

CUSTOMER SEGMENTATION WITH MACHINE LEARNING

Patricia Díez

April 2025

INDEX

- Introduction
- Dataset Description
- Exploratory Data Analysis (EDA)
- Data Preprocessing
- Applied Clustering Techniques
- Comparison of Results
- Final Model Selection
- Conclusions
- Results
- Potential Project Improvements

INTRODUCTION

OBJECTIVE

Segmenting wholesale customers based on their purchasing behavior, with the help of Machine Learning.

WHAT CAN WE USE IT FOR?

This segmentation enables the design of specific marketing strategies for each customer group.

DATASET DESCRIPTION

WHOLESALE CUSTOMERS

- Public dataset from Kaggle
- Contains spending information across 8 categories for 440 wholesale customers.
- Collected variables:
 - Numerical variables: Fresh, Milk, Grocery,
 Frozen, Detergents_Paper, Delicassen
 - Categorical variables: Region and Channel

PREPROCESSING AND EDA

HIGH NUMBER OF OUTLIERS

RIGHT SKEWNESS

PREPROCESSING AND EDA

FEATURE SCALING

LOGARITHM

PREPROCESSING AND EDA

ONE - HOT ENCODING OF CHANNEL

DROP REGION

PCA - PRINCIPAL COMPONENT ANALYSIS

- With 2 components, 89% of the total variance is explained
- With 3 components, 94%
- With 4 components, 97%

K = 2 IN KMEANS

- We tested values of k between 2 and 10
- Elbow method: not conclusive
- Silhouette Score: highest value at k = 2

RESULTS COMPARISON

Algorithm	Silhouette Score
KMeans (with PCA)	0.64
KMeans (without PCA)	0.69
DBSCAN	0.79
Agglomerative	0.78

MODEL SELECTION

FINAL MODEL SELECTED = KMEANS WITH PCA

CONCLUSIONS

- We tested three models: KMeans, DBSCAN, and Agglomerative Clustering.
- Although DBSCAN and Agglomerative achieved higher Silhouette Scores,
 we selected KMeans with PCA as the final model due to:
 - Simplicity and speed: Fast to train and easy to interpret.
 - Stability: Less sensitive to parameters compared to DBSCAN.
 - Generalization: Easily applicable to new, unseen data.
 - Interpretability: Allows clear analysis of the key features in each cluster

RESULTS

POTENTIAL IMPROVEMENTS

This system is useful for customer segmentation and marketing strategy — future improvements could include:

PARAMETER TUNING

OULIER ANALYSIS

THANK YOU!