MATH 8090: Stationary Processes: Properties, Mean, and Covariance Functions

Whitney Huang, Clemson University

9/2-9/4/2025

Contents

Examples of i.i.d. Noise
Examples realizations of white noise processes
MA(1) processes
AR(1) processes
Random walk
Gaussian process
Different covaraince functions (kernels)
Generate one sample from each Gaussian Process with different kernels

Examples of i.i.d. Noise

Examples realizations of white noise processes

If Z_t is a white noise process, then its mean and variance are constants and uncorrelated in time Note: here we do not require the sequence follow the same distribution.

```
T = 100
t <- 1:T
WN1 <- rnorm(n = T, mean = 2, sd = 2)

par(las = 1, mgp = c(2, 0.5, 0), mar = c(3.6, 3.6, 0.8, 0.6))
plot(t, WN1, type = "l", xlab = "Time", ylab = "i.i.d. N(2, 4) noise")
abline(h = 2, col = "gray")</pre>
```



```
acf(WN1)
points(0:20, c(1, rep(0, 20)), pch = 16, col = "blue")
```



```
WN2 <- rchisq(n = T, df = 2)
plot(t, WN2, type = "l", xlab = "Time", ylab = expression(paste("i.i.d. ", chi[2], " noise")))
abline(h = 2, col = "gray")</pre>
```



```
acf(WN2)
points(0:20, c(1, rep(0, 20)), pch = 16, col = "blue")
```



```
WN3 <- c(WN1, WN2)[sample(1:200)]
plot(1:200, WN3, type = "1", xlab = "Time", ylab = expression(paste("White noise")))
abline(h = 2, col = "gray")</pre>
```



```
acf(WN3)
points(0:23, c(1, rep(0, 23)), pch = 16, col = "blue")
```


MA(1) processes

$$\eta_t = Z_t + \theta Z_{t-1},$$

where $Z \sim WN(0, \sigma^2)$.


```
##another way to simulate MA(1)
MA1 <- arima.sim(n = 100, list(ma = c(0.5)))
plot(MA1)
acf(MA1)</pre>
```


AR(1) processes

$$\eta_t = \phi \eta_{t-1} + Z_t,$$

where $|\rho| < 1$ is a constant and η_s and Z_t are uncorrelated for all $s < t \Rightarrow$ future noise is uncorrelated with the current value.

```
phi <- c(0.25, 0.9, -0.5)

par(las = 1, mgp = c(2, 0.5, 0), mar = c(3.6, 3.6, 0.8, 0.6), mfrow = c(2, 1))
for (i in 1:3){
   AR1 <- arima.sim(n = 100, list(ar = c(phi[i])))
   plot(t, AR1, type = "l", xlab = "Time",
        ylab = paste("AR(1), rho = ", phi[i]))
   abline(h = 0, col = "gray")
   acf(AR1)
   points(0:20, phi[i]^(0:20), pch = 16, col = "blue")
}</pre>
```


Random walk

$$\eta_t = \sum_{s=1}^t Z_s.$$

Gaussian process

Different covaraince functions (kernels)

Generate one sample from each Gaussian Process with different kernels

```
Sigma_exp <- cov.exp(rdist(xg), c(1, 0.75))
Sigma_doubleExp <- cov.doubleExp(rdist(xg), c(1, 1))
Sigma_Matern <- cov.Matern(rdist(xg), c(1, 0.4, 1.5))
library(MASS)
set.seed(123)
sim_exp_1d <- mvrnorm(n = 1, rep(0, 501), Sigma_exp)
sim_doubleExp_1d <- mvrnorm(n = 1, rep(0, 501), Sigma_doubleExp)
sim_Matern_1d <- mvrnorm(n = 1, rep(0, 501), Sigma_Matern)

plot(xg, sim_exp_1d, type = "l", ylim = range(sim_exp_1d, sim_doubleExp_1d, sim_Matern_1d), ylab = "y", las = 1)
lines(xg, sim_doubleExp_1d, col = "red")
lines(xg, sim_doubleExp_1d, col = "blue")
legend("topleft", legend = c("Exp", "Gau", "Matern 3/2"), col = c("black", "red", "blue"), lty = 1, bty = "n")</pre>
```

