TÓM TẮT PHƯƠNG PHÁP CHỨNG MINH VÀ MỘT SỐ VÍ DỤ MÔN GIẢI TÍCH 2A HOC KỲ 1 NĂM HOC 2024 - 2025

1. Chứng minh $\|\cdot\|$ là một chuẩn trên $\mathbb R$

Cho E là một không gian vectơ trên \mathbb{R} . Một ánh xạ

$$\|\cdot\|: E \to [0, +\infty)$$
$$x \mapsto \|x\|$$

được gọi là một $chu \hat{a}n$ trên E nếu thỏa 3 tính chất sau:

i) Phân biệt dương:

$$||x|| \ge 0, \forall x \in E,$$

 $||x|| = 0 \Leftrightarrow x = 0.$

- ii) Chuẩn vectơ bội: $\|\lambda x\| = |\lambda| \|x\|, \forall x \in E, \lambda \in \mathbb{R}$.
- iii) Bất đẳng thức tam giác: $||x + y|| \le ||x|| + ||y||, \forall x, y \in E$.

Một không gian vectơ được trang bị một chuẩn được gọi là một không gian định chuẩn và được kí hiệu là $(E, \|\cdot\|)$.

Ví dụ 1. Cho C([0,1]) là không gian các hàm $f:[0,1]\to\mathbb{R}$ liên tục và $f\in C([0,1])$. Đặt

$$||f||_1 = \int_0^1 x \cdot |f(x)| dx,$$
$$||f||_2 = \sup_{x \in [0,1]} x \cdot |f(x)|.$$

Chứng minh $\|\cdot\|_1$ và $\|\cdot\|_2$ là các chuẩn trên C([0,1]).

2. Chứng minh (E,d) là không gian metric

Cho E là một tập hợp khác trống. Một metric trên E là một ánh xạ

$$d: E \times E \to \mathbb{R}$$

thỏa các tính chất:

i) Phân biệt dương:

$$d(x,y) \ge 0, \quad \forall x, y \in E$$

 $d(x,y) = 0 \Leftrightarrow x = y.$

ii) Đối xứng:

$$d(x,y) = d(y,x), \quad \forall x, y \in E$$

iii) Bất đẳng thức tam giác:

$$d(x,y) \le d(x,z) + d(z,y), \quad \forall x, y, z \in E.$$

Ví dụ 2. Cho $E = \mathbb{R}^2$, $x = (x_1, x_2)$ và $y = (y_1, y_2)$. Đặt

$$d: E \times E \to \mathbb{R}$$

 $(x,y) \mapsto d(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}.$

Chứng minh (\mathbb{R}^2, d) là không gian metric.

Ví dụ 3. Cho ánh xạ $d: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ được xác định như sau

$$d(x,y) = \left| \frac{x^2}{1+x^2} - \frac{y^2}{1+y^2} \right|, \ x,y > 0.$$

Chứng minh (\mathbb{R}, d) là không gian metric.

Ví dụ 4. Cho ánh xạ $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ được xác định như sau

$$d(x,y) = \left| \sqrt{x^2 + 1}e^{2x} - \sqrt{y^2 + 1}e^{2y} \right|.$$

Chứng minh (\mathbb{R}, d) là không gian metric.

Ví dụ 5. Cho (\mathbb{R}, d) là không gian metric. Xét $d_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ xác định bởi

$$d_1(x, y) = |x - y| + d(x, y).$$

Chứng minh (\mathbb{R}, d_1) là không gian metric.

3. Chứng minh a là điểm dính của A trong d

Cách 1 (dùng định nghĩa): Cho (E,d) là không gian mêtríc và $\emptyset \neq A \subset E$. Khi đó, a là diểm dinh của A nếu: $\forall r > 0, B(a,r) \cap A \neq \emptyset$.

Cách 2 (dùng mệnh đề): Cho (E,d) là không gian mêtríc, $\emptyset \neq A \subset E$ và $a \in E$. Muốn chứng minh a là điểm dính của A, ta tìm một dãy (x_n) thỏa

$$\begin{cases} (x_n) \subset A, \\ d(x_n, a) \xrightarrow{n \to \infty} 0. \end{cases}$$

Ví dụ 6. Cho metric $d(x,y) = |x-y| - \sqrt{|x-y|}$, $x,y \in \mathbb{R}^+$ và A = (0,1). Chứng minh a = 0 là điểm dính của A trong d.

4. Chứng minh A là tập đóng trong (E, d)

Cách 1 (dùng định nghĩa): Cho (E,d) là không gian mêtríc và $\emptyset \neq A \subset E$. Khi đó,

- a là điểm dính của A nếu: $\forall r > 0, B(a,r) \cap A \neq \emptyset$.
- A là $t\hat{q}p$ đóng trong (E,d) nếu mọi điểm dính của A đều thuộc A.

Cách 2 (dùng định lý): Lấy a là điểm dính bất kỳ của A. Khi đó, tồn tại dãy $(x_n) \subset A$ sao cho $x_n \xrightarrow[n \to \infty]{d} a$. Ta chứng minh $a \in A$.

