Model Elektronu jako Mód Pole Θ

Navrhujeme model, v němž elektron vzniká jako specifická excitace pole $\Theta(q,\tau)$. Tato excitace má tvar:

$$\Theta_e(q,\tau) = \psi(q) \otimes s,$$

kde $\psi(q)$ je prostorově-časová vlnová funkce a s je interní spinorová složka.

Hmotnost jako Vnitřní Frekvence

Předpokládáme periodickou závislost v imaginární složce komplexního času $\tau=t+i\psi$:

$$\Theta(q,\tau) = e^{i\omega\psi}\Psi(q).$$

Potom máme vztah mezi frekvencí a hmotností:

$$m = \frac{\hbar\omega}{c^2}.$$

Spin jako Algebraická Struktura

Uvažujeme komponenty Θ jako operátory splňující algebru:

$$[\hat{s}_i, \hat{s}_j] = i\hbar\epsilon_{ijk}\hat{s}_k,$$

což odpovídá spin-1/2 reprezentaci.

Interakce s Elektromagnetickým Polem

V klasickém limitu generuje Θ proud:

$$j^{\mu} = \bar{\Theta} \gamma^{\mu} \Theta$$
,

což odpovídá QED interakci s potenciálem A_{μ} .