بسم الله الرحمن الرحيم

نظریه علوم کامپیوتر

نظریه علوم کامپیوتر - بهار ۱۴۰۰ - ۱۴۰۱ - جلسه سیزدهم: پیچیدگی حافظه (۲) Theory of computation - 002 - S13 - space complexity (2)

Defn: Let $f: \mathbb{N} \to \mathbb{N}$ where $f(n) \ge n$. Say TM M runs in space f(n) if M always halts and uses at most f(n) tape cells on all inputs of length n.

Defn: Let $f: \mathbb{N} \to \mathbb{N}$ where $f(n) \ge n$. Say TM M runs in space f(n) if M always halts and uses at most f(n) tape cells on all inputs of length n.

An NTM M runs in space f(n) if all branches halt and each branch uses at most f(n) tape cells on all inputs of length n.

Defn: Let $f: \mathbb{N} \to \mathbb{N}$ where $f(n) \ge n$. Say TM M runs in space f(n) if M always halts and uses at most f(n) tape cells on all inputs of length n.

An NTM M runs in space f(n) if all branches halt and each branch uses at most f(n) tape cells on all inputs of length n.

 $\begin{aligned} &\mathsf{SPACE}\big(f(n)\big) = \{B \mid \mathsf{some} \ 1\text{-tape} \ \mathsf{TM} \ \mathsf{decides} \ B \ \mathsf{in} \ \mathsf{space} \ O\big(f(n)\big) \} \\ &\mathsf{NSPACE}\big(f(n)\big) = \{B \mid \mathsf{some} \ 1\text{-tape} \ \mathsf{NTM} \ \mathsf{decides} \ B \ \mathsf{in} \ \mathsf{space} \ O\big(f(n)\big) \} \end{aligned}$

Defn: Let $f: \mathbb{N} \to \mathbb{N}$ where $f(n) \ge n$. Say TM M runs in space f(n) if M always halts and uses at most f(n) tape cells on all inputs of length n.

An NTM M runs in space f(n) if all branches halt and each branch uses at most f(n) tape cells on all inputs of length n.

 $\mathsf{SPACE}ig(f(n)ig) = \{B \mid \mathsf{some} \; \mathsf{1}\text{-tape} \; \mathsf{TM} \; \mathsf{decides} \; B \; \mathsf{in} \; \mathsf{space} \; Oig(f(n)ig)\}$

 $\mathsf{NSPACE} ig(f(n) ig) = \{ B \mid \mathsf{some 1-tape NTM decides } B \mathsf{ in space } O ig(f(n) ig) \}$

PSPACE = $\int SPACE(n^k)$ "polynomial space"

NPSPACE = \bigcup_{k} NSPACE (n^k) "nondeterministic polynomial space"

Or possibly:

$$P = NP = coNP = PSPACE$$

Defn: Let $f: \mathbb{N} \to \mathbb{N}$ where $f(n) \ge n$. Say TM M runs in space f(n) if M always halts and uses at most f(n) tape cells on all inputs of length n.

An NTM M runs in space f(n) if all branches halt and each branch uses at most f(n) tape cells on all inputs of length n.

 $\mathsf{SPACE}ig(f(n)ig) = \{B \mid \mathsf{some} \; \mathsf{1}\text{-tape} \; \mathsf{TM} \; \mathsf{decides} \; B \; \mathsf{in} \; \mathsf{space} \; Oig(f(n)ig)\}$

 $\mathsf{NSPACE}ig(f(n)ig) = \{B \mid \mathsf{some} \; \mathsf{1}\text{-tape} \; \mathsf{NTM} \; \mathsf{decides} \; B \; \mathsf{in} \; \mathsf{space} \; Oig(f(n)ig)\}$

PSPACE = $\int SPACE(n^k)$ "polynomial space"

NPSPACE = \bigcup_{k} NSPACE (n^k) "nondeterministic polynomial space"

Today: PSPACE = NPSPACE

PSPACE = NPSPACE CONP NP

Or possibly:

P = NP = coNP = PSPACE

Defn: Let $f: \mathbb{N} \to \mathbb{N}$ where $f(n) \ge n$. Say TM M runs in space f(n) if M always halts and uses at most f(n) tape cells on all inputs of length n.

An NTM M runs in space f(n) if all branches halt and each branch uses at most f(n) tape cells on all inputs of length n.

 $\mathsf{SPACE}ig(f(n)ig) = \{B \mid \mathsf{some} \; \mathsf{1}\text{-tape} \; \mathsf{TM} \; \mathsf{decides} \; B \; \mathsf{in} \; \mathsf{space} \; O\big(f(n)\big)\}$

 $\mathsf{NSPACE}ig(f(n)ig) = \{B \mid \mathsf{some} \; \mathsf{1}\text{-tape} \; \mathsf{NTM} \; \mathsf{decides} \; B \; \mathsf{in} \; \mathsf{space} \; Oig(f(n)ig)\}$

PSPACE = $\int SPACE(n^k)$ "polynomial space"

NPSPACE = \bigcup_{k} NSPACE (n^k) "nondeterministic polynomial space"

Today: PSPACE = NPSPACE

PSPACE = NPSPACE CONP NP

Or possibly:

P = NP = coNP = PSPACE

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A <u>word ladder for English</u> is a ladder of English words.

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A <u>word ladder for English</u> is a ladder of English words.

Let A be a language. A ladder in A is a ladder of strings in A.

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A <u>word ladder for English</u> is a ladder of English words.

Let A be a language. A ladder in A is a ladder of strings in A.

WORK
PORK
PORT

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A word ladder for English is a ladder of English words.

Let A be a language. A ladder in A is a ladder of strings in A.

WORK
PORK
PORT
SORT

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A word ladder for English is a ladder of English words.

Let A be a language. A ladder in A is a ladder of strings in A.

WORK

PORK

PORT

SORT

SOOT

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A word ladder for English is a ladder of English words.

Let A be a language. A ladder in A is a ladder of strings in A.

WORK
PORT
SORT
SOOT
SLOT

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A <u>word ladder for English</u> is a ladder of English words.

Let A be a language. A ladder in A is a ladder of strings in A.

WORK

PORK

PORT

SORT

SOOT

SLOT

PLOT

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A word ladder for English is a ladder of English words.

Let A be a language. A ladder in A is a ladder of strings in A.

WORK

PORK

PORT

SORT

SOOT

SLOT

PLOT

PLOY

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A <u>word ladder for English</u> is a ladder of English words.

Let A be a language. A ladder in A is a ladder of strings in A.

WORK

PORK

PORT

SORT

SOOT

SLOT

PLOT

PLOY

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A <u>word ladder for English</u> is a ladder of English words.

Let A be a language. A ladder in A is a ladder of strings in A.

WORK

PORK

PORT

SORT

SOOT

SLOT

PLOT

PLOY

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A word ladder for English is a ladder of English words.

Let A be a language. A ladder in A is a ladder of strings in A.

Defn: LADDER**DFA** = $\left\{ \langle B, u, v \rangle \middle| B \text{ is a DFA and } L(B) \right\}$

contains a ladder $y_1, y_2, ..., y_k$ where $y_1 = u$ and $y_k = v$.

WORK

PORK

PORT

SORT

SOOT

SLOT

PLOT

PLOY

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A word ladder for English is a ladder of English words.

