Christian B. Mendl, Pedro Hack, Keefe Huang, Irene López Gutiérrez

Exercise 5.1 (Basis transformation and measurement)

(a) Compute the probabilities when measuring $|\psi\rangle=\frac{i}{\sqrt{2}}\,|0\rangle+\frac{1}{\sqrt{2}}\,|1\rangle$ with respect to the orthonormal basis $\{|u_1\rangle\,,|u_2\rangle\}$ given by $|u_1\rangle=\frac{3}{5}\,|0\rangle+i\frac{4}{5}\,|1\rangle$ and $|u_2\rangle=\frac{4}{5}\,|0\rangle-i\frac{3}{5}\,|1\rangle$.

Hint: You can obtain the coefficients of $|\psi\rangle$ with respect to these basis states by computing the inner products $\langle u_j|\psi\rangle$ for j=1,2.

(b) The role of the control and target qubit of a CNOT gate can be reversed by switching to a different basis! First show that

with H the Hadamard gate: $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. Use this identity to derive the following relations:

$$\begin{split} |+\rangle &|+\rangle \stackrel{\mathsf{CNOT}}{\mapsto} |+\rangle |+\rangle \\ |-\rangle &|+\rangle \stackrel{\mathsf{CNOT}}{\mapsto} |-\rangle |+\rangle \\ |+\rangle &|-\rangle \stackrel{\mathsf{CNOT}}{\mapsto} |-\rangle |-\rangle \\ |-\rangle &|-\rangle \stackrel{\mathsf{CNOT}}{\mapsto} |+\rangle |-\rangle \end{split}$$

with $|\pm\rangle$ defined as $|\pm\rangle=\frac{1}{\sqrt{2}}(|0\rangle\pm|1\rangle)$. In other words, with respect to the $|\pm\rangle$ basis, the second qubit assumes the role of the control and the first qubit the role of the target.

Hint: Use that $H \mid + \rangle = \mid 0 \rangle$ and $H \mid - \rangle = \mid 1 \rangle$, and conversely $H \mid 0 \rangle = \mid + \rangle$ and $H \mid 1 \rangle = \mid - \rangle$.

Solution

(a) We see that $\{|u_1\rangle, |u_2\rangle\}$ forms an orthonormal basis as $|u_1\rangle$ and $|u_2\rangle$ are normalized and $\langle u_1|u_2\rangle=0$. We then compute the inner products of $|\psi\rangle$ with $|u_1\rangle$ and $|u_2\rangle$:

$$\alpha_1 = \langle u_1 | \psi \rangle = -\frac{i}{5\sqrt{2}},$$

$$\alpha_2 = \langle u_2 | \psi \rangle = \frac{7i}{5\sqrt{2}}.$$

Thus in terms of the new basis, $|\psi\rangle = \alpha_1 |u_1\rangle + \alpha_2 |u_2\rangle$.

The measurement probabilities are then the squared absolute values of the coefficients α_i :

$$p(u_1) = |\alpha_1|^2 = \frac{1}{50},$$

$$p(u_2) = |\alpha_2|^2 = \frac{49}{50}.$$

(b) Conjugating the Pauli-X gate with the Hadamard gate results in the Pauli-Z gate and other way around, i.e., HXH=Z and HZH=X, see Exercise 3.1(d). Moreover, applying the Hadamard gate twice gives the identity, $H^2=I$. This justifies the first and last step of the following identities:

The second equal sign uses the fact that the controlled-Z operation is a diagonal matrix, with only a flipped sign on $|11\rangle$. Hence, this gate is invariant when interchanging the roles of the control and target qubits.

The relations then follow immediately by noting that the Hadamard gate switches between the $\{|0\rangle, |1\rangle\}$ and $\{|+\rangle, |-\rangle\}$ bases.