Chapitre 8

Géométrie élémentaire de l'espace

Objectifs

- Rappeler les différents modes de repérage dans l'espace
- Rappeler les notions de produit vectoriel, de produit scalaire et de produit mixte ainsi que leurs applications.
- Étudier les droites, les plans et les sphères de l'espace.

Sommaire

I)	Les modes de repérage		1
	1)	Repère cartésien	1
	2)	Repère orthonormal	2
	3)	Repère orthonormal direct	3
	4)	Coordonnées cylindriques et coordonnées sphériques	4
II)	Prod	uit scalaire, produit vectoriel	5
	1)	Produit scalaire	5
	2)	Produit vectoriel	5
	3)	Produit mixte	6
III)	Droites, plans et sphères		8
	1)	Le cas des plans	8
	2)	Le cas des droites	9
	3)	Sphères	12
IV)	Exerc	cices	13

& désigne l'espace usuel.

Les modes de repérage I)

Repère cartésien

DÉFINITION 8.1

Un repère \mathcal{R} de l'espace est la donnée d'un point O appelé **origine** et de trois vecteurs \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} **non coplanaires** appelés **vecteurs de base**, on note $\Re = (O, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ et $\Re = (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ la base associée. Les droites passant par O et de vecteurs directeurs respectifs, \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} sont appelés **les** axes du repère et notées (Ox), (Oy) et (Oz).

√ THÉORÈME 8.1

Soit \overrightarrow{a} un vecteur quelconque de l'espace, il existe des réels x, y, z tels que $\overrightarrow{a} = x \overrightarrow{u} + y \overrightarrow{v} + z \overrightarrow{w}$ et **le triplet** (x, y, z) **est unique**. Les réels x, y, z sont appelés **coordonnées** de \overrightarrow{a} dans la base \mathfrak{B} .

Preuve: En effet, cela découle du résultat suivant : si $x\overrightarrow{u} + y\overrightarrow{v} + z\overrightarrow{w} = \overrightarrow{0}$ alors x = y = z = 0 (par l'absurde : si $x \neq 0$ alors les trois vecteurs de base sont coplanaires).

FIGURE 8.1: Coordonnées dans l'espace

Soit M un point de l'espace, les coordonnées de M dans le repère $\mathcal R$ sont par définition, les coordonnées du vecteur \overrightarrow{OM} dans la base $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$, autrement dit :

$$M(x, y, z) \iff \overrightarrow{OM} = x\overrightarrow{u} + y\overrightarrow{v} + z\overrightarrow{w}.$$

Soient A(x, y, z) et B(x', y', z'), les coordonnées du vecteur \overrightarrow{AB} sont (x' - x, y' - y, z' - z) car $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$.

Le choix d'un repère cartésien permet d'identifier l'espace à l'ensemble \mathbb{R}^3 .

Repère orthonormal

On choisit arbitrairement un repère $\mathcal{R}_0 = (O, \overrightarrow{u}_0, \overrightarrow{v}_0, \overrightarrow{w}_0)$, on définit alors la notion de distance et d'orthogonalité de la manière suivante :

Soient $\overrightarrow{a}(x, y, z)$ et $\overrightarrow{b}(x', y', z')$ deux vecteurs de \mathscr{E} :

- La norme du vecteur \overrightarrow{a} est $\|\overrightarrow{a}\| = \sqrt{x^2 + y^2 + z^2}$. La distance d'un point A à un point B de \mathscr{E} est la norme du vecteur \overrightarrow{AB} : $AB = ||\overrightarrow{AB}||$.
- Les vecteurs \overrightarrow{a} et \overrightarrow{b} sont dits orthogonaux lorsque $\|\overrightarrow{a} + \overrightarrow{b}\|^2 = \|\overrightarrow{a}\|^2 + \|\overrightarrow{b}\|^2$.

Une fois ce choix [arbitraire] effectué, on dit que l'espace & est euclidien.

Remarques:

- La définition de l'orthogonalité est cohérente avec le théorème de *Pythagore* du plan.
- Avec la définition de norme dans le repère \mathcal{R}_0 , on a : $\|\overrightarrow{a} + \overrightarrow{b}\|^2 \|\overrightarrow{a}\|^2 \|\overrightarrow{b}\|^2 = 2(xx' + yy' + zz')$, la définition d'orthogonalité devient alors xx' + yy' + zz' = 0.
- Avec cette définition, le repère \mathcal{R}_0 est un repère **orthonormal**.

√ THÉORÈME 8.2

 $Soit \ \mathcal{R}_1 = (O', \overrightarrow{u}_1, \overrightarrow{v}_1, \overrightarrow{w}_1) \ un \ autre \ repère \ orthonormal, \ soit \ \overrightarrow{a}' \ de \ coordonnées \ (x,y,z) \ dans \ \mathcal{R}_0$ et (x_1, y_1, z_1) dans \mathcal{R}_1 , et \overrightarrow{b} de coordonnées (x', y', z') dans \mathcal{R}_0 et (x'_1, y'_1, z'_1) dans \mathcal{R}_1 , on a :

$$\sqrt{x^2 + y^2 + z^2} = \sqrt{x_1^2 + y_1^2 + z_1^2} \text{ et } xx' + yy' + zz' = x_1x_1' + y_1y_1' + z_1z_1'.$$

Preuve: On a $\overrightarrow{u}_1 = \alpha \overrightarrow{u} + \beta \overrightarrow{v} + \gamma \overrightarrow{w}$, $\overrightarrow{v}_1 = \alpha' \overrightarrow{u} + \beta' \overrightarrow{v} + \gamma' \overrightarrow{w}$ et $\overrightarrow{w}_1 = \alpha'' \overrightarrow{u} + \beta'' \overrightarrow{v} + \gamma'' \overrightarrow{w}$ avec $\alpha^2 + \beta^2 + \gamma^2 = \alpha'^2 + \beta'^2 + \gamma'^2 = \alpha''^2 + \beta''^2 + \gamma''^2 = 1$ et $\alpha\alpha' + \beta\beta' + \gamma\gamma' = \alpha\alpha'' + \beta\beta'' + \gamma\gamma'' = \alpha''\alpha' + \beta''\beta' + \gamma''\gamma' = 0$, on a les relations : $x = \alpha x_1 + \alpha' y_1 + \alpha'' z_1$, $y = \beta x_1 + \beta' y_1 + \beta'' z_1$ et $z = \gamma x_1 + \gamma' y_1 + \gamma'' z_1$, on calcule ensuite $x^2 + y^2 + z^2$ et xx' + yy' + zz' en remplaçant et en simplifiant grâce aux relations précédentes.

[°]√THÉORÈME 8.3

 $Soit (\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) \ une \ base \ de \ \mathscr{E}, \ il \ existe \ une \ base \ orthonormale (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) \ de \ \mathscr{E} \ telle \ que \ \overrightarrow{a} \ est$ colinéaire à \overrightarrow{u} et \overrightarrow{b} dans le plan défini par \overrightarrow{u} et \overrightarrow{v} .

Preuve: Cf: méthode de Schmidt.

Conséquences:

- Tout plan de & est euclidien [non orienté], i.e. contient des bases orthonormales.
- La norme de ℰ vérifient les propriétés :
 - $-\|\overrightarrow{u}\| = \iff \overrightarrow{u} = \overrightarrow{0}$ [découle de la définition].
 - $-\|\alpha\overrightarrow{u}\| = |\alpha| \cdot \|\overrightarrow{u}\|$ [découle de la définition].
 - $-\|\overrightarrow{u} + \overrightarrow{v}\| \le \|\overrightarrow{u}\| + \|\overrightarrow{v}\|$ [inégalité triangulaire]: il suffit de se placer dans un plan contenant \overrightarrow{u} et \overrightarrow{v} .

