F21T2A4

Für $a \in \mathbb{C}$ und r > 0 bezeichne $B_r(a) \coloneqq \{z \in \mathbb{C} : |z - a| < r\}$ die offene Kreisscheibe mit Mittelpunkt a und Radius r. Weiter seien $D_+ \coloneqq B_{\sqrt{2}}(1), D_- \coloneqq B_{\sqrt{2}}(-1)$ und $D \coloneqq D_+ \cap D_-$. Ziel dieser Aufgabe ist es, eine Funktion G zu bestimmen, die D biholomorph auf die Einheitskreisscheibe $B_1(0)$ abbildet.

- a) Begründen Sie, warum es eine solche Funktion G geben muss und warum diese keine Möbiustransformation sein kann.
- b) Zeigen Sie: ∂D_+ und ∂D_- schneiden sich in den beiden Punkten i und -i jeweils im Winkel $\frac{\pi}{2}$.
- c) Es sei $T: \mathbb{C} \to \mathbb{C}$; $z \to \frac{i+z}{i-z}$. Zeigen Sie $T(D) = \left\{ re^{i\varphi} : r > 0, \varphi \in \right\} \frac{\pi}{4}; \frac{\pi}{4}[\right\} \coloneqq U$ Hinweis: Bestimmen Sie zunächst das Bild der Geraden i \mathbb{R} und dann der beiden Kreislinien ∂D_+ und ∂D_+ unter der winkeltreuen Möbiustransformation T.
- d) Bestimmen Sie eine explizite Darstellung einer biholomorphen Abbildung h von U auf $B_1(0)$ und leiten Sie hieraus eine explizite Darstellung der gesuchten Funktion G ab.

Zu a)

Da D als Durchschnitt von zwei offenen Kreisscheiben offen und konvex ist und da $\emptyset \neq D \neq \mathbb{C}$ ist, ist D ein nichtleeres, einfach zusammenhängendes Gebiet und deshalb gibt es nach dem Riemannschen Abbildungssatz eine biholomorphe Abbildung $G: D \to B_1(0)$. G kann nicht die Einschränkung einer Möbiustransformation sein, denn dann ist auch $G^{-1}: B_1(0) \to D$ die Einschränkung einer Möbiustransformation $\varphi: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ und damit $\varphi(\partial B_1(0)) = \partial D$ eine verallgemeinerte Kreislinie im Widerspruch zur Definition von D.

Zub)

Für die Parametrisierung $\gamma_+:[0;2\pi]\to\mathbb{C}$; $t\to 1+\sqrt{2}e^{-it}$ von ∂D_+ und

$$\gamma_{-}: [0; 2\pi] \to \mathbb{C}$$
; $t \to -1 + \sqrt{2}e^{-it}$ von ∂D_{-} ist

$$\gamma_{+}\left(\frac{3}{4}\pi\right) = 1 + \sqrt{2}\left(\frac{-1+i}{\sqrt{2}}\right) = i = \gamma_{-}\left(\frac{3}{4}\pi\right) \text{ und } \gamma_{+}\left(\frac{5}{4}\pi\right) = 1 + \sqrt{2}\left(\frac{-1-i}{\sqrt{2}}\right) = -i = \gamma_{-}\left(\frac{5}{4}\pi\right).$$

Die Funktionen
$$\mathbb{R} \to \mathbb{C}$$
; $t \to i + t \gamma'_+ \left(\frac{3}{4}\pi\right) = i + t\sqrt{2}e^{\frac{3}{4}\pi i}(i) = i + t\sqrt{2}e^{\frac{5}{4}\pi i}(-i)$ und

$$\mathbb{R} \to \mathbb{C} ; t \to i + t \gamma'_{-} \left(\frac{3}{4}\pi\right) = i + t\sqrt{2}e^{-\frac{3}{4}\pi i}(-i) = i + t\sqrt{2}e^{-\frac{9}{4}\pi i}(-i) = i + t\sqrt{2}e^{\frac{7}{4}\pi i}(-i)$$

parametrisieren die Tangenten an ∂D_{-} und ∂D_{+} in i und zwischen $\frac{5}{4}\pi$ und $\frac{7}{4}\pi$ ist ein Winkel von $\frac{\pi}{2}$, unter dem sich beide Tangenten schneiden.

Analog ist
$$\gamma'_{+}\left(\frac{5}{4}\pi\right) = \sqrt{2}e^{\frac{5}{4}\pi i}(i) = \sqrt{2}e^{\frac{7}{4}\pi i}$$
 und $\gamma'_{-}\left(\frac{5}{4}\pi\right) = \sqrt{2}e^{-\frac{5}{4}\pi i}(-i) = \sqrt{2}e^{\frac{5}{4}\pi i}$.

