Chapter 9. Comparing Two Population Means

9.1 Introduction

- In Chapter 8, we considered a single population distribution
 - For example, we estimated the mean of a single population distribution
- But it is important to make a comparison between two population distributions

• Two-sample problem:

Set of data observations from population A

$$x_1, x_2, x_3, \dots, x_n$$

Additional set of observations from population B

$$y_1, y_2, y_3, ..., y_m$$

- Sample of data observations x_i are independent observations from the unknown probability distribution of A
- Sample of data observations y_i are independent observations from the unknown probability distribution of B
- Sample sizes *n* and *m* need not be equal (but experiments are often designed to have equal sample sizes)

• Example:

Population 1: Height of students in Korea

Population 2: Height of students in Europe

- In general, interested in assessing evidence that there is a difference between the two probability distributions
- One approach is to compare the means of the two probability distributions

- If we find that $\mu_A \neq \mu_B$, then this indicates that the two probability distributions are different
- If we find evidence that $\mu_A = \mu_B$,
 - we may conclude that the two probability distributions may be identical
 - or we may further compare the variances of the two data sets

• Example:

Control group

- How do we compare μ_A and μ_B ?
 - → Since we want to see if the two are the same, we construct a confidence interval for

$$\mu_A - \mu_B$$

Two-sided confidence interval for $\mu_A - \mu_B$

- How do we compare μ_A and μ_B ?
 - \rightarrow Since we want to see if the two are the same, we construct a confidence interval for $\mu_A \mu_B$
- We are interested whether this confidence interval contains zero

- How do we compare μ_A and μ_B ?
 - \rightarrow Since we want to see if the two are the same, we construct a confidence interval for $\mu_A \mu_B$
- We are interested whether this confidence interval contains zero
- The confidence interval is centered at $\bar{x} \bar{y}$ (from our samples)

- How do we compare μ_A and μ_B ?
 - → Another approach is to perform a hypothesis test

$$H_0: \mu_A = \mu_B$$
 versus $H_A: \mu_A \neq \mu_B$

• Then, a small p-value will indicate that the null hypothesis is not plausible

Paired vs. Independent Samples

- Two data sets may be paired samples or independent samples
- Paired samples may alleviate variability from outside factors

Paired Samples

• Paired samples can be expressed as

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

- Samples sizes from the two populations must be equal
- Comparison between the two is then based upon the pairwise differences:

$$z_i = x_i - y_i \qquad 1 \le i \le n$$

• Example:

	Day 1	Day 2	Difference
patient 1 patient 2 patient 3 patient 4	standard drug x_1 new drug y_2 standard drug x_3 new drug y_4	new drug y_1 standard drug x_2 new drug y_3 standard drug x_4	$z_1 = x_1 - y_1$ $z_2 = x_2 - y_2$ $z_3 = x_3 - y_3$ $z_4 = x_4 - y_4$
patient 39 patient 40	: standard drug x ₃₉ new drug y ₄₀	: new drug y ₃₉ standard drug x ₄₀	$ \vdots z_{39} = x_{39} - y_{39} z_{40} = x_{40} - y_{40} $

• Example:

• Example:

What if the second set of patients happen to be a group more receptive to drugs?

9.2 Analysis of Paired Samples

- Analysis of paired samples $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ is performed by reducing the problem to a one-sample problem
 - → Calculate the differences

$$z_i = x_i - y_i$$
 $1 \le i \le n$

- Data observations z_i can be taken to be independent identically distributed observations from some probability distribution with mean μ
- Then, one-sample techniques from Chapter 8 can be applied to

$$z_1, \ldots, z_n$$

• Then, the parameter μ is the average difference between A and B

$$\mu = \mu_A - \mu_B$$

- Positive μ indicates that the mean population of A is larger than the mean population of B
- Negative μ indicates that the mean population of A is smaller than the mean population of B
- Often valuable to test:

$$H_0: \mu = 0$$
 versus $H_A: \mu \neq 0$

→ If the null hypothesis is plausible, then there is no sufficient evidence that the means of A and B are different

• Suppose each observation obtained from population A is thought of as below

$$x_i = \mu_A + \gamma_i + \epsilon_i^A$$

- μ_A : effect of population A
- γ_i : effect of subject i
- ϵ_i^A : random error (with expectation = 0)

