(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 24. Oktober 2002 (24.10.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/083555 A2

(51) Internationale Patentklassifikation⁷: 1101M 4/58

C01B 25/45,

(21) Internationales Aktenzeichen:

PCT/DE02/01323

(22) Internationales Anmeldedatum:

10. April 2002 (10.04.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

101 17 904.9

10. April 2001 (10.04.2001) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): ZENTRUM FÜR SONNENERGIE- UND WASSERSTOFF-FORSCHUNG BADEN-WÜRTTEMBERG, GEMEINNÜTZIGE STIFTUNG [DE/DE]; Helmholtzstrasse 8, 89081 Ulm (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): HEMMER, Reinhard, P. [DE/DE]; Fliederweg 2A, 89257 Illertissen (DE). ARNOLD, Giesela [DE/DE]; Söflingerstrasse 145, 89077 Ulm (DE). VOGLER, Christian [DE/DE]; Weilertalweg 2, 89198 Westerstetten-Vorderdenkental (DE). WOHLFAHRT-MEHRENS, Margret [DE/DE]; Robert-Koch-Strasse 17, 89257 Illertissen (DE).

- (74) Anwalt: MERKLE, Gebhard; Ter Meer, Steinmeister & Partner GbR, Mauerkircherstrasse 45, 81679 München (DB).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: BINARY, TERNARY AND QUATERNARY LITHIUM PHOSPHATES, METHOD FOR THE PRODUCTION THEREOF AND USE OF THE SAME

- (54) Bezeichnung: BINÄRE, TERNÄRE UND QUATERNÄRE LITHIUMPHOSPHATE, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG
- (57) Abstract: The invention relates to binary, ternary and quaternary lithium phosphates of general formula $\text{Li}(\text{Fe}_x \text{M}^1_y \text{M}^2_z) \text{PO}_4$ wherein M¹ represents at least one element of the group comprising Se, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr and La; M² represents at least one element of the group comprising Se, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr and La; x = between 0.5 and 1, y = between 0 and 0.5, and z = between 0 and 0.5, provided that x + y + z = 1, or x = 0, y = 1, and z = 0. Said lithium phosphates can be obtained according to a method whereby precursor compounds of elements Li, Fe, M¹ and/or M² are precipitated from aqueous solutions and the precipitation product is dried in an inert gas atmosphere or a reducing atmosphere at a temperature which is between room temperature and approximately 200 °C, and tempered at a temperature of between 300 °C and 1000 °C. The inventive lithium phosphates have a very high capacity when used as cathode material in lithium accumulators.
- (57) Zusammenfassung: Beschrieben werden binäre, ternäre und quaternäre Lithiumphosphate der allgemeinen Formel Li(Fe_xM¹_yM²_z)PO₄ in der M¹ mindestens ein Element der Sc. Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr und La umfassenden Gruppe, M² mindestens ein Element der Sc. Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr und La umfassenden Gruppe, x=0,5 bis 1, y=O bis 0,5, z=0 bis 0.5, mit der Massgabe bedeuten, dass x + y + z = 1 ist, oder x = 0, y = 1, z = 0 bedeuten, erhältlich durch ein Verfahren, bei dem Vorläuferverbindungen der Elemente Li, Fe, M¹ und /oder M² aus wässrigen Lösungen ausgefällt werden und dann das Fallungsprodukt unter einer Inertgasatmosphäre oder einer reduzierenden Atmosphäre bei einer Temperatur im Bereich von Raumtemperatur bis etwa 200 °C getrocknet und bei einer Temperatur im Bereich von 300 °C bis 1000 °C getempert wird. Die erfindungsgemässen Lithiumphosphate zeigen eine sehr hohe Kapazität beim Einsatz als Kathodenmaterial in Lithiumakkumulatoren.

NO 02/083555 AC

Binäre, ternäre und quaternäre Lithiumphosphate, Verfahren zu ihrer Herstellung und ihre Verwendung

Gebiet der Erfindung

Die vorliegende Erfindung betrifft binäre, ternäre und quaternäre Lithiumphosphate, insbesondere Lithiumeisenphosphate, ein Verfahren zur ihrer Herstellung durch Ausfällung aus wäßrigen Lösungen und ihre Verwendung als Kathodenmaterial in Lithiumakkumulatoren, insbesondere sekundären Lithiumbatterien.

15 Stand der Technik

1

5

10

20

25

30

35

Lithiumeisenphosphat de-insertiert Lithiumionen reversibel bei einem elektrochemischen Potential von etwa 3,5 V gegen Li/Li⁺. Die theoretische spezifische Kapazität beträgt 170 mAh/g. Allerdings ist die Kapazität der bekannten Lithiumeisenphosphate bei Raumtemperatur gering und beträgt üblicherweise nur 70 bis 100 mAh/g. Die reversible elektrochemische Exsertion von Lithiumionen ist außer für Lithiumeisenphosphat bislang nur für Lithiumeisenmanganphosphat-Mischkristalle und Lithiumkobaltphosphat beobachtet worden. Lithiumeisen-manganphosphat-Mischkristalle zeigen dabei zwei Potentialplateaus bei 3,5 V und bei 4 V gegen Li/Li⁺ und eine reversible spezifische Kapazität von maximal 70 mAh/g. Lithiumkobaltphosphat zeigt ein flaches Potentialplateau bei 4,8 V gegen Li/Li⁺ mit einer reversiblen Kapazität von maximal 110 mAh/g.

