mRNA 加工 I: 剪接 (mRNA Processing I: Splicing)

本文介绍 mRNA 加工过程中的剪接机制,包括断裂基因的证据、RNA 剪接的过程、信号、机制以及调控,并简要提及了RNA 自剪接现象。

14.1 断裂基因 (Genes in Pieces)

大多数真核基因被非编码区打断。RNA 聚合酶在转录时会转录整个序列,产生不均一核 RNA (hnRNA)。细胞必须通过剪接 (splicing) 过程去除这些非编码 RNA 序列。基因中的间隔序列 (intervening sequences, IVS) 或内含子 (introns) 是非编码区,而编码区则称为外显子 (exons)。有些基因,尤其在低等真核生物中,没有内含子。内含子存在于真核生物的 mRNA、tRNA 和 rRNA 基因中,以及叶绿体和线粒体基因中。内含子的数量和大小差异很大。例如,哺乳动物的二氢叶酸还原酶 (DHFR) 基因有6个外显子,总长约 2000 个碱基,但整个基因长达 31,000 个碱基。α-胶原基因有 50 个外显子,总长约 2000 个碱基不等,基因总长约 40,000 个碱基。同样大小的基因可能含有不同数量和大小的内含子。有些物种的特定基因含有内含子,而其他物种的同一基因可能没有。例如,植物线粒体细胞色素氧化酶 (cytochrome oxidase) 亚基 II 基因在不同植物物种中内含子的存在情况不同。

14.1.1 断裂基因的证据: R-loop 技术 (Evidence for Split Genes, R-loop)

R-loop 技术是证明断裂基因存在的证据之一。其原理是 mRNA 与其 DNA 模板杂交形成双链杂合体,通过电子显微镜 (EM) 进行观察。

14.1.2 RNA 剪接过程 (RNA Splicing Process)

RNA 剪接是将不成熟 RNA 中的内含子切除并将外显子连接起来形成最终产物的过程。原始转录物 (primary transcript) 或 pre-mRNA 经过剪接后成为成熟转录物 (mature transcript)。

14.1.3 剪接信号 (Splicing Signals)

剪接信号是指导剪接发生的特异性序列。典型的剪接信号模式为:外显子/GU-内含子-AG/外显子。在哺乳动物中,5'剪接位点的共有序列为AG/GUAAGU,3'剪接位点的共有序列为YNCURAC-YnNAG/G。其中,/表示外显子-内含子边界,Y为U/C,Yn为约9个嘧啶组成的序列,R为A/G,A是参与分支的特殊腺苷酸,N是任意碱基。3'剪接位点由长度不等的多聚嘧啶区(polypyrimidine tract, PPT)界定,PPT区域招募因子结合到3'剪接位点和分支点序列(branch point sequence, BPS)。通过突变共有序列或研究有剪接问题的患者基因,证实了这些剪接信号对于正常剪接至关重要。

14.1.4 剪接对基因表达的影响 (Effect of Splicing on Gene Expression)

剪接的存在实际上促进了基因表达。内含子可以提高基因表达效率,例如β-珠蛋白基因的高效表达依赖于内含子。内含子刺激高效的 mRNA 3'-末端形成,并提高翻译效率。mRNA 在细胞核中与多种蛋白质复合形成信使核糖核蛋白 (mRNP),这些蛋白质随 mRNA 转运到细胞质。剪接过程中,一些蛋白质被添加到 mRNP 的外显子连接处,形成外显子接点复合物 (exon junction complex, EJC)。EJC 是内含子刺激基因表达所必需且充分的,可能通过促进 mRNA 与核糖体的结合来实现。因此,是剪接过程中添加的蛋白质而不是剪接本身引起了刺激作用。EJC 还能促使含有提前终止密码子的错误 mRNA 降解,从而通过去除无生产力地占据核糖体的受损 mRNA 来提高效率。

14.2 细胞核 mRNA 前体的剪接机制 (The Mechanism of Splicing of Nuclear mRNA Precursors)

14.2.1 分支中间体 (A Branched Intermediate)

