Interrupções e Exceções

Universidade Federal do Ceará - Campus Quixadá

Roberto Cabral rbcabral@ufc.br

03 de Março de 2021

Arquitetura e Organização de Computadores II

Introdução

- O processador ARM possui sete exceções que podem interromper a execução sequencial normal de instruções:
 - Interrupção de dados;
 - Solicitação de interrupção rápida;
 - Solicitação de interrupção;
 - Interrupção de pré-busca;
 - Interrupção de software;
 - Redefinição;
 - Instruções indefinidas.

Tratamento de Exceção

- Uma exceção é qualquer condição que precise interromper a execução sequencial normal de instruções.
- O tratamento de exceções é o método de processamento dessas exceções.
- A maioria das exceções possui um tratamento de exceção de software associado
 - uma rotina de software que é executada quando ocorre uma exceção.

Exceções e modos do processador ARM

- Cada exceção faz com que o processador entre em um modo específico.
- Além disso, qualquer um dos modos do processador ARM pode ser inserido manualmente, alterando q cpsr
- O usuário e o modo do sistema são os únicos dois modos que não são inseridos por uma exceção correspondente, ou seja, para entrar nesses modos, você deve modificar o cpsr.
- Quando uma exceção causa uma mudança de modo, o processador automaticamente
 - salva o *cpsr* no *spsr* do modo de exceção
 - salva o PC no lr do modo de exceção
 - ullet define o cpsr para o modo de exceção
 - define pc no endereço do manipulador de exceções

Exceções e modos associados

Exception	Mode	Main purpose
Fast Interrupt Request	FIQ	fast interrupt request handling
Interrupt Request	IRQ	interrupt request handling
SWI and Reset	SVC	protected mode for operating systems
Prefetch Abort and Data Abort	abort	virtual memory and/or memory protection
Undefined Instruction	undefined	software emulation of hardware coprocessor

Exceções e modos associados

Tabela de Vetores

- Tabela de vetores é uma tabela de endereços aos quais o núcleo do ARM se ramifica quando uma exceção é gerada.
- Esses endereços geralmente contêm instruções de ramificação de um dos seguintes formulários:
 - ullet B <endereço> fornece uma ramificação relativa do PC.
 - LDR pc, [pc, #offset] carrega o endereço do manipulador da memória para o PC.
 - LDR pc, [pc,#-0xff0] carrega um endereço de rotina de serviço de interrupção específico do endereço 0xfffff030 para o PC.
 - MOV pc, #imediato copia um valor imediato para o PC.

Tabela de vetores e modos do processador

Exception	Mode	Vector table offset
Reset	SVC	+0x00
Undefined Instruction	UND	+0x04
Software Interrupt (SWI)	SVC	+0x08
Prefetch Abort	ABT	+0x0c
Data Abort	ABT	+0x10
Not assigned	_	+0x14
IRQ	IRQ	+0x18
FIQ	FIQ	+0x1c

Tabela de vetores - Exemplo

```
600000000 < start>:
        ea00000d
                        3c <reset>
       e59ff014
                    ldr pc, [pc, #20]
                                         ; 20 <_undefined_instruction>
        e39ff014
                    ldr pc, [pc, #20]
                                         ; 24 <_software_interrupt>
        e591 5014
                    ldr pc, [pc, #20]
                                         ; 28 < prefetch abort>
                                           2c <aata_abort>
  10:
        e59ff011
                    ldr pc, [pc, #20]
  14:
        e59ff014
                    ldr pc, [pc, #20]
                                           30 < not used>
  18:
        e59ff014
                    ldr pc, [pc, #20]
                                           34 < irq>
        e59ff014
                                           38 <_fiq>
  1c:
                    los pc, [pc, #20]
 AAAAAAA < undofined instruction>
 20:
        00000000
                                   . r0
                    anded
00000024 < software_interrupt
                            ro, ro, ro
        00000000
                    anded
  24:
00000028 <_prefetch_abo t>:
                            ro, ro, ro
 28:
        00000000
                    anded
0000002c <_data_abort>:
  2c:
        00000000
                    andeq
                            r0, r0, r0
        < _fot_used>:
00000030
  30:
        0000000
                    andeq
                            r0, r0, r0
00000034 < irg>:
        00000000
                    andeq
                             r0, r0, r0
 000038 <_fiq>:
                             r0, r0, r0
        00000000
  38:
                    andeq
```

