Конспект по математическому анализу (1-й семестр)

Латыпов Владимир (конспектор) donrumata03@gmail.com

Виноградов Олег Леонидович (лектор) olvin@math.spbu.ru

23 сентября 2021 г.

Содержание

1	Введение		3
	1.1	Множества	3
		1.1.1 Определения	3
2	Веш	цественные числа	3
3	Оторбражения		3
		3.0.1 Инъекция, сюрьекция, биекция	5
	3.1	Графики	5
	3.2	Операции над функициями	6
		3.2.1 Многомерные отображения	6
	3.3	Счётные множества	6
4	Пос	ледовательности в метрических пространствах	9
	4.1	Предел последовательности	9

1. Введение

1.1. Множества

Kurale, Kurale, Kurale,

1.1.1. Определения

Определение 1 (Множество). X - множество, это аксиома, его метафизическая сущность не подлежит обсуждению.

$$\begin{cases} x \in X \\ x' \notin X \end{cases} \tag{1}$$

Пример. Задания множества:

$$set = \{1, 2, 3\}$$
 (2)

$$set = \{x | x \in \mathbb{N}\} \tag{3}$$

$$set = \{\{1, 4\}, 898\} \tag{4}$$

Определение 2 (Подмножество).

$$A \subset B \Longleftrightarrow \forall a \in A : a \in B \tag{5}$$

2. Вещественные числа

Множество вещестыенных чисел - множество, удовлетворяющее 16-и аксиомам.

1. Аксиомы поля (9 штук)

3. Оторбражения

Определение 3 (Отображение).] $\exists X, Y-sets, f-rule$ Говорят, что задано оторбражение, если $f:X\longrightarrow !Y$ (сопоставляет единстыенный Y каждому $x\in X$)

Отображение называют f, но оно включает как f, так и X,Y

$$f: X \longrightarrow Y \stackrel{\text{def}}{\iff} f: X \mapsto Y \stackrel{\text{def}}{\iff} X \stackrel{f}{\longrightarrow} Y$$
 (6)

Если X,Y - числовые множества, то f - функция. Если Y - числовое множество, X - любое, то это "функционал".

X - область задания, область отправления. Y - множество значений, область прибытия.

 $x \in X$ - аргумент, независимая переменная.

Определение 4 (Последователности). Последовательность - функция натурального аргумента.

Если при этом Y - число, то f - числовая последовательность. А если $\forall y \in Y: y \in \mathbb{Z}$, то это двусторонняя последовательность.

$$\{x_n\}_{n=1}^{\infty} \tag{7}$$

Определение 5. Семейство - это то же, что и отображение.

Определение 6 (Естественная область определения). Естественная область определения: то, где выражение имеет смысл.

Определение 7.

$$id_X: X \mapsto X$$
 (8)

$$f^{-1} \circ = id_{X} \tag{9}$$

Определение 8 (Образ).

$$B = f(A) = \{ y \in Y : \exists x \in A : f(x) = y \}$$
 (10)

Определение 9 (Прообраз). Прообраз множества B:

$$A = f^{-}1(B) = \{x \in X : f(x) \in B\}$$
(11)

Определение 10 (Композиция). ...

3.0.1. Инъекция, сюрьекция, биекция...

$$\triangleleft f: X \longrightarrow Y$$

Определение 11 (Инъективное оторбражение). Если $\forall x_1, x_2 \in X: f(x_1) \neq f(x_2)$, то отображение инъективно, *обратимо*.

Определение 12 (Обратимое отображение).

$$f \ is \ reversable \Longleftrightarrow \exists f^{-1}: \dots$$
 (12)

Определение 13 (Сюрьективное оторбражение). Если f(X) = Y, то f сюрьективно или *отображение на*.

Определение 14. Если f одновременно и инективно, и сюрьективно, то f - взаимно-однозначное соответствие или биективно.

3.1. Графики

Определение 15 (График оторбражения).

$$\Gamma_f = \{(x,y): x \in X, y = f(x)\} \subset X \times Y \tag{13}$$

Теорема 1.

$$\Gamma_f \iff f$$
 (14)

Определение 16. Отображение, сопоставляющее каждому $y \in f(X) \longrightarrow y \in Y$, для которого

$$f^{-1}(x):f(X)\mapsto X\tag{15}$$

Но что такое f^{-1} ? Прообраз или обратное отображение? Если обратимо, и имеет значение, то они совпадают **Определение 17** (Сужение, распространение, расширение, привЕдение).

$$]f:X\mapsto Y,X_0\subset X \tag{16}$$

$$f|_{X_0}$$
 (17)

3.2. Операции над функициями

- Сложение: (f+g)(x) = f(x) + g(x)
- Умножение: ...
- Деление: ...
- Вычитание: ...

• ...

3.2.1. Многомерные отображения

 f_i - Координатные функции отображения f

3.3. Счётные множества

Если множества конечны, легко сравнить количество элементов. Если одно конечно, другое - бес, то понятно.

А вот вопрос - одинаковы ли бесконечности?!

Определение 18 (Равномощные множества). Множества называют *равномощными*

или *эквивалентными* (по мощности), если ∃ биекция (взаимно однозначное соответствие) между ними

Определение 19 (Бесконечное множество). Не равномощно никакому подотрезку натурального ряда \iff никогда не исчерпается.

