目录

- 1.K-means算法逻辑?
- 2.K近邻算法逻辑?
- 3.什么是NeRF (Neural-Radiance-Fields) 技术?
- 4.介绍一下自回归模型的概念
- 5.什么是K最近邻算法?
- 6.什么是朴素贝叶斯?
- 7.什么是决策树?
- 8.什么是支持向量机?
- 9.什么是逻辑回归?
- 10.介绍一下机器学习中的Nucleus采样原理
- 11.介绍一下机器学习中不同聚类算法的性能特点
- 12.介绍一下机器学习中的SVD (Singular Value Decomposition) 技术
- 13.介绍一下机器学习中的聚类算法原理

1.K-means算法逻辑?

K-means算法是一个实用的无监督聚类算法,其聚类逻辑依托欧式距离,当两个目标的距离越近,相似度越大。对于给定的样本集,按照样本之间的距离大小,将样本集划分为 K 个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。

K-means的主要算法步骤:

- 1. 选择初始化的 k 个样本作为初始聚类中心 $D=D_1,D_2,D_3,\ldots,D_k$ 。
- 2. 针对数据集中每个样本 x_i ,计算它到 k 个聚类中心的距离并将其分到距离最小的聚类中心所对应的类中.
- 3. 针对每个类别 D_j ,重新计算它的聚类中心 $D_j = \frac{1}{|c_i|} \sum_{x \in c_j} x$ 。(即属于该类的所有样本的质心);
- 4. 重复上面2和3两步的操作,直到达到设定的中止条件(迭代次数、最小误差变化等)。

K-Means的主要优点:

- 1. 原理简单,实现容易,收敛速度快。
- 2. 聚类效果较优。
- 3. 算法的可解释度比较强。
- 4. 主要需要调参的参数仅仅是簇数k。

K-Means的主要缺点:

- 1. K值需要人为设定,不好把握。
- 2. 对初始的簇中心敏感,不同选取方式会得到不同结果。
- 3. 对于不是凸的数据集比较难收敛。
- 4. 如果各隐含类别的数据不平衡,比如各隐含类别的数据量严重失衡,或者各隐含类别的方差不同,则聚 类效果不佳。
- 5. 迭代结果只是局部最优。
- 6. 对噪音和异常点比较的敏感。

2.K近邻算法逻辑?

K近邻 (K-NN) 算法计算不同数据特征值之间的距离进行分类。存在一个样本数据集合,也称作训练数据集,并且数据集中每个数据都存在标签,即我们知道每一个数据与所属分类的映射关系。接着输入没有标签的新数据后,在训练数据集中找到与该新数据最邻近的K个数据,然后提取这K个数据中占多数的标签作为新数据的标签(少数服从多数逻辑)。

K近邻算法的主要步骤:

- 1. 计算新数据与各个训练数据之间的距离。
- 2. 按照距离的递增关系进行排序。
- 3. 选取距离最小的K个点。
- 4. 确定前K个点所在类别的出现频率。
- 5. 返回前K个点中出现频率最高的类别作为新数据的预测分类。

K近邻算法的结果很大程度取决于K的选择。其距离计算一般使用欧氏距离或曼哈顿距离等经典距离度量。

K近邻算法的主要优点:

- 1. 理论成熟,思想简单,既可以用来做分类又可以做回归。
- 2. 可以用于非线性分类。
- 3. 对数据没有假设,准确度高,对异常点不敏感。
- 4. 比较适用于数据量比较大的场景,而那些数据量比较小的场景采用K近邻算法算法比较容易产生误分类情况。

K近邻算法的主要缺点:

- 1. 计算复杂性高;空间复杂性高。
- 2. 样本不平衡的时候,对稀有类别的预测准确率低。
- 3. 是慵懒散学习方法,基本上不学习,导致预测时速度比起逻辑回归之类的算法慢。
- 4. 可解释性不强。

3.什么是NeRF (Neural-Radiance-Fields) 技术?

NeRF (Neural Radiance Fields) 技术主要用于生成高质量的三维场景渲染。NeRF技术通过使用神经网络来表示场景中的颜色和密度分布,从而能够生成从不同视角看到的高质量图像,在三维重建和新视图合成领域取得了显著的进展。以下是对 NeRF 技术的详细讲解:

基本概念

1. 辐射场 (Radiance Field):

NeRF 表示场景的辐射场,这是一种三维空间中每个点的颜色和密度的函数。具体来说,辐射场定义了从某个点在某个方向上发出的光的颜色和强度。

2. 核心模型:

。 NeRF 使用一个多层感知器(MLP)作为神经网络。这个网络接受三维空间中的位置(x, y, z)和 视角方向(θ , ϕ)作为输入,并输出该位置的颜色(RGB)和密度(σ)。

3. 体积渲染:

通过体积渲染算法,从神经网络中采样不同位置的颜色和密度,合成最终的图像。体积渲染过程模拟了光线在三维场景中的传输和散射。

工作原理

NeRF 的工作原理可以分为以下几个步骤:

1. 输入编码:

NeRF 使用傅里叶特征编码(Fourier Feature Encoding)来对输入的三维坐标和视角方向进行高频特征变换,从而提高模型的表示能力。这种编码将低频的空间信息转换为高频特征,使得神经网络可以更好地学习到细节。

2. 核心模型训练:

- 神经网络接受编码后的三维坐标和视角方向,输出该位置的颜色和密度。通过对比生成图像与实际图像之间的误差(如均方误差损失),调整神经网络的参数。
- 。 训练数据通常是从多个视角拍摄的二维图像,这些图像包含了场景的不同视角信息。

3. 体积渲染:

对每条光线,从神经网络中采样多个点的颜色和密度,并通过体积渲染公式将这些值组合起来, 生成光线上的像素颜色。

具体的体积渲染公式计算光线在经过场景中的每个点时的颜色贡献,并将这些贡献累加起来,形成最终的像素值。

应用场景

1. 新视图合成:

○ NeRF 可以从给定的几张二维图像生成新的视图,非常适合用于虚拟现实 (VR) 和增强现实 (AR) 应用。

2. **3D 重建**:

NeRF 可以用于从二维图像重建高质量的三维模型,应用于影视、游戏和数字文化遗产保护等领域。

3. 计算机图形学:

o 由于其生成高质量图像的能力,NeRF 在计算机图形学中也具有重要的应用价值。

优缺点

优点

- 高质量渲染: NeRF 可以生成非常逼真的图像,捕捉到细节和复杂的光照效果。
- 少量数据需求: 与传统的3D重建方法相比, NeRF只需要较少的输入图像即可生成高质量的三维场景。

