

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Инфор	матика и системы упра	<u>авления</u>
КАФЕДРА	Системы об	Бработки информации	и управления
		_	70.0
O	гчёт по руб	бежному контрол	ію №2
		Іо дисциплине:	ra))
	«технологи	ии машинного обучени	(M)
Выполнил:			
Студент группы И	[У5ц-82Б		_Акимкин М.Г.
		(Подпись, дата)	(Фамилия И.О.)
Проверил:			
проверил.			Гапанюк Ю. Е.
	-	(Подпись, дата)	(Фамилия И.О.)

Задание

Для заданного набора данных (по Вашему варианту) постройте модели классификации или регрессии (в зависимости от конкретной задачи, рассматриваемой в наборе данных). Для построения моделей используйте методы 1 и 2 (по варианту для Вашей группы). Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему?

Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д.

Для студентов групп ИУ5-62Б, ИУ5Ц-82Б:

Метод №1 – метод опорных векторов, метод №2 – случайный лес.

Набор данных: https://www.kaggle.com/brsdincer/star-type-classification

РК №2, Акимкин М.Г., ИУ5ц-82Б, Вариант №26.

Импорт библиотек

```
In [1]: import numpy as np
           import pandas as pd
import seaborn as sns
           import season as sass
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
           import warnings
           warnings.filterwarnings('ignore')
sns.set(style="ticks")
%matplotlib inline
           from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
           from sklearn.metrics import mean_absolute_error, mean_squared_error, median_absolute_error, r2_score
In [2]: data = pd.read_csv('Stars.csv')
In [3]: data['R'] = data['R'].astype(int)
data['L'] = data['L'].astype(int)
le = LabelEncoder()
le.fit(data.Color.drop_duplicates())
           data.Color = le.transform(data.Color)
le = LabelEncoder()
le.fit(data.Spectral_Class.drop_duplicates())
data.Spectral_Class = le.transform(data.Spectral_Class)
In [4]: data.head()
Out[4]: Temperature L R A_M Color Spectral_Class Type
            0 3068 0 0 16.12 8 5 0
                      3042 0 0 16.60
                                               8
                                                                 5
                                                                        0
           2 2600 0 0 18.70 8
           3
                    2800 0 0 16.65 8
                                                           5 0
           4 1939 0 0 20.06 8 5 0
```

```
In [5]: data.dtypes
Out[5]: Temperature
                                    int64
                                     int64
                               float64
           Color int64
Spectral_Class int64
Type int64
          Type
dtype: object
In [6]: data.isnull().sum()
          # проверим есть ли пропущенные значения
Out[6]: Temperature 0
                                  0
           Spectral_Class 0
           Type
           dtype: int64
In [7]: data.info()
          RangeIndex: 240 entries, 0 to 239
Data columns (total 7 columns):
# Column Non-Null Cour
           <class 'pandas.core.frame.DataFrame'>
                              Non-Null Count Dtype
            0 Temperature 240 non-null int64
1 L 240 non-null int64
2 R 240 non-null int64
3 A_M 240 non-null float
4 Color 240 non-null int64
            3 A_M
4 Color
                                                          float64
                                       240 non-null
            5 Spectral_Class 240 non-null
6 Type 240 non-null
                                                            int64
           dtypes: float64(1), int64(6) memory usage: 13.2 KB
```

```
In [8]: data.head()
```

Out[8]:

	Temperature	L	R	A_M	Color	Spectral_Class	Туре
0	3068	0	0	16.12	8	5	0
1	3042	0	0	16.60	8	5	0
2	2600	0	0	18.70	8	5	0
3	2800	0	0	16.65	8	5	0
4	1939	0	0	20.06	8	5	0

```
In [9]: #Построим корреляционную матрицу
fig, ax = plt.subplots(figsize=(15,7))
sns.heatmap(data.corr(method='pearson'), ax=ax, annot=True, fmt='.2f')
```

Out[9]: <AxesSubplot:>


```
In [10]: X = data.drop(['R','Color','Spectral_Class','L','R', 'Type','Temperature'], axis = 1)
Y = data.Type
print('Входные данные:\n\n', X.head(), '\n\nВыходные данные:\n\n', Y.head())
```

Входные данные:

A_M 0 16.12 1 16.60

2 18.70 3 16.65

4 20.06

Выходные данные:

0

1 2

3 0

Name: Type, dtype: int64

```
Входные параметры обучающей выборки:
            A_M
5 16.980
22 14.230
199 14.776
            97
                   2.440
            12 13.210
            Входные параметры тестовой выборки:
            109 -5.79
71 10.12
            37
                   2.93
                 10.89
             74
            108 -6.24
            Выходные параметры обучающей выборки:
            5
22
                     0
            199
            97
             12
            Name: Type, dtype: int64
            Выходные параметры тестовой выборки:
             109
                     4
            71
            37
            108
            Name: Type, dtype: int64
In [12]: from sklearn.svm import SVC , LinearSVC
            from matplotlib import pyplot as plt
In [13]: svc = SVC(kernel='linear')
            svc.fit(X_train,Y_train)
Out[13]: SVC(kernel='linear')
In [14]: pred_y = svc.predict(X_test)
In [15]:
plt.scatter(X_test.A_M, Y_test, marker = 's', label = 'Тестовая выборка')
plt.scatter(X_test.A_M, pred_y, marker = '.', label = 'Предсказанные данные')
plt.legend (loc = 'lower right')
plt.xlabel ('A_M')
plt.ylabel ('Type')
plt.scatter(X_test.A_M, Y_test, marker = 's', label = 'Предсказанные данные')
plt.ylabel ('Type')
plt.scatter(X_test.A_M, Y_test, marker = 's', label = 'Предсказанные данные')
            plt.show()
               5 - 🔳 📖
                                                     Тестовая выборка
                                                  Предсказанные дан
In [16]: from sklearn.ensemble import RandomForestRegressor
In [17]: forest_1 = RandomForestRegressor(n_estimators=5, oob_score=True, random_state=10)
            forest_1.fit(X, Y)
```

 ${\tt Out[17]:} \>\>\>\> {\tt RandomForestRegressor(n_estimators=5, oob_score=True, random_state=10)}$

```
In [18]: Y_predict = forest_1.predict(X_test)
    print('Средняя абсолютная ошибка:', mean_absolute_error(Y_test, Y_predict))
    print('Редняя квадратичная ошибка:', median_absolute_error(Y_test, Y_predict))
    print('Меdian absolute error:', median_absolute_error(Y_test, Y_predict))
    print('Коэффициент детерминации:', r2_score(Y_test, Y_predict))

    Cредняя абсолютная ошибка: 0.0861111111111112
    Cредняя квадратичная ошибка: 0.05574074074074076
    Median absolute error: 0.0
    Kоэффициент детерминации: 0.9790426457789382

In [19]: plt.scatter(X_test.A_M, Y_test, marker = 'o', label = 'Тестовая выборка')
    plt.scatter(X_test.A_M, Y_predict, marker = '.', label = 'Предсказанные данные')
    plt.legend(loc = 'lower right')
    plt.slabel('A_M')
    plt.slabel('Type')
    plt.show()
```

