PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-117481

(43)Date of publication of application: 22.04.2003

(51)Int.Cl.

B05D 5/06

B05D 1/36

(21)Application number : 2001-316737

(71)Applicant : TOYOTA MOTOR CORP

KANSAI PAINT CO LTD

(22)Date of filing:

15.10.2001

(72)Inventor: NORITAKE YOSHIYUKI

KODAMA SATOSHI NAKAO YASUSHI NAGANO HIROYUKI

(54) METHOD FOR FORMING MULTILAYER COATING FILM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for forming a multilayer coating film capable of forming a metallic coating film with excellent orientation of a metallic pigment, minute sense, flip-flop property and luster sense.

SOLUTION: In the method for forming a multilayer coating film, an aqueous thermosetting base coating (A) is applied on an object to be coated and an aqueous metallic coating (B) and a clear coating (C) are subsequently applied on the coating surface in the state that a solid content of the formed coating film is 40% by weight or higher.

【物件名】

刊行物3

(19)日本国特許庁(JP) (12)公開特許公報(A)

(11)特許出願公開番号 特開2003-117481

(P2003-117481A) (43)公開日 平成15年4月22日(2003.4.22)

(51) Int. Cl. ' テーマコード (参考) 識別記号 FΙ B05D 5/06 101 B05D 5/06 101 A 4D075 1/36 1/36 В

審査請求 未請求 請求項の数2 OL (全7頁)

(21)出願番号

特顧2001-316737(P2001-316737)

(22)出願日

平成13年10月15日 (2001.10.15)

(71)出願人 000003207

トヨタ自動車株式会社

愛知県豊田市トヨタ町1番地

(71)出願人 000001409

関西ペイント株式会社

兵庫県尼崎市神崎町33番1号

(72)発明者 則武 義奉

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(74)代理人 100060782

弁理士 小田島 平吉 (外2名)

最終頁に続く

(54) 【発明の名称】複層塗膜形成方法

(57)【要約】

【課題】 メタリック顔料の配向性、緻密感、フリップ フロップ性、光輝感などにすぐれたメタリック塗膜を形 成することのできる複層強膜形成方法を提供すること。 【解決手段】 被塗物に水性熱硬化性ベース塗料 (A) を登装し、形成される塗膜の固形分含有率が40重量% 以上である状態で、その釜面に水性メタリック塗料 (B) 及びクリヤ鍮料 (C) を順次釜り重ねることを特 徴とする複層塗膜形成方法。

7 11111111111 078

(2)

特開2003-117481

【特許請求の範囲】

【請求項1】 被塗物に水性熱硬化性ベース塗料 (A) を塗装し、形成される塗膜の固形分含有率が40重量% 以上である状態で、その範面に水性メタリック絵料

(B) 及びクリヤ塗料 (C) を順次塗り重ねることを特 徴とする複層塗膜形成方法。

【請求項2】 水性熱硬化性ベース塗料 (A) の固形分 含有率が40重量%以上である塗膜に水性メタリック塗 料(B)を塗り重ねてなる未硬化の複層塗膜の転球式粘 度測定法に基づく粘度が10'~10'センチポイズであ 10 ることを特徴とする請求項1記載の複層塗膜形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、メタリック顔料の 配向性及び緻密感にすぐれ、しかもフリップフロップ (ff)性及び光輝感などが良好なメタリック診膜を形 成せしめることができる複層塗膜形成方法に関する。

[0002]

【従来の技術とその課題】有機溶剤系ベース塗料、有機 てこの3層途膜を同時に硬化せしめる3コート1ベイク 方式 (3 C 1 B) によるメタリック感を有する複層強膜 の形成方法は公知である。この方法は、金膜を硬化させ るための加熱工程が1回で済むので省力化には好都合で あるが、ベース塗料の未硬化強面にメタリック強料を塗 装するとメタリック顔料の配向性が乱れ、緻密感が劣 り、しかもff性及び光輝感なども十分でないという欠 点が生ずる。

