Machine Learning Lecture 2

Review of basic concepts

- Feature vectors, labels
- Training set
- Classifier
- → Training error
- → Test error
- Set of classifiers

Review: training set

Review: a classifier

Review: test set

This lecture

- The set of linear classifiers
- Linear separation
- Perceptron algorithm

Linear classifiers

Linear classifiers through origin

Linear classifiers

Linear separation: ex

Linear separation: ex

Linear separation: ex

Linear separation

Learning linear classifiers

Training error for a linear classifier (through origin)

Definition:

Training examples $S_n = \{(x^{(i)}, y^{(i)}\}), i = 1, ..., n\}$ are linearly separable if there exists a parameter vector $\hat{\theta}$ and offset parameter $\hat{\theta}_0$ such that $y^{(i)}(\hat{\theta} \cdot x^{(i)} + \hat{\theta}_0) > 0$ for all i = 1, ..., n.

Learning linear classifiers

Training error for a linear classifier

Learning algorithm: perceptron

$$\theta = 0$$
 (vector)

if
$$y^{(i)}(\theta \cdot x^{(i)}) \leq 0$$
 then $\theta = \theta + y^{(i)}x^{(i)}$

Learning algorithm: perceptron

Learning algorithm: perceptron

$$\theta = 0 \text{ (vector)}$$

$$\mathbf{for } i = 1, \dots, n \text{ do}$$

$$\mathbf{if } y^{(i)}(\theta \cdot x^{(i)}) \leq 0 \text{ then}$$

$$\theta = \theta + y^{(i)}x^{(i)}$$

procedure Perceptron(
$$\{(x^{(i)},y^{(i)}),i=1,\ldots,n\},T$$
)
 $\theta=0 \text{ (vector)}$
for $t=1,\ldots,T$ do
for $i=1,\ldots,n$ do
if $y^{(i)}(\theta\cdot x^{(i)})\leq 0$ then
 $\theta=\theta+y^{(i)}x^{(i)}$
return θ

Perceptron algorithm: ex

Perceptron (with offset)

```
x_2
```

```
1: procedure Perceptron(\{(x^{(i)}, y^{(i)}), i = 1, ..., n\}, T)
2: \theta = 0 (vector), \theta_0 = 0 (scalar)
3: for t = 1, ..., T do
4: for i = 1, ..., n do
5: if y^{(i)}(\theta \cdot x^{(i)} + \theta_0) \leq 0 then
6: \theta = \theta + y^{(i)}x^{(i)}
7: \theta_0 = \theta_0 + y^{(i)}
8: return \theta, \theta_0
```

Key things to understand

- Parametric families (sets) of classifiers
- → The set of linear classifiers
- Linear separation
- Perceptron algorithm