高等数学上册

函数与极限 第一章

(一) 函数

- 1、 函数定义及性质(有界性、单调性、奇偶性、周期性):
- 2、 反函数、复合函数、函数的运算:
- 3、 初等函数: 幂函数、指数函数、对数函数、三角函数、反三角 函数、双曲函数、反双曲函数:
- 4、 函数的连续性与间断点:

第一类:左右极限均存在。 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点

- 闭区间上连续函数的性质:有界性与最大值最小值定理、零点 5、 定理、介值定理及其推论。
- (二) 极限
 - 1、 定义
 - 1) 数列极限

$$\lim_{n\to\infty} x_n = a \Leftrightarrow \forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n > N, \ \left| x_n - a \right| < \varepsilon$$

2) 函数极限

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, \ \mathbf{u} = 0 < |x - x_0| < \delta \mathbf{v}, \ |f(x) - A(x)| < \delta \mathbf{v}$$

左极限:
$$f(x_0^-) = \lim_{x \to x_0^-} f(x)$$
 右极限: $f(x_0^+) = \lim_{x \to x_0^+} f(x)$
$$\lim_{x \to x_0} f(x) = A$$
 存在 $\Leftrightarrow f(x_0^-) = f(x_0^+)$

- 2、 极限存在准则
- 1) 夹逼准则:

1)
$$y_n \le x_n \le z_n \quad (n \ge n_0)$$

2) $\lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n = a$ $\lim_{n \to \infty} x_n = a$

- 2) 单调有界准则:单调有界数列必有极限。
- 3、 无穷小(大)量
- 1) 定义: 若 $\lim \alpha = 0$ 则称为无穷小量; 若 $\lim \alpha = \infty$ 则称为无穷 大量。
- 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无 穷小

<u>Th1</u> $\alpha \sim \beta \Leftrightarrow \beta = \alpha + o(\alpha)$;

Th2
$$\alpha \sim \alpha', \beta \sim \beta', \lim \frac{\beta'}{\alpha'}$$
存在,则 $\lim \frac{\beta}{\alpha} = \lim \frac{\beta'}{\alpha'}$ (无穷小代

换)

- 4、 求极限的方法
 - 1) 单调有界准则;
 - 2) 夹逼准则:
 - 3) 极限运算准则及函数连续性;
 - 4) 两个重要极限:

$$a) \quad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

b)
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = \lim_{x\to +\infty} (1+\frac{1}{x})^x = e$$

- 5) 无穷小代换: $(x \rightarrow 0)$
 - a) $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$

b)
$$1 - \cos x \sim \frac{1}{2}x^2$$

c)
$$e^{x} - 1 \sim x$$
 ($a^{x} - 1 \sim x \ln a$)

d)
$$\ln(1+x) \sim x$$
 $(\log_a(1+x) \sim \frac{x}{\ln a})$

e)
$$(1+x)^{\alpha} - 1 \sim \alpha x$$

<mark>第二章</mark> 导数与微分

(一) 导数

1、
$$\not$$
 2: $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$

左导数:
$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}$$

右导数:
$$f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

函数
$$f(x)$$
 在 X_0 点可导 $\Leftrightarrow f'_-(x_0) = f'_+(x_0)$

- 2、 几何意义: $f'(x_0)$ 为曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线的斜率。
- 3、 可导与连续的关系:
- 4、 求导的方法
 - 1) 导数定义:
 - 2) 基本公式:
 - 3) 四则运算:
 - 4) 复合函数求导(链式法则);
 - 5) 隐函数求导数:
 - 6) 参数方程求导;
 - 7) 对数求导法。
- 5、 高阶导数

1)
$$\not\in \mathcal{X}: \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

2) Leibniz 公式: $(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)}$

(二) 微分

- 1) 定义: $\Delta y = f(x_0 + \Delta x) f(x_0) = A\Delta x + o(\Delta x)$, 其中 A 与 Δx 无关。
- 2)可微与可导的关系: 可微 \Leftrightarrow 可导,且 $dy = f'(x_0)\Delta x = f'(x_0)dx$

第三章 微分中值定理与导数的应用

(一) 中值定理

1、Rolle 定理: 若函数 f(x) 满足:

1)
$$f(x) \in C[a,b]$$
 ; 2) $f(x) \in D(a,b)$; 3) $f(a) = f(b)$; 则 $\exists \xi \in (a,b)$,使 $f'(\xi) = 0$.

