Lateral Math for Undergrads

Rule One Any mathematics at all, even a single character, gets a mathematical setting. Thus, for "the value of x is 7" enter the value of x is \$7\$.

Template Your document should contain at least this.

```
\documentclass{article}
\usepackage{mathtools,amssymb,amsthm} % imports amsmath
\begin{document}
    --document body here--
\end{document}
```

Common constructs

```
x^2 x^2 \sqrt{2}, \sqrt[n]{3} \sqrt{2}, \sqrt[n]{3} x_{i,j} x_{i,j} \frac{2}{3}, 2/3 \frac{2}{3}, 2/3
```

Calligraphic letters Use as in \$\mathcal{A}\$.

Get script letters, such as \mathscr{P} from $\mathrm{mathscr}\{P\}$, by putting $\mathrm{sepackage}\{\mathrm{mathrsfs}\}\$ in the preamble.

Greek

α \alpha	ξ,Ξ \xi,\Xi
eta \beta	0 0
γ,Γ \gamma, \Gamma	π,Π \pi,\Pi
δ,Δ \delta, \Delta	$arpi$ \varpi
ϵ \epsilon	$ ho$ \rho
arepsilon	$arrho$ \varrho
ζ \zeta	σ, Σ \sigma, \Sigma
η \eta	ς \varsigma
$\theta~\Theta~$ \theta, \Theta	$ au$ \tau
ϑ \vartheta	v, Υ \upsilon, \Upsilon
ι \iota	ϕ,Φ \phi,\Phi
κ \kappa	$arphi$ \varphi
$\lambda~\Lambda~$ \lambda, \Lambda	χ \chi
μ \mu	ψ,Ψ \psi,\Psi
ν \nu	ω,Ω \omega, \Omega

Sets and logic

\cup	\cup	\mathbb{R}	\mathbb{R}	\forall	\forall
\cap	\cap	\mathbb{Z}	\mathbb{Z}	\exists	\exists
\subset	\subset	\mathbb{Q}	\mathbb{Q}	\neg	\neg
\subseteq	\subseteq	\mathbb{N}	\mathbb{N}	\vee	\vee
\supset	\supset	\mathbb{C}	\mathbb{C}	\wedge	\wedge
\supseteq	\supseteq	Ø	\vert varnothing	\vdash	\vdash
\in	\in	Ø	\emptyset	=	$\mbox{\mbox{\mbox{models}}}$
∉	\n	×	\aleph	\	\setminus

Negate an operator, as in $\not\subset$, with \not\subset. Get the set complement A^c with A^{\complement} , or \overline{A} with \overline{A}).

Decorations

$$f'$$
 f' \dot{a} \dot{a} \tilde{x} \tilde{x} f'' f'' \ddot{a} \ddot{a} \bar{x} \bar{x} Σ^* \Sigma^{*} \hat{x} \hat{x} \vec{x} \vec{x}

If the decorated letter is i or j then some decorations need $\mbox{\sc hundred}$ as in $\mbox{\sc hundred}$. Some authors use boldface for vectors: $\mbox{\sc hundred}$.

Entering \overline{x+y} produces $\overline{x+y}$, and \widehat{x+y} gives $\widehat{x+y}$. Comment on an expression as here (there is also \overbrace{..}).

$$\underbrace{x+y}_{|A|}$$
 \underbrace{x+y}_{|A|}

Dots Use low dots in a list $\{0,1,2,\ldots\}$, entered as $\{0,1,2,\ldots\}$. (If you use $\lower label{loop}$ with London, Paris, $\lower label{loop}$ then note the thinspace $\lower label{loop}$, before the period.) Use centered dots in a sum or product $1+\cdots+100$, entered as $1+\cdot s+100$. You can also get vertical dots $\dot s$ and diagonal dots $\dot s$.

Roman names Enter \tan(x), with a backslash, instead of tan(x). These get the same treatment.

```
\sin
    \sin
            sinh \sinh
                          arcsin \arcsin
\cos
    \cos
            \cosh
                 \cosh
                          arccos
                                 \arccos
                          arctan \arctan
\tan
    \tan
            tanh \tanh
            coth \coth
                          min \min
\sec
    \sec
CSC
    \csc
            det \det
                          max \max
\cot
    \cot
            dim \dim
                          inf \inf
    \exp
            ker \ker
                          sup \sup
exp
\log \log
            deg \deg
                          lim inf \liminf
ln \ln
                          lim sup \limsup
            arg \arg
lg
   \lg
            gcd \gcd
                          lim \lim
```

Other symbols

<	<	_	\angle	•	\cdot
\leq	\leq	4	\measuredangle	\pm	\pm
>	>	ℓ	\ell	Ŧ	\mp
\geq	\geq		\parallel	×	\times
\neq	\neq	45	° 45^{\circ}	÷	\div
\ll	\11	\cong	\cong	*	\ast
\gg	\gg	\ncong	\ncong		\mid
\approx	\approx	\sim	\sim	1	\nmid
\simeq	$\agnumber \agnumber \agn$	\simeq	\simeq	n!	n!
=	\equiv	\sim	\n	∂	\partial
\prec	\prec	\oplus	\oplus	∇	\nabla
\preceq	\preceq	\ominus	\ominus	\hbar	\hbar
\succ	\succ	\odot	\odot	0	\circ
\succeq	\succeq	\otimes	\otimes	*	\star
\propto	\propto	\oslash	\oslash		\surd
$\dot{=}$	\doteq	1	\upharpoonright	\	\checkmark

Use a\mid b for the divides relation, $a \mid b$, and a\nmid b for the negation, $a \nmid b$. Also use \mid to get set builder notation $\{a \in S \mid a \text{ is odd}\}\$, with \{a\in S\mid\text{\$a\$ is odd}\}.

