

Lab 09

Fundamental Statistics

Applied Statistics and Experiments

Agenda

- 1. Discrete random variables
- 2. Continuous random variables
- 3. Descriptive statistics
- 4. Z-score

Lecture Recap

https://quizizz.com/join

Join and enter game code

Random variable

Mean - Median - Mode

The formula for variance uses squares. Therefore, the variance has different units

Variance - Standard deviation

f(x) is the probability mass function

Discrete random variables

the mean

$$E(x) = \mu = \sum x \cdot f(x)$$

• the **mode**

the peak (or local maximum) of f(x)

• the variance

$$Var(x) = \sum (x - \mu)^2 \cdot f(x) = E(x^2) - \mu^2$$

• the standard deviation

$$\sigma = \sqrt{Var\left(X\right)}$$

Discrete random variables - Median

```
Given a discrete random variable X, the median is that value m for which : P(X < m) \le 0.5 and P(X \le m) \ge 0.5
```

We have two cases:

Case 1 (Unique median): If P(X < x) < 0.5 then there is only one median which is m = x.

Case 2 (multiple medians): If $P(X < x_2) = 0.5$ then the previous value $x_1 < x_2$ holds $P(X \le x_1) = 0.5$ and the median is any number between x_1 and x_2 . For convenience, we choose the midpoint of the interval $[x_1, x_2]$ which is $m = \frac{x_1 + x_2}{2}$

A discrete random variable X has the following probability distribution table:

x	0	2	4	6
P(X=x)	$\frac{1}{7}$	$\frac{3}{7}$	$\frac{1}{7}$	$\frac{2}{7}$

- i. State the mode.
- ii. Calculate this discrete random variable's mean value.

A discrete random variable X has the following probability distribution table:

x	0	2	4	6
P(X=x)	$\frac{1}{7}$	$\frac{3}{7}$	$\frac{1}{7}$	$\frac{2}{7}$

- i. State the mode.
- ii. Calculate this discrete random variable's mean value.

i.
$$mode = argmax_x f(x) = 2$$
 (the value x at which f takes its maximum value $max(f) = \frac{3}{7}$)

ii.
$$E(X) = \mu = \sum x * f(x) = 0$$
. $\frac{1}{7} + 2$. $\frac{3}{7} + 4$. $\frac{1}{7} + 6$. $\frac{2}{7} = 3.14$

A discrete random variable \boldsymbol{X} has probability distribution table:

x	1	2	3	4	5
P(X=x)	$\frac{2}{10}$	$\frac{2}{10}$	k	$\frac{3}{10}$	$\frac{1}{10}$

- i. Find the value of k.
- ii. State the mode of X.
- iii. Calculate the expected value $E\left(\right. X\left) .$

A discrete random variable X has probability distribution table:

x	1	2	3	4	5
P(X=x)	2 10	$\frac{2}{10}$	k	$\frac{3}{10}$	$\frac{1}{10}$

- i. Find the value of k.
- ii. State the mode of X.
- iii. Calculate the expected value E(X).

i.
$$\frac{2}{10} + \frac{2}{10} + k + \frac{3}{10} + \frac{1}{10} = 1 \Longrightarrow k = 1 - \frac{2 + 2 + 3 + 1}{10} = \frac{2}{10} = 0.2$$

ii.
$$mode = argmax_x f(x) = 4$$
 (the value x at which f takes its maximum value $max(f) = \frac{3}{10}$)

iii.
$$E(X) = 1 * \frac{2}{10} + 2 * \frac{2}{10} + 3 * \frac{2}{10} + 4 * \frac{3}{10} + 5 * \frac{1}{10} = \frac{29}{10} = 2.9$$

Find the variance and standard deviation for the following data: 57, 64, 43, 67, 49, 59, 61, 59, 44, 47

Find the variance and standard deviation for the following data:

57, 64, 43, 67, 49, 59, 61, 59, 44, 47

The mean:
$$\mu = \frac{57 + 64 + 43 + 67 + 49 + 59 + 61 + 59 + 44 + 47}{10} = \frac{550}{10} = 55$$

