Work plan:

Fulvene calculations:

Task 1 Determine the active space: full valence CAS in the π space Orbital occupation for scf calculation:

System: Fulvene Point Group: c2v

N. Electrons: 42 Multiplicity: 1

Level: SCF/6-31G

			IRREP						
		a ₁	b ₁	b_2	a ₂				
SCF	DOCC	11	7	2	1				
	OPSH	0	0	0	0				

Task 2:

Perform a closed shell scf calculation (see Appendix for Cartesian geometry); analyze the π orbitals and add the lowest three virtual π orbitals to the active space. What is the resulting CAS orbital scheme?

MCSCF	DOCC	??	??	??	??
	RAS	0	0	0	0
	CAS	??	??	??	??
	AUX	0	0	0	0

Two states should be calculated: S_0 and S_1 . Fill out the table below

States	Multiplicity	N. electrons	Symmetry
1	??	??	?
2	??	??	?
Number of o	distinct rows (DRT	s): ??	

Task 3:Perform a single point state-averaged SA-CASSCF calculations with two states.

What is the excitation energy, the oscillator strength and the orbital excitation scheme of S_1 in comparison to S_0 ?

State	ΔE (eV)	Configuration	%	Osc. Str.
		SA2-CASSCF(6,6)		
S_0				-
S_1				

Plot the six π orbitals of the active space.

Task 4 Perform a geometry optimization for the planar S_1 state using the SA2-CASSCF(6,6) method.

	C-C _a	C-C _b	C-C _c	C-C _d
		SA2-CAS	SSCF(6,6)	
S_1				

Task 5

Compute the MXS starting from the planar S₁ fulvene structure using the SA2-CASSCF(6,6) method.

	C-C _a	C-C _b	C-C _c	C-C _d
		SA2-CAS	SSCF(6,6)	
MXS				

Plot or visualize the two vectors of the branching space and characterize the vibrations.

Task 6

Compute the vertical excitation energy at MRCI(CAS6,6) and MRCI(CAS6,6)+Pople correction using the S₀ MRCI geometry

1. Set up the MO occupation table for MRCI

Keep the core orbitals frozen.

MRCI	FC				
	FV				
	DOCC	 	 		
	ACT				
	AUX				
	INT				

2. Copy the SA-CASSCF input from Task 3 into a new directory and make only the MRCI input. Do it for S_0 and S_1 separately as they have different symmetries. Use the MRCI S_0 geometry from the Appendix. Extract the vertical excitation energy and compare it with the SA2-CASSCF result.

MRC	I/MRCI+P excitat	tion energies using the MRCI S ₀ of	ptimized
		geometry	
State	$\Delta E (eV)$	Configuration	%
S_0			
S_1			

Task 7

Compute the vertical excitation energy at MRCI(CAS6,6) and MRCI(CAS6,6)+Pople correction using the S_1 MRCI geometry

Copy the inputs from Task 6 into separate directories and use the S_1 MRCI optimized geometry (file geom) given in the Appendix. Replace only the old geom file by the new one and do the calculations.

Important: compute all energies relative to the MRCI ground state energy of the S_0 geometry (Task 6).

MRC	I/MRCI+P excitat	tion energies using the MRCI S_0 or	otimized
		geometry	L
State	$\Delta E (eV)$	Configuration	%
S_0	, ,	S	
Ü			
S_1			
~ 1			

Solutions

Directories on CCR:

	SA2-CASSCF(6,6)/6-31G
S ₀ opt	/user/ub2037/fulvene/S0-CAS
S ₁ opt	/user/ub2037/fulvene/S1-CAS
MXS	/user/ub2037/fulvene/MXS-CAS/mxs_opt
	MRCI
S ₀ opt	/user/ub2037/fulvene/S0-CI
S ₁ opt	/user/ub2037/fulvene/S1-CI

Task 2:

CAS orbital scheme

MCSCF	DOCC	11	7	0	0		
	RAS	0	0	0	0		
	CAS	0	0	4	2		
	AUX	0	0	0	0		

States	Multiplicity	N. electrons	Symmetry
1	1	42	A_1
2	1	42	B_1

Number of distinct rows (DRTs): 2

Task 3:Vertical excitations at SA2-CASSCF calculation

State	$\Delta E (eV)$	Configuration	%	Osc. Str.
	SA2-CA	$ASSCF(6,6) - S_0$ optimization		
S_0	0.000	$(1b2)^2(2b2)^2(3b2)^0(4b2)^0$	75.7	-
		$(1a2)^2(2a2)^0$		
S_1	4.080	$(1b2)^2(2b2)^2(3b2)^1(4b2)^0$	72.0	0.0
		$(1a2)^1(2a2)^0$		
		$(1b2)^2(2b2)^1(3b2)^2(4b2)^0$	14.8	
		$(1a2)^1(2a2)^0$		

Figure 1: Optimized active orbitals for the S_0 optimized with SA2-CASSCF(6,6)/6-31G.

