

Chapitre 5 Amplificateur opérationnel

Justine Philippe

JUNIA ISEN

Sommaire

- Introduction
- Le modèle de l'amplificateur idéal
- Réaction positive et contre-réaction
- Montages de base
 - ✓ Fonctionnement en mode linéaire
 - ✓ Fonctionnement en mode non-linéaire

Sommaire

- Introduction
- Le modèle de l'amplificateur idéal
- Réaction positive et contre-réaction
- Montages de base
 - ✓ Fonctionnement en mode linéaire
 - ✓ Fonctionnement en mode non-linéaire

Introduction

Les composants de base en électronique :

- Résistances, condensateurs, bobines (passifs)
- Diodes, transistors (actifs)
- Amplificateurs opérationnels (un circuit intégré de base)

Aussi dénommé : Ampli op, AO, AOP, ALI ou AIL

Historique : conçu initialement pour faire du calcul analogique

Maintenant : en circuit intégré avec performance excellente et bas coût

L'AO a toujours été un composant très important de l'électronique analogique, pour sa versatilité et sa grande facilité d'utilisation

- un composant actif (alimentation nécessaire)
- Circuit intégré (composé surtout de transistors)
- Monolithique (= sur puce)
- Contenu dans un boîtier de circuit intégré

Quelques fonctions possibles:

- **amplification linéaire** (sortie est comme l'entrée, mais beaucoup plus grande)
- Comparateur (comparaison des tensions entre 2 entrées)
- Décalage en tension
- Inversion de tension
- Conversion courant à tension ou le contraire
- Fonction mathématiques : intégration, dérivation
- Filtrage

Fonctionne en courant continu ou alternatif

Symboles

Parfois, deux pattes sont ajoutées, pour représenter les fils d'alimentation

Sommaire

- Introduction
- Le modèle de l'amplificateur idéal
- Réaction positive et contre-réaction
- Montages de base
 - ✓ Fonctionnement en mode linéaire
 - ✓ Fonctionnement en mode non-linéaire

Modélisation : remarques préalables

AO composé de résistances, condensateur, transistor

(Rmq. L'alimentation sert à polariser les transistors)

→ Modèle simplifié dans lequel l'AO est considéré comme une boîte noire avec certaines propriétés que l'on va voir maintenant

Modèle de l'amplificateur idéal

On suppose:

 $Z_{e} \rightarrow \infty$ $Z_{int} \rightarrow \infty$ $A \rightarrow \infty$ $Z_{s} \rightarrow 0$ V_{s} valeur finie

1)
$$Z_s \rightarrow 0$$
 donc A. $\varepsilon = V_s$
donc $\varepsilon = V_s / A$
avec A $\rightarrow \infty$

donc
$$\epsilon \rightarrow 0$$

2)
$$Z_e \rightarrow \infty$$
 et $\epsilon \rightarrow 0$

donc
$$i_+ = i_- = 0$$

Modèle de l'amplificateur idéal

A retenir par cœur

AOP idéal

- \square $\epsilon \rightarrow 0$ donc l'AOP tend à équilibrer les potentiels d'entrée : $V_{+} = V_{-}$
- \Box Les courants d'entrée tendent vers zéro : $i_{+} = i_{-} = 0$

Sommaire

- Introduction
- Le modèle de l'amplificateur idéal
- Réaction positive et contre-réaction
- Montages de base
 - ✓ Fonctionnement en mode linéaire
 - ✓ Fonctionnement en mode non-linéaire

Définitions

On dit qu'il y a **réaction positive** quand la sortie est reliée à l'**entrée non inverseuse V+**.

On dit qu'il y a **contre-réaction** (ou réaction négative) quand la sortie est reliée à l'**entrée inverseuse V-**.

