

Unsteady Heat-Flux Measurements of Second-Mode Instability Waves

Michael A. Kegerise & Shann J. Rufer

NASA Langley Research Center

Introduction

- Atomic Layer Thermopile (ALTP) sensors
 - Developed by Tim Roediger (2010 Doctoral Thesis, University of Stuttgart, Germany)
 - Provides a time-resolved heat-flux measurement
 - Good spatial resolution: ~1 mm²
 - Frequency response on the order of 1 MHz
 - Linear static response over several orders of magnitude (from mW/cm² to kW/cm²)
- Well suited for measurements of unsteady heat transfer in a wide range of flow problems
 - Heat transfer in turbomachinery
 - Stagnation point heating
 - Shock-boundary layer interactions
 - Measurements in short duration supersonic and hypersonic facilities
 - Laminar-to-turbulent transition

Objectives

- Gain experience with the ALTP sensors for measurements in transitional hypersonic boundary layers
 - Previous work by Roediger et al (2009), Roediger (2010), and Heitmann et al (2010) demonstrated this application in short-duration hypersonic wind tunnels
 - Demonstrate application in our conventional hypersonic blow-down tunnels
- Develop the capability to dynamically calibrate the ALTP sensors
 - Measurements of the sensor frequency response function
 - Critical for cross-correlations and cross-spectral analysis with multiple sensors
- Measure second-mode instability waves on a flat plate model in a Mach 6 freestream flow

Atomic Layer Thermopile (ALTP) Sensors

- Sensor area of 1 mm²
- Nominal bandwidth of ~1 MHz
- Nominal static sensitivity of 48.0 μV/W/cm²
- Signal from ALTP sensor is amplified with a miniature amplifier placed inside the model
 - AC coupled signal has a fixed gain of 5000 and bandwidth from 17 Hz to 1 MHz
 - DC coupled signal has adjustable gain from 100 to 800 and a bandwidth of 100 kHz

Close-up view of sensor active area at 150X optical mag.

Experimental Setup for Dynamic Calibration of the ALTP Sensors

Frequency Response Measurement Details

- Amplitude modulate radiant heat-flux input with a sine wave
- Collect time-series data for a range of sine-wave frequencies
- Calculate the frequency-response function between the reference input measured by the photo diode and the output of the ALTP sensor amplifier

$$H(f) = rac{G_{xy}(f)}{G_{xx}(f)}$$
 $|H(f)|$ Magnitude $\angle H(f)$ Relative Phase

Acquisition and Processing Parameters

$$F_s=2~\mathrm{MHz}$$
 $N_{samp}=4 imes10^6$ $N_{fft}=50000$ $N_{blk}=160$ Hanning Window, 50% overlap $\Delta f=40~\mathrm{Hz}$

Sample Time Series Data for Dynamic Calibration

Red Curve: Reference Photodiode

Blue Curve: ALTP Sensor

Frequency Response of ALTP Sensors

Black Symbols: Pre-Test Measurements Blue Symbols: Post-Test Measurements

Experimental Setup

Facility

- Langley Aerothermodynamics Laboratory
 20-Inch Mach 6 Tunnel
- Conventional blow-down tunnel
- Test Gas: Air
- Re Range: 1.6 to 28.5x10⁶/m
- Total Temperature: 465 to 520 K

Flat plate model

- 71.12 cm long by 27.94 cm wide
- Sharp leading edge
- AOA of zero and -5 degrees
- ALTP sensors were mounted in a streamwise array along model centerline
- 16 sensor locations were available from
 x = 21 cm to 63 cm with 2.8 cm spacing
- For a given run, 4 ALTP sensors were installed

Heat Flux Power Spectral Densities

Heat Flux Power Spectral Densities at x = 26.54 cm for a range of freestream unit Reynolds numbers and an AOA of zero degrees

Streamwise evolution of heat flux power spectral density at a unit Reynolds number of 5 million/m and an AOA of zero degrees

Sample Heat Flux Time Series

- Heat flux time series at several streamwise positions acquired simultaneously during a run
- Time series were band-pass filtered about the most unstable second mode frequency (70 to 200 kHz)
- Unit Reynolds number of 8 million/m

Second-Mode Wave Parameters

Measured phase speed for the most unstable second-mode disturbances

Measured wavelength for the most unstable second-mode disturbances

Note: The boundary layer thickness, δ , was based on the laminar similarity solution with a Sutherland viscosity model

Run-to-Run and Sensor-to-Sensor Repeatability

Heat flux power spectral densities measured with different sensors at x = 29.34 cm and a unit Reynolds number of 5 million/m

Heat flux power spectral densities measured with the same sensor in two different runs at x = 40.51 cm and a unit Reynolds number of

Issues with static calibration? Accuracy of static sensitivity? How flush is sensor plug with model surface?

Summary

- Dynamic calibration via laser-based radiative heating
 - Frequency response of our ALTP sensors was 650 kHz
 - Sensor-to-sensor frequency response functions were nearly the same
 - Pre- and post-test measurements of frequency response functions were essentially the same
- Measurements of second-mode instability waves on a flat plate model in a Mach 6 freestream
 - Results are in-line with what we expect from theory and previous measurements
 - Most-amplified second-mode frequency varies inversely with boundary-layer thickness
 - Phase speed is roughly 90% of the freestream velocity
 - Instability wavelength is roughly twice the boundary-layer thickness
- ALTP sensor measurement repeatability
 - Run-to-run repeatability for a given sensor is acceptable
 - Sensor-to-sensor measurements at a given port location show some variability
 - How accurate is the static calibration?
 - How stable is the static calibration over time?
 - How flush is the sensor with the model surface?

Backup Slides

Heat-Flux Statistics

Mean Heat Flux

Broadband R.M.S. Heat Flux

