Rational OpenCog Controlled Agent

Nil Geisweiller, Hedra Yusuf

Artificial General Intelligence 2023 (AGI-23)

Timestamped Recorded Events

Time	Event	Evaluation
1	:	1
10	reward(0)	reward(0)(10) = True
10	outside(house)	outside(house)(10) = True
10	hold(key)	hold(key)(10) = True
10	go(house)	go(house)(10) = True
11	inside(house)	inside(house)(11) = True
11	collect(diamond)	collect(diamond)(11) = True
11	reward(0)	reward(0)(11) = True
12	reward(1)	reward(1)(12) = True
1:	l :	l :

3/13

Learning Schemata

Pattern Mining

+
Temporal Reasoning

=
Cognitive Schematics

Pattern Mining Schemata

Time	Event
÷	:
10	reward(0)
10	outside(house)
10	hold(key)
10	go(house)
11	inside(house)
11	collect(diamond)
11	reward(0)
12	reward(1)
:	:

Reasoning Schemata

```
\frac{outside(house) \land get(key) \leadsto^1 outside(house) \quad outside(house) \land get(key) \leadsto^1 hold(key)}{outside(house) \land get(key) \leadsto^1 outside(house) \land hold(key)} \underbrace{\text{(CC)}}_{outside(house) \land hold(key) \land go(house) \leadsto^1 inside(house)}}_{outside(house) \land get(key) \land^1 go(house) \leadsto^2 inside(house)} \text{(PD)}
```

 $outside(house) \land get(key) \mathbin{\scriptstyle{/}}^1 go(house) \mathbin{\scriptstyle{/}}^1 collect(diamond) \mathbin{\scriptstyle{/}}^3 reward(1) \stackrel{\scriptscriptstyle \pm}{=} < 0.83, 0.005 > 0.005$

Cognitive Schematics

Action

The Paradox of Choice

Many applicable schemata

$$\begin{array}{cccc} C_1 \wedge A_1 \rightsquigarrow^{T_1} G & \stackrel{\text{\tiny m}}{=} & TV_1 \\ & \vdots & & & \\ C_{9999} \wedge A_{9999} \rightsquigarrow^{T_{9999}} G & \stackrel{\text{\tiny m}}{=} & TV_{9999} \end{array}$$

The Paradox of Choice

Many applicable schemata

$$\begin{array}{cccc} C_1 \wedge A_1 \leadsto^{T_1} G & \stackrel{\mathbb{m}}{=} & TV_1 \\ & \vdots & & & \\ C_{9999} \wedge A_{9999} \leadsto^{T_{9999}} G & \stackrel{\mathbb{m}}{=} & TV_{9999} \end{array}$$

With different risk/reward profiles

$$C_1 \wedge A_1 \rightsquigarrow^{T_1} G \stackrel{\text{m}}{=} <0.9 \ 0.1>$$

 $C_2 \wedge A_2 \rightsquigarrow^{T_2} G \stackrel{\text{m}}{=} <0.6 \ 0.9>$

The Paradox of Choice

Many applicable schemata

$$C_{1} \wedge A_{1} \rightsquigarrow^{T_{1}} G \qquad \stackrel{\text{m}}{=} \qquad TV_{1}$$

$$\vdots$$

$$C_{9999} \wedge A_{9999} \rightsquigarrow^{T_{9999}} G \stackrel{\text{m}}{=} \qquad TV_{9999}$$

With different risk/reward profiles

$$C_1 \wedge A_1 \rightsquigarrow^{T_1} G \stackrel{\text{m}}{=} <0.9 \ 0.1>$$

 $C_2 \wedge A_2 \rightsquigarrow^{T_2} G \stackrel{\text{m}}{=} <0.6 \ 0.9>$

Some contradicting each other

$$C_1 \wedge A \rightsquigarrow^{T_1} G \stackrel{\underline{m}}{=} <0.9 \ 0.5>$$

 $C_2 \wedge A \rightsquigarrow^{T_1} G \stackrel{\underline{m}}{=} <0.1 \ 0.5>$

8/13

Balancing exploitation and exploration

Solomonoff-ish Induction \
+ Second Order Mixture
Thompson Sampling

Balancing exploitation and exploration

Actions

- get(key)
- go(house)
- collect(diamond)

Percepts

- outside(house)
- inside(house)
- hold(key)
- next(door)
- reward(1)
- reward(0)

- Exploration
- 2 Learning
- Exploitation

outside(house) \land get(key) \land ¹ go(house) \land ¹ collect(diamond) \leadsto ³ reward(1)

outside(house) \land get(key) \land ¹ go(house) \land ¹ collect(diamond) \leadsto ³ reward(1)

outside(house) \land get(key) \nearrow^1 go(house) \nearrow^1 collect(diamond) \rightsquigarrow^3 reward(1) hold(key) \land go(house) \nearrow^1 collect(diamond) \rightsquigarrow^2 reward(1)

outside(house) \land get(key) \land^1 go(house) \land^1 collect(diamond) \rightsquigarrow^3 reward(1) hold(key) \land go(house) \land^1 collect(diamond) \rightsquigarrow^2 reward(1)

outside(house) \land get(key) \nearrow^1 go(house) \nearrow^1 collect(diamond) \rightsquigarrow^3 reward(1)

hold(key) \land go(house) \land ¹ collect(diamond) \leadsto ² reward(1)

inside(house) ∧ collect(diamond) → 1 reward(1)

outside(house) \land get(key) \land^1 go(house) \land^1 collect(diamond) \leadsto^3 reward(1)

hold(key) \land go(house) \land ¹ collect(diamond) \leadsto ² reward(1)

inside(house) ∧ collect(diamond) → 1 reward(1)

Future Work

- More challenging environments
- Attention Allocation
- Concept creation and schematization
- Plan in the inner world