Standards for subjectoriented specification of systems

Standardisation Gang:

Stefan Borgert, Matthes Elstermann, Albert Fleischmann, Reinhard Gniza, Herbert Kindermann, Florian Krenn, Werner Schmidt, Robert Singer, Florian Strecker, André Wolski

August 2018

Contents

1	Bac	ekground 1								
	1.1	Subject Orientation and PASS								
		1.1.1 Subject-driven Business Processes								
		1.1.2 Subject Interaction and Behavior								
		1.1.3 Subjects and Objects 6								
	1.2	Introduction to Ontologies and OWL								
	1.3	Introduction to Abstract State Machines								
2	Str	ucture of a PASS Description 11								
	2.1	Informal Description								
		2.1.1 Subject								
		2.1.2 Subject-to-Subject Communication								
		2.1.3 Message Exchange								
	2.2	OWL Description								
		2.2.1 PASS Process Model								
		2.2.2 Data Describing Component								
		2.2.3 Interaction Describing Component								
	2.3	ASM Description								
3	Exe	Execution of a PASS Model 23								
	3.1	Informal Description of Subject Behavior and its Execution 23								
		3.1.1 Sending Messages								
		3.1.2 Receiving Messages								
		3.1.3 Standard Subject Behavior								
		3.1.4 Extended Behavior								
	3.2	Ontology of Subject Behavior Description								
		3.2.1 Subject Base Behavior								
		3.2.2 Macro Behavior								
		3.2.3 Guard Behavior								
	3.3	ASM Definition of Subject Execution								

iv		CONTENTS

\mathbf{A}	Clas	sses and Property of the PASS Ontology	43
	A.1	All Classes (95)	43
	A.2	Data Properties (27)	60
	A.3	Object Properties (42)	66

Chapter 1

Background

Structure of PASS descriptions and ts relation to the execution semantics defined as Abstract State Machines (ASM).

- Start Event
- Intermediate Event
- End Event

Structure of each chapter document

- Informal description of PASS aspects
- OWL Description of these aspects
- ASM Sematic

In order to facilitate the understanding of the following sections we will introduce the philosophy of subjectorienting modelling which is the underlying PASS concept (PASS = Parallel Activity Specification Scheme). Additional we will give a short introduction to ontologies especially OWL (Web Ontology Language) and ASM (Abstract State Machines).

1.1 Subject Orientation and PASS

In this section we lay ground for PASS as a language for describing proceses in a subjectoriented way. This section is not a complete description of all PASS features it only gives a first impression about subject orientation and the specification language PASS. The advanced features are defined in the ubpcoming chapters.

1.1.1 Subject-driven Business Processes

Subjects represent the behavior of an active entity. A specification of a subject does not say anything about the technology used to execute the described behavior. This is different to other encapsulation approaches, such as multiagent systems.

Subjects communicate with each other by exchanging messages. Messages have a name and a payload. The name should express the meaning of a message informally and the payloads are the data (business objects) transported. Internally, subjects execute local activities such as calculating a price, storing an address etc. A subject sends messages to other subjects, expects messages from other subjects, and executes internal actions. these activities are done in sequences which are defined in a subject's behavior specification. Subject-oriented process specifications are embedded in a context. A context is defined by the business organization and the technology by which a business process is executed. Subject-oriented system development integrates established theories and concepts. It has been inspired by various process algebras (see e.g. [2], [3], [4]), by the basic structure of nearly all natural languages (Subject, Predicate, Object) and the systemic sociology developed by Niklas Luhmann (an introduction can be found in [5]). According to the organizational theory developed by Luhmann the smallest organization consists of communication executed between at least two information processing entities [5]. The integrated concepts have been enhanced and adapted to organizational stakeholder requirements, such as providing a simple graphical notation, as detailed in the following sections.

1.1.2 Subject Interaction and Behavior

We introduce the basic concepts of process modeling in S-BPM using a simple order process. A customer sends an order to the order handling department of a supplier. He is going to receive an order confirmation and the ordered product by the shipment company. Figure 1.3 shows the communication structure of that process. The involved subjects and the messages they exchange can easily be grasped.

Figure 1.1: The Communication Structure in the Order Process

Each subject has a so-called input pool which is its mail box for receiving messages. This input pool can be structured according to the business requirements at hand. The modeler can define how many messages of which type and/or from which sender can be deposited and what the reaction is if these restrictions are violated. This means the synchronization through message exchange can be specified for each subject individually. Messages have an intuitive meaning expressed by their name. A formal semantic is given by their use and the data which are transported with a message. Figure 1.2 depicts the behavior of the subjects "customer" and "order handling".

Figure 1.2: The Behavior of Subjects

In the first state of its behavior the subject "customer" executes the internal function "Prepare order". When this function is finished the transition "order prepared" follows. In the succeeding state "send order" the message "order" is sent to the subject "order handling". After this message is sent (deposited in the input pool of subject "order handling"), the subject "Customer" goes into the state "wait for confirmation". If this message is not in the input pool the subject stops its execution, until the corresponding message arrives in the input pool. On arrival the subject removes the message from the input pool and follows the transition into state "Wait for product" and so on.

The subject "Order Handling" waits for the message "order" from the subject "customer". If this message is in the input pool it is removed and the succeeding function "check order" is executed and so on.

The behavior of each subject describes in which order it sends messages, expects (receives) and performs internal functions. Messages transport data from the sending to the receiving subject, and internal functions operate on internal data of a subject. These data aspects of a subject are described in section 1.1.3 In a dynamic and fast changing world, processes need to be able to capture known but unpredictable events. In our example let us assume that a customer can change an order. This means the subject "customer" may send the message "Change order" at any time. Figure 1.3 shows the corresponding communication structure, which now contains the message "change order".

Figure 1.3: The Communication Structure with Change Message

Due to this unpredictable event the behavior of the involved subjects needs also to be adapted. Figure 1.4 illustrates the respective behavior of the customer.

Figure 1.4: Customer is allowed to Change Orders

The subject "customer" may have the idea to change its order in the state "wait for confirmation" or in the state "wait for product". The flags in these states indicate that there is a so-called behavior extension described by a so-called nondeterministic event guard [12, 22]. The non-deterministic event created in the subject is the idea "change order". If this idea comes up, the current states, either "wait for confirmation" or "wait for product", are left, and the subject "customer" jumps into state "change order" in the guard behavior. In this state the message "change order" is sent and the subject waits in state "wait for reaction". In this state the answer can either be "order change accepted" or "order change rejected". Independently of the received message the subject "customer" moves to the state "wait for product". The message "order change accepted" is considered as confirmation, if a confirmation has not arrived yet (state "wait for confirmation").

If the change is rejected the customer has to wait for the product(s) he/she has ordered originally. Similar to the behavior of the subject "customer" the behavior of the subject "order handling" has to be adapted.

1.1.3 Subjects and Objects

Up to now we did not mention data or the objects with their predicates, in order to get complete sentences comprising subject, predicate, and object. Figure 1.5 displays how subjects and objects are connected. The internal function "prepare order" uses internal data to prepare the data for the order message. This order data is sent as payload of the message "order".

Figure 1.5: Subjects and Objects

The internal functions in a subject can be realized as methods of an object or functions implemented in a service, if a service-oriented architecture is available. These objects have an additional method for each message. If a message is sent, the method allows receiving data values sent with the message, and if a message is received the corresponding method is used to store the received data in the object [22]. This means either subjects are the entities which use synchronous services as implementation of functions or asynchronous services are implemented through subjects or even through complex processes consisting of several subjects. Consequently, , the concept Service Oriented Architecture (SOA) is complementary to S-BPM: Subjects are the entities which use the services offered by SOAs (cf. [25]).

1.2 Introduction to Ontologies and OWL

Figure 1.6: Subject Behavior

1.3 Introduction to Abstract State Machines

Chapter 2

Structure of a PASS Description

In this chapter we describe the structure of a PASS specification. The structure of a PASS descritption consists of the subjects and the messages they exchange.

2.1 Informal Description

2.1.1 Subject

Subjects represent the behavior of an active entity. A specification of a subject does not say anything about the technology used to execute the described behavior. Subjects communicate with each other by exchanging messages. Messages have a name and a payload. The name should express the meaning of a message informally and the payloads are the data (business objects) transported. Internally subjects execute local activities such as calculating a price, storing an address etc. A subject sends messages to other subjects, expects messages from other subjects, and executes internal actions. All these activities are done in sequences which are defined in a subject's behavior specification.

In the following we use an example for the informal definition of subjects. In the simple scenario of the business trip application, we can identify three subjects, namely the employee as applicant, the manager as the approver, and the travel office as the travel arranger.

There are the following types of subjects:

• Fully specified subjects

- Multisubjects
- Single subject
- Interface subjects

Fully specified Subjects

This is the standard subject type. A subject communicates with other subjects by exchangeing messages. Fully specified subjects consists of following components:

• Business Objects

Each subjects has some business objects. A basic structure of business objects consists of an identifier, data structures, and data elements. The identifier of a business object is derived from the business environment in which it is used. Examples are business trip requests, purchase orders, packing lists, invoices, etc. Business objects are composed of data structures. Their components can be simple data elements of a certain type (e.g., string or number) or even data structures themselves.