缺点

- **计算成本高**: 训练NeRF模型需要大量的计算资源和时间, 尤其是对于高分辨率的场景。
- 实时性问题:目前,NeRF的实时渲染仍然是一个挑战,需要更多的优化和硬件支持。

4.介绍一下自回归模型的概念

自回归模型思想很早就被提出,在AIGC时代因为应用于ChatGPT系列中而再次成为机器学习领域的"明星"。接下来我们就详细介绍一下自回归模型。

自回归模型(Autoregressive Model, AR)是时间序列分析中的一种经典模型,用于表示当前值是过去若干值的 线性组合。自回归模型假设时间序列的数据点可以用其自身的历史数据来解释,即通过过去的观测值预测当前 和未来的观测值。以下是详细讲解自回归模型的原理、公式、假设、应用以及示例。

1. 原理

自回归模型通过回归分析的方法,利用时间序列的过去值对当前值进行预测。其核心思想是,时间序列的当前值与其前几个时间点的值之间存在某种线性关系。

2. 公式

自回归模型的数学表达式为:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \epsilon_t$$

其中:

- y_t 是时间 t 的观测值。
- c 是常数项。
- $\phi_1, \phi_2, \ldots, \phi_p$ 是模型的系数。
- p 是模型的阶数,表示回顾的时间步数。
- ϵ_t 是误差项,假设其为白噪声(即期望为零、方差为 σ^2 的独立同分布随机变量)。

3. 模型的假设

- 线性关系: 时间序列的当前值与过去 p 个时间点的值之间存在线性关系。
- 平稳性: 时间序列应是平稳的, 即其统计特性 (如均值和方差) 随时间不变。
- **白噪声误差**:误差项 ϵ_t 是白噪声。

4. 应用

自回归模型广泛应用于经济学、金融学、气象学、工程学等领域,用于预测和分析时间序列数据。例如:

- 经济数据中的 GDP 增长率、失业率等的预测。
- 金融市场中的股票价格、利率等的预测。
- 气象学中的气温、降雨量等的预测。

5. 自回归模型的阶数选择

选择自回归模型的阶数 p 是一个重要步骤。常用的方法包括:

- AIC (Akaike 信息准则) : 通过最小化 AIC 选择最佳阶数。
- BIC (贝叶斯信息准则): 通过最小化 BIC 选择最佳阶数。

6. 示例

下面是一个使用 Python 及 statsmodels 库来拟合和预测自回归模型的示例:

```
import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.ar_model import AutoReg

# 生成一个模拟的自回归时间序列数据  
np.random.seed(42)  
n = 100  
phi = [0.5, -0.3, 0.2] # AR(3) 模型的系数  
y = np.zeros(n)  
y[0], y[1], y[2] = np.random.normal(size=3) # 初始化前3个值  
for t in range(3, n):  
    y[t] = phi[0] * y[t-1] + phi[1] * y[t-2] + phi[2] * y[t-3] + np.random.normal()

# 拟合 AR 模型  
model = AutoReg(y, lags=3)
```

```
model_fit = model.fit()

# 模型系数
print("模型系数:", model_fit.params)

# 预测未来10个时间点的值
y_forecast = model_fit.predict(start=n, end=n+9)
print("预测值:", y_forecast)

# 绘制原始数据与预测值
plt.figure(figsize=(10, 6))
plt.plot(y, label='原始数据')
plt.plot(range(n, n+10), y_forecast, label='预测值', color='red')
plt.legend()
plt.show()
```

解释

1. 数据生成:

 \circ 使用一个已知的 AR(3) 模型生成模拟数据,其中系数为 [0.5, -0.3, 0.2]。

2. 拟合 AR 模型:

。 使用 AutoReg 类拟合 AR 模型,并指定滞后阶数为 3。

3. 输出模型系数:

○ 使用 model_fit.params 获取拟合模型的系数。

4. 预测未来值:

• 使用 model_fit.predict 方法预测未来 10 个时间点的值。

5. 绘制图形:

o 使用 matplotlib 库绘制原始数据和预测值的图形,以可视化效果展示预测结果。

5.什么是K最近邻算法? (K-nearest neighbor, KNN)

(1) K最近邻算法介绍(K-nearest neighbor,KNN)

KNN算法是一种用于分类任务的非参数统计方法。

- 核心思想: 当预测一个新样本的标签时,**根据它距离最近的** k **个样本点是什么标签来判断该新样本属于哪个标签**(多数投票)。
- 输入输出:输入为特征空间中的一个点,输出为该点所对应的类别标签。

(2) KNN的算法流程

假设一个样本数据集 (x_i,y_i) , x_i 是一个多维向量, y_i 是该向量的标签,对于未知向量 x_j ,预测其对应的标签 y_j

- 计算 x_i 到每一个 x_i 的距离;
- 对距离进行排序;
- 选择最接近 x_i 的 k 个样本 (也可通过kd树搜索);
- 根据多数投票原则,预测 x_i 的标签。

(3) 核心参数

距离度量

两个向量 $x_i = (x_i^1, x_i^2, x_i^3 \dots x_i^n)$, $x_j = (x_i^1, x_i^2, x_i^3 \dots x_i^n)$ 的距离 \rightarrow 两个向量的相似程度, 其公式为:

$$L_p(x_i, x_j) = (\sum_{i=1}^n |x_i^l - x_j^l|^p)^{rac{1}{p}}$$

当p=1,为曼哈顿距离;当p=2,为欧氏距离;当 $p=\infty$,为向量分量的最大距离差。

k值选取

- 过小的 k 值分类器:未知样本对邻近的样本十分敏感,易受到噪声干扰;
- 过大的 k 值分类器:未知样本易被预测为占比较大的标签类型。

常用的方法:

- (1) 从 k=1 开始,使用交叉验证法从样本数据集中分出检验集估计分类器的误差率。
- (2) 重复该过程,每次 k 增值1,允许增加一个近邻。
- (3) 选取产生最小误差率的 k 。 (4) 一般 k 值不超过20, 上限为 n 的开方。

分类决策规则

- KNN的分类决策规则:对未知样本的最邻近k个样本进行标签统计,采用多数投票进行分类预测。
- (4) Python实现

使用sklearn.neighbors.KNeighborsClassifier即可创建KNN分类器,参数包括:

- n_neighbors: 设定k值, 默认为5;
- weights:设定k个邻近样本对型统计的权重,默认为平均权重;
- algorithm: 设定搜索邻近样本的方法,包括ball tree, kd tree和 brute。
- (5) 算法优劣
 - 优点:简单易用,无需训练;对异常值不敏感。
 - 缺点: 惰性算法, 计算量大。
- (6) 算法应用场景
 - 人脸识别,文字识别,医学图像处理等。 (毋雪雁,王水花,张煜东.K最近邻算法理论与应用综述[J].计算机工程与应用,2017,53(21):1-7.)
- (7) KNN用于回归问题
 - 对于k个邻近样本的标签,采用平均值作为未知样本标签的预测值。

6.什么是朴素贝叶斯?

