3.5 The Fundamental Theorem of Arithmetic
This theorem says that the primes are the multiplicative building blocks of the integers.
$ex: 10 = 2.5, 60 = 2.2.3.5 = 2^2.3.5$
Lemma 8.4: Let $a,b \in \mathbb{Z}^+$ and $g(d(a,b) = 1$. Then, $a \mid bc => a \mid c$.
Proof: Since gcd(a,b)=1, 7 m,n & z s.t.
ma+nb=1. $mac+nbc=c$
Now, a (a and a lbc, so a l (mac+nbc) -: a (c.
Lemma 3.5: Let p be a prime and $a_1, a_2, \dots, a_n \in \mathbb{Z}^+$. Then, $p(a_1, a_2, \dots, a_n) = p(a_i, a_2, \dots, a_n) = p(a_i, a_2, \dots, a_n)$
Proof: We use induction on n. When n=1, the the result is trivially true.
Assume, $P a_1a_2\cdots a_{k-1} \Rightarrow p a_i$ for some i. Need to show that
$p a_1 a_2 - a_k \implies p a_i \text{ for some } c.$
Suppose pla,a2ak — ()

We know, gcd (p, a, a, -.. a,) = 1 or p If gcd (p, a, a, -.. ak-1)=1, then by Lemma 3 4, and (1), plak. It ged (p, a, a2, ..., ak-1) = p, then pla, a, ... ak-1 and then by the induction hypothesis, plai tor some i. Hence the lemma. Theorem 3.15 (Fundamental Theorem of Arithmetic): Let nezt, n>1. Then, n is a prime or can be written uniquely as a product of primes Proof: We use induction on n. When n=2, the theorem is true since 2 is a prime. Suppose the theorem is true for all integers 2,34, -.., k-1. Consider the integer k. If k is prime, then we're done! If k is not a prime, then it is composite. Then, k=ab with 1<a,b< k. Then, by the induction hypothesis, each of a and b is a prime or a product of primes.

Then, ab is a product of primes.
· k is a product of primes.
Hence, by mathematical induction, ever integer
greater than I is a prime or a product
of primes.
Mext, we prove the uniqueness.
We use the method of contradiction.
Suppose the product is not unique.
Then, 3 2 different representations of n.
Let them be
$n = P_1 P_2 \cdots P_m$ and $n = 2, 2, \cdots 2n$
where pi's and qi's are primes with
$p_1 \le p_2 \le \cdots \le p_m$ and $q_1 \le q_2 \le \cdots \le q_n$.
Suppose we remove all common primes from ()
to get
$n = P_i, P_i \cdots P_{iu} = q_i, q_i \cdots q_j \qquad (2)$
Now, each p; should be different from all
9; because we assumed that the two repre-
Now, each pi should be different from all q; because we assumed that the two representations are different.
But, 2 implies that Pi, 9 for some s.

Si	ince p	e, and ; = 9; ,	q co	nre p ntrad	rimes, liction	we.	should
Ha f	ence, ollowe	the un	iquene	255 0	and A	he the	corem
<u>ex</u> ! 120 All	= 23. factor	3.5 5 of	120	can t	be fou	ind.	
2° = 2° = 2° =	4 2	3 2·3 = 6 2°·3 = 1° 2³·3 = 2	2 2	3.6 = 3.6 = 1	20	3.5 : 2.3.5 2.3.5 3.3.5	= 30 = 60
We can the gcd							
<u>ex</u> !	24 =	2 ³ ·3					
In gen	igcd eral	if a=				d	

where ai, &i >0, then $g(d(a,b) = p^{min(\alpha,\beta)} p^{min(\alpha_2,\beta_2)} p^{min(\alpha_1,\xi_1)}$ ex: 24 = 23.3.5° g(d(24,60) = 2 -3 -5 -5 -12Definition? The least common multiple of two nonzero integers a and b is the smallest positive integer that is divisible by both a and b. It is denoted by lcm(a,b) Thus, c=lcm(a,b) if and only if ale, ble and ale and ble => c \le e. ex: lcm (4,6) = 12 lcm (7,8) = 56 1cm (a, a) = a

