Complexidade de Algoritmos

Jorge E. S. Souza

Algoritmos

"Uma seqüência bem definida de procedimentos computacionais (passos) que levam uma entrada a ser transformada em uma saída'

Cormen et al. 1991

Problema

A saída deve corresponder a uma resposta válida para o problema.

O tempo de execução deve ser finito.

Soluções

Um problema pode ser resolvido através de diversos algoritmos;

O fato de um algoritmo resolver um dado problema <mark>não significa que seja aceitáve</mark>l na prática.

Ordem	Método de Cramer	Método de Gauss
2	22us	50us
3	102us	159us
4	456us	353us
5	2.35ms	666us
10	1.19mim	4.95ms
20	15255 séculos	38.63ms

Qual a melhor solução?

Na maioria das vezes, a escolha de um algoritmo é feita através de critérios subjetivos como:

- 1) facilidade de compreensão, codificação e depuração;
- 2) eficiência na utilização dos recursos do computador e rapidez.

A análise de algoritmo fornece uma medida objetiva de desempenho proporcional ao tempo de execução do algoritmo.

Desempenho

A eficiência de um algoritmo pode ser medida através de seu tempo de execução ou através de funções que descrevem o seu tempo de execução.

Algorithm A	Algorithm B	Algorithm C
sum = 0 for i = 1 to n sum = sum + i	sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }	sum = n * (n + 1) / 2

Eficiência

É a medida quantitativa inversa da quantidade de recursos (tempo de processamento, memória, etc) requeridos para a execução do algoritmo.

Quanto maior a eficiência menos recursos são gastos.

Como medir a eficiência de um algoritmo?

Métodos

Temos principalmente dois métodos de mensuração:

1) Experimental;

2) Analitico.

Método experimental

- → Implementar diversos algoritmos.
- → Executar um grande número de vezes.
- → Analisar os resultados.

O tempo de execução não depende somente do algoritmo, mas do conjunto de instruções do computador, a qualidade do compilador, a habilidade do programador e etc..

Método experimental

- → Usar variáveis de tempo.
- → Função "time" do sistema operacional.

```
File Edit Options Buffers Tools Help

I/usr/bin/perl
use Time::HiRes qw( time );

sub fib {
    my $n = shift;
    if ($n == 1 or $n == 2) {
        return 1
    }

    return (fib($n-1)+fib($n-2));
}

$inicio = time();
$seq = fib($ARGV[0]);
print "$seq\n";
printf("Execution Time: %.4f s\n", time() - $inicio);
```

```
[jorge@edb2]$ ./fib_r.pl 30
832040
Execution Time: 0.8173 s

[jorge@edb2]$ time ./fib_r.pl 30
832040
Execution Time: 0.8077 s

real 0m0,829s
user 0m0,822s
sys 0m0,005s
[jorge@edb2]$
```

Método analitico

→ A ideia é encontrar funções matemáticas que descrevem o crescimento do tempo de execução dos algoritmos em relação ao tamanho da entrada.

→ Comparar as funções.

Como expressar a eficiência de um algoritmo?

Através da ordem de crescimento do tempo de execução.

Uma forma simples é levar em conta apenas o termo de mais alta ordem.

Essa é uma forma simples de caracterização da eficiência que permite comparar o desempenho relativo entre algoritmos alternativos.

- Quando observamos tamanhos de entradas grandes o suficiente, de forma que apenas a ordem de crescimento do tempo de execução seja relevante, estamos estudando a eficiência assintótica.
- Analisar um algoritmo significa prever os recursos (tempo) de que o algoritmo necessitará.

Vamos analisar um algoritmo:

procedimento Busca Sequencial (A[1,..,n],x)

- 1. i = 1
- 2. Enquanto $i \le n \in A[i] \ne x$
- 3. i = i+1
- 4. Se i ≤ n retorne (i)
- 5. Senão retorne (-1)

O que devemos olhar?

Operações:

- 1. Operações de Entrada e Saída;
- 2. Operações Aritméticas;
- 4. Movimentação de Dados entre os Componentes;
- 3. Operações Lógicas e Relacionais;
- 4. Atribuições, declarações de métodos e variáveis;
- 5. Estruturas de decisão e repetição;
- 6. Chamadas de métodos e etc..

Quanto custa?

- O esforço realizado por um algoritmo é calculado a partir da quantidade de vezes que a operação fundamental é executada.
- Para o algoritmo de busca, uma operação fundamental é a comparação entre elementos quando executada à busca.

Então:

- → Vamos chamar o tamanho do array de n;
- → Vamos contabilizar o custo de cada linha;
- → Cada operação primitiva tem custo 1 (demora uma unidade de tempo);
- → Contamos quantas vezes (no máximo) cada linha é executada;
- → Somamos o custo total de cada linha.

		custo	vezes	total
1.	i = 1	1		
2.	Enquanto i ≤ n e A[i] ≠ x	1		
3.	i = i+1	1		
4.	Se i ≤ n retorne (i)	1		
5.	Senão retorne (-1)	1		

		custo	vezes	total
1.	i = 1	 . 1	1	
2.	Enquanto i ≤ n e A[i] ≠ x	 . 1	n + 1	
3.	i = i+1	 . 1	n	
4.	Se i ≤ n retorne (i)	 . 1	1	
5.	Senão retorne (-1)	 . 1	1	

		custo	vezes	total
1.	i = 1	 . 1	1	1
2.	Enquanto i ≤ n e A[i] ≠ x	 . 1	n + 1	n + 1
3.	i = i+1	 . 1	n	n
4.	Se i ≤ n retorne (i)	 . 1	1	1
5.	Senão retorne (-1)	 . 1	1	1

		custo	vezes	total
1.	i = 1	 1	1	1
2.	Enquanto i ≤ n e A[i] ≠ x	 1	n + 1	n + 1
3.	i = i+1	 1	n	n
4.	Se i ≤ n retorne (i)	 1	1	1
5.	Senão retorne (-1)	 1	1	1

