PHYS 403

Oral Presentation (100 pts)

Name:	Eric Yu

CRITERIA	Eugene	Alexey
The whole day attendance (5)		5
Title was sent to instructor on time (3)		0
First slide has appropriate title, name, affiliation, date (3)		3
Scientific background, goal and motivation were clearly and correctly presented (20)		20
Research activities were clearly and correctly presented (20)		20
Results were clearly and correctly presented (20)		20
Technical aspects: good balance of text and figures, good quality figures, appropriate citations, correct spelling, correct number of significant digits, etc. (20)		20
Time management: good balance between Introduction-Procedure-Results-Analysis (3)		3
Spoke clearly, at a good pace, loud enough, etc. (3)		3
Finished on time and answered questions clearly and correctly (3)		3
Final Totals (100)		97

OTHER COMMENTS:

The vertical scale on the final result should be ms not s.

97

Temperature dependence of fluorescence lifetimes of rubies

Courtesy ruby-sapphire.com

Eric Yu

Dept. of Physics, University of Illinois

March 7, 2023

S1 —

STEP 1: Absorption

S1

STEP 2: Internal Conversion and Vibrational Relaxation

STEP 3: Fluorescence

Perrin-Jablonski Diagram Courtesy Edinburgh Instruments

Fluorescence in rubies

CORUNDUM: Crystalline Al₂O₃

RUBY: Corundum with Cr 3+ impurities

Crystalline Al₂O₃ Courtesy Wikipedia

Ruby (Al₂O₃:Cr) Courtesy Wikipedia

Cr³⁺ impurities are the fluorescence species in ruby.

Fluorescence in rubies

When the Cr³⁺ ions return to the ground state, they fluorescence red flight.

405 nm	UV
445 nm	VIOLET
514 nm	GREEN
694 nm	RED

Ruby Perrin-Jablonski Diagram Courtesy PhysicsOpenLab.org

Measuring fluorescence lifetime

Measuring fluorescence lifetime

Fit data to exponential to find fluorescence lifetime.

$$F_{\delta}(t) = A \exp(-t/\tau)$$

Varying temperature

Results

Conclusions

Lifetime decreases as temperature increases

- Makes sense?
- Linear?
- Frequency-domain measurement?
- Difference between samples?

Conclusions

Lifetime decreases as temperature increases

- Makes sense?
- Linear?
- Frequency-domain measurement?
- Difference between samples?

Questions?

References

- D. Chandler, Z. Majumdar, et al. Ruby crystal for demonstrating time- and frequency-domain methods of fluorescence lifetime measurements. *Journal of Fluorescence* (2006). doi:10.1007/s10895-006-0123-7
- J. Alcala, S-C. Liao, and J. Zheng. Real time frequency domain fibreoptic temperature sensor using ruby crystals. *Medical Engineering and Physics* (1996). doi:10.1016/1350-4533(95)00014-3
- 3. B. V. Thosar. On the Fluorescent Ion of Chromium in Ruby. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science* (1938). doi:10.1080/14786443808562133
- 4. B. Valeur and M. Berberan-Santos. Molecule Fluorescence: Principles and Applications. *John Wiley and Sons* (2012)
- 5. Ruby Crystal Fluorescence. *PhysicsOpenLab* (2020), link:https://physicsopenlab.org/2020/06/15/ruby-crystal-fluorescence/
- 6. A. Periasamy and R. Clegg. FLIM Microscopy in Biology and Medicine. *Taylor and Francis Group* (2009)