CO2035

3. Z - Transform

anhpham (at) hcmut (dot) edu (dot) vn

CO2035 – Z-Transform

Contents

- The z—Transform
 - The Direct z—Transform
 - The Inverse z–Transform
- Properties of the z–Transform
- Rational z—Transform
 - Poles and Zeros
 - The System Function of a LTI System
- Inversion of the z–Transform
 - Decomposition of Rational z Transform
- The One-sized z—Transform (Z+)
 - Definition and Properties
 - Solution of Difference Equations
- Analysis of LTI Systems in the z–Domain

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r

The z-Transform

The z-transform of a discrete-time signal x(n) is defined as the power series

$$\mathbf{X}(\mathbf{z}) = \sum_{\mathbf{n} = -\infty}^{+\infty} \mathbf{x}(\mathbf{n})\mathbf{z}^{-\mathbf{n}}$$

- where z is a complex variable (z = a + jb or z = re^{jδ})
- For convenience, the z-transform of a signal x(n) is denoted by

$$\mathbf{X}(\mathbf{z}) = \mathbf{Z}\{\mathbf{x}(\mathbf{n})\}\$$

The relationship between x(n) and X(z) is indicated by

$$\mathbf{x}(\mathbf{n}) \longleftrightarrow \mathbf{X}(\mathbf{z})$$

- The region of convergence (ROC) of X(z)
 - Set of all values of z for which X(z) attains a finite value.
 - ROC: $\{z \mid |X(z)| < \infty\}$

The z-Transform: Example

Determine the z-transform of the following signals

$$\mathbf{x}_1(\mathbf{n}) = \{\mathbf{1}^{\uparrow} \ \mathbf{2} \ \mathbf{5} \ \mathbf{7} \ \mathbf{0} \ \mathbf{1}\}$$

$$\mathbf{x}_{2}(\mathbf{n}) = \{\mathbf{1} \quad \mathbf{2} \quad \mathbf{5}^{\uparrow} \quad \mathbf{7} \quad \mathbf{0} \quad \mathbf{1}\}$$

$$\mathbf{x}_3(\mathbf{n}) = \{ \mathbf{0}^{\uparrow} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{2} \quad \mathbf{5} \quad \mathbf{7} \quad \mathbf{0} \quad \mathbf{1} \}$$

$$x_4(n) = \{2 \quad 4 \quad 5^{\uparrow} \quad 7 \quad 0 \quad 1\}$$

$$x_5(n) = \delta(n)$$

$$x_6(n) = \delta(n-k) \quad k > 0$$

$$x_7(n) = \delta(n+k)$$
 $k > 0$

The z-Transform: Example

- Determine the z-transform of the following signal
 - $x(n) = a^n u(n)$
 - $x(n) = -a^n u(-n-1)$

CO2035 - Z-Transform

The z-Transform: Example

• The z-transform of $x(n) = a^n u(n)$

$$\begin{split} X(\mathbf{z}) &= \sum_{\mathbf{n} = -\infty}^{+\infty} \mathbf{x}(\mathbf{n}) \mathbf{z}^{-\mathbf{n}} = \sum_{\mathbf{n} = -\infty}^{+\infty} \mathbf{a}^{\mathbf{n}} \mathbf{u}(\mathbf{n}) \mathbf{z}^{-\mathbf{n}} = \sum_{\mathbf{n} = 0}^{+\infty} \mathbf{a}^{\mathbf{n}} \mathbf{z}^{-\mathbf{n}} = \sum_{\mathbf{n} = 0}^{+\infty} (\mathbf{a} \mathbf{z}^{-1})^{\mathbf{n}} \\ &\Rightarrow X(\mathbf{z}) = \frac{1}{1 - \mathbf{a} \mathbf{z}^{-1}} \qquad \text{if } |\mathbf{a} \mathbf{z}^{-1}| < 1 \text{ (i. e. } |\mathbf{z}| > |\mathbf{a}|) \equiv \text{ ROC} \end{split}$$

