PC 5 : Calcul de lois & Vecteurs gaussiens

On corrigera les exercices (1), (4), (6) et (5) (dans cet ordre) en PC.

Exercice 1. Soit R une variable aléatoire de loi exponentielle de paramètre 1/2 et Θ une variable aléatoire de loi uniforme sur $[0,2\pi]$. On suppose que R et Θ sont indépendantes. Quelle est la loi jointe de $(X,Y)=(\sqrt{R}\cos(\Theta),\sqrt{R}\sin(\Theta))$? En déduire une méthode de simulation d'une variable Gaussienne sur \mathbb{R}^2 à partir de deux variables i.i.d. uniformément distribuées sur [0,1].

Solution. On utilise ici la méthode de la fonction muette. Soit f une fonction continue bornée de \mathbb{R}^2 dans \mathbb{R}^2 . En utilisant l'indépendance de Θ et R on voit que la loi du couple (R,Θ) admet une densité par rapport à la mesure de Lebesgue qui est le produit (tensoriel) des deux densités. On obtient alors par le théorème de transfert que

$$\begin{split} E\Big[f(\sqrt{R}\cos(\Theta),\sqrt{R}\sin(\Theta))\Big] &= \int_{\mathbb{R}} \int_{\mathbb{R}} f(\sqrt{r}\cos(\theta),\sqrt{r}\sin(\theta)) \frac{1}{2} e^{-\frac{1}{2}r} \mathbf{1}_{r \in \mathbb{R}^+} \times \frac{1}{2\pi} \mathbf{1}_{\theta \in [0,2\pi]} dr d\theta \\ &= \int_{0}^{+\infty} \int_{0}^{2\pi} f(\sqrt{r}\cos(\theta),\sqrt{r}\sin(\theta)) \frac{1}{2} e^{-\frac{1}{2}r} \times \frac{1}{2\pi} dr d\theta. \end{split}$$

Pour mener à bien la méthode de la fonction muette jusqu'à sa fin, on doit/veut effectuer le changement de variables suivant : $(x,y) = (\sqrt{r}\cos(\theta), \sqrt{r}\sin(\theta))$ dans la dernière intégrale. Pour cela, on va appliquer le théorème de changement de variables qui s'applique bien quand la fonction de changement de variables est un \mathcal{C}^1 -difféomorphisme. On considère

$$\varphi: \left\{ \begin{array}{ccc} U & \longrightarrow & V \\ (r,\theta) & \longrightarrow & (\sqrt{r}\cos(\theta), \sqrt{r}\sin(\theta)). \end{array} \right.$$

où $U :=]0, +\infty[\times]0, 2\pi[$ et $V = \mathbb{R}^2 \setminus \{0\} \times \mathbb{R}^+$ sont deux ouverts de \mathbb{R}^2 . On voit que φ est une bijection de U sur V en tant que composition de deux bijections : $(r', \theta) \longrightarrow (r' \cos(\theta), r' \sin(\theta))$ est le changement en coordonnées polaires qui est une bijection de U sur V et $(r, \theta) \to (\sqrt{r}, \theta)$ est une bijection de U sur U. Par ailleurs, φ est \mathcal{C}^1 en tant que composée de fonctions de classe \mathcal{C}^1 et sa matrice jacobienne est donnée pour tout $(r, \theta) \in U$ par

$$J(\varphi)(r,\theta) = \begin{pmatrix} \frac{\cos(\theta)}{2\sqrt{r}} & -\sqrt{r}\sin(\theta)\\ \frac{\sin(\theta)}{2\sqrt{r}} & \sqrt{r}\cos(\theta) \end{pmatrix}$$

qui est inversible car de déterminant égale à 1/2. La fonction φ est bien un \mathcal{C}^1 -difféomorphisme (on utilise ici que φ est inversible, \mathcal{C}^1 et de différentielle inversible – car de matrice Jacobienne inversible – comme caractérisation d'un \mathcal{C}^1 -difféomorphisme) et le théorème de changement de variable donne

$$\int_{V} h(x,y)dxdy = \int_{U} h(\varphi(r,\theta))|\det(J(\varphi)(r,\theta))|drd\theta$$

