Total No. of printed pages = 4

MA 181202

Roll No. of candidate

2021

B.Tech. 2nd Semester End-Term Examination

MATHEMATICS — II

Full Marks - 50

Time - Two and half hours

The figures in the margin indicate full marks for the questions.

Question 1 is compulsory and answer any *four* questions from the rest of the questions.

1. Choose the correct alternative from the following:

 $(10 \times 1 = 10)$

- (i) The value of $e^{\pm i2n\pi}$ is
 - (a) 1
 - (b) 0
 - (c) i
 - (d) -1
 - (e) None of these
- (ii) The complementary function of $\frac{d^2y}{dx^2} + 4y = 0$ is
 - (a) $A \cosh x + B \sinh x$
 - (b) $Ae^{2x} + Be^{-2x}$
 - (c) $A\cos x + B\sin x$
 - (d) $A\cos 2x + B\sin 2x$
 - (e) None of these

[Turn over

- (iii) The value of $\int_{c}^{1} \frac{1}{z} \cos z dz$ where c is the ellipse $9x^{2} + 4y^{2} = 1$ is
 - (a) 2mi
 - (b) 2π
 - (c) 0
 - (d) $3\pi i$
 - (e) none of these
- (iv) If \overline{A} be a constant vector and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then grad $(\vec{A} \cdot \vec{r}) =$
 - A \overline{A}
 - (b) $2\vec{A}$
 - (c) \bar{r}
 - (d) $3\vec{A}$
 - (e) none of these
- (v) If f(z) is analytic in a closed curve C except a finite number of poles with C then $\int_C f(z) dz =$
 - (2π) (sum of residues at the poles within C)
 - (b) 2π (sum of residues at the poles within C)
 - (c) 2πi
 - (d) $-2\pi i$ (sum of residues at the poles within C)
 - (e) none of these
- (vi) If $J_0(x)$ and $J_1(x)$ are Bessel function then $J_1(x)$ is given by
 - (a) $J_0(x) \frac{1}{x} J_1(x)$
 - (b) $-J_0(x) + J_1(x)$
 - (c) $J_0(x) + \frac{1}{x}J_1(x)$
 - (d) $J_0(x) \frac{1}{x^2}J_1(x)$
 - (e) none of these
- (vii) The value of $div(curl \vec{A})$ is
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) (
 - (e) none of these

MA 181202

(viii) The value of cos iz is

(a)
$$\frac{e^{it} + e^{-it}}{2}$$

(b)
$$\frac{e^{-z} + e^z}{2}$$

(c)
$$\frac{e^z - e^{-z}}{z}$$

(d)
$$\frac{e^{iz}-e^{-iz}}{2}$$

- (e) none of these
- (ix) The first order differential equation M(x, y)dx + N(x, y)dy = 0 is exact if

(a)
$$\frac{\partial M}{\partial y} + \frac{\partial N}{\partial x} = 0$$

(b)
$$\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0$$

$$(x) \qquad \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 0$$

(d)
$$\frac{\partial M}{\partial x} - \frac{\partial N}{\partial y} = 0$$

- (e) none of these
- (x) The integrating factor of $\frac{dy}{dx} + \frac{y}{x} = x^3$ is

(c)
$$\log x$$

(d)
$$\log \frac{1}{x}$$

- (e) none of these
- 2. (a) Find the directional derivative of $\phi = x^2yz + 4xz^2$ at the point (1, -2, -1) in the direction of the vector $2\hat{i} j 2\hat{k}$. (3)

(b) Find the value of
$$P_n(1)$$
.

(c) Show that
$$u = e^{-2xy} \sin(x^2 - y^2)$$
 is harmonic. • (a)

(d) State residue theorem and use it to evaluate $\int_{c} \frac{(2z-1)}{z(z+2)(2z+1)} dz \text{ where } C \text{ is}$ |Z|=1.(3)

MA 181202

3

[Turn over

3. (a) If $\vec{F} = 2y\hat{i} - 2\hat{j} + x\hat{k}$ evaluate $\oint_{C} F d\vec{r}$ along the curve $x = \cos t$, $y = \sin t$,

 $z = 2\cos t \text{ from } t = 0 \text{ to } t = \frac{\pi}{2}.$ (3)

- (b) Solve $y^2 p^3 y + 2px = 0$. 2 127. (2)
- (c) Solve: $(D^2 + D)y = x^2$. (2)
- (d) Find and plot the image of the triangular region with vertices at (0, 0), (1, 0), (0, 1) under the transformation w = (1-i)Z+3. (3)
- 4. (a) Define a solenoidal vector, show that the vector $3y^4z^2\hat{i} + 4x^3z^2\hat{j} + 3x^2y^2\hat{k}$ is solenoidal. (3)

(b) Solve: $\frac{dy}{dx} + y \cot x = 2 \cos x$. (2)

- (e) Prove that $xJ_n' = nJ_n xJ_{n+1}$. (2)
- (d) Find the analytic function whose imaginary part is $V = \log(x^2 + y^2) + x 2y.$ (3)
- 5. (a) If $r = |\vec{r}|$ where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ prove that $\nabla r = \frac{1}{r}\vec{r}$. (2)
 - (b) Test whether the following equation is exact or not. If not find an integrating factor to make it exact and hence solve it. (1+2+1=4) $(2xy^2 + y) dx + (x + 2x^2y x^4y^3) dy = 0$
 - (c) (i) Define a regular singularity of the differential equation. (4)
 - (ii) Find the series solution of $2x^2y'' + (2x^2 x)y' + y = 0.$
- 6. (a) Using Green's theorem, evaluate $\int_{c} (x^2ydx + x^2dy)$ where C is the boundary described counter clock wise of the triangle with vertices (0, 0), (1, 0), (1, 1).
 - (b) (i) Prove that $xP_n' P_{n-1}' = nP_n$. (2)
 - (ii) Find $P_3(x)$. (2)
 - (c) Apply the calculus of residue to evaluate:

 $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}.$ (3)

- 7. (a) Express $f(x) = 4x^3 + 6x^2 + 7x + 2$ in terms of legendre polynomial. (3)
 - (b) (i) Find e^z and $\left|e^z\right|$ if z equals to $4\pi(2+i)$. (2+2)
 - (ii) Find $\sin(iz)$.
 - (c) Evaluate $\int_{c} (x^2 + y^2) dz$ from z = 0 to z = 2 + 4i. (3)