SQL SERVER2005

数据库系统概论

参考:第六章 关系数据库理论P₁₇₇—P₂₀₄

内容回顾

- *关系
 - ■笛卡尔积、关系、候选码、主码、主属性
 - 关系6个性质
- *关系的完整性
 - ■实体完整性、参照完整性、自定义完整性
- ❖关系操作
 - ■并、交、差、笛卡尔积
 - ■选择、投影、连接

本节教学目标

❖掌握

- 函数四种依赖,重点掌握函数的部分依赖、传递依赖
- 规范化: 2NF, 3NF, BCNF, 能够利用投影法熟练对关系进行规范化

❖了解

■ 多值依赖, 4NF、5NF

❖重点

■ 规范化: 2NF, 3NF, BCNF

❖难点

■ 规范化: 3NF, BCNF

本节内容

- ●第一节 问题的提出
- ●第二节 规范化

第一节 问题的提出

- ◆什么是数据依赖
- ❖关系模式的简化定义
- ❖数据依赖对关系模式影响

一、什么是数据依赖

- ❖1. 完整性约束的表现形式
 - 限定属性取值范围: 例如学生成绩必须在0-100之间
 - 定义属性值间的相互关连

❖2. 数据依赖

- 一个关系内部属性与属性之间的约束关系
- ■现实世界属性间相互联系的抽象
- ■数据内在的性质
- ■语义的体现

❖3. 数据依赖的类型

- 函数依赖(Functional Dependency,简记为FD)
- 多值依赖(Multivalued Dependency,简记为MVD)
- 其他

二、关系模式的简化表示

❖关系模式R (U, D, DOM, F)

简化为一个三元组:

R (U, F)

❖当且仅当U上的一个关系「满足F时,「称为 关系模式 R (U, F) 的一个关系

三、数据依赖对关系模式的影响

[例1]建立一个描述学校教务的数据库:

学生的学号(Sno)、所在系(Sdept) 系主任姓名(Mname)、课程号(Cno) 成绩(Grade)

单一的关系模式: Student $\langle U \rangle$ $V = \{Sno, Sdept, Mname, Cno, Grade\}$

❖学校数据库的语义:

- 1. 一个系有若干学生, 一个学生只属于一个系;
- 2. 一个系只有一名主任;
- 3. 一个学生可以选修多门课程,每门课程有若 干学生选修;
- 4. 每个学生所学的每门课程都有一个成绩。

属性组U上的一组函数依赖F:

$$F = \{ Sno \rightarrow Sdept, Sdept \rightarrow Mname, (Sno, Cno) \rightarrow Grade \}$$

假设存在这样一个关系:

Student(Sno, Sdept, Mname, Cno, Grade)

Sno	Sdept	Mname	Cno	Grade
S1	计算机系	张明	C1	95
S2	计算机系	张明	C1	90
S3	计算机系	张明	C1	88
S4	计算机系	张明	C1	70
S5	计算机系	张明	C1	78
:	•	:	•	•

请问该关系模式好吗?

Sno Sdept Mname Cno Grade

- **系名、系主任名**重复出现
- "张明"退休,李四接替
- 一个新系刚成立,尚无学生
- 一个系的学生全部毕业

- > 数据冗余太大
- ▶ 更新异常
- ▶ 插入异常
- > 删除异常

小结

结论:

- Student关系模式不是一个好的关系模式。
- "好"的关系模式:

不会发生插入异常、删除异常、更新异常, 数据冗余应尽可能少

原因:由存在于关系模式中的某些数据依赖引起的

解决方法:通过分解关系模式来消除其中不合适

本节内容

- ●第一节 问题的提出
- ●第二节 规范化

第二节 规范化

- ◇函数依赖
- ❖码
- ❖范式
 - 1NF
 - 2NF
 - **3NF**
 - BCNF

函数依赖

定义6.1 设R(U)是一个属性集U上的关系模式,X和Y是U的子集。

若对于R(U)的任意一个可能的关系r,r中不可能存在两个元组在X上的属性值相等,而在Y上的属性值不等,则称 "X函数确定Y"或 "Y函数依赖于X",记作 $X \rightarrow Y$ 。

X称为这个函数依赖的<mark>决定属性集(Determinant)。</code> Y=f(x)</mark>

说明

- 1. 函数依赖不是指关系模式R的某个或某些关系实例满足的 约束条件, 而是指R的所有关系实例均要满足的约束条件。
- 2. 函数依赖是<mark>语义范畴</mark>的概念。只能根据数据的语义来确定 函数依赖。

例如"姓名→年龄"这个函数依赖只有在不允许有同名人的条件下 成立

3. 数据库设计者可以对现实世界作强制的规定。例如规定不允许同名人出现,函数依赖"姓名→年龄"成立。所插入的元组必须满足规定的函数依赖,若发现有同名人存在,则拒绝装入该元组。

到: Student(Sno, Sname, Ssex, Sage, Sdept)

假设不允许重名,则有:

Sno \rightarrow Ssex, Sno \rightarrow Sdept,

Sno $\leftarrow \rightarrow$ Sname, Sname \rightarrow Ssex, Sname \rightarrow Sage

Sname \rightarrow Sdept

但Ssex → Sage

 $\forall X \rightarrow Y$, 并且 $Y \rightarrow X$, 则记为 $X \leftarrow \rightarrow Y$ 。 若Y不函数依赖于X, 则记为 $X \rightarrow Y$ 。

函数依赖 (cont)

- ❖函数依赖可以从不同角度分为:
 - ■平凡函数依赖与非平凡函数依赖
 - ■完全函数依赖与部分函数依赖
 - ■传递函数依赖

平凡函数依赖与非平凡函数依赖

在关系模式R(U)中,对于U的子集X和Y,

如果 $X \to Y$,但 $Y \subseteq X$,则称 $X \to Y$ 是非平凡的函数依赖 若 $X \to Y$,但 $Y \subset X$,则称 $X \to Y$ 是平凡的函数依赖

例: 在关系SC(Sno, Cno, Grade)中,

非平凡函数依赖: (Sno, Cno) → Grade

平凡函数依赖: (Sno, Cno)→Sno

 $(Sno, Cno) \rightarrow Cno$

完全函数依赖与部分函数依赖

定义6.2 在关系模式R(U)中,如果 $X \rightarrow Y$,并且对于 X的任何一个真子X',都有 $X' \rightarrow Y$,则称Y完全函数依赖于X,记作 $X \xrightarrow{f} Y$ 。 若 $X \rightarrow Y$,但Y不完全函数依赖于X,则称Y部分函数依赖于X,记作 $X \xrightarrow{P} Y$ 。

例: 在关系SC(Sno, Cno, Grade)中,

曲于: Sno → Grade, Cno → Grade,

因此: $(Sno, Cno) \xrightarrow{f} Grade$

在关系Student(Sno, Sdept, Mname, Cno, Grade)

由于: Sno → Sdept, Sno是(Sno, Cno)的真子集

因此: (Sno, Cno) ^P→ Sdept

传递函数依赖

定义6.3 在关系模式R(U)中,如果 $X \rightarrow Y$, $(Y \subseteq X)$, $Y \rightarrow X$,

 $Y \rightarrow Z$,则称Z传递函数依赖于X,记为 $: X \stackrel{\text{fill}}{\rightarrow} Z$

注:如果 $Y \rightarrow X$,即 $X \leftarrow \rightarrow Y$,则Z直接依赖于 X_{\circ}

例: 在关系Std(Sno, Sdept, Mname)中, 有:
Sno → Sdept, Sdept → Mname, Sdept → Sno
Mname传递函数依赖于Sno

第二节 规范化

- ❖函数依赖
- ❖码
- ❖范式
 - 1NF
 - 2NF
 - **3NF**
 - BCNF

码

若候选码多于一个,则选定其中的一个做为 主码(Primary Key)。

- ■主属性和非主属性
- 全码

[1到2]

关系模式S(<u>Sno</u>, Sdept, Sage),单个属性Sno是码, SC(<u>Sno, Cno</u>, Grade)中,(Sno, Cno)是码

[1到3]

关系模式R (P, W, A)

P:演奏者 W:作品 A:听众一个演奏者可以演奏多个作品 某一作品可被多个演奏者演奏 听众可以欣赏不同演奏者的不同作品 码为(P, W, A),即A11-Key

外码

定义6.5 关系模式 R 中属性或属性组X 并非 R的码,但 X 是R 一个关系模式的码,则称 X 是R 的外部码(Foreign key)也称外码

- 如在SC(<u>Sno, Cno</u>, Grade)中, Sno不是码,但Sno 是关系模式S(<u>Sno</u>, Sdept, Sage)的码,则Sno是关系 模式SC的外部码
- **主码与外码**一起提供了表示关系间联系的手段

第二节 规范化

- ❖函数依赖
- ❖码
- ◇范式
 - 1NF
 - 2NF
 - **3NF**
 - BCNF

范式

- ❖范式是符合某一种级别的关系模式的集合
- ❖ 关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式
- ❖范式的种类:

第一范式(1NF)

第二范式(2NF)

第三范式(3NF)

BC范式(BCNF)

第四范式(4NF)

第五范式(5NF)

问题越少

范式(cont)

- 禁一关系模式R为第n范式,可简记为R∈nNF。
- ◆一个低一级范式的关系模式,通过模式分解可以转换为若干个高一级范式的关系模式的集合,这种过程就叫规范化

核心范式

1NF

如果一个关系模式R的所有属性都是不可分的基本数据项,则R∈1NF。简单一点来说,符合1范式的关系,就是不存在表中套表的情况

- 关系中不存在重复行、多值列
- 第一范式是对关系模式的最起码的要求。不满足第一范式的数据库模式不能称为关系数据库
- ■满足第一范式的关系模式并不一定是一个好的关系模式。

实例分析

下面表格是一个不规范化(UNF)学生选课系统的实例, 我们将从这个实例开始,一步一步将其**规范化** 表中套表

cno	cname	sno	sname	birthday	Grade	Result
IS701	Database Programming & Web Development	M928642 M928268	Bloggs Smith	10/01/1984	A [°] C	Distinction Pass
		N926484	Green	01/04/1980	D	Pass
		N978787	Morris	25/08/1975	F	Fail
	Communication Technologies	M928273	Bloggs		E	Fail
IS702		N926484	Green	01/04/1980	В	Merit
		N978787	Morris	25/08/1975	С	PassFail
IS705	Business Systems	M928268	Smith		Α	Distinction
		N926484	Green	01/04/1980	С	Pass
		N978787	Morris	25/08/1975	В	Merit

UNF Un-normalised Form(不符合1NF的形式、未规范化的形式)

将UNF转换成1NF,方法是剔除表中所套的表

SC

Course

Sno	Cno	Sname	Birthday	Grade	Result	Cno	Cname
M928642	IS701	Bloggs		А	Distinction	IS701	Database Programming & Web Development
M928268	IS701	Smith	10/01/1984	С	Pass		& Web Development
N926484	IS701	Green	01/04/1980	D	Pass	IS702	Communication Technologies
N978787	IS701	Morris	25/08/1975	F	Fail	IS705	Business Systems

❖转换成1NF后, 关系还存在:

将符合1NF的关系分解成符合2NF的多个关系

2NF

Course(<u>Cno</u>, Cname)

岩 $R \in 1NF$,且每一个非主属性完全函数依赖于码,则 $R \in 2NF$ 。

我们可以根据函数的依赖关系来分析SC和Course是不是2NF SC(Sno, Cno, Sname, Birthdate, Grade, Result)

 $(Sno, Cno) \xrightarrow{f} Grade$

 $(Sno, Cno) \xrightarrow{P} Sname$

 $(Sno, Cno) \xrightarrow{P} Birthdate$

- ❖ SC的码为(Sno, Cno)
- ❖ SC满足第一范式。
- ❖ 非主属性Sname、Birthdate部分函数依赖于码(Sno, Cno)

1NF

消除非主属性对主码的部分依赖

方法: 将一个模式分解为多个模式, 直至每个模式里都不存之非主属性对主码的部分依赖

2NF

❖将SC分解为:

Student(Sno, Sname, Birthdate)

Sgrade(Sno, Cno, Grade, Result)

Student中函数依赖

Sgrade中函数依赖

这样Student和Sgrade都不存在非主属性的部分依赖,都属于2NF

在2NF关系模式Sgrade(Sno, Cno, Grade, Result)中存在以下函数依赖:

(Sno, Cno)→Grade
Grade→Result
(Sno, Cno) 巻 Result

Result传递函数依赖于(Sno, Cno),即Sgrade中存在非主属性对码的传递函数依赖。

函数依赖图:

■插入异常

如果没有学生得A则Result中 Distinction无法插入到数据库。

■删除异常

如果学生只有一个学生得A,那么删除这个学生信息时Result中 Distinction也丢失了。

■数据冗余

每个Grade都对应一个Result,则 Result列重复存储。

解决方法

2NF

消除非主属性对主码的传递依赖

方法: 将一个模式分解为多个模式, 直至每个模式里都不存之非主属性对主码的传递依赖

3NF

3NF

eta 关系模式 $R\langle U, F \rangle$ 中若不存在这样的码X 属性组Y及非主属性Z ($Z \subseteq Y$), 使得 $X \rightarrow Y$, $Y \rightarrow Z$, 成立,则称 $R\langle U, F \rangle \in \mathit{3NF}$ 。

例,Sgrade(Sno, Cno, Grade, Result) ∈ 2NF

(Sno, Cno) ^{传递} Result

Sgrade(Sno, Cno, Grade, Result) \ 3NF

◇解决方法

采用投影分解法,把Sgrade分解为两个关系模式,以消除传递函数依赖:

SG (Sno, Cno, Grade)

GR (Grade, Result)

SG的码为(Sno,Cno), GR的码为Grade。

函数依赖图

- ❖ 若R∈3NF,则R的每一个非主属性既不部分函数依赖于侯
 选码也不传递函数依赖于侯选码。
- ❖ 如果R∈3NF. 则R也是2NF。
- ❖ 采用投影分解法将一个2NF的关系分解为多个3NF的关系, 可以在一定程度上解决原2NF关系中存在的插入异常、删 除异常、数据冗余度大、修改复杂等问题。
- ❖ 将一个2NF关系分解为多个3NF的关系后,并不能完全消除关系模式中的各种异常情况和数据冗余。

BCNF

◆定义6.8 关系模式R<U, F>∈1NF, 若X→Y且Y ⊆ X时X必含有码,则R<U, F>∈BCNF。

◆若R∈BCNF

- 所有非主属性对每一个码都是完全函数依赖
- 所有的主属性对每一个不包含它的码, 也是完全函数依赖
- 没有任何属性完全函数依赖于非码的任何一组属性

■
$$R \in BCNF$$
 $\xrightarrow{\widehat{\Sigma}}$ $R \in 3NF$

例:在关系模式STJ(S, T, J)中,S表示学生,T表示教师,J表示课程。

■ 每一教师只教一门课。每门课由若干教师教,某一学生选定某门课,就确定了一个固定的教师。某个学生选修某个教师的课就确定了所选课的名称: (S, J)→T, (S, T)→J, T→J

STJ函数依赖

- **♦** STJ ∈ 3NF
 - 没有任何非主属性对码传递依赖或部分依赖
- **STJ BCNF**
 - T是决定因素,T不包含码
- ❖解决方法:将STJ分解为二个关系模式:
 - $SJ(S, J) \in BCNF, TJ(T, J) \in BCNF$

BCNF的关系模式所具有的性质

- 1. 所有非主属性都完全函数依赖于每个候选码
- 2. 所有主属性都完全函数依赖于每个不包含它的候选码
- 3. 没有任何属性完全函数依赖于非码的任何一组属性

Q & A

❖按照规范化理论设计的关系 模式是最优的吗?

这次课我们学到了…

- ❖函数依赖
 - ■完全函数依赖、部分函数依赖
- ❖规范化
 - 2NF、3NF
 - ■投影分解法