Fundamentos de Redes de Computadores

Etapa 7 - Subnetting

Prof^a Natália Oliveira natalia.qoliveira@prof.infnet.edu.br

Estrutura do endereço IPv4

Conversão de decimal para binário

Máscara de Rede

- Expressamos a máscara de rede no mesmo formato decimal como o endereço IPV4
- Cada bit "1" informa a parte do endereço IP que é usada para o endereçamento da rede
- Cada bit "0" informa a parte do endereço IP que é usada para o endereçamento dos hosts
- A máscara de sub-rede é que irá definir o números de bits atribuídos à parte da rede a parte do host

Classe	Subnet Mask	Subnet Mask
A	255.0.0.0	11111111.00000000. 00000000. 00000000
В	255.255.0.0	11111111111111111 00000000 00000000
С	255.255.255.0	11111111.11111111. 11111111. 00000000

Classes de Endereços

Classe	Primeiro Octeto	Máscara de rede padrão	Parte da Rede (N) e parte dos Hosts (H)	Prefixo	Número de redes e hosts
А	1 - 127	255.0.0.0	N.H.H.H	/8	126 redes = (2 ⁷ - 2) 16.777.224 hosts por rede = (2 ²⁴ -2)
В	128 - 191	255.255.0.0	N.N.H.H	/16	16.384 redes = (2 ¹⁴) 65.534 hosts por rede = (2 ¹⁶ -2)
С	192 - 223	255.255.255.0	N.N.N.H	/24	2.097.152 redes = (2 ²¹) 254 hosts por rede = (2 ⁸ -2)
D	224 - 239	-	-	-	Reservado para tráfego Multicast
E	240 - 255	-	-	-	Reservado para uso futuro

Os endereços IPv4 são divididos em grupos chamados classes, com o intuito de acomodar redes de diversos tamanhos

Porção da rede e porção do host

Exemplos: Porção da rede e porção do host

Network . Host . Host . Host

Network . Network . Host . Host

Network . Network . Network . Host

Exemplo: 10.10.2.1/8

N. H.H.H 10.10.2.1 255.0.0.0

Exemplo: 172.16.10.1/16

N.N.H.H 172.16.10.1 255.255.0.0

Exemplo: 192.168.1.10/24

N. N. N. H 192.168.10.10 255.255.255.0

Blocos de Endereços Privados IPv4 (RFC 1918)

Prefixo	Faixa de Endereços	Descrição
10.0.0.0/8	10.0.0.0 a 10.255.255.255	Uma rede de endereços classe A.
172.16.0.0/12	172.16.0.0 a 172.31.255.255	16 redes contíguas de endereços classe B.
192.168.0.0/16	192.168.0.0 a 192.168.255.255	256 redes contíguas de endereços classe C.

Subnetting (Divisão em sub-redes)

- É a divisão lógica de uma rede IP em sub-redes
- Benefícios:
 - Segurança
 - Organização
 - Desempenho

Para criar sub-redes é necessário manipular os bits da porção do host da máscara de rede

Subnetting

Exemplo: Dada a rede 192.168.10.0/24 crie 7 sub-redes apresentando o plano de endereçamento utilizado

Passo 1 - Obter um quadro de máscaras, pesos e bits

Masks	128	192	224	240	248	252	254	255
Weights	128	64	32	16	8	4	2	1
	27	26	25	24	23	2 ²	21	20
Bits								

Passo 2 - Identificar quantas sub-redes precisamos criar

Precisamos de 7 sub-redes

2ⁿ = número de sub-redes onde n será a quantidade de bits "1" emprestados da máscara de rede

 $2^3 = 8$ sub-redes

Passo 3 - Identificar quantos bits "1" serão emprestados da máscara de rede

2 3 = 8 sub-redes -> 3 bits sinalizados como "1"

Masks	128	192	224	240	248	252	254	255
Weights	128	64	32	16	8	4	2	1
	27	2 ⁶	25	24	2 ³	2 ²	2 ¹	20
	1	1	1	0	0	0	0	0

Preenchimento dos 1s sempre da esquerda para direita

Passo 4 - Descobrir a nova máscara a ser utilizada, para criar 8 sub-redes

Masks	128	192	224	240	248	252	254	255
Weights	128	64	32	16	8	4	2	1
	27	26	25	24	2 ³	2 ²	2 ¹	2°
Bits	1	1	1	0	0	0	0	0

Nova máscara 255.255.255.224 ou /27

Passo 5 - Descobrir o intervalo entre as sub-redes

a. Identificar o Least Significant Bit (LSB), ele será o incremento entre as sub-redes

b. Escrever as sub-redes criadas com a nova máscara e seus respectivos intervalos

```
192.168.10.0 a 192.168.10.31 -> 1ª sub-rede
192.168.10.32 a 192.168.10.63 -> 2ª sub-rede
192.168.10.64 a 192.168.10.95 -> 3ª sub-rede
192.168.10.96 a 192.168.10.127 -> 4ª sub-rede
192.168.10.128 a 192.168.10.159 -> 5ª sub-rede
192.168.10.160 a 192.168.10.191 -> 6ª sub-rede
192.168.10.192 a 192.168.10.223 -> 7ª sub-rede
```

