安徽大学2017-2018学年第二学期 《线性代数B》期末考试试卷(A卷)

(闭卷 时间120分钟)

考场登记表序号

题号	_	 三	四	总分
得分				
阅卷人				

一、填空题 (本题共五小题, 每小题3分, 共15分)

得分	
----	--

- 1. 设A为3阶矩阵,且行列式|A|=3,则行列式 $|\frac{1}{2}A^{-1}|=$ _____
- 2. 设矩阵 $A = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 1 & 2 & 3 & 3 \\ 1 & 1 & 2 & 1 \end{pmatrix}$. 则A的秩为_______.
- 3. 设A为 4×3 矩阵,将A的第3列乘以(-4)加到第1列相当 于A的 (填"左"或"右")边乘以初等矩阵
- 4. 设 \mathbb{R}^3 中向量组 $\alpha_1 = (1,1,1), \alpha_2 = (1,2,3), \alpha_3 = (3,4,a)$ 线性相关. 则 $a = \underline{\hspace{1cm}}$
- 5. 设3阶矩阵A的特征值分别为-1,1,2. 若矩阵 $B = A^2 2A + 2E$, 其中E是3阶单位 阵,则行列式|B| =_____.
 - 二、选择题 (本题共五小题, 每小题3分, 共15分)

得分

6. 设A, B均是n阶可逆阵,则分块矩阵 $\begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$ 的逆为

(A)
$$\begin{pmatrix} 0 & A^{-1} \\ B^{-1} & 0 \end{pmatrix}$$
. (B) $\begin{pmatrix} 0 & B^{-1} \\ A^{-1} & 0 \end{pmatrix}$.

(B)
$$\begin{pmatrix} 0 & B^{-1} \\ A^{-1} & 0 \end{pmatrix}.$$

(C)
$$\begin{pmatrix} A^{-1} & 0 \\ 0 & B^{-1} \end{pmatrix}$$
. (D) $\begin{pmatrix} B^{-1} & 0 \\ 0 & A^{-1} \end{pmatrix}$.

$$(D) \quad \begin{pmatrix} B^{-1} & 0 \\ 0 & A^{-1} \end{pmatrix}.$$

7.	设 A 是 $n \times n$ 矩阵. 则下列条件中是行列式 $ A \neq 0$ 的充分必要条件的是	()
	① A 的行向量组线性无关; ② A 可逆; ③ A 的秩为 n ; ④ $ A^* \neq 0$; ⑤ 0 是矩阵 A 的特征值; ⑥ 非齐次线性方程组 $AX = \beta$ 有解.		
	(A) ① ② ③ ④ . (B) ① ② ③ ⑤. (C) ① ② ④ ⑤. (D) ① ③ ④ ⑥.		
8.	设向量空间 P^n 中,向量组 $\alpha_1, \cdots, \alpha_r$ 可由向量组 β_1, \cdots, β_s 线性表出,且 α_1 线性无关. 则必有	,··· ,	α_r
	(A) $r < s$. (B) $r \le s$. (C) $r > s$. (D) $r \ge s$.	()
9.	设 A 是可逆矩阵,且 A 与 B 相似.则下列结论 错误 的是 (A) A^{T} 与 B^{T} 一定相似. (B) A^{-1} 与 B^{-1} 一定相似. (C) $A+A^{T}$ 与 $B+B^{T}$ 一定相似. (D) $A+A^{-1}$ 与 $B+B^{-1}$ 一定相似	()
10.	设 A 是 n 阶实对称阵. 下列条件中, 不是" A 是正定阵"的充分必要条件是	()
	(A) A 的所有特征值大于零. (B) A 的所有顺序主子式大于零. (C) A 合同于 n 阶单位阵. (D) $ A > 0$.		
=	E、 计算题 (本题共六小题,第11-15题每题10分,第16题15分,共65分) <i>《</i>	3分	
13	1. 计算n阶行列式 $D = \begin{vmatrix} 2 + x_1 & x_2 & \cdots & x_n \\ x_1 & 2 + x_2 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_1 & x_2 & \cdots & 2 + x_n \end{vmatrix}$.		

12. 设矩阵
$$A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 4 & 8 \\ 3 & 4 & 9 & 27 \\ 4 & 1 & 16 & 64 \end{pmatrix}$$
, $|A|$ 是 A 的行列式, A_{ij} 为 a_{ij} 的代数余子式 $(i, j = 1, 2, 3, 4)$. 求 $A_{12} + A_{22} + A_{32} + A_{42}$.

13. 设矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$
,且 $AB - 2A = E$,其中 E 为3阶单位阵. 求矩阵 B .

14. 已知线性方程组 $\begin{cases} x_1 + x_2 + ax_3 = 1, \\ x_1 + ax_2 + ax_3 = 3, \text{ 有无穷多解. 求}a$ 的值, 以及该方程组的通 $ax_1 + x_2 + x_3 = -3$ 解.

15. 求向量组 $\alpha_1=(1,2,-1,1),$ $\alpha_2=(2,3,-3,1),$ $\alpha_3=(-1,-1,2,0),$ $\alpha_4=(1,3,1,3),$ $\alpha_5=(-1,2,3,1)$ 的极大无关组与秩.

- 16. 设实二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 2x_3^2 2x_1x_2 2x_1x_3 2x_2x_3$.
 - (1) 写出该二次型的矩阵A,并求A的特征值与特征向量.
 - (2) 求正交线性替换X = QY,将该二次型化为标准形.

四、证明题(本题共5:	分)
-------------	---	---

得分

17. 设A是n阶正交矩阵, λ_0 为A的实特征值. 证明: $\lambda_0 = \pm 1$.