3) Repère orthonormal direct

La notion d'orientation sera définie ultérieurement. D'une manière imagée on conviendra que le repère orthonormal $\mathcal{R} = (O, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est direct si lorsque l'on tourne de \overrightarrow{u} vers \overrightarrow{v} on progresse dans le sens de \overrightarrow{w} [règle du tire-bouchon], sinon on dira que \mathscr{R} est orthonormal indirect.

DÉFINITION 8.3 (orientation induite)

Soit \mathscr{P} un plan de \mathscr{E} , soit $(A, \overrightarrow{u}, \overrightarrow{v})$ un repère orthonormal de \mathscr{P} et soit \overrightarrow{w} un vecteur unitaire normal à \mathcal{P} . On dira que ce repère est orthonormal direct lorsque $(A, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est un repère orthonormal direct de \mathscr{E} . On dit que \mathscr{P} est orienté par \overrightarrow{w} [ou que \mathscr{P} a été muni de l'orientation induite par \overrightarrow{w}].

-`**જ**-THÉORÈME 8.4

Preuve: Soit $(A, \overrightarrow{u}, \overrightarrow{v})$ un repère orthonormal de \mathscr{P} , on sait qu'il existe \overrightarrow{w} tel que $(A, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est un repère orthonormal de \mathscr{E} , on cherche $\overrightarrow{a}(x,y,z)$ [dans ce repère] unitaire tel que $\overrightarrow{a} \perp \overrightarrow{u}$ et $\overrightarrow{a} \perp \overrightarrow{v}$, ce qui donne x=y=0et $x^2 + y^2 + z^2 = 1$, $\overrightarrow{a} = \pm \overrightarrow{w}$.

On ne définit pas les angles orientés de deux vecteurs dans l'espace, car un plan contenant ces deux vecteurs n'est pas intrinsèquement orienté [il faudrait faire un choix d'un vecteur normal unitaire pour chaque plan de &!], par contre on peut définir l'angle non orienté [ou écart angulaire] de la manière suivante, soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls :

- Si $\overrightarrow{u} = \lambda \overrightarrow{v}$ avec $\lambda > 0$ on pose $(\overrightarrow{u}, \overrightarrow{v}) = 0$. Si $\overrightarrow{u} = \lambda \overrightarrow{v}$ avec $\lambda < 0$ on pose $(\overrightarrow{u}, \overrightarrow{v}) = \pi$.
- Si \overrightarrow{u} et \overrightarrow{v} sont non colinéaires : soit $(O, \overrightarrow{a}, \overrightarrow{b})$ un repère orthonormal d'un plan \mathscr{P} contenant ces deux vecteurs, on a $\overrightarrow{u}(x,y)$ et $\overrightarrow{v}(x',y')$, on pose alors $(\overrightarrow{u},\overrightarrow{v}) = \left| \text{Arg} \left(\frac{x'+iy'}{x+iy} \right) \right|$. On peut vérifier que cette définition ne dépend pas du choix de $(\overrightarrow{a}, \overrightarrow{b})$ [ni de \mathscr{P} d'ailleurs].

L'angle non orienté de deux vecteurs est un élément de $[0; \pi]$.

4) Coordonnées cylindriques et coordonnées sphériques

Coordonnées cylindriques :

Soit $\mathcal{R} = (O, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ un repère orthonormal direct et soit $M(x, y, z) \in \mathcal{E}$. Le plan (xOy) est orienté par \overrightarrow{w} et H désigne le projeté orthogonal de M sur xOy: H a des coordonnées polaires (r, θ) dans le repère $(O, \overrightarrow{u}, \overrightarrow{v})$ c'est à dire $\overrightarrow{OH} =$ $r\overrightarrow{u}(\theta)r\cos(\theta)\overrightarrow{u} + r\sin(\theta)\overrightarrow{v}$, d'où

$$\overrightarrow{OM} = \overrightarrow{OH} + \overrightarrow{HM} = r \cos(\theta) \overrightarrow{u} + r \sin(\theta) \overrightarrow{v} + z \overrightarrow{w}$$

On dit que (r, θ, z) sont des **coordonnées cylindriques** de M,

de plus on a
$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \\ z = z \end{cases}$$

Coordonnées sphériques :

- Soit θ l'angle non orienté $(\overrightarrow{w}, \overrightarrow{OM})$, $\theta \in [0; \pi]$, c'est la **colatitude** de M [la latitude étant $\frac{\pi}{2} \theta$]
- Soit φ l'angle **orienté** $(\overrightarrow{u},\overrightarrow{OH})$, c'est la **longitude** de M.
- Soit r = OM.

$$\overrightarrow{OH} = OH\cos(\varphi)\overrightarrow{u} + OH\sin(\varphi)\overrightarrow{v}, \overrightarrow{HM} = r\cos(\theta)\overrightarrow{w}$$
 et $OH = r\sin(\theta)$, donc :

$$\overrightarrow{OM} = r \sin(\theta) \cos(\varphi) \overrightarrow{u} + r \sin(\theta) \sin(\varphi) \overrightarrow{v} + r \cos(\theta) \overrightarrow{w}$$

on dit que (r, θ, φ) sont des **coordonnées sphériques** de M.

De plus on a
$$\begin{cases} x = r \sin(\theta) \cos(\varphi) \\ y = r \sin(\theta) \sin(\varphi) \\ z = r \cos(\theta) \end{cases}$$

Les coordonnées cylindriques et sphériques ne sont pas uniques.

Produit scalaire, produit vectoriel II)

1) Produit scalaire

DÉFINITION 8.4

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de \mathscr{E} , on pose $\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left[\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2 \right]$.

Remarques:

- On a $\overrightarrow{u} \cdot \overrightarrow{u} = ||\overrightarrow{u}||^2$ et $\overrightarrow{v} \cdot \overrightarrow{u} = \overrightarrow{u} \cdot \overrightarrow{v}$ [symétrie].
- En se plaçant dans un plan \mathscr{P} contenant \overrightarrow{u} et \overrightarrow{v} on $a:\overrightarrow{u}\cdot\overrightarrow{v}=\|\overrightarrow{u}\|\cdot\|\overrightarrow{v}\|\cos(\overrightarrow{u},\overrightarrow{v})$, où $(\overrightarrow{u},\overrightarrow{v})$ désigne l'angle non orienté (orienter le plan ne changerait rien).
- On déduit que ce qui précède : $|\overrightarrow{u} \cdot \overrightarrow{v}| \le ||\overrightarrow{u}|| \times ||\overrightarrow{v}||$ (inégalité de *Cauchy-Schwarz*). L'égalité avant lieu si et seulement si les deux vecteurs sont colinéaires.
- On a $|\overrightarrow{u} + \overrightarrow{v}||^2 = ||\overrightarrow{u}||^2 + ||\overrightarrow{v}||^2 + 2\overrightarrow{u} \cdot \overrightarrow{v}|$

7 THÉORÈME 8.5 (Applications)

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs :

- $-\overrightarrow{u}$ et \overrightarrow{v} sont orthogonaux ssi $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.
- $-Si(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ est une base orthonormale de \mathscr{E} , alors les coordonnées de \overrightarrow{u} dans cette base

$$sont: \begin{cases} x = \overrightarrow{u} \cdot \overrightarrow{a} \\ y = \overrightarrow{u} \cdot \overrightarrow{b} \\ z = \overrightarrow{u} \cdot \overrightarrow{c} \end{cases}.$$

Preuve: Le premier résultat découle du théorème précédent. $2\overrightarrow{u} \cdot \overrightarrow{a} = \|\overrightarrow{u} + \overrightarrow{a}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{a}\|^2 = (x+1)^2 + (x+1)^2$ $y^2 + z^2 - x^2 - y^2 - z^2 - 1 = 2x$, par conséquent $x = \overrightarrow{u} \cdot \overrightarrow{a}$ (idem pour y et z).

