

CS 372 Lecture #14

The Transport Layer:

- Introduction
- Multiplexing

Note: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach,* 6th edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.

Transport services and protocols

Transport protocols

- provide *logical communication* between application <u>processes</u>
 running on different hosts
- run on end systems

Transport services and protocols

sender protocol:

- accepts messages from application socket
- breaks messages into data blocks
- encapsulates blocks/ports into segments
- passes segments/addresses to network layer

receiver protocol:

- accepts segments from network layer
- re-assembles data blocks into messages
- passes messages to sockets at application layer

Transport Layer requires some Network Layer services

- transport layer: logical communication between processes
- network layer: logical communication between hosts
 - Packet addressing
 - Route computation
 - Packet forwarding
 - More later on the network layer ...

Multiplexing/demultiplexing

- Multiplexing at sending hosts:
 - gathering data from multiple sockets, creating segments, encapsulating segments with header (later used for demultiplexing)
- Demultiplexing at receiving host:
 - delivering received segments to correct socket

How demultiplexing works

- host receives IP datagrams
 - each datagram has source IP address, destination IP address
 - each datagram encapsulates one transport-layer segment
 - each segment has source,
 destination port number
- host uses IP addresses & port numbers to direct segment to appropriate socket

TCP/UDP segment format

Connectionless demultiplexing

- UDP socket identified by destination (IP address, port number)
- When host receives UDP segment:
 - checks destination port number in segment
 - directs UDP segment to socket
 with that port number

 IP datagrams with different source IP addresses and/or source port numbers might be directed to same socket

Connection-oriented demultiplexing

- TCP socket identified by
 - source IP address
 - source port number
 - destination IP address
 - destination port number
- receiving host uses all four values to direct segment to appropriate socket

- Server host may support many simultaneous TCP sockets:
 - each socket identified by its own 4-tuple
- Web servers have different sockets for each connecting client
 - non-persistent HTTP will have different socket for each request

Demultiplexing: example

three segments, all destined to IP address: B, dest port: 80 are demultiplexed to *different* sockets

Summary Lecture #14

- Definitions
 - segment
 - multiplexing
 - demultiplexing
- Transport layer
 - inputs, outputs
 - responsibilities
 - sockets