Работа № 3.2.5

Вынужденные колебания в электрическом контуре

В работе используются: генератор звуковой частоты (3Γ), осциллограф (9O), вольтметр, частотомер, ёмкость, индуктивность, магазин сопротивлений, универсальный мост.

Ход работы

Исследование резонансных кривых

- 1. Рассчитаем резонансную частоту контура $\nu_0 = 1/(2\pi\sqrt{LC})$.
- 2. Снимем зависимость показаний вольтметра U от показаний частотомера ν при R=0 Ом и R=100 Ом.
- 3. Построим график зависимости $U/U_0 = f(\nu/\nu_0)$.

Процессы установления и затухания колебаний

- 1. Для расчёта добротности по скорости нарастания (затухания) амплитуды измерим амплитуды колебаний всех периодов для R=0 Ом и R=100 Ом и построим графики в условных единицах (по фотографиям экрана осциллографа).
- 2. По отношению соседних амплитуд вычислим добротность: $Q = \frac{\pi}{\ln{(U_k/U_{k+1})}}$.
- 3. Измерим активное сопротивление R_L и индуктивность L магазина индуктивностей с помощью измерителя LCR на частотах 50 Γ ц, 500 Γ ц и 1500 Γ ц.

Обработка результатов

Полученные графики и таблицы представлены ниже:

Вывод

Таким образом, мы вычислили добротность контура при различных сопротивлениях резистора различными способами: $Q=39.1\pm0.8$ при R=0 Ом и $Q=7.96\pm0.16$ при R=100 Ом. Результаты вычислений различными способами в пределах погрешности совпадают.