Chapter 6: Direct methods for solving linear System

Exercise: 6.5 and 6.6

CHAPTER OBJECTIVES

- 1. Matrix (LU) factorization
- 2. CROUTE and Doolittle's Factorization
- 3. Diagonally dominant matrices
- 4. Positive definite matrices
- 5. LDL^t Factorization
- 6. Choleskey LL^t Factorization

The Role of Linear Algebra in the Computer Science

Computer science has delivered extraordinary benefits over the last several decades. The breadth and depth of these contributions is accelerating as the world becomes globally connected. At the same time, the field of computer science has expanded to touch almost every facet of our lives. This places enormous pressure on the computer science curriculum to deliver a rigorous core while also allowing students to follow their interests into the many diverse and productive paths computer science can take them.

As science and engineering disciplines grow so the use of mathematics grows as new mathematical problems are encountered and new mathematical skills are required. In this respect, linear algebra has been particularly responsive to computer science as linear algebra plays a significant role in many important computer science undertakings.

A few well-known examples are:

- Internet search
- Graph analysis
- Machine learning
- Graphics
- Bioinformatics
- Scientific computing
- Data mining

- Computer vision
- Speech recognition
- Compilers
- Parallel computing

The broad utility of linear algebra to computer science reflects the deep connection that exists between the discrete nature of matrix mathematics and digital technology.

Matrix Factorization

LU Decomposition:

Suppose that A has been factored into the triangular form A = LU, where L is lower triangular and U is upper triangular. Then we can solve for **x** more easily by using a two-step process.

- First we let $\mathbf{y} = U\mathbf{x}$ and solve the lower triangular system $L\mathbf{y} = \mathbf{b}$ for \mathbf{y} . Since L is triangular, determining \mathbf{y} from this equation requires only $O(n^2)$ operations.
- Once y is known, the upper triangular system Ux = y requires only an additional $O(n^2)$ operations to determine the solution x.

Solving a linear system $A\mathbf{x} = \mathbf{b}$ in factored form means that the number of operations needed to solve the system $A\mathbf{x} = \mathbf{b}$ is reduced from $O(n^3/3)$ to $O(2n^2)$.

Example 1 Compare the approximate number of operations required to determine the solution to a linear system using a technique requiring $O(n^3/3)$ operations and one requiring $O(2n^2)$ when n = 20, n = 100, and n = 1000.

Solution Table 6.3 gives the results of these calculations.

Table 6.3

n	$n^{3}/3$	$2n^2$	% Reduction
10	$3.\overline{3} \times 10^{2}$	2×10^{2}	40
100	$3.\overline{3} \times 10^5$	2×10^{4}	94
1000	$3.\overline{3} \times 10^8$	2×10^{6}	99.4

As the example illustrates, the reduction factor increases dramatically with the size of the matrix. Not surprisingly, the reductions from the factorization come at a cost; determining the specific matrices L and U requires $O(n^3/3)$ operations. But once the factorization is determined, systems involving the matrix A can be solved in this simplified manner for any number of vectors \mathbf{b} .

Different forms of LU factorization

Doolittle form

Obtained by

Gaussian elimination

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

Crout form

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

• LDL^t form

$$A = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \begin{bmatrix} 1 & l_{21} & l_{31} \\ 0 & 1 & l_{32} \\ 0 & 0 & 1 \end{bmatrix}$$

1-Crout's Method

Set
$$U_{11} = U_{22} = U_{33} = 1$$

2-Dolittle's Method

Set
$$L_{11} = L_{22} = L_{33} = 1$$

Doolittle's Method

Doolittle method are computed from

$$\begin{split} u_{1k} &= a_{1k} & k = 1, \cdots, n \\ \\ m_{j1} &= \frac{a_{j1}}{u_{11}} & j = 2, \cdots, n \\ \\ u_{jk} &= a_{jk} - \sum_{s=1}^{j-1} m_{js} u_{sk} & k = j, \cdots, n; \quad j \ge 2 \\ \\ m_{jk} &= \frac{1}{u_{kk}} \left(a_{jk} - \sum_{s=1}^{k-1} m_{js} u_{sk} \right) & j = k+1, \cdots, n; \quad k \ge 2. \end{split}$$

Doolittle form
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$
 Gaussian elimination

Method: [A] Decomposes to [L] and [U]

$$[A] = [L][U] = \begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

[*U*] is the same as the coefficient matrix at the end of the forward elimination step.

[L] is obtained using the *multipliers* that were used in the forward elimination process

Finding the [U] matrix

Using the Forward Elimination Procedure of Gauss Elimination

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix}$$

Step 1:
$$\frac{64}{25} = 2.56$$
; $Row2 - Row1(2.56) = \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 144 & 12 & 1 \end{bmatrix}$

$$\frac{144}{25} = 5.76; \quad Row3 - Row1(5.76) = \begin{bmatrix} 25 & 5 & 1\\ 0 & -4.8 & -1.56\\ 0 & -16.8 & -4.76 \end{bmatrix}$$

Finding the [U] Matrix

Matrix after Step 1:
$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & -16.8 & -4.76 \end{bmatrix}$$

Step 2:
$$\frac{-16.8}{-4.8} = 3.5; \quad Row3 - Row2(3.5) = \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$$

$$[U] = \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$$

Finding the [L] matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1 \end{bmatrix}$$

Using the multipliers used during the Forward Elimination Procedure

From the first step of forward elimination
$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \qquad \ell_{21} = \frac{a_{21}}{a_{11}} = \frac{64}{25} = 2.56$$

$$\ell_{31} = \frac{a_{31}}{a_{11}} = \frac{144}{25} = 5.76$$

$$\ell_{31} = \frac{a_{31}}{25} = \frac{144}{25} = 5.76$$

Does [L][U] = [A]?

$$[L][U] = \begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} =$$
?

