1 Билет

Неопределённый интеграл. Свойства. Замена переменной интегрирования.

Определение.

Неопределёнынй интеграл это совокупность всех первообразных функций f на множестве x.

Первообразной для функции f называется такая функция F, производная которой равна данной функции.

Свойства.

- $d(\int f(x)dx) = f(x)dx$
- $(\int f(x)dx)' = f(x)$
- $\int dF(x) = F(x) + C$
- $\int af(x)dx = a \int f(x)dx$
- $\begin{array}{l} \bullet \quad \int (f_1(x)+f_2(x))dx = \int f_1(x)dx + \int f_2(x)dx \\ \bullet \quad \int (\alpha_1f_1(x)+\alpha_2f_2(x))dx = \alpha_1\int f_1(x)dx + \alpha_2\int f_2(x)dx \end{array}$

$$1. \int 0 \cdot dx = C$$

$$2. \int dx = \int 1 \cdot dx = x + C$$

2.
$$\int dx = \int 1 \cdot dx = x + C$$
3.
$$\int x^n \cdot dx = \frac{x^{n+1}}{n+1} + C,$$
10.
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$$
10.
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$$

$$n \neq -1, x > 0$$

4.
$$\int \frac{dx}{x} = \ln|x| + C$$

$$6. \int e^x dx = e^x + C$$

$$7 \int \sin r dr = -\cos r + 0$$

8.
$$\int \cos x dx = \sin x + C$$

9.
$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C$$

$$10. \int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$$

11.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, |x| < |a|$$

$$n \neq -1, x > 0$$
 11. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$ 4. $\int \frac{dx}{x} = \ln|x| + C$ 12. $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$ 5. $\int a^x dx = \frac{a^x}{\ln a} + C$ 13. «Высокий» логарифм:

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C, |x| \neq a$$

7.
$$\int \sin x dx = -\cos x + C$$
 14. «Длинный» логарифм:

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln\left|x + \sqrt{x^2 \pm a^2}\right| + C$$

1. Замена переменной

Доказательство:

Пуст функция x=arphi(t) — определена и дифференцируема на некотором промежутке T , а Xмножество значений этой функции, на котором определена функция f(x). Тогда если функция f(x) имеет первообразную на множестве X, то на множестве T справедлива формула

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt$$

Надём дифференциалы обеих частей неравенства:

$$d(\int f(x)dx) = f(x)dx = f(\varphi(t))d(\varphi(t)) = f(\varphi(t))\varphi'(t)dt$$

 $d(\int f(\varphi(t))\varphi'(t)dt) = f(\varphi(t))\varphi'(t)dt$

Пример

$$\int 2xe^{x^2}dx = egin{bmatrix} t = x^2 \ dt = 2xdx \end{bmatrix} = \int e^tdt = e^t + c = e^{x^2} + c$$

$$\int \cos x \sin^3 x dx = egin{bmatrix} t = \sin x \ dt = \cos x dx \end{bmatrix} t^3 dt = rac{t^4}{4} + c = rac{\sin^4 x}{4} + c$$

2 Билет

Интегрирования по частям и замена переменной интегрирования в неопределённом интеграле. Примеры.

1. Интегрирование по частям

$$\int u dv = uv - \int v du$$

Доказательство:

Известно, что
$$\int (uv)'dx = \int (u'v+v'u)dx = \int vdu + \int udv.$$

Но так же справделиво, что

$$\int (uv)'dx = uv$$

Тогда:

$$uv = \int vdu + \int udv$$

$$\int u dv = uv - \int v du$$

Пример:

$$\int xe^x dx = egin{cases} u = x & \xrightarrow{\Pi ext{ iny DOM3B}} du = 1*dx \ dv = e^x dx & \xrightarrow{\Pi ext{ iny DOM5D}} v = e^x \end{bmatrix} = xe^x - \int e^x dx = xe^x - e^x + c$$

Проверка:

$$(xe^x - e^x + c)' = xe^x$$

2. Замена переменной Доказательство:

Пуст функция $x=\varphi(t)-$ определена и дифференцируема на некотором промежутке T, а X- множество значений этой функции, на котором определена функция f(x). Тогда если функция f(x) имеет первообразную на множестве X, то на множестве T справедлива формула

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt$$

Надём дифференциалы обеих частей неравенства:

$$d(\int f(x)dx) = f(x)dx = f(\varphi(t))d(\varphi(t)) = f(\varphi(t))\varphi'(t)dt$$

$$d(\int f(\varphi(t))\varphi'(t)dt) = f(\varphi(t))\varphi'(t)dt$$

Пример

$$\int 2xe^{x^2}dx = egin{bmatrix} t = x^2 \ dt = 2xdx \end{bmatrix} = \int e^tdt = e^t + c = e^{x^2} + c$$

$$\int \cos x \sin^3 x dx = egin{bmatrix} t = \sin x \ dt = \cos x dx \end{bmatrix} t^3 dt = rac{t^4}{4} + c = rac{\sin^4 x}{4} + c$$

3 Билет

Интегрирование рациональный функция. Примеры.

• Рациональные функции

Пример метода неопределённых коэффициентов:

Зам.степень знаменателя должна быть больше степени числителя, если не так, то метод выделения целой части

$$\frac{2x^2 + 4x - 8}{x^3 - 4x} = \frac{2x^2 + 4x - 8}{x(x^2 - 4)} = \frac{2x^2 + 4x - 8}{x(x - 2)(x + 2)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{x + 2} = \frac{Ax^2 - 4A + Bx^2 + 2Bx + Cx^2 - 2Cx}{x^3 - 4}$$

$$\begin{cases} A + B + C = 2 \\ 2B - 2C = 4 \\ -4A = -8 \end{cases} \Rightarrow \begin{cases} A = 2 \\ B = 1 \\ C = -1 \end{cases}$$

https://www.youtube.com/watch?v=MJPSck6t4Y4

4 Билет

Интегрирование тригонометрических функций. Примеры.

- Тригонометрия:
 - $\circ \int \sin^m x \cdot \cos^n x dx; \ m,n \in Z$, если m,n < 0, то $t= \operatorname{tg} x,$ если m,n > 0, то вносим под дифференциал.
 - $\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha \beta) \cos(\alpha + \beta)]$
 - $\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha \beta) + \cos(\alpha + \beta)]$
 - $\circ\int R(\sin x,\cos x)dx$ универсальная тригонметрическая подстановка $\log rac{x}{2}=t\sin x=rac{2t}{t^2+1}\cos x=rac{1-t^2}{1+t^2}$ $\log x=rac{2t}{1-t^2}$
 - \circ если $R(-\sin x,\cos x)=-R(\sin x,\cos x),$ то $\cos x=t$
 - \circ если $R(\sin x, -\cos x) = -R(\sin x, \cos x)$, то $\sin x = t$
 - \circ если $R(-\sin x, -\cos x) = R(\sin x, \cos x),$ то $\operatorname{tg} x = t$
- 1. Если хотя бы одно из чисел m,n- нечётное, положительное цело, то от чётной степени отделяем один множитель, затем оставшуюся чётную степень выражаем, используя основное тригонметрическое тождество и сводим интеграл к табличному.

Пример:

a)
$$\int \cos^3 x dx = \int \underbrace{\cos^2 x \cos x dx}_{1-\sin^2 x} = \int (1-\sin^2 x) d(\sin x) = \int d(\sin x) - \int \sin^x d(\sin x) = \sin x - \frac{\sin^3 x}{3} + c$$

6)
$$\int \frac{\sin^3 x}{\sqrt{\cos x}} dx = \int \sin^3 x \cdot \cos^{-\frac{1}{2}} x dx = \int \sin x \cdot \underbrace{\sin^2 x}_{1-\cos^2 x} \cdot \cos^{-\frac{1}{2}} x dx = -\int (1-\cos^2 x) \cdot \cos^{-\frac{1}{2}} x d(\cos x) = -\int \cos^{-\frac{1}{2}} x d(\cos x) + \int \cos^{1\frac{1}{2}} x d(\cos x) = -\frac{\cos^{\frac{1}{2}} x}{\frac{1}{2}} + \frac{\cos^{\frac{1}{2}} x}{2\frac{1}{2}} + c$$

2. Если m,n- чётные, целые неотрицательные числа, то применяем тригонометрические формулы понижения степени:

$$\cos^2 x = \frac{1+\cos 2x}{2} \quad \sin^2 x = \frac{1-\cos 2x}{2} \quad \sin x \cos x = \frac{\sin 2x}{2}$$

Пример:

a)
$$\int \sin^2 x \cos^4 x dx = \int \sin^2 x \cos^2 x \cos^2 x dx = \int (\sin x \cos x)^2 \cos^2 x dx = \int (\frac{\sin 2x}{2})^2 \cdot \frac{1+\cos 2x}{2} dx = \frac{1}{8} \int \sin^2 2x \cdot (1+\cos^2 x) dx = \frac{1}{8} \int \sin^2 2x dx + \frac{1}{8} \int \sin^2 x \cos 2x dx = \frac{1}{8} \int \frac{1-\cos 4x}{2} dx + \frac{1}{16} \int \sin^2 2x d(\sin 2x) = \frac{1}{16} \int dx - \frac{1}{64} \int \cos 4x d(4x) + \frac{1}{16} \cdot \frac{\sin^3 2x}{3} + c = \frac{x}{16} - \frac{1}{64} \sin 4x + \frac{1}{48} \sin^3 2x + c$$

3. Если (m+n)— чётное отрицательное число, то подстановка $\lg x = t - \operatorname{ctg} x = t$

Пример:

$$\begin{array}{l} \text{a)} \int \frac{dx}{\sin^4 x} = \int \underbrace{\frac{1}{\sin^2 x}}_{1+\operatorname{ctg}^2 x} \cdot \underbrace{\frac{1}{\sin^2 x}}_{-d(\operatorname{ctg} x)} = -\int (1+\operatorname{ctg}^2 x) \cdot d(\operatorname{ctg} x) = -\int d(\operatorname{ctg} x) - \int \operatorname{ctg}^2 x \cdot d(\operatorname{ctg} x) = -\operatorname{ctg} x - \frac{\operatorname{ctg}^3 x}{3} + c \end{array}$$

$$6) \int \frac{\cos^2 x}{\sin^6 x} dx = \int \underbrace{\frac{\cos^2 x}{\sin^2 x}}_{\operatorname{ctg}^2 x} \cdot \underbrace{\frac{1}{\sin^2 x}}_{1 + \operatorname{ctg}^2 x} \cdot \underbrace{\frac{1}{\sin^2 x}}_{-d(\operatorname{ctg} x)} = - \int \operatorname{ctg}^2 x \cdot (1 + \operatorname{ctg}^2 x) \cdot d(\operatorname{ctg} x) = - \int \operatorname{ctg}^2 x \cdot d(\operatorname{ctg} x) = - \underbrace{\int \operatorname{ctg}^2 x}_{-d(\operatorname{ctg} x)} = - \underbrace{\int \operatorname{ctg}^2$$

5 Билет

Определение интеграла Римана. Верхние и нижние суммы Дарбу

Определённый интеграл - предел интегральных сумм Римана при стремлении диаметра разбиения функции f(x) на отрезке [a,b] к нулю.

Если предел существует, то функция интегрируема по Риману на отрезке [a,b]

$$au = \{a = x_0 < x_1 < ... < x_n = b\}$$
— разбиение отрезков

$$au_{\mathcal{E}} = \{ au, \xi \in [x_{i-1},...,x_i], \; i = \overline{1,n}\}$$
— тау отмеченные точками кси

Ищем площадь каждого прямоугольника и складываем

$$\sigma_{ au_{\xi}}(f) = \sum\limits_{i=1}^n f(\xi_i) \Delta x_i, \quad \Delta x_i = x_i - x_{i-1}$$

Отрезки всё меньше, если найти их предел, то он и будет интегралом

Определение.