(de manière informelle $(x, y) = (\sqrt{r}\cos(\theta), \sqrt{r}\sin(\theta))$ et $dxdy = |\det(J(\varphi)(r, \theta))|drd\theta$. On a aussi la formule d'inversion $r = x^2 + y^2$; on ne donne pas celle en θ car on ne s'en servira pas et elle fait intervenir plusieurs cas en fonction du signe de x et y). On obtient

$$E\Big[f(\sqrt{R}\cos(\Theta), \sqrt{R}\sin(\Theta))\Big] = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) \frac{1}{2} e^{-\frac{1}{2}(x^2 + y^2)} \times \frac{1}{2\pi} 2dxdy$$
$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) e^{-\frac{1}{2}(x^2 + y^2)} \times \frac{1}{2\pi} dxdy.$$

On en déduit, par la méthode de la fonction muette, que (X, Y) suit une loi normale standard (centrée et de matrice de covariance identité I_2) sur \mathbb{R}^2 .

Soit $\mu \in \mathbb{R}^2$ et $\Sigma \in \mathbb{R}^{2 \times 2}$ une matrice symétrique semi-définie positive. On souhaite simuler une v.a.r. distribuée selon $\mathcal{N}(\mu, \Sigma)$. On commence par observer que si $X \sim \mathcal{N}(0, I_2)$ alors $\mu + \Sigma^{1/2}X$ suit une

 $\mathcal{N}(\mu, \Sigma)$. Il suffit donc de simuler une $X \sim \mathcal{N}(0, I_2)$. Pour cela, on utilise la question précédente et la méthode d'inversion de la fonction de répartition. Soit U_1 et U_2 deux variables i.i.d. uniformément distribuées sur [0,1]. On a vu en PC2 que $F^{(-1)}: p \in]0, 1[\to -2\ln(1-p)$ est l'inverse généralisée de la fonction de répartition d'une $\exp(1/2)$. On en déduit que $R:=F^{(-1)}(U_1)$ est une variable aléatoire de loi exponentielle de paramètre 1/2 et $\Theta:=2\pi U_2$ est une variable aléatoire de loi uniforme sur $[0,2\pi]$. De plus, R et Θ sont indépendantes vu que U_1 et U_2 le sont. On conclut avec la première question.

Exercice 2 (PALE 2013). Soient X et Y deux variables aléatoires indépendantes de lois respectives $\Gamma(\alpha, \lambda)$ et $\Gamma(\alpha + 1/2, \lambda)$, avec $\alpha > 0$ et $\lambda > 0$. On pose $(V, W) = (\sqrt{XY}, \sqrt{Y})$. Déterminer la loi de (V, W).

On rappelle que la densité de la loi $\Gamma(a, \lambda)$ est

$$\frac{1}{\Gamma(a)}\lambda^a x^{a-1} e^{-\lambda x} \mathbf{1}_{x>0}, \qquad \text{avec} \quad \Gamma(a) = \int_0^\infty z^{a-1} e^{-z} dz.$$

Exercice 3. 1. Soit (X,Y) un couple de variables indépendantes de lois respectives $\Gamma(a,\lambda)$ et $\Gamma(b,\lambda)$. Déterminer la loi jointe du vecteur aléatoire (U,V) où U=X/Y et V=X+Y.

2. Soient Z et S des variables indépendantes de lois respectives $\mathcal{N}(0,1)$ et χ^2_n . On appelle loi de Student à n degrés de liberté la loi de la variable $T=\frac{Z}{\sqrt{S/n}}$. Montrer que la densité de T est donnée sur \mathbb{R} par

$$t\mapsto \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)}\left(1+\frac{t^2}{n}\right)^{-\frac{n+1}{2}}\ .$$

Exercice 4. Soit $X = (X_1, X_2, X_3)$ un vecteur gaussien centré de matrice de covariance

$$\Gamma = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1. Que peut-on dire de X_3 et de (X_1, X_2) ?
- 2. Quelle est la loi de (X_1, X_2) ?
- 3. Montrer que pour tout $a \in \mathbb{R}$ le vecteur $(X_2, X_2 + aX_1)$ est un vecteur gaussien.
- 4. En choisissant a de sorte que X_2 et $X_2 + aX_1$ soient indépendants, calculer $\mathbb{E}[X_1|X_2]$.

