Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0}^{#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\ \alpha}$	1
$t_{1}^{\#2}\alpha + 2ik \ \sigma_{1}^{\#1}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}+$	3
	$2 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi} \right)_{\beta} - \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi} +$	
	$\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\ \ eta}$) == $\partial_{\chi}\partial^{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\sigma_1^{\#1}{}^{\alpha} := \sigma_1^{\#2}{}^{\alpha}$	$\partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} + \partial_{\chi} \partial^{\chi} \sigma^{\alpha \beta}_{\beta} == 0$	3
$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	2
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} t^{\chi\beta} + \partial_{\chi}\partial^{\beta} t^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}t^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 - i(4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}t^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\alpha}t^{\chi}_{\chi} -$	5
	$3 \partial_{\delta} \partial_{\lambda} \partial_{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial_{\delta} \partial_{\chi} \partial_{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\ ^{i}\ k^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\delta arepsilon}_{\ \ \delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \partial_{\delta} \partial_{\chi} t^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{eta \delta lpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} r_{\chi}^{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	19

		$_{\alpha}$ -2 $\partial_{i}f^{\theta}_{\theta}$	$\partial_{\alpha}f_{I\theta}\partial^{\theta}f^{\alpha I}$ -	$f_{\alpha'}$	- ($\omega^{\alpha\beta'}\partial_{\theta}\omega^{\theta}_{'\beta}$ -				1,0	· ·
		$\frac{1}{6}t_{1}\left(2\ \omega^{\alpha\prime}_{\alpha}\ \omega^{\theta}_{,\theta}-4\ \omega^{\theta}_{\alpha\theta}\partial_{,}f^{\alpha\prime}+4\ \omega^{\theta}_{,\theta}\partial^{\prime}f^{\alpha}_{\alpha}-2\partial_{,}f^{\theta}_{\theta}\right)$	$\partial' f^{\alpha}_{\ \alpha} - 2 \partial_i f^{\alpha i} \partial_{\theta} f^{\ \theta}_{\ \alpha} + 4 \partial^i f^{\alpha}_{\ \alpha} \partial_{\theta} f^{\ \theta}_{\ i} - 6 \partial_{\alpha} f_{i \theta} \partial^{\theta} f^{\alpha i} -$	$3 \partial_{\alpha} f_{\theta_l} \partial^{\theta} f^{\alpha_l} + 3 \partial_{i} f_{\alpha \theta} \partial^{\theta} f^{\alpha_l} + 3 \partial_{\theta} f_{\alpha_l} \partial^{\theta} f^{\alpha_l} +$	$3 \partial_{\theta} f_{,\alpha} \partial^{\theta} f^{\alpha \prime} + 6 \omega_{\alpha \theta \prime} (\omega^{\alpha \prime \theta} + 2 \partial^{\theta} f^{\alpha \prime}))$	ο, θ β -	$\partial^{\theta}\omega^{\alpha\beta\prime})$ +	$^{\prime}\partial^{\prime}\omega^{\alpha\beta}$ +	$3\partial_{\alpha}\omega^{\alpha\beta'}\partial_{\theta}\omega^{\theta}_{\beta'}$, $6\partial'\omega^{\alpha\beta}_{\alpha}\partial_{\theta}\omega^{\theta'}_{\beta'}$, $+9\partial_{\alpha}\omega^{\alpha\beta'}\partial_{\theta}\omega^{\theta}_{\beta}$.	$^{\prime\prime}$	$_{eta}^{a}\partial^{ heta}\omega^{lphaeta\prime}$ -	$^{+, \beta_{\prime}} \partial^{\theta} \omega^{\alpha \beta^{\prime}} +$	$2\partial_{\theta}\omega_{\alphaetaeta}\partial^{\theta}\omega^{lphaeta_{\prime}})][t,x,y,z]dzdydxdt$	(
		$4 \omega_{\alpha \theta}^{ \theta} \partial_{i} f^{\alpha i}$	$_{,f}^{\alpha \prime }\partial _{\theta }f_{\alpha }^{\ \ \theta }+4$	$' + 3 \partial_{i} f_{\alpha \theta} \partial^{\theta}_{i}$	$^{\prime}+6~\omega_{lpha heta_{\prime}}$ (ω	$_{,}^{\prime}+\partial_{\alpha}\omega^{\alpha\beta^{\prime}}\partial_{\theta}\omega_{\beta}$	$2 \partial' \omega^{\alpha\beta}_{\alpha} \partial_{\theta} \omega_{,\beta}^{\theta} + \partial_{\beta} \omega_{,\theta\alpha} \partial^{\theta} \omega^{\alpha\beta}) +$	$\beta_{\alpha} + 3 \partial_{i} \omega_{\beta}^{\theta}$	ω_{β}^{θ} - 6 $\partial'\omega^{\alpha\beta}$	$18\partial'\omega^{\alpha\beta}_{\alpha}\partial_{\theta}\omega^{}_{}-4\partial_{\beta}\omega_{\alpha\beta}\partial^{\theta}\omega^{\alpha\beta\prime}+$	$2 \partial_{\beta} \omega_{\alpha\theta_{l}} \partial^{\theta} \omega^{\alpha\beta_{l}} + 4 \partial_{\beta} \omega_{l\theta\alpha} \partial^{\theta} \omega^{\alpha\beta_{l}}$	$2 \partial_i \omega_{\alpha\beta\theta} \partial^{\theta} \omega^{\alpha\beta'} + 2 \partial_{\theta} \omega_{\alpha\beta'} \partial^{\theta} \omega^{\alpha\beta'} +$	$(\alpha^{\alpha\beta^i}))[t, x, y, t]$:
	$\sigma_{\alpha\beta\chi}$ +	$\geq \omega^{\alpha\prime}_{\alpha} \omega^{\theta}_{\prime \theta}$	$\partial' f^{\alpha}_{\alpha} - 2 \partial_{\alpha}$	$3\partial_{\alpha}f_{\theta_{I}}\partial^{\theta}f^{\alpha_{I}}$	$3\partial_{\theta}f_{I\alpha}\partial^{\theta}f^{\alpha}$	$4 r_3 \left(\partial_{\beta} \omega_{,\ \theta}^{\ \theta} \partial' \omega^{\alpha \beta}_{\alpha} + \partial_{\alpha} \omega^{\alpha \beta i} \partial_{\theta} \omega_{,\ \beta}^{\ \theta} - \right)$	$2 \partial' \omega^{\alpha \beta}_{\alpha} \partial_{\theta} \omega$	$\frac{1}{3}r_1 (9\partial_\beta \omega_{,\theta}^{\theta}\partial^\prime \omega^{\alpha\beta}_{\alpha} + 3\partial_\prime \omega_{\beta}^{\theta}\partial^\prime \omega^{\alpha\beta}_{\alpha} +$	$3 \partial_{\alpha} \omega^{\alpha eta_{i}} \partial_{eta} \omega$	$18\partial'\omega^{lphaeta}_{}\partial_{\epsilon}$	$2 \partial_{\beta} \omega_{\alpha\theta}, \partial^{\theta} \omega$	$2 \partial_{i} \omega_{\alpha\beta\theta} \partial^{\theta} \omega$	$2 \partial_{\theta} \omega_{\alpha i \beta} \partial^{\theta} \omega$; ‡
:	ree) action $\frac{\beta}{\tau_{\alpha\beta}} + \omega^{\alpha\beta\chi}$	$\frac{1}{6}t_1 \left(2 \right)$				4 r ₃ (6		$\frac{1}{3}r_1$ (9						r F
:	Quadratic (free) action $S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$													‡

