Answers should be **exact** if possible (e.g. $\frac{3}{7}$ instead of 0.42857..., or $\sqrt{2}$ instead of 1.414...) If exact answers are not possible, approximations should be given to at least 4 decimal places.

- **1.** Convert the following angles from degrees to radians [Write answer in the form $\frac{m}{n}\pi$].
 - **a**. 4°
- **b**. 12°

- c. 18° d. 20° e. 28° f. 48° g. 140° h. 198°
- **2.** Convert the following angles from degrees to radians [Write answer in the form $\frac{m}{n}\pi$].
 - **a**. 6°

- **b**. 8° **c**. 15° **d**. 27° **e**. 54° **f**. 72° **g**. 138° **h**. 160°
- **3.** Convert the following angles from degrees to radians [Write answer in the form $\frac{m}{n}\pi$].
 - **a**. 56°
- **b**. 240° **c**. 312° **d**. 318° **e**. 438° **f**. 498° **g**. 520° **h**. 528°

- **4.** Convert the following angles from degrees to radians [Write answer in the form $\frac{m}{n}\pi$].

- **a**. 32° **b**. 36° **c**. 42° **d**. 52° **e**. 78° **f**. 108° **g**. 210° **h**. 546°
- 5. Convert the following angles from radians to degrees
- **a.** $\frac{3}{5}\pi$ (rad) **b.** $\frac{5}{12}\pi$ (rad) **c.** $\frac{7}{36}\pi$ (rad) **d.** $\frac{8}{15}\pi$ (rad)

- **e**. $1.8\overline{6}\pi$ (rad) **f**. 1.375π (rad) **g**. 0.1234 (rad)
- **6.** Convert the following angles from radians to degrees
- **a.** $\frac{7}{9}\pi$ (rad) **b.** $\frac{3}{20}\pi$ (rad) **c.** $\frac{4}{15}\pi$ (rad) **d.** $\frac{7}{6}\pi$ (rad)

- **e**. $1.\overline{6}\pi$ (rad) **f**. 2.35π (rad) **g**. 4.00553 (rad)
- 7. Convert the following angles from radians to degrees
- **a.** $\frac{32}{15}\pi$ (rad) **b.** $\frac{105}{36}\pi$ (rad) **c.** $\frac{182}{72}\pi$ (rad) **d.** $\frac{24}{5}\pi$ (rad)
- **e**. $3.9\overline{3}\pi$ (rad) **f**. 6.625π (rad) **g**. 5.4321 (rad)

- 8. Convert the following angles from radians to degrees

- **a.** $\frac{17}{20}\pi$ (rad) **b.** $\frac{23}{18}\pi$ (rad) **c.** $\frac{19}{15}\pi$ (rad) **d.** $\frac{71}{12}\pi$ (rad)
- **e**. $1.5\overline{7}\pi$ (rad) **f**. 3.15π (rad)
- **g.** 6.126106 (rad)
- **9.** Compute the following values using the given table [Do not use decimal approximations]
 - **a**. sin(135°)
- **b.** $\cos(270^{\circ})$ **c.** $\tan(-330^{\circ})$
- **d.** $\csc\left(\frac{2}{3}\pi\right)$ **e.** $\sec\left(-\frac{5}{4}\pi\right)$ **f.** $\cot\left(\frac{7}{6}\pi\right)$
- 60° 90° 0 $\frac{1}{2}$ 1 $\sin \theta$ $\cos \theta$
- **10.** Compute the following values using the given table [Do not use decimal approximations]
- **a.** $\sin(215^\circ)$ **b.** $\cos(-210^\circ)$ **c.** $\tan(-510^\circ)$
- **d.** $\csc\left(-\frac{7}{6}\pi\right)$ **e.** $\sec\left(\frac{2}{3}\pi\right)$ **f.** $\cot\left(-\frac{5}{4}\pi\right)$
- θ 30° 45° 60° 90° 1 $\sin \theta$ $\cos \theta$ 0

- 11. Compute the following values using the given table [Do not use decimal approximations]
 - **a.** $\sin(-315^{\circ})$ **b.** $\cos(180^{\circ})$ **c.** $\tan(240^{\circ})$
- **d.** $\csc\left(-\frac{19}{6}\pi\right)$ **e.** $\sec\left(\frac{2}{3}\pi\right)$ **f.** $\cot\left(-\frac{5}{4}\pi\right)$
- 45° 60° 90° 1 $\sin \theta$ 1 $\cos \theta$

- **12.** Compute the following values using the given table [Do not use decimal approximations]
 - **a.** $\sin(-330^{\circ})$ **b.** $\cos(300^{\circ})$ **c.** $\tan(180^{\circ})$

