2010 Geometry: Ex. 4

due 2011/10/14

- 1. p29 Ex1
- 2. p30 Ex3
- 3. **₩**
 - (a) 假設 $\kappa(s) \neq 0, \tau(s) \neq 0$,由四點決定一球,討論空間曲線 $\gamma(s)$ 的密切球,並決定球心與半徑。
 - (b) 討論螺線 $(a\cos t, a\sin t, bt)$ 的密切球,a > 0
- 5. \(\mathbb{H}\)(Darboux vector)
 - $\gamma(s)$ arc length
 - (a) 説明 \exists vector $\omega(s)$ (called Darboux vector)

s.t.
$$\begin{cases} T' = \omega \times T \\ N' = \omega \times N \\ B' = \omega \times B \end{cases}$$

(b) V(s) is a vector along $\gamma(s)$ $\mathbb{L} \text{ w.r.t}(T, N, B), V(s) = (v_1(s), v_2(s), v_3(s))$

$$\Rightarrow V' = (v'_1, v'_2, v'_3) + \omega \times V$$

(c) 說明 $\omega = \frac{1}{2} (T \times T' + N \times N' + B \times B')$

Rmk:(從物理觀點,這說明 κ measure (T,N,B) frame 對 B 的旋轉, τ measure (T,N,B) 對 T 的旋轉)

- 6. p26 Ex18
- 7. $f: \mathbb{R}^n \to \mathbb{R}, a \in \mathbb{R}^n, ||v|| = 1$
 - (a) 說明 $(\mathrm{d}f)_a(v_a) = \frac{\partial f}{\partial v}(a)$ f 在 a 對 v 方向的方向導數。
 - (b) $a \in f(x_1, \dots, x_n) = c$, v_a 切於 $f(x_1, \dots, x_n) = c$, 說明 $\mathrm{d}f_a(v_a) = 0$
- 8. \(\mathbf{H}\)
 - (a) 令函數

$$x_i: \mathbb{R}^n \to \mathbb{R}$$

 $(x_1, \dots, x_n) \mapsto x_i$

計算 $[dx_i]$, 在不同的 $a \in \mathbb{R}^n$, dx_i 如何隨 a 變化。

- (b) 由上題將微分式 $\mathrm{d}f = \frac{\partial f}{\partial x_1} \mathrm{d}x_1 + \dots + \frac{\partial f}{\partial x_n} \mathrm{d}x_n$ 與映射 $\mathrm{d}f$ 結合起來。
- (c) $f: \mathbb{R}^n \to \mathbb{R}^m$, 怎麼利用上題幫你計算 $\mathrm{d}f$

9. (給學複變的同學) $f:\mathbb{C}\to\mathbb{C}$ holomorphic 可以想成 $f:\mathbb{R}^2\to\mathbb{R}^2$ 的函數。請證明 $\|f'(z)\|^2=\det(dF)$ 。