ZILFIMIAN

KNN2/KNN (Q9L10)

63% (12/19)

- ✓ 1. KNN is
 - A data-driven method
 - (B) model-driven method
 - C I do not know
- ✓ 2. The dependent variable of the classification is
 - A categorical
 - (B) numeric
 - C I do not know
- ✓ 3. KNN can be used for regression
 - A Yes
 - B) No
 - (c) I do not know
- × 4. In the case of KNN classification we use
 - A average of outcomes
 - B majority voting scheme
 - (c) I do not know
- ✓ 5. Which of these errors will increase constantly by increasing k?
 - A train error
 - B test error
 - (c) both
 - (D) I do not know
- 6. This function can be used to perform KNN classification in R
 - (A) knn()
 - B k_nn()
 - c knnreg()
 - D knearneib()
 - (E) I do not know

	(C)	I do not know	
/	9.	KNN	
	A	is a supervised learning algorithm.	
	B	is an unsupervised learning algorithm.	
	<u>C</u>	I do not know	
/	10.	In the case of small k we have	
	A	overfitting	
	B	underfitting	
	C	it depends on the situation	
	D	I do not know	
/	11.	Why do we need scaling in KNN?	
	(A)	to avoid overfitting	
	B	to avoid underfitting	
	C	to have "equal" weights for variables	
	D	I do not know	
/	12.	Let k = n, (n- number of observations), K-NN is same as	
	(A)	random guessing	
	В	everything will be classified as the most probable class (in total)	
	C	everything will be classified as the least probable class (in total)	
	D	I do not know	
	Anna	ı Khachatryan	Pag

X 7. With the increase of k, the decision boundary will be

8. KNN algorithm is sensitive to outliers

(A) simplified

(D) unchanged

True False

B more complex

I do not know

ge 2 of 4

/	13. This function can be used to perform K-NN regression in R
	A knn.reg
	B knnforreg
	C regknn
	D knnforregression
	E I do not know
/	14. Do you need to worry about scaling with one explanatory variable? A No
	B Yes
	C I do not know
/	15. n - the number of observation, m - the number of explanatory variables
	When n=k, m=1, the decision boundary for regression is
	A a line
	B a stepwise constant function
	c a stepwise quadratic function
	D I do not know
X	16. Which of these algorithms can be used to fill the missing values
	A KNN for regression
	B KNN for classification
	© both
	D I do not know
×	17. Which one is better: KNN regression or Linear regression ?
	(A) KNN outperform LR if the parametric form that has been selected is close to the true form of f
	B LR outperform KNN if the parametric form that has been selected is close to the true form of f
	C KNN will always outperform the LR
	D I do not know

Anna Khachatryan Page 3 of 4

X 18. Which one is the Disadvantage of KNN? A required assumptions B cannot be applied for regression C difficult to perform D the problem of high dimensional data E I do not know X 19. The best k for train set equals to

- X 19. The best k for train set equals to

 A 1
 B 2
 C 0
 - D I do not know
- 20. What is the Parzen window

Anna Khachatryan Page 4 of 4