DATA OVERVIEW

rank: The ranking of the billionaire in terms of wealth.

finalWorth: The final net worth of the billionaire in U.S. dollars.

category: The category or industry in which the billionaire's business operates.

personName: The full name of the billionaire.

age: The age of the billionaire.

country: The country in which the billionaire resides.

city: The city in which the billionaire resides.

source: The source of the billionaire's wealth.

industries: The industries associated with the billionaire's business interests.

countryOfCitizenship: The country of citizenship of the billionaire.

organization: The name of the organization or company associated with the billionaire.

selfMade: Indicates whether the billionaire is self-made (True/False).

status: "D" represents self-made billionaires (Founders/Entrepreneurs) and "U" indicates inherited or unearned wealth.

gender: The gender of the billionaire.

birthDate: The birthdate of the billionaire.

lastName: The last name of the billionaire.

firstName: The first name of the billionaire.

title: The title or honorific of the billionaire.

date: The date of data collection.

state: The state in which the billionaire resides.

residenceStateRegion: The region or state of residence of the billionaire.

birthYear: The birth year of the billionaire.

birthMonth: The birth month of the billionaire.

birthDay: The birth day of the billionaire.

cpi_country: Consumer Price Index (CPI) for the billionaire's country.

cpi change country: CPI change for the billionaire's country.

gdp_country: Gross Domestic Product (GDP) for the billionaire's country.

gross_tertiary_education_enrollment: Enrollment in tertiary education in the billionaire's country.

gross_primary_education_enrollment_country: Enrollment in primary education in the billionaire's country.

life_expectancy_country: Life expectancy in the billionaire's country.

tax revenue country country: Tax revenue in the billionaire's country.

total_tax_rate_country: Total tax rate in the billionaire's country.

population_country: Population of the billionaire's country. latitude_country: Latitude coordinate of the billionaire's country. longitude_country: Longitude coordinate of the billionaire's country.

```
In [5]:

#Load the required modules
import pandas as pd
import numpy as np
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
import matplotlib
from plotly.subplots import make_subplots
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.feature_selection import VarianceThreshold

// wmatplotlib inline
```

The Billionaires Statistics Dataset stats:

The number of rows are :2640
The number of columns are : 35

Out[12]:

4	3	2	1	0	1.
5	4	3	2	1	rank
106000	107000	114000	180000	211000	finalWorth
Finance & Investments	Technology	Technology	Automotive	Fashion & Retail	category
Warren Buffett	Larry Ellison	Jeff Bezos	Elon Musk	Bernard Arnault & family	personName
92.00	78.00	59.00	51.00	74.00	age
United States	United States	United States	United States	France	country
Omaha	Lanai	Medina	Austin	Paris	city
Berkshire Hathaway	Oracle	Amazon	Tesla, SpaceX	LVMH	source
Finance & Investments	Technology	Technology	Automotive	Fashion & Retail	industries
United States	United States	United States	United States	France	countryOfCitizenship
Berkshire Hathaway Inc. (Cl A)	Oracle	Amazon	Tesla	LVMH Moët Hennessy Louis Vuitton	organization
True	True	True	True	False	selfMade
D	U	D	D	U	status
М	М	M	M	М	gender
8/30/1930 0:00	8/17/1944 0:00	1/12/1964 0:00	6/28/1971 0:00	3/5/1949 0:00	birthDate
Buffett	Ellison	Bezos	Musk	Arnault	lastName
Warren	Larry	Jeff	Elon	Bernard	firstName
CEO	CTO and Founder	Chairman and Founder	CEO	Chairman and CEO	title
4/4/2023 5:01	4/4/2023 5:01	4/4/2023 5:01	4/4/2023 5:01	4/4/2023 5:01	date
Nebraska	Hawaii	Washington	Texas	NaN	state
Midwest	West	West	South	NaN	residenceStateRegion
1,930.00	1,944.00	1,964.00	1,971.00	1,949.00	birthYear

	0	1	2	3	4
birthMonth	3.00	6.00	1.00	8.00	8.00
birthDay	5.00	28.00	12.00	17.00	30.00
cpi_country	110.05	117.24	117.24	117.24	117.24
cpi_change_country	1.10	7.50	7.50	7.50	7.50
gdp_country	\$2,715,518,274,227	\$21,427,700,000,000	\$21,427,700,000,000	\$21,427,700,000,000	\$21,427,700,000,000
gross_tertiary_education_enrollment	65.60	88.20	88.20	88.20	88.20
gross_primary_education_enrollment_country	102.50	101.80	101.80	101.80	101.80
life_expectancy_country	82.50	78.50	78.50	78.50	78.50
tax_revenue_country_country	24.20	9.60	9.60	9.60	9.60
total_tax_rate_country	60.70	36.60	36.60	36.60	36.60
population_country	67,059,887.00	328,239,523.00	328,239,523.00	328,239,523.00	328,239,523.00
latitude_country	46.23	37.09	37.09	37.09	37.09
longitude_country	2.21	-95.71	-95.71	-95.71	-95.71

In [7]: 1 df_full.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2640 entries, 0 to 2639
Data columns (total 35 columns):

