```
In [1]: import warnings
        warnings.filterwarnings("ignore", category=DeprecationWarning)
        warnings.filterwarnings("ignore", category=FutureWarning)
        warnings.filterwarnings("ignore", category=UserWarning)
        import numpy as np
        import pandas as pd
        #pd.set_option('display.max_colwidth', 200)
        import matplotlib.pyplot as plt
        import seaborn as sns
        %matplotlib inline
        import re
        import string
In [2]: | test= pd.read_csv('Twitter Sentiment Test.csv')
        train = pd.read_csv('Twitter Sentiment Train.csv')
In [3]: | print('Training dataset has {} rows and {} columns'.format(train.shape[0], train.shape[1]))
        print('Testing dataset has {} rows and {} columns'.format(test.shape[0], test.shape[1]))
        Training dataset has 31962 rows and 3 columns
        Testing dataset has 17197 rows and 2 columns
In [4]: | train.head(10)
```

Out[4]:

	id	label	tweet				
0	1	0	@user when a father is dysfunctional and is s				
1	2	0	@user @user thanks for #lyft credit i can't us				
2	3	0	bihday your majesty #model i love u take with u all the time in				
3	4	0					
4	5	0	factsguide: society now #motivation				
5	6	0	[2/2] huge fan fare and big talking before the				
6	7	0	@user camping tomorrow @user @user @user @use				
7	8	0	the next school year is the year for exams.ð				
8	9	0	we won!!! love the land!!! #allin #cavs #champ				
9	10	0	@user @user welcome here ! i'm it's so #gr				

In [5]: test.head(10)

Out[5]:

	id	tweet					
0	31963	#studiolife #aislife #requires #passion #dedic					
1	31964	@user #white #supremacists want everyone to s					
2	31965	safe ways to heal your #acne!! #altwaystohe					
3	31966	is the hp and the cursed child book up for res					
4	31967	3rd #bihday to my amazing, hilarious #nephew					
5	31968	choose to be :) #momtip					
6	31969	something inside me dies ð ¦ð ¿â ¨eyes nes					
7	31970	#finished#tattoo#inked#ink#loveitâ ¤ï¸ #â ¤ï¸					
8	31971	@user @user @user i will never understand why					
9	31972	1972 #delicious #food #lovelife #capetown mannaep					

In [6]: train.label.unique()

Out[6]: array([0, 1], dtype=int64)

```
In [7]: train[train.label == 0].head(10)
```

Out[7]:

```
id label
                                                                tweet
                        @user when a father is dysfunctional and is s...
    1
           0
    2
           0
                        @user @user thanks for #lyft credit i can't us...
                                                  bihday your majesty
    3
           0
           0
    4
                            #model i love u take with u all the time in ...
    5
           0
                                   factsguide: society now #motivation
                         [2/2] huge fan fare and big talking before the...
           0
    6
    7
               @user camping tomorrow @user @user @user ...
                      the next school year is the year for exams.ð
           0
    8
    9
           0
                       we won!!! love the land!!! #allin #cavs #champ...
           0
9 10
                          @user @user welcome here ! i'm it's so #gr...
```

```
In [8]: train[train.label == 1].head(10)
```

Out[8]:

```
id label
                                                              tweet
13
      14
               1
                  @user #cnn calls #michigan middle school 'buil...
14
      15
                      no comment! in #australia #opkillingbay #se...
      18
                                               retweet if you agree!
17
               1
23
      24
                   @user @user lumpy says i am a . prove it lumpy.
      35
               1
                      it's unbelievable that in the 21st century we'...
34
                              @user lets fight against #love #peace
56
      57
68
      69
                       ©the white establishment can't have blk fol...
               1
77
      78
                   @user hey, white people: you can call people '...
                      how the #altright uses & amp; insecurity to lu...
82
      83
                      @user i'm not interested in a #linguistics tha...
111 112
```

```
In [9]: train.label.value_counts()
```