• Sent messages

Messages which a subject sends to other subjects. Each message has a name and may transport some data objects as a payload. The values of these payload data objects are copied from internal business objects of a subject.

• Received messages

Messages received by a subject. The values of the payload objects are copied to business objects of the receiving subject.

• Input Pool

Messages sent to a subjects are deposited in the input pool of the receiving subject.

• Behavior

The behavior of each subject describes in which order it sends messages, expects (receives) and performs internal functions. Messages transport data from the sending to the receiving subject, and internal functions operate on internal data of a subject.

Multsubjects and Multiprocesses

Multisubjects are simular to Fully specified subjects. If in a process model several identical subjects are required e.g. in order to increse the through put these subjects can be modelled by a multi subject. If several communicating subjects in a process modell are multi subjects they can be combined to a multi process.

In a business process, there may be several identical sub-processes that perform certain similar tasks in parallel and independently. This is often the case in a procurement process, when bids from multiple providers are solicited. A process or sub-process is therefore executed simultaneously or sequentially multiple times during overall process execution. A set of type-identical, independently running processes or sub-processes are termed multiprocess. The actual number of these independent sub-processes is determined at runtime. Multi-processes simplify process execution, since a specific sequence of actions can be used by different processes. They are recommended for recurring structures and similar process flows. An example of a multiprocess can be illustrated as a variation of the current booking process. The travel agent should simultaneously solicit up to five bids before making a reservation. Once three offers have been received, one is selected and a room is booked. The process of obtaining offers from the hotels is identical for each hotel and is therefore modeled as a multi-process.

Single subjects

Single subjects can be instantiated only once. They are used if for the execution of a subject a resource is required which is only available once.

Interface Subjects

Interface subjects are used as interfaces to other process systems. If a subject of a process system sends or receives messages from a subject which belongs to an other process system. These so called interface subjects represent fully described subjects which belong to that other process system. This means to each interface subject belongs a fully described subject in an other process system. Interface subjects specifications contain the sent messages, received messages and the reference to the fully described subject which they represent.

2.1.2 Subject-to-Subject Communication

After the identification of subjects involved in the process (as process-specific roles), their interaction relationships need to be represented. These are the

messages exchanged between the subjects. Such messages might contain structured information—so-called business objects (see Section xxxxxxx).

The result is a model structured according to subjects with explicit communication relationships, which is referred to as a Subject Interaction Diagram (SID) or, synonymously, as a Communication Structure Diagram (CSD) (see figure 2.1).

Figure 2.1: Subject interaction diagram for the process 'business trip application'

Messages represent the interactions of the subjects during the execution of the process. We recommend naming these messages in such a way that they can be immediately understood and also reflect the meaning of each particular message for the process. In the sample 'business trip application', therefore, the messages are referred to as 'business trip request', 'rejection', and 'approval'.

Messages serve as a container for the information transmitted from a sending to a receiving subject. There are two options for the message content:

- Simple data types: Simple data types are string, integer, character, etc. In the business trip application example, the message 'business trip request' can contain several data elements of type string (e.g., destination, reason for traveling, etc.), and of type number (e.g., duration of trip in days).
- Business Objects: Business Objects in their general form are physical and logical 'things' that are required to process business transactions., We consider data structures composed of elementary data types, or even other data structures, as logical business objects in business processes. For instance, the business object 'business trip request' could consist of the data structures 'data on applicants', 'travel data', and 'approval data'—with each of these in turn containing multiple data elements.

2.1.3 Message Exchange

In the previous subsection, we have stated that messages are transferred between subjects and have described the nature of these messages. What is still missing is a detailed description of how messages can be exchanged, how the information they carry can be transmitted, and how subjects can be synchronized. These issues are addressed in the following sub-sections.

Synchronous and Asynchronous Exchange of Messages

In the case of synchronous exchange of messages, sender and receiver wait for each other until a message can be passed on. If a subject wants to send a message and the receiver (subject) is not yet in a corresponding receive state, the sender waits until the receiver is able to accept this message. Conversely, a recipient has to wait for a desired message until it is made available by the sender.

The disadvantage of the synchronous method is a close temporal coupling between sender and receiver. This raises problems in the implementation of business processes in the form of workflows, especially across organizational borders. As a rule, these also represent system boundaries across which a tight coupling between sender and receiver is usually very costly. For longrunning processes, sender and receiver may wait for days, or even weeks, for each other.

Using asynchronous messaging, a sender is able to send anytime. The subject puts a message into a message buffer from which it is picked up by the receiver. However, the recipient sees, for example, only the oldest message in the buffer and can only accept this particular one. If it is not the desired message, the receiver is blocked, even though the message may already be in the buffer, but in a buffer space that is not visible to the receiver. To avoid this, the recipient has the alternative to take all of the messages from the buffer and manage them by himself. In this way, the receiver can identify the appropriate message and process it as soon as he needs it. In asynchronous messaging, sender and receiver are only loosely coupled. Practical problems can arise due to the in reality limited physical size of the receive buffer, which does not allow an unlimited number of messages to be recorded. Once the physical boundary of the buffer has been reached due to high occupancy, this may lead to unpredictable behavior of workflows derived from a business process specification. To avoid this, the input-pool concept has been introduced in PASS.

Exchange of Messages via the Input Pool

To solve the problems outlined in asynchronous message exchange, the input pool concept has been developed. Communication via the input pool is considerably more complex than previously shown; however, it allows transmitting an unlimited number of messages simultaneously. Due to its high practical importance, it is considered as a basic construct of PASS. Consider the input pool as a mail box of work performers, the operation of which is specified in detail. Each subject has its own input pool. It serves as a message buffer to temporarily store messages received by the subject, independent of the sending communication partner. The input pools are therefore inboxes for flexible configuration of the message exchange between the subjects. In contrast to the buffer in which only the front message can be seen and accepted, the pool solution enables picking up (= removing from the buffer) any message. For a subject, all messages in its input pool are visible.

The input pool has the following configuration parameters (see figure 2.2):

- Input-pool size: The input-pool size specifies how many messages can be stored in an input pool, regardless of the number and complexity of the message parameters transmitted with a message. If the input pool size is set to zero, messages can only be exchanged synchronously.
- Maximum number of messages from specific subjects: For an input pool, it can be determined how many messages received from a particular subject may be stored simultaneously in the input pool. Again, a value of zero means that messages can only be accepted synchronously.
- Maximum number of messages with specific identifiers: For an input pool, it can be determined how many messages of a specifically identified message type (e.g., invoice) may be stored simultaneously in the input pool, regardless of what subject they originate from. A specified size of zero allows only for synchronous message reception.
- Maximum number of messages with specific identifiers of certain subjects: For an input pool, it can be determined how many messages of a specific identifier of a particular subject may be stored simultaneously in the input pool. The meaning of the zero value is analogous to the other cases.

Figure 2.2: Configuration of Input Pool Parameters

By limiting the size of the input pool, its ability to store messages may be blocked at a certain point in time during process runtime. Hence, messaging synchronization mechanisms need to control the assignment of messages to the input pool. Essentially, there are three strategies to handle the access to input pools:

- Blocking the sender until the input pool's ability to store messages has been reinstated: Once all slots are occupied in an input pool, the sender is blocked until the receiving subject picks up a message (i.e. a message is removed from the input pool). This creates space for a new message. In case several subjects want to put a message into a fully occupied input pool, the subject that has been waiting longest for an empty slot is allowed to send. The procedure is analogous if corresponding input pool parameters do not allow storing the message in the input pool, i.e., if the corresponding number of messages of the same name or from the same subject has been put into the input pool.
- Delete and release of the oldest message: In case all the slots are already occupied in the input pool of the subject addressed, the oldest message is overwritten with the new message.
- Delete and release of the latest message: The latest message is deleted from the input pool to allow depositing of the newly incoming message. If all the positions in the input pool of the addressed subject are taken, the latest message in the input pool is overwritten with the new message. This strategy applies analogously when the maximum number of messages in the input pool has been reached, either with respect to sender or message type.

2.2 OWL Description

The various building blocks of a PASS description and their relations are defined in a ontology. The following figure 2.3 gives an overview of the structure of PASS specifications.

Figure 2.3: Elements of PASS Process Models

The class PASSProcessModelElement hs 5 subclasses (subclass relations 084, 055, 069, 001 an 085 in figure 2.3). Only the classes PASSProcessModel, DataDescriptionCOmponent, InteractionDescribingComponent are used for defining the structural aspects of a process specification in PASS. The classes BehaviorDescribingComponent and SUbject Behavior define the dynamic aspects. In which sequences messages are sent and received or internal actions are executed. These dynamic asoects are considered in detail in Chapter 3.

2.2.1 PASS Process Model

The central entities of a PASS process model are subjects which represents the active elements of a process and the messages they exchange. Messages transport data from one subject to others (payload). The following figure 2.4 shows the coresponding ontology for the PASS Process models.

