Annexe A

Aide-mémoire

A.1 Quelques formules utiles

Progression géométrique

$$\sum_{i=k}^{\infty} a^i = \frac{a^k}{1-a} \qquad \text{si}|a| < 1 \tag{A.1}$$

A.2 Théorie d'échantillonnage

A.2.1 Une population – un échantillon

Le tableau A.1 contient les statistiques d'échantillonnage liées aux paramètres de la population dans le cas d'un échantillonnage aléatoire *avec* remplacement.

Dans le cas d'un échantillonnage sans remplacement dans une population finie de taille N, l'écart-type de la population utilisé dans Z – égal à σ ou $\sqrt{\pi(1-\pi)}$ – est multiplié par le facteur $\sqrt{\frac{N-n}{N-1}}$.

A.2.2 Deux populations – deux échantillons indépendants

Le tableau A.2 contient les statistiques d'échantillonnage liées aux paramètres des populations dans le cas d'un échantillonnage aléatoire et indépendant *avec* remplacement.

A.2.3 Deux populations – deux échantillons appariés

Si les échantillons sont appariés (« avant » / « après »), créer un nouvel échantillon $d_i = x_{1i} - x_{2i}$ et travailler avec \overline{D} (tableau A.1).

A.3 Intervalles de confiance / tests

Le tableau A.3 contient les intervalles de confiance des statistiques normalisées ainsi que les décisions de rejet des tests d'hypothèse.

- Intervalle de confiance : niveau de confiance $1-\alpha$
- Tests d'hypothèse : seuil de signification α
- Symétries :
 - Normale centrée réduite : $z_{1-\alpha} = -z_{\alpha}$
 - Student $(\nu): t_{1-\alpha}(\nu) = -t_{\alpha}(\nu)$
 - Fischer (ν_1, ν_2) : $f_{1-\alpha}(\nu_1, \nu_2) = 1/f_{\alpha}(\nu_2, \nu_1)$
- Proportions : remplacer $\pi(1-\pi)$ par $\hat{p}(1-\hat{p})$ comme variance de la population

a. En plus : $n\hat{p} \ge 5$, $n(1-\hat{p}) \ge 5$, ni $\hat{p} \approx 0$, ni $\hat{p} \approx 1$. TABLE A.1 - Th'eorie d''echantillonnage: une population, un 'echantillon al'eatoire, avec remplacement.

_	_	_							_
Mesme 0	Mosumo â	Degrés de liberté	Distribution	St. normalisée	Statistique $\hat{\Theta}$	Échantillon	Écart-type σ	Population	Paramètre θ
				$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$			connu	$\approx \text{normale}$	
			N(0,1)			n > 30	connu		
£	3			$Z = \frac{\overline{X} - \mu}{S/\sqrt{n}}$	X	n > 30 $n > 30$	inco	≈ nc	μ
		n-1	Student (ν)	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$		n < 30	inconnu	$\approx \text{normale}$	
ď	3>		N(0,1)	$Z = \frac{\hat{P} - \pi}{\sqrt{\pi (1 - \pi)/n}}$	\hat{P}	$n > 30^{a}$		1	74
ď	.2	n-1	khi-deux (ν)	$X^2 = \frac{(n-1)S^2}{\sigma^2}$	S^2			$\approx \text{normale}$	σ^2

Paramètre θ	Populations	Écart-types σ_1, σ_2	$\acute{ m E}{ m chantillons}$	Statistique Ô	St. normalisée	Distribution	Degrés de liberté	$\text{Mesure } \hat{\theta}$
	\approx normales	connus			$\overline{X} = Z$			
		connus	$n_1 > 30 \text{ et } n_2 > 30$		$Z = \frac{(\overline{X}_2 - \overline{X}_1) - (\mu_2 - \mu_1)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	N(0,1)		
$\mu_2 - \mu_1$		inconnus	$n_1 > 30 \text{ et } n_2 > 30$ $n_1 > 30 \text{ et } n_2 > 30$	$\overline{X}_2 - \overline{X}_1$	$Z = \frac{(\overline{X}_2 - \overline{X}_1) - (\mu_2 - \mu_1)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$			$\overline{x}_2 - \overline{x}_1$
1	\approx normales	inc., $\sigma_1 = \sigma_2$ ou $n_1 = n_2$	$n_1 < 30 \text{ o}$.1	$T = \frac{(\overline{X}_2 - \overline{X}_1) - (\mu_2 - \mu_1)}{S_c \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	Student (ν)	$n_1 + n_2 - 2$	1
		inc., $\sigma_1 = \sigma_2$ ou $n_1 = n_2$ inc., $\sigma_1 \neq \sigma_2$ et $n_1 \neq n_2$	$n_1 < 30 \text{ ou } n_2 < 30$		$T = \frac{(\overline{X}_2 - \overline{X}_1) - (\mu_2 - \mu_1)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	$\operatorname{nt}(\nu)$	ν^*	

 $S_c^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)}$ la variance commune, calculée à partir des deux échantillons $\frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}$ arrondir au nombre entier inférieur

σ_1^2/σ_2^2	\approx normales			S_1^2/S_2^2	$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$	Fischer (ν_1, ν_2)	$n_1 - 1, n_2 - 1$	s_1^2/s_2^2
$\pi_2-\pi_1$			$n_1 > 30 \text{ et } n_2 > 30 a$	$\hat{P}_2 - \hat{P}_1$	$Z = \frac{(\hat{P}_2 - \hat{P}_1) - (\pi_2 - \pi_1)}{\sqrt{\frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}}}$	N(0,1)		$\hat{p_2} - \hat{p_1}$
Paramètre θ	Populations	Écart-types σ_1,σ_2	Échantillons	Statistique $\hat{\Theta}$	St. normalisée	Distribution	Degrés de liberté	Mesure $\hat{\theta}$

TABLE A.2 – Théorie d'échantillonnage : deux populations, deux échantillons aléatoires et indépendants, avec remplacement.

a. En plus : $n_i \hat{p}_i \ge 5$, $n_i (1 - \hat{p}_i) \ge 5$, ni $\hat{p}_i \approx 0$, ni $\hat{p}_i \approx 1$ (i = 1, 2).

