Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 14 - Positive Definite Kernels, Mercer's
Theorem

Recap: The Gram (Kernel) Matrix

• For any dataset $\{x_1, x_2, \dots, x_m\}$ and for any m, the Gram matrix K is defined as

$$\mathcal{K} = egin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_n) \ \dots & K(\mathbf{x}_m, \mathbf{x}_1) & \dots \ K(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

- Claim: If $\mathcal{K}_{ii} = K(x_i, x_i) = \langle \phi(x_i), \phi(x_i) \rangle$ are entries of an

 - $n \times n$ Gram Matrix \mathcal{K} then

 \mathcal{K} must be positive semi-definite

 Proof: $\mathbf{b}^T \mathcal{K} \mathbf{b} = \sum_{i,j} b_i \mathcal{K}_{ij} b_j = \sum_{i,j} b_i b_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle^{n}$ $= \langle \sum_i b_i \phi(\mathbf{x}_i), \sum_i b_j \phi(\mathbf{x}_j) \rangle = || \sum_i b_i \phi(\mathbf{x}_i)||_2^2 \geq 0$

Recap: Basis expansion ϕ for symmetric K?

Positive-definite kernel: For any dataset $\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_m\}$ and for any m, the Gram matrix \mathcal{K} must be positive definite so that $\mathcal{K}=U\Sigma U^T=(U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T=RR^T$ where rows of U are linearly independent and Σ is a positive diagonal matrix

• Mercer kernel: Extending to eigenfunction decomposition 1: $K(\mathbf{x}_1,\mathbf{x}_2) = \sum_{j=1}^{\infty} \alpha_j \phi_j(\mathbf{x}_1) \phi_j(\mathbf{x}_2) \text{ where } \alpha_j \geq 0 \text{ and } \sum_{j=1}^{\infty} \alpha_j^2 < \infty$ $\sum_{j=1}^{\infty} \alpha_j^2 < \infty$ $\lim_{j \to \infty} \beta_j = \lim_{j \to \infty$

• Mercer kernel and Positive-definite kernel turn out to be equivalent if the input space {x} is compact²

¹ Eigen-decomposition wrt linear operators. See https://en.wikipedia.org/wiki/Mercer%27s_theorem

²That is, if every Cauchy sequence is convergent.

$[U,D]=svd(\mathbf{K}), UDU^{\mathsf{T}}=\mathbf{K}, UU^{\mathsf{T}}=\mathbf{I}$

```
U =
  -0.3709
            0.5499
                    0.3392
                              0.6302
                                       0.0992
                                               -0.1844
                                                        -0.0633
  -0.3670
           -0.6596
                    -0.1679
                              0.5164
                                       0.1935
                                                0.2972
                                                         0.0985
  -0.3727
            0.3007
                    -0.6704
                             -0.2199
                                       0.4635
                                               -0.1529
                                                         0.1862
  -0.3792
                     0.5603
                             -0.4709
                                       0.4938
                                                0.1029
           -0.1411
                                                        -0.2148
  -0.3851
            0.2036
                    -0.2248
                             -0.1177
                                       -0.4363
                                                0.5162
                                                         -0.5377
  -0.3834
           -0.3259
                    -0.0477
                                       -0.3677
                                                -0.7421
                                                         -0.2217
                              -0.0971
  -0.3870
            0.0673
                     0.2016
                             -0.2071
                                      -0.4104
                                                0.1628
                                                         0.7531
D =
```

6.6315	0	0	0	0	0	o 7 Eigenvalues
0	0.2331	0	0	0	0	0 (0)
0	0	0.1272	0	0	0	0 401 %
0	0	0	0.0066	0	0	(diag dements
0	0	0	0	0.0016	0	0 1000
0	0	0	0	0	0.000	O D D CONT
0	0	0	0	0	0	0.000 TINATED =

