Homological Algebra

Ikhan Choi Lectured by Takeshi Tsuji University of Tokyo, Spring 2023

April 20, 2023

Contents

1 Day 1: April 6			
	1.1 Commutative diagrams and exact sequences	2	
	1.2 Direct sum, direct product, inductive limit, direct limit	4	
2 Day 2: April 13			
3	Day 3: April 20	7	

1 Day 1: April 6

1. Modules

References: Atsushi Shiho, Yukiyoshi Kawada

1.1. R-modules

Definition 1.1. Let *R* be a ring with 1. A (left) *R*-module is an abelian group *M* with a map $R \times M \rightarrow M$: $(a, x) \mapsto ax$ satisfying a(x + y) = ax + ay, (a + b)x = ax + bx, (ab)x = a(bx), 1x = x.

Example 1.2. (a) Every abelian group is a \mathbb{Z} -module. The R-module structures on an abelian group M has 1-1 correspondence with the ring homomorphisms $R \to \operatorname{End}_{\mathbb{Z}}(M)$.

(b)
$$M = C^{\infty}(\mathbb{R}), R = \mathbb{R}[T]$$
 a polynomial ring, $R \times M \to M : (P(T), f(x)) \mapsto P(\frac{d}{dx})f(x)$.

Definition 1.3. A (left) *R*-submodule of *M* is a subgroup $N \subset M$ such that $ax \in N$ for $a \in R$, $x \in N$. A (left) *R*-homomorphism is a group homomorphism $M \to N$ which preserves the action of *R*.

Example 1.4. (a) $M = C^{\infty}(\mathbb{R}), R = \mathbb{R}[T]$, then $\varphi : M \to M : f(x) \mapsto f(x+1)$ is an R-homomorphism.

Definition 1.5. Let $f: M \to N$ be an R-homomorphism. The kernel of f is $\ker f := \{x \in M : f(x) = 0\} \xrightarrow{i} M$, and the cokernel of f is $N \xrightarrow{p} \operatorname{coker} f := N / \operatorname{im} f$, where the image is $\operatorname{im} f := \{f(x) \in N : x \in M\} \xrightarrow{j} N$.

$$\ker f \xrightarrow{i} M \xrightarrow{f} N \xrightarrow{p} \operatorname{coker} f$$

$$\lim f$$

On each of them, there is a unique R-module structure such that the each map i, j, p becomes an R-homomorphism respectively.

Theorem 1.6 (Universal property). For the above setting, note that fi = 0 and pf = 0. If an R-homomorphism $g: M' \to M$ satisfies fg = 0, then there is a unique R-homomorphism $h: M' \to \ker f$ such that g = ih. If an R-homomorphism $g: N \to N'$ satisfies gf = 0, then there is a unique R-homomorphism $h: \operatorname{coker} f \to N'$ such that g = hp.

1.1 Commutative diagrams and exact sequences

Definition 1.7 (Diagram). Among some *R*-modules suppose we have *R*-homomorphisms as the following diagram:

$$\begin{array}{ccc}
M_1 & \xrightarrow{f_1} & M_2 \\
f_3 \downarrow & & \downarrow g_1 \\
M_3 & \xrightarrow{g_2} & M_4 & .
\end{array}$$

Then, if the compositions sharing each source and target coincide, then we say the diagram is commutative. For example, we say the triangle formed by M_2 , M_3 , M_4 is commutative iff $g_1 = g_2 f_2$.

Definition 1.8 (Sequence). A sequence is a diagram of R-modules placed linearly as

$$\cdots \longrightarrow M_n \xrightarrow{f_n} M_{n+1} \xrightarrow{f_{n+1}} M_{n+2} \longrightarrow \cdots.$$

2

If $im f_n = \ker f_{n+1}$ for all n, then we say the sequence is exact.

Example 1.9. (a) $f: M \to N$ is injective iff $0 \to M \xrightarrow{f} N$ is exact. $f: M \to N$ is surjective iff $M \xrightarrow{f} N \to 0$ is exact.

