Reg. No.:

Name :

DIVYANSY 21BLC1488

5

5

Continuous Assessment Test I - May 2023

Programme	: B.Tech (ECM)	Semester	:	Fall Inter 2022-23
Course		Code	:	BCSE205L
Country	Computer Architecture and Organization	Slot	:	A2+TA2
Faculty	: Dr. Sindhuja M	Class Nbr.	:	CH2022232500336
	Dr. Sunil Kumar Pradhan			CH2022232500337
•	Dr. Balakrishnan R			CH2022232500338
	Mr. Ajeyprasaath Kb		1	CH2022232500340
ime	: 90 Minutes	Max. Marks		50

Answer ALL the questions

Q.No.	Sub. Sec.				Ques	stions	Marks
	(a)	Explain	the internal	structure of an	IAS con	nputer using a neat diagram.	5
				56	YL		
	(b)			ementation of a currence and (ISA there are 4 instruction types, with nown	5
			Туре	Frequency	CPI		
1.			LOAD	20%	4		
	-		STORE	8%	3		
			ALU	60%	1		
			BRANCH	12%	2		
		4	Calculate ave	rage CPI.	3.7		

- 2. (a) Tabulate the difference between RISC and CISC Architectures.
 - (b) Draw the block diagram of the Harvard architecture and explain why is Harvard architecture faster than Von Neumann?

	(a)	Draw the flow chart of booth's algorithm.	
	(b)	Show the steps of multiplication performed by using booth's algorithm of $(-12) \times (4)$	
3.	(c)	Draw the flow chart of restoring division algorithm	10
	(d)	Divide the following binary format positive numbers using the restoring division algorithm: A= 10101, B= 000011, and verify your answer by converting A and B and your result (A / B) to decimal.	
4.		What are the advantages of hardwired control unit? Describe the design of hardwired control unit of CPU, with diagram.	10
		Let's consider three different processors P1, P2 and P3 and they execute the same instruction set. P1 processor has 3GHz clock rate and a CPI (Cycles Per Instructions) of 1.5, P2 processor has a clock rate of 2.5 GHz and a CPI of 1.0 and P3 processor has 4.0 GHz clock rate and has a CPI of 2.2.	
	(a)		
5.	(b)	If the processors each execute a program in 10 seconds, find the number of cycles and the number of instructions?	10
	(c)	Let's consider a situation, where the execution time is reduced by 30%, which result an increase of 20% in the CPI. What clock rate should we have to get this time reduction?	

Name

Continuous Assessment Test I – September 2022

Programme	: B.Tech. CSE	Compater	1	
Course	: Computer Architecture and Organization	Semester	:	FALL 2022-23
	, gamaaton	Code	:	BCSE205L
Faculty	Dr Dama Probles Dr. A D. Chi	Slot		B2
•	: Dr.Rama Prabha , Dr. Aswiga, Prof.Nivedita, Dr. Bhanu Chander Balusa, Dr.Anushiya Rachel, Dr. Sambasivarao, Dr A.K. Havarasi	Class Nbr	:	CH2022231001507 CH2022231001510 CH2022231001511 CH2022231001512 CH2022231001513 CH2022231001514 CH2022231001515
inc	. 172 110urs	Max. Marks	1:	50

Answer ALL the questions

Q.No.

Questions

Marks

- Suppose you are an architect at Zion Computers and you are assigned the task of designing a processor that stores both data and instructions in the same memory and always accesses a pair of instructions at a time. Identify the suitable architecture for the given scenario and explain its structure with a neat diagram. (5 Marks)
 - ii) Explain how the following assembly language program would be stored in the memory and executed by the processor. (5 Marks)

1001 Load A, LOC1

1002 Add A, LOC2

1003 JNC 1005

1004 Sub A, LOC3

1005 Store LOC4, A

1006 HLT

Assume that you want to multiply two numbers, which are stored in the memory locations 2:2 and 3:3 as shown in the following figure.

Memor	1	2	3
y			
1			
2		2	
3			3

Two possible set of instructions to carry out the above process are as follows:

A) Instruction set

Mul 2:2, 3:3

B) Instruction Set

Load A, 2:2 Load B, 3:3 Mul A,B Store 3:2, A

Identify the processor corresponding to the instruction set A and B and claborate on the same. Also discuss the merits and demerits of these processors.

3. Multiply (-7) 10 x (8)10 using modified Booth's Algorithm.

- State how the modified booth is more efficient when dealing with operands of large value.

