E21 - IFT2105 - TP1

Fait par Rémi Ligez (remi.ligez@umontreal.ca)

$$\# 1 : |V| = |E| + 1$$

Prouver, par induction structurelle, que le nombre de sommets (|V|) d'un arbre binaire non-vide est égal au nombre d'arêtes (|E|) + 1.

Note : On verra au TP comment définir un arbre binaire non-vide de façon récursive.

$$\# 2 : |V| \le 2^{h+1} - 1$$

Prouver, par induction structurelle, qu'un arbre binaire non-vide de hauteur h a au plus 2^{h+1} - 1 sommets (|V|).

#3 : Ensemble S

Soit l'ensemble S contenant des éléments de \mathbb{Z}^2 :

Base :
$$(0,0) \in S$$

Règle : $(a,b) \in S \implies (a,b+1) \in S \land$

$$(a+1,b+1) \in S \land$$

$$(a+2,b+1) \in S$$

Prouver, par induction structurelle, que \forall (a,b) \in S, a \leq 2b.

#4 : Multiples de 3

Soit l'ensemble S contenant des éléments de \mathbb{N} :

Base : $3 \in S$

Règle:
$$(x \in S) \land (y \in S) \implies (x + y) \in S$$

Prouver que $S = \{3n : n \in \mathbb{N}^*\}$, l'ensemble des multiples de 3 positifs.

#5: Un langage défini récursivement

Soit $\Sigma = \{a,b\}$, un alphabet.

Soit \mathcal{L} , un langage :

Base : $\varepsilon \in \mathcal{L}$

Règle : $x \in \mathcal{L} \implies (axa \in \mathcal{L}) \land (bxb \in \mathcal{L})$

Prouver que \forall mot $w \in \mathcal{L}$, la longueur du mot w (|w|) est paire.

Note : On verra au TP ce qu'est un alphabet, un mot et un langage.