Análisis y diseño de algoritmos 2. Eficiencia

José Luis Verdú Mas, Jose Oncina, Mikel L. Forcada

Dep. Lenguajes y Sistemas Informáticos Universidad de Alicante

26-01-2015 (318)

Verdú, Oncina, Forcada (Univ. de Alicante)

ADA

Objetivos

- Proporcionar la capacidad para analizar con rigor la eficiencia de los algoritmos
 - Distinguir los conceptos de eficiencia en tiempo y en espacio
 - Entender y saber aplicar criterios asintóticos a los conceptos de eficiencia
 - Saber calcular la complejidad temporal o espacial de un algoritmo
 - Saber comparar, en cuanto a su eficiencia, distintas soluciones algorítmicas a un mismo problema

ADA

Contenido

- Noción de Complejidad
- Cotas de complejidad
- Cálculo de Complejidades
 - Algoritmos iterativos
 - Algoritmos recursivos

Índice

- Noción de Complejidad
- Cotas de complejidad
- Cálculo de Complejidades
 - Algoritmos iterativos
 - Algoritmos recursivos

¿Qué es un algoritmo?

Definición (Algoritmo)

Un algoritmo es una serie finita de instrucciones no ambiguas que expresa un método de resolución de un problema

Importante:

- la máquina sobre la que se define el algoritmo debe estar bien definida
- los recursos (usualmente tiempo y memoria) necesarios para cada paso elemental deben estar acotados
- El algoritmo debe terminar en un número finito de pasos

Verdú, Oncina, Forcada (Univ. de Alicante)

《四》《圖》《意》《意》

Noción de complejidad

Definición (Complejidad algorítmica)

Es una medida de los recursos que necesita un algoritmo para resolver un problema

Los recursos mas usuales son:

Tiempo: Complejidad temporal Memoria: Complejidad espacial

Se suele expresar en función de la dificultad a priori del problema:

Tamaño del problema: lo que ocupa su representación

Parámetro representativo: i.e. la dimensión de una matriz

rdú, Oncina, Forcada (Univ. de Alicante)

《日》《圖》《意》《意》

¿Cuál es el tamaño de un problema?

Definición (Tamaño de un problema o instancia)

Número de bits que se necesita para codificar una instancia

Problema	tamaño
Sumar uno a un entero (binario de 32 bits)	
Decir cuál es el mayor de 2 números	
Ordenar un vector de <i>n</i> enteros	
Multiplicar dos matrices de enteros de $m \times n$ y $n \times \ell$	

ADA

¿Cuál es el tamaño de un problema?

Definición (Tamaño de un problema o instancia)

Número de bits que se necesita para codificar una instancia

Problema	tamaño
Sumar uno a un entero (binario de 32 bits)	32
Decir cuál es el mayor de 2 números	
Ordenar un vector de <i>n</i> enteros	
Multiplicar dos matrices de enteros de $m \times n$ y $n \times \ell$	

¿Cuál es el tamaño de un problema?

Definición (Tamaño de un problema o instancia)

Número de bits que se necesita para codificar una instancia

Problema	tamaño
Sumar uno a un entero (binario de 32 bits)	32
Decir cuál es el mayor de 2 números	2 · 32
Ordenar un vector de <i>n</i> enteros	
Multiplicar dos matrices de enteros de $m \times n$ y $n \times \ell$	

Definición (Tamaño de un problema o instancia)

Número de bits que se necesita para codificar una instancia

Problema	tamaño
Sumar uno a un entero (binario de 32 bits)	32
Decir cuál es el mayor de 2 números	2 · 32
Ordenar un vector de <i>n</i> enteros	32 <i>n</i>
Multiplicar dos matrices de enteros de $m \times n$ y $n \times \ell$	

Verdú, Oncina, Forcada (Univ. de Alicante)

ADA

26-01-2015 (3

/ / 53

Verdú, Oncina, Forcada (Univ. de Alicante)

AD.

26.01.2015 (219)

7 / 53

¿Cuál es el tamaño de un problema?