【0003】本発明の目的は、3C1Bによるメタリッ ク感を有する複層塗膜の形成方法における上記の如き欠 30 点を解消することである。

[0004]

【課題を解決するための手段】本発明者らは、鋭食研究 を行った結果、今回、ベース強料及びメタリック釜料と して水性塑料を使用し、かつ、水性ベース塑料の塑膜の 固形分含有率が40重量%以上である状態で、その塗面 に水性メタリック塗料及びクリヤ塗料を順次塗り重ねる ことにより、上記の目的を達成することができることを 見出し、本発明を完成するに至った。

【0005】かくして、本発明によれば、被強物に水性 40 熱硬化性ベース塗料(A)を塗装し、形成される塗膜の 固形分含有率が40重量%以上である状態で、その途面 に水性メタリック強料 (B) 及びクリヤ強料 (C) を順 次塗り重ねることを特徴とする複層塗膜形成方法が提供

【0006】以下、本発明の複層塗膜形成方法(以下、 「本方法」という)についてさらに詳細に説明する。

【発明の実施の形態】本方法を適用することができる被 **塗物は、その形状、材質等に特に制限はなく、例えば、**

乗用車、軽自動車、オートバイなどの自動車の金属製又 はプラスチック製の車体外板部が好適なものとして例示 される。これらの被塗物には、本方法を適用するに先立 ち、既知の材料及び方法を用いて化成処理、下途り塗 装、中塗り塗装などを行なってもよく、本発明における 「被塗物」には、このような処理、塗装が施された基材 も包含される。

【0008】本方法は、これらの被塗物に直接、又は下 塗り塗料及び場合によりさらに中塗り塗料などをあらか じめ塗装してなる被塗物に、水性熱硬化性ベース塗料 (A)を強装し、適宜乾燥し、その強膜の固形分含有率 が40重量%以上である状態で、その塗面に水性メタリ ック塗料 (B) 及びクリヤ塗料 (C) を順次塗装してメ タリック感を有する複層途膜を形成する方法である。

【0009】水性熱硬化性ベース塗料 (A) は、本方法 に従い、メタリック塗料(B)に先立って被塗物に塗装 される塗料であり、水性媒体を含有する熱硬化性ベース **塗料である。具体的には、熱硬化性樹脂成分、着色顔** 料、水などを含有し、ソリッドカラー調、メタリック 溶剤系メタリック塗料及びクリヤ塗料を塗装し、加熱し 20 間、光干渉性などの着色塗膜を形成することができる液 状強料があげられる。

> 【0010】熱硬化性樹脂成分としては、水酸基などの 架橋性官能基及びカルボキシル基などの親水性官能基を 有する、アクリル樹脂、ビニル樹脂、ポリエステル樹 脂、アルキド樹脂、ウレタン樹脂などの基体樹脂と、メ ラミン樹脂、プロックポリイソシアネート化合物などの 架構剤とからなるそれ自体既知の強料用樹脂組成物を使 用することができる。基体樹脂は、一般に、10~20 0、特に30~120の範囲内の水酸基価、5~15 0、特に15~100の範囲内の酸価、及び2000~ 1000000、特に3000~50000の範囲内の 数平均分子量を有していることが好ましい。 基体樹脂と 架橋剤との配合割合は、通常、この両成分の合計固形分 重量に基いて、基体樹脂は50~90%、特に60~8 0%、架橋剤は50~10%、特に40~20%の範囲 内にあるのが適している。

