WFiIS	Kinga Jeleń Kamila Zaręba Rok III Grupa I		
Pracownia Radiochemii	EFEKT SZILARDA-CHALMERSA. ZALEŻNOŚĆ WYDZIELANIA ⁵⁶ Mn OD pH ROZTWORU.		
Data wykonania: 1.04.2015	Data oddania: 15.04.2015	OCENA:	

WSTĘP TEORETYCZNY

Dzięki zjawisku odkrytemu w 1934 r. przez Szillarda i Chalmersa można oddzielić powstały w reakcji jądrowej izotop od reszty substancji macierzystej. Jądro ulegając przemianie (n, γ) uzyskuje, zgodnie z zasadą zachowania pędu energię odrzutu. Energia ta może zerwać wiązanie atomu z cząsteczką i jeżeli taki atom nie zrekombinuje z cząsteczką to może zostać wydzielony z substancji macierzystej. Energię kinetyczną atomu odskoku można policzyć korzystając z zasady zachowania pędu.

Pęd wnoszony przez kwant promieniowania jest równy co do wartości pędowi otrzymanemu przez atom odrzutu przy założeniu, że pęd wniesiony przez neutrony termiczne jest zaniedbywanie mały. Po przekształceniu powyższego równania otrzymujemy wyrażenie na energię odskoku jądra:

Energia odskoku zostaje przekształcona w energię ruchów: oscylacyjnego, rotacyjnego i translacyjnego. Początkowo cała energia odskoku skupiona jest w atomie, który wyemitował kwant. Atom ten zaczyna się poruszać w kierunku przeciwnym do ruchu wyemitowanego kwantu, pociągając za sobą pozostałą część cząsteczki. W wyniku tego procesu odległość między atomem odskoku a resztą cząsteczki zwiększa się, wiązanie się rozciąga, a jeśli nie jest dostatecznie silne dochodzi do rozerwania czasteczki.

Podczas naświetlania roztworu nadmanganianu potasu atom manganu pochłania neutron. Tworzący się w wyniku tej reakcji atom promieniotwórczego manganu 56 Mn emituje kwant γ i otrzymuje energię odrzutu. Energia odskoku rozbija jon MnO_4^- z jednoczesnym utworzeniem Mn^{+7} , MnO_2^{+5} lub MnO_3^{+2} .

Powstałe w ten sposób jony biorą udział w następujących reakcjach:

```
I) 2^{56}MnO_3^+ + 4H_2O = 3H_2O_2 + 2H^+ + 2MnO_2

II) ^{56}MnO_3^+ + OH^- = ^{56}MnO_4^- + H^+

III) ^{56}MnO_3^+ + MnO_4^- = ^{56}MnO_4^- + MnO_3^+
```

Dwie ostatnie reakcje prowadzą do utworzenia się promieniotwórczego jonu MnO_4 , pierwsza zaś reakcja do utworzenia dwutlenku manganu. W ten sposób w wyniku reakcji wtórnych zachodzi rozdział promieniotwórczego manganu na cząsteczkę macierzystą i dwutlenek manganu. Oddzielenie promieniotwórczego manganu w postaci MnO_2 od nadmanganianu można prowadzić za pomocą filtracji naświetlonego roztworu przez sączek bibułowy.

Oddzielenie promieniotwórczego manganu w postaci MnO₂ od nadmanganianu można prowadzić za pomocą filtracji naświetlonego roztworu przez sączek bibułowy. Na ilość manganu pozostającego pod postacią macierzystą silnie wpływa kwasowość naświetlonego roztworu (rysunek poniżej)

WYKONANIE ĆWICZENIA

W ćwiczeniu wykorzystałyśmy 6 cześć czystych i zdezynfekowanych pojemniczków, dlatego pominęłyśmy pomiar tła i przyjęłyśmy, że wynosi ono 0.

W pierwszej kolejności wytrząsałyśmy naczynko z roztworem obojętnym, a następnie przelałyśmy roztwór do zlewki, mierząc jego objętość. Te same czynności powtórzyłyśmy później dla roztworu zasadowego.

Tabela 1. Zmierzone objętości badanych roztworów.

Odczyn roztworu	Objętość [ml]	
Obojętny	40	
Zasadowy	44	

W dalszej kolejności wymieszałyśmy roztwór, tak aby MnO₂ był równomiernie rozpuszczony i pobrałyśmy 4ml do naczynka O1, w celu zmierzenia aktywności tego roztworu. Pozostałą część roztworu przesaczyłyśmy.