The variance: $\sigma^2 = \frac{\sum (x - \mu)^2}{n} = \frac{2^2 + 9^2 + (-12)^2 + 12^2 + (-6)^2 + 4^2 + 6^2 + 4^2 + (-11)^2 + (-8)^2}{10} = \frac{662}{10} = 66.2$

The standard deviation: $\sigma = \sqrt{\sigma^2} = \sqrt{66.2} \approx 8.13$

Given the discrete random variable X, with probability distribution function:

$$f(x) = x^2/90$$
, where x={2, 3, 4, 5, 6}

- 1. Construct a probability distribution table for X.
- 2. State the mode of X.
- 3. Calculate the mean value of X.
- 4. Calculate standard deviation.
- 5. Construct a cumulative distribution table for X.
- 6. Find the median value of X.

1. Probility distribution function

x	2	3	4	5	6
f(x) = P(X = x)	4	9	16	25	36
	90	90	90	90	90

Exercise 4

$$2. mode = 6$$

3.
$$E(X) = \mu = \frac{440}{90} = 4.89$$

$$4. \ \sigma^2 = (2 - 4.89)^2 * \frac{4}{90} + (3 - 4.89)^2 * \frac{9}{90} + (4 - 4.89)^2 * \frac{16}{90} + (5 - 4.89)^2 * \frac{25}{90} + (6 - 4.89)^2 * \frac{36}{90}$$
$$= 1.3654\overline{3}$$

$$\sigma = \sqrt{1.365433} = 1.17$$

5. Cumulative distribution table

x	2	3	4	5	6
$F(x) = P(X \leqslant x)$	$\frac{4}{90}$	13 90	29 90	54 90	90 90

$$6. Median = 5$$

$$P(X < 5) = \frac{29}{90} = 0.32 \le 0.5 \text{ and } P(X \le 5) = \frac{54}{90} = 0.6 \ge 0.5 \text{ (5 is a unique median)}$$

 $P(X < 4) = \frac{13}{90} = 0.14 \le 0.5 \text{ but } P(X \le 4) = \frac{29}{90} = 0.32 < 0.5 \text{ (4 is not a median)}$

Discrete variable

Countable support

Probability mass function

Probabilities assigned to single values

Each possible value has strictly positive probability

Continuous variable

Uncountable support

Probability density function

Probabilities assigned to intervals of values

Each possible value has zero probability

f(x) is the probability density function

Continuous random variables

• the *mean*

$$\mu = \int_{-\infty}^{+\infty} x. f(x) dx$$

• the **median**

$$\int_{-\infty}^{m} f(x)dx = \frac{1}{2}$$

• the mode

the peak (or local maximum) of f(x)

the variance

$$Var(X) = E(X^2) - \mu^2$$

• the standard deviation

$$\sigma = \sqrt{Var(X)}$$

A continuous random variable X has probability density function defined as:

$$f(x) = \begin{cases} x^2/9, 0 \le x \le 3\\ 0, & elsewhere \end{cases}$$

Calculate:

- mean
- median
- mode
- variance
- standard deviation

mean =
$$E(X) = \int_0^3 x f(x) dx = \int_0^3 x \cdot \frac{x^2}{9} dx = \frac{x^4}{4*9} \Big|_0^3 = \frac{x^4}{36} \Big|_0^3 = \frac{3^4}{36} - 0 = \frac{81}{36} = \frac{9}{4} = 2.25$$

median = m such that
$$\int_0^m f(x) dx = 0.5$$

$$\int_0^m \frac{x^2}{9} dx = 0.5 \Longrightarrow \left. \frac{x^3}{27} \right|_0^m = 0.5 \Longrightarrow m^3 = \frac{27}{2} \Longrightarrow m = \sqrt[3]{\frac{27}{2}} \simeq 2.38$$

median is 2.38

$$mode = argmax_x f(x) = 3$$
 (the value x at which f takes its maximum value $max(f) = \frac{9}{9} = 1$)

$$variance = \sigma^2 = E(X^2) - E^2(X)$$

$$E(X)^2 = (2.25)^2 = 5.0625$$

$$E(X^2) = \int_0^3 x^2 f(x) \, dx = \int_0^3 x^2 \cdot \frac{x^2}{9} \, dx = \frac{x^5}{5*9} \Big|_0^3 = \frac{x^5}{45} \Big|_0^3 = \frac{3^5}{45} - 0 = 5.4$$

$$\sigma^2 = 5.4 - 5.0625 = 0.3375$$

$$\sigma = \sqrt{0.3375} \simeq 0.581$$

A continuous random variable X has probability density function defined as:

$$f(x) = \begin{cases} \sin(x)/2, 0 \le x \le \pi \\ 0, & elsewhere \end{cases}$$

