

# AKD4621-B AK4621 Evaluation board Rev.2

#### **GENERAL DESCRIPTION**

The AKD4621-B is an evaluation board for the AK4621, the 24Bit A/D & D/A converter. The AKD4621-B can evaluate A/D converter and D/A converter separately in addition to loopback mode (A/D $\rightarrow$ D/A). The AKD4621-B also has the digital audio interface and can achieve the interface with digital audio systems via opt-connector.

#### ■ Ordering guide

AKD4621-B --- Evaluation board for AK4621

(Cable for connecting with printer port of IBM-AT compatible PC and control software are packed with this. This control software does not operate on Windows NT.)

#### **FUNCTION**

- □ Digital interface
  - DIT (AK4114): optical or BNC
  - DIR (AK4114): optical or BNC
- ☐ 10pin header for serial control interface



Figure 1. AKD4621-B Block Diagram

\* Circuit diagram are attached at the end of this manual.

# **Evaluation Board Manual**

## ■ Operation sequence

1) Set up of the power supply lines

Each of the power supply lines should be distributed from the power supply units.

| Name    | Color   | - J P     | Using                                                                                                                                                                                                                                                                                                                                                                                  | Default setting                        |
|---------|---------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| of jack | of jack | k Voltage |                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
| +15V    | Green   | +15V      | Power supply for the plus terminal of OPAmp Power supply for the regulator: T1: +15V→+5V (Power supply for AVDD and VREF of AK4621, power supply for Bias of OPAmp, and power supply for the Regulator: T2: +5V→+3.3V (Power supply for DVDD and TVDD of AK4621)) Power supply for the regulator: T3: +15V→+3.3V (Power supply for AVDD, DVDD, TVDD of AK4114, Power supply for logic) | Connect to +15V<br>(Must be connected) |
| -15V    | Blue    | -15V      | Power supply for the minus terminal of OPAmp                                                                                                                                                                                                                                                                                                                                           | Connect to -15V (Must be connected)    |
| GND     | Black   | a 0V      | Analog ground<br>Digital ground                                                                                                                                                                                                                                                                                                                                                        | Connect to GND (Must be connected)     |

Table 1. Set up of the power supply lines

#### 3) Power on

The AK4621 should be reset once bringing SW2 (PDN) "L" upon power-up.

<sup>2)</sup> Set up the evaluation modes, jumper pins and DIP switch. (See the followings.)

#### ■ Evaluation modes

#### Applicable evaluation modes

- (1) Evaluation of A/D-D/A Loop back (Default)(2) Evaluation of DAC
- (3) Evaluation of ADC

#### 1) Evaluation of A/D-D/A Loop back (Default)

1-1) Sampling speed & MCLK frequency

a) Parallel mode (Default)

| SW1-1<br>(P/S) | SW1-4<br>(DFS0) | SW1-6<br>(CKS1) | SW1-7<br>(CKS0) | SW3-4<br>(OCKS1) | SW3-5<br>(OCKS0) | Sampling<br>Speed of<br>AK4621 | MCLK<br>Frequency of<br>AK4621 |
|----------------|-----------------|-----------------|-----------------|------------------|------------------|--------------------------------|--------------------------------|
| ON             | OFF             | OFF             | ON              | ON               | OFF              | Normal<br>Speed                | 512fs                          |
| ON             | ON              | OFF             | ON              | OFF              | OFF              | Double<br>Speed                | 256fs                          |

(Default)

Table 2. Sampling Speed & Master clock Frequency in parallel mode

| SW1<br>(P/S) | DFS1<br>bit | DFS0<br>bit | CMODE<br>bit | CKS1<br>bit | CKS0<br>bit | SW3-4<br>(OCKS1) | SW3-5<br>(OCKS0) | Sampling<br>Speed of<br>AK4621 | MCLK<br>Frequency of<br>AK4621 |
|--------------|-------------|-------------|--------------|-------------|-------------|------------------|------------------|--------------------------------|--------------------------------|
| OFF          | 0           | 0           | 0            | 0           | 1           | ON               | OFF              | Normal<br>Speed                | 512fs                          |
| OFF          | 0           | 1           | 0            | 0           | 1           | OFF              | OFF              | Double<br>Speed                | 256fs                          |
| OFF          | 1           | 0           | 0            | 0           | 1           | ON               | ON               | Quad Speed                     | 128fs                          |

Table 3. Sampling Speed & Master clock Frequency in serial mode

<sup>\*</sup> Parallel mode does not support quad speed mode.