рата #	Columns (total 35 columns):	Non-Null Count	Dtyno
		NOII-NUII COUIIC	Dtype
0	rank	2640 non-null	int64
1	finalWorth	2640 non-null	int64
2	category	2640 non-null	object
3	personName	2640 non-null	object
4	age	2575 non-null	float64
5	country	2602 non-null	object
6	city	2568 non-null	object
7	source	2640 non-null	object
8	industries	2640 non-null	object
9	countryOfCitizenship	2640 non-null	object
10	organization	325 non-null	object
11	selfMade	2640 non-null	bool
12	status	2640 non-null	object
13	gender	2640 non-null	object
14	birthDate	2564 non-null	object
15	lastName	2640 non-null	object
16	firstName	2637 non-null	object
17	title	339 non-null	object
18	date	2640 non-null	object
19	state	753 non-null	object
20	residenceStateRegion	747 non-null	object
21	birthYear	2564 non-null	float64
22	birthMonth	2564 non-null	float64
23	birthDay	2564 non-null	float64
24	cpi_country	2456 non-null	float64
25	cpi_change_country	2456 non-null	float64
26	gdp_country	2476 non-null	object
27	<pre>gross_tertiary_education_enrollment</pre>	2458 non-null	float64
28	<pre>gross_primary_education_enrollment_country</pre>	2459 non-null	float64
29	life_expectancy_country	2458 non-null	float64
30	tax_revenue_country_country	2457 non-null	float64
31	total_tax_rate_country	2458 non-null	float64
32	population_country	2476 non-null	float64
33	latitude_country	2476 non-null	float64
34	longitude_country	2476 non-null	float64

dtypes: bool(1), float64(14), int64(2), object(18)

memory usage: 704.0+ KB

```
In [13]:
           1 #Data Statistics
           g pd.options.display.float format = '{:,.2f}'.format
             def dataStat(df):
                 sel cols = df.select dtypes(include=['float64','int64'])
                 data box = pd.DataFrame(sel cols.dtypes, columns=['data type'])
           6
           7
                 data_box['missing_val'] = sel_cols.isnull().sum().values
                 data_box['missing_perc'] = sel_cols.isnull().sum().values / len(df) * 100
           8
                 data box['unique val'] = sel cols.nunique().values
           9
                 desc = pd.DataFrame(sel_cols.describe(include='number').transpose())
          10
                 data_box['min'] = desc['min'].values
          11
          12
                 data box['max'] = desc['max'].values
                 data_box['avg'] = desc['mean'].values
          13
          14
                 data_box['std_dev'] = desc['std'].values
          15
          16
                 return data_box
          17
          18
          19 dataStat(df full)
```

Out[13]:

	data type	missing_val	missing_perc	unique_val	min	max	avg	std_(
rank	int64	0	0.00	219	1.00	2,540.00	1,289.16	739
finalWorth	int64	0	0.00	219	1,000.00	211,000.00	4,623.79	9,834
age	float64	65	2.46	79	18.00	101.00	65.14	13
birthYear	float64	76	2.88	77	1,921.00	2,004.00	1,957.18	13
birthMonth	float64	76	2.88	12	1.00	12.00	5.74	3
birthDay	float64	76	2.88	31	1.00	31.00	12.10	Ę
cpi_country	float64	184	6.97	63	99.55	288.57	127.76	26
cpi_change_country	float64	184	6.97	44	-1.90	53.50	4.36	3
gross_tertiary_education_enrollment	float64	182	6.89	63	4.00	136.60	67.23	21
gross_primary_education_enrollment_country	float64	181	6.86	60	84.70	142.10	102.86	4
life_expectancy_country	float64	182	6.89	54	54.30	84.20	78.12	3
tax_revenue_country_country	float64	183	6.93	57	0.10	37.20	12.55	٤
total_tax_rate_country	float64	182	6.89	63	9.90	106.30	43.96	12
population_country	float64	164	6.21	68	38,019.00	1,397,715,000.00	510,205,317.84	554,244,732
latitude_country	float64	164	6.21	68	-40.90	61.92	34.90	17
longitude_country	float64	164	6.21	68	-106.35	174.89	12.58	86
4								•

Out[14]:

	count	unique	top	freq
category	2640	18	Finance & Investments	372
personName	2640	2638	Wang Yanqing & family	2
country	2602	78	United States	754
city	2568	741	New York	99
source	2640	906	Real estate	151
industries	2640	18	Finance & Investments	372
countryOfCitizenship	2640	77	United States	735
organization	325	294	Meta Platforms	4
selfMade	2640	2	True	1812
status	2640	6	D	1223
gender	2640	2	М	2303
birthDate	2564	2060	1/1/1965 0:00	19
lastName	2640	1736	Li	44
firstName	2637	1770	John	40
title	339	97	Investor	44
date	2640	2	4/4/2023 5:01	2638
state	753	45	California	178
residenceStateRegion	747	5	West	248
gdp_country	2476	68	\$21,427,700,000,000	754

Observations

Date has only two values , hence we can drop gdp_country has object data type , has \$ needs conversion

birth date has object type datatype, need to convert to timestamp Country and country of Citizenship same data, hence we can drop country of Citizenship

Irrevelant Data

date
personName
city
source
industries
countryOfCitizenship
organization
lastName
firstName
title

DATA CLEANING

There are 4228 missing values in the processed dataset.

There are still 1 missing values in the processed dataset.

There are still 0 missing values in the processed dataset.

There are 3 duplicate in the processed dataset

There are still 0 duplicate in the processed dataset

Non-Null Count Dtype rank 2637 non-null 0 int64 finalWorth 2637 non-null int64 category 2637 non-null object age 2637 non-null float64 country 2637 non-null object selfMade 2637 non-null bool 2637 non-null object status gender 2637 non-null object 2637 non-null birthDate object state 2637 non-null object birthYear 2637 non-null float64 10 11 birthMonth 2637 non-null float64 12 birthDay 2637 non-null float64 13 cpi country 2637 non-null float64 14 cpi change country 2637 non-null float64 15 gdp country 2637 non-null object 16 gross tertiary education enrollment 2637 non-null float64 17 gross primary education enrollment country 2637 non-null float64 18 life expectancy country 2637 non-null float64 19 tax_revenue_country_country 2637 non-null float64 20 total tax rate country 2637 non-null float64 21 population country 2637 non-null float64 22 latitude_country 2637 non-null float64 23 longitude country 2637 non-null float64

