HYDRAULIC STUDY OF A NON-STEADY HORIZONTAL SUB-SURFACE FLOW CONSTRUCTED WETLAND DURING START-UP

MATLAB Code Description and User Guide

The code was created in MATLAB R2016b and adjusted to run in previous versions (back to MATLAB R2015a)

DESCRIPTION

The sections of code described here were written to accept the data output from a fluorometer (.mv file) and perform the following operations:

- read the data
- calibrate the data
- make minor adjustments
 - o filtering and removing far outlying data
 - performing an exponential tail fit to data for which the flow test was terminated early or and the tail was completed manually
- extract the relevant data from the experimental window bounded by the time of tracer injection and the time of fluorometer shut down at the end of the flow test
- calculate the RTD and various hydraulic parameters using two methods:
 - standard RTD theory (textbooks by Fogler, Levenspiel etc.)
 - modified RTD theory for non-steady flow systems (Werner and Kadled, 1996)
- make various plots of the hydraulic output

The following document details the content and order of execution of the various scripts (.m files and supporting function .m files)

NOMENCLATURE

The following section summarizes the naming conventions, content and main function of the files provided as examples:

Note: The .mv and output files are identified by the port number (eg. 1, 2, 3 etc.) and sampling depth (eg. _1, _2, _3). This is important for multiple flow tests being run. Roman numerals denoted repeat tests at the same port/sampling depth.

File Name	Explanation of content and function
7iii_f025.mv	(.mv) file of experimental data obtained from the fluorometer
MasterDataProc.m	<i>M-file</i> - Pre-processing of experimental data. The function files below describe the operations performed:
read.m	Function file - Reads experimental data from .mv file and imports it into MATLAB.
cal.m	Function file - Calibrates experimental data using two-point calibration run immediately prior to commencement of flow test
extract.m	Function file - Extracts data from full set of experimental points using time of injection and time of flow test termination as end points
7iii_BTC_E1.mat	Data matrix - output from 'extract.m' => returned to MasterDataProc.m
myfilter.m	Function file – applies the Savitsky-Golay filter to identify data points which are outliers
7iii_BTC_F1.mat	Data matrix – output from 'myfilter.m => smoothed data returned to MasterDataProc.m and required for further hydraulic calculations
MasterTailFit.m	M-file – IF REQUIRED, fits an exponentially decaying curve to experimental data to complete the tail of the RTD
append.m	Function file – calculates the parameters for the exponential fit and appends the
	7iii_BTC_E1.mat data matrix with additional, theoretical data points to complete tail
7iii_BTC_A1.mat	Data matrix – output from 'append.m' => returned to MasterTailFit.m
7iii_BTC_F1.mat	Data matrix – output from MasterTailFit.m after Savitsky-Golay filter has been applied to 7iii_BTC_A1.mat and required for further calculations
LOG7iii.xlsx	Inlet and outlet volumetric flow rate data obtained from data loggers at wetland
Inflow.m	M-file – uses LOG7iii.xlsx and assigns a volumetric flow rate (for wetland inlet) to every experimental time using linear interpolation
7iii_inflow.mat	Data matrix – output from Inflow.m and required by for MasterCalcs
LOG7iii.xlsx	Original Excel file appended with experimental times and assigned inlet volumetric flows
Outflow.m	M-file – uses LOG7iii.xlsx and assigns a volumetric flow rate (for wetland outlet) to every experimental time using linear interpolation
7iii_outflow.mat	Data matrix – output from Outflow.m and required by for MasterCalcs
LOG7iii.xlsx	Original Excel file appended with experimental times and assigned outlet volumetric flows
MasterCalcs_SS.m	M-file – performs hydraulic calculations utilizing classic RTD theory
volume.m	Function file – calculates the wetland volume => returned to MasterCalcs_SS.m
7iii_BTC_Data.mat	Data matrix – output from MasterCalcs_SS.m containing θ , $C(\theta)$, $E(\theta)$
MasterCalcs_NSS.m	M-file – performs hydraulic calculations utilizing modified RTD theory for variable flow
7iii_BTC_Data.mat	Data matrix – output from MasterCalcs_SS.m which is appended with Φ , $C(\Phi)$, $E(\Phi)$