- **d.** $\csc\left(\frac{13}{6}\pi\right)$ **e.** $\sec\left(-\frac{7}{2}\pi\right)$ **f.** $\cot\left(\frac{13}{4}\pi\right)$
- 45° θ 60° $\sin \theta$ 0 1 $\frac{\sqrt{3}}{2}$ 0 $\cos \theta$

- **13.** Let O = (0,0) and Q = (1,0). The point P on the unit circle, in the third quadrant, has x-coordinate: $x_P = -0.8$. If $\angle POQ = \theta$ compute
 - **a.** $\sin(\theta)$ **b.** $\cos(\theta)$ **c.** $\tan(\theta)$ **d.** $\csc(\theta)$ **e.** $\sec(\theta)$ **f.** $\cot(\theta)$ **g.** θ (in degrees)
- **14.** Let O = (0,0) and Q = (1,0). The point P on the unit circle, in the second quadrant, has x-coordinate: $x_P = -\frac{3}{5}$. If $\angle POQ = \theta$ compute
 - **a.** $\sin(\theta)$ **b.** $\cos(\theta)$ **c.** $\tan(\theta)$ **d.** $\csc(\theta)$ **e.** $\sec(\theta)$ **f.** $\cot(\theta)$ **g.** θ (in degrees)
- **15.** Let O = (0,0) and Q = (1,0). The point P on the unit circle, in the third quadrant, has y-coordinate: $y_P = -\frac{5}{13}$. If $\angle POQ = \theta$ compute
 - **a.** $\sin(\theta)$ **b.** $\cos(\theta)$ **c.** $\tan(\theta)$ **d.** $\csc(\theta)$ **e.** $\sec(\theta)$ **f.** $\cot(\theta)$ **g.** θ (in degrees)
- **16.** Let O = (0,0) and Q = (1,0). The point P on the unit circle, in the fourth quadrant, has x-coordinate: $x_p = 0.6$. If $\angle POQ = \theta$ compute
 - **a.** $\sin(\theta)$ **b.** $\cos(\theta)$ **c.** $\tan(\theta)$ **d.** $\csc(\theta)$ **e.** $\sec(\theta)$ **f.** $\cot(\theta)$ **g.** θ (in degrees)
- 17. Find the angles θ (in degrees) in the following cases
 - **a.** $\sin(\theta) = -\frac{\sqrt{3}}{2}$ with $180^{\circ} \le \theta \le 360^{\circ}$ **b.** $\cos(\theta) = -\frac{\sqrt{3}}{2}$ with $0^{\circ} \le \theta \le 180^{\circ}$

 - **c.** $\tan(\theta) = -1$ with $90^{\circ} \le \theta \le 270^{\circ}$ **d.** $\csc(\theta) = -2$ with $90^{\circ} \le \theta \le 270^{\circ}$ **e.** $\sec(\theta) = -2$ with $0^{\circ} \le \theta \le 360^{\circ}$ **f.** $\cot(\theta) = -\sqrt{3}$ with $0^{\circ} \le \theta \le 360^{\circ}$
- **18.** Find the angles θ (in degrees [exact values]) in the following cases
 - **a**. $\sin(\theta) = -\frac{1}{2}$ with $-90^{\circ} \le \theta \le 90^{\circ}$ **b**. $\cos(\theta) = -\frac{1}{\sqrt{2}}$ with $-90^{\circ} \le \theta \le 90^{\circ}$
 - **c.** $\tan(\theta) = 1$ with $700^{\circ} \le \theta \le 990^{\circ}$ **d.** $\csc(\theta) = -\frac{2}{\sqrt{3}}$ with $-270^{\circ} \le \theta \le -90^{\circ}$
 - **e.** $\sec(\theta) = 2$ with $-720^{\circ} \le \theta \le -90^{\circ}$ **f.** $\cot(\theta) = -\frac{1}{\sqrt{3}}$ with $450^{\circ} \le \theta \le 900^{\circ}$