(1) 贝叶斯定理

先验概率 - Prior probability

• **定义**:在观测数据前,表达不确定量的不确定性的概率分布,记为 P(A) 。

• 释义: 根据已知的经验和分析得到的概率, 即由因求果。

后验概率 - Posterior probability

• **定义**: 考虑和给出相关证据或数据后所得到的条件概率,记为 P(B|A)。

• 释义:依据得到的结果所计算出的事件发生的概率,即由果溯因。

联合概率 - Joint probability

• **定义**: 两个事件共同发生的概率,记为 P(AB)。

条件概率 - Conditional probability

• **定义**: 事件 A 在事件 B 发生的条件下发生的概率。

• 公式:

$$P(A|B) = \frac{P(AB)}{P(B)}$$

全概率公式 - Law of total probability

- **定义**:将一复杂事件A的概率求解问题转化为不同独立条件($P(B_1 \cap B_2...) = 0$ & $P(B_1 \cup B_2...) = 1$)下发生的事件概率的求和问题。
- 公式:

$$P(A) = \sum_{i=1}^n P(A|B_i) imes P(B_i)$$

贝叶斯定理 - Bayes' theorem

• 定义: 描述条件概率和后验概率的乘法关系。

• 公式:

$$P(B_j|A) = rac{P(A|B_j) imes P(B_j)}{P(A)}$$

$$P(B_j|A) = rac{P(A|B_j) imes P(B_j)}{\sum_{i=1}^n P(A|B_i) imes P(B_i)}$$
(独立事件)

后验概率与条件概率的联系

• 后验概率是一种条件概率,用于描述在给定观测结果的情况下,因变量取某个值的概率。

(2) 案例释义(以信号发射为例)

案例:有一个信号的发射端和接收端。发射端只发射A、B两种信号,其中发射信号A的概率为0.6,发射信号B的概率为0.4。当发射信号A时,接收端接收到信号A的概率是0.9,接收到信号B的概率是0.1。当发射信号B时,接收端接收到信号B的概率为0.8,接收到信号A的概率为0.2。求当接收到信号A时,发射信号为A的概率。

概率

- 先验概率:
- P(sendA) = 0.6, P(sendB) = 0.4
- 条件概率:
- P(receiveA|sendA) = 0.9, P(receiveB|sendB) = 0.8, P(receiveA|sendB) = 0.2
- 后验概率: P(sendA|receiveA) = ?
- (3) 朴素贝叶斯 Naive bayes

基本假设

• 给定数据样本的每个特征相互独立。

简要推导 给定训练数据集,其中每个样本 x 都包含 n 维特征,即 $x=(x_1,x_2...,x_n)$,标签集合 有k 种标 签,即 $y=(y_1,y_2...,y_k)$ 。对于新样本 x ,判断其标签 y ,根据贝叶斯定理,可以到 x 属于 y_k 标签的概率为:

$$P(y_k|x) = rac{P(x|y_k) imes P(y_k)}{\sum_{i=1}^k P(x|y_i) imes P(y_i)}$$

后验概率最大的标签则为对新样本 x 的预测标签。

由于朴素贝叶斯的基本假设,所以条件概率 $P(x|y_k)$ 可以转化为:

$$P(x|y_k)=P(x_1,x_2...,x_n|y_k)=\prod_{j=1}^n P(x_j|y_k)$$

整合上式, 朴素贝叶斯算法可以表示为:

$$f(x) = \mathop{argmax}\limits_{y_1, y_2 ..., y_k} rac{\prod_{j=1}^n P(x_j|y_k) P(y_k)}{\sum_{i=1}^k \prod_{j=1}^n P(x_j|y_i) imes P(y_i)}$$

由于对于所有的标签,分母一样,因此忽略分母部分,将朴素贝叶斯化简为:

$$f(x) = \mathop{argmax}\limits_{y_1,y_2...,y_k} \prod_{j=1}^n P(x_j|y_k) P(y_k)$$

(4) 细分模型 (以文本分类为例)

高斯模型

- 连续型变量特征
- 条件概率

$$P(x_i|y_k) = rac{1}{\sqrt{2\pi\sigma_{y_k,i}^2}} imes e^{-rac{(x_i-u_{y_k,i})^2}{2\sigma_{y_k,i}^2}}$$

 $u_{y_k,i}$ - y_k 类中,第i维特征的均值; $\sigma_{y_k,i}^2$ - y_k 类中,第i维特征的方差。

在文本分类场景下,样本 x 就是文档,特征 x_i 就是单词,标签就 y 就是文档类别,对于新样本 x 判断其类别。

多项式模型

- 以单词的频次参与统计计算。
- 先验概率:

$$P(y_k) = rac{y_k$$
类文档的所有单词 所有文档的所有单词

条件概率

$$P(x_i|y_k) = rac{$$
单词 x_i 在 y_k 类文档中出现的次数之和 $+1$ y_k 类文档的所有单词 $+$ 所有文档的单词种类

伯努利模型

- 以是否出现参与统计计算。
- 先验概率:

$$P(y_k) = \frac{y_k$$
类文档的个数
所有文档的个数

条件概率

$$P(x_i|y_k) = rac{y_k$$
类文档中包含单词 x_i 的文档个数 $+ 1$ y_k 类文档的个数 $+ 2$

(5) 拉普拉斯平滑

由于 $P(y_k) \times \prod_{j=1}^n P(x_j|y_k) P(y_k)$ 为多项连乘,其中一项为0,则整个公式为0(**零概率事件**)。因此,假定训练样本很大时,每个特征 x_i 和样本 x 的计数加1造成的估计概率变化可以忽略不计,但可以方便有效的避免零概率问题。

(6) Python代码

sklearn.naive_bayes.MultinomialNB()

(7) 算法优劣

优点

• 分类稳定,可以处理多分类任务;

• 对确实数据不敏感,目可以讲行增量训练。

缺点

• 需要知道事件发生的先验概率。

7.什么是决策树?

