PS Ifood - Case

Contexto: Construir modelo de classificação para suportar iniciativas de marketing

PS Ifood - Case

Mas antes de chegar lá, passamos pelo conhecimento de público e tratamento dos dados...

1. Data Transformation, Exploration, and Analysis

Person

Attribute	Description		
ID	Customer's unique identifier		
Year_Birth	Customer's birth year		
Education	Customer's education level		
Marital_Status	Customer's marital status		
Income	Customer's yearly household income		
Kidhome	Number of children in customer's household		
Teenhome	Number of teenagers in customer's household		
Dt_Customer	Date of customer's enrollment with the company		
Recency	Number of days since customer's last purchase		
Complain	1 if the customer complained in the last 2 years, 0 otherwise		

Expenses

Attribute	Description
MntWines	Amount spent on wine in last 2 years
MntFruits	Amount spent on fruits in last 2 years
MntMeatProducts	Amount spent on meat in last 2 years
MntFishProducts	Amount spent on fish in last 2 years
MntSweetProducts	Amount spent on sweets in last 2 years
MntGoldProds	Amount spent on gold in last 2 years

Channels

Attribute	Description
NumWebPurchases	Number of purchases made through the company's website
NumCatalogPurchases	Number of purchases made using a catalogue
NumStorePurchases	Number of purchases made directly in stores
NumWebVisitsMonth	Number of visits to company's website in the last month

Campaigns/Promotions

Attribute	Description
NumDealsPurchases	Number of purchases made with a discount
AcceptedCmp1	1 if customer accepted the offer in the 1st campaign, 0 otherwise
AcceptedCmp2	1 if customer accepted the offer in the 2nd campaign, 0 otherwise
AcceptedCmp3	1 if customer accepted the offer in the 3rd campaign, 0 otherwise
AcceptedCmp4	1 if customer accepted the offer in the 4th campaign, 0 otherwise
AcceptedCmp5	1 if customer accepted the offer in the 5th campaign, 0 otherwise
Response	1 if customer accepted the offer in the last campaign, 0 otherwise

["Z_CostContact", "Z_Revenue"], duas outras variáveis presentes no dataset foram removidas pois era constantes e não trariam nenhum grau de explicabilidade para as análises/modelo.

Campaign Acceptance Rates

Customers by Campaigns Accepted

- Pessoas aceitam em média 1 campanha.
- Número de pessoas que aceita uma segunda campanha cai drasticamente.
- Dentro de Widow, não existe ninguém que aceitou 4 campanhas.
- Ninguém aceitou 5 campanhas.

Marital Status Share

 Mais de 60% da base corresponde à pessoas morando com outras pessoas (Married + Together).

Income distribution

- Mediana Renda muito parecida entre os grupos.
- Já percebemos a presença de outliers.
- Pessoas viúvas são o grupo de maior renda.

Acceptance Rate by Marital Status for Each Campaign

 Pessoas viúvas corresponderam à maior parcela daqueles que aceitaram as campanhas 4 e 5.

Acceptance Rate by Education for Each Campaign

- Pessoas com nível de educação básica, foram as que mas aceitaram à campanha 3.
- Em contrapartida, esse público não aceitou nenhuma das outras campanhas.

Deals Purchased by Marital Status

	Marital_Status	TotalPurchases	NumDealsPurchases	% DealsPurchases
0	Divorced	3535	565	16.0
1	Married	12922	2067	16.0
2	Single	6877	1034	15.0
3	Together	8594	1348	15.7
4	Widow	1286	180	14.0

Deals Purchased by Education

	Education	TotalPurchases	NumDealsPurchases	% DealsPurchases
0	2n Cycle	2802	456	16.3
1	Basic	379	97	25.6
2	Graduation	16872	2602	15.4
3	Master	5506	895	16.3
4	PhD	7655	1144	14.9

- Percentual de compras com cupom, independe de Marital Status.
- Escolaridade baixa parece ter mais efeito na busca por compras com cupom. 25,6% das compras de quem tem no máximo Educação Básica, estão atreladas à cupom.

