Lógica y Computabilidad

2do cuatrimestre 2020 - A DISTANCIA

Departamento de Computación - FCEyN - UBA

Computabilidad - clase 7

Conjuntos c.e., teorema de la enumeración, teorema de Rice y aplicaciones

Conjuntos en teoría de la computabilidad

Cuando hablamos de un conjunto de naturales A pensamos siempre en la función característica de ese conjunto.

$$A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si no} \end{cases}$$

Así, un conjunto puede ser:

- computable
- primitivo recursivo

Teorema

Sean A, B conjuntos de una clase PRC C. Entonces $A \cup B$, $A \cap B$ y \overline{A} están en C.

2

Conjuntos computablemente enumerables

Igual que con las funciones

hay conjuntos computables, por ejemplo

$$\emptyset$$
 , \mathbb{N} , $\{p: p \text{ es primo}\}$

hay conjuntos no computables, por ejemplo

$$\{\langle x,y\rangle:\mathsf{HALT}(x,y)\} \quad \text{ , } \quad \{\langle x,\langle y,z\rangle\rangle:\Phi_x(y)=z\}$$

Definición

Un conjunto A es computablemente enumerable (c.e.) cuando existe una función parcial computable $g: \mathbb{N} \to \mathbb{N}$ tal que

$$A = \{x : g(x) \downarrow\} = \text{dom } g$$

- podemos decidir algoritmicamente si un elemento sí pertenece a A, pero para elementos que no pertenecen a A, el algoritmo se indefine
- se llaman algoritmos de semi-decisión: resuelven una aproximación al problema de decidir la pertenencia de un elemento al conjunto A

Propiedades de los conjuntos c.e.

Un conjunto A es co-c.e. si \overline{A} es c.e.

Teorema

Si A es computable entonces A es c.e.

Demostración.

Sea P_A un programa para [la función característica de] A. Consideremos el siguiente programa P:

[C] IF
$$P_A(X) = 0$$
 GOTO C

Tenemos

$$\Psi_P(x) = \begin{cases} 0 & \text{si } x \in A \\ \uparrow & \text{si no} \end{cases}$$

y por lo tanto

$$A = \{x : \Psi_P(x) \downarrow \}$$

4

Propiedades de los conjuntos c.e.

Teorema

Si A y B son c.e. entonces $A \cup B$ y $A \cap B$ también son c.e.

Demostración.

Sean
$$A = \{x : \Phi_p(x) \downarrow\}$$
 , $B = \{x : \Phi_q(x) \downarrow\}$

 $(A \cap B)$ El siguiente programa R tiene como dominio a $A \cap B$:

$$Y \leftarrow \Phi_p(x)$$
$$Y \leftarrow \Phi_q(x)$$

En efecto, $\Psi_R(x) \downarrow \sin \Phi_p(x) \downarrow y \Phi_q(x) \downarrow$.

 $(A \cup B)$ El siguiente programa R' tiene como dominio a $A \cup B$:

[C] IF
$$STP^{(1)}(X, p, T) = 1$$
 GOTO E
IF $STP^{(1)}(X, q, T) = 1$ GOTO E
 $T \leftarrow T + 1$
GOTO C

En efecto, $\Psi_{R'}(x) \downarrow \sin \Phi_p(x) \downarrow \circ \Phi_q(x) \downarrow$.

Propiedades de los conjuntos c.e.

Teorema

A es computable sii A y \overline{A} son c.e.

Demostración.

- (\Rightarrow) si A es computable entonces \overline{A} es computable
- (\Leftarrow) supongamos que A y \overline{A} son c.e.

$$A = \{x : \Phi_p(x) \downarrow\}$$
 , $\overline{A} = \{x : \Phi_q(x) \downarrow\}$

Consideremos P:

[C] IF
$$STP^{(1)}(X, p, T) = 1$$
 GOTO F
IF $STP^{(1)}(X, q, T) = 1$ GOTO E
 $T \leftarrow T + 1$
GOTO C
[F] $Y \leftarrow 1$

Para cada x, $x \in A$ o bien $x \in \overline{A}$. Entonces Ψ_P computa A.

