Automatic Wood Pith Detector: Local Orientation Estimation and Robust Accumulation

Henry Marichal, Diego Passarella and Gregory Randall

Why is Pith Detection Important?

- Essential for determining the first year of growth and estimating tree age.
- The pith has distinct physical-mechanical properties, making it critical for:
 - Detecting growth eccentricity.
 - Identifying areas prone to fungal degradation.
 - Distinguishing wood sections for industrial applications.

Pith

Challenges in Pith Detection

- Natural wood irregularities
 - Ring asymmetries, cracks, knots, and fungal degradation.

Challenges by Species

Species diversity

Pinus Taeda

• Gymnosperms and angiosperms exhibit different wood structures.

Douglas Fir

Gleditsia triacanthos

Automatic Ring Detection

 Automatic Tree Ring delineation algorithms sensitive to precise pith location, especially those relying on the concentric ring pattern

Objective

• Develop automated, reliable method for pith detection that handle variability across species, conditions, and structural irregularities.

Tree Disk Structure

- Two main structures
 - Tree Rings formed by roughly concentric curves
 - Radial structures such as cracks and fungi
- Intersection of the lines supported by radial structures and the perpendicular to the rings is close to the pith

Computing Ring Normals

- Local orientation (LO) estimation at each pixel
 - 2D-Structure Tensor

 Splitting the image is patches, we assign to each patch the local orientation with highest coherence

Some LOs are going to be noise

Accumulation Space

- Accumulating the LOs we can see how the pith region is highlighted.
- In order to have an accurate pith localization we need a way of accumulate them intelligently.
 - Removing LO that does not belong to the ring structure

Alignment-Based Detection

- Intuitively the angle (Θ_i) between the pith position and the pixel belonging to the ring (p_{LO}^i) and **LO** $p_1^ip_2^i$ should be close to 0 (or 180).
 - If Θ_i is close to 0, $\cos^2(\Theta_i)$ is close to 1.

•
$$h(x,y) =$$

$$\frac{1}{N} \sum_{i=1}^{N} \cos^2(\Theta_i(x,y))$$

$$= \frac{\langle \overline{cp_{LO}^i}, \overline{p_1^i p_2^i} \rangle}{|\overline{cp_{LO}^i}||\overline{p_1^i p_2^i}|}$$

Refinement Process

Fig1 h(x,y) level curves

$$h(x,y) = \frac{1}{N} \sum_{i=1}^{N} cos^{2}(\Theta_{i}(x,y))$$

Pith candidate

$$c_{opt} = \max_{c} \quad \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\langle \overline{cp_{LO}^i}, \overline{p_1^i p_2^i} \rangle}{|\overline{cp_{LO}^i}| |\overline{p_1^i p_2^i}|} \right)^2$$

s.t. $c \in S$ lice Region

$$\cos(\theta_i(x,y)) = \frac{\langle \overline{cp_{LO}^i}, \overline{p_1^i p_2^i} \rangle}{|\overline{cp_{LO}^i}||\overline{p_1^i p_2^i}|}$$

Iterative Refinement

In blue colors is the sub image built around the solution c_1 obtained after the first iteration

Challenges with Anomalies

Original LOs

Blue LOs rotated 90 degres

- There are situations where the ring structures not give enough information due to fungi or other perturbations.
- If we can select the LO supported by the radial structures of those perturbations and the normal of the ring structures we could rotate 90 degrees the tangential LOs (blue)

Accumulation Space with Anomalies

APD Method

Parallel Coordinate Space

- Parallel Coordinate Space,
 - Lines are transformed as dots
 - Converging lines are aligned dots
 - It is composed by two sub-spaces: Twisted and Straight, lines with orientations between 180 and 360 degrees goes to the Twisted, lines with orientation between 0 and 180 degrees goes to the Straight

Straight

Aligned lines are selected using Ransac Method

Dubska, M., Herout, A., Havel, J.: Pclines - line detection using parallel coordinates Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography

Refined Accumulation Space

Deep Learning Approach: APD-DL

YoloV8 Network

- Architecture designed for object detection and segmentation.
- Inspired by Kurdthongmee et al. (2019, YoloV3).
- Dataset: Wood cross-section images labeled with pith location as bounding boxes (1/10th of image dimensions).

Training & Validation

- Five-Fold Cross-Validation:
 - Divide data into five subsets.
 - Train on 4 subsets, test on 1
 - Rotate subsets, ensuring no overlap between training and testing data.

Datasets

Collection	Number of images	Specie
UruDendro2	119	Pinus taeda
UruDendro3	9	Gleditsia triacanthos
Kennel	7	Abies alba
Forest	57	Douglas fir
Logyard	32	Douglas fir
Logs	150	Douglas fir
Discs	208	Douglas fir

Results

Average over each dataset

Lower the better

_		UruDendro2	UruDendro3	Kennel	Forest	Logyard	Logs	Discs
	LFSA (21)	1.03 (0.85)	1.46 (0.97)	0.42 (0.18)	0.80 (0.36)	1.02 (0.62)	0.80 (0.46)	0.72 (0.43)
	ACO (3)	2.23 (6.64)	4.52 (11.96)	0.2 (0.06)	0.24 (0.24)	0.60 (1.11)	0.46 (0.45)	0.24 (0.35)
	APD-PCL	0.42 (0.34)	0.74 (0.54)	0.19 (0.10)	0.81 (0.98)	0.82 (0.84)	0.52 (0.47)	0.46 (0.57)
\	APD	1.02 (2.45)	0.55 (0.30)	0.14 (0.06)	0.22 (0.18)	0.35 (0.17)	0.29 (0.33)	0.26 (0.42)
	APD-DL	0.55 (1.45)	0.13 (0.06)	0.14 (0.07)	0.45 (1.85)	0.52 (1.29)	0.22 (0.46)	0.23 (0.54)

Results on all the datasets. Normalized errors. We show the mean error and the standard deviation between parenthesis.

Performance Summary

Average over the full dataset (582 samples)

	Method	Mean	Median	Max	FN	Time
	LFSA (21)	0.83	0.72	5.03	0	627
Lower the	ACO (3)	0.79	0.21	36.39	2	918
better	APD-PCL	0.52	0.34	4.33	0	2339
	APD	0.42	0.19	15.44	0	784
+	APD-DL	0.33	0.14	13.91	3	209

Results of all the methods over the whole set of images, i.e., merging all collections. Normalized errors, number of false negatives, and execution time in milliseconds.

Qualitative results

Purple, LFSA; Red, ACO; Blue, APD; Yellow, APD-PCL and Green, APD-DL

Sample with fungal degradation. APD-PCL is the best method

Qualitative results

Purple, LFSA; Red, ACO; Blue, APD; Yellow, APD-PCL

and Green, APD-DL

Sample with fungal degradation. APD-PCL is the best method

Qualitative results

Purple, LFSA; Red, ACO; Blue, APD; Yellow, APD-PCL

and Green, APD-DL

Sample with fungal degradation. APD-PCL is the best method

Conclusions

- Proposed a comparative study of classic and machine learning-based methods for pith detection.
- Introduced the **UruDendro Dataset**, enhancing the community's ability to benchmark and develop new methods.
- Methods were assessed over different species, acquisitions condition and perturbations.
- APD method outperformed the YoloV8 model in the datasets Kennel,
 Forest and Logyard

Thanks

henry.marichal@fing.edu.uy

