Lecture 8: Discrete Random Variables - Part II

Satyajit Thakor IIT Mandi

Recall: summary of main ideas

- ► A sample space S is the set of all possible outcomes $S = \{ s : s \text{ is an outcome } \}$
- ► "An event A occurred" if

 the outcome of the experiment is in A.
- Probability is a function from the set of events to the set [0,1] satisfying Axioms 142.

$$P: \{A \leq S: A \text{ is an event } \} \rightarrow [0,1].$$

A random variable X is a function from the sample space S to the set of verl numbers.

$$\chi:S \rightarrow \mathbb{R}$$
.

Recall: summary of main ideas

Probability mass function (PMF) p_X of a discrete r.v. X is the function $P_X(x) = P(X = x)$.

$$p_{x}: \mathbb{R} \rightarrow [0,1].$$

Support of a discrete r.v. X is the set of all values $x \in \mathcal{F}_X(x) > 0$.

Support of
$$X = \{ x \in \mathbb{R} : P_X(x) > 0 \}.$$

Caution: For precise definition of the terms refer to the earlier lecture slides.

Example: Roll two fair 6-sided dice. Let T = X + Y be the total of the two rolls, where X and Y are the individual rolls. What is the PMF of T?

$$- |P_{+}(2)| = |P(T=2)| = |P(\{x=1, Y=1\})|$$

$$= \frac{1}{36}$$

$$- \frac{1}{10} = \frac{1}{$$

$$= P(\{x=1, y=2\}) + P(\{x=2, y=1\})$$

$$= \frac{2}{36} = P_{\tau}(11)$$

$$= P(\{x=5, y=6\} \text{ or } \{x=6, y=5\})$$

- Similarly,
$$P_{T}(4) = 3/36 = P_{T}(10)$$
 $(1,3)(2,2)(3,1)$
 $P_{T}(5) = 4/36 = P_{T}(9)$ $(1,4)(2,3)(3,2),(4,1)$
 $P_{T}(6) = 5736 = P_{T}(8)$ $(1,5),(2,4),(3,3),(4,2)$
 $P_{T}(7) = 6/36$ $(1/6),(2,5),(3,4),(4,3),(5,2),(6,1)$
 $P_{T}(7) = 6/36$ $P_{T}(8)$ P_{T

frequentist approach

Example of data: Suppose we choose a family in a town at random. Let X be the number of children in the chosen family. Since X can only take on integer values, it is a discrete r.v. The probability that X takes on the value x is proportional to the number of families in the town with x children, i.e.,

- ▶ Theorem: Let X be a discrete r.v. with support $\{x_1, x_2, \ldots\}$. The PMF p_X of X must satisfy the following two criteria:
 - 1. Nonnegative: $p_X(x) > 0$ if $x = x_j$ for some j, and $p_X(x) = 0$ otherwise;
 - 2. Sums to 1: $\sum_{i=1}^{\infty} p_X(x_i) = 1$

Proof: (1): follows from the def of support.

(2):
$$\sum_{i=1}^{\infty} b_{x}(n_{i}) = P\left(\bigcup_{i=1}^{\infty} x = n_{i}^{2}\right)$$
 (1): Axiom 2)

$$= P\left(\underbrace{\{x = n_{i}\} \text{ or } \{x = n_{2}\} \text{ or } \dots\right)}_{=1}$$

 \triangleright Conversely, if distinct values $\{x_1, x_2, \ldots\}$ are specified and we have a function satisfying the two criteria above, then this function is the PMF of some r.v.

- follows from the def of discrete r.v.

Example: Let T be the sum of two fair die rolls. We have already calculated the PMF of T. What is the probability that T is in the interval [1,4]?

$$P(T \in [1,4]) = P(\xi_{T=2}) \circ Y \xi_{T=3} \circ Y \xi_{T=4})$$

$$= \frac{1}{36} + \frac{2}{36} + \frac{3}{36}$$

$$= \frac{1}{6} \cdot \frac{1}{36} + \frac{1}{36} \cdot \frac{1}{36} = \frac{1}{6} \cdot \frac{1}{36} \cdot \frac{1}{36} = \frac{1}{6} \cdot \frac{1}{36} = \frac{1}{6} \cdot \frac{1}{36} = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{6} = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{6}$$

- An r.v. X is said to have the Bernoulli distribution with parameter p if P(X=1)=p and P(X=0)=1-p, where $0 . We write this as <math>X \sim \text{Bern}(p)$.
- ▶ The symbol \sim is read "is distributed as".
- The number p in Bern(p) is called the parameter of the distribution.
- \triangleright Examples: $X \sim \text{Bern}(1/3), Y \sim \text{Bern}(1/8)$
- The indicator random variable of an event A is the r.v. which equals 1 if A occurs and 0 otherwise.
- ▶ The indicator r.v. of A is denoted I_A or I(A).
- ▶ Note that $I_A \sim \text{Bern}(p)$ with p = P(A).

- An experiment that can result in either a "success" or a "failure" (but not both) is called a Bernoulli trial.
- ➤ A Bernoulli random variable can be thought of as the indicator of success in a Bernoulli trial: it equals 1 if success occurs and 0 if failure occurs in the trial.

- Suppose that n independent Bernoulli trials are performed, each with the same success probability p. Let X be the number of successes. The distribution of X is called the Binomial distribution with parameters n and p.
- ▶ $X \sim \text{Bin}(n, p)$ denotes that X has the Binomial distribution with parameters n and p, where n is a positive integer and 0 .

▶ Theorem: If $X \sim \text{Bin}(n, p)$, then the PMF of X is

$$p_X(k) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

for $k = 0, 1, \ldots, n$ and $p_X(k) = P(X = k) = 0$ otherwise.

Note that the PMF of the Bin(10, 1/2) distribution is symmetric about 5, but when the success probability is not 1/2, the PMF is skewed.

- Consider a sequence of independent Bernoulli trials, each with the same success probability $p \in (0,1)$, with trials performed until a success occurs. Let X be the number of failures before the first successful trial. Then X has the Geometric distribution with parameter p; denoted $X \sim \text{Geom}(p)$.
- ▶ Theorem: If $X \sim \text{Geom}(p)$, then the PMF of X is

$$P(X = k) = (1 - p)^k p$$
, for $k = 0, 1, 2, ...$

▶ Note that, the support of a geometric r.v. has infinite cardinality.

ightharpoonup Theorem: Geom(p) is a (valid) PMF.