Licenciatura en Ciencias de la Computación. Facultad de Ingeniería - Universidad Nacional de Cuyo

Algoritmos y Estructuras de Datos I

1. tema = "análisis de complejidad"

Dr. Carlos A. Catania Ing. Lucia Cortes Lic. Javier Rosenstein Dr. Claudio Careglio

El objetivo último de esta clase es que entiendan el chiste de XKCd

Enfoque teórico

Mas formalmente...

Principio de Invarianza:

Dado un algoritmo y dos implementaciones suyas I1 e I2, que tardan T1(n) y T2(n) existe una constante real c > 0 y un número natural n0 tales que para todo $n \ge n0$ se verifica que T1(n) $\le cT2(n)$.

La realidad es que...

 Si nos apartamos de detalles como arquitectura o lenguaje, las curvas de crecimiento van a presentar un comportamiento similar

A pensar...en abstracciones

 Imaginemos una computadora ideal, la cual ejecuta una instrucción en tiempo constante predeterminado.

Entonces...

 El tiempo de ejecución puede expresarse como una función T(n), donde T va a depender únicamente de los datos de entrada n.

Un enfoque teórico: Estimación del número de operaciones

- Estimar *T(n)* en función del número de operaciones elementales (OE)
- Se consideran como 1 OE:
 - Operaciones aritméticas básicas
 - Asignaciones a variables de tipo predefinido por el compilador,
 - Saltos (llamadas a funciones),
 - Comparaciones lógicas
 - Acceso a estructuras indexadas básicas(vectores y matrices).
- Tiempo de una OE es de orden 1

El tiempo de ejecución de la sentencia :

• es $T = T(c) + max\{T(s1), T(s2)\}.$

El tiempo de ejecución de una llamada a

• Tiempo es 1 (por la llamada), más el tiempo de evaluación de los parámetros P1, P2, ..., Pn, más el tiempo que tarda en ejecutarse F, esto es, T = 1 (salto) + T(P1) + T(P2) + ... + T(Pn) + T(F).

- Donde T(F) será igual a:
 - T(Op) Tiempo de las operaciones realizadas dentro de la función
 - T(R) Tiempo de evaluar el retorno (salto) + su valor (2 OE)

• El tiempo de ejecución de un bucle de sentencias

5

• es $T = T(c) + (n^{\circ} iteraciones)*(T(s) + T(c))$.

Obsérvese que tanto T(c) como T(s) pueden variar en cada iteración, y por tanto habrá que tenerlo en cuenta para su cálculo

• El tiempo de ejecución de un bucle de sentencias

```
for c in range(1,10):
```

Se lo expresa como una sentencia **while** y se calcula de la misma manera

```
c=0
while c<10:
    s
    c=c+1
```

Sumar N números enteros: Algoritmo 1

```
1: 2 OE
1: def sumadeN(n):
                                                T(n)=2+1+3+\sum 6+2
                                 2: 1 OE
     theSum = 0
                                 3: 3+n OE
      for i in range(1,n+1):
3:
                                                T(n)=2+1+3+6n+2
                                 4: 20E+40E
          theSum = theSum + i
4:
                                 5: 2 OE
     return theSum
5:
                                                T(n) = 8 + 6n
```

Sumar N números enteros: Algoritmo 2

```
1: 2 OE
1: def sumadeN(n):
                                                  T(n)=2+1+3+\sum_{i=0}^{n}6+2
                                  2: 1 OE
     theSum = 0
                                  3: 3+n OE
      for i in range(1,n+1):
3:
                                                  T(n)=2+1+3+6n+2
                                  4: 20E+40E
          theSum = theSum + i
                                  5: 2 OE
     return theSum
5:
                                                  T(n) = 8 + 6n = c_0 + c_1 n
                                                  T(n)=2+5
1: def sumDeN2(n):
                                  1: 2 OE
                                                  T(n)=7=c_0
     return (n*(n+1))/2
                                  2: 5 OE
```

Volviendo al cálculo experimental de T(n)

Verificamos el resultado experimental válido para todo lenguaje de programación y arquitectura

Ejercicios... de practica

Licenciatura en Ciencias de la Computación. Facultad de Ingeniería - Universidad Nacional de Cuyo

Algoritmos y Estructuras de Datos I

1. tema = "análisis de complejidad"

Dr. Carlos A. Catania Ing. Lucia Cortes Lic. Javier Rosenstein

Cómo comparamos la complejidad temporal de 2 algoritmos?

