

Deliverable 6:

Number of Emails Being Sent by Age Group

Rebekah Sander

Research Question

Can the person's age group predict the number of emails sent each month?

Research Variables

WHO	WHAT measure	ment is made on each	TYPE OF MEASURE
WHO	Name of Variable	Question Asked	I TPE OF WIEASURE
A Person	Age Group	What age group is this person in?	Categorical Variable: levels =
	Number of Emails	How many emails were sent by this person in one month?	Quantitative Variable Unit: emails
One quantitative variable being	tested among one categ	gorical variable with K leve	els.
1. One-way ANOVA	3. Kruskal Wallis		

1. One-way ANOVA

- 3. Kruskal Wallis
- 2. Welch's Test on Raw Data
- 4. Welch's Test on Ranked Data

SAS Code: Examining the Data

```
/* Check for and fix miscoding/missing values */
PROC FREQ DATA=WORK.emails;
TABLE 'Age Group'n 'Number of Emails'n;
run;
Proc Contents data=work.emails varnum;
run;
/*Fixing number of emails*/
data work.emails;
    set work.emails;
    if 'Number of Emails'n = -1 or 'Number of Emails'n = '.'
        or 'Number of Emails'n = 99999 or 'Number of Emails'n = 'NA'
        or 'Number of Emails'n = null then delete;
    'Number of Emails num'n = input('Number of Emails'n, ?? best32.)
    drop 'Number of Emails'n null;
    rename 'Number of Emails num'n='Number of Emails'n;
run;
```


SAS Code: Examining the Data


```
/*fixing age group*/
*20 to 40, 40 to 60,less_then_20, less_than_20, over_60;
data work.emails;
set work.emails;
length 'Age Group'n $20;
   if 'Age Group'n = '20 to 40' then 'Age Group Category'n='B';
   else if 'Age Group'n = '40 to 60' then 'Age Group Category'n='C';
   else if 'Age Group'n = 'Less then 20'
        or 'Age Group'n = 'Less_than_20' then 'Age Group Category'n='A';
   else if 'Age Group'n = 'Over 60' then 'Age Group Category'n='D';
drop 'Age Group'n
RUN;
```

```
Proc format;
Value $avgformat
'A'="Under 20"
'B'="20 to less than 40"
'C'="40 to less than 60"
'D'="60 and Older";
run;
```

```
data work.emails;
set work.emails;
format 'Age Group Category'n avgformat.;
rename 'Age Group Category'n='Age Group'n;
run;
```

SAS Code: Assessing Normality

run;

```
/*QQ Plots and normality test*/
title 'Figures 1, 2, 3: QQ Plots for Number of Emails by Age Group';
proc univariate data=work.emails normaltest plots;
    var 'Number of Emails'n;
    class 'Age Group'n;
title;
PROC FREQ DATA=WORK.emails;
TABLE 'Age Group'n 'Number of Emails'n;
run;
Proc Contents data=work.emails varnum;
run;
Proc Means data = work.emails MAXDEC=2 n mean stddev median Qrange RANGE min Q1 Q3 max;
   var 'Number of Emails'n;
```

Assessing Normality

- \blacktriangleright H_0 : The data came from a population where the number of emails are normally distributed
- \blacktriangleright H_A : The data came from a population where the number of emails are not normally distributed.
- $\alpha = 0.10$

Age Group	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Under 20	18	29.03	18	29.03
20 to less than 40	14	22.58	32	51.61
40 to less than 60	16	25.81	48	77.42
60 and Older	14	22.58	62	100.00

▶ The sample sizes for all four categories are less than 30. Therefore, the \bar{x} distribution cannot be assumed normal.

Assessing Normality—Under 20

Normality Tests: All four of the tests for normality show p-values greater than $\alpha = 0.10$. Thus, we have evidence to suggest the x distribution is normal.

▶ QQ Plot: The data follows the agreement line with little deviation. This supports that the x distribution is normal.

