CACULATION SHEET

ASSUMPTIONS:

- 1. LOAD CASES:
- LOAD CASE (1): (DEAD LOAD) + (LIVE LOAD)
- 2. PROPERTIES:
- STEEL USED (FY) = 360 N/mm2
- RCC USED (Fuc) = 25 N/ mm2
- PCC USED (Fuc) = 15 N/ mm^2
- Bearing Capacity of soil under footing (q)all = 15 N/ mm2
- 3. METHOD OF ANALYSING:
- Using (SAP2000) Software in structural Analysis

Design of Slabs

-for solid slab:

Take ts = 15 cm

Own weight = $0.15 \times 2.5 = 0.375 \text{ t/m}$ 2

Flooring Cover

 $=0.15 t/m^2$

Live load

=.025 t/m2

Total

0.775 t/m2

-For hollow block slab:

Take t(total) = 30 cm

Own weight = 0.08x2.5 = 0.2 t/m2

Ribs

=0.15 t/m2

Blocks = 8x0.01

=0.08 t/m2

Flooring Cover

=0.15 t/m2

Live load

=0.25 t/m2

Total

0.83 t/m2

- We calculate the bending moment . shear forces of all sec.s regarding critical cases (lengths. loads....)
- So . the concrete and schedule of reinforcement .

1. Solid slabs:

• (S1): Mmax = 2.98 mt

T = 200mm

As = 11.01 cm2
$$\rightarrow$$
 (6 Y 16/m +6 Y 12 BOTTOM)
 \rightarrow (5 Y 12/m BOTH WAY - TOP)

• (S2): Mmax = 2.38 mt

T=180 mm

As= 7.5 cm2
$$\rightarrow$$
 (6 Y 12/m BOTH WAY - BOTTOM)
 \rightarrow (6 Y 12/m BOTH WAY - TOP)(AT $\frac{1}{4}$ OF SPAN)

• (S3): Mmax =1.51 mt

T = 150mm

As = $6.3 \text{ cm}2 \rightarrow (6 \text{ Y } 12/\text{m BOTH WAY}) \text{ BOTTOM}$

SCHEDULE OF SLABS

TYPE	THICKNESS	ВОТТО	M R.F.T	TOP R.F.T(AT ¼ OF SPAN)		
		SHORT	LONG	SHORT	LONG	
S1	200mm	Y16@150mm	Y12@150mm	Y12@200mm	Y12@200mm	
S2	180mm	Y12@150mm	Y12@150mm	Y12@200mm	Y12@15200mm	
S 3	150mm	Y12@150mm	Y12@150mm	-	4. 	
S4	150mm	Y10@150mm	Y10@150mm	-	-	

2. **BEAMS**:

• Beam (FB1)

Mmax = 4.1 mt & Qmax = 5.95 t

$$B*T = 200 * 700 mm$$

As =
$$10.06 \text{ cm} 2 \rightarrow (3Y18 + 2Y18 \text{ CUT}) \text{ BOTTOM}$$

Shear Check:

$$Q = Q / B*T = 43.6 N/mm2 < 70 N/mm2$$

• Beam (FB2):

Mmax = 2.51 mt & Qmax = 3.25 t

$$B*T = 200 * 650 mm$$

As=
$$4.74 \text{ cm}2$$
 \rightarrow (3Y18 + 2Y16 CUT) BOTTOM

Shear Check:

$$Q = Q / B*T = 32.5 N/mm2 < 70 N/mm2$$

• Beam (FB3):

Mmax = 2.95 mt & Qmax = 4.02 t

$$B*T = 200 * 600 mm$$

As =
$$7.9 \text{ cm}2$$
 \rightarrow (3 Y16) BOTTOM +TOP

Shear Check:

$$Q = Q / B*T = 33.5 N/mm2 < 70 N/mm2$$

• Beam (FB4):