(b)
$$0 \longrightarrow \ker f \xrightarrow{i} M \xrightarrow{f} N \xrightarrow{p} \operatorname{coker} f \longrightarrow 0$$

is exact.

(c)
$$0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0$$

is exact.

(d) $0 \to \mathbb{R} \cos x \oplus \mathbb{R} \sin x \xrightarrow{n} C^{\infty}(\mathbb{R}) \xrightarrow{\frac{d^2}{dx^2} + 1} C^{\infty}(\mathbb{R}) \to 0$

is exact.

Proposition 1.10 (Five lemma). Suppose each row is exact in the folloing commutative diagram:

Then,

(a)

(b)

(c)

Proof. (a) We will show $x \in \ker h_3$ is in the image of f_2f_1 : $h_3(x) = 0 \implies f_3(x) = 0 \implies x = f_2(y) \implies g_2h_2(y) = 0 \implies h_2(y) = g_1(z) \implies z = h_1(u) \implies f_1(u) = y$. Then, $x = f_2(y) = f_2f_1 = 0$.

(b) Similar.

Proposition 1.11 (Snake lemma). Suppose the second and the third rows are exact in the following commutative diagram:

	$\ker h_1$	$\ker h_2$	$\ker h_3$	
	M_1	M_2	M_3	0
0	N_1	N_2	N_3	
	$\operatorname{coker} h_1$	$\operatorname{coker} h_2$	coker 3	

(a) There is $\delta : \ker h_3 \to \operatorname{coker} h_1$ such that

$$\ker h_1 \xrightarrow{k_1} \ker h_2 \xrightarrow{k_2} \ker h_3 \xrightarrow{\delta} \operatorname{coker} h_1 \xrightarrow{l_1} \operatorname{coker} h_2 \xrightarrow{l_2} \operatorname{coker} 3$$

is exact. Here k_1, k_2, l_1, l_2 are induced from f_1, f_2, g_1, g_2 , respectively. The element $\delta(x)$ is determined by u such that $x = f_2(y)$, $z = h_2(y)$, $z = g_1(u)$, and we can check that u does not depend on the choice of y.

(b)

Proof. (a) We have to show the well-definedness of δ , ker \subset im, and im \subset ker. Skip.

In the general abelian cateogies, the five lemma and the snake lemma hold but the proofs become more complicated.

1.2 Direct sum, direct product, inductive limit, direct limit

Definition 1.12. Let M_{λ} be a family of *R*-modules. The direct product is

$$\prod_{\lambda} M_{\lambda} := \{(x_{\lambda}) : x_{\lambda} \in M_{\lambda}\} \twoheadrightarrow M_{\lambda},$$

and the direct sum is the submodule of the direct product such that

$$\bigoplus_{\lambda} M_{\lambda} := \{(x_{\lambda}) : x_{\lambda} = 0 \text{ but finitely many}\} \hookrightarrow M_{\lambda}$$

Proposition 1.13 (Universal property). (a) For $f_{\mu}: M_{\mu} \to N$ there is unique $f: \bigoplus_{\lambda} M_{\lambda} \to N$ such that $fi_{\mu} = f_{\mu}$.

(b) For $g_{\mu}: N \to M_{\mu}$ there is unique $g: N \to \prod_{\lambda} M_{\lambda}$ such that $p_{\mu}g = g_{\mu}$.

Remark 1.14. (a) The direct sum and direct product is unique up to isomorphism by the universal property.

- (b) For *R*-homomorphisms $f_{\lambda}: M_{\lambda} \to N_{\lambda}$ we can induce $\prod_{\lambda} f_{\lambda}: \prod_{\lambda} M_{\lambda} \to \prod_{\lambda} N_{\lambda}$ and $\bigoplus_{\lambda} f_{\lambda}: \bigoplus_{\lambda} M_{\lambda} \to \bigoplus_{\lambda} N_{\lambda}$.
- (c) In the category of modules, even for infinite indices, direct product and sum commute with the kernel, cokernel, and image. In an abelian category, we may not have infinite direct product/sum.
- (d) exactness also preserved under products and sums

2 Day 2: April 13

Let (Λ, \prec) be a totally ordered set. By a direct system, we refer the family of R-modules M_{λ} for each $\lambda \in \Lambda$ and the family of R-homomorphisms $\tau_{\mu\lambda}: M_{\lambda} \to M_{\mu}$ for $\lambda \prec \mu$ such that $\tau_{\lambda\lambda} = \mathrm{id}_{M_{\lambda}}$ and $\tau_{\kappa\lambda} = \tau_{\kappa\mu}\tau_{\mu\lambda}$ for $\lambda \prec \mu \prec \kappa$.