 Suppose each observation obtained from population A is thought of as below

$$x_i = \mu_A + \gamma_i + \epsilon_i^A$$

• Similarly, suppose each observation obtained from population B is thought of as below

$$y_i = \mu_B + \gamma_i + \epsilon_i^B$$

- μ_B : effect of population B
- γ_i : effect of subject i
- ϵ_i^B : random error (with expectation = 0)

$$x_i = \mu_A + \gamma_i + \epsilon_i^A$$

$$y_i = \mu_B + \gamma_i + \epsilon_i^B$$

• Then, the difference becomes

$$z_i = \mu_A - \mu_B + \epsilon_i^{AB}$$

where the error term is

$$\epsilon_i^{AB} = \epsilon_i^A - \epsilon_i^B$$

• Since the error term is an observation from a distribution with a zero expectation, the differences z_i are consequently observations from a distribution with expectation

$$\mu = \mu_A - \mu_B$$

which does not depend on the subject effect γ_i

• *Example*: (Heart rate reduction from new drug)

$$H_0: \mu = 0$$
 versus $H_A: \mu \neq 0$

Patient	Standard drug	New drug	$z_i = x_i - y_i$	Patient	Standard drug	New drug	$z_i = x_i - y_i$
1	28.5	34.8	-6.3	21	27.0	25.3	1.7
2	26.6	37.3	-10.7	22	33.1	34.5	-1.4
3	28.6	31.3	-2.7	23	28.7	30.9	-2.2
4	22.1	24.4	-2.3	24	33.7	31.9	1.8
5	32.4	39.5	-7.1	25	33.7	36.9	-3.2
6	33.2	34.0	-0.8	26	34.3	27.8	6.5
7	32.9	33.4	-0.5	27	32.6	35.7	-3.1
8	27.9	27.4	0.5	28	34.5	38.4	-3.9
9	26.8	35.4	-8.6	29	32.9	36.7	-3.8
10	30.7	35.7	-5.0	30	29.3	36.3	-7.0
11	39.6	40.4	-0.8	31	35.2	38.1	-2.9
12	34.9	41.6	-6.7	32	29.8	32.1	-2.3
13	31.1	30.8	0.3	33	26.1	29.1	-3.0
14	21.6	30.5	-8.9	34	25.6	33.5	-7.9
15	40.2	40.7	-0.5	35	27.6	28.7	-1.1
16	38.9	39.9	-1.0	36	25.1	31.4	-6.3
17	31.6	30.2	1.4	37	23.7	22.4	1.3
18	36.0	34.5	1.5	38	36.3	43.7	-7.4
19	25.4	31.2	-5.8	39	33.4	30.8	2.6
20	35.6	35.5	0.1	40	40.1	40.8	-0.7

Heart rate reductions data set (% reduction in heart rate)

• Example: (Heart rate reduction from new drug)

From the collected data: $\bar{z} = -2.655$, $s_z = 3.730$, n = 40

Then, with $H_0: \mu = 0$

$$t = \frac{\sqrt{n}(\bar{z} - \mu)}{s} = \frac{\sqrt{40} \times (-2.655)}{3.730} = -4.50$$

and

$$p$$
-value = $2 \times P(X > 4.50) \simeq 0.0001$

where the random variable X has a t-distribution with 39 degrees of freedom

This analysis reveals that it is *not* plausible that $\mu = 0$, and so the experimenter can conclude that there is evidence that the new drug has a different effect from the standard drug.

• Example: (Heart rate reduction from new drug)

From the critical point $t_{0.005,39} = 2.7079$, a 99% two-sided confidence interval for the difference between the average effects of the drugs is

$$\mu = \mu_A - \mu_B \in \left(\bar{z} - \frac{t_{0.005,39}s}{\sqrt{40}}, \bar{z} + \frac{t_{0.005,39}s}{\sqrt{40}}\right)$$

$$= \left(-2.655 - \frac{2.7079 \times 3.730}{\sqrt{40}}, -2.655 + \frac{2.7079 \times 3.730}{\sqrt{40}}\right)$$

$$= (-4.252, -1.058)$$

Consequently, based upon this data set the experimenter can conclude that the new drug provides a reduction in a patient's heart rate of somewhere between 1% and 4.25% more on average than the standard drug.

