UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA MECÁNICA Y DE ENERGÍA

DEPARTAMENTO ACADÉMICO DE INGENIERÍA MECÁNICA

MATEMÁTICA APLICADA A LA INGENIERÍA ESPACIOS VECTORIALES

RESOLUCIÓN N° 053-2016-D-FIME

ANDRES COLLANTE HUANTO

SEMESTRE 2016-B CALLAO-PERU

INDICE

ESPACIOS VECTORIALES			2
1	Definición		
	1.1	Ejemplos	3
2	Subespacios		
	2.1	Combinación lineal	8
	2.2	Envolvente lineal	8
	2.3	Operaciones con subespacios	12
3	Independencia Lineal, Bases y Dimensión		
	3.1	Independencia Lineal	14
	3.2	Bases	17
	3.3	Dimensión	19
4	Ma	triz de cambio de base	23
\mathbf{R}	REFERENCIALES		

ESPACIOS VECTORIALES

La definición de un espacio vectorial envuelve un campo $\mathbb K$ arbitrario cuyos elementos se llaman escalares.

1 Definición

Se llama espacio vectorial sobre el campo \mathbb{K}^1 , a un conjunto $V \neq \emptyset$, que tiene dos operaciones que son: la suma y el producto por un escalar

• La suma

$$+: V \times V \longrightarrow V$$

$$(u, v) \longrightarrow u + v$$

• El producto por un escalar

$$\cdot : \mathbb{K} \times V \longrightarrow V$$

$$(\lambda, \mu) \longrightarrow \lambda \mu$$

y satisface los siguientes axiomas, $\forall u,v,w\in V,\ \forall \alpha,\beta\in\mathbb{K}$

$$[S_1]: u+v=v+u$$

$$[S_2]: (u+v)+w=u+(v+w)$$

 $[S_3]$: \exists un elementos $0 \in V,$ llamado cero $/u + 0 = u \ \forall u \in V$

 $[S_4]: \, \forall u \in V \, \exists$ un elemento $u' \in V/u + u' = 0$. El elemento u' se llama el opuesto de u y se denota por u' = -u

$$[P_1]: \alpha(\beta u) = (\alpha \beta)u$$

$$[P_2]: (\alpha + \beta)u = \alpha u + \beta u$$

$$[P_3]$$
: $\alpha(u+v) = \alpha u + \alpha v$

¹En adelante consideraremos a K como el conjunto de los numeros reales

 $[P_4]: 1 \cdot u = u$

NOTA

Sea V un espacio vectorial sobre el campo $\mathbb K$

- 1. Los elementos de V se llaman vectores
- 2. Los elementos de K se llaman escalares
- 3. Se dice que V es un espacio vectorial racional si $\mathbb{K} = \mathbb{Q}$
- 4. Se dice que V es un espacio vectorial real si $\mathbb{K} = \mathbb{R}$
- 5. Se dice que V es un espacio vectorial complejo si $\mathbb{K} = \mathbb{C}$

1.1 Ejemplos

Ejemplos de espacio vectorial

1. $V = \mathbb{K}^n, \ n = 1, 2, 3, \dots,$ donde \mathbb{K} es un campo arbitrario. Sean

$$u = (u_1, u_2, \dots, u_n), \ v = (v_1, v_2, \dots, v_n)$$

elementos de V y $\alpha \in \mathbb{K}$. Se definen las siguientes operaciones

$$u + v = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n), \ \alpha v = (\alpha v_1, \alpha v_2, \dots, \alpha v_n)$$

 $V=\mathbb{K}^n$ es un espacio vectorial sobre \mathbb{K}

2. En $V=\mathbb{R}^n,\ n=2,3,4,\ldots$ toda recta o plano que pasa por el origen de coordenadas con las operaciones definidas en ejemplo 1, es un espacio vectorial sobre \mathbb{R} . Por ejemplo

$$\mathcal{L} = \{(x, y) \in \mathbb{R}^2 / 5x + 4y = 0\}$$

у

$$\mathscr{P} = \{(x, y, z) = t(1, 2, 3) + r(0, 0, 1)/t, r \in \mathbb{R}\}\$$

son espacios vectoriales sobre el campo $\mathbb{K} = \mathbb{R}$

3. Sea $U \neq \emptyset$ un conjunto arbitrario

$$\mathbb{K}^U = \{ f : U \to \mathbb{K}/f \text{ es una función} \}$$

con las operaciones

$$(f+g)(x) = f(x) + g(x)$$
$$(\alpha f)(x) = \alpha f(x)$$

para $x \in U, \ f,g \in \mathbb{K}^U, \ \alpha \in \mathbb{K}, \ \mathbb{K}^U$ es un espacio vectorial sobre \mathbb{K}

- 4. Sea $\mathbb{K}[x]$ el conjunto de todos los polinomios con coeficientes en \mathbb{K} , con las operaciones suma de polinomios y el producto de un escalar por un polinomio, $\mathbb{K}[x]$ es un espacio vectorial sobre \mathbb{K} .
- 5. Sea I = [a, b], con a < b

$$C(I) = \{ f : I \to \mathbb{R}/f \text{ es continua} \}$$

con las operaciones del ejemplo 3, C(I) es un espacio vectorial sobre \mathbb{R} .

