02 Soil

Loïc Thurre

2024-09-17

0. Data importation

1. Principal coordinate analysis (PCA)

First, we performed a principal component analysis (PCA) to reveal relationships between the assessed physicochemical parameters across the 25 soils # 1.1 Computing PCA

```
## Importance of components:
##
                             PC1
                                    PC2
                                            PC3
                                                   PC4
                                                           PC5
                                                                   PC6
                                                                            PC7
                          2.3832 2.0647 1.6499 1.5564 1.35700 1.09755 0.99388
## Standard deviation
## Proportion of Variance 0.2469 0.1853 0.1184 0.1053 0.08006 0.05238 0.04295
  Cumulative Proportion
                          0.2469 0.4323 0.5506 0.6560 0.73602 0.78840 0.83134
                              PC8
                                       PC9
                                              PC10
                                                      PC11
                                                              PC12
                                                                      PC13
                          0.93561 0.86814 0.78603 0.64483 0.57209 0.54035 0.47326
## Standard deviation
## Proportion of Variance 0.03806 0.03277 0.02686 0.01808 0.01423 0.01269 0.00974
## Cumulative Proportion
                          0.86940 0.90217 0.92903 0.94711 0.96134 0.97404 0.98378
                             PC15
                                    PC16
                                            PC17
                                                    PC18
                                                            PC19
                                                                    PC20
                                                                             PC21
## Standard deviation
                          0.38049 0.3181 0.2347 0.21169 0.11623 0.09642 0.06691
## Proportion of Variance 0.00629 0.0044 0.0024 0.00195 0.00059 0.00040 0.00019
                          0.99007 0.9945 0.9969 0.99881 0.99940 0.99981 1.00000
## Cumulative Proportion
##
                              PC22
                                         PC23
## Standard deviation
                          0.002475 2.307e-16
## Proportion of Variance 0.000000 0.000e+00
## Cumulative Proportion 1.000000 1.000e+00
```

1.2 Figure 3A

To obtain insights on the relationship of soil parameters and BRI, we coloured the soils in the PCA based on the BRI of wheat growth on these soils

1.3 ANOVA

Formula: BRI \sim soil_variables

##
Shapiro-Wilk normality test
##
data: masterTable\$BRI

W = 0.96776, p-value = 0.5889

Table S3?

Table S3

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Humus	1	731.473828	731.473828	7.0263656	0.0569384
Clay	1	195.774132	195.774132	1.8805603	0.2421685
Sand	1	119.756400	119.756400	1.1503518	0.3438738
рН	1	18.724524	18.724524	0.1798634	0.6933047
P_H2O	1	200.357802	200.357802	1.9245899	0.2376429
K_{H2O}	1	5.138320	5.138320	0.0493575	0.8350673
Mg_H2O	1	95.859279	95.859279	0.9208017	0.3916050
Ca_H2O	1	39.130323	39.130323	0.3758767	0.5729635
P_AAE	1	5.383909	5.383909	0.0517166	0.8312535
K_AAE	1	119.616416	119.616416	1.1490072	0.3441238
Mg_AAE	1	19.899151	19.899151	0.1911466	0.6845322
Ca_AAE	1	8.263297	8.263297	0.0793753	0.7921208
Cu	1	519.077036	519.077036	4.9861319	0.0893164

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Fe	1	90.531967	90.531967	0.8696288	0.4038488
Mn	1	12.859107	12.859107	0.1235216	0.7429780
В	1	1.371004	1.371004	0.0131695	0.9141664
WHC	1	570.578949	570.578949	5.4808472	0.0792811
Corg	1	61.302653	61.302653	0.5888589	0.4856500
Nmin	1	9.968629	9.968629	0.0957563	0.7724326
CEC	1	86.830934	86.830934	0.8340775	0.4127640
Residuals	4	416.416607	104.104152	NA	NA

2. Pairwise correlation BRI \sim soil_variable

Next, we assessed pairwise correlations between the physicochemical soil parameters and BRI.

Table S4

Table S4

	Spearman coefficient	P-value	Adjusted P-value
Humus	-0.3000837	0.1449954	1.0000000
Clay	0.2935210	0.1544289	1.0000000
Silt	-0.0419314	0.8422546	1.0000000
Sand	-0.0470499	0.8232794	1.0000000
pН	0.1244242	0.5534617	1.0000000
P_{H2O}	-0.3715385	0.0674481	1.0000000
K_{H2O}	-0.2846154	0.1679142	1.0000000
Mg_H2O	-0.0861538	0.6821887	1.0000000
Ca_H2O	0.0730769	0.7284839	1.0000000
Nitrate	0.0015385	0.9941767	1.0000000
P_AAE	-0.3984615	0.0485087	1.0000000
K_AAE	-0.3615385	0.0757707	1.0000000
Mg_AAE	0.1300000	0.5356794	1.0000000
Ca_AAE	-0.0069231	0.9737994	1.0000000
Cu	0.1476923	0.4811006	1.0000000
Fe	-0.2961538	0.1505935	1.0000000
Mn	0.2638462	0.2025155	1.0000000
В	-0.1346931	0.5209237	1.0000000
WHC	0.4730769	0.0169225	0.4061408
Corg	-0.2907692	0.1585109	1.0000000
SOM	-0.2907692	0.1585109	1.0000000
Nmin	0.1538462	0.4628040	1.0000000
CEC	0.0023077	0.9912652	1.0000000

2. Removal of co-correlated predictors

We reduced the sets of parameters (removal of co-correlated variables). We exclude the co-correlated predictors ($|\mathbf{r}| > 0.8$).

2.1 Figure S5

3. Exhaustive screening of candidate models with glmulti()

To find the best model we proceed to an exhaustive screening of all the possible models BRI \sim soil_variables with the AICc criterion.

```
##
## Call:
## fitfunc(formula = as.formula(x), data = data, trace = ..1)
##
## Residuals:
##
                1Q Median
                                3Q
      Min
                                       Max
## -13.102 -4.372
                     0.438
                             5.792 11.952
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -102.80486
                           18.50365 -5.556 1.94e-05 ***
## Ca_H20
                  0.10409
                             0.03755
                                       2.772 0.011761 *
## P_AAE
                 -0.02587
                             0.01304
                                      -1.984 0.061118 .
## WHC
                  0.41536
                             0.07758
                                       5.354 3.06e-05 ***
                 -9.33690
                             1.99713 -4.675 0.000146 ***
## Corg
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

```
##
## Residual standard error: 7.232 on 20 degrees of freedom
## Multiple R-squared: 0.6857, Adjusted R-squared: 0.6229
## F-statistic: 10.91 on 4 and 20 DF, p-value: 7.385e-05
```

3.1 Normality assumptions of the model

Assessing the residuals normality assumptions the produced model. These values are aggregated into the Table S5 for each model.

##			
##	Test	Statistic	pvalue
##			
##	Shapiro-Wilk	0.9811	0.9062
##	Kolmogorov-Smirnov	0.0899	0.9767
##	Cramer-von Mises	1.7687	0.0000
##	Anderson-Darling	0.1695	0.9245
##			

3.2 Relative importance of best model

The relative importance of each predictor in the previously selected model is computed in this step. These values are then used to complete the figure 3B in illustrator.

3.3 Table S6

Summary of the model coefficient and relative importance

Table S6

Parameter	Coefficient	Relative importance
P_AAE	-0.0258744	0.0390570
Ca_H2O	0.1040869	0.0619036
Corg	-9.3368961	0.2294487
WHC	0.4153630	0.3553156
(Intercept)	-102.8048558	NA

3.4 Figure 3B