- 🗑 THÉORÈME 8.6 (Expression dans une base orthonormale)

 $Si \mathcal{R} = (O, \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ est un repère orthonormal, $si \overrightarrow{u}$ a pour coordonnées (x, y, z) et \overrightarrow{v} pour coordonnées (x', y', z'), alors $\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy' + zz'$.

Preuve: On sait que $2\overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2 = (x + x')^2 + (y + y')^2 + (z + z')^2 - x^2 - y^2 - z^2 - x'^2 + (y + y')^2 + (z + z')^2 - x^2 - y^2 - z^2 - x'^2 + (z + z')^2 - x^2 - y^2 - z^2 - x'^2 - x$ $y'^2 - z'^2 = 2(xx^7 + yy' + zz')$ ce qui entraîne le résultat.

- THÉORÈME 8.7 (Bilinéarité)

Le produit scalaire est bilinéaire : soient \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} trois vecteurs et $\lambda \in \mathbb{R}$, alors :

$$- [\overrightarrow{u} + \overrightarrow{v}] \cdot \overrightarrow{w} = \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w} \text{ et } [\lambda \overrightarrow{u}] \cdot \overrightarrow{w} = \lambda [\overrightarrow{u} \cdot \overrightarrow{w}].$$

$$- \overrightarrow{u} \cdot [\overrightarrow{v} + \overrightarrow{w}] = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} \text{ et } \overrightarrow{u} \cdot [\lambda \overrightarrow{v}] = \lambda [\overrightarrow{u} \cdot \overrightarrow{v}].$$

Preuve: Découle du théorème précédent.

Produit vectoriel

ØDéfinition 8.5

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs et \mathscr{P} un plan contenant \overrightarrow{u} et \overrightarrow{v} , on oriente \mathscr{P} en choisissant un vecteur unitaire normal \overrightarrow{w} et on pose : $\overrightarrow{u} \wedge \overrightarrow{v} = [\overrightarrow{u}, \overrightarrow{v}]\overrightarrow{w} = ||\overrightarrow{u}|| \cdot ||\overrightarrow{v}|| \sin(\overrightarrow{u}, \overrightarrow{v}) \cdot \overrightarrow{w}$.

 \Longrightarrow Si on oriente le plan avec $-\overrightarrow{w}$ alors le produit mixte change de signe et donc le résultat ne change pas.

Il découle de cette définition:

- $-\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0}$ ssi \overrightarrow{u} et \overrightarrow{v} sont colinéaires.
- $-\overrightarrow{u}\wedge\overrightarrow{v}$ est orthogonal à \overrightarrow{u} et \overrightarrow{v} .
- $-\overrightarrow{v}\wedge\overrightarrow{u}=-\overrightarrow{u}\wedge\overrightarrow{v}$ [antisymétrie].

- $\|\overrightarrow{u} \wedge \overrightarrow{v}\| = \|\overrightarrow{u}\| \cdot \|\overrightarrow{v}\| \cdot |\sin(\overrightarrow{u}, \overrightarrow{v})| \text{ et donc } \|\overrightarrow{u} \wedge \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2 \left(\overrightarrow{u} \cdot \overrightarrow{v}\right)^2.$ $\text{Si } \overrightarrow{u}, \ \overrightarrow{u}' \text{ et } \overrightarrow{v} \text{ sont coplanaires alors } (\overrightarrow{u} + \overrightarrow{u}') \wedge \overrightarrow{v} = \overrightarrow{u} \wedge \overrightarrow{v} + \overrightarrow{u}' \wedge \overrightarrow{v}.$ $\text{Si } \lambda \in \mathbb{R} \text{ alors } (\lambda \overrightarrow{u}) \wedge \overrightarrow{v} = \overrightarrow{u} \wedge (\lambda \overrightarrow{v}) = \lambda (\overrightarrow{u} \wedge \overrightarrow{v}).$

Cas particulier : $si(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est orthonormale directe, alors $\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{w}$, $\overrightarrow{v} \wedge \overrightarrow{w} = \overrightarrow{u}$ et $\overrightarrow{w} \wedge \overrightarrow{u} = \overrightarrow{v}$.

Soit $\mathcal{R} = (O, \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ une base orthonormale directe, soient $\overrightarrow{u}(x, y, z)$ et $\overrightarrow{v}(x', y', z')$ deux vecteurs quelconques, il est facile de vérifier que le vecteur $\overrightarrow{k}(yz'-y'z,-xz'+x'z,xy'-x'y)$ est orthogonal à \overrightarrow{u} et \overrightarrow{v} et que $\|\overrightarrow{k}\|^2 = \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2 - (\overrightarrow{u} \cdot \overrightarrow{v})^2 = \|\overrightarrow{u} \wedge \overrightarrow{v}\|^2$, on en déduit que si \overrightarrow{w} est un vecteur unitaire normal au plan \mathscr{P} contenant \overrightarrow{u} et \overrightarrow{v} , alors on a $\overrightarrow{k} = \pm ||\overrightarrow{k}|| \cdot \overrightarrow{w}$ et donc $\overrightarrow{k} = \pm \overrightarrow{u} \wedge \overrightarrow{v}$, nous admettrons [cela découle de la définition de l'orientation que nous verrons ultérieurement] que ces deux vecteurs ont le même sens et donc $\overrightarrow{k} = \overrightarrow{u} \wedge \overrightarrow{v}$, c'est à dire :

$$\overrightarrow{u} \wedge \overrightarrow{v} = (yz' - y'z)\overrightarrow{a} + (-xz' + x'z)\overrightarrow{b} + (xy' - x'y)\overrightarrow{c} = \begin{vmatrix} y & y' \\ z & z' \end{vmatrix} \overrightarrow{a} - \begin{vmatrix} x & x' \\ z & z' \end{vmatrix} \overrightarrow{b} + \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} \overrightarrow{c}$$

La formule ci-dessus reste vraie si \overrightarrow{u} et \overrightarrow{v} sont colinéaires. Il est facile de vérifier à partir de cette expression le résultat suivant :

√THÉORÈME 8.8

Le produit vectoriel est bilinéaire :

$$(\lambda \overrightarrow{u} + \mu \overrightarrow{v}) \wedge \overrightarrow{w} = \lambda (\overrightarrow{u} \wedge \overrightarrow{w}) + \mu (\overrightarrow{v} \wedge \overrightarrow{w}) \text{ et } \overrightarrow{u} \wedge (\lambda \overrightarrow{v} + \mu \overrightarrow{w}) = \lambda (\overrightarrow{u} \wedge \overrightarrow{v}) + \mu (\overrightarrow{u} \wedge \overrightarrow{w}).$$

Le produit vectoriel est interne dans & mais il n'admet pas d'élément neutre. Car s'il y avait un élément neutre \overrightarrow{e} , on devrait avoir $\overrightarrow{e} \wedge \overrightarrow{e} = \overrightarrow{0} = \overrightarrow{e}$, et pour tout \overrightarrow{u} , $\overrightarrow{u} \wedge \overrightarrow{e} = \overrightarrow{u} = \overrightarrow{0}$: absurde.

