PadhAl: Batch Normalization and Dropout

One Fourth Labs

Batch Normalization

Normalizing inputs

How do you normalize the data?

1. First, let's have another brief look at the Deep Learning timeline

- a. In this chapter, we will be looking at Batch Normalization and Dropout, which in some sense come under the topic of "Better Regularization"
- 2. Before we talk about Batch Normalization, let us first recap on how we normalize/standardize inputs. The terms normalization & standardization are used interchangeably

X _i (where): i: Training example number j: feature number			7		-				
Launch (within 6 months)	*"0	^x 21	x ₃₁ 1	x** 0	x _{s1} 0	× ₄₁ 1	×,10	^x 81 1	^x _{*1} 1
Weight (g)	151	180	160	205	162	182	138	185	170
SAR Value	0.64	0.87	0.67	0.88	0.7	0.91	0	1	0.47
dual sim	^x "1	^x 21		_	x _{s1} 0	-	×,40	^х ы 1	× •• 0
Internal memory (>= 64 GB, 4GB RAM)	1	1	1	1	^{'''} 1	^{'''} 1	1	1	1
NFC	0	1	1	0	1	0	1	1	1
Radio	 1	0	0	1	1	1	0	0	0
Battery(mAh)	3060	3500	3060	5000	3000	4000	1960	3700	3260
Price (INR)	15k	32k	25k	18k	14k	12k	35k	42k	44k
Like (y)	1	0	1	0	1	1	0	1	0

- a. We normalize the data using the following formula:
 - i. $x_{ij}^{(norm)} = \frac{x_{ij} \mu_j}{\sigma_j}$ for each feature of each training sample.
 - ii. Where mean: $\mu_j = \frac{1}{m} \sum_{i=1}^m x_{ij}$
- iii. And Variance/Standard deviation: $\sigma_j = \sqrt{\frac{1}{m}\sum_{i=1}^m (x_{ij} \mu_j)^2}$