Assignment 3:

1. If
$$\frac{d\vec{r}}{dt} = t^2 \vec{i} + (6t+1) \vec{j} + 8t^3 \vec{k}$$
 and $\vec{r}(0) = 2\vec{i} - 3\vec{j} + \vec{k}$, find \vec{r} .

- 2. If \vec{r} is the unit vectors, prove that $\left| \vec{r} \times \frac{d\vec{r}}{dt} \right| = \left| \frac{d\vec{r}}{dt} \right|$
- 3. If \vec{a} any vector then prove that $\vec{i} \times (\vec{a} \times \vec{i}) + \vec{j} \times (\vec{a} \times \vec{j}) + \vec{k} \times (\vec{a} \times \vec{k}) = 2\vec{a}$ where $\vec{i}, \vec{j}, \vec{k}$ mutually perpendicular unit vectors along the co-ordinate are axes.
- **4.** For the curve x = 3t, $y = 3t^2$, $z = 2t^3$, prove that $[\vec{r} \ \ddot{r} \ \ddot{r}] = 216$.
- 5. If $\frac{d\vec{a}}{dt} = \vec{c} \times \vec{a}$, $\frac{d\vec{b}}{dt} = \vec{c} \times \vec{b}$ show that $\frac{d(\vec{a} \times \vec{b})}{dt} = \vec{c} \times (\vec{a} \times \vec{b})$
- 6. Prove that the necessary and sufficient conditions for a vector function \vec{a} of a scalar variable t to have a constant direction is $\vec{a} \times \frac{d\vec{a}}{dt} = 0$.
- 7. Prove that the necessary and sufficient conditions for a vector function \vec{a} of a scalar variable t to have a constant magnitude is $\vec{a} \cdot \frac{d\vec{a}}{dt} = 0$.
- **8.** A particle moves along the curve $x = a \cos t$, $y = a \sin t$, z = bt. Find the velocity and acceleration at t = 0 and $t = \frac{\pi}{2}$. Also find their magnitude.
- 9. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2).
- 10. Find the angle between the normal to the surfaces $x \log z = y^2 1$ and $x^2y + z = 2$ at the point (1, 1, 1).
- 11. In what direction from the point (3,1,-2) is the directional derivative of $\phi(x,y,z) = x^2y^2z^4$ maximum? Find also the magnitude of this maximum.
- 12. Find the constant 'a' such that the vector $(ax^2y + yz)\vec{i} + (xy^2 xz^2)\vec{j} + (2xyz 2x^2y^2)\vec{k}$ is solenoidal.
- 13. Find the constants a, b, c so that the vector $\vec{v} = (x + 2y + az)\vec{i} + (bx 3y z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational..
- 14. If \vec{a} is a constant vector and \vec{r} be the position vector then prove that

$$\nabla\times(\vec{a}\times\vec{r})=2\vec{a}$$

- 15. Define gradient of a scalar point function and divergence, curl of vector point function. Find the gradient, divergence and curl (whichever possible) of the following scalar and vector point functions.
 - i. $\vec{v} = 3x^2\vec{i} + 5xy^2\vec{i} + xyz^3\vec{k}$ at the point (1,2,3)

ii.
$$\vec{v} = \frac{x\vec{i} + y\vec{j} + z\vec{k}}{\sqrt{x^2 + v^2 + z^2}}$$

ii.
$$\vec{v} = \frac{x\vec{i} + y\vec{j} + z\vec{k}}{\sqrt{x^2 + y^2 + z^2}}$$

iii. $\emptyset = 3x^2y - y^3z^2$ at the point (1,-2,-1).