Tasa de crecimiento

Análisis Asintótico: Notación O(f)

Tambien llamada Big Oh

La denominación O(f) hace referencia a la clase de equivalencia compuesta por las funciones g que van a crecer a lo sumo tan deprisa como f.

Notación Big-oh: Cota superior

 Dada una función f, nos interesan aquellas funciones g que a lo sumo crecen tan deprisa como f.

Para el conjunto de tales funciones g, la función f constituye una cota superior.

Notación Big-Oh Definición:

Sea $f: \mathbb{N} \to [0,\infty)$. Se define el conjunto de funciones de orden O (Omicron) de f como:

$$O(f) = \{g: \mathbf{N} \to [0, \infty) \mid \exists c \in \mathbf{R}, c > 0, \exists n_0 \in \mathbf{N} \cdot g(n) \le cf(n) \ \forall n \ge n_0 \}.$$

Diremos que una función $t: \mathbb{N} \to [0, \infty)$ es de orden O de f si $t \in O(f)$.

Normalmente estaremos interesados en la menor función f tal que t pertenezca a O(f).

3 casos

En el análisis asintótico aplicado a la complejidad de los algoritmos es posible considerar 3 casos:

- 1. El comportamiento del algoritmo en el peor caso
- 2. El comportamiento del algoritmo en el mejor caso
- 3. El comportamiento del algoritmo en el caso promedio

Buscar el elemento \boldsymbol{E} en un arreglo de N elementos.

0	1	2	3	4	5	6	7	 N
E								
								E

Normalmente la notación Big-Oh hace referencia al peor caso.

Al considerar la complejidad temporal de un algoritmo en el **peor caso**, la notación Big Oh nos permite descartar los términos de menor grado.

Notación Big-Oh: Ejemplos

$$T(n)=231 -> O(1)$$

$$T(n)=4n+2 -> O(n)$$

$$T(n)=32n^2+3n+2 -> O(n^2)$$

$$T(n)=5n^3+5n^2+12n+12 \rightarrow O(n^3)$$

Algunas de las clases más relevantes en el análisis de algoritmos.

Función Constante

$$T(n)=f(n)=c$$

- Sin importar el valor de *n*, el resultado de *T* siempre será igual a una constante *c*.
- Normalmente asociada a operaciones básicas como asignaciones, comparaciones, sumas, etc.

Funcion Lineal

$$T(n)=f(n)=n$$

 Para cualquier el valor de n, el resultado de T será igual n.

 Normalmente asociada a operaciones básicas como iteraciones sobre n elementos.

Función Cuadrática

$$T(n)=f(n)=n^2$$

 Para cualquier valor de n, el resultado de T siempre será igual al producto de n por si misma.

 Normalmente asociada a iteraciones anidadas.

Funcion Cubica

$$T(n)=f(n)=n^3$$

• Sin importar el valor de *n*, el resultado de *T* siempre será igual al producto de *n* por si misma 3 veces.

Se observa en iteraciones anidadas.

Function Logaritmica

$$T(n)=f(n)=log(n)$$

- Para cualquier valor de n, el resultado de T será igual al exponente al cual hay que elevar la base (normalmente 2)
- Normalmente asociada a operaciones recursivas.

Función Exponencial

$$T(n)=f(n)=2^n$$

 Dado un valor de n, el resultado de T será igual al producto de una constante c n veces.

 Se observa en iteraciones donde en cada paso se duplica el número de operaciones.

Conclusiones

La utilización del enfoque teórico nos va a permitir calcular la complejidad temporal de manera analitica.

La notación Big-Oh junto a las distintas clases de funciones f, nos van a permitir simplificar la estimación de la complejidad temporal.

Estas herramientas las vamos a usar para diferenciar y comparar cada una de las estructuras y algoritmos que vamos a ver durante el cursado de la materia.

Que dicen... Objetivo cumplido?

Algunos ejemplos:

```
if a>b:
    c=a+b
else:
    for d in range(1,10):
        c=a+b*d
```

Algunos ejemplos:

Algunos ejemplos:

```
for i in range(1,n):
    j=0
    while j<i:
    a=a*(1+j)
    j=j+1</pre>
```

Titular: Dr. C.A. Catania <harpomaxx@gmail.com> @harpolabs

Adjunto: Ing. L. Cortés < luciacortes 5519@gmail.com >

JTP: Lic. J. Rosenstein < rosensteinjavier@gmail.com >

HAPPY HACKING!

