IIITDM KANCHEEPURAM

MA1000 Calculus (B Batch) Assignment 2

February 18, 2021

Submit by: February 23, 2021 Marks: 10

1. Prove that
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$
.

2. A function $f:[0,1]\to\mathbb{R}$ is defined by

$$f(x) = \begin{cases} x, & x \text{ is rational} \\ 1 - x, & x \text{ is irrational} \end{cases}$$

Show that

- (a) f is injective (one-to-one) on [0, 1].
- (b) f assumes every real numbers in [0,1] (i.e., [0,1] is a subset of the range of f).
- (c) f is continuous at $\frac{1}{2}$ and is discontinuous at every other point in [0,1].
- 3. Find the points of discontinuities of the function f defined by $f(x) = \lim_{n \to \infty} \frac{(1 + \sin \pi x)^n 1}{(1 + \sin \pi x)^n + 1}$, $x \in \mathbb{R}$.
- 4. If $f:[a,b] \to \mathbb{R}$ and $g:[a,b] \to \mathbb{R}$ are both continuous functions on [a,b] having the same range [0,1], prove that f(c)=g(c) for some $c \in [a,b]$.
- 5. Give an example of a function f such that f(0) = 0 and f and |f| both are differentiable for every $x \in \mathbb{R}$. Justify your answer.
- 6. Give an example of a function which is not differentiable exactly at two points. Prove the correctness of your answer.
- 7. Prove that between any two real roots of the equation $e^x \cos x + 1 = 0$ there is at least one real root of the equation $e^x \sin x + 1 = 0$.
- 8. If $\sqrt{5-2x^2} \le f(x) \le \sqrt{5-x^2}$ for $-1 \le x \le 1$, find $\lim_{x \to 0} f(x)$.
- 9. Evaluate:
 - (a) $\lim_{y \to 0} \frac{\sin 3y \cot 5y}{y \cot 4y}.$
 - (b) $\lim_{x\to 0} 6x^2(\cot x)(\csc 2x)$.

(c)
$$\lim_{t\to 0} \sin\left(\frac{\pi}{2}\cos(\tan t)\right)$$
.

10. For what values of a and b is $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} ax + 2b, & x \le 0 \\ x^2 + 3a - b, & 0 < x \le 2 \\ 3x - 5, & x > 2 \end{cases}$$

continuous at every x?.

11. Prove that if the funtions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are both continuous on \mathbb{R} , then the set $S = \{x \in \mathbb{R} : f(x) = g(x)\}$ is a closed set in \mathbb{R} .

12. Prove that
$$\frac{x}{1+x} < \ln(1+x) < x$$
 for all $x > 0$.

13. Divide the number 10 into two parts such that the sum of their cubes is the least possible. Justify your answer.

14. Determine
$$a, b, c$$
 such that $\lim_{x\to 0} \frac{x(a+b\cos x)+c\sin x}{x^5} = \frac{1}{60}$.

15. Use Taylor's theorem to prove that $1 + \frac{x}{2} - \frac{x^3}{8} < \sqrt{1+x} < 1 + \frac{x}{2}$, if x > 0.

16. A function f is defined on [0,1] by

$$f(x) = \begin{cases} x, & x \text{ is rational} \\ 0, & x \text{ is irrational} \end{cases}$$

Find $\int_0^1 f(x)dx$ and $\int_0^1 f(x)dx$. Deduce that f is not Riemann integrable on [0,1].

- 17. Prove or disprove: If $f:[a,b]\to\mathbb{R}$ and $g:[c,d]\to\mathbb{R}$ are Riemann integrable and if the range of f is contained in [c,d], then the composite function $(g\circ f)(x)=g(f(x))$ is Riemann integrable on [a,b].
- 18. Let a function $f:[a,b] \to \mathbb{R}$ be Riemann integrable on [a,b] and suppose $f(x) \ge 0$ for all $x \in [a,b]$. If there exist point c in [a,b] such that f is continuous at c and f(c) > 0, then prove that $\int_a^b f(x) dx > 0$.
- 19. Let f(x) = [x] for $x \in [0,3]$. Prove that f is Riemann integrable on [0,3]. Also evaluate $\int_0^3 f(x)dx.$
- 20. Let $f:[a,b]\to\mathbb{R}$ be a bounded function with a finite number of points of discontinuity. Prove that f is Riemann integrable on [a,b].