(1) 决策树 (Decision Tree)

决策树是一种树形结构模型,由一个根节点,若干个内部节点和叶节点组成。其中,根节点和内部结点表示一个特征或属性,叶结点表示一个类别。西瓜分类的一颗决策树如下所示:

决策树(decision tree) 是一类常见的机器学习方法. 以二分类任务为例, 我们希望从给定训练数据集学得一个模型用以对新示例进行分类, 这个把样本分类的任务, 可看作对"当前样本属于正类吗?"这个问题的"决策"或"判定"过程. 顾名思义, 决策树是基于树结构来进行决策的, 这恰是人类在面临决策问题时一种很自然的处理机制. 例如, 我们要对"这是好瓜吗?"这样的问题进行决策时, 通常会进行一系列的判断或"子决策": 我们先看"它是什么颜色?", 如果是"青绿色",则我们再看"它的根蒂是什么形态?",如果是"蜷缩",我们再判断"它敲起来是什么声音?",最后,我们得出最终决策: 这是个好瓜. 这个决策过程如图 4.1 所示.

(2) 基本流程

决策树一个由根到叶的递归过程,通过根节点和内部节点划分属性,直到只剩单一类型/无可用属性后停止。其份代码如下所示:

输入: 训练集 $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\};$ 属性集 $A = \{a_1, a_2, \dots, a_d\}.$

过程: 函数 TreeGenerate(D, A)

1: 生成结点 node;

2: if D中样本全属于同一类别 C then

3: 将 node 标记为 C 类叶结点; return

4: end if

5: if $A = \emptyset$ OR D 中样本在 A 上取值相同 then

6: 将 node 标记为叶结点, 其类别标记为 D 中样本数最多的类; return

7: end if

8: 从 A 中选择最优划分属性 a*;

9: for a* 的每一个值 a* do

10: 为 node 生成一个分支; 令 D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集;

11: if D_v 为空 then

12: 将分支结点标记为叶结点, 其类别标记为 D 中样本最多的类; return

13: else

14: 以 TreeGenerate(Dv, A\{a*})为分支结点

15: end if

16: end for

输出:以 node 为根结点的一棵决策树

具体停止条件

- 当前节点包含的样本属于同一类别,视为叶节点,无需划分;
- 无可用属性进行后续划分,视为同一类别(叶节点),无需划分;
- 当点节点不包含样本,删除该节点,回退至父节点重新划分。

(3) 算法分类

- **ID3**: 在决策树的内部节点和根节点上,使用信息增益方法作为划分属性的选择标准,信息增益越大越好。
- C4.5: 使用信息增益率来选择节点属性,增益率越高越好。
- CART: 使用基尼指数选择划分属性, 基尼指数越小越好。

(4) 划分属性的选择标准

信息增益

假定离散属性 a 有 V 个可能的取值 a^1, a^2, \ldots, a^n , 若使用 a 来对样本集 D 进行划分,则会产生 V 个内部 节点,其中第 v 个内部节点包含了 D 中所有在属性 a 上取值为 a^n 的样本,记为 D_v ,根据式(1)计算出 D_v 的信息熵,并给予该节点权重 $\frac{|D^v|}{|D|}$ 。 再考虑到其他内部节点,计算出属性 a 对样本集进行划分所获得的 "信息增益",如式(2)所示。

$$Ent(D) = -\sum_1^n p_k log_2 p_k$$

- Ent(D) 信息熵;
- n-类别数目;

• p_k - 样本集中第k类样本所占的比例

$$Gain(D,a) = Ent(D) - \sum_{1}^{V} rac{|D^v|}{|D|} Ent(D^v)$$

• *Gain(D,a)* - 信息增益。

•

信息增益率

$$Gain_ratio(D) = rac{Gain(D,a)}{-\sum_1^V rac{|D^v|}{|D|}log_2rac{|D^v|}{|D|}}$$

基尼指数

$$Gini(D) = -\sum_{k_1=1}^n \sum_{k_2!=k_1} p_{k_1} p_{k_2}$$

$$Gini_index(D,a) = \sum_1^V rac{|D^v|}{|D|} Gini(D^v)$$

(5) Python代码

from sklearn import tree #导入需要的模块
clf = tree.DecisionTreeClassifier() #实例化模型对象
class sklearn.tree.DecisionTreeClassifier (criterion='gini'/'entropy',
splitter='best', max_depth=None,min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None,random_state=None,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None,class_weight=None, presort=False)

(6) 算法优劣

优点

- 易于理解和实现;
- 数据准备简单;

缺点

• 类别过多时,分类困难且时间较长。

8.什么是支持向量机?

(1) 支持向量机 (Support vector machine)

支持向量机(Support Vector Machine, SVM)是一种有监督的机器学习算法,主要用于分类和回归分析。它的基本思想是在高维空间中构建一个超平面,将不同类别的数据点分开,使得两类数据点到超平面的距离最大化。

• 超平面

超平面是指 n 维线性空间中维度为 n-1 的子空间。该子空间可以把线性空间分割成不相交的两个部分,例如:二维空间的线和三维空间的面。其描述方程为 $w^Tx+b=0$,记为超平面 (w,b) ;而由于方程的乘法性质,对于任意的 k 值,(w,b) 和 (kw,kb) 为同一超平面,因此下述用(w,b)表示。其中, $w=(w_1,w_2,\ldots,w_n)$ 为超平面的法向量;b 为位移项,决定超平面与原点的距离。

• 函数间隔与支持向量

函数间隔 $y_i \times (wx_i + b)$ 表示样本点距离超平面的距离,其值越大,距离越远。而支持向量则表示满足函数 $y_i \times (wx_i + b) = k$ 的样本点。

• 工作原理

线性可分情况(硬间隔SVM): 对于线性可分的数据,SVM试图找到一个能将两类数据完全分开的超平面,并使两类数据点到超平面的距离最大化(即最大间隔)。这个最大间隔超平面由最靠近它的几个支持向量决定。**线性不可分情况(软间隔SVM)**: 对于线性不可分的数据,SVM引入了软间隔,允许一些数据点位于间隔区域内或错分,从而使分类更加鲁棒。通过引入松弛变量和惩罚参数,SVM在最大化间隔和最小化误分类之间寻求平衡。**非线性情况**: 对于非线性数据,SVM使用核技巧将数据映射到高维特征空间,使得在高维空间中线性可分,从而实现非线性分类。常用的核函数包括线性核、多项式核、高斯核等。