<sup>\*</sup> In serial mode, SW1-4 (DFS0), SW1-6 (CKS1) and SW1-7 (CSK0) should be always "OFF", and DFS1, DFS0, CKS1, CKS0 and CMODE bits in the AK4621 should be set via the printer port (PORT3).

## 1-2) AK4114's master clock mode & reference X'tal frequency

| Mode |     | SW3-7<br>(CM0) | PLL | X'tal | Clock source | SDTO |           |
|------|-----|----------------|-----|-------|--------------|------|-----------|
| 1    | OFF | ON             | OFF | ON    | X'tal        | DAUX | (Default) |

Table 4. AK4114'S Clock Operation Mode

| SW3-1<br>(XTL1) | SW3-2<br>(XTL0) | X'tal Frequency |           |
|-----------------|-----------------|-----------------|-----------|
| ON              | OFF             | 24.576MHz       | (Default) |

Table 5. Reference X'tal frequency

## 1-3) Set up the digital filter

## a) Parallel mode (Default)

| SW1-2<br>(SDFIL) | Digital Filter |           |
|------------------|----------------|-----------|
| OFF              | Short Delay    |           |
| ON               | Sharp Roll-off | (Default) |

Table 6. Digital Filter Selection in parallel mode

| SW1-2<br>(SDFIL) | SDAD<br>bit | Digital Filter |
|------------------|-------------|----------------|
| OFF              | 0           | Sharp Roll-off |
| OFF              | 1           | Short Delay    |

Table 7. Digital Filter Selection in serial mode

## 2) Evaluation of D/A using DIR. (Optical link)

The DIR generates MCLK, BICK, LRCK and SDATA from the received data through optical connector (PORT1). PORT1 is also used for the evaluation using such as CD test disk.

BNC connector is recommended for an evaluation of the Sound quality.

2-1) DIR input interface (Default: JP2 (RX3)="OPT")

| Jumper                      | JP2<br>(RX3)         |
|-----------------------------|----------------------|
| Normal Speed & Double Speed | OPT (Default) or BNC |
| Quad Speed                  | BNC                  |

Table 8. DIR Input Interface

- 2-2) Sampling speed & MCLK frequency
- a) Parallel mode (Default)

| SW1-1<br>(P/S) | SW1-4<br>(DFS0) | SW1-6<br>(CKS1) | SW1-7<br>(CKS0) | SW3-4<br>(OCKS1) | SW3-5<br>(OCKS0) | Sampling<br>Speed of<br>AK4621 | MCLK<br>Frequency of<br>AK4621 |
|----------------|-----------------|-----------------|-----------------|------------------|------------------|--------------------------------|--------------------------------|
| ON             | OFF             | OFF             | OFF             | OFF              | OFF              | Normal<br>Speed                | 256fs                          |
| ON             | OFF             | OFF             | ON              | ON               | OFF              | Normal<br>Speed                | 512fs                          |
| ON             | ON              | OFF             | ON              | OFF              | OFF              | Double<br>Speed                | 256fs                          |

(Default)