 X^2 F

TN Statistique

Intervalle

Test d'hypothèse $H_0: \theta = \theta_0$

normalisée Procédure p-value suivre remplacer z, t, χ^2 ou f en fonction de θ ; $f_{1-\frac{\alpha}{2}}(\nu_1,\nu_2) < f < f_{\frac{\alpha}{2}}(\nu_1,\nu_2)$ $\chi_{1-\frac{\alpha}{2}}^2(\nu) < \chi^2 < \chi_{\frac{\alpha}{2}}^2(\nu)$ mettre sous la forme : $-t_{\frac{\alpha}{2}}(\nu) < t < t_{\frac{\alpha}{2}}(\nu)$ $-z_{\frac{\alpha}{2}} < z < z_{\frac{\alpha}{2}}$ $\theta_L < \theta < \theta_H$ de confiance calculer les valeurs critiques à partir de la valeur de α choisie $f < f_{1-\frac{\alpha}{2}}(\nu_1, \nu_2) \text{ ou } f > f_{\frac{\alpha}{2}}(\nu_1, \nu_2)$ prendre $\theta = \theta_0$ et calculer z, t, χ^2 ou f à partir des mesures; $<\chi_{1-\frac{\alpha}{2}}^2(\nu)$ ou $\chi^2>\chi_{\frac{\alpha}{2}}^2(\nu)$ trouver α_p qui rend le seuil de décision égal à z, t, χ^2 ou f $-t_{\frac{\alpha}{2}}(\nu)$ ou $t > t_{\frac{\alpha}{2}}(\nu)$ \wedge le tableau contient les décisions de rejet de H_0 $-z_{\frac{\alpha}{2}}$ ou $z>z_{\frac{\alpha}{2}}$ $H_1: \theta \neq \theta_0$ « entrer dans le monde de H_0 » : $f < f_{1-\alpha}(\nu_1, \nu_2)$ $\chi^2 < \chi^2_{1-\alpha}(\nu)$ $t < -t_{\alpha}(\nu)$ $H_1: heta < heta_0$ $z<-z_{\alpha}$ $f > f_{\alpha}(\nu_1, \nu_2)$ $t > t_{\alpha}(\nu)$ $z>z_{\alpha}$ $\theta > \theta_0$ $\chi^2_{lpha}(
u)$

Table A.3 – Intervalles de confiance et tests d'hypothèse

- cas spécial : tests avec deux populations et $H_0: \pi_1 \pi_2 = 0$ remplacer $\pi_j(1-\pi_j)$ par $\hat{p}(1-\hat{p})$ où $\hat{p} = (n_1\hat{p}_1 + n_2\hat{p}_2)/(n_1+n_2)$ Test unilatéral sur une moyenne :

 - $H_0: \mu = \mu_0, H_1: \mu > \mu_0, H_1 \text{ précise}: \mu = \mu_0 + \delta$ Si conditions pour $Z: z_\alpha + z_\beta = \frac{\delta}{\sigma/\sqrt{n}}$ Si conditions pour $T: t_\alpha + t_\beta = \frac{\delta}{s/\sqrt{n}}$

Table II Cumulative Standard Normal Distribution

20010 11										
Z	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	-0.00
-3.9	0.000033	0.000034	0.000036	0.000037	0.000039	0.000041	0.000042	0.000044	0.000046	0.000048
-3.8	0.000050	0.000052	0.000054	0.000057	0.000059	0.000062	0.000064	0.000067	0.000069	0.000072
-3.7	0.000075	0.000078	0.000082	0.000085	0.000088	0.000092	0.000096	0.000100	0.000104	0.000108
-3.6	0.000112	0.000117	0.000121	0.000126	0.000131	0.000136	0.000142	0.000147	0.000153	0.000159
-3.5	0.000165	0.000172	0.000179	0.000185	0.000193	0.000200	0.000208	0.000216	0.000224	0.000233
-3.4	0.000242	0.000251	0.000260	0.000270	0.000280	0.000291	0.000302	0.000313	0.000325	0.000337
-3.3	0.000350	0.000362	0.000376	0.000390	0.000404	0.000419	0.000434	0.000450	0.000467	0.000483
-3.2	0.000501	0.000519	0.000538	0.000557	0.000577	0.000598	0.000619	0.000641	0.000664	0.000687
-3.1	0.000711	0.000736	0.000762	0.000789	0.000816	0.000845	0.000874	0.000904	0.000935	0.000968
-3.0	0.001001	0.001035	0.001070	0.001107	0.001144	0.001183	0.001223	0.001264	0.001306	0.001350
-2.9	0.001395	0.001441	0.001489	0.001538	0.001589	0.001641	0.001695	0.001750	0.001807	0.001866
-2.8	0.001926	0.001988	0.002052	0.002118	0.002186	0.002256	0.002327	0.002401	0.002477	0.002555
-2.7	0.002635	0.002718	0.002803	0.002890	0.002980	0.003072	0.003167	0.003264	0.003364	0.003467
-2.6	0.003573	0.003681	0.003793	0.003907	0.004025	0.004145	0.004269	0.004396	0.004527	0.004661
-2.5	0.004799	0.004940	0.005085	0.005234	0.005386	0.005543	0.005703	0.005868	0.006037	0.006210
-2.4	0.006387	0.006569	0.006756	0.006947	0.007143	0.007344	0.007549	0.007760	0.007976	0.008198
-2.3	0.008424	0.008656	0.008894	0.009137	0.009387	0.009642	0.009903	0.010170	0.010444	0.010724
-2.2	0.011011	0.011304	0.011604	0.011911	0.012224	0.012545	0.012874	0.013209	0.013553	0.013903
-2.1	0.014262	0.014629	0.015003	0.015386	0.015778	0.016177	0.016586	0.017003	0.017429	0.017864
-2.0	0.018309	0.018763	0.019226	0.019699	0.020182	0.020675	0.021178	0.021692	0.022216	0.022750
-1.9	0.023295	0.023852	0.024419	0.024998	0.025588	0.026190	0.026803	0.027429	0.028067	0.028717
-1.8	0.029379	0.030054	0.030742	0.031443	0.032157	0.032884	0.033625	0.034379	0.035148	0.035930
-1.7	0.036727	0.037538	0.038364	0.039204	0.040059	0.040929	0.041815	0.042716	0.043633	0.044565
-1.6	0.045514	0.046479	0.047460	0.048457	0.049471	0.050503	0.051551	0.052616	0.053699	0.054799
-1.5	0.055917	0.057053	0.058208	0.059380	0.060571	0.061780	0.063008	0.064256	0.065522	0.066807
-1.4	0.068112	0.069437	0.070781	0.072145	0.073529	0.074934	0.076359	0.077804	0.079270	0.080757
-1.3	0.082264	0.083793	0.085343	0.086915	0.088508	0.090123	0.091759	0.093418	0.095098	0.096801
-1.2	0.098525	0.100273	0.102042	0.103835	0.105650	0.107488	0.109349	0.111233	0.113140	0.115070
-1.1	0.117023	0.119000	0.121001	0.123024	0.125072	0.127143	0.129238	0.131357	0.133500	0.135666
-1.0	0.137857	0.140071	0.142310	0.144572	0.146859	0.149170	0.151505	0.153864	0.156248	0.158655
-0.9	0.161087	0.163543	0.166023	0.168528	0.171056	0.173609	0.176185	0.178786	0.181411	0.184060
-0.8	0.186733	0.189430	0.192150	0.194894	0.197662	0.200454	0.203269	0.206108	0.208970	0.211855
-0.7	0.214764	0.217695	0.220650	0.223627	0.226627	0.229650	0.232695	0.235762	0.238852	0.241964
-0.6	0.245097	0.248252	0.251429	0.254627	0.257846	0.261086	0.264347	0.267629	0.270931	0.274253
-0.5	0.277595	0.280957	0.284339	0.287740	0.291160	0.294599	0.298056	0.301532	0.305026	0.308538
-0.4	0.312067	0.315614	0.319178	0.322758	0.326355	0.329969	0.333598	0.337243	0.340903	0.344578
-0.3	0.348268	0.351973	0.355691	0.359424	0.363169	0.366928	0.370700	0.374484	0.378281	0.382089
-0.2	0.385908	0.389739	0.393580	0.397432	0.401294	0.405165	0.409046	0.412936	0.416834	0.420740
-0.1	0.424655	0.428576	0.432505	0.436441	0.440382	0.444330	0.448283	0.452242	0.456205	0.460172
0.0	0.464144	0.468119	0.472097	0.476078	0.480061	0.484047	0.488033	0.492022	0.496011	0.500000