• *Example*: (Radar detection systems)

$$H_0: \mu \geq 0$$
 versus $H_A: \mu < 0$

Target	Standard radar system	New radar system	
	x_i	Уi	$z_i = x_i - y_i$
1	48.40	51.14	-2.74
2	47.73	46.48	1.25
3	51.30	50.90	0.40
4	50.49	49.82	0.67
5	47.06	47.99	-0.93
6	53.02	53.20	-0.18
7	48.96	46.76	2.20
8	52.03	54.44	-2.41
9	51.09	49.85	1.24
10	47.35	47.45	-0.10
11	50.15	50.66	-0.51
12	46.59	47.92	-1.33
13	52.03	52.37	-0.34
14	51.96	52.90	-0.94
15	49.15	50.67	-1.52
16	48.12	49.50	-1.38
17	51.97	51.29	0.68
18	53.24	51.60	1.64
19	55.87	54.48	1.39
20	45.60	45.62	-0.02
21	51.80	52.24	-0.44
22	47.64	47.33	0.31
23	49.90	51.13	-1.23
24	55.89	57.86	-1.97

Radar detection systems data set (distance of target in miles when detected)

• Example: (Radar detection systems)

From the collected data: $\bar{z} = -0.261$, $s_z = 1.305$, n = 24

Then, with $H_0: \mu \geq 0$

$$t = \frac{\sqrt{n}(\bar{z} - \mu)}{s} = \frac{\sqrt{24} \times (-0.261)}{1.305} = -0.980$$

and

$$P(X \le -0.980) = 0.170$$

where the random variable X has a t-distribution with 23 degrees of freedom

Large p-value \rightarrow This data set does not provide sufficient evidence to establish that the new radar system is better than the standard system

9.3 Analysis of Independent Samples

- Independent (unpaired) samples
 - n observations x_i from population A
 - m observations y_i from population B
- Goal: Inference on the difference between population means, $\mu_A \mu_B$
- Point estimate: $\bar{x} \bar{y}$

	Sample size	Sample mean	Sample standard deviation
Population A Population B	n m	$ar{x} \\ ar{y}$	s_x s_y

- Point estimate: $\bar{x} \bar{y}$
- For confidence intervals, we need the point estimate and also the standard error
- What is the standard error of $\bar{x} \bar{y}$?

- Point estimate: $\bar{x} \bar{y}$
- What about the standard error of this estimate?
 - Since $Var(\bar{x}) = \sigma_A^2/n$ and $Var(\bar{y}) = \sigma_B^2/m$, where σ_A^2 and σ_B^2 are the two population variances, this point estimate has a standard error

s.e.
$$(\bar{x} - \bar{y}) = \sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}$$

• But this includes the population variances of A and B

s.e.
$$(\bar{x} - \bar{y}) = \sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}$$

- What can we do?
 - Use the sample variances of A and B:

s.e.
$$(\bar{x} - \bar{y}) = \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}$$

This is the general approach for independent samples

Independent Samples: t-Intervals

• *Recall*: The basic structure of *t*-intervals

$$\mu \in (\hat{\mu} - \text{critical point} \times \text{s.e.}(\hat{\mu}), \hat{\mu} + \text{critical point} \times \text{s.e.}(\hat{\mu}))$$

• For example:

Independent Samples: t-Intervals

```
\mu \in (\hat{\mu} - \text{critical point} \times \text{s.e.}(\hat{\mu}), \hat{\mu} + \text{critical point} \times \text{s.e.}(\hat{\mu}))
where \mu = \mu_A - \mu_B
```

- So for independent samples, we need to find the following values:
 - \blacksquare $\hat{\mu}$
 - s.e. $(\hat{\mu})$
 - critical point

$$\mu \in (\hat{\mu} - \text{critical point} \times \text{s.e.}(\hat{\mu}), \hat{\mu} + \text{critical point} \times \text{s.e.}(\hat{\mu}))$$

where
$$\mu = \mu_A - \mu_B$$

- Since our goal is the difference $\mu_A \mu_B$
 - $\hat{\mu} \rightarrow \bar{x} \bar{y}$

• s. e.
$$(\hat{\mu}) \to \text{s. e.} (\bar{x} - \bar{y}) = \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}$$

critical point: ?