On peut remarquer également que le produit vectoriel n'est pas associatif, plus précisément :

- THÉORÈME 8.9 (Formule du double produit vectoriel)

Pour tous vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} de \mathscr{E} : $\overrightarrow{u} \wedge (\overrightarrow{v} \wedge \overrightarrow{w}) = (\overrightarrow{u} \cdot \overrightarrow{w}) \cdot \overrightarrow{v} - (\overrightarrow{u} \cdot \overrightarrow{v}) \cdot \overrightarrow{w}$.

Preuve: On choisit $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ une b.o.n telle que $\overrightarrow{u} = \alpha \overrightarrow{a}, \overrightarrow{v} = \beta \overrightarrow{a} + \gamma \overrightarrow{b}$ et $\overrightarrow{w} = x \overrightarrow{a} + y \overrightarrow{b} + z \overrightarrow{c}$, on a alors: $\overrightarrow{v} \wedge \overrightarrow{w} = y\beta \overrightarrow{c} - z\beta \overrightarrow{b} - x\gamma \overrightarrow{c} + z\gamma \overrightarrow{a} \text{ d'où } \overrightarrow{u} \wedge (\overrightarrow{v} \wedge \overrightarrow{w}) = -y\alpha\beta \overrightarrow{b} - z\alpha\beta \overrightarrow{c} + x\alpha\gamma \overrightarrow{b} = [x\alpha\gamma - y\alpha\beta] - z\alpha\beta \overrightarrow{c}.$ D'autre part, $(\overrightarrow{u}|\overrightarrow{w}) = x\alpha$ et $(\overrightarrow{u}|\overrightarrow{v}) = \alpha\beta$, donc on a $(\overrightarrow{u}|\overrightarrow{w})\overrightarrow{v} - (\overrightarrow{u}|\overrightarrow{v})\overrightarrow{w} = x\alpha\beta \overrightarrow{a} + x\alpha\gamma \overrightarrow{b} - x\alpha\beta \overrightarrow{a} - x\alpha\beta \overrightarrow{a} + x\alpha\gamma \overrightarrow{b} - x\alpha\beta \overrightarrow{a} - x\alpha\beta \overrightarrow{a} + x\alpha\gamma \overrightarrow{b} - x\alpha\beta \overrightarrow{a} - x\alpha\beta \overrightarrow{a} + x\alpha\gamma \overrightarrow{b} - x\alpha\beta \overrightarrow{a} - x\alpha\beta \overrightarrow{a} + x\alpha\gamma \overrightarrow{b} - x\alpha\beta \overrightarrow{a} - x\alpha\beta$ $\alpha\beta y\overrightarrow{b} - \alpha\beta z\overrightarrow{c}$ ce qui donne $[x\alpha\gamma - y\beta\alpha]\overrightarrow{b} - z\alpha\beta\overrightarrow{c}$, ce qui donne l'égalité.

On déduit de l'antisymétrie que : $(\overrightarrow{u} \wedge \overrightarrow{v}) \wedge \overrightarrow{w} = (\overrightarrow{u} \cdot \overrightarrow{w}) \cdot \overrightarrow{v} - (\overrightarrow{w} \cdot \overrightarrow{v}) \cdot \overrightarrow{u}$.

Produit mixte

DÉFINITION 8.6

L'espace \mathscr{E} étant orienté, on appelle **produit mixte** de trois vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} , le nombre :

$$[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}] = (\overrightarrow{u} \wedge \overrightarrow{v}) \cdot \overrightarrow{w}.$$

Cette définition dépend de l'orientation choisie, à cause du produit vectoriel.

Lorsque \overrightarrow{u} et \overrightarrow{v} sont colinéaires on a $\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0}$ et donc $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = 0$. Si \overrightarrow{u} et \overrightarrow{v} sont non colinéaires alors $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = 0$ ssi \overrightarrow{w} est orthogonal à $\overrightarrow{u} \wedge \overrightarrow{v}$ ce qui revient à dire que \overrightarrow{w} est dans un plan contenant \overrightarrow{u} et \overrightarrow{v} . On peut affirmer :

Le produit mixte de trois vecteurs est nul ssi ils sont coplanaires.

Interprétation géométrique : $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]$ est le volume algébrique du parallélépipède construit sur \overrightarrow{u} , \overrightarrow{v}

En effet, $\|\overrightarrow{u} \wedge \overrightarrow{v}\|$ est l'aire du parallélogramme construit sur \overrightarrow{u} et \overrightarrow{v} , or $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = \|\overrightarrow{u} \wedge \overrightarrow{v}\| \|\overrightarrow{w}\| \cos(\theta)$ et $\|\overrightarrow{w}\|\cos(\theta)$ représente la hauteur algébrique du parallélépipède, ce qui entraîne le résultat.

THÉORÈME 8.10

Le produit mixte est trilinéaire, c'est à dire :

$$[\lambda \overrightarrow{u} + \mu \overrightarrow{u}', \overrightarrow{v}, \overrightarrow{w}] = \lambda [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] + \mu [\overrightarrow{u}', \overrightarrow{v}, \overrightarrow{w}]$$

$$[\overrightarrow{u}, \lambda \overrightarrow{v} + \mu \overrightarrow{v}', \overrightarrow{w}] = \lambda [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] + \mu [\overrightarrow{u}, \overrightarrow{v}', \overrightarrow{w}]$$

$$[\overrightarrow{u}, \overrightarrow{v}, \lambda \overrightarrow{w} + \mu \overrightarrow{w}'] = \lambda [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] + \mu [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}'].$$

Preuve: Ceci découle de la définition avec la bilinéarité du produit vectoriel et du produit scalaire.

-`o^-THÉORÈME **8.11**

Soit $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ une base orthonormale directe et soient $\overrightarrow{u}(x, y, z)$, $\overrightarrow{v}(x', y', z')$ et $\overrightarrow{w}(x'', y'', z'')$,

$$[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}]=xy'z''+x'y''z+x''yz'-xy''z'-x'yz''-x''y'z.$$

Preuve: On sait que $\overrightarrow{u} \wedge \overrightarrow{v}$ a pour coordonnées (yz' - y'z, zx' - z'x, xy' - x'y) et donc $(\overrightarrow{u} \wedge \overrightarrow{v}) \cdot \overrightarrow{w} = x''yz' - y'z \cdot \overrightarrow{v}$ x''y'z + y''zx' - y''z'x + z''xy' - z''x'y.

Notation: On pose
$$[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = \begin{vmatrix} x & x' & x'' \\ y & y' & y'' \\ z & z' & z'' \end{vmatrix} = x''yz' - x''y'z + y''zx' - y''z'x + z''xy' - z''x'y$$
, pour

obtenir cette expression on ajoute tous les produits de 3 termes obtenus en en prenant un par ligne et un par colonne avec un signe + dans le sens de la diagonale principale et un signe - sinon (règle de Sarrus).

√ THÉORÈME 8.12

Le produit mixte est antisymétrique, c'est à dire :

$$[\overrightarrow{v},\overrightarrow{u},\overrightarrow{w}] = -[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}], \ [\overrightarrow{w},\overrightarrow{v},\overrightarrow{u}] = -[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}], \ [\overrightarrow{u},\overrightarrow{w},\overrightarrow{v}] = -[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}].$$

Autrement dit, permuter deux vecteurs change le signe du produit mixte.

Preuve: Cela découle du théorème précédent.

MPSI - Cours

Il en découle en particulier que $(\overrightarrow{u} \wedge \overrightarrow{v}) \cdot \overrightarrow{w} = (\overrightarrow{v} \wedge \overrightarrow{w}) \cdot \overrightarrow{u} = (\overrightarrow{w} \wedge \overrightarrow{u}) \cdot \overrightarrow{v}$.

