Question Bank

Unit -2 Regression Analysis

1.	Question	ns											
О													
			ll at Bellan				_					_	
	_	•	*		_	•			_				verage minut
per day) of smart phones. Table 1 shows the C								nd sma	art pho	ne us	age in	minu	tes per day o
	40 studer		_	_	_		_	_					
			e Pearson o	correlat	ion coe	efficier	it betw	een Co	GPA a	nd mo	bile p	hone	usage of
	students. (b) Conduct a hypothesis test at a = 0.01 to check whether CGPA and mobile phone usage are negatively correlated.												
	_	•		. 41 4 41		.1.4:	:. 1	41	0.4.0	أ	.4 . 1	41	:. 444
							is less	tnan -	-0.4. C	onau	et a ny	potne	esis test at a =
			ether the c				~~ (\ **				dow		
	rable.1:	Data 0	f CGPA an	a mooi	ne pho	ne usaş	ge (Av	erage i	mnute	s per o	Jay)		
	CGPA	2.65	2.25	1.86	1.47	2.10	1.94	2.71	1.83	2.65	2.0)4	
	Phone	75	89	65	136	95	103	74	109	7	98		
	Usage												
	CGPA	2.54	2.16	2.28	2.47	2.18	2.57	1.97	2.87	2.10	3.2	28	
	Phone	60	93	88	81	92	78	102	70	95	89		
	Usage												
	CGPA	2.78	2.441.87	2.50	2.24	2.01	2.17	2.20	2.05	1.63	3		
	Phone	72	82	107	80	89	100	92	91	98	123	3	
	Usage												
	CGPA	2.28	2.63	2.86	2.24	2.44	2.69	2.22	3.07	1.77	3.0	13	
	Phone	88	76	70	89	82	74	90	65	113	66		
	Usage												
													anguages of
				ves tha	t the le	ngth o	f the m	ovie (1	measu	red in	minu	tes) is	not related t
	its box-o			_									
			length of t										
												ation b	etween leng
	of the mo	ovie an	d the box-o	office c	ollectio	on at a	signifi	cance	ievei c	0.05	٠.		
	таргр	2 Dot	a on length	of the	movio	and th	o boy	office	aallaat	ion			
	Length			170	160	77	147				110	141]
	the	01 12	1 19	170	100	' '	14/	11.	· /	'	110	1+1	
	movie												
	Box-	10	78 415	441	1192	258	118	5 139	9 42	27	309	411	1
	office		113	' ' 1	11/2	250	110			'		111	
- 1	collection												

Question Bank

Unit -2 Regression Analysis

Length of	100	82	82	114	110	163	92	172	142	136
the										
movie										
Box-	506	441	595	1728	1507	518	1463	1356	1014	422
office										
collection										
Length of	143	108	154	140	177	97	106	163	142	115
the										
movie										
Box-	508	1262	1783	1281	1253	1178	1103	454	301	296
office										
collection										

Table 3. provides ranking of Indian states based on corruption and Table 4. provides ranking based on literacy rate.

Calculate the Spearman rank correlation between the corruption rank and literacy rank.

TABLE 3 Rank based on corruption (1 implies high corruption)

	Bihar	Jammu	Madhya	Uttar	Karnataka	Rajasthan	Tamil	Chhattisgarh
State		and	Pradesh	Pradesh			Nadu	
		Kashmir						
Rank	1	2	3	4	5	6	7	8
	Delhi	Gujarat	Jharkhand	Kerala	Orissa	Andhra	Haryana	Himachal
State						Pradesh	-	Pradesh
Rank	9	10	11	12	13	14	15	16

TABLE 4. Rank based on literacy rate (1 implies high literacy)

	1			` 1	ingii iitorae			
	Bihar	Jammu	Madhya	Uttar	Karnataka	Rajasthan	Tamil	Chhattisgarh
State		and	Pradesh	Pradesh			Nadu	
		Kashmir						
Rank	16	12	10	11	7	15	4	9
	Delhi	Gujarat	Jharkhand	Kerala	Orissa	Andhra	Haryana	Himachal
State						Pradesh	•	Pradesh
Rank	2	5	13	1	8	14	6	3

Conduct a hypothesis test to check whether corruption and literacy rate are negatively correlated at a = 0.05.

4 .Harrison Seth, Dean of a Business School, believes that the outgoing salary of their MBA students may be correlated with their undergraduate specialization. Harrison believes that the students with engineering specialization at the undergraduate degree received more salary compared to other degrees.

