Clustering

Part IV

Challenging Examples

Challenging Examples, Continued

DBSCAN (Density-Based Spatial Clustering of Applications With Noise)

- eps: neighborhood radius
- min_samples: 4
- A: Core
- B, C: not core
- N: noise

DBSCAN Illustration

Illustration of Parameters

Pros and Cons

Pro: Can learn arbitrary cluster shapes

Pro: Can detect outliers

Con: Needs two (non-obvious?) parameters to adjust

Silhouette Coefficient

- Input:
 - o Data
 - Cluster assignment
- Output:
 - o A score from -1 to 1 where:
 - 0 is random clustering
 - 1 is perfect clustering
- For each point i, compute:
 - o a_i = mean distance between i and all other points in the same cluster
 - \circ b_i = mean distance between i and the points in the next nearest cluster

$$\circ \ s_i = \frac{b_i - a_i}{\max(a_i, b_i)}$$

• The overall silhouette coefficient is the mean value of s_i , $i=1\dots n$