Using LU Decomposition to solve SLEs

Solve the following set of linear equations using LU Decomposition
$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

Using the procedure for finding the [L] and [U] matrices

$$[A] = [L][U] = \begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$$

Set
$$[L][y] = [b]$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2.56 & 1 & 0 \\ 5.76 & 3.5 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

Solve for
$$[y]$$
 $y_1 = 10$ $2.56y_1 + y_2 = 177.2$ $5.76y_1 + 3.5y_2 + y_3 = 279.2$

Complete the forward substitution to solve for [Z]

$$y_{1} = 106.8$$

$$y_{2} = 177.2 - 2.56y_{1}$$

$$= 177.2 - 2.56(106.8)$$

$$= -96.2$$

$$y_{3} = 279.2 - 5.76y_{1} - 3.5y_{2}$$

$$= 279.2 - 5.76(106.8) - 3.5(-96.21)$$

$$= 0.735$$

$$[y] = \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.21 \\ 0.735 \end{bmatrix}$$

Set
$$[U][X] = [y]$$

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.21 \\ 0.735 \end{bmatrix}$$

Solve for [X] The 3 equations become

$$25x_1 + 5x_2 + x_3 = 106.8$$
$$-4.8x_2 - 1.56x_3 = -96.21$$
$$0.7x_3 = 0.735$$

From the 3rd equation

$$0.7x_3 = 0.735$$
$$x_3 = \frac{0.735}{0.7}$$
$$x_3 = 1.050$$

Substituting in a₃ and using the second equation

$$-4.8x_2 - 1.56x_3 = -96.21$$

$$x_2 = \frac{-96.21 + 1.56x_3}{-4.8}$$

$$x_2 = \frac{-96.21 + 1.56(1.050)}{-4.8}$$

$$x_2 = 19.70$$

Substituting in a₃ and a₂ using the first equation

$$25x_1 + 5x_2 + x_3 = 106.8$$

$$x_1 = \frac{106.8 - 5a_2 - a_3}{25}$$

$$= \frac{106.8 - 5(19.70) - 1.050}{25}$$

$$= 0.2900$$

Hence the Solution Vector is:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.2900 \\ 19.70 \\ 1.050 \end{bmatrix}$$

(a) Determine the LU factorization for matrix A in the linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 1 & -1 & 1 \\ 3 & -1 & -1 & 2 \\ -1 & 2 & 3 & -1 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ -3 \\ 4 \end{bmatrix}.$$

(b) Then use the factorization to solve the system

$$x_1 + x_2 + 3x_4 = 8,$$

 $2x_1 + x_2 - x_3 + x_4 = 7,$
 $3x_1 - x_2 - x_3 + 2x_4 = 14,$
 $-x_1 + 2x_2 + 3x_3 - x_4 = -7.$

(a) The original system was considered in Section 6.1, where we saw that the sequence of operations $(E_2 - 2E_1) \rightarrow (E_2)$, $(E_3 - 3E_1) \rightarrow (E_3)$, $(E_4 - (-1)E_1) \rightarrow (E_4)$, $(E_3 - 4E_2) \rightarrow (E_3)$, $(E_4 - (-3)E_2) \rightarrow (E_4)$ converts the system to the triangular system

$$x_1 + x_2 + 3x_4 = 4,$$

 $-x_2 - x_3 - 5x_4 = -7,$
 $3x_3 + 13x_4 = 13,$
 $-13x_4 = -13.$

The multipliers m_{ij} and the upper triangular matrix produce the factorization

$$A = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 1 & -1 & 1 \\ 3 & -1 & -1 & 2 \\ -1 & 2 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix} = LU.$$

(b) To solve

$$A\mathbf{x} = LU\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 8 \\ 7 \\ 14 \\ -7 \end{bmatrix},$$

we first introduce the substitution y = Ux. Then b = L(Ux) = Ly. That is,

$$L\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 8 \\ 7 \\ 14 \\ -7 \end{bmatrix}.$$

This system is solved for y by a simple forward-substitution process:

$$y_1 = 8;$$

 $2y_1 + y_2 = 7,$ so $y_2 = 7 - 2y_1 = -9;$
 $3y_1 + 4y_2 + y_3 = 14,$ so $y_3 = 14 - 3y_1 - 4y_2 = 26;$
 $-y_1 - 3y_2 + y_4 = -7,$ so $y_4 = -7 + y_1 + 3y_2 = -26.$

We then solve $U\mathbf{x} = \mathbf{y}$ for \mathbf{x} , the solution of the original system; that is,

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 8 \\ -9 \\ 26 \\ -26 \end{bmatrix}.$$

Using backward substitution we obtain $x_4 = 2$, $x_3 = 0$, $x_2 = -1$, $x_1 = 3$.

Crout's Method

$$U_{1,1} := 1$$

$$U_{2,2} := 1$$

$$U_{1,1} := 1$$
 $U_{2,2} := 1$ $U_{3,3} := 1$

$$L_{1,1} := \frac{A_{1,1}}{U_{1,1}}$$

$$L_{1,1} := \frac{A_{1,1}}{U_{1,1}}$$
 $U_{1,2} := \frac{A_{1,2}}{L_{1,1}}$ $U_{1,3} := \frac{A_{1,3}}{L_{1,1}}$

$$U_{1,3} := \frac{A_{1,3}}{L_{1,1}}$$

$$L_{2,1} := \frac{A_{2,1}}{U_{1,1}}$$

$$L_{2,2} := \frac{A_{2,2} - L_{2,1} \cdot U_{1,2}}{U_{2,2}}$$

$$L_{2,1} := \frac{A_{2,1}}{U_{1,1}} \qquad L_{2,2} := \frac{A_{2,2} - L_{2,1} \cdot U_{1,2}}{U_{2,2}} \qquad U_{2,3} := \frac{A_{2,3} - L_{2,1} \cdot U_{1,3}}{L_{2,2}}$$

$$L_{3,1} := \frac{A_{3,1}}{U_{1,1}}$$

$$L_{3,2} := \frac{A_{3,2} - L_{3,1} \cdot U_{1,2}}{U_{2,2}}$$

$$L_{3,1} := \frac{A_{3,1}}{U_{1,1}} \qquad L_{3,2} := \frac{A_{3,2} - L_{3,1} \cdot U_{1,2}}{U_{2,2}} \qquad L_{3,3} := \frac{A_{3,3} - L_{3,1} \cdot U_{1,3} - L_{3,2} \cdot U_{2,3}}{U_{3,3}}$$

