Hometask #4. Predicate logic

- 1. Let P(x), Q(x), R(x), and S(x) be the statements "x is a baby," "x is logical," "x is able to manage a crocodile," and "x is despised," respectively. Suppose that the domain consists of all people. Express each of these statements using quantifiers; logical connectives; and P(x), Q(x), R(x), and S(x).
 - a) Babies are illogical.
 - b) Nobody is despised who can manage a crocodile.
 - c) Illogical persons are despised.
 - d) Babies cannot manage crocodiles.
 - *e) Does (d) follow from (a), (b), and (c)? If not, is therea correct conclusion?
- 2. Let the domain of x be the set of geometric figures in the plane, and let Ell(x) be "x is anellipse" and Circ(x) be "x is a circle." Translate into English, and say whether statement is true of false.
 - a. $\exists x$ such that $Ell(x) \land Circ(x)$.
 - b. $\exists x$ such that Circ (x) $\land \sim EII(x)$.
 - c. $\forall x$, Circ(x) \rightarrow EII(x).
- 3. Which of the following is a negation for "All Innopolis university students are blonde"? More than one answer may be correct.
 - a. There is an Innopolis university student who is a not blonde.
 - b. All Innopolis university students are not a blonde.
 - c. There is a not blonde person who is an Innopolis university student.
 - d. No Innopolis university students are blonde.
 - e. Some Innopolis university students are not blonde.
 - f. No blonde people are Innopolis university students.
- 4. Let D = $\{-42, -14, -6, 0, 3, 5, 18, 25, 28, 32, 48\}$. Determine which of the following statements are true and which are false. Provide counterexamples for those statements that are false.
 - a. $\forall x \in D$, if x is odd then x > 0.
 - b. $\forall x \in D$, if x is less than 0 then x is even.
 - c. $\forall x \in D$, if x is even then $x \le 0$.
 - d. $\forall x \in D$, if the ones digit of x is 2, then the tens digit is 3 or 4.
 - e. \forall x \in D, if the ones digit of x is 6, then the tens digit is 1 or 2.
- 5. Write a negation: \forall real numbers x, if $x^2 \ge 4$ then x > 2.
- 6. Let G(x, y) be " $\cos(x) x^2 \sin x + tg(x) > y + 1/y \ln y^2$." Indicate which of the following statements are true and which are false.
 - a. G(1,1)
 - b. G(1.25,10/4)
 - c. G(20,20)
 - d. G(0.5,0.3)
- 7. Let S be the set of students at Innopolis University, let M be the set of books that have ever been written, and let B(s,m) be "student s has readbookm." Rewrite each of the following statements without using the symbol \forall , the symbol \exists , or variables.
 - $a. \exists s \in S \text{ such that } B(s, LOTR).$
 - b. \forall s \in S, B(s, 50 shades of Gray).
 - c. \forall s \in S, \exists m \in M such that B(s,m).

- d. $\exists m \in M$ such that $\forall s \in S$, B(s,m).
- e. $\exists s \in S$, $\exists t \in S$, and $\exists m \in M$ such that $s \neq t$ and $B(s,m) \land B(t,m)$.
- f. $\exists s \in S$ and $\exists t \in S$ such that $s \neq t$ and $\forall m \in M$, $B(s,m) \rightarrow B(t,m)$.
- 8. Indicate which of the following statements are true andwhich are false. Justify your answers as best you can.
 - a. $\forall x \in Z+$, $\exists y \in Z+$ such that x = y + 1.
 - b. $\forall x \in Z$, $\exists y \in Z$ such that x = y + 1.
 - c. $\exists x \in R$ such that $\forall y \in R$, x = y + 1.
 - d. $\forall x \in R+$, $\exists y \in R+$ such that xy = 1.
 - e. $\forall x \in R, \exists y \in R \text{ such that } xy = 1.$
 - f. \forall x \in Z+ and \forall y \in Z+, \exists z \in Z+ such that z = x y.
 - g. \forall x \in Z and \forall y \in Z, \exists z \in Z such that z = x y.
 - h. $\exists u \in R+$ such that $\forall v \in R+$, uv < v.
- 9. Indicate whether the argument is valid or invalid. Support your answer by drawing diagram.

All discrete mathematics students can tell a valid argument from an invalid one.

All thoughtful people can tell a valid argument from aninvalid one.

- :All discrete mathematics students are thoughtful.
- 10. What rules do you use to prove or disprove next arguments
 - a. All cats purr.

John does not purr.

- ∴John is not a cat.
- b. All teachershandsome

Arthur is a teacher

∴Arthur handsome

c. All Russians are happy

Gérard Depardieu is Russian

∴Gérard Depardieu ishappy