PASSProcessModelElements and PASSProcessModells have a name. This is described with the property hasAdditionalAttribute (property 208 in 2.3). The class subject and the class MessageExchange have the relation hasRelationtoModelComponent to the class PASSProcessModel (property 226 in 2.3). The properties hasReceiver and hasSender express that a message has a sending and receiving subject (properties 225 and 227 in 2.3) whereas the properties hasOutgoingMessageExchange and hasIncomingMessageExchange define which messages are sent or received by a subject. Property hasStart-Subject (property 229 in 2.3) defines a start subject for a PASSProcessModell. A start subject is a subclass of the class subject (subclass relation 122 in 2.3).

Figure 2.4: PASS Process Modell

2.2.2 Data Describing Component

Each subject encapsulate data (business objects). The values of these data elements can be transferred to other subjects. The following figure 2.5 shows the ontology of this part of the PASS-ontology.

Figure 2.5: Data Description Component

From class DtadescribingCombonent three subclasses are derived (in figure 2.5 are these the relations 060, 056 and 066). Subclass PayLoadDescription are the data transported by messages.he relation of PayloadDescriptions to messages is defined by property ContainsPayloadDescription (in figure 2.5 number 204).

There are two types of payloads. The class PayloadPhysicalObjectDescription is used if a message will be later implemented by a physical transport like a parcel. The class PayLoadDataObjectDefinition is used to transport normal data (Subclass relations 068 and 67 in figure 2.5). These payload objects are also a subclass of class DataObjectDefinition (Subclass relation 058 in figure 2.5).

Data objects have a certain type. Therefore class DataObjectDefinition has the relation hasDatatype to class DataTypeDefinition (property 212 in figure 2.5). Class DataTypeDefinition has two subclasses (subclass relations 061 and 065 in figure 2.5). The subclass ModelBuiltInDataTypes are user defined data types whereas the class CustomOfExternalDataTypeDefinition is the superclass of JSON, OWL or XML based data type definitions(subclass relations 062, 63 and 064 in figure 2.5).

21

2.2.3 Interaction Describing Component

The following figure 2.6 shows the subset of the classes and properties required for describing the interaction of subjects.

Figure 2.6: Subject Interaction Diagram

The central classes are Subject and MessageExchange. Between these classes are defined the properties hasIncomingTransition (in figure 2.6 number 217) and hasOutgoingTransition (in figure 2.6 number 224). This properties defines that subjects have incoming and outgoing messages. Each message has a sender and a receiver (in figure 2.6 number 227 and number 225). Messages have a type. This is expressed by the property hasMessageType (in figure 2.6 number 222). Instead of the property 222 a message exchange may have the property 201 if a list of messages is used instead of a single message.

Each subject has an input pool. Input pools have three types of constraints (see section 2.1.3). This is expressed by the property references (in figure 2.6 number 236) and InputPoolConstraints (in figure 2.6 number 219). Constraints which are related to certain messages have references to the class MessageSpecification.

There are four subclasses of the class subject (in figure 2.6 number 079, 080, 081 and 082). The specialties of these subclasses are described in section 2.1.1. A class StartSubject (in figure 2.6 number 83) which is a subclass of class subject denotes the subject in which a process instance is started.

All other relarions are subclass relations. The class PASSProcessModelElement is the central PASS class. From this class all the other classes are

derived (see next sections). From class InteractionDescribingCOmponent all the classes required for describing the structure of a process system are derived.

2.3 ASM Description

In this chapter only the structure of a PASS model is considered. Execution has not been considered. Because ASM only considers execution aspects in this chapter an ASM specification of the structural aspects does not make sense. The execution semantic is part of chapter 4.

Chapter 3

Execution of a PASS Model

3.1 Informal Description of Subject Behavior and its Execution

The excution of subject means sending and reveiving messages and executing internal activities in the defined order. In the following sections it is described what sending and receiving messages and executing internal functions means.

3.1.1 Sending Messages

Before sending a message, the values of the parameters to be transmitted need to be determined. In case the message parameters are simple data types, the required values are taken from local variables or business objects of the sending subject, respectively. In case of business objects, a current instance of a business object is transferred as a message parameter.

The sending subject attempts to send the message to the target subject and store it in its input pool. Depending on the described configuration and status of the input pool, the message is either immediately stored or the sending subject is blocked until a delivery of the message is possible.

In the sample business trip application, employees send completed requests using the message 'send business trip request' to the manager's input pool. From a send state, several messages can be sent as an alternative. The following example shows a send state in which the message M1 is sent to the subject S1, or alternatively the message M2 is sent to S2, therefore referred to as alternative sending (see Figure 3.1). It does not matter which message is attempted to be sent first. If the send mechanism is successful, the corresponding state transition is executed. In case the message cannot be stored in the input pool of the target subject, sending is interrupted automatically,

and another designated message is attempted to be sent. A sending subject will thus only be blocked if it cannot send any of the provided messages.

Figure 3.1: Example of alternative sending

By specifying priorities, the order of sending can be influenced. For example, it can be determined that the message M1 to S1 has a higher priority than the message M2 to S2. Using this specification, the sending subject starts with sending message M1 to S1 and then tries only in case of failure to send message M2 to S2. In case message M2 can also not be sent to the subject S2, the attempts to send start from the beginning.

The blocking of subjects when attempting to send can be monitored over time with the so-called timeout. The example in Figure 3.2 shows with 'Timeout: 24 h' an additional state transition which occurs when within 24 hours one of the two messages cannot be sent. If a value of zero is specified for the timeout, the process immediately follows the timeout path when the alternative message delivery fails completely.

Figure 3.2: Send using time monitoring

3.1.2 Receiving Messages

Analogously to sending, the receiving procedure is divided into two phases, which run inversely to send.

3.1. INFORMAL DESCRIPTION OF SUBJECT BEHAVIOR AND ITS EXECUTION25

The first step is to verify whether the expected message is ready for being picked up. In case of synchronous messaging, it is checked whether the sending subject offers the message. In the asynchronous version, it is checked whether the message has already been stored in the input pool. If the expected message is accessible in either form, it is accepted, and in a second step, the corresponding state transition is performed. This leads to a takeover of the message parameters of the accepted message to local variables or business objects of the receiving subject. In case the expected message is not ready, the receiving subject is blocked until the message arrives and can be accepted.

In a certain state, a subject can expect alternatively multiple messages. In this case, it is checked whether any of these messages is available and can be accepted. The test sequence is arbitrary, unless message priorities are defined. In this case, an available message with the highest priority is accepted. However, all other messages remain available (e.g., in the input pool) and can be accepted in other receive states.

Figure 3.3 shows a receive state of the subject 'employee' which is waiting for the answer regarding a business trip request. The answer may be an approval or a rejection.

Figure 3.3: Example of alternative receiving

Just as with sending messages, also receiving messages can be monitored over time. If none of the expected messages are available and the receiving subject is therefore blocked, a time limit can be specified for blocking. After the specified time has elapsed, the subject will execute the transition as it is defined for the timeout period. The duration of the time limit may also be dynamic, in the sense that at the end of a process instance the process stakeholders assigned to the subject decide that the appropriate transition should be performed. We then speak of a manual timeout.

Figure 3.4 shows that, after waiting three days for the manager's answer, the employee sends a corresponding request.

Instead of waiting for a message for a certain predetermined period of time, the waiting can be interrupted by a subject at all times. In this case, a reason for abortion can be appended to the keyword 'breakup'. In the example shown in Figure 3.5, the receive state is left due to the impatience of the subject.

3.1. INFORMAL DESCRIPTION OF SUBJECT BEHAVIOR AND ITS EXECUTION27

Figure 3.4: Time monitoring for message reception

Figure 3.5: Message reception with manual interrupt

3.1.3 Standard Subject Behavior

The possible sequences of a subject's actions in a process are termed subject behavior. States and state transitions describe what actions a subject performs and how they are interdependent. In addition to the communication for sending and receiving, a subject also performs so-called internal actions or functions.

States of a subject are therefore distinct: There are actions on the one hand, and communication states to interact with other subjects (receive and send) on the other. This results in three different types of states of a subject. Figure 3.6 shows the different types of states with the coresponding symbols.

Figure 3.6: State types and coresponding symbols

In S-BPM, work performers are equipped with elementary tasks to model their work procedures: sending and receiving messages and immediate accomplishment of a task (function state). In case an action associated with a state (send, receive, do) is possible, it will be executed, and a state transition to the next state occurs. The transition is characterized through the result of the action of the state under consideration: For a send state, it is determined by the state transition to which subject what information is sent. For a receive state, it becomes evident in this way from what subject it receives which information. For a function state, the state transition describes the result of the action, e.g., that the change of a business object was successful or could not be executed.

The behavior of subjects is represented by modelers using Subject Behavior Diagrams (SBD). Figure 3.7 shows the subject behavior diagram depicting the behavior of the subjects 'employee', 'manager', and 'travel office', including the associated states and state transitions.

Figure 3.7: Subject behavior diagram for the subjects 'employee', 'manager', and 'travel office'

3.1.4 Extended Behavior

In order to reduce description efforts some additional specification constructs have been added to PASS. These constructs are informally explained in the following sections.