■ The z-transform of $\mathbf{x}(\mathbf{n}) = -\mathbf{a}^{\mathbf{n}}\mathbf{u}(-\mathbf{n} - 1)$

$$X(z) = \sum_{n = -\infty}^{+\infty} x(n)z^{-n} = \sum_{n = -\infty}^{+\infty} -a^n u(-n-1)z^{-n} = -\sum_{n = -\infty}^{-1} a^n z^{-n} = -\sum_{m = 1}^{+\infty} \left(a^{-1}z\right)^m \qquad (m = -n)$$

$$\Rightarrow X(z) = -\frac{a^{-1}z}{1 - a^{-1}z} = \frac{1}{1 - az^{-1}}$$
 if $|a^{-1}z| < 1$ (i. e. $|z| < |a|$) $\equiv ROC$

if
$$|a^{-1}z| < 1$$
 (i. e. $|z| < |a|$) $\equiv ROC$

Properties of the z-Transform

Linearity

If

$$x_1(n) \stackrel{z}{\longleftrightarrow} X_1(z)$$
 $ROC_{X_1(z)}$
 $x_2(n) \stackrel{z}{\longleftrightarrow} X_2(z)$ $ROC_{X_2(z)}$

Then

$$x(n) = ax_1(n) + bx_2(n) \xrightarrow{z} X(z) = aX_1(z) + bX_2(z)$$

$$ROC_{X(z)} = ROC_{X_1(z)} \cap ROC_{X_2(z)}$$

- Example:
 - Determine the z-transform and the ROC of the following signal

$$x(n) = a^n u(n) + b^n u(-n-1)$$

Example

$$x(n) = a^n u(n) + b^n u(-n-1)$$

We have

$$x_1(n) = a^n u(n) \stackrel{Z}{\longleftrightarrow} X_1(z) = \frac{1}{1 - az^{-1}}$$
 ROC: $|z| > |a|$

$$\mathbf{x}_2(\mathbf{n}) = -\mathbf{b}^{\mathbf{n}}\mathbf{u}(-\mathbf{n} - \mathbf{1}) \stackrel{\mathbf{Z}}{\longleftrightarrow} \mathbf{X}_2(\mathbf{z}) = \frac{1}{1 - \mathbf{b}\mathbf{z}^{-1}} \quad \text{ROC: } |\mathbf{z}| < |\mathbf{b}|$$

Then,

$$x(n) = x_1(n) - x_2(n) \stackrel{Z}{\longleftrightarrow} X(z) = X_1(z) - X_2(z) = \frac{1}{1 - az^{-1}} - \frac{1}{1 - bz^{-1}}$$

ROC:
$$|a| < |z| < |b|$$

Properties of the z-Transform

Time Shifting

If

$$x(n) \leftarrow x(z)$$

 $ROC_{X(z)}$

Then

$$x(n - k) \leftarrow z \rightarrow z^{-k}X(z)$$

$$ROC = ROC_{X(z)} - \begin{cases} 0 & k > 0 \\ \infty & k < 0 \end{cases}$$

Example

Determine the z-transform and the ROC of the following signal

$$x(n) = \left(\frac{1}{2}\right)^{n-2} u(n-2)$$

Example

Determine the Z-transform of the following discrete-time signal

$$x(n) = \left(\frac{1}{2}\right)^{n-2} u(n-2)$$

Properties of the z-Transform

- Scaling in the z-domain
 - If

$$x(n) \stackrel{z}{\longleftrightarrow} X(z)$$

ROC:
$$r_1 < |z| < r_2$$

Then

$$a^n x(n) \leftarrow x \rightarrow X(a^{-1}z)$$

ROC: $|a|r_1 < |z| < |a|r_2$

- where a can be real or complex value
- Example
 - Determine the z-transform of the signals

$$x(n) = a^n \left(\frac{1}{2}\right)^n u(n)$$

Example

Determine the Z-transform of the following discrete-time signal

$$\mathbf{x}(\mathbf{n}) = \mathbf{a}^{\mathbf{n}} \left(\frac{1}{2}\right)^{\mathbf{n}} \mathbf{u}(\mathbf{n})$$

