Apellido y Nombre:				
Carrera: DNI:				
[Llenar con letra mavúscula de imprenta GRANDE]				

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática

Algoritmos y Estructuras de Datos

Algoritmos y Estructuras de Datos. Final. [7 de Julio de 2005]

[Ej. 1] [clases (30 pts)]

[aoo (30 pts)] Escribir los siguientes métodos del TAD árbol ordenado orientado: insert(p,x), erase(p), splice(to,from).

[Ej. 2] [programacion (46 pts)]

- [parc-ord (34 pts)] Recordemos que un árbol es parcialmente ordenado si dados dos nodos m, n tal que m es hijo de n, entonces el valor de m es mayor o igual al de n. Consigna: Ecribir un predicado
 - bool es_parcialmente_ordenado(tree<int> &T,bool (comp*)(int,int), que verifica si el árbol ordenado orientado T es parcialmente ordenado con respecto a la función de comparación comp().
- [proper-subset (12 pts)] Dada una lista de árboles list< set<int> > L, escribir una función predicado bool proper_subset(list< set<int> > &L), que determina si los conjuntos de la lista L son subconjuntos propios en forma consecutiva. Es decir, si $L = (A_0, A_1, ..., A_{n-1})$, determinar si $A_i \subset A_{i+1}$ para i=0,...,n-2. (Recordar que $A \subset B$ indica inclusión propia, es decir $A \subseteq B$ y $A \neq B$.)

[Ej. 3] [operativos (16 pts)]

• [t-exec (4 pts)]

Dadas las funciones

- $T_1(n) = 3n^2 + 2n^3 + 0.5 \cdot 3^n$,
- $T_2(n) = 4^5 + 10 n + 0.2 n \log_2 n$,
- $T_3(n) = 3n + 5 + 6\sqrt{n}$, $T_4(n) = n^{1.5} + 7! + 4\sqrt{n}$.

ordenarlas de menor a mayor.

- [huffmann (4 pts)] Dados los caracteres siguientes con sus correspondientes probabilidades, contruir el código binario y encodar la palabra SKYWALKER: P(S) = 0.1, P(K) = 0.2, P(Y) = 0.05, P(W) = 0.050.05, P(A) = 0.05, P(L) = 0.05, P(E) = 0.2, P(R) = 0.3 Calcular la longitud promedio del código
- [heap-sort (4 pts)] Dados los enteros $\{23, 15, 12, 6, 8, 13, 10, 9\}$ ordenarlos por el método de "montículos" ("heap-sort"). Mostrar el montículo (minimal) antes y después de cada inserción/supresión.
- [quick-sort (4 pts)] Dados los enteros {3, 1, 11, 14, 18, 17, 7, 2, 11, 20} ordenarlos por el método de "clasficación rápida" ("quick-sort"). En cada iteración indicar el pivote y mostrar el resultado de la partición.

[Ej. 4] [preguntas (8 pts, 2 por pregunta)]

a)	$\ensuremath{\mathcal{C}}$ Cómo es el	${\it tiempo}$	de ejecución	para intercala	ar dos listas	clasificadas	de n elementos:
----	---------------------------------------	----------------	--------------	----------------	---------------	--------------	-------------------

	O(1)
	O(n)

1 Final. [7 de Julio de 2005]

	Nombre:	Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática
	DNI:etra mayúscula de imprenta GRANDE]	Algoritmos y Estructuras de Datos
b)) ¿Cuál de los siguientes árboles es un árbol binario	o de búsqueda?
	(6 (5 (3 . 4) .) (9 8 10)) (6 (5 (3 . 4) .) (9 (8 2 .) 10)) (6 (5 (3 4 .) .) (9 8 10)) (6 (5 (3 . 4) 7) (9 8 10))	
c)) ¿Cuál es el tiempo de ejecución para el algoritmo	de ordenamiento pot montículos en el peor caso?
<i>d</i>)		ush() del TAD COLA, implementado sobre listas de la lista)?

Final. [7 de Julio de 2005]