Table II Cumulative Standard Normal Distribution (continued)

				0.02	·	0.05	0.06	0.05	0.00	0.00
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.500000	0.503989	0.507978	0.511967	0.515953	0.519939	0.532922	0.527903	0.531881	0.535856
0.1	0.539828	0.543795	0.547758	0.551717	0.555760	0.559618	0.563559	0.567495	0.571424	0.575345
0.2	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706	0.602568	0.606420	0.610261	0.614092
0.3	0.617911	0.621719	0.625516	0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732
0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933
0.5	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840	0.712260	0.715661	0.719043	0.722405
0.6	0.725747	0.729069	0.732371	0.735653	0.738914	0.742154	0.745373	0.748571	0.751748	0.754903
0.7	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236
0.8	0.788145	0.791030	0.793892	0.796731	0.799546	0.802338	0.805106	0.807850	0.810570	0.813267
0.9	0.815940	0.818589	0.821214	0.823815	0.826391	0.828944	0.831472	0.833977	0.836457	0.838913
1.0	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141	0.855428	0.857690	0.859929	0.862143
1.1	0.864334	0.866500	0.868643	0.870762	0.872857	0.874928	0.876976	0.878999	0.881000	0.882977
1.2	0.884930	0.886860	0.888767	0.890651	0.892512	0.894350	0.896165	0.897958	0.899727	0.901475
1.3	0.903199	0.904902	0.906582	0.908241	0.909877	0.911492	0.913085	0.914657	0.916207	0.917736
1.4	0.919243	0.920730	0.922196	0.923641	0.925066	0.926471	0.927855	0.929219	0.930563	0.931888
1.5	0.933193	0.934478	0.935744	0.936992	0.938220	0.939429	0.940620	0.941792	0.942947	0.944083
1.6	0.945201	0.946301	0.947384	0.948449	0.949497	0.950529	0.951543	0.952540	0.953521	0.954486
1.7	0.955435	0.956367	0.957284	0.958185	0.959071	0.959941	0.960796	0.961636	0.962462	0.963273
1.8	0.964070	0.964852	0.965621	0.966375	0.967116	0.967843	0.968557	0.969258	0.969946	0.970621
1.9	0.971283	0.971933	0.972571	0.973197	0.973810	0.974412	0.975002	0.975581	0.976148	0.976705
2.0	0.977250	0.977784	0.978308	0.978822	0.979325	0.979818	0.980301	0.980774	0.981237	0.981691
2.1	0.982136	0.982571	0.982997	0.983414	0.983823	0.984222	0.984614	0.984997	0.985371	0.985738
2.2	0.986097	0.986447	0.986791	0.987126	0.987455	0.987776	0.988089	0.988396	0.988696	0.988989
2.3	0.989276	0.989556	0.989830	0.990097	0.990358	0.990613	0.990863	0.991106	0.991344	0.991576
2.4	0.991802	0.992024	0.992240	0.992451	0.992656	0.992857	0.993053	0.993244	0.993431	0.993613
2.5	0.993790	0.993963	0.994132	0.994297	0.994457	0.994614	0.994766	0.994915	0.995060	0.995201
2.6	0.995339	0.995473	0.995604	0.995731	0.995855	0.995975	0.996093	0.996207	0.996319	0.996427
2.7	0.996533	0.996636	0.996736	0.996833	0.996928	0.997020	0.997110	0.997197	0.997282	0.997365
2.8	0.997445	0.997523	0.997599	0.997673	0.997744	0.997814	0.997882	0.997948	0.998012	0.998074
2.9	0.998134	0.998193	0.998250	0.998305	0.998359	0.998411	0.998462	0.998511	0.998559	0.998605
3.0	0.998650	0.998694	0.998736	0.998777	0.998817	0.998856	0.998893	0.998930	0.998965	0.998999
3.1	0.999032	0.999065	0.999096	0.999126	0.999155	0.999184	0.999211	0.999238	0.999264	0.999289
3.2	0.999313	0.999336	0.999359	0.999381	0.999402	0.999423	0.999443	0.999462	0.999481	0.999499
3.3	0.999517	0.999533	0.999550	0.999566	0.999581	0.999596	0.999610	0.999624	0.999638	0.999650
3.4	0.999663	0.999675	0.999687	0.999698	0.999709	0.999720	0.999730	0.999740	0.999749	0.999758
3.5	0.999767	0.999776	0.999784	0.999792	0.999800	0.999807	0.999815	0.999821	0.999828	0.999835
3.6	0.999841	0.999847	0.999853	0.999858	0.999864	0.999869	0.999874	0.999879	0.999883	0.999888
3.7	0.999892	0.999896	0.999900	0.999904	0.999908	0.999912	0.999915	0.999918	0.999922	0.999925
3.8	0.999928	0.999931	0.999933	0.999936	0.999938	0.999941	0.999943	0.999946	0.999948	0.999950
3.9	0.999952	0.999954	0.999956	0.999958	0.999959	0.999961	0.999963	0.999964	0.999966	0.999967