Let A be a language. A ladder in A is a ladder of strings in A.

Defn: LADDER**DFA** = $\{\langle B, u, v \rangle \mid B \text{ is a DFA and } L(B) \}$

contains a ladder y_1, y_2, \dots, y_k where $y_1 = u$ and $y_k = v$.

Theorem: LADDER**DFA** \in NPSPACE

WORK

PORK

PORT

SORT

SOOT

SLOT

PLOT

PLOY

A <u>ladder</u> is a sequence of strings of a common length where consecutive strings differ in a single symbol.

A word ladder for English is a ladder of English words.

Let A be a language. A ladder in A is a ladder of strings in A.

Defn: LADDER**DFA** = $\{\langle B, u, v \rangle \mid B \text{ is a DFA and } L(B) \}$

contains a ladder y_1, y_2, \dots, y_k where $y_1 = u$ and $y_k = v$.

Theorem: LADDER**DFA** \in NPSPACE

WORK

PORK

PORT

SORT

SOOT

SLOT

PLOT

PLOY

Theorem: LADDERDFA \in NPSPACE

LADDERDFA ∈ NPSPACE

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

| WORK | PORK | PORT | SORT | SOOT | SLOT | PLOT | PLOY | PLAY

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

1. Let y = u and let m = |u|.

WORK
PORT
PORT
SORT
SOOT
SLOT
PLOT
PLOY
PLAY

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

- 1. Let y = u and let m = |u|.
- 2. Repeat at most t times where $t = \left| \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m}$

WORK
PORK
PORT
SORT
SOOT
SLOT
PLOT
PLOY
PLAY

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

- 1. Let y = u and let m = |u|.
- 2. Repeat at most t times where $t = |\Sigma|^m$.
- 3. Nondeterministically change one symbol in *y*.

WORK
PORT
PORT
SORT
SOOT
SLOT
PLOT
PLOY
PLAY

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

- 1. Let y = u and let m = |u|.
- 2. Repeat at most t times where $t = \left| \sum_{i=1}^{m} \sum_{j=1}^{m} \right|^{m}$.
- 3. Nondeterministically change one symbol in y.
- 4. Reject if $y \notin L(B)$.

| WORK
| PORT
| SORT
| SOOT
| SLOT
| PLOT
| PLOY
| PLAY

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

- 1. Let y = u and let m = |u|.
- 2. Repeat at most t times where $t = \left| \sum_{i=1}^{m} \sum_{j=1}^{m} \right|^{m}$.
- 3. Nondeterministically change one symbol in y.
- 4. Reject if $y \notin L(B)$.
- 5. Accept if y = v.

WORK
PORK
PORT
SORT
SORT
SOOT
PLOT
PLOT
PLOY
PLAY

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

- 1. Let y = u and let m = |u|.
- 2. Repeat at most t times where $t = \left| \sum_{i=1}^{m} \sum_{j=1}^{m} \right|^{m}$.
- 3. Nondeterministically change one symbol in y.
- 4. Reject if $y \notin L(B)$.
- 5. Accept if y = v.
- 6. *Reject* [exceeded *t* steps].

WORK
PORK
PORT
SORT
SORT
SIOT
PLOT
PLOY
PLAY

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

- 1. Let y = u and let m = |u|.
- 2. Repeat at most t times where $t = \left| \sum \right|^m$.
- 3. Nondeterministically change one symbol in y.
- 4. Reject if $y \notin L(B)$.
- 5. Accept if y = v.
- 6. *Reject* [exceeded *t* steps].

Space used is for storing *y* and *t*.

| WORK | PORK | PORT | SORT | SOOT | SLOT | PLOT | PLOY | PLAY

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

- 1. Let y = u and let m = |u|.
- 2. Repeat at most t times where $t = |\Sigma|^m$.
- 3. Nondeterministically change one symbol in y.
- 4. Reject if $y \notin L(B)$.
- 5. Accept if y = v.
- 6. *Reject* [exceeded *t* steps].

Space used is for storing y and t.

WORK
PORK
PORT
SORT
SORT
SIOT
PLOT
PLOT
PLOY
PLAY

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

- 1. Let y = u and let m = |u|.
- 2. Repeat at most t times where $t = \left| \sum_{i=1}^{m} \sum_{j=1}^{m} \right|^{m}$.
- 3. Nondeterministically change one symbol in y.
- 4. Reject if $y \notin L(B)$.
- 5. Accept if y = v.
- 6. *Reject* [exceeded *t* steps].

Space used is for storing y and t.

WORK
PORT
PORT
SORT
SOOT
FLOT
PLOT
PLOY
PLAY

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

- 1. Let y = u and let m = |u|.
- 2. Repeat at most t times where $t = |\Sigma|^m$.
- 3. Nondeterministically change one symbol in y.
- 4. Reject if $y \notin L(B)$.
- 5. Accept if y = v.
- 6. *Reject* [exceeded *t* steps].

Space used is for storing *y* and *t*.

WORK
PORK
PORT
SORT
SOOT
SLOT
PLOT
PLOY
PLAY

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

- 1. Let y = u and let m = |u|.
- 2. Repeat at most t times where $t = |\Sigma|^m$.
- 3. Nondeterministically change one symbol in y.
- 4. Reject if $y \notin L(B)$.
- 5. Accept if y = v.
- 6. *Reject* [exceeded *t* steps].

Space used is for storing *y* and *t*.

LADDERDFA \in NSPACE(n).

↑ WORK
PORK
PORT
SORT
SORT
SIOT
PLOT
PLOY
PLAY

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

- 1. Let y = u and let m = |u|.
- 2. Repeat at most t times where $t = |\Sigma|^m$.
- 3. Nondeterministically change one symbol in y.
- 4. Reject if $y \notin L(B)$.
- 5. Accept if y = v.
- 6. *Reject* [exceeded *t* steps].

Space used is for storing *y* and *t*.

LADDERDFA \in NSPACE(n).

WORK
PORK
PORT
SORT
SORT
SOOT
PLOT
PLOT
PLOY
PLAY

Theorem: LADDERDFA \in PSPACE (!)

Theorem: LADDERDFA \in NPSPACE

Proof idea: Nondeterministically guess the sequence from u to v.

Careful- (a) cannot store sequence, (b) must terminate.

Proof: "On input $\langle B, u, v \rangle$

- 1. Let y = u and let m = |u|.
- 2. Repeat at most t times where $t = |\Sigma|^m$.
- 3. Nondeterministically change one symbol in y.
- 4. Reject if $y \notin L(B)$.
- 5. Accept if y = v.
- 6. *Reject* [exceeded *t* steps].

Space used is for storing *y* and *t*.

LADDERDFA \in NSPACE(n).

WORK
PORK
PORT
SORT
SORT

≤ t SOOT
PLOT
PLOT
PLOY
PLAY

Theorem: LADDERDFA \in PSPACE (!)

Theorem: LADDERDFA \in SPACE (n^2)

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$.

