MCQs (Units -II, III)

- 1. The general solution of the differential equation y'' 4y = 0 is
 - (a) $a \cos 2x + b \sin 2x$
 - (b) $ae^{-2x} + bxe^{2x}$
 - (c) $ae^{-2x} + bx^2e^{2x}$
 - (d) $ae^{-2x} + be^{2x}$
- 2. What is the Wronskian of x, x^2 , x^3 ?
 - (a) 2x³
 - (b) x^{3}
 - (c) $3x^3$
 - (d) $4x^3$
- 3. If differential equation $y' = \frac{3y}{x}$ is normal over the interval I then I is
 - (a) $(-\infty, 2)$
 - (b) (-∞,∞)
 - (c) $(-2, \infty)$
 - (d) $(-\infty,0) \cup (0,\infty)$
- 4. If $y'' + y = 32x^3$ then by the method of undetermined coefficient the assumed particular integral
 - (a) $y_v(x) = c_1 x^3 + c_2 x^2 + c_3$
 - (b) $y_p(x) = c_1 x^3 + c_2 x^2 + c_3 x + c_4$
 - (c) $y_p(x) = c_1 x^3 + c_2$
 - (d) $y_v(x) = c_1 x^2 + c_2 x + c_3$
- 5. Particular integral for the differential equation $(D^2 + 9)y = \sin 3x$ is
 - (a) $\frac{x\cos 3x}{}$
 - $(b) = \frac{x \cos 3x}{\cos 3x}$

 - (c) $\frac{x\cos 3x}{3}$ (d) $\frac{x\cos 2x}{3}$
- 6. The particular integral of the differential equation $y'' + y = \tan x$ if $y_1 = \cos x$, $y_2 = \sin x$ is
 - (a) $y_p(x) = \sin x \ln|\sec x + \tan x|$
 - (b) $y_p(x) = \cos x \ln|\sec x + \tan x|$
 - (c) $y_p(x) = -\cos x \ln|\sec x + \tan x|$
 - (d) $y_v(x) = -ln|\sec x + \tan x|$
- 7. The general solution of the differential equation $x^2y'' + xy' 4y = 0$ is
 - (a) $ax^2 + \frac{1}{2}$
 - (b) $ax + \frac{1}{2}$
 - (c) $ax^2 + \frac{a^2}{b}$
 - (d) $3x + \frac{x}{4/x^2}$
- 8. For the system of the differential equations
- $(2D-4)y_1+(3D+5)y_2=3t+2$, $(D-2)y_1+(D+1)y_2=t$, the value of y_2 is given by (a) $ae^{3t}+\frac{1}{9}(3t+5)$ (b) $ae^{3t}-\frac{1}{9}(3t+5)$

 - (c) $ae^{-3t} \frac{1}{9}(3t+5)$ (d) $ae^{-3t} + \frac{1}{9}(3t+5)$

a) 1	b) 2	c) ¾	d) $-3/4$
10. what is low $3\cos 2x + \frac{1}{2}$		quation whose particular in	tegral is
a) 2	b) 3	c) 4	d) 6
	_	ler differential equation who val then wronskian accordi	
a) $w(x) = c$	onstant b) $w(x) =$	$Ae^{\int \frac{-b}{a}dx}$ c) $w(x)$	$=Ae^{\int \frac{b}{a}dx}$ d) None.
12. If $ay'' - by$ and distinct	_	ler differential equation the	n its roots are real
a) $b^2 - 4ac$	≥ 0 b) $b^2 - 4ac =$	0 c) $b^2 - 4ac \le 0$	d) both a and b
13. e^{-i3x} , e^{i3x}	be solution of		
a) $y'' + 6y' + 6$	-9y = 0 b) $y'' - 6y'$	+ y = 0 c) $y'' + 9y = 0$	d) $y'' - 9y = 0$
14. If $(D - a)_{3}$	$y = X$ then $y_p = \frac{1}{D-a}X = \frac{1}{D-a}$		
a) $e^{ax} \int X e^{ax}$	$e^{-ax}dx$ b) $e^{-ax}\int X e^{-ax}dx$	$e^{-ax}dx$ c) $e^{-ax}\int X e^{ax}dx$	$d) e^{ax} \int X e^{ax} dx$
15. Which of t	he following is true?		
a) $\frac{1}{f(D)}$ co c) $\frac{1}{f(D)}$ xe	$sbx e^{ax} = e^{ax} \frac{1}{f(D+b)} cosbx$ $ax = x \frac{1}{f(D+a)} e^{ax}$	b) $\frac{1}{f(D^2)} \cos bx \ e^{ax} =$ d) $\frac{1}{f(D)} x^2 e^{ax} = e^{ax} \frac{1}{f(D)} x^2 e^{ax}$	$\cos bx \frac{1}{f(-a^2)} e^{ax}$ $\frac{1}{(D+a)} x^2$
		$y_1' + 5y_2 = 0$, $y_2' + y_1 = 0$ and y_1 then what is the	
second ord	ler linear differential satisfi $4y_1' + 3y_1 = 0$ b) $y_1'' - 0$		$y_1'' - 4y_1' - 3y_1 = 0$

