LOGIKA PIERWSZEGO RZĘDU (LPR) – SYNTAKTYKA.

DEF. Język pierwszego rzędu.

Symbole

- a) logiczne
 - zmienne przedmiotowe: X,Y,Z,...,X₁,Y₁,...
 VAR zbiór wszystkich zmiennych przedmiotowych
 - stałe logiczne: $\neg, \land, \lor, \rightarrow, \leftrightarrow, \forall, \exists$
 - symbole pomocnicze: (,)
- b) pozalogiczne
 - symbole relacyjne (predykaty): P, Q, R, ...
 - symbole funkcyjne: f, g, h, ...
 - stałe przedmiotowe: a, b, c, ...

Językiem pierwszego rzędu nazywamy układ

$$L=(R_1,...,R_n;f_1,...,f_m; a_1,..., a_k; \rho)$$

gdzie ρ jest funkcją , która dla każdego symbolu relacyjnego i funkcyjnego określa jego arność, tzn. liczbę argumentów, przy czym $\rho(R_i) > 0, (i = 1,...,n)$ oraz $\rho(f_i) > 0, (i = 1,...,m)$.

DEF. Termy.

Termami języka *L* nazywamy wyrażenia określone przez następujące warunki:

- każda zmienna i stała przedmiotowa jest termem,
- jeżeli f jest symbolem funkcyjnym, $\rho(f) = n$ oraz $t_1,...,t_n$ są termami, to $f(t_1,...,t_n)$ jest termem.

 TER_L – zbiór wszystkich termów języka L. Przykłady termów:

DEF. Formuly atomowe.

Formułami atomowymi (atomami) języka L nazywamy wyrażenia postaci $R(t_1,...,t_n)$, gdzie R jest symbolem relacyjnym, $\rho(R) = n$, a $t_1,...,t_n$ są termami.

Przykłady formuł atomowych:

DEF. Formuly

Formułami języka L nazywamy wyrażenia określone przez następujące warunki:

- każda formuła atomowa jest formułą,
- jeżeli A i B są formułami, to wyrażenia $(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \lor B)$, $(A \lor B)$, $(A \lor B)$ są formułami,
- jeżeli A jest formułą i x jest zmienną przedmiotową, to wyrażenia $(\forall x A)$, $(\exists x A)$ są formułami.

 FOR_L – zbiór wszystkich formuł języka L.

Reguły opuszczania nawiasów w formułach:

- 1) opuszczamy zewnętrzne nawiasy,
- 2) uwzględniamy siłę wiązania spójników logicznych i kwantyfikatorów w kolejności od najsilniej wiążących:
 - a) ¬, ∀, ∃
 - b) ∧, ∨
 - $c) \rightarrow, \leftrightarrow$

Przykłady formuł:

$$\forall_x (A \land B) \leftrightarrow \forall_x A \land \forall_x B$$

$$\neg \forall_x A \leftrightarrow \exists_x \neg A$$

DEF. Zdania.

Zdaniem (formułą domkniętą) nazywamy formułę bez zmiennych wolnych.

 SEN_L – zbiór wszystkich zdań języka L.

Przykłady zdań:

$$P(a,b) \rightarrow R(a,c)$$

$$\forall_{x} P(x) \rightarrow \exists_{y} P(y)$$

DEF. Termy bazowe.

 $Termem\ bazowym\$ nazywamy term nie zawierający zmiennych. TB_L – zbiór wszystkich termów bazowych języka L.

DEF. Atomy bazowe.

Atomem bazowym nazywamy formułę atomową nie zawierającą zmiennych.

 AB_L – zbiór wszystkich atomów bazowych języka L.

LOGIKA PIERWSZEGO RZĘDU – SEMANTYKA.

Niech L=
$$(R_1,...,R_n;f_1,...,f_m; a_1,..., a_k; \rho)$$

będzie językiem pierwszego rzędu.

DEF. Interpretacja języka.

Interpretacją języka L nazywamy układ

$$M = (|M|; R_1^M, ..., R_n^M; f_1^M, ..., f_m^M; a_1^M, ..., a_k^M)$$
gdzie
$$|M| - \text{niepusty zbiór zwany dziedzina lub uniwe}$$

|M| – niepusty zbiór zwany dziedziną lub uniwersum interpretacji,

 R_i^M – n-argumentowa relacja na zbiorze |M|, $n = \rho(R_i)$, tzn $R_i^M \subset |M|^n = \{(u_1,...,u_n): u_1,...,u_n \in |M|\}$,

 $f_i^M - n$ -argumentowe działanie na zbiorze|M|, $n = \rho(f_i)$, tzn. $f_i^M : |M|^n \to |M|$,

 a_i^M – element zbioru |M|.

Dla każdego termu bazowego języka $L, t \in TB_L$, tzn. termu nie zawierającego zmiennych, określamy $t^M \in |M|$ następująco:

a) a_i^M jest dane przez interpretację M,

b)
$$(f_i(t_1,...,t_n))^M = f_i^M(t_1^M,...,t_n^M).$$

DEF. Tautologia LPR.

Tautologią (prawem) LPR nazywamy formułę, która jest prawdziwa we wszystkich interpretacjach danego języka.

WAŻNIEJSZE PRAWA RACHUNKU KWANTYFIKATORÓW

Prawa podstawiania

$$\forall_x A \to A[x/t]$$

$$A[x/t] \rightarrow \exists A$$

Założenie: nie ma kolizji zmiennych przy podstawianiu

Prawa przestawiania kwantyfikatorów

$$\bigvee_{x}\bigvee_{y}A\longleftrightarrow\bigvee_{y}\bigvee_{x}A$$

$$\exists \exists A \longleftrightarrow \exists A \\ \underset{y}{\exists} A$$

$$\exists \forall A \to \forall \exists A$$

Prawa rozdzielności kwantyfikatorów

$$\forall (A \land B) \longleftrightarrow \forall A \land \forall B$$

$$\exists (A \lor B) \longleftrightarrow \exists A \lor \exists B$$

$$\forall_{x} A \vee \forall_{x} B \to \forall_{x} (A \vee B)$$

$$\exists (A \land B) \to \exists A \land \exists B$$

Prawa wyłączania kwantyfikatorów przed nawias

$$\forall (A \land B) \leftrightarrow \forall A \land B$$

$$\forall (A \lor B) \longleftrightarrow \forall A \lor B$$

$$\exists (A \land B) \leftrightarrow \exists A \land B$$

$$\exists (A \lor B) \longleftrightarrow \exists A \lor B$$

Założenie: x nie jest wolne w B

Prawa zamiany zmiennych związanych

$$\forall_x A \leftrightarrow \forall_y A[x/y]$$

$$\exists_{x} A \longleftrightarrow \exists_{y} A[x/y]$$

Założenie: y nie występuje w A

Prawa de Morgana dla kwantyfikatorów

$$\neg \forall_x A \leftrightarrow \exists \neg A$$

$$\neg \exists A \leftrightarrow \forall \neg A$$

Prawa ekstensjonalności

$$\forall (A \leftrightarrow B) \rightarrow (\forall A \leftrightarrow \forall B)$$

$$\forall (A \leftrightarrow B) \rightarrow (\exists A \leftrightarrow \exists B)$$