连通度

2018年10月25日 15:00

● 无向图的连通度

- 一. 连通度connectivity、<u>割集</u>cut set
 - 1. 连通度主观理解: 为破坏连通性至少需要删除的顶点数/边数
 - 1) 破坏连通性:连通分支数增加,即:
 - p(G-V') > p(G)
 - i. p(G-E') > p(G)
 - 2) 特例:平凡图有连通性,n阶完全图删去n-1个点成为平凡图后仍有连通性,但一般规定,n阶完全图连通度为n-1

点割集: G=<V,E>, Ø≠V′⊂V, (1) p(G-V′)>p(G);

- 2. (2) ∀V"⊂V', p(G-V")=p(G) (极小性条件)
 - 1) 数量极小的一组顶点, 删除后使连通分支数增加
 - 2) 极小: 这组点少删任何一个都不能使连通分支数增加
 - 3) 不可以是全部点
- 3. 割点: 自成一点割集的点

v是割点 ⇔ {v}是割集

1) 例: G₁中f是割点, G₂中无割点

- · 边割集: G=<V,E>, ∅≠E'⊂E, (1) p(G-E')>p(G);
- (2) ∀E"⊂E', p(G-E")=p(G) (极小性条件)
 - 1) 引理1
 - · 设E'是边割集,则p(G-E')=p(G)+1.
 - 证: 如果p(G-E')>p(G)+1,
 - 则E'不是边割集,因为不满
 - L. 足定义中的极小性. #
 - 注:点割集无此性质
 - ii. **边割集只能让连通分支数加一**,点割集可能加很多
- 5. 割边/桥: 自成一边割集的边
- 6. 扇形割集:有公共顶点的边割集
 - · I₆(v)不一定是边割集(不一定极小)
 - · I_G(v)是边割集⇔v不是割点

1)

- · 扇形割集:边割集E'⊆I_G(v)
- 2) 此处IG是指某点的关联集,扇形割集是其子集,即有公共顶点的边割集
- 7. 重新定义点连通度
 - G是无向连通非完全图,
 - κ(G) = min{ | V' | | V'是G的点割集}

- · 规定: κ(K_n) = n-1
- 2) G非连通:κ(G)=0

(平凡图N₁连通, 但κ(N₁) = κ(K₁) = 0)

- i. 即K不连通图=0, K1阶图=0
- ii. 然而一阶图定义为连通, 所以**点连通度=0是不连通的必要条件**
- 8. 重新定义边连诵度
 - · G是无向连通图,
 - λ(G) = min{|E'| | E'是G的边割集}
 - 2) · 规定: G非连通: λ(G)=0
- 二. Whitney定理
 - 1. 引理2
 - · 设E'是非完全图G的最小边割集,
 - G-E'的两个(引理1)连通分支是G₁,G₂, 则存在u∈V(G₁),v∈V(G₂),使得(u,v) €E(G).
 - i. 即用边割集破坏连通性以后,(非完全图的)原图的**补图的边所连的点可能 分别在两个连通分支**
 - ii. 是找最小边割集的一个方法
 - 证:(反证)否则
 - $\lambda(G) = |E'| = |V(G_1)| \times |V(G_2)|$
 - - a≥1 ∧ b≥1 ⇒ (a-1)(b-1) ≥ 0
 ⇒ ab-a-b+1 ≥ 0 ⇔ ab ≥ a+b-1.
 - 2. k-连通图、k-边连通图
 - ・ k-连通图: κ(G)≥k
 - κ-边连通图: λ(G)≥k
 - 2) 即删掉k-1个点/边仍能连通的图
 - 3) 例: 彼得森图κ=λ=3, 是1、2、3-(边)连通图, 不是4-(边)连通图
 - 3. 定理: 3-正则图的点连通度=边连通度
 - 4. (Whitney不等式):
 - 1) $\kappa(G) \leq \lambda(G) \leq \delta(G)$.
 - i. 即: 点连通度<=边连通度<=最小度
 - 第一部分:λ≤δ
 - 证明: 设 d_C(v) = δ.
 - ii. $I_G(v) = \{ (u,v) \mid (u,v) \in E(G) \}$ 则必有扇形边割集 $S \subseteq I_G(v)$,所以, $\lambda \leq |S| \leq |I_G(v)| = \delta$.
 - iii. 扇形割集必能破坏至少一个点的连通性, 其边数小于等于最小度
 - 第二部分:κ≤λ
 - 证明: 设边割集Ε'满足Ε'=λ.
 - iV. 根据引理1和引理2, 设G-E'的两个连通分支是G₁和G₂, 设u∈V(G₁),v∈V(G₂),使得(u,v) €E(G).
 - v. 高阶非完全图找到引理2的两个点,删除这两点以外的、所有由边割集所连的

点,即删除了边割集。其他特殊情况易知恒成立

- 如下构造V":对任何e∈E',
 选择e的异于u,v的一个端点放入V".
- vi. 则 **u,v**∈G-V"⊆G-E'=G₁∪G₂, 所以 V"中含有点割集V'. 故 κ≤|V'|≤|V"|≤|E'|=λ.#
- 2) · 推论: k-连通图一定是k-边连通图.