细胞核 mRNA 前体的剪接通过**套索机制**进行,中间体呈分支状,类似套索 (lariat)。 剪接过程分两步: (1) 套索状中间体的形成; (2) 剪接过程完成。在第一步中,内含子中分支点的 A 的 2'-OH 攻击第一个外显子与内含子连接处的磷酸二酯键,产生游离外 显子1和套索状内含子-外显子2中间体。在第二步中,外显子1的游离3'-OH攻击内含子与外显子2的磷酸二酯键,连接两个外显子,并释放套索状内含子。

14.2.2 分支点信号 (A Signal at the Branch)

分支点存在一个共有序列。在酵母中,分支点序列几乎不变,为UACUAAC。在高等真核生物中,共有序列变化较大。在这两种情况下,分支的核苷酸都是序列中最后一个 A。酵母的分支点序列还能指导剪接机器选择下游合适的 AG 作为 3' 剪接位点。

14.2.3 剪接体 (Spliceosomes)

细胞核 mRNA 前体的剪接发生在剪接体 (spliceosome) 上。**剪接体由五种小核 RNA** 蛋白 (small nuclear RNA proteins, snRNPs) 和多种非 snRNP 相关蛋白因子组成。
snRNPs (发音为 "snurps") 由偶联到蛋白质上的小核 RNA (small nuclear RNAs, snRNAs) 组成。五种 snRNPs 和/或 snRNAs 包括 U1, U2, U4, U5, 和 U6。它们具有三个作用:
(1) 识别 5' 剪接位点和分支点; (2) 将这些位点聚集在一起; (3) 催化 (或协助催化)
RNA 的切割。RNA-RNA、RNA-蛋白质和蛋白质-蛋白质相互作用在剪接过程中都非常重要。

snRNAs 和蛋白质剪接因子都识别剪接信号。U1 snRNP 首先识别 5'-剪接位点,然后被 U6 snRNP 取代。U2 snRNP 识别分支点, U2AF 蛋白 (U2-associated factor) 识别 3'-剪接位点。U5 snRNP 结合到 5'-和 3' 剪接位点。

U1 snRNA 具有与 5' 和 3' 剪接位点共有序列互补的区域,可能通过碱基配对将它们聚集在一起。U6 snRNA 与 5'-剪接位点碱基配对。U6 在剪接体中与内含子 5'-末端非常接近。酵母 U6 中不变的 ACA (nt 47-49) 与内含子的 UGU (nt 4-6) 碱基配对。U6 在剪接的初始步骤前后都与剪接底物结合。存在 U2-U6 复合物, U2-U6 碱基配对有助于形成剪接体的活性位点。U6 snRNP 通过 U6 snRNA 与内含子 5'-末端碱基配对结合。U6 与剪接底物的结合对于剪接过程至关重要。U6 在剪接过程中也与 U2 结合。

U2 snRNA与分支点的保守序列碱基配对。这种碱基配对对于剪接至关重要。U2 也与 U6 形成重要的碱基对,形成螺旋 I (helix I),帮助这些 snRNPs 定位进行剪接。U2 的 5'-末端与 U6 的 3'-末端相互作用形成螺旋 II (helix II),这对于哺乳动物细胞的剪接很重要,但在酵母细胞中不是必需的。

U5 snRNP 与两个外显子结合,将它们定位以便进行第二步剪接。U5 snRNP 结合到第一个外显子的 3'-末端和第二个外显子的 5'-末端,以定位两个外显子进行剪接。

U4 snRNP与U6结合,但在剪接中没有直接作用。剪接开始后,U4从U6解离。U4的作用是结合并隔离U6,直到U6参与剪接。与U4碱基配对形成茎I的一些U6碱基也参与与U2的碱基配对。去除U4允许U6与U2碱基配对并帮助形成活性剪接体。U6 snRNA参与催化。剪接的两个步骤都是转酯反应 (trans-esterification reaction),其中一个磷酸二酯键断裂并形成另一个磷酸二酯键。

图 14.25 剪接体循环。循环过程中的各个事件已在正文中阐述。(Source: Adapted from Sharp, P. A. Split genes and RNA splicing. Cell 77: 811, 1994.)

