

Winning Space Race with Data Science

<Name> <Date>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data collection
 - Data wrangling
 - EDA with data visualization
 - EDA with SQL
 - Building an interactive map with Folium
 - Building a Dashboard with Plotly Dash
 - Predictive analysis (Classification)
- Summary of all results
 - EDA results
 - Interactive analytics
 - · Predictive analysis

Introduction

- Project background and context
- SpaceX advertise Falcon9 rocket launches on it's website, with cost of 62 Million dollars, other providers cost upwards of 165 million dollars each, much of savings Is because SpaceX can reuse the first stage.
- Problems you want to find answers
- The project task is to predicating if the first statge of the spaceX falcon 9 rocket will land successfully

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX rest API
 - Web scrapping form Wikipedia
- Perform data wrangling
 - One Hot encoding data files for machine learning and data cleaning of null values and irrelevant columns
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - LR, KNN, SVM, DT models have been built and evaluated for the best classifier

Data Collection

- The following datasets was collected:
 - SpaceX launch data that is gathered from the SpaceX REST API.
 - This API will give us data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome.
 - The SpaceX REST API endpoints, or URL, starts with api.spacexdata.com/v4/.
 - Another popular data source for obtaining Falcon 9
 Launch data is web scraping Wikipedia using
 BeautifulSoup.

Data Collection – SpaceX API

Data collection with SpaceX REST calls

https://github.com/initiative1972/datascience/blob/master/10-IBM%20Data%20Science%20Capstone%20project.ipynb

Data Collection - Scraping

 Web Scrapping from Wikipedia

https://github.com/initiative1972/datascience/blob/master/10-IBM%20DS%20Capstone%20project-lab2web%20scraping.ipynb

Data Wrangling

- Describe how data were processed
- You need to present your data wrangling process using key phrases and flowcharts
- Add the GitHub URL of your completed data wrangling related notebooks, as an external reference and peer-review purpose

EDA with Data Visualization

EDA with SQL

- Using bullet point format, summarize the SQL queries you performed
- Add the GitHub URL of your completed EDA with SQL notebook, as an external reference and peer-review purpose

Build an Interactive Map with Folium

Build a Dashboard with Plotly Dash

Predictive Analysis (Classification)

- Summarize how you built, evaluated, improved, and found the best performing classification model
- You need present your model development process using key phrases and flowchart
- Add the GitHub URL of your completed predictive analysis lab, as an external reference and peer-review purpose

Results

- The SVM, KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches.
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO,HEO,SSO,ES L1 has the best Success Rate.

Flight Number vs. Launch Site

 Launches from the site of CCAFS SLC 40 are significantly higher than launches form other sites.

Payload vs. Launch Site

 The majority of IPay Loads with lower Mass have been launched from CCAFS SLC 40.

Success Rate vs. Orbit Type

 The orbit types of ES-L1, GEO, HEO, SSO are among the highest success rate.

Flight Number vs. Orbit Type

 A trend can be observed of shifting to VLEO launches in recent years.

Payload vs. Orbit Type

 There are strong correlation between ISS and Payload at the range around 2000, as well as between GTO and the range of 4000-8000.

Launch Success Yearly Trend

 Launch success rate has increased significantly since 2013 and has stablised since 2019, potentially due to advance in technology and lessons learned.

All Launch Site Names

%sql select distinct(LAUNCH_SITE) from SPACEXTBL

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

%sql select * from SPACEXTBL where LAUNCH_SITE like 'CCA%' limit 5

DATE	time_utc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010-06- 04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12- 08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10- 08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	(ISS)	NASA (CRS)	Success	No attempt
2013-03- 01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

%sql select sum(PAYLOAD_MASS__KG_) from SPACEXTBL where CUSTOMER
 = 'NASA (CRS)'

45596

Average Payload Mass by F9 v1.1

 %sql select avg(PAYLOAD_MASS__KG_) from SPACEXTBL where BOOSTER_VERSION = 'F9 v1.1'

2928.400000

First Successful Ground Landing Date

 %sql select min(DATE) from SPACEXTBL where Landing_Outcome = 'Success (ground pad)'

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

%sql select BOOSTER_VERSION from SPACEXTBL where Landing__Outcome
 = 'Success (drone ship)' and PAYLOAD_MASS__KG_ > 4000 and
 PAYLOAD_MASS__KG_ < 6000

booster_version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

%sql select count(MISSION_OUTCOME) from SPACEXTBL where
 MISSION_OUTCOME = 'Success' or MISSION_OUTCOME = 'Failure (in flight)'

100

Boosters Carried Maximum Payload

 %sql select BOOSTER_VERSION from SPACEXTBL where PAYLOAD_MASS__KG_ = (select max(PAYLOAD_MASS__KG_) from SPACEXTBL)

2015 Launch Records

 %sql select * from SPACEXTBL where Landing_Outcome like 'Success%' and (DATE between '2015-01-01' and '2015-12-31') order by date desc

time_utc_	booster_version	launch_site	payload	payload_mass_kg_	orbit	customer	mission_outcome	landing_outcome
14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
17:54:00	F9 FT B1029.1	VAFB SLC-4E	Iridium NEXT 1	9600	Polar LEO	Iridium Communications	Success	Success (drone ship)
05:26:00	F9 FT B1026	CCAFS LC- 40	JCSAT-16	4600	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
04:45:00	F9 FT B1025.1	CCAFS LC- 40	SpaceX CRS-9	2257	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
21:39:00	F9 FT B1023.1	CCAFS LC- 40	Thaicom 8	3100	GTO	Thaicom	Success	Success (drone ship)
05 34 00	F0 FT 04000	CCAFS LC-	LOCAT AA	1000	CTO	SKY Perfect JSAT	_	

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 %sql select * from SPACEXTBL where Landing_Outcome like 'Success%' and (DATE between '2010-06-04' and '2017-03-20') order by date desc

Success (drone ship	Success	Thaicom	GTO	3100	Thaicom 8	CCAFS LC- 40	F9 FT B1023.1	21:39:00	2016-05- 27
Success (drone ship	Success	SKY Perfect JSAT Group	GTO	4696	JCSAT-14	CCAFS LC- 40	F9 FT B1022	05:21:00	2016-05- 06
Success (drone ship	Success	NASA (CRS)	LEO (ISS)	3136	SpaceX CRS-8	CCAFS LC- 40	F9 FT B1021.1	20:43:00	2016-04- 08
Success (ground pad	Success	Orbcomm	LEO	2034	OG2 Mission 2 11 Orbcomm-OG2 satellites	CCAFS LC- 40	F9 FT B1019	01:29:00	2015-12-

<Folium Map Screenshot 1>

<Folium Map Screenshot 2>

<Folium Map Screenshot 3>

< Dashboard Screenshot 1>

< Dashboard Screenshot 2>

< Dashboard Screenshot 3>

Classification Accuracy

Confusion Matrix

Conclusions

- The SVM, KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches.
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO,HEO,SSO,ES L1 has the best Success Rate.

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

