CSCE 5380/4380 – Data Mining

Chapter Four:
K-Nearest
Neighbor &
Logistic
Regression

Outline

- Nearest Neighbor Classifiers
- K-NN: Algorithms
- Characteristics of K-NN
- Logistic Regression
- Learning a Logistic Regression Model
- Characteristics of Logistic Regression

Nearest Neighbor Classifiers

Basic idea:

 If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest Neighbor Classifiers

The *k*-nearest neighbors of a given test instance *z* refer to the *k* training examples that are closest to *z*

Requires the following:

- A set of labeled records
- Proximity metric to compute distance/similarity between a pair of records
 - e.g., Euclidean distance
- The value of k, the number of nearest neighbors to retrieve
- A method for using class labels of K nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Nearest Neighbor classifiers

- Nearest neighbor classifiers are know as Lazy Learners (Strategy of delaying the process of modeling the training data until it is needed to classify the test instances)
- Nearest neighbor classifiers are local classifiers
- They can produce decision boundaries of arbitrary shapes.

1-nn decision boundary is a Voronoi Diagram

K-NN: Algorithms

- 1: Let k be the number of nearest neighbors and D be the set of training examples.
 - 2: for each test instance $z=(\mathbf{x}',\ y')$ do
- 3: Compute $z=(\mathbf{x}',\,\mathbf{x})$, the distance between z and every example, $(\mathbf{x},\,y)\in D$.
- 4: Select $D_z \subseteq D$, the set of k closest training examples to z.

5:
$$y' = \argmax_v \sum_{(\mathbf{x}_i, y_i) \in D_z} I(v = y_i)$$

6: end for

How to Determine the class label of a Test Sample?

 Take the majority vote of class labels among the k-nearest neighbors

$$\text{Majority Voting}: \ y' = \argmax_{v} \sum_{(\mathbf{x_i}, \ \mathbf{y_i}) \in D_z} I(v = y_i),$$

- To reduce the impact of K neighbors, Weight the vote according to distance
 - weight factor, $w = 1/d^2$

Choice of proximity measure matters

 For documents, cosine is better than correlation or Euclidean

11111111110

VS

00000000001

011111111111

100000000000

Euclidean distance = 1.4142 for both pairs, but the cosine similarity measure has different values for these pairs.

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points (overfitting)
 - If k is too large, neighborhood may include points from other classes (misclassification)

Nearest Neighbor Classification...

Data preprocessing is often required

 Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes

◆Example:

- height of a person may vary from 1.5m to 1.8m
- weight of a person may vary from 90lb to 300lb
- income of a person may vary from \$10K to \$1M
- Time series are often standardized to have 0 means a standard deviation of 1

Nearest Neighbor Classification...

- How to handle missing values in training and test sets?
 - Proximity computations normally require the presence of all attributes
 - Some approaches use the subset of attributes present in two instances
 - This may not produce good results since it effectively uses different proximity measures for each pair of instances
 - Thus, proximities are not comparable

Characteristics of K-NN

- K-NN is part of instance-based learning, which uses the training examples to make predictions for a test instance.
- Nearest neighbor classifiers make their predictions based on local information and can produce decision boundaries of arbitrary shape.
- Nearest neighbor classifiers have difficulty handling missing values in both the training and test sets since proximity computations normally require the presence of all attributes.
- Nearest neighbor classifiers can handle the presence of interacting attributes, but the presence of irrelevant and redundant attributes can adversely affect the performance of nearest neighbor classifiers.
- K-NN can produce wrong predictions unless the appropriate proximity measure and data preprocessing steps are taken.

Logistic Regression

- Logistic regression is a classification algorithm used to assign observations to a discrete set of classes (e.g. to classify instances, in some classification problems, to Email spam or not spam, Online transactions Fraud or not Fraud, Tumor Malignant or Benign).
- Logistic regression transforms its output using the logistic (sigmoid) function to return a probability value.
- logistic regression is a probabilistic discriminative model, which directly estimates the odds of a data instance x using its attribute values.

Different ways of expressing probability

Consider a two-outcome probability space, where:

$$- p(O_1) = p$$

$$-p(O_2) = 1 - p = q$$

Can express probability of O₁ as:

	notation	range equivalents		
standard probability	р	0	0.5	1
odds	p / q	0	1	+ ∞
log odds (logit)	log(p/q)	- ∞	0	+ ∞

Log odds (logit function) & logistic function

- Numeric treatment of outcomes O₁ and O₂ is equivalent
 - If neither outcome is favored over the other, then $\log \text{ odds} = 0$.
 - If one outcome is favored with log odds = x, then other outcome is disfavored with log odds = -x.

$$z = \log\left(\frac{p}{1-p}\right)$$
 logit function

$$\frac{p}{1-p} = e^z$$

$$p = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$
 logistic function

Logistic Regression: The Scenario

- A multidimensional feature space (features can be categorical or continuous).
- Outcome is discrete, not continuous.
 - We'll focus on case of two classes.
- It seems plausible that a linear decision boundary (hyperplane) will give good predictive accuracy.

