Present	ation · March 2019		
CITATIONS	5	READS	
0		219	
1 autho	r:		
	Alaa Tharwat Fachhochschule Bielefeld 120 PUBLICATIONS 6,195 CITATIONS SEE PROFILE		

Alaa Tharwat

- Review of Lecture 3
- Multiple hypotheses: New terms
- Error measures
- Noisy Targets
- Learning theory

Alaa Tharwat 2 / 22

- Review of Lecture 3
- Multiple hypotheses: New terms
- Error measures
- Noisy Targets
- Learning theory

Alaa Tharwat 3 / 22

- Any sample in the dataset is represented by a set of features
- PLA vs. Pocket algorithm
- Classification $(h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x}))$ vs. regression $(h(\mathbf{x}) = \mathbf{w}^T \mathbf{x})$
- Linear Regression,

$$E_{in} = \frac{1}{N} \sum_{i}^{N} (h(\mathbf{x}_i) - y_i)^2$$

 $\bullet \mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \Rightarrow \mathbf{w} = \mathbf{X} \dagger \mathbf{y}$

Alaa Tharwat

- Review of Lecture 3
- Multiple hypotheses: New terms
- Error measures
- Noisy Targets
- Learning theory

Alaa Tharwat 5 / 22

$$P[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

It is similar to

$$P[|E_{in}(g) - E_{out}(g)| \le \epsilon] \ge 1 - 2Me^{-2\epsilon^2 N}$$

- Let $\delta = 2Me^{-2\epsilon^2N}$, this means that with a probability 1δ , the difference between E_{in} and E_{out} is at most ϵ $(\Rightarrow P[|E_{in}(q) - E_{out}(q)| < \epsilon] > 1 - \delta)$
- $E_{out} \leq E_{in} + \epsilon$
- $\bullet \ \epsilon = \sqrt{\frac{ln\frac{2M}{\delta}}{2N}}$
- $N = \frac{\ln \frac{2M}{\delta}}{2\varepsilon^2}$

Alaa Tharwat 6 / 22

$$E_{out} \le E_{in} + \epsilon$$

$$E_{out} \le E_{in} + \sqrt{\frac{ln\frac{2M}{\delta}}{2N}}$$

- ullet parameter represents the maximum difference between E_{in} and E_{out} . It is inversely proportional with N and hence more training data are required for decreasing the difference between E_{in} and E_{out} ; this is the reason why the accuracy is **expensive**.
 - For example, to increase the accuracy (reduce ϵ) ten times this means $\epsilon' = \epsilon/10$ and hence we need 100N samples

Alaa Tharwat 7 / 22

$$E_{out} \le E_{in} + \epsilon$$
$$E_{out} \le E_{in} + \sqrt{\frac{ln\frac{2M}{\delta}}{2N}}$$

- \bullet δ parameter is called **confidence parameter** and it defines the probability of failure
 - For example, given $\delta = 0.05$ and then the confidence is $1 \delta = 0.95$

8 / 22

$$E_{out} \le E_{in} + \epsilon$$

$$E_{out} \le E_{in} + \sqrt{\frac{ln\frac{2M}{\delta}}{2N}}$$

• Increasing the size of hypothesis space (i.e. $M \to \infty$) increases the difference between E_{in} and E_{out} , even if the training error (E_{in}) is small

Alaa Tharwat 9 / 22

$$E_{out} \le E_{in} + \epsilon$$
$$E_{out} \le E_{in} + \sqrt{\frac{\ln \frac{2M}{\delta}}{2N}}$$

- Increasing the number of samples decreases the gap between E_{in} and E_{out} (see the example in next slide)
- $N \gg lnM \Rightarrow E_{out}(g) \approx E_{in}(g)$, does not depend on X, P(x), f, or how g is found
- Given a data which has 1000 samples and these samples are classified into two classes. First, we trained a classifier with all data and then used the trained model for testing the same data
- The whole dataset (1000 samples) represent the input space and hence the prediction results using all data represents E_{out}
- To test the influence of the number of samples, we calculate the prediction results of the same model but using 50, 250, 500, and 750 samples

Alaa Tharwat 10 / 22

Figure: Visualization of the difference between the empirical risk and the risk using different numbers of training samples; (a) 50 samples, (b) 250 samples, (c) 500 samples and (d) 750 samples.

