## Introduction to Computers Lab First Year (2017 – 2018)

80 03

Lab 5

### The Decimal Number System

- Name: "decimal" base-10 system, short name "dec"
- Characteristics : Ten symbols
  - > 0123456789
  - $> 2945 = (2*10^3) + (9*10^2) + (4*10^1) + (5*10^0)$
- For an n-digit number, the value that each digit represents depends on its weight or position.
- The weights are based on powers of 10

$$> 1024 = 1*10^3 + 0*10^2 + 2*10^1 + 4*10^0 = 1000 + 20 + 4$$

| 4 <sup>th</sup> | 3 <sup>rd</sup> | 2 <sup>nd</sup> | 1 <sup>st</sup> | POSITION |
|-----------------|-----------------|-----------------|-----------------|----------|
| $10^3 = 1000$   | $10^2 = 100$    | $10^1 = 10$     | $10^0 = 1$      | WEIGHT   |

#### The Binary Number System

- Name: "binary" base-2 system, short name "bin"
- Characteristics: Two symbols
  - > 01
- Most (digital) computers use the binary number system
- Terminology
  - > **Bit**: a binary digit
  - > **Byte**: (typically) 8 bits
- ❖ For an n-digit number, the value of a digit in each column depends on its position.
- The weights are based on powers of 2.

$$> 1011_2 = 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0 = 8 + 2 + 1 = 11_{10}$$

| 4 <sup>th</sup> | 3 <sup>rd</sup> | 2 <sup>nd</sup> | 1st       | Position |
|-----------------|-----------------|-----------------|-----------|----------|
| $2^3 = 8$       | $2^2 = 4$       | $2^1 = 2$       | $2^0 = 1$ | Weight   |

# The Hexadecimal Number System

- Name: "hexadecimal" base-16 system, short name "hex"
- Characteristics : Sixteen symbols
  - > 0123456789ABCDEF
- ❖ The letters A to F represent the unit values 10 to 15
- Computer programmers often use the hexadecimal number system
- For an n-digit number, the value of a digit in each column depends on its position.
- \* The weights are based on powers of 16.

$$> 7D1_{16} = 7*16^2 + 13*16^1 + 1*16^0 = 1792 + 208 + 1 = 2001_{10}$$

An hex number can easily be converted to binary by replacing each Hex digit with the corresponding group of 4 binary digits.

| 4 <sup>th</sup> | 3 <sup>rd</sup> | 2 <sup>nd</sup> | 1st        | POSITION |
|-----------------|-----------------|-----------------|------------|----------|
| $16^3 = 4096$   | $16^2 = 256$    | $16^1 = 16$     | $16^0 = 1$ | WEIGHT   |

## The Octal Number System

- Name: "octal" base-8 system, short name "oct"
- Characteristics : Eight symbols
  - > 01234567
- ❖ For an n-digit number, the value of a digit in each column depends on its position.
- The weights are based on powers of 8.

$$> 7512_8 = 7*8^3 + 5*8^2 + 1*8^1 + 2*8^0 = 3914_{10}$$

An octal number can easily be converted to binary by replacing each octal digit with the corresponding group of 3 binary digits.

| 4 <sup>th</sup> | 3 <sup>rd</sup> | 2 <sup>nd</sup> | 1 <sup>st</sup> | POSITION |
|-----------------|-----------------|-----------------|-----------------|----------|
| $8^3 = 512$     | $8^2 = 64$      | $8^1 = 8$       | $8^0 = 1$       | WEIGHT   |

## Convert a number from any base to another



## Decimal System

80 7 CB

#### 1-Convert to decimal

- Conversions to the decimal number system depends on the base of the number system you will convert from (i.e. 2 in case of binary, 8 in case of oct and 16 in case of hex)
- The conversion equation is

$$number_b = [d_{N}...d_2d_1d_0]_b = \sum_{n=0}^{N} d_nb^n = d_0b^0 + d_1b^1 + d_2b^2 + ... + d_Nb^N$$

#### Where

*b* - numeral system base

 $d_n$  - the n-th digit

*n* - can start from negative number if the number has a fraction part.

