The same a shearest at man	
Thermochemistry	
	J
	1
State Functions	
Depend only on the initial and final statesDo not depend on the path taken	
 Denoted by upper case letters – e.g. T, E, H, S,G, P, V (or the height of Mt Everest) 	
 Path functions depend on how change took place (discharging a battery, or path taken 	
while climbing mt Everest for example)	
– e.g. q, w	
]
Internal Energy E	
Sum of all the KE and PE of all particles in the	
system	
	J

Systems and Surroundings

- To keep track of energy changes we have to define a system (the part we are studying)
- And the surroundings (everything else)
- There may be a boundary (or it may be imaginary)

Open, Closed and Isolated systems

- Open can transfer matter and energy
- Closed transfer energy but not matter
- Isolated no transfer of matter or energy
 (hard to do!)

First Law of Thermodynamics

- Energy can not be created or destroyed (can be transferred or transformed)
- $\Delta E = q + w$
 - q is the thermal energy (heat) change (J)
 - w is the work done (J)
- In chemistry most systems we study (except gases) do not expand or contract much
 - $-\Delta E = q$

State and Path functions

- q and w are path functions— it matters how the change occurs - (eg discharging a battery in different ways)
- BUT at constant pressure q (the thermal energy change) is a state function, Enthalpy q
 ΔH

Enthalpy

- Heat absorbed or emitted during a reaction under constant pressure (which is almost everything we are interested in)
- Endothermic ΔH is + (heat goes **into** the reaction and the surroundings get **cold**)
- Exothermic ΔH is (heat goes **out of** the reaction and the surroundings get **hot**)

Exothermic or Endothermic?

- Sweat evaporating
- Water freezing
 - (for system water and the surroundings everything else?)
- Wood burning
- · Chemical handwarmer

Calorimetry at constant P

- To find thermal energy change (q) during a given process
- Do reaction in insulated container
- Measure T change
- q = m x c x ∆T
- Mass x specific heat x temperature change
- Specific heat = heat to raise 1g by 1°C
- Heat capacity C = heat to raise whole thing 1°C
- Molar heat capacity Cm = heat to raise 1mol by 1°C
- Enthalpy change ΔH can be calculated by

Calorimetry

- What are you measuring the T of? (system or surroundings)
- What is the sign of q?
- How will you change q to Δ **H?**

What is $\Delta H_{rxn/mol\;Mg}$ for the reaction

$$Mg(s) + 2 HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

if 0.158 g Mg reacts in 100.0 mL of solution changes the temperature from 25.6°C to 32.8°C ?

(assumptions: specific heat of solution = 4.18 J/g°C

Density of solution = 1g/mL)

Example – What is $\Delta H_{\text{rxa/mol Mg}}$ for the reaction $Mg(s) + 2 \text{ HCl}(aq) \rightarrow MgCl_2(aq) + H_2(g)$ if 0.158 g Mg reacts in 100.0 mL of solution to change the temperature from 25.6°C to 32.8°C? Use $C_s - 4.18 \text{ J}^{\circ}\text{C}$, $d_{\text{soln}} - 1.00 \text{ g/mL}$. $q_{\text{soln}} - m \times C_s \times \Delta T$ = $1.00 \times 10^2 \text{ g} \times 4.18 \frac{J}{g^{\circ}\text{C}} \times 7.2^{\circ}\text{C} = 3.0 \times 10^3 \text{ J}$ $q_{\text{rxn}} = -q_{\text{soln}} = -3.0 \times 10^3 \text{ J}$ 0.158 g Mg $\times \frac{1 \text{ mol}}{24.31 \text{ g}} = 6.4994 \times 10^{-3} \text{ mol}$

$$\Delta {\rm H} = \frac{q_{\rm rxn}}{{\rm mol\,Mg}} = \frac{-3.0 \times 10^3 \, {\rm J}}{6.4\underline{9}94 \times 10^{-3} \, {\rm mol}}$$

 $= -4.6 \times 10^5 \text{ J/mol}$

2?	
	-

The Second Law

- For any change in a system the total Entropy of the Universe must increase.
- (you cant get as much energy back when a change occurs as you put in – some is always lost – spread out as thermal energy – unusable)
- $\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$

Entropy

- Entropy is a measure of the number of possible arrangements
- The more possible arrangements the higher the probability of that state.
- S= k lnW (where W = number of arrangements)

Which has more entropy

- A deck of cards in order or a shuffled deck?
- Separated dye and water or mixed up?
- H₂O_(s) or H₂O_(l)
- CaCO₃(s) or CaO(s) + CO₂(g)

Can you think of examples where the	
can you think of examples where the	
 what effect does a more ordered system have on the surroundings? 	
on the surroundings:	
Why don't living systems violate the second	
law?	