Table 9. Sampling Speed & Master clock Frequency in parallel mode

| SW1-1<br>(P/S) | DFS1<br>bit | DFS0<br>bit | CMODE<br>bit | CKS1<br>bit | CKS0<br>bit | SW3-4<br>(OCKS1) | SW3-5<br>(OCKS0) | Sampling<br>Speed of<br>AK4621 | MCLK<br>Frequency of<br>AK4621 |
|----------------|-------------|-------------|--------------|-------------|-------------|------------------|------------------|--------------------------------|--------------------------------|
| OFF            | 0           | 0           | 0            | 0           | 0           | OFF              | OFF              | Normal<br>Speed                | 256fs                          |
| OFF            | 0           | 0           | 0            | 0           | 1           | ON               | OFF              | Normal<br>Speed                | 512fs                          |
| OFF            | 0           | 1           | 0            | 0           | 1           | OFF              | OFF              | Double<br>Speed                | 256fs                          |
| OFF            | 1           | 0           | 0            | 0           | 1           | ON               | ON               | Quad Speed                     | 128fs                          |

Table 10. Sampling Speed & Master clock Frequency in serial mode

<sup>\*</sup> Parallel mode does not support quad speed mode.

<sup>\*</sup> In serial mode, SW1-4 (DFS0), SW1-6 (CKS1) and SW1-7 (CSK0) should be always "OFF", and DFS1, DFS0, CKS1, CKS0 and CMODE bits in the AK4621 should be set via the printer port (PORT3).

## 2-3) AK4114's master clock mode & reference X'tal frequency

| Mode | SW3-6<br>(CM1) | SW3-7<br>(CM0) | PLL | X'tal | Clock source | SDTO |
|------|----------------|----------------|-----|-------|--------------|------|
| 0    | OFF            | OFF            | ON  | OFF   | PLL          | RX   |

Table 11. Clock Operation Mode

| SW3-1<br>(XTL1) | SW3-2<br>(XTL0) | X'tal Frequency |
|-----------------|-----------------|-----------------|
| ON              | ON              | OFF             |

Table 12. Reference X'tal frequency

#### 2-4) Set up the digital filter

## a) Parallel mode (Default)

| SW1-2<br>(SDFIL) | Digital Filter |
|------------------|----------------|
| OFF              | Minimum Delay  |
| ON               | Sharp Roll-off |

Table 13. Digital Filter Selection in parallel mode

## b) Serial mode

Set up the register of the AK4621 via the pint port (PORT3).

| SW1-2<br>(SDFIL) | SDAD<br>bit | SLOW<br>bit | Digital Filter |
|------------------|-------------|-------------|----------------|
| OFF              | 0           | 0           | Sharp Roll-off |
| OFF              | 0           | 1           | Slow Roll-off  |
| OFF              | 1           | 0           | Minimum Delay  |

Table 14. Digital Filter Selection in serial mode

## 3) Evaluation of A/D using DIT. (Optical link)

DIT generates audio bi-phase signal from received data and which is output through optical connector (PORT2). It is possible to connect AKM's D/A converter evaluation boards on the digital-amplifier which equips DIR input.

3-1) DIT output interface (Default: JP7 (TX) ="OPT")

| Jumper                      | JP7<br>(TX)          |
|-----------------------------|----------------------|
| Normal Speed & Double Speed | OPT (Default) or BNC |
| Quad Speed                  | BNC                  |

Table 15. DIT Output Interface

## 3-2) Sampling speed & MCLK frequency

#### a) Parallel mode (Default)

| SW1-1<br>(P/S) | SW1-4<br>(DFS0) | SW1-6<br>(CKS1) | SW1-7<br>(CKS0) | SW3-4<br>(OCKS1) | SW3-5<br>(OCKS0) | Sampling<br>Speed of<br>AK4621 | MCLK<br>Frequency of<br>AK4621 |
|----------------|-----------------|-----------------|-----------------|------------------|------------------|--------------------------------|--------------------------------|
| ON             | OFF             | OFF             | OFF             | OFF              | OFF              | Normal<br>Speed                | 256fs                          |
| ON             | OFF             | OFF             | ON              | ON               | OFF              | Normal<br>Speed                | 512fs                          |
| ON             | ON              | OFF             | ON              | OFF              | OFF              | Double<br>Speed                | 256fs                          |

(Default)

Table 16. Sampling Speed & Master clock Frequency in parallel mode

<sup>\*</sup> Parallel mode does not support quad speed mode.

