Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 7 Martie 2009

CLASA a X-a

Problema 1. Fie $f,g:\mathbb{R}\to\mathbb{R}$ două funcții cu proprietatea

$$f(g(x)) = g(f(x)) = -x,$$

pentru orice $x \in \mathbb{R}$.

- a) Să se arate că f și g sunt funcții impare.
- b) Dați un exemplu de funcții cu proprietatea din enunț.

Problema 2. Să se determine numerele complexe z_1, z_2, z_3 de acelaşi modul, cu proprietatea că $z_1 + z_2 + z_3 = z_1 z_2 z_3 = 1$.

Gazeta Matematică

Problema 3. Fie mulțimile $A = \{x \in \mathbb{R} \mid 3^x = x + 2\}$ şi $B = \{x \in \mathbb{R} \mid \log_3(x+2) + \log_2(3^x - x) = 3^x - 1\}$. Să se arate că:

- a) $A \subset B$;
- b) $B \not\subset \mathbb{Q}$ și $B \not\subset \mathbb{R} \setminus \mathbb{Q}$.

Problema 4. a) Fie z_1, z_2, z_3 numere complexe nenule de același modul astfel încât $z_1 + z_2 + z_3 = 0$. Să se arate că punctele $A_1(z_1), A_2(z_2), A_3(z_3)$ sunt vârfurile unui triunghi echilateral.

b) Fie $n \geq 3$ un număr natural și fie $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$ mulțimea rădăcinilor de ordin n ale unității. Să se determine numărul maxim de elemente ale unei mulțimi $A \subset U_n$ cu proprietatea că $z_1 + z_2 + z_3 \neq 0$ pentru orice $z_1, z_2, z_3 \in A$.

Timp de lucru 3 ore + 1/2 oră pentru întrebări lămuritoare asupra enunțurilor Fiecare problemă este punctată de la 0 la 7 puncte