Somando: 1 + n + 1 + n + 1 + 1 = 2n + 4

Complexidade em Tempo

É dita complexidade do algoritmo A se, para todo x, dado x como entrada de A, A termina em exatamente $t_{\Delta}(x)$ passos.

ps.:
$$t_{\Delta}:\{0,1\}^* \rightarrow N$$

Pode a análise ser realizada em três casos:

- → Melhor Caso
- → Pior Caso
- → Caso Médio

Melhor Caso

Estamos interessados na dependência da complexidade como função do tamanho da entrada, tomando o valor mínimo de passos para entradas de tamanho relevante.

	procedimento Busca Seque	encial (A[1,,n],x)	custo	vezes	total
1.	i = 1		1	1	1
2.	Enquanto i ≤ n e A[i] ≠ x		1	1	1
3.	i = i+1		1	0	0
4.	Se i ≤ n retorne (i)		1	1	1
5.	Senão retorne (-1)		1	1	1

Exemplo: No melhor caso a chave de busca sempre se encontra na primeira posição da lista.

Então mesmo com: $n \to \infty$, sempre temos $t_A(n) = 4$.

Pior Caso

Estamos interessados na dependência da complexidade como função do tamanho da entrada, tomando o valor máximo de passos para entradas de tamanho relevante.

	procedimento Busca Seque	encial (A[1,,n],x)	custo	vezes	total
1.	i = 1		1	1	1
2.	Enquanto i ≤ n e A[i] ≠ x		1	n + 1	n + 1
3.	i = i+1		1	n	n
4.	Se i ≤ n retorne (i)		1	1	1
5.	Senão retorne (-1)		1	1	1

Exemplo: No pior caso a chave de busca sempre se encontra na última posição da lista.

Então com: $n \rightarrow \infty$, sempre temos $t_A(n) = 2n + 4$.

Caso Médio

Depende de probabilidades associadas às possíveis entradas para o algoritmo.

⇒ Caso médio da busca sequencial:

Assumindo que x está em A,
$$t_A(n) = 1*p_1 + 2*p_2 + ... + n*p_n$$

Onde p, é a probabilidade de x estar na posição i;

 \Rightarrow Na busca sequencial as probabilidades são iguais: $p_i = 1/n$;

Então:
$$t_{\Delta}(n) = 1/n (1 + 2 + 3 + ... + n) = 1/n (n(n+1)/2) = (n+1)/2$$

Ou seja, complexidade de tem: (n + 1)/2.

Uma pesquisa bem-sucedida examina aproximadamente metade dos registros.

Comparação entre Complexidades

- → A complexidade exata possui muitos detalhes.
- → A escolha de um algoritmo é feita através de sua taxa de crescimento
- → Esta taxa é representada através de cotas que são funções mais simples.
- → A ordem de crescimento do tempo de execução de um algoritmo fornece uma caracterização simples de eficiência do algoritmo.

Termo de maior ordem

Imagine um algoritmo com complexidade:

- 1 Desprezamos os termos de baixa ordem;
- 2 Ignoramos o coeficiente constante;

Logo o tempo de execução do algoritmo tem cota igual a: n²

Ou seja, $O(n^2) \rightarrow veremos$ isso mais a diante.

Funções comuns encontradas quando analisamos o tempo de execução de algoritmos

Notação	Nome	Exemplos
O(1)	constante	Determinar se um número é par ou ímpar, encontrar o valor máximo em um arranjo ordenado
$O(\log n)$	logarítmico	Encontrar um valor em um arranjo ordenado usando busca binária
<i>O</i> (<i>n</i>)	linear	Encontrar um valor em um arranjo não ordenado usando busca linear
$O(n \log n)$	loglinear	quicksort
$O(n^2)$	quadrático	bubblesort
$O(c^n), c > 1$	exponencial	Encontrar a solução exata para o problema do caixeiro viajante usando programação dinâmica
O(n!)	fatorial	Encontrar a solução exata para o problema do caixeiro viajante usando força bruta

Funções comuns encontradas quando analisamos o tempo de execução de algoritmos

Alguns padrões (para identificar)

⇒ Uma sequência sem laço ou recursão conta passo constante (1):

```
/* bloco com número de passos constante */
```

⇒ Um único laço com n passos internos constante: linear (n):

```
for(i=0; i < n; i++)
/* bloco com número de passos constante */
```

 \Rightarrow Dois laços de tamanho n alinhados: quadrático (n^2):

```
for(i=0; i < n; i++)
for(j=0; j < n; j++)
/* bloco com número de passos constante */
```

Alguns padrões (para identificar)

 \Rightarrow Um laço interno dependente de um externo: quadrático (n^2):

```
for(i=0; i < n; i++) \\ for(j=0; j < i; j++) \\ /* bloco com número de passos constante */
```

⇒ Quando divide o problema pela metade: logarítmico (log₂n):

```
subprob(i,n)
  if (test)
     subprob(0,n/2)
  else
     subprob(n/2+1, n)
```

Obrigado

jorge@imd.ufrn.br