АСТРАДЬ

Содержание

1	Кон	ические с	ечен	ия														2						
	1.1	Парабола																						2

1 Конические сечения

1.1 Парабола

Каноническое уравнение параболы имеет следующий вид:

$$y^2 = 2px \tag{1}$$

 Γ де $p-\phi$ окальный параметр, равный расстоянию между фокусом параболы и директрисой или удвоенному расстоянию между фокусом параболы и вершиной.

Парабола в полярной системе координат (ρ, φ) с центром в фокусе и нулевым направлением вдоль оси параболы (от фокуса к вершине) может быть представлена в виде следующего уравнения:

$$\rho(1 + \cos \varphi) = p \tag{2}$$

Эксцентриситет параболы равен e=1. Так как парабола не является замкнутой \Rightarrow она не имеет большой и малой полуоси.

Ниже представлено оптическое свойство параболы:

Пучок лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. И наоборот, свет от источника, находящегося в фокусе, отражается параболой в пучок параллельных её оси лучей.

Рис. 1: Парабола