Chapter 2 Combinational systems

- Definition: combinational logic, block, system
- Logic gates and truth table
- Don't care condition
- switching algebra (Boolean)
- Complement
- Functions with gates

Digital logic circuits

- <u>Digital circuits</u>: hardware components that manipulate binary information
- Logic gates implement logic functions.
- Basic logical operators are the <u>logic functions</u> AND, OR and NOT
- <u>Boolean Algebra</u>: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as a foundation for designing and analyzing digital systems!
- Hierarchical design: circuit design hierarchy (Y-chart)
- Basic circuit element can be
 - Transistor
 - Logic gate
 - Wire

Levels of abstractions

Level	Behavioral forms	Structural components	Physical objects
Transistor	differential equations, current-voltage diagrams	transistors, resistors, capacitors	analog and digital cells
Gate	Boolean equations, finite state machines	gates, flip-flops	modules, units
Register	algorithms, flowcharts, instruction sets	adders, registers, counters, queues	microchips
Processor	executable specification, programs	processors, controllers, memories	printed-circuit boards, multichip modules

Y chart

BEHAVIORAL DOMAIN STRUCTURAL DOMAIN processor system algorithm ALU, RAM register transfer gates, flip-flop logic transistor transfer functions transistor layout cell layout module layout floorplan physical partition

PHYSICAL DOMAIN

Logical operations

```
The three basic logical operations are:
    AND
    OR
    NOT
AND is denoted by a dot (')
OR is denoted by a plus (+)
NOT is denoted by an overbar ( \overline{\ } ), a single quote mark ( ' ) after,
or (∼) before the variable
Examples:
            Y = A•B is read "Y is equal to A AND B."
           Z = X + Y is read "z is equal to x OR y."
           X = \sim A is read "X is equal to NOT A."
Note: The statement:
     1 + 1 = 2 (read "one plus one equals two")
  is not the same as
     1 + 1 = 1 (read "1 or 1 equals 1")
```

Operator definition

Operations are defined on the values "0" and "1" for each operator:

AND OR NOT

$$0 \cdot 0 = 0$$
 $0 + 0 = 0$ $0 = 1$
 $0 \cdot 1 = 0$ $0 + 1 = 1$ $1 = 0$
 $1 \cdot 0 = 0$ $1 + 0 = 1$
 $1 \cdot 1 = 1$ $1 + 1 = 1$

Truth table

- Truth table a tabular listing of the values of a function for all possible combinations of values on its arguments
- Example: Truth tables for the basic logic operations:

A B	C = A + B
0 0	0
0 1	1
1 0	1
1 1	1

A B	$C = A \cdot B$
0 0	0
0 1	0
1 0	0
1 1	1

A	C = ~A
0	1
1	0

symbols

Logic function implementation

Using Switches

- For inputs:
 - logic 1 is switch closed
 - logic 0 is switch open
- For outputs:
 - logic 1 is <u>light on</u>
 - logic 0 is <u>light off</u>.
- NOT uses a switch such that:
 - logic 1 is <u>switch open</u>
 - logic 0 is switch closed

Switches in parallel => OR

Switches in series => AND

Normally-closed switch => NOT

Logic Diagrams and Expressions

Truth Table

Tradit table				
XYZ	$ F = X + \overline{Y} \times Z $			
000	0			
001	1			
010	0			
011	0			
100	1			
101	1			
110	1			
111	1			

Equation

$$F = X + \overline{Y} Z$$

Logic Diagram

- •Boolean equations, truth tables and logic diagrams describe the same function!
- •Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

Basic logic library

NAME	GRAPHIC SYMBOL	FUNCTIONAL EXPRESSION	COST(NUMBER OF TRANSISTORS)	GATE DELAY(NS)	Truth table
Inverter		F = x '	2	1	x F 0 1 1 0
Driver		F = x	4	2	x + E 0 0 x y + E 1 1
AND		F = xy	6	2.4	0 0 0 0 1 0 1 0 0 <u>x y F</u>
OR		F = x + y	6	2.4	1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1
NAND		F = (xy)'	4	1.4	0 0 1 0 1 1 1 0 1
NOR		F = (x+y)'	4	1.4	1 0 0 1 1 0 1 1 0
XOR		F = x ⊕y	14	4.2	0 0 0 0 1 1 1 0 1 <u>x y F</u> 1 1 0 0 0 1
XNOR		F = x ⊙y	12	3.2	0 1 0 1 0 0 1 1 1

