4. 有限状態オートマトン

- 4.1 有限状態オートマトンとは
- 4.2 有限状態オートマトンが表現する言語
- 4.3 さまざまな有限状態オートマトン
- 4.4 有限状態オートマトンの性質

4.1 有限状態オートマトンとは

- 有限状態オートマトン の定義
 - 状態を持つ機械の振る舞いの論理的モデル
- 有限状態オートマトンの形式的定義
 - Σ: 入力記号の集合
 - Q:状態の集合
 - I⊆ Q:初期状態の集合
 - F⊆Q:最終状態の集合
 - $E \subseteq Q \times \Sigma \times Q$: 状態遷移規則の集合

4.1 有限状態オートマトンとは

- 有限状態受理機械 (finite state acceptor: FSA)
 - 入力記号列が特定の規則に従っているかどうかを判 定する有限状態オートマトン
- FSAの例
 - $\Sigma = \{ \mathbb{R} \in \mathbb{R} \}$ (形容詞, 名詞, 助詞, 動詞)
 - $Q = \{0, 1, 2, 3, 4\}$
 - *I* = {0}
 - $F = \{4\}$
 - E = {(0, 名詞, 1), (0, 形容詞, 2), ...}

4.1 有限状態オートマトンとは

- 決定性と非決定性
 - ・決定性オートマトン:現在の状態と入力記号から次 状態が一つに定まる
 - 非決定性オートマトン:上記条件で、次状態が一つ に定まらない (同じ入力記号で異なる状態に遷移 可能な場合)
 - 入力記号に空文字列 ε を含む場合は、必然的に非決定的になる

4.2 有限状態オートマトンが表現する言語

- FSAで表現できる言語 = 正規言語
- ・正規言語の定義
 - 1. 空集合は正規言語である
 - 2. すべての $a\subseteq (\Sigma\cup \varepsilon)$ に対して、 $\{a\}$ は正規言語である
 - 3. αとβが正規言語であるとき、以下も正規言語である
 - a. 連接 α・β
 - b. 選択 α | β
 - c. 繰り返し α*
 - 4. これ以外のものは正規言語ではない

• FSA

構成要素: {Σ, Q, I, F, E}

WFSA

• 構成要素: $\{\Sigma, Q, I, F, E, \lambda, \rho\}$

• $E \subseteq Q \times \Sigma \times K \times Q$

K:重みの集合

λ:初期状態の重み

ρ:最終状態の重み a / 0.3b / 0.2a / 0.5c / 0.1b / 0.3

重みが加わる

WFSA の例 図 4.7

FST

構成要素: {Σ, Δ, Q, I, F, E}

△:出力記号の集合

FST の例

WFST

重みと出力が加わる

• 構成要素: $\{\Sigma, \Delta, Q, I, F, E, \lambda, \rho\}$

4.4 有限状態オートマトンの性質

オートマトンの型

相互に変換可能

- ・ ミーリ型: 出力が現在の状態と入力で決まる
- ムーア型: 出力が現在の状態だけで決まる
- オートマトンの有用な性質
 - 非決定性オートマトンは、決定性オートマトンに変換することが可能(決定化)
 - ・決定性オートマトンは、その機能を変えることなく、 状態数最小のオートマトンに変換可能(最小化)