Column Categorization and Principal Component Analysis (PCA)

```
> names(loan)
[1] "X"
                                                                                "loan amnt"
     [3] "funded_amnt"
                                                                                "funded amnt inv"
  [5] "term"
[7] "installment"
[9] "sub_grade"
[11] "emp_length"
                                                                                "int_rate"
                                                                                "grade"
                                                                                "emp_title"
                                                                                "home ownership"
  [13] "annual_inc"
[15] "issue_d"
[17] "pymnt_plan"
[19] "purpose"
                                                                               "verification_status"
"loan_status"
"desc"
                                                                                "title"
  [21] "zip_code"
[23] "dti"
                                                                               "addr_state"
"delinq_2yrs"
  [25] "earliest_cr_line"
[27] "mths_since_last_delinq"
[29] "pub_rec"
[31] "revol_util"
                                                                                "ing last 6mths"
                                                                                "open_acc"
"revol_bal"
                                                                                "total acc"
  [31] "levol_utii
[33] "initial_list_status"
[35] "out_prncp_inv"
[37] "total_pymnt_inv"
                                                                                "out_prncp"
                                                                               "total_pymnt"
"total_rec_prncp"
  [39] "total_rec_int"
                                                                                "total_rec_late_fee"
  [41] "recoveries"
[43] "last_pymnt_d"
[45] "next_pymnt_d"
                                                                                "collection_recovery_fee"
                                                                                "last_pymnt_amnt"
                                                                                "last_credit_pull_d"
  [47] "collections_12_mths_ex_med" "policy_code"
[49] "application_type"
[51] "acc_now_deling"
                                                                                "verification_status_joint"
                                                                                "tot coll amt'
  [53] "tot_cur_bal"
                                                                                "open_acc_6m"
  [55] "open_act_il"
[57] "open_il_24m"
[59] "total_bal_il"
                                                                                "open_il_12m"
"mths_since_rcnt_il"
                                                                                "il_util"
  [61] "open_rv_12m"
[63] "max_bal_bc"
[65] "total_rev_hi_lim"
                                                                                "open_rv_24m"
                                                                                "aİl_util"
                                                                                "ing fi"
                                                                               "inq_last_12m"
"avg_cur_bal"
"bc_util"
  "delinq_amnt"
  [75] "mo_sin_old_il_acct"
[77] "mo_sin_rcnt_rev_tl_op"
[79] "mort_acc"
                                                                                "mo_sin_old_rev_tl_op"
                                                                                "mo_sin_rcnt_tl'
                                                                                "mths since recent bc"
  [81] "mths_since_recent_inq"
[83] "num_actv_bc_tl"
[85] "num_bc_sats"
                                                                               "num_accts_ever_120_pd"
"num_actv_rev_tl"
"num_bc_tl"
  [87] "num_il_tl"
                                                                                "num_op_rev_tl"
  [89] "num_rev_accts"
[91] "num_sats"
                                                                               "num_rev_tl_bal_gt_0"
"num_tl_120dpd_2m"
  [93] "num_sut3 30dpd"
                                                                                "num_tl_90g_dpd_24m"
  [95] "num_tl_op_past_12m"
[97] "percent_bc_gt_75"
[99] "tax_liens"
                                                                                "pct_tl_nvr_dlq"
"pub_rec_bankruptcies"
                                                                                "tot hi cred lim"
[101] "total_bal_ex_mort" "total_bc_limit" [103] "total_il_high_credit_limit" "sec_app_earliest_cr_line" [105] "hardship_flag" "hardship_type" [105] "hardship_flag" "hardship_type"
[107] "hardship_reason"
                                                                                "hardship_status"
[109] "hardship_start_date"
[111] "payment_plan_start_date"
                                                                               "hardship_end_date"
"hardship_loan_status"
[113] "disbursement method"
                                                                                "debt settlement flag"
[115] "debt_settlement_flag_date"
                                                                                "settlement_status'
[117] "settlement date"
```


- > loan = loan %>% select(loan_status , loan_amnt , funded_amnt, installment, int_rate, issue_d , grade , purpose, dti,
- emp length, home ownership, annual inc, term)

Binarization of Term column (36 <- 1 and 60 <- 0)

```
> unique(loan$term)
[1]
      36 months
                     60 months Levels:
      36 months
                     60 months
> loan$term <- as.integer(gsub("months", "", loan$term))
> loan$term[loan$term == 36] <-
 loan$term[loan$term != 1] <- 0
  unique(loan$term) [1] 1
Categorization of grade
> unique(loan$grade)
[1] BCDEAGFLevels: AB
ĊDEFG
> loan$grade <- as.character(loan$grade)
       > loan$grade[loan$grade ==
                                     "A"] <- 7
       > loan$grade[loan$grade ==
                                     "B"] <- 6
       > loan$grade[loan$grade ==
                                     "C"] <- 5
       > loan$grade[loan$grade ==
                                     "D"] <- 4
       > loan$grade[loan$grade ==
                                     "E"] <- 3
```

> loan\$grade <- as.integer(loan\$grade)

> loan\$grade[loan\$grade ==
> loan\$grade[loan\$grade ==

> unique(loan\$grade) [1] 6 5 4 3 7 1 2

Clearance of emp length variable

```
> unique(loan$emp_length)
                                        "3 years"
 [1] "10+ years" "5 years"
                                                                          " 1 year"
                                                                                           "8 years"
                                                         "1 year"
                       "7 years"
                                                                          "6 years"
                                                                                           "9 years"
 [7] "2 years"
                                        "4 years"
    > loan$emp_length <- gsub("<", "", loan$emp_length)
    > loan$emp_length <- gsub("years", "", loan$emp_length)
    > loan$emp_length <- gsub("year", "", loan$emp_length)
    > loan$emp length <- gsub("n/a", "", loan$emp length)
    > loan$emp_length <- gsub("", "", loan$emp_length)</pre>
    > loan$emp_length <- gsub("\\+", "", loan$emp_length)</pre>
```

"F"] <- 2

"G"] <- 1

Binarization of home ownership

```
> unique(loan$home_ownership)
[1] RENT MORTGAGE OWN ANY
Levels: ANY MORTGAGE OWN RENT
> loan$home_ownership <- as.character(loan$home_ownership)
> loan$home_ownership[loan$home_ownership=="OWN" | loan$home_ownership=="MORT GAGE" ] <- 1
> loan$home_ownership[loan$home_ownership!=1] <- 0
> loan$home_ownership <- as.numeric(loan$home_ownership)</pre>
```

Binarization of purpose

unique(loan\$home ownership) [1] 0 1

Purpose variable was binarize based on Lending Club offer and intuition. As one of these values r efers to personal needs and the other parts to financial issues. I decided to binarize this variable as shown in the below code.

```
> unique(loan$purpose)
 [1] credit_card
                                 other
                                                            house
                                                                                      debt consolidation
                                 home improvement
 [5] car
                                                            moving
                                                                                      major_purchase
 [9] vacation
                                 small business
                                                                                      renewable energy
                                                            medical
14 Levels: car credit_card debt_consolidation educational home_improvement ...
. wedding
> loan$purpose <- as.character(loan$purpose)
  | loan$purpose[loan$purpose == "home improvement" | loan$purpose == "other" | loan$purpose == "moving"
| loan$purpose == "vacation" |
                       loan$purpose == "major purchase" | loan$purpose == "small bus iness" | loan$purpose
== "car" | loan$purpose == "medical"|
                       loan$purpose == "house" | loan$purpose == "renewable energy"
| loan$purpose == "wedding"] <- 1
> loan$purpose[loan$purpose != 1] <- 0
 loan$purpose <- as.numeric(loan$purpose)</pre>
> unique(loan$purpose) [1] 0 1
```

Clearance of issue_d

Binarization of dependent variable loan_status

- > loan\$loan_status <- as.character(loan\$loan_status)
- > loan\$loan_status[loan\$loan_status == "Fully Paid"] <- 1</pre>
- > loan\$loan_status[loan\$loan_status != 1] <- 0
- > loan\$loan_status <- as.numeric(loan\$loan_status)

Conclusion – As we can see the entire data is now categorized.

Looking for correlation

- > Corr_<-cor(loan)
- > corrplot(Corr_, method = "square", type = "upper")

Conclusion - We can see that loan_amnt, funded_amnt and installment are highly positively correlated. Also int_rate and grade are highly negatively correlated the refore we remove funded_amnt, installment and grade.

PCA Application

> cor(ABC[,-1])

```
"emp_length" , "home_ownership" , "annual_inc" , "term")]
> cor(ABC[,-1])
                int_rate
                             issue_d
                                                         dti
                                                               emp_length
                                         purpose
              1.00000000 0.056567247
                                     0.026051583  0.216011067 -0.007511820
int_rate
issue_d
              0.05656725 1.000000000 0.046423193 -0.067248173 0.009880283
purpose
              0.02605158 0.046423193 1.000000000 -0.100760314 0.005532303
dti
              0.21601107 -0.067248173 -0.100760314 1.000000000
                                                             0.048241195
             -0.00751182 0.009880283 0.005532303 0.048241195
emp_length
                                                             1.000000000
home_ownership -0.06675641
                         0.023826468 0.048543854 0.004595834
                                                             0.181587513
             annual_inc
term
             home_ownership annual_inc
               -0.066756409 -0.07140994 -0.42675736
int_rate
issue_d
                0.023826468 0.02449414 -0.02346924
purpose
                0.048543854 0.02671103 0.06322270
dti
                0.004595834 -0.21305962 -0.02661717
emp_length
                0.181587513 0.03068314 -0.02937019
home_ownership
                1.000000000 0.10196960 -0.05784198
annual_inc
                0.101969604 1.00000000 -0.04585242
               -0.057841985 -0.04585242 1.00000000
term
```

> ABC.pca = prcomp(ABC[,-1], scale. = TRUE)

> summary(ABC.pca)

Importance of components:

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	Р
C8 Standard deviation 51	1.2337	1.1353	1.0747	1.0125	0.9736	0.9015	0.8681	0.703
Proportion of Variance	0.1902	0.1611	0.1444	0.1281	0.1185	0.1016	0.0942	0.061
Cumulative Proportion	0.1902	0.3514	0.4957	0.6239	0.7423	0.8439	0.9381	1.000

