AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions and listings of claims in the application.

Claims 1-17 (canceled)

Claim 18 (currently amended): A process for preparing fluoromethyl-substituted heterocycles of formula (I)

in which

R¹ is hydrogen, fluorine [[,]] or chlorine,

R² is hydrogen, fluorine, or chlorine,

 R^3 is C_1 - C_6 -alkyl,

A is a 5-membered heterocycle selected from the group consisting of pyrazole that is substituted by R⁴ in the 1-position, and

R⁴ is C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -alkyl, or phenyl,

comprising converting a chloromethyl-substituted heterocycle of formula (II)

$$CI \xrightarrow{R^1} CO_2R^3$$
 (II)

in which

R¹ [[,]] is chlorine, and

R², R³, and A are each as defined for formula (I),

to a fluoromethyl-substituted heterocycle of formula (I) in the presence of a fluorinating agent selected from the group consisting of 3 HF / N(Et)₃ (Franz reagent), 3 HF / N(n-Bu)₃, and HF/pyridine (Olah's reagent) and optionally in the presence of a diluent.

CS8789

Claim 19 (currently amended): A process according to Claim 18 wherein for the chloromethyl-substituted heterocycle of formula (II),

R¹ is hydrogen, fluorine, or chlorine,

R² is hydrogen, fluorine, or chlorine,

 R^3 is C_1 - C_4 -alkyl,

A is a 5-membered heterocycle pyrazole selected from the group consisting of

where in each case the bond marked by * is joined to the -CCIR 1 R 2 group and the other bond is joined to the CO $_2$ R 3 ester group, and

R⁴ is methyl, ethyl, n-propyl, isopropyl, cyclopropyl, cyclopentyl, cyclohexyl, or phenyl.

Claim 20 (currently amended): A process according to Claim 18 wherein the chloromethyl-substituted heterocycle of formula (II) is selected from the group consisting of compounds of formulas (II-a) and (II-b)

$$CI \xrightarrow{R^1} CO_2R^3$$
 $CI \xrightarrow{R^2} CO_2R^3$
 $CI \xrightarrow{R^2} CO_2R^3$

in which R¹, R², and R³ are as defined for formula (II) in Claim 18.

Claim 21 (currently amended): A process according to Claim 20 in which \mathbb{R}^4 -is chlorine, \mathbb{R}^2 -is hydrogen, and \mathbb{R}^3 is methyl or ethyl.

Claims 22-23 (canceled)

Claim 24 (previously presented): A process according to Claim 18 wherein the fluorinating agent is $3 \text{ HF} / \text{N(Et)}_3$ (Franz reagent) or $3 \text{ HF} / \text{N(n-Bu)}_3$.

CS8789 - 3 -

Claim 25 (currently amended): A process according to Claim 18 that [[it]] is carried out at a temperature of 80°C to 170°C.

Claim 26 (currently amended): A process according to Claim 18 that [[it]] is carried out at a temperature of 120°C to 150°C.

Claims 27-33 (canceled)

CS8789 - 4 -