Calculus of Polar Functions

To plot a point (r,θ) in polar form

- (1) Rotate by θ radians in the appropriate direction
 - ✓ Counterclockwise for $\theta > 0$
 - ✓ Clockwise for θ < 0
- $(x, y) \leftrightarrow (r, \theta)$ Where $r = f(\theta)$
- (2) Extend from the origin the appropriate magnitude |r| and proper direction
 - ✓ For r > 0, extend in the direction of the terminal side of θ by |r|
 - ✓ For r < 0, extend in the opposite direction of the terminal side of θ by |r|

To convert from rectangular to polar, and vice versa

$$x^{2} + y^{2} = r^{2}$$

$$x = r \cos \theta \iff x = r(\theta) \cos \theta$$

$$y = r \sin \theta \iff y = r(\theta) \sin \theta$$

$$\frac{d}{d\theta}[y] = \frac{d}{d\theta}[r(\theta)\sin(\theta)] \qquad \frac{d}{d\theta}[x] = \frac{d}{d\theta}[r(\theta)\cos(\theta)]$$
$$\frac{dy}{d\theta} = r'(\theta)\sin(\theta) + r(\theta)\cos(\theta) \qquad \frac{dx}{d\theta} = r'(\theta)\cos(\theta) - r(\theta)\sin(\theta)$$

Using these equations, we can determine $\frac{dy}{dx}$ by the following:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{r'(\theta)\sin(\theta) + r(\theta)\cos(\theta)}{r'(\theta)\cos(\theta) - r(\theta)\sin(\theta)}$$

To find the area enclosed by a polar curve, you can derive the integral from the area of a sector.

$$\frac{\pi \left[r(\theta) \right]^{2}}{\text{area of the circle}} \cdot \frac{\alpha \theta}{2\pi}$$
fraction of the circle

$$\frac{1}{2}\int_{\theta_{\rm i}}^{\theta_{\rm 2}} \left[r(\theta)\right]^2 d\theta$$

To find the area enclosed by a polar curve, or between two polar curves, <u>the most important/challenging task is</u> to determine the interval of θ that correspond to the lower bound and upper bound of the integral that sweep out the region in question.

Make sure to use clues like:

The structure of $r(\theta)$

The graph of the curve

Notice that the radius will be the shortest when $3+2\cos(\theta)$ attains its smallest value. This will occur when $\theta = \pi$.

Then use the fact that the graph is symmetric about the *x*-axis, and set up the following integral:

$$2 \cdot \left[\frac{1}{2} \int_{0}^{\pi} \left[r(\theta) \right]^{2} d\theta \right]$$

Notice that the curve will have radius zero when $\sin(\theta)\cos^2(\theta) = 0$.

The first values for which this will occur will be

$$\theta = \frac{\pi}{2}$$
 and π .

Use the fact that the graph is symmetric about the *y*-axis, and set up the following integral:

$$2 \cdot \left[\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \left[r(\theta) \right]^{2} d\theta \right]$$

Area in the first quadrant outside the polar curve and inside the polar curve $r^2 = 18\sin(2\theta)$.

Arc Length: $\alpha \le \theta \le \beta$ length of $r(\theta)$ from $\theta = \alpha$ to $\theta = \beta$ is given by

$$s = \int_{\alpha}^{\beta} \sqrt{(r(\theta))^{2} + (r'(\theta))^{2}} d\theta$$

Area in the first quadrant outside the polar curve r = 3 and inside the polar curve $r^2 = 18\sin(2\theta)$

$$3 = \pm \sqrt{18 \sin(2\theta)}$$

$$9 = 18 \sin(2\theta)$$

$$\frac{1}{2} = \sin(2\theta)$$

$$\downarrow$$

$$2\theta = \left(\frac{\pi}{6} \text{ or } \frac{5\pi}{6}\right) + 2\pi k$$

$$\theta = \left(\frac{\pi}{12} \text{ or } \frac{5\pi}{12}\right) + \pi k$$

Area = $\frac{1}{2} \int_{\theta_{1}}^{\theta_{2}} \left[r_{1}(\theta) \right]^{2} d\theta - \frac{1}{2} \int_{\theta_{1}}^{\theta_{2}} \left[r_{2}(\theta) \right]^{2} d\theta$

How to determine whether a particle is moving towards or away from the origin:

Determine whether r is positive or negative, AND whether $\frac{dr}{d\theta}$ is positive or negative.

If r and $\frac{dr}{d\theta}$ have the same sign, then the particle is moving away from the origin.

If r and $\frac{dr}{d\theta}$ have opposite signs, then the particle is moving towards the origin.

Examples:

 $r = \cos(3\theta)$ when $\theta = \frac{19\pi}{12}$. r < 0 and $\frac{dr}{d\theta} < 0$ and the point is moving away from the origin

 $r = \cos(3\theta)$ when $\theta = \frac{21\pi}{12}$. r < 0 and $\frac{dr}{d\theta} > 0$ and the point is moving towards the origin.

 $r = \cos(3\theta)$ when $\theta = \frac{\pi}{12}$. r > 0 and $\frac{dr}{d\theta} < 0$ and the point is moving towards the origin.

 $r = \cos(3\theta)$ when $\theta = -\frac{\pi}{12}$. r > 0 and $\frac{dr}{d\theta} > 0$ and the point is $\frac{\pi}{12}$ moving away from the origin.