14.2.4 剪接体的组装及功能 (Spliceosome Assembly and Function)

所有 snRNPs 都含有相同的一组七个 Sm 蛋白。这些蛋白是系统性自身免疫疾病患者体内抗体的常见靶点。 Sm 蛋白结合到 snRNAs 上的共同 Sm 位点。每个 snRNP 仍然有自己特异性的蛋白质组。 Sm 蛋白形成一个中间有孔的甜甜圈状结构。

在后生动物 (metazoans) 中,存在一种罕见的变异内含子类型。它们的 5'-剪接位点和分支点序列与典型的不同。一组丰度较低的 snRNPs,包括 U11, U12, U4atac, 和 U6atac, 与 U5 一起构成低丰度剪接体 (minor spliceosome),用于剪接罕见的 U12-型 pre-mRNA 内含子。这些构成 U12 剪接体的 snRNPs 位于细胞质中,而主要剪接体位于细胞核中。后生动物细胞含有低丰度 snRNAs: U11 对应 U1; U12 对应 U2; U4atac 对应 U4; U6atac 对应 U6。

剪接体的组装是逐步进行的。剪接体的组装、功能和拆卸被称为**剪接体循环** (spliceosome cycle)。U1 是第一个结合到剪接前体的 snRNP。

酵母剪接体循环包括以下步骤: (1) 定向复合体 (commitment complex, CC) 形成: 剪接底物+U1+其他因子。CC 在 5'-位点对内含子剪接进行定向。(2) U2 在 ATP 帮助下加入,形成 A 复合体。(3) U4-U6 和 U5 加入,形成 B1 复合体。(4) U4 解离: U6 取代U1; U1 和 U4 退出; U6 与 U2 碱基配对。形成活化的剪接体 (B2 复合体)。(5) 在ATP 帮助下,在 C1 复合体中进行第一步剪接。(6) 在第二次 ATP 帮助下,在 C2 复合体中进行第二步剪接。(7) 剪接后的内含子结合到 I 复合体,然后从 snRNPs 解离,去分支并降解。snRNPs 被回收用于另一个剪接复合体。

14.2.5 定位、剪接位点选择、可变剪接 (Commitment, Splice site selection, and Alternative Splicing)

snRNPs 需要额外的剪接因子帮助结合外显子-内含子边界。Slu7 识别正确的 AG。U2AF和 SR 蛋白参与特定位点剪接的定位。U2AF (U2-associated factor)和 SR 蛋白 (含有富含丝氨酸/S 和精氨酸/R 的结构域)。一些剪接因子桥接内含子和外显子,从而定义这些 RNA 元件用于剪接。其他因子可以改变剪接位点的选择。

3' 剪接位点选择 (3'-Splice Site Selection)

3' 剪接位点 AG 通常位于分支点下游 18-40 nt 之间。靠近分支点的 AG 通常被跳过。剪接因子 Slu7 对于选择正确的 AG 是必需的。没有 Slu7, 正确的 AG 不会被使用。 U2AF (U2AF35 + U2AF65) 参与 3' 剪接位点识别。 U2AF65 结合到多聚嘧啶区, U2AF35 结合到 3' 剪接位点的 AG。实验证明 Slu7 对于在 3' 剪接位点选择正确的 AG 是必需的。

定位 (Commitment)

剪接因子 SC35 是一种 RNA 结合蛋白 (RNA-binding protein),属于 SR 蛋白家族。 SC35 导致定向复合体的形成。SC35 的定向活性是特异性的,不源于一般的 RNA 结合能力。SR 蛋白是剪接激活因子,包含两个结构域:(1) RNA 识别模体 (RNA-recognition motif, RRM),用于 RNA 结合;(2) RS 结构域,介导剪接机器内部蛋白质之间的相互作用以促进剪接。

