# TapNet: Multivariate Time Series Classification with Attentional Prototypical Network

Xuchao Zhang $^1$ ,  $^2$ Yifeng Gao,  $^2$ Jessica Lin, Chang-Tien Lu $^1$ 

 $^{1}$ Discovery Analytics Center, Virginia Tech, Falls Church, VA







ull Paner



## Introduction

With the advance of sensor technologies, the Multivariate Time Series classification (MTSC) problem has continuously received a significant amount of attention in recent decades. Our paper focuses on:

- Multivariate Time Series Classification: Given a group of multivariate time series  $\mathcal{X} = \{X_1, \dots, X_n\} \in \mathcal{R}^{n \times m \times l}$ , where n is the number of time series, and the corresponding labels  $y = \{y_1, \dots, y_n\} \in \mathcal{R}^n$  for each time series, the MTSC task is to train a classifier  $f_X \mapsto y$  to predict a class label for a multivariate time series whose label is unknown.
- Semi-supervised Multivariate Time Series Classification: Assume model can utilize unlabeled data during the training process to help improve the overall classification performance.

## Challenge

- Traditional time series classification approaches may generate huge amounts of feature candidates.
- Deep learning based methods suffer from a shortage of labelled data.

## Contribution

We propose a novel attentional prototype network (TapNet):

- TapNet train the feature representation based on their distance to class prototypes with inadequate data labels.
- TapNet can be extended into its semi-supervised setting by utilizing the unlabeled data.

# **Attentional Prototypical Network**



Let  $H_k = [h_1, \ldots, h_{S_k}] \in \mathcal{R}^{S_k \times d}$  be a matrix of time series embeddings belonging to the class k, where  $S_k$  represents the set of indices for data samples with class label k.

$$c_k = \sum_i A_{k,i} \cdot H_{k,i}, \tag{1}$$

The attention weights  $A_{k,i}$  for the k class can be computed by the following equation:

$$A_k = \left( w_k^T \tanh \left( V_k H_k^T \right) \right), \tag{2}$$

the distribution over classes for a given time series  $x \in \mathcal{R}^d$  can be represented as a softmax over distances to the prototypes in the embedding space as follows:

$$p_{\Theta}(y = k|x) = \frac{\exp\left(-D(f_{\Theta}(x), c_k)\right)}{\sum_{i} \exp\left(-D(f_{\Theta}(x), c_i)\right)},\tag{3}$$

where the function  $D: \mathcal{R}^d \times \mathcal{R}^d \mapsto [0, +\infty)$  is the distance function to measure the distances between two embedding vectors. The distance function can be chosen from *regular Bregman divergences* Banerjee et al. (2005)

## **Random Dimension Permutation**



## Result

Multivariate Time Series Classification: We compare our proposed approach with eight different benchmark approaches, including the latest bag-of-patterns model based multivariate time series classification approach, deep learning framework, and common distance-based classifiers.

| Dataset                     | TapNet | MLSTM<br>-FCN | WEASEL<br>+MUSE | ED-1NN | DTW-<br>1NN-I | DTW-1NN-<br>D | ED-1NN (norm) | DTW-<br>1NN-I<br>(norm) | DTW-1NN-<br>D<br>(norm) |
|-----------------------------|--------|---------------|-----------------|--------|---------------|---------------|---------------|-------------------------|-------------------------|
| Articulary Word Recognition | 0.987  | 0.973         | 0.99            | 0.97   | 0.98          | 0.987         | 0.97          | 0.98                    | 0.987                   |
| AtrialFibrillation          | 0.333  | 0.267         | 0.333           | 0.267  | 0.267         | 0.2           | 0.267         | 0.267                   | 0.22                    |
| BasicMotions                | 1      | 0.95          | 1               | 0.675  | 1             | 0.975         | 0.676         | 1                       | 0.975                   |
| CharacterTrajectories       | 0.997  | 0.985         | 0.99            | 0.964  | 0.969         | 0.99          | 0.964         | 0.969                   | 0.989                   |
| FaceDetection               | 0.556  | 0.545         | 0.545           | 0.519  | 0.513         | 0.529         | 0.519         | 0.5                     | 0.529                   |
| HandMovementDirection       | 0.378  | 0.365         | 0.365           | 0.279  | 0.306         | 0.231         | 0.278         | 0.306                   | 0.231                   |
| Heartbeat                   | 0.751  | 0.663         | 0.727           | 0.62   | 0.659         | 0.717         | 0.619         | 0.658                   | 0.717                   |
| MotorImagery                | 0.59   | 0.51          | 0.5             | 0.51   | 0.39          | 0.5           | 0.51          | N/A                     | 0.5                     |
| NATOPS                      | 0.939  | 0.889         | 0.87            | 0.86   | 0.85          | 0.883         | 0.85          | 0.85                    | 0.883                   |
| PEMS-SF                     | 0.751  | 0.699         | N/A             | 0.705  | 0.734         | 0.711         | 0.705         | 0.734                   | 0.711                   |
| PenDigits                   | 0.98   | 0.978         | 0.948           | 0.973  | 0.939         | 0.977         | 0.973         | 0.939                   | 0.977                   |
| Phoneme                     | 0.175  | 0.11          | 0.19            | 0.104  | 0.151         | 0.151         | 0.104         | 0.151                   | 0.151                   |
| SelfRegulationSCP2          | 0.55   | 0.472         | 0.46            | 0.483  | 0.533         | 0.539         | 0.483         | 0.533                   | 0.539                   |
| SpokenArabicDigits          | 0.983  | 0.99          | 0.982           | 0.967  | 0.96          | 0.963         | 0.967         | 0.959                   | 0.963                   |
| StandWalkJump               | 0.4    | 0.067         | 0.333           | 0.2    | 0.333         | 0.2           | 0.2           | 0.333                   | 0.2                     |
| Avg. Rank                   | 1.15   | 4.23          | 3.23            | 5.76   | 5.15          | 4.46          | 6.15          | 5.38                    | 4.7                     |
| Wins/Ties                   | 12     | 1             | 4               | 0      | 0             | 1             | 0             | 1                       | 0                       |

**Semi-supervised Multivariate Time Series Classification**: We next evaluation the performance of our model on five datasets that have a significantly imbalanced training/test split.

Table 3: Performance of Semi-Supervised TapNet **TapNet** Dataset (Training/Test) Semi-**TapNet** Handwriting 0.3565 0.3882 (150/850)**UWaveGestureLibrary** 0.894 0.903 (120/320)ArticularyWordRecognition 0.987 0.993 (275/300)StandWalkJump 0.4 0.4 (12/15)**JapaneseVowels** 0.965 0.968 (270/370)

**Inspection of Class Prototype**: Finally, we visualize the class prototypes and their corresponding time series embeddings:



## References

Banerjee, A., Merugu, S., Dhillon, I. S., & Ghosh, J. (2005). Clustering with bregman divergences. *Journal of machine learning research*, 6(Oct), 1705–1749.