(2) 模型推导

• 线性可分

(a) 函数间隔和支持向量

已知超平面 (w,b) ,对于任一样本 (x_i,y_i) \in 样本集 D ,都满足函数间隔 $y_i \times (wx_i+b) > 0$ 。若定义最小函数间隔 γ 为 $\min_i(y_i \times (wx_i+b))$,则所有正样本一定满足 $y_i \times (wx_i+b) \geq \gamma > 0$ 。为了保证分类的鲁棒性,一定存在合适的超平面 (w,b) ,使得任一正样本 $(x_i,y_i) \in D$ 都满足函数间隔 $y_i \times (wx_i+b) \geq 1$ 。其中,函数间隔 $y_i \times (wx_i+b) = 1$ 对应的样本点,称为支持向量。若 $y_i = +1$,则 x_i 落在超平面 $H_1: wx+b=1$ 上;若 $y_i = -1$,则 x_i 落在超平面 $H_1: wx+b=1$ 上。如图所示,超平面 H_1 和 H_2 均与超平面 H_0 平行,且等距分布在两侧。其中,支持向量(超平面 H_1)到超平面 H_0 的距离 $\frac{1}{\|w\|_2}$ 为最短间隔,而超平面 H_1 到的超平面 H_2 的距离 $\frac{2}{\|w\|_2}$ 为几何间隔。

(b) **硬间隔最大化**

支持向量机通过最大化最短间隔和集合间隔,完成对训练样本的最佳线性分类,即**硬间隔最大化**。公式表达为 $\max_{(w,b)} \frac{1}{||w||_2}, s.\, t.\, y_i \times (wx_i+b) \geq 1$ 。而最大化 $\frac{1}{||w||_2}$ 和最小化 $\frac{1}{2} ||w||_2$ 等价,因此硬间隔最大化可以重写成一个凸二次规划函数,即 $\min_{(w,b)} \frac{1}{2} ||w||_2, s.\, t.\, y_i \times (wx_i+b) \geq 1$ 。若样本集线性可分,则该凸二次规划函数的解一定存在且唯一。

(c) 对偶求解

引入拉格朗日算子,即可写出凸二次规划函数的拉格朗日函数,如下:

$$L(w,b,lpha) = rac{1}{2} \|w\|_2 - \sum_{i=1}^n lpha_i y_i (wx_i + b) + \sum_{i=1}^n lpha_i$$

其中, $\alpha=(\alpha_1,\alpha_2,\dots\alpha_n)$ 是拉格朗日乘子。 根据朗格朗日的对偶性,将求解问题转化为一个极大极 小问题 $\max_{\alpha=(w,b)}L(w,b,\alpha)$ 。解法如下: Step 1: 将拉格朗日函数其 $L(w,b,\alpha)$ 分别对 w,b 求偏导

可得:

$$rac{\partial L}{\partial w} = w - \sum_{i=1}^n lpha_i y_i x_i = 0$$

$$rac{\partial L}{\partial b} = -\sum_{i=1}^n lpha_i x_i = 0$$

Step 2: 将拉格朗日函数化简为:

$$L(w,b,lpha) = -rac{1}{2}\sum_{i=1}^n\sum_{j=1}^nlpha_ilpha_jy_iy_j(x_ix_j) + \sum_{i=1}^nlpha_i$$

Step 3: 将极大极小问题化简为:

$$minrac{1}{2}\sum_{i=1}^n\sum_{j=1}^nlpha_ilpha_jy_iy_j(x_ix_j)-\sum_{i=1}^nlpha_i,$$

$$s.t.\sum_{i=1}^n \alpha_i y_i = 0$$

Step 4: 求解出最佳的超平面 (w,b):

$$w = \sum_{i=1}^n lpha_i y_i x_i$$

$$b=y_i-x_j\sum_{i=1}^nlpha_iy_ix_i$$

$$s.t.y_j(wx_j+b)=1$$

• 线性不可分

线性可分问题的支持向量机对线性不可分是不适用的,因此本节采用软间隔将支持向量机推广到线性不可分的情况。

(a) 软间隔最大化

假设条件: 样本集 D 不是线性可分的,但剔除特异点之后,剩下的大部分样本 (x_i,y_i) 是线性可分的。 线性不可分意味着某些样本点 (x_i,y_i) 不能满足函数间隔 $y_i \times (wx_i+b) \geq 1$ 的约束条件。因此,引入一个松弛变量 $\xi_i \geq 0$,使得函数间隔更加宽松 $y_i \times (wx_i+b) \geq 1-\xi_i$ 。同时,对每个松弛变量 ξ_i ,引入一个代价变量 ξ_i 和惩罚参数 C 。软间隔最大化的凸二次规划函数则可以转化为:

$$rac{1}{2}\|w\|_2 + C \sum_{i=1}^n \xi_i$$

$$s.t.y_i(wx_i+b) > 1 - \xi_i, (\xi_i > 0)$$

(2) 对偶求解

引入拉格朗日乘子 α, β ,写出凸二次规划函数的对偶问题,如下:

$$\max_{lpha,eta} -rac{1}{2}\sum_{i=1}^n\sum_{j=1}^nlpha_ilpha_jy_iy_j(x_ix_j) + \sum_{i=1}^nlpha_i$$

$$s.t.\sum_{i=1}^n lpha_i y_i = 0$$

$$C - \alpha_i - \beta_i = 0$$

$$\alpha_i \geq 0, \beta_i \geq 0$$

如果 $0<\alpha_i< C$,则 $C-\alpha_i=\beta_i>0$,可以求得对应的 $\xi_i=0$ 。因此,该条件下最终求解的最优超平面 (w,b) 同线性可分类似,为

$$w = \sum_{i=1}^n lpha_i y_i x_i$$

$$b=y_j-x_j\sum_{i=1}^nlpha_iy_ix_i$$

$$s.t.y_j(wx_j+b)=1$$

在线性不可分的情况下,最优超平面 (w,b) 的法向量 w 是唯一的,但是偏置 b 不一定是唯一的。因此,采用多次求解后的均值作为偏置 b 。 对于 $\alpha_i=C$ 来说,满足 $\xi_i>0$ 都是特异点。特异点到所属边界超平面的距离为 $\frac{\xi_i}{\|w\|_2}$ 。如果 $0<\xi_i<1$,则位于超平面 H_1,H_2 和 H_0 之间,仍被分类成功:如果 $\xi_i=1$,在超平面 H_0 上,无法分类; $\xi_i>1$,则被分类错误。

- **非线性** 在非线性情况下,SVM通过某种事先选择的非线性映射(核函数)将输入变量映到一个高维特征空间,将其变成在高维空间线性可分,在这个高维空间中构造最优分类超平面。参考:支持向量机原理之线性SVM与非线性SVM
- (3) Python代码

from sklearn.svm import SVC

参考: 【ML】支持向量机SVM及Python实现(详细)_支持向量机代码(鸢尾花为案例)

- (4) 优缺点
 - 优点:线性/非线性分类,小样本,高维数据。
 - 缺点: 对核函数和惩罚参数的选择十分敏感。

9.什么是逻辑回归?

