45011 Algoritmer og datastrukturer Løsningsforslag eksamen 9. august 1993

Oppgave 1

a)

Beregne x^n .

b)

Linjene:

(3)

if
$$n = 1$$
 then

(4)

$$pow := x$$

else

kan fjernes, idet linje (7) gjør samme nytte.

c)

pow er fortsatt korrekt idet:

$$x^n = (x^{n-1}) \times x$$

Effektiviteten til pow vil imidlertid bli påvirket.

d)

(6a) og (6b) vil ikke terminere (normalt) dersom n=2, dvs: Må beregne pow(x,2) **før** pow(x,2) beregnes, noe som medfører en evig løkke. (6c) er korrekt, men bruk av (6c) fører likevel til lavere effektivitet idet 2 rekursive kall genereres.

e)

Bruker Master-metoden, tilfelle 2 på
$$T(n) = T(n/2) + \Theta(1)$$
.

$$n^{\log_b a} = 1 \Rightarrow f(n) = \Theta(1) \Rightarrow T(n) = \Theta(\log n) = O(\log n).$$

f)

Resonnement: n odde vil alltid føre til et pow-kall med n jevn og dermed en halvering av n. Tilsvarende for n jevn. Det kan her kreve "2 steg pr. halvering av n", men fortsatt $O(\log n)$ tid.

g)

Med (6c) vil vi ha (worst case:
$$n = 2^m$$
): $T(n) = 2T(n/2) + \Theta(1)$

Master-teoremet, tilfelle 1 gir da: $T(n) = \Theta(n) = O(n)$.

Oppgave 2

a)

Hvert kall på RELAX reduserer også node v's d-verdi, d(v). Initielt er d(s) = 0 og enhver "forbedring" vil bety at d(s) blir negativ. I det d(v) = "hittil korteste vei fra s til v", betyr d(s) < 0 at G har en sykel (som går innom s) med negativ lengde.

b)

- Dijkstras algoritme **forutsetter** bare positive kantlengder, og man vil få feil svar hvis det fins negative sykler.
- Bellmann-Ford vil oppdage eventuelle sykler med negativ lengde og rapportere FALSE etter $m = (|V| 1) \cdot |E|$ RELAX-kall.

Oppgave 3

- La $|f_{uv}|$ være maksimal flyt fra u \to v i G^* , der G^* = "G, med linjekapasiteten til alle kanter i E lik 1"
- G^* har åpenbart O(|V|) noder og O(|E|) kanter, som G.
- For en vilkårlig $u \in V$ er nå (åpenbart):

$$k = \min_{v \in V - \{u\}} |f_{uv}|,$$

funnet ved:

Kant_koplingsgrad(G);

velg en vilkårlig $u \in V$ lag G^* som beskrevet ovenfor; for hver $v \in V - \{u\}$ do finn maksimal flyt $|f_{uv}|$ i G^* ; return den minste av de ovenfor funnede |V| - 1 maks-flyt-verdier:

$$\min_{v \in V - \{u\}} |f_{uv}|$$