# **CSC265 Notes**

Max Xu

'25 Fall

# **Contents**

1 Day 1: Review and ADTs (Sept 3, 2025)

2

Max Xu ('25 Fall) CSC265 Notes

## §1 Day 1: Review and ADTs (Sept 3, 2025)

#### §1.1 ADTs

Abstract data types (ADTs) are a mathematical object, which has a set of operations. Examples include a set, a sequence, or a graph.

A data structure that implements an ADT provides a representation for the object in memory and algorithms for each operation. There may exist many different data structures that implement the same ADT, with varying running time for each operation.

### Example 1.1 (Dictionary ADT)

The ADT consists of:

- ullet Object: a set of elements, with each having a unique key from totally ordered universe U
- Operations:

 $\mathbf{Insert}(S, x)$  adds an element with key x to the set S if S does not contain an element with key x

**Delete**(S, x) removes an element with key x from S if it exists

**Search**(S, x) returns a pointer to the element in S with key x, or nil if such an element doesn't exist

Here we are not worried about key-value pairs, although a specific implementation of this ADT might. We could implement this as a set of keys, with no associated element for each key.

An example implementation of dictionary ADT using singly linked list (unsorted) can have the following properties:

#### §1.2 Review

Let t(x) be the number of steps taken by an algorithm A on input x. Let the worst case step complexity of A be T(n), where

$$T(n) = \max\{t(x) \mid x \text{ is an input of size } n\}$$

Typically, this is very hard to determine exactly, which is why asymptotic notation is instead, which still captures how quickly T(n) grows with respect to n.

 $T(n) \in O(f(n))$  if there exists a constant  $c, n_0 \in \mathbb{N}$ , for all  $n \in \mathbb{N}$  such that when  $n > n_0, T(n) \leq cf(n)$ .  $T(n) \in \Omega(f(n))$  if there exists a constant  $c, n_0 \in \mathbb{N}$ , for all  $n \in \mathbb{N}$  such that when  $n > n_0, cf(n) \leq T(n)$ .  $T(n) \in \Theta(f(n))$  if  $T(n) \in O(f(n))$  and  $T(n) \in \Omega(f(n))$ .

For upper bound, show that there exists positive constant c and for all n large enough, for every input of size n, the algorithm takes at most cf(n) steps. We write  $T(n) \in O(n)$ .

For lower bound, show that there exists positive constant c and for all n large enough, there exists some input of size n that makes the algorithm take at least cf(n) steps. We write  $T(n) \in \Omega(n)$ .

Max Xu ('25 Fall) CSC265 Notes

## BubbleSort(A[1...n])

```
1: last = n
2: sorted = False
3: while not sorted do
      sorted = True
      for j = 1 to last -1 do
 5:
          if A[j] > A[j+1] then
6:
             swap A[j] and A[j+1]
 7:
             sorted = False
8:
          end if
9:
      end for
10:
      last = last - 1
11:
12: end while
```

#### **Upper Bound**

The outer loop can occur at most n times, as last starts at n and decrements by 1 every time the outer loop runs. The inner loop goes from 1 to last -1, meaning there are at most last -1 iterations of the inner loop. This can be written as the sum

$$\sum_{i=1}^{n} (i-1) = \left(\sum_{i=1}^{n} i\right) - n = \frac{n(n+1)}{2} - n = \frac{n^2 - n}{2}$$

meaning for this algorithm  $T(n) \in O(n^2)$ .

#### Lower Bound

We can pick the list A = [n, n-1, ..., 2, 1]. This list has the property that the first element is the largest number, barring the sorted block of size i-1 present at the end of the array at the start of the *i*-th iteration.<sup>1</sup> This means that it will take n-i swaps, which means it takes

$$\sum_{i=1}^{n} (n-i) = n^2 - \frac{n(n+1)}{2} = \frac{n^2 - n}{2}$$

steps total, meaning for this algorithm  $T(n) \in \Omega(n^2)$ .

#### Theta Bound

As 
$$T(n) \in \Omega(n^2)$$
 and  $T(n) \in O(n^2)$ , we have  $T(n) \in \Theta(n^2)$ .

<sup>&</sup>lt;sup>1</sup>i think iterations start at 1 in this course?