DHBW MANNHHEIM

2. Semester Cyber Security

Algorithmen und Komplexität

 $N.W. \ \mathcal{E} \ J.T$

Eigenschaften der Groß-O-Notation

- 1. Geben Sie die Definition der \mathcal{O} -Notation an.
- 2. Es sei $f \in \mathcal{O}(h_1)$ und $g \in \mathcal{O}(h_2)$. Zeigen Sie, dass $f \cdot g \in \mathcal{O}(h_1 \cdot h_2)$ gilt.
- 3. Beweisen Sie, dass für alle $f: \mathbb{N} \to \mathbb{R}_+$ gilt, dass $f \in \mathcal{O}(f)$.
- 4. Beweisen Sie, dass für $f, g : \mathbb{N} \to \mathbb{R}_+$ und $d \in \mathbb{R}_+$ gilt, dass $g \in \mathcal{O}(f) \to d \cdot g \in \mathcal{O}(f)$.
- 5. Beweisen Sie, dass für $f, g, h : \mathbb{N} \to \mathbb{R}_+$ gilt, dass $f \in \mathcal{O}(h) \land g \in \mathcal{O}(h) \to f + g \in \mathcal{O}(h)$.
- 6. Beweisen Sie, dass für $f, g, h : \mathbb{N} \to \mathbb{R}_+$ gilt, dass $f \in \mathcal{O}(g) \land g \in \mathcal{O}(h) \to f \in \mathcal{O}(h)$.
- 7. Angenommen $f, g, h: \mathbb{N} \to \mathbb{R}_+$. Außerdem wird angenommen, dass der Grenzwert von

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$

existiert. Beweisen sie, dass dann auch $f \in \mathcal{O}(g)$ gilt.

8. Es seien $f, g \in \mathbb{R}_+$. Geben Sie die Definition $f \sim g$ an.

 $1) \qquad O(9) := \{ \beta \in \mathbb{R}_{+}^{n} \mid \exists_{k} \in \mathbb{N} : \exists_{c} \in \mathbb{R}_{+} : \forall_{n} \in \mathbb{N} : (n \ge k \longrightarrow J(n) \le c \cdot g(n)) \}$

2) Je O(ha) 1 ge O(ha)

h, ha EN C, ca ER nell

 $\forall n \in \mathbb{N}: (n \ge k_1 -> \int (n) \le c_1 \cdot h_1(n))$ $\forall n \in \mathbb{N}: (n \ge k_2 -> g(n) \le c_2 \cdot h_2(n))$

ل:= max (لار لاء) (:= در . دء

 $\int (n) \cdot g(n) \leq c_{\lambda} \cdot h_{\lambda} \cdot (n) \cdot c_{\lambda} \cdot h_{\lambda} \cdot (n)$

(n) - q(n) = C, C2 · h, (n) · h2 (n)

∠ > /(n) · q(n) ← C · h, (n) · h, (n)

 $=>\int \cdot g \in O(h_1 \cdot h_2)$

3) { ((())

Definiere 4:=0 C:=1

4n∈ (N: (\(\lambda(n)) \(\lambda(n))

4) 9 € O() -> d. 9 € O()

L'∈ IN C'∈ R

∀n ∈ W: (n ≥ l' → q(n) ≤ c'. ∫(n)) Ungleichung Id

4n ∈ IN: (n ≥ h' -> d. g(n) ∈ c' f(n))

h:= h' c := d.c1

Vn ∈ N : (n ≥ h -> d. g (n) ≤ c. f(n))

=> d.a (0(1)

 \Box

5) $\int e O(h) \wedge g e O(h) -> \int f g e O(h)$

h, ha Ell ca, ca ER+

 $\forall n \in \mathbb{N} : (n \ge k_1 \longrightarrow \int_{\mathbb{N}} (n) \le c_1 \cdot h(n))$ $\forall n \in \mathbb{N} : (n \ge k_2 \longrightarrow g(n) \le c_2 \cdot h(n))$

1(n) + g(n) = c1. h(n) + c2. h(n)

U:= max(u1, u2) (:= C1+c2

J(n) + g(n) & ((1 + c2) · h(n)

f(n) + g(n) ≤ c · h(n)

=> 1 + 9 E h(n)

6)
$$\int \in O(g)$$
 $\Lambda g \in O(h) -> \int \in O(h)$
 $u_1 u_2 \in IN$ $c_1, c_2 \in IR+$

 $\forall_n \in (\mathbb{N} : (n \ge k_1 ->)(n) \le c_1 \cdot g(n))$ $\forall_n \in (\mathbb{N} : (n \ge k_2 -> g(n) \le c_2 \cdot h(n))$

€> C1. g(n) ≤ C2. (1. h(n)

h:= max (h, ha) C:= c1.c2

$$\frac{\int_{0}^{\infty} (x)}{g(x)} = \Lambda \quad \text{isd} \quad \Box$$

Groß-O-Notation

- 1. Zeigen Sie, dass $n^2 \in \mathcal{O}(2^n)$ ist.
- 2. Zeigen Sie auch, dass $n^3\mathcal{O}(2^n)$ gilt.
- 3. Zeigen Sie: $\log_2(n) \in \mathcal{O}(\ln(n+1))$
- 4. Zeigen Sie, dass $\ln^2(n) \in \mathcal{O}(\sqrt{n})$ gilt.
- 5. Versuchen Sie zu zeigen, dass $n^{\alpha} \in \mathcal{O}(2^n)$, wenn angenommen werden kann, dass $\alpha \in \mathbb{N}$ vorausgesetzt ist.

