

Week 01.1: Introduction

DS-GA 1004: Big Data

Instructor: Brian McFee

The three four "V"s of big data

Volume	The quantity of data
Velocity	Speed at which new data is collected
Variety	Data may be structured or heterogeneous
*Veracity	Data can be noisy, incomplete, or wrong

big data, n.:

Whatever doesn't fit on your laptop

More seriously...

- The definition of "big" depends on how the data is used and stored
- In practical terms, "big data" is differentiated by requiring coordinated processing by multiple computers
- Much of this class will focus on distributed storage and computation

Why this class?

- The tools are constantly evolving
- Odds are high that current software will be obsolete in a few years
- The underlying concepts don't change so rapidly
 - ⇒ Get proficient with concepts and current tools, and **learn to adapt**!

What should you get from this class?

- Familiarity with distributed storage and computation
- Appreciation for the technical challenges of big data
- Understanding of when to use which methods and tools

Your course staff for the semester

Instructor: Brian McFee

Contact: brian.mcfee@nyu.edu

Office hours: Th 09:00-11:00 EST/EDT, http://bit.ly/dsga-1004-s22

Section leaders:

- Wed 17:55-18:45 Xintong Li
- Wed 12:30-13:20 Jack Zhu
- Wed 13:30-14:20 Saumyaa Shah
- Wed 19:10-20:00 Safwan Mahmood

- + Graders:
- Artie Shen
- Sanae Lotfi
- Bo Zhang

About the instructor...

(2018-) Assistant Professor of Music Technology and Data Science machine learning algorithms and infrastructure for music and audio

(2014-2018) Research fellow @NYU Music and Audio Research Lab / CDS

(2012-2014) Postdoc @Columbia Electrical Engineering / Center for Jazz Studies

(2012) Ph.D. in Computer Science, @UC San Diego Similarity learning for music recommendation Cross-modal learning

How does this class work?

• Read the syllabus! (No, seriously, it's all in there.)

Lecture format

- Many of you may be unable to attend synchronously at some point
- We'll follow a flipped classroom format
- Lectures will be pre-recorded and posted in advance of our meeting time
- Watch the videos on your own time before the class meeting

Class meetings

- Class meetings will be used for discussions, Q&A, and group work
- We'll use Slido and work through problems together
- Staring at a screen all day is hard!
 - We might not use the full time, usually aiming ~1 hour

About jargon...

This subject matter involves a lot of obtuse terminology and buzzwords. **Don't worry**.

I can't keep most of the names straight either.

If terms are ever unclear, stop and ask for clarification.

Relatedly: some of you undoubtedly have more experience than others.

Be mindful of others and the environment we create in the classroom!

Readings

- Each week will have assigned reading, listed in the syllabus
 - Expect a book chapter, or 1-2 papers each week
- All materials will be available through brightspace.nyu.edu
- You're expected to do the reading before class meets
 - Learning works best when you first encounter new ideas on your own.
 - We can use the class time to clarify difficult or confusing concepts.
 - Give yourself time to do the reading -- start early!

Technology and resources

- All resources are available through brightspace.nyu.edu
 - o Course schedule, assigned reading, etc...
- Lab assignments will be available via GitHub Classroom
 - If that's a problem, we can make other arrangements

Grading

- 35% lab assignments
- 35% quizzes
- 30% final project

Lab assignments (35%)

- 5 ~bi-weekly programming assignments to be completed individually
- You'll get access to NYU's high-performance computing (HPC) cluster
- You have 2 slip days to use however you like over the semester
 - After that, 20% penalty per day for late submissions.
 - No assignments will be accepted more than 5 days late.
 - Grading these assignments is not easy, please be mindful of the graders' time!

Quizzes (35%)

- 5 online quizzes, ~biweekly on Fridays
- Quizzes are open book, open note, but must be completed independently.
- You will have 1 hour to complete a quiz once you start.
- Lowest score is automatically dropped

Final project (30%)

- This will be an extended lab / programming assignment over 3-4 weeks, integrating several of the tools and methods that we'll cover.
- Due 5/13 (end of semester)
 - Slip days do not extend past 5/13!
- Details will be posted in April

Roadmap for the semester

1.	01/24	Introduction	9.	03/21	HPC and Dask
2.	01/31	Relational databases	10.	03/28	Text and similarity search
3.	02/07	Map-reduce	11.	04/04	Reproducibility
4.	02/14	Hadoop distributed file system	12.	04/11	Recommender systems
5 .	02/21	President's day, no meeting	13.	04/18	Graph algorithms
6.	02/28	Spark	14.	04/25	Differential privacy
7.	03/07	Column-oriented storage	15.	05/02	Graphical processing units
8 .	03/14	Spring break, no meeting	16.	05/09	TBA

Let's go!

I hope you enjoy the Spring semester!