user1 OPEN BOOK CLASS TEST SEMESTER 1 - APRIL 2024

Question 1 (12 marks)

To detect corners in an image, the Harris corner detector can be used. Figure 1 shows an image I(x,y), where x is horizontal axis (column numbers) and y is vertical axis (row numbers).

		x-axis					
		0	1	2	3	4	5
	0	100	100	100	100	100	100
y -axis	1	100	100	100	100	100	100
	2	100	100	200	200	100	100
	3	100	100	200	200	100	100
	4	100	100	200	200	100	100
	5	100	100	100	100	100	100

Figure 1: Image I(x,y)

(a) Using the operators, $S_x = [-1 \ 0 \ +1]$ and $S_y = [-1 \ 0 \ +1]^T$, compute the horizontal gradients I_x and the vertical gradients I_y of the image I(x,y).

[2 marks]

(b) Determine the matrix H, at the pixel positions (1, 1) and (1, 3). The window size used in 3×3 .

[4 marks]

(c) Compute the following corner response function at the two pixel positions (1, 1) and (1, 3):

$$R = \det(H) - k(\operatorname{trace}(H))^2$$

Where k**=0.05**, and the window size used is 3 x 3.

[4 marks]

(d) Discuss how you use R to detect corners, and discuss your computed values of R.

[2 marks]

user1 OPEN BOOK CLASS TEST SEMESTER 1 - APRIL 2024

Question 2 (8 marks)

For a given image patch in two consecutive frames of an image sequence, I_x , I_y and I_t are given by:

	Pixel p ₁	Pixel p ₂
$I_x =$	[10.75	17.50]
$I_y =$	[20.25	17.00]
$I_t =$	[11.25	06.00]

The brightness constancy constraint that is utilized in optical flow computation can be written as follows:

$$(u\ v)^{\top} \cdot \nabla I + \frac{dI}{dt} = 0$$

and it relates the flow to the spatial and temporal gradients of the image sequence.

(i) Assuming that neighboring pixels p_1 and p_2 have the same flow vector (u v)^T, the brightness constancy constraint provides a set of linear equations for a given image patch in two consecutive frames of an image sequence (i.e. one equation per pixel). Write the system of linear equations in matrix form.

[4 marks]

(ii) Determine an expression for the flow vector $(u\ v)^T$ by using the least square solution method.

[4 marks]