Министерство образования Республики Беларусь Учреждение образования

«Белорусский государственный университет информатики и радиоэлектроники» Институт информационных технологий Кафедра физико-математических дисциплин

ДИСКРЕТНАЯ МАТЕМАТИКА

Задания для самостоятельной работы студентов учебных групп 381071-381074 специальности ПОИТ заочной формы получения высшего образования (осенний семестр 2014-15 уч. г.)

- **1.** Даны множества $A = \{1, 2, 5, 8, 9\}, B = \{2, 7, 8\}.$ Найдите их объединение, пересечение, разности и дополнения до множества $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$
- **2.** Даны множества $A = \{a,b,c,d\}, B = \{1,2,3\}$. Запишите элементы прямого произведения $A \times B$ этих множеств. Определите мощности множеств и число их подмножеств.
- **3.** Даны множества $U = \{1, 2, 3, ..., 100\}$, M_1 множество всех чисел, кратных 3, M_2 множество всех чисел, кратных 5. Найдите объединение, пересечение, разности и дополнения множеств M_1 и M_2 . Определите мощности множеств.
- **4.** Запишите все перестановки из элементов множества $\{a,b,c\}$. Найдите к каждой из них обратную.
- 5. Решите следующие комбинаторные задачи.
- 1) Метка состоит из буквы и цифры. Определите количество меток, составленных из 5 букв и 6 цифр.
- 2) В лотерее выбирается шесть разных номеров из первых 45 натуральных чисел. Определите количество возможных вариантов выбора.
- 3) Определите, сколькими способами в кондитерской можно выбрать 2 булочки из 5 видов, если:
 - нельзя выбирать булочки одного вида, и порядок выбора важен;
 - можно выбирать булочки одного вида, и порядок выбора важен;
 - нельзя выбирать булочки одного вида, но порядок выбора неважен;
 - можно выбирать булочки одного вида, но порядок выбора неважен.
- 4) Из пункта A в пункт B проложено две дороги, из пункта B в пункт C три, из пункта C в пункт D четыре, из D в A пять. Определите, сколько существует вариантов поездок из пункта A в пункт C.
- 5) Для записи целого числа используется строка из 16 двоичных цифр. Определите, сколько различных целых чисел может быть использовано при таком способе записи, если первая цифра зарезервирована под знак.
- 6) На полке в холодильнике лежат фрукты: 3 банана, 4 груши, 5 яблок. Определите

количество вариантов выбора двух фруктов разных видов.

- 7) Регистрационный знак легкового автомобиля представляет собой запись двух букв 12-буквенного алфавита и четырех арабских цифр. Определите, сколько различных номеров может быть выдано.
- 8) На каждой из игральных костей может выпасть от одного до шести очков. Определите количество вариантов выпадения очков при подбрасывании трех костей.
- 9) Из колоды в 36 карт произвольно вытягивается 3 карты. Определите количество комбинаций, содержащих ровно 1 туз (напомним, что в колоде 4 туза).
- 10) Для составления пароля, состоящего из трех различных символов, используется 10 цифр. Определите:
 - сколько можно создать разных паролей;
 - сколько можно создать разных паролей, в которые войдут цифры 0 и 1;
 - сколько можно создать паролей, в которых не будет ни цифры 0, ни цифры 1;
 - сколько можно создать паролей, в которых будет или цифра 0, или цифра 1 (но не обе).
- 11) Все буквы, составляющие слова «МАТЕМАТИКА», нарисованы на отдельных карточках, которые перевернуты изображением вниз и перемешаны. Определите, сколько существует вариантов собрать это слово «вслепую».
- 12) Определите, сколько различных «слов» можно составить из слова МАТЕМАТИКА».
 - **6.** Определите количество натуральных чисел, не превосходящих 100, которые не делятся ни на 3, ни на 5.
 - 7. Составьте таблицы истинности функций трех переменных, заданных формулами:

$$f(x_1, x_2, x_3) = (x_1 \lor x_2) \to (x_1 | (x_2 \oplus x_3)), \quad f(x_1, x_2, x_3) = (x_1 \downarrow x_2) \lor x_1(\overline{x_2 \oplus x_3}).$$

Запишите их канонические формы. Используя алгебраические преобразования, упростите полученные выражения.

Проведите минимизацию с помощью диаграммы Вейча (карты Карно).

Разложите заданные функции по двум первым переменным (теорема Шеннона) и упростите.

Сравните полученные результаты.