Prioridades de Exceção

 Exceções podem ocorrer simultaneamente, portanto, o processador precisa adotar um mecanismo de prioridade.

Exceptions	Priority	I bit	F bit
Reset	1	1	1
Data Abort	2	1	_
Fast Interrupt Request	3	1	1
Interrupt Request	4	1	_
Prefetch Abort	5	1	_
Software Interrupt	6	1	_
Undefined Instruction	6	1	

Offsets de registro de link

- Quando ocorre uma exceção, o registro do link é definido para um endereço específico com base no pc atual.
- Por exemplo, quando uma exceção IRQ é gerada, o registrador lraponta para a última instrução executada mais 8.
- É necessário tomar cuidado para garantir que o manipulador de exceções não corrompa $l\eta$, pois ele é usado para retornar de um manipulador de exceções.
- A exceção IRQ é tomada somente após a execução da instrução atual, portanto o endereço de retorno deve apontar para a próxima instrução

Useful link-register-based addresses.

Exception	Address	Use
Reset	_	<i>lr</i> is not defined on a Reset
Data Abort	lr — 8	points to the instruction that caused the Data Abor
FIQ	lr-4	return address from the FIQ handler
IRQ	lr-4	return address from the IRQ handler
Prefetch Abort	lr-4	points to the instruction that caused the Prefetch A
SWI	lr	points to the next instruction after the SWI instruc
Undefined Instruction	lr	points to the next instruction after the undefined in

Exemplos

Exemplo que mostra um método típico de retornar de um handler de IRQ e FIQ usando a instrução SUBS

```
handler <handler code>
...
SUBS pc, r14 #4; pc=r14-4
```

Como existe um S no final da instrução SUB e o pc é o registro de destino, o cpsr é restaurado automaticamente a partir do registro spsr.

Atribuindo Interrupções

- Um projetista de sistemas pode decidir qual periférico de hardware pode produzir qual solicitação de interrupção.
- Essa decisão pode ser implementada em hardware ou software (ou ambos) e depende do sistema embarcado que está sendo usado.
- Quando se trata de atribuir interrupções, os projetistas de sistemas adotaram uma prática padrão de design:
 - As interrupções de software são normalmente reservadas para chamar rotinas privilegiadas do sistema operacional.
 - Solicitações de interrupção são normalmente atribuídas a interrupções de uso geral.
 - As solicitações de interrupção rápida são normalmente reservadas para uma única fonte de interrupção que requer um tempo de resposta rápido.

Latência das Interrupções

- A latência de interrupção depende de uma combinação de hardware e software.
- Os arquitetos do sistema devem equilibrar o design do sistema para manipular várias fontes de interrupção simultâneas e minimizar a latência de interrupção.
- Se as interrupções não forem tratadas em tempo hábil o sistema exibirá tempos de resposta lentos.

Latência das Interrupções

- Os manipuladores de software têm dois métodos principais para minimizar a latência de interrupção.
 - O primeiro método é usar um manipulador de interrupções aninhado (nested interrupt handler), o que permite que outras interrupções ocorram enquanto está atendendo uma interrupção existente.
 - O segundo método envolve priorização. Você programa o controlador de interrupção para ignorar interrupções da mesma ou menor prioridade que a interrupção que você está manipulando.
- O processador gasta tempo nas interrupções de prioridade mais baixa até que ocorra uma interrupção de prioridade mais alta.
- Portanto, as interrupções de prioridade mais alta têm uma latência de interrupção média mais baixa do que as interrupções de prioridade mais baixa.

