Marcus Domingo

HW3 Due Date: 3/22/2017

6.16)

a. $EMP_WORKS10 \leftarrow (EMPLOYEE\bowtie_{Ssn=Essn}(\sigma_{Hours>10}(WORKS_ON))$ $EMP_WORKS10_PRODX \leftarrow (\sigma_{Pname='ProductX'}(PROJECT))\bowtie_{Pnumber=Pno}(EMP_WORKS10)$ $RESULT \leftarrow (\pi_{Fname,Lname}(\sigma_{Dno=5}(EMP_WORKS10_PRODX))$

Fname	Lname
John	Smith
Joyce	English

b. $EMP_W_DEP \leftarrow (EMPLOYEE\bowtie_{Ssn}=Essn(DEPENDENT))$ $RESULT \leftarrow (\pi_{Fname,Lname}(\sigma_{Fname}=Dependent_name}(EMP_W_DEP))$

Fname	Lname		

c. WONG_SSN $\leftarrow \pi_{Ssn}(\sigma_{Fname='Franklin',Lname='Wong'}(EMPLOYEE))$ RESULT $\leftarrow \pi_{Fname,Lname}(EMPLOYEE\bowtie_{Superssn=Ssn}(WONG_SSN))$

Fname	Lname
John	Smith
Ramesh	Narayan
Joyce	English

d. PROJ_SUM_HOURS $\leftarrow \rho_{R(Pno,Total_hours)}(Pno\mathfrak{T}_{SUM\ Hours}(WORKS_ON))$ RESULT $\leftarrow \pi_{Pname,Total_hours}(PROJ_SUM_HOURS\bowtie_{Pnumber=Pno}(PROJECT))$

Pname	Total_hours	
ProductX	52.5	
ProductY	37.5	
ProductZ	50.0	
Computerization	55.0	
Reorganization	25.0	
Newbenefits	55.0	

e. EMP_PNOS $\leftarrow \rho_{R(Pno,Ssn)}(\pi_{Pno,Essn}(WORKS_ON))$ $ALL_PNOS \leftarrow \rho_{R(Pno)}(\pi_{Pnumber}(PROJECT))$ $EMP_ALL_PNOS \leftarrow EMP_PNOS \div ALL_PNOS$ $RESULT \leftarrow \pi_{Fname_Lname}(EMP_ALL_PNOS * EMPLOYEE)$

Fname	Lname

f. EMPS $\leftarrow \pi_{Ssn}(EMPLOYEE)$

EMPS_WORK $\leftarrow \rho_{R(Ssn)}(\pi_{Essn}(WORKS_ON))$

RESULT $\leftarrow \pi_{\text{Fname},\text{Lname}}(\text{EMPLOYEE} * (\text{EMPS} - \text{EMPS}_{\text{WORK}}))$

Fname	Lname

Marcus Domingo

HW3 Due Date: 3/22/2017

g. DEPT_AVG $\leftarrow \rho_{R(Dnumber,Avg_sal)}(Dno\Im_{AVG\,Salary}(EMPLOYEE))$ RESULT $\leftarrow \pi_{Dname,Avg_sal}(DEPARTMENT * DEPT_AVG)$

Dname	Avg_sal
Research	33250
Administration	31000
Headquarters	55000

h. RESULT $\leftarrow \rho_{R(Avg_sal)}(\mathfrak{I}_{AVG\ Salary}(\sigma_{Sex='F'}EMPLOYEE))$

Avg_sal	
31000	

i. $HOUSTON_PROJ \leftarrow \rho_{R(Pname,Pno,Plocation,Dnum)}(\sigma_{Plocation='Houston'}(PROJECT))$ $EMP_HOUSTON_PROJ \leftarrow \rho_{R(Ssn)}(\pi_{Essn}(WORKS_ON * HOUSTON_PROJ))$ $DEPT_NOT_HOUSTON \leftarrow \rho_{R(Dno)}(\pi_{Dnumber}(\sigma_{Dlocation<>'Houston'}(DEPARTMENT)))$ $EMP_NOT_HOUSTON \leftarrow \pi_{Ssn}(EMPLOYEE * DEPT_NOT_HOUSTON)$ $RESULT \leftarrow \pi_{Fname_Lname_Address}(EMPLOYEE * (EMP_HOUSTON_PROJ - EMP_NOT_HOUSTON))$

