

PolarHV[™] HiPerFET Power MOSFET

IXFK 64N60P IXFX 64N60P

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

P	I _{D25}	=	64	Α
	R _{DS(on)}	≤	96	mΩ
	t _{rr}	≤	200	ns
OD D				

600

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T _J = 25° C to 150° C	600	V	
V _{DGR}	$T_J = 25^{\circ} C$ to $150^{\circ} C$; $R_{GS} = 1 M\Omega$	600	V	
V _{GSS}	Continuous	±30	V	
$\mathbf{V}_{\mathtt{GSM}}$	Transient	±40	V	
I _{D25}	T _C = 25° C	64	Α	
I _{DM}	$T_{\rm C}$ = 25° C, pulse width limited by $T_{\rm JM}$	150	Α	
I _{AR}	T _C =25°C	64	А	
E _{AR}	T _C = 25° C	80	mJ	
E _{AS}	T _C = 25° C	3.5	J	
dv/dt	$I_{S} \leq I_{DM}$, di/dt ≤ 100 A/ μ s, $V_{DD} \leq V_{DSS}$, $T_{J} \leq 150^{\circ}$ C, $R_{G} = 2$ Ω	20	V/ns	
$\overline{P_{D}}$	T _c = 25° C	1040	W	
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C °C	
T _L T _{SOLD}	1.6 mm (0.062 in.) from case for 10 s Plastic body for 10 s	300 260	°C	
F _c	Mounting force (PLUS247)	20120/4.525	N/lb	
M _d	Mounting torque (TO-264)	1.13/10	Nm/lb.in.	
Weight	TO-264 PLUS247	10 6	g g	

Symbol (T _J = 25° C,	Test Conditions unless otherwise specified)	Ch Min.	 istic Va Max	
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 3 \text{ mA}$	600		V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = 8 \text{ mA}$	3.0	5.0	V
I _{GSS}	$V_{GS} = \pm 30 V_{DC}, V_{DS} = 0$		±200	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 125° C	25 1000	μA μA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 I_{D25}, \text{ No}$	te 1	96	mΩ

TO-264 (IXFK)

PLUS247 (IXFX)

G = Gate D = Drain S = Source Tab = Drain

Features

- ¹ International standard packages
- ¹ Fast recovery diode
- ¹ Unclamped Inductive Switching (UIS) rated
- ¹ Low package inductance
 - easy to drive and to protect

Advantages

- ¹ Easy to mount
- Space savings
- High power density

Symbo	ol	Test Conditions	(T _J = 25° C,				cified)
g_{fs}		$V_{DS} = 20 \text{ V}; I_{D} = 0.5 I_{D25}, \text{ Not}$	e 1	40	63		S
C _{iss})				12		nF
Coss	}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1$	MHz		1150		pF
\mathbf{C}_{rss}	J				80		pF
t _{d(on)})				28		ns
t _r		$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS},$	$I_{D} = 0.5 I_{D25}$		23		ns
$\mathbf{t}_{d(off)}$	7	$R_G = 1 \Omega$ (External)			79		ns
$\mathbf{t}_{_{\mathbf{f}}}$					24		ns
$\mathbf{Q}_{g(on)}$)				200		nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I$	$_{\rm D}$ = 0.5 $I_{\rm D25}$		70		nC
\mathbf{Q}_{gd}	J				68		nC
R _{thJC}						0.12	° C/W
R_{thCS}					0.15		° C/W

Source-Drain Diode

Characteristic Values (T₁ = 25° C, unless otherwise specified)

Symb	ol	Test Conditions	Min.	Тур.	Max.	
I _s		V _{GS} = 0 V			64	Α
I _{sm}		Repetitive			150	Α
V _{SD}		$I_F = I_S$, $V_{GS} = 0$ V, Note 1			1.5	V
t _{rr})	$I_F = 25A, -di/dt = 100 A/\mu s$			200	ns
\mathbf{Q}_{RM}	}	V _R = 100V		0.6		μC
I _{RM}				6.0		Α

Notes:

1. Pulse test, t \leq 300 μ s, duty cycle d \leq 2 %

Terminals: 1 - Gate

- 2 Drain (Collector) 3 Source (Emitter) 4 Drain (Collector)

Dim.	Millimeter		Inc	hes
	Min.	Max.	Min.	Max.
Α	4.83	5.21	.190	.205
A,	2.29	2.54	.090	.100
A ₂	1.91	2.16	.075	.085
b	1.14	1.40	.045	.055
b,	1.91	2.13	.075	.084
b ₂	2.92	3.12	.115	.123
С	0.61	0.80	.024	.031
D	20.80	21.34	.819	.840
E	15.75	16.13	.620	.635
е	5.45	5.45 BSC .215 BSC		BSC
L	19.81	20.32	.780	.800
L1	3.81	4.32	.150	.170
Q	5.59	6.20	.220	0.244
R	4.32	4.83	.170	.190

Dim.	Milli	Millimeter Inc		ches	
DIIII.	Min.	Max.	Min.	Max.	
Α	4.82	5.13	.190	.202	
A1	2.54	2.89	.100	.114	
A2	2.00	2.10	.079	.083	
b	1.12	1.42	.044	.056	
b1	2.39	2.69	.094	.106	
b2	2.90	3.09	.114	.122	
С	0.53	0.83	.021	.033	
D	25.91	26.16	1.020	1.030	
Е	19.81	19.96	.780	.786	
е	5.46 BSC		.215 BSC		
J	0.00	0.25	.000	.010	
K	0.00	0.25	.000	.010	
L	20.32	20.83	.800	.820	
L1	2.29	2.59	.090	.102	
Р	3.17	3.66	.125	.144	
Q	6.07	6.27	.239	.247	
Q1	8.38	8.69	.330	.342	
R	3.81	4.32	.150	.170	
R1	1.78	2.29	.070	.090	
S	6.04	6.30	.238	.248	
Т	1.57	1.83	.062	.072	

@ 25°C V_{GS} = 10V 8V 6V 5V

V_{DS} - Volts

Fig. 1. Output Characteristics

@ 25°C V_{GS} = 10V ID - Amperes 5V V_{DS} - Volts

Fig. 2. Extended Output Characteristics

Fig. 6. Maximum Drain Current vs.

10

0 3.5

6.5

Fig. 7. Input Admittance

100 90 80 70 60 50 T_J = 125℃ 25℃ 40 - 40°C 30 20

Fig. 8. Transconductance

Fig. 9. Forward Voltage Drop of **Intrinsic Diode**

V_{GS} - Volts

4.5

Fig. 10. Gate Charge

Fig. 11. Capacitance

Fig. 12. Forward-Bias Safe Operating Area

IXYS reserves the right to change limits, test conditions, and dimensions.

1.000 0.100 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Fig. 13. Maximum Transient Thermal Resistance

