

Advanced Robot Control and Learning

Prof. Sami Haddadin

Part 1 Advanced Robot Control

Advanced Robot Control - Outline

Differential Geometry in Robotics

Basics of Task Space Modeling and Control

Modern Methods of Robot Control I

- Definition of Passivity
- Passivity Preservation for Interconnections
- Passive Representation of a Robot
- Stability and Passivity
- Passivity-Based Position and Motion Control

Modern Methods of Robot Control II
Linear Parametrization of Robot Dynamics
Robot Dynamics Identification
Bio-Inspired Robot Control

Chapter 3: Modern Methods of Robot Control I

Definition of Passivity

Definition of Passivity

- Consider the system H with input $u(t) \in \mathbb{R}^p$ and output $y(t) \in \mathbb{R}^p$, $t \in \mathbb{R}_+$, $\mathbb{R} := [0, \infty)$
- H is the mapping from input signal space $\mathcal U$ to output signal space $\mathcal V$

Definition 1

• The System $H: \mathcal{U} \mapsto \mathcal{V}$ with $\mathbf{u} \in \mathcal{U}$ and $\mathbf{y} \in \mathcal{V}$ is called *passive* if there exists a constant $\beta \geq 0$ such that

$$\int_0^{\tau} \mathbf{y}(t)^T \mathbf{u}(t) dt \ge -\beta, \qquad \forall \mathbf{u} \in \mathcal{U}, \tau \in \mathbb{R}_+$$

Additionally

• System *H*: input strictly passive, if there exists a scalar $\delta_u > 0$ such that

$$\int_0^{\tau} \mathbf{y}(t)^T \mathbf{u}(t) dt \ge -\beta + \delta_u \int_0^{\tau} ||\mathbf{u}(t)||^2 dt, \quad \forall \mathbf{u} \in \mathcal{U}, \tau \in \mathbb{R}_+$$

• System *H*: output strictly passive, if there exists a scalar $\delta_y > 0$ such that

$$\int_0^{\tau} \mathbf{y}(t)^T \mathbf{u}(t) dt \ge -\beta + \delta_{y} \int_0^{\tau} ||\mathbf{y}(t)||^2 dt, \qquad \forall \mathbf{u} \in \mathcal{U}, \tau \in \mathbb{R}_+$$

Note: $||x|| = \sqrt{x^T x}$ (Vector 2-norm)

Definition of Passivity

Consider now the state space model of the system with input $u(t) \in \mathbb{R}^p$, output $y(t) \in \mathbb{R}^p$ and state vector $x(t) \in \mathbb{R}^n$

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}), \quad \mathbf{x}(0) = \mathbf{x}_0 \in \mathbb{R}^n$$

$$\mathbf{y} = \mathbf{h}(\mathbf{x}, \mathbf{u})$$
(1.1)

Assume that the system has an equilibrum at the origin: f(0,0) = 0, h(0,0) = 0

Definition 2

• The system (1) from u(t) to y(t) is called *passive* if there exists a positive semidefinite function (*storage function*) $S: \mathbb{R}^n \to \mathbb{R}_+$ such that

$$S(x(\tau)) - S(x_0) \le \int_0^\tau \mathbf{y}(t)^T \mathbf{u}(t) dt, \qquad \forall \mathbf{u} : [0, \tau] \mapsto \mathbb{R}^p, \mathbf{x}_0 \in \mathbb{R}^n, \tau \in \mathbb{R}_+$$

Additionally

• System (1): *input strictly passive*, if there exists a scalar $\delta_u > 0$ such that

$$S(x(\tau)) - S(x_0) \le \int_0^\tau (\mathbf{y}(t)^T \mathbf{u}(t) - \delta_u ||\mathbf{u}(t)||^2) dt, \qquad \forall \mathbf{u} : [0, \tau] \mapsto \mathbb{R}^p, \mathbf{x}_0 \in \mathbb{R}^n, \tau \in \mathbb{R}_+$$

• System (1): output strictly passive, if there exists a scalar $\delta_{v} > 0$ such that

$$S(x(\tau)) - S(x_0) \le \int_0^\tau (\boldsymbol{y}(t)^T \boldsymbol{u}(t) - \delta_y \|\boldsymbol{y}(t)\|^2) dt, \qquad \forall \boldsymbol{u} : [0,\tau] \mapsto \mathbb{R}^p, x_0 \in \mathbb{R}^n, \tau \in \mathbb{R}_+$$

The Storage Function

• If the storage function S(x) is continuously differentiable, the time derivative S(x(t)) is given by

$$\dot{S} = \frac{d}{dt}S(x(t)) = \frac{\partial S}{\partial x}\dot{x} = \frac{\partial S}{\partial x}f(x, u)$$

· The system is passive if

$$\frac{\partial S}{\partial x} f(x, u) \leq y^T u = h^T(x, u) u, \qquad \forall x \in \mathbb{R}^n, \forall u \in \mathbb{R}^p$$

Additionally

• input strictly passive, if there exists a scalar $\delta_{\nu} > 0$ such that

$$\frac{\partial S}{\partial x} f(x, u) \leq y^{T} u - \delta_{u} ||u||^{2}, \quad \forall x \in \mathbb{R}^{n}, \forall u \in \mathbb{R}^{p}$$

output strictly passive, if there exists a scalar $\delta_{\nu} > 0$ such that

$$\frac{\partial S}{\partial x} f(x, u) \leq y^{T} u - \delta_{y} ||y||^{2}, \qquad \forall x \in \mathbb{R}^{n}, \forall u \in \mathbb{R}^{p}$$

- S(x) is the total energy of the system
- $y(t)^T u(t)$ is the power supplied to the system at time t.
- $\int_0^{\tau} y(t)^T u(t) dt$ is the energy supplied to the system within time interval $[0, \tau]$.

Passivity Preservation for Interconnections

MIRMI

Passivity Preservation for Interconnections – Feedback connection

- When interconnecting passive systems, passivity is preserved!
- · Consider two the subsystems

$$\begin{array}{ll} H_1: & H_2: \\ \dot{\boldsymbol{x}}_1 = \boldsymbol{f}_1(\boldsymbol{x}_1, \boldsymbol{u}_1), & \boldsymbol{x}_1(0) = \boldsymbol{x}_{10} \in \mathbb{R}^{n_1} \\ \boldsymbol{y}_1 = \boldsymbol{h}_1(\boldsymbol{x}_1, \boldsymbol{u}_1) & \boldsymbol{y}_2 = \boldsymbol{h}_2(\boldsymbol{x}_2, \boldsymbol{u}_2), & \boldsymbol{x}_2(0) = \boldsymbol{x}_{20} \in \mathbb{R}^{n_2} \\ \end{array} \tag{1.b}$$
 With $\boldsymbol{u}_1(t), \, \boldsymbol{u}_2(t), \, \boldsymbol{y}_1(t), \, \boldsymbol{y}_2(t) \in \mathbb{R}^p$

•
$$u := \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
, $e := \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$, $y := \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

• $u_1 = e_1 - y_2, u_2 = e_2 + y_1$

- Feedback connection (1) and (2) yield system H_{ey} from from input e to output y by eliminating u through substitution of (2) into (1).
- Suppose H_1 and H_2 are passive, then closed-loop system H_{ey} is also passive from input e to output y.
- Additionally, if $e_2 \equiv 0$, the closed-loop system $H_{e_1y_1}$ with input e_1 and output y_1 is also passive.

Proof : Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2005)

Prof. Sami Haddadin | Advanced Robot Control and Learning

a) Standard feedback connection

b) Block diagram of H_{ev}

(2)

b) Block diagram of $H_{e_1 v_1}$

Passivity Preservation for Interconnections – Parallel connection

- Consider now the parallel connection of the subsystems H_1 and H_2 with $\mathbf{u}_1(t)$, $\mathbf{u}_2(t)$, $\mathbf{y}_1(t)$, $\mathbf{y}_2(t) \in \mathbb{R}^p$
- If both subsystems are passive, then the system from input $u = u_1 = u_2$ to output $y = y_1 + y_2$ is also passive

Parallel connection of the systems H_1 and H_2

Stability and Passivity

Stability and Passivity –Lyapunov Stability

Given the following system

$$\dot{x} = f(x), \qquad x(0) = x_0 \in \mathbb{R}^n$$

With an equilibrium at $x_e = 0$ such that $f(x_e) = 0$

- 1. Equilibrium is Lyapunov stable: if for each $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that: $||x_0|| < \delta \rightarrow ||x(t)|| < \epsilon \quad \forall t \in \mathbb{R}_+$
- 2. Equilibrium is asymptotically stable if it is stable and there exists $\delta > 0$ such that: $\|x_0\| < \delta \to \lim_{t \to \infty} x(t) = 0$
- 3. Equilibrium is exponentially stable if there exists $k > 0, \lambda > 0, \delta > 0$ such that: $||x(t)|| \le k||x_0||e^{-\lambda t}$ $\forall ||x_0|| \le \delta$

Proof: Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

Stability and Passivity –Lyapunov Stability

Local asymptotic stability:

- Let x = 0 be an equilibrium point for $\dot{x} = f(x)$ and $\mathbf{D} \in \mathbb{R}^n$ a domain containing x = 0.
- Let $V: D \to R$ be a continuously differentiable function such that:
 - V(0) = 0 and V(x) > 0 in $D \{0\}$
 - $\dot{V}(x) \leq 0$ in D
 - $\dot{V}(x) < 0 \text{ in } D \{0\}$

Then x = 0 is asymptotically stable.

Global asymptotic stability:

- Let x = 0 be an equilibrium point for $\dot{x} = f(x)$ and $V: \mathbb{R}^n \to \mathbb{R}^n$ continuously differentiable function such that:
 - V(0) = 0 and V(x) > 0, $\forall x \neq 0$
 - $||x|| \to \infty$ then: $V(x) \to \infty$
 - $\dot{V}(x) < 0$, $\forall x \neq 0$

Then x = 0 is globally asymptotically stable.

Proof: Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

MIRMI

Stability and Passivity –Lyapunov Stability

Consider the following system

$$\dot{x} = f(x) + g(x)u, \quad x(0) = x_0 \in \mathbb{R}^n$$

 $y = h(x)$

- Use the storage function S(x(t)) as Lyapunov function
 - Recall definition of passivity: $\dot{S}(x(t)) \leq y^T u$
 - If the system is passive with respect to S and $u \equiv 0$:

$$\dot{S}(x(t)) \le 0$$

- > Stability of the origin of the system in case *S* is positive definite!
 - However, definition of passivity requires *S* to be only positive semidefinite!
- System is *zero-state observable* if no solution of $\dot{x} = f(x)$ with $u \equiv 0$ can stay identically in the set of states satisfying h(x) = 0, other than $x \equiv 0$
 - ► If the system is zero-state observable and output strictly passive with respect to S(x), then x = 0 is an asymptotically stable equlibrium with $u \equiv 0$

Stability and Passivity -Lyapunov Stability

- Consider the feedback connection with
 - subsystem H_1 passive (not necessary to be output strictly passive)
 - subsystem H_2 as static map $y_2 = k u_2, k > 0$ (thus H_2 is input strictly passive)

Then, using the previous theorems, it can be concluded that:

• The origin (x = 0) of a passive zero-state observable system can be asymptotically stabilized with the negative feedback u = -k y, k > 0

Passive Representation of a Robot

Passive Representation of a Robot

Robot dynamics in joint space (revisited)

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau$$

with:

- $q, \dot{q}, \ddot{q} \in \mathbb{R}^n$: joint positions, velocities, accelerations
- $M(q) \in \mathbb{R}^{n \times n}$: robot mass matrix
- $C(q, \dot{q}) \in \mathbb{R}^{n \times n}$: centrifugal and Coriolis matrix
- $g(q) \in \mathbb{R}^n$: gravitational force
- $\tau \in \mathbb{R}^n$: command torques
- Note: $g(q) = \left(\frac{\partial U(q)}{\partial q}\right)^T$ with robot potential energy U(q)
- We know that the robot mass matrix M(q) is positive definite and that the matrix $\dot{M}(q) 2C(q, \dot{q})$ is skew-symmetric by defining $C(q, \dot{q})$ using the Christoffel symbols¹
- Define the summation of the kinetic energy and the potential energy as the storage function:

$$S(\mathbf{x}) = T(\mathbf{q}, \dot{\mathbf{q}}) + U(\mathbf{q}) = \frac{1}{2} \dot{\mathbf{q}}^{\mathrm{T}} \mathbf{M}(\mathbf{q}) \dot{\mathbf{q}} + U(\mathbf{q}), \qquad \mathbf{x} = \begin{bmatrix} \mathbf{q} \\ \dot{\mathbf{q}} \end{bmatrix}$$

¹Richard M. Murray, S. Shankar Sastry, and Li Zexiang. 1994. A Mathematical Introduction to Robotic Manipulation (1st ed.). CRC Press, Inc., Boca Raton, FL, USA.

Passive Representation of a Robot

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau$$

$$S(x) = \frac{1}{2}\dot{q}^{T}M(q)\dot{q} + U(q), \qquad x = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$$

The time derivative of the storage function is

$$\dot{\mathbf{S}} = \dot{\mathbf{q}}^{T} \mathbf{M}(\mathbf{q}) \ddot{\mathbf{q}} + \frac{1}{2} \dot{\mathbf{q}}^{T} \dot{\mathbf{M}}(\mathbf{q}) \dot{\mathbf{q}} + \left(\frac{\partial U(\mathbf{q})}{\partial \mathbf{q}} \right) \dot{\mathbf{q}}$$

$$= \dot{\mathbf{q}}^{T} \left(\boldsymbol{\tau} - \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} - \mathbf{g}(\mathbf{q}) \right) + \frac{1}{2} \dot{\mathbf{q}}^{T} \dot{\mathbf{M}}(\mathbf{q}) \dot{\mathbf{q}} + \mathbf{g}(\mathbf{q})^{T} \dot{\mathbf{q}}$$

$$= \dot{\mathbf{q}}^{T} \boldsymbol{\tau} - \frac{1}{2} \dot{\mathbf{q}}^{T} (\dot{\mathbf{M}}(\mathbf{q}) - 2\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})) \dot{\mathbf{q}}$$

$$= \dot{\mathbf{q}}^{T} \boldsymbol{\tau}$$

Passivity of the manipulator dynamics from the commanded torque au to the joint velocity \dot{q}

Passivity-Based Position and Motion Control

MIRMI

PD-Control with Gravity Compensation (Takegaki & Arimoto¹) PD-g(q) Control

- Objective: Regulation, position control ($q_d = \text{const.}$) in free space, displacement error vector $\tilde{q} := (q q_d)$
- PD Control law with gravity compensation:

$$\tau = g(q) - K_{\rm P}\widetilde{q} + u \tag{2}$$

where $K_P \in \mathbb{R}^{n \times n}$ is a positive definite gain matrix

· Inserted in dynamics equation:

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} + K_{P}\tilde{q} = u$$
 (3)

· Definition of storage function:

$$S(\widetilde{q},\dot{q}) := \frac{1}{2} (\dot{q}^T M(q) \dot{q} + \widetilde{q}^T K_P \widetilde{q})$$

• Time derivative of storage function:

$$\dot{S}(\tilde{q}, \dot{q}) = \frac{1}{2} \dot{q}^T \dot{M}(q) \dot{q} + \dot{q}^T M(q) \ddot{q} + \tilde{q}^T K_P \dot{\tilde{q}}$$

$$= \frac{1}{2} \dot{q}^T \dot{M}(q) \dot{q} + \dot{q}^T (-C(q, \dot{q}) \dot{q} - K_P \tilde{q} + u) + \tilde{q}^T K_P \dot{q}$$

$$= \frac{1}{2} \dot{q}^T (\dot{M}(q) - 2C(q, \dot{q})) \dot{q} + \dot{q}^T u = \dot{q}^T u$$

System (3) is passive from input u to output \dot{q}

note: controller makes explicit use of

partial knowledge of manipulator model!

¹ Takegaki M., Arimoto S., 1981, "A new feedback method for dynamic control of manipulators", Transactions ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 103, pp. 119–125

PD-Control with Gravity Compensation (Takegaki & Arimoto) PD-g(q) Control

- Substituting $\dot{q} \equiv 0$ and $u \equiv 0$ into System (3) yields $\tilde{q} \equiv 0$ \longrightarrow system is **zero-state observable** by taking $\tilde{q} = (q q_d)$ as a state variable instead of q
- To guarantee asymptotic stability of the origin $\tilde{q} = 0$, $\dot{q} = 0$ the loop is closed by a negative feedback

$$\boldsymbol{u} = -\boldsymbol{K}_{\mathrm{D}}\dot{\boldsymbol{q}} \tag{4}$$

where $K_{D_i} \in \mathbb{R}^{n \times n}$ is a positive definite gain matrix

Storage function manipulator (open loop)	Storage function closed-loop control	
$S(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \frac{1}{2} \dot{\boldsymbol{q}}^T \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}} + U(\boldsymbol{q}),$	$S(\widetilde{q}, \dot{q}) = \frac{1}{2} (\dot{q}^T M(q) \dot{q} + \widetilde{q}^T K_P \widetilde{q})$	potential energy fu shaped by the loca loop (2)

function is cal feedback

- *Passivation:* energy shaping, such that unique minimal value is taken at desired state $\tilde{q} = 0$
- Damping injection: closing the loop with (4)

PD+ Control¹ (Paden & Panja)