Calculate:

- mean
- median
- mode
- variance
- standard deviation

mean =
$$E(X) = \int_0^{\pi} x f(x) dx = \int_0^{\pi} x \cdot \frac{\sin(x)}{2} dx = \frac{1}{2} \int_0^{\pi} x \cdot \sin(x) dx$$

We can use integration by parts:

$$\int u dv = u.v - \int v du$$

Exercise 6 u = x, dv = sin(x)dx

Integration by Partial Fractions

$$u = x$$
, $dv = sin(x)dx$
 $du = 1$, $v = -cos(x)$

$$E(X) = \frac{1}{2} \int_0^{\pi} x \cdot \sin(x) \, dx = \frac{1}{2} \left[-x \cos(x) \Big|_0^{\pi} - \int_0^{\pi} -\cos(x) \, dx \right] = \frac{1}{2} \left[-x \cos(x) \Big|_0^{\pi} + \sin(x) \Big|_0^{\pi} \right]$$
$$= \frac{1}{2} \left(-\pi \cos(\pi) + 0 + \sin(\pi) - \sin(0) \right) = \frac{1}{2} (\pi + 0 + 0 - 0) = \frac{\pi}{2}$$

median = m such that
$$\int_0^m f(x) dx = 0.5$$

$$\int_0^m \frac{\sin(x)}{2} dx = 0.5 \Longrightarrow \frac{-\cos(x)}{2} \Big|_0^m = 0.5 \Longrightarrow \cos(m) = -1 \Longrightarrow m = \pi + 2\pi k \text{ for integer } k \geqslant 0$$

but the range of values for X is [0, π], so k = 0 and median is $\frac{\pi}{2}$

$$mode = argmax_x f(x) = \frac{\pi}{2} \left(the \ value \ x \ at \ which \ f \ takes \ its \ maximum \ value \ max(f) = \frac{1}{2} \right)$$

$$variance = \sigma^2 = E(X^2) - E^2(X)$$

$$E(X)^2 = \left(\frac{\pi}{2}\right)^2 = \frac{\pi^2}{4}$$

$$E(X^2) = \int_0^{\pi} x^2 f(x) \, dx = \int_0^{\pi} x^2 \cdot \frac{\sin(x)}{2} \, dx = \frac{1}{2} \int_0^{\pi} x^2 \cdot \sin(x) \, dx$$

To calculate this integral, you need to apply integration by parts twice.

$$E(X^{2}) = \frac{1}{2} \left[\left(2x sin(x) - \left(x^{2} - 2 \right) cos(x) \right) \Big|_{0}^{\pi} \right] = \frac{1}{2} \left\{ \left(2\pi \cdot sin(\pi) - \left(\pi^{2} - 2 \right) cos(\pi) \right) - \left(0 - \left(0 - 2 \right) \cdot cos(0) \right) \right\}$$
$$= \frac{1}{2} \left(\pi^{2} - 2 - 2 \right) = \frac{\pi^{2} - 4}{2}$$

$$\sigma^2 = \frac{\pi^2 - 4}{2} - \frac{\pi^2}{4} = \frac{\pi^2}{4} - 2 \approx 0.467$$

$$\sigma = \sqrt{0.467} \approx 0.683$$

Z-score – Exercise 7

Suppose that the weight of navel oranges is normally distributed with mean $\mu = 8$ ounces, and standard deviation $\sigma = 1.5$ ounces. We can write $X \sim N(8, 1.5)$.

Answer the following questions:

- 1. What proportion of oranges weigh more than 11.5 ounces?
- 2. What proportion of oranges weigh between 6.2 and 7 ounces?

