Apuntes de un curso de

MÉTODOS DE LA FÍSICA MATEMÁTICA II

Departamento de Física Facultad de Ciencias Universidad de Chile

> Víctor Muñoz G. José Rogan C.

Índice

1.	Espacio de funciones	1
	1.1. Definiciones	1
	1.2. Sucesiones de funciones	3
	1.3. Proceso de ortonormalización de Gram-Schmidt	9
	1.4. Coeficientes de Fourier	10
	1.5. Integrales impropias (valor principal)	14
	1.6. Convergencia según Cesàro	15
2.	Series de Fourier	19
3.	Transformada de Fourier	35
	3.1. Definiciones	35
	3.2. Ejemplos	36
	3.3. Propiedades	41
	3.4. Aplicaciones	43
4.	Convolución	45
	4.1. Espacio S	45
	4.2. Producto de convolución	46
	4.3. El espacio S como anillo	49
5 .	Distribuciones temperadas	53
	5.1. Definiciones	53
	5.2. Sucesión de distribuciones	61
	5.3. Producto de distribuciones	71
	5.4. Distribuciones y ecuaciones diferenciales	72
	5.5. Convergencia débil	73
6.	Distribuciones y transformada de Fourier	79
7.	Convolución de distribuciones	87
	7.1. Definiciones	87
	7.2. Propiedades de la convolución de distribuciones	89
	7.3. Uso de convolución en Física	91

IV ÍNDICE

8.	La función Gamma)3
	8.1. La función factorial):
	8.2. La función Gamma) 4
	8.3. Función Beta)(
	8.4. Notación doble factorial	96
	8.5. Fórmula de Stirling	
	8.6. Otras funciones relacionadas	
g	Transformada de Laplace 10	13
υ.	9.1. Definición	
	9.2. Inversión de la transformada de Laplace	
	9.3. Propiedades de la transformada de Laplace	
	9.4. Lista de transformadas de Laplace	
	J.4. Dista de transformadas de Dapiace	LJ
10	Aplicaciones de la transformada de Laplace 11	
	10.1. Ecuaciones diferenciales lineales con coeficientes constantes	
	10.2. Ecuaciones integrales	
	10.3. Ecuaciones en derivadas parciales	
	10.4. Sistema de ecuaciones lineales	2(
11	.Polinomios ortogonales 12	23
	11.1. Definiciones	25
	11.2. Teoremas	
	11.3. Relación de recurrencia	
19	.Polinomios de Hermite	7
12	12.1. Definición	
	12.2. Función generatriz	
	12.3. Ortogonalidad	
	12.4. Algunos resultados interesantes	
	12.5. Solución por serie de la ecuación de Hermite	
13	Polinomios de Laguerre	
	13.1. Definición	
	13.2. Función generatriz	
	13.3. Relaciones de recurrencia	
	13.4. Ecuación de Laguerre	
	13.5. Ortogonalidad	
	13.6. Polinomios asociados de Laguerre	38
14	.El problema de Sturm-Liouville	39
	14.1. Operadores diferenciales autoadjuntos	36
	14.2. Operadores autohermíticos	
	14.3. Problema de autovalores	
	14.4. Ejemplos de funciones ortogonales	

ÍNDICE v

15. Ecuaciones diferenciales con singularidades 14	5
15.1. Puntos singulares	٤5
15.2. Solución por serie: método de Frobenius	6
15.3. Limitaciones del método. Teorema de Fuchs	9
15.4. Una segunda solución	1
16. Ecuaciones diferenciales del tipo 15	5
16.1. Soluciones en puntos regulares	5
16.2. Soluciones en la vecindad de puntos singulares	9
16.3. Singularidades en infinito	;7
16.4. Ejemplos	8
16.5. Ecuaciones con $n \leq 3$ singularidades Fuchsianas	'1
17. Funciones hipergeométricas 17	7
17.1. La ecuación hipergeométrica general	7
17.2. Ecuación indicial	
17.3. Ecuación diferencial de Gauss	'9
17.4. La serie hipergeométrica	31
17.5. Ecuación hipergeométrica confluente	
18. Polinomios de Legendre 18	7
18.1. Función generatriz	37
18.2. Relaciones de recurrencia	
18.3. Coeficientes del polinomio $P_n(x)$	0
18.4. Fórmula de Rodrigues	
18.5. Ecuación diferencial de Legendre	
18.6. Lugares nulos de $P_n(x)$	
18.7. Relación de ortogonalidad	
18.8. Expresiones integrales para $P_n(x)$	
18.9. Serie de Legendre	
18.10Funciones asociadas de Legendre	
18.11Problema de Sturm-Liouville asociado	
18.12Armónicos esféricos	
18.13Segunda solución de la ecuación de Legendre	
19.La ecuación diferencial de Bessel 21	1
19.1. La ecuación diferencial de Bessel	1
19.2. Funciones de Bessel de índice no entero	
19.3. Funciones de Bessel de índice entero	
19.4. Comportamiento asintótico	
19.5. Función generatriz	
19.6. Fórmulas de adición	
19.7. Representaciones integrales	
19.8. Relaciones de recurrencia	
19.9. Relaciones de ortogonalidad	
19.10Problema de Sturm-Liouville asociado	