Crout general formula:

First column of L is computed

$$l_{i1} = a_{i1}$$

Then first row of U is computed

$$u_{1j} = \frac{a_{1j}}{l_{11}}$$

The columns of L and rows of U are computed alternately

$$l_{ij} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \qquad j \le i, \quad i = 1, 2, ..., n$$

$$u_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}}{l_{ii}} \quad i \le j, \quad j = 2, 3, ..., n$$

Using the LU Factorization to solve $A\mathbf{x} = \mathbf{b}$

Once the matrix factorization is complete, the solution to a linear system of the form

$$Ax = LUx = b$$

is found by first letting

$$\mathbf{y} = U\mathbf{x}$$

and solving

$$Ly = b$$

for y.

Example: Solve the following system using an LU decomposition.

Using CROUT method

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 5\\ 2x_1 - 4x_2 + 6x_3 = 18\\ 3x_1 - 9x_2 - 3x_3 = 6 \end{cases}$$

1. Set up the equation Ax = b.

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 5 \\ 2x_1 - 4x_2 + 6x_3 = 18 \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & -4 & 6 \\ 3 & -9 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 18 \\ 6 \end{bmatrix}$$

Crout form

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & l_{11}u_{12} & l_{11}u_{13} \\ l_{21} & l_{21}u_{12} + l_{22} & l_{21}u_{13} + l_{22}u_{23} \\ l_{31} & l_{31}u_{12} + l_{32} & l_{31}u_{13} + l_{32}u_{23} + l_{33} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -4 & 6 \\ 3 & -9 & -3 \end{bmatrix} = \begin{bmatrix} l_{11} & l_{11}u_{12} & l_{11}u_{13} \\ l_{21} & l_{21}u_{12} + l_{22} & l_{21}u_{13} + l_{22}u_{23} \\ l_{31} & l_{31}u_{12} + l_{32} & l_{31}u_{13} + l_{32}u_{23} + l_{33} \end{bmatrix}$$

$$l_{11} = 1, l_{21} = 2, l_{31} = 3,$$

$$l_{11}u_{12} = 2, \qquad l_{11}u_{13} = 3$$

$$l_{21}u_{12} + l_{22} = -4,$$

$$l_{21}u_{13} + l_{22}u_{23} = 6,$$

$$l_{31}u_{12} + l_{32} = -9$$

$$l_{31}u_{13} + l_{32}u_{23} + l_{33} = -3$$

Find an LU decomposition for A. This will yield the equation (LU)x = b.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -4 & 6 \\ 3 & -9 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -8 & 0 \\ 3 & -15 & -12 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -4 & 6 \\ 3 & -9 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 18 \\ 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 2 & -8 & 0 \\ 3 & -15 & -12 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 18 \\ 6 \end{bmatrix}.$$

3. Let y = Ux. Then solve the equation Ly = b for y.

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & -8 & 0 \\ 3 & -15 & -12 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 18 \\ 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 2 & -8 & 0 \\ 3 & -15 & -12 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 18 \\ 6 \end{bmatrix}$$

Now solving for y gives the following values:

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & -8 & 0 \\ 3 & -15 & -12 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 18 \\ 6 \end{bmatrix} \rightarrow \begin{cases} y_1 = 5 \\ 2y_1 - 8y_2 = 18 \\ 3x_1 - 15y_2 - 12y_3 = 6 \end{cases} y_1 = 5$$

4. Take the values for y and solve the equation y = Ux for x.

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \rightarrow \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\Rightarrow \begin{cases}
 x_1 + 2x_2 + 3x_3 = 5 & x_1 = 1 \\
 x_2 = -1 & \rightarrow x_2 = -1 \\
 x_3 = 2 & x_3 = 2
\end{cases}$$

Summary Sol.of Linear Equation

1-write eqn in matrix form

2-Factorize A=LU

3-Solve LY=B

4-Solve UX=y

Example 5 Determine the Crout factorization of the symmetric tridiagonal matrix

$$\begin{bmatrix}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{bmatrix},$$

and use this factorization to solve the linear system

$$2x_1 - x_2 = 1,
-x_1 + 2x_2 - x_3 = 0,
- x_2 + 2x_3 - x_4 = 0,
- x_3 + 2x_4 = 1.$$

Solution The LU factorization of A has the form

$$A = \begin{bmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ 0 & a_{32} & a_{33} & a_{34} \\ 0 & 0 & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ 0 & l_{32} & l_{33} & 0 \\ 0 & 0 & l_{43} & l_{44} \end{bmatrix} \begin{bmatrix} 1 & u_{12} & 0 & 0 \\ 0 & 1 & u_{23} & 0 \\ 0 & 0 & 1 & u_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Solving the system

$$L\mathbf{z} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & \frac{3}{2} & 0 & 0 \\ 0 & -1 & \frac{4}{3} & 0 \\ 0 & 0 & -1 & \frac{5}{4} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad \text{gives} \quad \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{4} \\ 1 \end{bmatrix},$$

and then solving

$$U_{\mathbf{X}} = \begin{bmatrix} 1 & -\frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{2}{3} & 0 \\ 0 & 0 & 1 & -\frac{3}{4} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{4} \\ 1 \end{bmatrix} \text{ gives } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

