

HiperFac	HiperFace DSL 编码器研发快速指导手册								
部门: 产品管理部 类型: 指导说明									
编写人:	编写人: Carlos Wang 邮箱: Carlos.wang@sick.net.cn								
版本:	V1.0	日期:	2017-12-2						

西克中国 官方微信

西克中国 微官网

Ħ 录

1.	电气	₹接线	З
2.	电路	8设计	3
3.	硬化	牛配置注意事项	3
4.	系统	充初始化	4
	4.1.	DSL-Master 启动	5
	4.2.	激活 DSL 输出	5
	4.3.	DSL 同步	5
	4.4.	写入 ES 值	5
	4.5.	读取 EVENT_H 寄存器,清除所有报警位	6
	4.6.	读取 Fast Position 和 Speed 值,进行运动控制	6
5.	运行	亍中信号监控	6
	5.1.	Online Status_D 中的报警信息:	7
	5.2.	通讯质量	7
	5.3.	Estimator_on 输出信号	7
	5.4.	Div_thr_Err 输出信息号	7
6.	其他	也常用功能	8
	6.1.	设定预设值:	8
	7. 故	坟障处理	g
	7.1.	EVENT_H, EVENT_L 包含所有警报和故障的状态位。	g
	8. S	PI 通讯规则	10
	8.1.	SPI 通讯时序	12
	8.2.	读取单独寄存器	12
	8.3.	读取多个寄存器	13
	8.4.	写入一个寄存器	14
	8.5.	写入多个寄存器	14
	8.6.	读/写组合	15
	27	SDI	15

1. 电气接线

按照以下接线图把编码器与驱动器进行连接: 电源/通讯针脚分配

独立电缆 = S, T

整合至电机电缆中=J, K

针脚	信号	说明	针脚	信号	说明
1	+U _s	7 12 V 电源	1	***************************************	不连接
2	DSL+	RS-485 DSL-Data	2	+U_/DSL+	电源 / DSL-Data
3	DSL-	RS-485 DSL-Data	3	GND/DSL-	接地 / DSL-Data
4	GND	接地	4		不连接

推荐绞合电缆外径: 4 mm +0/-0.3 mm 推荐接头: JST (GHR-04V-S)

- 请注意电源为 DC7-12V, 推荐 DC8V。
- 电源功率保证可以满足 3.6A 的瞬时电流。

2. 电路设计

关于接口电路、FPGA IP-Core 输入输出以及电缆规格,请参考 Implementation 手册 第 4 章。

3. 硬件配置注意事项

- 需提供 75MHz 的时钟频率,用于驱动 IP-Core 运行
- 推荐驱动器与 IP-Core 同步的频率为 8KHz 或 10KHz

4. 系统初始化

上图为初始化的流程,供参考。以下是详细的介绍:

首先,需要给 IP-Core 接入75MHz的时钟,保证其正常运行

服务热线: 4000 121 000

时钟的规格如下:

		Value				
Parameter	Minimum	Typical	Maxi- mum	Units	Remarks	
System clock	74.9925	75.0000	75.0075	MHz	± 100 ppm	

4.1. DSL-Master 启动

通电,系统通过 rst 引脚对 IP-Core 进行 reset,等待大约 500ms。

5	Signal name	Туре	Function
r	st*	Input	Master reset (High active)

4.2. 激活 DSL 输出

写寄存器 00h 的 OEN 值 1, 在 SYS_CTRL Register 里:

00h	SYS_CTRL	PRST	MRST	FRST	LOOP	PRDY	SPPE	SPOL	OEN	0000 0000
-----	----------	------	------	------	------	------	------	------	-----	-----------

4.3. DSL 同步

读取寄存器 03h 的 LINK 值是否为 "1" , 确认 DSL 连接正常:

				- 10	275		
03h	MASTER_QM	LINK	-	-	-	Quality monitoring	0 0000

4.4.写入 ES 值

ES 值为驱动器每次读取数据时,编码器响应的频率,在寄存器 01h 内写入:

II	4		45-	10	EC.	la contract of the contract of	La:	4	Andrew Control of the
01h	SYNC_CTRL	ES	70 Y			77:			0000 0001

ES 值的计算方法如下:

根据驱动器的 SYNC 扫描频率计算:

Cycle time of the frequency inverter	12.1	1,950	μs	In SYNC mode
Packet cycle time	12.1	27	μs	In SYNC mode

