Notes on Bosonization*

Xiaodong Hu[†]
Department of Physics, Boston College
(Dated: November 25, 2018)

Notes of Bosonization.

Contents

I.	1D Electron Gas	1
	A. Particularity of 1D Electron Gas	1
	B. Linearization	1
II.	Bosonization A. Kac-Moody Algebra B. Equivalence of Fermionic and Bosonic Description: Partition Function	2 2 2
III.	Interactive Terms	2
IV.	Application on Other Models	2
v.	Non-abelian Bosonization	2
	Appendix A: Conformal Field Theory	2

I. 1D ELECTRON GAS

A. Particularity of 1D Electron Gas

Hamiltonian for $compactified^1$ 1DEG is $H = H_0 + H_{int}$ where

$$H_0 = \sum_{\sigma} \int_0^L d\mathbf{x} \, \psi_{\sigma}^{\dagger}(\mathbf{x}) \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} - \mu \right) \psi_{\sigma}(\mathbf{x}) \tag{1}$$

and

$$H_{\rm int} = \sum_{\sigma, \sigma'} \int \mathrm{d}x \tag{2}$$

B. Linearization

We are interested in the low energy effective theory of 1DES, in which fermions around FS has the energy

$$\varepsilon(p) \sim (|p| - p_F)v_F$$
.

In momentum space, this means that only the Fourier component of

$$\psi_{\sigma}(\boldsymbol{x}) \equiv \sum \frac{\mathrm{d}p}{2\pi} \psi_{\sigma}(p) e^{ipx/\hbar}$$

^{*}A footnote to the article title

 $^{^{\}dagger} Electronic \ address: \ \texttt{xiaodong.hu@bc.edu}$

¹ To circle S^1 .

near $\pm p_F$ contributes to the description of low-energy states. With the cut off Λ , one can write

$$\psi_{\sigma}(x) \sim \sum_{-\Lambda}^{\Lambda} \frac{\mathrm{d}p}{2\pi} \psi_{\sigma}(-p_F + p) e^{ix(-p_F + p)/\hbar} + \sum_{-\Lambda}^{\Lambda} \frac{\mathrm{d}p}{2\pi} \psi_{\sigma}(p_F + p) e^{ix(p_F + p)/\hbar}$$
$$=: e^{-ixp_F/\hbar} L_{\sigma}(x) + e^{ixp_F/\hbar} R_{\sigma}(x), \tag{3}$$

where

$$L_{\sigma}(x) \equiv \sum_{-\Lambda}^{\Lambda} \frac{\mathrm{d}p}{2\pi} \psi_{\sigma}(p - p_F) e^{ipx/\hbar}, \quad R_{\sigma}(x) \equiv \sum_{-\Lambda}^{\Lambda} \frac{\mathrm{d}p}{2\pi} \psi_{\sigma}(p + p_F) e^{ipx/\hbar},$$

or in momentum space

$$L_{\sigma}(p) \equiv \psi_{\sigma}(p - p_F), \quad R_{\sigma}(p) \equiv \psi_{\sigma}(p + p_F).$$

Therefore the free Hamiltonian

$$H_0 = \sum_{\sigma} \sum_{\sigma} \frac{\mathrm{d}p}{2\pi} \varepsilon(p) \psi_{\sigma}^{\dagger}(p) \psi_{\sigma}(p) \tag{4}$$

can be approximated to narrow integral around the region $p \pm p_F$, i.e.,

$$H_{0} = \sum_{\sigma} \sum_{-\Lambda}^{\Lambda} \frac{\mathrm{d}p}{2\pi} \left[\varepsilon(p - p_{F}) \psi_{\sigma}^{\dagger}(p - p_{F}) \psi_{\sigma}(p - p_{F}) + \varepsilon(p + p_{F}) \psi_{\sigma}^{\dagger}(p + p_{F}) \psi_{\sigma}(p + p_{F}) \right]$$

$$= \sum_{\sigma} \sum_{\Lambda}^{\Lambda} \frac{\mathrm{d}p}{2\pi} p v_{F} \left(R^{\dagger}(p) R(p) - L^{\dagger}(p) L(p) \right)$$
(5)

II. BOSONIZATION

A. Kac-Moody Algebra

B. Equivalence of Fermionic and Bosonic Description: Partition Function

III. INTERACTIVE TERMS

IV. APPLICATION ON OTHER MODELS

V. NON-ABELIAN BOSONIZATION

Appendix A: Conformal Field Theory