

LISTA AULA 3

1)	A porta lógica retorna 1 (verdadeiro) só se todas as en-tradas também forem 1 (verdadeiro).
	A) Transistor B) OR C) AND D) XOR
2)	O que a porta lógica NOT faz? A) Isola o circuito B) Retorna o inverso do valor da entrada C) Não faz nada D) Cria um resistência no circuito lógico
3)	Baseado na seguinte tabela verdade, qual porta lógica é essa:
	AB Q
	0 0 0 0 1 1 1 0 1 1 1 0
	A) NAND B) OR C) XOR D) NOT
4)	Os transistores são normalmente feitos de: (a) germânio e silício (b) carbono e oxigênio (c) alumínio e nitrogênio (d) lítio e cádmio
5)	O transistor foi invento em 1947 no Bell Labs por John Bardeen, William Shockley e Walter Brattain. Escreva em com suas palavras, o que são transistores, e qual foi a consequência dessa descoberta.

Engenharia - Elementos de Sistemas Prof. Luciano Soares

- 6) O teorema de De Morgan define que $\overline{X + Y} = \overline{X} \cdot \overline{Y}$. Isto significa que não há diferença nas seguintes lógicas:
 - (a) Uma porta NOR e uma porta AND com as entradas negadas
 - (b) Uma porta NAND e uma porta OR com as entradas negadas
 - (c) Uma porta AND e uma porta NOR com as entradas negadas
 - (d) Uma porta NOR e uma porta NAND com as entradas negadas
- 7) A seguinte representação é equivalente a qual porta lógica

- (a) NOT
- (b) OR
- (c) NOR
- (d) NAND
- 8) A seguinte representação é "equivalente" a qual porta lógica? (Perceba os inversores nas entradas da porta lógica)
 - (e) NOT
 - (f) OR
 - (g) NOR
 - (h) NAND

9) A seguinte representação é "equivalente" a qual porta lógica? (Perceba os inversores nas entradas da porta lógica)

- (i) NOT
- (j) OR
- (k) NOR
- (I) NAND

Engenharia - Elementos de Sistemas Prof. Luciano Soares

- 10) As portas lógicas NAND e NOR são conhecidas como portas universais pois:
 - (a) podem ser encontradas em quase todos os circuitos digitais
 - (b) são utilizadas em todos os países do mundo
 - (c) podem ser usadas para construir todos os outros tipos de portas
 - (d) foram as primeiras portas a ser produzidas em circuitos integrados
- 11)O teorema de De Morgan define que $\overline{X+Y} = \overline{X} \cdot \overline{Y}$. Isto significa que não há diferença nas seguintes lógicas: (1 ponto)
 - (a) Uma porta NOR e uma porta AND com as entradas negadas
 - (b) Uma porta NAND e uma porta OR com as entradas negadas
 - (c) Uma porta AND e uma porta NOR com as entradas negadas
 - (d) Uma porta NOR e uma porta NAND com as entradas negadas
- 12) Durante a evolução dos computador, foram desenvolvidos computadores a base de relés e de transistores, quais eram os inconvenientes dos relés que levaram aos computadores atuais serem todos transistorizados?