Solution. 1. La matrice de corrélation entre X_3 et $(X_1, X_2)^{\top}$ est $Cov(X_3, (X_1, X_2)^{\top}) = \mathbb{E}X_3(X_1, X_2)^{\top} = (\mathbb{E}X_3X_1, \mathbb{E}X_3X_2)^{\top} = (0, 0)^{\top}$. Donc X_3 et $(X_1, X_2)^{\top}$ sont deux composantes non corrélées d'un vecteur Gaussien elles sont donc indépendantes.

2. On va montrer que $(X_1, X_2)^{\top}$ est un vecteur gaussien centré, de matrice de covariance $\Gamma_{12} = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$. On voit que $(X_1, X_2)^{\top}$ est une transformation linéaire du vecteur Gaussien $(X_i)_{i=1}^3$:

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = A \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \text{ où } A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

C'est donc un vecteur Gaussien. Il suffit maintenant de caractériser sa moyenne et sa matrice de covariance pour déterminer entièrement sa loi; on a

$$\mathbb{E}\left(\begin{array}{c} X_1 \\ X_2 \end{array}\right) = \mathbb{E}A\left(\begin{array}{c} X_1 \\ X_2 \\ X_3 \end{array}\right) = A\mathbb{E}\left(\begin{array}{c} X_1 \\ X_2 \\ X_3 \end{array}\right) = A\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

et

$$\mathbb{E}\left(\begin{array}{c}X_1\\X_2\end{array}\right)\left(\begin{array}{cc}X_1&X_2\end{array}\right)=\mathbb{E}A\left(\begin{array}{c}X_1\\X_2\\X_3\end{array}\right)\left(\begin{array}{cc}X_1&X_2&X_3\end{array}\right)A^\top=A\Gamma A^\top=\Gamma_{12}=\begin{pmatrix}3&1\\1&2\end{pmatrix}.$$

On a donc $(X_1, X_2)^{\top} \sim \mathcal{N}(0, \Gamma_{12})$.

- 3. On a $(X_2, X_2 + aX_1)^{\top} = A(X_1, X_2)^{\top}$ avec $A = \begin{pmatrix} 0 & 1 \\ a & 1 \end{pmatrix}$. Donc $(X_2, X_2 + aX_1)$ est un vecteur gaussien centré de matrice de covariance $A\Gamma_{12}A^{\top}$.
- 4. Comme le vecteur $(X_2, X_2 + aX_1)$ est gaussien, X_2 et $X_2 + aX_1$ (en tant que composante d'un vecteur Gaussien) sont indépendants si et seulement si elles ne sont pas corrélées, càd si $Cov(X_2, X_2 + aX_1) = 0$. Or

$$Cov(X_2, X_2 + aX_1) = Var(X_2) + aCov(X_2, X_1) = 2 + a.$$

En prenant a=-2, on en déduit que X_2-2X_1 et X_2 sont indépendants.

Pour calculer $\mathbb{E}[X_1|X_2]$, l'idée est de choisir α, β pour avoir $X_1 = \alpha(X_2 - 2X_1) + \beta X_2$: en écrivant $X_1 = -\frac{1}{2}(X_2 - 2X_1) + \frac{1}{2}X_2$, on obtient donc:

$$\mathbb{E}\left[X_1|X_2\right] = -\frac{1}{2}\mathbb{E}\left[X_2 - 2X_1|X_2\right] + \mathbb{E}\left[\frac{1}{2}X_2|X_2\right] = -\frac{1}{2}\mathbb{E}\left[X_2 - 2X_1\right] + \frac{1}{2}X_2 = \frac{1}{2}X_2.$$

Exercice 5. Soient X, Y, Z trois variables aléatoires indépendantes, de même loi $\mathcal{N}(0,1)$. Montrer que la variable aléatoire $(X-Y)^2 + (X-Z)^2 + (Y-Z)^2$ est indépendante de la variable aléatoire X+Y+Z.