$\tau_{1}^{\#2}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24k^2}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$ \begin{array}{ccc} \sigma_{1}^{\#1} + \alpha \beta \\ \sigma_{1}^{\#2} + \alpha \beta \end{array} $ $ \begin{array}{ccc} \tau_{1}^{\#1} + \alpha \beta \\ \tau_{1}^{\#1} + \alpha \beta \end{array} $		$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{#2} +^{\alpha}$

0	0	0	<u>i kt1</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2 k^2 t_1}{3}$	$\omega_{\scriptscriptstyle 2}^{\sharp 1}\dagger^{lphaeta}$	$\omega_{2+\alpha\beta}^{\#1}$	$f_{2}^{\#1}\alpha\beta$ $-\frac{ikt_{1}}{\sqrt{2}}$	$\omega_2^{\#1}$	αβχ	
0	0	0	0	0	0	0	$f_{2}^{\#1} \dagger^{\alpha \beta}$	2	$\frac{1}{\sqrt{2}}$ $k^2 t_1$	0		_
0	0	0	$\frac{t_1}{3\sqrt{2}}$	1 1 3	0	$-\frac{1}{3}i\sqrt{2}kt_1$	$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$		0	$k^2 r_1$ -	$+\frac{t_1}{2}$ $\omega_0^{#1}$	$t_0^{\#1} t_0^{\#2} \sigma_0^{\#1}$
0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ i k t_1	$\omega_{0+}^{\#1} + 6$ $f_{0+}^{\#1} + 6$	$\frac{k^2 \left(-r_1 + r_2\right)}{0}$	<i>r</i> ₃) 0 0	0	0	$\sigma_{0}^{\#1}$
$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0	f ₀ ^{#2} †	0	0	0	0] L
$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	$\omega_{0}^{#1} +$	$\sigma_{2^{+}\alpha\beta}^{*1}$	<u>0</u> 3 τ	0 $2^{+1}\alpha\beta$	-t ₁	$\sigma_{2^{-}lphaeta\chi}^{\#1}$
$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	$\sigma_{2+}^{\#1} \dagger^{\alpha\beta}$	(= : = :: ,	t ₁ (1+	2 ii √2 k -2 k ²) ² 4 k ²	t ₁	0
$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$	$\tau_{2}^{\#1} + \alpha^{\beta}$ $\sigma_{2}^{\#1} + \alpha^{\beta} \lambda$	(IIZK)	t ₁ (1+	$\frac{2k^2)^2t}{0}$		$\frac{2}{k^2 r_1 + t_1}$

σ#1+ τ[#]1+ τ[#]2+ τ[#]2+ σ#1+

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$