Module 5 - Polynomial Regression

Polynomial least squares regression

The general problem of approximating a set of data,

$$\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$$

with an algebraic polynomial

$$P_m(x) = a_m x^m + a_{m-1} x^{m-1} \dots + a_1 x + a_0$$

of degree m < n - 1, using the least squares procedure can be handled similarly as of linear least squares regression.

Let
$$y = P_m(x) + e \longrightarrow = (y - \hat{y})$$
 = $(y - p_m(x))$ We choose the constants a_0, a_1, \dots, a_m to minimize the sum of squares of errors. That is:

$$E = \sum_{i=1}^{n} (y_i - P_m(x_i))^2 = \sum_{i=1}^{n} y_i^2 - 2 \sum_{i=1}^{n} y_i P_m(x_i) + \sum_{i=1}^{n} (P_m(x_i))^2$$

Or

$$E = \sum_{i=1}^{n} y_i^2 - 2 \sum_{i=1}^{n} \left[y_i \left(\sum_{k=1}^{m} a_k x_i^k \right) \right] + \sum_{i=1}^{n} \left(\sum_{k=1}^{m} a_k x_i^k \right)^2$$

For *E* to be minimized, we need to have the following systems of linear equations with respect to unknowns solved:

$$\frac{\partial E}{\partial a_j} = 0, \qquad j = 0, 1, 2, \dots, m$$

This leads to the following system of linear equations with m + 1 equations and m + 1 unknows (*normal equations*)

$$a_0 \sum_{i=1}^{n} x_i^0 + a_1 \sum_{i=1}^{n} x_i^1 + a_2 \sum_{i=1}^{n} x_i^2 + \dots + a_m \sum_{i=1}^{n} x_i^m = \sum_{i=1}^{n} y_i x_i^0,$$

$$a_0 \sum_{i=1}^{n} x_i^1 + a_1 \sum_{i=1}^{n} x_i^2 + a_2 \sum_{i=1}^{n} x_i^3 + \dots + a_m \sum_{i=1}^{n} x_i^{m+1} = \sum_{i=1}^{n} y_i x_i^1,$$

$$\vdots$$

$$a_0 \sum_{i=1}^{n} x_i^m + a_1 \sum_{i=1}^{n} x_i^{m+1} + a_2 \sum_{i=1}^{n} x_i^{m+2} + \dots + a_m \sum_{i=1}^{n} x_i^{2m} = \sum_{i=1}^{n} y_i x_i^m.$$

These *normal equations* have a **unique solution provided that the** x_i **are distinct**.

Example. Fit the data in the following table with the discrete least squares polynomial of degree at most 2.

Note that the total error of this procedure will be

$$E = \sum_{i=1}^{5} (y_i - 1.0051 - 0.86468x_i - 0.84316x_i^2)^2$$

General Linear Least Squares Regression.

The idea of linear least squares regression can be extended to the case we have more than one independent variable. Assume that y is related to the independent variables $x_1, x_2, ..., x_m$ using the following linear form:

$$y = (a_0 + (a_1)x_1 + (a_2)x_2 + \dots + (a_m)x_m + e$$
 $e = \begin{cases} 0 \\ i \end{cases} - \begin{cases} 0 \\ 0 \end{cases}$

As before, the "best" values of the coefficients are determined by formulating the sum of the squares of the residuals:

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_{1,i} - a_2 x_{2,i} - \dots - a_m x_{m,i})^2$$

where $(x_{1,i}, x_{2,i}, ..., x_{m,i}, y_i)$, for i = 1,2,...,n, are the set of n data values.

To find the coefficients, we need to solve the following system of linear equations.

$$\frac{\partial S_r}{\partial a_j} = 0, \qquad j = 0,1,2,...,m$$

As an example, assume that y is related to the independent variables x_1, x_2 using the following linear form:

$$y = a_0 + a_1 x_1 + a_2 x_2 + e$$

$$(x_1, x_2 \text{ asing the})$$

and

$$\begin{aligned}
&\mathcal{C}_{1} = \mathcal{Y}_{1} - \hat{\mathcal{Y}}_{1} = \mathcal{Y}_{1} - \left(\alpha_{0} + \alpha_{1} \chi_{1,1} + \alpha_{2} \chi_{2,1}\right) \\
&\mathcal{C}_{2} = \mathcal{Y}_{2} - \hat{\mathcal{Y}}_{2} = \mathcal{Y}_{2} - \left(\alpha_{0} + \alpha_{1} \chi_{1,2} + \alpha_{2} \chi_{2,2}\right) \\
&\mathcal{C}_{3} = \mathcal{Y}_{3} - \hat{\mathcal{Y}}_{3} = \mathcal{Y}_{3} - \left(\alpha_{0} + \alpha_{1} \chi_{1,3} + \alpha_{2} \chi_{2,3}\right)
\end{aligned}$$

