

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name: DANIEL WALSH															
UB Person Number:									Instructions:						
S 0 1 2 3 4 6 6 7 8 9	O	③④⑤⑥⑦	3 5 6 7	3 6 7 8	3 4 5 6	3 4 6 6 7 8	2 0 1 3 4 5 6 7 8 9		 Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes. For full credit solve each problem fully, showing all relevant work. 						
1		2	T	3		4	5		6	7	TOTAL	GRADE			

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

$$\begin{bmatrix}
1 & -1 & 1 & -2 \\
0 & 1 & 2 & 2 \\
2 & -3 & 0 & 9
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & -2 \\
0 & 1 & 2 & 2 \\
0 & -1 & -2 & 6+4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & -2 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 9+6
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 9+6
\end{bmatrix}$$

W-6 Span (V, V, V) for b=-6

the set {v, v, v, v, 3} is not linearly independent

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix} 1 & -1 & 2 & 1 & 6 & 6 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 2 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 2 & | & 2 & -1 & | & | \\
0 & 1 & 0 & | & 1 & -1 & | & | \\
0 & 0 & 1 & | & 2 & -2 & | & |
\end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$A^{T} = \begin{cases} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{cases} \qquad A^{T} c = B$$

$$C = (A^{T})^{-1} \cdot A^{T} c = (A^{T})^{-1} \cdot B$$

$$C = (A^{T})^{-1} \cdot B$$

$$(A^{T})^{-1} = (A^{-1})^{T} \cdot B$$

$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

$$(A')T = \begin{cases} -2 & 1 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{cases}$$

$$C = (A^{-1})^{T}, B = \begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} (-2 + 4 + 6) & (-4 + 5 + 4) & (-6 + 4 + 2) \\ (3 - 4 - 6) & (6 - 5 - 4) & (9 - 4 - 2) \\ (-1 + 4 + 3) & (-2 + 5 + 2) & (-3 + 4 + 1) \end{bmatrix}$$

$$C = \begin{bmatrix} 8 & 5 & 0 \\ -7 & -3 & 3 \\ 6 & 5 & 2 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

$$\begin{bmatrix}
 1 & -2 & | & 1 \\
 | & 1 & | & 10 \\
 | & 1 & | & 2 & | & 3
 \end{bmatrix}
 \begin{bmatrix}
 | & -2 & | & 0 \\
 | & 1 & | & | & 0 \\
 | & 1 & | & 2 & | & 0
 \end{bmatrix}$$

$$\begin{bmatrix}
 | & -2 & | & 0 \\
 | & 1 & | & 0 \\
 | & 1 & | & 2 & | & 0
 \end{bmatrix}$$

$$\begin{bmatrix}
 | & -2 & | & 0 \\
 | & 1 & | & 2 & | & 0
 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 3 & 9 \\ 0 & -1 & -3 \end{bmatrix} \begin{bmatrix} 1 & -2 & 0 \\ 0 & 3 & 6 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & -2 & 1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{bmatrix}$$

$$X_{1} = 1 + 2x_{2}$$

$$X_{2} = 3$$

$$\begin{bmatrix}
1 & 0 & 7 \\
0 & 1 & 6 \\
0 & 0 & 0
\end{bmatrix}$$

$$X_{1} = 1 + 2x_{2}$$

$$X_{2} = 3$$

$$\begin{bmatrix}
1 & 0 & 7 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
7 \\
3
\end{bmatrix}$$

$$X_{1} = 7$$

$$X_{1} = 7$$

$$X_{1} = 7$$

$$X_{1} = 3$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to-one or not. If T_A is not one-to-one, find two vectors v_1 and v_2 such that $T_A(v_1) = T_A(v_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$\begin{pmatrix}
 1 & 1 & 0 \\
 0 & 1 & 2 \\
 0 & 1 & 4
 \end{pmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 2 \\
6 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{bmatrix}$$

$$V_{1} = V_{1} + \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$$

Not 1-to-1 ; not all alumas are prior alumas

$$\begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 1 & 2 & 6
\end{bmatrix}$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

b) If u,v,w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

- **7.** (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in $\mathrm{Span}(v, w)$ then T(u) must be in $\mathrm{Span}(T(v), T(w))$.

By linearity:
$$T(u) = T(c_1v + c_2w) = T(c_1v) + T(c_2w)$$

$$= c_1T(v) + c_2T(w)$$

$$= c_1T(v) + c_2T(w)$$

$$T(u) \text{ is a constant multiple of } T(v) \text{ and } T(w)$$

$$= c_1T(v) + c_2T(w)$$

$$= c_1T(v) + c_2T(w)$$