Welcome to the dark side

Roadmap

- Putting things in perspective.
- On how a single neuron works.
- → Creating your first artificial neuron, from scratch.
- Creating your first Artificial Neural Network, step by step.
- Helping machines to make a prediction.
- Helping machines to learn from experience.
- Helping machines to get smarter.

What is machine learning?

It is a subfield of artificial intelligence.

It gives computers the ability to learn without being explicitly programmed.

We tell the computer what to do and how to do it.

• It solves a problem by following a set of instructions.

We tell the computer what to do and how to do it.

• It solves a problem by following a set of instructions.

It produces a pattern based on sample data and expectations.

It finds out how to solve the problem by itself.

Algorithmic Programming Data Program Computer Output

We tell the computer what to do and how to do it.

- It solves a problem by following a set of instructions.
- It never learns.

It produces a pattern based on sample data and expectations.

- It finds out how to solve the problem by itself.
- It learns by example.

Algorithmic Programming Data Program Computer Output

We tell the computer what to do and how to do it.

- It solves a problem by following a set of instructions.
- It never learns.
- Focus on the algorithm.

It produces a pattern based on sample data and expectations.

- It finds out how to solve the problem by itself.
- It learns by example.
- Focus on the data.

Algorithmic Programming Data Program Computer Output

We tell the computer what to do and how to do it.

- It solves a problem by following a set of instructions.
- It never learns.
- Focus on the algorithm.

The output is always the same.

- No mistakes.
- 2 + 2 = 4 (always)

It produces a pattern based on sample data and expectations.

- It finds out how to solve the problem by itself.
- It learns by example.
- Focus on the data.

Algorithmic Programming Data Program Computer Output

We tell the computer what to do and how to do it.

- It solves a problem by following a set of instructions.
- It never learns.
- Focus on the algorithm.

The output is always the same.

- No mistakes.
- 2 + 2 = 4 (always)

It produces a pattern based on sample data and expectations.

- It finds out how to solve the problem by itself.
- It learns by example.
- Focus on the data.

The output depends on network performance (training).

- They make mistakes.
- 2 + 2 = 3 (if network training is insufficient)

Algorithmic Programming Data Program Computer Output

We tell the computer what to do and how to do it.

- It solves a problem by following a set of instructions.
- It never learns.
- Focus on the algorithm.

The output is always the same.

- No mistakes.
- 2 + 2 = 4 (always)

Representational power

How much is 3 plus 5?

It produces a pattern based on sample data and expectations.

- It finds out how to solve the problem by itself.
- It learns by example.
- Focus on the data.

The output depends on network performance (training).

- They make mistakes.
- 2 + 2 = 3 (if network training is insufficient)

Representational power

How much is this plus this?

The kind of problems we can solve with Al

- Data Security
- Personal Security
- Financial Trading
- Healthcare
- Marketing Personalization
- Fraud Detection
- Recommendations
- Online Search
- Natural Language Processing (NLP)
- Smart Cars
- etc

The kind of problems we can solve with Al

Sample problem (quick & easy)

• I want to buy a car. I don't want to spend too much money.

Scenario.

• Buying/Selling goods (could be enhanced to take bidding into account)

What I did.

- I visited a couple of local web sites and created the spreadsheet below.
- This is the first time I do this so I collected 20-30 offers.

Brand	Model	State	Year	Mileage (Km)	Market Price
Fiat	Adventure	Used	2008	60,000	\$180,000.00
Fiat	Adventure	Used	2009	70,000	\$190,000.00
Fiat	Adventure	Used	2013	110,000	\$216,000.00
Fiat	Adventure	New	2017	0	\$380,000.00

(more samples...)

What I want.

I want to get the best car available in the market at the minimum price possible.

My questions:

Question #1.

What is the most convenient offer (best pick) based on my needs?

Question #2.

Should I bid for the following car? → Year: 2015, Mileage: 90k, Price: \$120k

Question #3.

What are the top 3 options that best fit my needs?

May 6, 1949 - Mathematical Laboratory at Cambridge University

"Today in 1949, the Electronic Delayed Storage Automatic Computer (EDSAC), the first practical stored-program computer, ran its first program and performed its first calculation."

August 25, 1950 - Toronto, Canada

"Bertie the Brain" is exhibited at the Canadian National Exhibition. It was just a computer game (one of the first games)

What makes it so special?

It used Artificial Intelligence to play tic-tac-toe with humans.

Humans win, mostly.

May 12, 1997.