Question Bank

Unit -2 Regression Analysis

Table 5. shows the outgoing salary (in millions of rupees) of MBA graduates and their discipline in undergraduate (1 =engineering and 0 =non-engineering). Calculate the correlation between salary and engineering discipline,

TABLE 5. Salary (in millions of rupees) and undergraduate degree (1 = engineering and 0 = non-

engineering)

	<i>U</i> /									
Degree	0	1	0	1	0	0	1	0	0	1
Salary	3.3	2.22	1.82	2.55	1.84	2.53	2.87	2.39	2.32	2.79
Degree	1	1	0	1	0	0	1	1	0	0
Salary	2.22	2.31	2.05	2.04	1.7	2.28	2.56	3.13	2.26	2.56
Degree	0	0	0	0	1	0	0	0	1	1
Salary	2.03	1.45	1.62	.92	2.31	2.37	1.59	2.56	3.13	3

Tele power is a telephone service provider which collects data on customer churn and the number of mobile handsets used by the customer.

Table 6. shows the data in which Y denotes churn (Y = 1 implies churn and Y = 0 implies no churn) and variable X denotes the number of handsets used by the customer where X = 0 implies the customer uses single handset and X = 1 implies the customer uses more than one handset for making phone calls. Calculate the Phi-coefficient for the data shown in Table 6.

TABLE 6. Number of handsets (X) and customer churn (Y)

				()				,		
X	1	1	0	0	0	1	1	1	1	1
Y	1	1	1	1	0	0	1	0	1	1
X	0	1	1	1	1	0	0	1	1	1
Y	0	1	0	1	1	0	0	1	1	1
X	1	1	1	0	1	0	1	0	1	1
Y	0	1	1	0	1	0	0	1	1	1
X	1	1	1	1	0	1	1	0	1	1
Y	0	1	0	1	1	1	1	0	0	1
X	0	0	1	0	1	0	1	1	0	1
Y	0	0	1	1	1	0	0	1	1	1

- For a simple linear regression, prove the following relationship between F-statistic and R^2 : $F = (n-2) R^2 / (1 R^2)$. In a simple linear regression model, prove that the value of F-statistic is same as the square of t-statistic value (that is, $F = t^2$).
- Price of a diamond is determined by 4Cs, namely, Carat, Cut, Clarity and Color. Carat is the weight of the diamond, and 1 carat is equivalent to 0.2 grams. Data on carat and price of 6000 diamonds are used for developing SLR models. The mean and the standard deviation of diamond price and carat are provided in Table 1.

TABLE 7. Descriptive statistics

Question Bank

Unit -2 Regression Analysis

	Carat	Price
Mean	1.33	11792
Standard Deviation	0.48	10184

A regression model (model 1) based on data of 6000 diamonds is developed using price as the dependent variable and carat as the independent variable.

Model 1: $Y = \beta 0 + \beta 1 \times Carat$

The SPSS output for model 1 and the corresponding residual plot is shown in Table 7 and Figure 8, respectively.

TABLE 8. Regression co-efficient Model

-								1
	Model		Unstandardiz	Standardized		t-value	Sig.	
			Coefficients		Coefficients			
			В	Std.	Bet	a		
				Error				
	1	(Constant)	-12738.581	200.801			-63.439	.000
		Carat	18381.261	141.733				

FIGURE 1. Plot between standardized predicted value versus standardized residual for model 1. (c) What is the interpretation of the coefficient for the variable carat in model 2?

Question Bank

Unit -2 Regression Analysis

- (d) Calculate the maximum possible price of a specific diamond whose weight is 0.4 grams at 95% confidence level using model 2.
- (e) Between models 1 and 2, which model should be used to explain variation in the diamond price? State the reasons clearly.
- Table 9. provides the winning margin of all 20 Lok Sabha constituencies of Kerala in 2014 parliament elections of India and maximum delay of top 20 flights (origin–destination) of Air India between 15 July 2014 and 15 September 2014.