Alle bislang beschriebenen Herstellungsverfahren für Lithiumeisenphosphat und andere Phospho-Olivine sind als Festkörper-Verfahren anzusehen. Beispielhaft kann hierzu verwiesen werden auf WO 97/40541, US 5,910,382 oder WO 00/60680. Bei diesen Festkörperverfahren werden in der Regel pulverisierte Ausgangsmaterialien meist durch Naß- oder Trockenmahlen vermengt, bevor sie zu ihrer chemischen Umsetzung einer Wärmebehandlung unterzogen werden. Das dabei in Form eines Sinterkuchens oder -granulates anfallende Reaktionsprodukt muss anschließend meist gebrochen, gemahlen und

klassiert werden, um ein technisch weiterverarbeitbares Produkt zu erhalten. Nachteile von Festkörperverfahren sind die für eine vollständige Umsetzung oft notwendigen hohen Sintertemperaturen und langen Ofenzeiten, die zu hohem Energieaufwand und niedrigen Durchsätzen führen. Weiterhin erhöhen
 5 Mahlprozesse das Risiko des Einbringens von Verunreinigungen, die insbesondere für elektrochemische Anwendungen kritisch sein können. Zudem erfordern die in Mahlprozessen erhaltenen, breiten Teilchengrößenverteilungen meist ein Klassieren des Produkts, was ebenfalls zu Materialverlusten führt.

10

Aufgabe der Erfindung

Der Erfindung liegt daher die Aufgabe zugrunde, Lithiumphosphate vorzusehen, welche bei ihrer elektrochemischen Anwendung eine hohe spezifische Kapazität, selbst bei Raumtemperatur, aufweisen. Ferner soll ein einfaches und kostengünstiges Verfahren zu ihrer Herstellung vorgesehen werden.

Zusammenfassung der Erfindung

- Die obige Aufgabe wird gelöst durch binäre, ternäre und quaternäre Lithiumphosphate gemäß Anspruch 1 sowie ein Verfahren zu ihrer Herstellung gemäß Anspruch 4. Bevorzugte bzw. besonders zweckmäßige Ausgestaltungen des Anmeldungsgegenstandes sind in den Unteransprüchen angegeben.
- Gegenstand der Erfindung sind daher binäre, ternäre und quaternäre Lithiumphosphate der allgemeinen Formel

$$Li(Fe_xM^1_vM^2_z)PO_4$$

in der M¹ mindestens ein Element der Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Be, 30 Mg, Ca, Sr, Ba, Al, Zr und La umfassenden Gruppe,

M² mindestens ein Element der Sc. Ti. V. Cr. Mn. Co. Ni. Cu. Zn. Be. Mg. Ca. Sr. Ba. Al. Zr und La umfassenden Gruppe.

x=0.5 bis 1,

y=0 bis 0.5,

z = 0 bis 0.5, mit der Maßgabe bedeuten, daß x + y + z = 1 ist, oder x = 0, y = 1, z = 0 bedeuten, erhältlich durch ein Verfahren, bei dem Vorläuferverbindungen der Elemente

Li. Fe, M¹ und/oder M² aus wäßrigen Lösungen ausgefällt werden und dann das Fällungsprodukt unter einer Inertgasatmosphäre oder einer reduzierenden Atmosphäre bei einer Temperatur im Bereich von Raumtemperatur bis etwa 200°C getrocknet und bei einer Temperatur im Bereich von 300°C bis 1000°C getempert wird.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung dieser Lithiumphosphate, welches dadurch gekennzeichnet ist, daß man Vorläuferverbindungen der Elemente Li, Fe, M¹ und/oder M² aus wässrigen Lösungen ausfällt und dann das Fällungsprodukt unter einer Inertgasatmoshphäre oder einer reduzierenden Atmosphäre bei einer Temperatur im Bereich von Raumtemperatur bis etwa 200°C trocknet und bei einer Temperatur im Bereich von 300°C bis 1000°C tempert.

Gegenstand der Erfindung ist weiterhin die Verwendung der erfindungsgemäßen Lithiumphosphate als Kathodenmaterial in Lithiumakkumulatoren, vorzugsweise sekundären (wiederaufladbaren) Lithiumbatterien.

Detaillierte Beschreibung der Erfindung

20

25

10

15

Gemäß der Erfindung hat sich überraschenderweise gezeigt, daß es durch das erfindungsgemäße Verfahren gelingt, neuartige Lithiumphosphate mit besonderer Oberflächenstruktur, geringer Teilchengröße sowie enger Teilchengrößenverteilung zu erhalten. Die erfindungsgemäßen Lithiumphosphate ergeben eine bei Raumtemperatur gemessene Kapazität beim Einsatz in Lithiumakkumulatoren von bis zu etwa 155 mAh/g, was über 90% des theoretischen Wertes von 170 mAh/g entspricht, wohingegen vergleichbare Lithiumphosphate, die durch herkömmliche Festkörperverfahren hergestellt werden, Kapazitäten von lediglich bis zu etwa 100 mAh/g aufweisen.

30

35

Bei einer bevorzugten Ausführungsform enthält die Phosphatmatrix der erfindungsgemäßen Lithiumphosphate homogen verteilte Kohlenstoffpartikel, was zu einer deutlichen Erhöhung der Leitfähigkeit, einer besseren Verarbeitbarkeit, beispielsweise durch Walzen, Extrusion mit geeigneten Begleitstoffen sowie zu einer Verringerung der Agglomeration der Teilchen führt.