Замечание. Равномощность множеств - отношение эквивалентности. Существут классы эквивалентности по мощности.

Пример. Пример равномощных множеств:

• Отрезки (возможно, разных длин)

- Концентрические (и не только) окружности
- Плоскость и сфера
- Отрезок и плоскость
- Полуинтервал и окружность

Определение 20. A - счётно $\Longleftrightarrow A \sim \mathbb{N}$

Эквивалетное определение: можно занумеровать натуральными числами, то есть расположить в виде последовательности

Пример. Положительные, чётные, квадраты натуральных, целые, ...- всё счётные

Теорема 2. Всякое бесконечное множество содержит счётное подмножество

Доказательство. Есть хотя бы один элемент. Обозначим его a_1 , удалим ero. induction

Теорема 3. Всякое подмножество счётного множества - счётно.

Доказательство. $b_{n+1} = A_{min(\{n|n\in A_{indexes}\})}$, $\overset{induction}{\dots}$

Предыдущие 2 теоремы - о бедности натурального ряда.

Определение 21 (Не более, чем счётное (НБЧС)). = пустое, конечное или счётное.

Лемма 1. $\mathbb{N}^n, n \in \mathbb{N}$ - счётное множество

 ${\it Доказательство.}$ Заполняем матрицу змейкой по диагонали. Для n измерений: $\stackrel{induction}{\dots}$

Теорема 4. Не более чем счётное объединение (множество индексов НБЧС) не более чем счётных множеств - не более чем счётное.

Доказательство.

$$B = \bigcup_{k=1}^{n} A_k \quad or \quad B = \bigcup_{k=1}^{\infty} A_k$$
 (18)

Запишем в матрицу: A_1,A_2 $A_1,...$ Получили не более чем множество $\mathbb{N}\times\mathbb{N}$. \blacksquare

Теорема 5. Множество ℚ - счётно.

Доказательство. Догадайтесь! ■

Теорема 6. Множество $\mathbb{R} \cap [0,1]$ - несчётно.

Доказательство. Пусть несчётно.

$$[0,1] = \{x_1, x_2, \ldots\} \tag{19}$$

Разобьём орезок на три части: $[0,\frac{1}{3}]$, $[\frac{1}{3},\frac{2}{3}]$, $[\frac{2}{3},1]$ Рассмотрим отрезок, в котором нет точки x_1 , затем - тот, в котором нет x_2 , деля на три до бесконечности. Получим последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^\infty$. Тогда по аксиоме о вложенных отрезках $\exists x^*: \forall n: x^* \in [a_n,b_n]$. Если пронумеровали, значит, был некий m, который Но, по построению, мы строили такой подотрезок \blacksquare

Следствие 1 (Некоторые множества тоже несчётны). $\qquad \cdot \ \mathbb{R}$ - несчётно, так как иначе его бесконечное подмножество было счётно.

- Любой невырожденный отрезок несчётен
- Любой невырожденный интервал, полуинтервал несчётен

Как строить биекцию, если выколотые точки?

Утверждение 1. Если A - бесконечно, а B - не более чем счётно, то A

Свойство 1 (Характеристическое свойство бесконечных множеств). Если

Определение 22 (
$$|A|<|B|$$
). $|A|<|B| \stackrel{\mathrm{def}}{\Longleftrightarrow} (\exists biection \ A \leftrightarrow part(B) \land \not \exists biection \ A \leftrightarrow B)$

Теорема 7 (Теорема Кантора-Бершнейна). Если $A \sim part(B) \&\& B \sim part(A)$, то $A \sim B$

(Теорема о том, что мощности можно сравнивать: либо)

Утверждение 2. Множество всех подмножеств имеют мощность б \acute{o} льшую,чем само множнство.

4. Последовательности в метрических пространствах

4.1. Предел последовательности

Определение 23.

$$A=\lim x_n \overset{\mathrm{def}}{\Longleftrightarrow} \forall \varepsilon>0: \exists N_0: \forall n>N_0: |A-x_n|<\varepsilon \tag{20}$$

Определение 24 (Сходящиеся, расходящиеся последовательности).

Пример.

$$\lim_{n \to \infty} \frac{1}{n} = 0 \tag{21}$$

$$\lim_{n \to \infty} A = A \tag{22}$$

Пример.

(!)
$$\forall A : \lim \{-1, 1, -1, ...\} \neq A$$
 (23)

Предъявим $\varepsilon=0.1$: $\exists n_1,n_2: \forall n>n_1: |A-a_n|<\varepsilon$

Замечание. Если проверено малое эпсилон, можно не проверять большие эпсилон. Например, достаточно проверять для всех |arepsilon| < 1

Замечание. Не обязательно находить самый маленький номер, для данного ε .

Замечание. Одно или оба (из 2, 3) строгих неравенства можно заменить на нестрогие, это непложно доказать.

Замечание. Если заменить конечное число членов, то сходимость не нарушится и предел не изменится.

Замечание. Последнее неравенство с модулем можно переписать как двойное. Это может быть полезно при некоторых доказательствах. Интервал $(A-\varepsilon,A+\varepsilon)$ - ε -окресность точки A. Тогда можно записать предел словами: Для любой окресности точки все члены за исключением конечного множества принадлежат этой окрестности.