Lexical Analysis Programming Languages

Sujit Kumar Chakrabarti

IIITB

FSA and Lexical Analysis

- 1 Each token class has an FSA.
- **2** FSA acts as the recogniser of a token.
- 3 FSA simulated to accept or reject a string.

FSA and Lexical Analysis

- 1 Each token class has an FSA.
- **2** FSA acts as the recogniser of a token.
- 3 FSA simulated to accept or reject a string.

FSA simulation is central to lexical analysis.

Deterministic FSA (DFA)

- \blacksquare Finite set of states -(S)
- Alphabet (\sum)
- Transition function $(T: S \times \sum \rightarrow S)$
- Initial state (S_0)
- Final/accepting states $(F \subseteq S)$
- Acceptance of a string: When there exists a path corresponding to the input leading to an accepting state.

Simulating FSAs

Representating transition function using transition tables

Transition Table:

State	a	b
0		
1		
2		
3		

Simulating FSAs

Representating transition function using transition tables

Transition Table:

State	a	b
0	1	0
1	1	2
2	1	3
3	1	0

```
procedure SIMDFA(D, inp)
    s \leftarrow D.s_0
                                                                 \triangleright D.s_0: initial state
    while there is input left do
        c \leftarrow \text{NEXTCHAR}
        s \leftarrow D.\text{MOVE}(s, c) \triangleright Extract next state from transition table
        if s = \text{nil then}
            break
        end if
    end while
    if s \in D.F then
                                                                 \triangleright D.F: Final states
        return true
    else
        return false
    end if
end procedure
```

Example 1

Example 2

 ${\bf Input:}\ abab$

Example 2

Example 2

Example 2

Example 2

