EXERCISE 4.4

Find adjoint of each of the matrices in Exercises 1 and 2.

1.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

1.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 2. $\begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$

Verify A (adj A) = (adj A) A = |A| I in Exercises 3 and 4

3.
$$\begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$$

3.
$$\begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$$
 4.
$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

Find the inverse of each of the matrices (if it exists) given in Exercises 5 to 11.

5.
$$\begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$$

6.
$$\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$$

6.
$$\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$$
 7. $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}$

8.
$$\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$$

8.
$$\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$$
 9.
$$\begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{bmatrix}$$
 10.
$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$$

$$\begin{array}{c|cccc}
\mathbf{10.} & 1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{array}$$

11.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$$

12. Let
$$A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$. Verify that $(AB)^{-1} = B^{-1} A^{-1}$.

13. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
, show that $A^2 - 5A + 7I = O$. Hence find A^{-1} .

14. For the matrix
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$
, find the numbers a and b such that $A^2 + aA + bI = O$.

15. For the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

Show that $A^3 - 6A^2 + 5A + 11 I = 0$. Hence, find A^{-1} .

16. If
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

Verify that $A^3 - 6A^2 + 9A - 4I = O$ and hence find A^{-1}

- 17. Let A be a nonsingular square matrix of order 3×3 . Then |adj| A is equal to (A) |A|(B) $|A|^2$ (C) $|A|^3$ (D) 3|A|
- 18. If A is an invertible matrix of order 2, then det (A⁻¹) is equal to

(A)
$$\det(A)$$
 (B) $\frac{1}{\det(A)}$ (C) 1 (D) 0