In the last lecture, we discussed strong and weak forms for the problem of steady two-dimensional heat conduction. In this brief note, we show how to discretize the weak form presented in the last lecture using a Galerkin approximation.

To begin, suppose I'm is a finite-dimensional subspace of I and that $g^h \in \mathcal{O}^h$. Then, a (Bubnov-) Galerkin approximation of the weak firm presented in the last lecture using I'm and g^h simply reads:

Find
$$T \in \mathcal{A}^h := \mathcal{Y}^h + g^h$$
 such that:
$$b(T^h, w^h) = \mathcal{L}(w^h) \quad \text{for all } w^h \in \mathcal{Y}^h$$

$$where:$$

$$b(T^h, w^h) = \int_{\mathcal{X}^h} K \overrightarrow{\nabla} T^h . \overrightarrow{\nabla}_w^h d\mathcal{X}_h + \int_{\mathcal{B}} T^h w^h d\mathcal{I}^2$$

$$I_R^h = \int_{\mathcal{X}^h} f^h d\mathcal{X}_h + \int_{\mathcal{A}^h} h w^h d\mathcal{I}^2 + \int_{\mathcal{B}} T_R w^h d\mathcal{I}^2$$

$$I_N^h = \int_{\mathcal{A}^h} f^h d\mathcal{X}_h + \int_{\mathcal{A}^h} h w^h d\mathcal{I}^2 + \int_{\mathcal{B}} T_R w^h d\mathcal{I}^2$$

The solution $T^h \in \mathcal{O}^h$ to the above problem is referred to as the Galerkin solution, just as we did for the 1D model problem studied earlier. Using Céa's lemma, we can prove the a priori error estimate:

$$\|T-T^h\|_{H'(\Omega)} \leq C_{b,m} \frac{K_{mex}}{K_{min}} \inf_{\Lambda_p \in \mathcal{D}_p} \|T-\Lambda_p\|_{H'(\Omega)}$$

where 11.11 H'(12) is the H'- norm defined as:

$$\|A\|_{L^{2}(U)}^{H_{1}(U)} := \|A\|_{L^{2}(U)}^{\Gamma_{2}(U)} + \Gamma_{2}\left(\|A^{2}x\|_{L^{2}(U)}^{\Gamma_{2}(U)} + \|A^{2}u\|_{L^{2}(U)}^{\Gamma_{1}(U)}\right)$$

where L is the size of the domain and 11.11 (1) is the L2-norm defined as:

$$\|A\|_{\Gamma_{\sigma}(\mathcal{Y})}^{\Gamma_{\sigma}(\mathcal{Y})} := \int_{\mathcal{Y}} \lambda_{\sigma} Y \mathcal{Y}$$

Cpoin > 0 is a constant such that:

for all $v \in \mathcal{Y}$ and:

$$K^{max} := \underset{\text{and}}{\overset{x}{\sim}} K(\overset{x}{\sim})$$
 and $K^{min} := \underset{\text{inf}}{\overset{x}{\sim}} K(\overset{x}{\sim})$

Thus, just as was the case for the 1D model public studied earlier, the Galerkin solution is guasi-optimal in the H-nom.

Also as was done for the 10 model problem studied earlier, we will
construct finite element Galerlein approximations by choosing the be
comprised of finite element functions, piecewise polynomial functions with
respect to a finite element mesh. However, in the 2D setting considered
here, the finite element mesh is typically an approximation of the domain
rather than an exact representation of the domain. As a consequence, the
Dirichlet, Neumann, and Robin boundaries must be approximated as well, as
must the boundary anditions specified on these boundaries. This will be
discussed in more detail in the next lecture.