Neural Nets: Learning Goals

- 1. Definition and Network Structure
- 2. Single-layer Feed-forward networks
- 3. Multilayer Feed-forward networks
- Russell 18.7

Many Classification Approaches

- Decision trees
- Linear models, e.g., regression, ridge, lasso
- Neural Nets
- Naïve Bayes
- * kNN
- * SVM
- Ensembles
- Random forests
- Hidden Markov Models
- Conditional Random Fields

Simulating Human Brains?

- To build a classifier, why not do what a human brain does?
- In particular, neuroscience reveals the existence of massively connected networks of neurons
- In 1943, McCulloch and Pitts proposed a simple mathematical model for neurons, now known as

neural networks

(journal.frontiersin.org)

Structure of a Network Unit

- * A Neural network composed on nodes/units connected by links
- * A link from unit i to unit j propagates an activation a_i to possibly trigger an activation a_i (caution: i and j swapped below; but use Fig 18.19)

(en.wikibooks.org)

Input and Output Activations

- * Each input link a_i has a weight $w_{i,j}$ determining the strength and sign of the connection
- Unit *j* computes a weighted sum of its inputs: $input_j = \sum_{i=0}^{n} (w_{i,j} a_i)$
- ❖ Unit j then applies an activation function g to the weighted sum of inputs to derive its output:

$$a_j = g(input_j) = g(\sum_{i=0}^n (w_{i,j} a_i))$$

* g can be a hard threshold (Fig 18.17), in which case the unit is called a perceptron, or a logistic function, in which case a sigmoid perceptron

Feed-forward and Recurrent Networks

- This network determines to which segment a customer belongs
- This is an example of a feed-forward network
 - No loops, forming an acyclic graph
- A recurrent network has loops and may take time to reach a steady state

Layers in Feed-forward Networks

- Our example has a hidden layer of units
- Common to have units arranged in layers, i.e., inputs from the preceding layer and outputs to the next layer
- Why do we need hidden layers?

Hidden Layers

- Layers add complexity to what we can model
- Suppose we have 1 hidden layer in between the inputs and outputs
- \diamond call the input vector x, the hidden layer activations h, and the output activation y
- ❖ have some function f that maps from x to h and another function g that maps from h to y
- * So the hidden layer's activation is f(x) and the output of the network is g(f(x))
- * g(f(x)) can make computation that g() and f() can't do individually will return to this issue later

E.g., Single-layer Boolean Function Networks

- Gain insights on the simplest networks boolean logical operators, i.e., AND, OR, NOT
- Consider an adder unit

x	y	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

* Thus, Carry(x,y) = AND(x,y) and Sum(x,y) = XOR(x,y)

Linearly Separability

- Easy for a 1-layer NN to learn AND
- Observe that AND is linearly separable
- So are OR and NOT

Linear Separability (2)

- XOR is not captured in a single-layer NN because it is not linearly separable
- But adding hidden layers can! How?
- * XOR(x,y) is true when:
 - First layer functions:
 - (i) OR(x,y)
 - (ii) NOT(AND(x,y))
 - Second layer function: both (i) and (ii) are true with AND

Expressiveness of NNs

- XOR shows that hidden layers can help
- ❖ But in general if training data not linearly separable, NNs can take effort to learn, as compared with decision trees (Fig 18.22)
- ❖ The reverse also true, i.e., NNs can learn other scenarios faster than decision trees
- ❖ E.g., a majority function (Fig 18.22)
 - Output = 1 iff n/2 inputs are 1
 - w_i = 1 for each of the *n* inputs; and w_0 = n/2

Expressiveness of NNs (2)

- Our discussion on logical operators show the "ideal" weights for an NN to capture the operator
- ❖ Fig 18.22 shows the speed for an NN to learn from the training data and to converge to the "ideal" weights
- Given NNs are good for linear separable scenarios, NNs are very good linear regression
- Multi-layer NNs are also very good for non-linear regression (Fig 18.23)

CPSC 340, R Ng

Learning in NNs

- For single-layer NNs, the perceptron learning rule sufficient for learning the weights
- For multi-layer NNs, the learning much harder (sec 18.7.4, not required)
- Expressiveness comes from hidden layers, which require more complex backpropagation
- Learning the structure of an NN also not trivial
- Cross-validation often used to select the best structure (sec 18.7.5, not required)

Concluding Remarks: Big Data

- NNs are often used for scenarios that are known to be non-linear
- Optimized for large NNs
- One weakness of NNs is that the hidden layers may not have natural meanings, unlike the paths in a decision tree
- So while NNs may be good for classification performance, they may not be as good in generating insights for users