Teorema de la enumeración

Definimos

$$W_n = \{x : \Phi_n(x) \downarrow\} = \text{dominio del } n\text{-\'esimo programa}$$

Teorema

Un conjunto A es c.e. sii existe un n tal que $A = W_n$.

Existe una enumeración de todos los conjuntos c.e.

$$\textit{W}_0,\,\textit{W}_1,\,\textit{W}_2,\dots$$

7

Problema de la detención (visto como conjunto)

Recordar que

$$W_n = \{x : \Phi_n(x) \downarrow \}$$

Definimos

$$K = \{n : n \in W_n\}$$

Observar que

$$n \in W_n$$
 sii $\Phi_n(n) \downarrow$ sii $HALT(n, n)$

Teorema

K es c.e. pero no computable.

Demostración.

- ▶ la función $n \mapsto \Phi(n, n)$ es parcial computable, de modo que K es c.e.
- ▶ supongamos que K fuera computable. Entonces \overline{K} también lo sería. Luego existe un e tal que $\overline{K} = W_e$. Por lo tanto

$$e \in K$$
 sii $e \in W_e$ sii $e \in \overline{K}$

Más propiedades de los conjuntos c.e.

Teorema

Si A es c.e., existe un predicado p.r. $R: \mathbb{N}^2 \to \mathbb{N}$ tal que

$$A = \{x : (\exists t) \ R(x, t)\}$$

Demostración.

Sea $A = W_e$. Es decir,

$$A = \{x : \Phi_e(x) \downarrow \}.$$

Entonces $x \in A$ cuando en algún tiempo t, el programa e con entrada x termina, i.e.

$$A = \{x : (\exists t) \ \underbrace{\mathsf{STP}^{(1)}(x, e, t)}_{R(x, t)}\}$$

Más propiedades de los conjuntos c.e.

Teorema

Si $A \neq \emptyset$ es c.e., existe una función p.r. $f : \mathbb{N} \to \mathbb{N}$ tal que

$$A = \{f(0), f(1), f(2), \dots\}$$

Demostración.

Por el teorema anterior, existe P p.r. tal que

$$A = \{x : (\exists t) \ P(x, t)\}.$$

Sea $a \in A$ y definamos

$$f(u) = \begin{cases} I(u) & \text{si } P(I(u), r(u)) \\ a & \text{si no} \end{cases}$$

- $\triangleright x \in A \Rightarrow \text{ existe } t \text{ tal que } P(x,t) \Rightarrow f(\langle x,t \rangle) = x$
- ▶ sea x tal que f(u) = x para algún u. Entonces x = a o bien u es de la forma $u = \langle x, t \rangle$, con P(x, t). Luego $x \in A$.

Más propiedades de los conjuntos c.e.

Teorema

Si $f : \mathbb{N} \to \mathbb{N}$ es parcial computable, $A = \{f(x) : f(x) \downarrow\}$ es c.e.

Demostración.

Sea $\Phi_p=f$. Definamos el programa Q

[A] IF
$$STP^{(1)}(Z, p, T) = 0$$
 GOTO B
IF $\Phi_p(Z) = X$ GOTO E

[B]
$$Z \leftarrow Z + 1$$

IF $Z \le T$ GOTO A

$$T \leftarrow T + 1$$

$$Z \leftarrow 0$$

GOTO A

Notar que $\Psi_Q(X) \downarrow$ si existen Z, T tal que

- Z ≤ T
- ▶ $STP^{(1)}(Z, p, T)$ es verdadero (i.e. el programa para f termina en T o menos pasos con entrada Z)
- $\rightarrow X = f(Z)$

$$\Psi_Q(x) = \begin{cases} 0 & \text{si } x \in A \\ \uparrow & \text{si no} \end{cases}$$

Luego A es c.e.

Caracterizaciones de los conjuntos c.e.

Teorema

Si $A \neq \emptyset$, son equivalentes:

- 1. A es c.e.
- 2. A es el rango de una función primitiva recursiva
- 3. A es el rango de una función computable
- 4. A es el rango de una función parcial computable

Demostración.