20.Diversos tipos de funciones cilíndricas 2 20.1. Segunda solución de la ecuación de Bessel 20.2. Funciones de Hankel	
21. Aplicaciones a la Electrostática	229
21.1. Coordenadas rectangulares	229
21.2. Coordenadas polares, dos dimensiones	233
21.3. Ecuación de Laplace en coordenadas esféricas	236
21.4. Ecuación de Laplace en coordenadas cilíndricas	240
21.5. Otras aplicaciones	243

Capítulo 20

Diversos tipos de funciones cilíndricas

versión preliminar 3.2-23 diciembre 2002

La ecuación de Bessel, que estudiamos en el capítulo anterior, da origen a una serie de funciones que genéricamente denominamos "cilíndricas", debido a que la ecuación de Bessel aparece de modo natural en diversos problemas físicos con simetría cilíndrica, pues corresponde a la parte radial del Laplaciano en dichas coordenadas. Una de ellas es la función de Bessel $J_{\alpha}(z)$, que estudiamos en el capítulo anterior. En éste revisaremos brevemente algunas otras funciones y sus propiedades.

20.1. Segunda solución de la ecuación de Bessel

Consideremos la ecuación de Bessel, con solución centrada en z=0. Escojamos además n=0:

$$f'' + \frac{1}{z}f' + f = 0. (20.1)$$

Esta ecuación hipergeométrica tiene dos soluciones linealmente independientes, una de las cuales es la ya conocida $J_0(z)$. Determinemos ahora la segunda solución. Observando la forma de la segunda solución en (15.26), proponemos una solución de la forma

$$f(z) = J_0(z) \int^z u(t) dt . (20.2)$$

Luego

$$\frac{1}{z}f'(z) = \frac{1}{z}J'_0(z)\int^z u(t)\,dt + \frac{1}{z}J_0(z)u(z)\,\,, (20.3)$$

$$f''(z) = J_0''(z) \int_0^z u(t) dt + 2J_0'(z)u(z) + J_0(z)u'(z) . \tag{20.4}$$

Reemplazando en (20.1), y puesto que $J_0(z)$ es solución de ella,

$$u'(z)J_0(z) + u(z)\left[2J'_0(z) + \frac{1}{z}J_0(z)\right] = 0$$
,

esto es,

$$u'(z) = -\left[\frac{2J_0'(z)}{J_0(z)} + \frac{1}{z}\right]u(z) ,$$

$$u(z) = C \exp\left[-\int^z \left(\frac{2J_0'(t)}{J_0(t)} + \frac{1}{t}\right) dt\right] ,$$

$$u(z) = \exp\left[-\ln J_0^2(z) - \ln z\right] ,$$

es decir,

$$u(z) = \frac{1}{zJ_0^2(z)} = \frac{1}{z} \left(1 + \sum_{\nu=1}^{\infty} a_{2\nu} z^{2\nu} \right) . \tag{20.5}$$

La solución linealmente independiente a $J_0(z)$ es entonces

$$N_0(z) = J_0(z) \int^z \frac{dt}{tJ_0^2(t)} , \qquad (20.6)$$

lo que reescribimos como

$$N_0(z) = J_0(z) \left[\ln z + \sum_{\nu=1}^{\infty} b_{2\nu} z^{2\nu} \right] = J_0(z) \ln z + \sum_{\nu=1}^{\infty} c_{2\nu} \left(\frac{z}{2} \right)^{2\nu} .$$

Reemplazando en la ecuación diferencial (20.1) determinamos los coeficientes $c_{2\nu}$. Para ello, notamos que:

$$\frac{1}{z}N_0'(z) = \frac{1}{z}J_0'(z)\ln z + \frac{1}{z^2}J_0(z) + \sum_{\nu=1}^{\infty} c_{2\nu}\frac{2\nu}{2} \left(\frac{z}{2}\right)^{2\nu-2} \frac{1}{2}$$

$$N_0''(z) = J_0''(z)\ln z + 2J_0'(z)\frac{1}{z} - J_0(z)\frac{1}{z^2} + \sum_{\nu=1}^{\infty} c_{2\nu}\frac{2\nu(2\nu-1)}{4} \left(\frac{z}{2}\right)^{2\nu-2} .$$