Task 4

	C-Ca	C-C _b	C-C _c	C-C _d
		SA2-CAS	SSCF(6,6)	
\mathbf{S}_0	1.352	1.479	1.360	1.482
S_1	1.497	1.402	1.475	1.363

Task 5

	C-C _a	C-C _b	C-C _c	C-C _d
		SA2-CAS	SSCF(6,6)	
MXS	1.583	1.373	1.538	1.321

Task 6
MRCI Occupation Table

MRCI	FC	4	2	0	0		
	FV	0	0	0	0		
		7		0	0		
	ACT	0	0	4	2		
	AUX	0	0	0	0		
	INT	7	5	4	2	 	

MRO	MRCI/MRCI+P excitation energies using the MRCI S ₀ optimized				
		geometry			
State	$\Delta E (eV)$	Configuration	%		
S_0	0.000/0.000	$(1b2)^2(2b2)^2(3b2)^0(4b2)^0$	69.0		
		$(1a2)^2(2a2)^0$			
S_1	3.907/3.779	$(1b2)^2(2b2)^2(3b2)^1(4b2)^0$	70.1		
		$(1a2)^1(2a2)^0$			

Task 7

MR	MRCI/MRCI+P excitation energies using the MRCI S ₀ optimized				
		geometry			
State	$\Delta E (eV)$	Configuration	%		
S_0	1.268/1.194	$(1b2)^2(2b2)^2(3b2)^0(4b2)^0$	61.8		
		$(1a2)^2(2a2)^0$			
		$(1b2)^2(2b2)^1(3b2)^1(4b2)^0$	10.5		
		$(1a2)^2(2a2)^0$			
S_1	2.638/2.600	$(1b2)^2(2b2)^2(3b2)^1(4b2)^0$	67.3		
		$(1a2)^1(2a2)^0$			
		$(1b2)^2(2b2)^1(3b2)^2(4b2)^0$	10.8		
		$(1a2)^1(2a2)^0$			

Appendix

Fulvene geom_unique.xyz file containing the symmetry unique atoms using the SA-CASSCF S_0 geometry

7

С	0.741279	-0.00000	-2.186935
С	1.177643	-0.00000	-0.898511
С	0.00000	0.00000	-0.004256
С	-0.00000	-0.00000	1.347324
Н	1.349366	-0.00000	-3.067414
Н	2.192618	-0.00000	-0.559673
Н	0.914227	0.00000	1.909820

Fulvene geom_unique.xyz file containing the symmetry unique atoms using the MR-CI S_0 geometry

7

С	0.746320	0.00000	-2.195217
С	1.187909	0.00000	-0.899709
С	0.00000	-0.00000	-0.001599
С	-0.00000	0.00000	1.356855
Н	1.358935	0.00000	-3.087441
Н	2.214125	0.00000	-0.555979
Н	0.922835	-0.00000	1.928229

Fulvene geom file using the MR-CI S₁ geometry

С	6.	1.29873323	0.0000000	-4.32672141	12.00000000
С	6.	-1.29873323	-0.0000000	-4.32672141	12.00000000
С	6.	2.14563104	0.00000000	-1.65647062	12.00000000
С	6.	-2.14563104	-0.00000000	-1.65647062	12.00000000
С	6.	0.0000000	0.00000000	-0.06736260	12.00000000
С	6.	-0.0000000	-0.00000000	2.75695396	12.00000000
Н	1.	2.53720115	0.00000000	-5.95135381	1.00782504
Н	1.	-2.53720115	-0.00000000	-5.95135381	1.00782504
Н	1.	4.09852982	0.00000000	-1.04133635	1.00782504
Н	1.	-4.09852982	-0.00000000	-1.04133635	1.00782504
Н	1.	1.75756975	-0.00000000	3.80378726	1.00782504
Н	1.	-1.75756975	0.00000000	3.80378726	1.00782504

Directories on CCR:

	SA2-CASSCF(6,6)/6-31G
S ₀ opt	/user/ub2037/fulvene/S0-CAS
S ₁ opt	/user/ub2037/fulvene/S1-CAS

MXS	/user/ub2037/fulvene/MXS-CAS/mxs_opt
	MRCI
S ₀ opt	/user/ub2037/fulvene/S0-CI
S ₁ opt	/user/ub2037/fulvene/S1-CI