Занятие 1.

Тема: Кинематика материальной точки. Путь, скорость, ускорение.

- **1**. Радиус-вектор частицы определяется выражением $\vec{r}(t) = \vec{e}_x 2t^2 + \vec{e}_y t^2 + \vec{e}_z$ (м). Найти $\vec{r}'(t)$ и $|\vec{r}(t)|$?.
- **2**. Начальное значение радиус-вектора равно $\vec{r}_1 = 1\vec{e}_x + 3\vec{e}_y + 5\vec{e}_z$ (м), конечное $\vec{r}_2 = 2\vec{e}_x + 4\vec{e}_y + 6\vec{e}_z$ (м). Найти: а) приращение радиус-вектора $\Delta \vec{r}$; б) модуль приращения радиус-вектора $|\Delta r|$.
- 3. Написать выражение для косинус угла α между векторами с компонентами (a_x, a_y, a_z) и (b_x, b_y, b_z) .
- **4**. Радиус-вектор частицы изменяется со временем по закону $\vec{r}(t) = 3t^2\vec{e}_x + 2t\vec{e}_y + 1\vec{e}_z$ (м). Найти: а) скорость \vec{v} и ускорение \vec{w} частицы; б) модуль скорости \vec{v} в момент времени t=1с; в) приближенное значение пути S, пройденного частицей за 11-ю секунду движения.
- 5. Начальное значение скорости равно $\vec{\mathbf{v}}_1 = 1\vec{e}_x + 3\vec{e}_y + 5\vec{e}_z$ (м/c), конечное $\vec{\mathbf{v}}_2 = 3\vec{e}_x + 5\vec{e}_y + 7\vec{e}_z$ (м/c). Найти: а) приращение скорости $\Delta \vec{\mathbf{v}}$; б) модуль приращения скорости $|\Delta \vec{\mathbf{v}}|$; в) приращение модуля скорости $\Delta \mathbf{v}$.
- **6.** Радиус-вектор частицы меняется со временем t по закону $\vec{r} = \vec{a}t(1-\alpha t)$, где \vec{a} положительный вектор, α положительная постоянная. Найти: 1) скорость \vec{v} и ускорение \vec{w} частицы в зависимости от времени; 2) промежуток времени Δt , по истечении которого частицы вернется в исходную точку, а также путь S, который она пройдет при этом.
- 7. Частица движется в положительном направлении оси так, что ее скорость меняется по закону $v = \alpha \sqrt{x}$, где α положительная постоянная. Имея в виду, что в момент времени t = 0 она находилась в точке x = 0, найти: 1) зависимость от времени скорости и ускорения частицы; 2) среднюю скорость частицы за время, в течение которого она пройдет первые S метров пути. (Ответ: $v(t) = \alpha^2 t/2$: $v(t) = \alpha^2 / 2$: v(t) =
 - **8**. Компоненты одного вектора равны (1,3,5), другого (6,4,2). Найти угол α между векторами.
- **9**. Радиус-вектор частицы определяется выражением $\vec{r}(t) = 3t^2 \vec{e}_x + 4t^2 \vec{e}_y + 7 \vec{e}_z$ (м). Вычислить: а) путь S, пройденный частицей за первые 10 секунд движения; б) модуль перемещения $|\Delta \vec{r}|$ за то же время. (**Ответ:** S = 500 м; $|\Delta \vec{r}| = 500$ м)
- **10**. Частица движется со скоростью $\vec{v} = 1\vec{e}_x + 2t\vec{e}_y + 3t^2\vec{e}_z$ (м/с). Найти: а) перемещение $\Delta \vec{r}$ частицы за первые 2 секунды ее движения; б) модуль скорости v в момент времени t = 2 с.
- **11**. Частица движется со скоростью $\vec{v} = at(2\vec{e}_x + 3\vec{e}_y + 4\vec{e}_z)$ ($a=1,00\,\text{ м/c}^2$). Найти: а) модуль скорости частицы в момент времени $t=1,00\,\text{ c};$ б) ускорение частицы и его модуль; в) путь, пройденный частицей с момента $t_1=2,00\,\text{ c}$ до момента $t_2=3,00\,\text{ c};$ г) какой характер имеет движение частицы.
- 12. В момент t=0 частица вышла из начала координат в положительном направлении оси x. Ее скорость меняется со временем по закону $\vec{\mathbf{v}}=\vec{\mathbf{v}}_0(1-t/\tau)$, где $\vec{\mathbf{v}}_0$ вектор начальной скорости, модуль которого $\mathbf{v}_0=10\,\mathrm{cm/c},\ \tau=5,0\,\mathrm{c}$. Найти: а) координату x частицы в момент времени 6, 10 и 20 с; б) моменты времени, когда частица будет находится на расстоянии 10 см от начала координат; в) путь S, пройденный частицей за первые 4 и 8 с. (Ответ: $x=24,0,-200\,\mathrm{cm};$ $t=1,1;8,87\,\mathrm{c};\ S=24,34\,\mathrm{cm}$)
- **13.** Зависимость модуля скорости тела от пройденного пути имеет вид $v(s) = v_0 bs$. Найти: а) зависимость пути s от времени t; δ) зависимость модуля скорости v от времени t.

- **14.** Три четверти своего пути автомобиль прошел со скоростью 60 км/ч, остальную часть пути со скоростью 80 км/ч. Какова средняя путевая скорость <v> автомобиля? (Ответ: 6,4 км/ч)
- **15.** Первую половину пути тело двигалось со скоростью v_1 =2 м/с, вторую со скоростью v_2 =8 м/с. Определите среднюю путевую скорость < v>.
- **16**. Точка движется, замедляясь, по прямой с ускорением, модуль которого зависит от ее скорости v по закону $w = a\sqrt{v}$, где a положительная постоянная. В начальный момент скорость точки равна v_0 . Какой путь она пройдет до остановки? За какое время этот путь будет пройден?
- **17.** Из начальной точки 1 частица, двигаясь вдоль кривой, переместилась в конечную точку 2. (см. рис.) Каким неравенством связаны модуль перемещения $|\vec{r}_{12}|$ и путь S, пройденный частицей? Показать на рисунке траекторию и перемещение частицы.

18. Может ли зависимость пути S от времени t изображаться графиками, показанными на рис.

19. Частица прошла окружность радиуса R за время T. Пусть \vec{r} — радиус-вектор, определяющий положение частицы относительно центра окружности. Определить: 1) $\Delta \vec{r}$, $|\Delta \vec{r}|$, Δr ; б) путь S; в) среднюю скорость $<\vec{v}>$, средний модуль скорости < v>.