- It turns out that we can still use the t-distribution
- But the degree of freedom is calculated as:

$$\nu = \frac{\left(\frac{s_x^2}{n} + \frac{s_y^2}{m}\right)^2}{\frac{s_x^4}{n^2(n-1)} + \frac{s_y^4}{m^2(m-1)}}$$

Round down to the nearest integer

$$\mu \in (\hat{\mu} - \text{critical point} \times \text{s.e.}(\hat{\mu}), \hat{\mu} + \text{critical point} \times \text{s.e.}(\hat{\mu}))$$

where
$$\mu = \mu_A - \mu_B$$

- Since our goal is the difference $\mu_A \mu_B$
 - $\hat{\mu} \rightarrow \bar{x} \bar{y}$

• s. e.
$$(\hat{\mu}) \to \text{s. e.} (\bar{x} - \bar{y}) = \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}$$

• critical point: $t_{\alpha/2,v}$

 $\mu \in (\hat{\mu} - \text{critical point} \times \text{s.e.}(\hat{\mu}), \hat{\mu} + \text{critical point} \times \text{s.e.}(\hat{\mu}))$

A two-sided $1 - \alpha$ level confidence interval for $\mu_A - \mu_B$ is therefore

$$\mu_A - \mu_B \in \left(\bar{x} - \bar{y} - t_{\alpha/2,\nu} \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}, \bar{x} - \bar{y} + t_{\alpha/2,\nu} \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}} \right)$$

Critical point \times s.e. $(\hat{\mu}_A - \hat{\mu}_B)$

• Example: Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

What is the 99% two-sided confidence interval?

• Example: Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

What is the 99% two-sided confidence interval?

1) First, calculate the degrees of freedom:

$$\nu = \frac{\left(\frac{3.438^2}{24} + \frac{3.305^2}{34}\right)^2}{\frac{3.438^4}{24^2 \times 23} + \frac{3.305^4}{34^2 \times 33}} = 48.43 \implies 48$$

• Example: Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

What is the 99% two-sided confidence interval?

1) First, calculate the degrees of freedom:

$$\nu = \frac{\left(\frac{3.438^2}{24} + \frac{3.305^2}{34}\right)^2}{\frac{3.438^4}{24^2 \times 23} + \frac{3.305^4}{34^2 \times 33}} = 48.43 \implies 48$$

2) Second, find the critical point: $t_{0.005,48} = 2.6822$

• Example: Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

What is the 99% two-sided confidence interval?

3) Then, the interval becomes:

$$\mu_A - \mu_B \in \left(9.005 - 11.864 - 2.6822\sqrt{\frac{3.438^2}{24} + \frac{3.305^2}{34}}, \right.$$

$$9.005 - 11.864 + 2.6822\sqrt{\frac{3.438^2}{24} + \frac{3.305^2}{34}}\right)$$

$$= (-5.28, -0.44)$$

• Example: Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

As we can see from the two-sided confidence interval, zero is not included in the interval.

• One-sided confidence intervals are also similar:

$$\mu_A - \mu_B \in \left(-\infty, \bar{x} - \bar{y} + t_{\alpha,\nu} \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}\right)$$

and

$$\mu_A - \mu_B \in \left(\bar{x} - \bar{y} - t_{\alpha,\nu} \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}, \infty\right)$$

• *Recall*: For one sample data

$$\mu \in \left(-\infty, \bar{x} + \frac{t_{\alpha, n-1}s}{\sqrt{n}}\right)$$
 $\mu \in \left(\bar{x} - \frac{t_{\alpha, n-1}s}{\sqrt{n}}, \infty\right)$

• Consider the **two-sided hypothesis testing** problem:

$$H_0: \mu_A - \mu_B = \delta$$
 versus $H_A: \mu_A - \mu_B \neq \delta$

• Now the *t*-statistic can be written as

$$t = \frac{\bar{x} - \bar{y} - \delta}{\sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}}$$

• *Recall*: For one-sample data

$$t = \frac{\sqrt{n}(\bar{x} - \mu_0)}{s} = \frac{(\bar{x} - \mu_0)}{s/\sqrt{n}} = \frac{(\bar{x} - \mu_0)}{s. e. (\hat{\mu})}$$

