

边缘计算参考架构2.0

ECC 需求与架构组主席 史扬

行业数字化转型是以数据作为生产要素,以智能化创造经济与社会价值

产生数据

价值流动

创造经济与社会价值

未来已来,迎接行业智能化2.0

行业智能化1.0:商业过程智能

商业数据为中心

未来已来

电梯预测性维护、机器人协作等

物数据与商业数据联接协同

产品全生命周期服务等

无处不在,海量数据,按需服务

云计算

泛在网络

- 物理世界与数字世界从割裂转变为<mark>协作融合</mark>;
- **运营决策**从模糊的经验化转变为基于**数字化、模型化的科学化**;
- 流程从割裂转变为基于数据的全流程协同;
- · **行业单边创新**转变为基于**产业生态的多边开放创新**;

是否需要新的技术架构和体系

联接物理和数字世界是关键,ICT指数性突破可以释放物理世界的潜能

物理世界

感知与采集

实时数据流动

数字世界

ICT技术

以太网

带宽增长1,000倍 晶体管数增加100倍 容量增长近1,000倍

AI感知能力突破

指数性突破

·运行优化

价值创造

- •业务连续
- 降低能耗
- 模式创新

计算 存储 AI VR,AF

操作与优化

ICT成本指数性下降

VR , AR

物理世界与云数字世界联接存在诸多挑战

智能需要分布到网络边缘侧,实现物的自主化和协作化学Edge Computing Consortium

数据与知识分享,增强协作化

物自主化

- 自主联接
- 自主发现
- 自主学习
- ・自主优化
- 自主决策
- 自主执行

通过学习协作化的数据,增强自主化

实现行业智能化2.0面临的产业挑战

OT和ICT跨界协作挑战

数据信息难以有效流动与集成

Wise

Knowledge

Information

Data

Physical System

DIKW模型视角

知识模型化仍是巨大挑战

产业链变长,增加了端到端协作集成挑战

边缘计算是分布式开放平台

边缘计算是一个开放分布式平台,在网络边缘靠近数据源就近提供网络、计算、存储等服务,满足了行业数字化转型在联接、智能、实时、数据优化和安全的诉求。

可以作为联接物理世界和数字世界的桥梁,使能智能资产、智能网关、智能系统和智能服务。

边缘计算 开放平台

网络

计算

存储

应用

边缘计算产业化三部曲

参考架构设计理念

模型驱动的参考架构

实现物理世界和

实现跨产业的

数字世界的协作

生态协作

减少系统异构性, 简化跨平台移植

有效支撑系统的 全生命周期活动

技术迁移与创新

技术迁移

SDN NFV

业务编排 微服务 虚拟化

独特创新

TSN AI算法优化 CCF 低功耗OS 低功耗芯片

边缘计算是OT和ICT融合产业

边缘计算参考架构

边缘计 CONSO

强腿次并放

智能服务

业务Fabric

联接计算Fabri

边缘计算节点

网络边缘侧

数据 全生命周期服务

参考架构:多视图定义呈现

概念视图

阐述边缘计算的领域模型和关键概念

阐述架构横向和纵向的框架与服务

阐述系统部署的模式和部署过程

概念视图:边缘计算节点、开发框架与产品实现

定义ECN逻辑节点

<u>提供四类开发框架</u>

基于四类开发框架 构建<mark>六类产品</mark>

概念视图:基于模型的框架实现开发接口标准化,

与标准组织/产业联盟合作

对象关联

资源,负载反馈

物理 拓扑 模型

负载 模型

EC基础设施

功能视图:ECN满足业务实时,服务可扩展与可编排 ② Edge Computing CONSORTIUM

边缘虚拟服务 (EVF)

虚拟化层

基础资源层

开放,灵活,实时

- 开放:基于现有硬件平台扩 展新功能
- 灵活:灵活编排,灵活迁移
- 实时: 低时延网络, 异构计 时序数据库、实时操作 系统

功能视图:联接计算Fabric实现业务调度智能

极简,智能,动态

- ●Fabric抽象为逻辑拓扑, 屏蔽物理拓扑复杂性
- Fabric可动态反馈当前 运行负载,性能基线等
- 动态优化计算负载分布

功能模型:模型驱动的开发服务框架

开发 → 集成 → 仿真 → 验证 → 发布

模型开发服务

仿真服务

集成发布服务

集成开发环境

边缘计算领域模型库

垂直行业领域模型库

完整,协作,灵活

- 提供完整的平台和工具链
- 模型驱动的集成开发环境 使能OICT产业协作
- 虚拟化的仿真环境,可降低集成验证成本
- 组件裁剪+重组技术可以灵活适配目标运行环境

功能视图:业务编排实现新业务快速部署

协作,扩展,敏捷

- 模型定义业务使能业务部 门、开发部门、部署部门 的多角色协作
- 分层部署,可扩展性好
- 策略驱动执行层,与设备 命令解耦,使能业务敏捷

功能视图:数据全生命周期服务

机 器 数 据 过滤

聚合

语义解析

即来即处理, 而不是现存后查询

数据分析

模型规则灵活选择

数据分发与策略执行

Pub-Sub模式灵活扩展

可视化与存储

呈现可灵活定义

部署模型:灵活应对应用场景多样性

大处着眼,小处着手

Think Big, Start Small

