ECE544-Pattern Recognition HW1

Junze Liu

September 17, 2016

1 Pencil-and-paper

1.

$$\frac{\partial E}{\partial w_j} = \frac{\partial \sum_i \left((t_i - y_i)^2 \right)}{\partial w_j}$$

$$= 2 \sum_i (t_i - y_i) \cdot \frac{\partial \sum_i (t_i - g(w'x_i + b))}{\partial w_j}$$

$$= -2 \sum_i (t_i - y_i) \cdot g'(w'x_i + b) \cdot x_{i,j}$$

$$\frac{\partial E}{\partial b} = \frac{\partial \sum_{i} ((t_i - y_i)^2)}{\partial b}$$

$$= 2 \sum_{i} (t_i - y_i) \cdot \frac{\partial \sum_{i} (t_i - g(w'x_i + b))}{\partial b}$$

$$= -2 \sum_{i} (t_i - y_i) \cdot g'(w'x_i + b)$$

2.

$$\frac{\partial E}{\partial w_j} = \frac{\sum_i \left((t_i - y_i)^2 \right)}{\partial w_j}$$

$$= 2 \sum_i (t_i - y_i) \cdot \frac{\partial \sum_i (t_i - y_i)}{\partial w_j}$$

$$= 2 \sum_i (t_i - y_i) \cdot \frac{\partial \sum_i (t_i - g(w'x_i + b))}{\partial w_j}$$

$$= -2 \sum_i (t_i - y_i) \cdot x_{i,j}$$

.

$$\begin{split} \frac{\partial E}{\partial w_j} &= \frac{\partial \sum_i \left((t_i - y_i)^2 \right)}{\partial w_j} \\ &= 2 \sum_i (t_i - y_i) \cdot \frac{\partial \sum_i (t_i - y_i)}{\partial w_j} \\ &= 2 \sum_i (t_i - y_i) \cdot \frac{\partial \sum_i (t_i - g(w'x_i + b))}{\partial w_j} \\ &= -2 \sum_i (t_i - y_i) \cdot y_i \cdot (1 - y_i) \cdot x_{i,j} \end{split}$$

.

$$\frac{\partial E}{\partial w_j} = -\sum_{i:y \neq sign(\vec{w^T}(\vec{x}))} \frac{\partial ((w'x_i + b) \cdot t_i)}{\partial w_j}$$
$$= -\sum_{i:y \neq sign(\vec{w^T}\vec{x})} x_{i,j} \cdot t_j$$

.

$$\begin{split} \frac{\partial E}{\partial w_j} &= \frac{\partial \|w\|_2^2}{\partial w_j} + C \cdot \sum_i \frac{\partial [1 - t_i(w'x_i + b)]}{\partial w_j} \\ &= 2w_j - C \cdot \sum_{i:y \neq t_i} \frac{d(t_i \cdot (w'x_i + b))}{\partial w_j} \\ &= 2w_j - C \cdot \sum_{i:y \neq t_i} t_j \cdot x_{i,j} \end{split}$$

2 Code-From-Scratch

2.1 Functions

nan_check(data, label):

Find out the nan-rows in datasets and delete these rows

label_edit(label): Edit label and change the domain of it from 0, 1 to -1, 1

shuffle(data_set, label_set):

Randomly shuffle the data and label

get_data(set_type):

Get data from files and storage them in a array. Return the data_set and label_set.

linear_regression_gradient(data, label, weight, b):

Calculate the gradient of linear node classifier. Return the gradient.

logistic_regression_gradient(data, label, weight, b):

Calculate the gradient of logistic regression . Return the gradient.

perceptron_gradient(data, label, weight, b = 0):

Calculate the gradient of perceptron classifier. Return the gradient.

$svm_gradient(C, data, label, w, b = 0)$:

Calculate the gradient of svm classifier. Return the gradient.

$gradient_descent(weight,\ b,\ learning_rate,\ gradient_w=0,\ gradient_b=0):$

Update and return weight and b.

compute_mse(data, label, w, b):

Compute the mean square error.

compute_acc(data, label, w, b):

Compute the accuracy

activate(epoch = 2500):

Activate the whole neural network and set the iteration as 2500.

