Signals and Systems

Lab 2: Signal analysis with DFT

Problem 15: "What's in a name?"

Preparation

```
!apt install libasound2-dev portaudio19-dev libportaudio2 libportaudiocpp0 ffmpeg
!pip install pyaudio
!git clone --recursive https://github.com/Atellas23/sis_files
import numpy as np
import matplotlib.pyplot as plt
from scipy.fftpack import fft, ifft
from scipy.signal import hamming, convolve
from scipy.io import wavfile
import pyaudio

fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 6*1.5
fig_size[1] = 4*1.5
plt.rcParams["figure.figsize"] = fig_size
```

Voice recording

We recorded the sound with an auxiliar program and then saved it as a .wav file in a Github repository, sanywhere. Now we load it, so we can use it for our analysis.

Recording

Studying the voiced segment

First of all, we distinguish the voiced segment from the noise segment. Therefore, the following plot should "Aleix".

Voiced segment

Now, from this part of the recording we will take the first part, where we think the 'A' is. We also window Hamming window.

```
i1 = 835
i2 = 1842
i3 = 1339
x2 = x[i1:i3]
wx2 = x2*hamming(i3-i1)
```

Here we can see both the windowing with a rectangular window and the windowing with the Hamming \

```
Saving...

plt.plot(wx2, label="Vowel segment (Hamming)")

plt.suptitle("Vowel segment", fontsize=32)

legend = fig.legend(loc="lower center", fontsize="x-large")

fig.show()
```

Vowel segment

Now, we compute the DFT of 504 samples of both the rectangular and the Hamming windowed signals.

```
fig = plt.figure(5)
plt.plot(np.arange(504)/504, abs(fft(x2)), label = "Rectangular")
plt.plot(np.arange(504)/504, abs(fft(wx2)), label = "Hamming")
plt.suptitle("DFT of the vowel segment", fontsize=32)
legend = fig.legend(loc="center", fontsize="x-large")
fig.show()
```


From this graph, we can estimate the formant and fundamental frequencies:

ullet The fundamental frequency is calculated dividing the sampling frequency by the period of the sign and the sampling frequency is $f_s=8000$. Then,

$$f_f=rac{f_s}{P}=rac{8000}{75}pprox 107~\mathrm{Hz}.$$

So, the speaker is (unsurprisingly, as we already knew) more likely to be a man.

• The formant frequencies are the two most important peaks times the sampling frequency; the mo $f_1=f_s\cdot 0.0932...\approx 745.6~{
m Hz}$, and the second formant is $f_2=f_s\cdot 0.1587...\approx 1269.6~{
m Hz}$ an 'A'.

We can also study one period of the 'A' signal, where the formant peaks are more clearly distinguishable

```
i4 = 230
i5 = 307
period = wx2[i4:i5]
fig = plt.figure(7)
plt.plot(np.arange(i5-i4)/(i5-i4), period, label = "One period")
plt.suptitle("One period of the vowel segment", fontsize=32)
fig.show()
```

One period of the vowel segment


```
fig = plt.figure(8)
plt.plot(np.arange(i5-i4)/(i5-i4), abs(fft(period)), label = "DFT of one period")
plt.suptitle("DFT of one period of the vowel segment", fontsize=32)
fig.show()
```

DFT of one period of the vowel segment

Now, the formant frequencies can be more clearly calculated, as the two most prominent peaks are at 0 are $f_1=8000\cdot 0.0879\approx 703.2$ and $f_2=8000\cdot 0.1558\approx 1246.4$.

- Aleix Torres Camps (aleix.torres.camps@est.fib.upc.edu)
- Àlex Batlle Casellas (alex.batlle@est.fib.upc.edu)

