STRUCTURED SPLITTINGS OF $\Omega SU(n)$ AND SNAITH'S CONSTRUCTION OF PERIODIC COMPLEX BORDISM

JEREMY HAHN AND ALLEN YUAN

Contents

1.	Introduction	1
2.	Filtered and Graded Ring Spectra	3
3.	The (Segal-Mitchell-Richter?) Filtration on $\Omega SU(n)$	4
4.	An \mathbb{A}_{∞} -splitting by Weiss Calculus	4
5.	An \mathbb{E}_2 -splitting in Complex Cobordism	4
6.	Obstructions to a general \mathbb{E}_2 -splitting	4
7.	Snaith's Construction of Periodic Complex Bordism	5
8.	Miscellaneous stuff here	5
References		5

1. Introduction

The complex cobordism spectrum MU has played a central role in homotopy theory ever since Quillen's 19XX arguments **CITE** connected its homotopy with the theory of one-dimensional formal group laws. As the Thom spectrum of the canonical bundle over BU, MU naturally acquires an immense amount of structure: it is an \mathbb{E}_{∞} -ring spectrum. To this day, however, much remains unknown about the full nature of this \mathbb{E}_{∞} structure. For example, almost nothing is known about the k-invariants of the spectrum of units $gl_1(MU)$ **CITE**.

As a spectrum, MU is classically constructed via the sequence of natural maps

$$MU(n) \longrightarrow \cdots$$

This suggests that perhaps the more elemental object is $\bigvee MU(n)$, the Thom spectrum of the J-homomorphism

$$\mathbf{Vect} \xrightarrow{J} \mathrm{Pic}(S)$$

that takes a vector space V to its one-point compactification $J(V) = S^{V}$. Since

$$J(V \oplus W) \simeq S^V \wedge S^W$$
,

the Thom spectrum $\bigvee MU(n)$ is naturally an \mathbb{E}_{∞} -ring spectrum. Inverting the Bott element $\beta \in \pi_2(MU(1)) \cong \pi_2(MU(1))$, one obtains the *periodic* complex cobordism spectrum

$$MUP \simeq \left(\bigvee MU(n)\right) [\beta^{-1}].$$

This periodic spectrum MUP is a minor variation on MU itself: there is a wedge decomposition $MUP \simeq \bigvee_{a \in \mathbb{Z}} \Sigma^{2a} MU$ and the inclusion $MU \to MUP$ onto the a=0 factor is an an \mathbb{E}_{∞} -ring homomorphism.

In 19XX, Victor Snaith CITE gave another presentation of periodic complex cobordism

Theorem 1.1 (Snaith). As homotopy commutative ring spectra, $MUP \simeq \Sigma_{+}^{\infty} BU[\beta^{-1}]$. More generally, there is an equivalence of homotopy commutative rings

$$\bigvee MU(n) \simeq \Sigma_+^{\infty} BU.$$

In the above, $\Sigma_{+}^{\infty}BU$ acquires an \mathbb{E}_{∞} -structure (and hence a homotopy commutative ring structure) from the fact that BU is an infinite loop space. One may think of $\Sigma_{+}^{\infty}BU$ as the group ring of the topological group BU.

The genesis of this paper was an attempt to use Snaith's theorem to study the \mathbb{E}_{∞} -ring structure on MUP. This seemed like an especially reasonable idea in light of two facts.

(1) By another theorem of Snaith, periodic K-theory KU may be constructed as

$$KU \simeq \Sigma_{+}^{\infty} \mathbb{CP}^{\infty}[\beta^{-1}].$$

This is an equivalence of \mathbb{E}_{∞} -ring spectra **CITE**.

(2) In CITE, Gepner and Snaith prove a motivic analogue of Theorem 1.1. In particular, **BLAH**. They then use the \mathbb{E}_{∞} -ring structure on **BLAH** to **define** an \mathbb{E}_{∞} -ring structure on periodic MGL.

