# **SIEMENS**

Preface, Contents **General Technical Specifications Power Supply Modules SIMATIC Digital Modules** S7-300 and M7-300 **Analog Modules Programmable Controllers Module Specifications** Other Signal Modules Interface Modules Reference manual RS 485 Repeater This manual is part of the following documentation packages with order nos: SIMATIC TOP connect S7-300 Programmable Controller: 6ES7 398-8AA03-8BA0 SIMATIC TOP connect TPA ET 200M Distributed I/O Device: 6ES7 153-1AA00-8BA0 **Appendices** Parameter Sets for Signal Modules Diagnostics Data of the Signal Modules **Dimension Drawings** Spare Parts and Accessories for S7-300 Modules Guidelines for Handling Electrostatic Sensitive Devices (ESD) F List of Abbreviations EWA 4NEB 710 6067-02 01 Glossary, Index

#### **Safety Guidelines**

This manual contains notices which you should observe to ensure your own personal safety, as well as to protect the product and connected equipment. These notices are highlighted in the manual by a warning triangle and are marked as follows according to the level of danger:



#### Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions are not taken.



#### Warning

indicates that death, severe personal injury or substantial property damage **can** result if proper precautions are not taken.



#### Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

#### Note

draws your attention to particularly important information on the product, handling the product, or to a particular part of the documentation.

#### **Qualified Personnel**

Only **qualified personnel** should be allowed to install and work on this equipment. Qualified persons are defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and systems in accordance with established safety practices and standards.

#### **Correct Usage**

Note the following:



#### Warning

This device and its components may only be used for the applications described in the catalog or the technical descriptions, and only in connection with devices or components from other manufacturers which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed correctly, and operated and maintained as recommended.

#### **Trademarks**

SIMATIC®, SIMATIC HMI® and SIMATIC NET® are registered trademarks of SIEMENS AG.

Some of other designations used in these documents are also registered trademarks; the owner's rights may be violated if they are used by third parties for their own purposes.

#### Copyright Siemens AG 1998 All rights reserved

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

Siemens AG Automation and Drives (A&D) Industrial Automation Systems (AS) Postfach 4848, D- 90327 Nürnberg

#### **Disclaimer of Liability**

We have checked the contents of this manual for agreement with the hardware and software described. Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in this manual are reviewed regularly and any necessary corrections included in subsequent editions. Suggestions for improvement are welcomed.

© Siemens AG 1998 Technical data subject to change.

# **Preface**

#### **Purpose**

The information contained in this manual will enable you to look up operator actions, function descriptions and the technical specifications of the signal modules, power supply modules and interface modules of the S7-300.

How to configure, assemble and wire these modules in an S7-300, M7-300 or ET 200M system is described in the installation manuals for each system.

#### Audience

This manual describes the modules of the S7-300 which are used in the S7-300, M7-300 and ET 200M systems. It includes data sheets for the signal modules, power supply modules and interface modules of the S7-300.

#### **Modifications Since the Last Version**

The following modifications have been made since the last version of the "Module Data" reference manual:

- new is Chapter 1.7 "SIMATIC Outdoor Modules" for use under extended environmental conditions
- new is Chapter 9 "SIMATIC TOP connect TPA"
- the following signal modules have been added:
  - SM 321; DI 32 x 120 VAC
  - SM 322; DO 32 x 120 VAC/1.0 A
  - SM 322; DO 8 x Rel. 230 VAC/5 A
  - SM 331; Al 8 x 16 Bit
  - SM 332; AO 4 x 16 Bit
  - SM 334; AI 4/AO 2 x 12 Bit
  - SM 338 POS input module

**Note:** You can recognize the previous version of this "Module Data" reference manual by the number EWA 4NEB 710 6067-0x in the footer.

The current number is: EWA 4NEB 710 6067-0x 01.

# **Standards and Approvals**

The S7-300 fulfills the requirements and criteria of the IEC 1131, Part 2. The S7-300 fulfills the requirements for CE marking. The approbations for CSA, UL and FM are available for the S7-300.

Details on the approbations and standards are given in Section 1.1.

## **Scope of the Documentation Package**

This manual forms part of the documentation for the S7-300, M7-300 and ET 200M.

| System Documentation Package |                                                                                                                                                                                            |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| \$7-300                      | <ul> <li>S7-300 Programmable Controller, Installation and Hardware</li> <li>S7-300, M7-300 Programmable Controllers, Module<br/>Specifications</li> <li>S7-300 Instruction List</li> </ul> |  |
| M7-300                       | <ul> <li>M7-300 Programmable Controller, Installation and Hardware</li> <li>S7-300, M7-300 Programmable Controllers, Module<br/>Specifications</li> </ul>                                  |  |
| ET 200M                      | ET 200M Distributed I/O Device     S7-300, M7-300 Programmable Controllers, Module Specifications                                                                                          |  |

#### **CD-ROM**

Note: You can also order the complete SIMATIC S7 documentation on CD-ROM.

#### How to Use this Manual

To help you find special information quickly, the manual contains the following access aids:

- At the start of the manual you will find a complete table of contents and a list of the diagrams and tables that appear in the manual.
- An overview of the contents of each section is provided in the left column on each page of each chapter.
- You will find a glossary in the appendix at the end of the manual. The glossary contains definitions of the main technical terms used in the manual.
- At the end of the manual you will find a comprehensive index which gives you fast access to the information you need.

## **Attributes of Technical Data**

Several values of the technical data are specified with attributes in the module data sheets.

These attributes for the values in the technical data mean:

| Attribute          | Meaning                                                                                                                                                                                                                                                        |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| minimum/maximum    | A minimum/maximum value represents a limit or operating value guaranteed by SIEMENS. The minimum or maximum of this value must not be exceeded within other operating limit values during operation. As a user, you must stay within the limits of this value. |
| typical            | The typical value is reached under nominal conditions and an ambient temperature of 25° C. Values may fall below or exceed the typical value due to component tolerances.                                                                                      |
| approx.            | The "approx." value denotes a rounded value, for example the weight of a module.                                                                                                                                                                               |
| without attributes | Values without attributes are rated values with no tolerances.                                                                                                                                                                                                 |

#### **Additional Assistance**

Please contact your local Siemens representative if you have any queries about the products described in this manual.

If you have any questions or suggestions concerning this manual, please fill in the form at the end of this manual and return it to the specified address. Please feel free to enter your personal assessment of the manual in the form provided.

We offer a range of courses to help you to get started with the SIMATIC S7 programmable controller. Please contact your local training center or the central training center in Nuremberg, D-90327 Germany, Tel. +49 911 895 3154.

# **Contents**

|   | Preface                        | e                                                                                                                                                                                                                                                                 |                                  |
|---|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1 | Genera                         | al Technical Specifications                                                                                                                                                                                                                                       |                                  |
|   | 1.1                            | Standards and Approvals                                                                                                                                                                                                                                           | 1-2                              |
|   | 1.2                            | Electromagnetic Compatibility of S7-300 Modules                                                                                                                                                                                                                   | 1-4                              |
|   | 1.3                            | Transport and Storage Conditions for S7-300 Modules and Backup Batteries                                                                                                                                                                                          | 1-6                              |
|   | 1.4                            | Mechanical and Climatic Environmental Conditions for Operating S7-300s                                                                                                                                                                                            | 1-7                              |
|   | 1.5                            | Information on Insulation Tests, Protection Class and Degree of Protection                                                                                                                                                                                        | 1-10                             |
|   | 1.6                            | Rated Voltages of the S7-300                                                                                                                                                                                                                                      | 1-11                             |
|   | 1.7                            | SIMATIC Outdoor Modules                                                                                                                                                                                                                                           | 1-12                             |
| 2 | Power                          | Supply Modules                                                                                                                                                                                                                                                    |                                  |
|   | 2.1                            | The PS 307 Power Supply Module (2 A)                                                                                                                                                                                                                              | 2-2                              |
|   | 2.2                            | The PS 307 Power Supply Module (5 A)                                                                                                                                                                                                                              | 2-6                              |
|   | 2.3                            | The PS 307 Power Supply Module (10 A)                                                                                                                                                                                                                             | 2-11                             |
| 3 | Digital                        | Modules                                                                                                                                                                                                                                                           |                                  |
|   | 3.1<br>3.1.1<br>3.1.2<br>3.1.3 | Digital Input Modules  Digital Input Module SM 321; DI 32 × 24 VDC  Digital Input Module SM 321; DI 16 × 24 VDC  Digital Input Module SM 321; DI 16 × 24 VDC; with Process and Diagnostics Interrupts  Digital Input Module SM 321; DI 16 × 24 VDC (Source Input) | 3-2<br>3-2<br>3-6<br>3-9<br>3-19 |
|   | 3.1.5<br>3.1.6<br>3.1.7        | Digital Input Module SM 321; DI 16 $\times$ 120 VAC                                                                                                                                                                                                               | 3-23<br>3-25<br>3-28             |
|   | 3.2<br>3.2.1<br>3.2.2<br>3.2.3 | Digital Output Modules                                                                                                                                                                                                                                            | 3-31<br>3-31<br>3-35             |
|   | 3.2.4<br>3.2.5<br>3.2.6        | with Diagnostics Interrupt                                                                                                                                                                                                                                        | 3-38<br>3-47<br>3-50<br>3-53     |

Digital Output Module SM 322; D0 32 × 20 VAC/1.0 A .....

3.2.7

3-56

|   | 3.3<br>3.3.1<br>3.3.2<br>3.3.3 | Relay Output Modules                                                                                                                                            | 3-59<br>3-59<br>3-62<br>3-66 |
|---|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|   | 3.4<br>3.4.1<br>3.4.2          | Digital Input/Output Modules                                                                                                                                    | 3-70<br>3-70<br>3-74         |
| 4 | Analog                         | Modules                                                                                                                                                         |                              |
|   | 4.1<br>4.1.1<br>4.1.2          | Analog Value Representation                                                                                                                                     | 4-2<br>4-2<br>4-4            |
|   | 4.1.3                          | of the Analog Inputs  Analog Value Representation of the Output Ranges of the Analog Outputs                                                                    | 4-4<br>4-16                  |
|   | 4.2                            | Connecting Sensors/Transducers and Loads/Actuators                                                                                                              |                              |
|   | 4.2.1                          | to Analog Modules                                                                                                                                               | 4-18<br>4-19                 |
|   | 4.2.2<br>4.2.3                 | Using Thermocouples  Connecting Voltage and Current Sensors and                                                                                                 | 4-25                         |
|   | 4.2.4                          | Resistance-TypeThermometers                                                                                                                                     | 4-31<br>4-34                 |
|   | 4.3<br>4.3.1<br>4.3.2          | Fundamental Principles for the Use of Analog Modules                                                                                                            | 4-38<br>4-39                 |
|   | 4.3.3                          | Channels                                                                                                                                                        | 4-41                         |
|   | 4.3.4                          | of the Analog Input Channels                                                                                                                                    | 4-43<br>4-47                 |
|   | 4.3.5                          | Diagnostics of the Analog Modules                                                                                                                               | 4-51                         |
|   | 4.3.6                          | Analog Module Interrupts                                                                                                                                        | 4-55                         |
|   | 4.3.7<br>4.4                   | Behavior of the Analog Modules                                                                                                                                  | 4-56<br>4-59                 |
|   | 4.4.1                          | Characteristic Features and Technical Specifications of the Analog Input Module SM 331; AI 8 × 12 Bit                                                           | 4-60                         |
|   | 4.4.2<br>4.4.3                 | Starting Up the Analog Input Module SM 331; AI 8 × 12 Bit                                                                                                       | 4-64<br>4-67                 |
|   | 4.5                            | Analog Input Module SM 331; Al 8 × 16 Bit                                                                                                                       | 4-70                         |
|   | 4.5.1<br>4.5.2                 | Starting Up the Analog Input Module SM 331; Al 8 $\times$ 16 Bit Measuring Methods and Measuring Ranges of the Analog Input Module SM 331; Al 8 $\times$ 16 Bit | 4-74<br>4-76                 |
|   | 4.6<br>4.6.1                   | Analog Input Module SM 331; Al 2×12 Bit                                                                                                                         | 4-79                         |
|   | 4.6.2<br>4.6.3                 | Module SM 331; AI 2×12 Bit                                                                                                                                      | 4-80<br>4-84<br>4-87         |
|   | 47                             | Analog Output Module SM 332: AO 4 × 12 Rit                                                                                                                      | 4-90                         |

|   | 4.7.1<br>4.7.2<br>4.7.3                                                     | Characteristic Features and Technical Specifications of the Analog Output Module SM 332; AO $4 \times 12$ Bit                                                                                                          | 4-90<br>4-94<br>4-95                                      |
|---|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|   | 4.8<br>4.8.1                                                                | Analog Output Module SM 332; AO 2×12 Bit                                                                                                                                                                               | 4-96<br>4-97                                              |
|   | 4.8.2<br>4.8.3                                                              | Starting Up the Analog Output Module SM 332; AO $2 \times 12$ Bit Output Ranges of the Analog Output Module SM 332; AO $2 \times 12$ Bit                                                                               | 4-101<br>4-102                                            |
|   | 4.9<br>4.9.1<br>4.9.2                                                       | Analog Output Module SM 332; AO 4 $\times$ 16 Bit                                                                                                                                                                      | 4-103<br>4-107<br>4-108                                   |
|   | 4.10<br>4.10.1                                                              | Analog Input/Output Module SM 334; AI 4/AO 2 × 8/8 Bit                                                                                                                                                                 | 4-109<br>4-109                                            |
|   | 4.10.2<br>4.10.3                                                            | Starting Up the Analog Input/Output Module SM 334; AI 4/AO 2 $\times$ 8/8 Bit                                                                                                                                          | 4-113<br>4-113                                            |
|   | 4.11<br>4.11.1<br>4.11.2<br>4.11.3                                          | Analog Input/Output Module SM334; AI 4/AO 2 × 12 Bit                                                                                                                                                                   | 4-115<br>4-120<br>4-121                                   |
| 5 | Other S                                                                     | ignal Modules                                                                                                                                                                                                          |                                                           |
|   | 5.1                                                                         | Simulator Module SM 374; IN/OUT 16                                                                                                                                                                                     | 5-2                                                       |
|   | 5.2                                                                         | Dummy Module DM 370                                                                                                                                                                                                    | 5-4                                                       |
|   | 5.3<br>5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br>5.3.5<br>5.3.6<br>5.3.7<br>5.3.8 | SM 338 POS Input Module Connection Diagram How the SM 338 Works Freeze Function Parameterization Data Handling Diagnostic Messages of the SM 338 Technical Specifications Configuration and Parameter Assignment Frame | 5-7<br>5-8<br>5-9<br>5-11<br>5-13<br>5-14<br>5-15<br>5-18 |
| 6 | Interfac                                                                    | e Modules                                                                                                                                                                                                              | 6-1                                                       |
|   | 6.1                                                                         | Interface Module IM 360                                                                                                                                                                                                | 6-2                                                       |
|   | 6.2                                                                         | Interface Module IM 361                                                                                                                                                                                                | 6-4                                                       |
|   | 6.3                                                                         | Interface Module IM 365                                                                                                                                                                                                | 6-6                                                       |
| 7 |                                                                             | Repeater                                                                                                                                                                                                               | 7-1                                                       |
|   | 7.1                                                                         | Application and Properties                                                                                                                                                                                             | 7-2                                                       |
|   | 7.2                                                                         | Technical Specifications                                                                                                                                                                                               | 7-5                                                       |

| 8 | SIMAT   | IC TOP connect                                                        |      |
|---|---------|-----------------------------------------------------------------------|------|
|   | 8.1     | Application Areas and Components of SIMATIC TOP Connect               | 8-2  |
|   | 8.2     | Terminal Assignments for Wiring the Terminal Block                    | 8-7  |
|   | 8.3     | Wiring Rules for the Terminal Block and the Front Connector           | 8-9  |
|   | 8.4     | Screw-Type Connections or Spring-Loaded Connections                   | 8-10 |
|   | 8.5     | Preparing the Connecting Cables                                       | 8-11 |
|   | 8.6     | Wiring the Front Connector and the Terminal Block                     | 8-13 |
|   | 8.7     | Wiring Digital Modules with SIMATIC TOP Connect                       | 8-15 |
| 9 | SIMAT   | IC TOP connect TPA                                                    |      |
| Α | Param   | eter Sets for Signal Modules                                          |      |
|   | A.1     | How to Assign the Parameters for Signal Modules in the User Program . | A-2  |
|   | A.2     | Parameters of the Digital Input Modules                               | A-3  |
|   | A.3     | Parameters of the Digital Output Modules                              | A-5  |
|   | A.4     | Parameters of the Analog Input Modules                                | A-7  |
|   | A.5     | Parameters of the Analog Output Modules                               | A-11 |
| В | Diagno  | ostics Data of the Signal Modules                                     |      |
| С | Dimen   | sion Drawings                                                         |      |
|   | C.1     | Dimension Drawings of the Rails                                       | C-2  |
|   | C.2     | Dimension Drawings of the Power Supply Modules                        | C-9  |
|   | C.3     | Dimension Drawings of the Interface Modules                           | C-14 |
|   | C.4     | Dimension Drawings of the Signal Modules                              | C-17 |
|   | C.5     | Dimension Drawings for Accessories                                    | C-18 |
| D | Spare   | Parts and Accessories for S7-300 Modules                              |      |
| Е | Guidel  | ines for Handling Electrostatic Sensitive Devices (ESD)               |      |
|   | E.1     | What is ESD?                                                          | E-2  |
|   | E.2     | Electrostatic Charging of Persons                                     | E-3  |
|   | E.3     | General Protective Measures Against Electrostatic Discharge Damage .  | E-4  |
| F | List of | Abbreviations                                                         |      |
|   | Glossa  | ary                                                                   |      |
|   | Index   |                                                                       |      |

#### **Figures** 2-1 2-3 2-2 Basic Circuit Diagram of the PS 307 Power Supply Module (2 A) ...... 2-4 2-3 2-7 2-4 Basic Circuit Diagram of the PS 307 Power Supply Module (5 A) . . . . . . . 2-8 2-5 Wiring Schematic of the PS 307 Power Supply Module (10 A) ...... 2-12 2-6 Basic Circuit Diagram of the PS 307 Power Supply Module (10 A) . . . . . . 2-13 3-1 Module View and Block Diagram of the Digital Input Module SM 321; DI 32×24VDC ..... 3-3 3-2 Module View and Block Diagram of Digital Input Module SM 321; DI 16 × 24 VDC ..... 3-7 3-3 Module View and Block Diagram of the SM 321; DI 16 $\times$ 24 VDC with Process and Diagnostics Interrupts ..... 3-10 3-4 Terminal Connection Diagram for the Redundant Supply of Sensors . . . . 3-10 3-5 Module View and Block Diagram of Digital Input Module SM 321; 3-20 3-6 Module View and Block Diagram of Digital Input Module SM 321; DI 16×120 VAC ..... 3-23 3-7 Module View and Block Diagram of Digital Input Module SM 321; DI 8 × 120/230 VAC ..... 3-26 Terminal Connection Diagram and Block Diagram of Digital Input Module 3-8 3-29 Module View and Block Diagram of Digital Output Module SM 322; 3-9 3-32 Module View and Block Diagram of Digital Output Module SM 322; 3-10 3-36 3-11 Terminal Connection Diagram and Block Diagram of Digital Output Module SM 322; DO 8 ×24 VDC/0.5 A; with Diagnostics Interrupt . . . . . 3-39 3-12 Block Diagram of Digital Input Module SM 322; DO 8×24 VDC/0.5 A; with Diagnostics Interrupt ..... 3-40 3-13 Module View and Block Diagram of Digital Output Module SM 322: DO 8 × 24 VDC/2 A ..... 3-48 3-14 Module View and Block Diagram of Digital Output Module SM 322; DO 16 × 120 VAC/1 A ...... 3-51 3-15 Module View and Block Diagram of the Digital Output Module SM 322; DO 8 × AC 120/230 V/2 A ..... 3-54 3-16 Terminal Connection Diagram and Block Diagram of Digital Output 3-57 3-17 Module View and Block Diagram of Relay Output Module SM 322; 3-60 3-18 Module View and Block Diagram of Relay Output Module SM 322; 3-63 Module View and Block Diagram of Digital Output Module SM 322; 3-19 3-67 3-20 Module View and Block Diagram of the SM 323; DI 16/DO 16 × 24 VDC/0.5 A ..... 3-71 3-21 Module View and Block Diagram of Digital Input/Output Module SM 323; 3-75

| 4-1            | Connecting Isolated Sensors to an Isolated Analog Input Module        | 4-22  |
|----------------|-----------------------------------------------------------------------|-------|
| 4-2            | Connecting Isolated Sensors to a Non-Isolated Analog Input Module     | 4-23  |
| 4-3            | Connecting Non-Isolated Sensors to an Isolated Analog Input Module    | 4-24  |
| 4-4            | Connecting Non-Isolated Sensors to a Non-Isolated Analog              |       |
|                | Input Module                                                          | 4-25  |
| 4-5            | Design of Thermocouples                                               | 4-26  |
| 4-6            | Connection of Thermocouples with External Compensating Box to an      | 7 20  |
| 4-0            | Isolated Analog Input Module                                          | 4-29  |
| 4-7            | Connection of Thermocouples with Internal Compensation to an Isolated | 4-23  |
| 4-7            |                                                                       | 4.00  |
| 4.0            | Analog Input Module                                                   | 4-30  |
| 4-8            | Connecting Voltage Sensors to an Isolated Analog Input Module         | 4-31  |
| 4-9            | Connecting 2-Wire Transducers to an Isolated Analog Input Module      | 4-32  |
| 4-10           | Connecting 4-Wire Transducers to an Isolated Analog Input Module      | 4-32  |
| 4-11           | Connecting Resistance-Type Thermometers to an Isolated                |       |
|                | Analog Input Module                                                   | 4-33  |
| 4-12           | Connecting Loads to a Current Output of an Isolated Analog            |       |
|                | Output Module                                                         | 4-35  |
| 4-13           | Connecting Loads to a Non-Isolated Analog Output Module               | 4-36  |
| 4-14           | Connecting Loads to a Voltage Output of an Isolated Analog Output     |       |
|                | Module over a 4-Wire Circuit                                          | 4-37  |
| 4-15           | Connecting Loads to a Voltage Output of a Non-Isolated Analog Output  |       |
|                | Module over a 2-Wire Circuit                                          | 4-38  |
| 4-16           | Cycle Time of the Analog Input Module                                 | 4-40  |
| 4-17           | Cycle Time of the Analog Output Module                                | 4-41  |
| 4-18           | Response Time of the Analog Output Channels                           | 4-42  |
| 4-19           | Markings for the Measuring Range Module                               | 4-44  |
| 4-20           | Easing a Measuring Range Module out of Analog Input Module SM 331;    | 7 77  |
| 7 20           | Al 8 × 12 Bit                                                         | 4-45  |
| 4-21           | Inserting a Measuring Range Module into Analog Input Module SM 331;   | 7 70  |
| 7-21           | Al 8 × 12 Bit                                                         | 4-46  |
| 4-22           | Module View and Block Diagram of the Analog Input Module SM 331;      | 4-40  |
| 4-22           |                                                                       | 4 64  |
| 4.00           | Al 8 × 12 Bit                                                         | 4-61  |
| 4-23           | Terminal Connection Diagram and Block Diagram of Analog Input         | 4 74  |
| 4.04           | Module SM 331; Al 8 x 16 Bit                                          | 4-71  |
| 4-24           | Module View and Block Diagram of the Analog Input Module SM 331;      |       |
|                | Al 2×12Bit                                                            | 4-81  |
| 4-25           | Module View and Block Diagram of the Analog Output Module SM 332;     |       |
|                | AO 4 × 12 Bit                                                         | 4-91  |
| 4-26           | Module View and Block Diagram of the Analog Output Module SM 332;     |       |
|                | AO 2×12 Bit                                                           | 4-98  |
| 4-27           | Block Diagram of Analog Output Module SM 332; AO 4 x 16 Bit           | 4-104 |
| 4-28           | Module View and Block Diagram of the Analog Input/Output Module       |       |
|                | SM 334; AI 4/AO 2 × 8/8 Bit                                           | 4-110 |
| 4-29           | Module View and Block Diagram of the SM 334                           | 4-116 |
| 4-30           | Record 1 of the SM 334 parameters                                     | 4-124 |
| 5-1            | Front View of Simulator Module SM 374; IN/OUT 16                      | 5-3   |
| 5-2            | Front and Rear View of the Dummy Module DM 370 and Position of the    |       |
| - <del>-</del> | Address Assignment Switch                                             | 5-5   |
| 6-1            | Front View of the Interface Module IM 360                             | 6-3   |
| 6-2            | Front View of the Interface Module IM 361                             | 6-5   |
| 6-3            | Front View of the Interface Module IM 365                             | 6-7   |
| J J            | THORE VIOW OF THE INTERIOR WOULD THE OUD THE THE TERMS OF THE         | U-1   |

| 7-1  | RS 485 Repeater                                                                   | 7-4      |
|------|-----------------------------------------------------------------------------------|----------|
| 7-2  | Block Diagram of the RS 485 Repeater                                              | 7-7      |
| 8-1  | SIMATIC TOP connect                                                               | 8-3      |
| 8-2  | Front Connector for 32-Channel Module                                             | 8-5      |
| 8-3  | Terminal Block with Spring-Loaded Connections                                     | 8-10     |
| 8-4  | Principle of Spring-Loaded Connections                                            | 8-11     |
| 8-5  | Threading the Round-Sheath Ribbon Cable into the Connector                        | 8-12     |
| 8-6  | Plugging the Connecting Cable into the Terminal Block                             | 8-14     |
| 8-7  | Wiring of a Digital Module with Terminal Block for 1-Conductor Initiators.        | 8-16     |
| 8-8  | Wiring a Digital Module with Terminal Block for 3-Conductor Initiators            | 8-18     |
| 8-9  | Wiring with Terminal Block for 2A Module                                          | 8-20     |
| 9-1  | Allocation of Terminals on Analog Module to Terminals on TPA                      | 9-3      |
| 9-2  | Connection Example                                                                | 9-5      |
| 9-3  | TPA Terminal Block with Shielding Plate                                           | 9-6      |
| A-1  | Data Record 1 for Parameters of the Digital Input Modules                         | A-4      |
| A-2  | Data Record 1 for Parameters of the Digital Output Modules                        | A-6      |
| A-3  | Data Record 1 for Parameters of the Analog Input Modules                          | A-8      |
| A-4  | Data Record 1 for Parameters of the Analog Output Module                          | A-12     |
| B-1  | Bytes 0 and 1 of the Diagnostics Data                                             | B-2      |
| B-2  | Bytes 2 and 3 of the Diagnostics Data                                             | B-3      |
| B-3  | Bytes 4 to 7 of the Diagnostics Data                                              | B-4      |
| B-4  | Diagnostics Byte for an Analog Input Channel of an SM 331 Analog                  | <b>.</b> |
|      | Input Module                                                                      | B-5      |
| B-5  | Diagnostics Byte for an Analog Output Channel of an SM 332 Analog                 | 20       |
| 20   | Output Module                                                                     | B-5      |
| B-6  | Diagnostics Byte for a Digital Input Channel of the Digital Input Module          | 20       |
| 20   | SM 321; DI 16 × 24 VDC                                                            | B-6      |
| B-7  | Diagnostics Byte for a Digital Output Channel                                     | B-6      |
| C-1  | Dimension Drawing of the 483 mm Standard Rail                                     | C-2      |
| C-2  | Dimension Drawing of the 530 mm Standard Rail                                     | C-3      |
| C-3  | Dimension Drawing of the 830 mm Standard Rail                                     | C-3      |
| C-4  | Dimension Drawing of the 2000 mm Standard Rail                                    | C-4      |
| C-5  | Dimension Drawing of the Rail with 160 mm Standard Width                          | C-4      |
| C-6  | Dimension Drawing of the Rail with 482.6 mm Standard Width                        | C-5      |
| C-7  | Dimension Drawing of the Rail with 530 mm Standard Width                          | C-5      |
| C-8  | Dimension Drawing of the Rail with 830 mm Standard Width                          | C-6      |
| C-9  | Dimension Drawing of the 2000 mm Rail                                             | C-6      |
| C-10 | Complete Dimension Drawing of a Rail for "Insert and Remove" Function             | 0 0      |
| 0 10 | with Active Bus Module, S7-300 Module and Explosion-proof Partition               | C-7      |
| C-11 | Dimension Drawing of the Active Bus Modules                                       | C-8      |
| C-12 | Power Supply Module PS 307; 2 A                                                   | C-9      |
| C-13 | Power Supply Module PS 307; 5 A                                                   | C-10     |
| C-14 | Power Supply Module PS 307; 10 A                                                  | C-11     |
| C-15 | Dimension Drawing of the Power Supply Module PS 307; 5 A with                     | 0        |
| 0 10 | CPUs 313/314/315/315-2 DP. Front View                                             | C-12     |
| C-16 | Dimension Drawing of the Power Supply Module PS 307; 5 A with                     | 0 12     |
| 0 10 | CPUs 313/314/315/315-2 DP. Side View                                              | C-13     |
| C-17 | Interface Module IM 360                                                           | C-14     |
| C-17 | Interface Module IM 360                                                           | C-15     |
| C-10 | Interface Module IM 365                                                           | C-16     |
| C-20 | Signal Module                                                                     | C-17     |
| C-21 | 2 Signal Modules with Shield Connecting Element                                   | C-18     |
|      | = e.goudioo mini omola oomiootilly Elolliolit i i i i i i i i i i i i i i i i i i | 0        |

|     | C-22<br>C-23<br>C-24<br>C-25<br>C-26 | SIMATIC TOP Connect, 3-Tier  SIMATIC TOP Connect, 2-Tier  SIMATIC TOP Connect, 1-Tier  RS 485 Repeater on Standard Rail  RS 485 Repeater on S7-300 Rail | C-19<br>C-19<br>C-20<br>C-20<br>C-21 |
|-----|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|     | E-1                                  | Electrostatic Voltages which can Build up on a Person                                                                                                   | E-3                                  |
| Tab | les                                  |                                                                                                                                                         |                                      |
|     | 1-1                                  | Rated Voltages of the S7-300                                                                                                                            | 1-11                                 |
|     | 1-2                                  | Modules for extended environmental conditions                                                                                                           | 1-13                                 |
|     | 2-1                                  | Reaction of the PS 307 Power Supply Module (2 A) to Atypical Operating Conditions                                                                       | 2-4                                  |
|     | 2-2                                  | Reaction of the PS 307 Power Supply Module (5 A) to Atypical Operating Conditions                                                                       | 2-9                                  |
|     | 2-3                                  | Reaction of the PS 307 Power Supply Module (10 A) to Atypical Operating Conditions                                                                      | 2-14                                 |
|     | 3-1                                  | Static and Dynamic Parameters of the SM 321; DI 16 $	imes$ 24 VDC with                                                                                  |                                      |
|     | 3-2                                  | Process and Diagnostics Interrupts                                                                                                                      | 3-12                                 |
|     |                                      | DI 16 $\times$ 24 VDC; with Process and Diagnostics Interrupts                                                                                          | 3-13                                 |
|     | 3-3                                  | Parameters of the SM 321; DI 16 $\times$ 24 VDC with Process and Diagnostics Interrupts                                                                 | 3-13                                 |
|     | 3-4                                  | Delay Times of the Input Signal of the SM 321; DI 16 $\times$ 24 VDC with Process and Diagnostics Interrupts                                            | 3-14                                 |
|     | 3-5                                  | Diagnostics Messages of the SM 321; DI 16 $\times$ 24 VDC with Process and Diagnostics Interrupts                                                       | 3-15                                 |
|     | 3-6                                  | Diagnostics Messages, Error Causes and Error Correction                                                                                                 | 3-16                                 |
|     | 3-7                                  | Dependence of the Input Values on the Operating State of the CPU and the Power Supply L+ of the SM 321; DI 16 $\times$ 24 VDC with Process              |                                      |
|     | 3-8                                  | and Diagnostics Interrupts                                                                                                                              | 3-18                                 |
|     | 3-9                                  | with Diagnostics Interrupt                                                                                                                              | 3-42                                 |
|     | 3-10                                 | Diagnostics Interrupt                                                                                                                                   | 3-43                                 |
|     |                                      | with Diagnostics Interrupt                                                                                                                              | 3-44                                 |
|     | 3-11                                 | Diagnostics Messages, Error Causes and Error Correction                                                                                                 | 3-45                                 |
|     | 3-12                                 | Dependence of the Input Values on the Operating State of the CPU and                                                                                    |                                      |
|     |                                      | the Power Supply L+ of the SM 322; DO 8 × 24 VDC/0.5 A with                                                                                             | 3-46                                 |
|     | 4-1                                  | Diagnostics Interrupt                                                                                                                                   | 3-46<br>4-2                          |
|     | 4-1<br>4-2                           | Bit Pattern of a 15-Bit and a 12-Bit Analog Value (Example)                                                                                             | 4-2                                  |
|     | 4-2<br>4-3                           | Possible Resolutions of the Analog Values                                                                                                               | 4-3<br>4-4                           |
|     | 4-4                                  | Representation of the Digitized Measured Value of an Analog Input                                                                                       |                                      |
|     | 4-5                                  | Module (Voltage Ranges)  Representation of the Digitized Measured Value of an Analog Input  Module (Voltage and Current Measuring Ranges)               | 4-5                                  |
|     | 4-6                                  | Module (Voltage and Current Measuring Ranges)                                                                                                           | 4-6                                  |
|     | 4-7                                  | Module (Voltage and Current Measuring Ranges)                                                                                                           | 4-7                                  |
|     |                                      | Module (Resistance-Type Sensors)                                                                                                                        | 4-8                                  |

| 4-8          | Representation of the Digitized Measured Value of an Analog Input     |              |
|--------------|-----------------------------------------------------------------------|--------------|
|              | Module (Standard Temperature Range, Pt 100)                           | 4-9          |
| 4-9          | Representation of the Digitized Measured Value of an Analog Input     |              |
|              | Module (Climate Temperature Range, Pt 100)                            | 4-10         |
| 4-10         | Representation of the Digitized Measured Value of an Analog Input     |              |
|              | Module (Standard Temperature Range, Ni 100)                           | 4-11         |
| 4-11         | Representation of the Digitized Measured Value of an Analog Input     |              |
|              | Module (Climate Temperature Range, Ni 100)                            | 4-12         |
| 4-12         | Representation of the Digitized Measured Value of an Analog Input     |              |
|              | Module (Temperature Range, Type K)                                    | 4-12         |
| 4-13         | Representation of the Digitized Measured Value of an Analog Input     |              |
|              | Module (Temperature Range, Type N)                                    | 4-13         |
| 4-14         | Representation of the Digitized Measured Value of an Analog Input     |              |
|              | Module (Temperature Range, Type J)                                    | 4-13         |
| 4-15         | Representation of the Digitized Measured Value of an Analog Input     |              |
|              | Module (Temperature Ranges, Type E)                                   | 4-14         |
| 4-16         | Representation of the Digitized Measured Value of an Analog Input     |              |
| 4 4-         | Module (Temperature Range, Type L)                                    | 4-15         |
| 4-17         | Representation of the Analog Output Range of the Analog Output        | 4.40         |
| 4.40         | Modules (Voltage Output Ranges)                                       | 4-16         |
| 4-18         | Representation of the Analog Output Range of the Analog Output        | 4 4 7        |
| 4.40         | Modules (Current Output Ranges)                                       | 4-17<br>4-49 |
| 4-19<br>4-20 | Parameters of the Analog Input Modules                                | 4-49         |
| 4-20<br>4-21 | Parameters of the Analog Output Modules                               | 4-50         |
| 4-21<br>4-22 | Diagnostics Messages of the Analog Input Modules,                     | 4-02         |
| 4-22         | Possible Error Causes, Remedies                                       | 4-52         |
| 4-23         | Diagnostics Message of the Analog Output Modules                      | 4-52         |
| 4-24         | Diagnostics Messages of the Analog Output Modules and their Possible  | 7 00         |
|              | Error Causes and Remedies                                             | 4-54         |
| 4-25         | Dependencies of the Analog Input/Output Values on the Operating State |              |
|              | of the CPU and the Supply Voltage L+                                  | 4-57         |
| 4-26         | Behavior of the Analog Modules Depending on the Position of the       | _            |
|              | Analog Input Value within the Value Range                             | 4-58         |
| 4-27         | Behavior of the Analog Modules Depending on the Position of the       |              |
|              | Analog Output Value within the Value Range                            | 4-58         |
| 4-28         | Assignment of the Channels of the Analog Input Module SM 331;         |              |
|              | Al 8 × 12 Bit to Channel Groups                                       | 4-64         |
| 4-29         | Default Settings of the Analog Input Module SM 331;                   |              |
|              | Al 8 $	imes$ 12 Bit Using Measuring Range Modules                     | 4-66         |
| 4-30         | Measuring Ranges for Voltage Measurement                              | 4-68         |
| 4-31         | Measuring Ranges for 2-Wire and 4-Wire Transducers                    | 4-68         |
| 4-32         | Measuring Ranges for Resistance Measurements                          | 4-69         |
| 4-33         | Measuring Ranges for Temperature Measurement                          | 4-69         |
| 4-34         | Assignment of Channels of the Analog Input Module SM 331;             |              |
|              | Al 8 × 16 Bit to Channel Groups                                       | 4-74         |
| 4-35         | Measuring Ranges for Current and Voltage                              | 4-77         |
| 4-36         | Minimum Potential Overflow/Underflow Threshold Limits                 | 4-78         |
| 4-37         | Default Settings of the Analog Input Module SM 331;                   | 4.00         |
| 4.00         | Al 2 × 12 Bit Using Measuring Range Module                            | 4-86         |
| 4-38         | Measuring Ranges for Voltage Measurement                              | 4-88         |
| 4-39         | Measuring Ranges for 2-Wire and 4-Wire Transducers                    | 4-88         |

| 4-40 | Measuring Ranges for Resistance Measurements                          | 4-89  |
|------|-----------------------------------------------------------------------|-------|
| 4-41 | Measuring Ranges for Temperature Measurement                          | 4-89  |
| 4-42 | Output Ranges of the Analog Output Module SM 332; AO 4 $	imes$ 12 Bit | 4-95  |
| 4-43 | Output Ranges of the Analog Output Module SM 332; AO 2 $	imes$ 12 Bit | 4-102 |
| 4-44 | Ranges for Current and Voltage Outputs                                | 4-108 |
| 4-45 | Analog Value Representation                                           | 4-121 |
| 4-46 | Representation of the Digitized Measured Value for Measuring Ranges   |       |
|      | 10 kW and 0 to 10 V                                                   | 4-122 |
| 4-47 | Representation of the Digitized Measured Value for the Climate        |       |
|      | Temperature Range, Pt 100                                             | 4-122 |
| 4-48 | Representation of the analog output range from 0 to 10 V              | 4-123 |
| 4-49 | Codes for Interference Suppression                                    | 4-125 |
| 4-50 | Codes for the Measuring Ranges of the Analog Inputs                   | 4-125 |
| 4-51 | Codes for the Output Ranges                                           | 4-126 |
| 5-1  | Meaning of the Switch Positions of the Dummy Module DM 370            | 5-6   |
| 7-1  | Maximum Cable Length of a Segment                                     | 7-2   |
| 7-2  | Maximum Cable Length between Two RS 485 Repeaters                     | 7-2   |
| 7-3  | Description and Functions of the RS 485 Repeater                      |       |
|      | (Order Number 6ES7 972-0AA00-0XA0)                                    | 7-3   |
| 7-4  | Technical Specifications of the RS 485 Repeater                       | 7-5   |
| 7-5  | Pin Assignment of the 9-Pin Sub D Connector (PG/OP Socket)            | 7-6   |
| 8-1  | Components of SIMATIC TOP connect                                     | 8-4   |
| 8-2  | Assignment of the Round-Sheath Ribbon Cable Terminals to the          |       |
|      | Address Bytes of the 32-Channel Modules                               | 8-5   |
| 8-3  | Selection for SIMATIC TOP Connect Components                          | 8-6   |
| 8-4  | Terminal Assignments of the Terminal Block for 3-Conductor Initiators | 8-7   |
| 8-5  | Terminal Assignments of the Terminal Block for 2A Modules             | 8-7   |
| 8-6  | Terminal Assignments of the Terminal Block for 1-Conductor Connection | 8-8   |
| 8-7  | Wiring the Front Connector                                            | 8-13  |
| 8-8  | Connection Notes for SIMATIC TOP Connect for 1-Conductor Initiators . | 8-15  |
| 8-9  | Connection Notes for SIMATIC TOP Connect for 3-Conductor Initiators . | 8-17  |
| 8-10 | Connection Notes for SIMATIC TOP Connect for 2A Modules               | 8-19  |
| 9-1  | Components for SIMATIC TOP connect TPA                                | 9-2   |
| 9-2  | Multiplier Terminals for TPA                                          | 9-4   |
| A-1  | Parameters of the Digital Input Modules                               | A-3   |
| A-2  | Parameters of the Digital Output Modules                              | A-5   |
| A-3  | Parameters of the Analog Input Modules                                | A-7   |
| A-4  | Codes for the Interference Frequency Suppression of the Analog        |       |
|      | Input Modules                                                         | A-9   |
| A-5  | Codes for the Measuring Ranges of the Analog Input Modules            | A-9   |
| A-6  | Parameters of the Analog Output Modules                               | A-11  |
| A-7  | Codes for the Output Ranges of the Analog Output Modules              | A-13  |
| B-1  | Codes of the Module Types                                             | B-2   |
| D-1  | Accessories and Spare Parts                                           | D-1   |

**General Technical Specifications** 

# 1

## What are General Technical Specifications?

The general technical specifications include standards and test specifications which the S7-300 meets and fulfills and which were used during testing of the S7-300.

#### **Contents**

This chapter includes the following sections relating to the general technical specifications:

| Section | Contents                                                                   | Page |
|---------|----------------------------------------------------------------------------|------|
| 1.1     | Standards and Approbations                                                 | 1-2  |
| 1.2     | Electromagnetic Compatibility of S7-300 Modules                            | 1-4  |
| 1.3     | Transport and Storage Conditions for S7-300 Modules and Backup Batteries   | 1-6  |
| 1.4     | Mechanical and Climatic Environmental Conditions for Operating S7-300s     | 1-7  |
| 1.5     | Information on Insulation Tests, Protection Class and Degree of Protection | 1-10 |
| 1.6     | Rated Voltages of the S7-300                                               | 1-11 |
| 1.7     | SIMATIC Outdoor Modules                                                    | 1-12 |

# 1.1 Standards and Approvals

#### Introduction

This section provides information on the modules and components of the S7-300 with reference to

- the most important standards whose criteria are met by the S7-300 and
- approbations for the S7-300.

#### **IEC 1131**

The S7-300 programmable controller meets the requirements and criteria of standard IEC 1131, Part 2.

## **CE Marking**

Our products meet the requirements and protection objectives of the following EC Directives and comply with the harmonized European standards (EN) issued in the Official Journal of the European Communities with regard to programmable controllers:

- 89/336/EEC "Electromagnetic Compatibility" (EMC Directive)
- 73/23/EEC "Electrical Equipment Designed for Use between Certain Voltage Limits" (Low-Voltage Directive)

The declarations of conformity are held at the disposal of the competent authorities at the address below:

Siemens Aktiengesellschaft Bereich Automatisierungstechnik A&D AS E 4 Postfach 1963 D-92209 Amberg Germany

#### **EMC Directive**

SIMATIC products have been designed for use in industrial environments.

| Area of Application | Requirements in respect of: |                   |
|---------------------|-----------------------------|-------------------|
|                     | Emitted interference        | Immunity          |
| Industry            | EN 50081-2 : 1993           | EN 50082-2 : 1995 |

If you operate an S7-300 in a residential area, you must ensure Limit Value Class B in accordance with EN 55011 to guard against radio interference emissions.

Measures to achieve interference suppression according to Limit Value Class B:

- · mounting the S7-300 in a grounded cabinet or case
- · use of filters in supply lines

## **UL Approval**

UL Recognition Mark Underwriters Laboratories (UL) to Standard UL 508, Report 116536

## **CSA Approval**

CSA Certification Mark Canadian Standard Association (CSA) to Standard C22.2 No. 142, Report LR 48323

#### **FM Approval**

Factory Mutual Approval Standard Class Number 3611, Class I, Division 2, Group A, B, C, D.



#### Warning

Personal injury or property damage can result.

In areas subject to danger of explosion, personal injury or property damage can result if you withdraw connectors while an S7-300 is in operation.

Always isolate the S7-300 in areas subject to danger of explosion before withdrawing connectors.

#### **UL, CSA, FM Approval for SIMATIC Outdoor Modules**

For the SIMATIC Outdoor Modules for use under extended environmental conditions the respective UL, CSA, and FM approvals have been applied for.

## 1.2 Electromagnetic Compatibility of S7-300 Modules

#### **Definition**

Electromagnetic compatibility is the ability of an item of electrical equipment to function satisfactorily in its electromagnetic environment without having an adverse effect on that environment.

The S7-300 modules satisfy the requirements of EMC legislation of the European national market.

You will find below some information on the noise immunity of S7-300 modules and their RI specifications.

## **Pulse-Shaped Interference**

The table below shows the electromagnetic compatibility of S7-300 modules with regard to pulse-shaped interference. A prerequisite is that the S7-300/M7-300/ET 200M conforms to the specifications and guidelines for the electrical configuration.

| Pulse-Shaped Interference                                                                                                                                                                     | Tested With                                        | Corr. to Severity<br>Class |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------|
| Electrostatic discharge to IEC 801-2                                                                                                                                                          | 8 kV                                               | 3 (discharge in air)       |
| (DIN VDE 0843 Part 2)                                                                                                                                                                         | 4 kV                                               | 2 (contact discharge)      |
| Bursts (fast transient bursts) to                                                                                                                                                             | 2 kV (supply cable)                                | 3                          |
| IEC 801-4 (VDE 0843, Part 4)                                                                                                                                                                  | 2 kV (signal cable)                                |                            |
| Surges to IEC 801-5 (DIN VDE 0839, Part 10) External protection circuit required (see manual <i>S7-300 Programmable Controller, Hardware and Installation</i> , Chap. "Lightning Protection") |                                                    |                            |
| Asymmetrical coupling                                                                                                                                                                         | 2 kV (supply cable)<br>2 kV (signal/data cable)    | 3                          |
| Symmetrical coupling                                                                                                                                                                          | 1 kV (supply cable)<br>1 kV (signal/data<br>cable) |                            |

## Sinusoidal Interference

High-frequency radiation to the device in accordance with ENV 50140 (corresponds to IEC 801-3):

- · Electromagnetic high-frequency field, amplitude modulated
  - from 80 to 1000 MHz
  - 10 V/m
  - 80 % AM (1 kHz)
- Electromagnetic high-frequency field, pulse modulated
  - $-900 \pm 5 \text{ MHz}$
  - 10 V/m
  - 50 % ED
  - 200 Hz repetition frequency
- High-frequency interference on signal and data lines, etc. in accordance with ENV 50141 (corresponds to IEC 801-6), high-frequency, asymmetrical, amplitude modulated
  - from 0.15 to 80 MHz
  - 10 V effective value, unmodulated
  - 80 % AM (1 kHz)
  - 150  $\Omega$  source impedance

#### **Emission of Radio Interference**

Interference emission of electromagnetic fields in accordance with EN 55011: Limit value class A, Group 1.

| From 20 to 230 MHz                        | < 30 dB (μV/m)Q                            |
|-------------------------------------------|--------------------------------------------|
| From 230 to 1000 MHz                      | $< 37 \text{ dB } (\mu\text{V/m})\text{Q}$ |
| Measured at a distance of 30 m (98.4 ft.) |                                            |

Interference emission via the mains AC power supply in accordance with EN 55011: Limit value class A, Group 1.

| From 0.15 to 0.5 MHz | < 79 dB (μV)Q |
|----------------------|---------------|
|                      | < 66 dB (μV)M |
| From 0.5 to 5 MHz    | < 73 dB (μV)Q |
|                      | < 60 dB (μV)M |
| From 5 to 30 MHz     | < 73 dB (μV)Q |
|                      | < 60 dB (μV)M |

# 1.3 Transport and Storage Conditions for S7-300 Modules and Backup Batteries

#### S7-300 Modules

As regards transport and storage conditions, S7-300 modules more than meet the requirements of IEC 1131, Part 2. The following data applies to S7-300 modules transported or stored in their original packing.

| Condition            | Permissible Range                                                  |  |
|----------------------|--------------------------------------------------------------------|--|
| Free fall            | ≤ 1m (3.28 ft)                                                     |  |
| Temperature          | - 40°C to + 70°C (- 40°F to + 158°F)                               |  |
| Atmospheric pressure | 1080 to 660 hPa (corresponding to an altitude of – 1000 to 3500 m) |  |
| Relative humidity    | 5 to 95 %, no condensation                                         |  |

## **Transporting Backup Batteries**

Wherever possible, transport backup batteries in their original packing. Special approval does not have to be obtained for transporting backup batteries for S7-300 systems. A backup battery contains about 0.25 g of lithium.

Note: According to the transport regulations for air freight, backup batteries are materials of danger class 9.

## **Storing Backup Batteries**

Store backup batteries in a dry and cool place.

Backup batteries can be stored for five years.



#### Warning

If backup batteries are not treated properly, they can ignite, explode and cause severe burning.

Store backup batteries in a dry and cool place.

# 1.4 Mechanical and Climatic Environmental Conditions for Operating S7-300s

## **Operating Conditions**

S7-300 systems are intended for stationary use in locations protected against the weather. The operating conditions exceed the requirements of IEC 1131-2.

The S7-300 fulfills the operating conditions of class 3C3 according to DIN EN 60721 3-3 (installation locations with high traffic density and in immediate proximity to industrial plants with chemical emissions).

#### Where Not to Use S7-300 Systems

Unless the appropriate extra measures are taken, S7-300 systems **must not** be used

- in locations exposed to a high degree of ionizing radiation
- · in hostile environments caused, for instance, by
  - dust accumulation
  - corrosive vapors or gases.
- in installations requiring special monitoring, for example
  - elevators
  - electrical installations in particularly hazardous locations.

One of the extra measures you can take to widen the application of S7-300 systems, for instance, is to install them in cabinets.

## **Climatic Conditions**

You can use S7-300s under the following climatic conditions:

| Climatic Conditions                                              | Range                                                                                                                                                        | Remarks                                                                                 |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Temperature:<br>Horizontal arrangement:<br>Vertical arrangement: | 0 to 60°C (32 to 140°F)<br>0 to 40°C (32 to 104°F)                                                                                                           | _                                                                                       |
| Relative atmospheric humidity                                    | 5 to 95 %                                                                                                                                                    | No condensation;<br>corresponds to a rel.<br>humidity stress level of 2 to<br>IEC 131-2 |
| Atmospheric pressure                                             | 1080 to 795 hPa                                                                                                                                              | Corresponding to an altitude of – 1000 to2000 m                                         |
| Concentration of                                                 |                                                                                                                                                              | Test:                                                                                   |
| contaminants                                                     | SO <sub>2</sub> : < 0.5 ppm;<br>relative humidity < 60 %, no<br>condensation<br>H <sub>2</sub> S: < 0.1 ppm;<br>relative humidity < 60 %, no<br>condensation | 10 ppm; 4 days 1 ppm; 4 days                                                            |

# **Ambient Mechanical Conditions**

The ambient mechanical conditions for S7-300 modules are listed in the following table in the form of sinusoidal oscillations.

| Frequency Range (Hz) | Continuous                  | Occasional                |
|----------------------|-----------------------------|---------------------------|
| 10 ≤ f ≤ 58          | 0.0375 mm amplitude         | 0.075 mm amplitude        |
| 58 ≤ f ≤ 150         | 0.5 g constant acceleration | 1 g constant acceleration |

# **Reducing Vibrations**

If your S7-300 modules are exposed to severe shock and/or vibrations, you must take the appropriate measures to reduce the acceleration and/or amplitude, respectively.

We recommend that you install the rail on vibration-damping material (for example rubber-metal antivibration mountings).

## **Ambient Mechanical Conditions Test**

The following table contains important information on the type and scope of tests for ambient mechanical conditions.

| Test       | Test Standard                       | Remarks                                                                                      |
|------------|-------------------------------------|----------------------------------------------------------------------------------------------|
| Vibrations | Vibration test to IEC 68, Parts 2-6 | Type of oscillation: Frequency sweeps with a rate of change of 1 octave/minute.              |
|            | (sinusoidal)                        | 10 Hz $\leq$ F $\leq$ 58 Hz, constant amplitude 0.075 mm                                     |
|            |                                     | 58 Hz $\leq$ F $\leq$ 150 Hz, constant acceleration 1 g                                      |
|            |                                     | Duration of oscillation: 10 frequency sweeps per axis in each of 3 axes normal to each other |
| Shock      | Shock test to IEC 68,               | Type of shock: Semisinusoidal                                                                |
|            | Parts 2-27                          | Severity of shock: 15 g peak value, 11 ms duration                                           |
|            |                                     | Direction: 3 shocks each in +/- direction in each of the 3 axes normal to each other         |

# 1.5 Information on Insulation Tests, Protection Class and Degree of Protection

## **Test Voltages**

The dieletric strength of the insulation was proven with the following test voltages to IEC 1131 Part 2.

| Circuits With Rated Voltage U <sub>e</sub> to Other Circuits or to Ground | Test Voltage                  |
|---------------------------------------------------------------------------|-------------------------------|
| $0 \text{ V} < \text{U}_{\text{e}} \le 50 \text{ V}$                      | 500 VDC                       |
| 100 V < U <sub>e</sub> ≤ 300 V                                            | (2 U <sub>N</sub> + 1000) VAC |

## **Example**

According to the above table, the test voltage for 230 VAC is 1460 VAC.

#### **Protection Class**

Protection class 1 to IEC 536 (VDE 0106, Part 1), that is, the protective grounding conductor must be connected to the rail!

## **Protection Against Ingress of Foreign Bodies and Water**

Degree of protection IP 20 to IEC 529, that is, protection against contact with standard probes.

Also: Protected against the ingress of foreign bodies with diameters of more than 12.5 mm.

No special protection against water.

# 1.6 Rated Voltages of the S7-300

# **Rated Operating Voltages**

The S7-300 and its various modules operate at different rated voltages. Table 1-1 lists these rated voltages and the relevant tolerances for the S7-300.

Table 1-1 Rated Voltages of the S7-300

| Rated Voltage | Tolerance Range  |
|---------------|------------------|
| 24 VDC        | 20.4 to 28.8 VDC |
| 120 VAC       | 93 to 132 VAC    |
| 230 VAC       | 187 to 264 VAC   |

## 1.7 SIMATIC Outdoor Modules

SIMATIC outdoor modules are modules that can be used under extended environmental conditions. Extended environmental conditions means:

- operation possible at temperatures from 25 °C to + 60 °C
- · occasional, brief condensation permitted
- · increased mechanical stress permissible

## Comparison with "standard" modules

The functional scope and technical specifications for the SIMATIC outdoor modules correspond to those of the "standard" modules.

The climatic and mechanical environmental conditions as well as the methods used to test them have changed.

The SIMATIC outdoor modules have their own Order Numbers (see Table 1–1)

## **Configuring in STEP 7**

Do you have a STEP 7 version in which the SIMATIC outdoor modules are not in the hardware catalog?

Simply configure your system with the corresponding "standard" modules (see Table 1-2).

## **Modules**

Table 1-2 lists all modules which satisfy the extended environmental conditions.

The Order No. of the corresponding "standard" module has additionally been included in the Table as a configuring aid. Refer to these "standard" modules for a detailed description and technical specifications.

Table 1-2 Modules for extended environmental conditions

| Module                                   | SIMATIC outdoor<br>module for use under<br>extended environmental<br>conditions | "Standard" modules  |
|------------------------------------------|---------------------------------------------------------------------------------|---------------------|
|                                          | as of or                                                                        | rder no.            |
| IM 153-1                                 | 6ES7 153-1AA <b>82</b> -0XB0                                                    | 6ES7 153-1AA02-0XB0 |
| IM 153-2 FO                              | 6ES7 153-2AB <b>80</b> -0XB0                                                    | 6ES7 153-2AB00-0XB0 |
| CPU 315-2 DP                             | 6ES7 315-2AF <b>82</b> -0AB0                                                    | 6ES7 315-2AF02-0AB0 |
| CPU 312                                  | 6ES7 312-5AC <b>81</b> -0AB0                                                    | 6ES7 312-5AC01-0AB0 |
| CPU 314                                  | 6ES7 314-1AE <b>83</b> -0AB0                                                    | 6ES7 314-1AE03-0AB0 |
| CPU 314 IFM                              | 6ES7 314-5AE <b>83</b> -0AB0                                                    | 6ES7 314-5AE03-0AB0 |
| IM 365                                   | 6ES7 365-0BA <b>81</b> -0AA0                                                    | 6ES7 365-0BA01-0AA0 |
| SM 321 digital input module;             |                                                                                 |                     |
| SM 321; DI 16 × 24 VDC                   | 6ES7 321-1BH <b>81</b> -0AA0                                                    | 6ES7 321-1BH01-0AA0 |
| SM 321; DI 32 × 24 VDC                   | 6ES7 321-1BL <b>80</b> -0AA0                                                    | 6ES7 321-1BL00-0AA0 |
| SM 321; DI 16 × 24 VDC                   | 6ES7 321-7BH <b>80</b> -0AA0                                                    | 6ES7 321-7BH00-0AB0 |
| SM 321; DI 8 × 120/230 VAC               | 6ES7 321-1FF <b>81</b> -0AA0                                                    | 6ES7 321-1FF01-0AB0 |
| SM 322 digital output module;            |                                                                                 |                     |
| SM 322; DO 16 × 24 VDC/0.5 A             | 6ES7 322-1BH <b>81</b> -0AA0                                                    | 6ES7 322-1BH01-0AA0 |
| SM 322; DO 8 × Rel. 230 VAC/5 A          | 6ES7 322-1HF <b>80</b> -0AA0                                                    | 6ES7 322-1HF10-0AA0 |
| SM 322; DO 32 × 24 VDC/0,5 A             | 6ES7 322-1BL <b>80</b> -0AA0                                                    | 6ES7 322-1BL00-0AA0 |
| SM 322; DO 8 × 120/230 VAC/2 A           | 6ES7 322-1FF <b>81</b> -0AA0                                                    | 6ES7 322-1FF01-0AA0 |
| SM 323 digital I/O module;               |                                                                                 |                     |
| DI8/DO8 × 24 VDC/0.5 A                   | 6ES7 323-1BH <b>80</b> -0AA0                                                    | 6ES7 323-1BH00-0AA0 |
| SM 331 analog input module; AI 2×12 Bit  | 6ES7 331-1KB <b>81</b> -0AB0                                                    | 6ES7 331-1KB01-0AB0 |
| SM 332 analog output module; AO 2×12 Bit | 6ES7 332-5HB <b>81</b> -0AB0                                                    | 6ES7 332-5HB01-0AB0 |
| SM 334 analog I/O module;                |                                                                                 |                     |
| AI4/AO 2×12 Bit                          | 6ES7 334-0KE <b>80</b> -0AB0                                                    | 6ES7 334-0KE00-0AB0 |
| FEPROM 64 KByte memory card              | 6ES7 951-0KF <b>80</b> -0AA0                                                    | 6ES7 951-0KF00-0AA0 |
| FEPROM 32 kByte memory card              | 6ES7 951-0KE <b>80</b> -0AA0                                                    | 6ES7 951-0KE00-0AA0 |
| FEPROM 16 kByte memory card              | 6ES7 951-0KD <b>80</b> -0AA0                                                    | 6ES7 951-0KD00-0AA0 |
| Bus connector                            | 6ES7 972-0BAx0-0XA0                                                             |                     |
|                                          | 6ES7 972-0BBx0-0XA0                                                             |                     |

## **Climatic environmental conditions**

The SIMATIC outdoor modules for extended environmental conditions may be used under the following climatic conditions:

Installation category: According to IEC 721 3-3, Class 3K5.

| Environmental conditions                                         | Range of application                                                                               | Remarks                                                                                           |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Temperature:<br>Horizontal installation<br>Vertical installation | −25 °C to 60 °C<br>−25 °C to 40 °C                                                                 | _                                                                                                 |
| Relative humidity                                                | From 5 to 95 %                                                                                     | Occasional, brief condensation,<br>corresponds to relative humidity (RH)<br>class 2 to IEC 1131-2 |
| Atmospheric pressure                                             | 1080 to 795 hPa                                                                                    | Corresponds to a height of<br>-1000 to 2000 m                                                     |
| Pollutant concentration<br>(to IEC 721 3-3;<br>class 3C3)        | $SO_2$ : < 0.5 ppm;<br>Relative humidity < 60 %<br>$H_2S$ : < 0.1 ppm;<br>Relative humidity < 60 % | Test:<br>10 ppm; 4 days<br>1 ppm; 4 days                                                          |

#### **Mechanical environmental conditions**

Installation category: to IEC 721 3-3, class 3M4.

## **Testing of mechanical conditions**

The table below provides information on the type and scope of the mechanical condition tests for SIMATIC outdoor modules.

| Test for  | Test standard                                  | Remarks                                                                                                                                                                                                                                                                        |
|-----------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vibration | Vibration test to IEC 68 Part 2-6 (sinusoidal) | Mode of vibration: Frequency sweeps with a sweep rate of 1 octave/minute.   2 Hz $\leq$ f $\leq$ 9 Hz, const. amplitude 3.5 mm   10 Hz $\leq$ f $\leq$ 150 Hz, const. acceleration 1 g   Period of vibration: 10 frequency sweeps per axis in each of the 3 perpendicular axes |
| Shock     | Shock test to IEC 68 Part 2-27                 | Type of shock: Semi–sinusoidal Schock intensity: 15 g peak value, 11 ms duration Shock direction: 3 shocks, each in +/– direction in each of the perpendicular axes                                                                                                            |

Power Supply Modules

#### Introduction

Various power supply modules are available to supply your S7-300 programmable controller and the sensors/actuactors with 24 VDC.

## **Power Supply Modules**

This chapter describes the technical specifications of the power supply modules of the S7-300 programmable controller.

In addition to the technical specifications, this chapter describes the following:

- Characteristics
- · Wiring schematic
- · Basic circuit diagram
- · Line protection
- · Reaction to atypical operating conditions

#### **Contents**

This chapter describes the following power supply modules:

| Section | Contents                         | Page |
|---------|----------------------------------|------|
| 2.1     | Power supply module PS 307; 2 A  | 2-2  |
| 2.2     | Power supply module PS 307; 5 A  | 2-6  |
| 2.3     | Power supply module PS 307; 10 A | 2-11 |

# 2.1 The PS 307 Power Supply Module (2 A)

#### **Order Number**

6ES7 307-1BA00-0AA0

#### **Characteristics**

The PS 307 power supply module (2 A) has the following salient features:

- · Output current 2 A
- Output voltage 24 VDC; proof against short-circuit and open circuit
- Connection to single-phase AC system (input voltage 120/230 VAC, 50/60 Hz)
- Reliable isolation to EN 60 950
- Can be used as load power supply

# **Wiring Schematic**

Figure 2-1 shows the wiring schematic of the PS 307 power supply module (2 A). You will find a detailed technical description of the module on the following pages.



Figure 2-1 Wiring Schematic of the PS 307 Power Supply Module (2 A)

## **Basic Circuit Diagram**

Figure 2-2 shows the basic circuit diagram of the PS 307 power supply module (2 A).



Figure 2-2 Basic Circuit Diagram of the PS 307 Power Supply Module (2 A)

#### **Line Protection**

We recommend that you install a miniature circuit-breaker (MCB) (for example Siemens 5SN1 series) with the following rating to protect the incoming supply cable of the PS 307 power supply module (2 A):

- · Rated current at 230 VAC: 6 A
- Tripping characteristic (type): B or C

## **Reaction to Atypical Operating Conditions**

Table 2-1 gives information on the reaction of the power supply module to atypical operating conditions.

