A Research on Urban Logistics Development Level and Spatio-temporal Network Analysis -Perspective of China Railway Express

도시 물류 발전 수준 및 시공간적 네트워크 분석에 관한 연구 - 중·유럽 화물열차 중심으로

19th Nov. 2021

Graduate School of Logistics Incheon National University

Guan Wang

Contents

Introduction **Overview of CRE Literature Review** Methodology **Experimental Analysis** Conclusion

Chapter 1. Introduction

1. Introduction

***** Research Background

✓ What is China Railway Express?

Which is organized by China Railway Corporation and has fixed trips, route, schedule, and transport time, is a China–Europe block train ferry operated in international railway container intermodal transportation mode.

✓ Policy & Plan

12th 5-year plan: 2011–2015 2 13th 5-year plan: 2016–2020

"Vision and Actions on Jointly Building Silk Road Economic Belt and 21st-Century Maritime Silk Road - 2015"

4 "China Railway Express construction and development plan (2016–2020)"

✓ Development Stage

1. Introduction

Scope & Objective

"China Railway Express construction and development plan (2016–2020)"

Nodes of main inland sources	Chongqing	Chengdu	Zhengzhou	Wuhan	Xi'an	Lanzhou
of goods:	Changsha	Hefei	Shenyang	Dongguan	Suzhou	Yiwu
	Chongqing	Chengdu	Zhengzhou	Wuhan	Xi'an	Lanzhou
Main railway hub nodes:	Changsha	Hefei	Shenyang	Beijing	Harbin	Jinan
	Nanjing	Hangzhou	Tianjin	Urumqi	UlanQab	
Important coastal	Dalian	Yingkou	Tianjin	Qingdao	Lianyungang	Ningbo
port nodes:	Xiamen	Guangzhou	Shenzhen	Qinzhou		
Nodes along the border land ports:	Alataw	Horgos	Erenhot	Manchuria		

High operation costs

- Relying subsidies
- Low loading rate

Hub City Selection Chapter 2. Overview of China Railway Express

2. Overview of China Railway Express

***** The major Transport Corridors

Source : Liu, W., Zhu, X., & Wang, L. (2019)

✓ The growth of China Railway Express (2011-2020)

Routes	Corridors	Main Railw ay Border	Main Supply Regions
Eastern	Beijing–Harbin–Manchuria– Russia–Belarus– Poland–other European countries	Manchuria	East China, South China and North China
Central	Erenhot–Mongolia–Russia– Belarus–Poland– other European countries	Erenhot	Central China and North China
Western	Alataw (Khorgos)–Kazakhstan– Russia–Belarus–Poland– other European countries	Alataw / Khorgos	Southwest, Northwest

Source: Choi, K. S. (2021)

✓ Operation of freight trains at four major border stations (2020)

Chapter 3. Literature Review

3. Literature Review

***** China Railway Express

Researcher	Title	Method
(Jiang et al., 2018)	Hinterland patterns of China Railway (CR) express in China under the Belt and Road Initiative: A preliminary analysis	Binary logit model
(Zhao et al., 2018)	Evaluation of consolidation center cargo capacity and locations for China railway express	TOPSIS
(Liu et al., 2019)	Distribution organization optimization for Inbound China Railway Express at Alataw Pass Railway Station	Model
(Sun et al., 2020)	Selection of consolidation centres for China Railway Express	TOPSIS
(Zhang et al., 2020)	Importance rankings of nodes in the China Railway Express network under the Belt and Road Initiative	MADM
(Ma et al., 2020)	Hierarchical multimodal hub Location with Time Restriction for China Railway (CR) Express Network	mix integer programming
(Zhao et al., 2020)	European hub location problem for China Railway Express in the context of the Belt and Road Initiative	TOPSIS
(Cheng et al., 2021)	Selection of consolidation center locations for China Railway Express to reduce greenhouse gas emission	Augmented ε-constraint method

Differentiation

- 1. Geographic information system (GIS) is applied to represent the evolution of node cities in different periods to visualize the formation process of hub cities.
- 2. The dynamic analysis using temporal and spatial perspectives is the differentiator of this paper.

Chapter 4. Methodology

4. Methodology

***** Entropy Weight Method

1) Normalize the collected data matrix X_{ij} , X_{ij} '= X_{ij} / X_{ij} max* and thus the normalized matrix of data Y_{ii} =(Y_{ii})m*n

$$Y_{ij} = X_{ij} / \sum_{i=1}^{m} X_{ij}$$
 (eq.1)

2) Calculate the entropy value of the jth indicator ej. Where $k=1/\ln n$, y_{ij} is the normalization matrix

$$ej = -k \sum_{i=1}^{m} y_{ij} \ln y_{ij}$$
 (eq.2)

Calculate the deviation of the jth index d_i, where e_{ii} is the entropy value

$$d_i = 1 - e_{ii} \qquad \text{(eq.3)}$$

Calculate the weight w_i of the jth indicator. where d_i is the deviation degree

$$wj = \frac{d_j}{\sum_{i=1}^n d_{ij}} \qquad \text{(eq.4)}$$

3) Composite score U is calculated

$$U = \sum_{i=1}^{n} y_{ij} w_j \quad \text{(eq.5)}$$

❖ Modified Gravity Model

$$G_{ij} = k \frac{M_i M_j}{D_{ij}^d}$$

where: G_{ii} is the spatial gravity between cities i and j;

M_i, M_i denote the "mass" of cities i and j;

$$D_{ij} = \sqrt[3]{d_{ij}t_{ij}c_{ij}}$$

 d_{ij} denotes the spatial distance between city i and j. The value is the geometric mean of the road and rail distances between city i, j.

 t_{ij} denotes the time distance between city i and j. The value is the geometric mean of the road and rail transportation time between city i, j.

 C_{ij} denotes the unit transportation rate between city i and j. The rate is the geometric mean of the road transportation rate and the rail transportation rate between city i and j. Based on the results of existing studies (Dong 2016), the road transportation rate is 1.5, and the rail transportation rate is 1.

The modified gravity model is calculated as:

$$G_{ij} = \frac{M_i M_j}{\left(\sqrt[3]{d_{ij} t_{ij} c_{ij}}\right)^2}$$

4. Methodology

❖ Social Network Analysis

Degree centrality

$$C_D(N_i) = \frac{\sum_{j=1}^g x_{ij}}{g-1}$$

 $C_D(N_i)$: The degree centrality of node i. $\sum_{i=1}^{g} x_{ij}$: The number of connections node i has with (g-1) other nodes. $x_{ij} = 0$ or 1, *g*: The number node.

Betweenness centrality

$$C_B(N_i) = \frac{\left|\sum_{j < k} \frac{g_{jk}(N_i)}{g_{jk}}\right| * 2}{(g-1)(g-2)}$$

 $C_B(N_i)$: The betweenness centrality of node i g_{ik}: The number of shortest paths from j to k. $g_{ik}(N_i)$: The number of paths including I among the shortest paths between j and k.

Closeness centrality

$$C_C(N_i) = (g-1) \left[\sum_{j=1}^g d(N_i, N_j) \right]^{-1}$$

 $C_C(N_i)$: The closeness centrality of node i $\sum_{i=1}^{g} d(N_i, N_j)$: The sum of the shortest path distances between node i and node j. g: The number node.

Chapter 5. Experimental Analysis

❖ Process of experimental analysis

Regional economic level

Total Retail Sales of Consumer Goods
Total import and export value

Mileage of highway, railway
Freight volume of highway, railway
Freight Turnover of highway, railway
Employment in transportation, storage and post
Investment in transportation, storage and post
Internet penetration

Internet penetration

Visualization: GIS + Gephi

Data source:

- Statistical yearbooks of the provinces and cities
- Region statistical bureau
- China State Railway Group Co., Ltd.
- China Railway Container Transport Corp., Ltd

❖ Analysis of LDL in CRE node cities

✓ The logistics development level Score

Region	City	2013	Rank	2016	Rank	2019	Rank	2013-2019
E	Shenyang	0.030	13	0.030	16	0.031	15	↓ 3
Eastern	Harbin	0.028	14	0.031	15	0.028	16	↓2
G	Beijing	0.085	4	0.080	3	0.090	2	<u>†2</u>
Central	Tianjin	0.166	1	0.080	4	0.079	5	↓4
	Suzhou	0.099	3	0.084	2	0.060	8	↓ 5
	Jinan	0.037	10	0.043	11	0.032	14	↓ 4
Mid-Eastern	Nanjing	0.081	5	0.065	6	0.073	7	↓2
	Yiwu	0.010	18	0.011	19	0.010	19	↓1
	Hangzhou	0.047	8	0.051	9	0.049	10	↓2
	Xi'an	0.033	11	0.037	12	0.038	12	↓1
	Urumuqi	0.012	17	0.015	17	0.017	17	→0
Western	Chongqing	0.123	2	0.166	1	0.110	1	↑1
	Lanzhou	0.010	19	0.014	18	0.015	18	↑1
	Chengdu	0.044	9	0.051	8	0.083	4	† 5
	Changsha	0.022	16	0.035	13	0.040	11	† 5
	Zhengzhou	0.032	12	0.045	10	0.076	6	† 6
Mid-western	Wuhan	0.063	6	0.073	5	0.085	3	† 3
	Hefei	0.028	15	0.033	14	0.035	13	† 2
	Dongguan	0.052	7	0.056	7	0.049	9	↓2
Geometric Mean		0.0	139	0.0)43	().044	

✓ Logistics development level in major corridor

Decrease: Central & Mid-Eastern Corridor

Increase: Western & Mid-western

❖ Analysis of LDL & Gravity

❖ Social Network Analysis

City	Rank	D.C-2013	Rank	D.C-2016	Rank	D.C-2019
Zhengzhou	5	21	4	22	1	30
Wuhan	1	28	1	28	2	28
Nanjing	3	22	6	21	3	26
Tianjin	2	27	3	24	4	22
Chongqing	3	22	2	25	5	22
Suzhou	5	21	4	22	6	21
Beijing	8	17	7	18	7	19
Hangzhou	7	18	7	18	8	18
Changsha	12	10	11	13	9	17
Jinan	8	17	9	17	10	16
Hefei	10	15	10	16	10	16
Xi'an	11	14	11	13	10	16
Chengdu	16	5	15	5	13	13
Shenyang	14	6	15	5	14	8
Dongguan	13	9	13	9	14	8
Harbin	16	5	15	5	16	7
Yiwu	14	6	14	7	16	7
Lanzhou	18	1	18	2	18	4
Urumqi	19	0	19	0	19	0

City	Rank	C.C-2013	Rank	C.C-2016	Rank	C.C-2019
Zhengzhou	5	0.727	7	0.708	1	0.895
Wuhan	1	0.889	1	0.850	2	0.850
Nanjing	3	0.762	3	0.773	3	0.810
Tianjin	1	0.889	1	0.850	4	0.773
Beijing	3	0.762	3	0.773	5	0.773
Suzhou	5	0.727	5	0.739	6	0.708
Chongqing	7	0.696	5	0.739	7	0.680
Hangzhou	7	0.696	9	0.654	7	0.680
Hefei	10	0.640	9	0.654	9	0.654
Changsha	12	0.593	12	0.531	9	0.654
Jinan	7	0.696	8	0.680	11	0.630
Xi'an	11	0.615	11	0.586	11	0.630
Chengdu	14	0.516	14	0.515	11	0.630
Yiwu	14	0.516	14	0.515	14	0.548
Dongguan	12	0.593	12	0.531	15	0.531
Shenyang	14	0.516	16	0.486	15	0.531
Harbin	17	0.500	16	0.486	17	0.515
Lanzhou	18	0.425	18	0.436	18	0.436
Urumqi	19	0.000	19	0.000	19	0.000

City	Rank	B.C-2013	Rank	B.C-2016	Rank	B.C-2019
Zhengzhou	9	0.020	6	0.032	1	0.136
Wuhan	2	0.136	2	0.140	2	0.094
Chongqing	3	0.095	1	0.165	3	0.079
Nanjing	4	0.041	7	0.032	4	0.055
Tianjin	1	0.142	3	0.119	5	0.047
Suzhou	5	0.038	4	0.040	6	0.034
Hangzhou	6	0.030	9	0.025	7	0.028
Xi'an	10	0.006	10	0.005	8	0.027
Beijing	8	0.023	5	0.036	9	0.017
Changsha	11	0.003	11	0.004	10	0.017
Chengdu	14	0.000	14	0.000	11	0.014
Jinan	7	0.025	8	0.030	12	0.012
Hefei	12	0.002	12	0.003	13	0.004
Dongguan	13	0.001	13	0.001	14	0.000
Shenyang	15	0.000	15	0.000	15	0.000
Harbin	16	0.000	16	0.000	16	0.000
Yiwu	17	0.000	17	0.000	17	0.000
Lanzhou	18	0.000	18	0.000	18	0.000
Urumqi	19	0.000	19	0.000	19	0.000

❖ Social Network Analysis

In-Degree Centrality

Year 2013

Year 2016

Year 2019

1

3

❖ Social Network Analysis

Year 2013

Out-Degree Centrality

Year 2016

❖ Social Network Analysis

Betweenness Centrality

Year 2013

Year 2016

Year 2019

1

❖ Social Network Analysis

Closeness Centrality

Chapter 6. Conclusion

6. Conclusion

- The level of logistics development in inland node cities **has increased** from 2013-2019, indicating that the implementation of the "CRE Construction and Development Plan 2016-2020" is **effective.**
- Beijing, Tianjin Zhengzhou, Wuhan Chengdu, Chongqing as the main three major **inland core** has been formed.
- The rapid development of the central cities of Zhengzhou and Wuhan can be connected to the developed areas of the southeast coast.
- Zhengzhou, Wuhan, Chongqing, Tianjin, Nanjing has an important position in the network and can act as a hub city to provide cargo **consolidation and distribution** for CRE.

! Limitation:

• The logistics network is generated based on cities already participating in CRE. If the scope of the study is expanded the logistics hub city may not be optimal.

***** Future research:

Add nodes outside of China to explore hubs from a global perspective.

Thanks!

Q&A