Macros

Quite often, a certain behavior pattern occurs repeatedly within a subject. This happens in particular, when in various parts of the process identical actions need to be performed. If only the basic constructs are available to this respect, the same subject behavior needs to be described many times.

Instead, this behavior can be defined as a so-called behavior macro. Such a macro can be embedded at different positions of a subject behavior specification as often as required. Thus, variations in behavior can be consolidated, and the overall behavior can be significantly simplified.

The brief example of the business trip application is not an appropriate scenario to illustrate here the benefit of the use of macros. Instead, we use an example for order processing. Figure 3.8 contains a macro for the behavior to process customer orders. After placing the 'order', the customer receives an order confirmation; once the 'delivery' occurs, the delivery status is updated.

As with the subject, the start and end states of a macro also need to be identified. For the start states, this is done similarly to the subjects by putting black triangles in the top left corner of the respective state box. In our example, 'order' and 'delivery' are the two correspondingly labeled states. In general, this means that a behavior can initiate a jump to different starting points within a macro.

The end of a macro is depicted by gray bars, which represent the successor states of the parent behavior. These are not known during the course of the macro definition.

Figure 3.9 shows a subject behavior in which the modeler uses the macro 'order processing' to model both a regular order (with purchase order), as well as a call order.

The icon for a macro is a small table, which can contain multiple columns in the first line for different start states of the macro. The valid start state for a specific case is indicated by the incoming edge of the state transition from the calling behavior. The middle row contains the macro name, while the third row again may contain several columns with possible output transitions, which end in states of the surrounding behavior.

The left branch of the behavioral description refers to regular customer orders. The embedded macro is labeled correspondingly and started with

3.1. INFORMAL DESCRIPTION OF SUBJECT BEHAVIOR AND ITS EXECUTION31

the status 'order', namely through linking the edge of the transition 'order accepted' with this start state. Accordingly, the macro is closed via the transition 'delivery status updated'.

The right embedding deals with call orders according to organizational frameworks and frame contracts. The macro starts therefore in the state 'delivery'. In this case, it also ends with the transition 'delivery status updated'.

Similar subject behavior can be combined into macros. When being specified, the environment is initially hidden, since it is not known at the time of modeling.

Figure 3.8: Behavior macro class 'request for approval'

Figure 3.9: Subject behavior for order processing with macro integration

Guards: Exception Handling and Extensions

Exception Handling

Handling of an exception (also termed message guard, message control, message monitoring, message observer) is a behavioral description of a subject that becomes relevant when a specific, exceptional situation occurs while executing a subject behavior specification. It is activated when a corresponding message is received, and the subject is in a state in which it is able to respond to the exception handling. In such a case, the transition to exception handling has the highest priority and will be enforced.

Exception handling is characterized by the fact that it can occur in a process in many behavior states of subjects. The receipt of certain messages, e.g., to abort the process, always results in the same processing pattern. This pattern would have to be modeled for each state in which it is relevant. Exception handlings cause high modeling effort and lead to complex process models, since from each affected state a corresponding transition has to be specified. In order to prevent this situation, we introduce a concept similar to exception handling in programming languages or interrupt handling in operating systems.

To illustrate the compact description of exception handlings, we use again the service management process with the subject 'service desk' introduced in section 5.6.5. This subject identifies a need for a business trip in the context of processing a customer order—an employee needs to visit the customer to provide a service locally. The subject 'service desk' passes on a service order to an employee. Hence, the employee issues a business trip request. In principle, the service order may be canceled at any stage during processing up to its completion. Consequently, this also applies to the business trip application and its subsequent activities.

Below, it is first shown how the behavior modeling looks without the concept of exception handling. The cancelation message must be passed on to all affected subjects to bring the process to a defined end. Figure 3.10 shows the communication structure diagram with the added cancelation messages to the involved subjects.

Figure 3.10: Communication structure diagram (CSD) of the business trip application

A cancelation message can be received by the employee either while filling

out the application, or while waiting for the approval or rejection message from the manager. With respect to the behavior of the subject 'employee', the state 'response received from manager' must also be enriched with the possible input message containing the cancelation and the associated consequences (see Figure 3.11). The verification of whether filing the request is followed by a cancelation, is modeled through a receive state with a timeout. In case the timeout is zero, there is no cancelation message in the input pool and the business trip request is sent to the manager. Otherwise, the manager is informed of the cancelation and the process terminates for the subject 'employee'.

Figure 3.11: Handling the cancelation message using existing constructs

A corresponding adjustment of the behavior must be made for each subject which can receive a cancelation message, including the manager, the travel office, and the interface subject 'travel agent'.

This relatively simple example already shows that taking such exception messages into account can quickly make behavior descriptions confusing to understand. The concept of exception handling, therefore, should enable supplementing exceptions to the default behavior of subjects in a structured and compact form. Figure 5.48 shows how such a concept affects the behavior of the employee.

3.1. INFORMAL DESCRIPTION OF SUBJECT BEHAVIOR AND ITS EXECUTION35

Figure 3.12: Behavior of subject 'employee' with exception handling

Instead of, as shown in Figure 3.11, modeling receive states with a timeout zero and corresponding state transitions, the behavioral description is enriched with the exception handling 'service cancelation'. Its initial state is labeled with the states from which it is branched to, once the message 'service cancelation' is received. In the example, these are the states 'fill out Bt-request' and 'receive answer from manager'. Each of them is marked by a triangle on the right edge of the state symbol. The exception behavior leads to an exit of the subject, after the message 'service cancelation' has been sent to the subject 'manager'.

A subject behavior does not necessarily have to be brought to an end by an exception handling; it can also return from there to the specified default behavior. Exception handling behavior in a subject may vary, depending on from which state or what type of message (cancelation, temporary stopping of the process, etc.) it is called. The initial state of exception handling can be a receive state or a function state.

Messages, like 'service cancelation', that lead to exception handling always have higher priority than other messages. This is how modelers express that specific messages are read in a preferred way. For instance, when the approval message from the manager is received in the input pool of the employee, and shortly thereafter the cancelation message, the latter is read first. This leads to the corresponding abort consequences.

Since now additional messages can be exchanged between subjects, it may be necessary to adjust the corresponding conditions for the input-pool structure. In particular, the input-pool conditions should allow storing an interrupt message in the input pool. To meet organizational dynamics, exception handling and extensions are required. They allow taking not only

discrepancies, but also new patterns of behavior, into account.

Behavior Extensions

When exceptions occur, currently running operations are interrupted. This can lead to inconsistencies in the processing of business objects. For example, the completion of the business trip form is interrupted once a cancelation message is received, and the business trip application is only partially completed. Such consequences are considered acceptable, due to the urgency of cancelation messages. In less urgent cases, the modeler would like to extend the behavior of subjects in a similar way, however, without causing inconsistencies. This can be achieved by using a notation analogous to exception handling. Instead of denoting the corresponding diagram with 'exception', it is labeled with 'extension'.

Behavior extensions enrich a subject's behavior with behavior sequences that can be reached from several states equivocally.

For example, the employee may be able to decide on his own that the business trip is no longer required and withdraw his trip request. Figure 3.13 shows that the employee is able to cancel a business trip request in the states 'send business trip request to manager' and 'receive answer from manager'. If the transition 'withdraw business trip request' is executed in the state 'send business trip request to manager', then the extension 'F1' is activated. It leads merely to canceling of the application. Since the manager has not yet received a request, he does not need to be informed.

3.1. INFORMAL DESCRIPTION OF SUBJECT BEHAVIOR AND ITS EXECUTION37

In case the employee decides to withdraw the business trip request in the state 'receive answer from manager', then extension 'F2' is activated. Here, first the supervisor is informed, and then the business trip is canceled.

Figure 3.13: Subject behavior of employee with behavior extensions

Alternative Actions (Freedom of Choice)

So far, the behavior of subjects has been regarded as a distinct sequence of internal functions, send and receive activities. In many cases, however, the sequence of internal execution is not important.

Certain sequences of actions can be executed overlapping. We are talking about freedom of choice when accomplishing tasks. In this case, the modeler does not specify a strict sequence of activities. Rather, a subject (or concrete entity assigned to a subject) will organize to a particular extent its own behavior at runtime.

The freedom of choice with respect to behavior is described as a set of alternative clauses which outline a number of parallel paths. At the beginning and end of each alternative, switches are used: A switch set at the beginning means that this alternative path is mandatory to get started, a switch set at the end means that this alternative path must be completely traversed. This leads to the following constellations:

- Beginning is set / end is set: Alternative needs to be processed to the end.
- Beginning is set / end is open: Alternative must be started, but does not need to be finished.

- Beginning is open / end is set: Alternative may be processed, but if so must be completed.
- Beginning is open / end is open: Alternative may be processed, but does not have to be completed.

The execution of an alternative clause is considered complete when all alternative sequences, which were begun and had to be completed, have actually been entirely processed and have reached the end operator of the alternative clause.

Transitions between the alternative paths of an alternative clause are not allowed. An alternate sequence starts in its start point and ends entirely within its end point.