Наибольшая длина-диаметр разбиения (мелкость)= $\max\{\Delta x_i\}$

$$I = \lim \sigma_{ au_{arepsilon}}(f) \Leftrightarrow orall \epsilon > 0 \ \exists \delta > 0 : (orall au_{ar{arepsilon}}, \delta(au_{ar{arepsilon}}) < \delta \Rightarrow |\sigma_{ au_{ar{arepsilon}}}(f) < \epsilon|)$$

Замечание: длина Δx_i и I от кси не зависит

Верхние и нижние суммы Дарбу

Обозначим:

$$M_i - sup\{f(x)\}$$
 $m_i = inf\{f(x)\}$ $x \in [x_{i-1}, x_i]$

Пусть f(x)— ограниченная на сегменте [a,b] функция и $\{x_i\}$ — произвольное разбиение этого сегмента. Так как f(x) ограничена на сегменте [a,b], то она ограничена на любом частичном сегменте $[x_{i-1},x_i]$, а поэтому у функции f(x) существует точная нижняя грань m_i и точная верхняя грань M_i на частичном сегменте $[x_{i-1},x_i]$

$$\overline{S} = \sum\limits_{i=1}^n M_i \cdot \Delta x_i$$
— верхняя сумма Дарбу

$$\underline{s} = \sum\limits_{i=1}^n m_i \cdot \Delta x_i$$
— нижняя сумма Дарбу

Свойства.

Суммы Дарбу существуют для ограниченных функций (и сверху, и снизу)
 #Если предел существует, то функция ограничена
 Ограниченность вытекает из существования предела Римана, каждое слагаемое ограничено

- \Rightarrow сумма ограничена
- #Если предел не существует, то f не интегрируема на $\left[a,b\right]$
- 2. Пусть $\sigma_{\tau_{\xi}}(x_i,\xi_i)$ интегральная сумма, отвечающая данному разбиению $\{x_i\}$. Тогда при любом выборе промежуточных точек ξ_i всегда справедливы неравенства

$$\underline{s_ au} \leq \sigma_{ au_\xi}(f) \leq \overline{S_ au}$$

Док-во

По определнию чисел m_i, M_i заключаем, что $m_i \leq f(\xi_i) \leq M_i$ для любого $\xi_i \in [x_{i-1}, x_i]$. Умножая неравенства на Δx_i и суммируя по всем i от 1 до n, получаем требуемое утверждение леммы

3. При измельчении разбиения верхняя сумма Дарбу не увеличивается(может только уменьшиться), а нижняя - не уменьшается(может только увеличиться).

Док-во

- а) Если x^\prime попало на одну из точек разбиения, то ничего не изменится.
- 6) Если x^\prime попало в i-ый отрезок, то было 1 слагаемое, а теперь станет 2.

Очевидно, что в 1 из половинок $M_i' \leq M_i$

$$M_i'(x'-x_{i-1})+M(x_i-x)\leq M(x'-x_{i-1})+M(x_i-x)=M(x_i-x_{i-1})=M_i\Delta x$$
Для минимума наоборот

При добавлении некоторого набора точек получаем, добавляя по одной, что новая M_i не увеличивается

4. Любая нижняя сумма Дарбу меньше любой верхней:

$$orall au_1$$
 и $au_2 \Rightarrow \underline{s_{ au_1}} \leq \overline{S_{ au_2}}$

Составим разбиение au, в которое входит $au_1, au_2:$

$$au = au_1 \cup au_2 \ s_{ au_1} \leq \underline{s_{ au}} \leq \overline{S_{ au}} \leq \overline{S_{ au_2}}$$

Следствие:

Множество верхних сумм данной функции, отвечающих всевозможным разбиением сегмента [a,b], ограничено снизу. Множество нижних сумм - ограничено сверху.

Дейсвтительно, любая верхняя сумма не меньше некоторой фиксированной нижней суммы, следовательно, множество верхних сумм огрничено снизу. Аналогично проводятся рассуждения

для нижних сумм. Также существует точная нижняя грань множества $\{S\}$ и точная верхняя грань множества $\{s\}$

6 Билет

Интегралы Дарбу. Критерий интегрируемости.

Интеграл Дарбу.

Верхним интегралом Дарбу от функции f(x) называется число \overline{I} , равное точной нижней грани множества верхних сумм $\{S\}$ данной функции для всевозможных разбиений сегмента [a,b]

Нижним интегралом Дарбу от функции f(x) называется число \underline{I} , равное точной верхней грани множества нижних групп сумм $\{s\}$ данной функции для всевозможных разбиений сегмента [a,b]

 $\sup \underline{s_{ au_{\mathbf{l}}}} = \underline{I}$ — нижний интеграл Дарбу

 $\inf \overline{S_{ au_2}} = \overline{I}$ — верхний интеграл Дарбу

$$\Rightarrow \underline{I} \leq \overline{I}$$

Если $\underline{I} = \overline{I} \Rightarrow$ существует интеграл Дарбу

Если $\underline{I} = \overline{I} \Rightarrow \ f(x)$ интегрируема по Дарбу

По теоремам о сходимости монотонной величины имеем:

$$\underline{I} = \lim_{\delta(au) o 0} \underline{s_ au}$$

$$\overline{I} = \lim_{\delta(au) o 0} \overline{S_ au}$$

Теорема.

Если существует интеграл Дарбу, то существует интеграл Римана и они равны.

Применяя теорему о промежуточной величине, находящейся между двумя сходящимися к одному пределами

Лемма.

Нижний интеграл Дарбу всегда не превосходит верхнего интеграла Дарбу, т.е. $I \leq \overline{I}$

Док-во

Допустим противное, т.е. что $\overline{I}>\underline{I}$. Тогда $\underline{I}-\overline{I}=\epsilon<0$. Для указанного $\epsilon,$ согласно определению числа \overline{I} , найдется такое разбиение $\{x_i\}$ сегмента [a,b], что для соответсвующей верхней суммы \overline{S} будет выполнено неравенство $\overline{S_{ au}} < \overline{I} + rac{\epsilon}{2}.$

Точно так же можно указать такое разбиение $\{x_i'\}$ сегмента [a,b], что для соответствующей нижней суммы \underline{s} будет выполнено неравенство $\underline{s}>I-\frac{\epsilon}{2}$ Вычтем второе неравенство из первого. Получим $\overline{S}-\underline{s}<\overline{I}-\underline{I}+\frac{\epsilon}{2}$. Но $\overline{I}-\underline{I}=-\epsilon$, поэтому $\overline{S}-\underline{s}<0$, т.е. $\underline{s}>\overline{S}$

Ho
$$\overline{I} - I = -\epsilon$$
 postomy $\overline{S} - \epsilon < 0$ to $\epsilon > \overline{S}$

Получившееся неравенство противоречит утверждению леммы (Любая нижняя сумма Дарбу меньше любой верхней). Таким образом, доказываемое утверждение справедливо, т.е. $\underline{I} \leq \overline{I}$

Число A называется пределом верхних сумм при стремлении к нулю диаметра разбиений d_i если для любого положительного числа ϵ можно указать положительное число δ такое, что при условии $d < \delta$ выполняется неравенство $|\overline{S} - A| < \epsilon.$

Для обозначения указанного предела естественно употреблять символ $A=\lim_{d o 0}\overline{S}.$

Аналогично для В нижних сумм.

Основная лемма Дарбу

Верхний интеграл Дарбу \overline{I} является пределом верхни сумм \overline{S} при стремлении диаметра d к нулю, т.е. $\overline{I} = \lim_{d o 0} \overline{S}$. Аналогично $\underline{I} = \lim_{d o 0} \underline{s}$.

Док-во

Проведём доказательство первого утверждения леммы.

Заметим, что если функция f(x)=c=const, то $M=\sup\{f(x)\}>m=\inf\{f(x)\}.$

Фиксируем произвольное положительное число ϵ

По определению числа \overline{I} существует такое разбиение $\{x_i^*\}$, что верхняя сумма $\overline{S^*}$ этого разбиения будет удовлетворять условию $\overline{S^*} - \overline{I} < rac{\epsilon}{2}$

Обозначим через I число точек разбиения $\{x_i^*\}$, не совпадающих с концами сегмента [a,b]. Пусть $\{x_i\}$ — произвольное разбиение сегмента [a,b], диаметр которого удоавлетворяет неравенству $d<\delta=\frac{\epsilon}{2l(M-m)}$, и пусть \overline{S} — верхняя сумма этого разбиения. Произведём измельчение разбиения $\{x_i\}$, добавив к нему отмеченные I точек разбиения $\{x_i^*\}$.

Полученное при этом разбиение обозначим $\{x_i'\}$.

По лемме (Для разностей $\overline{S}-\overline{S^*}$ выполяется следующее неравенство $\overline{S}-\overline{S^*}\leq (M-m)ld$. Аналогично для \underline{S}) верхняя сумма $\overline{S'}$ этого последнего разбения удовлетворяет условию $0\leq \overline{S}-\overline{S^*}\leq (M-m)ld<\frac{\epsilon}{2}$.

Но разбиение $\{x_i'\}$ можно рассматривать как измельчение разбиения $\{x_i^*\}$, к которому добавляются точки разбиения $\{x_i\}$, не совпадающие с концами сегмента [a,b]

Поэтому в силу определения \overline{I} и леммы(При измельчении данного разбиения верхняя сумма может только уменьшиться, а нижняя сумма - только увеличиваться) $\overline{I} \leq \overline{S'} \leq \overline{S^*}$, т.е. $0 \leq \overline{S'} - \overline{I} < \overline{S^*} - \overline{I}$.

Выше было показано, что $\overline{S^*}-\overline{I}<rac{\epsilon}{2},$ поэтому $0\leq \overline{S'}-\overline{I}<rac{\epsilon}{2}$

Объединяя эти неравенства с установленными выше неравенствами $0 \leq \overline{S} - \overline{S'} < \frac{\epsilon}{2},$ получаем, что $0 \leq \overline{S} - \overline{I} < \epsilon,$ если только $d < \delta.$

Следовательно: $\overline{I} = \lim_{d o 0} \overline{S}.$

Теорема 1. (свойства сумм Дарбу). Д**1.**. Для любого размеченного разбиения (au, ξ) отрезка [a, b] справедливы равенства:

$$\underline{s}_{\tau}(f) \leq \sigma_{\tau}(f, \xi) \leq \overline{S}_{\tau}(f),$$

причём
$$\underline{s}_{ au}(f) = \inf_{\xi} \sigma_{ au}(f,\xi), \ \overline{S}_{ au}(f) = \sup_{\xi} \sigma_{ au}(f,\xi)^*$$

 $^{*}inf$ и sup берутся по всевозможным совокупностям отмеченных точек.

Доказательство: Докажем утверждение для верхних сумм.

 $orall k=\overline{1,n}$ и $orall \xi_k\in [x_{k-1},x_k]$ выполнено $f(\xi_k)\leq M_k$. Умножая это неравенство на Δx_k и суммируя по k, получим:

$$\sigma_{ au}(f,\xi) = \sum_{k=1}^n f(\xi_k) \Delta x_k \leq \sum_{k=1}^n M_k \Delta x_k = \overline{S}_{ au}(f).$$

Далее по определению $\sup: orall \epsilon > 0 \; \exists \xi_k^* \in [x_{k-1},x_k]: \; f(\xi_k^*) > M_k - \frac{\epsilon}{b-a}.$ Откуда,

$$\sigma_{ au}(f,\xi^*) = \sum_{k=1}^n f(\xi_k^*) \Delta x_k > \overline{S}_{ au} - rac{\epsilon}{b-a} \cdot \sum_{k=1}^n \Delta x_k = \overline{S_{ au}}(f) - \epsilon$$

Теорема 7. Д7. (Критерии интегрируемости). Для любой ограниченной функции

следующие утверждения равносильны:

- а) f интегрируема на [a,b]
- 6) $I_* = I^*$ (критерий Дарбу)
- в) $\lim_{d_{ au} o 0} (\overline{S}_{ au}(f) \underline{s}_{ au}(f)) = 0^*$ (критерий Римана);

*т.е.
$$orall \epsilon>0 \; \exists \delta(\epsilon)>0: orall au, \; d_{ au}<\delta(\epsilon)$$
 выполено $\overline{S}_{ au}(f)-s_{ au}<\epsilon$

Доказательство :(a $\$ Nightarrow 6) $\$ Пусть f — интегрируема на [a,b], тогда

$$\exists I \in R: orall \epsilon > 0 \ \exists \delta(\epsilon): orall au, \ d_{ au} < \delta(\epsilon)$$
 и $orall \xi \Rightarrow |\sigma_{ au}(f, \xi) - I| < \epsilon$

Беря в последнем неравенстве sup и inf повсем ξ , получаем:

$$egin{aligned} orall \epsilon > 0 \ \exists \delta(\epsilon) > 0 : orall au, \ d_ au < \delta(\epsilon) \Rightarrow egin{bmatrix} |\overline{S}_ au(f) - I| \leq \epsilon \ |\underline{s}_ au(f) - I| \leq \epsilon \end{bmatrix} \Rightarrow \ & \Rightarrow \lim_{d_ odo} \overline{S}_ au(f) = \lim_{d_ odo} \underline{s}_ au(f) = I. \end{aligned}$$

