Decision Trees

Prof. G Panda, FNAE, FNASc, FIET (UK)
IIT Bhubaneswar

Introduction

- Decision Tree is a type of Supervised Machine Learning algorithm where decision is taken based on the tree built by data where it is continuously split according to certain parameter.
- The tree can be explained by two entities namely decision nodes and leaves.
- The leaves are the decisions or the final outcomes.
- The Decision nodes are where data is split.

Introduction

Is Person fit? Age < 30? No? Yes? Decision Exercises in nodes Eat's a lot of the morning? pizzas? No? Yes? Yes? No? Unfit! fit Unfit! fit Leaf nodes

Illustrating Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Examples of Classification Task

Predicting tumor cells as benign or malignant

 Classifying credit card transactions as legitimate or fraudulent

 Categorizing news stories as finance, weather, entertainment, sports, etc

Example of a Decision Tree

categorical continuous

			•	
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Start from the root of tree.

Refund	Marital Status		Cheat
No	Married	80K	?

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART(Classification and Regression tree)
 - ID3(Iterative Dichotomiser 3)

General Structure of Hunt's

Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hunt's Algorithm

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Luxury

Binary split: Divides values into two subsets. Need to find optimal partitioning.

CarType

Sports

Family

Splitting Based on Ordinal Attributes

Small

Multi-way split: Use as many partitions as distinct values.

Large

Binary split: Divides values into two subsets. Need to find optimal partitioning.

Size

Medium

What about this split?

Splitting Based on Continuous Attributes

Different ways of handling

- Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
- Binary Decision: (A < v) or (A ≥ v)</p>
 - consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

How to determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

Measures of Node Impurity

Gini Index(used in CART algorithm)

Entropy(used in ID3 algorithm)

Measure of Impurity: GINI

□ Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Splitting Based on GINI

When a parent node p is split into k partitions (children), the quality of split is computed using information gain,

$$Gain_{split} = GINI(p) - \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child node i, n_i = number of records at parent node p.

Let Gini = $\frac{\sum_{i=1}^{n} \frac{n_i}{n} GINI(i)}{\sum_{i=1}^{n} \frac{n_i}{n} GINI(i)}$ indicate GINI at children nodes smaller the value of Gini, larger is the gain.

Binary Attributes: Computing GINI Index

	Parent	
C1	6	
C2	6	
Gini = 0.500		

Gini(N1)

$$= 1 - (5/6)^2 - (2/6)^2$$

= 0.194

Gini(N2)

$$= 1 - (1/6)^2 - (4/6)^2$$

= 0.528

	N1	N2
C1	5	1
C2	2	4

Gini=0.333

Gini(Children)

= 7/12 * 0.194 +

5/12 * 0.528

= 0.333

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

	CarType					
	Family Sports Luxury					
C1	1	2	1			
C2	4	1	1			
Gini	0.393					

Two-way split (find best partition of values)

	CarType		
	{Sports, Luxury} {Family}		
C1	3	1	
C2	2	4	
Gini	0.400		

	CarType			
	{Sports} {Family Luxury			
C1	2	2		
C2	1	5		
Gini	0.419			

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 - = Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and A ≥ v</p>
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat		No		No		No		Yes		Yes		Υe	es	No		No		No			No	No	
·		Taxable Income																						
Sorted Values		60			70		75		85		90		95		100		120		125		220			
Split Positions	·	55		65		72		80		8	87		92		97 1		0 1		22		72	23	230	
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0	
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0	
	Gini	0.420 0.400		00	0.375		0.343		0.417		0.4	0.400		<u>0.300</u>		0.343		0.375		0.400		0.420		

Alternative Splitting Criteria based on Entropy

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Measures homogeneity of a node.
 - Maximum (log n_c) when records are equally distributed among all classes implying least information
 - Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are similar to the GINI index computations

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j | t) \log_{2} p(j | t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2(1/6) - (5/6) \log_2(1/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Splitting Based on Entropy

Information Gain:

$$Gain_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n_i is number of records in partition I

Let,
$$H(p) = \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Where H(p) indicates uncertainty at parent node p

So, smaller the uncertainty(H(p)) larger is the Gain.

Stopping Criteria for Tree Induction

Stop expanding a node when all the records belong to the same class

Day	Outlook	Temperat ure	Humidity	Wind	Play cricket
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- How to choose best attribute?
 - Choose the attribute with highest information gain which is equivalent to finding minimum uncertainty(in ID3 algorithm)

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

$$H(p) = \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Compute H(p) for each attribute and consider the one with Minimum value as the root.

Attribute Outlook

Entropy(outlook = sunny) = -2/5xlog(2/5) - 3/5xlog(3/5) = 0.971

Entropy(outlook = Overcast) = $-1x\log(1) - 0x\log(0) = 0$

Entropy(outlook = Rain) = -3/5xlog(3/5) -2/5xlog(2/5) = 0.971

Uncertainty of outlook is

$$= 5/14 \times 0.971 + 4/14 \times 0 + 5/14 \times 0.971$$

$$= 0.693$$

Attribute Temperature

Entropy(Temperature = Hot)
=
$$-2/4$$
xlog(2/4) - $2/4$ xlog(2/4) = 1

Entropy(Temperature = Mild) = -2/6xlog(2/6) -4/6xlog(4/6) = 0.918

Entropy(Temperature = Cool) = -1/4xlog(1/4) - 3/4xlog(3/4) = 0.811

Uncertainty of Temperature is

$$= 4/14x1 + 6/14x0.918 + 4/14x0.811$$

$$= 0.911$$

Attribute Humidity

Entropy(Humidity = High) = $-3/7 x \log(3/7) - 4/7 x \log(4/7) = 0.985$

Entropy(Humidity = Normal) = -1/7xlog(1/7) -6/7xlog(6/7) = 0.591

Uncertainty of Humidity is H(Humidity) = 7/14xEntropy(Humidity = High) + 7/14xEntropy(Humidity = Normal)= 7/14x0.985 + 7/14x0.591