Properties of the z-Transform

Time reversal

If

$$\mathbf{x}(\mathbf{n}) \longleftrightarrow \mathbf{X}(\mathbf{z})$$

ROC:
$$r_1 < |z| < r_2$$

Then

$$\mathbf{x}(-\mathbf{n}) \longleftrightarrow \mathbf{X}(\mathbf{z}^{-1})$$

ROC:
$$\frac{1}{r_2} < |\mathbf{z}| < \frac{1}{r_1}$$

- Example
 - Determine the z-transform of the signals

$$\mathbf{x}(\mathbf{n}) = (2)^{\mathbf{n}}\mathbf{u}(-\mathbf{n})$$

Example

Determine the Z-transform of the following discrete-time signal

$$x(n) = (2)^n u(-n)$$

Properties of the z-Transform

- Differentiation in the z-domain
 - If

$$x(n) \stackrel{z}{\longleftrightarrow} X(z)$$

ROC: $r_1 < |z| < r_2$

Then

$$nx(n) \stackrel{z}{\longleftrightarrow} -z \frac{dX(z)}{dz}$$

ROC: $r_1 < |z| < r_2$

- Example
 - Determine the z-transform of the signals

$$x(n) = na^n u(n)$$

Example

Determine the Z-transform of the following discrete-time signal

$$x(n) = na^n u(n)$$

Properties of the z-Transform

Convolution of two sequences

If

$$x_1(n) \stackrel{z}{\longleftrightarrow} X_1(z)$$
 $ROC_{X_1(z)}$
 $x_2(n) \stackrel{z}{\longleftrightarrow} X_2(z)$ $ROC_{X_2(z)}$

Then

$$\mathbf{x}(\mathbf{n}) = \mathbf{x_1}(\mathbf{n}) * \mathbf{x_2}(\mathbf{n}) \longleftrightarrow \mathbf{X}(\mathbf{z}) = \mathbf{X_1}(\mathbf{z})\mathbf{X_2}(\mathbf{z})$$

$$ROC_{X(z)} = ROC_{X_1(z)} \cap ROC_{X_2(z)}$$

Properties of the z-Transform

- The convolution property is one of the most powerful properties of the z-transform because it converts the convolution of two signals (in time domain) to multiplication of their transforms.
- Computation of the convolution of two signals, using z-transform, requires the following steps:
 - Compute the z-transform of the signals to be convolved
 - $X_1(z) = Z\{x_1(n)\}$
 - $X_2(z) = Z\{x_2(n)\}$
 - Multiply the two z-transform
 - $X(z) = X_1(z)X_2(z)$
 - Find the inverse z-transform of X(z)

$$x(n) = Z^{-1}\{X(z)\}$$

Time domain \rightarrow Z domain

Z domain

Z domain \rightarrow Time domain

CO2035 – Z-Transform

Example

Compute the convolution x(n) of two signals

$$x_{1}(n) = \{1 - 2 \uparrow 1\}$$
 $x_{2}(n) = \begin{cases} 1, \\ 0, \\ 0, \end{cases}$ $X_{1}(z) = z - 2 + z^{-1}$ $X_{2}(z) = 1 + (z) + (z$

$$x_2(n) = \begin{cases} 1, & 0 \le n \le 5 \\ 0, & \text{elsewhere} \end{cases}$$

$$X_2(z) = 1 + z^{-1} + z^{-2} + z^{-3} + z^{-4} + z^{-5}$$

$$X(z) = X_1(z)X_2(z) = (z - 2 + z^{-1})(1 + z^{-1} + z^{-2} + z^{-3} + z^{-4} + z^{-5})$$

$$X(z) = z - 1 - z^{-5} + z^{-6}$$

$$\mathbf{x}(\mathbf{n}) = \mathbf{x_1}(\mathbf{n}) * \mathbf{x_2}(\mathbf{n}) = \mathbf{Z^{-1}}\{\mathbf{X}(\mathbf{z})\} = \{\mathbf{1} \ -\mathbf{1}^{\uparrow} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{1}\}$$

In-Class Hackathon

In-Class Hackathon

Determine the z-transform of the following signals

$$\mathbf{x}_1(\mathbf{n}) = \{\mathbf{3} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{6}^{\uparrow} \ \mathbf{1} \ -\mathbf{4}\}$$
 $\mathbf{x}_5(\mathbf{n}) = (-1)^{\mathbf{n}} 2^{-\mathbf{n}} \mathbf{u}(\mathbf{n})$

$$x_5(n) = (-1)^n 2^{-n} u(n)$$

$$\mathbf{x}_{2}(\mathbf{n}) = \begin{cases} \left(\frac{1}{3}\right)^{\mathbf{n}} & \mathbf{n} \ge \mathbf{0} \\ \left(\frac{1}{2}\right)^{-\mathbf{n}} & \mathbf{n} < \mathbf{0} \end{cases}$$

•
$$x_6(n) = \frac{1}{2}(n^2 + n)(\frac{1}{3})^{n-1}u(n-1)$$

$$x_7(n) = \left(\frac{1}{2}\right)^n [u(n) - u(n-10)]$$

$$x_3(n) = (1+n)u(n)$$

$$x_8(n) = n^2 u(n)$$

$$x_4(n) = (a^n + a^{-n})u(n)$$
 a: real

Rational z-Transform

- The zeros of X(z) are the values of z for which X(z)=0.
- The poles of X(z) are the values of z for which $X(z)=\infty$.
 - ROC does not contain any poles.