The Crout Factorization Algorithm can be applied whenever $l_{ii} \neq 0$ for each i = 1, 2, ..., n. Two conditions, either of which ensure that this is true, are that the coefficient matrix of the system is positive definite or that it is strictly diagonally dominant. An ad-

11. Use Crout factorization for tridiagonal systems to solve the following linear systems.

a.
$$x_1 - x_2 = 0$$
,
 $-2x_1 + 4x_2 - 2x_3 = -1$,
 $-x_2 + 2x_3 = 1.5$.

c.
$$2x_1 - x_2 = 3$$
,
 $-x_1 + 2x_2 - x_3 = -3$,
 $-x_2 + 2x_3 = 1$.

b.
$$3x_1 + x_2 = -1$$
, $2x_1 + 4x_2 + x_3 = 7$, $2x_2 + 5x_3 = 9$.

d.
$$0.5x_1 + 0.25x_2 = 0.35,$$

 $0.35x_1 + 0.8x_2 + 0.4x_3 = 0.77,$
 $0.25x_2 + x_3 + 0.5x_4 = -0.5,$
 $x_3 - 2x_4 = -2.25.$

12. Use Crout factorization for tridiagonal systems to solve the following linear systems.

a.
$$2x_1 + x_2 = 3$$
, $x_1 + 2x_2 + x_3 = -2$, $2x_2 + 3x_3 = 0$.

c.
$$2x_1 - x_2 = 3$$
,
 $x_1 + 2x_2 - x_3 = 4$,
 $x_2 - 2x_3 + x_4 = 0$,
 $x_3 + 2x_4 = 6$.

b.
$$2x_1 - x_2 = 5$$
, $-x_1 + 3x_2 + x_3 = 4$, $x_2 + 4x_3 = 0$.

d.
$$2x_1 - x_2 = 1$$
, $x_1 + 2x_2 - x_3 = 2$, $2x_2 + 4x_3 - x_4 = -1$, $2x_4 - x_5 = -2$, $x_4 + 2x_5 = -1$.

An $n \times n$ **permutation matrix** $P = [p_{ij}]$ is a matrix obtained by rearranging the rows of I_n , the identity matrix. This gives a matrix with precisely one nonzero entry in each row and in each column, and each nonzero entry is a 1.

Recall Elementary Matrices!

The matrix

$$P = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]$$

is a 3×3 permutation matrix. For any 3×3 matrix A, multiplying on the left by P has the effect of interchanging the second and third rows of A:

$$PA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}.$$

Similarly, multiplying A on the right by P interchanges the second and third columns of A.

Two useful properties of permutation matrices relate to Gaussian elimination, the first of which is illustrated in the previous example. Suppose k_1, \dots, k_n is a permutation of the integers $1, \dots, n$ and the permutation matrix $P = (p_{ij})$ is defined by

$$p_{ij} = \begin{cases} 1, & \text{if } j = k_i, \\ 0, & \text{otherwise.} \end{cases}$$

Then

• PA permutes the rows of A; that is,

$$PA = \begin{bmatrix} a_{k_{1}1} & a_{k_{1}2} & \cdots & a_{k_{1}n} \\ a_{k_{2}1} & a_{k_{2}2} & \cdots & a_{k_{2}n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k_{n}1} & a_{k_{n}2} & \cdots & a_{k_{n}n} \end{bmatrix}.$$

• P^{-1} exists and $P^{-1} = P^t$.

permits Gaussian elimination to proceed without row interchanges. This implies that for any nonsingular matrix A, a permutation matrix P exists for which the system

$$PAx = Pb$$

can be solved without row interchanges. As a consequence, this matrix PA can be factored into

$$PA = LU$$
,

where L is lower triangular and U is upper triangular. Because $P^{-1} = P^t$, this produces the factorization

$$A = P^{-1}LU = (P^tL)U.$$

The matrix U is still upper triangular, but $P^{t}L$ is not lower triangular unless P = I.

Example 3 Determine a factorization in the form $A = (P^t L)U$ for the matrix

$$A = \left[\begin{array}{rrrr} 0 & 0 & -1 & 1 \\ 1 & 1 & -1 & 2 \\ -1 & -1 & 2 & 0 \\ 1 & 2 & 0 & 2 \end{array} \right].$$

Solution The matrix A cannot have an LU factorization because $a_{11} = 0$. However, using the row interchange $(E_1) \leftrightarrow (E_2)$, followed by $(E_3 + E_1) \rightarrow (E_3)$ and $(E_4 - E_1) \rightarrow (E_4)$, produces

$$\left[\begin{array}{ccccc} 1 & 1 & -1 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \end{array}\right].$$

Then the row interchange $(E_2) \leftrightarrow (E_4)$, followed by $(E_4 + E_3) \rightarrow (E_4)$, gives the matrix

$$U = \left[\begin{array}{cccc} 1 & 1 & -1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{array} \right].$$

The permutation matrix associated with the row interchanges $(E_1) \leftrightarrow (E_2)$ and $(E_2) \leftrightarrow (E_4)$ is

$$P = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{array} \right],$$

and

$$PA = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 1 & 2 & 0 & 2 \\ -1 & -1 & 2 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}.$$

Gaussian elimination is performed on PA using the same operations as on A, except without the row interchanges. That is, $(E_2 - E_1) \rightarrow (E_2)$, $(E_3 + E_1) \rightarrow (E_3)$, followed by $(E_4 + E_3) \rightarrow (E_4)$. The nonzero multipliers for PA are consequently,

$$m_{21} = 1$$
, $m_{31} = -1$, and $m_{43} = -1$,

and the LU factorization of PA is

$$PA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{bmatrix} = LU.$$

Multiplying by $P^{-1} = P^t$ produces the factorization

$$A = P^{-1}(LU) = P^{t}(LU) = (P^{t}L)U = \begin{bmatrix} 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