【0011】基体樹脂は、例えば、該樹脂に含まれる親 水性官能基としてのカルボキシル基を中和することにより り水溶化又は水分散化することができるが、カルボキシ ル基を中和するための中和剤としては、例えば、アンモ ニア、メチルアミン、エチルアミン、プロビルアミン、 イソプロピルアミン、プチルアミン、2-エチルヘキシ ルアミン、シクロヘキシルアミン、ジメチルアミン、ジ エチルアミン、ジプロピルアミン、ジイソプロピルアミ ン、ジブチルアミン、トリメチルアミン、トリエチルア ミン、トリイソプロピルアミン、トリプチルアミン、エ チレンジアミン、モルホリン、N-アルキルモルホリ ン、ピリジン、モノイソプロパノールアミン、メチルエ タノールアミン、メチルイソプロパノールアミン、ジメ 50 チルエタノールアミン、ジイソプロパノールアミン、ジ

(3)

特開2003-117481

エタノールアミン、トリエタノールアミン、ジエチルエ

タノールアミン、トリエタノールアミンなどがあげられ る。これらの中和剤は1種又は2種以上を組み合わせて 使用することができる。中和剤の使用量は、基体樹脂中 のカルポキシル基に対して、通常、0.1~2当量、

0.3~1.2当量の範囲内が適している。

【0012】着色顔料としては、例えば、ソリッドカラ 一顔料、メタリック顔料、光干渉性顔料などが包含さ れ、塑料用顔料としてそれ自体既知のものを使用するこ とができる。例えば、酸化チタン、亜鉛華、リトポン、 アンチモン白、カーボンブラック、アセチレンブラッ ク、ランプブラック、ナフトールエローS、ハンザエロ ー、ピグメントエローL、ベンジジンエロー、パーマネ ントエロー、クロムオレンジ、クロムバーミリオン、パ ーマネントオレンジ、酸化鉄、アンパー、ベンガラ、鉛 丹、パーマネントレッド、キナクリドン系赤顔料、コバ ルト紫、ファストバイオレット、メチルバイオレットレ ーキ、群青、紺青、コパルトブルー、フタロシアニンブ ルー、インジゴ、クロムグリーン、ピグメントグリーン B、フタロシアニングリーンなどのソリッドカラー顔 料;アルミニウム、酸化アルミニウム、オキシ塩化ビス マス、ニッケル、銅などのフレーク又は蒸着片、雲母フ レーク、酸化チタン被覆雲母フレーク、酸化鉄被覆雲母 フレークなどのメタリック顔料を好適に使用することが できる。

【0013】また、バリタ粉、沈降性硫酸バリウム、炭 酸パリウム、炭酸カルシム、石膏、クレー、シリカ、ホ ワイトカーポン、珪藻土、タルク、炭酸マグネシウム、 アルミナホワイト、グロスホワイト、マイカ粉などの体 質顔料等も配合することができる。

【0014】ベース塗料 (A) は、これらの着色顔料を 含有せしめることにより、その単独硬化塗膜の下地白黒 隠蔽膜厚が20μm以下、好ましくは15μm以下、さ らに好ましくは13μm以下になるように調整されてい ることが好ましい。ここで、「下地白黒隠蔽膜厚」は、 塗料を白黒の格子模様を有する塗面に塗装し、その塗膜 を透かして白黒格子模様が見えなくなる最小硬化膜厚の ことである。

【0015】ベース強料(A)には、水に加えて、さら に必要に応じて、親水性有機溶剤を含有せしめることが できる。その際に使用しうる親水性有機溶剤としては、 20℃において、水100重量部あたり50重量部以上 溶解することができる有機溶剤が包含され、具体的に は、例えば、酢酸エチレングリコールモノメチルエーテ ル、酢酸ジエチレングリコールモノメチルエーテル、酢 酸ジエチレングリコールモノエチルエーテル、ジオキサ ン、エチレングリコールモノメチルエーテル、エチレン グリコールモノエチルエーテル、エチレングリコールモ ノブチルエーテル、ジエチレングリコールモノメチルエ