Example

Determine the pole-zero plot for the signal

$$X(z) = \frac{1}{1 - 0.9z^{-1}}$$

$$X(z) = \frac{1 - z^{-1}}{1 - z^{-1} - 2z^{-2}}$$

Analysis of LTI Sytems in z Domain

- In order to determine y(n)
 - Determine X(z) and H(z)
 - Compute Y(z) = X(z)H(z)
 - Determine Inverse z-Transform of Y(Z)
- Impulse response

$$H(z) = \frac{Y(z)}{X(z)} = \sum_{n=-\infty}^{+\infty} h(n)z^{-n}$$

- H(z): system function in z domain
- h(n): system function in time domain
- Example: $h(n) = \left(\frac{1}{2}\right)^n u(n)$ and $x(n) = \left(\frac{1}{3}\right)^n u(n)$

$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}$$
 $X(z) = \frac{1}{1 - \frac{1}{3}z^{-1}}$

$$Y(z) = X(z)H(z) = \frac{1}{\left(1 - \frac{1}{3}z^{-1}\right)} \cdot \frac{1}{\left(1 - \frac{1}{2}z^{-1}\right)}$$

Inversion of the z-Transform

The inverse z-transform is formally given by

$$\mathbf{x}(\mathbf{n}) = \frac{1}{2\pi \mathbf{j}} \oint_{\mathbf{C}} \mathbf{X}(\mathbf{z}) \mathbf{z}^{\mathbf{n}-1} d\mathbf{z}$$

- where C can be taken as a circle in the ROC of X(z) in the z-plane
- Notation: $x(n) = Z^{-1}{X(z)}$
- There are three methods that are often used for evaluation of the z-transform in practice.
 - Direct evaluation by contour integration.
 - Expansion into a series of terms, in the variables z and z⁻¹
 - Partial-fraction expansion and table lookup

Inverse z - Transform

- Partial-fraction expansion and table lookup
 - Principle
 - If X(z) is represented as $X(z) = a_1X_1(z) + a_2X_2(z) + ... + a_kX_k(z)$
 - Then $x(n) = a_1x_1(n) + a_2x_2(n) + ... + a_kx_k(n)$
 - Rational z-transform
 - X(z) is proper if a_N≠0 and M<N
 - if $M \ge N$
 - It can always be written as

- Approach
 - Partial-fraction expansion
 - Table lookup for inverse z-transform

$$X(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}}$$

$$X(z) = \frac{N(z)}{D(z)} = c_0 + c_1 z^{-1} + \dots + c_{M-N} z^{-(M-N)} + \frac{N_1(z)}{D(z)}$$

$$X(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}}$$
$$= \frac{b_0 z^N + b_1 z^{N-1} + \dots + b_M z^{N-M}}{z^N + a_1 z^{N-1} + \dots + a_N}$$

$$\frac{X(z)}{z} = \frac{b_0 z^{N-1} + b_1 z^{N-2} + \dots + b_M z^{N-M-1}}{z^N + a_1 z^{N-1} + \dots + a_N}$$

Inverse z - Transform

- Partial-fraction expansion
 - Determine poles $(p_1, p_2, ..., p_N)$ by solving the equation: $z^N + a_1 z^{N-1} + ... + a_N = 0$

If these poles are all different (distinct)
$$\frac{X(z)}{z} = \frac{A_1}{z - p_1} + \frac{A_2}{z - p_2} + \dots + \frac{A_N}{z - p_N}$$

• Determine
$$A_k$$
 by
$$A_k = \frac{(z-p_k)X(z)}{z} \left| z = p_k \right|$$

- If $p_2 = p_1^*$ (complex conjugates) then $A_2 = A_1^*$
- Multi-order poles
 - If pole p_k is a pole of multiplicity L

$$\frac{X(z)}{z} = \frac{A_1}{z - p_1} + \frac{A_2}{z - p_2} + \dots + \frac{A_{1k}}{z - p_k} + \frac{A_{2k}}{(z - p_k)^2} + \dots + \frac{A_{lk}}{(z - p_k)^l} + \dots + \frac{A_N}{z - p_N}$$

