MTH211A: Theory of Statistics

Problem set 2

- 1. Find a sufficient statistic for θ (or $\boldsymbol{\theta} = (\theta_1, \theta_2)^{\top}$) when X_1, \dots, X_n are random samples from each of the following distributions:
 - (a) Location exponential: pdf $f_X(x;\theta) = \exp\{-(x-\theta)\}$; with $x > \theta$ and $\theta \in \mathbb{R}$.
 - (b) Cauchy: pdf $f_X(x;\theta) = 1/\left[\pi\left\{1 + (x-\theta)^2\right\}\right]$; with $x \in \mathbb{R}$ and $\theta \in \mathbb{R}$.
 - (c) Logistic: pdf $f_X(x;\theta) = \exp\{-(x-\theta)\}/[1+\exp\{-(x-\theta)\}]^2$; with $x \in \mathbb{R}$ and $\theta \in \mathbb{R}$.
 - (d) Double exponential: pdf $f_X(x;\theta) = 2^{-1} \exp\{-|x-\theta|\}$; with $x \in \mathbb{R}$ and $\theta \in \mathbb{R}$.
 - (e) Location-scale exponential: pdf $f_X(x; \boldsymbol{\theta}) = \theta_2^{-1} \exp\{-(x \theta_1)/\theta_2\}$; with $x > \theta_1$, $\theta_1 \in \mathbb{R}$ and $\theta_2 > 0$.
 - (f) Gamma: pdf $f_X(x; \theta) = \theta_2^{\theta_1} x^{\theta_1 1} \exp\{-\theta_2 x\} / \Gamma(\theta_1)$; with x > 0 and $\theta_i > 0$, i = 1, 2.
 - (g) Uniform: pdf $f_X(x;\theta) = 1$; with $\theta < x < \theta + 1$ and $\theta > 0$.
 - (h) Normal distribution with mean θ and θ^2 .
 - (i) Geometric distribution: pmf $f_X(x;\theta) = \theta(1-\theta)^{x-1}$; with x = 1, 2, ... and $0 < \theta < 1$.
 - (j) Inverse Gaussian distribution: pdf $f(x; \boldsymbol{\theta}) = \sqrt{\theta_1} \exp\left\{-\theta_1(x-\theta_2)^2/(2\theta_2^2x)\right\}/\sqrt{2\pi x^3}$, with x > 0, $\theta_1 > 0$ and $\theta_2 \in \mathbb{R}$
- 2. [Independent but not identically distributed] Let X_1, \ldots, X_n be independent but not identically distributed from the following distributions. Find a sufficient statistic for θ .
 - (a) $X_i \sim \text{uniform}(1 i\theta, 1 + i\theta)$.
 - (b) X_i has the pdf $f_{X_i}(x;\theta) = \exp\{i\theta x\}$, with $x \ge i\theta$, $\theta \in \mathbb{R}$.
 - (c) $X_i \sim \text{Poisson}(a_i\theta)$ for some positive real numbers a_1, \ldots, a_n and $\theta > 0$.
- 3. Find minimal sufficient statistic in each case in Q.1.

4. Let $\mathbf{Z}_1 = (X_1, Y_1), \dots, \mathbf{Z}_n = (X_n, Y_n)$ be a random sample from an uniform distribution over a a circle with radius θ . The pdf of \mathbf{Z}_1 is

$$f_{\mathbf{Z}|\theta}\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{cases} \frac{1}{\pi\theta^2} & \text{if } x^2 + y^2 \leq \theta, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Let $W_i = ||\mathbf{Z}_i||$. Find the distribution of Y_1 .
- (b) Show that $\mathbf{T}(\mathbf{Z}_1, \dots, \mathbf{Z}_n) = (W_1, \dots, W_n)$ is jointly sufficient for θ .
- (c) Find a minimal sufficient statistic T^* for θ . Also, find the distribution of T^* .
- 5. Let X_1, \dots, X_n be a random sample from exponential(θ). Consider the statistics $T_1 = \arg\min_{i \in \{1,\dots,n\}} X_i$ and $T_2 = X_{(1)}$.
 - (a) Derive the pre-images $A_t = \{ \mathbf{z} \in [0, \infty)^n : T_1(\mathbf{z}) = t \}$ and $B_t = \{ \mathbf{z} \in [0, \infty)^n : T_2(\mathbf{z}) = t \}.$
 - (b) Hence derive the distributions of T_1 and T_2 .
 - (c) Which statistic contains more information about θ . Justify your answer.
- 6. Let $f((x,y) | \boldsymbol{\theta})$, where $\boldsymbol{\theta} = (\alpha_1, \alpha_2, \beta_1, \beta_4)'$, be a bivariate pdf for the uniform distribution on the rectangle with lower left corner (α_1, β_1) and upper-right corner (α_2, β_2) in \mathbb{R}^2 . The parameters satisfy $\alpha_1 < \alpha_2$ and $\beta_1 < \beta_2$. Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be a random sample from this pdf. Find a four-dimensional sufficient statistics for $\boldsymbol{\theta}$.
- 7. Let X_1, \dots, X_n be a random sample from a population with pdf of the form $h(x \theta)$ where $h : \mathbb{R} \to \mathbb{R}$ is a function. Show that the order statistics, $\mathbf{T}(\mathbf{X}) = (X_{(1)}, \dots, X_{(n)})$ is sufficient for θ , and no further reduction is possible.
- 8. Let X_1, \dots, X_n and Y_1, \dots, Y_m be independently distributed according to $normal(\mu, \sigma^2)$ and $normal(\nu, \tau^2)$, respectively. Find a minimal sufficient statistics for the following cases:
 - (a) $\mu = \nu \in \mathbb{R}$ and $\sigma, \tau > 0$.
 - (b) $\sigma = \tau > 0$ and $\mu, \nu \in R$.