

Reginald H. Garrett Charles M. Grisham

www.cengage.com/chemistry/garrett

Chapter 1 The Facts of Life: Chemistry is the Logic of Biological Phenomena

© 2005 Brooks/Cole - Thomson BROOKS/COLE

© 2005 Brooks/Cole - Thomson

From the Science Section of the Dallas Morning News

BRANCHING

Last month, biologists announced that they had completely sequenced the DNA - the cellular blueprints - of an organism called Methanococcus jannaschii. The domain of organisms to which this one belonged - the archaea has been recognized by biologists as a distinct group for several years. New genetic evidence, however, indicates that the archaea are far more diverse than previously believed. Moreover, knowing the gene sequence of an archaea is helping biologists get a clearer picture of the evolution of life on Earth.

OLD SYSTEM

The outdated five-kingdom tree of life illustrated traditional ideas about how living species were believed to be related to one another. Until new research techniques revolutionized the field, biologists described five major groups of life — bacteria,

plants, fungi, protists (such as the amoeba) and animals. While the bacterial kingdom diverged from the other four kingdoms almost 3 billion years ago, the fungal and animal kingdoms began on their separate evolutionary paths more recently.

How Many Genes Does a Cell Need?

TABLE 1.6 How Many Genes Does It Take To	Make An Organ	nism?
Organism	Number of Cells in Adult*	Number of Genes
Mycobacterium genitalium (Mycoplasma genitalium	1) 1	523
Pathogenic bacterium		
Methanococcus jannaschii	1	1,800
Archaeal methanogen		
Escherichia coli K12	1	4,400
Intestinal bacterium		
Saccharomyces cereviseae	1	6,000
Baker's yeast (eukaryote)		
Caenorhabditis elegans	959	19,000
Nematode worm		
Drosophila melanogaster	10 ⁴	13,500
Fruit fly		
Arabidopsis thaliana	10 ⁷	27,000
Flowering plant		
Fugu rubripes	10^{12}	26,700 (est.)
Pufferfish		
Homo sapiens	10 ¹⁴	20,500 (est.)
Human		

Figure 17.2 A metabolic map, indicating the reactions of intermediary metabolism and the enzymes that catalyze them. More than 500 different chemical intermediates, or metabolites, and a greater number of enzymes are represented here.

For a detailed look go to:

http://www.sigmaaldrich .com/etc/medialib/docs/ Sigma-Aldrich/General_I nformation/metabolicpat hways_updated_02_07.Par .0001.File.tmp/metaboli c_pathways_poster.pdf

Outline

- Three Domains of Life Biochemistry in Common
- Chemical Elements of Life
- Functional Groups of Biomolecules
- Biopolymers
- Weak Forces
- Bond Energies

1.2 What Kinds of Molecules are Biomolecules?

 H, O, C and N make up 99+% of atoms in the human body

ELEMENT	PERCENTAGE
Hydrogen	63
Oxygen	25.5
Carbon	9.5
Nitrogen	1.4

Elements highlighted in red comprise 99.9% of human body Elements highlighted in green are essential trace elements in human body

Elements highlighted in blue are trace elements found in some organisms

Periodic Table of the Elements

Period	Group la	Group Ila	Group IIIa	Group IVa	Group Va	Group Vla	Group VIIa		Group VIII		Group	Group IIb	Group IIIb	Group IVb	Group Vb	Group VIb	Group VIIb	Group
1 1s	1 H																1	2 He
2 2s2p	3 Li	4 Be											5 B	6	7 N	8	9 F	IO Ne
3 3s3p	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4 4s3d 4p	19 K	20 Ca	21 Sc	Z2 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5 5s4d 5p	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6 6s (4f) 5d 6p	SS Ca	56 Ba	57* La	72 Hf	73 To	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7 7s (5f) 6d	87 Fr	88 Ra	89** Ac						J. 11 11 11 11 11 11 11 11 11 11 11 11 11									

*Lanthanide series 4f	S8 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
**Actinide series 5f	90 Th	91 Pa	92 U	-93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	IOI Md	102 No(?)	103 Lw

What are the major ions of life?

Major Functional Groups in Biomolecules

M	DE	
		-
		1

Ionized Form	Structure	Name
74	-)c -0H	HYDROXYL
.0	C=0	CARBONYL
-C"0- =	- C (0H	CARBOXYL
-c-NH3 -	- C-NH2	AMINO
	C=NH	IMINO
-,c-s- =	-,C-5H	THIOL
·) C-0-P=0 =	-C-0-P=0	PHOSPHATE

Figure 1.8 Molecular organization in the cell is a hierarchy.