However, as it turns out (though it is not at all obvious from the modern literature and in particular not mentioned in **GepnerSnaith**) another old theorem of Snaith **CITE** shows that our idea was entirely unreasonable.

Theorem 1.2 (Snaith). As \mathbb{E}_{∞} -rings,

$$MUP \not\simeq \Sigma_{+}^{\infty} BU[\beta^{-1}].$$

In Section 7 we refine Snaith's results in to what we consider their definitive form:

Theorem 1.3. There is an equivalence of \mathbb{E}_2 -ring spectra

$$MUP \simeq \Sigma_{\perp}^{\infty} BU[\beta^{-1}],$$

but $MUP \not\simeq \Sigma_+^{\infty} BU[\beta^{-1}]$ as \mathbb{E}_3 -ring spectra. There is an equivalence of \mathbb{A}_{∞} -ring spectra

$$\bigvee MU(n) \simeq \Sigma_{+}^{\infty}BU$$
,

but $\bigvee MU(n) \not\simeq \Sigma_{+}^{\infty} BU$ as \mathbb{E}_2 -ring spectra.

Remark 1.4. We freely use the language of ∞ -categories throughout this paper, referring to an ∞ -category simply as a category.

In Section 2 we will review the symmetric monoidal categories **Fil** and **Gr** of filtered and graded spectra, respectively. A filtered spectrum is an infinite sequence

$$X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow \cdots$$

of spectra. The tensor product

$$(X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow \cdots) \otimes (Y_0 \longrightarrow Y_1 \longrightarrow Y_2 \longrightarrow \cdots)$$

of two filtered spectra is computed as a Day convolution

$$X_0 \otimes Y_0 \longrightarrow \operatorname{colim} \left(\begin{array}{c} X_0 \wedge Y_1 \\ \uparrow \\ X_0 \wedge Y_0 \longrightarrow X_1 \wedge Y_0 \end{array} \right) \longrightarrow \operatorname{colim} \left(\begin{array}{c} X_0 \wedge Y_2 \\ \uparrow \\ X_0 \wedge Y_1 \longrightarrow X_1 \wedge Y_1 \\ \uparrow \\ X_0 \wedge Y_0 \longrightarrow X_1 \wedge Y_0 \longrightarrow X_2 \wedge Y_0 \end{array} \right) \longrightarrow \cdots.$$

A graded spectrum, on the other hand, is simply an ordered sequence (A_0, A_1, A_2, \cdots) of spectra. The tensor product is computed as

$$(A_0,A_1,A_2,\cdots)\otimes(B_0,B_1,B_2,\cdots)\simeq\left(A_0\wedge B_0,(A_1\wedge B_0)\vee(A_0\wedge B_1),\cdots,\bigvee_{i+j=n}A_i\wedge B_j,\cdots\right).$$

There is a sequence of symmetric monoidal functors

$$\mathbf{Gr} \xrightarrow{I} \mathbf{Fil} \xrightarrow{\operatorname{colim}} \operatorname{Sp},$$

where I sends the graded spectrum (A_0, A_1, A_2, \cdots) to the filtered spectrum

$$I(A_0, A_1, A_2, \cdots) = (A_0 \longrightarrow A_0 \lor A_1 \longrightarrow A_0 \lor A_1 \lor A_2 \longrightarrow \cdots).$$

Definition 1.5. We say that an \mathbb{E}_n -ring spectrum is \mathbb{E}_n -split if it is equivalent to the image of an \mathbb{E}_n -algebra in \mathbf{Gr} under the composite colim $\circ I$. Similarly, a filtered \mathbb{E}_n -algebra is \mathbb{E}_n -split if it is equivalent to the image under I of an \mathbb{E}_n -algebra in \mathbf{Gr} .

In section 5 we will show:

Theorem 1.6. The ??? filtration on $\Sigma^{\infty}_{+}\Omega SU(n)$ is \mathbb{E}_2 -split after smashing with MU.