dtypes: bool(1), float64(14), int64(2), object(7)

memory usage: 497.0+ KB

In [23]: 1 df_full.head().T

	0	1	2	3	
rank	1	2	3	4	
finalWorth	211000	180000	114000	107000	1
category	Fashion & Retail	Automotive	Technology	Technology	Finance & Inves
age	74.00	51.00	59.00	78.00	
country	France	United States	United States	United States	United
selfMade	False	True	True	True	
status	U	D	D	U	
gender	М	М	M	M	
birthDate	1949-03-05 00:00:00	1971-06-28 00:00:00	1964-01-12 00:00:00	1944-08-17 00:00:00	1930-08-30 00
state	California	Texas	Washington	Hawaii	Ne
birthYear	1949	1971	1964	1944	
birthMonth	3	6	1	8	
birthDay	5	28	12	17	
cpi_country	110.05	117.24	117.24	117.24	
cpi_change_country	1.10	7.50	7.50	7.50	
gdp_country	2,715,518,274,227.00	21,427,700,000,000.00	21,427,700,000,000.00	21,427,700,000,000.00	21,427,700,000,
gross_tertiary_education_enrollment	65.60	88.20	88.20	88.20	
gross_primary_education_enrollment_country	102.50	101.80	101.80	101.80	
life_expectancy_country	82.50	78.50	78.50	78.50	
tax_revenue_country_country	24.20	9.60	9.60	9.60	
total_tax_rate_country	60.70	36.60	36.60	36.60	
population_country	67,059,887.00	328,239,523.00	328,239,523.00	328,239,523.00	328,239,
latitude_country	46.23	37.09	37.09	37.09	
longitude_country	2.21	-95.71	-95.71	-95.71	

Out[24]: 24

```
1 #Using Z-score to remove the outliers
In [25]:
           3
            from scipy import stats
            count outlier=[]
           6  num cols = df full.select dtypes(include=['float64','int64'])
             print("There are {:,} records in the data before deleting the outliers.".format(df_full.shape[0]))
           8
             for column in num cols.columns:
                 # Calculate the z-score for each column
          10
                 z = np.abs(stats.zscore(df_full[column]))
          11
          12
                 # Identify outlier data with a z-score greater than 3
          13
          14
                 threshold = 3
                 outliers = df_full[z > threshold]
          15
                 count outlier.append(len(outliers))
          16
                 # drop rows containing outliers
          17
                 df_full.drop(outliers.index,inplace=True)
          18
          19
          print("There are {:,} records in the data after delete the outliers.".format(df_full.shape[0]))
          21 df_outlier=pd.DataFrame({"column":num_cols.columns,"number_of_outliers":count_outlier})
          22 df_outlier
```

There are 2,637 records in the data before deleting the outliers. There are 2,395 records in the data after delete the outliers.

Out[25]:

	column	number_of_outliers
0	rank	0
1	finalWorth	37
2	age	6
3	cpi_country	46
4	cpi_change_country	0
5	gdp_country	0
6	gross_tertiary_education_enrollment	4
7	gross_primary_education_enrollment_country	34
8	life_expectancy_country	8
9	tax_revenue_country_country	10
10	total_tax_rate_country	0
11	population_country	0
12	latitude_country	97
13	longitude_country	0

```
In [26]:
           1 %matplotlib inline
           2 fig=go.Figure()
           4
             target=df full.selfMade.value counts(normalize=True)[::-1]
           6 text=['{}'.format(i) for i in target.index]
             color, pal = ['#32CD32', '#FF4500'], ['#00BFFF', '#FFD700']
           8 | if text[0]=='State 0':
                  color,pal=color,pal
          10 else:
                 color,pal=color[::-1],pal[::-1]
          11
          12
          13
             fig.add trace(go.Pie(labels=target.index, values=target*100, hole=.5,
                                  text=text, sort=False, showlegend=False,
          15
                                  marker=dict(colors=pal,line=dict(color=color,width=2)),
          16
                                  hovertemplate = "Self-Made %{label}: %{value:.2f}%<extra>"))
          17
          18
            temp = dict(layout=go.Layout(font=dict(family="Franklin Gothic", size=12)))
             fig.update_layout(template=temp, title='Target Distribution',
          21
                               uniformtext minsize=15, uniformtext mode='hide', width=700)
          22
          23
          24 #for Legend
          25 for i, c in enumerate(pal):
                 fig.add trace(go.Bar(x=[0], y=[0], marker color=c, showlegend=True, name=['Not-Self Made', 'Self Made'][i]))
          26
          27
          28 # Update Layout
          temp = dict(layout=go.Layout(font=dict(family="Franklin Gothic", size=12)))
             fig.update_layout(template=temp, title='Target Distribution',
          31
                               uniformtext minsize=15, uniformtext mode='hide', width=700,
                               legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1))
          32
          33
          34
          35 fig.show()
```



```
In [27]:
          1 import plotly graph objects as go
          2 from plotly.subplots import make subplots
           import pandas as pd
            # Assuming df full is your DataFrame
            # df full = pd.read csv('your data.csv') # Replace with your actual data loading method
            # Define a custom layout template for consistent styling across all plots
           temp = dict(layout=go.Layout(font=dict(family="Franklin Gothic", size=12)))
         10
           # Plotting the 'rank' column with a subplot layout (1 row, 2 columns)
         11
         12 | fig = make subplots(rows=1, cols=2, vertical spacing=0.0625)
         13
         14
            # Histogram for the 'rank' column
         16 fig.add trace(
         17
                go.Histogram(
         18
                   x=df full['rank'],
                   # Probability density histogram shows distribution in terms of probabilities
         19
         20
                   histnorm='probability density',
                    marker=dict(
         21
         22
                       # Map 'selfMade' values to specific colors
         23
                       color=df_full['selfMade'].map({True: '#AF4343', False: '#C6AA97'}),
         24
                       line=dict(width=1, color='#000000'), # Black outline for bars
         25
                    ),
         26
                    opacity=0.8,
         27
                   name='Rank', # Name for the Legend
         28
                    showlegend=False
         29
                ), row=1, col=1
         30
         31
         # Box plot for 'Self Made' group in the 'rank' column
            fig.add_trace(go.Box(y=df_full[df_full.selfMade==True]['rank'], name="Self Made",
         35
                               marker color='#AF4343', showlegend=True), row=1, col=2)
         36
         37 # Box plot for 'Not Self Made' group in the 'rank' column
            fig.add trace(go.Box(y=df full[df full.selfMade==False]['rank'], name="Not Self Made",
         39
                               marker color='#C6AA97', showlegend=True), row=1, col=2)
         40
         41
           # Layout settings for the subplot
```

```
fig.update layout(
       title="Data Distributions<br><br>Distribution of Rank<br>",
43
       barmode='overlay',
44
       showlegend=True,
45
46
       template=temp,
       legend=dict(orientation="h", yanchor="top", y=1.01, xanchor="left", x=.4),
47
48
       height=500,
       width=700
49
50 )
51 # Axis settings for the subplot
52 | fig.update xaxes(showline=True, linewidth=1, linecolor='black', zeroline=False)
  fig.update yaxes(showline=False, zeroline=False)
53
54
55 # Display the figure
56 fig.show()
57
  # Plotting other numerical columns
59  num cols = df full.select dtypes(include=['float64','int64'])
60
61 # Loop through each numerical column (excluding the first one)
62 for i, column in enumerate(num cols.columns[1:], 1):
       # Creating a subplot for each numerical column
63
       fig = make subplots(rows=1, cols=2, vertical spacing=0.0625)
64
       fig.update layout(barmode='overlay', template=temp, height=500, width=700)
65
66
       # Histograms for 'Self Made' and 'Not Self Made' groups
67
       fig.add trace(go.Histogram(x=df_full[df_full.selfMade == True][column],
68
                                   histnorm='probability density',
69
70
                                   marker=dict(color='#AF4343', line=dict(width=1, color='#000000')),
71
                                   opacity=0.75,
                                   showlegend=False), row=1, col=1)
72
       fig.add trace(go.Histogram(x=df full[df full.selfMade == False][column],
73
74
                                   histnorm='probability density',
                                   marker=dict(color='#C6AA97', line=dict(width=1, color='#000000')),
75
76
                                   opacity=0.75,
                                   showlegend=False), row=1, col=1)
77
78
79
       # Box plots for 'Self Made' and 'Not Self Made' groups
       fig.add_trace(go.Box(y=df_full[df_full.selfMade == True][column],
80
                             name="Self Made",
81
                             marker color='#AF4343',
82
                             showlegend=False), row=1, col=2)
83
```

```
fig.add_trace(go.Box(y=df_full[df_full.selfMade == False][column],
84
85
                             name="Not Self Made",
86
                            marker_color='#C6AA97',
                             showlegend=False), row=1, col=2)
87
88
89
       # Update layout for each subplot
90
       fig.update_layout(
           title=f'Distribution of {column}',
91
           xaxis=dict(showline=True, linewidth=1, linecolor='black', zeroline=False),
92
93
           yaxis=dict(showline=False, zeroline=False)
94
95
       # Display the figure
96
97
       fig.show()
98
```

Data Distributions

Distribution of finalWorth

Distribution of age

Distribution of cpi_country

Distribution of cpi_change_country

Distribution of gdp_country

Distribution of gross_tertiary_education_enrollment

Distribution of gross_primary_education_enrollment_country

Distribution of life_expectancy_country

Distribution of tax_revenue_country_country

Distribution of total_tax_rate_country

Distribution of population_country

Distribution of latitude_country

Distribution of longitude_country


```
In [28]:
           corr=df full.select dtypes(include=['float64','int64','bool']).corr()
             corr=corr['selfMade'].sort_values(ascending=True)[1:-1]
             fig = go.Figure()
             pal=sns.color palette("Reds r",8).as hex()
             rgb=['rgba'+str(matplotlib.colors.to rgba(i,0.7)) for i in pal]
             fig.add_trace(go.Bar(x=corr[corr<0], y=corr[corr<0].index,</pre>
           9
                                   marker color=rgb, orientation='h',
                                   marker line=dict(color=pal,width=2), name='',
          10
                                   hovertemplate='%{y} correlation with target: %{x:.3f}',
          11
                                   showlegend=False))
          12
          13
              pal=sns.color_palette("Blues",8).as_hex()
          14
             rgb=['rgba'+str(matplotlib.colors.to rgba(i,0.9)) for i in pal]
          15
             fig.add trace(go.Bar(x=corr[corr>=0], y=corr[corr>=0].index,
          16
                                   marker_color=rgb, orientation='h',
          17
                                   marker line=dict(color=pal,width=2), name='',
          18
          19
                                   hovertemplate='%{y} correlation with target: %{x:.3f}',
                                   showlegend=False))
          20
          21
          22
             temp = dict(layout=go.Layout(font=dict(family="Franklin Gothic", size=12)))
          23
              fig.update layout(template=temp,title="Feature Correlations with Target (Self Made)",
                                xaxis title="Correlation", margin=dict(1=250),
          25
                                height=900, width=700, hovermode='closest')
          26
          27 | fig.update_xaxes(range=(0.3,-0.2))
          28 fig.show()
```

Feature Correlations with Target (Self Made)


```
In [30]: 1 print("current Shape",df_full.shape)
2 df_full.head().T
```

current Shape (2395, 17)

Out[30]:

	37	38	39	40	
rank	38	39	40	41	_
finalWorth	33400	32600	32100	31600	3
age	54.00	74.00	65.00	74.00	2
selfMade	True	True	True	False	1
status	D	U	D	U	
gender	М	М	М	М	
cpi_country	125.08	105.48	119.62	117.24	1 [,]
cpi_change_country	2.90	0.50	1.70	7.50	
gdp_country	19,910,000,000,000.00	5,081,769,542,380.00	2,827,113,184,696.00	21,427,700,000,000.00	21,427,700,000,00
gross_tertiary_education_enrollment	50.60	63.20	60.00	88.20	ŧ
gross_primary_education_enrollment_country	100.20	98.80	101.20	101.80	10
life_expectancy_country	77.00	84.20	81.30	78.50	7
tax_revenue_country_country	9.40	11.90	25.50	9.60	
total_tax_rate_country	59.20	46.70	30.60	36.60	;
population_country	1,397,715,000.00	126,226,568.00	66,834,405.00	328,239,523.00	328,239,52
latitude_country	35.86	36.20	55.38	37.09	;
longitude_country	104.20	138.25	-3.44	-95.71	-{

In [31]: 1 df_full.describe().T

Out[31]:

	count	mean	std	min	25%	
rank	2,395.00	1,298.97	729.71	38.00	659.00	_
finalWorth	2,395.00	3,730.94	4,132.17	1,000.00	1,500.00	
age	2,395.00	65.02	12.98	26.00	56.00	
cpi_country	2,395.00	125.19	20.72	99.55	117.24	
cpi_change_country	2,395.00	4.22	2.84	-1.90	1.70	
gdp_country	2,395.00	12,456,897,309,555.13	9,441,190,639,529.93	3,154,057,987.00	2,029,000,000,000.00	19,910,000,0
gross_tertiary_education_enrollment	2,395.00	67.04	20.00	10.10	50.60	
gross_primary_education_enrollment_country	2,395.00	102.51	3.37	92.70	100.20	
life_expectancy_country	2,395.00	78.11	3.56	69.40	77.00	
tax_revenue_country_country	2,395.00	11.90	4.73	0.10	9.60	
total_tax_rate_country	2,395.00	43.58	11.86	9.90	36.60	
population_country	2,395.00	549,353,321.82	564,291,820.23	38,019.00	69,625,582.00	328,2
latitude_country	2,395.00	37.25	12.02	-9.19	35.86	
longitude_country	2,395.00	12.75	87.82	-106.35	-95.71	
4						>

^{**}Feature Selection **

1 #PCA Exploration Begins

```
In [35]:
           3 #For Testing with PCA
           4 df full t=df full
           6
             def warn(*args, **kwargs):
           8
                  pass
           9 import warnings
          10 warnings.warn = warn
          11 import numpy as np
          12 import pandas as pd
          13 from itertools import accumulate
          14 import matplotlib.pyplot as plt
          15 import seaborn as sns
          16 %matplotlib inline
          17 from sklearn.preprocessing import StandardScaler
          18 from sklearn.decomposition import PCA
          19 from sklearn.compose import ColumnTransformer
          20 from sklearn.preprocessing import OneHotEncoder
          21 warnings.filterwarnings('ignore')
          22 sns.set context('notebook')
          23 sns.set_style('white')
          24
          25
          26
             df_full_t['selfMade'] = df_full_t['selfMade'].astype(int)
          28
          29 from sklearn.compose import ColumnTransformer
          30 from sklearn.preprocessing import OneHotEncoder
          31 one hot = ColumnTransformer(transformers=[("one_hot", OneHotEncoder(), ['status', 'gender']) ], remainder="passthrough."
          32 data=one hot.fit transform(df full t)
          33
          34 names=one_hot.get_feature_names_out()
          35 column_names=[name[name.find("_")+1:] for name in [name[name.find("_")+2:] for name in names]]
          36    new_data=pd.DataFrame(data,columns=column_names)
             new_data.head()
          37
          38
          39
          40
```

Out[35]:

	D	E	N	R	Split Family Fortune	U	F	M	rank	finalWorth	 change_country	country	tertiary_education_enrollment	prim
0	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	33,400.00	 2.90	19,910,000,000,000.00	50.60	
1	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00	1.00	32,600.00	 0.50	5,081,769,542,380.00	63.20	
2	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	32,100.00	 1.70	2,827,113,184,696.00	60.00	
3	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00	1.00	31,600.00	 7.50	21,427,700,000,000.00	88.20	
4	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00	1.00	31,600.00	 7.50	21,427,700,000,000.00	88.20	

5 rows × 23 columns

Out[38]: 0 1.00 1 1.00 2 1.00 3 0.00 4 0.00

Name: selfMade, dtype: float64

3-dimensional projection space (Top 3 PCs)

In [43]: #Since the min rank = 38 and the max rank=2540, we need to group this ranks into ranges , so that the model
#does not get confused ,5 labels have been produced each having a range of 500 , so rank suppose 38 will fall
#under label -->1

df_full['rank']=pd.cut(df_full['rank'],[0,500,1000,1500,2000,2600],labels=[1,2,3,4,5])
df_full.head()

Out[43]:

	rank	finalWorth	age	selfMade	status	gender	cpi_country	cpi_change_country	gdp_country	gross_tertiary_education_enrollment
37	1	33400	54.00	1	D	М	125.08	2.90	19,910,000,000,000.00	50.60
38	1	32600	74.00	1	U	М	105.48	0.50	5,081,769,542,380.00	63.20
39	1	32100	65.00	1	D	М	119.62	1.70	2,827,113,184,696.00	60.00
40	1	31600	74.00	0	U	М	117.24	7.50	21,427,700,000,000.00	88.20
41	1	31600	72.00	0	U	М	117.24	7.50	21,427,700,000,000.00	88.20

New data shape with interaction terms: (2395, 210)

