REGRESSION ANALYSIS

RESULTS IN BRUSCO ET AL. 2004

Table 3 Model Estimations of Vote Buying

	(1)	(2)	(3)	(4)	(5)
Dependent Variable	Patron	Puntero	Job	Gift	Influence
Model Estimated	Logit	Logit	Logit	Logit	Ordered Logit
Income	-0.126 (0.058	0.005 (0.055)	-0.054 (0.037)	-0.174 (0.074)	-0.207 (0.070)
Education	-0.005 (0.058)	-0.050 (0.039)	-0.197 (0.035)	-0.162 (0.071)	-0.185 (0.066)
Housing	-0.215 (0.114)	-0.219 (0.084)	-0.133 (0.073)	-0.254 (0.124)	-0.294 (0.115)
Gender	-0.178 (0.166)	0.093 (0.118)	0.208 (0.103)	-0.092 (0.181)	0.153 (0.171)
Age	-0.005 (0.006)	-0.001 (0.006)	-0.022 (0.003)	-0.012 (0.006)	-0.016 (0.006)
Peronist sympathizer	0.594 (0.192)	0.273 (0.187)	0.735 (0.119)	0.806 (0.202)	0.807 (0.189)
Radical sympathizer	0.357 (0.243)	0.041 (0.208)	0.146 (0.158)	-0.217 (0.346)	0.213 (0.278)
Log population	-0.361 (0.044)	0.034 (0.042)	-0.035 (0.029)	-0.108 (0.047)	-0.107 (0.043)
Constant	3.254 (0.643)	-0.437 (0.616)	1.879 (0.397)	0.911 (0.690)	
N observations	1114	1920	1920	1920	1920

NOTE: Cell entries are coefficients, standard errors in parentheses. Boldface indicates significance at the p=0.05 level or smaller. Models in columns 2 through 5 use five imputed datasets generated by Amelia program. (Responses to Patron depended on prior responses and reduced the relevant sample of respondents to 1,114; here we analyzed the original matrix and used listwise deletion.)

Explanation of variables. Refer to table 1 for question wording associated with these variables. Patron, Puntero, Job, Gift: coded yes=1. Influence: coded 1=did not receive goods, 2=received goods, no influence; 3=received goods, acknowledged influence. Based on responses to open-ended question. Other variables coded as explained in the note to table 2.

RELATIONSHIP

Many questions we are interested in comparative politics are interested in relationships between between two variables, X and Y, e.g.:

X	Y
Income	Vote Buying
Party ID	Vote choice
Regime type	Number of parties
Ethnic diversity	Public goods provision

REGRESSION

- A statistical tool to determine the relationship between two or more variables. Regression is primarily used for prediction and causal inference.
- Most widely used tool in the social sciences
- Knowing how to do/interpret a regression analysis is widely useful.

NOTATION

- Y is the outcome or "dependent" variable
- X is the explanatory or independent variable
- A simple linear regression equation is the function :

$$Y = \alpha + \beta X + \varepsilon \tag{1}$$

• where β is the slope; α is the intercept; ε is an error term that captures the amount of variation not predicted by the slope and intercept terms

LINEAR FUNCTION

Graph of the Straight Line Y = 3 + 2X

INTERPRETATION

Graph of the Straight Line $Y = \alpha + \beta X$ β is change in Y, given a one unit change in X

INTERPRETATION

The sign of β determines the type of relationship between ${\bf Y}$ and ${\bf X}$

SIMPLE REGRESSION

- How the parameter estimates are generated:
- True value: $S = \alpha + \beta P + \varepsilon$
- Estimated Value: $\hat{S} = \hat{\alpha} + \hat{\beta}P$
- Estimated error = $S \hat{S}$
- Regression analysis is to find the line that minimize the sum of squares of estimated errors.

REGRESSION LINE

- How do we know the coefficients from the regression analysis are reliable? How much confidence can we have for the coefficients?
- Fortunately, we have tools that discern the credibility of coefficients from the regression analysis

- $\hat{\beta}$ is a point estimate of β in the regression of Y on X. This is our best guess, but may be too high or too low
- Standard error s of $\hat{\beta}$ gives us an indication of how much the point estimate is likely to vary from the corresponding true parameter

- Population mean = μ , parameter mean = β , standard error = s
- t-statistics = $(\mu \beta)/s$
- t-statistics is used in hypothesis testing when you want to figure out if you should accept or reject the null hypothesis
- Null hypothesis = there is no relationship between two variables

T-DISTRIBUTION

- The central region on this graph is the acceptance area and the tail is the rejection region
- The tail area is referred to as "p-value": what is the probability of observing this t-stat if the null hypothesis is true?

- A small p-value (typically ≤ 0.05) indicates strong evidence against the null hypothesis, so you can reject the null hypothesis ("Difference is statistically significant")
- A large p-value (typically ≥ 0.05) indicates weak evidence against the null hypothesis, so you fail to reject the null hypothesis

STANDARD ERROR, T-STATS, P-VALUE

- Small standard error ⇒ Large t-stats ⇒ Small p-value: Coefficient of interest is statistically significant (***)
- Large standard error ⇒ Small t-stats ⇒ Large p-value: Coefficient of interest is not statistically significant