Vizualizace ACO pro hledání nejkratší cesty

Tomáš Beránek

xberan46@stud.fit.vutbr.cz Fakulta informačních technologií Vysokého učení technického v Brně

Obecné informace

Glabowski, M., Musznicki, B., Nowak, P. a Zwierzykowski, P. Shortest path problem solving based on ant colony optimization metaheuristic. Image Processing Communications. De Gruyter Poland. 2012, roč. 17, 1-2, s. 7.

Řešení hostováno na Githubu:

https://github.com/TomasBeranek/but-sfc-project

- Programovací jazyk:
 - Python3.8 pro Ubuntu,
 - Python3.6 pro server Merlin (bez tooltipů).
- GUI knihovna tkinter.

Algoritmus ShortestPathACO

- Větší podobnost reálným mravencům než u řešení TSP.
- Mravenci vyráží z mraveniště (počáteční uzel) a hledají jídlo (koncový uzel), se kterým se vracejí zpět.
- Mravenci mají určitou rychlost nepřeskakují mezi uzly.
- Výběr následujícího uzlu:

$$ho_{ij} = rac{oldsymbol{q}_{ij}}{\sum_{l:(i,l)\in E}oldsymbol{q}_{il}} \qquad \qquad oldsymbol{q}_{ij} = au_{ij}^lpha \eta_{ij}^eta$$

kde τ je množství feromonů a η je váha (délka) hrany.

Algoritmus ShortestPathACO

- Mravenci se vracejí po stejné cestě bez smyček.
- Feromony jsou vypouštěny postupně při návratu mravence.
- Přírůstek feromonů je počítán:

$$\Delta au = 1$$
 $\Delta au = rac{1}{a_P}$ $\Delta au = rac{C}{a_P}$ $\Delta au = rac{a_{P_{best}}}{a_P}$

- Vypařování feromonů probíhá každou sekundu a je nezávislé na rychlosti mravenců.
- Stále se jedná o heuristiku!

Nastavitelné parametry simulace

- Při spuštění programu:
 - počet mravenců,
 - podkladový graf (JSON formát).
- Za běhu:
 - typ výpočtu přírůstku feromonů,
 - koeficient vypařování,
 - rychlost mravenců,
 - α vliv feromonů,
 - β vliv váhy (délky) hrany.

Děkuji Vám za pozornost