Power Set Construction Recap + Closure Statements Revisit + Regular Expressions Intro

Featured Student Club

Zoom link for the event:

https://wsu.zoom.us/j/91714742835?pwd=eFYw UUNCR1dwTzR4ZUM4VXViUFRsQT09

Power Set Construction (Example, see the PDF posted on Mon 1/31 as further reading for details)

Closures under regular operations

Theorem 1

The class of regular languages is closed under the union operation

IOW: if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof using NFAs

Proof using NFAs (formal)

PROOF

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

- 1. $Q = \{q_0\} \cup Q_1 \cup Q_2$. The states of N are all the states of N_1 and N_2 , with the addition of a new start state q_0 .
- **2.** The state q_0 is the start state of N.
- **3.** The set of accept states $F = F_1 \cup F_2$. The accept states of N are all the accept states of N_1 and N_2 . That way, N accepts if either N_1 accepts or N_2 accepts.
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 \ \delta_2(q,a) & q \in Q_2 \ \{q_1,q_2\} & q = q_0 ext{ and } a = oldsymbol{arepsilon} \ \emptyset & q = q_0 ext{ and } a
eq oldsymbol{arepsilon}. \end{cases}$$

Theorem 2

The class of regular languages is closed under the concatenation operation

IOW: if A_1 and A_2 are regular languages, so is $A_1 \circ A_2$.

Proof Idea

PROOF IDEA We have regular languages A_1 and A_2 and want to prove that $A_1 \circ A_2$ is regular. The idea is to take two NFAs, N_1 and N_2 for A_1 and A_2 , and combine them into a new NFA N as we did for the case of union, but this time in a different way, as shown in Figure 1.48.

- Assign N's start state to be the start state of N₁
- The accept states of N₁ have additional ε arrows that nondeterministically allow branching to N₂ whenever N₁ has an accept state, signifying that it has found an initial piece of the input that constitutes a string in A₁.
- The accept states of N are the accept states of N₂ only.
- Therefore, N accepts when the input can be split into two parts, the first accepted by N₁ and the second by N₂.

Formal proof

PROOF

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$.

- 1. $Q = Q_1 \cup Q_2$. The states of N are all the states of N_1 and N_2 .
- **2.** The state q_1 is the same as the start state of N_1 .
- **3.** The accept states F_2 are the same as the accept states of N_2 .
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 ext{ and } q
otin F_1 \ \delta_1(q,a) & q \in F_1 ext{ and } a
eq arepsilon \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 ext{ and } a = arepsilon \\ \delta_2(q,a) & q \in Q_2. \end{cases}$$

Our third closure theorem

Theorem 3: The class of regular languages is closed under the star operation.

PROOF IDEA We have a regular language A_1 and want to prove that A_1^* also is regular. We take an NFA N_1 for A_1 and modify it to recognize A_1^* , as shown in the following figure. The resulting NFA N will accept its input whenever it can be broken into several pieces and N_1 accepts each piece.

Formal proof

PROOF Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

- 1. $Q = \{q_0\} \cup Q_1$. The states of N are the states of N_1 plus a new start state.
- **2.** The state q_0 is the new start state.
- 3. $F = \{q_0\} \cup F_1$. The accept states are the old accept states plus the new start state.

Formal proof (cont'd)

4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

Regular Expressions

- Much like we use operations such + and × in arithmetic to build expressions such as (2+6) × 3, we use regular operations such as Union, Concatenation and Star to build regular expressions.
- Example:
 - **■** (O ∪ 1) 0*
- The value of an arithmetic expression is a number; the value of a regular expression is a language.

Regular expressions

- Regular expressions have an important role in computer science applications
 - Unix
 - Programming languages such as Perl
 - Text editors
- These provide mechanisms for description of patterns using regular expressions

-

Shorthands

- Consider the regular expression (0 ∪ 1)*
- The value of this expression is the language consisting of all possible strings of 0s and 1s
- If Σ = {0, 1}, we can write Σ as a shorthand for the regular expression
 (0 ∪ 1)
- Generally, if Σ is any alphabet, the regular expression Σ describes the language consisting of *all strings of length 1* over the alphabet, and $Σ^*$ describes the language consisting of *all strings* over that alphabet
- Example
 - The language (0Σ*) ∪ (Σ*1) consists of all strings that start with a 0 or end with 1

Precedence

- Precedence order in regular expressions
 - 1. Star
 - 2. Concatenation
 - 3. Union

Unless parentheses change the usual order

Formal definition of a regular expression

DEFINITION 1.52

Say that R is a **regular expression** if R is

- 1. a for some a in the alphabet Σ ,
- $2. \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

In items 1 and 2, the regular expressions a and ε represent the languages $\{a\}$ and $\{\varepsilon\}$, respectively. In item 3, the regular expression \emptyset represents the empty language. In items 4, 5, and 6, the expressions represent the languages obtained by taking the union or concatenation of the languages R_1 and R_2 , or the star of the language R_1 , respectively.

- The definition we just gave may appear circular (that we define a regular expression in terms of itself).
- But this is not the case. We are defining regular expressions in terms of smaller regular expressions, which is fine. Such a definition is called inductive definition.
- R⁺ is usually used as a shorthand for RR^{*}
- R^k is used as a shorthand for concatenation of k R's with each other
- When we want to distinguish between a regular expression R and the language that it describes, we write L(R) to be the language of R