Ex # 6.5: 1,2,3-6

Solve the following linear systems:

a.
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & -1 \\ 0 & -2 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 3 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix}$$

2. Solve the following linear systems:

a.
$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 0 & 4 & 2 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -5 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 8 \end{bmatrix}$$

3. Consider the following matrices. Find the permutation matrix P so that PA can be factored into the product LU, where L is lower triangular with 1s on its diagonal and U is upper triangular for these matrices.

$$\mathbf{a.} \quad A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

$$\mathbf{c.} \quad A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 4 & 3 \\ 2 & -1 & 2 & 4 \\ 2 & -1 & 2 & 3 \end{bmatrix}$$

b.
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & -2 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$

c.
$$A = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 1 & 1 & 4 & 3 \\ 2 & -1 & 2 & 4 \\ 2 & -1 & 2 & 3 \end{bmatrix}$$
 d. $A = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & -1 \\ 1 & 2 & -1 & 3 \\ 1 & 1 & 2 & 0 \end{bmatrix}$

4. Consider the following matrices. Find the permutation matrix P so that PA can be factored into the product LU, where L is lower triangular with 1s on its diagonal and U is upper triangular for these matrices.

$$\mathbf{a.} \quad A = \left[\begin{array}{ccc} 0 & 2 & -1 \\ 1 & -1 & 2 \\ 1 & -1 & 4 \end{array} \right]$$

c.
$$A = \begin{bmatrix} 1 & 1 & -1 & 2 \\ -1 & -1 & 1 & 5 \\ 2 & 2 & 3 & 7 \\ 2 & 3 & 4 & 5 \end{bmatrix}$$
 d. $A = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 2 & 2 & 4 & 5 \\ 1 & -1 & 1 & 7 \\ 2 & 3 & 4 & 6 \end{bmatrix}$

b.
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & 7 \\ -1 & 2 & 5 \end{bmatrix}$$

$$\mathbf{d.} \quad A = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 2 & 2 & 4 & 5 \\ 1 & -1 & 1 & 7 \\ 2 & 3 & 4 & 6 \end{bmatrix}$$

Factor the following matrices into the LU decomposition using the LU Factorization Algorithm with $l_{ii} = 1$ for all i.

$$\mathbf{a.} \quad \begin{bmatrix} 2 & -1 & 1 \\ 3 & 3 & 9 \\ 3 & 3 & 5 \end{bmatrix}$$

a.
$$\begin{bmatrix} 2 & -1 & 1 \\ 3 & 3 & 9 \\ 3 & 3 & 5 \end{bmatrix}$$
c.
$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 1.5 & 0 & 0 \\ 0 & -3 & 0.5 & 0 \\ 2 & -2 & 1 & 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1.012 & -2.132 & 3.104 \\ -2.132 & 4.096 & -7.013 \\ 3.104 & -7.013 & 0.014 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1.012 & -2.132 & 3.104 \\ -2.132 & 4.096 & -7.013 \\ 3.104 & -7.013 & 0.014 \end{bmatrix}$$
d.
$$\begin{bmatrix} 2.1756 & 4.0231 & -2.1732 & 5.1967 \\ -4.0231 & 6.0000 & 0 & 1.1973 \\ -1.0000 & -5.2107 & 1.1111 & 0 \\ 6.0235 & 7.0000 & 0 & -4.1561 \end{bmatrix}$$

Factor the following matrices into the LU decomposition using the LU Factorization Algorithm with $l_{ii} = 1$ for all i.

$$\mathbf{a.} \quad \left[\begin{array}{rrr} 1 & -1 & 0 \\ 2 & 2 & 3 \\ -1 & 3 & 2 \end{array} \right]$$

$$\mathbf{c.} \quad \begin{bmatrix} 2 & 1 & 0 & 0 \\ -1 & 3 & 3 & 0 \\ 2 & -2 & 1 & 4 \\ -2 & 2 & 2 & 5 \end{bmatrix}$$

b.
$$\begin{bmatrix} \frac{1}{3} & \frac{1}{2} & -\frac{1}{4} \\ \frac{1}{5} & \frac{2}{3} & \frac{3}{8} \\ \frac{2}{5} & -\frac{2}{3} & \frac{5}{8} \end{bmatrix}$$

d.
$$\begin{bmatrix} 2.121 & -3.460 & 0 & 5.217 \\ 0 & 5.193 & -2.197 & 4.206 \\ 5.132 & 1.414 & 3.141 & 0 \\ -3.111 & -1.732 & 2.718 & 5.212 \end{bmatrix}$$

Special Types of Matrices

Diagonally Dominant Matrices

Definition 6.20 The $n \times n$ matrix A is said to be diagonally dominant when

$$|a_{ii}| \ge \sum_{\substack{j=1,\j\neq i}}^{n} |a_{ij}|$$
 holds for each $i = 1, 2, \dots, n$.

Each main diagonal entry in a strictly diagonally dominant matrix has a magnitude that is strictly greater that the sum of the magnitudes of all the other entries in that row.

Consider the matrices

$$A = \begin{bmatrix} 7 & 2 & 0 \\ 3 & 5 & -1 \\ 0 & 5 & -6 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 6 & 4 & -3 \\ 4 & -2 & 0 \\ -3 & 0 & 1 \end{bmatrix}.$$

The nonsymmetric matrix A is strictly diagonally dominant because

$$|7| > |2| + |0|$$
, $|5| > |3| + |-1|$, and $|-6| > |0| + |5|$.

The symmetric matrix B is not strictly diagonally dominant

first row the absolute value of the diagonal element is |6| < |4| + |-3| = 7.

