Regression Analysis:

Predicting the International vs. Domestic Share of Box Office Revenue

ANALYSIS BY: Olivia Offutt, Metis Regression

INTRODUCTION

OVERVIEW

- Global markets are significant sources of revenue for US made movies
- Predicting what kind of movie will produce a high international response would be helpful for a movie distributor to have in its business decision making toolkit

PROJECT GOAL:

Using data from Box Office Mojo, build a predictive model for international revenue percentage (%) of revenue for domestic made movies

DATA

Sample Frame: 1000 domestic movie web pages from Box Office Mojo Top Lifetime Grosses page

Variables:

- Target Variable (1): International Revenue %
- Feature Variables (95):
 - Numeric Vars: [Year, Run Time, Budget (adjusted for inflation)]
 - Categorical Vars: [Distributor, Rating, Genres, Directors, Actors, Release Month]

TOOLS

- Web Scraping: Beautiful Soup, Pickle
- Data Visualization: Matplotlib and Seaborn
- Regression Analysis: SciKitLearn, statsmodels

METRICS

- Model variable review (feature engineering)
 - Fit linear regression to sample data
 - Pairplots, heatmaps, and VIF analysis to ID/address collinearity
 - Residuals scatter plot to ID/address heteroskedasticity
- Trained and tested 4 regression models scored for explanation power (R^2 value) and magnitude of error value (MAE):

METRICS

- Standard OLS, cross validated (KFold)*:
 - \circ R² = 0.33 +- 0.11
 - \circ MAE = 0.1 +- 0.01
- Polynomial OLS, cross validated (KFold))*:
 - \circ R² = -0.21 +- 0.36
 - \circ MAE = 0.13 +- 0.02
- Ridge Regression, cross validated (RidgeCV))*:
 - \circ R² = .29
 - o MAE = 0.09
- Lasso Regression, cross validated (LassoCV))*:
 - \circ R² = .33
 - MAE = 0.09

RESULTS

Final Model:

Lasso Regression, cross validated (LassoCV)

$$R^2 = .33$$

$$MAE = 0.09$$

RESULTS

Variables with highest coefficient (standardized)

•	'budget_adj'	0.034
•	'year'	0.032
•	'Adventure'	0.022
•	'Animation'	0.012
•	'Thriller'	0.011
•	'Comedy'	0.015
•	'Will Ferrell'	0.016

Variables that were dropped to zero during Lasso Regression:

- Run Time
- All Directors
- All Distributors
- Al Months Released
- Most Actors
- Many Genres

CONCLUSIONS

Unfortunately, the model in its current form is not very predictive or useful for a business case.

Ways to improve the model

- Better sample Frame:
 - Use a much larger data set
 - Use a data set within a more recent time frame (last 10 years for example)
- Better target:
 - International % may be too broad and capturing too many variables
 - Model can be refined to predict more specific targets, e.g.
 Chinese box office revenue
- Better features:
 - Search for another movie data website that has data that promises to be more explanatory for predicting international market targets