Batch Online Regression with noise reduction

Ilyass OUBAIK

June 2019

1 Optimization problem

$$C(w) = \frac{||w - w_{t-1}||_B}{2} + \frac{\alpha_B(h)}{r} ||\mathbf{Y} - w\mathbf{X}^\top||_B$$

- \bullet w: weights at time t
- w_{i-1} : previous weigths at time t-1
- B: Batch
- $\alpha_B(h)$: Noise parameter
- r: robustness parameter (hyperparamter)
- \bullet Y: N-vector of outputs at time t
- X: (N,p) matrix at time t (Observation x features)

2 Hyperparameters

• Noise parameter:

$$\alpha_B(h) = \frac{1}{1 + h\sigma_B}$$

- σ_B : noise in N vector(Y) output at time t (ex : $\sigma_B = \frac{1}{N} \sum \sigma_{Bi} = \mathbf{E}_B[\sigma_B]$)
- -h: hyper-parameter
- robustness parameter
 - if $r \to \infty$ then $C(w) \simeq \frac{||w-w_{t-1}||_B}{2}$ then $\min C(w) = w_{t-1}$ (ex for noisy batch $(\sigma_B \gg 0)$)
 - if $r \to 0$ then $C(w) \simeq ||Y w^T X||_B$ then $\min C(w) = (X^\top X)^{-1} X^\top Y$ (ex non noisy batch $(\sigma_B \simeq 0)$)

3 Model update

$$w_t = \min C(w)$$

let's solve $\frac{\partial C(w)}{\partial w} = 0$

$$\frac{\partial C(w)}{\partial w} = \frac{\partial \frac{||w - w_{t-1}||_B}{2}}{\partial w} + \frac{\alpha_B(h)}{r} \frac{\partial ||\mathbf{Y} - w\mathbf{X}^\top||_B}{\partial w}
= w - w_{t-1} + \frac{\alpha_B(h)}{r} (X^\top X w - X^\top Y)
= w - w_{t-1} + \frac{\alpha_B(h)}{r} X^\top X w - \frac{\alpha_B(h)}{r} X^\top Y
= (\mathbf{I} + \frac{\alpha_B(h)}{r} X^\top X) w - w_{t-1} + \frac{\alpha_B(h)}{r} X^\top Y$$
(1)

Result
$$\left[w = (\mathbf{I} + \frac{\alpha_B(h)}{r} X^\top X)^{-1} (w_{t-1} + \frac{\alpha_B(h)}{r} X^\top Y) \right]$$