

Document Title

512K x8 bit 3.3V Low Power CMOS slow SRAM

Revision History

Revision No	<u>History</u>	<u>Draft Date</u>	<u>Remark</u>
03	Revision History Insert Revised - Improved standby current Isb1: 30uA; 20uA	Jul.06.2000	Final
04	Revised - Change Iccdr Value : 15uA => 20uA	Aug.04.2000	Final
05	Marking Information Add Revised - E.T (-25~85°C), I.T (-40~85°C) Part Insert - AC Test Condition Add: 5pF Test Load - VIH max: Vcc + 0.2V => Vcc + 0.3V - VIL min: - 0.2V => - 0.3V	Dec.04.2000	Final
06	Changed Logo - HYUNDAI -> hynix - Marking Information Change	Apr.30.2001	Final

Rev 06 / Apr. 2001 Hynix Semiconductor

DESCRIPTION

The HY62V8400A is a high-speed, low power and 4M bits CMOS SRAM organized as 512K words by 8 bits. The HY62V8400A uses Hynix's high performance twin tub CMOS process technology and was designed for high-speed and low power circuit technology. It is particularly well suited for use in high-density and low power system applications. This device has a data retention mode that guarantees data to remain valid at the minimum power supply voltage of 2.0V.

FEATURES

- Fully static operation and Tri-state outputs
- TTL compatible inputs and outputs
- Low power consumption
- Battery backup(LL-part)
 - -. 2.0V(min) data retention
- Standard pin configuration
 - -. 32pin 525mil SOP
 - -. 32pin 400mil TSOP-II (Standard and Reversed)

Product	Voltage	Speed	Operation	Standby Current(uA)	Temperature
No.	(V)	(ns)	Current/Icc(mA)	LL	(°C)
HY62V8400A	3.0~3.6	70/85/100	5	20	0~70
HY62V8400A-E	3.0~3.6	70/85/100	5	30	-25~70
HY62V8400A-I	3.0~3.6	70/85/100	5	30	-40~70

Note 1. Current value is max.

PIN CONNECTION

PIN DESCRIPTION

Pin Name	Pin Function
/CS	Chip Select
/WE	Write Enable
/OE	Output Enable
A0 ~ A18	Address Input
I/O1 ~ I/O8	Data Input/Output
Vcc	Power(3.0~3.6V)
Vss	Ground

BLOCK DIAGRAM

ORDERING INFORMATION

Part No.	Speed	Power	Temp	Package
HY62V8400ALLG	70/85/100	LL-part	0~70 °C	SOP
HY62V8400ALLG-E	70/85/100	LL-part	-25~85 °C	SOP
HY62V8400ALLG-I	70/85/100	LL-part	-40~85 °C	SOP
HY62V8400ALLT2	70/85/100	LL-part	0~70 °C	TSOP-II (Standard)
HY62V8400ALLT2-E	70/85/100	LL-part	-25~85 °C	TSOP-II (Standard)
HY62V8400ALLT2-I	70/85/100	LL-part	-40~85 °C	TSOP-II (Standard)
HY62V8400ALLR2	70/85/100	LL-part	0~70 °C	TSOP-II (Reversed)
HY62V8400ALLR2-E	70/85/100	LL-part	-25~85 °C	TSOP-II (Reversed)
HY62V8400ALLR2-I	70/85/100	LL-part	-40~85 °C	TSOP-II (Reversed)

ABSOLUTE MAXIMUM RATING (1)

Symbol	Parameter		Rating	Unit
Vcc, Vin, Vout	Power Supply, Input/Outp	ut Voltage	-0.5 to 4.0	V
TA	Operating Temperature HY62V8400A		0 to 70	°C
		HY62V8400A-E	-25 to 85	°C
		HY62V8400A-I	-40 to 85	°C
TSTG	Storage Temperature		-65 to 150	°C
Po	Power Dissipation		1.0	W
lout	Data Output Current		50	MA
TSOLDER	Lead Soldering Temperat	ure & Time	260 •10	°C•sec

Note

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is stress rating only and the functional operation of the device under these or any other conditions above those indicated in the operation of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect reliablity.