假设驱动器扫描频率 8kH,那么 Cycle time 是 125us,而编码器的帧频为 12.1-27us,那么最小 ES 值是 4.6,最大 ES 是 10.3,可以把 ES 值写成 10。 注:ES 值只可以写入,不可以读取,写完后,可以监控同步信号和 dsl_en 信号,确保 ES 值已经生效,如下图,ES 值被成功写为 10:

建议有条件的话,把 ES 值设置为 2 的 N 次方,比如 8 或 16,在一个同步请求后,能收到 1 个或 2 个完整的 safe position 值。

4.5. 读取 EVENT_H 寄存器,清除所有报警位

A. EVENT_H 的 SUM 为是报警合集,如果 SUM=1,需要找出与之对应的所有报警寄存器,进行清零。寄存器对应关系详见第7节,或英文手册。

04h	EVENT_H	INT	SUM	SCE	_	POS	VPOS	DTE	PRST	000- 0000

- B. 读取 POS,确保为 0:说明当前没有 Fast Position 报警;如果是 1,进行清除操作;如果无法清除,则需要查找原因。
- C. 读取 PRST 的值,确保为 0: 说明当前 IP-Core 正常运行;如果是 1,进行清除操作;如果无法清除,则需要查找 reset 原因。

4.6. 读取 Fast Position 和 Speed 值,进行运动控制

		_	
10h	POS4	Fast position, byte 4	0000 0000
11h	POS3	Fast position, byte 3	0000 0000
12h	POS2	Fast position, byte 2	0000 0000
13h	POS1	Fast position, byte 1	0000 0000
14h	POS0	Fast position, byte 0	0000 0000
15h	VEL2	Speed, byte 2	0000 0000
16h	VEL1	Speed, byte 1	0000 0000
17h	VEL0	Speed, byte 0	0000 0000

驱动器利用并口或 SPI 方式读取需要的值:

位置值是寄存器 10h 到 14h 的组合,从高到低位的排序如下所示:

Byte4	Byte3	Byte2	Byte1	Byte0
00	6B	10	0A	06

速度值是寄存器 15h 和 17h 的组合 , 从高到低位的排序如下所示:

Byte2	Byte1	Byte0
1A	0d	08

5. 运行中信号监控

运行中重要的监控信息有以下几种:

服务热线: 4000 121 000

5.1. Online Status_D 中的报警信息:

驱动器每次同步读取位置时, Online status 内容会跟着位置信息一起发送.

位	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	INT	SUM	SCE	FIX1	POS	VPOS	DTE	PRST	PO	STX	MIN	ANS	FIX0	QMLW	FREL	FRES
正常	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	1

其中, POS 表示 fast postion 是否正常。

5.2. 通讯质量

可监控寄存器 03h 的 LINK 为,或者监控 IP 核的 link 输出:

03h	MASTER_QM	LINK	-	-	-	Quality monitoring	0 0000

IPcore 的 OUTPUT。

	link	Output	Connection indication
--	------	--------	-----------------------

二者意思一样,如果通讯中断,二者都会变为1

5.3. Estimator_on 输出信号

这个信号有输出,表明当前的 Fast Position 数值无效,当前驱动器得到的数值是预估值 Estimated value。

监控 IP-Core 的这个输出点,

5.4. Div_thr_Err 输出信息号

当前位置的偏差值超过了寄存器 3A,3B 的设定值, IPcore 会激活这个输出:

dev_till_ell Output Estillator deviation tilleshold reached	dev_thr_err 0	Output	Estimator deviation threshold reached
---	---------------	--------	---------------------------------------

6. 其他常用功能

Resource 集合了编码器所有的功能,驱动器可以用长信息来实现和 resource 通讯,读取或修改相应的参数。

RDB(Resource database)里的每个 Resource 都有自己的 Index,叫做 RID。

6.1. 设定预设值:

设置预设值需要用到长信息写入方法,具体操作如下: 把当前位置值设置为预设值,比如 00h 00h 00h 00h.

a. 写入之前,需要把 Access Level 改为 2,即 Maintenance Level。

详见手册 8.8.3:

Access level	Standard access key	Usage
0	No access key necessary	Publicly accessible system functions
1	31 31 31 31h	Protected system functions - "operator" level
2	32 32 32 32h	Protected system functions - "maintenance" level

b. 检查寄存器 05h, FREL 为 1:

05h	EVENT_L	-	-	MIN	ANS	_	QMLW	FREL	FRES	
-----	---------	---	---	-----	-----	---	------	------	------	--

Bit 1 FREL: Channel status for "long message".

