EC4219: Software Engineering

Lecture 13 — Program Verification (4) Invariant Inference by Guess-and-Check

Sunbeom So 2024 Spring

Hounini Overview

- Named after magician Harry Hounidi
- Originally proposed as annotation assistant for ESC/Java (extended static checker for Java).
- Guess-and-Check: Guess some annotations, and check if they are correct.
 - ► The annotations produced by Houdini are *sound* (inferred invariants are true invariants).
 - Generally applicable to inference of any types of invariants (loop invariants, function specifications, etc).
 - ▶ However, it is not complete. The synthesized annotations may not be sufficient to prove property.

Step 1: Guess Invariants

Many different techniques for guessing invariants.

- Collect candidates from source code based on heuristics
 - Expressions of the form v_1 op v_2 or v_1 op c, where v_1 and v_2 are variables used in source code and c is an "interesting" constant.
- Use dynamic analysis (Daikon approach)
 - Employ facts while running the program.
- All these techniques are heuristics in nature. Their effectiveness can differ depending on application domains.

Step 2: Check Invariants

- The checker only throws out candidate annotations that are refuted by the verifier.
- Loop invariant I is refuted if
 - 1 it is not implied by the loop precondition
 - 2 it is not preserved by the loop body
- Function precondition P is refuted if it does not hold at the function's call-site.
- Function postcondition Q is refuted if $\{P\}$ S $\{Q\}$ is invalid, i.e., $P \to \operatorname{pre}(Q,S)$ is invalid (S is the function body).

Pseudo Code of Houdini¹

Algorithm 1 Houdini

```
Input: A program P to verify Output: A conjunctive invariant A
1: A_0 \leftarrow enumerate speculated invariants
2: A \leftarrow A_0
3: while true do
```

- 4: $refuted \leftarrow \mathsf{Verify}(P, A)$
- 5: if $refuted = \emptyset$ then
- 6: **return** A
- 7: $A \leftarrow A \setminus refuted$
 - ullet The algorithm returns the conjunctive invariant $I=igwedge_{b_i\in A}b_i$.
 - ullet **Termination**: Terminates after at most $|A_0|$ iterations.
 - ullet Soundness: Upon termination, annotations in $oldsymbol{A}$ are true invariants.

 $^{^1}$ This algorithm assumes P has a sinlge loop.

Example: Finding Loop Invariants

Consider the simple code below.

```
1    i := 0;
2    j := -1;
3    while (i<1000) {
4       j := i;
5       i := i+1;
6    }</pre>
```

Suppose $A_0=\{I_1:i\geq 0,I_2:i=j,I_3:i<1000,I_4:i\leq 1000\}.$ Compute the inductive invariant.

• The candidate I_2 is refuted because it is not implied by the precondition (the following is invalid):

$$\{true\}\ L1; L2\ \{I_2\}$$

ullet The candidate I_3 is also refuted because the following is invalid:

$$\{I_1 \wedge I_3 \wedge I_4 \wedge i < 1000\}\ L4; L5\ \{I_3\}$$

Property of Houdini Algorithm

Given a set of candidate loop invariants, Houdini finds the largest subset that is inductive (i.e., the strongest inductive invariant). Why? (proof by contradiction)

- Suppose Houdini returns the set A, but there exists a stronger and inductive invariant B, i.e., $B \supset A$ such that $\bigwedge_{b_i \in B} b_i$ is inductive.
- ullet This means that the algorithm must have eliminated some $b_i \in B$.
- This happens only when if either (1) $Pre \rightarrow b_i$ is invalid or (2) $\{I_B \wedge C\} \ Body \ \{b_i\}$ is invalid.
- But neither option is possible since B is inductive according to our assumption (contradiction!).

Houdini for Function Specifications

- Houdini is not limited to inferring loop invariants, and it can be used to infer function specifications.
- Suppose we have a candidate set of preconditions (P) and postconditions (Q), and initialize preconditions and postconditions of every function with P and Q, respectively.
- When analyzing a function F:
 - ▶ If verification fails due to the callee's precondition *p*, remove *p* from the callee's precondition set.
 - If verification fails because some postcondition q could not be established, remove q from the F's postcondition set Q.

Example: Finding Function Specifications

```
1 main () { foo (5,0); }
2
3 foo (x, y) {
4   if (x<=0) z := y; else z := bar(x,y);
5   return z;
6 }
7
8 bar (x,y) { x := x-1; y := y+1; return foo(x,y); }</pre>
```

Suppose $P=\{P_1:x\geq 0,P_2:y\geq 0,P_3:x=y,P_4:x>0\}$. Suppose also $Q=\{Q_1:rv\geq 0,rv=0\}$. Find function specifications for foo and bar.

Example: Finding Function Specifications (Cont'd)

```
1 main () { foo (5,0); }
2 foo (x, y) {
3   if (x<=0) z := y; else z := bar(x,y);
4   return z;
5 }
6 bar (x,y) { x := x-1; y := y+1; return foo(x,y); }</pre>
```

- ullet When analyzing main, we remove $P_3: x=y$ for foo.
- When analyzing foo, we remove $P_3: x=y$ for bar because assert(x=y) fails at bar's callsite.
- ullet When analyzing foo, we remove $Q_2:rv=0$ for foo because assert(rv=0) fails (rv=5).

Example: Finding Function Specifications (Cont'd)

```
1 main () { foo (5,0); }
2 foo (x, y) {
3   if (x<=0) z := y; else z := bar(x,y);
4   return z;
5 }
6 bar (x,y) { x := x-1; y := y+1; return foo(x,y); }</pre>
```

- ullet When analyzing bar, we remove $P_4: x>0$ for foo.
- ullet When analyzing bar, we remove $Q_2: rv = 0$ for bar.
- Iterate the same process, and nothing is refuted.
- The inferred function specification for foo:

$$P = \{x \ge 0 \land y \ge 0\}$$
 and $Q = \{rv \ge 0\}$

• The inferred function specification for bar:

$$P = \{x \ge 0 \land y \ge 0\}$$
 and $Q = \{rv \ge 0\}$

Summary

Houdini algorithm: a simple approach for automatically inferring (strongest) invariants:

- Pros: general applicability, easy to implement
- Cons: infer conjunctive invariants only, not property-directed (no guarantee that the inferred invariants are useful for verifying property)

Finding invariants still remains an active research area (probabilistic reasoning, domain-specific refinement, etc) – join if interested!