2、 Lagrange 中值定理: 若函数 f(x) 满足:

1)
$$f(x) \in C[a,b]$$
; 2) $f(x) \in D(a,b)$; $\emptyset \exists \xi \in (a,b), \not \in f(b) - f(a) = f'(\xi)(b-a)$.

3、 Cauchy 中值定理: 若函数 f(x), F(x) 满足:

1)
$$f(x), F(x) \in C[a,b]$$
; 2) $f(x), F(x) \in D(a,b)$; 3)

$$F'(x) \neq 0, x \in (a,b)$$

则
$$\exists \xi \in (a,b)$$
,使 $\frac{f(b)-f(a)}{F(b)-F(a)} = \frac{f'(\xi)}{F'(\xi)}$

(二) 洛必达法则

1、尽量先化简(有理化、无穷小代换、分离非零因子) 再用洛必达法则!

如:
$$\lim_{x\to 0} \frac{\sqrt{1-x^2} - \cos x}{\tan^4 x}$$

2、对于某些数列极限问题,可化为连续变量的极限,然后用洛必达法则!

如:
$$\lim_{n\to\infty} \left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2} \right)^n$$

3、洛必达法则是一种很有效的方法,但不是万能的!

$$\exists x: \lim_{x\to +\infty} \frac{x+\cos(x^2)}{x}$$

$$\frac{x^2 \cos \frac{1}{x}}{\sin x} = \lim_{x \to 0} \frac{x^2 \cos \frac{1}{x}}{\sin x}$$

(三) Taylor 公式

n 阶 Taylor 公式:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots$$
$$+ \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}$$

 ξ 在 X_0 与X之间.

当 $x_0 = 0$ 时,成为 n 阶麦克劳林公式:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1}$$

 ξ 在0与x之间.

常见函数的麦克劳林公式:

1)
$$e^x = 1 + x + \frac{1}{2!}x^2 + \dots + \frac{1}{n!}x^n + \frac{e^{\xi}}{(n+1)!}x^{n+1}$$

 ξ 在0与X之间, $-\infty$ <x< $+\infty$;

2

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^{m-1} \frac{x^{2m-1}}{(2m-1)!} + \frac{\sin \left[\xi + (2m+1)\frac{\pi}{2}\right]}{(2m+1)!} x^{2m+1}$$

 ξ 在0与x之间, $-\infty < x < +\infty$;

3

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^{m-1} \frac{x^{2m-2}}{(2m-2)!} + \frac{\cos\left[\xi + 2m \cdot \frac{\pi}{2}\right]}{(2m)!} x^{2m}$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^{3} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n}$$

$$+\frac{\alpha(\alpha-1)\cdots(\alpha-n)(1+\xi)^{\alpha-n-1}}{(n+1)!}x^{n+1},$$

 ξ 在0与X之间。-1<x<1.

(四) 单调性及极值

- 1、单调性判别法: $f(x) \in C[a,b]$, $f(x) \in D(a,b)$, 则若 f'(x) > 0, 则 f(x) 单调增加; 则若 f'(x) < 0, 则 f(x) 单调减少。
- 2、极值及其判定定理:
 - a) 必要条件: f(x) 在 x_0 可导, 若 x_0 为 f(x) 的极值点, 则 \hat{x} 8 页共 19 页

