

- 1. Contexto Histórico
 - 1.1. A dificuldade no gerenciamento de páginas na internet
 - 1.2. Uma Breve apresentação do mecanismo
- 2. Funcionamento do algoritmo
 - 2.1. Esclarecimentos
 - 2.2. O algoritmo simplificado
- 3. Falhas do PageRank
 - 3.1. Páginas sem ligações
 - 3.2. Ciclos (Rank Sink)
 - 3.3. Solução: Fator de Amortecimento
- 4. Representação Matricial
- 5. Exemplo computacional com dados reais

1. Contexto Histórico

1.1. A dificuldade no gerenciamento de páginas na internet

A organização, classificação e gerenciamento dos sites tornou-se mais difícil na mesma medida que as páginas de web se multiplicavam.

Quantos Websites existem?

1. Contexto Histórico

1.1. A dificuldade no gerenciamento de páginas na internet

Os primeiros motores de busca da internet possuíam limitações:

- Combinações das palavras-chave nas pesquisas não eram bem interpretadas;
- Os resultados das consultas eram relacionados a publicidade de produtos.

Em 1998, Larry Page e Sergey Brin desenvolveram o PageRank:

- Algoritmo de classificação da importância dos websites com base no número de referências entre as páginas.

Larry e Sergey aplicaram o algoritmo na empresa que criaram, a Google Inc.

1. Contexto Histórico

1.2. Uma Breve apresentação do mecanismo

2. Funcionamento do algoritmo

2.1. Esclarecimentos

01

O PR de cada página representa a probabilidade de um usuário, navegando aleatoriamente, chegar até ela. A soma de todos os

ranqueamentos é igual a 1.

02

O algoritmo é iterativo.

03

Após a primeira iteração, todas as páginas terão a classificação 1/N (N é o número total de páginas).

2. Funcionamento do algoritmo

2.2. O algoritmo simplificado

$$\Delta = \frac{ab + c}{ab + c}$$

Para encontrar o PageRank do nó A:

- 1° Após a primeira iteração, as páginas têm o mesmo valor 1/N de PageRank, ou seja, 0,25.
- 2º Na segunda iteração, cada página transfere o seu PageRank em porções iguais para as páginas que aponta.

$$PR(A) = \frac{PR(B)}{3} + \frac{PR(C)}{2} + \frac{PR(D)}{1}$$

2. Funcionamento do algoritmo

$$PR(p_i) = \sum_{p_j \in M(p_i)} \frac{PR(p_j)}{L(p_j)}$$

M(pi) conjunto de todas as páginas pj que referenciam a página pi; L(pj) número de referências em pj.

3. Falhas do PageRank

3.1. Páginas sem ligações

B absorve o ranqueamento da rede, mas ao calcular o PageRank de cada página, ambos os nós recebem zero.

3. Falhas do Pagerank

3.2. Ciclos (Rank Sink)

Após cada iteração, o valor de ranqueamento é transferido para o nó seguinte em sua totalidade.

Não há um momento em que o sistema entra em equilíbrio. O cálculo resulta em 1 de PageRank para todas as redes: ABSURDO!

3. Falhas do Pagerank

- Representado por d;
- V---- Varia de 0 a 1;
 - Probabilidade de um usuário continuar seguindo as ligações entre as páginas;
 - O valor padrão para d é 0, 85;
 - Se d = 0, todas as páginas ficam com o PageRank de 1/N;
 - Quanto mais próximo d estiver de 1, maior é a influência da estrutura da rede;

$$PR(A) = \frac{1-d}{N} + d\left(\frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)}\right)$$

4. Representação Matricial

$$PR(p_i) = \frac{1-d}{N} + d\left(\sum_{p_j \in M(p_i)} \frac{PR(p_j)}{L(p_j)}\right)$$

$$R = \begin{bmatrix} \frac{1-d}{N} \\ \frac{1-d}{N} \\ \vdots \\ \frac{1-d}{N} \end{bmatrix} + d \begin{bmatrix} l(p_1, p_1) & l(p_1, p_2) & \dots & l(p_1, p_n) \\ l(p_2, p_1) & \ddots & & \vdots \\ \vdots & & l(p_i, p_j) & \\ l(p_n, p_1) & \dots & l(p_n, p_n) \end{bmatrix} R$$

Exemplo computacional

Como seria a classificação da premier league temporada 20/21 se a classificação fosse por PageRank em vez de pontos corridos?

Base de dados original:

In [4]: data.head(11)

Out[4]:

Result	Away Team	Home Team	Location	Date	Round Number	Match Number	
0 - 3	Arsenal	Fulham	Craven Cottage	12/09/2020 12:30	1	4	0
1 - 0	Southampton	Crystal Palace	Selhurst Park	12/09/2020 15:00	1	3	1
4 - 3	Leeds	Liverpool	Anfield	12/09/2020 17:30	1	5	2
0 - 2	Newcastle	West Ham	London Stadium	12/09/2020 20:00	1	8	3
0 - 3	Leicester	West Brom	The Hawthorns	13/09/2020 14:00	1	7	4
0 - 1	Everton	Spurs	Tottenham Hotspur Stadium	13/09/2020 16:30	1	6	5
0 - 2	Wolves	Sheffield Utd	Bramall Lane	14/09/2020 18:00	1	10	6
1 - 3	Chelsea	Brighton	Amex Stadium	14/09/2020 20:15	1	9	7
5 - 2	West Brom	Everton	Goodison Park	19/09/2020 12:30	2	14	8
4 - 3	Fulham	Leeds	Elland Road	19/09/2020 15:00	2	15	9
1 - 3	Crystal Palace	Man Utd	Old Trafford	19/09/2020 17:30	2	17	10

Alterando a base de dados original:

In [45]:	df.	head(11)			
Out[45]:		home_team	away_team	home_gols	away_gols
	0	Fulham	Arsenal	0	3
	1	Crystal Palace	Southampton	1	0
	2	Liverpool	Leeds	4	3
	3	West Ham	Newcastle	0	2
	4	West Brom	Leicester	0	3
	5	Spurs	Everton	0	1
	6	Sheffield Utd	Wolves	0	2
	7	Brighton	Chelsea	1	3
	8	Everton	West Brom	5	2
	9	Leeds	Fulham	4	3
	10	Man Utd	Crystal Palace	1	3

In [25]:	df_matches.head()	
Out[25]:	winner	los

	winner	loser
0	Arsenal	Fulham
1	Crystal Palace	Southampton
2	Liverpool	Leeds
3	Newcastle	West Ham
4	Leicester	West Brom

In [15]:	<pre>matrix.head()[matrix.columns[:5]]</pre>					
Out[15]:		Arsenal	Aston Villa	Brighton	Burnley	Chelsea
	Arsenal	NaN	NaN	NaN	NaN	NaN
	Aston Villa	NaN	NaN	NaN	NaN	NaN
	Brighton	NaN	NaN	NaN	NaN	NaN
	Burnley	NaN	NaN	NaN	NaN	NaN
	Chelsea	NaN	NaN	NaN	NaN	NaN

Criando a matriz de transição:

In [41]: # Matriz de transição M.
M.head()[M.columns[:5]]

Out[41]:

	Arsenal	Aston Villa	Brighton	Burnley	Chelsea
Arsenal	0.0	0.0	1.0	1.0	1.0
Aston Villa	1.0	0.0	1.0	1.0	1.0
Brighton	0.0	1.0	0.0	1.0	1.0
Burnley	1.0	1.0	1.0	0.0	0.0
Chelsea	0.0	1.0	1.0	1.0	0.0

Finalizando a matriz de transição:

In [46]: dfpr.head()[dfpr.columns[:5]]

Out[46]:

	Arsenal	Aston Villa	Brighton	Burnley	Chelsea
Arsenal	0.000000	0.000000	0.058824	0.058824	0.076923
Aston Villa	0.071429	0.000000	0.058824	0.058824	0.076923
Brighton	0.000000	0.058824	0.000000	0.058824	0.076923
Burnley	0.071429	0.058824	0.058824	0.000000	0.000000
Chelsea	0.000000	0.058824	0.058824	0.058824	0.000000

Após finalizarmos a matriz de transição, calculamos o pagerank utilizando a fórmula abaixo.

$$Pr = \frac{1-d}{n} + d \cdot L$$

Após isso calculamos os autovalores e autovetores da matriz Pr. e então pegamos o autovetor correspondente ao autovalor 1 para ser o pagerank dos times.

In [40]: classificacao

Out[40]:

	Time	Pagerank
1	Liverpool	0.273477
2	Man Utd	0.272085
3	Man City	0.266215
4	Leicester	0.262372
5	Chelsea	0.261980
6	Spurs	0.258811
7	Everton	0.243673
8	Leeds	0.238636
9	Brighton	0.234189
10	Aston Villa	0.220853
11	Crystal Palace	0.212731
12	West Ham	0.212430
13	Southampton	0.206356
14	Fulham	0.202996
15	Arsenal	0.201735
16	West Brom	0.187869
17	Wolves	0.182869
18	Newcastle	0.180655
19	Burnley	0.156745
20	Sheffield Utd	0.122887

GD PTS

RELEGATION

38 26

-1

38 -16

38 -16

38 -25

38 -21

38 -6

38 -22

38 -26

38 -41

38 -43

Resultados interessantes:

- O Liverpool teria sido o campeão.
- O Fulham sairia da 18º para a 14º colocação.
- O West Brom sairia da 19º para a 16º colocação.
- O Burnley sairia de 17º para 19º e seria rebaixado.
- O Newcastle sairia de 12º para 18º e seria rebaixado .

