ImageRecognition aihemäärittely (tarkentuu)

Simo Korkolainen

30. toukokuuta 2016

Projektin tarkoituksena on tehdä ohjelma, joka opettaa neuroverkon tunnistamaan kuvia backpropagation-algoritmin avulla. Neuroverkon opetuksessa verkon painoja muutetaan liikuttamalla niitä virhefunktion gradientin vastaiseen suuntaan, kunnes virhefunktio on minimoitunut ja neuroverkko on oppinut tunnistamaan kuvat. Derivoinnin ketjusääntöön perustuva backpropagation-algoritmi mahdollistaa gradientin nopean laskemisen.

1 Neuroverkko

Neuroverkko koostuu kerroksista, joissa on neuroneita. Olkoon L neuroverkon kerroksien lukumäärä. Olkoon l_k kerroksen k=1,...,L neuronien lukumäärä. Merkitään kerroksen k aktivaatiota vektorina $z_k \in \mathbb{R}^{l_k}$. Ensimmäisen kerroksen aktivaatio z_1 on neuroverkon syöte ja viimeisen kerroksen aktivaation z_L on neuroverkon antama tuloste.

Jokaisen kerroksen k>1 aktivaation voidaan ajatella laskettavan parametrisoidun funktion $f_k: \mathbb{R}^{l_{k-1}} \times A_k \to \mathbb{R}^{l_k}$ avulla. Tässä A_k on verkon kerroksien k-1 ja k yhteyksien painoina toimivien parametrien joukko. Kerroksen aktivaatio lasketaan rekursiivisesti kaavan

$$z_k = f(z_{k-1}, a_k)$$

avulla, missä $a_k \in A_k$. Parametrit $a_1, ..., a_L$ on tarkoitus oppia backpropagationalgoritmia käyttäen.

2 Aineisto ja kokonaisvirhe

Olkoon $x_1, x_2, \ldots, x_n \in \mathbb{R}^{l_1}$ neuroverkon opetussyötteitä ja $y_1, y_2, \ldots, y_n \in \mathbb{R}^{l_L}$ syötteitä vastaavia tavoitetuloksia. Olkoon $E: \mathbb{R}^{l_L} \times \mathbb{R}^{l_L} \to \mathbb{R}$ virhefunktio. Merkitään syötteen x_j aiheuttamaa aktivaatiota kerroksessa k merkinnällä z_k^j , jolloin syötekerroksessa pätee $z_1^j = x_j$. Määritellään neuroverkon kokonaisvirhe kaavalla

$$E_{tot} = \sum_{j=1}^{n} E(z_L^j, y_j).$$

Backprobagation-algoritmin tarkoituksena on valita parametrin $a_1, ..., a_L$ siten, että kokonaisvirhe E_{tot} minimoituu.

Jos neuroverkkoa käytetään syötteiden luokittelemiseen erillisiin luokkiin $1,...,S=l_L$, viimeisen kerroksen $z_L=(z_{L1},...,z_{LS})$ aktivaation z_{Lm} tulkitaan tarkoittavan todennäköisyyttä, että syöte x_j kuuluu luokkaan m. Halutuksi tulokseksi valitaan $y_{jm}=1$, kun x_j kuuluu luokkaan m ja $y_{jm}=0$ muulloin. Luokittelun tapauksessa on luontevaa käyttää viimeisessä kerroksessa softmax-funktiota $f_L: \mathbb{R}^S \times A_L \to (0,1)^S$, missä

$$f_{Lm}(z_{L-1}) = \frac{e^{\sum_{i=1}^{l_{L-1}} a_{mi} z_{(L-1)i}}}{\sum_{k=1}^{S} e^{\sum_{i=1}^{l_{L-1}} a_{ki} z_{(L-1)i}}}.$$

Softmax-funktion kuva-alkion komponenttien summa on yksi.

Luokittelussa virhefunktiona käytettään yleensä logloss-virhettä. Tässä tapauksessa virhefunktio määritellään kaikilla $s \in \{0,1\}^S$ ja $t \in (0,1)^S$ kaavalla

$$E(s,t) = \sum_{m=1}^{S} s_m \log(t_m).$$

3 Backpropagation-algoritmi

4 Aikavaativuus

Neuroverkoon liittyvät aikavaativuudet riippuvat paljon neuroverkon rakenteesta Ohjelmassa käytetään vain eteenpäin kytkettyjä neuroverkkoja. Neuroneiden aktivaatio z_k kerroksessa k lasketaan täsmälleen edellisen kerroksen aktivaatioiden perusteella eli $z_k = f(z_{k-1}, a_k)$ missä f on aktivaatiofunktio. Kuten aikasemmin, olkoon L neuroverkon kerroksien lukumäärä ja olkoon l_k kerroksen k = 1, ..., L neuronien lukumäärä. Jos jokainen kerroksen k neuroni on kytketty kaikkiin edellisen kerroksen solmuihin ja neuronipariin liittyvän laskennan aikavaativuus on luokkaa O(1), yhden kerroksen k neuronin aktivaation laskemisen aikavaativuus on luokkaa $O(l_{k-1})$. Koska kerroksessa k on l_k neuronia, koko kerrokseen liittyvän laskennan aikavaativuus on $O(l_{k-1}l_k)$. Ensimmäisen kerroksen eli syötekerroksen aktivaatioden asettamisen aikavaativuus on $O(l_1)$.

Koko neuroverkon aktivaatioden laskennan aikavaativuus T_{act} on kerrosten aikavaativuuksien summa eli

$$T_{act} = O(l_1 + \sum_{k=2}^{L} l_{k-1} l_k)$$

Tarkastellaan tapausta, jossa kerrosten neuronien lukumäärä pienee eksponentiaalisesti eli $l_k=\alpha^{k-1}l_1$, missä $0<\alpha<1$. Tällöin

$$l_1 + \sum_{k=2}^{L} l_{k-1} l_k = l_1 + \sum_{k=2}^{L} \alpha^{k-2} l_1 \alpha^{k-1} l_0$$

$$= l_1 + l_1^2 \sum_{k=2}^{L} \alpha^{2k-3}$$

$$= l_1 + l_1^2 \alpha \sum_{k=0}^{L-2} (\alpha^2)^k$$

$$\leq l_1 + l_1^2 \alpha \sum_{k=0}^{\infty} (\alpha^2)^k$$

$$= l_1 + l_1^2 \frac{\alpha}{1 - \alpha^2}$$

Saamme, että $T_{act} = O(l_1^2),$ koska $\frac{\alpha}{1-\alpha^2}$ on positiivinen vakio.