FAST

多源数据下载终端 软件说明书

Fusion Abundant multi-Source data download Terminal

Release 2.11

常春涛, 蒋科材, 李博, 魏恒达, 李凯, 慕仁海

武汉大学

题记

针对目前GNSS数据下载步骤繁琐、下载速度慢等问题,开发了一套较为完备的融合多源数据下载终端软件——FAST,软件目前包含GNSS科研学习过程中绝大部分所需的数据源,采用并行下载的方式极大的提升了下载的效率。

参与贡献

常春涛博士@武汉大学

程序思路、主程序编写、文档编写、程序测试

蒋科材博士后@武汉大学

程序思路、并行计算处理思路

李博博士@辽宁工程技术大学

程序测试、文档编写、节点汇总

魏恒达硕士@武汉大学

程序编写、程序思路

李凯副高工@中国科学院上海天文台

程序思路、程序测试

慕仁海博士@武汉大学

程序思路、程序测试

Git地址(最新软件获取)

https://github.com/ChangChuntao/FAST https://gitee.com/changchuntao/FAST

软件如有任何问题,可与笔者及时联系!开源万岁!

常春涛¹ 2022年4月2日 于北京房山人卫观测站 2023年10月14日修订 于武汉大学卫星导航定位技术研究中心

¹ 邮箱: chuntaochang@whu.edu.cn 微信: amst-jazz

目录

1	介绍		. 1
2	安装教	安装教程	
	2.1	软件获取	. 2
		2.1.1 直接下载	. 2
		2.1.2 Git	. 3
		2.1.3 文件简介	. 3
	2.2	安装	. 3
3	使用证	b用说明	
	3.1	模式介绍	. 4
	3.2	引导下载模式	. 4
		3.2.1 数据下载	. 4
		3.2.2 GNSS时间转换	. 6
	3.3	带参数运行模式	. 7
	3.4	界面版	. 8
		3.4.1 时间转换插件	. 8
		3.4.2 下载方式	. 8
4	数据习	支持	10

1 介绍

FAST软件是我们团队开发的GNSS数据下载软件,其包含了目前GNSS绝大多数的数据源,若有缺失可后期陆续补充,有任何问题探讨可通过微信(amst-jaz z)与邮箱(chuntaochang@whu.edu.cn)及时与我取得联系。软件特点如下:

系统支持:同时支持Windows与linux系统,其中Windows提供界面版本与命令行版本,Linux系统提供命令行版本;

操作简单: Windows系统可使用界面版本,一键操作快速便捷;同时命令行支持引导模式和带参数运行模式,引导模式下只需根据提示选择下载的类型等即可下载,通过FAST-h查看带参数运行帮助;

资源丰富:基本囊括了GNSS科研学习与测绘工作中所需的大部分数据源,目前支持15个大类、178个产品,具体支持数据见数据支持,并且在不断完善丰富中:

下载快速:软件采用并行下载方式,在命令行参数运行模式和界面模式下可自行指定下载线程数,经测试下载100天的IGS中心brdc+sp3+clk文件只需要48.93s(并行数20);

拓展性强:如需支持更多数据源,可在FTP_Source.py、GNSS_TYPE.py中指定所需的数据与数据源;

灵活轻便:在带参数运行模式下,用户可灵活指定下载类型、下载位置、下载时间、是否解压、线程数等,可根据自我需求编写bat、shell、python等脚本运行;非界面版体量小、可操作性高,界面版使用方便;

维护良好:代码托管至github与gitee,两平台同步;平均20~30d进行一次更新,有bug或需求可即时通过文中联系方式联系或github提交issue。

2 安装教程

2.1 软件获取

请先于GITEE或Github链接(ctrl+鼠标左边点击链接)处下载软件包!