Fig.1.9 Biopolymers (aka. macromolecules)

Amino acids build proteins

Fig.1.9 Biopolymers (aka. macromolecules)

Polysaccharides are built by joining sugars together

Fig.1.9 Biopolymers (aka. macromolecules)

Nucleic acids are polymers of nucleotides

The Major Biopolymers

Sec. 1.4 Properties of Biomolecules Reflect Their Fitness to the Living Condition

 Macromolecules and their building blocks have a "sense" or directionality

Macromolecules are informational

Biomolecules have characteristic three-dimensional architecture

Figure 1.17 Denaturation and renaturation of the intricate structure of a protein.

Weak Forces

Maintain Biological Structure

Determine Biomolecular Interactions

Weak Interaction	Electrostatic Model	Example	E(r)
charge - charge	a	, тн, -, с-	r-1
charge - dipole	+ q _ q ·	-NH3 40 4+	r-2
dipole - dipole	q q q q	40 4 40 4 H	r-3
charge - induced dipole	+ 000	- N H₃	r -4
dipole - induced dipole	q q q q	9 0 + (q-q+)	r-5
dispersion		9	r -6
van der waals repulsion	XX	8	r-12
hydrogen bond	Donor Acceptor	N—H···O—C Hydrogen bond length	Fixed bond length

THOMSON

BROOKS/COLE

Coulomb's Law for electrostatic interactions

$$F = \frac{k g_1 g_2}{\epsilon r^2}$$

$$E = \frac{kg_1g_2}{\epsilon} \int_{r}^{\infty} \frac{1}{r^2} dr$$

$$= \frac{kg_1g_2}{\epsilon r}$$

Terms for energy: 1 cal = 4.184 joules

Van der Waals Interactions E(distance of separation, r)

Fig. 1.12 Van der Waals Forces Are Important to Biomolecular Interactions

Van der Waals packing is enhanced in molecules that are structurally complementary. Gln¹²¹ represents a surface protuberance on the protein lysozyme. This protuberance fits nicely within a pocket (formed by Tyr¹⁰¹, Tyr³², Phe⁹¹, and Trp⁹²) in the antigen-binding domain of an antibody raised against lysozyme. (See also Figure 1.16.) (a) A ball-and-stick model. (b) A space-filling representation. (*From* Science **233**:751 (1986), figure 5.)

Fig. 1.14 Some biologically important H bonds

H bonds Bonded atoms	Approximate bond length*
O—HO O—HN O—HO N—HO N—HN	0.27 nm 0.26 nm 0.29 nm 0.30 nm 0.29 nm 0.31 nm

*Lengths given are distances from the atom covalently linked to the H to the atom H bonded to the hydrogen:

$$O - H - - - O$$

 $\leftarrow 0.27 \text{ nm} \rightarrow$

Figure 1.14

Some of the biologically important functional groups that serve as H bond donors and acceptors.

Functional groups that are important H-bond donors and acceptors:

Donors

$$-c$$
OH \rightarrow

$$-C - OH \rightarrow$$

Acceptors

Fig. 1.14 Some biologically important H bonds

H bonds Bonded atoms	Approximate bond length*
O—HO O—HN O—HO N—HO N—HN	0.27 nm 0.26 nm 0.29 nm 0.30 nm 0.29 nm 0.31 nm

*Lengths given are distances from the atom covalently linked to the H to the atom H bonded to the hydrogen:

$$O \longrightarrow H = --C$$

 $\leftarrow 0.27 \text{ nm} \rightarrow$

Covalent and Noncovalent Bond Energies

Bond	Strength (kJ/mol)
C - H	414
C - OH	351
C-C	343
C - NH	292
Van der Waals and dipole interactions	0.4 - 4.0
H-bonds	12 - 30
lonic (aka. Charge - Charge)	20
Hydrophobic Interactions	<40
(not a specific bond, but energy derived from changes in H-bonding in the solvent H ₂ O)	

Two Important Points About Weak Forces

 Biomolecular Recognition is Mediated by Weak Chemical Forces

 Weak Forces Restrict Organisms to a Narrow Range of Environmental Conditions