We can	use the	fundamental	theorem
of arit	hmetre to	fundamental find lcm	as follows.
Let a	$= p_1^{\alpha_1} p_2^{\alpha_2} - \cdots$	pan and	
		. p &n where	$\alpha_i, \beta_i \geq 0$
and p	is are prin	mes.	
Then,	(cm (a,b)=	$max(\alpha_1, \beta_1)$ $max(\alpha_1, \beta_2)$	(a, b) (a, b)
	$= 2 \cdot 3 \cdot 5$ $= 2^2 \cdot 3^2 \cdot 5$		
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	= 900
There is First we	a relationst	sip between u	gcd and lcm.
Lemma 2	3.6: For 290	eR, y)+min(x,y)	- x +4
Proof: 1	Cf x≥4,	min(x,y) = x +	
2	f z <y,< td=""><td>min(x,y) = y</td><td></td></y,<>	min(x,y) = y	

Theorem 3.16: Let a, b \(Z^{\frac{1}{2}} \). Then,
$gcd(a,b)\cdot lcm(a,b)=ab$
Proof: Let $a = p_i^{\alpha_i} - p_i^{\alpha_n}$ and
$b = p_1^{\beta_1} \cdots p_n^{\beta_n}$
Then, we saw that
$g(d(a,b)) = p_i^{min(x_i,\beta_i)} p_n^{min(\alpha_n,\beta_n)}$
and $lcm(a,b) = p^{max(a, B)} max(\alpha, Bn)$
Then, $g(d(a,b) \cdot lcm(a,b) =$
$P_{n}^{min(\alpha_{i},\beta_{i})+max(\alpha_{i},\beta_{i})} \qquad \qquad min(\alpha_{n},\beta_{n})+max(\alpha_{n},\beta_{n})$
$= p_{1}^{\alpha_{1} + \beta_{1}} \dots p_{n}^{\alpha_{n} + \beta_{n}}$
$= \left(P_1^{\alpha_1} \dots P_n^{\alpha_n} \right) \left(P_1^{\beta_1} \dots P_n^{\beta_n} \right)$
=ab
Theorem 3.17: There are Infinitely many primes of the form 411+3, where next.
TITE YOUR TITE, WILL TO THE

Proof: See page 118 of the textbook. Use the following lemma. Lemma 3.8: The product of two integers of the form 4n+1 has the same form. Proof: a = 4n+1, b = 4m+1 => ab = 16mn + 4n + 4m + 1= 4 (4mn+n+m)+1 = 4 K+1 where k=4mn+n+meZt. We know that JZ is irrational. So are J3, 15, \$\sqrt{2}, \$\sqrt{10} etc. We can prove a general result Theorem 3.18: Let XER be a root of the polyn--omial equation $\chi^{n} + C_{n-1}\chi^{n-1} + \cdots + C_{1}\chi + C_{0} = 0$ where Citz for all i. Then, & is either an integer or an irrational number. Proof: Suppose & is not an irrational number. We'll show that & is an integer. Since & is not irrational, it is rational. Then, $\alpha = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$, b > 0. Since x is a root of the given equation $\left(\frac{a}{b}\right)^{n} + C_{n-1}\left(\frac{a}{b}\right)^{n-1} + \cdots + C_{i}\left(\frac{a}{b}\right) + C_{0} = 0.$ Multiply by b" to get $a^{n} + c_{n} = a^{n-1}b + \cdots + c_{n}ab^{n-1} + c_{0}b^{n} = 0$ Rearrange the terms to get $a^n = b \left(-c_{n-1} a^{n-1} + \cdots + c_n a b^{n-2} + c_0 b^{n-1} \right)$ -. b/a" Suppose b = 1. Then, b>1 (: b \ Z^{\frac{1}{2}}) Then, by the fundamental theorem of arithmetic, b has a prime factor p. Then, plan. Now, by Lemma 3.5 with $a_1 = a_2 = \dots = a_n = a$, we get $p \mid a$.

	Theref	ore, pis	a prime b.	factor	of
	This is	a conti	radiction a and b	because b withou	we can
	TACTOR	G .			
	There	fore, b=1.	b) is in	possible,	
	- , Q	- 7 /3	an integi	Ur.	
	- f	10	<i>L</i> a	· / .	, , ,
$ex: \sqrt{2}$	$\chi^2 - 2$	ational =0 and	because no intege	r soluti	noot ons
en	îst.				
Exercise	2: Why	doesn't	2 2 = 0	have in	rteger
	solu-	Atons?	x ² 2=0		