ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

FACULTAD DE INFÓRMATICA Y ELECTRONICA INGENIERIA DE SOFTWARE APLICACIONES INFORMÁTICAS II

INTEGRANTES: ALAN NAVIA (6780) JOHAN GRACIA (7138)

PERIODO ACADEMICO: OCTUBRE 2024 – FEBRERO 2025

Definición de tecnologías

TABLA COMPARATIVA FRONTEND

ASPECTO	REACT	ANGULAR	VUE.JS	HTML + VANILLA
noi Ecio	KL/1G1	IntdoLint	V OLIJO	JS
Gestión del estado	Herramientas como Redux o Context API simplifican el manejo de datos dinámicos y sincronización en tiempo real.	Complejo de configurar para aplicaciones interactivas; requiere RxJS para manejo de eventos complejos.	Ofrece herramientas básicas para manejo del estado (Vuex), pero menos robustas que en React.	Requiere programar la lógica manualmente, aumentando la complejidad en proyectos dinámicos.
Accesibilidad	Amplio soporte con librerías como react-aria y configuración simple para cumplir estándares WCAG, ideal para personas con discapacidad auditiva.	Accesibilidad posible, pero con configuraciones más manuales.	Compatible con accesibilidad, pero menos recursos nativos o específicos en comparación con React.	Necesita implementar todo desde cero, lo que requiere más tiempo y es propenso a errores.
Animaciones avanzadas	Librerías como Framer Motion y React Spring permiten animaciones fluidas para lenguaje de señas y gráficos educativos interactivos.	Soporte para animaciones más complejo de implementar; utiliza Angular Animations, pero con más esfuerzo.	Compatible con librerías de animación, pero con menos opciones maduras y soporte en comparación con React.	Animaciones requieren mayor esfuerzo manual o librerías externas complejas.
Componentes reutilizables	Permite crear y reutilizar componentes fácilmente, lo que optimiza el tiempo de desarrollo para múltiples lecciones y actividades.	Componentes reutilizables, pero su estructura es más rígida y compleja.	También permite reutilización, aunque el ecosistema es menos robusto que React.	No hay estructura clara para reutilización; componentes deben codificarse nuevamente.
Integración con APIs	Fácil integración con APIs de lenguaje de señas, reconocimiento de gestos y	Compatible con APIs, pero la configuración es más tediosa y	Menos intuitivo para manejar integraciones complejas con APIs externas.	Integración requiere programar lógica y manejo de

	servicios de texto	menos flexible		errores
	a voz.	que en React.		manualmente.
Ecosistema de	Comunidad y	Ecosistema	Comunidad activa,	Comunidad básica
herramientas	recursos amplios;	robusto, pero	pero menos	sin soporte
	soporte para	menos	enfoque en	avanzado para
	herramientas	especializado en	herramientas	herramientas
	específicas como	herramientas	avanzadas para	específicas de
	React Helmet para	específicas para	aprendizaje	accesibilidad o
	accesibilidad y	objetos de	inclusivo y visual.	aprendizaje
	React Three Fiber	aprendizaje y		interactivo.
	para gráficos 3D	accesibilidad.		
	interactivos.			
Tiempo de	Desarrollo rápido	Mayor tiempo	Tiempo de	Tiempo
desarrollo	gracias a su	inicial debido a su	desarrollo	significativamente
	sintaxis sencilla,	curva de	moderado,	mayor al
	modularidad y	aprendizaje	aunque limitado	implementar
	librerías	compleja y	en	desde cero
	específicas para	configuraciones	funcionalidades	funcionalidades
	objetos de	obligatorias.	avanzadas.	como
	aprendizaje	o o		animaciones y
	interactivos.			accesibilidad.
Escalabilidad	Ideal para crecer	Escalable, pero	Escalable en	Dificultades para
	con el proyecto;	con mayor	proyectos	escalar sin una
	permite agregar	complejidad en	pequeños o	estructura sólida
	nuevas	proyectos	medianos, pero no	definida desde el
	funcionalidades o	pequeños o	tan robusto como	inicio.
	actividades sin	medianos.	React en	
	comprometer el		proyectos	
	rendimiento.		complejos.	

