AID-521 Mathematics for Data Science

Module: Statistics | Lecture: 5

HYPOTHESIS TESTING & STATISTICAL DECISIONS

hypotheses, power, p-value, testing for a parameter, tests for count data*, **interval estimation**

Hypothesis Testing -- Introduction

- → Make decisions about the population on the basis of sample information (Statistical Decisions)
- → Begin with initial conjectures about the population (Statistical Hypotheses)
- → Compare conjecture with sample observations in a probabilistic manner (Tests of significance / Rules of decision)

Elements of a Statistical Test

- \rightarrow Null hypothesis H_0
 - → Usually, the nullification of a claim.
- \rightarrow Alternative hypothesis H_1 or H_a
 - → The claim itself.
- → Test statistic TS
 - \rightarrow Function of the sample measurements used for the statistical decision to reject H_0 or not.
 - \rightarrow Known distribution under H_0 .
- → Rejection region (or critical region) RR
 - \rightarrow Values of the observed *TS* for which H_0 will be rejected.
 - → Such values are usually extreme values of TS, or in other words, highly unlikely values of TS

Usual Alternative Hypotheses

One may have hypotheses such as

$$H_0: \mu = \mu_0$$

against one of the following alternatives:

→ a two-tailed test/alternative

$$H_1: \mu \neq \mu_0$$

→ a one-tailed test

$$\begin{cases} H_1: \mu < \mu_0, & \text{a lower (or left) tailed alternative} \\ H_1: \mu > \mu_0, & \text{an upper (or right) tailed alternative} \end{cases}$$

The Test Statistic

- \rightarrow A function of random sample (data), hence is a r.v.
 - ightarrow Usually, an estimator for the unknown parameter
- ightarrow Its prob. distribution is known under null hypothesis H_0
 - ightarrow Assume population $\sim \, \mathcal{N}(\mu,\sigma^2=\sigma_0^2)$
 - \rightarrow Consider a simple hypothesis[†] $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$
 - o Then $Z(\mu_0|X_1,...,X_n)=\sqrt{n}rac{ar{\chi}-\mu_0}{\sigma_0}$ is a TS with known distribution $\mathcal{N}(0,1)$
- → Observed test statistic is its value when substituted with a given sample's values

$$ightarrow z(\mu_0|\mathbf{X}_1,...,\mathbf{X}_n) = \sqrt{n} \frac{\bar{\mathbf{X}}-\mu_0}{\sigma_0}$$

[†] A hypothesis that uniquely specifies the distribution from which the sample is taken is called a simple hypothesis.

Interpretation of Statistical Decision

If evidence (sampled data) strongly contradicts H_0 (beyond a reasonable doubt), then we reject H_0 in favor of H_1 .

If H_0 is not rejected, then H_1 is automatically rejected.

Failure to reject H_0 does not necessarily mean that H_0 is true.

[†] For e.g., "not guilty" does not mean a person "is innocent". This basically means that there is not enough evidence to reject H_0 .

Errors in Statistical Decision

Statistical	True state of n	rue state of null hypothesis	
decision	H ₀ true	H ₀ false	
Do not reject H_0	Correct decision	Type II error (β)	
Reject H_0	Type I error (α)	Correct decision	

Level of significance =
$$\alpha = P(\text{reject } H_0 \mid H_0 \text{ is true})$$

- $\beta = P(\text{don't reject } H_0 \mid H_0 \text{ is false})$
- \rightarrow For fixed α , as *n* increases β decreases and vice versa.

Errors in Statistical Decision

- → Consequences of different types of errors are, in general, very different.
 - \rightarrow H_0 : Person is innocent, vs. H_1 : Person is guilty
 - \rightarrow H_0 : Person is healthy, vs. H_1 : Person is sick
- → In many situations it is possible to determine which of the two errors is more serious.
 - → Choose null hypothesis such that its rejection should be considered to be more serious.

Rejection Regions in Statistical Decision

- → Given the probability distribution of a TS under H₀, the rejection region consists of those values of TS that are "extremely unlikely".
- → The statistical analyst decides what values of TS are "extreme".
- → The rejection region RR is pre-determined using the analyst's tolerance for error in decision.
 - ightarrow Usually, the level of significance lpha is used to specify the level of error tolerance, and hence the *RR*
 - ightarrow Each value of lpha corresponds to corresponding critical value(s) of *TS*

Visualizing α

Plotting $f(\hat{\theta})$ requires knowledge of an estimator $\hat{\theta}$ for parameter θ , and the sampling distribution of $\hat{\theta}$ under null hypothesis H_0 .

Sample Size

• • •

Power

The power of a test is the probability that the test rejects H_0 when the alternative H_1 is true.

 \rightarrow If $H_0: \theta = \theta_0$, and $H_1: \theta = \theta_0$, then the power of the test at some $\theta = \theta_1 \neq \theta_0$ is

$$\pi(\theta_1) = Power(\theta_1) = P(reject H_0 | \theta = \theta_1)$$

 \rightarrow A good test will have high power.

Likelihood Ratio Tests

•••

p-Value

Corresponding to an observed value of a test statistic, the p-value (or attained significance level) is the lowest level of significance at which the null hypothesis would have been rejected.

- \rightarrow The maximum value of α , willing to tolerate, is chosen.
- \rightarrow If the *p*-value of the test is less than the maximum value of α , reject H_0 .

The lower the p-value, the stronger the evidence.

p-Value and Rejection Regions

- → Large sample
- → One-tailed test (right/upper)

p-Value and Rejection Regions

- → Large sample
- → One-tailed test (left/lower)

p-Value and Rejection Regions

- → Large sample
- → Two-tailed test

Hypothesis Test for Parameter μ

SUMMARY OF HYPOTHESIS TESTS FOR μ

Large Sample (n > 30)

To test

 $H_0: \mu = \mu_0$ versus

 $\mu > \mu_0$, upper tail test H_a : $\mu < \mu_0$, lower tail test $\mu \neq \mu_0$, two-tailed test

Test statistic: $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{p}}$

Replace σ by S, if σ is unknown.

Small Sample (n < 30)

To test $H_0: \mu = \mu_0$ versus

 $\mu > \mu_0$, upper tail test H_a : $\mu < \mu_0$, lower tail test $\mu \neq \mu_0$, two-tailed test

Test statistic: $T = \frac{\overline{X} - \mu_0}{S / \sqrt{p}}$

Assumption: n > 30**Assumption:** Random sample

comes from a normal population

Decision: Reject H_0 , if the observed test statistic falls in the RR and conclude that H_0 is true with $(1-\alpha)100\%$ confidence. Otherwise, keep H_0 so that there is not enough evidence to conclude that H_{α} is true for the given α and more experiments may be needed.

Hypothesis Test for Parameter σ^2

If X_1, \ldots, X_n is a random sample from a normal population with the mean μ and variance σ^2 , then

$$\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2} = \frac{(n-1) S^2}{\sigma^2}$$

has a chi-square distribution with (n-1) degrees of freedom.

We know from Theorem 4.2.7 that $(1/\sigma^2) \sum_{i=1}^n (X_i - \mu)^2$ has a chi-square distribution with n degrees of freedom. Thus,

$$\begin{split} \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 &= \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X} + \overline{X} - \mu)^2 \\ &= \frac{1}{\sigma^2} \left[\sum_{i=1}^n (X_i - \overline{X})^2 + \sum_{i=1}^n (\overline{X} - \mu)^2 \right] \\ &\qquad \left(\text{Since } 2 \sum_{i=1}^n (X_i - \overline{X}) (\overline{X} - \mu) = 0 \right) \\ &= \frac{(n-1) \frac{S^2}{\sigma^2}}{\sigma^2} + \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \right)^2. \end{split}$$

The left-hand side of this equation has a chi-square distribution with n degrees of freedom. Also, since $(\overline{X} - \mu) / (\sigma / \sqrt{n}) \sim N$ (0, 1) by Theorem 4.2.6 we have $\left[(\overline{X} - \mu) / (\sigma / \sqrt{n}) \right]^2 \sim \chi^2$ (1). Now from Theorem 4.2.4, $(n-1) S^2 / \sigma^2 \sim \chi^2$ (n-1).

