Mathematical Methods for Engineers (MathEng) EXAM

16th February 2011

Duration: 2 hrs, calculators permitted, no documents This exam paper contains 8 questions and 70 marks. ATTEMPT ALL QUESTIONS – ANSWER IN ENGLISH

1. Identify the pivot and free variables of the following matrices. Find a special solution for each free variable and, by combining the special solutions, describe every solution to Ax = 0 and Bx = 0.

$$A = \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 8 & 8 \end{bmatrix}$$

[8 marks]

2. Show how *QR* decompositions can be useful for solving least squares approximations.

[6 marks]

3. Determine an expression in the form of $g(t) = c \sin t$ to approximate the square signal f(t) over the interval $0 \le t \le 2\pi$ such that the error signal e(t) = f(t) - g(t) is minimised.

[HINT: one approach involves minimising the energy in e(t), or just a simple projection!]

[10 marks]

4. Sketch the functions $f(t) = \exp(-t)u(t)$ and $h(t) = \exp(-2t)u(t)$, where u(t) is the unit step function, and then sketch **and** determine an expression for y(t) = f(t) * h(t).

[8 marks]

5. Sketch Bode plots of the magnitude and phase responses for a system with transfer function:

$$H(s) = \frac{10^4(s+1)}{s^2 + 110s + 1000}$$

[12 marks]

6. Sketch the magnitude and phase frequency responses for discrete-time systems with pole and zero positions as illustrated in the z-planes of Figure Q6 (a) and (b).

Figure Q6

[6 marks]

7. Assuming zero initial conditions determine the response of a system with difference equation:

$$y(n + 2) + y(n + 1) + 0.16y(n) = x(n + 1) + 0.32x(n)$$

to an input $x(n) = (-2)^{-n}u(n)$. State whether or not the system is stable and explain why.

[14 marks]

8. Suppose a probabilistic model involves 5 continuous random variables X_1 , X_2 , X_3 , X_4 , X_5 where only X_4 is observed. Suppose also that X_4 depends on X_1 and X_2 , and that X_5 depends on X_3 and X_4 . Sketch a directed graph model and determine whether, given X_4 , pairs X_1 , X_2 and X_1 , X_3 are dependent or independent.

[6 marks]

Table of selected Laplace transforms

$x(t)$ $(t \ge 0)$	X(s)
$\delta(t)$	1
$\delta(t-\alpha)$	$\exp(-\alpha s)$
1 (unit step)	$\frac{1}{s}$
t (unit ramp)	$\frac{1}{s^2}$
$\exp(-\alpha t)$	$\frac{1}{s+\alpha}$
$t \exp(-\alpha t)$	$\frac{1}{(s+\alpha)^2}$
$\sin(\alpha t)$	$\frac{1}{s^2 + \alpha^2}$
$\cos(\alpha t)$	$\frac{s}{s^2 + \alpha^2}$
$e^{-\alpha t}\sin(\omega t)$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
$e^{-\alpha t}\cos(\omega t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$

Table of selected z-transforms

$x(n) (n \ge 0)$	X(z)
$\delta(n)$ unit pulse	1
$\delta(n-m)$	z^{-m}
1 (unit step)	$\frac{z}{z-1}$
n (unit ramp)	$\frac{z}{(z-1)^2}$
$\exp(-\alpha n)$	$\frac{z}{(z-e^{-\alpha})}$
$n \exp(-\alpha n)$	$\frac{e^{-\alpha}z}{(z-e^{-\alpha})^2}$
$\sin(\beta n)$	$\frac{z\sin(\beta)}{z^2 - 2z\cos(\beta) + 1}$
$\cos(\beta n)$	$\frac{z^2 - z\cos(\beta)}{z^2 - 2z\cos(\beta) + 1}$
$e^{-\alpha n}\sin(\beta n)$	$\frac{ze^{-\alpha}\sin(\beta)}{z^2 - 2ze^{-\alpha}\cos(\beta) + e^{-2\alpha}}$
$e^{-\alpha n}\cos(\beta n)$	$\frac{z^2 - ze^{-\alpha}\cos(\beta)}{z^2 - 2ze^{-\alpha}\cos(\beta) + e^{-2\alpha}}$

Fourier series and transforms

Fourier series – periodic and continuous in time, discrete in frequency

$$x(t) = \sum_{n=-\infty}^{+\infty} X_n \exp(jn\omega_0 t)$$

$$X_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \exp(-jn\omega_0 t) dt$$

Fourier transform – continuous in time, continuous in frequency

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \exp(j\omega t) d\omega \qquad X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt$$

Discrete-time Fourier transform – discrete in time, continuous and periodic in frequency

$$x(n\Delta t) = \frac{\Delta t}{2\pi} \int_{-\pi/\Delta t}^{\pi/\Delta t} X(\omega) \exp(jn\Delta t\omega) d\omega \qquad X(\omega) = \sum_{n=-\infty}^{\infty} x(n\Delta t) \exp(-j\omega n\Delta t)$$

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n\Delta t) \exp(-j\omega n\Delta t)$$

Discrete Fourier transform – discrete and periodic in time and in frequency

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \exp\left(\frac{jnk2\pi}{N}\right)$$

$$X(k) = \sum_{n=0}^{N-1} x(n) \exp\left(\frac{-jnk2\pi}{N}\right)$$