По основной лемме Дарбу: $\lim_{d_ au o 0} \overline{S}_ au(f) = I^* \quad \lim_{d_ au o 0} \underline{s}_ au(f) = I_* \Rightarrow I_* = I^*$

Доказательство :(6 \Rightarrow в) Пусть $I_* = I^*$, тогда по основной лемме Дарбу получим:

$$\lim_{d_{ au} o 0} \underline{s}_{ au}(f) = \lim_{d_{ au} o 0} \overline{S}_{ au}(f) \Rightarrow \lim_{d_{ au} o 0} (\overline{S}_{ au}(f) - \underline{s}_{ au}(f)) = 0$$

 $m{\mathcal{I}}$ **оказательство** : (в \Rightarrow a) Пусть $\lim_{d_ au o 0}(\overline{S}_ au(f)-\underline{s}_ au(f))=0.$ Т.к. для любого разбиения au:

$$\underline{s}_{ au}(f) \leq I_* \leq I^* \leq \overline{S}_{ au}(f), ext{ to } 0 \leq I^* - I_* \leq \overline{S}_{ au}(f) - \underline{s}_{ au}(f) \xrightarrow[d_{ au} \to 0]{} 0 \Rightarrow I_* = I^* = I.$$

Покажем, что $\lim_{d_{ au} o 0}\sigma_{ au}(f,\xi)=I.$ По свойству $ot\hspace{-1pt}\mathcal{f I}{\bf 1}:$

$$\underline{s}_{ au}(f) \leq \sigma_{ au}(f, \xi) \leq \overline{S}_{ au}(f); \quad \underline{s}_{ au}(f) \leq I \leq \overline{S}_{ au}(f) \Longrightarrow$$
 $\Longrightarrow |\sigma_{ au}(f, \xi) - I| \leq \overline{S}_{ au}(f) - \underline{s}_{ au}(f) < \epsilon.$

Получаем, что:

$$\forall \epsilon > 0 \ \exists \delta(\epsilon) > 0 : \forall \tau, \ d_{\tau} < \delta(\epsilon), \quad \forall \xi \Rightarrow |\sigma_{\tau}(f, \xi) - I| < \epsilon.$$

7 Билет

Интегрируемость непрерывных и монотонных функций

Теорема 1.

Непрерывная на отезке функция интегрируема на этом отрезке

Доказательство

По теореме Кантора-Гейне f- равномерно непрерывна на $[a,b]\Rightarrow \forall \epsilon>0 \quad \exists \delta>0: \forall x_1,x_2\in [a,b]: (|x_1-x_2|<\delta\Rightarrow |f(x_1)-f(x_2)|<rac{\epsilon}{b-a}).$

$$\exists \epsilon>0 \quad \exists \delta>0$$
 возьмём такое $T:\delta(T)<\delta\Rightarrow orall i, \ |x_i-x_{i-1}|<\delta\Rightarrow$ по т. Вейерштрассе $m_i=f(\overline{x_i}), \ M_i=\overline{\overline{x_i}}\Rightarrow M_i-m_i=f(\overline{\overline{x_i}})-f(\overline{x_i})<rac{\epsilon}{b-a}$

Теорема 2.

Монотонная на отрезке функция интегрируема на этом отрезке.

Доказательство

Пусть f(x)— возрастает на [a,b]

$$orall \epsilon > 0 \quad \exists \delta > 0 : orall T : \delta(T) < \delta \quad S_T - s_T = \sum_{i=1}^n (M_i - m_i) \Delta x_i < \delta \sum_{i=1}^n f(x_i) - f(x_{i-1}) = \delta(f(x_1) - f(a) + f(x_2) - f(x_1) + ... + f(b)) = \delta(f(b) - f(a)) < \epsilon$$

8 Билет

Интегрируемость кусочно-непрерывных функций

Теорема.

Кусочно-непрерывная*, ограниченная на отрезке, функция интегрируема на нём *Непрерывная за исключением конечного числа точек разрыва 1ого рода.

Утверждение.

Если значение интегральной функции изменить на конечном множестве точек, то интегрируемость при этом не нарушиться и интеграл не изменится

Доказательство.

Пусть функция f- интегрируема на $[a,b],\ F$ отличается от f в m точках: $x_1,x_2,...,x_m$. Т.к. f- ограничена некоторыми числами L, то \overline{f} ограничена числом $\overline{L}=\max\{L,|f(x_1)|,...,|\overline{f}(x_m)|\}.$

Заметим, что для f и \overline{f} в интегральных суммах различны не более 2m слагаемых, тогда: $|\sigma_{\tau}(f,\xi)-\sigma_{\tau}(\overline{f},\xi)|\leq 2m(L+\overline{L})d_{\tau}\to 0$ Следовательно: $\exists\lim_{d_{\tau}\to 0}\delta(\overline{f},\xi),\;$ и $\lim_{d_{\tau}\to 0}\sigma_{\tau}(\overline{f},\xi)=\lim_{d_{\tau}\to 0}\sigma_{\tau}(f,\xi)$

Данное утверждение позволяет определить интеграл для функций, заданных на отрезке за исключением конечного множества точе, и говорить об интегрируемости этих функций.

9 билет

Интегрируемость неравенств. Оценка модуля

1. Если
$$a < b$$
; $f(x) \leq arphi(x),$ они обе интегрируемы на $[a,b],$ то $\int\limits_a^b f(x) \leq \int\limits_a^b arphi(x)$

Доказательство

$$\int\limits_a^b f(x) - \int\limits_a^b arphi(x) = \int\limits_a^b (f(x) - arphi(x)) dx = \lim \sum_{i=1}^n (arphi(\xi_i) - f(\xi_i)) \Delta x_i$$

Так как
$$arphi(x)>f(x),$$
 то каждая сумма $>0\Rightarrow\lim_a>0\Rightarrow\int\limits_a^barphi>\int\limits_a^bf$

2. Оценка модуля: если f(x) интегрируема на [a,b], то и |f| тоже интегрируема на [a,b], причём $|\int\limits_a^b f(x)dx| \leq \int\limits_a^b f(x)dx$

Доказательство

Известно, что
$$|a|-|b|\leq |a-b|$$
. Тогда $M_{|f|}-m_{|f|}\leq |M_f-m_f|$

$$|\sigma_{ au}(f)| = |\sum_{i=1}^n f(\xi_i) \Delta x_i| \leq \sum_{i=1}^n |f(\xi_i)| \Delta x_i = \sigma_{ au}(|f|)$$

10 Билет

Линейность и аддитивность определенного интеграла

Аддитивность

Если f(x) интегрируема на [a,b], а $c\in [a,b]$, то

$$\int\limits_{-\infty}^{b}f(x)dx=\int\limits_{-\infty}^{c}f(x)dx+\int\limits_{-\infty}^{b}f(x)dx$$

Доказательство

Составляя разбиение au сделаем так, чтобы точка c в него входила. Тогда

$$\sum_{i=1}^n f(\xi) \Delta x_i = \sum_{i=1}^k f(\xi) \Delta x_i + \sum_{i=k}^n f(\xi) \Delta x_i \quad (1)$$

По свойству сумм: $\sigma = \sigma' + \sigma''$

Переходя от сумм к пределам получим (1)

Линейность

Если f и g - интегрируемы на [a,b], то справедливо равенство

$$\int\limits_a^b (f(x)+g(x))dx=\int\limits_a^b f(x)dx+\int\limits_a^b g(x)dx$$

Доказательство

$$\lim \sum_{i=1}^n (f(\xi)+g(\xi))\Delta x_i + \lim \sum_{i=1}^n f(\xi)\Delta x_i + \lim \sum_{i=1}^n g(\xi)\Delta x_i = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx$$

11 Билет

Непрерывность интеграла по переменному верхнему пределу интегрирования.

$$\phi(x)=\int\limits_{a}^{x}f(t)dt$$
— определённый интеграл с переменным верхним пределом

Если f(x) интегрируема на [a,b], то она интегрируема на любом вложенном отрезке $[a,x]\subset [a,b]$

- ullet Обладает всеми свойствами определенного интеграла по [a,b], но является функцией своего
- ullet Геометрический смысл: $\int\limits_a^{ \cdot \cdot} f(t) dt-$ переменная площадь криволинейной трапеции, которая

Теорема.

Если f(x) интегрируема на [a,b], то на этом отрезке функция $F(x)=\int\limits_{-x}^{x}f(t)dt$ непрерывна.

Доказательство.

$$x\in [a,b].$$
 $f(t)$ — интегрируема, $t\in [a,b]\Rightarrow F(x)$ определена для $x\in [a,b].$

$$egin{aligned} orall x \in [a,b], \quad |F(x+\Delta x) - F(x)| = |\int\limits_a^{x+\Delta x} f(t) dt|; \ |f(t)| \leq M, \quad t \in [a,b] \end{aligned}$$

$$|\int\limits_x^{x+\Delta x}f(t)dt|\leq |\int\limits_x^{x+\Delta x}Mdt|\leq M|\Delta x|< M\delta=\epsilon,$$
 если $\delta=rac{\epsilon}{M},\ orall \epsilon>0$

12 Билет

Дифференцируемость интеграла по переменному верхнему пределу интегрирования.

Теорема.

$$f(x)$$
 непрерывна на $[a,b]$, тогда $F(x)=\int\limits_a^x f(t)dt$ — дифференцируема, причём $F'(x)=f(x),\ x\in [a,b]$

Суть: Производная от определённого интеграла с переменным верхним пределом равна подинтегральной функции, в которой переменная интегрирования заменена этим пределом.

Доказательство.

1. Найдём
$$\phi'(x)$$
 по определению: $\phi'(x)=\lim_{\Delta x \to 0} rac{\Delta\phi(x)}{\Delta x}. \quad orall x \in [a,b] \quad (x+\Delta x) \in [a,b]$

2.
$$\Delta\phi(x)=\phi(x+\Delta x)-\phi(x)=\int\limits_a^{x+\Delta x}f(t)dt-\int\limits_a^xf(t)dt$$
 =\по свойству аддитивности первый интеграл расписываем\ = $\int\limits_a^xf(t)dt+\int\limits_a^{\Delta x}f(t)dt-\int\limits_a^xf(t)dt=\int\limits_a^{\Delta x}f(t)dt$ =\ по теореме о среднем значении\ = $f(c)(x+\Delta x-x)$, где $c\in[x,x+\Delta x]=f(c)\Delta x$

3. Подставляем полученное наверх в производную.

$$\phi'(x)=\lim_{\Delta x o 0}rac{f(c)\Delta x}{\Delta x}=\lim_{\Delta x o 0}f(c).$$
 Так как $\Delta x o 0,$ а $c\in[x,x+\Delta x],$ то $x+\Delta x\geq c\geq x\Rightarrow c o x.$ Подставляем $\phi'(x)=\lim_{c o x}f(c)$

Тогда по определению непрерывности: $\lim_{c o x} f(c) = f(x)$. Получается, что $\phi'(x) =$

$$f(x),\ (\int\limits_{-x}^{x}f(t)dt)'=f(x)$$

Вывод: Каждая непрерывная на отрезке функция имеет первообразную $F(x)=\int\limits_{0}^{x}f(t)dt$

13 Билет

Формула Ньютона-Лейбница

Если f(x) непрерывна на отрезке [a,b], а $\varphi-$ некая её первообразная, то имеет место следующая формула:

$$\int\limits_{a}^{b}f(x)dx=arphi(b)-arphi(a)$$

Согласно теореме о дифференцировании интеграла по переменному верхнему пределу:

$$F(x) = \int\limits_{a}^{x} f(t) dt$$
, где $F(x)-$ некая первообразная

Значит,
$$F(x) = arphi(x) + c$$

Полагая, что x=a можно сказать, что $arphi(a)+c=0\Rightarrow c=-arphi(a)$

Тогда
$$\int\limits_{a}^{x}f(t)dt=arphi(x)-arphi(a).$$

Теперь заменим x на b и получим $\int\limits_a^b f(t)dt=arphi(b)-arphi(a)$

14 Билет

Интегрирование по частям и замена переменной интегрирования в определенном интеграле.

Теорема (интегрирование по частям).

