-5-hydroxyindol-3-yl]glyoxylamide;

N-(3,5-dichloro-1-oxopyridin-4-yl)-[5-hydroxy-1-(3-nitrobenzyl)-indol-3-yl]glyoxylamide;

N-(3,5-dichloro-1-oxopyridin-4-yl)-[1-(2,6-difluorobenzyl)-5-hydroxyindol-3-yl]glyoxylamide;

N-(3,5-dichloro-1-oxopyridin-4-yl)-(5-hydroxy-1-isobutylindol-3-yl)glyoxylamide;

N-(3,5-dichloro-1-oxopyridin-4-yl)-(1-cyclopropyl-methyl-5-hydroxyindol-3-yl)glyoxylamide;

N-(3,5-dichloro-1-oxopyridin-4-yl)-[5-hydroxy-1-(4-hydroxybenzyl)-indol-3-yl]glyoxylamide;

N-(3,5-dichloro-1-oxopyridin-4-yl)-N-methyl-[1-(4-fluorobenzyl)-5-hydroxyindol-3-yl]glyoxylamide;

and or a physiologically tolerated salt ~~salt~~ thereof.

6. (previously presented) The compound of claim 1 that is N-(3,5-dichloro-1-oxopyridin-4-yl)-[1-(4-fluorobenzyl)-5-hydroxyindol-3-yl]glyoxylamide.

Claims 7-15 (canceled)

16.(previously presented) A compound as claimed in claim 2 wherein R² is hydrogen or a methyl group.

17.(previously presented) The compound of claim 1 that is a physiologically acceptable salt of N-(3,5-dichloro-1-oxopyridin-4-yl)-[1-(4-fluorobenzyl)-5-hydroxyindol-3-yl]glyoxylamide.

Claims 18-19 (canceled)

20.(currently amended) A compound as claimed in claim 1, wherein at least one of R⁴ and R⁵ is F, Cl, Br, or I a halogen atom.

21. (new) A pharmaceutical composition comprising the compound as claimed in claim 1 and at least one of a conventional physiologically tolerated carrier, diluent or excipient.