<u>GITEE</u> > <u>https://github.com/ChangChuntao/FAST</u>

Github > https://gitee.com/changchuntao/FAST

2.1.1 直接下载

进入网址直接进行下载,其中GITEE流程为:克隆/下载 > 下载ZIP;

图 1 gitee

Github流程为: Code > Download ZIP

图 2 github

2.1.2 Git

如需自行修改代码,可使用git工具进行拉取程序(若仅使用无需此步):

- 1、下载git工具,下载地址: git官网,安装教程: git安装教程;
- 2、将FAST代码Fork到自己的仓库;
- 3、获取自己的Git地址,例如https://gitee.com/changchuntao/FAST;
- 4、本地运行git bash 运行 git clone https://gitee.com/changchuntao/FAST

2.1.3 文件简介

下载解压后会有以下几个文件夹:

图 3 软件文件结构

FAST src: 软件源码; Linux: Linux系统软件包;

Windows: Windows系统软件包; Win QT: Win界面版软件包;

Mac: Mac系统软件包; Mac QT: Mac界面版软件包;

LICENSE: 许可文件; README.md: 项目介绍文档;

README EN.md: 英文版项目介绍文档。

2.2 安装

无需安装,拷贝对应文件夹下文件至用户自用软件目录下即可使用; 其中FAST.exe或FAST-QT.exe为主程序,bin目录为相关文件与库注意的是:

- 1、文件路径中不可有空格!
- 2、FAST.exe和bin目录须在同级目录下!
- 3、FAST-QT.exe和win bin或mac bin须在同级目录下!
- 4、于Linux或Mac首次启动会出现权限错误,进入命令行将bin文件夹和win bin文件夹、mac bin文件夹内文件全部用chmod +x *给于权限。

3 使用说明

3.1 模式介绍

FAST程序有引导下载模式与命令行带参数运行模式两种方式下载,相关数据支持请看**数据支持**;

- 1、引导下载模式: 在Windows系统下直接双击运行FAST.exe便可进入引导下载模式,在Linux系统下在终端运行FAST便可进入引导下载模式。
- 2、带参数运行模式:在各系统于终端中运行FAST-h便可查看带参数运行模式帮助。
 - 3、界面版:双击即可打开使用。

3.2 引导下载模式

3.2.1 数据下载

数据按照类型可分为15个大类、178个产品,Windows系统下直接双击 FAST.exe,其他系统命令行运行FAST,执行后会看到一级菜单,输入想要下载的 类别的编号,回车以确认,类如需要下载广播星历,输入2回车;

```
root@LAPTOP-5TJ0CAGV:/mnt/d/Code/CodeTest/FAST-main# fast
 *** 当前为Linux系统
                       : Fusion Abundant multi-Source data download Terminal
      FAST
                       : Chang Chuntao
      Copyright(C) : The GNSS Center, Wuhan University &
                       Chinese Academy of Surveying and mapping

: QQ@1252443496 & WECHAT@amst-jazz GITHUB@ChangChuntao
: https://github.com/ChangChuntao/FAST
      Contact
      Git
                       https://gitee.com/changchuntao/FAST
: 2023-09-20 # 2.11
      Version
                                          ----FAST-
          1 : BRDC
                                          2 : SP3
                                                                        3 : CLK
                                                                           : BIA_DCB_OBX
          4
            : RINEX
                                          5
                                            : ERP
                                                                        6
          7 : ION_TRO
                                          8 : SINEX
                                                                        9 : CNES_AR
         10 : Time_Series
                                         11 : Velocity_Fields
                                                                       12 : SLR
         13 : LEO
                                         14 : PANDA
                                                                       15 : GAMIT
          a: HELP
                                          b : GNSS_Timestran
     Note: 请输入数据编号 (eg. 2 or a)
```

图 7 一级菜单

1:BRDC-广播星历 2:SP3-精密星历

3: CLK - 精密钟差; 4: RINEX - 观测文件

5: ERP - ERP文件 6: BIA_DCB_OBX - 改正

7 : ION TRO 8 : SINEX - SNX

9: CNES_AR - PPPAR 10: Time_Series - 时序

13: LEO - 低轨数据 14: PANDA - PANDA表文件

15: GAMIT - GAMIT表文件

确认后会出现二级菜单,输入对应需要下的数据类型,回车确认,例如我们需要下载多系统的武汉大学分析中心计算的精密星历,输入6以回车;

图 8 二级菜单

MGEX - 多系统,指数据含有GCRE四系统或更多系统数据;

GPS - 单GPS, 指数据仅含有GPS系统数据;

GRE - 仅有GPS/GAL/GLO数据,不含BDS数据;

GLO - 单GLO, 指数据仅含有GLONASS系统数据;

F-final, 最终;

R - rapid 快速;

U-ultra 超快速;

确认后软件会根据数据类型,提示输入时间、站点、是否解压等输入。

1、提示输入时间,输入需要下载的年、年积日(起始年积日 截至年积日)

, 2023 1 10表示为下载2023年年积日1到10天的数据;

- 若需下载多天数据,请输入 <年 起始年积日 截止年积日> <year start_doy end_doy> 若需下载单天数据,请输入 <年 年积日> <year doy> Note: 如需返回上级目录,请输入y
- 2023 1

图 9 输入时间

- 2、提示输入时间,输入需要下载的站点或者站点文件:
- ①如若站少的情况下直接输入站点名,用空格分开,例如: BJFS00CHN irkj urum,对于IGS站点,输入长名、短名都可以识别,大写小写也都可以识别;
- ②若站较多,可以将站点名都写入一个文本文件,站名输入同①,行模式列 模式都可以,然后输入所对应的文件名以确认。

 - 请输入站点名称或站点文件所在位置(绝对位置/相对位置) 例如直接输入站点名 BJFS00CHN irkj urum 或输入站点文件(相对目录/绝对目录/当前目录文件) site.txt 或 D:\site.txt 文件内写入站名,长名短名都可,按行按空格分割都可!例如文件内容 BJFS00CHN irkj urum

图 10 输入站点或站点名

- 3、下载完成后会提示是否解压文件,直接回车即可解压,若不想解压输入 任意字符串回车。
 - 是否解压文件? 如需解压直接回车,若无需解压输入任意字符回车! / Press enter to unzip!

图 11 是否解压

GNSS时间转换 3.2.2

1.12版本后新增GNSS时间转换功能,通过引导进入FAST后,输入b引导进入 时间转换,同时也有单独的FAST Time可执行程序以供使用。

输入b后可看到当前历元的各格式的GNSS时间,同时提示输入需要转换的格 式;

输入对应的编号,例如如需转换年月日,输入1并回车,后经提示输入对应 的年月日:

```
当前系统UTC时间为2022-09-19 03:16:29
Year / Month / Day
Year / Doy
GPSWeek / DayofWeek
                               2022 262
MJD / Sod
                               59841 11789.41846
1. Year Month Day 2. Year Doy 3. GPSWeek DayofWeek 4. MJD SOD
请输入所需转换的时间格式编号 (eg. 2)
请输入 Year Month Day (eg. 2022 04 29)
月間/(Para Flyor)
2022 9 16
Year / Month / Day
Year / Doy
                                       09 16
                               2022
                                       259
GPSWeek / DayofWeek
                               2227
                               59838 0.0
```

3.3 带参数运行模式

命令行带参数运行模式Windows系统CMD或power shell运行FAST.exe -h可查看命令行运行帮助,若为Linux系统终端输入FAST -h查看帮助:

- -v, -version:输出软件版本;
- -h, -help: 输出软件帮助;
- -t, -type: 指定数据类型,如需下载多种数据以逗号分割:

例如: -t GPS_brdc,GPS_IGS_sp3,GPS_IGR_clk

- -l, -loc: 指定下载输出位置;
- -y, -year: 指定下载年份;
- -d, -day: 指定下载单天年积日;
- -s, -day1: 指定下载起始年积日;
- -e, -day2: 指定下载截至年积日;
- -m, -month: 指定下载月份;
- -u, -uncomprss Y/N: 默认为Y, 代表解压文件, N代表不解压文件;
- -f, -file: 指定站点文件所在位置;
- -i, -site: 指定站点, 多站用逗号分割站点;

例如: -i bjfs,abpo

-p, -process: 指定下载并发数量,默认为8。

例如:

FAST -t Panda svnav

FAST -t GPS_brdc,GPS_IGS_sp3,GPS_IGR_clk -y 2022 -s 22 -e 30 -p 30

FAST -t MGEX IGS rnx -y 2022 -d 22 -f D:\code\cdd\mgex.txt

FAST -t MGEX_IGS_rnx -y 2022 -d 22 -i bjfs,abpo

FAST -t IVS week snx -y 2022 -m 1

3.4 界面版

界面版仅在Win系统和Mac系统下可用,双击FAST-QT以使用,软件界面分为三个区域,左侧为时间转换插件,右上侧为参数输入区,右下侧为LOG区

图 12 界面版

3.4.1 时间转换插件

界面版左侧为时间转换区,输入自己所需的时间点击转换即可将时间转换为 所有其他时间格式

3.4.2 下载方式

选择或输入所需的选项,点击下载即可触发下载,点击终止即可强行终止下载。

其中:

数据类型对应一级菜单,也就是数据所属的大类:

数据名称对应二级菜单,即为数据的具体名称;

下载年份即为所需下载数据的年份;

下载月份即为所需下载数据的月份,注意的是此选项仅在数据类型为 IVS week snx\P1C1\P1P2\P2C2时可用;

起始日和截止日对应下载数据的开始时间和截止时间,注意的是,仅下载一 天数据的时候只需要输入起始日参数即可;

站点名称即为下载观测数据文件或者时序文件时输入站点名,站点名按照逗号(英文)分开,输入长名、短名都可以识别,大写小写也都可以识别;

小时选择为下载超快速产品时希望下载哪个小时的产品;

是否解压为下载完成后是否希望文件解压;

并发数量为并发下载数量,根据电脑配置选择,可大大提升下载速度;

站点文件为当下载观测数据站点量较大时,将站点名站点名都写入一个文本文件,文件内输入长名、短名都可以识别,大写小写也都可以识别,按照空格分开,右侧按钮选择或直接输入文件位置;

下载位置为所希望文件的下载的本地位置右侧按钮选择或直接输入文件位置。

例如,希望下载abpo bjfs站点2023年1至10天的数据到桌面,下载完需要解压,如下所示:

4 数据支持

BRDC: GPS_brdc/MGEX_brdm

SP3: GPS_IGS_sp3/GPS_IGR_sp3/GPS_IGU_sp3/GPS_GRG_sp3

MGEX_WHU_F_sp3/MGEX_WHU_R_sp3/MGEX_WHU_U_sp3

MGEX_WHU_H_sp3/MGEX_WHU_RTS_sp3/MGEX_SHA_F_sp3

MGEX_COD_F_sp3/MGEX_GRG_F_sp3/MGEX_GFZ_R_sp3

MGEX_IAC_F_sp3/GRE_GFZ_F_sp3/GRE_COD_R_sp3/GLO_IGL_F_sp3

GRE_JAX_U_sp3

CLK: GPS_IGS_clk / GPS_IGR_clk / GPS_GRG_clk / GPS_IGS_clk_30s

MGEX_WHU_F_clk / MGEX_WHU_R_clk / MGEX_WHU_U_clk

MGEX_WHU_H_clk / MGEX_WHU_RTS_clk / MGEX_SHA_F_clk

MGEX_COD_F_clk / MGEX_GRG_F_clk / MGEX_GFZ_R_clk

MGEX_IAC_F_clk / GRE_GFZ_F_clk / GRE_COD_R_clk / GLO_IGL_F_clk

GRE_COD_F_clk_30s / GRE_JAX_U_clk_30s

RINEX: GPS_IGS_rnx / GPS_USA_cors / GPS_HK_cors / GPS_AU_cors

MGEX_IGS_rnx / MGEX_HK_cors / GRE_IGS_01S / GCRE_MGEX_01S

MGEX_EU_cors / GRE_USA_01S

ERP: IGS_F_erp / IGS_R_erp / WHU_F_erp / COD_F_erp / WHU_U_erp GFZ_R_erp / COD_R_erp / WHU_H_erp

BIA_DCB_OBX: GPS_COD_F_osb / GE_GRG_F_osb / GRE_COD_R_osb / MGEX_WHU_F_osb

MGEX_WHU_R_osb / MGEX_WHU_R_abs / MGEX_COD_F_osb

MGEX_GFZ_R_osb / MGEX_CAS_R_osb / GPS_COD_dcb /

MGEX_CAS_R_dcb

P1C1/P1P2/P2C2/GPS_COD_F_obx/GPS_GRG_F_obx

MGEX_WHU_F_obx / MGEX_WHU_R_obx / MGEX_WHU_U_obx

MGEX_COD_F_obx / MGEX_GFZ_R_obx

 $ION_TRO: IGSG_ion / IGRG_ion / WHUG_ion / WURG_ion / CODG_ion \\ CORG_ion / UQRG_ion / UPRG_ion / JPLG_ion / JPRG_ion \\ CASG_ion / CARG_ion / ESAG_ion / ESRG_ion / IGS_zpd \\ COD_tro / JPL_tro / GRID_1x1_VMF3 / GRID_2.5x2_VMF1 \\ GRID_5x5_VMF3 / Meteorological$

SINEX: IGS_day_snx/IGS_week_snx/IVS_week_snx/ILS_week_snx

IDS_week_snx/IGS_crd_snx/COD_sol_snx/ESA_sol_snx

GFZ sol snx/GRG sol snx/NGS sol snx/SIO sol snx

 $CNES_AR: CNES_post \, / \, CNES_real time$

Time_Series: IGS14_TS_ENU/IGS14_TS_XYZ/Series_TS_Plot

Velocity_Fields: IGS14_Venu / IGS08_Venu / PLATE_Venu

SLR: HY_SLR/GRACE_SLR/BEIDOU_SLR

 $LEO: GRACE_dat/GRACE_rnxapp/GRACE_fo_dat/GRACE_fo1_sp3\\ GRACE_fo2_sp3/CHAMP_rnx/CHAMP_sp3/SWARM_rnx\\ SWARM_sp3/C1_L1a_leoAtt/C1_L1a_opnGps/C1_L1a_podCrx\\ C1_L1b_atmPhs/C1_L1b_gpsBit/C1_L1b_ionPhs/C1_L1b_leoClk\\ C1_L1b_leoOrb/C1_L1b_podTec/C1_L1b_scnLv1/C2_L1a_leoAtt\\ C2_L1a_opnGps/C2_L1a_podCrx/C2_L1b_conPhs/C2_L1b_leoOrb\\ C2_L1b_podTc2\\ \label{eq:condition}$

PANDA: Panda_jpleph_de405 / Panda_poleut1 / Panda_EGM / Panda_oceanload
Panda_oceantide / Panda_utcdif / Panda_antnam / Panda_svnav
Panda_nutabl / Panda_ut1tid / Panda_leap_sec / MGEX_IGS14_atx
MGEX_IGS20_atx / SW_EOP / Panda_gpsrapid / EOP_C04

GAMIT : Gamit_pmu_bull / Gamit_ut1usno / Gamit_poleusno / Gamit_dcb_dat

Gamit_soltab / Gamit_luntab / Gamit_leap_sec / Gamit_nutabl

Gamit_antmod / Gamit_svnav / Gamit_rcvant / Gamit_nbody

IGS_hfile