Zu c)

$$T: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}} ; z \to \begin{cases} \frac{i+z}{i-z} ; z \in \mathbb{C} \setminus \{i\} \\ \infty ; z = i \\ -1 ; z = \infty \end{cases} \text{ definiert wegen } \det \begin{pmatrix} 1 & i \\ -1 & i \end{pmatrix} = i - (-i) = 2i \neq 0 \text{ eine }$$

Möbiustransformation. Für $y \in \mathbb{R}$ ist $T(iy) = \frac{i+iy}{i-iy} = \frac{1+y}{1-y} \in \mathbb{R} \cup \{\infty\}$, also wird durch T die verallgemeinerte Kreislinie $i\mathbb{R} \cup \{\infty\}$ auf die verallgemeinerte Kreislinie $\mathbb{R} \cup \{\infty\}$ abgebildet.

 $T(1) = \frac{i+1}{i-1} = \frac{(1+i)(-1-i)}{(-1+i)(-1-i)} = \frac{-2i}{2} = -i$, deshalb wird die rechte Halbebene auf die untere Halbebene abgebildet, also $T(\{z \in \mathbb{C} : Re(z) > 0\}) = \{z \in \mathbb{C} : Im(z) < 0\}$ und $T(\{z \in \mathbb{C} : Re(z) < 0\}) = \{z \in \mathbb{C} : Im(z) > 0\}$.

Es sind i und -i die Schnittpunkte der (verallgemeinerten) Kreislinien Spur(γ_+) und Spur(γ_-) mit $T(i) = \infty$ und T(-i) = 0. Wegen $T(i) = \infty$ sind die Bilder $T(Spur(\gamma_+))$ und $T(Spur(\gamma_-))$ Geraden durch ∞ und 0.

Es gilt
$$1 + i\sqrt{2} \in Spur(\gamma_{+}), -1 + i\sqrt{2} \in Spur(\gamma_{-})$$
 mit $T(1 + i\sqrt{2}) = \cdots = \frac{-2 - 2i}{1 + (1 - \sqrt{2})^{2}} \in \{z = x + iy \in \mathbb{C} : x = y\}$ und $T(-1 + i\sqrt{2}) = \cdots = \frac{-2 + 2i}{1 + (1 - \sqrt{2})^{2}} \in \{z = x + iy \in \mathbb{C} : x = -y\}.$ Damit ist $T(Spur(\gamma_{+})) = \{x + ix : x \in \mathbb{R}\} \cup \{\infty\}$ und $T(Spur(\gamma_{-})) = \{x - ix : x \in \mathbb{R}\} \cup \{\infty\}.$

Es gilt $2i \notin D_+und\ T(2i) = -3$. Da die Zusammenhangskomponente D_+ von $\widehat{\mathbb{C}} \setminus Spur(\gamma_+)$ auf eine Zusammenhangskomponente von $\widehat{\mathbb{C}} \setminus T(Spur(\gamma_+))$ abgebildet wird, ist $T(D_+) = \{x + iy : x > y\}$ und ebenso ist $T(D_-) = \{x + iy : y > -x\}$.

Da T bijektiv ist, ist $T(D) = T(D_{+} \cap D_{-}) = T(D_{+}) \cap T(D_{-}) = \{x + iy : x > y > -x\} = \{re^{i\varphi} : r > 0, \varphi \in] -\frac{\pi}{4}; \frac{\pi}{4}[\} = U$

Zu d)

 $f_1: U \to \{z: Re(z) > 0, Im(z) > 0\}; z \to e^{\frac{i\pi}{4}}z$ ist bijektiv und holomorph, also biholomorph. $f_2: \{z: Re(z) > 0, Im(z) > 0\} \to \{z: Im(z) > 0\}; z \to z^2$ ist holomorph und bijektiv $f_3: \{z: Im(z) > 0\} \to B_1(0); z \to \frac{z-i}{z+i}$ ist biholomorph als Einschränkung der Cayley-Transformation.

Somit gilt: $h = f_3 \circ f_2 \circ f_1 = U \to B_1(0)$ ist biholomorph als Komposition bihol. Funktionen.

Da T biholomorph ist mit T(D) = U, ist auch die Einschränkung $f_4: D \to U$; $z \to T(z)$ biholomorph und $G := h \circ f_4: D \to B_1(0)$ ist biholomorph.