6. El conjunto

$$E = \{f : \mathbb{R} \to \mathbb{R}/f \text{ es diferenciable en } x = 2\}$$

con las operaciones del ejemplo 3, E es un espacio vectorial sobre \mathbb{R} .

7. Sea

$$D = \{f : [-2, 2] \to \mathbb{R}/f \text{ es integrable}\}\$$

con las operaciones del ejemplo 3, D es un espacio vectorial sobre \mathbb{R} .

- 8. Sea P_n el conjunto de polinomios con coeficientes reales de grado menor o igual a n con las operaciones suma de polinomios y el producto de un escalar real por un polinomio, P_n es un espacio vectorial sobre \mathbb{R} .
- 9. Sea $M_{m \times n}$ el conjunto de matrices de orden $m \times n$

$$M_{m \times n} = \{ [a_{ij}]/a_{ij} \in \mathbb{R} \}$$

con las operaciones usuales de suma de matrices y el producto de un escalar real por una matriz, $M_{m\times n}$ es un espacio vectorial sobre \mathbb{R} .

10. Además

$$F = \{ f : \mathbb{R} \to \mathbb{R}/f''' - 5f' + 8f = 0 \}$$

con las operaciones del ejemplo 3, F es un espacio vectorial sobre \mathbb{R} .

2 Subespacios

Definición

Sea V un espacio vectorial sobre $\mathbb{K},\ S \neq \emptyset,\ S \subset V,\ S$ es un subespacio de V si S es un espacio vectorial con las operaciones de V

Ejemplos

- 1. Si V es un espacio vectorial sobre \mathbb{K} y $0 \in V \Rightarrow \{0\}$ es un sub-espacio de V
- 2. $\mathscr{L}=\{a(1,0)/a\in\mathbb{R}\}$ es un sub-espacio de \mathbb{R}^2 $\mathscr{P}=\{a(1,0,0)+b(0,1,0)/a,b\in\mathbb{R}\}$ es un subespacio de \mathbb{R}^3
- 3. Sea $V = \mathbb{R}[x]$ el conjunto de todos los polinomios con coeficientes en \mathbb{R} , $V = \mathbb{R}[x]$ tiene infinitos sub-espacios. Veamos algunos de ellos

$$M = \{f(x) \in V/\operatorname{grado}(f(x)) \le 8\}$$

$$R = \{g(x^3)/g(x) \in V\}$$

$$S = \{h(x) \in V/h(-x) = -h(x)\}$$

Proposición. Sea V un espacio vectorial, $S \neq \emptyset$, $S \subset V$, S es un subespacio de V si y sólo si

$$\alpha u + \beta v \in S \quad \forall u, v \in S, \ \forall \alpha, \beta \in \mathbb{K}$$

Ejemplos

1. Probar que $\mathscr{L}=\{a(1,0)/a\in\mathbb{R}\}$ es un subespacio de \mathbb{R}^2

$$\mathscr{L} \subset \mathbb{R}^2, \ (1,0) \in \mathscr{L} \Rightarrow \mathscr{L} \neq \emptyset$$

Sea
$$b(1,0) \in \mathcal{L}, c(1,0) \in \mathcal{L}, \alpha, \beta \in \mathbb{K}$$

$$\alpha b(1,0) + \beta c(1,0) = (\alpha b + \beta c)(1,0) \in \mathcal{L}$$

 $\therefore \mathscr{L}$ es un subespacio de \mathbb{R}^2

2. Determinar si $W = \{(x, y, z)/x^2 + y^2 + z^2 \le 1\}$ es un subespacio de \mathbb{R}^3

Solución

 $W \neq \emptyset$ pues $(1,0,0) \in W$ además $W \subset \mathbb{R}^3$

$$(1,0,0) + (1,0,0) = (2,0,0) \notin W$$

 $\therefore W$ no es sub-espacio de \mathbb{R}^3

3. Probar que P_m es un sub-espacio de P_n donde $0 \le m \le n$

Solución

 $P_m \neq \emptyset$ pues $0 \in P_m$, además $P_m \subset P_n$

Sean $\alpha, \beta \in \mathbb{R}$

Sean $p(x), q(x) \in \mathscr{P}_m$ entonces

$$p(x) = a_0 + a_1 x + \dots + a_{m-1} x^{m-1} + a_m x^m, \ a_i \in \mathbb{R}$$
$$q(x) = b_0 + b_1 x + \dots + b_{m-1} x^{m-1} + b_m x^m, \ b_i \in \mathbb{R}$$

y grado $(p(x)) \le m$, grado $(q(x)) \le m$

Planteamos

$$\alpha p(x) + \beta q(x) = (\alpha a_0 + \beta b_0) + (\alpha a_1 + \beta b_1)x$$

 $+ \dots + (\alpha a_{m-1} + \beta b_{m-1})x^{m-1} + (\alpha a_m + \beta b_m)x^m \in \mathscr{P}_m$

