

The Eclipse/GMT MoDisco Component

Overview

Outline

- Introduction
- Background
- Discovery Principles
- Motivating Examples
- · Component Description
- Benefits of the Approach
- Organization
- Roadmap
- First Use Cases Descriptions

Introduction

· MoDisco for "Model Discovery"

- Eclipse GMT component for model-driven reverse-engineering (MDRE)
- Extraction of models from legacy systems
 - Multiple types of such legacy systems
- A generic and extensible metamodel-driven approach to model discovery

Background

- · Important issue:
 - Reverse-engineering of legacy systems
- MoDisco component's goal:
 - Provide an extensible base framework for performing <u>metamodel-driven reverse engineering</u>
- The key to success:
 - Adoption by leading industrials
 - Development of a wide user community in different application domains

Discovery Principles

- Step 1:
 - Define the metamodel
- Step 2:
 - Create the "discoverer"
- Step 3:
 - Run the discoverer to extract model M_i from system S

Motivating Examples (1/4)

- Example of the Unix file system
- Study of a static view of the system
 - Snapshot of the system at time t

Motivating Examples (2/4)

- Example of the Unix users' actions
- Study of the dynamic behavior of the system
 - Execution trace of the system

Motivating Examples (3/4)

· Conclusions:

- The same general discovery process is applied in both examples
 - · Only the nature of the "discoverers" is changing
- Need for a system classification
 - A decision tree more than an absolute classification
 - Several points of view are possible on the same system
 - A support and methodology for facilitating the development of the "discoverers"
 - For instance, encouraging the use of the introspection capabilities in the case of a reflexive system

Motivating Examples (4/4)

 A possible system classification (basic very first version):

Component Description (1/2)

- · A base generic and extensible framework
 - A core metamodel (based on the OMG^{TM} KDM specification)
 - A metamodel extension's mechanism
 - Facilities for manipulating models
 - A methodology for designing extensions of this framework
 - An extension (or "blade") is a couple: extension of the core metamodel + plugin
 - Different extensions for different domains in various fields

Component Description (2/2)

· Overall vision of MoDisco:

Benefits of the Approach

- A unified model-based approach and a metamodel-driven methodology:
 - Work in the homogeneous world of the models
 - Match different requirements
 - Data integration, tools interoperability, systems migration, etc
 - Use models properties and facilities
 - · Transformations, weavings, extractions, etc
- · A possible wide user community
- A common toolbox for MDRE

Organization (1/2)

 Creation of MoDisco supported by the ModelPlex European Integrated Project (FP6-IP #034081)

- · Initial committers & contributors:
 - Hugo Bruneliere (INRIA)
 - Mikael Barbero (INRIA)

Organization (2/2)

- Contributors and/or interested parties (industrials and academics):
 - INRIA

- MIA Software
- Sodius
- Obeo

Roadmap

- 1. Creation and initialization of the project (general description, web site, newsgroup, etc).
- 2. Elaboration of several use cases provided by different partners. A use case is usually composed of a specification and an implementation.
- 3. Consolidification of the common toolbox and of the initial framework for building model discoverers.
 Improvement of the guidelines, methodological support and basic documentation.
- 4. Improvement of the framework as additional use cases are built and contributed.

First Use Cases Descriptions (1/3)

Java Abstract Syntax

- Example of produced model (in XMI):

First Use Cases Descriptions (1/3)

Relational Database Schema

- Example of produced model (in Ecore):

```
<tables name="employees" key="#//@tables.1/@columns.0">
        <columns name="employeeNumber" dataType="int(11)" defaultValue="" keyOf="#//@tables.1"/>
        <columns name="firstName" dataType="varchar(50)" defaultValue=""/>
        <columns name="firstName" dataType="varchar(50)" defaultValue=""/>
        <columns name="extension" dataType="varchar(10)" defaultValue=""/>
        <columns name="email" dataType="varchar(100)" defaultValue=""/>
        <columns name="email" dataType="varchar(100)" defaultValue=""/>
        <columns name="officeCode" dataType="varchar(10)" defaultValue=""/>
        <columns name="reportsTo" dataType="int(11)" null="true"/>
        <columns name="jobTitle" dataType="varchar(50)" defaultValue=""/>
```


First Use Cases Descriptions (1/3)

Relational Database Content

- Example of produced model (in Ecore):

```
<tables name="employees">
- <tuples>
    <elements value="1002"/>
    <elements value="Murphy"/>
    <elements value="Diane"/>
    <elements value="z5800"/>
    <elements value="dmurphy@classicmodelcars.com"/>
    <elements value="1"/>
    <elements value="1"/>
    <elements value="President"/>
    </tuples>
```

End

- · Thank you
 - Questions?
 - Comments?

- MoDisco website
 - http://www.eclipse.org/gmt/modisco
- MoDisco newsgroup
 - news://news.eclipse.org/eclipse.modeling.gmt.modisco
- · Contacts
 - Jean.Bezivin@univ-nantes.fr
 - Hugo.Bruneliere@univ-nantes.fr
 - Mikael.Barbero@univ-nantes.fr