桥接蛋白与定位 (Bridging Proteins and Commitment) 内含子界定

酵母中不存在 SR 蛋白,但酵母和哺乳动物的 CC 具有许多共同特征。酵母 Mud2p 不仅与内含子 5'-末端的 U1 snRNA 相互作用,还与分支点桥接蛋白 (branchpoint bridging protein, BBP) 和靠近内含子 5'-末端的 yPrp40p 相互作用。Prp40p 是 mRNA 前体加工蛋白,是 U1 snRNP 的组分之一。BBP 在内含子 5'-和 3'-末端之间形成桥梁。在酵母 CC 中,BBP 结合到内含子 5'-末端的 U1 snRNP 蛋白,并结合到内含子 3'-末端附近的 Mud2p。BBP 也结合到内含子 3'-末端附近的 RNA。因此,它桥接内含子,可能在剪接前定义内含子中发挥作用。哺乳动物的 BBP 对应物 SF1 (mBBP) 可能在哺乳动物 CC 中发挥相同的桥接功能。

RNA 聚合酶 II CTD 的作用 (Role of the RNA Polymerase II CTD)

剪接、加帽和多聚腺苷酸化由 RNA 聚合酶 II 的 C-末端结构域 (CTD of Rpb1) 协调。 在外显子界定 (exon definition) 中,剪接因子识别外显子的末端并剪切内含子。所有 外显子必须完整才能确定其为外显子。在内含子界定 (intron definition) 中,识别的是内含子的末端。CTD 刺激使用外显子界定的底物剪接,但不刺激使用内含子界定的底物。高等真核生物主要以外显子界定为主,酵母以内含子界定为主。高等真核生物的外显子通常较小 (<300nt),酵母的内含子通常较小,而外显子大小似乎没有限制。CTD 与剪接因子结合,将剪接因子组装到外显子的两端,促进剪接反应。实验表明CTD 能够刺激剪接反应,并帮助剪接底物募集到活性剪接体。CTD-GST (CTD 融合蛋白) 不能刺激含有不完整外显子的剪接底物。CTD 与 snRNPs 和 SR 蛋白结合。RNA Pol II 转录出第一个外显子,CTD 介导剪接因子组装到 pre-mRNA 外显子的两端,从而界定该外显子。CTD 以同样方式介导第二个外显子,并拉近两个外显子,为剪接做准备。随着 RNAP 继续转录,两个外显子被剪接在一起。

选择性剪接/可变剪接 (Alternative splicing)

选择性剪接是从一种**剪接模式切换**到另一种。大约50%的 pre-mRNA 可以以不止一种方式剪接,产生两种或多种可变 mRNA,从而产生不同的蛋白质。其意义在于:(1)决定基因蛋白质产物的性质;(2)控制基因表达。果蝇 DSCAM 基因可以以38,000种可变方式剪接。

果蝇的性别决定系统是选择性剪接的例子。Sex lethal (Sxl)、transformer (tra)和doublesex (dsx) 三个基因 pre-mRNA 的选择性剪接方式在雄性和雌性中不同。在雌性中,Sxl 转录物的雌性特异性剪接产生活性产物,该产物进一步增强 Sxl 转录物的雌性特异性剪接,同时也引起 tra 转录物的雌性特异性剪接,产生活性 tra 产物。活性tra 产物与另一个基因 tra-2 的产物一起,引起 dsx 转录物的雌性特异性剪接,其产物使雄性特异性基因失活,导致雌性个体发育。相反,在雄性中,Sxl 转录物的雄性特异性剪接产生无活性产物,因为外显子 3 含有终止密码子。因此,tra 转录物也进行默认 (雄性特异性)剪接,产生无活性产物。没有 tra 产物,细胞按照默认的雄性特异性剪接模式剪接 dsx 转录物,其产物使雌性特异性基因失活,导致雄性个体发育。