200

Mapped points=sqrt(D)*UT

Mapped points =

```
-0.9451
                                         -0.9597
                                                    -0.9765
                                                               -0.9917
                                                                          -0.9872
                                                                                     -0.9966
-0.3184
                                                                          -0.1573
                                          0.1452
                                                    -0.0681
                                                                0.0983
                                                                                     0.0325
                    0.1210 -0.0599
0.0511 0.0419
0.0040 0.0077
-0.0011 0.0018
                                                     0.1998
                                          -0.2391
                                                               -0.0802
                                                                          -0.0170
                                                                                     0.0719
                                         -0.0178
                                                    -0.0382
                                                               -0.0095
                                                                          -0.0079
                                                                                     -0.0168
                                          0.0185
                                                     0.0197
                                                               -0.0174
                                                                          -0.0146
                                                                                     -0.0163
                                         -0.0009
                                                     0.0006
                                                                0.0032
                                                                          -0.0045
                                                                                     0.0010
                               0.0004
                                                               -0.0020
                                                                          -0.0008
                                                                                     0.0028
                                          0.0007
                                                    -0.0008
                    \phi(x_1) \phi(x_2) \phi(x_3) \phi(x_4) \phi(x_5) \phi(x_6) \phi(x_7)
This $\P$ is not a function. It is defined ONLY on these 7 you can check now that points and not for any other pt
                    \langle \phi(x_i), \phi(x_j) \rangle \doteq \phi(x_i)^T \phi(x_j) = \exp(-|x_i - x_j|^2/10) \forall i, j
         want a \phi(.) that is a function (eigenfunction)

OR atleast assured existence of Such as \phi.
```

Mercer and Positive Definite Kernels

Can we show that
$$\exists a \not p \text{ for the}$$

function $exp\left(-\frac{|x_i-x_j|^2}{10}\right) = \varphi(x_i) \varphi(x_j)$

without depending on some subset $\{x_1...x_m\}$

Mercer's theorem

- Mercer kernel: $K(\mathbf{x}_1, \mathbf{x}_2)$ is a Mercer kernel if $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} K(\mathbf{x}_1, \mathbf{x}_2) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$ for all square integrable functions $g(\mathbf{x})$ Extending psd definition using quadratic expansion to $(g(\mathbf{x}))$ is square integrable iff $\int_{\mathbf{x}_1} (g(\mathbf{x}))^2 d\mathbf{x}$ is finite) functions
- Mercer's theorem: (Assures existence of Such ϕ)

 An implication of the theorem:
 for any Mercer kernel $K(\mathbf{x}_1, \mathbf{x}_2)$, $\exists \phi(\mathbf{x}) : \mathbb{R}^n \mapsto H$,
 s.t. $K(\mathbf{x}_1, \mathbf{x}_2) = \phi^{\top}(\mathbf{x}_1)\phi(\mathbf{x}_2)$
 - where *H* is a *Hilbert space*, the infinite dimensional version of the Eucledian space, which is.....
 - $(\Re^n, <...>)$ where <...> is the standard dot product in \Re^n
 - Advanced: Formally, Hibert Space is an inner product space with associated norms, where every Cauchy sequence is convergent

Prove that $(\mathbf{x}_1^{\mathsf{T}}\mathbf{x}_2)^d$ is Mercer kernel $(d \in \mathbb{Z}^+, \ d \geq 1)$

- We want to prove that $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^{\top} \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \geq 0,$ for all square integrable functions $g(\mathbf{x})$
- Here, \mathbf{x}_1 and \mathbf{x}_2 are vectors s.t $\mathbf{x}_1, \mathbf{x}_2 \in \Re^t$
- Thus, $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$

$$=\int_{x_{11}}..\int_{x_{1t}}\int_{x_{21}}..\int_{x_{2t}}\left[\sum_{n_1..n_t}\frac{d!}{n_1!..n_t!}\prod_{j=1}^t(x_{1j}x_{2j})^{n_j}\right]g(x_1)g(x_2)\,dx_{11}..dx_{1t}dx_{21}..dx_{2t}$$