- Objective: *tracking*, motion control $(q_d, \dot{q}_d, \ddot{q}_d)$ in free space (extension of PD-g(q) Control)
- PD+ Control

$$\tau = M(q)\ddot{q}_d + C(q,\dot{q})\dot{q}_d + g(q) - K_P \widetilde{q} + u$$
 where $K_P, K_D \in \mathbb{R}^{n \times n}$ are positive definite matrices and $\widetilde{q} := (q_d - q)$

Inserted in dynamics equation:

$$M(q) \ddot{q} + C(q, \dot{q}) \dot{q} + K_{P} \tilde{q} = u$$
 (5)

· Definition of storage function:

$$S(\widetilde{q}, \dot{\widetilde{q}}) := \frac{1}{2} (\dot{\widetilde{q}}^T M(q) \dot{\widetilde{q}} + \widetilde{q}^T K_P \widetilde{q})$$

• Time derivative of storage function:

$$\dot{S}(\tilde{q}, \dot{\tilde{q}}) = \frac{1}{2} \dot{\tilde{q}}^T \dot{M}(q) \dot{\tilde{q}} + \dot{\tilde{q}}^T M(q) \ddot{\tilde{q}} + \tilde{q}^T K_P \dot{\tilde{q}}
= \frac{1}{2} \dot{\tilde{q}}^T \dot{M}(q) \dot{\tilde{q}} + \dot{\tilde{q}}^T (-C(q, \dot{q}) \dot{\tilde{q}} - K_P \tilde{q} + u) + \tilde{q}^T K_P \dot{\tilde{q}}
= \frac{1}{2} \dot{\tilde{q}}^T (\dot{M}(q) - 2C(q, \dot{q})) \dot{\tilde{q}} + \dot{\tilde{q}}^T u = \dot{\tilde{q}}^T u$$

System (5) is passive from input u to output $\dot{\tilde{q}}$

¹ Paden, B., & Panja, R. (1988). Globally asymptotically stable 'PD+'controller for robot manipulators. International Journal of Control, 47(6), 1697-1712.

PD+ Control (Paden & Panja)

- Storage function shaped so that minimal value taken at desired state $\tilde{q}=\dot{\tilde{q}}=0$
- Substituting $\dot{\tilde{q}} \equiv 0$ and $u \equiv 0$ into System (5) yields $\dot{\tilde{q}} \equiv 0$ _____ system is zero-state
- Damping injection

$$u = -K_{\rm D}\dot{\tilde{q}}$$

guarantees asymptotic stability of the origin \tilde{q} , $\dot{\tilde{q}} = 0$

MIRMI

Joint Control Summary – Performance vs. Robustness

 $\tau = K_{P}(q_d - q) - K_{D}(\dot{q}_d - \dot{q}) + \dots$

Performance (Theoretical)
Robustness

 $\dots g(q)$

PD-g(q) (regulation controller, $\dot{q}_d = 0$)

Global asymptotic stability

...
$$M(q)\ddot{q}_d + C(q,\dot{q})\dot{q}_d + g(q)$$

PD+ controller (tracking controller)

Global asymptotic stability

$$\tau = M(q)[\ddot{q}_d + K_P(q_d - q) - K_D(\dot{q}_d - \dot{q})] + c(\dot{q}, q) + g(q)$$

Computed torque controller¹

Global exponential stability, linear decoupled

Challenge: deal with model errors and distubances

Scale of joint, inaccurate data about load/robot, external disturbances

Possible solutions:

Model-based friction compensation, Including integrator in controller, Disturbance observer and disturbance controller, Adaptive controller

¹See lecture basics of task space modeling and control for the computed torque controller in task space Prof. Sami Haddadin | Advanced Robot Control and Learning

MIRMI

References

- The content of this lecture is based on
 - Passivity-based Control and Estimation in Networked Robotics, T. Hatanaka et al., Springer international publishing, 2015
 - ➤ Slides of the lecture Sensor-based Robotic Manipulation and Locomotion, *Prof. Dr. Alin Albu-Schäffer*, Technical University of Munich, Wintersemester 2018/19
 - M. W. Spong, S. Hutchinson, M. Vydiasagar: Robot Modelling and Control, John Wiley & Sons, 2006
 - Takegaki M., Arimoto S., 1981, "A new feedback method for dynamic control of manipulators", Transactions ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 103, pp. 119–125
 - Paden, B., & Panja, R. (1988). Globally asymptotically stable 'PD+'controller for robot manipulators. *International Journal of Control*, *47*(6), 1697-1712.
 - Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control (Vol. 199, No. 1). Englewood Cliffs, NJ: Prentice hall.
 - R. Kelly, V. Davila, A. Loria (2005). Control of Manipulators in Joint Space