TABLA COMPARATIVA BACKEND

Aspecto		Express.js	Django	Ruby on Rails	Laravel (PHP)
Simplicidad flexibilidad	y	Minimalista y altamente flexible; permite personalizar completamente la arquitectura del backend para casos específicos	convenciones; menos flexible para configuraciones personalizadas.	Ofrece flexibilidad moderada, pero depende de gems específicas para casos particulares.	Basado en convenciones, menos flexible para aplicaciones personalizadas.
		como aprendizaje accesible.			

D 1: : :	7	14/	D 1: : :	D 1: :
Rendimiento	Ligero y rápido; ideal para manejar solicitudes en tiempo real necesarias para sincronizar objetos de aprendizaje y actividades interactivas.	Más pesado debido a su enfoque completo y características integradas.	Rendimiento moderado, pero menos eficiente en comparación con Express.js para aplicaciones en tiempo real.	Rendimiento más lento debido al consumo de recursos y su naturaleza monolítica.
Escalabilidad	Escalable para manejar múltiples usuarios y tareas simultáneamente; bien soportado por herramientas como Clústeres de Node.js.	Escalabilidad sólida, pero más adecuada para aplicaciones monolíticas que para microservicios.	Escalable, pero no tan eficiente como Express.js en arquitecturas distribuidas o microservicios.	Escalable, aunque con mayor complejidad al dividir funcionalidades en microservicios.
Soporte para APIs en tiempo real	Compatible con Socket.IO para WebSockets, ideal para implementar comunicación en tiempo real como videollamadas, chat o animaciones interactivas.	Soporte limitado para WebSockets; requiere librerías externas y mayor configuración.	Posible con gems como ActionCable, pero menos optimizado para alto tráfico.	Soporte para WebSockets mediante librerías como Ratchet, pero más difícil de configurar.
Integración con tecnologías modernas	Fácil integración con bases de datos NoSQL (MongoDB) y SQL (PostgreSQL, MySQL), ideal para almacenar objetos de aprendizaje multimedia y metadatos de accesibilidad.	Compatible con múltiples bases de datos, pero más optimizado para SQL (PostgreSQL).	Compatible con bases de datos SQL, pero menos eficiente para NoSQL.	Principalmente optimizado para bases de datos SQL; integración con NoSQL requiere más trabajo.
Curva de aprendizaje	Curva de aprendizaje baja para desarrolladores con experiencia en JavaScript; ideal para	Curva de aprendizaje más alta debido a su sintaxis y herramientas específicas de Python.	Curva de aprendizaje moderada, pero menos amigable para principiantes.	Curva de aprendizaje moderada; requiere conocimientos avanzados de PHP y su ecosistema.

Comunidad y recursos	proyectos que requieren rápido desarrollo y adaptación. Gran comunidad y ecosistema activo; muchas librerías y middleware específicos para manejar accesibilidad, seguridad, y gestión de usuarios.	Comunidad robusta, con gran cantidad de recursos educativos, aunque centrados en aplicaciones tradicionales.	Comunidad más pequeña y menos recursos dedicados a aplicaciones accesibles o aprendizaje interactivo.	Amplia comunidad, pero con menos librerías especializadas para accesibilidad o aprendizaje interactivo.
Costo de infraestructura	Ligero, consume menos recursos en servidores, lo que reduce costos; ideal para entornos interactivos con alta concurrencia.	Más consumo de recursos debido a su enfoque completo y características integradas.	Requiere más recursos para manejar cargas altas en comparación con Express.js.	Consumo moderado de recursos, pero menos eficiente que Express.js para manejar muchas solicitudes concurrentes.
Soporte para accesibilidad	Integración directa con herramientas como APIs de texto a voz, conversión de lenguaje de señas y almacenamiento multimedia para personas con discapacidad auditiva.	Compatible con herramientas de accesibilidad, pero requiere más trabajo manual para configuraciones específicas.	Menos librerías dedicadas a accesibilidad; se necesita esfuerzo adicional para integrar características inclusivas.	Compatible con librerías de accesibilidad, pero no está optimizado para casos complejos como aprendizaje interactivo accesible.
Tiempo de desarrollo	Desarrollo rápido debido a su simplicidad y amplia gama de middleware preconstruido.	Desarrollo más lento debido a la configuración inicial y la integración de herramientas avanzadas.	Desarrollo moderado, pero con mayor esfuerzo para configuraciones personalizadas.	Más lento al manejar configuraciones específicas y acceso a tecnologías modernas como NoSQL o WebSockets.