Table 2-1 Reaction of the PS 307 Power Supply Module (2 A) to Atypical Operating Conditions

| If                                                       | Then                                                                                   | 24 VDC<br>LED |
|----------------------------------------------------------|----------------------------------------------------------------------------------------|---------------|
| the output circuit is overloaded:  • I > 2.6 A (dynamic) | Voltage dip, autom. volt. recovery                                                     | Flashes       |
| • 2 A < I ≤ 2.6 A (steady state)                         | Voltage drop, shortening of service life                                               |               |
| the output is short-circuited                            | Output voltage 0 V; automatic voltage recovery after short circuit has been eliminated | Dark          |

Table 2-1 Reaction of the PS 307 Power Supply Module (2 A) to Atypical Operating Conditions

| If                                           | Then                                                | 24 VDC<br>LED |
|----------------------------------------------|-----------------------------------------------------|---------------|
| an overvoltage occurs on the primary side    | Possible destruction                                | -             |
| there is an undervoltage on the primary side | Automatic disconnection; automatic voltage recovery | Dark          |

# **Technical Specifications**

The technical specifications of the PS 307 power supply module (2 A) are listed below.

| Dimensions and Weight                |                                                |  |  |
|--------------------------------------|------------------------------------------------|--|--|
| Dimensions                           | 50 × 125 × 120 mm                              |  |  |
| $W \times H \times D$                | $(1.95 \times 4.88 \times 4.68 \text{ in.})$   |  |  |
| Weight                               | approx. 420 g                                  |  |  |
|                                      | (14.7 oz.)                                     |  |  |
| Input Rating                         |                                                |  |  |
| Input voltage                        |                                                |  |  |
| Rated value                          | 120 / 230 VAC                                  |  |  |
| System frequency                     |                                                |  |  |
| Rated value                          | 50 Hz or 60 Hz                                 |  |  |
| Permiss. range                       | 47 Hz to 63 Hz                                 |  |  |
| Rated input current                  |                                                |  |  |
| • at 230 V                           | 0.5 A                                          |  |  |
| • at 120 V                           | 0.8 A                                          |  |  |
| Inrush current (at 25°C/77°F)        | 20 A                                           |  |  |
| I <sup>2</sup> t (at inrush current) | $2.2 A^2 s$                                    |  |  |
| Output Rating                        |                                                |  |  |
| Output voltage                       |                                                |  |  |
| Rated value                          | 24 VDC                                         |  |  |
| Permiss. range                       | 24 V $\pm$ 5 %, proof against open-circuit     |  |  |
| Ramp-up time                         | max. 2.5 s                                     |  |  |
| Output current                       |                                                |  |  |
| Rated value                          | 2 A,                                           |  |  |
|                                      | cannot be connected in parallel configurations |  |  |

| Output Rating, continued                                    |                                        |  |  |
|-------------------------------------------------------------|----------------------------------------|--|--|
| Short-circuit protection                                    | Electronic,                            |  |  |
|                                                             | nonlatching,                           |  |  |
|                                                             | 1.1 to 1.3 $\times$ I <sub>N</sub>     |  |  |
| Residual ripple                                             | max. 150 mVss                          |  |  |
| Other Parameters                                            |                                        |  |  |
| Protection class to IEC 536 (DIN VDE 0106, Part 1)          | I, with protective grounding conductor |  |  |
| Insulation                                                  |                                        |  |  |
| <ul> <li>Rated insulation level<br/>(24 V to L1)</li> </ul> | 250 VAC                                |  |  |
| <ul> <li>Tested with</li> </ul>                             | 2800 VDC                               |  |  |
| Reliable isolation                                          | to DIN VDE 0106,<br>Part 101           |  |  |
| Bridging of power failures                                  |                                        |  |  |
| (at 93 and/or 187 V)                                        | min. 20 ms                             |  |  |
| <ul> <li>Repeat rate</li> </ul>                             | min 1 s                                |  |  |
| Efficiency                                                  | 83 %                                   |  |  |
| Power input                                                 | 58 W                                   |  |  |
| Power losses                                                | typ. 10 W                              |  |  |
| Diagnostics                                                 |                                        |  |  |
| LED for output voltage available                            | Yes, green LED                         |  |  |
|                                                             |                                        |  |  |

# 2.2 The PS 307 Power Supply Module (5 A)

#### **Order Number**

6ES7 307-1EA00-0AA0

## Eigenschaften

The PS 307 power supply module (5 A) has the following salient features:

- Output current 5 A
- Output voltage 24 VDC; proof against short-circuit and open circuit
- Connection to single-phase AC system (input voltage 120/230 VAC, 50/60 Hz)
- Safe electrical isolation to EN 60 950
- · Can be used as load power supply

# **Wiring Schematic**

Figure 2-3 shows the wiring schematic of the PS 307 power supply module (5 A). You will find a detailed technical description of the module on the following pages.



Figure 2-3 Wiring Schematic of the PS 307 Power Supply Module (5 A)

# **Basic Circuit Diagram**

Figure 2-4 is the basic circuit diagram of the PS 307 power supply module (5 A).



Figure 2-4 Basic Circuit Diagram of the PS 307 Power Supply Module (5 A)

#### **Line Protection**

We recommend that you install a miniature circuit-breaker (MCB) (for example Siemens 5SN1 series) with the following rating to protect the incoming supply cable of the PS 307 power supply module (5 A):

- Rated current at 230 VAC: 10 A
- Tripping characteristic (type): B or C

# **Reaction to Atypical Operating Conditions**

Table 2-2 gives information on the reaction of the power supply module to atypical operating conditions.

Table 2-2 Reaction of the PS 307 Power Supply Module (5 A) to Atypical Operating Conditions

| If                                                       | Then                                                                                   | 24 VDC<br>LED |
|----------------------------------------------------------|----------------------------------------------------------------------------------------|---------------|
| the output circuit is overloaded:  • I > 6.5 A (dynamic) | Voltage dip, automatic voltage recovery                                                | Flashes       |
| 5 A < I ≤ 6.5 A (steady state)                           | Voltage drop, shortening of service life                                               |               |
| the output is short-circuited                            | Output voltage 0 V; automatic voltage recovery after short circuit has been eliminated | Dark          |
| an overvoltage occurs on the primary side                | Possible destruction                                                                   | _             |
| there is an undervoltage on the primary side             | Automatic disconnection; automatic voltage recovery                                    | Dark          |

# **Technical Specifications**

The technical specifications of the PS 307 power supply module (5 A) are listed below.

| Dimensions and Weight                |                                                               |
|--------------------------------------|---------------------------------------------------------------|
| Dimensions (W $\times$ H $\times$ D) | $80 \times 125 \times 120 \text{ mm}$ (3.12 × 4.88 × 4.68 in) |
| Weight                               | approx. 740 g<br>(25.9 oz.)                                   |
| Input Rating                         |                                                               |
| Input voltage                        |                                                               |
| Rated value                          | 120 V / 230 VAC                                               |
| System frequency                     |                                                               |
| Rated value                          | 50 Hz or 60 Hz                                                |
| Permiss. range                       | 47 Hz to 63 Hz                                                |
| Rated input current                  |                                                               |
| • at 230 V                           | 1 A                                                           |
| • at 120 V                           | 2 A                                                           |
| Inrush current (at 25°C/77°F)        | 45 A                                                          |
| I <sup>2</sup> t (at inrush current) | 4.32 A <sup>2</sup> s                                         |
| Output Rating                        |                                                               |
| Output voltage                       |                                                               |
| Rated value                          | 24 VDC                                                        |
| Permiss. range                       | 24 V $\pm$ 5 %, proof against open-circuit                    |
| Ramp-up time                         | max. 2.5 s                                                    |
| Output current                       |                                                               |
| Rated value                          | 5A                                                            |
|                                      | cannot be connected in parallel configurations                |
| Short-circuit protection             | Electronic, nonlatching,                                      |
|                                      | 1.1 to 1.3 $\times$ I <sub>N</sub>                            |
| Residual ripple                      | max. 150 mV <sub>pp</sub>                                     |

| Other Parameters                                                          |                                        |
|---------------------------------------------------------------------------|----------------------------------------|
| Protection class to IEC 536<br>(DIN VDE 0106, Part 1)                     | I, with protective grounding conductor |
| Insulation                                                                |                                        |
| <ul><li>Rated insulation level (24 V to L1)</li><li>Tested with</li></ul> | 250 VAC<br>2800 VDC                    |
| Reliable isolation                                                        | to DIN VDE 0106, Part<br>101           |
| Bridging of power failures                                                |                                        |
| (at 93 and/or 187 V)                                                      | min. 20 ms                             |
| Repeat rate                                                               | min 1 s                                |
| Efficiency                                                                | 87 %                                   |
| Power input                                                               | 138 W                                  |
| Power losses                                                              | typ. 18 W                              |
| Diagnostics                                                               |                                        |
| LED for output voltage available                                          | Yes, green LED                         |

# 2.3 The PS 307 Power Supply Module (10 A)

#### **Order Number**

6ES7 307-1KA00-0AA0

#### **Characteristics**

The PS 307 power supply module (10 A) has the following salient features:

- · Output current 10 A
- Output voltage 24 VDC; proof against short-circuit and open circuit
- Connection to single-phase AC system (input voltage 120/230 VAC, 50/60 Hz)
- Reliable isolation to EN 60 950
- Can be used as load power supply

# **Wiring Schematic**

Figure 2-5 shows the wiring schematic of the PS 307 power supply module (10 A). You will find a detailed technical description of the module on the following pages.



Figure 2-5 Wiring Schematic of the PS 307 Power Supply Module (10 A)

# **Basic Circuit Diagram**

Figure 2-6 shows the basic circuit diagram of the PS 307 power supply module (10 A).



Figure 2-6 Basic Circuit Diagram of the PS 307 Power Supply Module (10 A)

#### **Line Protection**

We recommend that you install a miniature circuit-breaker (MCB) (for example, Siemens 5SN1 series) with the following rating to protect the incoming supply cable of the PS 307 power supply module (10 A):

- Rated current at 230 VAC: 16 A
- Tripping characteristic (type): B or C

# **Reaction to Atypical Operating Conditions**

Table 2-3 gives information on the reaction of the power supply module to atypical operating conditions.

Table 2-3 Reaction of the PS 307 Power Supply Module (10 A) to Atypical Operating Conditions

| If                                                                                                                               | Then                                                                                   | 24 VDC<br>LED |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------|
| <ul> <li> the output circuit is overloaded:</li> <li>I &gt; 13 A (dynamic)</li> <li>10 A &lt; I ≤ 13 A (steady state)</li> </ul> | Voltage dip, automatic voltage recovery Voltage drop, shortening of service life       | Flashes       |
| the output is short-circuited                                                                                                    | Output voltage 0 V; automatic voltage recovery after short circuit has been eliminated | Dark          |
| an overvoltage occurs on the primary side                                                                                        | Possible destruction                                                                   | _             |
| there is an undervoltage on the primary side                                                                                     | Automatic disconnection; automatic voltage recovery                                    | Dark          |

# **Technical Specifications**

The technical specifications of the PS 307 power supply module (10 A) are listed below.

| Dimensions and Weight                |                                                             |
|--------------------------------------|-------------------------------------------------------------|
| Dimensions (W × H × D)               | 200 × 125 × 120 mm<br>(7.8 × 4.88 × 4.68 in.)               |
| Weight                               | 1.2 kg (2.64 lb.)                                           |
| Input Rating                         |                                                             |
| Input voltage                        |                                                             |
| Rated value                          | 120 V/230 VAC                                               |
| System frequency                     |                                                             |
| Rated value                          | 50 Hz or 60 Hz                                              |
| <ul> <li>Permiss. range</li> </ul>   | 47 Hz to 63 Hz                                              |
| Rated input current                  |                                                             |
| • at 230 V                           | 1.7 A                                                       |
| • at 120 V                           | 3.5 A                                                       |
| Inrush current (at 25°C/77°F)        | 55 A                                                        |
| I <sup>2</sup> t (at inrush current) | 9 A <sup>2</sup> s                                          |
| Output Rating                        |                                                             |
| Output voltage                       |                                                             |
| Rated value                          | 24 VDC                                                      |
| Permiss. range                       | $24 \text{ V} \pm 5 \text{ \%, proof}$ against open circuit |
| Ramp-up time                         | max. 2.5 s                                                  |
| Output current                       |                                                             |
| Rated value                          | 10 A,                                                       |
|                                      | cannot be connected in parallel configurations              |
| Short-circuit protection             | Electronic, nonlatching                                     |
|                                      | 1.1 to 1.3 × I <sub>N</sub>                                 |
| Residual ripple                      | max. 150 mVss                                               |

| Other Parameters                                            |                                        |
|-------------------------------------------------------------|----------------------------------------|
| Protection class to IEC 536<br>(DIN VDE 0106, Part 1)       | I, with protective grounding conductor |
| Insulation                                                  |                                        |
| <ul> <li>Rated insulation level<br/>(24 V to L1)</li> </ul> | 250 VAC                                |
| Tested with                                                 | 2800 VDC                               |
| Reliable isolation                                          | to DIN VDE 0106, Part<br>101           |
| Bridging of power failures                                  |                                        |
| (at 93 and/or 187 V)                                        | min. 20 ms                             |
| Repeat rate                                                 | min 1 s                                |
| Efficiency                                                  | 89 %                                   |
| Power input                                                 | 270 W                                  |
| Power losses                                                | typ. 30 W                              |
| Diagnostics                                                 |                                        |
| LED for output voltage available                            | Yes, green LED                         |

Digital Modules 3

#### Introduction

A range of digital modules are available for the S7-300 programmable controller to connect sensors/transducers and/or loads/actuators.

# **Digital Modules**

This chapter contains the technical specifications of the digital modules of the S7-300.

Apart from the technical specifications, this chapter also describes:

- The characteristics
- · The special features
- The module view and the block diagram of the digital modules

#### **Contents**

This chapter contains the technical specifications for the following groups of digital modules:

| Section | Contents                     | Page |
|---------|------------------------------|------|
| 3.1     | Digital Input Modules        | 3-2  |
| 3.2     | Digital Output Modules       | 3-31 |
| 3.3     | Relay Output Modules         | 3-59 |
| 3.4     | Digital Input/Output Modules | 3-70 |

# 3.1 Digital Input Modules

## **List of Digital Input Modules**

This chapter describes the following digital input modules:

- SM 321; DI 32  $\times$  24 VDC
- SM 321; DI 16  $\times$  24 VDC
- SM 321; DI 16 imes 24 VDC; with process and diagnostics interrupts
- SM 321; DI 16 × 120 VAC
- SM 321; DI 8 × 120/230 VAC
- SM 321; DI 16 × 24 VDC; source input
- SM 321; DI 32 imes 120 VAC

# 3.1.1 Digital Input Module SM 321; DI 32 $\times$ 24 VDC

## **Order Number**

6ES7 321-1BL00-0AA0

#### **Characteristics**

The digital input module SM 321; DI  $32 \times 24$  VDC has the following salient features:

- 32 input points, isolated in groups of 32
- 24 VDC rated input voltage
- Suitable for switches and 2/3/4-wire BEROs (proximity switches).

# **Terminal Connection Diagram and Block Diagram**

Figure 3-1 shows the terminal connection diagram and block diagram of the digital input module SM 321; DI  $32 \times 24$  VDC.

You will find the detailed technical specifications of the SM 321; DI 32  $\times$  24 VDC on the following page.



Figure 3-1 Module View and Block Diagram of the Digital Input Module SM 321; DI 32×24VDC

# **Terminal Assignment**

The following figure shows the assignment of the channels to the addresses.



| Dimensions and Weight                                                               |                                                                              |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Dimensions W × H × D                                                                | $40 \times 125 \times 120 \text{ mm}$ (1.56 $\times$ 4.88 $\times$ 4.68 in.) |
| Weight                                                                              | approx. 260 g                                                                |
| Module-Specific Data                                                                |                                                                              |
| Number of input points                                                              | 32                                                                           |
| Length of cable                                                                     |                                                                              |
| <ul> <li>Unshielded</li> </ul>                                                      | max. 600 m (654 yd.)                                                         |
| Shielded                                                                            | max. 1000 m (1090 yd.)                                                       |
| Voltages, Currents, Potentials                                                      |                                                                              |
| Rated load voltage L+                                                               | 24 VDC                                                                       |
| Reverse polarity protection                                                         | Yes                                                                          |
| Number of input points that can be driven simultaneously  • Horizontal installation |                                                                              |
| up to 40 °C                                                                         | 32                                                                           |
| up to 60 °C                                                                         | 16                                                                           |
| Vertical installation                                                               |                                                                              |
| up to 40 °C                                                                         | 32                                                                           |
| Galvanic isolation                                                                  |                                                                              |
| between channels and backplane bus                                                  | Yes                                                                          |
| between the channels<br>in groups of                                                | Yes<br>16                                                                    |
| Permiss. potential differences                                                      |                                                                              |
| between different circuits                                                          | 75 VDC                                                                       |
|                                                                                     | 60 VAC                                                                       |
| Insulation tested with                                                              | 500 VDC                                                                      |
| Current drawn                                                                       |                                                                              |
| from backplane bus                                                                  | max. 15 mA                                                                   |
| from load voltage L+                                                                | -                                                                            |
| Module power losses                                                                 | typ. 6.5 W                                                                   |
| Status, Interrupts, Diagnostics                                                     | 1                                                                            |
| Status display                                                                      | Green LED per channel                                                        |
| Interrupts                                                                          | None                                                                         |
| Diagnostic functions                                                                | None                                                                         |

| Sensor Selection Data                 |                     |
|---------------------------------------|---------------------|
| Input voltage                         |                     |
| <ul> <li>Rated value</li> </ul>       | 24 VDC              |
| • for "1" signal                      | 13 to 30 V          |
| • for "0" signal                      | – 3 to 5 V          |
| Input current                         |                     |
| • at "1" signal                       | typ. 7 mA           |
| Input delay                           |                     |
| • from "0" to "1"                     | 1.2 to 4.8 ms       |
| • from "1" to "0"                     | 1.2 to 4.8 ms       |
| Input characteristic                  | To IEC 1131, type 1 |
| Connection of 2-wire BEROs            | Possible            |
| Permissible closed-circuit<br>current | max. 1.5 mA         |

# 3.1.2 Digital Input Module SM 321; DI 16 $\times$ 24 VDC

Order No.

## **Characteristics**

The digital input module SM 321; DI 16  $\times$  24 VDC has the following salient features:

- 16 input points, isolated in groups of 16
- 24 VDC rated input voltage
- Suitable for switches and 2/3/4-wire BEROs (proximity switches).

# **Terminal Connection Diagram and Block Diagram**

Figure 3-2 shows the terminal connection diagram and block diagram of the digital input module SM 321; DI 16  $\times$  24 VDC.

You will find the detailed technical specifications of the module on the following page.



Figure 3-2 Module View and Block Diagram of Digital Input Module SM 321; DI 16 imes 24 VDC

| Dimensions and Weight                                                               |                                                                               |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Dimensions W $\times$ H $\times$ D                                                  | $40 \times 125 \times 120 \text{ mm} $ (1.56 $\times$ 4.88 $\times$ 4.68 in.) |
| Weight                                                                              | approx. 200 g (7 oz.)                                                         |
| Module-Specific Data                                                                |                                                                               |
| Number of input points                                                              | 16                                                                            |
| Length of cable                                                                     |                                                                               |
| Unshielded                                                                          | max. 600 m (654 yd.)                                                          |
| Shielded                                                                            | max. 1000 m (1090 yd.)                                                        |
| Voltages, Currents, Potentials                                                      |                                                                               |
| Rated load voltage L +                                                              | 24 VDC                                                                        |
| Reverse polarity protection                                                         | Yes                                                                           |
| Number of input points that can be driven simultaneously  • Horizontal installation |                                                                               |
| up to 60 °C  Vertical installation                                                  | 16                                                                            |
| up to 40 °C                                                                         | 16                                                                            |
| Galvanic isolation                                                                  |                                                                               |
| <ul> <li>between channels and<br/>backplane bus</li> </ul>                          | Yes                                                                           |
| between the channels                                                                | No                                                                            |
| Permiss. potential differences                                                      |                                                                               |
| between different circuits                                                          | 75 VDC                                                                        |
|                                                                                     | 60 VAC                                                                        |
| Insulation tested with                                                              | 500 VDC                                                                       |
| Current drawn                                                                       |                                                                               |
| from backplane bus                                                                  | max. 25 mA                                                                    |
| from load voltage L +                                                               | max. 25 mA                                                                    |
| Module power losses                                                                 | typ. 3.5 W                                                                    |
| Status, Interrupts, Diagnostics                                                     | · · · · · · · · · · · · · · · · · · ·                                         |
| Status display                                                                      | Green LED per channel                                                         |
| Interrupts                                                                          | None                                                                          |
| Diagnostics functions                                                               | None                                                                          |

| Sensor Selection Data              |                     |
|------------------------------------|---------------------|
| Input voltage                      |                     |
| Rated value                        | 24 VDC              |
| • for "1" signal                   | 13 to 30 V          |
| • for "0" signal                   | – 3 to 5 V          |
| Input current                      |                     |
| • at "1" signal                    | typ. 7 mA           |
| Input delay                        |                     |
| • from "0" to "1"                  | 1.2 to 4.8 ms       |
| • from "1" to "0"                  | 1.2 to 4.8 ms       |
| Input characteristic               | To IEC 1131, type 2 |
| Connection of 2-wire BEROs         | Possible            |
| Permissible closed-circuit current | max. 1.5 mA         |

# 3.1.3 Digital Input Module SM 321; DI 16 $\times$ 24 VDC; with Process and Diagnostics Interrupts

#### Order Number

6ES7 321-7BH00-0AB0

#### Characteristics

The digital input module SM 321; DI  $16 \times 24$  VDC with process and diagnostics interrupts has the following salient features:

- · 16 input points, isolated in groups of 16
- 24 VDC rated input voltage
- Suitable for switches and 2/3/4-wire BEROs (proximity switches)
- 2 short-circuit-proof sensor supplies for 8 channels each
- External redundant power supply possible for sensors
- "Sensor supply (Vs) O.K." status LEDs
- Group fault LED
- · Configurable diagnostics
- · Configurable diagnostics interrupt
- · Configurable process interrupt
- Settable input delays

#### Use in

This I/O modules can be used in the

• **S7-300** (centralized configuration) with the CPU

| 312 IFM | from 6ES7 312-5AC00-0AB0, revision level 5  |
|---------|---------------------------------------------|
| 313     | from 6ES7 313-1AD00-0AB0, revision level 3  |
| 314     | from 6ES7 314-1AE01-0AB0, revision level 6  |
| 314 IFM | from 6ES7 314-5AE00-0AB0, revision level 1  |
| 315     | from 6ES7 315-1AF00-0AB0, revision level 3  |
| 315-2   | from 6ES7 315-2AF00-0AB0, revision level 3  |
| 614     | from 6ES7 614-1AH01-0AB3, revision level 6. |

• ET 200M with the

```
IM 153-1 from 6ES7 153-1AA02-0XB0, revision level 1 IM 153-2 from 6ES7 153-2Ax00-0XB0, revision level 1 IM 153-3 from 6ES7 153-3AA00-0XB0, revision level 1 and with the following DP masters:
IM 308C from 6ES5 308-3UC11, revision level 3, and CPUs 41x from 6ES7 41x-2XG00-0AB0; revision level 2.
```

## **Terminal Connection Diagram**

Figure 3-3 shows the terminal diagram and the block diagram of the SM 321; DI  $16 \times 24$  VDC; with process and diagnostics interrupts.

Detailed technical specifications for the SM 321; DI 16  $\times$  24 VDC with process and diagnostics interrupts follow on the next pages.



Figure 3-3 Module View and Block Diagram of the SM 321; DI 16  $\times$  24 VDC with Process and Diagnostics Interrupts

## **Redundant Sensor Supply**

Figure 3-4 shows how sensors can be supplied via Vs from an additional power source (e.g. from another module).



Figure 3-4 Terminal Connection Diagram for the Redundant Supply of Sensors

| Diı | mensions and Weight                                           |                                              | Status, Inte                      |
|-----|---------------------------------------------------------------|----------------------------------------------|-----------------------------------|
| Dir | mensions $W \times H \times D$                                | $40 \times 125 \times 120 \text{ mm}$        | Diagnostics                       |
|     |                                                               | $(1.56 \times 4.88 \times 4.68 \text{ in.})$ | Group t                           |
|     | eight                                                         | approx. 200 g (7 oz.)                        | <ul> <li>Diagno readab</li> </ul> |
| Мс  | dule-Specific Data                                            |                                              | Sensor Su                         |
| Nu  | mber of input points                                          | 16                                           | Outputs                           |
| Le  | ngth of cable                                                 |                                              | ·                                 |
| •   | Unshielded                                                    | max. 600 m (654 yd.)                         | Output volta     with loa         |
| •   | Shielded                                                      | max. 1000 m (1090 yd.)                       | _                                 |
| Vo  | Itages, Currents, Potentials                                  |                                              | Output curr    Rated \( \)        |
| Ra  | ted load voltage L +                                          | 24 VDC                                       | Permis                            |
| •   | Reverse polarity protection                                   | Yes                                          |                                   |
|     | mber of input points that can                                 |                                              | Additional (                      |
| be  | driven simultaneously  Horizontal installation                |                                              | Short-circui                      |
|     | up to 60 °C                                                   | 16                                           | Sensor Se                         |
| •   | Vertical installation                                         | 10                                           | Input voltag                      |
|     | up to 40 °C                                                   | 16                                           | Rated \                           |
| Ga  | Ivanic isolation                                              |                                              | • for sign                        |
| •   | between channels and                                          | Yes                                          | • for sign                        |
|     | backplane bus                                                 |                                              | Input currer                      |
| •   | between the channels                                          | No                                           | • at signa                        |
| •   | between load voltage L+ and sensor supply V <sub>S</sub>      | No                                           | Input chara                       |
| Pe  | rmiss. potential differences                                  |                                              | Connection     Permiss            |
| •   | between different circuits                                    | 75 VDC                                       | current                           |
|     |                                                               | 60 VAC                                       | Time/Frequ                        |
| Ins | ulation tested with                                           | 500 VDC                                      | Internal inte                     |
| Cu  | rrent drawn                                                   |                                              | time withou                       |
| •   | from backplane bus                                            | max. 55 mA                                   | • interrup                        |
| •   | from load voltage L + (without sensor supply V <sub>S</sub> ) | max. 40 mA                                   | • interrup                        |
| Mo  | odule power losses                                            | typ. 4 W                                     | Input delay                       |
| Sta | atus, Interrupts, Diagnostics                                 | 1                                            | Configuration     Rated v         |
| Sta | atus display                                                  |                                              | - Nateu V                         |
| •   | Inputs                                                        | Green LED per channel                        | Input from:                       |
| •   | Sensor supplies (Vs)                                          | Green LED per output                         | Input freque<br>(with 0.1 m       |
| Int | errupts                                                       |                                              | <u> </u>                          |
| •   | Process interrupt                                             | Configurable                                 |                                   |
| •   | Diagnostics interrupt                                         | Configurable                                 |                                   |

| Status, Interrupts, Diagnostic                               | s, continued        |  |  |  |
|--------------------------------------------------------------|---------------------|--|--|--|
| Diagnostics functions                                        | Configurable        |  |  |  |
| <ul> <li>Group fault LED (SF)</li> </ul>                     | Red LED             |  |  |  |
| <ul> <li>Diagnostics information<br/>readable</li> </ul>     | Possible            |  |  |  |
| Sensor Supply Outputs                                        |                     |  |  |  |
| Outputs                                                      | 2                   |  |  |  |
| Output voltage                                               |                     |  |  |  |
| <ul><li>with load</li></ul>                                  | min. L+ (- 2.5 V)   |  |  |  |
| Output current                                               |                     |  |  |  |
| <ul> <li>Rated value</li> </ul>                              | 120 mA              |  |  |  |
| <ul> <li>Permissible range</li> </ul>                        | 0 to 150 mA         |  |  |  |
| Additional (redundant) supply                                | Permitted           |  |  |  |
| Short-circuit protection                                     | Yes, electronic     |  |  |  |
| Sensor Selection Data                                        |                     |  |  |  |
| Input voltage                                                |                     |  |  |  |
| <ul> <li>Rated value</li> </ul>                              | 24 VDC              |  |  |  |
| <ul><li>for signal "1"</li></ul>                             | 13 to 30 V          |  |  |  |
| <ul><li>for signal "0"</li></ul>                             | −3 to 5 V           |  |  |  |
| Input current                                                |                     |  |  |  |
| <ul><li>at signal "1"</li></ul>                              | typ. 7 mA           |  |  |  |
| Input characteristic                                         | to IEC 1131, type 2 |  |  |  |
| Connection of 2-wire BEROs                                   | Possible            |  |  |  |
| <ul> <li>Permissible closed-circuit<br/>current</li> </ul>   | max. 1.5 mA         |  |  |  |
| Time/Frequency                                               |                     |  |  |  |
| Internal interrupt processing time without input delay for   |                     |  |  |  |
| <ul> <li>interrupt processing only</li> </ul>                | max. 250 μs         |  |  |  |
| <ul> <li>interrupt and diagnostics<br/>processing</li> </ul> | max. 250 μs         |  |  |  |
| Input delay                                                  |                     |  |  |  |
| <ul> <li>Configurable</li> </ul>                             | Yes                 |  |  |  |
| Rated value                                                  | typ. 0.1/0.5/3/15/  |  |  |  |
|                                                              | 20 ms               |  |  |  |
| Input frequency                                              | ≤2 kHz              |  |  |  |
| (with 0.1 ms delay time)                                     |                     |  |  |  |

### **Setting the Parameters**

You set the parameters for the SM 321; DI 16  $\times$  24 VDC with process and diagnostics interrupts using *STEP 7*. Table 3-3 indicates the digital module parameters that can be set. You must enter the settings when the CPU is in the STOP state. The parameters are transferred from the programming device to the CPU of the S7-300 and stored there. The CPU transfers them to the digital module.

You can also change some of the parameters in the user program with the SFC 55 (see Reference Manual *System and Standard Functions*).

According to the two alternative ways of setting the parameters, they are divided into

- Static parameters
- Dynamic parameters

Table 3-1 below describes the properties of the static and dynamic parameters.

Table 3-1 Static and Dynamic Parameters of the SM 321; DI 16  $\times$  24 VDC with Process and Diagnostics Interrupts

| Parameter | Settable with          | Operating State of the CPU |
|-----------|------------------------|----------------------------|
| Static    | Programming device     | STOP                       |
| Dynamic   | Programming device     | STOP                       |
| Dynamic   | SFC 55 in user program | RUN                        |

## **Default Settings**

The SM 321; DI 16  $\times$  24 VDC with process and diagnostics interrupts has the following default settings for diagnostics, interrupts, etc (see Table 3-3).

These default settings are active if you have not set any parameters with STEP 7.

#### **Assignment of Sensor Supplies**

The two sensor supplies are used to supply two groups of channels: inputs 0 to 7 and inputs 8 to 15. You can also set the diagnostics for the sensor supply in these channel groups (see Table 3-2).

# **Parameter Assignment**

Table 3-2 shows the parameter assignment for the respective inputs of the SM 321; DI 16  $\times$  24 VDC; with process and diagnostics interrupts. You can configure the module in these input groups (channel groups). You will need the numbers of the channel groups to configure the user program with SFCs (see also Figure A-3 in Appendix A).

Table 3-2 Assignment of Parameters to the 16 Digital Inputs of the SM 321; DI 16 × 24 VDC; with Process and Diagnostics Interrupts

| Parameter             |        | Set in the Following<br>nannel Groups | Channel<br>Group<br>Number |
|-----------------------|--------|---------------------------------------|----------------------------|
|                       |        | 0 and 1                               | 0                          |
|                       |        | 2 and 3                               | 1                          |
| Dragge interrupt      |        | 4 and 5                               | 2                          |
| Process interrupt     | Innuto | 6 and 7                               | 3                          |
| (on falling or        | Inputs | 8 and 9                               | 4                          |
| rising edge)          |        | 10 and 11                             | 5                          |
|                       |        | 12 and 13                             | 6                          |
|                       |        | 14 and 15                             | 7                          |
| Diagnostics interrupt |        | 0 to 7                                |                            |
| (sensor supply        | Inputs | 0 to 7                                | -                          |
| missing)              |        | 8 to 15                               |                            |

## **Parameters of the Digital Input Module**

Table 3-3 provides an overview of the parameters of the SM 321; DI 16  $\times$  24 VDC with process and diagnostics interrupts and shows, which parameters

- · are static or dynamic or
- can be set for the complete module or for one channel group each.

Table 3-3 Parameters of the SM 321; DI 16 × 24 VDC with Process and Diagnostics Interrupts

| Parameter                     | SM 321; DI 16×DC24V; with Process and Diagnostics Interrupts |         |         |               |
|-------------------------------|--------------------------------------------------------------|---------|---------|---------------|
|                               | Value Range                                                  | Default | Туре    | Scope         |
| Input delay (ms)              | 0.1/0.5/3/15/20                                              | 3       | Static  | Module        |
| Enable                        |                                                              |         |         |               |
| Process interrupt             | Yes/no                                                       | No      | Dynamic | Module        |
| Diagnostics interrupt         | Yes/no                                                       | No      | Dynamic | Module        |
| Diagnostics                   |                                                              |         |         |               |
| Sensor supply missing         | Yes/no                                                       | No      | Static  | Channel group |
| Trigger for process interrupt |                                                              |         |         |               |
| Rising edge                   | Yes/no                                                       | No      | Dynamic | Channel group |
| Falling edge                  | Yes/no                                                       | No      | Dynamic | Channel group |

### **Input Delay**

Table 3-4 shows the possible settings and their tolerances for the input delay times of the SM 321; DI 16  $\times$  24 VDC with process and diagnostics interrupts.

Table 3-4 Delay Times of the Input Signal of the SM 321; DI 16  $\times$  24 VDC with Process and Diagnostics Interrupts

| Input Delay    | Tolerance        |
|----------------|------------------|
| 0.1 ms         | 87.5 to 112.5 μs |
| 0.5 ms         | 0.43 to 0.57 ms  |
| 3 ms (default) | 2.62 to 3.38 ms  |
| 15 ms          | 13.1 to 16.9 ms  |
| 20 ms          | 20 to 25 ms      |

# **Diagnostics**

With the diagnostics feature you can determine if errors occur on signal acquisition.

## **Diagnostics Parameters**

Use STEP 7 to set the diagnostics parameters.

## **Diagnostics Evaluation**

For the diagnostics evaluation, a distinction has to be made between configurable and non-configurable diagnostics messages. In the event of the configurable diagnostics message "Sensor supply missing" the diagnostics message is output only if diagnostics evaluation has been enabled (in parameter "diagnostics: sensor supply missing").

In the event of non-configurable diagnostics messages, the diagnostics messages are always output, irrespective of the parameter settings.

Output of a diagnostics message triggers a diagnostics interrupt only if the diagnostics interrupt has been enabled in the relevant parameter.

Irrespective of the parameter configuration, the group fault (SF) LED will light up if errors have been detected, and the relevant Vs LED will be extinguished in case of a short circuit on the sensor supply.

The group fault (SF) LED also lights up in case of external errors (short circuit of sensor supply), independent of the operating status of the CPU (if power is on).

# **Diagnostics of Digital Input Module**

Table 3-5 provides you with an overview of the diagnostics messages of the SM 321; DI 16  $\times$  24 VDC with process and diagnostics interrupts. You enable the diagnostics parameters in *STEP 7* (see Table 3-3).

The diagnostics information is assigned either to the channel groups or to the module as a whole.

Table 3-5 Diagnostics Messages of the SM 321; DI 16  $\times$  24 VDC with Process and Diagnostics Interrupts

| Diagnostic Message               | Scope of the<br>Diagnostics | Configurable |
|----------------------------------|-----------------------------|--------------|
| Sensor supply missing            | Channel group               | Yes          |
| External auxiliary power missing | Module                      |              |
| Internal auxiliary power missing | Module                      |              |
| Fuse blown                       | Module                      |              |
| Incorrect parameter on module    | Module                      | NI-          |
| Watchdog timeout                 | Module                      | No           |
| EPROM error                      | Module                      |              |
| RAM error                        | Module                      |              |
| Process interrupt lost           | Module                      |              |

# **Diagnostics Message Read-Out**

You can read out the detailed diagnostics messages using *STEP 7*. Detailed diagnostics messages can be read out in the user program with the SFC 59 (see Appendix B and Reference Manual *System and Standard Functions*).

# **Error Causes and Error Correction**

In Table 3-6, the diagnostics messages for the possible error causes and measures for error correction are listed.

Please note that the signal module must be configured so as to detect the missing sensor supply.

Table 3-6 Diagnostics Messages, Error Causes and Error Correction

| Diagnostics Message              | Possible Error Cause                                              | Error Correction                                                                  |
|----------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Sensor supply missing            | Overload of sensor supply                                         | Eliminate overload                                                                |
|                                  | Short circuit of sensor supply to M                               | Eliminate short circuit                                                           |
| External auxiliary power missing | Power supply L+ to module missing                                 | Supply L+                                                                         |
| Internal auxiliary power missing | Power supply L+ to module missing                                 | Supply L+                                                                         |
|                                  | Fuse in module defective                                          | Replace module                                                                    |
| Fuse blown                       | Fuse in module defective                                          | Replace module                                                                    |
| Incorrect parameter on module    | Illegal parameter transferred to module                           | Reconfigure module parameter                                                      |
| Watchdog time-out                | Temporary high electromagnetic interferences                      | Eliminate interferences                                                           |
|                                  | Module defective                                                  | Replace module                                                                    |
| EPROM error                      | Temporary high electromagnetic interferences                      | Eliminate interferences and switch on/off power supply of CPU                     |
|                                  | Module defective                                                  | Replace module                                                                    |
| RAM error                        | Temporary high electromagnetic interferences                      | Eliminate interferences and switch on/off power supply of CPU                     |
|                                  | Module defective                                                  | Replace module                                                                    |
| Process interrupt lost           | Quick succession of process interrupts cannot be processed by CPU | Change interrupt processing in CPU and reconfigure module parameters, if required |

### Interrupts

The following interrupts exist with the SM 321; DI 16  $\times$  24VDC with process and diagnostics interrupts:

- · Diagnostics interrupt
- Process interrupt.

## **Configuring Interrupts**

Use STEP 7 to configure the interrupts.

### **Default Setting**

The default setting for interrupts is disabled.

### **Diagnostics Interrupt**

If an error (for example, sensor supply missing) is detected or remedied, the module triggers a diagnostics interrupt, provided the diagnostics interrupt is enabled. The CPU interrupts the execution of the user program or of priority classes with low priority and processes the diagnostics interrupt block (OB 82).

#### **Process Interrupt**

Depending on the configuration, the module can trigger for each channel group a process interrupt, either in case of rising, falling or both edges of a signal state change. In the user program, you can use SFCs to find out which one of the two channels of a channel group has triggered the interrupt (see Reference Manual *System and Standard Functions*).

Pending process interrupts trigger process interrupt processing in the CPU (OB 40). The CPU interrupts the execution of the user program or of the priority classes with low priority. The signal module can buffer one interrupt per channel. If no priority classes with higher priority are to be processed, the buffered interrupts (of all modules) are processed in the sequence in which they have occurred.

#### **Process Interrupt Lost**

In an interrupt has been buffered for a channel and another interrupt occurs on that channel before it has been processed by the CPU, a diagnostics interrupt "process interrupt lost" is triggered.

More interrupts on this channel are not acquired until processing of the interrupt buffered on this channel has been executed.

# Impact of the Power Supply and the Operating State

The input values on the SM 321; DI 16  $\times$  24 VDC with process and diagnostics interrupts depend on the power supply of the digital module and the operating state of the CPU.

Table 3-7 provides you with an overview of these relationships.

Table 3-7 Dependence of the Input Values on the Operating State of the CPU and the Power Supply L+ of the SM 321; DI 16  $\times$  24 VDC with Process and Diagnostics Interrupts

| CPU Operating State |      | Power Supply L+<br>to Digital Module | Input Value of Digital<br>Module |
|---------------------|------|--------------------------------------|----------------------------------|
| POWER ON            | RUN  | L+ exists                            | Process value                    |
|                     |      | L+ missing                           | 0 signal                         |
|                     | STOP | L+ exists                            | Process value                    |
|                     |      | L+ missing                           | 0 signal                         |
| POWER OFF           | _    | L+ exists                            | -                                |
|                     |      | L+ missing                           | -                                |

A failure in the power supply to the SM 321; DI 16  $\times$  24 VDC with process and diagnostics interrupts is always indicated by the group fault LED on the front panel of the module, and is also entered in the diagnostics log.

In case of a failure in the power supply L+ to the module, the input value is maintained for 20 to 40 ms before the 0 signal is transferred to the CPU. Power supply dips < 20 ms do not cause a change in the process value.

#### Note

If an external redundant source is applied simultaneously to the sensor supply (Vs), a failure in the internal sensor supply causes a failure of the internal and/or external sensor supply and/or a blown fuse to be indicated instead of a regular sensor supply failure.

The initiation of a diagnostics interrupt depends on the parameters (see Table 3-3).

# 3.1.4 Digital Input Module SM 321; DI 16 $\times$ 24 VDC (Source Input)

#### **Order Number**

6ES7 321-1BH5-AA0

#### **Characteristics**

The SM 321; DI 16  $\times$  24 VDC (source input) has the following salient features:

- 16 input points, source input, isolated in groups of 16
- 24 VDC rated input voltage
- Suitable for switches and 2/3/4-wire proximity switches (BEROs)

# **Terminal Connection Diagram and Block Diagram**

Figure 3-5 shows the terminal connection diagram and block diagram of the SM 321; DI 16  $\times$  24 VDC (source input).

You will find the detailed technical specifications of the SM 321; DI 16  $\times$  24 VDC (source input) on the following page.



Figure 3-5 Module View and Block Diagram of Digital Input Module SM 321; DI 16  $\times$  24 VDC (Source Input)

| Dimensions and Weight                                      |                                 |  |  |
|------------------------------------------------------------|---------------------------------|--|--|
| Dimensions W $\times$ H $\times$ D                         | 40 $\times$ 125 $\times$ 120 mm |  |  |
|                                                            | (1.56 × 4.88 ×                  |  |  |
|                                                            | 4.68 in.)                       |  |  |
| Weight                                                     | approx. 200 g                   |  |  |
| Module-Specific Data                                       |                                 |  |  |
| Number of input points                                     | 16                              |  |  |
| Length of cable                                            |                                 |  |  |
| <ul> <li>Unshielded</li> </ul>                             | max. 600 m (654 yd.)            |  |  |
| • Shielded                                                 | max. 1000 m                     |  |  |
|                                                            | (1090 yd.)                      |  |  |
| Voltages, Currents, Potentials                             |                                 |  |  |
| Rated load voltage L +                                     | 24 VDC                          |  |  |
| Reverse polarity protection                                | Yes                             |  |  |
| Number of input points that can be driven simultaneously   |                                 |  |  |
| <ul> <li>Horizontal installation</li> </ul>                |                                 |  |  |
| up to 60 °C                                                | 16                              |  |  |
| <ul> <li>Vertical installation</li> </ul>                  |                                 |  |  |
| up to 40 °C                                                | 16                              |  |  |
| Galvanic isolation                                         |                                 |  |  |
| <ul> <li>between channels and<br/>backplane bus</li> </ul> | Yes                             |  |  |
| <ul> <li>between the channels</li> </ul>                   | No                              |  |  |
| Permiss. potential differences                             |                                 |  |  |
| <ul> <li>between different circuits</li> </ul>             | 75 VDC                          |  |  |
|                                                            | 60 VAC                          |  |  |
| Insulation tested with                                     | 500 VDC                         |  |  |
| Current drawn                                              |                                 |  |  |
| <ul> <li>from backplane bus</li> </ul>                     | max. 10 mA                      |  |  |
| <ul> <li>from load voltage L+</li> </ul>                   | _                               |  |  |
| Module power losses                                        | typ. 3.5 W                      |  |  |
| Status, Interrupts, Diagnostics                            |                                 |  |  |
| Status display                                             | Green LED per channel           |  |  |
| Interrupts                                                 | None                            |  |  |
|                                                            |                                 |  |  |

| Sensor Selection Data      |                     |  |  |  |
|----------------------------|---------------------|--|--|--|
| Input voltage              |                     |  |  |  |
| Rated value                | 24 VDC              |  |  |  |
| • for "1" signal           | +13 to +30 V        |  |  |  |
| • for "0" signal           | −3 to +5 V          |  |  |  |
| Input current              |                     |  |  |  |
| at "1" signal              | typ. 7 mA           |  |  |  |
| Input delay                |                     |  |  |  |
| • from "0" to "1"          | 1.2 to 4.8 ms       |  |  |  |
| • from "1" to "0"          | 1.2 to 4.8 ms       |  |  |  |
| Input characteristic       | to IEC 1131, type 1 |  |  |  |
| Connection of 2-wire BEROs | Possible            |  |  |  |
| Permissible closed-circuit |                     |  |  |  |
| current                    | max.1.5 mA          |  |  |  |

None

Diagnostics functions

# 3.1.5 Digital Input Module SM 321; DI 16 imes 120 VAC

#### Order No.

6ES7 321-1EH01-0AA0

## **Characteristics**

The digital input module  $\,$  SM 321; DI 16  $\times$  120 VAC has the following salient features:

- 16 input points, isolated in groups of 4
- 120 VAC rated input voltage
- Suitable for switches and 2/3/-wire AC proximity switches

# **Terminal Connection Diagram and Block Diagram**

Figure 3-6 shows the terminal connection diagram and block diagram of the digital input module SM 321; DI 16 imes 120 VAC.

You will find the detailed technical specifications of the SM 321; DI 16  $\times$  120 VAC on the following page.



Figure 3-6 Module View and Block Diagram of Digital Input Module SM 321; DI 16 imes 120 VAC

| Dimensions and Weight                                           |                                                                              |  |  |  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|
| Dimensions W×H×D                                                | $40 \times 125 \times 120 \text{ mm}$ (1.56 $\times$ 4.88 $\times$ 4.68 in.) |  |  |  |
| Weight                                                          | approx. 225 g<br>(7.88 oz.)                                                  |  |  |  |
| Module-Specific Data                                            |                                                                              |  |  |  |
| Number of input points                                          | 16                                                                           |  |  |  |
| Length of cable                                                 |                                                                              |  |  |  |
| Unshielded                                                      | max. 600 m (654 yd.)                                                         |  |  |  |
| Shielded                                                        | max. 1000 m (1090 yd.)                                                       |  |  |  |
| Voltages, Currents, Potentials                                  |                                                                              |  |  |  |
| Rated load voltage L1                                           | -                                                                            |  |  |  |
| Number of input points that can be driven simultaneously        |                                                                              |  |  |  |
| Horizontal installation                                         |                                                                              |  |  |  |
| up to 60 °C                                                     | 16                                                                           |  |  |  |
| Vertical installation     up to 40 °C                           | 16                                                                           |  |  |  |
| Galvanic isolation                                              |                                                                              |  |  |  |
| between channels and backplane bus                              | Yes                                                                          |  |  |  |
| between the channels                                            | Yes                                                                          |  |  |  |
| in groups of                                                    | 4                                                                            |  |  |  |
| Permiss. potential differences                                  |                                                                              |  |  |  |
| <ul> <li>between M<sub>internal</sub> and the inputs</li> </ul> | 120 VAC                                                                      |  |  |  |
| between the inputs of different groups                          | 250 VAC                                                                      |  |  |  |
| Insulation tested with                                          | 1500 VAC                                                                     |  |  |  |
| Current drawn                                                   |                                                                              |  |  |  |
| from backplane bus                                              | max. 16 mA                                                                   |  |  |  |
| Module power losses typ. 4.1 W                                  |                                                                              |  |  |  |
| Status, Interrupts, Diagnostics                                 |                                                                              |  |  |  |
| Status display                                                  | Green LED per channel                                                        |  |  |  |
| Interrupts                                                      | None                                                                         |  |  |  |
| Diagnostics functions                                           | None                                                                         |  |  |  |

| Sensor Selection Data              |                     |
|------------------------------------|---------------------|
| Input voltage                      |                     |
| Rated value                        | 120 VAC             |
| • for "1" signal                   | 79 to 132 V         |
| • for "0" signal                   | 0 to 20 V           |
| Frequency range                    | 47 to 63 Hz         |
| Input current                      |                     |
| • at "1" signal                    | typ. 6 mA           |
| Input delay                        |                     |
| • from "0" to "1"                  | max. 25 ms          |
| • from "1" to "0"                  | max. 25 ms          |
| Input characteristic               | to IEC 1131, type 1 |
| Connection of 2-wire BEROs         | Possible            |
| Permissible closed-circuit current | max. 1 mA           |

# 3.1.6 Digital Input Module SM 321; DI 8 imes 120/230 VAC

#### Order No.

6ES7 321-1FF01-0AA0

#### **Characteristics**

The digital input module SM 321; DI 8  $\times$  120/230 VAC has the following salient features:

- 8 input points, isolated in groups of 2
- 120/230 VAC rated input voltage
- Suitable for switches and 2/3/-wire AC proximity switches

# **Terminal Connection Diagram and Block Diagram**

Figure 3-7 shows the terminal connection diagram and block diagram of the digital input module SM 321; DI 8  $\times$  120/230 VAC.

You will find the detailed technical specifications of the SM 321; DI 8 imes 120/230 VAC on the following page.



Figure 3-7 Module View and Block Diagram of Digital Input Module SM 321; DI 8 imes 120/230 VAC

| Dimensions and Weight                                           |                                                  |  |
|-----------------------------------------------------------------|--------------------------------------------------|--|
| Dimensions W × H × D                                            | 40 × 125 × 120 mm<br>(1.56 × 4.88 ×<br>4.68 in.) |  |
| Weight                                                          | approx. 240 g (8.4 oz.)                          |  |
| Module-Specific Data                                            |                                                  |  |
| Number of input points                                          | 8                                                |  |
| Length of cable                                                 |                                                  |  |
| <ul> <li>Unshielded</li> </ul>                                  | max. 600 m (654 yd.)                             |  |
| Shielded                                                        | max. 1000 m (1090 yd.)                           |  |
| Voltages, Currents, Potentials                                  |                                                  |  |
| Rated load voltage L1                                           | _                                                |  |
| Number of input points that can be driven simultaneously        |                                                  |  |
| Horizontal installation                                         |                                                  |  |
| up to 60 °C                                                     | 8                                                |  |
| <ul> <li>Vertical installation</li> </ul>                       |                                                  |  |
| up to 40 °C                                                     | 8                                                |  |
| Galvanic isolation                                              |                                                  |  |
| <ul> <li>between channels and<br/>backplane bus</li> </ul>      | Yes                                              |  |
| <ul> <li>between the channels</li> </ul>                        | Yes                                              |  |
| in groups of                                                    | 2                                                |  |
| Permiss. potential differences                                  |                                                  |  |
| <ul> <li>between M<sub>internal</sub> and the inputs</li> </ul> | 230 VAC                                          |  |
| <ul> <li>between the inputs of<br/>different groups</li> </ul>  | 500 VAC                                          |  |
| Insulation tested with                                          | 1500 VAC                                         |  |
| Current drawn                                                   |                                                  |  |
| from backplane bus                                              | max. 29 mA                                       |  |
| Module power losses                                             | typ. 4.9 W                                       |  |
| Status, Interrupts, Diagnostics                                 | ;                                                |  |
| Status display                                                  | Green LED per channel                            |  |
| Interrupts                                                      | None                                             |  |
| Diagnostics functions                                           | None                                             |  |

| Sensor Selection Data              |                     |
|------------------------------------|---------------------|
| Input voltage                      |                     |
| Rated value                        | 120/230 VAC         |
| • for "1" signal                   | 79 to 264 V         |
| <ul><li>for "0" signal</li></ul>   | 0 to 40 V           |
| Frequency range                    | 47 to 63 Hz         |
| Input current at "1" signal        |                     |
| for signal "1"                     |                     |
| 120 V, 60 Hz                       | typ. 6.5 mA         |
| 230 V, 50 Hz                       | typ. 11 mA          |
| Input delay                        |                     |
| • from "0" to "1"                  | max. 25 ms          |
| • from "1" to "0"                  | max. 25 ms          |
| Input characteristic               | to IEC 1131, type 1 |
| Connection of 2-wire BEROs         | Possible            |
| Permissible closed-circuit current | max. 2 mA           |

# 3.1.7 Digital Input Module SM 321; DI 32 imes 120 VAC

#### Order No.

6ES7 321-1EL00-0AA0

## **Characteristics**

The digital input module, SM 321; DI 32  $\times$  120 VAC, has the following salient features:

- 32 input points, isolated in groups of 8
- 120 VAC rated input voltage
- Suitable for switches and 2/3-wire AC proximity switches

Figure 3-8 shows the terminal connection diagram and block diagram of the digital input module SM 321; DI 32  $\times$  120 VAC.

You will find detailed technical specifications of the SM 321; DI 32  $\times$  120 VAC on the following page.



Figure 3-8 Terminal Connection Diagram and Block Diagram of Digital Input Module SM 321; DI 32  $\times$  120 VAC

| Dimensions and Weight                                                                  |                                       |  |
|----------------------------------------------------------------------------------------|---------------------------------------|--|
| Dimensions $W \times H \times D$                                                       | 40×125×120 mm<br>(1.56×4.88×4.68 in.) |  |
| Weight                                                                                 | approx. 300 g<br>(10.6 oz.)           |  |
| Module-Specific Data                                                                   |                                       |  |
| Number of input points                                                                 | 32                                    |  |
| Length of cable                                                                        |                                       |  |
| <ul> <li>Unshielded</li> </ul>                                                         | max. 600 m (654 yd.)                  |  |
| Shielded                                                                               | max. 1000 m<br>(1090 yd.)             |  |
| Voltages, Currents, Potentials                                                         |                                       |  |
| Rated input voltage L1                                                                 | 120 VAC                               |  |
| Number of input points that can be driven simultaneously                               |                                       |  |
| <ul> <li>Horizontal installation<br/>up to 60° C/140° F</li> </ul>                     | 24                                    |  |
| <ul> <li>Horizontal or vertical<br/>installation<br/>up to 40° C/104° F</li> </ul>     | 32                                    |  |
| Galvanic isolation                                                                     |                                       |  |
| <ul> <li>To backplane bus</li> </ul>                                                   | Yes (optocoupler)                     |  |
| <ul> <li>Between the channels<br/>in groups of</li> </ul>                              | Yes<br>8                              |  |
| Permiss. potential differences                                                         |                                       |  |
| <ul> <li>Between N terminals<br/>of the groups</li> </ul>                              | 250 VAC                               |  |
| <ul> <li>Between the input<br/>(N terminal) and central<br/>grounding point</li> </ul> | 1500 VAC                              |  |
| Insulation tested with                                                                 | 1500 VAC                              |  |
| Current drawn                                                                          |                                       |  |
| <ul> <li>from backplane bus</li> </ul>                                                 | max. 16 mA                            |  |
| Module power losses                                                                    | typ. 4 W                              |  |

| Status, Interrupts, Diagnostics  |                            |  |  |
|----------------------------------|----------------------------|--|--|
| Status display                   | Yes; green LED per channel |  |  |
| Interrupts                       | No                         |  |  |
| Diagnostics functions            | No                         |  |  |
| Sensor Selecti                   | ion Data                   |  |  |
| Input voltage                    |                            |  |  |
| Rated value                      | AC 120 V                   |  |  |
| Frequency                        | 47 to 63 Hz                |  |  |
| For "1" signal                   | 74 to 132 V                |  |  |
| • For "0" signal                 | 0 to 20 V                  |  |  |
| Input current                    |                            |  |  |
| At "1" signal                    | max. 27 mA                 |  |  |
|                                  | typ. 21 mA                 |  |  |
| Input delay                      |                            |  |  |
| <ul> <li>Programmable</li> </ul> | No                         |  |  |
| • From "0" to "1"                | max. 15 ms                 |  |  |
| • From "1" to "0"                | max. 25 ms                 |  |  |
| Input characteristic             | to IEC 1131, Type 2        |  |  |
| Connection of 2-wire BEROs       | Possible                   |  |  |
| Permiss. closed-circuit current  | < 4 mA                     |  |  |

# 3.2 Digital Output Modules

## **List of Digital Output Modules**

The following digital output modules are described in this chapter:

- SM 322; DO 32 × 24 VDC/0.5 A
- SM 322; DO 16 × 24 VDC/0.5 A
- SM 322; DO 8 × 24 VDC/0.5 A with diagnostics interrupt
- SM 322; DO 8 × 24 VDC/2 A
- SM 322; DO 16 × 120 VAC/1 A
- SM 322; DO 8 × 120/230 VAC/2 A
- SM 322; DO 32× 120 VAC/1.0 A

## 3.2.1 Digital Output Module SM 322; DO 32 $\times$ 24 VDC/0.5 A

#### Order No.

6ES7 322-1BL00-0AA0

#### **Characteristics**

The digital output module SM 322; DO 32  $\times$  24 VDC/0.5 A has the following salient features:

- 32 output points, isolated in groups of 8
- 0.5 A output current
- 24 VDC rated load voltage
- Suitable for solenoid valves, DC contactors and indicator lights

#### **Special Feature**

When the power supply is switched on via a mechanical contact, the digital output module SM 322; SO 32  $\times$  24 VDC/0.5 A sends a "1" signal to its outputs for approximately 50  $\mu s$ . You must observe this when using the digital output module SM 322; DO 32  $\times$  24 VDC/0.5 A for high-speed counters.

Figure 3-9 shows the terminal connection diagram and block diagram of the digital output module SM 322; DO 32  $\times$  24 VDC/0.5 A.

You will find the detailed technical specifications of the module SM 322; DO 32  $\times$  24 VDC/0.5 A on the following page.



Figure 3-9 Module View and Block Diagram of Digital Output Module SM 322; DO 32 × 24 VDC/0.5 A

# **Terminal Assignment**

The following figure shows the assignment of the channels to the addresses.



| Dimensions and Weight                                      |                                                                                    |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------|--|
| Dimensions W $\times$ H $\times$ D                         | $40 \times 125 \times 120 \text{ mm} \ (1.56 \times 4.88 \times 4.68 \text{ in.})$ |  |
| Weight                                                     | approx. 260 g                                                                      |  |
| Module-Specific Data                                       |                                                                                    |  |
| Number of output points                                    | 32                                                                                 |  |
| Length of cable                                            |                                                                                    |  |
| Unshielded                                                 | max. 600 m (654 yd.)                                                               |  |
| Shielded                                                   | max. 1000 m (1090 yd)                                                              |  |
| Voltages, Currents, Potentials                             |                                                                                    |  |
| Rated load voltage L +                                     | 24 VDC                                                                             |  |
| Total current of the outputs (per group)                   |                                                                                    |  |
| horizontal installation                                    |                                                                                    |  |
| up to 20 °C / 68 °F                                        | max. 4 A                                                                           |  |
| up to 40 °C / 104 °F                                       | max. 3 A                                                                           |  |
| up to 60 °C / 140 °F                                       | max. 2 A                                                                           |  |
| vertical installation                                      |                                                                                    |  |
| up to 40 °C / 104 °F                                       | max. 2 A                                                                           |  |
| Galvanic isolation                                         |                                                                                    |  |
| <ul> <li>between channels and<br/>backplane bus</li> </ul> | Yes                                                                                |  |
| between the channels                                       | Yes                                                                                |  |
| in groups of                                               | 8                                                                                  |  |
| Permiss. potential differences                             |                                                                                    |  |
| between different circuits                                 | 75 VDC<br>60 VAC                                                                   |  |
| Insulation tested with                                     | 500 VDC                                                                            |  |
| Current drawn                                              |                                                                                    |  |
| from backplane bus                                         | max. 90 mA                                                                         |  |
| from load voltage L+     (without load)                    | max. 200 mA                                                                        |  |
| Module power losses                                        | typ. 6.6 W                                                                         |  |
| Status, Interrupts, Diagnostics                            | i                                                                                  |  |
| Status display                                             | Green LED per channel                                                              |  |
| Interrupts None                                            |                                                                                    |  |
| Diagnostics functions                                      | None                                                                               |  |

| Actuator Selection Data                                                                |                                                        |  |  |  |
|----------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|
| Output voltage                                                                         |                                                        |  |  |  |
| at "1" signal                                                                          | min. L + (- 0.8 V)                                     |  |  |  |
| Output current  at "1" signal                                                          |                                                        |  |  |  |
| Rated value Permiss. range                                                             | 0.5 A<br>5 mA to 0.6 A                                 |  |  |  |
| at signal "0"     Residual current                                                     | max. 0.5 mA                                            |  |  |  |
| Load impedance                                                                         | 48 $\Omega$ to 4 k $\Omega$                            |  |  |  |
| Lamp load                                                                              | max. 5 W                                               |  |  |  |
| Parallel connection of 2 outputs  for redundant actuation of a load  to increase power | Possible (only outputs of the same group) Not possible |  |  |  |
| Actuation of digital input                                                             | Possible                                               |  |  |  |
| Switching frequency                                                                    |                                                        |  |  |  |
| <ul><li>Resistive loads</li><li>Inductive loads</li></ul>                              | max. 100 Hz                                            |  |  |  |
| to IEC 947-5-1, DC 13                                                                  | max. 0.5 Hz                                            |  |  |  |
| Lamp loads                                                                             | max. 10 Hz                                             |  |  |  |
| Voltage limited on circuit interruption reduced (internally) to                        | L + (- 48 V), typ.                                     |  |  |  |
| Short-circuit protection of output                                                     | Yes, electronic                                        |  |  |  |
| Response threshold                                                                     | 1 A, typ.                                              |  |  |  |

# 3.2.2 Digital Output Module SM 322; DO 16 $\times$ 24 VDC/0.5 A

#### Order No.

6ES7 322-1BH01-0AA0

#### **Characteristics**

The digital output module SM 322; DO 16  $\, imes\,$  24 VDC/0.5 A has the following salient features:

- 16 output points, isolated in groups of 8
- 0.5 A output current
- 24 VDC rated load voltage
- Suitable for solenoid valves, DC contactors and indicator signals.

## **Special Feature**

When the 24 V power supply is switched on via a mechanical contact, the digital output module SM 322; DO 16  $\times$  24 VDC/0.5 A sends a "1" signal to its outputs for approximately 50  $\mu$ s. You must observe this when using the digital output module SM 322; DO 16  $\times$  24 VDC/0.5 A for high-speed counters!

Figure 3-10 shows the terminal connection diagram and block diagram of the digital output module SM 322; DO 16 imes 24 VDC/0.5 A.

You will find the detailed technical specifications of the module SM 322; DO 16  $\times$  24 VDC/0.5 A on the following page.



Figure 3-10 Module View and Block Diagram of Digital Output Module SM 322; DO 16 imes 24 VDC/0.5 A

| Dimensions and Weight                                      |                                                                              |
|------------------------------------------------------------|------------------------------------------------------------------------------|
| Dimensions W × H × D                                       | $40 \times 125 \times 120 \text{ mm}$ (1.56 $\times$ 4.88 $\times$ 4.68 in.) |
| Weight                                                     | approx. 190 g<br>(6.65 oz.)                                                  |
| Module-Specific Data                                       |                                                                              |
| Number of output points                                    | 16                                                                           |
| Length of cable                                            |                                                                              |
| <ul> <li>Unshielded</li> </ul>                             | max. 600 m (654 yd.)                                                         |
| Shielded                                                   | max. 1000 m (1090 yd)                                                        |
| Voltages, Currents, Potentials                             |                                                                              |
| Rated load voltage L +                                     | 24 VDC                                                                       |
| Total current of the outputs (per group)                   |                                                                              |
| <ul> <li>horizontal installation</li> </ul>                |                                                                              |
| up to 20 $^{\circ}$ C / 68 $^{\circ}$ F                    | max. 4 A                                                                     |
| up to 60 °C / 140 °F                                       | max. 2 A                                                                     |
| <ul> <li>vertical installation</li> </ul>                  |                                                                              |
| up to 40 °C / 104 °F                                       | max. 2 A                                                                     |
| Galvanic isolation                                         |                                                                              |
| <ul> <li>between channels and<br/>backplane bus</li> </ul> | Yes                                                                          |
| <ul> <li>between the channels</li> </ul>                   | Yes                                                                          |
| in groups of                                               | 8                                                                            |
| Permiss. potential differences                             |                                                                              |
| <ul> <li>between different circuits</li> </ul>             | 75 VDC                                                                       |
| <ul> <li>Insulation tested with</li> </ul>                 | 60 VAC<br>500 VDC                                                            |
|                                                            | 300 VDC                                                                      |
| Current drawn                                              | may 20 m 1                                                                   |
| • from backplane bus                                       | max. 80 mA                                                                   |
| • from L+ (without load)                                   | max. 120 mA                                                                  |
| Module power losses                                        | typ. 4.9 W                                                                   |
| Status, Interrupts, Diagnostics                            |                                                                              |
| Status display                                             | Green LED per channel                                                        |
| Interrupts                                                 | None                                                                         |
| Diagnostics functions                                      | None                                                                         |

| Actuator Selection Data                                                                                                    |                                                        |  |  |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| Output voltage                                                                                                             |                                                        |  |  |
| <ul><li>at "1" signal</li></ul>                                                                                            | min. L + (– 0.8 V)                                     |  |  |
| Output current  at "1" signal Rated value Permiss. range  at "0" signal                                                    | 0.5 A<br>5 mA to 0.6 A                                 |  |  |
| Residual current                                                                                                           | max. 0.5 mA                                            |  |  |
| Load impedance                                                                                                             | 48 $\Omega$ to 4 k $\Omega$                            |  |  |
| Lamp load                                                                                                                  | max. 5 W                                               |  |  |
| <ul> <li>Parallel connection of 2 outputs</li> <li>for redundant actuation of a load</li> <li>to increase power</li> </ul> | Possible (only outputs of the same group) Not possible |  |  |
| Actuation of digital input                                                                                                 | Possible                                               |  |  |
| <ul> <li>Switching frequency</li> <li>Resistive loads</li> <li>Inductive loads<br/>to IEC 947-5-1, DC 13</li> </ul>        | max. 100 Hz<br>max. 0.5 Hz                             |  |  |
| Lamp loads                                                                                                                 | max. 10 Hz                                             |  |  |
| Voltage limited on circuit interruption reduced (internally) to                                                            | typ. L + (– 48 V)                                      |  |  |
| Short-circuit protection of output                                                                                         | Yes, electronic                                        |  |  |
| <ul> <li>Response threshold</li> </ul>                                                                                     | 1 A, typ.                                              |  |  |

# 3.2.3 Digital Output Module SM 322; DO 8 $\times$ 24 VDC/0.5 A; with Diagnostics Interrupt

#### Order No.

6ES7 322-8BF00-0AB0

#### **Characteristics**

The digital output module SM 322; DO  $8 \times 24$  VDC/0.5 A; with diagnostics interrupt has the following salient features:

- 8 output points, isolated in groups of 8
- 0.5 A output current
- 24 VDC rated load voltage
- Suitable for solenoid valves, DC contactors and signal lights
- · 2 terminals per output
  - Output without series diode
  - Output with series diode (for redundant load control)
- Configurable diagnostics
- · Configurable diagnostics interrupt
- Configurable substitute value output
- Group fault LED
- · Channel-specific status and error LEDs

#### Use in

This I/O modules can be used in the

S7-300 (centralized configuration) with the CPU
 312 IFM from 6ES7 312-5AC00-0AB0, revision level 5

| 012 II IVI | Hom ded 312 3Addo dAbo, revision level 3    |
|------------|---------------------------------------------|
| 313        | from 6ES7 313-1AD00-0AB0, revision level 3  |
| 314        | from 6ES7 314-1AE01-0AB0, revision level 6  |
| 314 IFM    | from 6ES7 314-5AE00-0AB0, revision level 1  |
| 315        | from 6ES7 315-1AF00-0AB0, revision level 3  |
| 315-2      | from 6ES7 315-2AF00-0AB0, revision level 3  |
| 614        | from 6ES7 614-1AH01-0AB3, revision level 6. |

ET 200M with the

IM 153-1 from 6ES7 153-1AA02-0XB0, revision level 1 IM 153-2 from 6ES7 153-2Ax00-0XB0, revision level 1 IM 153-3 from 6ES7 153-3AA00-0XB0, revision level 1 and with the following **DP masters**:
IM 308C from 6ES5 308-3UC11, revision level 3, and CPUs 41x from 6ES7 41x-2XG00-0AB0; revision level 2.

