5 A student investigated how changing the temperature of a copper wire affects the resistance of the wire.

He placed a coil of the copper wire into a beaker of hot water, as shown. The temperature of the water was measured using a thermometer with a resolution of $1\,^{\circ}$ C. The resistance of the wire was measured using an ohmmeter with a resolution of $0.001\,\Omega$.

The student recorded corresponding values for the temperature of the water and the resistance of the wire, as the water cooled. The results are shown in the table.

temperature/°C	resistance / Ω			
69	0.347			
62	0.34			
55	0.331			
38	0.312			
33	0.31			
22	0.294			

(a) Criticise these results.		
	(2)	

(b) Plot a graph of resistance on the *y*-axis against temperature on the *x*-axis.

(5)

(c)	The relationship between the temperature	T and	the resistance	R of the	copper	wire
	is given by					

$$R = \alpha R_0 T + R_0$$

where R_0 is the resistance of the wire at 0 °C and α is the temperature coefficient of resistance.

Determine R_0 and α .

$$R_0 = \dots$$

(d) Explain one modification to this investigation that would improve the accuracy of the values of R_0 and α determined in (c).