lecture 14, syntax of MPL

phil1012 introductory logic

overview

this lecture

- the syntax of MPL
- formal specification of the vocabulary and syntax of MPL
- how formulas of MPL are constructed
- the notions of logical operators, the scope of a quantifier, free and bound variables, open and closed formulas

learning outcomes

- after doing the relevant reading for this lecture, listening to the lecture, and attending the relevant tutorial, you will be able to:
 - identify well-formed formulas of MPL
 - construct construction tables for formulas of MPL
 - identify the main operator of a formula of MPL
 - identify the scope of a quantifier
 - identify free and bound variables and open and closed formulas of MPI.

required reading

• section 8.4 of chapter 8

syntax of MPL

syntax of MPL

 \bullet we can give a precise specification of the syntax of MPL as we did for PL.

```
    the symbols of MPL (continued) are:
    two quantifier symbols:
    ∀∃\forall \hspace{12pt} \exists
    two punctuation symbols (parentheses):
    ()(\hspace{12pt})
```

- terms are defined as follows:
 - a name is a term
 - a variable is a term
 - nothing else is a term
- wffs of MPL are defined as follows:
 - (3i) where P_\underline{P} is a predicate and t_\underline{t}
 is a term, the following is a wff:
 - P_t_\underline{P}\underline{t}
 - (3ii) where α \alpha and β \beta are wffs and x_\underline{x} is a variable, the following are wffs:
 - nothing else is a wff

constructing wffs

constructing wffs

- given this syntax for MPL we can show how any well formed formula of MPL is constructed.
- suppose we want to construct
 - $(\forall xRx \rightarrow \exists xPx)$ (\forall x Rx \rightarrow \exists x Px)
- we might construct it as follows

StepWff	constructed at this	step Fro	m steps/by	clause
1	RxRx		/(3i)	
2	PxPx		/(3i)	

Ste	₽₩ff	constructed at th	is step	From	steps	/by	clause
1		RxRx			/ (:	3i)	
2		PxPx			/ (:	3i)	
3		∀ xRx\forall x R		1,	/(3ii	$\forall \setminus f$	orall)
4		∃xPx\exists x P	X,	2,	/(3ii	∃\ex	kists)

Step	Wff constructed at this step	From steps/by clause
1	RxRx	/(3i)
2	PxPx	/(3i)
3	∀ xRx\forall x Rx	1, /(3ii ∀ \forall)
4	∃xPx\exists x Px	2, /(3ii 3 \exists)
5	(♥xRx→∃xPx)(\forall x Rx \rightarrow	3,4 /(3ii
	\exists x Px)	\rightarrow \rightarrow)

- ullet a ${f logical}$ ${f operator}$ is a connective or a quantifier
- the main operator (c.f. main connective) is the last operator added in the construction of the wff
- any wff constructed along the way is a subformula
- suppose we want to construct
 - \circ \forall x(Rx→ \exists xPx)\forall x (Rx \rightarrow \exists x Px).
- we might construct it as follows

StepWff	constructed at this	step From steps/by clause
1	RxRx	/(3i)
2	PxPx	/(3i)

Step	Wff constructed at this st	cep From steps/by clause
1	RxRx	/(3i)
2	PxPx	/(3i)
3	∃xPx\exists x Px	2, /(3ii ∃\exists)

Step	Wff constructed at this step	From steps/by clause
1	RxRx	/(3i)
2	PxPx	/(3i)
3	∃xPx\exists x Px	2, /(3ii 3 \exists)
4	(Rx→ ∃ xPx)(Rx \rightarrow \exists x	1,3 /(3ii
	Px)	$\rightarrow \$ rightarrow)

Step	Wff constructed at this step	From steps/by clause
1	RxRx	/(3i)
2	PxPx	/(3i)
3	∃xPx\exists x Px	2, /(3ii 3 \exists)
4	$(Rx \rightarrow \exists x Px) (Rx \rightarrow \exists x Px)$	1,3, /(3ii
5	∀x(Rx→∃xPx)\forall x (Rx \rightarrow \exists x Px)	→\rightarrow) 4/(3ii ∀ \forall)

quantifier scope

quantifier scope

- if a wff has a quantifier in it, then it must have got there by being stuck on the front of some sub-formula α (by 3ii \forall \forall or 3ii \exists \exists) at some stage in the construction
- for any quantifier appearing in a wff, we call this subformula α \alpha the **scope** of the quantifier
- in $(\forall x Rx \rightarrow \exists x Px)$ (\forall x Rx \rightarrow \exists x Px), the scope of the quantifier $\forall x$ \forall x is the wff RxRx
- to see this, consider how we would construct $(\forall x Rx \rightarrow \exists x Px)$ (\forall x Rx \rightarrow \exists x Px)