2. FILTERED AND GRADED RING SPECTRA

Here we review a framework from [Lur15] for studying graded and filtered objects. The reader is referred to [Lur15] for a more thorough treatment and all proofs.

Let \mathcal{C} be a stable ∞ -category. Denote by $\mathbb{Z}_{\geq 0}$ the poset of non-negative integers, and by $\mathbb{Z}_{\geq 0}^{ds}$ the corresponding discrete category. The reader is warned that our numbering conventions are opposite the ones in [Lur15].

Definition 2.1. Let $\mathbf{Gr}(\mathcal{C})$ denote the functor category $\mathrm{Fun}(\mathbb{Z}^{ds}_{\geq 0}, \mathcal{C})$. We shall refer to $\mathbf{Gr}(\mathcal{C})$ as the category of graded objects in \mathcal{C} . Its objects can be thought of as sequences $X_0, X_1, X_2, \dots \in \mathcal{C}$.

Definition 2.2. -Let $\mathbf{Fil}(\mathcal{C})$ denote the functor category $\mathrm{Fun}(\mathbb{Z}_{\geq 0}, \mathcal{C})$. We shall refer to \mathbf{Fil} as the category of filtered spectra. Its objects can be thought of as sequences $Y_0 \to Y_1 \to Y_2 \to \cdots$ of spectra filtering $\mathrm{colim}_i Y_i$.

The obvious map $\mathbb{Z}^{ds}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ induces a restriction functor res : $\mathbf{Fil} \to \mathbf{Gr}$. The restriction is right adjoint to a functor $I: \mathbf{Gr} \to \mathbf{Fil}$ given by left Kan extension. The functor I can be thought of as taking a graded spectrum X_0, X_1, X_2, \cdots to the filtered spectrum $X_0 \to X_0 \oplus X_1 \to X_0 \oplus X_1 \oplus X_2 \to \cdots$. There is also an associated graded functor $\mathrm{gr}: \mathrm{Fil} \to \mathrm{Gr}$ such that the composite $\mathrm{gr} \circ I: \mathrm{Gr} \to \mathrm{Gr}$ is an equivalence.

The categories **Gr** and **Fil** are given symmetric monoidal structures via the Day convolution; we denote the operation in both cases by \otimes . The unit \mathbb{S}^{gr} of \otimes in graded spectra is S^0 in degree 0 and * otherwise; the unit \mathbb{S}^{fil} in filtered spectra is $I\mathbb{S}^{gr}$.

The functors I and gr can be given symmetric monoidal structures such that the composite $\operatorname{gr} \circ I : \operatorname{\mathbf{Gr}} \to \operatorname{\mathbf{Gr}}$ is a symmetric monoidal equivalence. It follows in particular that they extend to functors on between the categories of \mathbb{E}_n algebras in $\operatorname{\mathbf{Gr}}$ and $\operatorname{\mathbf{Fil}}$. Thus, given an \mathbb{E}_n algebra Y in filtered spectra, we obtain a canonical \mathbb{E}_n structure on its associated graded $\operatorname{gr}(Y)$. Conversely, given $X \in \operatorname{Alg}_{\mathbb{E}_n}(\operatorname{\mathbf{Fil}})$

Definition 2.3. An object $X \in Alg_{\mathbb{E}_n}(\mathbf{Fil})$ is called \mathbb{E}_n -split if it is in the essential image of I.

Given an \mathbb{E}_n -split filtered spectrum X, we can recover the underlying graded spectrum by taking the associated graded.

3. The (Segal-Mitchell-Richter?) Filtration on $\Omega SU(n)$

I believe Mitchell shows in [Mit86] that the filtration is filtered \mathbb{A}_{∞} . We need to check this.

Conjecture 3.1. The filtration is \mathbb{E}_2 .

I guess now we know this is just true. We should probably thank Jacob for bringing to our attention that this conjecture of Mahowald is actually well-known by geometric representation theorists.

4. An \mathbb{A}_{∞} -splitting by Weiss Calculus

In this section, we extend the methods of [Aro01] to produce \mathbb{A}_{∞} stable splittings of Stiefel manifolds.

