NN514260 / NN514260A series Fast Page Mode CMOS 256K×16bit Dynamic

DESCRIPTION

The NN514260/A series is a high performance CMOS Dynamic Random Access Memory organized as 262,144 words by 16 bits. The NN514260/A series is fabricated with advanced CMOS technology and designed with innovative design techniques resulting in high speed, extremely low power and wide operating margins at both component and system levels.

The NN514260/A series features a high speed page mode operation in which a high speed read, write or read-write is performed on any column address along a row address.

An extremely short row address capture time and an asynchronous column address decoder relax the timing constraints associated with address multiplexing.

The outputs are tri-stated by CAS which, in essence, acts as an output enable independent of RAS with very fast CAS to output access time.

Refresh is accomplished by performing RAS only refresh cycles, hidden refresh cycles, CAS before RAS refresh cycles, or normal read or write cycles on the 512 address combinations of A0 to A8 during a 8 ms period.

Multiplexed address inputs permit The NN514260/A series to be packaged in a standard 40-pin plastic SOJ,44-pin plastic TSOP TYPEII. The package sizes provide high system bit densities and are compatible with widely available automated testing and insertion equipment. System level features include single power supply of 5V ±10% tolerance and direct interface with high performance TTL logic families.

FEATURES

- 262,144 × 16 bit Organization
- Single 5V ±10% Power Supply
- Performance Ranges

(NN514260)

Parameter	-45	-50	-60	-70
Max. RAS Access Time (t _{RAC})	45ns	50ns	60ns	70ns
Max. CAS Access Time (t _{CAC})	15 ns	15ns	15ns	20ns
Max. Column Address Access Time (t _{AA})	25ns	27ns	30ns	35ns
Min. Read/Write Cycle Time (t _{RC})	80ns	90ns	110ns	130ns

(NN514260A)

Paramet	er	-35	-40	-45	-50	-60
Max. RAS Access Time	(t _{RAC})	35ns	40ns	45ns	50ns	60ns
Max. CAS Access Time	(t _{CAC})	10ns	12ns	13ns	13ns	15ns
Max. Column Ac Access Time	tdress (t _{AA})	17ns	20ns	25ns	25ns	30ns
Min. Read/Write Cycle Time	(t _{AC})	60ns	70ns	80ns	90ns	110ns

- Fast Page Mode Operation
- Separate CAS (UCAS, LCAS) for Byte Selection
- Byte Read/Write Mode Operation
- Low Power Operation

Low Standby Current (CMOS level inputs)

Standard 1mAL version 100μA

■ 512 Refresh Cycles

Standard distributed across 8ms
 L version distributed across 128ms

Self Refresh Mode

(L version)
■ All inputs/Outputs and Clocks

fully TTL and CMOS compatible

Refresh Modes
RAS only
CAS before RAS
Hidden Refresh

■ High Reliability Package

Plastic 40pin SOJ (P40SJ-2B)
Plastic 44pin TSOP TYPEII (P44/40TP-3B)

(P44/40TP-3B-L)*
*Note: Only for NN514260A

PIN CONFIGURATION (TOP VIEW)

			٦ .
Vcc	1	40	⊅ v _{ss}
VO ₁	2 🔾	39	
1/O ₂ [3	38	Þ 1∕O ₁₅
1/O ₃ [4	37	1014
VO₄□	5	36	D 1/O₁3
Vcc	6	35	þ v _{ss}
l/O 5□	7	34	Þ 1/O₁2
1/06	8	33	b 1∕O ₁₁
1/O ₇ C	9	32	b 1∕0₁0
VO _B C	10	31	խ //O ջ
NC		30	D NC
NC		29	LCAS
WE	13	28	UCAS
RAS	14	27	OE
NC	15	26	. A8
- A₀ □	16	25	Þ A7
A ₁ □	17	24	ÞA6
A ₂ d	18	23	Þ A ₅
A ₃ q	19	22	A₁
V _{CC} C	20	21	□ v _{ss}
	<u> </u>		