Définitions

On admet que :

- Une contre-réaction assure un fonctionnement linéaire de l'AO : ε ≈ 0 V
- Une réaction positive provoque la saturation de l'AO

Sommaire

- Introduction
- Le modèle de l'amplificateur idéal
- Réaction positive et contre-réaction
- Montages de base
 - ✓ Fonctionnement en mode linéaire
 - ✓ Fonctionnement en mode non-linéaire

Suiveur

Souvent appelé étage tampon de tension (Buffer en anglais).

Que vaut V_S/ V_e ? A quoi sert ce montage ?

Suiveur

Supposons que l'amplificateur opérationnel soit parfait, alors $i_+ = i_- = 0$ Il y a aussi une rétroaction négative (liaison physique entre sortie et entrée inverseuse), donc l'étude se fait en mode linéaire, ce qui engendre :

$$\varepsilon = V_+ - V_- = 0$$

En effectuant une loi des mailles : $V_s = V_e + \varepsilon$, or $\varepsilon = 0$ donc $V_s = V_e$

A quoi sert un suiveur?

Grâce à son impédance d'entrée très importante et à sa faible impédance de sortie, il est destiné à permettre l'adaptation d'impédance entre deux étages successifs d'un circuit.

Amplificateur inverseur

En calculant Vs / Ve, montrer à quoi sert ce montage.

Amplificateur inverseur

Supposons que l'amplificateur opérationnel soit parfait, alors $i_+ = i_- = 0$ Il y a aussi une rétroaction négative (liaison physique entre sortie et entrée inverseuse), donc l'étude se fait en mode linéaire, ce qui engendre :

$$\varepsilon = V_+ - V_- = 0$$

Donc : $V_+ = 0$ et d'après le théorème de Millman : $V_- = \frac{\frac{V_e}{R_1} + \frac{V_s}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2}}$

Or, comme
$$V_{+} = V_{-}$$
 on a : $0 = \frac{V_{e}}{R_{1}} + \frac{V_{s}}{R_{2}}$

Donc
$$V_S = -V_e \frac{R_2}{R_1}$$

Inversion du signal d'entrée et amplification par un facteur $\frac{R_2}{R_1}$

Amplificateur non inverseur

Contre réaction → Régime linéaire → V₋ = V₊

Le signal Ve qu'on veut amplifier est sur le + donc $V_+ = V_e$

Théorème du diviseur de tension : $V_{-} = V_{S} \frac{R_{1}}{R_{1} + R_{2}}$

Amplificateur non inverseur

En combinant on obtient :

$$\frac{V_S}{V_e} = 1 + \frac{R_2}{R_1}$$

Ce dispositif permet donc bien d'amplifier la tension Vs par rapport à la tension Ve d'un facteur 1+R₂/R₁

Amplificateur différentiel / soustracteur

On peut montrer que

$$V_s = \frac{R_1 + R_f}{R_2 + R_g} \frac{R_g}{R_1} V_2 - \frac{R_f}{R_1} V_1$$

- Quand $R_1 = R_2$ et $R_f = R_g$ => amplificateur de différence dont le gain est $\frac{R_f}{R_1}$
- Quand R₁ = R_f et R₂ = R_g => soustracteur

Amplificateur différentiel / soustracteur

Calcul des potentiels V₊ et V₋ :

- V_+ est obtenu grâce au pont diviseur de tension à vide : $V_+ = \frac{R_g}{R_2 + R_g} V_2$
- V₋ est obtenu grâce au théorème de Millman :

$$V_{-} = \frac{\frac{V_{s}}{R_{f}} + \frac{V_{1}}{R_{1}}}{\frac{1}{R_{f}} + \frac{1}{R_{1}}} = \frac{V_{1}R_{f} + V_{s}R_{1}}{R_{1} + R_{f}}$$

