Přednáška 1, 20. února 2015

Nejprve motivace — souvislost primitivních funkcí s plochami rovinných útvarů. Funkce F je primitivni k funkci f, když na daném definičním oboru platí vztah F'=f. Pro nezápornou a spojitou funkci $f:[a,b]\to\mathbb{R}$ uvažme rovinný útvar

$$U(a, b, f) = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b \& 0 \le y \le f(x)\}.$$

Jeho plochu, ať je to cokoli, označíme jako

$$\int_{a}^{b} f := \operatorname{plocha}(U(a, b, f)) .$$

Jde tedy o plochu části roviny vymezené osou x, grafem funkce f a svislými přímkami y=a a y=b. Dva základní vztahy mezi plochou a derivací jsou následující. První základní věta analýzy říká, že pro každé $c \in [a,b]$ máme

$$\left(\int_{a}^{x} f\right)'(c) = f(c)$$

— derivace funkce, jejíž argument x je horní mez útvaru U(a,x,f) a hodnota je jeho plocha, se rovná výchozí funkci f. Plocha $F(x) = \int_a^x f$ jako funkce je tedy primitivní funkcí k f. Podle druhé základní věty analýzy pro každou funkci g, která je na [a,b] primitivní k f, je

$$\int_a^b f = g(b) - g(a) .$$

Známe-li nějakou funkci primitivní k f, a spoustu jich lze odvodit prostým obrácením pravidel pro derivování elementárních funkcí, můžeme ihned spočítat plochu útvaru U(a,b,f). Obě věty přesně zformulujeme a dokážeme v části přednášky o Riemannově integrálu, kdy také přesně zavedeme pojem plochy $\int_a^b f$. Nejprve se ale musíme zabývat vlastnostmi primitivních funkcí — kdy má funkce primitivní funkci, zda je jednoznačně určena a podobně.

Funkce primitivní k dané funkci

Definice (primitivní funkce). Pokud $I \subset \mathbb{R}$ je neprázdný interval a dvě funkce

$$F, f: I \to \mathbb{R}$$

splňují na I vztah F'=f, pak F nazveme funkcí primitivní k funkci f (na intervalu I). (V krajních bodech $x \in I$ se F'(x) rozumí příslušná jednostranná derivace.)

U limitění a derivování je výsledek operace jednoznačný, pokud existuje, ale primitivní funkce určená jednoznačně není. Hned uvidíme, že daná funkce buď nemá žádnou primitivní funkci nebo jich má nekonečně mnoho. Vzhledem k linearitě derivování je i operace nalezení primitivní funkce lineární: Je-li F na I primitivní k f, G ke g a α , $\beta \in \mathbb{R}$, potom je funkce

$$\alpha F + \beta G$$

na I primitivní k funkci $\alpha f + \beta g$.

Tvrzení (o nejednoznačnosti primitivní funkce). Je-li F na intervalu I primitivní k f, potom množina všech funkcí primitivních k f na I je

$$\{F+c\mid c\in\mathbb{R}\}\ .$$

Všechny funkce primitivní k f se tedy dostanou posunem libovolné z nich o konstantu.

 $D\mathring{u}kaz$. Derivace konstantní funkce je nulová, a tak (F+c)'=F'+0=f pro každé $c\in\mathbb{R}$ a každou funkci F primitivní k f na I. Na druhou stranu, jsou-li F a G primitivní k f na I, pak jejich rozdíl H=F-G má na I nulovou derivaci: pro každé $\gamma\in(a,b)$ je $H'(\gamma)=F'(\gamma)-G'(\gamma)=f(\gamma)-f(\gamma)=0$. Pro libovolné dva body $\alpha<\beta$ z I tak podle Lagrangeovy věty o střední hodnotě máme rovnost

$$H(\beta) - H(\alpha) = (\beta - \alpha)H'(\gamma) = (\beta - \alpha)0 = 0$$
,

pro nějaký bod $\gamma \in (\alpha, \beta)$, takže $H(\alpha) = H(\beta)$ a H je na I konstantní. Tedy existuje konstanta c, že F(x) - G(x) = c pro každé $x \in I$ a F = G + c. \square

Tvrzení (spojitost primitivní funkce). Je-li F na intervalu I primitivní k f, potom je F na I spojitá.

