Fiktive krefter

25.04.2013

Fiktive krefter

problem: Newtons lover gjelder bare i inertialsystemer hvordan analyserer vi en bevegelse i et akselerert system?

det er upraktisk å finne et inertialsystem for å beskrive bevegelsen til pendelen på FI (eller skyene i atmosfæren)

vi kan bruke akselererte referansesystemer, men det oppstår fiktive krefter

Vi er vant til det fiktive krefter:

Du sitter på en buss som svinger til høyre og bremser. I bussens system vil det da virke som om det virker en kraft:

- 1. Bakover og mot venstre
- 2. Bakover og mot høyre
- 3. Fremover og mot venstre
- 4. Fremover og mot høyre

Eksempel: du sitter i en bil som bremser

koordinatsystem S: festet til gaten

koordinatsystem S': festet til bilen

$$\vec{r} = \vec{R} + \vec{r}'$$

$$\vec{v} = \vec{V} + \vec{v}'$$

 $\vec{a} = \vec{A} + \vec{a}'$

 \vec{v} din hastighet mot gaten

$$\vec{v}'$$
 din hastighet mot bilen

$$\vec{V}$$
 hastighet til bilen

er system S et inertialsystem?

egentlig ikke på grunn av jordens rotasjon, men i dette tilfelle er effektene neglisjerbar vi kan bruke Newtons lover i system S

$$\sum \vec{F} = m\vec{a} = m\vec{A} + m\vec{a}'$$

$$m\vec{a}' = \sum \vec{F} - m\vec{A} = \sum \vec{F} + \vec{F}_A$$

hvis vi introdusere den fiktive kraften $\vec{F}_A = -m\vec{A}$ så kan vi bruke Newtons andre lov også i systemet S' Bilen kjører rund en sving

$$\vec{r} = \vec{R} + \vec{r}'$$

$$\vec{v} = \vec{V} + \vec{v}'$$

akselerasjon til bilen som kjører med konstant hastighet ν i en kurve med radius R:

$$\vec{a} = \vec{A} + \vec{a}'$$

$$\vec{A} = -\frac{v^2}{R}\hat{i}$$
 sentripetalakselerasjon

i system S':
$$m\vec{a}' = m\vec{a} - m\vec{A} = \sum \vec{F} + \frac{v^2}{R}\hat{i}$$

passasjeren føler en fiktive kraft
$$\vec{F}_A = +\frac{v^2}{R}\hat{i}$$

sentrifugalkraft

fri legeme diagram i system S

(bilen er en del av omgivelsen)

friksjonskreftene mellom passasjer og sete fungerer som sentripetalkraft, passasjer beveger seg i en sirkelbane

normalkraft og gravitasjon kompenserer hverandre sentrifugalkraft og friksjon mellom kroppen og setet kompenserer hverandre

⇒ passasjer sitter i ro

det kan være et kraftmoment på grunn av sentrifugalkraften

To personer står på en skive som roterer som vist i figuren. Person A kaster en ball mot person B. Fra A's perspektiv

- 1. går ballen forbi B på venstre
- 2. treffer ballen B
- 3. gar ballen forbi B på høyre

person A kaster en ball mot person B mens person C observerer

han bommer fordi person B har dreiet seg ut av skuddlinjen mens ballen beveger seg mot ham

han bommer fordi en mysteriøst kraft har avledet ballen

Corioliskraft

sett utenfra beveger ballen seg på en rett linje

i det roterende referansesystem virker en fiktiv kraft som avleder ballen: Corioliskraft

Akselererte koordinatsystemer

Akselererte koordinatsystemer

$$\vec{a} = \vec{A} + \vec{a}' + 2\vec{\omega} \times \vec{v}' + \vec{\alpha} \times \vec{r}' + \vec{\omega} \times (\vec{\omega} \times \vec{r}')$$

for et jevnt roterende koordinatsystem: $\vec{A} = \vec{0}$

$$\vec{\alpha} = \vec{0}$$

$$m\vec{a}' = m\vec{a} - 2m\vec{\omega} \times \vec{v}' - m\vec{\omega} \times (\vec{\omega} \times \vec{r}')$$
$$= \sum_{i} \vec{F} + \vec{F}_{C} + \vec{F}_{S}$$

Corioliskraft: $\vec{F}_C = -2m\vec{\omega} \times \vec{v}'$

er hastighetsavhengig

virker på en masse som **beveger** seg i et roterende referansesystem

$$\vec{F}_C \perp \vec{\omega} \qquad \vec{F}_C \perp \vec{v}'$$

$$\vec{F}_{c} = \vec{0}$$
 hvis $\vec{v}' \| \vec{\omega}$

Sentrifugalkraft: $\vec{F}_{S} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r}')$

er posisjonsavhengig (avstand fra rotasjonsaksen)

Sentrifugalkraft

sentripetalkraften holder massen på sirkelbanen

en observatør i det roterende system ser massen i ro sentripetalkraften virker som motkraft til sentrifugalkraften

$$\vec{F}_{S} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r}')$$

$$= -m\omega \hat{k} \times (\omega \hat{k} \times R \hat{j})$$

$$= -m\omega^{2} R \hat{k} \times (-\hat{i})$$

$$= m\omega^{2} R \hat{j}$$

Corioliskraft

to masser beveger seg på en plate

$$\vec{v}_1 = \vec{v}\,\hat{i}$$

$$\vec{v}_2 = \vec{v}\,\hat{j}$$

rotasjon om z aksen: $\vec{\omega} = \omega \hat{k}$

$$\vec{F}_{C,1} = -2m\vec{\omega} \times \vec{v}_1'$$

$$= -2m\omega v \,\hat{k}' \times \hat{i}'$$

$$= -2m\omega v \,\hat{j}'$$

$$\vec{F}_{C,2} = -2m\omega v \hat{k}' \times \hat{j}' = 2m\omega v \hat{i}'$$

Corioliskraft og været

uten rotasjon

luft strømmer inn til et område med lavt trykk

med rotasjon

skyggene dreier seg i motsatt retning på den sørlige halvkule

Du står på ekvator og dropper en masse fra en høyde h. Corioliskraften avleder massen

- 1. mot nord
- 2. mot vest
- 3. mot sør
- 4. mot øst
- 5. har ingen effekt

koordinatsystem som roterer med jorden:

$$\hat{i}'$$
 øst \hat{j}' nord \hat{k}' vertikal opp

massen faller nedover: $\vec{v}' = -v\hat{k}'$ jordens rotasjonsakse: $\vec{\omega} = \omega \hat{i}'$

Corioliskraft:

$$\vec{F}_C = -2m\vec{\omega} \times \vec{v}'$$

$$= -2m\omega \hat{j}' \times (-v\hat{k}')$$

$$= 2m\omega v(\hat{j}' \times \hat{k}')$$

$$= 2m\omega v\hat{i}'$$

Corioliskraften avleder massen mot øst.