Foundations of Computing Lecture 22

Arkady Yerukhimovich

April 10, 2025

Outline

- 1 Lecture 21 Review
- 2 Reduction Gadgets
- Graph Coloring
- 4 co- \mathcal{NP}

Lecture 21 Review

- ullet \mathcal{P} and $\mathcal{N}\mathcal{P}$
- Polynomial-Time Reductions
- \bullet $\mathcal{NP}\text{-completeness}$ of SAT

Outline

- 1 Lecture 21 Review
- 2 Reduction Gadgets
- Graph Coloring
- 4 co- \mathcal{NP}

What We Already Know

- **①** SAT is \mathcal{NP} -complete
- **2** 3-SAT is \mathcal{NP} -complete
- \bullet 3-SAT \leq_P CLIQUE
- **4** CLIQUE \leq_P Independent Set

What We Already Know

- **①** SAT is \mathcal{NP} -complete
- **2** 3-SAT is \mathcal{NP} -complete
- \bullet 3-SAT \leq_P CLIQUE
- **4** CLIQUE \leq_P Independent Set

Gadgets

Gadgets

 Gadgets are structures in the target problem that can simulate structures in the source problem

Gadgets

- Gadgets are structures in the target problem that can simulate structures in the source problem
- For example, in proof of 3SAT \leq_P CLIQUE
 - We replaced each variable with a node
 - We replaced each clause with 3 nodes (1 for each variable)
 - Edges capture independent variables between clauses

Vertex Covers

Given a graph G = (V, E), a <u>vertex cover</u> is a subset of the nodes $C \subseteq V$ s.t. each edge in E has an end-point in V.

Vertex Cover Problem

 $VERTEX-COVER = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } \leq k \}$

Vertex Cover Problem

VERTEX-COVER = $\{\langle G, k \rangle \mid G \text{ has a vertex cover of size } \leq k\}$

Goal: Prove that VC is \mathcal{NP} -Complete

Vertex Cover Problem

 $VERTEX-COVER = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } \leq k \}$

Goal: Prove that VC is \mathcal{NP} -Complete

1 Show that $VC \in \mathcal{NP}$

Vertex Cover Problem

 $VERTEX-COVER = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } \leq k \}$

Goal: Prove that VC is \mathcal{NP} -Complete

- **1** Show that $VC \in \mathcal{NP}$
- 2 Show that 3-SAT \leq_p VC

Goal: Show reduction f from 3-SAT to VC s.t.

- if ϕ is satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has VC of size $\leq k$
- if ϕ is not satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has no VC of size $\leq k$

Goal: Show reduction f from 3-SAT to VC s.t.

- if ϕ is satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has VC of size $\leq k$
- if ϕ is not satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has no VC of size $\leq k$

Variable gadget:

Goal: Show reduction f from 3-SAT to VC s.t.

- if ϕ is satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has VC of size $\leq k$
- if ϕ is not satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has no VC of size $\leq k$

Variable gadget: For every variable x_1 , draw pair of nodes

Clause gadget:

Goal: Show reduction f from 3-SAT to VC s.t.

- if ϕ is satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has VC of size $\leq k$
- if ϕ is not satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has no VC of size $\leq k$

Variable gadget: For every variable x_1 , draw pair of nodes

Clause gadget: For every (3-term) clause draw a triangle

Observations:

- For each variable need 1 node in cover
- For each triangle need at least 2 nodes
- Need to connect variables to clauses

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

- **1** A satisfying assignment implies cover C, $|C| \le 2c + v$
- $oldsymbol{\circ}$ No satisfying assignment implies smallest cover needs $|\mathcal{C}|>2c+v$

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

- **1** A satisfying assignment implies cover C, $|C| \le 2c + v$
- $oldsymbol{\circ}$ No satisfying assignment implies smallest cover needs |C|>2c+v

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

1 A satisfying assignment implies cover C, $|C| \le 2c + v$

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

- **1** A satisfying assignment implies cover C, $|C| \le 2c + v$
- ullet No satisfying assignment implies smallest cover needs $|\mathcal{C}|>2c+v$

Outline

- 1 Lecture 21 Review
- 2 Reduction Gadgets
- Graph Coloring
- 4 co- \mathcal{NP}

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0,1,2\}$ to all nodes, such that no edges have the same color on both ends.