エチレングリコールジエチルエーテル、ジエチレングリ コールモノブチルエーテル、プロピレングリコールモノ エチルエーテル、ジプロピレングリコールモノメチルエ ーテル、メチルアルコール、エチルアルコール、アリル アルコール、nープロピルアルコール、イソプロピルア ルコール、第3プチルアルコール、エチレングリコー ル、1、2-プロピレングリコール、1、3-プチレン グリコール、2、3ープチレングリコール、ヘキシレン グリコール、ヘキサンジオール、ジプロピレングリコー 10 ル、アセトン、ジアセトンアルコールなどがあげられ る。このうち沸点が180~200℃の範囲内に含まれ る溶剤が特に好適である。親水性有機溶剤の配合比率 は、通常、熱硬化性樹脂成分100重量部(固形分)あ たり、20~150重量部、特に30~90重量部の範 囲内が適している。

【0016】水性熱硬化性ベース塗料(A)は、以上に 述べた熟硬化性樹脂成分、着色顔料などの成分を木性媒 体に混合分散せしめることにより調製することができ、 強装時における固形分含有率は、一般に、15~50重 20 量%、特に18~35重量%の範囲内にあるのが好まし い。また、水と親水性有機溶剤との比率は、塗装時にお いて、この両成分の合計重量に基いて、水は50~10 0%、好ましくは70~95%、より好ましくは75~ 90%、親水性有機溶剤は50~0%、好ましくは30 ~5%、より好ましくは25~10%の範囲内にあるの が適している。さらに、ベース盤料(A)には、上記の 親水性溶剤に加えて、疎水性有機溶剤を本発明の目的を 阻害しない範囲内で併用することができ、その配合比率 は 観水性有機溶剤と水との混合液100重量部あた り、30重量部以下、特に20重量部以下であることが 30 好ましい。

【0017】水性熱硬化性ベース塗料 (A) は、被塗物 に、エアスプレー、エアレススプレー、静電塗装などの 方法により塗装することができる。その膜厚は塗装製品 の使用目的等に依存して広範囲にわたって変えることが できるが、通常、下地隠蔽膜厚と同程度又はそれ以上が 好ましく、具体的には、例えば、硬化塗膜を基準にし て、20μm以下、好ましくは15μm以下、さらに好 ましくは13 m以下が適している。

【0018】本方法によれば、水性熱硬化性ベース塗料 (A) を上記のようにして鈴奘し、その絵膜を、実質的 に三次元に架橋硬化させることなく未硬化の状態で、固 形分含有率が40重量%以上、好ましくは50~100 重量%、より好ましくは50~80重量%の範囲内にな るように乾燥させた後、その塗面に水性メタリック塗料 (B) が鈴装される。

【0019】ベース強料 (A) の未硬化塗膜の固形分含 有率を上記の範囲内に調整する方法としては、例えば、 固形分含有率が40重量%以上のベース塗料(A)を用 ーテル、ジエチレングリコールモノエチルエーテル、ジ 50 いるか、形成された途膜を室温で放置するか、約50~

(4)

特開2003-117481

できるが、一般には、0.5~40μm、特に1~20

μπの範囲内が適している。

改良されるという効果を奏する。

約100℃の温度で1~30分間程度強制乾燥するなど の方法があげられ、後者の強制乾燥方法が効率的で特に 好ましい。本方法において、ベース塗料(A)の鐘膜の 固形分含有率が40重量%よりも低い状態の塗面にメタ リック塗料 (B). を塗装すると、このメタリック塗料

(B) に含まれているメタリック顔料の配向性が不均一 になり、しかも f f 性や緻密感が低下する傾向がある。

【0020】水性メタリック塗料 (B) は、本方法に従 い、固形分含有率を上記のように調整してなるベース釜 科(A)の未硬化塗膜面に塗装されるものであり、具体 | 10 | 的には、熱硬化性樹脂成分、メタリック顔料及び水を必 須成分として含有し、さらに必要に応じて、親水性有機 溶剤、メタリック顔料以外の着色塗料、体質顔料などを 配合してなる水性液状塗料を使用することができる。上 記成分のうち、熱硬化性樹脂成分及び親水性有機溶剤と しては、水性 熱硬化性ペース塗料 (A) の説明におい て例示したものが同様に使用可能である。