TRUTH TABLE

/CS	/WE	/OE	MODE	I/O OPERATION	Power
Н	Χ	X	Deselected	High-Z	Standby
L	Ι	Н	Output Disabled	High-Z	Active
L	Η	L	Read	Data Out	Active
L	L	Х	Write	Data In	Active

Note:

1. H=VIH, L=VIL, X=don't care (VIH or VIL)

RECOMMENDED DC OPERATING CONDITION

TA = 0; If o 70; If Normal)/-25°C to 85°C (Extended) /-40°C to 85°C (Industrial), unless otherwise specified.

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	3.0	3.3	3.6	V
Vss	Ground	0	0	0	V
VIH	Input High Voltage	2.2	-	Vcc+0.3	V
VIL	Input Low Voltage	-0.3(1)	-	0.4	V

Note:

DC ELECTRICAL CHARACTERISTICS

TA = 0; Ifto 70; IfNormal)/-25°C to 85°C (Extended) /-40°C to 85°C (Industrial), unless otherwise specified.

Symbol	Parameter	Test Condit	ion	Min	Тур	Max	Unit
ILI	Input Leakage Current	Vss ≤ VIN ≤ Vcc		-1	-	1	uA
ILO	Output Leakage Current	Vss < Vout < Vcc, /C		-1	-	1	uA
		/OE = VIH or /WE = V	IL				
Icc	Operating Power Supply	/CS = VIL,		-		5	mΑ
	Current	VIN = VIH or VIL, II/O =	· 0mA				
ICC1	Average Operating Current	/CS = VIL		-		40	mΑ
		Min Duty Cycle = 100	0%,				
		VIN = VIH or VIL, II/O =	· 0mA				
Isb	TTL Standby Current	/CS = VIH,		-		0.5	mΑ
	(TTL Input)	VIN = VIH or VIL					
ISB1	Standby Current	/CS ≥ Vcc - 0.2V,	LL	-	-	20	uA
	(CMOS Input)	VIN ≥ Vcc - 0.2V or	LL-E/I	-	-	30	uA
		VIN < Vss + 0.2V					
Vol	Output Low Voltage	IOL = 2.1mA		-	-	0.4	V
Vон	Output High Voltage	IOH = -1mA		2.2	-	-	V

Note: Typical values are at Vcc = 3.3V, TA = 25°C

CAPACITANCE

Temp = 25° C, f= 1.0MHz

Symbol	Parameter	Condition	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	pF
Соит	Output Capacitance	VI/O = 0V	8	pF

Note: This parameter is sampled and not 100% tested

^{1.} VIL = -1.5V for pulse width less than 30ns and not 100% tested.

AC CHARACTERISTICS

TA = 0; Ifo 70; IfNormal)/-25°C to 85°C (Extended) /-40°C to 85°C (Industrial), unless otherwise specified.

#	Symbol	pol Parameter	70	ns	85ns		100ns		I Imit
# Syllibol		Parameter		Max.	Min.	Max.	Min	Max.	-Unit
	READ	CYCLE							
1	tRC	Read Cycle Time	70	-	85	-	100	-	ns
2	tAA	Address Access Time	-	70	-	85	-	100	ns
3	tACS	Chip Select Access Time	-	70	-	85	-	100	ns
4	tOE	Output Enable to Output Valid	-	40	-	45	-	50	ns
5	tCLZ	Chip Select to Output in Low Z	10	-	10	-	10	-	ns
6	tOLZ	Output Enable to Output in Low Z	5	-	5	-	5	-	ns
7	tCHZ	Chip Deselecting to Output in High Z	0	25	0	30	0	30	ns
8	tOHZ	Out Disable to Output in High Z	0	25	0	30	0	30	ns
9	tOH	Output Hold from Address Change	15	-	15	-	15	-	ns
		CYCLE							
10	tWC	Write Cycle Time	70	-	85	-	100	-	ns
11	tCW	Chip Selection to End of Write	60	-	70	-	80	-	ns
12	tAW	Address Valid to End of Write	60	-	70	-	80	-	ns
13	tAS	Address Set-up Time	0	-	0	-	0	-	ns
14	tWP	Write Pulse Width	50	-	60	-	70	-	ns
15	tWR	Write Recovery Time	0	-	0	-	0	-	ns
16	tWHZ	Write to Output in High Z	0	25	0	30	0	30	ns
17	tDW	Data to Write Time Overlap	30	-	35	-	40	-	ns
18	tDH	Data Hold from Write Time	0	-	0	-	0	-	ns
19	tOW	Output Active from End of Write	5	-	5	-	5	-	ns

AC TEST CONDITIONS

TA = 0; If o 70; Industrial), unless otherwise specified.

01 20 . 01 4 . 0	(a.a.a.,, aa.a.	
	Parameter	Value
Input Pulse Level		0.4V to 2.2V
Input Rise and Fall Ti	me	5ns
Input and Output Tim	ing Reference Level	1.5V
Output Load	tCLZ,tOLZ,tCHZ,tOHZ,tWHZ	CL = 5pF + 1TTL Load
	Others	CL = 100pF + 1TTL Load

AC TEST LOADS

Note

1. Including jig and scope capacitance

TIMING DIAGRAM

READ CYCLE 1(Note 1,4)

READ CYCLE 2(Note 1,2,4)

READ CYCLE 3(Note 1,2,4)

Notes:

- 1. A read occurs during the overlap of a low /OE, a high /WE, and a low /CS.
- 2. /OE = VIL
- 3. Transition is measured \pm 200mV from steady state voltage. This parameter is sampled and not 100% tested.
- 4. /CS in high for the standby, low for active

WRITE CYCLE 1(1,4,5,8) (/WE Controlled)

WRITE CYCLE 2 (Note 1,4,5,8) (/CS Controlled)

Notes:

- 1. A write occurs during the overlap of a low /WE and a low /CS.
- 2. tWR is measured from the earlier of /CS or /WE going high to the end of write cycle.
- 3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the output must not be applied.
- 4. If the /CS low transition occur simultaneously with the /WE low transition or after the /WE transition, outputs remain in a high impedance state.
- 5. Q(data out) is the same phase with the write data of this write cycle.
- 6. Q(data out) is the read data of the next address.
- 7. Transition is measured + 200mV from steady state. This parameter is sampled and not 100% tested.
- 8. /CS in high for the standby, low for active

DATA RETENTION ELECTRIC CHARATERISTIC

TA = 0; If to 70; If Normal)/-25°C to 85°C (Extended) /-40°C to 85°C (Industrial), unless otherwise specified.

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
Vdr	Vcc for Data Retention	/CS <u>></u> Vcc - 0.2V,		2.0	-	-	V
		$VIN \ge VCC - 0.2V \text{ or } VIN \le Vss +$	VIN > Vcc - 0.2V or VIN < Vss + 0.2V				
ICCDR	Data Retention Current	$Vcc = 3.0V, /CS \ge Vcc - 0.2V,$	LL	-	-	20	uA
		VIN>Vcc-0.2V or	LL-E	-	-	30	uA
		VIN <u><</u> Vss+0.2V	LL-I	-	-	30	uA
tCDR	Chip Deselect to Data			0	-	-	ns
	Retention Time						
tR	Operating Recovery Time			tRC(2)	1	1	ns

Notes:

- 1. Typical values are at the condition of $TA = 25^{\circ}C$.
- 2. tRC is read cycle time.

DATA RETENTION TIMING DIAGRAM

PACKAGE INFORMATION

32pin 400mil Thin Small Outline Package Standard(T2)

UNIT : INCH(mm) $\frac{MAX}{MIN}$.

32pin 400mil Thin Small Outline Package Reversed(R2)

UNIT : INCH(mm) $\frac{MAX}{MIN}$.

32pin 525mil Small Outline Package(G)

MARKING INFORMATION

Package	Marking Example
SOP	h y n i x
	y y w w p c c G - s s t
	h y n i x K O R E A
TSOP-II	H Y 6 2 V 8 4 0 0 A
	y y w w p c c T 2 - s s t
	Index
• hynix • KOREA • HY62V8400A • yy • ww • p • cc	 : hynix Logo : Origin Country : Part Name : Year (ex: 00 = year 2000, 01 = year 2001) : Work Week (ex: 12 = ww12) : Process Code : Power Consumption - L - L
• ss	- G : SOP - T2 : TSOP-II : Speed - 70 : 70ns
•t	- 85 : 85ns : Temperature - Blank : Commercial (0 ~ 70 °C) - E : Extended (-25 ~ 85 °C) - I : Industrial (-40 ~ 85 °C)
Note - Capital Letter - Small Letter	: Fixed Item : Non-fixed Item (Except hynix)