# Spline Interpolation: Cubic Spline Interpolation (CSI)

Lecture-2

# **Objectives**

- ☐ Introduce MATLAB Spline Interpolation Functions
- ☐ Solve problems by using Cubic Spline Interpolation
- Draw curve by applying MATLAB Spline Interpolation Functions

## **Conditions for Cubic Spline**

Let us consider the cubic spline

$$f(x) = \begin{cases} f_1(x) & x_1 < x < x_2 \\ f_2(x) & x_2 < x < x_3 \\ f_3(x) & x_3 < x < x_4 \end{cases}$$

At the common point  $x = x_2$ ,

$$f_1(x_2) = f_2(x_2)$$

$$f'_1(x_2) = f'_2(x_2)$$

$$f''_1(x_2) = f''_2(x_2)$$

At the common point  $x = x_3$ ,

$$f_2(x_3) = f_3(x_3)$$
  
 $f'_2(x_3) = f'_3(x_3)$   
 $f''_2(x_3) = f''_3(x_3)$ 

## Boundary conditions for Cubic Spline

Let us consider the cubic spline

$$f(x) = \begin{cases} f_1(x) & x_1 < x < x_2 \\ f_2(x) & x_2 < x < x_3 \\ f_3(x) & x_3 < x < x_4 \end{cases}$$

Normally we use three types of conditions

- Natural Cubic Spline
- Clamped Cubic Spline
- Not-a-Knot Cubic Spline

#### Natural Cubic Spline

Second derivatives at the end points are zero.

$$f_1''(x_1) = 0, f_3(x_4) = 0$$

#### **Clamped Cubic Spline**

First derivatives at the end points are known.

$$f_1'(x_1) = d_1,$$
  
 $f_3'(x_4) = d_2$ 

#### Not-a-knot Cubic Spline

Automatically adjusted boundary conditions known as **not-a-knot** cubic spline.

$$f_1'''(x_2) = f_2'''(x_2)$$
  
$$f_2'''(x_3) = f_3'''(x_3)$$

# **MATLAB Spline Interpolation Functions**

➤ MATLAB function **spline** 

x, Y are inputs and xx is expolant.

$$dY0 = Y'(x0)$$
 and  $dYn = Y'(xn)$ 

> csape spline interpolation with various end conditions

Syntax: sp=csape(X, Y, conds)

some of the conditions are

- 1. 'second' adjusted second derivatives if not mentioned it uses [0, 0]
- 2. 'clamped' adjusted first derivatives
- 3. 'not-a-knot' uses not-a-knot condition

## **Solve Problems**

**Example #1**: A natural cubic spline is defined by

$$f(x) = \begin{cases} A(x+1)^3 + B(x+1)^2 + C(x+1) + 1, & -1 \le x < 1 \\ D(x-1)^3 + 6(x-1)^2 + E(x-1) - 1, & 1 \le x \le 2 \end{cases}$$

- I. Use continuity and boundary conditions to estimate A, B, C, D and E.
- II. Find the value of f(1.4) from the spline curve'
- III. Use MATLB function "sp=csape(x, y, 'conditions')" to construct natural cubic spline for the data set (-1, 1), (1, -1) and (2, 10).

Find f(1.4) using "fnval(sp,x)", and Plot the spline curve using "fnplt(sp)" along with the data points.

#### **Solution**

Let 
$$f_1(x) = A(x+1)^3 + B(x+1)^2 + C(x+1) + 1, \qquad -1 \le x < 1$$
 and 
$$f_2(x) = D(x-1)^3 + 6(x-1)^2 + E(x-1) - 1, \qquad 1 \le x \le 2$$
 Differentiating 
$$f_1'(x) = 3A(x+1)^2 + 2B(x+1) + C$$
 
$$f_2'(x) = 3D(x-1)^2 + 12(x-1) + E$$

and

$$f_1''(x) = 6A(x+1) + 2B$$
  
$$f_2''(x) = 6D(x-1) + 12$$

Conditions at the common point x = 1

$$f_1(1) = f_2(1) \implies 8A + 4B + 2C + 1 = -1$$
 (1)

$$f_1'(1) = f_2'(1) \implies 12A + 4B + C = E$$
 (2)

$$f_1''(1) = f_2''(1) \implies 12A + 2B = 12$$
 (3)

At the common point x = 1, f(x), f'(x) and f''(x) are continuous.

