

Sora Nagano

The University of Tokyo

2025-07-12

1.		XXXXX 3	4.	VQ	$XXXX \Longleftrightarrow XXXXXXXX \dots \dots$. 23
	1.1	$\times \times $		4.1	VQ XXXX	. 24
	1.2	XXXXXXX		4.2	K-means XXX VQ XX	. 25
	1.3	XXXXXXXXXXX 8	5.	XXX		. 28
	1.4			5.1	RQ1	. 29
	1.5	XXXXXXX		5.2	RQ2XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 31
2.		XXX	6.	XXX		. 32
	2.1	XXXX		6.1		. 33
	2.2	NLP XXX		6.2		. 35
	2.3	XXXX NLP XXX		6.3		. 37
3.	SSI	LXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	7.	XXX	1XIXIX	. 44
	3.1	SSLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		7.1	RQ1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 45
	3.2	wav2vec 2.0 SSL SSL SSL 19		7.2	RQ2XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. 49
	3.3	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		7.3		. 57

Sora Nagano 2025-07-12

3.			58
	8.1		59
	8.2		60
9.		☑	61
	9.1		62
	9.2		63
			65

1. XXXXXXXXX

1.1 **XXXXXXXXX vs XX**

1. XXXXXXX

XX

- MXXXXXXChomsky & Halle 1968\(\text{\text{M}}\)
- MXXXXIPrince & Smolensky 1993

 \mathbb{Z} [sak \mathbb{Z} [sak \mathbb{Z}] \rightarrow /sakura/

- MM/s/, /a/, /k/, /u/, /r/, /a/MM/MM/M
- MM[+consonantal], [-voice], [+coronal]......MMMMMMM

- word2vec, Skip-gram\(Mikolov et al. 2013\(\)

GAN XXXXXX (Begus, 2020)X

Vector Quantization (VQ) XXX → XXXXXXXX (Higy et al., 2021)

- k-means XXXXXXXX → XXXXXXXX

- **MXXXXX**/p/-/p^h/**XXX** (Medin et al., 2024)

1.5 XXXXXXXXX

1. XXXXXXXX

2. XXXXX

NLP XXXXXX

- XXXXXXXXXXXXXXX

NLP XXXXXX

 $\begin{array}{c} & & & \\ &$

XX

 $\frac{2}{2}$

- XXXXXXXXXXX

SSL XXXX

wav2vec 2.0 Meta/Facebook MM = MMMMMMM SSL MM (Baevski et al., 2022) M

- 3. **XXXXXXXXXXXXX**

3. SSLXXXXXXXXX

XXX (Astrach & Pinter, 2025; Venkateswaran et al., 2025)∑

4. $VQXXX \iff XXXXXXX$

4.1 VQ

 $4. \ VQ \overline{XXX} \Longleftrightarrow \overline{XXXXXX}$

VIXION VOLUMEVector Quantization, VQXX

= \times

 $\boxtimes\boxtimes\boxtimes\boxtimes$ [0.73, -0.45, 1.23] $\longrightarrow\boxtimes\boxtimes\boxtimes\boxtimes$ \boxtimes \boxtimes

XXXXXX

4.2 K-means WW VQ W

XXXX

- 1. wav2vec 2.0
- 2. K-means 🛭 128 🖾 🖾 🖽
- 3. MXXXXX ID XXXXX
- 4. XXXXXXXXXXXXXXXXX

- XXXXXn_clusters=128, random_state=42, batch_size=2048, n_init=3

- ⊠⊠⊠joblib.dump ⊠⊠ pickle ⊠

- 1. XXXXXXX: all_frames.shape = (15,234, 768)
- 2. KMeans XX: 128 XXXXXX
- 3. **XXXXXXX**: cluster_centers_.shape = (128, 768)

RQ1

- XXXXX wav2vec2-base-960h XXXXX
- XXXXXXXX vs VQ XXX(vs XXX)

XXXX

- XXXXXXXXXX

RQ2

Zubiaga, 2024)

6. XXXXXXXX

XXXX

- Docker + Poetry
- XXXXXCPU XXXXMacBook ProX- GPU XXXXXXXX

LibriSpeech	100	

6. XXXXXXXX

Common Voice	100	

6.2 XXXX

6. XXXXXXX

RQ1

XXXXXX

- XXXX wav2vec2 XXXXX 768 XXX
- MXXXVQ XXXX IDX0-127 XXXX

XXXXXXX

- **XX**train-test split (70%-30%)
- XXX63 XXXXXXXXXXXXXX

6.2 XXXX

6. XXXXXXX

RQ2

- XXXXStandardScaler XX

- XXXXIIIbrosa.pyin XXXXXXXX
- XXXXXXXX 772 XXXXXXXXXX
- XXXXXXXXX StandardScaler XX

LibriSpeech test.clean ⊠RQ1 XXX

- XXX 100 XXXXXX

Common Voice 13.0 🛮 RQ2 🖾 🛣

- XXXXXIteens, twenties, thirties, forties, fifties, sixties, seventies, eighties