Arrows

The right arrows in the first column have matching left arrows, such as **\nleftarrow**, and there are some other matches for down arrows, etc.

Variable-sized operators The summation $\sum_{j=0}^{3} j^2 \sum_{j=0}^{3} j^2 \int_{x=0}^{3} x^2 dx \int_{x=0}^{3} x^2 dx$ \int_{x=0}^3 x^2\,dx expand when displayed.

$$\sum_{j=0}^{3} j^2 \qquad \int_{x=0}^{3} x^2 \, dx$$

These do the same.

Fences

Fix the size with \big, \Big, \bigg, or \Bigg.

$$\left[\sum_{k=0}^n e^{k^2}\right] \quad \texttt{\Big[\sum_{k=0}^n e^{k^2}]} \quad \texttt{\Big[\sum_{k=0}^n e^{k^2}]}$$

To have them grow with the enclosed formula, use \left and \right (although sometimes \big, etc., are necessary).

$$\left\langle i,2^{2^{i}}\right\rangle$$
 \left\langle i,2^{2^i}\right\rangle

Every \left must match a \right and they must end on the same line in the output. For a one-sided fence, put a \left. or \right. on the other side.

$$\left. \frac{df}{dx} \right|_{x_0} \ \ \left| \frac{df}{dx} \right|_{x_0}$$

Arrays, Matrices Make an array of mathematical text as you make a table of plain text.

Definition by cases is an array with two columns.

$$f_n = \begin{cases} a & \text{if } n = 0 \\ r \cdot f_{n-1} & \text{else} \end{cases} \quad \begin{array}{c} \text{f_n=} \\ \text{begin{cases}} \\ \text{a} & \text{\&\text{\text{if $n=0$}} \ \ } \\ \text{r \cdot f_{n-1} & \&\text{\text{else}}} \\ \text{\ \ end{cases}} \end{cases}$$

A matrix is an array with fences. With a pmatrix environment, you need not specify column alignments.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \begin{array}{c} \texttt{\begin\{pmatrix\}} \\ \texttt{a & \&b \ \backslash } \\ \texttt{c & \&d} \\ \texttt{\end\{pmatrix\}} \\ \end{array}$$

For the determinant use |A| inline and vmatrix in display. Spacing in mathematics Improve $\sqrt{2}x$ to $\sqrt{2}x$ with a thin space, as in \sqrt{2}\,x. Slightly wider are \: and \; (the three are in ratio 3:4:5). Get the improvement of $n/\log n$ instead of $n/\log n$ by using a negative thin space, as in $n/\frac{\log n}$ Bigger spaces are: \quad for \rightarrow \leftarrow , and \quad for \rightarrow \leftarrow , which are useful between parts of a display. Get arbitrary space as in \hspace*{0.5cm}.

Displayed equations The equation* environment puts an equation on a separate line.

$$S = k \cdot \lg W \qquad \begin{array}{l} \texttt{\begin{equation*}\\ S=k \backslash cdot \backslash lg\ W\\ \backslash end{equation*}} \end{array}$$

You can break into multiple lines.

$$\sin(x) = x - \frac{x^3}{3!}$$

$$+ \frac{x^5}{5!} - \cdots$$
\text{begin{multline*} \text{multline*} \text{hfrac}{x^5}{5!} - \cdots \text{end}{multline*}

Align equations using align*

(the left or right side of an alignment can be empty). For each environment, get a numbered version by dropping the asterisk from the name.

Calculus examples The last three here are display style.

 $f \colon \mathbb{R} \to \mathbb{R}$ f\colon\mathbb{R}\to\mathbb{R}

$$9.8~\mathrm{m/s^2}$$
 $9.8^{\mathrm{text}m}/\mathrm{text\{s\}^2}$

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \qquad \lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = \int x^2 \, dx = x^3/3 + C \qquad \text{int x^2\,dx=x^3/3+C}$$

$$\nabla = \pmb{i} \frac{d}{dx} + \pmb{j} \frac{d}{dy} + \pmb{k} \frac{d}{dz} \quad \text{\nabla=\boldsymbol{i}\frac{d}{dx}} + \cdots$$

Discrete mathematics examples There are four modulo forms: $m \mod n$ is from $m \mod n$, and $a \equiv b \pmod m$ is from a\equiv b\mod m, and $a \equiv b \mod m$ is from a\equiv b\mod m, and $a \equiv b \pmod m$ a\equiv b\mod m.

For combinations the binomial symbol $\binom{n}{k}$ is from \binom{n}{k}. This resizes to be bigger in a display (to require the display version use \dbinom{n}{k} and require the inline version with \tbinom{n}{k}.

For permutations use n^r from n^{\perp} (some authors use P(n,r), or n^r from {}_nP_r).

Statistics examples

$$\sigma^2 = \sqrt{\sum (x_i - \mu)^2/N} \quad \text{sigma^2=\operatorname{\sqrt{\sqrt{\sqrt{x_i - \mu}}^2/N}}} \\ E(X) = \mu_X = \sum (x_i - P(x_i)) \quad E(X) = \mu_X = \sup (x_i - P(x_i))$$

The probability density of the normal distribution

$$\frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

comes from this.

For more See also the Comprehensive LATEX Symbols List at mirror.ctan.org/info/symbols/comprehensive and DeTEXify at detexify.kirelabs.org/classify.html.