Positive Definite Matrices

Definition 6.22 A matrix A is positive definite if it is symmetric and if $x^t Ax > 0$ for every n-dimensional vector $x \neq 0$.

Example 1 Show that the matrix

$$A = \left[\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right]$$

is positive definite

Solution Suppose x is any three-dimensional column vector. Then

$$\mathbf{x}^{t} A \mathbf{x} = [x_{1}, x_{2}, x_{3}] \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

$$= [x_1, x_2, x_3] \begin{bmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 \end{bmatrix}$$

$$=2x_1^2-2x_1x_2+2x_2^2-2x_2x_3+2x_3^2.$$

Rearranging the terms gives

$$\mathbf{x}^{t} A \mathbf{x} = x_{1}^{2} + (x_{1}^{2} - 2x_{1}x_{2} + x_{2}^{2}) + (x_{2}^{2} - 2x_{2}x_{3} + x_{3}^{2}) + x_{3}^{2}$$
$$= x_{1}^{2} + (x_{1} - x_{2})^{2} + (x_{2} - x_{3})^{2} + x_{3}^{2},$$

which implies that

$$x_1^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2 + x_3^2 > 0$$

Example 2 In Example 1 we used the definition to show that the symmetric matrix

$$A = \left[\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right]$$

is positive definite. Confirm this using Theorem 6.25.

Solution Note that

$$\det A_1 = \det[2] = 2 > 0,$$

$$\det A_2 = \det\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = 4 - 1 = 3 > 0,$$

$$\det A_3 = \det\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} = 2 \det\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} - (-1) \det\begin{bmatrix} -1 & -1 \\ 0 & 2 \end{bmatrix}$$

$$= 2(4 - 1) + (-2 + 0) = 4 > 0.$$

- Corollary 6.27 The matrix A is positive definite if and only if A can be factored in the form LDL^t, where L is lower triangular with 1s on its diagonal and D is a diagonal matrix with positive diagonal entries.
- Corollary 6.28 The matrix A is positive definite if and only if A can be factored in the form LL¹, where L is lower triangular with nonzero diagonal entries.

NOTE:

If the coefficient matrix [A] is symmetrical but not necessarily positive definite, then the above Cholesky algorithms will not be valid. In this case, the following LDL^{T} factorized algorithms can be employed

LDL^t Factorization

Corollary 6.29 Let A be a symmetric $n \times n$ matrix for which Gaussian elimination can be applied without row interchanges. Then A can be factored into LDL^t , where L is lower triangular with 1s on its diagonal and D is the diagonal matrix with $a_{11}^{(1)}, \ldots, a_{nn}^{(n)}$ on its diagonal.

Example 3 Determine the LDL^t factorization of the positive definite matrix

$$A = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5 \end{bmatrix}.$$

Example 3 Determine the LDL^t factorization of the positive definite matrix

$$A = \left[\begin{array}{rrr} 4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5 \end{array} \right].$$

Solution The LDL^t factorization has 1s on the diagonal of the lower triangular matrix L so we need to have

$$A = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \begin{bmatrix} 1 & l_{21} & l_{31} \\ 0 & 1 & l_{32} \\ 0 & 0 & 1 \end{bmatrix}$$

Solution The LDL^t factorization has 1s on the diagonal of the lower triangular matrix L so we need to have

$$A = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \begin{bmatrix} 1 & l_{21} & l_{31} \\ 0 & 1 & l_{32} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5 \end{bmatrix} = \begin{bmatrix} d_1 & d_1 l_{21} & d_1 l_{31} \\ d_1 l_{21} & d_2 + d_1 l_{21}^2 & d_2 l_{32} + d_1 l_{21} l_{31} \\ d_1 l_{31} & d_1 l_{21} l_{31} + d_2 l_{32} & d_1 l_{31}^2 + d_2 l_{32}^2 + d_3 \end{bmatrix}$$

Thus

$$a_{11}: 4 = d_1 \Longrightarrow d_1 = 4,$$

$$a_{21}: -1 = d_1 l_{21} \Longrightarrow l_{21} = -0.25$$

$$a_{31}: 1 = d_1 l_{31} \Longrightarrow l_{31} = 0.25,$$

$$a_{31}: 1 = d_1 l_{31} \Longrightarrow l_{31} = 0.25,$$
 $a_{22}: 4.25 = d_2 + d_1 l_{21}^2 \Longrightarrow d_2 = 4$

$$a_{32}: 2.75 = d_1l_{21}l_{31} + d_2l_{32} \Longrightarrow l_{32} = 0.75,$$

$$a_{32}: 2.75 = d_1 l_{21} l_{31} + d_2 l_{32} \Longrightarrow l_{32} = 0.75, \quad a_{33}: 3.5 = d_1 l_{31}^2 + d_2 l_{32}^2 + d_3 \Longrightarrow d_3 = 1,$$

and we have

$$A = LDL^{t} = \begin{bmatrix} 1 & 0 & 0 \\ -0.25 & 1 & 0 \\ 0.25 & 0.75 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -0.25 & 0.25 \\ 0 & 1 & 0.75 \\ 0 & 0 & 1 \end{bmatrix}.$$

Procedure to solve Ax=b using IDI^t

If the coefficient matrix [A] is symmetrical but not necessarily positive definite, then the above Cholesky algorithms will not be valid. In this case, the following LDL^{T} factorized algorithms can be employed

$$[A] = [L][D][L]^T$$

For example

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} d_{11} & 0 & 0 \\ 0 & d_{22} & 0 \\ 0 & 0 & d_{33} \end{bmatrix} \begin{bmatrix} 1 & l_{21} & l_{31} \\ 0 & 1 & l_{32} \\ 0 & 0 & 1 \end{bmatrix}$$

$$d_{jj} = a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2 d_{kk}$$

$$l_{ij} = \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} d_{kk} l_{jk}\right) \times \left(\frac{1}{d_{jj}}\right)$$

the LDL^{T} algorithms can be summarized by the following step-by-step procedures.