Figure 3.14 shows an example for modeling alternative clauses. After receiving an order from the customer, three alternative behavioral sequences can be started, whereby the leftmost sequence, with the internal function 'update order' and sending the message 'deliver order' to the subject 'warehouse', must be started in any case. This is determined by the 'X' in the symbol for the start of the alternative sequences (gray bar is the starting point for alternatives). This sequence must be processed through to the end of the alternative because it is also marked in the end symbol of this alternative with an 'X' (gray bar as the end point of the alternative).

The other two sequences may, but do not have to be, started. However, in case the middle sequence is started, i.e., the message 'order arrived' is sent to the sales department, it must be processed to the end. This is defined by an appropriate marking in the end symbol of the alternatives ('X' in the lower gray bar as the endpoint of the alternatives). The rightmost path can be started, but does not need to be completed.

The individual actions in the alternative paths of an alternative clause may be arbitrarily executed in parallel and overlapping, or in other words: A step can be executed in an alternative sequence, and then be followed by an action in any other sequence. This gives the performer of a subject the appropriate freedom of choice while executing his actions.

In the example, the order can thus first be updated, and then the message 'order arrived' sent to sales. Now, either the message 'deliver order' can be sent to the warehouse or one of the internal functions, 'update sales status' or 'collect data for statistics', can be executed.

The left alternative must be executed completely, and the middle alternative must also have been completed, if the first action ('inform sales' in the example) is executed. It can occur that only the left alternative is processed because the middle one was never started. Alternatively, the sequence in

3.1. INFORMAL DESCRIPTION OF SUBJECT BEHAVIOR AND ITS EXECUTION39

Figure 3.14: Example of Process Alternatives

the middle may have already reached its end point, while the left is not yet complete. In this case the process waits until the left one has reached its end point. Only then will the state 'confirmation' be reached in the alternative clause. The right branch neither needs to be started, nor to be completed. It is therefore irrelevant for the completion of the alternative construct. The leeway for freedom of choice with regards to actions and decisions associated with work activities can be represented through modeling the various alternatives—situations can thus be modeled according to actual regularities and preferences.

- 3.2 Ontology of Subject Behavior Description
- 3.2.1 Subject Base Behavior

Figure 3.15: Behavior of subjects

- 3.2.2 Macro Behavior
- 3.2.3 Guard Behavior
- 3.3 ASM Definition of Subject Execution

Appendix A

Classes and Property of the PASS Ontology

A.1 All Classes (95)

- SRN = Subclass Reference Number; Is used for marking the coresponding relations in the following figures. The number identifies the subclass relation to the next level of super class.
- PASSProcessModelElement
 - BehaviorDescribingComponent; SRN: 001
 Group of PASS-Model components that describe aspects of the behavior of subjects
 - * Action; SRN: 002

 An Action is a grouping concept that groups a state with all its outgoing valid transitions
 - * DataMappingFunction; SRN: 003
 Standard Format for DataMappingFunctions must be define:
 XML? OWL? JSON? Definitions of the ability/need to write
 or read data to and from a subject's personal data storage.
 DataMappingFunctions are behavior describing components
 since they define what the subject is supposed to do (mapping
 and translating data) Mapping may be done during reception
 of message, where data is taken from the message/Business
 Object (BO) and mapped/put into the local data field. It may
 be done during sending of a message where data is taken from
 the local vault and put into a BO. Or it may occur during ex-

ecuting a do function, where it is used to define read(get) and write (set) functions for the local data.

- · DataMappingIncomingToLocal; SRN: 004 A DataMapping that specifies how data is mapped from an an external source (message, function call etc.) to a subject's private defined data space.
- · DataMappingLocalToOutgoing; SRN: 005 A DataMapping that specifies how data is mapped from a subject's private data space to an an external destination (message, function call etc.)
- * FunctionSpecification; SRN: 006

A function specification for state denotes

Concept: Definitions of calls of (mostly technical) functions (e.g. Web-service, Scripts, Database access,) that are not part of the process model.

Function Specifications are more than "Data Properties"? -¿
- If special function types (e.g. Defaults) are supposed to be reused, having them as explicit entities is a the better OWL-modeling choice.

- · CommunicationAct; SRN: 007
 A super class for specialized FunctionSpecification of communication acts (send and receive)
 - · ReceiveFunction; SRN: 008 Specifications/descriptions for Receive-Functions describe in detail what the subject carrier is supposed to do in a state.

DefaultFunctionReceive1_EnvoironmentChoice: present the surrounding execution environment with the given exit choices/conditions currently available depending on the current state of the subjects in-box. Waiting and not executing the receive action is an option.

DefaultFunctionReceive2_AutoReceiveEarliest: automatically execute the according activity with the highest priority as soon as possible. In contrast to DefaultFunctionReceive1, it is not an option to prolong the reception and wait e.g. for another message.

- · SendFunction; SRN: 009 Comments have to be added
- · DoFunction; SRN: 010 Specifications or descriptions for Do-Functions describe

in detail what the subject carrier is supposed to do in an according state. The default DoFunction

1: present the surrounding execution environment with the given exit choices/conditions and receive choice of one exit option—¿ define its Condition to be fulfilled in order to go to the next according state. The default DoFunction

- 2: execute automatic rule evaluation (see DoTransition-Condition ToDo) More specialized Do-Function Specifications may contain Data mappings denoting what of a subjects internal local Data can and should be:
- a) read: in order to simply see it or in order to send it of to an external function (e.g. a web service)
- b) write: in order to write incoming Data from e.g. a web Service or user input, to the local data fault
- * ReceiveType ; SRN: 011 Comments have to be added
- * SendType ; SRN: 012 Comments have to be added
- * State; SRN: 013

A state in the behavior descriptions of a model

- · ChoiceSegment; SRN: 014
 ChoiceSegments are groups of defined ChoiceSegementPaths. The paths may contain any amount of states.
 However, those states may not reach out of the bounds of the ChoiceSegmentPath.
- ChoiceSegmentPath; SRN: 015
 ChoiceSegments are groups of defined ChoiceSegementPaths. The paths may contain any amount of states.
 However, those states may not reach out of the bounds of the ChoiceSegmentPath. The path may contain any amount of states but may those states may not reach out of the bounds of the choice segment path. Similar to an initial state of a behavior a choice segment path must have one determined initial state. A transition within a choice segment path must not have a target state that is not inside the same choice segment path.
 - · MandatoryToEndChoiceSegmentPath ; SRN: 016 Comments have to be added
 - · MandatoryToStartChoiceSegmentPath ; SRN: 017 Comments have to be added

- · OptionalToEndChoiceSegmentPath ; SRN: 018 Comments have to be added
- · OptionalToStartChoiceSegmentPath; SRN: 019 ChoiceSegmentPath and (isOptionalToEndChoiceSegment-Path value false)
- · EndState; SRN: 020

 An end state a behavior. A subject behavior may have one or more end states. Only Do and Receive states may be end states. Send States cannot be end states. There are no individual end states that are not Do, Send, or Receive
- · GenericReturnToOriginReference ; SRN: 021 Comments have to be added
- · InitialStateOfBehavior ; SRN: 022 The initial state of a behavior

States at the same time.

- · InitialStateOfChoiceSegmentPath; SRN: 023 Similar to an initial state of a behavior a choice segment path must have one determined initial state
- · MacroState; SRN: 024 A state that references a macro behavior that is executed upon entering this state. Only after executing the macro behavior this state is finished also.
- StandardPASSState; SRN: 025
 A super class to the standard PASS states: Do, Receive
 and Send
 - · DoState; SRN: 026

 The standard state in a PASS subject behavior diagram denoting an action or activity of the subject in itself.
 - · ReceiveState; SRN: 027

 The standard state in a PASS subject behavior diagram denoting an receive action or rather the waiting for a receive possibility.
 - · SendState; SRN: 028

 The standard state in a PASS subject behavior diagram denoting a send action
- · StateReference; SRN: 029

 A state reference is a model component that is a reference to a state in another behavior. For most modeling aspects it is a normal state.

* Transition; SRN: 030

An edge defines the transition between two states. A transition can be traversed if the outcome of the action of the state it originates from satisfies a certain exit condition specified by it's "Alternative"

- · CommunicationTransition; SRN: 031
 A super class for the CommunicationTransitions.
 - · ReceiveTransition; SRN: 032 Comments have to be added
 - · SendTransition; SRN: 033 Comments have to be added
- · DoTransition; SRN: 034 Comments have to be added
- · SendingFailedTransition; SRN: 035 Comments have to be added
- · TimeTransition; SRN: 036

 Generic super calls for all TimeTransitions, transitions with conditions based on time events. E.g.passing of a certain time duration or the (reoccurring) calendar event.
 - · Reminder Transition; SRN: 037
 Reminder transitions are transitions that can be traverses if a certain time based event or frequency has been reached. E.g. a number of months since the last traversal of this transition or the event of a certain preset calendar date etc.
 - · CalendarBasedReminderTransition; SRN: 038

 A reminder transition, for defining exit conditions
 measured in calendar years or months
 Conditions are e.g.: reaching of (in model) preset calendar date (e.g. 1st of July) or the reoccurrence of a
 a long running frequency ("every Month", "2 times
 a year")"
 - · TimeBasedReminderTransition ; SRN: 039 Comments have to be added
 - · TimerTransition; SRN: 040

 Generic super calls for all TimeTransitions, transitions with conditions based on time events. E.g.passing of a certain time duration or the (reoccurring) calendar event.