$$= 0.788$$

Attribute Wind

Entropy(Wind = Weak) = $-2/8x\log(2/8) - 6/8x\log(6/8) = 0.811$

Entropy(Wind = Strong) = -3/6xlog(3/6) - 3/6xlog(3/6) = 1

Uncertainty of Wind is

H(Wind) = 8/14xEntropy(Wind = Weak) + 6/14xEntropy(Wind = Strong)

$$= 8/14x0.811 + 4/14x0 + 6/14x1$$

= 0.892

Since Outlook has less uncertainty, choose it as root

- Since outlook = overcast has all class labels 'No', it is classified as Don't play.
- To find attributes A and B, repeat same procedure

Attribute Temperature

Given Outlook = Sunny

Entropy(Temperature = Hot)

$$= -1\operatorname{xlog}(1) - 0\operatorname{xlog}(0) = 0$$

Entropy(Temperature = Mild)

$$= -1/2x\log(1/2) - 1/2x\log(1/2) = 1$$

Entropy(Temperature = Cool)

$$= -1x\log(1) - 0x\log(0) = 0$$

Uncertainty of Temperature is

H(Temperature) = 2/5xEntropy(Temperature = Hot) + 2/5xEntropy(Temperature = Mild) + 1/5xEntropy(Temperature = Cool)

$$=2/5x0 + 2/5x1 + 1/5x0$$

$$= 0.4$$

Attribute Humidity

Given Outlook = Sunny

Entropy(Humidity = High)
=
$$-1x\log(1) - 0x\log(0) = 0$$

Entropy(Humidity = Normal) = $-0x\log(0) - 1x\log(1) = 0$

= 0

Uncertainty of Humidity is H(Humidity) = 3/5xEntropy(Humidity = High) + 2/5xEntropy(Humidity = Normal)= 3/5x0 + 2/5x0

Attribute Wind

Given Outlook = Sunny

Entropy(Wind = Weak)
=
$$-2/3 x \log(2/3) - 1/3 x \log(1/3) = 0.918$$

Entropy(Wind = Strong)
=
$$-1/2$$
xlog(1/2) - $1/2$ xlog(1/2) = 1

Uncertainty of outlook is
$$H(Outlook) = 3/5xEntropy(Wind = Weak) + 2/5xEntropy(Wind = Strong)$$

$$= 3/5x0.918 + 2/5x1$$

$$= 0.951$$

□ Since for Outlook = Sunny, Humidity has less uncertainty we can choose it as child

Attribute Temperature Given Outlook = Rain

Entropy(Temperature = Hot)

 $= -0x\log(0) - 0x\log(0) = 0$

Entropy(Temperature = Mild)

 $= -1/3x\log(1/3) - 2/3x\log(2/3) = 0.918$

Entropy(Temperature = Cool)

 $= -1/2x\log(1/2) - 1/2x\log(1/2) = 1$

Uncertainty of Temperature is

H(Temperature) = 0/5xEntropy(Temperature = Hot) + 3/5xEntropy(Temperature = Mild) + 2/5xEntropy(Temperature = Cool)

= 0/5x0 + 3/5x0.918. + 2/5x1

= 0.951

Attribute Humidity

Given Outlook = Rain

Entropy(Humidity = High) = -1/2xlog(1/2) - 1/2xlog(1/2) =1

Entropy(Humidity = Normal) = -1/3xlog(1/3) -2/3xlog(2/3) = 0.918

Uncertainty of Humidity is H(Humidity) = 2/5xEntropy(Humidity = High) + 3/5xEntropy(Humidity = Normal) = 2/5x1 + 3/5x0.918= 0.951

Attribute Wind

Given Outlook = Rain

Entropy(Wind = Weak)
=
$$-1x\log(1) - 0x\log(0) = 0$$

Entropy(Wind = Strong)
=
$$-0x\log(0) - 1x\log(1) = 0$$

Uncertainty of Wind is

$$H(Wind) = 3/5xEntropy(Wind = Weak) + 2/5xEntropy(Wind = Strong)$$

 $= 3/5x0 + 2/5x0$
 $= 0$

Since for Outlook = Rain, Wind has less uncertainty we can choose it as child

This is the final Decision tree, since all leaf nodes indicate the class label.

- Testing:
- ☐ Given outlook = Sunny, Temperature = cool, Humidity = Normal and wind = weak whether to play cricket or not.

From the Decision tree, it is found that if outlook = Sunny and Humidity = Normal then play Cricket.

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

References

- Data Mining with Decision Trees: Theory and Applications Book by Lior Rokach, 17 December 2007
- Decision Tree and Ensemble Learning Based on Ant Colony Optimization Book by Jan Kozak, 20 June 2018
- Decision Trees and Random Forests: A Visual Introduction for Beginners Book by Chris Smith and Mark Koning,
- 4 October 2017

Thank You