Reading: 5.6.

Last time:

- Divide and Conquer
- Recurrences
- Mergesort, Integer Multiply

Today:

- Polynomial Multiplication
- Fast Fourier Transform

Convolution and Polynomial Multiplication

Example:

$$A(x) = -2 + 2x$$

$$B(x) = 3/2 - x/2$$

$$C(c) = A(x) \cdot B(x) = -3 + 4x - x^2$$

Fact: let

$$A(x) = a_0 + a_1 x + \dots a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + \dots b_{n-1} x^{n-1}$$

be degree n-1 polynomials. Then,

$$C(x) = A(x) \cdot B(x)$$

= $c_0 + c_1 x + \dots + c_{2n-2} x^{n-2}$

with

$$c_k = \sum_{i,j : i+j=k} a_i b_j$$

Def: $\mathbf{a} = (a_0, \dots, a_{n-1})$ is an *n*-vector.

Def: \mathbf{c} (above) is the **convolution** of \mathbf{a} with \mathbf{b} , denoted $\mathbf{c} = \mathbf{a} * \mathbf{b}$.

Def: for **a** and **b**, the **pointwise vector product** is $\mathbf{c} = \mathbf{a} \cdot \mathbf{b}$ with $c_k = a_i \cdot b_i$.

[what are runtimes of trivial algorithms] for convolution and vector product?

Runtimes:

- pointwise product: O(n).
- convolution: $O(n^2)$. [[optimal?]]

[[can we do convolution faster?

Polynomial evaluation

Fact: a degree n-1 polynomial is uniquely Conclusion: Given determined by n points

Example: A(x) = -2 + 2x determined by (1,0), (2,2).

[[use fact to do poly mult another way]

Example:

$$A(x) = -2 + 2x$$

$$B(x) = 3/2 - x/2$$

Evaluate:

x	1	2	3
A(x)	0	2	4
B(x)	3/2	1/2	0

Multiply:

$$C(x) = A(x)B(x)$$
 0 1 0

What degree 2 poly goes through these points?

multiplication via Interpolate: $C(x) = -3 + 4x - x^2$.

[[last step comes from "Algebra 2"

]]

- x-coordinates x_0, \ldots, x_{n-1}
- function values A_0, \ldots, A_{n-1}

(with
$$A_i = A(x_i)$$
)

there is correspondence:

coefficients evaluate values
$$\mathbf{a} = (a_0, \dots, a_{n-1}) \underbrace{\qquad}_{\text{interpolate}} \mathbf{A} = (A_0, \dots, A_{n-1})$$

Algorithm: Polynomial Mult (degree n-1)

- 1. choose **x** as 2n-1 points x_0, \ldots, x_{2n-2}
- 2. evaluate on \mathbf{x} : \mathbf{a} , $\mathbf{b} \Rightarrow \mathbf{A}$, \mathbf{B} .
- 3. pointwise multiply: $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$.
- 4. interpolate: $\mathbf{C} \Rightarrow \mathbf{c}$.

Runtime: $T(n) = O(n^2)$

 $\begin{bmatrix} e.g., evaluate degree n poly on 2n points \\ is O(n^2). need a better idea \end{bmatrix}$

Idea: Choose \mathbf{x} to make evaluation/interpolation faster.

Fast Fourier Transform

Fact (Euler's Formula):
$$e^{i\theta} = \cos \theta + i \sin \theta$$

Proof: E.g., via Taylor series, see Wikipedia.

Recall: trigonometry

Example: Evaluate $e^{i\theta}$ at $\theta = \{0, \pi/2, \pi, 3\pi/2, 2\pi\}$

Fact: multiplying \equiv adding angles

$$e^{i\theta_1}e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}$$

Fact (Euler's Identity): $e^{i2\pi} = 1$

Def: *n*th roots of unity are $e^{ij2\pi/n}$ for $j = 0, \ldots, n-1$.

]]

Fact: nth roots of unity are solutions to $x^n = 1$.

[[intuition: multiplying = adding angles]]

Proof:
$$(e^{ij2\pi/n})^n = e^{ij2\pi} = (e^{i2\pi})^j = 1^j = 1.$$

Idea: use 2nth roots of unity as x_0, \ldots, x_{2n-1} .

Problem: Fourier Transform

Input: coefficients of degree n-1 poly.

$$A(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}.$$

Output:
$$A_0, ..., A_{n-1}$$

with
$$A_j = A(e^{ij2\pi/n})$$
.

Divide and Conquer FFT

[[subproblem?

[[break $A(\cdot)$ into even and odd terms

Idea: write $A(x) = \underbrace{A''(x^2)}_{\text{evens}} + \underbrace{xA'(x^2)}_{\text{odds}}$

- $A'(\cdot)$, $A''(\cdot)$, degree n/2-1 polys on x^2 .
- x^2 on nth roots of unity $\equiv x$ on n/2th roots of unity

Formally:

- $A''(x) = a_0 + a_2 x + \dots + a_{n-2} x^{n/2-1}$
- $A'(x) = a_1 + a_3 x + \dots + a_{n-1} x^{n/2-1}$ and

$$A(e^{ij2\pi/n}) = A''(e^{ij2\pi/n^2}) + e^{ij2\pi/n}A'(e^{ij2\pi/n^2})$$
$$= A''(\underbrace{e^{ij\pi/n}}) + e^{ij2\pi/n}A'(\underbrace{e^{ij\pi/n}})$$
$$n/2\text{th root of unity}$$

Subproblems: evaluate n/2 - 1 degree polys $A'(\cdot)$, $A''(\cdot)$ on n/2th roots of unity.

Algorithm: FFT (evaluates n-1 degree poly on nth roots of unity)

- 0. if n = 1, return $A_0 = a_o$.
- 1. divide \mathbf{a} into even & odd coefs, \mathbf{a}' and \mathbf{a}''
- 2. $\mathbf{A}' = FFT(\mathbf{a}'); \mathbf{A}'' = FFT(\mathbf{a}'').$
- 3. for each *n*th root of unity $e^{ij2\pi/n}$:

$$A_j = A''_{(j \mod 2)} + e^{ij2\pi/n}A'_{(j \mod 2)}$$

Runtime: T(n) = 2T(n/2) + n $\Rightarrow T(n) = O(n \log n).$

Poly Mult w. FFT

Claim: can de-FFT $(\mathbf{A} \Rightarrow \mathbf{a})$ with similar divide and conquer alg.

Proof: See text.

]]

]]

Algorithm: Poly Mult w. FFT

 $egin{bmatrix} use & FFT/de ext{-}FFT & for & evalu-\ ate/interpolate in poly mult algorithm \end{bmatrix}$

- 1. take 2n bit FFTs: $\mathbf{a}, \mathbf{b} \Rightarrow \mathbf{A}, \mathbf{B}$
- 2. pointwise multiply: $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}$
- 3. take 2n bit de-FFT: $\mathbf{C} \Rightarrow \mathbf{c}$.

Runtime: $T(n) = O(n \log n)$

Note: FFT with complex roots of unity can have numerical errors, with integer coefs, round solution to be integers.

 $\begin{bmatrix} Also, \ can \ get \ roots \ of \ units \ via \ number \\ theory, \ e.g., \ integers \ modulo \ a \ prime. \end{bmatrix}$

Note: Can use FFT to integer multiply in $O(n \log^2 n)$