 $D\mathring{u}kaz$. Ze ZS víme, že existence vlastní (jednostranné, jde-li o krajní bod) derivace funkce v bodě implikuje její spojitost v daném bodě. Protože $F'(\alpha)$ existuje a rovná se $f(\alpha)$ pro každé $\alpha \in I$, je F na I spojitá.

Věta (spojitá funkce má primitivní funkci). Je-li f na intervalu I spojitá, pak má na I primitivní funkci F.

 $D\mathring{u}kaz$. To dokážeme podrobně a přesně později. Jak bylo naznačeno v úvodu, F se dá definovat jako plocha útvaru pod grafem funkce f. Jiný způsob, jak větu dokázat, je vyjádřit f jako $f = \lim f_n$ (stejnoměrná limita), kde f_n jsou lomené čáry s primitivními funkcemi F_n , a položit $F = \lim F_n$.

Může mít nespojitá funkce primitivní funkci? Může.

Příklad (nespojitá funkce s primitivní funkcí). Funkce $f: \mathbb{R} \to \mathbb{R}$ definovaná jako

$$f(x) = 2x\sin(x^{-2}) - 2x^{-1}\cos(x^{-2})$$
 pro $x \neq 0$, $f(0) = 0$,

má na reálné ose primitivní funkci, i když není spojitá v bodě 0.

 $D\mathring{u}kaz$. Uvažme funkci $F: \mathbb{R} \to \mathbb{R}$ definovanou pro $x \neq 0$ jako $F(x) = x^2 \sin(x^{-2})$ a pro x = 0 jako F(0) = 0. Derivování podle vzorců pro $x \neq 0$ dává F' = f. V nule podle definice derivace spočteme, že

$$F'(0) = \lim_{x \to 0} \frac{F(x) - F(0)}{x - 0} = \lim_{x \to 0} x \sin(x^{-2}) = 0 ,$$

protože $|x\sin(x^{-2})| \leq |x|$ pro každé $x \neq 0$. Tedy F'(0) existuje a opět F'(0) = f(0). Tudíž F' = f na \mathbb{R} a F je na \mathbb{R} primitivní k f. Funkce f není spojitá v 0, protože je v každém okolí nuly dokonce neomezená shora i zdola — pro $x \to 0$ její graf kmitá s neomezeně vzrůstající amplitudou i frekvencí.

V MAI jsme si dokázali větu, že funkce spojitá na intervalu na něm nabývá všech mezihodnot, to jest zobrazuje ho zase na interval. Této vlastnosti funkcí se říká i *Darbouxova vlastnost*, podle francouzského matematika Jeana-Gastona Darbouxe (1842–1917). Darboux dokázal, že funkce s primitivní funkcí mají tuto vlastnost.

Věta (funkce s primitivní funkcí má Darbouxovu vlastnost). Je-li F na intervalu I primitivní k f, potom f na I nabývá všech mezihodnot.

Důkaz. Vezměme nějakou mezihodnotu c: $f(x_1) < c < f(x_2)$ pro nějaké dva body $x_1 < x_2$ z I. Nalezneme $x^* \in I$, dokonce $x^* \in (x_1, x_2)$, že $f(x^*) = c$. (Pokud $f(x_1) > c > f(x_2)$, následující argument se snadno upraví náhradou minima maximem.) Funkce