 $f'(x_0) = 0.$

- b) 第一充分条件: f(x) 在 x_0 的邻域内可导,且 $f'(x_0) = 0$,则 ①若当 $x < x_0$ 时, f'(x) > 0,当 $x > x_0$ 时, f'(x) < 0,则 x_0 为极大值点;②若当 $x < x_0$ 时, f'(x) < 0,当 $x > x_0$ 时, f'(x) > 0,则 x_0 为极小值点;③若在 x_0 的两侧 f'(x) 不变号,则 x_0 不是极值点。
- c) 第二充分条件: f(x) 在 x_0 处二阶可导,且 $f'(x_0) = 0$, $f''(x_0) \neq 0$,则

①若 $f''(x_0) < 0$,则 x_0 为极大值点;②若 $f''(x_0) > 0$,则 x_0 为极小值点。

- 3、凹凸性及其判断,拐点
- 1) f(x) 在区间 / 上连续,若 $\forall x_1, x_2 \in I$, $f(\frac{x_1 + x_2}{2}) < \frac{f(x_1) + f(x_2)}{2}$,则 称 f(x) 在 区 间 / 上 的 图 形 是 凹 的 ; 若 $\forall x_1, x_2 \in I$, $f(\frac{x_1 + x_2}{2}) > \frac{f(x_1) + f(x_2)}{2}$,则称 f(x) 在区间 / 上的图形是凸的。
- 2) 判定定理: f(x) 在[a,b]上连续,在(a,b)上有一阶、二阶导数,则

- a) 若 $\forall x \in (a,b), f''(x) > 0$,则 f(x) 在 [a,b] 上的图形是凹的;
- b) 若 $\forall x \in (a,b), f''(x) < 0$,则 f(x) 在 [a,b] 上的图形是凸的。
- 3) 拐点: 设 y = f(x) 在区间 / 上连续, x_0 是 f(x) 的内点,如果曲 线 y = f(x) 经过点 $(x_0, f(x_0))$ 时,曲线的凹凸性改变了,则称点 $(x_0, f(x_0))$ 为曲线的拐点。

(五) 不等式证明

- 1、利用微分中值定理;
- 2、利用函数单调性;
- 3、利用极值(最值)。

(六) 方程根的讨论

- 1、连续函数的介值定理;
- 2、Rolle 定理;
- 3、函数的单调性;
- 4、极值、最值;
- 5、 凹凸性。

(七) 渐近线

- 1、 铅直渐近线: $\lim_{x\to a} f(x) = \infty$, 则 x = a 为一条铅直渐近线;
- 2、 水平渐近线: $\lim_{x\to\infty} f(x) = b$, 则 y = b 为一条水平渐近线;
- 3、 斜渐近线: $\lim_{x\to\infty}\frac{f(x)}{x}=k$ $\lim_{x\to\infty}[f(x)-kx]=b$ 存在,则

y = kx + b 为一条斜

渐近线。

(八) 图形描绘

步骤:

- 1. 确定函数 y = f(x) 的定义域, 并考察其对称性及周期性;
- 2. 求 f'(x), f''(x) 并求出 f'(x) 及 f''(x) 为零和不存在的点;
- 3. 列表判别函数的增减及曲线的凹向,求出极值和拐点;
- 4. 求渐近线;
- 5. 确定某些特殊点,描绘函数图形.

<mark>第四章</mark> 不定积分

(一) 概念和性质

- 1、 原函数: 在区间 /上, 若函数 F(x) 可导, 且 F'(x) = f(x), 则 F(x) 称为 f(x) 的一个原函数。
- 2、 不定积分: 在区间 / 上, 函数 f(x) 的带有任意常数的原函数 称为 f(x) 在区间 / 上的不定积分。
- 3、 基本积分表 (P188, 13 个公式);
- 4、 性质(线性性)。

(二) 换元积分法

1、第 一 类 换 元 法 (凑 微 分) :
$$\int f[\varphi(x)]\varphi'(x)\mathrm{d}x = \left[\int f(u)du\right]_{u=\varphi(x)}$$

2、第 二 类 换 元 法 (变 量 代 换) :
$$\int f(x)dx = \left[\int f[\varphi(t)]\varphi'(t)\mathrm{d}t\right]_{t=\varphi^{-1}(x)}$$