Step1: Factorization phase

$$[A] = [L][D][L]^T$$

Step 2: Forward solution and diagonal scaling phase

$$[L][D][L]^{T}[x] = [b]$$

Let us define

$$\begin{bmatrix} L \end{bmatrix}^{T}[x] = \begin{bmatrix} y \end{bmatrix}$$

$$\begin{bmatrix} 1 & l_{21} & l_{31} \\ 0 & 1 & l_{32} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$x_i = y_i - \sum_{k=i+1}^{n} l_{ki} x_k; \text{ for } i = n, n-1,...,2,1$$

Also, define

$$[D][y] = [z]$$

$$\begin{bmatrix} d_{11} & 0 & 0 \\ 0 & d_{22} & 0 \\ 0 & 0 & d_{33} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} \qquad y_i = \frac{z_i}{d_{ii}}, \text{ for } i = 1, 2, 3, \dots, n$$

$$[L][z] = [b]$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{22} & l_{22} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_2 \end{bmatrix}$$

$$z_i = b_i - \sum_{k=1}^{i-1} L_{ik} z_k \quad for \ i = 1, 2, 3, \dots, n$$

Step 3: Backward solution phase

Example: Using the LDL^T algorithm, solve the following system for the unknown vector [x]..

$$[A][x] = [b]$$
 where

$$[A] = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

$$[b] = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Solution

The factorized matrices [D] and [L] can be computed from

$$d_{jj} = a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2 d_{kk}$$

$$l_{ij} = \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} d_{kk} l_{jk} \right) \times \left(\frac{1}{d_{jj}} \right)$$

We know that

$$[D] = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & 0 & 0.3333 \end{bmatrix}$$

$$[D] = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & 0 & 0.3333 \end{bmatrix} \qquad [L] = \begin{bmatrix} 1 & 0 & 0 \\ -0.5 & 1 & 0 \\ 0 & -0.6667 & 1 \end{bmatrix}$$

$$[L][z] = [b]$$

$$\begin{bmatrix} 1 & 0 & 0 \\ -0.5 & 1 & 0 \\ 0 & -0.667 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}. \qquad \qquad z = \begin{bmatrix} 1 \\ 0.5 \\ 0.3333 \end{bmatrix}$$

$$[D][y] = [z]$$

$$\begin{bmatrix} D \\ [y] = [z] \\ \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & 0 & 0.3333 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.5 \\ 0.3333 \end{bmatrix}$$

$$[L]^T[x] = [y]$$

$$\begin{bmatrix} 1 & -0.5 & 0 \\ 0 & 1 & -0.667 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.333 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Hence

$$\begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Cholesky's Method

For a symmetric, positive definite matrix A (thus $A = A^T, x^T A x > 0$ for all $x \neq 0$)

The popular method of solving Ax = b based on this factorization $A = LL^T$ is called Cholesky's method.³ In terms of the entries of $L = [l_{jk}]$ the formulas for the factorization

Example:

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 14 \\ 2 & 17 & -5 \\ 14 & -5 & 83 \end{bmatrix} = \mathbf{L}\mathbf{L}^{\mathsf{T}} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 4 & 0 \\ 7 & -3 & 5 \end{bmatrix} \begin{bmatrix} 2 & 1 & 7 \\ 0 & 4 & -3 \\ 0 & 0 & 5 \end{bmatrix}.$$

Procedure to find U_{ii} of ll^t

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} u_{11} & 0 & 0 \\ u_{12} & u_{22} & 0 \\ u_{13} & u_{23} & u_{33} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$u_{11} = \sqrt{a_{11}}; u_{12} = \frac{a_{12}}{u_{11}}; u_{13} = \frac{a_{13}}{u_{11}}$$

$$u_{22} = \left(a_{22} - u_{12}^2\right)^{\frac{1}{2}}; u_{23} = \frac{a_{23} - u_{12}u_{13}}{u_{22}}; u_{33} = \left(a_{33} - u_{13}^2 - u_{23}^2\right)^{\frac{1}{2}}$$

Example 4 Determine the Cholesky LL^t factorization of the positive definite matrix

$$A = \left[\begin{array}{rrr} 4 & -1 & 1 \\ -1 & 4.25 & 2.75 \\ 1 & 2.75 & 3.5 \end{array} \right].$$

$$A = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$
$$= \begin{bmatrix} l_{11}^{2} & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{21}^{2} + l_{22}^{2} & l_{21}l_{31} + l_{22}l_{32} \\ l_{11}l_{31} & l_{21}l_{31} + l_{22}l_{32} & l_{31}^{2} + l_{32}^{2} + l_{33}^{2} \end{bmatrix}$$

$$a_{11}: 4 = l_{11}^2 \implies l_{11} = 2,$$
 $a_{21}: -1 = l_{11}l_{21} \implies l_{21} = -0.5$

$$a_{31}: 1 = l_{11}l_{31} \implies l_{31} = 0.5,$$
 $a_{22}: 4.25 = l_{21}^2 + l_{22}^2 \implies l_{22} = 2$

$$a_{32}: 2.75 = l_{21}l_{31} + l_{22}l_{32} \implies l_{32} = 1.5, \quad a_{33}: 3.5 = l_{31}^2 + l_{32}^2 + l_{33}^2 \implies l_{33} = 1,$$

Put all values then

$$\begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

and we have

$$A = LL^{t} = \begin{bmatrix} 2 & 0 & 0 \\ -0.5 & 2 & 0 \\ 0.5 & 1.5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -0.5 & 0.5 \\ 0 & 2 & 1.5 \\ 0 & 0 & 1 \end{bmatrix}.$$

