Comparative Analysis of Machine Learning Models for Classification of Signals Based On Higgs-Boson Experiments

PRESENTERS:

Akshat Tyagi (at3761) Hamza Mirza (hm1800) Pulkit Aneja (pa1304) Vishal Prabhu (vp1179)

Contents

- Motivation
- Dataset
- Technologies Used
- Data Preprocessing and Cleaning
- Classification Models Used
- Evaluation Metrics
- Confusion Matrix
- Results
- Conclusion
- Challenges Faced and Learning Outcomes
- References

Motivation

- Higgs-Boson is the last and a major piece of the Standard Model of Particle Physics discovered in 2012.
- Explains how particles and forces interact in the universe.
- Could prove theories in physics. For example: Higgs-Boson is responsible for the mass of matter.
- Could change the way we see the universe.
- One step closer to the ultimate goal of proving "The Theory of Everything".

Dataset

- Source: provided by the physicists working on the experiment at CERN.(https://archive.ics.uci.edu/ml/datasets/HIGGS)
- Task: Classify whether the event resulted in Higgs-Boson particles or just background noise.
- **Description:** 1 label column, 30 feature columns.
- **Selection:** Features include those measured by detectors and advanced features selected by physicists.

Technologies Used

- Apache Spark (2.1)
 - Spark MLlib
- Tableau
- Apache Zeppelin
- Docker

Data Preprocessing and Cleaning

- Label Encoding: Convert the strings in label to double.
- Removing NA Values: Drop all na values from the dataset.
- **Normalization and Feature Scaling:** Bring features to a similar scale for easier convergence during optimization process.
- Model Selection: Splitting data to train and test data with some random seed.

Classification Models Used

- 1. Multivariate Logistic Regression with Regularization
- 2. Decision Tree
- 3. Random Forest Algorithm
- 4. Gradient Boosting Tree
- 5. Multilayer Perceptron (using 3 hidden layers)

Evaluation Metrics

- True Positive Rate/ Precision: TP / (TP+FP).
- False Positive Rate: FP / (FP + TN)
- Recall/Sensitivity: TP/(TP+FN).
- **F1 Score**: 2*((Precision*Recall)/(Precision+Recall))
- Area Under ROC Curve: Area under the Receiver Operating Characteristic Curve
- Area Under PR Curve: Area under Precision-Recall Curve
- Accuracy: Ratio of correct classifications to total number of classifications.

Confusion Matrix

Confusion matrix is the summarization of classification.

PREDICTED

ACTUAL

	Р	N
Y	True positives(TP)	False positives(FP)
N	False negatives(FN)	True negatives(TN)

Logistic Regression Confusion Matrix

	Predicted		Value	
Actual	PY	PN		
AY	42,258	6,873	6,873	42,258
AN	12,217	13,643		

Decision Tree Confusion Matrix

Gradient Boosting Confusion Matrix

	Predi	Predicted		
Actual	PY	PN		
AY	43,731	5,400	5,400	43,731
AN	7,731	18,129		

MLP Confusion Matrix

	Predicted		Value	
Actual	PY	PN		
AY	40,005	9,126	9,126	40,005
AN	10,513	15,347		

Random Forest Confusion Matrix

	Predicted		Value	
Actual	PY	PN		
AY	44,615	4,516	4,516	44,615
AN	9,286	16,574		

Precision Comparison

Precision Comparison

Sum of Ratio for each Precison. Color shows sum of Ratio.

Recall Comparison

Recall Comparison

Sum of Ratio for each Recall. Color shows sum of Ratio.

False Positive Rate Comparison

False Positive Rate Comparison

Sum of Ratio for each False Positive Rate. Color shows sum of Ratio.

F1 Score Comparison

F1 Score Comparison

Sum of Ratio for each F1 Score. Color shows sum of Ratio.

Accuracy Visualization

Accuracy Comparison

Sum of Percentage Accuracy for each Algorithm. Color shows sum of Percentage Accuracy.

Area Under ROC Curve

Area Under ROC Comparison

Sum of Value for each Area under ROC. Color shows sum of Value.

Area Under PR Curve

Area Under PR Comparison

Sum of Value for each Area under PR. Color shows sum of Value.

Conclusion

- Gradient Boosting Tree performed the best on many metrics.
- Random Forests Algorithm offered better precision and lower FP rate than Gradient
 Boosting Tree but GBT outperformed in all other metrics.
- Decision Trees had a better F1 Score and Precision than Random Forests.
- Multi-Layer Perceptron had the highest FP rate. Performance could be improved by adding more hidden layers and nodes.
- Slight correlation observed between accuracy, F1 Score, Recall, and TP Rate.
- Randomization affected accuracy.

Challenges Faced

- Launching Apache Zeppelin on NYU HPC.
- Tuning of parameters.

Learning Outcomes

- How to implement ML models on Apache Spark.
- How randomization affects performance.
- Improving performance of algorithms by understanding the data.

References

- 1. MLlib Main Guide (https://spark.apache.org/docs/latest/ml-guide.html)
- 2. Higgs Boson Machine Learning Challenge (https://www.kaggle.com/c/higgs-boson)
- 3. UCIML Higgs (https://archive.ics.uci.edu/ml/datasets/HIGGS).