Example.1.3.3.

- (a) Let $\Lambda = \mathbb{N}$ and $n \prec m \Leftrightarrow n \mid m, M_n = \mathbb{Z}$ and $\tau_{mn}(z) : M_n \to M_m : z \mapsto (m/n)z$.
- (b) Let M be a R-module, $\{M_{\lambda}\}$ are finitely generated R-submodules of M, and $\lambda \prec \mu \Leftrightarrow M_{\lambda} \subset M_{\mu}$, with $\tau_{\mu\lambda}$ inclusions.

Definition.

$$\lim_{\longrightarrow} M_{\lambda} = \lim_{\longrightarrow} (M_{\lambda}, \tau_{\mu\lambda}) := \operatorname{coker}(\bigoplus_{\substack{(\lambda, \mu) \in \Lambda \\ \lambda \prec \mu}} M_{\lambda} \xrightarrow{\Phi} \bigoplus_{\lambda \in \Lambda} M_{\lambda}),$$

where $\Phi((x_{\lambda\mu})) = \sum_{\lambda \prec \mu} \iota_{\mu} \tau_{\mu\lambda}(x_{\lambda\mu}) - \iota_{\lambda}(x_{\lambda\mu})$, and $\iota_{\lambda} : M_{\lambda} \to \bigoplus_{\lambda} M_{\lambda}$ is a componentwise embedding. That is, we want to identify $x \in M_{\lambda}$ and $\tau_{\mu\lambda}(x) \in M_{\mu}$ with the map Φ .

Proposition.1.3.4. Let $\tau_{\mu}: M_{\mu} \xrightarrow{\iota_{\mu}} \bigoplus_{\lambda} M_{\lambda} \twoheadrightarrow \lim_{\longrightarrow} M_{\lambda}$.

- (a) $\tau_{\mu} = \tau_{\kappa} \tau_{\kappa \mu}$.
- (b) $M_{\mu} \xrightarrow{f_{\mu}} N$ for $\mu \in \Lambda$ are R-homomorphisms, and they satisfy $f_{\mu} = f_{\kappa} \tau_{\kappa \mu}$. Then, there is a unique $f: \lim_{\longrightarrow} M_{\lambda} \to N$ such that $f_{\mu} = f \tau_{\mu}$

For each example in 1.3.3, \mathbb{Q} and M are the direct limits because it satisfies the universal property (1.3.4(b))

Remark. (1) The direct limit is unique by the universal property up to isomorphism.

(2) If $f_{\lambda}: M_{\lambda} \to M'_{\lambda}$ are *R*-homomorphism such that

$$\begin{array}{ccc} M_{\lambda} & \xrightarrow{f_{\lambda}} & M\lambda' \\ \downarrow & & \downarrow \\ M_{\mu} & \xrightarrow{f_{\mu}} & M'_{\mu} \end{array}$$

commutes for all $\lambda \prec \mu$, then there is a unique f such that

$$\bigoplus_{\lambda \prec \mu} M_{\lambda} \longrightarrow \bigoplus_{\lambda} M_{\lambda} \longrightarrow \lim_{\longrightarrow} M_{\lambda} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\bigoplus_{\lambda \prec \mu} M_{\lambda}' \longrightarrow \bigoplus_{\lambda} M_{\lambda}' \longrightarrow \lim_{\longrightarrow} M_{\lambda}' \longrightarrow 0$$

commutes, and f is denoted by $\lim_{\longrightarrow} f_{\lambda}$. It is by the universal property of cokernel.

