CPE301 – SPRING 2019

Design Assignment 2A

Student Name: Rocky Yasuaki Gonzalez

Student #: 5003229733

Student Email: gonzar14@unlv.nevada.edu

Primary Github address: https://github.com/rockyg1995/ihswppdar.git

Directory: C:\Users\rocky\Documents\CpE 301+L - Embedded Systems Design\CpE

301\Repository\DesignAssignments\DA2A

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

Multifunction Shield Atmega328PB Xplained Mini Green LED Micro USB Cable (Power Supply)

Figure 1 - Block Diagram/Pin Connections

2. INITIAL/DEVELOPED CODE OF TASK 1/A

```
; DA2A_T1.asm
; Created: 3/1/2019 10:08:49 PM
; Author: rocky
.ORG 0
      LDI R16, (1<<2) ; Load '0000 0100' into R16
      OUT DDRB, R16
                          ; Set PB2 as an Output
      OUT PORTB, R16
                          ; Set PB2 as 'High'
                          ; Loop LED Toggle, Period of 735ms (60% High, 40% Low)
main:
                         ; Subroutine to Delay program 435ms
      CAll delay435ms
      CBI PORTB, 2
CAll delay290ms
                         ; Toggle LED 'Low' at PORTB.2
                         ; Subroutine to Delay program 290ms
      SBI PORTB, 2
                          ; Toggle LED 'High' at PORTB.2
      RJMP main
                          ; Repeat LED Squarewave Period (725ms)
delay435ms:
                          ; Delay Program '290ms'
                          ; Store R16 into Stack
      Push R16
                          ; Store R17 into Stack
      Push R17
                          ; Store R18 into Stack
      Push R18
      LDI R18, 15
L3:
      LDI R17, 200
                          ; 15
                          ; 200*15
L2:
      LDI R16, 232
                          ; 232*200*15
L1:
      NOP
                          ; 232*200*15
      NOP
                          ; 232*200*15
      NOP
                          ; 232*200*15
      NOP
                          ; 232*200*15
      NOP
      NOP
                           ; 232*200*15
```

```
; 232*200*15
      NOP
                          ; 232*200*15
      NOP
                         ; 232*200*15
      DEC R16
                         ; 232*200*15
      BRNE L1
                         ; 200*15
      DEC R17
                         ; 200*15
      BRNE L2
                         ; 15
      DEC R18
                         ; 15
      BRNE L3
                         ; Restore R18 from Stack
      Pop R18
                       ; Restore R17 from Stack
; Restore R16 from Stack
      Pop R17
      Pop R16
                         ; Complete Subroutine
      RET
                       ; Delay Program '290ms'
; Store R16 into Stack
delay290ms:
      Push R16
      Push R17
                         ; Store R17 into Stack
      Push R18
                         ; Store R18 into Stack
      LDI R18, 10
                         ; 10
M3:
      LDI R17, 200
      LDI R16, 232
                         ; 200*10
M2:
                          ; 232*200*10
M1:
      NOP
                         ; 232*200*10
      NOP
                         ; 232*200*10
      NOP
                         ; 232*200*10
      NOP
      NOP
                         ; 232*200*10
                         ; 232*200*10
      NOP
                         ; 232*200*10
      NOP
      NOP
                         ; 232*200*10
                          ; 232*200*10
      DEC R16
                         ; 232*200*10
      BRNE M1
                         ; 200*10
      DEC R17
                         ; 200*10
      BRNE M2
      DEC R18
                         ; 10
      BRNE M3
                         ; 10
                       ; 10
; Else, Restore R18 from Stack
      Pop R18
      Pop R17
                         ; Restore R17 from Stack
      Pop R16
                        ; Restore R16 from Stack
      RET
                         ; Complete Subroutine
* DA2A_T1_C.c
* Created: 3/2/2019 2:30:06 AM
* Author: rocky
#include <avr/io.h>
                                // Standard AVR Library
#include <util/delay.h>
                                // AVR library containing _delay_ms() function
#define LED 0b00000100
                                // Modify LED Bit here (Currently PB2)
int main(void) {
                                 // Main Function
      DDRB = LED;
                                        // Set PB2 as an Output
      PORTB = LED;
                                 // Set PB2 as 'High'
                                 // Loop LED Toggle, Period of 735ms (60% High, 40% Low)
      while (1) {
             delay ms(435*16); // Delay Program by 435ms (Multiply '16' because 16MHz)
             PORTB &= ~LED; // Turn OFF LED (High-to-Low)
```

```
_delay_ms(290*16); // Delay Program by 290ms (Multiply '16' because 16MHz)
PORTB |= LED; // Turn ON LED (Low-to-High)
}
}
```