Out[44]:

	rank	tinaiworth	age	cpi_country	cpi_cnange_country	gap_country	gross_tertiary_education_enrollment	gross_primary_education_er
0	1.00	33,400.00	54.00	125.08	2.90	19,910,000,000,000.00	50.60	
1	1.00	32,600.00	74.00	105.48	0.50	5,081,769,542,380.00	63.20	
2	1.00	32,100.00	65.00	119.62	1.70	2,827,113,184,696.00	60.00	
3	1.00	31,600.00	74.00	117.24	7.50	21,427,700,000,000.00	88.20	
4	1.00	31,600.00	72.00	117.24	7.50	21,427,700,000,000.00	88.20	

5 rows × 210 columns

-

```
In [78]:
          1 #There will be auasi-constant features . i.e features having not much of variation
          2 | #Lets put a threshold for .25 , so that all the features having vartions< .25 will be removed
          3 remove quasi costant = VarianceThreshold(threshold = 0.25) #Removing both constant and quasi-constant
            remove quasi costant.fit(X pf)
            #Items having True are features will be retained
          6 remove quasi costant.get support()
Out[78]: array([ True, True,
                True, True, True, True, False, False, False,
               False, False, True, True, True, True, True, True, True,
                True, True, True, True, True, True,
                                                              True.
                      True, True, True, True,
                                                 True,
                True,
                                                       True, True,
                                                                     True,
                True,
                       True, True, True, True,
                                                 True,
                                                        True,
                                                              True,
                                                                     True,
                True,
                       True, True,
                                   True, True,
                                                 True,
                                                        True,
                                                              True,
                                                                     True,
                True, True, True, True, True,
                                                 True, True,
                                                              True,
                                                                     True,
                True,
                       True, True, True, True,
                                                 True,
                                                       True,
                                                              True,
                True.
                       True, True,
                                   True, True,
                                                 True,
                                                        True,
                                                              True,
                                                                     True,
                True.
                       True, True, True, True,
                                                 True.
                                                        True.
                                                              True,
                                                                     True,
                True.
                                   True, True,
                       True, True,
                                                 True,
                                                        True,
                                                              True,
                                                                     True,
```

True, True,

True, True,

True, True,

True.

True,

True.

True,

True,

True,

True,

True,

True.

True.

True,

True.

True,

True,

True,

True.

True, True,

True, True,

True, True,

True, True,

False, False, False])

True, True,

True, True,

True,

True,

True, True, True, True, True, False, False,

True, True, True, True, True, True, True, True,

True,

True,

True, True, True, True,

True, True, True, True,

True, True, True, True,

True, True, True, True,

```
In [79]:
           1 #Lets remove the low variance features
           3 # Picking Up the Low Variance Columns
            col low variance = [column for column in X pf.columns
                       if column not in X pf.columns[remove quasi costant.get support()]]
             for features in col_low_variance:
                 print(features)
         status_E
         status_N
         status R
         status Split Family Fortune
         status_U
         gender_M
         status_E status N
         status_E status_R
         status_E status_Split Family Fortune
         status E status U
         status_E gender_M
         status_N status_R
         status_N status_Split Family Fortune
         status_N status_U
         status N gender M
         status_R status_Split Family Fortune
         status R status U
         status_R gender_M
         status Split Family Fortune status U
         status Split Family Fortune gender M
         status_U gender_M
In [80]:
           1 # Drop the low variance columns
           2 X pf.drop(col low variance,axis=1,inplace=True)
           3 print("New data shape with interaction terms and reduced features: ",X pf.shape)
```

New data shape with interaction terms and reduced features: (2395, 189)

In [81]:

1 X_pf.describe()

Out[81]:

	rank	finalWorth	age	cpi_country	cpi_change_country	gdp_country	gross_tertiary_education_enrollment	gross_primary_ed
count	2,395.00	2,395.00	2,395.00	2,395.00	2,395.00	2,395.00	2,395.00	
mean	3.09	3,730.94	65.02	125.19	4.22	12,456,897,309,555.13	67.04	
std	1.44	4,132.17	12.98	20.72	2.84	9,441,190,639,529.93	20.00	
min	1.00	1,000.00	26.00	99.55	-1.90	3,154,057,987.00	10.10	
25%	2.00	1,500.00	56.00	117.24	1.70	2,029,000,000,000.00	50.60	
50%	3.00	2,300.00	65.00	117.24	2.90	19,910,000,000,000.00	65.60	
75%	4.00	4,200.00	74.00	125.08	7.50	21,427,700,000,000.00	88.20	
max	5.00	33,400.00	101.00	182.75	7.70	21,427,700,000,000.00	113.10	

8 rows × 189 columns

- ◀

```
In [82]:
```

- 1 #Data Transformation
- 2 # Scale features
- 3 scaler=StandardScaler()
- 4 X_pf=pd.DataFrame(scaler.fit_transform(X_pf), columns=X_pf.columns)
- 5 X_pf.describe()

Out[82]:

	rank	finalWorth	age	cpi_country	cpi_change_country	gdp_country	gross_tertiary_education_enrollment	gross_primary_education_
count	2,395.00	2,395.00	2,395.00	2,395.00	2,395.00	2,395.00	2,395.00	_
mean	0.00	0.00	0.00	0.00	0.00	0.00	-0.00	
std	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
min	-1.46	-0.66	-3.01	-1.24	-2.16	-1.32	-2.85	
25%	-0.76	-0.54	-0.70	-0.38	-0.89	-1.10	-0.82	
50%	-0.06	-0.35	-0.00	-0.38	-0.47	0.79	-0.07	
75%	0.63	0.11	0.69	-0.01	1.15	0.95	1.06	
max	1.33	7.18	2.77	2.78	1.22	0.95	2.30	