Design process

- Design process is a sequence of steps which leads from a product concept to manufacturing drawings that show how to build that product
- Computer design
 - Server, desktop, embedded
- System design
- ASIC (application specific integrated circuit)
- IP blocks (processor, memory, I/O, control units)

Switching algebra

P1a.
$$a + b = b + a$$

P1b.
$$ab = ba$$

Commutative

P2a.
$$a + (b + c) = (a + b) + c$$

P2b.
$$a(bc) = (ab)c$$

Associative

P3a.
$$a + 0 = a$$

P3b.
$$a \cdot 1 = a$$

Identity

P3aa.
$$0 + a = a$$

P3bb.
$$1 \cdot a = a$$

P4a.
$$a + 1 = 1$$

P4b.
$$a \cdot 0 = 0$$

Null

P4aa.
$$1 + a = 1$$

P4bb.
$$0 \cdot a = 0$$

P5a.
$$a + a' = 1$$

P5b.
$$a \cdot a' = 0$$

Complement

P5aa.
$$a' + a = 1$$

P5bb.
$$a' \cdot a = 0$$

P6a.
$$a + a = a$$

P6b.
$$a \cdot a = a$$

Idempotency

P7.
$$(a')' = a$$

Involution

Switching algebra

P8a.
$$a(b+c) = ab + ac$$

P8b.
$$a + bc = (a + b)(a + c)$$

Distributive

P9a.
$$ab + ab' = a$$

P9b.
$$(a + b)(a + b') = a$$

Adjacency

P9aa.
$$a'b' + a'b + ab + ab' = 1$$

P9bb.
$$(a' + b')(a' + b)(a + b)(a + b') = 0$$

P10a.
$$a + a'b = a + b$$

P10b.
$$a(a' + b) = ab$$

Simplification

P11a.
$$(a + b)' = a'b'$$

P11b.
$$(ab)' = a' + b'$$

DeMorgan

P11aa.
$$(a + b + c...)' = a'b'c'...$$

P11bb.
$$(abc...)' = a' + b' + c'...$$

P12a.
$$a + ab = a$$

P12b.
$$a(a + b) = a$$

Absorption

P13a.
$$at_1 + a't_2 + t_1t_2 = at_1 + a't_2$$

P13b.
$$(a + t_1)(a' + t_2)(t_1 + t_2)$$

= $(a + t_1)(a' + t_2)$

Consensus

P14a.
$$ab + a'c = (a + c)(a' + b)$$

Example 1: Boolean Algebraic Proof

```
A + A·B = A (Absorption Theorem)
Proof Steps Justification (identity or theorem)
A + A·B
A · 1 + A · B
A · (1 + B)
A · (1 + B)
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
A · 1
```

- Our primary reason for doing proofs is to learn:
 - Careful and efficient use of the identities and theorems of Boolean algebra, and
 - How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application.

Example 2: Boolean Algebraic Proofs

• AB + A'C + BC = AB + A'C (Consensus Theorem)

Proof Steps
$$AB + A'C + BC$$

$$= AB + A'C + 1 \cdot BC$$

$$= AB + A'C + (A + A') \cdot BC$$
?