Пусть функции u,v- диффференцируемы на [a,b], а $u',v'\in R[a,b].$ Тогда справедливо равенство:

$$\int\limits_{a}^{b}u(x)v'(x)dx=u(x)v(x)igg|_{a}^{b}-\int\limits_{a}^{b}u'(x)v(x)dx.$$

Доказательство

Заметим, что из условий теоремы и соответсвующих утверждений из предыдущих пунктов, следует, что функции u'v и v'u- интегрируемы на [a,b]. Следовательно и производная (uv)'=u'v+uv'- интегрируема на [a,b]. По формуле Ньютона-Лейбница:

$$\int\limits_a^b u(x)v'(x)dx+\int\limits_a^b u'(x)v(x)dx=\int\limits_a^b (u(x)v(x))'dx=u(x)v(x)igg|_a^b.$$

Остаётся перенести второе слагаемое из левой части вправую.

Иногда формулу интегрирования по частям записывают в виде:

$$\int ^b u dv = uvigg|_a^b - \int ^b v du,$$

трактуя u'(x)dx и v'(x)dx как дифференциалы.

Теорема (замена переменной в определённом интеграле).

Доказательство:

Пуст функция x=arphi(t)- определена и дифференцируема на некотором промежутке T, а X- множество значений этой функции, на котором определена функция f(x). Тогда если функция f(x) имеет первообразную на множестве X, то на множестве T справедлива формула

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt$$

Надём дифференциалы обеих частей равенства:

$$d(\int f(x)dx) = f(x)dx = f(\varphi(t))d(\varphi(t)) = f(\varphi(t))\varphi'(t)dt$$

$$d(\int f(\varphi(t))\varphi'(t)dt) = f(\varphi(t))\varphi'(t)dt$$

15 Билет

Параметрически заданные кривые. Длина кривой

Параметрически заданные кривые

Рассмотрим в декартовой прямоугольной системе координат параметрические уравнения кривой:

$$egin{cases} x = x(t) \ y = y(t) \end{cases}$$

t - параметр кривой. Область изменения параметра определяется как пересечение максимально возможных областей определения функций x=x(t),y=y(t). Исключение параметра t из системы (если оно возможно) приводит к уравнению, связывающему x и y, т.е. к уравнению вида f(x,y)=0

Для приближенного построения графика кривой, заданной параметрически, достаточно построить таблицу значений x и y в зависимости от возможных значений параметра t. При этом надо учитывать $t_1 < t_2 < ... < t_n$.

t_1	t_2		t_n
x_1	x_2	:	x_n
y_1	y_2		y_n

Затем на плоскости построить декартову систему координат и отметить точки с координатами $(x_1,y_1),(x_2,y_2),...,(x_n,y_n),$ соединить эти точки в порядке увеличения параметра t.

Нахождение площади

Для нахождения площади криволинейной трапеции заданной $y=f(x): \quad S=\int\limits_a^b f(x)dx=\int\limits_a^b ydx(1)$

При некоторых конкретных значениях $t_1,t_2,$ параметрические уравнения будут определять точки A,B

Подставляем в (1) функции x(t),y(t) и раскрываем дифференциал:

$$S=\int\limits_{t_1}^{t_2}y(t)d(x(t))=\int\limits_{t_1}^{t_2}y(t)x'(t)dt$$

Примечание: подразумевается, что функции x(t),y(t),x(t) непрерывны на промежутке интегрирования и, кроме того, функция x(t) монотонна на нём.

Длина параметрически заданной кривой

Для функции заданной уравнением:

- 1. Рассмотрим кривую заданную функцией y=f(x). Разделим интервал на n частей точками $x_0=a,x_1,x_2,...,x_{n-1},x_n=b$, где $\Delta x=x_{i+1}-x_i$
- 2. Длину небольшой части кривой можно приближенно найти как длину гипотенузы. $\Delta x_i = x_{i+1}-x_i, \quad \Delta y_i = f(x_{i+1})-f(x_1)$ Тогда гипотенуза равна $\sqrt{(\Delta x_i)^2+(\Delta y_i)^2}$

3. Для нахождения точной длины отрезков можно использовать f'(x).

Когда Δx_i достаточно мало, Δy_i можно выразить через f'(x)

$$\Delta y_i pprox f'(x_i) \Delta x_i$$

Подставим под корень:

$$\sqrt{(\Delta x_i)^2 + (\Delta y_i)^2} = \sqrt{(\Delta x_i)^2 + (f'(x_i)\Delta x_i)^2} = \sqrt{(\Delta x_i)^2 (1 + (f'(x_i))^2)} = \Delta x_i \sqrt{1 + (f'(x))^2}$$

Для нахождения всей длины: $\sum\limits_{i=1}^{n} \Delta x_i \sqrt{1+(f'(x))^2}$

В пределе при $n o \infty, \quad \Delta x_i o 0$ сумма переходит в интеграл

$$l=\int\limits_{a}^{b}\sqrt{1+(f'(x))^{2}}dx,$$

где
$$f(x)=y,\ x\in [a,b]$$

Пусть кривая L задана параметрическими уравнениями

$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$$

где $t \in [t_0,t_1].$

Если функции непрерывно дифференцируемы на отрезке $[t_0,t_1]$, то кривая L спрямляема и её длина вычисляется по формуле:

$$L = \int\limits_{t_0}^{t_1} \sqrt{(\phi'(t))^2 + (\psi'(t))^2} dt$$

Док-во:

$$f'(x)=rac{\psi'(t)}{\phi'(t)}. \quad dx=\phi'(t)dt \ L=\int\limits_{t_0}^{t_1}\sqrt{1+(rac{\psi'(t)}{\phi'(t)})^2}\phi'(t)dt$$

После преобразования получаем:

$$L=\int\limits_{t_0}^{t_1}\sqrt{(\phi'(t))^2+(\psi'(t))^2}dt$$

https://www.youtube.com/watch?v=GSKYIFey3J8&t

16+17 Билет

Несобственный интеграл первого, второго рода. Определение, свойства.

При построении определённого интеграла Римана(или собственного) $\int\limits_a^b f(x) dx$ было существенно выполнение следующих условий:\

- 1. Отрезок [a,b]— конечен, т.е. $-\infty < a < b < +\infty;$
- 2. Функция f ограничена на [a,b];

3. Функция f непрерывна почти всюду на [a,b].

Если не выполнено условие 1, то по меньшей мере один из отрезков разбиения [a,b] будет бесконечным, и поэтому теряет смысл интегральная сумма $\sigma_{\tau}(f,\xi)=\sum\limits_{k=1}^n f(\xi_k)\Delta x_k$. При невыполнении условия 2, не выполняется необходимое условие интегрируемости по Риману. Если не выполнено 3, то не выполняется условие из критерия Лебега.

Далее считаем, что условие 3 выполнено.

Определение. Интегралы, для которых не выполнено условие 1 и 2 называются *несобственными интегралами*

Определение. Особыми точками несобственного интеграла $\int\limits_a^b f(x) dx$ будем называть все точки отрезка [a,b], в окресностях которых функция f не ограничена. К особым точкам причисляют также точки $\pm\infty$.

Определение. Функция f называется локально интегрируемой (по Риману) на промежутке E, если f- интегрируема (по Риману) на каждом отрезке, содержащемся в E. $f\in R_{loc}(E).$

Определение. Пусть $f\in R_{loc}([a,+\infty])$ (т.е. $f\in R[a,A],\ \forall A>a$). Предел (частичного) интеграла $\int\limits_a^A f(x)dx$ (конечный или бесконечный) при $A\to +\infty$ называют несобственным интегралом первого рода от функции f по лучу $[a,+\infty]$. $\int\limits_a^+ f(x)dx = \lim\limits_{A\to\infty}\int\limits_a^A f(x)dx$.

Определение. Пусть $f \in R_{loc}([a,b])$ (т.е. $f \in R[a,b-\epsilon], \ \forall \epsilon>0$). Предел интеграла $\int\limits_a^B f(x)dx$ (конечный или бескочнечный), при $B \to b-0$ называют несобственным интегралом второго рода от функции f по промежутку [a,b]. Суть этого определения состоит в том, что в любой окресности конечной точки функция f может оказаться неограниченной.

 ${f C}$ войства. Пусть $-\infty < a < \omega \leq +\infty$ и $f \in R_{loc}([a,\omega]),$ тогдаackslash

1. Если $\omega \in R,$ то значение интеграла $\int\limits_a^\omega f(x)dx,$ понимаемого, как в собсвенном так и в несобственном смысле совпадают, т.е.

$$\int\limits_{a}^{
ightarrow\omega}f(x)dx=\lim_{\substack{A o\omega\A\in[a,\omega]}}\int\limits_{a}^{A}f(x)dx=\int\limits_{a}^{\omega}f(x)dx$$

Доказательство.

Следует из непрерывности интеграла с переменным верхним пределом $F(a)=\int\limits_a^A f(x)dx$ на отрезке $[a,\omega]$, на котором функция f интегрируема.

2. Если
$$c\in [a,\omega]$$
, то $\int\limits_a^\omega f(x)dx=\int\limits_a^c f(x)dx+\int\limits_a^{ o\omega} f(x)dx$

Доказательство.\ Если $A\in [c,\omega]$, то $\int\limits_a^A f(x)dx=\int\limits_a^c f(x)dx+\int\limits_c^A f(x)dx$. При $A\to\omega,\ A\in [c,\omega)$ предел обеих частей последнего равенства существует или нет одновременно, т.е. несобственные интегралы $\int\limits_a^{\to\omega} f(x)dx$ и $\int\limits_c^{\to\omega} f(x)dx$ сходятся или расходятся одновременно.

3. Замена переменной в несобственном интеграле: если

$$\phi: [\alpha, \gamma) \to [a, \omega)$$

-непрерывно дифференцируемое, строго монотонное отображение. Причём, $\phi(\alpha)=a,\ \phi(\beta)\to\omega$, при $\beta\to\gamma,\ \beta\in[\alpha,\gamma)$. То несобственный интеграл от функции $(f\circ\phi)\phi'$ на $[\alpha,\gamma)$ существует, и справедливо равенство:

$$\int\limits_{lpha}^{
ightarrow\gamma}(f\circ\phi)(t)\cdot\phi'(t)dt=\int\limits_{lpha}^{
ightarrow\omega}f(x)dx.$$

Замена переменной в собственном интеграле может привести к несобственному интегралу, и обратно.

Доказательство.

Следует из формулы $\int\limits_{a=\phi(lpha)}^{b=\phi(eta)}f(x)dx=\int\limits_{lpha}^{eta}(f\circ\phi)(t)\phi'(t)dt$ замены переменной в определенном интеграле.

4. Интегрирование по частям в неопределённом интеграле. Если функция f и g- непрерывно дифференцируемы на промежутке $[a,\omega]$ и $\exists \lim_{\substack{x \to \omega \\ x \in [a,\omega]}} (fg)(x)$, то функция fg' и f'g

одновременно интегрируемы или не интегрируемы в несобственном смысле на $[a,\omega],$ и в случае интегрируемости справедливл равенство:

$$\int\limits_{a}^{
ightarrow\omega}(fg')(x)dx=fg(x)igg|_{a}^{
ightarrow\omega}-\int\limits_{a}^{
ightarrow\omega}(f'g)(x)dx,$$

где
$$(fg)(x)igg|_a^{ o\omega}=\lim_{\substack{x o\omega \ x\in [a,\omega]}}(fg)(x)-(fg)(a)$$

Доказательство.

Для доказательства нужно устремить $A o\omega,\ A\in[a,\omega)$ в формуле

$$\int\limits_{a}^{A}(fg')(x)dx=fg(x)igg|_{a}^{A}-\int\limits_{a}^{A}(f'g)(x)dx$$

интегрирования по частям в собственном интеграле.

