Introduction: Linear Algebra

Introduction to Artificial Intelligence with Mathematics Lecture Notes

Ganguk Hwang

Department of Mathematical Sciences KAIST

Metric Space

Metrics generalize the notion of distance from Euclidean space.

Definition 1

A metric on a set S is a function $d: S \times S \longrightarrow \mathbb{R}$ that satisfies

- $d(x,y) \ge 0$ and the equality holds if and only if x = y
- d(x,y) = d(y,x)
- $d(x,y) \le d(x,z) + d(z,y)$ (the triangle inequality)

for all $x, y, z \in S$.

Normed Space

Norms generalize the notion of length from Euclidean space.

Definition 2

A norm on a real vector space V is a function $||\cdot||:V\longrightarrow \mathbb{R}$ that satisfies

- $ullet ||\mathbf{x}|| \geq 0$ and the equality holds if and only if $\mathbf{x} = \mathbf{0}$
- $\bullet ||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||$
- ullet $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$ (triangle inequalty)

for all $\mathbf{x}, \mathbf{y} \in V$ and all $\alpha \in \mathbb{R}$.

A vector space with a norm is called a normed vector space or a normed space.

Examples of norms

Let $\mathbf{x} = (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n$.

- $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$
- $||\mathbf{x}||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$
- $||\mathbf{x}||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$
- $\bullet ||\mathbf{x}||_{\infty} = \max_{1 \le i \le n} |x_i|$

Inner Product Spaces

Definition 3

An inner product on a real vector space V is a function

$$<\cdot,\cdot>:V\times V\longrightarrow\mathbb{R}$$
 that satisfies

- ullet < ${f x},{f x}>\geq 0$ and the equality holds if and only if ${f x}={f 0}$
- ullet < ${f x}+{f y},{f z}>=<{f x},{f y}>+<{f x},{f z}>$ and < $lpha{f x},{f y}>=lpha<{f x},{f y}>$
- ullet < x, y >=< y, x >

for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and all $\alpha \in \mathbb{R}$.

A vector space with an inner product is called an inner product space. Note that an inner product on V induces a norm on V as follows:

$$||\mathbf{x}|| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

- Two vectors \mathbf{x} and \mathbf{y} are orthogonal if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.
- If two orthogonal vectors \mathbf{x} and \mathbf{y} satisfy $||\mathbf{x}|| = ||\mathbf{y}|| = 1$, then they are called orthonormal.
- ullet The standard inner product in \mathbb{R}^n is

$$<\mathbf{x},\mathbf{y}>=\sum_{i=1}^n x_iy_i$$

where $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$.

Pythagorean Theorem

If two vectors \mathbf{x} and \mathbf{y} are orthogonal,

$$||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2.$$

Cauchy-Schwarz Inequality

$$|<\mathbf{x},\mathbf{y}>|^2 \le ||\mathbf{x}||^2 ||\mathbf{y}||^2$$

c.f.
$$0 \le ||\mathbf{x} - \lambda \mathbf{y}||^2$$
 with $\lambda = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{y}||^2}$

Orthogonal complements and projections

Let V be an inner product space and S be a finite-dimensional subspace of V. Then $\mathbf{v}\in V$ can be written uniquely as

$$\mathbf{v} = \mathbf{v}_S + \mathbf{v}_\perp$$

where $\mathbf{v}_S \in S$ and $\mathbf{v}_{\perp} \in S^{\perp}$.

This implies that

$$V = S \oplus S^{\perp}$$
.

Moreover, we can define an orthogonal projection $P_S: V \longrightarrow S$ defined by

$$P_S(\mathbf{v}) = \mathbf{v}_S.$$

Let $\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_k$ form a basis of a subspace S of \mathbb{R}^n , and \mathbf{A} denote the $n \times k$ matrix with these vectors as columns, then the orthogonal projection P_S is given by

$$P_S(\mathbf{v}) = \mathbf{A}(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{v}.$$

c.f. consider $\mathbf{A}^\top(\mathbf{v}-\mathbf{A}\mathbf{x})=\mathbf{0}$ and find $\mathbf{x}.$

Eigenvalues and Eigenvectors

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix. We say that a nonzero vector $\mathbf{x} \in \mathbb{R}^n$ is an eigenvector of \mathbf{A} corresponding to eigenvalue λ if

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$
.

The following are the properties of eigenvalues and eigenvectors.

- For any $\gamma \in \mathbb{R}$, \mathbf{x} is an eigenvector of $\mathbf{A} + \gamma \mathbf{I}$ with eigenvalue $\lambda + \gamma$.
- If ${\bf A}$ is invertible, then ${\bf x}$ is an eigenvector of ${\bf A}^{-1}$ with eigenvalue λ^{-1} .
- $\mathbf{A}^k \mathbf{x} = \lambda^k \mathbf{x}$ for any $k \in \{0, 1, 2, \cdots\}$.

Trace

The trace of an $n \times n$ square matrix $\mathbf{A} = (a_{ij})$ is the sum of its diagonal elements, i.e.,

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}.$$

The nice properties of the trace are

- $\bullet \ \mathsf{tr}(\mathbf{A} + \mathbf{B}) = \mathsf{tr}(\mathbf{A}) + \mathsf{tr}(\mathbf{B})$
- $tr(\alpha \mathbf{A}) = \alpha tr(\mathbf{A})$
- $\operatorname{tr}(\mathbf{A}^{\top}) = \operatorname{tr}(\mathbf{A})$
- tr(ABC) = tr(BCA) = tr(CAB) (invariant under *cyclic* permutations)
- The trace of A is equal to the sum of its eigenvalues (repeated according to multiplicity).

Determinant

We skip the definition of the determinant of a squre matrix, but we need its properties.

- $det(\mathbf{I}) = 1$
- $\bullet \ \det(\mathbf{A}^{\top}) = \det(\mathbf{A})$
- $\bullet \ \det(\mathbf{AB}) = \det(\mathbf{A})\det(\mathbf{B})$
- $\bullet \ \det(\mathbf{A}^{-1}) = \det(\mathbf{A})^{-1}$
- $det(\alpha \mathbf{A}) = \alpha^n det(\mathbf{A})$
- The determinant of a matrix is equal to the product of its eigenvalues (repeated according to multiplicity).

Symmetric Matrices

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be symmetric if $\mathbf{A}^{\top} = \mathbf{A}$.

- If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, then there exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of \mathbf{A} .
- Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ denote the orthonormal basis and $\lambda_1, \lambda_2, \cdots, \lambda_n$ be their eigenvalues. Let \mathbf{U} be the matix with $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ as its columns, and $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$. Then

 $AU = U\Lambda$, equivalently $A = U\Lambda U^{\top}$.

Positive Semi-definite Matrices

A symmetric matrix \mathbf{A} is positive semi-definite (positive definite, resp.) if for every non-zero vector $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geq 0 (>0$, resp.).

- A symmetric matrix is positive semi-definite if and only if all of its eigenvalues are nonnegative, and positive definite if and only if its eigenvalues are positive.
- For $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{A}^{\top} \mathbf{A}$ is positive semi-definite. If $\mathrm{null}(\mathbf{A}) = \{\mathbf{0}\}$, then $\mathbf{A}^{\top} \mathbf{A}$ is positive definite.
- If **A** is positive semi-definite and $\epsilon > 0$, then **A** + $\epsilon \mathbf{I}$ is positive definite.
- If \mathbf{A} is positive semi-definite, it satisfies $\mathbf{A} = \mathbf{A}^{\frac{1}{2}} \mathbf{A}^{\frac{1}{2}}$ where $\mathbf{A}^{\frac{1}{2}} = \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} \mathbf{U}^{\top}$ and $\mathbf{\Lambda}^{\frac{1}{2}} = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n})$.

Singular Value Decomposition

Sigular value decomposition is one of important tools in linear algebra and machine learning. Its strength stems from the fact that every matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has a singular value decomposion.

For $\mathbf{A} \in \mathbb{R}^{m \times n}$, it can be decomposed as

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$

where $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are orthogonal matrices and $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ is a diagonal matrix with the sigular values of \mathbf{A} , denoted by σ_i on its diagonal.

When the rank of ${\bf A}$ is r, only the first r singular values are nonzero in the increasing order, i.e.,

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r \ge \sigma_{r+1} = \cdots = \sigma_{\min\{m,n\}} = 0.$$

Another way to represent the singular value decomposition is

$$\mathbf{A} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^\top$$

where \mathbf{u}_i and \mathbf{v}_i are the *i*-th column vectors of \mathbf{U} and \mathbf{V} , called the left singular vectors and the right singular vectors of \mathbf{A} , respectively.

It is easy to see that $\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\top}$ are positive semi-definite, so their eigenvalues are nonnegative.

Observing

$$\begin{split} \mathbf{A}^{\top}\mathbf{A} &= (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})^{\top}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top} = \mathbf{V}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top} = \mathbf{V}\boldsymbol{\Sigma}^{\top}\boldsymbol{\Sigma}\mathbf{V}^{\top} \\ \mathbf{A}\mathbf{A}^{\top} &= \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})^{\top} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{V}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top} = \mathbf{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top}, \end{split}$$

we see that the columns of V are eigenvectors of $A^{\top}A$ and the columns of U are eigenvector of AA^{\top} .

Note that, even though two matrices $\Sigma^{\top}\Sigma$ and $\Sigma\Sigma^{\top}$ are not necessarily the same size, they are diagonal with σ_i^2 and some zeros. That is, the singular values of \mathbf{A} are the square roots of the eigenvalues of $\mathbf{A}^{\top}\mathbf{A}$ or $\mathbf{A}\mathbf{A}^{\top}$.

Matrix Differentiation

We use the following convention.

$$\mathbf{x} = (x_1, x_2, \cdots, x_n)^{\top}, \mathbf{y} = (y_1, y_2, \cdots, y_m)^{\top}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}.$$

• If y = Ax and A is independent of x, then

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \mathbf{A}.$$

• If $\mathbf{y} = \mathbf{A}\mathbf{x}$, $\mathbf{x} = (x_1(\mathbf{z}), \dots, x_n(\mathbf{z}))$ for some \mathbf{z} , and \mathbf{A} is independent of \mathbf{z} , then

$$\frac{\partial \mathbf{y}}{\partial \mathbf{z}} = \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}}.$$

• If $\alpha = \mathbf{y}^{\top} \mathbf{A} \mathbf{x}$ and \mathbf{A} is independent of \mathbf{x} and \mathbf{y} , then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{y}^{\top} \mathbf{A}, \frac{\partial \alpha}{\partial \mathbf{y}} = \mathbf{x}^{\top} \mathbf{A}^{\top}.$$

• If $\alpha = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ and \mathbf{A} is independent of \mathbf{x} , then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{x}^{\top} (\mathbf{A} + \mathbf{A}^{\top}).$$

• If $\alpha = \mathbf{y}^{\top}\mathbf{x}$, $\mathbf{x} = (x_1(\mathbf{z}), \cdots, x_n(\mathbf{z}))^{\top}$, and $\mathbf{y} = (y_1(\mathbf{z}), \cdots, y_n(\mathbf{z}))^{\top}$ for some \mathbf{z} , then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{x}^{\top} \frac{\partial \mathbf{y}}{\partial \mathbf{z}} + \mathbf{y}^{\top} \frac{\partial \mathbf{x}}{\partial \mathbf{z}}.$$

• If $\alpha = \mathbf{y}^{\top} \mathbf{A} \mathbf{x}$, $\mathbf{x} = (x_1(\mathbf{z}), \dots, x_n(\mathbf{z}))^{\top}$, $\mathbf{y} = (y_1(\mathbf{z}), \dots, y_n(\mathbf{z}))^{\top}$ for some \mathbf{z} and \mathbf{A} is independent of \mathbf{z} , then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{y}^{\top} \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}} + \mathbf{x}^{\top} \mathbf{A}^{\top} \frac{\partial \mathbf{y}}{\partial \mathbf{z}}.$$

• If $\alpha = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$, $\mathbf{x} = (x_1(\mathbf{z}), \cdots, x_n(\mathbf{z}))^{\top}$ for some \mathbf{z} and \mathbf{A} is independent of \mathbf{z} , then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{x}^{\top} (\mathbf{A} + \mathbf{A}^{\top}) \frac{\partial \mathbf{x}}{\partial \mathbf{z}}.$$