Vaccine Production

Problem Code: VACCINE1

Tweet

Share

47 people like this. Sign Up to see what your friends

Read problem statements in <u>Hindi</u>, <u>Bengali</u>, <u>Mandarin Chinese</u>, <u>Russian</u>, and <u>Vietnamese</u> as well.

Increasing COVID cases have created panic amongst the people of Chefland, so the government is starting to push for production of a vaccine. It has to report to the media about the exact date when vaccines will be available.

There are two companies which are producing vaccines for COVID. Company A starts producing vaccines on day D_1 and it can produce V_1 vaccines per day. Company B starts producing vaccines on day D_2 and it can produce V_2 vaccines per day. Currently, we are on day 1.

We need a total of P vaccines. How many days are required to produce enough vaccines? Formally, find the smallest integer d such that we have enough vaccines at the end of the day d.

Input

Input

• The first and only line of the input contains five space-separated integers D_1 , V_1 , D_2 , V_2 and P.

Output

Print a single line containing one integer — the smallest required number of days.

Constraints

- $1 \le D_1, V_1, D_2, V_2 \le 100$
- $1 \le P \le 1,000$

Subtasks

Subtask #1 (30 points): $D_1=D_2$

Subtask #2 (70 points): original constraints

Example Input 1

1 2 1 3 14

Example Output 1

3

Explanation

Since $D_1=D_2=1$, we can produce $V_1+V_2=5$ vaccines per day. In 3 days, we produce 15 vaccines, which satisfies our requirement of 14 vaccines.

Example Input 2

5 4 2 10 100

Example Output 2

9

Explanation

There are 0 vaccines produced on the first day, 10 vaccines produced on each of days 2, 3 and 4, and 14 vaccines produced on the fifth and each subsequent day. In 9 days, it makes a total of $0+10\cdot 3+14\cdot 5=100$ vaccines.