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W	0.948626	Pr < W	0.4039		
Kolmogorov-Smirnov	D	0.141636	Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.053435	Pr > W-Sq	>0.2500		
Anderson-Darling	A-Sq	0.346307	Pr > A-Sq	>0.2500		

Assessing Normality—20 to less than 40

Normality Tests: Three of the tests for normality show p-values greater than $\alpha=0.10$. Thus, we have evidence to suggest the x distribution is not normal.

QQ Plot: The data follows the agreement line with fairly little deviation.

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W	0.89198	Pr < W	0.0863		
Kolmogorov-Smirnov	D	0.195037	Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.081195	Pr > W-Sq	0.1906		
Anderson-Darling	A-Sq	0.582125	Pr > A-Sq	0.1231		

Assessing Normality —40 to less than 60

Normality Tests: All four of the tests for normality show p-values greater than $\alpha=0.10$. Thus, we have evidence to suggest the x distribution is normal.

QQ Plot: The data follows the agreement line with little deviation. This supports that the x distribution is normal.

Tests for Normality						
Test	St	Statistic p Valu				
Shapiro-Wilk	W	0.9345	Pr < W	0.2870		
Kolmogorov-Smirnov	D	0.132574	Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.049464	Pr > W-Sq	>0.2500		
Anderson-Darling	A-Sq	0.3612	Pr > A-Sq	>0.2500		

Assessing Normality —60 and older

Normality Tests: Three of the tests for normality show p-values less than $\alpha = 0.10$. Thus, we have evidence to suggest the x distribution is not normal.

QQ Plot: The data follows the agreement line with a bit of deviation.

Tests for Normality					
Test	Statistic p Value				
Shapiro-Wilk	W	0.912635	Pr < W	0.1721	
Kolmogorov-Smirnov	D	0.252088	Pr > D	0.0169	
Cramer-von Mises	W-Sq	0.111978	Pr > W-Sq	0.0728	
Anderson-Darling	A-Sq	0.594986	Pr > A-Sq	0.0989	

SAS Code: Assessing Homogeneity

```
/*A Rough Check for Homogeneity*/
TITLE "Table 1: Table to Compare Standard Deviations for Homogeneity";
PROC MEANS DATA = work.emails mean stddev VAR maxdec=4;
        class 'Age Group'n;
        VAR 'Number of Emails'n;
RUN;
TITLE;
```

Table 1: Table to Compare Standard Deviations for Homogeneity

The MEANS Procedure

Analysis Variable : Number of Emails							
Age Group N Obs Mean Std Dev Variance							
Under 20	18	44.7778	2.9014	8.4183			
20 to less than 40	14	41.2857	2.2678	5.1429			
40 to less than 60	16	41.0625	2.7681	7.6625			
60 and Older	14	37.7857	2.8333	8.0275			

Assessing Homogeneity

- H_0 : $\sigma_{\text{Under }20}^2 = \sigma_{20 \text{ to less than }40}^2 = \sigma_{40 \text{ to less than }60}^2 = \sigma_{60 \text{ and older}}^2$
 - H_A : At least one variance is different than the rest
- ► The ratio is less than 2. Thus, the standard deviations are close enough to use a test that requires homogeneity.

ard deviations ar

Ratio of standard deviations:

$$= \frac{SD_{under\ 20}}{SD_{20\ to\ less\ than\ 40}}$$

$$=\frac{2.9014}{2.2678}$$

$$= 1.2794 < 2$$

Choosing Hypothesis Test: Kruskal Wallis

- Since the data is not normal and homogeneous, we will perform the Kruskal Wallis test.
- ► The null hypothesis is that all age groups have the same median number of emails sent each month for the populations of all age groups.
 - H_0 : $\eta_{Under\ 20} = \eta_{20}$ to less than $40 = \eta_{40}$ to less than $60 = \eta_{60}$ and Older
- ▶ The alternative hypothesis is,
 - H_A : At least one age group has a different median number of emails sent in a month for the population.
- ▶ The level of significance, $\alpha = 0.10$, tells us that 10% of the time the analysis will conclude that at least one median is different when all medians are equal.