TABLE 9 Data on Lok Sabha election winning margin of Kerala constituencies and maximum delay of top 20 Air India

S. No.	Constituency	Winning Margin	Air India Top 20 flights	Maximum Delay in Minutes
1	Alappuzha	19407	Bangalore—Mumbai	182
2	Alathur	37312	Ahmedabad—Mumbai	203
3	Attingal	69378	Hyderabad—Mumbai	240
4	Chalakudy	13884	Mumbai—Goa	164
5	Ernakulum	87047	Delhi-Kolkata	265
6	Idukki	50542	Chennai-Delhi	226
7	Kannur	6566	Delhi—Bangalore	156
8	Kasaragod	6921	Mumbai-Chennai	161
9	Kollam	37649	Kolkata—Delhi	219
10	Kottayam	120599	Mumbai-Delhi	328
11	Kozhikode	16883	Hyderabad—Delhi	181
12	Malappuram	194740	Delhi-Mumbai	340
13	Mavelikkara	32737	Mumbai—Ahmedabad	202
14	Palakkad	105300	Mumbai-Hyderabad	284
15	Pathanamthitta	56191	Chennai-Mumbai	234
16	Ponnani	25410	Bangalore—Delhi	199
17	Thiruvananthapuram	15470	Goa-Mumbai	178
18	Thrissur	38228	Delhi—Chennai	225
19	Vadakara	3306	Delhi—Hyderabad	146
20	Wayanad	20870	Mumbai—Bangalore	197

- (a) Develop a simple linear regression model between winning margin (Y) and maximum flight delay (X) and calculate the regression coefficients.
- (b) What is the value of R2?
- (c) Is the model statistically significant, what can you infer from the regression model?
- The box-office collection of a Bollywood movie across different regions and the corresponding social media engagement (likes + dislikes) is provided in Table

Question Bank

Unit -2 Regression Analysis

T-1-1- 10 C!-1	1	
- Labie TU, Sociai	- media engagement	versus box-office collection.
I do lo lo booldi	modia ongagomom	versus con onnection.

Region	Cumulative Likes + Dislikes (Engagement)	Revenue (INR)
Mumbai Territory	908104	70,056,138
Delhi/UP	1885487	45,230,603
East Punjab	845910	17,193,472

11 | TABLE 11. Social media engagement versus box-office collection—Continued

Region	Cumulative Likes + Dislikes (Engagement)	Revenue (INR)
West Bengal	1071577	15,074,364
Bihar	5	6,165,934
Rajasthan	3188	11,934,830
Nizam/AP	11527	14,984,099
Mysore	189588	5,923,729
Assam	34939	2,371,340
Odisha	999024	2,328,932
TNK	644074	1482738
CP	482457	14,224,686
Cl	296348	10,595,171

- (a) Develop a simple linear regression model for the data shown in Table 11. Is there any evidence that the box-office collection (Y) of the movie has statistically significant relationship with the social media engagement (X)?
- (b) What is the 95% confidence interval for the average box-office collection for a movie with 20,000 likes and dislikes?
- (c) Should Bollywood movie producers invest more to promote their movies through social media?
- Corruption perception index (source: Transparency International) and Gini Index (Source: Wikipedia) of 20 countries is shown in Table 11 Corruption perception index close to 100 indicates low corruption and close to 0 indicates high corruption. Gini index is a measure of income distribution among citizens of a country (high Gini indicates high inequality). TABLE 12. Corruption Index and Gini Index

Question Bank

Unit -2 Regression Analysis

Country	Corruption Index	Gini Index
Hong Kong	77	53.7
South Korea	53	30.2
China	40	46.2
Italy	47	32.7
Mongolia	38	36.5
Austria	75	27.6
Norway	85	23.5
UK	81	31.6
Canada	82	33.7
Germany	81	30.7
Sweden	88	25.4
Denmark	90	27.5

- (a) Develop a simple linear regression model (Y = b0 + b1 X) between corruption perception index (Y) and Gini index (X). What is the change in the corruption perception index for every one-unit increase in Gini index?
 - (b) What proportion of the variation in corruption perception index is explained by Gini index?
 - (c) Is there a statistically significant relationship between corruption perception index and Gini index at a = 0.1?
 - (d) Calculate the 95% confidence interval for the regression coefficient b1.
 - (e) Is it possible to conclude that the corruption perception index will decrease by at least 1 unit for every one-unit increase in Gini index? Conduct an appropriate hypothesis test at a = 0.05.
 - (f) Calculate 95% confidence interval for the expected value of corruption perception index for Gini index value = 30.