- 4.1. Weiss Calculus. Let \mathcal{J} be the ∞ -category which is the nerve of the topological category whose objects are finite dimensional complex vector spaces equipped with a Hermitian inner product and whose morphisms are spaces of linear isometries.
- 4.2. **General splitting machinery.** Let [n] denote the linearly ordered set of integers $0 \le i \le n$. Define $\mathbf{Fil}_n = \mathrm{Fun}([n], \mathrm{Sp}^{\mathcal{J}})$ and $\mathbf{Cofil}_n = \mathrm{Fun}([n]^{\mathrm{op}}, \mathrm{Sp}^{\mathcal{J}})$. These categories admit functors to $\mathrm{Sp}^{\mathcal{J}}$ by taking colimit and limit, respectively. Let $\mathcal{C}_n = \mathbf{Fil}_n \times_{\mathrm{Sp}^{\mathcal{J}}} \mathbf{Cofil}_n$. Finally, let $\mathbf{Gr}_n = \mathrm{Fun}([n]^{\mathrm{ds}}, \mathrm{Sp}^{\mathcal{J}})$ where $[n]^{\mathrm{ds}}$ denotes the underlying discrete category. We have the following lemma:

Lemma 4.1. For all integers n > 0, there is a fully faithful functor $i_n : \mathbf{Gr}_{n+1} \to \mathcal{C}_n$.

Proof. An element of C_n is given by a sequence of maps The proof is by induction.

We may then take inverse limits to get a category $\mathcal{C}_{\infty} = \mathbf{Fil}(\mathrm{Sp}^{\mathcal{J}}) \times_{\mathrm{Sp}^{\mathcal{J}}} \mathbf{Cofil}(\mathrm{Sp}^{\mathcal{J}})$ and a functor $i : \mathbf{Gr} \to \mathcal{C}_{\infty}$.

Corollary 4.1.1. The functor i is fully faithful.

Proof.

at the end, restrict connectivity so that it's monoidal

5. An \mathbb{E}_2 -splitting in Complex Cobordism

Let R denote any \mathbb{E}_2 -ring spectrum with even-concentrated homotopy groups. I claim that any \mathbb{A}_{∞} -morphism $\Omega SU(n) \to R$ lifts to an \mathbb{E}_2 -morphism.

The argument is inspired by [CM15]

Proof. The obstructions live in $H_*(\Omega SU(n); \pi_{*+1}(R))$, and no matter the value of $\pi_{*+1}(R)$ this is 0.

Corollary 5.0.2. If R is the relevant split MU- \mathbb{E}_2 -algebra, this yields an MU- \mathbb{E}_2 -algebra equivalence $\Omega SU(n) \wedge MU \to R$ by adjunction from the \mathbb{E}_2 -map $\Omega SU(n) \to R$.

6. Obstructions to a general \mathbb{E}_2 -splitting

Suppose there is a map $\Sigma_+^{\infty}\Omega SU(n) \to \Sigma_+^{\infty}\mathbb{CP}^{n-1}$. This is adjoint to a double loop map $\Omega SU(n) \to GL_1(\Sigma_+^{\infty}\mathbb{CP}^{n-1})$ which lands in the component $SL_1(\Sigma_+^{\infty}\mathbb{CP}^{n-1}) \simeq \Omega^2 \Sigma^2 \mathbb{CP}^{n-1}$. BLAH BLAH

7. Snaith's Construction of Periodic Complex Bordism

A classical theorem of Snaith [Sna81] gives an equivalence of homotopy commutative ring spectra

$$\Sigma^{\infty}_{+}BU[\beta^{-1}] \simeq MUP.$$

The equivalence arises from considering the total MU-Chern class map $BU \to GL_1(MUP)$. It is known from [Sna77] that the total Chern class in integral homology is not an infinite loop map. It follows from the existence of an \mathbb{E}_{∞} map $MUP \to H\mathbb{Z}P$ from periodic complex bordism to periodic integral homology that Snaith's equivalence is not an equivalence of \mathbb{E}_{∞} ring spectra. The following theorem refines this observation:

Theorem 7.1. The equivalence $\Sigma_{+}^{\infty}BU[\beta^{-1}] \simeq MUP$ is \mathbb{E}_2 but not \mathbb{E}_3 .

