Lecture 19-Geodesic Equations and Exponential Map

Prof. Weiqing Gu

Recall: what is covariant derivative?

Let w be a differentiable vector field in Let $y \in T_p(S)$. Consider a parametrized

$$\alpha: (-\epsilon, \epsilon) \to U$$
,

with $\alpha(0) = p$ and $\alpha'(0) = y$, and let w(t), $t \in (-\epsilon, \epsilon)$, be the restriction of the vector field w to the curve α . The vector field obtained by the normal projection of w'(0) onto the plane $T_p(S)$ is called the *covariant derivative* at p of the vector field w relative to the vector y. This covariant derivative is denoted by (Dw/dt)(0) or $(D_v w)(p)$.

The Covariant Derivative in Local Coordinates

The above definition makes use of the normal vector of S and of a particular curve α , tangent to y at p. To show that covariant differentiation is a concept of the intrinsic geometry and that it does not depend on the choice of the curve α , we shall obtain its expression in terms of a parametrization $\mathbf{x}(u,v)$ of S in p.

Working out details with the students on the board

Covariant derivative equation

$$\frac{Dw}{dt} = (a' + \Gamma_{11}^{1}au' + \Gamma_{12}^{1}av' + \Gamma_{12}^{1}bu' + \Gamma_{22}^{1}bv')\mathbf{x}_{u}
+ (b' + \Gamma_{11}^{2}au' + \Gamma_{12}^{2}av' + \Gamma_{12}^{2}bu' + \Gamma_{22}^{2}bv')\mathbf{x}_{v}.$$
(1)

Obtained by throwing away the normal components of dw/dt.

Recall: Geodesics

A nonconstant, parametrized curve $\gamma:I\to S$ is said to be *geodesic* at $t\in I$ if the field of its tangent vectors $\gamma'(t)$ is parallel along γ at t; that is,

$$\frac{D\gamma'(t)}{dt}=0;$$

 γ is a parametrized geodesic if it is geodesic for all $t \in I$.

Recall:

A vector field w along a parametrized curve $\alpha: I \to S$ is said to be parallel if Dw/dt = 0 for every $t \in I$.

Example: Geodesic on a Sphere

The great circles of a sphere S^2 are geodesics. Indeed, the great circles C are obtained by intersecting the sphere with a plane that passes through the center O of the sphere. The principal normal at a point $p \in C$ lies in the direction of the line that connects p to O because C is a circle of center O. Since S^2 is a sphere, the normal lies in the same direction, which verifies our assertion.

Recall we have proved:

- 1. $\|\gamma'(t)\|$ is constant.
- 2. A parametrized geodesic may admit self-intersections.

Geodesic in local coordinates

Let $\mathbf{x}(u(t), v(t))$, $t \in J$, be the expression of $\gamma : J \to S$ in the parametrization \mathbf{x} . Then, the tangent vector field $\gamma'(t)$, $t \in J$, is given by

$$w = u'(t)\mathbf{x}_u + v'(t)\mathbf{x}_v.$$

Note: Plug a(t) = u'(t), b(t) = v'(t) into the covariant derivative equation (1) on slide 4.

Therefore, the fact that w is parallel is equivalent to the the system of differential equations

$$u'' + \Gamma_{11}^{1}(u')^{2} + 2\Gamma_{12}^{1}u'v' + \Gamma_{22}^{1}(v')^{2} = 0,$$

$$v'' + \Gamma_{11}^{2}(u')^{2} + 2\Gamma_{12}^{2}u'v' + \Gamma_{22}^{2}(v')^{2} = 0,$$

obtained by equating to zero the coefficients of \mathbf{x}_u and \mathbf{x}_v .