$$\text{ for wave of sampling from defects of type }x_{ij}\,\mathcal{R}_{2j}\,$$

$$\text{ (taking a leap)}$$

$$g(x_1)g(x_2)\,dx_{11}..dx_{1t}dx_{21}..dx_{2t}$$

$$\text{ for also leave it }$$

$$\text{ for also leave it }$$

$$\text{ objects of type }x_{ij}\,\mathcal{R}_{2j}\,$$

$$\text{ (taking a leap)}$$

Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is Mercer kernel $(d \in \mathbb{Z}^+, d \ge 1)$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} \int_{\mathbf{x}_{1}} \int_{\mathbf{x}_{2}} \prod_{j=1}^{t} (x_{1j}x_{2j})^{n_{j}} g(x_{1})g(x_{2}) dx_{1}dx_{2}$$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} \int_{\mathbf{x}_{1}} \int_{\mathbf{x}_{2}} (x_{11}^{n_{1}}x_{12}^{n_{2}} \dots x_{1t}^{n_{t}}) g(x_{1}) (x_{21}^{n_{1}}x_{22}^{n_{2}} \dots x_{2t}^{n_{t}}) g(x_{2}) dx_{1}dx_{2}$$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} \int_{\mathbf{x}_{1}} \int_{\mathbf{x}_{2}} (x_{11}^{n_{1}}x_{12}^{n_{2}} \dots x_{1t}^{n_{t}}) g(x_{1}) (x_{21}^{n_{1}}x_{22}^{n_{2}} \dots x_{2t}^{n_{t}}) g(x_{2}) dx_{1}dx_{2}$$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} \int_{\mathbf{x}_{1}} \int_{\mathbf{x}_{2}} (x_{11}^{n_{1}}x_{12}^{n_{2}} \dots x_{1t}^{n_{t}}) g(x_{1}) (x_{21}^{n_{1}}x_{22}^{n_{2}} \dots x_{2t}^{n_{t}}) g(x_{2}) dx_{1}dx_{2}$$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} \int_{\mathbf{x}_{1}} \int_{\mathbf{x}_{2}} (x_{11}^{n_{1}}x_{12}^{n_{2}} \dots x_{1t}^{n_{t}}) g(x_{1}) (x_{21}^{n_{1}}x_{22}^{n_{2}} \dots x_{2t}^{n_{t}}) g(x_{2}) dx_{1}dx_{2}$$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} \int_{\mathbf{x}_{1}} \int_{\mathbf{x}_{1}} (x_{11}^{n_{1}}x_{12}^{n_{2}} \dots x_{1t}^{n_{t}}) g(x_{1}) (x_{21}^{n_{1}}x_{22}^{n_{2}} \dots x_{2t}^{n_{t}}) g(x_{2}) dx_{1}dx_{2}$$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} \int_{\mathbf{x}_{1}} \int_{\mathbf{x}_{1}} (x_{11}^{n_{2}}x_{12}^{n_{2}} \dots x_{1t}^{n_{t}}) g(x_{1}) (x_{21}^{n_{1}}x_{22}^{n_{2}} \dots x_{2t}^{n_{t}}) g(x_{2}) dx_{1}dx_{2}$$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} \int_{\mathbf{x}_{1}} \int_{\mathbf{x}_{1}} (x_{11}^{n_{2}}x_{12}^{n_{2}} \dots x_{1t}^{n_{t}}) g(x_{1}^{n_{1}}x_{22}^{n_{2}} \dots x_{2t}^{n_{t}}) g(x_{1}^{n_{1}}x_{22}^{n_{2$$

Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is Mercer kernel $(d \in \mathbb{Z}^+, d \geq 1)$

$$=\sum_{n_1...n_t}\frac{d!}{n_1!\ldots n_t!}\int_{\mathbf{x}_1}\int_{\mathbf{x}_2}\prod_{j=1}^{\tau}(x_{1j}x_{2j})^{n_j}g(x_1)g(x_2)\,dx_1dx_2$$

$$=\sum_{\mathbf{x}_1,\ldots,\mathbf{x}_t}\frac{d!}{n_1!\ldots n_t!}\int_{\mathbf{x}_1}\int_{\mathbf{x}_2}(x_{11}^{n_1}x_{12}^{n_2}\ldots x_{1t}^{n_t})g(x_1)(x_{21}^{n_1}x_{22}^{n_2}\ldots x_{2t}^{n_t})g(x_2)dx_1dx_2$$

$$= \sum_{n_1 \dots n_t} \frac{d!}{n_1! \dots n_t!} \left(\int_{\mathbf{x}_1} (x_{11}^{n_1} \dots x_{1t}^{n_t}) g(x_1) dx_1 \right) \left(\int_{\mathbf{x}_2} (x_{21}^{n_1} \dots x_{2t}^{n_t}) g(x_2) dx_2 \right)$$

(integral of decomposable product as product of integrals)

$$\sum n_i = 0$$

Prove that $(\mathbf{x}_1^{ op}\mathbf{x}_2)^d$ is Mercer kernel $(d \in \mathbb{Z}^+, \ d \geq 1)$

- Realize that both the integrals are basically the same, with different variable names
- Thus, the equation becomes:

$$\sum_{n_1...n_t} \frac{d!}{n_1! \dots n_t!} \left(\int_{\mathbf{x}_1} (x_{11}^{n_1} \dots x_{1t}^{n_t}) g(x_1) dx_1 \right)^2 \geq 0$$

(the square is non-negative for reals)

• Thus, we have shown that $(\mathbf{x}_1^\top \mathbf{x}_2)^d$ is a Mercer kernel. Recall: We showed that for d=2 4 t-2, a $\phi(\cdot)$ exist. We have now more general result

What about $\sum_{d=1}^{\infty} \alpha_d(\mathbf{x}_1^{\top} \mathbf{x}_2)^d$ s.t. $\alpha_d \geq 0$?

What about $\sum_{d=1}^{\infty} \alpha_d(\mathbf{x}_1^{\top} \mathbf{x}_2)^d$ s.t. $\alpha_d \geq 0$?

• Is
$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d (\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$$
?

We have

$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r lpha_d (\mathbf{x}_1^ op \mathbf{x}_2)^d
ight) g(x_1) g(x_2) dx_1 dx_2 = 0$$

What about $\sum_{d=1}^{\infty} \alpha_d(\mathbf{x}_1^{\top} \mathbf{x}_2)^d$ s.t. $\alpha_d \geq 0$?

• Is
$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{t=1}^r \alpha_d(\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$$
?

We have

$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d (\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(x_1) g(x_2) dx_1 dx_2 =$$

$$\sum_{a} \alpha_{d} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} (\mathbf{x}_{1}^{\top} \mathbf{x}_{2})^{d} g(\mathbf{x}_{1}) g(\mathbf{x}_{2}) d\mathbf{x}_{1} d\mathbf{x}_{2}$$

What about
$$\sum_{d=1}^{\infty} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$
 s.t. $\alpha_d \geq 0$?

- Since $\alpha_d \geq 0$, $\forall d$ and since we have already proved that $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$
- We must have.

$$\sum_{d=1}^{r} \alpha_d \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x} 1^{\top} \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \geq 0$$

- By which, $K(\mathbf{x}_1, \mathbf{x}_2) = \sum \alpha_d(\mathbf{x}_1^{\top} \mathbf{x}_2)^d$ is a Mercer kernel.
- Examples of Mercer Kernels: Linear Kernel, Polynomial Kernel, Radial Basis Function Kernel

Recall Taylor series (polynomial) expansion for

$$e^{t} = \sum_{n=0}^{\infty} \frac{t^{n}}{t^{n}} \quad \text{Suggest you apply Taylor series only on terms involving } < x_{1}, x_{2} > x_{1} = \exp\left(-\Gamma\left(\left\|x_{1}\right\|^{2} + \left\|x_{2}\right\|^{2} - 2x_{1}^{T}x_{2}\right)\right)$$

$$= \exp\left(-\Gamma\left(\left\|x_{1}\right\|^{2}\right) \exp\left(-\Gamma\left(\left\|x_{2}\right\|^{2}\right) + \exp\left(2\Gamma\left(x_{1}^{T}x_{2}\right)\right)\right)$$

These terms separate out into the two integrals and are the same within the integrals.