Weiterhin besitzen die erfindungsgemäßen Lithiumphosphate vorzugsweise eine durchschnittliche Teilchengröße von weniger als etwa 6 μ m, vorzugsweise weniger als etwa 3 μ m. Die nach dem PET-Verfahren gemessenen Oberflächen liegen üblicherweise bei etwa 2 m²/g. Ferner sind die mit Hife des erfindungsgemäßen Verfahrens erhaltenen Lithiumphosphate weitestgehend phasenrein, indem sie beispielsweise weniger als 2% Eisenphosphat enthalten.

Die Herstellung der erfindungsgemäßen Lithiumphosphate erfolgt mittels einer an sich bekannten Naß-Fällungsreaktion in wäßrigem Medium. Als Ausgangsmaterialien eignen sich lösliche Lithiumsalze, Eisensalze und lösliche Salze der Elemente M^1 und M^2 sowie lösliche Phosphate des Lithiums oder Ammoniums.

Durch Einstellung und Einhaltung eines geeigneten pH-Wertes der wäßrigen Lösung während der Fällungsreaktion, durch geeignete Temperaturwahl. durch viskositätsbeeinflussende Zusätze und durch Beeinflussung der Mischbedingungen können die Teilchenform und die Partikelgröße der Phosphate maßgeblich im Sinne gewünschter Materialeigenschaften beeinflußt werden. Durch Variation der Stöchometrie der verwendeten Salze kann das Verhältnis der Elemente in den Phosphaten nahezu beliebig eingestellt werden. Durch zusätzlichen Einsatz von Lithiumhydroxid kann der pH-Wert des Reaktionsmediums in die gewünschte Richtung beeinflußt werden.

Erfindungsgemäß kann das Eisen in den Lithiumeisenphosphaten auch ersetzt werden durch mindestens eines der Elemente Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr und La.

Die bei der erfindungsgemäßen Fällungsreaktion erhaltenen Vorläufermaterialien werden zunächst auf einen Feuchtigkeitsgehalt von vorzugsweise < 5 % getrocknet und dann bei einer Temperatur von 300°C bis 1000°C getempert, wobei das Tempern bei deutlich milderen Bedingungen und vor allem während kürzerer Zeitdauer als bei vergleichbaren Festkörperreaktionen abläuft. Während des Trocknens und des Temperns bei hohen Temperaturen wird eine Inertgasatmosphäre, beispielsweise Stickstoff oder Argon, angewandt, wobei es vorteilhaft ist, der Inertgasatmosphäre geringe Mengen von beispielsweise Wasserstoff als reduzierendem Gas zuzusetzen, um so eine reduzierende Atmosphäre vorzusehen.

1

_ 5

10

15

20

25

30

35

Bei einer Variation des erfindungsgemäßen Verfahrens ist es nicht notwendig, das Fällungsprodukt zu isolieren und vor dem Tempern zu trocknen. Es ist ebenso möglich, aus der das Fällungsprodukt enthaltenden Suspension den Wasseranteil zu verdampfen und dann den Rückstand einer kontinuierlichen Trocknungs- und Temperbehandlung unter Inertgasatmosphäre oder einer reduzierenden Atmosphäre zu unterziehen. Diese Behandlung besteht beispielsweise aus einer kontinuierlichen Aufheizphase von Raumtemperatur auf 600 bis 1000°C, vorzugsweise 600 bis 750°C, einer Haltephase bei dieser erhöhten Temperatur sowie einer Abkühlphase auf Raumtemperatur.

10

15

20

1

5

Vorzugsweise wird die Fällung und/oder das Trocknen und Tempern in Gegenwart von Additiven, vorzugsweise organischen Verbindungen durchgeführt, die sich unter Trocknungs- oder Temperbedingungen zu Stoffen umwandeln, welche die Verarbeitungs- und elektrischen Materialeigenschaften der Lithiumphosphate verbessern. Insbesondere werden hierbei solche Additive eingesetzt, welche nach dem Trocknen und Tempern zu homogen verteilten Kohlenstoffpartikeln in der Phosphatmatrix führen. Beispiele geeigneter Additive sind Polyalkylenglykole, wie Polyethylenglykole, Stärke oder Stärkederivate, Zucker oder Zuckerderivate, wie beispielsweise Lactose, Mono- oder Polycarbonsäuren oder deren Derivate, insbesondere Polyhydroxycarbonsäuren, wie Citronensäure. Bevorzugte Additive zeichnen sich dadurch aus, daß sie unter den angewandten Temperbedingungen zusätzlich zu ihrer Eigenschaft als Materialverbesserer auch als intrinsische Reduktionsmittel wirken (siehe nachfolgendes Beispiel 4).

25

Kurze Beschreibung der Zeichnungen

Figur 1 zeigt das Röntgenbeugungsdiagram des in Beispiel 1 hergestellten Lithiumeisenphosphats.

30

35

Figuren 2 bis 5 zeigen die Ergebnisse der Teilchengrößenanalysen der in den Beispielen 1 bis 4 erhaltenen Lithiumeisenphosphate.

Figur 6 zeigt das Zyklenverhalten beim Laden und Entladen des in Beispiel 4 erhaltenen Lithiumeisenphosphats, wenn dieses als Kathodenmaterial in einem Lithiumakkumulator eingesetzt wird.

Figur 7 zeigt die Lade-Entladekurve zum ersten Zyklus des Messung für Figur 6.

