Décisions et Jeux

Arbres de décision-chance

Pierre-Henri WUILLEMIN

LIP6

pierre-henri.wuillemin@lip6.fr

moodle https://moodle-sciences-22.sorbonne-universite.fr/course/view.php?id=4521
mattermost https://channel.lip6.fr/etudmasterandro/channels/coursdj23fev

Existence d'une utilité linéaire

Une fonction f est dite linéaire $\iff f(\lambda \cdot x + \beta \cdot y) = \lambda \cdot f(x) + \beta \cdot f(y)$

Théorème (VNM)

Sous les axiomes 1,2 et 3, il existe sur (\mathcal{P},\succeq) une fonction d'utilité linéaire, unique à une transformation affine, strictement croissante près.

C'est-à-dire qu'il existe une fonction U vérifiant :

- ② Pour tout mixage (P, P', λ) , $U(\lambda \cdot P + (1 \lambda) \cdot P') = \lambda \cdot U(P) + (1 \lambda) \cdot U(P')$
- **3** Si V vérifie (1) et (2), alors $\exists a > 0, b, \forall P, V(P) = a \cdot U(P) + b$

Une utilité linéaire est aussi appelée utilité ou indice de Bernoulli.

Un petit exercice

Comparaison de loteries

Soit les 3 loteries suivantes :

Un agent rationnel au sens de vNM est indifférent entre les loteries A et B ci-dessous. Préfère-t-il A à C ou le contraire?

Arbre de décision-chance

On a donc un cadre permettant de résoudre (moyennant quelques hypothèses) le problème de sélection de la décision optimale. Quel outil pratique pour des problèmes plus omplexes

Arbre de décision-chance

Lorsque une situation de décision dans le risque peut se décomposer en un nombre fini de décisions, dont la possibilité de réalisation peut être conditionnelle à un nombre fini d'évènements, il est commode de lui associer une représentation graphique appelée arbre

il est commode de lui associer une représentation graphique appelée arbre de décision-chance.

Arbre de décision-chance

▶ Définition

Un arbre de décision-chance est une arborescence (orientée) dont :

- chaque nœud non terminal représente soit un nœud de décision (carré), soit un nœud d'information (rond),
- chaque arc issu d'un nœud de décision représente une décision pouvant être prise en ce sommet,
- chaque arc issu d'un nœud d'information représente un évènement d'une partition de l'évènement certain décrivant l'information de ce sommet,
- chaque feuille représente une résultat c atteint par la séquence de décisions/évènements issue de la racine.
- On note que la racine est souvent (mais pas forcément) un nœud de décision.
- Chaque nœud de décision représente une prise de décision faite dans la connaissance complète de l'état actuel des connaissances (hypothèse de la mémoire parfaite.)

Un arbre de décision-chance

Stratégie

▶ Définition (Stratégie de décision)

Soit un arbre de décision-chance \mathcal{T} , une stratégie de décisions (\mathcal{S}) se définit comme la sélection en tout nœud de décision de \mathcal{T} d'une décision d appartenant

Loi engendrée par une stratégie

▶ Définition (Loi engendrée)

Á toute stratégie S dans un arbre de décision-chance T, correspond une loi de probabilité P_S sur l'espace des conséquences dite loi engendrée par la stratégie S.

Á toute stratégie ${\cal S}$ dans un arbre de décision-chance ${\cal T}$, correspond donc une loterie sur l'espace des conséquences.

Résolution d'un arbre de décision-chance

On suppose que le Décideur se comporte dans le risque conformément au modèle de VNM, indépendamment du contexte :

- Ses préférences sont représentés par la maximalisation de l'espérance de son utilité de VNM.
- ② En tout sommet de décision, ses préférences ne dépendent que des données du sous-arbre de décision-chance issus (conséquentialisme).
- Son utilité de VNM est la même à tout sommet de l'arbre (invariance des préférences).

Théorème

La stratégie optimale est la stratégie dont la loi engendrée maximise la valeur de l'utilité parmi les lois engendrées par les différentes stratégies.

Stratégie optimale de l'arbre de décision-chance

Étant donné ·

- un arbre de décision-chance T
- une utilité de VNM u(c) sur les conséquences aux feuilles de \mathcal{T} ,
- Σ_T l'ensemble des stratégies sur T,

$$\forall \mathcal{S}, \mathcal{S}' \in \Sigma_{\mathcal{T}}, \mathcal{S} \succsim \mathcal{S}' \iff P_{\mathcal{S}} \succsim P_{\mathcal{S}'} \iff \mathbb{E}_{P_{\mathcal{S}}}[u] \geq \mathbb{E}_{P_{\mathcal{S}}'}[u]$$

Stratégie optimale d'un arbre de décision-chance

Soit \mathcal{T} et u.

résoudre
$$\mathcal{S}^* = \arg\max_{\mathcal{S} \in \Sigma_{\mathcal{T}}} \mathbb{E}_{P_{\mathcal{S}}}\left[u\right]$$

On a donc un algorithme de calcul de la stratégie optimale \mathcal{S}^* :

- $\bigcirc \forall S \in \Sigma_{\mathcal{T}}$,
 - Calculer Ps
 - Construire la loterie équivalente et y calculer $U(S) = \mathbb{E}_{P_S}[u]$
 - Conserver le meilleur couple $\langle S, U(S) \rangle$
- S* est la stratégie conservée à la fin de la boucle ci-dessus.

Explosion combinatoire de $|\Sigma_{\mathcal{T}}|$

Programmation dynamique : plus court chemin de A à K

Propriété (Programmation dynamique)

Tout sous-chemin (arrivant en K) du chemin minimal est minimal.

Sous-arbre et sous-stratégie

▶ Définition

Un sous-arbre de décision-chance est obtenu en isolant un sous-graphe de l'arbre de décision-chance contenant un de ses nœuds et l'ensemble de ses descendants. Un sous-arbre de décision-chance est un arbre de décision-chance. Une sous-stratégie de décision est une stratégie de décision dans un sous-arbre de décision-chance.

Résolution d'un arbre de décision-chance (2)

Évaluer chaque stratégie est une tâche complexe impliquant une explosition combinatoire en fonction de la taille de l'arbre.

Résolution d'un arbre de décision-chance par induction arrière

- ① Toute feuille contenant un résultat c est évalué à u(c).
- Tout nœud de chance dont tous les enfants ont été évalués peut être évalué par l'espérance des évaluations des enfants, en fonction de la distribution du nœud.
- Tout nœud de décision dont tous les enfants ont été évalués peut être évalué par la valeur maximale des évaluations des enfants. On note alors la branche correspondant à cette valeur maximale : c'est la décision optimale en ce nœud.

La procédure se termine quand le nœud racine est évalué.

Résolution : exemple

Limite du modèle : paradoxe d'Allais

Choisir entre:

$$\bullet$$
 $P = \delta_{10}$;

•
$$P' = \frac{10}{11}\delta_{50} + \frac{1}{11}\delta_0$$

Limite du modèle : pompe monétaire

Soient $P,\,P',\,Q\in\mathcal{P}$ et $\lambda\in[0,\,1],\,R=\lambda P+(1-\lambda)Q$ et $R'=\lambda P'+(1-\lambda)Q$ Supposons $P\succ P'$ et pourtant $R'\succ R$. On propose au Décideur :

- (L1) de choisir entre R' et R (en choisissant entre P et P');
- (L2) de payer M pour pouvoir choisir entre R' et R.
 Le Décideur va choisir de payer M pour ne pas avoir à décider entre P et P'.