Definition.1.3.6. A preordered set Λ is a directed set if $\forall \lambda, \lambda' \in \Lambda$, there is $\mu \in \Lambda$ such that $\lambda, \lambda' \prec \mu$.

Proposition. *If* Λ *is a directed set, then there is a 1-1 correspondence*

$$(\coprod_{\lambda} M_{\lambda})/\sim \to \lim_{\longrightarrow} M_{\lambda}: [x_{\lambda}] \mapsto \tau_{\lambda}(x_{\lambda}),$$

where $x_{\lambda} \sim y_{\lambda'}$ iff there is $\mu > \lambda$, λ' such that $\tau_{\mu\lambda}(x_{\lambda}) = \tau_{\mu\lambda'}(y_{\lambda'})$.

Proposition. If

$$L_{\lambda} \xrightarrow{f_{\lambda}} M_{\lambda} \xrightarrow{g_{\lambda}} N_{\lambda} \longrightarrow 0$$

is exact, then

$$\operatorname{colim} L_{\lambda} \,\longrightarrow\, \operatorname{colim} M_{\lambda} \,\longrightarrow\, \operatorname{colim} N_{\lambda} \,\longrightarrow\, 0$$

is exact.

Proof. The only non-trivial part is the exactness at colim M_{λ} . We can prove it by diagram chasing. \Box

Example. Examples of inverse limit

- (a) projection $\mathbb{Z}/p^m\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ for m > n.
- (b) restriction $C^{\infty}((-r,r)) \to C^{\infty}((-r',r'))$ for r' > r.

3 Day 3: April 20

Example. Limit preserves injectivity, but not surjectivity: although the diagram

commutes, but the induced map $\mathbb{Z} \to \mathbb{Z}_p := \lim_n \mathbb{Z}/p^n \mathbb{Z}$ is not surjective.

Lemma (Mittag-Leffler condition). Let

$$0 \longrightarrow M_n \longrightarrow N_n \longrightarrow L_n \longrightarrow 0$$

be a sequence of exact sequences. Suppose (M_n) satisfies that for each n we have a eventually constant monotonically decreasing sequence of submodules

$$M_n \supset \pi_{n,n+1}(M_{n+1}) \supset \pi_{n,n+2}(M_{n+2}) \supset \cdots$$

Then,

$$0 \longrightarrow \lim M_n \longrightarrow \lim N_n \longrightarrow \lim L_n \longrightarrow 0.$$

When we consider the seuqence of kernels $p^n\mathbb{Z}$ of $\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$, we can check it does not satisfy the Mittag-Leffler condition.

1.4. Properties of Hom

Let R be a commutative ring and M, N be a R-modules. Define

$$\operatorname{Hom}_{\mathbb{R}}(M,N) := \{ f : M \to N \text{ } R\text{-homomorphism} \}.$$

It is an *R*-module, which is not the case if *R* is not commutative. If $\varphi: N_1 \to N_2$ is an *R*-homomorphism, then

$$\operatorname{Hom}_R(M, N_1) \to \operatorname{Hom}_R(M, N_2) : f \mapsto \varphi \circ f$$

is an R-homomorphism. If $\psi:M_1\to M_2$ is an R-homomorphism, then

$$\operatorname{Hom}_R(M_2, N) \to \operatorname{Hom}_R(M_1, N) : f \mapsto f \circ \psi$$

is an R-homomorphism.

Proposition.1.4.1.

(a) If

$$0 \longrightarrow N_1 \longrightarrow N_2 \longrightarrow N_3$$

is exact, then

$$0 \longrightarrow \operatorname{Hom}_{R}(M, N_{1}) \longrightarrow \operatorname{Hom}_{R}(M, N_{2}) \longrightarrow \operatorname{Hom}_{R}(M, N_{3})$$

is exact.

(b) If

$$M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$$

is exact, then

$$0 \longrightarrow \operatorname{Hom}_R(M_3, N) \longrightarrow \operatorname{Hom}_R(M_2, N) \longrightarrow \operatorname{Hom}_R(M_1, N)$$

is exact.

