Arithmétique binaire

M. Combacau combacau@laas.fr

Université Paul Sabatier LAAS-CNRS

10 novembre 2024

Objectif

Construire une unité arithmétique et logique minimale

Vue systémique d'une UAL (entrées/sorties)

Mode de fonctionnement de l'UAL

M:
$$(\underbrace{m_2, m_1, m_0}_{\text{8 combinaisons}}) \Rightarrow \text{sélection de l'opération à effectuer (Mode)}$$

m_2	m_1	m_0	opération sélectionnée	
0	0	0	logique NON (A)	logique
0	0	1	logique A ET B	logique
0	1	0	logique A OU B	logique
0	1	1	logique A XOR B	logique
1	0	0	logique déclage à gauche	décalage
1	0	1	logique déclage à droite	décalage
1	1	0	arithmétique $A + B$	arithmétique
1	1	1	arithmétique A-B	arithmétique

Ce tableau résulte du choix du concepteur

Flags de l'UAL

 ${f Z}$ (Zero) vaut 1 quand le résultat S=0 (tous les bits sont nuls)

- $lue{N}$ (Negative) vaut 1 quand le résultat S est un nombre négatif
- C (Carry) vaut 1 quand un débordement a lieu sur S

V (oVerflow) vaut 1 si dépassement de capacité pour S

Z et N permettent des instructions conditionnelles comme : if (x==0) en c
C et V protègent contre les erreurs de calcul

Constitution générale de l'UAL

Basée sur un multiplexeur 8 vers 1 à n bits \equiv n mpx 8 \rightarrow 1 à 1 bit soustraction

 $S_i = \sum_{i=0}^{7} E_i.(M=i) = \overline{m_2}.\overline{m_1}.\overline{m_0}.E_0 + ... + m_2.m_1.m_0.E_7$

Constitution de la partie logique de l'UAL

$$S_i = \overline{m_2}.\overline{m_1}.\overline{m_0}.a_i + \overline{m_2}.\overline{m_1}.m_0.a_i.b_i + \overline{m_2}.m_1.\overline{m_0}.(a_i + b_i) + \overline{m_2}.m_1.m_0.a_i.(a_i \oplus b_i) + \dots$$

Partie décalage de l'UAL

dans l'UAL - mot initial : A - mot décalé : S

décalage de A (pour explication)

Rectangles en pointillés bleus : bilan pour la suite de la synthèse

Constitution de la partie logique (complète)

$$\begin{array}{l} S_0 = (E_0 \dots E_3) + m_2.\overline{m_1}.\overline{m_0}.0 + m_2.\overline{m_1}.m_0.a_1 + (E_6,E_7) \\ S_i = (E_0 \dots E_3) + m_2.\overline{m_1}.\overline{m_0}.a_{i-1} + m_2.\overline{m_1}.m_0.a_{i+1} + (E_6,E_7) \\ S_{n-1} = (E_0 \dots E_3) + m_2.\overline{m_1}.\overline{m_0}.a_{n-2} + m_2.\overline{m_1}.m_0.0 + (E_6,E_7) \end{array}$$

Addition binaire de n bits

Elle repose sur la mise en parallèle de n additionneurs complets 1 bit

Additionneur conçu pour les entiers positifs

On a vu (Video du cours) que :

- 3 Ainsi, prendre le Ca2 de (x) c'est coder -x
- Permet de transformer A B en A + Ca2(B)

Calcul du complément à deux avec l'additionneur complet

Ainsi câblé, l'additionneur réalise en fait le calcul $A + \overline{Cb(B)} + 1$ c'est à dire l'addition A + Ca2(B) soit encore la soustraction A - B.

Il ne reste qu'à concevoir un circuit appliquant

- 1 le complément à l'opérande B sur les entrées du multiplexeurs
- 2 la valeur 1 sur l'entrée r₀

uniquement lorsque l'opération effectuée est la soustraction.

