UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO PRÁCTICA: PL MODELIZACIÓN

INVESTIGACIÓN OPERATIVA

Ejercicio 1

Desde una distribuidora se desea vender a tres estaciones de servicio litros de nafta y gasoil, a precio mayorista de \$30 y \$10 el litro respectivamente, y cuenta con la siguiente información.

Estación De servicio	Costo fijo de envío	Demanda de nafta(L)	Demanda de gasoil
А	\$200	10000	5000
В	\$300	8000	4500
С	\$500	7000	3000

Capacidad de venta de Nafta=22000 L

Capacidad de venta de Gasoil=11000 L

Las estaciones de servicio B y C son clientes de hace mucho tiempo y gozan de un descuento de 5% y 8% respectivamente.

Se desea modelizar el problema para saber cuánto debería venderle a cada estación, de manera de maximizar las ganancias, teniendo en cuenta la información suministrada, y sabiendo que a las tres estaciones se le debe vender por lo menos el 80% de lo que solicitan.

Ejercicio 2

hs
Una cafetería trabaja 24 /día con los siguientes requerimientos de mozos:

Horario	2-6	6 -10	10- 14	14- 18	18- 22	22-2
Mín. Mozos	4	8	10	7	12	4

Cada mozo sólo puede trabajar 8 hs consecutivas. Se pide encontrar el mínimo número de mozos requeridos para satisfacer estas necesidades.

Ejercicio 3

Dos compañías farmacéuticas tienen en stock 1.100 y 900 (en miles) dosis, respectivamente, de una vacuna contra la gripe.

Se considera inminente una epidemia de gripe en tres ciudades y, dado que ésta podría ser fatal para los ciudadanos de edad avanzada, a ellos se les debe vacunar primero. A los demás habitantes se los vacunará según se presenten, mientras duren los suministros de vacunas. Las cantidades de vacunas (en miles de dosis) que cada ciudad estima necesitar son las siguientes:

	Ciudad 1	Ciudad 2	Ciudad 3
Ancianos	325	260	195
Otros	750	800	650

Los costos de embarque (en \$ por dosis) entre las compañías farmacéuticas y las ciudades se muestran a continuación.

	Ciudad 1	Ciudad 2	Ciudad 3
Compañía 1	3	3	6
Compañía 2	1	4	7

Determinar un programa de embarque de costo mínimo que provea a cada ciudad las vacunas suficientes para atender, al menos, a los ciudadanos de edad avanzada.

Ejercicio 4

Cierta persona dispone de \$100.000 para ser colocados en cualquiera de dos alternativas de inversión: *A* y *B*. Las características de estas alternativas son:

Alternativa A: garantiza que por cada \$ invertido se obtendrán \$0,7 al cabo de un año.

Alternativa B: garantiza que por cada \$ invertido se obtendrán \$2 al cabo de 2 años. (Sólo puede reinvertirse al cabo de 2 años).

Determine el plan de inversión que maximizar el beneficio al cabo de tres años.

Ejercicio 5

En el espacio de un año debe transportarse por avión el siguiente número (en cientos) de pasajeros, según tres itinerarios.

Itinerario	Nº pasajeros	Ganancia cada 100 pasajeros
1	320	15
2	165	15
3	190	8

Se dispone de tres tipos de aviones que, según el itinerario al que sean afectados, pueden transportar por año las siguientes cantidades (en cientos) de pasajeros.

Itinerario	Tipo de avión			
- Illiteratio	1	2	3	
1	20	15	_	
2	18	13	10	
3	_	14	8	
Total aviones disponibles	15	14	18	

(–) Unidades de este tipo no vuelan en el itinerario

Los gastos por avión y por año son los indicados en la siguiente tabla.

Itinerario	Tipo de avión			
Illiteratio	1	2	3	
1	12	13	_	
2	12	13	10	
3	_	11	14	

Se considera que el "costo" de un pasajero "perdido", es decir una persona que no ha podido ser transportada, es igual a la ganancia no percibida por no haberlo transportado.

Se desea afectar los aviones a las diferentes líneas de manera tal que el costo total sea mínimo.