192.168.10.224 a 192.168.10.255 -> 8^a sub-rede

<u>Passo 6</u> - A partir dos intervalos entre as sub-redes descobrir os endereços de rede, hosts e broadcast

Primeiro endereço da sub-rede é o endereço da rede Último endereço da sub-rede é o endereço de broadcast

X.X.X.0	а	X.X.X.31
X.X.X.32	а	X.X.X.63
X.X.X.64	а	X.X.X.95
X.X.X.96	а	X.X.X.127
X.X.X.128	а	X.X.X.159
X.X.X.160	а	X.X.X.191
X.X.X.192	а	X.X.X.223
X.X.X.224	а	X.X.X.255

```
End. Válidos 1ª sub-rede -> X.X.X.1 a X.X.X.30

End. Válidos 2ª sub-rede -> X.X.X.33 a X.X.X.62

End. Válidos 3ª sub-rede -> X.X.X.65 a X.X.X.94

End. Válidos 4ª sub-rede -> X.X.X.97 a X.X.X.126

End. Válidos 5ª sub-rede -> X.X.X.129 a X.X.X.158

End. Válidos 6ª sub-rede -> X.X.X.161 a X.X.X.190

End. Válidos 7ª sub-rede -> X.X.X.193 a X.X.X.222

End. Válidos 8ª sub-rede -> X.X.X.225 a X.X.X.254
```

Exemplo: Dada a rede 192.168.1.0 255.255.255.0, precisamos de 2 hosts válidos por sub-rede. Apresente o endereçamento a ser utilizado

Passo 1 - Obter um quadro de máscaras, pesos e bits

Masks	128	192	224	240	248	252	254	255
Weights	128	64	32	16	8	4	2	1
	27	26	25	24	23	2 ²	21	20
Bits								

Passo 2 - Identificar quantos hosts válidos precisamos ter para cada sub-rede criada

Precisamos de 2 hosts válidos

2 y - 2= número de hosts válidos por sub-rede onde y será a quantidade de bits "0" na máscara de rede

 $2^2 - 2 = 4 - 2 = 2$ hosts válidos por sub-rede

Passo 3 - Identificar quantos bits "0" serão emprestados da máscara de rede

2² - 2 = 4 - 2 = 2 hosts válidos por sub-rede -> 2 bits sinalizados como "0"

Masks	128	192	224	240	248	252	254	255
Weights	128	64	32	16	8	4	2	1
	2 ⁷	2 ⁶	25	24	2 ³	2 ²	2 ¹	2°
Bits	1	1	1	1	1	-1	0	0

Observações:

$$2^{n} = 2^{6} = 64$$
 sub-redes

$$2^{y}$$
 - 2 = 2^{2} -2 = 2 hosts válidos por sub-rede

Preenchimento dos 0s sempre da direita para esquerda

Passo 4 - Descobrir a nova máscara a ser utilizada para 4 hosts por sub-rede

Masks	128	192	224	240	248	252	254	255
Weights	128	64	32	16	8	4	2	1
	2 ⁷	2 ⁶	25	24	2 ³	2 ²	2 ¹	2°
Bits	1	1	1	1	1	-1	0	0

Nova máscara 255.255.252 ou /30

Passo 5 - Descobrir o intervalo entre as sub-redes

- a. Identificar o Least Significant Bit (LSB), ele será o incremento entre as sub-redes
- b. Escrever as sub-redes criadas com a nova máscara e seus respectivos intervalos

192.168.1.0 a 192.168.1.3 -> 1^a sub-rede

192.168.1.4 a 192.168.1.7 -> **2**^a **sub-rede**

192.168.1.8 a 192.168.1.11 -> 3^a sub-rede

192.168.1.12 a 192.168.1.15 **-> 4**^a **sub-rede**

•

<u>Passo 6</u> - A partir dos intervalos entre as sub-redes descobrir os endereços de rede, hosts e broadcast

Primeiro endereço da sub-rede é o endereço da rede Último endereço da sub-rede é o endereço de broadcast

192.168.1.0 a 192.168.1.3 192.168.1.4 a 192.168.1.7 192.168.1.8 a 192.168.1.11 192.168.1.12 a 192.168.1.15

End. Válidos 1^a sub-rede -> 192.168.1.1 a 192.168.1.2 End. Válidos 2^a sub-rede -> 192.168.1.5 a 192.168.1.6 End. Válidos 3^a sub-rede -> 192.168.1.9 a 192.168.1.10 End. Válidos 4^a sub-rede -> 192.168.1.13 a 192.168.1.14

Exercícios Subnetting IPv4

https://docs.google.com/document/d/1AW8cdX871kHaSaPcAfo-dgUhA_y6tpVa3WtoeRawnml/edit?usp=sharing

Envio e/ou dúvidas natalia.qoliveira@prof.infnet.edu.br

