Crop Yield Prediction

Objective & Data

The project aimed to predict next-season agricultural yields for three major crop categories — Rice, Wheat, and Pulses — across Indian states and seasons.

- Historical Data: Crop yield records from 1997 to 2020 by Year, Season, and State.
- Additional Features: Annual rainfall, fertilizer use, pesticide use, cultivated area, and production volumes were included as regressors.

• Seasons Considered: Whole Year, Kharif, Rabi, Autumn, Summer, and Winter.

Methodology

- Data Cleaning & Transformation:
 - o Removed entries with zero or missing values in key columns (Area, Production, Yield).
 - o Encoded categorical columns like State and Season.
 - Lag features (Yield_Lag1, Yield_Lag2), rolling averages, and sudden yield spike indicators were engineered.

Spike counts per crop:

Crop Category

Pulses - 119

Rice - 9

Wheat - 40

- Modeling:
 - o Facebook Prophet was used for each crop type, with climate and input variables as external regressors.
 - o Predictions extended from 2021 to 2023.
 - Cross-validation was done to validate accuracy.

2010

Year

• Analysis:

- o Top 5 and bottom 5 states were ranked based on predicted yields.
- o Correlation heatmaps identified the most influential factors for yield changes.

Top & Bottom 5 States by Predicted Yield (Mean values)

State	Actual Yield	Predicted Yield
Punjab	3.045287	3.056572
Delhi	2.832879	2.809993
Haryana	2.620682	2.621628
Tamil Nadu	2.151110	2.127485
Uttar Pradesh	1.954193	1.951510

Bottom 5 States by Predicted Yield (Mean values)

State	Actual_Yield	Predicted_Yield
Mizoram	1.262866	1.260254
Himachal Pradesh	1.213576	1.219190
Assam	1.159276	1.163430
Odisha	1.124258	1.130991
Chhattisgarh	1.056414	1.040789

Key Findings

Predictive Accuracy

- The model demonstrated **high predictive accuracy** for historical years, with actual vs predicted yields closely aligned (very low RMSE and very Low MAPE[avg 4% for all 3 crops]).
- Given Year-Season-State level data for future years, yield forecasts can be reasonably accurate.

High & Low Yield Regions

- High-yield next season: States like Punjab, Tamil Nadu, and Andhra Pradesh (Rice), Haryana & Punjab (Wheat), and select southern states for Pulses.
- Low-yield next season: States like Jharkhand, Chhattisgarh, Madhya Pradesh for Rice and some northeastern states for Pulses.

Correlation Insights

- **Fertilizer, Pesticide,** show a **strong positive correlation** with yield for Wheat nut almost negligible with Rice and Pulses.
- **Seasons** do correlate with all e crops in positive manner though States do correlate positive with some crops or negative with other crops.
- **Annual Rainfall** shows mixed correlation beneficial in some cases but negatively correlated in over-irrigated or flood-prone states.
- Lag-based, Rolling mean yield features (Yield_Lag1, Yield_Roll3, etc.) also strongly correlate with future yields, confirming yield persistence patterns.

Recommendations

Resource Allocation

- Prioritize fertilizer and pesticide supply in low yield states, ensuring optimized usage.
- Targeted irrigation infrastructure in drought prone regions.
- Provide storage and processing facilities to reduce post-harvest losses in high-production states.

Policy Strategies

- Launch precision agriculture programs in low erforming states.
- Expand seasonal weather forecasting for farmers to optimize planting and input use.
- Encourage **crop diversification** in low yield zones to reduce dependency on a single crop.

Conclusion

With the implemented methodology, the system can accurately predict crop yields at a seasonal and state level when provided with updated climate, input, and seasonal data for future years.

The top & bottom state yield rankings can guide government interventions, subsidy allocation, and agricultural planning for the upcoming seasons.