IBM supercomputer *Deep Blue* annihilates world champion Garry Kasparov at chess, in 19 moves

2011

IBM Watson beats human opponents at Jeopardy.

Watson developed reasoning to overcome human opponents.

(The improved version for competing against humans became fully operational on Feb 2010)

April, 2016

DeepMind AlphaGo (Google) defeats the world's best human at Go (Lee Sedol) Go has more possible moves than there are atoms in the Universe.

The network had to develop intuition.

- Their authors (human programmers) didn't understand why AlphaGo was doing what it was doing.
- Possible moves in Go: 10¹⁷⁰
- Number of atoms in the universe: 10⁸⁰

Hands ON, From now ON

Biological model

So let's start modeling this in Excel...

Dendrites (Neuron Inputs)

Axon from an	other neuron	Dendrite		Synapse (chemic	al reaction)
Axon	Input Value	Name	Connection Weight	Name	Value
x0	4	w0	1.5	x0 * w0	6
x1	6	w1	2.8	x1 * w1	16.8
x2	1	w2	0.7	x2 * w2	0.7
				Weigthed Sum	23.5

Cell Body (*Process*)

Cell Body	
Body Input	23.5
Bias	1
Body Response	24.5

Response (Output)

Neuron Response				
Activation Type	Output			
Identity	24.5			
Sigmoid	0.99999999937759			
Tanh	1			
ReLU	24.5			

Hands on \rightarrow


```
/// <summary>
   </summary>
    <param name="inputValues">Specifies the input values</param>
    <returns>Returns the weighted sum</returns>
protected double[] ComputeWeightedResponse(double[] inputValues)
   // The response of each neuron available at the current layer
   double[] neuronResponse = new double[NumberOfNeurons];
   for (int targetNeuronIndex = 0; targetNeuronIndex < NumberOfNeurons; targetNeuronIndex++)</pre>
       // Compute the weighted summation of the inputs
        double weightedSum = 0.0D;
        for (int sourceNeuronIndex = 0; sourceNeuronIndex < PreviousLayer.NumberOfNeurons; sourceNeuronIndex++)
           weightedSum += inputValues[sourceNeuronIndex] * Weights[targetNeuronIndex][sourceNeuronIndex];
        // Compute the weighted sum plus a bias contribution
       neuronResponse[targetNeuronIndex] = weightedSum + Biases[targetNeuronIndex];
   // Apply the activation function
   IActivationFunction activationFunction = ActivationFunctionFunctionFunction(ActivationFunctionType);
   neuronResponse = activationFunction.Execute(neuronResponse);
   return neuronResponse;
```

Source code is provided for educational purposes only

Hands on \rightarrow


```
#region Interface Implementation
/// </summary>
    <param name="inputValues">Specifies the input values</param>
public double[] Predict(double[] inputValues)
   // Check the network configuration
   VerifyNetworkDefinition(inputValues);
    // Compute the response of each layer
    int depth = Layers.Length;
    for (int layerIndex = 0; layerIndex < depth; layerIndex++)
       double[] previousLayerResponse = (layerIndex == 0) ? inputValues : Layers[layerIndex - 1].LayerResponse;
       Layers[layerIndex].LayerResponse = Layers[layerIndex].Predict(previousLayerResponse);
    return Layers[depth - 1].LayerResponse;
```

Source code is provided for educational purposes only

Hands on \rightarrow

Why do we need a bias? What it does?

A bias neuron <u>allows the classifier to shift the decision boundary</u> to the left or to the right. Without a bias, your layer (or network) is prone to produce a probability of 50% - 50%

Scenario.

Imagine that all your inputs are zero, or all weights are zero, or both at the same time.

$$f(y) \rightarrow f(0)$$

$$f(y) \rightarrow \text{sigmoid } (0) \rightarrow 0.5$$

Example 1 → (hidden layer)

Hidden Layer Response				
Neuron	Weighted Sum	Bias		Neuron Output
H1	0.000000		0	0.50000000
H2	0.000000		0	0.50000000

Example 2 → (output layer followed by SoftMax)

Neuron	Weighted Sum	Bias	Neuron Output
01		Dias	0.t
	0	U	
02	0	0	0.
	•	!	
Neuron	Output value	Exp(o)	Probability
	Output value	Exp(o) 1.648721271	TO LANGUE CONTROL #1
Neuron O1 O2		The state of the s	Probability 50.00% 50.00%

That's why.

Hands on →

What if we try with different activation functions?

