EE787 Autumn 2019 Jong-Han Kim

Multi-Class Classification

Jong-Han Kim

EE787 Machine learning Kyung Hee University

Multi-class classification

Multi-class classification

- $lackbox{\it classification}$ is multi-class when raw output variable v is a categorical $v \in \mathcal{V} = \{v_1, \dots, v_K\}$ with K > 2
- \triangleright v_i are called *classes* or *labels*
- we'll also denote them as $1, \ldots, K$
- examples:
 - $\triangleright \mathcal{V} = \{\text{YES, MAYBE, NO}\}$
 - $\mathcal{V} = \{$ ALBANIA, AZERBAIJAN, ... $\}$
 - $\triangleright \mathcal{V} = \{\text{HINDI, TAMIL, }...\}$
 - \triangleright \mathcal{V} = set of English words in some dictionary
 - \triangleright $\mathcal{V} = \text{set of } m!$ possible orders of m horses in a race
- lacktriangleright a *classifier* predicts label \hat{v} given raw input u
- called a K-class classifier

Confusion matrix

Confusion matrix

- ightharpoonup measure performance of a specific predictor on a data set with n records
- lacktriangleright for each data record i, there are K^2 possible values of (\hat{v}^i, v^i)
- \blacktriangleright $K \times K$ confusion matrix is defined by

$$C_{ij}=\#$$
 records with $\hat{v}=v_i$ and $v=v_j$

- \blacktriangleright entries in C add up to n
- ▶ column sums of C give number of records in each class in the data set
- $ightharpoonup C_{ii}$ is the number of times we predict v_i correctly
- $lackbox{} C_{ij}$ for i
 eq j is the number of times we mistook v_j for v_i
- lacktriangle there are K(K-1) different types of errors we can make
- ▶ there are K(K-1) different error rates, C_{ij}/n , $i \neq j$

Neyman-Pearson error

- $igspace{}{igspace{}{}} E_j = \sum_{i
 eq j} C_{ij}$ is number of times we mistook v_j for another class
- $ightharpoonup E_j/n$ is the error rate of mistaking v_j
- ▶ we will scalarize these K error rates using a weighted sum
- ▶ the Neyman-Pearson error is

$$\sum_{j=1}^K \kappa_j E_j = \sum_{i
eq j} \kappa_j C_{ij}$$

where κ is a weight vector with nonnegative entries

- lacksquare κ_j is how much we care about mistaking v_j
- for $\kappa_i = 1$ for all i, Neyman-Pearson error is the error rate

Embedding

Embedding v

- we embed raw output $v \in \mathcal{V}$ into \mathbf{R}^m as $y = \psi(v) \in \mathbf{R}^m$ (cf. boolean classification, where we embed v into \mathbf{R})
- we can describe ψ by the K vectors $\psi_1 = \psi(v_1), \dots, \psi_K = \psi(v_K)$ (i.e., just say what vector in \mathbb{R}^m each $v \in \mathcal{V}$ maps to)
- lacktriangle we call the vector ψ_i the *representative* of v_i
- we call the set $\{\psi_1, \dots, \psi_K\}$ the *constellation*
- examples:
 - ▶ TRUE \mapsto 1, FALSE \mapsto -1
 - ▶ YES \mapsto 1, MAYBE \mapsto 0 NO \mapsto -1
 - ightharpoonup yes \mapsto (1,0), maybe \mapsto (0,0), no \mapsto (0,1)
 - ▶ APPLE \mapsto (1,0,0), ORANGE \mapsto (0,1,0), BANANA \mapsto (0,0,1)
 - ▶ (Horse 3, Horse 1, Horse 2) \mapsto (3, 1, 2)
 - word2vec (maps 1M words to vectors in R³⁰⁰)

One-hot embedding

- ightharpoonup a simple generic embedding of K classes into \mathbf{R}^K
- $\blacktriangleright \ \psi(v_i) = \psi_i = e_i$

- ▶ variation (embedding K classes into R^{K-1}):
 - lacktriangle choose one of the classes as the *default*, and map it to $0 \in \mathbf{R}^{K-1}$
 - lacktriangle map the others to the unit vectors $e_1,\ldots,e_{K-1}\in \mathsf{R}^{K-1}$