(1) 核心思想

对样本集X中的样本 $x=(x_1,x_2...x_i)$ 的特征进行线性拟合,并采用Sigmoid函数将拟合的预测结果值映射到值域为(0,1)的概率空间。其中,当线性回归的输出值大于0,Sigmoid函数将输出大于0.5的值;当线性回归的输出值等于0,Sigmoid函数将输出等于0.5的值;当线性回归的输出值小于0,Sigmoid函数将输出小于0.5的值。因此,可以将大于等于0.5的情况视为正分类(y_1),而小于0.5的情况视为负分类(y_0)。

• **Sigmoid函数** 由于线性回归的结果范围为正负无穷,因此通过**对数几率**将线性回归的**预测结果**非线性映射到固定区间(0~1)之间,数学表达式为:

$$S(x)=rac{1}{1+e^{-x}}$$

(2) 逻辑回归

数学表达

$$P(y=1|x, heta)=rac{1}{1+e^{- heta^Tx}}$$

 $P(y=1|x,\theta)$ 表示给定样本 x ,其预测标签为正分类的概率。 θ 表示样本特征 x_i 的权重参数。这个表达式的核心思想可以通过2步来分解和理解:**第一步:回归假设**: $z=h_{\theta}(x)=\theta^Tx$;**第二步:Sigmoid函数**: $y=g(z)=\frac{1}{1+e^{-z}}$ 。当 $\theta^Tx\geq 0, h_{\theta}(x)\geq 0, g(z)\geq 0.5$ 为正分类,反之 g(z)<0.5 为负分类,因此逻辑回归算法的核心就在于求解权重 θ 和回归假设的函数,即确定决策边界。

• 决策边界的定义 逻辑回归算法通常不拟合样本分布,而且通过权重 θ 和回归函数确定决策边界,将样本划分为2类。其中,决策边界包括线性决策边界和非线性决策边界。 线性决策边界:即第一步线性回归: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \dots + \theta_i x_i$ 。

非线性决策边界:即将线性回归拓展成多项式回归: $h_{ heta}(x)= heta_0+ heta_1x_1+ heta_2x_2^2\ldots+ heta_ix_i^i$ 。

• **决策边界的确定** 决策边界通过梯度下降法最小化损失函数得到。 **损失函数**: 损失函数通过衡量训练样本标签与预测标签之间的差异,确定最优的决策边界。其中,损失函数越小,决策边界越好。损失函数包括: 均方误差损失(MSE)和对数损失函数。 均方差误差:

$$MSE = rac{1}{m}\sum_{x \in X}(f(x) - y_{1/2})$$

对数损失函数:

$$J(heta) = -rac{1}{m}[\sum_{x \in X} (y_{1/2} \log h_{ heta}(x) + (1-y_{1/2}) \log (1-h_{ heta}(x))]$$

梯度下降:梯度下降法通过向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索,找到一个函数的局部极小值。该局部极小值对应的参数 θ 即为最佳的参数 θ 。其公式为:

$$J(heta_1) = heta_1 - lpha rac{dJ(heta_1)}{d heta_1}$$

(3) 算法正则化

在训练数据不够多,或者模型复杂又过度训练时,模型会陷入过拟合(Overfitting)状态。通过对损失函数添加正则化项,可以约束参数的搜索空间,从而缓解过拟合现象,以下是对对数损失函数添加L2正则化项的公式。其中,m为样本集 X的个数; λ 为正则化系数, λ 值越大, $J(\theta)$ 越大,越不容易发生过拟合现象。

$$J(heta) = rac{1}{m} [\sum_{x \in X} (y_{1/2} \log h_{ heta}(x) + (1-y_{1/2}) \log (1-h_{ heta}(x))] + rac{\lambda}{2m} \sum_{j=1}^i heta_j^2$$

(4) Python代码

参见厦门大学数据实验室 Python实现逻辑回归(Logistic Regression in Python)_厦大数据库实验室博客 (xmu.edu.cn)

10.介绍一下机器学习中的Nucleus采样原理

Nucleus 采样 (Nucleus Sampling),也称为 **Top-p 采样**,是一种用于文本生成模型(如 GPT 系列模型)的 采样策略,特别用于生成质量更高、更具多样性的文本。它通过动态调整生成候选集的大小,控制输出的质量 和随机性。

1. 采样问题背景

在生成式任务中,如文本生成或对话系统,模型通常会在每个生成步骤从概率分布中选择一个单词。常见的策略有:

- 贪婪搜索:每一步选择概率最高的单词,容易导致重复和缺乏多样性。
- 随机采样: 完全根据模型输出的概率分布随机选取, 可能会导致生成无意义或语法不通的内容。
- **Top-k 采样**: 仅从概率分布前 k 个最有可能的词中选择,而忽略剩下的候选词。这增加了一定的随机性,但 k 的值固定,可能忽略了一些罕见但有意义的词。

为了在 **质量** 和 **多样性** 之间取得更好的平衡,Nucleus **采样** 应运而生。

2. Nucleus 采样原理

Nucleus 采样并不是简单地选择前 k 个最可能的词,而是根据一个动态的概率阈值 p 来决定候选集的大小。它的具体操作如下:

- 1. 计算概率分布: 给定模型在当前时间步的输出概率分布。
- 2. **排序并累加概率**:将词按照模型给出的概率从高到低排序,然后从最高概率开始累积这些概率值,直到累积的概率达到设定的阈值 p。
- 3. **采样候选集**:生成的候选集是累积概率超过p的那一部分词。接下来,从这个候选集中根据概率分布随机采样。

因此,Nucleus 采样是基于累积概率的动态调整策略,它确保候选词集合足够灵活,包含那些对生成质量至关重要的高概率词,同时也保留了低概率但可能有创意的词。

3. 与 Top-k 采样的区别

- **Top-k 采样**: Top-k 采样是从前 k 个最有可能的词中采样,忽略了剩下的词。而无论总概率分布如何,k 是一个固定的整数。它的局限性在于,k 的选择可能过小,限制了生成的多样性,或者过大,导致生成质量下降。
- Nucleus 采样 (Top-p 采样): Nucleus 采样动态选择候选词的数量,通过一个累积概率阈值 p。随着 p 的变化,候选词集合可以根据上下文自动扩展或收缩,因此比 Top-k 更灵活、更适应不同的生成情境。

4. p 值的影响

- **较小的** \mathbf{p} : 如果设定的 p 很小(接近 0.1 或 0.2),模型将只会从极少数的高概率词中选择,输出将趋于确定,类似贪婪搜索的效果。这会提高文本的连贯性和语法正确性,但可能缺乏多样性和创意。
- **较大的 p**: 如果设定的 p 较大(如 0.9),候选词集合会更大,包含更多低概率词,增加生成的随机性和 多样性。这可能使文本生成更具创意和新颖性,但也可能会增加生成不连贯或无意义内容的风险。

