ECON 703 - ANSWER KEY TO HOMEWORK 7

- 1. For an unit vector, $D_u f(x) = \lim_{t \to 0} \frac{f(x+t\cdot u)-f(x)}{t} = Df(x) \cdot u$. Since f does not have a local maximum at x, $Df(x) \neq 0$. Since $f \in C^1$, the problem is to find u^* such that i) $||u^*|| = 1$; ii) $D_{u^*} f(x) \geq D_u f(x)$ for all u such that ||u|| = 1. Let $u^* = \frac{Df(x)}{||Df(x)||}$. I claim this solves the problem. Clearly u^* satisfies i). Observe also $D_u f(x) = Df(x) \cdot u \leq ||Df(x) \cdot u||$ ($D_u f(x)$ is a number here because $f : E \to \Re$). By Schwarz Inequality, $||Df(x) \cdot u|| \leq ||Df(x)|| \cdot ||u|| = ||Df(x)||$ for all u such that ||u|| = 1. Now since $D_{u^*} f(x) = Df(x) \cdot u^* = ||Df(x)||$, Therefore, u^* satisfies ii). The claim is proved.
- 2. (a) Suppose to the contrary that there exist two points $x \neq y$ s.t. f(x) = x and f(y) = y. By the MVT, we have f(y) f(x) = f'(z)(y x) where $z \in (x, y)$. But then we have $f'(z) = \frac{f(y) f(x)}{y x} = \frac{y x}{y x} = 1$, contradicting that $f'(x) \neq 1$ for all x.
 - (b) If x is a fixed point of f, we have $f(x) = x + (1 e^x)^{-1} = x$. Hence, we get $(1 e^x)^{-1} = 0$, but this is impossible. So f has no fixed point.
 - (c) We shall show that $\{x_n\}$ is a convergent sequence and denote the limit by x. Then by the continuity of f and the definition of $\{x_n\}$, we have

$$x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(x).$$

(The third equation comes from that f is continuous, which is deduced from f is differential). So x is a fixed point of f.

We will show that $\{x_n\}$ is a Cauchy sequence in \mathbb{R} (so it is a convergent sequence). By the mean value theorem, we have

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| = |f'(z_n)(x_n - x_{n-1})|$$

$$\leq c|x_n - x_{n-1}| \leq \dots \leq c^n|x_1 - x_0|.$$

where z_n is between x_{n-1} and x_n . Hence

$$|x_m - x_n| \le |x_m - x_{m-1}| + \dots + |x_{n+1} - x_n|$$

 $\le (c^{m-1} + \dots + c^n)|x_1 - x_0| \le \frac{c^n}{1 - c}|x_1 - x_0| \to 0$

as $n \to \infty$. So we have proved that $\{x_n\}$ is a Cauchy sequence.

- (d) Draw the 45° line and graph of f.
- 3. (a) Since f is continuous and f(a) < 0 < f(b), by the Intermediate Value Theorem, there exists a $x^* \in (a,b)$ s.t. $f(x^*) = 0$. Furthermore, since f'(x) > 0 for all x, f is a strictly increasing function. Hence, x^* is the unique point which satisfies $f(x^*) = 0$.

- (b) x_{n+1} is the point where the tangent line at x_n hits the x-axis.
- (c) Since $x_{n+1} x_n = -\frac{f(x_n)}{f'(x_n)}$ and $f'(x_n) > 0$, we have $x_{n+1} x_n \le 0$ if we can show $f(x_n) \ge 0$. We know that $f(x^*) = 0$ and f'(x) > 0. So if $x_n \ge x^*$, then we will get $f(x_n) \ge 0$. We can use

induction to prove $x_n \geq x^*$.

We know that $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$. And $0 = f(x^*) = f(x_0) + f'(z)(x^* - x_0)$, so $x^* = x_0 - \frac{f(x_0)}{f'(z)}$. Because z is between x^* and x_0 , and $f''(x) \ge 0$, we have $f'(z) \le f'(x_0)$. Therefore, $x_1 \ge x^*$. Now suppose $x_n \ge x^*$. Again we have $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, and using Taylor expansion, we have $x^* = x_n - \frac{f(x_n)}{f'(z)}$, here z is between x^* and x_n . And again as $f'(z) \le f'(x_n)$, we get $x_{n+1} \ge x^*$.

Observe that the sequence $\{x_n\}$ is decreasing and bounded below by x^* , so it must have a limit. Denote this limit by x. then take limits on both sides of $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, we will get $x = x - \frac{f(x)}{f'(x)}$. (here we used the fact that f is differentiable, then f is continuous. f' is differentiable, then f' is continuous. So $\lim_{x_n \to x} f(x_n) = f(x)$, and $\lim_{x_n \to x} f'(x_n) = f'(x)$) So f(x) = 0. By f'(x) > 0, we get $x = x^*$.

(d)Method 1: From part (c), we know that $x_{n+1} \geq x_0$. Now

$$x_{n+1} - x^* = x_n - \frac{f(x_n)}{f'(x_n)} - x^* = x_n - x^* - \frac{f(x_n)}{f'(x_n)}$$

$$= x_n - x^* - \frac{f'(x_n)(x_n - x^*) - \frac{1}{2}f''(z)(x_n - x^*)^2}{f'(x_n)} = \frac{f''(z)}{2f'(x_n)}(x_n - x^*)^2 \le \frac{M}{2c}(x_n - x^*)^2.$$
(Note, we have $f(x^*) = f(x_n) + f'(x_n)(x^* - x_n) + \frac{f''(z)}{2}(x^* - x_n)^2$. So $f(x_n) = f'(x_n)(x_n - x^*) - \frac{f''(z)}{2}(x^* - x_n)^2$.)

Method 2: By Taylor's Theorem, we have

$$f(x^*) = f(x_n) + f'(x_n)(x^* - x_n) + \frac{f''(z_n)}{2}(x^* - x_n)^2.$$

Substituting $f(x^*) = 0$, dividing both sides by $f'(x_n)$ and using $x_{n+1} - x_n = -\frac{f(x_n)}{f'(x_n)}$, we obtain the desired result.

(e) Observe that
$$\frac{f''(z_n)}{2f'(x_n)} \le \frac{M}{2c} = A$$
. From (d), we have
$$x_n - x^* \le A(x_{n-1} - x^*)^2 \le A(A(x_{n-2} - x^*))^2 \le \dots \le \frac{1}{A}(A(x_0 - x^*))^{2n}.$$

4. (a) Yes, f is a continuous function. To see this observe that

$$|f(x,y) - f(0,0)| = \left|\frac{x^3}{x^2 + y^2} - 0\right| = \left|\frac{x}{1 + \left(\frac{y}{x}\right)^2}\right| \le |x| \to 0$$

as $(x, y) \to (0, 0)$.

(b) When $(x,y) \neq (0,0)$, f is a C^1 function divided by another C^1 function, and its denominator is not equal to 0. Hence, f is differentiable at all such points. So the directional derivative $D_u f$ exists and

$$D_u f(x,y) = D f(x,y) \cdot \frac{u}{\|u\|} = \left(\frac{x^4 + 3x^2y^2}{(x^2 + y^2)^2}, \frac{-2x^3y}{(x^2 + y^2)^2}\right) \cdot \frac{(1,1)}{\sqrt{2}} = \frac{x^4 - 2x^3y + 3x^2y^2}{\sqrt{2}(x^2 + y^2)^2}.$$

On the other hand, when (x, y) = (0, 0), by definition, we have

$$D_u f(0,0) = \lim_{t \to 0} \frac{f(\frac{t}{\|u\|}, \frac{t}{\|u\|}) - f(0,0)}{t - 0} = \frac{t^3}{2\sqrt{2}t^3} = \frac{1}{2\sqrt{2}}.$$

(Note: Directional derivative is defined at an union vector. So for those $||u|| \ge 1$, we need to normalize,

i.e. let $u' = \frac{u}{\|u\|}$ and consider the directional derivative at u')

(c) When $(x,y) \neq (0,0)$, we have $\frac{\partial f}{\partial x}(x,y) = \frac{x^4 + 3x^2y^2}{(x^2 + y^2)^2}$ and $\frac{\partial f}{\partial y}(x,y) = \frac{-2x^3y}{(x^2 + y^2)^2}$. On the other hand, when (x,y) = (0,0), we have

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \to 0} \frac{x - 0}{x} = 1$$

and

$$\frac{\partial f}{\partial y}(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y - 0} = \lim_{y \to 0} \frac{0 - 0}{y} = 0.$$

(d) Way1: If f were differentiable at (0,0), then

$$Df(0,0) = (\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)) = [1,0].$$

Then

$$lim_{h \to 0} \frac{\|f((0,0)+h) - f(0,0) - Df(0,0) \cdot h\|}{\|h\|} = lim_{h \to 0} \frac{\|f(h_x,h_y) - f(0,0) - [1,0] \cdot (h_x,h_y)'\|}{\|h\|}$$

$$= \lim_{h \to 0} \frac{\left\| \frac{h_x^3}{h_x^2 + h_y^2} - 0 - h_x \right\|}{\sqrt{h_x^2 + h_y^2}} = \lim_{h \to 0} - \frac{h_x * h_y^2}{\left(h_x^2 + h_y^2\right)^{\frac{3}{2}}}.$$

Let $h_x = \frac{1}{n}$, and $h_y = \frac{1}{n}$. Then the limit is $-2^{-\frac{3}{2}} \neq 0$. So we get the contradiction. Therefore f is not differentiable at (0,0).

Way2: If f were differentiable at (0,0), we would have

$$D_u f(0,0) = D f(0,0) \cdot \frac{u}{\|u\|} = \frac{\partial f}{\partial x}(0,0) \cdot \frac{1}{\sqrt{2}} + \frac{\partial f}{\partial y}(0,0) \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}.$$

But (b) showed that $D_u f(0,0) = \frac{1}{2\sqrt{2}}$, a contradiction.

5. (a) Since $Df(x,y) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) = (6x^2 - 6x, 6y^2 + 6y)$, we have Df(x,y) = (0,0) when (x,y) = (0,0), (0,-1), (1,0), or (1,-1). At the point (x,y) = (0,-1),

$$D^2 f(0,-1) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} |_{(0,-1)} = \begin{bmatrix} 12x - 6 & 0 \\ 0 & 12y + 6 \end{bmatrix} |_{(0,-1)} = \begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix}.$$

Let $M = D^2 f(0, -1)$, and let A_r be the determinant of M_r , the $(r \times r)$ upper left sub-matrix of M. We claim that M is negative definite. To see this, we will show that $(-1)^r A_r > 0$ for r = 1, ..., n. We have $(-1)A_1 = (-1)(-6) = 6 > 0$ and $(-1)^2 A_2 = 36 > 0$, proving the claim. We conclude that (0, -1) is a strict local maximum.

At the point (x,y)=(1,0), we have

$$D^2 f(1,0) = \left[\begin{array}{cc} 12x - 6 & 0 \\ 0 & 12y + 6 \end{array} \right]|_{(1,0)} = \left[\begin{array}{cc} 6 & 0 \\ 0 & 6 \end{array} \right].$$

Now let $M = D^2 f(1,0)$, we claim that $A_r > 0$ for r = 1, ..., n, so that M is positive definite. Indeed, $A_1 = 6 > 0$ and $A_2 = 36 > 0$. Hence f has a strict local minimum at (1,0).

However, at (0,0), and (-1,-1) we respectively have :

$$D^{2}f(0,0) = \begin{bmatrix} -6 & 0 \\ 0 & 6 \end{bmatrix} \quad D^{2}f(1,-1) = \begin{bmatrix} 6 & 0 \\ 0 & -6 \end{bmatrix}$$

which are neither negative semi-definite nor positive semi-definite. Thus neither of those points are a local maximum or minimum.

(b) Since
$$f(x,y) = 0$$
, we have

$$2x^3 - 3x^2 + 2y^3 + 3y^2 = 2(x^3 + y^3) - 3(x^2 - y^2)$$

$$= 3(x+y)(x^2 - xy + y^2) - 3(x+y)(x-y)$$

$$= (x+y)(2x^2 - 2xy + 2y^2 - 3x + 3y) = 0.$$

Hence, S is the set of $(x, y) \in \mathbb{R}^2$ such that either x + y = 0 or $2x^2 - 2xy + 2y^2 - 3x + 3y = 0$. It is the union of a straight line (x + y = 0) and an ellipse $(2x^2 - 2xy + 2y^2 - 3x + 3y)$ centered at (.5, -.5).

Now consider the points in S which have no neighborhoods s.t. y can be solved in terms of x. Consider the points $(x,y) \in S$ such that $\frac{\partial f}{\partial y}(x_0,y_0)=0$. Since $\frac{\partial f}{\partial y}=6y^2+6y$, any such point must have y=0 or y=-1. Substituting these value into the equation f(x,y)=0 and solving for x yields the following set of points: A=(0,0), B=(0,1.5), C=(1,-1) and D=(-.5,-1). The implicit function theorem require that in order to be able to express y as a function of x around the point $(x_0,y_0) \in S$, we must have $\frac{\partial f}{\partial y}(x_0,y_0) \neq 0$. The hypothesis of the implicit function theorem is thus violated at the point $\{A,B,C,D\}$. Looking at the graph, we can see why y cannot be expressed locally as a function of x.

Similarly, let us consider the point $(x,y) \in S$ such that $\frac{\partial f}{\partial x}(x_0,y_0) = 0$, implying x = 0 or x = 1. Substituting these values into equation f(x,y) = 0 yields the point A = (0,0), C = (1,-1), E = (0,-1.5) and F = (1,.5). At these points, the condition for x to be solved locally as a function of y fails.

(Note: We do not know whether we can solved for y in terms of x for those points with $\frac{\partial f}{\partial y}(x_0, y_0) = 0$. Because $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$ is a sufficient but not necessary condition for solving y in terms of x. Even if $\frac{\partial f}{\partial y}(x_0, y_0) = 0$, it is still possible to solve y in terms of x.)