Exercises on transposes, permutations, spaces

Problem 5.1: (2.7 #13. Introduction to Linear Algebra: Strang)

- a) Find a 3 by 3 permutation matrix with $P^3 = I$ (but not P = I).
- b) Find a 4 by 4 permutation \widehat{P} with $\widehat{P}^4 \neq I$.

		0	0	1	_	0	1	0	_		-ι	۵	0
a)	P =	ı	0	٥	P2 =	O	0	1	P3	=	9	1	0
,		0	l	0		ι	0	0			0	٥	ι

Problem 5.2: Suppose *A* is a four by four matrix. How many entries of *A* can be chosen independently if:

- a) A is symmetric?
- b) A is skew-symmetric? $(A^T = -A)$

All diagonals must be
$$O(a=-a \rightarrow a=0 \text{ for } e^{xample})$$
.

must set $e=-b$, $i=-c$, $m=-d$

$$j=-g$$
, $n=-h$

$$0=-\ell$$

For a
$$4 \times 4$$
 skew symmetric

 $A = \begin{bmatrix} -b & 0 & g & h \\ -c & -g & 0 & l \end{bmatrix}$
 $A = \begin{bmatrix} -b & 0 & q & h \\ -c & -g & 0 & l \end{bmatrix}$
 $A = \begin{bmatrix} -d & -h & -l & 0 \\ -d & -h & -l & 0 \end{bmatrix}$

For a 4×4 skew symmetric

 $A = \begin{bmatrix} -b & 0 & q & h \\ -d & -h & -l & 0 \end{bmatrix}$
 $A = \begin{bmatrix} -b & 0 & q & h \\ -d & -h & -l & 0 \end{bmatrix}$

For a 4×4 skew symmetric

 $A = \begin{bmatrix} -b & 0 & q & h \\ -c & -g & 0 & l \\ -c & -h & -l & 0 \end{bmatrix}$
 $A = \begin{bmatrix} -b & 0 & q & h \\ -c & -g & 0 & l \\ -c & -h & -l & 0 \end{bmatrix}$
 $A = \begin{bmatrix} -b & 0 & q & h \\ -c & -g & 0 & l \\ -c & -h & -l & 0 \end{bmatrix}$
 $A = \begin{bmatrix} -b & 0 & q & h \\ -c & -g & 0 & l \\ -c & -h & -l & 0 \end{bmatrix}$

Problem 5.3: (3.1 #18.) True or false (check addition or give a counterexample):

- a) The symmetric matrices in M (with $A^T = A$) form a subspace.
- b) The skew-symmetric matrices in M (with $A^T = -A$) form a subspace.
- c) The unsymmetric matrices in M (with $A^T \neq A$) form a subspace.

6) True. Let
$$A, B \in M$$
 $(n \times n)$ and $C \in \mathbb{R}$
Then $(A+B)^T = A^T + B^T = A+B$,
 $(CA)^T = CA$

b) True. Let A, B be skew symmetric matrices in M and CER.

Then
$$(A+B)^T = A^T + B^T = -A - B = -(A+B)$$
,
 $(CA)^T = CA^T = -CA$.

c) False. Consider the unsymmetric A, B:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 6 \\ 3 & 5 & 6 \end{bmatrix}$$

Even more simply, for any unsymmetric matrix

A, taking c=0 gives cA = zero matrix, which
is of course symmetric.