Extension: Si $\mathfrak{B} = (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ est une base **quelconque** de \mathscr{E} , et si on a trois vecteurs $\overrightarrow{u}(x, y, z)$, $\overrightarrow{v}(x',y',z')$ et $\overrightarrow{w}(x'',y'',z'')$ alors on pose :

$$\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = \begin{vmatrix} x & x' & x'' \\ y & y' & y'' \\ z & z' & z'' \end{vmatrix} = x''yz' - x''y'z + y''zx' - y''z'x + z''xy' - z''x'y,$$

c'est le déterminant dans la base \mathfrak{B} des vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} . Il est facile de vérifier avec la trilinéarité et l'antisymétrie du produit mixte, que

$$\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = \frac{[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]}{[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}]}$$

le déterminant appraît donc comme le rapport de deux volumes algébriques. On déduit de cette relation que l'application déterminant dans une base est trilinéaire, antisymétrique et que $\det_{\mathfrak{B}}(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = 0$ ssi les trois vecteurs sont coplanaires [ce qui est bien utile lorsque l'on cherche une équation de plan dans un repère cartésien qui n'est pas orthonormal!].

Le produit mixte apparaît aussi comme le déterminant dans une base orthonormale directe [et le résultat ne dépend pas de la base orthonormale directe choisie]. On remarquera également que si \overrightarrow{u} = $(\overrightarrow{a}\overrightarrow{a} + \overrightarrow{\beta}\overrightarrow{b} + \gamma\overrightarrow{c})$, alors $(\overrightarrow{a} = \det_{\mathfrak{B}}(\overrightarrow{u}, \overrightarrow{b}, \overrightarrow{c}))$, $(\overrightarrow{b} = \det_{\mathfrak{B}}(\overrightarrow{a}, \overrightarrow{u}, \overrightarrow{c}))$ et $(\overrightarrow{a} = \det_{\mathfrak{B}}(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{u}))$.

Droites, plans et sphères III)

1) Le cas des plans

Soit
$$\mathcal{R} = (O, \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$$
 un repère de \mathcal{E} .

Soit $\mathscr{R}=(O,\overrightarrow{a},\overrightarrow{b},\overrightarrow{c})$ un repère de \mathscr{E} . • Plan \mathscr{P} défini par la donnée d'un point $A(x_A,y_A,z_A)$ et de deux vecteurs non colinéaires $\overrightarrow{u}(\alpha,\beta,\gamma)$ et $\overrightarrow{w}(\alpha',\beta',\gamma')$:

$$M(x,y,z) \in \mathscr{P} \iff (\overrightarrow{AM},\overrightarrow{u},\overrightarrow{v}) \text{ sont coplanaires}$$

$$\iff \exists \lambda, \mu \in \mathbb{R}, \overrightarrow{AM} = \lambda \overrightarrow{u} + \mu \overrightarrow{v}$$

$$\iff \exists \lambda, \mu \in \mathbb{R}, \begin{cases} x = x_A + \lambda \alpha + \mu \alpha' \\ y = y_A + \lambda \beta + \mu \beta' \end{cases} \text{ [représentation paramétrique de } \mathscr{P} \text{]}$$

$$\iff \det(\overrightarrow{AM},\overrightarrow{u},\overrightarrow{v}) = 0$$

$$\iff \begin{vmatrix} x - x_A & \alpha & \alpha' \\ y - y_A & \beta & \beta' \\ z - z_A & \gamma & \gamma' \end{vmatrix} = 0$$

$$\iff [\beta \gamma' - \beta' \gamma](x - x_A) - [\alpha \gamma' - \alpha' \gamma](y - y_A) + [\alpha \beta' - \alpha' \beta](z - z_A) = 0$$

On obtient ainsi une **équation cartésienne** de \mathcal{P} , elle peut se mettre sous la forme ax + by + cz = d

Si on avait a = b = c = 0 alors \overrightarrow{u} et \overrightarrow{v} seraient coplanaires avec tous les vecteurs de \mathscr{E} , et donc ils seraient colinéaires ce qui est exclu.

Réciproquement l'ensemble $I = \{M(x, y, z) \mid ax + by + cz = d\}$ avec $(a, b, c) \neq (0, 0, 0)$ est un plan, effet supposons par exemple $a \neq 0$ alors l'équation équivaut $x = \frac{d}{a} - \frac{b}{a}y - \frac{c}{a}z$, on obtient ainsi une

représentation paramétrique de I qui est $\begin{cases} x = \frac{d}{a} + \lambda [-\frac{b}{a}] + \mu [-\frac{c}{a}] \\ y = \lambda \\ z = \mu \end{cases}$, c'est le plan passant par $A(\frac{d}{a}, 0, 0)$

et de base $\overrightarrow{u}(-\frac{b}{a},1,0)$ et $\overrightarrow{v}(-\frac{c}{a},0,1)$

- Si ax + by + cz = d est une équation d'un plan \mathscr{P} , alors l'ensemble des vecteurs de ce plan admet comme équation ax + by + cz = 0. Si \mathscr{P} admet comme équation ax + by + cz = d et \mathscr{P}' admet comme équation kax + kby + kcz = d' avec $k \neq 0$, alors \mathscr{P} et \mathscr{P}' sont confondus si d' = kd et strictement parallèles sinon.

- Plan \mathscr{P} défini par trois points non alignés $A(x_A,y_A,z_A)$, $B(x_B,y_B,z_B)$ et $C(x_C,y_C,z_C)$: les vecteurs $\overrightarrow{u}=\overrightarrow{AB}$ et $\overrightarrow{v}=\overrightarrow{AC}$ sont non colinéaires et forment donc une base de \mathscr{P} , on est ainsi ramené au cas précédent.
- Plan \mathscr{P} défini par un point $A(x_A, y_A, z_A)$ et un vecteur normal $\overrightarrow{n}(a, b, c)$: le repère \mathscr{R} est supposé **orthonormal**, on peut écrire alors :

$$M(x, y, z) \in \mathscr{P} \iff \overrightarrow{AM} \text{ et } \overrightarrow{n} \text{ sont orthogonaux}$$

$$\iff \overrightarrow{AM} \cdot \overrightarrow{n} = 0$$

$$\iff a(x - x_A) + b(x - y_A) + c(z - z_A) = 0.$$

On trouve ainsi une équation cartésienne de \mathcal{P} .

Lorsque le repère est orthonormal, les coordonnées d'un vecteur normal au plan se lisent sur l'équation cartésienne du plan. Si on connaît $(\overrightarrow{u}, \overrightarrow{v})$ une base du plan alors on peut prendre $\overrightarrow{u} \wedge \overrightarrow{v}$ comme vecteur normal.

Soit \mathscr{P} un plan, $M \in \mathscr{E}$, H son projeté orthogonal sur \mathscr{P} et soit $A \in \mathscr{P}$, alors $AM^2 = AH^2 + HM^2$, par conséquent la distance AM est minimale lorsque A = H auquel on a AM = HM, cette distance est appelée **distance de** M **à** \mathscr{P} et notée :

$$d(M, \mathcal{P}) = HM$$
.