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0,1,2\}$ to all nodes, such that no edges have the same color on both ends.

3-Coloring

Definition

An undirected graph G is 3-colorable, if can assign colors $\{0,1,2\}$ to all nodes, such that no edges have the same color on both ends.

Goal: Prove than 3-Coloring is \mathcal{NP} -Complete

NAE-3SAT

NAE-kSAT Problem

 ${\sf NAE-kSAT} = \{\langle \phi \rangle \quad | \quad \phi \text{ is in k-CNF and ϕ has a satisfying assignment s.t.}$ each clause has at least one 0 and at least one 1}

NAE-3SAT

NAE-kSAT Problem

 ${\sf NAE-kSAT} = \{ \langle \phi \rangle \quad | \quad \phi \text{ is in } k\text{-CNF and } \phi \text{ has a satisfying assignment s.t.} \\ \text{each clause has at least one 0 and at least one 1} \}$

Definition:

• x is an NAE-assignment of ϕ if $\phi(x)=1$ and x does not assign all 1s or all 0s to any clause

NAE-3SAT

NAE-kSAT Problem

 ${\sf NAE-kSAT} = \{ \langle \phi \rangle \quad | \quad \phi \text{ is in } k\text{-CNF and } \phi \text{ has a satisfying assignment s.t.}$ each clause has at least one 0 and at least one 1}

Definition:

• x is an NAE-assignment of ϕ if $\phi(x)=1$ and x does not assign all 1s or all 0s to any clause

Lemma: If x is NAE-assignment of ϕ then \overline{x} is NAE-assignment of ϕ

Proof:

- x must assign at least one 1 and at least one 0 to every clause
- ullet \overline{x} must also have at least one 1 and one 0 in every clause
- ullet This means every clause is satisfied, and ϕ is satisfied since it's CNF

Goal

Prove that NAE-3SAT is \mathcal{NP} -complete: 3SAT \leq_P NAE-3SAT

$3SAT \leq_P NAE-3SAT$

- Turns out it's not easy to directly prove this
- Instead we take two steps:

3SAT
$$\leq_P$$
 NAE-4SAT \leq_P NAE-3SAT

$3SAT \leq_P NAE-4SAT$

• We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'

$3SAT <_P NAE-4SAT$

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - \bullet If ϕ is satisfiable, ϕ' is NAE-satisfiable

$3SAT <_P NAE-4SAT$

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - \bullet If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable

$3SAT \leq_P NAE-4SAT$

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - Note that this must hold for every clause of ϕ , ϕ'

$3SAT <_P NAE-4SAT$

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - Note that this must hold for every clause of ϕ , ϕ'
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - \bullet Note that this must hold for every clause of $\phi,\,\phi'$
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \vee x_2 \vee x_3) \rightarrow (x_1 \vee x_2 \vee x_3 \vee S)$$

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - \bullet Note that this must hold for every clause of $\phi,\,\phi'$
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$$

Why this works:

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - Note that this must hold for every clause of ϕ , ϕ'
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$$

- Why this works:
 - Want to argue:
 - \bullet A satisfying assignment to ϕ implies satisfying assignment to ϕ'
 - \bullet A satisfying assignment to ϕ' implies satisfying assignment to ϕ

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - Note that this must hold for every clause of ϕ , ϕ'
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$$

- Why this works:
 - Want to argue:
 - \bullet A satisfying assignment to ϕ implies satisfying assignment to ϕ'
 - \bullet A satisfying assignment to ϕ' implies satisfying assignment to ϕ
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3) = 1$

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - Note that this must hold for every clause of ϕ , ϕ'
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$$