 Comment whether the multiplier yields best case/worst case /ordinary case outcome.
- ii. Determine the final product of multiplicand and bit-pair recoded multiplier in binary format.

6

10

- A. A coin-change dispensing machine provides an appropriate number of Rs.5 coins in exchange for a note inserted into it. If the machine makes use of non-restoring division algorithm to calculate the number of coins dispensed, illustrate the steps involved in calculating the number of Rs.5 coins to be dispensed in exchange for a Rs.20 note.
- 5. Perform the following Floating point operation on the numbers (251.529)10 and (142.758)10
 - A. Convert the above decimal numbers to normalized notation of binary format.
 - Perform subtraction for the given numbers and write the normalized result in IEEE 6 single precision format.

Reg. No.:

Name

Continuous Assessment Test 1 - May 2023

	n as a creati	Semester		Fall Inter 2022-23
Programme	: B.Tech (ECM)	Code	:	BCSE205L
Course	Computer Architecture and Organization	Slot	:	A1+TA1
Faculty	: Dr. Sindhuja M Mr. Srinivasan R	Class Nbr.	:	CH2022232500330 CH2022232500333 CH2022232500335
	Mr. Prasanna Kumaar S	Max. Marks	:	50
Time	: 90 Minutes			

Answer ALL the questions.

Q.No.	Sub. Sec.		Questions		N.O.	Marks
ч.	(ar	Describe the concept of the functioning of a com	puter system. (5 mar	KS)		10
	46	as general-purpose regis	iters, control registers	only found in a processon, and status registers. (5	marks	
	(3)	Draw the block diagram components. (5 marks)	of the von Neumanr	architecture and explain	n its key	
2.	- Op	Explain the multiplicati point representation. (5	marks)	/ 125 ₁₀ using IEEE 75 4 flo		10
3/		Using Booth's non-rest 14÷4.	oring binary division	algorithm, calculate the	result of	10
A	(#	What is addressing mod relative addressing mod	de? Explain register in des with example. (6	ndirect, auto increment a marks)	nd	10
Ą	Ŋ	(4 marks)		d horizontal micro-instru		
		A benchmark program consists of 100,000 ins and clock cycle count:	is run on a 40 MHz struction executions,	processor. The executed with the following instruc	program etion mix	
,	4	Instruction Type	Instruction Count	Cycles per Instruction		
5		Integer arithmetic	45,000	l		10

Instruction Type	Instruction Count	Cycles per Instruction
Integer arithmetic	45,000	1
Data transfer	32,000	2
Floating point	15,000	2
Control transfer	8000	2

Determine the effective CPI, MIPS rate, and execution time for this program.

Reg. No.: 20BL(1075

Name :

Continuous Assessment Test 1 – August 2022

	Commission	Semester	: FS 2022-23
Programme	: B.Tech (ECE/ECM)	Code	: ECE3004
Course	Computer Organization and Architecture	Class Nbr	: CH2022231000032 CH2022231001961
		Slot	: D2+TD2
Faculty	: Dr. E. Sathish, Dr. J. Florence Gnana Poovathy	Max. Marks	: 50
Time	: 90 Minutes		1.0

Answer ALL the questions

.No.	Sub. Sec.	Questions	Marks
1.	a	Explain in brief about interconnection of components in a computer for communicating data, address and control information. (5 Marks) Discuss in detail about control signals used for communications in a processor.	10
€2.	a b	(5 Marks) If the number of transistors in Intel's i7 core processor is -4 billion, according to Moore's law, what would be the number of transistors of the new model released by 2030? Explain the same in brief. (5 Marks) Discuss in details about various functions and structure of a computing system. (5 Marks)	10
3.	C	Discuss in detail about signed number representation in computers. Perform the essential bit calculations of representation for the following values. b) 2AB3	10
2.34		Perform Booth's Algorithm for the following numbers: Multiplicand = 16, Multiplier = -5. Mention the advantage of Booth's algorithm over traditional binary multiplication	10
35		Find the quotient and remainder of 6/3 using restoring division along with a flowchart or an algorithm.	10

School of Computer Science and Engineering Continuous Assessment Test I - August - 2018

B. Tech Computer Science and Engineering- III Semester

CSE2001 -Computer Architecture and Organization

Answer all the questions

 $(5 \times 10 = 50 Marks)$

1. Didentify the instruction type (Data transfer, Arithmetic, Logical and Program Control) for the following instructions

Exchange - swap contents of source and destination

- Change sign of the operand Negate

-Test specified conditions; (set flags based on outcome) Test

- Stop program Execution */ Halt

- increment PC to skip next instruction Skip

Identify the addressing mode for the following specification:

An instruction is stored at location 2000 with its address field at location 2001. The address has the value 800. A processor register R1 contains the number 200. Evaluate the effective address if the addressing mode of the instruction is (a) direct; (b) immediate (c) relative (d) register (e) index With RI as the index register.

Explain the expanded structure of IAS Architecture in detail with the help of diagram.

3. a/A benchmark program is on a 40 MHz processor. The executed program consist of 1,100 instruction executions with the following instruction mix and clock cycle count.

Instruction Count	Cycles Per Instruction
	1
A STATE OF THE STA	2
200	
100	2
500	2
	300 200 100

Determine the effective CPI. MIPS rate, and execution time for this program

perform Booth's multiplication on the given data of 6 * (-3).

Compute Memory traffic, total memory for encoding and storing code that implements the expression evaluation for the following code. Assume that the opcode occupy one byte, addresses occupy two bytes, and data values also occupy two bytes and 1 byte world length for 3-, 2-, 1-, 0- address machines.

3 addr 2-addr MUL A.B.C MUL B,C DIV D,D.E DIV D.E SUB A.A.D SUB B.D STOR A.B	1-addr LOAD D DIV E STOR D LOAD B MUL C SUB D STOR A	0-addr PUSH B PUSH C MUL PUSH D PUSH E DIV SUB POP A
--	---	--

School of Computer Science and Engineering

Continuous Assessment Test I – August – 2018 B.Tech Computer Science and Engineering- III Semester

CSE2001 -Computer Architecture and Organization

Answer all the questions $(5 \times 10 = 50 \text{Marks})$ Compare and Contrast Von-Neumann and Harvard architecture. If the last operation performed on a computer with an 8-bit word was an addition in which the two [2] operands were binary 2 and 9, what would be the value of the following status flags: carry, zero, overflow, sign, and even parity? 1. (c) Match the following columns: [5] instruction Operation Shift left SUBTRACT Compare DIVISION Exclusive-or of same register AND Shift right CLEAR

2. / Comment on the Booth's algorithm and its efficiency for multiplication representing the steps as a [10] flow chart. Demonstrate step by step multiplication of (-9) × (-15) using Booth's algorithm.

MULTIPLICATION

- 3. With divisor as 2 and dividend as 9, perform step by step restoring binary division. [10]
- 4.(a) Explain the big-endian and little-endian memory storage formats. Illustrate with an example for a 4 [5] byte value.
- 4 (b) Discuss in detail various stages of instruction execution cycle with a neat sketch. [5]
- 5. Given a mathematical operation "a = b + c", where a, b and c are memory locations. CPU has 128 [10] different instructions, If word length of memory is given to be 2 bytes and the address length to store the data is given as 16 bits, calculate
 - (i) Memory to encode these instructions
 - (ii) Memory traffic for these instructions for following instruction formats:

TEST instruction

- (a) 3 Address instruction format
- (b) 2 Address instruction format
- (c) 1 Address instruction format
- (d) 0 Address instruction format
- Mention assumptions if made any.

Continuous Assessment Test I - September, 2023

Programme		Semester	:	Fall 2023-24
Course	: Computer Architecture and Organization	Code	:	BCSE205L
Faculty	Dr. A. K Ilavarasi Dr. Vaidehi Vijayakumar Dr. B V A N S S Prabhakar Rao	Class Nbr(s)		CH2023240101204 CH2023240100884 CH2023240100883
	20.7%	Slot(s)	:	F2+TF2
Time	: 1½ Hours	Max. Marks	:	50