$$\int \int g(x_1) g(x_2) \exp(-\Gamma ||x_1 - x_2||_2^2) dx_1 dx_2$$

$$= \int \int g(x_1) \exp(-\Gamma ||x_1||^2) g(x_2) \exp(-\Gamma ||x_2||^2)$$

$$= \int \int \int \int (x_1^T x_2)^T dx_1 dx_2$$

$$= \int \int \int \int \int (x_1^T x_2)^T dx_1 dx_2$$

$$= \int \int \int \int \int (x_1^T x_2)^T dx_1 dx_2$$

$$= \int \int \int \int \int (x_1^T x_2)^T dx_1 dx_2$$

$$= \int \int \int \int \int (x_1^T x_2)^T dx_1 dx_2$$

$$= \int \int \int \int \int \int (x_1^T x_2)^T dx_1 dx_2$$

$$= \int \int \int \int \int \int \int (x_1^T x_2)^T dx_1 dx_2$$

$$= \int \int \int \int \int \int \int (x_1^T x_2)^T dx_1 dx_2$$

$$= \int \int \int \int \int \int \int \int (x_1^T x_2)^T dx_1 dx_2$$

$$= \int \int \int \int \int \int \int \int \int (x_1^T x_2)^T dx_1 dx_2$$

$$= \int \partial x_1 dx_2$$

$$= \int \partial x_1 dx_2$$

$$= \int \int \int \int \int \int \int \partial x_1 dx_2$$

$$= \int \int \int \int \int \partial x_1 dx_2$$

$$= \int \int \int \int \int \partial x_1 dx_2$$

$$= \int \int \partial x_1 dx_2$$

$$= \int \int \int \partial x_1 dx_2$$

$$= \int \partial x_1 dx_2$$

$$= \int \int \partial x_1 dx_2$$

$$= \int \partial x_1 dx_2$$

Closure properties of Kernels

A different way of proving valid kernel helps in some other circumstances

Let $K_1(\mathbf{x}_1, \mathbf{x}_2)$ and $K_2(\mathbf{x}_1, \mathbf{x}_2)$ be positive definite (valid) kernels. Then the following are also kernels.

•
$$\alpha_1 K_1(\mathbf{x}_1, \mathbf{x}_2) + \alpha_2 K_2(\mathbf{x}_1, \mathbf{x}_2)$$
 for $\alpha_1, \alpha_2 \geq 0$.
Proof: Kint: $K_1 \leftarrow K_2$ have $\phi(\cdot) \leftarrow \phi(\cdot)$
 $K_1(\alpha_1, \alpha_2) = \phi(\alpha_1)\phi(\alpha_2) \leftarrow K_2(\alpha_1, \alpha_2) = \phi(\alpha_1)\phi(\alpha_2)$
Then $\int \nabla \alpha_1 \phi(\cdot) = \nabla \alpha_1 \nabla \alpha_2 \nabla \alpha_2 \nabla \alpha_1 \nabla \alpha_2 \nabla \alpha_2 \nabla \alpha_2 \nabla \alpha_2 \nabla \alpha_1 \nabla \alpha_2 \nabla \alpha_2$

Closure properties of Kernels

Let $K_1(\mathbf{x}_1, \mathbf{x}_2)$ and $K_2(\mathbf{x}_1, \mathbf{x}_2)$ be positive definite (valid) kernels. Then the following are also kernels.

•
$$\alpha_1 K_1(\mathbf{x}_1, \mathbf{x}_2) + \alpha_2 K_2(\mathbf{x}_1, \mathbf{x}_2)$$
 for $\alpha_1, \alpha_2 \ge 0$.
Proof:

• $K_1(\mathbf{x}_1, \mathbf{x}_2) K_2(\mathbf{x}_1, \mathbf{x}_2) = \left(\sum_i \phi_i(\mathbf{x}_i) \phi_i(\mathbf{x}_2)\right) \left(\sum_j \phi_j(\mathbf{x}_i) \phi_j(\mathbf{x}_2)\right)$ Proof: $(\mathbf{x}_1, \mathbf{x}_2) K_2(\mathbf{x}_1, \mathbf{x}_2) = \left(\sum_i \phi_i(\mathbf{x}_i) \phi_i(\mathbf{x}_2)\right) \left(\sum_j \phi_j(\mathbf{x}_i) \phi_j(\mathbf{x}_2)\right)$ $(\mathbf{x}_1, \mathbf{x}_2) K_2(\mathbf{x}_1, \mathbf{x}_2) = \left(\sum_i \phi_i(\mathbf{x}_i) \phi_i(\mathbf{x}_2)\right) \left(\sum_j \phi_j(\mathbf{x}_i) \phi_j(\mathbf{x}_2)\right)$ $(\mathbf{x}_2, \mathbf{x}_3) K_2(\mathbf{x}_1, \mathbf{x}_2) = \left(\sum_i \phi_i(\mathbf{x}_i) \phi_i(\mathbf{x}_2)\right) \left(\sum_j \phi_j(\mathbf{x}_i) \phi_j(\mathbf{x}_2)\right)$

$$= \sum_{i} \phi_{i}(x_{i})\widetilde{\phi}_{i}(x_{i}) \phi_{i}(x_{2})\widetilde{\phi}_{i}(x_{2})$$

$$= \sum_{i} \phi_{new}(x_{i}) \phi_{i}(x_{2})\widetilde{\phi}_{i}(x_{2})$$

$$= \sum_{i} \phi_{new}(x_{i}) \phi_{i}(x_{2})\widetilde{\phi}_{i}(x_{2})$$

Kernels in SVR

• Recall:

$$\max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) K(\mathbf{x}_i, \mathbf{x}_j) - \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$$
 and the decision function:
$$f(x) = \sum_i (\alpha_i - \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}) + b$$
 are all in terms of the kernel $K(\mathbf{x}_i, \mathbf{x}_j)$ only