#### b) Serial mode

| SW1-1<br>(P/S) | DFS1<br>bit | DFS0<br>bit | CMODE<br>bit | CKS1<br>bit | CKS0<br>bit | SW3-4<br>(OCKS1) | SW3-5<br>(OCKS0) | Sampling<br>Speed of<br>AK4621 | MCLK<br>Frequency of<br>AK4621 |
|----------------|-------------|-------------|--------------|-------------|-------------|------------------|------------------|--------------------------------|--------------------------------|
| OFF            | 0           | 0           | 0            | 0           | 0           | OFF              | OFF              | Normal<br>Speed                | 256fs                          |
| OFF            | 0           | 0           | 0            | 0           | 1           | ON               | OFF              | Normal<br>Speed                | 512fs                          |
| OFF            | 0           | 1           | 0            | 0           | 1           | OFF              | OFF              | Double<br>Speed                | 256fs                          |
| OFF            | 1           | 0           | 0            | 0           | 1           | ON               | ON               | Quad Speed                     | 128fs                          |

Table 17. Sampling Speed & Master clock Frequency in serial mode

3-3) AK4114's master clock mode & reference X'tal frequency

#### 3-3-1) PLL is used as clock source

Synchronized signal should be set via PORT1 (optical) or J6 (BNC).

| Mode | SW3-6<br>(CM1) | SW3-7<br>(CM0) | PLL | X'tal | Clock source | SDTO |
|------|----------------|----------------|-----|-------|--------------|------|
| 0    | OFF            | OFF            | ON  | OFF   | PLL          | RX   |

Table 18. Clock Operation Mode (PLL)

| SW3-1<br>(XTL1) | SW3-2<br>(XTL0) | X'tal Frequency |
|-----------------|-----------------|-----------------|
| ON              | ON              | OFF             |

Table 19. Reference X'tal frequency (PLL)

#### 3-3-2) X'tal is used as clock source (Default)

| Mode | SW3-6<br>(CM1) | SW3-7<br>(CM0) | PLL | X'tal | Clock source | SDTO |           |
|------|----------------|----------------|-----|-------|--------------|------|-----------|
| 1    | OFF            | ON             | OFF | ON    | X'tal        | DAUX | (Default) |

Table 20. Clock Operation Mode (X'tal)

| SW3-1<br>(XTL1) | SW3-2<br>(XTL0) | X'tal Frequency |           |
|-----------------|-----------------|-----------------|-----------|
| ON              | OFF             | 24.576MHz       | (Default) |

Table 21. Reference X'tal frequency (X'tal)

<sup>\*</sup> In serial mode, SW1-4 (DFS0), SW1-6 (CKS1) and S1-7 (CSK0) should be always "OFF", and DFS1, DFS0, CKS1, CKS0 and CMODE bits in the AK4621 should be set via the printer port (PORT3).

- 3-4) Set up the digital filter
  - a) Parallel mode (Default)

| SW1-2<br>(SDFIL) | Digital Filter |           |
|------------------|----------------|-----------|
| OFF              | Short Delay    |           |
| ON               | Sharp Roll-off | (Default) |

Table 22. Digital Filter Selection in parallel mode

| SW1-2<br>(SDFIL) | SDAD<br>bit | Digital Filter |
|------------------|-------------|----------------|
| OFF              | 0           | Sharp Roll-off |
| OFF              | 1           | Short Delay    |

Table 23. Digital Filter Selection in serial mode

## ■ Set up of DIP Switch: SW1, SW3

1) Set-up of SW1 (Mode set-up of AK4621)

#### 1-1) Audio data format in parallel mode

| Mode | DIF<br>(SW1-5) | SDTO                        | SDTI                        | LRCK | BICK  |           |
|------|----------------|-----------------------------|-----------------------------|------|-------|-----------|
| 2    | OFF            | 24bit MSB Justified         | 24bit MSB Justified         | H/L  | ≥48fs | (Default) |
| 3    | ON             | I <sup>2</sup> S Compatible | I <sup>2</sup> S Compatible | L/H  | ≥48fs |           |