• Consider the **two-sided hypothesis testing** problem:

$$H_0: \mu_A - \mu_B = \delta$$
 versus $H_A: \mu_A - \mu_B \neq \delta$

• When testing if A and B have the same population mean, we set $\delta = 0$

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}}$$

For the two-sided hypothesis testing problem

$$H_0: \mu_A - \mu_B = \delta$$
 versus $H_A: \mu_A - \mu_B \neq \delta$

for some fixed value δ of interest (usually $\delta = 0$), the appropriate t-statistic is

$$t = \frac{\bar{x} - \bar{y} - \delta}{\sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}}$$

The two-sided p-value is calculated as

$$p$$
-value = $2 \times P(X > |t|)$

where the random variable X has a t-distribution with ν degrees of freedom, and a size α hypothesis test accepts the null hypothesis if

$$|t| \leq t_{\alpha/2,\nu}$$

and rejects the null hypothesis when

$$|t| > t_{\alpha/2,\nu}$$

• Example (continued): Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

How do we do the following hypothesis test?

$$H_0: \mu_A = \mu_B$$
 versus $H_A: \mu_A \neq \mu_B$

(In other words, the above is the same as saying that $\delta = 0$ in the below test)

$$H_0: \mu_A - \mu_B = \delta$$
 versus $H_A: \mu_A - \mu_B \neq \delta$

• Example (continued): Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

Hypothesis test:

$$H_0: \mu_A = \mu_B$$
 versus $H_A: \mu_A \neq \mu_B$

The *t*-statistic is

$$t = \frac{\bar{x} - \bar{y} - \delta}{\sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}} = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}} = \frac{9.005 - 11.864}{\sqrt{\frac{3.438^2}{24} + \frac{3.305^2}{34}}} = -3.169$$

• *Example (continued)*: For the hypothesis test:

$$H_0: \mu_A = \mu_B$$
 versus $H_A: \mu_A \neq \mu_B$

The two-sided p-value is therefore

$$p$$
-value = $2 \times P(X > 3.169)$

where the random variable X has a t-distribution with degrees of freedom

$$v = \frac{\left(\frac{3.438^2}{24} + \frac{3.305^2}{34}\right)^2}{\frac{3.438^4}{24^2 \times 23} + \frac{3.305^4}{34^2 \times 33}} = 48.43$$

Using the integer value $\nu = 48$ gives

$$p$$
-value $\simeq 2 \times 0.00135 = 0.0027$

Null hypothesis is rejected and conclude that $\mu_A \neq \mu_B$

• *Example (continued)*: For the hypothesis test:

$$H_0: \mu_A = \mu_B$$
 versus $H_A: \mu_A \neq \mu_B$

• Example (continued): Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

Recall: The two-sided confidence interval did not include zero.

This is consistent with the hypothesis test rejecting the null hypothesis that the two means are the same.

A one-sided hypothesis testing problem

$$H_0: \mu_A - \mu_B \leq \delta$$
 versus $H_A: \mu_A - \mu_B > \delta$

has a p-value

$$p$$
-value = $P(X > t)$

and a size α hypothesis test accepts the null hypothesis if

$$t \leq t_{\alpha,\nu}$$

and rejects the null hypothesis if

$$t > t_{\alpha,\nu}$$

A size α test for the one-sided hypotheses

$$H_0: \mu \le \mu_0 \quad \text{versus} \quad H_A: \mu > \mu_0$$

rejects the null hypothesis when

$$t > t_{\alpha,n-1}$$

and accepts the null hypothesis when

$$t \leq t_{\alpha,n-1}$$

Similarly, the one-sided hypothesis testing problem

$$H_0: \mu_A - \mu_B \ge \delta$$
 versus $H_A: \mu_A - \mu_B < \delta$

has a *p*-value

$$p$$
-value = $P(X < t)$

and a size α hypothesis test accepts the null hypothesis if

$$t \geq -t_{\alpha,\nu}$$

and rejects the null hypothesis if

$$t < -t_{\alpha,\nu}$$

A size α test for the one-sided hypotheses

$$H_0: \mu \ge \mu_0$$
 versus $H_A: \mu < \mu_0$ rejects the null hypothesis when