5. Nucleus 采样的优势

- **灵活性**: Nucleus 采样能够根据不同上下文动态调整候选集的大小,在保证生成质量的同时,增加文本的多样性。
- **避免冗余或无意义的选择**:与 Top-k 不同,Nucleus 采样不会固定从 k 个词中采样,它会在保证语义连贯的前提下,选择最有意义的词进行采样。
- **平衡性**:它提供了灵活的平衡机制,既能控制生成的连贯性和语法正确性,又能通过随机性保持生成内容的丰富性。

6. 实际应用场景

Nucleus 采样常用于生成式语言模型中,如 GPT-3、GPT-4 等,它可以生成对话、文本扩展等任务。通过调整 p 值,开发者可以控制模型输出的创造性和连贯性。比如:

- 在**写作辅助**场景中,可以设置较大的 p 值,鼓励模型生成具有创意的内容。
- 在对话系统中, 较小的 p 值可能更适合, 让模型的回答更加精确和连贯。

7. 示例代码

以下是一个使用 PyTorch 的简单示例,展示如何实现 Nucleus 采样。

```
import torch

def nucleus_sampling(logits, p):
    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
    cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)

# 选出累积概率大于 p 的部分
    cutoff_index = torch.where(cumulative_probs > p)[0][0]
    filtered_logits = sorted_logits[:cutoff_index + 1]
    filtered_indices = sorted_indices[:cutoff_index + 1]
```

```
# 在这些候选集中进行采样
sampled_index = torch.multinomial(torch.softmax(filtered_logits, dim=-1), 1)
return filtered_indices[sampled_index]

# 假设 logits 是一个表示词的概率的张量,下面的代码会从中进行 Nucleus 采样
logits = torch.tensor([0.1, 0.2, 0.05, 0.4, 0.15, 0.1])
p = 0.85 # 累积概率阈值
selected_word_index = nucleus_sampling(logits, p)
print(selected_word_index)
```

11.介绍一下机器学习中不同聚类算法的性能特点

算法名称	可伸缩性	适合的数据类型	高维性	异常数据抗干扰性	聚类形状	算法效率
WAVECLUSTER	很高	数值型	很高	较高	任意形状	很高
ROCK	很高	混合型	很高	很高	任意形状	一般
BIRCH	较高	数值型	较低	较低	球形	很高
CURE	较高	数值型	一般	很高	任意形状	较高
K-PROTOTYPES	一般	混合型	较低	较低	任意形状	一般
DENCLUE	较低	数值型	较高	一般	任意形状	较高
OPTIGRID	一般	数值型	较高	一般	任意形状	一般
CLIQUE	较高	数值型	较高	较高	任意形状	较低
DBSCAN	一般	数值型	较低	较高	任意形状	一般
CLARANS	较低	数值型	较低	较高	球形	较低

12.介绍一下机器学习中的SVD (Singular Value Decomposition) 技术

SVD (Singular Value Decomposition, 奇异值分解) 是一种常用的矩阵分解技术,在AIGC、传统深度学习以及自动驾驶中都有广泛的应用。SVD 提供了一种将一个矩阵分解成多个分量的方法,有助于数据降维、特征提取、数据去噪、AI模型轻量化等任务。

1. SVD 的数学原理

对于一个任意矩阵 A (大小为 $m \times n$),SVD 将其分解为三个矩阵的乘积:

$$A = U\Sigma V^T$$

其中:

- U (大小 m imes m) : 左奇异向量矩阵,列向量是 AA^T 的特征向量。
- Σ (大小 $m \times n$) : 对角矩阵, 包含 A 的**奇异值**, 按降序排列。奇异值是 A 的特征值的平方根。
- V^T (大小 $n \times n$) : 右奇异向量矩阵,行向量是 A^TA 的特征向量的转置。

几何解释:

• SVD 将一个矩阵 A 分解成三个部分:先通过 V 进行旋转,再通过 Σ 进行缩放,最后通过 U 进行另一个旋转。

• Σ 中的奇异值反映了矩阵 A 在不同方向上的重要性。

2. SVD 的应用场景

2.1 数据降维与 PCA

- **PCA (主成分分析)** : PCA 可以通过 SVD 实现,它将高维数据映射到一个低维空间,同时保留尽可能多的数据方差。
- 方法:
 - 1. 对数据矩阵 A 进行中心化处理 (减去均值)。
 - 2. 对中心化矩阵执行 SVD 分解 $A = U\Sigma V^T$ 。
 - 3. 选取 Σ 中最大的 k 个奇异值及对应的 U 和 V 向量,得到降维后的数据。

2.2 推荐系统

- 在推荐系统中,用户-物品评分矩阵通常是稀疏的。SVD 可以分解评分矩阵,提取出用户和物品的隐含特征表示。
- 步骤:
 - 1. 对评分矩阵 R 进行 SVD 分解。
 - 2. 使用分解后的矩阵 U , Σ , V^T 预测缺失的评分。

优势: SVD 可以有效提取用户和物品的特征,解决稀疏矩阵的问题。

2.3 去噪与数据压缩

- **图像去噪**: SVD 可用于图像的压缩和去噪,通过保留主要的奇异值,丢弃次要的奇异值,实现信息的压缩和噪声的滤除。
- 原理:
 - \circ 图像通常被表示为矩阵形式,通过 SVD 分解后,保留前 k 个奇异值及对应向量,重构近似图像。
 - 。 较小的奇异值通常对应噪声。

2.4 解决线性系统与伪逆计算

- SVD 可以用于求解奇异或非方矩阵的线性系统。
- 矩阵伪逆:
 - \circ 对矩阵 A 的伪逆可以通过 SVD 求解:

 $A^+ = V \Sigma^+ U^T$

其中 Σ^+ 是 Σ 的伪逆。

3. SVD 的优点与缺点

优点:

- 1. 适用性广: 适用于任意形状的矩阵(非方矩阵也适用)。
- 2. **数值稳定性**: SVD 是一种数值稳定的分解方法。
- 3. 特征提取: 可用于数据降维、压缩、去噪等任务。

4. 适用于稀疏矩阵: 在推荐系统等任务中表现优秀。

缺点:

- 1. **计算复杂度高**: SVD 的时间复杂度为 $O(n^3)$ (对于 $n \times n$ 的矩阵) , 在大规模数据上计算成本较高。
- 2. 不易解释: 分解后的奇异值和奇异向量可能缺乏直观的物理意义。

4. SVD 与其他分解方法的对比

分解方法	适用矩阵类型	主要应用	是否适用于降维	
SVD	任意矩阵	降维、去噪、推荐系统	是	
PCA	数据协方差矩阵	主成分分析、特征提取	是 (基于 SVD)	
LU 分解	方阵	线性方程求解	否	
QR 分解	方阵	正交化与回归分析	否	
 Eigen 分解	方阵,且对称正定	 计算特征值、特征向量		

13.介绍一下机器学习中的聚类算法原理

什么是聚类?