Fname Lname		Address	
Jennifer Wallace		291 Berry, Bellaire, TX	

j. $DEPT_MANG \leftarrow \rho_{R(Ssn)}(\pi_{Mgrssn}(DEPARTMENT))$ $EMP_W_DEP \leftarrow \rho_{R(Ssn)}(\pi_{Essn}(DEPENDENT))$ $RESULT \leftarrow \pi_{Fname,Lname}(EMPLOYEE * (DEPT_MANG - EMP_W_DEP))$

Fname	Lname
James	Borg

6.17)

a) DEPART←_{Flight_number}ℑ_{MIN Leg_number}(FLIGHT_LEG)
ARRIVE←_{Flight_number}ℑ_{MAX Leg_number}(FLIGHT_LEG)
DEPART_AIRPORT← π_{Flight_number,Departure_airport_code}(DEPART * FLIGHT_LEG)
ARRIVE_AIRPORT← π_{Flight_number,Arrival_airport_code}(ARRIVE * FLIGHT_LEG)
RESULT←(DEPART * ARRIVE)

b) DEPART_HOUSTON $\leftarrow \sigma_{Departure_airport_code='IAH'}(FLIGHT_LEG)$ ARRIVE_LA $\leftarrow \sigma_{Arrival_airport_code='LAX'}(FLIGHT_LEG)$ RESULT $\leftarrow \pi_{Flight_number,Weekdays}(FLIGHT * (DEPART_HOUSTON * ARRIVE_LA))$

c) DEPART_HOUSTON $\leftarrow \sigma_{Departure_airport_code='IAH'}(FLIGHT_LEG)$ ARRIVE_LA $\leftarrow \sigma_{Arrival_airport_code='LAX'}(FLIGHT_LEG)$ RESULT $\leftarrow \pi_{Flight_number,Departure_airport_code,Scheduled_departure_time,Arrival_airport_code,Scheduled_arrival_time,}$ Weekdays(FLIGHT * (DEPART_HOUSTON * ARRIVE_LA))

d) RESULT $\leftarrow \sigma_{\text{Flight_number}='CO197'}(\text{FARE})$

Marcus Domingo HW3 Due Date: 3/22/2017

e) RESULT $\leftarrow \pi_{\text{Number_of_available_seats}}(\sigma_{\text{Flight_number='CO197' AND Date='2009-10-09'}}(\text{LEG_INSTANCE}))$

6.18)

- a) LOST_TRIBE $\leftarrow \sigma_{Title="The Lost Tribe"}(BOOK)$ SHARPSTOWN $\leftarrow \sigma_{Branch_name="Sharpstown"}(LIBRARY_BRANCH)$ RESULT $\leftarrow \pi_{No_of_copies}((LOST_TRIBE * BOOK_COPIES) * SHARPSTOWN)$
- b) LOST_TRIBE $\leftarrow \sigma_{Title="The Lost Tribe"}(B00K)$ RESULT $\leftarrow \pi_{Title,Brance_name,No_of_copies}((LOST_TRIBE * B00K_COPIES) * LIBRARY_BRANCH)$
- c) LOANED $\leftarrow \pi_{Card_no}(BOOK_LOANS)$ MEMBERS $\leftarrow \pi_{Card_no}(BORROWER)$ RESULT $\leftarrow \pi_{Name}(BORROWER * (MEMBERS - LOANED))$

This relational algebra is assuming that you can sign-up to be a borrower but not have borrowed a book and that after books are returned the entry is removed from BOOK_LOAN.

d) SHARPSTOWN \leftarrow $\sigma_{Branch_name='Sharpstown')}(LIBRARY_BRANCH)$ DUE_TODAY \leftarrow $\sigma_{Due_date='2017-03-22'}(BOOK_LOANS)$ DUE_TODAY_SHARPSTOWN \leftarrow ((SHARPSTOWN * DUE_TODAY) * BOOK) RESULT \leftarrow $\pi_{Title.Name.Address}(DUE_TODAY_SHARPSTOWN * BORROWER)$

This relational algebra is using today's actual date (03/22/2017) as the Due_date of today and the date format is assumed from 6.17) e).

- e) LOAN_COUNT $\leftarrow \rho_{R(Brancg_id,Loan_count)}(Branch_id \Im_{COUNT\ Book_id}(BOOK_LOANS))$ RESULT $\leftarrow \pi_{Branch_name,\ Loan_count}(LOAN_COUNT\ * LIBRARY_BRANCH)$
- f) LOAN_COUNT $\leftarrow \rho_{R(Card_no,Loan_count)}(Card_no \mathfrak{I}_{COUNT Book_id}(BOOK_LOANS))$ LOAN_COUNT_5 $\leftarrow \sigma_{Loan_count>5}(LOAN_COUNT)$ RESULT $\leftarrow \pi_{Name,Address,Loan_count}(BORROWER * LOAN_COUNT_5)$
- g) CENTRAL $\leftarrow \sigma_{Branch_name='Central'}$ (LIBRARY_BRANCH) KING $\leftarrow \sigma_{Author_name='Stephen King'}$ (BOOK_AUTHORS) KING_BOOKS \leftarrow KING * BOOK RESULT $\leftarrow \pi_{Title,No\ of\ copies}$ ((BOOK_COPIES * CENTRAL) * KING_BOOKS)