Table 13. Corruption Index and Gini Index—Continued

Country	Corruption Index	Gini Index
United States	74	40.8
Russia	29	40.1
Portugal	62	34.2
Romania	48	34
Argentina	36	42.7
Greece	44	34.2
Thailand	35	39.4

7. A regression model is developed between corruption perception index and per capita income (in US dollars) based on data on 20 countries. Regression model output obtained through Microsoft Excel is shown in Table 14. Note that Table 14 shows only partial output of the model developed. TABLE 14. Regression between corruption perception index (Y) and per capita (X)

Question Bank

Unit -2 Regression Analysis

able 14. Corruption	Index and Gi	ni Index—Con	tinued			
		SUMMARY	OUTPUT			
Regression Statistics						
Multiple R						
R Square						
Adjusted R Square						
Standard Error	10.94929					
Observations	20					
		ANO	VA			
	df	SS	MS	F	Significance F	
Regression	1	5918.236				
Residual	18	2157.964				
Total						
	Coefficients	Standard Error	t-Stat	p-value	Lower 95%	Upper 95%
Intercept		6.496415			5.773095	33.07002
Per Capita		0.00016			0.000788	0.001461

- (a) What proportion of the corruption perception index is explained by per capita?
- (b) What is change in the value of corruption perception index for every one-dollar increase in per capita?
- (c) Is there a statistically significant relationship between corruption perception index and per capita at

a = 0.01?

- (d) What is the average corruption perception index when per capita is \$30,000. What is the corresponding 95% confidence interval?
- (e) Per capita of a country is \$30,000. What is the probability that the corruption perception index of this country is less than 50?
- (f) Which of the following statements are true based on the model shown in Table 13?
- (i) Corruption perception index and per capita are positively correlated.
- (ii) Corruption perception index and per capita are negatively correlated.
- (iii) There is no correlation between corruption perception index and per capita.
- Data for Questions 1–6: The dean of a business school has collected data on their recent placement. To attract good students, it is important for the school to ensure that the students are placed with good salary package. The dean of the school believed that the salary earned by a student at placement depended on several variables. The data collected by the dean is listed in Table 15.

Table 15. Data Description.

Question Bank

Unit -2 Regression Analysis

S. No.	Variable	Variable Type	Code in SPSS output
1	Salary (Y)	Numerical	Salary
2	Gender	Categorical	Gender = 1 (Male), 0 (Female)
3	Percentage Marks in SSC	Numerical	Percent_SSC
			SSC_CBSE
4	Board SSC	Categorical (3 levels)	SSC_ICSE
			SSC_OTHERS
5	Percentage Marks in HSC	Numerical	Percent_HSC
6	Percentage Marks in Degree	Numerical	Percent_Degree
			Degree_Arts
			Degree_Commerce
7	Danua Cassialization	Catamanical (Clauses)	Degree_CompApp
/	Degree Specialization	Categorical (6 levels)	Degree_Engineering
			Degree_Science
			Degree_Management

S. No.	Variable	Variable Type	Code in SPSS output
8	Years of Experience	Numerical measured in years	Experience_Yrs
9	Entrance Exam	Catagorical	ENT = 1 implies took entrance exam
9	Elludiice Exalli	Categorical	ENT = 0 implies otherwise
10	Percentage in MBA	Numerical	Percent_MBA
11	Marks in communication	Numerical	Marks_Communication

The first regression model is built using degree of specialization as the explanatory variable.

 $Y=\beta_0+\beta_1$ Degree_Arts + β_2 Degree_Commerce + β_3 Degree_CompApp + β_4 Degree_Engineering

 $+ \beta_5$ Degree_Management.

The model 1 SPSS outputs are shown in Tables 16 - 18

Table. 16. Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	271ª	.073	.058	82949.958

^aPredictors: (Constant), Degree_Management, Degree_Arts, Degree_CompApp, Degree_Engineering, Degree_Commerce.

Question Bank

Unit -2 Regression Analysis

	Table	e. 16.	AN	OV	Ά
--	-------	--------	----	----	---

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
	Regression	1.662E11	5			
1	Residual		305			
	Total	2.265E12	310			

^aDependent Variable: Salary.

Table. 16. Coefficients

Mod	lal.	Unstandardized	d Coefficients	Standardized Coefficients	. +	Sig.
MOU	lei	В	Std. Error	Beta	ι	Jiy.
	(Constant)	261440.000	16589.992			
	Degree_Arts	-14040.000	31037.032			
	Degree_Commerce	26294.043	18666.192			
1	Degree_CompApp	13393.333	23704.925			
	Degree_Engineering	63760.000	22462.955			
	Degree_Management	-9013.437	18137.895			

^aDependent Variable: Salary.