Geodesic Equation

$$u'' + \Gamma_{11}^{1}(u')^{2} + 2\Gamma_{12}^{1}u'v' + \Gamma_{22}^{1}(v')^{2} = 0,$$

$$v'' + \Gamma_{11}^{2}(u')^{2} + 2\Gamma_{12}^{2}u'v' + \Gamma_{22}^{2}(v')^{2} = 0,$$

• Where the solutions (u(t), v(t)) will be geodesic in local coordinates. An the following curve will be the geodesic on the surface S:

 $\mathbf{x}(u(t), v(t)), t \in J$, be the expression of $\gamma: J \to S$

Homework

Let us study locally the geodesics of a surface of revolution with the parametrization

$$x = f(v)\cos u,$$
 $y = f(v)\sin u,$ $z = g(v).$

See page 255, baby Do Carmo, Example 5 for more details

Example 5. We shall use system (4) to study locally the geodesics of a surface of revolution (cf. Example 4, Sec. 2-3) with the parametrization

$$x = f(v) \cos u$$
, $y = f(v) \sin u$, $z = g(v)$.

By Example 1 of Sec. 4-1, the Christoffel symbols are given by

$$egin{align} \Gamma^1_{1\,1} = 0, & \Gamma^2_{1\,1} = -rac{f\!f'}{(f')^2 + (g')^2}, & \Gamma^1_{1\,2} = rac{f\!f'}{f^2}, \ \hline \Gamma^2_{1\,2} = 0, & \Gamma^2_{2\,2} = rac{f'f'' + g'g''}{(f')^2 + (g')^2}. \end{array}$$

With the values above, system (4) becomes

$$u'' + \frac{2ff'}{f^2}u'v' = 0,$$

$$v'' - \frac{ff'}{(f')^2 + (g')^2}(u')^2 + \frac{f'f'' + f'g''}{(f')^2 + (g')^2}(v')^2 = 0.$$
(4a)

We are going to obtain some conclusions from these equations.

First, as expected, the meridians u = const. and v = v(s), parametrized by arc length s, are geodesics. Indeed, the first equation of (4a) is trivially satisfied by u = const. The second equation becomes

Geodesic on manifold

Definition 7.1.2 Let (M, g) be a Riemannian manifold. A curve, $\gamma: I \to M$, (where $I \subseteq \mathbb{R}$ is any interval) is a geodesic iff $\gamma'(t)$ is parallel along γ , that is, iff

$$\frac{D\gamma'}{dt} = \nabla_{\gamma'}\gamma' = 0.$$

If M was embedded in \mathbb{R}^d , a geodesic would be a curve, γ , such that the acceleration vector, $\gamma'' = \frac{D\gamma'}{dt}$, is normal to $T_{\gamma(t)}M$.

By Proposition 6.4.6, $\|\gamma'(t)\| = \sqrt{g(\gamma'(t), \gamma'(t))}$ is constant, say $\|\gamma'(t)\| = c$.

Same definition for regular surface or a manifold!

Geodesic equation for manifold

In a local chart, (U, φ) , since a geodesic is characterized by the fact that its velocity vector field, $\gamma'(t)$, along γ is parallel, by Proposition 6.3.4, it is the solution of the following system of second-order ODE's in the unknowns, u_k :

$$\frac{d^2u_k}{dt^2} + \sum_{ij} \Gamma_{ij}^k \frac{du_i}{dt} \frac{du_j}{dt} = 0, \qquad k = 1, \dots, n,$$

with $u_i = pr_i \circ \varphi \circ \gamma \ (n = \dim(M)).$

Just extend dim = 2 to dim = n.

Exponential map

Also log map

Exponential Map on manifold

Definition 7.2.1 Let (M, g) be a Riemannian manifold. For every $p \in M$, let $\mathcal{D}(p)$ (or simply, \mathcal{D}) be the open subset of T_pM given by

$$\mathcal{D}(p) = \{ v \in T_p M \mid \gamma_v(1) \text{ is defined} \},$$

where γ_v is the unique maximal geodesic with initial conditions $\gamma_v(0) = p$ and $\gamma_v'(0) = v$. The *exponential map* is the map, $\exp_p: \mathcal{D}(p) \to M$, given by

$$\exp_p(v) = \gamma_v(1).$$

Geodesic Polar Coordinates

- 1. The normal coordinates which correspond to a system of rectangular coordinates in the tangent plane $T_p(S)$.
- 2. The geodesic polar coordinates which correspond to polar coordinates in the tangent plane $T_p(S)$ (Fig. 4-38).

Figure 4-38 Polar coordinates.