18 Билет

Критерий сходимости несобственных интегралов от положительных функций

Если $f(x) \geq 0 \ \forall x \in [a,b)$, где b- конечное число или $+\infty$, то чтобы несобственный интеграл сходился - нужно, чтобы первообразная F(x) была ограничена сверху

1.
$$\int\limits_{1}^{+\infty} rac{dx}{x^p} = egin{cases} ext{сходится, } p>1 \ ext{расходится, } p\leq 1 \end{cases}$$

$$\int\limits_{1}^{+\infty}rac{dx}{x^{p}}=\left\{egin{align*} lnigg|_{1}^{+\infty},\;p=1\Rightarrow\;$$
 расходится $rac{x^{-p+1}}{p+1}igg|_{1}^{+\infty},\;p
eq1 \end{cases}$

$$\lim_{x \to +\infty} \frac{x^{-p+1}}{-p+1} = \begin{cases} +\infty, \ -p+1 > 0 \Rightarrow \ \text{расходится, } p < 1 \\ 0, \ -p+1 < 0 \Rightarrow \ \text{сходится, } p > 1 \end{cases}$$

$$2. \int\limits_0^1 \frac{dx}{x^p} = \begin{cases} \text{сходится, } p < 1 \\ \text{расходится, } p \geq 1 \end{cases}$$

$$\int\limits_0^1 \frac{dx}{x^p} = \begin{cases} \ln |x| \bigg|_0^1, \ p = 1 \Rightarrow \ \text{расходится} \\ \frac{x^{-p+1}}{-p+1} \bigg|_0^1, \ p \neq 1 \end{cases}$$

$$\lim_{x \to +\infty} \frac{x^{-p+1}}{-p+1} = \begin{cases} 0, \ -p+1 > 0 \Rightarrow \ \text{сходится, } p < 1 \\ -\infty, \ -p+1 < 0 \Rightarrow \ \text{расходится, } p > 1 \end{cases}$$

19 Билет

Признаки сравнения для сходимости несобственных интегралов. Эквивалентность

1. Пусть функции f(x) и g(x) интегрируемы на $[a,c]: orall c \in [a,b],$ причём $0 \leq f(x) \leq g(x)$

Тогда, если интеграл $\int\limits_a^b g(x)dx$ сходится, то и $\int\limits_a^b f(x)dx$ — сходится, причём $\int\limits_a^b f(x)dx \leq \int\limits_a^b g(x)dx$

1. Если функции f(x) и g(x) интегрируемы на $[a,c]: orall c \in [a,b].$

 $f(x) \sim g(x)$, то они одновременно сходятся или расходятся

3. Если функции
$$f(x),g_1(x),g_2(x)$$
 интегрируемы на $[a,c]: orall c\in [a,b],$ причём $g_1(x)\leq f(x)\leq g_2(x)$

То если g_1,g_2 сходятся, то сходится и f(x)

Следствие:

Если $\int\limits_a^b |f(x)| dx$ сходится, то и $\int\limits_a^b f(x) dx$ сходится

1.
$$|f(x)| \leq F(x), \; x \geq a$$
 а) Если $\int\limits_a^{+\infty} F(x) dx$ — сходится $\Rightarrow \int\limits_a^{+\infty} |f(x)| dx$ — сходится Т.е. если больший сходится, то и меньший тоже сходится

Пример:
$$\int\limits_0^8 \frac{dx}{x^2+\sqrt{x}}; \quad \frac{1}{x^2+\sqrt[3]{x}} \leq \frac{1}{\sqrt[3]{x}}; \quad \int\limits_0^8 \frac{1}{\sqrt[3]{x}} - \operatorname{сходится} \Rightarrow \int\limits_0^8 \frac{dx}{x^2+\sqrt{x}} - \operatorname{сходится}$$
 по первому признаку

6) Если
$$\int\limits_{a}^{+\infty}|f(x)|dx$$
— расходится, то $\int\limits_{a}^{+\infty}F(x)dx$ — расходится

Т.е. если меньший расходится, то и больший тоже расходится

2.
$$au(x)>0,\;\phi(x)=0$$
 ($au(x)$)(функция того же порядка и величины) Т.е. $\lim_{x\to\pm\infty}rac{ au(x)}{\phi(x)}=k=const\quad (
eq\pm\infty;\;
eq0$)!

При этих условиях выполянется:

$$\int\limits_a^{+\infty}\phi(x)dx$$
 и $\int\limits_a^{+\infty} au(x)dx$ сходятся(или расходятся одновременно)

Примеры функций и с чем их сравнивать

1.
$$\int\limits_a^{+\infty} f(x)dx \quad \phi(x) = rac{1}{x^p}$$
2. $\int\limits_a^b f(x)dx \quad \phi(x) = rac{1}{(b-x)^p}$
3. $\int\limits_{a^*}^b f(x)dx \quad \phi(x) = rac{1}{(x-a)^p}$

*Особенные точки

20 Билет

Абсолютная сходимость несобственного интеграла. Связь с простой сходимостью

Несобственный интеграл $\int\limits_a^b f(x)dx$ называется абсолютно сходящимся, если сходится интеграл $\int\limits_a^b |f(x)|dx$

Критерий Коши

Для сходимости $\int\limits_a^b f(x) dx$ необходимо и достаточно, чтобы

$$orall \epsilon > 0 \quad \exists \delta \in (a,b): orall \xi', \xi'' \in (a,b)
ightarrow |\int\limits_{\xi'}^{\xi''} f(x) dx| < \epsilon$$

Критерий Коши абсолютной сходимости интеграла

Чтобы интеграл абсолютно сходился необходимо и достаточно, чтобы $\forall \epsilon>0 \quad \exists \xi',\xi''\in [a,b): |\int\limits_{\xi'}^{\xi''}|f(x)|dx|$

Теорема

Если интеграл сходится абсолютно, то он и просто сходится

$$\int\limits_{a}^{+\infty}f(x)dx$$
— сходится абсолютно, если: $\int\limits_{a}^{+\infty}|f(x)|dx$ — сходится.

Если
$$\int\limits_a^{+\infty} f(x)dx$$
 сходится, а $\int\limits_a^{+\infty} |f(x)|dx-$ расходится, то $\int\limits_a^{+\infty} f(x)dx-$ сходится условно.

Если
$$\int\limits_a^{+\infty}f(x)dx$$
 и $\int\limits_a^{+\infty}|f(x)|dx$ расходятся, то $\int\limits_a^{+\infty}f(x)dx-$ расходится

21 Билет

Признак Абеля-Дирихле сходимости несобственного интеграла

Если условия выполняются:

$$\begin{cases} 1)\ \phi(x)$$
 — монотонно стремится к нулю при $x o +\infty.$ $\\ 2)f(x)$ — имеет ограниченную первообразную (т.е. $F(x)=\int\limits_a^x f(\xi)d\xi$ — ограниченная функция) ' то $\int\limits_a^{+\infty} f(x)\phi(x)dx$ — сходится

Пример:

$$\int\limits_0^{+\infty} \frac{\sin x}{x} dx = \int\limits_0^1 \frac{\sin x}{x} dx + \int\limits_1^{+\infty} \frac{\sin x}{x} dx$$

1. $rac{\sin x}{x}pprox 1$ (при x o 0 по замечательному пределу) \Rightarrow сходится

2.
$$\phi(x)=rac{1}{x}$$
 , $\phi'(x)=-rac{1}{x^2}<0,\;x>0\Rightarrow$ монотонно стремится к нулю при $x o 0$

3.
$$F(x)=\int\limits_1^x sin(\xi)d\xi=-\cos(x)+cos(x)<2$$
 \Rightarrow ограничена. Следовательно, $\int\limits_0^{+\infty} rac{\sin x}{x}dx$ — сходится

22 Билет

Сходимость в \mathbb{R}^n . Теоремы о пределах.

$$R^n = \{x_1, x_2, ..., x_n\}$$

Определение : последовательность
$$P_n o P_0\Leftrightarrow ||P_n-P_0|| o 0\Rightarrow orall \epsilon>0 \exists N: (orall n>N:||P_n-P_0||<\epsilon)$$

Теорема.

Сходимость
$$P_n o P_0$$
 означает покоординатную сходимость: $P_n(x_{1_n};x_{2_n}) o P_0(x_{1_0};x_{2_0})\Leftrightarrow egin{cases}x_{1_n} o x_{1_0}\x_{2_n} o x_{2_0}\end{cases}$

Доказательство

1. Из общей к покоординатной.

Если
$$P_n o P_0$$
, то $\exists N: orall n>N: ||P_n-P_0||<\epsilon$, а значит, $orall n>N: egin{cases} |x_n-x_0|<\epsilon\ |y_n-y_0|<\epsilon \end{cases}$

Это покоординатная сходимость

Теорема

Многомерная последовательность P_m сходится к P_0 тогда и только тогда, когда имеет место покоординатная сходимость, то есть:

$$egin{aligned} x_{i_m} & o x_{i_0}.\ P_m & o P_0 \Leftrightarrow x_{i_m} & o x_{i_0}.\ \lim_{m o\infty} P_m &= P_0 \Leftrightarrow \lim_{m o\infty} x_{i_m} = x_{i_0}\ \lim x_m &= x,$$
 если $\lim x_{i_m} = x_i$

1.
$$orall \epsilon>0$$
 $\exists M$, что $orall m>M:||x_m-x_0||<\epsilon$, и тогда $orall i$ при $m>M$ верно, что $\lim_{m o\infty}x_{i_m}=x_{i_0}$

2. Теперь наоборот.
$$x_{i_m} o x_{i_0}$$
 Допустим, $\exists M_i$, что $orall m>M_i$ верно, что $|x_{i_m}-x_{i_0}|<\epsilon.$

Возьмём тах из всех $M_i\Rightarrow orall m>max M_i$ верно, что $|x_{i_m}-x_{i_0}|<\epsilon$ — для каждой координаты.

Значит, все x_{i_m} попадут в окрестность $\epsilon\Rightarrow\lim x_m=x_0\Rightarrow P_m\to P_0\Rightarrow orall \epsilon>0$ $\exists M>0: orall m>M: |P_m-P_0|<\epsilon.$

Теоремы о пределах

Последовательность, у lpha существует предел - сходящийся. Преполагается, что далее рассмотрим по след. $P_n o P_0$ покоординатно, а P_0- некоторое число.

$$P_{m_n} = \{x_{1_n}, x_{2_n}, ..., x_{m_n}\}$$

1. У последовательности может быть только 1 преде.

Док-во: допустим последовательность P_n имеет 2 предела: A,B . Пусть $\epsilon=rac{|B-A|}{2}$

$$\left\{ egin{aligned} \exists N_1: orall n > N_1: |P_n - A| < \epsilon \ \exists N_2: orall n > N_2: |P_n - B| < \epsilon \end{aligned}
ight\} N = \max\{N_1, N_2\}$$

Тогда $\forall n>N$ верно следующее:

 $P_n \in U_{\epsilon}(B)$

 $P_n \in U_\epsilon(A)$

Но $U_{\epsilon}(B) \cap U_{\epsilon}(A) = \emptyset \Rightarrow$ предел всего один

2. Если последовательность сходится, то она ограничена.

Возьмём $\epsilon=1$. Тогда:

$$\lim x_{i_m} = A \Rightarrow \exists N_i > 0: orall m > N_i$$
 верно, что $A - \epsilon < x_{i_m} < A + \epsilon$ $A - 1 < x_{i_m} < A + 1$

Пусть c_i — максимальное из $\{x_{i_1}, x_{i_2}, ..., x_{i_N}, |A-1|, |A+1|\}$

тогда $\{x_i\} < c$, все точки попадают в $[-c_i, c_i]$.

Так же рассуждае для всех $x_i, i = \overline{1, n}$.

Возьмём $c=\max\{c_i\}$, тогда все подполсдедовательности попадут в окрестность точки c.

3. Теорема о двух миллиционерах.