Comparando los coeficientes de potencias iguales de z, se tiene la relación de recurrencia

$$c_{2\nu} = -\frac{c_{2\nu-2}}{\nu^2} - \frac{(-1)^{\nu}}{(\nu!)^2} \frac{1}{\nu} , \quad \nu \ge 1 .$$
 (20.7)

Tomamos $c_0 = 0$, y notamos que sólo nos interesan los índices pares. Entonces

$$c_2 = 1$$
,
 $c_4 = -\frac{1}{4} - \frac{1}{8} = -\frac{1}{4} \left(1 + \frac{1}{2} \right)$.

Afirmación

$$c_{2\nu} = \frac{(-1)^{\nu}}{(\nu!)^2} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{\nu} \right) . \tag{20.8}$$

Demostración La demostración es fácil por inducción. Suponiendo que la afirmación es cierta para $\nu = n$, podemos calcular

$$c_{2n+2} = \frac{1}{(n+1)^2} \frac{(-1)^n}{(n!)^2} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) - \frac{(-1)^{n+1}}{[(n+1)!]^2} \frac{1}{n+1}$$

$$c_{2n+2} = -\frac{(-1)^{n+1}}{[(n+1)!]^2} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1} \right).$$

q.e.d.

Con este resultado, podemos escribir una solución linealmente independiente de $J_0(x)$ en la forma:

$$N_0(z) = J_0(z)\ln(z) + \frac{1}{(1!)^2} \left(\frac{z}{2}\right)^2 - \frac{1}{(2!)^2} \left(1 + \frac{1}{2}\right) \left(\frac{z}{2}\right)^4 + \frac{1}{(3!)^2} \left(1 + \frac{1}{2} + \frac{1}{3}\right) \left(\frac{z}{2}\right)^6 - \cdots$$
(20.9)

Gráficamente:

Análogamente, asociadas a las funciones de índices superiores $J_n(z)$, será posible encontrar la segunda solución, $N_n(z)$.

En general, $N_n(z)$ se puede encontrar notando que la función

$$N_{\alpha}(z) = \frac{1}{\operatorname{sen} \alpha \pi} [J_{\alpha}(z) \cos \alpha \pi - J_{-\alpha}(z)], \qquad (20.10)$$

es linealmente independiente a $J_{\alpha}(z)$ si $\alpha \notin \mathbb{Z}$, y por tanto puede ser usada como segunda solución. Las $N_{\alpha}(z)$ se conocen como funciones de Bessel de segunda especie, o funciones de Neumann. Lo interesante es que, al contrario de $J_{-\alpha}(z)$, $N_{\alpha}(z)$ continúa siendo linealmente independiente cuando α es entero. Para mostrarlo (no lo haremos aquí), se puede considerar $\alpha = n + \epsilon$, y tomar el límite $\epsilon \to 0$. Resulta finalmente

$$N_n(z) = \frac{2}{\pi} \ln\left(\frac{z}{2}\right) J_n(z) - \frac{1}{\pi} \sum_{l=0}^{\infty} \frac{(-1)^l \left[\Psi(l+1) + \Psi(n+l+1)\right]}{l!(l+n)!} \left(\frac{z}{2}\right)^{2l+n} - \frac{1}{\pi} \sum_{l=0}^{n-1} \frac{(n-l-1)!}{l!} \left(\frac{z}{2}\right)^{2l-n} , \quad (20.11)$$

donde

$$\Psi(\lambda) = \frac{1}{\Gamma(\lambda)} \frac{d\Gamma(\lambda)}{d\lambda} \ . \tag{20.12}$$

20.2. Funciones de Hankel

En el capítulo anterior, vimos que las funciones de Bessel se pueden representar en la forma integral

$$J_n(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp[i(z \operatorname{sen} \phi - n\phi)] d\phi .$$

Hagamos el cambio de variable $\phi = -\psi$, de modo que

$$J_n(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp[-i(z \sin \psi - n\psi)] d\psi .$$

Consideremos ahora una generalización de lo anterior al plano complejo, la función

$$\Phi(z) = \int_C e^{-iz \operatorname{sen} s} e^{i\alpha s} \, ds \ . \tag{20.13}$$

