Inverse matrices for inverse transformations

BAx = y

 ${\mathscr N}$ Suppose x and y are column vectors. Then if Ax=y, then $x=A^{-1}y$.

 $\int x = A^{-1}B^{-1}y$

The inverse matrix therefore allows us to retrieve the original point/position vector before a transformation.

The triangle T has vertices at A, B and C. The matrix $M = \begin{pmatrix} 4 & -1 \\ 3 & 1 \end{pmatrix}$ transforms T to the triangle T' with vertices at A'(4,3), B'(4,10) and C'(-4,-3). Determine the coordinates of A, B and C.

$$M = \begin{pmatrix} 4 & -1 \\ 3 & 1 \end{pmatrix} \qquad M^{-1} = \frac{1}{7} \begin{pmatrix} 1 & 1 \\ -3 & 4 \end{pmatrix}$$

$$\frac{1}{7} \begin{pmatrix} 1 & 1 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 4 & 4 & -4 \\ 3 & 10 & -3 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 7 & 14 & -7 \\ 0 & 28 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & -1 \\ 0 & 4 & 0 \end{pmatrix}$$

$$A(1,0), B(2,4), C(-1,0)$$

Edexcel June 2012 Q9

$$\mathbf{M} = \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix}.$$

(a) Find det M. = -23

Given that

$$\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad \mathbf{i} \qquad \mathbf{i}$$

(e) describe fully the single geometrical transformation represented by A. Rotation 90° anti-dockwise, centre (0,0).

The transformation represented by A followed by the transformation represented by B is equivalent to the transformation represented by M.

(f) Find B.

 $A^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

(1)

Tip: If M = BA, make sure you multiply the end of each by A^{-1} :

$$\mathbf{M}\mathbf{A}^{-1} = \mathbf{B}\mathbf{A}\mathbf{A}^{-1}$$

$$\mathbf{M}\mathbf{A}^{-1} = \mathbf{B}\mathbf{I} = \mathbf{B}$$

$$M = BA$$
 $MA^{-1} = BAA^{-1}$
 $MA^{-1} = C$
 $A^{-1} = C$

$$\mathbf{M} = \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$$

(a) Show that M is non-singular.

(2)

The hexagon R is transformed to the hexagon S by the transformation represented by the matrix M.

Given that the area of hexagon R is 5 square units,

(b) find the area of hexagon S.

(1)

The matrix **M** represents an enlargement, with centre (0, 0) and scale factor k, where k > 0, followed by a rotation anti-clockwise through an angle θ about (0, 0).

(c) Find the value of k.

(2)

(d) Find the value of θ .

(2)

Question	Scheme	Marks	AOs
5(a)	$\det(\mathbf{M}) = (1)(1) - (\sqrt{3})(-\sqrt{3})$	M1	1.1a
	M is non-singular because $det(\mathbf{M}) = 4$ and so $det(\mathbf{M}) \neq 0$	A1	2.4
		(2)	
(b)	Area(S) = 4(5) = 20	B1ft	1.2
		(1)	
(c)	$k = \sqrt{(1)(1) - \left(\sqrt{3}\right)\left(-\sqrt{3}\right)}$	M1	1.1b
	= 2	A1ft	1.1b
		(2)	
(d)	$\cos\theta = \frac{1}{2} \text{ or } \sin\theta = \frac{\sqrt{3}}{2} \text{ or } \tan\theta = \sqrt{3}$	M1	1.1b
	$\theta = 60^{\circ} \text{ or } \frac{\pi}{3}$	A1	1.1b
		(2)	
	(7 m		

1.

$$\mathbf{P} = \frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix} \qquad \mathbf{Q} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

The matrices P and Q represent linear transformations, P and Q respectively, of the plane.

The linear transformation M is formed by first applying P and then applying Q.

- (a) Find the matrix M that represents the linear transformation M.
- (b) Show that the invariant points of the linear transformation M form a line in the plane, stating the equation of this line.

(2)

(3)

Question	Scheme	Marks	AOs
1(a)	$\mathbf{M} = \mathbf{QP} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \times \frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$	M1	1.1a
	$= \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \text{ or } \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$	A1	1.1b
		(2)	
(b)	$\begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow -\frac{1}{2}x - \frac{\sqrt{3}}{2}y = x \text{ and } -\frac{\sqrt{3}}{2}x + \frac{1}{2}y = y$	M1	3.1a
	$\Rightarrow -y\sqrt{3} = 3x \text{ and } y = -x\sqrt{3}$	M1	1.1b
	First equation gives $y = -\frac{3x}{\sqrt{3}} = -x\sqrt{3}$, so equations are the same, hence M fixes all points on the line $y = -x\sqrt{3}$.	A1ft	2.1
		(3)	

(5 marks)