Report

Pietro Ventrucci, Luca Carabini June 2023

Indice

1	Intr	oduzione	2
2	Sottosistemi		
	2.1	Water Level Monitoring subsystem	3
		2.1.1 Macchina a Stati	3
	2.2	River Monitoring Service	
		2.2.1 Macchina a Stati	4
	2.3	Water Channel Controller	4
		2.3.1 Macchina a Stati	5
	2.4	River Monitoring Dashboard	5
	2.5	Video dimostrazione	5

Capitolo 1

Introduzione

Il sistema realizzato ha il compito di controllare i livelli di acqua in un fiume, e agire sull'apertura di una valvola in base al livello del fiume. Si vuole implementare anche la possibilità di agire manualmente sull'apertura della valvola, anche da remoto attraverso una Dashboard.

Capitolo 2

Sottosistemi

Il sistema è composto da 4 sottosistemi.

2.1 Water Level Monitoring subsystem

Questo sottosistema ha il compito di monitorare il livello di acqua del fiume, e di comunicarlo al River Monitoring Service subsystem.

2.1.1 Macchina a Stati

La FSM è formata da due stati:

- Monitoring: il quale esegue il controllo del livello dell'acqua con una certa frequenza e poi invia i dati via mqtt al River Monitoring Service
- Connecting : si pasa in questo stato quando l'ESP non è connesso a Internet, ed esegue la riconnessione fino a quando non riesce a connettersi alla rete

2.2 River Monitoring Service

Questo sottosistema riceve il livello dell'acqua via MQTT dall'ESP. Riceve anche l'apertura della valvola e lo stato di gestione della valvola via Seriale da Arduino.

Inoltre ha il compito di gestire l'apertura della valvola, a seconda del livello dell'acqua.

Può anche cambiare l'apertura della valvola nel caso l'operatore la cambi nella dashboard

2.2.1 Macchina a Stati

La FSM è formata da 5 stati uno per ogni livello di allerta:

- Normal: Lo stato nel quale si entra se il livello dell'acqua è compreso tra WL1 e WL2. Quando si passa in questo stato si setta la frequenza di aggiornamento a F1
- ATL: sta per ALARM-TOO-LOW, si passa in questo stato quando il livello dell'acqua è minore di WL1. Quando si passa in questo stato si setta la frequenza di aggiornamento a F1
- PATH : sta per PRE-ALARM-TOO-HIGH , si passa in questo stato quando il livello dell'acqua è compreso tra WL2 e WL3. Quando si passa in questo stato si setta la frequenza di aggiornamento a F2
- ATH: sta per ALARM-TOO-HIGH, si passa in questo stato quando il livello dell'acqua è compreso tra WL3 e WL4. Quando si passa in questo stato si setta la frequenza di aggiornamento a F2
- ATHC: sta per ALARM-TOO-HIGH-CRITIC, si passa in questo stato quando il livello dell'acqua è maggiore di WL4. Quando si passa in questo stato si setta la frequenza di aggiornamento a F2

Quando si entra in uno stato si invia la nuova apretura della valvola al **Water Channel Controller**. Nel diagramma non sono state inserite tutte le frecce per motivi di spazio e per mancanza di disponibilità di frecce. Comunque ogni stato è collegato a tutti gli altri

2.3 Water Channel Controller

Questo sottosistema si occupa di aprire e chiudere la valvola. Dispone di due modalità:

- Automatica : La valvola viene aperta e chiusa a seconda dei valori inviati dal River Monitoring Service, in modo automatico
- Manuale: L'apertura della valvola viene modificata da un potenziometro, che verrà gestito da un operatore

2.3.1 Macchina a Stati

La FSM ha due stati:

- Automatic : controlla periodicamente il livello inviato nella seriale e cambia l'apertura della valvola di conseguenza
- Manuale : con la pressione di un bottone si passa a questo stato, il quale controlla periodicamente il potenziometro e cambia l'apertura della valvola di conseguenza

2.4 River Monitoring Dashboard

Questo sottosistema ha il compito principale di mostrare vari dati sullo stato del fiume, in particolare la percentuale di apertura della valvola, lo stato del sistema e un grafico sul livello del fiume. Inoltre attraverso la Dashboard è possibile cambiare il livello di apretura della valvola da remoto. Per questo sottosistema non è presente una FSM

2.5 Video dimostrazione

https://www.youtube.com/watch?v=PuPYf8sZlAo