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem:

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem:

BOUNDED-LADDERDFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B$ a DFA and $u \xrightarrow{b} v$ by a ladder in $L(B) \right\}$

WORK

PLAY

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B$ a DFA and $u \xrightarrow{b} v$ by a ladder in $L(B) \right\}$

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem:

BOUNDED-LADDERDFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

WORK

AAAA t

PLAY

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \stackrel{b}{\longrightarrow} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem: $BOUNDED\text{-}LADDER \text{DFA} = \left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B$ a DFA and $u \xrightarrow{b} v$ by a ladder in $L(B) \right\}$

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem:

BOUNDED-LADDERDFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem:

BOUNDED-LADDERDFA = $\left\{ \langle B, u, v, b \rangle \mid B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B$ a DFA and $u \xrightarrow{b} v$ by a ladder in $L(B) \right\}$

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \stackrel{b}{\longrightarrow} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem:

BOUNDED-LADDERDFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B$ a DFA and $u \xrightarrow{b} v$ by a ladder in $L(B) \right\}$

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \stackrel{b}{\longrightarrow} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \stackrel{b}{\longrightarrow} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

B-L = "On input $\langle B, u, v, b \rangle$ Let m = |u| = |v|.

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

$$B$$
- L = "On input $\langle B, u, v, b \rangle$ Let $m = |u| = |v|$.

1. For b=1, accept if $u,v\in L(B)$ and differ in ≤ 1 place, else reject.

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

- B-L = "On input $\langle B, u, v, b \rangle$ Let m = |u| = |v|.
 - 1. For b=1, accept if $u,v\in L(B)$ and differ in ≤ 1 place, else reject.
 - 2. For b > 1, repeat for each w of length |u|

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

B-L = "On input $\langle B, u, v, b \rangle$ Let m = |u| = |v|.

- 1. For b=1, accept if $u,v\in L(B)$ and differ in ≤ 1 place, else reject.
- 2. For b > 1, repeat for each w of length |u|
- 3. Recursively test $u \xrightarrow{b/2} w$ and $w \xrightarrow{b/2} v$ [division rounds up]

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

$$B$$
- L = "On input $\langle B, u, v, b \rangle$ Let $m = |u| = |v|$.

- 1. For b=1, accept if $u,v\in L(B)$ and differ in ≤ 1 place, else reject.
- 2. For b > 1, repeat for each w of length |u|
- 3. Recursively test $u \stackrel{b/2}{\rightarrow} w$ and $w \stackrel{b/2}{\rightarrow} v$ [division rounds up]
- 4. *Accept* both accept.

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

$$B$$
- L = "On input $\langle B, u, v, b \rangle$ Let $m = |u| = |v|$.

- 1. For b=1, accept if $u,v\in L(B)$ and differ in ≤ 1 place, else reject.
- 2. For b > 1, repeat for each w of length |u|
- 3. Recursively test $u \stackrel{b/2}{\rightarrow} w$ and $w \stackrel{b/2}{\rightarrow} v$ [division rounds up]
- 4. *Accept* both accept.
- 5. Reject [if all fail]."

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem:

BOUNDED-LADDERDFA = $\left\{ \langle B, u, v, b \rangle \middle| B$ a DFA and $u \xrightarrow{b} v$ by a ladder in $L(B) \right\}$

$$B-L=$$
 "On input $\langle B,u,v,b \rangle$ Let $m=\left|u\right|=\left|v\right|$.

- 1. For b=1, accept if $u,v\in L(B)$ and differ in ≤ 1 place, else reject.
- 2. For b > 1, repeat for each w of length |u|
- 3. Recursively test $u \stackrel{b/2}{\rightarrow} w$ and $w \stackrel{\overline{b/2}}{\rightarrow} v$ [division rounds up]
- 4. *Accept* both accept.
- 5. Reject [if all fail]."

 $\text{Test } \langle B, u, v \rangle \in LADDER \text{DFA with } B\text{-}L \text{ procedure on input } \langle B, u, v, t \rangle \text{ for } t = \left| \sum_{\text{recurse}}^{m} \right|^{m}$

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$. Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

$$B$$
- L = "On input $\langle B, u, v, b \rangle$ Let $m = |u| = |v|$.

- 1. For b=1, accept if $u,v\in L(B)$ and differ in ≤ 1 place, else reject.
- 2. For b > 1, repeat for each w of length |u|
- 3. Recursively test $u \stackrel{b/2}{\rightarrow} w$ and $w \stackrel{\overline{b/2}}{\rightarrow} v$ [division rounds up]
- 4. *Accept* both accept.
- 5. Reject [if all fail]."

Test $\langle B, u, v \rangle \in LADDER$ DFA with B-L procedure on input $\langle B, u, v, t \rangle$ for $t = \left| \sum_{\text{recurse}}^{m} \right|$ Space analysis:

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

$$B$$
- L = "On input $\langle B, u, v, b \rangle$ Let $m = |u| = |v|$.

- 1. For b=1, accept if $u,v\in L(B)$ and differ in ≤ 1 place, else reject.
- 2. For b > 1, repeat for each w of length |u|
- 3. Recursively test $u \xrightarrow{b/2} w$ and $w \xrightarrow{b/2} v$ [division rounds up]
- 4. *Accept* both accept.
- 5. Reject [if all fail]."

Test $\langle B, u, v \rangle \in LADDER$ DFA with B-L procedure on input $\langle B, u, v, t \rangle$ for $t = \left| \sum_{\text{recurse}}^{m} \right|$ Space analysis:

Each recursive level uses space O(n) (to record w).

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

$$B$$
- L = "On input $\langle B, u, v, b \rangle$ Let $m = |u| = |v|$.

- 1. For b=1, accept if $u,v\in L(B)$ and differ in ≤ 1 place, else reject.
- 2. For b > 1, repeat for each w of length |u|
- 3. Recursively test $u \xrightarrow{b/2} w$ and $w \xrightarrow{b/2} v$ [division rounds up]
- 4. *Accept* both accept.
- 5. Reject [if all fail]."

Test $\langle B, u, v \rangle \in LADDER$ DFA with B-L procedure on input $\langle B, u, v, t \rangle$ for $t = \left| \sum_{\text{recurse}}^{m} \right|$

Space analysis:

Each recursive level uses space O(n) (to record w).

Recursion depth is $\log t = O(m) = O(n)$.

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

$$B$$
- L = "On input $\langle B, u, v, b \rangle$ Let $m = |u| = |v|$.

- 1. For b=1, accept if $u,v\in L(B)$ and differ in ≤ 1 place, else reject.
- 2. For b > 1, repeat for each w of length |u|
- 3. Recursively test $u \xrightarrow{b/2} w$ and $w \xrightarrow{b/2} v$ [division rounds up]
- 4. *Accept* both accept.
- 5. Reject [if all fail]."

Test $\langle B, u, v \rangle \in LADDER$ DFA with B-L procedure on input $\langle B, u, v, t \rangle$ for $t = \left| \sum_{\text{recurse}}^{m} \right|$

Space analysis:

Each recursive level uses space O(n) (to record w).

Recursion depth is $\log t = O(m) = O(n)$.

Total space used is $O(n^2)$.

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \stackrel{b}{\longrightarrow} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B$ a DFA and $u \stackrel{b}{\longrightarrow} v$ by a ladder in $L(B) \right\}$

$$B$$
- L = "On input $\langle B, u, v, b \rangle$ Let $m = |u| = |v|$.

- 1. For b=1, accept if $u,v\in L(B)$ and differ in ≤ 1 place, else reject.
- 2. For b > 1, repeat for each w of length |u|
- 3. Recursively test $u \xrightarrow{b/2} w$ and $w \xrightarrow{b/2} v$ [division rounds up]
- 4. *Accept* both accept.
- 5. Reject [if all fail]."