## 1-Convert to decimal (cont.)

- Example 1: (from Bin. to decimal)
- ▶ 1011.101<sub>2</sub>
- $= (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0}) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3})$ 
  - = 8+0+2+1+0.5+0+0.125
  - $= 11.625_{10}$
- Example 2: (from Hex. To decimal)
- > 2AF.3<sub>16</sub>
- $\rightarrow$  =  $(2 \times 16^2) + (10 \times 16^1) + (15 \times 16^0) + (3 \times 16^{-1})$ 
  - $= 512_{10} + 160_{10} + 15_{10} + 0.1875$
  - $= 687.1875_{10}$

## 1-Convert to decimal (cont.)

- Example 3: (from Oct. to decimal)
- > 254.7<sub>8</sub>
- $\rightarrow$  =  $(2 \times 8^2) + (5 \times 8^1) + (4 \times 8^0) + (7 \times 8^{-1})$
- $= 128_{10} + 40_{10} + 4_{10} + 0.875$
- $> = 172.875_{10}$

#### 2-Convert from Decimal

- 50 To convert any decimal number to any other number system:
  - 1. Divide the number by base.
  - 2. Get the integer quotient for the next iteration.
  - 3. Get the remainder for the digit.
  - 4. Repeat the steps until the quotient is equal to 0.

### 2-Convert from Decimal

- Example 1: (from decimal to binary)
- $13_{10} = (..)_2$
- Solution:

| Division<br>by 2 | Quotient | Remainder | Bit # |
|------------------|----------|-----------|-------|
| 13/2             | 6        | 1         | 0     |
| 6/2              | 3        | 0         | 1     |
| 3/2              | 1        | 1         | 2     |
| 1/2              | 0        | 1         | 3     |

So 
$$13_{10} = (1101)_2$$

#### 2-Convert from Decimal (cont.)

```
Example 2: (from decimal to binary with floating point)
37.375_{10} = !!!
Solution:
  37 = !!!
  Repeated division
37/2 = 18 remainder 1 (binary number will end with 1)
18/2 = 9 remainder 0
9/2=4 remainder 1
4/2 = 2 remainder 0
2/2 = 1 remainder 0
1/2 = 0 remainder 1 (binary number will start with 1)
Read the result upward to give an answer of 37_{10} = 100101_2
0.375 = 111
Repeated multiplication
        0.375 \times 2 = 0.750 integer 0 \text{ MSB}
        0.750 \times 2 = 1.500 integer 1
        0.500 \times 2 = 1.000 integer 1 LSB
        Read the result downward .375_{10} = .011_2
 So
        37.375_{10} = 100101.011_2
```

### 2-Convert from Decimal (cont.)

#### Example 3: (from decimal to Octal):

$$23.68_{10} = !!!$$

#### Solution:

- 23<sub>10</sub>=!!!
- Repeated division
- $23_{10} / 8 = 2$  remainder 7 (Octal number will end with 7) : **LSB**
- $2_{10}$  / 8 = 0 remainder 2 (Octal number will start with 2) : **MSB**
- Read the result upward to give an answer of  $23_{10} = 27_8$
- 0.68<sub>10</sub>=!!!
- Repeated multiplication
  - 0.68 \*8 = 5.44 (0.44) and integer is 5 **MSB**
  - 0.44 \*8 = 3.52 (0.52) and integer is 3
  - 0.52\*8 = 4.16 (0.16) and integer is 4 **LSB**
  - Read the result downward  $.68_{10} = .534_8$
- So 23.68<sub>10</sub>= 27.534<sub>8</sub>





### 2-Convert from Decimal (cont.)

#### Example 4: (from decimal to Hex.):

\$\infty\$ 423.78<sub>10</sub> = !!!

