

Clase o6: Geoestadística y Análisis Espacial

Fundamentos estadísticos para el análisis de datos geoespaciales

Profesor: Francisco Parra O.

4 de septiembre de 2025

USACH - Ingeniería Civil en Informática

Introducción: ¿Por qué Geoestadística?

Exploratory Spatial Data Analysis (ESDA)

Interpolación Espacial

Análisis de Patrones de Puntos

Regresión Espacial

Casos de Aplicación

Herramientas y Recursos

Introducción: ¿Por qué Geoestadística?

La Primera Ley de la Geografía

Ley de Tobler (1970)

"Todo está relacionado con todo lo demás, pero las cosas cercanas están más relacionadas"

Valores similares se agrupan

Implicaciones:

- Datos NO independientes
- Proximidad importa
- · Métodos clásicos fallan
- Herramientas especiales

¿Qué es la Geoestadística?

Definición:

- Rama de la estadística aplicada
- Analiza fenómenos espacialmente correlacionados
- Desarrollada inicialmente para minería (Krige, 1951)
- Aplicable a cualquier dato georreferenciado

Objetivos principales:

- 🗠 Detectar patrones espaciales
- Interpolar valores desconocidos
- Q Identificar clusters y outliers

- Aplicaciones en el mundo real:
 - **Salud:** Mapeo de enfermedades
 - Ambiente: Contaminación del aire
 - Inmobiliario: Valoración de propiedades
 - **Crimen:** Hot spots delictuales
 - Agricultura: Rendimiento de cultivos
 - Minería: Estimación de reservas

▲ Sin geoestadística, ignoramos la estructura espacial de los datos

• • Modelar relaciones espaciales

Exploratory Spatial Data Analysis

(ESDA)

ESDA: Explorando Datos Espaciales

¿Qué es ESDA?

Conjunto de técnicas para describir y visualizar distribuciones espaciales, identificar localizaciones atípicas, descubrir patrones de asociación espacial y sugerir regímenes espaciales

1. Visualización

- Mapas temáticos
- Cartogramas
- · Mapas de calor
- 3D surfaces

2. Análisis Global

- · Autocorrelación global
- Tendencias espaciales
- Anisotropía
- Heterogeneidad

3. Análisis Local

- LISA clusters
- Hot/Cold spots
- Outliers espaciales
- Regímenes locales

© ESDA es el primer paso: entender los datos antes de modelar

Matrices de Pesos Espaciales

¿Qué son?

Matrices W que definen las relaciones de vecindad entre observaciones espaciales. Elemento w_{ij} = peso de la relación entre i y j

Tipos principales:

• Contigüidad: Queen, Rook

• Distancia: K-vecinos, umbral

• Kernel: Gaussiano, triangular

• Custom: Redes, flujos

Queen: 8 vecinos

Rook: 4 vecinos

Normalización: Por filas para que

$$\sum_{j} w_{ij} = 1$$

Autocorrelación Espacial Global

Índice de Moran (I)

$$I = \frac{n}{\sum_{ij} w_{ij}} \frac{\sum_{ij} w_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_i (x_i - \bar{x})^2}$$

Interpretación:

- I>0: Clustering
- I=0: Aleatorio
- I < 0: Dispersión

Rango: [-1,1] aproximadamente

▲ Siempre probar significancia estadística con permutaciones

Autocorrelación Espacial Local (LISA)

LISA

Descomponen el índice global en contribuciones locales para identificar clusters

Moran Local:

$$I_i = \frac{(x_i - \bar{x})}{s^2} \sum_j w_{ij} (x_j - \bar{x})$$

- **HH:** Hot spot
- · LL: Cold spot
- **HL:** Outlier alto
- LH: Outlier bajo

Mapa de clusters LISA

El Problema de la Interpolación

Objetivo

Estimar valores en ubicaciones no muestreadas

Interpolación

Aplicaciones:

- Puntos → Superficie
- Llenar gaps
- · Cambiar resolución
- Mapas de predicción

▲ Base: Ley de Tobler

Métodos Determinísticos

IDW

$$\hat{z} = \frac{\sum w_i z_i}{\sum w_i}$$

$$w_i = 1/d_i^p$$

Pros:

- Simple
- Rápido

Contras:

- · Sin incertidumbre
- · "Bull's eyes"