Definición (Tamaño de un problema o instancia)

Número de bits que se necesita para codificar una instancia

Problema	tamaño
Sumar uno a un entero (binario de 32 bits)	32
Decir cuál es el mayor de 2 números	2 · 32
Ordenar un vector de <i>n</i> enteros	32 <i>n</i>
Multiplicar dos matrices de enteros de $m \times n$ y $n \times \ell$	$32(mn+n\ell)$

¿Cuál es el tamaño de un problema?

Definición (Tamaño de un problema o instancia)

Número de bits que se necesita para codificar una instancia

Problema	tamaño
Sumar uno a un entero (binario de 32 bits)	32
Decir cuál es el mayor de 2 números	2 · 32
Ordenar un vector de <i>n</i> enteros	32 <i>n</i>
Multiplicar dos matrices de enteros de $m \times n$ y $n \times \ell$	$32(mn+n\ell)$

• Usualmente se omite el tamaño de enteros, reales, punteros, etc. si se asume que su tamaño está acotado

ADA

¿Cuál es el tamaño de un problema?

Definición (Tamaño de un problema o instancia)

Número de bits que se necesita para codificar una instancia

Problema	tamaño
Sumar uno a un entero (binario de 32 bits)	32
Decir cuál es el mayor de 2 números	2 · 32
Ordenar un vector de <i>n</i> enteros	32 <i>n</i>
Multiplicar dos matrices de enteros de $m \times n$ y $n \times \ell$	$32(mn+n\ell)$

- Usualmente se omite el tamaño de enteros, reales, punteros, etc. si se asume que su tamaño está acotado
- ¿Cuántos bits se necesitan para codificar un entero n arbitrariamente grande?

Verdú, Oncina, Forcada (Univ. de Alicante)

El tiempo de ejecución

El tiempo de ejecución de un algoritmo depende de:

Factores externos

- La máquina en la que se va a ejecutar
- El compilador
- Los datos de entrada suministrados en cada ejecución

Factores internos

• El número de instrucciones que ejecuta el algoritmo y su duración

Atención:

La complejidad puede depender de cómo se codifique el problema

Ejemplo

Sumar uno a un entero arbitrariamente grande

- Complejidad constante si el entero se codifica en base uno
- Complejidad lineal si el entero se codifica en base dos

Normalmente se prohíben:

- codificaciones en base uno
- codificaciones no compactas

erdú, Oncina, Forcada (Univ. de Alicante)

¿Cómo estudiamos el tiempo de ejecución?

Definición (Análisis empírico o a posteriori)

Ejecutar el algoritmo para distintos valores de entrada y cronometrar el tiempo de ejecución

- ▲ Es una medida del comportamiento del algoritmo en su entorno
- ▼ El resultado depende de los factores externos e internos

Definición (Análisis teórico o a priori)

Obtener una función que represente el tiempo de ejecución (en operaciones elementales) del algoritmo para cualquier valor de entrada

- ▲ El resultado depende sólo de los factores internos
- ▲ No es necesario implementar y ejecutar los algoritmos
- ▼ No obtiene una medida real del comportamiento del algoritmo en el entorno de aplicación

Tiempo de ejecución de un algoritmo

Definición (Operaciones elementales)

Son aquellas operaciones que realiza el ordenador en un tiempo acotado por una constante

Ejemplo (Operaciones elementales)

- Operaciones aritméticas básicas
- Asignaciones a variables de tipo predefinido por el compilador
- Los saltos (llamadas a funciones, retorno desde ellos ...)
- Comparaciones lógicas
- Acceso a estructuras indexadas básicas (vectores o matrices)

Verdú, Oncina, Forcada (Univ. de Alicante)

◆□→ ◆圖→ ◆園→ ◆園→ ■

Ejemplo: Suma del los elementos de un vector

Ejemplo (sintaxis de la STL)

Si estudiamos el bucle (n = v.size()):

n	asign.	comp.	inc.	total
0	1	1	0	2
1	1	2	1	4
2	1	3	2	6
: n	: 1	\vdots $n+1$: n	: 2+2n
:	1 1 : 1	3 :	:	:

La complejidad del algoritmo será:

rdú, Oncina, Forcada (Univ. de Alicante)

$$T(n) = \underbrace{1}_{\text{primera asignación}} + \underbrace{2 + 2n}_{\text{bucle}} + \underbrace{n}_{\text{interior del bucle}} = 3 + 3n$$

Tiempo de ejecución de un algoritmo

Para simplificar, se suele considerar que el coste temporal de las operaciones elementales es unitario

Definición (Tiempo de ejecución de un algoritmo)

Una función (T(n)) que mide el número de operaciones elementales que realiza el algoritmo para un tamaño de problema n

erdú, Oncina, Forcada (Univ. de Alicante)

∢ロト→部ト→車ト→車

Ejercicio: Traspuesta de una matriz cuadrada

Traspuesta de una matriz $d \times d$

(Sintaxis de la librería armadillo)

```
1 void traspuesta( mat& A){ // supongo que A.n_rows == A.n_cols
   for( int i = 1; i < A.n_rows; i++ )</pre>
      for( int j = 0; j < i; j++)
        swap( A(i,j), A(j,i) );
5 }
```

Como la complejidad del bucle interior es: 2 + 3i veces

$$T_d(d) = \underbrace{2(d-1)+2}_{\text{bucle exterior}} + \underbrace{\sum_{i=1}^{d-1} (2+3i)}_{\text{interior}} = \cdots = O(d^2)$$

Si queremos la complejidad con respecto al tamaño del problema ($s = d^2$):

$$T_s(s) = T_d(d) = O(d^2) = O(s)$$

Ejercicio: Producto de dos matrices cuadradas

- La complejidad de las líneas 6-7 es O(d)
- La complejidad de las líneas 4-9 es $O(d) + d \cdot O(d) = O(d^2)$
- La complejidad de las líneas 3-10 es $O(d) + d \cdot O(d^2) = O(d^3)$

La complejidad del algoritmo será: $T_d(d) = O(d^3)$

erdú, Oncina, Forcada (Univ. de Alicante)

ADA

26-01-2015 (3

3) 15

Ejercicios

- Dado un vector de enteros v y el entero z
 - Devuelve el primer índice i tal que v[i] == z
 - Devuelve -1 en caso de no encontrarlo

```
Búsqueda de un elemento

int buscar( const vector<int> &v, int z ){
  for( int i = 0; i < v.size(); i++ )
    if( v[i] == z )
    return i;
  return -1;
}</pre>
```

4

Ejercicio: Producto de dos matrices cuadradas

¿Cual es la complejidad con respecto al tamaño?

El tamaño del problema es $s=2d^2$ por lo que $d=\sqrt{s/2}$

$$T_s(s) = T_d(d) = O(d^3) = O(\sqrt{s/2}^3) = O(s^{3/2})$$

¿Cual es la complejidad espacial?

- En la complejidad espacial no se tiene en cuenta lo que ocupa la codificación del problema.
- Solo se tiene en cuenta lo que es imputable al algoritmo.

$$T_d(d) = d^2$$
 $T_s(s) = T_d(\sqrt{s/2}) = O(s)$

′erdú, Oncina, Forcada (Univ. de Alicante)

AD,

26-01-2015 (318)

《日》《圖》《意》《意》

3) 10/5

Problema

- No podemos contar el número de pasos porque para diferentes entradas de un mismo tamaño de problema se obtienen diferentes complejidades
- En el ejemplo de la transparencia anterior:

V	z	Pasos
(1,0,2,4)	1	3
(1,0,2,4)	0	6
(1,0,2,4)	2	9
(1,0,2,4)	4	12
(1,0,2,4)	5	14

- ¿Qué podemos hacer?
 - Acotar el coste mediante dos funciones que expresen respectivamente, el coste máximo y el coste mínimo del algoritmo (cotas de complejidad)

Índice

- Noción de Complejidad
- 2 Cotas de complejidad
- Cálculo de Complejidades
 - Algoritmos iterativos
 - Algoritmos recursivos