Z-score – Exercise 7

- 1. What proportion of oranges weigh more than 11.5 ounces?
- 2.What proportion of oranges weigh between 6.2 and 7 ounces?

$$Z \sim N(0, 1)$$

$$P(X > 11.5) = P(Z > \frac{11.5 - 8}{1.5}) = P(Z > 2.33) = 1 - 0.9901 = 0.0099$$

$$P(6.2 < X < 7) = P(\frac{6.2 - 8}{1.5} < Z < \frac{7 - 8}{1.5}) = P(-1.2 < Z < -0.67) = 0.2514 - 0.1151 = 0.1363$$

Exercise 8 – Median of discrete random variables

x	4	5	12	53	84	125
f(x) = P(X = x)	0.2	0.1	0.1	0.3	0.1	0.2
$F(x) = P(X \leqslant x)$	0.2	0.3	0.4	0.7	0.8	1

$$P(X < 12) = 0.3 \le 0.5$$
 but $P(X \le 12) = 0.4 < 0.5$ (12 is not a median) $P(X < 53) = 0.4 \le 0.5$ and $P(X \le 53) = 0.7 \ge 0.5$ (53 is a unique median) median is $m = 53$

Exercise 9 – Median of discrete random variables

x	4	5	12	53	84	125
f(x) = P(X = x)	0.2	0.1	0.1	0.1	0.3	0.2
$F(x) = P(X \leqslant x)$	0.2	0.3	0.4	0.5	0.8	1

$$P(X < 12) = 0.3 \le 0.5$$
 but $P(X \le 12) = 0.4 < 0.5$ (12 is not a median)
 $P(X < 53) = 0.4 \le 0.5$ and $P(X \le 53) = 0.5 \ge 0.5$ (53 is a candidate median)
 $P(X < 84) = 0.5 \le 0.5$ and $P(X \le 84) = 0.8 \ge 0.5$ (84 is also a candidate median)

The median is any number between 53 and 84. For convenience, we choose the midpoint of the interval [53, 84] which is $\frac{53 + 84}{2} = 68.5$

Exercise 10 – Median of discrete random variables

x	4	5	12	53	84	125
f(x) = P(X = x)	0.2	0.1	0.1	0.05	0.3	0.25
$F(x) = P(X \leqslant x)$	0.2	0.3	0.4	0.45	0.75	1

$$P(X < 53) = 0.4 \le 0.5$$
 but $P(X \le 53) = 0.45 < 0.5$ (53 is not a median) $P(X < 84) = 0.45 \le 0.5$ and $P(X \le 84) = 0.75 \ge 0.5$ (84 is a unique median) $m = 84$

Exercise 11 - Median of discrete random variables

x	0	1	4
f(x) = P(X = x)	$\frac{1}{3}$	$\frac{1}{3}$	1 3
$F(x) = P(X \le x)$	$\frac{1}{3}$	<u>2</u> 3	1

$$P(X < 1) = \frac{1}{3} \le 0.5 \text{ and } P(X \le 1) = \frac{2}{3} \ge 0.5 \text{ (1 is a unique median)}$$

$$P(X < 4) = \frac{2}{3} > 0.5 \text{ (4 is not a median)}$$

$$P(X < 0) = 0 \le 0.5 \text{ but } P(X \le 0) = \frac{1}{3} < 0.5 \text{ (0 is not a median)}$$

$$m = 1$$

Exercise 12 – Median of discrete random variables

x	0	1	2	3
f(x) = P(X = x)	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$F(x) = P(X \leqslant x)$	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{3}{4}$	1

$$P(X < 1) = \frac{1}{4} \le 0.5$$
 and $P(X \le 1) = \frac{2}{4} = 0.5$ (1 is a candidate median)
 $P(X < 2) = \frac{2}{4} = 0.5$ and $P(X \le 2) = \frac{3}{4} \ge 0.5$ (2 is a candidate median)
 $P(X < 0) = 0 \le 0.5$ but $P(X \le 0) = \frac{1}{4} < 0.5$ (0 is not a median)
 $m = \frac{1+2}{2} = 1.5$

Note: *X here is uniformly distributed and the median of a discrete uniform distribution is*:

$$\frac{a+b}{2} = \frac{0+3}{2} = 1.5$$

Attendance https://baam.duckdns.org

Questions?