Activation Type	Formula	Neuron Response
Sigmoid	f(24.5) = 1.0 / (1.0 + Exp(-24.5))	f(24.5) = 0.99999999937759
Hyperbolic Tangent	f(24.5) = Tanh(24.5)	f(24.5) = 1.0
Relu	f(24.5) = 24.5 < 0 ? 0 : 24.5	f(24.5) = 24.5

Neuron Activation Functions

Purpose.

- An activation function mimics the <u>response of a neuron</u>.
- Any activation function has their derivative counterpart, by definition.

Commonly used functions:

- Rectified Linear Unit (aka ReLU)
- Logistic Function (aka Sigmoid)
- Hyperbolic Tangent (aka TanH)
- SoftMax
- ...and others

Hyperbolic Tangent:

$$f(y) = Tanh(y)$$

Sigmoid:

$$f(y) = 1.0 / (1.0 + Exp(-y))$$

RELU:

$$f(y) = y < 0.0 ? 0 : y$$

Neuron Activation Functions (example - ReLU)

ReLU - How it works.

If the value is higher than zero then get excited. Otherwise get inhibited (produce a "0")

return y < 0 ? 0 : y;

Hidden Layer

Neurons in this layer help the network to identify emerging patterns.

They act as a descriptor.

Output Layer

Neurons in this layer are responsible for classifying the pattern identified.

They act as a classifier.

Establish a connection between each neuron. Assign a "weight" to each connection.

Compute the response of each neuron.

Compute the response of each neuron.

Assume the bias is 0.0001 for all neurons
Assume the activation function is a Sigmoid for all neurons

Compute the response of each neuron.

Compute the response of each neuron.

Compute the response of each neuron.

Done!

Checkpoint: Are we good so far?

Next: How to turn this data into useful information →

Neuron	Output value	Exp(o)	Scale	Scaled value	Probability
01	0.7640713445	2.146999626	4.825092991	0.44496544	44.4965%
O2	0.9851051105	2.678093365	4.825092991	0.55503456	55.5035%
	As a second		Sum check!	1	100%

My prediction, as a neural network:

"I am 55.5% sure that O2 is the right answer."

Hands on \rightarrow

Summary

Takeaways:

- A *neuron* can be modeled as function $\rightarrow f(y)$
- Neurons connect with other neurons. The strength (weight) of such connections represent knowledge.
- One or more neurons grouped together represent a *layer* \rightarrow (e.g. input layer, hidden layer, output layer)
- One or more layers grouped together make a Neural Network.
- A neural network is a function too.

Checkpoint

Achievements.

- 1. You created your first Artificial Neural Network from scratch step by step.
 - a. You defined the topology of your first network.
- 2. You now have a comprehensive understanding on how a single neuron works.
 - a. You modeled a single neuron.
 - b. You know how neurons work.
- 3. Now you know how a neural network makes a prediction.
 - a. You managed to provide a network response based on a set of input values.
 - b. You managed to interpret the response of the Neural Network.
 - c. You were able to turn mere data into useful information.

Level up \rightarrow

How can we make the network learn from this *first* experience?

Learning from mistakes

Supervised Learning

What is the distance between the desired response and the actual response? (cost function)

Output Layer

For example:

- Suppose we want neuron O1 to produce a "1"
- Suppose we want neuron O2 to produce a "0"

So the error at each neuron is:

The **expected value** - The **actual value** produced by the neuron

What is the distance between the desired response and the actual response? (cost function)

Output Layer

For example:

- Suppose we want neuron O1 to produce a "1"
- Suppose we want neuron O2 to produce a "0"

So the error at each neuron is:

The **expected value** - The **actual value** produced by the neuron

Our goal is to minimize these values

Step #1 - Compute the error at the output Layer

Step #1 - Compute the error at the output Layer

Step #1 - Compute the error at the output Layer

Step #1 - Compute the error at the output Layer

Step #1 - Compute the error at the output Layer

Step #1 - Compute the error at the output Layer

Step #1 - Compute the error at the output Layer

Error Signal at the Output Layer							
Neuron	Neuron Output	Feedback	Output Derivative	Error Signal at (O)			
01	0.7640713445	0.2359286555	0.180266325	0.04252999169			
O2	0.9851051105	-0.9851051105	0.01467303175	-0.01445447857			

This is the error at the output layer of the network

Step #2 - Compute the gradients of the Hidden Layer (H1 and H2)

Step #2 - Compute the gradients of the Hidden Layer (H1 and H2)

Step #2 - Compute the gradients of the Hidden Layer (H1 and H2)

Summary - Compute the gradients of the Hidden Layer (H1 and H2)

