Mini Network Toolkit

Group - 7

Rushil Patel (AU1841008) Harshil Mehta (AU1841010)

Project Definition

- Mini Network Toolkit is an application that allows its users to perform some network related functions and monitoring activity.
- The point of such a mini toolkit is to ease the pain of managing the network administrators so that they would not need large and complex softwares just to perform some basic housekeeping.
- Some features of our toolkit are:
 - Fetching the system information.
 - Fetching the Interface Table and the Routing table of the machine.
 - Viewing the connections made by internet sockets and/or unix sockets
 - Capturing and viewing ICMP, TCP and UDP packets
 - Testing whether an IP address or a set of IP addresses are active or unreachable
 - Tracing the path taken by a packet during its journey to the provided machine.

Stepwise approach to solve a problem #1

- To build a simple network toolkit, we have used python-tkinter to create its Graphical User Interface.
 - For these we have used functionalities / modules such as creating frames, scroll application & other formatting techniques too.
 - b) Proper modular functions (new files) are made to process different functionalities.
- ViewSystemDetails() functionality calls the OS from the python environment and dumps the expected output into a data file.
 - a) Now, we create a seperate frame / window using tkinter and extract the data from the file.
 - Use of proper delimeter's to show the output in proper format.
 - c) The command used here is *uname* with different switches.

Stepwise approach to solve a problem #2

- 1) KernelInterfaceTable() and kernelRoutingTable() shows the interface table for connecting to the node using netstat command with "-i & -r".0
 - Use of tables, scrolls, frames was done to provide proper interfacing to the users.
- ConnectionDetails() extracts Packet Connection information and then it is read, formatted and appropriately filtered by the tkinter facility.
 - a) The command used here to view packet connection is 'ss'.
- 3) PacketSniffer() sniffs the network and shows information regarding the following packets.
 - a) ICMP Packets
 - b) TCP Packets
 - c) UDP Packets

We have developed the sniffing functionality ourselves and it does not use any Shell Command like the other functionalities.

Stepwise approach to solve a problem #3

- The fping() utility checks the activity of many desired hosts at a single time & provide suitable information regarding the ping sent.
 - a) Here, we also have added dynamic addition of hostnames (in form of abc.com / 8.8.8.8), where user can add / remove different hostnames accordingly in the text area given in GUI.
 - b) The final status *alive/unreachable/dead* is displayed with given hostname.
- 2) The final utility is to show the path/hops for the system to connect to any given webservice using *traceroute*.
 - a) Again, here the similar methods of data fetch & feed works for the GUI as well as formatting.

Originality

01	This mini toolkit allows you to access multiple network tracking commands	 Check network statistics even for multiple targets Monitoring network through packet capture Info about Hops / Path through traceroute & routing information (Data Forwarding)
02	It also allows users to simultaneously check system/connection details	 It helps users to check its active ports & its interface info. Reads the specification of the system
03	Integrating the all above mentioned network related commands for feasible use	 Common usage for diverse networking commands GUI integrated facility for better user perspective Implemented python sniffer to read data on an open socket with proper filters & unpacking.

Tools and References used

Language	Python
GUI Framework	Tkinter (Python)
	Socket
	Struct
Other Modules	Textwrap
	Subprocess
	OS
	fping
	traceroute
Shell Commands	netstat
	SS

Conclusion and Future Work

• Conclusion:

- Concluding, we can say that our toolkit works as intended and provides a very useful housekeeping as well as a quite illustrating example for visualising our theory concepts.
- Obviously, it is not the best software out that can perform such common tasks, but it is definitely usable and could do some good to the network and it's administrator/user, though at a smaller scale and can be used widely in monitoring activities.

Future Work :

- Can add more validation, making sure the software works as intended.
- Can add a few more features like capturing different classes of packets and analyse them.
- A summary feature that shows the statistics of different packets over time.
- Support for Simple Network Management Protocol (SNMP)
- Can be scaled to include some control settings

Thank You