10 de agosto de 2016

1. Espacios topológicos

Un espacio topológico es un par (X,τ) con $X\neq\emptyset$, topología $\tau\subseteq P(X),\,O\in\tau$ son abiertos y

- \blacksquare $\emptyset, X \in \tau$
- $O_1, O_2 \in \tau \implies O_1 \cap O_2 \in \tau$
- $\{O_{\lambda}, \lambda \in \Lambda\} \subseteq \tau \implies \bigcup_{\lambda \in \Lambda} O_{\lambda} \in \tau$

Discreta
$$X \neq \emptyset$$
, $\tau_d := P(X)$
Fuerte $X \neq \emptyset$, $p_O \in X$ fijo, $\tau_f := \{O \in X : p_0 \not\in O \text{ o } X - O \text{ finito}\}$
Sierpinski $X = \{a,b\}$, $\tau := \{\emptyset, \{a\}, X\}$
Sorgenfrey (\mathbb{R}, τ_s) , $O \in \tau_s \iff \forall x \in O, \exists \epsilon > 0 : [x, x + \epsilon] \subseteq O$