CURSO

Administrador de Banco de Dados

Disciplina II Modelagem de Banco de Dados

AULA 09

Modelo Lógico

- Tipos de Dados
- Chaves Estrangeiras

Introdução

- O modelo lógico busca demonstrar as entidades e relacionamentos do banco de dados através de uma nova perspectiva, incluindo duas informações importantes:
- ➤Os <u>tipos dos dados</u> salvos na tabela;
- >As chaves estrangeiras que unem as tabelas relacionadas;

Tipo de Dados

- O tipo de dado salvo em uma tabela diz respeito ao formato do dado em cada atributo da entidade;
- Cada atributo possui um tipo de dado específico;
- Exemplos comuns:
- ➤ Data de Nascimento: Data
- **➢**Nome: **Texto**
- ► Salario: Número Fracionado
- **►** *Idade*: **Número Inteiro**

Tipo de Dados

- No modelo lógico o tipo de dado dos atributos é identificado;
- O nome do tipo de dado irá variar de acordo com o SGBD escolhido para o sistema de banco de dados;
- No MySQL os tipos de dados mais comuns são:

≻Texto: varchar (100)

≻Data: date

≻Hora: time

>Número Fracionado: double ou float

➢ Número Inteiro: integer

Varchar

- O tipo varchar (texto) recebe qualquer tipo de <u>caractere</u>, seja <u>letras</u>, <u>números</u> ou <u>símbolos</u>.
- Porém, para o SGBD o tipo do dado sempre será texto;
- Por exemplo:
- ✓ Você tem um atributo chamado <u>salario</u> e pretende fazer cálculos matemáticos com ele, o tipo **não deve** ser varchar, pois não podemos fazer cálculos com texto mas sim com números;
- ✓ Já se você tem um atributo numérico mais quer armazenar símbolos junto com o número você deve escolher varchar;

Varchar

- O tipo varchar vem acompanhado com um número dentro de parênteses. Exemplo: varchar (100);
- Esses número dentro do parêntese é o **tamanho** do texto, ou seja, **quantos caracteres** este texto poderá possuir;
- Exemplo: nome varchar (10) -> significado que o nome dentro deste atributo da tabela não pode ter mais do que 10 caracteres;
- O tipo varchar precisa de **aspas simples** entre o texto inserido no atributo. **Exemplo**: *'Jackson Henrique'*;

Date

- O tipo date é utilizado somente para datas e não aceita receber números, textos ou horas;
- Exemplo: data_nascimento date;
- No MySQL as datas são inseridas no banco de dados de uma forma diferente: de trás para frente;
- O tipo date também precisa de aspas simples entre o valor da data, senão o MySQL não entende o sinal de – (traço);
- Exemplo: '2020-08-31'

Time

- O tipo time é utilizado somente para horas e não aceita receber números, textos ou datas;
- Exemplo: hora_inicio time;
- No MySQL as datas são inseridas no banco de dados de uma forma específica usando a sequencia, hora, minuto e segundo;
- Como o tipo date o tipo time também precisa de aspas simples entre os valor inserido;
- Exemplo: '13:56:00'

Float ou Double

- Os tipos Float e Double são usados para **números fracionados**, ou seja número que precisam demonstrar um valor com **casas decimais**;
- Normalmente é utilizado para valores financeiros para demonstrar os centavos por exemplo. Exemplo: salario float;
- Exemplo do número fracionado: 500,50
- No MySQL este formato não precisa de aspas simples, porém ao inserir um número não temos a vírgula ao separar a casa decimal mais sim um ponto;
- Exemplo do número fracionado no MySQL: 500.50
- Para separa a casa do milhar, não temos sinal.
- Exemplo: 1500.50

Integer

- O tipo integer serve para armazenar um número inteiro, que não possue casa decimal;
- São normalmente usados para demonstrar um dia, mês ou ano. Ou um número simples;
- Exemplo: 1990 ou 06 ou 50
- No MySQL este formato não precisa de aspas simples;
- Os atributos identificadores sempre são do tipo inteiro;

Exemplo Prático

Atributos	Tipo	Exemplo:		
id	integer	1		
nome	Varchar (200)	'Jackson'		
cpf	Varchar (30)	'123.123.123 [']		
rg	Varchar (50)	'881231 sesdec/RO'		
endereco	Varchar (250)	'Av. X, 111 – Vida'		
Data_nascimento	Date	'1987-06-30'		
telefone	Varchar (100)	'69 98408 5712'		
salario	Float	30500.50		
funcao	Varchar (40)	'Professor'		
horario_entrada	Time	'08:30:00'		