Comme :

$$V_{+} = V_{-}$$

$$\frac{R_{g}}{R_{2} + R_{g}} V_{2} = \frac{V_{1}R_{f} + V_{s}R_{1}}{R_{1} + R_{f}}$$

$$\frac{R_{1} + R_{f}}{R_{2} + R_{g}} R_{g}V_{2} = V_{1}R_{f} + V_{s}R_{1}$$

$$\frac{R_{1} + R_{f}}{R_{2} + R_{g}} \frac{R_{g}}{R_{1}} V_{2} - V_{1}R_{f} = V_{s}R_{1}$$

On obtient le résultat escompté :

$$V_{s} = \frac{R_{1} + R_{f}}{R_{2} + R_{g}} \frac{R_{g}}{R_{1}} V_{2} - \frac{R_{f}}{R_{1}} V_{1}$$

Sommateur inverseur

Sommateur inverseur

Application du théorème de Millman en V^-

$$V^- = rac{rac{V_s}{R_f} + \sum_{n\geqslant 1}rac{V_n}{R_n}}{rac{1}{R_f} + \sum_{n\geqslant 1}rac{1}{R_n}}$$

Or:

$$V^+=0=V^-$$

Ainsi:

$$V^-=rac{V_s}{R_f}+\sum_{n\geqslant 1}rac{V_n}{R_n}=0 \ rac{V_s}{R_f}=-\sum_{n\geqslant 1}rac{V_n}{R_n}$$

On obtient le résultat escompté :

$$V_s = -R_f {\displaystyle \sum_{n\geqslant 1}} \, rac{V_n}{R_n}$$

Intégrateur

Que vaut Vs = f(Ve), en notation réelle ?

Intégrateur

Supposons que l'amplificateur opérationnel soit parfait, alors $i^+=i^-=0$ et que $V^+=V^-=0$. Le courant I traversant R et C est donné par :

$$I(t)=rac{V_e(t)}{R}$$

Il peut aussi être exprimé en fonction de la tension de sortie :

$$I(t) = -Crac{dV_{
m s}(t)}{dt}$$

En utilisant les deux équations précédentes on obtient :

$$V_{
m s}(t) = -\left(rac{1}{RC}
ight)\int V_{
m e}(t)dt$$

Dérivateur

Que vaut Vs = f(Ve), en notation réelle ?

Dérivateur

Supposons que l'amplificateur opérationnel soit parfait, alors $i^+=i^-=0$ et que $V^+=V^-=0$. Le courant I traversant R et C est donné par :

$$I(t) = -rac{V_s(t)}{R}$$

Il peut aussi être exprimé en fonction de la tension d'entrée :

$$I(t) = C rac{dV_{
m e}(t)}{dt}$$

En utilisant les deux équations précédentes on obtient :

$$V_{
m s}(t) = -RCrac{dV_{
m e}(t)}{dt}$$

Amplificateur logarithmique

Le courant traversant une diode est : $i_D = I_S e^{\frac{qV_D}{kT}}$

On peut démontrer que :
$$V_S = -\frac{kT}{q} \ln \left(\frac{V_e}{I_S R} \right)$$