SAS Code: Kruskal Wallis and Post-hoc

```
/*Kruskal Wallis Test with Post Hoc DSCF*/
proc npar1way data=work.emails wilcoxon dscf;
    class 'Age Group'n;
    var 'Number of Emails'n;
run;
```

441.0 59.124120

13.857143

Classified by Variable Age Group								
Age Group	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score			
Under 20	18	856.50	567.0	64.186345	47.583333			
20 to less than 40	14	429.00	441.0	59.124120	30.642857			
40 to less than 60	16	473.50	504.0	61.875534	29.593750			

194.00

60 and Older

Kruskal-Wallis Test					
Chi-Square DF Pr > ChiSq					
28.1609	3	<.0001			

The NPAR1WAY Procedure

Donne Steel Critebless Filence Mathed						
Dwass, Steel, Critchlow-Fligner Method						
Variable: Num	ber of Emails					
Age Group	Wilcoxon Z	DSCF Value	Pr > DSCF			
Under 20 vs. 20 to less than 40	3.1695	4.4824	0.0083			
Under 20 vs. 40 to less than 60	3.2269	4.5635	0.0089			
Under 20 vs. 60 and Older	4.3298	6.1233	<.0001			
20 to less than 40 vs. 40 to less than 60	0.2522	0.3566	0.9944			
20 to less than 40 vs. 60 and Older 3.0241 4.2767						
40 to less than 60 vs. 60 and Older	2.8674	4.0552	0.0215			

Performing Kruskal Wallis Test

- χ^2 : 28.16 measures the variation between the average rank for each group and the overall average rank.
- ► P-value: There is a less than 0.01% chance of getting these ranks for the four age groups when all age groups have the same median number of emails sent in a month.
- ▶ Conclusion: Since less than 0.01% is less than 10%, we reject H_0 . We are 90% confident that at least one age group has a different median of number of emails sent in a month.

Wilcoxon Scores (Rank Sums) for Variable Number of Emails Classified by Variable Age Group								
Age Group Sum of Expected Std Dev Mean Scores Under H0 Under H0 Scores								
Under 20	18	856.50	567.0	64.186345	47.583333			
20 to less than 40	14	429.00	441.0	59.124120	30.642857			
40 to less than 60	16	473.50	504.0	61.875534	29.593750			
60 and Older	14	194.00	441.0	59.124120	13.857143			
Δ	verac	Average scores were used for ties.						

Kruskal-Wallis Test				
Chi-Square	DF	Pr > ChiSq		
28.1609	3	<.0001		

Post-hoc Tests: Dwass-Steel-Critchlow-Fligner Test

► Conclusion: The age group under 20 and the age group 60 and older have the smallest p-value and caused the significant Kruskal Wallis test at $\alpha = 0.10$.

The NPAR1WAY Procedure

Pairwise Two-Sided Multiple Comparison Analysis					
Dwass, Steel, Critchlow-Fligner Method					
Variable: Number of Emails					
Age Group	Wilcoxon Z	DSCF Value	Pr > DSCF		
Under 20 vs. 20 to less than 40	3.1695	4.4824	0.0083		
Under 20 vs. 40 to less than 60	3.2269	4.5835	0.0089		
Under 20 vs. 60 and Older	4.3298	6.1233	<.0001		
20 to less than 40 vs. 40 to less than 60	0.2522	0.3586	0.9944		
20 to less than 40 vs. 60 and Older	3.0241	4.2767	0.0133		
40 to less than 60 vs. 60 and Older	2.8874	4.0552	0.0215		

Supporting Graphic: Stratified Box Plot

Taking Action

- ▶ Further investigation is recommended.
- ▶ People under 20 may have more of the positions that require more email communication. It could also be the case that they may not be sending efficient or necessary emails. Company may need to provide lessons to less-experienced younger employees.
- ▶ People over 60 may have positions that require less email communication. It could also be the case that they send more efficient emails or prefer phone calls. Company may need to encourage older employees to use email as the world is becoming more virtual.

SAS Code: Screen Recording

