

□ patrick.grady@gatech.edu • www.pgrady.net

### Education

Georgia Institute of Technology

PhD Robotics

Atlanta, GA 2018-Dec 2023 est.

Georgia Institute of Technology

MS Computer Science - Machine Learning

**Atlanta, GA** 2018-2020

**Duke University** 

BS Computer Science, BS Electrical and Computer Engineering

**Durham, NC** 2014-2018

### **Publications**

- Visual Contact Pressure Estimation for Grippers in the Wild Jeremy A. Collins, Cody Houff, **Patrick Grady**, Charles C. Kemp, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2023
- Visual Estimation of Fingertip Pressure on Diverse Surfaces using Easily Captured Data Patrick Grady, Jeremy A. Collins, Chengcheng Tang, Christopher D. Twigg, James Hays, Charles C. Kemp, arXiv 2023
- Force/Torque Sensing for Soft Grippers using an External Camera Jeremy A. Collins, Patrick Grady, Charles C. Kemp, IEEE International Conference on Robotics and Automation (ICRA) 2023
- BodyPressure Inferring Body Pose and Contact Pressure from a Depth Image Henry M. Clever, Patrick Grady, Greg Turk, Charles C. Kemp, IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 2023
- Visual Pressure Estimation and Control for Soft Robotic Grippers Patrick Grady, Jeremy A. Collins, Samarth Brahmbhatt, Christopher D. Twigg, Chengcheng Tang, James Hays, Charles C. Kemp, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2022
- PressureVision: Estimating Hand Pressure from a Single RGB Image Patrick Grady, Chengcheng Tang, Samarth Brahmbhatt, Christopher D. Twigg, Chengde Wan, James Hays, Charles C. Kemp, European Conference on Computer Vision (ECCV) 2022, Oral
- ContactOpt: Optimizing Contact to Improve Grasps Patrick Grady, Chengcheng Tang, Christopher D. Twigg, Minh
   Vo, Samarth Brahmbhatt, Charles C. Kemp, Conference on Computer Vision and Pattern Recognition (CVPR) 2021, Oral
- Masked Reconstruction based Self-Supervision for Human Activity Recognition Harish Haresamudram, Apoorva Beedu, Varun Agrawal, Patrick Grady, Irfan Essa, Judy Hoffman, Thomas Ploetz, Ubiquitous Computing/International Semantic Web Conference (UbiComp/ISWC) 2020
- Learning to Collaborate from Simulation for Robot-Assisted Dressing Alexander Clegg, Zackory Erickson, Patrick Grady, Greg Turk, Charles Kemp, C. Karen Liu, IEEE Robotics and Automation Letters (RA-L) 2020
- A Study of Energy Losses in the World's Most Fuel Efficient Vehicle Patrick Grady, Gerry Chen, Shomik Verma, Aniruddh Marellapudi, Nico Hotz, IEEE Vehicle Power and Propulsion Conference (VPPC) 2019, Oral

# **Technical Experience**

### Meta Reality Labs

Research Intern with Chengcheng Tang

Summer 2020, Summer 2021, Summer 2022

- Developed methods for estimating hand pressure from single RGB images. Designed multi-view camera cages, collected a dataset of diverse participants manipulating force-sensitive objects, developed deep models
- Developed methods for inferring hand-object contact for grasps and optimization methods to enforce physical

### **Healthcare Robotics Lab**

Graduate Research Assistant with Dr. Charlie Kemp

2019 - cur

- Developed closed-loop robotic grasping and manipulation algorithms using visually inferred tactile information
- Collected data and developed methods for visual inference of contact and pressure for human hands
- Generated high-quality 3D human mesh model fits from depth imagery
- Transferred deep RL policies from sim-to-real for robot-assisted dressing

#### **Duke Electric Vehicles**

President (2016-2018), Electrical Lead (2014-2016)

2014 - 2018

- Guinness World Record: Most efficient electric vehicle: 27,482 MPGe (battery-electric). Previous record, 2016 TU
   Munich
- Guinness World Record: Most fuel-efficient vehicle: 14,573 MPG (hydrogen fuel cell). Previous record, 2005 ETH
   Zurich
- Led team of 15 undergraduates to design battery and fuel cell powered vehicles for the Shell Eco-Marathon
- Led two year initiative to push the team past Eco-Marathon competition, to seek and achieve two World Records
- Vehicle designer, high level architect of vehicle powertrain and aerodynamics. Justified with extensive simulation and real-world testing