40-pin SOJ (400mil) P40SJ-2B

Vcc [. 0	44] Vss
1/01 [2	43	J 1/O16
VO2 [3	42	VO15
VO3 [4	41	VO14
VO4 [5	40	I/O13
Vcc [6	39] Vss
I/O5 [7	38) VO12
1/06	8	37	1/011
VO7 [d 9	36	VO10
1/08 [10	35	1 // 09
	1	ŀ	
NC E	13	32 þ	NC_
NC E	14	31 🛚	LCAS
WE	15		UCAS
RAS [16	29 🏻	ŌĒ
NC E	17	28	1 A8
A0 [18	27 🗓) A7
A1 [19	26] A 6
A2 [20	25] A 5
A3 [21	24) A 4
Vcc [22	23 1	l Vss

44/40-pin TSOP TYPE (II) (400mil) P44/40TP-3B P44/40TP-3B-L*

*Note: Only for NN514260A

PIN NAMES

Address Inputs								
Row Address Strobe								
Column Address Strobe Upper Byte Control								
Column Address Strobe Lower Byte Control								
Output Enable								
Output Enable Data-in / Data-out								
11.								
Data-in / Data-out								
Data-in / Data-out Write Enable								

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

RATING	SYMBOL	VALUE	UNIT	
Voltage on Any Pin Relative to V _{SS}	Vin,Vout	-1 to 7		
Voltage on Vcc Relative to V _{SS}	V _{cc}	-1 to 7	٧	
Storage Temperature (Plastic)	Tstg	-55 to +125	°C	
Power Dissipation	Pd	1.0	W	
Ambient Operating Temperature	Ta	0 to + 70	°C	
Short Circuit Output Current	lout	50	mA	

Permanent device damage can occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods can affect device reliability.

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{CC}	Supply Voltage	4.5	5.0	5.5	V
V _{SS}	Supply Voltage	0	0	0	V
V _{IH}	Input High Voltage, All Inputs	2.4	_	6.5	V
V _{IL}	Input Low Voltage, All Inputs	-0.5	_	0.8	v

Note: All voltage values in this data sheet are with respect to \mathbf{V}_{SS} unless otherwise specified.

DC ELECTRICAL CHARACTERISTICS (0°C \leq Ta \leq 70°C, V_{CC} = 5.0V \pm 10%) (NN514260)

SYMBOL	PARAMETER	SPEED	MIN.	MAX.	UNIT	TEST CONDITIONS	NOTES
l _{CC1}	Operating Current	-45		180	mA	$t_{RC} = t_{RC}$ (min.)	1,2
001	'	-50		160	mA	RAS, CAS, Address cycling	
		-60		150	mA:		
		-70		130	mA		
l _{CC2}	Standby Current			1.0	mA	RAS = CAS ≥ (V _{CC} - 0.2V)	
				2.0	mA	RAS = CAS ≥ V _{IH}	
	Standby Current			100	μA	$\overline{RAS} = \overline{CAS} \ge (V_{CC} - 0.2V)$	
	(L version)					All other inputs are stable at (V _{CC} - 0.2V)	
						or (V _{SS} + 0.2V)	
I _{CC3}	Refresh Current	-45		180	mA	$t_{RC} = t_{RC}$ (min.)	
	(RAS only refresh)	-50		160	mA	RAS cycling, CAS = V _{IH}	1
		-60		150	mA		
	-	-70		130	mA		<u> </u>
I _{CC4}	Fast Page Mode Current	-45		100	mA	$t_{PC} = t_{PC}$ (min.)	1,2
		-50		90	mA	RAS = V _{IL}	ļ
		-60		80	mA	CAS, Address cycling	
		-70		70	mA		
lccs	Refresh Current	-45		180	mA	t _{RC} = t _{RC} (min.)	
	(CAS before RAS refresh)	-50		160	mA	RAS, CAS cycling	1
	·	-60		150	mA		
		-70		130	mA		
I _{CC6}	Refresh Current			150	μΑ	512 cycles / 1 <u>28m</u> s	
	(L version : CAS before					$t_{RAS} \le 200 \text{ns}, \overline{WE} \ge (V_{CC} - 0.2V)$	
	RAS refresh)					All other inputs are stable at (V _{CC} - 0.2V)	
						or (V _{SS} + 0.2V)	
I _{CC7}	Self Refresh Mode Current		-	150	μA	RAS = CAS ≤ (V _{SS} + 0.2V)	
	(L version)					All other input high levels are (V_{CC} - 0.2V)	
						or input low levels are (V _{SS} + 0.2V)	
II _{L1} I	Input Leakage Current (Any input pin)		-10	10	μA	$0V \le V_{HH} \le 5.5V$, Others = $0V$	
الما	Output Leakage Current		-10	10	μA	RAS ≥ V _{IH} (min.), CAS ≥ V _{IH} (min.)	
ייטויי	(For high impedance state)		-10	10	μA	$0V \le V_{OUT} \le 5.5V$	
V _{OH}	Output High Voltage		2.4		٧	I _{OH} = -5.0 mA	
V _{OL}	Output Low Voltage			0.4	٧	I _{OL} = 4.2 mA	