- 8. Постройте диаграмму Вейча для функции $x_1x_2x_3 \lor x_1x_2\overline{x_3} \lor \overline{x_1} x_2x_4 \lor \overline{x_2} x_4x_5$ и запишите минимальное выражение в ДНФ.
- 9. Постройте систему функций, преобразующий двоичный код (n=3) в код Грея.
- 10. Булева функция 10 переменных не определена для 30 значений. Сколько существует вариантов доопределения этой функции?
- 11.Постройте для неориентированного графа матрицы смежности и инцидентности, сопряженный (реберный) граф.

- 12.Изобразите неориентированный граф со множеством $V = \{a,b,c,d\}$ вершин и множеством $E = \{(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)\}$ ребер. Составьте его матрицы смежности и инцидентности. Определите степени вершин. Выясните, является ли он планарным.
- 13.С помощью графа на множестве $V = \{1, 2, 3, 4, 5\}$ задайте отношения:

1)
$$x + y \le 5$$
; 2) $x - y < 0$.

- 14.Изобразите орграф со множеством $V = \{a, b, c, d\}$ вершин и множеством $E = \{(a, b), (b, c), (b, d), (c, d), (d, a), (d, b)\}$ дуг. Составьте его матрицы смежности и инцидентности. Определите полустепени входа и выхода его вершин.
- 15. В поселке 6 стационарных телефонов. Можно ли каждый из них соединить кабелем ровно с тремя другими? Изменится ли ответ, если добавить еще один телефон?
- 16. В понедельник проводится 6 лекций. Некоторые из них нельзя читать одновременно. Определить минимальное время, за которое могут быть прочитаны все лекции, если на каждую отводится 2 академических часа. В таблице 1 крестиком помечены лекции, которые не могут начинаться в одно и то же время.

Таблица 1

	Математика Физи	Физика	Социология	Логика	Английский	Французский
		Физика			язык	язык
Математика		X	X		X	
Физика	X		X		X	X
Социология	X	X			X	
Логика						X
Английский	X	X	X			
Язык						
Французский		X		X		
Язык						

- 17. В спортивных соревнованиях каждая команда сыграла с каждой другой. Сколько было проведено встреч в случае 10 участников? Можно ли эту задачу решить для произвольного числа команд?
- 18. Между городами A, B, C, D, E, F, G, H установлено автобусное сообщение по следующей схеме: A-B, A-C, A-D, C-E, F-G, F-H, G-H. Определить: 1) Можно ли доехать на рейсовом автобусе из города A в город E и G? Если да, то определить маршрут с наименьшим числом пересадок. 2. Если каждый из городов соединен автобусным сообщением не менее, чем с четырьмя другими, то можно ли в этом случае добраться из каждого города в любой другой?
 - 19. Постройте плоский граф, изоморфный полному, состоящему из четырех вершин.
 - 20. Определите, изоморфны ли графы

21. Постройте граф, для которого задана матрица смежности

22. Постройте орграф по его матрице смежности $\begin{vmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{vmatrix}$

23. Для шести белорусских городов и попарных расстояний между ними (табл. 2) построить минимальную сеть дорог (найти минимальное остовное дерево полного графа с 6-ю вершинами).

Таблица 2

	Гомель	Гродно	Минск	Могилев	Пинск
Барановичи	431	214	147	393	161
Гомель		596	300	175	365
Гродно			301	557	284
Минск				261	296
Могилев					541

24. Для семи деревень A - G и попарных расстояний между ними (табл. 3) построить минимальную сеть дорог и найти ее суммарный вес.

Таблица 3

	В	C	D	$\boldsymbol{\mathit{E}}$	$\boldsymbol{\mathit{F}}$	\boldsymbol{G}
\boldsymbol{A}	8	14	25	5	12	17
В		8	15	10	21	7
\boldsymbol{C}			14	23	40	31
D				7	17	9
E					6	18

\boldsymbol{F}			12

Для графа, описывающего схему дорог, найти количество остовных деревьев.

25. Постройте матрицу достижимости орграфа, элементы a_{ij} которой равны длине минимального маршрута из вершины v_i в вершину v_i .

26. Составьте матрицу минимальных расстояний от вершины i к вершине j графа, изображенного на рисунке:

Рекомендуемая литература

- 1. Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера. М.: Энергия, 1980. 342 с.
- 2. Липский В. Комбинаторика для программистов. М.:Мир, 1988. 213 с.
- 3. Ерусалимский Я.М. Дискретная математика. М.: Вузов. кн., 2005.
- 4. Новиков Ф.А. Дискретная математика для программистов. (2-е изд).М.-С.-Пб.:Питер.2005.
- 5. Андерсон, Дж. А. Дискретная математика и комбинаторика. Пер. с англ. М. : Издательский дом "Вильямс", 2004.
 - 6. Хаггарти Р. Дискретная математика для программистов. М.: Техносфера, 2005.
- 7. Плотников А.Д. Дискретная математика: учеб. пособие . М.: Новое знание, 2005.