Verdú, Oncina, Forcada (Univ. de Alicante)

return -1;

6 }

ADA

26-01-2015 (31

5 (318) 19

19 / 53

Cotas de complejidad

- Cuando aparecen diferentes casos para una misma talla n, se introducen las siguientes medidas de la complejidad
 - Caso peor: cota superior del algoritmo $\to C_s(n)$
 - Caso mejor: cota inferior del algoritmo $\rightarrow C_i(n)$
 - Caso promedio: coste promedio $\rightarrow C_m(n)$
- Todas son funciones del tamaño del problema
- El coste promedio es difícil de evaluar a priori
 - Es necesario conocer la distribución de probabilidad de la entrada
 - ¡No es la media de la cota inferior y de la cota superior!

C

Verdú

erdú, Oncina, Forcada (Univ. de Alicante)

۸D

4□ > 4♂ > 4 ≥ > 4 ≥ > ≥

20 / 52

ΑE

18) 20

20 / 55

Cotas superior e inferior

Buscar elemento int buscar(const vector<int> &v, int z) { for(int i = 0; i < v.size(); i++) if(v[i] == z) return i;</pre>

• En este caso el tamaño del problema es n = v.size()

ADA

	Mejor caso	Peor caso
	1 + 1 + 1	1 + 3n + 1
Suma	3	3n + 2

rdú, Oncina, Forcada (Univ. de Alicante)

Cotas:

$$C_s(n) = 3n + 2 = O(n)$$

$$C_i(n) = 3 \qquad = O(1)$$

/ > 4립 > 4절 > 4절 > 절 > 4

Cotas superior e inferior

Coste de la función buscar

Análisis asintótico

- El estudio de la complejidad resulta realmente interesante para tamaños grandes de problema por varios motivos:
 - Las diferencias "reales" en tiempo de ejecución de algoritmos con diferente coste para tamaños pequeños del problema no suelen ser muy significativas
 - Es lógico invertir tiempo en el desarrollo de un buen algoritmo sólo si se prevé que éste realizará un gran volumen de operaciones
- Al estudio de la complejidad para tamaños grandes de problema se le denomina análisis asintótico
 - Permite clasificar las funciones de complejidad de forma que podamos compararlas entre si fácilmente
 - Para ello, se definen clases de equivalencia que engloban a las funciones que "crecen de la misma forma".
- Se emplea la notación asintótica

Verdú, Oncina, Forcada (Univ. de Alicante)

Cota superior. Notación O

• Sea $f: \mathbb{N} \to \mathbb{R}^+$; se define el conjunto O(f) como el conjunto de funciones acotadas superiormente por un múltiplo de f:

$$O(f) = \{g : \mathbb{N} \to \mathbb{R}^+ | \exists c \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \forall n \geqslant n_0, g(n) \leqslant cf(n) \}$$

• Dada una función $t: \mathbb{N} \to \mathbb{R}^+$ se dice que $t \in O(f)$ si existe un múltiplo de f que es cota superior de t para valores grandes de n

Análisis asintótico

Notación asintótica:

- Notación matemática utilizada para representar la complejidad cuando el tamaño de problema (n) crece $(n \to \infty)$
- Se definen tres tipos de notación:
 - Notación O (ómicron mayúscula o big omicron) ⇒ cota superior
 - Notación Ω (omega mayúscula o *big omega*) \Rightarrow cota inferior
 - Notación Θ (zeta mayúscula o big theta)⇒ coste exacto

rdú, Oncina, Forcada (Univ. de Alicante)

dú, Oncina, Forcada (Univ. de Alicante)

Cota superior. Notación O

¿Para qué sirven?

