Homework #21

20221059 정상목

1. 과제 목표

Greenfunction을 이용하여 electron/hole continuity equation을 perturbed 시키고, 특정 위치 r_0 에서 excited 되었을 때 각 터미널에서의 current를 구하자.

2. Mesh

이번 과제에서 사용할 mesh는 다음과 같습니다.

Fig 1. N-type bar

3. Result

3.1. N_type bar

먼저 N_type bar에서 electron continuity equation을 perturbed 시키고 결과를 확인했습니다. 결과를 확인 하기에 앞서 코드가 정상적인지 확인하기 위해 다음 수식을 기반으로 코드의 유효성을 확인했습니다.

$$(\delta n + \delta p) \times q \times Control\ Volume = \delta q$$

 $\rightarrow \int J_d \cdot ds = \int jwD \cdot ds = jw\delta q$

다음과 같이 5개 지점에서 결과를 확인했습니다. 결과는 다음과 같습니다.

r_0			C	
Position (nm)	Index	$jw\delta q$	$\int J_d \cdot ds$	
(20,20)	130	-1.1745821e-07 - 3.4738607e-04i	-1.1745821e-07 - 3.4738607e-04i	
(100,20)	150	-1.1745821e-07 - 3.4738607e-04i	-1.1745821e-07 - 3.4738607e-04i	
(60,50)	326	-1.5185138e-07 - 3.9097385e-04i	-1.5185138e-07 - 3.9097385e-04i	
(20,80)	502	-1.1745821e-07 - 3.4738607e-04i	-1.1745821e-07 - 3.4738607e-04i	
(100,80)	522	-1.1745821e-07 - 3.4738607e-04i	-1.1745821e-07 - 3.4738607e-04i	

다음의 결과를 통해 $jw\delta q$ 값과 $\int J_d \cdot ds$ 의 값이 같음을 확인했다. 따라서 이 시스템에 특정 r_0 에 electron이 excited 되었을 때 이 영향으로 인한 J_a 의 합과 $\delta n, \delta p$ 의 변화가 같음을 확인해서 코드에 문제가 없음을 확인했다.

이제 각 r_0 에서 electron continuity equation을 perturbed 시킨 후, 각 터미널에서 J_n,J_p,J_d 을 구한 후 합을 비교했습니다.

r_0			Anode current		Cathode current	
(nm)	Index					
(20,20)	130	J_n	-0.9329919 + 0.0003156i	J_n	-0.1666666 + 0.0000653i	
		J_p	-5.7632752e-20 - 8.5243072e-18i	J_p	-4.4962822e-20 - 5.0824533e-18i	
		J_d	-9.1847914e-08 - 2.8203705e-04i	J_d	-2.5610302e-08 - 6.5349019e-05i	
		J	-0.9329920 + 0.0000336i	J	-0.1666666 + 0.0000000i	
(100,20)	150	J_n	-0.1908225 + 0.0000748i	J_n	-0.8333332 + 0.0002820i	
		J_p	-5.1961223e-20 - 5.8529094e-18i	J_p	-4.9988302e-20 - 7.4687627e-18i	
		J_d	-2.5610302e-08 - 6.5349019e-05i	J_d	-9.1847914e-08 - 2.8203705e-04i	
		J	-0.1908226 + 0.0000094i	J	-0.8333333 + 0.0000000i	
(60,50)	326	J_n	-0.5799999 + 0.0002267i	J_n	-0.4999999 + 0.0001954i	
		J_p	-1.0896031e-19 - 1.3496029e-17i	J_p	-9.393122e-20 - 1.1634508e-17i	
		J_d	-7.5925690e-08 - 1.9548692e-04i	J_d	-7.5925690e-08 - 1.9548692e-04i	
		J	-0.5799999 + 0.0000312i	J	-0.4999999 + 0.0000000i	
(20,80)	502	J_n	-1.0001306 + 0.0003386i	J_n	-0.1666666 + 0.0000653i	
		J_p	-5.8340741e-20 - 8.8032152e-18i	J_p	-4.4963113e-20 - 5.0824533e-18i	
		J_d	-9.1847914e-08 - 2.8203705e-04i	J_d	-2.5610302e-08 - 6.5349019e-05i	
		J	-1.0001307 + 0.0000566i	J	-0.1666666 + 0.0000000i	
(100,80)	522	J_n	-0.1958440 + 0.0000767i	J_n	-0.8333332 + 0.0002820i	
		J_p	-5.235263e-20 - 5.938382e-18i	J_p	-4.9988504e-20 - 7.4687627e-18i	
		J_d	-2.5610302e-08 - 6.5349019e-05i	J_d	-9.1847914e-08 - 2.820370e-04i	
		J	-0.1958440 + 0.0000114i	J	-0.8333333 + 0.0000000i	

다음의 결과를 살펴보면 r_0 가 anode쪽에 가까워지면 anode current가 커지고, r_0 가 cathode으로 가까워지면 cathode current가 커짐을 확인 할 수 있습니다. 또한 한 가운데 지점인 index 326에서는 J_a 의 anode와 cathode current가 동일함을 확인할 수 있었습니다.

Doublegate 구조에서는 값이 예상한 결과와 다르게 나왔는데 그 이유는 Gate terminal에서의 current를 고려하지 않았기 때문으로 예상했습니다. Oxied에 gate가 있기 때문에 current 흐르지 않을 것이라 생각했는데, displacement current를 고려해 주어함을 생각했습니다. 이를 고려해서 결과를 보완할 예정입니다.