19. Find the angles θ (in degrees [exact values]) in the following cases

a.
$$\sin(\theta) = -\frac{\sqrt{2}}{2}$$
 with $-90^{\circ} \le \theta \le 90^{\circ}$ **b.** $\cos(\theta) = -\frac{1}{2}$ with $-90^{\circ} \le \theta \le 90^{\circ}$

b.
$$\cos(\theta) = -\frac{1}{2}$$
 with $-90^{\circ} \le \theta \le 90^{\circ}$

c.
$$\tan(\theta) = -\sqrt{3}$$
 with $630^{\circ} \le \theta \le 810^{\circ}$ **d**. $\csc(\theta) = -\sqrt{2}$ with $-270^{\circ} \le \theta \le -90^{\circ}$

d.
$$\csc(\theta) = -\sqrt{2}$$
 with $-270^{\circ} \le \theta \le -90^{\circ}$

e.
$$\sec(\theta) = -\frac{2}{3}\sqrt{3}$$
 with $-720^{\circ} \le \theta \le -90^{\circ}$ **f.** $\cot(\theta) = -1$ with $450^{\circ} \le \theta \le 900^{\circ}$

f.
$$\cot(\theta) = -1$$
 with $450^{\circ} \le \theta \le 900^{\circ}$

20. Find the angles θ (in degrees [exact values]) in the following cases

a.
$$\sin(\theta) = -\frac{1}{\sqrt{2}}$$
 with $-180^{\circ} \le \theta \le 145^{\circ}$ **b.** $\cos(\theta) = \frac{1}{2}$ with $-250^{\circ} \le \theta \le 175^{\circ}$

b.
$$\cos(\theta) = \frac{1}{2}$$
 with $-250^{\circ} \le \theta \le 175^{\circ}$

c.
$$\tan(\theta) = \sqrt{3}$$
 with $630^{\circ} \le \theta \le 810^{\circ}$ **d**. $\csc(\theta) = -2$ with $-270^{\circ} \le \theta \le -90^{\circ}$

d.
$$\csc(\theta) = -2$$
 with $-270^{\circ} \le \theta \le -90^{\circ}$

e.
$$\sec(\theta) = -1$$
 with $-720^{\circ} \le \theta \le 180^{\circ}$

e.
$$\sec(\theta) = -1$$
 with $-720^{\circ} \le \theta \le 180^{\circ}$ **f.** $\cot(\theta) = -\sqrt{3}$ with $-450^{\circ} \le \theta \le 270^{\circ}$

21. A triangle has angles $\alpha = 15^{\circ}$, $\beta = 55^{\circ}$ and side a = 32

Compute **a**. γ

- **b**. *b*
- **c**. c
- **d**. Area of $\triangle ABC$ **e**. Distance of C to \overline{AB}

22. A triangle has angle $\alpha = 20^{\circ}$, and sides a = 28 and c = 52

Compute **a**. γ

- **b**. β
- **c**. *b*
- **d**. Area of $\triangle ABC$ **e**. Distance of C to \overline{AB}

23. A triangle has angle $\alpha = 23^{\circ}$, and sides a = 34 and b = 56

Compute **a**. γ

- **b**. β
- **c**. *c*
- **d**. Area of $\triangle ABC$ **e**. Distance of C to \overline{AB}
- **24.** A triangle has angle $\beta = 47^{\circ}$, and sides b = 43 and c = 52

- Compute **a**. γ
- **b**. α
- **c**. *c*
- **d**. Area of $\triangle ABC$ **e**. Distance of C to \overline{AB}
- **25.** A triangle has sides a = 32, b = 40 and c = 60

- Compute **a**. α
- **b**. β
- **c**. γ
- **d**. Area of $\triangle ABC$ **e**. Distance of C to \overline{AB}

- **26.** If $\sin(\theta) = -0.3456$ and θ is in the third quadrant, find
 - **a**. $cos(\theta)$ **b**. $tan(\theta)$ **c**. $csc(\theta)$ **d**. $sec(\theta)$ **e**. $cot(\theta)$ **f**. θ (in degrees)
- **27.** If $cot(\theta) = -1.2345$ and θ is in the second quadrant, find
 - **a.** $\sin(\theta)$ **b.** $\cos(\theta)$ **c.** $\tan(\theta)$ **d.** $\csc(\theta)$ **e.** $\sec(\theta)$ **f.** θ (in degrees)
- **28.** If $sec(\theta) = -2.3456$ and θ is in the third quadrant, find
 - **a**. $\sin(\theta)$ **b**. $\cos(\theta)$ **c**. $\tan(\theta)$ **d**. $\csc(\theta)$ **e**. $\sec(\theta)$ **f**. θ (in degrees)
- **29.** If $\csc(\theta) = -3.125$ and θ is in the fourth quadrant, find
 - **a**. $\sin(\theta)$ **b**. $\cos(\theta)$ **c**. $\tan(\theta)$ **d**. $\csc(\theta)$ **e**. $\sec(\theta)$ **f**. θ (in degrees)
- **30.** Graph the following functions [No calculator: shifts and such of the basic functions]
 - **a.** $f(x) = \sin(x) + 1$
- **b**. $g(x) = 2 \cos(x)$
- **c**. $h(x) = 5 \tan(x)$