Beispiele

_ 5

Beispiel 1

Herstellung von LiFePO₄

- Aus 0,52 mol (54,26 g) Lithiumdihydrogenphosphat, und 0,4 mol (111,21 g) Eisen(II)-sulfat-Heptahydrat, jeweils gelöst in 400 ml anarobisiertem demineralisiertem Wasser, wird unter Rühren unter Inertgas eine homogen disperse Mischung hergestellt. Zu dieser Mischung wird unter Rühren bei Raumtemperatur eine zuvor anaerobisierte, wässrige Lösung von 0,85 mol (35,70 g) Lithiumhydroxid-Monohydrat, gelöst in 200 ml demineralisiertem Wasser, über einen Zeitraum von 15 Minuten zugetropft. Unter strengem Sauerstoffausschluß erhält man eine weiße, leicht sedimentierende Suspension.
- Die Suspension wird unter Stickstoffatmosphäre filtriert und mit insgesamt 500 ml anaerobisiertem demineralisiertem Wasser sulfatfrei gewaschen.

Der Precursor, erhalten als weißer Filterkuchen, besteht aus Lithium-ophosphat und Vivianit (Fe₃(PO₄)₂-Hydrat) und wird zunächst unter Stickstoff bei 150 °C getrocknet.

Die homogene Phosphatmischung wird zur Umwandlung in die Triphylinphase im Stickstoffstrom ausgehend von Raumtemperatur und beginnend mit einer Aufheizrate von 2 K/min zunächst auf 650 °C für 12 h und anschließend mit gleicher Heizrate auf eine Endtemperatur von 675 °C erhitzt. Diese wird für weitere 12 h beibehalten.

Figur 1 zeigt das Röntgenbeugungsdiagram des hierbei erhaltenen Lithiumeisenphosphats. Zum Vergleich sind ebenfalls die Diagramme von reinem Triphylit (LiFePO₄) sowie von reinem Lithiumphosphat (Li₃PO₄) unterlegt. Es zeigt sich, daß das erfindungsgemäße Lithiumeisenphosphat nahezu phasenrein ist.

25

30

35

Die Teilchengrößenanalyse des erhaltenen Lithiumeisenphosphats ist in Figur 2 gezeigt. Die Teilchengrößenmessung erfolgte mittels einer Lichtstreuungsmethode unter Verwendung einer handelsüblichen Vorrichtung (Malvern Instruments SBOD). Die durchschnittliche Teilchengröße ergibt sich mit 2,25 μm bei einer engen Teilchengrößenverteilung.

Beispiel 2

Herstellung von LiFe_{0.98}Mn_{0.02}PO₄

10

15

Aus 0,13 mol (13,57 g) Lithiumdihydrogenphosphat, gelöst in 100 ml demineralisiertem Wasser, und einer Lösung von 0,098 mol (27,25 g) Eisen(II)-sulfat-Heptahydrat und 0,002 mol (0,34 g) Mangansulfat-Monohydrat in 100 ml demineralisiertem Wasser wird unter Rühren und einer Schutzgasatmosphäre eine homogene Mischung hergestellt. Zu dieser Mischung wird unter Rühren bei Raumtemperatur eine zuvor anaerobisierte, wässrige Lösung von 0,212 mol (8,94 g) Lithiumhydroxid-Monohydrat, gelöst in 50 ml demineralisiertem Wasser, über einen Zeitraum von 4 Minuten zugetropft.

Die weiße Suspension wird unter Stickstoffatmosphäre filtriert und mit insgesamt 150 ml anaerobisiertem demineralisiertem Wasser sulfatfrei gewaschen.

Der weiße Filterkuchen wird unter Stickstoffatmosphäre bei 130 °C getrocknet.

25

30

35

Die so erhaltene Phosphatmischung wird zur Umwandlung in die Triphylinphase unter Stickstoff, dem als reduzierendes Agens 1 Vol-% Wasserstoff zugemischt wird, bei Raumtemperatur beginnend mit einer Aufheizrate von 3 K/min auf eine Endtemperatur von 675 °C erhitzt. Die Endtemperatur wird für 12 h gehalten. Während der ganzen Temperung wird die Wasserstoff/Stickstoffzufuhr beibehalten.

Die Teilchengrößenanalyse des erhaltenen Lithiumeisen-manganphosphats ist in Figur 3 gezeigt. Bei sehr enger Teilchengrößenverteilung ergibt sich eine mittlere Teilchengröße von $2.63~\mu m$.

Beispiel 3

1

10

15

20

Herstellung von LiFePO₄ unter Zuhilfenahme von Additiven

Aus 0,065 mol (6,78 g) Lithiumdihydrogenphosphat, gelöst in 50 ml einer anaerobisierten 20 %igen wässrigen Polyethylenglycol-20000-Lösung und einer ebenso anaerobisierten Lösung aus 0,05 mol (13,90 g) Eisen(II)-sulfat-Heptahydrat in 60 ml 20 %iger wässriger Polyethylenglycol-20000-Lösung wird unter Rühren eine homogene Mischung hergestellt. Zu dieser Mischung wird unter Rühren bei Raumtemperatur eine zuvor anaerobisierte, wässrige Lösung von 0,106 mol (4,47 g) Lithiumhydroxid-Monohydrat, gelöst in 25 ml demineralisiertem Wasser, über einen Zeitraum von 3 Minuten zugetropft. Die entstehende stabile, weiße Suspension wird durch Zugabe von 500 ml anaerobisiertem Ethanol (99,6 %ig) gebrochen. Danach wird das Sediment unter Stickstoffatmosphäre zentrifugiert (3000 upm) und der Bodenkörper mit insgesamt 200 ml anaerobisiertem demineralisiertem Wasser sulfatfrei gewaschen und danach unter Stickstoff bei 150 °C getrocknet.