6.3 XXXXXXXXXXX

```
"file": "6930-75918-0000.flac",
  "audio": {"array": [-6.10e-05, 9.15e-05, ...], "sampling_rate": 16000},
  "text": "CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS",
  "speaker id": 6930
Common Voice
  "audio": {"array": [0.001, -0.002, ...], "sampling rate": 48000},
  "sentence": "The quick brown fox jumps over the lazy dog",
  "age": "twenties"
```

6. XXXXXXX

XXXXXXXX

- 1. wav2vec2-base-960h
- 3. **XXXXXXXX**Shape (**XXXXX**, 768 **XX**)
- 4. Milibrispeech_micro_continuous.npy

VQ XXXXX

- 2. MiniBatchKMeans XXX128 XXXXXX
- 3. XXXXXXXXXVq_kmeans_128_micro.pkl
- 4. **XXXXXXXXXXXXXX**

XXXXXXX

- 100 \boxtimes $(15,234,768) \rightarrow \boxtimes 15,234 \boxtimes$

VQ XXXX

- XXXXXX: [0.73, −0.45, 1.23, ...] (768 XX)
- \rightarrow XXXXX ID: 25 (0-127 XXX)

XXXX 3XXXXXX notebook XXXX

Notebook	
rq1_probing_pipeline	XXX vs VQ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

6.3 XXXXXXXXXX

6. XXXXXXX

Notebook	
rq2_hybrid_model_poc	


```
[DDD] K-MeansDall_framesDshape: (15234, 768), Dtype: float32
VQDD (KMeans) D128 DDDDDD...
[DDD] DDDDDDShape: (128, 768)
VQDDD outputs/models/vq kmeans 128 micro.pkl
```

- Poetry XXX Python XXXX
- Docker XXXXXXXX OS XXXXXXX
- requirements XXXXX XXXXXXX
- Hugging Face datasets/transformers

7. XXXXXXX

XXXXX

- XXXXX63 XXXXXXXXXXXX
- XXXXXXXLibriSpeech micro (100 XXXXXX 33,464 XXXX)
- XXXXXtrain-test split (70%-30%) XXXXXXXXXX

XXXXXXXXX

- G2P-ENXXXXX "A MAN SAID..." \rightarrow XXX ['AH0', '', 'M', 'AE1', 'N', ...]
- $\boxtimes 150 \boxtimes \boxtimes \boxtimes 10 \boxtimes \longrightarrow \boxtimes \boxtimes 15 \boxtimes \boxtimes \boxtimes \boxtimes \boxtimes$

- MXXXXI"CONCORD RETURNED TO ITS PLACE AMIDST THE TENTS"
- XXXX42 XXX['K', 'AA1', 'N', 'K', 'AO2', 'R', 'D', ' ', 'R', 'IH0', 'T', 'ER1', 'N', 'D', ...]
- MXXXXXXX175 MXXXX

VQ XXXXXXXXXXX

VQ XXXXXXXX

VQ XXXXXXXXXX

XXXXXXXX

- VQ XX:XXXX ID=52 (XXXXXXX)
- XXXcatX: [ID:52, ID:23, ID:78] → XXXXXX

XXXXX

- XXXXXXXXXXX VS XXXXXX
- Matrain-test split + Matrain-test split + classification_report

7. XXXXXXX

- XXXXStandardScaler

- XXXXXnp.hstack XXXXX → 772 XXXXXX
- MXXXXXXX StandardScaler XX

XXXXXXXX

- X_acoustic: (100, 4) [mean_f0, std_f0, jitter, shimmer]
- XXXXXXX ≈ 0.0, XXXX ≈ 1.0 XXXXXXX

7. XXXXXXX

- **XXXXXXX** 'twenties'
- **XXXX** [mean_f0: 192.33, std_f0: 15.7, jitter: 0.02, shimmer: 0.1]

RQ1

RQ2

- 2. MXXXXXXIII torchaudio.transforms.Resample
- 4. MXXXXIII torch.no_grad() MX GPU MXXXXIII
- 5. XXXXCPU XXXnumpy XXXXXXXXXX

XXXXX

G2P-EN XXXXXXXXX	Montreal Forced Aligner 🖾
100 XXXX 2 XXXXXX	
CPU ⊠⊠	MXXX GPU XX
wav2vec2-base	WavLM-Large ₩

8. XXXXXXXX

XXXX

- WavLM-Large
- XXXXXX

XXXX

XXXXXXXX

9. XXX

- 2. **XXXXXXXXXXXXXX**

- 5. **XXXXXXXXXXXXXXXX**

XXXX

- XXXXXXXXXX

9.2 XXXXXXX

9. XXX

- data/processed/librispeech micro continuous.npy
- outputs/models/vq_kmeans_128_micro.pkl\XXXXX VQ XXX