$$t < -t_{\alpha,n-1}$$

and accepts the null hypothesis when

$$t \geq -t_{\alpha,n-1}$$

	Hypothesis Testing			Confidence Intervals		
	$H_0: \mu_A - \mu_B = \delta$ versus $H_A: \mu_A - \mu_B \neq \delta$ Significance Levels			$\left(\bar{x} - \bar{y} - t_{\alpha/2, \nu} \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}, \bar{x} - \bar{y} + t_{\alpha/2, \nu} \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}\right)$		
				Confidence Levels		
p-Value	$\alpha = 0.10$	$\alpha = 0.05$	$\alpha = 0.01$	$1-\alpha=0.90$	$1-\alpha=0.95$	$1-\alpha=0.99$
≥ 0.10 $0.05-0.10$ $0.01-0.05$ < 0.01	accept H_0 reject H_0 reject H_0 reject H_0	accept H_0 accept H_0 reject H_0 reject H_0	accept H_0 accept H_0 accept H_0 reject H_0	contains δ does not contain δ does not contain δ does not contain δ	contains δ contains δ does not contain δ does not contain δ	contains δ contains δ contains δ does not contain δ

The procedures with independent samples discussed so far are known as
 two-sample t-tests without a pooled variance estimate

• What if we want to assume that the two variance are the same?

$$\sigma_A^2 = \sigma_B^2$$

• If we assume that the variances are equal to a common value σ^2 , then

$$\sigma_A^2 = \sigma_B^2 = \sigma^2$$

and we can estimate σ^2 with

$$\hat{\sigma}^2 = s_p^2 = \frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2}$$

pooled variance estimate

• If we assume that the variances are equal to a common value σ^2 , then

$$\sigma_A^2 = \sigma_B^2 = \sigma^2$$

and we can estimate σ^2 with

$$\hat{\sigma}^2 = s_p^2 = \frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2}$$

Also, the standard error

s.e.
$$(\bar{x} - \bar{y}) = \sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}} = \sigma\sqrt{\frac{1}{n} + \frac{1}{m}}$$

can be estimated as

s.e.
$$(\bar{x} - \bar{y}) = s_p \sqrt{\frac{1}{n} + \frac{1}{m}}$$

• When a pooled variance estimate is employed, p-values and critical points are calculated from a t-distribution with n + m - 2 degrees of freedom

- When a pooled variance estimate is employed, p-values and critical points are calculated from a t-distribution with n + m 2 degrees of freedom
- Therefore, a two-sided 1α level confidence interval for $\mu_A \mu_B$ is

$$\mu_A - \mu_B \in \left(\bar{x} - \bar{y} - t_{\alpha/2, n+m-2} \, s_p \sqrt{\frac{1}{n} + \frac{1}{m}}, \bar{x} - \bar{y} + t_{\alpha/2, n+m-2} \, s_p \sqrt{\frac{1}{n} + \frac{1}{m}}\right)$$

$$\mu \in (\hat{\mu} - \text{critical point} \times \text{s.e.}(\hat{\mu}), \ \hat{\mu} + \text{critical point} \times \text{s.e.}(\hat{\mu}))$$

• Example: Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

These are the same data from the previous example

Example: Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

These are the same data from the previous example

But if we assume the population variances to be the same, the common standard deviation becomes:

$$s_p = \sqrt{\frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2}} = \sqrt{\frac{(23 \times 3.438^2) + (33 \times 3.305^2)}{24 + 34 - 2}} = 3.360$$

• Example: Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_v = 3.305$

$$s_p = 3.360$$

How do we do the following hypothesis test?

$$H_0: \mu_A = \mu_B$$
 versus $H_A: \mu_A \neq \mu_B$

• Example: Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

 $s_p = 3.360$

How do we do the following hypothesis test?

$$H_0: \mu_A = \mu_B$$
 versus $H_A: \mu_A \neq \mu_B$

The *t*-statistic is

$$t = \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}} = \frac{9.005 - 11.864}{3.360 \sqrt{\frac{1}{24} + \frac{1}{34}}} = -3.192$$

• Example: Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

 $s_p = 3.360$

How do we do the following hypothesis test?

$$H_0: \mu_A = \mu_B$$
 versus $H_A: \mu_A \neq \mu_B$

The *t*-statistic is

$$t = \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}} = \frac{9.005 - 11.864}{3.360 \sqrt{\frac{1}{24} + \frac{1}{34}}} = -3.192$$

and the *p*-value is p-value = $2 \times P(X > 3.192) \simeq 2 \times 0.00115 = 0.0023$ where the random variable X has a t-distribution with degrees of freedom n + m - 2 = 56,

• Example: Hypothesis test

$$H_0: \mu_A = \mu_B$$
 versus $H_A: \mu_A \neq \mu_B$

• Example: Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_v = 3.305$

$$s_p = 3.360$$

What about a 99% two-sided confidence interval?