Die so erhaltene Phosphatmischung wird zur Umwandlung in die Triphylinphase unter Stickstoff, dem als reduzierendes Agens 10 Vol-% Wasserstoff zugemischt sind, bei Raumtemperatur beginnend mit einer Aufheizrate von 3 K/min auf eine Endtemperatur von 675 °C erhitzt. Die Endtemperatur wird für 12 h gehalten. Während der ganzen Temperung wird die Wasserstoff/Stickstoffzufuhr beibehalten.

25

30

35

Die Teilchengrößenanalyse des erhaltenen Lithiumeisenphosphats ist in Figur 4 gezeigt. Bei sehr enger Teilchengrößenverteilung ergibt sich eine mittlere Teilchengröße von 2.19 μ m.

Beispiel 4

Herstellung von LiFePO4 - kohlehaltig, durch Imprägnierung mit Lactose

Aus 0.13 mol (13,57 g) Lithiumdihydrogenphosphat und 0.1 mol (27,80 g) Eisen(II)-sulfat-Heptahydrat wird unter Rühren in 200 ml demineralisiertem Wasser (wie in Beispiel 1) eine homogene Mischung hergestellt. Zu dieser Mischung wird unter Rühren bei Raumtemperatur eine zuvor anaerobisierte.

PCT/DE02/01323 WO 02/083555

wässrige Lösung von 0.212 mol (8.94 g) Lithiumhydroxid-Monohydrat, gelöst 1 in 50 ml demineralisiertem Wasser, über einen Zeitraum von 4 Minuten zugetropft. Man erhält unter strengem Sauerstoffausschluß eine weiße, leicht sedimentierende Suspension.

5

10

15

20

25

Die Suspension wird unter Stickstoffatmosphäre filtriert und mit insgesamt 100 ml anaerobisiertem demineralisiertem Wasser sulfatfrei gewaschen.

Aus dem weißen Filterkuchen wird unter Zusatz von 20 g einer 10 %igen Lactoselösung ein homogener, dickflüssiger Schlicker hergestellt. Nach dieser Imprägnierung wird die Mischung unter Stickstoff bei 150 °C getrocknet.

Diese homogene Phosphat-Lactose-Mischung wird zur Umwandlung in die Triphylinphase in Stickstoffatmosphäre bei Raumtemperatur beginnend mit einer Aufheizrate von 3 K/min auf eine Endtemperatur von 725 °C erhitzt. Die Endtemperatur wird für 12 h gehalten. Während der ganzen Temperung wird die Stickstoffzufuhr beibehalten.

Die Teilchengrößenanalyse des erhaltenen Lithiumeisenphosphats ist in Figur 5 gezeigt. Hierbei ergibt sich bei sehr enger Teilchengrößenverteilung eine mittlere Teilchengröße von 2,70 µm.

Das erhaltene Lithiumeisenphosphat wurde als Kathodenmaterial in einem Lithiumakkumulator verwendet. Figur 6 zeigt die Abhängigkeit der spezifischen Kapazität bei wiederholtem Laden und Entladen der Batterie. Die galvanostatische elektrochemische Messung erfolgte hierbei in einer mit Flüssigelektrolyt (LP30 von der Firma Merck) gefüllten Glaszelle in 3-Elektroden-Anordnung mit Gegen- und Referenzelektroden aus Lithiummetall. Die Stromstärke betrug konstant ±0,26 mA, was einer flächenbezogenen Stromdichte 30 von 0.26 mA/cm² bzw. einer theoretischen Lade-/Entlade-Rate von Kapazität (C)/20 h entspricht. Die Potentialgrenzen waren 2,9 V und 4,0 V gegen Li/ Li⁺. Wie zu sehen ist, treten nach 40 Zyklen keinerlei Zyklenverluste auf, so daß die Reversibilität des erfindungsgemäßen Lithiumeisenphosphats vorzüglich ist.

35

Schließlich zeigt Figur 7 die Lade-Entladekurve zum ersten Zyklus bei der für Figur 6 beschriebenen Messung.

l Beispiel 5

Herstellung von LiFePO4 - kohlehaltig durch Imprägnierung mit Lithiumcitrat

100ml einer Lösung von 0.05 mol (19,61 g) Ammoniumeisen(II)-sulfat-Hexahydrat, gelöst in demineralisiertem anaerobisiertem Wasser, werden unter Rühren binnen 1 min zu 100ml einer Lösung von 0,25 mol (33,04 g) Diammoniumhydrogenphosphat in anaerobisiertem Wasser geschüttet. Unter strengem Sauerstoffausschluß erhält man nach 5 min Rühren eine weiße, Suspension. schnell sedimentierende Die Suspension wird unter Stickstoffatmosphäre filtriert. mit anaerobisiertem Wasser gewaschen und bei 75° C getrocknet. Das getrocknete Fällungsprodukt besteht ausschließlich aus sphärischen Pulverpartikeln (Durchmesser $< 5 \mu m$) der Phase Ammoniumeisen(II)-phosphat-Monohydrat.

