Chapter 9

Modèle de Black-Scholes et Merton

On se place sous des hypothèses d'un marché idéal :

- il n'y a pas de coûts de transaction ;
- Il n'y a pas d'écart (bid-ask) entre prix d'achat et prix de vente des titres ;
- Les titres négociables sont très liquides et indéfiniment fractionnables ;
- Il n'y a pas de restriction sur les ventes à découvert ;
- Il n'y a pas d'impôt ou de taxe ;
- Les transactions sont instantanées ;
- Les participants du marché sont preneurs de prix.
- Les prix sont exprimés dans une unique monnaie de référence;
- Il y a absence d'opportunité d'arbitrage(A.O.A.) : i.e. il est impossible de gagner de l'argent de façon certaine à partir d'un investissement nul.
- Il y a unicité des prix : si les valeurs de deux portefeuilles coïncident de façon certaine (ou avec probabilité1) à une date donnée, alors ces deux portefeuilles ont la même valeur à toute date intermédiaire.

9.1 Dynamiques du modèle de BSM

On se propose ici d'étudier un modèle très simple à deux actifs. Un actif risqué et un actif dit sans risque. On note $S^0 = (S^0_t)_{t \geq 0}$ le processus représentant la valeur de l'actif sans risque. Il s'agit d'un processus déterministe de prix initial S^0_0 satisfaisant à l'équation différentielle ordinaire :

$$dS_t^0 = rS0_t dt$$

où r > 0 est (constant, déterministe) le **taux d'intérêt instantané** (à ne pas confondre avec le taux d'intérêt sur une période des marchés discrets).

On fixe $S_0^0 = 1$ de sorte que à tout instant $t \ge 0$ on a $S_t^0 = e^{rt}$.

Par ailleurs on notera $S = (S_t)_{t \ge 0}$ le processus des prix de l'actif risqué. On suppose que celui ci est solution de l'E.D.S.

$$dS_t = \mu S_t dt + \sigma S_t dB_t$$

avec $S_0 = s_0 > 0$, $\mu > 0$, $\sigma > 0$ et B est un M.B.S. et $(\mathcal{F}_t)_{t \geq 0}$ est sa filtration naturelle sous les conditions habituelles. On a ainsi que S est un Mouvement Brownien géométrique de tendance μ et volatilité σ . Nous avons déjà vu que pour tout $t \geq 0$

$$S_t = s_0 \exp\left[\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma B_t\right] \tag{9.1}$$

qui est de loi log-normale.

9.2 Stratégies autofinancées

On va vouloir constituer un portefeuille avec des parts d'actif risqué et sans risque puis gérer celui-ci. On notera $V = (V_t)_{t>0}$ le processus représentant la valeur du portefeuille à l'instant t.

Définition 9.1. On appelle **stratégie** un processus $\varphi = (\varphi_t)_{t \geq 0}$, $(\mathcal{F}_t)_{t \geq 0}$ -adapté, càg-làd à valeurs dans \mathbb{R}^2 où

$$\varphi_t = (H_t^0, H_t)$$

avec H_t (resp. H_t^0) représentant la quantité d'actif risqué (resp. sans risque) détenue en portefeuille au temps t. On a ainsi que

$$V_t(\varphi) = H_t^0 S_t^0 + H_t S_t.$$

Remarque : L'hypothèse (technique) càg-làd est à relier à la notion de prévisible des stratégies admissibles dans le cas discret étudiées dans le cours de PSAF.

Nous allons à présent définir une condition importante.

Définition 9.2. Une stratégie $\varphi = (\varphi_t)_{t \in [0,T]}$ est dite **autofinancée** si elle vérifie

1. \mathbb{P} -p.s. on a

$$\int_{0}^{T} (|H_{t}^{0}| + H_{t}^{2}) dt < +\infty$$

2. Condition d'autofinancement : \mathbb{P} -p.s. $\forall t \in [0,T]$

$$H_t^0 S_t^0 + H_t S_t = H_0^0 S_0^0 + H_0 S_0 + \int_0^t H_u^0 dS_u^0 + \int_0^t H_u dS_u$$

ou sous sa "forme différentielle"

$$dV_t(\varphi) = H_t^0 dS_t^0 + H_t dS_t$$

$$V_0(\varphi) = H_0^0 S_0^0 + H_0 S_0$$

Remarques:

a. La propriété (1.) assure que les intégrales dans (2.) ont bien un sens en effet : on a

$$\int_0^t H_s \ dS_s = \int_0^t \mu S_s H_s \ ds + \int_0^t \sigma S_s H_s \ dB_s$$

par continuité des trajectoires de S on a $\forall s \in [0, T]$

$$S_s^2 H_s^2 \le (\max_{u \in [0,T]} S_u^2) H_s^2$$

Ce qui entraine entre autre que $(\sigma S_t H_t)_{t \in [0,T]}$ est dans $\Pi_3^2([0,T])$.