Summary - Computing the hidden gradients in a spreadsheet

Neuron	Neuron Output	Feedback	Output Derivative	Error Signal at (O)
01	0.7640713445	0.2359286555	0.180266325	0.04252999169
O2	0.9851051105	-0.9851051105	0.01467303175	-0.01445447857
Weight Gradients bet	tween O-H			
Upper Neuron	Lower Neuron	Error at (O)	Input from (H)	Weight Gradient (O-H)
01	H1	0.04252999169	0.9781208692	0.04159947244
01	H2	0.04252999169	0.9909875945	0.04214669416
O2	H1	-0.01445447857	0.9781208692	-0.01413822714
				-0.01432420894

Hands on →

01

Error Signal (O1): **0.04252999169**

Step #3 - Compute the error at the Hidden Layer

Step #4 - Compute the gradients of the input layer (I1, I2, I3)

Step #4 - Compute the gradients of the input layer (I1, I2, I3)

Step #4 - Compute the gradients of the input layer (I1, I2, I3)

Step #4 - Compute the gradients of the input layer (I1, I2, I3)

Neuron	Neuron Output	Feedback	Output Derivative	Error Signal at (H)	
H1	0.9781208692	0.001974107305	0.02140043443	0.00004224675393	
H2	0.9909875945	-0.01265874075	0.008931182038	-0.000113057518	
Weight Gradients bet	ween H-I				
Upper Neuron	Lower Neuron	Error at (H)	Input from (I)	Weight Gradient (H-I)	
H1	11	0.00004224675393	5	0.0002112337697	
H1	12	0.00004224675393	8	0.0003379740315	
H <mark>1</mark>	13	0.00004224675393	9	0.0003802207854	
H2	11	-0.000113057518	5 -0.0005652		
H2	12	-0.000113057518	8 -0.00090446		
112	, ·-				

Weight updates (H-I)					New Weights, with Momentum (H-I)		
Upper Neuron	Lower Neuron	Old Weight	Weight Gradient (O-H)	Gradient x Learning Rate	Previous Delta	Delta Momentum	New Weight
H1	11	0.2	0.0002112337697	0.00002112337697	0	0	0.20002112338
H1	12	-0.1	0.0003379740315	0.00003379740315	0	0	-0.09996620260
H1	13	0.4	0.0003802207854	0.00003802207854	0	0	0.40003802208
H2	l1	0.7	-0.0005652875902	-0.00005652875902	0	0	0.69994347124
H2	12	-1.2	-0.0009044601443	-0.00009044601443	0	0	-1.20009044601
H2	13	1.2	-0.001017517662	-0.0001017517662	0	0	1.19989824823

Weight updates (O-H)					New Weights, with Momentum (O-H)		
Upper Neuron	Lower Neuron	Old Weight	Weight Gradient (O-H)	Gradient x Learning Rate	Previous Delta	Delta Momentum	New Weight
01	H1	1.1	0.04159947244	0.004159947244	0	(1.104159947
01	H2	0.1	0.04214669416	0.004214669416	0	(0.1042146694
O2	H1	3.1	-0.01413822714	-0.001413822714	0	(3.098586177
O2	H2	1.17	-0.01432420894	-0.001432420894	0	(1.168567579

Checkpoint

Achievements.

Now you know how a Neural Network learns from mistakes.

- **Trial** → It makes a prediction, to the best of their ability. This is called *"forward pass"*.
- Error → It measures the error.
- Learn → It adjusts their weights accordingly, in order to perform better next time.
 This is called backpropagation.

Experience is what you get when things don't go as expected.

The mechanics.

Networks learn through back propagation $(trial \rightarrow error \rightarrow adapt)$

The algorithms.

Networks can be trained through a wide variety of algorithms:

- Stochastic gradient descent (aka: SGD)
- Genetic Algorithms
- etc

Training Algorithm

- SGD
- Genetics
- Others

Stochastic gradient descent (SGD)

- Online
- Batch

Data

It could be anything:

- Pictures
- Songs
- Videos
- Criminal records
- Global Temperatures
- Stock Prices
- Industry ratios
- Custom database records
- etc

Stochastic gradient descent (SGD)

Online

- Better accuracy rate
- Not suitable for large datasets
- Training takes more time

Batch

- Faster training, because you update the weights only once.
- The network accuracy is worst compared with the Online method.
- Suitable for large datasets

Dataset

Training set

Testing set

Validation set

Training set.

The samples we will use to to adjust the weights of the network.

This is what the network will learn

Example.

MNIST dataset (digits recognition)

Testing set.

The samples we will use to assess the performance of the network.

