414D 20.03.2021 Grupa Data

Fişă laborator 2 - online rev. 1

ID = {G,N,M,T,S} N1=ascii("G")=71; N2=78; N3=77; N4=84; N5=83. ID=393 mod 100+1=93+1=94

1. Vizualizarea semnalului sinusoidal

a) $f_i = 50Hz$ $T_i = 0.02s = 20ms$ $A_i = 4V$

Stop
$$=40$$
ms

schemă montaj

grafic Vout

b) $A_{mas} = 0.254V$ $T_{mas} = 0.0202s = 20,2ms$

grafic V_{out} cu markeri

c) $\Delta t_1 = 0.0025 = 2.5 \text{ms}$

grafic V_{out} cu faza = -45 grade

relație Δt_I , T_i : $\Delta t_1 = T_i * \frac{\varphi_1}{360}$ Explicații imagine:

Avand un defazaj de -45°, semnalul sinusoidal porneste de la o amplitudine negativa cu o intarziere de timp de 2,5ms.

$$\Delta t_{1_calculat} = 20 * \frac{-45}{360} = -2,5 ms$$

$$\Delta t_{2_calculat} = 20 * \frac{-90}{360} = -5ms$$

d)
$$N_x = 5 div$$
 $C_x = 4 ms/div$

$$T_{i m \breve{a} s} = 20 m s$$

e) $Stop = T_1 = 20ms$ Step = 2ms

$$\Delta t_2 = 0.005 s = 5 ms$$

grafic V_{out} cu faza = -90 grade

relație Δt_2 , T_i : $\Delta t_2 = T_i * \frac{\varphi_2}{360}$ Explicații imagine:

Graficul semnalului sinusoidal se modifica, acesta plecand de la o amplitudine negativa, avand un defazaj de -90°, deplasandu-se exact cu un sfert de perioada fata de valoarea semnalului fara modificari de faza. (intarzierea de timp este de 5ms.

$$Stop = T_1/2 = 10ms$$
 $Step = 1ms$

$$N_x = 10 div \quad C_x = 2 ms/div \quad T_{i \text{ mas}} = 20 ms$$

$$N_x = 10 div C_x = 1 ms/div T_{i m as} = 10 ms$$

 $f) f_2 = 500Hz = 0.5kHz$

 $A_2 = 20V$

2. Setarea și măsurarea unui semnal sinusoidal cu componentă continuă

$$\mathbf{a}$$
) f_1 =20kHz

$$U_V$$
=2V U_{CC1} = -1V

schemă

grafic u(t) cu cursori $U_{max} = \mathbf{1V} \qquad U_{min} = -\mathbf{3V}$

$$\mathbf{b)} \qquad U_{\text{CC2}} = 0 \text{V}$$

$$U_{\text{CC3}}=1\text{V}$$

$$U_{max} = 2V$$
 $U_{min} = -2V$

$$U_{max} = 3V$$

$$U_{min} = -1V$$

Explicați efectul c.c. asupra graficelor:

Introducerea componentei continue transforma semnalul sinusoidal simetric,intr-un semnal nesimetric,valorile de minim si de maxim ale semnalului modificandu-se,aceste nemaifiind egale in modul. Media semnalului nu se mai realizeaza fata de valorea 0,ci de valorea pe care o are componenta continua. Nu modifica cu nimic numarul de diviziuni pe care se intinde semnalul,ci doar valorile de minim si maxim ale acestuia.

Explicație comutare AC \rightarrow DC cînd Ucc= +1V:

Atunci cand se trece de pe AC pe DC la Ucc=1V, semnalul se deplaseaza in sus cu 2 diviziuni. Valorile lui minime si maxime sunt determinate in functie de valoarea medie, aceasta fiind reprezentata de componenta continua(Ucc=1V). Se modifica valorile amplitunii minime si maxime, dar semnalul ramane reprezentat pe aceeasi numar de diviziuni.

c) $U_{\text{CC2}} = 0\text{V}$

 $U_{\text{CC3}}=1\text{V}$

$$T = \frac{\Lambda}{2} = \frac{1}{20.10^3} = 0.15.10^{-4} h = 50 \mu h$$

$$U = 1 + 10.150 = 1 + 1.88 = 2.88 V$$

$$U_{CC} = 0 V$$

$$u(t) \in [-2.88 V : 2.88 V]$$

$$A = \frac{1}{4} = \frac{50103}{100} = 012.1047 = 2017$$

$$A = \frac{1}{4} = \frac{50103}{100} = 012.1047 = 2017$$

3. Setarea unui semnal dreptunghiular; factorul de umplere

a) $A_i = 1V$ $f_i = 2000Hz = 2kHz$ $T_i = 0.0005s = 0.5ms$ Stop = 1ms

$$\tau_1 = 0.248 \text{ms}$$
 $T_1 = 0.497 \text{ms}$ $\eta_{ml} = 0.4989 = >49.89\%$

b) η_i =80% Daca factorul de umplere este de 80%, la o perioada de 0.5 ms inseamna ca durata impulsului τ =0.4ms

$$\tau_2 = 0.399 \text{ms}$$
 $T_2 = 0.798 \text{ms}$ $\eta_{m2} = 0.5 = 50\%$

Explicație valori extreme η :

Un factor de umplere de 100% ar insemna o livrare maxima a tensiunii,mentinandu-se constanta. Perioada unui semnal ar fi egala cu durata impulsului.

Daca factorul de umplere ar fi zero,nu am mai putea defini un semnal dreptunghiular.

4. Generarea unui semnal modulat în amplitudine

a)
$$U_1 = 4V$$
 $f_1 = 20 \text{ kHz}$ $m=1$ $U_2 = 2V$ $f_2 = 1 \text{ kHz}$

$$Stop = 5ms$$
 $Step = 0.0005s = 0.5ms$

$$A(t) = U_1[1+m*U_2*\sin(2*\pi*f_2*t)]$$

$$u(t) = U_1[1+m*U_2*\sin(2*\pi*f_2*t)]*\sin(2*\pi*f_1*t)$$

limitele
$$u(t)$$
: măsurate $A_{min} = -11.9V$ $A_{max} = 12V$ $A_{max_calc} = -11.6V$ $A_{max_calc} = 11.6V$

b)
$$m = 0.5$$

$$Stop = 5ms$$
 $Step = 0.0005s = 0.5ms$

$$A_{min} = -7.93$$
V $A_{max} = 7.99$ V $A_{min_calc} = -7.8$ V $A_{max_calc} = 7.8$ V

Explicație m:

Pe baza celor 2 grafice se poate observa că amplitudinile maxime, respectiv cele minime, s-au obținut în aceleași momente de timp, cu aceeași frecvență at $\hat{a}t$ pentru m=1, c $\hat{a}t$ si pentru m=0.5. Astfel, putem spune că rolul indicelui de modulație este de a transmite mai multe semnale (diferite ca amplitudine) pe același canal de frecvență, în același timp.

Explicație m=0:

Atunci când indicele de modulație este egal cu 0, se poate observa ca valoarea maximă a amplitudinii devine chiar amplitudinea semnalului de purtător.

$$U_1 = A_{max} = 4V$$