- Why this works:
 - Want to argue:
 - \bullet A satisfying assignment to ϕ implies satisfying assignment to ϕ'
 - \bullet A satisfying assignment to ϕ' implies satisfying assignment to ϕ
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3) = 1$ at least one $x_i = 1$, so $(x_1 \lor x_2 \lor x_3 \lor S) = 1$. Set S = 0 to make it NAE-assignment

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - Note that this must hold for every clause of ϕ , ϕ'
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$$

- Why this works:
 - Want to argue:
 - \bullet A satisfying assignment to ϕ implies satisfying assignment to ϕ'
 - \bullet A satisfying assignment to ϕ' implies satisfying assignment to ϕ
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3) = 1$ at least one $x_i = 1$, so $(x_1 \lor x_2 \lor x_3 \lor S) = 1$. Set S = 0 to make it NAE-assignment
 - (\Leftarrow) If $(x_1 \lor x_2 \lor x_3 \lor S) = 1$

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - Note that this must hold for every clause of ϕ , ϕ'
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$$

- Why this works:
 - Want to argue:
 - \bullet A satisfying assignment to ϕ implies satisfying assignment to ϕ'
 - \bullet A satisfying assignment to ϕ' implies satisfying assignment to ϕ
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3) = 1$ at least one $x_i = 1$, so $(x_1 \lor x_2 \lor x_3 \lor S) = 1$. Set S = 0 to make it NAE-assignment
 - (\Leftarrow) If $(x_1 \lor x_2 \lor x_3 \lor S) = 1$
 - If S=0, then at least one $x_i=1$, so $(x_1 \vee x_2 \vee x_3)=1$

- We need a reduction f that takes 3SAT instance ϕ and converts it into NAE-4SAT instance ϕ'
 - ullet If ϕ is satisfiable, ϕ' is NAE-satisfiable
 - If ϕ' is NAE-satisfiable, ϕ is satisfiable
 - Note that this must hold for every clause of ϕ , ϕ'
- Idea: Can we build a "gadget" for each clause of ϕ to enforce this condition?

$$(x_1 \lor x_2 \lor x_3) \to (x_1 \lor x_2 \lor x_3 \lor S)$$

- Why this works:
 - Want to argue:
 - \bullet A satisfying assignment to ϕ implies satisfying assignment to ϕ'
 - ullet A satisfying assignment to ϕ' implies satisfying assignment to ϕ
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3) = 1$ at least one $x_i = 1$, so $(x_1 \lor x_2 \lor x_3 \lor S) = 1$. Set S = 0 to make it NAE-assignment
 - (\Leftarrow) If $(x_1 \lor x_2 \lor x_3 \lor S) = 1$
 - If S=0, then at least one $x_i=1$, so $(x_1 \vee x_2 \vee x_3)=1$
 - If S = 1, then $(\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor 0)$ is also NAE-assignment. So, $(\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) = 1$, so just flip all assignments in \emptyset^l

Arkady Yerukhimovich

$NAE-4SAT \leq_P NAE-3SAT$

 Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE

- Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$

- Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value

- Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0

- Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses:

- Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses:

$$(x_1 \lor x_2 \lor x_3 \lor x_4) \to (x_1 \lor x_2 \lor z_i) \land (x_3 \lor x_4 \lor \overline{z_i})$$

- Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses: $(x_1 \lor x_2 \lor x_3 \lor x_4) \to (x_1 \lor x_2 \lor z_i) \land (x_3 \lor x_4 \lor \overline{z_i})$
- Why this works:

- Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses: $(x_1 \lor x_2 \lor x_3 \lor x_4) \rightarrow (x_1 \lor x_2 \lor z_i) \land (x_3 \lor x_4 \lor \overline{z_i})$
- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE

- Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses: $(x_1 \vee x_2 \vee x_3 \vee x_4) \rightarrow (x_1 \vee x_2 \vee z_i) \wedge (x_3 \vee x_4 \vee \overline{z_i})$
- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE, then $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE

- Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses: $(x_1 \lor x_2 \lor x_3 \lor x_4) \rightarrow (x_1 \lor x_2 \lor z_i) \land (x_3 \lor x_4 \lor \overline{z_i})$
- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE, then $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE • (\Rightarrow) If $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE

- Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses: $(x_1 \lor x_2 \lor x_3 \lor x_4) \rightarrow (x_1 \lor x_2 \lor z_i) \land (x_3 \lor x_4 \lor \overline{z_i})$
- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE, then $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE • (\Rightarrow) If $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - - If $x_1 \neq x_2$: Set $z_i = x_2$

- Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses: $(x_1 \lor x_2 \lor x_3 \lor x_4) \to (x_1 \lor x_2 \lor z_i) \land (x_3 \lor x_4 \lor \overline{z_i})$
- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE, then $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - If $x_1 \neq x_2$: Set $z_i = x_3$
 - If $x_1 \neq x_3$: Set $z_i = x_3$

- Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses: $(x_1 \lor x_2 \lor x_3 \lor x_4) \to (x_1 \lor x_2 \lor z_i) \land (x_3 \lor x_4 \lor \overline{z_i})$
- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE, then $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - If $x_1 \neq x_2$: Set $z_i = x_3$
 - If $x_1 \neq x_3$: Set $z_i = x_3$
 - If $x_1 \neq x_4$: Set $z_i = x_4$

- Need a gadget to convert 4-CNF clause to 3-CNF clauses that preserves NAE
- Observations: Starting with $(x_1 \lor x_2 \lor x_3 \lor x_4)$
 - We know that not all x_i have the same value
 - At least one of x_i is a 1 and one is a 0
 - Idea: Let's split the variables into two clauses: $(x_1 \lor x_2 \lor x_3 \lor x_4) \rightarrow (x_1 \lor x_2 \lor z_i) \land (x_3 \lor x_4 \lor \overline{z_i})$
- Why this works:
 - (\Leftarrow) If $(x_1 \lor x_2 \lor z_i)$ and $(x_3 \lor x_4 \lor \overline{z_i})$ are both NAE, then $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - (\Rightarrow) If $(x_1 \lor x_2 \lor x_3 \lor x_4)$ is NAE
 - If $x_1 \neq x_2$: Set $z_i = x_3$
 - If $x_1 \neq x_3$: Set $z_i = x_3$
 - If $x_1 \neq x_4$: Set $z_i = x_4$

Theorem

 $3SAT \leq_P NAE-4SAT \leq_P NAE-3SAT$

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

 ${\bf 0}$ If ϕ is NAE-SAT, then not all variables are all 0 or all 1. So, enough colors to color clauses

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

- If ϕ is NAE-SAT, then not all variables are all 0 or all 1. So, enough colors to color clauses
- ② If G is 3-colorable, colors indicate a NAE-SAT assignment

ullet Many useful problems are $\mathcal{NP} ext{-complete}$

- ullet Many useful problems are $\mathcal{NP} ext{-complete}$
- \bullet But, as long as $\mathcal{P} \neq \mathcal{NP}$, these are hard

- ullet Many useful problems are $\mathcal{NP} ext{-complete}$
- ullet But, as long as $\mathcal{P}
 eq \mathcal{N}\mathcal{P}$, these are hard
- Given a problem *L*, you should:

- ullet Many useful problems are $\mathcal{NP} ext{-complete}$
- ullet But, as long as $\mathcal{P}
 eq \mathcal{N}\mathcal{P}$, these are hard
- Given a problem L, you should:
 - **1** Try to solve it $(L \in \mathcal{P})$

- ullet Many useful problems are $\mathcal{NP} ext{-complete}$
- ullet But, as long as $\mathcal{P}
 eq \mathcal{N}\mathcal{P}$, these are hard
- Given a problem L, you should:
 - **1** Try to solve it $(L \in \mathcal{P})$
 - 2 Try to prove \mathcal{NP} -complete

- ullet Many useful problems are $\mathcal{NP} ext{-complete}$
- ullet But, as long as $\mathcal{P}
 eq \mathcal{N}\mathcal{P}$, these are hard
- Given a problem L, you should:
 - **1** Try to solve it $(L \in \mathcal{P})$
 - ② Try to prove \mathcal{NP} -complete
- But, you must be careful

