第三次作业

2024年4月24日

1.

x	0.7	0.9	1.1	1.3	1.5	1.7
$\sin x$	0.6442	0.7833	0.8912	0.9636	0.9975	0.9917

根据上表构造差商表格,并构建四点牛顿插值多项式,逼近 sin(1.0)

- 2. 采用和上题相同的表格,解决以下问题:
 - (1). 构造对应的前向差分表格和后向差分表格。
 - (2). 构建四点牛顿前插公式以近似计算sin(0.74),并估算相关的截断误差。
 - (3). 构建四点牛顿后插公式以近似计算sin(1.6),并估算相关的截断误差。
- 3. 已知函数 $\sin x$ 与 $\cos x$ 在 $x=0,\frac{\pi}{6},\frac{\pi}{4},\frac{\pi}{3},\frac{\pi}{2}$ 处的值,
 - (1). 线性插值求 $\sin \frac{\pi}{12}$ 的近似
 - (2). 二次插值求 $\cos \frac{\pi}{5}$ 的近似值. 并作误差估计.
- 4. 设 x_0, x_1, \dots, x_n 为n+1个互异插值节点, $l_0(x), l_1(x), \dots, l_n(x)$ 为Lagrange 插值基函数,试证明:
 - (1). $\sum_{j=0}^{n} l_j(x) \equiv 1;$
 - (2). $\sum_{j=0}^{n} x_{j}^{k} l_{j}(x) \equiv x^{k}, \quad k = 1, 2, \dots, n;$
 - (3). $\sum_{j=0}^{n} (x_j x)^k l_j(x) \equiv 0, \quad k = 1, 2, \dots, n;$

$$\sum_{j=0}^{n} l_j(0) x_j^k = \begin{cases} 1, k = 0; \\ 0, k = 1, 2, \dots, n; \\ (-1)^n x_0 x_1 \cdots x_n, & k = n + 1. \end{cases}$$

- 5. $\exists \exists f(x) = 5x^6 + 2x^4 + 3x + 1$. $\exists f[2^02^1 \cdots 2^6] \not \exists f[2^02^1 \cdots 2^7]$.
- 6. 求函数 f 在指定区间和函数类 Φ 上的最佳平方逼近多项式:
 - (1). $f(x) = \cos \pi x$, [0, 1], $\Phi = \text{span}\{1, x, x^2\}$;
 - (2). $f(x) = |x|, [-1, 1], \Phi = \operatorname{span}\{1, x^2, x^4\};$
- 7. 已知实验数据如下

$\overline{x_i}$	19	25	31	38	44	
y_i	19.0	32.3	49.0	73.3	97.8	

用最小二乘法求形如 $y = a + bx^2$ 的经验公式,并计算均方误差.

8. 已知一组实验数据

t	1	2	3	4	5	6	7	8
\overline{y}	4.00	6.40	8.00	8.80	9.22	9.50	9.70	9.86

试用 $y = \frac{t}{at+b}$ 来拟合.