Equations:

Work-done: $W = PdV = \int PdV$

1st law of Thermodynamics: q = dE + W

Entropy: $\Delta S = \frac{q}{T} = k \ln(\text{Multiplicity}) = k \ln[D(E)\delta E]$

Density of states in 3D: $D(\varepsilon) = \frac{2\pi (2m)^{3/2}}{h^3} V \varepsilon^{1/2}$

 $\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{\text{fixed external parameters}}$

Ideal gas law: PV = NkT

For an adiabatic process: $PV^{\gamma} = \text{constant}$ or $TV^{\gamma-1} = \text{constant}$

 $q = C_p dT$ at a constant pressure. $q = C_V dT$ at a constant volume.

 $\gamma = \frac{c_p}{c_V}$, $\gamma = 1.6$ for monatomic gas and $\gamma = 1.4$ for diatomic gas

Efficiency of an engine (cycle): $\eta = \frac{W}{Q_H} = \frac{Q_H - Q_C}{Q_H}$

For Carnot engine: $\eta_{\text{Carnot}} = 1 - \frac{Q_C}{Q_H} = 1 - \frac{T_C}{T_H}$

Boltzmann constant $k = 1.381 \times 10^{-23} \text{ J/K}$

Plank's constant $h = 6.63 \times 10^{-34} \text{ Js}$

 $1.0 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$