【0021】メタリック顔料には、キラキラとした光輝 感を示す光輝性顔料及び光干渉模様を示す光干渉性顔料 などが包含される。具体的には、例えば、アルミニウ ム、酸化アルミニウム、塩化オキシピスマス、ニッケ ル、銅などのフレーク又は蒸着片、鬘母フレーク、酸化 チタン被覆雲母フレーク、酸化鉄被覆雲母フレークなど が好適に使用できる。これらのメタリック顔料として は、長手方向寸法が1~100μm、特に5~40μ m、厚さが0.0001~5μm、特に0.001~2 μmの範囲内にあるものが適している。

【0022】メタリック顔料の配合量は、最終製品の使 用目的等に依存して広範囲にわたって変えることができ るが、一般には、熱硬化性樹脂成分100重量部(固形 30 分) あたり、3~100重量部、特に5~80重量部の 範囲内が適している。また、親水性有機溶剤の配合比率 は、塗装時において、通常、熱硬化性樹脂成分100重 量部あたり、1~20重量部、特に5~10重量部の籤 囲内が適している。さらに、水と親水性有機溶剤との比 率は、塗装時において、この両成分の合計重量に基い て、水は50~100%、好ましくは70~95%、よ り好ましくは15~90%、親水性有機溶剤は50~0 %、好ましくは30~5%、より好ましくは25~10 %の範囲内にあるのが適している。

【0023】水性メタリック塗料(B)には、上記の親 水性有機溶剤に加えて、疎水性有機溶剤を併用すること も可能であり、その含有量は親水性有機溶剤100重量 部あたり、50重量部以下、特に30重量部以下である ことが好ましい。

【0024】水性メタリック塗料(B)は、塗装時にお ける固形分含有率を、通常、1~50重量%、特に3~ 40重量%に調整し、エアスプレー、エアレススプレ 一、静電塗装などの方法により塗装することができる。

【0025】本方法において、水性熱硬化性ベース塗料 (A) を塗装し、その塗膜を固形分含有率が40重量% 以上になるように乾燥してから、その登面に水性メタリ ック塗料(B)を塗装することにより、水性メタリック 塗料(B)の塗膜中の水分などが下層に隣接する水性熱 硬化性ベース塗料(A)の金膜中にすみやかに吸収さ れ、その結果、メタリック顔料が塗面に対して平行にか つ緻密に配向しやすく、しかもff性及び光輝感なども

【0026】また、本方法において、水性熱硬化性ベー ス塗料(A)の未硬化塗膜とその上に塗り重ねた水性メ タリック塗料(B)の未硬化とからなる複層塗膜の転球 式粘度測定法に基づく粘度が、10'~10'センチポイ ズの範囲内であることが好ましい。

【0027】 転球式粘度測定法は、水性熱硬化性ベース 塗料(A)の未硬化塗膜とその上に塗り重ねた水性メタ リック塗料 (B) の未硬化とからなる2層塗膜につい 20 て、下記の方法で行なわれる。

【0028】被強物に固形分含有率20~30重量%の 水性熱硬化性ベース塗料(A)を硬化塗膜で膜厚10~ 15 µmにエアスプレー塗装し、70~80℃で1~1 5分間強制乾燥して固形分含有率を60~80重量%の 範囲内に調整し、ついでその塗面に固形分含有率20~ 30重量%の水性メタリック塗料 (B) を硬化鈴膜で7 ~13μmの膜厚に塗装し、20℃で1分間経過した 時、同温度において、角度 $Cos\theta=2/3$ に保持し、 重量0.45±0.001g、直径0.48±0.01 cmの鋼球を塗面に置き、鋼球が15秒間転がった距離 (cm)を測定し、その測定値を下記式にあてはめて、 その複層強膜の粘度を算出する。

[0029] Log·cm=5. $48-(1.08\times1)$ og・センチポイズ)