三. 割的充要条件

- 1. 割点:
 - 定理7.17:
 - 无向连通图G中顶点v是割点

- 推论:无向连通图G中顶点v是割点
- 今存在与v不同的顶点u和w,使得从顶点u到w的路径 都要经过v. #

2. 割边:

- 定理7.18-19: 无向连通图G中边e是桥
- ⇔ G的任何圈都不经过e
- → 可把V(G)划分成V₁与V₂,使得从V₁中任意顶点u到
 V₂中任意顶点v的路径都要经过e. #

- 3) 推论: 桥的两端都是割点或孤立点
- 3. 块: 极大无割点连通子图

- 定理7.20: G是3阶以上无向简单连通图. 则G是块
 会 G中任意2项点共圈 会 G中任意1项点与任意1边共图 ⇔ G中任意2项点与任意
- 3) 1边,有路径连接这2项点并经过这1边⇔G中任意3项点,有路径连接其中2项点并经过第3点⇔G中任意3项点,有路径连接其中2项点并经过第3点。#
 - 块: 极大无割点连通子图
 - · 2-连通图: κ≥2, 即连通无割点图
 - 2-边连通图: λ≥2, 即连通无桥图
- 4) ・2-连通 ⊂ 2-边连通 (可能 κ<λ)
 - · 2-连通 ⊂ 块 (K2是块,不是2-连通)
 - 块≠2-边连通(K₂是块,不是2-边连通;
 8字形图是2-边连通,不是块)

四. Menger定理

1. x-y割: 删去后能让点x和y不连通的一组点

- · 如果 x,y是G中不相邻顶点,
- $S \subseteq V(G) \{x,y\},$
- 1) 在**G-S**中**x**与**y**不连通,

则 S称为G中的x-y割

- 2. 两点间独立路径: 除起点和终点外无其他公共顶点的路径
- 3. Menger定理/最小-最大(min-max)定理:
 - 定理(Menger,1927): 在图G中,
 - 1) 最小的x-y割包含的顶点数
 - = 最大的x-y独立路径的条数.#

五. 连通充要条件

- · 定理7.15: 3阶以上无向简单连通图G是2-连通图
- 1 ⇔ G中任两顶点共圈
 - ⇔ G中任两顶点之间有2条以上独立路径. #
- 2. 边不交路径: 两条无公共边(但可能有公共顶点)的路径

• 定理7.16:

3阶以上无向图G是2-边连通图

- 3. ⇔ G中任2项点共简单回路
 - ⇔G中任2顶点间有2条以上边不交路径. #
 - 1) 简单回路: 无重复边的回路
 - 定理: 3阶以上无向图G是k-连通图
 - ⇔ G中任2顶点间有k条以上独立路径.#
- ・ 定理: 3阶以上无向图G是k-边连通图
 - ⇔ G中任2顶点间有k条以上边不交路径.#

六. 其他定理

- n阶简单连通图的κ,λ,δ之间关系有且仅有3种可能:
 - (1) $\kappa = \lambda = \delta = n-1$
- (2) $1 \le 2\delta n + 2 \le \kappa \le \lambda = \delta \le n 2$
- 1. **(3)** 0 ≤ κ ≤ λ ≤ δ < ⌊n/2⌋
 - 注: 1≤2δ-n+2 ⇔ (n-1)/2≤δ ⇔⌊n/2∫≤δ
 - 目标: (有): (1) κ = λ = δ = n-1.
 - · 构造: 令 G = K,即可.
 - 注意:非连通图⇒κ=λ=0
 - 1) 但是 K_1 连通, $\kappa(K_1)=\lambda(K_1)=\delta(K_1)=0$

- 目标: 1≤2δ-n+2≤κ≤λ=δ≤n-2
- ・构造: 令r = [(n-κ)/2], s = [(n-κ-1)/2],
- r+s = n-κ-1. 令G'=K_κ+(K₁∪K_s). 给G'增加顶点ν,使得ν 与K_κ中所有顶点相邻,与K_s中δ-κ个顶点相邻,就得 到G.
 - 分析: δ(G)=δ:

 K_{κ} : $d(u) = \kappa - 1 + r + s + 1 = n - 1 \ge \delta$,

 K_r : $d(u) = r-1+\kappa \ge \delta$,

 K_s : $d(u) = s-1+\kappa \ge \delta$,

 $v: d(v) = \delta$.

• 分析:

κ(G)=κ: 删除K_κ.

 $\lambda(G)=\lambda=\delta$: 删除 $I_G(v)$.