Exceções de IRQ e FIQ

- As exceções de IRQ e FIQ ocorrem apenas quando uma máscara de interrupção específica é limpa no cpsr.
- O processador ARM continuará executando a instrução atual no estágio de execução do pipeline antes de manipular a interrupção.
- O procedimento varia um pouco, dependendo do tipo de interrupção que está sendo disparada.

Exceções de IRQ e FIQ

- Uma exceção IRQ ou FIQ faz com que o hardware do processador passe por um procedimento padrão:
 - O processador muda para um modo de solicitação de interrupção específico, que reflete a interrupção que está sendo disparada.
 - O cpsr do modo anterior é salvo no spsr do novo modo de solicitação de interrupção.
 - O PC é salvo no lr do novo modo de solicitação de interrupção.
 - As interrupções estão desabilitadas as exceções IRQ ou IRQ e FIQ estão desabilitadas no cpsr. Isso imediatamente interrompe a solicitação de outra interrupção do mesmo tipo.
 - O processador ramifica para uma entrada específica na tabela de vetores.

Fast Interrupt Request (FIQ)

Interrupt Request (IRQ)

Enabling a	n interrupt.			
<i>cpsr</i> value	IRQ		FIQ	
Pre	nzcvqj I Ft_	_SVC	nzcvqjI F t_	SVC
Code	enable_ir	p'	enable_fi	q
	MRS	r1, cpsr	MRS	r1, cpsr
	BIC	r1, r1, #0x80	BIC	r1, r1, #0x40
	MSR	cpsr_c, r1	MSR	cpsr_c, r1
Post	nzcvqj i Ft_	_SVC _	nzcvqjI f t_	SVC

Disabling an interrupt.

cpsr	IRQ	FIQ
Pre	nzcvqj i ft_SVC	nzcvqjift_SVC
Code	disable_irq	disable_fiq
	MRS r1, cpsr	MRS r1, cpsr
	ORR r1, r1, #0x80	ORR r1, r1, #0x40
	MSR cpsr_c, r1	MSR cpsr_c, r1
Post	nzcvqj I ft_SVC	nzcvqji F t_SVC

Projeto e Implementação Básica da Pilha de Interrupções

- Os manipuladores de exceções fazem uso extensivo de pilhas, com cada modo tendo um registro dedicado contendo o ponteiro da pilha.
- O design das pilhas de exceção depende desses fatores:
 - Requisitos do sistema operacional Cada sistema operacional possui seus próprios requisitos para o design da pilha.
 - Hardware de destino O hardware de destino fornece um limite físico para o tamanho e o posicionamento da pilha na memória.
- Decisões que precisam ser tomadas no projeto da pilha
 - O **local** determina onde no mapa de memória a pilha começa.
 - O tamanho da pilha depende do tipo de manipulador, aninhado ou não.

Projeto e Implementação Básica da Pilha de Interrupções

- Um bom projeto de pilha tenta evitar o estouro de pilha.
- Existem técnicas de software que identificam o estouro e permitem que medidas corretivas sejam tomadas para reparar a pilha antes que ocorra uma corrupção irreparável da memória.
 - usar proteção de memória;
 - chamar uma função de verificação de pilha no início de cada rotina.

Typical memory layouts

- É o manipulador de interrupção mais simples.
- As interrupções são desativadas até o controle retornar à tarefa ou processo interrompido.
- Como um manipulador de interrupção não aninhado só pode atender uma única interrupção por vez, os manipuladores deste formulário não são adequados para sistemas embarcados complexos que atendem a várias interrupções com diferentes níveis de prioridade.