Table III $\;\;$ Percentage Points $\chi^2_{\alpha,\nu}$ of the Chi-Squared Distribution

Ci.		<u> </u>									
ν α	.995	.990	.975	.950	.900	.500	.100	.050	.025	.010	.005
1	.00+	+00.	+00.	+00.	.02	.45	2.71	3.84	5.02	6.63	7.88
2	.01	.02	.05	.10	.21	1.39	4.61	5.99	7.38	9.21	10.60
3	.07	.11	.22	.35	.58	2.37	6.25	7.81	9.35	11.34	12.84
4	.21	.30	.48	.71	1.06	3.36	7.78	9.49	11.14	13.28	14.86
5	.41	.55	.83	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.75
6	.68	.87	1.24	1.64	2.20	5.35	10.65	12.59	14.45	16.81	18.55
7	.99	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	10.34	17.28	19.68	21.92	24.72	26.76
12	3.07	3.57	4.40	5.23	6.30	11.34	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	13.34	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.27	7.26	8.55	14.34	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	15.34	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	16.34	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.87	17.34	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	18.34	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	19.34	28.41	31.41	34.17	37.57	40.00
21	8.03	8.90	10.28	11.59	13.24	20.34	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	21.34	30.81	33.92	36.78	40.29	42.80
23	9.26	10.20	11.69	13.09	14.85	22.34	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	23.34	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	24.34	34.28	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	25.34	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	26.34	36.74	40.11	43.19	46.96	49.65
28	12.46	13.57	15.31	16.93	18.94	27.34	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	28.34	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	29.34	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	39.34	51.81	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76	37.69	49.33	63.17	67.50	71.42	76.15	79.49
60	35.53	37.48	40.48	43.19	46.46	59.33	74.40	79.08	83.30	88.38	91.95
70	43.28	45.44	48.76	51.74	55.33	69.33	85.53	90.53	95.02	100.42	104.22
80	51.17	53.54	57.15	60.39	64.28	79.33	96.58	101.88	106.63	112.33	116.32
90	59.20	61.75	65.65	69.13	73.29	89.33	107.57	113.14	118.14	124.12	128.30
100	67.33	70.06	74.22	77.93	82.36	99.33	118.50	124.34	129.56	135.81	140.17

 $[\]nu$ = degrees of freedom.

Table IV Percentage Points $t_{\alpha,\nu}$ of the t-Distribution

Tubic 1	7 61661	itage 1 onto	στα,ν στ της	· Distriction						
να	.40	.25	.10	.05	.025	.01	.005	.0025	.001	.0005
1	.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	.289	.816	1.886	2.920	4.303	6.965	9.925	14.089	23.326	31.598
3	.277	.765	1.638	2.353	3.182	4.541	5.841	7.453	10.213	12.924
4	.271	.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	.267	.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	.265	.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	.263	.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	.262	.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	.261	.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	.260	.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	.260	.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
12	.259	.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	.259	.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	.258	.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	.258	.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
16	.258	.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
17	.257	.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965
18	.257	.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
19	.257	.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	.257	.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
21	.257	.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	.256	.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	.256	.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.767
24	.256	.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.745
25	.256	.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.725
26	.256	.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.707
27	.256	.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.690
28	.256	.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674
29	.256	.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.659
30	.256	.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
40	.255	.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.551
60	.254	.679	1.296	1.671	2.000	2.390	2.660	2.915	3.232	3.460
120	.254	.677	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.373
∞	.253	.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

 $[\]nu$ = degrees of freedom.

Degrees of freedom for the denominator (v_2) 1.47 1.40 1.40 1.42 1.44 1.43 1.41 1.46 1.69 1.62 1.57 1.42 1.49 1.45 1.51 1.81 1.60 1.53 1.53 1.52 1.51 1.51 1.51 1.51 1.62 2.05 1.88 1.78 1.72 1.67 1.63 1.60 1.58 1.56 1.55 1.53 1.53 1.65 1.61 1.58 1.55 1.53 1.51 1.51 1.89 1.78 1.71 1.46 1.47 1.50 1.49 1.147 1.146 1.145 1.143 1.143 1.141 1.141 1.141 1.141 1.141 1.141 1.141 1.141 1.141 1.141 1.141 1.141 1.141 1.141 1.145 1. Degrees of freedom for the numerator (ν_1 1.56 1.53 1.51 1.49 1.45 1.43 1.44 1.46 1.48 1.50 1.55 1.52 1.63 1.69 1.89 1.77 1.4.1 1.59 1.45 1.44 1.49 1.4 1.44 1.43 1.41 15 2.08 1.188 1.175 1.167 1.160 1.152 1.144 1.142 1.141 1.139 1.134 1.137 1.137 1.137 1.138 1.137 1.138 1.131 1 9.67 3.44 2.247 2.208 1.155 1.166 1.160 1.151 1.141 1. 1.65 1.59 1.54 1.50

Table V Percentage Points $f_{\alpha,\nu_{\nu},\nu_{z}}$ of the F-Distribution

 Table V
 Percentage Points of the F-Distribution (continued)

