Notes for Calculus III

Melvin Chia

November 13, 2024

Contents

1	Vector in Plane Geometry	2
2	Vector in Space	6
3	Dot Product	8
4	Projections	22
5	Direction Cosines and Direction Angles	24
6	Cross Product	26
7	Distance in Space	32
8	Lines in Space	33
9	Planes in Space	41
10	Cylindrical Coordinates	56
11	Spherical Coordinates	58
12	Vector-valued Functions	60
13	Limits of Vector-valued Functions	65
14	Derivatives and Integration of Vector-valued Functions	66
15	Velocity, Speed and Acceleration	67
16	Introduction to Partial Derivative	74

Chapter 4

Projections

Given two vectors \vec{v} and \vec{u} . Construct a vector $\vec{w_1}$ from the terminal point of \vec{u} perpendicular to \vec{v} . The vector that starts from the initial point of \vec{u} and ends at the intersection of the line and \vec{v} is called the **projection of** \vec{u} **onto** \vec{v} , which is also known as the **vector component of** \vec{u} **along** \vec{v} .

From the diagram, it is not hard to see that $\vec{u} = \vec{w_1} + \vec{w_2}$

Hence, the vector component of \vec{u} orthogonal to \vec{v} is given by $\vec{w_2} = \vec{u} - \vec{w_1}$

Let $\vec{w_1} = t\vec{v}$, for some scalar t.

Then $\vec{w_2} = \vec{u} - t\vec{v}$ is orthogonal to \vec{v} , which implies that $\vec{w_2} \cdot \vec{v} = 0$.

$$\vec{w_2} \cdot \vec{v} = (\vec{u} - t\vec{v}) \cdot \vec{v} = 0$$
$$\vec{u} \cdot \vec{v} - t\vec{v} \cdot \vec{v} = 0$$
$$t = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}$$

Therefore, The projection of \vec{u} onto \vec{v} is given by

$$proj_{\vec{v}}\vec{u} = \vec{w_1} = t\vec{v} = \left(\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}\right)\vec{v} = \left(\frac{\vec{u} \cdot \vec{v}}{\left\|\vec{v}\right\|^2}\right)\vec{v} = \left(\frac{\vec{u} \cdot \vec{v}}{\left\|\vec{v}\right\|}\right)\frac{\vec{v}}{\left\|\vec{v}\right\|}$$

where $\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|}$ is the scalar projection of \vec{u} onto \vec{v} , denoted by $comp_{\vec{v}}\vec{u}$.

Example 1. Find the projection of $\vec{u} = \langle 6, 7 \rangle$ onto $\vec{v} = \langle 1, 4 \rangle$. Hence, find the vector component of \vec{u} orthogonal to \vec{v} .

$$proj_{\vec{v}}\vec{u} = \left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2}\right) \vec{v}$$

$$= \left(\frac{6(1) + 7(4)}{1^2 + 4^2}\right) \langle 1, 4 \rangle$$

$$= \left(\frac{34}{17}\right) \langle 1, 4 \rangle$$

$$= \langle 2, 8 \rangle$$

$$\vec{w_2} = \vec{u} - \vec{w_1}$$
$$= \langle 6, 7 \rangle - \langle 2, 8 \rangle$$
$$= \langle 4, -1 \rangle$$

Example 2. Find the projection of $\vec{u} = 2i + 3j$ onto $\vec{v} = 5i + j$. Hence, find the vector component of \vec{u} orthogonal to \vec{v} .

$$proj_{\vec{v}}\vec{u} = \left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2}\right) \vec{v}$$

$$= \left(\frac{2(5) + 3(1)}{5^2 + 1^2}\right) (5i + j)$$

$$= \left(\frac{13}{26}\right) (5i + j)$$

$$= \left(\frac{5}{2}\right) i + \left(\frac{1}{2}\right) j$$

$$\begin{aligned} \vec{w_2} &= \vec{u} - \vec{w_1} \\ &= (2i + 3j) - \left(\left(\frac{5}{2} \right) i + \left(\frac{1}{2} \right) j \right) \\ &= \left(-\frac{1}{2} \right) i + \left(\frac{5}{2} \right) j \end{aligned}$$

Example 3. Find the scalar projection of the force $\vec{F} = 4i - 2j + 3k$ in the direction of the vector v = i - j + 2k.

Solution.

$$comp_{\vec{v}}\vec{F} = \frac{\vec{F} \cdot \vec{v}}{\|\vec{v}\|}$$

$$= \frac{4(1) + (-2)(-1) + 3(2)}{\sqrt{1^2 + (-1)^2 + 2^2}}$$

$$= \frac{4 + 2 + 6}{\sqrt{6}}$$

$$= \frac{12}{\sqrt{6}}$$

$$= 2\sqrt{6}$$

Notes: Selected exercises are mixed in the exercises of the previous chapters.