Mmax = 1.65 mt & Qmax = 2.08t

B*T = 200 * 500 mm

As = $4.02 \text{ cm} 2 \longrightarrow (2Y16 \text{ BOTTOM})$

→(2Y16) TOP

Shear Check:

Q = Q / B*T = 38 N/mm2 < 70 N/mm

SCHEDULE OF FLOOR BEAMS

ТҮРЕ	SIZE	BOTTOM R.F.T		TOP R.F.T		STIRRUPS AT	
		CON	CUT	CON	CUT	SUPPORT	MID.SPAN
FB1	200X700	3Y18	2Y18	3Y18	2Y18	Y8@100	Y8@150
FB2	200X650	3Y18	2Y16	3Y16	2Y16	Y8@100	Y8@150
FB3	200X600	3Y16	14	3Y16	(. 	Y8@100	Y8@150
FB4	200X500	2Y16	N - N	2Y16	72	Y8@100	Y8@150
FB5	200X500	2Y16		3Y16	X 2	Y8@100	Y8@150
HB1	1000X200	10Y16		10Y16	-	Y8@100	Y8@150
HB2	500X200	5Y16	the state of	5Y16	Victor III	Y8@100	Y8@150

DESING OF RECTANGULAR COLUMN

COLUMN C1

Loading COLUMN Load = 100 ton

Parameters Fco = 250 kg/cm2

Fc = 60 kg/cm^2

Fy = 3600 kg/cm2

Percentage of steel = 1.2 %

Height of column = 320 cm

Slender Ratio (h/b) = 16 %

Reduction Factor = .096

Fc = 57.6 kg/cm2

Dimensions Are Required = 1375.85 cm2

Column Width (a)=20 cm

Column Length (b) = 70 cm

Reinforcemei Area Required = 14.38 cm2

Diameter of Bars = 16 mm

Number of Bars = 10 no

Diameter of Bars for Stirrups = 8 mm

Number of Bars for Stirrups = 7 no

Actual Percent of Reinf = 1.1 %

DESING OF RECTANGULAR COLUMN

COLUMN C2

Loading COLUMN Load = 85 ton

Parameters Fco = 250 kg/cm2

Fc $= 60 \text{ kg/cm}^2$

Fy $= 3600 \text{ kg/cm}^2$

Percentage of steel = 1.2 %

Height of column = 320 cm

Slender Ratio (h/b) = 16 %

Reduction Factor = .096

Fc $= 57.6 \text{ kg/cm}^2$

Dimensions Are Required = 1530.33 cm2

Column Width (a) = 20 cm

Column Length (b)=60 cm \

Reinforcemei Area Required = 18.38 cm2

Diameter of Bars = 16 mm

Number of Bars = 8 no

Diameter of Bars for Stirrups = 8 mm

Number of Bars for Stirrups = 6 no

Actual Percent of Reinf = 1.1 %

TYPE	SIZE	MAIN R.F.T	LINKS	REMARKS
C1	0.20 X 0.70	10 Y 16	3 Y 8 @ 0.15 c/c	
C2	0.20 X 0.60	8 Y 16	2 Y 8 @ 0.15 c/c	
C3	0.20 X 0.50	6 Y 16	1 Y 8 @ 0.15 c/c	
C4	See Details	6 Y 16	1 Y 8 @ 0.15 c/c	
C5	Dia 0.30	6Y 16	1 Y 8 @ 0.15 c/c	

DESING OF isolated footing

F1

Input data:

Ref column Unfactored load = 105.984 t

Design Bearing Capacity (Sbc) = 1.5 Kg/cm2

Dimensions of Column:

a = 200 mm b = 700 mm

 $Mz = 0.00 \text{ KN.m} \qquad pbz = 0.00 \text{ KN/m2}$

Mx = 00 KN.m pbx = 0.00 KN/m2

Check for Bearing capacity:

Footing area req = 3.75 m2 Provide L = 2.30 m

B = 2.10 m

Area Provided = 3.99 m2 > 3.75 m2 O.K

Sbc (max) = 105.984 KN/m2 < 150.00 O.K

Sbc (min) = 105.984 KN/m2 O.K

Rft . req. In Longitudinal Direction :

Depth req for Oneway Shear: (d from face of col)

Assume D = 600 mm d = 540 mm

Vu = 37.06 Kn pt = 0.32 %

V = 0.07 N/mm2 vc = 0.40 N/mm2

Moment at Critical Section Safe

Muxx = 49.63 Kn-m/m Mu / bd2.fck = 0.01 N/mm2

Z = 535.88 mm Ast (req) = 25.9cm2

Ast (req) = 0.05 % < 0.32 SO O.K

Check for punching shear (1.5 d from face of col)

Punching shear Perimeter = 7880 mm vmax = 0.60 N/mm2

Vu= -230.89 Kn < 4.00 N/mm2 OK

V = -0.05 N/mm2 < 0.40 N/mm2 SO OK

Final: P t(req) = 0.32 A st (req) = 23.50 cm

Rft req for Punching shear

Pt (req) = 0.15

Final Pt req = 0.15 %

Ast(req) = 23.70 cm2 FOR 1.90m Width

Ic = 850 mm

3c/4+9d/4 = 1365 mm

Required Y 16 @ 150 mm c/c

4- DESING OF isolated footing

F2

Input data:

Ref column Unfactored load = 142 t

Design Bearing Capacity (Sbc) = 1.5 Kg/cm2

Dimensions of Column:

a = 200 mm

b = 800 mm

Mz = 0.00 KN.m

pbz = 0.00 KN/m2

Mx = 00 KN.m

pbx = 0.00 KN/m2

Check for Bearing capacity:

Footing area req = 4.55 m^2

Provide L = 2.10 m

B = 1.90 m

Area Provided = 4.83 m2 > 4.55 m2 O.K

Sbc (max) = 127.65 KN/m2 < 150.00 O.K

Sbc (min) = 127.65 KN/m2 O.K

Rft . req. In Longitudinal Direction :

Depth req for Oneway Shear: (d from face of col)

Assume D = 600 mm

d = 540 mm

Vu = 37.06 Kn

pt = 0.32 %

 $V = 0.07 \text{ N/mm}^2$

vc = 0.40 N/mm2

Moment at Critical Section

Safe

Muxx = 49.63 Kn-m/m

Mu / bd2.fck = 0.01 N/mm2

Z = 535.88 mm

Ast (req) = 25.28 cm 2

Ast (req) = 0.05 % < 0.32 SO O.K

Check for punching shear (1.5 d from face of col)

Punching shear Perimeter = 7880 mm

vmax = 0.60 N/mm2

Vu= -230.89 Kn < 4.00 N/mm2 OK

V = -0.05 N/mm2 < 0.40 N/mm2 SO OK

Final: P t(req) = 0.32

A st (req) = 23.70 cm 2

Ic = 750 mm For 1.50 m Wideth

3c/4+9d/4 = 1590 mm

Required Y 16 @ 150 mm c/c

Moment at Critical Section:

Muyy =22.06 Kn.m

Mu/bd2 fck = .00 N/mm2

Z = 538.18 mm

Ast (req) = 21.59 cm 2

Oneway shear : Vu = -7.06 Kn

 $V = -0.01 \text{ N/mm}^2$

Pt (req) = 0.02

Rft req for Punching shear

Pt (req) = 0.00

Pt (req) = 0.15

Final Pt req = 0.15 %

Ast(req) = 23.70 cm2

FOR 2.10m Width

Ic = 850 mm

3c/4+9d/4 = 1365 mm

Required Y 16 @ 150 mm c/c

DESING OF isolated footing

F3

Input data:

Ref column Unfactored load = 167.2 t

Design

Bearing Capacity (Sbc) = 1.50 Kg/cm2

Dimensions of Column:

a = 550 mm

b = 700 mm

Mz = 0.00 KN.m

pbz = 0.00 KN/m2

Mx = 00 KN.m

pbx = 0.00 KN/m2

Check for Bearing capacity:

Footing area req = 5.95 m2

Provide L = 1.90 m

B = 1.70 m

Area provided = 6.11 m2 > 5.95 m2 O.K

Sbc (max) = 134.35 KN/m2 < 150.00 O.K

Sbc (min) = 134.35 KN/m2 O.K

Rft . req. In Longitudinal Direction:

Depth req for Oneway Shear: (d from face of col)

Assume D = 600 mm

d = 540 mm

Vu = 37.06 Kn

pt = 0.32 %

 $V = 0.07 \text{ N/mm}^2$

vc = 0.40 N/mm2

Moment at Critical Section

Safe

Muxx = 49.63 Kn-m/m Mu / bd2.fck = 0.01 N/mm2

Z = 535.88 mm

Ast (req) = 284.44 cm 2

Ast (req) = 0.05 % < 0.32 SO O.K

Check for punching shear (1.5 d from face of col)

Punching shear Perimeter = 7880 mm

vmax = 0.60 N/mm2

Vu= -230.89 Kn < 4.00 N/mm2 OK

V = -0.05 N/mm2 < 0.40 N/mm2 SO OK

Final: P t(req) = 0.32

A st (req) = 23.92 cm2

Ic = 750 mm For 1.50 m Wideth

3c/4+9d/4 = 1590 mm

Required Y 16@ 150 mm c/c

Moment at Critical Section:

Muyy =22.06 Kn.m

Mu/bd2 fck = .00 N/mm2

Z = 538.18 mm

Ast (req) = 25.2cm2

Pt (req) = 0.02

Oneway shear: Vu = -7.06 Kn

V = -0.01 N/mm2

Pt (req) = 0.00

Rft req for Punching shear

Pt (req) = 0.15

Final Pt req = 0.15 %

Ast(req) = 25.28 cm2

Ic = 850 mm

3c/4+9d/4 = 1365 mm

Required Y 16 @ 150 mm c/c

DESING OF isolated footing

F4

Input data:

Ref column Unfactored load = 135.50 t

Design

Bearing Capacity (Sbc) = 1.5 Kg/cm²

Dimensions of Column:

a = 200 mm

b = 120 mm

Mz = 0.00 KN.m

pbz = 0.00 KN/m2

Mx = 00 KN.m

pbx = 0.00 KN/m2

Check for Bearing capacity:

Footing area req = 6.78 m^2

Provide L = 2.40 m

B = 2.40 m

Area Provided = 7.00 m2 > 6.78 m2 O.K

Sbc (max) = 131.33 KN/m2 < 150.00 O.K

Sbc (min) = 131.33 KN/m2 O.K

Rft . req. In Longitudinal Direction :

Depth req for Oneway Shear: (d from face of col

Assume D = 600 mm

d = 540 mm

Vu = 37.06 Kn

pt = 0.32 %

V = 0.07 N/mm2

 $vc = 0.40 \text{ N/mm}^2$

Moment at Critical Section

Safe

Muxx = 49.63 Kn-m/m Mu / bd2.fck = 0.01 N/mm2

Z = 535.88 mm

Ast (req) = 30.0 cm 2

Ast (req) = 0.05 % < 0.32 SO O.K

Check for punching shear (1.5 d from face of col)

Punching shear Perimeter = 7880 mm

vmax = 0.60 N/mm2

 $Vu = -230.89 \text{ Kn} < 4.00 \text{ N/mm}^2 \text{ OK}$

V = -0.05 N/mm2 < 0.40 N/mm2 SO OK

Final: P t(req) = 0.32

A st (req) = 23.50 cm2

Ic = 750 mm For 1.90 m Wideth

3c/4+9d/4 = 1590 mm

Required Y 16@150 mm c/c

Moment at Critical Section:

Muyy =22.06 Kn.m

Mu/bd2 fck = .00 N/mm2

Z = 538.18 mm

Ast (req) = 22.50 cm2

Pt (req) = 0.02

Oneway shear : Vu = -7.06 Kn

 $V = -0.01 \text{ N/mm}^2$

Pt (req) = 0.00

Rft req for Punching shear

Pt (req) = 0.15

Final Pt req = 0.15 %

Ast(req) = 23.70

Ic = 850 mm

3c/4+9d/4 = 1365 mm

Required Y 16 @ 150 mm c/c

SCHEDULE OF FOOTINGS

ТҮРЕ	SIZE	R.C.C	ВОТТО	M R.F.T	TOP R.F.T	
	SIZE	R.C.C	SHORT	LONG	SHORT	CUT
F1	2500X2300X100	2300X2100X600	Y16@150mm	Y16@150mm	-	7)) -
F2	2300X2100X100	2100X1900X600	Y16@150mm	Y16@150mm	10 Page 201	-
F3	2100X1900X100	1900X1700X600	Y16@150mm	Y16@150mm	To 200	_
CF1	See DetailsX100	See DetailsX600	Y16@150mm	Y16@150mm	Y16@150mm	Y16@150mm
CF2	4100X2300X100	3900X2100X600	Y16@150mm	Y16@150mm	Y16@150mm	Y16@150mm
CF3	3800X2300X100	3600X2100X600	Y16@150mm	Y16@150mm	Y16@150mm	Y16@150mm

5-Plinth Beams:

• Plinth Beams (PB1) :

Mmax = 2.92 mt & Qmax = 4.05 t

B*T = 200 * 600 mm

As = $5.8 \text{ cm} 2 \rightarrow (3Y16 + 2Y16) \text{ B} + (3Y16 + 2Y16) \text{ T}$

Shear Check:

Q = Q / B*T = 38.6 N/mm2 < 70 N/mm2

• Plinth Beams (PB2):

Mmax = 2.85 mt & Qmax = 3.00 t

B*T = 200 * 600 mm

As = $8.14 \text{ cm} 2 \rightarrow (3+2Y16) \text{ B}$

\rightarrow (3Y16) T

Shear Check:

Q = Q / B*T = 32.45 N/mm2 < 70 N/mm2

• Plinth Beams (PB3):

Mmax = 2 mt & Qmax = 2.25 t

B*T = 200 * 500 mm

As = $7.2 \text{ cm} 2 \rightarrow (3 \text{ Y} 16 \text{ B} + 3 \text{ Y} 16 \text{ T})$

Shear Check:

Q = Q / B*T = 29.5 N/mm2 < 70 N/mm2

• Plinth Beams (PB4):

Mmax = 1.1 mt & Qmax = 2.95 t

B*T = 200 * 500 mm

As = 13.8 cm2 \rightarrow (2Y16 + 2Y16)t & B

Shear Check:

Q = Q / B*T = 33.6 N/mm2 < 70 N/mm

SCHEDULE OF PLINTH BEAMS

ТҮРЕ	SIZE	BOTTOM R.F.T		TOP R.F.T		STIRRUPS AT	
		CON	CUT	CON	CUT	SUPPORT	MID.SPAN
PB1	200X600	3Y16	2Y16	3Y16	2Y16	Y8@100	Y8@150
PB2	200X600	3Y16	2Y16	2Y16	2 Y 16	Y8@100	Y8@150
PB3	200X500	3Y16	-	3Y16	02	Y8@100	Y8@150
PB4	200X500	3Y16		2Y16	100	Y8@100	Y8@150
PB5	200X500	2Y16	-	3Y16	-	Y8@100	Y8@150
PB6	200X500	4Y16	=	4Y16	929	Y8@100	Y8@150