本节内容

KMP算法

求next数组

KMP算法

根据模式串T,求 出 next 数组

利用next数组进行匹配 (主串指针不回溯)

T = 'abaabc'

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1	2	2	3

KMP算法,最坏时间复杂度 O(m+n)

其中,求 next 数组时间复杂度 O(m) 模式匹配过程最坏时间复杂度 O(n)

```
int Index_KMP(SString S,SString T,int next[]){
   int i=1, j=1;
   while(i<=S.length&&j<=T.length){</pre>
       if(j==0||S.ch[i]==T.ch[j]){
           ++i;
                               //继续比较后继字符
           ++j;
       else
           j=next[j];
                               //模式串向右移动
   if(j>T.length)
       return i-T.length;
                               //匹配成功
   else
       return 0;
```

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
			N. J.	Ź		X JAN OC

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
			, X ² Moc			

next数组的作用: 当模式串的第 j 个字符失配时, 从模式串的第 next[j] 的继续往后匹配

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
777, NOC			, X ² / ₂ / ₂ / ₂ / ₂ OCC	Ź	NO C	X ZZZZWOCC

next数组的作用: 当模式串的第 j 个字符失配时, 从模式串的第 next[j] 的继续往后匹配

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0			Ž		

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	100°C	, jiji Moo	Ź	^M O _C	, X ^A AMOC

next数组的作用: 当模式串的第 j 个字符失配时, 从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	× 1	, X ² / ₂ / ₂ / ₂ / ₂ OCC	Ž		N. J. J. J. M. O.

任何模式串都一样,第2个字符不匹配时,应尝试匹配模式串的第1个字符,因此,往后余生,next[2]都无脑写 1

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	N. J. J. J. M. O.			

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	, ¹⁰⁰ 1	N. J. J. J. M. O.		**************************************	

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1				

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000			

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000			

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1,000			

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000			X JANOC C

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	, 1° 1	1,000			

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	Ž		

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1		

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1		X iij MOC

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1		

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[(0] n	ext[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	5	0	1	1.000	1		

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1		

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1		X JANOS C

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	** 1	1.000	1	2	

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	100C	1	2	

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1	2	

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1,000	1	2	

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	100C	1	2	

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1	2	X iii MOC

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1,000	1	2	

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next数组的作用: 当模式串的第 j 个字符失配时,从模式串的第 next[j] 的继续往后匹配

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1	2	1,000

在不匹配的位置前边,划一根美丽的分界线 模式串一步一步往后退,直到分界线之前 "能对上",或模式串完全跨过分界线为止

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	a ^c 1	1,000	1	2	1,000

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1	2	1,000

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1,000	1	2	1000

j=next[j]

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1	2	1.000

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1,000	1	2	1 000

j=next[j]

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	, 1° 1	1,000	1	2	1,000

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1,000	1	2	1,1000

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1	2	1,000

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1	2	1.000

j=next[j]

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1	2	1,000

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1.000	1	2	1,000

模式串 T = ababaa

	序号j	1	် 2	3	4	5	6
***************************************	模式串	a	b	a	b	a	a
	next[j]		56				