Calcul du complément à deux avec l'additionneur complet

Rappel:
$$Ca2(x) = \overline{Cb(x)} + 1$$

$$m_0 = 0 \begin{vmatrix} b_i \\ r_0 = 0 \end{vmatrix} \qquad m_0 = 1 \begin{vmatrix} \overline{b_i} \\ r_0 = 1 \end{vmatrix} \qquad \text{et} \qquad m_0 = 0 \text{ (addition)}$$

$$m_0 = 1 \text{ (soustraction)}$$

Ainsi câblé le circuit réalise addition ou soustraction en fonction de m_0

UAL 1 bit complète (sans Flags)

Questions de mise en œuvre

- Nous avons fait l'étude de chaque sous fonction de cette UAL
 - additionneur complet n bits
 - multiplexeur 8 vers 1 (Pr Sainrat)
 - opérateurs logiques : NON, ET, OU, XOR (Pr Sainrat)
 - 4 décalage droite et gauche
- Il est donc possible de faire simplifier les différentes expressions à un outil de conception (pas à la main!)
- Rien ne s'oppose à câbler cette UAL dans un ciruit logique programmable (FPGA)
- Utilisation du langage VHDL (hors programme ici!)

Manque la définition des flags Z, N, V, C

Synthèse des indicateurs (Flags) : Z(ero)

- Z = 1 quand S = 0 (tous les bits à 0) $Z = \overline{S_{n-1}}.\overline{S_{n-2}}...\overline{S_0}$ (minterme)
- ⇒ très simple à réaliser

Remarque : indicateur valide quelle que soit l'opération réalisée par l'UAL (sa valeur ne dépend pas de m_2 , m_1 ou m_0)

Par exemple, on peut tester S = 0 après l'opération "A et B"

Synthèse des indicateurs (Flags) : N(egative)

N = 1 quand $s_{n-1} = 1$ Uniquement quand l'UAL manipule des codes en en Ca2

C'est le cas pour l'addition et la soustraction Pour les autres opérations choisissons $\rightarrow N=0$

Rappel : en Ca2, $S < 0 \Rightarrow s_{n-1} = 1$, d'où :

m_2	m_1	m_0	N	
0	0	0	0	
÷	÷	÷	:	$N = m_2.m_1.\overline{m_0}.s_{n-1} + m_2.m_1.m_0.s_{n-1}$
1	0	1	0	$= m_2.m_1.s_{n-1}$
1	1	0	s_{n-1}	
1	1	1	S_{n-1}	

Synthèse des indicateurs (Flags) : C(arry)

C=1 quand le résultat d'une opération déborde des n bis de S

- décalages
- + et -

Pour les 4 autres opérations (logiques) notre choix C=0 car il s'agit d'opérations bit à bit dans lesquelles C n'intervient jamais

Synthèse

m_2	m_1	m_0	С				
0	*	*	0	d'où	С	=	$m_2.\overline{m_1}.\overline{m_0}.a_{n-1} + m_2.\overline{m_1}.m_0.a_0 + m_2.m_1.r_n$
1	0	0	a_{n-1}				
1	0	1	a_0				
1	1	0	r _n				
1	1	1	<u>_</u>				

Synthèse des indicateurs (Flags) : (o)V(erflow)

V=1 quand un résultat est faux (opérations + et -)

 \Rightarrow Seules les deux opérations arithmétiques positionnent V

- $A \ge 0, B < 0 : A \in [0, 2^{n-1} 1], b \in [-2^{n-1}, 0]$ $A + B \in [-2^{n-1}, 2^{n-1} - 1]$ $\Rightarrow A + B$ est toujours dans l'intervalle du Ca2 (jamais d'erreur)
- $A < 0, B < 0, A \in [-2^{n-1}, 0], b \in [-2^{n-1}, 0]$ $A + B \in [-2^n, 0]$ et peut donc être hors de l'intervalle du Ca2 Overflow si A + B apparaît comme ≥ 0 ($V_1 = a_{n-1}.b_{n-1}.\overline{s_{n-1}}$)
- $A \ge 0, B \ge 0, A \in [0, 2^{n-1} 1], b \in [0, 2^{n-1} 1]$ $A + B \in [0, 2^n - 2]$ et peut donc être hors de l'intervalle du Ca2 Overflow si A + B apparaît comme < 0 ($V_2 = \overline{a_{n-1}}.\overline{b_{n-1}}.s_{n-1}$)

D'où finalement : $V = V_1 + V_2 = a_{n-1} \cdot b_{n-1} \cdot \overline{s_{n-1}} + \overline{a_{n-1}} \cdot \overline{b_{n-1}} \cdot s_{n-1}$