Calcul de $d(M, \mathcal{P})$: Soit \overrightarrow{n} un vecteur normal au plan et A un point du plan, on a $\overrightarrow{AH} \perp \overrightarrow{n}$, d'où $\overrightarrow{AM} \cdot \overrightarrow{n} = \overrightarrow{HM} \cdot \overrightarrow{n} = \pm HM ||\overrightarrow{n}||$ et donc :

$$d(M, \mathscr{P}) = HM = \frac{\left|\overrightarrow{AM} \cdot \overrightarrow{n}\right|}{\|\overrightarrow{n}\|}.$$

Si \mathscr{P} est donné par une équation cartésienne ax + by + cz = d dans un repère orthonormal, alors on peut prendre $\overrightarrow{n}(a,b,c)$ et on a $\overrightarrow{AM} \cdot \overrightarrow{n} = a(x-x_A) + b(y-y_A) + c(z-z_A) = ax + by + cz - d$ car $A \in \mathscr{P}$, par conséquent on a :

$$d(M, \mathscr{P}) = HM = \frac{\left| ax + by + cz - d \right|}{\sqrt{a^2 + b^2 + c^2}}.$$

Si \mathscr{P} est donné par un point A et deux vecteurs non colinéaires \overrightarrow{u} et \overrightarrow{v} , alors on peut prendre $\overrightarrow{n} = \overrightarrow{u} \wedge \overrightarrow{v}$, on a alors $\overrightarrow{AM} \cdot \overrightarrow{n} = [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{AM}]$ d'où :

$$d(M, \mathscr{P}) = HM = \frac{\left| [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{AM}] \right|}{\|\overrightarrow{u} \wedge \overrightarrow{v}\|}.$$

2) Le cas des droites

Soit $\Re = (O, \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ un repère de \mathscr{E} .

• Droite $\mathfrak D$ définie par la donnée d'un point $A(x_A, y_A, z_A)$ et d'un vecteur directeur $\overrightarrow{u}(\alpha, \beta, \gamma)$:

$$M(x,y,z)\in\mathfrak{D}\iff \overrightarrow{AM} \text{ et }\overrightarrow{u} \text{ sont colinéaires}$$
 $\iff \exists t\in\mathbb{R}, \overrightarrow{AM}=t\,\overrightarrow{u}$
 $\iff \exists t\in\mathbb{R}, \begin{cases} x=x_A+t\,\alpha\\ y=y_A+t\,\beta \text{ [représentation paramétrique de }\mathfrak{D}]\\ z=z_A+t\,\gamma \end{cases}$

• Droite définie comme l'intersection de deux plans non parallèles : Soient \mathcal{P} d'équation ax + by + cz = det \mathscr{P}' d'équation a'x + b'y + c'z = d' non parallèles, c'est à dire $\overrightarrow{u}(a,b,c)$ et $\overrightarrow{u}'(a',b',c')$ sont non colinéaires, soit $\mathfrak{D} = \mathscr{P} \cap \mathscr{P}'$ alors :

$$M(x,y,z) \in \mathfrak{D} \iff M \in \mathscr{P} \text{ et } M \in \mathscr{P}'$$

$$\iff \begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \end{cases} \text{ [représentation cartésienne de } \mathfrak{D}\text{]}$$

Pour trouver les points de cette droite, on résout le système en prenant une des inconnues comme paramètre.

Exemple: Soit \mathfrak{D} d'équations $\begin{cases} x + 2y - 3z = -1 \\ 2x - y + z = -2 \end{cases}$, ce système équivaut à $\begin{cases} x + 2y = -1 + 3z \\ -5y = -7z \end{cases}$, ce qui donne comme représentation paramétrique : $\begin{cases} x = -1 + t \frac{1}{5} \\ y = t \frac{7}{5} \end{cases}$, donc \mathfrak{D} est la droite passant par A(-1,0,0) et dirigée par $\overrightarrow{u}(\frac{1}{5},\frac{7}{5},1)$ z = t

ou encore $\overrightarrow{v}(1,7,5)$.

- L'ensemble des vecteurs de $\mathfrak D$ admet comme équations $\begin{cases} ax + by + cz = 0 \\ a'x + b'y + c'z = 0 \end{cases}$ À partir d'une représentation paramétrique de $\mathfrak D$ on peut trouver une représentation cartésienne en
- éliminant le paramètre.

DÉFINITION 8.8 (Distance d'un point à une droite)

Soit \mathfrak{D} une droite, $M \in \mathcal{E}$, H son projeté orthogonal sur \mathfrak{D} et soit $A \in \mathfrak{D}$, alors $AM^2 = AH^2 + HM^2$, par conséquent la distance AM est minimale lorsque A = H auquel on a AM = HM, cette distance est appelée distance de M à D et notée :

Calcul de $d(M,\mathfrak{D}): HM$ est la hauteur du parallèlogramme construit sur \overrightarrow{u} et $\overrightarrow{AM}:$

$$d(M,\mathfrak{D}) = HM = \frac{\|\overrightarrow{AM} \wedge \overrightarrow{u}\|}{\|\overrightarrow{u}\|}.$$

THÉORÈME 8.13 (perpendiculaire commune à deux droites)

Soient \mathfrak{D} et \mathfrak{D}' deux droites de \mathscr{E} , il existe une droite \mathfrak{D}'' perpendiculaire à \mathfrak{D} et \mathfrak{D}' et qui rencontre \mathfrak{D} et \mathfrak{D}' . Cette droite est unique lorsque \mathfrak{D} et \mathfrak{D}' sont non parallèles.

Preuve: Soit \mathfrak{D} passant par A, dirigée par \overrightarrow{u} et soit \mathfrak{D}' passant par A', dirigée par \overrightarrow{u}' .

* si elles sont parallèles alors elles sont dans un même plan P et il est clair que toute perpendiculaire à D dans le plan est aussi une perpendiculaire à \mathfrak{D}' .

* si elles sont sécantes en un point I: alors elles sont dans un même plan $\mathscr P$ et la droite $\mathfrak D''$ passant par I et dirigée par $\overrightarrow{u} \wedge \overrightarrow{u}'$ est une perpendiculaire commune. Tout perpendiculaire commune est dirigée par $\overrightarrow{u} \wedge \overrightarrow{u}'$ et donc coupe le plan en un seul point, or elle doit couper \mathfrak{D} et \mathfrak{D}' , donc elle coupe \mathscr{P} en I, il n'y a que la droite \mathfrak{D}'' .

* si elles sont non coplanaires : toute perpendiculaire commune est dirigée par $\overrightarrow{n} = \overrightarrow{u} \wedge \overrightarrow{u}'$. Soit \mathscr{P} le plan contenant \mathfrak{D} et de base $(\overrightarrow{u}, \overrightarrow{n})$, ce plan rencontre \mathfrak{D}' en un point H' car \mathfrak{D}' n'est pas parallèle à \mathscr{P} . La droite \mathfrak{D}'' passant par H' et dirigée par \overrightarrow{n} rencontre $\mathfrak D$ en un point H car elles sont coplanaires non parallèles, donc $\mathfrak D''$ est une perpendiculaire commune. Une perpendiculaire commune doit être dans \mathscr{P} et avoir un point commun avec \mathfrak{D}' elle passe donc nécessairement par H', il n'y a qu'une solution : \mathfrak{D}'' .

FIGURE 8.2: Perpendiculaire commune

Soit A un point de \mathfrak{D} , A' un point de \mathfrak{D}' , \mathfrak{D}'' une perpendiculaire commune avec $\mathfrak{D} \cap \mathfrak{D}'' = \{H\}$ et $\mathfrak{D}' \cap \mathfrak{D}'' = \{H'\}, \text{ alors}:$

$$\|\overrightarrow{AA'}\|^2 = \|\overrightarrow{AH} + \overrightarrow{HH'} + \overrightarrow{H'A'}\|^2$$

$$= [HH']^2 + \|\overrightarrow{AH} + \overrightarrow{H'A'}\|^2 + 2\overrightarrow{HH'} \cdot [\overrightarrow{AH} + \overrightarrow{H'A'}]$$

$$= [HH']^2 + \|\overrightarrow{AH} + \overrightarrow{H'A'}\|^2$$

$$\geqslant [HH']^2$$

On voit ainsi que la distance $\overrightarrow{AA'}$ est minimale lorsque $\|\overrightarrow{AH'} + \overrightarrow{H'A'}\|^2 = 0$ c'est ce qui se produit lorsque A = H et A' = H', cette distance minimale vaut alors HH'.

