

AutoGrow: automatic layer growing in deep convolutional networks

¹ Wei Wen, ² Feng Yan, ¹ Yiran Chen, ¹ Hai Li

¹ Duke University, ² University of Nevada - Reno

Code: https://github.com/wenwei202/autogrow

Automated depth discovery in neural networks is essential

- Human designed and heuristic, thus time-consuming and sub-optimal
- Depth automation can save design time and find better models
- Applications
 - Automated machine learning
 - designing machine learning models by machine learning
 - Life-long learning
 - adapting neural architectures to dynamic domains

AutoGrow algorithm

Growth policy and initializers

Growth policy

Option 1: Grow after a shallow net converges

Option 2: Grow every K=3 epochs

Initializer of new layers

Option 1: Network Morphism

Option 2: Adam pre-training

Option 3: Uniform noise

Option 4: Gaussian noise

Findings contradicting previous intuitions:

- AutoGrow should grow rapidly **before** a shallow net converges using a small period of K epochs (K = 3);
- Simple random initializers *outperform* complex Network Morphism [3–5, 9, 36, 37]

Experimental results

- AutoGrow (with K=3) adapts to 5 datasets and 4 network architectures without any human tuning
- Significantly improves the accuracy of plain (non-residual) nets

net	dataset	found net	accu %	Δ*	net	dataset	found net	accu %	Δ^*
Basic3ResNet	CIFAR10	42-42-42	94.27	-0.03		CIFAR10	23-22-22	90.82	6.49
	CIFAR100	54-53-53	74.72	-0.95		CIFAR100	28-28-27	66.34	31.53
	SVHN	34-34-34	97.22	0.04	Plain3Net	SVHN	36-35-35	96.79	77.20
	FashionMNIST	30-29-29	94.57	-0.06		FashionMNIST	17-17-17	94.49	0.56
	MNIST	33-33-33	99.64	-0.03		MNIST	20-20-20	99.66	0.12
Basic4ResNet	CIFAR10	22-22-22-22	95.49	-0.10		CIFAR10	17-17-17-17	94.20	5.72
	CIFAR100	17-51-16-16	79.47	1.22		CIFAR100	16-15-15-15	73.91	29.34
	SVHN	20-20-19-19	97.32	-0.08	Plain4Net	SVHN	12-12-12-11	97.08	0.32
	FashionMNIST	27-27-27-26	94.62	-0.17		FashionMNIST	13-13-13-13	94.47	0.72
	MNIST	11-10-10-10	99.66	0.01		MNIST	13-12-12-12	99.57	0.03

^{*} Δ = (accuracy of *AutoGrow*) – (accuracy of training from scratch)

Depth is near-optimal & tuning K can make trade-off

AutoGrow finds shallower nets when datasets are smaller

Table 9: The adaptability of AutoGrow to dataset sizes

Basic3	ResNet on CIFA	R10	Plain3Net on MNIST			
dataset size	found net	accu %	dataset size	found net	accu %	
100%	42-42-42	94.27	100%	20-20-20	99.66	
75%	32-31-31	93.54	75%	12-12-12	99.54	
50%	17-17-17	91.34	50%	12-11-11	99.46	
25%	21-12-7	88.18	25%	10-9-9	99.33	
Basic4R	esNet on CIFAF	R100	Plai	n4Net on SVHN	1	
Basic4R dataset size	esNet on CIFAF found net	R100 accu %	Plai dataset size	n4Net on SVHN found net	accu %	
					•	
dataset size	found net	accu %	dataset size	found net	accu %	
dataset size	found net 17-51-16-16	accu % 79.47	dataset size	found net	accu % 97.08	

AutoGrow scales efficiently to large-scale problems and outperform human

Dataset: ImageNet

Takeaways

- AutoGrow can adapt depth of a specific network to a specific dataset without any tuning
- AutoGrow can scale to large dataset efficiently thanks to the rapid growth and appropriate stop policy
- New layers should be grown rapidly before shallow nets converge to avoid local minima
 - Check trajectory visualization in the paper
- Complex initializers (e.g. Network Morphism [3–5, 9, 36, 37]) are *unnecessary* and underperform random initializers.

Future directions

- Neural Architecture Search (NAS) with architecture growth
 - searches in an open-ended space
 - can be more efficient by starting from a small net
 - Current NAS tries to find a small sub-net by training a gigantic super-net (inefficient)
- Lifelong learning with neural growth
 - Adapts neural architectures to domains
- Integration of neural growing and neural pruning [7, 38-40]

Thanks!