本方法に従えば、水性熱硬化性ペース塗料 (A) 及び水 性メタリック<table-row>料(B)を塗装した後、室温で数分間以 内放置してから、又は室温以上120℃以内の温度でブ レヒートしてから、メタリック**塗料(B)の未硬化**塗面 にクリヤ登料(C)が強装される。

【0030】水性メタリック強料 (B) の未硬化の塗面 に塗装されるクリヤ塗料 (C) は、無色透明又は有色透 明の鞏膜を形成するものであり、具体的には、熱硬化性 樹脂成分を必須成分とし、さらに必要に応じて、有機溶 剤及び/又は水、着色顔料、体質顔料などを配合してな る粉体塗料又は液状塗料を用いることができる。

【0031】熱硬化性樹脂成分としては、例えば、水酸 基、カルボキシル基、エポキシ基などの官能基を有す る、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、 ウレタン樹脂などの基体樹脂と、これらの官能基と反応 その膜厚は塗装製品の使用目的等に応じて変えることが 50 しうるメラミン樹脂、尿素樹脂、ブロックポリイソシア

(5)

特開2003-117481

ネート化合物、カルボキシル基含有化合物又は樹脂、エ ポキシ基含有化合物又は樹脂などの架橋剤とからなる熱 硬化性樹脂組成物が好適である。これら両成分の配合比 率は、一般に、これらの合計固形分を基準にして、基体 樹脂は50~90重量%、特に65~80重量%、架橋 剤は50~10重量%、特に35~20重量%の範囲内 にあるのが適している。着色顔料としては、水性熱硬化 性ベース強料 (A) の説明で例示したものを同様に使用 することができる。有機溶剤としてはそれ自体既知の塗 料用有機溶剤を使用することができ、具体的には、例え 10 ート、エチルアクリレート、nープチルアクリレート、 は、炭化水素系、アルコール系、エステル系、エーテル 系、ケトン系などの通常の有機溶剤が使用でき、親水性 及び疎水性のいずれでも使用可能である。

【0032】クリヤ塗料(C)として、有機溶剤及び/ 又は水を含有する液状塗料を使用する場合は、塗装時に おける固形分含有率を20~80重量%、特に30~7 0重量%の範囲内に調整することが好ましい。

【0033】クリヤ塗料 (C) は、メタリック袋料 (B) の未硬化塗膜面に、エアスプレー、エアレススプ レー、静電塗装などの方法により塗装することができ る。その膜厚は塗装製品の使用目的等に応じて変えるこ とができるが、通常、10~300µm、特に20~2 D O μ m の範囲内にあるのが適している。本方法では、 その後、約100~約200℃、特に約120~約16 0℃の温度で10~40分程度加熱して、ベース塗料 (A)、メタリック塗料(B)及びクリヤ塗料(C)に よる複層塗膜を一緒に硬化させることができる。 [0034]

【発明の効果】本方法によれば、メタリック顔料の配向 性及び緻密感にすぐれ、フリップフロップ性、光輝感な 30 どの良好な複層塗膜を形成することが可能である。その 理由は十分に解明されていないが、水性熱硬化性ベース 塗料(A)の未硬化塗膜を固形分含有率を40重量%以 上に乾燥することにより、水分の吸収性が向上し、その **塗面に塗装される水性メタリック塗料(B)の登膜中の** 水分を速やかに吸収し、その結果、その塗膜中に含まれ るメタリック顔料がベース塗料(A)の塗膜面に対して 平行、かつ緻密に配向するものと推察される。

100351

【実施例】以下、実施例及び比較例により本発明をさら に具体的に説明する。実施例及び比較例において、各登 料の成分の配合量は原則として固形分量で示し、部及び %はいずれも重量基準であり、さらに塗膜の膜厚は硬化 塗膜についてのものである。

