E_1 10 N
Eup-10 Dijkstra's Algo
import sys
class Graph():
def-init- (self, vertices):
Self. V = vertices
self. graph = [[o for column in range (vertices)]
self. graph = [[o for column in range (vertices)] for now in range (vertices)]
def print Solution (self, dist):
Print ("Verten distance from source:"),
print ("Vertex Cost")
for node in sauge (self.v) Print (" ", node," ", dist [node])
Prunt (", node," ", dist [node])
-loC . N. 1
det min Distance (Belf, dist, spt Set):
min = Sys-mansize
tor v in range (self. v):
if dist[v] \ min and spt Set [v] == False:
min = dist [v]
$min_index = V$
return min-index
def dijkstra (self, src):
dist = [sys. mansize] * self. V
dist [src] = 0
SptSet = [False] * self. V

Scanned by TapScanner

```
for cout in range (set. v):

v = self. min Dictance (dut, spt set)
              Spt Set [u] - Twe
       for v in range (self. V):

if self. graph [v][v] >0 and sptSet[v] == False

and dist[v] > dist[v] + self. graph [v][v]:
            dist [v] - dist [v] + self. graph [v][v]
         Self. plint Solution (dist)
if _ name _ = = "_ main_":
        print ("Enter number of verten:", end = "")
          n = int (input ())
           g = Graph (n)
       print (" In Enter matrix:")
    matrin = []
     for in range (n):
         how = []
         now = list (map (int, input (). split (" "))
        matrin. append (now)
        g. graph = natrix
        print (" Enter src vertex: ", end = " ")
         SAC = int (input ())
      g. dijksta (SAC)
```

Scanned by TapScanner