Amplificateur logarithmique

Supposons que l'AOP soit parfait, alors $i_+=i_-=0$ et $\varepsilon=V_+-V_-=0$

La tension aux bornes de la diode est : $V_d = V_- - V_S = -V_S$

$$Or: V_D = \frac{kT}{q} \ln \left(\frac{I}{I_S}\right)$$

Et, d'après la loi d'Ohm, on a : $I = \frac{V_e}{R}$

On en déduit alors : $V_S = -\frac{kT}{q} \ln \left(\frac{V_e}{I_S R} \right)$

Amplificateur anti-logarithmique

Le courant traversant une diode est : $i_D = I_S e^{\frac{qV_D}{kT}}$

On peut démontrer que : $V_S = -RI_S e^{\frac{qV_D}{kT}}$

Amplificateur anti-logarithmique

Supposons que l'AOP soit parfait, alors $i_+=i_-=0$ et $\varepsilon=V_+-V_-=0$

La tension aux bornes de la diode est : $V_d = V_e - V_- = V_e$

$$Or: I = I_S e^{\frac{qV_D}{kT}}$$

Et, d'après la loi d'Ohm, on a : $I = \frac{-V_s}{R}$

On en déduit alors : $V_S = -RI_S e^{\frac{qV_D}{kT}}$

Multiplicateur analogique

On peut démontrer que : $V_s = KV_1V_2V_3$

Multiplicateur analogique

Supposons que les AOP soient parfaits

La tension de sortie d'un ampli log vaut : $V_{out,i} = -\frac{kT}{q} \ln \frac{V_i}{RI_S}$ avec $i = \{1,2,3\}$

En supposant que les résistances soient identiques, la tension de sortie de l'additionneur vaut :

$$V_{add} = \frac{kT}{q} \sum_{i=1}^{3} \ln \frac{V_i}{RI_s} = \frac{kT}{q} \ln \frac{V_1 V_2 V_3}{(RI_s)^3}$$

La tension Vs vaut alors : $V_S = -RI_S e^{\frac{qV_{add}}{kT}} = -\frac{V_1V_2V_3}{(RI_S)^2} = KV_1V_2V_3$

Sommaire

- Introduction
- Le modèle de l'amplificateur idéal
- Réaction positive et contre-réaction
- Montages de base
 - ✓ Fonctionnement en mode linéaire
 - ✓ Fonctionnement en mode non-linéaire

Principe

- Pas de circuit de contre-réaction
- Conséquences :

✓ Si
$$\varepsilon$$
 > 0 alors $V_s = +V_{cc}$

✓ Si
$$\varepsilon$$
 < 0 alors $V_s = -V_{cc}$

• Le fonctionnement n'est pas linéaire

Comparateur de tension

- ☐ Si V+ > V- alors Vs = Vcc
- ☐ Si V+ < V- alors Vs = -Vcc

Remarque : si V- vaut zéro alors nous obtenons un détecteur de signe.

Comparateur à seuil à hystérésis

- Exprimer V₊
- Quelle est la relation entre Ve et Vs lorsque V₊ = 0 ?
- Quels sont les seuils de basculement V_T^+ (de $V_s = -V_{cc}$ à $V_s = +V_{cc}$) et V_T^- (de $V_s = +V_{cc}$ à $V_s = -V_{cc}$)?

Comparateur à seuil à hystérésis

- D'après le théorème de Millman : $V_{+} = \frac{\frac{V_{e}}{R_{1}} + \frac{V_{s}}{R_{2}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}}} = \frac{R_{2}V_{1} + R_{1}V_{s}}{R_{1} + R_{2}}$
- Si $V_{+} = 0$, alors : $V_{e} = -\frac{R_{1}}{R_{2}}V_{s}$ avec $V_{s} = \pm V_{cc}$
- Si $V_s = V_{cc}$, alors : $V_+ = \frac{R_2V_1 + R_1V_{cc}}{R_1 + R_2}$ Or pour que V_s bascule en $-V_{cc}$, il faut : $V_+ < 0$

D'où :
$$V_e < -\frac{R_1}{R_2} V_{cc} \Longrightarrow V_T^- = -\frac{R_1}{R_2} V_{cc}$$

• Si $V_s = -V_{cc}$, alors : $V_+ = \frac{R_2 V_1 - R_1 V_{cc}}{R_1 + R_2}$ Or pour que V_s bascule en V_{cc} , il faut : $V_+ > 0$ D'où : $V_e > \frac{R_1}{R_2} V_{cc} \implies V_T^+ = \frac{R_1}{R_2} V_{cc}$

Récapitulatif (à savoir)

- Modèle de l'AOP idéal et utilisation
- Utilisation de l'AOP dans le domaine linéaire : contre-réaction
- Principe de fonctionnement des comparateurs

Fin du Chapitre 5

JUNIA ISEN