Figure 3-11 shows the terminal connection diagram and block diagram of the digital output module SM 322; DO  $8 \times 24$  VDC/0.5 A; with diagnostics interrupt.

You will find the block diagram and the detailed technical specifications for the SM 322; DO 8  $\times$  24 VDC/0.5 A with diagnostics interrupt on the following pages.



Figure 3-11 Terminal Connection Diagram and Block Diagram of Digital Output Module SM 322; DO 8×24 VDC/0.5 A; with Diagnostics Interrupt

## **Block Diagram**

Figure 3-12 shows the block diagram of the SM 322; DO  $8 \times 24$  VDC/0.5 A; with diagnostics interrupt.



Figure 3-12 Block Diagram of Digital Input Module SM 322; DO 8×24 VDC/0.5 A; with Diagnostics Interrupt

## **Redundant Output Signals**

The output with series diode can be used for the redundant control of an actuator. The redundant control can be triggered by two different modules without an external circuit. Both signal modules must have the same reference potential M.

#### Note

If the output with series diode is used, external P connections cannot be detected.

| Dimensions and Weight                                                                         |                                              | Status, Interrupts, Diagnostics                                 | 3                                          |
|-----------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|
| Dimensions                                                                                    | $40 \times 125 \times 120 \text{ mm}$        | Status display                                                  | Green LED per channel                      |
| $W \times H \times D$                                                                         | $(1.56 \times 4.88 \times 4.68 \text{ in.})$ | Interrupts                                                      |                                            |
| Weight                                                                                        | approx. 210 g                                | Diagnostics interrupts                                          | Configurable                               |
| Module-Specific Data                                                                          |                                              | Diagnostics functions                                           | Configurable                               |
| Number of output points                                                                       | 8                                            | Group fault display (SF)                                        | Red LED (SF)                               |
| Length of cable  Unshielded                                                                   | mov 600m (654 vd.)                           | Channel fault display (F)                                       | Red LED (F) per<br>channel                 |
| Shielded                                                                                      | max. 600m (654 yd.)<br>max. 1000m (1090 yd)  | Diagnostics information                                         | Possible                                   |
|                                                                                               |                                              | readable                                                        | . 666.6.6                                  |
| Voltages, Currents, Potentials                                                                |                                              | Actuator Selection Data                                         |                                            |
| Rated load voltage L +                                                                        | 24 VDC                                       | Output voltage                                                  |                                            |
| <ul> <li>Reverse polarity protection</li> </ul>                                               | Yes                                          | • at "1" signal                                                 |                                            |
| Total current of the outputs without series diode (per group)                                 |                                              | Output without series diode at "1" signal                       | min. L + (- 0.8 V)                         |
| <ul> <li>horizontal installation<br/>up to 40 °C / 104 °F<br/>up to 60 °C / 140 °F</li> </ul> | max. 4 A<br>max. 3 A                         | Output with series diode at<br>"1" signal                       | min. L + (– 1.6 V)                         |
| vertical installation                                                                         | IIIax. 5 A                                   | Output current                                                  |                                            |
| up to 40 °C / 104 °F                                                                          | max. 4 A                                     | at "1" signal     Rated value                                   | 0.5 A                                      |
| Total current of the outputs                                                                  |                                              | Permiss. range                                                  | 10 mA to 0.6 A                             |
| with series diode (per group)                                                                 |                                              | at "0" signal                                                   |                                            |
| <ul> <li>horizontal installation</li> </ul>                                                   |                                              | (Residual current)                                              | max. 0.5 mA                                |
| up to 20 °C / 68 °F<br>up to 40 °C / 104 °F                                                   | max. 4A                                      | Output delay with resistive load                                |                                            |
| up to 60 °C / 140 °F                                                                          | max. 3 A<br>max. 2 A                         | • from "0" to "1"                                               | max. 180 μs                                |
| vertical installation                                                                         |                                              | • from "1" to "0"                                               | max. 245 μs                                |
| up to 40 $^{\circ}$ C / 104 $^{\circ}$ F                                                      | max. 3 A                                     | Load impedance                                                  | 48 $\Omega$ to 3 k $\Omega$                |
| Galvanic isolation                                                                            |                                              | Lamp load                                                       | max. 5 W                                   |
| <ul> <li>between channels and<br/>backplane bus</li> </ul>                                    | Yes                                          | Parallel connection of 2 outputs                                | 0                                          |
| <ul> <li>between the channels</li> </ul>                                                      | No                                           | <ul> <li>for redundant actuation of a load</li> </ul>           | Output with series diode only, must have   |
| Permiss. potential differences                                                                |                                              | .544                                                            | the same reference                         |
| <ul> <li>between different circuits</li> </ul>                                                | 75 VDC                                       |                                                                 | potential                                  |
|                                                                                               | 60 VAC                                       | for power increase                                              | Not possible                               |
| Insulation tested with  Current drawn                                                         | 500 VDC                                      | Actuationof digital input                                       | Poss., 1 binary input to IEC 1131 2 type 2 |
| from backplane bus                                                                            | max. 70 mA                                   | Switching frequency                                             | 10 120 1101 2 typo 2                       |
|                                                                                               | max. 90 mA                                   | Resistive load                                                  | max. 100 Hz                                |
| <ul> <li>from load voltage L+<br/>(without load)</li> </ul>                                   | max. 30 mA                                   | Resistive load     Inductive load to IEC                        | max. 2 Hz                                  |
| Module power losses                                                                           | typ. 5 W                                     | 947-5-1, DC 13                                                  |                                            |
|                                                                                               |                                              | Lamp load                                                       | max. 10 Hz                                 |
|                                                                                               |                                              | Voltage limited on circuit interruption reduced (internally) to | typ. L + (– 45 V)                          |
|                                                                                               |                                              | Short-circuit protection of output                              | Yes, electronic                            |
|                                                                                               |                                              | Response threshold                                              | 0.75 to 1.5 A                              |

## **Setting the Parameters**

You set the parameters for the SM 322; DO 8  $\times$  24 VDC/0.5 A with diagnostics interrupt using *STEP 7*. Table 3-9 indicates the digital output module parameters that can be set. You must enter the settings when the CPU is in the STOP state. The parameters are transferred from the programming device to the CPU of the S7-300 and stored there. These parameters are passed by the CPU to the digital module.

You can also change some of the parameters in the user program with the SFC 55 (see Reference Manual *System and Standard Functions*).

According to the two alternative ways of setting the parameters, they are divided into:

- Static parameters
- · Dynamic parameters

Table 3-8 below describes the properties of the static and dynamic parameters.

Table 3-8 Static and Dynamic Parameters of the SM 322; DO 8  $\times$  24 VDC/0.5 A with Diagnostics Interrupt

| Parameter | Settable with           | Operating State of the CPU |
|-----------|-------------------------|----------------------------|
| Static    | Programming device      | STOP                       |
| Dynamic   | Programming device STOP |                            |
|           | SFC 55 in user program  | RUN                        |

#### **Default Settings**

The SM 322; DO 8  $\times$  24 VDC/0.5 A with diagnostics interrupt has the following default settings for diagnostics, substitute values, etc. (see Table 3-9).

These default settings are active if you have not set any parameters with STEP 7.

## **Parameter Assignment**

With the SM 322; DO  $8 \times$  DC 24V/0.5 A; using diagnostics interrupts you can configure each output individually.

## **Parameters of the Digital Output Module**

Table 3-9 provides an overview of the parameters of the SM 322; DO 8  $\times$  24 VDC/0.5 A with diagnostics interrupt and shows which parameters

- are static or dynamic, and which
- can be set for the complete module or individual channels.

Table 3-9 Parameters of the SM 322; DO 8 × 24 VDC/0.5 A with Diagnostics Interrupt

| Parameter                                                                                          | SM 322; DO 8×24 VDC/0.5A; with Diagnostics Interrupt |         |         |         |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------|---------|---------|---------|
|                                                                                                    | Value Range                                          | Default | Туре    | Scope   |
| Enable                                                                                             |                                                      |         |         |         |
| Diagnostics interrupt                                                                              | Yes/no                                               | No      | Dynamic | Module  |
| Response on CPU STOP                                                                               |                                                      |         |         |         |
| Hold last value (LWH)                                                                              | Yes/no                                               | No      | Dynamic | Module  |
| Substitute a value (EWS)                                                                           | Yes/no                                               | No      | Dynamic | Module  |
| Substitute value                                                                                   | 0/1                                                  | 0       | Dynamic | Module  |
| Group diagnostics                                                                                  | Yes/no                                               | No      | Static  | Channel |
| (Test for: Short circuit to M Short circuit to L+ Wire break <sup>1</sup> Missing load voltage L+) |                                                      |         |         |         |

<sup>1</sup> If the wire break diagnostics enable parameter is not set, the channel fault error LEDs do not indicate a fault on a wire break.

## **Diagnostics**

With the diagnostics feature you can determine if errors occur on signal output.

## **Configuration of Diagnostics**

Use STEP 7 to set the diagnostics parameters.

#### **Diagnostics Evaluation**

For the diagnostics evaluation, a distinction has to be made between configurable and non-configurable diagnostics messages. In the event of a configurable diagnostics message (for example M short-circuit), the diagnostics message is output only if diagnostics evaluation has been enabled (in parameter "diagnostics short-circuit to M").

In the event of a non-configurable diagnostics message, the diagnostics message is always output, irrepespective of the parameter settings.

#### SF-LED

Output of a diagnostics message triggers a diagnostics interrupt only if the diagnostics interrupt has been enabled in the relevant parameter.

Irrespective of the parameter configuration, the group fault (SF) LED or the relevant channel error LED will light up if module errors have been detected, independent of the operating state of the CPU (POWER ON).

Exception: A wire break only results in the group error LED or relevant channel error LED lighting up if the parameters have been set accordingly.

## **Diagnostics of Digital Ouput Module**

Table 3-10 provides you with an overview of the diagnostics messages of the SM 322; DO  $8 \times 24 \text{VDC}/0.5$  A with diagnostics interrupt. You enable the diagnostics parameters in *STEP 7* (see Table 3-9).

The diagnostics information is assigned either to the individual channels or to the module as a whole.

Table 3-10 Diagnostics Messages of the SM 322; DO  $8 \times 24$  VDC/0.5 A; with Diagnostics Interrupt

| Diagnostics Message              | Scope of Diagnostics | Configurable |  |
|----------------------------------|----------------------|--------------|--|
| Short-circuit to M               |                      |              |  |
| Short-circuit to P               |                      | .,           |  |
| Wire break                       | Channel              | Yes          |  |
| Load voltage missing             |                      |              |  |
| External auxiliary power missing |                      |              |  |
| Internal auxiliary power missing |                      | No           |  |
| Fuse blown                       | Module               |              |  |
| Watchdog timeout                 | Module               | INO          |  |
| EPROM error                      |                      |              |  |
| RAM error                        |                      |              |  |

#### **Wire Break Detection**

Wire break detection is at a current of < 1mA.

#### **Diagnostics Message Read-Out**

You can read out the system diagnostics with *STEP 7*. Detailed diagnostics messages can be read out from the module in the user program with the SFC 59 (see Appendix B and Reference Manual *System and Standard Functions*).

## **Error Causes and Error Correction**

In the following table the possible error causes, conditions for error detection and measures for error correction are listed for the individual diagnostics messages.

Please note that the module must be configured so that it can detect the errors for which configurable diagnostics messages are output.

Table 3-11 Diagnostics Messages, Error Causes and Error Correction

| Diagnostics<br>Message           | Error<br>Detection      | Possible Error Cause                           | Remedy                                                               |
|----------------------------------|-------------------------|------------------------------------------------|----------------------------------------------------------------------|
| Short-circuit to P               | Always                  | Short-circuit at output to L+ of module supply | Eliminate short-circuit                                              |
| Short circuit to M               | Only with               | Overload of output                             | Eliminate overload                                                   |
|                                  | output to "1"           | Short-circuit of output to M                   | Eliminate short-circuit                                              |
| Wire break                       | Only with output to "1" | Open circuit between module and actuator       | Establish wire connection                                            |
|                                  |                         | Channel not used (open)                        | Disable for the channel by setting parameter "diagnostics wirebreak" |
| Load voltage missing             | Only with output to "1" | Defective output                               | Replace module                                                       |
| External auxiliary power missing | Always                  | Power supply L+ to module missing              | Feed supply L+                                                       |
| Internal auxiliary power missing | Always                  | Power supply L+ to module missing              | Feed supply L+                                                       |
|                                  |                         | Fuse in module defective                       | Replace module                                                       |
| Fuse blown                       | Always                  | Fuse in module defective                       | Replace module                                                       |
| Watchdog timeout                 | Always                  | Temporary high electromagnetic interferences   | Eliminate interferences                                              |
|                                  |                         | Module defective                               | Replace module                                                       |
| EPROM error                      | Always                  | Temporary high electromagnetic interferences   | Eliminate interferences and switch on/off power supply of CPU        |
|                                  |                         | Module defective                               | Replace module                                                       |
| RAM error                        | Always                  | Temporary high electromagnetic interferences   | Eliminate interferences and switch on/off power supply of CPU        |
|                                  |                         | Module defective                               | Replace module                                                       |

#### Interrupts

The digital module can trigger a diagnostics interrupt.

#### **Configuring Interrupts**

Use STEP 7 to configure the interrupts.

#### **Default Setting**

The default setting for interrupts is disabled.

### **Diagnostics Interrupt**

If an error (for example, short-circuit to M) is detected or eliminated, the digital module triggers a diagnostics interrupt, provided the diagnostics interrupt is enabled. The CPU interrupts the execution of the user program and processes the diagnostics alarm block (OB 82).

## Impact of the Power Supply and the Operating State

The input values on the SM 322; DO 8  $\times$  24 VDC/0.5 A with diagnostics interrupt depend on the power supply of the digital module and the operating state of the CPU.

Table 3-12 provides you with an overview of these relationships.

Table 3-12 Dependence of the Input Values on the Operating State of the CPU and the Power Supply L+ of the SM 322; DO 8  $\times$  24 VDC/0.5 A with Diagnostics Interrupt

| CPU Operating State |      | Power Supply L+<br>to Digital Module | Output Value<br>of Digital Module                |
|---------------------|------|--------------------------------------|--------------------------------------------------|
| POWER ON            | RUN  | L+ exists                            | CPU value                                        |
|                     |      | L+ missing                           | 0 signal                                         |
|                     | STOP | L+ exists                            | Substitute value / last value (0 signal default) |
|                     |      | L+ missing                           | 0 signal                                         |
| POWER OFF           | _    | L+ exists                            | 0 signal                                         |
|                     |      | L+ missing                           | 0 signal                                         |

A failure in the power supply to the SM 322; DO 8  $\times$  24 VDC/0.5 A with diagnostics interrupt is always indicated by the group fault LED on the front panel of the module, and is also entered in the diagnostics log.

The initiation of a diagnostics interrupt depends on the parameters.

# 3.2.4 Digital Output Module SM 322; DO 8 $\times$ 24 VDC/2 A

#### Order No.

322-1BF01-0AA0

#### **Characteristics**

The digital output module SM 322; DO 8  $\times$  24VDC/2 A has the following salient features.

- 8 output points, isolated in groups of 4
- 2 A output current
- 24 VDC rated load voltage
- · Suitable for solenoid valves, DC contactors and indicator lights.

## **Special Feature**

When the power supply is switched on via a mechanical contact, the digital output module SM 322; DO 8  $\times$  24 VDC/2 A sends a "1" signal to its outputs for approximately 50  $\mu$ s. You must observe this when using the digital output module SM 322; DO 8  $\times$  24 VDC/2 A for high-speed counters!

Figure 3-13 shows the terminal connection diagram and block diagram of the module SM 322; DO 8  $\times$  24 VDC/2 A.

You will find the detailed technical specifications of the module SM 322; DO 8  $\times$  24 VDC/2 A on the following page.



Figure 3-13 Module View and Block Diagram of Digital Output Module SM 322; DO 8 imes 24 VDC/2 A

| Dimensions and Weight                                                                                                               |                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| $\begin{array}{l} \text{Dimensions} \\ \text{W}  \times  \text{H}  \times  \text{D} \end{array}$                                    | $40 \times 125 \times 120$ mm (1.56 $\times$ 4.88 $\times$ 4.68 in.) |
| Weight                                                                                                                              | approx. 190 g<br>(6.65 oz.)                                          |
| Module-Specific Data                                                                                                                |                                                                      |
| Number of output points                                                                                                             | 8                                                                    |
| Length of cable                                                                                                                     |                                                                      |
| <ul> <li>Unshielded</li> </ul>                                                                                                      | max. 600 m (654 yd.)                                                 |
| <ul> <li>Shielded</li> </ul>                                                                                                        | max. 1000 m (1090 yd.)                                               |
| Voltages, Currents, Potentials                                                                                                      |                                                                      |
| Rated load voltage L +                                                                                                              | 24 VDC                                                               |
| Total current of the outputs (per group)  • horizontal installation up to 20 °C / 68°F up to 60 °C / 140°F  • vertical installation | max. 6 A<br>max. 4 A                                                 |
| up to 40 °C / 104°F                                                                                                                 | max. 4 A                                                             |
| Galvanic isolation                                                                                                                  |                                                                      |
| <ul> <li>between channels and<br/>backplane bus</li> </ul>                                                                          | Yes                                                                  |
| <ul> <li>between the channels</li> </ul>                                                                                            | Yes                                                                  |
| in groups of                                                                                                                        | 4                                                                    |
| Permiss. potential differences  • between different circuits                                                                        | 75 VDC<br>60 VAC                                                     |
| Insulation tested with                                                                                                              | 500 VDC                                                              |
| Current drawn                                                                                                                       |                                                                      |
| <ul> <li>from backplane bus</li> </ul>                                                                                              | max. 40 mA                                                           |
| <ul> <li>from load voltage L+<br/>(without load)</li> </ul>                                                                         | max. 60 mA                                                           |
| Module power losses                                                                                                                 | typ. 6.8 W                                                           |
| Status, Interrupts, Diagnostics                                                                                                     | 5                                                                    |
| Status display                                                                                                                      | Green LED per channel                                                |
| Interrupts                                                                                                                          | None                                                                 |
| Diagnostics functions                                                                                                               | None                                                                 |

| Actuator Selection Data                                                        |                                           |  |  |  |
|--------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
| Output voltage                                                                 |                                           |  |  |  |
| • at "1" signal                                                                | min. L + – 0.8 V                          |  |  |  |
| Output current                                                                 |                                           |  |  |  |
| <ul> <li>at "1" signal</li> <li>Rated value</li> <li>Permiss. range</li> </ul> | 2 A<br>5 mA to 2.4 A                      |  |  |  |
| at "0" signal     Residual current                                             | max. 0.5 mA                               |  |  |  |
| Load impedance range                                                           | 12 $\Omega$ to 4 k $\Omega$               |  |  |  |
| Lamp load                                                                      | max. 10 W                                 |  |  |  |
| Parallel connection of 2 outputs                                               |                                           |  |  |  |
| for redundant actuation of a load                                              | Possible (only outputs of the same group) |  |  |  |
| to increase power                                                              | Not possible                              |  |  |  |
| Actuation of digital input                                                     | Possible                                  |  |  |  |
| Switching frequency                                                            |                                           |  |  |  |
| Resistive loads                                                                | max. 100 Hz                               |  |  |  |
| <ul> <li>Inductive loads<br/>to IEC 947-5-1, DC 13</li> </ul>                  | max. 0.5 Hz                               |  |  |  |
| Lamp loads                                                                     | max. 10 Hz                                |  |  |  |
| Voltage induced on circuit interruption limited (internally) to                | typ. L + – 48 V                           |  |  |  |
| Short-circuit protection of output                                             | Yes, electronic                           |  |  |  |
| Response threshold                                                             | typ. 3 A                                  |  |  |  |

# 3.2.5 Digital Output Module SM 322; DO 16 imes 120 VAC/1 A

#### Order No.

6ES7 322-1EH01-0AA0

## **Characteristics**

The digital output module SM 322; DO 16  $\times$  120 VAC/1 A has the following salient features:

- 16 output points, fused and isolated in groups of 8
- 1 A output current
- 120 VAC rated load voltage
- Suitable for AC solenoid valves, contactors, motor starters, fractional h.p. motors and indicator lights.

Figure 3-14 shows the terminal connection diagram and block diagram of the digital output module SM 322; DO 16 imes 120 VAC/1 A.

You will find the detailed technical specifications of the module SM 322; DO 16  $\times$  120 VAC/1 A on the following page.



Figure 3-14 Module View and Block Diagram of Digital Output Module SM 322; DO 16 imes 120 VAC/1 A

| Dimensions and Weight                                                                        |                                                                      | Ad         | ctuator Selection Data                        |                                           |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------|-----------------------------------------------|-------------------------------------------|
| $\begin{array}{l} \text{Dimensions} \\ \text{W} \times \text{H} \times \text{D} \end{array}$ | $40 \times 125 \times 120$ mm (1.56 $\times$ 4.88 $\times$ 4.68 in.) | •          | utput voltage<br>at "1" signal                | min. L1 (– 8.5 V)                         |
| Weight                                                                                       | approx. 300 g<br>(10.5 oz.)                                          | •          | utput current<br>at "1" signal<br>Rated value |                                           |
| Module-Specific Data                                                                         |                                                                      |            | Permiss. current for                          | 1 A<br>10 mA to 1 A                       |
| Number of output points                                                                      | 16                                                                   |            | 0 °C to 40 °C<br>Permiss. current for         | 10 mA to 0.5 A                            |
| Length of cable                                                                              |                                                                      |            | 40 °C to 60 °C<br>Permiss. surge current      |                                           |
| <ul> <li>Unshielded</li> </ul>                                                               | max. 600 m (654 yd.)                                                 |            | (per group)                                   | max. 10 A<br>(with 2 half waves)          |
| • Shielded                                                                                   | max. 1000 m (1090 yd.)                                               | •          | at "0" signal                                 | max. 1 mA                                 |
| Voltages, Currents, Potentials                                                               | 3                                                                    |            | (Residual current)                            |                                           |
| Load voltage L1                                                                              | 120 VAC                                                              | Ze         | ero cross inhibit voltage                     | Non-zero cross outputs                    |
| Total current of the outputs (per group)                                                     |                                                                      |            | ze of motor starter                           | max. size 3 to NEMA                       |
| <ul> <li>horizontal installation</li> </ul>                                                  |                                                                      |            | mp load                                       | max. 25 W                                 |
| up to 40 °C / 104°F                                                                          | max. 4 A                                                             | Pa         | arallel connection of 2 outputs               |                                           |
| up to 60 °C / 140°F  • vertical installation up to 40 °C / 104°F                             | max. 2 A                                                             | •          | for redundant actuation of a load             | Possible (only outputs of the same group) |
| •                                                                                            | IIIax. 2 A                                                           | •          | to increase power                             | Not possible                              |
| Galvanic isolation     between channels and                                                  | Yes                                                                  | Ac         | tuation of a digital input                    | Possible                                  |
| backplane bus                                                                                | 165                                                                  |            | ax. switching frequency                       |                                           |
| <ul> <li>between the channels</li> </ul>                                                     | Yes                                                                  | •          | Resistive loads                               | max. 10 Hz                                |
| in groups of                                                                                 | 8                                                                    | •          | Inductive loads, to IEC                       | max. 0.5 Hz                               |
| Permiss. potential differences                                                               |                                                                      |            | 947–5–1, AC 15                                |                                           |
| <ul> <li>between M<sub>internal</sub> and the<br/>outputs</li> </ul>                         | 120 VAC                                                              | Sh         | Lamp loads nort-circuit protection of output  | 1 Hz<br>8 A fuse, 250 V; per              |
| <ul> <li>between the outputs of<br/>different groups</li> </ul>                              | 250 VAC                                                              | •          | Min. current required for fuse to blow        | group<br>min. 40 A                        |
| land detinate and with                                                                       | 4500 \/A C                                                           | •          | Max. response time                            | max. 300 ms                               |
| Insulation tested with                                                                       | 1500 VAC                                                             | Sp         | pare fuses                                    | 8 A fuse/quick-acting                     |
| Current drawn                                                                                |                                                                      | •          | Wickmann                                      | 19 194-8 A                                |
| from backplane bus     from load voltage I 1                                                 | max. 184 mA                                                          | •          | Schurter                                      | SP001.1013                                |
| <ul> <li>from load voltage L1<br/>(without load)</li> </ul>                                  | max. 3 mA                                                            | •          | Littlefuse                                    | 217.008                                   |
| Module power losses                                                                          | typ. max. 9 W                                                        | Fu         | se holder                                     | 10.653                                    |
| Status, Interrupts, Diagnostic                                                               | s                                                                    | <b>  L</b> | Wickmann                                      | 19 653                                    |
| Status display                                                                               | Green LED per channel                                                |            |                                               |                                           |
| Interrupts                                                                                   | None                                                                 |            |                                               |                                           |
| Diagnostics functions                                                                        |                                                                      |            |                                               |                                           |
| <ul> <li>Group fault display on the<br/>module (fuse or no L1/N)</li> </ul>                  | Red LED (SF)                                                         |            |                                               |                                           |
|                                                                                              |                                                                      | •          |                                               |                                           |

# 3.2.6 Digital Output Module SM 322; DO 8 imes 120/230 VAC/2 A

#### Order No.

6ES7 322-1FF01-0AA0

#### **Characteristics**

The digital output module SM 322; DO 8  $\times$  120/230 VAC/2 A has the following salient features:

- 8 output points, fused and isolated in groups of 4
- 2 A output current
- 120/230 VAC rated load voltage
- Suitable for AC solenoid valves, contactors, motor starters, fractional h.p. motors and lamps indicator lights.

Figure 3-15 shows the terminal connection diagram and block diagram of the module SM 322; DO 8  $\times$  120/230 VAC/2 A.

You will find the detailed technical specifications of the module SM 322; DO 8  $\times$  120/230 VAC/2 A on the following page.



Figure 3-15 Module View and Block Diagram of the Digital Output Module SM 322; DO 8  $\times$  AC 120/230 V/2 A

| Dimensions and Weight                                                       |                                                  |
|-----------------------------------------------------------------------------|--------------------------------------------------|
| Dimensions $W \times H \times D$                                            | 40 × 125 × 120 mm<br>(1.56 × 4.88 ×<br>4.68 in.) |
| Weight                                                                      | approx. 275 g<br>(9.63 oz.)                      |
| Module-Specific Data                                                        |                                                  |
| Number of output points                                                     | 8                                                |
| Length of cable                                                             |                                                  |
| <ul> <li>Unshielded</li> </ul>                                              | max. 600 m (654 yd.)                             |
| • Shielded                                                                  | max. 1000 m (1090 yd.)                           |
| Voltages, Currents, Potentials                                              | ;                                                |
| Rated load voltage L1                                                       | 120/230 VAC                                      |
| Total current of the outputs (per group)                                    |                                                  |
| <ul> <li>horizontal installation<br/>up to 40 °C / 104°F</li> </ul>         | max. 4 A                                         |
| up to 60 °C / 140°F                                                         | max. 2 A                                         |
| <ul> <li>vertical installation<br/>up to 40 °C / 104°F</li> </ul>           | max. 2 A                                         |
| Galvanic isolation                                                          |                                                  |
| <ul> <li>between channels and<br/>backplane bus</li> </ul>                  | Yes                                              |
| <ul> <li>between the channels</li> </ul>                                    | Yes                                              |
| in groups of                                                                | 4                                                |
| Permiss. potential differences                                              |                                                  |
| <ul> <li>between M<sub>internal</sub> and the<br/>outputs</li> </ul>        | 230 VAC                                          |
| <ul> <li>between the outputs of different groups</li> </ul>                 | 500 VAC                                          |
| Insulation tested with                                                      | 1500 VAC                                         |
| Current drawn                                                               |                                                  |
| <ul> <li>from backplane bus</li> </ul>                                      | max. 100 mA                                      |
| <ul> <li>from load voltage L1<br/>(without load)</li> </ul>                 | max. 2 mA                                        |
| Module power losses                                                         | typ. 8.6 W                                       |
| Status, Interrupts, Diagnostic                                              | s                                                |
| Status display                                                              | Green LED per channel                            |
| Interrupts                                                                  | None                                             |
| Diagnostics functions                                                       |                                                  |
| <ul> <li>Group fault display on the<br/>module (fuse or no L1/N)</li> </ul> | Red LED (SF)                                     |

| Actuator Selection Data                                                                                                                                              |                                                                                      |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
| Output voltage                                                                                                                                                       |                                                                                      |  |  |  |
| • at "1" signal                                                                                                                                                      | min. L1 (– 8.5 V)                                                                    |  |  |  |
| Output current                                                                                                                                                       |                                                                                      |  |  |  |
| at "1" signal Rated value Permiss. current for 0 °C to 40 °C Permiss. current for 40 °C to 60 °C Permiss. surge current (per group) at "0" signal (Residual current) | 2 A<br>10 mA to 2 A<br>10 mA to 1 A<br>max. 20 A<br>(with 2 half waves)<br>max. 2 mA |  |  |  |
| Zero cross inhibit voltage                                                                                                                                           | max. 60 V                                                                            |  |  |  |
| Size of motor starter                                                                                                                                                | max. size 5 to NEMA                                                                  |  |  |  |
| Lamp load                                                                                                                                                            | max. 50 W                                                                            |  |  |  |
| Parallel connection of 2 outputs                                                                                                                                     |                                                                                      |  |  |  |
| for redundant actuation of a load                                                                                                                                    | Possible (only outputs of the same group)                                            |  |  |  |
| to increase power                                                                                                                                                    | Not possible                                                                         |  |  |  |
| Actuation of digital input                                                                                                                                           | Possible                                                                             |  |  |  |
| Switching frequency  Resistive loads  Inductive loads to IEC 947–5–1, AC 15                                                                                          | max. 10 Hz<br>max. 0.5 Hz                                                            |  |  |  |
| Lamp loads                                                                                                                                                           | max. 1 Hz                                                                            |  |  |  |
| Short-circuit protection of output     Min. current required for fuse to blow     Max. response time                                                                 | 8 A fuse, 250 V; per<br>group<br>min. 40 A<br>max. 300 ms                            |  |  |  |
| Spare fuses  Wickmann  Schurter  Littlefuse                                                                                                                          | 8 A fuse/ quick-acting<br>19 194-8 A<br>SP001.1013<br>217.008                        |  |  |  |
| Fuse holder                                                                                                                                                          |                                                                                      |  |  |  |
| Wickmann                                                                                                                                                             | 19 653                                                                               |  |  |  |

# 3.2.7 Digital Output Module SM 322; D0 32 imes 120 VAC/1.0 A

#### Order No.

6ES7 322-1EL00-0AA0

## **Characteristics**

The digital output module, SM 322; DO 32  $\times$  120 VAC/1.0 A has the following salient features:

- 32 output points, fused and isolated in groups of 8
- 1.0 A output current
- 120 VAC rated load voltage
- Blown fuse indicator for each group
- Suitable for AC solenoid valves, contactors, motor starters, fractional h.p. motors and indicator lights

Figure 3-16 shows the terminal connection diagram and block diagram of the digital output module SM 322; D0 32 imes 120 VAC/1.0 A.

You will find the detailed technical specifications of the module SM 322; D0 32  $\times$  120 VAC/1.0 A on the following page.



Figure 3-16 Terminal Connection Diagram and Block Diagram of Digital Output Module SM 322; D0 32  $\times$  120 VAC/1.0 A

| Dimensions and Weight                                                                    |                                       | Status, Interrupts, Diagnostics    | 3                                          |
|------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------|--------------------------------------------|
| Dimensions<br>W×H×D                                                                      | 80×125×120 mm<br>(3.15×4.88×4.68 in.) | Status display                     | Yes; green LED per channel                 |
| Weight                                                                                   | approx. 500 g                         | Interrupts                         | No                                         |
| Madala Ossadii a Data                                                                    | (19.3 oz.)                            | Diagnostics functions              | Yes                                        |
| Module-Specific Data                                                                     |                                       | Group fault display on the         | Yes                                        |
| Number of output points                                                                  | 32                                    | module (fuse)                      |                                            |
| Length of cable                                                                          |                                       | Actuator Selection Data            |                                            |
| <ul> <li>Unshielded</li> </ul>                                                           | max. 600 m (654 yd.)                  | Output voltage                     |                                            |
| Shielded                                                                                 | max. 1000 m<br>(1090 yd.)             | At "1" signal  Output current      | L1 – 1.5 V                                 |
| Voltages, Currents, Potentials                                                           |                                       | At "1" signal                      |                                            |
| Rated load voltage L1                                                                    | 120 VAC                               | Rated current Min. current         | 1 A<br>10 mA                               |
| Total current of the outputs (per group)                                                 |                                       | Permiss. surge current (per group) | max. 10 A<br>(with 2 half waves)           |
| <ul> <li>Horizontal installation<br/>up to 20° C/68° F<br/>up to 60° C/140° F</li> </ul> | max. 6 A                              | At "0" signal     Residual current | max. 3 mA                                  |
| Vertical installation                                                                    | max. 3 A                              | Zero cross inhibit voltage         | Non-zero cross outputs                     |
| up to 40 °C/104 °F                                                                       | max. 4 A                              | Size of motor starter              | max. size 4 to NEMA                        |
| Galvanic isolation                                                                       |                                       | Output power                       |                                            |
| To backplane bus                                                                         | Yes                                   | Lamp load                          | max. 25 W                                  |
| Between the channels<br>in groups of                                                     | Yes<br>8                              | Parallel connection of 2 outputs   |                                            |
| Permiss. potential differences                                                           |                                       | For logic operations               | Possible (only outputs of the same group)  |
| <ul> <li>Between the L1 terminals of<br/>the groups</li> </ul>                           | 250 VAC                               | To increase power                  | Not possible                               |
| Between the input                                                                        | 120 VAC                               | Driving of digital input           | Possible                                   |
| (L1 terminal) and the central grounding point                                            |                                       | Max. switching frequency           |                                            |
| Insulation tested with                                                                   | 1500 VAC                              | Resistive loads                    | max. 10 Hz                                 |
|                                                                                          |                                       | Inductive loads                    | max. 0.5 Hz                                |
| Current drawn                                                                            | 400 4                                 | Lamp loads                         | 1 Hz                                       |
| <ul><li>From backplane bus</li><li>From L1 (without load)</li></ul>                      | max. 100 mA<br>max. 275 mA            | Short-circuit protection of output | 7 A fuse, 125 V per group, not replaceable |
| Module power losses                                                                      | typ. max. 25 W                        |                                    | 3, op. accabio                             |

# 3.3 Relay Output Modules

## **List of Relay Output Modules**

The following relay output modules are described in this chapter.

- SM 322; DO 16  $\times$  120 VAC REL.
- SM 322; DO 8 × 230 VAC REL.
- SM 322; DO 8 × 230 VAC/5A REL.

## 3.3.1 Relay Output Module SM 322; DO 16 $\times$ 120 VAC REL.

#### Order No.

6ES7 322-1HH00-0AA0

#### **Characteristics**

The relay output module SM 322; DO 16  $\times$  120 VAC REL. has the following salient features:

- 16 output points, isolated in groups of 8
- Load voltage 24 VDC to 120 VDC, 48 VAC to 120 VAC
- Suitable for AC/DC solenoid valves, contactors, motor starters, fractional h.p. motors and indicator lights.

#### Note

When the power supply is switched off, the capacitor still stores energy for about 200 ms. The relay can therefore still be driven briefly within this time by the user program.

Figure 3-17 shows the terminal connection diagram and block diagram of the module SM 322; DO 16 imes 120 VAC REL.

You will find the detailed technical specifications of the SM 322; DO 16  $\times$  120 VAC REL on the following page.



Figure 3-17 Module View and Block Diagram of Relay Output Module SM 322; DO 16 imes 120 VAC REL.

| Dimensions and Weight                                                          |                                                               | Status, Interrupts, Diagno                                | stics                          |             |  |
|--------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|-------------|--|
| Dimensions                                                                     | 40 × 125 × 120 mm                                             |                                                           |                                | nnol        |  |
| W × H × D                                                                      | $40 \times 125 \times 120 \text{ mm}$<br>(1.56×4.88×4.68 in.) | Status display                                            | Green LED p. cha               | aririei     |  |
| Weight                                                                         | approx. 250 g                                                 | Interrupts                                                | None                           |             |  |
| Module-Specific Data                                                           | арргол. 200 у                                                 | Diagnostics functions                                     | None                           |             |  |
|                                                                                | 10                                                            | Actuator Selection Data                                   |                                |             |  |
| Number of output points  Length of cable                                       | 16                                                            | Thermic permanent current                                 | max. 2 A                       |             |  |
| <ul> <li>Unshielded</li> </ul>                                                 | max. 600m (654 yd.)                                           | Switching capacity and serv                               | vice life of the conta         | cts         |  |
| <ul> <li>Shielded</li> </ul>                                                   | max. 1000m (1090 yd)                                          | Resistive load                                            |                                |             |  |
| Voltages, Currents, Poten                                                      | tials                                                         | Voltage                                                   | Current No. of                 | switching   |  |
| Rated supply voltage of                                                        | 24 VDC                                                        | 241170                                                    | cyc. (t                        | yp.)        |  |
| the relay L +                                                                  |                                                               | 24 VDC<br>24 VDC                                          | 2.0 A 0.1 mi                   |             |  |
| Number of outputs that                                                         | 16                                                            | 24 VDC<br>24 VDC                                          | 0.21111                        |             |  |
| can be driven                                                                  |                                                               | 60 VDC                                                    | 0.5 A 1.0 mi<br>0.5 A 0.2 mi   |             |  |
| simultaneously                                                                 |                                                               | 120 VDC                                                   | 0.2 A 0.6 mi                   |             |  |
| Total current of the outputs                                                   | max. 8 A                                                      | 48 VAC                                                    | 1.5 A 1.5 mi                   |             |  |
| (per group)                                                                    | a.ki o / t                                                    | 60 VAC                                                    | 1.5 A 1.5 mi                   |             |  |
| Galvanic isolation                                                             |                                                               | 120 VAC                                                   | 2.0 A 1.0 mi                   |             |  |
|                                                                                |                                                               | 120 VAC                                                   | 1.0 A 1.5 mi                   | I           |  |
| <ul> <li>between channels and<br/>backplane bus</li> </ul>                     | Yes                                                           | 120 VAC                                                   | 0.5 A 2.0 mi                   | II          |  |
| <ul> <li>between the channels</li> </ul>                                       | Yes                                                           | madelive load to IEO 5-                                   | 17-5-1 DC13/AC15               |             |  |
| in groups of Permiss. potential                                                | 8                                                             | Voltage                                                   | cyc. (t                        |             |  |
| differences:                                                                   |                                                               | 24 VDC                                                    | 2.0 A 0.05 m                   |             |  |
|                                                                                | 75 VDC                                                        | 24 VDC                                                    | 1.0 A 0.1 mi                   |             |  |
| <ul> <li>between M<sub>internal</sub> and<br/>supply voltage of the</li> </ul> | 60 VAC                                                        | 24 VDC                                                    | 0.5 A 0.5 mi                   |             |  |
| relays                                                                         | 00 VAC                                                        | 60 VDC                                                    | 0.5 A 0.1 mi<br>0.2 A 0.3 mi   |             |  |
| •                                                                              | 120.1/40                                                      | 120 VDC<br>48 VAC                                         | 0.2 A 0.3 mi<br>1.5 A 1 mill   | II          |  |
| <ul> <li>between M<sub>internal</sub> and<br/>supply voltage of the</li> </ul> | 120 VAC                                                       | 60 VAC                                                    | 1.5 A 1 mill                   |             |  |
| relays and the outputs                                                         |                                                               | 120 VAC                                                   | 2.0 A 0.7 mi                   | II          |  |
|                                                                                | 250.1/4.0                                                     | 120 VAC                                                   | 1.0 A 1.0 mi                   |             |  |
| <ul> <li>between the outputs of<br/>different groups</li> </ul>                | 250 VAC                                                       | 120 VAC                                                   | 0.5 A 1.5 mi                   | II          |  |
| Insultation tested with:                                                       |                                                               | Lamp load                                                 | max. 50 W                      |             |  |
| <ul> <li>between M<sub>internal</sub> and</li> </ul>                           | 500 VDC                                                       | Size of motor starter                                     | max. size 5 to NE              | MA          |  |
| supply voltage of the relays                                                   | 000 120                                                       | You will achieve a longer se suppressor circuit           | rvice life with an ex          | ternal      |  |
| <ul> <li>between M<sub>internal</sub> and<br/>supply voltage of the</li> </ul> | 1500 VAC                                                      | Paral. connection of 2 outputs                            |                                |             |  |
| <ul><li>relays and the outputs</li><li>between the outputs of</li></ul>        | 1500 VAC                                                      | <ul> <li>for redundant<br/>actuation of a load</li> </ul> | Possible (only out same group) | puts of the |  |
| different groups                                                               |                                                               | to increase power                                         | Not possible                   |             |  |
| Current drawn                                                                  |                                                               | Actuation of a digital output                             | Possible                       |             |  |
| <ul> <li>from backplane bus</li> </ul>                                         | max. 100 mA                                                   | Switching frequency                                       |                                |             |  |
| • from supply voltage L+                                                       | max. 250 mA                                                   | Mechanical                                                | max. 10 Hz                     |             |  |
| Module power losses                                                            | typ. 4.5 W                                                    | Resistive loads                                           | max. 1 Hz                      |             |  |
|                                                                                |                                                               | • Inductive loads to IEC 947–5–1,                         | max. 0.5 Hz                    |             |  |
|                                                                                |                                                               | DC 13/AC 15                                               |                                |             |  |

Lamp loads

max. 1 Hz

# 3.3.2 Relay Output Module SM 322; DO 8 $\times$ 230 VAC REL.

#### Order No.

6ES7 322-1HF00-0AA0

#### **Characteristics**

The relay output module SM 322; DO 8  $\times$  230 VAC REL. has the following salient features:

- 8 output points, isolated in groups of 2
- Rated load voltage 24 VDC to 120 VDC, 48VAC to 230VAC
- Suitable for AC/DC solenoid valves, contactors, motor starters, fractional h.p. motors and indicator lights.

#### Note

When the power supply is switched off, the capacitor still stores energy for about 200 ms. The relay can therefore still be driven briefly within this time by the user program.

## **Terminal Connection Diagram and Block Diagram**

Figure 3-18 shows the terminal connection diagram and block diagram of the module SM 322; DO 8  $\times$  230 VAC REL.

You will find the detailed technical specifications of the module SM 322; DO 8  $\times$  230 VAC REL. on the following page.



Figure 3-18 Module View and Block Diagram of Relay Output Module SM 322; DO 8 imes 230 VAC REL.

| Dimensions and Weight                                                         |                                                | Status, Interrupts, Diagr | nostics          |                                         |
|-------------------------------------------------------------------------------|------------------------------------------------|---------------------------|------------------|-----------------------------------------|
| Dimensions<br>W × H × D                                                       | 40 × 125 × 120 mm<br>(1.56 × 4.88 × 4.68 in.)  | Status display            | Green LE         | D per channel                           |
|                                                                               | ,                                              | Interrupts                | None             |                                         |
| Weight                                                                        | approx. 190 g<br>(6.65 oz.)                    | Diagnostics functions     | None             |                                         |
| Module-Specific Data                                                          |                                                | Actuator Selection Data   |                  |                                         |
| Number of output points                                                       | 8                                              | Thermic permanent current | max. 3 A         |                                         |
| Length of cable  Unshielded                                                   | may 600 m (654 vd.)                            | Switching capacity and se | ervice life of t | he contacts                             |
| Shielded                                                                      | max. 600 m (654 yd.)<br>max. 1000 m (1090 yd.) | Resistive load            |                  |                                         |
| Voltages, Currents, Poten                                                     |                                                | Voltage                   | Current          | No. of switching cyc. (typ.)            |
| Rated supply voltage of                                                       | 24 VDC                                         | 24 VDC                    | 2.0 A            | 0.7 mill                                |
| the relay L +                                                                 |                                                | 24 VDC                    | 1.0 A            | 1.6 mill                                |
| Tatal assumant of the costs of                                                |                                                | 24 VDC                    | 0.5 A            | 4.0 mill                                |
| Total current of the outputs                                                  | max. 4 A                                       | 60 VDC                    | 0.5 A            | 1.6 mill                                |
| (per group)                                                                   |                                                | 120 VDC                   | 0.2 A            | 1.6 mill                                |
| Galvanic isolation                                                            |                                                | 48 VAC                    | 2.0 A            | 1.6 mill                                |
|                                                                               |                                                | 60 VAC                    | 2.0 A            | 1.0 mill                                |
| <ul> <li>between channels and</li> </ul>                                      | Yes                                            | 120 VAC                   | 2.0 A            | 0.4 mill                                |
| backplane bus                                                                 |                                                | 120 VAC                   | 1.0 A            | • · · · · · · · · · · · · · · · · · · · |
| <ul> <li>between the channels</li> </ul>                                      | Yes                                            | 120 VAC                   | 0.5 A            | 1.2 mill                                |
| in groups of                                                                  | 2                                              | 230 VAC                   | 2.0 A            | 5.0 mill                                |
| in groups or                                                                  | _                                              | 230 VAC                   | 1.0 A            | 0.2 mill                                |
| Permiss. potential differences:                                               |                                                | 230 VAC                   | 0.5 A            | 0.4 mill<br>1.5 mill                    |
| <ul> <li>between M<sub>internal</sub> and</li> </ul>                          | 75 VDC                                         | Inductive load to IEC:    | 947-5-1 DC1      | 3/AC15                                  |
| supply voltage of the relays                                                  | 60 VAC                                         | Voltage                   | Current          | No. of switching                        |
| <ul> <li>between M<sub>internal</sub> or</li> </ul>                           | 230 VAC                                        |                           |                  | cyc. (typ.)                             |
| supply voltage of the                                                         | <del></del>                                    | 24 VDC                    | 2.0 A            | 0.3 mill.                               |
| relays and the outputs                                                        |                                                | 24 VDC                    | 1.0 A            | 0.5 mill.                               |
| •                                                                             | 400 \/A C                                      | 24 VDC                    | 0.5 A            | 1.0 mill.                               |
| between the outputs of                                                        | 400 VAC                                        | 60 VDC                    | 0.5 A            | 0.5 mill.                               |
| different groups                                                              |                                                | 120 VDC                   | 0.2 A            | 0.5 mill.                               |
|                                                                               |                                                | 48 VAC                    | 1.5 A            | 1 mill.                                 |
| Insulation tested with:                                                       |                                                | 60 VAC                    | 1.5 A            | 1 mill.                                 |
| <ul> <li>between M<sub>internal</sub> and</li> </ul>                          | 500 VDC                                        | 120 VAC                   | 2.0 A            | 0.2 mill.                               |
| supply voltage of the                                                         |                                                | 120 VAC                   | 1.0 A            | 0.7 mill.                               |
| relays                                                                        |                                                | 120 VAC                   | 0.7 A            | 1 mill.                                 |
| •                                                                             | 1500 V/AC                                      | 120 VAC                   | 0.5 A            | 2.0 mill.                               |
| <ul> <li>between M<sub>internal</sub> or<br/>supply voltage of the</li> </ul> | 1500 VAC                                       | 230 VAC                   | 2,0 A            | 0.1 mill.                               |
|                                                                               |                                                | 230 VAC                   | 1.0 A            | 0.2 mill.                               |
| relays and the outputs                                                        |                                                | 230 VAC                   | 0.5 A            | 1 mill.                                 |
| <ul> <li>between the outputs of<br/>different groups</li> </ul>               | 1500 VAC                                       | Lamp load                 | max. 50 \        |                                         |
| Current drawn                                                                 |                                                | You will achieve a longer | service life w   | ith an external                         |
| <ul> <li>from backplane bus</li> </ul>                                        | may 40 mA                                      | suppressor circuit        |                  |                                         |
| '                                                                             | max. 40 mA                                     | 12777.3                   |                  |                                         |
| <ul> <li>from supply voltage L+</li> </ul>                                    | max. 110 mA                                    |                           |                  |                                         |
|                                                                               |                                                |                           |                  |                                         |

Module power losses

typ. 2.2 W

| Actuator Selection Data, continued                                                     |                                                        |
|----------------------------------------------------------------------------------------|--------------------------------------------------------|
| Contact circuit (internal)                                                             | Varistor SIOV-CU4032<br>K275 G                         |
| Parallel connection of 2 outputs  for redundant actuation of a load  to increase power | Possible (only outputs of the same group) Not possible |
| Actuation of a digital output                                                          | Possible                                               |
| Switching frequency                                                                    |                                                        |
| Mechanical                                                                             | max. 10 Hz                                             |
| Resistive loads                                                                        | max. 2 Hz                                              |
| Inductive loads to IEC 947–5–1, DC 13/AC 15                                            | max. 0.5 Hz                                            |
| Lamp loads                                                                             | max. 2 Hz                                              |

# 3.3.3 Digital output Module SM 322; DO 8 imes Rel. 230 VAC/5 A

#### Order No.

6ES7 322-1HF10-0AA0

#### **Characteristics**

The digital output module SM 322; DO  $8 \times$  Rel. 230 VAC/5 A has the following features:

- 8 outputs, isolated in groups of 1
- Load current 24 V to 120 V DC, 48 V to 230 V AC
- Suitable for AC/DC solenoid valves, contactors, motor starters, fractional h.p. motors and indicator lights

#### Note

In the case of currents greater than 3 A, a conductor cross-section of 1.5 mm<sup>2</sup> must be selected in order to minimize the additional heating of the module at the connector.

When the front-panel connector with spring-loaded terminals is implemented, the connector with the order number 6ES7 392-1BM01-0AA0 must be used.

## **Terminal Connection Diagram and Block Diagram**

Figure 3-19 shows the terminal connection diagram and block diagram of the digital output module SM 322; DO 8×Rel. 230 VAC/5 A.

You will find the detailed technical specifications of the module SM 322; DO  $8 \times \text{Rel}$ . 230 VAC/5 A on the following pages.



Figure 3-19 Module View and Block Diagram of Digital Output Module SM 322; DO 8×Rel. 230 VAC/5 A

| Dimensions and V                                                                     | Veight                                |
|--------------------------------------------------------------------------------------|---------------------------------------|
| Dimensions                                                                           | $40 \times 125 \times 120 \text{ mm}$ |
| $W \times H \times D (mm)$                                                           | (1.56 x 4.88 x 4.68 in.)              |
| Weight                                                                               | approx. 320 g                         |
|                                                                                      | (11.2 oz.)                            |
| Module-Specific D                                                                    | Data                                  |
| Number of output                                                                     | t points 8                            |
| Length of cable                                                                      |                                       |
| <ul> <li>Unshielded</li> </ul>                                                       | max. 600m (654 yd.)                   |
| <ul> <li>Shielded</li> </ul>                                                         | max. 1000 m                           |
|                                                                                      | (1090 yd.)                            |
| Voltages, Currents                                                                   | s, Potentials                         |
| Rated supply voltage relay L +                                                       | ge for 24 V DC                        |
| Current of the outp                                                                  | uts                                   |
| horizontal insta                                                                     | llation                               |
| up to 30 °C<br>up to 60 °C                                                           | max. 8 A                              |
| <ul> <li>vertical installa</li> </ul>                                                | max. 5A<br>ation max. 5A              |
| up to 40 °C                                                                          | max. or                               |
| Galvanic isolation                                                                   |                                       |
| <ul> <li>between chann<br/>backplane bus</li> </ul>                                  | nels and yes                          |
| • between the ch                                                                     | nannels yes                           |
| Permiss. potential differences:                                                      |                                       |
| <ul> <li>between M<sub>intern</sub><br/>the supply volta<br/>the relays</li> </ul>   |                                       |
| <ul> <li>between M<sub>intern</sub><br/>supply voltage<br/>relays and the</li> </ul> | of the                                |
| • between the ou                                                                     | itputs 00 V AC                        |
| Insulation tested wi                                                                 | ith                                   |
| <ul> <li>between M<sub>interr</sub><br/>the supply volta<br/>the relays</li> </ul>   | <sub>nal</sub> and 500 V DC<br>age of |
| <ul> <li>between M<sub>intern</sub><br/>supply voltage<br/>relays and the</li> </ul> | of the                                |
| • between the ou                                                                     | itputs 2000 V AC                      |
| Current drawn                                                                        |                                       |
| • from backplane                                                                     | e bus max. 40 mA                      |
| • from supply vol<br>L +                                                             | ltage max. 125 mA                     |
| Module power loss                                                                    | typ. 4.2 W                            |

| Diagonal Dia | rupts unostics functions uator Selection Data rmic permanent ent rt-circuit-proof with circu EC 947-5-1) for cos \$\phi\$ 1.0 cos \$\phi\$ 0.5-0.7 rt-circuit-proof with fusib | 600 A<br>900 A                            | of characteristic B            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|
| Ther curre Short (to If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rmic permanent ent rt-circuit-proof with circuit-proof with circuits 947-5-1) for cos φ 1.0 cos φ 0.5–0.7 rt-circuit-proof with fusib                                          | max. 8 A<br>uit-breaker<br>600 A<br>900 A | of characteristic B            |
| Ther curre Short (to III • (constant) Short Short Short Switt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rmic permanent<br>ent<br>rt-circuit-proof with circu<br>EC 947-5-1) for<br>cos φ 1.0<br>cos φ 0.5–0.7<br>rt-circuit-proof with fusib                                           | uit-breaker<br>600 A<br>900 A             | of characteristic B            |
| Short (to III)  Short (to III)  Short (to III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ent rt-circuit-proof with circu<br>EC 947-5-1) for<br>cos φ 1.0<br>cos φ 0.5–0.7<br>rt-circuit-proof with fusib                                                                | uit-breaker<br>600 A<br>900 A             | of characteristic B            |
| • (to III • (short •  | EC 947-5-1) for<br>cos φ 1.0<br>cos φ 0.5–0.7<br>rt-circuit-proof with fusib                                                                                                   | 600 A<br>900 A                            | of characteristic B            |
| Short                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\cos\phi$ 0.5–0.7<br>rt-circuit-proof with fusib                                                                                                                              | 900 A                                     |                                |
| Shor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rt-circuit-proof with fusib                                                                                                                                                    |                                           |                                |
| • I<br>Swit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                                                                                                                                                              | ole link                                  |                                |
| Swit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Diazed 8 A                                                                                                                                                                     |                                           |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | 1000 A                                    |                                |
| • 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ching capacity and serv                                                                                                                                                        | rice life of o                            | contacts                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for resistive load (heatin                                                                                                                                                     | ng)                                       |                                |
| е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Voltag                                                                                                                                                                         | Current                                   | No. of switching cycles (typ.) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | 8.0 A                                     | 0.1 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 V DC                                                                                                                                                                        | 4.0 A                                     | 0.3 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | 2.0 A                                     | 0.7 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | 0.5 A                                     | 4.0 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | 0.5 A                                     | 1.6 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 V DC                                                                                                                                                                        | 0.2 A                                     | 1.6 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120 V DC                                                                                                                                                                       | 8.0 A                                     | 0.1mill.                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48 V AC                                                                                                                                                                        | 2.0 A                                     | 1.6 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | 8.0 A                                     | 0.1 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 V AC                                                                                                                                                                        | 2.0 A                                     | 1.2 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 420 \ / 40                                                                                                                                                                     | 8.0 A                                     | 0.1 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120 V AC                                                                                                                                                                       | 4.0 A<br>2.0 A                            | 0.3 mill.<br>0.5 mill.         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | 2.0 A<br>1.0 A                            | 0.5 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | 0.5 A                                     | 1.5 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | 8.0 A                                     | 0.1 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 230 V AC                                                                                                                                                                       | 4.0 A                                     | 0.3 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                            | 2.0 A                                     | 0.5 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | 1.0 A                                     | 0.7 mill.                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                | 0.5 A                                     | 1.5 mill.                      |

| Actuator Selection Data, continued              |         |                                |
|-------------------------------------------------|---------|--------------------------------|
| Switching capacity and service life of contacts |         |                                |
| • for inductive loads IEC 947-5-1 DC13/AC15     |         |                                |
| Voltage                                         | Current | No. of switching cycles (typ.) |
| 24 V DC                                         | 2.0 A   | 0.3 mill.                      |
|                                                 | 1.0 A   | 0.5 mill.                      |
|                                                 | 0.5 A   | 1 mill.                        |
| 60 V DC                                         | 0.5 A   | 0.5 mill.                      |
|                                                 | 0.3 A   | 1 mill.                        |
| 120 V DC                                        | 0.2 A   | 0.5 mill.                      |
| 48 V AC                                         | 3.0A    | 0.5 mill.                      |
|                                                 | 1.5 A   | 1 mill.                        |
| 60 V AC                                         | 3.0A    | 0.3 mill.                      |
|                                                 | 1.5A    | 1 mill.                        |
| 120 V AC                                        | 3.0 A   | 0.2 mill.                      |
|                                                 | 2.0 A   | 0.3 mill.                      |
|                                                 | 1.0 A   | 0.7 mill.                      |
|                                                 | 0.5 A   | 2 mill.                        |
| 230 V AC                                        | 3.0 A   | 0.1 mill.                      |
|                                                 | 2.0 A   | 0.3 mill.                      |
|                                                 | 1.0 A   | 0.7 mill.                      |
|                                                 | 0.5 A   | 2.0 mill.                      |
| Aux. contactors Size 0 (3TH28)                  |         | 30 mill.                       |
| Lamps (230 V AC)                                | 1000W   | 25000                          |
|                                                 | 1500W   | 10000                          |
| Energy saving lamps/<br>fluorescent lamps with  | 10×     |                                |
| electronic balast                               | 58W     | 25000                          |
| Fluorescent lamps                               | 1×      |                                |
| conventionally compensated                      | 58W     | 25000                          |
| Fluorescent lamps                               | 10×     |                                |
| uncompensated                                   | 58W     | 25000                          |
| An external protection circ                     |         | •                              |

will enhance the service life of the contacts.

| Actuator Selection Data, continued                                      |              |
|-------------------------------------------------------------------------|--------------|
| Contact circuit (internal)                                              | None         |
| Parallel connection of 2 out                                            | puts         |
| <ul> <li>for redundant<br/>actuation of a load</li> </ul>               | Possible     |
| to increase power                                                       | Not possible |
| Actuation of a digital input                                            | Possible     |
| Switching frequency                                                     |              |
| <ul> <li>Mechanical</li> </ul>                                          | max. 10 Hz   |
| <ul> <li>Resistive loads</li> </ul>                                     | max. 2 Hz    |
| <ul> <li>Inductive loads to<br/>IEC 947-5-1,<br/>DC 13/AC 15</li> </ul> | max. 0.5 Hz  |
| Lamp loads                                                              | max. 2 Hz    |

# 3.4 Digital Input/Output Modules

## **List of Digital Input/Output Modules**

The following digital input/output modules are described in this chapter:

- SM 323; DI 16/DO 16 × 24 VDC/0.5 A
- SM 323; DI 8/DO 8 × 24 VDC/0.5 A

# 3.4.1 Digital Input/Output Module SM 323; DI 16/DO 16 $\times$ 24 VDC/0.5 A

#### Order No.

6ES7 323-1BL00-0AA0

#### **Characteristics**

The digital input/output module 323; DI 16/DO 16  $\times$  24 VDC/0.5 A has the following salient features:

- 16 output points, isolated in groups of 16
- 16 output points, isolated in groups of 8.
- Rated input voltage 24 VDC
- · 24 VDC rated load voltage
- Inputs suitable for switches and 2/3/4-wire proximity switches (BEROs).
- Outputs suitable for solenoid valves, DC contactors and indicator lights.

## **Special Feature**

When the power supply is switched on via a mechanical contact, the digital output module SM 323; DI 16/DO 16  $\times$  24 VDC/0.5 A sends a "1" signal to its outputs for approximately 50  $\mu$ s. You must observe this when using the digital output module SM 323; DI 16/DO 16  $\times$  24 VDC/0.5 A for high-speed counters!

## **Terminal Connection Diagram and Block Diagram**

Figure 3-20 shows the terminal connection diagram and block diagram of the SM 323; DI 16/DO 16  $\times$  24 VDC/0.5 A.

You will find the detailed technical specifications of the module SM 323; DI 16/DO 16  $\times$  24 VDC/0.5 A on the following page.



Figure 3-20 Module View and Block Diagram of the SM 323; DI 16/DO 16  $\times$  24 VDC/0.5 A

# **Terminal Assignment**

The following figure shows the assignment of the channels to the input/output addresses.



| Dimensione on I Weight                       |                                              |
|----------------------------------------------|----------------------------------------------|
| Dimensions and Weight                        |                                              |
| Dimensions                                   | $40\times125\times120~\text{mm}$             |
| $W \times H \times D$                        | $(1.56 \times 4.88 \times 4.68 \text{ in.})$ |
| Weight                                       | approx. 260 g                                |
| Module-Specific Data                         |                                              |
| Number of input points                       | 16                                           |
| Number of output points                      | 16                                           |
| Length of cable                              |                                              |
| Unshielded                                   | max. 600m (654 yd.)                          |
| Shielded                                     | max. 1000m (1090 yd)                         |
| Voltages, Currents, Potentials               |                                              |
| Rated load voltage L+                        | 24 VDC                                       |
| Reverse polarity protection for input supply | Yes                                          |
| No. of inputs controllable simultaneously    |                                              |
| Horizontal installation                      |                                              |
| up to 40 °C<br>up to 60 °C                   | 16<br>8                                      |
| Vertical installation                        | O                                            |
| up to 40 °C                                  | 16                                           |

| Voltages, Currents, Potentials, continued                           |                       |  |  |
|---------------------------------------------------------------------|-----------------------|--|--|
| Total current of the outputs (per group)                            |                       |  |  |
| Horizontal installation     up to 20 °C     up to 40 °C             | max. 4 A<br>max. 3 A  |  |  |
| up to 60 °C  • Vertical installation up to 40 °C                    | max. 2 A              |  |  |
| Galvanic isolation                                                  |                       |  |  |
| between channels and<br>backplane bus                               | Yes                   |  |  |
| between the channels<br>Inputs in groups of<br>Outputs in groups of | Yes<br>16<br>8        |  |  |
| Permiss. potential differences                                      |                       |  |  |
| between different circuits                                          | 75 VDC<br>60 VAC      |  |  |
| Insulation tested with                                              | 500 VDC               |  |  |
| Current drawn                                                       |                       |  |  |
| <ul> <li>from backplane bus</li> </ul>                              | max. 55 mA            |  |  |
| <ul> <li>from load voltage L+<br/>(without load)</li> </ul>         | max. 100 mA           |  |  |
| Module power losses                                                 | typ. 6.5 W            |  |  |
| Status, Interrupts, Diagnosti                                       | cs                    |  |  |
| Status display                                                      | Green LED per channel |  |  |
| Interrupts                                                          | None                  |  |  |
| Diagnostics functions                                               | None                  |  |  |

| Sensor Selection Data                 |                                 |
|---------------------------------------|---------------------------------|
| Input voltage                         |                                 |
| Rated value                           | 24 VDC                          |
| at "1" signal                         | 13 to 30 V                      |
| at "0" signal                         | -3 to 5 V                       |
| Input current                         |                                 |
| at "1" signal                         | typ. 7 mA                       |
| Input delay time                      |                                 |
| • from "0" to "1"                     | 1.2 to 4.8 ms                   |
| • from "1" to "0"                     | 1.2 to 4.8 ms                   |
| Input characteristic                  | to IEC 1131, type 1             |
| Connection of 2-wire BEROs            | Possible                        |
| Permissible bias current              | max. 1.5 mA                     |
| Actuator Selection Data               |                                 |
| Output voltage                        |                                 |
| at "1" signal                         | min. L + (- 0.5 V)              |
| Output current                        |                                 |
| at "1" signal                         | 0.5.4                           |
| Rated value Permiss. range            | 0.5 A<br>5 mA to 0.6 A          |
| at "0" signal                         |                                 |
| Residual current                      | max. 0.5 mA                     |
| Load impedance                        | 48 $\Omega$ to 4k $\Omega$      |
| Lamp load                             | max. 5 W                        |
| Parallel connection of 2 outputs      |                                 |
| for redundant actuation of a load     | Possible (only outputs          |
| to increase power                     | of the same group) Not possible |
| Actuation of digital input            | Possible                        |
| Switching frequency                   |                                 |
| Resistive loads                       | max. 100 Hz                     |
| Inductive loads to IEC 947–5–1, DC 13 | max. 0.5 Hz                     |
| Lamp loads                            | max. 10 Hz                      |

| Actuator Selection Data, continued                              |                          |
|-----------------------------------------------------------------|--------------------------|
| Voltage induced on circuit interruption limited (internally) to | typ. L + (- 48 V)        |
| Short-circuit protection of output  Response threshold          | Yes, electronic typ. 1 A |

## 3.4.2 Digital Input/Output Module SM 323; DI 8/DO 8 $\times$ 24 VDC/0.5 A

#### Order No.

6ES7 323-1BH00-0AA0

#### **Characteristics**

The digital input/output module SM 323; DI 8/DO 8  $\times$  24 VDC/0.5 A has the following salient features:

- 8 output points, isolated in groups of 8
- · 8 input points, isolated in groups of 8
- Rated input voltage 24 VDC
- Rated load voltage 24 VDC
- Outputs suitable for switches and 2/3/4-wire proximity switches (BEROs).
- Inputs suitable for solenoid valves, DC contactors and indicator lights

#### **Special Feature**

When the power supply is switched on via a mechanical contact, the digital output module SM 323; DI 8/DO 8  $\times$  24 VDC/0.5 A sends a "1" signal to its outputs for approximately 50  $\mu s$ . You must observe this when using the digital output module SM 323; DI 8/DO 8  $\times$  24 VDC/0.5 A for high-speed counters!