Hypothesis Test for Parameter σ^2

SUMMARY OF HYPOTHESIS TEST FOR THE VARIANCE σ^2

To test

$$H_0: \sigma^2 = \sigma_0^2$$

versus

$$\sigma^2 > \sigma_0^2$$
, upper tail test

$$H_a: \sigma^2 < \sigma_0^2$$
, lower tail test $\sigma^2 \neq \sigma_0^2$, two-tailed test.

 $\sigma^2 \neq \sigma_0^2$, two-ta

Test statistic:

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

where S^2 is the sample variance.

Observed value of test statistic:

$$\frac{(n-1)s}{\sigma_0^2}$$

$$\text{Rejection region}: \begin{cases} \chi^2 > \chi^2_{\alpha,n-1}, & \text{upper tail RR} \\ \chi^2 < \chi^2_{1-\alpha,n-1}, & \text{lower tail RR} \\ \chi^2 > \chi^2_{\alpha/2,n-1} \text{ or } \chi^2 < \chi^2_{1-\alpha/2,n-1}, & \text{two tail RR} \end{cases}$$

where $\chi^2_{\alpha,n-1}$ is such that the area under the chi-square distribution with (n-1) degrees of freedom to its right is equal to α .

Assumption: Sample comes from a normal population.

Decision: Reject H_0 , if the observed test statistic falls in the RR and conclude that H_0 is true with $(1 - \alpha)100\%$ confidence. Otherwise, do not reject H_0 because there is not enough evidence to conclude that H_0 is true for given α and more data are needed.

Hypothesis Test for Count Data

(Optional) Refer Ramachandran & Tsokos Section 7.6

Interval Estimation

- → We know how to obtain point estimate(s) of a (vector of) population parameter(s).
- → Here, we will discuss interval estimation.
 - → Intuition closely related to acceptance region of a statistical test
- \rightarrow Given a sample, we will find L and U such that $L < \theta < U$ with some probability.
 - \rightarrow The higher the probability $P(L < \theta < U)$, the better.
 - \rightarrow The lower the length of interval (*L*, *U*), the better.
- → Interval estimators are called confidence intervals.

Confidence Intervals

- \rightarrow Probability that a confidence interval (CI) will contain the true parameter θ is called the confidence coefficient.
 - → Fraction of the time that the constructed interval will contain the true parameter, under repeated sampling
- \rightarrow For a confidence coefficient of $1-\alpha$, the interval $(L,\ U)$ such that

$$P(L < \theta < U) = 1 - \alpha$$

is called $(1-\alpha)100\%$ confidence interval.

ightarrow For lpha=0.05, we will obtain a 95% confidence interval.

Large Sample CI for μ

For large sample, using CLT, we know that the z-transform of $\hat{\mu}$, the estimator of population mean μ ,

$$Z = \frac{\hat{\mu} - \mu}{\sigma_{\hat{\mu}}}$$

has an approximately standard normal distribution, where $\sigma_{\hat{\mu}}$ is the standard deviation of $\hat{\mu}$.

Therefore

$$\hat{\mu} - \mathbf{Z}_{\frac{\alpha}{2}} \sigma_{\hat{\mu}} \ < \ \mu \ < \ \hat{\mu} + \mathbf{Z}_{\frac{\alpha}{2}} \sigma_{\hat{\mu}}$$

is a $(1-\alpha)100\%$ confidence interval for the population mean μ .

Small Sample CI for μ

- → Let $X_1, ..., X_n$ be a small sample from a normal **population**. σ^2 is unknown.
- → We know that

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim T_{(n-1)}$$

→ Therefore

$$\bar{X} - t_{\frac{\alpha}{2}, n-1} \frac{\mathsf{S}}{\sqrt{n}} < \mu < \bar{X} + t_{\frac{\alpha}{2}, n-1} \frac{\mathsf{S}}{\sqrt{n}}$$

is a $(1-\alpha)100\%$ confidence interval for the population mean μ .

CI for σ^2

If \overline{X} and S are the mean and standard deviation of a random sample of size n from a normal population, then

$$P\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2}\right) = 1 - \alpha$$

where the χ^2 -distribution has (n-1) degrees of freedom.

That is, we are $(1 - \alpha)100\%$ confident that the population variance σ^2 falls in the interval

$$((n-1)S^2/\chi^2_{\alpha/2}, (n-1)S^2/\chi^2_{1-\alpha/2}).$$

CI for σ^2