- ullet Many useful problems are $\mathcal{NP} ext{-complete}$
- ullet But, as long as $\mathcal{P}
 eq \mathcal{N}\mathcal{P}$, these are hard
- Given a problem L, you should:
 - **1** Try to solve it $(L \in \mathcal{P})$
 - ② Try to prove \mathcal{NP} -complete
- But, you must be careful
 - 3-Coloring is $\mathcal{NP}\text{-complete}, \text{ but } 2\text{-Coloring} \in \mathcal{P}$

Outline

- 1 Lecture 21 Review
- 2 Reduction Gadgets
- Graph Coloring
- 4 co- \mathcal{NP}

Are All Problems in \mathcal{NP} ?

Question

Do all languages have poly-size proofs?

Are All Problems in \mathcal{NP} ?

Question

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

 $\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

Are All Problems in \mathcal{NP} ?

Question

Do all languages have poly-size proofs?

Consider the following language:

UNSAT

 $\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

Problems like UNSAT are in co- \mathcal{NP}

 $\overline{\mathcal{P}}$

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

$\overline{\mathcal{NP}}$

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

co- \mathcal{NP}

 $L \in \text{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ for all w, V(x,w) = 0

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

$co-\mathcal{NP}$

 $L\in \text{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x\in L$ for all w, V(x,w)=0

Question:

Is
$$\mathcal{NP} = \text{co-}\mathcal{NP}$$
?

We can continue in this way to define more powerful classes of languages:

We can continue in this way to define more powerful classes of languages:

Σ_2^p (Generalization of \mathcal{NP}

 $L \in \Sigma_2^p$ if there exists poly-time DTM V s.t. for $x \in L$, there exists a w_1 s.t. for all w_2 , $V(x, w_1, w_2) = 1$

$$\exists w_1 \forall w_2 \text{ s.t. } V(x, w_1, w_2) = 1$$

We can continue in this way to define more powerful classes of languages:

Σ_2^p (Generalization of \mathcal{NP}

 $L\in \Sigma_2^p$ if there exists poly-time DTM V s.t. for $x\in L$, there exists a w_1 s.t. for all w_2 , $V(x,w_1,w_2)=1$

$$\exists w_1 \forall w_2 \text{ s.t. } V(x, w_1, w_2) = 1$$

Π_2^p (Generalization of co- \mathcal{NP})

 $L\in\Pi_2^p$ if there exists poly-time DTM V s.t. for $x\in L$, for all w_1 there exists w_2 s.t. $V(x,w_1,w_2)=1$

$$\forall w_1 \exists w_2 \text{ s.t. } V(x, w_1, w_2) = 1$$

We can continue in this way to define more powerful classes of languages:

Σ_2^p (Generalization of \mathcal{NP}

 $L \in \Sigma_2^p$ if there exists poly-time DTM V s.t. for $x \in L$, there exists a w_1 s.t. for all w_2 , $V(x, w_1, w_2) = 1$

$$\exists w_1 \forall w_2 \text{ s.t. } V(x, w_1, w_2) = 1$$

Π_2^p (Generalization of co- \mathcal{NP})

 $L\in\Pi_2^p$ if there exists poly-time DTM V s.t. for $x\in L$, for all w_1 there exists w_2 s.t. $V(x,w_1,w_2)=1$

$$\forall w_1 \exists w_2 \text{ s.t. } V(x, w_1, w_2) = 1$$

We believe that there are infinitely many levels of the polynomial hierarchy and that $\Pi_i^p \neq \Sigma_i^p$ for i > 0, but can't prove it.

• There are many other complexity classes

- There are many other complexity classes
- We know some relationships between classes

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P} = \mathcal{NP}$, $\mathcal{NP} = \text{co-}\mathcal{NP}$, does PH collapse) are still not known!!!

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P} = \mathcal{NP}$, $\mathcal{NP} = \text{co-}\mathcal{NP}$, does PH collapse) are still not known!!!

Complexity Zoo

The complexity zoo (https://complexityzoo.net/Complexity_Zoo) now has 546 complexity classes.