- Disable Interrupt:
 - desabilita a ocorrência de outras exceções
 - faz o backup do cpsr
 - define o modo de solicitação de interrupção
 - ajusta o PC para apontar para a entrada correta na tabela de vetores
- Save context salva um subconjunto dos registradores.
- Interrupt handler identifica a fonte de interrupção externa e executa a rotina de serviço de interrupção (ISR) apropriada.
- Interrupt service routine o ISR atende a fonte de interrupção externa e redefine a interrupção.
- Restore context O ISR retorna ao manipulador de interrupções, que restaura o contexto.
- Enable interruption restaura o cpsr e ajusta o PC para a próxima instrução após a interrupção ter sido disparada.

```
interrupt_handler
   SUB r14, r14, #4; adjust lr
   STMFD r13!, {r0-r3, r12, r14}; save context
   <interrupt service routine>
   LDMFD r13!, {r0-r3, r12, pc}*; return
```

```
interrupt handler
    SUB r14, r14, #4; r14-=4
    STMFD sp!, {r0-r3,r12,r14}; save context
    LDR r0.=IROStatus; interrupt status addr
    LDR r0, [r0]; get interrupt status
    TST r0, #0x0080; if counter timer
    BNE timer isr; then branch to ISR
    TST r0, #0x0001; else if button press
    BNE button_isr; then call button ISR
    LDMFD sp!, {r0-r3,r12,r14}; restore context
    LDR pc,=debug monitor; else debug monitor
```

- Única interrupção sequencial
- Alta latência de interrupção; não pode lidar com outras interrupções que ocorrem enquanto uma interrupção está sendo tratada.
- Vantagens: relativamente fácil de implementar e depurar.
- Desvantagem: n\u00e3o pode ser usado para lidar com sistemas embarcados complexos com m\u00edltiplas interrup\u00f3\u00f3es de prioridade.

- Um manipulador de interrupção aninhado permite que outra interrupção ocorra no manipulador atualmente chamado.
- Isso é alcançado reativando as interrupções antes que o manipulador atenda totalmente a interrupção atual.

- Lida com várias interrupções sem uma atribuição de prioridade.
- Latência de interrupção média a alta.
- Vantagem: pode ativar interrupções antes de terminar outras, reduzindo a latência da interrupção.
- Desvantagem: Não trata prioridades, assim uma interrupção de baixa prioridade pode bloquear uma de maior prioridade.

Manipulador de interrupção simples priorizado

- Lida com interrupções de prioridade mais alta em um tempo menor que as interrupções de prioridade mais baixa.
- Baixa latência de interrupção.
- Vantagem: interrupções de alta prioridade tratadas com maior urgência, sem duplicação de código, para definir máscaras de interrupção externas.
- Desvantagem: existe uma penalidade de tempo, pois esse manipulador exige dois saltos, resultando na liberação do pipeline cada vez que ocorre um salto.

Manipulador de interrupção simples priorizado

Outros esquemas

- Existem alguns outros esquemas, que são, na verdade, modificações aos esquemas anteriores, como segue:
 - Manipulador de interrupção reentrante reativa as interrupções mais cedo e dá suporte às prioridades, para que a latência seja reduzida.
 - Manipulador de interrupção padrão priorizado organiza as prioridades de uma maneira especial para reduzir o tempo necessário para decidir qual interrupção será tratada.
 - Manipulador de interrupções agrupadas priorizadas agrupa algumas interrupções em um subconjunto que tem um nível de prioridade, isso é bom para uma grande quantidade de fontes de interrupção.

Resumo

- A disponibilidade de diferentes modos de operação no ARM ajuda no tratamento de exceções de forma estruturada.
- A troca de contexto é um dos principais problemas que afetam a latência de interrupção, e isso é resolvido no modo FIQ com o aumento do número de registradores armazenados.
- Não podemos decidir sobre um esquema de tratamento de interrupção para ser usado como um padrão em todos os sistemas, isso depende da natureza do sistema:
 - Que tipo de interrupções existem?
 - Quantas interrupções existem?

Interrupções e Exceções

Universidade Federal do Ceará - Campus Quixadá

Roberto Cabral rbcabral@ufc.br

03 de Março de 2021

Arquitetura e Organização de Computadores II