

Trends of predictive breeding

Changes in the plant breeding landscape driven by more, better and different data

Alencar Xavier Breeding Analyst at Corteva Agrisciences Adjunct professor at Purdue University

12/08/2023

Contributions from Radu Totir, Frank Technow, David Habier, David Bubeck, Abelardo de la Vega

What are some implications of continuous Corn Improvement?

Source: Totir 2021, ASTA

*Based on 2021 USDA NASS data

More Pheno

https://www.mdpi.com/2076-3417/12/5/2570

More Geno Growth of DNA Sequencing

The Cost of Sequencing a Human Genome. NIH. https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome/

Stephens, Z. D.et al. (2015). Big data: astronomical or genomical? *PLoS biology*, *13*(7), e1002195.

More Env ****

- UC Merced GridMET
- NWS NOAA
- NASA GISS, NASA power
- Harmonized SoilDB
- USDA SSURGO

More Computing

Challenges in Corn Improvement

End goal of GxExM characterization

Data Decision **SELECTION** Phenotype **CHARACTERIZATION** Genotype Modeling and analytics PRODUCT PLACEMENT Environmental (Predictive, Prescriptive **SEED PRODUCTION** Management 5) LOGISTICS OPTIMIZATION Business Addressing yield Addressing limiting factors producibility and through breeding commercial questions and agronomics

Linear models

Crop models

Linearly correlated phenotypes

Using machine learning to infer connections from data

flowering

maturity

A new approach fits multivariate genomic prediction models efficiently

Alencar Xavier^{1,2*†} and David Habier^{1*†}

Using unsupervised learning techniques to assess interactions among complex traits in soybeans

Alencar Xavier \cdot Benjamin Hall \cdot Shaun Casteel \cdot William Muir \cdot Katy Martin Rainey

size

Leveraging information from secondary traits

High-throughput phenotyping

Correlation(HTP, main trait) with thousands of traits

Runcie et al. (2021) https://doi.org/10.1186/s13059-021-02416-w

"Breeding objective"

f (market segment, farming systems)

• Set of traits of interest (**TOI**) bred into a WHAT

Yield, moisture, relative maturity, disease resistance, stability, trait package, producibility

• Target population of genetics (**TPG**) for a given who

Corn 111-121, corn 122-130 white corn 118-123

 Target population of environments (TPE) and management (TPM) practices

HOW, WHEN

Drought, irrigation, early planting, varying levels of disease pressure, different soil types

 $\rho_{\text{GxExM}} = \rho_{\text{TPG}} \times \rho_{\text{TPG}} \times \rho_{\text{TPM}}$

Model testing and validation schemes

Prediction accuracy $\propto \sqrt{\mathrm{H}^2} \times \rho_{\mathrm{GxExM}}$

Technical nuances of machine learning: implementation and validation of supervised methods for genomic prediction in plant breeding

Alencar Xavier 1

With more data and better analytics, breeding can respond faster the new farming challenges and trends

- New & better management
- Changing environment
- New pests and diseases

(TPE, TPG, TPM)

 $Acc \propto GxExM \times h^2$

Performance Producibility Robustness

Thank you for your attention!

Final remarks:

- 1) Plant breeding is changing with new data and modern analytics
- 2) Harnessing GxExM information benefits decision making, business and farmers
- 3) Modeling is contingent to the target genetics, environments and management

Questions??

Alencar Xavier

Alencar.Xavier@Corteva.com