- 目标:0≤κ≤λ≤δ< [n/2]
- 构造:令G'=K_{δ+1}∪K_{n-δ-1},设
- $V(K_{\delta+1})=\{u_1,u_2,...,u_{\delta+1}\},\$
- $V(K_{n-\delta-1})=\{v_1,v_2,...,v_{n-\delta-1}\},$

给G′增加边(u;,v;), i=1,2,...,κ,

以及(u_1,v_i), $i=2,3,...,\lambda-\kappa+1$, 就得到G.

分析: δ(G)=δ:

 $K_{\delta+1}$: $d(u) \ge \delta$, $K_{n-\delta-1}$: $d(u) \ge n-\delta-2 \ge \delta$.

κ(G)=κ: 删除{u_i | i=1,2,...,κ},

λ(G)=λ: 删除

 $\{(u_i,v_i) | i=1,2,...,\kappa\} \cup$

 $\{(u_1,v_i) | i=2,3,...,\lambda-\kappa+1\}$

- 如果 G是完全图,则 G=Kn, 所以κ= λ = δ =n-1.
- (2) $1 \le 2\delta n + 2 \le \kappa \le \lambda = \delta \le n 2$
- 5) δ≥[n/2]时,定理7.12,7.13.
 - i. 7.12和7.13在下面
 - (3) $0 \le \kappa \le \lambda \le \delta < \lfloor n/2 \rfloor$
- 6) δ<[n/2]时, Whitney定理. #

2. 定理7.11

4)

• G是n阶简单无向连通图, λ (G)< δ (G),则存在G*以G 为生成子图,G*由完全图 K_{n1} 和 K_{n2} ,以及它们之间的 λ(G)条边组成,λ(G)+2≤n₁≤ n/2」.

- 证: 设E₁是G的最小边割, |E₁|=λ(G).
- 设G-E₁的2个连通分支是G₁与G₂, $|V(G_1)|=n_1$, 2) |V(G₂)|=n₂,不妨设n₁≤n₂,显然n₁+n₂=n, n₁≤n/2」.
 - · 给G₁加新边使它成为K_{n1}, 给 G_2 加新边使它成为 K_{n2} ,

- $\diamondsuit G^* = K_{n1} \cup E_1 \cup K_{n2}.$ • $\lambda(G) < \delta(G) \le \delta(G^*) \le n_1 - 1 + \lambda(G)/n_1$
- $\Rightarrow \lambda(G) < n_1-1+\lambda(G)/n_1 \Leftrightarrow (n_1-1)(n_1-\lambda(G))>0$
- $\Rightarrow \lambda(G) < n_1 \Rightarrow \lambda(G) \le n_1-1.$
- $\lambda(G)=n_1-1 \Rightarrow \lambda(G)=n_1-1+\lfloor \lambda(G)/n_1\rfloor$
- \Rightarrow λ (G)< δ (G)≤ δ (G*)≤ λ (G) (矛盾!)
- $\lambda(G) < n_1-1 \Rightarrow \lambda(G) \le n_1-2 \Rightarrow \lambda(G)+2 \le n_1$. #

- (1) δ(G)≤δ(G*)≤n₁-1≤ n/2 -1
- (2) G*中有不相邻顶点u,v,使得

d_{G+}(u)+d_{G+}(v)≤n-2

- (3) d(G)≥d(G*)≥3 3)
 - 证明:(2)u∈G₁,v∈G₂,在G中不相邻,则在G*中仍然不 相邻.
 - (3) d(G)=max d(u,v)

λ(G)≤n₁-2 #

- 3. 定理7.12
 - · G是6阶以上连通简单无向图.
 - (1) $\delta(G) \geq \lfloor n/2 \rfloor \Rightarrow \lambda(G) = \delta(G)$
 - (2) 任意一对不相邻顶点u,v都有 1)
 - d(u)+d(v)≥n-1,
 - $\Rightarrow \lambda(G)=\delta(G)$.
 - (3) $d(G) \le 2 \Rightarrow \lambda(G) = \delta(G)$. #
 - · 定理7.13 G是n阶简单连通无向非完全图,则
- $2\delta(G)-n+2 \leq \kappa(G)$.

证: 设V₁是G的点割集, |V₁|=κ(G), 设G-V₁的连通分支是G₁,G₂,...,G₅(s≥2), 设|V(G₁)|=n₁, |V(G₂)|+x...+|V(G₅)|=n₂, 则n₁+ n₂+κ(G)=n. δ(G)≤n₁-1+κ(G)=n₁+κ(G)-1, #且 δ(G)≤n₁+κ(G)-1 G G₂
 ⇒ 2δ(G)≤n₁+κ(G)+n₂+κ(G)-2 = n+κ(G)-2
 ⇒ κ(G)≥ 2δ(G)-n+2. #

 ii.
 iii.
 iv.
 V.
 V.
 Vii.
 Viii.

ix. -----我是底线------