8 rows × 189 columns

4

```
In [83]:
           1 #Lets run few models and check which is the best one
           2 from sklearn.model_selection import cross_val_score, KFold
          3 from sklearn.linear model import LogisticRegression
          4 from sklearn.ensemble import RandomForestClassifier
           5 #Support vector classification
          6 from sklearn.svm import SVC
          7 from sklearn.metrics import make scorer, f1 score
           8
          9
          10
          11 # Initialize the model#Increased max iter from 100 to 1000 for convergence issue
         12 model log reg = LogisticRegression(max iter=1000)
         model random for classifier = RandomForestClassifier()
          14
             model svc = SVC()
          15
          16
          17 # Initialize KFold
         18 kf = KFold(n splits=5, shuffle=True, random state=42)
          19 # Perform k-fold cross-validation with F1 scoring
          20 f1 scorer = make scorer(f1 score)
          21
          22 #Logistic Regression
          23 cv f1 scores log reg = cross_val_score(model_log_reg, X_pf, y, cv=kf, scoring=f1_scorer)
          24 #Random Forest Classifier
          cv f1 scores for classifier = cross val score(model random for classifier, X pf, y, cv=kf, scoring=f1 scorer)
         26 #SVC or Support Vector Classifier
          27 cv_f1_scores_svc = cross_val_score(model_svc, X_pf, y, cv=kf, scoring=f1_scorer)
          28
          29
          30
          31 # Display the cross-validation F1 scores
          32 print("Logistic Regression results \n")
          33 print("Cross-validation F1 scores:", cv_f1_scores_log_reg)
          34 print("Average F1 Score:", cv_f1_scores_log_reg.mean())
          35 | print("\n\nRandom Forest Classifier results \n")
          36 print("Cross-validation F1 scores:", cv_f1_scores_for_classifier)
         37 | print("Average F1 Score:", cv_f1_scores_for_classifier.mean())
         38 print("\n\nSVC results \n")
         39 | print("Cross-validation F1 scores:", cv_f1 scores svc)
         40 print("Average F1 Score:", cv f1 scores svc.mean())
```

```
Logistic Regression results
         Cross-validation F1 scores: [0.87569061 0.83844011 0.82576867 0.864
                                                                                 0.84722222]
         Average F1 Score: 0.8502243218040787
         Random Forest Classifier results
         Cross-validation F1 scores: [0.84813754 0.82708934 0.78593272 0.85714286 0.81779053]
         Average F1 Score: 0.8272185965388583
         SVC results
         Cross-validation F1 scores: [0.86909582 0.85479452 0.83168317 0.86410256 0.85054348]
         Average F1 Score: 0.8540439095384895
In [85]:
          1 #Selection of best model
          2 #The model which been selected is SVC
          3 #We need to perform hyper parameter tuning
           4
          5 #Lets Split the dataset into Training and test sets , 80% training and 20% test
          6 from sklearn.model_selection import train_test_split
          7 # Split the data into training and testing sets (80% train, 20% test)
          8 X_train, X_test, y_train, y_test = train_test_split(X_pf, y, test_size=0.2, random_state=42)
          10
```

```
In [86]:
           1 #Hyperparameter tuning using GridCV
           2 from sklearn.model selection import GridSearchCV
             param_grid = {
                  'C': [0.1, 1, 10], # Regularization parameter
                  'kernel': ['linear', 'rbf', 'poly'], # Type of the kernel
                  'gamma': ['scale', 'auto'], # Kernel coefficient
           7
                  'class weight': [None, 'balanced'] # Handling class imbalance
           8
           9
          10
          11
          12 # Set the random seed for reproducibility
          13 random state = 25
          14 np.random.seed(random_state)
          15
          16 # Create the SVC model
             model = SVC(probability=True, random_state=random_state)
          17
          18
          19 # Perform GridSearchCV
          grid search = GridSearchCV(estimator=model, param grid=param grid, cv=5, scoring='f1')
          21
             grid_search.fit(X_train, y_train)
          22
          23
          24
          25
          26
          27
Out[86]: GridSearchCV(cv=5, estimator=SVC(probability=True, random state=25),
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with noviewer.org.

'kernel': ['linear', 'rbf', 'poly']},

param_grid={'C': [0.1, 1, 10], 'class_weight': [None, 'balanced'],

'gamma': ['scale', 'auto'],

scoring='f1')

```
In [87]:
          1 #Get the best model and parameters
          2 best model = grid search.best estimator
          3 best params = grid search.best params
          4 #Print best model and best params
           5 print("Best Model Parameters:", grid search.best estimator )
          6 print("\nBest Model:", grid_search.best_params_)
          7 # Retrain the best model
          8 best_model.fit(X_train, y_train)
          10 # Evaluate on the training set
         11 y train pred = best model.predict(X train)
         12 | f1 train = f1 score(y train pred, y train)
          13
          14 # Evaluate on the test set
          15 y test pred = best model.predict(X test)
          16 | f1 test = f1 score(y test pred, y test)
          17
          18 # Print the F1 scores
         19 print('F1-score on the train set:', f1 train)
          20 print('F1-score on the test set:', f1_test)
          21
```

Best Model Parameters: SVC(C=0.1, kernel='linear', probability=True, random_state=25)

Best Model: {'C': 0.1, 'class_weight': None, 'gamma': 'scale', 'kernel': 'linear'}

F1-score on the train set: 0.8646641916976037 F1-score on the test set: 0.8736559139784946

