Karnaugh maps

Jia Chen jiac@ucr.edu

Karnaugh map

- A systematic and graphical way to reduce the product or sum terms in an expression.
- Key: apply the uniting property/theorem/law as judiciously as possible

Uniting Theorem
$$ab + ab' = a$$
 $(a + b)\cdot(a + b')=a$

Application examples:

$$x_1x_2x_3 + x_1x_2x_3' = x_1x_2$$
, where $a = x_1x_2$, $b = x_3$
 $(x_1 + x_2 + x_3)(x_1 + x_2 + x_3') = x_1 + x_2$, where $a = x_1 + x_2$, $b = x_3$

Karnaugh maps for SoP

Truth table

Row number	x_1	x_2	x_3	f
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	O	1
5	1	0	1	1
6	1	1	O	1
7	1	1	1	0

Use Boolean algebra:

 $= x_3' + x_1 x_2'$

How to easily discover groups of minterms for f=1

that can be combined into single terms?

$$f = m_0 + m_2 + m_4 + m_5 + m_6$$

$$= (m_0 + m_2 + m_4 + m_6)$$

$$+ (m_4 + m_5)$$

$$= (x_1'x_2'x_3' + x_1'x_2x_3' + x_1x_2'x_3' + x_1x_2x_3')$$

$$+ (x_1x_2'x_3' + x_1x_2'x_3)$$

$$= x_1'x_3' + x_1x_3' + x_1x_2'$$

f=1

	J		
	x_1	x_2	<i>x</i> ₃
m_0	0	0	0
m_2	0	1	0
m_4	1	0	0
m_6	1	1	0

If $x_3=0$, f=1regardless of the values of x_1 and x_2

$$m_0 + m_2 + m_4 + m_6 = x_3$$

$$x_1$$
 x_2 x_3 m_4 1 0 0 m_5 1 0 1

If $x_1 = 1$ and $x_2 = 0$, f = 1regardless of the value of x_3

$$m_4 + m_5 = x_1 x_2$$

Karnaugh map

An alternative to the truth-table form for representing a function

 A map consists of cells corresponding to the rows of the truth table

Location of two-variable minterms

(a) Truth table

(b) Karnaugh map

- Advantage: minterms in any two cells that are adjacent, either in the same row or the same column, can be combined.
- Test m_2+m_3 ?

$$m_2 + m_3 = x_1 x_2' + x_1 x_2 = x_1$$

2-variable K-map example

Inp	Output		
A	В	Output	
0	0	1	1
0	1 1		Ī
1	0	1	i
1	1	0	

$ m_0 $
m_1
m_2
$ m_3 $

Combining $m_0 + m_2 = B'$

Combining $m_0 + m_1 = A'$

Output =
$$m_0 + m_1 + m_2 = A' + B'$$

Observation

Output = A' + B'

- In the two cells (A=0,B=0), & (A=1,B=0)
- Result doesn't include A as A has two different values 0 and 1
- Result only includes B as B is always 0
- As B=0 in both cells, result is B'
- In the two cells (**A=0**,B=0), & (**A=0**,B=1)
- Result doesn't include B as B has two different values 0 and 1
- Result only includes A as A is always 0
- As A=0 in both cells, result is A'

Conclusion:

- (1) A resulting term from a combination only contains the variables having constant values
- (2) If the variable (denoted as X)=0 in all cells combined, X' shows up in the resulting term; otherwise X shows up in the resulting term.

Steps to find the simplest SoP

- **Step 1)** Create a 2 dimensional truth table with input variables on each dimension, and adjacent column(j)/row(i) only change one bit in the variable.
- Step 2) Fill each (i, j) with the corresponding output result in the truth table
- Step 3) Combine neighboring 2, 4, 8, 16, ..., 2ⁿ Minterms to obtain a SINGLE product term
 - > Therefore, in a K map, we can only circle 2, 4, 8, 16, ..., 2ⁿ adjacent cells to obtain a single term!
 - How to get a SINGLE product term (see next slide)
- Step 4) Find the "minimum cover" that covers all 1s in the map
- **Step 5)** OR the product terms in the "minimum cover"

How to get a SINGLE product term (Step 3)?

- A product terms include only those variables having the same value for all cells in the group represented by this term
- If the variable is 1 in the group, it appears uncomplemented (e.g., X)
- If the variable is 0 in the group, it appears complemented (e.g., X')

Strategy for SoP simplification

Intuitive strategy: find as few as possible for the number of groups & as large as possible for the number of cells with 1s for each group

- Each group of 1s has to comprise cells that can be represented by a single product term
- The larger the group of 1s, the fewer the number of variables in the corresponding product term

Practicing 2-variable K-map

- What's the simplified function of the given K-map?
 - A. A'
 - B. A'B
 - C. AB'
 - D. B
 - E. A

Practicing 2-variable K-map

What's the simplified function of the given K-map?

B. A'B

C. AB'

D. B

E. A

B (as B has the same value 1 in both cells while A has different values 0/1 in two cells)

3-variable K-map example

 One dimension (row or column) will represent two variables and the other dimension represents one variable

Adjacent cells should differ by only 1 bit; so we only change one variable in the neighboring

columns and rows

	Input	Output	
A	В	C	Output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Observation

Solution 1:

C' (only C is always 0 for all the four cells, A=0/1, B=0/1)

A' (only A is always 0 in all the four cells, B=0/1, C=0/1)

Output = A' + C'

Schedule for rows/columns is not unique

 One dimension (row or column) will represent two variables and the other dimension represents one variable

Adjacent cells should differ by only 1 bit; so we only change one variable in the neighboring

columns and rows

	Input	Output	
A	В	C	Output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

The most left and the most right columns are adjacent; The most top and the most bottom rows are adjacent.

Schedule for rows/columns is not unique

 One dimension (row or column) will represent two variables and the other dimension represents one variable

Adjacent cells should differ by only 1 bit; so we only change one variable in the neighboring

columns and rows

	Input	Output	
A	В	C	Output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Combine/circle adjacent cells

Circle 2=2¹ adjacent cells

Combine/circle adjacent cells

Circle 4=2² adjacent cells

		B'	В
	AC B	0	1
AC	1,1	1	1
A'C	0,1	1	1
A'C'	0,0	0	0
AC'	1,0	0	0

Combine/circle adjacent cells

Circle 8=2³ adjacent cells

Output = 1
Special case!

4-variable K-map

- Usually, row represents 2 variables and column represents 2 variables
- Adjacent columns/rows should differ by only 1 bit; so we only change one variable in the neighboring column/row

A'B'C'		A'B'	A'B	AB	AB'	
		00	01	11	10	
C'D'	00	1	0	0	0	
C'D	01	1	0	0	0	F(A, B, C) = A'B'C'+B'CD'
CD	11	0	0	0	0	
CD'	10	1	0	0	1	B'CD'

Observation

C'D

CD

CD'

The resulting product is A'B'C' because:

- In the two cells, A=0,B=0,C=0,D=0/1
- Only variables with constant values are kept which are A, B, C
- As A=0, complemented form, aka A'
- Similarly for B, C

The resulting product is **B'CD**' because:

- In the two cells, A=0/1,B=0,C=1,D=0
 - Only variables with constant values are kept which are B, C, D
 - As B=0, complemented form, aka B'
 - As C=1, uncomplemented form, aka C
 - As D=0, complemented form, aka D'

F(A, B, C) = A'B'C'+B'CD'

Alternatives of 4-variable K-map

Alternatives of 4-variable K-map

BUT, not very convenient!

Karnaugh maps for PoS

Steps to find the simplest PoS

- **Step 1)** Create a 2 dimensional truth table with input variables on each dimension, and adjacent column(j)/row(i) only change one bit in the variable.
- Step 2) Fill each (i, j) with the corresponding result in the truth table
- Step 3) Combine neighboring 2, 4, 8, 16, ..., 2ⁿ Maxterms to obtain a SINGLE sum term
 - > Therefore, in a K map, we can only circle 2, 4, 8, 16, ..., 2ⁿ adjacent cells to obtain a single term!
 - How to get a SINGLE sum term (see next slide)
- Step 4) Find the "minimum cover" that covers all 0 s in the map
- Step 5) AND all the sum terms from the "minimum cover"

How to get a SINGLE sum term?

- A sum terms include only those variables having the same value for all cells in the group represented by this term
- If the variable is 1 in the group, it appears complemented (e.g., X')
- If the variable is 0 in the group, it appears uncomplemented (e.g., X)

Strategy for POS simplification

Intuitive strategy: find as few as possible for the number of groups & as large as possible for the number of cells with 0s for each group

 Each group of 0 s has to comprise cells that can be represented by a single sum term

• The larger the group of 0 s, the fewer the number of variables in the corresponding sum term

Simplest PoS: 2-variable K-map

What's the simplified function of the given K-map?

The resulting sum term is B because:

- (1) B has the same value 0 in both cells while A has different values 0/1 in two cells
- (2) B = 0, uncomplemented form, aka B

Simplest PoS: 3-variable K-map

A'

	Input	Output	
A	В	C	Output
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

	B'C'	B'C	BC	BC'
A BC	0,0	0,1	1,1	1,0
0	1	1	0	0
1	1	1	0	0

The resulting sum term is B' because:

- (1) B has the same value 1 in all the four cells while A, C have different values 0/1
- (2) B = 1, complemented form, aka B'

Simplest PoS: 4-variable K-map

The resulting sum is $x_3 + x_4$ because:

- In the four cells, $x_3 = 0$, $x_4 = 0$, $x_1 = 0/1$, $x_2 = 0/1$
- Only variables with constant values are kept which are x_3 , x_4
- As $x_3 = 0$, uncomplemented form, aka x_3
- As $x_4 = 0$, uncomplemented form, aka x_4

The resulting sum is $\bar{x}_1 + \bar{x}_2 + \bar{x}_3 + \bar{x}_4$ because:

- No neighbors; a single Maxterm
- As all the variables are 1, complemented form

The resulting sum is $x_2 + x_3$ because:

- In the four cells, $x_2 = 0$, $x_3 = 0$, $x_1 = 0/1$, $x_4 = 0/1$
- Only variables with constant values are kept which are x_2 , x_3
- As $x_3 = 0$, uncomplemented form, aka x_3
- As $x_2 = 0$, uncomplemented form, aka x_2

$$F = (x_3 + x_4)(x_2 + x_3)(x_1' + x_2' + x_3' + x_4')$$

Karnaugh maps for Incompletely Specified Functions

Incompletely Specified Functions

- Situations where the output of a function can be either 0 or 1 for a particular combination of inputs
- This is specified by a don't care in the truth table
- This happens when
 - The input does not occur. e.g. Decimal numbers 0... 9 use 4 bits, so (1,1,1,1) does not occur.
 - The input may happen but we don't care about the output. E.g. The output driving a seven segment display we don't care about illegal inputs (greater than 9)

Recall: Truth table with Don't Cares

• Each "x" for these valuations is either 1 or 0, whichever is more useful

K-map with Don't Cares

• Each "X" for these valuations is either 1 or 0, whichever is more useful

The simplest SoP with Don't Cares

You can treat "X" as either 0 or 1

depending on which is more advantageous

	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

What is the simplest product term including the "1"?

What is the simplest product term including the "1"?

	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

If we circle one cell

$$x_3' x_2' x_1 x_0$$

What is the simplest product term including the "1"?

	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

If we circle two cells

$$x_3$$
' x_2 ' x_1

What is the simplest product term including the "1"?

	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

If we circle four cells

$$x_3$$
' x_1

What is the simplest product term including the "1"?

	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

If we circle eight cells

 x_1

The simplest!

What is the simplest product term including the "1"?

	$x_1 x_0$
$x_3 x_2$	

	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

Green "1"s have been circled Red "1"s have not been circled

What is the simplest product term including the "1" on the left top corner?

	$x_1 x_0$
$x_3 x_2$	

	00	01	-	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

What is the simplest product term including the "1" on the left top corner? (circle as many cells as possible)

	$x_1 x_0$
$x_3 x_2$	

	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X(1)

We can circle as many as four cells

$$x_0$$
' x_2 '

	$x_1 x_0$
$x_3 x_2$	

	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

Green "1"s have been circled Red "1"s have not been circled

What is the simplest product term including the "1"

	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

Green "1"s have been circled Red "1"s have not been circled

What is the simplest product term including the "1"

	00	01 11		10	
00	1	0	1	1	
01	0	1	1	1	
11	X	X(1)	X(1)	X	
10	1	1	X	X	

We can circle as many as four cells

$$x_0x_2$$

	$x_1 x_0$)
$x_3 x_2$		

	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

Green "1"s have been circled Red "1" has not been circled

What is the simplest product term including the "1"

	$x_1 x_0$
$x_3 x_2$	

	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

Which of the following circling will lead to the simplest product term including the "1"

 00
 01
 11
 10

 00
 1
 0
 1
 1

 01
 0
 1
 1
 1

 11
 X
 X
 X
 X

 10
 1
 1
 X
 X

Which of the following circling will lead to the simplest product term including the "1"

X

10

Summary

	x_3	<i>x</i> ₂	x_1	<i>x</i> ₀	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
	0	0	0	1	0	1	1	0	0	0	0
a	0	0	1	0	1	1	0	1	1	0	1
	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
8	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
9	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
ſ	- 1	0	1	0	Х	X	X	X	X	X	X
	1	0	1	1	Х	X	X	X	X	X	X
Don't-care 📙	1	1	0	0	Х	Х	X	X	X	X	X
	1	1	0	1	Х	X	X	X	X	X	X
conditions	1	1	1	0	Х	Х	X	X	X	X	X
Į	1	1	1	1	X	X	X	X	X	X	X

$$a = x_1 + x_0 x_2 + x_0 x_2 + x_3$$