StepWff	constructed at this	step Fr	com steps/by	clause
1	RxRx		/(3i)	
2	PxPx		/(3i)	

Step	Wff constructed at this step	From steps/by clause
1	RxRx	/(3i)
2	PxPx	/(3i)
3	∀ xRx\forall x Rx	1, /(3ii ∀ \forall)
4	∃xPx\exists x Px	2, /(3ii ∃ \exists)

• in \forall x(Rx \rightarrow 3xPx)\forall x (Rx\rightarrow\exists x Px), the scope of the quantifier \forall x\forall x is the wff (Rx \rightarrow 3xPx) (Rx\rightarrow\exists x Px).

• to see this, consider the construction table for $\forall x (Rx \rightarrow \exists xPx) \setminus forall x (Rx \setminus rightarrow \setminus exists x Px)$

Step	Wff constructed at this step	From steps/by clause
1	RxRx	/(3i)
2	PxPx	/(3i)
3	∃xPx\exists x Px	2, /(3ii ∃ \exists)
4	$(Rx \rightarrow \exists xPx)$ (Rx \rightarrow \exists x	1,3, /(3ii →\rightarrow)

Step	Wff constructed at this step	From steps/by clause
1	RxRx	/(3i)
2	PxPx	/(3i)
3	∃xPx\exists x Px	2, /(3ii 3 \exists)
4	$(Rx \rightarrow \exists x Px)$ $(Rx \rightarrow \exists x Px)$	1,3, /(3ii →\rightarrow)
5	∀x(Rx→∃xPx)\forall x (Rx \rightarrow \exists x Px)	4, /(3ii ∀ \forall)

free and bound variables

free and bound variables

- an occurrence of a variable in a wff is **bound** if it is in the scope of a quantifier that contains that variable.
- an occurrence of a variable that is not bound in a wff is free.
- consider:
 - (Fx→∃xGx) (Fx \rightarrow \exists x Gx)
- the first occurrence of xx is free.
- the second-the one in the quantifier-is bound.
- the third is bound.
- if a variable falls within the scope of multiple quantifiers containing that variable, it is bound by the one added first (in the construction of the wff).
- consider:
 - \forall x(Fx→ \exists xGx)\forall x(Fx \rightarrow \exists x Gx)
- the second occurrence of xx is bound by \forall x\forall x.
- the fourth occurrence of xx is bound by \exists x\exists x.
- an occurrence of a quantifier is **vacuous** if the variable in the quantifier does not occur free within the scope of the quantifier.
- consider:
 - ∘ ∃xPy\exists x P y
- this occurrence of $\exists x \in x$ is vacuous.
- we distinguish between the quantifier symbols $\forall \land$ and $\exists \land$ and $\exists \land$ and $\exists x \land$ $\exists x \land$
- a quantifier consists of a quantifier symbol and a variable.
- the variable which is a constituent of a quantifier is not free. (is it bound?)
- this variable is sometimes called the operator variable.

open and closed wffs

open and closed wffs

- corresponding to the notion of free and bound variables is the notion of open and closed wffs
- a wff with no free occurrences of variables is a **closed** wff.
 - e.g. \forall x(Fx \rightarrow \exists xGx)\forall x(Fx\rightarrow\exists x Gx)
- \bullet a wff with one or more free occurrences of variables is an $\ensuremath{\mathsf{open}}$ wff.
 - e.g. $(Fx_{\rightarrow}\exists xGx)$ $(F\underline\{x\} \rightarrow \exists x Gx)$
- open and closed wffs are equally well-formed.
- but open wffs do not express propositions—they cannot themselves be true or false.
- consider: RxRx
 - \bullet this doesn't express a proposition
 - \exists xRx\exists x R x does, however

wrapping up

this lecture

- the syntax of MPL
- formal specification of the vocabulary and syntax of MPL
- how formulas of MPL are constructed
- the notions of logical operators, the scope of a quantifier, free and bound variables, open and closed formulas

next lecture

• lecture 15, the semantics of MPL, part 1