TABLA COMPARATIVA BASES DE DATOS

Aspecto	PostgreSQL	MySQL	MongoDB	SQLite
Compatibilidad con datos estructurados y no estructurados	Soporta datos relacionales (SQL) y almacenamiento JSON nativo, ideal para mezclar información estructurada y contenidos multimedia no estructurados.	Optimizado principalmente para datos relacionales, con soporte JSON limitado.	Diseñado para datos no estructurados, pero menos eficiente para relaciones complejas entre datos.	Solo soporta datos relacionales; no es adecuado para manejar contenido multimedia o JSON de manera eficiente.
Escalabilidad	Escalable horizontal y verticalmente, con soporte para grandes volúmenes de datos y consultas complejas, ideal para gestionar recursos educativos multimedia.	Escalable, pero menos eficiente en consultas complejas debido a su diseño optimizado para velocidad sobre consistencia.	Escalabilidad horizontal robusta, pero con limitaciones en consultas transaccionales complejas.	No es adecuado para aplicaciones que requieren manejar grandes volúmenes de datos; está limitado a entornos pequeños.
Consultas complejas	Soporta consultas avanzadas como CTE (Common Table Expressions), ventanas y funciones analíticas, ideales para análisis detallados del progreso de los usuarios.	Consultas menos avanzadas; carece de funcionalidades como índices GIN/GIN para búsquedas rápidas en JSON.	Consultas avanzadas más limitadas debido a su modelo orientado a documentos.	Consultas básicas, no apto para análisis o búsquedas avanzadas.
Soporte para multimedia	Compatible con extensiones como PostGIS para almacenar y consultar datos multimedia o geoespaciales, y almacenamiento	Soporte básico para datos binarios, pero no optimizado para multimedia o extensiones avanzadas como PostGIS.	Ideal para almacenar multimedia en formato de documentos JSON, pero no es eficiente para consultas	Soporte muy limitado para datos multimedia; no es práctico para proyectos de esta escala.

	aficiente de detec		nologionales	
	eficiente de datos		relacionales	
C	binarios (BLOB).	Carata ACID	complejas.	Carada ACID
Consistencia y	Alta consistencia	Soporta ACID,		Soporta ACID,
fiabilidad	y fiabilidad	pero con	eventual, lo que	pero no es apto
	gracias a	limitaciones en	puede ser un	para manejar
	transacciones	algunas	problema para	múltiples
	ACID completas,	configuraciones	aplicaciones que	usuarios
	esencial para	que afectan la		concurrentes en
	garantizar que los	consistencia bajo	educativos	proyectos
	datos educativos	alta carga.	sincronizados y	grandes.
	y de usuario se		precisos.	
	gestionen			
	correctamente.			
Compatibilidad	Permite	Menor	Bueno para	Limitado para
con	almacenar datos	flexibilidad para	metadatos no	manejar y
accesibilidad	complejos como	manejar	estructurados,	optimizar
	metadatos de	metadatos	pero ineficiente	metadatos o datos
	accesibilidad	complejos debido	para relaciones o	multimedia
	(subtítulos,	a su diseño	búsquedas que	requeridos para
	descripciones de	tradicional	combinen	accesibilidad.
	lenguaje de señas,	relacional.	múltiples fuentes	
	etc.) y		de datos.	
	recuperarlos			
	eficientemente.			
Extensiones	Compatible con	Extensiones	No soporta	No soporta
	extensiones	limitadas	extensiones	extensiones;
	avanzadas como	comparadas con	avanzadas como	extremadamente
	PostGIS (datos	PostgreSQL;	PostGIS; está más	limitado para
	geoespaciales),	carece de soporte	orientado a	personalizar
	pg_trgm	avanzado para	documentos y	funcionalidades
	(búsqueda de	búsquedas	análisis básicos.	avanzadas.
	texto), ideal para	complejas y datos		avanzadasi
	herramientas	especializados.		
	educativas	cspecianzaaos.		
	personalizadas.			
Integración con	Compatible con	Amplia	Muy integrado	Menor
tecnologías	múltiples	integración con	con tecnologías	integración con
modernas	lenguajes y	lenguajes	modernas,	tecnologías
	frameworks	modernos, pero	especialmente	modernas;
	modernos; ideal	menos soporte	para aplicaciones	diseñado
	para trabajar con	para	que manejan	principalmente
	APIs que manejan	funcionalidades	documentos	para aplicaciones
	accesibilidad y	avanzadas como	JSON.	locales o de
	multimedia.	JSON y búsquedas	,55111	pequeño alcance.
	maidifficula.	complejas.		pequeno arcance.
Costo de	Open source con	Open source en su	Open source, pero	Open source y
implementación	funcionalidades	versión básica,	con costos	gratuito, pero no
mpiementation	empresariales	1	_	
	_	pero algunas	^	*
	incluidas; ideal	funciones	servicios alojados	escalar o manejar