b. La traduction pratique de la condition d'autofinancement est que les rebalancements effectués sur le portefeuille se font sans apport externe ni dépense vers l'extérieur : les variations du prix du portefeuille ne seront dues qu'aux seules variations des actifs.

En utilisant que $dS_t^0 = rS_t^0 dt$ on a

$$dV_t(\varphi) = rH_t^0 S_t^0 dt + H_t dS_t$$

puis en utilisant que $H_t^0 S_t^0 = V_t(\varphi) - H_t S_t$ on obtient

$$dV_t(\varphi) = r(V_t(\varphi) - H_t S_t) dt + H_t dS_t$$

= $rV_t(\varphi) dt + H_t (dS_t - rS_t dt)$

d'où la proposition

Proposition 9.3. Dynamique d'autofinancement.

Un portefeuille autofinançant de prix $V = (V_t)_{t \in [0,T]}$, dans le modèle de Black-Scholes et Merton suit la dynamique

$$dV_t = rV_t dt + H_t (dS_t - rS_t dt)$$

$$(9.2)$$

avec $V_0 = v_0$. En particulier le processus V est complètement déterminé par V_0 et $H = (H_t)_{t \in [0,T]}$.

On remarque en effet que $\forall t \in [0,T]$ la quantité investie dans le taux sans risque est donnée par $H_t^0 = e^{-rt}(V_t - H_t S_t)$.

9.3 Dynamique des prix actualisés, probabilité risque neutre et stratégie admissible

9.3.1 Actualisation

On définit $\widetilde{S} = (\widetilde{S})_{t \in [0,T]}$ le processus du prix de l'actif actualisé par

$$\widetilde{S}_t = \frac{S_t}{S_t^0} = e^{-rt} S_t, \ \forall t \in [0, T]$$

Le facteur e^{-rt} est appelé facteur d'actualisation. Par Itô on a

$$d\widetilde{S}_{t} = -r\widetilde{S}_{t} dt + e^{-rt} dS_{t}$$

$$= -r\widetilde{S}_{t} dt + \mu \widetilde{S}_{t} dt + \sigma \widetilde{S}_{t} dB_{t}$$

$$= (\mu - r)\widetilde{S}_{t} dt + \sigma \widetilde{S}_{t} dB_{t}$$

On remarque que hormis le cas où $\mu = r$ le processus \widetilde{S} n'est pas une $(\mathcal{F}_t)_{t \in [0,T]}$ -martingale sous la probabilité (historique) \mathbb{P} .

En revanche si on arrivait à trouver une probabilité $\widetilde{\mathbb{P}}_T$ sous laquelle le processus W défini par

$$W_t = \frac{\mu - r}{\sigma}t + B_t \tag{9.3}$$

soit un M.B.S. on pourrait alors écrire

$$d\widetilde{S}_t = \sigma \widetilde{S}_t \ dW_t$$

Et on pourrait alors conclure que \widetilde{S} est une $(\mathcal{F}_t)_{t\in[0,T]}$ -martingale sous cette nouvelle probabilité $\widetilde{\mathbb{P}}_T$.

9.3.2 Probabilité risque neutre

Cet objectif est réalisable en utilisant le théorème de Cameron-Martin appliqué à la fonction $h(t) = \frac{\mu - r}{\sigma}t$. On définit

$$L_t = \exp\left(-\int_0^t \frac{\mu - r}{\sigma} dB_s - \frac{1}{2} \int_0^t \left(\frac{\mu - r}{\sigma}\right)^2 ds\right) = \exp\left(-\frac{\mu - r}{\sigma} B_t - \frac{1}{2} \left(\frac{\mu - r}{\sigma}\right)^2 t\right)$$