next[1]都无脑写 0 next[2]都无脑写 1

模式串 T = ababaa

ababaa

序号j	1	⁶ 2	3	4	5	6
模式串	a	b	а	b	а	a
next[j]	0	s 1				

next[1]都无脑写 0 next[2]都无脑写 1

ab???abaaa

模式串 T = ababaa

序号j	1	[©] 2	3	4	5	6
模式串	a	b	a	b	a	а
next[j]	0	s 1				

next[1]都无脑写 0 next[2]都无脑写 1

ab??? ablaaaa 模式串 T = ababaa

序号j	1	ິ 2	3	4	5	6
模式串	a	b	a	b	a	a
next[j]	0	s 1				

next[1]都无脑写 0 next[2]都无脑写 1

ab???
ababaa

模式串 T = ababaa

序号j	1	2 و	3	4	5	6
模式串	a	b	а	b	а	а
next[j]	o 0	s⁴ 1				

next[1]都无脑写 0 next[2]都无脑写 1

ab??? ababaa 模式串 T = ababaa

序号j	1	် 2	3	4	5	6
模式串	a	b	a	b	a	a
next[j]	0	s 1	1			

next[1]都无脑写 0 next[2]都无脑写 1

aba??abaaaabaa

模式串 T = ababaa

序号j	1	် 2	3	4	5	6
模式串	a	b	a	b	a	a
 next[j]	0	s 1	1			

next[1]都无脑写 0 next[2]都无脑写 1

aba??
abaaaa

模式串 T = ababaa

序号j	1	် 2	3	4	5	6
模式串	a	b	a	b	a	а
next[j]	0	s 1	1			

next[1]都无脑写 0 next[2]都无脑写 1

aba???
ababaa

模式串 T = ababaa

	序号j	1	် 2	3	4	5	6
***************************************	模式串	a	b	а	b	a	а
W.	next[j]	0	s 1	1			

next[1]都无脑写 0 next[2]都无脑写 1

aba???
ababaa

模式串 T = ababaa

序号j	1	် 2	3	4	5	6
模式串	a	b	a	b	a	a
 next[j]	0	s 1	1	2		

next[1]都无脑写 0 next[2]都无脑写 1

abab??
ababaa

模式串 T = ababaa

	序号j	1	2	3	4	5	6
†	莫式串	a	b	а	b	a	а
	next[j]	0	of 1	1	2		

next[1]都无脑写 0 next[2]都无脑写 1

abab??
abababaa

模式串 T = ababaa

	序号j	1	2	3	4	5	6
†	莫式串	a	b	а	b	a	а
	next[j]	0	of 1	1	2		

next[1]都无脑写 0 next[2]都无脑写 1

abab??
abababaa

模式串 T = ababaa

序号j	1	် 2	3	4	5	6
模式串	a	b	a	b	a	a
 next[j]	0	s 1	1	2		

next[1]都无脑写 0 next[2]都无脑写 1

abab??
abababaa

模式串 T = ababaa

序号j	1	် 2	3	4	5	6
模式串	a	b	a	b	a	a
 next[j]	0	s 1	1	2	3	

next[1]都无脑写 0 next[2]都无脑写 1

ababa?
ababaa

模式串 T = ababaa

序号j	1	ິ 2	3	4	5	6
模式串	a	b	a	b	a	a
next[j]	0	s 1	1	2	3	

next[1]都无脑写 0 next[2]都无脑写 1

ababa?
ababaa

模式串 T = ababaa

序号j	1	် 2	3	4	5	6
模式串	a	b	a	b	a	a
 next[j]	0	s 1	1	2	3	

next[1]都无脑写 0 next[2]都无脑写 1

ababa?
abababaa

模式串 T = ababaa

序号j	1	် 2	3	4	5	6
模式串	a	b	a	b	a	а
next[j]	0	s 1	1	2	3	

next[1]都无脑写 0 next[2]都无脑写 1

ababa?
abababaa

模式串 T = ababaa

序号j	1	[©] 2	3	4	5	6
模式串	a	b	a	b	a	a
next[j]	0	s 1	1	2	3	4

next[1]都无脑写 0 next[2]都无脑写 1

aaaab

序号j	1	2	3	4	5
模式串	a	a	a	a	b
next[j]			S ^C		

aaaab

序号j	1	2	3	4	5
模式串	a	a	a	a	b
next[j]	0	1	<u>2</u>	3	4

KMP算法——求next数组

根据模式串T,求 出 next 数组

T = 'abaabc'

next数组:

next[0]	next[1]	next[2]	next[3]	next[4]	next[5]	next[6]
	0	1	1,33,40	2	2	3

if (j==0) { i++; j++ }

KMP算法,最坏时间复杂度 O(m+n)

其中,求 next 数组时间复杂度 O(m) 模式匹配过程最坏时间复杂度 O(n) next[1]都无脑写 0 next[2]都无脑写 1

欢迎大家对本节视频进行评价~

学员评分: 4.2.2_2 求next数组

公众号: 王道在线

b站: 王道计算机教育

抖音: 王道计算机考研