- · Business Day Timer Transition; SRN: 041 imer transitions, denote time outs for the state they originate from. The condition for a timer transition is that a certain amount of time has passed since the state it originates from has been entered. The time unit for this timer transition is measured
 - The time unit for this timer transition is measured in business days. The definition of a business day depends on a subject's relevant or legal location
- DayTimeTimerTransition; SRN: 042
 Timer Transitions, denoting time outs for the state
 they originate from. The condition for a timer transition is that a certain amount of time has passed since
 the state it originates from has been entered.
 Day or Time Timers are measured in normal 24 hour
 days. Following the XML standard for time and day
 duration. They are to be differed from the timers that
 are timeout in units of years or months.
- · YearMonthTimerTransition; SRN: 044

 Timer transitions, denote time outs for the state they originate from. The condition for a timer transition is that a certain amount of time has passed since the state it originates from has been entered.

 Year or Month timers measure time in calendar years or months. The exact definitions for years and months depends on relevant or legal geographical location of the subject.
- · UserCancelTransition; SRN: 045 A user cancel transition denotes the possibility to exit a receive state without the reception of a specific message. The user cancel allows for an arbitrary decision by a subject carrier/processor to abort a waiting process.
- · TransitionCondition; SRN: 046
 natives which in turn is given for a state. An alternative
 (to leave the state) is only a real alternative if the exit
 condition is fulfilled (technically: if that according function returns "true").

Note: Technically and during execution exit conditions belong to states. They define when it is allowed to leave that state. However, in PASS models exit conditions for states are defined and connected to the according transi-

tion edges. Therefore transition conditions are individual entities and not DataProperties.

The according matching must be done by the model execution environment.

By its existence, an edge/transition defines one possible follow up "state" for its state of origin. It is coupled with an "Exit Condition" that must be fulfilled in the originating state in order to leave the state.

- · DoTransitionCondition; SRN: 047 A TransitionCondition for the according DoTransitions and DoStates.
- · MessageExchangeCondition; SRN: 048

 MessageExchangeConditon is the super class for Send

 End Receive Transition Conditions the both require either the sending or receiving (exchange) of a message
 to be fulfilled.
 - · ReceiveTransitionCondition; SRN: 049
 ReceiveTransitionConditions are conditions that state
 that a certain message must have been taken out of a
 subjects in-box to be fulfilled.
 These are the typical conditions defined by Receive
 Transitions.
 - · SendTransitionCondition; SRN: 050 SendTransitionConditions are conditions that state that a certain message must have been successfully passed to another subjects in-box to be fulfilled. These are the typical conditions defined by Send transitions.
- · SendingFailedCondition; SRN: 051 Comments have to be added
- · TimeTransitionCondition; SRN: 052

 A condition that is deemed 'true' and thus the according edge is gone, if: a surrounding execution system has deemed the time since entering the state and starting with the execution of the according action as too long (predefined by the outgoing edge)

A condition that is true if a certain time defined has passed since the state this condition belongs to has been entered. (This is the standard TimeOut Exit condition)

· ReminderEventTransitionCondition; SRN: 053

Comments have to be added

· TimerTransitionCondition; SRN: 054 Comments have to be added

- DataDescribingComponent; SRN: 055

Subject-Oriented PASS Process Models are in general about describing the activities and interaction of active entities. Yet these interactions are rarely done without data that is being generated by activities and transported via messages. While not considered by Börger's PASS interpreter, the community agreed on adding the ability to integrate the means to describe data objects or data structures to the model and enabling their connection to the process model. It may be defined that messages or subject have their individual DataObjectDefinition in form of a SubjectDataDefinition in the case of FullySpecifiedSubjects and

PayloadDataObjectDesfinition in the case of

MessageSpecifications In general, it expected that these

DataObjectDefinition list on or more data fields for the message or subject with an internal data type that is described via a DataTypeDefinition. There is a rudimentary concept for a simple build-in data type definition closely oriented at the concept of ActNConnect. Otherwise, the principle idea of the OWL standard is to allow and employ existing or custom technologies for the serialized definition of data structures

(CustomOrExternalDataTypeDefinition) such as XML-Schemata (XSD), according elements with JSON or directly the powerful expressiveness of OWL itself.

* DataObjectDefinition; SRN: 056

Data Object Definitions are model elements used to describe that certain other model elements may posses or carrier Data Objects.

E.G. a message may carrier/include a Business Objects. Or the private Data Space of a Subject may contain several Data Objects.

A Data Objects should refer to a DataTypeDefinition denoting its DataType and structure.

DataObject: states that a data item does exist (similar to a variable in programming)DataType: the definition of an Data Object's structure.

· DataObjectListDefintion ; SRN: 057 Data definition concept for PASS model build in capabilities of data modeling. Defines a simple list structure.

· PayloadDataObjectDefinition; SRN: 058

Messages may have a description regarding their payload

(what is transported with them).

This can either be a description of a physical (real) object

or a description of a (digital) data object

· SubjectDataDefinition; SRN: 059 Comments have to be added

* DataTypeDefinition; SRN: 060

Data Type Definitions are complex descriptions of the supposed structure of Data Objects.

DataObject: states that a data item does exist (similar to a variable in programming).

DataType: the definition of an Data Object's structure.

- · CustomOrExternalDataTypeDefinition; SRN: 061 Using this class, tool vendors can include their own custom data definitions in the model.
 - · JSONDataTypeDefinition; SRN: 062 Comments have to be added
 - · OWLDataTypeDefinition; SRN: 63 Comments have to be added
 - · XSD-DataTypeDefinition; SRN: 064 XML Schemata Description (XSD) is an established technology for describing structure of Data Objects (XML documents) with many tools available that can verify a document against the standard definition
- · ModelBuiltInDataTypes ; SRN: 065 Comments have to be added
- * PayloadDescription ; SRN: 066

Comments have to be added

- · PayloadDataObjectDefinition; SRN: 067

 Messages may have a description regarding their payload

 (what is transported with them).
 - This can either be a description of a physical (real) object or a description of a (digital) data object
- · PayloadPhysicalObjectDescription; SRN: 068

 Messages may have a description regarding their payload

 (what is transported with them).

This can either be a description of a physical (real) object

or a description of a (digital) data object

- InteractionDescribingComponent; SRN: 069
 This class is the super class of all model elements used to define or specify the interaction means within a process model
 - * InputPoolConstraint; SRN: 070
 Subjects do implicitly posses input pools.
 During automatic execution of a PASS model in a work-flow engine this message box is filled with messages.
 Without any constraints models this message in-box is assumed to be able to store an infinite amount of messages.
 For some modeling concepts though it may be of importance to restrict the size of the input pool for certain messages or senders.

This is done using several different Type of InputPoolConstraints that are attached to a fully specified subject. Should a constraint be applicable, an "InputPoolConstraintHandlingStrategy" will be executed by a work-flow engine to determine what to do with the message that does not fit in the pool. Limiting the input pool for certain reasons to size 0 together with the InputPoolConstraintStrategy-Blocking is effectively modeling that a communication must happen synchronously instead of the standard asynchronous mode. The sender can send his message only if the receiver is in an according receive state, so the message can be handled directly without being stored in the in-box.

- · MessageSenderTypeConstraint; SRN: 071 An InputPool constraint that limits the number of message of a certain type and from a certain sender in the input pool.
 - E.g. "Only one order from the same customer" (during happy hour at the bar)
- · MessageTypeConstraint; SRN: 072

 An InputPool constraint that limits the number of message of a certain type in the input pool.

 E.g. You can accept only "three request at once
- · SenderTypeConstraint; SRN: 073

 An InputPool constraint that limits the number of message from a certain Sender subject in the input pool.

 E.g. as long as a customer has non non-fulfilled request of any type he may not place messages

* InputPoolContstraintHandlingStrategy; SRN: 074
Should an InputPoolConstraint be applicable, an "InputPoolConstraintHandlingStrategy" will be executed by a work-flow engine to determine what to do with the message that does not fit in the pool.

There are types of HandlingStrategies.

InputPoolConstraintStrategy-Blocking - No new message will be adding will need to be repeated until successful

InputPoolConstraintStrategy-DeleteLatest - The new message will be added, but the last message to arrive before that applicable to the same constraint will be overwritten with the new one. (LIFO deleting concept)

InputPoolConstraintStrategy-DeleteOldest - The message will be added, but the earliest message in the input pool applicable to the same constraint will be deleted (FIFO deleting concept) InputPoolConstraintStrategy-Drop - Sending of the message succeeds. However the new message will not be added to the in-box. Rather it will be deleted directly.

* MessageExchange; SRN: 075

A message exchange is an element in the interaction description section that specifies exactly one possibility of exchanging messages in the given process context of the model.

A message exchange is a triple of, a sender, a receiver, and the specification of the message that may be exchanged.

While message exchanges are singular occurrences, they may be grouped in MessageExchangeLists

* MessageExchangeList; SRN: 076

While MessageExchanges are singular occurrences, they may be grouped in MessageExchangeLists.