18. What are the characteristic roots of a homogeneous LDE having $4 + x e^{2x}$ as its

c) 4, 2,2

d) 0, 2, 2

9 If e^{kx} is solution of 4y'' + 7y' + 3y = 0 then k is

19. The general solution of $y^{(4)}$ - $2y^{\prime\prime\prime}$ = 0 is given by

b) 4, 2

particular solution?

a) 0, 2

a) A + B
$$e^{2x}$$
 b) A + B + C e^{2x} c) A + Bx + Cx² + D e^{2x} d) A + Bx + Cx² + Dxe^{2x} where A, B, C and D are arbitrary constants.

20. The DE $x^2y'' - 4xy' + 6y = 0$ on $(0, \infty)$ has ____ linearly independent solutions.
a) 2 b) 3 c) infinite d) Can't say

- 21. The general solution of the equation $4y'' 4y' + y = 8e^{x/2}$ is given by
 - a) $Ae^{x/2} + Be^{x/2} + x^2e^{x/2}$
 - b) $Ae^{x/2} + Bxe^{x/2} + x^2e^{x/2}$
 - c) $Ae^{x/2} + Be^{x/2} + e^{x/2}$
 - d) $Ae^{x/2} + Bxe^{x/2} + xe^{x/2}$
- 22. If $(D^2 3D + 2)y = coshx$, then what will be the Complementary Factor?

a)
$$C_1 e^{-x} + C_1 e^{-2x}$$

b)
$$C_1 e^x + C_1 e^{2x}$$

a)
$$C_1 e^{-x} + C_1 e^{-2x}$$
 b) $C_1 e^x + C_1 e^{2x}$ c) $C_1 e^{-\frac{x}{3}} + C_1 e^{-\frac{2x}{3}}$ d) $\frac{e^{2x}}{5} + \frac{e^{-\frac{x}{7}}}{7}$

d)
$$\frac{e^{2x}}{5} + \frac{e^{-\frac{4x}{7}}}{7}$$

23. If $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = e^{ax}V$, V is a function of x, then Particular Integral will be written as

a)
$$\frac{1}{f(D+a)}V$$

b)
$$e^{ax} \frac{1}{f(D+a)} V$$

a)
$$\frac{1}{f(D+a)}V$$
 b) $e^{ax}\frac{1}{f(D+a)}V$ c) $e^{ax}\frac{1}{f(D-a)}V$ d) $e^{ax}\frac{1}{f(D^2+a^2)}V$

- 24. The auxiliary equation of $4x^2y'' + y = 0$ is
 - a) $4m^2 + 4m + 1 = 0$
 - b) $4m^2 + 1 = 0$
 - c) $4m^2 4m + 1 = 0$
 - d) $4m^2 4m 1 = 0$
- 25. The auxiliary equation of the second order Euler Cauchy differential equation $x^2y'' - 5xy' + 13y = 30 x^2$ has roots
 - a) -3, 2
 - b) 3, 2
 - c) $-3 \pm 2i$
 - d) $3 \pm 2i$
- 26. The characteristic equation of $4x^2y'' + y = 0$ has double root $\frac{1}{2}$, what is its general solution?
 - a) $(A + B \ln x) x^{1/2}$
 - b) $(A + Bx) e^{x/2}$
 - c) $Ax^{1/2}$
 - d) Ae^{x/2}
- 27. If m-1 and m+2 are factors of auxiliary equation of y'' + y' 2y = 0 then general solution is
 - $Ae^{-x} + Be^{2x}$ (b) $e^{x} + e^{-2x}$ $Ae^x + Be^{-2x}$ (d) $e^{-x} + e^{2x}$ (c)
- The Wronskian of the functions $f(x)=\sec x$ and $g(x)=\tan x$ is 28. (a) 1 (b) -1

