第二次作业——第三章条件概率与独立性

2. 设 $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{2}$, 若 A 、 B 相互独立, 求下列事件的概率 $P(\overline{A}B)$; $P(A \cup B)$; $P(A \cup \overline{B})$; $P(\overline{A} \cup B)$.

3. 设 P(A) = 0.4, $P(A \cup B) = 0.7$, 若 A = B 是相互独立的, 求 P(B).

4. 三人独立破译一密码,他们能独立译出的概率分别为 $\frac{1}{4}$, $\frac{3}{5}$, $\frac{2}{3}$, 求此密码被译出的概率.

5. 设甲、乙、丙三人同时独立地向同一目标各射击一次,命中率分别为 $\frac{1}{3}$, $\frac{1}{2}$, $\frac{2}{3}$, 求目标被命中的概率.

6. 若抛掷一枚不均匀的硬币三次,至少出现一次正面的概率为 $\frac{19}{27}$,求在一次试验中出现正面的概率.

7. 一射手对同一目标独立地进行四次射击,如果至少命中一次的概率为 $\frac{80}{81}$,求该射手的命中率.

8.	已知甲袋	中装有3	只红球2只	白球,	乙袋中装有	6只红球4	只白球,	丙袋中装有	2只红
球	8 只白球,	随机地取	(一只袋子,	再从该	炙袋中随机 均	边取一只球,	求该球是	是红球的概率	₫.

9. 发报台分别以概率 0.6 和 0.4 发出信号"*"和"-",由于通信系统受到干扰,当发出信号"*"时,收报台未必受到信号"*",而是分别以概率 0.7 和 0.3 收到信号"*"和"-",同样,当发出信号"-"时,收报台分别以概率 0.8 和 0.2 收到信号"-"和"*",求收报台收到信号"*"的概率.

10. 玻璃杯成箱出售,每箱10只.假设各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1,一顾客从欲购买的一箱中任取4只查看,若有残次品则退回,否则买下.求顾客买下该箱的概率.