Singular Values

The singular values of any $m \times n$ real matrix A are the square roots of the eigenvalues of A^TA .

Say we want to find a v that maximizes $||A\vec{v}||$ Where $||\vec{v}||=1$ This is the same thing as maximizing $||A\vec{v}||^2$, so we have

$$||Aec{v}||^2 = ec{v}^T A^T A ec{v}$$

 A^TA is always <u>symmetric</u>. After acknowledging that we can realizes that is a <u>Constrained Optimization</u> problem. $||\vec{v}|| = 1$ being the constraint.

We will simply use the largest eigenvalue of A^TA to find the largest value for $||A\vec{v}||^2$. The location of this will simply be the corresponding normalized eigenvector.

The min value can be found using a simpler method.

Calling singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ we can say that the σ_1 is the max value of $||A\vec{v}||$ and σ_n is the min value.

The eigenvalues of A^TA are non-negative.

Proof: recall that $\vec{v}_j^T \vec{v}_j = \vec{v}_j \cdot \vec{v}_j = \|\vec{v}_j\|^2 = 1$ because \vec{v}_j are unit eigenvectors of $A^T A$.

$$||A\vec{v}_{j}||^{2} = (A\vec{v}_{j})^{T}A\vec{v}_{j} = \vec{v}_{j}A^{T}A\vec{v}_{j} = \lambda_{j}\vec{v}_{j}^{T}\vec{v}_{j} = \lambda_{j} \ge 0.$$

Therefore:

- ullet the eigenvalues of A^TA must be real and non-negative
- ullet the singular values of A, which are the square roots of the eigenvalues, must also be real and non-negative

From the above Proof we can see,

$$||Aec{v}||^2=\lambda_i$$

And hence,

$$||A\vec{v}|| = \sigma_i$$