 $\therefore P_m$ es sub-espacio de P_n

4. Verificar que $S=\{g(x^3)/g(x)\in V\}$ es un subespacio de $V=\mathbb{R}[x]$

Solución

Vemos que

$$0 \in S \neq \emptyset \qquad \land \qquad S \subset V$$

Sean
$$f(x^3), g(x^3) \in S$$
 y $\alpha, \beta \in \mathbb{R}$

$$\alpha f(x^3) + \beta g(x^3) = (\alpha f + \beta g)(x^3) \in S$$

 \therefore S es un subespacio de $V = \mathbb{R}[x]$

5. Sea $C'[0,1]=\{f:[0,1]\to\mathbb{R}/f'\text{ es continua en }[0,1]\}$. Probar que C'[0,1] es un subespacio de C[0,1]

Solución

 $C'[0,1] \neq 0$ pues la función nulo $0 \in C'[0,1]$

Veamos que $C'[0,1] \subset C[0,1]$

Sea
$$f \in C'[0,1] \longrightarrow f'$$
 es continua en $[0,1]$
$$\longrightarrow f \text{ es diferenciable en } [0,1]$$

$$\longrightarrow f \text{ es continua en } [0,1]$$

$$\longrightarrow f \in C[0,1]$$

Sean $f, g \in C'[0, 1]$ y $\alpha, \beta \in \mathbb{R}$

$$f \in C'[0,1] \longrightarrow f'$$
 es continua en $[0,1]$
$$\longrightarrow \alpha f'$$
 es continua en $[0,1]$
$$g \in C'[0,1] \longrightarrow g'$$
 es continua en $[0,1]$
$$\longrightarrow \beta g'$$
 es continua en $[0,1]$

Luego

$$\longrightarrow \alpha f' + \beta g'$$
 es continua en $[0,1]$
 $\longrightarrow (\alpha f + \beta g)'$ es continua en $[0,1]$
 $\longrightarrow \alpha f + \beta g \in C'[0,1]$
 $\therefore C'[0,1]$ es un subespacio de $C[0,1]$

2.1 Combinación lineal

Sea V un espacio vectorial sobre un campo \mathbb{K} . Sean $v_1, v_2, \ldots, v_m \in V$ y sean $\alpha_1, \alpha_2, \ldots, \alpha_m \in \mathbb{K}$. El vector de la forma

$$\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_m v_m$$

se llama combinación lineal de v_1, v_2, \ldots, v_m .

2.2 Envolvente lineal

Sea V un espacio vectorial sobre $\mathbb{K},\ S \neq \emptyset$ y $S \subset V$. Se llama envolvente lineal generada por S al conjunto de vectores que se puede poner como combinacion lineal de elementos de S

$$L[S] = \{\alpha v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m / v_1, \dots, v_m \in S, \alpha_1, \alpha_2, \dots, \alpha_m \in \mathbb{K}, m \in \mathbb{N}\}\$$

Al conjunto S se le llama conjunto generador de L[S].

Teorema

Sea V un espacio vectorial sobre $\mathbb{K},\ S \neq \emptyset$ y $S \subset V$

Se cumple las siguientes proposiciones

- i) $S \subset L[S]$ y L[S] es un subespacio de V.
- ii) Si Wes subespacio de V y $S \subset W$ entonces $L[S] \subset W$

NOTA

- 1. L[S] se llama el subespacio generado por S.
- 2. $L[\emptyset] = \{0\}$

Definición

Si L[S] = V se dice que S es un conjunto generador de V

Ejemplos

1. Probar que $\{(1,0,0),(0,1,0),(0,0,1)\}$ genera \mathbb{R}^3

Solución

Probemos que

$$L[\{(1,0,0),(0,1,0),(0,0,1)\}] = \mathbb{R}^3$$

Veamos que

 $L[\{(1,0,0),(0,1,0),(0,0,1)\}] \subset \mathbb{R}^3$ obvio pues

$$\alpha_1(1,0,0) + \alpha_2(0,1,0) + \alpha_3(0,0,1) = (\alpha_1,\alpha_2,\alpha_3) \in \mathbb{R}^3$$

Veamos que

$$\mathbb{R}^3 \subset L[\{(1,0,0),(0,1,0),(0,0,1)\}]$$

Sea
$$(x, y, z) \in \mathbb{R}^3 \Rightarrow (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) \in L[\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}]$$

$$\therefore \{(1,0,0),(0,1,0),(0,0,1)\}$$
 genera a \mathbb{R}^3

2. Determinar si $\{(1,2),(1,1)\}$ genera a \mathbb{R}^2

Solución

Veamos que $L[\{(1,2),(1,1)\}] = \mathbb{R}^2$

$$L[\{(1,2),(1,1)\}]\subset\mathbb{R}^2$$
obvio

Probemos que $\mathbb{R}^2 \subset L[\{(1,2),(1,1)\}]$

Sea $(x,y) \in \mathbb{R}^2$

$$(x,y) = \alpha(1,2) + \beta(1,1)$$

$$\alpha + \beta = x$$

$$2\alpha + \beta = y$$

$$\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & x \\ 2 & 1 & y \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & x \\ 0 & -1 & y - 2x \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & y - x \\ 0 & -1 & y - 2x \end{pmatrix}$$