Proof. Proof goes here \Box

Comment now about GepnerSnaith. We should cite at some point here or the introduction all of [Sna77], [GS09], and the Snaith book with the original splitting.

8. Miscellaneous stuff here

It would be nice to at some point deal with showing the associated graded E_2 structure of BU is the thom spectrum VMU(n). I've directly pasted in some writing from a previous argument I claimed, but it definitely uses that $\coprod BU(n)$ is an E_2 algebra over $\mathbb{Z}_{\geq 0}$ which I never got straight an actual proof of.

Proposition 8.1. The associated graded of $\Sigma^{\infty}_{+}BU$ is E_2 equivalent to the Thom spectrum $\bigvee MU(n)$.

Proof. Let R = BU with its natural filtration, and let $R^{\oplus} = \coprod BU(n)$ with its natural filtration. Let M be the (E_{∞}) filtered spectrum which is MU(n) in degree n, and all maps are 0. In other words, $\bigvee MU(n)$ with its natural filtration is I(res(M)).

We begin with a filtered E_{∞} map $z: R^{\oplus} \to I(res(M))$ coming from the zero section. Then, R^{\oplus} comes with the structure of an E_2 algebra over $\mathbb{Z}_{\geq 0}^{fil}$. In fact, I(res(M)) has a trivial structure as an E_{∞} -algebra over $\mathbb{Z}_{\geq 0}^{fil}$ via the augmentation $\mathbb{Z}_{\geq 0}^{fil} \to S^{0,fil} \to I(res(M))$. We may then tensor z along the augmentation to get a map of E_2 filtered spectra $z': R \to I(res(M))$.

There is a canonical equivalence $I(res(M)) \otimes \mathbb{A} \simeq M$ because M is in the image of $\mathbb{A} \otimes I(-)$ (that is, all the maps in the filtration of M were zero). As such, M acquires a canonical structure as an \mathbb{A} algebra such that the map $M \otimes \mathbb{A} \to M$ is a map of E_2 rings (in fact I think it's E_{∞} ?).

Finally, we observe that we may tensor z' with \mathbb{A} and compose with the multiplication map to get an E_2 map $R \otimes A \to M \otimes A \to M$ which is the right thing up to homotopy, so it's an equivalence.

What is $\Sigma_{+}^{\infty}\Omega SU(n)[\beta^{-1}]$, by the way? Is it related to a periodic version of the X(n)-filtration of MU??

References

- [Aro01] Greg Arone, The Mitchell-Richter filtration of loops on Stiefel manifolds stably splits, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1207–1211. MR 1814154
- [CM15] Steven Greg Chadwick and Michael A. Mandell, E_n genera, Geom. Topol. 19 (2015), no. 6, 3193–3232. MR 3447102
- [GS09] David Gepner and Victor Snaith, On the motivic spectra representing algebraic cobordism and algebraic K-theory, Doc. Math. 14 (2009), 359–396. MR 2540697

- [Lur15] Jacob Lurie, Rotation invariance in algebraic k-theory, Available at http://www.math.harvard.edu/lurie/ (2015).
- [Mit86] Stephen A. Mitchell, A filtration of the loops on SU(n) by Schubert varieties, Math. Z. 193 (1986), no. 3, 347–362. MR 862881
- [Sna77] Victor Snaith, The total Chern and Stiefel-Whitney classes are not infinite loop maps, Illinois J. Math. 21 (1977), no. 2, 300–304. MR 0433446
- [Sna81] _____, Localized stable homotopy of some classifying spaces, Math. Proc. Camb. Phil. Soc. 89 (1981), no. 2, 325–330. MR 0600247