

Cyber Security

O1 Geschichte der KryptographieO2 Grundbegriffe der Kryptographie

03 Symmetrisch Verschlüsselungsverfahren

04 Asymmetrisch Verschlüsselungsverfahren

05 Hashfunktionen

O6 Angriffe auf Kryptosysteme

07 Kryptographie im Alltag

O8 Zukunftsthemen:
Post-Quanten-Kryptographie

6

09 Steganographie

AGENDA

O1 Geschichte der Kryptographie

Geschichte der Kryptographie

Kryptographie existiert seit der Antike:

- Skytale (Sparta, ca. 500 v. Chr.):
 Holzstab zur Transpositionsverschlüsselung
- Caesar-Verschlüsselung (Römisches Reich, ca. 50 v. Chr.): Buchstabenverschiebung
- Ziele dabei immer:
 Militärische Kommunikation schützen Kryptographie

Geschichte der Kryptographie

Mittelalter & Renaissance:

- Vigenère-Chiffre (16. Jh.):
 Polyalphabetische Verschlüsselung
- Kryptographie als Geheimsprache bei Diplomatie & Spionage
- Häufig auch Codierungen, z.B. Zahlen für Wörter

Geschichte der Kryptographie

Moderne – Mechanische Verschlüsselung:

- Enigma-Maschine (Deutschland, 1920er–1945):
 Elektromechanische Verschlüsselung im 2. Weltkrieg
- Wettrüsten: Codeknacker vs. Kryptographen (Bletchley Park, Alan Turing)
- Meilenstein:
 Erste systematische Kryptoanalyse
- Grundstein für spätere Computerentwicklung

Geschichte der Kryptographie

Computerzeitalter und digitale Kryptographie:

- Entwicklung elektronischer Verschlüsselungsverfahren (ab 1970er)
- DES (Data Encryption Standard, 1977)
- RSA (erstes asymmetrisches Verfahren, 1977)
- AES (Advanced Encryption Standard, ab 2001)
- Kryptographie als Basis der IT-Sicherheit (z.B. Internet, E-Mail)

Geschichte der Kryptographie

Ausblick – Kryptographie heute & morgen:

- Allgegenwärtig:
 Smartphones, Cloud, Banking
- Stetiger Wettlauf:
 Stärkere Algorithmen vs. leistungsfähigere Angreifer
- Zukunft:
 Quantenkryptographie, Post-Quantum-Kryptographie
- Zentraler Bstandteil unserer heutigen Gesellschaft

Grundlegendes

Wie aus der Historie hervorgeht, dreht sich bei der Kryptographie schlussendlich alles um die CIA-Triade:

- Vertraulichkeit:
 Schutz vor unbefugtem Zugriff
- Integrität:
 Schutz vor unbemerkter Veränderung
- Authentizität:
 Nachweis der Identität von Kommunikationspartnern

AGENDA

02 Grundbegriffe der Kryptographie

Grundbegriffe der Kryptographie

Symmetrische und asymmetrische Kryptosysteme:

• Symmetrisch:

Gleicher Schlüssel für Ver- und Entschlüsselung

- Schnell, aber Schlüsselverteilung ist schwierig

- Beispiele: AES, DES

Asymmetrisch:

Verschiedene Schlüssel (öffentlich & privat)

- Ermöglicht Schlüsselaustausch und digitale Signaturen
- Beispiele: RSA, ECC

Grundbegriffe der Kryptographie

Wichtige Begriffe:

Klartext:

Ursprüngliche, lesbare Nachricht

Chiffretext:

Verschlüsselte Nachricht

Schlüssel:

Geheime Information zur Ver- und Entschlüsselung

Algorithmus:

Verfahren/Regelwerk der Verschlüsselung

Kryptographie Kryptographie

Grundbegriffe der Kryptographie

Hashfunktionen und digitale Signaturen:

Hashfunktion:

"Fingerabdruck" einer Nachricht bzw. von Daten

Merkmal: feste Länge

Beispiele: SHA-256, SHA-3

Digitale Signatur:

Elektronische Unterschrift zur Prüfung von Integrität und Authentizität.