• Permite agrupar en clases funciones con el mismo crecimiento

Cota inferior. Notación Ω

• Sea $f: \mathbb{N} \to \mathbb{R}^+$; se define el conjunto $\Omega(f)$ como el conjunto de funciones acotadas inferiormente por un múltiplo de f:

$$\Omega(f) = \{g : \mathbb{N} \to \mathbb{R}^+ | \exists c \in \mathbb{R}, \exists n_0 \in \mathbb{N} : \forall n \geqslant n_0, g(n) \geqslant cf(n) \}$$

• Dada una función $t: \mathbb{N} \to \mathbb{R}^+$ se dice que $t \in \Omega(f)$ si existe un múltiplo de f que es cota inferior de t para valores grandes de n

ADA

Propiedades

$$f \in O(f)$$

$$f \in O(g) \Rightarrow O(f) \subseteq O(g)$$

$$O(f) = O(g) \Leftrightarrow f \in O(g) \land g \in O(f)$$

$$f \in O(g) \land g \in O(h) \Rightarrow f \in O(h)$$

$$f \in O(g) \land f \in O(h) \Rightarrow f \in O(\min\{g, h\})$$

$$f_1 \in O(g_1) \land f_2 \in O(g_2) \Rightarrow f_1 + f_2 \in O(\max\{g_1, g_2\})$$

$$f_1 \in O(g_1) \land f_2 \in O(g_2) \Rightarrow f_1 + f_2 \in O(g_1 + g_2)$$

$$f_1 \in O(g_1) \land f_2 \in O(g_2) \Rightarrow f_1 f_2 \in O(g_1 + g_2)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f \in O(g)$$

$$f(n) = a_m n^m + \dots + a_1 n + a_0 \text{ con } a_m > 0 \Rightarrow f(n) \in O(n^m)$$

$$O(f) \subset O(g) \Rightarrow f \in O(g) \land g \notin O(f)$$

Cota inferior. Notación Ω

Propiedades

$$f \in \Omega(f)$$

$$f \in \Omega(g) \Rightarrow \Omega(f) \subseteq \Omega(g)$$

$$\Omega(f) = \Omega(g) \Leftrightarrow f \in \Omega(g) \land g \in \Omega(f)$$

$$f \in \Omega(g) \land g \in \Omega(h) \Rightarrow f \in \Omega(h)$$

$$f \in \Omega(g) \land f \in \Omega(h) \Rightarrow f \in \Omega(\max\{g, h\})$$

$$f_1 \in \Omega(g_1) \land f_2 \in \Omega(g_2) \Rightarrow f_1 + f_2 \in \Omega(\min(f_1, f_2))$$

$$f_1 \in \Omega(g_1) \land f_2 \in \Omega(g_2) \Rightarrow f_1 + f_2 \in \Omega(f_1 + f_2)$$

$$f_1 \in \Omega(g_1) \land f_2 \in \Omega(g_2) \Rightarrow f_1 f_2 \in \Omega(g_1g_2)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \Rightarrow g \in \Omega(f)$$

$$f(n) = a_m n^m + \dots + a_1 n + a_0 \text{ con } a_m > 0$$

$$\Rightarrow f(n) \in \Omega(n^m)$$

Verdú, Oncina, Forcada (Univ. de Alicante)

Coste exacto. Notación Θ

• Sea $f: \mathbb{N} \to \mathbb{R}^+$; se define el conjunto $\Theta(f)$ como el conjunto de funciones acotadas superior e inferiormente por un múltiplo de f:

$$\Theta(f) = \{g : \mathbb{N} \to R^+ | \exists c, d \in \mathbb{R}, \exists n_0 \in \mathbb{N} : \\ \forall n \geqslant n_0, cf(n) \leqslant g(n) \leqslant df(n) \}$$

- O lo que es lo mismo: $\Theta(f) = O(f) \cap \Omega(f)$
- Dada una función $t: \mathbb{N} \to \mathbb{R}^+$ se dice que $t \in \Theta(f)$ si existen múltiplos de f que son a la vez cota superior y cota inferior de t para valores grandes de n

rdú, Oncina, Forcada (Univ. de Alicante)