Test $\langle B, u, v \rangle \in LADDER$ DFA with B-L procedure on input $\langle B, u, v, t \rangle$ for $t = \left| \sum_{\text{recurse}}^{m} \right|$

Space analysis:

Each recursive level uses space O(n) (to record w).

Recursion depth is $\log t = O(m) = O(n)$.

Total space used is $O(n^2)$.

Theorem: LADDERDFA \in SPACE (n^2)

Proof: Write $u \xrightarrow{b} v$ if there's a ladder from u to v of length $\leq b$.

Here's a recursive procedure to solve the bounded DFA ladder problem:

$$BOUNDED$$
- $LADDER$ DFA = $\left\{ \langle B, u, v, b \rangle \middle| B \text{ a DFA and } u \xrightarrow{b} v \text{ by a ladder in } L(B) \right\}$

$$B$$
- L = "On input $\langle B, u, v, b \rangle$ Let $m = |u| = |v|$.

- 1. For b=1, accept if $u,v\in L(B)$ and differ in ≤ 1 place, else reject.
- 2. For b > 1, repeat for each w of length |u|
- 3. Recursively test $u \xrightarrow{b/2} w$ and $w \xrightarrow{b/2} v$ [division rounds up]
- 4. *Accept* both accept.
- 5. Reject [if all fail]."

Test $\langle B, u, v \rangle \in LADDER$ DFA with B-L procedure on input $\langle B, u, v, t \rangle$ for t

Space analysis:

Each recursive level uses space O(n) (to record w).

Recursion depth is $\log t = O(m) = O(n)$.

Total space used is $O(n^2)$.

Check-in 17.3

Find an English word ladder connecting MUST and VOTE.

- (a) Already did it.
- (b) I will.

PSPACE = NPSPACE

Savitch's Theorem: For $f(n) \ge n$, NSPACE $\left(f(n)\right) \subseteq \text{SPACE}\left(f^2(n)\right)$

PSPACE = NPSPACE

Savitch's Theorem: For $f(n) \ge n$, $\mathsf{NSPACE} \big(f(n) \big) \subseteq \mathsf{SPACE} \big(f^2(n) \big)$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

PSPACE = NPSPACE

Savitch's Theorem: For $f(n) \ge n$, $\mathsf{NSPACE} \big(f(n) \big) \subseteq \mathsf{SPACE} \big(f^2(n) \big)$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

Savitch's Theorem: For $f(n) \ge n$, $\mathsf{NSPACE} \big(f(n) \big) \subseteq \mathsf{SPACE} \big(f^2(n) \big)$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \xrightarrow{b} c_j$ if can get from c_i to c_j in $\leq b$ steps.

Savitch's Theorem: For $f(n) \ge n$, $\mathsf{NSPACE} \big(f(n) \big) \subseteq \mathsf{SPACE} \big(f^2(n) \big)$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

Give recursive algorithm to test $c_i \xrightarrow{b} c_j$:

 $M = \text{``On input } c_i, \ c_j, \ b \ \ [\text{goal is to check } c_i \overset{b}{\longrightarrow} \ c_j]$

Savitch's Theorem: For $f(n) \ge n$, $\mathsf{NSPACE} \big(f(n) \big) \subseteq \mathsf{SPACE} \big(f^2(n) \big)$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

Give recursive algorithm to test $c_i \xrightarrow{b} c_j$:

 $M = \text{``On input } c_i, \ c_j, \ b \ \ [\text{goal is to check } c_i \overset{b}{\longrightarrow} \ c_j]$

Savitch's Theorem: For $f(n) \ge n$, $\mathsf{NSPACE} \big(f(n) \big) \subseteq \mathsf{SPACE} \big(f^2(n) \big)$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

Give recursive algorithm to test $c_i \stackrel{b}{\longrightarrow} c_j$:

$$M = \text{``On input } c_i, \ c_j, \ b \ \ [\text{goal is to check } c_i \xrightarrow{b} \ c_j]$$

1. If b=1, check directly by using N's program and answer accordingly.

Savitch's Theorem: For $f(n) \ge n$, NSPACE $(f(n)) \subseteq SPACE(f^2(n))$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

$$M = \text{``On input } c_i, \ c_j, \ b \ \ [\text{goal is to check } c_i \overset{b}{\longrightarrow} \ c_j]$$

- 1. If b=1, check directly by using N's program and answer accordingly.
- 2. If b > 1, repeat for all configurations c_{mid} that use f(n) space.

Savitch's Theorem: For $f(n) \ge n$, $\mathsf{NSPACE} \big(f(n) \big) \subseteq \mathsf{SPACE} \big(f^2(n) \big)$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

$$M = \text{"On input } c_i, c_j, b \text{ [goal is to check } c_i \xrightarrow{b} c_j \text{]}$$

- 1. If b=1, check directly by using \overline{N} 's program and answer accordingly.
- 2. If b > 1, repeat for all configurations c_{mid} that use f(n) space.

Savitch's Theorem: For $f(n) \ge n$, NSPACE $(f(n)) \subseteq SPACE(f^2(n))$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

$$M = \text{``On input } c_i, \ c_j, \ b \ \ [\text{goal is to check } c_i \overset{b}{\longrightarrow} \ c_j]$$

- 1. If b=1, check directly by using \overline{N} 's program and answer accordingly.
- 2. If b > 1, repeat for all configurations c_{mid} that use f(n) space.
- 3. Recursively test $c_i \stackrel{b/2}{\longrightarrow} c_{\mathrm{mid}}$ and $c_{\mathrm{mid}} \stackrel{b/2}{\longrightarrow} c_j$

Savitch's Theorem: For $f(n) \ge n$, $\mathsf{NSPACE} \big(f(n) \big) \subseteq \mathsf{SPACE} \big(f^2(n) \big)$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

$$M = \text{"On input } c_i, c_j, b \text{ [goal is to check } c_i \xrightarrow{b} c_j \text{]}$$

- 1. If b=1, check directly by using N's program and answer accordingly.
- 2. If b>1, repeat for all configurations c_{mid} that use f(n) space.
- 3. Recursively test $c_i \xrightarrow{b/2} c_{\mathrm{mid}}$ and $c_{\mathrm{mid}} \xrightarrow{b/2} c_j$

Savitch's Theorem: For $f(n) \ge n$, $\mathsf{NSPACE} \big(f(n) \big) \subseteq \mathsf{SPACE} \big(f^2(n) \big)$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

$$M = \text{"On input } c_i, c_j, b \text{ [goal is to check } c_i \xrightarrow{b} c_j \text{]}$$

- 1. If b=1, check directly by using N's program and answer accordingly.
- 2. If b > 1, repeat for all configurations c_{mid} that use f(n) space.
- 3. Recursively test $c_i \xrightarrow{b/2} c_{\mathrm{mid}}$ and $c_{\mathrm{mid}} \xrightarrow{b/2} c_j$
- 4. If both are true, accept. If not, continue.

Savitch's Theorem: For $f(n) \ge n$, $\mathsf{NSPACE} \big(f(n) \big) \subseteq \mathsf{SPACE} \big(f^2(n) \big)$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

$$M = \text{"On input } c_i, c_j, b \text{ [goal is to check } c_i \xrightarrow{b} c_j \text{]}$$

- 1. If b=1, check directly by using N's program and answer accordingly.
- 2. If b > 1, repeat for all configurations c_{mid} that use f(n) space.
- 3. Recursively test $c_i \xrightarrow{b/2} c_{\mathrm{mid}}$ and $c_{\mathrm{mid}} \xrightarrow{b/2} c_j$
- 4. If both are true, accept. If not, continue.
- 5. Reject if haven't yet accepted."

Savitch's Theorem: For $f(n) \ge n$, $\mathsf{NSPACE} \big(f(n) \big) \subseteq \mathsf{SPACE} \big(f^2(n) \big)$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

Give recursive algorithm to test $c_i \stackrel{b}{\longrightarrow} c_j$:

$$M = \text{"On input } c_i, c_j, b \text{ [goal is to check } c_i \xrightarrow{b} c_j \text{]}$$

- 1. If b=1, check directly by using N's program and answer accordingly.
- 2. If b > 1, repeat for all configurations c_{mid} that use f(n) space.
- 3. Recursively test $c_i \xrightarrow{b/2} c_{\mathrm{mid}}$ and $c_{\mathrm{mid}} \xrightarrow{b/2} c_j$
- 4. If both are true, accept. If not, continue.
- 5. Reject if haven't yet accepted."

Test if N accepts w by testing $c_{\text{start}} \stackrel{t}{\longrightarrow} c_{\text{accept}}$ where t = number of configurations

Savitch's Theorem: For $f(n) \ge n$, $\mathsf{NSPACE} \big(f(n) \big) \subseteq \mathsf{SPACE} \big(f^2(n) \big)$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

Give recursive algorithm to test $c_i \stackrel{b}{\longrightarrow} c_j$:

$$M = \text{``On input } c_i, \ c_j, \ b \ \ [\text{goal is to check } c_i \overset{b}{\longrightarrow} \ c_j]$$

- 1. If b=1, check directly by using N's program and answer accordingly.
- 2. If b > 1, repeat for all configurations c_{mid} that use f(n) space.
- 3. Recursively test $c_i \xrightarrow{b/2} c_{\mathrm{mid}}$ and $c_{\mathrm{mid}} \xrightarrow{b/2} c_j$
- 4. If both are true, accept. If not, continue.
- 5. Reject if haven't yet accepted."

Test if N accepts w by testing $c_{\text{start}} \stackrel{t}{\longrightarrow} c_{\text{accept}}$ where t = number of configurations $= |Q| \times f(n) \times d^{f(n)}$

Savitch's Theorem: For $f(n) \ge n$, NSPACE $(f(n)) \subseteq SPACE(f^2(n))$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

Give recursive algorithm to test $c_i \stackrel{b}{\longrightarrow} c_j$:

$$M = \text{``On input } c_i, \ c_j, \ b \ \ [\text{goal is to check } c_i \xrightarrow{b} \ c_j]$$

- 1. If b=1, check directly by using N's program and answer accordingly.
- 2. If b > 1, repeat for all configurations c_{mid} that use f(n) space.
- 3. Recursively test $c_i \xrightarrow{b/2} c_{\mathrm{mid}}$ and $c_{\mathrm{mid}} \xrightarrow{b/2} c_j$
- 4. If both are true, accept. If not, continue.
- 5. Reject if haven't yet accepted."

Test if N accepts w by testing $c_{\text{start}} \stackrel{t}{\longrightarrow} c_{\text{accept}}$ where t = number of configurations $= |Q| \times f(n) \times d^{f(n)}$

Each recursion level stores 1 config = O(f(n)) space.

Number of levels = $\log t = O(f(n))$. Total $O(f^2(n))$ space.

Savitch's Theorem: For $f(n) \ge n$, NSPACE $(f(n)) \subseteq SPACE(f^2(n))$

Proof: Convert NTM N to equivalent TM M, only squaring the space used.

For configurations c_i and c_j of N, write $c_i \stackrel{b}{\longrightarrow} c_j$ if can get from c_i to c_j in $\leq b$ steps.

Give recursive algorithm to test $c_i \stackrel{b}{\longrightarrow} c_j$:

$$M = \text{``On input } c_i, \ c_j, \ b \ \ [\text{goal is to check } c_i \overset{b}{\longrightarrow} \ c_j]$$

- 1. If b=1, check directly by using N's program and answer accordingly.
- 2. If b > 1, repeat for all configurations c_{mid} that use f(n) space.
- 3. Recursively test $c_i \xrightarrow{b/2} c_{\mathrm{mid}}$ and $c_{\mathrm{mid}} \xrightarrow{b/2} c_j$
- 4. If both are true, accept. If not, continue.
- 5. Reject if haven't yet accepted."

Test if N accepts w by testing $c_{\text{start}} \stackrel{t}{\longrightarrow} c_{\text{accept}}$ where t = number of configurations $= |Q| \times f(n) \times d^{f(n)}$

Each recursion level stores 1 config = O(f(n)) space.

Number of levels = $\log t = O(f(n))$. Total $O(f^2(n))$ space.

Defn: B is PSPACE-complete if

- 1) $B \in PSPACE$
- 2) For all $A \in PSPACE$, $\overline{A \leq_P B}$

Defn: *B* is <u>PSPACE-complete</u> if

- 1) $B \in PSPACE$
- 2) For all $A \in PSPACE$, $\overline{A \leq_P B}$

Defn: *B* is <u>PSPACE-complete</u> if

- 1) $B \in PSPACE$
- 2) For all $A \in PSPACE$, $A \leq_P B$

If B is PSPACE-complete and $B \in P$ then P = PSPACE.

Defn: *B* is <u>PSPACE-complete</u> if

- 1) $B \in PSPACE$
- 2) For all $A \in PSPACE$, $A \leq_P B$

If B is PSPACE-complete and $B \in P$ then P = PSPACE.

Why \leq_P and not \leq_{PSPACE} when defining PSPACE-complete?

Defn: *B* is <u>PSPACE-complete</u> if

- 1) $B \in PSPACE$
- 2) For all $A \in PSPACE$, $A \leq_P B$

If B is PSPACE-complete and $B \in P$ then P = PSPACE.

Why \leq_P and not \leq_{PSPACE} when defining PSPACE-complete?

- Reductions should be "weaker" than the class. Otherwise all problems in the class would be reducible to each other, and then all problems in the class would be complete.

Defn: *B* is <u>PSPACE-complete</u> if

- 1) $B \in PSPACE$
- 2) For all $A \in PSPACE$, $A \leq_P B$

If B is PSPACE-complete and $B \in P$ then P = PSPACE.

Why \leq_P and not \leq_{PSPACE} when defining PSPACE-complete?

- Reductions should be "weaker" than the class. Otherwise all problems in the class would be reducible to each other, and then all problems in the class would be complete.

Theorem: TQBF is PSPACE-complete

Defn: *B* is <u>PSPACE-complete</u> if

- 1) $B \in PSPACE$
- 2) For all $A \in PSPACE$, $A \leq_P B$

If B is PSPACE-complete and $B \in P$ then P = PSPACE.

Why \leq_P and not \leq_{PSPACE} when defining PSPACE-complete?

- Reductions should be "weaker" than the class. Otherwise all problems in the class would be reducible to each other, and then all problems in the class would be complete.

