Pg 1	1,3,7,10,11
992	16,18,20,21,23,25
	28,35,38
<u>193</u>	41,44,47,51
Pgy	4()(())
Pg 5	4
Pg 6	6,7
Pg 7	15, 16, (18)
Pg 9	Comp 1.
Pg 10	Comp 4

$$\triangleright$$
) \times .

$$B) \times$$

A)
$$P = \frac{F}{A}$$

$$\left(P+\frac{a}{v^2}\right)\left(v-b\right) = RT$$

$$\dim(P) = \dim\left(\frac{a}{V^2}\right)$$

$$dom(a) = dem(P) dem(V^2)$$

$$= \left[\frac{MLT^{-2}L^{-2}}{L^3} \right] \left[\frac{(L^3)^2}{A} \right]$$

$$= ML^5T^{-2} \qquad (A)$$

$$y = A Sm \frac{w}{w} \left(\frac{x}{v} - b \right)$$

$$dim \left(w \left(\frac{x}{v} - b \right) \right) = none$$

$$dim \left(\frac{x}{v} - b \right) = T$$

$$dim \left(\frac{x}{v} - b \right) = T$$

2-331

(ii)
$$L = 2.331$$
 cm $B = 2.0$ cm
 $L + 13$

$$\frac{2.1}{4.4cm}$$

$$\frac{4.4cm}{D}$$

$$\frac{1}{M^{2}L^{-2}} = \frac{M^{-1}L^{3}}{M^{2}L^{-2}} \times \frac{D}{L^{-2}}$$

(8)
$$S = \alpha + bt + ct^2$$

 $dim(S) = dim(ct^2)$

$$dim(c) = dim(s)$$

$$dim(t^{2})$$

$$= \frac{L}{T^{2}}$$

$$= LT^{-2}$$

$$= ms^{-2}(D)$$

20) France Energy =
$$FS \cos \theta$$

 $x (Energy) = 4F \times 4S$
= $16FS$

$$T^{-1} = M^{2+y} - 2y - 2y = -1$$

$$T^{-2} = M^{2+y} - 2y - 2y = -1$$

$$Y = \frac{1}{2}$$

$$x = -\frac{1}{2}$$

$$F = -NA \frac{3V}{3Z}$$

$$dim[N] = dim \left[\frac{F}{A \times velocity gradient'}\right]$$

$$= \left[\frac{MLT^{-2}}{L^{2}}\right]$$

$$= \left[\frac{MLT^{-2}}{L^{2}+1}\right]$$

$$= \left[\frac{MLT^{-2}}{L^{2}+1}\right]$$

$$= \left[\frac{ML^{-1}}{L^{2}+1}\right]$$

yearstahonal Const = ML3T-2 = Gr

Planck's Const = ML2T-1 h

Planck's Const = ML2T-1 h

P= CxGyhz

M = CxGyhz

M= CxGyhz

M= CxGyhz

M= CxGyhz

M= CxGyhz

M = C Gth $M = (LT^{-1})^{\chi} (M^{-1}L^{3}T^{-2})^{\chi} (ML^{2}T^{-1})^{\chi} = hc$ $M = (LT^{-1})^{\chi} (M^{-1}L^{3}T^{-2})^{\chi} (ML^{2}T^{-1})^{\chi} = hc$ $M = (LT^{-1})^{\chi} (M^{-1}L^{3}T^{-2})^{\chi} (ML^{2}T^{-1})^{\chi} = hc$ $M = (M^{-1}L^{3}T^{-1})^{\chi} = hc$ $M = (M^{-1}L^{3}T$

$$\frac{1}{20} = \frac{5}{100} = 0.0500$$

41)

$$5 = \sqrt{3^2 + 4^2 + 2(3)(4)} (650$$

$$\cos \phi = 0 \implies \theta = 90^{\circ} = \frac{\pi}{2}$$
(B)

44)

$$1 = \sqrt{0.2^2 + 0.6^2 + a^2}$$

$$a^2 = 0.6$$
 $a = \sqrt{0.6}$ (C)

27

[5] IMSD =
$$\frac{1}{10} = 0.4$$
 Cm.

L·C = 0.005 cm.

1. C = $\frac{4}{10}$ MSD.

Number of vernus scale by:

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.005 = 0.11$.

 $0.$

$$P'=m'v'$$

$$=\frac{1}{\alpha^{2}p^{2}}m\cdot\frac{d^{2}}{p}v'$$

$$=\frac{1}{\beta^{3}}p'=\frac{1}{\beta^{3}$$

7)
$$V = a^3$$

$$= 7.203 \times 7.203 \times 7.203 \quad 2 \text{ SF}.$$

$$= 373.7 \text{ cm}^3 \text{ A}$$

$$= 6 a^2$$

$$= 6 (7.203 \times 7.203) = 311.299$$

$$= 6 (7.203 \times 7.203) = 311.3 \text{ cm}^2 \text{ C} \times 311.3 \text{ cm}^2 \text{$$

15)
$$\gamma = \sqrt{6^2 + 8^2 + 26} \times 6 \times 60$$

$$= \sqrt{100 + 96 (6 \times 6)}$$

$$2 - - 14$$

$$ABC)$$

$$ABC)$$

$$100 + 96 (6 \times 6)$$

$$\begin{array}{ccc}
\boxed{ & E = MLT^{-2} \\
 & = \alpha B^2 V^{-2}
\end{array}}$$

$$|(a)| = 4.2 J$$

$$= (4.2) \times \beta^2 v^{-2}$$

$$1 = -2x$$
 $\Rightarrow x = -\frac{1}{2}$
 $0 = x + y \Rightarrow y = \frac{1}{2}$

$$E = m^{\chi} f^{\gamma} A^{z}$$

$$ML^{2}T^{-2} = M^{\chi}T^{-\gamma}L^{z}$$

$$x=1 \quad Z=2$$

$$y=2$$

$$mf^2A^2$$
 (D)

Comp 4

10 VSD 9 MSD.

$$\int_{0.00}^{0.00} E_{0.00} = -0.5 + 10 \times LC$$

$$= -0.5 + 10 \times 0.025$$

$$= -0.25$$

o) (2)

$$(31)(0.5) + 4LC = 15.5 + 0.1 = 15.6 mm$$

 $= 15.6 + 0.25$
 $= 15.85 mm$