In graphical PASS modeling that is usually the case when one arrow between two subjects contains more than one message and thereby specifies more than one possible message exchange channel between the two subjects.

* MessageSpecification; SRN: 077

MessageSpecification are model elements that specify the existence of a message. At minimum its name and id.

It may contain additional specification for its payload (contained Data, exact form etc.)

* Subject : SRN: 078

The subject is the core model element of a subject-oriented

PASS process model.

- · FullySpecifiedSubject; SRN: 079
 Fully specified Subjects in a PASS graph are entities that,
 in contrast to interface subjects, linked to one ore more
 Behaviors (they posses a behavior).
- · InterfaceSubject; SRN: 080
 Interface Subjects are Subjects that are not linked to a behavior. In contrast, they may refer to FullySpecified-Subjects that are described in other process models.
- · MultiSubject; SRN: 081 The Multi-Subject is term for a subject that "has a maximum subject instantiation restriction" within a process context larger than 1.
- · SingleSubject; SRN: 082 Single Subject are subject with a maximumInstanceRestriction of 1
- · StartSubject; SRN: 083
 Subjects that start their behavior with a Do or Send state
 are active in a process context from the beginning instead
 of requiring a message from another subject.
 Usually there should be only one Start subject in a process
 context.
- PASSProcessModel; SRN: 084
 The main class that contains all relevant process elements
- SubjectBehavior; SRN: 085

 Additional to the subject interaction a PASS Model consist of multiple descriptions of subject's behaviors. These are graphs described with the means of BehaviorDescribingComponents

 A subject in a model may be linked to more than one behavior.
 - * GuardBehavior; SRN: 086
 - A guard behavior is a special usually additional behavior that guards the Base Behavior of a subject. $\beta\beta$ It starts with a (guard) receive state denoting a special interrupting message. Upon reception of that message the subject will execute the according receive transition and the follow up states until it is either redirected to a state on the base behavior or terminates in an end-state within the guard behavior
 - * MacroBehavior; SRN: 087

 A macro behavior is a specialized behavior that may be entered

and exited from a function state in another behavior.

- * SubjectBaseBehavior; SRN: 088 The standard behavior model type
- SimplePASSElement; SRN: 089 Comments have to be added
 - CommunicationTransition ; SRN: 090

A super class for the Communication Transitions.

- * ReceiveTransition; SRN: 091 Comments have to be added
- * SendTransition; SRN: 092 Comments have to be added
- DataMappingFunction; SRN: 093

Definitions of the ability/need to write or read data to and from a subject's personal data storage.

DataMappingFunctions are behavior describing components since they define what the subject is supposed to do (mapping and translating data)

Mapping may be done during reception of message, where data is taken from the message/Business Object (BO) and mapped/put into the local data field.

It may be done during sending of a message where data is taken from the local vault and put into a BO.

Or it may occur during executing a do function, where it is used to define read(get) and write (set) functions for the local data.

- * DataMappingIncomingToLocal; SRN: 094
 - A DataMapping that specifies how data is mapped from an an external source (message, function call etc.) to a subject's private defined data space.
- * DataMappingLocalToOutgoing; SRN: 095 A DataMapping that specifies how data is mapped from a subject's private data space to an an external destination (message, function call etc.)"
- DoTransition; SRN: 096 Comments have to be added
- DoTransitionCondition; SRN: 097
 A TransitionCondition for the according DoTransitions and DoStates.

- EndState; SRN: 098

An end state a behavior. A subject behavior may have one or more end states. Only Do and Receive states may be end states. Send States cannot be end states.

There are no individual end states that are not Do, Send, or Receive States at the same time.

- FunctionSpecification; SRN: 099

A function specification for state denotes

Concept: Definitions of calls of (mostly technical) functions (e.g. Web-service, Scripts, Database access,) that are not part of the process model.

Function Specifications are more than "Data Properties"? —¿ - If special function types (e.g. Defaults) are supposed to be reused, having them as explicit entities is a the better OWL-modeling choice.

* CommunicationAct; SRN: 100

A super class for specialized FunctionSpecification of communication acts (send and receive)

· ReceiveFunction; SRN: 101

Specifications/descriptions for Receive-Functions describe in detail what the subject carrier is supposed to do in a state.

DefaultFunctionReceive1_EnvoironmentChoice: present the surrounding execution environment with the given exit choices/conditions currently available depending on the current state of the subjects in-box. Waiting and not executing the receive action is an option.

DefaultFunctionReceive2_AutoReceiveEarliest: automatically execute the according activity with the highest priority as soon as possible. In contrast to DefaultFunction-Receive1, it is not an option to prolong the reception and wait e.g. for another message.

· SendFunction; SRN: 102 Comments have to be added

* DoFunction; SRN: 103

Specifications or descriptions for Do-Functions describe in detail what the subject carrier is supposed to do in an according state.

The default DoFunction 1: present the surrounding execution environment with the given exit choices/conditions and receive choice of one exit option $-\dot{c}$ define its Condition to be fulfilled in order to go to the next according state.

The default DoFunction 2: execute automatic rule evaluation (see DoTransitionCondition).

More specialized Do-Function Specifications may contain Data mappings denoting what of a subjects internal local Data can and should be:

- a) read: in order to simply see it or in order to send it of to an external function (e.g. a web service)
- b) write: in order to write incoming Data from e.g. a web Service or user input, to the local data fault
- InitialStateOfBehavior; SRN: 104 The initial state of a behavior
- MessageExchange ; SRN: 105

A message exchange is an element in the interaction description section that specifies exactly one possibility of exchanging messages in the given process context of the model.

A message exchange is a triple of, a sender, a receiver, and the specification of the message that may be exchanged.

While message exchanges are singular occurrences, they may be grouped in MessageExchangeLists

- MessageExchangeCondition; SRN: 106

MessageExchangeCondition is the super class for Send End Receive Transition Conditions the both require either the sending or receiving (exchange) of a message to be fulfilled.

* ReceiveTransitionCondition; SRN: 107

Receive Transition Conditions are conditions that state that a certain message must have been taken out of a subjects in-box to be fulfilled.

These are the typical conditions defined by Receive Transitions.

* SendTransitionCondition; SRN: 108

SendTransitionConditions are conditions that state that a certain message must have been successfully passed to another subjects in-box to be fulfilled.

These are the typical conditions defined by Send transitions.

MessageExchangeList; SRN: 109

While MessageExchanges are singular occurrences, they may be grouped in MessageExchangeLists.

In graphical PASS modeling that is usually the case when one arrow between two subjects contains more than one message and thereby specifies more than one possible message exchange channel between the two subjects.

- MessageSpecification ; SRN: 110
 - MessageSpecification are model elements that specify the existence of a message. At minimum its name and id.
 - It may contain additional specification for its payload (contained Data, exact form etc.)
- ModelBuiltInDataTypes ; SRN: 111
 Comments have to be added
- PayloadDataObjectDefinition; SRN: 112

Messages may have a description regarding their payload (what is transported with them).

This can either be a description of a physical (real) object or a description of a (digital) data object

- StandardPASSState : SRN: 113
 - A super class to the standard PASS states: Do, Receive and Send
 - * DoState; SRN: 114

The standard state in a PASS subject behavior diagram denoting an action or activity of the subject in itself.

- * ReceiveState : SRN: 115
 - The standard state in a PASS subject behavior diagram denoting an receive action or rather the waiting for a receive possibility.
- * SendState; SRN: 116

 The standard state in a PASS subject behavior diagram denoting a send action
- Subject; SRN: 117

The subject is the core model element of a subject-oriented PASS process model.

- * FullySpecifiedSubject; SRN: 118

 Fully specified Subjects in a PASS graph are entities that, in contrast to interface subjects, linked to one ore more Behaviors (they posses a behavior).
- * InterfaceSubject; SRN: 119
 Interface Subjects are Subjects that are not linked to a behavior. In contrast, they may refer to FullySpecifiedSubjects that are described in other process models.

* MultiSubject; SRN: 120 The Multi-Subject is term for a subject that "has a maxi-

mum subject instantiation restriction" within a process context larger than 1.

