Remarks:

- (1) Since A is symmetric positive definite, the bilinear map $(u, v) \mapsto \langle Au, v \rangle$ is an inner product $\langle -, \rangle_A$ on \mathbb{R}^n . Consequently, two vectors u, v are *conjugate* with respect to the matrix A (or A-conjugate), which means that $\langle Au, v \rangle = 0$, iff u and v are orthogonal with respect to the inner product $\langle -, \rangle_A$.
- (2) By picking the descent direction to be $-\nabla J_{u_k}$, the gradient descent method with optimal stepsize parameter treats the level sets $\{u \mid J(u) = J(u_k)\}$ as if they were spheres. The conjugate gradient method is more subtle, and takes the "geometry" of the level set $\{u \mid J(u) = J(u_k)\}$ into account, through the notion of conjugate directions.
- (3) The notion of conjugate direction has its origins in the theory of projective conics and quadrics where A is a 2×2 or a 3×3 matrix and where u and v are conjugate iff $u^{T}Av = 0$.
- (4) The terminology conjugate gradient is somewhat misleading. It is not the gradients who are conjugate directions, but the descent directions.

By definition of the vectors $\Delta_{\ell} = u_{\ell+1} - u_{\ell}$, we can write

$$\Delta_{\ell} = \sum_{i=0}^{\ell} \delta_i^{\ell} \nabla J_{u_i}, \quad 0 \le \ell \le k.$$
 (*2)

In matrix form, we can write

$$(\Delta_0 \ \Delta_1 \ \cdots \ \Delta_k) = (\nabla J_{u_0} \ \nabla J_{u_1} \ \cdots \ \nabla J_{u_k}) \begin{pmatrix} \delta_0^0 \ \delta_0^1 \ \cdots \ \delta_0^{k-1} \ \delta_0^k \\ 0 \ \delta_1^1 \ \cdots \ \delta_1^{k-1} \ \delta_1^k \\ 0 \ 0 \ \cdots \ \delta_2^{k-1} \ \delta_2^k \\ \vdots \ \vdots \ \ddots \ \vdots \ \vdots \\ 0 \ 0 \ \cdots \ 0 \ \delta_k^k \end{pmatrix},$$

which implies that $\delta_{\ell}^{\ell} \neq 0$ for $\ell = 0, \dots, k$.

In view of the above fact, since Δ_{ℓ} and d_{ℓ} are collinear, it is convenient to write the descent direction d_{ℓ} as

$$d_{\ell} = \sum_{i=0}^{\ell-1} \lambda_i^{\ell} \nabla J_{u_i} + \nabla J_{u_{\ell}}, \quad 0 \le \ell \le k.$$
 (*3)

Our next goal is to compute u_{k+1} , assuming that the coefficients λ_i^k are known for $i = 0, \ldots, k$, and then to find simple formulae for the λ_i^k .

The problem reduces to finding ρ_k such that

$$J(u_k - \rho_k d_k) = \inf_{\rho \in \mathbb{R}} J(u_k - \rho d_k),$$