Out[9]: 0

0 297201 2242

Name: label, dtype: int64

```
In [10]: train_length = train.tweet.str.len()
    test_length = test.tweet.str.len()
    print(train_length,test_length)
```

```
0
         102
1
         122
2
          21
3
          86
4
          39
31957
          68
31958
         131
31959
          63
31960
          67
31961
          32
Name: tweet, Length: 31962, dtype: int64 0
                                                      90
2
          71
3
         142
          93
4
17192
         108
17193
         96
17194
         145
17195
         104
17196
          64
Name: tweet, Length: 17197, dtype: int64
```

```
In [11]: plt.hist(train_length, bins=20, label='Tweets in training set')
  plt.hist(test_length, bins=20, label='Tweets in testing set')
  plt.legend()
  plt.show()
```



```
In [12]: combined = train.append(test, ignore_index=True)
    print('Combined data has {} rows and {} columns'.format(combined.shape[0], combined.shape[1]))
```

Combined data has 49159 rows and 3 columns

In [13]: | combined.head(10) #last values too

Out[13]:

tweet	label	id	
@user when a father is dysfunctional and is s	0.0	1	0
@user @user thanks for #lyft credit i can't us	0.0	2	1
bihday your majesty	0.0	3	2
#model i love u take with u all the time in	0.0	4	3
factsguide: society now #motivation	0.0	5	4
[2/2] huge fan fare and big talking before the	0.0	6	5
@user camping tomorrow @user @user @use	0.0	7	6
the next school year is the year for exams.ð	0.0	8	7
we won!!! love the land!!! #allin #cavs #champ	0.0	9	8
@user @user welcome here ! i'm it's so #gr	0.0	10	9

In [14]: combined.tail(10)

Out[14]:

tweet					label	id	
#createyourfutu	ï, ð	¸â	°ð	loving lifeð	NaN	49150	49149
, proposes nazi style	nizes,	demo	fesso	black pro	NaN	49151	49150
learn how to think positive. #positive #ins						49152	49151
we love the pretty, happy and fresh you! #teen						49153	49152
NaN 2_damn_tuff-ruff_mufftechno_city-(ng005)-web							49153
ght polarisation! #tru	left-riç	ctory:	ught f	tho	NaN	49155	49154
#hairflip #neverre	ð b	ermaio	ke a m	feeling li	NaN	49156	49155
in #ohio((omg)) &am	oday i	ned to	ampai	#hillary #c	NaN	49157	49156
: right mindset leads	rence	confe	ıt worl	happy, a	NaN	49158	49157
wnload! #shoegaze	ee do	ad" fr	g "so	my son	NaN	49159	49158

```
In [15]: | from nltk.stem.porter import PorterStemmer
         stemmer = PorterStemmer()
         def clean_tweet(tweet):
            '''This function takes raw tweet as input and
           returns cleaned tweet. It removes twitter handles, punctuation,
           short words and stopwords which does not contribute much to our
           analysis'''
           clean_handle = re.sub(r'@[\w]*', '', tweet)
                                                                                           # Removes twitter handles from tweets
           clean_punc = re.sub(r'[^a-zA-Z#]', ' ', clean_handle)
                                                                                            # Removes punctuation, special characte
           clean_short_tokenized = [word for word in clean_punc.split() if len(word) > 3] # Remove short words and tokenize
           clean_normalize = [stemmer.stem(word) for word in clean_short_tokenized]
                                                                                            # Stem tokenized words
           return ' '.join(clean_normalize)
In [16]: | clean tweet(combined.tweet.iloc[3])
Out[16]: '#model love take with time'
In [17]:
         combined.tweet = combined.tweet.apply(lambda x : clean_tweet(x))
In [18]: | from wordcloud import WordCloud, STOPWORDS
         wordcloud = WordCloud(width=800, height=500, random_state=42, max_font_size=110, stopwords=STOPWORDS)
In [19]: | all_tweets = ' '.join(combined.tweet)
         good_tweets = ' '.join(combined[combined.label == 0].tweet)
         bad_tweets = ' '.join(combined[combined.label == 1].tweet)
In [20]: | plt.figure(figsize=(20,12))
         plt.subplot(1,3,1)
         plt.imshow(wordcloud.generate(all_tweets), interpolation='bilinear')
         plt.axis('off')
         plt.title('All tweets')
         plt.subplot(1,3,2)
         plt.imshow(wordcloud.generate(good_tweets), interpolation='bilinear')
         plt.axis('off')
         plt.title('Good tweets')
         plt.subplot(1,3,3)
         plt.imshow(wordcloud.generate(bad_tweets), interpolation='bilinear')
         plt.axis('off')
         plt.title('Bad tweets')
         plt.show()
                         All tweets
                                                                  Good tweets
                                                                                                             Bad tweets
In [21]: def extract_hashtags(tweet):
           hashtag = re.findall(r'#(\w+)', tweet)
            return hashtag
In [22]: | good_hashtags = extract_hashtags(good_tweets)
         bad_hashtags = extract_hashtags(bad_tweets)
In [23]: from nltk import FreqDist
         good = FreqDist(good_hashtags)
```