Nearest neighbor un-embedding

- **b** given prediction $\hat{y} \in \mathbb{R}^m$, we *un-embed* to get \hat{v}
- lacktriangle we denote our un-emdedding using the symbol $\psi^\dagger:{f R}^m o{\cal V}$
- lacktriangle we *define* the un-embedding function ψ^\dagger as

$$\psi^{\dagger}(\hat{y}) = \operatorname*{argmin}_{v \in \mathcal{V}} ||\hat{y} - \psi(v)||$$

(we can break ties any way we like)

- ▶ i.e., we choose the raw value associated with the nearest representative
- called nearest neighbor un-embedding

Un-embedding boolean

$$lacktriangledown$$
 embed true $\mapsto 1=\psi_1$ and false $\mapsto -1=\psi_2$

un-embed via

$$\psi^{\dagger}(\hat{y}) = egin{cases} ext{TRUE} & \hat{y} \geq 0 \ ext{FALSE} & \hat{y} < 0 \end{cases}$$

Un-embedding yes, maybe, no

- lacktriangle embed YES \mapsto (1,0), MAYBE \mapsto (0,0), NO \mapsto (0,1)
- un-embed via

$$\psi^{\dagger}(\hat{y}) = egin{cases} ext{YES} & \hat{y}_1 > 1/2, \; \hat{y}_1 > \hat{y}_2 \ ext{MAYBE} & \hat{y}_1 < 1/2, \; \hat{y}_2 < 1/2 \ ext{NO} & \hat{y}_2 > 1/2, \; \hat{y}_1 < \hat{y}_2 \end{cases}$$

(can choose any value on boundaries)

Un-embedding one-hot

- lacksquare one-hot embedding: $\psi_i=e_i,\ i=1,\ldots,K$
- lacksquare un-embed via $\psi^\dagger(y) = \mathop{
 m argmin}
 olimits_i ||y e_i||_2 = \mathop{
 m argmax}
 olimits_i y_i$
- intuition:
 - > you can subtract one from one component of a vector
 - ▶ to get the smallest norm
 - best choice is the largest entry of the vector

Voronoi diagram

- lacksquare ψ^{\dagger} partitions \mathbf{R}^m into the K regions $\{y \mid \psi^{\dagger}(y) = v_i\}$, for $i = 1, \dots, K$
- regions are polyhedra
- ▶ called *Voronoi diagram*
- ightharpoonup boundaries between regions are perpendicular bisectors between pairs of representatives ψ_i, ψ_j

Margins

Margins and decision boundaries

- lacktriangle given prediction $\hat{y} \in \mathbf{R}^m$, we un-embed via $\hat{v} = \psi^\dagger(\hat{y})$
- $m{\psi}^{\dagger}(\hat{y})=v_{j}$ when \hat{y} is closer to ψ_{j} than the other representatives, *i.e.*,

$$||\hat{y} - \psi_j|| < ||\hat{y} - \psi_i||$$
 for $i \neq j$

 \blacktriangleright define the *negative margin* function M_{ij} by

$$\begin{aligned} M_{ij}(\hat{y}) &= \left(||\hat{y} - \psi_j||^2 - ||\hat{y} - \psi_i||^2 \right) / \left(2||\psi_i - \psi_j|| \right) \\ &= \frac{2(\psi_i - \psi_j)^\mathsf{T} \hat{y} + ||\psi_j||^2 - ||\psi_i||^2}{2||\psi_i - \psi_j||} \end{aligned}$$

lacksquare so $\psi^{\dagger}(\hat{y}) = v_j$ when $M_{ij}(\hat{y}) < 0$ for all $i \neq j$

Margins and decision boundaries

linear equation

$$M_{ij}(\hat{y})=0$$

defines a $\emph{hyperplane}$ called the $\emph{perpendicular bisector}$ between ψ_i and ψ_j