【0036】1. 試料の調製

1)被签物

脱脂及びりん酸亜鉛処理した鋼板(大きさ400×30 D×0.8mm) にエポキシ樹脂系カチオン電着塗料及 びポリエステル・メラミン樹脂系中塗り塗料を順次塗装 し、それぞれの塗膜を加熱硬化してなる塗装鋼板を被塗 50 を7μmの膜厚に塗装した塗板を、20℃で60秒間経

物として使用した。

【0037】2)水性熱硬化性ベース強料 (A) アクリル樹脂(注1)75部、メラミン樹脂(注2)2 5部、カーボンブラック顔料1. 5部及びチタン白顔料 80部を、エチレングリコールモノブチルエーテル20 %と水80%とからなる混合液に均一に混合して、固形 分含有率20%、粘度40秒/フォードカップ#4/2 0℃に調製した。下地白黒隠蔽鎮厚は15μmである。 【0038】 (注1) アクリル樹脂:メチルメタクリレ ヒドロキシエチルメタクリレート、ラウリルメタクリレ ート及びアクリル酸からなる単量体成分の共重合体であ

【0039】(注2)メラミン樹脂:部分メチルエーデ ル化メラミン樹脂。

り、水酸基価50、酸価70、数平均分子量50000

【0040】3) 水性メタリック塗料 (B)

である。モノエタノールアミンで中和した。

水性塗料用アルミニウム顔料15部、アクリル樹脂 (注 1) 75部及びメラミン樹脂(注2) 25部をエチレン 20 グリコールモノブチルエーテル20%と木80%とから なる混合液に均一に混合して、固形分含有率20%、粘 度30秒/フォードカップ#4/20℃に調製した。 【0041】4) クリヤ塗料 (C)

カルポキシル基含有アクリル樹脂 (注4) 50部、エポ キシ基含有アクリル樹脂(注 5) 5 0 部、「チヌピン 9 00」(チバガイギ社製、商品名、紫外線吸収剤)1 部、テトラブチルアンモニウムプロマイド1部及び「B YK300」(ビッグへミー社製、商品名、表面調整 材) 0. 1部を「スワゾール1000」からなる溶剤液 に混合して、粘度20秒/フォードカップ#4/20℃

【0042】 (注4) カルボキシル基含有アクリル樹 脂:アクリル酸20部、アクリル酸4-ヒドロキシn-ブチル20部、nーブチルアクリレート40部及びスチ レン20部からなる単量体の共重合体。数平均分子量3 500、酸価86、水酸基価78。

【0043】(注5)エポキシ基含有アクリル樹脂:グ リシジルメタクリレート30部、アクリル酸2-ヒドロ キシnープチル20部、nープチルアクリレート30部 40 及びスチレン20部からなる単量体の共重合体。数平均 分子量3000、エポキシ基含有量2、1ミリモルノ g、水酸基価78。

【0044】2. 実施例及び比較例 実施例 1

に調製した。

被塗物に固形分含有率20重量%の水性熱硬化性ベース 塗料 (A) を硬化塗膜で膜厚10 μmになるようにエ アスプレー塗装し、その塗膜を70℃で5分間強制乾燥 して固形分含有率を70重量%とした。ついでその盤面 に固形分含有率20重量%の水性メタリック塗料 (B)

(6)

特開2003-117481

10

過した時、同温度で、角度Cos 8=2/3に保持し、 重量0.45±0.001g、直径0.48±0.01 c mの鋼球をその未硬化塗面に置き、鋼球が15秒間転 がった距離を測定すると1.9cmであった。それから 下記式に従いその複層強膜の粘度を求めると65000 センチポイズであった。

[0045] Log·1. 9cm=5. 48-(1.0)8×log・センチポイズ)

ついで、この未硬化釜面にクリヤ塗料 (C) を膜厚40 µmに塗装し、室温で7分間放置してから140℃で3 10 0分間加熱して、3層強膜を同時に架橋硬化せしめた。 【0046】得られた複層塗膜は、メタリック顔料の配 向性及び緻密感にすぐれ、しかもフリップフロップ(f f) 性及び光輝感などが良好であった。

