Programming Design Writeup for Assignment 2:

Scale Space using Laplacian of Gaussian operator; Unsharp Masking, and Sobel Operator;

Tim Hung < thung1@binghamton.edu>

CS 455/555
Professor Lijun Yin
11 October 2016

1. Obtaining images

I first obtain the two provided images, "ant" and "basel," in TIFF format.

2. Unsharp Masking

To apply the Unsharp Masking method to create an enhanced edge image, I first run a Gaussian Blur over the images.

Blurred Images

Next, I added the original image with the difference of the original image and the blurred image to obtain the enhanced image.

enhanced = original + (original - blurred)

Enhanced Edge Image

3. Sobel Operator

I apply two 3x3 kernels to accentuate horizontal and vertical changes in intensity, to generate two gradient images, Gx and Gy. Next, I combine the two gradient images using the Pythagorean Theorem to generate the edge image.

-1	-2	-1	-1	0	1	
0	0	0	-2	0	2	
1	2	1	-1	0	1	
Horizontal Kernel			Vertical Kernel			

Edge Image from Sobel Operator application

4. Laplacian of Gaussian Mask

Using the following function:

$$L(x,y) = \left(\frac{1}{\sqrt{2\pi}\sigma^2}\right)^2 \left(\frac{x^2y^2}{\sigma^2} - 2\right)e^{\frac{-x^2y^2}{2\sigma^2}}$$

I generate the two Laplacian of Gaussian masks.

5	11	16	18	16	11	5
11	18	10	1	10	18	11
16	10	-40	-78	-40	10	16
18	1	-78	-136	-78	1	18
16	10	-40	-78	-40	10	16
11	18	10	1	10	18	11
5	11	16	18	16	11	5

Laplacian of Gaussian of size 7x7 with \sigma=1.4

0	-1	-2	- 3	-4	-4	-4	-3	-2	-1	0
-1	-2	-4	- 5	-6	-6	-6	-5	-4	-2	-1
-2	-4	-6	-7	-8	-9	-8	-7	-6	-4	-2
-3	- 5	-7	-9	-10	-11	-10	-9	-7	- 5	-3
-4	-6	-8	-10	-12	-12	-12	-10	-8	-6	-4
-4	-6	-9	-11	-12	-13	-12	-11	-9	-6	-4
-4	-6	-8	-10	-12	-12	-12	-10	-8	-6	-4
-3	-5	-7	-9	-10	-11	-10	-9	-7	-5	-3
-2	-4	-6	-7	-8	-9	-8	-7	-6	-4	-2
-1	-2	-4	-5	-6	-6	-6	-5	-4	-2	-1
0	-1	-2	-3	-4	-4	-4	-3	-2	-1	0

Laplacian of Gaussian of size 11x11 with \sigma=5.0

5. Applying L.o.G. Masks

I apply the two generated Laplacian of Gaussian masks to our original images.

Applying 7x7, $\sigma=1.4$ mask

Applying 11x11, $\sigma=5.0$ mask

It is clear that the application of the 7x7 mask results in far more edge detail. This is because the 11x11 mask has a very large σ value of 5.0, while the 7x7 only has a σ of 1.4.