2.2 Lines of codes related to the equations above

1.

$$\frac{\partial E}{\partial w_j} = -2\sum_i (t_i - y_i) \cdot g'(w'x_i + b) \cdot x_{i,j}$$

Codes:

for i in range(len(label)): gradient_w -= (-2) * (label[i] - (np.dot(weight, data[i]) + b)) * data[i]

$$\frac{\partial E}{db} = -2\sum_{i} (t_i - y_i) \cdot g'(w'x_i + b)$$

Codes:

for i in range (len(label)): gradient_b += (-2) * (label[i] - (np.dot(weight, data[i]) + b))

2.

$$\frac{\partial E}{\partial w_j} = -2\sum_{i} (t_i - y_i) \cdot x_{i,j}$$

Codes:

for i in range(len(label)): gradient_w -= (-2) * (label[i] - (np.dot(weight, data[i]) + b)) * data[i]

3.

$$\frac{\partial E}{\partial w_j} = -2\sum_{i} (t_i - y_i) \cdot y_i \cdot (1 - y_i) \cdot x_{i,j}$$

Codes:

for i in range(len(label)): gradient_w += (-2) * ((np.dot(weight, data[i]) + b) - label[i]) * (np.dot(weight, data[i]) + b) * (1 - (np.dot(weight, data[i]) + b)) * data[i]

4.

$$\frac{\partial E}{\partial w_j} = -\sum_{i: y \neq sign(\vec{w^T}\vec{x})} x_{i,j} \cdot t_j$$

Codes:

for i in range(len(label)): if np.dot(weight, data[i]) * label[i] ; 0 : gradient_w += (-1) * data[i] * label[i] else: gradient_w += 0

5.

$$\frac{\partial E}{\partial w_j} = 2w_j - C \cdot \sum_{i: y \neq t_i} t_j \cdot x_{i,j}$$

Codes:

for i in range(len(label)):

```
if label[i] * np.dot(w, data[i]) ; 1 : gradient_w += C * (-1) * data[i] * label[i] gradient_b += C * (-1) * label[i] else: gradient_w += 0 gradient_b += 0 gradient_w = (2 * w + gradient_w)
```

2.3 Results

2.3.1 Error Rates Figure

2.3.3 Scatter Plot and Different Classifier

using PCA to reduce the dimensions

3 TensorFlow

3.1 Methods

TensorFlow functions I use and explanations of them are below.

Codes:

x_placeholder = tf.placeholder(tf.float32, [None, 16])

Create a placeholder. For each sample, it has 16 dimensions' feature. When we activate the session, it will input a value.

Codes:

 $w = tf.Variable(tf.random_normal([16, 2]))$

creates a variable. It has the shape of [16, 2] because we have 16 features in a sample and we classify it into to classes.

Codes:

v_hat = tf.nn.softmax(tf.matmul(x_placeholder, w) + b)

means we first compute the output by multiply weights and sample, then we use a softmax node to compute the class possibility.

Codes:

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_placeholder * tf.log(y_hat), reduction _indices=[1])) calculate the cross entropy and the goal of the algorithm is to minimize it. tf.log computes the logarithm of each element, tf.reduce_mean computes the mean.

Codes:

 $correct_prediction = tf.equal(tf.argmax(y_hat,1), tf.argmax(y_placeholder,1))$

finds the correct predictions. tf.argmax finds the index of the highest entry in y_hat and y_placeholder and compare if they are the same.

Codes:

 $accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))$

tf.cast turn the booleans in correct_prediction to floating point numbers.

Codes

 $train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)$

means we choose gradient descent to minimize croos entropy

Codes:

init = tf.initialize_all_variables()

initializes variables.

Codes:

sess = tf.Session()

launches the model in a session.

Codes:

sess.run(init)

input values into variables.

3.2 Results

Convergence Figure

table 3.1		
	train	eval
error rate	0.200659	0.131954