Table 24. Audio data format (Parallel mode)

#### 1-2) De-emphasis control in parallel mode

| DEM0 pin<br>(SW1-3) | MODE         |           |
|---------------------|--------------|-----------|
| OFF                 | ON (44.1KHz) |           |
| ON                  | OFF          | (Default) |

Table 25. De-emphasis control (Parallel mode)

#### 1-3) Parallel mode/ serial mode

| P/S pin<br>(SW1-1) | MODE     |    |
|--------------------|----------|----|
| OFF                | Serial   |    |
| ON                 | Parallel | (D |

Table 26. Set up P/S pin

#### 2) Set-up of SW3 (AK4114's mode set-up)

## 2-1) Audio data format

| Mode | DIF0<br>(SW3-3) | SDTO                        | SDTI                        | LRCK | BICK  |   |
|------|-----------------|-----------------------------|-----------------------------|------|-------|---|
| 4    | OFF             | 24bit MSB Justified         | 24bit MSB Justified         | H/L  | ≥48fs | ( |
| 5    | ON              | I <sup>2</sup> S Compatible | I <sup>2</sup> S Compatible | L/H  | ≥48fs |   |

(Default)

Table 27. Audio data format

## ■ Other Jumper pin set up

JP3, JP4, JP5, JP6: Input mode selection of A/D converter.

DIFF: Analog differential input mode. <Default>

SINGLE: Analog single-end mode can not be selected on this board.

JP2, JP7: The interface selection of digital input and output.

OPT: Select the optical connector.

BNC: Select the BNC connector. <Default>

<sup>\*</sup> DIF1=L and DIF2=H are fixed in AKD4621-B evaluation board.

## ■ Toggle Switch: SW2

[SW2]: Resets the AK4621 and the AK4114. Keep "H" during normal operation. However, "L" must be input once after power supply is done.

#### ■ Serial control mode

The AK4621 can be controlled via the printer port (parallel port) of IBM-AT compatible PC. Connect PORT3 (CR-I/F) with PC by 10-wire flat cable packed with the AKD4621-B.

Take care of the direction of connector. There is a mark at pin#1.



Figure 2. Connect of 10 wire flat cable

#### ■ Analog Input Buffer Circuit

The AK4621 can accept input voltages from AGND to AVDD. The input signal range scales with the VREF voltage and is nominally 2.82Vpp (VREF = 5V). Figure 3 shows an input buffer circuit example. This is a fully differential input buffer circuit with an inverted amplifier (fc=370KHz,gain: -10dB).

The capacitor of 10nF between AINL+/– (AINR+/–) decreases the clock feed through noise of the modulator, and composes a 1st order LPF (fc=360kHz) with a  $22\Omega$  resistor before the capacitor.



Figure 3. Input buffer circuit in differential input mode

#### ■ Analog Output Buffer Circuit

The differential output circuit (2nd order LPF, fc=182KHz,Q=0.637,G=+3.9dB) and LPF(1st order LPF, fc=284KHz, G=-0.84dB) is implemented on board. The differential outputs of AK4621 is buffered by non-inverted circuit and output via Cannon connector (differential output). LPF adds differential outputs. NJM5534D is used for op-amp on this board that has low noise and high voltage torelance characteristics. Analog signal is output via BNC connectors on the board. The output level is about 2.8Vrms (typ@VREF=5.0V) by BNC.



Figure 4. Output buffer circuit

<sup>\*</sup> AKM assumes no responsibility for the trouble when using the above circuit examples.

#### **Control Soft Manual**

#### **■** Evaluation Board and Control Soft Settings

- 1. Set an evaluation board properly.
- 2. Connect the evaluation board to an IBM PC/AT compatible PC by a 10wire flat cable. Be aware of the direction of the 10pin header. When running this control soft on the Windows 2000/XP, the driver which is included in the CD must be installed. Refer to the "Driver Control Install Manual for AKM Device Control Software" for installing the driver. When running this control soft on the windows 95/98/ME, driver installing is not necessary. This control soft does not support the Windows NT.
- 3. Proceed evaluation by following the process below.

