定理 2.10.2 に関して、証明を詳しく確認する。

定理 2.10.2(準同型定理 (部分群の対応))

- 1, N を群 G の正規部分群、
- $2, \pi: G \to G/N$ を自然な準同型とする。
- 3, G/N の部分群の集合を X,
- 4, G の N を含む部分群の集合を Y とするとき、
- 5, 写像 $\phi: \mathbb{X} \ni H \mapsto \pi^{-1}(H) \in \mathbb{Y}$,
- $6, \psi : \mathbb{Y} \ni K \mapsto \pi(K) \in \mathbb{X}$
- 7, は互いに逆写像である。
- 8, したがって、集合 \mathbb{X} , \mathbb{Y} は 1 対 1 に対応する。

1に関して、Nが正規部分群だとすると、2.8にある性質たちが利用できる。

定理 2.10.1 にもあるが、上記の 2 について、定義 2.6.9(1) を踏まえると、 $G \to G/N$ 自然な写像になる。自然な写像なので、 π が存在することは、明らか。命題 2.8.13 より、その写像は全射準同型で、 $Ker(\pi)=N$ となる。

 π は存在して、H が G/N の部分群なので、その逆像は必ず存在する。しかし、この写像 ϕ (上記、5 にある。) が $\mathbb Y$ への写像になっているか (well-defined になるか) は確認する必要がある。これは、本の証明、1-4 行目にある。

 $H \in \mathbb{X}$ なら、上記、3 にあるように H は G/N の部分群なので、命題 2.3.2 より、 $1_{G/N} \in H$ となる。よって、 $\pi^{-1}(1_{G/N}) \subset \pi^{-1}(H)$ となる。 $(\pi^{-1}(1_{G/N})$ は逆像で、複数の元を持つので、 \in ではなく、 \subset になる。) 上記の 2 に関する記述と、定義 2.5.1(3) より、 $\pi(h) = 1_{G/N} (h \in Ker(\pi) = N$ であり、 $\pi^{-1}(1_{G/N}) = Ker(\pi) = N$ となる。つまり、 $N = \pi^{-1}(1_{G/N}) \subset \pi^{-1}(H)$ となり、 \mathbb{Y} の条件になる、 $\pi^{-1}(H)$ が \mathbb{N} を含むことを確認できた。あとは、 $\pi^{-1}(H)$ が \mathbb{N} の部分群であることが確認できれば良い。

部分群であることは命題 2.3.2(1)-(3) を示せば良い。(1) について、 $N \subset \pi^{-1}(H)$ であり、N は正規部分群なので定義 2.8.1,命題 2.3.2(1) より、 $1_G \in N$ になる。よって、 $1_G = \pi^{-1}(H)$ になる。(2) について、 $x,y \in \pi^{-1}(H) \subset G$ なら、 $\pi(x),\pi(y) \in H$ になり、H は群、 π は準同型なので、 $\pi(x)\pi(y) = \pi(xy) \in H$ となり、 $xy \in \pi^{-1}(H)$ になり、(2) も満たす。(3) について、準同型、部分群の性質を考え、 $x \in \pi^{-1}(H) \subset G$ について、 x^{-1} は存在し、 $\pi(x)\pi(x^{-1}) = \pi(xx^{-1}) = \pi(1_G) = 1_{G/N} \in H$ になり、定理 2.8.11 より、G/N は部分群なので、 $\pi(x^{-1}) \in H$ 。よって、 $x^{-1} \in \pi^{-1}(H)$ となり、(3) も満たす。これにより、 $\pi^{-1}(H)$ が G の部分群であることも示され、 ϕ が Y への写像になっていることが確認できた。

次に上記 6 にある、写像 ψ が $\mathbb X$ への写像になっているか (well-defined になるか) は確認する必要がある。 これは、本の証明、4-9 行目にある。

 $K\subset G$ が N を含む部分群である時、 $\pi(K)$ が G/N の部分群であることを確認すればよい。N が G の正規部分群なので定義 2.8.1 より、任意の $g\in G$ に対して、 $gNg^{-1}\in N$ なので、 $g\in K\subset G$ に対しても、当然成り立つ。よって、同様に定義 2.8.1 より、 $N\lhd K$ である。K/N は K の元 g により gN という形をした剰余類の集合なので、G/N の部分集合とみなすことができ、また、 $K/N=\pi(K)$ (任意の $g\in K$ に関して、gN という形をした剰余類を考えている。) である。定理 2.8.11 より、K/N は群になっているので、命題 2.3.2 より、G の部分群になっている。よって、 $\pi(K)\in \mathbb{X}$ となり、 ψ は X への写像になり、well-defined になる。

定義 1.1.4(3) に従い、逆写像であることを確認する。本の証明 10-15 行目では $\phi\circ\psi=id_{\mathbb Y}$ つまり、任意の $K\in\mathbb Y$ に対して、 $\phi\circ\psi(K)=K$ であることを確認している。13-15 行目にあるように K は G の部分集合

(部分群) ではあるが、K を Y の元とみなしている。

本の 10 行目にあるよう j に $H=\pi(K)$ とおくと、 $K\subset\pi^{-1}(H)$ は明らかである。 $(\pi$ は写像なので、 $k\in K$ に対して、対応する $\pi(k)=j\in H$ は必ず存在する。ただし、ここまででは、 $k'\notin K,\pi(k')=j'\in H$ が存在しないことを言えていないので、 $K\subset\pi^{-1}(H)$ となる。 $)g\in\pi^{-1}(H)$ とすると、この定義より、 $\pi(g)\in\pi(K)$ になる。よって、ある $h\in K$ があり、 $\pi(g)=\pi(h)$ となる。写像 π と同値類の定義を考えると G/N で同じ元になるので、gN=hN となる。つまりある $n_1\in N$ に対して、 $gn_1=hn_2$ となる $n_2\in N$ が存在する。N は正規部分群なので g=hn となる $n\in N$ が存在する。 $N\subset K$ であり、K は部分群なので、 $g\in K$ になる。これにより、任意の $G\in\pi^{-1}(H)$ に対して、 $G\in\pi^{-1}(H)$ に

次に、本の証明の 16-19 行目にあるように、 $\psi\circ\phi=id_{\mathbb X}$ つまり、任意の $H\in\mathbb X$ に対して、 $\psi\circ\phi(H)=H$ であることを確認して、上記と合わせて互いに逆写像であることが言えるようになる。

 $H \in \mathbb{X}$ に対して、 $\pi(\pi^{-1}(H))$ $\subset H$ となる。 $(i \in H \subset G/N)$ に対して、ある $s \in G$ があり、 $\pi(s) = h$ だとすると、 $i \in \pi(\pi^{-1}(\{i\}))$ になるが、前記のような s が存在しないと、 $i \notin \pi(\pi^{-1}(\{i\}))$ になり、 $\pi(\pi^{-1}(H)) \subset H$ となる。) 定義 2.8.13 より、 π は全射であるので、すべての $h \in H$ に対して、 $g \in G$ があり、 $\pi(g) = h \in H$ である。これは $g \in \pi^{-1}(H)(=G)$ であることを意味する。よって、 $h = \pi(g) \in \pi(\pi^{-1}(H))$ である。したがって、 $H \subset \pi(\pi^{-1}(H))$ となり、結果として、 $H = \pi(\pi^{-1}(H))$ となる。これにより、 $\psi \circ \phi(H) = \pi(\pi^{-1}(H)) = H$ となる。

これにより、証明の 10-19 行目で、定義 1.1.4(3) が示されたので、逆写像が存在することがわかった。 本の P.4 にあるように、上記、7.8 にあるような逆写像を持つこと、1 対 1 に対応することは同値になる。 そのため、1 対 1 対応することも言える。