#### Solution:

- 423<sub>10</sub>=!!!
- Repeated division
- $423_{10}$  / 16 = 26 remainder 7 (Hex number will end with 7) : **LSB**
- $26_{10} / 16 = 1$  remainder 10
- $1_{10} / 16 = 0$  remainder 1 (Hex number will start with 1): MSB
- Read the result upward to give an answer of  $423_{10} = 1A7_{16}$
- 0.78<sub>10</sub>=!!!
- Repeated multiplication
  - 0.78 \*16=12.48 (0.48) and integer is  $12 \rightarrow C$  MSB
  - 0.48 \*16 = 7.68 (0.68) and integer is  $7 \rightarrow 7$
  - 0.68\*16=10.88 (0.88) and integer is  $10 \rightarrow A$  **LSB**
  - Read the result downward  $.78_{10}$  =  $.C7A_{16}$
- So 423.78<sub>10</sub>=1A7.C7A<sub>16</sub>

The integer part conversion by division



## Binary System

80 16 CB

## 1-Convert to Binary System

#### A. Convert From Hexadecimal to binary System:

1. Represent each digit in hexadecimal by 4 bits to find the equivalent binary

number.

2. Example 1:





Exercise:

- 1.  $8AC.2D_{16} = ???$
- 2.  $5FF_{16} = ???$

# 1-Convert to Binary System(cont.)

#### **Bo** Convert From Octal to binary System:

- Represent each digit in Octal number by 3 bits to find the equivalent binary number.
- Example 1:

$$72.5_8 = 7$$
 $= 111$ 
 $= 111010.101_2$ 
 $5$ 
 $= 111$ 
 $= 111010.101_2$ 

#### Excersices:

- $524.2_8 = (..)_2$
- $177_8 = (..)_2$



#### 2-Convert From Binary System

#### Convert from binary system to Hexadecimal:

- value of each 4 digits represents by 1 digit in octal
- Start from the right before floating point
- Start from the left after floating point
- Example:



#### Excersices:

- $1001.11_2 = (...)_{16}$
- 11001.101<sub>2</sub>=(..)<sub>16</sub>



# 2-Convert From Binary System(cont.)

#### B. Convert from Binary to Octal System:

- o value of each 3 digits represents by 1 digit in octal
- Start from the right before floating point
- Start from the left after floating point
- o Example:

 $= 1444.1_8$ 

#### Find:

- 1. 1101.1001<sub>2</sub> = ???
- 2. 110101.101<sub>9</sub>=???



#### Hexadecimal-Octal

- © Conversion from HEX to OCT and from OCT to HEX is difficult ...
- Use decimal or binary as a step between them



#### Hex to Oct Conversion

- Example:  $A1_{16} = (..)_8$
- **Solution:**
- Using decimal

$$A1_{16} = 10 \times 16^{1} + 1 \times 16^{0} = 160 + 1 = 161_{10}$$
  
 $\rightarrow A1_{16} = 161_{10}$   
 $161_{10} / 8 = 20$  remainder 1  
 $20_{10} / 8 = 2$  remainder 4  
 $2_{10} / 8 = 0$  remainder 2  
 $\rightarrow 161_{10} = 241_{8}$   
So  $A1_{16} = 241_{8}$ 

Using binary

$$A1_{16} = 1010 \ 0001_2$$

#### Octal to hex Conversion

- Example:  $71_8 = (...)_{16}$
- Solution:
- Using decimal

$$71_8 = 7 \times 8^1 + 1 \times 8^0 = 56 + 1 = 57_{10}$$
  
 $\rightarrow 71_8 = 57_{10}$   
 $57_{10} / 16 = 3$  remainder 9  
 $3_{10} / 16 = 0$  remainder 3  
 $\rightarrow 57_{10} = 39_{16}$   
So  $71_8 = 39_{16}$ 

Using binary

$$71_8 = 111 \ 001_2$$
  
 $0011 \ 1001_2 = 39_{16}$ 

### Exercises

#### Solve

- Convert to decimal
  - 0 11001.110<sub>2</sub>
  - o 275.6<sub>8</sub>
  - o 1AD.F<sub>16</sub>
- Convert to binary
  - o 235.6<sub>10</sub>
  - o 57.3<sub>8</sub>
  - o 1DF.3<sub>16</sub>