Coste exacto. Notación Θ

ADA

Propiedades

$$f \in \Theta(f)$$

$$f \in \Theta(g) \Rightarrow \Theta(g) = \Theta(f)$$

$$\Theta(f) = \Theta(g) \Leftrightarrow f \in \Theta(g) \land g \in \Theta(f)$$

$$f \in \Theta(g) \land g \in \Theta(h) \Rightarrow f \in \Theta(h)$$

$$f \in \Theta(g) \land f \in \Theta(h) \Rightarrow f \in \Theta(\max\{g, h\})$$

$$f_1 \in \Theta(g_1) \land f_2 \in \Theta(g_2) \Rightarrow f_1 + f_2 \in \Theta(f_1 + f_2)$$

$$f_1 \in \Theta(g_1) \land f_2 \in \Theta(g_2) \Rightarrow f_1 f_2 \in \Theta(g_1 g_2)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k, k \neq 0, k \neq \infty \Rightarrow \Theta(f) = \Theta(g)$$

$$f(n) = a_m n^m + \dots + a_1 n + a_0 \text{ con } a_m > 0$$

$$\Rightarrow f(n) \in \Omega(n^m)$$

Jerarquias de funciones

• Los conjuntos de funciones están incluidos unos en otros generando una ordenación de las diferentes funciones. Por ejemplo, para $O(\cdot)$,

• Las clases más utilizadas en la expresión de complejidades son:

$$\underbrace{O(1)}_{\text{constantes}} \subset \underbrace{O(\log\log n)}_{\text{subligarítmicas}} \subset \underbrace{O(\log n)}_{\text{logarítmicas}} \subset \underbrace{O(n)}_{\text{logarítmicas}} \subset \underbrace{O(n)}_{\text{sublineales}} \subset \underbrace{O(n)}_{\text{lineales}} \subset \underbrace{O(n!)}_{\text{exponenciales}} \subset \underbrace{O(n!)}_{\text{superexponenciales}} \underbrace{O(n!)}_{\text{superexp$$

Verdú, Oncina, Forcada (Univ. de Alicante)

ADA

Cálculo de complejidades

- Pasos para obtener las cotas de complejidad
 - Determinar la talla o tamaño del problema
 - Determinar los casos mejor y peor (instancias para las que el algoritmo tarda más o menos)

ADA

- Para algunos algoritmos, el caso mejor y el caso peor son el mismo ya que se comportan igualmente para cualquier instancia del mismo tamaño
- Obtención de las cotas para cada caso
 - Algoritmos iterativos
 - Algoritmos recursivos

Índice

- Noción de Complejidad
- Cálculo de Complejidades
 - Algoritmos iterativos
 - Algoritmos recursivos

erdú, Oncina, Forcada (Univ. de Alicante)

∢ロト→部ト→車ト→車

Algoritmos iterativos

Sumar elementos

```
1 int sumar( const vector<int> &v ) {
    for( int i = 0; i < v.size(); i++ )</pre>
      s += v[i];
    return s;
6 }
```

Línea	Pasos	C. Asintótica
2	1	Θ(1)
3,4	n	$\Theta(n)$
5	1	$\Theta(1)$
Suma	n+2	$\Theta(n)$

Algoritmos iterativos

Buscar elemento 1 int buscar(const vector<int> &v, int z) { for(int i = 0; i < v.size(); i++)</pre> if(v[i] == z)return i; return -1; 6 }

Línea	Cuenta Pasos		C. Asir	ntótica
	Mejor	Peor	Mejor	Peor
	caso	caso	caso	caso
2	1	n	$\Omega(1)$	$\overline{O(n)}$
3	1	n	$\Omega(1)$	O(n)
4	1	0	$\Omega(1)$	_
5	0	1	_	O(1)
Suma	3	2n + 1	$\Omega(1)$	O(n)

$$C_s(n) = 2n + 1$$
 $C_i(n) = 3$
 $C_s(n) \in O(n)$
 $C_i(n) \in \Omega(1)$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < ○

26-01-2015 (318)

Ejemplo

Verdú, Oncina, Forcada (Univ. de Alicante)

Verdú, Oncina, Forcada (Univ. de Alicante)