$$\alpha = y - x \qquad \beta = 2x - y$$

$$(x,y) = (y-x)(1,2) + (2x-y)(1,1)$$

$$\therefore \{(1,2),(1,1)\}$$
genera a \mathbb{R}^2

3.
$$A = \{1, x, x^2, \dots, x^n, \dots\}$$
 genera a $\mathbb{R}[x]$

4.
$$B = \{1, x, x^2, \dots, x^n\}$$
 genera a P_n

5. Determinar si
$$\{1+x, x^2, x-2x^2\}$$
 genera a P_2

Solución

Veamos que
$$L[\{1+x, x^2, x-2x^2\}] = P_2$$

Probemos que $L[\{1+x,x^2,x-2x^2\}] \subset P_2$ obvio

Probemos que $P_2 \subset L[\{1+x, x^2, x-2x^2\}]$

Sea $a + bx + cx^2 \in P_2$

$$a + bx + cx^2 = \alpha(1+x) + \beta x^2 + \gamma(x-2x^2)$$

entonces

$$a = \alpha$$

$$b = \alpha + \gamma \to \gamma = b - a$$

$$c = \beta - 2\gamma \to \beta = c + 2\gamma \to \beta = c + 2(b - a)$$

$$a + bx + cx^2 = a(1+x) + (c+2b-2a)x^2 + (b-a)(x-2x^2) \in L[\{1+x, x^2, x-2x^2\}]$$

$$L[\{1+x, x^2, x-2x^2\}] \subset P_2$$

$$\therefore \{1+x, x^2, x-2x^2\} \text{ genera a } P_2$$

6. Sea $S = \{1+x, x+x^2, 1+x+x^2, 1+2x+x^2\}$. Verificar que $1+2x+3x^2 \in L[S]$ (envolvente lineal de S)

$$1 + 2x + 3x^2 = \alpha(1+x) + \beta(x+x^2) + \gamma(1+x+x^2) + \eta(1+2x+x^2)$$
$$1 = \alpha + \gamma + \eta$$
$$2 = \alpha + \beta + \gamma + 2\eta$$
$$3 = \beta + \gamma + \eta$$

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \eta \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Formamos la matriz aumentada y realizamos operaciones elementales por filas

$$\begin{pmatrix}
1 & 0 & 1 & 1 & | & 1 \\
1 & 1 & 1 & 2 & | & 2 \\
0 & 1 & 1 & 1 & | & 3
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & 1 & 1 & | & 1 \\
0 & 1 & 0 & 1 & | & 1 \\
0 & 1 & 1 & 1 & | & 3
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & 1 & 1 & | & 1 \\
0 & 1 & 0 & 1 & | & 1 \\
0 & 0 & 1 & 0 & | & 2
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 1 & | & -1 \\
0 & 1 & 0 & 1 & | & 1 \\
0 & 0 & 1 & 0 & | & 2
\end{pmatrix}$$

$$\gamma = 2$$

$$\alpha + \eta = -1 \to \alpha = -1 - \eta$$

$$\beta + \eta = 1 \to \beta = 1 - \eta$$

$$1+2x+3x^2 = (-1-\eta)(1+x)+(1-\eta)(x+x^2)+2(1+x+x^2)+\eta(1+2x+x^2) \ \forall \eta \in \mathbb{R}$$
$$1+2x+3x^2 \in L[S]$$

7. Si $S = \{(1,1,0),(0,1,1)\}$. Determinar el sub-espacio de \mathbb{R}^3 generado por S.

Solución

El sub-espacio generado por S es

$$L[S] = \{\alpha_1(1, 1, 0) + \alpha_2(0, 1, 1) / \alpha_1, \alpha_2 \in \mathbb{R}\}\$$

ecuación vectorial de un plano

Podemos hacer las siguientes operaciones

$$\begin{cases} (x, y, z) = \alpha_1(1, 1, 0) + \alpha_2(0, 1, 1) \\ x = \alpha_1 \\ y = \alpha_1 + \alpha_2 \\ z = \alpha_2 \end{cases} \rightarrow y = x + z$$

también se puede escribir como

$$L[S] = \{(x, y, z)/y = x + z\}$$

2.3 Operaciones con subespacios

Sea V un espacio vectorial sobre \mathbb{K} , sean V_1 y V_2 subespacios de V, se definen las siguientes operaciones:

$$V_1 \cap V_2 = \{ u \in V/u \in V_1 \land u \in V_2 \}$$

$$V_1 \cup V_2 = \{ u \in V/u \in V_1 \lor u \in V_2 \}$$

$$V_1 + V_2 = \{ u_1 + u_2 \in V/u_1 \in V_1, u_2 \in V_2 \}$$

Proposición. $V_1 \cap V_2$ y $V_1 + V_2$ son subespacios de V, en cambio no siempre $V_1 \cup V_2$ es un subespacio de V

Ejemplo

1. Sea

$$V_1 = \{\alpha(1,0,0) + \beta(0,1,0)/\alpha, \beta \in \mathbb{R}\}$$
$$V_2 = \{m(0,1,0) + n(0,0,1)/m, n \in \mathbb{R}\}$$

Determinar $V_1 \cap V_2$

Solución

 V_1 es el plano XY y V_2 es el plano YZ

$$\alpha(1,0,0) + \beta(0,1,0) = m(0,1,0) + n(0,0,1)$$

$$\alpha = 0$$

$$\beta = m$$

$$0 = n$$

$$V_1 \cap V_2 = \{r(0,1,0)/r \in \mathbb{R}\}$$

2. Sea

$$V_1 = \{\alpha(0, 1, 0) / \alpha \in \mathbb{R}\}\$$

 $V_2 = \{\beta(0, 0, 1) / \beta \in \mathbb{R}\}\$

Halle $V_1 + V_2$

Solución

$$V_1 + V_2 = \{\alpha(0, 1, 0) + \beta(0, 0, 1) / \alpha(0, 1, 0) \in V_1 \land \beta(0, 0, 1) \in V_2\}$$
$$V_1 + V_2 = \{\alpha(0, 1, 0) + \beta(0, 0, 1) / \alpha, \beta \in \mathbb{R}\}$$

es el plano YZ

3. Sea

$$V_1 = \{ \alpha(1, 0, 0) / \alpha \in \mathbb{R} \}$$
$$V_2 = \{ \beta(0, 1, 0) / \beta \in \mathbb{R} \}$$

