

Point MixSwap: Attentional Point Cloud Mixing via Swapping Matched Structural Division

Ardian Umam¹ Cheng-Kun Yang² Yung-Yu Chuang² Jen-Hui Chaung¹ Yen-Yu Lin^{1,3}
¹National Yang Ming Chiao Tung University ²National Taiwan University ³Academia Sinica

Contributions:

- Introduce an effective technique for synthesizing diverse and realistic point clouds by swapping matched structural division, without any part-segmentation labels
- Develop a novel encoder-decoder structure to decompose point cloud with cross-cloud correspondence
- ➤ Mix the point clouds to generate augmented data utilizing division queries, leading to significant improvement on point cloud classification task
- Augment the point clouds by swapping matched divisions cross different clouds
- > Evaluated on both synthetic and real-world datasets
- ModelNet10, ModelNet40, ScanObjectNN
- Experiment with all data (100%) and reduced data (20%)

Observations:

- Existing point cloud mixup methods does not consider the semantic structural information while performing mixup:
- We generalize the encoder-decoder model to explores inter-cloud division correspondence for division swapping
- Through the learned division queries, we can divide the point cloud into R divisions and synthesize the new point clouds

Designed encoder-decoder architecture:

 \succ The learnable division queries jointly decompose point cloud into R disjoint subsets, for further division swapping

The query and key-value pairs will be switched in the second layer and jointly produce point-specific features

Quantitative results:

> Different SoTA methods and training data usage are compared

Method			Rate M40	100% M10
DGCNN	87.5	93.2	92.6	94.8
DGCNN + PointMixup [3]	89.0	93.8	93.1	95.1
DGCNN + PointAugment [12]	88.6	92.8	93.4	95.2
$\overline{\mathrm{DGCNN} + \mathrm{RSMix}[11]}$	90.1	93.7	93.5	95.9
DGCNN + PointWOLF [9]	89.3	93.5	93.2	95.1
DGCNN + Ours	91.3	94.6	93.5	96.0

Divisions	Level	M40	M10	SON
2	Input	91.0	94.6	75.9
	Feature	91.1	94.7	76.2
3	Input	91.2	94.5	76.1
	Feature	91.3	94.6	76.3
4	Input	91.0	94.4	75.7
	Feature	91.2	94.6	76.1
5	Input	91.0	94.3	75.5
	Feature	91.2	94.6	76.0

Visualization:

