CME 307: Optimization

CME 307 / MS&E 311 / OIT 676

Quiz 5: Practice questions

Fall 2025 Prof. Udell

Exercise. Let $f: \mathbb{R}^n \to \mathbb{R}$ be L-smooth. Show that for any x and any $t \in (0, 1/L]$, the gradient step $x^+ = x - t\nabla f(x)$ satisfies $f(x^+) \le f(x) - \frac{t}{2}|\nabla f(x)|^2$ by using the quadratic upper bound for L-smooth functions.

Exercise. Armijo backtracking terminates. Let f be L-smooth, fix $c \in (0,1)$ and $\beta \in (0,1)$. Starting from $t_0 = 1$, repeatedly set $t \leftarrow \beta t$ until the Armijo condition $f(x - t\nabla f(x)) \le f(x) - c$, $t|\nabla f(x)|^2$ holds. Show Armijo holds whenever $0 < t \le \frac{2(1-c)}{L}$, and deduce an upper bound on the number of backtracks when starting at $t_0 = 1$.

Exercise. Exact line search on a quadratic. Let $f(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x$ with $A \succeq 0$. If $g = \nabla f(x) = Ax - b$ and p = -g, compute $t^* = \arg\min_{t \geq 0} f(x + tp)$ and show $t^* = \frac{g^{\top}g}{g^{\top}Ag}$ (assuming $g \neq 0$ and $g^{\top}Ag > 0$).

Exercise. Upper-bound viewpoint. Assume f is L-smooth. Show that the minimizer of $m_y(z) = f(y) + \nabla f(y)^\top (z-y) + \frac{L}{2}|z-y|^2$ is $z^* = y - \frac{1}{L}\nabla f(y)$. Conclude gradient descent with stepsize 1/L arises by minimizing this upper model at each iterate.

Exercise. Quadratic loss. For $f(x) = |Ax - b|^2$, compute ∇f and $\nabla^2 f$ and prove L-smoothness with $L = 2\lambda_{\max}(A^{\top}A)$. When is f strongly convex?

Exercise. Logistic loss. For $f(x) = \sum_{i=1}^{m} \log! (1 + \exp(b_i a_i^{\top} x))$, show $\nabla^2 f(x) = \sum_i \sigma_i (1 - \sigma_i) a_i a_i^{\top}$ with $\sigma_i = \frac{1}{1 + \exp(-b_i a_i^{\top} x)}$, deduce *L*-smoothness with $L \leq \frac{1}{4}$, $\lambda_{\max}(A^{\top} A)$, and state a condition under which f is strongly convex on a compact domain.

Exercise. Sanity check in \mathbb{R}^n . For $f(x) = \frac{1}{2}|x|^2$, gradient descent gives $x^{k+1} = (1-t)x^k$. Determine precisely for which t > 0 the iterates converge and give the linear rate as a function of t.

Exercise. For a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, explain geometrically why the negative gradient $-\nabla f(x)$ gives the direction of steepest decrease of f at x. You may reason using the first-order Taylor approximation or by considering the directional derivative.

Exercise. In gradient descent,

$$x^{(k+1)} = x^{(k)} - t \nabla f(x^{(k)}).$$

Suppose x represents a position vector with physical units of meters, and f(x) represents energy (joules).

- (a) What are the units of $\nabla f(x)$? Recall the definition of the gradient.
- (b) What are the units of the step size t?
- (c) How does this affect your intuition about why it is difficult to choose a good step size in practice?

Exercise. Consider $f(x) = \frac{1}{2}x^T Ax$ for $A \succeq 0$. Show that gradient descent updates each eigen-direction of A independently. If the eigenvalues of A lie in $[\mu, L]$, how does this explain the convergence rate bound in the previous exercise?

Exercise. For an L-smooth function f, derive the gradient descent update rule by minimizing the quadratic upper bound

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2.$$

Conceptually, what are we minimizing at each step, and why does this guarantee descent when $t \leq 1/L$?

Exercise. You apply gradient descent to minimize a smooth loss f(w) in machine learning. During training you observe oscillations: the objective decreases for a few steps, then increases. What does this behavior suggest about your current step size? Explain how you could adjust it using ideas from smoothness or the Armijo rule.