Determinar si $V_1 \cup V_2$ es subespacio de \mathbb{R}^3

Solución

$$V_{1} \cup V_{2} = \{v \in V/v \in V_{1} \lor v \in V_{2}\}$$

$$(1,0,0) \in V_{1} \longrightarrow (1,0,0) \in V_{1} \cup V_{2}$$

$$(0,1,0) \in V_{2} \longrightarrow (0,1,0) \in V_{1} \cup V_{2}$$

$$(1,0,0) + (0,1,0) = (1,1,0) \notin V_{1} \cup V_{2}$$

$$\therefore V_{1} \cup V_{2} \text{ no es subespacio de } \mathbb{R}^{3}$$

2.3.1 Suma directa

Sea V e.v.², sean V_1, V_2 subespacios de V. La suma $V_1 + V_2$ se llama suma directa si $V_1 \cap V_2 = \{0\}$. En este caso la suma se denota $V_1 \oplus V_2$

Ejemplo

1. Sean

$$V_1 = \{(x, y, z) \in \mathbb{R}^3 / x - y + z = 0\}$$

²e.v. abreviatura de espacio vectorial

$$V_2 = \{(x, y, z) \in \mathbb{R}^3 / - x + y + z = 0\}$$
$$L = \{\lambda(1, 1, 2) / \lambda \in \mathbb{R}\}$$

Determine si $V_1 + V_2$ y $V_1 + L$ son sumas directas

Solución

Hallemos $V_1 \cap V_2$

$$\begin{aligned} x - y + z &= 0 \\ -x + y + z &= 0 \end{aligned} \right\} \to \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x - y &= 0 \longrightarrow x = y$$

$$z &= 0$$

$$(x, y, z) = (x, x, 0) = x(1, 1, 0)$$

$$V_1 \cap V_2 = \{x(1, 1, 0) / x \in \mathbb{R}\} \neq \{0\}$$

luego $V_1 + V_2$ no es suma directa

Hallemos $V_1 \cap L$

$$x - y + z = 0$$

$$(x, y, z) = \lambda(1, 1, 2)$$

$$\rightarrow \lambda - \lambda + 2\lambda = 0 \rightarrow \lambda = 0$$

$$V_1 \cap L = \{0\}$$

Luego $V_1 + L$ es suma directa

3 Independencia Lineal, Bases y Dimensión

3.1 Independencia Lineal

Definición

Se dice que los vectores $v_1, v_2, \dots, v_n \in V$ e.v. son linealmente independientes si la

ecuación

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0 \ (\alpha_i \in \mathbb{K}) \Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

solución única. En caso contrario se dice que son linealmente dependiente.

Ejemplos

1. Pruebe que $v_1 = (1, 2, 3), v_2 = (1, 2, 2), v_3 = (2, 2, 3)$ son l.i.

Solución

De

$$\alpha_1(1,2,3) + \alpha_2(1,2,2) + \alpha_3(2,2,3) = (0,0,0)$$

$$\alpha_1 + \alpha_2 + 2\alpha_3 = 0$$

$$2\alpha_1 + 2\alpha_2 + 2\alpha_3 = 0$$

$$3\alpha_1 + 2\alpha_2 + 3\alpha_2 = 0$$

$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & 2 & 2 \\ 3 & 2 & 3 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 0 & -2 \\ 3 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \alpha_1 = \alpha_2 = \alpha_3 = 0$$

 $\Rightarrow v_1, v_2 \text{ y } v_3 \text{ son linealmente independientes}$

2. Sea $L[S]=\{(x,y,z,w)\in\mathbb{R}^4/x-y+w=0,2x+y-w=0,z+w=0\}.$ Halle un conjunto S que genere a L[S]

Solución

$$x - y + w = 0
2x + y - w = 0 \Rightarrow \begin{pmatrix} 1 & -1 & 0 & 1 \\ 2 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$-y + w = 0 \longrightarrow y = w$$

 $x = 0 \longrightarrow x = 0$
 $z + w = 0 \longrightarrow z = -w$

$$(x, y, z, w) = (0, w, -w, w) = w(0, 1, -1, 1)$$

 $L[S] = \{w(0, 1, -1, 1)/w \in \mathbb{R}\}$
 $S = \{(0, 1, -1, 1)\}$

3. Sea

$$A = \left\{ \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix} \middle/ a, b \in \mathbb{R} \right\}$$

Halle un conjunto S que genere al conjunto A

$$A = \left\{ a \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \middle/ a, b \in \mathbb{R} \right\}$$

$$A = L \left[\left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\} \right]$$

$$S = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$

Definición

Un conjunto $A\subset V$ es l.i. si toda colección finita de elementos de A es linealmente independiente.

Ejemplo

$$A = \{1, x, x^2, \ldots\} \subset \mathbb{R}[x]$$
 es l.i.

3.2 Bases

Sea V un espacio vectorial, un conjunto $S \subset V$ es una base si

- (i) S genera V, es decir L[S] = V
- (ii) S es linealmente independiente.

