Cournot Competition with Idiosyncratic Tax

Nate Dwyer and Sandro Lera

February 4, 2019

1 Model Definition

We simulate a basic economy of buyers and sellers by basing it on the Cournot competition model.

The 'geography' of our model is one-dimensional with periodic boundaries, i.e. a topological circle. We denote the length of that circle by L. We measure physical distances with the metric min(|x-y|, L-|y-x|) for any two points ('agents') x,y on L. Without loss of generality, we set L=1.

1.1 Buyers

On that circle we place some |B| buyers randomly distributed. The buyers all have an identical demand curve P = a - Q, and each buyer $b \in B$ buys a quantity \vec{b} , where b_i is the amount b buys from the ith seller. Each buyer tries to buy as much total quantity as they can while staying under the curve, i.e. they try to maximize $sum(\vec{b})$.

1.2 Sellers

On that circle we will also find some |S| sellers, who all offer the same product, but at potentially different prices and in potentially different quantities. We denote the prices that are offered by a vector \vec{p} and the quantities by the vector \vec{q} , where the *i*th seller offers q_i amount of the product at a price p_i . Each seller chooses q_i and p_i simultaneously in an attempt to maximize profit.

1.3 Idiosyncratic tax

For any buyer b and seller s, we define a product-distance D = D(b, s) such that the seller s that is physically closest to s has distance s has distance s and s on.

If buyer b buys from seller s, the total price, including transaction cost (tax), is given by $p(b,s) = p_s * D(b,s)^{\gamma}$ where gamma is a scaling coefficient.

1.4 Profit Function

The profit function is as follows: $\Pi_i = p_i * q_i^s - c * q_i$, where c is the price to produce each unit of product, and q_i^s is the quantity the ith seller sells.

2 Setup

We construct a set of buyers B and a set of sellers S, and transaction cost function $t:(B\times S)\to\mathbb{R}$, which has subfunctions $t_b:S\to\mathbb{R}$ s.t. for all $s\in S$, $t(b,s)=t_b(s)$.

Also, we construct an demand curve for all $b \in B$, namely P = a - Q.

3 Function to put into nashpy

We construct a function $\Pi : (\mathbb{R} \times \mathbb{R})^{|S|} \to \mathbb{R}^{|S|}$ s.t. $\Pi(\vec{s}) = \vec{\pi}$, where the elements of \vec{s} are the tuples (q_i, p_i) listing the quantity produced and the price offered by the *i*th seller, and the elements of $\vec{\pi}$ are π_i , the profits of the *i*th seller.

Given \vec{s} , $\vec{\pi}$ is calculated by first calculating \vec{q}^s , the vector of total quantity sold, then using it to calculate $\vec{\pi}$ using the formula $\pi_i = p_i q_i^s$.

 $q_i^s = \sum_{b \in B} b_i$, where b_i is the amount seller b buys from the ith seller.

Each buyer b chooses a vector \vec{b} , where each element of the vector b_i is the amount b bought from the ith buyer.

Set $\vec{q}^{unsold} = \vec{q}$

For each $b_i \in \vec{b}$, have it maximize the total quantity bought by b while remaining under the individual demand curve P = a - Q. The resulting vector that lists the amount b buys from each seller is \vec{b} . Subtract \vec{b} from \vec{q}^{unsold} to get a new \vec{q}^{unsold} .

3.1 Algorithm to determining what a buyer purchases

To determine \vec{b} , do the following:

Calculate b's perceived prices, $t_b(s_i) * p_i = \vec{p}^b$, then turn it into a |S| by 2 matrix M with the first column being the price, \vec{p} the second column being the remaining quantity, \vec{q}^{unsold} .

Sort M's rows by the perceived price column, and re-index the rows $0,1,\cdots,j,\cdots,|S|$.

Find the maximal index j and quantity $q_j^* \leq q_j^{unsold}$ such that $p_j + q_j^* + \sum_{k=0}^j q_k \leq a$. Now we have a vector of amount bought by b as follows: $< q_0, q_1, \cdots, q_{j-1}, q_j^*, 0, 0, \cdots, 0 > .$

Finally, re-index this new vector using the *i*-index instead of the j index to get \vec{b} .