Solution. Comme X, Y, Z sont i.i.d. de loi normale standard, le vecteur (X, Y, Z) est gaussien centrée de matrice de variance l'identité (produit des densités). On a $(X, Y, Z) \sim \mathcal{N}_3(0, I_3)$. Considérons le vecteur

$$\mathbf{V} := \begin{pmatrix} X - Y \\ X - Z \\ Y - Z \\ X + Y + Z \end{pmatrix} = A \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}, \quad \text{avec } A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Donc, V est vecteur gaussien en tant que transformation linéaire d'un vecteur gaussien. Sa matrice de variance-covariance est donnée par

$$Var(\mathbf{U}) = Var\begin{pmatrix} A & X \\ Y \\ Z \end{pmatrix} = AVar\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} A^{T} = AA^{T} = \begin{pmatrix} 2 & 1 & -1 & 0 \\ 1 & 2 & 1 & 0 \\ -1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Les covariances nulles implique l'indépendance du sous-vecteur $\mathbf{W} := \begin{pmatrix} X - Y \\ X - Z \\ Y - Z \end{pmatrix}$ de la variable X +

Y+Z. Or, $(X-Y)^2+(X-Z)^2+(Y-Z)^2=\|\mathbf{W}\|^2$ est fonction mesurable de \mathbf{W} , donc l'indépendance de X+Y+Z est préservée.

Une autre solution consiste à appliquer Cochran (voir exercice 6) au sous-espace

$$V_1 := \operatorname{Vect}(\mathbb{1}_3) \text{ où } \mathbb{1}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3 \text{ et } V_2 := V_1^{\perp} := \operatorname{Vect}\left(\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}\right)$$

pour en déduire l'indépendance de $(X+Y+Z)\mathbbm{1}_3$ avec $\begin{pmatrix} X-Y\\ X-Z\\ Y-Z. \end{pmatrix}$

Exercice 6 (Théorème de Cochran). Soit Z un vecteur gaussien de \mathbb{R}^n d'espérance nulle et de matrice de covariance I_n où I_n est la matrice identité de dimension n. Supposons que \mathbb{R}^n s'écrit comme la somme directe de J sous-espaces vectoriels orthogonaux V_1, \dots, V_J de dimensions respectives p_1, \dots, p_J . On désigne par Π_{V_j} la matrice de projection orthogonale sur V_j .

- 1. Montrer que $\Pi_{V_1}Z, \cdots, \Pi_{V_k}Z$ sont des vecteurs aléatoires indépendants. Déterminer leurs lois.
- 2. Montrer que $\|\Pi_{V_i}Z\|^2$ suit la loi $\chi^2(p_j)$ pour tout $1 \leq j \leq J$.

3. Application. Soient X_i , $i=1,\ldots,n$ des variables aléatoires indépendantes de loi normale $\mathcal{N}(\mu,\sigma^2)$ avec $\mu \in \mathbb{R}$ et $\sigma > 0$. On pose $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ et $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$. Déterminer la loi jointe du vecteur aléatoire (\bar{X}_n, S_n^2) .

Solution. 1. Formons d'abord une grande matrice A avec toutes les matrices de projections :

$$A = \begin{pmatrix} \Pi_{V_1} \\ \Pi_{V_2} \\ \vdots \\ \Pi_{V_I} \end{pmatrix}.$$

Puisque Z est un vecteur gaussien, $\begin{pmatrix} \Pi_{V_1}Z\\ \cdots\\ \Pi_{V_J}Z \end{pmatrix}=AZ$ l'est aussi comme transformation affine d'un

vecteur gaussien. Sa moyenne est $\mathbb{E}[AZ] = A\mathbb{E}[Z] = 0$ et sa matrice de variance-covariance est $Var(AZ) = A Var(Z) A^T = AA^T$.

Rappel sur les projecteurs orthogonaux : on a pour tout j, $\Pi_{V_j} = \Pi_{V_j}^T$ (symétrie) et $\Pi_{V_j}^2 = \Pi_{V_j}$, et par orthogonalité des sous-espaces vectoriels V_j on a $\Pi_{V_j}\Pi_{V_l} = 0$ pour tout $j \neq l$.

Donc, la matrice de variance-covariance de AZ est diagonale par block :

$$\operatorname{Var}(AZ) = \begin{pmatrix} \Pi_{V_1} & 0 & \cdots & 0 \\ 0 & \Pi_{V_2} & \ddots & \vdots \\ \vdots & & \ddots & \\ 0 & \cdots & \cdots & \Pi_{V_J} \end{pmatrix}.$$

La structure de la matrice $\operatorname{Var}(AZ)$ implique que les composantes $\Pi_{V_j}Z$ du vecteur gaussien Z sont non corrélées et donc des vecteurs gaussiens indépendants. De plus, $\Pi_{V_j}Z$ est de moyenne nulle et $\operatorname{Var}(\Pi_{V_j}Z) = \Pi_{V_j}$ pour tout j. Donc, $\Pi_{V_j}Z \sim \mathcal{N}_{p_j}(0,\Pi_{V_j})$.

2. Comme Π_{V_j} est symétrique, il existe une matrice Γ orthogonale telle que $\Pi_{V_j} = \Gamma \Lambda \Gamma^T$, où $\Lambda = \text{Diag}(\lambda_1, \dots, \lambda_p)$ est la matrice diagonale des valeurs propres de Π_{V_j} . Alors,

$$\|\Pi_{V_j} Z\|^2 = Z^T \Pi_{V_j}^T \Pi_{V_j} Z = Z^T \Pi_{V_j} Z = (Z^T \Gamma) \Lambda(\Gamma^T Z) = U^T \Lambda U = \sum_{i=1}^k \lambda_i U_i^2 ,$$

où $U = \Gamma^T Z = (U_1, \dots, U_n)^T$. En utilisant l'orthogonalité de Γ et la propriété d'invariance par rotation des Gaussiennes Standard, on vérifie que U est un vecteur normal de loi $\mathcal{N}_k(0, I_k)$. En effet,

$$\mathbb{E}\left[U\right] = \Gamma^T \mathbb{E}\left[Z\right] = 0 \quad \text{ et } \quad \operatorname{Var}(U) = \Gamma^T \operatorname{Var}(Z) \Gamma = \Gamma^T \Gamma = I_k \; .$$

Or, Π_{V_j} est un projecteur orthogonal, donc $\lambda_j \in \{0,1\}$ et $\operatorname{Card}\{j : \lambda_j = 1\} = \operatorname{Rang}(\Pi_{V_j}) = p_j$. Donc.

$$\|\Pi_{V_j} Z\|^2 = \sum_{i:\lambda_i=1} U_i^2 \sim \chi_{p_j}^2.$$

3. Le vecteur aléatoire $X = (X_1, \dots, X_n)^T$ est de loi normale de moyenne $(\mu, \dots, \mu)^T$ et de matrice de variance $\sigma^2 I_n$. Posons $Z = \frac{X - \mu}{\sigma}$. Alors Z est un vecteur gaussien centré de variance I_n . Notons

 $V_1 = \operatorname{Vect}(\mathbbm{1}_n)$ le sous-espace vectoriel engendré par le vecteur $\mathbbm{1}_n = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^n$. La projection

orthogonale $\Pi_{V_1}Z$ de Z sur V_1 est donnée par

$$\langle \frac{1}{\sqrt{n}}\mathbb{1}_n, Z \rangle \frac{1}{\sqrt{n}}\mathbb{1}_n = \frac{1}{n}\mathbb{1}_n^T Z \mathbb{1}_n = \bar{Z}_n \mathbb{1}_n,$$

où $\bar{Z}_n = (\bar{X}_n - \mu)/\sigma$. On en déduit que la projection orthogonale de Z sur $V_2 = V_1^{\perp}$ est donnée par $Z - \Pi_{V_1}Z = Z - \bar{Z}_n\mathbbm{1}_n$. Par le théorème de Cochran, $\bar{Z}_n\mathbbm{1}_n$ et $Z - \bar{Z}_n\mathbbm{1}_n$ sont des vecteurs gaussiens indépendants. De plus, $\|Z - \bar{Z}_n\mathbbm{1}_n\|^2 = \frac{nS_n^2}{\sigma^2}$ suit la loi de khi-deux dont le nombre de degrés de liberté est $\dim(V_2) = n - \dim(V_1) = n - 1$. On en déduit l'indépendance de \bar{X}_n et S_n^2 avec $\bar{X}_n \sim \mathcal{N}(\mu, \sigma^2)$ et $\frac{nS_n^2}{\sigma^2} \sim \chi_{n-1}^2$.