

Bayesian Data Analysis with BRMS

Mitzi Morris Stan Development Team Columbia University, New York NY

2/28/23

BRMS: Bayesian Regression and Multilevelmodeling in Stan

The BRMS package fits Bayesian models using an extended R formula syntax.

https://paul-buerkner.github.io/brms/

Why should I use BRMS?

- Simplifies model development:
 - Use extended R formula syntax to specify the likelihood
 - User set_prior function to specify priors for all parameters
- Supports Bayesian workflow
 - BRMS package provides prior and posterior predictive checks
 - Works with downstream analysis packages bayesplot, projpred, and loo
- BRMS-generated Stan programs are efficient and robust

Bayesian Workflow

Model development

- Fit data to model (simulated or real)
- Evaluate the fit:
 - How good is the fit?
 - How sensitive are the results to the modeling assumptions?
 - Do the predictions make sense?

Model Comparison

- Some models are too simple
 - Learn what we lose when features are omitted
- Some models are too complex
 - Learn the limits of what we can fit given the data

Modeling Terminology and Notation

- *y* data
- lacksquare parameters
- lacktriangledown p(y, heta) joint probability distribution of the data and parameters
- lacksquare p(heta) **prior probability distribution** the probability of the parameters before any data are observed
- $p(\theta \mid y)$ **posterior probability distribution** the probability of the parameters conditional on the data (i.e., after seeing the data).
- $\blacksquare p(y \mid \theta)$
 - \blacksquare if y is fixed, this is the **likelihood function**
 - \blacksquare if θ is fixed, this is the **sampling distribution**

Multilevel Regression

McElreath: "Multilevel regression deserves to be the default form of regression."

Statistical Rethinking, 2nd ed, section 1.3.2

Multilevel regression models can handle structured data.

- Almost all data has some structure
 - Observations are repeated or ordered or come from different (nested) groups, e.g.
 - Hierarchical: students in classrooms in schools in districts in states in regions
 - Auto-regressive: time series, spatial data, spatio-temporal data
- With a multilevel models, we can say more about the data
 - Estimate variation on all levels of the model
 - Predict values of new groups not originally present in the data

Regression Models in R

- Pre-existing packages lm, glm, lme4
 - lm, glm single-level linear models
 - 1me4 hierarchal linear model
- Stan (2010) build a better 1me4
 - Stan probabilistic programming language based on BUGS
 - NUTS-HMC algorithm more efficient MCMC sampler
- BRMS (2016) simplify model specification.
 - Use 1me4-style formulas and R functions to wrap Stan
 - User specifies formula, priors, BRMS generates Stan program
- RStanARM (2015) precompiled Stan models

Linear Regression

Linear regression relates a scalar outcome (the dependent variable "y") to one or more predictors (the independent variable "x"). For a single predictor x

- $y_i = \alpha + \beta x_i + \epsilon_i$
 - $\,\blacksquare\,\,\alpha$ is the $\mathit{intercept},$ the offset from zero on the x-axis
 - lacksquare eta is the *slope*, the multiplier applied to x.
 - lacksquare ϵ_i is the error term

When ϵ_i are independent errors drawn from a normal distribution with mean 0, standard deviation σ , the **linear model** is

- $y_i \sim N(\alpha + \beta x_i, \sigma)$
 - lacktriangledown $\alpha + \beta x_i$ is the linear predictor
 - lacksquare σ is the variance

Generalized Linear Regression

We extend the simple linear model $y_i \sim \mathrm{N}(\alpha + \beta \, x_i, \sigma)$ to a multilevel general linear regression as follows

- Instead of a normal distribution N, we can use any distributional **family** D, (e.g., a Beta distribution), correspondingly, we generalize the variance parameter σ to any family-specific parameter θ
- lacktriangle We generalize $lpha + eta x_i$ to η , any linear predictor
- lacktriangle The linear predictor can be transformed by any inverse link function f
- We use group-level subscripts to allow for group-level parameters.

General Multilevel Model: $y_i \sim \mathrm{D}(\mathit{f}(\eta_i), \theta)$

Don't let these definitions obscure the fact we are defining a function comprised of **intercept** and **slope** terms.

Regression Formula Syntax

A regression formula has the general form $LHS \sim RHS$

```
Reaction ~ 1 + Days + (1 + Days|Subject)
```

- The left-hand side is the outcome, in the simplest case, a single observed value.
- The right-hand side is the linear predictor, consisting of
 - "Population-level" terms (a.k.a. fixed effects)
 - "Group-level" terms (a.k.a. random effects) which vary by grouping factor. Group-level terms are of the form (coefs | group), where group is a grouping factor and coefs refer to the predictors whose effects vary with the levels of the grouping factor.
 - The number 1 corresponds to an intercept term

BRMS Processing

Notebook

link to online notebook and data here

References

- https://paul-buerkner.github.io/brms/articles/index.html
- https://xcelab.net/rm/statistical-rethinking/
- https://journal.r-project.org/archive/2018/RJ-2018-017/RJ-2018-017.pdf
- https://www.barelysignificant.com/slides/RGUG2019#1
- https://ourcodingclub.github.io/tutorials/brms/
- https://onlinelibrary.wiley.com/doi/pdf/10.1111/eth.13225
- https://mc-stan.org/users/documentation/case-studies/tutorial_rstanarm.html