# 21AI638 Reinforcement Learning 21AM711 Reinforcement Learning

#### Course Policies

#### Syllabus

- Unit 1
- Introduction to Machine Learning and its various types, Motivation and Introduction to Reinforcement Learning, Multi arm Bandits; Markov Decision Process, Value functions; Dynamic programming: Policy evaluation and improvement, Value iteration and Policy iteration algorithms
- Unit 2
- Value prediction problems : Temporal difference learning in finite state spaces Algorithms for large state spaces Control : Closed loop interactive learning, online and active learning in bandits, Q learning in finite MDPs, Q learning with function approximation
- Unit 3
- On policy approximation of action values: Value Prediction with Function Approximation, GradientDescent Methods, Policy approximation: Actor critic methods, Monte Carlo Methods: Monte carlo prediction, estimation of action values, off policy prediction via importance sampling

#### TEXTBOOKS/REFERENCES

- 1. Sutton and Barto, Reinforcement Learning: An Introduction, The MIT Press Cambridge, Massachusetts London, England, 2015
- 2. Csaba Szepesvari, Algorithms for Reinforcement Learning, Morgan & Claypool, United States, 2010

## Course Outcomes (CO)

| COs | Description                                                                   |  |
|-----|-------------------------------------------------------------------------------|--|
| CO1 | Understand the relevance of Reinforcement Learning and how does it complement |  |
|     | other ML techniques.                                                          |  |
| CO2 | Understand various RL algorithms.                                             |  |
| CO3 | Formulate a problem as a Reinforcement Learning problem and solve it          |  |
| CO4 | Implement RL algorithms using Python                                          |  |

#### 21AM711 Reinforcement Learning 2-0-2-3

Evaluation Pattern - 70:30

Midterm Exam - 20%

Lab Assignments – 25%

Project – 25%

End Semester Exam - 30%

#### 21Al638 Reinforcement Learning 3-0-2-4

- Evaluation Pattern 70:30
- Midterm Exam 20%
- Lab Assignments 25%
- Project 25%
- End Semester Exam 30%

## Overview of Machine Learning

- Overview of ML
- Applications
- Types of ML



### Machine Learning

- Artificial intelligence: Makes a computer system to mimic human intellect.
- Machine learning: Learn from data or experiences without being explicitly programmed.
- Machine learning models map inputs to the outputs of the given dataset
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E": Tom Mitchell
- E.g. Facebook photo tagging

Mitchell, Tom, and Machine Learning McGraw-Hill. "Edition." (1997)





## Traditional Programming vs Machine Learning

Traditional programming

Machine learning













## Types of machine learning Supervised Learning Unsupervised Learning

Reinforcement Learning













#### Applications of Machine Learning

Recommendation Systems

Healthcare

Online Advertising

Stock Market Trading

Speech Recognition

Virtual Personal Assistants

Autonomous Vehicles

Sentiment Analysis

Cmart LaT





### Take away

- What is machine learning?
- How ML different from traditional programming?
- Types of ML algorithms
- Applications of ML

## Introduction to Reinforcement Learning

### Objectives

- What is RL?
- Why and where we use RL?
- How RL different from other ML methods?

#### What is Reinforcement Learning?

Learn to make good sequence of decisions



Trial-and-error Learning

Sequential Decision Making



## Sequential Decision Making

- Series of decisions over time
- Decision outcomes may depend on environmental factors
- Final goal depends on many interactive decisions and their random consequences
- Examples:
  - § Traffic signal control
  - **§** Communication Network Packet Routing
  - Autonomous Vehicles













#### What is RL?

- Science of decision making
- Discover the sequence of actions trial and error
- Learns the optimal behavior through interactions with the environment
- Actions receive a reward or penalty from the environment







#### What is RL?

After many attempts the robot learns the best path





#### How RL different from SL and USL?

- There is no supervisor to guide the training
- Not required to train with a large (labeled or unlabeled) dataset.
- Data is provided dynamically via feedback from the real-world environment with which you are interacting.
- Make decisions over a sequence of time-steps
- Work in dynamic and uncertain environments





## Comparison of SL, USL and RL

| Supervised Learning                         | Unsupervised<br>Learning                              | Reinforcement<br>Learning                                                          |
|---------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|
| Labelled data with target                   | Unlabelled data without target                        | Input data not predefined:<br>learns from environment<br>using rewards and penalty |
| External Supervision                        | No supervision                                        | Feedback signals                                                                   |
| Learn pattern in data and its labels        | Learn to group data                                   | Compute best reward to reach goal from start state                                 |
| Map input data to known labels              | Find similar features in data and understand patterns | Maximize rewards following trail and error approach                                |
| Model training prior to testing             | Model training prior to testing                       | Model training and testing simultaneously                                          |
| E.g. Regression and classification problems | E.g. Association mining and clustering                | E.g. Reward based problems planning, control                                       |



