Homework 10

Quantum Mechanics

December 2, 2022

C Seitz

Problem 1. 4.7

Solution.

The wave function in three dimensions for a free particle (V=0), is

$$\psi(\boldsymbol{x},t) = u(\boldsymbol{x})e^{-iE_nt/\hbar}$$
$$\psi^*(\boldsymbol{x},-t) = u^*(\boldsymbol{x})e^{-iE_nt/\hbar}$$

where $u(\boldsymbol{x}) = e^{i\vec{p}\cdot\vec{k}}$. Note that the phase remains unchanged under complex conjugation and time reversal. Now if we reverse the direction of momentum i.e. $|p\rangle \to |p'\rangle$ for $\vec{p}\cdot\vec{p'} = -1$,

$$\psi'(\boldsymbol{x},t) = u'(\boldsymbol{x})e^{-iE_nt/\hbar}$$

Notice that $u'(\boldsymbol{x}) = e^{-i\vec{p}'\cdot\vec{k}} = u^*(\boldsymbol{x})$. Therefore $\psi'(\boldsymbol{x},t) = \psi^*(\boldsymbol{x},-t)$

$$\chi_{+}(\hat{n}) = \begin{pmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2}e^{i\gamma} \end{pmatrix}$$

It is also known that

$$\chi_{-}(\hat{n}) = \begin{pmatrix} -\sin\frac{\theta}{2}e^{-i\gamma} \\ \cos\frac{\theta}{2} \end{pmatrix}$$

So we just need to prove that the given transformation gives this result, which it does

$$-i\sigma_2\chi^*(\hat{n}) = -i\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2}e^{-i\gamma} \end{pmatrix} = \begin{pmatrix} -\sin\frac{\theta}{2}e^{-i\gamma} \\ \cos\frac{\theta}{2} \end{pmatrix}$$

Problem 2. 4.8

Solution.

Problem 3. 4.9

Solution.

Problem 4. 4.10

Solution.

Problem 5. 4.11

Solution.

Problem 6. 4.12

Solution.