Determine A_{ik} by

$$A_{ik} = \frac{1}{(l-i)!} \frac{d^{l-i}}{dz} \left[\frac{(z-p_k)^l X(z)}{z} \right]_{z=n} i = 1, 2, ..., l$$

Inverse z - Transform

Table lookup to detemine inverse z-transform for each partial fraction

$$\text{If the poles are all different} \qquad X(z) = A_1 \frac{1}{1-p_1z^{-1}} + A_2 \frac{1}{1-p_2z^1} + \cdots + A_N \frac{1}{z-p_Nz^{-1}}$$

We have

$$Z^{-1}\left\{\frac{1}{1-p_kz^{-1}}\right\} = \begin{cases} p_k^nu(n) & ROC: |z| > |p_k| \ (causal) \\ -p_k^nu(-n-1) & ROC: |z| < |p_k| \ (non-causal) \end{cases}$$

Then

$$x(n) = (A_1p_1^n + A_2p_2^n + \cdots + A_Np_N^n)u(n)$$

In case of complex-conjugate poles

$$\begin{split} \text{If} \quad & \begin{cases} A_k = |A_k| e^{j\alpha_k} \\ p_k = r_k e^{j\beta_k} \end{cases} \quad \text{then} \qquad x_k(n) = \left[A_k \Big(p_k \, \Big)^n + A_k^* (p_k^*)^n \right] u(n) \\ & \qquad \qquad Z^{-1} \left\{ A_k \frac{1}{1 - p_k z^{-1}} + A_k^* \frac{1}{1 - p_k^* z^{-1}} \right\} = 2|A_k| r_k^n cos(\beta_k n + a_k) u(n) \quad ROC: |z| > |p_k| = r_k \right\} \end{split}$$

In case of double poles

$$Z^{-1}\left\{\frac{pz^{-1}}{(1-pz^{-1})^2}\right\} = np^nu(n) \quad ROC: |z| > |p|$$

CO2035 – Z-Transform

Exercise

CO2035 – Z-Transform

$$X(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$$

Inverse Z-Transform

Determine the causal signal x(n) if its z-transform is given

$$X(z) = \frac{1 - 3z^{-1}}{1 + 3z^{-1} + 2z^{-2}}$$

CO2035 – Z-Transform

$$X(z) = \frac{1 + z^{-1}}{1 - z^{-1} + 0.5z^{-2}}$$

$$X(z) = \frac{1 + z^{-1}}{1 - z^{-1} + 0.5z^{-2}}$$

$$p_1 = \frac{1}{2} + j\frac{1}{2}$$

$$p_2 = \frac{1}{2} - j\frac{1}{2}$$

$$\frac{X(z)}{z} = \frac{A_1}{z - p_1} + \frac{A_2}{z - p_2} \Longrightarrow X(z) = \frac{A_1}{1 - p_1 z^{-1}} + \frac{A_2}{1 - p_2 z^{-1}}$$

$$A_1 = \frac{1}{2} - j\frac{3}{2}$$

$$A_2 = \frac{1}{2} + j\frac{3}{2}$$

CO2035 – Z-Transform

$$X(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$$

$$X(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$$

$$p_1 = -1$$
 $p_2 = p_3 = 1$

$$\frac{X(z)}{z} = \frac{A_1}{z+1} + \frac{A_2}{z-1} + \frac{A_3}{(z-1)^2} \Longrightarrow X(z) = \frac{A_1}{1+z^{-1}} + \frac{A_2}{1-z^{-1}} + \frac{A_3z^{-1}}{(1-z^{-1})^2}$$

$$A_1 = \frac{1}{4}$$
 $A_2 = \frac{3}{4}$ $A_3 = \frac{1}{2}$

One-sided z-Transform

The one-sided or unilateral z-transform of a signal x(n) is defined by

$$\mathbf{X}^{+}(\mathbf{z}) = \sum_{\mathbf{n}=0}^{+\infty} \mathbf{x}(\mathbf{n})\mathbf{z}^{-\mathbf{n}}$$

• We aslo use the notation $Z^+\{x(n)\}$ and

$$\mathbf{x}(\mathbf{n}) \longleftrightarrow \mathbf{X}^{+}(\mathbf{z})$$

- Charateristics
 - $^{-}$ Z⁺{x(n)} does not contain information about the signal x(n) for negative value of time (i.e. n < 0).
 - $^{-}$ Z⁺{x(n)} is unique only for causal signals because only these signals are zero for n < 0.
 - $Z^{+}\{x(n)\} = Z\{x(n)u(n)\}$
 - It is not necessary to refer to their ROC when we deal with one-sided z-transforms.

