

Klee's Trigonometry Problem

Author(s): PL. Kannappan

Source: *The American Mathematical Monthly*, Vol. 110, No. 10 (Dec., 2003), pp. 940–944

Published by: Mathematical Association of America

Stable URL: <http://www.jstor.org/stable/3647966>

Accessed: 23-01-2016 14:22 UTC

REFERENCES

Linked references are available on JSTOR for this article:

http://www.jstor.org/stable/3647966?seq=1&cid=pdf-reference#references_tab_contents

You may need to log in to JSTOR to access the linked references.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at <http://www.jstor.org/page/info/about/policies/terms.jsp>

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to *The American Mathematical Monthly*.

<http://www.jstor.org>

Note first that \mathcal{F} lies in $C(K)$: it is clear from the definition of \mathcal{F} that every element of \mathcal{F} is continuous. Note as well that \mathcal{F} is contained in $\prod_{x \in K} \overline{D}(0, r(x))$, where $\overline{D}(0, r(x))$ is the closed disk in the complex plane with center 0 and radius $r(x)$. Let \mathcal{F}_1 denote \mathcal{F} with the topology of uniform convergence, and let \mathcal{F}_2 denote \mathcal{F} with the topology it inherits as a subspace of $\prod_{x \in K} \overline{D}(0, r(x))$. We will show that \mathcal{F}_2 is a closed subspace of $\prod_{x \in K} \overline{D}(0, r(x))$ and that the identity map from \mathcal{F}_2 to \mathcal{F}_1 is continuous. It will then follow from the Tychonoff theorem that \mathcal{F}_2 (and hence \mathcal{F}_1) is compact.

The fact that \mathcal{F}_2 is a closed subset of $\prod_{x \in K} \overline{D}(0, r(x))$ is clear: if $\langle f_\alpha \rangle_{\alpha \in A}$ is a net in \mathcal{F}_2 converging to f in $\prod_{x \in K} \overline{D}(0, r(x))$ then $f_\alpha(x) \rightarrow f(x)$ for each x in K , so f belongs to \mathcal{F}_2 .

The proof that the identity mapping from \mathcal{F}_2 to \mathcal{F}_1 is continuous is proved as in the traditional proof of the Ascoli-Arzelà Theorem: Suppose that $\epsilon > 0$. The fact that K is compact shows that there exist finitely many points x_1, \dots, x_n of K such that $K = \bigcup_{j=1}^n \omega(x_j, \epsilon)$. Now if $\langle f_\alpha \rangle_{\alpha \in A}$ is a net converging to f in \mathcal{F}_2 then there exists α_0 in A such that $|f_\alpha(x_j) - f(x_j)| < \epsilon$ for $j = 1, \dots, n$ whenever $\alpha \geq \alpha_0$. Now for any such α and any x in K we may choose j in $\{1, \dots, n\}$ such that x belongs to $\omega(x_j, \epsilon)$. It follows that

$$|f_\alpha(x) - f(x)| \leq |f_\alpha(x) - f_\alpha(x_j)| + |f_\alpha(x_j) - f(x_j)| + |f(x_j) - f(x)| < 3\epsilon.$$

We conclude that the supremum of $|f_\alpha - f|$ is no larger than 3ϵ whenever $\alpha \geq \alpha_0$. ■

*Department of Mathematics, Oklahoma State University, Stillwater OK, 74078
ullrich@math.okstate.edu*

Klee's Trigonometry Problem

PL. Kannappan

1. INTRODUCTION. V. L. Klee posed the following problem in this MONTHLY [6].

Problem. Suppose that $f, g : \mathbb{R} \rightarrow \mathbb{R}$ satisfy the functional equation

$$g(x - y) = g(x)g(y) + f(x)f(y) \quad (1)$$

for x and y in \mathbb{R} , and that $f(t) = 1$ and $g(t) = 0$ for some $t \neq 0$. Prove that f and g satisfy

$$g(x + y) = g(x)g(y) - f(x)f(y) \quad (2)$$

and

$$f(x \pm y) = f(x)g(y) \pm g(x)f(y) \quad (3)$$

for all real x and y .

A solution by T. S. Chihara appeared in this MONTHLY [3], but it unfortunately had a gap. We first determine the general solution of (1) without any additional conditions and obtain (2) and (3) in the process. We then give a simple and direct solution to Klee's problem with the added conditions.

Remark. Compare (1)–(3) with the familiar trigonometric formulas

$$\cos(x \mp y) = \cos x \cos y \pm \sin x \sin y,$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y.$$

2. SOLUTION OF (1) ON GROUPS. Let $f, g : G \rightarrow \mathbb{C}$ (where G is an Abelian, two divisible group, and \mathbb{C} denotes the field of complex numbers) satisfy (1) for x and y in G . (A group G is *two divisible* if each x in G can be expressed in the form $x = y + z = 2y$ for some (unique) y in G . Thus $x/2$ is meaningful for x in G .) We determine the general solution of (1) (see [1], [2], [4], [5], [7], [9], [10], and [11]).