### **NVIDIA Circuits Research Group**

Research Intern Summer 2017

- Benchmarked high-speed signalling test chips for for next-gen memory-to-GPU communications
- Developed automatic optimization to minimize bit error-rate of 25 Gbps ground-referenced link
- Designed setup for characterization of SRAM devices in high-radiation environments

## **Teaching Experience**

| reactiffing Experience |  |
|------------------------|--|
| nvited Talks           |  |

| <ul> <li>Sensing Touch from Vision for Humans and Robots. Amazon Lab126</li> </ul> | August 2023     |
|------------------------------------------------------------------------------------|-----------------|
| • Sensing Touch from Vision for Humans and Robots. Carnegie Mellon University      | <i>May</i> 2023 |
| o 14,500 MPG: Design of the World's Most Fuel Efficient Vehicle. Duke University   | Feb 2019        |

### **Visiting Lecturer**

Politeknik Brunei, Brunei Mar 2019

Invited to host tutorial on design and integration of BLDC motor drives

### **Graduate Teaching Assistant**

| CS 6601 - Artificial Intelligence | Fall 2020   |
|-----------------------------------|-------------|
| o CS 7463 - Deep Learning         | Spring 2020 |
| CS 6476 - Computer Vision         | Fall 2019   |
| ECE 3072 - Electrical Energy      | Fall 2018   |

#### **Undergraduate Teaching Assistant**

| <ul> <li>ECE 110 - Fundamentals of Electrical and Computer Engineering</li> </ul> | Spring 2016 |
|-----------------------------------------------------------------------------------|-------------|
| <ul> <li>ECE 230 - Microelectronic Devices and Circuits, Projects Lab</li> </ul>  | Fall 2016   |

# **Selected Projects**

### **Inertial Variometers for Glider Aircraft**

Mid-Georgia Soaring Association

2020

- Developed RTK-INS for high-precision sensing of aircraft orientation and velocity
- Integrated INS into a high-performance glider, collected 30 hours of flight data
- Designed sensor fusion filters to exceed performance of current-gen barometric variometers

| CS 8803 Class Project [Link]                                                                                                                                                                                                                         | 2019       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <ul> <li>Developed RL agent to play OpenAI Gym car racing environment</li> <li>Leveraged experience of an oracle agent to accelerate training of Deep Q Network</li> <li>Achieved human-level performance with 6x fewer training episodes</li> </ul> |            |
| EasyController2 BLDC Motor Drive                                                                                                                                                                                                                     | 2010       |
| Duke Electric Vehicles                                                                                                                                                                                                                               | 2019       |
| <ul> <li>Released open source design of BLDC motor controller, PCB and code</li> <li>Supported 7 international teams using the EasyController2 as a reference design</li> </ul>                                                                      |            |
| Awards                                                                                                                                                                                                                                               |            |
| Reviewer: CVPR, ECCV, ICCV, ICRA, IROS, TPAMI                                                                                                                                                                                                        |            |
| Finalist: Meta PhD Research Fellowship                                                                                                                                                                                                               | 2022       |
| Guinness World Record: Most efficient electric vehicle, 27,482 MPG                                                                                                                                                                                   | 2019       |
| Guinness World Record: Most fuel efficient vehicle, 14,573 MPG                                                                                                                                                                                       | 2018       |
| Shell Eco-Marathon: First place battery-electric prototype. Best of 25 teams                                                                                                                                                                         | 2018       |
| <b>Shell Eco-Marathon</b> : First place hydrogen prototype. Best of 7 teams                                                                                                                                                                          | 2018       |
| <b>Shell Eco-Marathon</b> : First place battery-electric prototype. Best of 30 teams                                                                                                                                                                 | 2017       |
| Georgia Tech CreateX: Idea2Prototype grant                                                                                                                                                                                                           | 2019       |
| HackMIT: Winner                                                                                                                                                                                                                                      | 2016       |
| HackDuke: Winner                                                                                                                                                                                                                                     | 2015       |
| Microsoft Code Competition: Winner. Best of 30 teams                                                                                                                                                                                                 | 2015, 2017 |
| ACM IC Programming Contest: 5th of 180 teams in Mid-Atlantic conference                                                                                                                                                                              | 2015       |
| FAA Private Pilot: Glider, Airplane                                                                                                                                                                                                                  | 2014, 2021 |
| Soaring Records: Holder of 11 Georgia state soaring records                                                                                                                                                                                          |            |
| Media Coverage: [Clean Technica] [News and Observer] [Killer Innovations] [Duke Chronicle]                                                                                                                                                           |            |
|                                                                                                                                                                                                                                                      |            |

Online Imitation Learning for Warm-Starting of DQN