## **Terminal Connection Diagram and Block Diagram**

Figure 3-21 shows the terminal connection diagram and block diagram of the digital input/output module SM 323; DI 8/DO 8  $\times$  24 VDC/0.5 A.

You will find the detailed technical specifications of the SM 323; DI 8/DO 8  $\times$  24 VDC/0.5 A on the following page.



Figure 3-21 Module View and Block Diagram of Digital Input/Output Module SM 323; DI 8/DO 8  $\times$  24 VDC/0.5 A

| Dimensions and Weight                                                |                                           |
|----------------------------------------------------------------------|-------------------------------------------|
|                                                                      | 40 × 125 × 120 mm<br>(1.56×4.88×4.68 in.) |
| Weight                                                               | approx. 200 g                             |
| Module-Specific Data                                                 |                                           |
| Number of input points                                               | 8                                         |
| Number of output points                                              | 8                                         |
| Length of cable                                                      |                                           |
| <ul> <li>Unshielded</li> </ul>                                       | max. 600m (654 yd.)                       |
| <ul> <li>Shielded</li> </ul>                                         | max. 1000m (1090 yd)                      |
| Voltages, Currents, Potentials                                       |                                           |
| Rated load voltage L+                                                | 24 VDC                                    |
| <ul> <li>Reverse polarity protection<br/>for input supply</li> </ul> | Yes                                       |
| No. of inputs controllable simultaneously                            |                                           |
| Horizontal installation<br>up to 60 °C                               | 8                                         |
| <ul> <li>Vertical installation<br/>up to 40 °C</li> </ul>            | 8                                         |
| Total current of the outputs (per group)                             |                                           |
| <ul> <li>Horizontal installation<br/>up to 60 °C</li> </ul>          | max. 4 A                                  |
| <ul> <li>Vertical installation<br/>up to 40 °C</li> </ul>            | max. 4 A                                  |
| Galvanic isolation                                                   |                                           |
| <ul> <li>between channels and<br/>backplane bus</li> </ul>           | Yes                                       |
| between the channels                                                 | Yes                                       |
| Inputs in groups of<br>Outputs in groups of                          | 8                                         |
| Permiss. potential differences                                       |                                           |
| between different circuits                                           | 75 VDC<br>60 VAC                          |
| Insulation                                                           | 500 VDC                                   |
| Current drawn                                                        |                                           |
| <ul> <li>from backplane bus</li> </ul>                               | max. 40 mA                                |
| <ul> <li>from load voltage L+<br/>(without load)</li> </ul>          | max. 20 mA                                |
| Module power losses                                                  | typ. 3.5 W                                |
| Status, Interrupts, Diagnostics                                      | 3                                         |
| Status display<br>Interrupts                                         | Green LED per chan.<br>None               |

| Dia                   | agnostics functions                                           | None                            |
|-----------------------|---------------------------------------------------------------|---------------------------------|
| Sensor Selection Data |                                                               |                                 |
| Inp                   | out voltage                                                   |                                 |
| •                     | Rated value                                                   | 24 VDC                          |
| •                     | at "1" signal                                                 | 11 to 30 V                      |
| •                     | at "0" signal                                                 | -3 to 5 V                       |
| Inp                   | out current                                                   |                                 |
| •                     | at "1" signal                                                 | typ. 7 mA                       |
| Inp                   | out delay time                                                |                                 |
| •                     | from "0" to "1"                                               | 1.2 to 4.8 ms                   |
| •                     | from "1" to "0"                                               | 1.2 to 4.8 ms                   |
| Inp                   | out characteristic                                            | to IEC 1131, type 2             |
| Со                    | nnection of 2-wire BEROs                                      | Possible                        |
| •                     | Permissible closed-circuit                                    | max. 2 mA                       |
|                       | current                                                       |                                 |
| Ac                    | tuator Selection Data                                         |                                 |
| Οu                    | itput voltage                                                 |                                 |
| •                     | at "1" signal                                                 | min. L + (- 0.5 V)              |
| Output current        |                                                               |                                 |
| •                     | at "1" signal                                                 |                                 |
|                       | Rated value                                                   | 0.5 A                           |
| _                     | Permiss. range                                                | 5 mA to 0.6 A                   |
| •                     | at "0" signal<br>Residual current                             | max. 0.5 mA                     |
| Lo                    | ad impedance                                                  | 48 $\Omega$ to 4 k $\Omega$     |
| La                    | mp load                                                       | max. 5 W                        |
| Pa                    | rallel connection of 2 outputs                                |                                 |
| •                     | for redundant actuation of a                                  |                                 |
|                       | load                                                          | Possible (only outputs          |
| •                     | to increase power                                             | of the same group) Not possible |
|                       |                                                               | ,                               |
|                       | tuation of a digital output                                   | Possible                        |
| Ma                    | ax. switching frequency                                       |                                 |
| •                     | for resistive load                                            | max. 100 Hz                     |
| •                     | for inductive load to IEC 947-5-1, DC 13                      | max. 0.5 Hz                     |
| •                     | for lamp load                                                 | max. 10 Hz                      |
|                       | Itage induced on circuit<br>erruption limited (internally) to | typ. L + (- 48 V)               |
| Sh                    | ort-circuit protection of output                              | Yes, electronic                 |
| •                     | Response threshold                                            | typ. 1 A                        |

Analog Modules

## Introduction

The S7-300 system has a number of analog modules for connecting to sensors and/or loads/actuators.

#### **Contents**

In this chapter we describe the basic principles of analog technology and the analog modules of the S7-300:

| Section | Contents                                                             | Page  |
|---------|----------------------------------------------------------------------|-------|
| 4.1     | Analog Value Representation                                          | 4-2   |
| 4.2     | Connecting Sensors/Transducers and Loads/Actuators to Analog Modules | 4-18  |
| 4.3     | Fundamental Principles for the Use of Analog Modules                 | 4-38  |
| 4.4     | Analog Input Module SM 331; Al 8 × 12 Bit                            | 4-59  |
| 4.6     | Analog Input Module SM 331; Al 2 × 12 Bit                            | 4-79  |
| 4.7     | Analog Output Module SM 332; AO 4 × 12 Bit                           | 4-90  |
| 4.8     | Analog Output Module SM 332; AO 2 × 12 Bit                           | 4-96  |
| 4.9     | Analog Output Module SM 332; AO 4 × 16 Bit                           | 4-103 |
| 4.10    | Analog Input/Output Module SM 334; AI 4/AO 2 × 8/8 Bit               | 4-109 |
| 4.11    | Analog Input/Output Module SM 334; AI 4/AO 2 × 12 Bit                | 4-115 |

# 4.1 Analog Value Representation

## **Analog Values**

In all S7-300 analog modules, the analog value is represented in binary form in the same way.

This chapter describes the analog values for **all** the measuring and/or output ranges you can use with your S7-300 analog modules.

## 4.1.1 Representation of Analog Input and Output Values

#### **Converting Analog Values**

The CPU processes the analog values in binary form only.

Analog input modules convert the analog process signal into digital form.

Analog output modules convert the digital output value into an analog signal.

## **Analog Value Representation**

The digitized analog value is the same for both input and output values having the same nominal range.

The analog values are represented as two's complement.

Table 4-1 shows how the analog values of the analog modules are represented:

Table 4-1 Analog Value Representation

| Resolution     | Analog Value |     |                 |                 |     |                 |                |                |    |                |                |                |                |                |                |    |
|----------------|--------------|-----|-----------------|-----------------|-----|-----------------|----------------|----------------|----|----------------|----------------|----------------|----------------|----------------|----------------|----|
| Number of bits | 15           | 14  | 13              | 12              | 11  | 10              | 9              | 8              | 7  | 6              | 5              | 4              | 3              | 2              | 1              | 0  |
| Bit weighting  | VZ           | 214 | 2 <sup>13</sup> | 2 <sup>12</sup> | 211 | 2 <sup>10</sup> | 2 <sup>9</sup> | 2 <sup>8</sup> | 27 | 2 <sup>6</sup> | 2 <sup>5</sup> | 2 <sup>4</sup> | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 20 |

## Sign

The sign (S) of the analog value is always in bit number 15:

- "0" → +
- "1" → -

## Resolutions of Less than 15 Bits

If the resolution of an analog module has fewer than 15 bits, the analog value is entered left-justified in the accumulator. The lower-order bit positions not used are padded with zeros ("0").

Table 4-2 contains a bit pattern to show you how to write zeros ("0") into the unassigned bit positions for a resolution with fewer than 15 bits.

Table 4-2 Bit Pattern of a 15-Bit and a 12-Bit Analog Value (Example)

| Resolution                |    |    |    |    |    |    |   | Analog | g Val | ue |   |   |   |   |   |   |
|---------------------------|----|----|----|----|----|----|---|--------|-------|----|---|---|---|---|---|---|
| Number of bits            | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8      | 7     | 6  | 5 | 4 | 3 | 2 | 1 | 0 |
| 15-bit analog value (+ S) | 0  | 1  | 0  | 0  | 0  | 1  | 1 | 0      | 0     | 1  | 1 | 1 | 0 | 0 | 1 | 1 |
| 12-bit analog value (+ S) | 0  | 1  | 0  | 0  | 0  | 1  | 1 | 0      | 0     | 1  | 1 | 1 | 0 | 0 | 0 | 0 |
| 8-bit analog value (+ S)  | 0  | 1  | 0  | 0  | 0  | 1  | 1 | 0      | 0     | 0  | 0 | 0 | 0 | 0 | 0 | 0 |

# 4.1.2 Analog Value Representation of the Measuring Ranges of the Analog Inputs

#### Introduction

The tables in this chapter contain the digitized analog values for the various measuring ranges of the analog modules.

Table 4-3 shows you the binary representation of the analog values and the associated decimal and hexadecimal notation of the units of the analog values.

#### **How to Read the Measured-Value Tables**

Tables 4-4 to 4-15 contain the digitized analog values for the various measuring ranges.

Since the binary representation of the analog values is always the same, these tables only contain the measured values and the units.

This makes the tables clearer and easier to read. You will find the binary representations corresponding to the measured values in Table 4-3.

#### **Measured-Value Resolution**

The resolution of the analog values may vary, depending on the analog module and the parameters assigned to it. For the resolutions < 15 bits, the bits marked with an "x" are set to "0".

**Note:** This resolution does not apply to temperature values. The converted temperature values are the result of a conversion in the analog module (see Tables 4-8 to 4-15).

Table 4-3 Possible Resolutions of the Analog Values

| Book I division             | Ur      | nits            | Analog Value     |                 |  |  |  |  |
|-----------------------------|---------|-----------------|------------------|-----------------|--|--|--|--|
| Resolution in<br>Bits (+ S) | Docimal |                 | High-Order Byte  | Low-Order Byte  |  |  |  |  |
| 8                           | 128     | 80 <sub>H</sub> | VZ 0 0 0 0 0 0   | 1 x x x x x x x |  |  |  |  |
| 9                           | 64      | 40 <sub>H</sub> | VZ 0 0 0 0 0 0 0 | 0 1 x x x x x x |  |  |  |  |
| 10                          | 32      | 20 <sub>H</sub> | VZ 0 0 0 0 0 0 0 | 0 0 1 x x x x x |  |  |  |  |
| 11                          | 16      | 10 <sub>H</sub> | VZ 0 0 0 0 0 0 0 | 0 0 0 1 x x x x |  |  |  |  |
| 12                          | 8       | 8 <sub>H</sub>  | VZ 0 0 0 0 0 0 0 | 00001xxx        |  |  |  |  |
| 13                          | 4       | 4 <sub>H</sub>  | VZ 0 0 0 0 0 0 0 | 000001xx        |  |  |  |  |
| 14                          | 2       | 2 <sub>H</sub>  | VZ 0 0 0 0 0 0 0 | 000001x         |  |  |  |  |
| 15                          | 1       | 1 <sub>H</sub>  | VZ 0 0 0 0 0 0 0 | 00000001        |  |  |  |  |

# **Voltage Measuring Ranges**

Table 4-4 shows the representation of the digitized measured value for the voltage measuring ranges  $\pm$  80 mV,  $\pm$  250 mV,  $\pm$  500 mV,  $\pm$  1 V,  $\pm$ 2.5 V.

Table 4-4 Representation of the Digitized Measured Value of an Analog Input Module (Voltage Ranges)

| Measuring        | Measuring         | Measuring         | Measuring      | Measuring        | Ur           | nits              |               |  |
|------------------|-------------------|-------------------|----------------|------------------|--------------|-------------------|---------------|--|
| Range<br>± 80 mV | Range<br>± 250 mV | Range<br>± 500 mV | Range<br>± 1 V | Range<br>± 2.5 V | Deci-<br>mal | Hexa-<br>decimal  | Range         |  |
| > 94.071         | > 293.97          | > 587.94          | > 1.175        | > 2.9397         | 32767        | 7FFF <sub>H</sub> | Overflow      |  |
| 94.071           | 293.97            | 587.94            | 1.175          | 2.9397           | 32511        | 7EFF <sub>H</sub> |               |  |
| :                | :                 | :                 | :              | :                | :            | :                 | Overrange     |  |
| 80.003           | 250.01            | 500.02            | 1.00004        | 2.5001           | 27649        | 6C01 <sub>H</sub> |               |  |
| 80.000           | 250.00            | 500.00            | 1.000          | 2.500            | 27648        | 6C00 <sub>H</sub> |               |  |
| 60.000           | 187.50            | 375.00            | 0.750          | 1.875            | 20736        | 5100 <sub>H</sub> |               |  |
| :                | :                 | :                 | :              | :                | :            | :                 | Nominal range |  |
| - 60.000         | - 187.50          | - 375.00          | - 0.750        | <b>–</b> 1.875   | -20736       | AF00 <sub>H</sub> |               |  |
| - 80.000         | - 250.00          | - 500.00          | -1.000         | - 2.500          | -27648       | 9400 <sub>H</sub> |               |  |
| - 80.003         | - 250.01          | - 500.02          | - 1.00004      | - 2.5001         | -27649       | 93FF <sub>H</sub> |               |  |
| :                | :                 | :                 | :              | :                | :            | :                 | Underrange    |  |
| - 94.74          | - 293.98          | - 587.96          | - 1.175        | - 2.93398        | -32512       | 8100 <sub>H</sub> |               |  |
| <- 94.074        | <- 293.98         | <- 587.96         | <- 1.175       | <- 2.93398       | -32768       | 8000 <sub>H</sub> | Underflow     |  |

# **Voltage and Current Measuring Ranges**

Table 4-5 shows the representation of the digitized measured value

- for the voltage measuring ranges  $\pm$  5 V,  $\pm$  10 V and
- for the current measuring ranges  $\pm$  10 mA,  $\pm$  3.2 mA,  $\pm$  20 mA.

Table 4-5 Representation of the Digitized Measured Value of an Analog Input Module (Voltage and Current Measuring Ranges)

| Measuring<br>Range | Measuring<br>Range | Measuring<br>Range | Measuring<br>Range | Ur           | nits              |               |
|--------------------|--------------------|--------------------|--------------------|--------------|-------------------|---------------|
| ± 5 V              | ± 10 V<br>± 10 mA  | ± 3.2 mA           | ± 20 mA            | Deci-<br>mal | Hexa-<br>decimal  | Range         |
| > 5.8794           | > 11.7589          | > 3.7628           | > 23.515           | 32767        | 7FFF <sub>H</sub> | Overflow      |
| 5.8794             | 11.7589            | 3.7628             | 23.515             | 32511        | 7EFF <sub>H</sub> |               |
| :                  | :                  | :                  | :                  | :            | :                 | Overrange     |
| 5.0002             | 10.0004            | 3.2001             | 20.0007            | 27649        | 6C01 <sub>H</sub> |               |
| 5.00               | 10.00              | 3.200              | 20.000             | 27648        | 6C00 <sub>H</sub> |               |
| 3.75               | 7.50               | 2.400              | 14.998             | 20736        | 5100 <sub>H</sub> |               |
| :                  | :                  | :                  | :                  | :            | :                 | Nominal range |
| - 3.75             | <b>-</b> 7.50      | - 2.400            | - 14.998           | -20736       | AF00 <sub>H</sub> |               |
| - 5.00             | - 10.00            | - 3.200            | - 20.000           | -27648       | 9400 <sub>H</sub> |               |
| - 5.0002           | - 10.0004          | - 3.2001           | - 20.0007          | -27649       | 93FF <sub>H</sub> |               |
| :                  | :                  | :                  | :                  | :            | :                 | Underrange    |
| - 5.8796           | - 11.759           | - 3.7629           | - 23.516           | -32512       | 8100 <sub>H</sub> |               |
| <- 5.8796          | <- 11.759          | <- 3.7629          | <- 23.516          | -32768       | 8000 <sub>H</sub> | Underflow     |

# **Voltage and Current Measuring Ranges**

Table 4-6 shows the representation of the digitized measured value

- for the voltage measuring ranges 1 to 5 V and
- for the current measuring ranges 0 to 20 mA, 4 to 20 mA.

Table 4-6 Representation of the Digitized Measured Value of an Analog Input Module (Voltage and Current Measuring Ranges)

| Measuring<br>Range | Measuring<br>Range | Measuring<br>Range | Ur           | nits              |                   |
|--------------------|--------------------|--------------------|--------------|-------------------|-------------------|
| 1 to 5 V           | 0 20 mA            | 4 to 20 mA         | Deci-<br>mal | Hexa-<br>decimal  | Range             |
| > 5.7036           | > 23.515           | > 22.810           | 32767        | 7FFF <sub>H</sub> | Overflow          |
| 5.7036             | 23.515             | 22.810             | 32511        | 7EFF <sub>H</sub> |                   |
| :                  | :                  | :                  | :            | :                 | Overrange         |
| 5.0001             | 20.0007            | 20.0005            | 27649        | 6C01 <sub>H</sub> |                   |
| 5.000              | 20.000             | 20.000             | 27648        | 6C00 <sub>H</sub> |                   |
| 4.000              | 14.998             | 16.000             | 20736        | 5100 <sub>H</sub> | Ni-asia al asa as |
| :                  | :                  | :                  | :            | :                 | Nominal range     |
| 1.000              | 0.000              | 4.000              | 0            | 0 <sub>H</sub>    |                   |
| 0.9999             | -0.0007            | 3.9995             | -1           | FFFF <sub>H</sub> |                   |
| :                  | :                  | :                  | :            | :                 | Underrange        |
| 0.2963             | -3.5185            | 1.1852             | -4864        | ED00 <sub>H</sub> |                   |
| < 0.2963           | <-3.5185           | < 1.1852           | -32768       | 8000 <sub>H</sub> | Underflow         |

# **Resistance-Type Sensors Measuring Ranges**

Table 4-7 shows the representation of the digitized measured value for resistance-type sensors with the measuring ranges 150  $\Omega$ , 300  $\Omega$  and 600  $\Omega$ .

Table 4-7 Representation of the Digitized Measured Value of an Analog Input Module (Resistance-Type Sensors)

| Measuring      | Measuring      | Measuring          | Ur           | nits              |               |
|----------------|----------------|--------------------|--------------|-------------------|---------------|
| Range<br>150 Ω | Range<br>300 Ω | Range 600 $\Omega$ | Deci-<br>mal | Hexa-<br>decimal  | Range         |
| > 176.383      | > 352.767      | > 705.534          | 32767        | 7FFF <sub>H</sub> | Overflow      |
| 176.383        | 352.767        | 705.534            | 32511        | 7EFF <sub>H</sub> |               |
| :              | :              | :                  | :            | :                 | Overrange     |
| 150.005        | 300.011        | 600.022            | 27649        | 6C01 <sub>H</sub> |               |
| 150.000        | 300.000        | 600.000            | 27648        | 6C00 <sub>H</sub> |               |
| 112.500        | 225.000        | 450.000            | 20736        | 5100 <sub>H</sub> |               |
| :              | :              | :                  | :            | :                 | Nominal range |
| 0.000          | 0.000          | 0.000              | 0            | 0 <sub>H</sub>    |               |
| (negative val  | ues physically | not possible)      | -1           | FFFF <sub>H</sub> |               |
|                |                |                    | :            | :                 | Underrange    |
|                |                |                    | -4864        | ED00 <sub>H</sub> |               |
| -              | -              | -                  | -32768       | 8000 <sub>H</sub> | Underflow     |

# Standard Temperature Range Pt 100

Table 4-8 shows the representation of the digitized measured value for the standard temperature range of the Pt 100 sensor.

Table 4-8 Representation of the Digitized Measured Value of an Analog Input Module (Standard Temperature Range, Pt 100)

| Standard                              | Un      | its               | Range         |
|---------------------------------------|---------|-------------------|---------------|
| Temperature<br>Range Pt 100<br>850 °C | Decimal | Hexa-<br>decimal  |               |
| > 1000.0                              | 32767   | 7FFF <sub>H</sub> | Overflow      |
| 1000.0                                | 10000   | 2710 <sub>H</sub> |               |
| :                                     | :       | :                 | Overrange     |
| 850.1                                 | 8501    | 2135 <sub>H</sub> |               |
| 850.0                                 | 8500    | 2134 <sub>H</sub> |               |
| :                                     | :       | :                 | Nominal range |
| -200.0                                | -2000   | F830 <sub>H</sub> |               |
| -200.1                                | -2001   | F82F <sub>H</sub> |               |
| :                                     | :       | :                 | Underrange    |
| -243.0                                | -2430   | F682 <sub>H</sub> |               |
| <- 243.0                              | -32768  | 8000 <sub>H</sub> | Underflow     |

# **Climate Temperature Range Pt 100**

Table 4-9 shows the representation of the digitized measured value for the climate temperature range of the Pt 100 sensor.

Table 4-9 Representation of the Digitized Measured Value of an Analog Input Module (Climate Temperature Range, Pt 100)

| Standard<br>Temperature | Un      | its               | Range         |
|-------------------------|---------|-------------------|---------------|
| Range Pt 100<br>130 °C  | Decimal | Hexa-<br>decimal  |               |
| > 155.00                | 32767   | 7FFF <sub>H</sub> | Overflow      |
| 155.00                  | 15500   | 3C8C <sub>H</sub> |               |
| :                       | :       | :                 | Overrange     |
| 130.01                  | 13001   | 32C9 <sub>H</sub> |               |
| 130.00                  | 13000   | 32C8 <sub>H</sub> |               |
| :                       | :       | :                 | Nominal range |
| -120.00                 | -12000  | D120 <sub>H</sub> |               |
| -120.01                 | -12001  | D11F <sub>H</sub> |               |
| :                       | :       | :                 | Underrange    |
| -145.00                 | -14500  | C75C <sub>H</sub> |               |
| <- 145.00               | -32768  | 8000 <sub>H</sub> | Underflow     |

# Standard Temperature Range Ni 100

Table 4-10 shows the representation of the digitized measured value for the standard temperature range of the Ni 100 sensor.

Table 4-10 Representation of the Digitized Measured Value of an Analog Input Module (Standard Temperature Range, Ni 100)

| Standard                              | Un      | its               | Range         |
|---------------------------------------|---------|-------------------|---------------|
| Temperature<br>Range Ni 100<br>250 °C | Decimal | Hexa-<br>decimal  |               |
| >295.0                                | 32767   | 7FFF <sub>H</sub> | Overflow      |
| 295.0                                 | 2950    | B86 <sub>H</sub>  |               |
| :                                     | :       | :                 | Overrange     |
| 250.1                                 | 2501    | 9C5 <sub>H</sub>  |               |
| 250.0                                 | 2500    | 9C4 <sub>H</sub>  |               |
| :                                     | :       | :                 | Nominal range |
| -60.0                                 | -600    | FDA8 <sub>H</sub> |               |
| -60.1                                 | -601    | FDA7 <sub>H</sub> |               |
| :                                     | :       | :                 | Underrange    |
| -105.0                                | -1050   | FBE6 <sub>H</sub> |               |
| <- 105,0                              | -32768  | 8000 <sub>H</sub> | Underflow     |

## Climate Temperature Range, Ni 100

Table 4-11 shows the representation of the digitized measured value for the climate temperature range of the Ni 100 sensor.

Table 4-11 Representation of the Digitized Measured Value of an Analog Input Module (Climate Temperature Range, Ni 100)

| Standard<br>Temperature | Un      | its               | Range         |
|-------------------------|---------|-------------------|---------------|
| Range Ni 100<br>250 °C  | Decimal | Hexa-<br>decimal  |               |
| >295.00                 | 32767   | 7FFF <sub>H</sub> | Overflow      |
| 295.00                  | 29500   | 733C <sub>H</sub> |               |
| :                       | :       | :                 | Overrange     |
| 250.01                  | 25001   | 61A9 <sub>H</sub> |               |
| 250.00                  | 25000   | 61A8 <sub>H</sub> |               |
| :                       | :       | :                 | Nominal range |
| -60.00                  | -6000   | E890 <sub>H</sub> |               |
| -60.01                  | -6001   | E88F <sub>H</sub> |               |
| :                       | :       | :                 | Underrange    |
| -105.00                 | -10500  | D6FC <sub>H</sub> |               |
| <- 105.00               | -32768  | 8000 <sub>H</sub> | Underflow     |

## **Temperature Range Type K**

Table 4-12 shows the representation of the digitized measured value for the temperature range, sensor type K.

Table 4-12 Representation of the Digitized Measured Value of an Analog Input Module (Temperature Range, Type K)

| Temperature           | Un      | its                    | Range         |
|-----------------------|---------|------------------------|---------------|
| Range in °C<br>Type K | Decimal |                        |               |
| >1622                 | 32767   | 7FFF <sub>H</sub>      | Overflow      |
| 1622                  | 16220   | 3FSC <sub>H</sub>      |               |
| :                     | :       | :                      | Overrange     |
| 1373                  | 13730   | 35A2 <sub>H</sub>      |               |
| 1372                  | 13720   | 3598 <sub>H</sub>      |               |
| :                     | :       | :                      | Nominal range |
| -270                  | -2700   | F574 <sub>H</sub>      |               |
| <-270                 | <-2700  | <f574<sub>H</f574<sub> | Underrange    |

In the case of incorrect wiring (e. g. polarity reversal or open inputs) or of a sensor error in the negative range (e. g. incorrect thermocouple type), the analog input module signals underflow below  $F0C5_H$  and outputs  $8000_H$ .

## **Temperature Range Type N**

Table 4-13 shows the representation of the digitized measured value for the temperature range, sensor type N.

Table 4-13 Representation of the Digitized Measured Value of an Analog Input Module (Temperature Range, Type N)

| Temperature<br>Range in °C | Ur      | nits                   | Range         |
|----------------------------|---------|------------------------|---------------|
| Type N                     | Decimal | Hexadecimal            |               |
| >1550                      | 32767   | 7C8C <sub>H</sub>      | Overflow      |
| 1550                       | 15500   | 3C8C <sub>H</sub>      |               |
| :                          | :       | :                      | Overrange     |
| 1301                       | 13010   | 32D2 <sub>H</sub>      |               |
| 1300                       | 13000   | 32C8 <sub>H</sub>      |               |
| :                          | :       | :                      | Nominal range |
| -270                       | -2700   | F574 <sub>H</sub>      |               |
| <-270                      | <-2700  | <f574<sub>H</f574<sub> | Underrange    |

In the case of incorrect wiring (e. g. polarity reversal or open inputs) or of a sensor error in the negative range (e. g. incorrect thermocouple type), the analog input module signals underflow below  $F0C5_H$  and outputs  $8000_H$ .

## **Temperature Range Type J**

Table 4-14 shows the representation of the digitized measured value for the temperature range, sensor type J.

Table 4-14 Representation of the Digitized Measured Value of an Analog Input Module (Temperature Range, Type J)

| Temperature<br>Range in °C | Ur      | nits                   | Range         |
|----------------------------|---------|------------------------|---------------|
| Type J                     | Decimal | Hexadecimal            |               |
| >1450                      | 32767   | 7FFF <sub>H</sub>      | Overflow      |
| 1450                       | 14500   | 38A4 <sub>H</sub>      |               |
| :                          | :       | :                      | Overrange     |
| 1201                       | 12010   | 2EEA <sub>H</sub>      |               |
| 1200                       | 12000   | 2EE0 <sub>H</sub>      |               |
| :                          | :       | :                      | Nominal range |
| -210.0                     | -2100   | F7CC <sub>H</sub>      |               |
| <-210                      | <-2100  | <f7cc<sub>H</f7cc<sub> | Underrange    |

In the case of incorrect wiring (e. g. polarity reversal or open inputs) or of a sensor error in the negative range (e. g. incorrect thermocouple type), the analog input module signals underflow below  $F0C5_H$  and outputs  $8000_H$ .

# **Temperature Range Type E**

Table 4-15 shows the representation of the digitized measured value for the temperature range, sensor type E.

Table 4-15 Representation of the Digitized Measured Value of an Analog Input Module (Temperature Ranges, Type E)

| Temperature           |         |                        | Range         |
|-----------------------|---------|------------------------|---------------|
| Range in °C<br>Type E | Decimal | Hexadecimal            |               |
| >1201                 | 32767   | 7FFF <sub>H</sub>      | Overflow      |
| 1200                  | 12000   | 2EE0 <sub>H</sub>      |               |
| :                     | :       | :                      | Overrange     |
| 1001                  | 10010   | 271A <sub>H</sub>      |               |
| 1000                  | 10000   | 2710 <sub>H</sub>      |               |
| :                     | :       | :                      | Nominal range |
| -270                  | -2700   | F574 <sub>H</sub>      |               |
| <-271                 | <-2700  | <f574<sub>H</f574<sub> | Underrange    |

In the case of incorrect wiring (e. g. polarity reversal or open inputs) or of a sensor error in the negative range (e. g. incorrect thermocouple type), the analog input module signals underflow below  $F0C5_H$  and outputs  $8000_H$ .

## **Temperature Range Type L**

Table 4-16 shows the representation of the digitized measured value for the temperature range, sensor type L.

Table 4-16 Representation of the Digitized Measured Value of an Analog Input Module (Temperature Range, Type L)

| Temperature<br>Range in °C | Ur     | nits                   | Range         |
|----------------------------|--------|------------------------|---------------|
| Type L                     |        |                        |               |
| >1150                      | 32767  | 7FFF <sub>H</sub>      | Overflow      |
| 1150                       | 11500  | 2CEC <sub>H</sub>      |               |
| :                          | :      | :                      | Overrange     |
| 901                        | 9010   | 2332 <sub>H</sub>      |               |
| 900                        | 9000   | 2328 <sub>H</sub>      |               |
| :                          | :      | :                      | Nominal range |
| -200                       | -2000  | F830 <sub>H</sub>      |               |
| <-200                      | <-2000 | <f830<sub>H</f830<sub> | Underrange    |

In the case of incorrect wiring (e. g. polarity reversal or open inputs) or of a sensor error in the negative range (e. g. incorrect thermocouple type), the analog input module signals underflow below  $F0C5_H$  and outputs  $8000_H$ .

## Measuring Ranges for the SM 334

The analog input/output module SM 334; AI 4/AO  $2 \times 8/8$  Bit has the measuring ranges 0 to 10 V and 0 to 20 mA. In contrast to other analog modules, however, the analog input/output module SM 334 has a lower resolution and no negative measuring ranges. Please observe this when reading Tables 4-5 and 4-6.

# 4.1.3 Analog Value Representation of the Output Ranges of the Analog Outputs

## **Tables for Output Ranges**

Tables 4-17 and 4-18 show the analog output ranges of the analog output module.

## **Voltage Output Ranges**

Table 4-17 shows the representation of the voltage output ranges 0 to 10 V, 1 to 5 V and  $\pm$  10 V.

Table 4-17 Representation of the Analog Output Range of the Analog Output Modules (Voltage Output Ranges)

| Output             |                   |                 | Units    |                    |              |
|--------------------|-------------------|-----------------|----------|--------------------|--------------|
| Range<br>0 to 10 V | Range<br>1 to 5 V | Range<br>± 10 V | Decimal  | Hexa-<br>decimal   | Range        |
| 0                  | 0                 | 0               | >32511   | >7EFF <sub>H</sub> | Overflow     |
| 11.7589            | 5.8794            | 11.7589         | 32511    | 7EFF <sub>H</sub>  |              |
| :                  | :                 | :               | :        | :                  | Overrange    |
| 10.0004            | 5.0002            | 10.0004         | 27649    | 6C01 <sub>H</sub>  |              |
| 10.0000            | 5.0000            | 10.0000         | 27648    | 6C00 <sub>H</sub>  |              |
| :                  | :                 | :               | :        | :                  |              |
| 0                  | 1.0000            | 0               | 0        | 0 <sub>H</sub>     |              |
| 0                  | :0.9999           |                 | :        | :                  |              |
|                    | 0                 | :               | - 6912   | E500 <sub>H</sub>  | Nomial range |
|                    | 0                 |                 | - 6913   | E4FF <sub>H</sub>  |              |
|                    |                   |                 | :        | :                  |              |
|                    |                   | - 10.0000       | - 27648  | 9400 <sub>H</sub>  |              |
|                    |                   | 10.0004         | - 27649  | 93FF <sub>H</sub>  |              |
|                    |                   | :               | :        | :                  | Underrange   |
|                    |                   | - 11.7589       | - 32512  | 8100 <sub>H</sub>  |              |
|                    |                   | 0               | <- 32512 | <8100 <sub>H</sub> | Underflow    |

## **Current Output Ranges**

Table 4-18 shows the representation of the current output ranges 0 to 20 mA, 4 to 20 mA and  $\pm$  20 mA.

Table 4-18 Representation of the Analog Output Range of the Analog Output Modules (Current Output Ranges)

| Output              | Output              | Output           | Units    |                    | Range         |
|---------------------|---------------------|------------------|----------|--------------------|---------------|
| Range<br>0 to 20 mA | Range<br>4 to 20 mA | Range<br>± 20 mA | Decimal  | Hexa-<br>decimal   |               |
| 0                   | 0                   | 0                | >32511   | >7EFF <sub>H</sub> | Overflow      |
| 23.515              | 22.81               | 23.515           | 32511    | 7EFF <sub>H</sub>  |               |
| :                   | :                   | :                | :        | :                  | Overrange     |
| 20.0007             | 20.005              | 20.0007          | 27649    | 6C01 <sub>H</sub>  |               |
| 20.000              | 20.000              | 20.000           | 27648    | 6C00 <sub>H</sub>  |               |
| :                   | :                   |                  | :        | :                  |               |
| 0                   | 4.000               | 0                | 0        | 0 <sub>H</sub>     |               |
| 0                   | 3.9995              |                  | :        | :                  |               |
|                     | 0                   | :                | - 6912   | E500 <sub>H</sub>  | Nominal range |
|                     | 0                   |                  | - 6913   | E4FF <sub>H</sub>  |               |
|                     |                     |                  | :        | :                  |               |
|                     |                     | - 20.000         | - 27648  | 9400 <sub>H</sub>  |               |
|                     |                     |                  | - 27649  | 93FF <sub>H</sub>  |               |
|                     |                     | :                | :        | :                  | Underrange    |
|                     |                     | - 23.515         | - 32512  | 8100 <sub>H</sub>  |               |
|                     |                     | 0                | <- 32512 | <8100 <sub>H</sub> | Underflow     |

## **Output Ranges for the SM 334**

The analog input/output module SM 334; AI 4/AO  $2\times8/8$  Bit has the output ranges 0 to 10 V and 0 to 20 mA. In contrast to other analog modules, however, the analog input/output module SM 334 has a lower resolution and no overranges. Please observe this when reading Tables 4-17 and 4-18.

# 4.2 Connecting Sensors/Transducers and Loads/Actuators to Analog Modules

## In this Chapter

In this chapter, you will find:

- Fundamentals on how to connect sensors and transducers
- · A description of thermocouples
  - Design and principle of operation of thermocouples
  - Use of compensating boxes
- A description of how to connect up thermocouples to analog inputs
- A description of how to connect up other sensors and transducers to analog inputs
  - Connection of voltage sensors
  - Connection of resistance thermometers
  - Connection of current sensors
  - Connection of other sensors and transducers
- A description of how to connect up loads/actuators to analog inputs

# 4.2.1 Connecting Sensors/Transducers to Analog Inputs

#### Introduction

You can connect various types of transducers and sensors to your analog input modules:

- Voltage sensors
- · Current sensors as
  - 2-wire transducers
  - 4-wire transducers
- Resistors

This chapter tells you how to connect up your sensors and transducers and what precautions you have to take when doing so.

## **Cables for Analog Signals**

To reduce electrical interference, you should use twisted-pair shielded cables for the analog signals. The shield of the analog signal cables should be grounded at both cable ends. If there are potential differences between the cable ends, an equipotential bonding current can flow over the shield, which leads to an interference of the analog signals. In such a case, you should ground the shield at one end of the cable only.

#### **Isolated Analog Input Modules**

With the isolated analog input modules there is no electrical connection between the reference point of the measuring circuit  $M_{\text{ANA}}$  and the M terminal of the CPU.

You must use isolated analog input modules if a potential difference  $U_{ISO}$  can occur between the reference point of the measuring circuit  $M_{ANA}$  and the M terminal of the CPU. Make sure that  $U_{ISO}$  does not exceed the permissible value. If it is possible that the permissible value is exceeded, establish a connection between the  $M_{ANA}$  terminal and the M terminal of the CPU.

#### Non-Isolated Analog Input Modules

With the non-isolated analog input modules, you must establish a connection between the reference point of the measuring circuit  $M_{ANA}$  and the M terminal of the CPU or IM 153. Therefore, connect the  $M_{ANA}$  terminal with the M terminal of the CPU or IM 153. A potential difference between  $M_{ANA}$  and the M terminal of the CPU or IM 153 can lead to a corruption of the analog signal.

## **Connection of Sensors to Analog Inputs**

Only a limited potential difference  $U_{CM}$  (common mode voltage) may occur between the measuring lines M— of the input channels and the reference point of the measuring circuit  $M_{ANA}$ . In order to prevent the permissible value from being exceeded, you must take different actions, depending on the potential connection of the sensors (isolated, non-isolated). These actions are described in this section.

When connecting resistance-type sensors or 2-wire transducers for current measurement, you cannot make the connection from M- to M $_{ANA.}$  This also applies to inputs which are not used.

#### **Abbreviations and Mnemonics**

The abbreviations and mnemonics used in Figures 4-1 to 4-4 have the following meanings:

M +: Measuring lead (positive)

M -: Measuring lead (negative)

M<sub>ANA</sub>: Reference potential of the analog measuring circuit

M: Ground terminal

L+: Terminal for 24 VDC supply voltage

U<sub>CM</sub>: Potential difference between inputs and reference potential of

the M<sub>ANA</sub> measuring circuit

U<sub>ISO</sub>: Potential difference between M<sub>ANA</sub> and M terminal of CPU

#### **Isolated Sensors**

The isolated sensors are not connected with the local ground potential. They can be operated free of potential. Caused by local conditions or interferences potential differences  $U_{CM}$  (static or dynamic) can occur between the measuring lines M- of the input channels and the reference point of the measuring circuit  $M_{ANA}$ .

In order to prevent the permissible value for  $U_{CM}$  from being exceeded when operating in areas with heavy EMC interference, the following applies:

- for analog input modules SM 331 with order no. 331-7K.00: Connect M

  — with M

  ANA!
- for analog input modules SM 331 with order no. 331-7K.01:
   We recommend you to connect M

   with M

  ANA.

Do not connect M- to  $M_{ANA}$  when connecting 2-wire measuring transducers for current measurement and resistance-type sensors.

You can operate the CPU as follows:

| Analog input module | CPU                                                       |
|---------------------|-----------------------------------------------------------|
| Isolated            | Non-floating (bridge between                       and M) |
|                     | or                                                        |
|                     | floating (no bridge between 🛕 and M)                      |

## **Isolated Sensors, continued**

Figure 4-1 shows the principle of connecting isolated sensors to an isolated analog input module.

Please observe that you must not make the connection from M– to M<sub>ANA</sub> when connecting 2-wire transducers for current measurement or resistance-type sensors. This also applies to configured inputs which are not used.



Figure 4-1 Connecting Isolated Sensors to an Isolated Analog Input Module



Figure 4-2 shows the principle of connecting isolated sensors to a non-isolated analog input module.

Figure 4-2 Connecting Isolated Sensors to a Non-Isolated Analog Input Module

## **Non-Isolated Sensors**

The non-isolated sensors are connected locally to ground potential.  $M_{ANA}$  must be connected to ground potential. Caused by local conditions or interferences potential differences  $U_{CM}$  (static or dynamic) can occur between the locally distributed individual measuring points.

If the potential difference  $U_{CM}$  exceeds the permissible value, you must provide equipotential bonding conductors between the measuring points.

You can operate the CPU as follows:

| Analog Input module | СРИ                                      |  |  |  |
|---------------------|------------------------------------------|--|--|--|
| Isolated            | Non-floating (bridge between   ♠  and M) |  |  |  |
|                     | or floating (no bridge between 🛕 and M)  |  |  |  |
| Non-isolated        | Non-floating (bridge between 🖨 and M)    |  |  |  |

Figure 4-3 shows the principle of connecting non-isolated sensors to an isolated analog input module.



Figure 4-3 Connecting Non-Isolated Sensors to an Isolated Analog Input Module

## Non-Isolated Sensors, continued

Figure 4-4 shows the principle of connecting non-isolated sensors to a non-isolated analog input module.



Figure 4-4 Connecting Non-Isolated Sensors to a Non-Isolated Analog Input Module

Do not use non-isolated 2-wire transducers and non-isolated resistance sensors!

# 4.2.2 Using Thermocouples

## Introduction

This section describes the design of thermocouples and what you must observe when connecting thermocouples.

## **Design of Thermocouples**

A thermocouple consists of

- · the thermocouple proper (sensor) and
- the necessary mounting and connecting parts

The thermocouple consists of two wires of dissimilar metals or metal alloys soldered or welded together at the ends. There are different types of thermocouple, for example K, J and N thermocouples, depending on the composition of the material used. The measuring principle of all thermocouple is the same, irrespective of their type.



Figure 4-5 Design of Thermocouples

## **Principle of Operation of Thermocouples**

If the measuring junction is exposed to a temperature other than that obtained at the free ends of the thermocouple (point of connection), a voltage, or thermo-e.m.f., arises between the free ends.

The magnitude of the thermo-e.m.f. generated depends on the difference between the temperature at the measuring junction and the temperature at the free ends, as well as on the material combination used for the thermocouple. Since a thermocouple always measures a temperature difference, the free ends must be kept at a known temperature at a reference junction in order to determine the temperature of the measuring junction.

## **Extension to a Reference Junction**

The thermocouples can be extended from their point of connection to a point of known temperature (reference junction) by means of compensating wires.

These compensating wires consist of the same material as the thermocouple wires. The supply leads are copper wire. You should use external compensation in this case. Make sure these wires are connected with the correct polarity, otherwise there will be considerable measurement errors.

## **External Compensation**

You can compensate for the effects of temperature fluctuations at the reference junction by means of compensating leads, for example by connecting a compensating box.

The compensating box contains a bridge circuit calibrated for a definite reference junction temperature. The reference junction is formed by the connections for the ends of the thermocouple's compensating leads.

If the actual temperature deviates from the compensating temperature, the temperature-sensitive bridge resistance changes. This results in a positive or negative compensating voltage, which is added to the thermo-e.m.f.

Use compensating boxes with a **reference junction temperature of 0 °C (32 °F)** for analog input modules.

Please note the following:

- The compensating box must have an isolated supply.
- The power supply must have adequate filtering, for example by means of a grounded shielding winding.

## **Internal Compensation**

Bei der internen Kompensation können Sie die Vergleichstelle an den Klemmen der Analogeingabebaugruppe bilden. In diesem Fall müssen Sie die Ausgleichsleitungen bis zur Analogbaugruppe führen. Der interne Temperatursensor erfaßt die Temperatur der Baugruppe und liefert eine Kompensationsspannung.

Note that internal compensation is not as accurate as external compensation!

## **Using Thermocouples**

If you wish to connect thermocouples, you must observe the following:

You can use internal or external compensation, depending on where you want the reference junction to be.

If you employ internal compensation, the internal temperature of the module is used for comparison purposes.

If you employ external compensation, the temperature of the reference junction of the thermocouples is taken into account via a compensating box.

Connect the compensating box to the COMP terminals of the module, locating the compensating box at the reference junction of the thermocouples.

The following constraints apply:

- The parameters of a channel group have general validity for all channels of that group (for example, input voltage, integrating time etc.)
- External compensation with the compensating box connected to the COMP terminals of the module can only be implemented for one type of thermocouple. That is, you must use the same type of thermocouple for all channels that are connected to that compensating box.

#### **Abbreviations and Mnemonics**

The abbreviations and mnemonics used in Figures 4-6 and 4-7 have the following meanings:

M +: Measuring lead (positive)

M -: Measuring lead (negative)

COMP<sub>+</sub>: Compensating terminal (positive)

COMP \_: Compensating terminal (negative)

M<sub>ANA</sub>: Reference potential of the analog measuring circuit

M: Ground terminal

L+: Terminal for 24 VDC supply voltage

## **Choice of Thermocouple Connections**

Figures 4-6 and 4-7 show the various methods of connecting thermocouples with and without compensating boxes.

In addition to the following explanations, the remarks in Section 4.2.1 about the connection of sensors to analog inputs apply. In the following figures, the required connecting leads between the M connection of the CPU, M–, M<sub>ANA</sub> and ground potential which are required due to the potential connection of the analog module (isolated, non-isolated) are not shown. This means that you must bear in mind and implement the remarks comprised in Section 4.2.1.

## Thermocouples with Compensating Box

The thermocouples using a compensating box must be of the same type. If the thermocouples connected to the inputs of the module or a group all have the same reference junction, you must provide compensation as shown in Figure 4-6.



Figure 4-6 Connection of Thermocouples with External Compensating Box to an Isolated Analog Input Module

## Thermocouples without Compensating Box

If you connect thermocouples direct to the inputs of the module or via compensating leads, you can use internal temperature compensation. Each channel group can use a thermocouple type supported by the analog module independently of the other channel groups.



Figure 4-7 Connection of Thermocouples with Internal Compensation to an Isolated Analog Input Module

# 4.2.3 Connecting Voltage and Current Sensors and Resistance-TypeThermometers

#### **Abbreviations and Mnemonics**

The abbreviations and mnemonics used in Figures 4-8 through 4-11 have the following meanings:

I<sub>C +</sub>: Constant-current lead (positive)

I<sub>C</sub> .: Constant-current lead (negative)

M +: Measuring lead (positive)

M -: Measuring lead (negative)

M<sub>ANA</sub>: Reference potential of the analog measuring circuit

M: Ground terminal

L +: Terminal for 24 VDC supply voltage

In addition to the following explanations, the remarks in Section 4.2.1 about the connection of sensors to analog inputs apply. In the following figures, the required connecting leads between the M connection of the CPU, M–, M<sub>ANA</sub> and ground potential which are required due to the potential connection of the analog module (isolated, non-isolated) are not shown. This means that you must bear in mind and implement the remarks comprised in Section 4.2.1.

## **Connecting Voltage Sensors**

Figure 4-8 shows you how to connect voltage sensors to an isolated analog input module.



Figure 4-8 Connecting Voltage Sensors to an Isolated Analog Input Module

## **Connecting Current Sensors as 2-Wire and 4-Wire Transducers**

The 2-wire transducer receives its short-circuit-proof power supply via the analog input. This transducer then converts the measured variable into a current. Four-wire transducers have separate power supplies.

Two-wire transducers must be isolated sensors.

Figure 4-9 shows you how to connect current sensors as 2-wire transducers to an isolated analog input module.



Figure 4-9 Connecting 2-Wire Transducers to an Isolated Analog Input Module

Figure 4-10 shows you how to connect current sensors as 4-wire transducers to an isolated analog input module.



Figure 4-10 Connecting 4-Wire Transducers to an Isolated Analog Input Module

## Connecting Resistance-Type Thermometers (e.g. Pt 100) and Resistances

Resistance-type thermometers and resistances are connected in a 4-wire circuit. A constant current is supplied to the resistance-type thermometer or resistance over terminals  $I_{C+}$  and  $I_{C-}$ . The voltage generated at the resistance-type thermometer or resistance is measured via the M+ and M- terminals. This results in a high measuring accuracy in the 4-wire circuit.

Figure 4-11 shows you how to connect resistance-type thermometers to an isolated analog input module.



Figure 4-11 Connecting Resistance-Type Thermometers to an Isolated Analog Input Module

In the 2-wire and 3-wire circuit, you must insert jumpers between M+ and  $I_{C-}$  and between M- and  $I_{C-}$ . This, however, reduces the accuracy of the measuring results.

## 4.2.4 Connecting Loads/Actuators to Analog Outputs

#### Introduction

You can use the analog output modules to supply loads/actuators with current and voltage.

## **Cables for Analog Signals**

To reduce electrical interference, you should use twisted-pair shielded cables for the analog signals. The cables  $Q_v$  and S+ and M and S-, respectively, are to be twisted together. The shield of the analog signal cables should be grounded at both cable ends. If there are potential differences between the cable ends, an equipotential bonding current, which can flow over the shield, can cause interference of the analog signals. In such a case, you should ground the shield at one end of the cable only.

## **Isolated Analog Output Modules**

With the isolated analog output modules there is no electrical connection between the reference point of the measuring circuit M<sub>ANA</sub> and the M terminal of the CPU.

You must use isolated analog output modules if a potential difference  $U_{ISO}$  can occur between the reference point of the measuring circuit  $M_{ANA}$  and the M terminal of the CPU. Make sure that  $U_{ISO}$  does not exceed the permissible value. If it is possible that the permissible value is exceeded, establish a connection between the  $M_{ANA}$  terminal and the M terminal of the CPU.

#### Non-Isolated Analog Output Modules

With the non-isolated analog output modules, you must establish a connection between the reference point of the measuring circuit  $M_{ANA}$  and the M terminal of the CPU. Therefore, connect the  $M_{ANA}$  terminal with the M terminal of the CPU. A potential difference between  $M_{ANA}$  and the M terminal of the CPU can lead to a corruption of the analog signal.

## **Abbreviations and Mnemonics**

The abbreviations and mnemonics used in Figures 4-12 to 4-15 have the following meanings:

Q<sub>I</sub>: Analog output current

Q<sub>V</sub>: Analog output voltage

S +: Detector lead (positive)

S -: Detector lead (negative)

M<sub>ANA</sub>: Reference potential of analog circuit

R<sub>L</sub>: Load/actuator

L +: Terminal for 24 VDC supply voltage

M: Ground terminal

U<sub>ISO</sub>: Potential difference between M<sub>ANA</sub> and M terminal of CPU.

## **Connecting Loads to a Current Output**

You must connect loads at a current output to  $Q_I$  and the reference point of the analog circuit  $M_{\text{ANA}}$ .

Figure 4-12 shows the principle of connecting loads to a current output of an isolated analog output module.



Figure 4-12 Connecting Loads to a Current Output of an Isolated Analog Output Module

# **Connecting Loads to a Current Output, continued**

Figure 4-13 shows the principle of connecting loads to a current output of a non-isolated analog output module.



Figure 4-13 Connecting Loads to a Non-Isolated Analog Output Module

## **Connecting Loads to a Voltage Output**

Connecting loads to a voltage output is possible both in a 4-wire and a 2-wire circuit. However, not all analog output modules allow both types of connection.

## **4-Wire Circuit**

A high accuracy at the load can be achieved through the 4-wire circuit. You must therefore connect the sensor leads (S– and S+) directly to the load. The voltage is thus measured and corrected directly at the load. Interferences or a voltage drop can result in a potential difference between the sensor lead S– and the reference circuit of the analog circuit  $M_{ANA}$ . However, this potential difference should not exceed the permissible value. If the permissible potential difference is exceeded, the accuracy of the analog signal is impaired.

With a 2-wire circuit, the S+ and S- terminals can be left open. However, you will not achieve the accuracy of a 4-wire circuit.

Figure 4-14 shows you how to connect loads to a voltage output of an isolated analog output module over a 4-wire circuit.



Figure 4-14 Connecting Loads to a Voltage Output of an Isolated Analog Output Module over a 4-Wire Circuit

## 2-Wire Circuit

Use terminals  $Q_V$  and the reference point of the measuring circuit  $M_{ANA}$  to connect loads to a voltage output over a 2-wire circuit.

Figure 4-15 shows the principle of connecting loads to a voltage output of a non-isolated analog output module over a 2-wire circuit.



Figure 4-15 Connecting Loads to a Voltage Output of a Non-Isolated Analog Output Module over a 2-Wire Circuit

# 4.3 Fundamental Principles for the Use of Analog Modules

#### In this Section

In this section, you will find information on:

- The fundamental terms of analog value processing.
- How to set the measuring ranges of the analog input channels.
- · Which diagnostics means the individual analog modules offer.
- How to set the functions of the individual analog modules (using which parameters).
- The behavior of the individual analog modules.

# 4.3.1 Conversion and Cycle Time of the Analog Input Channels

#### Introduction

In this section, you will find the definitions and relations of the conversion time and cycle time for the analog input modules.

## **Conversion Time**

The conversion time consists of a basic conversion time and additional processing times of the module for:

- Resistance measurement
- · Wire-break monitoring

The basic conversion time depends directly on the conversion method (integrating method, successive approximation) of the analog input channel. In the case of integrating conversion methods, the integration time has a direct influence on the conversion time. The integration time has a direct influence on the resolution. You will find the basic conversion times for the individual analog modules in Section 4.3.4. You set the integration time using *STEP 7* (see Section 4.3.3).

## **Cycle Time**

Analog-to-digital conversion and the transfer of digitized measured values to memory and/or the data bus of the programmable controller is sequential. This means that the individual analog input channel values are converted one after the other. The cycle time, that is the time elapsing until an analog input value is again converted, is the sum of the conversion times of all activated analog input channels of the analog input module. When the analog input channels are grouped in channel groups, you must take into account the conversion time channel group by channel group. Two analog input channels of the analog input modules SM 331 form one channel group. You must therefore grade the cycle time in steps of 2. To reduce the cycle time, you should use the parameter assignment in *STEP 7* to deactivate any analog input channels that are not used.

Figure 4-16 illustrates the components of the cycle time for an n-channel analog input module.



Figure 4-16 Cycle Time of the Analog Input Module

# 4.3.2 Conversion, Cycle, Setting and Response Times of the Analog Output Channels

#### Introduction

This section contains the definition and interrelationships of the times relevant for the analog output modules.

#### **Conversion Time**

The conversion time of the analog output channels comprises the transfer of the digitized output values from the internal memory and the digital-to-analog conversion.

## **Cycle Time**

Conversion of the analog output channels is sequential. This means that the analog output channel values are converted one after the other.

The cycle time, that is the time elapsing before an analog output value is again converted, is the sum of the conversion times of all activated analog output channels of the analog output module.

Figure 4-17 illustrates the components of the cycle time for an n-channel analog output module.



Figure 4-17 Cycle Time of the Analog Output Module

# **Settling Time**

The settling time ( $t_2$  to  $t_3$ ), that is the time elapsing between the converted value being present and reaching the specified value at the analog output is load-dependent. A distinction is made between resistive, capacitive and inductive loads.

## **Response Time**

The response time  $(t_1 \text{ to } t_3)$ , that is the time elapsing between the digital output values being present in the internal memory and reaching the specified value at the analog output is in the worst case the sum of the cycle time and the settling time. You have a worst case situation, if, shortly prior to the transfer of a new output value, the analog channel has been converted and is not converted again until all other channels are converted (cycle time).

Figure 4-18 shows the response time of the analog output channels.



Figure 4-18 Response Time of the Analog Output Channels

# 4.3.3 Setting the Measuring Method and the Measuring Ranges of the Analog Input Channels

#### Introduction

You can set the measuring method and the measuring ranges for the analog input channels of the S7-300 analog modules in two different ways:

 Using a measuring range module on the analog module and STEP 7 (see also the STEP 7 Documentation)

or

• Using the wiring of the analog input channel.

Which of these two methods is used for the individual analog modules depends on the module and is described in detail in the module section.

This section describes how you set the measuring method and the measuring range via a measuring range module.

# **Setting the Measuring Method and the Measuring Ranges with Measuring Range Modules**

If an analog module has a measuring range module, it is supplied with the measuring range module plugged in.

You may have to relocate the measuring range modules to change the measuring method and the measuring range. Make sure that the measuring range modules are on the left-hand side of the analog input module. **Before** installing the analog input module, therefore, check whether the measuring range modules have to be set to another measuring method and measuring range! The assignment of measuring range modules to measuring ranges is described in connection with the particular analog module.

## **Markings for the Measuring Range Module**

When unplugging and plugging in the measuring range module, please note the markings on the analog input module.

Figure 4-19 shows you the position of the measuring range module relative to the marking on the analog input module.



Figure 4-19 Markings for the Measuring Range Module

## **Resetting the Measuring Range Module**

If you have to reset a measuring range module, proceed as follows (example: analog input module SM 331; Al 8 imes 12 Bit):

1. Use a screwdriver to ease the measuring range module out of the analog input module with a **single** lift.

**Note:** Make sure that you do not insert the screwdriver in the latching window of the measuring range module if you require more than one lift to ease the measuring range module out. You might thus damage its contacts.



Figure 4-20 Easing a Measuring Range Module out of Analog Input Module SM 331; Al 8 imes 12 Bit



2. Insert the measuring range module (correctly positioned) into the analog input module

Figure 4-21 Inserting a Measuring Range Module into Analog Input Module SM 331; Al 8 imes 12 Bit

Follow the same procedure for all other measuring range modules.

## **Position of the Measuring Range Modules**

The measuring range modules have the following possible positions: "A", "B", "C" and "D".

Which measuring range module positions you must select for the individual types of measurement and measuring ranges is described under the description of the analog module.

The settings for the various types of measurement and measuring ranges are also printed on the analog module.

# 4.3.4 Parameters of the Analog Modules

#### Introduction

This section contains a summary of the analog modules and their parameters.

## **Parameter Assignment**

Use *STEP 7* to assign the parameters to the analog modules. You must carry out this setting in the STOP mode of the CPU. On a transition from STOP to RUN mode, the CPU then transfers the parameters to the individual analog modules.

Alternatively, you can also change some of the parameters in the user program with SFC 55. You can find the relevant parameters in Appendix A or in Tables 4-19 and 4-20. The parameters set with STEP 7 in the CPU RUN mode can be transferred to the analog module using SFCs 56 and 57 (see Reference Manual *System and Standard Functions*).

For the two parameter assignment alternatives, we subdivide the parameters into:

- · Static parameters and
- Dynamic parameters.

The following table shows the characteristics of the static and dynamic parameters.

| Parameter | Settable with              | CPU Operating<br>State |
|-----------|----------------------------|------------------------|
| Static    | Programming device         | STOP                   |
| Dynamic   | Programming device         | STOP                   |
|           | SFC 55 in the user program | RUN                    |

# **Programmable Characteristics**

You can program the characteristics of the analog modules by means of the following parameters in *STEP 7*:

- For input channels
  - Interrupt enable
  - Limit value interrupt
  - Diagnostics interrupt
  - Measurement
- · For output channels
  - Interrupt enable
  - Diagnostics interrupt
  - Substitute values
  - Output

# **Parameters of the Analog Input Modules**

Table 4-19 summarizes the parameters of the analog input modules and shows which paremeters

- · are static or dynamic or
- can be set for the modules as a whole or for one group of channels or one channel each.

Table 4-19 Parameters of the Analog Input Modules

| Parameter                                              | SM 331; Al 2 $	imes$ 12 Bit and SM 331; Al 8 $	imes$                                                        | Para-              | Scope         |                     |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------|---------------|---------------------|
|                                                        | Value Range                                                                                                 | Default<br>Setting | meter<br>Type |                     |
| Enable                                                 |                                                                                                             |                    |               |                     |
| Process interrupt<br>when limit value is<br>exceeded   | Yes/no                                                                                                      | No                 | Dynamic       | Module              |
| Diagnostics interrupt                                  | Yes/no                                                                                                      | No                 |               |                     |
| Trigger for process interrupt                          |                                                                                                             |                    |               |                     |
| Upper limit value                                      | 32511 to – 32512                                                                                            |                    | Dynamic       | Channel             |
| Lower limit value                                      | - 32512 to 32511                                                                                            | _                  |               |                     |
| Diagnostics                                            |                                                                                                             |                    |               | 01 1                |
| Group diagnostics                                      | Yes/no                                                                                                      | No                 | Static        | Channel or channel  |
| With wire-break check                                  | Yes/no                                                                                                      | No                 | Ciano         | group               |
| Measurement                                            |                                                                                                             |                    |               | Channel             |
| <ul> <li>Interference frequency suppression</li> </ul> | 400 Hz; 60 Hz; 50 Hz; 10 Hz                                                                                 | 50 Hz              | Dynamic       | or channel<br>group |
| Measurement type                                       | deactivated                                                                                                 | U                  |               |                     |
|                                                        | U Voltage                                                                                                   |                    |               |                     |
|                                                        | 4DMU Current (4-wire transducer)                                                                            |                    |               |                     |
|                                                        | 2DMU Current (2-wire transducer)                                                                            |                    |               |                     |
|                                                        | R-4L Resistance (4-wire connection)                                                                         |                    |               |                     |
|                                                        | RTD-4L Thermal resistance (linear, 4-wire -                                                                 |                    |               |                     |
|                                                        | connection)                                                                                                 |                    |               | Channel             |
|                                                        | TC-I Thermocouple (internal comparison)                                                                     |                    | Dynamic       | or channel          |
|                                                        | TC-E Thermocouple (external comparison)                                                                     |                    |               | group               |
|                                                        | TC-LI Thermocouple (linear, internal comparison)                                                            |                    |               |                     |
|                                                        | TC-LE Thermocouple (linear, external comparison)                                                            |                    |               |                     |
| Measuring range                                        | For the settable measuring ranges of the input channels, please refer to the individual module description. | ±10 V              |               |                     |

# **Parameters of the Analog Output Modules**

Table 4-20 summarizes the parameters of the analog output modules and shows which parameters

- · are static or dynamic or
- can be set for the modules as a whole or for one channel each.

Table 4-20 Parameters of the Analog Output Modules

| Parameter                       | SM 332; AO 4 $	imes$ 12 Bit and SM 332; AO 2 $	imes$                                                         | 12 Bit                      | Parame-<br>ter Type | Scope   |
|---------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|---------|
|                                 | Value Range                                                                                                  | Value Range Default Setting |                     |         |
| Enable • Diagnostics interrupt  | Yes/no                                                                                                       | No                          | Dynamic             | Module  |
| Diagnostics • Group diagnostics | Yes/no                                                                                                       | No                          | Static              | Channel |
| Response with CPU-STOP          | LWH Hold last value<br>ASS Outputs de-energized                                                              | _                           | Dynamic             | Channel |
| Output  Output type             | Deactivated Voltage Current                                                                                  | U                           | Dynamic             | Channel |
| Output range                    | For the settable measuring ranges of the output channels, please refer to the individual module description. | +/-10 V                     | Dynamic             | Channel |

## Parameters of the Analog Input/Output Module SM 334

You cannot parameterize the analog input/output module SM 334; AI 4/AO 2  $\times$  8/8 Bit. The measuring method for this module is set via the wiring (see Section 4.10).

## 4.3.5 Diagnostics of the Analog Modules

#### Introduction

This Section contains tables listing the diagnostic messages of the analog modules.

## What does Diagnostics Mean?

Use diagnostics to find out if and which errors have occurred on analog processing. When detecting an error, the analog input modules supply signal value "7FFFH", independent of the parameter assignment.

## **Parameterizing Diagnostics**

Use STEP 7 to set the diagnostics parameters.

## **Diagnostics Evaluation**

For the purpose of diagnostics evaluation, a distinction is made between programmable and non-programmable diagnostics messages. With the programmable diagnostics messages, evaluation is made only if a diagnostics enable has been programmed (in the "group diagnostics" parameter). The non-programmable diagnostics messages are always evaluated, irrespective of the diagnostics enable setting.

Only evaluated diagnostics messages will activate the following functions:

- Group error LED on the analog module lights up,
- Diagnostics message is transferred to CPU,
- Diagnostics interrupt is triggered (only if you have enabled the diagnostics interrupt by parameter).

See also Appendix B and the reference manual *Systems and Standard Functions* for diagnostics evaluation in the user program with SFC.

# **Diagnostics of the Analog Input Modules**

Table 4-21 gives an overview of the diagnostic messages that you can program for the analog input modules. Enabling is executed in the "Diagnostics" parameter block (see Section 4.3.4). The diagnostic information is assigned to the individual channels or to the module as a whole.

Table 4-21 Diagnostic Message of the Analog Input Modules

| Diagnostics<br>Message                  | SM 331;<br>AI 2 × 12 Bit | SM 331 ;<br>Al 8 × 12Bit | Diagnostics<br>Effective for | Configur-<br>able |
|-----------------------------------------|--------------------------|--------------------------|------------------------------|-------------------|
| External auxiliary supply missing       | Yes                      | Yes                      | Module                       | No                |
| Configuring/paramet er assignment error | Yes                      | Yes                      |                              |                   |
| Common-mode error                       | Yes                      | Yes                      |                              |                   |
| Wire break                              | Yes                      | Yes                      | Channel                      | Yes               |
| Measuring range underflow               | Yes                      | Yes                      |                              |                   |
| Measuring range overflow                | Yes                      | Yes                      |                              |                   |

#### **Wire-Break Check**

Diagnosis of a wire break is only possible when the wire-break check is activated. You can activate the wire-break check with the corresponding parameter.