First we consider constant solutions of (1). If $g \equiv c$, a constant, and $f \not\equiv 0$, then (1) gives that $f \equiv d$, a constant for which $d^2 + c^2 = c$, but this won't satisfy (2). If $f \equiv d$, a constant, then (1) becomes

$$g(x - y) = g(x)g(y) + d^2 = g(y - x).$$

In particular, g is even (i.e., $g(-x) = g(x)$), so $g(x - y) = g(x + y)$ (replace y by $-y$ in the foregoing identity and appeal to the evenness of g). Then with $x = (u + v)/2$ and $y = (u - v)/2$ for any u and v in G , we have $g(v) = g(u)$, that is, g is a constant (here the two divisibility of G is used). Identity (2) won't hold for such solutions unless $d = 0 = c$.

We henceforth consider only the nonconstant (nontrivial) solutions f and g of (1). Interchange of x and y in (1) yields

$$g(x - y) = g(y - x),$$

whence g is even.

Replace y by $-y$ in (1) to get

$$g(x + y) = g(x)g(y) + f(x)f(-y) \tag{4}$$

for x and y in G . We show that f is odd (i.e., $f(-x) = -f(x)$). Change x to $-x$ in (1) to obtain

$$g(x + y) = g(x)g(y) + f(-x)f(y) \tag{5}$$

for x and y in G . Thus

$$f(x)f(-y) = f(-x)f(y).$$

Since $f \not\equiv 0$,

$$f(x) = kf(-x) = k^2 f(x)$$

for all x in G , where k is a constant such that $k^2 = 1$.

If $k = 1$, then f is even and (1) and (4) imply that $g(x - y) = g(x + y)$ and then g is constant (here again the two divisibility of G is used), contrary to assumption.

Hence $k = -1$, f is odd, and (4) becomes

$$g(x + y) = g(x)g(y) - f(x)f(y),$$

which is (2), and g satisfies the *cosine equation* (6) (add (1) and (2)):

$$g(x + y) + g(x - y) = 2g(x)g(y). \quad (6)$$

Further, applying associativity and (2), we get

$$g(x + y + z) = [g(x)g(y) - f(x)f(y)]g(z) - f(x + y)f(z)$$

and

$$g(x + y + z) = g(x)[g(y)g(z) - f(y)f(z)] - f(x)f(y + z),$$

that is,

$$[f(x + y) - f(y)g(x)]f(z) = [f(y + z) - f(y)g(z)]f(x)$$

or

$$f(x + y) - f(y)g(x) = h(y)f(x), \quad (7)$$

where

$$h(y) = \frac{1}{f(z_0)}[f(y + z_0) - f(y)g(z_0)]$$

with $f(z_0) \neq 0$.

Change x to $-x$ in (7) and use the fact that f is odd and g even to conclude that

$$f(x - y) = -f(y)g(x) + f(x)h(y), \quad (8)$$

that is (add (7) and (8)),

$$f(x + y) + f(x - y) = 2f(x)h(y) \quad (9)$$

for x and y in G . Interchange x and y in (9) to see that

$$f(x + y) - f(x - y) = 2f(y)h(x) \quad (10)$$

for x and y in G . Addition of (9) and (10) yields

$$f(x + y) = f(x)h(y) + f(y)h(x). \quad (11)$$

Since $f \not\equiv 0$, (7) and (11) imply that $h(x) = g(x)$ for all x in G . Hence (7) becomes

$$f(x + y) = f(x)g(y) + f(y)g(x) \quad (12)$$

for x and y in G , which is one part of (3). Replace y by $-y$ in (12) to obtain

$$f(x - y) = f(x)g(y) - f(y)g(x), \quad (13)$$

which is the other part of (3).

Now we are in a position to determine f and g . Since g satisfies the cosine equation (6), we must have

$$g(x) = \frac{E(x) + E^*(x)}{2} \quad (14)$$

for x in G , where $E : G \rightarrow \mathbb{C}^*$ (the nonzero complex numbers) is a homomorphism satisfying the exponential equation $E(x + y) = E(x)E(y)$ and $E^* = 1/E$ [4].