Assuming that the salary package is important for the school, should the dean give more importance to certain degree disciplines while admitting the students to their MBA programme? Support your answers with precise arguments. 2. Is there a significant difference between the average salary earned by a student with science degree and commerce degree? Clearly state your arguments. 3. The dean of the school believes that the engineering students earn on average at least INR 25,000 more than the science students. Check whether his belief is true at 5% significance level by conducting an appropriate hypothesis tests. A new variable, which is the interaction between degree discipline engineering and the percentage marks in degree, is added to model 1 and the corresponding output is shown in Table 19.

Table. 17. Coefficients

Question Bank

Unit -2 Regression Analysis

Madal	Unstandardized Coefficients			c:-	1/15
Model -	В	Std. Error	t	Sig.	VIF
(Constant)	261440.000	16520.960	15.825	0.000	
Degree_Arts	-14040.000	30907.885	-0.454	0.650	1.355
Degree_Commerce	26294.043	18588.520	1.415	0.158	3.321
1 Degree_CompApp	13393.333	23606.287	0.567	0.571	1.809
Degree_Engineering	336963.387	146632.427	2.298	0.022	85.412
Degree_Management	- 9013.437	18062.423	-0.499	0.618	3.601
ENGPERCENT ^a	-5444.138	2357.318	-2.309	0.021	84.424

^{*}ENGPERCENT is interaction between Degree_Engineering and Percent_Degree.

Interpret the coefficient value for the interaction value ENGPERCENT (Degree_Engineering × Percent_Degree). Explain possible reason for the salary of engineering students decreasing as the percentage marks in degree increases. Clearly state your arguments. A stepwise regression is carried out using SPSS and the results of stepwise regression are shown in Tables 20 and 21.

Table. 17. Model summary

Model	R	R-Square	Adjusted R-Square	Std. Error of the Estimate
1	0.246a		0.057	82984.946
2				
3				
4				

Table. 17. Coefficient Values

Question Bank

Unit -2 Regression Analysis

Mo	del	Unstandardize	ed Coefficients	Sia	Correlations		
MO	dei	В	Std. Error	Sig.	Zero-order	Partial	Part
1	(Constant)	131027.092	32059.466	0.000			
	Marks_Communication	2333.254	523.349	0.000	0.246	0.246	0.246
2	(Constant)	96461.563	32253.883	0.003			
	Marks_Communication	2441.930	510.130	0.000	0.246	0.263	0.257
	GENCOM	689.203	162.261	0.000	0.215	0.235	0.228
3	(Constant)	116685.273	32465.888	0.000			
	Marks_Communication	2323.885	504.517	0.000	0.246	0.254	0.244
	GENCOM	658.158	160.332	0.000	0.215	0.228	0.217
	Degree_Management	-28695.590	9222.060	0.002	-0.196	- 0.175	- 0.165
4	(Constant)	116712.754	32228.770	0.000			
	Marks_Communication	2242.984	502.012	0.000	0.246	0.247	0.235
	GENCOM	629.520	159.625	0.000	0.215	0.220	0.207
	Degree_Management	- 22777.435	9494.078	0.017	-0.196	-0.136	- 0.126
	Degree_Engineering	37336.093	15871.087	0.019	0.202	0.133	0.124
(a) S (b) S (c) T	t is the R-square value able, GENCOM is the ch of the following st Salary is more sensitive Salary is more sensitive There is no difference	e interaction atements is t e to marks in	variable bet rue? Clearly n communic	ween government state yeartion for	gender and your argum for females for males th	ents. than ma	ales.
(d) (Can't say.						
Insui depe	for Questions 7–12 (rance company wantends on the rainfall. That as the total acreage u	ed to come une complicat	p with a modion is that th	del and e produ	see how the see ho	ne total o depen	product

regression models: PROD The total production in thousands of tons (dependent variable) IRR Total irrigated area in thousands of hectares (independent variable) NON Total non-irrigated area

Question Bank

Unit -2 Regression Analysis

in thousands of hectares (independent variable) RAIN Total rainfall in millimetres (independent variable)

The SPSS regression model output is given Table 22.

Table 23. Regression Model output

	-		-			
Model	R	R-Square	Adjusted R-Square	Std. Error of the Estimate	Degrees of freedom SSR	Degrees of freedom SSE
Model 1	0.895	0.801	0.787	703.6283	3	44

- 19 If stepwise regression was used to arrive at Table 23, how many variables did SPSS consider? Give reasons.
- How many observations were included in the regression? ANOVA corresponding to the MLR model developed is shown in Table 24.

The Question Bank questions are from the prescribed Text Book

Text Book:

1. "Business Analytics, The Science of Data-Driven Decision Making", U. Dinesh Kumar, Wiley 2017