Week 08 Participation Part 1

Corey Mostero

07 April 2023

Contents

1	Par	t 1																	2										
	1.1	a)																											2
	1.2																												3

1 Part 1

Consider the set

$$S = \vec{v}_1, \vec{v}_2, \vec{v}_3,$$

where
$$\vec{v}_1 = <1, 1, 0>$$
, $\vec{v}_2 = <0, 1, 1>$, $\vec{v}_3 = <2, -1, -3>$.

Verify the following:

- a) None of the pairs are parallel. That is v_1 is not a multiple of v_2 nor v_3 , v_2 is not a multiple of v_1 nor v_3 , v_3 is not a multiple of v_1 nor v_2 .
- b) Show that the set is linear dependent by finding a none zero solution to the dependence test equation.

1.1 a)

Find if $\vec{v}_1 \parallel \vec{v}_2$:

$$\vec{v}_1 \times \vec{v}_2 = <1 \cdot 1 - 0 \cdot 1, -(1 \cdot 1 - 0 \cdot 0), 1 \cdot 1 - 1 \cdot 0 >$$

 $\vec{v}_1 \times \vec{v}_2 = <1, -1, 1 >$

$$\boxed{ <1, -1, 1> \neq <0, 0, 0> : \vec{v_1} \not \mid \vec{v_2} }$$

Find if $\vec{v}_1 \parallel \vec{v}_3$:

$$\vec{v}_1 \times \vec{v}_3 = <1\cdot -3 - 0\cdot -1, -(1\cdot -3 - 0\cdot 2), 1\cdot -1 - 1\cdot 2 > \\ \vec{v}_1 \times \vec{v}_3 = <-3, 3, -3>$$

$$<-3,3,-3> \neq <0,0,0> :: \vec{v}_1 \not \parallel \vec{v}_3$$

Find if $\vec{v}_2 \parallel \vec{v}_3$:

$$\vec{v}_2 \times \vec{v}_3 = <1\cdot -3 - 1\cdot -1, -(0\cdot -3 - 1\cdot 2), 0\cdot -1 - 1\cdot 2 > \vec{v}_2 \times \vec{v}_3 = <-2, 2, -2>$$

$$<-2,2,-2> \neq <0,0,0> :: \vec{v}_2 \not\parallel \vec{v}_3$$

1.2 b)

$$A = \left[\begin{array}{ccc|c} 1 & 0 & 2 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & -3 & 0 \end{array} \right]$$

$$A_2 = A_2 - A_1$$

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 1 & -3 & 0 \end{bmatrix}$$

$$A_3 = A_3 - A_2$$

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$a + 2c = 0$$
$$b - 3c = 0$$
$$a = -2c$$
$$b = 3c$$

$$-2c\vec{v}_1 + 3c\vec{v}_2 + \vec{v}_3 = 0$$