DSZOB, cvičenie 2.

Zadanie:

Úloha 1 – Základné generovanie signálov

Vygenerujte a vhodne vizualizujte nasledovné signály (vzorkovacia frekvencia 44.1 kHz, časový úsek 3 sekundy):

- 1. Sínusový signál s frekvenciou zvoleného tónu temperovaného ladenia (vid tab. dole) a magnitúdou = 0,6.
- 2. Sínusový signál s frekvenciou iného zvoleného tónu temperovaného ladenia (vid tab. dole) a magnitúdou z rozsahu <0,2:0,5>.
- 3. Sínusový signál s frekvenciou iného zvoleného tónu temperovaného ladenia (vid tab. dole) a magnitúdou z rozsahu <0,1:0,4>.
- 4. Generujte zložený signál ako súčet z predchádzajúcich vygenerovaných signálov.
- 5. K zloženému signálu aditívne pripočítajte šum s magnitúdou z rozsahu <0,01:0,05>.

(pomôcka: funkcia rand() alebo randn())

Vygenerované signály si vypočujte po sebe v poradí generovania (zložený signál na záver).

Vygenerované signály vizualizujte!

Pozn.: Môžete sa pokúsit o akord (vid tab. dole)

Tab. Temperované ladenie - frekvencie

	0	1	2	3	4	5	6	7	8	9
c	16,35	32,7	65, 4	130,8	261,6	523,2	1046,4	2092,8	4185,6	8371,2
cis	17,32	34,64	69, 29	138,58	277,16	554,31	1108,62	2217,24	4434,49	8868,98
d	18,35	36,7	73, 41	148,82	293,64	587,27	1174,54	2349,09	4698,18	9396,35
dis	19,44	38,89	77,77	155,55	311,1	622,19	1244,39	2488,77	4977,55	9955,09
e	20,6	41,2	82,4	164,8	329,6	659,19	1318,38	2636,76	5273,53	10547,05
f	21,82	43,65	87,3	174,6	349,19	698,39	1396,78	2793,55	5587,11	11174,21
fis	23,12	46, 24	92, 49	184,98	369,96	739,92	1479,83	2959,67	5919,33	11838,66
g	24,5	48,99	97,99	195,98	391,96	783,91	1567,83	3135,66	6271,31	12542,63
gis	25,95	51,91	103,82	207,63	415,26	830,53	1661,06	3322,11	6844,23	13288,45
а	27,5	54,99	109,99	219,98	440,00	879,91	1759,83	3519,66	7039,31	14078,62
ais	29,13	58, 26	116,53	233,06	466,12	932,24	1864,47	3728,95	7457,89	14915,78
h	30,88	61,73	123,46	248,92	493,84	987,67	1975,34	3950,68	7901,36	15802,72

Príklady akordov / Tóny, z ktorých sa skladá:

- Cdur / C, E, G
- Gdur / G, H, D
- Amoll / A, C, E

Postup vhodne dokumentuje (Code/Text bloky)!

Riešenie:

```
% Riesenie / Solution
f_{ais5} = 932.24
                                                        %vybraný ton č.1
f ais5 = 932.2400
f 0 = 44.1
                                                        %vzorkovacia frekvencia pre
všetky tóny 1.Úlohy
f 0 = 44.1000
mag_ais5 = 0.6
                                                        %1. amplitúda
mag ais5 = 0.6000
x_0 = 0:1/(f_0 * 1000):3
                                                        %vector "časov" kedy sa
samplovalo
x_0 = 1 \times 132301
            0.0000
                     0.0000
                             0.0001
                                      0.0001
                                               0.0001
                                                        0.0001
                                                                 0.0002 ...
%1. Sínusový signál s frekvenciou ais 5 a magnitúdou = 0,6:
sinY_ais5 = sin(2*pi*x_0*f_ais5) * mag_ais5
                                                        %zdigitalizovaní signál z
pôvodného ais 5 tónu.,
sinY ais5 = 1 \times 132301
                                                                 0.4809 ...
          0.0795
                    0.1575 0.2328
                                      0.3040
                                               0.3698
                                                        0.4291
plot(x_0,sinY_ais5)
xlabel("time")
ylabel("sin(x) = y")
xlim([0 0.03])
                                                         %nastavenie grafu, vzhladom na
hranice x osi
                                                         %nastavenie grafu, vzhladom na
ylim([-1 1])
hranice y osi
```


 $f_fis4 = 369.9600$

 $mag_fis4 = 0.3782$

```
sinY_fis4 = sin(2 * pi * x_0 * f_fis4) * mag_fis4 %zdigitalizovaní signál z pôvodného fis 4 tónu.
```

```
sinY_fis4 = 1×132301
0 0.0199 0.0398 0.0595 0.0791 0.0985 0.1176 0.1364 · · ·
```

```
plot(x_0, sinY_fis4)
xlabel("time")
ylabel("sin(x) = y")
xlim([0 0.03])
ylim([-1 1])
```


%3.Sínusový signál s frekvenciou iného zvoleného tónu temperovaného ladenia (vid tab. dole) a magnitúdou z rozsahu <0,1:0,4>. $f_d2 = 73.41$ %vybraný ton č.3

 $f_d2 = 73.4100$

 $mag_d2 = 0.3415$

```
sinY_d2 = sin(2 * pi * x_0 * f_d2) * mag_d2 %zdigitalizovaní signál z pôvodného d 2 tónu.
```

```
sinY_d2 = 1 \times 132301
0 0.0036 0.0071 0.0107 0.0143 0.0179 0.0214 0.0250 · · ·
```

```
plot(x_0,sinY_d2)
xlabel("time")
ylabel("sin(x) = y")
xlim([0 0.03])
ylim([-1 1])
```


 $sumSin = 1 \times 132301$

```
%4.Generujte zložený signál ako súčet z predchádzajúcich vygenerovaných signálov.

sumSin = sinY_ais5 + sinY_fis4 + sinY_d2 %výsledny signál po ščítaní

dig. signalov podla tónov, asi5, tis4, d2
```

```
0 0.1030 0.2045 0.3031 0.3974 0.4862 0.5682 0.6422 ...

plot(x_0, sumSin)
    xlabel("time")
    ylabel("sin(x) = y")
    xlim([0 0.01])
    ylim([-1 1])
```


%5.K zloženému signálu aditívne pripočítajte šum s magnitúdou z rozsahu <0,01:0,05>. sizeOfSigna = size(sumSin) %výpočeť počtu časov vzorkovania

```
sizeOfSigna = 1 \times 2
1 132301
```

```
sum = rand(1, sizeOfSigna(2)) %naplnenie vektora náhodnými
čislami, (s ich počtom rovným počtu vzorkovacích časov), keďže sum berieme ako
náhodnu a nesuvisiacu hodnotu k hodnote zvuku
```

```
sum = 1×132301
0.7716 0.0415 0.7037 0.9637 0.0654 0.2100 0.8500 0.5048 · · ·
```

sum_mag = 0.3001

```
sum = 1 \times 132301
0.2316 0.0125 0.2112 0.2892 0.0196 0.0630 0.2551 0.1515 · · ·
```

```
plot(x_0, sumSin + sum)
xlabel("time")
ylabel("sin(x) = y")
xlim([0 0.03])
ylim([-1 1])
```



```
% prehravanie signalov, od jednotlivých tónov, po ich sumu, a nakoniec s pridaním
sumu
audio1 = audioplayer(sinY_ais5, length(sinY_ais5));
audio2 = audioplayer(sinY_fis4, length(sinY_fis4));
audio3 = audioplayer(sinY_d2, length(sinY_d2));
audio4 = audioplayer(sumSin, length(sumSin));
audio5 = audioplayer(sumSin + sum, length(sum));
playblocking(audio1, 3)
playblocking(audio2, 3)
playblocking(audio3, 3)
playblocking(audio4, 3)
playblocking(audio5, 3)
```

Úloha 2

Znížte vzorkovaciu frekvenciu u Vami vygenerovaného signálu:

- na polovicu
- na štvrtinu
- na hranicu danú Nyquistovým teorémom
- a aj s porušením Nyquistovho teorému.

Vizualizujte dané signály v jednom grafe. Signál si vypočujte a vyhodnoťte kvalitu.

```
%opetovné zadanie niektorých základných premmených pre lepší prehlad (a
ovladatelnejsi spustanie, iba sekcie)
fs = 44100;
freq = 932.24;
x_{vec} = 0:1/fs:3
x \text{ vec} = 1 \times 132301
           0.0000
                    0.0000
                             0.0001
                                      0.0001
                                              0.0001
                                                       0.0001
                                                                0.0002 ...
%base signal
signal1 = sin(2 * pi * x_vec * freq) * mag_ais5
signal1 = 1 \times 132301
           0.0795
                    0.1575
                             0.2328
                                      0.3040
                                              0.3698
                                                       0.4291
                                                                0.4809 ...
       0
% na polovicu
x 1 = downsample(x vec, 2);
newSin1 = downsample(signal1, 2);
% na štvrtinu
x_2 = downsample(x_1, 2);
newSin2 = downsample(signal1, 4);
 %výpočet potrebného dividera, pre funkciu downsampling, kedže máme
 %základnu hodnotu fs, tak potrebujeme vedieť kolko krát ju mám videliť
 %abych dostal cielovy sampling freq, v tomto prípade pre downsampling
%signlálu na hranicu nyquistovho teoremu, tj. cca. 2.1x najvyzsia
 %frequencia v signály.
multiOnNyquist = round(fs / (freq * 2.3))
multiOnNyquist = 21
%opet výpočet potrebného dividera, ale v tomto prípade pre sample
%frequenciu ktorá je pod hranicou nyquistovho teoremu.
multiDownNyquist = round(fs / (freq * 1.7))
multiDownNyquist = 28
% na hranicu danú Nyquistovým teorémom
x_3 = downsample(x_vec, multiOnNyquist);
newSin3 = downsample(signal1, multiOnNyquist);
% s porušením nyquistového teorému
x_4 = downsample(x_vec, multiDownNyquist);
newSin4 = downsample(signal1, multiDownNyquist);
plot(x_0, signal1)
% Vizalizácia signálov na jednom grafe
hold on
plot(x_1, newSin1)
plot(x_2, newSin2)
plot(x 3, newSin3, "-o")
plot(x_4, newSin4, "-*")
```

```
legend('Base','Half','Quarter','Borderline on nyquist theor.','Below on nyquist
theorem','Location','southwest')
xlabel("time")
ylabel("sin(x) = y")
xlim([0 0.02])
ylim([-1 1])
hold off;
```



```
% Vysledok: Grafy ktr. boli podvzorkované na polovicu a stvtinu,
% zachovávaju svoj, priebeh s minimálnou odchylkou od základu, avšak graf
% ktorý bol podvzorkovaný na hranicu nyquist. theoremu. tj. 1/21 pôvodného
(vzhladom na to že vzorkovanie má cca. 2x 930 Hz) vykazuje väčšie
% odchylky, ktoré su na hranici podobnosti k pôvodnemu grafu ( výkyvy
% amplitúdi/maximá sú v podobnom umiestnená ako base graf), toto je však už
% porušené u grafu ktr. nedodržiava nyqst. theroem.
plot(x_1, newSin1)
hold on
plot(x_3, newSin3, "-o")
xlim([0 0.02])
ylim([-1 1])
hold off;
```



```
plot(x_1, newSin1)
hold on
plot(x_4, newSin4, "-*")
xlim([0 0.02])
ylim([-1 1])
hold off;
```



```
new_audio0 = audioplayer(signal1, length(signal1));
new audio1 = audioplayer(newSin1, length(newSin1));
new_audio2 = audioplayer(newSin2, length(newSin2));
new_audio3 = audioplayer(newSin3, length(newSin3));
new_audio4 = audioplayer(newSin4, length(newSin4));
playblocking(new audio0, 3)
playblocking(new_audio1, 3)
playblocking(new_audio2, 3)
playblocking(new audio3, 3)
playblocking(new_audio4, 3)
% Vzhladom na kvalitu zvuku, tak minimálne prvé tri zvuky, tj. základny
% tón, polovica a štvrtina boli na počutie rovnaké, rozdiel bol
% zaznamenitelný v 4. signále ktr. je na hranici nyquistovho teoremu a v 5.
% boli zmeni zjávne hlavne vzhladom na to že celé úseky zvuku boli zdatelne
% nižšieho tónu
%
```