Curso de Engenharia de Computação Sistemas Operacionais

Sistemas de Arquivo - Parte I

Slides da disciplina Sistemas Operacionais Curso de Engenharia de Computação Instituto Mauá de Tecnologia – Escola de Engenharia Mauá Prof. Marco Antonio Furlan de Souza

Sistema de Arquivos

Conceitos

- É a parte do sistema operacional mais visível ao usuário;
- São manipulados pelo sistema operacional por meio de chamadas de sistema;
- Requisitos principais de um sistema de arquivos:
 - Armazenar e recuperar uma grande quantidade de informação (normalmente bem maior que a memória virtual);
 - Persistência: os dados armazenados pelo sistema perdurar após a finalização dos processos que os manipulam – por exemplo, banco de dados;
 - Possibilitar que diversos processos acessem dados de forma concorrente
 por exemplo, módulos financeiro e contábil de um sistema de gestão empresarial (ERP).

Sistema de Arquivos

Conceitos

- Sistema de arquivos representa a forma como os dados são armazenados em dispositivos (discos, flash drive, pendrive ...) e disponibiliza operações para manipulá-los;
- Normalmente, em todo sistema de arquivo, os dados são armazenados em unidades denominadas arquivos;
- Processos podem criar arquivos, ler e alterar dados de/para arquivos, de acordo com operações disponibilizadas pelo sistema operacional (e que implicam chamadas de sistema);
- Pergunta: dado = informação?

Nomes de arquivo

- Quando arquivos são criados, nomes são atribuídos aos arquivos e então passam a ser referenciados por esses nomes;
- Trata-se de uma abstração do sistema de arquivos que existe em "baixo nível";
- Podem ter tamanho variável (tipicamente até até 255 caracteres);
- Restritos em alguns sistema (MS-DOS aceita de 1-8 caracteres);
- Letras, números, caracteres especiais podem compor nomes de arquivos:
 - Caracteres permitidos: A-Z, a-z, 0-9, \$, %, ´, @, {, }, ~, `, !, #, (,), &
 - Caracteres não permitidos: ?, *, /, \, ", |, <, >, :

- Nomes de arquivo
 - Alguns sistemas operacionais diferem (sensibilidade ao caso)
 letras maiúsculas de minúsculas para nomes de arquivos:
 - UNIX(es) e Linux(es) tem regra de nome de arquivo sensível ao caso;
 - MS-DOS não é sensível ao caso na nomeação de arquivos;
 - Windows (95, 98, NT, 2000, XP, Vista, 8, 10) herdaram características do sistema de arquivos do MS-DOS;
 - Mas Windows (NT, 2000, XP, Vista, 8, 10) possuem um sistema de arquivos próprio, NTFS (New Technology File System).

Extensões de arquivo

- Alguns sistemas suportam uma extensão relacionada ao nome do arquivo:
 - MS-DOS: até 1-3 caracteres e apenas uma extensão (exemplo: fatura.doc);
 - UNIX: pode conter mais de 3 caracteres e mais de uma extensão (exemplo: backup.tar.gz) e permite que arquivos sejam criados sem extensão;
- Extensões em geral associam arquivos a aplicativos, por exemplo:
 - .doc Microsoft Word;
 - .py interpretador Python.
- Esta associação pode ser explicitamente feita pelo sistema operacional:
 - Unix(es) e Linux(es) não associam;
 - Windows associa.

- Estruturas de arquivos
 - Sequência não estruturada de bytes
 - Um arquivo é uma sequência de bytes;
 - O sistema operacional não se importa com o conteúdo do arquivo;
 - O significado do arquivo é o resultado da interpretação realizada pelos programas em nível de usuário (aplicativos);
 - Vantagem:
 - Flexibilidade: os usuários nomeiam seus arquivos como quiserem;
 - Exemplo: UNIX(es), Linux(es) e Windows.

- Estruturas de arquivos
 - Sequência de registros estruturados de tamanho fixo
 - Leitura/escrita são realizadas em registros;
 - Utilizados em sistemas operacionais mais antigos (mainframes com cartões perfurados de 80 caracteres);
 - Nenhum sistema atual utiliza esse esquema.
 - Árvores de registros variáveis com campo chave
 - A chave fica em uma posição fixa:
 - A chave é utilizada para rapidamente localizar os arquivos;
 - O sistema operacional decide onde armazenar os arquivos;
 - Utilizado em alguns mainframes atuais.

Estruturas de arquivos

Visão geral das três abordagens:

Tipos de arquivos

- Arquivos regulares: são aqueles que contêm informações dos usuários;
- Diretórios: são arquivos responsáveis por manter a estrutura do sistema de arquivos;
- Arquivos especiais de caracteres: são aqueles relacionados com E/S e utilizados para modelar dispositivos seriais de E/S (impressora, interface de rede, terminais etc);
- Arquivos especiais de bloco: são aqueles utilizados para modelar discos.

Tipos de arquivos

Arquivos regulares podem ser do tipo:

Texto

- Os bytes são interpretados como caracteres ASCII ou Unicode;
- Consistem de linhas de texto (terminados por um ou mais caracteres especiais que sinalizam fim de linha);
- Facilitam integração de arquivos;
- Podem ser **exibidos** e **impressos** como estão;
- Podem ser editados em qualquer programa de editor de texto.

Binários

- Os bytes estão no "estado bruto" (não há uma interpretação em ASCII ou Unicode);
- Seu **significado depende** de algum aplicativo que o utiliza (por exemplo, um programa executável depende do "loader" do sistema operacional para ser executado).

Tipos de arquivos

Exemplos de arquivo binário

Object

Arquivo de arquivamento (archiving) – manipulado pelo programa tar (UNIX/Linux)

Acessos em arquivos

- Sistemas operacionais mais antigos realizavam apenas acesso sequencial no disco – leitura em ordem byte a byte (ou registro a registro);
- Sistemas operacionais mais recentes fazem acesso aleatório;
 - Acesso feito por chave (por exemplo, base de dados de uma empresa de aérea);
 - Necessita de métodos para especificar onde iniciar leitura:
 - Operação read: realiza a leitura onde está a posição do arquivo;
 - Operação seek: marca posição corrente permite a leitura sequencial.

Atributos de arquivos

 Além do nome e extensão, existem outros atributos importantes de um arquivo (varia entre sistemas operacionais):

Attribute	Meaning
Protection	Who can access the file and in what way
Password	Password needed to access the file
Creator	ID of the person who created the file
Owner	Current owner
Read-only flag	0 for read/write; 1 for read only
Hidden flag	0 for normal; 1 for do not display in listings
System flag	0 for normal files; 1 for system file
Archive flag	0 for has been backed up; 1 for needs to be backed up
ASCII/binary flag	0 for ASCII file; 1 for binary file
Random access flag	0 for sequential access only; 1 for random access
Temporary flag	0 for normal; 1 for delete file on process exit
Lock flags	0 for unlocked; nonzero for locked
Record length	Number of bytes in a record
Key position	Offset of the key within each record
Key length	Number of bytes in the key field
Creation time	Date and time the file was created
Time of last access	Date and time the file was last accessed
Time of last change	Date and time the file was last changed
Current size	Number of bytes in the file
Maximum size	Number of bytes the file may grow to

Referências bibliográficas

TANENBAUM, Andrew S. **Sistemas operacionais modernos**. 3. ed. São Paulo: Pearson, 2013. 653 p.