Motores das portas:

O motor utilizado no momento é o N20 da Polulu (link). O motor pode ser alimentado de 1,5 a 12V. Ele é acoplado a uma caixa de redução de 298:1, convertendo parte de sua rotação em torque. O torque a 6V é aproximadamente 5,04 kgf·cm (0,5N·m) a vazio e cerca de 1kgf·cm com carga. Tem uma velocidade de 100 rpm a 6V.

			6000 RPM	2 oz-in	5:1 HP 6V	5:1 HP 6V dual-shaft
6 V	high-power (HP) (same specs as 6V HPCB above)	1600 mA	3000 RPM	4 oz-in	10:1 HP 6V	10:1 HP 6V dual-shaft
			1000 RPM	9 oz-in	30:1 HP 6V	30:1 HP 6V dual-shaft
			625 RPM	15 oz-in	50:1 HP 6V	50:1 HP 6V dual-shaft
			400 RPM	22 oz-in	75:1 HP 6V	75:1 HP 6V dual-shaft
			320 RPM	30 oz-in	100:1 HP 6V	100:1 HP 6V dual-shaft
			200 RPM	40 oz-in	150:1 HP 6V	150:1 HP 6V dual-shaft
			140 RPM	50 oz-in	210:1 HP 6V	210:1 HP 6V dual-shaft
			120 RPM	60 oz-in	250:1 HP 6V	250:1 HP 6V dual-shaft
			100 RPM	70 oz-in	298:1 HP 6V	298:1 HP 6V dual-shaft
			32 RPM	125 oz-in	1000:1 HP 6V	1000:1 HP 6V dual-shaft

Para deslocar a porta na direção vertical, a força necessária deve ser maior do que a força de atrito.

Há dois valores distintos para esta força. Um é o valor quando a porta ainda não venceu a inércia, que seria a força de atrito estático, e outro valor é quando a porta já está em movimento, que é a força de atrito dinâmico.

Consultando tabelas obtemos alguns valores de coeficientes de atritos dinâmicos (link). No caso em estudo trata-se de atrito madeira e aço, não lubrificados, cujo valor é de 0,40. O atrito estático é cerca de 0,54. A massa da porta da esquerda é de 1,592 kg contando os suportes e roldanas.

$$F_{at_{est\'atico}} = m_{esquerda} \cdot \vec{g} \cdot \mu_{est\'atico}$$

 $F_{at_{est\'atico}} = 1,592 \cdot 9,807 \cdot 0,540$
 $F_{at_{est\'atico}} = 8,431N$

O torque inicial necessário ao sistema será a força aplicada ao ponto médio do pinhão, que é 0,1375mm:

$$au_{inicial} = F_{at_{estático}} \cdot d$$

$$au_{inicial} = 8,431 \cdot 0,001375$$

$$au_{inicial} = 0,011593 \ Nm$$

Para o mercado de motores este valor é correspondente a aproximadamente 0,12kgf cm.

$$F_{at_{din\hat{a}mico}} = m_{esquerda} \cdot \vec{g} \cdot \mu_{din\hat{a}mico}$$

$$F_{at_{din\hat{a}mico}} = 1,592 \cdot 9,807 \cdot 0,400$$

$$F_{at_{din\hat{a}mico}} = 6,245N$$

$$au_{movimento} = F_{at_{din\hat{a}mico}} \cdot d$$

$$au_{movimento} = 6,245 \cdot 0,001375$$

$$au_{movimento} = 0,008587 \, Nm$$

Para o mercado de motores este valor é correspondente a aproximadamente 0,09kgf cm.

A velocidade de abertura da porta deve ser de no máximo 3,9 segundos (<u>link</u> [pg 33]). A porta deve se deslocar 25cm.

$$v_{abertura} = \frac{25 \ cm}{3.9s} \rightarrow \frac{3.846m}{min}$$

O pinhão tem 5,5mm de diâmetro.

$$C_{pinh\tilde{a}o} = 0.0173m$$

Número de giros necessários para deslocamento total da porta:

$$giros = \frac{0,250}{0,0173} \rightarrow 14,451$$

A velocidade angular será então:

$$\omega = \frac{14,451}{3,9s} \rightarrow 222,32 \, rpm$$

$$\omega = 23,28 \, rad/s$$

A velocidade é diretamente proporcional à tensão aplicada nos terminais do motor, logo a tensão que deve ser aplicada a este motor para alcançar a rotação de 222,32rpm é de 13,34V. O motor não deve ser alimentado acima de 12V, segundo o fabricante, então a rotação final do motor será de 200rpm, que levará a porta a se abrir em 3,905s, o que não prejudica a velocidade desejada.

A potência na ponta do eixo será:

$$P = \tau_{movimento} \cdot \omega$$

$$P = 0,008587 \cdot 23,28$$

$$P = 0,200 W$$

Para uma tensão de 6V a corrente necessária para tirar a porta da inércia é de 180mA, consultando as curvas de corrente vs torque, e para manutenção do movimento:

$$i_{movimento} = \frac{P}{V} \rightarrow \frac{0.2}{12} = 33.31 mA$$