AVOVA	(Analysis	of	variance)

droup ig	Sample			Sample Gite	population Mean		sample mean	sample Sd
group 1;	y 11 , y 12 ,	~ · ·	YIN,	n,	N ₁	T	Ji	5,
drenb s.	J 21, J 22,	_ •`	J2 N2	hz	Mr	T	Jr	Sz
				Ì	ì	`,	1	:
group +:	J+11, J+2,	J 114	J+n+	N+	Mt	T	Jt	St

$$\overline{y}_{i} = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} y_{ij} \quad \leq \text{Sample mean of } i-\text{th group}$$
 $\overline{y}_{i} = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} y_{ij} \quad \leq \text{Sample mean of whole Sample}$

$$S_i^2 = \frac{1}{n_i-1} \sum_{i=1}^{n_i} (y_{ij} - \overline{y}_i)^2 \leftarrow Sample Sd of i-th gran$$

$$\sum_{i,j}^{\Sigma} \left(y_{ij} - \overline{y} \right)^{2} = \sum_{i}^{\Sigma} n_{i} \left(\overline{y}_{i} - \overline{y} \right)^{2} + \sum_{i,j}^{\Sigma} \left(y_{ij} - \overline{y}_{i} \right)^{2}$$

Source of variation of Sum sq MS

Treatment
$$t-1$$
 SSTrt = $\frac{t}{|z|} n: (\overline{y}_i - \overline{y})^2$ MSTrt = SSTrt / $(t-1)$

Error $n-t$ SSE = $\frac{t}{|z|} \int_{z-1}^{z-1} (y_{ij} - \overline{y}_i)^2$ MSE = SSE / $(n-t)$

Total $n-1$ SSTotal = $\frac{t}{|z|} \int_{z-1}^{z-1} (y_{ij} - \overline{y}_i)^2$ SSTotal / $(n-1)$

$$\frac{SSE}{N-t} = \frac{(n_1-1)S_1^2 + \cdots + (n_t-1)S_t^2}{n-t}$$

$$= \frac{SSE}{N-t} = \frac{(n_1-1)S_1^2 + \cdots + (n_t-1)S_t^2}{N-t}$$

$$= \frac{(n_1-1)S_1^2 + \cdots + (n_t-1)S_t^2}{N-t}$$

$$= \frac{(n_1-1)S_1^2 + \cdots + (n_t-1)S_t^2}{N-t}$$

$$= \frac{(n_1-1)S_1^2 + \cdots + (n_t-1)S_t^2}{N-t}$$

M1: otherwise Ho- Mi= Mr= " = M+ F = MSTrt SSTrt/(+-1) Ho
F t-1, n-t Fobs is the observed F stat we compute from sample. Significance level: 2 Suppose f is a random variable with distribution Ft-1, n-t O reject region P (F > Ca) = 2 want to find such Ca $C_{2} = 9f(1-2, df|= t-1, df 2 = n-t)$ reject Ho if Fobs > Ca 2 p- value p-value = P (F > Fols)

= pf (Fobs, df = t-1, df 2 = n-t)
reject to if p-value < 2
(3) off-the-shelf method: 9 orup: 11, 22 , t t y: Jii Jin, , Jri Jrnz, ytne
- mod = aov (y~ group) - anovA (mod)