#### **Error Causes and Remedies:**

The following table shows for the analog input modules the possible error causes by which the diagnostics messages are triggered, and relevant remedies.

Please note that the analog input module must be parameterized accordingly so that the errors for which programmable diagnostics messages are output can be detected.

Table 4-22 Diagnostics Messages of the Analog Input Modules, Possible Error Causes, Remedies

| Diagnostics Message           | Possible Error Cause                                                                                                                            | Remedy                           |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| External load voltage missing | Load voltage L+ of module missing                                                                                                               | Feed supply L+                   |
| Configuring/parameter         | Illegal parameters transferred to                                                                                                               | Check measuring range module     |
| assignment error              | module                                                                                                                                          | Reassign module parameter        |
| Common-mode error             | Potential difference U <sub>CM</sub> between<br>the inputs (M–) and reference<br>potential of measuring circuit<br>(M <sub>ANA</sub> ) too high | Connect M– with M <sub>ANA</sub> |

Table 4-22 Diagnostics Messages of the Analog Input Modules, Possible Error Causes, Remedies, continued

| Diagnostics Message       | Possible Error Cause                                                        | Remedy                                                                                                  |
|---------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Wire break                | Resistance too high in the sensor connection                                | Use different type of sensor or connection, e.g. use conductors with a larger cross-sectional core area |
|                           | Open circuit between module and sensor                                      | Close circuit                                                                                           |
|                           | Channel not connected (open)                                                | Deactivate channel group ("measure type" parameter                                                      |
|                           |                                                                             | Connect channel                                                                                         |
| Measuring range underflow | Input value underflows underrange, error may be caused:                     |                                                                                                         |
|                           | <ul><li>with measuring range betw.</li><li>4 and 20 mA, 1 to 5 V:</li></ul> |                                                                                                         |
|                           | <ul> <li>by polarity reversal of<br/>sensor connection</li> </ul>           | Check terminals                                                                                         |
|                           | <ul> <li>by incorrect measuring<br/>range selected</li> </ul>               | Configure other measuring range                                                                         |
|                           | with other measuring ranges                                                 |                                                                                                         |
|                           | <ul> <li>by incorrect measuring<br/>range selected</li> </ul>               | Configure other measuring range                                                                         |
| Measuring range overflow  | Input value overflows overrange                                             | Configure other measuring range                                                                         |

## **Diagnostics of the Analog Output Modules**

Table 4-23 gives an overview of the diagnostic messages of the analog output modules. Enabling is executed in the "Diagnostics" parameter block (see Section 4.3.4).

The diagnostics information is assigned to the individual channels or to the module as a whole.

Table 4-23 Diagnostics Message of the Analog Output Modules

| Diagnostics<br>Message                  | SM 332;<br>AO 2×12 Bit | SM 332;<br>AO 4×12 Bit | Diagnostics<br>Effective for | Configur-<br>able |
|-----------------------------------------|------------------------|------------------------|------------------------------|-------------------|
| External auxiliary supply missing       | Yes                    | Yes                    | Module                       | No                |
| Configuring/paramet er assignment error | Yes                    | Yes                    |                              |                   |
| M short circuit                         | Yes                    | Yes                    | Channel                      | Yes               |
| Wire break                              | Yes                    | Yes                    |                              |                   |

## **Error Causes and Remedies:**

The following table shows for the analog output modules the possible error causes by which the diagnostics messages are triggered, and the relevant remedies.

Please note that the analog output module must be parameterized accordingly so that the errors for which programmable diagnostics messages are output can be detected.

Table 4-24 Diagnostics Messages of the Analog Output Modules and their Possible Error Causes and Remedies

| Diagnostics Message                    | Possible Error Cause                     | Remedy                                                                                                    |
|----------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| External load voltage missing          | Load voltage L+ of module missing        | Feed supply L+                                                                                            |
| Configuring/parameter assignment error | Illegal parameter transferred to module  | Reassign module parameter                                                                                 |
| M short circuit                        | Overload of output                       | Eliminate overload                                                                                        |
|                                        | Short circuit of output QV to MANA       | Eliminate short circuit                                                                                   |
| Wire break                             | Actuator resistance too high             | Use different type of actuator or connection, e.g. use conductors with a larger cross-sectional core area |
|                                        | Open circuit between module and actuator | Close circuit                                                                                             |
|                                        | Channel not used (open)                  | Deactivate channel group ("output type" parameter)                                                        |

## **Reading Out Diagnostics Messages**

If you set diagnostics for analog modules, you can read out the detailed diagnostics messages with STEP 7 (see *STEP 7* User Manual).

## Diagnostics of the Analog Input/Output Module SM 334

You cannot program diagnostics messages for the analog input/output module SM 334; AI 4/AO 2  $\times$  8/8 Bit.

# 4.3.6 Analog Module Interrupts

#### Introduction

In this Section, the interrupt behavior of the analog modules is described.

The following interrupts exist:

- Diagnostics interrupt
- Process interrupt

## **Configuring Interrupts**

Use STEP 7 to configure the interrupts.

## **Default Setting**

The default setting for interrupts is "disabled".

## **Diagnostics Interrupt**

If an error (for example, wire break) is detected or eliminated, the module triggers a diagnostics interrupt, provided the interrupt is enabled. The CPU interrupts the execution of the user program or of priority classes with low priority and processes the diagnostics interrupt block (OB 82).

## **Process Interrupt**

Define a working range by setting parameters for an upper and lower limit value. If the process signal (for example, temperature) leaves this working range, the module triggers a process interrupt, provided the interrupt is enabled. The CPU interrupts the execution of the user program or of priority classes with low priority and processes the process interrupt block (OB 40). The 4 bytes of the additional process interrupt information of OB 40 indicate which channel has exceeded which limit value.

| Contents of the 4 bytes of additional information |                                          | 27 | 2 <sup>6</sup> | 2 <sup>5</sup> | 24 | 2 <sup>3</sup> | 22 | 21 | 20 | Byte |
|---------------------------------------------------|------------------------------------------|----|----------------|----------------|----|----------------|----|----|----|------|
| Analog modules 2 bits per channel for marking     |                                          |    | ange           |                | •  | •              | •  | •  | •  |      |
|                                                   | Value exceeds upper limit in channel     | 7  | 6              | 5              | 4  | 3              | 2  | 1  | 0  | 0    |
|                                                   | Value falls below lower limit in channel | 7  | 6              | 5              | 4  | 3              | 2  | 1  | 0  | 1    |

## **Process Interrupt Example**

The following figure shows when the analog module triggers a process interrupt:

- If the value exceeds the upper limit
- . If the value falls below the lower limit



# 4.3.7 Behavior of the Analog Modules

## Introduction

In this section, you will find information on:

- How the analog input and output values depend on the supply voltage of the analog module and the operating states of the CPU
- The behavior of the analog modules depending on where the analog values lie within the value range
- The influence of errors on the analog modules

## Influence of Supply Voltage and Operating Mode

The input and output values of the analog modules depend on the supply voltage of the analog module and on the operating state of the CPU.

Table 4-25 gives an overview of these dependencies.

Table 4-25 Dependencies of the Analog Input/Output Values on the Operating State of the CPU and the Supply Voltage L+

| CPU Oper    | ating State | Supply Voltage L+ at<br>Analog Module | Input Value of the<br>Analog Input Module                                                                                                | Output Value of the<br>Analog Output Module                                                                                                                                        |
|-------------|-------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POWER<br>ON | RUN         | L + present                           | Process value                                                                                                                            | CPU values                                                                                                                                                                         |
|             |             |                                       | 7FFF <sub>H</sub> until the 1st<br>conversion after<br>switch-on or after<br>configuration of the<br>module has been<br>completed        | Until the 1st conversion  • after switch-on has been completed, a signal of 0 mA or 0 V is output.  • after parameter assignment has been completed, the previous value is output. |
|             |             | L+ missing                            | Overflow value                                                                                                                           | 0 mA/0 V                                                                                                                                                                           |
| POWER       | STOP        | L + present                           | Process value                                                                                                                            | Substitute value/last                                                                                                                                                              |
| ON          |             |                                       | 7FFF <sub>H</sub> until the 1st<br>conversion after<br>switch-on or after<br>parameter assignment<br>of the module has been<br>completed | value<br>(0 mA/0 V default)                                                                                                                                                        |
|             |             | L + missing                           | Overflow value                                                                                                                           | 0 mA/0 V                                                                                                                                                                           |
| POWER       | _           | L + present                           | -                                                                                                                                        | 0 mA/0 V                                                                                                                                                                           |
| OFF         |             | L + missing                           | _                                                                                                                                        | 0 mA/0 V                                                                                                                                                                           |

Failure of the supply voltage of the analog modules is always indicated by the SF-LED on the module and additionally entered in the diagnostics.

Triggering of the diagnostic interrupt depends on the parameter assignment (see Section 4.3.4).

## Influence of the Value Range on the Input

The behavior of the analog modules depends on where the input values lie within the value range. Table 4-26 shows this dependency for the analog input values.

Table 4-26 Behavior of the Analog Modules Depending on the Position of the Analog Input Value within the Value Range

| Process Value<br>Lies Within | Input Value       | SF LED               | Diagnostics          | Interrupt                         |
|------------------------------|-------------------|----------------------|----------------------|-----------------------------------|
| Nominal range                | Process value     | _                    | -                    | -                                 |
| Overrange/<br>underrange     | Process value     | _                    | -                    | -                                 |
| Overflow                     | 7FFF <sub>H</sub> | Flashes <sup>1</sup> | Entered <sup>1</sup> | Diagnostic interrupt <sup>1</sup> |
| Underflow                    | 8000 <sub>H</sub> | Flashes <sup>1</sup> | Entered <sup>1</sup> | Diagnostic interrupt <sup>1</sup> |
| Beyond the programmed limit  | Process value     | -                    | -                    | Process interrupt <sup>1</sup>    |

Depending on the parameter assignment

## Influence of the Value Range on the Output

The behavior of the analog modules depends on where the output values lie within the value range. Table 4-27 shows this dependency for the analog output values.

Table 4-27 Behavior of the Analog Modules Depending on the Position of the Analog Output Value within the Value Range

| Process Value<br>Lies Within | Output<br>Value | SF LED | Diagnostics | Interrupt |
|------------------------------|-----------------|--------|-------------|-----------|
| Nominal range                | CPU value       | -      | -           | _         |
| Overrange/<br>underrange     | CPU value       | _      | -           | -         |
| Overflow                     | 0 signal        | _      | -           | _         |
| Underflow                    | 0 signal        | _      | -           | -         |

### Influence of Faults/Errors

In the case of analog modules with diagnostics capability and the appropriate parameter assignment (see Section 4.3.4 "Parameters of the Analog Modules"), faults/errors can cause a diagnostic entry and a diagnostic interrupt. Tables 4-19 and 4-21 in Section 4.3.5 list the possible faults/errors.

The SF LED flashes also if external faults/errors occur, independent of the operating state of the CPU (with POWER ON).

# 4.4 Analog Input Module SM 331; Al $8 \times 12$ Bit

### In this Section

In this section, you will find information on:

- The characteristics of the analog input module SM 331; Al 8 imes 12 Bit
- The technical specifications of the analog input module SM 331; Al 8 imes 12 Bit You will also learn:
- How to start up the analog input module SM 331; Al 8 imes 12 Bit
- Which measuring ranges the analog input module SM 331; Al 8 imes 12 Bit has
- Which parameters can be used to influence the characteristics of the analog input module SM 331; Al 8 imes 12 Bit

# 4.4.1 Characteristic Features and Technical Specifications of the Analog Input Module SM 331; Al 8 imes 12 Bit

### Order No.

6ES7 331-7KF01-0AB0

### **Characteristic Features**

The analog input module SM 331; Al 8 imes 12 Bit has the following characteristic features:

- 8 inputs in 4 channel groups
- Measured-value resolution; settable per group (depending on the integration time set)
  - 9 bits + sign
  - 12 Bit + sign
  - 14 Bit + sign
- Measuring method selectable per channel group:
  - Voltage
  - Current
  - Resistance
  - Temperature
- Arbitrary measuring range selection per channel group
- · Programmable diagnostics
- Programmable diagnostic interrupt
- · Two channels with limit monitoring
- Programmable limit interrupt
- Galvanic isolation to CPU
- Galvanic isolation to load voltage (not for 2-wire transducer)

### Resolution

The resolution of the measured value is a direct function of the integration time selected. In other words the longer the integration time for an analog input channel, the more accurate the resolution of the measured value will be (see Technical Specifications of the analog input module and Table 4-3).

## **Terminal Connection Diagram**

Figure 4-22 shows the module view and the block diagram of the SM 331; Al 8  $\times$  12 Bit. The input resistances depend on the measuring range selected (see Technical Specifications). You will find the detailed technical specifications of the analog input module SM 331; Al 8  $\times$  12 Bit on the following page.



Figure 4-22 Module View and Block Diagram of the Analog Input Module SM 331; Al 8 × 12 Bit

| Dimensions and Weight                                                                         |                                                                               |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Dimensions W $\times$ H $\times$ D                                                            | $40 \times 125 \times 120$ mm (1.56 $\times$ 4.88 $\times$ 4.68 in.)          |
| Weight                                                                                        | approx. 250 g<br>(8.75 oz.)                                                   |
| Module-Specific Data                                                                          |                                                                               |
| Number of inputs                                                                              | 8                                                                             |
| with resistance<br>measurement                                                                | 4                                                                             |
| Length of cable (shielded)                                                                    | max. 200 m (218 yd.)<br>max. 50 m (54.5 yd.) at<br>80 mV and<br>thermocouples |
| Voltages and Currents                                                                         |                                                                               |
| Rated load voltage L+                                                                         | 24 VDC                                                                        |
| Reverse polarity protection                                                                   | Yes                                                                           |
| Power supplies of the transducers                                                             |                                                                               |
| <ul> <li>Supply current (for 2<br/>channels each of a channe<br/>group):</li> </ul>           | max: 62 mA                                                                    |
| Short-circuit-proof                                                                           | Yes                                                                           |
| Constant current for resistance-type sensor                                                   | typ. 1.67 mA                                                                  |
| Galvanic isolation                                                                            |                                                                               |
| between channels and backplane bus                                                            | Yes                                                                           |
| <ul> <li>between channels and load<br/>voltage L+</li> </ul>                                  | d Yes                                                                         |
| Possible potential difference                                                                 |                                                                               |
| <ul><li>between inputs and M<sub>ANA</sub> (U<sub>CM</sub>)</li><li>at signal = 0 V</li></ul> | 2.5 VDC                                                                       |
| <ul> <li>not for 2-wire<br/>transducer</li> </ul>                                             |                                                                               |
| <ul> <li>between M<sub>ANA</sub> and M<sub>interna</sub><br/>(U<sub>ISO</sub>)</li> </ul>     | 75 VDC<br>60 VAC                                                              |
| Insulation tested with                                                                        | 600 VDC                                                                       |
| Current consumption                                                                           |                                                                               |
| from backplane bus                                                                            | max. 60 mA                                                                    |
| <ul> <li>from load voltage L +<br/>(without load)</li> </ul>                                  | max. 200 mA                                                                   |
| Power losses of the module                                                                    | typ. 1.3 W                                                                    |

| Measuring principle                                                                                                                   | Integ           | rating                         |                   |                  |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------|-------------------|------------------|
| Integrations/conversion time/resolution (per channel)                                                                                 |                 |                                |                   |                  |
| Programmable                                                                                                                          | Yes             |                                |                   |                  |
| <ul> <li>Integration time in ms</li> </ul>                                                                                            | 2.5             | 16 <sup>2</sup> / <sub>3</sub> | 20                | 100              |
| Basic conversion time incl.                                                                                                           | 3               | 17                             | 22                | 10               |
| integr. time in ms Additional conversion time for resistance measurement in ms or                                                     | 1               | 1                              | 1                 | 1                |
| Additional conversion time<br>for wire-break monitoring<br>in ms<br>or                                                                | 10              | 10                             | 10                | 10               |
| Additional conversion time for resistance measurement <b>and</b> wire-break monitoring in ms                                          | 16              | 16                             | 16                | 16               |
| <ul> <li>Possible resolution in bits<br/>+ sign (incl. overrange)<br/>unipolar measuring range<br/>bipolar measuring range</li> </ul> | 9<br>9+<br>sign | 12<br>12+<br>sign              | 12<br>12+<br>sign | 14<br>14-<br>sig |
| <ul> <li>Noise suppression for<br/>frequency f1 in Hz</li> </ul>                                                                      | 400             | 60                             | 50                | 10               |
| Noise Suppression and Error                                                                                                           | Limits          | 3                              |                   |                  |
| Noise suppression for $F = n \times (f1 \pm 1 \%)$ , $(f1 = interference frequency)$                                                  |                 |                                |                   |                  |
| <ul> <li>Common-mode noise<br/>(U<sub>pp</sub> &lt; 2.5 V)</li> </ul>                                                                 | > 70            | dB                             |                   |                  |
| <ul> <li>Series-mode noise (peak<br/>value of noise &lt; nominal<br/>value of input range)</li> </ul>                                 | > 40            | dB                             |                   |                  |
| Crosstalk between inputs                                                                                                              | > 50            | dB                             |                   |                  |

| Noise Suppression and Error I                                              | Limits, continued                         | Sensor Selection Data, contin                                   | nued                                                     |
|----------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|
| Operational limit (over entire temperature range, referred to input range) |                                           | Input ranges (rated values)/ input resistance                   | (Continued)                                              |
| • 80 mV                                                                    | ± 1 %                                     | Current                                                         | $\pm$ .3.2 mA; /25 $\Omega$                              |
| • 250 to 1000 mV                                                           | ± 1 %<br>± 0.6 %                          |                                                                 | $\pm$ 10 mA; $/25 \Omega$                                |
| • 2.5 to 10 V                                                              | ± 0.8 %                                   |                                                                 | $\pm$ 20 mA; $_{/25~\Omega}$                             |
| • 3.2 to 20 mA                                                             | ± 0.8 %<br>± 0.7 %                        |                                                                 | 0 to 20 mA; $/25 \Omega$                                 |
| 0.2 to 20 11/1                                                             | ± 0.7 %                                   |                                                                 | 4 to 20 mA: $/25 \Omega$                                 |
| Basic error limit (over entire temperature range, referred to input range) |                                           | Resistance                                                      | 150 Ω; /10 MΩ<br>300 Ω; /10 MΩ                           |
| • 80 mV                                                                    | ± 0.6 %                                   |                                                                 | 600 Ω; /10 MΩ                                            |
| • 250 to 1000 mV                                                           | ± 0.4 %                                   | Thermocouples                                                   | •                                                        |
| • 2.5 to 10 V                                                              | ± 0.6 %                                   | Thermocouples                                                   | Type E, N, J, $/10 \text{ M}\Omega$ K, L                 |
| • 3.2 to 20 mA                                                             | ± 0.5 %                                   | Resistance-tyne                                                 | •                                                        |
|                                                                            |                                           | Resistance-type     thermometer                                 | Pt 100, $/10 \text{ M}\Omega$<br>Ni 100                  |
| Temperature drift (over entire temperature range, referred to input range) | ± 0.005 %/K                               | Permissible input voltage for voltage input (destruction limit) | max. 20 V continuously 75 V for max. 1 s (duty           |
| Linearity error (referred to input range)                                  | ± 0.05 %                                  | Permissible input current for                                   | factor 1:20)<br>40 mA                                    |
| Repeatability (in steady state at                                          | ± 0.05 %                                  | current input (destruction limit)                               |                                                          |
| 25 °C or 77°F, referred to input                                           |                                           | Connection of sensors                                           |                                                          |
| range)                                                                     |                                           | for voltage measurement                                         | Possible                                                 |
| Temperature error of internal compensation                                 | ± 1 %                                     | for current measurement     as 2-wire transducers               | Possible                                                 |
| Status, Interrupts, Diagnostics                                            | 3                                         | as 4-wire transducers  for resistance                           | Possible                                                 |
| Interrupts                                                                 |                                           | for resistance 2-wire connection                                |                                                          |
| Limit interrupt                                                            | Programmable channels 0 and 2             | 3-wire connection 4-wire connection                             | Possible<br>Possible                                     |
| <ul> <li>Diagnostics interrupt</li> </ul>                                  | Programmable                              | Impedance of 2-wire transducer                                  | Possible max. 820 $\Omega$                               |
| Diagnostics functions                                                      | Programmable                              |                                                                 |                                                          |
| <ul> <li>System fault display</li> </ul>                                   | Red LED (SF)                              | Characteristic linearization                                    | Programmable                                             |
| <ul> <li>Diagnostics information<br/>read-out</li> </ul>                   | Possible                                  | for thermocouples                                               | <ul> <li>Type</li> <li>E, N, J, K, L</li> </ul>          |
| Sensor Selection Data                                                      |                                           | for resistance-type     thermometers                            | <ul> <li>Pt 100 (standard,<br/>climate range)</li> </ul> |
| Input ranges (rated values)/ input resistance                              |                                           | unomonoters                                                     | Ni 100 (standard, climate range)                         |
| <ul> <li>Voltage</li> </ul>                                                | $\pm$ 80 mV; /10 M $\Omega$               | Temperature compensation                                        | Programmable                                             |
|                                                                            | $\pm 250 \text{ mV};$ /10 MΩ              | Internal temperature compensation                               | Possible                                                 |
|                                                                            | $\pm 500 \text{ mV}; /10 \text{ M}\Omega$ | External temperature                                            | Possible                                                 |
|                                                                            | $\pm 1000$ mV; /10 MΩ                     | compernsation with                                              |                                                          |
|                                                                            | $\pm$ 2.5 V; /100k $\Omega$               | compensating box                                                |                                                          |
|                                                                            | $\pm$ 5 V; /100k $\Omega$                 |                                                                 |                                                          |
|                                                                            | 1 to 5 V; /100kΩ                          |                                                                 |                                                          |
|                                                                            | $\pm$ 10 V; /100k $\Omega$                |                                                                 |                                                          |

# 4.4.2 Starting Up the Analog Input Module SM 331; Al 8 $\times$ 12 Bit

# **Parameter Assignment**

The analog input module SM 331; Al 8  $\times$  12 Bit is set

- by means of measuring range modules on the module and
- with STEP 7 (see also the STEP 7 User Manual) or
- in the user program by means of SFCs (see STEP 7 System and Standard Functions Reference Manual).

## **Default Setting**

The analog input module has default settings for the integration time, diagnostics, interrupts, etc. (see Table 4-19).

These default settings apply, if you have not re-initialized the module with STEP 7.

## **Channel Groups**

The channels of the analog input module SM 331; Al 8  $\times$  12 Bit are arranged in groups of two. You can only assign parameters to one channel group at a time.

The analog input module SM 331; Al 8  $\times$  12 Bit has a measuring range module for each channel group.

Table 4-28 shows which channels of the analog input module SM 331; Al 8  $\times$  12 Bit are configured as one channel group. You will need the channel group numbers to set the parameters in the user program with SFC (see Fig. A-3 in Appendix A).

Table 4-28 Assignment of the Channels of the Analog Input Module SM 331; Al  $8 \times 12$  Bit to Channel Groups

| Channels  | form one Channel Group each |  |
|-----------|-----------------------------|--|
| Channel 0 | Observed reserve O          |  |
| Channel 1 | Channel group 0             |  |
| Channel 2 | Observed resource 4         |  |
| Channel 3 | Channel group 1             |  |
| Channel 4 | Observed reserve O          |  |
| Channel 5 | Channel group 2             |  |
| Channel 6 | Channel group 2             |  |
| Channel 7 | Channel group 3             |  |

### **Resistance Measurement**

If you use the resistance measurement method, there is only one channel per channel group. The "2nd" channel of each group is used for current injection (I<sub>C</sub>).

The measured value is obtained by accessing the "1st" channel of the group. The "2nd" channel of the group has the default carry value "7FFF<sub>H</sub>".

### **Unused Input Channels**

You must short-circuit unused channels of the analog input module SM 331; Al 8  $\times$  12 Bit and you should connect them to M<sub>ANA</sub>. In this way, you obtain an optimum interference immunity for the analog input module. Also deactivate the unused channels using *STEP 7* (see Section 4.3.4), in order to reduce the module's cycle time.

If you do not use the COMP input, you must short-circuit it also.

Since configured inputs can remain unused, because of the channel group generation, you should note the following points for these inputs:

- Measuring range 1 to 5 V: Connect the unused input in parallel with a used input of the same channel group.
- Current measurement, 2-wire transducer: There are two ways to use the channels:
  - a) Leave the unused input open and do not enable diagnostics for this channel group. If diagnostics is enabled, the analog module triggers a diagnostics interrupt once and the group fault LED of the analog module flashes.
  - b) Connect a 1.5 to 3.3 k $\Omega$  resistance to the unused input. You may then enable diagnostics for this channel group.
- Current measurement 4 to 20 mA, 4-wire transducer: Connect the unused input in series with an input of the same channel group.

## Special Feature of De-Activated Input Channels

If you de-activate **all** input channels and enable diagnostics when parameterizing the analog input module SM 331; Al  $8 \times 12$  Bit, the analog input module does **not** indicate that the "external auxiliary voltage" is missing.

### **Measuring Range Modules**

Some of the parameters of the analog input module SM 331; Al 8  $\times$  12 Bit can be assigned directly on the module with measuring range modules.

The measuring range modules can be set to the following positions: "A", "B", "C" and "D".

They are set to the "B" position in the factory.

Tables 4-30 to 4-33 in Section 4.4.3. tell you which setting you have to select for which measuring method and measuring range. The settings for the various measuring ranges are also printed on the module.

# **Default Settings for Measuring Range Module**

In the individual measuring range module positions, you can use the following measuring methods and measuring ranges without re-initializing the analog input module SM 331; Al  $8 \times 12$  Bit with *STEP 7*:

Table 4-29 Default Settings of the Analog Input Module SM 331; AI 8  $\times$  12 Bit Using Measuring Range Modules

| Measuring Range<br>Module Setting | Measuring Method           | Measuring Range |
|-----------------------------------|----------------------------|-----------------|
| A                                 | Voltage                    | ± 1000 mV       |
| В                                 | Voltage                    | ± 10 V          |
| С                                 | Current, 4-wire transducer | 4 to 20 mA      |
| D                                 | Current, 2-wire transducer | 4 to 20 mA      |

These measuring methods and measuring ranges are the default settings on the module. You only have to insert the measuring range module to the required setting (see Section 4.3).

### **Special Feature of Process Interrupts**

You can set process interrupts in *STEP* 7 for the 1st and 2nd channel group. Note that a process interrupt is set only for the 1st channel of the channel group, i.e. for channel 0 or channel 2, respectively.

# 4.4.3 Measuring Methods and Measuring Ranges of the Analog Input Module SM 331; Al 8 imes 12 Bit

### **Measuring Methods**

You can set the following measuring methods on the analog input module SM 331; Al  $8 \times 12$  Bit:

- Voltage measurement
- Current measurement
- · Resistance measurement
- Temperature measurement

Use the *S7 Configuration* STEP 7 tool and the measuring range modules on the analog input module to make the necessary settings (see Section 4.3.4).

# Measuring Ranges

Tables 4-30 to 4-33 list the measuring ranges you can use with the analog input module. Use *STEP 7* and the measuring range modules on the analog input module to select the desired measuring ranges (see Section 4.3.4). Tables 4-30 to 4-33 also show the necessary settings of the measuring range modules.

### Wire-Break Check

With the measuring range 4 to 20 mA and

- activated wire-break check, the analog input module enters a wire break in the diagnostics if the current value falls below 3.6 mA. If you have enabled diagnostics interrupt during configuration, the analog input module additionally triggers a diagnostics interrupt.
  - If no diagnostics interrupt has been enabled, the illuminated SF display is the only indicator for the wire break and you must evaluate the diagnostics bytes in the user program.
- non-activated wire-break check, the analog input module triggers a diagnostics interrupt when the underflow has been reached.

## **Measuring Ranges for Voltage Measurements**

Table 4-30 shows all of the measuring ranges or the sensor type for voltage measurements, as well as the relevant measuring range module settings.

Table 4-30 Measuring Ranges for Voltage Measurement

| Measuring Method<br>Selected   | Description                             | Measuring Range<br>(Type of Sensor)       | Measuring Range<br>Module Setting |
|--------------------------------|-----------------------------------------|-------------------------------------------|-----------------------------------|
| Voltage                        | You will find the digitized analog      | +/- 80 mV                                 | А                                 |
|                                | values in Section 4.1.2, Tables 4-4     | +/- 250 mV                                |                                   |
|                                | and 4-6 in the voltage measuring range. | +/- 500 mV                                |                                   |
|                                | Tango.                                  | +/- 1000 mV                               |                                   |
|                                |                                         | +/- 2,5 V                                 | В                                 |
|                                |                                         | +/- 5 V                                   |                                   |
|                                |                                         | 1 to 5 V                                  |                                   |
|                                |                                         | +/- 10 V                                  |                                   |
| internal compensation          | You will find the digitized analog      | Typ N [NiCrSi-NiSi]                       | A                                 |
|                                | values in Section 4.1.2, Table 4-4      |                                           |                                   |
| (thermovoltage measurement)    | in the voltage measuring range ± 80 mV. | Type J [Fe-CuNi]                          |                                   |
| moded of finding               | rango ± 00 mv.                          | Type K [NiCr-Ni]                          |                                   |
|                                |                                         | Type L [Fe-CuNi]                          |                                   |
| Thermocouples +                | You will find the digitized analog      | Type N [NiCrSi-NiSi] A Type E [NiCr-CuNi] | А                                 |
| external compensation          | values in Section 4.1.2, Table 4-4      |                                           |                                   |
| (thermovoltage<br>measurement) | in the voltage measuring range ± 80 mV. | Type J [Fe-CuNi]                          |                                   |
|                                | 90 _ 00                                 | Type K [NiCr-Ni]                          |                                   |
|                                |                                         | Type L [Fe-CuNi]                          |                                   |

# **Measuring Ranges for Current Measurement**

Table 4-31 lists all of the measuring ranges for current measurement with 2-wire and 4-wire transducers, as well as the relevant measuring range module settings.

Table 4-31 Measuring Ranges for 2-Wire and 4-Wire Transducers

| Measuring Method<br>Selected | Description                                                                                                   | Measuring Range                                                  | Measuring Range<br>Module Setting |
|------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|
| 2-wire transducers           | You will find the digitized analog values in Section 4.1.2, Table 4-6 in the current measuring range.         | 4 to 20 mA                                                       | D                                 |
| 4-wire transducers           | You will find the digitized analog values in Section 4.1.2, Table 4-5 and 4-6 in the current measuring range. | +/- 3.2 mA<br>+/- 10 mA<br>0 to 20 mA<br>4 to 20 mA<br>+/- 20 mA | С                                 |

## **Measuring Ranges for Resistance Measurements**

Table 4-32 lists all of the measuring ranges for resistance measurements and the relevant measuring range module settings.

Table 4-32 Measuring Ranges for Resistance Measurements

| Measuring Method<br>Selected  | Description                                                                                                  | Measuring Range               | Measuring Range<br>Module Setting |
|-------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|
| Resistance, 4-wire connection | You will find the digitized analog values in Section 4.1.2, Table 4-7, under the resistance measuring range. | 150 Ohm<br>300 Ohm<br>600 Ohm | A                                 |

# **Measuring Ranges for Temperature Measurement**

Table 4-33 lists the measuring ranges (or the sensor type) and the measuring range module settings for temperature measurement. The characteristics are linearized:

- for Pt 100 according to DIN IEC 751
- for Ni 100 to IEC DIN 43760
- for thermocouples to DIN 584, type L to DIN 43710.

Table 4-33 Measuring Ranges for Temperature Measurement

| Measuring Method<br>Selected                                                             | Description                                                                                                  | Measuring Range<br>(Type of Sensor)                                                                        | Measuring Range<br>Module Setting |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Thermocouples + linearization, internal compensation (thermal e.m.f. measurement)        | The digitized analog values are listed in Section 4.1.2, Tables 4-12 to 4-15, under the temperature range.   | Typ e N<br>[NiCrSi-NiSi]<br>Type E [NiCr-CuNi]<br>Type J [Fe-CuNi]<br>Type K [NiCr-Ni]<br>Type L [Fe-CuNi] | A                                 |
| Thermocouples + linearization, external compensation (thermal e.m.f. measurement)        | The digitized analog values are listed in Section 4.1.2, Tables 4-12 to 4-15, under the temperature range.   | Type N [NiCrSi-NiSi] Type E [NiCr-CuNi] Type J [Fe-CuNi] Type K [NiCr-Ni] Type L [Fe-CuNi]                 | А                                 |
| Resistance-type thermometer + linearization, 4-wire connection (temperature measurement) | You will find the digitized analog values in Section 4.1.2, Tables 4-8 and 4-9, under the temperature range. | Pt 100<br>standard range,<br>climate range<br>Ni 100<br>standard range,<br>climate range                   | А                                 |

# 4.5 Analog Input Module SM 331; Al 8 $\times$ 16 Bit

### Order No.

6ES7 331-7NF00-0AB0

### **Characteristic Features**

The analog input module SM 331; Al 8 imes 16 Bit has the following characteristic features:

- 8 inputs in 4 channel groups
- Measured-value resolution 15 Bit + sign (independent of integration time)
- Fast update mode for individually enabled channel groups 0 or 1
- Measurement mode selectable per channel group:
  - Voltage
  - Current
- · Arbitrary measuring range and filter/update rate selection per channel group
- · Programmable diagnostics
- Programmable diagnostic interrupt
- Two channels with limit monitoring
- Programmable limit interrupt
- Galvanic isolation to CPU
- Permissible common mode voltage between channels of 50 VDC maximum

# **Terminal Connection Diagram**

Figure 4-23 shows the terminal connection diagram for the analog input module SM 331; Al 8 x 16 Bit. Note that Channel 0 is configured for current and Channel 7 is configured for voltage.

The detailed technical specifications for this analog input module are on the following page.



Figure 4-23 Terminal Connection Diagram and Block Diagram of Analog Input Module SM 331; AI 8 x 16 Bit

| Dimensions and Weight                                            |                                                                                                                                  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Dimensions W × H × D                                             | 40 × 125 × 120mm<br>(1.56×4.88 × 4.68 in.)                                                                                       |
| Weight                                                           | approx. 272 g<br>(9.6 oz.)                                                                                                       |
| Module-Specific Data                                             |                                                                                                                                  |
| Number of inputs                                                 | 8                                                                                                                                |
| Surge protection in accordance with IEC 1000–4–5                 | External protection<br>device required in the<br>signal lines<br>(150 V/14 mm MOV on<br>each + and – input to<br>chassis ground) |
| Length of cable (shielded)                                       | max. 200 m (218 yd.)                                                                                                             |
| Voltages and Currents                                            |                                                                                                                                  |
| Galvanic isolation                                               |                                                                                                                                  |
| between channels and back plane bus                              | Yes, tested at 500 VAC                                                                                                           |
| Permissible common mode voltage                                  |                                                                                                                                  |
| <ul> <li>between channels</li> </ul>                             | 50 VDC, 35 V RMS                                                                                                                 |
| <ul> <li>between channel and<br/>M<sub>internal</sub></li> </ul> | 50 VDC, 35 V RMS                                                                                                                 |
| Current consumption                                              |                                                                                                                                  |
| from back plane bus                                              | typ. 120 mA<br>max. 130 mA                                                                                                       |
| Power losses of the module                                       | typ. 0.6 W<br>max. 1.4 W<br>(all channels in current<br>mode)                                                                    |

| An  | alog Value Generation                                                                                                                           |             |             |             |             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|
| A/E | O Conversion Method                                                                                                                             | Sigm        | a/Delta     | type        |             |
|     | egrations/conversion<br>e/resolution (per channel)                                                                                              |             |             |             |             |
| •   | Programmable                                                                                                                                    | Yes         | 16.7        | 20          | 100         |
| •   | Filter setting in ms                                                                                                                            | 2.5         | 16.7        | 20          | 100         |
| •   | Channel integration time (1/fl) in ms                                                                                                           | 10          |             |             |             |
| •   | Module update time, in<br>ms (max.) 8 channels<br>enabled, same filter<br>setting                                                               | 140         | 220         | 260         | 1220        |
| •   | Channel update time per<br>active channel group with<br>more than one channel<br>group enabled, or with<br>channel group 2 or 3 only<br>enabled | 35          | 55          | 65          | 305         |
| •   | Channel update time per<br>channel group if only<br>channel group 0 or 1 is<br>enabled                                                          | 10          | 16.7        | 20          | 100         |
| •   | Resolution in bits + sign (incl. overrange) unipolar measuring range                                                                            | 5           | 15          | 15          | 15          |
|     | bipolar measuring range                                                                                                                         | 15+<br>sign | 15+<br>sign | 15+<br>sign | 15+<br>sign |
| •   | Noise frequency suppression fl in Hz                                                                                                            | 100         | 60          | 50          | 10          |

/  $2M\Omega$ 

/  $2 \text{M}\Omega$ 

/  $2M\Omega$ 

/ 250  $\Omega$ 

/  $250~\Omega$ 

/ 250  $\Omega$ 

Programmable channels 0 and 2 Programmable Programmable Red LED (SF) Possible

 $\pm$  5 V

1 to 5 V

 $\pm~10~\text{V}$  0 to 20 mA

 $\pm~20~mA$ 

4 to 20 mA

max. 32 mA, continuous (all points)

max. 50 V RMS, continuous

120 V RMS common mode or series mode

| Noise Suppression and Erro                                                                                                                                            | or Limits           | Status, Interrupts, Diagnostics                                                                                                      |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|---|
| Interference voltage suppression for F = n × (fl ± 1%),                                                                                                               |                     | Interrupts • Limit interrupt                                                                                                         | - |
| (f1 = parameterized interference frequency)  ■ Common-mode noise (U <sub>cm</sub> < 50 V)  ■ Series-mode noise (peak value of noise + signal < nominal value of input | > 100 dB<br>> 90 dB | Diagnostics interrupt     Diagnostics functions     System fault display     Diagnostics information read-out  Sensor Selection Data |   |
| range) Cross-talk between inputs Typical error @ 25° C                                                                                                                | > 100 dB            | Input ranges (rated values/input resistance)  • Voltage                                                                              |   |
| <ul> <li>(referred to input range)</li> <li>Voltage</li> <li>Current</li> <li>Max. full range error</li> </ul>                                                        | ± 0.05%<br>± 0.05%  | Current                                                                                                                              | ( |
| (0 to 60° C, no common mode voltage, referred to input range)  Voltage  Current                                                                                       | ± 0.1%<br>± 0.3%    | Permissible input voltage for voltage input                                                                                          | r |
| Max. full range error with DC common mode voltage (0 to $60^{\circ}$ C, $\pm 50$ VDC channel to channel, referred to input range)                                     |                     | Destruction limit  Permissible input current for current input (destruction limit)                                                   | r |
| <ul><li>Voltage</li><li>Current</li></ul>                                                                                                                             | ± 0.7%<br>± 0.9%    |                                                                                                                                      |   |
| Repeatability<br>(Referred to input range)                                                                                                                            | ± 0.025%            |                                                                                                                                      |   |

# 4.5.1 Starting Up the Analog Input Module SM 331; Al 8 $\times$ 16 Bit

### **Parameter Assignment**

The analog input module SM 331; Al 8  $\times$  16 Bit is set:

- With STEP 7 (see the STEP 7 User Manual) or
- In the user program by means of SFCs (see the STEP 7 System and Standard Functions Reference Manual)

## **Default Setting**

The analog input module has default settings for the integration time, diagnostics, interrupts, etc. The default settings are:  $\pm 10V$  measuring mode, 20 ms integration time, no diagnostics, and no interrupts.

## **Channel Groups**

The channels of the analog input module SM 331; Al  $8 \times 16$  Bit are arranged in four groups of two. You must assign the same parameters to both channels in each group.

Table 4-28 shows which channels of the analog input module SM 331; Al 8  $\times$  16 Bit are configured as one channel group. You will need the channel group numbers to set the parameters in the user program with an SFC. See Figure A–3 in Appendix A of the *S7-300 Installation and Hardware Manual* for more information.

Table 4-34 Assignment of Channels of the Analog Input Module SM 331; Al 8  $\times$  16 Bit to Channel Groups

| Channels  | Form One Channel Group Each |
|-----------|-----------------------------|
| Channel 0 | Channel group 0             |
| Channel 1 | Channel group 0             |
| Channel 2 | Observed waves 4            |
| Channel 3 | Channel group 1             |
| Channel 4 | Observed reserve O          |
| Channel 5 | Channel group 2             |
| Channel 6 | Channel group 2             |
| Channel 7 | Channel group 3             |

### **Unused Input Channels**

Unused channels of the analog input module SM331; AI 8 x 16 Bit should be deactivated using STEP 7 in order to reduce the module's cycle time. See Section 4.3.4 of the *S7-300 Installation and Hardware* manual for more information.

Since configured inputs can remain unused because of the channel group generation, you should make the following preparation for these inputs if diagnostics on the used channels are enabled.

- Measuring range 1 to 5 V: Connect the unused input in parallel with a used input of the same channel group.
- Current measurement 4 to 20 mA: Connect the unused input in series with an input of the same channel group. Ensure that a current sense resistor is connected for each active and unused channel.
- Other ranges: Short the positive to the negative input of the channel.

### **Current Measurement Mode**

Current measurements are made by paralleling a channel's voltage input terminals with its respective current sense resistor. This is accomplished by jumpering the channels input terminals to the adjacent terminals on the field connector. For example, to configure channel 0 for current mode, you must jumper terminal 22 to 2 and terminal 23 to 3.

The channel being configured for current measurements must be paired with the sense resistor connected to the channel's adjacent terminals in order to achieve the specified accuracy.

### **High Speed Update Mode**

The high speed update mode is only available when two channels are enabled on channel group 0 or 1.

The module enters the high speed update mode if either channel group 0 or channel group 1 (not both) is enabled. In the high speed update mode, updates for the two channels in the group occur three times faster than with multiple channel groups enabled. For example, if channels 0 and 1 are enabled with 2.5 ms filtering, data updates for both channels will be available to the PLC every 10 msec. (For other filter settings, the filter setting equals the update rate.)

### **Special Feature of Process Interrupts**

You can set process interrupts in STEP 7 for the first and second channel group. Note that a process interrupt is set only for the first channel of the channel group, that is, for channel 0 or channel 2 respectively.

# 4.5.2 Measuring Methods and Measuring Ranges of the Analog Input Module SM 331; Al 8 imes 16 Bit

### **Measuring Methods**

You can set the following measuring methods on the analog input module SM 331; Al 8 imes 16 Bit:

- Voltage measurement
- · Current measurement

Use the STEP 7 tool on the analog input module to make the necessary settings. See Section 4.3.4 of the *S7-300 Installation and Hardware Manual* for more information about these settings.

### **Measuring Ranges**

Table 4-35 lists the measuring ranges you can use with the analog input module. Use STEP 7 to select the desired measuring ranges.

# **Common Mode Voltage**

The analog input module SM 331; Al 8 x 16 Bit can make measurements in the presence of AC or DC common mode voltage.

For AC common mode voltages at multiples of the filter frequency setting, the rejection is accomplished by the integration period of the A/D converter and by the common mode rejection of the input amplifiers. For AC common mode voltages < 35 VRMS, the rejection ratio of > 100 dB results in negligible measurement error.

For DC common mode voltages, only the rejection of the input amplifier stage is available to minimize the effect of the common mode voltage. Therefore, some accuracy degradation occurs in proportion to the common mode voltage. The worst case error occurs with 50 VDC between one channel and the other seven channels. The calculated worst case error is 0.7% from 0 to 60 degrees C, and measured error is typically  $\leq$  0.1% @ 25 degrees C.

### Wire-Break Check

The wire-break check is a module software function that is provided for the voltage measuring range 1 to 5 volts and the current range 4 to 20 mA.

With the measuring range 4 to 20 mA (1 to 5 volts) and:

- <u>activated</u> wire-break check, the analog input module enters a wire break in the
  diagnostics if the process value falls below 3.6 mA (.9 V). If you have enabled
  the diagnostic interrupt during configuration, the analog input module
  additionally triggers a diagnostic interrupt. If no diagnostic interrupt has been
  enabled, the illuminated SF display is the only indicator for the wire break and
  you must evaluate the diagnostic bytes in the user program.
- **non-activated** wire-break check, the analog input module triggers a diagnostics interrupt when the underflow limit has been reached.

### **Measuring Ranges for Voltage and Current Measurement**

Table 4-35 shows the voltage and current measuring ranges for the SM331; Al  $8 \times 16$  Bit module.

Table 4-35 Measuring Ranges for Current and Voltage

| Measuring<br>Method Selected                                        | Description                                                                                                                       | Measuring<br>Range                  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Voltage                                                             | You will find the digitized analog values in Section 4.1.2 <sup>1</sup> , Table 4–4 and Table 4–6 in the voltage measuring range. | ± 5 V<br>1 to 5 V<br>± 10 V         |
| Section 4.1.2 <sup>1</sup> , Table 4–5 and Table 4–6 in $\pm$ 20 mA |                                                                                                                                   | 0 to 20 mA<br>± 20 mA<br>4 to 20 mA |
| 1 of the S7-300 Installation and Hardware manual                    |                                                                                                                                   |                                     |

## Overflow, Underflow, and Process Alarm Limits

Overflow and Underflow diagnostic thresholds for some of the measuring ranges differ from those shown in Section 4.1.2, of the *S7-300 Installation and Hardware Manual*. Numerical methods in the module software for evaluating the process variables prevent values up to 32511 from being reported in some cases. The process input value at which an underflow or overflow diagnostic will be reported depends on the calibration factors for an individual channel and may vary between the minimum limits shown in Table 4-29 and 32511 (7EFF<sub>H</sub>).

Process alarm limits should not be set at values higher than the minimum potential overflow or underflow threshold limits shown in Table 4-29.

Table 4-36 Minimum Potential Overflow/Underflow Threshold Limits

| Range      | Minimum Possible<br>Overflow Threshold  | Minimum Possible<br>Underflow Threshold   |
|------------|-----------------------------------------|-------------------------------------------|
| ± 10 V     | 11.368 V<br>31430<br>7AC6 <sub>H</sub>  | -11.369 V<br>-31433<br>8537 <sub>H</sub>  |
| ± 5 V      | 5.684 V<br>31430<br>7AC6 <sub>H</sub>   | -5.684 V<br>-31430<br>853A <sub>H</sub>   |
| 1 to 5 V   | 5.684 V<br>32376<br>7E78 <sub>H</sub>   | 0.296 V<br>-4864<br>ED00 <sub>H</sub>     |
| 0 to 20 mA | 22.737 mA<br>31432<br>7AC8 <sub>H</sub> | -3.519 mA<br>-4864<br>ED00 <sub>H</sub>   |
| 4 to 20 mA | 22.737 mA<br>32378<br>7E7A <sub>H</sub> | 1.185 mA<br>-4864<br>ED00 <sub>H</sub>    |
| ± 20 mA    | 22.737 mA<br>31432<br>7AC8 <sub>H</sub> | −22.737 ma<br>−31432<br>8538 <sub>H</sub> |

# 4.6 Analog Input Module SM 331; Al 2×12 Bit

### In this Section

In this section, you will find information on:

- The characteristics of the analog input module SM 331; Al 2 imes 12 Bit
- The technical specifications of the analog input module SM 331; Al 2  $\times$  12 Bit You will also learn:
- How to start up the analog input module SM 331; Al 2  $\times$  12 Bit
- Which measuring ranges the analog input module SM 331; Al 2 imes 12 Bit has
- Which parameters can be used to influence the characteristics of the analog input module SM 331; Al 2 imes 12 Bit

# 4.6.1 Characteristic Features and Technical Specifications of the Analog Input Module SM 331; Al 2×12 Bit

#### Order No.

6ES7 331-7KB01-0AB0

### **Characteristic Features**

The analog input module SM 331; Al 2 imes 12 Bit has the following characteristic features:

- · Two inputs in one channel group
- Measured-value resolution (depending on the integration time set)
  - 9 bits + sign
  - 12 bits + sign
  - 14 bits + sign
- Measuring method selectable per channel group:
  - Voltage
  - Current
  - Resistance
  - Temperature
- Arbitrary measuring range selection per channel group
- · Programmable diagnostics
- Programmable diagnostic interrupt
- One channel with limit monitoring
- Programmable limit interrupt
- Galvanic isolation to CPU
- Galvanic isolation to load voltage (not for 2-wire transducer)

#### Resolution

The resolution of the measured value is a direct function of the integration time selected. In other words the longer the integration time for an analog input channel, the more accurate the resolution of the measured value will be (see technical specifications of analog input module and Table 4-3).

## **Terminal Connection Diagram**

Figure 4-24 shows the terminal connection diagram and the block diagram of the analog input module SM 331; Al 2  $\times$  12 Bit. The input resistances depend on the measuring range selected (see Technical Specifications). You will find the detailed technical specifications of the analog input module SM 331; Al 2  $\times$  12 Bit on the following page.



Figure 4-24 Module View and Block Diagram of the Analog Input Module SM 331; AI 2×12 Bit

| Dimensions and Weight                                                                                                               |                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Dimensions $W \times H \times D$                                                                                                    | 40 × 125 × 120 mm<br>(1.56 × 4.88 × 4.68<br>in.)                              |
| Weight                                                                                                                              | approx. 250 g<br>(8.75 oz.)                                                   |
| Module-Specific Data                                                                                                                |                                                                               |
| Number of inputs                                                                                                                    | 2                                                                             |
| • with resistance-type sensor                                                                                                       | 1                                                                             |
| Length of cable (shielded)                                                                                                          | max. 200 m (218 yd.)<br>max. 50 m (54.5 yd.)<br>at 80 mV and<br>thermocouples |
| Voltages, Currents, Potentials                                                                                                      |                                                                               |
| Rated load voltage L+                                                                                                               | 24 VDC                                                                        |
| Reverse polarity protection                                                                                                         | Yes                                                                           |
| Power supplies of the transducers                                                                                                   |                                                                               |
| <ul> <li>Supply current (for 2<br/>channels each of a channel<br/>group):</li> </ul>                                                | max: 62 mA                                                                    |
| Short-circuit-proof                                                                                                                 | Yes                                                                           |
| <ul> <li>Constant current for<br/>resistance-type sensor</li> </ul>                                                                 | typ. 1.67 mA                                                                  |
| Galvanic isolation                                                                                                                  |                                                                               |
| <ul> <li>between channels and<br/>backplane bus</li> </ul>                                                                          | Yes                                                                           |
| <ul> <li>between channels and load<br/>voltage L+</li> </ul>                                                                        | Yes                                                                           |
| Permissible potential difference                                                                                                    |                                                                               |
| <ul> <li>between inputs and M<sub>ANA</sub> (U<sub>CM</sub>)</li> <li>at signal = 0 V</li> <li>not for 2-wire transducer</li> </ul> | 2.5 VDC                                                                       |
| <ul> <li>between M<sub>ANA</sub> and M<sub>internal</sub> (U<sub>ISO</sub>)</li> </ul>                                              | 75 VDC<br>60 VAC                                                              |
| <ul> <li>Insulation tested with</li> </ul>                                                                                          | 600 VDC                                                                       |
| Current consumption                                                                                                                 |                                                                               |
| <ul> <li>from backplane bus</li> </ul>                                                                                              | max. 60 mA                                                                    |
| <ul> <li>from load voltage L+<br/>(without load)</li> </ul>                                                                         | max. 80 mA                                                                    |
| Power losses of the module                                                                                                          | typ. 1.3 W                                                                    |

|                          | nalog Value Generation                                                                                     |                 |                   |                   |                   |
|--------------------------|------------------------------------------------------------------------------------------------------------|-----------------|-------------------|-------------------|-------------------|
| Me                       | easuring principle                                                                                         | Integ           | rating            |                   |                   |
|                          | egration/conversion<br>ne/resolution (per channel)                                                         |                 |                   |                   |                   |
| •                        | Programmable                                                                                               | Yes             |                   |                   |                   |
| •                        | Integration time in ms                                                                                     | 2.5             | $16^2/_3$         | 20                | 100               |
| •                        | Basic conversion time incl. integr. time in ms                                                             | 3               | 17                | 22                | 102               |
|                          | Additional conversion time for resistance measurement in ms                                                | 1               | 1                 | 1                 | 1                 |
|                          | Additional conversion time for wire-break monitoring in ms                                                 | 10              | 10                | 10                | 10                |
|                          | or Additional conversion time for resistance measurement and wire-break monitoring in ms                   | 16              | 16                | 16                | 16                |
| •                        | Possible resolution in bits<br>+ sign (incl. overrange)<br>Unipolar meas. range<br>Bipolar measuring range | 9<br>9+<br>sign | 12<br>12+<br>sign | 12<br>12+<br>sign | 14<br>14+<br>sigr |
| •                        | Noise suppression for frequency f1 in Hz                                                                   | 400             | 60                | 50                | 10                |
| No                       | oise Suppression and Error                                                                                 | Limits          | 5                 |                   |                   |
| F=                       | bise suppression for $n \times (f1 \pm 1 \%)$ , =interference frequency)                                   |                 |                   |                   |                   |
| •                        | Common-mode noise $(U_{pp} < 2.5 \text{ V})$                                                               | > 70            | dB                |                   |                   |
| •                        | Series-mode noise<br>(peak value of noise <<br>nominal value of input<br>range)                            | > 40            | dB                |                   |                   |
| Crosstalk between inputs |                                                                                                            | > 50            | dB                |                   |                   |
| ter                      | perational limit (over entire mperature range, referred to out range)                                      |                 |                   |                   |                   |
| •                        | 80 mV                                                                                                      | ± 1 °           | %                 |                   |                   |
|                          | 250 to 1000 mV                                                                                             | ± 0.0           | 6 %               |                   |                   |
| •                        | 200 10 1000 1111                                                                                           |                 |                   |                   |                   |
| •                        | 2.5 to 10 V                                                                                                | ± 0.8           | 8 %               |                   |                   |

| Noise Suppression and Error I                             | Limits, continu      | ued            | Se | ensor Selection Data, conti                                         | nued         |                                        |                        |
|-----------------------------------------------------------|----------------------|----------------|----|---------------------------------------------------------------------|--------------|----------------------------------------|------------------------|
| Basic error (operational limit at 25 °C or 77 °F,         |                      |                | •  | Resistance                                                          |              | Ω;                                     | /10 MΩ                 |
| referred to input range)                                  |                      |                |    |                                                                     |              | ) Ω;                                   | /10 MΩ                 |
| • 80 mV                                                   | ± 0.6 %              |                |    |                                                                     | 600          | ) Ω;                                   | $/10~\mathrm{M}\Omega$ |
| • 250 to 1000 mV                                          | ± 0.4 %              |                | •  | Thermocouples                                                       | Typ<br>J, k  | es E, N,                               | $/10~\mathrm{M}\Omega$ |
| • 2.5 to 10 V                                             | $\pm$ 0.6 %          |                |    |                                                                     |              |                                        |                        |
| • 3.2 to 20 mA                                            | $\pm$ 0.5 %          |                | •  | Resistance-type thermometer                                         | Pt 1<br>Ni 1 | 100,<br>100                            | $/10~\mathrm{M}\Omega$ |
| Temperature drift (referred to input range)               | ± 0.005 %/K          |                |    | ermissible input voltage for<br>ltage input (destruction limit)     |              | x. 20 V coi<br>V for max.              |                        |
| Linearity error (referred<br>to input range)              | $\pm~0.05~\%$        |                |    | ermissible input current for                                        |              | tor 1:20)                              | ` ,                    |
| Repeatability (in steady state at 25 °C or 77 °F.         | ± 0.05 %             |                | cu | rrent input (destruction limit)                                     | 40           | 111/4                                  |                        |
| referred to input range)                                  |                      |                |    | onnection of sensors                                                | _            |                                        |                        |
| Temperature drift (referred to                            | ± 1 %                |                | •  | for voltage measurement                                             | Pos          | ssible                                 |                        |
| internal compensation) Status, Interrupts, Diagnostics    |                      |                | •  | for current measurement as 2-wire transducers as 4-wire transducers |              | ssible<br>ssible                       |                        |
| <u> </u>                                                  |                      |                |    | for resistance                                                      |              | 301010                                 |                        |
| nterrupts                                                 | D                    | 1-             |    | measurement                                                         |              |                                        |                        |
| Limit interrupt                                           | Programmab channel 0 |                |    | 2-wire connection 3-wire connection                                 | Pos          | ssible<br>ssible                       |                        |
| <ul> <li>Diagnostics interrupt</li> </ul>                 | Programmab           | le             |    | 4-wire connection                                                   |              | ssible                                 |                        |
| Diagnostics functions                                     | Programmab           | le             | •  | Impedance of<br>2-wire transducer                                   | ma           | x. 820 Ω                               |                        |
| System fault display on                                   | Red LED (SF          | <del>-</del> ) |    |                                                                     | D            |                                        | _                      |
| module <ul><li>Diagnostics information Read-out</li></ul> | Possible             |                | •  | naracteristic linearization for thermocouples                       | •            | grammabl<br>Types<br>E, N, J, K        |                        |
| Sensor Selection Data                                     |                      |                | •  | for resistance-type                                                 | •            | Pt 100 (st                             | andard,                |
| Input ranges (nominal values)/ input resistance           |                      |                |    | thermometers                                                        |              | climate ra<br>Ni 100 (st<br>climate ra | andard,                |
| Voltage                                                   | $\pm$ 80 mV;         | /10 $M\Omega$  | To | mperature compensation                                              | Dro          | grammabl                               | 0 ,                    |
|                                                           | $\pm$ 250 mV;        | /10 $M\Omega$  | •  | Internal temperature                                                |              | ssible                                 | C                      |
|                                                           | $\pm$ 500 mV;        | /10 $M\Omega$  |    | compensation                                                        | 1 08         | JOIDIO                                 |                        |
|                                                           | $\pm$ 1000 mV;       | /10 $M\Omega$  | •  | External temperature                                                | Pos          | ssible                                 |                        |
|                                                           | $\pm$ 2.5 V;         | $/100 k\Omega$ |    | compensation with                                                   |              |                                        |                        |
|                                                           | ± 5 V;               | $/100 k\Omega$ | .  | compensating box                                                    | Niar         | naacitis                               |                        |
|                                                           | 1 to 5 V;            | $/100 k\Omega$ |    | External temperature compensation with                              | NOt          | possible                               |                        |
|                                                           | $\pm$ 10 V;          | $/100 k\Omega$ |    | Pt 100                                                              |              |                                        |                        |
| Current                                                   | ± 3.2 mA;            | $/25~\Omega$   |    |                                                                     |              |                                        |                        |
|                                                           | $\pm$ 10 mA;         | $/25~\Omega$   |    |                                                                     |              |                                        |                        |
|                                                           | $\pm$ 20 mA;         | $/25~\Omega$   |    |                                                                     |              |                                        |                        |
|                                                           | 0 to 20 mA;          | $/25~\Omega$   |    |                                                                     |              |                                        |                        |
|                                                           | 4 to 20 mA:          | $/25 \Omega$   |    |                                                                     |              |                                        |                        |

# 4.6.2 Starting Up the Analog Input Module SM 331; AI 2×12 Bit

# **Parameter Assignment**

You make the necessary settings of the analog input module SM 331; Al 2 imes 12 Bit

- by means of measuring range module on the module and
- with STEP 7 (see also the STEP 7 User Manual) or
- in the user program by means of SFCs (see STEP 7 System and Standard Functions Reference Manual).

### **Default Settings**

The analog input module has default settings for the integration time, diagnostics, interrupts, etc. (see Table 4-19).

These default settings apply, if you have not re-initialized the module with STEP 7.

### **Channel Groups**

The two channels of the analog input module SM 331; Al 2  $\times$  12 Bit are combined to a channel group. You can thus assign channel group parameters only to the two channels.

The analog input module SM 331; Al 2  $\times$  12 Bit has a measuring range module for this channel group.

### **Resistance Measurement**

If you use the resistance measurement method, the analog input module has only one channel. The "2nd" channel is used for current injection ( $I_{\rm C}$ ).

The measured value is obtained by accessing the "1st" channel. The "2nd" channel has the default carry value "7FFF<sub>H</sub>".

### **Unused Input Channels**

You must short-circuit unused channels of the analog input module SM 331; Al 2  $\times$  12 Bit and you should connect them to M<sub>ANA</sub>. In this way, you obtain an optimum interference immunity for the analog input module. Also deactivate the unused channels using *STEP 7* (see Section 4.3.4), in order to reduce the module's cycle time.

If you do not use the COMP input, you must short-circuit it also.

Since configured inputs can remain unused, because of the channel group generation, you should note the following points for these inputs:

- Measuring range 1 to 5 V: Connect the unused input in parallel with a used input of the same channel group.
- · Current measurement, 2-wire transducer:

There are two ways to use the channels:

- a) Leave the unused input open and do not enable diagnostics for this channel group. If diagnostics is enabled, the analog module triggers a diagnostics interrupt once and the group fault LED of the analog module flashes.
- b) Provide a 1.5 to 3.3 k $\Omega$  resistor on unused input. You may then enable diagnostics for this channel group.
- Current measurement 4 to 20 mA, 4-wire transducer: Connect the unused input in series with an input of the same channel group.

### **Measuring Range Module**

Some of the parameters of the analog input module SM 331; Al  $2 \times 12$  Bit can be assigned directly on the module with a measuring range module. The analog input module is supplied with the measuring range module plugged in.

The measuring range modules can be set to the following positions: "A", "B", "C" and "D".

They are set to the "B" position in the factory.

Tables 4-38 to 4-41 in Section 4.6.3 tell you which setting you have to select for which measuring method and measuring range. The settings for the various measuring ranges are also printed on the module.

# **Default Settings for Measuring Range Module**

In the individual measuring range module positions, you can use the following measuring methods and measuring ranges without re-initializing the analog input module SM 331; Al  $2 \times 12$  Bit with *STEP 7*:

Table 4-37 Default Settings of the Analog Input Module SM 331; Al 2  $\times$  12 Bit Using Measuring Range Module

| Measuring Range<br>Module Setting | Measuring Method              | Measuring Range |
|-----------------------------------|-------------------------------|-----------------|
| A                                 | Voltage                       | ± 1000 mV       |
| В                                 | Voltage                       | ±10 V           |
| С                                 | Current,<br>4-wire transducer | 4 to 20 mA      |
| D                                 | Current,<br>2-wire transducer | 4 to 20 mA      |

These measuring methods and measuring ranges are the default settings on the module. You only have to insert the measuring range module to the required setting (see Section 4.3).

# **Special Feature of Process Interrupts**

You can set a process interrupt in *STEP 7* for the channel group. Note, however, that the process interrupt is set only for the 1st channel of the channel group, i.e. for channel 0.

# 4.6.3 Measuring Methods and Measuring Ranges of the Analog Input Module SM 331; Al $2\times12$ Bit

# **Measuring Methods**

You can set the following measuring methods on the analog input module SM 331; Al 2  $\times$  12 Bit:

- Voltage measurement
- · Current measurement
- · Resistance measurement
- Temperature measurement

Use *STEP 7* and the measuring range module on the analog input module to make the necessary settings (see Section 4.3.4).

# **Measuring Ranges**

Tables 4-38 to 4-41 list the measuring ranges you can use with the analog input module. Use *STEP 7* and the measuring range modules on the analog input module to select the desired measuring ranges (see Section 4.3.4). Tables 4-38 to 4-41 also show the necessary settings of the measuring range module.

### Wire-Break Check

With the measuring range 4 to 20 mA and

- activated wire-break check, the analog input module enters a wire break in the diagnostics if the current value falls below 3.6 mA. If you have enabled diagnostics interrupt during configuration, the analog input module additionally triggers a diagnostics interrupt.
  - If no diagnostics interrupt has been enabled, the illuminated SF display is the only indicator for the wire break and you must evaluate the diagnostics bytes in the user program.
- non-activated wire-break check, the analog input module triggers a diagnostics interrupt when the underflow has been reached.

## **Measuring Ranges for Voltage Measurements**

Table 4-38 shows all of the measuring ranges or the sensor type for voltage measurements, as well as the relevant measuring range module settings.

Table 4-38 Measuring Ranges for Voltage Measurement

| Measuring Method<br>Selected | Description                             | Measuring Range<br>(Type of Sensor) | Measuring Range<br>Module Setting |
|------------------------------|-----------------------------------------|-------------------------------------|-----------------------------------|
| Voltage                      | You will find the digitized analog      | +/- 80 mV                           | А                                 |
|                              | values in Section 4.1.2, Tables 4-4     | +/- 250 mV                          |                                   |
|                              | and 4-6 in the voltage measuring range. | +/- 500 mV                          |                                   |
|                              | Tango.                                  | +/- 1000 mV                         |                                   |
|                              |                                         | +/- 2,5 V                           | В                                 |
|                              |                                         | +/- 5 V                             |                                   |
|                              |                                         | 1 to 5 V                            |                                   |
|                              |                                         | +/- 10 V                            |                                   |
| Thermocouples +              | You will find the digitized analog      | Typ N [NiCrSi-NiSi]                 | А                                 |
| internal compensation        | values in Section 4.1.2, Table 4-4      | TypeE [NiCr-CuNi]                   |                                   |
| (thermovoltage measurement)  | in the voltage measuring range ± 80 mV. | Type J [Fe-CuNi]                    |                                   |
| moded of finding             | range ± 80 mv.                          | Type K [NiCr-Ni]                    |                                   |
|                              |                                         | Type L [Fe-CuNi]                    |                                   |
| Thermocouples +              | You will find the digitized analog      | Type N [NiCrSi-NiSi]                | А                                 |
| external compensation        | novoltage in the voltage measuring      | Type E [NiCr-CuNi]                  |                                   |
| (thermovoltage measurement)  |                                         | Type J [Fe-CuNi]                    |                                   |
|                              | 90 _ 00                                 | Type K [NiCr-Ni]                    |                                   |
|                              |                                         | Type L [Fe-CuNi]                    |                                   |

# **Measuring Ranges for Current Measurement**

Table 4-39 lists all of the measuring ranges for current measurement with 2-wire and 4-wire transducers, as well as the relevant measuring range module settings.