Spending by Marital Status and Education

- Nível de gastos tem relação com Marital Status, mas varia mais pelo nível de escolaridade.
- Pessoas viúvas são quem mais gastam. Gastam quase o dobro da mediana dos outros grupos.
- Pessoas com PhD gastam 8x mais que o grupo que menos consome.

Response

Olhando para a variável Response (target)...

Income x Spent | Response

Para facilitar, chamaremos:

G1: Grupo que aderiu a Response

G0: Grupo que não aderiu à

Response.

Embora à renda do grupo que aderiu (G1) e não aderiu à última campanha (G0) seja muito parecida, o grupo que adere gasta **2.6x** mais.

Amount Spent per Categories | Response

Quem respondeu tem maior padrão de consumo em todas as categorias.

Purchases and Web visits | Response

2. Data Preparation and Cleaning for Customer Segmentation

Agora vamos remover os outliers...

InterQuartile Range (IQR)

Metodologia utilizada para remoção de outliers

Outliers are typically defined as values below

- Q1 1.5 x IQR or above
- Q3 + 1.5 x IQR

where

Q1 = First Quartil (25%),

Q3 = Third Quartil (75%) and

IQR = Q3 - Q1

Nós iremos variar o multiplicador de IQR à depender da distribuição e da cauda da variável observada no histograma. Para variáveis com caudas longas, principalmente aquelas referentes à Montantes de Gastos, consideramos um multiplicador menos conservador (3) de forma a manter mais dados para criação dos modelos.

Year_Birth

- Utilização de MaritageStatus apenas para facilitar visualização, a remoção de outliers considera unicamente Year_Birth.
- Após à remoção de outliers, nós perdemos -0.1% do nosso dataset.

Income

- Utilização de MaritageStatus apenas para facilitar visualização, a remoção de outliers considera unicamente Income.
- Após à remoção de outliers, nós perdemos -1.4% do nosso dataset.

NumWebPurchases

- Utilização de MaritageStatus apenas para facilitar visualização, a remoção de outliers considera unicamente NumWebPurchases.
- Após à remoção de outliers, nós perdemos -0.1% do nosso dataset.

MntGoldProds

- Utilização de MaritageStatus apenas para facilitar visualização, a remoção de outliers considera unicamente MntGoldProds.
- Após à remoção de outliers, nós perdemos -5.4% do nosso dataset.

Após performar à limpeza, ficamos com 1.740 observações, 78% do dataset original.

3. Clusterização

Depois de feito os tratamentos, removido os outliers, podemos começar nosso processo de segmentação...

Correlation Matrix

KidHome: Ter crianças em casa, apresenta uma correlação negativa com quase

0.0

-0.2

-0.4

todas as variáveis.

- KidHome has a significant negative correlation with almost all other features unlike TeenHome.
- To capture more
 variability from both
 variables, we created a
 new variable called
 ChildrenAtHome, which
 combines the two.

Principal Component Analysis (PCA)

Performs linear transformation of the original data, to reduce dimensionality.

- first we plot X1 versus X2
- the two best fitting of these variables become our principal components.
- rotate to transform pc1 and pc2 in our X and Y axes
- now we have an adjusted combination of the two variables.

Principal Component Analysis (PCA)

Reduce the dimensionality of the original dataset, selecting a smaller number of components

 From graph we can see that it's possible to retain almost 85% of the variation by using only 7 out of the 13 features

Number of Clusters

Vamos usar os 7 principais componentes obtidos a partir da abordagem PCA para definir o número de clusters...

Elbow Method

Observe how the sum of the clusters' variance decreases as the number of clusters increases

- Kmeans will perform n combinations of clusters, using the PCA scores.
- After that we take the sum of the clusters' variance and plot it.
- Visually (Elbow Method), we observe that using four clusters achieves a degree of stability in the process.

Cluster Analytics

Depois de definidos os clusters, adicionamos as informações de cada cluster ao dataset original e podemos analisar suas características...

Customer per Cluster

Clusters 1 e 3 tem a major volumetria de clientes.

Income | Spent

No geral, renda está muito correlacionada com o padrão de consumo.

