ResNet Overview*

Implementation using Keras

* Slides are modified from the original paper Deep Residual Learning for Image Recognition by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun

Winning Model

- Won 1st place in the ILSVRC 2015 classification competition with top-5 error rate of 3.57%
- Won the 1st place in ILSVRC and COCO 2015 competition in ImageNet Detection, ImageNet localization, Coco detection and Coco segmentation.
- Replacing VGG-16 layers in Faster R-CNN with ResNet-101. They observed a relative improvements of 28%
- Efficiently trained networks with 100 and 1000 layers.

ImageNet Classification top-5 error (%)

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

GoogleNet, 22 layers (ILSVRC 2014)

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

Problem

- With the network depth increasing, accuracy gets saturated and then degrades rapidly.
- A huge barrier to training NN is vanishing gradients: very deep networks often have a gradient signal that goes to zero quickly, thus making gradient descent unbearably slow

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Sequential Block

$$z^{[l+1]} = W^{[l+1]} * a^{[l]} + b^{[l+1]}$$
 $a^{[l+1]} = g(z^{[l+1]})$
 $z^{[l+2]} = W^{[l+2]} * a^{[l+1]} + b^{[l+2]}$
 $a^{[l+2]} = g(z^{[l+2]})$

a[1] -> Linear -> ReLu -> Linear -> ReLu

Residual Block ("shortcut" or "skip connection")

$$z^{[l+1]} = W^{[l+1]} * a^{[l]} + b^{[l+1]}$$

$$a^{[l+1]} = g(z^{[l+1]})$$

$$z^{[l+2]} = W^{[l+2]} * a^{[l+1]} + b^{[l+2]}$$

$$a^{[l+2]} = g(z^{[l+2]} + a^{[l]})$$

Building block

Plain block

Residual block

Minimizing high-dimensional non-convex loss function

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The vertical axis is logarithmic to show dynamic range. The proposed filter normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

34-layer residual

34-layer plain

VGG-19

Implementation

The residual blocks are based on the improved scheme proposed in "Identity Mappings in Deep Residual Networks" by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Architecture

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
		3×3 max pool, stride 2				
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $
conv3_x	28×28	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{bmatrix} \times 3 $
	1×1	average pool, 1000-d fc, softmax				
FLOPs		1.8×10 ⁹	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10 ⁹

```
# Resuidal block BN -> relu -> conv -> bn -> relu -> conv
def res_block(x, filters):
     bn1 = BatchNormalization()(x)
     act1 = Activation('relu')(bn1)
     conv1 = Conv2D(filters=filters, kernel_size=(3, 3), data_format='channels_first', strides=(2, 2), padding='same',
                    kernel initializer=glorot uniform(seed=0))(act1)
     bn2 = BatchNormalization()(conv1)
     act2 = Activation('relu')(bn2)
     conv2 = Conv2D(filters=filters, kernel_size=(3, 3), data_format='channels_first', strides=(1, 1), padding='same',
                    kernel initializer=glorot uniform(seed=0))(act2)
     residual = Conv2D(1, (1, 1), strides=(1, 1), data_format='channels_first')(conv2)
     x = Conv2D(filters=filters, kernel_size=(3, 3), data_format='channels_first', strides=(2, 2), padding='same',
                    kernel initializer=glorot_uniform(seed=0))(x)
                                                                        30 # Combining resuidal blocks into a network
                                                                        31 res1 = res block(input1, 64)
     # Combing shortcut and resuidal block
                                                                        32 res2 = res_block(res1, 128)
     out = Add()([x, residual])
                                                                        33 res3 = res block(res2, 256)
                                                                           res4 = res block(res3, 512)
     return out
                                                                        35
                                                                        36 # Classifier block
                                                                        37 act1 = Activation('relu')(res4)
                                                                        38 | flatten1 = Flatten()(act1)
                                                                        39 dense1 = Dense(512)(flatten1)
                                                                        40 act2 = Activation('relu')(dense1)
                                                                        41 dense2 = Dense(62)(act2)
                                                                        42 | output1 = Activation('softmax')(dense2)
                                                                        43
                                                                           model = Model(inputs=input1, outputs=output1)
                                                                        45
                                                                        46 # Compiling the model
                                                                           model.compile(loss='categorical crossentropy',
                                                                                         optimizer=Adadelta(lr=0.1),
                                                                        48
                                                                                         metrics=['categorical accuracy'])
                                                                        49
                                                                        50
                                                                        51 model.summary()
```

10

11

12 13 14

15

16

17 18

23

24

25

26

27

28

Results

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

References

- Li, Hao, Zheng Xu, Gavin Taylor, and Tom Goldstein. "Visualizing the loss landscape of neural nets." arXiv preprint arXiv:1712.09913 (2017).
- Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. "Densely Connected Convolutional Networks." In CVPR, vol. 1, no. 2, p. 3. 2017.
- He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Identity mappings in deep residual networks." In European conference on computer vision, pp. 630-645. Springer, Cham, 2016.
- He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770-778. 2016.
- Andrew Ng "Deep Learning" course at Coursera
- Article @ Medium "Understanding and Implementing Architectures of ResNet and ResNeXt for state-of-the-art Image Classification: From Microsoft to Facebook"