6.21)

- a) SMITH $\leftarrow \pi_{Ssn}(\sigma_{Name='John\ Smith'}(STUDENT))$ SMITH_COURSES \leftarrow SMITH * ENROLL SMITH_COURSE_COUNT $\leftarrow \rho_{R(Quarter,Course_count)}(Quarter \Im_{COUNT\ Course\#}(SMITH_COURSES))$ RESULT $\leftarrow \pi_{Course\ count}(\sigma_{Ouarter='W09'}(SMITH_COURSE_COUNT))$
- b) CS_COURSES $\leftarrow \sigma_{Dept='CS'}(COURSE)$ CS_COURSES_BOOKS $\leftarrow ((CS_COURSES * BOOK_ADOPTION) * TEXT)$ CS_BOOKS_COUNT $\leftarrow \rho_{R(Course\#,Book_title,Book_Count)}(Course\#,Book_title}$ COUNT

 Book_isbn(CS_COURSES_BOOKS))
 CS_BOOKS_COUNT_INFO \leftarrow CS_BOOKS_COUNT * TEXT

 RESULT $\leftarrow \pi_{Course\#,Book_isbn,Book_title}(\sigma_{Book_count>2}(CS_BOOKS_COUNT_INFO)$

Marcus Domingo

HW3 Due Date: 3/22/2017

c) NOT_PEARSON $\leftarrow \sigma_{Publisher <> Pearson Publishing'}$ (TEXT) NOT_PEARSON_DEPT $\leftarrow \pi_{Dept}$ ((PEARSON * BOOK_ADOPTION) * COURSE) ALL_DEPT $\leftarrow \pi_{Dept}$ (BOOK_ADOPTION * COURSE) RESULT \leftarrow ALL_DEPT - NOT_PEARSON_DEPT

6.23)

- a) JANE $\leftarrow \sigma_{Name='Jane\ Doe'}(SALESPERSON)$ RESULT $\leftarrow \pi_{Serial\#,Manufacturer,Sale_price}((JANE * SALE) * CAR)$
- b) $CAR_W_OPTIONS \leftarrow \pi_{Serial\#,Model}(CAR * OPTION)$ $ALL_CARS \leftarrow \pi_{Serial\#,Model}(CAR)$ $RESULT \leftarrow ALL_CARS - CAR_W_OPTIONS$
- c) The left outer join (SALESPERSON ⋈ SALE) will result in any SALESPERSON that didn't make a sale to be padded for Serial_no, Date, Sale_price.

EXAMPLE:

Sal	lesperson_id	Name	Phone	Serial_no	Date	Sale_price
	1	John Smith	4445556666	01	2016-04-10	30000
	2	Jane Doe	2223334444	NULL	NULL	NULL

d) SALESPERSON_SALE $\leftarrow \pi_{Serial_no}(SALESPERSON * SALE)$ $CAR_W_OPTIONS \leftarrow \pi_{Serial_no}(CAR * OPTION)$ $RESULT \leftarrow SALESPERSON_SALE \cap CAR_W_OPTIONS$

English: List all the Cars that were sold that had options.

6.32)

A. RESULT
$$\leftarrow \pi_{Fname,Lname}(\sigma_{Dno} = (EMPLOYEE))$$

$$(\pi_{Dno}(\sigma_{Salary} = (EMPLOYEE)))$$

$$(\mathfrak{F}_{MAX \, Salary}(EMPLOYEE))$$

B. RESULT
$$\leftarrow \pi_{\text{Fname,Lname}}(\sigma_{\text{Superssn}=})$$
 (EMPLOYEE)) $(\pi_{\text{Ssn}}(\sigma_{\text{Superssn}='888665555'}(\text{EMPLOYEE})))$

C. RESULT
$$\leftarrow \pi_{\text{Fname},\text{Lname}}(\sigma_{\text{Salary}}) + (EMPLOYEE)$$

$$(\pi_{\text{Salary}}(\sigma_{\text{Salary}}) + (EMPLOYEE))$$

$$(\mathfrak{F}_{\text{MIN Salary}}(\text{EMPLOYEE}))$$