- $(1 \Rightarrow 2)$ Teorema de hoja 10
- $(2 \Rightarrow 3)$ Trivial
- $(3 \Rightarrow 4)$ Trivial
- $(4 \Rightarrow 1)$ Teorema de hoja 11

Teorema de Rice

 $A\subseteq\mathbb{N}$ es un conjunto de índices si existe una clase de funciones $\mathbb{N}\to\mathbb{N}$ parciales computables \mathcal{C} tal que $A=\{x:\Phi_x\in\mathcal{C}\}$

Teorema

Si A es un conjunto de índices tal que $\emptyset \neq A \neq \mathbb{N}$, A no es computable.

Demostración.

Supongamos \mathcal{C} tal que $A = \{x : \Phi_x \in \mathcal{C}\}$ computable. Sean $f \in \mathcal{C}$ y $g \notin \mathcal{C}$ funciones parciales computables.

Sea $h: \mathbb{N}^2 \to \mathbb{N}$ la siguiente función parcial computable:

$$h(t,x) = \begin{cases} g(x) & \text{si } t \in A \\ f(x) & \text{si no} \end{cases}$$

Por el Teorema de la Recursión, existe e tal que $\Phi_e(x) = h(e, x)$.

- $\bullet \ e \in A \Rightarrow \Phi_e = g \Rightarrow \Phi_e \notin \mathcal{C} \Rightarrow e \notin A$
- $ightharpoonup e \notin A \Rightarrow \Phi_e = f \Rightarrow \Phi_e \in \mathcal{C} \Rightarrow e \in A$

Aplicaciones del Teorema de Rice

El teorema da una fuente de conjuntos no computables:

- \blacktriangleright { $x : \Phi_x$ es total}
- \blacktriangleright { $x : \Phi_x$ es creciente}
- $\{x : \Phi_x \text{ tiene dominio infinito}\}$
- $\blacktriangleright \{x : \Phi_x \text{ es primitiva recursiva}\}$

¡Todos son no computables porque todos son conjuntos de índices no triviales!

Ejemplos de conjuntos no c.e.

- $\overline{K} = \{x : \Phi_x(x) \uparrow\}$ no es c.e.
 - \blacktriangleright K es c.e. de modo que si \overline{K} lo fuera, K sería computable
- $ightharpoonup Tot = \{x : \Phi_x \text{ es total}\}\$ no es c.e.:
 - es una diagonalización simple. Supongamos que *Tot* es c.e.
 - existe f computable tal que $Tot = \{f(0), f(1), f(2), \dots\}$
 - entonces existe e tal que $\Phi_e(x) = \Phi_{f(x)}(x) + 1$
 - lacktriangle como Φ_e es total, $e \in Tot$. De modo que existe u tal que f(u) = e
- $\overline{Tot} = \{x : \Phi_x \text{ no es total}\}\$ no es c.e.
 - ▶ parecido a lo que hicimos la clase pasada. Supongamos *Tot* c.e.
 - existe d tal que $\overline{Tot} = \text{dom } \Phi_d$
 - definimos el siguiente programa P:

[C] IF
$$STP^{(1)}(X, d, T) = 1$$
 GOTO E
$$T \leftarrow T + 1$$
GOTO C

sigue igual a lo que vimos la clase pasada

$$\Psi_P^{(2)}(x,y) = g(x,y) = \begin{cases} \uparrow & \Phi_x \text{ es total} \\ 0 & \text{si no} \end{cases}$$

Conjuntos más difíciles que el halting problem

- $K = \{x : \Phi_x(x) \downarrow \}$ no es computable
 - ▶ pero *K* es c.e.
- ▶ $Tot = \{x : \Phi_x \text{ es total}\}$ no es computable
 - ▶ Tot no es c.e.
 - ▶ *Tot* no es c.e.
- de alguna forma, Tot es más difícil que K
 - esto se formaliza dentro de la teoría
 - no hay tiempo para verlo en esta materia
 - pero lo estudiamos en Teoría de la Computabilidad
 - se suele dar los primeros cuatrimestres
 - da 3 puntos como optativa para la licenciatura y se cursa 1 vez por semana
 - http://www.glyc.dc.uba.ar/teocomp/