- **Convert to hex** 
  - **-** 11001.1101<sub>2</sub>
  - $-275.6_8$
  - **-** 123<sub>10</sub>

- **≻**Convert to octal
  - **-** 235.6<sub>10</sub>
  - **-** 1001<sub>2</sub>
  - **–** 1DF.3<sub>16</sub>

#### Solution

#### Convert to decimal

- o 11001.110<sub>2</sub>=25.75
- $0.0275.6_8 = 189.75$
- $\circ$  1AD.F<sub>16</sub> = 429.9375

#### Convert to binary

- $\begin{array}{ccc} \circ & 235.6_{10} \\ & = 11101011.1001100 \\ & & 110011001101 \end{array}$
- o 57.3<sub>8</sub> =101111.011
- o 1DF.3<sub>16</sub> =111011111.0011

#### **≻**Convert to hex

- o 11001.1101 =19.D
- $\circ 275.6_8 = BD.C$
- $\circ 123_{10} = 7B$

#### **≻**Convert to octal

- **-** 235.6<sub>10</sub> =353.4631
- $-1001_2$  =11
- -1DF. $3_{16} = 737.14$

#### On Line Converter

http://www.rapidtables.com/convert/number/hex-dec-bin-converter.htm

# Number of Bits needed to represent value

How many values can be represented in n bits ??

If n = 5 ...

So the rule is (2<sup>n</sup>)

So in 5 bits we can represent  $2^5 = 32$  value (00000 to 11111) in decimal is (0 to 31).

- Mow many values can be represented in 6 bits??
- Mow many values can be represented in 4 bits?



# Largest & smallest number that can represented in n digits

What's the Largest and Smallest number that can represented in n digits ??

```
If n = 5 ...
So the rule of the largest value is (2^n-1)
So in 4 bits the largest value is 2^5-1 = (11111)_2 in decimal (31)
And always the Smallest value is 0
So the smallest value is (00000)_2 in decimal (0)
```

- What's the Largest and Smallest number that can represented in 6 digits?
- What's the Largest and Smallest number that can represented in 2 digits ??

# Number of bits needed to represent a certain value

How many bits needed to represent x decimal value??

```
If value (x) = 17 ...
the rule is 2^{n-1} - 1 \le x \le 2^n - 1
2^4 - 1 \le 17 \le 2^5 - 1
So the n digits can represent 17 is 5 digits (10001)_2
```

- Mow many digits needed to represented 29 decimal value?
- Mow many digits needed to represented 16 decimal value ??



#### Exercises

- > How many values can be represented in n bits ??
- When
  - o n = 8
  - $\circ$  n = 1
- What's the Largest and Smallest number that can represented in n digits ??
- When
  - n = 5
  - -n = 10
- How many digits needed to represented x decimal value ??
- When
  - x = 52
  - x = 100

#### Solution

- ➢ How many values can be represented in n bits ??
- when when
  - o  $n = 8, 2^8$
  - o n = 1, 2
- ➤ What's the Largest and Smallest number that can represented in n digits ??
- When

- How many digits needed to represented x decimal value ??
- When
  - -x = 52,6bits
  - x = 100,7bits

## BREAK (10 Min.)

## Google Forms

80 34 CB

## Creating Forms



## Add and Edit Questions



## Questions types



## Exercise



## Sharing Forms

In order to share the created form with others use <u>Send</u> button.



- You can send form using
- 50 1)Email
- 2) Get a sharable link
- 3) Embed link in HTML



## Form Settings



## Collect Forms Responses

The form creator can see the respondents' responses by pressing the Responses tab.



### Collect Forms Responses(cont.)



### Collect Forms Responses(cont.)

- The created spread sheet will automatically added to the creator drive.
- The generated sheet will be named "form name (Responses)".



#### Next Lab is Quiz!!

## Thank You