Theorem: TQBF is PSPACE-complete

Defn: *B* is PSPACE-complete if

- 1) $B \in PSPACE$
- 2) For all $A \in PSPACE$, $A \leq_P B$

If B is PSPACE-complete and $B \in P$ then P = PSPACE.

Check-in 18.1

Knowing that TQBF is PSPACE-complete, what can we conclude if $TQBF \in NP$? Check all that apply.

- (a) P = PSPACE
- (b) NP = PSPACE
- (c) P = NP
- (d) NP = coNP

Recall: $TQBF = \left\{ \langle \phi
angle \mid \phi \text{ is a QBF that is TRUE}
ight\}$

Examples:
$$\phi_1 = \forall x \; \exists y \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \in TQBF \; \text{[TRUE]}$$
 $\phi_2 = \exists y \; \forall x \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \not\in TQBF \; \text{[FALSE]}$

Recall: $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a QBF that is True} \}$

Examples:
$$\phi_1 = \forall x \; \exists y \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \in TQBF \; [TRUE]$$

$$\phi_2 = \exists y \; \forall x \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \not\in TQBF \; [FALSE]$$

Theorem: TQBF is PSPACE-complete

Recall: $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a QBF that is True} \}$

Examples:
$$\phi_1 = \forall x \; \exists y \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \in TQBF \; [TRUE]$$

$$\phi_2 = \exists y \; \forall x \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \notin TQBF \; [FALSE]$$

Theorem: TQBF is PSPACE-complete

Proof: 1) $TQBF \in PSPACE \checkmark$

Recall: $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a QBF that is True} \}$

Examples:
$$\phi_1 = \forall x \; \exists y \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \in TQBF \; [TRUE]$$

$$\phi_2 = \exists y \; \forall x \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \not\in TQBF \; [FALSE]$$

Theorem: TQBF is PSPACE-complete

- Proof: 1) $TQBF \in PSPACE \checkmark$
 - 2) For all $A \in PSPACE$, $A \leq_P TQBF$

Recall: $TQBF = \{ \langle \phi \rangle \, \middle| \, \phi \text{ is a QBF that is True} \}$

Examples:
$$\phi_1 = \forall x \; \exists y \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \in TQBF \; [TRUE]$$

$$\phi_2 = \exists y \; \forall x \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \notin TQBF \; [FALSE]$$

Theorem: TQBF is PSPACE-complete

- Proof: 1) $TQBF \in PSPACE \checkmark$
 - 2) For all $A \in PSPACE$, $A \leq_P TQBF$

Let $A \in PSPACE$ be decided by TM M in space n^k .

Give a polynomial-time reduction f mapping A to TQBF.

Recall: $TQBF = \left\{ \langle \phi
angle \, \middle| \, \phi ext{ is a QBF that is True}
ight\}$

Examples:
$$\phi_1 = \forall x \; \exists y \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \in TQBF \; [TRUE]$$

$$\phi_2 = \exists y \; \forall x \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \notin TQBF \; [FALSE]$$

Theorem: TQBF is PSPACE-complete

- Proof: 1) $TQBF \in PSPACE \checkmark$
 - 2) For all $A \in PSPACE$, $A \leq_p TQBF$

Let $A \in PSPACE$ be decided by TM M in space n^k .

Give a polynomial-time reduction f mapping A to TQBF.

$$f \colon \Sigma^* \to \text{ QBFs}$$

$$f(w) = \langle \phi_{M,w} \rangle$$

$$w \in A \text{ iff } \phi_{M,w} \text{ is True}$$

Recall: $TQBF = \{ \langle \phi \rangle \, \middle| \, \phi \text{ is a QBF that is True} \}$

Examples:
$$\phi_1 = \forall x \; \exists y \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \in TQBF \; [TRUE]$$

$$\phi_2 = \exists y \; \forall x \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \notin TQBF \; [FALSE]$$

Theorem: TQBF is PSPACE-complete

Proof: 1) $TQBF \in PSPACE \checkmark$

2) For all $A \in PSPACE$, $A \leq_p TQBF$

Let $A \in PSPACE$ be decided by TM M in space n^k .

Give a polynomial-time reduction f mapping A to TQBF.

$$\begin{array}{ll} f \colon \Sigma^* \to & \text{QBFs} \\ f(w) &= & \langle \phi_{M,w} \rangle \\ w \in A \text{ iff } \phi_{M,w} \text{ is True} \end{array}$$

Plan: Design $\phi_{M,w}$ to "say" M accepts w. $\phi_{M,w}$ simulates M on w.

Recall: $TQBF = \left\{ \langle \phi
angle \, \middle| \, \phi \, \text{is a QBF that is True} \right\}$

Examples:
$$\phi_1 = \forall x \; \exists y \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \in TQBF \; [TRUE]$$

$$\phi_2 = \exists y \; \forall x \; \left[\left(x \lor y \right) \land \left(\overline{x} \lor \overline{y} \right) \right] \notin TQBF \; [FALSE]$$

Theorem: TQBF is PSPACE-complete

Proof: 1) $TQBF \in PSPACE \checkmark$

2) For all $A \in PSPACE$, $A \leq_p TQBF$

Let $A \in PSPACE$ be decided by TM M in space n^k .

Give a polynomial-time reduction f mapping A to TQBF.

$$f \colon \Sigma^* \to \text{ QBFs}$$

$$f(w) = \langle \phi_{M,w} \rangle$$

$$w \in A \text{ iff } \phi_{M,w} \text{ is True}$$

Plan: Design $\phi_{M,w}$ to "say" M accepts w. $\phi_{M,w}$ simulates M on w.

Tableau for M on w

Recall: A tableau for M on w represents a computation history for M on w when M accepts w. Rows of that tableau are configurations.

Tableau for M on w

Recall: A tableau for M on w represents a computation history for M on w when M accepts w. Rows of that tableau are configurations.

M runs in space n^k , its tableau has:

Tableau for M on w

Recall: A tableau for M on w represents a computation history for M on w when M accepts w. Rows of that tableau are configurations.

M runs in space n^k , its tableau has:

- n^k columns (max size of a configuration)

Tableau for M on w

Recall: A tableau for M on w represents a computation history for M on w when M accepts w.

Rows of that tableau are configurations.

M runs in space n^k , its tableau has:

- n^k columns (max size of a configuration)

Tableau for M on w

Recall: A tableau for M on w represents a computation history for M on w when M accepts w. Rows of that tableau are configurations.

M runs in space n^k , its tableau has:

- n^k columns (max size of a configuration)
- $d^{(n^k)}$ rows (max number of steps)

Tableau for ${\it M}$ on ${\it w}$

Recall: A tableau for M on w represents a computation history for M on w when M accepts w. Rows of that tableau are configurations.

M runs in space n^k , its tableau has:

- n^k columns (max size of a configuration)
- $d^{(n^k)}$ rows (max number of steps)

Tableau for M on w

Recall: A tableau for M on w represents a computation history for M on w when M accepts w. Rows of that tableau are configurations.

M runs in space n^k , its tableau has:

- n^k columns (max size of a configuration)
- $d^{(n^k)}$ rows (max number of steps)

Constructing $\phi_{M,w}$. Try Cook-Levin method.