One-sided z-Transform

- Properties
 - The properties of the z-transform are correct for the one-sided z-trasnform except the time shifting property.
 - Time shifting in one-sided z-Transform
 - if

$$\mathbf{x}(\mathbf{n}) \longleftrightarrow \mathbf{x}^+(\mathbf{z})$$

Delay

$$x(n-k) \overset{z^+}{\longleftrightarrow} z^{-k} \left[X^+(z) \right. \\ \left. + \sum_{n=1}^k x(-n) z^n \right] \quad \text{where } k > 0$$

If x(n) is causal signal, we have x(n)

$$x(n-k) \longleftrightarrow z^{-k}X^{+}(z)$$
 where $k > 0$

Advance

$$x(n+k) \overset{z^+}{\longleftrightarrow} z^k \left[X^+(z) \ - \sum_{n=0}^{k-1} x(n) z^{-n} \right] \quad \text{where } k > 0$$

One-sided z-Transform

- Solution of difference equation
 - Use one-sided z-transform to solve the difference equation with non-zero initial condition.
 - Procedure
 - Determine difference equation described the system.
 - Adopt the one-sided z-transform on both sides of the difference equation.
 - Solve the equation in z-domain
 - Adopt inverse z-transform to convert the response in z domain to time domain.
- **Example**: determine the unit step response [x(n)=u(n)] of the following system
- y(n) = ay(n-1) + x(n) (|a|< 1) with the initial condition y(-1) = 1

$$X^+(z) = \frac{1}{1 - z^{-1}}$$

$$Y^+(z) = a\big[z^{-1}Y^+(z) + y(-1)\big] + X^+(z) \implies \big(1 - az^{-1}\big)Y^+(z) = ay(-1) + X^+(z)$$

$$\Rightarrow Y^{+}(z) = \frac{ay(-1)}{1 - az^{-1}} + \frac{1}{1 - az^{-1}}X^{+}(z) = \frac{a}{1 - az^{-1}} + \frac{1}{1 - az^{-1}}\frac{1}{1 - az^{-1}}$$

$$\Rightarrow y(n) = a^{n+1}u(n) + \frac{1-a^{n+1}}{1-a}u(n)$$

One-sided z-Transform

 Determine the response of a LTI System for an input signal x(n) and given system function h(n).

Analysis of LTI Systems

- Response of pole-zero systems
 - Assume that

$$H(z) = \frac{B(z)}{A(z)}$$
 and $X(z) = \frac{N(z)}{Q(z)}$

If the system is relax (i.e. y(-1) = y(-2) = ... = y(-N) = 0)

$$Y(z) = H(z)X(z) = \frac{B(z)N(z)}{A(z)Q(z)}$$

- Assume that
 - The system has N single poles p_1 , p_2 , ..., p_N and X(z) has also L single poles q_1 , q_2 , ..., q_L
 - $p_k \neq q_m (k = 1, ..., N \text{ và } m = 1, ..., L)$
 - It can not adopt reduction for B(z)N(z) and A(z)Q(z)

$$\mathbf{Y}(\mathbf{z}) = \sum_{k=1}^{N} \frac{A_k}{1 - p_k \mathbf{z}^{-1}} + \sum_{k=1}^{L} \frac{Q_k}{1 - q_k \mathbf{z}^{-1}}$$

Apply inverse z-transform

$$\mathbf{y}(\mathbf{n}) = \sum_{k=1}^{N} \mathbf{A}_k \mathbf{p}_k^n \mathbf{u}(\mathbf{n}) + \sum_{k=1}^{L} \mathbf{Q}_k \mathbf{q}_k^n \mathbf{u}(\mathbf{n})$$

The natural response

The forced response

It can be generalized for the case X(z) and H(z) has same pole or multiple poles.

Analysis of LTI Systems

 Determine the response of the input signal x(n) thru a LTI system with initial conditions for a given h(n) and non-zero initial conditions of the system.