Notes: 1. I_{CC1} , I_{CC3} , I_{CC4} and I_{CC5} depend on cycle rate.

2. I_{CC1} and I_{CC4} depend on output loading. Specified values are obtained with the outputs open.

CAPACITANCE (0°C \leq Ta \leq 70°C, V_{CC} = 5.0V \pm 10%, f = 1MHz)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
C _{IN1}	Address(A0 ~ A8)	_	5	pF
C _{IN2}	RAS, UCAS, LCAS, WE,OE	<u> </u>	5	pF
C _{out}	1/01~1/016	_	7	pF

DC ELECTRICAL CHARACTERISTICS (0°C \leq Ta \leq 70°C, V_{CC} = 5.0V $\pm10\%$) (NN514260A)

SYMBOL	PARAMETER	SPEED	MIN.	MAX.	UNIT	TEST CONDITIONS	NOTES
I _{CC1}	Operating Current	-35		180	mA	$t_{RC} = t_{RC}$ (min.)	1, 2
		-40		160	mA	RAS, CAS, Address cycling	'
		-45		140	mA		
		-50		120	mA		
		-60		100	mA		
l _{CC2}	Standby Current			1.0	mA	RAS = CAS ≥ (V _{CC} - 0.2V)	
				2.0	mA	RAS = CAS ≥ V _{IH}	
	Standby Current			150	μА	$\overline{RAS} = \overline{CAS} \ge (V_{CC} - 0.2V)$	
	(L version)					All other inputs are stable at (V _{CC} - 0.2V)	
						or (V _{SS} + 0.2V)	
I _{CC3}	Refresh Current	-35	-	180	mA	t _{RC} = t _{RC} (min.)	
	(RAS only refresh)	-40		160	mA	RAS cycling, CAS = V _{IH}	1
		-45		140	mA		
		-50		120	mA		
		-60		100	mA		!
I _{CC4}	Fast Page Mode Current	-35		80	mA	$t_{PC} = t_{PC}$ (min.)	1,2
		-40		70	mA	RAS = V _{IL}	
		-45		60	mA	CAS, Address cycling	!
		-50		50	mA		
		-60	-	40	mA		
I _{CC5}	Refresh Current	-35		180	mA	$t_{RC} = t_{RC}$ (min.)	
	(CAS before RAS refresh)	-40		160	mA	RAS, CAS cycling	1
		-45		140	mA		Į
		-50		120	mA		
		-60		100	mA		
I _{CC6}	Refresh Current	ĺ		200	μΑ	512 cycles / 128ms	
	(L version : CAS before					$t_{RAS} \le 200 \text{ns}, \overline{WE} \ge (V_{CC} - 0.2V)$	
	RAS refresh)					All other inputs are stable at (V_{∞} - 0.2V)	
				1		or (V _{SS} + 0.2V)	ļ
I _{CC7}	Self Refresh Mode Current			200	μA	RAS = CAS ≤ (V _{SS} + 0.2V)	
	(L version)			[All other input high levels are (V _{CC} - 0.2V))
						or input low levels are (V _{SS} + 0.2V)	
ii _{L1} i	Input Leakage Current		-10	10	μ A	0V ≤ V _{IH} ≤ 5.5V, Others = 0V	
	(Any input pin)				<u> </u>		1
li _{LO} l	Output Leakage Current		-10	10	μA	RAS ≥ V _{IH} (min.), CAS ≥ V _{IH} (min.)	<u> </u>
	(For high impedance state)					0V ≤ V _{OUT} ≤ 5.5V	
V _{OH}	Output High Voltage		2.4		٧	I _{OH} = -5.0 mA	
VoL	Output Low Voltage			0.4	V	I _{OL} = 4.2 mA	1

Notes: 1. I_{CC1} , I_{CC3} , I_{CC4} and I_{CC5} depend on cycle rate.