Tableau for M on w

			rı		
				נ	 _
	а				
$d^{(n^k)}$					

Recall: A tableau for M on w represents a computation history for M on w when M accepts w. Rows of that tableau are configurations.

M runs in space n^k , its tableau has:

- n^k columns (max size of a configuration)
- $d^{(n^k)}$ rows (max number of steps)

Constructing $\phi_{M,w}$. Try Cook-Levin method.

Then $\phi_{M,w}$ will be as big as tableau.

Tableau for ${\it M}$ on ${\it w}$

			rı			
				ı.	•••	1
	а					
 k						
(n^k)						
ļ						

Recall: A tableau for M on w represents a computation history for M on w when M accepts w. Rows of that tableau are configurations.

M runs in space n^k , its tableau has:

- n^k columns (max size of a configuration)
- $d^{(n^k)}$ rows (max number of steps)

Constructing $\phi_{M,w}$. Try Cook-Levin method.

Then $\phi_{M,w}$ will be as big as tableau.

But that is exponential: $n^k \times d^{(n^k)}$.

Tableau for M on w

			rı .			
				L	•••	
	а					
$d^{(n^k)}$						

Recall: A tableau for M on w represents a computation history for M on w when M accepts w. Rows of that tableau are configurations.

M runs in space n^k , its tableau has:

- n^k columns (max size of a configuration)
- $d^{(n^k)}$ rows (max number of steps)

Constructing $\phi_{M,w}$. Try Cook-Levin method.

Then $\phi_{M,w}$ will be as big as tableau.

But that is exponential: $n^k \times d^{(n^k)}$.

Too big! 😊

Tableau for M on w

Recall: A tableau for M on w represents a computation history for M on w when M accepts w. Rows of that tableau are configurations.

M runs in space n^k , its tableau has:

- n^k columns (max size of a configuration)
- $d^{(n^k)}$ rows (max number of steps)

Constructing $\phi_{M,w}$. Try Cook-Levin method.

Then $\phi_{M,w}$ will be as big as tableau.

But that is exponential: $n^k \times d^{(n^k)}$.

Too big! 😊

Tableau for M on w

Tableau for M on w

	n^k						
1							
	а						
(k)							
$\gamma(n^k)$							

Tableau for M on w

Tableau for M on w

 $-----n^k$

Tableau for M on w

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

as in Cook-Levin

Tableau for M on w

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\exists x_1, x_2, \dots, c_l$$

Tableau for M on w

$$\phi_{c_i, \ c_j, \ b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, \ b/2} \land \phi_{c_{\text{mid}}, \ c_j, \ b/2} \right]$$

$$\exists x_1, x_2, \cdots, c_l$$

$$\text{as in Cook-Levin}$$

$$\exists c_{\text{mid}} \left[\phi_{, \ , \ b/4} \land \phi_{, \ , \ b/4} \right]$$

Tableau for M on w

Tableau for M on w

Tableau for M on w

Tableau for M on \overline{w}

For configs c_i and c_j construct $\phi_{c_i, c_j, b}$ which "says" $c_i \stackrel{b}{\longrightarrow} c_j$ recursively.

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \wedge \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\exists x_1, x_2, \dots, c_l$$

$$\exists s \text{ in Cook-Levin}$$

$$\exists c_{\text{mid}} \left[\phi_{,, b/4} \wedge \phi_{,, b/4} \right] \exists c_{\text{mid}} \left[\phi_{,, b/4} \wedge \phi_{,, b/4} \right]$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\exists c_{\text{mid}} \left[\phi_{,, b/4} \wedge \phi_{,, b/4} \right]$$

Tableau for M on w

For configs c_i and c_j construct $\phi_{c_i, c_j, b}$ which "says" $c_i \stackrel{b}{\longrightarrow} c_j$ recursively.

$$\phi_{M,w} = \phi_{c_{ ext{start}}, c_{ ext{accept}}, t}$$
 $t = d^{(n^k)}$

Tableau for M on w

For configs c_i and c_j construct $\phi_{c_i, c_j, b}$ which "says" $c_i \stackrel{b}{\longrightarrow} c_j$ recursively.

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\exists x_1, x_2, \dots, c_l$$
as in Cook-Levin
$$\exists c_{\text{mid}} \left[\phi_{,, b/4} \land \phi_{,, b/4} \right] \exists c_{\text{mid}} \left[\phi_{,, b/4} \land \phi_{,, b/4} \right]$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\exists c_{\text{mid}} \left[\phi_{,, b/4} \land \phi_{,, b/4} \right]$$

 ϕ defined as in Cook-Levin

$$\phi_{M,w} = \phi_{c_{ ext{start}}, c_{ ext{accept}}, t}$$
 $t = d^{(n^k)}$

Size analysis:

Each recursive level doubles number of QBFs.

Tableau for M on w

For configs c_i and c_j construct $\phi_{c_i, c_j, b}$ which "says" $c_i \stackrel{b}{\longrightarrow} c_j$ recursively.

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\exists x_1, x_2, \dots, c_l$$
as in Cook-Levin
$$\exists c_{\text{mid}} \left[\phi_{,, b/4} \land \phi_{,, b/4} \right] \exists c_{\text{mid}} \left[\phi_{,, b/4} \land \phi_{,, b/4} \right]$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\exists c_{\text{mid}} \left[\phi_{,, b/4} \land \phi_{,, b/4} \right]$$

 ϕ defined as in Cook-Levin

$$\phi_{M,w} = \phi_{c_{ ext{start}}, c_{ ext{accept}}, t}$$
 $t = d^{(n^k)}$

Size analysis:

Each recursive level doubles number of QBFs. Number of levels is $\log d^{(n^k)} = O(n^k)$.

Tableau for M on w

For configs c_i and c_j construct $\phi_{c_i, c_j, b}$ which "says" $c_i \stackrel{b}{\longrightarrow} c_j$ recursively.

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \wedge \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\exists x_1, x_2, \dots, c_l$$
as in Cook-Levin
$$\exists c_{\text{mid}} \left[\phi_{,, b/4} \wedge \phi_{,, b/4} \right] \exists c_{\text{mid}} \left[\phi_{,, b/4} \wedge \phi_{,, b/4} \right]$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\exists c_{\text{mid}} \left[\phi_{,, b/4} \wedge \phi_{,, b/4} \right]$$

 ϕ defined as in Cook-Levin

$$\phi_{M,w} = \phi_{c_{ ext{start}}, c_{ ext{accept}}, t}$$
 $t = d^{(n^k)}$

Size analysis:

Each recursive level doubles number of QBFs.

Number of levels is $\log d^{(n^k)} = O(n^k)$.

 \rightarrow Size is exponential. \odot

Tableau for M on \overline{w}

For configs c_i and c_j construct $\phi_{c_i, c_j, b}$ which "says" $c_i \stackrel{b}{\longrightarrow} c_j$ recursively.

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\exists x_1, x_2, \dots, c_l$$
as in Cook-Levin
$$\exists c_{\text{mid}} \left[\phi_{,, b/4} \land \phi_{,, b/4} \right] \exists c_{\text{mid}} \left[\phi_{,, b/4} \land \phi_{,, b/4} \right]$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\exists c_{\text{mid}} \left[\phi_{,, b/4} \land \phi_{,, b/4} \right]$$

 ϕ defined as in Cook-Levin

$$\phi_{M,w} = \phi_{c_{ ext{start}}, c_{ ext{accept}}, t}$$
 $t = d^{(n^k)}$

Size analysis:

Each recursive level doubles number of QBFs.