Analysis of LTI Systems

- Response of pole-zero system with non-zero initial condition
 - Given a causal signal x(n) and initial conditions y(-1), y(-2), ..., y(-N)

$$y(n) = -\sum_{k=1}^N a_k y(n-k) + \sum_{k=0}^M b_k x(n-k)$$

 $N_0(z) = -\sum_{k=1}^{N} a^k z^{-k} \sum_{n=1}^{K} y(-n) z^n$

Adopt one-sided z-transform and X⁺(z) = X(z)

$$Y^{+}(z) = \frac{\sum_{k=0}^{M} b^{k} z^{-k}}{1 + \sum_{k=1}^{N} a^{k} z^{-k}} X(z) - \frac{\sum_{k=1}^{N} a^{k} z^{-k} \sum_{n=1}^{k} y(-n) z^{n}}{1 + \sum_{k=1}^{N} a^{k} z^{-k}} = H(z) X(z) + \frac{N_{0}(z)}{A(z)}$$

- The total response consits of two parts
 - The zero state response $Y_{zs}(z) = H(z)X(z)$
 - The zero input response $(p_1, p_2, ..., p_N \text{ are poles of } A(z))$
 - Since $y(n) = y_{zs}(n) + y_{zi}(n)$

$$Y_{zi}(z) = \frac{N_o(z)}{A(z)} \quad \longleftarrow \quad z^+ \qquad \qquad y_{zi}(n) = \sum_{k=1}^N D_k p_k^n u(n)$$

$$\Rightarrow y(n) = \sum_{k=0}^{N} A_{k}'(p_{k})^{n} u(n) + \sum_{k=0}^{L} Q_{k}(q_{k})^{n} u(n) \qquad (A_{k}' = A_{k} + D_{k})$$

Exercise (1)

Determine all possible signals that can have the following z-transform

$$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$$

Exercise (2)

• Determine $x(n) = x_1(n) * x_2(n)$ where

$$x_1(n) = \left(\frac{1}{4}\right)^n u(n-1)$$

$$x_2(n) = \left[1 + \left(\frac{1}{2}\right)^n\right] u(n)$$

CO2035 – Z-Transform

Exercise (3)

A LTI system is given by input-output description

$$y(n) = \frac{1}{2}y(n-1) + 4x(n) + 3x(n-1)$$

- Determine impulse response h(n) of the above system using Z and Z⁻¹ Transform
- Determine $y_{zs}(n)$ of the following LTI system where $x(n) = \left(\frac{1}{2}\right)^n u(n)$ using one-sided Z Transform and Z-1 Transform

Exercise (4)

If

$$\mathbf{x}(\mathbf{n}) \stackrel{\mathbf{z}}{\longleftrightarrow} \mathbf{X}(\mathbf{z})$$

Then, prove the followings

$$Z\{x^*(n)\} = X^*(z^*)$$

$$2{Re[x(n)]} = \frac{1}{2}[X(z) + X^*(z^*)]$$

$$Z\{Im[x(n)]\} = \frac{1}{2}[X(z) - X^*(z^*)]$$

$$Z\{e^{j\omega_0 n}\} = X(ze^{-j\omega_0})$$

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N-1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r

In-Class Quiz

• Use z-transform, one-sided z-transform and inverse z-transform to determine the zero-input response $y_{zi}(n)$, the zero-sate response $y_{zs}(n)$, and total response y(n) of the following systems.

$$y(n) = \frac{3}{4}y(n-1) + \frac{1}{4}y(n-2) + x(n) + x(n-1)$$

where $x(n) = u(n)$ and $y(-1) = y(-2) = 1$.

In-Class Quiz

• Use z-transform, one-sided z-transform and inverse z-transform to determine the zero-input response $y_{zi}(n)$, the zero-sate response $y_{zs}(n)$, and total response y(n) of the following systems.

$$y(n) = \frac{3}{4}y(n-1) + \frac{1}{4}y(n-2) + x(n) + x(n-1)$$

where $x(n) = u(n)$ and $y(-1) = y(-2) = 1$.

$$y(n) = y(n-1) - \frac{1}{4}y(n-2) + x(n-2)$$
 where $x(n) = \left(\frac{2}{3}\right)^n u(n)$ and $y(-1) = y(-2) = 1$.

$$y(n) = \frac{1}{4}y(n-2) + x(n-2)$$
 where $x(n) = \left(\frac{1}{3}\right)^n u(n)$ and $y(-1) = y(-2) = 1$.