Table 4-39 Measuring Ranges for 2-Wire and 4-Wire Transducers

| Measuring Method<br>Selected | Description                                                                                                   | Measuring Range                                                  | Measuring Range<br>Module Setting |
|------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|
| 2-wire transducers           | You will find the digitzed analog values in Section 4.1.2, Tables 4-5 and 4-6 in the current measuring range. | 4 to 20 mA                                                       | D                                 |
| 4-wire transducers           | You will find the digitzed analog values in Section 4.1.2, Tables 4-5 and 4-6 in the current measuring range. | +/- 3.2 mA<br>+/- 10 mA<br>0 to 20 mA<br>4 to 20 mA<br>+/- 20 mA | С                                 |

## **Measuring Ranges for Resistance Measurements**

Table 4-40 lists all of the measuring ranges for resistance measurements and the relevant measuring range module settings.

Table 4-40 Measuring Ranges for Resistance Measurements

| Measuring Method<br>Selected  | Description                                                                                                  | Measuring Range               | Measuring Range<br>Module Setting |
|-------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|
| Resistance, 4-wire connection | You will find the digitized analog values in Section 4.1.2, Table 4-7, under the resistance measuring range. | 150 Ohm<br>300 Ohm<br>600 Ohm | A                                 |

## **Measuring Ranges for Temperature Measurement**

Table 4-41 lists the measuring ranges (or the sensor type) and the measuring range module settings for temperature measurement. The characteristics are linearized:

- for Pt 100 according to DIN IEC 751
- for Ni 100 to DIN 43760
- for thermocouples to DIN 548, type L to DIN 43710.

Table 4-41 Measuring Ranges for Temperature Measurement

| Measuring Method<br>Selected                                                             | Description                                                                                                  | Measuring Range<br>(Type of Sensor)                                                        | Measuring Range<br>Module Setting |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------|
| Thermocouples + linearization, internal compensation (temperature measurement)           | The digitized analog values are listed in Section 4.1.2, Tables 4-12 to 4-15, under the temperature range.   | Type N [NiCrSi-NiSi] Type E [NiCr-CuNi] Type J [Fe-CuNi] Type K [NiCr-Ni] Type L [Fe-CuNi] | A                                 |
| Thermocouples + linearization, external compensation (temperature measurement)           | The digitized analog values are listed in Section 4.1.2, Tables 4-12 to 4-15, under the temperature range.   | Type N [NiCrSi-NiSi] Type E [NiCr-CuNi] Type J [Fe-CuNi] Type K [NiCr-Ni] Type L [Fe-CuNi] | А                                 |
| Resistance-type<br>thermometer +<br>linearization, 4-wire<br>connection<br>(temperature) | You will find the digitized analog values in Section 4.1.2, Table 4-8 and 4-10, under the temperature range. | Pt 100<br>standard range<br>climate range<br>Ni 100<br>standard range<br>climate range     | А                                 |

# 4.7 Analog Output Module SM 332; AO 4 $\times$ 12 Bit

### In this Section

In this section, you will find:

- The characteristic features of the analog output module SM 332; AO 4 imes 12 Bit
- The technical specifications of the analog output module SM 332; AO 4 imes 12 Bit

You will learn:

- How to start up the analog output module SM 332; AO 4 imes 12 Bit
- Which output ranges you can use with the analog output module SM 332; AO 4 imes 12 Bit
- The parameters with which you can influence the characteristic features of the analog output module SM 332; AO 4 imes 12 Bit

# 4.7.1 Characteristic Features and Technical Specifications of the Analog Output Module SM 332; AO $4 \times 12$ Bit

### Order No.

6ES7 332-5HD01-0AB0

### **Characteristic Features**

The analog output module SM 332; AO 4  $\times$  12 Bit has the following characteristic features:

- 4 outputs in 4 channel groups
- The individual output channels can be programmed as
  - voltage outputs
  - current outputs
- · Resolution 12 bits
- Programmable diagnostics
- Programmable diagnostics interrupt
- Porgrammable substitute value output
- Galvanic isolation to CPU and load voltage

#### Note

When switching on and off the rated load voltage (L+), wrong intermediate values can be present at the output for approx. 10 ms.

## **Terminal Connection Diagram**

Figure 4-25 shows the module view and the block diagram of the analog output module SM 332; AO 4  $\times$  12 Bit. You will find the detailed technical specifications of the analog output module on the following pages.



Figure 4-25 Module View and Block Diagram of the Analog Output Module SM 332; AO 4 × 12 Bit

| Dimensions and Weight                                                                          |                                                                |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Dimensions $W \times H \times D$                                                               | $40 \times 125 \times 120 \text{ mm}$ (1.56 × 4.88 × 4.68 in.) |
| Weight                                                                                         | approx. 220 g (7.7 oz.)                                        |
| Module-Specific Data                                                                           |                                                                |
| Number of outputs                                                                              | 4                                                              |
| Length of cable (shielded)                                                                     | max. 200 m (218 yd.)                                           |
| Voltages, Currents, Potentials                                                                 |                                                                |
| Rated load voltage L+                                                                          | 24 VDC                                                         |
| Reverse polarity protection                                                                    | No                                                             |
| Galvanic isolation                                                                             |                                                                |
| <ul> <li>between channels and<br/>backplane bus</li> </ul>                                     | Yes                                                            |
| <ul> <li>between channels and load<br/>voltage L+</li> </ul>                                   | Yes                                                            |
| Permissible potential difference                                                               |                                                                |
| <ul> <li>between S– and M<sub>ANA</sub> (UCM)</li> </ul>                                       | 3 VDC                                                          |
| <ul> <li>between M<sub>ANA</sub> and the<br/>M<sub>internal</sub> (U<sub>ISO</sub>)</li> </ul> | 75 VDC<br>60 VAC                                               |
| <ul> <li>Insulation tested with</li> </ul>                                                     | 600 VDC                                                        |
| Current drawn                                                                                  |                                                                |
| <ul> <li>from backplane bus</li> </ul>                                                         | max. 60 mA                                                     |
| <ul> <li>from load voltage L+<br/>(without load)</li> </ul>                                    | max. 240 mA                                                    |
| Power losses of the module                                                                     | typ. 3 W                                                       |
| Analog Value Generation                                                                        |                                                                |
| Resolution (incl. overrange)                                                                   |                                                                |
| • ±10 V; ±20 mA;                                                                               | 11 hits Leign                                                  |
| 4 to 20 mA; 1 to 5 V<br>• 0 to 10 V; 0 to 20 mA                                                | 11 bits + sign<br>12 bits                                      |
| Conversion time per channel                                                                    | max. 0.8 ms                                                    |
| Setting time                                                                                   |                                                                |
| for resistive load                                                                             | 0.1 ms                                                         |
| for capacitive load                                                                            | 3.3 ms                                                         |
| for inductive load                                                                             | 0.5 ms                                                         |
| Injection of substitute values                                                                 | Yes, programmable                                              |
|                                                                                                |                                                                |

| Noise Suppression and Error Limits                                                 |              |
|------------------------------------------------------------------------------------|--------------|
| Crosstalk between outputs                                                          | > 40 dB      |
| Operational limit<br>(in the total temperature range,<br>referred to output range) |              |
| <ul> <li>Voltage output</li> </ul>                                                 | ± 0.5 %      |
| <ul> <li>Current output</li> </ul>                                                 | ± 0.6 %      |
| Basic error (operational limit at 25 °C, referred to output range)                 |              |
| <ul> <li>Voltage output</li> </ul>                                                 | ± 0.2 %      |
| <ul> <li>Current output</li> </ul>                                                 | ± 0.3 %      |
| Temperature drift (referred to output range)                                       | ± 0.02 %/K   |
| Linearity error (referred to output range)                                         | ± 0.05 %     |
| Repeatability (in steady state at 25 °C, referred to output range)                 | ± 0.05 %     |
| Output ripple; range 0 to 50 kHz (referred to output range)                        | ± 0.05 %     |
| Status, Interrupts, Diagnostics                                                    | 3            |
| Interrupts                                                                         |              |
| <ul> <li>Diagnostics interrupt</li> </ul>                                          | Programmable |
| Diagnostics functions                                                              | Programmable |
| <ul> <li>System fault display on module</li> </ul>                                 | Red LED (SF) |
| <ul> <li>Diagnostics information<br/>read-out</li> </ul>                           | Possible     |

| Actuator Selection Data                                                                                             |                                                                   |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Output ranges (nominal values)                                                                                      |                                                                   |
| Voltage                                                                                                             | ± 10 V<br>0 to 10 V<br>1 to 5 V                                   |
| • Current                                                                                                           | ± 20 mA<br>0 to 20 mA<br>4 to 20 mA                               |
| Impedance (in the nominal output range)                                                                             |                                                                   |
| <ul> <li>with voltage outputs</li> </ul>                                                                            | min. 1 k $\Omega$                                                 |
| <ul> <li>capacitive load</li> </ul>                                                                                 | max. 1 μF                                                         |
| <ul> <li>with current outputs</li> </ul>                                                                            | max. 500 $\Omega$                                                 |
| <ul> <li>at U<sub>CM</sub> &lt; 1 V</li> </ul>                                                                      | max. 600 $\Omega$                                                 |
| <ul> <li>inductive load</li> </ul>                                                                                  | max. 10 mH                                                        |
| Voltage output                                                                                                      |                                                                   |
| Short-circuit protection                                                                                            | Yes                                                               |
| Short-circuit current                                                                                               | max. 25 mA                                                        |
| Current output                                                                                                      |                                                                   |
| Open-circuit voltage                                                                                                | max. 18 V                                                         |
| Destruction limit for voltages/currents connected from outside                                                      |                                                                   |
| Voltage at outputs to M <sub>ANA</sub>                                                                              | max 18 V continuously;<br>75 V for max. 1 s (duty<br>factor 1:20) |
| Current                                                                                                             | max. DC 50 mA                                                     |
| Connection of actuators                                                                                             |                                                                   |
| <ul> <li>Voltage output</li> <li>2-wire connection</li> <li>4-wire connection</li> <li>(measuring leads)</li> </ul> | Possible<br>Possible                                              |
| <ul><li>Current output</li><li>2-wire connection</li></ul>                                                          | Possible                                                          |

# 4.7.2 Starting Up the Analog Output Module SM 332; AO 4 $\times$ 12 Bit

### **Parameter Assignment**

The functions of the analog output module SM 332; AO 4  $\times$  12 Bit are set as follows:

- with STEP 7 (also see STEP 7 User Manual) or
- in the user program by means of SFCs (see STEP7 System and Standard Functions Reference Manual).

#### Note

If you modify output ranges when the analog output module SM 332; AO 4  $\times$  12 Bit is in operation, intermediate values may appear at the output!

### **Default Settings**

The analog output module has default settings for the type of output, diagnostics, interrupts, etc. (see Table 4-20).

These default settings are valid, if you have not re-initialized the module with STEP 7.

### **Parameter Assignment**

You can configure each output channel of the SM 332; AO 4  $\times$  12 Bit individually.

Advantage: You can assign individual parameters for each output channel.

When you set the parameters with SFCs in the user program, the parameters are assigned to channel groups. Each output channel of the analog output module SM 332; AO 4  $\times$  12 Bit is then assigned to one channel group, i.e. output channel 0 = channel group 0 (see Fig. A-4 in Appendix A).

### **Unused Output Channels**

To make sure that unused output channels of the analog output module SM 332; AO 4  $\times$  12 Bit are dead, you must deactivate them and leave them open. Deactivate an output channel using the "Output" parameter block when programming with STEP 7 (see Section 4.3.4).

# 4.7.3 Output Ranges of the Analog Output Module SM 332; AO $4 \times 12$ Bit

### **Analog Outputs**

You can use the outputs as:

- Voltage outputs
- Current outputs

Set the outputs group-wise, using STEP 7 for programming the output type.

# **Output Ranges**

Set the various output ranges for the voltage and/or current outputs with STEP 7.

Table 4-42 lists all the possible output ranges of the analog output module SM 332; AO  $4 \times 12$  Bit.

Table 4-42 Output Ranges of the Analog Output Module SM 332; AO 4 imes 12 Bit

| Selected Type of Output | Description                                                                          | Output Range                        |
|-------------------------|--------------------------------------------------------------------------------------|-------------------------------------|
| Voltage                 | You will find the digital analog values in Section 4.1.3 in the voltage output range | 1 to 5 V<br>0 to 10 V<br>± 10 V     |
| Current                 | You will find the digital analog values in Section 4.1.3 in the current output range | 0 to 20 mA<br>4 to 20 mA<br>± 20 mA |

# **Default Setting**

The default settings of the module are output type "voltage" and output range " $\pm$  10 V". You can use this output type with this output range without changing the parameters of the SM 332; AO 4  $\times$  12 Bit with *STEP 7*.

## Wire-Break Check

The analog output module SM 332; AO 4  $\times$  12 Bit carries out a wire-break check only for current outputs.

#### **Short-Circuit Check**

The analog output module SM 332; AO 4  $\times$  12 Bit carries out a short-circuit check only for voltage outputs.

### **Substitute Values**

You can configure the SM 332; AO 4  $\times$  12 Bit for the CPU operating mode STOP as follows: Output Substitute Values (default: 0 mA/0 V) or Hold Last Value.

For the output ranges 4 to 20 mA and 1 to 5 V you must set the substitute value E500<sub>H</sub> in order for the output to remain de-energized (see Tables 4-17 and 4-18).

# 4.8 Analog Output Module SM 332; AO $2 \times 12$ Bit

#### In this Section

In this section, you will find:

- The characteristic features of the analog output module SM 332; AO 2 × 12 Bit
- The technical specifications of the analog output module SM 332;
   AO 2 × 12 Bit

You will learn:

- How to start up the analog output module SM 332; AO 2  $\times$  12 Bit
- Which output ranges you can use with the analog output module SM 332; AO 2  $\times$  12 Bit
- The parameters with which you can influence the characteristic features of the analog output module SM 332; AO 2 imes 12 Bit

# 4.8.1 Characteristic Features and Technical Specifications of the Analog Output Module SM 332; AO 2×12 Bit

#### Order No.

6ES7 332-5HB01-0AB0

#### **Characteristic Features**

The analog output module SM 332; AO 2  $\times$  12 Bit has the following characteristic features:

- · 2 output in 2 channels groups
- The individual output channels can be programmed as
  - voltage outputs
  - current outputs
- · Resolution 12 bits
- · Programmable diagnostics
- Programmable diagnostics interrupt
- Programmable substitute value output
- · Galvanic isolation to CPU and load voltage

#### Note

When switching on and off the rated load voltage (L+), wrong intermediate values can be present at the output for approx. 10 ms.

# **Terminal Connection Diagram**

Figure 4-26 shows the module view and the block diagram of the analog output module SM 332; AO 2  $\times$  12 Bit. You will find the detailed technical specifications of the analog output module on the following pages.



Figure 4-26 Module View and Block Diagram of the Analog Output Module SM 332; AO 2×12 Bit

| Dimonsions and Waight                                                                          |                                                                              |  |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| Dimensions and Weight                                                                          |                                                                              |  |
| Dimensions<br>W × H × D                                                                        | $40 \times 125 \times 120 \text{ mm}$ (1.56 $\times$ 4.88 $\times$ 4.68 in.) |  |
| Weight                                                                                         | approx. 220 g (7.7 oz.)                                                      |  |
| Module-Specific Data                                                                           |                                                                              |  |
| Number of outputs                                                                              | 2                                                                            |  |
| Length of cable (shielded)                                                                     | max. 200 m (218 yd.)                                                         |  |
| Voltages, Currents, Potentials                                                                 |                                                                              |  |
| Rated load voltage L+                                                                          | 24 VDC                                                                       |  |
| Reverse polarity protection                                                                    | Yes                                                                          |  |
| Galvanic isolation                                                                             |                                                                              |  |
| <ul> <li>between channels and<br/>backplane bus</li> </ul>                                     | Yes                                                                          |  |
| <ul> <li>between channels and load<br/>voltage L+</li> </ul>                                   | Yes                                                                          |  |
| Permiss. potential difference                                                                  |                                                                              |  |
| <ul> <li>between S– and M<sub>ANA</sub><br/>(U<sub>CM</sub>)</li> </ul>                        | 3 VDC                                                                        |  |
| <ul> <li>between M<sub>ANA</sub> and the<br/>M<sub>internal</sub> (U<sub>ISO</sub>)</li> </ul> | 75 VDC<br>60 VAC                                                             |  |
| <ul> <li>Isolation tested with</li> </ul>                                                      | 600 VDC                                                                      |  |
| Current drawn                                                                                  |                                                                              |  |
| <ul> <li>from backplane</li> </ul>                                                             | max. 60 mA                                                                   |  |
| <ul> <li>from load voltage L+<br/>(without load)</li> </ul>                                    | max. 135 mA                                                                  |  |
| Power losses of the module                                                                     | typ. 3 W                                                                     |  |
| Analog Value Generation                                                                        |                                                                              |  |
| Resolution (incl. overrange)                                                                   |                                                                              |  |
| <ul> <li>± 10 V; ± 20 mA;</li> <li>4 to 20 mA; 1 to 5 V</li> </ul>                             | 11 bits + sign                                                               |  |
| • 0 to 10 V; 0 to 20 mA                                                                        | 12 bits                                                                      |  |
| Conversion time per channel                                                                    | max. 0.8 ms                                                                  |  |
| Setting time                                                                                   |                                                                              |  |
| <ul> <li>for resistive load</li> </ul>                                                         | 0.1 ms                                                                       |  |
| <ul> <li>for capacitive load</li> </ul>                                                        | 3.3 ms                                                                       |  |
| for inductive load                                                                             | 0.5 ms                                                                       |  |
| Injection of substitute values                                                                 | Yes, programmable                                                            |  |

| 1 | Noise Suppression and Error Limits                                           |              |  |
|---|------------------------------------------------------------------------------|--------------|--|
|   | Crosstalk between outputs                                                    | > 40 dB      |  |
|   | Operational limit (in the total temperature range, referred to output range) |              |  |
|   | Voltage output                                                               | ± 0.5 %      |  |
| _ | Current output                                                               | ± 0.6 %      |  |
|   | Basic error (operational limit at 25 °C, referred to output range)           |              |  |
|   | Voltage output                                                               | ± 0.2 %      |  |
|   | Current output                                                               | ± 0.3 %      |  |
|   | Temperature drift (referred to output range)                                 | ± 0.02 %/K   |  |
|   | Linearity error (referred to output range)                                   | ± 0.05 %     |  |
|   | Repeatability (in steady state at 25 °C, referred to output range)           | ± 0.05 %     |  |
|   | Output ripple; range 0 to 50 kHz (referred to output range)                  | ± 0.05 %     |  |
|   | Status, Interrupts, Diagnostics                                              |              |  |
|   | Interrupts                                                                   |              |  |
|   | Diagnostics alarm                                                            | Programmable |  |
|   | Diagnostics functions                                                        | Programmable |  |
|   | <ul> <li>System fault display on module</li> </ul>                           | Red LED (SF) |  |
|   | Diagnostics information read-out                                             | Possible     |  |

| Actuator Selection Data |                                                                |                                                                   |  |
|-------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|--|
| Οι                      | tput ranges (nominal values)                                   |                                                                   |  |
| •                       | Voltage                                                        | ± 10 V<br>0 to 10 V<br>1 to 5 V                                   |  |
| •                       | Current                                                        | ± 20 mA<br>0 to 20 mA<br>4 to 20 mA                               |  |
|                         | pedance (in nominal output<br>nge)                             |                                                                   |  |
| •                       | with voltage outputs                                           | min. 1 k $\Omega$                                                 |  |
|                         | <ul> <li>capacitive load</li> </ul>                            | max. 1 μF                                                         |  |
| •                       | with current outputs                                           | max. 500 $\Omega$                                                 |  |
|                         | <ul> <li>at U<sub>CM</sub> &lt; 1 V</li> </ul>                 | max. 600 $\Omega$                                                 |  |
|                         | <ul> <li>inductive load</li> </ul>                             | max. 10 mH                                                        |  |
| Vo                      | Itage output                                                   |                                                                   |  |
| •                       | Short-circuit protection                                       | Yes                                                               |  |
| •                       | Short-circuit current                                          | max. 25 mA                                                        |  |
| Cu                      | rrent output                                                   |                                                                   |  |
| •                       | Open-circuit voltage                                           | max. 18 V                                                         |  |
| vol                     | Destruction limit for voltages/currents connected from outside |                                                                   |  |
| •                       | Voltage at outputs to M <sub>ANA</sub>                         | max 18 V continuously;<br>75 V for max. 1 s (duty<br>factor 1:20) |  |
| •                       | Current                                                        | max. DC 50 mA                                                     |  |
| Со                      | Connection of actuators                                        |                                                                   |  |
| •                       | Voltage output                                                 |                                                                   |  |
|                         | 2-wire connection                                              | Possible                                                          |  |
|                         | 4-wire connection (measuring leads)                            | Possible                                                          |  |
| •                       | Current output                                                 |                                                                   |  |
|                         | 2-wire connection                                              | Possible                                                          |  |

# 4.8.2 Starting Up the Analog Output Module SM 332; AO 2×12 Bit

### **Parameter Assignment**

The functions of the analog output module SM 332; AO 2  $\times$  12 Bit are set as follows:

- with STEP 7 (see aso STEP 7 User Manual) or
- in the user program by means of SFCs (see STEP 7 System and Standard Functions Reference Manual).

#### Note

If you modify output ranges when the analog output module SM 332; AO 2  $\times$  12 Bit is in operation, intermediate values may appear at the output!

#### **Default Settings**

The analog output module has default settings for the type of output, diagnostics, interrupts, etc. (see Table 4-20).

These default settings are valid, if you have not re-initialized the module with STEP 7

#### **Parameter Assignment**

You can configure each output channel of the SM 332; AO 2  $\times$  12 Bit individually.

Advantage: You can assign individual parameters for each output channel.

When you configure with SFCs in the user program, the parameters are assigned to channel groups. Each output channel of the analog output module SM 332; AO  $2 \times 12$  Bit is then assigned to one channel group, i.e. output channel 0 = 0 channel group 0 (see Fig. A-3 in Appendix A).

#### **Unused Output Channels**

To make sure that unused output channels of the analog output module SM 332; AO  $2 \times 12$  Bit are dead, you must deactivate them and leave them open. Deactivate an output channel using the "Output" parameter block of *STEP 7* (see Section 4.3.4).

# 4.8.3 Output Ranges of the Analog Output Module SM 332; AO $2 \times 12$ Bit

## **Analog Outputs**

You can use the outputs as:

- · Voltage outputs
- · Current outputs

You make the output settings channel-group-wise, using STEP 7.

## **Output Ranges**

Set the various output ranges for the voltage and/or current outputs with STEP 7.

Table 4-43 lists all the possible output ranges of the analog output module SM 332; AO 2  $\times$  12 Bit.

Table 4-43 Output Ranges of the Analog Output Module SM 332; AO 2 imes 12 Bit

| Selected Type of Output | Description                                                                          | Output Range                        |
|-------------------------|--------------------------------------------------------------------------------------|-------------------------------------|
| Voltage                 | You will find the digital analog values in Section 4.1.3 in the voltage output range | 1 to 5 V<br>0 to 10 V<br>± 10 V     |
| Current                 | You will find the digital analog values in Section 4.1.3 in the current output range | 0 to 20 mA<br>4 to 20 mA<br>± 20 mA |

## **Default Setting**

The default settings of the module are output type "voltage" and output range " $\pm$  10 V". You can use this output type with this output range without changing the parameters of the SM 332; AO 2  $\times$  12 Bit with *STEP 7*.

#### **Wire-Break Check**

The analog output module SM 332; AO 2  $\times$  12 Bit carries out a wire-break check only for current outputs.

#### **Short-Circuit Check**

The analog output module SM 332; AO 2  $\times$  12 Bit carries out a short-circuit check only for voltage outputs.

#### **Substitute Values**

You can parameterize the SM 332; AO 2  $\times$  12 Bit for the CPU operating mode STOP as follows: Output Substitute Values (default: 0 mA/0 V) or Hold Last Value.

For the output ranges 4 to 20 mA and 1 to 5 V you must set the substitute value E500<sub>H</sub> in order for the output to remain de-energized (see Tables 4-17 and 4-18).

# 4.9 Analog Output Module SM 332; AO 4 $\times$ 16 Bit

#### Order No.

6ES7 332-7ND00-0AB0

#### **Characteristic Features**

The analog output module SM 332; AO 4  $\times$  16 Bit has the following characteristic features:

- · 4 outputs in 4 channel groups
- The individual output channels can be programmed as:
  - Voltage outputs
  - Current outputs
- Resolution of 16 bits
- Programmable diagnostics
- · Programmable diagnostics interrupt
- Programmable substitute value output
- Galvanic isolation to CPU and analog output channel
- Galvanic isolation analog output channel-to-channel
- Galvanic isolation analog output and L+, M
- Galvanic isolation CPU and L+, M

## **Terminal Connection Diagram**

Figure 4-27 shows the block diagram of the analog output module SM 332; AO 4  $\times$  16 Bit.

The detailed technical specifications for this analog output module are on the following pages.



Figure 4-27 Block Diagram of Analog Output Module SM 332; AO 4 x 16 Bit

| Di  | mensions and Weight                        |                                              | Analog Value Generation                                              |
|-----|--------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|
| Di  | mensions W $\times$ H $\times$ D           | 40 × 125 × 120 mm                            | Resolution (incl. Overrange) 15 bits + sign                          |
|     |                                            | $(1.56 \times 4.88 \times 4.68 \text{ in.})$ | • 1 to 5 V 13 bits                                                   |
| W   | eight                                      | approx. 220 g (7.7 oz.)                      | • 4 to 20 mA 14 bits                                                 |
| М   | odule-Specific Data                        |                                              | Conversion time max. 1.5 ms                                          |
| Νι  | umber of outputs                           | 4                                            | 1 1 to 4 channels                                                    |
| Le  | ength of cable (shielded)                  | max. 200 m (218 yd.)                         | Settling time                                                        |
|     | oltages, Currents, and Potent              |                                              | • for resistive load 0.2 ms                                          |
| VC  | mages, Currents, and Potent                |                                              | • for capacitive load 1.0 ms                                         |
| Ra  | ated load voltage L +                      | 24 VDC                                       | • for inductive load 0.2 ms                                          |
| •   | Reverse Polarity protection                | Yes                                          | Substitute values Yes, configurab                                    |
| Ga  | alvanic isolation                          |                                              | Noise Suppression and Error Limits                                   |
| •   | between channels and backplane bus         | Yes                                          | Crosstalk between outputs > 100 dB                                   |
| •   | between channels and load voltage L+       | Yes                                          | Operational limit (over entire temperature range,                    |
| •   | between output                             | Yes                                          | referred to output range)                                            |
| •   | channel-to-channel<br>backplane bus and L+ | Yes                                          | Voltage outputs     max. ± 0.12%     typ. ± 0.04%                    |
| Pe  | ermissible potential difference            | 100                                          | Current outputs max. ± 0.18%                                         |
| •   | channel to backplane                       | 200 VDC / 120 VAC                            | typ. ± 0.05%                                                         |
| •   | channel to L+, M                           | 200 VDC / 120 VAC                            | Basic error                                                          |
| •   | between channels                           | 200 VDC / 120 VAC                            | (operational limit at 25° C, referred to output range)               |
| •   | backplane to L+, M                         | 200 VDC / 120 VAC                            | Voltage outputs ± 0.01%                                              |
| lec | olation tested with                        |                                              | • Current outputs ± 0.01%                                            |
| •   | channel to backplane                       | 1500 VAC                                     | Temperature drift ± 0.001% / K                                       |
| •   | channel to L+, M                           | 1500 VAC                                     | (referred to output range) 10 ppm / K                                |
| •   | between channels                           | 1500 VAC                                     | Linearity error ± 0.004%                                             |
| •   | backplane to L+, M                         | 1500 VAC                                     | (referred to output range)                                           |
| Cι  | urrent drawn                               |                                              | Repeatability ± 0.002 %                                              |
| •   | from backplane bus                         | max. 60 mA                                   | (in steady state at 25° C,                                           |
| •   | from load voltage L+                       | max. 240 mA                                  | referred to output range)                                            |
|     | (without load)                             | -                                            | Output ripple; range 0 to 50 Khz ± 0.05 % (referred to output range) |
| Po  | ower losses of the module                  | typ. 3 W                                     | (1.5.5od to output range)                                            |

| Status, Interrupts, Diagnostics                            |                                                                            |  |
|------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Interrupts                                                 |                                                                            |  |
| Diagnostic interrupt                                       | Programmable                                                               |  |
| Diagnostic functions                                       | Programmable                                                               |  |
| System fault display on                                    | Red LED (SF)                                                               |  |
| module                                                     |                                                                            |  |
| Diagnostic information readout                             | Possible                                                                   |  |
| Actuator Selection Data                                    |                                                                            |  |
| Output ranges (nominal values)                             |                                                                            |  |
| <ul> <li>Voltage</li> </ul>                                | ± 10 V                                                                     |  |
|                                                            | 0 to 10 V<br>1 to 5 V                                                      |  |
| • Current                                                  |                                                                            |  |
| Current                                                    | ± 20 mA<br>0 to 20 mA                                                      |  |
|                                                            | 4 to 20 mA                                                                 |  |
| Load impedance (in the nominal output range)               |                                                                            |  |
| With voltage outputs     capacitive load                   | min. 1K $\Omega$ max. 1 $\mu$ F                                            |  |
| With current outputs     inductive load                    | $\begin{array}{l} \text{max. 500 } \Omega \\ \text{max. 1 mH} \end{array}$ |  |
| Voltage output                                             |                                                                            |  |
| Short circuit protection                                   | Yes                                                                        |  |
| Short circuit current                                      | 40 mA, nominal                                                             |  |
| Current output                                             |                                                                            |  |
| Open circuit voltage                                       | max. 18 V                                                                  |  |
| Connection of actuators                                    |                                                                            |  |
| Voltage output     4-wire connection     (measuring leads) | Possible                                                                   |  |
| Current output     2-wire connection                       | Possible                                                                   |  |

# 4.9.1 Starting Up the Analog Output Module SM 332; AO 4 $\times$ 16 Bit

### **Parameter Assignment**

The functions of the analog output module SM 332; AO 4  $\times$  16 Bit are set:

- with STEP 7 (see the STEP 7 User Manual) or
- in the user program by means of SFCs (see the STEP 7 System and Standard Functions Reference Manual)

#### Note

If you modify output ranges when the analog output module SM 332; AO 4 X 16 Bit is in operation, intermediate values may appear at the output.

You can configure each output channel of the SM 332; AO 4 x 16 Bit individually.

Advantage: you can assign individual parameters for each output channel.

When you set the parameters with SFCs in the user program, the parameters are assigned to channel groups. Each output channel of the analog output module SM 332; AO 4  $\times$  16 Bit is then assigned to one channel group, i.e., output channel 0 = channel group 0.

#### **Default Setting**

The default settings of the module are diagnostic interrupt disabled: group diagnostics disabled; output type: voltage; output range:  $\pm$  10 V; and reaction to CPU STOP: outputs without voltage or current. You can use this output type with this output range without changing the parameters of the SM 332; AO 4 x 16 Bit with STEP 7.

#### **Unused Output Channels**

Unused output channels of the analog output module SM 332; AO 4 x 16 Bit should be deactivated by using the Output parameter block when programming with STEP 7 and field wiring terminals should be empty.

# 4.9.2 Output Ranges of the Analog Output Module SM 332; AO $4 \times$ 16 Bit

### **Analog Outputs**

You can use the outputs as:

- · Voltage outputs
- · Current outputs

Set the outputs as groups, using STEP 7 for programming the output type.

## **Output Ranges**

Set the various output ranges for the voltage and/or current outputs with STEP 7.

Table 4-35 lists the possible output ranges of the analog output module SM 332; AO 4 x 16 Bit.

Table 4-44 Ranges for Current and Voltage Outputs

| Selected Type of Output                          | Description                                                                                       | Output<br>Range                     |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------|
| Voltage                                          | You will find the digital analog values in Table 4–17 <sup>1</sup> , in the voltage output range. | 1 to 5 V<br>0 to 10 V<br>± 10 V     |
| Current                                          | You will find the digital analog values in Table 4–18 <sup>1</sup> , in the current output range. | 0 to 20 mA<br>4 to 20 mA<br>± 20 mA |
| 1 of the S7-300 Installation and Hardware manual |                                                                                                   |                                     |

#### **Reaction to CPU STOP**

You can configure the SM 332; AO  $4 \times 16$  Bit for the CPU operating mode STOP as follows: Outputs Without Voltage or Current (OWVC), Retain Last Value (RLV), or Switch to Substitute Value (SSV).

#### **Substitute Values**

Substitute values, expressed as a current (mA) or voltage (V), must be within the nominal range of the channel configuration.

# 4.10 Analog Input/Output Module SM 334; AI 4/AO 2 $\times$ 8/8 Bit

#### In this Section

In this section you will get to know:

- The characteristic features of the analog input/output module SM 334; AI 4/AO 2  $\times$  8/8 Bit
- The technical specifications of the analog input/output module SM 334; Al 4/AO 2  $\times$  8/8 Bit

You will learn:

- How to start up the analog input/output module SM 334; Al 4/AO 2  $\times$  8/8 Bit
- Which measuring and output ranges the analog input/output module SM 334: Al 4/AO 2  $\times$  8/8 Bit has

# 4.10.1 Characteristic Features and Technical Specifications of the Analog Input/Output Module SM 334; AI 4/AO 2 $\times$ 8/8 Bit

#### Order No.

6ES7 334-0CE01-0AA0

#### **Characteristic Features**

The analog input/output module SM 334: Al 4/AO 2  $\times$  8/8 Bit has the following characteristic features:

- Four input and two output channels
- Resolution 8 bits
- Measuring range of 0 to 10 V or 0 to 20 mA
- Output range of 0 to 10 V or 0 to 20 mA
- · Both voltage and current output options
- Non-isolated to CPU
- Galvanic isolation to load voltage

## Special Feature: Measuring Range and Output Range Selection

You cannot assign parameters to the SM 334 analog input/output module with four 8-bit analog input channels and two 8-bit analog output channels. Select the measuring range of the input channels and the output range of the output channels via the wiring (see Figure 4-28).

#### **Terminal Connection Diagram**

Figure 4-28 shows the module view and the block diagram for the analog input/output module SM 334; Al4/AO2  $\times$  8/8 Bit. You will find the detailed technical specifications of the analog input/output module on the following page.



Figure 4-28 Module View and Block Diagram of the Analog Input/Output Module SM 334; AI 4/AO 2  $\times$  8/8 Bit

#### Important Information on Connecting the Module

The SM 334; Al4/AO2 x 8/8 Bit analog input/output module is a **non-isolated module**.

Note when connecting the SM 334 that the *analog ground* ( $M_{ANA}$ ), which is terminal 15 or 18, is connected to the ground (M) of the CPU or IM interface module. Use a wire with a minimum cross-section of 1 mm<sup>2</sup> for this.

If there is no ground connection between  $M_{ANA}$  and M, the module switches off. Inputs are read with  $7FFF_H$ ; outputs return a value of 0.

If the module is run without a ground connection for some time, it may be destroyed.

Note also that *the supply voltage for the CPU or IM interface module must not be connected incorrectly*. Reverse polarity causes the destruction of the module because M<sub>ANA</sub> is subjected to an impermissibly high potential (+24V).

| Dimensions and Weight                                                           |                                                                   |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Dimensions $W \times H \times D$                                                | $40 \times 125 \times 120 \text{ mm}$<br>(1.56 × 4.88 × 4.68 in.) |  |
| Weight                                                                          | approx. 285 g<br>(9.98 oz.)                                       |  |
| Module-Specific Data                                                            |                                                                   |  |
| Number of inputs                                                                | 4                                                                 |  |
| Number of outputs                                                               | 2                                                                 |  |
| Cable length, shielded                                                          | max. 200 m (218 yd.)                                              |  |
| Voltages, Currents, Potentials                                                  |                                                                   |  |
| Rated load voltage L+                                                           | 24 VDC                                                            |  |
| Galvanic isolation                                                              | No                                                                |  |
| Permiss. potential difference                                                   |                                                                   |  |
| <ul> <li>between the inputs and<br/>M<sub>ANA</sub> (U<sub>CM</sub>)</li> </ul> | 1 VDC                                                             |  |
| Current drawn                                                                   |                                                                   |  |
| <ul> <li>from the backplane bus</li> </ul>                                      | max. 55 mA                                                        |  |
| <ul> <li>from load voltage L+<br/>(without load)</li> </ul>                     | max. 110 mA                                                       |  |
| Module power losses                                                             | typ. 2.6 W                                                        |  |
| Status, Interrupts, Diagnostic                                                  | S                                                                 |  |
| Interrupts                                                                      | No                                                                |  |
| Diagnostic functions                                                            | No                                                                |  |
| Analog Value Generation for t                                                   | he Inputs                                                         |  |
| Measuring principle                                                             | Successive approximation                                          |  |
| Resolution (incl. overrange)                                                    | 8 bits                                                            |  |
| Conversion time (all channels)                                                  | 5 ms                                                              |  |

| Interference Suppression, Erro                                                      | or Limits for the Inputs |
|-------------------------------------------------------------------------------------|--------------------------|
| Interference suppression for $f = n \times (f1 \pm 1 \%)$                           |                          |
| (f1 = interference frequency)                                                       |                          |
| • Common-mode interference (U <sub>pp</sub> < 1 V)                                  | > 60 dB                  |
| Crosstalk between the inputs                                                        | > 50 dB                  |
| Operational limit                                                                   |                          |
| (in the total temperature range, referred to the input range)                       |                          |
| Voltage input                                                                       | ±0.9 %                   |
| Current input                                                                       | ±0.8 %                   |
| Basic error limit (operational limit at 25 °C or 77 F, referred to the input range) |                          |
| Voltage input                                                                       | $\pm0.7~\%$              |
| Current input                                                                       | $\pm0.6~\%$              |
| Temperature error (referred to input range)                                         | ± 0.005 %/K              |
| Linearity error (referred to the input range)                                       | ± 0,05 %                 |
| Repeat accuracy (in the steady state at 25 °C / 77 F, referred to the input range)  | ± 0.05 %                 |

| Canaar Calaatian Data                                                          |                             | Depost accuracy (in the start)                                             | L 0.05.0/              |
|--------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------|------------------------|
| Sensor Selection Data  Input ranges (rated values) / input resistance          |                             | Repeat accuracy (in the steady state at 25 °C / 77 °F, referred            | ± 0.05 %               |
|                                                                                |                             | to the output range)                                                       |                        |
| <ul> <li>Voltage</li> </ul>                                                    | 0 to10 V/100 k Ω            | Output ripple (bandwidth                                                   | $\pm~0.05~\%$          |
| • Current                                                                      | 0 to 20 mA/50 $\Omega$      | referred to the output range)                                              |                        |
| Permissible input voltage                                                      | max. 20 V                   | Actuator Selection Data                                                    |                        |
| (destruction limit)                                                            | continuously; 75 V for      | Output ranges (rated values)                                               |                        |
|                                                                                | max. 1 s (duty factor 1:20) | Voltage                                                                    | 0 to10 V               |
| Permissible input current for                                                  | 40 mA                       | Current                                                                    | 0 to20 mA              |
| current input (destruction limit)                                              | 40 IIIA                     | Impedance (in nominal output range)                                        |                        |
| Connection of signal sensors                                                   |                             | with voltage outputs                                                       | min. 5 k $\Omega$      |
| <ul> <li>for voltage measurement</li> </ul>                                    | Possible                    | <ul> <li>with capacitive load</li> </ul>                                   | max. 1 μF              |
| <ul> <li>for current measurement</li> </ul>                                    |                             | with current outputs                                                       | max. 300 $\Omega$      |
| as 2-wire transducer                                                           | Not possible                | <ul> <li>with capacitive load</li> </ul>                                   | max. 1 mH              |
| as 4-wire transducer                                                           | Possible                    | Voltage output                                                             |                        |
| Analog Value Generation for t                                                  | he Outputs                  | Short-circuit protection                                                   | Yes                    |
| Resolution                                                                     | 8 bits                      | Short-circuit current                                                      | max. 11 mA             |
| Conversion time (all channels)                                                 | 5 ms                        | Current output                                                             |                        |
| Settling time                                                                  |                             | No-load voltage                                                            | max. 15 V              |
| <ul> <li>for resistive load</li> </ul>                                         | 0.3 ms                      | Destruction limit for                                                      |                        |
| <ul> <li>for capacitive load</li> </ul>                                        | 3.0 ms                      | voltages/currents connected from outside                                   |                        |
| <ul> <li>for inductive load</li> </ul>                                         | 0.3 ms                      |                                                                            | max 15 V continuously; |
| Injection of substitute values                                                 | No                          | <ul> <li>Voltage at outputs to M<sub>ANA</sub></li> <li>Current</li> </ul> | max. DC 50 mA          |
| Interference Suppress., Error                                                  | Limits for the Outputs      | Connection of actuators                                                    |                        |
| Crosstalk between the outputs                                                  | > 40 dB                     | for voltage output                                                         |                        |
| Operational limit                                                              |                             | 2-wire connection                                                          | Possible               |
| (in the total temperature range,                                               |                             | 4-wire connection (measuring line)                                         | Not possible           |
| referred to the output range)  • Voltage output                                | . 0.0.0/                    | • for current output                                                       | Descible               |
| <ul><li>Voltage output</li><li>Current output</li></ul>                        | ± 0.6 %<br>± 1.0 %          | 2-wire connection                                                          | Possible               |
| •                                                                              | ± 1.U /0                    |                                                                            |                        |
| Basic error (operational limit at 25 °C or 77 F, referred to the output range) |                             |                                                                            |                        |
| <ul> <li>Voltage output</li> </ul>                                             | ±0.5 %                      |                                                                            |                        |
| Current output                                                                 | $\pm0.5~\%$                 |                                                                            |                        |
| Temperature error (referred to the output range)                               | ± 0.02 %/K                  |                                                                            |                        |
|                                                                                |                             | İ                                                                          |                        |

Linearity error (referred to the

output range)

 $\pm~0.05~\%$ 

# 4.10.2 Starting Up the Analog Input/Output Module SM 334; AI 4/AO 2 $\times$ 8/8 Bit

#### **Electrical Design**

You **must** connect one of the chassis ground terminals ( $M_{ANA}$ ) of the analog input/output module SM 334; Al 4/AO 2  $\times$  8/8 Bit to the chassis ground terminal of the CPU (see Figure 4-28). Use a cable with a cross-section conductor of at least 1 mm<sup>2</sup> for this purpose.

#### **Unused Channels**

You must short-circuit unused input channels and you should connect them to M<sub>ANA</sub>. You thus obtain optimum interference protection for your analog module.

Unused output channels must be left open.

# 4.10.3 Measurement Method and Type of Output of the Analog Input/Output Module SM 334; AI 4/AO 2 $\times$ 8/8 Bit

### Selecting the Measurement Method and the Type of Output

Select the measuring method of an input channel (voltage, current) by wiring the input channel appropriately.

Select the type of output of an output channel (voltage, current) by wiring the output channel appropriately.

The analog input/output module SM 332; Al 4/AO 2  $\times$  8/8 Bit cannot be programmed.

#### Addressing

The module's inputs and outputs are addressed starting at the module start address.

The address of a channel is obtained from the module start address and an address offset.

# **Input Addresses**

The following addresses apply to the inputs:

| Channel | Address                                       |
|---------|-----------------------------------------------|
| 0       | Module start address                          |
| 1       | Module start address + 2 bytes address offset |
| 2       | Module start address + 4 bytes address offset |
| 3       | Module start address + 6 bytes address offset |

## **Output Addresses**

The following channel addresses apply to the module outputs:

| Channel | Address                                         |  |  |  |  |  |
|---------|-------------------------------------------------|--|--|--|--|--|
| 0       | Module start address                            |  |  |  |  |  |
| 1       | 1 Module start address + 2 bytes address offset |  |  |  |  |  |

# Measuring Ranges for the SM 334

The analog input/output module SM 334; AI 4/AO  $2 \times 8/8$  Bit has the measuring ranges 0 to 10 V and 0 to 20 mA. In contrast to other analog modules, however, the analog input/output module SM 334 has a lower resolution and no negative measuring ranges. Observe this, when reading Tables 4-5 and 4-6.

### **Output Ranges for the SM 334**

The analog input/output module SM 334; AI 4/AO  $2 \times 8/8$  Bit has the measuring ranges 0 to 10 V and 0 to 20 mA. In contrast to other analog modules, however, the analog input/output module SM 334 has a lower resolution and the analog outputs have no negative measuring ranges. Please remember this when reading Tables 4-17 and 4-18.

# 4.11 Analog Input/Output Module SM334; AI 4/AO $2 \times 12$ Bit

#### Order No.

6ES7 334-0KE00-0AB0

#### **Characteristic Features**

The SM 334 has the following characteristic features:

- 4 inputs in two groups
- 2 outputs (voltage outputs)
- Measured value resolution of 12 bits + sign
- Type of measurement selectable
  - Voltage
  - Resistance
  - Temperature
- Isolated from CPU
- · Isolated from load voltage

#### Note

Below the rated load voltage range, incorrect intermediate values occur at the output when the rated load voltage supply is switched on/off.

# **Terminal Connection Diagram**

Figure 4-29 shows the module view and the block diagram for the SM 334. You will find the detailed technical specifications of the SM 334 on the following pages.



Figure 4-29 Module View and Block Diagram of the SM 334

| Dimensions and Weight                                             |                                            |  |  |  |  |  |
|-------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|
| Dimensions W × H ×D (mm)                                          | 40 × 125 × 120<br>(1.56 x 4.88 x 4.68 in.) |  |  |  |  |  |
| Weight                                                            | Approx. 200 g                              |  |  |  |  |  |
| Module-Specific Data                                              |                                            |  |  |  |  |  |
| Number of inputs                                                  | 4                                          |  |  |  |  |  |
| Number of outputs                                                 | 2                                          |  |  |  |  |  |
| Cable length, shielded                                            | Max. 100 m                                 |  |  |  |  |  |
| Voltages, Currents, Potential                                     |                                            |  |  |  |  |  |
| Rated load voltage L+                                             | 24 V DC                                    |  |  |  |  |  |
| Polarity protection                                               | Yes                                        |  |  |  |  |  |
| Power supply to the transducers                                   |                                            |  |  |  |  |  |
| Short-circuit-proof                                               | Yes                                        |  |  |  |  |  |
| Constant current                                                  |                                            |  |  |  |  |  |
| <ul><li>Resistance measurement</li></ul>                          | Typ. 400 μA                                |  |  |  |  |  |
| Galvanic isolation                                                |                                            |  |  |  |  |  |
| Between channels and backplane bus                                | Yes                                        |  |  |  |  |  |
| Between channels and load<br>voltage L+                           | Yes                                        |  |  |  |  |  |
| Permiss. potential difference                                     |                                            |  |  |  |  |  |
| Between the inputs and                                            |                                            |  |  |  |  |  |
| M <sub>ANA</sub> (U <sub>CM</sub> )  Between M <sub>ANA</sub> and | 1 V<br>75 V DC                             |  |  |  |  |  |
| M <sub>internal</sub> -(U <sub>ISO</sub> )                        | 60 V AC                                    |  |  |  |  |  |
| Current drawn                                                     |                                            |  |  |  |  |  |
| From the backplane bus                                            | Max. 60 mA                                 |  |  |  |  |  |
| From load voltage L +     (without load)                          | Max. 80 mA                                 |  |  |  |  |  |
| Module power losses                                               | Typ. 2 W                                   |  |  |  |  |  |

| Status, Interrupts, Diagnostics                                    |             |            |  |  |  |  |
|--------------------------------------------------------------------|-------------|------------|--|--|--|--|
| Interrupts No                                                      |             |            |  |  |  |  |
| Diagnostic functions                                               | No          |            |  |  |  |  |
| Analog Value Generation for the                                    | he Inputs   |            |  |  |  |  |
| Measuring principle                                                | Integrating |            |  |  |  |  |
| Integration/conversion time (per channel)                          |             |            |  |  |  |  |
| Configurable                                                       | Yes         |            |  |  |  |  |
| Integration time in ms                                             | $16^2/_3$   | 20         |  |  |  |  |
| Basic conversion time incl. integration time in ms                 | 72          | 85         |  |  |  |  |
| Additional conversion<br>time for temperature<br>measurement in ms | 72          | 85         |  |  |  |  |
| Resolution in bits (incl. overcontrol range)                       | 12          | 12         |  |  |  |  |
| unipolar measuring range                                           | 12+         | 12+        |  |  |  |  |
| bipolar measuring range                                            | Sign<br>60  | Sign<br>50 |  |  |  |  |
| Interference suppression<br>for interference frequency<br>f1 in Hz |             |            |  |  |  |  |

Repeat accuracy (in the steady  $~\pm~0.05~\%$  state at 25°C, referred to the

input range)

| Interference Suppression, Err                                                               | or Limits for the Inputs | Sensor Selection Data                         |                                                                       |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|--|--|
| Interference suppression for $f = n \times (f1 \pm 1 \%)$                                   |                          | Input ranges (rated values)/input resistance  |                                                                       |  |  |  |  |  |  |
| (f1 = interference frequency)                                                               |                          | Resistance thermometer                        | Pt 100 10 M Ω                                                         |  |  |  |  |  |  |
| Common-mode interference (USS < 1 V)                                                        | > 38 dB                  | <ul><li>Resistance</li><li>Voltage</li></ul>  | 10 kΩ 10 M Ω 0 to 10 V 100 K Ω                                        |  |  |  |  |  |  |
| Series-mode interference<br>(peak value of interference<br>< rated value of input<br>range) | > 36 dB                  | Permissible input voltage (destruction limit) | Max. 20 V<br>continuously;<br>75 V for max. 1 s<br>(duty factor 1:20) |  |  |  |  |  |  |
| Crosstalk between the inputs                                                                | > 88 dB                  | Connection of signal sensors                  |                                                                       |  |  |  |  |  |  |
| Operational limit                                                                           |                          | For voltage measurement                       | Possible                                                              |  |  |  |  |  |  |
| (in the total temperature range, referred to the input range)                               |                          | For resistance<br>measurement                 | Describle.                                                            |  |  |  |  |  |  |
| • Pt 100                                                                                    | ±0.7 %                   | with 2-wire connection with 3-wire connection | Possible<br>Possible                                                  |  |  |  |  |  |  |
| • 0 to 10 V                                                                                 | ±0.7 %                   | with 4-wire connection                        | Possible                                                              |  |  |  |  |  |  |
| • 10 k Ω                                                                                    | ±3.0 %                   | Characteristic linearization                  | Yes                                                                   |  |  |  |  |  |  |
| Basic error limit (operational limit at 25°C, referred to the input range)                  |                          | Thermal resistance                            | Pt 100 (climate range)                                                |  |  |  |  |  |  |
| • Pt 100                                                                                    | $\pm0.5~\%$              |                                               |                                                                       |  |  |  |  |  |  |
| • 0 to 10 V                                                                                 | $\pm0.5$ %               |                                               |                                                                       |  |  |  |  |  |  |
| • 10 k Ω                                                                                    | $\pm2.0~\%$              |                                               |                                                                       |  |  |  |  |  |  |
| Temperature error (referred to the input range)                                             | ±0.01 %/K                |                                               |                                                                       |  |  |  |  |  |  |
| Linearity error (referred to the input range)                                               | ± 0.05 %                 |                                               |                                                                       |  |  |  |  |  |  |

| Analog Value Generation for the Outputs                                           |                   |  |  |  |  |
|-----------------------------------------------------------------------------------|-------------------|--|--|--|--|
| Resolution (incl. overcontrol range)                                              | 12 bits           |  |  |  |  |
| Cycle time (all output channels)                                                  | 85 ms             |  |  |  |  |
| Settling time                                                                     |                   |  |  |  |  |
| for resistive load                                                                | 0.8 ms            |  |  |  |  |
| for capacitive load                                                               | 0.8 ms            |  |  |  |  |
| Injection of substitute values                                                    | No                |  |  |  |  |
| Interference Suppression, Erro<br>Outputs                                         | or Limits for the |  |  |  |  |
| Crosstalk between the outputs                                                     | > 88 dB           |  |  |  |  |
| Operational limit (in the total temperature range, referred to the output range)  | ± 1.0 %           |  |  |  |  |
| Basic error limit (operational error limit at 25°C, referred to the output range) | ± 0.85 %          |  |  |  |  |
| Temperature error (referred to the output range)                                  | ± 0.01 %/K        |  |  |  |  |
| Linearity error (referred to the output range)                                    | ± 0.01 %          |  |  |  |  |
| Repeat accuracy (in the steady state at 25°C, referred to the output range)       | ± 0.01 %          |  |  |  |  |
| Output ripple; bandwidth 0 to 50 kHz (referred to the output range)               | ± 0.1 %           |  |  |  |  |

| Actuator Selection Data                                        |                       |
|----------------------------------------------------------------|-----------------------|
| Output range (rated value)                                     | 0 to 10 V             |
| Impedance (in rated output range)                              |                       |
| <ul> <li>with voltage outputs</li> </ul>                       | Min. 2.5 k $\Omega$   |
| <ul> <li>with capacitive load</li> </ul>                       | Max. 1.0 μF           |
| Voltage output                                                 |                       |
| Short-circuit protection                                       | Yes                   |
| Short-circuit current                                          | Max. 10 mA            |
| Destruction limit for voltages/currents connected from outside |                       |
| <ul> <li>Voltage at outputs to M<sub>ANA</sub></li> </ul>      | Max 15 V continuously |
| Connection of actuators                                        |                       |
| 2-wire connection                                              | Possible              |
| 4-wire connection (measuring line)                             | Not possible          |

# 4.11.1 Starting Up the SM 334

#### **STEP 7 V 4.0**

Analog input/output module SM 334 Al4/AO2 $\times$ 12Bit is only contained in the module catalog of *STEP 7* V 4.0 and higher.

### Configuration

You set the prescribed function parameters of the SM 334:

- with STEP 7 before start-up (see User Manual STEP 7 or the online help in STEP 7).
- in the user program with SFCs (see Reference Manual STEP 7 System and Standard Functions).

#### **Default Settings**

The SM 334 has the following default settings:

- for the analog inputs: Pt 100 climate range
- for the analog outputs: 0 to 10 V

# **Wiring Versions**

You can wire the channels of the SM 334 for the following combinations:

| Channels 0       | • 2×Pt 100                |
|------------------|---------------------------|
| and 1            | • 2×resistance            |
| Channels 2 and 3 | • 2×voltage               |
|                  | • 2×resistance            |
|                  | • 2×Pt 100                |
|                  | • 1×Pt 100, 1×voltage     |
|                  | • 1×resistance, 1×voltage |

#### **Unused Input Channels**

You must short-circuit unused channels of the SM 334 and connect them to  $M_{\text{ANA}}$ . You thus obtain optimum interference protection for your analog module. You should also deactivate unused channels during configuration with  $STEP\ 7$  (see Section 4.3.4 in the *Module Specifications* Reference Manual), in order to reduce the cycle time of the module.

# **Unused Output Channels**

To ensure that unused output channels of the SM 334 are voltage-free, you must deactivate them and leave them open. You deactivate an output channel during configuration with *STEP 7* in the "Output" parameter block (see Section 4.3.4 in the *Module Specifications* Reference Manual).

# 4.11.2 Analog Value Representation

## **Analog Values**

The digitized analog value is the same for input and output values with the same rated range.

The analog values are represented in two's complement.

Table 4-1 shows the analog value representation of the analog modules:

Table 4-45 Analog Value Representation

| Resolution               |    |                 |                 |     |                 |                 | -              | Analog         | y Valu | ıe             |                |    |                |                |    |    |
|--------------------------|----|-----------------|-----------------|-----|-----------------|-----------------|----------------|----------------|--------|----------------|----------------|----|----------------|----------------|----|----|
| Bit number               | 15 | 14              | 13              | 12  | 11              | 10              | 9              | 8              | 7      | 6              | 5              | 4  | 3              | 2              | 1  | 0  |
| Significance of the bits | S. | 2 <sup>14</sup> | 2 <sup>13</sup> | 212 | 2 <sup>11</sup> | 2 <sup>10</sup> | 2 <sup>9</sup> | 2 <sup>8</sup> | 27     | 2 <sup>6</sup> | 2 <sup>5</sup> | 24 | 2 <sup>3</sup> | 2 <sup>2</sup> | 21 | 20 |

# **Analog Value**

Table 4-46 contains the analog value representation for the measuring ranges 10 k $\Omega$  and 0 to 10 V.

Table 4-46 Representation of the Digitized Measured Value for Measuring Ranges 10 k $\Omega$  and 0 to 10 V

| Measurin                    | ng Range     | Ur      | nits              |                    |
|-----------------------------|--------------|---------|-------------------|--------------------|
| <b>10 k</b> Ω               | 0 to 10 V    | Decimal | Hexadeci-<br>mal  | Range              |
| > 11.7589                   | > 11.7589    | 32767   | 7FFF <sub>H</sub> | Overflow           |
| 11.7589                     | 11.7589      | 32511   | 7EFF <sub>H</sub> |                    |
| :                           | :            | :       | :                 | Overcontrol range  |
| 10.0004                     | 10.0004      | 27649   | 6C01 <sub>H</sub> |                    |
| 10.0000                     | 10.0000      | 27648   | 6C00 <sub>H</sub> |                    |
| :                           | :            | :       | :                 |                    |
| 7.50000                     | 7.50000      | 20736   | 5100 <sub>H</sub> | Rated range        |
| :                           | :            | :       | :                 |                    |
| 0                           | 0            | 0       | 0                 |                    |
| Negative value not possible | Not possible | _       | _                 | Undercontrol range |
| _                           | _            | _       | _                 | Underflow          |

# Climate Temperature Range, Pt 100

Table 4-47 contains the representation of the digitized measured value for the climate temperature range of the Pt 100 sensor.

Table 4-47 Representation of the Digitized Measured Value for the Climate Temperature Range, Pt 100

| Climate<br>Temperature<br>Range<br>Pt 100 130 °C | Decimal | Hexadeci-<br>mal  | Range             |
|--------------------------------------------------|---------|-------------------|-------------------|
| > 155.00                                         | 32767   | 7FFF <sub>H</sub> | Overflow          |
| 155.00                                           | 15500   | 3C8C <sub>H</sub> |                   |
| :                                                | :       | :                 | Overcontrol range |
| 130.01                                           | 13001   | 32C9 <sub>H</sub> |                   |
| 130.00                                           | 13000   | 32C8 <sub>H</sub> |                   |
| :                                                | : :     |                   | Rated range       |
| -120.00                                          | -12000  | D120 <sub>H</sub> |                   |

Table 4-47 Representation of the Digitized Measured Value for the Climate Temperature Range, Pt 100

| Climate<br>Temperature<br>Range<br>Pt 100 130 °C | Decimal | Hexadeci-<br>mal  | Range              |
|--------------------------------------------------|---------|-------------------|--------------------|
| -120.01                                          | -12001  | D11F <sub>H</sub> |                    |
| :                                                | :       | :                 | Undercontrol range |
| -145.00                                          | -14500  | C75C <sub>H</sub> |                    |
| <- 145.00                                        | -32768  | 8000 <sub>H</sub> | Underflow          |

# **Analog Value**

Table 4-48 contains the representation of the 0 to 10 V output range.

Table 4-48 Representation of the analog output range from 0 to 10  $\rm V$ 

| Output Banas              | Un      | its                |                    |
|---------------------------|---------|--------------------|--------------------|
| Output Range<br>0 to 10 V | Decimal | Hexadeci-<br>mal   | Range              |
| 0                         | >32511  | >7EFF <sub>H</sub> | Overflow           |
| 11.7589                   | 32511   | 7EFF <sub>H</sub>  |                    |
| :                         | :       | :                  | Overcontrol range  |
| 10.0004                   | 27649   | 6C01 <sub>H</sub>  |                    |
| 10.0000                   | 27648   | 6C00 <sub>H</sub>  |                    |
| :                         | :       | :                  | Rated range        |
| 0                         | 0       | 0 <sub>H</sub>     |                    |
| 0                         | -       | -                  | Undercontrol range |

## 4.11.3 Parameters

#### Structure of Record 1

Figure 4-30 shows you the structure of record 1 of the parameters for SM 334.



Figure 4-30 Record 1 of the SM 334 parameters

## **Interference Suppression**

Table 4-49 contains the codes for the various frequencies which you enter in byte 1 of record 1 (see Figure 4-30). You must count the resulting integration time separately for each channel!

#### Note

You must set the same interference suppression for all channels of the SM 334.

Table 4-49 Codes for Interference Suppression

| Interference<br>Suppression<br>Frequency | Integration Time | Code |
|------------------------------------------|------------------|------|
| 60 Hz                                    | 16.7 ms          | 2#01 |
| 50 Hz                                    | 20 ms            | 2#10 |

### Type of Measurement and Measuring Ranges

Table 4-50 contains the measuring ranges of the SM 334 analog input/output module. The table shows the codes for the type of measurement and for the corresponding measuring range. You must enter these codes in bytes 2 to 5 of record 1, according to the desired measuring range (see Figure 4-30).

Table 4-50 Codes for the Measuring Ranges of the Analog Inputs

| Type of Measurement                                   | Code<br>(Bits 4 to 7) | Measuring Range | Code<br>(Bits 0 to 3) |
|-------------------------------------------------------|-----------------------|-----------------|-----------------------|
| Deactivated                                           | 2#0000                | Deactivated     | 2#0000                |
| Voltage                                               | 2#0001                | 0 to 10 V       | 2#1000                |
| Resistance<br>4-wire<br>connection                    | 2#0100                | 10 kΩ           | 2#1001                |
| Thermal resistance + lin earization 4-wire connection | 2#1000                | Pt 100 climate  | 2#0000                |

#### Note

The simultaneous connection of the PT 100 and a resistance to channels 0 and 1, or to channels 2 and 3, is not permitted.

Reason: common current source for both channels.

# **Output Type and Output Ranges**

Table 4-51 contains the output ranges of the SM 334 analog input/output module. The table shows the codes for the output type and for the corresponding output range. You must enter these codes in bytes 6 and 7 of record 1, according to the desired output range (see Figure 4-30).

Table 4-51 Codes for the Output Ranges

| Output Type | Code<br>(Bits 4 to 7) | Output Range | Code<br>(Bits 0 to 3) |
|-------------|-----------------------|--------------|-----------------------|
| Deactivated | 2#0000                | Deactivated  | 2#0000                |
| Voltage     | 2#0001                | 0 to 10 V    | 2#1000                |

Other Signal Modules

5

## **Other Signal Modules?**

In addition to the digital and analog modules further signal modules are available:

- a simulator module for simulating inputs and outputs and
- a dummy module for reserving an installation slot.
- an SM 338 POS input module to register the SSI encoder values

In this chapter, you will find the technical specifications for these signal modules and a description of their function.

#### **Contents**

The following signal modules are described in this chapter:

| Section | Contents                           | Page |
|---------|------------------------------------|------|
| 5.1     | Simulator Module SM 374; IN/OUT 16 | 5-2  |
| 5.2     | Dummy Module DM 370                | 5-4  |
| 5.3     | SM 338 POS input module            | 5-7  |

# 5.1 Simulator Module SM 374; IN/OUT 16

#### Order No.

6ES7 374-2XH01-0AA0

#### Characteristics

The simulator module SM 374; IN/OUT 16 has the following salient features:

- · Simulation of
  - 16 input points or
  - 16 output points or
  - 8 input points and 8 output points (with the same start addresses each!)
- The function can be set using screwdriver

#### Note

Do not actuate the switch for setting the mode when the CPU is in the RUN mode!

Status LED for simulating inputs and outputs

### What to Note when Assigning Parameters

The SM 374; IN/OUT 16 is not listed in the module catalog of *STEP 7*. That is, *STEP 7* does not recognize the order number of the simulator module. This means that you must "simulate" the relevant operating mode of the simulator module when configuring the desired function:

• If you wish to use the SM 374 with 16 inputs, enter the order number of a digital input module with 16 inputs.

Example: 6ES7 321-1BH01-0AA00

• If you require an SM 374 with 16 outputs, enter the order number of a digital output module with 16 outputs.

Example: 6ES7 322-1BH01-0AA00

• If you wish to use the SM 374 with eight inputs and eight outputs, enter the order number of a digital input module with eight inputs.

Example: 6ES7 323-1BH00-0AA0

### **Front View**

Figure 5-1 shows you the front view of the simulator module SM 374; IN/OUT (without front door). You will find the simulator module's detailed specifications under Figure 5-1.



Figure 5-1 Front View of Simulator Module SM 374; IN/OUT 16

### **Technical Specifications**

The following table lists the technical specifications of the simulator module SM 374; IN/OUT 16.

| Dimensions and Weight                                                                        |                                                            |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| $\begin{array}{l} \text{Dimensions} \\ \text{W} \times \text{H} \times \text{D} \end{array}$ | $40 \times 125 \times 110 \text{ mm}$ (1.56×4.88×4.29 in.) |  |
| Weight                                                                                       | approx. 190 g<br>(6.65 oz.)                                |  |
| Module-Specific Data                                                                         |                                                            |  |
| Simulation either of                                                                         | 16 input points                                            |  |
|                                                                                              | 16 output points                                           |  |
|                                                                                              | 8 input and output points                                  |  |

| Voltages, Currents, Potentials   |                            |  |
|----------------------------------|----------------------------|--|
| Current drawn from backplane bus | max. 80 mA                 |  |
| Module power losses              | typ. 0.35 W                |  |
| Status, Interrupts, Diagnostics  |                            |  |
| Status display                   | Yes, green LED per channel |  |
| Interrupts                       | No                         |  |
| Diagnostic functions             | No                         |  |

# 5.2 Dummy Module DM 370

#### Order No.

6ES7 370-0AA01-0AA0

#### Characteristics

The dummy module DM 370 reserves a slot for non-configured digital modules and interface modules. If you replace the dummy module by another S7-300 module, the mechanical configuration and the address assignment of the overall configuration are retained.