15

20

25

30

10

5

Zur weiteren Umsetzung zum Lithiumeisenphosphat werden 0,025 mol (4.67 g) des gefällten Ammoniumeisen(II)-phosphat-Monohydrats zu 5ml einer mit Citronensäure neutral gestellten Lösung von 0.00875 mol (2.47 g) Tri-Lithiumcitrat-Tetrahydrat in anaerobisiertem, demineralisiertem Wasser gegeben und zu einer homogenen, dünnflüssigen Suspension verrührt. Unter Rühren wird die Suspension vorsichtig ohne Sieden erhitzt und der Wasseranteil verdampft, bis die Suspension Fäden zieht und beim Abkühlen zu einer karamellartig zähen Masse erstarrt. Diese Masse wird anschließend einer Trocknungs- und Temperbehandlung in Stickstoffatmosphäre unterzogen. Diese Behandlung besteht aus einer sechsstündigen Aufheizphase von Raumtemperatur auf 675° C, aus einer Haltephase von 12 h bei 675° C und aus einem sechsstündigen Abkühlschritt. Der erhaltene poröse, harte Sinterkuchen wird im Achatmörser gebrochen und gemahlen, bis ein glattes, fließfähiges schwarzes Pulver erhalten wird. Das Temperprodukt besteht aus LiFePO4 (Triphylin) und geringfügigen Beimengungen (< 3 %) von Lithiumphosphat (Li₃PO₄) und Eisenphosphid (FeP). Dieses Produkt enthält ungefähr 10 Gew.-% amorphen Kohlenstoff.

Beispiel 6

35

Herstellung von LiFePO₄ - über Imprägnierung mit Lithiumacetat

0,025 mol (4,67 g) des gefällten Ammoniumeisen(II)-phosphat-Monohydrat aus Beispiel 5 werden zu 2 ml einer mit Citronensäure neutral gestellten Lösung von 0,0265 mol (2,68 g) Lithiumacetat-Dihydrat in anaerobisiertem, demineralisiertem Wasser gegeben und zu einer homogenen Suspension verrührt. Unter Rühren wird die Suspension vorsichtig ohne Sieden erhitzt und der Wasseranteil verdampft, bis die Suspension beim Abkühlen zu einer krümeligen, hellgrünen Masse erstarrt. Diese Masse wird anschließend einer Trocknungs- und Temperbehandlung in Stickstoffatmosphäre unterzogen. Diese besteht aus einer sechsstündigen Aufheizphase von Raumtemperatur auf 675° C, aus einer Haltephase von 12 h bei 675° C und aus einem sechsstündigen Abkühlschritt. Das erhaltene Granulat wird im Achatmörser gemahlen, bis ein hellgraues Pulver erhalten wird. Das Temperprodukt besteht aus LiFePO₄ (Triphylin) und Beimengungen von Lithiumphosphat (Li₃PO₄), Magnetit (Fe₃O₄) und Wüstit (FeO). Diese Produkt enthält keinen Kohlenstoff.

Patentansprüche

Binäre, ternäre und quaternäre Lithiumphosphate der allgemeinen For-1. mel

 $Li(Fe_xM^1_vM^2_z)PO_4$

in der M¹ mindestens ein Element der Sc. Ti, V, Cr. Mn, Co, Ni, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr und La umfassenden Gruppe,

M² mindestens ein Element der Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Be, Mg, Ca,

10 Sr, Ba, Al, Zr und La umfassenden Gruppe.

x=0.5 bis 1.

1

5

y=0 bis 0,5,

z = 0 bis 0.5, mit der Maßgabe bedeuten, daß x + y + z = 1 ist, oder

x = 0, y = 1, z = 0 bedeuten.

- 15 erhältlich durch ein Verfahren, bei dem Vorläuferverbindungen der Elemente Li. Fe. M¹ und/oder M² aus wäßrigen Lösungen ausgefällt werden und dann das Fällungsprodukt unter einer Inertgasatmosphäre oder einer reduzierenden Atmosphäre bei einer Temperatur im Bereich von Raumtemperatur bis etwa 200°C getrocknet und bei einer Temperatur im Bereich von 300°C bis 20 1000°C getempert wird.
- - Lithiumphosphate nach Anspruch 1, wobei die Phosphatmatrix weiterhin homogen verteilte Kohlenstoffpartikel enthält.
- 25 3. Lithiumphosphate nach Anspruch 1 und/oder 2, welche eine durchschnittliche Teilchengröße von weniger als etwa 6 μ m, vorzugsweise weniger als etwa 3 µm, aufweisen.
- Verfahren zur Herstellung der Lithiumphosphate nach den Ansprüchen 30 1-3. dadurch gekennzeichnet, daß Vorläuferverbindungen der Elemente Li, Fe. M¹ und/oder M² aus wässrigen Lösungen ausgefällt werden und dann das Fällungsprodukt unter einer Inertgasatmosphäre oder einer reduzierenden Atmosphäre bei einer Temperatur im Bereich von Raumtemperatur bis etwa 200°C getrocknet und bei einer Temperatur im Bereich von 300°C bis 1000°C 35 getempert wird.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Fällung und/oder das Trocknen und Tempern in Gegenwart von Additiven, vorzugsweise organischen Verbindungen durchgeführt wird, die sich unter Trocknungs- oder Temperbedingungen zu Stoffen umwandeln, welche die Verarbeitungs- und elektrischen Materialeigenschaften der Lithiumphosphate verbesssern.

- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß solche Additive eingesetzt werden, welche nach dem Trocknen und Tempern zu homogen verteilten Kohlenstoffpartikeln in der Phosphatmatrix führen.
 - 7. Verfahren nach Anspruch 5 und/oder 6, dadurch gekennzeichnet, daß als Additive Polyalkylenglykole, Stärke oder Stärkederivate, Zucker oder Zuckerderivate, Mono- oder Polycarbonsäuren oder deren Derivate eingesetzt werden.
 - 8. Verwendung der Lithiumphosphate nach den Ansprüchen 1 bis 3 oder der nach dem Verfahren gemäß den Ansprüche 4 bis 7 erhaltenen Lithiumphosphate als Kathodenmaterial in Lithiumakkumulatoren, vorzugsweise sekundären Lithiumbatterien.

25

10

15

20

30

Fig 2

Fig 3

Fig 4

Fig 5

BNSDOCID: <WO ____ 02083555A2 1 >

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 24. Oktober 2002 (24.10.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/083555 A3

(51) Internationale Patentklassifikation7: C01B 25/45. H01M 4/58

(DE). WOHLFAHRT-MEHRENS, Margret [DE/DE]: Robert-Koch-Strasse 17, 89257 Illertissen (DE).

(21) Internationales Aktenzeichen: PCT/DE02/01323 (74) Anwalt: MERKLE, Gebhard; Ter Meer, Steinmeister & Partner GbR, Mauerkircherstrasse 45, 81679 München (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,

(22) Internationales Anmeldedatum:

10. April 2002 (10.04.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

101 17 904.9

10. April 2001 (10.04,2001)

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): ZENTRUM FÜR SONNENERGIE- UND WASSERSTOFF-FORSCHUNG BADEN-WÜRT-**GEMEINNÜTZIGE STIFTUNG** [DE/DE]; Helmholtzstrasse 8, 89081 Ulm (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): HEMMER, Reinhard, P. [DE/DE]; Hiederweg 2A. 89257 Illertissen (DE). ARNOLD, Giesela [DE/DE]; Söflingerstrasse 145, 89077 Ulm (DE). VOGLER, Christian [DE/DE]; Weilertalweg 2, 89198 Westerstetten-Vorderdenkental
- CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW. (84) Bestimmungsstaaten (regional): ARIPO-Patent (GII,
- GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), curasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 30. Mai 2003

[Fortsetzung auf der nächsten Seite]

(54) Title: BINARY, TERNARY AND QUATERNARY LITHIUM PHOSPHATES, METHOD FOR THE PRODUCTION THEREOF AND USE OF THE SAME

- (54) Bezeichnung: BINÄRE, TERNÄRE UND QUATERNÄRE LITHIUMPHOSPHATE, VERFAHREN ZU IHRER HERSTEL-LUNG UND THRE VERWENDUNG
- (57) Abstract: The invention relates to binary, ternary and quaternary lithium phosphates of general formula Li(Fe_xM¹_yM²_z)P()₄ wherein M1 represents at least one element of the group comprising Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr and La; M² represents at least one element of the group comprising Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr and La: x = between 0.5 and 1, y = between 0 and 0.5, and z = between 0 and 0.5, provided that x + y + z = 1, or x = 0, y = 1, and z = 0. Said lithium phosphates can be obtained according to a method whereby precursor compounds of elements Li, Fe, M1 and/or M2 are precipitated from aqueous solutions and the precipitation product is dried in an inert gas atmosphere or a reducing atmosphere at a temperature which is between room temperature and approximately 200 °C, and temperature at a temperature of between 300 °C and 1000 °C. The inventive lithium phosphates have a very high capacity when used as cathode material in lithium accumulators.
- (57) Zusammenfassung: Beschrieben werden binäre, ternäre und quaternäre Lithiumphosphate der allgemeinen Formel Li(Fe_xM¹_vM²_Z)PO₄ in der M¹ mindestens ein Element der Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr und La umfassenden Gruppe, M2 mindestens ein Element der Sc. Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr und La umfassenden Gruppe. x=0.5 bis 1, y=0 bis 0.5, z=0 bis 0.5, mit der Massgabe bedeuten. dass x+y+z=1 ist, oder x=0, y=1, z=10 bedeuten, erhältlich durch ein Verfahren, bei dem Vorläuferverbindungen der Elemente Li, Fe, M1 und /oder M2 aus wässrigen Lösungen ausgefällt werden und dann das Fallungsprodukt unter einer Inertgasatmosphäre oder einer reduzierenden Atmosphäre bei einer Temperatur im Bereich von Raumtemperatur bis etwa 200 °C getrocknet und bei einer Temperatur im Bereich von 300 °C bis 1000 °C getempert wird. Die erfindungsgemässen Lithiumphosphate zeigen eine sehr hohe Kapazität beim Einsatz als Kathodenmaterial in Lithiumakkumulatoren.