Proof. (a) If $f \in \text{Hom}_R(M, N_2)$ satisfies $\varphi_2 \circ f = 0$ where $\varphi : N_2 \to N_3$, then by the universal property

$$0 \longrightarrow N_1 \stackrel{\exists!}{\longrightarrow} N_2 \longrightarrow N_3$$

Example. For

$$0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0,$$

The maps

$$0 \cong \operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}) \to \operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z}$$

and

$$\mathbb{Z} \cong \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \xrightarrow{n} \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \cong \mathbb{Z}$$

are not surjective.

1.5. Projective modules

Definition.1.5.1. An *R*-module is said to be projective if for every surjective $\varphi: N_1 \to N_2$ and for every $f: M \to N_2$, there is a map $\widetilde{f}: M \to N_1$ such that

$$\begin{array}{c}
M \\
\downarrow^{\widetilde{f}} \\
N_1 & \longrightarrow N_2
\end{array}$$

commutes, equivalently,

$$\operatorname{Hom}_R(M, N_1) \to \operatorname{Hom}_R(M, N_2) \to 0$$

is exact for every exact $N_1 \rightarrow N_2 \rightarrow 0$.

Proposition.1.5.2. *If* M *is a projective module, then* $Hom_R(M, -)$ *is an exact functor.*

Proposition.1.5.3. A direct sum of R-modules is projective iff its summands are all projective. In particular, a free R-module is projective.

Remark. 1.5.4. A module M is projective if and only if there is another module N such that $M \oplus N$ is free.

Proof. (\Rightarrow) Take generators of $\{e_{\lambda}\}_{\lambda}$ of M. Then, for

$$f: \bigoplus_{\lambda} R \twoheadrightarrow M: (a_{\lambda}) \mapsto \sum_{\lambda} a_{\lambda} e_{\lambda},$$

we have a exact sequence

$$0 \to \ker f \to \bigoplus_{\lambda} R \to M \to 0,$$

which is right split by applying the definition of projective modules to extend the codomain of $id_M : M \to M$.

$$(\Leftarrow)$$
 Clear from Proposition 1.5.3.

Remark.1.5.5. Let *R* be a PID. Then, since a submodule of a free module is free, so a module is projective if and only if it is free.

1.6. Injective modules

Definition.1.6.1. An *R*-module is said to be injective if for every injective $\varphi: N_1 \hookrightarrow N_2$ and for every $g: N_1 \to M$, there is a map $\widetilde{g}: N_2 \to M$ such that

$$\begin{matrix} N_1 & \stackrel{\varphi}{\longleftarrow} & N_2 \\ \downarrow^g & \swarrow & \widetilde{g} \end{matrix}$$

$$M$$

commutes, equivalently,

$$\operatorname{Hom}_R(M,N_1) \to \operatorname{Hom}_R(M,N_2) \to 0$$

is exact for every exact $N_1 \rightarrow N_2 \rightarrow 0$.

Proposition. 1.6.3. An R-module M is injective iff the restriction $Hom(R, M) \to Hom(I, M)$ is surjective for every ideal I of R.

Proof. (\Rightarrow) Clear. (\Leftarrow) Suppose there is $x \in N_2$ such that $N_2 = N_1 + Rx$. By letting I be the kernel of a ring homomorphism $R \to (N_1 + Rx)/N_1 : a \mapsto ax + N_1$, we have an exact sequence

$$0 \to I \to N_1 \oplus R \to N_1 + Rx = N_2 \to 0$$

in which the first map sends b to (-bx, b) and the second map sends (y, a) to y + ax.

Remark. 1.6.4. If *R* is a PID, then an *R*-module *M* is injective iff for all $0 \neq a \in R$ the map $M \xrightarrow{\cdot a} M$ is surjective.

Proof.

Example. If $R = \mathbb{Z}$, then \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are injective, and \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ are not injective.

Ab-enriched: preadditive binary biproduct: semiadditive existence of ker/coker normality of mono/epi constructions: universals(products and equalizers, pullbacks, limits, representables)