### **Special Features**

The dummy module can be used as a placeholder for:

- Interface modules (without reserving address space)
- · Non-configured digital modules (reserving address space)
- Modules occupying 2 slots. In this case, you must plug in two dummy modules with the dummy module in slot "x" reserving the address space and the dummy module in slot "x + 1" reserving no address space (see also Table 5-1). Note: No more than 8 modules (SM/FM/CP) may be plugged into a module rack. For example, if you reserve a slot for a module of 80 mm width using 2 dummy modules, you can plug in only 6 other modules (SM/FM/CP).

## **Configuration with STEP 7**

Use *STEP* 7 to configure the dummy module only if you are using the module to reserve the slot for a parameterized signal module. If the module is to reserve the slot for an interface module, you need not configure the module with *STEP* 7.

#### Configuration for ET 200M

If you use the dummy module DM 370 in an ET 200M setup with active bus modules, you must configure an input or output address range of 0 bytes for the dummy module (see also Table 5-1).

## Front and Rear View of the Dummy Module

Figure 5-2 shows the front and rear view of the dummy module DM 370 and the position of the address assignment switch.



Figure 5-2 Front and Rear View of the Dummy Module DM 370 and Position of the Address Assignment Switch

### **Switch Position**

Table 5-1 shows the meaning of the switch positions on the rear of the dummy module DM 370.

Table 5-1 Meaning of the Switch Positions of the Dummy Module DM 370

| Switch Position | Meaning                                                                                                              | Use in an ET 200M Setup with Active Bus Modules (Pull and Plug)                                                                                                               |
|-----------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NA A            | Dummy module reserves the slot<br>for an interface module (NA = No<br>Address, that is no address<br>space reserved) | No                                                                                                                                                                            |
| NA A            | Dummy module reserves the slot<br>for a signal module (A =<br>Address, that is address space<br>reserved)            | Dummy module reserves the slot for a signal module. If you use the dummy module for an "empty slot", you must configure the "empty slot" with 0 bytes input/output addresses. |

### **Technical Specifications**

The following table lists the technical specifications for the dummy module DM 370.

| Dimensions and Weight              |                |
|------------------------------------|----------------|
| Dimensions W $\times$ H $\times$ D | 40 × 125 × 120 |
| Weight                             | approx. 180 g  |
| Voltages, Currents, Potentials     |                |
| Current drawn from backplane bus   | approx. 5 mA   |
| Power loss                         | typ. 0.03 W    |

## 5.3 SM 338 POS Input Module

#### **Order Number**

6ES7 338-4BC00-0AB0

#### Characteristics

The SM 338 POS input module is characterized by the following features:

- The SM 338 POS input module is an interface between up to three absolute position encoders (SSIs) and the CPU of SIMATIC S7.
- You edit the encoder values obtained by the SM 338 in your STEP 7 program.
- You can respond directly in your process to encoder values in moving systems.

#### **How the SM 338 POS Input Module Works**

The SM 338 POS input module makes available the SSI position encoder status in the process input range to the CPU. It is also possible to freeze the SSI position encoder statuses via two module-specific digital inputs. This freeze function makes it possible to provide a solution for other time-critical position detection applications.

#### Supported Encoder Types

The following encoder types are supported:

- · The absolute position encoder (SSI) with 13 bits
- The absolute position encoder (SSI) with 21 bits
- The absolute position encoder (SSI) with 25 bits

#### **Data Formats**

The data formats supported are gray code and binary code.

#### **Parameterization**

You parameterize the SM 338 with HWConfig in STEP 7 (as of Version 4.1).

### 5.3.1 Connection Diagram

#### Wiring Rules

- The ground of the encoder supply must be connected to the ground of the CPU (non-isolated). In other words, pin 2 (M) of the SM 338 must be connected to the ground of the CPU with low impedance.
- The encoder lines (pins 3 to 14) must be shielded, twisted-pair cables. The shield must be supported at both ends. To support the shield at the SM 338, use the shield supporting element (order number 6ES7 390-5AA00-0AA0).
- If you exceed the maximum output current (900 mA) of the encoder supply, you must connect an external power supply.

#### **Connection Diagram**



#### **5.3.2** How the SM 338 Works

The SM 338 captures the signals of up to three connected encoders cyclically.

The principle is illustrated here using the example of an encoder input. A 25-bit encoder may be connected to the input, for example.

The following steps are relevant:



#### **Standardization**

Standardization allows you to choose whether:

- trailing, irrelevant bits remain in the encoder value; or
- · these bits are excluded.

#### Note

If you are using an absolute position encoder that transmits additional information in the trailing bits (see the manufacturer's information) and you want to evaluate this information, you must take this into account at standardization by specifying the positions. You will find more information in the online help system and Section 5.3.4.

### **Example: Standardization**

You are using a single-turn encoder with  $2^9$  steps = 512 steps per revolution (resolution/360°) with the following parameterization:

- Encoder type: 13-bit
- Standardization: 4 positions

Before standardization: cyclically captured encoder value 100



Result: Bits 0 to 3 (4 positions marked "x") are excluded

#### 5.3.3 Freeze Function

The freeze function "freezes" the module's current encoder values. A frozen encoder value is indicated by bit 31 being set (output range). The encoder value is retained until the freeze function is terminated. The evaluation of the encoder values can thus be event-dependent.

#### **Prerequisite for Using the Freeze Function**

The freeze function must be enabled and linked to the I0 and/or I1 digital inputs.

During parameterization you specify which I0/I1 digital inputs freeze the encoder values.

With one digital input you can freeze one, two or three encoder values.

### **Terminating the Freeze State**

The freeze state must be terminated separately for each encoder input. When the user program acknowledges the transfer of the encoder value, bit 31 is deleted and the encoder values are updated again.

You write the acknowledgment in the output address of the module with a set acknowledgment bit by directly accessing the SM 338 (T PAB "xyz").

Freezing is possible again as soon as you have deleted the acknowledgment bit in the module's output address.

## **Example: Accessing Encoder Values**

You want to read and evaluate the value of the encoder at the encoder inputs. The initial module address is 256.

| STL |     |       | Explanation                                |
|-----|-----|-------|--------------------------------------------|
| L   | PED | 256   | The encoder value in the address area for  |
|     |     |       | encoder input 0 is read.                   |
| T   | MD  | 100   | The encoder value is stored in the memory  |
|     |     |       | double word.                               |
| υ   | M   | 100.7 | The freeze status is determined and stored |
| =   | M   | 99.0  | for subsequent acknowledgment.             |
| L   | PED | 260   | The encoder value in the address area for  |
|     |     |       | encoder input 1 is read.                   |
| T   | MD  | 104   | The encoder value is stored in the memory  |
|     |     |       | double word.                               |
| υ   | M   | 104.7 | The freeze status is determined and stored |
| =   | M   | 99.1  | for subsequent acknowledgment.             |
| L   | PED | 264   | The encoder value in the address area for  |
|     |     |       | encoder input 2 is read.                   |
| T   | MD  | 108   | The encoder value is stored in the memory  |
|     |     |       | double word.                               |
| υ   | M   | 108.7 | The freeze status is determined and stored |
| =   | M   | 99.2  | for subsequent acknowledgment.             |
| L   | MB  | 99    | The freeze status is loaded and            |
| T   | PAB | 256   | acknowledged (SM 338: output address 256)  |

Afterwards you can further process the encoder values from the bit memory address area MD 100, MD 104 and MD 108.

The encoder value is in bits 0 to 30 of the memory double word.

### 5.3.4 Parameterization

You parameterize the SM 338 with HWConfig in STEP 7 (as of Version 4.1). Reparameterization using the user program is not possible.

#### Parameters of the SM 338

You enter the following parameters in STEP 7. Note also the information in the online help system.

| Parameter (per chan-<br>nel) | Values                                                | Note                                                                                                                                                                                              |
|------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diagnostic Interrupt         | Yes; <b>No</b> <sup>2</sup>                           |                                                                                                                                                                                                   |
| Absolute Encoder (SSI)       | None; <b>13-bit</b> <sup>2</sup> ; 21-bit; 25-bit     | None means the encoder input is disabled.                                                                                                                                                         |
| Code Type                    | Gray; Binary                                          |                                                                                                                                                                                                   |
| Transmission Rate            | <b>125 kHz</b> <sup>2</sup> ; 250 kHz; 500 kHz; 1 MHz | Note that the transmission rate and monoflop time affect the accuracy and currency of the encoder values.                                                                                         |
| Monoflop Time <sup>1</sup>   | 16 μs; 32 μs; 48 μs; <b>64 μs</b> <sup>2</sup>        | See the technical specifications of the manufacturer.                                                                                                                                             |
| Standardization              | <b>0</b> <sup>2</sup> to 12 Positions                 |                                                                                                                                                                                                   |
| Enable Freeze                | Off <sup>2</sup> ; I0; I1                             | Off: The encoder value cannot be frozen.                                                                                                                                                          |
|                              |                                                       | I0; I1: You specify the digital input whose positive edge is to "freeze" the value at the respective encoder input 0,1 or 2. You can also "freeze" all the encoder values with one digital input. |

The monoflop time is the length of time between 2 SSI frames. The parameterized monoflop time must be greater than the monoflop time of the absolute encoder (see the technical specifications of the manufacturer). You have to add the time 2×(1/transmission rate) to the specified values.

<sup>&</sup>lt;sup>2</sup> Default setting for all 3 encoder inputs.

### 5.3.5 Data Handling

The values of the encoders are stored in the data area as of the initial module address. They can be read from there using the command (L PED "xyz").

#### **Data Areas for the Encoder Values**

The inputs and outputs of the module are both addressed as of the initial module address.

You determine the input address and output address during configuration of the SM 338. Read about this in the online help system.

#### **Input Addresses**

| Encoder Input | Input Address (from Configuration) + Address Offset |  |
|---------------|-----------------------------------------------------|--|
| 0             | "Initial module address"                            |  |
| 1             | "Initial module address" + 4 bytes address offset   |  |
| 2             | "Initial module address" + 8 bytes address offset   |  |

#### Structure of the Data Double Word

The data double word is structured as follows at each encoder input:



 $\mathbf{0} = \mathbf{e}$ ncoder value is not frozen. The value is continuously updated.

1 = encoder value is frozen. The value remains the same until acknowledgment.

#### **Output Address**



## 5.3.6 Diagnostic Messages of the SM 338

In the event of a diagnostic interrupt, the SM 338 makes information available to the user in the diagnostic area. The area is subdivided into diagnostic data part 1 (module diagnosis, bytes 0 to 3) and part 2 (channel diagnosis, bytes 4 to 15). The diagnostic messages are generated even when you have not enabled diagnostics.

The module diagnosis is available after a diagnostic interrupt in the CPU (interrupt OB, OB 82). The channel diagnostic information must be read using the SFC 51 "RDSYSST" with SZL\_ID :=W#16#B3. See the *System and Standard Functions* Reference Manual.

All the relevant bytes and bits are listed in the tables below.

### **Group Error LED (SF)**

The group error LED (red) comes on:

- When there is a problem with a module
- At start-up during the self-test of the SM 338 (for a short time)

### **Module Diagnosis**

| Byte | Bit    | Meaning                         | Explanation                                                            |
|------|--------|---------------------------------|------------------------------------------------------------------------|
| 0    | 0      | Module problem                  | The bit is always set when a malfunction occurs.                       |
|      | 1      | Internal malfunc-<br>tion       | An internal malfunction or internal channel malfunction has occurred.  |
|      | 2      | External malfunction            | An external malfunction or external channel malfunction has occurred.  |
|      | 3      | Channel malfunction             | An internal or external channel malfunction has occurred.              |
|      | 4      | External auxiliary              | Cause: missing connection, undervoltage, ground wire break             |
|      |        | supply missing                  | Effect: diagnostic interrupt, no cyclical capture, encoder malfunction |
|      |        |                                 | Remedy: Ensure the 24V connection is correct.                          |
|      | 6      | Module not para-<br>meterized.  | Parameterize the module.                                               |
|      | 7      | Parameterization error          | Check the parameterization.                                            |
| 1    | 0 to 3 | Module category: 5 <sub>H</sub> |                                                                        |
|      | 4      | Channel information             | This bit is always set.                                                |
| 2    | 3      | Watchdog                        | Internal time monitoring is activated.                                 |

## **Channel Diagnosis (Diagnosis of the Encoder Inputs)**

| Byte | Bit | Meaning                                   | Explanation                                                                                          |  |
|------|-----|-------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| 4    |     | Channel type                              | The SM 338 is of the type SM POS-INPUT: 79 <sub>H.</sub>                                             |  |
| 5    |     | Length of the diag-<br>nostic information | The length of the diagnostic information is 8 diagnostic bits per channel.                           |  |
| 6    |     | Number of chan-<br>nels                   | Number of subsequent channels of the same type: 3                                                    |  |
| 7    | 0   | Channel malfunc-                          | Channel 0                                                                                            |  |
|      | 1   | tion                                      | Channel 1                                                                                            |  |
|      | 2   |                                           | Channel 2                                                                                            |  |
| 8    | 0   | POS-INPUT 0 indi-<br>vidual error         | POS-INPUT configuration or parameterization error (internal channel malfunction)                     |  |
|      | 1   |                                           | POS-INPUT encoder malfunction (external channel malfunction)                                         |  |
|      |     |                                           | Cause: wire break of the encoder cable, encoder cable not connected, encoder defective, interference |  |
|      |     |                                           | Effect: diagnostic message                                                                           |  |
|      |     |                                           | Remedy: Check the connected encoder.                                                                 |  |
| 9    | 0   | POS-INPUT 1 indi-                         | See byte 8.                                                                                          |  |
|      | 1   | vidual error                              |                                                                                                      |  |
| 10   | 0   | POS-INPUT 2 indi-                         | See byte 8.                                                                                          |  |
|      | 1   | vidual error                              |                                                                                                      |  |

## 5.3.7 Technical Specifications

| Dimensions and Weight                                                    |                                                                                                                        |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| Dimensions W x H x D (mm)                                                | 40×125×120                                                                                                             |  |
| Weight                                                                   | Approx. 235 g                                                                                                          |  |
| Voltages, Currents, Poten                                                | tials                                                                                                                  |  |
| Rated load voltage L+                                                    | DC 24V                                                                                                                 |  |
| Range                                                                    | 20.4 28.8V                                                                                                             |  |
| Reversed polarity protection                                             | No                                                                                                                     |  |
| Optical isolation                                                        | No, only from shield                                                                                                   |  |
| Permissible potential difference                                         |                                                                                                                        |  |
| Between input (M terminal) and centralized ground point of the CPU       | DC 1V                                                                                                                  |  |
| Encoder supply                                                           | 1 . 0.01/                                                                                                              |  |
| Output voltage                                                           | L+ -0.8V<br>Max. 900 mA short                                                                                          |  |
| Output current                                                           | circuit-proof                                                                                                          |  |
| Power input                                                              |                                                                                                                        |  |
| <ul> <li>From backplane bus</li> </ul>                                   | Max. 160 mA                                                                                                            |  |
| From load voltage L+     (without load)                                  | Max. 10 mA                                                                                                             |  |
| Power loss of the module                                                 | Typically 3W                                                                                                           |  |
| Encoder Inputs POS-INPUT 0 to 2                                          |                                                                                                                        |  |
| Position detection                                                       | Absolute                                                                                                               |  |
| Data transmission rate and line length with absolute encoders (shielded) | <ul> <li>125 kHz max. 320 m</li> <li>250 kHz max. 160 m</li> <li>500 kHz max. 60 m</li> <li>1 MHz max. 20 m</li> </ul> |  |
| Digital Inputs I0, I1                                                    |                                                                                                                        |  |
| Optical isolation                                                        | No, only from shield                                                                                                   |  |
| Input voltage                                                            | 0 signal: -3V 5V<br>1 signal: 11V 30.2V                                                                                |  |
| Input current                                                            | 0 signal: ≤2 mA<br>(closed-circuit current)<br>1 signal: 9 mA (typically)                                              |  |
| Input delay                                                              | 0 > 1: max. 300 μs<br>1 > 0: max. 300 μs                                                                               |  |
| Maximum repetition frequency                                             | 1 kHz                                                                                                                  |  |
| Connection of a two-wire BERO type 2                                     | Possible                                                                                                               |  |
| Shielded line length                                                     | 600 m                                                                                                                  |  |
| Unshielded line length                                                   | 32 m                                                                                                                   |  |

| Status, Interrupts, Diagnos              | stics                                                 |  |  |
|------------------------------------------|-------------------------------------------------------|--|--|
| Interrupts                               | Parameterizable                                       |  |  |
| <ul> <li>Diagnostic interrupt</li> </ul> | Farametenzable                                        |  |  |
| Status indication for digital inputs     | LED (green)                                           |  |  |
| Group error                              | LED (red)                                             |  |  |
| Unsharpness of the Measu                 | red Value                                             |  |  |
| Minimum unsharpness <sup>1.</sup>        | Frame time + 130 μs                                   |  |  |
| Maximum unsharpness <sup>1.</sup>        | (2 $\times$ frame time) + monoflop time + 600 $\mu s$ |  |  |
| Frame time of the encoders               | 13-bit 21-bit 25-bit                                  |  |  |
| • 125 kHz                                | 112 μs 176 μs 208 μs                                  |  |  |
| • 250 kHz                                | 56 μs 88 μs 104 μs                                    |  |  |
| • 500 kHz                                | 28 μs 44 μs 52 μs                                     |  |  |
| • 1 MHz                                  | 14 μs 22 μs 26 μs                                     |  |  |
| Monoflop time <sup>2</sup>               | 16 μs, 32 μs, 48 μs, 64 μs                            |  |  |
| Update rate                              | Evaluation of the frame every 450 μs                  |  |  |

- Age of the encoder values determined by the method of transmission and the processing
- $^2$   $\,$  Encoder with a monoflop time greater than 64  $\mu s$  cannot be used with the SM 338. You have to add the time  $2\times (\mbox{1/transmission rate})$  to the specified values.

### 5.3.8 Configuration and Parameter Assignment Frame

#### **Identifier for the Configuration Frame**

| Order Number: 6ES7 | Byte 0 | Byte 1 | Byte 2 | Byte 4 | Byte 5 |
|--------------------|--------|--------|--------|--------|--------|
| 338-4BC00-0AB0     | C2     | 8F     | 00     | 05     | CD     |

#### Structure of Data Record 0 for the Parameter Assignment Frame

The parameters of the SM 338 in data record 0 are shown below:



Interface Modules 6

#### **Interface Modules**

In this chapter you will find the technical specifications and characteristic features of the interface modules for the S7-300.

#### **Contents**

The following interface modules are described in this chapter:

| Section | Contents                | Page |
|---------|-------------------------|------|
| 6.1     | Interface Module IM 360 | 6-2  |
| 6.2     | Interface Module IM 361 | 6-4  |
| 6.3     | Interface Module IM 365 | 6-6  |

### 6.1 Interface Module IM 360

#### Order No.

6ES7 360-3AA01-0AA0

#### **Characteristics**

The interface module IM 360 has the following characteristic features:

- Interface for rack 0 of the S7-300
- Data transfer from IM 360 to IM 361 over the connecting cable 368
- Maximum distance between IM 360 and IM 361 is 10 m (32.8 ft.)

#### **Status and Fault LEDs**

The interface module IM 360 has the following status and fault LEDs.

| LED | Meaning           | Explanation                                                                                                         |
|-----|-------------------|---------------------------------------------------------------------------------------------------------------------|
| SF  | Group error/fault | <ul> <li>The LED lights up if</li> <li>the connecting cable is missing.</li> <li>IM 361 is switched off.</li> </ul> |

### **Front View**

Figure 6-1 shows the front view of the interface module IM 360.



Figure 6-1 Front View of the Interface Module IM 360

## **Technical Specifications**

The following overview lists the technical specifications for the interface module IM 360.

| Dimensions and Weigh                                                                         | Dimensions and Weight                                          |  |  |  |  |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|
| $\begin{array}{c} \text{Dimensions} \\ \text{W} \times \text{H} \times \text{D} \end{array}$ | $40 \times 125 \times 120 \text{ mm}$ (1.56 × 4.88 × 4.68 in.) |  |  |  |  |
| Weight                                                                                       | approx. 250 g                                                  |  |  |  |  |
| Module-Specific Data                                                                         |                                                                |  |  |  |  |
| Cable length                                                                                 |                                                                |  |  |  |  |
| Maximum length to<br>next IM                                                                 | 10 m (32.8 ft.)                                                |  |  |  |  |
| Current drawn                                                                                |                                                                |  |  |  |  |
| from backplane bus                                                                           | 350 mA                                                         |  |  |  |  |
| Power loss                                                                                   | typ. 2 W                                                       |  |  |  |  |
| Status and fault LEDs                                                                        | Yes                                                            |  |  |  |  |

### 6.2 Interface Module IM 361

#### Order No.

6ES7 361 3CA01-0AA0

#### **Characteristics**

The interface module IM 361 has the following characteristic features:

- 24 VDC power supply
- Interface for racks 1 to 3 of the S7-300
- Current output via the S7-300 backplane bus max. 0.8 A
- Data transfer from the IM 360 to the IM 361 or from the IM 361 to the IM 361 via connecting cable 368
- Maximum distance between IM 360 and IM 361 is 10 m (32.8 ft.)
- Maximum distance between IM 361 and IM 361 is 10 m (32.8 ft.)

#### Status and Fault LEDs

The interface module IM 361 has the following status and fault LEDs.

| LED   | Meaning                                   | Explanation                                                         |  |  |
|-------|-------------------------------------------|---------------------------------------------------------------------|--|--|
| SF    | Group error/fault                         | The LED flashes, if                                                 |  |  |
|       |                                           | <ul> <li>the connecting cable is<br/>missing</li> </ul>             |  |  |
|       |                                           | <ul> <li>the series-connected<br/>IM 361 is switched off</li> </ul> |  |  |
|       |                                           | <ul> <li>the CPU is in the<br/>POWER OFF state</li> </ul>           |  |  |
| 5 VDC | 5 VDC supply for the S7-300 backplane bus | -                                                                   |  |  |

#### **Front View**

Figure 6-2 shows the front view of the interface module IM 361.



Figure 6-2 Front View of the Interface Module IM 361

### **Technical Specifications**

The following overview lists the technical specifications for the interface module IM 361.

| Dimensions and Weight        |                                                                |  |  |  |
|------------------------------|----------------------------------------------------------------|--|--|--|
| Dimensions W × H × D         | $80 \times 125 \times 120 \text{ mm}$ (3.12 × 4.88 × 4.68 in.) |  |  |  |
| Weight                       | 505 g (17.68 oz.)                                              |  |  |  |
| Module-Specific Data         |                                                                |  |  |  |
| Cable length                 |                                                                |  |  |  |
| Maximum length to<br>next IM | 10 m (32.8 ft.)                                                |  |  |  |
| Current drawn                |                                                                |  |  |  |
| • from 24 VDC                | 0.5 A                                                          |  |  |  |
| Power loss                   | typ. 5 W                                                       |  |  |  |
| Current output               |                                                                |  |  |  |
| to backplane bus             | 0.8 A                                                          |  |  |  |
| Status and fault LEDs        | Yes                                                            |  |  |  |

### 6.3 Interface Module IM 365

#### Order No.

6ES7 365-0BA01-0AA0

#### **Characteristics**

The interface module IM 365 has the following characteristic features:

- Pre-assembled pair of modules for rack 0 and rack 1
- Total power supply of 1.2 A, of which up to 0.8 A can be used per rack.
- Connecting cable with a length of 1 m (3.28 ft.) already permanently connected
- Install only signal modules in rack 1
- IM 365 does **not** route the communication bus to subrack 1

#### **Front View**

Figure 6-3 shows the front view of the interface module IM 365.



Figure 6-3 Front View of the Interface Module IM 365

## **Technical Specifications**

The following overview lists the technical specifications for the interface module IM 365.

| Dimensions and Weight                  |                  |  |  |  |
|----------------------------------------|------------------|--|--|--|
|                                        | 40 × 125 × 120   |  |  |  |
| Total weight                           | 580 g (20.3 oz.) |  |  |  |
| Module-Specific Data                   |                  |  |  |  |
| Cable length                           |                  |  |  |  |
| Maximum length to<br>next IM           | 1 m (3.28 ft.)   |  |  |  |
| Current drawn                          |                  |  |  |  |
| <ul> <li>from backplane bus</li> </ul> | 100 mA           |  |  |  |
| Power loss                             | typ. 0.5 W       |  |  |  |
| Current output                         | max. 1.2 A       |  |  |  |
| • per rack                             | 0.8 A            |  |  |  |
| Status and fault LEDs                  | No               |  |  |  |

RS 485 Repeater

## In this Chapter

In this chapter, you will find a detailed description of the RS 485 repeater.

Included in the description are:

- The purpose of the RS 485 repeater
- The maximum cable lengths possible between two RS 485 repeaters
- The functions of the individual operating elements and terminals
- Information about grounded and non-grounded operation
- · Technical specifications and the block diagram

#### **Further Information**

You will find further information on the RS 485 repeater in the manuals *Hardware* and *Installation* in the Chapter "Configuring of an MPI or PROFIBUS-DP network".

#### **Contents**

This chapter includes the following sections on the RS 485 repeater:

| Section | Contents                   | Page |
|---------|----------------------------|------|
| 7.1     | Application and Properties | 7-2  |
| 7.2     | Technical Specification    | 7-5  |

## 7.1 Application and Properties

#### Order No.

6ES7 972-0AA00-0XA0

#### What is an RS 485 Repeater?

The RS 485 repeater amplifies data signals on bus lines and interconnects bus segments.

#### **Application of the RS 485 Repeater**

You need an RS 485 repeater if:

- more than 32 nodes are connected to the bus
- · bus segments are to be operated non-grounded on the bus, or
- the maximum cable length of a segment is exceeded.

Table 7-1 Maximum Cable Length of a Segment

| Baud Rate             | Max. Cable Length of a Segment (in m) |
|-----------------------|---------------------------------------|
| 9.6 to 187.5<br>kbaud | 1000                                  |
| 500 kbaud             | 400                                   |
| 1.5 Mbaud             | 200                                   |
| 3 to 12 Mbaud         | 100                                   |

#### Rules

If you configure the bus with RS 485 repeaters:

- Up to 9 RS 485 repeaters can be connected in series.
- The maximum cable length between two nodes must not exceed the values in Table 7-2.

Table 7-2 Maximum Cable Length between Two RS 485 Repeaters

| Baud Rate             | Max. Cable Length between 2 Nodes with RS 485 Repeaters (in m) (6ES7 972-0AA00-0XA0) |
|-----------------------|--------------------------------------------------------------------------------------|
| 9.6 to 187.5<br>kbaud | 10000                                                                                |
| 500 kbaud             | 4000                                                                                 |

Table 7-2 Maximum Cable Length between Two RS 485 Repeaters

| Baud Rate     | Max. Cable Length between 2 Nodes with RS 485 Repeaters (in m) (6ES7 972-0AA00-0XA0) |  |  |  |
|---------------|--------------------------------------------------------------------------------------|--|--|--|
| 1.5 Mbaud     | 2000                                                                                 |  |  |  |
| 3 to 12 Mbaud | 1000                                                                                 |  |  |  |

### Design of the RS 485 Repeater

Table 7-3 shows the RS 485 repeater:

Table 7-3 Description and Functions of the RS 485 Repeater (Order Number 6ES7 972-0AA00-0XA0)

| Repeater Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Repeater Design No. Function                         |                                                                                                                                                                                                                                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DC 24 V L+ M PE M 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                    | Connection for the RS 485 repeater power supply (pin "M5.2" is the ground reference, if you want to measure the voltage difference between terminals "A2" and "B2").                                                                        |  |
| A B A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                    | Shield clamp for the strain relief and grounding of the bus cable of bus segment 1 or bus segment 2                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                    | Terminals for the bus cable of bus segment 1                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                    | Terminating resistance for bus segment 1                                                                                                                                                                                                    |  |
| 9 ON A GO ON | \$                                                   | Switch for baud rate. The various positions have the following meaning:  0: bus segments separated from each other 5: 500 kbaud  1: 9.6 kbaud 6: 1.5 Mbaud  2: 19.2 kbaud 7: 3 Mbaud  3: 93.75 kbaud 8: 6 Mbaud  4: 187.5 kbaud 9: 12 Mbaud |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                    | Terminating resistance for bus segment 2                                                                                                                                                                                                    |  |
| A B A B 2 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | Terminals for the bus cable of bus segment 2                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | Slide for mounting and removing the RS 485 repeater on the standard rail                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Interface for programming device/OP in bus segment 1 |                                                                                                                                                                                                                                             |  |

### **Grounded or Ungrounded**

The RS 485 repeater is

- grounded, if all other nodes in the segment are also operated with a grounded potential
- ungrounded, if all other nodes in the segment are operated with an ungrounded potential

#### Note

The bus segment 1 is grounded if you connect a programming device to the PG/OP socket of the RS 485 repeater. Ground connection is effected since the MPI in the programming device is grounded and the PG/OP socket is connected internally with bus segment 1 in the RS 485 repeater.

#### **Grounded Operation of the RS 485 Repeater**

You must not remove the jumper at the top side of the RS 485 repeater if you wish to operate the RS 485 repeater in a grounded configuration.

#### **Galvanic Isolation between Bus Segments**

Bus segment 1 and bus segment 2 are galvanically isolated from each other. The PG/OP interface is connected internally to the port for bus segment 1. Figure 7-1 shows the front panel of the RS 485 repeater.



Figure 7-1 RS 485 Repeater

#### **Amplification of the Bus Signals**

The amplification of the bus signals takes place between the port for bus segment 1 or the PG/OP interface and the port for bus segment 2.

# 7.2 Technical Specifications

## **Technical Specifications**

Table 7-4 shows the technical specifications of the RS 485 repeater:

Table 7-4 Technical Specifications of the RS 485 Repeater

| Technical Specifications             |                                      |  |
|--------------------------------------|--------------------------------------|--|
| Power supply                         |                                      |  |
| Rated voltage                        | 24 VDC                               |  |
| Ripple                               | 18 VDC to 30 VDC                     |  |
| Current consumption at rated voltage |                                      |  |
| without node at PG/OP socket         | 100 mA                               |  |
| Node at PG/OP socket (5 V/90 mA)     | 130 mA                               |  |
| Node at PG/OP socket (24 V/100 mA)   | 200 mA                               |  |
| Galvanic isolation                   | Yes, 500 VAC                         |  |
| Connection of fiber optic cables     | Yes, via repeater adapters           |  |
| Redundancy operation                 | No                                   |  |
| Baud rate                            | 9.6 Kbaud to 12 Mbaud                |  |
| Degree of protection                 | IP 20                                |  |
| Dimensions W $\times$ H $\times$ D   | 45 × 128 × 67 mm (1.8 x 5 x 2.6 in.) |  |
| Weight (incl. packing)               | 350 g (12.3 oz.)                     |  |

#### Note

For harsh industrial environments, a special RS 485 repeater with degree of protection IP 65 is available; a special RS 485 repeater is also available for redundancy operation.

A detailed description of these RS 485 repeaters is contained in the SINEC L2/L2FO Network Manual.

## Pin Assignment of the Sub D Connector (PG/OP Socket)

The 9-pin sub D connector has the following pin assignment:

Table 7-5 Pin Assignment of the 9-Pin Sub D Connector (PG/OP Socket)

| View                                     | Pin No. | Signal Name | Designation                             |
|------------------------------------------|---------|-------------|-----------------------------------------|
|                                          | 1       | _           | -                                       |
| • 5                                      | 2       | M24V        | Ground 24 V                             |
| • 4 9                                    | 3       | RxD/TxD-P   | Data line B                             |
| 4 • 8                                    | 4       | RTS         | Request To Send                         |
| 3 •                                      | 5       | M5V2        | Data reference potential (from station) |
| $\left  \bullet_{2} \bullet^{7} \right $ | 6       | P5V2        | Supply plus (from station)              |
| • 1 6/                                   | 7       | P24V        | 24 V                                    |
|                                          | 8       | RxD/TxD-N   | Data line A                             |
|                                          | 9       | _           | -                                       |

### **Block Diagram**

Figure 7-2 shows the block diagram of the RS 485 repeater:

- Bus segment 1 and bus segment 2 are galvanically isolated from each other.
- Bus segment 2 and the PG/OP socket are galvanically isolated from each other.
- · Signals are amplified
  - between bus segment 1 and bus segment 2
  - between PG/OP socket and bus segment 2



Figure 7-2 Block Diagram of the RS 485 Repeater

SIMATIC TOP connect

#### Introduction

SIMATIC TOP connect is the name of components used for wiring digital modules.

This type of wiring is an elegant alternative to the conventional way of wiring the actuators and sensors directly at the front connector.

#### **Contents**

In this Chapter the following is described referring to SIMATIC TOP connect:

| Section | Contents                                                    |      |  |
|---------|-------------------------------------------------------------|------|--|
| 8.1     | Application Areas and Components of SIMATIC TOP connect     | 8-2  |  |
| 8.2     | Terminal Assignments for Wiring the Terminal Block          | 8-7  |  |
| 8.3     | Wiring Rules for the Terminal Block and the Front Connector | 8-9  |  |
| 8.4     | Screw-Type Connections or Spring-Loaded Connections         | 8-10 |  |
| 8.5     | Preparing the Connecting Cables                             | 8-11 |  |
| 8.6     | Wiring the Front Connector and the Terminal Block           | 8-13 |  |
| 8.7     | Wiring Digital Modules with SIMATIC TOP connect             | 8-15 |  |

## **Application**

When using SIMATIC TOP connect, you wire actuators and sensors "locally" to one or more terminal blocks. A connecting cable (round-sheath ribbon cable) establishes the connection to the digital module.

#### **Advantages**

Wiring the digital modules using SIMATIC TOP connect has the following advantages:

- Easy plug-on connection of front connector module, connecting cable and terminal
- Fast, low-cost wiring (the use of central terminal blocks is no longer necessary)
- The power supply for the digital module can be wired either to the front connector or to the terminal block
- Multiple terminals for M- and L+ connection
- Wiring errors are drastically reduced and the cabinet wiring is clearly arranged
- · Each component can be replaced separately
- Cable length can be configured without cuttings

## 8.1 Application Areas and Components of SIMATIC TOP Connect

### **Application Areas**

SIMATIC TOP connect is used for wiring the following digital modules:

| With SIMATIC TOP connect | You can Wire the Following Digital Modules |
|--------------------------|--------------------------------------------|
|                          | SM 321; DI 32×24 VDC                       |
|                          | SM 321; DI 16×24 VDC                       |
| SIEMENS   TP3            | SM 321; DI 16×24 VDC; source input         |
|                          | SM 322; DO 32×24 VDC/0.5 A                 |
|                          | SM 322; DO 16×24 VDC/0.5 A                 |
|                          | SM 322; DO 8×24 VDC/0.5 A;                 |
|                          | with diagnostics interrupt                 |
|                          | SM 322; DO 8×24 VDC/2 A                    |
|                          | SM 323; DI 16/DO 16×24 VDC/0.5 A           |
|                          | SM 323; DI 8/DO 8×24 VDC/0.5 A             |

### **SIMATIC TOP Connect and its Components**

A SIMATIC TOP connect always consists of a front connector module with a flat ribbon connection À and one or more terminal blocks Â. The front connector and the terminal block are linked via a connecting cable Á. This cable may be up to 30 m long.



Figure 8-1 SIMATIC TOP connect

## Components

Table 8-1 lists all components of SIMATIC TOP connect.

Table 8-1 Components of SIMATIC TOP connect

| Components                          |                            |                     | Order number        |
|-------------------------------------|----------------------------|---------------------|---------------------|
| Terminal block                      | for 1-conductor connection | spring-loaded       | 6ES7 924-0AA00-0AB0 |
|                                     |                            | screw-type          | 6ES7 924-0AA00-0AA0 |
|                                     | for 1-conductor            | spring-loaded       | 6ES7 924-0AA00-1AB0 |
|                                     | connection (10 items)      | screw-type          | ES7 924-0AA00-1AA0  |
|                                     | for 3-conductor initiators | spring-loaded       | 6ES7 924-0CA00-0AB0 |
|                                     |                            | screw-type          | 6ES7 924-0CA00-0AA0 |
|                                     | for 3-conductor initiators | spring-loaded       | 6ES7 924-0CA00-1AB0 |
|                                     | (10 items)                 | screw-type          | 6ES7 924-0CA00-1AA0 |
|                                     | for 2A modules             | spring-loaded       | 6ES7 924-0BB00-0AB0 |
|                                     |                            | screw-type          | 6ES7 924-0BB00-0AA0 |
|                                     | for 2A modules (10 items)  | spring-loaded       | 6ES7 924-0BB00-1AB0 |
|                                     |                            | screw-type          | 6ES7 924-0BB00-1AA0 |
| Front connector                     | for 32-channel modules     | Power supply via:   |                     |
|                                     | (see Figure 8-2)           | spring-loaded       | 6ES7 921 3AA20-0AA0 |
|                                     | for 16-channel modules     | Power supply via:   |                     |
|                                     |                            | spring-loaded       | 6ES7 921-3AA00-0AA0 |
|                                     |                            | screw-type          | 6ES7 921-3AB00-0AA0 |
|                                     | for 16-channel 2A modules  | Power supply via:   |                     |
|                                     |                            | spring-loaded       | 6ES7 921-3AC00-0AA0 |
|                                     |                            | screw-type          | 6ES7 921-3AD00-0AA0 |
| Connector, 8 items (crimped)        |                            | 6ES7 921-3BE10-0AA0 |                     |
| Round-sheath ribbon cables          | unshielded                 | 30 m                | 6ES7 923-0CD00-0AA0 |
|                                     |                            | 60 m                | 6ES7 923-0CG00-0AA0 |
|                                     | shielded                   | 30 m                | 6ES7 923-0CD00-0BA0 |
|                                     |                            | 60 m                | 6ES7 923-0CG00-0BA0 |
| Crimping tool for connectors 16-pin |                            | 6ES7 928-0AA00-0AA0 |                     |

#### **Front Connector for 32-Channel Modules**

Figure 8-2 shows the front view of the front connector for 32-channel modules. The terminals for the supply voltage are spring-loaded (see also Section 8.4). Table 8-2 indicates the assignment of the flat ribbon cable terminals to the channels of the signal modules via the address assignment.



Figure 8-2 Front Connector for 32-Channel Module

Table 8-2 Assignment of the Round-Sheath Ribbon Cable Terminals to the Address Bytes of the 32-Channel Modules

| Flat Ribbon<br>Terminal           | Address Assignment for |                          |                                |  |
|-----------------------------------|------------------------|--------------------------|--------------------------------|--|
| (Assignment<br>See<br>Figure 8-2) | Digital Input Module   | Digital Output<br>Module | Digital Input/Output<br>Module |  |
| 0                                 | IB x                   | QB x                     | IB x                           |  |
| 2                                 | IB (x+1)               | QB (x+1)                 | IB (x+1)                       |  |
| 8                                 | IB (x+2)               | QB (x+2)                 | QB x                           |  |
| •                                 | IB (x+3)               | QB (x+3)                 | QB (x+1)                       |  |

#### **Selection Table**

The following selection table shows to which SIMATIC TOP connect components the digital modules can be wired. Please observe the Notes for Connection in Section 8.7.

Table 8-3 Selection Table for SIMATIC TOP Connect Components

| Digital Modules                                               | Terminal Block                   |                                  |                   | Front Connector                 |                   |
|---------------------------------------------------------------|----------------------------------|----------------------------------|-------------------|---------------------------------|-------------------|
|                                                               | for<br>1-conductor<br>connection | for<br>3-conductor<br>connection | for 2A<br>modules | for SM:<br>16 or 32<br>channels | for 2A<br>modules |
| SM 321; DI16 × 24 VDC                                         | Х                                | Х                                |                   | Х                               |                   |
| SM 321; DI16 × 24 VDC; source input                           | Х                                | Х                                |                   | Х                               |                   |
| SM 322; DO32 × 24 VDC/0.5 V                                   | Х                                | Х                                | _                 | Х                               | -                 |
| SM 322; DO16 $\times$ DC VDC/0.5 V                            | Х                                | Х                                |                   | Х                               |                   |
| SM 322; DO8 $\times$ 24 VDC/0.5 V; with diagnostics interrupt | Х                                | Х                                |                   | Х                               |                   |
| SM 322; DO8 × 24 VDC/2 A                                      |                                  |                                  | Х                 |                                 | Х                 |
| SM323; DI 16/DO16×24 VDC/<br>0.5 A                            | Х                                | Х                                | -                 | Х                               | _                 |
| SM 323; DI 8/DO 8 × 24 VDC/0.5<br>A                           | Х                                | Х                                |                   | Х                               |                   |

## 8.2 Terminal Assignments for Wiring the Terminal Block

#### Introduction

The terminal assignments are described in this section.

#### **Terminal Assignment of Digital Modules**

The description of the bit address is printed in the top tier of the terminal block.

#### **Terminal Block for 3-Conductor Initiators**

Table 8-4 shows the terminal assignments of the 3-conductor initiators.

Table 8-4 Terminal Assignments of the Terminal Block for 3-Conductor Initiators

| Front View of Terminal Block             | Assignments of the Terminals                             |
|------------------------------------------|----------------------------------------------------------|
| SIEMENS TP3                              | Top tier: Terminal 0 through 7:Inputs/outputs x.0 to x.7 |
|                                          | Middle tier: All terminals: M potential                  |
| L+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Bottom tier: All terminals: L + potential                |

#### **Terminal Block for 2A Modules**

Table 8-5 shows the terminal assignments of 2A modules.

Table 8-5 Terminal Assignments of the Terminal Block for 2A Modules

| Front View of Terminal<br>Block | Assignments of the<br>Terminals (left)                                                                        | Assignments of the<br>Terminals (right)                                                                                     |
|---------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                 | Top tier: Terminal 0 through 3: Outputs x.0 to x.3 Middle tier: Terminal 0 through 3: M1 potential for x.0 to | Top tier, right: Terminal 0 through 3: Outputs x.4 to x.7 Middle tier, right: Terminal 0 through 3: M2 potential for x.4 to |
| M1 M2 1                         | x.3  Bottom tier: 2 terminals connection for M1                                                               | x.7  Bottom tier: 2 terminals connection for M2                                                                             |

#### **Terminal Block for 1-Conductor Connection**

Table 8-6 shows the terminal assignments of the terminal block for 1-conductor connection.

Table 8-6 Terminal Assignments of the Terminal Block for 1-Conductor Connection

| Front View of Terminal Block | Assignment of the Terminals                               |
|------------------------------|-----------------------------------------------------------|
| SIEMENS  0 1 2 3 4 5 6 7     | Top tier: Terminal 0 through 7: Inputs/outputs x.0 to x.7 |

## 8.3 Wiring Rules for the Terminal Block and the Front Connector

## **Rules for Wiring**

The following table tells you which rules you have to observe when wiring the terminal blocks and the front connectors (power supply).

| Rules for                                                                                                   | Terminal Block                                        |                          | Front Connector SIMATIC TOP connect |                                 |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------|-------------------------------------|---------------------------------|
|                                                                                                             | Spring-loaded<br>Connection                           | Screw-type<br>Connection |                                     | tion for<br>I Supply            |
|                                                                                                             |                                                       |                          | Up to 4<br>Terminals                | Up to 8<br>Terminals            |
| Conductor cross-sectional areas:                                                                            |                                                       |                          |                                     |                                 |
| Solid conductors                                                                                            | N                                                     | lo                       | No                                  | No                              |
| Stranded conductors                                                                                         |                                                       | •                        |                                     |                                 |
| without end ferrules                                                                                        | 0.25 to 7                                             | 1.5 mm <sup>2</sup>      | 0.25 to<br>1.5 mm <sup>2</sup>      | 0.25 to<br>0.75 mm <sup>2</sup> |
| with end ferrules                                                                                           | 0.25 to <sup>-</sup>                                  | 1.5 mm <sup>2</sup>      | 0.25 to<br>1.5 mm <sup>2</sup>      | 0.25 to<br>0.75 mm <sup>2</sup> |
| Number of conductors per connection                                                                         | 1 or combination of 2                                 | conductors up to 1.5 mm  | <sup>2</sup> (sum) in a co          | ommon end                       |
| Max. diameter of conductor insulation                                                                       | Ø 3. <sup>4</sup>                                     | 1 mm                     | Ø 3.1 mm                            | Ø 2.0 mm                        |
| Length of insulation to be stripped                                                                         |                                                       |                          |                                     |                                 |
| without insulation collar                                                                                   | 11 mm                                                 |                          | 6 r                                 | nm                              |
| with insulation collar                                                                                      | 11 ו                                                  | mm                       | -                                   |                                 |
| <ul><li>End ferrules toDIN 46228</li><li>without insulation collar</li><li>with insulation collar</li></ul> | Model A; up to 12 mm long Model A; up to 12 mm long   |                          | Model A; 5 t                        | o 7 mm long<br>-                |
| - 0.25 to 1.0 mm <sup>2</sup>                                                                               | Model E; up to 12 mm  long  Model E; up to 12 mm long |                          |                                     |                                 |
| - 1.5 mm <sup>2</sup>                                                                                       | Model E; 12 mm long   Model E; 18 mm long             |                          |                                     |                                 |
| Blade width of                                                                                              |                                                       | 3.5 mm (cylindrical mod  | el)                                 |                                 |
| screwdriver                                                                                                 |                                                       |                          |                                     |                                 |
| Tightening torque for connecting the conductors (not for spring-loaded conductors)                          | – 0.4 to                                              |                          | 0.7 Nm                              |                                 |

## 8.4 Screw-Type Connections or Spring-Loaded Connections

#### **Screw-Type or Spring-Loaded Connections**

You can choose between two methods for connecting the signal lines to the terminal block and the power cables to the terminal block or front connector:

- Screw-type connection or
- · Spring-loaded connection

#### Wiring with Spring-Loaded Connections

Wiring with spring-loaded connection enables fast and easy connection of the signal lines and power cables.

You connect the cables as follows to the spring-loaded contacts (see Figure 8-3):

- 1. Use a screwdriver to press the spring-loaded contact in the rectangular opening down and hold it pressed in this position (see Figure 8-4).
- 2. Insert the wire Á into the round opening of the relevant spring-loaded contact.
- 3. Release the pressure of the screwdriver on the spring-loaded contact. The wire is gripped in position by the spring-loaded contact.



#### Caution

The spring-loaded contact will be damaged, if you insert the screwdriver into the opening for the cable.

Make sure that you insert the screwdriver only into the rectangular opening of the terminal block.



Figure 8-3 Terminal Block with Spring-Loaded Connections

#### **Principle of Spring-Loaded Connections**

Figure 8-4 shows the principle of spring-loaded connections.



Figure 8-4 Principle of Spring-Loaded Connections

## 8.5 Preparing the Connecting Cables

#### Introduction

In this section, we will show you how you can preassemble the connecting cable yourself. The maximum distance between the SIMATIC S7 and the terminal blocks can be  $30\ m.$ 

#### **Tools Required**

A crimping tool is required to connect the connector to the round-sheath ribbon cable.

#### **Connecting Cable End to the Connector**

Preassemble the connecting cable as follows:

 Cut the round-sheath ribbon cable to the length required and remove part of the cable sheath at both ends. The length of the cable sheath to be removed is indicated in the following table.

| Cable End to                    | Cable Sheath to be Removed |        |
|---------------------------------|----------------------------|--------|
| Front Connector:                | 20-pin                     | 40-pin |
| upper socket of front connector | 110 mm                     | 115 mm |
| lower socket of front connector | 70 mm                      | 75 mm  |
| socket of terminal block        | 40 mm                      |        |

2. Thread the round-sheath ribbon cable into the 16-pin connector. The positions of the details marked must be strictly observed (see Figure 8-5).



Figure 8-5 Threading the Round-Sheath Ribbon Cable into the Connector

- 3. Press the end of the cable into the connector using the crimping tool.
- 4. Secure the strain relief assembly at the connector of the terminal block.

#### **Securing Strain-Relief Assembly**

A strain-relief assembly only needs to be attached to the plug-in connector of the terminal block. Proceed as follows: Lay the round-sheath ribbon cable back over the connector after pressing in. You can then slide the enclosed strain-relief assembly over the round-sheath ribbon cable and engage it at the plug-in connector.

## 8.6 Wiring the Front Connector and the Terminal Block

#### Introduction

In the following section, you will learn how to wire the connecting cable and the power supply at the front connector and at the terminal block.

#### **Connecting the Cable to the Front Connector**

Wire the front connector as follows (see also Section 8.3).

Table 8-7 Wiring the Front Connector

| Step | 8/16-Channel Digital Modules                                                                            | 32-Channel Digital Modules                                                                                                                                                       |  |
|------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.   | Open the front door.                                                                                    |                                                                                                                                                                                  |  |
| 2.   | Bring the front connector into the wiring position.                                                     |                                                                                                                                                                                  |  |
| 3.   | If required, connect the cables for the power sup                                                       | pply of the digital module.                                                                                                                                                      |  |
|      |                                                                                                         | Observe the assignment of the supply terminals to the flat ribbon terminals (see Figure 8-2).                                                                                    |  |
| 4.   | Plug the round-sheath ribbon cable into the front                                                       | t connector.                                                                                                                                                                     |  |
|      | ing the round-sheath hibbon cable into the front connector.                                             |                                                                                                                                                                                  |  |
| 5.   | Twist the round-sheath ribbon cable downwards by 90 $^{\circ}$ and then by a complete turn if possible. |                                                                                                                                                                                  |  |
| 6.   | _                                                                                                       | Thread a strain relief assembly into the middle of the front connector. This strain relief serves to fix the round-sheath ribbon cable into the tight cable space of the module. |  |
| 7.   | Thread the strain relief assembly into the front connector.                                             |                                                                                                                                                                                  |  |

## **Attaching the Connecting Cable to the Terminal Block**

- 1. Attach the terminal block to a 35 mm standard rail in accordance with EN 50 022.
- 2. Plug the connecting cable into the terminal block (see Figure 8-6).



Figure 8-6 Plugging the Connecting Cable into the Terminal Block

## 8.7 Wiring Digital Modules with SIMATIC TOP Connect

#### Wiring

Three terminal blocks are available for wiring the SIMATIC S7 digital modules with SIMATIC TOP connect. The following notes for connection must be observed for wiring. The connection notes depend on the SIMATIC TOP connect components used. Table 8-3 in Seciton 8.1 will help you with the selection of components.

#### **Connection Notes**

Table 8-8 lists the connection notes for SIMATIC TOP connect with the terminal block for 1-conductor initiators.

Table 8-8 Connection Notes for SIMATIC TOP Connect for 1-Conductor Initiators

| Digital Modules                                        | Connection Notes              |                                                 |                                               |                                           |                                                          |
|--------------------------------------------------------|-------------------------------|-------------------------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------------------------------|
|                                                        | Power supply                  |                                                 |                                               | add.                                      | Descr. on                                                |
|                                                        | at front<br>connector<br>only | add.<br>ground<br>conn. at<br>terminal<br>block | at front<br>connector<br>or terminal<br>block | jumper<br>required<br>for power<br>supply | terminal<br>block not<br>in line with<br>descr. on<br>SM |
| SM 321; DI 32×24 VDC                                   | Х                             | _                                               | _                                             | _                                         | _                                                        |
| SM 321; DI 16×24 VDC                                   | Х                             | _                                               | _                                             | _                                         | _                                                        |
| SM 321; DI 16×24 VDC;                                  | Х                             | -                                               | _                                             | _                                         | _                                                        |
| source input                                           |                               |                                                 |                                               |                                           |                                                          |
| SM 322; DO 32×24 VDC/0.5 A                             | Χ                             | 1                                               | _                                             | -                                         | _                                                        |
| SM 322; DO 16×24 VDC/0.5 A                             | Х                             | _                                               | _                                             | _                                         | _                                                        |
| SM 322; DO 16×24 VDC/0.5 A; with diagnostics interrupt | Х                             | -                                               | _                                             | -                                         | Х                                                        |
| SM 323;                                                | Х                             | _                                               | -                                             | _                                         | _                                                        |
| DI 16/DO 16 × DC 24 V/0.5 A                            |                               |                                                 |                                               |                                           |                                                          |
| SM 323;<br>DI 8/DO 8×24 VDC/0.5 A                      | X                             | 1                                               | _                                             | 1                                         | _                                                        |

#### **Connection to Terminal Block for 1-Conductor Initiators**

In Tables 8-3 and 8-8 you will find the digital modules that can be connected with the terminal block for 1-conductor initiators.

When connecting the supply voltage, note the following: The supply voltage is generally connected to the front connector (see description of the relevant digital ouput module). In the example in Figure 8-7 you must connect L+ at the positive connection of the **upper** terminal and M at the negative connection of the **lower** terminal.

#### Note

With the digital output module SM 322; DO  $8\times24$  VDC/0.5 A; with diagnostics interrupt, the description on the terminal block does not match the description on the digital output group.

Figure 8-7 shows the wiring principle and the connection to the supply voltage:



Figure 8-7 Wiring of a Digital Module with Terminal Block for 1-Conductor Initiators

#### **3-Conductor Initiators**

The connection notes for SIMATIC TOP connect with the terminal block for 3-conductor initiators are listed in Table 8-9.

Table 8-9 Connection Notes for SIMATIC TOP Connect for 3-Conductor Initiators

| Digital Modules                                        | Connection Notes              |                                              |                                               |                                           |                                              |
|--------------------------------------------------------|-------------------------------|----------------------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------------------|
|                                                        | Р                             | Power supply                                 |                                               | add.                                      | Descr. on terminal                           |
|                                                        | at front<br>connector<br>only | add. ground<br>conn. at<br>terminal<br>block | at front<br>connector<br>or terminal<br>block | jumper<br>required<br>for power<br>supply | block not<br>in line with<br>descr. on<br>SM |
| SM 321; DI 32×24 VDC                                   | -                             | -                                            | Х                                             | Х                                         | _                                            |
| SM 321; DI 16×24 VDC                                   | -                             | -                                            | Х                                             | Х                                         | _                                            |
| SM 321; DI 16×24 VDC; source input                     | _                             | _                                            | Х                                             | Х                                         | -                                            |
| SM 322; DO 32×24 VDC/0.5 A                             | _                             | -                                            | Х                                             | _                                         | _                                            |
| SM 322; DO 16×24 VDC/0.5 A                             | _                             | -                                            | Х                                             | _                                         | _                                            |
| SM 322; DO 16×24 VDC/0.5 A; with diagnostics interrupt | -                             | -                                            | Х                                             | Х                                         | Х                                            |
| SM 323;                                                | -                             | -                                            | Х                                             | _                                         | _                                            |
| DI 16/DO 16×24 VDC/0.5 A                               |                               |                                              |                                               |                                           |                                              |
| SM 323;<br>DI 8/DO 8×24 VDC/0.5 A                      | _                             | _                                            | Х                                             | _                                         | _                                            |

#### **Connection to Terminal Block for 3-Conductor Initiators**

Tables 8-3 and 8-9 list the digital modules which can be wired to the terminal block for 3-conductor initiators.

For some digital modules, two jumpers are usually required for connecting the power supply. You can wire the jumpers either in the front connector or in the terminal block. In the front connector, you must connect the two positive and the two negative connections. The same applies if you wire the jumpers at the terminal block.

#### Note

With the digital output module SM 322; DO  $8\times24$  VDC/0.5 A; with diagnostics interrupt, the description on the terminal block does not match the description on the digital output group.

Figure 8-8 shows the wiring principle and the connection of the power supply.



Figure 8-8 Wiring a Digital Module with Terminal Block for 3-Conductor Initiators

#### 2A Modules

Table 8-10 lists the connection notes for SIMATIC TOP connect with the terminal block for the 2A modules. Note that you will also need the front connector for the 2A modules!

Table 8-10 Connection Notes for SIMATIC TOP Connect for 2A Modules

| Digital Modules          |                               | Co                                              | nnection Not                                  | es                                        |                                                          |
|--------------------------|-------------------------------|-------------------------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------------------------------|
|                          | Power supply                  |                                                 | Add.                                          | Descr. on                                 |                                                          |
|                          | at front<br>connector<br>only | add.<br>ground<br>conn. at<br>terminal<br>block | at front<br>connector<br>or terminal<br>block | jumper<br>required<br>for power<br>supply | terminal<br>block not<br>in line with<br>descr. on<br>SM |
| SM 322; DO 16×24 VDC/2 A | Х                             | Х                                               | _                                             | -                                         | _                                                        |

#### **Connection to Terminal Block for 2A Module**

You can use the terminal block for 2A modules to wire the SM 322; 8 × DO 24VDC/2A. Please observe the following when connecting the power supply:

- You must connect the power supply to both potential terminals on the front connector with separate cables.
- In addition to the round-sheath ribbon cable, you must provide each terminal block with a line for M1 or M2. Connect M1 or M2 via a separate line with the front connector and the terminal block. You can jumper the potential of M1 and M2 yourself.

Figure 8-9 shows the principle of wiring and the connection of the power supply:



Figure 8-9 Wiring with Terminal Block for 2A Module

**SIMATIC TOP connect TPA** 

9

#### **Einleitung**

SIMATIC TOP connect TPA are components for wiring analog modules.

They offer an elegant alternative to the conventional way of wiring the actuators and sensors directly at the front connector.

#### **Contents**

This description contains all information necessary to wire S7-300 analog modules with SIMATIC TOP connect TPA.

Additional information concerning the following topics can be found in Chapter 8.

- Setting up an S7–300 with SIMATIC TOP connect
- · Wiring rules
- · Principles of wiring with spring-loaded connections.

#### **Application**

SIMATIC TOP connect TPA enables wiring of the following analog modules:

| With SIMATIC TOP connect                             | You Can Wire the Following Analog Modules                                                                                                        |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| SIEMENS TPA  IABODERGHIM  IABODERGHIM  IYKIKIAAAIAZZ | SM 331; AI 2×12 Bit<br>SM 331; AI 8×12 Bit<br>SM 332; AO 4×12 Bit<br>SM 332; AO2×12 Bit<br>SM 334; AI 4/AO 2×8/8 Bit<br>SM 334; AI 4/AO 2×12 Bit |

## Components

Table 9-1 lists the components for SIMATIC TOP connect TPA

Table 9-1 Components for SIMATIC TOP connect TPA

| Components for TPA                                      |                            |                         | Order Number           |
|---------------------------------------------------------|----------------------------|-------------------------|------------------------|
| Terminal block                                          | Quantity: 1                | Spring-loaded terminals | 6ES7<br>924-0CC00-0AB0 |
|                                                         |                            | Screw-type terminals    | 6ES7<br>924-0CC00-0AA0 |
|                                                         | Quantity: 10               | Spring-loaded terminals | 6ES7<br>924-0CC00-1AB0 |
|                                                         |                            | Screw-type terminals    | 6ES7<br>924-0CC00-1AA0 |
| Front connector                                         |                            | Voltage supply via:     |                        |
|                                                         |                            | Spring-loaded terminals | 6ES7<br>921-3AF00-0AA0 |
|                                                         |                            | Screw-type terminals    | 6ES7<br>921-3AG00-0AA0 |
| 8 connectors (insulation displacement wiring method)    |                            |                         | 6ES7<br>921-3BE10-0AA0 |
| Shielding plate for term                                | inal block; quantity: 4    |                         | 6ES7<br>928-1BA00-0AA0 |
| Terminal element for:                                   |                            |                         |                        |
| 2 cables, each with a sl                                | nield diameter of 2 to 6 m | nm                      | 6ES7<br>390-5AB00-0AA0 |
| 1 cable with a shield dia                               | ameter of 3 to 8 mm        |                         | 6ES7<br>390-5BA00-0AA0 |
| 1 cable with a shield diameter of 4 to 13 mm            |                            |                         | 6ES7<br>390-5CA00-0AA0 |
| Round-sheath ribbon cable, shielded, $\varnothing$ 8 mm |                            | 30 m                    | 6ES7<br>923-0CD00-0BA0 |
|                                                         |                            |                         | 6ES7<br>923-0CG00-0BA0 |
| Crimping tool for 16-pin connector                      |                            | 6ES7<br>928-0AA00-0AA0  |                        |

#### **Terminal Assignments**

On the TPA terminal block, the terminals are identified by letters. This simplifies the allocation of the terminals on the analog module to the terminals on the terminal block.

Figure 9-1 shows the allocation of the terminals on the analog module to those on the terminal block.



Figure 9-1 Allocation of Terminals on Analog Module to Terminals on TPA

## **Multiplier Terminal**

The lower row of terminals on the terminal block consists of 2 x 5 multiplier terminals (see Table 9-2)

Table 9-2 Multiplier Terminals for TPA

| Terminal Assignments                         | Description                                                                                                                                                                                       |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SIEMENS TPA  ABOURGE GHILL  YYMKI KAANANA ZZ | Terminals ②and ③ can be used for multiplying arbitrary potentials and signals.  Terminals that have the same letters are electrically linked to one another, except terminals ②and Z and ④ and Y. |

#### **Load Voltage Supply**

The front connector provides separate pins for load voltage L+ and M. This allows you to connect the analog module's load voltage supply via the front connector.

The front connector and the terminal block may be up to 30 meters apart.

## **Connection Example**

Figure 9-2 shows a sample connection for the SM 321 analog input module SM 321; Al  $8 \times 12$  Bit in "resistance test" mode.



Figure 9-2 Connection Example

#### **Allocation of Front Connector to Terminal Block**

The **upper socket** of the front connector is the connection for **terminal block 1** and the **lower socket** is the connection for **terminal block 2**.

#### **Shield Connection**

The screen for the shielded signal leads can be connected to ground

- · via a shield support on the analog module and
- via the shielding plate on the terminal block.

The shield for the signal leads can be placed directly on the terminal block. To do so, afix a shielding plate to the terminal block prior to installation. Figure 9-3 shows that the shielding plate is at the rear of the terminal block, thus providing a connection to the grounded mounting rail. Connect the shield for the signal leads to the shielding plate via the terminal elements.

This method of shield connection is described in Chapter 6 of the manual entitled *S7–300 Hardware and Installation* as well as in Chapter 5 of the manual entitled *ET 200M Distributed I/O Device*.

Figure 9-3 shows a schematic sketch of the terminal block with shielding plate.



Figure 9-3 TPA Terminal Block with Shielding Plate

## **Parameter Sets for Signal Modules**



#### In this Appendix

This appendix briefly describes how to assign the parameters for signal modules in the *STEP 7* user program. You can assign the parameters for the signal modules in the user program instead of, or as well as, with the proogramming device in *STEP 7* 

This appendix also contains the structure of the parameters for the various classes of signal modules.

#### **Reference Literature**

In the *System and Standard Functions* Reference Manual, you will find a comprehensive description of how to assign the parameters for signal modules in the user program, as well as a description of the SFCs used.

#### In M7-300:

You can also use the M7-API to assign the parameters in the user program for M7-300 CPUs or FMs (see the Manuals for *M7-300/400 System Software*).

#### Contents

This appendix contains the parameter sets for the following classes of signal modules on the S7-300:

| Section | Contents                                                            | Page |
|---------|---------------------------------------------------------------------|------|
| A.1     | How to Assign the Parameters for Signal Modules in the User Program | A-2  |
| A.2     | Parameters of the Digital Input Modules                             | A-3  |
| A.3     | Parameters of the Digital Output Modules                            | A-5  |
| A.4     | Parameters of the Analog Input Modules                              | A-7  |
| A.5     | Parameters of the Analog Output Modules                             | A-11 |

# A.1 How to Assign the Parameters for Signal Modules in the User Program

#### **Parameter Assignment in the User Program**

You have already set the parameters for the S7-300 modules using *STEP 7*. You can use an SFC in the user program to change the module parameters. You can also use an SFC in the user program to transfer the parameters from the CPU to the addressed signal module.

#### **Parameters Stored in Data Records**

The parameters for the signal modules are stored in two data records: records 0 and 1.

#### **Modifiable Parameters**

You can change the parameters of record 1 and pass them to the signal module using SFC 55. The parameters set on the CPU are not changed when you do this! You cannot change the S7-300 parameters of record 0 in the user program.

In the following sections, we show you an overview of the parameters which are stored in records 0 and 1 for each module class.

#### **SFCs for Parameter Assignment**

The following SFCs are available for assigning the parameters for the signal modules in the user program:

| SFC<br>No. | Identifier | Application                                                                                   |
|------------|------------|-----------------------------------------------------------------------------------------------|
| 55         | WR_PARM    | Transfer modifiable parameters (record 1) to addressed signal module.                         |
| 56         | WR_DPARM   | Transfer parameters (record 0 <b>or</b> 1) from the CPU to the addressed signal module.       |
| 57         | PARM_MOD   | Transfer all parameters (records 0 <b>and</b> 1) from the CPU to the addressed signal module. |

#### **Description of the Parameters**

The following sections contain **all** the modifiable parameters for the various module classes.

The parameters for the configurable signal modules are described:

- · in this reference manual
- in the on-line help of STEP 7

The data sheets of the individual signal modules describe which parameters can be set for each signal module.

## A.2 Parameters of the Digital Input Modules

#### **Parameters**

Table A-1 contains all the parameters which you can set for digital input modules. The comparison shows:

- which parameters you can change with STEP 7 and
- which parameters you can change with SFC 55 "WR\_PARM".