Example 3: Boolean Algebraic Proofs

• (X+Y)'Z+XY' = Y'(X+Z)proof steps Justification

Proof of DeMorgan's Laws

•
$$(x+y)' = x'y'$$

It is important that we do not USE DeMorgan's Laws in doing this proof. This requires a different proof method. We will show that, x'. y', satisfies the definition of the complement of (x + y), defined as (x + y)' by DeMorgan's Law. To show this we need to show that A + A' = 1 and $A \cdot A' = 0$ with A = x + y and $A' = x' \cdot y'$. This proves that $x' \cdot y' = (x + y)'$.

```
Part 1: Show x + y + x' \cdot y' = 1.
x + y + x' y'
= (x + y + x') (x + y + y')
                                                 X + YZ = (X + Y)(X + Z) (Distributive Law)
                                                 X + Y = Y + X (Commutative Law)
= (x + x' + y) (x + y + y')
                                                 X + X' = 1
= (1 + y)(x + 1)
                                                 1 + X = 1
= 1.1
                                                 1.X = 1
= 1
Part 2: Show (x + y) \cdot x' \cdot y' = 0.
  (x + y) \cdot x' \cdot y'
= (x \cdot x' \cdot y' + y \cdot x' \cdot y')
                                                 X (Y + Z) = XY + XZ (Distributive Law)
= (x \cdot x' \cdot y' + y \cdot y' \cdot x')
                                                 XY = YX (Commutative Law)
                                                 X \cdot X' = 0
= (0 \cdot y' + 0 \cdot x')
= (0 + 0)
                                                 0 \cdot X = 0
                                                 X + 0 = X \text{ (With } X = 0)
= 0
                                                      2 - 17
```

Boolean Function Evaluation

$$F1 = xy\overline{z}$$

$$F2 = x + \overline{y}z$$

$$F3 = \overline{x}\overline{y}\overline{z} + \overline{x} y z + x\overline{y}$$

$$F4 = x\overline{y} + \overline{x} z$$

X	y	Z	F1	F2	F3	F4
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	0		
0	1	1	0	0		
1	0	0	0	1		
1	0	1	0	1		
1	1	0	1	1		
1	1	1	0	1		

Expression Simplification

- An application of Boolean algebra
- Simplify to contain the smallest number of <u>literals</u> (complemented and uncomplemented variables):

$$AB+\overline{A}CD+\overline{A}BD+\overline{A}C\overline{D}+ABCD$$

- = AB + ABCD + A'CD + A'CD' + A'BD
- = AB + AB(CD) + A'C(D + D') + A'BD
- = AB + A'C + A'BD
- = B(A + A'D) + A'C
- = B (A + D) + A'C 5 literals

Complementing Functions

- Use DeMorgan's Theorem to complement a function:
 - 1. Interchange AND and OR operators
 - 2. Complement each constant value and literal
- Examples
 - Complement F = x'yz' + xy'z'
 - Complement G = (a' + bc)d' + e

Complement example

• Example 2.5

$$F = wx'y + xy' + wxz$$
$$F' =$$

• Example 2.6

$$f = ab'(c + d'e) + a'bc'$$

$$f' = [ab'(c + d'e) + a'bc']' \qquad using [P11a], [P11b]$$

$$= [ab'(c + d'e)]'[a'bc']'$$

$$= [a' + b + (c + d'e)'][a + b' + c]$$

$$= [a' + b + c'(d'e)'][a + b' + c]$$

$$= [a' + b + c'(d + e')][a + b' + c]$$

Boolean Functions

■ Truth Table for $F_1 = xy + xy'z + x'yz$ its Complement $F_1' = (x'+y')(x'+y+z')(x+y'+z')$

	VARIABLE VALUES	FUNCTION VALUES
ROW NUMBER	x y z	Fı Fı'
0	0 0 0	0 1
1	0 0 1	0 1
2	0 1 0	0 1
3	0 1 1	1 0
4	1 0 0	0 1
5	1 0 1	1 0
6	1 1 0	1 0
7	1 1 1	1 0

$$ex) F_1 = 1$$

x=1 and y=1, or if x=1, y=0, and z=1, or if x=0, y=1, and z=1.

• As a general rule, the truth table for any Boolean function of n variable has 2ⁿ rows.

Implementation of Functions with AND, OR, and NOT Gates

■ Block diagram

$$f = x'yz' + x'yz + xy'z' + xy'z + xyz$$

• Block diagram of f in sum of standard products form.

Figure 2.7 in text

Canonical Forms - Minterm

■ Minterm

- Let $i = b_{n-1}...b_0$ be a binary number
- A minterm of variables $x_{n-1}, x_{n-2}, ..., x_0$

$$m_i(x_{n-1}, x_{n-2}, ..., x_0) = y_{n-1}...y_0$$

$$y_k = \begin{cases} x_k & \text{if } bk = 1 \text{ all } k \text{ } 0 \le k \le n-1 \\ x_k & \text{if } bk = 0 \end{cases}$$

• All minterms of the three binary variables, x,y, and z

X	у	Z	MINTERMS	NOTATION
0	0	0	x'y'z'	m_0
0	0	1	x'y'z	m_1
0	1	0	x'yz'	m_2
0	1	1	x'yz	m_3
1	0	0	xy'z'	m_4
1	0	1	xy'z	m_5
1	1	0	xyz'	m_6
1	1	1	xyz	m_7

Canonical Forms - Minterm

$$F_1 = m_3 + m_5 + m_6 + m_7 = x'yz + xy'z + xyz' + xyz$$
 1-minterms

$$F_1' = m_0 + m_1 + m_2 + m_4 = x'y'z' + x'y'z + x'yz' + xy'z'$$
 0-minterms

• An important property of Boolean algebra :

Any Boolean function can be expressed as a sum of its 1-minterms.

• Sum-of-minterms form F (list of variables) = Σ (list of 1-minterm indices)

ex)
$$F_1(x,y,z) = \sum (3,5,6,7)$$

 $F_1'(x,y,z) = \sum (0,1,2,4)$

Sum of minterm expressions

EXAMPLE 3.1 Sum-of-minterms expansion

PROBLEM Express the Boolean function F=x+yz as a sum of minterms

SOLUTION

$$F = x+yz$$
= $x(y+y')(z+z')+(x+x')yz$
= $xyz+xy'z+xyz'+xy'z'+xyz+x'yz$

After removing duplicates,

$$F = x'yz+xy'z'+xy'z+xyz'+xyz$$

$$= m_3 + m_4 + m_5 + m_6 + m_7$$

$$= \sum (3,4,5,6,7)$$

EXAMPLE 3.2 Conversion to a sum of minterms

PROBLEM Convert the Boolean function F=x+yz into a sum of minterms by using a truth table.

(*Table 3.10*)

SOLUTION

$$F = m_3 + m_4 + m_5 + m_6 + m_7$$

Truth Table for F = x + yz

X	у	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
_1	1	1	1

Canonical Forms - Maxterm

• Eight maxterms of the three binary variables, x,y, and z

X	у	Z	MAXTERMS	NOTATION
0	0	0	x + y + z	M _o
0	0	1	x + y + z	M_1
0	1	0	x + y' + z	M_2
0	1	1	x + y' + z'	M_3
1	0	0	x' + y + z	M_4
1	0	1	x' + y + z'	M ₅
1	1	0	x' + y' + z	M_6
1	1	1	x' + y' + z'	M ₇

• The expression for $F_1=x'yz+xy'z+xyz'+xyz$

$$(F_1)' = (x'yz+xy'z+xyz'+xyz)'$$

= $(x+y'+z')(x'+y+z')(x'+y'+z)(x'+y'+z')$
= $M_3M_5M_6M_7$

Similarly, by complementing the expression

F₁ = (F₁')'
= (x'y'z'+x'y'z+x'yz'+xy'z')'
= (x+y+z)(x+y+z')(x+y'+z)(x'+y+z)
=
$$M_0M_1M_2M_4$$

Product of maxterm

- An second unique property of Boolean algebra :
 - Any Boolean function can be expressed as a product of its 0-maxterms.
- Product of maxterms form

$$F$$
 (list of variables) = \prod (list of 0-maxterm indices)

• A general conversion procedure to convert from on canonical form to another, interchange the symbols Σ and Π , and list the numbers that were excluded from the original form.

EXAMPLE 3.3 Product-of-maxterms expansion

PROBLEM Derive the product-of-maxterms form for the Boolean function F=x'y'+xz

SOLUTION

$$F = x'y'+xz$$

$$= (x'y'+x)(x'y'+z)$$

$$= (x'+x)(y'+x)(x'+z)(y'+z)$$

$$= (x+y')(x'+z)(y'+z)$$

Product of maxterm

into two maxterms

$$x+y'=x+y'+zz'=(x+y'+z)(x+y'+z')$$

 $x'+z=x'+z+yy'=(x'+y+z)(x'+y'+z)$
 $y'+z=y'+z+xx'=(x+y'+z)(x'+y'+z)$

Finally,

$$F = (x+y'+z)(x+y'+z')(x'+y+z)(x'+y'+z)$$

= $M_2M_3M_4M_6 = \prod (2,3,4,6)$

EXAMPLE 3.4 Conversion to product of maxterms

PROBLEM Convert the Boolean function F= x'y'+xz into the product-of-maxterms form.

SOLUTION

$$F(x,y,z) = \sum_{m_0, m_1, m_5, m_7} (0,1,5,7)$$
minterms m_0, m_1, m_5, m_7 from Table

$$F(x,y,z) = \prod (2,3,4,6)$$
the missing minterms m_2, m_3, m_4, m_6

Truth Table for F = x'y' + xz

X	у	Z	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
_1	1	1	1

Minterm and Maxterm Expansions

• 3 variables

Row No.	АВС	Minterms	Maxterms
0	000	$A'B'C'=m_0$	$A+B+C=M_0$
1	0 0 1	$A'B'C=m_1$	$A + B + C' = M_1$
2	010	$A'BC'=m_2$	$A + B' + C = M_2$
3	0 1 1	$A'BC = m_3$	$A + B' + C' = M_3$
4	100	$AB'C'=m_4$	$A'+B+C=M_4$
5	1 0 1	$AB'C = m_s$	$A'+B+C'=M_{5}$
6	110	$ABC' = m_6$	$A'+B'+C=M_6$
7	1 1 1	$ABC = m_7$	$A'+B'+C''=M_7$

Minterm and Maxterm Expansions

$$f(A, B, C) = m_3 + m_4 + m_5 + m_6 + m_7$$

$$f' = m_0 + m_1 + m_2 = \sum m(0, 1, 2)$$

$$f(A,B,C) = M_0 M_1 M_2 \longrightarrow f' = \prod M(3,4,5,6,7) = M_3 M_4 M_5 M_6 M_7$$

- Minterm and Maxterm expansions are complement each other

$$f' = (m_3 + m_4 + m_5 + m_6 + m_7)' = m'_3 m'_4 m'_5 m'_6 m'_7 = M_3 M_4 M_5 M_6 M_7$$
$$f' = (M_0 M_1 M_2)' = M'_0 + M'_1 + M'_2 = m_0 + m_1 + m_2$$

Combinational Logic Design Using a Truth Table

Original equation \rightarrow

$$f = A'BC + AB'C' + AB'C + ABC' + ABC'$$

Simplified equation →

$$f = A'BC + AB' + AB = A'BC + A = A + BC$$

Circuit realization →

$$C$$
 A A

Conversion of English Sentences to Boolean Equations

1. The alarm will ring(Z) iff the alarm switch is turned on(A) **and** the door is not closed(B'), **or** it is after 6PM(C) and window is not closed(D')

2. Boolean Equation

$$Z = AB' + CD'$$

3. Circuit realization

From The Truth Table to Algebraic Expressions

- Truth table
 - To find a minimum POS expression
 - Manipulate the previous POS expression to obtain f = (A + B + C)(A' + B')
 - Simplify the SOP expression for f' and then use DeMorgan to convert it to a POS expression.

Both approaches produce the same result.

– How many different functions of n variables are there?

a	b	ſб	fi	ħ	fs	<i>f</i> 4	f 5	f 6	f	f8	fs	f 10	f ii	<i>f</i> 12	f 13	f 14	f 15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Variables	Terms
1	4
2	16
3	256
4	65,536
5	4,294,967,296

Number of functions of *n* variables

Other logic operations

FUNCTION									
	PERATOR				$\mathbf{R} \mathbf{x}, \mathbf{y} =$	ALGEBRAIC			
NAME S	YMBOL	00	01	10	11	EXPRESSION	N COMMENT		
Zero		0	0	0	0	$F_0 = 0$	Binary constant 0		
AND	x • y	0	0	0	1	$F_1 = xy$	x and y		
Inhibition	x/y	0	0	1	0	$F_2 = xy$	x but not y		
Transfer		0	0	1	1	$F_3 = x$	X		
Inhibition	y/x	0	1	0	0	$F_4 = x'y$	y but not x		
Transfer		0	1	1	1	$F_5 = y$	y		
XOR	x⊕y	0	1	1	0	$F_6 = xy' + x'$	y x or y but not both		
OR	x+y	0	1	1	1	F7 = x + y	x or y		
NOR	x↓y	1	0	0	0	$F_8 = (x+y)'$	Not-OR		
Equivalence	x⊙y	1	0	0	1	$F_9 = xy + x^2$	'y' x equals y		
Complement	y'	1	0	1	0	$F_{10} = y'$	Not y		
Implication	x⊂y	1	0	1	1	$F_{11} = x + y'$	If y, then x		
Complement	х'	1	1	0	0	$F_{12} = x$	Not x		
Implication	x⊃y	1	1	0	1	$F_{13} = x' + y$	If x, then y		
NAND	x↑y	1	1	1	0	$F_{14} = (xy)'$	Not-AND		
One		1	1	1	1	$F_{15} = 1$	Binary constant 1		

Boolean Expressions for the 16 Functions of Two Variables

Basic logic library

NAME	GRAPHIC SYMBOL	FUNCTIONAL EXPRESSION	COST(NUMBER OF TRANSISTORS)	GATE DELAY(NS)	Truth table
Inverter		F = x '	2	1	x F 0 1 1 0
Driver		F = x	4	2	x E 0 0 x y E 1 1
AND		F = xy	6	2.4	0 0 0 0 1 0 1 0 0 <u>x y F</u> 1 1 1 0 0 0
OR		F = x+y	6	2.4	0 1 1 1 0 1 x y F 1 1 1
NAND		F = (xy) [']	4	1.4	0 0 1 0 1 1 1 0 1
NOR		$F = (x+y)^{,}$	4	1.4	1 0 0 1 1 0 1 1 0
XOR		F = x ⊕y	14	4.2	0 1 1 1 0 1 x y F 1 1 0 0 0 1
XNOR		F = x ⊙y	12	3.2	$egin{array}{c c} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$

Exclusive-OR and Equivalence Operations

Exclusive-OR

$$0 \oplus 0 = 0 \oplus 1 = 1$$

$$1 \oplus 0 = 1$$
 $1 \oplus 1 = 0$

Truth Table

XY	$X \oplus Y$
0 0	0
0 1	1
1 0	1
1 1	0

Symbol

$$X \longrightarrow X \oplus Y$$

Exclusive-OR and Equivalence Operations

Theorems for Exclusive-OR:

$$X \oplus 0 = X$$

 $X \oplus 1 = X'$
 $X \oplus X = 0$
 $X \oplus X' = 1$
 $X \oplus Y = Y \oplus X$ (commutative law)

$$(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z) = X \oplus Y \oplus Z$$
 (associative law)

$$X(Y \oplus Z) = XY \oplus XZ$$
 (distributi ve law)

$$(X \oplus Y)' = X \oplus Y' = X' \oplus Y = XY + X'Y'$$

NAND, NOR, AND EXCLUSIVE-OR GATES

■ Three other gates

- Exclusive-OR gates.
 - An Exclusive-OR gate

• An Exclusive-NOR gate

- ✓ Exclusive-OR gate implements the expression
 - $(a \oplus b) = a'b + ab'$
 - $(a \oplus b)' = a'b' + ab$

Binary Adders and Subtracters

Truth Table for a Full Adder

XY		C_{in}	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full adder

$$Sum = X'Y'C_{in} + X'YC'_{in} + XY'C'_{in} + XYC_{in}$$

$$= X'(Y'C_{in} + YC'_{in}) + X(Y'C'_{in} + YC_{in})$$

$$= X'(Y \oplus C_{in}) + X(Y \oplus C_{in})' = X \oplus Y \oplus C_{in}$$

$$\begin{split} C_{out} &= X'YC_{in} + XY'C_{in} + XYC'_{in} + XYC_{in} \\ &= (X'YC_{in} + XYC_{in}) + (XY'C_{in} + XYC_{in}) + (XYC'_{in} + XYC_{in}) \\ &= YC_{in} + XC_{in} + XY \end{split}$$

Full adder design

EXAMPLE Full-adder design

PROBLEM Design a full adder based on the specifications given in table, using the basic logic library that was given in Table. The primary goal is to minimize the propagation delay from C_i to C_{i+1} , while the secondary goal is to use the smallest possible number of transistors.

SOLUTION

$$s_{i} = x'_{i} y'_{i} c_{i} + x'_{i} y_{i} c'_{i} + x_{i} y'_{i} c'_{i} + x_{i} y_{i} c_{i}$$

$$= (x'_{i} y_{i} + x_{i} y'_{i}) c'_{i} + (x'_{i} y'_{i} + x_{i} y_{i}) c_{i}$$

$$= (x_{i} \oplus y_{i}) c'_{i} + (x_{i} \oplus y_{i}) c_{i}$$

$$= (x_{i} \oplus y_{i}) c'_{i} + (x_{i} \oplus y_{i})' c_{i}$$

$$= (x_{i} \oplus y_{i}) \oplus c_{i}$$

$$c_{i+1} = x_i y_i c'_i + x_i y_i c_i + x'_i y_i c_i + x_i y'_i c_i$$

= $x_i y_i (c'_i + c_i) + c_i (x'_i y_i + x_i y'_i)$
= $x_i y_i + c_i (x_i \oplus y_i)$

Addition of Binary Digits

X_i	y_i	C_{i}	C_{i+1}	S_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
_1	1	1	1	1

Full adder design

- Modify the expression (faster, less expensive NAND and NOR gates)
- De Morgan's theorems :

$$c_{i+1} = x_i y_i + c_i (x_i + y_i)$$

= $((x_i y_i)' (c_i (x_i + y_i))')'$

$$s_{i} = (x_{i} \oplus y_{i})c'_{i} + (x_{i} \odot y_{i})c_{i}$$
$$= (x_{i} \odot y_{i})'c'_{i} + (x_{i} \odot y_{i})c_{i}$$
$$= (x_{i} \odot y_{i}) \odot c_{i}$$

In addition, with two NANDs and one OR gates:

$$(x_{i} \odot y_{i}) = x_{i} y_{i} + x'_{i} y'_{i}$$

$$= ((x_{i} y_{i})'(x'_{i} y'_{i})')'$$

$$= ((x_{i} y_{i})'(x_{i} + y_{i}))'$$

A seven-segment display

■ The Development of Truth Tables

Truth table for seven segment display

■ The Development of Truth Tables

Digit	W	X	Y	Z	a	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	Х	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	Χ	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	Χ	0	1	1
-	1	0	1	0	Х	Χ	Χ	Χ	Χ	Χ	Χ
-	1	0	1	1	Х	Χ	Χ	Χ	Χ	Χ	Χ
-	1	1	0	0	Х	Χ	Χ	Χ	Χ	Χ	Χ
-	1	1	0	1	Х	Χ	Χ	Χ	Χ	Χ	Χ
-	1	1	1	0	Х	Χ	Χ	Χ	Χ	Χ	Χ
-	1	1	1	1	Х	Χ	X	Х	X	X	Х