

Magnaporthe oryzae small-RNA sequencing

Introduction

EXP5

Introduction – RBP35

- We performed a poly(A) specific RNA-seq
- Alternative polyadenylation is altered in $\Delta rbp35$ in 25% of genes, belonging to specific functional groups
- UTR are usually shortened in ∆rbp35
- Δrbp35 probably binds to UGUA motif
-(previous work)

Introduction – EXP5

 In yeast, involved in nuclear import and export of several proteins, and required for re-export of mature tRNAs after their retrograde import from the cytoplasm

 In mammals also mediates the nuclear export of micro-RNA precursors, and double-strand RNA bearing proteins

Introduction – purposes

 In order to elucidate a role for EXP5 in M.oryzae, and considering its role in smallRNA export in mammals, we performed a smallRNA sequencing.

We also included the Δrbp35 mutant in the pool

Small RNA library preparation and sequencing

Standard smallRNA-seq adapters have been shown to be biased for certain RNA structures

Our library was prepared with HD adapters (adriana in england)

Sequencing resume

sample	total reads	After filtering*	% filtered reads	Unique reads
WT_3	14168509	11826616	16.53%	10.71%
WT_2	21412622	17398315	18.75%	8.97%
WT_1	13826696	10577152	23.50%	10.09%
Δrbp35 _3	32233131	21309230	33.89%	10.86%
Δrbp35 _2	25965551	22122147	14.80%	10.61%
Δrbp35 _1	14107800	7261472	48.53%	11.50%
Δexp5 _3	16606918	12293728	25.97%	10.11%
Δexp5 _2	39423030	37346923	5.27%	7.03%
Δexp5 _1	25580902	23662841	7.50%	8.29%

^{*} No 3' adapter found, too short after trimming (<18) or low quality

Adapters contamination is variable

Reads length is between 18-25 bp

-0.05

There is an overall U preference as 1st nucleotide

Some HD adapter are significantly changed

WT -> Δexp5 3'adapters

WT -> Δrbp35 5'adapters

WT -> Δrbp35 3'adapters

More than 70% of reads do not aligned perfectly on the genome

Δrbp35 aligns a little more, Δexp5 slightly less

WT no mismatches

Δrbp35 no mismatches

Δexp5 no mismatches

Δrbp35 aligns a little more, Δexp5 slightly less

WT mismatches allowed

Δrbp35 with mismatches

Δexp5 with mismatches

Δrbp35 produces more reads from cDNA

40%

Transposable elements represent most of the expression

Three approaches to identify changes

DIFFERENTIAL EXPRESSION

Most of genome cluster loci (3572) come from protein transcripts

In Δexp5, a lot of protein-coding related clusters are down regulated, and many transposable elements related clusters are up regulated

In \(\Delta \texp5 \), tRNA-lys is downregulated, retro5 clusters are upregulated, and several protein-coding related clusters:

ncRNA	
tRNA-lys	

Protein coding	
MGG_00246	NADP-dependent alcohol dehydrogenase 6
MGG 12760	Anthranilate synthase component I; Anthranilate synthase component I, variant
_	
MGG_10911	Cupin domain-containing protein
MGG 06868	Acetolactate synthase catalytic subunit
_	
MGG_02980	DNA-(Apurinic or apyrimidinic site) lyase 2
MGG_10912	Mycocerosic acid synthase
MGG_01704	Vacuolar protein-sorting-associated protein 36
MGG_08072	Cholesterol oxidase
MGG_10315	Hydrophobin-like protein MPG1
MGG_01655	Copper radical oxidase
MGG_15185	Agglutinin isolectin 1
MGG_05160	Hydrolase
MGG 08641	Pre-mRNA-splicing factor CWC2
MGG 02439	Oxidoreductase
MGG 14897	Polyketide synthase
MGG_07779	Quinate permease
 MGG_03670	Subtilisin-like proteinase Spm1

In Δexp5, retro5 clusters are upregulated, and several protein-coding related clusters:

Transposable element	
17 retro5	

Protein coding	
MGG_08059	Putative uncharacterized protein
MGG_07571	LysM domain-containing protein
MGG_11176	Putative uncharacterized protein
MGG_08022	Putative uncharacterized protein
MGG_18082	Putative uncharacterized protein
MGG_17196	Putative uncharacterized protein
MGG_06654	Putative uncharacterized protein
MGG_01516	Putative uncharacterized protein

In Δrbp35, a lot of transposable elements related clusters are down regulated, and many ncRNA related clusters are up regulated

Total 492 Total 407

In Δ rbp35, a lot of transposable elements (mainly MAGGY and INAGO 1/2) related clusters are down regulated

Transposable element	
116 MAGGY	
64 INAGO 1	
31 INAGO 2	
2 Pyret	
1 POT2	
1 MGRL-3	