good_ht = pd.DataFrame({'Hashtag' : list(good.keys()) , 'Count' : list(good.values())}).sort_values('Count', ascending=F
bad_ht = pd.DataFrame({'Hashtag' : list(bad.keys()) , 'Count' : list(bad.values())}).sort_values('Count', ascending=Fals

bad = FreqDist(bad_hashtags)

```
In [24]:
         plt.figure(figsize=(20,10))
         plt.subplot(2,1,1)
         sns.barplot(data=good_ht.iloc[:20], x='Hashtag', y='Count')
         plt.title('Hashtag frequency distribution - Good tweets')
         plt.subplot(2,1,2)
         sns.barplot(data=bad_ht.iloc[:20], x='Hashtag', y='Count')
         plt.title('Hashtag frequency distribution - Bad tweets')
```



```
!pip install genism
         Collecting genism
           ERROR: Could not find a version that satisfies the requirement genism (from versions: none)
         ERROR: No matching distribution found for genism
In [30]: | from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
         import gensim
         ModuleNotFoundError
                                                    Traceback (most recent call last)
         <ipython-input-30-91226bfc434d> in <module>
               1 from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
         ---> 2 import gensim
         ModuleNotFoundError: No module named 'gensim'
         bow_vectorizer = CountVectorizer(max_df=0.90, min_df=2, max_features=1000, stop_words='english')
In [31]:
         bow = bow_vectorizer.fit_transform(combined.tweet)
```

```
In [32]: | tfidf_vectorizer = TfidfVectorizer(max_df=0.90, min_df=2, max_features=1000, stop_words='english')
         tfidf = tfidf_vectorizer.fit_transform(combined.tweet)
         tfidf.shape
```

Out[32]: (49159, 1000)

bow.shape

Out[31]: (49159, 1000)

In [29]:

Logistic Regression

```
In [34]: | from sklearn.linear_model import LogisticRegression
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, roc_curve, auc
         train_bow = bow[:31962, :] # Training data had 31962 rows
         test_bow_without_label = bow[31962:, :] # unlabbeled tweet data
         x_bow_train, x_bow_test, y_bow_train, y_bow_test = train_test_split(train_bow, train.label, test_size=0.3, random_state=
In [35]: | model = LogisticRegression()
         model.fit(x_bow_train, y_bow_train)
Out[35]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                            intercept_scaling=1, l1_ratio=None, max_iter=100,
                            multi_class='warn', n_jobs=None, penalty='12',
                            random_state=None, solver='warn', tol=0.0001, verbose=0,
                            warm_start=False)
In [40]: | bow_pred = model.predict(x_bow_test)
         print('Accuracy score : ',accuracy_score(y_bow_test, bow_pred))
         print('F1 Score : ',f1_score(y_bow_test, bow_pred))
         Accuracy score : 0.9458754823234957
         F1 Score: 0.48460774577954313
In [48]: | from sklearn.metrics import confusion_matrix
         import matplotlib.pyplot as plt
         cf_matrix = confusion_matrix(y_bow_test,bow_pred)
         cf_matrix
Out[48]: array([[8826,
                [ 440, 244]], dtype=int64)
In [85]: import seaborn as sns
         ax = sns.heatmap(cf_matrix, annot=True, cmap='Blues')
         ax.set_title('Seaborn Confusion Matrix with labels\n\n');
         ax.set_xlabel('\nPredicted Values')
         ax.set_ylabel('Actual Values ');
         ## Ticket labels - List must be in alphabetical order
         ax.xaxis.set_ticklabels(['False','True'])
         ax.yaxis.set_ticklabels(['False','True'])
         plt.rcParams['figure.figsize'] = [4,4]
         ## Display the visualization of the Confusion Matrix.
```

