A Book of Abstract Algebra (2nd Edition)

∷≣	Chapter 27, Problem 7EJ	Bookmark	Show all steps: ON	5.7 2.3	
	Problem				
<	Suppose $a(x) \cong F[x]$, and K is an extension of F . An element $c \in K$ is called a multiple root of $a(x)$ if $(x-c)^m a(x)$ for some $m > 1$. It is often important to know if all the roots of a polynomial are different, or not.				
	We now consider a method for determining whether an arbitrary polynomial $a(x) = F[x]$ has multiple roots in any extension of F .				
	Let K be any field containing all the roots of $a(x)$. Suppose $a(x)$ has a multiple root c . Show that each of the following polynomials has no multiple roots in any extension of its field of coefficients:				
	$x^3 - 7x^2 + 8 \in \mathbb{Q}[x]$ $x^2 + x + 1 \in \mathbb{Z}_5[x]$ $x^{100} - 1 \in \mathbb{Z}_7[x]$				
	The preceding example is most interesting: it shows that there are 100 <i>different</i> hundredth roots of 1 over Z ₇ . (The roots ±1 are in Z ₇ , while the remaining 98 roots are in extensions of Z ₇ .) Corresponding results hold for most other fields.				
	Step-by-step solution				
	Step 1 of 4 A				
	Objective is to prove that following polynomials have no multiple roots in any extension of its field of coefficients.				
	The polynomial is $a(x) = x^3 - 7x^2 + 8 \in Q[x]$. Consider the fact that: a polynomial $a(x)$ in $F[x]$ has a multiple root if and only if $a(x)$ and $a'(x)$ have a common factor of positive degree in $F[x]$.				
	Comment				
	Step 2 of 4 $ ilde{A}$ Calculate the derivative of the polynomial and get $a'(x) = 3x^2 - 14x$.				
	The rational roots of derivative are $x = 0$, $x = 14/3$ (because $x(3x-14)=0$). Note that, no value of x satisfy the equation $x^3 - 7x^2 + 8 = 0$. It shows that $a(x)$ and $a'(x)$ have no common factor.				
	Hence, by the stated fact, $a(x)$ has no multiple roots in any extension of its field of coefficients.				
	Comment				
	Step 3 of 4 $ ilde A$ The polynomial is $a(x) = x^2 + x + 1 \in Z_5[x]$. The derivative of this polynomial is $a'(x) = 2x + 1$. Check the roots of $a(x)$ in $Z_5[x]$ by simply substituting the elements of Z_5 and get,				
	$a(0) = 1$ $a(1) = 3$ $a(2) = 7 \equiv 2$				
	a(2) = 7 = 2 a(3) = 13 = 3 a(4) = 21 = 1.				
	$a(4)=21\equiv 1$. That is, there is not root of $a(x)$ in $Z_5[x]$. Thus, $a(x)$ and $a'(x)$ cannot have any factor in common.				
	Comment				
Step 4 of 4 A					
	The polynomial is $a(x) = x^{100} - 1 \in \mathbb{Z}_7[x]$.				
	Then, $a'(x) = 100x^{99}$. Note that $x = 0$ is the only root of $a'(x)$ in $Z_7[x]$. But 0 does not satisfy $a(x)$. Therefore, both $a(x)$ and $a'(x)$ cannot have any factor in common. Hence, $a(x)$ has no multiple roots in any extension of its field of coefficients				
	Comment				

2 4 B