

centec

盛科 CTC5118

端口应用指南

版本 R1.1

日期 2021-04-30

版权所有 © 盛科网络(苏州)有限公司。保留一切权利。

未经盛科网络(苏州)有限公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部, 并不得以任何形式和任何方法传播。

盛科商标,服务标志和其他盛科标志均为盛科网络(苏州)有限公司拥有商标。盛科交换机系列产品和芯片系列产品的标志均为盛科网络(苏州)有限公司商标或注册商标。未经盛科书面授权,不允许使用这些标志。本文档提及的其他所有商标和商业名称,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受盛科网络商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,本公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

盛科网络(苏州)有限公司

地址 江苏省苏州市工业园区星汉街 5 号(腾飞新苏工业坊)B 幢 4 楼 13/16 单元

电话 86-512-62885358

传真 86-512-62885870

网址 http://www.centecnetworks.com

邮箱 support@centecnetworks.com

内容目录

1	芯片介绍		7
	1.1 概述		7
	1.2 端口模式		7
	1.3 主要特性	<u> </u>	8
2	芯片 SerDes 综述		9
	2.1 CTC5118 SerDes 综述	90° ×	9
	2.1.1 概述		
	2.1.2 SerDes 均衡参数		
3	端口功能介绍	•••••	11
	3.1 端口功能介绍		11
4	端口/SerDes 限制		12
	4.1 SerDes 限制说明		
	4.2 端口模式组合限制		
5	端口相关命令		13
	5.1 配置命令		
	5.1.1 SerDes 配置 RX 均衡参数		
	5.1.2 配置端口模式		
	5.1.3 配置自协商和 FEC 模式		
	5.2 Debug 相关的命令		14
	5.2.1 Serdes 寄存器 dump		14
	5.2.2 读取眼高眼宽		14
	5.2.3 读取完整眼图		14
	5.2.4 获取 DFE 状态		14
	5.2.5 CTLE 结果		
	5.2.6 FFE 结果获取		
	5.2.7 端口能力获取		
	5.2.8 端口配置寄存器获取和自校验		15

tec

5.3 Debug 范例	
5.5 不同板材/走线长度的 FFE 经验参数	17

图形目录

图 1-1 CTC5118 架构		
图 2-1 12.5G SerDes 框图		9
图 2-2 12.5G SerDes TX 均衡 图 3-1 CTC5118 端口示意图		10
图 3-1 CTC5118 端口示意图	~	11
图 2-2 12.5G SerDes TX 均衡		

修订记录

CGITCC			אניסו נו פו
订记录			
日期	版本号	说明	页码
2020-04-13	R1.0	初始发布	
2021-04-30	R1.1	增加"chip set serdes xx"命令适用版本说明	13

1 芯片介绍

1.1 概述

CTC5118(TsingMa.CX)是旨在满足云时代,边缘计算技术演进需求的新一代交换芯片。芯片支持 180G I/O 带宽,集成 ARM 双核 A53 处理器,支持 QSGMII 和 USXGMII-M 等端口形态,提供从 100M 到 40G 的全速率端口能力。单芯片支持 48x1G/48x2.5G 下行,上行支持 10G/40G。

1.2 端口模式

CTC5118 内部集成 18 根高速 SerDes Lane,其 SerDes 的设计满足多个标准: 100Base-FX/SGMII/QSGMII/USXGMII/XAUI /DXAUI /XFI /40G 等。

CTC5118 可以灵活配置为不同的工作模式,典型的如下:

- 24x 1G+ 4x 10G
- 48x 1G+4x 10G

CTC5118 支持 PCle GEN2.0,最高速率达到 5Gbps,为芯片配置和 CPU 交互处理提供灵活高速的接口。

CTC5118 内部集成 TCAM 和 SRAM,不需要外挂,最大程度减少系统使用成本。

图1-1 CTC5118 架构

1.3 主要特性

CTC5118 支持主要特性如下:

- 内嵌 3MB 报文缓存, 自调整阈值, 更有效的利用缓存
- 内嵌 ARM A53 双核处理器,配置完备的外设接口
- 基于 1-lane 高速 SerDes(每条高达 5Gbps)的 PCle GEN2,支持 RC 和 EP 模式
- 片上 OAM,支持 Ethernet/BFD/MPLS-TP OAM
- 稳定的低延时,支持直通转发
- 支持 9600 字节长包
- 丰富的网络监控和对网络故障诊断功能
- 大流表,全面支持 SDN/ OpenFlow 的特点

2 芯片 SerDes 综述

2.1 CTC5118 SerDes 综述

2.1.1 概述

CTC5118 内部集成 3 组 12.5Gbps 高速 SerDes,每组又集成 8 根 SerDes Lane,(最后一组为 2 根)。在 CTC5118 内部,12.5Gbps SerDes 可以配置为 100BASE-FX/SGMII/2.5G/QSGMII/USXGMII/XFI/XAUI/DXAUI/XLAUI 接口。

12.5G SerDes 内部架构框图如下所示,内部集成 3 个 PLL,供 8 根 SerDes Lane 选用。其中 Lane0~3 可以在 PLL A 和 PLLB 中选择,Lane4~7 可以在 PLL B 和 PLL C 中选择。

图2-1 12.5G SerDes 框图

12.5Gbps SerDes 满足以下国际标准:

- 10 Gb Ethernet application that include IEEE 802.3ak CX4 10Gb/s Ethernet
- 10 Gb Ethernet application that include IEEE 802.3ap KX, KX4, and 10G-KR Ethernet over backplane

- 10 Gb Ethernet application that include IEEE 802.3ap KX, KX4, and 10G-KR Ethernet Energy Efficient Ethernet
- 10 Gb Small Form Factor Module, XFP and XFI
- Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable Module "SFP+", SFF-8431
- 1Gb Ethernet applications that include SGMII(AC-coupled only)
- 1Gb Ethernet applications that include IEEE 802.3z 1000BASE-SX/LX
- 40 Gb Ethernet applications that include IEEE802.3ba XLPPI, LKAUI, CR4, KR4.
- OIF-CEI-02.0 6G+ Short Reach and Long Reach and 11G+ Short Reach, Medium Reach, and Long Reach

2.1.2 SerDes 均衡参数

12.5G SerDes TX 方向集成了 3 阶 FFE 前向滤波器,可以根据信道衰减预先配置滤波器三个 TAP 的参数 C0, C1, C2 来提前补偿信道衰减。

TX 的均衡参数可以通过 Link-Training 和强制配置得到。当强制配置时,三个 TAP C0, C1, C2 取值范围分别是:

C0: 0~15C1: 0~255

C2: 0~31

图2-2 12.5G SerDes TX 均衡

SerDes RX 端集成了 CTLE 和 DFE 用于接收端均衡调制。其中 CTLE 的三个参数 (VGA, EQR 和 EQC) 是用户可配的,用户也可以在链路建立初始阶段调用 API 进行 RX 参数的自适应。而 DFE 是动态调整的,用户无需自行配置。

RX 的三个参数 VGA、EQR 和 EQC 可以通过 Link-Training 和强制配置得到。其中强制配置的命令如下:

chip set serdes 0 ctle 5 8 10

在低速率(<10.3125G)时推荐取值 VGA 5, EQC 8, EQR 10, 高速率 (10.3125Gbps) 时推荐取值 VGA 4 或 6, EQC 14, EQR 0~15 可调。

3 端口功能介绍

3.1 端口功能介绍

CTC5118 端口框图如下所示:

图3-1 CTC5118 端口示意图

其中每个部分功能介绍如下:

- HSS Macro
 - 发送、接收数据
 - 《端口自协商,包括速率协商和 FFE 参数的协商
 - 发送 PRBS 帧
- PCS Layer
 - 包含 USXGMII/QSGMII/100Base-FX (仅 12.5G SerDes Macro 支持)
 /SGMII/XFI/XAUI/40G
 - FEC 相关操作
 - 实现不同接口的 PCS 协议,并产生相应的 Link Status,CodeErr 等状态
- Shared MII
 - 实现 MAC 数据和 PCS 接口间的数据转换
 - IPG, Preamble 相关的处理
 - USXGMII/QSGMII 协议中的复制功能
- TXQM:
 - 主要是实现 MAC 相关的功能
 - 和交换芯片内部 Datapath 交互

4 端口/SerDes 限制

4.1 SerDes 限制说明

使用 SerDes 外环模式,TX 和 RX 端 PN Swap 必须同时使能或不使能

4.2 端口模式组合限制

在用户针对 CTC5118 展开端口模式硬件设计时,需注意以下应用限制:

- SerDes 0 是 QSGMII/USXGMII-M2G5 模式时,不支持 SerDes 1/2/3 是 XFI/SGMII/SGMII2.5G/100BASE-FX 模式,原因是 MAC ID 冲突。类似的, SerDes 4 会对 5/6/7 有同样限制、SerDes 8 对 9/10/11 有同样限制。
- SerDes 0 是 USXGMII-M5G 模式时,不支持 SerDes 1 是 XFI/SGMII/SGMII2.5G/100BASE-FX 模式,原因是 MAC ID 冲突。类似的, SerDes 4 会对 5 有同样限制、SerDes 8 对 9 有同样限制。
- SerDes0 如果不是 USXGMII-Single 模式时, SerDes1/2/3 不能出 USXGMII-Single 模式; 反之, 当 SerDes0 是 USXGMII-Single 时, SerDes1/2/3 模式无限制。类似的, SerDes4/5/6/7、SerDes8/9/10/11 对应有同样的要求。
- CTC5118 Datapath 配置表格中,如果用户填入 SerDes Mode 是 NA,则此 SerDes 永不起用。生成 datapath_cfg.txt 时,此 SerDes 的[SERDES_MODE] = 3.代表 NOT SUPPORT.
 - TsingMa.CX datapath 的 SERDES_MODE 用 *3* 来代表 NA,我们不允许用户 随意修改 datapath cfg.txt。
 - 用户随意修改 datapath_cfg.txt 可能导致 ctcsdk 启动失败。

5 端口相关命令

5.1 配置命令

所有"chip set serdes xx"的命令仅针对 SDK V5.6.x 之前的版本。从 SDK V5.6.x 之后的版本开始,相应的命令为"chip serdes xx"。SerDes 配置 TX FFE 参数:

chip set serdes xx ffe mode user-define c0 xx c1 xx c2 xx

5.1.1 SerDes 配置 RX 均衡参数

```
chip set serdes 0 ctle 6 14 10 //手动配置模式
chip set serdes 0 ctle auto-en //自适应模式
```

5.1.2 配置端口模式

```
port XXX if-mode 1G SGMII

port XXX if-mode 1G QSGMII

port XXX if-mode 10G XAUI

port XXX if-mode 20G DXAUI

port XXX if-mode 10G XFI

port XXX if-mode 40G CR4
```

5.1.3 配置自协商和 FEC 模式

1. 10GBASE-KR 自协商能力

port XXX cl73-auto-neg ability 10GBASE-KR

2. 40GBASE-KR4/CR4 自协商能力

port XXX cl73-auto-neg ability 40GBASE-KR4/40GBASE-CR4

3. FEC 自协商能力

port XXX c173-auto-neg ability FEC-ABILITY //IEEE 10G/40G Base-R FEC ability port XXX c173-auto-neg ability FEC-REQ //IEEE 10G/40G Base-R FEC request

5.1.4 配置端口环回模式

```
chip set serdes 0 loopback internal enable/disable //内环使能/关闭 chip set serdes 0 loopback external enable/disable //外环使能/关闭
```


5.2 Debug 相关的命令

5.2.1 Serdes 寄存器 dump

当遇到比较棘手的问题时,可以通过 dump 所有 serdes 寄存器并发给盛科 FAE 来比对是否有些寄存器处于不正常的状态。这样有助于更深层次分析 serdes 内部电路的状态。其命令如下:

```
CTC CLI(ctc-sdk)# dkits
CTC_CLI(ctc-sdk)# serdes XXX dump //打印到屏幕
CTC_CLI(ctc-sdk)# serdes XXX dump file dump.txt //打印到 dump.txt 文件中
CTC CLI(ctc-sdk)# serdes XXX dump detail //dump解析之后的部分寄存器的值
```

5.2.2 读取眼高眼宽

通过读取 RX 端的眼高眼宽,可以更好的分析接收端收到的眼图幅值有多大,有助于解决信号完整性的问题。

```
CTC CLI(ctc-sdk)# dkits
CTC CLI(ctc-dkits)# serdes 0 eye height times 10
CTC_CLI(ctc-dkits)# serdes 0 eye width times 10
```

5.2.3 读取完整眼图

通过读取 RX 端的完整眼图,可以更好的分析接收端收到的眼图形状,有助于解决信号完整性的问题。

```
CTC CLI(ctc-sdk)# dkits
CTC_CLI(ctc-dkits)# serdes 0 eye width-slow times 4
```

5.2.4 获取 DFE 状态

DFE 的 TAP 值有助于分析,接收端的状态是否处于正常状态还是已经接近通道能力的极限。

```
CTC_CLI(ctc-dkits) # show serdes XXX dfe status
```

5.2.5 CTLE 结果

原理同上。

CTC CLI(ctc-sdk) # show chip serdes XXX ctle

5.2.6 FFE 结果获取

获取目前 TX 端的 FFE 参数值

```
CTC_CLI(ctc-sdk)# show chip serdes XXX ffe user-define //强制结果
CTC CLI(ctc-sdk)# show chip serdes XXX ffe 3ap //AN+LT结果
```

5.2.7 端口能力获取

CTC CLI(ctc-sdk) # show port XXX capability

5.2.8 端口配置寄存器获取和自校验

CTC CLI(ctc-sdk) # port x self-checking

5.3 Debug 范例

5.3.1 端口无法 Link Up

5.3.2 MAC/PCS 相关的 debug 流程

此处仅以 XFI(10G)为例,其余端口 debug 相对应的寄存器,请咨询 FAE。

5.4 SerDes 参数说明

参数范围选择规则

• C0(Pre Cursor): 0 ~ 15

• C1(Main): 0 ~255

• C2(Post Cursor): 0 ~ 31

C1 直接影响信号幅值, C1 增大, 幅值增大; C0/C2 增加, 幅值减小。

C0 增大,会使信号的上升沿变陡,C2 增加,可以改善 Jitter。

对端 FFE 参数调节推荐

当 12.5G SerDes 作为接收端时,对发送端的 FFE 有一定偏好,大致规则为:

- Pre Cursor 在接近 0 的范围内小幅调整,插损越大,调整范围可能越大
- Main 在接近 MAX 的范围内小幅调整
- Post Cursor 在接近 0 的范围内小幅调整。
- 总体看优先调 C0 和 C1, 尽量少调 C2

接收眼高参数判断

当接收眼高达到以下标准时, 认为接收信号较好(仅供参考):

● 光模块: 眼高大于90, 眼宽大于35

● DAC/背板: 眼高大于 50, 眼宽大于 35

5.5 不同板材/走线长度的 FFE 经验参数

FR4 板材

走线长度	光模块+光纤			3M DAC		
	c0	c1	c2	c0	c1	c2
0~4 inch	2	70	7	4	180	0
4~7 inch	2	92	15	8	174	0

M4 板材

走线长度	光模块+光纤			3M DAC		
	c0	c1	c2	c0	c1	c2
0~4 inch	1	40	4	暂无	暂无	暂无
4~7 inch	2	70	5	. 0	50	