Búsqueda en un vector ordenado

```
1 int buscar( const vector<int> &v, int x ) {
2 int pri = 0;
    int ult = v.size() - 1;
    while( pri < ult ) {</pre>
      int m = ( pri + ult ) / 2;
      if (v[m] < x)
        pri = m + 1;
      else
        ult = m;
    if(v[pri] == x)
12
      return pri;
13
      return -1;
14
15 }
```

《四》《圖》《意》《意》》 意

Ejercicio

Elemento máximo de un vector 1 int maximo(const vector<int> &v) { int max = v[0];for(int i = 1; i < v.size(); i++)</pre> if(v[i] > max) max = v[i];return max; 7 }

/erdú, Oncina, Forcada (Univ. de Alicante)

Algoritmos recursivos

Dado un algoritmo recursivo:

Búsqueda binaria

```
1 int buscar( const vector<int> &v, int pri, int ult, int x){
   if( pri == ult )
      return (v[pri] == x) ? pri : -1;
   int m = ( pri + ult ) / 2;
   if(v[m] < x)
     return buscar( v, m+1, ult, x );
      return buscar( v, pri, m, x );
8
9 }
```

• El coste depende de las llamadas recursivas, y, por tanto, debe definirse recursivamente:

$$\mathcal{T}(n) \in egin{cases} \Theta(1) & n=1 \ \Theta(1) + \mathcal{T}(n/2) & n>1 \end{cases} \qquad (n= exttt{ult}- exttt{pri}+1)$$

Relaciones de recurrencia

• Una relación de recurrencia es una expresión que relaciona el valor de una función f definida para un entero n con uno o más valores de la misma función para valores menores que n

$$f(n) = \begin{cases} a f(F(n)) + P(n) & n > n_0 \\ P'(n) & n \leqslant n_0 \end{cases}$$

Donde:

- $a \in \mathbb{N}$ es una constante
- P(n), P'(n) son funciones de n
- F(n) < n (normalmente n b con b > 0, o n/b con $b \ge 1$)

'erdú, Oncina, Forcada (Univ. de Alicante)

Ordenación por selección

• Ejemplo: Ordenar un vector a partir del elemento pri:

Ordenación por selección (recursivo)

```
void ordenar( vector<int> &v, int pri) {
    if( pri == v.size() )
       return:
    for( int i = pri + 1; i < v.size(); i++ )</pre>
       if( v[i] < v[m] )</pre>
         m = i:
    swap( v[m], v[pri]);
    ordenar(v,pri + 1);
10 }
```

• Obtener ecuación de recurrencia a partir del algoritmo:

$$T(n) = egin{cases} \Theta(1) & n = 1 \ \Theta(n) + T(n-1) & n > 1 \end{cases}$$

donde n = v.size() - pri.

Algoritmos recursivos

- Las relaciones de recurrencia se usan para expresar la complejidad de un algoritmo recursivo aunque también son aplicables a los iterativos
- Si el algoritmo dispone de mejor y peor caso, puede haber una relación de recurrencia para cada caso
- La complejidad de un algoritmo se obtiene en tres pasos:
 - Determinación de la talla del problema
 - Obtención de las relaciones de recurrencia del algoritmo
 - Resolución de las relaciones
- Para resolverlas, usaremos el método de sustitución:
 - Es el método más sencillo
 - Sólo para funciones lineales (sólo una vez en función de sí mismas)
 - Consiste en sustituir cada f(n) por su valor al aplicarle de nuevo la función hasta obtener un término general

rdú, Oncina, Forcada (Univ. de Alicante)