Number of levels is $\log d^{(n^k)} = O(n^k)$.

 \rightarrow Size is exponential. \odot

Check-in 18.2

Constructing $\overline{\phi}_{M,w}$: 2nd try

configs c_i and c_j construct $\phi_{c_i, c_j, b}$ which "says" $c_i \stackrel{b}{\longrightarrow} c_j$ recursively.

Check-in 18.2

Why shouldn't we be surprised that this construction fails?

- (a) We can't define a QBF by using recursion.
- (b) It doesn't use \forall anywhere.
- (c) We know that $TQBF \notin P$.

ϕ defined as in Cook-Levin

$$\phi_{M,w} = \phi_{c_{ ext{start}}, c_{ ext{accept}}, t}$$
 $t = d^{(n^k)}$

Size analysis:

Each recursive level doubles number of QBFs.

Number of levels is $\log d^{(n^k)} = O(n^k)$.

 \rightarrow Size is exponential. \odot

Check-in 18.2

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\forall \left(c_g, c_h \right) \in \left\{ \left(c_i, c_{\text{mid}} \right), \left(c_{\text{mid}}, c_j \right) \right\} \left[\phi_{c_g, c_h, b/2} \right]$$

Constructing $\overline{\phi_{M,w}}$: 3rd try

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\forall \left(c_g, c_h \right) \in \left\{ \left(c_i, c_{\text{mid}} \right), \left(c_{\text{mid}}, c_j \right) \right\} \left[\phi_{c_g, c_h, b/2} \right]$$

$$\vdots$$

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\forall \left(c_g, c_h \right) \in \left\{ \left(c_i, c_{\text{mid}} \right), \left(c_{\text{mid}}, c_j \right) \right\} \left[\phi_{c_g, c_h, b/2} \right]$$

$$\vdots$$

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\begin{array}{ccc} \phi_{c_i, c_{\text{mid}}, b/2} & \land & \phi_{c_{\text{mid}}, c_j, b/2} \end{array} \right]$$

$$\forall \left(\begin{array}{ccc} c_g, c_h \end{array} \right) \in \left\{ \begin{array}{ccc} \left(\begin{array}{ccc} c_i, c_{\text{mid}} \end{array} \right), \left(\begin{array}{ccc} c_{\text{mid}}, c_j \end{array} \right) \right\} \left[\begin{array}{ccc} \phi_{c_g, c_h, b/2} \end{array} \right] \begin{array}{ccc} \forall (x \in S) \left[\begin{array}{ccc} \psi \right] \\ \text{is equivalent to} \\ \forall x \left[(x \in S) \rightarrow \psi \right] \end{array} \right]$$

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\forall \left(c_g, c_h \right) \in \left\{ \left(c_i, c_{\text{mid}} \right), \left(c_{\text{mid}}, c_j \right) \right\} \left[\phi_{c_g, c_h, b/2} \right] \quad \begin{array}{c} \forall (x \in S) \left[\psi \right] \\ \text{is equivalent to} \\ \forall x \left[(x \in S) \rightarrow \psi \right] \end{array}$$

$$\phi_{M,w} = \phi_{c_{ ext{start}}, c_{ ext{accept}}, t}$$
 $t = d^{(n^k)}$

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\forall \left(c_g, c_h \right) \in \left\{ \left(c_i, c_{\text{mid}} \right), \left(c_{\text{mid}}, c_j \right) \right\} \left[\phi_{c_g, c_h, b/2} \right] \quad \begin{cases} \forall (x \in S) \left[\psi \right] \\ \text{is equivalent to} \\ \forall x \left[(x \in S) \rightarrow \psi \right] \end{cases}$$

$$\phi_{M,w} = \phi_{c_{ ext{start}}, c_{ ext{accept}}, t}$$
 $t = d^{(n^k)}$

 ϕ defined as in Cook-Levin

Size analysis:

Each recursive level <u>adds</u> $O(n^k)$ to the QBF.

Number of levels is $\log d^{(n^k)} = O(n^k)$.

$$\Rightarrow$$
 Size is $O(n^k \times n^k) = O(n^{2k})$ \odot

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\forall \left(c_g, c_h \right) \in \left\{ \left(c_i, c_{\text{mid}} \right), \left(c_{\text{mid}}, c_j \right) \right\} \left[\phi_{c_g, c_h, b/2} \right] \quad \forall (x \in S) \left[\psi \right] \text{ is equivalent to } \forall x \left[(x \in S) \rightarrow \psi \right]$$

$$\phi_{M,w} = \phi_{c_{ ext{start}}, \ c_{ ext{accept}}, \ t}$$
 $t = d^{(n^k)}$

 ϕ . . . 1 defined as in Cook-Levin

Size analysis:

Each recursive level <u>adds</u> $O(n^k)$ to the QBF.

Number of levels is $\log d^{(n^k)} = O(n^k)$.

$$\Rightarrow$$
 Size is $O(n^k \times n^k) = O(n^{2k})$ \odot

$$\phi_{c_i, c_j, b} = \exists c_{\text{mid}} \left[\phi_{c_i, c_{\text{mid}}, b/2} \land \phi_{c_{\text{mid}}, c_j, b/2} \right]$$

$$\forall \left(c_g, c_h \right) \in \left\{ \left(c_i, c_{\text{mid}} \right), \left(c_{\text{mid}}, c_j \right) \right\} \left[\phi_{c_g, c_h, b/2} \right] \quad \forall (x \in S) \left[\psi \right] \quad \text{is equivalent to} \quad \forall x \left[(x \in S) \rightarrow \psi \right]$$

$$\phi_{M,w} = \phi_{c_{ ext{start}}, \ c_{ ext{accept}}, \ t}$$
 $t = d^{(n^k)}$

 $\phi_{\,\,,\,\,\,\,1}\,$ defined as in Cook-Levin

Size analysis:

Each recursive level <u>adds</u> $O(n^k)$ to the QBF.

Number of levels is $\log d^{(n^k)} = O(n^k)$.

$$\rightarrow$$
 Size is $O(n^k \times n^k) = O(n^{2k})$ \odot

Check-in 18.3

Would this construction still work if M were nondeterministic?

- (a) Yes.
- (b) No.

Check-in 18.3

Quick review of today

- 1. Space complexity
- 2. SPACE(f(n)), NSPACE(f(n))
- 3. PSPACE, NPSPACE
- 4. Relationship with TIME classes
- 5. $TQBF \in PSPACE$
- 6. LADDERDFA \in NSPACE(n)
- 7. LADDERDFA \in SPACE (n^2)
- 8. Savitch's Theorem: $NSPACE(f(n)) \subseteq SPACE(f^2(n))$
- 9. TQBF is PSPACE-complete

Quick review of today

- 1. Space complexity
- 2. SPACE(f(n)), NSPACE(f(n))
- 3. PSPACE, NPSPACE
- 4. Relationship with TIME classes
- 5. $TQBF \in PSPACE$
- 6. LADDERDFA \in NSPACE(n)
- 7. LADDERDFA \in SPACE (n^2)
- 8. Savitch's Theorem: $NSPACE(f(n)) \subseteq SPACE(f^2(n))$
- 9. TQBF is PSPACE-complete