Name:

1. (4 points) The procedure EUCLID computes the greatest common divisor of two positive integers. Use the following loop invariant to prove that the call EUCLID(A, B), $0 \le B < A$, correctly computes the gcd of A and B:

$$gcd(a, b) = gcd(A, B)$$
 and $0 \le b < a$.

You may use the following facts:

- $gcd(b, a \mod b) = gcd(a, b)$
- gcd(a,0) = a

Euclid(a, b)

- 1 while $b \neq 0$
- $2 r = a \bmod b$
- a = b
- b = r
- 5 return a

Solution

Initialization. Before the first execution of the while loop, a = A and b = B, so gcd(a, b) = gcd(A, B) and $0 \le b < a$.

Maintenance. Suppose the invariant holds at the start of an iteration; that is, gcd(a, b) = gcd(A, B) and $0 \le b < a$. The variable r is set equal to $a \mod b$, which is the remainder upon dividing a by b; therefore, $0 \le r < b$. Lines 3 and 4 update a and b; let a' and b' be the new values after these lines execute. Then since b' = r and a' = b, $0 \le b' = r < b = a'$, or $0 \le b' < a'$. Also,

$$\gcd(a',b') = \gcd(b,r) = \gcd(b,a \bmod b) = \gcd(a,b) = \gcd(A,B),$$

so gcd(a',b') = gcd(A,B), and we conclude that the invariant holds at the start of the next iteration.

Termination. Initially, b = B, a non-negative integer. At each iteration, b is reduced but remains non-negative; therefore it must eventually be true that b = 0, at which point the invariant gives us

$$a = \gcd(a, 0) = \gcd(A, B),$$

so we can conclude that the algorithm correctly computes gcd(A, B).

2. (4 points) The function Recursive-Max recursively computes the maximum value in a numeric sub-array A[p..r]. Initially, it is called with p=1 and r=A.length to determine the maximum value in the entire array.

RECURSIVE-MAX(A, p, r)1 if p < r2 $q = \lfloor (p+r)/2 \rfloor$ 3 x = RECURSIVE-MAX(A, p, q)4 y = RECURSIVE-MAX(A, q+1, r)5 return MAX(x, y) // two-argument MAX(x, y)) function

6 return A[p]

- (a) Derive a recursion for the running-time of RECURSIVE-MIN.
- (b) Use a recursion tree to 'guess' an asymptotic bound for the recursion.
- (c) Use the substitution method to prove your guess is correct.

Solution

- (a) $T(n) = 2T(n/2) + \Theta(1)$ since the algorithm makes two recursive calls of size n/2 and the non-recursive work is all constant-time.
- (b) The tree is a complete binary tree with $\lg n$ levels. Every node has cost c. Therefore, the cost of level k is $c2^k$, $k=0,1,\ldots,\lg n$, and the sum over all the nodes is

$$\sum_{k=0}^{\lg n} c2^k = c(2^{\lg n+1} - 1) = c(2n-1).$$

We conjecture that the running time is $\Theta(n)$.

(c) It is sufficient to prove the Big-Oh bound; proof of the Big-Omega bound is similar. Let n > 1 and suppose that for all $1 \le k < n$ we have that $T(k) \le ck$ for some constant c > 0 [this is the *inductive hypothesis*]. We need to show that $T(n) \le cn$.

$$T(n) = 2T(n/2) + \Theta(1)$$

 $\leq 2T(n/2) + d$ (for some positive constant d and n sufficiently large)
 $\leq 2c(n/2) + d$
 $= cn + d$

Unfortunately, there is no way to make $cn + d \le cn$ since d > 0. We start over with a stronger inductive hypothesis: $T(k) \le ck - d$ for positive constants c and d. Then

$$T(n) = 2T(n/2) + \Theta(1)$$

$$\leq 2T(n/2) + e \text{ (for some positive constant } e \text{ and } n \text{ sufficiently large)}$$

$$\leq 2c(n/2) - 2d + e$$

$$\leq cn - d \text{ (so long as } d \geq e)$$

Note: The students are not required to address the base case. We discussed in class that for these sorts of problems, we can always increase the constant c to ensure that the bound is satisfied for any finite number of initial values.

- **3.** (2 points) Use the Master Theorem to determine the running times for each of the following recurrence relations:
 - (a) $T(n) = 4T(n/2) + \Theta(n)$ (Schoolbook-Multiply)
 - (b) $T(n) = 2T(n/2) + \Theta(n)$ (Maximum-Subarray)

Solution

- (a) a=4, b=2, so $\log_b a=\lg 4=2$ and $n^{\log_b a}=n^2$. Therefore, $f(n)=\Theta(n)=O(n^{\log_b a-\epsilon})=O(n^2)$, so by case (a) of the Master Theorem, $T(n)=\Theta(n^{\log_b a})=\Theta(n^2)$.
- (b) a=2, b=2, so $\log_b a = \lg 2 = 1$ and $n^{\log_b a} = n$. Therefore, $f(n) = \Theta(n) = \Theta(n^{\log_b a})$, so by case (b) of the Master Theorem, $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(n \lg n)$.

Theorem (Master Theorem). Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n)$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- (a) If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- (b) If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- (c) If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.