#### ■ Operation Screen

1. Start up the control program following the process above.

The operation screen is shown below.



Figure 5. Window of [FUNCTION]

#### **■** Operation Overview

Function, register map and testing tool can be controlled by this control soft. These controls are selected by upper tabs.

Buttons which are frequently used such as register initializing button "Write Default", are located outside of the switching tab window. Refer to the "Dialog Boxes" for details of each dialog box setting.

- 1. [Port Reset]: For when connecting to USB I/F board (AKDUSBIF-A)

  Click this button after the control soft starts up when connecting USB I/F board (AKDUSBIF-A).
- 2. [Write Default]: Register Initializing
  When the device is reset by a hardware reset, use this button to initialize the registers.
- 3. [All Write]: Executing write commands for all registers displayed.
- 4. [Save]: Saving current register settings to a file.
- 5. [Load]: Executing data write from a saved file.
- 6. [Data R/W]: "Data R/W" dialog box is popped up.

#### **■ Tab Functions**

## [Data R/W]

Click the [Data R/W] button in the main window for data read/write dialog box. Data write is available to specified address.



Figure 6. Window of [ Data R/W ]

Address Box: Input data address in hexadecimal numbers for data writing.

Data Box : Input data in hexadecimal numbers.

Mask Box : Input mask data in hexadecimal numbers.

This is "AND" processed input data.

[Write]: Writing to the address specified by "Address" box. [Close]: Closing the dialog box and finish the process.

Data writing can be cancelled by this button instead of [Write] button.

<sup>\*</sup>The register map will be updated after executing [Write] or [Read] commands.

#### [REG]: Register Map

This tab is for a register writing and reading.

Each bit on the register map is a push-button switch.

Button Down indicates "H" or "1" and the bit name is in red (when read only it is in deep red).

Button Up indicates "L" or "0" and the bit name is in blue (when read only it is in gray)

Grayout registers are Read Only registers. They can not be controlled.

The registers which is not defined in the datasheet are indicated as "---".



Figure 7. Window of [ REG]

## [Write]: Data Writing Dialog

It is for when changing two or more bits on the same address at the same time.

Click [Write] button located on the right of the each corresponded address for a pop-up dialog box. When checking the checkbox, the register will be "H" or "1", when not checking the register will be "L" or "0". Click [OK] to write setting value to the registers, or click [Cancel] to cancel this setting.



Figure 8. Window of [Register Set]

## [Tool]: Testing Tools

This tab screen is for evaluation testing tool. Click buttons for each testing tool.



Figure 9. Window of [ Tool]

## [Repeat Test]: Repeat Test Dialog

Click [Repeat Test] button to open repeat test setting dialog box.



Figure 10. Window of [Repeat Test]

# [Loop Setting]: Loop Setting Dialog

Click [Loop Setting] button to open loop setting dialog box.



Figure 11. Window of [Loop]

## Measurement Results

## [Measurement condition]

• Measurement unit : Audio Precision System two Cascade (AP2)

• MCLK : 512fs (fs = 48kHz), 256fs (fs = 96kHz), 128fs (fs = 192kHz)

• BICK : 64fs

• fs : 48kHz, 96kHz, 192kHz

• Bit : 24bit

• Power Supply : AVDD=5V, DVDD=TVDD=3.3V

Interface : DIT or DIRTemperature : Room

## 1. ADC (Differencial)

#### fs=48kHz

| Parameter Inpu | Input signal | Measurement filter   | Results |       |
|----------------|--------------|----------------------|---------|-------|
| 1 arameter     | mput signai  | Wicasurement inter   | L ch    | R ch  |
| S/(N+D)        | 1kHz, -1dB   | 20kHzLPF             | 104.0   | 104.0 |
| S/(N+D)        | 1kHz, -60dB  | 20kHzLPF             | 53.7    | 53.8  |
| DR             | 1kHz, -60dB  | 20kHzLPF, A-weighted | 116.1   | 116.1 |
| S/N            | "0" data     | 20kHzLPF, A-weighted | 116.1   | 116.1 |