Einsatz z.B. bei Software-Updates und Zertifikaten

AGENDA

03 Symmetrische Verschlüsselungsverfahren

Symmetrische Verschlüsselungsverfahren

Prinzip und Beispiel:

- Grundprinzip:
 Ein Schlüssel für Ver- und Entschlüsselung
- Anwendung für schnelle, sichere Datenübertragung
- Beispiel:
 Dateien, Festplatten, Netzwerkverbindungen

Symmetrische Verschlüsselungsverfahren

Funktionsweise symmetrischer Verfahren:

- Sender und Empfänger teilen einen geheimen Schlüssel
- Klartext => Verschlüsselungsalgorithmus => Chiffretext
- Chiffretext => Entschlüsselungsalgorithmus => Klartext
- Schnelle und effiziente Verarbeitung

Symmetrische Verschlüsselungsverfahren

Bekannte symmetrische Algorithmen:

- DES (Data Encryption Standard):
 56 Bit, historisch wichtig, heute unsicher
- AES (Advanced Encryption Standard):
 128/192/256 Bit, aktueller Standard
- Blowfish, Twofish, RC4, ChaCha20:
 Weitere verbreitete Verfahren
- Unterschiede liegen hauptsächlich in der Geschwindigkeit, Sicherheit und dem Einsatzgebiet

Symmetrische Verschlüsselungsverfahren

Vor- und Nachteile symmetrischer Verfahren:

Vorteile:

Sehr schnell, geringe Rechenleistung erforderlich. Ideal für große Datenmengen.

Nachteile:

Schlüsselverteilung ist ein zentrales Problem. Keine direkte Möglichkeit für digitale Signaturen

Symmetrische Verschlüsselungsverfahren

Anwendungen im Alltag:

- Festplatten- und Dateiverschlüsselung (z.B. BitLocker, VeraCrypt)
- VPNs und sichere Netzwerkkommunikation
- Verschlüsselte Messenger und Cloud-Speicher
- Basis für viele hybride Kryptosysteme (Kombination mit asymmetrischer Verschlüsselung)

AGENDA

O4 Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren

Merkmal und Prinzip:

- Bei der asymmetrischen Verschlüsselung existieren immer zwei Schlüssel: öffentlich und privat
- Prinzip:
 Was mit dem Einen verschlüsselt wird, kann nur mit
 dem Anderen (Schlüssel) entschlüsselt werden.
- Zentrale Technik f
 ür sichere Kommunikation im Internet

Asymmetrische Verschlüsselungsverfahren

Funktionsweise asymmetrischer Verfahren:

Schlüsselpaar:

- Öffentlicher Schlüssel: Wird verteilt

- Privater Schlüssel: Bleibt geheim

Beispiel:

Person A verschlüsselt Nachricht mit dem öffentlichen Schlüssel von B.

Nur B kann die Nachricht mit seinem privaten Schlüssel entschlüsseln.

Anwendung auch für digitale Signaturen

Asymmetrische Verschlüsselungsverfahren

Funktionsweise asymmetrischer Verfahren:

Asymmetrische Verschlüsselungsverfahren

Bekannte asymmetrische Algorithmen:

RSA:

Seit 1977, basiert auf Faktorisierung großer Zahlen. Weit verbreitet für Verschlüsselung und Signaturen.

Diffie-Hellman:

Ermöglicht sicheren Schlüsselaustausch.

• ECC (Elliptic Curve Cryptography):

Hohe Sicherheit mit kurzen Schlüsseln.

Besonders geeignet für mobile Geräte

Asymmetrische Verschlüsselungsverfahren

Anwendungsbeispiele im Alltag:

- TLS/SSL:
 - z.B. Verschlüsselte Webseiten (https)
- E-Mail-Verschlüsselung:
 - OpenPGP, S/MIME
- Digitale Signaturen:
 - Nachweis von Authentizität und Integrität
- Kryptowährungen:
 - Wallets und Transaktionen

Asymmetrische Verschlüsselungsverfahren

Vor- und Nachteile asymmetrischer Verfahren:

- Vorteile:
 - Sichere Schlüsselverteilung
 - Ermöglicht digitale Signaturen
 - Kein vorheriger Schlüsselaustausch nötig
- Nachteile:
 - Langsamer als symmetrische Verfahren
 - Rechenintensiv

AGENDA

05 Hashfunktionen

Hashfunktionen

Eigenschaften kryptographischer Hashfunktionen:

- Feste Ausgabelänge:
 Unabhängig von der Eingabemenge
- Schnelle Berechnung
- Einwegfunktion:
 Aus dem Hashwert kann der Ursprung nicht rekonstruiert werden
- Bei der kleinsten Änderung resultiert daraus ein komplett anderer Hashwert.

Hashfunktionen

Bekannte Hash-Algorithmen:

- MD5:
 - Schnell, aber unsicher (Kollisionen möglich)
- SHA-1:
 - Veraltet, nicht mehr empfohlen
- SHA-2 (SHA-256, SHA-512):
 - Weit verbreitet und sicher
- SHA-3:
 - Neuer Standard mit alternativer Architektur

Hashfunktionen

Anwendungsbeispiele:

- Integritätsprüfung von Dateien und Downloads
- Speicherung und Vergleich von Passwörtern
- Digitale Signaturen
- Blockchains und digitale Währungen
- Datenbanken und Hash-Tabellen

AGENDA

O6 Angriffe auf Kryptosysteme

Angriffe auf Kryptosysteme

- Ziel: Schwächen von Verschlüsselung erkennen und ausnutzen.
- Unterschiedliche Methoden und Werkzeuge
- Schutzmaßnahmen

Angriffe auf Kryptosysteme

Brute-Force-Angriffe: (Wörterbuchattacken und Rainbowtables)

- Vorgehensweise:
 Systematisches Durchprobieren aller möglichen
 Schlüssel
- Erfolgreich, wenn der Schlüsselraum klein ist
- Je länger und komplexer der Schlüssel, desto sicherer das System

Angriffe auf Kryptosysteme

Brute-Force-Angriffe:

Beispielprogramme:

Programm

ITD base lobe the

JTR bzw. John the Ripper

Hashcat

Hydra

Verwendung

Passwörter

Hashwerte

Login-Formulare und

Netzwerkdienste

Angriffe auf Kryptosysteme

Kryptoanalyse:

- Vorgehensweise:
 Mathematische oder statistische Analyse, um
 Schwächen im Algorithmus oder der Implementierung auszunutzen
- Häufiges Ziel:
 Alte oder fehlerhaft implementierte Verfahren
- Erfolgreich, z. B. bei schwachen Algorithmen wie MD5, SHA-1, DES

Angriffe auf Kryptosysteme

Kryptoanalyse:

- Beispielprogramme:
 - Cryptool
 - HashClash (Kollisionsangriffe auf Hashfunktionen)

Angriffe auf Kryptosysteme

Man-in-the-Middle (MITM):

- Vorgehensweise:
 Angreifer schaltet sich zwischen Sender und Empfänger
- Kommunikation wird mitgelesen, manipuliert oder umgeleitet
- Besonders gefährlich bei ungesicherter Verbindung (z. B. ohne TLS/SSL)

Angriffe auf Kryptosysteme

Man-in-the-Middle (MITM):

- Beispielprogramme:
 - Bettercap
 - Ettercap
 - mitmproxy

Angriffe auf Kryptosysteme

Seitenkanalangriffe:

- Vorgehensweise:
 - Ausnutzung physikalischer Merkmale (z. B. Stromverbrauch, Laufzeit, elektromagnetische Strahlung)
- Kein Angriff auf die Mathematik, sondern auf die konkrete Implementierung
- Praktisch vor allem bei Smartcards, IoT-Geräten oder Hardware-Tokens

Angriffe auf Kryptosysteme

Seitenkanalangriffe:

Beispielprogramme / Tools:

- ChipWhisperer (Hardware-Toolkit)

- Riscure Inspector (professionelle Analyseplattform)

Angriffe auf Kryptosysteme

Schutzmaßnahmen gegen Angriffe auf Kryptosysteme

- Regelmäßige Überprüfung und Aktualisierung der eingesetzten Algorithmen
- Einsatz starker Schlüssel und sicherer Protokolle
- Software und Hardware gegen Seitenkanäle absichern
- Wachsamkeit gegenüber neuen Angriffsmethoden und Tools

AGENDA

O7 Kryptographie im Alltag

Kryptographie im Alltag

Allgemeines:

- Kryptographie ist die Grundlage für den Datenschutz in der IT-Sicherheit
- Steigende Bedeutung durch immer weiter gehende Digitalisierung.
 - Dabei muss die CIA-Triade eingehalten werden.
- Kontinuierliche Weiterentwicklung gegen neue Bedrohungen
- Bewusstes Verhalten wichtig für eigene Sicherheit (Awareness!)

Kryptographie im Alltag

Sicheres Surfen – TLS/SSL:

- Verschlüsselte Verbindungen mit HTTPS
- Schutz vor Abhören und Manipulation beim Surfen
- Einsatz: Online-Banking, E-Commerce, E-Mail
- Erkennbar am "Schloss"-Symbol im Browser

Kryptographie im Alltag

Sichere Kommunikation – Messenger & E-Mail:

- Ende-zu-Ende-Verschlüsselung
 (z. B. Signal, WhatsApp, Threema)
- Verschlüsselte E-Mails, z.B. mit OpenPGP
- Schützt Privatsphäre bzw. sensible Daten
- Durch die Implementierung sicherer Kommunikation ist keine Einsichtnahme durch 3rd Parties möglich

Kryptographie im Alltag

Datensicherheit – Verschlüsselte Festplatten & Geräte:

- Verschlüsselung von Computern und Smartphones,
 - z.B. durch:
 - BitLocker (Windows)
 - FileVault (macOS)
 - LUKS (Linux)
 - Smartphone-Verschlüsselung
- Schutz vor unbefugtem Zugriff bei Verlust oder Diebstahl

Kryptographie im Alltag

Zahlungsverkehr & Digitale Identitäten:

- Kryptographie im Online-Banking (TAN-Verfahren, Chipkarten, Mobile Payment)
- Digitale Identitäten und elektronische Signaturen,
 z.B. elektronische Ausweise oder digitale Signaturen für Dokumente
- Kryptowährungen (z. B. Bitcoin, Ethereum)

AGENDA

08 Zukunftsthemen: Postquantenkryptographie

Postquantenkryptographie

Generelles:

- Quantencomputer als neue Herausforderung für Kryptographie.
- Postquantenkryptographie (PQK) entwickelt Verfahren, die resistent gegen Angriffe durch Quantencomputer sind.
- Zukünftige Sicherung der Kommunikation notwendig.

Postquantenkryptographie

Warum brauchen wir Postquantenkryptographie?

- Quantencomputer bedrohen klassische Verschlüsselungsverfahren
- Shors Algorithmus:
 Quantencomputer können RSA, ECC effizient brechen
- Gefahr für heutige IT-Systeme und Datensicherheit
- Rechtzeitige Entwicklung neuer Algorithmen erforderlich

Postquantenkryptographie

Ausblick:

- Rechtzeitige Vorbereitung auf Postquantenära notwendig
- Hohe Relevanz für langfristige Datensicherheit ("Store now, decrypt later")
- Laufende Forschung notwendig zur Weiterentwicklung robuster Verfahren
- Unternehmen und Institutionen müssen sich frühzeitig mit PQK befassen

AGENDA

09 Steganographie

Steganographie

Was ist Steganographie?

- Definition:
 - Geheime Informationen unauffällig in Medien verstecken
- Unterschied zur Kryptographie:
 Informationen nicht verschlüsseln, sondern verbergen
- Ziel:
 - Unbemerkte Kommunikation, keine Aufmerksamkeit erregen

Steganographie

Geschichte der Steganographie:

- Antike Beispiele:
 - Tätowierungen auf Sklavenköpfen, versteckte
 - Botschaften in Wachstafeln
- Mittelalter & Renaissance:
 - Geheime Botschaften in Büchern, Gemälden und Noten
- Moderne Nutzung:
 - Digitale Medien wie Bilder, Audio- und Videodateien

Steganographie

Techniken und Vorgehensweise:

- Least Significant Bit (LSB)-Verfahren:
 Verstecken von Informationen in den Pixeln eines Bildes
- Audio-Steganographie:
 z.B. Frequenzänderungen in Audiodateien
- Text-Steganographie:
 Unsichtbare Zeichen, Schriftartänderungen
- Alle Techniken verfolgen immer ein Ziel:
 Informationen schwer nachweisbar integrieren

Steganographie

Anwendungsbeispiele:

- Schutz vertraulicher Informationen
 - z. B. digitale Wasserzeichen
- Geheime Kommunikation in sensiblen Bereichen (Nachrichtendienste, Journalismus)
- Digital Rights Management (DRM), Copyright-Markierungen in digitalen Medien
- Verdeckte Datenübertragung in Cybersecurity
 - z. B. Malware-Kommunikation

Steganographie

Programme und Tools für Steganographie

- Steghide:
 - Verstecken von Dateien in Bildern und Audio
- OpenStego:
 - Wasserzeichen und versteckte Daten in Bildern
- SilentEye:
 - Einfache Oberfläche, vielseitig einsetzbar
- OutGuess
 - Werkzeug zum Verstecken in JPEG-Bildern

Steganographie

Herausforderungen und Erkennung (Steganalyse)

- Schwierigkeit:
 Informationen unauffällig verstecken
- Steganalyse:
 Methoden zum Erkennen versteckter Informationen
- Techniken:
 Statistische Analysen, maschinelles Lernen
- Wettrüsten zwischen Steganographie und Steganalyse

Gibt es noch Fragen?

