CSC 226 SUMMER 2018 ALGORITHMS AND DATA STRUCTURES II ASSIGNMENT 1 - WRITTEN UNIVERSITY OF VICTORIA

- 1. I have seven different programming textbooks on my bookshelf, three C++ and four Java. In how many ways can I arrange the books
 - a) if there are no restrictions?
 - b) if the languages should alternate?
 - c) if all the C++ books must be next to each other?
 - d) if all the C++ books must be next to each other and all the Java books must be next to each other?
- 2. a) Show that if n is a positive integer and n > 2, then

$$\binom{n}{2} + \binom{n-1}{2}$$

is a <u>perfect square</u> (i.e. its square root is an integer.)

b) For x a real number and n a positive integer, show that

$$1 = (1+x)^n - \binom{n}{1}x(1+x)^{n-1} + \binom{n}{2}x^2(1+x)^{n-2} - \dots + (-1)^n \binom{n}{n}x^n$$

- 3. Determine the number of integer solutions of $x_1 + x_2 + x_3 + x_4 = 32$, where
 - a) $x_i \ge 0$, $1 \le i \le 4$
 - b) $x_i > 0$, $1 \le i \le 4$
- 4. During the first six weeks after you graduate you send out at least one resumé a day but no more than 60 resumés in total. Show that there is a period of consecutive days during which you send out exactly 23 resumés.
- 5. Let (A, \mathcal{R}_1) and (B, \mathcal{R}_2) be two posets. Consider the set derived from the cross product of sets A and $B, A \times B = \{(a, b): a \in A, b \in B\}$. Define relation \mathcal{R} on $A \times B$ by $((a, b), (x, y)) \in \mathcal{R}$ if $(a, x) \in \mathcal{R}_1$ and $(b, y) \in \mathcal{R}_2$. Prove that \mathcal{R} is a partial order.