Если
$$P_n, Q_n, T_n \in R^n$$
 и $T_n < P_n < Q_n,$ а $\lim T_n = \lim Q_n = A,$ то $\lim P_n = A$

Доказательство

Пусть
$$orall \epsilon>0$$
 $\exists N_1,N_2$ такое, что: $orall n>N_1:T_n\subset U_\epsilon(A). orall n>N_2:Q_n\subset U_\epsilon(A).$ Возьмём $max\{N_1,N_2\}:[T_n,Q_n]\subset U_\epsilon(A).$

Тогда т.к.
$$T_n < P_n < Q_n \Rightarrow P_n \subset [T_n,Q_n]$$
, значит $orall n > max\{N_1,N_2\}$ $P_n \subset U_\epsilon$

4. Если
$$\lim P_n = A, \ \lim Q_n = B,$$
 причём $A < B,$ (при условии, что пределы существуют) то $\exists N: \forall n > N: P_n < Q_n$

Доказательство

Возьмём ϵ_1,ϵ_2 так, чтобы их окружности не пересекались. Тогда $\exists N_1,N_2: \forall n>N_1: P_n\subset U_{\epsilon_1};\ \forall n>N_2\ Q_n\subset U_{\epsilon_2}.$ Пусть $N=max\{N_1,N_2\}.$ Тогда $\forall n.N: P_n< Q_n,$ т.к. окружности не пересекаются

5. Пусть
$$\exists \lim P_n = A$$
 и $orall n$ верно, что $P_n \leq B,$ то $A \leq B$

Действительно, в противном случае при A>B нашёлся бы такое номер, начиная с которого $P_n>B,$ что противоречит условию

6. Сумма/разность сходящихся последовательностей сходится, а её $\lim = \sum \lim$

$$\left. egin{aligned} \lim P_n &= A \ \lim Q_n &= B \end{aligned}
ight.
ight. P_n = A + lpha, \; Q_n = B + eta$$

$$P_n \pm Q_n = (A \pm B) + (lpha \pm eta) \Rightarrow \lim (P_n \pm Q_n) = A \pm B = \lim_{n o \infty} P_n \pm \lim_{n o \infty} Q_n$$

7. Произведение сходящихся последовательностей сходится последовательно и её $\lim_1 \cdot \lim_2$

$$\lim P_n = A$$
, $\lim Q_n = B \Rightarrow P_n = A + \alpha$, $Q_n = B + \beta$

$$P_n \cdot Q_n = (A + \alpha)(B + \beta) = AB + A\beta + \alpha B + \alpha \beta$$

$$\lim(P_n\cdot Q_n)=A\cdot B=\lim P_n\cdot \lim Q_n$$

8.
$$\lim \frac{P_n}{Q_n} = \frac{A}{B} = \frac{\lim P_n}{\lim Q_n}$$

$$\frac{A+lpha}{B+eta}=rac{A}{B}+(rac{A+lpha}{B+eta}-rac{A}{B})=rac{A}{B}+rac{lpha B+Aeta}{B(B+eta)}=\limrac{lpha B+Aeta}{B(B+eta)}=rac{0}{B^2}=0\Rightarrowrac{lpha B+Aeta}{B(B+eta)}$$

23 Билеты

Теорема Больцано-Вейештрасса

Из любой ограниченной последовательности точек в \mathbb{R}^n можно выделить сходящуюся подпоследовательность

Пусть $x^k = \{x_i^k\}$. Тогда согласно теореме Больцано-Вейерштрасса для одномерного случая, из любой ограниченной последовательности x_i^k можно выделить сходящуюся последовательность $x_i^{k_m}$

Проделав это, получим, что все сходящиеся последовательности $\{x_i^{k_m}\}$ сходятся, $\forall i=\overline{1,n}.$ Тогда согласно теореме о покоординатной сходимости, сходится и последовательность $x^{k_m}=\{x_i^{k_m}\}$

Теорема Б-В для одномерного случая:

Пусть x_n- ограничена. Значит $orall n \quad x_n < c$

Если множество значений последовательности ограничено, то хотя бы одно из них принимается бесконечное количество раз. Тогда $\forall k \quad a_{n_k}=x; \quad \lim a_{n_k}=x$

Множество значений бесконечно: $\Rightarrow \exists x =$ предельной точке.

 $\epsilon_1 \Rightarrow$ в $U_\epsilon(x)$ — бесконечно много элементов последовательности.

$$n_1: \quad x_{n_1} \in U_1(x)$$

 $\epsilon=rac{1}{2}\Rightarrow U_{\epsilon}(x)$ — бесконечное множество элементов $\Rightarrow n_2>n_1:x_{n_2}\in U_{rac{1}{2}}\in U_1$

 $\epsilon=rac{1}{k}\Rightarrow U_\epsilon$ — бесконечно много точек последовательности $\Rightarrow n_k>n_{k-1}>...>n_1\Rightarrow a_{n_k}\in U_{rac{1}{2}}\Rightarrow \lim a_{n_k}=x$

24 Билет

Теорема Кантора о вложенных шарах

Пересечение последующих вложенных замкнутых шаров не пусто. Если радиус o 0, то в пересечении есть 1 единственная точка.

Доказательство

Доказательство строится на основе покоординатной сходимости и соображении о том, что радиусы - это вложенные отрезки, а их длинны стремятся к нулю, то есть $\forall \epsilon>0$ \exists радиус, что $|b_n-a_n|<\epsilon$

Последовательность шаров B_n с центрами x_n и радиусами r_n .

Тогда x_n- фундаментальна, т.к. $ho(x_n,x_{n+1})< r_n,\ a\ r_n o 0,\ \lim r_n=0;$ ведь шары вложены и расстояние от центра x_n до $x_{n+1}< r_n.$

Тогда $\exists \lim x_n = x$, ведь R^n - полно.

Теперь возьмём шар B_n , он содержит все x_n , кроме, возможно $x_1, x_2, ..., x_{n-1}$ (центры других шаров). $\Rightarrow x-$ точка прикосновения для всех шаров, т.к. они замкнуты.

Допустим, $\exists y \in$ всем шара, а $ho(x,y) > 0 = \delta \quad y \in B_n$, как и x: по правилу треуегольника.

$$ho(x,y) \le
ho(x_n,x) +
ho(x_n,y) \Rightarrow x = y.$$

25 Билет

Предел, непрерывность функции многих переменных. Связь с повторными пределами

$$f(x)=f(x,y); \qquad f(x_0)=f(x_0,y_0).$$

Предел

Определение по Коши:

Число A- предел функции f по множеству E в точке x_0 при $x o x_0$, если $orall \epsilon>0 \quad \exists \delta>0: \ \forall x\in U_\delta(x_0): \ |f(x)-A|<\epsilon.$

Или же:

$$orall \epsilon > 0 \quad \exists \delta > 0: ||x-x_0|| < \delta \Rightarrow |f(x)-A| < \epsilon$$

Определение по Гейне:

Число A называется пределом функции f(x), при $x \to x_0$, если для любой последовательности x_n , такой, что $\lim_{n \to \infty} x_n = x_0$ числовая последовательность $\{f(x_n)\}$ сходится к A, т.е.

$$\lim f(x_n) = A.$$

Это записывается:

$$\lim_{x o x_0}=A$$

Коши~Гейне

ullet Гейне o Коши.

Пусть выполняется условие предела по Гейне, то есть:

1)
$$\lim x_n = x_0$$

2)
$$\lim_{n o \infty} f(x_n) = A$$

Но не выполняется условие предела по Коши, то есть:

$$\exists \epsilon > 0: \ orall \delta > 0 \quad \exists x \in U_\delta(x_0), \, \mathsf{Ho} \ f(x) \in U_\epsilon(A)$$

Пусть $\delta = \frac{1}{n}$. Тогда для $\exists x_n$ верно, что:

 $x_n \in U(x_0)$, но $f(x)
otin U_{\epsilon}(A)$, что нарушает второе условие предела по Гейне

• Коши ightarrow Гейне

Пусть
$$orall \epsilon > 0 \quad \exists \delta > 0 : orall x \in U_\delta(x_0) :$$

$$|f(x) - A| < \epsilon$$
.

Влзьмём произвольную последовательность

 $\{x_n\}$ сходящуюся к x_0 .

Тогда
$$orall \delta > 0 \quad \exists N : orall n > N \quad x_n \in U_\delta(x_0)$$

И по определению предела по Коши: $f(x_n) \in U_{\epsilon}(A)$ при orall n > N

Что соответсвует определению предела по Гейне

Непрерывность

- ullet Функция f непрерывна в точке x_0 , если $orall \epsilon>0$ $\exists \delta>0: orall x\in U_\delta(x_0)$ верно, что $|f(x)-f(x_0)|<\epsilon$, или же $\lim_{x o x_0}f(x)=f(x_0)$
- ullet Функция f(x,y) непрерывна в точке (x_0,y_0) по переменному x, если функция $f(x,y_0)$ непрерывна в (x_0,y_0)
- ullet Функция f(x,y) непрерывна в точке (x_0,y_0) по переменному y, если функция $f(x_0,y)$ непрерывна в (x_0,y_0)
- Функция f(x,y) непрерывна по совокупности переменных, если f(x,y) непрерывна в т. $f(x_0,y_0).$
- Функция непрерывна, если она непрерывна в каждой точке своего множества определений.
- Функция непрерывна на множестве, если непрерывно её сужение на этом множество

Связь с повторными пределами

Пусть $f:(E\subset R^2) o R$ — функция 2ух независимых переменных, $u=f(x_1,x_2)$, и точка $a(a_1,a_2)$ — предельная точка множества $E\subset R^2$, тогда:\

- 1. В смысле метрики пространства $R^2, \lim_{\substack{x_1 o a_1 \ x_2 o a_2}} f(x_1, x_2)$ это двойной предел2
- 2. Если при $(\forall x_1,(x_1,x_2)\in E)$ существует $\lim_{x_2\to a_2}f(x_1,x_2)=arphi(x_1)$ и существует $\lim_{x_1\to a_1}=arphi(x_1)$, то предел $\lim_{x_1\to a_1}\lim_{x_2\to a_2}f(x_1,x_2)$ называется повторным пределом.

Теорема (о связи между двойным и повторным пределом)

Пусть выполнены условия:

- 1. $\exists \lim_{x_1 o a_1} \lim_{x_2 o a_2} f(x_1, x_2), \; a(a_1, a_2)$ предельная точка множества
- 2. При $\forall x_1, (x_1,x_2) \in E$ существует конечный предел $\lim_{x_2 \to a_2} f(x_1,x_2) = \varphi(x_1),$ тогда существует повторный предел и равен двойному

Доказательство

Пусть для определённости двойной предел существует и он конечен $\lim_{\substack{x_1 \to a_1 \\ x_2 \to a_2}} f(x_1, x_2) = A \Leftrightarrow (\forall \xi > 0) (\exists \delta_1(\xi, a) > 0). \ (\forall (x_1, x_2) \in E, \ 0 < d(x, a) < d_1(\xi, a)) : |f(x_2, x_1) - A| < \frac{\epsilon}{2}, \ d(x, a) = \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2}, \ d < d(x, a) < \delta_1 - \text{ очевидно, что неравенство выполняется если одновременно}$

$$0<|x_1-a_1|<rac{\delta_1}{\sqrt{2}}$$
 и $0<|x_2-a_2|<rac{\delta_1}{\sqrt{2}}$. $d(x,a)=\sqrt{(x_1-a_1)^2+(x_2-a_2)^2}<\sqrt{rac{\delta_1^2}{2}+rac{\delta_1^2}{2}}=\delta_1$. Из того, что существует конечный предел при $\Leftrightarrow (orall \xi>0)(\exists \delta_2(\xi,a)>0)(orall x_2,(x_1,x_2)\in E,\ 0<|x_2-a_2|<\delta_2(\xi,a)):|f(x_1,x_2)-arphi(x_1)|<rac{\epsilon}{2}$. Выберем $\delta(\xi,a)=\min\{rac{\delta_1}{\sqrt{2}},\delta_2\}$. Составим разность $|arphi(x_1)-A|=|arphi(x_1)-f(x_1,x_2)+f(x_1,x_2)-A|\leq |f(x_1,x_2)-arphi(x_1)|+|f(x_1,x_2)-A|<rac{\epsilon}{2}+rac{\epsilon}{2}=\xi$, тогда $\exists\lim_{x_1\to a_1}arphi(x_1)=A$

26 Билет

Теоремы Вейерштрасса о непрерывных на компакте функциях

1. Непрерывная на замкнутом ограниченном множестве M функция ограничена на нём.

Доказательство

Допустим это не так, и f(x) не ограничена. Тогда $\forall n \in N: \exists x_n \in M: f(x_n) > n$. По теореме Больцано-Вейертштрасса из любой ограниченной последовательности можно выделить сходящуюся под последовательность

$$\Rightarrow x_{n_k}$$
 сходится к x_0 $x_{n_k}\in M;$ т.е. $x_0\in M$ $(f(x_n)>n o f(x_{n_k})>n_k;\ k o\infty).$ Но т.к. $f(x)$ — непрерывна $\Rightarrow f(x)$ непрерывна в $x_0\Rightarrow\lim_{x_{n_k}\to x_0}f(x_{n_k})=f(x_0)$. Это противоречие и доказывает, что $f(x)$ — ограничена сверху и снизу

 Непрерывная на замкнутом ограниченном множестве функция принимает на нём минимальное и максимальное значение Доказательство(для минимума, для максимума-аналогичное)

Пусть f(x) непрерывна на компакте P, а m - её точная нижняя грань.

