

Predicting Future IMDb Movie Scores

Essie (Yuyang) Liu, Zoe (Hao) Zhang, Nick Ohadi Rishi Malhotra, Violet (Xuanqi) Liu Dataset Introduction

Research Questions

3 Methodology

Findings & Recs.

Agenda

IMDb 5000 Movie Dataset

Total Dataset

- 28 variables
- 5043 movies
- 4906 posters
- Across 100 years and 66 countries

Selected Dataset

- 67 variables
- 1494 movies
- 1494 posters
- Across 100 years and only USA

Dataset Introduction

- Non-zero budget
- None missing
- Fixed for inflation (past CPI, 2016 as a reference)
- Budget -> Adjusted Budget
- Gross -> Adjusted Gross
- Adjusted to 2016

Adjusted
 19XX \$ =
 19XX \$ *
 (2016-CPI /
 19XX-CPI)

Data Cleaning

Research Questions

Can we predict a movie's IMDb rating using its quantitative attributes?

Which genres are likely to correlate with great movies?

Will the # of human faces in a movie poster correlate with the movie rating?

Methodology

Forward-Stepwise Variable Selection

Full List of Variables Considered:

Group 1 - Orange Group 2 - G1 + Blue Group 3 - G2 + Green

Variables list:

Duration Director facebook likes Adj gross Cast total facebook likes Facenumber_in_poster Adj_budg Title year Action Adventure Animation Comedy Crime **Family Fantasy Thriller** Sci Fi Drama **Mystery**

Romance **Biography** History Music War Western Horror Sport **Documentary** Film Noir Approved M NC 17 Not Rated PG PG 13 Passed Unrated rating x

Model 1:

Duration
Director_facebook_likes
Adj_gross
Cast_total_facebook_likes
facenumber_in_poster

Model 2:

Duration
Director_facebook_likes
Cast_total_facebook_likes
Title_year
Adj_gross
Animation
Drama
Horror
Comedy
Fantasy
History

Model 3:

Duration Director_facebook_likes Adj_gross Cast_total_facebook_likes Horror Comedy **Fantasy** Music G Not Rated Approved **Passed** NC_17

Selected Variables

Model 1:

R-squared: 22.64%

Error: 11.8%

Straightforward to

interpret

All variables significant (5 total variables)

Model 2:

R-squared: 29.85%

Error: 10.8%

Relatively straightforward

to interpret

Eight significant variables

(10 total variables; 2 are marginally significant)

Model 3:

R-squared: **31.27%**

Error: 10.9%

Slightly difficult to

interpret

Twelve significant variables

(15 total variables)

Multiple Regression Models

Methodology

Dependent Variables:

Movie	IMDB-Score	Greatness Level						
1	2.3	2						
2	4.9	5						

Movie Greatness 10 classes (rounded the imdb-score)

Decision Tree --

Tree --Model

Predictor:

28 variables (e.g. adjusted budget, genre, # human faces, movie facebook likes...)

Calibration:

• First ²/₃ observations

Decision Tree --Outcome

• **Positive Features:** Duration; Movie_facebook_likes; adj_budget; Animation; Drama

Error

Error =12.25% (sum(abs(actual-predict)/actual))/#validation

Confusion Matrix for Training

Confusion Matrix for Testing

				82505	9,000	19900	08.20			2	3	4	5	6	7	8	9
	2	3	4	5	6	7	8	9	2	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	5	1	1	1	12	13	3	3	0
5	1	6	12	52	32	4	0	0	6	0	1	6	20	72	39	6	0
6	3	5	16	67	178	79	5	0	7	0	3	8	25	127	178	73	6
7	1	0	4	23	110	239	55	4	8	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0									

Decision Tree--Performance

- Most common error range: 1 class
- Tends to be under estimated

Methodology

Random Forest

Random Forest

Findings &
&
Recommendations

Q1: Can we predict a movie's IMDb rating using its quantitative attributes?

★ Regression and Decision Tree give insight into what traits of a movie increase/decrease ratings

★ Increase: duration, director's Facebook likes, gross revenue, cast total Facebook likes, budget

★ Decrease: number of faces in poster, G rating

Distribution
of IMDb
Scores(USA)

Managerial Perspective: What aspects of a motion picture can the Studio control to achieve high ratings?

- \star The studio can control the following attributes:
 - o Duration, director, cast, content rating, budget
- ★ Recommendation: Increase film length, pick directors with high # of Facebook likes, pick a cast with a high total # of Facebook likes, non-G rating, higher-budget films

Q2: Which genres are likely to correlate with great movies?

Genres selected by the Forward-Stepwise Regression phase, and are statistically significant (taken from model 2):

- Animation, Drama, Horror, Comedy (only Fantasy is statistically insignificant)
- Model 3 would include Fantasy (marginal significance), and Music (not significant)

Increase Ratings: Animation, Drama

Decrease Ratings: Horror, Comedy

*Interpretation of genre effects from Model 3 reflect Model 2

*Decision Tree also reflects the effects of Animation and Drama

Managerial Perspective: What genres should the Studio focus on that earn the best ratings in the future?

- ★ Animation & Drama tend to be most attractive in terms of positive ratings. Horror & Comedy should be avoided
- ★ Focus on producing motion pictures in these genres
 - Cross-pollinating and promoting movies with this genre are likely to boost ratings as well, due to association

- **Q3:** Will the # of human faces in a movie poster correlate with movie rating?
- ★ Only Model 1 includes # of faces in advertising posters, conclusions based on that
- ★ With a coefficient of -.0240, we would conclude that fewer faces in a movie poster lead to higher IMDb ratings
- ★ Borderline significance : p-value is .0502
- ★ A "sweetspot" # of faces likely exists, but is not reflected by the model's coefficient (which implies o faces is best)

IMDB Score Vs. Facenumber in Poster

Sum of Facenumber In Poster vs. average of Imdb Score. Details are shown for Movie Title.

Managerial Perspective: How can we direct our creative advertising team to promote a movie?

- ★ Since there is a direct correlation, we can have internal creative teams and vendors create more effective marketing materials (i.e. posters or billboard creation)
 - Design posters with a theoretical sweet spot in mind
 - Create additional marketing materials (handouts, postcards, etc.) to experiment with # actors/actresses faces
- ★ We advise more research to be done on the design of posters, as # of faces doesn't capture other elements such as color, shapes, face size, composition, general aesthetic appeal, etc.

Two Movies with 7.7 Rating

Thank You