Chapter 31 Convergence simple et uniforme des suites de fonctions

Exercice 31.1

Pour tout $n \in \mathbb{N}^*$, on définit la fonction u_n de [0,1] vers \mathbb{R} par

$$u_n(x) = x^n(1-x).$$

- **1.** Montrer que la suite de fonctions $(u_n)_{n\in\mathbb{N}^*}$ converge simplement sur [0,1] vers une fonction u que l'on précisera.
- **2.** Montrer que pour tout $n \in \mathbb{N}^*$,

$$||u_n - u||_{\infty} = \frac{1}{n+1} \left(\frac{n}{n+1}\right)^n.$$

3. La suite $(u_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers u sur [0,1]?

Solution 31.1

1. Pour $0 \le x < 1$, on a $\lim_{n \to +\infty} x^n = 0$ donc

$$\lim_{n \to +\infty} u_n(x) = 0.$$

Pour x = 1, on a $u_n(1) = 0$, donc

$$\lim_{n\to+\infty} u_n(1) = 0.$$

Ce qui montre que la suite de fonctions $(u_n)_{n\in\mathbb{N}^*}$ converge simplement sur [0,1] vers la fonction $u:[0,1]\to\mathbb{R}$ définie par

$$\forall x \in [0,1], u(x) = 0.$$

2. Pour $n \in \mathbb{N}^*$, étudions la fonction $u_n - u = u_n$. Pour $x \in [0, 1]$,

$$u'_n(x) = nx^{n-1}(1-x) - x^n = x^{n-1}(n-(n+1)x).$$

Ainsi

- u_n est croissante sur [0, n/n + 1] de $u_n(0) = 0$ à $u_n(n/n + 1) = \frac{1}{n+1} \left(\frac{n}{n+1}\right)^n$,
- u_n est décroissante sur [n/n+1,1] de $u_n(n/n+1) = \frac{1}{n+1} \left(\frac{n}{n+1}\right)^n$ à $u_n(1) = 0$.

Finalement, pour tout $n \in \mathbb{N}^*$,

$$||u_n - u||_{\infty} = \frac{1}{n+1} \left(\frac{n}{n+1}\right)^n.$$

3. Pour $n \in \mathbb{N}^*$, on a

$$\|u_n - u\|_{\infty} \le \frac{1}{n+1}$$
 et $\lim_{n \to +\infty} \frac{1}{n+1} = 0$.

La suite $(u_n)_{n\in\mathbb{N}^*}$ converge donc bien uniformément vers u sur [0,1].

Pour tout $n \in \mathbb{N}^*$, on définit la fonction f_n de \mathbb{R} vers \mathbb{R} par

$$f_n(x) = \frac{n+1}{n}x.$$

- 1. Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers une fonction f que l'on précisera.
- **2.** La suite $(f_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers f sur \mathbb{R} ?

Solution 31.2

1. Pour tout $x \in \mathbb{R}$, on a

$$\lim_{n \to +\infty} \frac{n+1}{n} x = 1 \cdot x = x.$$

La suite de fonctions (f_n) converge donc simplement sur $\mathbb R$ vers la fonction $f:\mathbb R\to\mathbb R$ définie par

$$\forall x \in \mathbb{R}, f(x) = x.$$

2. Pour $x \in \mathbb{R}$,

$$\left| f_n(x) - f(x) \right| = \left| \frac{n+1}{n} x - x \right| = \frac{1}{n} |x|.$$

On a par exemple $|f_n(n) - f(n)| = 1$ donc $||f_n - f||_{\infty} \ge 1$ (en fait, $||f_n - f||_{\infty} = +\infty$). Par conséquent, la suite $(f_n)_{n \in \mathbb{N}^*}$ ne converge pas uniformément vers f sur \mathbb{R} .

Pour tout $n \in \mathbb{N}^*$, on définit la fonction g_n de \mathbb{R} vers \mathbb{R} par

$$g_n(x) = \begin{cases} 1 - \frac{1}{n}|x|, & |x| < n \\ 0, & |x| \ge n. \end{cases}$$

- 1. Montrer que la suite de fonctions $(g_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers une fonction f que l'on précisera.
- **2.** La suite $(g_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers g sur \mathbb{R} ?

Pour tout $n \in \mathbb{N}^*$, on définit la fonction h_n de \mathbb{R} vers \mathbb{R} par

$$h_n(x) = \begin{cases} 1 + x^2 \sin \frac{1}{nx}, & x \neq 0 \\ 1, & x = 0. \end{cases}$$

- 1. Montrer que la suite de fonctions $(h_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers une fonction h que l'on précisera.
- **2.** La suite $(h_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers h sur \mathbb{R} ?

Pour tout $n \in \mathbb{N}^{\star}$, on définit la fonction k_n de [0,1] vers \mathbb{R} par

$$k_n(x) = \begin{cases} 4n^2x, & 0 \le x \le \frac{1}{2n} \\ -4n^2x + 4n, & \frac{1}{2n} < x \le \frac{1}{n} \\ 4n^2x, & \frac{1}{n} < x \le 1. \end{cases}$$

- **1.** Montrer que la suite de fonctions $(k_n)_{n\in\mathbb{N}^*}$ converge simplement sur [0,1] vers une fonction k que l'on précisera.
- **2.** La suite $(k_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers h sur [0,1]?
- **3.** Soit $a, b \in]0, 1[$ avec a < b. La suite $(k_n)_{n \in \mathbb{N}^*}$ converge-t-elle uniformément vers h sur [a, b]?

Pour tout $n \in \mathbb{N}^*$, on définit la fonction ℓ_n de [0,1] vers \mathbb{R} par

$$\mathscr{C}_n(x) = n\left(x^n - x^{n+1}\right).$$

- 1. Montrer que la suite de fonctions $(\ell_n)_{n\in\mathbb{N}^*}$ converge simplement sur [0,1] vers une fonction ℓ que l'on précisera.
- **2.** La suite $(\ell_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers ℓ sur [0,1]?
- **3.** Soit $a, b \in]0, 1[$ avec a < b. La suite $(\ell_n)_{n \in \mathbb{N}^*}$ converge-t-elle uniformément vers ℓ sur [a, b]?

Pour tout $n \in \mathbb{N}^*$, on définit la fonction m_n de \mathbb{R}_+ vers \mathbb{R} par

$$m_n(x) = \frac{x^n}{1 + x + x^2 + \dots + x^n}.$$

- **1.** Montrer que la suite de fonctions $(m_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R}_+ vers une fonction m que l'on précisera.
- **2.** Montrer que pour tout $x \in \mathbb{R}_+$ et tout $n \in \mathbb{N}^*$, on a

$$\left|m_n(x)-m(x)\right|\leq \frac{1}{n+1}.$$

3. La suite $(m_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément vers m sur \mathbb{R}_+ ?