	para proyectos	avanzadas están	como MongoDB	requisitos
	educativos	restringidas a	Atlas para	avanzados.
	accesibles con	versiones	manejar grandes	
	presupuestos	comerciales	volúmenes de	
	limitados.	(MySQL	datos.	
		Enterprise).		
Rendimiento	Alto rendimiento	Mejor	Bueno para	Rendimiento
general	en consultas	rendimiento en	grandes	limitado a
	complejas y	operaciones de	volúmenes de	aplicaciones
	operaciones de	lectura simples,	datos no	pequeñas o con
	escritura/lectura	pero menos	relacionales, pero	pocos usuarios
	para grandes	eficiente en	rendimiento bajo	concurrentes.
	cantidades de	consultas	en sistemas	
	datos educativos.	complejas.	híbridos o	
			relacionales	
			complejos.	

CONCLUSIONES

PostgreSQL es la mejor opción para proyectos que integren objetos de aprendizaje en entornos virtuales accesibles debido a:

- Capacidad para manejar datos híbridos (relacionales y no relacionales), ideal para objetos de aprendizaje interactivos y metadatos de accesibilidad.
- **Consultas avanzadas y extensiones especializadas**, como PostGIS y pg_trgm, que amplían sus capacidades más allá de otras bases de datos.
- **Alta consistencia y fiabilidad**, esencial para datos educativos que requieren precisión y sincronización.
- **Ecosistema open source completo**, sin necesidad de licencias adicionales para funcionalidades avanzadas.

En comparación con otras bases de datos, PostgreSQL combina flexibilidad, rendimiento y escalabilidad, lo que lo hace ideal para proyectos educativos inclusivos y accesibles.

Express.js sobresale en el desarrollo de objetos de aprendizaje para entornos virtuales accesibles gracias a:

- **Alto rendimiento** para manejar solicitudes en tiempo real y actividades interactivas.
- **Flexibilidad** para personalizar el backend según las necesidades específicas del provecto.
- **Compatibilidad con tecnologías modernas**, como WebSockets y bases de datos NoSQL, esenciales para contenido multimedia dinámico.

• Eficiencia en costos e infraestructura, ideal para aplicaciones escalables e interactivas.

Esto lo convierte en una opción superior para crear espacios de comunicación y aprendizaje inclusivos, en comparación con sistemas más rígidos o monolíticos como Django o Laravel.

React ofrece ventajas claras frente a otros sistemas:

- Mejor gestión del estado para entornos dinámicos e interactivos.
- **Soporte avanzado de accesibilidad** con menos esfuerzo de configuración.
- Librerías especializadas para animaciones y gráficos educativos.
- Mayor **flexibilidad y escalabilidad** para ampliar el entorno con nuevos objetos de aprendizaje.

Estas características hacen que React sea la opción más adecuada para desarrollar espacios inclusivos y accesibles, diseñados específicamente para personas con discapacidad auditiva.