

CLOUD COMPUTING APPLICATIONS

Cloud Databases – Managed RDBMS
Prof. Reza Farivar

Relational Cloud Databases

- For decades, managing a relational database has been a high-skill, labor-intensive task
- Relational databases store data with predefined schemas and relationships between them
- These databases are designed to support ACID transactions, maintain referential integrity and strong data consistency.
 - Atomicity
 - Consistency
 - Isolation
 - Durability
- OLTP workloads
 - On- Line Transactional Processing (OLTP)

Relational Databases

- In large systems, failures are a norm, not an exception
- Users want to start with a small footprint and then grow massively without infrastructure limiting their velocity
- Replication
 - Storage (SAN, NAS, Aurora)
 - Database
 - Application

Sharding

- Sharding: Split data set by certain criteria and store such "shards" on separate "clusters"
 - Sharding can be considered an embodiment of the "share-nothing" architecture and essentially involves breaking a large database into several smaller databases
- One common way to split a database is splitting tables that are not joined in the same query onto different hosts
- Another method is duplicating a table across multiple hosts and then using a hashing algorithm to determine which host receives a given update

Managed Relational Databases

- Traditional single server databases running on a virtual machine
 - AWS RDS: MySQL, PostgreSQL, MariaDB, Oracle, MS SQL server
 - Azure SQL Database, Database for MySQL, PostgreSQL, MariaDB
 - Google Cloud SQL
 - IBM Cloud Databases for PostgreSQL, DB2 on cloud
- Instances are fully managed, relational MySQL, PostgreSQL, and SQL Server databases
- Cloud provider handles replication, patch management, and database management to ensure availability and performance
- Availability through failover
- Horizontal Scalability through read replicas
 - Vertical scalability by using larger machines (64 processors, 400GB RAM)

Managed Relational Databases

- Typically the database instance is accessible by most compute resources in the cloud provider's network
 - Virtual Machines (AWS EC2, Azure VMs, Google Compute Engine)
 - PaaS (Aws Elastic beanstalk, Google App Engine)
 - Serverless (AWS lambda, Google Cloud Functions, Azure functions, etc.)
- Over the internet
 - SQL Proxy
 - Google Cloud SQL Proxy for public interfacing
 - ./cloud sql proxy -instances=INSTANCE CONNECTION NAME=tcp:3306 &
 - import pymysql connection = pymysql.connect(host='127.0.0.1', user='DATABASE_USER', password='PASSWORD', db='DATABASE_NAME')
- Encryption at rest and in transport