Amounts Spent per Category

Purchases and Web Visits

Recency | Age | ChildrenAtHome

Cluster 2 o de maior renda, é o que têm menos filhos, e o 2º de maior idade.

Cluster 0 é o de maior idade, segundo mais rico e com a segunda menor taxa de filhos.

Cluster 1 e Cluster 3 tem à maior taxa de filhos e são os mais jovens.

Cluster 3 tem à maior taxa de filhos e faz tempo que não compra.

Response

Cluster 2 é o que tem à maior taxa de Response.

Cluster 2 além de ser o de maior renda, é o que tem à maior taxa de Response. Corrobora com as análises iniciais de Response x Income.

Cluster 3 tem a menor taxa de Response, mas tem uma alta taxa de visitas ao site. Além disso é o maior Cluster.

Cluster 1 tem a segunda maior taxa de Response, e é o 2º maior em volumetria. Aprendizados podem ajudar a melhorar a performance do Cluster 3.

Clusters

Cluster 0

Tem Cupom?

- 1.0 filhos
- 2º maior renda
- Visita bem o site
- Privilegia produtos de alto valor agregado (Ouro e Vinhos)
- 50 dias desde a última compra
- Maior amplitude no uso de cupom. (Metade desse público usa entre 2 e 4 cupons)

Cluster 2

Tô Podendo...

- 0.5 filhos
- Maior renda
- É o que menos visita o site.
- Tem um padrão de consumo alto, bem distribuído entre todas as categorias.
- O que menos usa cupom.

Cluster 1

Vou dar uma voltinha depois eu passo aí...

- 1.2 filhos
- Menor Renda
- O mais recente (Apenas 22 dias desde a última compra)
- Visita muito o site
- Mesmo volume de compra do Cluster 3 (mais antigo)

Cluster 3

Na volta à gente compra...

- 1.3 filhos
- 2° menor renda
- O mais antigo (75 dias desde a última compra)
- Visita muito o site
- mesmo volume de compra do Cluster 1

Predictive Model

Agora nosso modelo de previsão...

Predictive Model - Logistic Regression

Com as informações obtidas até aqui, podemos agora construir o modelo de previsão para a variável Response.

 Em vez de uma classificação determinística entre 0 e 1, a regressão logística nos permite obter uma relação contínua que estima a probabilidade de ocorrência de um evento. Isso nos fornece insights valiosos sobre a chance de um evento acontecer com base nas características dos usuários.

Predictive Model - Logistic Regression

Mesmo preservando o 78% da base original, o modelo não performou muito bem.

	precision	recall	f1-score	support
9	0.89	0.97	0.93	457
1	0.45	0.15	0.23	65
accuracy			0.87	522
macro avg	0.67	0.56	0.58	522
weighted avg	0.84	0.87	0.84	522

- O modelo de previsão logística acerta 45% dos dados previstos, indicando uma alta taxa de falsos positivos.
- Aqui no entanto, nós temos a opção de abordar aqueles clientes com probabilidade de Response acima de acima de um certo valor, digamos 50%.

Percentage of Response with probability > 0.5

No geral, o modelo acerta 50% dos casos para indivíduos com probabilidade de Response maior que 0.5

- É muito difícil acertar para o cluster 4, uma vez que ele tem a menor taxa de Response, o que dificulta a generalização do modelo para estes casos.
- Além disso, tem a pior taxa de recência (75 dias desde a última compra). Seus indicadores de produtividade estão defasados.

Aprendizados

- O maior gasto do grupo que aderiu à Response, é puxado principalmente por Wines e Meat Products. Então deveríamos focar em Clientes classificados dentro dos Clusters 2 e 0 com o objetivo de aumentar Response.
- O **Cluster 0** é o que o nosso modelo melhor consegue prever a probabilidade de Response 1.
- Cluster 3 tem a menor taxa de Response, mas uma alta taxa de visita ao site. Talvez existam oportunidades de prospecção nesse canal.

For a better detailment of each step, consult:

https://colab.research.google.com/drive/1hHscJaSTtYEy8A3hC JcHHeSwbHSzSzP#scrollTo=pwfiWliuLsXK