CAPACITANCE (0°C \leq Ta \leq 70°C, V_{CC} = 5.0V \pm 10%, f = 1MHz)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
C _{IN1}	Address(A0 ~ A8)	_	5	pF
C _{IN2}	RAS, UCAS, LCAS, WE, OE	_	5	pF
C _{OUT}	I/O1~I/O16	_	7	pF

^{2.} I_{CC1} and I_{CC4} depend on output loading. Specified values are obtained with the outputs open.

AC ELECTRICAL CHARACTERISTICS

Test conditions : $V_{IH}/V_{IL} = 2.4V/0.8V$ $V_{OH}/V_{OL} = 2.0V/0.8V$ output loading $C_L = 100pF + 2TTL$

Operating conditions: (0 °C \leq Ta \leq 70°C, V_{CC} = 5 V ± 10%, V_{SS} = 0 V) (NOTES 3, 4, 5)

(NN514260)

	NOT	(0)		-45 -50			T 20 T						
NO.		1	PARAMETER			-60			-70		NOTE		
	JEDEC	STD.		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	_	<u> </u>
_1	t _{CL1QV}	tcac	Access Time from CAS	_	15	<u> </u>	15	_	15		20	ns	6,13
_2	t _{CH2QV}	t _{CPA}	Access Time from CAS Precharge		30		32	<u> </u>	35	_	40	ns	13,14
3	tavav	t _{AA}	Access Time from Column Address	_	25		27		30		35	ns	7,13
4	t _{RL1QV}	TRAC	Access Time from RAS	·	45		50		60		70	nş	6,7
5	t _{RL1CH1}	t _{CSH}	CAS Hold Time	45		50		60		70		ns	
6	t _{RL1CH1}	t _{CHR}	CAS Hold Time (CAS before RAS Refresh)	8		8		10		10	_	ns	
7	t _{RL1CX}	tcHs	CAS Precharge Time (Self Refresh Mode)	-50		-50	_	-50	_	-50	_	ns	
8	tcH2CL2	t _{CPN}	CAS Precharge Time (CAS before RAS Refresh)	10	-	10	-	10	-	10	_	ns	
9	t _{CH2CL2}	t _{CP}	CAS Precharge Time (Fast Page Mode)	5	_	5	_	5	_	5	—	ns	14
10	t _{CL1CH1}	tcas	CAS Pulse Width	13	100K	13	100K	15	100K	20	100K	ns	
11	[†] CL1RL2	t _{CSR}	CAS Setup Time (CAS before RAS Refresh)	5	-	5	_	5	-	5	_	ns	
12	t _{CL1QX}	tcız	CAS to Output in Low-Z	0	_	0	_	0	_	0	_	ns	8
13	t _{CH2RL2}	t _{CRP}	CAS to RAS Precharge Time	5	_	5		5	_	5	_	ns	
14	t _{CL1WL2}		CAS to WE Delay Time	35	_	35	_	35	_	50	_	ns	11
15	tCL1AX	t _{CAH}	Column Address Hold Time	8	_	8	_	10	_	15	_	ns	
16	t _{RL1AX}	t _{AR}	Column Address Hold Time Referenced to RAS	30	_	35	-	40	_	40	-	ns	
17.	t _{AVCL2}	tasc	Column Address Setup Time	0	_	0	_	0		0	_	ns	14
18	t _{AVRH1}	t _{RAL}	Column Address to RAS Lead Time	22	_	24	_	30	_	35	_	กร	
19	tavwl2	tawo	Column Address to WE Delay Time	48	_	50	_	50		65		ns	11
20	t _{CL1DX}	^t DH	Data Hold Time	8	_	8	_	10	_	10		ns	12
21	toval2	t _{DS}	Data Setup Time	0	_	0	_	0	_	0	_	ns	12
22	t _{OL1QV}	t _{OEA}	OE Access Time	_	13	_	15	_	15	_	20	ns	
23	twL10L2	t _{OEH}	OE Command Hold Time	8		8	_	10	_	20	_	ns	
24	t _{CH2QV}	t _{OED}	OE to Data Delay Time	7	_	8	_	10	_	10	_	ns	
25	t _{CH2QZ}	toff	Output Buffer Turn-off Delay Time	0	13	0	13	0	15	0	20	ns	10
26	†онгох	t _{OEZ}	Output Buffer Turn-off Delay Time Referenced to OE	0	10	0	10	0	15	Ö	15	ns	
27	t _{CL1RH1}	t _{RSH}	RAS Hold Time	13	_	13	_	15	_	20		ns	
28	t _{OL1RH1}		RAS Hold Time Referenced to OE	8	_	8		10	_	10	_	ns	
29			RAS Precharge Time	25	_	25	_	30	_	40	_	ns	
30	t _{RH2RL2}	t _{RPS}	RAS Precharge Time (Self Refresh Mode)	80	<u> </u>	90	-	110	-	130	_	ns	
31	t _{RL1RH1}	t _{RAS}	RAS Pulse Width	45	100K	50	100K	60	100K	70	100K	ns	
32			RAS Pulse Width (Fast Page Mode)	45	100K	50	100K	60	100K	70	100K	ns	
33			RAS Pulse Width (Self Refresh Mode)	300		300	_	300	-	300	_	μs	
34			RAS to CAS Delay Time	13	30	13	35	13	45	13	50	ns	6
35			RAS to CAS Precharge Time	10		10		10		10			-