Cholesky's Method

Solve by Cholesky's method:

$$4x_1 + 2x_2 + 14x_3 = 14$$

 $2x_1 + 17x_2 - 5x_3 = -101$
 $14x_1 - 5x_2 + 83x_3 = 155$.

$$\begin{bmatrix} 4 & 2 & 14 \\ 2 & 17 & -5 \\ 14 & -5 & 83 \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

we compute, in the given order,

$$l_{11} = \sqrt{a_{11}} = 2 \qquad l_{21} = \frac{a_{21}}{l_{11}} = \frac{2}{2} = 1 \qquad l_{31} = \frac{a_{31}}{l_{11}} = \frac{14}{2} = 7$$

$$l_{22} = \sqrt{a_{22} - l_{21}^2} = \sqrt{17 - 1} = 4$$

$$l_{32} = \frac{1}{l_{23}} (a_{32} - l_{31}l_{21}) = \frac{1}{4} (-5 - 7 \cdot 1) = -3$$

$$l_{33} = \sqrt{a_{33} - l_{31}^2 - l_{32}^2} = \sqrt{83 - 7^2 - (-3)^2} = 5.$$

We now have to solve Ly = b, that is,

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 4 & 0 \\ 7 & -3 & 5 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 14 \\ -101 \\ 155 \end{bmatrix}.$$
 Solution $\mathbf{y} = \begin{bmatrix} 7 \\ -27 \\ 5 \end{bmatrix}.$

we have to solve $Ux = L^{T}x = y$, that is,

$$\begin{bmatrix} 2 & 1 & 7 \\ 0 & 4 & -3 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ -27 \\ 5 \end{bmatrix}.$$
 Solution $\mathbf{x} = \begin{bmatrix} 3 \\ -6 \\ 1 \end{bmatrix}.$

Summary Sol.of Linear Equation

Check symmetric ($A=A^t$)

1-Factorize $A=ll^t$

2-Solve LY=B

3-Solve $l^t X=y$

Solve
$$Ax = b$$
 using Cholesky method, where
$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \qquad \begin{bmatrix} b \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$[b] = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Cholesky factorization:

$$\begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

$$\mathbf{l} = \begin{bmatrix} 1.414 & 0 & 0 \\ -0.7071 & 1.225 & 0 \\ 0 & -0.8165 & 0.5774 \end{bmatrix}$$

$$\boldsymbol{l} = \begin{bmatrix} 1.414 & 0 & 0 \\ -0.7071 & 1.225 & 0 \\ 0 & -0.8165 & 0.5774 \end{bmatrix} \qquad \boldsymbol{l}^{t} = \begin{bmatrix} 1.414 & -0.7071 & 0 \\ 0 & 1.225 & -0.8165 \\ 0 & 0 & 0.5774 \end{bmatrix}$$

solve LY = b

$$\begin{bmatrix} 1.414 & 0 & 0 \\ -0.7071 & 1.225 & 0 \\ 0 & -0.8165 & 0.5774 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$Y = \begin{bmatrix} 0.7071 \\ 0.4082 \\ 0.5774 \end{bmatrix}$$

solve $L^tX = y$

$$\begin{bmatrix} 1.414 & -0.7071 & 0 \\ 0 & 1.225 & -0.8165 \\ 0 & 0 & 0.5774 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.7071 \\ 0.4082 \\ 0.5774 \end{bmatrix}$$
Hence
$$[x] = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$[x] = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{a.} \quad \left[\begin{array}{cc} 2 & 1 \\ 1 & 3 \end{array} \right]$$

c.
$$\begin{bmatrix} 4 & 2 & 6 \\ 3 & 0 & 7 \\ -2 & -1 & -3 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 0 \\ 1 & 0 & 4 \end{bmatrix}$$

$$\mathbf{d.} \quad \begin{bmatrix} 4 & 0 & 0 & 0 \\ 6 & 7 & 0 & 0 \\ 9 & 11 & 1 & 0 \\ 5 & 4 & 1 & 1 \end{bmatrix}$$

$$\mathbf{a.} \quad \left[\begin{array}{cc} -2 & 1 \\ 1 & -3 \end{array} \right]$$

$$\mathbf{c.} \quad \begin{bmatrix} 2 & -1 & 0 \\ -1 & 4 & 2 \\ 0 & 2 & 2 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 2 \\ 1 & 2 & 4 \end{bmatrix}$$

$$\mathbf{d.} \begin{bmatrix} 2 & 3 & 1 & 2 \\ -2 & 4 & -1 & 5 \\ 3 & 7 & 1.5 & 1 \\ 6 & -9 & 3 & 7 \end{bmatrix}$$

Use the LDL' Factorization Algorithm to find a factorization of the form A = LDL' for the following matrices:

$$\mathbf{a.} \quad A = \left[\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right]$$

$$\mathbf{b.} \quad A = \begin{bmatrix} 4 & 1 & 1 & 1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{bmatrix}$$

c.
$$A = \begin{bmatrix} 4 & 1 & -1 & 0 \\ 1 & 3 & -1 & 0 \\ -1 & -1 & 5 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$
 d. $A = \begin{bmatrix} 6 & 2 & 1 & -1 \\ 2 & 4 & 1 & 0 \\ 1 & 1 & 4 & -1 \\ -1 & 0 & -1 & 3 \end{bmatrix}$

$$\mathbf{d.} \quad A = \begin{bmatrix} 6 & 2 & 1 & -1 \\ 2 & 4 & 1 & 0 \\ 1 & 1 & 4 & -1 \\ -1 & 0 & -1 & 3 \end{bmatrix}$$

Use the Cholesky Algorithm to find a factorization of the form $A = LL^t$ for the matrices in Exercise 3.