La v.a. L_T définit un changement de probabilité vers une probabilité $\widetilde{\mathbb{P}}_T \sim \mathbb{P}$ telle que

$$\frac{d\widetilde{\mathbb{P}}_T}{d\mathbb{P}} = L_T$$

assurant que le processus $W=(W_t)_{t\in[0,T]}$ défini par (9.3) est un $(\mathcal{F}_t)_{t\in[0,T]}$ -M.B.S. sous $\widetilde{\mathbb{P}}_T$ en conséquence de quoi le **processus du prix de l'actif actualisé** \widetilde{S} **est bien une** $(\mathcal{F}_t)_{t\in[0,T]}$ -martingale sous $\widetilde{\mathbb{P}}_T$: on vérifie, en effet, sans problème que

$$\sigma \widetilde{S} \in \Pi_2^2([0,T]).$$

Remarquons que sous la probabilité $\widetilde{\mathbb{P}}_T$ le processus des prix S suit la dynamique

$$dS_t = rS_t dt + \sigma S_t dW_t \tag{9.4}$$

qui traduit que S est en core un MB géométrique mais dont le rendement est réduit à r: le taux sans risque! D'où la définition :

Définition 9.4. La probabilité $\widetilde{\mathbb{P}}_T$ est appelée **probabilité risque neutre** (ou probabilité martingale). On notera $\widetilde{\mathbb{E}}$ l'espérance associée à cette probabilité.

Observons à présent que si V est la valeur d'un porte feuille autofinancé on a par la dynamique d'autofinancement et par (9.4)

$$dV_t = rV_t dt + H_t(dS_t - rS_t dt) = rV_t dt + \sigma H_t S_t dW_t$$

$$\tag{9.5}$$

Comme précédemment on notera $\widetilde{V}=(\widetilde{V}_t)_{t\in[0,T]}$ le processus valeur du portefeuille actualisée :

$$\widetilde{V}_t = e^{-rt}V_t, \ \forall t \in [0, T].$$

Par Itô (IPP) et (9.5) on a

$$d\widetilde{V}_t = -r\widetilde{V}_t dt + e^{-rt} dV_t = \sigma H_t \widetilde{S}_t dW_t$$
(9.6)

Définition 9.5. Stratégie admissible

Une stratégie φ est dite admissible si elle est autofinancée et si de plus on a

1. $V_t(\varphi) \ge 0, \forall t \in [0,T]$ et

2.
$$\widetilde{\mathbb{E}}\left[\left(\sup_{t\in[0,T]}\widetilde{V}_t(\varphi)\right)^2\right]<+\infty.$$

Donc si φ est une stratégie admissible alors $\forall t \in [0, T]$ par (2.)

$$+\infty > \widetilde{\mathbb{E}}\left[\left(\sup_{t \in [0,T]} \widetilde{V}_t(\varphi)\right)^2\right] \geq \widetilde{\mathbb{E}}\left[\left(\widetilde{V}_t(\varphi)\right)^2\right] \geq \widetilde{\mathbb{E}}\left[\left(\int_0^t \sigma H_s \widetilde{S}_s \ dW_s\right)^2\right] = \widetilde{\mathbb{E}}\left[\left(\int_0^t \sigma^2 H_s^2 \widetilde{S}_s^2 \ ds\right)\right]$$

on en déduit que $(\sigma H_s \widetilde{S}_s)_{s \in [0,T]}$ est dans $\Pi_2^2([0,T])$ ce qui montre par (9.6) que sous la probabilité risque neutre $\widetilde{\mathbb{P}}_T$ le prix du portefeuille actualisé $\widetilde{V}(\varphi)$ est une $(\mathcal{F}_t)_{t \in [0,T]}$ -martingale. Résumons ces propriétés dans la proposition :

Proposition 9.6. Sous la probabilité risque neutre $\widetilde{\mathbb{P}}_T$:

1. le prix actualisé de l'actif \widetilde{S} est une $(\mathcal{F}_t)_{t\in[0,T]}$ -martingale et on a

$$d\widetilde{S}_t = \sigma \widetilde{S}_t \ dW_t;$$

2. de plus si φ est une stratégie admissible le prix du portefeuille actualisé $\widetilde{V}(\varphi)$ est aussi une $(\mathcal{F}_t)_{t\in[0,T]}$ martingale et on a

$$d\widetilde{V}_t(\varphi) = \sigma H_t \widetilde{S}_t \ dW_t$$

9.4 Option réplicable et théorème de Pricing

9.4.1 Option réplicable

Une option vanille est un produit dérivé simple d'un actif risqué S: qui est un contrat passé au temps t=0 et qui promet au détenteur de recevoir un flux final $h(S_T)$ (appelé aussi payoff) à une date T appelée maturité.