【0047】比較例 1

被強物に固形分含有率20重量%の水性熱硬化性ベース 塗料 (A) を硬化塗膜で膜厚10μmになるようにエア スプレー強装し、その塗膜を室温で2分間放置して固形 分含有率を30重量%とした。ついでその塗面に固形分 含有率20重量%の水性メタリック塗料(B)を7 μm 20 性の測定結果は下記のとおりである。 の膜厚に塗装した塗板を、20℃で60秒間経過した 時、同温度で、角度Cos θ = 2 / 3 に保持し、重量 0. 45±0. 001g、直径0. 48±0. 01cm の鋼球をその未硬化強面に置き、鋼球が15秒間転がっ た距離を測定すると82cmであった。それから下記式 に従いその複層塗膜の粘度を求めると2000センチポ イズであった。

[0048] Log·82cm=5.48-(1.08 ×log・センチポイズ)

µmに塗装し、室温で3分間放置してから140℃で3 0分間加熱して、3層塗膜を同時に架橋硬化せしめた。 【0049】得られた複層塗膜は、メタリック顔料の配 向性及び緻密感が劣り、しかもフリップフロップ(f f) 性及び光輝感なども十分でなかった。

【0050】比較例 2

被量物に固形分含有率20重量%の水性熱硬化性ベース 塗料(A)を硬化塗膜で膜厚10μαになるようにエア

スプレー塗装し、その鐘膜を140℃で30分間加熱し て硬化した。ついでその塗面に固形分含有率20重量% の水性メタリック塗料 (B) を7μmの膜厚に塗装した 塗板を、20℃で60秒間経過した時、同温度で、角度 $Cos\theta = 2/3$ に保持し、重量0.45±0.001 g、直径0.48±0.01cmの鋼球をその未硬化塗 面に置き、鋼球が15秒間転がった距離を測定すると1 70cmであった。それから下記式に従いその複層塗膜 の粘度を求めると1000センチポイズであった。

[0051] Log·170cm=5.48-(1.0 8×log・センチポイズ)

ついで、この未硬化釜面にクリヤ塗料 (C) を膜厚40 µmに参装し、室温で3分間放置してから140℃で3 0分間加熱して、3層塗膜を同時に架橋硬化せしめた。 【0052】得られた複層塗膜は、メタリック顔料の配 向性及び緻密感が劣り、しかもフリップフロップ(f f)性及び光輝感なども十分でなかった。

【0053】上記の実施例及び比較例により形成された 複層塗膜のメタリック顔料の配向性 (1 V値) 及びff

[0054]

【表1】

	実施例	比較例	
	1	1	2
IV值	390	280	300
f f 性	1.78	1.69	1.71

【0055】【V値は、「アルコープ」(関西ペイント 社製、商品名)を用いて測定したハイライト(15°) ついで、この未硬化釜面にクリヤ塗料 (C) を膜厚40 30 のY値のことである。数値が大きい方が配向性良好で、 上限は400である。

> 【0056】ff性は「アルコープ」(関西ペイント社 製、商品名)を用いて測定した15°のY値a及び45 °のY値bを次式にあてはめて算出したものであり、数 値が大きいほど! f 性が良好で、上限は2. 00であ

[0057] f f = (a-b) / [(a+b) / 2]

フロントページの続き

(72) 発明者 児玉 敏

愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内

(72) 発明者 中尾 泰志

愛知県西加茂郡三好町大字莇生字平地1番 地 関西ペイント株式会社内

(72)発明者 永野 裕幸

愛知県西加茂郡三好町大字莇生字平地1番 地 関西ペイント株式会社内

(7)

特開2003-117481

F ターム(参考) 4D075 AE12 AE13 BB25Y BB26Z
BB91Y BB91Z CB04 CB06
CB13 DA06 DB02 DB31 DC11
EA06 EA07 EA19 EA43 EB14
EB20 EB22 EB32 EB33 EB35
EB36 EB38 EB45 EB52 EB56
EC11