CSE-170 Computer Graphics

Lecture 19 Subdivision Surfaces

Dr. Renato Farias rfarias 2@ucmerced.edu

Curves

- Main approaches to define curves:
 - Procedural curves: fractals, subdivision rules

- Parametric curves: are mappings
 - Ex.: Continuous map from 1D space to n-D space
 f(t)=(x,y), ex: f(t)=(cos t, sin t)
- Implicit curves: defined by an equation
 - Described by all points satisfying an equation
 f(x,y)=0 ex: x²+y²-1=0

Surfaces

- Can also be parameterized
 - With 2 parameters instead of only one
 - Recall the torus equation!
- Can be defined implicitly
 - For ex. with an implicit equation
 - We will later see: marching cubes algorithm for surface extraction
- Can also be defined procedurally
 - Several subdivision procedures possible
 - Subdivision surfaces

- Surfaces based on equations are very popular for defining surfaces
 - However, parametrization requires two parameters to completely define the surface
 - Recall the torus parameterization
 - We will later also see "control grids/patches"
- What can we do for generic control grids?
 - Or control meshes?

- Main idea
 - Create smooth surfaces out of procedural subdivision rules applied to arbitrary meshes
- Main goal
 - Generalize surface modeling to any type of initial "control mesh"

- What is a "subdivision surface"?
 - A way to define smooth surfaces as the limit of a sequence of successive refinements

- What is a refinement?
 - A refinement has two steps:

1st step: topological subdivision (or split)

2nd step: geometrical rearrangement (or tweak)

- The subdivision is applied to the control points
- Think of drawing successive control polygons instead of the curve itself

B-Spline Tweak

- Example
 - It is possible to define a "quadratic B-Spline" by subdivision
 - We will see B-Splines later
 - B-Spline tweak: move the old vertices <u>halfway</u> towards the <u>average of their new neighbors</u>
 - And then repeat the process

Advantages

- Can handle arbitrary topology (connectivity) in control meshes
 - Removing restriction to grids
- Natural multiresolution, good for LOD

(LOD = levels of detail)

- Uniform representation for patches or meshes
- Numerical stability
- Code simplicity

Difficulties

- No equation defining the surface
- No direct parameterization

- Main methods (1978)
 - Doo-Sabin, for generalizing bi-quadratic patches
 - Catmull-Clark, for generalizing bi-cubic patches
- Several other methods exist
 - Loop, Butterfly, Kobbelt, etc

Face split		
	Triangular meshes	Quad. meshes
Approximating	Loop (C2)	Catmull-Clark (C^2)
Interpolating	Mod. Butterfly (C^1)	Kobbelt (C^1)

Vertex split		
Doo-Sabin, Midedge (C1)		
Biquartic (C2)		

- Doo-Sabin
 - For every face F, take each vertex of F, and create a new vertex as the average of:
 - the vertex
 - the face centroid
 - and the 2 centroids (midpoints) of the adjacent edges

Connect all new vertices

- Doo-Sabin
 - Example:

Catmull-Clark

- Tweak edges and faces:
 - New "edge points" e: average of
 - 1) midpoint of the original edge, and
 - 2) the centers of the two adjacent faces
 - New "face points" *f*: face's original center (average of the vertices in the face)
- Tweak each old vertex to: $\frac{\mathbf{Q}}{n} + \frac{2\mathbf{R}}{n} + \frac{\mathbf{S}(n-3)}{n}$
 - S = the (old) vertex position
 - Q = average of the new face points around old vertex
 - R = average of the midpoints of the edges adjacent to S
 - n = number of edges adjacent to S

Solid line: subdivided mesh

- Loop scheme
 - Split: Each edge is split in two

- Loop scheme
 - Split: Each edge is split in two
 - Tweak: new vertices are then positioned as a weighted average of adjacent vertices

Each new vertex from an edge split will have position based on a weighted average of its neighbors "Old vertices" are also repositioned based on a weighted average of its neighbors

Zorin & Shroeder SIGGRAPH'99 course notes

Loop scheme

- Split: Each edge is split in two
- Tweak: new vertices are then positioned as a weighted average of adjacent vertices
- Special schemes are needed for "extraordinary" vertices (the ones with k!=6), like in borders, or for "crease edges" (k=number of edges around vertex)

Zorin & Shroeder SIGGRAPH'99 course notes

Subdivision Surfaces: comparison

Butterfly

Every edge midpoint is adjacent to 2 triangles,
 and each of these will be adjacent to 2 others:

New vertex v will be a combination of the existing vertices, with weights such as:

$$a:\frac{1}{2}, b:\frac{1}{8}+2w, c:\frac{1}{16}-w$$

w is a tension parameter=>there are several variants of a butterfly subdivision

Cube refinement example

- More Examples
 - Loop

More Examples

Loop vs. Catmuli-Clark

