Instituto Tecnológico de Costa Rica

Proyecto 3: Reemplazo de equipos

Investigación de Operaciones

Profesor:

Francisco Jose Torres Roja

Integrantes:

Jose Pablo Fernandez Jimenez - 2023117752

Diego Durán Rodríguez - 2022437509

Segundo semestre 2025

Problema de Reemplazo de Equipos

El **problema de reemplazo de equipos** es un problema clásico de toma de decisiones en investigación de operaciones. Consiste en determinar, a lo largo de un horizonte temporal, en qué momento resulta óptimo reemplazar un equipo (por ejemplo, una máquina, vehículo o computadora) considerando que, con el tiempo, su rendimiento disminuye y los costos de mantenimiento aumentan, mientras que su valor de reventa disminuye.

El objetivo es minimizar el costo total esperado.

Variantes del problema:

- Horizonte finito vs. infinito: El análisis puede hacerse en un período limitado de tiempo o indefinido.
- Determinístico vs. estocástico: En la versión determinística se conocen los costos y valores de reventa; en la estocástica, se modelan como variables aleatorias.
- Reemplazo individual vs. múltiple: Puede plantearse para un único equipo o para varios equipos en paralelo.

Algoritmo utilizado

El problema de reemplazo de equipos se resolvió utilizando la **ecuación recursiva de Bellman**, la cual permite determinar la decisión óptima en cada instante de tiempo aplicando el principio de optimalidad.

La formulación es:

$$G(t) = \min\{C_{t,x} + G(x)\}\$$

donde:

- G(t) representa el costo mínimo óptimo a partir del instante t.
- $C_{t,x}$ es el costo de comprar el equipo en el instante t y venderlo en el instante x.
- G(x) corresponde a la decisión más óptima a partir del instante x.

De esta forma, en cada período se comparan las posibles decisiones (mantener el equipo o reemplazarlo) y se elige aquella que minimiza el costo total acumulado.

Problema

• Costo inicial del equipo: 14000

• Plazo del proyecto: 13 períodos

• Vida útil del equipo: 5 períodos

Datos iniciales de Reventa, Mantenimiento y ganancia:

Año de vida	Reventa	Mantenimiento	Ganancia
1	6000	1500	0
2	5500	1450	0
3	5000	1000	0
4	4700	1700	0
5	4000	1500	0

Costos de cada periodo $C_{t,x}$

$t \to x$	1	2	3	4	5	6	7	8	9	10	11	12	13
0	9500	11450	12950	14950	17150	-	-	-	-	-	-	-	-
1	-	9500	11450	12950	14950	17150	-	-	-	-	-	-	-
2	-	-	9500	11450	12950	14950	17150	-	-	-	-	-	-
3	_	-	-	9500	11450	12950	14950	17150	-	-	-	-	-
4	_	-	-	-	9500	11450	12950	14950	17150	-	-	-	-
5	_	-	-	-	-	9500	11450	12950	14950	17150	-	-	-
6	_	-	-	-	-	-	9500	11450	12950	14950	17150	-	-
7	-	-	-	-	-	-	-	9500	11450	12950	14950	17150	-
8	_	-	-	-	-	-	-	-	9500	11450	12950	14950	17150
9	-	-	-	-	-	-	-	-	-	9500	11450	12950	14950
10	_	-	-	-	-	-	-	-	-	-	9500	11450	12950
11	-	-	-	-	-	ı	-	-	1	-	-	9500	11450
12	-	_	_	_	-	_	_	-	-	_	_	-	9500

Tabla de trabajo

t	G(t)	Próximo
0	47050	4,5
1	44850	5
2	42850	5,6
3	34300	8
4	32100	8,9
5	29900	9
6	27900	9,10
7	25900	10
8	17150	13
9	14950	13
10	12950	13
11	11450	13
12	9500	13
13	0	-

Solución óptima

Costo mínimo total: 47050

• 0 - 4 - 8 - 13

• 0 - 4 - 9 - 13

• 0 - 5 - 9 - 13

6

References

- [1] Meyer, R. A. (1971). Equipment replacement under uncertainty. Management Science, 17(11), 750-758. https://doi.org/10.1287/mnsc.17.11.750
- [2] Tan, C., Hartman, J. (2010). Equipment replacement analysis with an uncertain finite horizon. Disponible en: https://econpapers.repec.org/article/tafuiiexx/v_3a42_3ay_3a2010_3ai_3a5_3ap_3a342-353.htm