Bochum 9 June 2022

Pacemaker – a tool for atomic cluster expansion fitting

Lysogorskiy Yury, Anton Bochkarev, Matteo Rinaldi, Sarath Menon, Matous Mrovec, Ralf Drautz

Interdisciplinary Centre for Advanced Materials Simulation (ICAMS)
Ruhr-Universität Bochum, Germany
yury.lysogorskiy@rub.de

Atomic cluster expansion - basics

1) Atom ("i") and its neighbors ("j") within cutoff r_c

- 2) one-particle basis function for each bond \mathbf{r}_{\parallel} :
- 3) Atomic base A: (sum up over neighbors)

4) A-product

$$\phi_{\mu_i \mu_j n l m} = R_{nl}^{\mu_i \mu_j}(r_{ji}) Y_{lm}(\hat{\boldsymbol{r}}_{ji})$$
translational invariance

$$A_{i\mu nlm} = \sum_{j} \delta_{\mu\mu_{j}} \phi_{\mu_{i}\mu_{j}nlm}(m{r}_{ji})$$
 (n,l,m) – various indices permutation invariance $m{A}_{i\mu \mathbf{n}l\mathbf{m}} = \prod_{j} A_{i\mu_{t}n_{t}l_{t}m_{t}}$

Atomic cluster expansion – B-basis function

B-function

$$m{B_{i\mu {f nlL}}} = \sum_{f m} \left(egin{array}{c} m{lm} \ m{L}_R = 0 \end{array}
ight) m{A_{i\mu {f nlm}}} \qquad {m{rotational~\&~inversion}} \ {m{invariance}}$$

 Atomic property

$$\varphi_i^{(p)} = \sum_{\mu \mathbf{nlL}} c_{\mu \mathbf{nlL}}^{(p)} \boldsymbol{B}_{i\mu \mathbf{nlL}}$$

 Atomic energy

$$E_i = \varphi_i^{(1)} + \sqrt{\varphi_i^{(2)}}$$

scale invariance

pacemaker workflow

pacemaker workflow

Potential setup

Atomic cluster expansion – B-basis function

$$\boldsymbol{A}_{i\mu\mathbf{n}\mathbf{l}\mathbf{m}} = \prod_{t=1}^{\nu} A_{i\mu_t n_t l_t m_t}$$

All possible/valid permutationally invariant combinations

Atomic cluster expansion – B-basis functions

potential.yaml

```
1-order  
- { type: Mg Mg, nr: [1], nl: [0], c: [-0.38927436162521611, 0.20984551246156766]} 
- { type: Mg Mg, nr: [2], nl: [0], c: [1.4094350400758542, 0.94050815622715633]} 
- { type: Mg Mg, nr: [3], nl: [0], c: [2.588899132794248, 2.1388349209791118]} 
- { type: Mg Mg, nr: [4], nl: [0], c: [2.588890313794248, 2.1388349209791118]} 
- { type: Mg Mg, nr: [4], nl: [0], c: [-1.653578093574122, -0.85822653649028668]} 

- { type: Mg Mg Mg, nr: [1, 1], nl: [0, 0], c: [-0.01894305647420548, 0.12680828730394764]} 
- { type: Mg Mg Mg, nr: [1, 1], nl: [1, 1], c: [-0.1029318127695891, 0.02532028159817765]} 
- { type: Mg Mg Mg, nr: [1, 1], nl: [2, 1], c: [0.028012606257895433, -0.0037383526619737695]} 
- { type: Mg Mg Mg, nr: [1, 1], nl: [3, 3], c: [0.028012606257895433, -0.0037383526619737695]} 
- { type: Mg Mg Mg, nr: [1, 2], nl: [1, 1], c: [-0.16609878751560357, -0.049233689797688574]} 
- { type: Mg Mg Mg, nr: [1, 2], nl: [1, 1], c: [-0.16609878751560357, -0.049233689797688574]} 
- { type: Mg Mg Mg, nr: [1, 2], nl: [2, 2], c: [0.13828744540635127, -0.0114422839876834313]} 
- { type: Mg Mg Mg, nr: [1, 2], nl: [2, 2], c: [0.085372900243592676, -0.0492748491834585]} 
- { type: Mg Mg Mg, nr: [1, 3], nl: [0, 0], c: [0.04243842771959408, -0.60471926771396389]} 
- { type: Mg Mg Mg, nr: [1, 3], nl: [1, 1], c: [0.1060883763226281, -0.17816850678190668]} 
- { type: Mg Mg Mg, nr: [1, 3], nl: [1, 1], c: [0.091615432810955202, 0.023297853506166682]} 

3-order 

- { type: Mg Mg Mg, nr: [1, 1, 1], nl: [0, 0, 0], lint: [0], c: [0.0041897229317814149, 0.0026578093935502112]} 
- { type: Mg Mg Mg, nr: [1, 1, 1], nl: [0, 2, 2], lint: [2], c: [-0.01581849261329347, -0.0033906055739953887]} 
- { type: Mg Mg Mg, nr: [1, 1, 1], nl: [0, 0, 0], lint: [0], c: [-0.0026335649445420592, 0.05517096076958995887]} 
- { type: Mg Mg Mg, Ng, nr: [1, 1, 1], nl: [0, 0, 0], lint: [2], c: [-0.002633554944520592, 0.0551709607895889]} 
- { type: Mg Mg Mg, Mg, nr: [1, 1, 1], nl: [0, 0, 0], lint: [0], c: [-0.0063355390594, -0.003941884764793547]} 
- { type: Mg M
```

$$arphi_i^{(p)} = \sum_{\mu \mathbf{nlL}} \overline{c_{\mu \mathbf{nlL}}^{(p)}} \boldsymbol{B}_{i\mu \mathbf{nlL}}$$

Trainable coefficients

$$E_i = \varphi_i^{(1)} + \sqrt{\varphi_i^{(2)}}$$

Finnis-Sinclair embedding with 2 densities

Atomic cluster expansion – potential

Three components to specify the B-basis potential

embeddings

bonds

functions

npot: 'FinnisSinclairShiftedScaled'

ndensity: 2

fs_parameters: [1, 1, 1, 0.5]

radbase: ChebExpCos

rcut: 5

nradmax_by_orders: [15, 3, 2, 2, 1]

lmax_by_orders: [0, 2, 2, 1, 1]

Specify maximum n/l for each order

check *pacemaker* documentation for more details

Fit setup

Atomic cluster expansion: Computational workflow

† TensorFlow

A Bochkarev, Y Lysogorskiy, S Menon, M Qamar, M Mrovec, R Drautz Physical Review Materials 6 (1), 013804

Loss function

Loss function – energy/force contribution

fitting = minimization of loss function

$$\mathcal{L} = (1 - \kappa) \sum_{n=1}^{N_{\text{struct}}} w_n^{(E)} \left(\frac{E_n^{\text{ACE}} - E_n^{\text{ref}}}{n_{\text{at,n}}} \right)^2$$

$$+ \kappa \sum_{n=1}^{N_{\text{struct}}} \sum_{i=1}^{n_{\text{at,n}}} w_{ni}^{(F)} \left(\boldsymbol{F}_{ni}^{\text{ACE}} - \boldsymbol{F}_{ni}^{\text{ref}} \right)^{2}$$

$$+ \Delta_{\text{coeff}} + \Delta_{\text{rad}},$$

relative force contribution:

- kappa = 0: energy-only fit
- kappa = 1: force-only fit

Loss function - weights

fitting = minimization of loss function

$$\mathcal{L} = (1 - \kappa) \sum_{n=1}^{N_{\text{struct}}} w_n^{(E)} \left(\frac{E_n^{\text{ACE}} - E_n^{\text{ref}}}{n_{\text{at,n}}} \right)^2$$

$$+ \kappa \sum_{n=1}^{N_{\text{struct}}} \sum_{i=1}^{n_{\text{at,n}}} w_{ni}^{(F)} (\boldsymbol{F}_{ni}^{\text{ACE}} - \boldsymbol{F}_{ni}^{\text{ref}})^2$$

$$+ \Delta_{\text{coeff}} + \Delta_{\text{rad}},$$

Energies per-structure and forces per-atom weights:

- uniform weights
- energy-based weights
- custom weights

Loss function - regularization

fitting = minimization of loss function

$$\mathcal{L} = (1 - \kappa) \sum_{n=1}^{N_{\text{struct}}} w_n^{(E)} \left(\frac{E_n^{\text{ACE}} - E_n^{\text{ref}}}{n_{\text{at,n}}} \right)^2$$

$$+ \kappa \sum_{n=1}^{N_{\text{struct}}} \sum_{i=1}^{n_{\text{at,n}}} w_{ni}^{(F)} \left(\boldsymbol{F}_{ni}^{\text{ACE}} - \boldsymbol{F}_{ni}^{\text{ref}} \right)^{2}$$

$$+ \Delta_{\text{coeff}} + \Delta_{\text{rad}},$$

L1/L2 regularization

$$\Delta_{\text{coeff}} = L_1 \sum_{p \mu \mathbf{nlL}} \left| c_{\mu \mathbf{nlL}}^{(p)} \right| + L_2 \sum_{p \mu \mathbf{nlL}} \left| c_{\mu \mathbf{nlL}}^{(p)} \right|^2$$

Hierarchical basis extension (= LADDER fit)

$$E_i = \varphi_i^{(1)} + \sqrt{\varphi_i^{(2)}}$$

$$\varphi_i^{(p)} = \sum_{\mu \mathbf{nlL}} c_{\mu \mathbf{nlL}}^{(p)} \boldsymbol{B}_{i\mu \mathbf{nlL}}$$

new B-functions could be seamlessly added with 0-coeffs

{type: Mg Mg, nr: [1], nl: [0], c: [-0.38927436162521611, {type: Mg Mg, nr: [2], nl: [0], c: [1.4094350400758542, 0.94 {type: Mg Mg, nr: [3], nl: [0], c: [2.9588990132794248, {type: Mg Mg, nr: [4], nl: [0], c: [1.2851509007772666, ladder step {type: Mg Mg, nr: [5], nl: [0], c: [-1.653578093574122, -0.8 {type: Mg Mg Mg, nr: [1, 1], nl: [0, 0], c: [-0.018946305647 {type: Mg Mg Mg, nr: [1, 2], nl: [0, 0], c: [-0.046345361589 {type: Mg Mg Mg, nr: [1, 2], nl: [2, 2], c: [0.1382874454063 Series of ladder step {type: Mg Mg Mg, nr: [1, 2], nl: [3, 3], c: [-0.055372900243 {type: Mg Mg Mg, nr: [1, 3], nl: [0, 0], c: [0.0424384277195 hierarchical potentials {type: Mg Mg Mg Mg, nr: [1, 1, 1], nl: [0, 2, 2], lint: [2] {type: Mg Mg Mg, nr: [1, 1, 1], nl: [1, 1, 2], lint: ladder step {type: Mg Mg Mg, nr: [1, 1, 1], nl: [2, 2, 2], lint: [2] {type: Mg Mg Mg, nr: [1, 1, 2], nl: [1, {type: Mg Mg Mg Mg, nr: [1, 1, 2], nl: [1, 2, 1], lint: [1] {type: Mg Mg Mg Mg, nr: [1, 1, 2], nl: [2, 2, 0], lint: {type: Mg Mg Mg Mg, nr: [1, 1, 2], nl: [2, 2, 2], lint: [2

Body-order or power-order

Hierarchical basis extension: convergence exponent

Data setup

DFT reference data

Where from get the DFT data?

Find dataset in Internet

Generate by yourself

DFT reference data: from Internet

Where from get the DFT data?

Find dataset in Internet

Generate by yourself

!! check Supplementary Materials / Data Availability/ etc. sections of papers !!

Examples: archive.materialscloud.org

Revised MD17 dataset

Files

File name	Size	Description	
rmd17.tar.bz2 MD5	1016.9 MiB	Tarfile containing the data in NPZ and CSV format	
readme.txt MD5	2.0 KiB	Readme file	

CA-9, a dataset of carbon allotropes for training and testing of neural network potentials

Files

File name	Size	Description	
Readme.txt MD5	2.4 KiB	Readme file	
scripts.zip MD5	3.4 KiB	Python scripts used to read data from VASP and train neural network potentials	
datasets.zip MD5	453.4 MiB	Datasets for training and testing of neural network potentials	
NNPs.zip MD5	13.1 MiB	The best trained neural network potentials for each dataset	

DFT reference data: generate by yourself

Where from get the DFT data?

Find dataset in Internet

Generate by yourself

Any (high-throughput) DFT calculation solutions:

- BASH scripts
- Python/ASE
 - YUTOTI/ASE IMPORTANT!
- pyiron

energy_corrected = DFT energy – $N_{(at)}$ * DFT free atom(s) energy

- etc.

Special columns names:

ıaı	Columnis mames. ase_at	UIIIS	energy_corrected	loices
0	(Atom('Ti', [3.866588, 2.3427139999999995, 2	2.3	-2.098939	[[-0.0809379287038194, -0.296866532922296, -0
1	(Atom('Ti', [0.01561, 0.047543, 0.016239],	nd	-45.733959	[[-0.189867494784043, -0.327421600829841, -0.3
2	(Atom('Ti', [5.59319699999999, 0.0020120000	00	-104.175058	$\hbox{\tt [[0.15376244749841, -0.067939845038046, -0.195}}\\$
3	(Atom('Ti', [0.0, 0.0, 0.0], index=0), Atom	('T	-8.891530	[[-2.18770164697502e-10, -3.05044330444982e-09
4	(Atom('Ti', [0.0, 0.0, 0.0], index	(=0))	-3.032699	[[0.0, 0.0, 0.0]]

ASE atoms

Cohesive energy (eV)

Forces (eV/A): [n_at, 3]

Save to file as: df.to_pickle("my_dataset.pckl.gzip", compression="gzip", protocol=4)

Usage of the potential

Usage of the potential

PACE: LAMMPS implementation performance

C++ implementation for CPU

by ICAMS team and C. Ortner (UBC Math)

100-500 microsec / atom / CPU core

KOKKOS implementation for GPU

by Stan Moore (SNL), with helpful discussions with Evan Weinberg (NVIDIA) and Yury Lysogorskiy (ICAMS)

4-20 microsec / atom/ GPU (x30 faster)

Al-Li potential fit: details

Al-Li potential validation: feature curves

Error ~ C n^{-q}

Al-Li potential validation: Convex hull

Al-Li potential validation: Convex hull (more prototypes)

Thank you for attention

PACE: Product and recursive evaluator

Product evaluator:

$$\rho = \begin{bmatrix} c_1 A_1 + c_2 A_2 + ... + c_n A_n \end{bmatrix} + \begin{bmatrix} c_{12} A_1 A_2 + c_{13} A_1 A_3 + ... \end{bmatrix} + \begin{bmatrix} c_{123} A_1 A_2 A_3 + ... \end{bmatrix} + \begin{bmatrix} c_{1234} A_1 A_2 A_3 A_4 + ... \end{bmatrix} + ...$$
1-order 2-order 3-order 4-order

Recursive evaluator:

(by C. Ortner)

RUB