A FIRST COURSE

IN

NUMERICAL ANALYSIS

A FIRST COURSE

IN

NUMERICAL ANALYSIS

MAT4001 Notebook

Prof. Yutian Li

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	vii
Notat	ions	ix
1	Week1	. 1
1.1	Wednesday	1
1.1.1	Introduction to Imaginary System	. 1

Acknowledgments

This book is from the MAT4001 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 1

Week1

1.1. Wednesday

1.1.1. Introduction to Imaginary System

Actually, $(\mathbb{C},+)$ forms a group:

$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$$
$$z_1 + z_2 = z_2 + z_1$$
$$z + 0 = 0 + z = z$$
$$z + (-z) = (-z) + z = 0$$

Also, $(\mathbb{C} \setminus \{0\}, \cdot)$ forms a group.

The product for imaginary numbers is different from vector product:

$$\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2$$

Also, we can define the crossover product $\vec{v} \times \vec{w}$.

modulus:

$$|z| = \sqrt{x^2 + y^2}$$

direction angle (Argument):

$$\tan\theta = \frac{y}{x}$$

Using the polar coordination, we find z = x + iy can be transformed into

$$z = r\cos\theta + ir\sin\theta$$
$$= r(\cos\theta + i\sin\theta)$$
$$= r[\cos(\theta + 2n\pi) + i\sin(\theta + 2n\pi)]$$

Principal argument:

$$-\pi < \text{Arg}z \le \pi$$

Conjugate form of imaginary number:

$$\bar{z} = x - iy$$

$$\overline{z+w} = \bar{z} + \bar{w}$$

$$z \cdot \bar{z} = |z|^2$$

$$\frac{1}{z} = \frac{\bar{z}}{|z|^2}$$

Proposition 1.1 $|z + w| \le |z| + |w|$

Proposition 1.2
$$|z+w|^2 + |z-w|^2 = 2|z|^2 + 2|w|^2$$
.

Proposition 1.3

$$\Re z = \frac{z + \bar{z}}{2}, \ \Im z = \frac{z - \bar{z}}{2i}$$