Ejemplos

1. Si
$$e_j = (\underbrace{0, \dots, 0, 1}_{j}, 0, \dots, 0), \ j = 1, 2, \dots, n$$

 $\{e_1, e_2, \dots, e_n\}$ es una base de \mathbb{R}^n llamada base canónica.

- 2. $\{(1,2),(2,1)\}$ es una base de \mathbb{R}^2
- 3. $\{1,x,x^2,\ldots\}$ es una base de $\mathbb{R}[x]$
- 4. $\{1, x, x^2, x^3\}$ es una base de P_3

5.
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
 es una base $M_{2\times 2}$

6. Halle una base de $V=\{(x,y,z)\in\mathbb{R}^3/x-y+z=0\}$

$$x - y + z = 0 \longrightarrow x = y - z$$

 $(x, y, z) = (y - z, y, z) = y(1, 1, 0) + z(-1, 0, 1)$

$$V = \{y(1,1,0) + z(-1,0,1)/y, z \in \mathbb{R}\}$$

$$V = L[\{(1,1,0), (-1,0,1)\}]$$

$$S = \{(1,1,0), (-1,0,1)\} \text{ genera } V$$

es fácil ver que (1, 1, 0) y (-1, 0, 1) son l.i.

Así S es una base de V

Proposición. Cualquier base de un espacio vectorial tiene la misma cantidad de elementos

Ejemplos

- 1. $\{(1,0),(0,1)\}$ base de \mathbb{R}^2 $\{(1,2),(2,1)\}$ base de \mathbb{R}^2
- 2. $\{1, x, x^2\}$ base de P_2 $\{1, 1+x, 1+x+x^2\}$ base de P_2

Proposición. De cualquier conjunto de generadores de V se puede extraer una base

Ejemplo

Sea
$$A = \{(1, -3, 2, 0), (1, 1, 0, 2), (2, -2, 2, 2), (0, -4, 2, -2), (3, -1, 2, 4)\}$$

Halle un subconjunto de A que sea una base de L[A]

$$\alpha_1(1,-3,2,0) + \alpha_2(1,1,0,2) + \alpha_3(2,-2,2,2) + \alpha_4(0,-4,2,-2) + \alpha_5(3,-1,2,4) = (0,0,0,0)$$

$$\begin{pmatrix}
1 & 1 & 2 & 0 & 3 \\
-3 & 1 & -2 & -4 & -1 \\
2 & 0 & 2 & 2 & 2 \\
0 & 2 & 2 & -2 & 4
\end{pmatrix}
\begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\alpha_4 \\
\alpha_5
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}$$
(1)

Formamos la matriz aumentada y por operaciones elementales por filas lo llevamos a la forma de una matriz escalonada

La columna 1 y 2 son pivote entonces la columna 1 y 2 de la matriz de coeficientes de (1) son una base de L[A]. Es decir

$$\{(1, -3, 2, 0), (1, 1, 0, 2)\}$$

es una base para L[A]

3.3 Dimensión

Definición

La dimensión de un espacio vectorial V es el número de elementos de una base. Este número se denota por dim V

NOTA

1. Si
$$V = \{0\} \Rightarrow \dim V = 0$$

2. Sea
$$S = \{v_1, v_2, \dots, v_n\}$$
 una base de $V \Rightarrow \dim V = n$

3. Si V tiene una base infinita $\Rightarrow \dim V = \infty$

Ejemplos

1. $\{(1,0,0),(0,1,0),(0,0,1)\}$ es una base de $\mathbb{R}^3\Rightarrow\dim\mathbb{R}^3=3$

2. $\{1, x, x^2, x^3\}$ es una base de $P_3 \Rightarrow \dim P_3 = 4$

3.
$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
 es una base de $M_{2\times 2} \Rightarrow \dim M_{2\times 2} = 4$

4. $\{1, x, x^2, x^3, \ldots\}$ es una base de $\mathbb{R}[x] \Rightarrow \dim \mathbb{R}[x] = \infty$

Proposición (Completación de una base). Sea V un \mathbb{K} -espacio vectorial, dim V=n. Si $v_1, v_2, \ldots, v_r, r < n$ son l.i. en $V \Rightarrow \exists v_{r+1}, \ldots, v_n / \{v_1, \ldots, v_r, \ldots, v_n\}$ es una base de V

Ejemplos

1. En \mathbb{R}^2 tenemos el vector $v_1=(1,0)$ completando a una base

2. En P_3 tenemos los vectores 1, x completando a una base

$$1, x, x^2, x^3$$

Corolario

Si dim $V \ge 1$ todo vector $v \ne 0$ forma parte de una base de V.

Proposición. Sea S sub-espacio de V ocurre

1. $\dim S \leq \dim V$

2. $\dim V < \infty \ y \dim V = \dim S \Longrightarrow S = V$

3. $\dim V = \infty$ la afirmación anterior es falsa en general

Ejemplo

1. En \mathbb{R}^3 sea

$$\mathcal{L} = \{\lambda(1,2)/\lambda \in \mathbb{R}\}$$

$$\mathcal{P} = \{a(1,0,0) + b(0,1,0)/a, b \in \mathbb{R}\}$$

entonces $dim(\mathcal{L}) \leq dim(\mathbb{R}^3)$ y $dim(\mathcal{P}) \leq dim(\mathbb{R}^3)$

2. Sea

$$V = L[\{1, x, x^2, \ldots\}] \text{ y } S = L[\{x, x^2, x^3, \ldots\}]$$

entonces $\dim V = \dim S = \infty$ y $S \neq V$

Proposición. Si V_1 y V_2 son sub-espacios de V $(\dim V < \infty) \Rightarrow$

$$\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$$

Ejemplo

1. Sea los espacios vectoriales

$$V_1 = \{\alpha(1,0,0)/\alpha \in \mathbb{R}\}\$$

$$V_2 = \{\beta(0, 1, 0) / \beta \in \mathbb{R}\}$$

Halle $dim(V_1 \cap V_2)$

Solución

La suma de espacios V_1 y V_2 es

$$V_1 + V_2 = \{\alpha(1,0,0) + \beta(0,1,0)/\alpha, \beta \in \mathbb{R}\}\$$

Luego

$$\dim(V_1 + V_2) = 2$$
, $\dim V_1 = 1$, $\dim V_2 = 1$
 $2 = 1 + 1 - \dim(V_1 \cap V_2)$
 $\rightarrow \dim(V_1 \cap V_2) = 0$

Proposición. Sea V un espacio vectorial $y S = \{v_1, v_2, \dots, v_n\} \subset V$, dim V = n

S es linealmente independiente \iff S genera a V

Definición

Sea V un espacio vectorial sobre \mathbb{R} , dim $V=n,\,B=\{v_1,v_2,\ldots,v_n\}$ es una base de V y $v\in V$

El vector de coordenadas de v respecto a la base B es

$$(v)_B = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{R}^n$$

donde

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

La matriz de coordenadas de v respecto a la base B es

$$[v]_B = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$

Ejemplos

1. Sea
$$v = (3,4),$$
 $B = \{(1,0),(0,1)\}$ Halle $(v)_B$ y $[v]_B$

Solución

$$(3,4) = \alpha_1(1,0) + \alpha_2(0,1)$$

 $\alpha_1 = 3$, $\alpha_2 = 4$
 $(v)_B = (3,4) \text{ y } [v]_B = \begin{pmatrix} 3\\4 \end{pmatrix}$

2. Sea
$$v = (3,4),$$
 $B_1 = \{(1,3), (-1,2)\}$
Halle $(v)_{B_1}$ y $[v]_{B_1}$

$$(3,4) = \alpha_1(1,3) + \alpha_2(-1,2)$$

$$\begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 3 \\ 3 & 2 & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 3 \\ 0 & 5 & -5 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 3 \\ 0 & 1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \end{pmatrix}$$

$$(v)_{B_1} = (2, -1) \text{ y } [v]_B = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

4 Matriz de cambio de base

Sea V un espacio vectorial sobre $\mathbb R$ dim V=n

$$B_1 = \{v_1, v_2, \dots, v_n\}$$
y $B_2 = \{u_1, u_2, \dots, u_n\}$ dos bases de V Sea $w \in V$

$$w = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n, \quad \alpha_i \in \mathbb{R}$$
$$w = \beta_1 u_1 + \beta_2 u_2 + \dots + \beta_n u_n \quad \beta_i \in \mathbb{R}$$

$$v_1 = m_1 u_1 + m_2 u_2 + \dots + m_n u_n$$
 $m_i \in \mathbb{R}$
 $v_2 = n_1 u_1 + n_2 u_2 + \dots + n_n u_n$ $n_i \in \mathbb{R}$
 \vdots
 $v_n = f_1 u_1 + f_2 u_2 + \dots + f_n u_n$ $f_i \in \mathbb{R}$

$$[w]_{B_2} = [\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n]_{B_2}$$
$$[w]_{B_2} = \alpha_1 [v_1]_{B_2} + \alpha_2 [v_2]_{B_2} + \dots + \alpha_n [v_n]_{B_2}$$

$$[w]_{b_2} = \begin{bmatrix} [v_1]_{B_2} & [v_2]_{B_2} & \cdots & [v_n]_{B_2} \end{bmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$

$$[w]_{B_2} = \underbrace{\begin{pmatrix} m_1 & n_1 & \cdots & f_1 \\ m_2 & n_2 & \cdots & f_2 \\ \vdots & & & \vdots \\ m_n & n_n & \cdots & f_n \end{pmatrix}}_{p} [w]_{B_1}$$

$$P[w]_{B_1} = [w]_{B_2}$$

P matriz de cambio de base de B_1 a B_2

Observación

- 1. $|P| \neq 0$ (P es no singular)
- 2. Si $P[w]_{B_1} = [w]_{B_2}$ entonces $P^{-1}[w]_{B_2} = [w]_{B_1}$, donde P^{-1} es la matriz cambio de base de B_2 hacia B_1

Ejemplos

1. Sea

$$B_1 = \{(1,1,1), (1,2,2), (1,2,3)\}$$

$$B_2 = \{(0,0,1), (0,1,1), (1,1,1)\}$$

bases de \mathbb{R}^3 , halle la matriz de cambio de base de B_1 a B_2

Solución

$$(1,1,1) = \alpha_1(0,0,1) + \alpha_2(0,1,1) + \alpha_3(1,1,1)$$

$$(1,2,2) = \beta_1(0,0,1) + \beta_2(0,1,1) + \beta_3(1,1,1)$$

$$(1,2,3) = \gamma_1(0,0,1) + \gamma_2(0,1,1) + \gamma_3(1,1,1)$$

$$\begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 1 & 2 & 3 \end{pmatrix} \xrightarrow{f_3 - f_2} \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{f_2 - f_1}$$

$$\begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\longrightarrow P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