1 = The channel for the "long message" is free.

0 = The channel for the "long message" is in use.

c. 写入预设值到长数据寄存器:

数据写操作寄存器起始地址是 20h。

寄存器 20h~24h, 写入的数据为 5 bytes 据 00h。

寄存器 25h~27h 写入数据也是 00h;

d. 指定写入规则

28h	PC_ADD_H	LID	LRW	LOFF	LIND	LLEN	LADD9:8			
29h	PC_ADD_L	LADD7:	LADD7:0							

寄存器 28h 写入 1Dh; 寄存器 29h 写入 01h;

		13													
1	0	0	1	1	1	0	1	0	0	0	0	0	0	0	1

即:写入模式;无 offset;间接模式;数据长度为 8bytes;地址为 101h。

服务热线: 4000 121 000 网址: https://www.sick.com/cn/zh

- e. 寄存器 2A、2Bh 为 00h , 表示无地址 offset ;
- f. 最后写入寄存器 2Ch 数据 01h, 启动发送 long message。

		1							
2Ch	PC_CTRL	-	_	_	_	_	_	_	LSTA

g. 写完之后,一直读取 FREL,直到 FREL=1。

- 1											
	05h	EVENT_L	-	_	MIN	ANS	-	QMLW	FREL	FRES	

h. 当 FREL=1 时,读取当前 Fast Position 值,可以看到当前的位置已经被成功设置为 0.

DOG 4		
POS4	Fast position, byte 4	0000 0000
POS3	Fast position, byte 3	0000 0000
POS2	Fast position, byte 2	0000 0000
POS1	Fast position, byte 1	0000 0000
POS0	Fast position, byte 0	0000 0000
VEL2	Speed, byte 2	0000 0000
VEL1	Speed, byte 1	0000 0000
VEL0	Speed, byte 0	0000 0000
	POS3 POS2 POS1 POS0 VEL2 VEL1	POS3 Fast position, byte 3 POS2 Fast position, byte 2 POS1 Fast position, byte 1 POS0 Fast position, byte 0 VEL2 Speed, byte 2 VEL1 Speed, byte 1

Byte4	Byte3	Byte2	Byte1	Byte0
00	00	00	00	00

7. 故障处理

7.1. EVENT_H, EVENT_L 包含所有警报和故障的状态位。

04h	EVENT H	INT	SUM	SCE	-	POS	VPOS	DTE	PRST	000- 0000
05h	EVENT_L	-	-	MIN	ANS	-	QMLW	FREL	FRES	00 -000

EVENT_H 的 SUM 的值为 1 的时候 , 说明 DSL 编码器有报错信息。此时 , 你需要检查寄存器 DSL Slave(40h...47h),是不是有 bit 为 1 了。

读取之后, 你可以把相应的 bit 写入 0。因为寄存器的报警位是无法自己消除的, 所以需要驱动器进行消除。

初始化结束后, 你需要清除 PRST-bit, 这个总是用于表示一个 Protocol Reset 被执行完毕。(EVENT_H, 04h, bit0)

如果故障无法消除,那么请参考详细手册7.6节,明确故障内容,进行排查。

Encoder status	SAFE_SUM bit (DSL Master 36h)
ENC_ST0 (40h)	SUMO
ENC_ST1 (41h)	SUM1
ENC_ST2 (42h)	SUM2
ENC_ST3 (43h)	SUM3
ENC_ST4 (44h)	SUM4
ENC_ST5 (45h)	SUM5
ENC_ST6 (46h)	SUM6
ENC_ST7 (47h)	SUM7

8. SPI 通讯规则

以下为驱动器与 IPCORE 进行 SPI 串口通讯的规则,仅供参考。详细信息请翻阅操作手册。

接口如下:

时钟规格如下:

服务热线: 4000 121 000

Parameter	Value			Units	Comments
	Mini- mum	Typical	Maxi- mum		
Clock spi_clk			10	MHz	
Clock phase (PHA)	PHA = 1, scanning during falling clock edge			ge	
Clock polarity (POL)	POL = 0, base value of the clock is 0				
Data endianness	MSB is clocked out first				