#### Real World Applications of RL

 Self Driving Cars **Smart Vehicles** • Autonomous Helicopters Atari <u>Games</u> Alpha Go Navigation **Robotics**  Surveillance Manage Critical Diseases **Healthcare**  Adaptive Treatment Plans Stock market <u>Finance</u> Portfolio optimizations Personalized Ads Smart Ads Recommendation Systems • Siri **Chatbots** Alexa





#### Take away

- Trial and error learning
- Difference from other ML techniques
- Real-world applications of RL



## History and Characteristics of RL

## Objectives

- History of RL
- RL Characteristics
- Challenges

#### History of Reinforcement Learning

- Originates from trial-and-error learning & optimal control
- 1911: Thorndike described trial-and-error learning with the "Law of effect" reinforce the satisfying activities and deter from distracting activities
- 1927 : Pavlov's experiment with dogs dog learned to associate sound with the presentation of food
- 1933 : Thomas Ross built a machine to navigate through a maze
- 1961: Minsky addressed the Credit Assignment Problem
- 1950: Optimization methods to find solutions in control problems



#### History of Reinforcement Learning

• Thorndike psychology of animal learning. • Law of Effect. • Richard Bellman developed the optimal return function 1950s-1960s • Introduced Markov Decision Processes • Minsky's credit assignment 1960s-1970s • Learning automata. 1970s-1980s • Temporal difference learning 1990s • Deep Reinforcement Learning and Deep Q-learning • Google DeepMind AlphaGo • Atari games, Autonomous driving, Robotics

#### Characteristics of RL

- Trial-and-error search
- Sequential decision making- time plays an important role
- Delayed rewards
- Environment is stochastic

#### Challenges in RL

- Exploration and exploitation
- Reward design
- Partial observability
- Scalability
- Stochastic environment

## **Takeaways**

- History
- Characteristics
- Challenges

## **Elements of Reinforcement Learning**

## Objectives

- Components of RL
- How RL works?

#### Elements of RL

- 1. Agent
- 2. Environment
- 3. State
- 4. Action
- 5. Reward
- 6. Value Function
- 7. Policy

## RL Elements : Agent

Agent: Learner in RL problem



#### RL Elements: Environment

- Environment: training situation
- The real-world environment with which the agent interacts as part of its operation



#### Deterministic and Stochastic Environments

- Deterministic Environment : The next state can be predicted from the current state and the actions.
- Stochastic Environment: The next state of the environment can not be predicted from the current state and action.



Single Agent and Multi-Agent Environments

- Single Agent Environment : One agent in an environment.
- Multi-Agent Environment: Multiple agents interacting with the environment



#### Discrete and Continuous Environment

- Discrete Environment: Action space is discrete
- Continuous Environment: action space is continuous.

Fully Observable and Partially Observable

- Fully Observable : Agent knows full status of the environment
- Partially Observable: Agent does not know the entire state of the environment



Sequential and Episodic Environment

- Sequential Environment: agent's current action is related to previous actions
- Episodic Environment: agent's actions are limited to the current episode



#### RL Elements: Action

Action: Possible steps taken by an agent within the environment based on its observation



### RL Elements: State

State: The current position or condition returned by the model



| 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 |
| 11 | 12 | 13 | 14 | 15 |

# RLE le ments : Reward the agent recieves

- Receives from the environment as a result of its actions
- To help the model move in the right direction
- Games : won/lost
- Navigation : getting close to treasure/obstacle



### Reward Characteristics

- Positive and negative real values can be used as rewards.
- It is possible that the reward for a specific action will be delayed.
- Actions can have both short term and long-term rewards
- Discounted rewards

#### RL Elements: Value

A function describes how good each state or action is.



| 11 | 25 | 30 | 80  | 90  |
|----|----|----|-----|-----|
| 10 | 17 | 80 | 90  | 100 |
| 11 | 60 | 10 | -10 | 90  |

## RL Elements : Policy

- Policy determines how an agent will behave at anytime
- Mapping between action and present state



# Policy Example







## Take away

- Components of RL
- How RL works?

#### References

- [Chapter 1] Sutton and Barto, Reinforcement Learning: An Introduction, The MIT Press Cambridge, Massachusetts London, England, 2015
- Csaba Szepesvari, Algorithms for Reinforcement Learning, Morgan & Claypool, United States, 2010