Sea

$$g(s) = e^{i\alpha s} (20.14)$$

Entonces

$$g'' + \alpha^2 g = 0 \ . \tag{20.15}$$

Sea además

$$f(z,s) = e^{-iz \operatorname{sen} s}$$
, (20.16)

de modo que

$$z^{2} \frac{\partial^{2} f}{\partial z^{2}} + z \frac{\partial f}{\partial z} + z^{2} f = -\frac{\partial^{2} f}{\partial s^{2}} . \qquad (20.17)$$

Afirmación $\Phi(z)$ satisface la ecuación de Bessel (bajo ciertas restricciones),

$$z^{2}\Phi'' + z\Phi' + (z^{2} - \alpha^{2})\Phi = 0.$$
 (20.18)

Demostración Si (20.18) se satisface, entonces

$$0 = \int_C \left[z^2 \frac{\partial^2 f}{\partial z^2} + z \frac{\partial f}{\partial z} + (z^2 - \alpha^2) f \right] g .$$

Con (20.17),

$$\begin{split} 0 &= -\alpha^2 \int_C fg - \int_C \left(\frac{\partial^2 f}{\partial s^2}\right) g \\ &= -\alpha^2 \int_C fg + \int_C \frac{\partial f}{\partial s} g' - \left[\frac{\partial f}{\partial s} g\right]\Big|_C \\ &= -\alpha^2 \int_C fg - \int_C fg'' + \left[fg' - \frac{\partial f}{\partial s} g\right]\Big|_C \\ &= -\int_C f(g'' + \alpha^2 g) + \left[fg' - \frac{\partial f}{\partial s} g\right]\Big|_C \;. \end{split}$$

Con (20.15),

$$0 = \left[fg' - \frac{\partial f}{\partial s}g \right] \Big|_{C} .$$

Por lo tanto, Φ es solución de la ecuación de Bessel si f y $\partial f/\partial s$ son despreciables en el contorno de integración C.

q.e.d.

Sean ahora z = x > 0, $s = s_1 + is_2$, $s_{1,2} \in \mathbb{R}$. En este caso,

$$sen s = sen s_1 \cosh s_2 + i \cos s_1 senh s_2.$$

Considerando la afirmación anterior, ¿en qué parte del plano (Re s, Im s) tenemos $|f(x,s)| = |e^{ix \operatorname{sen} s}| \to 0$? Esto es, buscamos un contorno C tal que

$$\operatorname{Re}(-ix\operatorname{sen} s) = x\cos s_1\operatorname{senh} s_2 \longrightarrow -\infty$$
.

Esta condición equivale a

$$senh s_2 \longrightarrow -\infty \quad si \cos s_1 > 0 ,
senh s_2 \longrightarrow \infty \quad si \cos s_1 < 0 .$$
(20.19)

Escojamos los contornos de integración:

Sobre estos contornos, f y $\partial f/\partial s$ son desprecibles en infinito, y estamos en condiciones de definir dos nuevas funciones, soluciones de la ecuación diferencial de Bessel:

Definición 20.1 Funciones de Hankel

$$H_{\alpha}^{(1,2)}(x) = \frac{1}{\pi} \int_{C_{1,2}} e^{-ix \operatorname{sen} s} e^{i\alpha s} ds , \quad x > 0$$
(20.20)

Consideremos el caso particular $\alpha=n,$ y la expresión

$$I(x) = H_n^{(1)}(x) + H_n^{(2)}(x)$$
(20.21)

De (20.20),

$$I(x) = \frac{1}{\pi} \int_C e^{-ix \operatorname{sen} s} e^{ins} \, ds \; ,$$

con

Puesto que

$$e^{in(s+2\pi)} = e^{ins}$$
,
 $sen(s+2\pi) = sen s$,

las integraciones sobre los segmentos verticales de ${\cal C}$ se anulan entre sí. Se tiene entonces

$$H_n^{(1)}(x) + H_n^{(2)}(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{-ix \sin \phi} e^{in\phi} d\phi$$
.

Se siguen las siguientes relaciones entre las funciones cilíndricas que hemos examinado:

$$J_n = \frac{1}{2} \left[H_n^{(1)} + H_n^{(2)} \right] , \qquad (20.22)$$

$$N_n = \frac{1}{2i} \left[H_n^{(1)} - H_n^{(2)} \right] , \qquad (20.23)$$

y a la inversa,

$$H_n^{(1)} = J_n + iN_n , (20.24)$$

$$H_n^{(2)} = J_n - iN_n \ . \tag{20.25}$$