

LED	Connection	Switch	Connection
LED0	H17	SW0	J15
LED1	K15	SW1	L16
LED2	J13	SW2	M13
LED3	N14	SW3	R15
LED4	R18	SW4	R17

LED	Connection	Switch	Connection
LED5	V17	SW5	T18
LED6	U17	SW6	U18
LED7	U16	SW7	R13
LED8	V16	SW8	Т8
LED9	T15	SW9	U8
LED10	U14	SW10	R16
LED11	T16	SW11	T13
LED12	V15	SW12	H6
LED13	V14	SW13	U12
LED14	V12	SW14	U11
LED15	V11	SW15	V10

Two-bit wide 4-to-1 multiplexer:

VHDL architecture:

VHDL stimulus process:

```
-- First test values
        s_d <= "00"; s_c <= "00"; s_b <= "00"; s_a <= "00";
        s_sel <= "00"; wait for 50 ns;</pre>
        s a <= "01"; wait for 100 ns;
        s_b <= "01"; wait for 100 ns;</pre>
        s_sel <= "01"; wait for 75 ns;</pre>
        s_c <= "00"; wait for 75 ns;</pre>
        s_b <= "11"; wait for 75 ns;</pre>
        s_d <= "10"; s_c <= "11"; s_b <= "01"; s_a <= "00";
        s_sel <= "10"; wait for 70 ns;</pre>
        s d <= "00"; s c <= "00"; s b <= "00"; s a <= "00";
        s_sel <= "10"; wait for 100 ns;</pre>
        s d <= "10"; s c <= "11"; s b <= "01"; s a <= "00";
        s_sel <= "11"; wait for 50 ns;</pre>
        -- Report a note at the end of stimulus process
        report "Stimulus process finished" severity note;
        wait;
    end process p_stimulus;
end architecture testbench;
```

Screeen Analisis:

A Vivado tutorial:

Vytvorenie projektu:

- 1. Otvorenie "Vivado 2020.2"
- 2. V menu "Quick Start" zvolíme "Create Project"
- Klikneme "Next"
- 4. Zadáme "project name" a "select project location"
- 5. Klikneme "Next"
- 6. Klikneme "Next"

Pridanie Source file:

- 7. Klikneme na "Create File", zmeníme file type na "VHDL" a type file name, rovnaké ako project name
- 8. Klikneme "OK"
- 9. Kliknme 2x "Next"
- 10. Klikneme na "Boards" a zvolíme si príslušnú...napr. "Nexys A7-50T"
- 11. Klikneme "Next" -> "Finish" -> "OK" -> "Yes"

Pridanie testbench file:

- 12. Pod "Sources", otvoríme priečinok "Simulation Sources"
- 13. Pravým klikom na prečinok "sim1" vyberieme "Add Sources"
- 14. Klikneme "Next"
- 15. Klikneme "Create File" zmeníme file type na "VHDL" a type file name s pridavkom "tb_" a name project
- 16. Klikneme "OK" -> "Finish" -> "OK" -> "Yes"

Running simulation:

17.V sekcií "Simulation" si vyberieme a klikneme na "Run Simulation" -> "Run Brhavioral Simulation"