Ecuación de recurrencia

Resolviendo la recurrencia por sustitución

$$T(n) = n + T(n-1)$$

$$= n + (n-1) + T(n-2)$$

$$= n + (n-1) + (n-2) + T(n-3)$$

$$= n + (n-1) + (n-2) + (n-3) + \dots + 3 + 2 + T(1)$$

$$= n + (n-1) + (n-2) + (n-3) + \dots + 3 + 2 + 1$$

$$= \sum_{i=1}^{n} j = \frac{n(n+1)}{2}$$

Entonces

$$T(n) \in \Theta(n^2)$$

Algoritmo de ordenación por partición o Quicksort

- Elemento pivote: sirve para dividir en dos partes el vector. Su elección define variantes del algoritmo
 - Al azar
 - Primer elemento (Quicksort primer elemento)
 - Elemento central (Quicksort central)
 - Elemento mediana (Quicksort mediana)
- Pasos:
 - Elección del pivote
 - Se divide el vector en dos partes:
 - parte izquierda del pivote (elementos menores)
 - parte derecha del pivote (elementos mayores)
 - Se hacen dos llamadas recursivas. Una con cada parte del vector

17 }

《日》《圖》《意》《意》

Quicksort

Verdú, Oncina, Forcada (Univ. de Alicante)

- Tamaño del problema: n
 - Mejor caso: subproblemas (n/2, n/2)

$$T(n) \in egin{cases} \Theta(1) & n \leqslant 1 \ \Theta(n) + T(rac{n}{2}) + T(rac{n}{2}) & n > 1 \end{cases}$$

• Peor caso: subproblemas (0, n-1) o (n-1, 0)

$$T(n) \in egin{cases} \Theta(1) & n \leqslant 1 \ \Theta(n) + T(0) + T(n-1) & n > 1 \end{cases}$$

Quicksort primer elemento

Quicksort 1 void quicksort(int v[], int pri, int ult) { if(ult <= pri)</pre> return; int p = pri; int j = ult; while(p < j) {</pre> if(v[p+1] < v[p]) {</pre> swap(v[p+1], v[p]); p++; } else { swap(v[p+1], v[j]); 14 quicksort(v, pri, p-1); quicksort(v, p+1, ult);

erdú, Oncina, Forcada (Univ. de Alicante)

Quicksort

Mejor caso:

$$f(n) = n + 2T\left(\frac{n}{2}\right)$$
 Rec. 1

$$= n + 2\left(\frac{n}{2} + 2f\left(\frac{n}{2^2}\right)\right) = 2n + 2^2T\left(\frac{n}{2^2}\right)$$
 Rec. 2

$$= 2n + 2^2\left(\frac{n}{2^2} + 2f\left(\frac{n}{2^3}\right)\right) = 3n + 2^3T\left(\frac{n}{2^3}\right)$$
 Rec. 3

$$= i n + 2^iT\left(\frac{n}{2^i}\right)$$
 Rec. i

La recursion termina cuando $n/2^i = 1$ por lo que habrá $i = \log_2 n$ llamadas recursivas

$$= n \log_2 n + nT(1) = n \log_2 n + n$$

Por tanto,

$$T(n) \in \Omega(n \log_2 n)$$

Quicksort

• Peor caso:

$$T(n) = n + T(n-1)$$
 Rec. 1
= $n + (n-1) + T(n-2)$ Rec. 2
= $n + (n-1) + (n-2) + T(n-3)$ Rec. 3
= $n + (n-1) + (n-2) + \dots + T(n-i)$ Rec. i

La recursión termina cuando n-i=1 por lo que habrá i=n-1llamadas recursivas

$$= n + (n-1) + (n-2) + \dots + 3 + 2 + T (1)$$

$$= \sum_{j=2}^{n} j + 1 = \frac{n(n+1)}{2}$$

Por tanto,

$$f(n) \in O(n^2)$$

Verdú, Oncina, Forcada (Univ. de Alicante)

ADA

26-01-2015 (318)

Quicksort mediana

- En la versión anterior se cumple que el caso mejor es cuando el elemento seleccionado es la mediana
- En este algoritmo estamos forzando el caso mejor
- Obtener la mediana
 - Coste menor que $O(n \log n)$
 - Se aprovecha el recorrido para reorganizar elementos y para encontrar la mediana en la siguiente subllamada
 - Su complejidad es por tanto de $\Theta(n \log n)$

Quicksort

Verdú, Oncina, Forcada (Univ. de Alicante)