

RDRS Thrust Area Update

Walter McNeil

Mechanical & Nuclear Engineering Dept.

Kansas State University

Manhattan, KS 66506

June 13, 2018

Data Collection Scheme

- The DT generator beam current has been unlocked with help from Fabian
 - DT generator can now be operated from 20-60 µA beam current,
 - Voltage range is 40-80 kV
- The best combination of current and voltage is $40\mu A:40kV$
 - Lowest dead time and noise with stable neutron output
- Generator noise is now entirely removed from spectrum using decimation settings

We only assume the time response of the neutron output follows:

• Neutron detectors have significantly reduced dead time thanks to reduction of output

• Neutron detectors have significantly reduced dead time thanks to reduction of output

• NaI detectors also behaving well, similarly low dead time

External Timing Trigger

- DT Generator is now connected to a function generator
- Switching noise is synchronized with square wave

List-Mode Data

- List-Mode data provides timestamps (2µs intervals) and channel data (15 bit) for each pulse event in three numbers
- ASCII format is easy to interpret, but file sizes are large

TIMESTAMP CHANNEL EVENT_TAG

Sensor on ChO

- The DT generator beam current has been unlocked with help from Fabian
 - DT generator can now be operated from 20-60 µA beam current,
 - Voltage range is 40-80 kV

- The "best" combination of current and voltage is $40\mu A$:40kV
 - Low dead time and noise with good neutron output
- Noise is now entirely removed from spectrum using decimation settings

Three Tap Water Experiments

06/11/18

Long Vo

Alan Reinke & Alexi Rojas

Repeatability of time-integrated spectra. NaI

Repeatability of Time-Integrated Spectra (BF3 and He-3)

He-3 (Far)

Dead-time is acceptable

• TapWater00

1. NearNaI: 1.2%

2. FarNaI: 0.6%

3. NearBF3: 9.9%

4. FarHe3: 12%

• TapWater01

1. NearNaI: 1.2%

2. FarNaI: 0.6%

3. NearBF3: 13%

4. FarHe3: 9.6%

TapWater03

1. NearNal: 1.2%

2. FarNal: 0.6%

3. NearBF3: 12%

4. FarHe3: 13%

 $\frac{RealTime-LiveTime}{RealTime} x 100$

Time-Dependent Spectral Data

NaI with Na-22 Calibration

• Time progression of pulse energy spectra

Calibration NAI near

From TapWater00

BF3 (Near Sensor)

• Time progression of energy spectra

From TapWater00

Red dots identify error flags on time-stamp (likely pile-up, or unusual waveform)

NaI Near, Generator on

• Time progression of energy spectra

NaI and BF3 Near

• Time progression of energy spectra over 2 seconds

Time-Dependent Gross Count-Rate

Cyclical Output Behavior

A Look at Die-Away

- Time between every trigger is 1000 micro-second
- Binning Time after every trigger into 10us bins
- Y-axis is count per second
- A clock rollover is ~4295triggers or 4295x(1000us)=4.295second

Energies study in the divided regions

- What energies are we losing because of cut off?
- Looking at regions (20us-140us), (140us-500us), and (500us-1000us) in NaI_Near

Pulse Region Spectra, Near NaI

From TapWater00

Pulse Region Spectra, Near NaI

From TapWater01

From another source

Fast Neutron and Gamma Burst measured with EJ-299-34 Plastic and SiPM on THermoFisher A325 DT Generator 2KHz and 20%duty cycle

Figure 6: Fast neutron and gamma count rates over the course of a 2 kHz, 20% duty cycle burst period.

R. M. Preston, "Neutron generator burst timing measured using a pulse shape discrimination plastic scintillator with silicon photomultiplier readout"