Тогда

1.
$$f(x) \geq m \quad orall x \in P.$$
2. $orall \epsilon > 0 \quad \exists x_\epsilon$, такое, что $f(x_\epsilon) < m + \epsilon$

Пусть
$$\epsilon=rac{1}{n},$$
 тогда $x_n\in P;$

$$f(x_n) < m + rac{1}{n}$$

$$f(x_n) < m + rac{1}{n}$$

 $f(x_n) - m < rac{1}{n} \Rightarrow \lim f(x_n) = m.$

$$x_n$$
— ограничена $\Rightarrow x_{n_k}$ — сходится $\Rightarrow \lim x_{n_k} = c; \quad c \in P$

В случае непрерывности:

 $\lim f(x_{n_k})=f(c)$, но также $\lim f(x_n)=m\Rightarrow \lim f(x_{n_k})=m\Rightarrow f(c)=m\Rightarrow$ в некоторой точке $c \in P$ принимается min значение

27 Билет

Частные производные и дифференциал. Эквивалентные записи. Необходимое условие дифференцируемости.

Пусть в некоторой области D мы имеем функцию u = f(x,y) $M(x_0,y_0) \in [x,y].$

Тогда если зафиксировать $y=y_0$, то функция f(x,y) станет зависеть лишь от одной переменной x(в окрестности x_0)

Можно вычислить в точке x_0 производную по x (частная производная по аргументу при фиксированном другом)\

1. Придадим x_0 приращение Δx , тогда функция получит приращение:

$$\Delta x u = \Delta x f(x_0, y_0) = f(x_0 + \Delta x, y_0) - f(x_0, y_0).$$

2. Разделим приращение функции на приращение аргумента и перейдя к \lim , получим:

$$\lim_{\Delta x o 0} rac{\Delta_x u}{\Delta x} = \lim_{\Delta x o 0} rac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}.$$

Это частная производная по x в точке (x_0, y_0)

Её можно обозначить как:

$$\frac{du}{dx}$$
; u'_x ; $f'(x_0, y_0)$

Для y всё аналогично.

Пример:
$$f(x,y)=x^y$$
 $rac{df}{dx}=y\cdot x^{y-1}; \quad rac{df}{dy}=x^y\cdot \ln y.$

Дифференциал это произведение частной производной на соответсвующее приращение. Например, произведение частной производной по x на приращение Δx – частный диффернииал по x.

$$dxu = \frac{du}{dx}\Delta x$$

Если под диффернциалом dx переменной x подразумевать приращение Δx , то

$$dxu=rac{du}{dx}dx$$

Функция называется дифференцируемой в точке (x_0,y_0) , если её приращение в этой точке можно представить как:

$$_{\Delta}f(x_0, y_0) = A_{\Delta x} + B_{\Delta y} + 0(\sqrt{_{\Delta}x^2 + _{\Delta}y^2}), \quad (1)$$

$$egin{aligned} \Delta x, \Delta y &
ightarrow 0. \ & x = (x,y) \ & x_0 = (x_0,y_0) \ & \overline{\Delta x} = (\Delta x, \underline{\Delta y}) \end{aligned}$$

$$egin{aligned} \overline{_{\Delta}x} &= (_{\Delta}x,_{\Delta}y) \ ||_{\Delta}x|| &= \sqrt{_{\Delta}x^2 + _{\Delta}y^2} \ \overline{F} &= (A,B) \end{aligned}$$

$$egin{aligned} F &= (A,B) \ \Delta f(x_0) &= \overline{F_\Delta x} + 0(||\Delta x||), \quad \Delta x
ightarrow 0. \end{aligned}$$

Необходимое условие дифференцируемости

Если функция дифференцируема в точке $(x_0,y_0),$ то она имеет в этой точке все частные производные

Доказательство:

1. Зафиксируем
$$y(_\Delta y=0)$$
 в (1) $_\Delta f_x=A_{_\Delta x}+0(_\Delta x)\Rightarrow \frac{_\Delta f_x}{_\Delta x}\to A=f'_x,\quad _\Delta x\to 0$ 2. Зафиксируем $x;\quad _\Delta x=0$ и получим: $_\Delta f_y=B_{_\Delta y}+0(_\Delta y)\Rightarrow \frac{_\Delta f_y}{_\Delta y}\to B=f'_y;\quad _\Delta y\to 0.$ Как следствие имеем $_\Delta f=\overline{f'}\cdot \overline{_\Delta x}+0(||_\Delta x||)$

Эквивалентная запись

Функция f(x,y) называтеся дифференцируемой в точке (x_0,y_0) , если её полное приращение в это точке представимо в виде:

$$\Delta f(x_0,y_0) = rac{df}{dx}(x_0,y_0)\Delta x + rac{df}{dy}(x_0,y_0)\Delta y + lpha\cdot\Delta x + eta\cdot\Delta y,$$

где функция $lpha=lpha(\Delta x,\Delta y)$ и $eta=eta(\Delta x,\Delta y)$ — бесконечно малые при $\Delta x,\ \Delta y o 0$

28 Билет

Производные по направлению. Дифференцирование композиции

Производная по направлению

Пусть на некоторой области определена функция f(M). Задана точка $M(x_0,y_0,z_0)$ и через неё проходит некоторая ось e M(x,y,z) так же принадлежит этой оси.\

 M_0M- длина отрезка $M_0M,$ взятая с " + " если направление совпадает с e, и с " - ", если у eдургое направление

Пусть M неограничено приближается к M_0 , тогда предел:

$$\lim_{M o M_0}=rac{f(M)-f(M_0)}{M_0M}=rac{df(M_0)}{de}$$
 — производная по направлению e

Теперь есть точка M_0 и $M; \quad M_0 M = S-$ расстояние между ними.

$$\Delta x = x - x_0; \quad \Delta y = y - y_0; \quad \Delta z = z - z_0$$

Зададим направляющие косинусы:

$$x-x_0=S\coslpha; \quad y-y_0=S\coseta; \quad z-z_0=S\cosarphi$$

Тогда f(M) можно представить как f(S) :

$$f(x_0 + S\cos\alpha; y_0 + S\cos\beta; z_0 + S\cos\varphi).$$

Пусть они дифференцируема в $f(x_0, y_0, z_0)$.

Тогда:

$$\frac{df(M_0)}{de} = \lim_{M \to M_0} = \frac{f(M) - f(M_0)}{M_0 M} = \lim_{S \to 0} \frac{f(x_0 + S\cos\alpha; y_0 + S\cos\beta; z_0 + S\cos\varphi) - f(x_0, y_0, z_0)}{S} = \frac{df}{ds} = \frac{df(M_0)}{dx} \cdot \frac{dx}{dS} + \frac{df(M_0)}{dy} \cdot \frac{dy}{dS} + \frac{df(M_0)}{dz} \cdot \frac{dz}{ds}$$

Ho!
$$rac{dx}{dS} = (x_0 + S\cosarphi)' = \coslpha$$
 и т.п.

То есть:
$$rac{df}{dS}=rac{df(M_0)}{dx}\coslpha+rac{df(M_0)}{dy}\coseta+rac{df(M_0)}{dz}\cosarphi$$

И если f(M) дифференцируема в (x_0,y_0,z_0) можно по формуле вычислить любую производную по направлению по формуле.

Дифференциал композиции

$$d(f(g)) = \overline{f'}(g) \cdot d\overline{g}$$

Если f(g) дифференцируема в точке $g(x_0)$, а g дифференцируема в точке x_0 .

$$egin{cases} x = x(t) \ y = y(t) \end{cases}$$

$$x = (x, y)$$
 $x_0 = (x_0, y_0)$ $x(t) = (x(t), y(t))$

$$rac{\Delta x}{\Delta t} = (rac{\Delta x}{\Delta t}; \; rac{\Delta y}{\Delta t})
ightarrow (x'(t)dt, y'(t)dt).$$

$$dx(t) = x'(t)dt = (x'(t)dt, y'(t)dt) = (dx(t), dy(t))$$

Доказательство

Пусть f(x) дифференцируема в точке x_0 , а x(t) в точке t_0

$$\begin{array}{l} _{\Delta}F(t) = d(f(x(t),\ y(t))) = f'_{x}(x_{0})_{\Delta}x + f'_{y}(x_{0})_{\Delta}y + \alpha(_{\Delta}x,\ _{\Delta}y) = f'_{x}(x_{0})(x'(t_{0})_{\Delta}t + \beta(_{\Delta}t)) + f'_{y}(x_{0})(y'(t_{0})_{\Delta}t + \gamma(_{\Delta}t)) = f'_{x}(x_{0})x'(t_{0})_{\Delta}t + f'_{y}(x_{0})y'(t_{0})_{\Delta}t + \overline{\alpha}(_{\Delta}t) = \overline{f'}(x_{0})\overline{x}(t_{0})_{\Delta}t + \overline{\alpha}(_{\Delta}t); \end{array}$$

$$\overline{f'}(x_0)d\overline{x}(t_0)=dF(t_0)$$
, где $F(t_0)=f=(x(t_0))$

Производные высших порядков. Теорема о смешанных производных

Производной n-ого порядка называется производная от производной n-1 порядка

Частные производные $\frac{df(x,y)}{dx}$ и $\frac{df(x,y)}{dy}$ называют частным производными первого порядка. Их модно рассматривать как функции от $(x,y)\in D$. Эти функции могут иметь частные производные, которые называются частынми производными второго порядка. Они определяются и обозначаются следующим образом:

1.
$$\frac{d}{dx}(\frac{dz}{dx}) = \frac{d^2z}{dx^2} = z''_{xx} = f''_{x^2}(x,y)$$
2. $\frac{d}{dx}(\frac{dz}{dy}) = \frac{d^2z}{dydx} = z''_{xy} = f''_{xy}(x,y)$
3. $\frac{d}{dy}(\frac{dz}{dx}) = \frac{d^2z}{dxdy} = z''_{yx} = f''_{yx}(x,y)$
4. $\frac{d}{dy}(\frac{dz}{dy}) = \frac{d^2z}{dy^2} = z''_{yy} = f''_{y^2}(x,y)$

Теорема Шварца о равенстве смешанных производных

Если:

- 1. f(x) определена в некоторой области D и имеет в этой области:
 - \circ Первые производные $f_x'(x)$ и $f_y'(x)$
 - $\circ~$ Вторые производные (смешанные) f_{xy}'' и f_{yx}''
- 2. $f_{xy}^{\prime\prime}$ и $f_{yx}^{\prime\prime}$ определены в некоторой окрестности $U(x_0)$
- 3. $f_{xy}^{\prime\prime}$ и $f_{yx}^{\prime\prime}$ непрерывны в x_0

To
$$f_{xy}^{\prime\prime}=f_{yx}^{\prime\prime}$$

Или же:

Функция определена в n-мерной области и имеет в этой области (k-1)-ые производные - всевозможные частные производные и смешанные производные k-ого порядка, α к тому же непрерывна в точке x_0 и существует в её окрестности, то все смешанные производные k-ого порядка равны

Теорема о неявной функции

Теорема о неявной функции — общее название для теорем, гарантирующих локальное существование и описывающих свойства неявной функции, т. е. функции

$$y=f(x),\quad f:X o Y,$$
 заданной уравнением $F(x,y)=z_0,\quad F:X imes Y o Z$ и значение $z_0\in Z$ фиксирован

Одномерный случай

Если функция F:R imes R o R

- непрерывна в некоторой окрестности точки (x_0, y_0)
- При фиксированном x, функция F(x,y) строго монотонна по y в данной окрестности, тогда найдётся такой двумерный промежуток $I=I_x imes I_y$, являющийся окрестностью точки (x_0,y_0) , и такая непрерывная функция $f:I_x o I_y$, что для любой точки $(x,y) \in I$ $F(x,y)=0 \Leftrightarrow y=f(x)$

Теорема о неявной функции/рамка

Обычно дополнительно предполагается, что функция F непрерывно дифференцируема, в этом случае условие монотонности следует из того, что $F_y'(x_0,y_0) \neq 0$, здесь F_y' обозначает частную производную F по y. Более того, в этом случае производная функции f может быть вычислена по формуле

$$f'(x) = -rac{F_x'(x,f(x))}{F_y'(x,f(x))}$$

30 Билет

Экстремумы. Необходимое и достаточное условие экстремума.

Экстремум функции - локальный минимум или максимум.

Точка $m(x_0,y_0)$ – локальный минимум, если $\exists U_{x_0}: \forall x \in x_0: f(x) \geq f(x_0)$

Тока $m(x_0,y_0)$ — локальный максимум, если $\exists U_{x_0}: \forall x \in x_0: f(x) \leq f(x_0)$

Это не строгое условие, в строгом условии знаки <>.

Необходимое условие экстремума

Если f(x) имеет в точке x_0 экстремум, то в этой точке частные производные первого порядка равны 0 или не существуют. Это стационарная точка.