Protein coding			
MGG_17324	Putative uncharacterized protein		PHI:879
MGG_16535	Putative uncharacterized protein		PHI:871
MGG_04538	Putative uncharacterized protein		PHI:786
MGG_15019	Peroxisomal copper amine oxidase		PHI:2171
MGG_06368	AGC/PKA protein kinase		PHI:2162
MGG_12865	Putative uncharacterized protein		PHI:2131
MGG_05078	Potassium/sodium efflux P-type ATPase		PHI:2098
MGG_03580	Cysteine protease ATG4	ATG4	PHI:2072
MGG_00611	2OG-Fe(II) oxygenase		
	Actin cytoskeleton-regulatory complex protein		
MGG_12839	PAN1		
MGG_15020	Amino acid permease		
	Anthranilate synthase component I; Anthranilate		
MGG 12760	synthase component I, variant		
_ MGG_04855	ATP-dependent bile acid permease		
MGG_04179	ATP-dependent RNA helicase DBP10	DBP10	
MGG_06335	Calpain-7		
MGG_06327	Candidapepsin-3		
MGG_04407	Cation efflux family protein		
MGG_08072	Cholesterol oxidase		
MGG_09930	Chromodomain-helicase-DNA-binding protein 3		
MGG_07098	Condensin subunit		
MGG_06470	DNA repair helicase RAD25		
MGG_02804	DNA repair protein rad16		

Adriana's Mo-3 is down-regulated in $\Delta rbp35$, but not in $\Delta exp5$;)

In \(\Delta \text{rbp35}, \text{ many ncRNA related clusters are up regulated \)

ncRNA	Transposa	Protein coding	
	ble	MGG_04582	Putative uncharacterized protein
tRNA-Ala	element		r didave diffinated field protein
tRNA-Arg tRNA-Asn	17 MINE		
tRNA-Asp		MGG_02961	Anucleate primary sterigmata protein A
tRNA-Cys		MGG 11454	Vacuolar calcium ion transporter
tRNA-Gln tRNA-Gly	7 Pyret		
tRNA-His		MGG_02074	Potassium/sodium efflux P-type ATPase
tRNA-Ile	1 MGRL-3	MGG_00454	Putative uncharacterized protein
tRNA-Leu		MGG_00865	1,3-beta-glucan synthase component FKS1
tRNA-Lys tRNA-Met	1 8461		1,5 Deta Giacan Synthase component mos
tRNA-Phe	1 MGL	MGG_03372	40S ribosomal protein S20
tRNA-Pro		MGG_06657	40S ribosomal protein S25
tRNA-Pseudo tRNA-Ser		MGG_02392 MGG_02747	40S ribosomal protein S30 40S ribosomal protein S4-A
tRNA-Thr		MGG_06658	40S ribosomal protein S5
tRNA-Trp		<u>-</u> 55555	5-methyltetrahydropteroyltriglutamate-homocysteine S-
tRNA-Undet tRNA-Val		MGG_06712	methyltransferase
U6		MGG_12403	5'-3' exoribonuclease 1
A. fumigatus snoRNA		MGG_09194	60S ribosomal protein L17
Afu_300		MGG_04484	60S ribosomal protein L18
A. fumigatus snoRNA Afu_335		MGG_04582	Putative uncharacterized protein

4 classes of siRNAs were discovered in Mucor

Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus *Mucor circinelloides*

```
Francisco Esteban Nicolas<sup>1</sup>, Simon Moxon<sup>2</sup>, Juan P. de Haro<sup>3</sup>, Silvia Calo<sup>3</sup>,

Igor V. Grigoriev<sup>4</sup>, Santiago Torres-Martínez<sup>3</sup>, Vincent Moulton<sup>2</sup>,

Rosa M. Ruiz-Vázquez<sup>3</sup>,* and Tamas Dalmay<sup>1</sup>,*

+ Author Affiliations

*To whom correspondence should be addressed. Tel: +34 868 887136; Fax: +34 868 883963; Email: rmruiz@um.es

Correspondence may also be addressed to Tamas Dalmay. Tel: +0044 1603 593221; Fax: +0044 1603 592250; Email: t.dalmay@uea.ac.uk

Received January 10, 2010.

Revision received March 9, 2010.

Accepted April 11, 2010.
```

Dicer1 Dicer2 RdP1 Rdp2

This is how siRNAs supposedly work...

Diagram illustrating the major steps in siRNA biogenesis and subsequent siRNA-mediated gene silencing.

647 siRNAs from the three strains were identified, mostly from protein-coding genes

RBP35 itself has a siRNA in its 5'UTR, before its "famous" intron

Unlike RBP35, most of siRNAs identified have a SNP, possibly a post transcriptional modification (or some kind of error of mine;) They are also very short, 18-20 bp....:-/

27 and 134 siRNA are differentially expressed in $\Delta exp5$ and $\Delta rbp35$, respectively

WT_vs_\Delta rbp35 .down

WT_vs_Δexp5.up

WT_vs_\Delta rbp35 .up

Δrbp35 produces shorter smallRNA

Δrbp35 produces smallRNA with 1st nucleotide U-preference

A lot of differentially expressed unique reads are of unknown origin

Is RBP35 involved in alternative splicing?

Nothing notable about Adriana's Mo-2

Probably, an intronic snoRNA

Adriana's Mo-1 is belongs to an unknown, but conserved RNA class. Anyway, they don't seem to be affected by the two mutants

Aspartyl-tRNA synthase

Large polyadenylated transcript
(precursor?)

AAAAA...

Mo-1

OTHER GENES:

Pre-RNA processing factor 39
GET1
Nuclear pore complex protein Nup107
Serine hydroxymethyltransferase
A subunit of the AP-1 complex
A extracellular serine-threonine rich protein

Similar structure conserved in all pezyzozyma clade!

Next steps...

- Find out what all those unknown reads are
- Classify better siRNAs and their genes, is the situation conserved? (mucor)
- Analyze the transcriptome as well
- Mix the results with polyadenylation study
- Reads shortening and 1st nucleotide preference in rbp35 is related with anything?
- Redo the analysis on GUY11 genome

• ...