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_{1,i} - a_2 x_{2,i})^2$$

Thus,

$$\begin{split} \frac{\partial S_r}{\partial a_0} &= -2 \sum (y_i - a_0 - a_1 x_{1,i} - a_2 x_{2,i}) = 0 \\ \frac{\partial S_r}{\partial a_1} &= -2 \sum x_{1,i} (y_i - a_0 - a_1 x_{1,i} - a_2 x_{2,i}) = 0 \\ \frac{\partial S_r}{\partial a_2} &= -2 \sum x_{2,i} (y_i - a_0 - a_1 x_{1,i} - a_2 x_{2,i}) = 0 \end{split}$$

Therefore, we have the following system:

$$\begin{bmatrix} n & \sum x_{1,i} & \sum x_{2,i} \\ \sum x_{1,i} & \sum x_{1,i}^2 & \sum x_{1,i} x_{2,i} \\ \sum x_{2,i} & \sum x_{1,i} x_{2,i} & \sum x_{2,i}^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_{1,i} y_i \\ \sum x_{2,i} y_i \end{bmatrix}$$

Example. The following data were created from the equation $y = 5 + 4x_1 - 3x_2$:

у	x_1	x_2	x_{1}^{2}	x_{2}^{2}	x_1x_2	x_1y	x_2y
5	0	0					
10	2	1					
9	2.5	2					
0	1	3					
3	4	6					
27	7	2					
54	16.5	14	76.25	54	48	243.5	00

Observation and extension
$$\hat{y} = \alpha_0 + \alpha_1 \gamma + \alpha_2 \gamma + \alpha_3 \gamma + \alpha_4 \gamma \gamma \gamma$$
We have introduced three types of regression: simple linear, polynomial, and

we limit a linear. In fact, all three belong to the following general linear least agreence.

multiple linear. In fact, all three belong to the following general linear least-squares model:

$$\hat{y} = Q_0 Z_0 + Q_1 Z_1 + \cdots \rightarrow Q_m Z_m$$

$$y = a_0 z_0 + a_1 z_1 + a_2 z_2 + \cdots + a_m z_m + e$$

Where z_i 's are m + 1 basis functions.

• Simple regression: $z_0 = 1, z_1 = x$ • Simple regression: $z_0 = 1, z_1 = x$ • $y = a_0 c_0 c_0 + a_1 c_0 c_0 c_0$

• Polynomial regression: $z_0=1, z_1=x, z_2=x^2, \dots, z_m=x^m$

Note that the terminology "linear" refers only to the model's dependence on its parameters. As another example, the z's can be sinusoids, as in

$$y = a_0 + a_1 \cos(\omega x) + a_2 \sin(\omega x)$$

The sum of the squares of the residuals for this model can be defined as

$$S_r = \sum_{i=1}^{n} (y_i - a_0 - a_1 z_{1,i} - a_2 z_{2,i} - \dots - a_m z_{m,i})^2$$

where $(z_{j,i}) \neq z_j(x_{1,i},...,x_{n,i})$. Again, to find the coefficients, we need to solve the following system of linear equations.

In case $n \ge m + 1$, the solution for coefficient vector will be obtained from solving the following normal equations:

$$(Z^T Z)(a) = Z^T y$$

$$7$$

Example. Use Matlab and $z_0 = \int z_1 z_2 = x^2$ to fit a quadratic function for the following data.

x_i	y_i
0	2.1
1	7.7
2	13.6
3	27.2
4	40.9
5	61.1

Solution. Note that the backslash function (that is $w=A \setminus b$ for solving Aw = b) uses QR factorization which is more robust approach for ill-conditioned problems.

$$Z = [ones(size(x)) \times x.^2]$$

$$\Rightarrow a = (Z'*Z) \setminus (Z'*y)$$

$$Z = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}$$

$$\Rightarrow a = (Z'*Z) \setminus (Z'*y)$$

$$\Rightarrow a = (Z'*Z) \setminus (Z'*Z)$$

$$\Rightarrow a = (Z'*Z)$$

$$\Rightarrow a = (Z'*Z) \setminus (Z'*Z)$$

$$\Rightarrow a = ($$

References

- Chapra, Steven C. (2018). Numerical Methods with MATLAB for Engineers and Scientists, 4th Ed. McGraw Hill.
 Burden, Richard L., Faires, J. Douglas (2011). Numerical Analysis, 9th Ed.
- Brooks/Cole Cengage Learning