DÉFINITION 8.9 (Distance de deux droites)

La distance minimale HH' est appelée **distance de** \mathfrak{D} à \mathfrak{D}' et notée : $d(\mathfrak{D}, \mathfrak{D}') = HH'$.

Calcul de $d(\mathfrak{D}, \mathfrak{D}')$:

* Si les deux droites sont strictement parallèles on est ramené à calculer la distance d'un point à une

droite, ce qui donne
$$d(\mathfrak{D}, \mathfrak{D}') = d(A', \mathfrak{D}) = \frac{\|\overrightarrow{AA'} \wedge \overrightarrow{u'}\|}{\|\overrightarrow{u'}\|}$$
.

* Si les deux droites sont sécantes, alors H = H' et donc $d(\mathfrak{D}, \mathfrak{D}') = 0$.

* Si les deux droites sont non coplanaires : soit $\overrightarrow{n} = \overrightarrow{u} \wedge \overrightarrow{u}'$, alors $\overrightarrow{HH'} = \frac{\overrightarrow{HH'} \cdot \overrightarrow{n}}{||\overrightarrow{n}||^2} \cdot \overrightarrow{n}'$, or $\overrightarrow{AA'} \cdot \overrightarrow{n} = \overrightarrow{AA'} \cdot \overrightarrow{n}'$

$$\overrightarrow{AH} \cdot \overrightarrow{n} + \overrightarrow{HH'} \cdot \overrightarrow{n} + \overrightarrow{H'A'} \cdot \overrightarrow{n} = \overrightarrow{HH'} \cdot \overrightarrow{n}$$
, par conséquent :

$$d(\mathfrak{D}, \mathfrak{D}') = \|\overrightarrow{HH'}\| = \frac{\left|\overrightarrow{AA'} \cdot \overrightarrow{n'}\right|}{\|\overrightarrow{n'}\|} = \frac{\left|\overrightarrow{[AA'}, \overrightarrow{u'}, \overrightarrow{u'}, \overrightarrow{u''}]\right|}{\|\overrightarrow{u'} \wedge \overrightarrow{u''}\|}.$$

3) Sphères

Le repère $\mathcal{R} = (O, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est supposé orthonormal, la sphère de centre $A(x_A, y_A, z_A)$ et de rayon R > 0 est par définition $\mathcal{S}(A,R) = \{M \in \mathcal{E} \mid AM = R\}$, par conséquent :

$$M(x,y,z) \in \mathscr{S} \iff AM^2 = R^2 \iff \left[(x - x_A)^2 + (y - y_A)^2 + (z - z_A)^2 = R^2 \right].$$

C'est une **équation cartésienne** de \mathcal{S} .

Intersection droite-sphère :

Soit \mathfrak{D} une droite dirigée par \overrightarrow{a} [unitaire], prenons comme repère $\mathscr{R}' = (A, \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ de telle sorte que $\mathfrak D$ soit dans le plan $(A, \overrightarrow{a}, \overrightarrow{b})$ alors l'équation de $\mathscr S$ est $x^2 + y^2 + z^2 = R^2$ et un système d'équations de \mathfrak{D} est $\begin{cases} y = d \\ z = 0 \end{cases}$ avec $|d| = d(A, \mathfrak{D})$. Un point M(x, d, 0) est sur la sphère ssi $x^2 = R^2 - d^2$, d'où la discussion :

- Si $d(A, \mathfrak{D}) > R$: alors $\mathscr{S} \cap \mathfrak{D} = \emptyset$.
- Si $d(A, \mathfrak{D}) = R$: alors il y a un seul point commun H(0, d, 0), c'est le projeté orthogonal de A sur \mathfrak{D} , dans ce cas la droite \mathfrak{D} est dite **tangente** à la sphère (et elle est perpendiculaire au rayon (AH)).
- Si d(A, \mathfrak{D}) < R: alors il y a deux points communs $I(\sqrt{R^2-d^2},d,0)$ et $J(-\sqrt{R^2-d^2},d,0)$.

Intersection plan-sphère:

Soit \mathscr{P} un plan muni d'une base orthonormale $(\overrightarrow{a}, \overrightarrow{b})$, prenons comme repère $\mathscr{R}' = (A, \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ avec $\overrightarrow{c} = \overrightarrow{a} \wedge \overrightarrow{b}$, alors une équation de $\mathscr S$ est $x^2 + y^2 + z^2 = R^2$ et une équation de $\mathscr S$ est z = d avec $|d| = d(A, \mathscr P)$, un point M(x, y, d) appartient à $\mathscr S$ ssi $x^2 + y^2 = R^2 - d^2$, d'où la discussion :

- Si d(A, \mathscr{P}) > R : alors $\mathscr{S} \cap \mathscr{P} = \emptyset$.
- Si $d(A, \mathcal{P}) = R$: alors il y a un seul point commun H(0, 0, d), c'est le projeté orthogonal de A sur \mathcal{P} , dans ce cas le plan \mathcal{P} est dit **tangent** à la sphère (et il est perpendiculaire au rayon (AH)).
- Si $d(A, \mathfrak{D}) < R$: alors $\mathscr{S} \cap \mathscr{P} = \{M(x, y, d) / x^2 + y^2 = R^2 d^2\}$ dans le plan \mathscr{P} muni du repère $(H, \overrightarrow{a}, \overrightarrow{b})$ avec H(0,0,d) le projeté orthogonal de A sur \mathscr{P} , c'est l'équation du cercle de centre H et de rayon $\sqrt{R^2 - d^2}$ car $\overrightarrow{HM} = x \overrightarrow{a} + y \overrightarrow{b}$.

Le plan tangent à $\mathscr S$ au point $T_0 \in \mathscr S$ est défini par $\overrightarrow{T_0M} \cdot \overrightarrow{AT_0} = 0$.

FIGURE 8.3: Intersection droite-sphère et intersection plan-sphère

Intersection sphère-sphère : montrer que l'étude de l'intersection entre deux sphères, se ramène à l'étude précédente, c'est à dire l'intersection entre un plan et une sphère.

FIGURE 8.4: Intersection sphère-sphère

IV) Exercices

★Exercice 8.1

Soit \Re un repère de \mathscr{E} , établir une équation du plan \mathscr{P} dans les cas suivants :

- a) Passant par A(-1,2,3) et de base $(\overrightarrow{u},\overrightarrow{v})$ avec $\overrightarrow{u}(1,1,1)$ et $\overrightarrow{v}(0,1,4)$.
- b) Contenant la droite $\mathfrak{D}: \left\{ \begin{array}{ll} 3x-y+z&=&1\\ x-4y+z&=&2 \end{array} \right.$, et tel que $\mathfrak{D}': \left\{ \begin{array}{ll} x+y+z&=&4\\ 2x-y+z&=&2 \end{array} \right.$ soit parallèle à \mathscr{P} .
- c) Passant par les points A(-1,2,3), B(2,-1,4) et C(2,1,-1).
- d) Passant par A(-1, 2, 3) et parallèle au plan d'équation 3x + y z = 0.
- e) Passant par A(-1,2,3) et contenant la droite $\mathfrak{D}: \begin{cases} 3x+y-z+2 = 0 \\ x-y+z-4 = 0 \end{cases}$.

