第五章 留数及其应用

留数是复变函数论中重要的概念之一,它与解析函数在孤立奇点处的罗朗展开式、柯西复合闭路定理等都有密切的联系. 留数定理是留数理论的基础,也是复积分和复级数理论相结合的产物,利用留数定理可以把沿闭曲线的积分转化为计算在孤立奇点处的留数,并可应用于计算某些定积分.

5.1 留数及其计算

5.1.1 留数的概念

考虑积分 $\oint_{|z|=\frac{1}{3}} e^{\frac{1}{z}} dz$ 和 $\oint_{|z|=2} \sin \frac{2}{z-1} dz$. 利用罗朗展开和例 3.4 可得 $\oint_{|z|=\frac{1}{3}} e^{\frac{1}{z}} dz = \oint_{|z|=\frac{1}{3}} \left[1 + \frac{1}{z} + \frac{1}{2z^2} + \dots + \frac{1}{n!z^n} + \dots \right] dz = 2\pi i = 2\pi i C_{-1}.$ $\oint_{|z|=2} \sin \frac{2}{z-1} dz = \oint_{|z|=2} \left[\frac{2}{z-1} - \frac{2^3}{3!(z-1)^3} + \dots + (-1)^n \frac{2^{2n+1}}{(2n+1)!(z-1)^{2n+1}} + \dots \right] dz$

或写成

$$\frac{1}{2\pi i} \oint_{|z|=\frac{1}{3}} e^{\frac{1}{z}} dz = C_{-1}, \quad \frac{1}{2\pi i} \oint_{|z|=2} \sin \frac{2}{z-1} dz = C_{-1}.$$

其中, C_{-1} 为上述两积分被积函数的罗朗展开式中 $\frac{1}{z}$ 项和 $\frac{1}{z-1}$ 的系数.

 $=2\pi i\times 2=2\pi iC_{\perp}$

定义 5.1 设函数 f(z)在 $0<|z-z_0|< R$ 内解析,点 z_0 为 f(z) 的一个孤立奇点, C 是任意正向圆周 $C:|z-z_0|=\rho< R$,则积分

$$\frac{1}{2\pi i} \oint_C f(z) dz \tag{5.1}$$

的值称为f(z)在点 z_0 处的留数,记为 $\operatorname{Re} s[f(z),z_0]$.

根据多连通区域上的柯西定理,可知积分 $\oint_C f(z)dz$ 不依赖于圆周C的半径,因此,上述定义的留数值是唯一的。

设f(z)在孤立奇点 z_0 的邻域 $0<|z-z_0|< R$ 内的罗朗级数为

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n, \ 0 < |z - z_0| < R,$$
 (5.2)

式 (5.2) 两端乘以 $\frac{1}{2\pi i}$, 并沿闭曲线 C 正向积分,得

$$\frac{1}{2\pi i} \oint_C f(z) dz = \sum_{n=-\infty}^{+\infty} \frac{c_n}{2\pi i} \oint_C (z - z_0)^n dz = c_{-1}.$$

由此即得如下定理:

定理 5.1 设点 z_0 为 f(z) 的一个孤立奇点,则 f(z) 在点 z_0 处的留数为 f(z) 在 z_0 处罗朗展开式负幂项 $\left(z-z_0\right)^{-1}$ 系数 c_{-1} ,即

$$\operatorname{Re} s[f(z), z_0] = c_{-1}.$$
 (5.3)

定理 5.1 表明: (1) 符号 $\operatorname{Re} s[f(z), z_0]$ 只有当点 z_0 为函数 f(z) 的孤立奇点时才有意义; (2) 留数 $\operatorname{Re} s[f(z), z_0]$ 的计算可通过把函数 f(z) 在点 z_0 处作罗朗展开实现.

例题 5.1 利用罗朗级数计算留数: (1) $\operatorname{Re} s\left[\frac{\sin z}{z},0\right]$; (2) $\operatorname{Re} s\left[ze^{\frac{1}{z}},0\right]$; (3)

$$\operatorname{Re} s \left[\frac{1}{1-z} e^{\frac{1}{z}}, 0 \right].$$

解 (1) 由于

$$\frac{\sin z}{z} = \frac{1}{z} \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} + \dots + (-1)^n \frac{z^{2n}}{(2n+1)!} + \dots,$$

从而

$$\operatorname{Re} s \left[\frac{\sin z}{z}, 0 \right] = c_{-1} = 0.$$

(2) 由于

$$ze^{\frac{1}{z}} = z\sum_{n=0}^{+\infty} \frac{1}{n!} \frac{1}{z^n} = z + 1 + \frac{1}{2!} \frac{1}{z} + \frac{1}{3!} \frac{1}{z^2} + \dots + \frac{1}{n!} \frac{1}{z^{n-1}} + \dots,$$

从而

$$\operatorname{Re} s \left[z e^{\frac{1}{z}}, 0 \right] = c_{-1} = \frac{1}{2}.$$

(3) 由于 f(z) 在 0 < |z| < 1 内罗朗展开式为

$$f(z) = (1 + \frac{1}{z} + \frac{1}{2!} \frac{1}{z^2} + \dots + \frac{1}{n!} \frac{1}{z^n} + \dots)(1 + z + z^2 + \dots + z^n + \dots)$$
$$= \dots + \frac{1}{z} \left(1 + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots \right) + \dots,$$

可得 $c_{-1} = 1 + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots = e - 1$,从而

Re
$$s \left[\frac{1}{1-z} e^{\frac{1}{z}}, 0 \right] = c_{-1} = e - 1.$$

仿照有限奇点处留数的定义,可以定义无穷远点的留数.

定义 5.2 设 $z=\infty$ 是函数 f(z) 的孤立奇点,即 f(z) 在无穷远点的邻域 $r<|z|<+\infty$ 内解析, C 是任意正向圆周 C:|z|=R>r ,则积分

$$\frac{1}{2\pi i} \oint_{C} f(z) dz \tag{5.4}$$

的值称为f(z)在点 ∞ 处的留数,记为 $\mathrm{Re}\,s[f(z),\infty]$.

定理 5.2 设 $z = \infty$ 是函数 f(z) 的孤立奇点,则

$$\operatorname{Re} s[f(z), \infty] = -c_{-1}, \tag{5.5}$$

其中 c_{-1} 为f(z)在 $z = \infty$ 处罗朗展开式中 z^{-1} 项的系数.

证明 设 f(z) 在无穷远点的邻域 $r<|z|<+\infty$ 内解析, C 是任意正向圆周 C:|z|=R>r, f(z)在 $z=\infty$ 的罗朗展开式为

$$f(z) = \sum_{n = -\infty}^{+\infty} c_n z^n. \tag{5.6}$$

对式 (5.6) 沿C 逐项积分,得

$$\operatorname{Re} s \left[f(z), \infty \right] = \frac{1}{2\pi i} \oint_{C^{-}} f(z) dz = -\frac{1}{2\pi i} \oint_{C} f(z) dz = -c_{-1}.$$

定理 2 表明:与有限奇点处留数计算类似, $z=\infty$ 处留数也可利用其罗朗展开式求得.

例题 5.2 利用罗朗级数计算留数: (1) $\operatorname{Re} s\left[\frac{1}{1-z},\infty\right]$; (2) $\operatorname{Re} s\left[\sin z - \cos z,\infty\right]$;

(3)
$$\operatorname{Re} s \left[\frac{1 - \cos z}{z^{2n+1}}, \infty \right], n = 1, 2, \cdots$$

解 (1) 由于当1<|z|<+∞时

$$\frac{1}{1-z} = -\frac{1}{z} \left(\frac{1}{1-\frac{1}{z}} \right) = -\frac{1}{z} \sum_{n=0}^{+\infty} \left(\frac{1}{z} \right)^n,$$

从而

$$\operatorname{Re} s \left[\frac{1}{1-z}, \infty \right] = -c_{-1} = 1.$$

(2) 由于

$$\sin z - \cos z = \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} - \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$
$$= 1 + z - \frac{z^2}{2!} - \frac{z^3}{3!} + \frac{z^4}{4!} + \frac{z^5}{5!} - \cdots$$

从而

Re
$$s [\sin z - \cos z, \infty] = -c_{-1} = 0.$$

(3) 由于

$$\frac{1-\cos z}{z^{2n+1}} = \frac{1}{z^{2n+1}} \sum_{k=1}^{+\infty} (-1)^{k-1} \frac{z^{2k}}{(2k)!} = \sum_{k=1}^{+\infty} (-1)^{k-1} \frac{z^{2k-2n-1}}{(2k)!},$$

当k = n时,2k - 2n - 1 = -1,所以

$$\operatorname{Re} s \left[\frac{1 - \cos z}{z^{2n+1}}, \infty \right] = -c_{-1} = -(-1)^{n-1} \frac{1}{(2n)!} = \frac{(-1)^n}{(2n)!}.$$

例题 5.3 设 $P_n(z)$ 为 z 的 n 次多项式,计算留数 $\operatorname{Re} s\left[\frac{P_n'(z)}{P_n(z)},\infty\right]$.

解 设
$$P_n(z) = c_n z^n + c_{n-1} z^{n-1} + \dots + c_1 z + c_0, \quad c_n \neq 0$$
,则

$$\frac{P_n'(z)}{P_n(z)} = \frac{nc_n z^{n-1} + (n-1)c_{n-1} z^{n-2} + \dots + c_1}{c_n z^n + c_{n-1} z^{n-1} + \dots + c_1 z + c_0}$$

$$= \frac{n}{z} \left[\frac{1 + \frac{n-1}{n} \frac{c_{n-1}}{c_n} \frac{1}{z} + \frac{n-2}{n} \frac{c_{n-2}}{c_n} \frac{1}{z^2} + \cdots}{1 + \frac{c_{n-1}}{c_n} \frac{1}{z} + \frac{c_{n-2}}{c_n} \frac{1}{z^2} + \cdots} \right] = \frac{n}{z} \left(1 + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots \right).$$

从而

$$\operatorname{Re} s \left[\frac{P_n'(z)}{P_n(z)}, \infty \right] = -c_{-1} = -n.$$

5.1.2 留数的计算

一般而言,计算留数 $\operatorname{Re} s[f(z),z_0]$ 仅需求出函数 f(z) 在孤立奇点 z_0 的去心邻域内的罗朗展开式中 $(z-z_0)^{-1}$ 项的系数 c_{-1} 即可.当 z_0 为函数 f(z) 的本性奇点,或奇点性质不明显时,常用此方法.而对于可去奇点和极点处留数的计算,可用以下方法.

定理 5.3 设 z_0 为 f(z) 在复平面上的可去奇点,则 $\operatorname{Re} s[f(z), z_0] = 0$.

证明 由于函数 f(z) 在 z_0 点的罗朗展开式中不含有负幂项,由定理 5.知, $\mathrm{Re}\,s\big[f(z),z_0\big]\!=\!c_{-\!1}=\!0.$

例题 5.4 计算留数
$$\operatorname{Re} s \left[\frac{\cos z^2 - 1}{z^4}, 0 \right].$$

解 由于

$$\lim_{z \to 0} \frac{\cos z^2 - 1}{z^4} = \lim_{z \to 0} \frac{-\frac{1}{2}z^4}{z^4} = -\frac{1}{2},$$

说明 z = 0 为 $f(z) = \frac{\cos z^2 - 1}{z^4}$ 的可去奇点, 所以, $\operatorname{Re} s \left[\frac{\cos z^2 - 1}{z^4}, 0 \right] = 0.$

注 5.1 若 $z=\infty$ 为函数 f(z) 的可去奇点,但留数 $\mathrm{Re}\,s\big[f(z),\infty\big]$ 不一定为零. 例如,例

题 5.2 (1) 中,
$$z = \infty$$
 为函数 $f(z) = \frac{1}{1-z}$ 的可去奇点,但 $\operatorname{Re} s\left[\frac{1}{1-z}, \infty\right] = 1$.

定理 5.4 设 $z = z_0$ 为 f(z) 在复平面上的 m 阶极点,则

$$\operatorname{Re} s[f(z), z_0] = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big[(z - z_0)^m f(z) \Big].$$
 (5.7)

证明 由于 z_0 为f(z)的 m 阶极点,则f(z)在点 z_0 的邻域内的罗朗展开式为

$$f(z) = c_{-m} (z - z_0)^{-m} + c_{-m+1} (z - z_0)^{-m+1} + \dots + c_{-1} (z - z_0)^{-1} + c_0 + c_1 (z - z_0) + \dots,$$

其中 $c_{-m} \neq 0$. 从而

$$(z - z_0)^m f(z) = c_{-m} + c_{-m+1} (z - z_0) + \dots + c_{-1} (z - z_0)^{m-1}$$

$$+ c_0 (z - z_0)^m + c_1 (z - z_0)^{m+1} + \dots,$$
(5.8)

在式 (5.8) 两端关于 z 求 m-1 阶导数,并取 $z \rightarrow z_0$ 极限得

$$\lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \Big[\Big(z - z_0 \Big)^m f(z) \Big] = (m-1)! c_{-1}.$$

由此即得(5.7).

推论 5.1 若 z_0 为 f(z)的一阶极点,则

Re
$$s[f(z), z_0] = \lim_{z \to z_0} (z - z_0) f(z)$$
. (5.9)

推论 5.2 设 $f(z) = \frac{P(z)}{Q(z)}$, 其中 P(z), Q(z) 在 z_0 处解析,如果 $P(z_0) \neq 0$,

 $Q(z_0) = 0$, $Q'(z_0) \neq 0$, 则 z_0 为 f(z) 的一阶极点,且

Re
$$s[f(z), z_0] = \frac{P(z)}{Q'(z)}$$
. (5.10)

证明 显然, z_0 为Q(z)的一阶零点,由 $P(z_0) \neq 0$ 知, z_0 为 $f(z) = \frac{P(z)}{Q(z)}$ 的一阶极点.

因此,

$$\operatorname{Re} s[f(z), z_0] = \lim_{z = z_0} (z - z_0) f(z) = \lim_{z = z_0} \frac{P(z)}{Q(z) - Q(z_0)} = \frac{P(z_0)}{Q'(z_0)}.$$

注 5.2 由分式给出的函数 $\frac{P(z)}{Q(z)}$, 其中 P(z) 与 Q(z) 在 $z_0 \neq \infty$) 都解析. 若 z_0 为 Q(z)

的一阶零点,那么当 $P(z_0) \neq 0$ 时, z_0 是 $\frac{P(z)}{Q(z)}$ 的一阶极点;当 $P(z_0) = 0$ 时, z_0 是 $\frac{P(z)}{Q(z)}$ 的

可去奇点. 不管是哪类奇点,都有 $\operatorname{Re} s\left[\frac{P(z)}{Q(z)}, z_0\right] = \frac{P(z_0)}{Q'(z_0)}$.

定理 5.4 及其推论提供了计算函数在奇点类型为极点处的留数的方法.

例题 5.5 求函数
$$f(z) = \frac{z}{(z-1)(z+1)^2}$$
 在 $z = 1$ 及 $z = -1$ 处的留数.

解 z=1是 f(z) 的一阶极点, z=-1是 f(z)的二阶极点,于是

Re
$$s[f(z),1] = \lim_{z \to 1} (z-1) \cdot \frac{z}{(z-1)(z+1)^2} = \lim_{z \to 1} \frac{z}{(z+1)^2} = \frac{1}{4}$$
.

$$\operatorname{Re} s[f(z), -1] = \lim_{z \to -1} \frac{d}{dz} \left[(z+1)^2 \cdot \frac{z}{(z-1)(z+1)^2} \right]$$
$$= \lim_{z \to -1} \frac{d}{dz} \left(\frac{z}{z-1} \right) = \lim_{z \to -1} \frac{-1}{(z-1)^2} = -\frac{1}{4}.$$

例题 5.6 求函数 $f(z) = \tan z$ 在 $z = k\pi + \frac{\pi}{2}$ 处的留数,其中 k 为整数.

解 因为

$$\tan z = \frac{\sin z}{\cos z}, \sin \left(k\pi + \frac{\pi}{2} \right) = (-1)^k \neq 0,$$

$$\cos\left(k\pi + \frac{\pi}{2}\right) = 0$$
, $\cos' z|_{k\pi + \frac{\pi}{2}} = (-1)^{k+1} \neq 0$.

所以, $k\pi + \frac{\pi}{2}$ 为的一阶极点,由推论 5.2 得:

$$\operatorname{Re} s \left[\tan z, k\pi + \frac{\pi}{2} \right] = \frac{\sin z}{(\cos z)'} \bigg|_{k\pi + \frac{\pi}{2}} = -1.$$

例题 5.7 求函数 $f(z) = \frac{z \sin z}{(1 - e^z)^3}$ 在 z = 0 处的留数.

解 显然, z=0 为函数 $f(z)=\frac{z\sin z}{(1-e^z)^3}$ 的一阶极点, 从而

Re
$$s[f(z), 0] = \lim_{z \to 0} zf(z) = \lim_{z \to 0} \frac{z^2 \sin z}{(1 - e^z)^3}$$

= $\lim_{z \to 0} \frac{z^3}{(-z)^3} = -1$.

对于无穷远点的留数 $\operatorname{Re} s[f(z),\infty]$,一般是寻求 f(z) 在 $R<|z|<+\infty$ 内罗朗展开式中负幂项 $c_{-1}z^{-1}$ 的系数变号 $-c_{-1}$,也可用以下定理来计算.

定理 5.5 设 $z = \infty$ 是函数 f(z) 的孤立奇点,则

$$\operatorname{Re} s[f(z), \infty] = -\operatorname{Res} \left[\frac{1}{z^2} f\left(\frac{1}{z}\right), 0 \right]. \tag{5.11}$$

证明 因为 $z=\infty$ 是函数 f(z)的孤立奇点,则存在充分大的 R>0,使得函数 f(z)在 圆周 |z|=R外部可展开为罗朗级数

$$f(z) = \cdots + c_{-3} z^{-3} + c_{-2} z^{-2} + c_{-1} z^{-1} + c_0 + c_1 z + c_2 z^2 + \cdots,$$

且

Re
$$s[f(z), \infty] = -c_{-1}$$
. (5.12)

由于

$$\frac{1}{z^{2}}f\left(\frac{1}{z}\right) = \dots + c_{-3}z + c_{-2} + c_{-1}z^{-1} + c_{0}z^{-2} + c_{1}z^{-3} + \dots$$

且 z = 0 是函数 $\frac{1}{z^2} f\left(\frac{1}{z}\right)$ 在 $|z| \le \frac{1}{R}$ 内的孤立奇点,所以,

$$\operatorname{Res}\left[\frac{1}{z^{2}}f\left(\frac{1}{z}\right),0\right] = c_{-1}.$$
 (5.13)

由式 (5.12) 和 (5.13) 即得 (5.11).

定理 5.6 设 $z = \infty$ 是函数 f(z)的孤立奇点,若 $\lim_{z \to \infty} z f(z) = A$,则

$$\operatorname{Re} s[f(z), \infty] = -A. \tag{5.14}$$

证明 因为 $z=\infty$ 是函数f(z)的孤立奇点,则存在充分大的R>0,使得函数f(z)在 圆周|z|=R外部可展开为罗朗级数:

$$f(z) = \dots + c_{-3} z^{-3} + c_{-2} z^{-2} + c_{-1} z^{-1} + c_0 + c_1 z + c_2 z^2 + \dots,$$

从而

$$zf(z) = \cdots + c_{-3} z^{-2} + c_{-2} z^{-1} + c_{-1} + c_0 z + c_1 z^2 + c_2 z^3 + \cdots$$

由条件 $\lim_{z\to\infty} zf(z) = A$ 可得

$$c_{-1} = A$$
, $c_n = 0$, $n \ge 0$.

因此

Re
$$s[f(z), \infty] = -c_{-1} = -A$$
.

例题 5.8 求函数 $f(z) = \frac{e^{\frac{1}{z}}}{1-z}$ 在 $z = \infty$ 下的留数.

解 方法 1 利用定理 5.5 结论. 因为 z=0 为函数

$$\frac{1}{z^2} f\left(\frac{1}{z}\right) = \frac{e^z}{z(z-1)}$$

的一阶极点, 故

Re
$$s \left[\frac{1}{z^2} f \left(\frac{1}{z} \right) \right] = \lim_{z \to 0} z \cdot \frac{e^z}{z(z-1)} = \lim_{z \to 0} \frac{e^z}{(z-1)} = -1.$$

由式 (5.13) 得

Re
$$s[f(z), \infty] = -\text{Res}\left[\frac{1}{z^2}f\left(\frac{1}{z}\right), 0\right] = 1.$$

方法 2 利用定理 5.6 结论. 因为

$$\lim_{z \to \infty} zf(z) = \lim_{z \to \infty} \frac{ze^{\frac{1}{z}}}{1 - z} = -1,$$

由式(5.14)得

$$\operatorname{Re} s[f(z), \infty] = -\lim_{z \to \infty} z f(z) = 1.$$

5.1.3 留数定理

定理 5.7 设C为一条正向简单闭曲线,若函数 f(z)在C上连续,在C所围的区域 D内除去有限个奇点 z_1, z_2, \cdots, z_n 外均解析,则

$$\oint_C f(z)dz = 2\pi i \sum_{k=1}^n \operatorname{Re} s[f(z), z_k].$$
(5.15)

证明 在D内以 z_k 为中心,以充分小的 $r_k > 0$ 为半径作圆周 $C_k : |z-z_k| = r_k$,

 $(k = 1, 2, \dots, n)$,且使任何两个小圆周既不相交,又不相含. 由 f(z) 在以 C 和 C_1, C_2, \dots, C_n 为边界的多连通区域上解析,可得:

$$\oint_C f(z)dz = \sum_{k=1}^n \oint_{C_k} f(z)dz.$$

上式两边同除以 $2\pi i$,得

$$\frac{1}{2\pi i} \oint_C f(z) dz = \sum_{k=1}^n \frac{1}{2\pi i} \oint_{C_k} f(z) dz = \sum_{k=1}^n Res[f(z), z_k].$$

由此即得结论.

定理 5.7 称为第一留数定理,它揭示了复变函数沿围线的积分与留数间的联系. 从而,提供了一种计算复变函数沿闭曲线积分的方法.

图 5.1

例题 5.9 计算下列积分:

(1)
$$I = \oint_C \frac{1}{z^3(z-i)} dz$$
, 其中 C 为正向圆周| $z = 2$; (2) $I = \oint_C \tan \pi z dz$, 其中 C 为

正向圆周|z|=n(n为正整数).

解 (1) 在圆周|z|=2内,函数 $f(z)=\frac{1}{z^3(z-i)}$ 有三阶极点z=0和一阶极点z=i.

$$Res[f(z),0] = \frac{1}{2!} \lim_{z \to 0} [z^3 \cdot \frac{1}{z^3 (z-i)}]^{"} = \frac{1}{2} \lim_{z \to 0} \frac{2}{(z-i)^3} = -i,$$

$$Res[f(z),i] = \lim_{z \to i} (z-i) \cdot \frac{1}{z^3(z-i)} = i.$$

因此, 由留数定理, 有

$$I = \oint_C \frac{1}{z^3(z-i)} dz = 2\pi i (-i+i) = 0.$$

(2) $f(z) = \tan \pi z = \frac{\sin \pi z}{\cos \pi z}$ 有一阶极点 $z = k + \frac{1}{2}(k)$ 为整数),由推论 5.2,

$$Res[f(z), k + \frac{1}{2}] = \frac{\sin \pi z}{(\cos \pi z)'}\Big|_{z=k+\frac{1}{2}} = -\frac{1}{\pi}.$$

由留数定理,

$$I = \oint_C \tan \pi z dz = 2\pi i \sum_{|k+\frac{1}{2}| < n} Res[f(z), k + \frac{1}{2}]$$
$$= 2\pi \left(-\frac{2n}{\pi}\right) = -4ni.$$

例题 5.10 计算下列积分: (1) $I = \oint_C \frac{z - \sin z}{z^8} dz$, 其中C为正向圆周| $z \models 1$; (2) $I = \oint_C \frac{1}{1+e^z} dz$, 其中C为正向圆周| $z \models 4\pi$.

解(1) z=0为 f(z)在|z|=1所围区域内唯一的孤立奇点,且为五阶极点,

$$f(z) = \frac{z - \sin z}{z^8} = \frac{1}{z^8} \left[z - \left(z - \frac{1}{3!} z^3 + \frac{1}{5!} z^5 - \frac{1}{7!} z^7 + \cdots \right) \right]$$
$$= \frac{1}{3! z^5} - \frac{1}{5! z^3} + \frac{1}{7! z} - \cdots,$$

得

$$Res[f(z),0] = c_{-1} = \frac{1}{7!}.$$

从而

$$I = \oint_C \frac{z - \sin z}{z^8} dz = 2\pi i Res[f(z), 0] = \frac{2}{7!} \pi i.$$

(2) 在 $|z|=4\pi$ 所围区域内, $f(z)=\frac{1}{1+e^z}$ 有四个一阶极点: $\pm \pi i, \pm 3\pi i$,

$$Res[f(z), \pm \pi i] = \lim_{z \to \pm \pi i} \frac{1}{e^z} = -1,$$

$$Res[f(z), \pm 3\pi i] = \lim_{z \to \pm 3\pi i} \frac{1}{e^z} = -1.$$

从而

$$I = \oint_C \frac{1}{1 + e^z} dz = 2\pi i \{ Res[f(z), \pi i] + Res[f(z), -\pi i] + Res[f(z), 3\pi i] + Res[f(z), -3\pi i] \}$$
$$= -8\pi i.$$

定理 5.8 若函数 f(z) 在扩充复平面上除有限个孤立奇点 $z_1, z_2, \cdots, z_n, \infty$ 外是解析的,

则 f(z)在所有孤立奇点处的留数之和为零,即

$$\sum_{k=1}^{n} Res[f(z), z_{k}] + Res[f(z), \infty] = 0.$$
 (5.16)

证明 以原点为中心,充分大的 R 为半径作圆周 C ,使 C 所围的区域包含点 z_1, z_2, \cdots, z_n ,则由留数定理,得

$$\oint_C f(z)dz = 2\pi i \sum_{k=1}^n Res[f(z), z_k],$$

即

$$\sum_{k=1}^{n} Res[f(z), z_k] = \frac{1}{2\pi i} \oint_{C} f(z) dz.$$

而由无穷远点的留数定义,得

$$Res[f(z),\infty] = \frac{1}{2\pi i} \oint_{C^{-}} f(z) dz = -\frac{1}{2\pi i} \oint_{C} f(z) dz,$$

因此

$$\sum_{k=1}^{n} Res[f(z), z_k] + Res[f(z), \infty] = 0.$$

定理 5.8 称为第二留数定理. 由式(5.16)可见: 若能较容易地算出 $Res[f(z),\infty]$,且 n 越大,则利用式(5.16)计算 $\sum_{k=1}^n Res[f(z),z_k]$ 的优越性也越大,从而大大方便了积分 $\oint_C f(z)dz$ 的计算.

例题 5.11 设
$$f(z) = \frac{1}{(z-3)^2(z^8-1)}$$
, $z_k(k=1,2,\dots,8)$ 为方程 $z^8=1$ 的解,计算

$$Res[f(z),3] + \sum_{k=1}^{8} Res[f(z),z_k].$$

解 函数 f(z) 在扩充复平面上有奇点为 $z_k(k=1,2,\cdots,8)$ 及 z=3. 应用定理 5.8,得

$$Res[f(z),3] + \sum_{k=1}^{8} Res[f(z),z_k] = -Res[f(z),\infty].$$

求 z = ∞ 处留数有两种方法:

方法 1 利用定理 5.5 结论, 由于

$$\frac{1}{z^2}f\left(\frac{1}{z}\right) = \frac{1}{z^2} \cdot \frac{1}{\left(\frac{1}{z} - 3\right)^2 \left(\frac{1}{z^8} - 1\right)} = \frac{z^8}{(1 - 3z)^2 (1 - z^8)},$$

从而

$$Res[f(z),\infty] = -Res\left[\frac{1}{z^2}f\left(\frac{1}{z}\right),0\right] = 0.$$

方法 2 利用定理 5.6 结论.

$$\lim_{z \to \infty} zf(z) = \lim_{z \to \infty} \frac{z}{(z-3)^2 (z^8 - 1)} = 0.$$

由式(5.14)得

$$\operatorname{Re} s[f(z), \infty] = -\lim_{z \to \infty} z f(z) = 0.$$

所以

$$Res[f(z),3] + \sum_{k=1}^{8} Res[f(z),z_k] = 0.$$

例题 5.12 计算积分
$$I = \oint_C \frac{z^{15}}{(z^2+1)^2(z^4+2)^3} dz$$
, 其中 C 为正向圆周 $|z|=4$.

解 函数
$$f(z) = \frac{z^{15}}{(z^2+1)^2(z^4+2)^3}$$
 除去 $z = \infty$ 外,还有奇点

$$z = \pm i$$
, $z_k = \sqrt[4]{2}e^{\frac{\pi + 2k\pi}{4}}$, $(k = 0, 1, 2, 3)$,

以上奇点均位于C内. 另外

$$Res[f(z), \infty] = -\lim_{z \to \infty} zf(z) = -\lim_{z \to \infty} \frac{z^{16}}{(z^2 + 1)^2 (z^4 + 2)^3} = -1.$$

由定理 5.8 得

$$Res[f(z), \pm i] + \sum_{k=0}^{3} Res[f(z), z_k] = -Res[f(z), \infty] = 1.$$

所以

$$I = \oint_C \frac{z^{15}}{(z^2 + 1)^2 (z^4 + 2)^3} dz = 2\pi i.$$

5.2 留数在某些定积分计算中的应用

本节主要介绍用留数计算某些定积分的方法. 在很多实际问题和理论研究中经常遇到 一些定积分,它们的计算往往比较复杂,有些甚至由于原函数不能用初等函数表示而根本无

法计算. 留数定理为此类型积分的计算,提供了极为有效的方法. 应用留数定理计算实变函数定积分的方法称为围道积分方法. 所谓围道积分方法,就是将实变函数的积分化为复变函数沿闭曲线的积分,然后应用留数定理,使沿闭曲线的积分计算,归结为留数计算.

5.2.1 形如
$$\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta$$
 的积分

被积函数 $R(\cos\theta,\sin\theta)$ 是 $\cos\theta$, $\sin\theta$ 的有理函数,且在 $0 \le \theta \le 2\pi$ 上连续. 令 $z=e^{i\theta}$,则

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{z^2 - 1}{2iz}$$
, $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{z^2 + 1}{2z}$,

且 $d\theta = \frac{dz}{iz}$. 当 $\theta: 0 \to 2\pi$ 时,对应的 z 恰好沿单位圆 |z| = 1 的正向绕行一圈. 如果

$$f(z) = R\left(\frac{z^2+1}{2z}, \frac{z^2-1}{2iz}\right) \frac{1}{iz}$$
在积分闭路 $|z| = 1$ 上无奇点,在 $|z| < 1$ 内的奇点为

 $z_k(k=1,2,\cdots,n)$,则由第一留数定理,

$$\int_{0}^{2\pi} R(\cos\theta, \sin\theta) d\theta = \oint_{|z|=1} f(z) dz$$

$$= 2\pi i \sum_{k=1}^{n} \operatorname{Re} s[f(z), z_{k}].$$
(5.17)

例题 5.13 试计算积分 $I = \int_0^{2\pi} \frac{\sin^2 x}{5 + 3\cos x} dx$.

解 令 $z = e^{ix} = \cos x + i \sin x$, 则

$$\cos x = \frac{z + z^{-1}}{2}, \quad \sin x = \frac{z - z^{-1}}{2i}, \quad dx = \frac{1}{iz}dz.$$

$$I = \int_0^{2\pi} \frac{\sin^2 x}{5 + 3\cos x} dx = \oint_{|z| = 1} \frac{i(z^2 - 1)^2}{2z^2(3z^2 + 10z + 3)} dz$$

$$= \frac{i}{6} \oint_{|z| = 1} \frac{(z^2 - 1)^2}{z^2 \left(z + \frac{1}{3}\right)(z + 3)} dz.$$

记
$$f(z) = \frac{(z^2-1)^2}{z^2(z+\frac{1}{3})(z+3)}$$
,其在 $|z| < 1$ 内有二阶极点 $z = 0$,一阶极点 $z = -\frac{1}{3}$,它

们的留数为

$$Res[f(z),0] = \lim_{z \to 0} \left[z^{2} \cdot \frac{(z^{2}-1)^{2}}{z^{2}(z+\frac{1}{3})(z+3)}\right] = -\frac{10}{3};$$

$$Res\left[f(z), -\frac{1}{3}\right] = \lim_{z \to -\frac{1}{3}} \left(z+\frac{1}{3}\right) \cdot \frac{(z^{2}-1)^{2}}{z^{2}\left(z+\frac{1}{3}\right)(z+3)} = \frac{8}{3}.$$

所以

$$I = \frac{i}{6} \cdot 2\pi i \left\{ Res[f(z), 0] + Res\left[f(z), -\frac{1}{3}\right] \right\} = -\frac{\pi}{3} \left[-\frac{10}{3} + \frac{8}{3} \right] = \frac{2}{9}\pi.$$

例题 5.14 计算下列各积分

(1)
$$I = \int_0^{\pi} \frac{\cos mx}{5 - 4\cos x} dx$$
 (m 为正整数). (2) $I = \int_0^{\alpha} \frac{1}{\left(5 - 3\sin \frac{2\pi\varphi}{\alpha}\right)^2} d\varphi$ ($\alpha > 0$).

解 (1)
$$I = \frac{1}{2} \int_{-\pi}^{\pi} \frac{\cos mx}{5 - 4\cos x} dx$$
. 对积分 $\int_{-\pi}^{\pi} \frac{e^{imx}}{5 - 4\cos x} dx$, 令 $z = e^{ix} = \cos x + i \sin x$, 则

由

$$\cos x = \frac{z + z^{-1}}{2}, \quad \sin x = \frac{z - z^{-1}}{2i}, \quad dx = \frac{1}{iz} dz,$$

得

$$\int_{-\pi}^{\pi} \frac{e^{imx}}{5 - 4\cos x} dx = \int_{-\pi}^{\pi} \frac{\cos mx + i\sin mx}{5 - 4\cos x} dx$$
$$= \frac{1}{i} \oint_{|z|=1} \frac{z^m}{5z - 2(1+z^2)} dz.$$

被积分函数 $f(z) = \frac{z^m}{5z - 2(1+z^2)}$ 在 |z| < 1 仅有一个一阶极点 $z = \frac{1}{2}$,其留数为

Re
$$s\left[f(z), \frac{1}{2}\right] = \lim_{z \to \frac{1}{2}} \left(z - \frac{1}{2}\right) \cdot \frac{z^m}{-2\left(z - \frac{1}{2}\right)(z - 2)} = \frac{1}{3 \times 2^m},$$

因此

$$\int_{-\pi}^{\pi} \frac{e^{imx}}{5 - 4\cos x} dx = \int_{-\pi}^{\pi} \frac{\cos mx}{5 - 4\cos x} dx + i \int_{-\pi}^{\pi} \frac{\sin mx}{5 - 4\cos x} dx$$
$$= \frac{1}{i} \times 2\pi i \times \frac{1}{3 \times 2^{m}} = \frac{\pi}{3 \times 2^{m}},$$

从而

$$I = \int_0^{\pi} \frac{\cos mx}{5 - 4\cos x} dx = \frac{1}{2} \int_{-\pi}^{\pi} \frac{\cos mx}{5 - 4\cos x} dx = \frac{\pi}{3 \times 2^m}.$$

(2) 令
$$\theta = \frac{2\pi\varphi}{\alpha}$$
, 则
$$I = \int_0^\alpha \frac{1}{(5 - 3\sin\frac{2\pi\varphi}{\alpha})^2} d\varphi = \frac{\alpha}{2\pi} \int_0^{2\pi} \frac{1}{(5 - 3\sin\theta)^2} d\theta.$$

 $\diamondsuit z = e^{i\theta}$,则

$$\cos \theta = \frac{z + z^{-1}}{2}$$
, $\sin \theta = \frac{z - z^{-1}}{2i}$, $d\theta = \frac{1}{iz}dz$.

从而

$$I = -\frac{2\alpha}{i\pi} \oint_{|z|=1} \frac{z}{(3z-i)^2 (z-3i)^2} dz.$$

被积分函数 $f(z) = \frac{z}{(3z-i)^2(z-3i)^2}$ 在 |z| < 1 内只有一个二阶极点 $z = \frac{i}{3}$,其留数为

$$\operatorname{Re} s \left[f(z), \frac{i}{3} \right] = \lim_{z \to \frac{i}{3}} \frac{d}{dz} \left[\left(z - \frac{i}{3} \right)^2 f(z) \right]$$
$$= \lim_{z \to \frac{i}{2}} \frac{d}{dz} \left[\frac{z}{9(z - 3i)^2} \right] = -\frac{5}{256}.$$

所以

$$I = 2\pi i \left(-\frac{2\alpha}{i\pi} \right) \left(-\frac{5}{256} \right) = \frac{5}{64} \alpha.$$

5.2.2 计算
$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx$$
 型积分

为介绍此类积分的计算, 先给出如下引理.

引理 5.1 设C为圆周|z|=R的上半圆周,函数 f(z)在C上连续,且 $\lim_{z\to\infty} zf(z)=0$,则

$$\lim_{|z|=R\to+\infty} \int_C f(z)dz = 0.$$
 (5.18)

证明 令 $z = \operatorname{R} e^{i\theta} (0 \le \theta \le \pi)$,由 $\lim_{z \to \infty} z f(z) = 0$ 得, $\forall \varepsilon > 0, \exists R_0(\varepsilon) > 0$,使当

 $\mathbb{R} > R_0$ 时,有 $|zf(z)| < \varepsilon, z \in C$, 从而 $|\mathbb{R} e^{i\theta} f(\mathbb{R} e^{i\theta})| < \varepsilon$.

于是

$$\left| \int_{C} f(z) dz \right| = \left| \int_{0}^{\pi} f(\operatorname{Re}^{i\theta}) \operatorname{Re}^{i\theta} d\theta \right| < \pi \varepsilon.$$

从而式(5.18)成立.

由引理 5.1 知,如果存在 $\alpha > 1$, M > 0,使得 $|f(z)| \le \frac{M}{|z|^{\alpha}}$,则 $\lim_{R \to +\infty} \int_C f(z) dz = 0$.

特别地,当 $f(z) = \frac{P(z)}{Q(z)}$,其中, P(x),Q(x) 为多项式,且 Q(x) 的次数比 P(x) 的次数至

少高两次,则式(5.18)成立.因此,有如下定理:

定理 5.9 设 P(x), Q(x) 为多项式, 方程 Q(x) = 0 无实根, 且 Q(x) 的次数比 P(x) 的次

数至少高两次,
$$f(z) = \frac{P(z)}{Q(z)}$$
 , 则

$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx = 2\pi i \sum_{k=1}^{n} Res[f(z), z_k].$$
 (5.19)

其中 $z_k(k=1,2,\cdots,n)$ 为 f(z) 在上半平面上的孤立奇点.

证明 取上半圆周 $C_R:|z|=R$ 和实线段[-R,R]组成一条闭曲线C,如图 5.2 所示.

取充分大的R,使C所围的区域包含f(z)在上

半平面上的所有奇点. 由留数定理,得

$$\int_{-R}^{R} f(z)dz + \int_{C_R} f(z)dz = 2\pi i \sum_{k=1}^{n} Res[f(z), z_k].$$

图 5.2

由引理 5.1,得

$$\lim_{R\to +\infty} \int_{C_R} f(z) dz = 0.$$

从而

$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx = 2\pi i \sum_{k=1}^{n} Res[f(z), z_k].$$

例题 5.15 计算积分
$$I = \int_{-\infty}^{+\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx$$
.

解 函数 $f(z) = \frac{z^2 - z + 2}{z^4 + 10z^2 + 9}$ 在上半平面内有两个一阶极点 z = i 和 z = 3i,且

$$Res[f(z),i] = \lim_{z \to i} (z-i) \cdot \frac{z^2 - z + 2}{z^4 + 10z^2 + 9} = \frac{1-i}{16i},$$

$$Res[f(z),3i] = \lim_{z \to 3i} (z-3i) \cdot \frac{z^2 - z + 2}{z^4 + 10z^2 + 9} = \frac{7+3i}{48i}.$$

因此

$$I = \int_{-\infty}^{+\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx = 2\pi i \left(\frac{1 - i}{16i} + \frac{7 + 3i}{48i} \right) = \frac{5}{12} \pi.$$

例题 5.16 计算积分 $I = \int_0^{+\infty} \frac{1}{x^4 + a^4} dx \ (a > 0).$

解 函数 $f(z) = \frac{1}{z^4 + a^4}$ 在上半平面内有两个一阶极点 $z_k = ae^{\frac{\pi + 2k\pi}{4}}, k = 0, 1, 且$

Re
$$s[f(z), z_k] = \frac{1}{4z^3} \Big|_{z=z_k} = -\frac{z_k}{4a^4}, k = 0, 1.$$

因此

$$I = \int_0^{+\infty} \frac{1}{x^4 + a^4} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{1}{x^4 + a^4} dx$$

$$= \pi i \left\{ Res \left[f(z), z_1 \right] + Res \left[f(z), z_2 \right] \right\}$$

$$= \pi i \cdot \frac{-1}{4a^4} \left(ae^{\frac{\pi}{4}i} + ae^{\frac{3\pi}{4}i} \right) = -\frac{\pi i}{4a^3} \left(e^{\frac{\pi}{4}i} + e^{-\frac{\pi}{4}i} \right)$$

$$= \frac{-\pi i}{4a^4} \cdot 2i \sin \frac{\pi}{4} = \frac{\sqrt{2}\pi}{4a^3}.$$

5.2.3 计算
$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} e^{i\lambda x} dx$$
型积分

引理 5.2[约当引理] 设C为圆周|z|=R的上半圆周,函数 f(z)在C上连续,且

$$\lim_{z \to \infty} f(z) = 0, \quad \text{M}$$

$$\lim_{|z|=R\to+\infty} \int_C f(z)e^{i\lambda z}dz = 0 \quad (\lambda > 0).$$
 (5.20)

证明 令
$$z = \mathbf{R} \, e^{i\theta} (0 \le \theta \le \pi)$$
,由 $\lim_{z \to \infty} f(z) = 0$ 得, $\forall \varepsilon > 0, \exists R_0(\varepsilon) > 0$,使 当 $\mathbf{R} > R_0$ 时,有 $\left| f(z) \right| < \varepsilon, z \in C$,从而 $\left| f(\mathbf{R} e^{i\theta}) \right| < \varepsilon$.

由
$$\left| \operatorname{Re}^{i\theta} i \right| = R$$
, $\left| e^{i\lambda \operatorname{Re}^{i\theta}} \right| = \left| e^{-\lambda R \sin \theta + i\lambda R \cos \theta} \right| = e^{-\lambda R \sin \theta}$,得

$$\left| \int_{C} f(z) e^{i\lambda z} dz \right| = \left| \int_{0}^{\pi} f(\operatorname{Re}^{i\theta}) e^{i\lambda \operatorname{Re}^{i\theta}} \operatorname{Re}^{i\theta} d\theta \right| = 2R\varepsilon \int_{0}^{\pi/2} e^{-\lambda R \sin \theta} d\theta.$$

于是,由约当不等式: $\frac{2\theta}{\pi} \le \sin \theta \le \theta \left(0 \le \theta \le \frac{\pi}{2} \right)$.

$$\left| \int_{C} f(z) e^{i\lambda z} dz \right| \leq 2R\varepsilon \int_{0}^{\pi/2} e^{-\frac{2}{\pi}\lambda R\theta} d\theta$$

$$=2R\varepsilon\left[-\frac{e^{-\frac{2\lambda R}{\pi}\theta}}{\frac{2\lambda R}{\pi}}\right]_{\theta=0}^{\theta=\frac{\pi}{2}}=\frac{\pi\varepsilon}{\lambda}\left(1-e^{-\lambda R}\right)<\frac{\pi\varepsilon}{\lambda},$$

 $\mathbb{P}\lim_{R\to+\infty}\int_C f(z)e^{i\lambda z}dz=0.$

由引理 5.2 知,若 $f(z) = \frac{P(z)}{Q(z)}$,其中 P(x),Q(x) 为多项式,且 Q(x) 的次数比 P(x) 的

次数至少高一次,则式(5.20)成立. 因此,有如下定理.

定理 5.10 设 P(x), Q(x) 为多项式, 方程 Q(x) = 0 无实根, 且 Q(x) 的次数比 P(x) 的次

数至少高一次. 令 $f(z) = \frac{P(z)}{Q(z)}$, 则

$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} e^{i\lambda x} dx = 2\pi i \sum_{k=1}^{n} Res[f(z)e^{i\lambda z}, z_k]. \tag{5.21}$$

其中 $z_k(k=1,2,\cdots,n)$ 为 f(z) 在上半平面上的孤立奇点.

证明 类似于定理 5.9 的证明,略.

由定理 5.10 可得

$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} \cos \lambda x dx = Re \left(2\pi i \sum_{k=1}^{n} Res[f(z)e^{i\lambda z}, z_{k}] \right),$$

$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} \sin \lambda x dx = Im \left(2\pi i \sum_{k=1}^{n} Res[f(z)e^{i\lambda z}, z_{k}] \right).$$

其中 $\lambda > 0$. 上述两类积分在傅里叶积分及变换中有着广泛地应用.

例题 5.17 计算积分
$$I = \int_{-\infty}^{+\infty} \frac{x \cos x}{x^2 - 2x + 10} dx$$
.

解 函数
$$f(z) = \frac{z}{z^2 - 2z + 10}$$
 在上半平面内有一个一阶极点 $z = 1 + 3i$,且

$$Res[f(z)e^{iz},1+3i] = \frac{ze^{iz}}{(z^2-2z+10)'}\bigg|_{z=1+3i} = \frac{(1+3i)e^{-3+i}}{6i}.$$

从而

$$I = \int_{-\infty}^{+\infty} \frac{x \cos x}{x^2 - 2x + 10} dx = Re \left(\int_{-\infty}^{+\infty} \frac{x e^{ix}}{x^2 - 2x + 10} dx \right)$$
$$= 2\pi i Res[f(z)e^{iz}, 1 + 3i] = \frac{\pi}{3e^3} (\cos 1 - 3\sin 1).$$

例题 5.18 计算积分
$$I = \int_0^{+\infty} \frac{x \sin x}{(x^2 + 4)^2} dx$$
.

$$\mathbf{M} \quad I = \int_0^{+\infty} \frac{x \sin x}{(x^2 + 4)^2} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{x \sin x}{(x^2 + 4)^2} dx \,, \quad \Leftrightarrow \quad f(z) = \frac{z}{(z^2 + 4)^2} e^{iz} \,, \quad f(z) \stackrel{\text{def}}{=} \frac{z}{(z^2 + 4)^2} e^{iz} \,.$$

上半平面上只有一个二阶极点z=2i,且

Re
$$s[f(z), 2i] = \lim_{z \to 2i} \frac{d}{dz} \left[(z - 2i)^2 \frac{ze^{iz}}{(z^2 + 4)^2} \right]$$

$$= \lim_{z \to 2i} \frac{(1 + iz)e^{iz}(z + 2i)^2 - 2(z + 2i)ze^{iz}}{(z + 2i)^4}$$

$$= \frac{e^{-2}}{8}$$

$$I = \frac{1}{2} \operatorname{Im}(2\pi \ i \sum_{k=1}^{n} \operatorname{Re} s[f(z), 2i]) = \frac{1}{2} \times 2\pi \times \frac{e^{-2}}{8} = \frac{e^{-2}}{8} \pi.$$

以上三种类型的实积分计算,大致可分为如下步骤:

- (1) 根据实积分被积函数 f(x) 的特点,作以相应的复变函数 F(z),使当 $z \in (a,b)$ 时, F(z) = f(x),或 F(z) 的实部或虚部之一等于 f(x);
- (2) 选取一条或几条按段光滑的辅助曲线 Γ ,使其与实线段[a,b]构成闭曲线并围成区域D,使F(z)在D内除有限个孤立奇点 $z_k(k=1,2,\cdots,n)$ 外处处解析, 并应用留数定理,

$$\int_a^b F(x) dx + \int_{\Gamma} F(z) dz = 2\pi i \operatorname{Re} s[F(z), z_k].$$

- (3) 计算F(z)沿辅助曲线的积分 $\int_{\Gamma} F(z) dz$;
- (4) 计算F(z)在D内奇点 $z_k(k=1,2,\cdots,n)$ 处的留数 $\operatorname{Re} s[F(z),z_k]$;

若实积分是无穷积分,则可取极限,并求出 $\int_{\Gamma} F(z) dz$ 的极限值.

5.2.4* 实轴上有奇点的积分

利用留数定理计算以上三类实积分,要求积分路径上无奇点,但在实际问题中,常遇到积分路径(如实轴上)有奇点的情形,此时,需选取特殊的辅助曲线 Γ ,使其上无奇点.下面以计算狄利克莱(Dirichlet)积分为例,说明积分路径上有奇点的解决方法.

为了叙述方便, 先给出下面引理.

引理 5.3 设C为圆周|z|=r的上半圆周, f(z)在C上连续,且

$$\lim_{z\to 0} zf(z) = 0,$$

则

$$\lim_{|z|=r\to 0} \int_C f(z)dz = 0.$$

例题 5.19 计算积分 $\int_{0}^{+\infty} \frac{\sin x}{x} dx$.

解
$$\int_{0}^{+\infty} \frac{\sin x}{x} dx$$
存在,且 $\int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx$.

考虑函数 $f(z) = \frac{e^{iz}}{z}$ 沿图 5.3 所示之闭曲线路径 C 的

图 5.3

积分.

根据柯西积分定理得

$$\int_{C} f(z)dz = 0$$

或写成

$$\int_{r}^{R} \frac{e^{iz}}{x} dx + \int_{C_{R}} \frac{e^{iz}}{z} dz + \int_{-R}^{-r} \frac{e^{ix}}{x} dx - \int_{C_{r}} \frac{e^{iz}}{z} dz = 0$$
 (5.22)

这里 C_R 及 C_r 分别表示圆周 $z = \operatorname{Re}^{i\theta}$ 及 $z = re^{i\theta}$ ($0 \le \theta \le \pi, r < R$).

由引理 5.2 知

$$\lim_{R\to+\infty}\int_{C_R}\frac{e^{iz}}{z}dz=0.$$

对于积分 $\int_{C_r} \frac{e^{iz}}{z} dz$,因为

$$\frac{e^{iz}}{z} = \frac{1}{z} + i - \frac{z}{2!} - \frac{iz^2}{3!} + \dots = \frac{1}{z} + p(z),$$

其中 p(z) 在 z=0 的邻域内解析,所以

$$\lim_{z\to 0} zp(z) = 0.$$

于是,由引理5.3,得

$$\lim_{r\to 0}\int_{C_r}p(z)dz=0,$$

从而

$$\lim_{r \to 0} \int_{C_r} \frac{e^{iz}}{z} dz = \lim_{r \to 0} \int_{C_r} \frac{1}{z} dz + \lim_{r \to 0} \int_{C_r} p(z) dz$$
$$= \lim_{r \to 0} \int_{\pi}^{0} \frac{1}{re^{i\theta}} rie^{i\theta} d\theta = -\pi i.$$

 $\Leftrightarrow x = -t$, 则

$$\int_{-R}^{-r} \frac{e^{ix}}{x} dx = \int_{R}^{r} \frac{e^{-it}}{t} dt = -\int_{r}^{R} \frac{e^{-ix}}{x} dx,$$

从而

$$\int_{r}^{R} \frac{e^{ix}}{x} dx + \int_{-R}^{-r} \frac{e^{ix}}{x} dx = 2i \int_{r}^{R} \frac{\sin x}{x} dx.$$

于是,在 (5.22) 中, 令 $r \rightarrow 0, R \rightarrow +\infty$, 得

$$2i\int_0^{+\infty} \frac{\sin x}{x} dx - i\pi = 0,$$

所以

$$\int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$