Inserting the representation (14) for g into (1) results, after a straightforward computation, in

$$f(x)f(y) = \frac{E(x) - E^*(x)}{2} \cdot \frac{E(y) - E^*(y)}{2}$$

for x and y in G . Since $f \not\equiv 0$,

$$f(x) = b(E(x) - E^*(x)) \quad (15)$$

for x in G , with $b^2 = 1/4$. Thus we have proved the following theorem:

Theorem 1. Suppose that $f, g : G \rightarrow \mathbb{C}$ are nonconstant solutions of (1), where G is a two divisible Abelian group. Then f and g satisfy (2) and (3). Moreover, these functions are given by (14) and (15) for some homomorphism $E : G \rightarrow \mathbb{C}^*$.

Theorem 1 has the following corollary (see [4], [1], and [7]):

Corollary 1. Let $f, g : \mathbb{R} \rightarrow \mathbb{C}$ be nonconstant solutions of (1) with g continuous. Then f is also continuous, and $g(x) = \cos(bx)$ and $f(x) = k \sin(bx)$, where $k^2 = 1/4$ and b is a complex constant.

Remark. As a special case, Theorem 1 provides a solution to Klee's problem and shows that the additional conditions $f(t) = 1$ and $g(t) = 0$ are superfluous.

3. SELF-CONTAINED SOLUTION TO KLEE'S PROBLEM. We return briefly to the original problem posed by Klee and provide a solution that makes no appeal to [4].

Let $f, g : \mathbb{R} \rightarrow \mathbb{R}$ be solutions of (1). The assumption that $f(t) = 1$ and $g(t) = 0$ for some $t \neq 0$ forces f and g to be nonconstant. As earlier, (1) implies that g is even.

Substituting $y = t$ in (1) gives

$$g(x - t) = f(x), \quad f(x + t) = g(x), \quad (16)$$

so $f(-x) = g(x + t)$ for all real x . Now by (16) and (1),

$$\begin{aligned} f(x - y) &= g(x - y - t) \\ &= g(x)g(y + t) + f(x)f(y + t) \\ &= g(x)f(-y) + f(x)g(y) \end{aligned} \quad (17)$$

for x and y in \mathbb{R} . Change y to $-y$ in (17) to obtain the "+" half of (3). To verify both the other half of (3) and (2) it is enough to show that f is odd.

Arguing as before, we find that (4) holds, and from it we again infer that

$$f(x)f(-y) = f(y)f(-x)$$

for all real x and y .

Now setting $y = t$ and $x = -t$ yields $f(-t)^2 = 1$, so $f(-t) = \pm 1$. The choice $f(-t) = 1$ leads to the conclusion that f is even and g is constant, which is not the case. Thus f is odd and (17) and (4) become the “ $-$ ” half of (3) and (2), respectively. This furnishes a solution to Klee’s problem. Note that we have used the conditions $f(t) = 1$, $g(t) = 0$ a couple of times.

As remarked at the end of the solution of E1079, the usual formula for $\cos(x \pm y)$ and $\sin(x \pm y)$ follow purely algebraically from the formula for $\cos(x - y)$.

ACKNOWLEDGMENT This paper is dedicated to Professor Z. Moszner on the occasion of his 73rd birthday.

REFERENCES

1. J. Aczél, *Lectures on Functional Equations and Their Applications*, Academic Press, New York, 1966.
2. J. Aczél and J. Dhombres, *Functional Equations in Several Variables*, Cambridge University Press, Cambridge, 1989.
3. T. S. Chihara, Solution to E1079, this *MONTHLY* **61** (1954) 197.
4. PL. Kannappan, The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$ for groups, *Proc. Amer. Math. Soc.* **19** (1968) 69–74.
5. ———, *Theory of Functional Equations*, Matscience Report, no. 48, Institute of Math. Sciences, Chennai, India, 1969.
6. V. L. Klee, E1079, this *MONTHLY* **60** (1953) 479.
7. S. Kurepa, On some functional equations in Banach spaces, *Studia Math.* **19** (1960) 149–158.
8. S. Parameswaran, Trigonometry retold, *Math. Gazette* **42** (1958) 81–83.
9. A. L. Rukhin, The solution of the functional equation of d’Alembert’s type for commutative groups, *Internat. J. Math. Sci.* **5** (1982) 315–355.
10. L. Vietoris, Zur Kennzeichnung des Sinus und verwandter Funktionen durch Funktionalgleichungen, *J. Reine Angew. Math.* **186** (1944) 1–15.
11. W. H. Wilson, On certain related functional equations, *Bull. Amer. Math. Soc.* **26** (1919–1920) 300–312.

*Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
plkannappan@pythagoras.uwaterloo.ca*

Green’s Theorem and the Fundamental Theorem of Algebra

Paul Loya

One proof of the fundamental theorem of algebra uses Liouville’s theorem, which follows from Cauchy’s theorem, which in turn can be derived from Green’s theorem; see, for instance, the beautiful book [1]. The purpose of this note is to show that Green’s theorem is sufficient. The proof does not use any topology or analytic function theory.