- (c) secx
- (d) tanx

29.	If e^{-x} and e^{2x} are solutions of $y'' - y' - 6y = 0$ then roots of auxiliary equation are (a) 1 and -2 (b) -1 and 2 (c) 1 and 2 (d) -1 and -2		
30.	The general solution of $4y'' - 9y' + 2y = 0$ is		
31.	(a) Ae^{2x} (b) $Ae^{2x} + Be^{\frac{x}{4}}$ (c) $(A + Bx)e^{2x}$ (d) $(A + B)e^{2x}$ The general solution of $4y'' - 4y' + 17y = 0$ is		
	(a) $Ae^{\frac{x}{2}} + Be^{\pm 2x}$ (b) $Ae^{2x} + Be^{-2x}$		
	(c) $e^{2x} \left(A \cos \frac{x}{2} + B \sin \frac{x}{2} \right)$ (d) $e^{\frac{x}{2}} \left(A \cos 2x + B \sin 2x \right)$		
32.	The general solution of $y''' + 4y'' + 5y' + 2y = 0$ is		
	(a) $Ae^{-2x} + (B + Cx)e^{-x}$ (b) $Ae^{-x} + (B + Cx)e^{-2x}$		
	(c) $Ae^{-2x} + (B+C)xe^{-x}$ (d) $(A+Bx)e^{-x} + (C+Dx)e^{2x}$		
33.	If D is a differential operator then value of $\frac{1}{D}(e^{-2x} + Sm2x + 4)$		
	(a) $-\frac{e^{-2x}}{2} - \frac{Cos2x}{2}$ (b) $-\frac{e^{-2x}}{2} + \frac{Cos2x}{2} + 4x$ (c) $-\frac{e^{-2x}}{2} - \frac{Cos2x}{2} + 4x$		
(d)	$-\frac{e^{-2x}}{2} - \frac{Cos2x}{2} + 4$		
34.	Particular Integral of $y'' + 2y' - 3y = e^{2x}$ is		
	(a) $-\frac{1}{5}e^{2x}$ (b) $\frac{1}{5}e^{2x}$ (c) $\frac{1}{5}$ (d) $-\frac{1}{5}$		
35.	Particular Integral of $y'' + 4y = Sin2x$ is		
	(a) $-\frac{1}{2}\cos 2x$ (b) $\frac{x}{2}\cos 2x$ (c) $-\frac{x}{2}\cos 2x$ (d) $-x\cos 2x$		
36.	If D is a linear differential operator then $\frac{1}{f(D)}.e^{-\alpha x} =$		
00.			
	(a) $\frac{1}{f(-\alpha^2)} e^{-\alpha x}, f(-\alpha^2) \neq 0 $ (b) $\frac{1}{f(D-\alpha)} e^{-\alpha x}$		
	(c) $\frac{1}{f(\alpha^2)} e^{-\alpha x}$, $f(\alpha^2) \neq 0$ (d) $\frac{1}{f(-\alpha)} e^{-\alpha x}$, $f(-\alpha) \neq 0$		
37.	In method of undetermined coefficients if complimentary function $y_c = Ae^{-x} + (B+Cx)e^{2x}$ of equation $y''' - 3y'' + 4y = e^{2x}$ then choice of particular integral will be		
	(a) cxe^{2x} (b) cx^2e^{2x} (c) ce^{2x} (d) $c_1e^{-x} + C_2e^{2x}$		
38.	In method of undetermined coefficients. If complementary function $y_c = ACos2x + BSin2x$ of equation $y'' + 4y = Sin2x$ then choice of particular integral		
	(a) $c_1 \times Cos2x + c_2 \sin2x$ (b) $c_1 \cos2x + c_2 \times \sin2x$		

```
(c) x[c_1Cos2x+c_2Sin2x] (d) c_1Cos2x+c_2Sin2x
```

39. General solution of
$$x^2y'' + xy' - 4y = 0$$

(a)
$$y = Ax + Bx^{-2}$$
 (b) $y = Ax^2 + Bx^{-2}$ (c) $y = Ax^2 + Bx$ (d) $y = Ax^{-2} + Bx^{-2}$