The parameters which you set with *STEP 7* can also be transferred to the module with SFCs 56 and 57.

Table A-1 Parameters of the Digital Input Modules

| Parameter                          | Data          | Configurable with |                           |
|------------------------------------|---------------|-------------------|---------------------------|
|                                    | Record<br>No. | SFC 55            | <br>Programming<br>Device |
| Input delay                        | 0             | No                | Yes                       |
| Diagnostics                        |               | No                | Yes                       |
| Process interrupt enable           |               | Yes               | Yes                       |
| Diagnostics interrupt enable       | 1             | Yes               | Yes                       |
| Process interrupt on positive edge |               | Yes               | Yes                       |
| Process interrupt on negative edge |               | Yes               | Yes                       |

#### Note

Before you can enable the diagnostics interrupt in record 1 in the user program, you must first enable the diagnostics in record 0 with *STEP 7*.

#### Structure of Data Record 1

Figure A-1 shows the structure of data record 1 for the parameters of the digital input modules.

You activate a parameter by setting the corresponding bit to "1".



Figure A-1 Data Record 1 for Parameters of the Digital Input Modules

## A.3 Parameters of the Digital Output Modules

#### **Parameters**

Table A-2 contains all the parameters which you can set for digital output modules. The comparison shows:

- which parameters you can change with STEP 7 and
- which parameters you can change with SFC 55 "WR\_PARM".

The parameters which you set with *STEP 7* can also be transferred to the module with SFCs 56 and 57.

Table A-2 Parameters of the Digital Output Modules

| Parameter                    | Data          | Configurable with |                           |
|------------------------------|---------------|-------------------|---------------------------|
|                              | Record<br>No. | SFC 55            | <br>Programming<br>Device |
| Group diagnostics            | 0             | No                | Yes                       |
| Diagnostics interrupt enable |               | Yes               | Yes                       |
| Substitute value enable      | 1             | Yes               | Yes                       |
| Hold last value              | ] 1           | Yes               | Yes                       |
| Substitute value             |               | Yes               | Yes                       |

#### Note

Before you can enable the diagnostics interrupt in record 1 in the user program, you must first enable the diagnostics in record 0 with *STEP 7*!

You should only activate one of the parameters "substitute value output" and "hold last value" at a time.

#### Structure of Data Record 1

Figure A-2 shows the structure of data record 1 for the parameters of the digital output modules.

You activate a parameter by setting the corresponding bit in byte 0 to "1".



Figure A-2 Data Record 1 for Parameters of the Digital Output Modules

## A.4 Parameters of the Analog Input Modules

#### **Parameters**

Table A-3 contains all the parameters which you can set for analog input modules. The comparison shows:

- which parameters you can change with STEP 7 and
- which parameters you can change with SFC 55 "WR\_PARM".

The parameters which you set with *STEP 7* can also be transferred to the module with SFCs 56 and 57.

Table A-3 Parameters of the Analog Input Modules

| Parameter                          | Data       | Configurable with |                           |
|------------------------------------|------------|-------------------|---------------------------|
|                                    | Record No. | SFC 55            | <br>Programming<br>Device |
| Diagnostics: : Group diagnostics   | - 0        | No                | Yes                       |
| Diagnostics:with wire-break check  | ] 0        | No                | Yes                       |
| Limit value interrupt enable       | - 1        | Yes               | Yes                       |
| Diagnostics interrupt enable       | ] '        | Yes               | Yes                       |
| Interference frequency suppression |            | Yes               | Yes                       |
| Measurement type                   |            | Yes               | Yes                       |
| Measurement range                  | 1          | Yes               | Yes                       |
| Upper limit value                  |            | Yes               | Yes                       |
| Lower limit value                  |            | Yes               | Yes                       |

#### Note

Before you can enable the diagnostics interrupt in record 1 in the user program, you must first enable the diagnostics in record 0 with *STEP 7*.

#### Structure of Data Record 1

Figure A-3 shows the structure of data record 1 for the parameters of the digital output modules.

You activate a parameter by setting the corresponding bit in byte 0 to "1".



Figure A-3 Data Record 1 for Parameters of the Analog Input Modules

#### Note

The representation of the limit values matches the analog value representation (see Chapter 4). Please observe the range limits when setting the limit values.

#### **Interference Frequency Suppression**

Table A-4 contains the codes for the various frequencies which you enter in byte 1 of data record 1 (see Figure A-3). The integration time must be calculated per channel!

Table A-4 Codes for the Interference Frequency Suppression of the Analog Input Modules

| Interference Frequency Suppression | Reset Time | Code |
|------------------------------------|------------|------|
| 400 Hz                             | 2.5 ms     | 2#00 |
| 60 Hz                              | 16.7 ms    | 2#01 |
| 50 Hz                              | 20 ms      | 2#10 |
| 10 Hz                              | 100 ms     | 2#11 |

#### **Measurement Type and Measuring Ranges**

Table A-5 contains all the measuring ranges for the analog input modules. The table also shows the codes for the measurement types and the measuring range. You must enter these codes, according to the measuring range desired, in bytes 2 to 5 of data record 1 (see Figure A-3).

#### Note

Please note that a measuring range module may need to be reconnected, depending on the measuring range (see Chapter 4)!

Table A-5 Codes for the Measuring Ranges of the Analog Input Modules

| Measurement<br>Type | Code   | Measuring Range | Code   |
|---------------------|--------|-----------------|--------|
| Deactivated         | 2#0000 | Deactivated     | 2#0000 |
| Voltage             | 2#0001 | ± 80 mV         | 2#0001 |
|                     |        | ± 250 mV        | 2#0010 |
|                     |        | ± 500 mV        | 2#0011 |
|                     |        | ± 1 V           | 2#0100 |
|                     |        | ± 2.5 V         | 2#0101 |
|                     |        | ± 5 V           | 2#0110 |
|                     |        | 1 to 5 V        | 2#0111 |
|                     |        | ± 10 V          | 2#1001 |
|                     |        | ± 25 mV         | 2#1010 |
|                     |        | ± 50 mV         | 2#1011 |

Table A-5 Codes for the Measuring Ranges of the Analog Input Modules, continued

| Measurement<br>Type                               | Code     | Measuring Range        | Code   |
|---------------------------------------------------|----------|------------------------|--------|
| 4-wire transducer                                 | 2#0010   | ± 3.2 mA               | 2#0000 |
|                                                   |          | ± 10 mA                | 2#0001 |
|                                                   |          | 0 to 20 mA             | 2#0010 |
|                                                   |          | 4 to 20 mA             | 2#0011 |
|                                                   |          | ± 20 mA                | 2#0100 |
|                                                   |          | ± 5 mA                 | 2#0101 |
| 2-wire transducer                                 | 2#0011   | 4 to 20 mA             | 2#0011 |
| Resistor 4-wire                                   | 2#0100   | 150 Ω                  | 2#0010 |
| connection                                        |          | 300 Ω                  | 2#0100 |
|                                                   |          | 600 Ω                  | 2#0110 |
| Resistor 4-wire                                   | 2#0110   | 52 to 148 Ω            | 2#0001 |
| connection; 100 $\Omega$                          |          | 250 Ω                  | 2#0011 |
| compensation                                      |          | 400 Ω                  | 2#0101 |
|                                                   |          | 700 Ω                  | 2#0111 |
| Resistance-type                                   | 2#1000   | Pt 100 climate         | 2#0000 |
| thermometer + line                                |          | Ni 100 climate         | 2#0001 |
| arization 4-wire connection                       |          | Pt 100 standard range  | 2#0010 |
| Connection                                        |          | Pt 200 standard range  | 2#0011 |
|                                                   |          | Pt 500 standard range  | 2#0100 |
|                                                   |          | Pt 1000 standard range | 2#0101 |
|                                                   |          | Ni 1000 standard range | 2#0110 |
|                                                   |          | Pt 200 climate         | 2#0111 |
|                                                   |          | Pt 500 climate         | 2#1000 |
|                                                   |          | Pt 1000 climate        | 2#1001 |
|                                                   |          | Ni 1000 climate        | 2#1001 |
|                                                   |          | Ni 100 standard range  | 2#1011 |
| Thermocouples                                     | 2#1010   | Type B [PtRh – PtRh]   | 2#0000 |
| internal                                          |          | Type N [NiCrSi – NiSi] | 2#0001 |
| comparison                                        | 0,110,11 | Type E [NiCr – CuNi]   | 2#0010 |
| Thermocouples external                            | 2#1011   | Type R [PtRh –Pt]      | 2#0011 |
| comparison                                        |          | Type S [PtRh –Pt]      | 2#0100 |
| Thermocouples +                                   | 2#1101   | Type J [Fe – CuNi IEC] | 2#0101 |
| linearization                                     |          | Type L [Fe – CuNi]     | 2#0110 |
| internal                                          |          | Type T [Cu – CuNi]     | 2#0111 |
| comparison                                        |          | Type K [NiCr – Ni]     | 2#1000 |
| Thermocouples + linearization external comparison | 2#1110   | Type U [Cu - Cu Ni]    | 2#1001 |

## A.5 Parameters of the Analog Output Modules

#### **Parameters**

Table A-6 contains all the parameters which you can set for analog output modules. The comparison shows:

- which parameters you can change with STEP 7 and
- which parameters you can change with SFC 55 "WR\_PARM".

The parameters which you set with *STEP 7* can also be transferred to the module with SFCs 56 and 57.

Table A-6 Parameters of the Analog Output Modules

| Parameter                      | Data          | Configurable with |                           |
|--------------------------------|---------------|-------------------|---------------------------|
|                                | Record<br>No. | SFC 55            | <br>Programming<br>Device |
| Diagnostics: group diagnostics | 0             | No                | Yes                       |
| Diagnostics interrupt enable   |               | Yes               | Yes                       |
| Behavior on CPU STOP           |               | Yes               | Yes                       |
| Output: type                   | 1             | Yes               | Yes                       |
| Output: range                  |               | Yes               | Yes                       |
| Substitute value               |               | Yes               | Yes                       |

#### Note

Before you can enable the diagnostics interrupt in record 1 in the user program, you must first enable the diagnostics in record 0 with *STEP 7*.

#### Structure of Data Record 1

Figure A-4 shows the structure of data record 1 for the parameters of the analog output modules.

You activate the diagnostics interrupt enable by setting the corresponding bit in byte 0 to "1".



Figure A-4 Data Record 1 for Parameters of the Analog Output Module

#### **Notes on Substitute Values**

Please observe the following notes when you set substitute values for the analog outputs:

- For the output ranges 4 to 20 mA and 1 to 5 V you must set the substitute value E500<sub>H</sub> so that the output remains de-energized (see Tables 4-17 and 4-18 in Chapter 4).
- The representation of the substitute values corresponds to the representation of the analog values (see Chapter 4). You should observe the relevant range limits when setting the substitute values.

#### **Output Type and Output Ranges**

Table A-7 contains all output ranges for the analog output modules. Also shown in the table are the codes for the output type and the output range. You must enter these codes, according to the measuring range desired, in bytes 2 to 5 of data record 1 (see Figure A-4).

Table A-7 Codes for the Output Ranges of the Analog Output Modules

| Output Type | Code   | Output Range | Code   |
|-------------|--------|--------------|--------|
| Deactivated | 2#0000 | Deactivated  | 2#0000 |
| Voltage     | 2#0001 | 1 to 5 V     | 2#0111 |
|             |        | 0 to 10 V    | 2#1000 |
|             |        | ± 10 V       | 2#1001 |
| Current     | 2#0010 | 0 to 20 mA   | 2#0010 |
|             |        | 4 to 20 mA   | 2#0011 |
|             |        | ± 20 mA      | 2#0100 |

**Diagnostics Data of the Signal Modules** 

B

#### In this Appendix

This appendix describes the configuration of the diagnostics data in the system data. You must be familiar with this configuration if you want to evaluate the diagnostics data of the signal module in the STEP 7 user program.

#### **Further References**

The reference manual *System and Standard Functions* includes an extensive description of the evaluation principle for the diagnostics data of signal modules in the user program, in addition to a description of the SFCs that can be used for this purpose.

#### Data Records 0 and 1 of the System Data

The diagnostics data of a module can be up to 16 bytes long and are located in data records 0 and 1 of the system data area:

- Data record 0 contains 4 bytes of diagnostics data describing the current status of an S7-300.
- · Data record 1 contains
  - the 4 bytes of diagnostics data of an S7-300 that are also located in data record 0 and
  - up to 12 bytes of module-specific diagnostics data.

## **Configuration and Contents of Diagnostics Data**

The configuration and the contents of the individual bytes of the diagnostics data are described below.

The following general rule applies: If an error occurs, the corresponding bit is set to "1".

#### Bytes 0 and 1

Figure B-1 shows the contents of bytes 0 and 1 of the diagnostics data.



Figure B-1 Bytes 0 and 1 of the Diagnostics Data

#### **Module Types**

Table B-1 lists the codes of the module types (bits 0 to 3 in byte 1).

Table B-1 Codes of the Module Types

| Code | Module Type     |
|------|-----------------|
| 0101 | Analog module   |
| 0110 | CPU             |
| 1000 | Function module |
| 1100 | СР              |
| 1111 | Digital module  |

## Bytes 2 and 3

Figure B-2 shows the contents of bytes 2 and 3 of the diagnostics data.



Figure B-2 Bytes 2 and 3 of the Diagnostics Data

## Bytes 4 to 7

Figure B-3 shows the contents of bytes 4 to 7 of the diagnostics data.



Figure B-3 Bytes 4 to 7 of the Diagnostics Data

## Byte 7 and Higher: Channel-Specific Error

Bytes 7 to 15 of data record 1 contain the channel-specific errors (see Figures B-4 to B-7).

## **Analog Input Channel**

Figure B-4 shows the bit assignment of the diagnostics byte for an analog input channel of the SM 331 analog input modules (see Sections 4.4 and 4.6). Section 4.3.5 includes a description of possible error causes and appropriate remedies.



Figure B-4 Diagnostics Byte for an Analog Input Channel of an SM 331 Analog Input Module

## **Analog Output Channel**

Figure B-5 shows the bit assignment of the diagnostics byte for an analog output channel of the SM 332 analog output modules (see Sections 4.7 and 4.8). Section 4.3.5 includes a description of possible error causes and appropriate remedies.



Figure B-5 Diagnostics Byte for an Analog Output Channel of an SM 332 Analog Output Module

## **Digital Input Channel**

Figure B-6 shows the bit assignment of the diagnostics byte for a digital input channel of the digital input module SM 321; DI 16×24VDC; with process and diagnostics interrupt (see Section 3.1.3). This section also includes a description of possible error causes and appropriate remedies.



Figure B-6 Diagnostics Byte for a Digital Input Channel of the Digital Input Module SM 321; DI 16×24 VDC

## **Digital Output Channel**

Figure B-7 shows the bit assignment of the diagnostics byte for a digital output channel of the digital output module SM 322; DO 8 24VDC/0.5A; with diagnostics alarm (see Section 3.2.3). This section also includes a description of possible error causes and appropriate remedies.



Figure B-7 Diagnostics Byte for a Digital Output Channel

**Dimension Drawings** 

C

#### Introduction

In this appendix, you will find the dimension drawings for the most important components of an S7-300. The specifications in these dimension drawings are required for dimensioning the S7-300 configuration. The dimensions of an S7-300 configuration must be taken into account when installing an S7-300 in cabinets, switchgear rooms, etc. This appendix does not contain any dimension drawings of the CPUs of the S7-300 or M7-300 or of the IM 153-1. These dimension drawings are contained in the relevant manuals.

#### **Contents**

In this appendix, you will find the dimension drawings of the following S7-300 components.

| In Section | You will find                                  | On<br>Page |
|------------|------------------------------------------------|------------|
| C.1        | Dimension Drawings of the Rails                | C-2        |
| C.2        | Dimension Drawings of the Power Supply Modules | C-9        |
| C.3        | Dimension Drawings of the Interface Modules    | C-14       |
| C.4        | Dimension Drawings of the Signal Modules       | C-17       |
| C.5        | Dimension Drawings for Accessories             | C-18       |

## C.1 Dimension Drawings of the Rails

## 483 mm Standard Rail

Figure C-1 shows the dimension drawing of the 483 mm standard rail.



Figure C-1 Dimension Drawing of the 483 mm Standard Rail

## 530 mm Standard Rail

Figure C-2 shows the dimension drawing of the 530 mm standard rail.



Figure C-2 Dimension Drawing of the 530 mm Standard Rail

## 830 mm Standard Rail

Figure C-3 shows the dimension drawing of the 830 mm standard rail.



Figure C-3 Dimension Drawing of the 830 mm Standard Rail

## 2000 mm Standard Rail

Figure C-4 shows the dimension drawing of the 2000 mm standard rail.



Figure C-4 Dimension Drawing of the 2000 mm Standard Rail

## 160 mm Rail

Figure C-5 shows the dimension drawing of the 160 mm rail.



Figure C-5 Dimension Drawing of the Rail with 160 mm Standard Width

## 482.6 mm Rail

Figure C-6 shows the dimension drawing of the 482.6 mm rail.



Figure C-6 Dimension Drawing of the Rail with 482.6 mm Standard Width

#### 530 mm Rail

Figure C-7 shows the dimension drawing of the 530 mm rail.



Figure C-7 Dimension Drawing of the Rail with 530 mm Standard Width

## 830 mm Rail

Figure C-8 shows the dimension drawing of the 830 mm rail.



Figure C-8 Dimension Drawing of the Rail with 830 mm Standard Width

## 2000 mm Rail

Figure C-9 shows the dimension drawing of the 2000 mm rail.



Figure C-9 Dimension Drawing of the 2000 mm Rail

## Rail for "Insert and Remove" Function

Figure C-10 shows the dimension drawing of the rail for the "Insert and Remove" function with active bus module, S7-300 module and explosion-proof partition. The rail is 482.6 mm or 530 mm long.



Figure C-10 Complete Dimension Drawing of a Rail for "Insert and Remove" Function with Active Bus Module, S7-300 Module and Explosion-proof Partition

## **Bus Modules (Expansion Buses)**

Figure C-11 shows the dimension drawing of the active bus module for the "Insert and Remove" function.



Figure C-11 Dimension Drawing of the Active Bus Modules

## C.2 Dimension Drawings of the Power Supply Modules

## PS 307; 2 A

Figure C-12 shows the dimension drawing of the PS 307; 2 A power supply module.



Figure C-12 Power Supply Module PS 307; 2 A

## PS 307; 5A

Figure C-13 shows the dimension drawing of the PS 307; 5 A power supply module.



Figure C-13 Power Supply Module PS 307; 5 A

## PS 307; 10 A

Figure C-14 shows the dimension drawing of the PS 307; 10 A power supply module.



Figure C-14 Power Supply Module PS 307; 10 A

## PS 307; 5 A with CPUs 313/314/315/315-2 DP

Figures C-15 and C-16 show the dimension drawings of the configuration of a power supply module PS 307; 5 A with the CPUs 313/314/315/315-2 DP. Observe the dimensions that result from the use of the power connector for wiring the PS 307; 5 A with the CPU.



Figure C-15 Dimension Drawing of the Power Supply Module PS 307; 5 A with CPUs 313/314/315/315-2 DP. Front View

## PS 307; 5 A with CPUs 313/314/315/315-2 DP

Figure C-16 shows the dimension drawing of the power supply module PS 307; 5 A with the CPUs 313/314/315/315-2 DP in the side view.



Figure C-16 Dimension Drawing of the Power Supply Module PS 307; 5 A with CPUs 313/314/315/315-2 DP. Side View

## C.3 Dimension Drawings of the Interface Modules

## IM 360

Figure C-17 shows the dimension drawing of the interface module IM 360.



Figure C-17 Interface Module IM 360

## IM 361

Figure C-18 shows the dimension drawing of the interface module IM 361.



Figure C-18 Interface Module IM 361

## IM 365

Figure C-19 shows the dimension drawing of the interface module IM 365.



Figure C-19 Interface Module IM 365

## C.4 Dimension Drawings of the Signal Modules

## **Signal Module**

Figure C-20 shows the dimension drawing of the signal module. A signal module might look slightly different than the example below. The dimensions however are always the same.



Figure C-20 Signal Module

## **C.5** Dimension Drawings for Accessories

## **Shield Connecting Element**

Figure C-21 shows the dimension drawing of the shield connecting element in connection with two signal modules.



Figure C-21 2 Signal Modules with Shield Connecting Element

## **SIMATIC TOP Connect, 3-Tier**

Figure C-22 shows the dimension drawing of the 3-tier SIMATIC TOP connect.



Figure C-22 SIMATIC TOP Connect, 3-Tier

## **SIMATIC TOP Connect, 2-Tier**

Figure C-23 shows the dimension drawing of the 2-tier SIMATIC TOP connect.



Figure C-23 SIMATIC TOP Connect, 2-Tier

## **SIMATIC TOP Connect, 1-Tier**

Figure C-24 shows the dimension drawing of the 1-tier SIMATIC TOP connect.



Figure C-24 SIMATIC TOP Connect, 1-Tier

## **RS 485 Repeater on Standard Rail**

Figure C-25 shows the dimension drawing of the RS 485 repeater on the standard rail.



Figure C-25 RS 485 Repeater on Standard Rail

## RS 485 Repeater on S7-300 Rail

Figure C-26 shows the dimension drawing of the RS 485 repeater on the S7-300 rail.



Figure C-26 RS 485 Repeater on S7-300 Rail

# **Spare Parts and Accessories for S7-300 Modules**



## **Spare Parts**

Table D-1 lists all the parts you can order separately or later for S7-300 programmable controllers.

Table D-1 Accessories and Spare Parts

| S7-300 Parts                                      | Order No.           |
|---------------------------------------------------|---------------------|
| Bus connector                                     | 6ES7 390-0AA00-0AA0 |
| Power connector between power supply unit and CPU | 6ES7 390-7BA00-0AA0 |
| Labeling strip (Qty 10)                           |                     |
| for 8/16-channel modules                          | 6ES7 392-2XX00-0AA0 |
| for 32-channel modules                            | 6ES7 392-2XX10-0AA0 |
| Slot numbering label                              | 6ES7 912-0AA00-0AA0 |
| Front connector 20-pin                            |                     |
| Screw-type connection                             | 6ES7 392-1AJ00-0AA0 |
| Spring-loaded connection                          | 6ES7 392-1BJ00-0AA0 |
| Front connector 40-pin                            |                     |
| Screw-type connection                             | 6ES7 392-1AM00-0AA0 |
| Front connector for 2 flat ribbon terminals       |                     |
| Screw-type connection                             | 6ES7 921-3AB00-0AA0 |
| Spring-loaded connection                          | 6ES7 921-3AA00-0AA0 |
| Front connector for 4 flat ribbon terminals       |                     |
| Spring-loaded connection                          | 6ES7 921-3AA20-0AA0 |
| SIMATIC TOP connect, 1-tier, with                 |                     |
| Screw-type connection                             | 6ES7 924-0AA00-0AA0 |
| Spring-loaded connection                          | 6ES7 924-0AA00-0AB0 |
| SIMATIC TOP connect, 2-tier, with                 |                     |
| Screw-type connection                             | 6ES7 924-0BB00-0AA0 |
| Spring-loaded connection                          | 6ES7 924-0BB00-0AB0 |

Table D-1 Accessories and Spare Parts, continued

| S7-300 Parts                                                                           | Order No.           |
|----------------------------------------------------------------------------------------|---------------------|
| SIMATIC TOP connect, 3-tier, with                                                      |                     |
| Screw-type connection                                                                  | 6ES7 924-0CA00-0AA0 |
| Spring-loaded connection                                                               | 6ES7 924-0CA00-0AB0 |
| Round-sheath ribbon cable (16-pin)                                                     |                     |
| • Unshielded 30 m (98.4 ft.)                                                           | 6ES7 923-0CD00-0AA0 |
| <ul> <li>Unshielded 60 m (196.8 ft.)</li> </ul>                                        | 6ES7 923-0CG00-0AA0 |
| • Shielded 30 m (98.4 ft.)                                                             | 6ES7 923-0CD00-0BA0 |
| • Shielded 60 m (196.8 ft.)                                                            | 6ES7 923-0CG00-0BA0 |
| Plug-in connectors, 16-pin, set of 8 (insulation displacement connectors)              | 6ES7 921-3BE10-0AA0 |
| Shield connecting element                                                              | 6ES7 390-5AA00-0AA0 |
| Shield connection terminals for                                                        |                     |
| 2 cables with a shield diameter of 2 to 6 mm each                                      | 6ES7 390-5AB00-0AA0 |
| 1 cable with a shield diameter of 3 to 8 mm                                            | 6ES7 390-5BA00-0AA0 |
| 1 cable with a shield diameter of 4 to 13 mm                                           | 6ES7 390-5CA00-0AA0 |
| Measuring range module for analog modules                                              | 6ES7 974-0AA00-0AA0 |
| Fuse set for 120/230 VAC digital output modules (contains 10 fuses and 2 fuse holders) | 6ES7 973-1HD00-0AA0 |

## **Guidelines for Handling Electrostatic Sensitive Devices (ESD)**



#### Introduction

In this appendix, we explain

- what is meant by "electrostatic sensitive devices"
- the precautions you must observe when handling and working with electrostatic sensitive devices.

#### **Contents**

This chapter contains the following sections on electrostatic sensitive devices:

| Section | Contents                                                           | Page |
|---------|--------------------------------------------------------------------|------|
| E.1     | What is ESD?                                                       | E-2  |
| E.2     | Electrostatic Charging of Persons                                  | E-3  |
| E.3     | General Protective Measures Against Electrostatic Discharge Damage | E-4  |

## E.1 What is ESD?

#### **Definition**

All electronic modules are equipped with large-scale integrated ICs or components. Due to their design, these electronic elements are very sensitive to overvoltages and thus to any electrostatic discharge.

These Electrostatic Sensitive Devices are commonly referred to by the abbreviation ESD.

Electrostatic sensitive devices are labelled with the following symbol:





#### Caution

Electrostatic sensitive devices are subject to voltages that are far below the voltage values that can still be perceived by human beings. These voltages are present if you touch a component or the electrical connections of a module without previously being electrostatically discharged. In most cases, the damage caused by an overvoltage is not immediately noticeable and results in total damage only after a prolonged period of operation.

## E.2 Electrostatic Charging of Persons

## Charging

Every person with a non-conductive connection to the electrical potential of its surroundings can be charged electrostatically.

Figure E-1 shows you the maximum values for electrostatic voltages which can build up on a person coming into contact with the materials indicated in the figure. These values are in conformity with the specifications of IEC 801-2.



Figure E-1 Electrostatic Voltages which can Build up on a Person

## E.3 General Protective Measures Against Electrostatic Discharge Damage

## **Ensure Sufficient Grounding**

Make sure that the personnel, working surfaces and packaging are sufficiently grounded when handling electrostatic sensitive devices. You thus avoid electrostatic charging.

#### **Avoid Direct Contact**

You should touch electrostatic sensitive devices only if it is unavoidable (for example, during maintenance work). Hold modules without touching the pins of components or printed conductors. In this way, the discharged energy cannot affect the sensitive devices.

If you have to carry out measurements on a module, you must discharge your body before you start the measurement by touching grounded metallic parts. Use grounded measuring devices only.

**List of Abbreviations** 



| Abbreviation | Description                                        |
|--------------|----------------------------------------------------|
| ADC          | Analog-digital converter                           |
| Al           | Analog input                                       |
| AO           | Analog output                                      |
| CPU          | Central processing unit of programmable controller |
| DAC          | Digital-analog converter                           |
| DB           | Data block                                         |
| DI           | Digital input                                      |
| DO           | Digital output                                     |
| EMC          | Electromagnetic compatibility                      |
| ESD          | Electrostatic sensitive device                     |
| FB           | Function block                                     |
| IM           | Interface module                                   |
| IP           | Intelligent I/O                                    |
| LS           | Leading sign                                       |
| М            | Ground connection                                  |
| MPI          | Multiple point interface                           |
| ОВ           | Organization block                                 |
| ОР           | Operator panel                                     |
| PG           | Programming device                                 |
| PLC          | Programmable controller                            |
| PS           | Power supply                                       |
| SFC          | System function                                    |

## **Glossary**

#### **Analog Module**

Analog modules convert analog process variables (for example, temperature) into digital values that can be processed in the CPU or they convert digital values into analog manipulated variables.

#### **Chassis Ground**

The chassis ground comprises all interconnected inactive parts of an apparatus, which even in case of a fault cannot take dangerous touch voltages.

#### CPU

Central processing unit of the S7 programmable controller with control and arithmetic unit, memory, operating system and interface for programming device.

#### **Data Block**

Data blocks (DB) are data areas in the user program, which contain user data. Global data blocks can be accessed by all code blocks and instance data blocks are assigned to a specific FB call.

## **Diagnostics**

→ System Diagnostics

#### **Diagnostics Buffer**

The diagnostics buffer is a backed up memory area in the CPU where diagnostic events are stored in the order they occur.

## **Diagnostics Interrupt**

Modules with diagnostics capability signal system errors to the  $\rightarrow$  CPU by means of diagnostic interrupts.

## **Equipotential Bonding**

An electrical connection (equipotential bonding conductor) that ties the exposed conductive parts of an item of electrical equipment and extraneous conductive parts to the same, or approximately the same, potential in order to prevent disturbing or dangerous voltages between these parts.

#### **Error Display**

Error display is one of the possible responses of the operating system to a  $\rightarrow$  Run Time Error. The other possible responses include:  $\rightarrow$  Error Response in the user program, STOP mode of the CPU.

#### **Error Handling via OB**

When the operating system detects an error (for example, STEP 7 access error), it calls the specific organization block (error OB) for this error, where the further response of the CPU can be specified.

#### **Functional Grounding**

Grounding whose only purpose is to ensure the intended function of the electrical equipment concerned. Functional grounding short-circuits any noise that might otherwise have a detrimental effect on the equipment.

#### Ground

The conductive mass of the ground whose potential can be assumed to be zero at any point.

In the vicinity of ground electrodes, the ground may have a potential other than zero. The term "reference ground" is often used in this situation.

#### **Ground (verb)**

To ground means connecting an electrically conductive part via a grounding system to ground (one or several electrically conductive parts that have good contact with the soil).

#### **Hardware Interrupt**

Interrupt-triggering modules trigger a hardware interrupt in the case of a certain event in the process. The hardware interrupt is signalled to the CPU. In accordance with the priority of this interrupt, the corresponding → Organization Block is then executed.

### Interrupt

The → Operating System of the CPU has 10 different priority classes which control execution of the user program. These priority classes include interrupts, as for example, process interrupts. When an interrupt occurs, the operating system automatically calls a corresponding organization block where the user can program the reaction desired (for example, in an FB).

### Interrupt, Diagnostics

→ Diagnostics Interrupt

#### Interrupt, Hardware

→ Hardware Interrupt

#### Isolated

In the case of isolated input/output modules, the reference potentials of the control and load circuits are galvanically isolated from each other, for example, by optocouplers, relay contacts or transformers. The input/output circuits can be connected to a common potential.

### **Measuring Range Module**

Measuring range modules are plugged onto the analog input module for adaptation to various measuring ranges.

#### **Module Parameters**

Module parameters are used to set the module reactions. A difference is made between static and dynamic module parameters.

#### Non-Isolated

In the case of non-isolated input/output modules, the reference potentials of the control and load circuits are electrically connected to each other.

#### **Operating Mode**

The SIMATIC S7 programmable controllers have the following operating modes: STOP,  $\rightarrow$  RESTART, RUN.

#### **Parameters**

- 1. Variable of a STEP 7 code block
- 2. Variable for setting the module reaction (one or several per module). Each module is supplied with a basic setting that can be changed by means of *STEP7*. Parameters can be  $\rightarrow$  Dynamic or  $\rightarrow$  Static.

# Parameters, Dynamic

In contrast to static parameters, dynamic parameters of modules can be changed during running operation by calling an SFC in the user program, for example, limit values of an analog signal input module.

#### Parameters, Static

In contrast to dynamic parameters, static parameters of modules cannot be changed by means of the user program, but only via *STEP7*, for example, input delay of a digital signal input module.

PG

→ Programming Device

**PLC** 

→ Programmable Controller

# **Programmable Controller**

Programmable controllers (PLCs) are electronic control devices whose functions are stored in the controller in the form of a program. The configuration and wiring of a PLC therefore do not depend on the actual functions of the control. Programmable controllers and computers have similar structures: they consist of a CPU (central processing unit) with memory, input/output modules and an internal bus system. The I/O and programming language are tailored to the requirements of open-loop control technology.

#### **Programming Device**

Programming devices are principally personal computers that are industry-standard, compact and transportable. They are characterized by a special hardware and software for SIMATIC programmable controllers.

#### **Reference Ground**

→ Ground

#### Reference Potential

The potential on which the voltages of the various circuits are based and according to which they are measured.

#### RESTART

On transition from the STOP to the RUN mode, the PLC goes through the RE-START mode.

It can be triggered using the  $\rightarrow$  Mode Selector or after a power on or through operator intervention on the programming device. With the S7-300, a  $\rightarrow$  Complete Restart is carried out.

#### S7-300 Backplane Bus

The S7-300 backplane bus is a serial data bus the modules use to communicate with each other and from which they draw the power they require. The connection between the modules is implemented via bus connectors.

#### SFC

→ System Function

# Signal Module

Signal modules (SMs) are the interface between the process and the programmable controller. Signal modules comprise digital input and output modules (input/output module, digital) and analog input and output modules (input/output module, analog).

#### STEP 7

Programming language for generating user programs for SIMATIC S7 programmable controllers.

#### **Substitute Value**

Substitute values are values which are output to the process in the case of faulty signal output modules or which are used in the user program instead of a process variable in the case of faulty signal input modules. The substitute values can be specified in advance by the user (for example, maintain old value).

#### **System Diagnostics**

System diagnostics comprises the recognition, evaluation and signalling of errors which occur within the programmable controller. Examples of such errors include: Program errors or module failures. System errors can be indicated via LEDs or via the STEP 7 tool *S7 Information*.

#### **System Function**

A system function (SFC) is a  $\rightarrow$  Function integrated in the operating system of the CPU, which can be called in the STEP 7 user program if required.

#### **Total Current**

Sum of currents of all output channels of a digital output module.

# Ungrounded

Without galvanic connection to ground

# **User Program**

With SIMATIC; a difference is made between the → Operating System of the CPU and user programs. The latter are generated by means of the → STEP 7 programming software in the possible programming languages (Ladder Logic and Statement List) and are stored in code blocks. Data is stored in data blocks.

# Index

| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analog input module SM 331; Al 2, 4-79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accessories, D-1 Actuators, connection to analog outputs, 4-34 Addressing, analog input/output module SM 334, 4-113 Active bus module, dimension drawing, C-8 Ambient conditions, mechanical, 1-8 Analog input connecting sensor, 4-20 measuring ranges, 4-4 Analog input channel measuring method, 4-43 measuring range, 4-43 Analog input module diagnostics, A-7 diagnostics interrupt enable, A-7 limit value, A-7 limit value interrupt enable, A-7 measurement (type), A-7 parameters, A-7 range, A-7 reset time, A-7 wire break, A-7 | channel groups, 4-84 characteristics, 4-80 current measurement, 4-88 default setting, 4-84 measured value resolution, 4-80 measuring methods, 4-87 measuring range module, 4-85 measuring ranges, 4-87 parameter assignment, 4-85 resistance measurement, 4-84, 4-89 start-up, 4-84 technical specifications, 4-80 temperature measurement, 4-89 terminal connection diagram, 4-81 voltage measurement, 4-88 Analog module, Glossary-1 dependencies, 4-56 diagnostics, 4-51 diagnostics interrupt, 4-55 dimension drawing, C-17 parameters, 4-47 process interrupt, 4-55 Analog output connecting loads/actuators, 4-34 output ranges, 4-16 Analog output channel conversion time, 4-41 response time, 4-42 settling time, 4-42 Analog output module diagnostics interrupt enable, A-11 output (range), A-11 output (type), A-11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | substitute value, A-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Analog output module SM 332; AO 2, 4-96      | Analog input module                         |
|----------------------------------------------|---------------------------------------------|
| characteristics, 4-97                        | basic settings, 4-49                        |
| current (output), 4-102                      | common-mode error, 4-52                     |
| default settings, 4-101                      | configuring error, 4-52                     |
| output range, 4-102                          | diagnostics, 4-49, 4-52                     |
| short-circuit check, 4-102                   | diagnostics interrupt enable, 4-49          |
| start-up, 4-101                              | wire break, 4-53, 4-54                      |
| technical specifications, 4-97               | wire-break check, 4-49                      |
| terminal connection diagram, 4-98            | error causes, 4-52                          |
| voltage (output), 4-102                      | limit value, 4-49                           |
| wire-break check, 4-102                      | isolated, 4-19                              |
| Analog output modules, parameters, A-11      | limit interrupt enable, 4-49                |
| Analog signal, cables for, 4-19, 4-34        | load voltage missing, 4-52                  |
| Analog value                                 | measuring range overflow, 4-53              |
| conversion, 4-2                              | measuring range underflow, 4-53             |
| resolution, 4-3                              | measurement type, 4-49                      |
| sign, 4-3                                    | measuring range, 4-49                       |
| Analog value representation, 4-2             | measurement, 4-49                           |
| Analog-to-digital conversion, 4-40           | non-isolated, 4-19                          |
| Analog output module SM 332; AO 4, 4-90      | parameters, 4-49                            |
| characteristics, 4-90                        | parameter assignment error, 4-52            |
| current (output), 4-95                       | group diagnostics, 4-49                     |
| default settings, 4-94                       | interference frequency suppression, 4-49    |
| substitute values, 4-96, 4-103               | Analog input module SM 331; AI 8, 4-59      |
| output ranges, 4-95                          | terminal connection diagram, 4-61           |
| parameter assignment, 4-94, 4-101            | channel groups, 4-64                        |
| short-circuit check, 4-95                    | characteristics, 4-60                       |
| start-up, 4-94                               | current measurement, 4-68                   |
| technical specifications, 4-90               | default setting, 4-64                       |
| terminal connection diagram, 4-91            | wire-break check, 4-67, 4-87                |
| voltage (output), 4-95                       | measured value resolution, 4-60             |
| wire-break check, 4-95                       | measuring method, 4-67                      |
| Analog output channel, diagnostics byte, B-5 | measuring range module, 4-66                |
| Analog input/output module SM 334, 4-109,    | measuring ranges, 4-67                      |
| 4-115                                        | parameter assignment, 4-66                  |
| addressing, 4-113                            | resistance measurement, 4-65, 4-69          |
| characteristics, 4-109                       | start-up, 4-64                              |
| diagnostics, 4-54                            | technical specifications, 4-60              |
| electrical design, 4-113                     | temperature measurement, 4-69               |
| measuring method, 4-113                      | voltage measurement, 4-68                   |
| output type, 4-113                           | Analog input channel, diagnostics byte, B-5 |
| parameters, 4-50                             | Tightening torque, SIMATIC TOP connect, 8-9 |
| start-up, 4-113                              |                                             |
| technical specifications, 4-109              |                                             |

terminal connection diagram, 4-110

| Output                                    | Common-mode error, analog input module,        |
|-------------------------------------------|------------------------------------------------|
| analog output module, 4-50                | 4-52                                           |
| current (SM 332; AO 2), 4-102             | Compensating box, 4-28                         |
| current (SM 332; AO 4), 4-95              | Compensating leads, 4-27                       |
| voltage (SM 332; AO 2), 4-102             | Configuring error                              |
| voltage (SM 332; AO 4), 4-95              | analog input module, 4-52                      |
| Analog output module                      | analog output module, 4-54                     |
| output type, 4-50                         | Connecting cables, 8-3                         |
| configuring error, 4-54                   | for SIMATIC TOP connect, 8-11                  |
| conversion time, 4-42                     | Connection notes, SIMATIC TOP connect,         |
| cycle time, 4-41                          | 8-15                                           |
| diagnostics, 4-50, 4-53                   | Connection to analog output, loads/actuators,  |
| diagnostics interrupt enable, 4-50        | 4-34                                           |
| error causes, 4-54                        | Conversion time                                |
| isolated, 4-34                            | analog input channel, 4-39                     |
| load voltage missing, 4-54                | analog output channel, 4-41                    |
| M short circuit, 4-54                     | Converting, analog values, 4-2                 |
| non-isolated, 4-34                        | CSA, 1-3                                       |
| output, 4-50                              | Current (output)                               |
| output range, 4-50                        | analog output module SM 332; AO 2, 4-102       |
| parameters, 4-50                          | analog output module SM 332; AO 4, 4-95        |
| parameter assignment error, 4-54          | Current measurement                            |
| group diagnostics, 4-50                   | analog input module SM 331; Al 2, 4-88         |
| response with CPU-STOP, 4-50              | analog input module SM 331; Al 8, 4-68         |
| Output type, analog output module, 4-50   | Cycle time                                     |
| Output range                              | analog input module, 4-40                      |
| analog output module SM 332; AO 2, 4-102  | analog output module, 4-41                     |
| analog output module, 4-50                | analog calpar module, 1 11                     |
| of the analog outputs, 4-16               |                                                |
| SM 334, 4-17                              | D                                              |
| Auxiliary power missing                   |                                                |
| SM 321; DI 16 x 24VDC with process and    | Data records, for parameters, A-2              |
| diagnostics interrupts, 3-16              | Default setting                                |
| SM 322; DO 8 x 24VDC with diagnostics     | analog output module SM 332; AO 2, 4-101       |
| interrupt, 3-45                           | analog output module SM 332; AO 4, 4-94        |
| monapt, o to                              | SM 322; DO 8 x 24VDC with diagnostics          |
|                                           | interrupt, 3-42                                |
| В                                         | Default settings, SM 321; DI 16 x 24VDC with   |
|                                           | process and diagnostics interrupt, 3-12        |
| Backup battery, transport and storage     | Degree of protection, IP 20, 1-10              |
| conditions, 1-6                           | Design, electrical, analog input/output module |
| Basic settings, analog input module, 4-49 | SM 334, 4-113                                  |
| Module types, code, B-2                   |                                                |
|                                           |                                                |
| С                                         |                                                |
|                                           |                                                |
| Cable, for analog signals, 4-19, 4-34     |                                                |
| CE, marking, 1-2                          |                                                |
| Channel groups                            |                                                |
| analog input module SM 331; Al 2, 4-84    |                                                |
| analog input module SM 331; Al 8, 4-64    |                                                |

| Diagnostics                                   | Digital output module                        |
|-----------------------------------------------|----------------------------------------------|
| analog input/output module, 4-54              | See also SM 322                              |
| analog output module, 4-50, 4-53              | diagnostics, A-5                             |
| analog input module, 4-49, 4-52               | diagnostics interrupt enable, A-5            |
| channel-specific, B-4                         | hold last value, A-5                         |
| of the analog modules, 4-51                   | parameters, A-5                              |
| parameter block, 4-52, 4-53                   | substitute value, A-5                        |
| SM 321; DI 16 x 24VDC with process and        | substitute value enable, A-5                 |
| diagnostics interrupts, 3-13, 3-15            | Digital input channel, diagnostics byte, B-6 |
| SM 322; DO 8 x 24VDC with diagnostics         | Dimension drawings, C-1                      |
| interrupt, 3-44                               | analog module, C-17                          |
| Diagnostics interrupt enable                  | digital module, C-17                         |
| analog input module, 4-49                     | IM 360, C-14                                 |
| analog output module, 4-50                    | IM 365, C-16                                 |
| SM 321; DI 16 x 24VDC with process and        | interface module, C-14                       |
| diagnostics interrupts, 3-13                  | power supply module PS 307, C-9              |
| SM 322; DO 8 x 24VDC with diagnostics         | PS 307, C-9                                  |
| interrupt, 3-43                               | rail, C-2                                    |
| Digital output channel, diagnostics byte, B-6 | RS 485 repeater, C-20                        |
| Diagnostics byte                              | shield connecting element, C-18              |
| analog output channel, B-5                    | signal module, C-17                          |
| analog input channel, B-5                     | SIMATIC TOP connect, C-19                    |
| digital output channel, B-6                   | Wire break, SM 322; DO 8 x 24VDC with        |
| digital input channel, B-6                    | diagnostics interrupt, 3-43, 3-45            |
| Diagnostics data, B-1                         | Wire-break check                             |
| Diagnostics                                   | analog output module SM 332; AO 2, 4-102     |
| analog input module, A-7                      | analog output module SM 332; AO 4, 4-95      |
| analog output module, A-11                    | analog input module, 4-49                    |
| digital input module, A-3                     | analog input module SM 331; Al 8, 4-67,      |
| digital output module, A-5                    | 4-87                                         |
| system, Glossary-5                            | Dummy module, 5-4                            |
| Diagnostics buffer, Glossary-1                |                                              |
| Diagnostics entry, 4-59                       |                                              |
| Diagnostics interrupt, 3-17, 3-46, 4-59,      | E                                            |
| Glossary-1                                    | lament deless CM 204 DI 4C v 24\/DC with     |
| analog module, 4-55                           | Input delay, SM 321; DI 16 x 24VDC with      |
| Diagnostics interrupt enable                  | process and diagnostics interrupts, 3-13,    |
| analog input module, A-7                      | 3-14                                         |
| analog output module, A-11                    | Electromagnetic compatibility, 1-4           |
| digital input module, A-3                     | EMC directive, 1-3                           |
| digital output module, A-5                    | Environmental conditions, 1-7                |
| Digital input module, 3-2                     | EPROM error                                  |
| diagnostics, A-3                              | SM 321; DI 16 x 24VDC with process and       |
| diagnostics interrupt enable, A-3             | diagnostics interrupts, 3-16                 |
| input delay, A-3                              | SM 322; DO 8 x 24VDC with diagnostics        |
| process interrupt, A-3                        | interrupt, 3-45                              |
| process interrupt enable, A-3                 |                                              |
| Digital input modules, parameters, A-3        |                                              |
| Digital input/output module, 3-70             |                                              |
| Digital module, dimension drawing, C-17       |                                              |
| Digital modules, 3-1                          |                                              |

| Error causes                                                                                      | IM 365                                                                                                           |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| analog input module, 4-52<br>analog output module, 4-54<br>SM 321; DI 16 x 24VDC with process and | dimension drawing, C-16<br>interface module, 6-6<br>Input delay, digital input module, A-3                       |
| diagnostics interrupts, 3-16                                                                      | Interface module, 6-1                                                                                            |
| SM 322; DO 8 x 24VDC with diagnostics                                                             | dimension drawing, C-14                                                                                          |
| interrupt, 3-45<br>Error display, Glossary-2                                                      | IM 360, 6-2<br>IM 361, 6-4                                                                                       |
| Substitute value, SM 322; DO 8 x 24VDC with                                                       | IM 365, 6-6                                                                                                      |
| diagnostics interrupt, 3-43                                                                       | Interference                                                                                                     |
| Substitute a value, SM 322; DO 8 x 24VDC with diagnostics interrupt, 3-43                         | pulse-shaped, 1-4<br>sinusoidal, 1-5                                                                             |
| Substitute values, analog output module SM                                                        | Internal compensation, 4-27                                                                                      |
| 332; AO 4, 4-96, 4-103                                                                            | Interrupt, Glossary-3<br>IP 20, 1-10                                                                             |
|                                                                                                   | IF 20, I-10                                                                                                      |
| F                                                                                                 |                                                                                                                  |
| Missing load voltage, SM 322; DO 8 x 24VDC                                                        | K                                                                                                                |
| with diagnostics interrupt, 3-43                                                                  | Channel-specific errors, B-4                                                                                     |
| FM, approval, 1-3<br>Four-wire transducer, 4-19                                                   | Compensation external, 4-28                                                                                      |
| analog input module SM 331; Al 8, 4-68                                                            | internal, 4-27, 4-28                                                                                             |
| connection, 4-32                                                                                  | Short circuit to L+, SM 322; DO 8 x 24VDC                                                                        |
| measuring ranges, 4-88 Front connector module, with flat ribbon connection, 8-3                   | with diagnostics interrupt, 3-43 Short circuit to M, SM 322; DO 8 x 24VDC with diagnostics interrupt, 3-43, 3-45 |
| Fuse blown                                                                                        | diagnostios interrupt, o 40, o 40                                                                                |
| SM 321; DI 16 x 24VDC with process and                                                            |                                                                                                                  |
| diagnostics interrupts, 3-16 SM 322; DO 8 x 24VDC with diagnostics                                | L                                                                                                                |
| interrupt, 3-45                                                                                   | Conductors, number, 8-9                                                                                          |
|                                                                                                   | Conductors (SIMATIC TOP connect), length of insulation to be stripped, 8-9                                       |
| G                                                                                                 | Connecting conductors, tightening torque, 8-9                                                                    |
|                                                                                                   | Conductor cross-sectional areas, 8-9                                                                             |
| Limit value, analog input module, 4-49<br>Grounded operation, RS 485 repeater, 7-4                | Hold last value, SM 322; DO 8 x 24VDC with diagnostics interrupt, 3-43                                           |
| Crounded operation, No 100 repeater, 7 1                                                          | Limit interrupt enable, analog input module, 4-49                                                                |
| н                                                                                                 | Limit value, analog input module, A-7                                                                            |
| Hardware interrupt, Glossary-2                                                                    | Limit value interrupt enable, analog input                                                                       |
| Hold last value, digital output module, A-5                                                       | module, A-7<br>Load voltage missing                                                                              |
|                                                                                                   | analog input module, 4-52                                                                                        |
| 1                                                                                                 | analog output module, 4-54                                                                                       |
|                                                                                                   | SM 322; DO 8 x 24VDC with diagnostics                                                                            |
| IEC 1131, 1-2<br>IM 360                                                                           | interrupt, 3-45 Loads, connection to analog outputs, 4-34                                                        |
| dimension drawing, C-14                                                                           | ,                                                                                                                |
| interface module, 6-2                                                                             |                                                                                                                  |
| IM 361, interface module, 6-4                                                                     |                                                                                                                  |

#### Р M M short circuit, analog output module, 4-54 **Parameters** Dimension drawing, active bus module, C-8 analog input/output module, 4-50 Measured value resolution, 4-4 analog module, 4-47 Measured value tables, for analog inputs, 4-4 analog output module, 4-50 Measurement, analog input module, A-7 analog input module, 4-49 Measurement (type), analog input module, A-7 Parameter assignment error Measuring method analog input module, 4-52 analog input channels, 4-43 analog output module, 4-54 analog input module SM 331; AI 2, 4-87 Parameter block, diagnostics, 4-52, 4-53 analog input module SM 331; AI 8, 4-67 Parameter sets, for signal modules, A-1 analog input/output module SM 334, 4-113 Parameters, Glossary-3 Measuring range module, 4-43, Glossary-3 analog input module, A-7 analog input module SM 331; AI 2, 4-85 analog output modules, A-11 analog input module SM 331; Al 8, 4-66 data records, A-2 Measuring range overflow, analog input digital input modules, A-3 module, 4-53 digital output module, A-5 Measuring range underflow, analog input modules, Glossary-3 module, 4-53 SM 321; DI 16 x 24VDC with process and Measurement type, analog input module, 4-49 diagnostics interrupts, 3-13 Measuring range, 4-2 SM 322; DO 8 x 24VDC with diagnostics analog input channels, 4-43 interrupt, 3-43 analog input module SM 331; AI 2, 4-87 Parameters, incorrect, SM 321; DI 16 x 24VDC with process and diagnostics interrupts, analog input module SM 331; Al 8, 4-67 3-16 analog input module, 4-49 of the analog inputs, 4-4 Parameter assignment SM 334, 4-15 analog output module SM 332; AO 4, 4-94, Measurement, analog input module, 4-49 4-101 Module, transport and storage conditions, 1-6 SM 321; DI 16 x 24VDC with process and Module parameters, Glossary-3 diagnostics interrupts, 3-13 SM 322; DO 8 x 24VDC with diagnostics interrupt, 3-42 Ν PARM MOD, SFC 57, A-2 Power supply module, 2-1 Standards, 1-2 dimension drawing, C-9 Process interrupt analog module, 4-55 0 digital input module, A-3 Operating conditions, 1-7 Process interrupt enable, digital input module, Output (range), 4-2 A-3 analog output module, A-11 Process interrupt lost analog output module SM 332; AO 4, 4-95 SM 321; DI 16 x 24VDC with process and Output (type) diagnostics interrupt, 3-17 analog input/output module SM 334, 4-113 SM 321; DI 16 x 24VDC with process and analog output module, A-11 diagnostics interrupts, 3-16

| Process interrupt, 3-17                        | S                                                                                |
|------------------------------------------------|----------------------------------------------------------------------------------|
| SM 321; DI 16 x 24VDC with process and         | Group diagnostics                                                                |
| diagnostics interrupts, 3-13                   | analog output module, 4-50                                                       |
| Process interrupt enable, SM 321; DI 16 x      | analog input module, 4-49                                                        |
| 24VDC with process and diagnostics             | Sensor                                                                           |
| interrupts, 3-13                               | connecting, 4-19                                                                 |
| PS 307, dimension drawing, C-9                 | isolated, 4-21                                                                   |
| Pulse-shaped interference, 1-4                 | non-isolated, 4-23                                                               |
|                                                | to analog inputs, 4-20                                                           |
| В                                              | Sensor supply missing, SM 321; DI 16 x                                           |
| R                                              | 24VDC with process and diagnostics                                               |
| Radio interference, emission of, 1-5           | interrupts, 3-16                                                                 |
| Rail for the "Insert and Remove" function,     | Settling time, 4-42                                                              |
| dimension drawing, C-7                         | SFC 55 WR_PARM, A-2                                                              |
| Rails, dimension drawing, C-2                  | SFC 56 WR_DPARM, A-2                                                             |
| RAM error                                      | SFC 57 PARM_MOD, A-2                                                             |
| SM 321; DI 16 x 24VDC with process and         | Shield connecting element, dimension drawing                                     |
| diagnostics interrupts, 3-16                   | C-18                                                                             |
| SM 322; DO 8 x 24VDC with diagnostics          | Short circuit to P, SM 322; DO 8 x 24VDC with                                    |
| interrupt, 3-45                                | diagnostics interrupt, 3-45                                                      |
| Rated voltage, 1-11                            | Short-circuit check                                                              |
| Reference junction, for thermocouple, 4-27     | analog output module SM 332; AO 2, 4-102                                         |
| Relay output module, 3-59                      | analog output module SM 332; AO 4, 4-95                                          |
| Repeater. See RS 485 repeater                  | Sign, analog value, 4-3                                                          |
| Reset time, analog input module, A-7           | Signal module, Glossary-5                                                        |
| Resistance measurement, 4-89                   | dimension drawing, C-17                                                          |
| analog input module SM 331; Al 2, 4-84,        | parameter sets, A-1                                                              |
| 4-89                                           | SIMATIC TOP connect, 8-1, 9-1                                                    |
| analog input module SM 331; Al 8, 4-65,        | application areas, 8-2                                                           |
| 4-69                                           | components, 8-2                                                                  |
| Resistance-type thermometer, connection,       | connecting cables, 8-11                                                          |
| 4-33                                           | connection notes, 8-15                                                           |
| Resolution, analog value, 4-3                  | dimension drawing, C-19                                                          |
| Response time, 4-42                            | rules for wiring, 8-9                                                            |
| RS 485 repeater, 7-1                           | selection, 8-6                                                                   |
| application, 7-2                               | spring-loaded connections, 8-10                                                  |
| block diagram, 7-7                             | terminal assignments. <i>See</i> Terminal block wiring the front connector, 8-13 |
| definition, 7-2<br>design, 7-3                 | wiring the front connector, 6-13 wiring the terminal block, 8-13                 |
| dimension drawing, C-20                        | Simulator module, 5-2                                                            |
| galvanic isolation, 7-4                        | Sinusoidal interference, 1-5                                                     |
| grounded operation, 7-4                        | SM 321; DI 16 x 120VAC                                                           |
| pin assignment of the PG/OP socket, 7-6        | characteristics, 3-22                                                            |
| rules, 7-2                                     | technical data, 3-24                                                             |
| technical specifications, 7-5                  | terminal connection diagram, 3-23                                                |
| Rules for wiring, SIMATIC TOP connect, 8-9     | terrilliai connection diagram, 5-25                                              |
| realization willing, Chivite in Confident, 0-9 |                                                                                  |

SM 321; DI 16 x 24VDC SM 321; DI 16 x 24VDC with process and characteristics, 3-6 diagnostics interrupts, input delay, 3-13 technical data, 3-8 SM 321; DI 32 x 24VDC Terminal connection diagram, 3-7 characteristics, 3-2 SM 321; DI 16 x 24VDC with process and technical data, 3-5 diagnostics interrupt terminal connection diagram, 3-3 characteristics, 3-9 SM 321; DI 8 x 120/230VAC diagnostics interrupt, 3-17 characteristics, 3-25 process interrupt, 3-17 technical data, 3-27 process interrupt lost, 3-17 terminal connection diagram, 3-26 redundant sensor supply, 3-10 SM 322, 3-31 SM 322; DO 16 x 120VAC setting the parameters, 3-12 technical data, 3-11 characteristics, 3-50 terminal connection diagram, 3-10 technical data, 3-52 SM 321; DI 16 x 24VDC with process and terminal connection diagram, 3-51 diagnostics interrupts SM 322; DO 16 x 230VAC REL. auxiliary power missing, 3-16 characteristics, 3-59 default setting, 3-13 technical data, 3-61 diagnostics interrupt enable, 3-13 terminal connection diagram, 3-60 diagnostics, 3-13, 3-15 SM 322; DO 16 x 24VDC EPROM error, 3-16 characteristics, 3-35 error causes, 3-16 technical data, 3-37 fuse blown, 3-16 terminal connection diagram, 3-36 input delay, 3-14 SM 322; DO 32 x 24VDC characteristics, 3-31 parameters, 3-13 parameters, incorrect, 3-16 technical data, 3-34 parameter assignment, 3-13 terminal connection diagram, 3-32 process interrupt lost, 3-16 SM 322; DO 8 x 120/230VAC process interrupt, 3-13 characteristics, 3-53 process interrupt enable, 3-13 technical data, 3-55 RAM error, 3-16 terminal connection diagram, 3-54 sensor supply missing, 3-16 SM 322; DO 8 x 230VAC REL. watchdog, 3-16 characteristics, 3-62 SM 321; DI 16 x 24VDC; source input technical data, 3-64 characteristics, 3-19 terminal connection diagram, 3-63 technical data, 3-21

terminal connection diagram, 3-20

| SM 322; DO 8 x 24VDC characteristics, 3-47 technical data, 3-49 terminal connection diagram, 3-48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Interference frequency suppression, analog input module, 4-49 Substitute value, Glossary-5 analog output module, A-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SM 322; DO 8 x 24VDC with diagnostics interrupt auxiliary power missing, 3-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | digital output module, A-5 Substitute value enable, digital output module, A-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| characteristics, 3-38 default setting, 3-42 diagnostics interrupt enable, 3-43 diagnostics, 3-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | System diagnostics, Glossary-5 System data area, diagnostics data, B-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| diagnostics interrupt, 3-46 wire break, 3-43, 3-45 EPROM error, 3-45 error causes, 3-45 substitute value, 3-43 substitute a value, 3-43 missing load voltage, 3-43 fuse blown, 3-45 short circuit to L+, 3-43 short circuit to M, 3-43, 3-45 hold last value, 3-43 load voltage missing, 3-45 output signals, redundant, 3-40 parameters, 3-43 parameter assignment, 3-42 RAM error, 3-45 redundant output signals, 3-40 setting the parameters, 3-42 short circuit to P, 3-45 technical data, 3-41 terminal connection diagram, 3-39 response with CPU-STOP, 3-43 watchdog, 3-45 SM 322; DO 8 x Rel. 230VAC characteristics, 3-66 technical specifications, 3-68 terminal connection diagram, 3-67 SM 323; DI/DO 16 x 24VDC | Technical specifications, RS 485 repeater, 7-5 Temperature measurement     analog input module SM 331; Al 2, 4-89     analog input module SM 331; Al 8, 4-69 Terminal block, 8-3     terminal assignments, 8-7 Test voltages, 1-10 Thermo resistance measurement, 4-69 Thermocouple, 4-26     choice of connections, 4-29     connecting, 4-28     design, 4-26     principle of operation, 4-26     reference junction, 4-27     types, 4-26     with compensating box, 4-29     without compensating box, 4-30 Transducer     2-wire, 4-19     4-wire, 4-19     connecting, 4-19 Two-wire transducer, 4-19     analog input module SM 331; Al 8, 4-68     connection, 4-32     measuring ranges, 4-88 |
| characteristics, 3-70 technical data, 3-72, 3-76 terminal connection diagram, 3-71 SM 323; DI/DO 8 x 24VDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>U</b><br>UL, 1-3<br>User program, Glossary-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| characteristics, 3-74 terminal connection diagram, 3-75 SM 338, POS input module, 5-7 SM 338 POS input module, 5-7 SM 374, simulator module, 5-2 Spare parts, D-1 Spring-loaded connections, SIMATIC TOP connect, 8-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V  Response with CPU-STOP analog output module, 4-50 SM 322; DO 8 x 24VDC with diagnostics interrupt, 3-43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Vibrations, 1-9 Voltage, rated, 1-11 Voltage (output) analog output module SM 332; AO 2, 4-102 Wiring the terminal block, SIMATIC TOP analog output module SM 332; AO 4, 4-95 Voltage measurement analog input module SM 331; AI 2, 4-88 analog input module SM 331; Al 8, 4-68 Voltage sensor, 4-19 connection, 4-31

Wire break, analog input module, A-7 Wiring the front connector, SIMATIC TOP connect, 8-13 connect, 8-13 WR\_DPARM, SFC 56, A-2 WR\_PARM, SFC 55, A-2

#### Ζ

Approbations, 1-2

## W

Watchdog

SM 321; DI 16 x 24VDC with process and diagnostics interrupts, 3-16 SM 322; DO 8 x 24VDC with diagnostics interrupt, 3-45

To Siemens AG A&D AS E 82 Postfach 1963 D–92209 Amberg

From

| You  | r Name:           |                   |            | <br>           |
|------|-------------------|-------------------|------------|----------------|
| You  | r Title:          |                   |            | <br>           |
| Con  | npany Name:       |                   |            | <br>           |
|      | Street:           |                   |            | <br>           |
|      | City, Zip Code:   |                   |            | <br>           |
|      | Country:          |                   |            | <br>           |
|      | Phone:            |                   |            | <br>           |
|      |                   |                   |            |                |
|      |                   |                   |            |                |
|      |                   |                   |            |                |
| Plea | ase check any ind | dustry that appli | es to you: |                |
|      | Automotive        |                   |            | Pharmaceutical |
|      | Chemical          |                   |            | Plastic        |
|      | Electrical Mach   | inery             |            | Pulp and Paper |
|      | Food              |                   |            | Textiles       |
|      | Instrument and    | Control           |            | Transportation |
|      | Nonelectrical M   | achinery          |            | Other          |
|      | Petrochemical     |                   |            |                |

# Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our publications. Please take the first available opportunity to fill out this questionnaire and return it to Siemens.

| Plea             | ase give each of the following questions your own personal mark within the range from 1 (very d) to 5 (poor). |
|------------------|---------------------------------------------------------------------------------------------------------------|
| 1.               | Do the contents meet your requirements?                                                                       |
| 2.               | Is the information you need easy to find?                                                                     |
| 3.               | Is the text easy to understand?                                                                               |
| 4.               | Does the level of technical detail meet your requirements?                                                    |
| 5.               | Please rate the quality of the graphics/tables:                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
| Add              | litional comments:                                                                                            |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
| <br>             |                                                                                                               |
| <br>             |                                                                                                               |
| <br><br>         |                                                                                                               |
| <br><br>         |                                                                                                               |
| <br><br><br>     |                                                                                                               |
| <br><br><br><br> |                                                                                                               |
| <br><br><br><br> |                                                                                                               |
|                  |                                                                                                               |

To Siemens AG A&D AS E 82 Postfach 1963 D–92209 Amberg

From

| You  | r Name:           |                   |            | <br>           |
|------|-------------------|-------------------|------------|----------------|
| You  | r Title:          |                   |            | <br>           |
| Con  | npany Name:       |                   |            | <br>           |
|      | Street:           |                   |            | <br>           |
|      | City, Zip Code:   |                   |            | <br>           |
|      | Country:          |                   |            | <br>           |
|      | Phone:            |                   |            | <br>           |
|      |                   |                   |            |                |
|      |                   |                   |            |                |
|      |                   |                   |            |                |
| Plea | ase check any ind | dustry that appli | es to you: |                |
|      | Automotive        |                   |            | Pharmaceutical |
|      | Chemical          |                   |            | Plastic        |
|      | Electrical Mach   | inery             |            | Pulp and Paper |
|      | Food              |                   |            | Textiles       |
|      | Instrument and    | Control           |            | Transportation |
|      | Nonelectrical M   | achinery          |            | Other          |
|      | Petrochemical     |                   |            |                |

# Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness of our publications. Please take the first available opportunity to fill out this questionnaire and return it to Siemens.

| Plea             | ase give each of the following questions your own personal mark within the range from 1 (very d) to 5 (poor). |
|------------------|---------------------------------------------------------------------------------------------------------------|
| 1.               | Do the contents meet your requirements?                                                                       |
| 2.               | Is the information you need easy to find?                                                                     |
| 3.               | Is the text easy to understand?                                                                               |
| 4.               | Does the level of technical detail meet your requirements?                                                    |
| 5.               | Please rate the quality of the graphics/tables:                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
| Add              | litional comments:                                                                                            |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
|                  |                                                                                                               |
| <br>             |                                                                                                               |
| <br>             |                                                                                                               |
| <br><br>         |                                                                                                               |
| <br><br>         |                                                                                                               |
| <br><br><br>     |                                                                                                               |
| <br><br><br><br> |                                                                                                               |
| <br><br><br><br> |                                                                                                               |
|                  |                                                                                                               |