]	Deg	ree	s of	f fro	eed	om	for	the	de	noi	nin	ato	r (v	₂)										v_2	/
8	20	60	40	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	2	4	3	2	1		_r
2.71	2.75	2.79	2.84	2.88	2.89	2.89	2.90	2.91	2.92	2.93	2.94	2.95	2.96	2.97	2.99	3.01	3.03	3.05	3.07	3.10	3.14	3.18	3.23	3.29	3.36	3.46	3.59	3.78	4.06	4.54	5.54	8.53	39.86	1	
2.30	2.35	2.39	2.44	2.49	2.50	2.50	2.51	2.52	2.53	2.54	2.55	2.56	2.57	2.59	2.61	2.62	2.64	2.67	2.70	2.73	2.76	2.81	2.86	2.92	3.01	3.11	3.26	3.46	3.78	4.32	5.46	9.00	49.50	2	
2.08	2.13	2.18	2.23	2.28	2.28	2.29	2.30	2.31	2.32	2.33	2.34	2.35	2.36	2.38	2.40	2.42	2.44	2.46	2.49	2.52	2.56	2.61	2.66	2.73	2.81	2.92	3.07	3.29	3.62	4.19	5.39	9.16	53.59	ω	
1.94	1.99	2.04	2.09	2.14	2.15	2.16	2.17	2.17	2.18	2.19	2.21	2.22	2.23	2.25	2.27	2.29	2.31	2.33	2.36	2.39	2.43	2.48	2.54	2.61	2.69	2.81	2.96	3.18	3.52	4.11	5.34	9.24	55.83	4	
1.85	1.90	1.95	2.00	2.03	2.06	2.06	2.07	2.08	2.09	2.10	2.11	2.13	2.14	2.16	2.18	2.20	2.22	2.24	2.27	2.31	2.35	2.39	2.45	2.52	2.61	2.73	2.88	3.11	3.45	4.05	5.31	9.29	57.24	5	
1.77	1.82	1.87	1.93	1.98	1.99	2.00	2.00	2.01	2.02	2.04	2.05	2.06	2.08	2.09	2.11	2.13	2.15	2.18	2.21	2.24	2.28	2.33	2.39	2.46	2.55	2.67	2.83	3.05	3.40	4.01	5.28	9.33	58.20	6	
1.72	1.77	1.82	1.87	1.93	1.93	1.94	1.95	1.96	1.97	1.98	1.99	2.01	2.02	2.04	2.06	2.08	2.10	2.13	2.16	2.19	2.23	2.28	2.34	2.41	2.51	2.62	2.78	3.01	3.37	3.98	5.27	9.35	58.91	7	
1.67	1.72	1.77	1.83	1.88	1.89	1.90	1.91	1.92	1.93	1.94	1.95	1.97	1.98	2.00	2.02	2.04	2.06	2.09	2.12	2.15	2.20	2.24	2.30	2.38	2.47	2.59	2.75	2.98	3.34	3.95	5.25	9.37	59.44	∞	Degrees
1.63	1.68	1.74	1.79	1.85	1.86	1.87	1.87	1.88	1.89	1.91	1.92	1.93	1.95	1.96	1.98	2.00	2.03	2.06	2.09	2.12	2.16	2.21	2.27	2.35	2.44	2.56	2.72	2.96	3.32	3.94	5.24	9.38	59.86	9	of freedo
1.60	1.65	1.71	1.76	1.82	1.83	1.84	1.85	1.86	1.87	1.88	1.89	1.90	1.92	1.94	1.96	1.98	2.00	2.03	2.06	2.10	2.14	2.19	2.25	2.32	2.42	2.54	2.70	2.94	3.30	3.92	5.23	9.39	60.19	10	m for th
1.55	1.60	1.66	1.71	1.77	1.78	1.79	1.80	1.81	1.82	1.83	1.84	1.86	1.87	1.89	1.91	1.93	1.96	1.99	2.02	2.05	2.10	2.15	2.21	2.28	2.38	2.50	2.67	2.90	3.27	3.90	5.22	9.41	60.71	12	Degrees of freedom for the numerator (v_1)
1.49	1.55	1.60	1.66	1.72	1.73	1.74	1.75	1.76	1.77	1.78	1.80	1.81	1.83	1.84	1.86	1.89	1.91	1.94	1.97	2.01	2.05	2.10	2.17	2.24	2.34	2.46	2.63	2.87	3.24	3.87	5.20	9.42	61.22	15	tor (ν_1)
1.42	1.48	1.54	1.61	1.67	1.68	1.69	1.70	1.71	1.72	1.73	1.74	1.76	1.78	1.79	1.81	1.84	1.86	1.89	1.92	1.96	2.01	2.06	2.12	2.20	2.30	2.42	2.59	2.84	3.21	3.84	5.18	9.44	61.74	20	
1.38	1.45	1.51	1.57	1.64	1.65	1.66	1.67	1.68	1.69	1.70	1.72	1.73	1.75	1.77	1.79	1.81	1.84	1.87	1.90	1.94	1.98	2.04	2.10	2.18	2.28	2.40	2.58	2.82	3.19	3.83	5.18	9.45	62.00	24	
1.34	1.41	1.48	1.54	1.61	1.62	1.63	1.64	1.65	1.66	1.67	1.69	1.70	1.72	1.74	1.76	1.78	1.81	1.84	1.87	1.91	1.96	2.01	2.08	2.16	2.25	2.38	2.56	2.80	3.17	3.82	5.17	9.46	62.26	30	
1.30	1.37	1.44	1.51	1.57	1.58	1.59	1.60	1.61	1.63	1.64	1.66	1.67	1.69	1.71	1.73	1.75	1.78	1.81	1.85	1.89	1.93	1.99	2.05	2.13	2.23	2.36	2.54	2.78	3.16	3.80	5.16	9.47	62.53	40	
1.24	1.32	1.40	1.47	1.54	1.55	1.56	1.57	1.58	1.59	1.61	1.62	1.64	1.66	1.68	1.70	1.72	1.75	1.78	1.82	1.86	1.90	1.96	2.03	2.11	2.21	2.34	2.51	2.76	3.14	3.79	5.15	9.47	62.79	60	
1.17	1.26	1.35	1.42	1.50	1.51	1.52	1.53	1.54	1.56	1.57	1.59	1.60	1.62	1.64	1.67	1.69	1.72	1.75	1.79	1.83	1.88	1.93	2.00	2.08	2.18	2.32	2.49	2.74	3.12	3.78	5.14	9.48	63.06	120	
1.00	1.19	1.29	1.38	1.46	1.47	1.48	1.49	1.50	1.52	1.53	1.55	1.57	1.59	1.61	1.63	1.66	1.69	1.72	1.76	1.80	1.85	1.90	1.97	2.06	2.16	2.29	2.47	2.72	3.10	3.76	5.13	9.49	63.33	8	

Table V Percentage Points of the F-Distribution (continued)