(三) 分部积分法:
$$\int u dv = uv - \int v du$$

- (四) 有理函数积分
 - 1、"拆":
 - 2、变量代换(三角代换、倒代换等)。

<mark>第五章</mark> 定积分

(一) 概念与性质:

1.
$$\not\in \mathcal{X}$$
:
$$\int_a^b f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$$

2、 性质: (7条)

性质 7 (积分中值定理) 函数 f(x) 在区间 [a,b] 上连续,则

$$\exists \xi \in [a,b]$$
 , 使 $\int_a^b f(x)dx = f(\xi)(b-a)$ (平均值:

$$f(\xi) = \frac{\int_a^b f(x)dx}{b-a}$$

(二) 微积分基本公式 (N-L 公式)

1、 变上限积分: 设
$$\Phi(x) = \int_a^x f(t)dt$$
, 则 $\Phi'(x) = f(x)$

推广: $\frac{d}{dx} \int_{\alpha(x)}^{\beta(x)} f(t)dt = f[\beta(x)]\beta'(x) - f[\alpha(x)]\alpha'(x)$

2、 N — L 公式: 若 F(x) 为 f(x) 的 一 个 原 函 数 , 则 $\int_a^b f(x) dx = F(b) - F(a)$

(三) 换元法和分部积分

1、 换元法:
$$\int_a^b f(x)dx = \int_\alpha^\beta f[\varphi(t)]\varphi'(t)dt$$

2、 分部积分法:
$$\int_a^b u dv = [uv]_a^b - \int_a^b v du$$

(四) 反常积分

1、 无穷积分:

$$\int_{a}^{+\infty} f(x)dx = \lim_{t \to +\infty} \int_{a}^{t} f(x)dx$$

$$\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx$$

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{0} f(x)dx + \int_{0}^{+\infty} f(x)dx$$

2、 瑕积分:

$$\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx \quad (a 为瑕点)$$

$$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx \quad (b \ 为瑕点)$$

两个重要的反常积分:

1)
$$\int_{a}^{+\infty} \frac{\mathrm{d}x}{x^{p}} = \begin{cases} +\infty, & p \le 1 \\ \frac{a^{1-p}}{p-1}, & p > 1 \end{cases}$$

2)
$$\int_{a}^{b} \frac{dx}{(x-a)^{q}} = \int_{a}^{b} \frac{dx}{(b-x)^{q}} = \begin{cases} \frac{(b-a)^{1-q}}{1-q}, & q < 1\\ +\infty, & q \ge 1 \end{cases}$$

<mark>第六章</mark> 定积分的应用

(一) 平面图形的面积

1、 直角坐标:
$$A = \int_a^b [f_2(x) - f_1(x)] dx$$

2、 极坐标: $A = \frac{1}{2} \int_{\alpha}^{\beta} [\varphi_2^2(\theta) - \varphi_1^2(\theta)] d\theta$

3、参数方程: $\int_{\alpha}^{\beta} |y(t)x'(t)| dt$

(二) 体积

1、旋转体体积:

a) 曲边梯形 y = f(x), x = a, x = b, x 轴,绕 x 轴旋转而成的旋

转体的体积:
$$V_x = \int_a^b \pi f^2(x) dx$$

第 15 页 共 19 页

b) 曲边梯形
$$y = f(x), x = a, x = b, x$$
 轴, 绕 y 轴旋转而成的

旋转体的体积:
$$V_y = \int_a^b 2\pi x f(x) dx$$
 (柱壳法)

2、 平行截面面积已知的立体:
$$V = \int_a^b A(x) dx$$

3、 极坐标图形绕极轴旋转所成旋转体体积:

$$V = \frac{2\pi}{3} \int_{\alpha}^{\beta} \rho^{3}(\theta) \sin \theta d\theta$$

证: 先求 $[\theta, \theta + d\theta]$ 上微曲边扇形绕极轴旋转而成的体积 dV_{ox} .