接口的定义如下图:

Pin name	Model name	Function	Note
Host interface			
clk	Input	Clock input	
spi_miso	output	SPI data output	
spi_mosi	Input	SPI data input	
spi_clk	Input	SPI clock	
spi_sel	Input	SPI selection	
IP Core interface			
rst	Input	Internal reset	Connect to IUO(1) of the IP Core
bit_period(2:0)	Input	Internal state machine	Connect to IUO(4:2) of the IP Core
online_sta- tus_d(15:0)	Input	Internal status IP Core	
hostd_a(6:0)	output	Register block address bus	
hostd_di(7:0)	output	Data bus interface to core	
hostd_do(7:0)	Input	Data bus core to interface	
hostd_r	output	Read access requirement	
hostd_w	output	Write access requirement	
hostd_f	output	Freeze register selection	

SPI 对寄存器有以下交互操作:

- 读取每个寄存器
- 自由读取多个寄存器
- 写入每个寄存器
- 写入多个寄存器(自动增加)
- 读/写组合

注:在进行一个读/写组合时,写必须是最后一步。

在每一次交互的开始, DSL master 通过 spi_miso 传输 online-status, 以 2 个字节的形式。

服务热线: 4000 121 000

8.1. SPI 通讯时序

时序图如下:

Figure 37: Time control of the SPI

时序要求如下

Diagram position	Description	Minimum	Maximum	Units
а	Setting spi_sel before spi_clk	25		ns
b	Time for spi_clk high	50		ns
С	Time for spi_clk low	50		ns
d	Setting spi_mosi before spi_clk low	10		ns
е	Keep spi_mosi at spi_clk low	25		ns
f	Keep spi_sel at spi_clk low	260		ns
g	Delay spi_misoat spi_clk high	25	60	ns
h	Delay spi_miso at spi_sel low	25	60	ns
i	Time for spi_sel low	50		ns

8.2. 读取单独寄存器

读写的标志位是指寄存器地址的最高位:

读的时候在寄存器地址最高位变为 1, 也就是寄存器地址加 80h; 写的时候保持寄存器地址最高位为 0.

因为收到的 Status H, Status L, REG DATA 总共 3 个字节,所以读取时要用 DUMMY 虚拟地址填满,防止收到其他信息。

时序如下:

服务热线: 4000 121 000

Symbol	Meaning
R	Access bit: Read ("1")
REG ADDR	Register address (00h to 7Fh)
DUMMY ADDR	Register address for the dummy read process (3Fh)
ONLINE STATUS H	Online-status – High byte
ONLINE STATUS L	Online-status – Low byte
REG DATA	Register content

举例:读取寄存器 00h 的值:

Spi_Mosi: 80 BF BF

8.3. 读取多个寄存器

时序如下:

Symbol	Meaning
R	Access bit: Read ("1")
REG ADDR x	Register address (00h to 7Fh), no. x
DUMMY ADDR	Register address for the dummy read process (3Fh)
ONLINE STATUS H	Online-status – High byte
ONLINE STATUS L	Online-status - Low byte
REG DATA x	Content of register x

8.4. 写入一个寄存器

Symbol	Meaning
W	Access bit: Write ("0")
REG ADDR	Register address (00h to 7Fh)
REG DATA	Register content
ONLINE STATUS H	Online-status - High byte
ONLINE STATUS L	Online-status - Low byte

举例:写入寄存器 00h 值 01h

Spi_mosi: 00 00 01h.

8.5. 写入多个寄存器

Symbol	Meaning
W	Access bit: Write ("0")
REG ADDR	Address of the starting register (00h to 7Fh)
REG DATA x	Content of register x, beginning at REG ADDR
ONLINE STATUS H	Online-status – High byte
ONLINE STATUS L	Online-status - Low byte

8.6. 读/写组合

Symbol	Meaning
R	Access bit: Read ("1")
W	Access bit: Write ("0")
REG ADDR 1	Register address for read access (00h to 7Fh)
REG ADDR 2	Register start address for write access (00h to 7Fh)
REG DATA 2	Register content for write access
MASTER STATUS H	Online-status – High byte
MASTER STATUS L	Online-status - Low byte
REG DATA 1	Register content for read access

8.7. SPI 故障

Fault condition of the SPI	Fault indication
Incorrect number of CLK impulses	spi_miso at high level
Write command without data	spi_miso at high level