- * SingleSubject; SRN: 121
 Single Subject are subject with a maximumInstanceRestriction
 of 1
- * StartSubject; SRN: 122
 Subjects that start their behavior with a Do or Send state are active in a process context from the beginning instead of requiring a message from another subject.
 Usually there should be only one Start subject in a process context.
- SubjectBaseBehavior; SRN: 123 The standard behavior model type

A.2 Data Properties (27)

Property name		Domain-Range	Comments	Reference
has Business Day Duration Time Out Time Domain:	Domain:			
	Range:			
hasCalendarBasedFrequencyOrDate	Domain:			
	Range:			
hasDataMappingString	Domain:			
	Range:			
hasDayTimeDurationTimeOutTime	Domain:			
	Range:			
hasDurationTimeOutTime	Domain:			
	Range:			
hasFeelExpressionAsDataMapping	Domain:		See	
			https://www.omg.org/spec/DMN	pec/DMN
			for specification of	
			Feel-Statement-Strings	
			The idea of these ex-	
			pression is to map data	
			fields from and to the	
			internal Data storage	
			of a subject	
	Range:			

Property name		Domain-Range	Comments	Reference
hasGraphicalRepresentation	Domain:		The process models are in principle abstract graph structures. Yet the visualization of process models is very important since many process models are initially created in a graphical form using a graphical graph editor (e.g. MS Visio, yEd, etc.) that was created to foster human comprehensibility. If available any process element may have a graphical representation attached to it	
1.07.Co.r.	Kange:			
haskey	Domain: Range:			
hasLimit	Domain: Range:			
hasMaximumSubjectInstanceRestrictionDomain:	nDomain: Range:			

Property name		Domain-Range	Comments	Reference
hasMetaData	Domain:			
	Range:			
hasModelComponentComment	Domain:		equivalent to	
			rdfs:comment	
	Range:			
hasModelComponentID	Domain:		The unique ID of a	
			PASSProcessModel-	
			Component	
	Range:			
hasModelComponentLabel	Domain:		The human legible la-	
			bel or description of a	
			model element.	
	Range:			

Property name		Domain-Range	Comments	Reference
hasPriorityNumber	Domain:		Transitions or Behaviors have numbers that denote their execution priority in situations where two or more options could be executed. This is important for automated execution. E.g. when two messages are in the inbox and could be followed, the message denoted on the transition with the higher priority (lower priority number) is taken out and processed. Similarly, SubjectBehaviors with higher priority (lower priority number) are to be executed before Behaviors with lower priority.	
	Range:			

Property name		Domain-Range	Comments	Reference
naskeoccurancerrequenyOrDate	Domain:		A data neid meant for the two classes ReoccuranceTime-OutTransition and ReoccuranceTimeOutExitCondition. ToDo: Define the according data format for describing the iteration frequencies or reoccurring dates. Opinion: rather complex: expressive capabilities should cover expressions like: "every 2nd Monday of Month at 7:30 in Morning." Every 29th of July" or "Every Hour", "ever 25 Minuets", "once each day", "twice each week" etc	
	Range:			

Property name		Domain-Range	Comments	Reference
hasSVGRepresentation	Domain:		The Scalable Vector Graphic (SVG) XML format is a text based standard to describe vector graphics. Adding according image information as XML literals is therefor a suitable, yet not necessarily easily changeable option to include the graphical representation of model elements in the an OWL file.	
	Kange:			
hasTimeBasedReoccuranceFrequencyOrDatanain:	r Decte nain:			
	Range:			
hasTimeValue	Domain:		Generic super class for	
			all data properties of time based transitions.	
	Range:			

Property name		Domain-Range	Comments	Reference
hasToolSpecificDefinition	Domain:		This is a placeholder DataProperty meant as a tie in point for tool vendors to include tool specific data values/properties into models. By denoting their own data properties as sub- classes to this one the according data fields can easily be recog- nized as such. How- ever, this is only an op- tion and a place holder to remind that some- thing like this is possi- ble.	
	Range:			
hasValue	Domain: Range:			
has Year Month Duration Time Out Time	Domain: Range:			
isOptionalToEndChoiceSegmentPath	Domain: Range:			

Property name		Domain-Range	Comments	Reference
isOptionalToStartChoiceSegmentPath Domain:	Domain:			
	Range:			
owl:topDataProperty	Domain:			
	Range:			
PASSModelDataProperty	Domain:		Generic super class	
			of all DataProperties	
			that PASS process	
			model elements may	
			have.	
	Range:			
SimplePASSDataProperties	Domain:		Every element/sub-	
			class of SimplePASS-	
			DataProperties is also	
			a Child of PASSMod-	
			elDataPropertiy. This	
			is simply a surro-	
			gate class to group	
			all simple elements	
			together	
	Range:			

A.3 Object Properties (42)

Property name		Domain-Range	Comments	Reference
belongsTo	Domain: Range:	PASSProcessModelElement PASSProcessModelElement	Generic ObjectProperty that links two process elements, where one is contained in the other (inverse of contains).	200
contains	Domain:	PASSProcessModelElement DASSProcessModelElement	Generic ObjectProperty that links two model elements where one contains another (possible multiple)	201
containsBaseBehavior	Domain: Range:	Subject Subject Subject Behavior		202
containsBehavior	Domain: Range:	Subject SubjectBehavior		203
containsPayload- Description	Domain: Range:	Domain: MessageSpecification Range: PayloadDescription		204
guardedBy	Domain: Range:	State, Action GuardBehavior		205

Property name		Domain-Range	Comments	Reference
guardsBehavior	Domain:	GuardBehavior	Links a GuardBehavior to an-	206
			other SubjectBehavior. Auto-	
			matically all individual states	
			in the guarded behavior are	
			guarded by the guard behav-	
			ior. There is an SWRL Rule in	
			the ontology for that purpose.	
	Range:	SubjectBehavior		
guardsState	Domain:	State, Action		207
	Range:	guardedBy		
hasAdditionalAttribute	Domain:	PASSProcessModelElement		208
	Range:	AdditionalAttribute		
hasCorrespondent	Domain:		Generic super class for the Ob-	209
			jectProperties that link a Sub-	
			ject with a MessageExchange	
			either in the role of Sender or	
			Receiver.	
	Range:	Subject		
hasDataDefinition	Domain:			210
	Range:	DataObjectDefinition		

Property name		Domain-Range	Comments	Reference
hasDataMapping-	Domain:	state, SendTransition, Re-		211
Function		ceiveTransition		
	Range:	DataMappingFunction		
hasDataType	Domain:	PayloadDescription or		212
		DataObjectDefinition		
	Range:	DataTypeDefinition		
hasEndState	Domain:	SubjectBehavior or Choice-		213
		SegmentPath		
	Range:	State, not SendState		
hasFunction-	Domain:	State		214
Specification				
	Range:	FunctionSpecification		
hasHandlingStrategy	Domain:	InputPoolConstraint		215
	Range:	InputPoolContstraint-		
		HandlingStrategy		
hasIncomingMessage- Exchange	Domain:	Subject		216
	Range:	MessageExchange		
hasIncomingTransition	Domain:	State		217
	Range:	Transition		
hasInitialState	Domain:	SubjectBehavior or Choice-		218
		SegmentPath		
	Range:	State		

Property name		Domain-Range	Comments	Reference
hasInputPoolConstraint Domain:	Domain: Range.	Subject InputPoolConstraint		219
hasKeyValuePair	Domain:			220
	Range:			
hasMessageExchange	Domain:	Subject	Generic super class for the Ob-	221
			ject roperties mixing a subject with either incoming or	
			outgoing MessageExchanges.	
	Range:			
hasMessageType	Domain:	MessageTypeConstraint		222
		or MessageSenderType-		
		Constraint or MessageEx-		
		change		
	Range:	MessageSpecification		
hasOutgoingMessage-	Domain:	Subject		223
Exchange				
	Range:	MessageExchange		
hasOutgoingTransition	Domain:	State		224
	Range:	Transition		
hasReceiver	Domain:	MessageExchange		225
	Range:	Subject		

$74APPENDIX\,A.\ CLASSES\,AND\,PROPERTY\,OF\,THE\,PASS\,ONTOLOGY$

Property name		Domain-Range	Comments	Reference
hasRelationToModel- Component	Domain:	PASSProcessModelElement DASSProcessModelElement	Generic super class of all object properties in the standard-pass-ont that are used to link model elements with one-another.	226
hasSender	Domain: Range:	MessageExchange Subject		227
hasSourceState	Domain: Range:	Transition State		228
hasStartSubject	Domain: Range:	PASSProcessModel StartSubject		229
hasTargetState	Domain Range	Transition State		230
hasTransitionCondition	Domain Range	Transition TransitionCondition		231
isBaseBehaviorOf	Domain:	SubjectBaseBehavior	A specialized version of the "belongsTo" Object- Property to denote that a -SubjectBehavior belongs to a Subject as its BaseBehavior	232
isEndStateOf	Domain: Range:	State and not SendState SubjectBehavior or Choice- SegmentPath		233

Property name		Domain-Range	Comments	Reference
isInitialStateOf	Domain:	State		234
	Range:	SubjectBehavior or Choice-		
		Segmentram		
isReferencedBy	Domain:			235
	Range:			
references	Domain:			236
	Range:			
referencesMacroBehavior Domain:	r Domain:	MacroState		237
	Range:	MacroBehavior		
refersTo	Domain:	CommunicationTransition	Communication transitions	238
			(send and receive) should refer	
			to a message exchange that	
			is defined on the interaction	
			layer of a model.	
	Range:	MessageExchange		
requires Active Reception-Domain:	-Domain:	ReceiveTransitionCondition		239
OfMessage				
	Range:	MessageSpecification		
requiresPerformed-	Domain:	MessageExchangeCondition		240
MessageExchange				
	Range:	MessageExchange		

Property name		Domain-Range	Comments	Reference
SimplePASSObject-	Domain:		Every element/sub-class of 241	241
Propertie			SimplePASSObjectProperties	
			is also a Child of PASSMod-	
			elObjectPropertiy. This is	
			simply a surrogate class to	
			group all simple elements	
			together	
	Range:			