3. INITIAL/DEVELOPED CODE OF TASK 2/A

```
; DA2A_T2.asm
; Created: 3/2/2019 9:11:02 AM
; Author: rocky
.ORG 0
                       LDI R16, (1<<2) ; Load '0000 0100' into R16
LDI R17, (0<<2) ; Load 'xxxx x0xx' into R17
                       CLR R18
                                                                               ; Set PB2 as an Output
                       OUT DDRB, R16
                      OUT PORTB, R17
OUT DDRC, R17
Out PORTC, R16
                                                                                          ; Set PB2 as 'Low'
                                                                                           ; Set PC2 as an Input
                                                                                           ; Activate Pull-up in PC2 (resistor connected to VCC)
                                                                                           ; Poll: Check if PC2 is 'High' or 'Low'
check:
                      IN R18, PINC ; Read in PC2 to 'R18'

ANDI R18, 0x04 ; Mask Out all bits except bit 2

BRNE check ; If Bit 2 is 'Low', continue reading PC2

SBI PORTB, 2 ; Else, Toggle LED 'High' at PB2

CAll delay1250ms ; Subroutine to Delay program 1250ms
                       CBI PORTB, 2
                                                                                           ; Toggle LED 'Low' at PB2
                       RJMP check
                                                                                             ; Go back to Poll
                                                                                          ; Delay Program '290ms'
delay1250ms:
                                                                         ; Delay Program '290ms'
; Store R16 into Stack
; Store R17 into Stack
                       Push R16
                       Push R17
                      Push R18
                                                                                         ; Store R18 into Stack
                       LDI R18, 32
L3:
                       LDI R17, 250
                                                                                          ; 32
L2:
                      LDI R16, 250
                                                                                           ; 250*32
                                                                                            ; 250*250*32
L1:
                      NOP
                                                                                            ; 250*250*32
                      NOP
                                                                                           ; 250*250*32
                       NOP
                                                                                          ; 250*250*32
                       NOP
                                                                                         ; 250*250*32
                       NOP
                       NOP
                                                                                         ; 250*250*32
                       NOP
                                                                                         ; 250*250*32
                                                                                          ; 250*250*32
                       NOP
                                                                                          ; 250*250*32
                       DEC R16
                                                                                            ; 250*250*32
                       BRNE L1
                     BRNE LI
DEC R17

BRNE L2

DEC R18

BRNE L3

Pop R18

Pop R17

Pop R16

RET

S 250*32

S 250*32
```

```
* DA2A T2 C.c
 * Created: 3/2/2019 9:50:45 AM
 * Author : rocky
                            // Standard AVR Library
#include <avr/io.h>
#include <util/delay.h>
                            // AVR library containing delay ms() function
#define LED 0b00000100
                            // Modify LED bit here (PB2 in program)
                            // Modify SWITCH bit here (PC2 in program)
#define SWITCH 0b00000100
int main(void) {
                            // Main Function
       DDRC = (0<<2);

PORTC = (1<<2);

DDRB = (1<<2);

PORTB = (0<<2);
                            // Set/Mask PC2 as an Input
       DDRC = (0 << 2);
                            // Activate Pull-up on PC2 (resistor connected to VCC)
                            // Set/Mask PB2 as an Output
       PORTB = (0 << 2);
                            // Set/Mask PB2 as 'Low'
                                                   // Poll: Check to read if PC2 is 'High'
       while (1) {
              if ((~PINC & SWITCH) == SWITCH) { // If 'High' Turn LED ON for 1250ms
                     PORTB |= LED;
                                                // Set/Mask PB2 as 'High'
                     <u>_delay_ms</u>(1250*16);
                                                 // Delay Program by 1250ms
                     PORTB &= ~LED;
                                                 // Set/Mask PB2 as 'Low'/End Program
              }
       }
}
```

4. SCHEMATICS

Figure 2 – Schematic Connections for Tasks 1 and 2

5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

The following are the output waveforms Tasks 1 and 2 using Assembly and C Coding:

Figure 3a – Output Waveform of Task 1 (Assembly Coding)

Figure 3b – Output Waveform of Task 1 (C Coding)

Figure 3c – Output Waveform of Task 2 (Assembly Coding)

Figure 3d – Output Waveform of Task 2 (C Coding)

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Each Demo utilizes the same set up which includes a Shield Attachment placed on top of the Xplained Mini PB and a green LED connected to the actual Xplained Mini PB. This set up is shown in *Figure 2*:

Figure 4 – Green LED and Shield Attached onto Atmega328PB Xplained Mini

7. VIDEO LINKS OF EACH DEMO

https://youtu.be/oliSMltyldA

8. GITHUB LINK OF THIS DA

https://github.com/rockyg1995/ihswppdar/tree/master/DesignAssignments/DA2A

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Rocky Gonzalez