For **natural cubic spline** the boundary conditions give

$$f_1''(-1) = 0$$
  $2B = 0 \rightarrow B = 0$   
 $f_2''(2) = 0$   $6D + 12 = 0 \rightarrow D = -2$ 

From (3), 
$$12A + 2B = 12 \rightarrow A = 1$$
  
From (1),  $8A + 4B + 2C + 1 = -1 \rightarrow C = -5$   
From (2),  $12A + 4B + C = E \rightarrow E = 7$ 

The natural cubic spline function is

$$f(x) = \begin{cases} (x+1)^3 - 5(x+1) + 1, & -1 \le x < 1 \\ -2(x-1)^3 + 6(x-1)^2 + 7(x-1) - 1, & 1 \le x \le 2 \end{cases}$$

(ii) 
$$f(x) = -2(x-1)^3 + 6(x-1)^2 + 7(x-1) - 1$$
,  $1 \le x \le 2$   
 $f(1.4) = f_2(1.4) = -2(0.4)^3 + 6(0.4)^2 + 7(0.4)$   
 $= 2.632$ .

```
iii.
>> clear
>> x=[-1 1 2];
>> y=[1 -1 10];
>> sp=csape(x,y,'second');
>> y1=fnval(sp,1.4)

y1 =
    2.6320
```

- >> fnplt(sp, [-2, 4])
- >> hold on
- >> plot(x, y,'O')
- >> hold off

% used to plot in the same figure



**Example #2**: A cubic spline f(x) which interpolates the data (1,-10), (2,-6), (4,2), (5,18) is defined by

$$f(x) = \begin{cases} (x-1)^3 + b_1(x-1)^2 + c_1(x-1) - 10, & 1 \le x < 2 \\ a_2(x-2)^3 - (x-2)^2 + c_2(x-2) - 6, & 2 \le x < 4 \\ a_3(x-4)^3 + b_3(x-4)^2 + 10(x-4) + 2, & 4 \le x \le 5 \end{cases}$$

- i. If the spline satisfies the not-a-knot boundary conditions, find  $a_2$  and  $a_3$ .
- ii. Use MATLAB function "sp=spline(x, y)" to construct the spline curve and find coefficients by "sp.coefs".
- iii. Write down MATLAB codes using "fnval(sp,x)" to estimate the values of f(x) for x = 1.4, 2.5 and 4.8 from the spline curve.
- iv. Write down MATLAB codes using "fnplt(sp)" to plot the spline curve and the given data points.

#### **Solutions:**

Let the cubic spline be 
$$f(x) = \begin{cases} f_1(x), & 1 \le x < 2 \\ f_2(x), & 2 \le x < 4 \\ f_3(x), & 4 \le x \le 5 \end{cases}$$

where

$$f_1(x) = (x-1)^3 + b_1(x-1)^2 + c_1(x-1) - 10,$$
  

$$f_2(x) = a_2(x-2)^3 - (x-2)^2 + c_2(x-2) - 6,$$
  

$$f_3(x) = a_3(x-4)^3 + b_3(x-4)^2 + 10(x-4) + 2.$$

Then

$$f_1'(x) = 3(x-1)^2 + 2b_1(x-1) + c_1,$$
  

$$f_2'(x) = 3a_2(x-2)^2 - 2(x-2) + c_2,$$
  

$$f_3'(x) = 3a_3(x-4)^2 + 2b_3(x-4) + 10.$$

And

$$f_1''(x) = 6(x-1) + 2b_1,$$
  

$$f_2''(x) = 6a_2(x-2) - 2,$$
  

$$f_3''(x) = 6a_3(x-4) + 2b_3.$$

Also

$$f_1^{\prime\prime\prime}(x) = 6$$
,  $f_2^{\prime\prime\prime}(x) = 6a_2$ ,  $f_3^{\prime\prime\prime}(x) = 6a_3$ .