The network has never seen these examples before.

Validation set.

The samples we will use to fine tune the hyperparameters of the network

For example:

- Number of hidden units
- Learning Rate
- Momentum

Also used to prevent over-fitting.

Procedure (pseudo-code)

- 1.3) For each training sample:
- ightharpoonup Trial ightharpoonup Present the training sample to the network and get the network response.
 - ightharpoonup Error ightharpoonup Learn from experience. Measure the error and backpropagate the gradients.
 - $\textbf{Learn} \rightarrow \textbf{Update the network parameters}.$

Procedure (pseudo-code)

1) For each Training Epoch (also called "iteration")

- 1.3) For each training sample:
 - o **Trial** o Present the training sample to the network and get the network response.
 - \longrightarrow **Error** \rightarrow Learn from experience. Measure the error and backpropagate the gradients.

 $\textbf{Learn} \rightarrow \textbf{Update}$ the network parameters.

Procedure (pseudo-code)

1) For each Training Epoch (also called "iteration")

- 1.2) Reorder your training set, in a random manner.
 - In online learning the training samples need to be presented to the network in random order. This is a key factor.
- 1.3) For each training sample:
 - o **Trial** o Present the training sample to the network and get the network response.
 - \longrightarrow **Error** \rightarrow Learn from experience. Measure the error and backpropagate the gradients.

Learn \rightarrow Update the network parameters.

Procedure (pseudo-code)

- 1) For each Training Epoch (also called "iteration")
 - 1.1) Measure the *Network Performance*, to see how the network is doing.
 - If the network achieved the desired accuracy then stop training.
 - Otherwise continue with the training process.
 - 1.2) Reorder your training set, in a random manner.
 - In online learning the training samples need to be presented to the network in random order. This is a key factor.
 - 1.3) For each training sample:
 - → **Trial** → Present the training sample to the network and get the network response.
 - \longrightarrow **Error** \rightarrow Learn from experience. Measure the error and backpropagate the gradients.

Learn → Update the network parameters.


```
// Run all epochs...
for (int trainingEpoch = 0; trainingEpoch < maxTrainingEpochs; trainingEpoch++)</pre>
    Measure the Network Performance
      Generate a random training sequence in order to mitigate over-fitting,
    // local-minima and other well-known side effects.
    int[] trainingSequence = GenerateRandomSequence(trainingSet);
    for (int i = 0; i < totalSamples; i++)</pre>
        // Pick a training sample, randomly
        int randomSampleIndex = trainingSequence[i];
        TrainingSample trainingSample = trainingSet.Samples[randomSampleIndex];
        // Learn about this training sample in particular.
        // Adjust the network weights accordingly.
        LearnTrainingSample(trainingSample.Sample, trainingSample.ExpectedOutput, networkTrainingParameters);
```

Source code is provided for educational purposes only.

In plain English:

- We learn about every training sample over a set of training epochs.
- At the beginning of each training epoch, we reorder the training samples randomly.
 This is crucial for online-SGD to succeed.

You could speed up the training process by learning multiple training samples at the same time. Tips:

- Parallelization
 - Multi-Threading

Network Error

Epochs: 100

Number of Training Samples: 500 Number of Testing Samples: 2500

Learning rate: 0.1 Momentum: 0.5

Epoch	Error		Accuracy
	9	0.14	89.8
1)	19	0.10	93.4
	29	0.11	92.8
;	39	0.14	91.4
	49	0.12	92.
	59	0.09	94.4
	69	0.12	92.6
	79	0.10	94.
	39	0.12	9:
	99	0.13	91.3

Best Training Epoch: 59 Epoch Accuracy: 94.4%

Local Minima

Happens when you get stuck in a valley

Descending too fast or too slow is a problem.

Fine tune your hyperparameters.

Try with different learning rates and momentum. Also check your network topology.

Momentum helps the network to overcome obstacles (local minima) in the error surface and settle down at or near the global minimum.

Repeated training.

A widely used approach is to train the network more than once, starting with a random set of weights. Use different partitions for training/test/validation.

This is known as cross-validation.

Downside: it takes more time to train networks.

You nailed it!

Thank you

Ready to level up?

Machine Learning datasets.

The links below contain Machine Learning datasets:

- https://en.wikipedia.org/wiki/List of datasets for machine learning research
- https://archive.ics.uci.edu/ml/datasets.html

Homework:

- Pick any of the datasets of your preference.
- Create a neural network.
- Train it.

Example.MNIST dataset (digits recognition)

Link:

http://yann.lecun.com/exdb/mnist/