40. General solution of
$$x^2y'' + 3xy' + 10y = 0$$

(a)
$$y = x[ACos(3\log x) + BSin(3\log x)] \quad \text{(b)} \quad y = x[ACos(\log x) + BSin(\log x)]$$

(c)
$$y = x^{-1} [A Cos(\log x) + B Sin(\log x)]$$
 (d)

$$y = x^{-1} [ACos(3\log x) + BSin(3\log x)]$$

41. General solution of system of simultaneous equations
$$y_1' = -2y_1 + y_2$$

$$y_2' = y_1 - 2y_2$$

(a)
$$y_1 = Ae^{-t} + Be^{3t}, y_2 = Ae^t - Be^{3t}$$
 (b) $y_1 = Ae^{-t} + Be^{3t}, y_2 = Ae^t - Be^{3t}$

(c)
$$y_1 = Ae^{-t} + Be^{-3t}, y_2 = Ae^t + Be^{-3t}$$
 (d) $y_1 = Ae^{-t} + Be^{-3t}, y_2 = Ae^t - Be^{-3t}$

42. The roots of auxiliary equation of
$$x^2y''+xy'-9y=0$$
 are

43. The equation
$$y'' + xy' + 6y = \ln(x^2 - 9)$$
 is normal in any of the subintervals of

a)
$$(3,\infty)$$
 b) $(0,\infty)$ c) $(0,4)$ d) $(-\infty,-3) \cup (3,\infty)$

44.
$$A2x+B(6x+3)+C(3x+2)=0$$
 will be linearly independent when

45. General solution of
$$y'' - y' - 2y = 0$$
 is
a) $Ae^{2x} + Be^{x}$ b) $Ae^{2x} + Be^{-x}$ c) $Ae^{-2x} + Be^{x}$ d) $Ae^{-2x} + Be^{x}$

46. General solution of
$$4y'' + 8y' - 5y = 0$$
 is given by a) $Ae^{x/2} + Be^{-5x/2}$ b) $Ae^{-x/2} + Be^{-5x/2}$ c) $Ae^{x/2} + Be^{5x/2}$ d) $Ae^{-x/2} + Be^{5x/2}$

47. Particular integral for $y''+16y = \cos 4x$ is

a)
$$-2x\sin 4x$$
 b) $-\frac{x\sin 4x}{8}$ c) $\frac{x\sin 4x}{8}$ d) None of these

48. The diff. equation of
$$(D^2 + 6D + 9)y = 50e^{2x}$$
 has P.I.

a)
$$\frac{2}{3}e^{2x}$$
 b) $2e^{2x}$ c) e^{2x} d) None of these

49.By method of undetermined coefficient, the choice of particular integral for
$$y''-4y=5e^{-2x}$$
 is

a)
$$Ce^{-2x}$$
 b) Cxe^{-2x} c) Cx^2e^{-2x} d) Cx^3e^{-2x}

50. By variation of parameters
$$y''+4y=\cos 2x$$
, the value of wronskian is

51. General solution of $y''+16y = 12e^{-2x}$ is

a)
$$Ae^{-4x} + Be^{4x} + \frac{3}{5}e^{-2x}$$
 b) $A\cos 4x + B\sin 4x + \frac{3}{5}e^{-2x}$ c) $Ae^{4x} + Bxe^{4x} + e^{-2x}$ d) none of these

52. The solution of diff. equation $x^2y''+xy'+y=0$ is

a)
$$c_1 \cos(\ln x) + c_2 \sin(\ln x)$$
 b) $c_1 x + c_2 x^2$ c) $c_1 \cos x + c_2 \sin x$ d) None of these

53.By elimination, solution of y_2 in the simultaneous system $(D+3)y_1 + (3D+23)y_2 = e^{-2t}$ and $(D+2)y_1 + (4D+14)y_2 = e^{2t}$ will be a) $Be^{-t} + Ae^{4t} - e^{2t}$ b) $Be^{-t} + Ae^{4t} - \frac{5}{6}e^{2t}$ c) 0 d) Does not exist

a)
$$Be^{-t} + Ae^{4t} - e^{2t}$$
 b) $Be^{-t} + Ae^{4t} - \frac{5}{6}e^{2t}$ c) 0 d) Does not exist

54. $x^2y'' + xy' - 4y = 0$ has auxiliary equation

a)
$$m^2+2m-4=0$$
 b) $m^2-4=0$ c) $m^2-2m-4=0$ d) $m^2+4=0$