i. Spline curve satisfies not-a-knot boundary conditions. Thus

$$f_1'''(2) = f_2'''(2) \implies 6 = 6a_2 \text{ or } a_2 = 1.$$

$$f_3^{\prime\prime\prime}(4) = f_2^{\prime\prime\prime}(4)$$
 or  $6a_3 = 6a_2 = 6$  or  $a_3 = 1$ .

$$f(x) = \begin{cases} f_1(x), & 1 \le x < 2\\ f_2(x), & 2 \le x < 4\\ f_3(x), & 4 \le x \le 5 \end{cases}$$

Coefficients =

| 1 | -4 | 7  | -10 |
|---|----|----|-----|
| 1 | -1 | 2  | -6  |
| 1 | 5  | 10 | 2   |

iv.
>> fnplt(sp, [0, 6])
>> hold on
>> plot(x,y,'o')



#### **Outcomes**

- ☐ Functions can be derived by using Cubic Spline Interpolation (CSI) from given data sets.
- ☐ Functions can be plotted by using built in function in MATLAB for Cubic Spline Interpolation (CSI).

# **Multiple questions:**

| S.No. | Questions                                                                                                                                                                 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Which command can be used to find coefficients after constructing spline curve in MATHLAB by?  (a) sp.coefs,  (b) esape(x, y, 'conditions'),  (c) None of them            |
| 2     | By using Cubic Spline Interpolation (CSI) from available data sets- (a) Functions can be derived, (b) Functions can not be derived, (c) None of them, (d) Both of them    |
| 3     | By applying built in function in MATLAB for Cubic Spline Interpolation -  (a) Functions can be plotted,  (b) Functions can not be plotted,  (c) Both of them              |
| 4     | Which command can be used for to construct natural cubic spline for the given data set?  (a) csape(x, y, 'conditions'),  (b) esape(x, y, 'conditions'),  (c) None of them |

# Try to do yourself

Exercise 1: A natural cubic spline f(x) which interpolates the data points (-1,5), (2,2), (4,60) is defined by

$$f(x) = \begin{cases} A(x+1)^3 + B(x+1)^2 + C(x+1) + 5, & -1 \le x < 2 \\ D(x-1)^3 + E(x-1)^2 + 17(x-1) + 2, & 2 \le x \le 4 \end{cases}$$

- i. Use continuity and boundary conditions to find the values of *A*, *B*, *C*, *D* and *E*.
- ii. Estimate f(1) and f(3) from .the spline curve.

Exercise 2: A clamped cubic spline function through (-1,1), (2,-2) (4,30) is defined by

$$f(x) = \begin{cases} A(x+1)^3 + 3(x+1)^2 + B(x+1) + 1, & -1 \le x < 2\\ C(x-2)^3 + D(x-2)^2 + E(x-2) - 2, & 2 \le x \le 4 \end{cases}$$

- i. Given that f'(-1) = 1 and f'(4) = 30, find the values of A, B, C, D and E.
- ii. Estimate the value of f(2.5)
- iii. Write a MATLAB code using function "spline(x, y)" to construct the spline curve and "fnval(function,x)" to estimate the values of f(x) for x = -0.5, 2.5 and 3.8

#### References

- [1] Applied Numerical Methods With Matlab for Engineers and Scientists (Steven C.Chapra).
- [2] Applied Numerical Analysis C.F.Gerald & P.O.Wheatley, 7<sup>th</sup> Edition, 2003, <u>Pearson Education Limited</u>, USA.
- [3] Numerical Analysis & Computing W. Cheney & D. Kincaid, 6<sup>th</sup> Edition, 2007, Cengage Learning, Inc, USA.
- [4] Numerical Analysis <u>J. Douglas Faires</u>, <u>Annette Burden</u>, <u>Richard Burden</u>, 10<sup>th</sup> Edition, 2015, <u>Cengage Learning</u>, Inc, USA.