NO.	SYMBOL		PARAMETER	-45		-50		-60		-70			
NO.	JEDEC	STD.	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MINL	MAX.	UNIT	NUIE
36	t _{RL1AV}	t _{RAD}	RAS to Column Address Delay Time	11	20	11	23	11	30	11	35	ns	7
37	t _{RL1WL2}	t _{RWD}	RAS to WE Delay Time	75		80	_	85	_	100	_	ns	11
38	t _{CH2WL2}	t _{RCH}	Read Command Hold Time	0	_	0	_	0	_	0	_	ns	9
39	t _{RH2WL2}	t _{RRH}	Read Command Hold Time Referenced to RAS	5	_	5	_	5	_	5		ns	9
40	twH2CL2	t _{RCS}	Random Command Setup Time	0	—	0	_	0	_	0	_	ns	
41	t _{RL2RL2}	t _{RC}	Random Read or Write Cycle Time	80	_	90	_	110	_	130	_	ns	
42	t _{CL2CL2}	t _{PC}	Read or Write Cycle Time (Fast Page Mode)	30	_	33		40	_	45	_	ns	13,14
43	t _{RL2RL2}	t _{RMW}	Read-Modify-Write Cycle Time	120	_	125	-	135	_	185	_	ns	
44	t _{CL2CL2}	t _{PRMW}	Read-Modify-Write Cycle Time (Fast Page Mode)	57	-	57	_	66	_	100	_	ns	13,14
45	t _{REF}	t _{REF}	Refresh Period	_	8	_	8	_	8	_	8	ms	15
46	t _{RL1AX}	trah	Row Address Hold Time	8	_	8	_	8		8	_	ns	
47	t _{AVRL2}	t _{ASR}	Row Address Setup Time	0	_	0	_	0	_	0		ns	
48	t _T	t _T	Transition Time (Rise and Fall)	2	50	2	50	2	50	2	50	ns	4,5
49	t _{CL1WH1}	twcH	Write Command Hold Time	8	_	8	_	10	_	15	_	ns	
50	t _{WL1WH1}	twe	Write Command Pulse Width	8		8	_	10		15	_	ns	
51	twL1CL2	twcs	Write Command Setup Time	0	_	0		0	_	0	_	ns	11
52	twL1CH1	t _{CWL}	Write Command to CAS Lead Time	13	_	13		15	_	20	_	ns	
53	t _{WL1RH1}	t _{RWL}	Write Command to RAS Lead Time	13	T-	13	-	15	_	20	_	ns	

A.C. ELECTRICAL CHARACTERISTICS

Test conditions:

 $V_{H}/V_{IL} = 2.4V/0.8V$ $V_{OH}/V_{OL} = 2.0V/0.8V$ ouput loading $C_L = 50pF + 1TTL$

Operating conditions : ($0 \text{ °C} \le \text{Ta} \le 70 \text{ °C}$, $V_{\text{CC}} = 5 \text{ V} \pm 10\%$, $V_{\text{SS}} = 0 \text{ V}$) (NOTES 3, 4, 5)

(NN514260A)

	NOT	ES	,	-35 -40			Τ.	45	T 3		-60		<u> </u>	T	
NO.	JEDEC STD.		PARAMETER	MIN	MAX	+			 -		MAX.	MIN	MAX	UNIT	NOTE
1	¹ CL1QV	tcac	Access Time from CAS	_	10	_	12		15	-	15	_	15	ns	6,13
2	tangav.	t _{CRA}	Access Time from CAS Precharge	_	25	†_	28	1_	30	-	32	 _ 	35	ns	13,14
3	tavav	t _{AA}	Access Time from Column Address	1_	17	<u> </u>	20	†	25	_	27	 _	30	ns	7,13
4	I _{RL1QV}	¹ RAC	Access Time from RAS	 _ 	35		40	1_	45	 _ 	50	 _ 	60	ns	6,7
5	t _{RL1CH1}	t _{CSH}	CAS Hold Time	35	_	40	1_	45		50	1_	60	1 -	ns	
6	IRL1CH1	t _{CHR}	CAS Hold Time (CAS before RAS Refresh)	8	1_	8	 	8	 _	8	<u>†</u>	10	_	ns	ļ
7	^t RL1CX	tcHs	CAS Precharge Time (Self Refresh Mode)	-50	_	-50	1-	-50		-50	_	-50		ns	<u> </u>
8	t _{CH2CL2}	t _{CPN}	CAS Precharge Time (CAS before RAS Refresh)	10		10	-	10	_	10	-	10	-	ns	
9	t _{CH2CL2}	tcp	CAS Precharge Time (Fast Page Mode)	5	1-	5	1-	5	 	5		5	_	ns	14
10	t _{CL1CH1}	tcas	CAS Pulse Width	10	100K	12	100K	13	100K	13	100K	15	100K	ns	
11	t _{CL1RL2}	t _{CSR}	CAS Setup Time (CAS before RAS Refresh)	5	_	5	-	5	_	5	-	5	-	ns	
12	t _{CL1QX}	Z Z	CAS to Output in Low-Z	0	_	0	_	0	 	0	-	0	_	ns	8
13	t _{CH2RL2}	t _{CRP}	CAS to RAS Precharge Time	5	_	5	1-	5	<u> </u>	5	_	5	_	ns	
14	t _{CL1WL2}	tcwD	CAS to WE Delay Time	30	_	32		35	-	35	_	35	_	ns	11
15	t _{CL1AX}	t _{CAH}	Column Address Hold Time	5	_	5] —	8	_	8	 	10	T —	ns	
16	^t RL1AX	t _{AR}	Column Address Hold Time Referenced to RAS	25	_	30	-	30	_	35	-	40	-	ns	
17	t _{AVCL2}	tasc	Column Address Setup Time	0		0	_	0	_	0		0	 	ns	14
18	t _{AVRH1}	t _{RAL}	Column Address to RAS Lead Time	20	_	20	 	22	<u> </u>	24	_	30	_	ns	
19	tavw.2	t _{AWD}	Column Address to WE Delay Time	35	_	38	-	48	_	50	_	50	_	ns	11
20	CL1DX	t _{DH}	Data Hold Time	5	_	5	_	8	_	8	_	10	_	ns	12
21	tovol2 tovwl2	t _{DS}	Data Setup Time	0	-	0	—	0	_	0	-	0	_	ns	12
22	t _{OL1QV}	t _{OEA}	OE Access Time		10	_	12		13	1	15	_	15	ns	
23	twL10L2	t _{OEH}	OE Command Hold Time	8	_	8	_	8	-	8		10	_	ns	
24	tснесоv	t _{OED}	OÉ to Data Delay Time	6	_	6	_	7		8	_	10	-	ns	
25	t _{CH2QZ}	t _{OFF}	Output Buffer Turn-off Delay Time	0	8	0	10	0	13	0	13	0	15	ns	10
26	tонгох		Output Buffer Turn-off Delay Time Referenced to OE	0	8	0	8	0	10	0	10	0	15	ns	
27	t _{CL1RH1}	^t rsh	RAS Hold Time	12	-	12	—	13		13	_	15	_	ns	
28	toL1RH1	[†] нон	RAS Hold Time Referenced to OE	8		8		8	_	8	_	10	_	ns	
29	t _{RH2RL2}	t _{RP}	RAS Precharge Time	23		25	_	25	_	25		30	_	ns	
30	RH2RL2		RAS Precharge Time (Self Refresh Mode)	60	-	70	_	80	-	90	-	110	_	ns	
31	t _{RL1RH1}	t _{ras}	RAS Pulse Width	35	100K	40	100K	45	100K	50	100K	60	100K	ns	
32	t _{RL1RH1}	t _{rasp}	RAS Pulse Width (Fast Page Mode)	35	100K	40	100K	45	100K	50	100K	60	100K	ns	
33	t _{RL1RH1}	t _{rass}	RAS Pulse Width (Self Refresh Mode)	300	_	300	_	300	-	300	_	300	_	μs	
34	tRL1CL1	t _{RCD}	RAS to CAS Delay Time	10	25	12	28	13	30	13	35	13	45	ns	6