Alaa Tharwat 11 / 22

- In the learning theory, we need $g \approx f \Rightarrow E_{out}(g) \approx 0$. This can be achieved if
 - Make sure that $E_{out}(g)$ is close to $E_{in}(g)$, $E_{out} \approx E_{in}$ (good generalization)
 - 2 Minimize $E_{in}(g)$, $E_{in}(g) \approx 0$

Alaa Tharwat 12 / 22

Any learning model generates infinite (M) hypotheses, we can say increasing M means increasing the model complexity

- Model complexity $\uparrow \Rightarrow E_{in} \downarrow$
- Model complexity $\uparrow \Rightarrow E_{out} E_{in} \uparrow$

Alaa Tharwat

- Review of Lecture 3
- Multiple hypotheses: New terms
- Error measures
- Noisy Targets
- Learning theory

Alaa Tharwat 14 / 22

- Error measure or loss function is used for evaluating a hypothesis (E(h,f))
- For example, Squared error $e(h(\mathbf{x}), f(\mathbf{x})) = (h(\mathbf{x}) f(\mathbf{x}))^2$
- For example, Binary error $e(h(\mathbf{x}), f(\mathbf{x})) = h(\mathbf{x}) \neq f(\mathbf{x})$
- Overall error (in-sample error) is $E_{in} = \frac{1}{N} \sum_{i=1}^{N} e(h(\mathbf{x}_i), f(\mathbf{x}_i))$
- Out-of-sample error is $E_{out} = E_x[e(h(\mathbf{x}_i), f(\mathbf{x}_i))]$
- E_{in} and E_{out} use the same cost function

Alaa Tharwat 15 / 22

Alaa Tharwat

Types of errors

- From the confusion matrix below, the outputs are: True positive,
 True negative, false positive, and false negative
- The errors are not the same. For example, in a fingerprint verification
 - In a supermarket application, to get a discount, false rejection is costly than false acceptance
 - In false rejection → the customer gets annoyed, while, false acceptance → more customers get the discount
 - In security, false acceptance is costly than false rejection (why?)
 - False acceptance in security is a disaster because unauthorized person can access the system, but, with false rejection, the employee need to do more trails

True Class

Alaa Tharwat 17 / 22

Type I error (false positive)

Type II error (false negative)

Alaa Tharwat 18 / 22

- Review of Lecture 3
- Multiple hypotheses: New terms
- Error measures
- Noisy Targets
- Learning theory

Alaa Tharwat 19 / 22

- The target function is not always a function such case credit-approval, weather prediction, or face recognition problems
- For example, two identical customers may have two different behaviors (approved/denied)
- So, instead of using $y = f(\mathbf{x})$, we use target distribution $P(y|\mathbf{x})$
 - \bullet \to (\mathbf{x},y) is generated now using the joint distribution $P(\mathbf{x})P(y|\mathbf{x})$
- Noisy target \equiv deterministic target $f(\mathbf{x}) = E(y|\mathbf{x})$ plus noise $y f(\mathbf{x})$
- Hence, deterministic noise is a special case of noisy target, when the noise is zero

20 / 22

¹Mathematically, a function returns a unique value for every point in the domain.

- $P(\mathbf{x})$ is the input distribution (\mathbf{x}_i is drawn from \mathbf{X} with a probability $P(\mathbf{x}_i)$
- $P(y|\mathbf{x})$ is the target distribution, and this is what we trying to learn. y_i is observed with probability $P(y_i|\mathbf{x}_i)$ (i.e. $y \sim P(y|\mathbf{x})$); hence, y_i in some papers is called desired output
- $P(\mathbf{x}, y) = P(\mathbf{x})P(y|\mathbf{x})$ is the mix of the two concepts
- ullet The observed response is probabilistic o the same input can generate different outputs

Alaa Tharwat 21 / 22

Alakie Thaling stats 22 / 22