Hora de praticar

Identifique os tipos de dados

Chaves Estrangeiras

- Até aqui conhecemos dois tipos de atributos no banco de dados: o atributo simples e o identificador também chamado de Primary Key (PK);
- Agora iremos conhecer um terceiro tipo, a chave estrangeira;
- A chave estrangeira ou Foreign Key (FK) é um atributo criado na tabela que recebe o N entre duas tabelas relacionadas;
- Este atributo tem como objetivo arramar a relação entre duas tabelas;
- A chave estrangeira (FK) corresponde ao atributo identificador (PK) da tabela com a cardinalidade 1 do relacionamento;
- As **FK** sempre são do **tipo Inteiro**, uma vez que são representações das **PKs**;

Confuso? Vamos lá!

A tabela com o N recebe a PK da tabela com 1

- A FK é a PK da tabela com o 1
- set é abreviação de Setor

Atributos	Tipo	Exemplo:
id	integer	1
nome	Varchar (200)	'Jackson'
cpf	Varchar (30)	'123.123.123 [']

Atributos	Tipo	Exemplo:		
id	integer	1		
nome	Varchar (200)	'Jackson'		
cpf	Varchar (30)	'123.123.123 [']		
rg	Varchar (50)	'881231 sesdec/RO'		
endereco	Varchar (250)	'Av. X, 111 – Vida'		
Data_nascimento	Date	'1987-06-30'		
telefone	Varchar (100)	'69 98408 5712'		
salario	Float	30500.50		
funcao	Varchar (40)	'Professor'		
horario_entrada	Time	'08:30:00'		
Id_set_fk	Integer	1		

Tabela: Setor

ld	Nome	Local		
1	'Vendas'	'Frente'		
2	'Financeire'	'Fundo'		
3	'Almoxarifado'	'Fundo'		

Tabela: Funcionário

Id	Nome	Cpf	Rg	Endereco	Data_ nasc	Telefone	Funcao	Horario_ entrada	salario	Id_ set_ fk
1	'Jackson Henrique da Silva bezerra'	'123.123.52 2-22'	'445588 sesdec-RO'	'Rua X, 522 – são Paulo'	'1987-06-30'	'69 98408- 5712	'Vendedor'	'08:00:00'	10500.50	1
2	'Ana Paula Silva'	'123-123- 123-23'	'123123 sesdec-RO'	'Rua A, 223 – são Pedro'	'1990-01-01'	'69 98408- 5555'	'Caixa'	'09:00:00'	5000.00	2

Lembre-se

- A chave estrangeira só existe a partir do modelo lógico;
- Mas e as tabelas N para N como fica?
- E as **1 para 1**?

Desmembramento de tabela N para N

- <u>Lembre-se</u>: o relacionamento N para N só existe no modelo conceitual;
- A partir do modelo lógico não temos relacionamento N para N, apenas N para 1;
- Para resolver isso temos que desmembrar o relacionamento N para N para que o mesmo fique N para 1;
- Isso é feito criando uma 3º tabela no meio do relacionamento entre as duas tabelas N para N;
- Como?

Regras do N para N

- 1. Quando houver N para N **cria-se** a 3ª Tabela, ligada as duas tabelas de origem;
- 2. A 3ª Tabela recebe o nome das duas tabelas de origem;
- 3. A 3º Tabela recebe o N na relação com as duas tabelas de origem;
- 4. Já as **tabelas de origem** ficam com o **1**;
- 5. Assim a 3º Tabela recebe as chaves estrangeiras das tabelas de origem;

Hora de Praticar

- Desmembre o N para N deste diagrama;

E o 1 para 1 com fica?

- No relacionamento 1 para 1 você deve escolher uma das duas tabelas para receber a chave estrangeira;
- Na prática o único relacionamento existente no modelo físico e lógico é o 1 para N;
- No 1 para 1, escolha a tabela que faça mais sentido receber a chave da outra;

Hora de Praticar 2

- Desmembre o N para N deste diagrama;
 - Adicione a FK nas tabelas N para 1
 - Adicione a FK nas tabelas 1 para 1
 - Identifique os tipos dos dados

Jackson Henrique

Professor Formador

E-mail:

Jackson.henrique@ifro.edu.br