体积微元 $rd\theta dr \cdot 2\pi r \sin\theta$

(三) 弧长

1、 直角坐标:
$$S = \int_a^b \sqrt{1 + [f'(x)]^2} dx$$

2、 参数方程:
$$S = \int_{\alpha}^{\beta} \sqrt{[\varphi'(t)]^2 + [\phi'(t)]^2} dt$$

3、 极坐标:
$$S = \int_{\alpha}^{\beta} \sqrt{\left[\rho(\theta)\right]^2 + \left[\rho'(\theta)\right]^2} d\theta$$

<mark>第七章</mark> 微分方程

(一) 概念

数。

微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程。

阶:微分方程中所出现的未知函数的最高阶导数的阶

2、解:使微分方程成为恒等式的函数。

通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同。

特解:确定了通解中的任意常数后得到的解。

(二) 变量可分离的方程

$$g(y)dy = f(x)dx$$
, 两边积分 $\int g(y)dy = \int f(x)dx$

(三) 齐次型方程

$$\frac{dy}{dx} = \varphi(\frac{y}{x}), \quad \text{彼} \quad u = \frac{y}{x}, \quad \text{则} \quad \frac{dy}{dx} = u + x \frac{du}{dx};$$

或 $\frac{dx}{dy} = \varphi(\frac{x}{y}), \quad \text{设} \quad v = \frac{x}{y}, \quad \text{则} \quad \frac{dx}{dy} = v + y \frac{dv}{dy}$

(四) 一阶线性微分方程

$$\frac{dy}{dx} + P(x)y = Q(x)$$

用常数变易法或用公式:

$$y = e^{-\int P(x)dx} \left[\int Q(x)e^{\int P(x)dx} dx + C \right]$$

(五) 可降阶的高阶微分方程

1、 $y^{(n)} = f(x)$,两边积分n次:

2、
$$y'' = f(x, y')$$
 (不显含有 y), 令 $y' = p$, 则 $y'' = p'$;

3、
$$y'' = f(y, y')$$
 (不显含有 x), 令 $y' = p$, 则 $y'' = p \frac{dp}{dv}$

(六) 线性微分方程解的结构

- 1、 y_1, y_2 是齐次线性方程的解,则 $C_1y_1 + C_2y_2$ 也是;
- **2**、 y_1, y_2 是齐次线性方程的线性无关的特解,则 $C_1y_1 + C_2y_2$ 是方程的通解:
 - 3、 $y = C_1 y_1 + C_2 y_2 + y^*$ 为非齐次方程的通解,其中 y_1, y_2 为对应 齐次方程的线性无关的解, y^* 非齐次方程的特解。

(七) 常系数齐次线性微分方程

二阶常系数齐次线性方程: y'' + py' + qy = 0

特征方程: $r^2 + pr + q = 0$, 特征根: r_1, r_2

特征根	通解
$y_{R} r_1 \neq r_2$	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
$r_1 = r_2 = -\frac{p}{2}$	$y = (C_1 + C_2 x)e^{r_1 x}$
$r_{1,2} = \alpha \pm i \beta$	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

(八) 常系数非齐次线性微分方程

$$y'' + py' + qy = f(x)$$
1.
$$f(x) = e^{\lambda x} P_m(x)$$

设特解
$$y^* = x^k e^{\lambda x} Q_m(x)$$
,其中 $k = \begin{cases} 0, \lambda$ 不是特征根 $1, \lambda$ 是一个单根 $2, \lambda$ 是重根

2、
$$f(x) = e^{\lambda x} \left(P_l(x) \cos \omega x + P_n(x) \sin \omega x \right)$$

设特解 $y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos \omega x + R_m^{(2)}(x) \sin \omega x \right]$,
其中 $m = \max\{l, n\}$, $k = \begin{cases} 0, & \lambda + \omega i$ 不是特征根 $1, & \lambda + \omega i$ 是特征根