NO.	SYMBOL		PARAMETER	-35		-40		-45		-50		-60			
140.	JEDEC STD.		FARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MłN.	MAX.	UNIT	NOTE
35	t _{RH2CL2}	t _{RPC}	RAS to CAS Precharge Time	10		10	_	10		10		10	_	ns	
36	t _{RL1AV}	t _{RAD}	RAS to Column Address Delay Time	9	16	10	19	11	20	11	23	11	30	ns	7
37	t _{RL1WL2}	t _{RWD}	RAS to WE Delay Time	45	_	58		75	_	80	_	85	_	ns	11
38	t _{CH2WL2}	t _{RCH}	Read Command Hold Time	0		0		0	_	0	_	0	_	ns	9
39	t _{RH2WL2}	t _{RRH}	Read Command Hold Time Referenced to RAS	5		5	_	5	-	5	_	5	_	ns	9
40	t _{WH2CL2}	t _{RCS}	Random Command Setup Time	0	_	0	_	0		0		0	_	ns	
41	t _{RL2RL2}	t _{RC}	Random Read or Write Cycle Time	60		70	_	80	_	90	_	110	_	ns	
42	t _{CL2CL2}	t _{PC}	Read or Write Cycle Time (Fast Page Mode)	20	_	23		30	_	33	_	40	_	ns	13,14
43	t _{RL2RL2}	t _{RMW}	Read-Modify-Write Cycle Time	105		115	_	120	_	125	_	135		ns	
44	t _{CL2CL2}	t _{PRMW}	Read-Modify-Write Cycle Time (Fast Page Mode)	52	_	55	_	57	_	57	_	66	_	ns	13,14
45	t _{REF}	t _{REF}	Refresh Period	1-	8	_	8	_	8	_	8	_	8	ms	15
46	t _{RL1AX}	t _{RAH}	Row Address Hold Time	7	_	7	_	8	_	8	_	8	_	ns	\Box
47	t _{AVRL2}	tASR	Row Address Setup Time	0	_	0		0	_	0	_	0	_	ns	
48	t _T	t _T	Transition Time (Rise and Fall)	2	50	2	50	2	50	2	50	2	50	ns	4,5
49	t _{CL1WH1}	twcH	Write Command Hold Time	5	_	5	_	8	_	8	_	10		ns	
50	t _{WL1WH1}	t _{WP}	Write Command Pulse Width	5	-	5	_	8	_	8	_	10		ns	
51	twL1CL2	twcs	Write Command Setup Time	0	_	0	_	0		0	_	0	_	ns	11
52	t _{WL1CH1}	tcwL	Write Command to CAS Lead Time	12	_	12	_	13	_	13	-	15	_	ns	
53	t _{WL1RH1}	t _{RWL}	Write Command to RAS Lead Time	12		12	_	13	_	13	_	15	_	ns	\Box