Доказательство:

Допустим у нас есть f(x,y) и точка $m(x_0,y_0)$ — экстремум Зафиксировав $\Delta y=0(y=y_0)$, получим функцию от 1 переменной $f(x,y_0)$, и по теореме Ферма, в точке c её производная $f_x'(x_0,y_0)=0$ или не существует. Аналогично для $f_y'(x_0,y_0)$

Достаточное условие экстремума

Для этого понадобится формула Тейлора

$$f(x+\Delta x)-f(x_0)=df(x_0)+rac{d^2f(x_0)}{2!}+o(||\Delta x||^3)$$

Теорема:

Если функция дважды дифференцируема в точке x_0 и её второй дифференциал $d^2f>0,$ то это точка минимума.

Если в точке $x_0 \ d^2 f < 0$, то это точка максимума.

Если же в точке $x_0 \ d^2 f = 0$, то нужны дополнительные исследования - берём формулу Тейлора для $d^3 f$ и $d^4 f$ (в 3м меняем знак!)

Можно считать 2мя способами:

1.
$$d^2f=f_{xx}''(x_0)\Delta x^2+2f_{xy}''(x_0)\Delta x\Delta y+f_{yy}''\Delta y^2=\Delta y^2(f_{xx}''(x_0)(\frac{\Delta x}{\Delta y})^2+2f_{xy}''(x_0)\frac{\Delta x}{\Delta y}+f_{yy}''(x_0)).$$
 $f_{xx}''(x_0)t^2+2f_{xy}''t+f_{yy}''$ Считаем дискриминант: a) $D>0\Rightarrow d^2f>0$

б)
$$D < 0 \Rightarrow d^2 f < 0$$

в)
$$D=0...?????$$

2. Критерий Сильвестра Найти при помощи
$$rac{df}{dx}=0$$
 $rac{df}{dy}=0$ точку $M(x_0,y_0)$

Составим матрицу:

$$egin{pmatrix} \left(egin{array}{cc} rac{d^2f}{dx^2} & rac{d^f}{dxdy} \ rac{d^f}{dydx} & rac{d^f}{dy^2} \end{array}
ight) M(x_0,y_0)$$

Если все определители по минорам $> (<)0 \Rightarrow d^2 f > (<)0$

31 Билет

Двойной и тройной интеграл. Определение. Свойства.

Стоит сказать, что свойства обычного интеграла(от 1 переменной) ничем не отличаются от свойст двойного и тройного интеграла.

Двойной интеграл

ullet Объём кривоповрехностного цилиндра. Пусть G- квадрируемое множество - область на плоскости

На этом компакте задана f(x,y)=z.

Делим компакт G на области G_i так, что $G_i \cap G_j = \emptyset; \quad i
eq j;$

$$T=\{G_i;\ igcup_{i=1}^n G_i=G,\ i=\overline{1,n}\}$$

В каждой области выбираем произвольно $P_i,$ тогда $V_i = f(P_i) \cdot S(G_i).$

$$\sum_{i=1}^n V_i = \sum_{i=1}^n f(P_i) \cdot S(G_i).$$

Теперь скажем о диаметре. Внутри каждого G_i есть диаметр:

$$S(G_i)=max||P_1-P_2||,\quad P_1,P_2\in G$$

Выберем $\delta(T) - max\{S(G_i)\}$

Тогда при измельчении областей G_i будет уменьшаться и $\delta(T) o 0.$

$$\lim_{\delta(T) o 0} \sum_{i=1}^n f(P_i) \cdot S(G_i) = I = \iint\limits_G f(x) dS$$

https://youtu.be/THJdwU5Ng-Y?si=WpcuQzAfy5xwHXX3

Двойной интеграл - предел интегрируемых сумм при диаметре разбиения ightarrow 0 не зависит от выбора точек P_i и разбиения

Свойства

1.
$$\iint\limits_{G\atop i=1} dS = S(G) \quad ext{(t.k. } h=0)$$
 $\sum\limits_{i=1}^{G} S(G_i) = S(G).$

2.
$$\iint\limits_{G}cf(P)dS=c\iint\limits_{G}f(P)dS$$

3.
$$\iint\limits_G (f(P)+g(p))dS=\iint\limits_G f(P)dS+\iint\limits_G g(P)dS$$
 Если все \iint существуют

4. Если f(P)иg(P) интегрируемы на Gf(P) < g(P), то

$$\iint\limits_{C}f(P)dS<\iint\limits_{C}g(P)dS$$

5. Аддитивность по площади

$$\begin{aligned} &6. \left| \iint\limits_{G} f(P) dS \right| \leq \iint\limits_{G} |f(P)| dS \\ &- |f(P)| dS < f(P) dS < |f(P)| dS \\ &- \iint\limits_{G} f(P) dS < \iint\limits_{G} |f(P) dS < \iint\limits_{G} |f(P)| dS \end{aligned}$$

7. Если f(P) интегрируема на компакте G и непрерывна на нём, то $\exists c \in G:$

$$f(c) = rac{\iint\limits_G f(P) dS}{S(G)}$$

По т.2 Вейештрасса:

f(P) имеет максимум и минимум значений на G.

$$m \leq f(p) \leq M \quad \forall P \in G.$$

$$mS(G) \leq \iint\limits_G f(P) dS \leq MS(G)$$

$$m \leq rac{\iint\limits_G f(P)dS}{S(G)} \leq M$$

Соответсвенно т.к. f(P)— непрерывна, то m < c < M , значит, $\exists c: \ f(c) = rac{\iint\limits_G f(P) dS}{S(G)}$

8. Если f(P) сегментируема на координатном компакте G, а квадрируемый компакт D такой, что $D\subset G$, то

f(P) интегрируема на G. Если f ограничена на G, то ограничена и на D.

Разобьём G на отрезки $\mathrm{T}_1 - orall \epsilon > 0$ $\exists \delta,$ что $\overline{S_G} - \underline{s_G} < \epsilon.$ Сделав тоже самое с D,

дополним его разбиение T_2 до $\mathrm{T}_3,$ чтобы его мелкость была $<\delta.$

$$\overline{S_D} - \underline{s_D} < \overline{S_G} - \underline{s_G} < \epsilon$$
. ч.т.д.

Тройной интеграл

Значение: масса фигуры

Пусть G- кубируемая область пространства. Тогда рзобьём её на области:

$$T\{G_i; G_i \cap G_j = \emptyset; \cup G_i = G\}.$$

$$\delta(G_i) = max||P_1 - P_2||, \quad P_1, P_2 \subset G_i$$

$$\delta T = max\{\delta(G_i)\}$$

Тогда выберем P_i в каждом G

 $m_i = f(P_i) \cdot V(G_i)$ — масса одной области.

$$\sum\limits_{i=1}^{n}f(P_{i})\cdot V(G_{i})$$
— интегрируемая сумма.

Пусть
$$\delta T o 0,$$
 тогда $\lim_{\delta T o 0} \sum_{i=1}^n f(P_i) \cdot V(G_i) = I$

Тройной интеграл - предел интегрируемой суммы при мелкости разбиения o 0, не зависящий от способа разбиения, и выбора точек P_i

Свойства аналогичны двойному, только с тройным интегралом

https://www.youtube.com/watch?v=SJRV49TikqI

32 Билет

Сведение двойного интеграла к повторным интегралам

Теорема 1.

Пусть f(x,y) определена в области G=[a,b] imes [c,d]:

Для
$$f(x,y)$$
 в G

1.
$$\exists \iint\limits_{C} f(x,y) dx dy$$

1.
$$\exists \iint\limits_G f(x,y) dx dy$$
 2. $orall x \in [a,b] \quad \exists I[x] = \int\limits_c^d f(x,y) dy.$

Тогда
$$\exists\int\limits_a^b dx\int\limits_c^d f(x,y)dy=\iint\limits_G f(x,y)dxdy.$$

Теорема 2.

Пусть
$$G: egin{cases} a \leq x \leq b \ y_1(x) \leq y \leq y_2(x) \end{cases}$$

Тогда, если
$$f(x,y)$$
 определена на G : $\exists \iint\limits_G f(x,y) dx dy$

$$orall x \in [a,b] \quad \exists I[x] = \int\limits_{y_1(x)}^{y_2(x)} f(x,y) dy$$

$$\Rightarrow \exists \int\limits_a^b dx \int\limits_{y_1(x)}^{y_2(x)} f(x,y) dy = \iint\limits_G f(x,y) dx dy$$

Теорема 3.

$$G = egin{cases} c \leq y \leq d \ x_1(y) \leq x \leq x_2(y) \end{cases}$$

Если f(x,y) определена на компакте G и \exists интегралы:

$$\left\{egin{aligned} \iint\limits_G f(x,y) dx dy \ \iint\limits_{x_2(y)} f(x,y) dx \end{aligned}
ight. \Rightarrow \exists I_y = \int\limits_c^d dy \int\limits_{x_1(y)}^{x_2(y)} f(x,y) dx$$

33 Билет

Полярные, цилиндрические, сферичиские координаты. Замена переменных интегрирования.

Замена переменной в двойном интеграле

Пусть функция f(x,y) интегрируема в некоторой области D :

$$\iint\limits_{D} f(x,y) dx dy$$

Можно выполнить замену:

$$x = \phi(u, v)$$

 $y = \psi(u, v)$

Тогда важен ещё Якобиан-определитель матрицы $2\mathrm{x}2$

$$J = egin{bmatrix} rac{dx}{du} & rac{dx}{dv} \ rac{dy}{du} & rac{dy}{dv} \end{bmatrix}
eq 0$$

Тогда:

$$\iint\limits_{D}f(\phi,\psi)\cdot |J|\cdot dudv$$

Замена переменной в тройном интеграле

Пусть функция f(x,y,z) интегрируема в некоторой области D :

$$\iiint\limits_{D}f(x,y,z)dxdydz$$

$$egin{aligned} x &= \phi(u,v,\mu) \ y &= \psi(u,v,\mu) \ z &= \omega(u,v,\mu) \end{aligned}$$
 $J = egin{aligned} rac{dx}{du} & rac{dx}{dv} & rac{dx}{d\mu} \ rac{dy}{du} & rac{dy}{dv} & rac{dz}{d\mu} \ rac{dz}{du} & rac{dz}{dv} & rac{dz}{d\mu} \end{aligned}
onumber
onumber $J = egin{aligned} rac{dx}{du} & rac{dy}{dv} & rac{dz}{d\mu} \ rac{dz}{du} & rac{dz}{dv} & rac{dz}{d\mu} \ \end{pmatrix}
eq 0$$

Тогда:

$$\iiint\limits_{D}f(\phi,\psi,\omega)\cdot |J|\cdot dudvd\mu$$

Переход к полряным координатам

f(x,y) определена и интегрируема на компакте D.

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$$

$$J=egin{aligned} \cosarphi & -
ho\sinarphi \ \sinarphi &
ho\cosarphi \end{aligned} =
ho\cos^2arphi+
ho\sin^2arphi=
ho-$$
 всегда >0
$$\iint\limits_D f(
ho\cosarphi,\;
ho\sinarphi)\cdot
ho\cdot d
ho\cdot darphi$$

в полярных координатах

Переход к сфеерическим координатам

$$\begin{cases} x = \rho \sin \theta \cdot \cos \varphi \\ y = \rho \sin \theta \cdot \sin \varphi \\ z = \rho \cos \theta \end{cases}$$

$$J = \begin{vmatrix} \sin \theta \cos \varphi & \rho \cos \theta \cos \varphi & -\rho \sin \theta \cos \varphi \\ \sin \theta \cdot \sin \varphi & \rho \cos \theta \sin \varphi & \rho \sin \theta \cos \varphi \\ \cos \theta & -\rho \sin \theta & 0 \end{vmatrix} = -r^2 \sin \theta$$

$$\iiint f(x, y, z) dx dy dz = \iiint = f(\rho \sin \theta \cos \varphi; \rho \sin \theta \sin \varphi; \rho \cos \theta) \cdot -r^2 \sin \theta d\rho d\varphi d\theta$$

Переход к цилиндрическим координатам

$$\left\{egin{aligned} x &=
ho \cdot \cos arphi \ y &=
ho \cdot \sin arphi \ z &= z \end{aligned}
ight.$$

$$J = egin{array}{cccc} \cos arphi & -
ho \sin arphi & z \ \sin arphi &
ho \cos arphi & 0 \ 0 & 0 & 1 \ \end{bmatrix} = r
eq 0 \Rightarrow \iint\limits_{D} f(x,y,z) dx dy dz = \iint\limits_{D} f(
ho \cdot \cos arphi;
ho \cdot \sin arphi; z) \cdot
ho d
ho darphi darphi dz$$