"Share Love not Hate" Assessing Hate Speech
Detection methods using TF-IDF
and POS tagging approach on
Twitter

Kshitija Hande (1131778)

Outline

The Problem

Methodology

Results

Limitation

Conclusion

Exponential increase in the use of the internet by people of different cultures, sexual orientation, ethnicities and educational backgrounds.

Differentiating hate speech and offensive language is a key challenge.

New York Times reported personal attacks motivated by bias and prejudice

Classification of tweets on Twitter into three classes: hate speech, offensive language and neither.
We perform experiments by leveraging TF-IDF and POS tagging features as input to machine learning models.

The style of social media especially hateful data is different

Uses abbreviations and spelling variations

Words cannot be taken literally.

OOV words are impossible to train

Example: #BanPUBG

Issue with pre-trained embeddings

Splitting tweets to normalize input

Training on domain-specific data

Methodology

01

DATASET DISTRIBUTION

DATASET	COUNT	
Train	14,869	
Validation	3,718	
Test	6,196	
TOTAL	24,783	

02

VALUES IN THE CLASS COLUMN

0:"hate speech"

1:"offensive language"

2:"neither"

COLUMNS IN THE DATASET

count	
hate_speech_count	
offensive_language_count	
neither_count	
class	
tweet	

03

Class labels	count	
hateful	840	
offensive	11,571	
neither	2,458	
Total	14,869	

TABLE I
CLASS DISTRIBUTION IN TRAINING SET

04

- Data Preprocessing:
 - Lowercase
 - Stemming
 - Lemmatization
- Data cleaning
 - Stopwords
 - URLs
 - Twitter Mentions
 - Retweet Symbols
 - Emojis

Feature Extraction

```
tfidf(d, t) = tf(t) * idf(d,t)
```

Feature Selection - Logistic Regression

- → L2 regularization
- → Returns transformed version of input X
- → This transformed input will be given as input to our classifier

Model - Linear SVM

- → Separate data points with a line across the hyperplane
- → Goal is to maximize the margin and make a decision boundary
- → One-versus-rest framework
- → L2 regularization with 0.01 as regularization parameter
- → Squared hinge loss function

Results and Discussions

Class labels	Precision	Recall	F1-score
hateful	0.60	0.79	0.68
offensive	0.97	0.92	0.94
neither	0.81	0.93	0.87
overall			0.91

RESULTS FROM EXPERIMENT 2 USING TF-IDF AND POS TAGGING FOR FEATURE EXTRACTION

Limitations

- Skewed dataset
- Hate comments without explicit toxic vocabulary
- Humorous content may be flagged due to use of controversial terms
- Overfitting can be addressed by using cross validation

Conclusion

What next?

- → Build richer dictionary
- → Experiment with deep neural network architectures
- → Use larger dataset for training

Thank You!

Timeline