Notes: (NN514260/A/B)

- 3. Eight Initialization Cycles are required following a 200µs pause after Power Up. These Initialization Cycles may consist of any combination of the following: RAS only refresh Cycles, Read Cycles, Write Cycles, CAS before RAS refresh Cycles.
- 4. AC measurements assume t_T=3ns.
- 5. V_{IH}(min.) and V_{IL}(max.) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL}.
- Operation within the t_{RCD}(max.) limit ensures that t_{RAC}(max.) can be met. t_{RCD}(max.) is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD}(max.) limit, then access time is controlled by t_{CAC}.
- Operation within the t_{RAD}(max.) limit ensures that t_{RAC}(max.) can be met. t_{RAD}(max.) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD}(max.) limit, then access time is controlled by t_{AA}.
- 8. Assumes three state test load (5pF and a 220 ohm to 1.3V Thevenin equivalent).
- Either t_{BCH} or t_{BBH} must be satisfied for a read cycle.
- 10. t_{OFF}(max.) defines the time at which the output achieves an open circuit condition and is not referenced to output voltage levels.
- 11. t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If t_{WCS}≥t_{WCS}(min.), the cycle is an early write cycle and data-out pins will remain open circuit (high impedance) throughout the entire cycle. If t_{RWD}≥t_{RWD}(min.), t_{CWD}≥t_{CWD}(min.) and t_{AWD}≥t_{AWD}(min.), the cycle is a read-modify-write cycle and the data-out will contain data read from the selected cell. If neither of the above conditions is satisfied, the condition of the data-out (at access time) is indeterminate.
- 12. These parameters are referenced to CAS leading edge in early write cycles and to WE leading edge in read-modify-write cycles.
- 13. Access time is determined by the longer of t_{AA} , t_{CAC} , or t_{CPA} .
- 14. $t_{ASC} \ge t_{CP}$ to achieve t_{PC} (min.) and t_{CPA} (max.) values.
- t_{REF}=128msec for Long Refresh version (L version).

WORD READ CYCLE

BYTE READ CYCLE

WORD WRITE CYCLE (EARLY WRITE)

BYTE WRITE CYCLE (EARLY WRITE)

WORD WRITE CYCLE (OE-CONTROLLED WRITE)

BYTE WRITE CYCLE (OE-CONTROLLED WRITE)

WORD READ-MODIFY-WRITE CYCLE

BYTE READ-MODIFY-WRITE CYCLE

FAST PAGE MODE WORD READ CYCLE

FAST PAGE MODE BYTE READ CYCLE

FAST PAGE MODE EARLY WORD WRITE CYCLE

: High or Low

FAST PAGE MODE EARLY BYTE WRITE CYCLE

FAST PAGE MODE WORD READ-MODIFY-WRITE CYCLE

FAST PAGE MODE BYTE READ-MODIFY-WRITE CYCLE

RAS ONLY REFRESH CYCLE

CAS BEFORE RAS REFRESH CYCLE

Note: WE, OE, A0~A8 = Don't care.

HIDDEN REFRESH CYCLE (WORD READ)

HIDDEN REFRESH CYCLE (BYTE READ)

HIDDEN REFRESH CYCLE (EARLY WORD WRITE)

HIDDEN REFRESH CYCLE (EARLY BYTE WRITE)

SELF REFRESH MODE

Note: WE, OE = Don't care.

/////: High or Low		: High or Low
--------------------	--	---------------

- The NN514260L/AL version has a Self Refresh Mode.
- a. Entering the Self Refresh Mode:

 The NN514260L/ALSelf Refresh Mode is entered by using CAS before RAS cycle and holding RAS and CAS signal "
 low " longer than 300µs.
- b. Continuing the Self Refresh Mode:
 The Self Refresh Mode is continued by holding RAS " low " after entering the Self Refresh Mode.

 It does not depend on CAS being " high " or " low " after entering the Self Refresh Mode to continue the Self Refresh Mode.
- c. Exiting the Self Refresh Mode:
 The NN514260L/AL exits the Self Refresh Mode when the RAS signal is brought " high ".

ORDERING INFORMATION