$$H(x) = F(x) - cx$$

je na I spojitá, dokonce tam má vlastní derivaci

$$H'(x) = (F(x) - cx)' = f(x) - c.$$

Podle věty ze ZS nabývá na kompaktním intervalu $[x_1, x_2]$ minimum v bodě $x^* \in [x_1, x_2]$. Protože $H'(x_1) = f(x_1) - c < 0$, je H klesající v bodě x_1 , což dává, že pro nějaké $\delta > 0$ máme $x \in (x_1, x_1 + \delta) \Rightarrow H(x) < H(x_1)$. Tudíž $x^* \neq x_1$. Obdobně z $H'(x_2) > 0$ plyne, že $x^* \neq x_2$. Tedy $x^* \in (x_1, x_2)$ a podle kritéria extrému ze ZS musí být $H'(x^*) = f(x^*) - c = 0$. Tedy $f(x^*) = c$. \square

Důsledek (příklad funkce bez primitivní funkce). Funkce $\operatorname{sgn}: \mathbb{R} \to \mathbb{R}$, definovaná jako $\operatorname{sgn}(x) = -1$ pro x < 0, $\operatorname{sgn}(0) = 0$ a $\operatorname{sgn}(x) = 1$ pro x > 0, nemá na \mathbb{R} (ani na žádném jiném intervalu obsahujícím 0) primitivní funkci.

 $D\mathring{u}kaz$. Podle Darbouxovy věty, protože sgn nenabývá všech mezihodnot: i když nabývá hodnotu -1 a 1, nenabývá nikde třeba hodnotu $\frac{1}{2} \in (-1,1)$. \square

Značení. Skutečnost, že funkce F je na intervalu I primitivní k funkci f, se značí jako

$$F = \int f$$
, a píšeme též $F = \int f + c$,

abychom zdůraznili, že každé posunutí F o konstantu je rovněž primitivní funkce k f. Symbolu $\int f$ je třeba rozumět tak, že označuje množinu všech funkcí primitivních k f na daném intervalu.

Pro derivaci součinu máme Leibnizův vzorec (fg)' = f'g + fg'. Invertováním obdržíme následující důležitý výsledek pro primitivní funkce.

Věta (integrace per partes). Jsou-li $f, g: I \to \mathbb{R}$ spojité funkce (I je interval) a F, G jim odpovídající primitivní funkce, pak na I platí rovnost

$$\int fG + \int Fg = FG + c .$$

Podrobněji řečeno, funkce fG a Fg mají na I primitivní funkce, jejichž součet se na I vždy rovná, až na aditivní konstantu c, funkci FG.

Půkaz. Podle předpokladu je f na I spojitá a podle hořejšího tvrzení tam je i primitivní funkce G spojitá. Takže součinová funkce fG je tam též spojitá a podle hořejší zatím nedokázané věty má na I primitivní funkci (funkce) $\int fG$. Podobně máme i primitivní funkci $\int Fg$. Podle hořejší poznámky o linearitě je součet $\int fG + \int Fg$ primitivní funkcí k funkci fG + Fg. K té je ale primitivní i funkce FG, protože Leibnizův vzorec dává (FG)' = fG + Fg. Podle tvrzení o nejednoznačnosti primitivní funkce tedy pro jistou konstantu c platí, že $\int fG + \int Fg = FG + c$.

Vzorec pro integraci per partes se uvádí obvykle v ekvivalentním tvaru

$$\int F'G = FG - \int FG' .$$

Pokud tedy umíme spočítat pro dané dvě funkce F a G se spojitými derivacemi (F'=f a G'=g) primitivní funkci k FG', dostáváme podle tohoto vzorce primitivní funkci k F'G.

Příklad. Díky x' = 1 a $(\log x)' = 1/x$ na intervalu $(0, +\infty)$ máme

$$\int \log x = \int x' \log x = x \log x - \int x(\log x)' = x \log x - \int 1 = x \log x - x.$$

Přesněji, $\int \log x = x \log x - x + c$ (na $(0, +\infty)$). Zderivováním snadno zkontrolujeme správnost odvozeného vzorce.