• One can now employ any mercer kernel in SVR or Ridge Regression to implicitly perform linear regression in higher dimensional spaces

Solving the SVR Dual Optimization Problem

The SVR dual objective is:

$$\max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) K(x_i, x_j) - \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*) \text{ such that } \sum_i (\alpha_i - \alpha_i^*) = 0,$$

$$\alpha_i, \alpha_i^* \in [0, C]$$

 This is a linearly constrained quadratic program (LCQP), just like the

³https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_and_scripting_.28programming.29_languages

Solving the SVR Dual Optimization Problem

The SVR dual objective is:

$$\max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) K(x_i, x_j) - \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*) \text{ such that } \sum_i (\alpha_i - \alpha_i^*) = 0,$$

 $\alpha_i, \alpha_i^* \in [0, C]$

- This is a linearly constrained quadratic program (LCQP), just like the constrained version of Lasso
- There exists no closed form solution to this formulation
- Standard QP (LCQP) solvers³ can be used
- Question: Are there more specific and efficient algorithms for solving SVR in this form?

³https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_and_ scripting_.28programming.29_languages

Sequential Minimial Optimization Algorithm for Solving SVR

Solving the SVR Dual Optimization Problem

• It can be shown that the objective:

$$\max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(x_i, x_j) \\ -\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$$

• can be written as:

$$\max_{\beta_{i}} - \frac{1}{2} \sum_{i} \sum_{j} \beta_{i} \beta_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) - \epsilon \sum_{i} |\beta_{i}| + \sum_{i} y_{i} \beta_{i}$$
s.t.
$$\beta_{i} = \alpha_{i} - \alpha_{i}$$

$$\alpha_{i} + \alpha_{i}' = |\beta_{i}|$$

$$\alpha_{i} + \alpha_{i}' = |\beta_{i}|$$

Solving the SVR Dual Optimization Problem

• It can be shown that the objective:

$$\max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(x_i, x_j) \\ -\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$$

• can be written as:

$$\max_{\beta_{i}} - \frac{1}{2} \sum_{i} \sum_{j} \beta_{i} \beta_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) - \epsilon \sum_{i} |\beta_{i}| + \sum_{i} y_{i} \beta_{i}$$
s.t.
$$\sum_{i} \beta_{i} = 0$$

$$\beta_{i} \in [-C, C], \forall i$$

$$\max_{\beta_{i}} |\beta_{i}| + \sum_{i} y_{i} \beta_{i}$$

$$\min_{\beta_{i}} |\beta_{i}| + \sum_{i} y_{i} \beta_{i}$$

$$\min_{\beta_{i}} |\beta_{i}| + \sum_{i} y_{i} \beta_{i}$$

- Even for this form, standard QP (LCQP) solvers⁴ can be used
- Question: How about (iteratively) solving for two β_i 's at a time?
 - This is the idea of the Sequential Minimal Optimization (SMO) algorithm

Sequential Minimal Optimization (SMO) for SVR

Consider:

$$\max_{\beta_i} - \frac{1}{2} \sum_i \sum_j \beta_i \beta_j K(\mathbf{x}_i, \mathbf{x}_j) - \epsilon \sum_i |\beta_i| + \sum_i y_i \beta_i$$
 s.t.

- $\sum_i \beta_i = 0$
- $\beta_i \in [-C, C]$, $\forall i$
- The SMO subroutine can be defined as:

Sequential Minimal Optimization (SMO) for SVR

Consider:
$$\max_{\beta_{i}} - \frac{1}{2} \sum_{i} \sum_{j} \beta_{i} \beta_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) - \epsilon \sum_{i} |\beta_{i}| + \sum_{i} y_{i} \beta_{i}$$
s.t.
$$\sum_{i} \beta_{i} = 0$$

$$\beta_{i} \in [-C, C], \forall i$$

$$\beta_{i} = 0$$

$$\beta_{i} \in [-C, C], \forall i$$

- The SMO subroutine can be defined as:
 - 1 Initialise β_1, \ldots, β_n to some value $\in [-C, C]$
 - Pick β_i , β_j to estimate closed form expression for next iterate (i.e. β_i^{new} , β_i^{new})
 - Check if the KKT conditions are satisfied
 - If not, choose β_i and β_j that worst violate the KKT conditions and reiterate

