TSPC

CONSTITUTION ET TRANSFORMATION DE LA MATIERE

Force des acides et des bases en solution

Activité n° 4 : Constante d'acidité et programmation

La constante d'acidité K_A ou le pK_A d'un couple acide/base permettent de classer les acides et les bases selon leur force mais aussi de déterminer :

- ◆ la composition finale d'une solution de l'acide connaissant sa concentration apportée en acide C_A;
- le diagramme de distribution du couple en fonction du pH de la solution qui le contient.

On propose d'utiliser des programmes en langage Python pour illustrer ces deux cas.

1. CALCUL DU pH D'UNE SOLUTION D'ACIDE FAIBLE

Données:

◆ Bilan de la transformation entre un acide faible et l'eau, pour un volume V de solution d'acide AH apporté à la concentration C_A.

Equation de la réaction		AH + H ₂ O		← + H ₃ O ⁺		
Etat	Avancement	n(AH)	n(eau)	n(A ⁻)	n(H₃O⁺)	
initial	x = 0	$n(AH)_i = C_A \times V$	Solvant en excès	0	≈ 0	
en cours	<i>x</i> > 0	$C_A \times V - x$	en exces	x	x	
final	$\chi_f < \chi_{max}$	$C_A \times V - x_f$		χ_f	χ_f	

• Le réactif limitant est AH et disparaitrait totalement pour l'avancement maximal $x_{max} = n(AH)_i = C_A \times V$.

• Dans l'état final,
$$[A^-]_f = [H_3O^+]_f = \frac{x_f}{V}$$
 et $[AH]_f = \frac{C_A \times V - x_f}{V} = C_A - \frac{x_f}{V} = C_A - [H_3O^+]_f$

• Le taux d'avancement final est
$$\tau = \frac{x_f}{x_{max}} = \frac{x_f}{C_A \times V} = \frac{[H_3 O^+]_f}{C_A}$$
.

1.1. Mise en équation du problème et analyse d'un programme de résolution

- a) On pose $h = [H_3O^+]_f$. Exprimer la constante d'acidité K_A du couple AH /A⁻ en fonction de C_A , C° et h puis montrer que h est solution d'une équation du second degré de la forme : a $h^2 + b h + c = 0$.
- **b)** Exprimer le discriminant Δ (delta) en fonction de K_A , C_A et C° et justifier que l'équation précédente admet deux solutions.
- **c)** Exprimer littéralement les deux solutions h_1 et h_2 de cette équation et justifier qu'une seule des solutions est acceptable dans le cas étudié.
- **d)** Coller le programme de l'annexe 1 dans repl.it puis compléter les lignes 11, 12, 13, 25 et 26 en utilisant la réponse **a** et les données utiles.
- e) Expliquer le rôle du bloc d'instruction formé par les lignes 17 à 22.

1.2. Application

A l'aide de ce programme, déterminer le pH et le taux d'avancement final de la transformation entre l'acide éthanoïque et l'eau pour des solutions d'acide de concentration apportée C_A indiquée dans le tableau suivant sachant que p K_A = 4.8 à 25°C pour le couple acide éthanoïque/ion éthanoate.

C _A (mol.L ⁻¹)	1.0x10 ⁻¹	1.0x10 ⁻²	1.0x10 ⁻³	1.0x10 ⁻⁴
τ				
рН				

2. TRACE DU DIAGRAMME DE DISTRIBUTION D'UN COUPLE ACIDE / BASE

Pour une solution de pH donné contenant le couple A/B, la part (en %) de l'acide A est définie par :

$$pA = \frac{[A]_f}{[A]_f + [B]_f} \times 100 \text{ et celle de la base conjuguée B est définie par : } pB = \frac{[B]_f}{[A]_f + [B]_f} \times 100 = 100 - pA.$$

2.1. Expression de la part de l'acide en fonction du pH de la solution

- a) Exprimer la constante d'acidité K_A du couple A/B puis montrer que $\frac{[B]_f}{[A]_f}=10^{pH-pK_A}$.
- **b)** En déduire que pA = $\frac{100}{1 + 10^{pH pK_A}}$

2.2. Analyse d'un programme de tracé du diagramme de distribution

On propose d'utiliser un programme en langage Python pour tracer le diagramme de distribution du couple A/B en solution, c'est-à-dire les courbes représentant pA et pB en fonction du pH de la solution.