Kolejno z uzyskanego przesączu pobrałyśmy kolejne 4ml i zamieściłyśmy w naczynku O2. Natomiast osad osiadły na sączku umieściłyśmy w naczynku O3.

Wszystkie kroki przedstawione dla roztworu obojętnego, zostały powtórzone także dla zasadowego.

Tabela 2. Zawartość naczynek pomiarowych.

Numer naczynka	Zawartość	
01	roztwór	Odczyn obojętny
02	przesącz z roztworu	
03	sączek	
Z 1	roztwór	Odczyn zasadowy
Z 2	przesącz z roztworu	
Z 3	sączek	

Podczas wykonywania pomiarów aktywności próbek wyszczególnionych w tabeli 2., na liczniku scyntylacyjnym ustawiony był zakres kanałów od 505 do 582, co kolejno odpowiada energii 792,9 keV i 915,5 keV. Czas każdego z pomiarów wynosił 200s. Wyniki, jakie uzyskałyśmy, zostały zamieszczone w tabeli nr 3.

Tabela 3. Zestawienie wyników pomiaru aktywności.

Numer naczynk a	Objętość	Centroid Channel	Energia [keV]	Powierzc h-nia pod pikiem	Niepew- ność [%]	Niepewnoś ć obliczona	Integra l	Niepew -ność u(I)
O1	4 ml	549	863	600	6,68	40	892	30
O2	4 ml	547	860	93	23,16	22	200	14
О3	-	550	864	2741	3,31	90	4437	67
Z1	4 ml	549	862	555	7,34	41	877	30
Z2	4 ml	548	860	214	15,14	32	458	21
Z3	-	550	864	1368	5,32	73	2509	50

I – wartość pojedynczego pomiaru,

u(I) – niepewność pojedynczego pomiaru.

OPRACOWANIE WYNIKÓW

A. Na początku sprawdziłyśmy, czy ⁶Mn w mieszaninie MnO₂ i roztworu KMnO₄ jest sumą zawartości tego izotopu (w granicach niepewności pomiaru) w osadzie i w przesączu (bilans ⁵⁶Mn).

Aby obliczyć całkowitą powierzchnię pod pikiem musimy przeskalować otrzymane wyniki według podanego poniżej wzoru.

$$A_{calk} = k \cdot A$$
 oraz $k = \frac{V_{calk}}{V_p}$

gdzie: A_{calk} - całkowita powierzchnia pod pikiem (dla danej próbki) A - powierzchnia pod pikiem (dla danej próbki)

- 1. Objętość początkowa dla roztworu obojętnego $V_{calk}=40\,cm^3$ Objętość początkowa dla roztworu zasadowego $V_{calk}=44\,cm^3$ Objętość pobrana $V_p=4\,cm^3$
- 2. Objętość przesączu dla roztworu obojętnego $V_{calk} = 36 \, cm^3$ Objętość przesączu dla roztworu zasadowego $V_{calk} = 40 \, cm^3$ Objętość pobrana $V_p = 4 \, cm^3$
- 3. W przypadku sączków $V_p = V_{calk} 4 cm^3$

Niepewności wyznaczanych wielkości obliczyłyśmy korzystając z poniższych wzorów.

$$u_{c}(k) = \sqrt{\left[\frac{1}{V_{p}} \cdot u(V_{calk})\right]^{2} + \left[\frac{-V_{calk}}{V_{p}^{2}} \cdot u(V_{p})\right]^{2}}$$

$$u(k) = 2 \cdot u_c(k)$$

$$u_{c}(A_{calk}) = \sqrt{[A \cdot u_{c}(k)]^{2} + [k \cdot u(A)]^{2}}$$

$$u(A_{calk}) = 2 \cdot u_c(A_{calk})$$

Jako niepewności pomiarów objętości przyjęłyśmy:

$$u(V_{calk}) = 1 \text{ cm}^3,$$

 $u(V_p) = 0.01 \text{ cm}^3 \text{ (niepewność pipety)}$

Tabela 4. Wyniki po przeskalowaniu danych.

