power_simulation.m

Table of Contents

Initial parameters to set	- 1
Population	
Simulate experiments with varying sample sizes and estimate effect size	
Plot results	
print power to screen	

Simulation to at minimum effect size to achieve 80 percent power, given alpha of 0.05, and n=16 and n=55 across the two groups. Population size to sample from is set to n=10,000,000 and this simulation runs 100,000 experiments repeatedly sample n=16 and n=55 from the population of 10 million. The minimum effect size to achieve 80 percent of simulated experiments with a significant effect at alpha < 0.05 is an effect of 0.80751 standard deviations of difference.

Initial parameters to set

```
% set seed for reproducibility
rng(1);
% population effect size
popES = 0.80751;
% sample sizes
sample\_sizes = [55, 16];
% actual effect size
actualES = 1.28;
% population size
pop size = 10000000;
% number of experiments to simulate
n_{exp} = 100000;
% set to 1 to plot rejected h0 in histogram
PLOTREJECTEDH0 = 1;
% plot options to set
% number of bins for histogram
nbins = 100;
% xlimits to plot
XLIM = [-0.5 \ 2.5];
% line width
lineWidth = 1;
% colors
pop_es_lineColor = [0 1 0];
rejected_h0_color = [1 0 0];
```

```
% alpha transparency
faceAlpha = 1;
% CI limits
ci lim = [2.5 97.5];
```

Population

```
% population parameters
pop_mean1 = popES;
pop_sd1 = 1;
pop_mean2 = 0;
pop_sd2 = 1;

% generate population data
pop1_data = normrnd(pop_mean1, pop_sd1, pop_size,1);
pop2_data = normrnd(pop_mean2, pop_sd2, pop_size,1);
% calculate effect size
D = cohens_d(pop1_data, pop2_data, 1, 0);
```

Simulate experiments with varying sample sizes and estimate effect size

```
% pre-allocate sample effect size estimate variable
d = zeros(n exp, 1);
t = zeros(size(d));
p = zeros(size(d));
reject_h0 = zeros(size(d));
% run 100,000 simulated experiments
for i = 1:n_exp
    % sample data from group 1
    sampl_data = datasample(popl_data,sample_sizes(1), 'Replace',
 false);
    % sample data from group 2
    samp2_data = datasample(pop2_data,sample_sizes(2), 'Replace',
 false);
    % compute effect size
    d(i,1) = cohens_d(samp1_data, samp2_data, 1, 0);
    % run hypothesis test
    [H,P,CI,STATS] = ttest2(samp1 data,samp2 data);
    t(i,1) = STATS.tstat;
    p(i,1) = P;
    reject_h0(i,1) = H;
end % for i
```

```
% get binary mask of whether experiments rejected null hypothesis or
    not
    reject_h0 = logical(reject_h0);
```

Plot results

```
figure; set(gcf,'color','white');
% plot histogram of sample effect sizes
h = histogram(d,nbins);
h.FaceColor = ones(1,3)./2;
h.EdgeColor = h.FaceColor; %axis square;
if PLOTREJECTEDH0
    % plot histogram of effect sizes for experiments with rejected H0
    hold on;
    h = histogram(d(reject_h0), nbins);
    h.FaceColor = rejected_h0_color;
    h.EdgeColor = h.FaceColor;
    h.FaceAlpha = faceAlpha; %axis square;
end
% plot line for population effect
hold on; l = line([D D],ylim); l.Color = pop_es_lineColor; l.LineWidth
 = lineWidth;
% plot line for actual effect size in current study
hold on; l = line([actualES actualES],ylim); l.Color = [0 0 0];
 1.LineWidth = lineWidth;
grid on;
xlabel('Effect Size');
ylabel('Count');
xlim(XLIM);
```


print power to screen

```
disp(sprintf('Effect Size = %f',popES));
disp(sprintf('TD n = %d',sample_sizes(1)));
disp(sprintf('GeoPrefASD n = %d',sample_sizes(2)));
disp(sprintf('Power = %f',sum(reject_h0)/n_exp));

Effect Size = 0.807510
TD n = 55
GeoPrefASD n = 16
Power = 0.800000
```

Published with MATLAB® R2018b