Seaborn Confusion Matrix with labels

Support Vector Machines

plt.show()

```
In [86]: | from sklearn.svm import SVC
         model = SVC(kernel='linear', C=1, probability=True)
         model.fit(x_bow_train, y_bow_train)
         bow_pred = model.predict(x_bow_test)
         print('Accuracy score : ',accuracy_score(y_bow_test, bow_pred))
         print('F1 Score : ',f1_score(y_bow_test, bow_pred))
         Accuracy score : 0.9456669100010429
         F1 Score: 0.4805583250249251
In [87]: | from sklearn.metrics import confusion_matrix
         import matplotlib.pyplot as plt
         cf_matrix = confusion_matrix(y_bow_test,bow_pred)
         cf_matrix
Out[87]: array([[8827,
                         78],
                [ 443, 241]], dtype=int64)
In [88]: | import seaborn as sns
         ax = sns.heatmap(cf_matrix, annot=True, cmap='Blues')
         ax.set_title('Seaborn Confusion Matrix with labels\n\n');
         ax.set_xlabel('\nPredicted Values')
         ax.set_ylabel('Actual Values ');
         ## Ticket labels - List must be in alphabetical order
         ax.xaxis.set_ticklabels(['False','True'])
         ax.yaxis.set_ticklabels(['False','True'])
         plt.rcParams['figure.figsize'] = [4,4]
         ## Display the visualization of the Confusion Matrix.
         plt.show()
```

Seaborn Confusion Matrix with labels

Predicted Values

F1 Score: 0.5494853523357086

Random Forest

```
In [94]: from sklearn.ensemble import RandomForestClassifier
    rfc = RandomForestClassifier(n_estimators=400, random_state=11)

In [95]:    rfc.fit(x_bow_train, y_bow_train)
    bow_pred = rfc.predict(x_bow_test)
    print('Accuracy score : ',accuracy_score(y_bow_test, bow_pred))
    print('F1 Score : ',f1_score(y_bow_test, bow_pred))

Accuracy score : 0.9406611742621754
```

```
In [97]: from sklearn.metrics import confusion_matrix
         import matplotlib.pyplot as plt
         cf_matrix = confusion_matrix(y_bow_test,bow_pred)
         print("Confusion_Matrix")
         print(cf_matrix)
         import seaborn as sns
         ax = sns.heatmap(cf_matrix, annot=True, cmap='Blues')
         ax.set_title('Seaborn Confusion Matrix with labels\n\n');
         ax.set_xlabel('\nPredicted Values')
         ax.set_ylabel('Actual Values ');
         ## Ticket labels - List must be in alphabetical order
         ax.xaxis.set_ticklabels(['False','True'])
         ax.yaxis.set_ticklabels(['False','True'])
         plt.rcParams['figure.figsize'] = [4,4]
         ## Display the visualization of the Confusion Matrix.
         plt.show()
```

Confusion_Matrix [[8673 232] [337 347]]

Seaborn Confusion Matrix with labels

XGBoost

```
In [99]: from xgboost import XGBClassifier
    xgb = XGBClassifier(max_depth=6, n_estimators=1000)
    xgb.fit(x_bow_train, y_bow_train)
    bow_pred = xgb.predict(x_bow_test)
    print('Accuracy score : ',accuracy_score(y_bow_test, bow_pred))
    print('F1 Score : ',f1_score(y_bow_test, bow_pred))
```

Accuracy score : 0.9461883408071748 F1 Score : 0.5248618784530387

```
In [100]: | from sklearn.metrics import confusion_matrix
          import matplotlib.pyplot as plt
          cf_matrix = confusion_matrix(y_bow_test,bow_pred)
          print("Confusion_Matrix")
          print(cf_matrix)
          import seaborn as sns
          ax = sns.heatmap(cf_matrix, annot=True, cmap='Blues')
          ax.set_title('Seaborn Confusion Matrix with labels\n\n');
          ax.set_xlabel('\nPredicted Values')
          ax.set_ylabel('Actual Values ');
          ## Ticket Labels - List must be in alphabetical order
          ax.xaxis.set_ticklabels(['False','True'])
          ax.yaxis.set_ticklabels(['False','True'])
          plt.rcParams['figure.figsize'] = [4,4]
          ## Display the visualization of the Confusion Matrix.
          plt.show()
```

```
Confusion_Matrix
[[8788 117]
[ 399 285]]
```

Seaborn Confusion Matrix with labels

In []: