Linear Algebra Quiz 2

Dept. of Elec. Eng., National Taiwan University May 17, 2006

USE OF ALL AUTOMATIC COMPUTING MACHINES IS PROHIBITED

- 1. Judge if the following statements are true or false. Give a concise proof to each true statement, and a counterexample to each false statement.
 - (a) For any subspace W of \mathcal{R}^n , the orthogonal projection matrix P_w for W equals $(P_w)^T$. (20%)
 - If two $n \times n$ matrices have the same characteristic polynomial, then they have the same eigenvectors. (20%)
- 2. Given a linear operator $T\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1 + 3x_2 \\ -4x_1 + 6x_2 \end{bmatrix}$ on \Re^2 , find a linear operator G on \Re^2 such that $T = G^2$.

 Is the answer unique? (30%)

 4. 146
- 3. Given a vector $\mathbf{v} = \begin{bmatrix} 7 \\ 4 \\ 1 \\ 2 \end{bmatrix}$ and a subspace $\mathbf{w} = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \\ 2 \end{bmatrix} \right\}$ of \mathcal{R}^4 , find an orthonormal basis of \mathbf{w}^4 ,

and two vectors $\mathbf{w} \in \mathcal{W}$ and $\mathbf{z} \in \mathcal{W}^{\perp}$ such that $\mathbf{v} = \mathbf{w} + \mathbf{z}$. (30%)

(t+1)(t-6)= t-5t-6 \$12 = t-56+6