THE VIRTUAL SCHOOL OF MATHEMATICS PURE MATHEMATICS 3 HRS

SECTION A (40 MARKS)

- 1. Solve the in equality $\frac{x+3}{x-1} > 2$ for which interval its valid.
- 2. Given the equation $2x^2 3x 8 = 0$ has roots $\propto and \beta$, find the equation whose roots are a and c such that $\propto = \frac{\beta}{a-1}$ and $\beta = \frac{\alpha}{c-1}$
- 3. Expand $\sqrt{(x-2)}$ in descending powers of x as far as the 3rd term. Hence evaluate $\sqrt{2}$ to 5 significant figures.
- 4. Evaluate the integral of $\int_0^1 \frac{dx}{\sqrt{9-4x^2}}$
- 5. Use the method row reduction to echelon form to solve,

$$2a + b + 3c = 11$$

$$4a + 3b + c = 15$$

$$a + 2b - 2c = 3$$

- 6. Given that $x = \sqrt{\left(\frac{y^2 2}{5}\right)}$, show that $y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 5$
- 7. Solve for x in $e^{2x} 5e^x + 6 = 0$, hence or otherwise find the value of $\sqrt{e^5}$
- 8. Solve for θ in the range $0^0 \le \theta \le 720^0$ in $\cos 4\theta + \cos 2\theta + \cos 6\theta = 0$.

SECTION B (60 MARKS)

- 9. Sketch the curve $y = \frac{x^2 + 2x 8}{x^2 + x 2}$
- 10. (a) Prove that $\int_0^{1/2\pi} \frac{4\cos x}{4-\sin^2 x} dx = 1\pi\sqrt{3}$
 - (b) Use the expansion of $\sqrt{\left(\frac{1-x}{1+x}\right)}$ up to the third term to evaluate the integral of $\int_0^{\pi/6} \sqrt{\left(\frac{1-x}{1+x}\right)} dx$
- 11. (a) Find the coordinates of intersection of the circles $x^2 + y^2 6x + 4y = 13$ and $x^2 + y^2 10x + 10y = 15$
 - (b) (i) Find the focus and vertex of the parabola $y = 2x^2 + 3x 5$
 - (ii) Find the equations of the normal and tangent to the circle whose equation is given by $x^2 + y^2 10x 6y + 24 = 0$ at (2,2)
- 12. (a) Find the derivatives with respect to X of the following functions;

$$\frac{\cos 2x}{1+\sin 2x}$$

(ii)
$$in (secx + tanx)$$

(b)
$$\int_0^{\pi/2} x^2 \sin x \, dx$$

13. If
$$Z = \frac{(2-i)(5+12i)}{(1+2i)^2}$$

- (a) Find the;
 - (i) Modulus of Z
 - (ii) Argument of Z.

- (c) Write Z in the polar form.
- 14. (a) Sketch the curve y = x(x + 2) and y = x(4 x) on the same axes.
 - (b) Find the area enclosed by the two curves in (a)
 - (c) Determine the volume of the solid generated when the area enclosed by the two curves in (a) is rotated about the x axis.
- 15. (a) (i) Show that the points (1, 2, 3), (3, 8, 1) and (7, 20, -3) are collinear.
 - (ii) Coordinates A (3,8,1) and B(7,20,-3) are externally bisected from point B by Point M, find coordinates of M.
 - (b) (i) Find the point of intersection of the lines, $r = 2\hat{\imath} + 2\hat{\jmath} + 5k + \lambda$ $(-\hat{\imath} 2k)$ and $\frac{x-1}{1} = \frac{y-2}{0} = \frac{z-1}{3}$
 - (c) Find the shortest distance of P(3, +1, -1) from the line $\mathbf{r} = (1 \lambda)\hat{\imath} + (2 \lambda 1)\hat{\jmath} + (2 \lambda 2)\hat{k}$
- 16. At 3:00pm, the temperature of a hot metal was 80° C and that of the surrounding 20° C. At 3:03pm, the temperature of the metal had dropped to 42° C. The rate of cooling of the metal was directly proportional to the difference between its temperature θ and that of the surroundings.
 - (a) (i) Write a differential equation to represent the rate of cooling of the metal.
 - (ii) Solve the differential equation using the given condition.
 - (b) Find the temperature of the metal at 3:05pm.