Logistic Regression: The Idea

- Model consists of a vector θ in n-dimensional feature space (Model Parameters)
- For a point x in feature space, project it onto θ to convert it into a real number z in the range - ∞ to + ∞

$$z = \theta^{\mathsf{T}} x = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

 Map z to the range 0 to 1 using the logistic function (Hypothesis Representation)

$$h_{\theta}(x) = g(\theta^{\mathsf{T}}x)$$
, where $g(z) = \frac{1}{1+e^{-z}}$

 Overall, logistic regression maps a point x in ndimensional feature space to a value in the range 0 to 1

Logistic Regression: The Model

$$h_{\theta}(x) = g(\theta^{\top}x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y = 1" if $h_{\theta}(x) \ge 0.5$

$$z = \theta^{\mathsf{T}} x \geq 0$$

predict "y = 0" if
$$h_{\theta}(x) < 0.5$$

$$z = \theta^{\mathsf{T}} x < 0$$

Logistic Regression: Decision Boundary

Example:

Classification of Tumor Malignant (*y*=1) or Benign (*y*=0), based on two features (Age and Tumor Size)

• Predict "y = 1" if $-3 + x_1 + x_2 \ge 0$

Learning a Logistic Regression Model

- Need to optimize θ so the model gives the best possible reproduction of training set labels
 - Done by numerical approximation of maximum likelihood
 or
 - By using stochastic gradient descent

Logistic Regression: Cost Function

How to learn a *logistic regression model* $h_{\theta}(x) = g(\theta^T x)$, where $\theta = [\theta_0, ..., \theta_n]$ and $x = [x_0, ..., x_n]$?

By minimizing the following cost function:

$$Cost(\boldsymbol{h}_{\boldsymbol{\theta}}(\boldsymbol{x}), \mathbf{y}) = -y \log \left(\frac{1}{1 + e^{-\boldsymbol{\theta}^T x}}\right) - (1 - y) \log \left(1 - \frac{1}{1 + e^{-\boldsymbol{\theta}^T x}}\right)$$

That is:

minimize
$$\frac{1}{n} \sum_{i=1}^{m} Cost(h_{\theta}(x)^{(i)}, y^{(i)})$$

Cost function
$$J(\theta)$$

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{m} -y^{(i)} \log \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} \right) - (1 - y) \log \left(1 - \frac{1}{1 + e^{-\theta^T x^{(i)}}} \right)$$

Gradient Descent For Logistic Regression

Outline:

- Have cost function $J(\theta)$, where $\theta = [\theta_0, ..., \theta_n]$
- Start off with some guesses for $\theta_0, ..., \theta_n$
 - It does not really matter what values you start off with,
 but a common choice is to set them all initially to zero
- Repeat until convergence { $\theta_j = \theta_j \alpha \frac{\partial J(\theta)}{\partial \theta_j}$ Note: Update all θ_j simulatenously

Learing rate, which controls how big a step we take when we update θ_i

Gradient Descent For Logistic Regression

Outline:

- Have cost function $J(\theta)$, where $\theta = [\theta_0, ..., \theta_n]$
- Start off with some guesses for $\theta_0, ..., \theta_n$
 - It does not really matter what values you start off with, but a common choice is to set them all initially to zero
- Repeat until convergence {

$$\theta_j = \theta_j - \alpha \sum_{i=1}^m \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} - y^{(i)}\right) x_j^{(i)}$$
 The final formula after applying partial derivatives

Introduction to Data Mining, 2nd Edition

Logistic Regression: Inference after learning

• After learning the parameters $\boldsymbol{\theta} = [\theta_0, ..., \theta_n]$, we can predict the output of any new unseen $\boldsymbol{x} = [x_0, ..., x_n]$ as follows:

$$\begin{cases} if \ h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} < 0.5 \text{ predict 0} \\ Else \ if \ h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} \ge 0.5 \text{ predict 1} \end{cases}$$

Characteristics of Logistic Regression

- The learned parameters of logistic regression can be analyzed to understand the relationships between attributes and class labels.
- Because logistic regression does not involve computing densities and distances in the attribute space, it can work more robustly even in high-dimensional settings.
- Logistic regression can handle irrelevant attributes by learning weight parameters close to 0 for attributes that do not provide any gain in performance during training. It can also handle interacting attributes since the learning of model parameters is achieved in a joint fashion by considering the effects of all attributes together.
- Logistic regression cannot handle data instances with missing values, since the posterior probabilities are only computed by taking a weighted sum of all the attributes.