Εργασίες AIDA

Εαρινό εξάμηνο 2022

eXplainable Artificial Intelligence - XAI

How to XAI

Table 1: Examples of explanations divided for different data type and explanation

TABULAR	IMAGE	TEXT
Rule-Based (RB) A set of premises that the record must satisfy in order to meet the rule's consequence. $r = Education \leq College$ $\rightarrow \leq 50k$	Saliency Maps (SM) A map which highlight the contribution of each pixel at the prediction.	Sentence Highlighting (SH) A map which highlight the contribution of each word at the prediction. the movie is not that bad
Feature Importance (FI) A vector containing a value for each feature. Each value indicates the importance of the feature for the classification. capitaligan 0.00 education-num 14.00 relationship 1.00 hoursperweek 3.00	Concept Attribution (CA) Compute attribution to a target "concept" given by the user. For example, how sensitive is the output (a prediction of zebra) to a concept (the presence of stripes)? O.72 Zebra	Attention Based (AB) This type of explanation gives a matrix of scores which reveal how the word in the sentence are related to each other.
Prototypes (PR)		

The user is provided with a series of examples that characterize a class of the black box $p = Age \in [35, 60], \; Education$ p = "... not bad ..." \rightarrow \in [College, Master] \rightarrow " \geq 50k" "positive"

Counterfactuals (CF)

The user is provided with a series of examples similar to the input query but with different class prediction

Εκφώνηση

Σκοπός της εργασίας είναι η δημιουργία ενός εμπλουτισμένου dataset πάνω σε εικόνες, με σκοπό να βοηθήσει στην ερμηνεία προεκπαιδευμένων classifiers για την κατηγοριοποίηση των εικόνων με χρήση ΧΑΙ αλγορίθμων.

Φόρμα δήλωσης ομάδας/θέματος:

https://docs.google.com/forms/d/e/1FAlpQLSdz97QihFmY7avNb1kGzHB4PwPFppBg8Era9B5vPmYbPg2n3g/viewform

Dataset

Βήμα 1: Δημιουργία dataset: Επιλέγετε η κάθε ομάδα 2 κλάσεις του places (http://places2.csail.mit.edu/), οι οποίες μπορούν να αντιστοιχιστούν σε υποσύνολα του COCO dataset. Διαλέξτε τα υποσύνολα του COCO μέσω του interface https://cocodataset.org/#explore Οι κατηγορίες του places μπορούν να βρεθούν εδώ:

https://github.com/CSAILVision/places365/blob/master/categories_places365.txt

Βήμα 2: Δημιουργία γνώσης: Ενώστε το dataset με το WordNet

https://www.nltk.org/howto/wordnet.html ή με άλλη γνώση (ConceptNet πχ - δείτε More Info)

Βήμα 3: Αναπαρασταση WordNet και individuals σε .owl.

Enrichment

Βήμα 4: Εμπλουτισμός της γνώσης:

- Προσθήκη αξιωμάτων συμβατών με το domain
- Scene-graph generation για προσθήκη ρόλων. Εδώ μπορεί να γίνει χρήση προεκπαιδευμένων μοντέλων, κατά προτίμηση αυτών με τις καλύτερες μετρικές και που να έχουν διαθέσιμο κώδικα.

Βήμα 5: Ορίστε την κατηγορία με αξιώματα (πχ pizzeria = has.Pizza)

Βήμα 6: Τρέχετε τον έτοιμο <u>places classifier</u> στο dataset σας. Συγκρίνετε τα αποτελέσματα των αξιωμάτων με τον classifier.

Explanation

Βήμα 7: Εφαρμόστε μεθόδους ΧΑΙ πχ LIME, Rule Matrix, Scope Rule (pixel level - saliency maps, semantic level - feature importance) και άλλα που να ταιριάζουν στα αποτελέσματά σας. **Repeat Βήματα 4,5,6, 7**

Analysis

Βήμα 8: Αναλύστε τα συμπεράσματά σας μετά την επανάληψη των βημάτων

Βήμα 9: Προτείνετε δικές σας ιδέες σχετικά με το πώς μπορεί να αξιοποιηθεί το dataset που δημιουργήσατε για ΧΑΙ ή για άλλη εφαρμογή. Πώς συνεισφέρει η γνώση στις εξηγήσεις?

Παραδοτέο: jupyter notebook ή ακόμα καλύτερα Github pages

https://medium.com/analytics-vidhya/convert-your-jupyter-notebook-to-github-pages-with-github-action-fa2ce9b4182a.

COCO dataset

Πώς επιλέγουμε κατηγορίες στο COCO? Μέσω του COCO explorer https://cocodataset.org/#explore

COCO Explorer

COCO 2017 train/val browser (123,287 images, 886,284 instances). Crowd labels not shown.

36 results

More info

Γράφοι γνώσης που μπορούν να χρησιμοποιηθούν για εμπλουτισμό:

Widely used structured KGs:

- Wordnet (hierarchical)
- ConceptNet (commonsense)
- DBPedia (Hierarchical, Encyclopedic/Factual)
- Wikidata (Encyclopedic/Factual)
- WebChild (Commonsense)
- HasPartKB (Commonsense, part-whole)
- Visual Genome (Visual)