

Visualization and manipulation of Matched Molecular Series for decision support

Noel O'Boyle and Roger Sayle

NextMove Software

MATCHED (MOLECULAR) PAIRS

Coined by Kenny and Sadowski in 2005*
Easier to predict **differences** in the values of a property than it is to predict the value itself

^{*} Chemoinformatics in drug discovery, Wiley, 271–285.

MATCHED PAIR USAGE

- Successfully used for:
 - Rationalising and predicting physicochemical property changes
 - Finding bioisosteres

- Not very successful in improving activity
 - Activity changes dependent on binding environment

Need to look beyond matched pairs

MATCHED SERIES OF LENGTH 2 = MATCHED PAIR

[CI, F]

"Matching molecular series" introduced by Wawer and Bajorath, J. Med. Chem. **2011**, 54, 2944

MATCHED SERIES OF LENGTH 3

[CI, F, NH₂]

ORDERED MATCHED SERIES OF LENGTH 3

[Cl > F > NH₂]

THE MATCHED PAIR MENTALITY

- There can only be two
 - Like inhabitants of Flatland ignorant of a third dimension
- What is the equivalent of pair for three?
 - Triad, trio, triple?
- A matched pair represents a transformation from A->B
 - How would that work if it there were three?

MATSY: PREDICTION USING MATCHED SERIES

MATCHED SERIES HAVE PREFERRED ORDERS

Series	Enrichment	Observations
Br > Cl > F > H	5.36*	256
Cl > Br > F > H	3.14*	150
H > F > Cl > Br	1.53*	73
Br > Cl > H > F	1.40	67
F > Cl > Br > H	1.36	65
Cl > F > Br > H	0.96	46
H > F > Br > Cl	0.77	37
H > Br > F > Cl	0.48*	23
Cl > H > F > Br	0.48*	23
Cl > F > H > Br	0.48*	23
H > Cl > F > Br	0.42*	20
Br > F > H > Cl	0.40*	19
F > H > Br > Cl	0.40*	19
H > Cl > Br > F	0.38*	18
F > Br > H > Cl	0.36*	17
Br > H > F > Cl	0.17*	8

The fact that certain orders are preferred may be used as the basis of a predictive method

FIND R GROUPS THAT INCREASE ACTIVITY

R Group	Observations	Obs that increase activity	% that increase activity
D	3	3	100
Е	1	1	100
С	4	1	25
•••	•••		•••

THE DATASET-CENTRIC APPROACH

 "Here is my dataset of molecules with activities – now tell me what to make next"

• Pro:

- Easy for users to get up-and-running
- Fits with their existing way of thinking
 - Don't need to think too much about matched series

• Con:

- User is one step removed from the matched series data on which the predictions are actually based
- Dataset is fixed: cannot play with around with the prediction input

GOALS FOR THE INTERFACE

- Visual interface based around R-Groups as firstclass objects arranged in ordered series
 - Promote new paradigm
 - Make it clear that the scaffold is not involved
- Should help break the "matched pair" mentality
 - Just a particular case of matched series
- Should be easy to play with
 - Easy to manipulate and quick to respond

- Drag-and-drop R Groups into slots to represent observed activity order
 - The query matched series

PROS

- Easy to play around with
 - Swap around order of R groups
 - See what happens if you follow the predictions
- May suggest hypotheses
- Useful for searching (not just for predictions)
- Tablet-friendly

CONS

- The user needs to be able to provide an ordered matched series as a query
 - You can't just provide a dataset of molecules

NO CHEMISTRY REQUIRED

- Predictions are solely based on the order of R groups in a matched series
 - Not using any calculated properties
- Images of all R groups in ChEMBL can be generated in advance (~65K)
- ⇒ A cheminformatics toolkit is not required for the interface or even for making predictions
- In practice, we do use a toolkit to allow the user to enter R groups as SMILES

USE CASE #1 ARE MATCHED SERIES PREDICTIONS SYMMETRIC?

ARE MATCHED SERIES PREDICTIONS SYMMETRIC?

- If A>B>C>D is a highly preferred order
 - Then D>C>B>A also tends to be preferred
- Hypothesis:
 - if A reduces the activity given D>C>B
 - ⇒ it will also improve the activity given B>C>D

- If true, then we have twice as much data to use for predictions
 - Let's find out....

? > CI > F > H

H > F > Cl > ?

USE CASE #2 TOPLISS DECISION TREE

Topliss, J. G. Utilization of Operational Schemes for Analog Synthesis in Drug Design. *J. Med. Chem.* **1972**, *15*, 1006–1011.

TOPLISS DECISION TREE

TOPLISS DECISION TREE

CHEMBL-BASED DECISION TREE (ONE OF MANY)

Visualization and manipulation of Matched Molecular Series for decision support

http://nextmovesoftware.com noel@nextmovesoftware.com

@nmsoftware

