Heterogeneous Network Representation Learning: A Unified Framework with Survey and Benchmark

1 HETEROGENEOUS NETWORK REPRESENTATION LEARNING: A UNIFIED FRAMEWORK WITH SURVEY AND BENCHMARK - YANG ET AL.

1.1 Goals

- we aim to provide a unified framework to **deeply summarize and evaluate existing research** on heterogeneous network embedding (HNE)
 - we first formulate a unified yet flexible mathematical paradigm of HNE algorithms
 - we propose a generic objective function of *network smoothness*, and reformulate all
 existing models into this uniform paradigm while highlighting their individual novel
 contributions
- we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms
- we **create four benchmark datasets** with various properties regarding scale, structure, attribute/label availability, and etc. from different sources, towards handy and fair evaluations of HNE algorithms
- we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms

1.2 Preliminaries

- HNE: Heterogenous network embedding
- Hadamard product: element-wise product

1.3 Challenges

• real-world objects and interactions are often multi-modal and multi-typed

1.4 Previous Work / Citations

• This Work: ...

1.5 Definitions

- Heterogeneous network: $H = \{V, E, X, R, \phi, \psi\}$
 - $-v_i$ ∈ V: vertices, e_{ij} ∈ E: edges
 - $-\phi(v_i)$: Node type, $\psi(e_{ij})$: Link type
 - X_i^o : Node attribute, U_{ij}^o : Link attribute
- Meta-Path: Path $o_1 \rightarrow l_1 o_2 \rightarrow l_2 ... o_m \rightarrow l_{m+1} o_{m+1}$
 - Where o and l are node/link types
 - Carries semantics (composed relation)
 - Allows computing multi-modal proximity

- Network embedding: $\Phi: V \to \mathbb{R}^{|V| \times d}$
- Heterogenous network embedding: $\{\Phi_k : V \to \mathbb{R}^{|V_k| \times d}\}_{k=1}^K$
 - where *K* is number of node types
- Smoothness Objective: $\mathcal{J} = \sum_{u,v \in V} w_{uv} d(\mathbf{e}_u, \mathbf{e}_v) + \mathcal{J}_R$
 - Where e_u , e_v are node embeddings
 - w_{vw} : proximity weight
 - $d(\cdot, \cdot)$: distance function

1.6 Outline / Structure

1.6.1 Taxonomy

Proximity-Preserving Methods.

- Goal of network embedding is to capture network topological information
- Preserving different types of proximity among nodes
- Approaches:
 - Random Walk Approaches (DeepWalk [29])
 - * metapath2vec: randomwalk -> skipgram (context based) (negative sampling)
 - * hin2vec: max likelihood based on path count/probability approximation (but employs a negative sampling like approach)
 - First/Second-order Proximity (LINE [30])
 - * PTE: Split into multiple bipartite networks. Per network maximize the co-occurrence objective (skipgram)
 - · Instead of co-occurrence counts, edge weight is used (based on different type edge counts)
 - * HEER:
 - · each edge type has embedding μ_l
 - · each edge has embedding g_{uw}
 - · assume:

$$\boldsymbol{\mu}_l^T \boldsymbol{g}_{uv} = \boldsymbol{e}_u^T \boldsymbol{A}_l \boldsymbol{e}_v$$

- · Again max likelihood across bi networks
- considered as shallow network embedding, due to their essential single-layer decomposition

Message Passing Methods.

- aim to learn node embeddings e_u based on x_u by aggregating the information from u's neighbors.
- Considered as deep network embedding due to multiple layers of learnable projection functions
- In unsupervised setting: objective is link prediction
- Meta path based neighborhood: $\mathcal{N}_{\mathcal{M}}(u) = \{v | v \text{ connexts with } u \text{ via meta-path } \mathcal{M}\}$
- $a_{uv}^{\mathcal{M}}$: Learned weight of of neighbors
- β_M : Meta path weight

Relation-Learning Methods.

- Knowledge Graphs are a special case of heterogeneous networks
- Explicitly model the **relation types** of edges via **parametric algebraic operators**
- Focus on the designs of triplet based scoring functions

- learn a scoring function $s_l(u, v)$ which evaluates an arbitrary triplet (where l is relation type)
- Usually margin based ranking loss is used + regularizer
 - Which has very similar form to negative sampling loss (!)
- Works:
 - **TransE**: assume $e_u + e_l \approx e_v$ when relation *l* holds (translation of embedding)
 - * Optimizes by maximizing margin between related and unrelated pairs
 - Distmult: exploits similarity based scoring (usually $e_u^T A_l e_v$) (aka the alignment score with some diagonal matrix inbetween)
 - ComplEx: utilizes complex valued representations which allows capturing asymmetric relations

1.7 Evaluations

- Tested: Classification and Link prediction
- Proximity-preserving algorithms: often perform well on both tasks under the unsupervised unattributed HNE setting
- Message-passing methods: perform poorly except for HGT, especially on node classification. But are known to excel due to their integration of node attributes, link structures, and training labels (which are not available).
- Relation learning methods: perform well on link predictions (when there are a lot of link types)

1.8 Code

• https://github.com/yangji9181/HNE)

1.9 Resources

•

1.10 Note (to self)

• Read more about transformers and check out [85]