Ví dụ 7. Cho $X = C([0,1]) = \{f : [0,1] \to \mathbb{R} \text{ liên tục} \}$ và $f,g \in X$. Đặt metric

$$d_{\infty}(f,g) = \sup_{t \in [0,1]} |f(t) - g(t)|.$$

Chứng minh $A = \{ f \in X : f(0) = 1 \}$ và $B = \{ f \in X : f(0) = f(1) \}$ là hai tập đóng trong (X, d_{∞}) .

Ví dụ 8. Cho $A = \{(x,y) \in \mathbb{R}^2 : xy = 2024\}$. Chứng minh A là tập đóng trong metric thông thường.

4. Chứng minh A là tập mở trong (E, d)

Cho (E, d) là không gian metric, $a \in E$ và r > 0 (r là số thực)

Cách 1 (dùng định nghĩa): Với mọi điểm bất kỳ $a \in E$, ta tìm r > 0 sao cho $B(a,r) \subset E$, trong đó $B(a,r) = \{x \in E, \ d(x,a) < r\}$.

Cách 2 (dùng định lý liên hệ giữa tập mở và tập đóng): Chứng minh $E \setminus A$ là tập đóng.

Ví dụ 9. Trong \mathbb{R}^2 , cho metric

$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|.$$

Chứng minh $A = \{(x, y) \in \mathbb{R}^2 : x + y > 1\}$ mở trong \mathbb{R}^2 .

Ví dụ 10. Trong \mathbb{R}^2 , cho metric Euclide. Chứng minh $A = \{(x, y) \in \mathbb{R}^2 : |xy| < 1\}$ mở trong \mathbb{R}^2 .

5. Dãy hôi tu trong không gian metric

Cách 1 (dùng định nghĩa): Cho $a \in E$ và dãy $(x_n) \in (E, d)$. Ta nói (x_n) hội tụ về a trong (E, d) khi và chỉ khi

$$\forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N} : d(x_n, a) < \varepsilon, \quad \forall n \ge N(\varepsilon).$$

Cách 2 (dùng mệnh đề): Cho $a \in E$ và dãy $(x_n) \in (E, d)$. Ta tính $\lim_{n \to \infty} d(x_n, a)$.

- Nếu $\lim_{n\to\infty} d(x_n, a) = 0$ thì (x_n) hội tụ về a trong (E, d).
- Nếu $\lim_{n\to\infty} d(x_n, a) \neq 0$ thì (x_n) không hội tụ về a trong (E, d).

Ví dụ 11. Cho E = C([0,1]) là không gian các hàm liên tục trên [0,1] và các metric

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx,$$
$$d_2(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

Cho $f_n(x) = \sqrt{n}x^n$ và f = 0. Chứng minh

- a) f_n hội tụ về f trong (E, d_1) .
- b) f_n không hội tụ về f trong (E, d_2) .

Ví dụ 12. Cho X là tập hợp các hàm liên tục trên [0,1]. Với $x,y \in X$, đặt

$$d_1(x,y) = \int_0^1 |x(t) - y(t)| dt,$$

$$d_2(x,y) = \max\{|x(t) - y(t)| : t \in [0,1]\}.$$

- a) Chứng minh rằng, nếu $\lim_{n\to\infty} x_n = x$ trong (X, d_2) thì $\lim_{n\to\infty} x_n = x$ trong (X, d_1) .
- b) Cho $x_n(t) = t^n t^{2n}$ và x = 0. Chứng minh x_n hội tụ về x trong (X, d_1) nhưng x_n không hội tụ về x trong (X, d_2) .

Ví dụ 13. Cho X = C([0,1]). Với $f, g \in X$, đặt

$$D_{\infty}(f,g) = \sup_{t \in [0,1]} t |f(t) - g(t)|.$$

- a) Chứng minh D_{∞} là metric trên X.
- b) Cho $E = \{ f \in X : f(1) = 1 \}$. Chúng minh E là tập đóng trong (X, D_{∞}) .
- c) Cho $f_n(t) = 1 e^{nt}$ và f = 1. Hỏi (f_n) có hội tụ về f trong (X, D_∞) không? Giải thích?
- 6. Dãy bị chặn Dãy Cauchy

Cho (E,d) là không gian metric. Khi đó

• Chứng minh dãy (x_n) là dãy bị chặn trong (E, d):

Tìm $a \in E$ và tìm r > 0 sao cho $x_n \in B(a, r), \ \forall n \in \mathbb{N}.$

• Chứng minh dãy (x_n) là $d\tilde{a}y$ Cauchy trong (E, d):

Cách 1 (dùng định nghĩa): Lấy bất kỳ $\varepsilon > 0$, tìm $N(\varepsilon) \in \mathbb{N}$ sao cho $d(x_m, x_n) < 0$, $\forall m, n \geq N(\varepsilon)$.