Coller le programme de l'annexe 2.

- **a)** Quelles lignes permettent de remplir la liste des valeurs du pH ? Préciser la signification des instructions correspondantes.
- **b)** A l'aide de l'expression du **b**, compléter l'instruction de la ligne 15 permettant de calculer la part de l'acide A en solution pour la valeur pH[i] du pH de la solution et de l'ajouter dans la liste pA.
- **c)** Compléter l'instruction de la ligne 16 permettant de calculer la part de la base B en solution pour la valeur pH[i] du pH de la solution et de l'ajouter dans la liste pB.

2.3. Applications

- ① Tracer le diagramme du couple acide méthanoïque / ion méthanoate tel que p K_A = 3.8 à 25 °C.
- a) Retrouver par lecture graphique la valeur du pH de la solution dans lequel l'acide méthanoïque et sa base conjuguée sont présents en proportions égales. Commenter cette valeur.
- **b)** Déterminer graphiquement le domaine des valeurs de pH pour lesquelles la part de l'acide est supérieure à 99 % puis le domaine des valeurs de pH pour lesquelles la part de la base est supérieure à 99 %.
- ② Tracer le diagramme du couple ammonium NH_4^+ / ammoniac NH_3 tel que $pK_A = 9.2$ à 25 °C.
- a) Comparer l'allure du graphe obtenu avec celui du ①.
- **b)** On suppose que l'on ajoute une base B dans une solution contenant NH₄⁺ / NH₃. Evaluer graphiquement la variation du pH de la solution correspondant à une diminution de la part de l'acide de 10% (par réaction entre B et NH₄⁺) dans les cas suivants.

Part initiale de l'acide dans la solution initiale	99 %	55 %	11 %
ΔpH correspondant à une baisse de pA de 10 %			

Dans quel cas ΔpH est-elle la plus faible ? Commenter ce résultat.

Annexe 1 : Calcul du taux d'avancement final et du pH d'une solution d'acide faible

```
import os
os.environ['MPLCONFIGDIR'] = os.getcwd() + "/configs/"
#importation des fonctions racine carré sqrt(x) et logarithme décimal log10(x)
from math import sqrt, log10
pKa = float(input('Pour le couple acide/base dont pKa ='))
Ca = float(input('dans une solution où la concentration apportée en acide, en mol/L, est
Ca ='))
Ka = 10**(-pKa)
# La concentration finale en ion oxonium notée h est solution d'une équation du second
degré de la forme
                      a*h^2 + b*h + c = 0
a=
b=
c=
delta = b**2-4*a*c
h1 = (-b - sqrt(delta)) / (2*a)
h2 = (-b + sqrt(delta)) / (2*a)
if h1>0 :
  h=h1
elif h2>0:
  h=h2
else :
  print("L'équation n'a pas de solution convenable du point de vue chimique.")
#Calcul du taux d'avancement final et du pH de la solution
pH =
print("le taux d'avancement final de la transformation entre cet acide et l'eau est égal
à",'%.2e'%t)
print("et le pH de la solution est égal à",'%.2f'%pH)
```

Annexe 2 : Tracé du diagramme de distribution d'un couple A/B en fonction du pH

```
import os
os.environ['MPLCONFIGDIR'] = os.getcwd() + "/configs/"
from matplotlib import pyplot as plt
# Saisie du pKa du couple A/B
pKa = float(input('pKa du couple A/B ='))
# Définition des listes utiles
pH=[]
pA=[]
pB=[]
for i in range (140):
  pH.append(0.1*i)
  pA.append(
                     )
  pB.append(
                     )
# Affichage des courbes
plt.plot(pH,pA,"r-",label="Part de l'acide A")
plt.plot(pH,pB,"b--",label="Part de la base B")
plt.title("Diagramme de distribution d'un couple A/B")
plt.xlabel("pH de la solution")
plt.ylabel("Proportions de A et de B (en %)")
plt.legend()
plt.grid()
plt.savefig("Courbe 1")
plt.show()
```