Splines

- Suave
- · Min. curvatura
- Exacto

Voronoi

- Polígonos
- Constante
- Discontinuo

Trend

- Polinomio
- Tendencia
- Inexacto

Semivariograma

Variabilidad vs distancia

$$\gamma(h) = \frac{1}{2N(h)} \sum [z_i - z_{i+h}]^2$$

Componentes:

• Nugget: Var. en h=o

• Sill: Var. total

• Range: Alcance

Modelos teóricos: Esférico, Exponencial, Gaussiano, Matérn

Kriging: El Mejor Estimador Lineal Insesgado (BLUE)

Tipos de Kriging:

- Simple: Media conocida y constante
- · Ordinario: Media desconocida constante
- Universal: Con tendencia (drift)
- Co-Kriging: Múltiples variables
- Indicator: Variables categóricas

Ecuación de Kriging Ordinario:

$$\hat{Z}(s_0) = \sum_{i=1}^n \lambda_i Z(s_i)$$

con
$$\sum_{i=1}^{n} \lambda_i = 1$$
 (insesgado)

Ventajas:

- BLUF
- Con varianza
- Anisotropía
- Óptimo

Mapa de incertidumbre:

Varianza de Kriging

Análisis de Patrones de Puntos

Patrones Espaciales de Puntos

Point Pattern Analysis

Aleatorio (CSR)

Randomness

Complete Spatial

Análisis de distribución: aleatorio, agrupado o regular

Agrupado

Atracción entre puntos

Uniforme Regular

Repulsión entre puntos

A Patrón varía con escala

Clustering

Función K de Ripley

Función K

Puntos esperados dentro de radio $\it r$

$$K(r) = \lambda^{-1} E[N(r)]$$

Interpretación:

- $K(r) = \pi r^2$: CSR
- $K(r) > \pi r^2$: Clustering
- $K(r) < \pi r^2$: Regularidad

Función L (normalizada):

• Usar simulaciones Monte Carlo para bandas de confianza

Hot Spot Analysis: Getis-Ord G_i^*

Estadístico G_i^*

Detecta hot spots y cold spots significativos

$$G_i^* = \frac{\sum_j w_{ij} x_j - \bar{X} \sum_j w_{ij}}{S \sqrt{\frac{n \sum_j w_{ij}^2 - (\sum_j w_{ij})^2}{n-1}}}$$

Z-scores:

- > 2,58: Hot 99 %
- > 1,96: Hot 95 %
- < -1.96: Cold 95 %
- < -2.58: Cold 99 %

Aplicación: Análisis de criminalidad

Hot/Cold Spots de Crimen

Políticas focalizadas

Regresión Espacial

El Problema con OLS en Datos Espaciales

OLS:
$$y = X\beta + \varepsilon$$

Violaciones:

- Independencia
- Homoscedasticidad
- Estacionariedad

Consecuencias:

- Sesgo
- · Inferencia errónea
- Mal ajuste
- · SE subestimados

Diagnósticos espaciales:

Patrón espacial en residuos

A Moran's I detecta autocorrelación

Geoinformática - Clase 6 Profesor: Francisco Parra O. Semestre 2, 2025

Modelos de Regresión Espacial

SAR:

$$y = \rho W y + X \beta + \varepsilon$$

- ρ : Autocorrelación
- Wy: Lag espacial
- Spillovers

SEM:

$$y = X\beta + u$$

$$u = \lambda W u + \varepsilon$$

- λ : Error AC
- · Var. omitidas

SDM:

$$y = \rho Wy + X\beta + WX\theta + \varepsilon$$

- Lags de X y y
- Flexible
- · Efectos dir/indir

Selección:

- 1. Moran's I
- 2. Tests LM
- 3. AIC/BIC
- 4. Especificación

Geographically Weighted Regression (GWR)

GWR

Coeficientes locales que varían espacialmente

Modelo GWR:

$$y_i = \beta_0(u_i, v_i) + \sum_k \beta_k(u_i, v_i) x_{ik} + \varepsilon_i$$

Ventajas:

- Captura heterogeneidad espacial
- Coeficientes locales interpretables
- Identifica regímenes espaciales
- Flexible y visual

Consideraciones:

Mapa de coeficientes locales:

 eta_k para educación

• Los coeficientes varían suavemente en el espacio

Geoinformática Anascho de banda crítico

Caso 1: Análisis de Precios Inmobiliarios

Problema:

- · Valoración de propiedades en Santiago
- Efectos de vecindario
- Amenidades y des-amenidades

Metodología:

- 1. ESDA: Moran's I, LISA clusters
- 2. Kriging de precios/m²
- 3. GWR con variables:
 - · Distancia a metro
 - Áreas verdes
 - Seguridad
 - Educación

Resultados esperados: Insights:

Clusters de precio

• Premium del 15% cerca del metro

- Efectos spillover entre comunas
- Heterogeneidad en valoración de amenidades

Caso 2: Epidemiología Espacial

Análisis COVID-19 en Chile: Datos:

- · Casos por comuna
- Movilidad (Google Mobility)
- Densidad poblacional
- · Nivel socioeconómico

Análisis realizado:

- Hot spots temporales (Gi*)
- Difusión espacial (Moran's I)
- Modelo SIR espacial
- Predicción con Kriging espacio-temporal

Hallazgos:

- Clustering inicial en comunas ABC1
- · Difusión jerárquica y por contagio
- Persistencia en zonas vulnerables

Herramientas y Recursos

Herramientas para Geoestadística

Python:

- **PySAL:** Suite completa
- GeoPandas: DataFrames espaciales
- scikit-gstat:
 Variogramas
- PyKrige: Kriging
- pointpats: Patrones de puntos
- mgwr: GWR

R:

- sp/sf: Objetos espaciales
- gstat: Geoestadística
- spdep: Dependencia espacial
- spatstat: Point patterns
- **GWmodel:** GWR
- tmap: Visualización

Software especializado:

- GeoDa: ESDA visual
- SAGA GIS: Geoestadística
- ArcGIS: Spatial Analyst
- QGIS: Processing toolbox
- **GS+:** Variogramas

Python + PySAL es la combinación más versátil para investigación

Mejores Prácticas

- Siempre hacer ESDA primero
- · Verificar estacionariedad
- Validar modelos con datos independientes
- · Considerar múltiples escalas
- · Reportar incertidumbre
- Usar múltiples métodos
- · Documentar decisiones

O Don'ts:

- · Ignorar autocorrelación espacial
- Usar OLS sin diagnósticos
- Interpolar sin validación
- Asumir isotropía siempre
- Extrapolar más allá del rango
- P-hacking espacial
- Olvidar el MAUP

MAUP: Modifiable Areal Unit Problem - los resultados pueden cambiar con la agregación

Geoinformática - Clase 6 Profesor: Francisco Parra O. Semestre 2, 2025

Conclusiones

Resumen de la Clase

Conceptos clave aprendidos:

- Primera Ley de Tobler
- Autocorrelación espacial (Moran, LISA)
- Matrices de pesos espaciales
- Interpolación (IDW, Kriging)
- Semivariogramas
- Análisis de patrones de puntos
- Hot spots (Getis-Ord)
- Regresión espacial (SAR, SEM, GWR)

Habilidades desarrolladas:

- · Detectar dependencia espacial
- Crear superficies interpoladas
- Identificar clusters y outliers
- · Modelar con conciencia espacial
- Generar mapas de incertidumbre
- Validar modelos espaciales

Mensaje clave

Datos espaciales = métodos especiales

Próximos Pasos: Recursos

E Libros recomendados:

- . Applied Spatial Data Analysis with R Bivand et al.
- "Geographic Data Science with Python Rey et al.
- "Geostatistics for Natural Resources Isaaks & Srivastava

</> Práctica con notebooks:

- ESDA de datos chilenos
- Kriging de contaminación en Santiago
- Hot spots de criminalidad
- GWR de precios inmobiliarios

Próximos Pasos: Proyecto

Proyecto sugerido:

- · Análisis geoestadístico completo de un fenómeno local
- · Comparar métodos de interpolación
- Implementar modelo de regresión espacial
- Desarrollar dashboard interactivo con resultados

A Próxima clase: Machine Learning Geoespacial

Entregables del Proyecto

Entregables esperados

Análisis ESDA completo

- · Autocorrelación global y local
- Clusters y outliers espaciales

Comparación de métodos

- · Mínimo 3 métodos de interpolación
- · Validación cruzada y métricas

∠ Visualizaciones interactivas

- · Mapas con Folium/Plotly
- · Dashboard integrado

Reporte final

- Metodología e interpretación
- Profesor: Francisco Parra O.

 Profesor: Francisco Parra O.

¿Preguntas?

✓ francisco.parra.o@usach.cl

github.com/franciscoparrao

Material y notebooks disponibles en el repositorio del curso