Lisans: http:// mons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devreler (Synchronous Sequential Circuits)
Ardışıl (sequential) devrelerde çıkış değeri, hem girişlerden gelen değerlere hem de devrenin "durumuna" bağlıdır. Sonlu durumlu makine (*finite durum machine*) modeline göre oluşturulan bu devrelerde durum bilgileri belleklerde (flip-floplarda) tutulur. Tüm flip-floplar aynı saat işareti ile eşzamanlı tetiklenirler (senkron) . Buna göre makine sadece saat işaretinin etkin geçişlerinde durum değiştirebilir. Eşzamanlı ardışıl devreler iki farklı modele göre tasarlanabilir. a) Mealy Modeli (George H. Mealy, bilgisayar bilimleri, ABD) Bu modelde çıkışlar hem o andaki girişlerin hem de o andaki durumun fonksiyonudur. flip-flop sonrak çıkış lojiği sürme girişler (I) durum durum (S) loiiă sonrak G simdik durum durun O = G(S,I)(S) işareti ©2000-2013 Yrd.Doç.Dr. Feza BUZLUCA

Sayısal Devreler (Lojik Devreleri)

Eşzamanlı ardışıl devrelerin çözümlenmesi (Analiz)

Bir ardışıl devrenin tasarlanıp gerçeklenmesi konusundan önce tasarlanmış olan bir devrenin nasıl çözümleneceği incelenecektir.

Hatırlatma: Mealy modelinde bir devrenin gerçeklenmesi aşağıda gösterilmiş olan F (sonraki durum) ve G (çıkış) fonksiyonlarının gerçeklenmesi anlamına qelmektedir. (Bkz. 7.1)

 $S^* = F(S,I)$ S: Şimdiki durumlar (*Durum*), S^* : Sonraki durumlar O = G(S,I) I: Girişler (*Input*), $O : C_I(S,I)$ O: CIRIŞlar (*CIRIŞ*)

Bir ardışıl devrenin çözümlenmesi (analiz edilmesi) demek, F ve G fonksiyonları şeklinde verilmiş bir devrenin "ne yaptığının" belirlenmesi demektir.

Çözümleme 3 adımdan oluşur:

- 1. Devrenin çiziminden F (sonraki durum) ve G (çıkış) fonksiyonlarının ifadeleri bulunur.
- 2. F ve G fonksiyonları kullanılarak olası tüm girişler ve şimdiki durumlar için makinenin hangi durumlara geçeceği (sonraki durumlar) ve hangi çıkışları üreteceği bir tablo halinde yazılır. Bu tabloya durum/çıkış tablosu denir.
- 3. Makinenin işlevini daha iyi görebilmek için durum geçişlerini ve çıkışları grafik olarak gösteren durum geçiş diyagramı çizilir.

http://akademi.itu.edu.tr/buzluca

©2000-2013 Yrd.Doç.Dr. Feza BUZLUCA 7.3

Sayısal Devreler (Lojik Devreleri)

Sonraki Durumların Bulunması:

F fonksiyonu, flip-flopların girişlerine gelecek olan sürücü değerleri belirler.

Bu giriş değerleri ise bir saat darbesi sonra flip-flopun içeriğinin hangi değeri alacağını (sonraki durumu) belirler.

Gelen giriş değerlerine göre flip-flopun içeriğinin nasıl değişeceğini hesaplamak için flip-flopların karakteristik fonksiyonlarını bilmek qerekir.

Flip-flopların karakteristik fonksiyonları: SR FF: Q(t+1) = S + R'•Q(t), SR=0 JK FF: Q(t+1) = J•Q(t)' + K'•Q(t)

©2000-2013 Yrd.Doç.Dr. Feza BUZLUCA

D FF: Q(t+1) = DT FF: $Q(t+1) = T \oplus Q(t)$

http://akademi.itu.edu.tr/buzluca

Makinenin davranışının sözle ifade edilmesi: A durumu başlangıç durumu olarak ele alınıp diyagram incelendiğinde, bu devrenin girişine 4'ün katları kadar "1" geldiğinde devrenin çıkışının "1" olduğu, aksi durumlarda ise "0" olduğu görülür.

http://akademi.itu.edu.tr/buzluca

©2000-2013 Yrd.Doc.Dr. Feza BUZLUCA 7,

Mealy ve Moore Modellerinde Çıkışların Yorumlanması

Mealy ve Moore modellerinde çıkıştaki değerin hangi anda geçerli olacağı (çıkışın ne zaman örnekleneceği) farklılık göstermektedir.

Mealy Modeli:

Mealy modelinde çıkış girişlere de bağlı olduğundan girişteki değer değiştiği anda çıkıştaki değer de değişir.

Buna göre Mealy modeli ile tasarlanan bir makine şu şekilde çalışır:

- 1. Girişlere (I) değer verilir.
- 2. Çıkışların değeri, giriş ve o andaki durumun bir fonksiyonu olarak belirlenir. $O\!=\!G(S,I)$
- 3. Saat işareti etkin olur. Örneğin çıkan kenar oluşur.
- 4. Yeni duruma geçilir. Yeni durum, girişin ve o andaki durumun fonksiyonu olarak belirlenir. S^+ =F(S,I)

http://akademi.itu.edu.tr/buzluca

©2000-2013 Yrd.Doç.Dr. Feza BUZLUCA 7.14

Sayısal Devreler (Lojik Devreleri)

Moore Modeli:

Moore modelinde çıkışın değeri sadece durum değişkenlerine bağlı olduğundan girişteki değerin değişimi çıkışı hemen etkilemez.

Girişteki değerin çıkış üzerindeki etkisi ancak durum değiştikten sonra görülür.

Buna göre Moore modeli ile tasarlanan bir makine şu şekilde çalışır:

- 1. Girişlere (I) değer verilir.
- 2. Saat işareti etkin olur. Örneğin çıkan kenar oluşur.
- 3. Yeni duruma geçilir. Yeni durum, girişin ve o andaki durumun fonksiyonu olarak belirlenir. $S^+=F(S,I)$
- 4. Çıkışların değeri, **yeni durumun** bir fonksiyonu olarak belirlenir. O=G(S)

Görüldüğü gibi bu modelde girişlerdeki değişimin çıkıştaki etkisi bir saat darbesi sonra görülür.

http://akademi.itu.edu.tr/buzluca

©2000-2013 Yrd.Doç.Dr. Feza BUZLUCA 7.16

