Robots Móviles

Tema 1: Cinemática de los robots móviles

Parte 1. Modelos de movimiento

Locomoción

- Interacción física entre el vehículo móvil y su entorno, la forma en la que se desplaza
- Es el complementario del problema de la manipulación
 - En la manipulación el robot está fijo y mueve los objetos
 - En la locomoción el entorno es "fijo" y el robot es el que se mueve

Inspiración biológica

Casi todos los mecanismos de locomoción de robots están inspirados en la biología

Excepción: la rueda

Centro de Curvatura Instantáneo (CCI)

- Las ruedas deben estar configuradas de tal manera que exista un punto (Centro de Curvatura Instantáneo CCI) sobre el que se realizará el giro del robot
- Dependiendo de la configuración del CCI tendremos distintos modelos de conducción. No todas las disposiciones de las ruedas permiten un movimiento correcto
- * Cuando disponemos de varias ruedas, el giro del robot se consigue modificando alguna de las propiedades del giro de las ruedas (velocidad, orientación, etc.)

Ejemplos de CCI

- El punto de intersección de todos los ejes de las ruedas

Restricciones Holonómicas vs No Holonómicas

- Las restricciones holonómicas limitan las posibles poses en el espacio de configuraciones
 - Ejemplo: un tren en una vía no puede alcanzar cualquier posición
 - Ejemplo: un robot con ruedas no puede volar

(a) Bilateral scleronomic

$$v = 0$$

$$\theta = 0$$

Restricciones Holonómicas vs No Holonómicas

- Las restricciones no holonómicas limitan los posibles movimientos incrementales dentro del espacio de configuración del robot (los cambios en la pose) Más formalmente, son restricciones expresadas en términos de derivadas
 - Ejemplo: un coche no se puede mover lateralmente para aparcar, tiene que maniobrar

Robots Holonómicos vs No Holonómicos

- Los robots holonómicos son aquellos que no tienen restricciones no holonómicas
- Otra forma de verlo es que un robot es holonómico si y solo si el número de grados de libertad (DOF) es igual al número de grados de libertad controlables (DDOF - Differentiable Degrees of Freedom)

Pregunta: ¿Cuántos grados de libertad tiene un coche? ¿Y cuántos controlables?

Modelos de conducción

- · Qué parámetros controlamos y cómo se mueve el robot cuando varían
 - · Más habituales en robots móviles
 - · Conducción diferencial
 - · Conducción síncrona
 - · Existen más modelos
 - · Conducción dirigida: triciclo, biciclo
 - Modelo de Ackerman (vehículos)
 - · Omnidireccional (ruedas mecanum)
 - · Algunos modelos incorporan "ruedas de castor" que no afectan a los cálculos

Rueda de castor

Conducción diferencial

El mecanismo de conducción más común, se basa en la diferencia en la velocidad de giro de las ruedas

Conducción diferencial

No hay ruedas directrices. El cambio de dirección se realiza modificando la velocidad relativa de las ruedas a Izquierda y Derecha

- L es la distancia entre los centros de las dos ruedas
- R es la distancia desde el punto medio entre las ruedas y el CCI
- vr y vi son las velocidades tangenciales de la rueda derecha e izquierda
- Al cambiar vry vi cambiamos R

Cinemática de la conducción diferencial

$$\omega \left(R + \frac{L}{2} \right) = v_R$$

$$\omega \left(R - \frac{L}{2} \right) = v_L$$

Despejando w en ambas ecs., igualando y despejando ahora la

$$R = \frac{L}{2} \frac{v_L + v_R}{v_R - v_L}$$

$$\omega = \frac{v_R - v_L}{L}$$
$$v = \frac{v_R + v_L}{2}$$

Cinemática de la conducción diferencial

Actualización de las coordenadas

$$ICC = [x - R\sin\theta, y + R\cos\theta]$$

$$\begin{bmatrix} x' \\ y' \\ \theta' \end{bmatrix} = \begin{bmatrix} \cos(\omega \delta t) & -\sin(\omega \delta t) & 0 \\ \sin(\omega \delta t) & \cos(\omega \delta t) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x - ICC_x \\ y - ICC_y \\ \theta \end{bmatrix} + \begin{bmatrix} ICC_x \\ ICC_y \\ \omega \delta t \end{bmatrix}$$

Cinemática directa de la conducción diferencial

Integrando las ecuaciones anteriores

$$x(t) = \frac{1}{2} \int_0^t (v_r(t) + v_l(t)) \cos(\theta(t)) dt$$

$$y(t) = \frac{1}{2} \int_0^t (v_r(t) + v_l(t)) \sin(\theta(t)) dt$$

$$\theta(t) = \frac{1}{l} \int_0^t (v_r(t) - v_l(t)) dt.$$

 Habitualmente, más que controlar la velocidad lineal de las ruedas controlaremos su velocidad angular (rad/s): w = v*r, donde r es el radio de la rueda

Odometría

 La cinemática directa + sensores en las ruedas (encoders) nos permite estimar la posición actual del robot

Odometría

Cinemática inversa de la conducción diferencial

- Para llegar a una posición determinada en general vamos a poder seguir muchos caminos alternativos
- Problema: ¿cómo determinar qué camino es mejor?. Nos podemos basar en
 - Camino más rápido
 - Más eficiente energéticamente
 - Perfil de velocidades más suave (evitar cambios muy bruscos)
- En la práctica lo más sencillo es controlar solo unos pocos DOF a la vez

(1) Girar sin avanzar para que las ruedas queden paralelas a una línea que conecte la posición inicial y la final

$$-V_{L}(t) = V_{R}(t) = V_{max}$$

(1) Girar sin avanzar para que las ruedas queden paralelas a una línea que conecte la posición inicial y la final

$$-V_{L}(t) = V_{R}(t) = V_{max}$$

(2) Avanzar recto hasta que el origen de coordenadas del robot coincida con el destino

$$V_L(t) = V_R(t) = V_{max}$$

(1) Girar sin avanzar para que las ruedas queden paralelas a una línea que conecte la posición inicial y la final

$$-V_{L}(t) = V_{R}(t) = V_{max}$$

(2) Avanzar recto hasta que el origen de coordenadas del robot coincida con el destino

$$V_L(t) = V_R(t) = V_{max}$$

(3) Rotar otra vez como en el paso (1) pero ahora para alcanzar la orientación final

Seguimiento de trayectorias

Lo podemos plantear como un **problema de control Ir a una posición**

Seguimiento de trayectorias en ROS

Por defecto se aplica la **ventana dinámica**, que en origen es un algoritmo de **evitación de obstáculos**, pero cumple también con el propósito del **seguimiento**: nos devuelve la (v,w) "óptima" para moverse en dirección a un objetivo evitando los obstáculos

Características de la conducción diferencial

- · Ventajas:
 - · Sistema barato
 - * Fácil de implementar
 - · Diseño simple
- · Desventajas:
- * Es no-holonómica. P.ej. no es posible que el robot se desplace (sin girar) de manera perpendicular a los ejes de las ruedas
 - · Se suele utilizar una rueda castor para estabilidad
 - · Pequeñas variaciones en las velocidades de las ruedas (e incluso en el suelo) hacen que se produzcan errores en las trayectorias

Conducción síncrona

Características de la conducción síncrona

- · Todas las ruedas giran a la vez
- · Habitualmente dos motores, uno para el giro de las ruedas hacia delante y otro que hace que el robot gire sobre sí mismo
- · También es no holonómica
- · No es necesario que el cuerpo del robot gire para cambiar de dirección, sólo giran las ruedas
- · También le afecta problemas en el suelo, pero en menor medida que el diferencial

Lego Synchro Drive robot https://www.youtube.com/watch?v=THdu6QD8Roc

Ackerman Steering

Mecanum wheels (a.k.a swedish wheels)

https://www.youtube.com/watch?v=Ne09Y72zW Y

$$v_{y} = (v_{0} + v_{1} + v_{2} + v_{3})/4$$

$$v_{x} = (v_{0} - v_{1} + v_{2} - v_{3})/4$$

$$v_{\theta} = (v_{0} + v_{1} - v_{2} - v_{3})/4$$

$$v_{error} = (v_{0} - v_{1} - v_{2} + v_{3})/4$$

Mecanum wheels

