Real Numbers

Ex 1.1, 1

Express each number as a product of its prime factors:

(i) 140

2	140
2	70
5	35
7	7
	1

$$140 = 2 \times 2 \times 5 \times 7$$
$$= 2^2 \times 5 \times 7$$

(ii) 156

2	156
2	78
3	39
13	13
	1

$$156 = 2 \times 2 \times 3 \times 13$$
$$= 2^{2} \times 3 \times 13$$

(iii) 3825

3	3825
3	1275
5	425
5	85
17	17
	1

$$3825 = 3 \times 3 \times 5 \times 5 \times 17$$
$$= 3^{2} \times 5^{2} \times 17$$

(iv) 5005

5	5005
7	1001
11	143
13	13
	1

$$5005 = 5 \times 7 \times 11 \times 13$$

(v) 7429

17	7429
19	437
23	23
	1

$$7429 = 17 \times 19 \times 23$$

Ex 1.1, 2

Find the LCM and HCF of the following pairs of integers and verify that LCM \times HCF = product of the two numbers.

(i) 26 and 91

$$26 = 2 \times \boxed{13}$$
$$91 = 7 \times \boxed{13}$$

Find the LCM and HCF of the following pairs of integers and verify that LCM \times HCF = product of the two numbers.

(ii) 510 and 92

2	510
3	255
5	85
17	17
	1

$$510 = 2 \times 3 \times 5 \times 17$$

 $92 = 2 \times 2 \times 23$

Find the LCM and HCF of the following pairs of integers and verify that LCM \times HCF = product of the two numbers.

(iii) 336 and 54

2	336
2	168
2	84
2	42
3	21
7	7
	1

2	54
3	27
3	9
3	3
	1

$$336 = 2 \times 2 \times 2 \times 2 \times 3 \times 7$$

$$54 = 2 \times 3 \times 3 \times 3$$

$$\therefore \mathbf{H.C.F} = 2 \times 3$$

Ex 1.1, 3

LEULHUU

Find the LCM and HCF of the following integers by applying the prime factorisation method.

(i) 12, 15 and 21

2	12
2	6
3	3
	1

$$12 = 2 \times 2 \times \boxed{3}$$

Ex 1.2, 1

Prove that $\sqrt{5}$ is irrational.

We have to prove $\sqrt{5}$ is irrational

Let us assume the opposite,

i.e., $\sqrt{5}$ is rational

Hence, $\sqrt{5}$ can be written in the form $\frac{a}{b}$

where a and b (b \neq 0) are **co-prime** (no common factor other than 1) Hence,

$$\sqrt{5} = \frac{a}{b}$$

$$\sqrt{5}$$
 b = a

Squaring both sides

$$(\sqrt{5}b)^2 = a^2$$

Prove that $3 + 2\sqrt{5}$ is irrational.

We have to prove $3 + 2\sqrt{5}$ is irrational Let us assume the **opposite**,

i.e., $3 + 2\sqrt{5}$ is rational

Hence, $3 + 2\sqrt{5}$ can be written in the form $\frac{a}{b}$ where a and b (b \neq 0) are **co-prime** (no common factor other than 1) Hence,

$$3 + 2\sqrt{5} = \frac{a}{b}$$

$$2\sqrt{5} = \frac{a}{b} - 3$$

$$2\sqrt{5} = \frac{a - 3b}{b}$$

Prove that the following are irrationals:

(i)
$$\frac{1}{\sqrt{2}}$$

We have to prove $\frac{1}{\sqrt{2}}$ is irrational

Let us assume the opposite,

i.e., $\frac{1}{\sqrt{2}}$ is rational

Hence, $\frac{1}{\sqrt{2}}$ can be written in the form $\frac{a}{b}$

where a and b (b \neq 0) are **co-prime** (no common factor other than 1) Hence,

$$\frac{1}{\sqrt{2}} = \frac{a}{b}$$

$$\frac{b}{a} = \sqrt{2}$$

(ii) 7√5

We have to prove $7\sqrt{5}$ is irrational

Let us assume the opposite,

i.e., $7\sqrt{5}$ is rational

Hence, $7\sqrt{5}$ can be written in the form $\frac{a}{b}$ where a and b (b \neq 0) are **co-prime** (no common factor other than 1) Hence,

$$7\sqrt{5} = \frac{a}{b}$$

$$\sqrt{5} = \frac{1}{7} \times \frac{a}{b}$$

(iii)
$$6 + \sqrt{2}$$

We have to prove $6 + \sqrt{2}$ is irrational

Let us assume the opposite,

i.e., $6 + \sqrt{2}$ is rational

Hence, 6 + $\sqrt{2}$ can be written in the form $\frac{a}{b}$

where a and b (b \neq 0) are **co-prime** (no common factor other than 1) Hence,

$$6 + \sqrt{2} = \frac{a}{b}$$

$$\sqrt{2} = \frac{a}{b} - 6$$