Estimating 3D Human Shapes from Measurements阅读笔记

训练模型

在PCA空间中,每个三维网格 X_i 都由一个向量 W_i 表示,通过特征分析可以得到一个线性映射关系,给定一个新的测量值就可以得到对应的网格在PCA中的权重:

$$W_{new} = BP_{new} \tag{1}$$

对于每个训练集里的网格 X_i 进行特征分析,可以得到一个平均模型 μ 和矩阵A。有了这两个参数就可以通过一个新的模型的权重 W_{new} 求出对应的模型 X_{new} :

$$X_{new} = AW_{new} + \mu \tag{2}$$

由公式 (1) (2) 给定测量值 P_{new} 就可以得到对应的人体模型:

$$X_{new} = ABP_{new} + \mu \tag{3}$$

模型微调

算法总体流程

已知通过学习方法获取的一个初始模型 X_{new}^{init} \Rightarrow 将W看做关于 X_{new}^{init} 的函数: $W_{new}=A^+(X_{new}^{init}-\mu)$,通过优化 X_{new}^{init} 生成更优的 W_{new} \Rightarrow 将 W_{new} 带入回归模型得到新的初始模型 $X_{new}^{pca}=AW_{new}+\mu$ \Rightarrow 对 X_{new}^{pca} 进行相同的尺寸优化,但是要加上保形能量项 $E=(1-\lambda)E_m+\lambda E_s$,得到最终结果 X_{new}

算法细节

测量的数据分为三类,欧式距离值,测地距离值和围长值,对于每个待求的网格 X_i ,在网格上对应的求出的数据尽量和真实值保持一致,这就是一个最小化能量函数的问题

$$E_e = \sum_{d \in \mathcal{D}} \left(\left(p_i - p_j
ight)^2 - \left(l_t(d)
ight)^2
ight)^2$$

$$E_g = \sum_{e \in \mathcal{D}} \left((p_k - p_l)^2 - \left(l_t(e)
ight)^2
ight)^2$$

$$E_c = \sum_{e \in \mathcal{C}} \left(\left(q_i - q_j
ight)^2 - \left(l_t(e)
ight)^2
ight)^2 = \sum_{e \in \mathcal{C}} \left(\left(lpha(p_n - p_m) + p_m - eta(p_g - p_h)
ight)^2
ight)^2$$

其中p是顶点坐标向量,q是切平面与网格上三角面片的边的交点坐标向量。 $l_t(d)$ 是实际测量线段的长度, $l_t(e)$ 是实际测量的围长,欧式距离就是两点坐标的直线距离直接计算就可以,而测地距离和围长是多个顶点距离之和,每一段的逼近长度需要单独计算出来。假定变形前后长度比例不变,可以通过下式算出逼近的长度:

$$l_t(d) = rac{l_t(P)}{l_g(P)} l_g(e)$$

$$l_t(e) = \frac{l_t(C)}{l_g(C)} l_g(e)$$

在模型预测部分我们知道,只要给定一个全新的降维后的主成分 W_{new} ,就可以带入线性回归模型 $X_{new}=AW_{new}+\mu$,得到一个全新的模型。那么接下来目标就是,如何获得一个更准确的 W_{new} 。我们知道 $W_{new}=A^+(X_{new}^{init}-\mu)$,所以可以从如何获取一个比较好的 X_{new}^{init} 着手。

ullet Minimization with respect to W_{new}

 X_{new}^{init} 可以通过学习的方法算出一个初始的模型,通过对三类尺寸的优化获得更精确的模型。优化方法采用拟牛顿法,需要对方程求导: $\nabla_{W_{new}}E=A^+
abla_{p_i}E$

$$abla_{\mathrm{pi}}E_{e}=\sum_{d\in D(p_{i})}4\left(\left(\mathrm{p_{i}}-\mathrm{p_{j}}
ight)^{2}-\left(l_{t}(d)
ight)^{2}
ight)\left(\mathrm{p_{i}}-\mathrm{p_{j}}
ight)$$

$$abla_{\mathrm{pi}}E_{g}=\sum_{e\in P(p_{i})}4\left(\left(\mathrm{p_{k}}-\mathrm{p_{l}}
ight)^{2}-\left(l_{t}(e)
ight)^{2}
ight)\left(\mathrm{p_{k}}-\mathrm{p_{l}}
ight)$$

$$\nabla_{\mathrm{pi}}E_{c}=*$$

优化欧式距离时,可以直接对 p_i 求导,优化测地距离时,用的是最短路径,也就是路径顶点之间距离之和,所以也可以直接对 p_i 求导,而优化围长时,围长与网格的交点不一定是网格顶点,所以不能直接求导。但是交点仍然可以用其所在边的两个端点来线性表示它。所以通过转换后仍然可以对 p_i 求导。

计算出新的 W_{new} 后就可以通过线性回归模型得到新的模型 $X_{new}^{pca}=AW_{new}+\mu$ 。但是这个模型仍然是数据集空间中的模型。

• Minimization with respect to p_i

接下来就用网格优化的方法,得到一个数据集构建的空间无法描述的全新的结果。如果直接对 $E_m=E_e+E_g+E_c$ 最小化能量处理,可能会导致网格不光滑。所以加入一个平滑项来保证得到模型在人体空间内。该平滑项的意义是让相邻的顶点都有相似的变形, $\Delta \mathbf{p}_i$ 表示变形前后的平移向量。

$$E_s = \sum_{p_i \in X_{new}} \sum_{p_j \in N(p_i)} (\Delta \mathbf{p}_i - \Delta \mathbf{p}_j)^2$$

$$abla_{\mathbf{p_i}} E_s = \sum_{p_i \in N(p_i)} 2 \left(\Delta \mathbf{p_i} - \Delta \mathbf{p_j}
ight)$$

将顶点初始化为上一步中求得的 X_{new}^{pca} ,这一步的整体能量函数可以表示为 $E=\left(1-\right)$

$$\lambda)E_m + \lambda E_s$$
 .

问题

为何不直接对 X_{new}^{init} 加上保形能量,一步到位,还要重新生成一个新的PCA权W。再对新的模型进行重复的优化过程。

实现细节