Podstawy Fizyki

dla Informatyki

Stanisław Drożdż Katedra Informatyki PK

Bozony, fermiony i zakaz Pauliego

Fermiony i bozony Układ okresowy Gaz Fermiego

Fermiony i bozony

- Fermiony cząstki i atomy o spinie połówkowym Np. elektron, proton i neutron mają spin $s = \frac{1}{2}$.
- Bozony cząstki i atomy o spinie całkowitym Np. foton ma spin s=1, mezony π^0 , π^+ mają spin s=0, atom $^{23}_{11}$ Na parzysta liczba cząstek o spinie $s=\frac{1}{2}$ (11 protonów, 11 elektronów i 12 neutronów).
- Takie same cząstki w tym samym stanie kwantowym są nierozróżnialne (np. dwa elektrony).

Zakaz Pauliego

Obsadzanie poziomów energetycznych:

bozony

 Wiele bozonów może zajmować ten sam stan kwantowy (statystyka Bosego-Einsteina).

Zakaz Pauliego (1925 r.):

Fermiony zamknięte w tej samej przestrzeni nie mogą mieć jednakowych wszystkich liczb kwantowych.

- E_F stan i energia Fermiego.
- Fermiony podlegają statystyce Fermiego-Diraca.
- Istnienie atomów, a zarazem świata jaki znamy, jest związane z zakazem Pauliego!

Dwie cząstki w dwóch przegrodach

Statystyka klasyczna (cząstki rozróżnialne)

Statystyka kwantowa (cząstki nierozróżnialne)

Bosego-Einsteina

Fermiego-Diraca

Obsadzanie poziomów energetycznych elektronów w nieskończonej studni

Stany elektronowe atomu

Symbol	Nazwa liczby kwantowej	Dozwolone wartości
n	główna	1, 2, 3,
ℓ	orbitalna	$0, 1, 2, \ldots, n-1$
m_ℓ	magnetyczna	$-\ell$,, 0,, $+\ell$
m_s	spinowa magnetyczna	$\pm 1/2$

Powłoka

Wszystkie stany o jednakowym n: $2n^2$ stanów

Podpowłoka

Wszystkie stany o jednakowym n i ℓ : $2(2\ell+1)$ stanów

Przykłady konfiguracji elektronowych

W konfiguracji elektronowej atomów podane są ilości elektronów zajmujących stany z określonymi n i ℓ .

Budowa układu okresowego

- Cztery liczby kwantowe identyfikują stany każdego z elektronów w atomie wieloelektronowym.
- Funkcje falowe tych stanów nie są takie same jak odpowiednie funkcje w atomie wodoru, ponieważ elektrony oddziaływują z sobą.
- Do obliczenia funkcji falowych i energii atomów wieloelektronowych służą komputery.
- Oznaczenia podpowłok:

```
\ell = 0, 1, 2, 3, \dots
s, p, d, f, ...
```

- Wszystkie stany danej podpowłoki mają prawie taką samą energię.
- Bezwzględna wartość energii określonego stanu elektronowego rośnie ze wzrostem liczby atomowej.

Nukleony w jądrze

- Nukleony w jądrach są gęsto upakowane.
- Protony odpychają się w wyniku oddziaływania elektromagnetycznego o nieskończonym zasięgu.
- Nukleony przyciągają się (również dwa protony!) w wyniku silnego oddziaływania jądrowego o krótkim zasięgu. Poniżej 0.2 fm siły jądrowe są odpychające.
- W bardzo ciężkich jądrach siły elektromagnetyczne przeważają
 ⇒ jądra są nietrwałe!