• Example: Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

$$s_p = 3.360$$

What about a 99% two-sided confidence interval?

First, find the critical point: $t_{0.005,56} = 2.6665$

Independent Samples: Pooled Variance

• Example: Suppose we have two sets of data

A:
$$n = 24$$
, $\bar{x} = 9.005$, $s_x = 3.438$

B:
$$m = 34$$
, $\bar{y} = 11.864$, $s_y = 3.305$

$$s_p = 3.360$$

What about a 99% two-sided confidence interval?

First, find the critical point: $t_{0.005,56} = 2.6665$

Then, the two-sided interval becomes:

$$\mu_A - \mu_B \in \left(9.005 - 11.864 - 2.6665 \times 3.360 \times \sqrt{\frac{1}{24} + \frac{1}{34}}, \right.$$

$$9.005 - 11.864 + 2.6665 \times 3.360 \times \sqrt{\frac{1}{24} + \frac{1}{34}}\right)$$

$$= (-5.25, -0.47)$$

Independent Samples: Pooled Variance

A two-sided p-value is calculated as $2 \times P(X > |t|)$, where the random variable X has a t-distribution with n + m - 2 degrees of freedom, and one-sided p-values are P(X > t) and P(X < t). A size α two-sided hypothesis test accepts the null hypothesis if

$$|t| \leq t_{\alpha/2,n+m-2}$$

and rejects the null hypothesis when

$$|t| > t_{\alpha/2, n+m-2}$$

and size α one-sided hypothesis tests have rejection regions $t > t_{\alpha,n+m-2}$ or $t < -t_{\alpha,n+m-2}$.

These procedures are known as two-sample *t*-tests *with* a pooled variance estimate.

Independent Samples

- Pooled or un-pooled?
 - General procedure is without a pooled variance estimate (this is the safer choice)
 - However, the two population variances are known to be equal, then the pooled variance provides a powerful analysis (e.g., shorter confidence interval)
 - If the results from with and without pooled variance estimates are different, that is likely because the two sample standard deviations are different

Two Sample z-Procedures

- If we assume that the population variances σ_A^2 and σ_B^2 are known, then we can use the standard normal distribution instead of a *t*-distribution
- Similar to the one-sample case, two-sample *t*-tests with large sample sizes are essentially equivalent to the two-sample *z*-tests
 - Thus, two-sample *t*-tests can be considered as small-sample tests

Two Sample z-Procedures

A two-sided $1 - \alpha$ level confidence interval for the difference in population means $\mu_A - \mu_B$ is

$$\mu_A - \mu_B \in \left(\bar{x} - \bar{y} - z_{\alpha/2}\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}, \bar{x} - \bar{y} + z_{\alpha/2}\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}\right)$$

The appropriate z-statistic for the null hypothesis $H_0: \mu_A - \mu_B = \delta$ is

$$z = \frac{\bar{x} - \bar{y} - \delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}}$$

A two-sided *p*-value is calculated as $2 \times \Phi(-|z|)$, and one-sided *p*-values are $1 - \Phi(z)$ and $\Phi(z)$. A size α two-sided hypothesis test accepts the null hypothesis if

$$|z| \leq z_{\alpha/2}$$

and rejects the null hypothesis when

$$|z| > z_{\alpha/2}$$

and size α one-sided hypothesis tests have rejection regions $z > z_{\alpha}$ or $z < -z_{\alpha}$.

Summary of Chapter 9

- Comparison of two population means
 - Paired and unpaired samples
 - Mainly use *t*-distributions
- Paired samples
 - Take the difference and create a one-sample dataset
 - Then, perform analyses using methods in Chapter 8
- Unpaired samples
 - Unpooled variance: assume that the two datasets have different variances
 - Pooled variance: assume that the two datasets have the same variance
- Use z-procedures if population variances are known

Independent Samples

More examples ...