Rekurrenzgleichungen

Lösen Sie folgende Rekurrenzgleichungen:

- 1. $x_{n+2} = x_{n+1} + x_n$ für welche gilt: $x_0 = 0$ und $x_1 = 1$
- 2. $x_{n+2} = 4 \cdot x_{n+1} 4 \cdot x_n + 1$ für welche gilt: $x_0 = 1$ und $x_1 = 3$
- 3. $a_{n+2} = \frac{1}{6} \cdot a_{n+1} + \frac{1}{6} \cdot a_n$ für welche gilt: $a_0 = 0$ und $a_1 = \frac{5}{6}$
- 4. $a_{n+2} = -\frac{1}{2} \cdot a_{n+1} + \frac{1}{2} \cdot a_n$ für welche gilt: $a_0 = 2$ und $a_1 = 1$
- 5. $a_{n+2}=a_{n+1}+2\cdot a_n+1$ für welche gilt: $a_0=0$ und $a_1=-\frac{1}{2}$
- 6. $a_{n+2} = a_n + 2$ für welche gilt: $a_0 = 2$ und $a_1 = 1$
- 7. $a_{n+2} = 2 \cdot a_n a_{n+1}$ für welche gilt: $a_0 = 0$ und $a_0 = 3$
- 8. $a_{n+2} = 7 \cdot a_{n+1} 10 \cdot a_n$ für welche gilt: $a_0 = 0$ und $a_0 = 3$
- 9. $a_{n+1} = 2^n \cdot a_n$ für welche gilt: $a_1 = 1$
- 10. Stellen Sie mit dem Ansatz $a_k := f(2^k)$ eine Rekurrenzgleichung auf und lösen Sie diese.

$$f(n) = 2 \cdot f(n \setminus 2) + \log_2(n)$$

Es gelten folgende Anfangsbedingungen: $x_0 = 0$ und $x_1 = 1$

Master Theorem

- 1. Geben Sie die Definition des Master-Theorems an.
- 2. Schätzen Sie mit Hilfe des Master-Theorems die Komplexität von f
 ab. $f(n) = 2 \cdot f(n \backslash 2) + n$
- 3. Schätzen Sie $g(n) = 4 \cdot g(n \setminus 3) + (\frac{2}{3})^2 \cdot n$ mit Hilfe des Master-Theorems ab
- 4. Schätzen Sie $g(n) = 4 \cdot g(n \setminus 5) + (\frac{3}{2})^3 \cdot n^2$ mit Hilfe des Master-Theorems ab.
- 5. Schätzen Sie $g(n) = 4 \cdot g(n \setminus 3) + 2 \cdot n^{\log_3(4)} + n$ mit Hilfe des Master-Theorems ab.

- 1. Geben Sie die Gleichung an, mit der wir Merge Sort definiert haben. Alternativ ist auch der Pythoncode von Merge Sort akzeptabel.
- 2. Wir haben die Funktion, die für zwei sortierte Listen L_1, L_2 berechnet, wie viele Vergleichsoperationen beim Aufruf von $merge(L_1, L_2)$ geschehen, mit cmpCount bezeichnet. geben Sie die Ungleichung an, die wir für das Verhältnis zwischen $\#L_1, \#L_2$ und $cmpCount(L_1, L_2)$ aufgestellt haben.
- 3. Schätzen Sie mit Hilfe des Master-Theorems die Komplexität von MergeSort ab.

${\bf Sortier problem}$

- 1. Definieren Sie:
 - (a) Partielle Ordnung
 - (b) Lineare Ordnung
 - (c) Quasiordnung
 - (d) Totale-Quasiordnung
- 2. Geben Sie die Definition des Sortierproblems an.

Sortieralgorithmen

- 1. Insertion Sort
 - (a) Formale Defintion
 - (b) Implementierung
 - (c) Komplexität
- 2. Selection Sort
 - (a) Formale Defintion
 - (b) Implementierung
 - (c) Komplexität
- 3. Merge Sort
 - (a) Formale Defintion
 - (b) Implementierung
 - (c) Komplexität
 - (d) Komplexität im Master-Theorem
- 4. Quicksort
 - (a) Formale Defintion
 - (b) Implementierung
 - (c) Komplexität
- 5. Counting Sort
 - (a) Formale Defintion mit allen Phasen
 - (b) Implementierung
 - (c) Komplexität
- 6. Radix Sort
 - (a) Vorgehensweise
 - (b) Implementierung
- 7. Heapsort
 - (a) Formale Defintion
 - (b) Implementierung
 - (c) Komplexität

ADTs + Set und Maps

- 1. Geben Sie die formale Definition von ADTs an.
- 2. Geben Sie die formale Definition des ADT Stack an.
- 3. Beschreiben Sie was ein Generator in einem
- 4. Beschreiben Sie den Shunting-Yard-Algorithmus.
- 5. Geben Sie die formale Definition des ADT Map an.
- 6. Was haben geordnete Binärbäume, AVL Bäume, Tries und co. miteinander zu tun, was verbindet sie?
- 7. Geben Sie die formale Definition und die Komplexität von geordneten Binärbäumen an.
- 8. Geben Sie die formale Definition und die Komplexität von AVL Bäumen an.
- 9. Geben Sie die formale Definition und die Komplexität von Tries an.
- 10. Beschreiben Sie, was eine Prioritätswarteschlange ist.
- 11. Geben Sie die formale Definition und die Komplexität von Prioritätswarteschlangen an.
- 12. Geben Sie die formale Definition und die Komplexität des Heaps an.