Math 324 A - Summer 2017 Midterm exam 2 Friday, July 28th, 2017

Name:	

10	
15	
10	
15	
50	
	15 10 15

- There are 4 questions on this exam. Make sure you have all four.
- You must show your work on all problems. The correct answer with no supporting work may result in no credit. Put a box around your FINAL ANSWER for each problem and cross out any work that you don't want to be graded.
- Give exact answers, and simplify as much as possible. For example, $\frac{\pi}{\sqrt{2}}$ is acceptable, but 3/4+1/2 should be reduced to 5/4.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- Any student found engaging in academic misconduct will receive a score of 0 on this exam.
- You have 60 minutes to complete the exam. Budget your time wisely!

- 1. (10 pts) Let f(x,y) be a function on \mathbb{R}^2 . Assume that the minimum value of $D_u f(1,-3)$ is attained when $u = -\frac{\sqrt{2}}{2}\hat{i} + \frac{\sqrt{2}}{2}\hat{j}$. Also, assume $\frac{\partial f}{\partial x}(1,-3) = +4$.
 - (a) (5 pts) Find $\nabla f(1, -3)$.

(b) (2 pts) What unit vector v maximizes $D_v f(1, -3)$?

(c) (3 pts) Given your answer from part (a), is it possible that $f(x,y) = 10 - x^2 - 3xy + x$? Explain.

2.	(15 pts) Let D	be the region in	the plane under	the parabola $y = 4 - x^2$	² and above the line $y = 3x$.

(a) (3 pts) Draw D, and find the points where the two bounding curves meet.

(b) (7 pts) Consider the change of coordinates u = x, v = y - 3x. Draw the image of D in the u-v plane, and find the Jacobian of the transformation.

(c) (5 pts) Parameterize the double integral $\iint_D (x+y) dA$ in terms of u's and v's. You do not need to evaluate it.

- 3. (10 pts) Consider the vector field $F = 3x^2y\hat{i} + x^3\hat{j}$.
 - (a) (5 pts) Is F conservative? If so, find a potential function; if not, explain how you know it isn't conservative.

(b) (5 pts) Let C be the curve consisting of the part of the circle $x^2 + y^2 = 1$ below the x-axis, from (1,0) to (-1,0), followed by the line segment from (-1,0) to (1,1). Evaluate $\int_C F \cdot dr$.

- 4. (15 pts) Let R be the circle of radius 1 centered at (0,0), and let $C = \partial R$ be the boundary of R, oriented counter-clockwise.
 - (a) (10 pts) Use Green's theorem to evaluate

$$\int_C x^3 \, dy.$$

(b) (5 pts) Verify your answer from part (a) by evaluating the line integral directly.