## fs=96kHz

| Parameter  | Input signal | gnal Measurement filter | Results |       |
|------------|--------------|-------------------------|---------|-------|
| 1 arameter | input signai | Weasurement inter       | L ch    | R ch  |
| S/(N+D)    | 1kHz, -1dB   | 40kHzLPF                | 102.8   | 102.8 |
| S(N+D)     | 1kHz, -60dB  | 40kHzLPF                | 49.5    | 49.6  |
| DR         | 1kHz, -60dB  | 40kHzLPF, A-weighted    | 115.1   | 115.2 |
| S/N        | "0" data     | 40kHzLPF, A-weighted    | 115.2   | 115.4 |

#### fs=192kHz

| Parameter  | Input signal | Measurement filter   | Results |       |
|------------|--------------|----------------------|---------|-------|
| 1 arameter | mput signai  | Weasurement inter    | L ch    | R ch  |
| S/(N+D)    | 1kHz, -1dB   | 40kHzLPF             | 102.7   | 102.8 |
| S(N+D)     | 1kHz, -60dB  | 40kHzLPF             | 49.9    | 50.1  |
| DR         | 1kHz, -60dB  | 40kHzLPF, A-weighted | 115.3   | 115.6 |
| S/N        | "0" data     | 40kHzLPF, A-weighted | 115.5   | 115.6 |

# 2. DAC

## fs=48kHz

| Parameter  | Input signal | Measurement filter   | Results |       |
|------------|--------------|----------------------|---------|-------|
| 1 arameter | input signai | Weasurement inter    | Lch     | R ch  |
| S/(N+D)    | 1kHz, -1dB   | 20kHzLPF             | 99.8    | 100.2 |
| S/(N+D)    | 1kHz, -60dB  | 20kHzLPF             | 52.7    | 52.7  |
| DR         | 1kHz, -60dB  | 22kHzLPF, A-weighted | 114.8   | 114.8 |
| S/N        | "0" data     | 22kHzLPF, A-weighted | 115.0   | 114.9 |

## fs=96kHz

| Parameter  | Input signal | Measurement filter   | Results |       |
|------------|--------------|----------------------|---------|-------|
| 1 arameter | mput signai  | Wicasurement inter   | L ch    | R ch  |
| S/(N+D)    | 1kHz, -1dB   | 40kLPF               | 99.2    | 99.4  |
| S/(N+D)    | 1kHz, -60dB  | 40kLPF               | 50.0    | 50.0  |
| DR         | 1kHz, -60dB  | 40kHzLPF, A-weighted | 114.9   | 114.9 |
| S/N        | "0" data     | 40kHzLPF, A-weighted | 115.0   | 115.0 |

## fs=192kHz

| Parameter Input signal |             | Measurement filter   | Results |       |
|------------------------|-------------|----------------------|---------|-------|
| 1 arameter             | mput signai | Weasurement inter    | L ch    | R ch  |
| S/(N+D)                | 1kHz, -1dB  | 40kHzLPF             | 99.2    | 99.4  |
| S/(N+D)                | 1kHz, -60dB | 40kHzLPF             | 49.7    | 49.8  |
| DR                     | 1kHz, -60dB | 40kHzLPF, A-weighted | 114.8   | 114.7 |
| S/N                    | "0" data    | 40kHzLPF, A-weighted | 115.1   | 115.1 |

## 3. PLOT DATA

## 3.1 ADC (fs=48kHz)



Figure 12. FFT (fin=1kHz, Input Level=-1dBFS)



Figure 13. FFT (fin=1kHz, Input Level=-60dBFS)



Figure 14. FFT (Noise Floor)



Figure 15. THD+N vs. Input level (fin=1kHz)



Figure 16. THD +N vs. Input Frequency (Input level=-1dBFS)



Figure 17. Linearity (fin=1kHz)