- **d**. $k(x) = 3 \sin(x + \pi)$
- **e**. $l(x) = \cos(x \pi) + 3$
- **f.** $m(x) = \tan(x \pi/2) + 5$

- $\mathbf{g.} \quad n(x) = 2\sin(x)$
- $\mathbf{h}. \quad p(x) = \sin(2x)$
- i. $q(x) = 3 + 4\cos(2x)$
- **31.** Graph the following functions [No calculator: shifts and such of the basic functions]
 - **a.** $f(x) = 1 \cos(x)$
- **b**. $g(x) = 2 + \sin(x)$
- **c.** $h(x) = 3 + \cot(x)$

- **d**. $k(x) = 3 + \cos(x + \pi)$
- **e**. $l(x) = \sin(x \pi) 2$
- **f**. $m(x) = \tan(x + \pi/2) 5$

- \mathbf{g} . $n(x) = \cos(2x)$
- **h**. $p(x) = 2\sin(x)$
- i. $q(x) = 1 2\sin(2x)$
- **32.** Use trig identities to exactly compute the following [e.g. $\sin(75^\circ) = \sin(30^\circ + 45^\circ)$]
 - \mathbf{a} . $\sin(15^\circ)$

- **b**. $\cos(195^{\circ})$
- **c**. $tan(-165^{\circ})$

- **d**. csc(195°)
- **e**. $\sec(-75^{\circ})$
- \mathbf{f} . $\cot(105^\circ)$

- **g**. $\sin(22.5^{\circ})$
- **h**. $\cos(82.5^{\circ})$
- i. $tan(22.5^{\circ})$
- **33.** Use trig identities to exactly compute the following [e.g. $\sin(75^\circ) = \sin(30^\circ + 45^\circ)$]
 - \mathbf{a} . $\sin(75^\circ)$

b. $cos(15^\circ)$

c. $tan(-105^{\circ})$

- **d**. csc(105°)
- **e**. sec(165°)
- **f**. $\cot(195^{\circ})$

g. $\sin(7.5^{\circ})$

- **h**. $\cos(22.5^{\circ})$
- i. $tan(82.5^{\circ})$

34. Find the areas of the following triangles

a.
$$a = 8$$
, $b = 15$ and $c = 17$

c.
$$a = 8$$
, $b = 4$ and $c = 6$

e.
$$\alpha = 45^{\circ}$$
, $b = 5$ and $c = 6$

g.
$$\alpha = 30^{\circ}$$
, $b = 5$ and $a = 4$

i.
$$\alpha = 30^{\circ}$$
, $\beta = 45^{\circ}$ and $c = 10$

b.
$$a = 12$$
, $b = 37$ and $c = 35$

d.
$$a = 15$$
, $b = 9$ and $c = 7$

f.
$$\alpha = 60^{\circ}$$
, $b = 9$ and $c = 7$

h.
$$\alpha = 30^{\circ}$$
, $b = 5$ and $a = 7$

j.
$$\alpha = 135^{\circ}$$
, $\beta = 30^{\circ}$ and $c = 10$

35. Find the areas of the following triangles

a.
$$a = 3$$
, $b = 4$ and $c = 5$

c.
$$a = 7$$
, $b = 5$ and $c = 6$

e.
$$\alpha = 30^{\circ}$$
, $b = 5$ and $c = 6$

g.
$$\alpha = 60^{\circ}$$
, $b = 5$ and $a = 10$

i.
$$\alpha = 60^{\circ}$$
, $\beta = 45^{\circ}$ and $c = 20$

b.
$$a = 5$$
, $b = 12$ and $c = 13$

d.
$$a = 14$$
, $b = 9$ and $c = 7$

f.
$$\alpha = 45^{\circ}$$
, $b = 9$ and $c = 7$

h.
$$\alpha = 30^{\circ}$$
, $b = 10$ and $a = 20$

j.
$$\alpha = 30^{\circ}$$
, $\beta = 45^{\circ}$ and $c = 35$

36. Find the lengths of all the sides of the following right triangles

a.
$$a = 3$$
, $b = 5$

b.
$$a = 5$$
, $c = 12$

c.
$$a = 7$$
, $c = 8$

d.
$$c = 7$$
, $a = 12$

e.
$$a = 7$$
, $b = 8$

f.
$$c = 7$$
, $b = 12$

g.
$$\gamma = 25^{\circ}$$
, $b = 8$

h.
$$\gamma = 35^{\circ}$$
, $c = 10$

i.
$$\gamma = 25^{\circ}$$
. $a = 8$

i.
$$\alpha = 35^{\circ}$$
. $c = 10$