2. Sea v=(3,5,6), considere las bases del ejemplo (1). Halle $[v]_{B_1}$, $[v]_{B_2}$

$$(3,5,6) = \alpha_1(1,1,1) + \alpha_2(1,2,2) + \alpha_3(1,2,3)$$

$$[v]_{B_1} = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$(3,5,6) = \beta_1(0,0,1) + \beta_2(0,1,1) + \beta_3(1,1,1)$$

$$[v]_{B_2} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$

se verifica

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
$$P[v]_{B_1} = [v]_{B_2}$$

Ejercicios

- 1. Determine si los siguientes conjuntos son espacios vectoriales, justifique su respuesta
 - (a) $V = \{f : R \to R/2f(0) = f(1)\}\$

(b)
$$U = \left\{ \begin{bmatrix} a & a+b \\ a+b & b \end{bmatrix} \middle/ a, b \in \mathbb{R} \right\}$$

- 2. Determine si los siguientes vectores son linealmente independientes a = (2, 2i, 2 + 2i, -2i), b = (-i, 0, 2, 2 i, 1 + i), c = (0, -1, 0, 1), d = (3i, -2 i, 3i 5, -i)
- 3. Probar que los siguientes conjuntos son linealmente independientes
 - (a) $\{x, x^2, x^3\}$

 - (c) $\{x^2e^x, xe^x, e^x\}$
- 4. Hallar el valor de β para que $g=-x+y+3z, \ f=5x-2y+9z, \ h=x-\beta y+2\beta z$ sean linealmente dependientes
- 5. Sea el subespacio $V = L\left[\{t+t^2, 1-3t+2t^2, -3+11t-4t^2\}\right]$
 - (a) $\[\] V$ es un subespacio de P_2 ?
 - (b) Diga si los vectores $a=1-t+t^2,\ b=-3+6t-9t^2$ pertenecen a V
 - (c) Determine la condición entre m,n y p para que el vector $m(1+t)+n(1-t)+pt^2$ pertenezca a V
- 6. Considere los siguientes subespacios de

$$V = L \left[\left\{ 1 + 2x + 3x^2 + x^3, 4 - x + 3x^2 + 6x^3, 5 + x + 6x^2 + 12x^3 \right\} \right]$$

$$U = L \left[\left\{ 1 - x + x^2 + x^3, 2 - x + 4x^2 + 5x^3 \right\} \right]$$

- (a) Halle una base para $U \cap V$ y su dimensión
- (b) Extienda la base hallada en a) a una base V y luego a una base de U
- (c) Halle una base para U + V y su dimensión

- 7. Sea $W \subset P_n / W = \{p(x)/p(2) = 1\}$. Diga si W es un subespacio.
- 8. Sean los subespacios $U=\{(x,y,z)/x+y+z=0\},\ V=\{(x,y,z)/x=y=z\}.$ Halle $U\oplus V$
- 9. Sea U el conjunto de soluciones del sistema

$$x - y + 3z = 0$$

$$3x + 2y - z = 0$$

$$3x - 8y + kz = 0$$

Halle el valor de k de modo que $\dim(U)$ sea 0, 1, 2

10. Diga si es verdad o falso la siguiente proposición, justifique su respuesta

$$L\left[\left\{\sin^2 x, \cos^2 x, \sin^2 x + 2, 8\sin^2 x - \cos^2 x\right\}\right] = L\left[\left\{1, \sin^2 x\right\}\right]$$

- 11. Sea el espacio vectorial $V=\{f/f:[-3,3]\to\mathbb{R}\}$ con las operaciones usuales, $S=\{f\in V/f(x)=f(-x)\},\ T=\{f\in V/f(x)=-f(-x)\}$
 - (a) Pruebe que S y T son subespacios de V
 - (b) Calcule $S \cap T$
 - (c) Pruebe que V = S + T
- 12. En \mathbb{R}^3 considere los subespacios

$$W_1 = \{(x, y, z)/2x + 3y + 3z = 0\}, \qquad W_2 = L[\{(0, 0, 1), (-1, 1, 0)\}]$$

Halle una base y dimensión de

- (a) $W_1 \cap W_2$
- (b) $W_1 + W_2$

13. Sean las bases
$$S_1 = \{\beta_1, \beta_2, \beta_3\}$$
 y $S_2 = \{t^2 + 1, t, 1\}$ y $P = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$

Halle

- (a) $(\beta)_{S_2}$ si $\beta = 3t^2 2t + 1$
- (b) La base S_1 , si P es la matriz cambio de base de S_2 a la base S_1

REFERENCIALES

- [1] Kolman Bernard. Algebra Lineal con aplicaciones y matlab. Sexta edición. Prentice Hall, México 1999.
- [2] Grossman Stanley I. "Algebral lineal". Ed. Mc. Graw Hill 1995.
- [3] Kreyszyg, Erwin. "Matemáticas Avanzadas para Ingeniería". Vol 1. Editorial Limusa, 1996.
- [4] Carlos Chavez V. "Algebra lineal". Editorial Moshera 2012.