Introduction to SILVACO ATLAS TCAD Tool

Course ECE 445 Swarnav Mukhopadhyay

What is TCAD??

Technology Computer-Aided Design

Do We Trust TCAD??

NO!! Always Verify Twice!

What Can we do with TCAD?

SIMULATE ANY DEVICE!

Let's Get Started with TCAD!

Basics of TCAD

Defining the Structure

Mesh Design/Digitization of the simulation area

We want to simulate different properties (Current densities, Electric field, doping profile, band diagram etc.) of this resistor

How to digitize the device?

We can create different densities of meshing

How to design a mesh?

Mesh along x-axis

Denser at the junction (Where electric-field changes) and coarse at the middle

MESH SPACE.MULT=<VALUE>

This is followed by a series of X. MESH and Y. MESH statements.

X.MESH LOCATION=<VALUE> SPACING=<VALUE>

Some useful features: Auto mesh, Regrid etc.

Y.MESH LOCATION=<VALUE> SPACING=<VALUE>

Defining a Region

You can define different materials in different regions. Regions can't exceed the area of the mesh.

REGION number=<integer> <material_type> <position parameters>

Position parameter: x.min=, x.max=, y.min=, y.max=

REGION NUM=1 Y.MAX=0 MATERIAL=OXIDE

REGION NUM=2 Y.MIN=0 MATERIAL=SILICON

For defining composition of a material use x.comp= , y.comp=

Defining a Electrode/Contact

You can define different materials in different regions. Regions can't exceed the area of the mesh.

ELECTRODE NAME=ANODE X.MIN=0.5 X.MAX=1.0

By default the contacts are ohmic in nature

For ohmic contact there would be no electric field present between metal and semiconductor

Defining a Doping

Uniform Doping profile of x/cm³

Doping of specific type, concentration, profile, position can be defined

DOPING <distribution type> <dopant type> <position parameters>

DOPING UNIFORM CONCENTRATION=1E16 N.TYPE REGION=1

DOPING GAUSSIAN CONCENTRATION=1E18 CHARACTERISTIC=0.05 P.TYPE

X.LEFT=0.0 X.RIGHT=1.0 PEAK=0.1

Commonly used doping profiles uniform and gaussian

Defining a Contact Property

Defining a metal workfunction changes its property from ohmic to schottky

CONTACT NAME=gate WORKFUNCTION=4.8

(d)

(c)

By default the contacts are voltage controlled, you can change it to current controlled if you want to

CONTACT NAME=drain CURRENT

How to define material properties?

For Defining basic material properties:

- 1. Name of material
- 2. Type of material: Semiconductor, Insulator, Conductor
- 3. Bandgap
- 4. Band offsets between two materials
- 5. Affinity
- 6. Permittivity
- 7. Density of states
- 8. Mobility and/or effective mass
- 9. Ionization property (E_c-E_D) or (E_A-E_V)
- 10. Thermal property
- 11. Transport property
- 12. Optical property

https://www.ioffe.ru/SVA/NSM/Semicond/ https://www.tf.unikiel.de/matwis/amat/semitech_en/index.html

What are different models?

Models are basically different physical phenomena that we want to use for obtaining certain output after the simulation

Physical Models:

- 1. Carrier Statistics
 - I. Fermi-Dirac
 - II. Boltzmann
 - III.Schrodinger
 - IV. K.P.
- 2. Transport properties
 - I. Drift-diffusion
 - II. Thermionic emission
 - III. Field Emission
 - IV. Tunneling
- 3. Mobility Models
- 4. Recombination models
- 5. Impact Ionization models
- 6. Tunneling models

Numerical methods for solving the simulation

Newton-Raphson (mostly used)

You need an initial guess, generally taken at equilibrium condition

Other two methods: Gummel and Block (Used for specific kind of simulations)

$$x_n = x_{n-1} - f(x_{n-1})/f'(x_{n-1})$$

Where,

- x_{n-1} is the estimated $(n-1)^{th}$ root of the function,
- $f(x_{n-1})$ is the value of the equation at $(n-1)^{th}$ estimated root, and
- $f'(x_{n-1})$ is the value of the first order derivative of the equation or function at x_{n-1} .

Different Kind of solutions

- DC: Where the applied bias is constant (Amplitude) and frequency is 0 with respect to time
- AC: Where the applied bias has a constant amplitude and frequency with respect to time
 - Single frequency (Change of voltage/amplitude)
 - Frequency response (Constant voltage/amplitude)
- Transient: The applied bias changes with respect to time

Figure 2-16 Diagram showing syntax of Transient Voltage Ramp in Atlas