Supplemental Instructions

Niklas Gustafsson niklgus@student.chalmers.se Gustav Örtenberg gusort@student.chalmers.se

2016-12-06

Linjärt beroende

1.

Undersök om vektorerna i respektive deluppgift är linjärt beroende eller linjärt oberoende.

a)
$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 5 \\ 7 \\ 1 \end{bmatrix}$

b)
$$\vec{u} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 7\\1\\2 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 14\\2\\4 \end{bmatrix}$

c)
$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 4 \\ 3 \\ 8 \end{bmatrix}$

- d) $\vec{e_x}$, $\vec{e_y}$, $\vec{e_z}$
- e) Kan ni kort och enkelt beskriva vad det innebär att två vektorer är linjärt beroende respektive oberoende?

Baser och koordinater

2.

- a) Utifrån definitionen av en bas, vad är det som krävs för att vektorerna $\vec{v_1}, \vec{v_2}...\vec{v_n}$ ska utgöra en bas i R^n ? Uppfyller något av vektorparen i förra uppgiften dessa krav?
- b) Ange en alternativ bas för R^2 (dvs inte $\vec{e_x}$ eller $\vec{e_y}$).

3.

 $Uppgift\ ifrån\ tentamen\ 2016-01-04,\ gav\ två\ poäng.$ Vilken av följande vektoruppsättningar utgör **inte** en bas för R^3 .

a)
$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$

b)
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$

d)
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

e)
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

4.

Uppgift ifrån tentamen 2016-01-04, gav tre poäng

Bestäm koordinaterna för vektorn $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ relativt basen $F = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ -5 \\ 1 \end{bmatrix}$.

2

5.

Låt G och F utgöra varsin bas i R^3 samt låt $\vec{v_F} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$. Bestäm $\vec{v_G}$.

$$G = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 4 \\ -5 \\ 1 \end{bmatrix} F = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}$$

Egenvärden och egenvektorer

6.

Bestäm egenvärden och egenvektorer till matrisen $\begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix}$.

7.

Uppgift ifrån tentamen 2016-04-07, gav tre poäng.

Bestäm egenvärden och egenvektorer till produkterna $A\cdot B$ och $B\cdot A.$

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} B = \begin{bmatrix} 3 & -2 \\ -2 & 2 \end{bmatrix}$$