5.12 For the circuit of Fig. 5.24, what is the largest value that R_D can have while the transistor remains in the saturation mode?

Ans. $12 \text{ k}\Omega$

Let $V_{tn} = 1 \text{ V}$ and $k'_{n}(W/L) = 1 \text{ mA/V}^{2}$.

Hint: See the similar example, solved in the class.

$$V_6 = \frac{10}{200}$$
. $10M = 5V$ and $V_5 = 0 + I_0$. $6L$

$$I_{D} = \frac{1}{2} k_{n} V_{OV}^{V} = \frac{1}{2} \cdot 1 m \cdot (V_{OV} - V_{T})$$

$$= \frac{1}{2} 1 m \left(5 - I_{D} \cdot 6k - 1 \right) = I_{D} \Rightarrow 2m = L_{1}I_{D} \Rightarrow 1_{D} = \frac{1}{2}mA$$

For saturation
$$V_s=3V$$

$$V_{DS} > V_{OV} \Rightarrow V_{DS} > V_{G}-V_{S}-V_{T}=5-6k.1m-1=1V$$

$$V_{D}-V_{S} > 1V \Rightarrow V_{D}-3V > 1V \Rightarrow V_{D} > 4V$$

D5.9 For the circuit in Fig. E5.9, find the value of R that results in $V_D=0.7$ V. The MOSFET has $V_m=0.5$ V, $\mu_n C_{ox}=0.4$ mA/V², $W/L=\frac{0.72~\mu\text{m}}{0.18~\mu\text{m}}$, and $\lambda=0$.

$$L_n = Mn Cox \frac{W}{L} = 0.4m \cdot 4 = 1.6 \frac{mA}{\sqrt{2}}$$

NMOS operates in saturation

$$I_D = \frac{1}{2} k_n V_{0v}^2 = \frac{1}{2} \cdot (1.6m) \cdot (0.2) = 0.032 m A = 32 \mu A$$

D5.13 Redesign the circuit of Fig. 5.24 for the following requirements: $V_{DD} = +5 \text{ V}$, $I_D = 0.32 \text{ mA}$, $V_S = 1.6 \text{ V}, V_D = 3.4 \text{ V}, \text{ with a } 1-\mu\text{A} \text{ current through the voltage divider } R_{G1}, R_{G2}. \text{ Assume the}$ same MOSFET as in Example 5.6.

Ans. $R_{G1} = 1.6 \text{ M}\Omega$; $R_{G2} = 3.4 \text{ M}\Omega$, $R_{S} = R_{D} = 5 \text{ k}\Omega$

Let $V_{tn} = 1 \text{ V}$ and $k'_{n}(W/L) = 1 \text{ mA/V}^{2}$.

$$0.32m = \frac{1}{2} \cdot 1_{\text{m}} \cdot \sqrt{000} \Rightarrow \sqrt{000} = 10.8 \Rightarrow \sqrt{000} = 0.8$$

$$R_0 = \frac{5 - 3.4}{0.32m} = \frac{1.6}{0.32m} = 512.0$$

$$R_0 = \frac{5 - 3.4}{0.32m} = \frac{1.6}{0.32m} = \frac{5 \text{ k.N}}{0.32m}$$

$$R_5 = \frac{1.6 - 0}{0.32m} = \frac{1.6}{0.32m} = \frac{5 \text{ k.N}}{0.32m}$$

Reither

Coiven that
$$5 = 1 \mu A \Rightarrow 3.4 = 1 \mu . ker \Rightarrow ker = 3.4 \mu . L$$

$$ka + ker$$

$$5M = kei + ker = kei + 3.4 M \Rightarrow kei = 1.6 M L$$