•

Gate Problem

Sanskar Nanegaonkar EP18BTECH11016

IIT Hyderabad

February 11, 2020

Problem Statement

► EE-2016-Set-1

Question 30: Consider the following asymptotic Bode magnitude plot (ω is in rad/s).

Figure 1: Bode Plot

Which of the following transfer function is best represented by the above Bode magnitude plot?

above Bode magnitude plot?
(A)
$$\frac{2s}{(1+0.5s)(1+0.25s)^2}$$
 $(B) \frac{4(1+0.5s)}{s(1+0.25s)}$
(C) $\frac{2s}{(1+2s)(1+4s)}$ $(D) \frac{4s}{(1+2s)(1+4s)^2}$

Solution:

- ▶ By looking to the plot, we can say that since the initial slope is +20, there must be zero at the origin.
- Let the corner frequencies of the plot be ω_{01} and ω_{02} . They can be calculated as follows: slope $=\frac{M_2-M_1}{log\omega_2-log\omega_1}$

Therefore for
$$\omega_{02}$$
,
$$-40 = \frac{0-12}{log8 - log\omega_{02}}$$

$$log8 - log\omega_{02} = \frac{12}{40}$$

$$log\omega_{02} = log8 - \frac{12}{40}$$

$$\omega_{02} = 4$$

► Therefore for
$$\omega_{01}$$
,

$$\frac{0-12}{0.5-\log}\omega_0$$

$$20 = \frac{0 - 12}{\log 0.5 - \log} \omega_{01}$$

$$\log 0.5 - \log \omega_{01} = \frac{-12}{20}$$

$$\log \omega_{01} = \log 0.5 + \frac{12}{20}$$

$$\log \omega_{01} = \log 0.5 + \frac{1}{20}$$

$$\omega_{01} = 2$$

- ▶ So, the corner frequencies are ω_{01} =2 and ω_{02} = 4.
 - \triangleright At ω_{01} , the change in slope is +20dB, so their exists one pole at this frequency and at ω_{02} , the change in slope is -40dB, so their exists two pole at this frequency.
- The denominators have the form $(1 + \frac{3}{2})$

 $(1+\frac{s}{2})(1+\frac{s}{4})^2$

Therefore, the transfer function is
$$\frac{sc}{(1+\frac{s}{2})(1+\frac{s}{4})^2}$$

Therefore, the transfer function is $\frac{sc}{(1+\frac{s}{2})(1+\frac{s}{4})^2}$ where c is

some constant The answer is therefore option (A) $\frac{2s}{(1+0.5s)(1+0.25s)^2}$

Verification

- ▶ We will now plot the bode plot of the given transfer function.
- ► The bode plot is:

