

Capstone Project: 2 Bike Sharing Demand Prediction

TEAM MEMBERS

Team Member
Atul Chouhan

Content

- ☐ Understanding Business Problem
- **☐** Dataset Information
- ☐ Feature Analysis
- ☐ Exploratory Data Analysis
- ☐ Data Pre-processing
- **☐** Model Implementing
- **☐** Challenges
- □ Conclusions

Understanding Business Problem

-> Bike rentals have became a popular service in recent years and it seems people are using it more often.

- -> "Currently Rental bikes are introduced in many urban cities for the enhancement of mobility comfort. It is important to make the rental bike available and accessible to the public at the right time as it lessens the waiting time. Eventually, providing the city with a stable supply of rental bikes becomes a major concern. The crucial part is the prediction of bike count required at each hour for the stable supply of rental bikes"
- -> **Target** is to maximize the availability of bikes to the customer. And minimise the time of waiting to get a bike on rent

Dataset Information

This Dataset contains 8760 lines and 14 columns.

Three categorical features 'Seasons', 'Holiday', & 'Functioning Day'.

One Datetime features 'Date'.

We have some numerical type variables such as temperature, humidity, wind, visibility, dew point temp, solar radiation, rainfall, snowfall which tells the environment conditions at that particular hour of the day

Date	Rented Bike Count	Hour	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature(°C)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)	Seasons	Holiday	Functioning Day
0 01/12/2017	254	0	-5.2	37	2.2	2000	-17.6	0.0	0.0	0.0	Winter	No Holiday	Yes
1 01/12/2017	204	1	-5.5	38	0.8	2000	-17.6	0.0	0.0	0.0	Winter	No Holiday	Yes
2 01/12/2017	173	2	-6.0	39	1.0	2000	-17.7	0.0	0.0	0.0	Winter	No Holiday	Yes
3 01/12/2017	107	3	-6.2	40	0.9	2000	-17.6	0.0	0.0	0.0	Winter	No Holiday	Yes
4 01/12/2017	78	4	-6.0	36	2.3	2000	-18.6	0.0	0.0	0.0	Winter	No Holiday	Yes

Feature Summary

Date: Year-Month-Day

Rented Bike Count - Count of bikes rented at each hour

Hour - Hour of the day

Temperature - Temperature in Celsius

Humidity - %

Wind Speed - m/s

Visibility - 10m

Dew point temperature -Celsius

Solar radiation -MJ/m2

Rainfall -mm

Snowfall -cm

Seasons -Winter, Spring, Summer, Autumn

Holiday -Holiday/No Holiday

Functional Day: Non Functional day or Functional day

Insights From Our Dataset

- There are No Missing Values present
- ➤ There are No Duplicate values present
- There are No null values.
- ➤ And finally we have 'rented bike count' variable which we need to predict for new observations
- ➤ The dataset shows hourly rental data for one year (1 December 2017 to 31 November(2018)(365 days).we consider this as a single year data
- ➤ So we convert the "date" column into 3 different column i.e. "year", "month", "day".

```
Non-Null Count Dtype
    Column
                                                 object
0
    Date
                                8760 non-null
1
    Rented Bike Count
                                8760 non-null
                                                 int64
    Hour
                                8760 non-null
                                                 int64
    Temperature(°C)
                                8760 non-null
                                                 float64
    Humidity(%)
                                8760 non-null
                                                 int64
    Wind speed (m/s)
                                8760 non-null
                                                 float64
    Visibility (10m)
                                8760 non-null
                                                 int64
    Dew point temperature(°C) 8760 non-null
7
                                                 float64
    Solar Radiation (MJ/m2)
                                                 float64
8
                                8760 non-null
    Rainfall(mm)
                                8760 non-null
                                                 float64
    Snowfall (cm)
                                8760 non-null
                                                 float64
    Seasons
11
                                8760 non-null
                                                 object
    Holiday
                                8760 non-null
                                                object
13 Functioning Day
                                8760 non-null
                                                 object
dtypes: float64(6), int64(4), object(4)
```


Data Distribution Of Dependent Variable

Transformed data→ distribution

Analysis Of Season Variable

Analysis Of Function Day & Holiday

Analysis Of Month Variable

Analysis Of Weekdays & Weekend Variable

Analysis Of Hour Variable

Analysis Of Functioning day Variable

Analysis Of Season Variable

Regression Plot For Numerical Variable

Positively correlated variable

Regression Plot For Numerical Variable

Regression Plot For Numerical Variable

Negatively correlated variable

Correlation Matrix (Heatmap)

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Al

→Linear Regression _step_1 → VIF range should be lower 10

	variables	VIF
0	Temperature	29.075866
1	Humidity	5.069743
2	Wind_speed	4.517664
3	Visibility	9.051931
4	Dew_point_temperature	15.201989
5	Solar_Radiation	2.821604
6	Rainfall	1.079919
7	Snowfall	1.118903

	variables	VIF
0	Temperature	3.166007
1	Humidity	4.758651
2	Wind_speed	4.079926
3	Visibility	4.409448
4	Solar_Radiation	2.246238
5	Rainfall	1.078501
6	Snowfall	1.118901

vif should be in range of 1 to 10 clearly we need to drop heighly correlated column

Linear Regression (continue)

Test dataset result

MSE : 35.077512998569425 RMSE : 5.9226272040851455 MAE : 4.4740422173338565 R2 : 0.7722101540678412

Adjusted R2: 0.7665580651940564

Lasso, Ridge and Elastic Net

Test dataset results Lasso

MSE : 35.07752396970736 RMSE : 5.922628130290417 MAE : 4.474047285132368 R2 : 0.7722100828223736

Adjusted R2: 0.7665579921807939

Ridge

MSE: 35.078136174806644 RMSE: 5.922679813632225 MAE: 4.474831316083193 R2: 0.7722061072239539

Adjusted R2: 0.7665539179369079

Elastic Net

MSE: 52.987831883019176 RMSE: 7.279274131602627 MAE: 5.607820103665487 R2: 0.6559023422953525

Adjusted R2: 0.6473643386163515

Test dataset result Kernel= 'rbf'

MSE: 140.71554768323855 RMSE: 11.86235843680499 MAE: 9.80545492295386 R2: 0.08620736799865203

Adjusted R2: 0.06353367441434898

kernel='linear'

MSE : 40.93355714508648 RMSE : 6.3979338184359555 MAE : 4.944313631955972 R2 : 0.7341815916107068

Adjusted R2: 0.7275859101291373

Random Forest

Test dataset result

MSE : 12.120575429745571 RMSE : 3.4814616800627824 MAE : 2.1724688159056256 R2 : 0.9232711818900445

Adjusted R2 : 0.9213673301298256

→ 92% accuracy

XGBoost

Test dataset result

Model Score: 0.9921200071811659

MSE : 1.2134454431020136

RMSE : 1.1015649972207784

MAE : 0.754253930308519

R2: 0.9331907895417064

Adjusted R2 : 0.9315330703683499

Hyper parameter

```
# Grid search
grid = GridSearchCV(estimator=xgb,param_grid = param_dict,verbose=2)
```


Output and Important Features

Important Features

Summary

	Model	MAE	MSE	RMSE	R2_score	Adjusted R2
0	Linear regression	4.474	35.078	5.923	0.772	0.770
1	Lasso regression	4.474	35.078	5.923	0.772	0.770
2	Ridge regression	4.475	35.078	5.923	0.772	0.770
3	Elastic net regression	5.608	52.988	7.279	0.656	0.650
4	SVM (kernel)	4.944	40.934	6.398	0.734	0.650
5	Random forest regression	2.156	12.098	3.478	0.923	0.920
6	Gradient boosting regression	0.754	1.213	1.102	0.933	0.932

Random forest Regressor and XGBoost gives the highest R2 score of 92% and 93.2% respectively

Challenges

- Large Dataset to handle
- Need to analyze lot of variable
- Feature engineering
- Feature selection
- Optimizing the model
- Deciding the flow of the presentation

Conclusion

- 'Functioning day' column holds the most important feature.
- Bike rental count is mostly correlated with the time of the day as it is peak at 8 am morning and 6 pm at evening.
- Bike rental count is high during working days than non working day.
- We see that people generally prefer to bike at moderate to high temperatures, and when little windy.
- It is observed that highest number bike rentals counts in Autumn & Summer seasons & the lowest in winter season.
- highest number of bike rentals on a clear day and the lowest on a snowy or rainy day.
- We observed that with increasing humidity, the number of bike rental counts decreases.
- When we compare the root mean squared error and mean absolute error of all the models, Random forest Regressor and XGBoost with gridsearchev gives the highest R2 score of 92% and 93% respectively

Q&A

Thank you