											De	gree	es o	f fr	eed	lom	for	r th	e do	eno	mir	ato	or (v ₂)										v_2		1
8	120	60	40	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	S	4	ယ	2	1	/	_ <u>_</u>	
3.84	3.92	4.00	4.08	4.17	4.18	4.20	4.21	4.23	4.24	4.26	4.28	4.30	4.32	4.35	4.38	4.41	4.45	4.49	4.54	4.60	4.67	4.75	4.84	4.96	5.12	5.32	5.59	5.99	6.61	7.71	10.13	18.51	161.4	1		
3.00	3.07	3.15	3.23	3.32	3.33	3.34	3.35	3.37	3.39	3.40	3.42	3.44	3.47	3.49	3.52	3.55	3.59	3.63	3.68	3.74	3.81	3.89	3.98	4.10	4.26	4.46	4.74	5.14	5.79	6.94	9.55	19.00	199.5	2		
2.60	2.68	2.76	2.84	2.92	2.93	2.95	2.96	2.98	2.99	3.01	3.03	3.05	3.07	3.10	3.13	3.16	3.20	3.24	3.29	3.34	3.41	3.49	3.59	3.71	3.86	4.07	4.35	4.76	5.41	6.59	9.28	19.16	215.7	သ		
2.37	2.45	2.53	2.61	2.69	2.70	2.71	2.73	2.74	2.76	2.78	2.80	2.82	2.84	2.87	2.90	2.93	2.96	3.01	3.06	3.11	3.18	3.26	3.36	3.48	3.63	3.84	4.12	4.53	5.19	6.39	9.12	19.25	224.6	4		
2.21	2.29	2.37	2.45	2.53	2.55	2.56	2.57	2.59	2.60	2.62	2.64	2.66	2.68	2.71	2.74	2.77	2.81	2.85	2.90	2.96	3.03	3.11	3.20	3.33	3.48	3.69	3.97	4.39	5.05	6.26	9.01	19.30	230.2	5		
2.10	2.17	2.25	2.34	2.42	2.43	2.45	2.46	2.47	2.49	2.51	2.53	2.55	2.57	2.60	2.63	2.66	2.70	2.74	2.79	2.85	2.92	3.00	3.09	3.22	3.37	3.58	3.87	4.28	4.95	6.16	8.94	19.33	234.0	6		
2.01	2.09	2.17	2.25	2.33	2.35	2.36	2.37	2.39	2.40	2.42	2.44	2.46	2.49	2.51	2.54	2.58	2.61	2.66	2.71	2.76	2.83	2.91	3.01	3.14	3.29	3.50	3.79	4.21	4.88	6.09	8.89	19.35	236.8	7		
1.94	2.02	2.10	2.18	2.27	2.28	2.29	2.31	2.32	2.34	2.36	2.37	2.40	2.42	2.45	2.48	2.51	2.55	2.59	2.64	2.70	2.77	2.85	2.95	3.07	3.23	3.44	3.73	4.15	4.82	6.04	8.85	19.37	238.9	∞	Degrees	
1.88	1.96	2.04	2.12	2.21	2.22	2.24	2.25	2.27	2.28	2.30	2.32	2.34	2.37	2.39	2.42	2.46	2.49	2.54	2.59	2.65	2.71	2.80	2.90	3.02	3.18	3.39	3.68	4.10	4.77	6.00	8.81	19.38	240.5	9	of freedom for the numerator (v_1	
1.83	1.91	1.99	2.08	2.16	2.18	2.19	2.20	2.22	2.24	2.25	2.27	2.30	2.32	2.35	2.38	2.41	2.45	2.49	2.54	2.60	2.67	2.75	2.85	2.98	3.14	3.35	3.64	4.06	4.74	5.96	8.79	19.40	241.9	10	m for the	
1.75	1.83	1.92	2.00	2.09	2.10	2.12	2.13	2.15	2.16	2.18	2.20	2.23	2.25	2.28	2.31	2.34	2.38	2.42	2.48	2.53	2.60	2.69	2.79	2.91	3.07	3.28	3.57	4.00	4.68	5.91	8.74	19.41	243.9	12	numera	
1.67	1.75	1.84	1.92	2.01	2.03	2.04	2.06	2.07	2.09	2.11	2.13	2.15	2.18	2.20	2.23	2.27	2.31	2.35	2.40	2.46	2.53	2.62	2.72	2.85	3.01	3.22	3.51	3.94	4.62	5.86	8.70	19.43	245.9	15	tor (v ₁)	
1.57	1.66	1.75	1.84	1.93	1.94	1.96	1.97	1.99	2.01	2.03	2.05	2.07	2.10	2.12	2.16	2.19	2.23	2.28	2.33	2.39	2.46	2.54	2.65	2.77	2.94	3.15	3.44	3.87	4.56	5.80	8.66	19.45	248.0	20		
1.52	1.61	1.70	1.79	1.89	1.90	1.91	1.93	1.95	1.96	1.98	2.01	2.03	2.05	2.08	2.11	2.15	2.19	2.24	2.29	2.35	2.42	2.51	2.61	2.74	2.90	3.12	3.41	3.84	4.53	5.77	8.64	19.45	249.1	24		
1.46	1.55	1.65	1.74	1.84	1.85	1.87	1.88	1.90	1.92	1.94	1.96	1.98	2.01	2.04	2.07	2.11	2.15	2.19	2.25	2.31	2.38	2.47	2.57	2.70	2.86	3.08	3.38	3.81	4.50	5.75	8.62	19.46	250.1	30		
1.39	1.55	1.59	1.69	1.79	1.81	1.82	1.84	1.85	1.87	1.89	1.91	1.94	1.96	1.99	2.03	2.06	2.10	2.15	2.20	2.27	2.34	2.43	2.53	2.66	2.83	3.04	3.34	3.77	4.46	5.72	8.59	19.47	251.1	40		
1.32	1.43	1.53	1.64	1.74	1.75	1.77	1.79	1.80	1.82	1.84	1.86	1.89	1.92	1.95	1.98	2.02	2.06	2.11	2.16	2.22	2.30	2.38	2.49	2.62	2.79	3.01	3.30	3.74	4.43	5.69	8.57	19.48	252.2	60		
1.22	1.35	1.47	1.58	1.68	1.70	1.71	1.73	1.75	1.77	1.79	1.81	1.84	1.87	1.90	1.93	1.97	2.01	2.06	2.11	2.18	2.25	2.34	2.45	2.58	2.75	2.97	3.27	3.70	4.40	5.66	8.55	19.49	253.3	120		
1.00	1.25	1.39	1.51	1.62	1.64	1.65	1.67	1.69	1.71	1.73	1.76	1.78	1.81	1.84	1.88	1.92	1.96	2.01	2.07	2.13	2.21	2.30	2.40	2.54	2.71	2.93	3.23	3.67	4.36	5.63	8.53	19.50	254.3	8		

Table V Percentage Points of the F-Distribution (continued)