Numer naczynka	k	uc(k)	u(k)	Acałk	u(Acałk)	uc(Acałk)
01	10	0,25	0,50	6000	428	856
O2	9	0,25	0,50	837	195	390
O3	1,13	0,03	0,06	3084	133	266
Z1	11	0,25	0,50	6105	472	944
Z2	10	0,25	0,50	2140	324	649
Z 3	1,11	0,03	0,06	1520	90	179

Kolejno sprawdziłyśmy, czy zawartość ⁵⁶Mn w mieszaninie MnO₂ i roztworu KMnO₄ jest sumą zawartości tego izotopu w osadzie i w przesączu .

$$A_{calk \ roztworu} = A_{calk \ przesgczu} + A_{calk \ sgczka}$$

Dla roztworu obojętnego:

$$\begin{split} A_{calk\,O2} + A_{calk\,O3} &= 837 + 3084 = 3921 \\ u\left(A_{calk\,O2} + A_{calk\,O3}\right) = 2 \cdot \sqrt{u_c \left(A_{calkO2}\right)^2 + u_c \left(A_{calkO3}\right)^2} &= 473 \\ A_{calk\,O1} &= 6000 \\ u\left(A_{calk\,O1}\right) &= 428 \end{split}$$

Niestety dla roztworu o obojętnym pH, w granicach niepewności, suma zawartości ⁵⁶Mn w osadzie i przesączu nie jest równa zawartości izotopu w roztworze.

Dla roztworu zasadowego:

$$A_{calk\ Z2} + A_{calk\ Z3} = 837 + 3084 = 3660$$

$$u\left(A_{calk\ Z2} + A_{calk\ Z3}\right) = 2 \cdot \sqrt{u_c \left(A_{calkZ2}\right)^2 + u_c \left(A_{calkZ3}\right)^2} = 673$$

$$A_{calk OI} = 6105$$

$$u(A_{calk OI}) = 472$$

Dla roztworu o zasadowym pH, w granicach niepewności, suma zawartości 56Mn w osadzie i przesączu również nie jest równa zawartości izotopu w roztworze.

B. Na podstawie otrzymanych wyników obliczyłyśmy wydajność efektu Szilarda-Chalmersa (mierzoną względną ilością powstałego ⁵⁶MnO₂) dla rozpuszczalników o różnych pH.

$$W = \frac{A_{calk \ sqczka}}{A_{calk \ sqczka} + A_{calk \ przesqczu}} \quad \text{, gdzie W wydajność efektu Szilarda – Chalmersa}$$

$$u_{c}(W) = \sqrt{\left[\frac{A_{calk\ przesqczu}}{\left(A_{calk\ sqczka} + A_{calk\ przesqczu}\right)^{2}} \cdot u_{c}(A_{calk\ sqczka})\right]^{2} + \left[\frac{-A_{calk\ sqczka}}{\left(A_{calk\ sqczka} + A_{calk\ przesqczu}\right)^{2}} \cdot u_{c}(A_{calk\ przesqczu})\right]^{2}} \cdot u_{c}(A_{calk\ przesqczu})^{2} \cdot u_{c}(A_{calk\ przesqczu})^{2}} \cdot u_{c}(A_{calk\ przesqczu})^{2}$$

$$u(W) = 2 \cdot u_c(W)$$

Tabela 5. Wartości wydajności efektu Szilarda-Chalmersa.

Roztwór	Wydajność	Niepewność u(W)
obojętny	0,787	0,079
zasadowy	0,415	0,079

C. W następnym kroku obliczyłyśmy energię odskoku atomu 56 Mn, przyjmując energię kwantów $\gamma = 2$ MeV.

$$E_{od} = \frac{E_{\gamma^2}}{2 \cdot 4 \cdot c^2} = \frac{E_{\gamma^2}}{1863 \cdot A} = \frac{4}{1863 \cdot xX} MeV = \zeta$$

WNIOSKI

Wydajność efektu Szilarda-Chalmersa jest większa dla roztworów organicznych o pH obojętnym co jest zgodne z przewidywaniami teoretycznymi. W przeprowadzonym doświadczeniu wydajność ta była prawie dwa razy większa dla roztworu o pH=7 w porównaniu do roztworu o pH=12.

Wyliczenie bilansu zawartości ⁵⁶Mn dla próbek roztworu obojętnego i zasadowego zakończyło się niepowodzeniem. Wynikać to może z nieprawidłowego wykonania sączenia.

Wyznaczona energia odrzutu Eod wyniosła 38.3 eV a więc zgodnie z przewidywaniami przekracza energię wiązań chemicznych kilkakrotnie.