选择性剪接受到 RNA 剪接因子的控制。Sxl 和 Tra 的产物能够决定 tra 和 dsx 转录物的剪接位点。Sxl 和 Tra 可能是剪接因子,引起雌性特异性剪接模式的定位。Tra 蛋白和 Tra-2 蛋白通过结合在 dsx pre-mRNA 雌性特异性 3'-剪接位点下游的调控区而发挥作用。Tra 和 Tra-2 是 dsx pre-mRNA 进行雌性特异性剪接所必需的。Tra 和 Tra-2 单独不足以引起定位,外加任何一种有活性的 SR 蛋白就足以确保 dsx pre-mRNA 发生雌性特异性剪接。

图 14. 36 果蝇性别决定中选择性剪接的级联反应。Sxl、tra 和 dsx 基因前体 mRNA 分子的结构在雌雄果蝇个体中是一致的,见图中部所示。雄性特异剪接模式和雌性特异剪接模式分别在结构图的上、下方标出。Sxl 前体 mRNA 的雌性特异性剪接涉及 1、2、4~8 等 7 个外显子的拼接,而 Sxl 前体 mRNA 的雄性特异性剪接涉及全部 8 个外显子的拼接,其中外显子 3 含有终止密码子,这意味着该转录物的雄性特异性剪接产生短的无活性的蛋白质。同样,tra 前体 mRNA 的雌性特异性剪接涉及 1、3、4 外显子的拼接,产生有活性的蛋白质,而 tra 前体 mRNA 的雄性特异性剪接涉及全部 4 个外显子的拼接,其中外显子 2 含有终止密码子,产生无活性蛋白质产物。最左侧的长箭头指示基因的蛋白质产物对剪接反应具有正控效应,即雌性的 Sxl 蛋白引发 Sxl 前体 mRNA 和 tra 前体 mRNA 的雌性特异性剪接反应。雌性 tra 基因产物与 tra 2 蛋白协同作用,引发 tra 3 tra 2 蛋白协同作用,引发 tra 2 tra 3 tra 3 tra 6 tra 6 tra 6 tra 6 tra 7 tra 6 tra 7 tra 6 tra 8 tra 7 tra 8 tra 8 tra 8 tra 9 tra 8 tra 9 tra

补充知识: mRNA 的可变剪接极大地增加了蛋白质组的多样性和复杂性, 使基因能够承担复杂功能并实现精细调节。59%的人类基因具有可变剪接, 每个基因平均有 2.6 种剪接型。多数可变剪接基因表达于神经系统和免疫系统。

14.2.6 剪接的调控 (Control of Splicing)

选择性剪接模式的调控方式包括: (1) 转录物从不同的启动子处开始; (2) 有些外显子可被忽略; (3) 5'-剪接位点的选择; (4) 3'-剪接位点的选择; (5) 内含子保留 (retained intron); (6) 多聚腺苷酸化引起 pre-mRNA 切割, 使下游外显子缺失。细胞可精细调

控选择性剪接,对一段序列在不同情况下以外显子或内含子区别对待。决定对剪接信号特异性识别的因素包括: (1) 剪接因子刺激在特定剪接位点的定位; (2) 外显子含有促进剪接的外显子剪接增强子 (exonic splicing enhancer, ESE) 和抑制剪接的外显子剪接沉默子 (exonic splicing silencer, ESS); (3) 内含子也有内含子剪接增强子和内含子剪接沉默子。这些序列与细胞类型特异性或发育阶段特异性蛋白质因子结合,或响应外界刺激,从而促进或抑制邻近位点的剪接。SR 蛋白结合 ESE,hnRNP (heterogeneous nuclear ribonucleoprotein) 蛋白结合 ESS。hnRNP 蛋白结合 hnRNA,是剪接阻遏物 (splicing repressors)。它们缺乏 RS 结构域,不能招募剪接机器,但能阻止其结合的特定剪接位点的使用。具有 ESS 活性的 hnRNP 通常是 hnRNPA1。hnRNPA1 蛋白至少有 3 种作用机制抑制外显子剪接。

14.3 RNA 的自剪接 (Self-Splicing RNAs)

RNA 的自剪接是分子生物学的重要发现之一。首先在四膜虫 (Tetrahymena) 26S rRNA 基因中发现。自剪接内含子分为 Group I 内含子和 Group II 内含子。