

Description

Features

● 30V, 190A

 $R_{DS(ON)}$ < 2.4m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ < 4.2m Ω @ V_{GS} =4.5V

- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

100% UIS 100% ΔVds

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM190N03-T3	VSM190N03	TAPING	TO-263	13inch	800	4000

Absolute Maximum Ratings (Tc=25°C unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		30	V
V_{GSS}	Gate-Source Voltage		±20	V
I _D	Continuous Drain Current	T _C = 25°C	190	Α
		T _C = 100°C	124	Α
I_{DM}	Pulsed Drain Current note1		760	Α
Eas	Single Pulsed Avalanche Energy note2		441	mJ
P _D	Power Dissipation	T _C = 25°C	173	W
R ₀ JC	Thermal Resistance, Junction to Case		0.87	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	$^{\circ}\!\mathbb{C}$

Electrical Characteristics (Tc=25 °C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	30	_	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V,	-	-	1.0	μA		
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±20V	-	-	±100	nA		
On Characteristics								
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.6	2.5	V		
	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =30A	-	1.9	2.4			
$R_{DS(on)}$	note3	V _{GS} =4.5V, I _D =20A	-	3	4.2	mΩ		
Dynamic Characteristics								
C _{iss}	Input Capacitance	V 45V/V 0V	-	6847	-	рF		
Coss	Output Capacitance	V _{DS} =15V, V _{GS} =0V,	-	940	-	pF		
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	604	-	pF		
Qg	Total Gate Charge	\/ 45\/ L 004	-	93	-	nC		
Q_{gs}	Gate-Source Charge	V_{DS} =15V, I_{D} =30A, V_{GS} =10V	-	14	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge	VGS-10V	-	21	-	nC		
Switching	Characteristics							
t _{d(on)}	Turn-on Delay Time	1/ 45)/	-	16	-	ns		
t _r	Turn-on Rise Time	V _{DS} =15V,	-	9	-	ns		
t _{d(off)}	Turn-off Delay Time	I_D =30A, R_{GEN} =3 Ω , V_{GS} =10 V	-	65	-	ns		
t _f	Turn-off Fall Time	VGS-10V	-	18	-	ns		
Drain-Sou	rce Diode Characteristics and Maxim	um Ratings						
	Maximum Continuous Drain to Source Diode Forward Current				100	Δ		
Is				-	190	Α		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	760	Α		
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} =0V, I _S =30A	-	-	1.2	V		
trr	Body Diode Reverse Recovery Time			29	_	ns		
Qrr	Body Diode Reverse Recovery	l I _F =20A,dI/dt=100A/μs	-	19	-	nC		
	Charge	, , , , , , , , , , , , , , , , , , ,						
	J. I.a. yo			L				

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition: TJ=25 $^{\circ}\text{C}$, VDD=15V, VG=10V, L=0.5mH, RG=25 Ω , IAS=42A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms