

Efficient Discovery of Spatial Co-evolving Patterns in Massive Geo-sensory Data

Chao Zhang¹, Yu Zheng², Xiuli Ma³, Jiawei Han¹

¹UIUC, ²Microsoft, ³PKU

<u>czhang82@illinois.edu</u>

Big Geo-Sensory Data is Ubiquitous

- Wireless sensor network (WSN): multiple sensors are deployed at different locations to monitor the target condition cooperatively.
- The geo-sensory data is becoming big
 - A modern WSN can contain hundreds of sensors, with each sensor collecting millions of records.

Spatial Co-evolving Pattern: An Example

- Goal: mining a set of spatially correlated sensors that exhibit frequent co-evolution.
- Frequent co-evolution for [s1, s2, s3]
 - ▶ s1 decreases in AQI, s2 and s3 increase in AQI $\{[-20/h, -15/h], [+15/h, +20/h], [+15/h, +20/h]\}$
 - Caused by traffic flow in off-work hours

Spatial Co-evolving Pattern Mining

- A spatial co-evolving pattern (SCP) contains
 - a set of spatially connected sensors
 - the frequent co-evolution in their readings
- We aim to find all SCPs from the input geo-sensory data.

Why is it a Challenging Problem?

- The truly interesting evolutions are often flooded by numerous trivial fluctuations.
 - Existing motif discovery methods can only find trivial motifs from such data.

AQI Change Distribution

Why is it a Challenging Problem?

- The combinatorial nature of SCP leads to an extremely large search space.
 - An arbitrary number of sensors.
 - ▶ The occurring time intervals of an SCP is uncertain.

Assembler: A Two-stage Approach

 Stage I: find frequent evolutions for individual sensors.

 Stage II: assemble individual evolutions into SCPs based on the spatial constraint.

Stage I: Mining Frequent Evolutions for Individual Sensors

- To find interesting evolutions, we must filter trivial fluctuations and identify evolving intervals.
- In geo-sensory data, the changes occur with different rates and durations.

Extract Evolutions using Wavelet Transform

- We capture multi-scale changes using wavelet transform.
 - In the wavelet space, the coefficients of different bases measure the strengths of changes.
 - We preserve large coefficients and discard small coefficients.

Detecting Frequent Evolutions

- After extracting evolving intervals in the time series, we detect frequent evolutions via clustering.
- A segment-and-group approach:
 - Partition each interval into line segments.
 - Use mean shift to cluster the line segments based on slope (change rate).

Mean shift clustering

Stage II: SCP Generation

- From individual sensors to groups of sensors
 - Pattern assembling via timestamp intersection.

1	Pattern P_1	[+20/h, +50/h]
	Timestamps	$\{t_1, t_3, t_4, t_7, t_9, t_{10}, t_{11}, t_{12}, t_{13}, t_{14}\}$
2	Pattern P_2	[-30/h, -10/h]
	Timestamps	$\{t_2, t_4, t_5, t_7, t_9, t_{10}, t_{11}, t_{12}, t_{13}, t_{17}\}$
-2	Pattern P_{12}	{[+20/h, +50/h], [-30/h, -10/h]}
	Timestamps	$\{t_4, t_7, t_9, t_{10}, t_{11}, t_{12}, t_{13}\}$

Stage II: SCP Generation

- Anti-monotonicity: if one set of sensors have SCP, any of its subsets must also have SCP.
- A baseline method based on Apriori: starting with patterns on individual sensors, obtain SCPs in a bottom-up manner.
- The baseline method is not efficient enough
 - ▶ It generates numerous candidates and keep them in memory.
 - It performs pair-wise comparison to examine whether two candidates can be joined.

Stage II: SCP Generation

- Can we leverage the spatial constraint to generate SCPs more efficiently?
- The connectivity graph
 - Each set of spatially connected sensors corresponds to a connected component in the connectivity graph.

Parent Relation

 We define the parent relation between two connected components.

DEFINITION 10 (PARENT). Let Y be a size-(k+1) connected component in a connectivity graph G. Given a vertex ordering V, the roll-up operation on Y removes one vertex s from Y such that: (1) the result set $X = Y - \{s\}$ is still connected; (2) s is the first possible vertex in V on the premise of satisfying Condition (1). We say X is the parent of Y, and Y is a child of X.

Example:

Suppose V = 1 -> 2 -> 3 -> 4 -> 5 -> 6, then the parent relation generates:

$$\{245\} \rightarrow \{25\} \rightarrow \{5\} \rightarrow \phi$$

The SCP Search Tree

- Starting from any connected component, by performing the roll-up operation, we can reach the same node ϕ .
- A tree structure: each node is a connected component along with the SCPs occurring on it.

Reverse Search of SCPs

- Starting from the root node, we perform depth-first construction of the SCP search tree
 - SCPs are obtained on-the-fly
 - Unqualified branches are pruned with anti-monotonicity.

Experimental Evaluation

Data sets

- Air: the AQI data collected by 180 sensors in northern China during 1.5 years.
- ▶ Bike: the bike rental data of 332 docks in New York during one year.

Example SCPs

On the Air data set:

Example SCPs

• On the Bike data set:

Running Time Comparison

Summary

- We study the problem of mining spatial co-evolving patterns from massive geo-sensory data.
- We propose the two-stage method Assembler:
 - Stage 1: it obtains frequent evolutions for individual sensors.
 - Stage 2: it assembles single patterns into SCPs.
- The experiment results show that Assembler is effective and efficient.