

Type977 fitting for heat pump SIN-30TE Parametric Heat Pump calculation

Dani Carbonell

dani. carbonell@spf.ch

2019/03/12 at: 16:04:45 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
		[kW]
P_{Q_1}	1 st condenser polynomial coefficient	2.7878e + 01
P_{Q_2}	2^{st} condenser polynomial coefficient	2.9731e+02
P_{Q_3}	3^{st} condenser polynomial coefficient	9.2128e+01
P_{Q_4}	4 st condenser polynomial coefficient	-4.5257e+02
P_{Q_5}	5^{st} condenser polynomial coefficient	4.0830e + 02
P_{Q_6}	6 st condenser polynomial coefficient	-4.5471e + 02
P_{COP_1}	1 st COP polynomial coefficient	5.9269e+00
P_{COP_2}	2 st COP polynomial coefficient	5.4679e + 01
P_{COP_3}	3 st COP polynomial coefficient	-2.8169e+00
P_{COP_4}	4 st COP polynomial coefficient	-2.0992e+02
P_{COP_5}	5 st COP polynomial coefficient	-2.0439e+00
P_{COP_6}	6 st COP polynomial coefficient	-7.3062e+01
\dot{m}_{cond}	$5000.00 \ [kg/h]$	
\dot{m}_{evap}	$5000.00 \ [kg/h]$	
COP_{nom} (A0W35)	4.29	
$Q_{cond,nom}$ (A0W35)	$30.21 \ [kW]$	
$Q_{evap,nom}$ (A0W35)	$23.16 \ [kW]$	
$W_{comp,nom}$ (A0W35)	$7.05 \ [kW]$	
RMS_{COP}	4.15e - 02	
$RMS_{Q_{cond}}$	1.43e - 01	
$RMS_{W_{comp}}$	9.47e - 02	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	^{o}C	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	-5.00	3.80	3.80	0.0	26.55	26.60	0.2	6.99	7.00	0.18
35.00	0.00	4.32	4.30	0.6	30.46	30.30	0.5	7.05	7.05	0.04
35.00	5.00	4.86	4.86	0.0	34.61	34.70	0.2	7.12	7.14	0.28
50.00	-5.00	2.77	2.75	0.5	25.11	25.33	0.9	9.07	9.20	1.38
50.00	0.00	3.10	3.03	2.4	28.68	28.37	1.1	9.26	9.38	1.24
50.00	5.00	3.45	3.39	1.6	32.52	32.50	0.1	9.43	9.58	1.54
45.00	-5.00	3.16	3.21	1.4	25.87	25.97	0.4	8.18	8.10	1.03
45.00	0.00	3.56	3.57	0.4	29.56	29.33	0.8	8.31	8.21	1.16
45.00	5.00	3.97	4.02	1.1	33.51	33.60	0.3	8.44	8.36	0.88
55.00	0.00	2.59	2.60	0.5	27.53	27.40	0.5	10.65	10.54	1.01
55.00	5.00	2.87	2.91	1.2	31.28	31.40	0.4	10.89	10.80	0.80
35.00	10.00	5.40	5.40	0.0	39.00	39.10	0.3	7.22	7.24	0.22
35.00	15.00	5.94	5.93	0.2	43.61	43.50	0.2	7.34	7.33	0.05
50.00	10.00	3.80	3.74	1.6	36.60	36.63	0.1	9.63	9.79	1.64
50.00	15.00	4.16	4.08	2.0	40.91	40.77	0.3	9.83	9.99	1.62
45.00	10.00	4.39	4.45	1.3	37.69	37.87	0.5	8.58	8.51	0.84
45.00	15.00	4.81	4.86	1.0	42.10	42.13	0.1	8.75	8.66	0.97
55.00	10.00	3.16	3.20	1.1	35.25	35.40	0.4	11.14	11.06	0.73
55.00	15.00	3.46	3.48	0.6	39.46	39.40	0.2	11.41	11.32	0.76
Sum				17.7			7.4			16.36
RMS_{COP}	4.15e - 02									
$RMS_{Q_{cond}}$	1.43e - 01									
$RMS_{W_{comp}}$	9.47e - 02									

$\rm Meier/SIN\text{--}30TE/SIN\text{--}30TE\text{--}Qcond.pdf}$

Figure 1: Q_{cond} differences between experiments and fitted data

$\rm Meier/SIN\text{--}30TE/SIN\text{--}30TE\text{--}Qcomp.pdf}$

Figure 2: W_{comp} differences between experiments and fitted data

$\rm Meier/SIN\text{-}30TE/SIN\text{-}30TE\text{-}COP.pdf$

Figure 3: COP differences between experiments and fitted data