Answer ALL the Questions

		, C.	1b-						
·	Q. N		ision			Question Text	Marks		
	o.t.	Identify the type of processor that uses instruction buffer register to hold temporarily the instruction from a word in memory. Justify the use of instruction buffer register in processor with neat labeled structure. (5 marks) The above processor is used to perform a task Y = A * B and the operands are present in the main memory location 3000 and 4000 respectively. Assume each instruction is 20 bits long and each address location is 40 bits long.							
				Address	Mnemonics	Comment	1 1		
- 1				500	LDA 3000	Load accumulator with the content of memory location 3000			
- [MOV B, 4000	Copy content of the memory location 4000 to register B			
1				501	MUL B	Multiply the content of accumulator with register B and store it in accumulator			
		1	Ш		STA 5000	Store content of accumulator to memory location 5000	11 1		
			R co	egister, Instru de. (10 mark	ction Register, Ins s)	m Counter, Memory Address Register, Memory Buffe struction Buffer Register and Accumulator for the give	en		
1	2		Di	scuss the fea	atures of CISC a	nd RISC processors as per the modern computation	al 5		
			rec	quirements. (5 marks)	*			
9	3.		Α	9 litres jar f	illed with keroser	ne was poured to a big keg for 15 times. A part of	a 10		
			pro	ocessor modu	le uses the Booth's	s algorithm to perform this operation. With respect to the	nis		
			alg	orithm, answ	er the following				
	l l	i)	Sh	ow the step-b	y-step process use	d in this algorithm. (7 Marks)	1		
	ļi	i)				alt in both binary and decimal format. (3 Marks)			

	_		
A.		As per the Gregorian Calendar the average (mean) length of a year is 365.2425 days.	10
	i)	Represent the given floating-point number in IEEE 754 standard single precision format. (5 Marks)	
	ii)	After adding 180.75 days to 365.2425 days, present the result in IEEE double precision format. (5 Marks)	
5.		A company wants to manufacture a Spherical Jar which has different diameters at the top and the bottom and requires a program that calculates the sum of the volume of both the spheres. Assume, the radius of the bigger sphere A is R and the smaller sphere B is S. Hint: Volume of sphere $A = \frac{4}{3}\pi R^3$ and Volume of a sphere $B = \frac{4}{3}\pi S^3$	10
		Represent the task clearly and device an assembly code using 0-address, 1-address and 2-address instruction format that does this task. Explain each instruction clearly to achieve the final result. (10 marks)	
,		Saily	

Reg. No.: Name :

Continuous Assessment Test I - September 2023

Programme	-	B. Tech (CSE)	Semester	1:	Fall 2023-24
Course	:	Computer Architecture and Organization	Code		BCSE205L
Faculty	:	Dr. Anusha K Dr. Vaidehi Vijayakumar Dr. Rathna R Dr. Dhanalakshmi R	Class Nbr(s)		CH2023240100879 CH2023240100882 CH2023240100877 CH2023240100878
Time	:	1½ Hours	Slot(s) Max. Marks		F1 + TF1 50

Answer ALL the Questions

Q. No	Question Text	Marks
1.	Interpret how the processor manipulates the results for the given numbers using IEEE 754 – 32-bit floating point format. 24.735 - 12.25	10
2	Consider the following three instructions stored in memory in consecutive memory locations. ADD R1, R2 SUB R3, R1 XOR R3, R2. The first instruction is stored at memory location 10000(in hexadecimal). R1, R2 and R3 are all 8-bit registers. R1 = 30 (in hexadecimal), R2 = 47 (in hexadecimal), and R3 = 80 (in hexadecimal). i) What will be the value of R1, R3, IR, AC and PC after executing all the three instructions? (3 marks) ii) Assume that all instructions are 32 bits in size. Elaborate the sequence flow with the help of the internal structure of IAS computer. (7 marks)	
	You are selected as an assembly language programmer at TWR info systems. Your manage has given an instruction $K = (G * (Z + (F + T * W)))$ asking you to code the instruction by considering the below constraints. i) Using zero address format (5 Marks) ii) Using two operand instruction set architecture (5 Marks)	

4.	Mr. Kelvin has been assigned a project to design a Kelvin in designing an algorithm by sketching the with the following numbers:	an algorithm for e flowchart and	restoring Division. Help Mr. also check the working of it	10
	 i) (10000)₂ by (100)₂. (5 Marks) ii) How many numbers of cycles are requabove? (2 Marks). iii) After performing the following operat M, if MSB of A is 1, What will be the 	ions - left shift	operation on A, Q and A=A-	
5.	Estimate the effective address and the operand val			10
	Assume that the initial values of the registers are address and values are given in the diagram below		3000, PC-4300. The memory	10
) IDA #4000	Address	Value	
	i) LDA #4000 ii) LDA 4100	4000	1000	
	iii) LDA (4200)	4100	1100	
	iv) MOV R1, 50[PC]	4100	1100	
	v) LDA (R1)	4200	4000	
		4220	2500	
	107		•	
		4250	4500	
		4300	3000	
	GO		•	
		4500	4200	
		4550	4300	
			•	
		4600	4220	