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

INTERNATIONAL SEARCH REPORT

PCT/DE 02/01323

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C01B25/45 H01M H01M4/58 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 HO1M CO1B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) WPI Data, PAJ, INSPEC, COMPENDEX, CHEM ABS Data, EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Category 6 Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Ε EP 1 261 050 A (UMICORE S A NV ; CENTRE NAT 1 - 4.8RECH SCIENT (FR)) 27 November 2002 (2002-11-27) claims 1-11 page 2, line 47 -page 3, line 26 page 4, line 18 -page 5, line 12 Ε DATABASE WPI 1,4 Section Ch, Week 200256 Derwent Publications Ltd., London, GB; Class LO3, AN 2002-522963 XP002228973 & JP 2002 117831 A (SONY CORP). 19 April 2002 (2002-04-19) abstract X Further documents are listed in the continuation of box C. Patent tamily members are listed in annex. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 31 January 2003 --19/02/2003 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Rigondaud, B

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Internati pplication No
PCT/UL U2/01323

		PC1/DE 02/01323
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 97 40541 A (BOARDS OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM) 30 October 1997 (1997-10-30) cited in the application claims 1-5 example 1	1,8
A	KADI A K ET AL: "Phospho-olivines as positive-electrode materials for rechargeable lithium batteries" JOURNAL OF THE ELECTROCHEMICAL SOCIETY, ELECTROCHEMICAL SOCIETY. MANCHESTER, NEW HAMPSHIRE, US, vol. 144, no. 4, April 1997 (1997-04), pages 1188-1194, XP002169166 ISSN: 0013-4651 the whole document	1,8
A	ANDERSSON A S ET AL: "Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study" SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM, NL, vol. 130, no. 1-2, May 2000 (2000-05), pages 41-52, XP004197786 ISSN: 0167-2738 the whole document	1,8
		·

INTERNATIONAL SEARCH REPORT

intermation on patent taining members

Internati plication No
PCT/UE U2/01323

	Patent document cited in search report		Publication Patent family member(s)			Publication date	
EP	1261050	Α	27-11-2002	EP WO	1261050 02099913		27-11-2002 12-12-2002
JP	2002117831	Α	19-04-2002	NONE			
WO	9740541	A	30-10-1997	EP JP WO US US	0904607 2000509193 9740541 6391493 5910382	T Al B1	31-03-1999 18-07-2000 30-10-1997 21-05-2002 08-06-1999

Form PCT/ISA/210 (patent family annex) (July 1992)

INTERNATIONALER RECHERCHENBERICHT

Internatic : Aktenzeichen PCT/Dt U2/01323

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES K 7 C01B25/45 H01M4/58 Nach der Internationalen Patentklassitikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 HOIM COIB Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweil diese unter die recherchierten Gebiete tallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) WPI Data, PAJ, INSPEC, COMPENDEX, CHEM ABS Data, EPO-Internal C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie* Betr. Anspruch Nr. Bezeichnung der Veröffentlichung, sowelt erforderlich unter Angabe der in Betracht kommenden Teile EP 1 261 050 A (UMICORE S A NV ; CENTRE NAT Ε 1 - 4.8RECH SCIENT (FR)) 27. November 2002 (2002-11-27) Ansprüche 1-11 Seite 2, Zeile 47 -Seite 3, Zeile 26 Seite 4, Zeile 18 -Seite 5, Zeile 12 E DATABASE WPI 1.4 Section Ch, Week 200256 Derwent Publications Ltd., London, GB; Class LO3, AN 2002-522963 XP002228973 & JP 2002 117831 A (SONY CORP), 19. April 2002 (2002-04-19) Zusammenfassung Wellere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie entnehmen * Besondere Kategorien von angegebenen Veröffentlichungen Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Priorilätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundellegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröttentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Effindung kann alloin aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdalum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung soll oder die aus einem anderen besonderen Grund angegeben ist (wie kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist ausgeführt) *O* Veröflentlichung, die sich auf eine mündliche Ollenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht *P* Veröflentlichung, die vor dem Internationaten Annetdedatum, aber nach dem beanspruchten Prioritälsdatum veröffentlicht worden ist *& Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 31. Januar_2003_ 19/02/2003 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentaml, P.B. 5818 Patentlaan 2 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Rigondaud, B

INTERNATIONALER RECHERCHENBERICHT

Internat Aktenzelchen
PCT/UE U2/01323

A //-		C1/DE 02/01323
	zung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommende	en Teite Detr. Anspruch Nr.
A	WO 97 40541 A (BOARDS OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM) 30. Oktober 1997 (1997-10-30) in der Anmeldung erwähnt Ansprüche 1-5 Beispiel 1	1,8
Α	KADI A K ET AL: "Phospho-olivines as positive-electrode materials for rechargeable lithium batteries" JOURNAL OF THE ELECTROCHEMICAL SOCIETY, ELECTROCHEMICAL SOCIETY. MANCHESTER, NEW HAMPSHIRE, US, Bd. 144, Nr. 4, April 1997 (1997-04), Seiten 1188-1194, XP002169166 ISSN: 0013-4651 das ganze Dokument	1,8
A	ANDERSSON A S ET AL: "Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study" SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM, NL, Bd. 130, Nr. 1-2, Mai 2000 (2000-05), Seiten 41-52, XPO04197786 ISSN: 0167-2738 das ganze Dokument	1,8
	SA/210 (Fortsetzung von Blatt 2) (Juli 1992)	

Fomblatt PCT/ISA/210 (Fortsetzung von Blatt 2) (Juli 1992)

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichunger

ır selben Patentfamilie gehören

Internatic Aktenzeichen
PCT/DE U2/01323

	Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung	
EP	1261050	Α	27-11-2002	EP WO	1261050 A1 02099913 A1	27-11-2002 - 12-12-2002	
JP	2002117831	A	19-04-2002	KEI	KEINE .		
WO	9740541	А	30-10-1997	EP JP WO US US	0904607 A1 2000509193 T 9740541 A1 6391493 B1 5910382 A	31-03-1999 18-07-2000 30-10-1997 21-05-2002 08-06-1999	