- Data from standard and new treatments are shown below
- Same sample size but unpaired data

Standard treatment x _i	New treatment y _i
33	65
54	61
62	37
46	47
52	45
42	53
34	53
51	69
26	49
68	42
47	40
40	67
46	46
51	43
60	51

• If we simply analyze each data set independently, it is difficult to know whether the two are different with statistical significance

Standard Treatment

Sample size = 15 Sample mean = 47.47 Sample standard deviation = 11.40

New Treatment

Sample size = 15 Sample mean = 51.20 Sample standard deviation = 10.09

- First, let's perform the general (unpooled) procedure
- We want evidence that the new treatment is better than the standard treatment, thus we set the hypothesis test as:

$$H_0: \mu_A \geq \mu_B$$
 versus $H_A: \mu_A < \mu_B$

- First, let's perform the general (unpooled) procedure
- We want evidence that the new treatment is better than the standard treatment, thus we set the hypothesis test as:

$$H_0: \mu_A \ge \mu_B$$
 versus $H_A: \mu_A < \mu_B$

• Degrees of freedom: $\left(\frac{11}{2}\right)$

$$v = \frac{\left(\frac{11.40^2}{15} + \frac{10.09^2}{15}\right)^2}{\frac{11.40^4}{15^2 \times 14} + \frac{10.09^4}{15^2 \times 14}} = 27.59$$

which can be rounded down to v = 27

- First, let's perform the general (unpooled) procedure
- We want evidence that the new treatment is better than the standard treatment, thus we set the hypothesis test as:

$$H_0: \mu_A \geq \mu_B$$
 versus $H_A: \mu_A < \mu_B$

Degrees of freedom: $v = \frac{\left(\frac{11.40^2}{15} + \frac{10.09^2}{15}\right)^2}{\frac{11.40^4}{15^2 \times 14} + \frac{10.09^4}{15^2 \times 14}} = 27.59$

which can be rounded down to v = 27

• t-statistic: $t = \frac{47.47 - 51.20}{\sqrt{\frac{11.40^2}{15} + \frac{10.09^2}{15}}} = -0.949$

• Finally, the *p*-value is:

$$p$$
-value = $P(X < -0.949) = 0.175$

where the random variable X has a t-distribution with $\nu = 27$ degrees of freedom

→ Cannot reject the null hypothesis

• For a 99% confidence interval, we first find the critical point

$$t_{0.01,27} = 2.473$$

Then the interval becomes

$$\mu_A - \mu_B \in \left(-\infty, 47.47 - 51.20 + 2.473\sqrt{\frac{11.40^2}{15} + \frac{10.09^2}{15}}\right)$$

$$= (-\infty, 5.99)$$

→ The standard treatment may be 6 points better than the new treatment on average

• Suppose we decide to perform a pooled variance analysis

(assume
$$s_x = 11.40$$
 and $s_v = 10.09$ are similar)

- Suppose we decide to perform a pooled variance analysis
- For the hypothesis test:

$$H_0: \mu_A \ge \mu_B$$
 versus $H_A: \mu_A < \mu_B$

Pooled variance is:

$$s_p^2 = \frac{(14 \times 11.40^2) + (14 \times 10.09^2)}{28} = 115.88$$

so that the pooled standard deviation is $s_p = \sqrt{115.88} = 10.76$

- Suppose we decide to perform a pooled variance analysis
- For the hypothesis test:

$$H_0: \mu_A \geq \mu_B$$
 versus $H_A: \mu_A < \mu_B$

Pooled variance is:

$$s_p^2 = \frac{(14 \times 11.40^2) + (14 \times 10.09^2)}{28} = 115.88$$

so that the pooled standard deviation is $s_p = \sqrt{115.88} = 10.76$

• *t*-statistic becomes:

$$t = \frac{47.47 - 51.20}{10.76\sqrt{\frac{1}{15} + \frac{1}{15}}} = -0.946$$

• Then the *p*-value for the pooled variance procedure is:

$$p$$
-value = $P(X < -0.946) = 0.175$

where the random variable X has a t-distribution with v = 28 degrees of freedom

- Both the unpooled and pooled analyses results in similar *p*-values
- One-sided 99% confidence interval also turns out to be very similar

Excel Examples

• Next, let's show how to solve similar questions in Excel