- 聚类是一种**无监督学习**技术,它的目标是将数据集划分为若干个组(簇,clusters),使得:
 - 。 同一簇中的数据点彼此之间的相似度尽可能高。
 - 。 不同簇之间的数据点相似度尽可能低。
- 聚类广泛应用于AIGC、传统深度学习以及自动驾驶等AI核心领域。

聚类算法的主要类别

根据聚类方法的不同,可以将聚类算法分为以下几类:

- 1. 划分式聚类 (Partitioning Clustering)
- 2. 层次聚类 (Hierarchical Clustering)
- 3. 基于密度的聚类 (Density-Based Clustering)
- 4. 基于网格的聚类 (Grid-Based Clustering)
- 5. 基于模型的聚类 (Model-Based Clustering)

下面Rocky详细介绍每种类别的代表算法。

1. 划分式聚类

概念

- 将数据集划分为 K 个簇, 直接对簇进行优化。
- 每个簇由一个中心点(质心)表示,数据点根据距离最近的质心分配到对应的簇。

代表算法: K-Means

• K-Means 是最常用的划分式聚类算法。

• 工作原理:

- 1. 随机选择 K 个点作为初始质心。
- 2. 将每个数据点分配到最近的质心。
- 3. 重新计算每个簇的质心。
- 4. 重复步骤 2 和 3, 直到质心不再变化或达到最大迭代次数。

• 优点:

- 。 简单易实现。
- 。 计算效率高,适合大规模数据。

• 缺点:

- \circ 需要预先指定 K 。
- 。 对初始值敏感,容易陷入局部最优。
- 。 不能处理非球形数据和不同大小的簇。

改进算法:

- 。 K-Means++: 改进初始化步骤, 使质心的选择更加合理。
- MiniBatch K-Means: 用于大规模数据集,采用小批量数据优化。

2. 层次聚类

概念

- 通过构建层次树状结构 (dendrogram) 实现聚类。
- 可以分为两种方法:
 - 1. 凝聚层次聚类 (Agglomerative Clustering) :
 - 自底向上,每个数据点开始是一个单独的簇,逐步合并簇。
 - 2. 分裂层次聚类 (Divisive Clustering) :
 - 自顶向下,所有数据点开始是一个大簇,逐步分裂成多个簇。

代表算法: 凝聚层次聚类

• 步骤:

- 1. 计算所有数据点之间的距离矩阵。
- 2. 找到最近的两个簇, 合并它们。
- 3. 更新距离矩阵。
- 4. 重复步骤 2 和 3, 直到所有数据点合并为一个簇或达到停止条件。

• 链接方法 (距离度量方式):

- 单链 (Single Linkage): 两簇中最近的数据点之间的距离。
- o 全链 (Complete Linkage):两簇中最远的数据点之间的距离。
- 平均链 (Average Linkage):两簇之间所有点的平均距离。

• 优点:

不需要预定义簇的数量。

适合小数据集,能够生成数据的层次结构。

• 缺点:

- 。 计算复杂度较高,无法处理大规模数据。
- 对噪声和异常值敏感。

3. 基于密度的聚类

概念

• 通过数据点的密度来定义簇, 高密度区域的点归为一个簇, 低密度区域被认为是噪声或边界点。

代表算法: DBSCAN

工作原理:

- 1. 选择一个点,确定其 ϵ -邻域内的点。
- 2. 如果邻域内的点数大于某个阈值(MinPts),则将这些点归为一个簇。
- 3. 对邻域内的点重复步骤 2, 直到没有新的点可以加入。
- 4. 标记低密度区域的点为噪声点。

• 优点:

- 。 能够自动确定簇的数量。
- 。 能处理任意形状的簇。
- 对噪声点具有鲁棒性。

缺点:

- \circ 对 ϵ 和 MinPts 参数敏感。
- 。 在高维数据中效果较差。

改进算法

• HDBSCAN:

。 在 DBSCAN 基础上, 自动选择合适的密度阈值, 适合更多场景。

4. 基于网格的聚类

概念

• 将数据空间划分为固定大小的网格单元,每个单元根据数据密度分配到簇。

代表算法: CLIQUE

• 工作原理:

- 1. 将数据划分为固定网格。
- 2. 识别高密度网格单元。
- 3. 将相邻的高密度单元合并为一个簇。

• 优点:

- 。 高效, 适合大规模数据。
- 。 对高维数据有效。

缺点:

- 。 依赖网格划分的大小。
- 。 可能丢失簇的边界细节。

5. 基于模型的聚类

概念

• 通过假设数据点服从某种分布 (例如高斯分布) , 用概率模型来拟合数据。

代表算法: GMM (Gaussian Mixture Model)

工作原理:

- 1. 假设数据点服从多个高斯分布。
- 2. 使用期望最大化算法 (EM) 优化每个高斯分布的参数 (均值、协方差)。
- 3. 根据每个数据点属于各高斯分布的概率分配簇。

• 优点:

- 。 能够生成概率输出,适合软聚类。
- 。 能处理不同形状和大小的簇。

• 缺点:

- 。 对初始值敏感。
- 。 计算复杂度较高。

聚类算法比较

算法	适用场景	优点	缺点
K- Means	球形数据、规模较大的数据 集	简单高效,易实现	对初始值敏感,无法处理非球形簇
层次聚 类	小规模数据、生成层次结构	不需要预定义簇数量,结果直 观	计算复杂度高,敏感于噪声
DBSCAN	任意形状的簇,含噪声的数 据	自动确定簇数,对噪声鲁棒	参数敏感,高维数据效果差
GMM	不同形状和大小的簇	能处理软聚类,适合概率建模	对初始值敏感, 计算复杂度高
CLIQUE	大规模高维数据	高效,适合网格划分的场景	依赖网格划分,可能丢失细节

如何选择聚类算法?

1. 数据规模:

。 小数据集: 层次聚类。

。 大规模数据集: K-Means 或 DBSCAN。

2. 数据分布:

○ 球形数据: K-Means。

。 非球形数据: DBSCAN 或 GMM。

3. **是否包含噪声**:

。 包含噪声: DBSCAN。

。 不包含噪声: K-Means 或层次聚类。

4. 结果要求:

○ 精确分组: GMM。

。 快速近似: K-Means。