Degrees of freedom for the numerator (ν_i)	J_{0025,v_1,v_2}

												De	gre	es o	f fr	eed	lom	for	r th	e d	eno	miı	ato	or (v ₂)										ν_2	
	8	120	60	40	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	~	7	6	5	4	ယ	2	_		_r_
	5 02	5.15	5.29	5.42	5.57	5.59	5.61	5.63	5.66	5.69	5.72	5.75	5.79	5.83	5.87	5.92	5.98	6.04	6.12	6.20	6.30	6.41	6.55	6.72	6.94	7.21	7.57	8.07	8.81	10.01	12.22	17.44	38.51	647.8	1	
	3 60	3.80	3.93	4.05	4.18	4.20	4.22	4.24	4.27	4.29	4.32	4.35	4.38	4.42	4.46	4.51	4.56	4.62	4.69	4.77	4.86	4.97	5.10	5.26	5.46	5.71	6.06	6.54	7.26	8.43	10.65	16.04	39.00	799.5	2	
	3 17	3.23	3.34	3.46	3.59	3.61	3.63	3.65	3.67	3.69	3.72	3.75	3.78	3.82	3.86	3.90	3.95	4.01	4.08	4.15	4.24	4.35	4.47	4.63	4.83	5.08	5.42	5.89	6.60	7.76	9.98	15.44	39.17	864.2	3	
!	2 79	2.89	3.01	3.13	3.25	3.27	3.29	3.31	3.33	3.35	3.38	3.41	3.44	3.48	3.51	3.56	3.61	3.66	3.73	3.80	3.89	4.00	4.12	4.28	4.47	4.72	5.05	5.52	6.23	7.39	9.60	15.10	39.25	899.6	4	
1	7 57	2.67	2.79	2.90	3.03	3.04	3.06	3.08	3.10	3.13	3.15	3.18	3.22	3.25	3.29	3.33	3.38	3.44	3.50	3.58	3.66	3.77	3.89	4.04	4.24	4.48	4.82	5.29	5.99	7.15	9.36	14.88	39.30	921.8	5	
!	2 41	2.52	2.63	2.74	2.87	2.88	2.90	2.92	2.94	2.97	2.99	3.02	3.05	3.09	3.13	3.17	3.22	3.28	3.34	3.41	3.50	3.60	3.73	3.88	4.07	4.32	4.65	5.12	5.82	6.98	9.20	14.73	39.33	937.1	6	
ļ	2 29	2.39	2.51	2.62	2.75	2.76	2.78	2.80	2.82	2.85	2.87	2.90	2.93	2.97	3.01	3.05	3.10	3.16	3.22	3.29	3.38	3.48	3.61	3.76	3.95	4.20	4.53	4.99	5.70	6.85	9.07	14.62	39.36	948.2	7	
!	2 19	2.30	2.41	2.53	2.65	2.67	2.69	2.71	2.73	2.75	2.78	2.81	2.84	2.87	2.91	2.96	3.01	3.06	3.12	3.20	3.29	3.39	3.51	3.66	3.85	4.10	4.43	4.90	5.60	6.76	8.98	14.54	39.37	956.7	∞	Degrees
!	2 11	2.22	2.33	2.45	2.57	2.59	2.61	2.63	2.65	2.68	2.70	2.73	2.76	2.80	2.84	2.88	2.93	2.98	3.05	3.12	3.21	3.31	3.44	3.59	3.78	4.03	4.36	4.82	5.52	6.68	8.90	14.47	39.39	963.3	9	Degrees of freedom for the numerator (v_1)
1	2 05	2.16	2.27	2.39	2.51	2.53	2.55	2.57	2.59	2.61	2.64	2.67	2.70	2.73	2.77	2.82	2.87	2.92	2.99	3.06	3.15	3.25	3.37	3.53	3.72	3.96	4.30	4.76	5.46	6.62	8.84	14.42	39.40	968.6	10	om for t
	1 94	2.05	2.17	2.29	2.41	2.43	2.45	2.47	2.49	2.51	2.54	2.57	2.60	2.64	2.68	2.72	2.77	2.82	2.89	2.96	3.05	3.15	3.28	3.43	3.62	3.87	4.20	4.67	5.37	6.52	8.75	14.34	39.41	976.7	12	he nume
0	1 83	1.94	2.06	2.18	2.31	2.32	2.34	2.36	2.39	2.41	2.44	2.47	2.50	2.53	2.57	2.62	2.67	2.72	2.79	2.86	2.95	3.05	3.18	3.33	3.52	3.77	4.10	4.57	5.27	6.43	8.66	14.25	39.43	984.9	15	rator (v ₁
,	1 71	1.82	1.94	2.07	2.20	2.21	2.23	2.25	2.28	2.30	2.33	2.36	2.39	2.42	2.46	2.51	2.56	2.62	2.68	2.76	2.84	2.95	3.07	3.23	3.42	3.67	4.00	4.47	5.17	6.33	8.56	14.17	39.45	993.1	20	
	1 64	1.76	1.88	2.01	2.14	2.15	2.17	2.19	2.22	2.24	2.27	2.30	2.33	2.37	2.41	2.45	2.50	2.56	2.63	2.70	2.79	2.89	3.02	3.17	3.37	3.61	3.95	4.42	5.12	6.28	8.51	14.12	39.46	997.2 1	24	
	1 57	1.69	1.82	1.94	2.07	2.09	2.11	2.13	2.16	2.18	2.21	2.24	2.27	2.31	2.35	2.39	2.44	2.50	2.57	2.64	2.73	2.84	2.96	3.12	3.31	3.56	3.89	4.36	5.07	6.23	8.46	14.08	39.46	1001	30	
	1 48	1.61	1.74	1.88	2.01	2.03	2.05	2.07	2.09	2.12	2.15	2.18	2.21	2.25	2.29	2.33	2.38	2.44	2.51	2.59	2.67	2.78	2.91	3.06	3.26	3.51	3.84	4.31	5.01	6.18	8.41	14.04	39.47	1006	40	
,	1 30	1.53	1.67	1.80	1.94	1.96	1.98	2.00	2.03	2.05	2.08	2.11	2.14	2.18	2.22	2.27	2.32	2.38	2.45	2.52	2.61	2.72	2.85	3.00	3.20	3.45	3.78	4.25	4.96	6.12	8.36	13.99	39.48	1010	60	
į	1 27	1.43	1.58	1.72	1.87	1.89	1.91	1.93	1.95	1.98	2.01	2.04	2.08	2.11	2.16	2.20	2.26	2.32	2.38	2.46	2.55	2.66	2.79	2.94	3.14	3.39	3.73	4.20	4.90	6.07	8.31	13.95	39.49	1014	120	
	1 00	1.31	1.48	1.64	1.79																				3.08				4.85		8.26	13.90	39.50	1018	8	