- XXXXX63 XXXX ', 'AA0', 'AA1', 'AE1', 'AH0', ...X
- XX/XXXXXX23,424/10,040 XXXX

XXXXXX

- MXXX notebooks/prepare.ipynb XXXXXX
- Docker

Note: Reference file path needs to be adjusted for compilation

- Astrach, G., & Pinter, Y. (2025, June). Probing Subphonemes in Morphology Models (Issue arXiv:2505.11297). arXiv. https://doi.org/10.48550/arXiv.2505.11297
- Baevski, A., Hsu, W.-N., Conneau, A., & Auli, M. (2022, May). Unsupervised Speech Recognition (Issue arXiv:2105.11084). arXiv. https://doi.org/10.48550/arXiv.2105.11084
- Begŭs, G. (2020). Generative Adversarial Phonology: Modeling Unsupervised Phonetic and Phonological Learning With Neural Networks. *Frontiers in Artificial Intelligence*, *3*. https://doi.org/10.3389/frai.2020.00044
- Chen, J., & Elsner, M. (2023, May). Exploring How Generative Adversarial Networks Learn Phonological Representations (Issue arXiv:2305.12501). arXiv. https://doi.org/10.48550/arXiv.2305.12501
- Cho, C. J., Lee, N., Gupta, A., Agarwal, D., Chen, E., Black, A. W., & Anumanchipalli, G. K. (2025, March). *Sylber: Syllabic Embedding Representation of Speech from Raw Audio* (Issue arXiv:2410.07168). arXiv. https://doi.org/10.48550/arXiv.2410.07168
- Choi, K., Pasad, A., Nakamura, T., Fukayama, S., Livescu, K., & Watanabe, S. (2024, June). Self-Supervised Speech Representations Are More Phonetic than Semantic (Issue arXiv:2406.08619). arXiv. https://doi.org/10.48550/arXiv.2406.08619
- Gosztolya, G., Kiss-Vetráb, M., Svindt, V., Bóna, J., & Hoffmann, I. (2024). Wav2vec 2.0 Embeddings Are No Swiss Army Knife-A Case Study for Multiple Sclerosis.
- Higy, B., Gelderloos, L., Alishahi, A., & Chrupała, G. (2021). Discrete Representations in Neural Models of Spoken Language. In J. Bastings, Y. Belinkov, E. Dupoux, M. Giulianelli, D. Hupkes, Y. Pinter, & H. Sajjad (Eds.), *Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP: Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP.* https://doi.org/10.18653/v1/2021.blackboxnlp-1.11
- Jarosz, G. (2019). Computational Modeling of Phonological Learning. *Annual Review of Linguistics*, *5*(1), 67–90. https://doi.org/10.1146/annurev-linguistics-011718-011832

- Kolachina, S., & Magyar, L. (2019). What Do Phone Embeddings Learn about Phonology? In G. Nicolai & R. Cotterell (Eds.), *Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology: Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology*. https://doi.org/10.18653/v1/W19-4219
- Medin, L. B., Pellegrini, T., & Gelin, L. (2024). Self-Supervised Models for Phoneme Recognition: Applications in Children's Speech for Reading Learning. *Interspeech 2024*, 5168–5172. https://doi.org/10.21437/Interspeech.2024-1095
- Mohamed, A., Lee, H.-y., Borgholt, L., Havtorn, J. D., Edin, J., Igel, C., Kirchhoff, K., Li, S.-W., Livescu, K., Maaløe, L., Sainath, T. N., & Watanabe, S. (2022). Self-Supervised Speech Representation Learning: A Review. *IEEE Journal of Selected Topics in Signal Processing*, *16*(6), 1179–1210. https://doi.org/10. 1109/JSTSP.2022.3207050
- Panchendrarajan, R., & Zubiaga, A. (2024, March). Synergizing Machine Learning & Symbolic Methods: A Survey on Hybrid Approaches to Natural Language Processing (Issue arXiv:2401.11972). arXiv. https://doi.org/10.48550/arXiv.2401.11972
- Pasad, A., Chien, C.-M., Settle, S., & Livescu, K. (2024). What Do Self-Supervised Speech Models Know About Words?. *Transactions of the Association for Computational Linguistics*, 12, 372–391. https://doi.org/10.1162/tacl_a_00656
- Pouw, C., Kloots, M. d. H., Alishahi, A., & Zuidema, W. (2024). Perception of Phonological Assimilation by Neural Speech Recognition Models. *Computational Linguistics*, *50*(3), 1557–1585. https://doi.org/10.1162/coli_a_00526
- Silfverberg, M. P., Mao, L., & Hulden, M. (2018). Sound Analogies with Phoneme Embeddings. *Society for Computation in Linguistics*, 1(1). https://doi.org/10.7275/R5NZ85VD
- Staples, R., & Graves, W. W. (2020). Neural Components of Reading Revealed by Distributed and Symbolic Computational Models. *Neurobiology of Language (Cambridge, Mass.)*, 1(4), 381–401. https://doi.org/10.1162/nol a 00018
- Tsvilodub, P., Hawkins, R. D., & Franke, M. (2025, June). *Integrating Neural and Symbolic Components in a Model of Pragmatic Question-Answering* (Issue arXiv:2506.01474). arXiv. https://doi.org/10.48550/arXiv.2506.01474
- Venkateswaran, N., Tang, K., & Wayland, R. (2025, June). Probing for Phonology in Self-Supervised Speech Representations: A Case Study on Accent Perception (Issue arXiv:2506.17542). arXiv. https://doi.org/10.48550/arXiv.2506.17542