Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Die spezifische Wärme

Praktikant: Felix Kurtz

Michael Lohmann

E-Mail: felix.kurtz@stud.uni-goettingen.de

m.lohmann@stud.uni-goettingen.de

Betreuer: Phillip Bastian

Versuchsdatum: 13.03.2015

Testat:		

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	3
2	Theorie	3
3	Durchführung	3
4	Auswertung4.1 Temperaturverläufe4.2 Widerstand4.3 Leistung4.4 molare Wärmekapazität	3 5 5 5
5	Diskussion	5
6	Anhang	5

1 Einleitung

Die spezifische Wärmespeicherkapazität ist eine wichtige Materialkonstante, da sie für viele alltäglichen Dinge essentiell ist. Als Beispiel ist hier die Isolation zu nennen, die die Heizkosten moderat halten. Hierfür ist es wichtig, Stoffe zu finden, die gut für diese Aufgabe geeignet sind. Ein Versuch um Materialien zu charakterisieren wurde hier durchgeführt.

2 Theorie

3 Durchführung

4 Auswertung

4.1 Temperaturverläufe

Abbildung 1: Raumtemperatur: Erhitzen und Abkühlen von Aluminium und Beryllium

Abbildung 2: Stickstofftemperatur: Erhitzen und Abkühlen von Aluminium und Beryllium

Abbildung 3: Raumtemperatur: Widerstand des Cu-Drahtes

Abbildung 4: Stickstofftemperatur: Widerstand des Cu-Drahtes

4.2 Widerstand

4.3 Leistung

4.4 molare Wärmekapazität

	$a [10^{-3} \cdot \mathrm{K s^{-1}}]$	$\lambda \ [10^{-5} \cdot \mathrm{s}^{-1}]$
Al RT	303 ± 2	11.61 ± 0.24
Be RT	188.5 ± 1.2	7.61 ± 0.14
Al Stickstoff	74.85 ± 0.23	45.5 ± 1.0
Be Stickstoff	109 ± 4	60.48 ± 0.18

 Tabelle 1: Temperaturverläufe: gefittete Parameter

5 Diskussion

6 Anhang

Abbildung 5: Raumtemperatur: beim Heizen hineingesteckte Leistung

Abbildung 6: Stickstofftemperatur: beim Heizen hineingesteckte Leistung

Abbildung 7: molare Wärmekapazität bei verschiedenen Temperaturen für Aluminium und Beryllium sowie Vergleich mit dem Dulong-Petit-Wert