 Table V
 Percentage Points of the F-Distribution (continued)

	7.82 7.77 7.72 7.68 7.64 7.60 7.56 7.31 7.08											22 7.95 5.72		20 8.10 5.85	19 8.18 5.93			16 8.53 6.23									7 12.25 9.55	6 13.75 10.92	_	4 21.20 18.00		.50	1 4052 4999.5	1 2		
8 4.31 8 4.13 9 3.95								3 4.64								1 5.09													_	_	2 29.46	_	5403	သ		
3.48		3.65	3.83	4.02	4.04	4.07	4.11	4.14	4.18	4.22	4.26	4.31	4.37	4.43	4.50	4.58	4.67	4.77	4.89	5.04	5.21	5.41	5.67	5.99	6.42	7.01	7.85	9.15	11.39	15.98	28.71	99.25	5625	4		
3.17		3.34	3.51	3.70	3.73	3.75	3.78	3.82	3.85	3.90	3.94	3.99	4.04	4.10	4.17	4.25	4.34	4.44	4.36	4.69	4.86	5.06	5.32	5.64	6.06	6.63	7.46	8.75	10.97	15.52	28.24	99.30	5764	5		
2.90	200	3.12	3.29	3.47	3.50	3.53	3.56	3.59	3.63	3.67	3.71	3.76	3.81	3.87	3.94	4.01	4.10	4.20	4.32	4.46	4.62	4.82	5.07	5.39	5.80	6.37	7.19	8.47	10.67	15.21	27.91	.33	5859 5	6		
1:	2 79	2.95	3.12	3.30	3.33	3.36	3.39	3.42	3.46	3.50	3.54	3.59	3.64	3.70	3.77	3.84	3.93	4.03	4.14	4.28	4.44	4.64	4.89	5.20	5.61	6.18	6.99	8.26	10.46	14.98	27.67	.36	5928 5	7		
	2.66	2.82	2.99	3.17	3.20	3.23	3.26	3.29	3.32	3.36	3.41	3.45	3.51	3.56	3.63	3.71	3.79	3.89	4.00	4.14	4.30	4.50	4.74	5.06	5.47	6.03	6.84	8.10	10.29	14.80	27.49	.37	5982 6	∞	Degrees o	
	2.56	2.72	2.89	3.07	3.09	3.12	3.15	3.18	3.22	3.26	3.30	3.35	3.40	3.46	3.52	3.60	3.68	3.78	3.89	4.03	4.19	4.39	4.63	4.94	5.35	5.91	6.72	7.98	10.16	14.66	27.35	.39	6022 6	9	Degrees of freedom for the numerator (v_1)	0 0:01,11,12
	2.47	2.63	2.80	2.98	3.00	3.03	3.06	3.09	3.13	3.17	3.21	3.26	3.31	3.37	3.43	3.51	3.59	3.69	3.80	3.94	4.10	4.30	4.54	4.85	5.26	5.81	6.62	7.87	10.05	14.55	27.23	40	6056 6	10	n for the	s ¹ 2
	2.34	2.50	2.66	2.84	2.87	2.90	2.93	2.96	2.99	3.03	3.07	3.12	3.17	3.23	3.30	3.37	3.46	3.55	3.67	3.80	3.96	4.16	4.40	4.71	5.11	5.67	6.47	7.72	9.89	14.37	27.05	.42	106 6	12	numerat	
	2.19	2.35	2.52	2.70	2.73	2.75	2.78	2.81	2.85	2.89	2.93	2.98	3.03	3.09	3.15	3.23	3.31	3.41	3.52	3.66	3.82	4.01	4.25	4.56	4.96	5.52	6.31	7.56	9.72	14.20	26.87	.43	6157 6	15	or (v ₁)	
	2.03	2.20	2.37	2.55	2.57	2.60	2.63	2.66	2.70	2.74	2.78	2.83	2.88	2.94	3.00	3.08	3.16	3.26	3.37	3.51	3.66	3.86	4.10	4.41	4.81	5.36	6.16	7.40	9.55	14.02	26.69	.45	6209 6	20		
	1.95	2.12	2.29	2.47	2.49	2.52	2.55	2.58	2.62	2.66	2.70	2.75	2.80	2.86	2.92	3.00	3.08	3.18	3.29	3.43	3.59	3.78	4.02	4.33	4.73	5.28	6.07	7.31	9.47	13.93	26.00	.46	6235 63	24		
	1.86	2.03	2.20	2.39	2.41	2.44	2.47	2.50	2.54	2.58	2.62	2.67	2.72	2.78	2.84	2.92	3.00	3.10	3.21	3.35	3.51	3.70	3.94	4.25	4.65	5.20	5.99	7.23	9.38	13.84	26.50	.47	6261 6	30		
	1.76	1.94	2.11	2.30	2.33	2.35	2.38	2.42	2.45	2.49	2.54	2.58	2.64	2.69	2.76	2.84	2.92	3.02	3.13	3.27	3.43	3.62	3.86	4.17	4.57	5.12	5.91	7.14	9.29	13.75	26.41	.47	6287 6	40		
	1.66	1.84	2.02	2.21	2.23	2.26	2.29	2.33	2.36	2.40	2.45	2.50	2.55	2.61	2.67	2.75	2.83	2.93	3.05	3.18	3.34	3.54	3.78	4.08	4.48	5.03	5.82	7.06	9.20	13.65	26.32	.48	6313 6	60		
	1.53	1.73	1.92	2.11	2.14	2.17	2.20	2.23	2.27	2.31	2.35	2.40	2.46	2.52	2.58	2.66	2.75	2.84	2.96	3.09	3.25	3.45	3.69	4.00	4.40	4.95	5.74	6.97	9.11	13.56	26.22	.49	339 6	120		
	1.38	1.60	1.80	2.01	2.03	2.06	2.10	2.13	2.17	2.21	2.26	2.31	2.36	2.42	2.59	2.57	2.65	2.75	2.87	3.00	3.17	3.36	3.60	3.91	4.31	4.46	5.65	6.88	9.02	13.46	26.13	99.50	366	8		

Degrees of freedom for the denominator (v_2)

 $f_{0.01,
u_1,
u_2}$