```
In [88]:
           1 from sklearn.metrics import confusion matrix, roc curve, classification report
           2 from sklearn.metrics import f1 score, precision score, recall score, roc auc score, auc, RocCurveDisplay
           3 # Subplot 1: Confusion Matrix
           4 from matplotlib.colors import LinearSegmentedColormap
             cm = confusion matrix(y test,y test pred ,labels=[0,1])
             plt.subplots adjust(hspace=0.5)
             warm=LinearSegmentedColormap.from list('warm',
                                                     [(0, '#EBD5C8'),
           9
                                                       (0.25, '#E1C1AD'),
          10
                                                       (.75, '#D77873'),
          11
          12
                                                       (1, '#C8504A')], N=256)
          13
          14 fig,ax=plt.subplots(nrows=1,ncols=2,figsize=(15,5))
          15
          16 | classes=['Self Made','No Self Made']
          17 | label = ['True Positives', 'False Negatives', 'False Positives', 'True Negatives']
          annot = [f'\{i\} \setminus n \setminus f] for i, j in zip(cm.flatten(), label)]
             annot = np.asarray(annot).reshape(2,2)
          20
          21 sns.set context('notebook')
          22 | sns.heatmap(cm, annot=annot, fmt='', cmap=warm, linecolor='white', linewidths=8, ax=ax[0])
          23 ax[0].set_title('Confusion Matrix')
          24 | ax[0].set_xlabel('\nPredicted Label')
          25 | ax[0].set ylabel('True Label\n')
          26 ax[0].xaxis.set_ticklabels(classes)
          27 ax[0].yaxis.set ticklabels(classes)
          28
          29
             # Subplot 2: AUC
          30
          31 y proba= best model.predict proba(X test)
          32 fpr, tpr, _ = roc_curve(y_test, y_proba[:,1])
          33 roc_auc = auc(fpr, tpr)
          34 RocCurveDisplay.from estimator(best model, X test, y test,ax=ax[1],color="#AF4343")
          35 |sns.lineplot(x = [0, 1], y = [0, 1], color = 'gold', linestyle="dashed", ax=ax[1])
          36 ax[1].set_title('ROC Curve')
          37
          38 plt.tight layout()
```

<Figure size 640x480 with 0 Axes>


```
In [89]:
           1 # Define the hyperparameter grid
           2 param grid = {
                 'n estimators': [50,100, 200],
           3
                  'max_depth': [None, 10, 20, 30],
           4
                  'min_samples_split': [2, 5, 10],
                 'min samples leaf': [1, 2, 4],
           7
                 'max features': ['sqrt', 'log2'],
                 'criterion': ['gini', 'entropy'],
           9
                  'class weight': [None, 'balanced']
          10 }
          11
          12 # Set the random seed for reproducibility
          13 random state = 25
             np.random.seed(random_state)
          15
          16
          17 # Create the RandomForestClassifier model
             model = RandomForestClassifier(class weight='balanced', random state=random state)
          19
          20 # Perform GridSearchCV
          21 grid search = GridSearchCV(estimator=model, param grid=param grid, cv=5)
          22 grid_search.fit(X_train, y_train)
          23
          24 # Retrieve the best model and best parameters
          25 best model = grid search.best estimator
          26 best_params = grid_search.best_params_
          27
          28 # Retrain the best model on the entire training set
          29
            best model.fit(X train, y train)
          30
          31 # Evaluate on training set
          32 y train val pred = best model.predict(X train)
          33 f1_train = f1_score(y_train_val_pred, y_train)
          34
          35 #Calculate the model results to the data points in the testing data set.
          36 y_test_pred = best_model.predict(X_test)
          37 f1_test = f1_score(y_test_pred, y_test)
          38
          39
          40
             print('F1-score on the train set:', f1_train)
```

```
42 print('F1-score on the test set:', f1_test)
```

F1-score on the train set: 0.9018789144050104 F1-score on the test set: 0.8698060941828255

```
In [91]: 1 print(best_model)
```

```
In [90]:
           1 from sklearn.metrics import confusion matrix, roc curve, classification report
           2 from sklearn.metrics import f1 score, precision score, recall score, roc auc score, auc, RocCurveDisplay
           3 # Subplot 1: Confusion Matrix
           4 from matplotlib.colors import LinearSegmentedColormap
             cm = confusion matrix(y test,y test pred ,labels=[0,1])
             plt.subplots adjust(hspace=0.5)
             warm=LinearSegmentedColormap.from list('warm',
                                                     [(0, '#EBD5C8'),
           9
                                                      (0.25, '#E1C1AD'),
          10
                                                      (.75, '#D77873'),
          11
          12
                                                       (1, '#C8504A')], N=256)
          13
          14 fig,ax=plt.subplots(nrows=1,ncols=2,figsize=(15,5))
          15
          16 | classes=['Self Made','No Self Made']
          17 | label = ['True Positives', 'False Negatives', 'False Positives', 'True Negatives']
          annot = [f'\{i\} \setminus n \setminus f] for i, j in zip(cm.flatten(), label)]
             annot = np.asarray(annot).reshape(2,2)
          20
          21 sns.set context('notebook')
          22 | sns.heatmap(cm, annot=annot, fmt='', cmap=warm, linecolor='white', linewidths=8, ax=ax[0])
          23 ax[0].set_title('Confusion Matrix')
          24 | ax[0].set_xlabel('\nPredicted Label')
          25 | ax[0].set ylabel('True Label\n')
          26 ax[0].xaxis.set_ticklabels(classes)
          27 ax[0].yaxis.set ticklabels(classes)
          28
          29
             # Subplot 2: AUC
          30
          31 y proba= best model.predict proba(X test)
          32 fpr, tpr, _ = roc_curve(y_test, y_proba[:,1])
          33 roc_auc = auc(fpr, tpr)
          34 RocCurveDisplay.from estimator(best model, X test, y test,ax=ax[1],color="#AF4343")
          35 | sns.lineplot(x = [0, 1], y = [0, 1], color = 'gold', linestyle="dashed",ax=ax[1])
          36 ax[1].set_title('ROC Curve')
          37
          38 plt.tight layout()
          39 plt.show();
```

<Figure size 640x480 with 0 Axes>

In []: 1