1.
$$T = 300 \, \text{K}$$
, $K = 8.625 \times 10^{-5} \, \text{eV/K}$
 $E_0 = 5.6 \, \text{eV}$
 $E_{C} - E_{F} = \frac{E_0}{2} = 2.8 \, \text{eV}$
 $f(E_{C}) = \frac{1}{1 + c(E_{C} - E_{F})} = 1.09 \times 10^{-47}$

Assume,
$$T = 300 \text{ k}$$
 $n_e = N_c e$
 $-(E_c - E_F)/kT \dots 0$
 $-(E_c - E_F)/kT$
 $= N_c e \dots 0$

$$0 \div 0 \qquad 2 = e^{-(E_C - E_{F_2}) + (E_C - E_{F_2})}$$

=)
$$E_{c} - E_{f_{2}} = 0.4 - kT \ln 2$$

= 0.382 eV.

3.
$$E_F - E_i = kT \ln \left(\frac{n_0}{n_i} \right)$$

No & ND

4.
$$E_F - E_V = KT \ln \left(\frac{N_U}{P_0} \right)$$
 $P_0 \approx N_A = 5 \times 10^{16} / \text{cm}^3$
 $N_U = 4.82 \times 10^{15} \times \left(\frac{mp}{m} \right)^{3/2} \cdot T^{3/2} = \frac{m_n}{m} = 1.08$
 $\frac{m_p}{m} = 0.56$
 $E_F - E_V = KT \ln \left(\frac{7 \times 10^{18}}{5 \times 10^{16}} \right)$

$$E_F - E_V = KT \ln \left(\frac{7 \times 10^{18}}{5 \times 10^{16}} \right)$$

= 0.127 eV

$$E_F - E_V = 0.22 eV = KT \ln \left(\frac{N_U}{P_0}\right)$$

$$= KT \ln \left(\frac{N}{N_A}\right)$$

$$\frac{N_{V}}{N_{A}} = e^{\frac{0.22}{0.0259}} = 4914.77$$

=)
$$N_A = P_0 = \frac{1.04 \times 10^{19}}{4914.77} = 2.12 \times 10^{15} / cm^3$$

$$N_A = P_0 = \frac{1.04 \times 10^{19}}{4914.77} = 2.12 \times 10^{15} / cm^3$$

=)
$$n_0 = \frac{n_1^2}{P_0}$$
= $\frac{(1.5 \times 10^{16})^2}{2.12 \times 10^{15}}$

1.04×1019 4.7×101

6 x10 18 7x 10 15

0.57 0.067

0.37 0.48