- lacktriangle it is the *decision boundary* between ψ_i and ψ_j
- $ightharpoonup \hat{y}$ is the correct prediction, when $v=v_j$, if

$$\max_{i
eq j} M_{ij}(\hat{y}) < 0$$

Margins and decision boundaries

 $lackbox{boolean:}\; \psi_1 = -1 \; {\sf and} \; \psi_2 = 1 \; {\sf and} \;$

$$M_{21}(\hat{y}) = \hat{y} \qquad M_{12}(\hat{y}) = -\hat{y}$$

lacktriangle one-hot: $\psi_j=e_j$ for all j, so

$$M_{ij}=rac{y_i-y_j}{\sqrt{2}}$$

Margins

Vector ERM

Vector prediction

- lacktriangle after embedding raw data u and v we have data pair (x,y)
- lacktriangle the target y is a *vector* (which takes only the values ψ_1,\ldots,ψ_K)
- ightharpoonup predictor is a function $g: \mathbf{R}^d o \mathbf{R}^m$
- lacktriangle our final (raw) prediction is $\hat{v}=\psi^\dagger(\hat{y})$

Vector linear predictor

- lacktriangle vector linear predictor has form $\hat{y} = g(x) = \theta^{\mathsf{T}} x$
- lacktriangle same form as when y is a scalar, but here heta is a $d \times m$ parameter matrix
- $ightharpoonup heta_{23}$ is how much x_2 affects \hat{y}_3
- lacktriangledown reduces to the usual parameter vector when m=1 (i.e., y is scalar)

Vector ERM

- ▶ linear model $\hat{y} = \theta^{\mathsf{T}} x$, $\theta \in \mathbf{R}^{d \times m}$
- lacktriangle choose parameter matrix heta to minimize $\mathcal{L}(heta) + \lambda r(heta)$
- \triangleright $\mathcal{L}(\theta)$ is the empirical risk

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell(\hat{y}^i, y^i) = rac{1}{n} \sum_{i=1}^n \ell(heta^{ extsf{T}} x^i, y^i)$$

with loss function $\ell: \mathbf{R}^m \times \mathbf{R}^m \to \mathbf{R}$ (i.e., ℓ takes two arguments, each in \mathbf{R}^m)

- $ightharpoonup \lambda \geq 0$ is regularization parameter
- ightharpoonup r(heta) is the regularizer

Derivative of the empirical risk

- $lackbox{loss } \mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell(heta^\mathsf{T} x^i, y^i)$
- we'd like to apply the gradient method
- \blacktriangleright $D\mathcal{L}(\theta)$ is the derivative of \mathcal{L} with respect to θ (a matrix)
- we have

$$(D\mathcal{L}(\theta))_{ij} = \frac{\partial \mathcal{L}(\theta)}{\partial \theta_{ij}}$$

▶ then the first-order Taylor approximation is

$$\mathcal{L}(\theta + \delta\theta) \approx \mathcal{L}(\theta) + \mathsf{trace}(D\mathcal{L}(\theta)^{\mathsf{T}}\delta\theta)$$

we have

$$D\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n x^i ig(
abla_1 \ell(heta^ op x^i, y^i) ig)^ op$$

where ∇_1 means the gradient with respect to the first argument

Matrix regularizers

Matrix regularizers

- general penalty regularizer: $r(\theta) = \sum_{i=1}^d \sum_{j=1}^m q(\theta_{ij})$
- lacksquare sum square regularizer: $r(heta) = || heta||_F^2 = \sum_{i=1}^d \sum_{j=1}^m heta_{ij}^2$
- lacktriangle the *Frobenius norm* of a matrix heta is $\left(\sum_{i,j} heta_{ij}^2\right)^{1/2}$
- lacksquare sum absolute or ℓ_1 regularizer: $r(heta) = || heta||_1 = \sum_{i=1}^d \sum_{j=1}^m | heta_{ij}|$

Multi-class loss functions

Multi-class loss functions

- \blacktriangleright $\ell(\hat{y},y)$ is how much prediction \hat{y} bothers us when observed value is y
- lackbox but the only possible values of y are ψ_1,\ldots,ψ_K
- ightharpoonup so we can simply give the K functions of \hat{y}

$$\ell(\hat{y},\psi_j), \quad j=1,\ldots,K$$

ullet $\ell(\hat{y},\psi_j)$ is how much we dislike predicting \hat{y} when $y=\psi_j$