Figure 18. Frequency Response(Input level=-1dBFS)



Figure 19. Crosstalk

## 3.2 ADC (fs=96kHz)



Figure 20. FFT (fin=1kHz, Input Level=-1dBFS)



Figure 21. FFT (fin=1kHz, Input Level=-60dBFS)



Figure 22. FFT (Noise Floor)



Figure 23. THD +N vs. Input level (fin=1kHz)



Figure 24. THD +N vs. Input Frequency (Input level=-1dBFS)



Figure 25. Linearity (fin=1kHz)



Figure 26. Frequency Response(Input level=-1dBFS)



Figure 27. Crosstalk

## 3.3 ADC (fs=192kHz)



Figure 28. FFT (fin=1kHz, Input Level=-1dBFS)



Figure 29. FFT (fin=1kHz, Input Level=-60dBFS)



Figure 30. FFT (Noise Floor)



Figure 31. THD+N vs. Input level (fin=1kHz)



Figure 32. THD+N vs. Input Frequency (Input level=-1dBFS)



Figure 33. Linearity (fin=1kHz)



Figure 34. Frequency Response(Input level=-1dBFS)



Figure 35. Crosstalk

## 3.4 DAC (fs=48kHz)



Figure 36. FFT (fin=1kHz, Input Level=-1dBFS)



Figure 37. FFT (fin=1kHz, Input Level=-60dBFS)



Figure 38. FFT (Noise Floor)



Figure 39. THD+N vs. Input level (fin=1kHz)



Figure 40. THD +N vs. Input Frequency (Input level=-1dBFS)



Figure 41. Linearity (fin=1kHz)



Figure 42. Frequency Response (Input level=-1dBFS)



Figure 43. Crosstalk



Figure 44. Out-of-band Noise

## 3.5 DAC (fs=96kHz)



Figure 45. FFT (fin=1kHz, Input Level=-1dBFS)



Figure 46. FFT (fin=1kHz, Input Level=-60dBFS)



Figure 47. FFT (Noise Floor)



Figure 48. THD +N vs. Input level (fin=1kHz)



Figure 49. THD +N vs. Input Frequency (Input level=-1dBFS)



Figure 50. Linearity (fin=1kHz)



Figure 51. Frequency Response (Input level=-1dBFS)



Figure 52. Crosstalk

## 3.6 DAC (fs=192kHz)



Figure 53. FFT (fin=1kHz, Input Level=-1dBFS)



Figure 54. FFT (fin=1kHz, Input Level=-60dBFS)



Figure 55. FFT (Noise Floor)



Figure 56. THD+N vs. Input level (fin=1kHz)



Figure 57. THD+N vs. Input Frequency (Input level=-1dBFS)



Figure 58. Linearity (fin=1kHz)



Figure 59. Frequency Response (Input level=-1dBFS)



Figure 60. Crosstalk

## **REVISION HISTORY**

| Date       | Manual   | Board    | Reason           | Page  | Contents                                                                           |
|------------|----------|----------|------------------|-------|------------------------------------------------------------------------------------|
| (yy/mm/dd) | Revision | Revision |                  |       |                                                                                    |
| 2010/03/12 | KM100800 | 0        | First Edition    |       |                                                                                    |
| 2010/03/12 | KM100801 | 1        | Evaluation Board |       | Device Rev. Change                                                                 |
|            |          |          | Change           |       | AK4621: Rev.A $\rightarrow$ Rev.B                                                  |
| 2010/12/07 | KM100802 | 2        | Modification     | 21~47 | Device revision was changed.: Rev.B→Rev.C Update of measurement results and Plots. |
|            |          |          | Modification     | 49    | Circuit diagram was changed.                                                       |

## **IMPORTANT NOTICE**

- These products and their specifications are subject to change without notice.
   When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.
- AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use
  of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official
  approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,
  or strategic materials.
- AKM products are neither intended nor authorized for use as critical components<sub>Note1)</sub> in any safety, life support, or other hazard related device or system<sub>Note2)</sub>, and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:
  - Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
  - Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.