Cách 2 (dùng mệnh đề): Chứng minh $\lim_{n,m\to\infty} d(x_m,x_n) = 0$.

Ví dụ 14. Cho X = C([0,1]). Với $f, g \in X$, đặt

$$d(f,g) = \int_{0}^{1} |f(t) - g(t)| dt.$$

Cho $f_n(t) = t^n$. Chúng minh (f_n) là dãy Cauchy trong (x, d).

7. Không gian metric đầy đủ/không đầy đủ

• Lưu ý:

Với (E, d) là không gian metric bất kì,

$$H$$
ội tụ \Rightarrow Cauchy Cauchy \Rightarrow H ội tụ

Với (E, d) là không gian metric đầy đủ, hội tụ \Leftrightarrow Cauchy.

• Chứng minh (E, d) là không gian metric đầy đủ:

Bước 1: Chứng minh (E,d) là không gian metric.

Bước 2: Cho (x_n) là dãy Cauchy, chứng minh (x_n) là dãy hội tụ trong (E, d).

ullet Chứng minh (E,d) là không gian metric không đầy đủ:

Bước 1: Kiểm tra (E, d) có phải là không gian metric không?

- Nếu (E,d) không là không gian metric thì ta kết luận (E,d) không đầy đủ.
- Nếu (E,d) là không gian metric thì sang bước 2.

Bước 2: Tìm (x_n) là dãy Cauchy nhưng không hội tụ trong (E, d).

Ví dụ 15. Cho ánh xạ $d: \mathbb{R}^2 \to \mathbb{R}$ được xác định như sau

$$d(x,y) = \left| \frac{x^2}{1+x^2} - \frac{y^2}{1+y^2} \right|.$$

Hỏi (\mathbb{R}, d) có là không gian metric đầy đủ không?

Ví dụ 16. Cho ánh xạ $d: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ được xác định như sau

$$d(x,y) = \left| \frac{x^2}{1+x^2} - \frac{y^2}{1+y^2} \right|.$$

- a) Chứng minh (\mathbb{R}, d) là không gian metric.
- b) Cho $x_n = \sqrt{n}$. Chứng minh (x_n) là dãy Cauchy trong (\mathbb{R}, d) .
- c) Chứng minh (\mathbb{R}, d) là không gian metric không đầy đủ.

Ví dụ 17. Cho $d_1, d_2 : \mathbb{R}^2 \to \mathbb{R}$ được xác định như sau

$$d_1(x, y) = |\arctan x - \arctan y|,$$

$$d_2(x, y) = \left| \frac{e^x}{1 + e^x} - \frac{e^y}{1 + e^y} \right|,$$

$$d_3(x, y) = \left| (x^2 + 1) e^x - (y^2 + 1) e^y \right|$$

Chứng minh $(\mathbb{R}, d_1), (\mathbb{R}, d_2)$ và (\mathbb{R}, d_3) là hai không gian metric không đầy đủ.

8. Chứng minh D là tập compact trong (E,d)

Bước 1: Kiểm tra E có là tập con của \mathbb{R}^n không? Tức là, kiểm E có là không gian hữu hạn chiều không? Nếu có, làm bước 2-3. Nếu không, làm bước 4.

Bước 2: Chứng minh D là tập đóng.

Bước 3: Chứng minh D là tập bị chặn, tức là, tìm $a = (a_1, \ldots, a_n) \in E$, tìm r > 0 sao cho $D \subset B(a, r)$.

Bước 4: Cho dãy $(u_n)_{n\in\mathbb{N}}\subset E$. Chứng minh tồn tại dãy con $(u_{n_k})_{k\in\mathbb{N}}\to u\in E$.

Ví dụ 18. Trong \mathbb{R}^2 , cho metric

$$d(x,y) = \max\{|x_1 - y_1| \ ; \ |x_2 - y_2|\},\,$$

với mọi $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$.

Cho $D = \{(x, y) \in \mathbb{R}^2 : 2x^2 + 3y^2 \le 1\}$. Chứng minh D là tập compact trong (\mathbb{R}^2, d) .

Ví du 19. Trong \mathbb{R}^2 , cho metric

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2},$$

với mọi $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$.

Cho $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 2y\}$. Chứng minh D là tập compact trong (\mathbb{R}^2, d) .

9. Chứng minh D không là tập compact trong (E, d)

Cách 1: Chứng minh *D* không đóng hoặc không bị chặn.

Cách 2: Giả sử D là tập compact, chỉ ra tồn tại dãy $(u_n) \subset D$ sao cho $u_n \nrightarrow u \in D$.

Ví dụ 20. Cho $X=C\left([0,1]\right)=\left\{f:[0,1]\to\mathbb{R}\ \text{liên tục}\right\}$ và $f,g\in X.$ Đặt metric

$$d(f,g) = \int_{0}^{1} |f(t) - g(t)| dt.$$

Cho $a = \{f \in X : f(0) = 0\}$. Chứng minh A không compact trong (X, d).