Neyman-Pearson loss

▶ Neyman-Pearson loss is

$$\ell^{\mathsf{NP}}(\hat{y},\psi_j) = egin{cases} 0 & ext{if } \mathsf{max}_{i
eq j} \ M_{ij} < 0 \ \kappa_j & ext{otherwise} \end{cases}$$

- lacktriangle Neyman-Pearson risk $\mathcal{L}^{\sf NP}(heta)$ is the Neyman-Pearson error
- ▶ but $\nabla \mathcal{L}^{NP}(\theta)$ is either zero or undefined
- lacktriangle so there's no gradient to tell us which way to change heta to reduce $\mathcal{L}(heta)$

Proxy loss

- we will use a proxy loss that
 - approximates, or at least captures the flavor of, the Neyman-Pearson loss
 - ▶ is more easily optimized (e.g., is convex or has nonzero derivative)

- we want a proxy loss function
 - lacksquare with $\ell(\hat{y},\psi_j)$ small whenever $M_{ij}<0$ for i
 eq j
 - and not small otherwise
 - ▶ which has other nice characteristics, e.g., differentiable or convex

Multi-class hinge loss

hinge loss is

$$\ell(\hat{y},\psi_j) = \kappa_j \max_{i
eq j} (1+M_{ij}(\hat{y}))_+$$

- ullet $\ell(\hat{y},\psi_j)$ is zero when the correct prediction is made, with a margin at least one
- convex but not differentiable
- ▶ for boolean embedding with $\psi_1 = -1$, $\psi_2 = 1$, reduces to

$$\ell(\hat{y},-1) = \kappa_1(1+\hat{y})_+, \qquad \ell(\hat{y},1) = \kappa_2(1-\hat{y})_+$$

usual hinge loss when $\kappa_1=1$

Multi-class hinge loss

Multi-class logistic loss

▶ logistic loss is

$$\ell(\hat{y}, \psi_j) = \kappa_j \log \left(\sum_{i=1}^K \exp(M_{ij}(\hat{y}))
ight)$$

- ▶ recall that $M_{jj} = 0$
- convex and differentiable
- ▶ for boolean embedding with $\psi_1 = -1$, $\psi_2 = 1$, reduces to

$$\ell(\hat{y},-1)=\kappa_1\log(1+e^{\hat{y}}), \qquad \ell(\hat{y},1)=\kappa_2\log(1+e^{-\hat{y}})$$

usual logistic loss when $\kappa_1=1$

Multi-class logistic loss

Soft-max function

▶ the function $f: \mathbb{R}^n \to \mathbb{R}$

$$f(x) = \log \sum_{i=1}^n \exp(x_i)$$

is called the *log-sum-exp* function

- ▶ it is a convex differentiable approximation to the max function
- we have

$$\max\{x_1,\ldots,x_n\} \leq f(x) \leq \max\{x_1,\ldots,x_n\} + \log(n)$$

Example: Iris

Example: Iris

- ▶ famous example dataset by Fisher, 1936
- ▶ measurements of 150 plants, 50 from each of 3 species
- ▶ iris setosa, iris versicolor, iris virginica
- ▶ four measurements: sepal length, sepal width, petal length, petal width

Example: Iris

Classification with two features

- using only sepal_length and sepal_width
- ▶ one-hot embedding, multi-class logistic loss

Classification with two features

- ▶ let θ_i be the *i*th column of θ
- $lackbox{ plot shows } heta_i^{\mathsf{T}} \phi(u)$ as function of u
- $lackbox{ one-hot embedding of } v$, so un-embedding is $\hat{v} = \arg\max_i \theta_i^{\mathsf{T}} x$

Example: Iris confusion matrix

- lacktriangle we train using multi-class logistic loss, with $\kappa_i=$ for all i
- ▶ for this example, train using all the data
- resulting confusion matrix is

$$C = \left[\begin{array}{ccc} 50 & 0 & 0 \\ 0 & 49 & 1 \\ 0 & 1 & 49 \end{array} \right]$$