★Exercice 8.2

Soit $\mathfrak R$ un repère de $\mathscr E$, établir un système d'équations de la droite $\mathfrak D$ dans les cas suivants :

- a) Passant par A(-1,2,3) et de vecteur directeur $\overrightarrow{u}(1,2,-1)$.
- b) Passant par A(-1, 2, 3) et B(2, -1, 4).
- c) Passant par A(-1,2,3) et parallèle à la droite \mathfrak{D}' : $\begin{cases} 3x+y-z+2 &= 0 \\ x-y+z-4 &= 0 \end{cases}$.

★Exercice 8.3

L'espace & est muni d'un repère, soient $\mathfrak{D}: \begin{cases} x = az + p \\ y = bz + q \end{cases}$ et $\mathfrak{D}': \begin{cases} x = a'z + p' \\ y = b'z + q' \end{cases}$ deux droites. Déterminer une condition nécessaire et suffisante pour que \mathfrak{D} et \mathfrak{D}' soient coplanaires.

★Exercice 8.4

 $\mathscr E$ est muni d'un repère orthonormé, soit $\mathscr P$ le plan d'équation 2x+y-z=1 et $\mathscr D$ la droite passant par A(1,0,2) et dirigée par $\overrightarrow{u}(-1,1,2)$.

- a) Déterminer l'expression de la projection orthogonale sur \mathcal{P} . Même question avec la symétrie orthogonale par rapport à \mathcal{P} .
- b) Déterminer l'expression de la projection orthogonale sur \mathcal{D} . Même question avec la symétrie orthogonale par rapport à \mathcal{D} .

★Exercice 8.5

 $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ est un repère orthonormé direct, dans les cas suivants, on demande une équation du plan \mathscr{P} :

a) passant par A(1,1,1) et orthogonal à $\overrightarrow{u}(3,-1,2)$.

b) passant par
$$A(2,-1,1)$$
 et orthogonal à \mathfrak{D} :
$$\begin{cases} 2x-y+z = 1 \\ 3x+y+2z = 2 \end{cases}$$
.

★Exercice 8.6

Soit \overrightarrow{n} un vecteur non nul et $A, B \in \mathcal{E}$ deux points distincts.

- a) Démontrer que l'ensemble des points M vérifiant $\overrightarrow{MA} \cdot \overrightarrow{n} = 0$ est un plan, préciser.
- b) Démontrer que l'ensemble des points M vérifiant $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ est une sphère, préciser. Plus généralement, que dire de l'ensemble $\left\{ M \in \mathscr{E} \ / \ \overrightarrow{MA} \cdot \overrightarrow{MB} = k \right\}$ où k est une constante ?
- c) Démontrer que l'ensemble des points M vérifiant MA = MB est un plan, préciser.
- d) Démontrer que l'ensemble des points M vérifiant MA = k.MB où $k \in \mathbb{R}^*_{\perp} \setminus \{1\}$, est une sphère.

★Exercice 8.7

 $(0, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ est un repère orthonormé :

a) Soit
$$\mathfrak{D}$$
:
$$\begin{cases} x-y+z &= 1\\ 3(x+z) &= 2 \end{cases}$$
, soit $M(0,1,0)$, calculer $d(M,\mathfrak{D})$.

b) Soit
$$\mathscr{P}$$
:
$$\begin{cases} x = 1 + \lambda + \mu \\ y = -1 + \lambda - \mu \\ z = 1 + 2\lambda + 3\mu \end{cases}$$
, soit $M(1, 0, -2)$, calculer $d(M, \mathscr{P})$.

★Exercice 8.8

Montrer que pour tous vecteurs \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} de l'espace, on a :

$$(\overrightarrow{u} \wedge \overrightarrow{v}) \wedge \overrightarrow{w} + (\overrightarrow{v} \wedge \overrightarrow{w}) \wedge \overrightarrow{u} + (\overrightarrow{w} \wedge \overrightarrow{u}) \wedge \overrightarrow{v} = \overrightarrow{0}.$$

★Exercice 8.9

Montrer que pour tous vecteurs \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} de l'espace on a :

a)
$$(\overrightarrow{a} \wedge \overrightarrow{b}) \cdot (\overrightarrow{c} \wedge \overrightarrow{d}) = \begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{c} & \overrightarrow{a} \cdot \overrightarrow{d} \\ \overrightarrow{b} \cdot \overrightarrow{c} & \overrightarrow{b} \cdot \overrightarrow{d} \end{vmatrix}$$
.

b)
$$(\overrightarrow{a} \wedge \overrightarrow{b}) \wedge (\overrightarrow{c} \wedge \overrightarrow{d}) = [\overrightarrow{a}, \overrightarrow{c}, \overrightarrow{d}] \overrightarrow{b} - [\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}] \overrightarrow{a} = [\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d}] \overrightarrow{c} - [\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}] \overrightarrow{d}$$
.

★Exercice 8.10

Soient \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} trois vecteurs de l'espace.

- a) Montrer que $[\overrightarrow{u} \land \overrightarrow{v}, \overrightarrow{v} \land \overrightarrow{w}, \overrightarrow{w} \land \overrightarrow{u}] = [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]^2$.
- b) On suppose \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} non coplanaires, soient $\overrightarrow{u}' = \frac{\overrightarrow{v} \wedge \overrightarrow{w}}{[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]}$, $\overrightarrow{v}' = \frac{\overrightarrow{w} \wedge \overrightarrow{u}}{[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]}$ et $\overrightarrow{w}' = \frac{\overrightarrow{u} \wedge \overrightarrow{v}}{[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]}$.
 - i) Calculer les produits scalaires $\overrightarrow{u}' \cdot \overrightarrow{u}$, $\overrightarrow{u}' \cdot \overrightarrow{v}$ et $\overrightarrow{u}' \cdot \overrightarrow{w}$ [idem avec \overrightarrow{v}' et \overrightarrow{w}'].
 - ii) Montrer que $[\overrightarrow{u}', \overrightarrow{v}', \overrightarrow{w}'] = \frac{1}{[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]}$.

★Exercice 8.11

Soient A, B, C et D quatre points non coplanaires dans l'espace. On admet que le volume algébrique du tétraèdre \overrightarrow{ABCD} (noté V(ABCD)) est égal à un sixième du volume algébrique du parallélépipède construit sur \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} .

- a) Soit G le centre de gravité du tétraèdre ABCD, montrer que V(GABC) = -V(GBCD) = V(GCDA) = -V(GDAB).
- b) Montrer que V(ABCD) = -4V(GABC).

★Exercice 8.12

Soient \mathfrak{D} et \mathfrak{D}' deux droites de l'espace passant respectivement par A(1,-1,0) et A'(2,1,-1) et dirigées respectivement par $\overrightarrow{u}'(-1,0,2)$ et $\overrightarrow{u}'(1,-1,-1)$, dans un repère orthonormé direct.

- a) Montrer que ces deux droites sont non coplanaires.
- b) Déterminer leur perpendiculaire commune.
- c) Quelle est la distance entre ces deux droites?

★Exercice 8.13

Soient $\mathfrak{D}_1, \mathfrak{D}_2, \mathfrak{D}_3$ trois droites du plan (muni d'un repère) d'équations respectives : $a_i x + b_i y = c_i$ avec $i \in [1..3]$. Montrer que ces trois droites sont concourrantes ou 2 à 2 parallèles ssi : $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$. On pourra considérer l'espace $\mathscr E$ muni d'un repère orthonormé (direct) et les trois vecteurs $\overrightarrow{u}(a_1, a_2, a_3), \overrightarrow{v}(b_1, b_2, b_3)$ et $\overrightarrow{w}(c_1, c_2, c_3)$.