Ici on supposera donc que $h(S_T)$ est une variable aléatoire \mathcal{F}_T -mesurable et intégrable, et qui ne dépend de la valeur de S qu'aux temps 0 et T.

Les objectifs sont : dans un premier temps de trouver le juste prix de l'option (pricing) à faire payer au souscripteur, puis dans un deuxième temps, d'élaborer une stratégie (couverture ou hedging) permettant de reverser au client, à coup sûr, le flux à maturité en n'utilisant que le le produit de la vente de l'option.

Définition 9.7. On dira qu'une option de payoff h est **réplicable** (ou simulable) s'il existe une stratégie admissible φ avec un portefeuille associé de valeur terminale (à maturité) égale au flux de l'option : i.e.

$$V_T(\varphi) = h$$
, $\mathbb{P} - p.s$.

Le portefeuille associé est appelé portefeuille de réplication de l'option de payoff h.

9.4.2 Théorème de Pricing

Théorème 9.8. Pour toute v.a. h positive, \mathcal{F}_T -mesurable et de carré intégrable sous $\widetilde{\mathbb{P}}_T$ il existe une stratégie φ admissible qui réplique h; De plus $\forall t \in [0,T]$

$$V_t(\varphi) = \widetilde{\mathbb{E}} \left[e^{-r(T-t)} h | \mathcal{F}_t \right], \ \widetilde{\mathbb{P}}_T - p.s.$$

Par unicité des prix on en déduit que le prix de l'option est celui du portefeuille de réplication.

Preuve. On commence par supposer qu'il existe une stratégie admissible φ répliquant h. On a donc \mathbb{P} -p.s.

$$V_T(\varphi) = h$$

De par la Proposition 9.6 la valeur du porte feuille actualisé $\widetilde{V}(\varphi) = e^{-rt}V_t(\varphi)$, est une martingale sous $\widetilde{\mathbb{P}}_T$. Ainsi $\forall t \in [0,T]$ on a

$$\widetilde{V}_t(\varphi) = \widetilde{\mathbb{E}}\left[\widetilde{V}_T(\varphi)|\mathcal{F}_t\right] = \widetilde{\mathbb{E}}\left[e^{-rT}h|\mathcal{F}_t\right]$$

et nous venons donc de voir que s'il existe une stratégie admissible φ répliquant h alors $\widetilde{\mathbb{P}}_T$ -p.s.

$$V_t(\varphi) = e^{rt} \widetilde{V}_t(\varphi) = \widetilde{\mathbb{E}} \left[e^{-r(T-t)} h | \mathcal{F}_t \right]$$
(9.7)

Passons à l'existence d'une telle stratégie :

On considère la martingale $M=(M_t)_{t\in[0,T]}$ sous $\widetilde{\mathbb{P}}_T$ définie par

$$M_t = \widetilde{\mathbb{E}}(e^{-rT}h|\mathcal{F}_t), \ \forall t \in [0, T]$$

qui est de carré intégrable car h l'est. Comme $(\mathcal{F}_t)_{t\in[0,T]}$ est la filtration naturelle de B et que $W=(W_t)_{t\in[0,T]}$ avec $W_t=(\mu-r)t/\sigma+B_t$ on voit qu'il s'agit également de la filtration naturelle de W.

Par le théorème de représentation des martingales Browniennes on sait qu'il existe un processus K, $(\mathcal{F}_t)_{t\in[0,T]}$ -adapté vérifiant $\widetilde{\mathbb{E}}\left[K_s^2\ ds\right]<+\infty$ et tel que $\widetilde{\mathbb{P}}_T$ -p.s.

$$M_t = M_0 + \int_0^t K_s \ dW_s, \ \forall t \in [0, T].$$

Posons alors

$$H_t = \frac{K_t}{\sigma \widetilde{S}_t}$$
 et $H_t^0 = M_t - H_t \widetilde{S}_t$

et $\varphi = (H^0, H)$. On a alors

$$V_{t}(\varphi) = H_{t}^{0} S_{t}^{0} + H_{t} S_{t}$$

$$= (M_{t} - H_{t} \widetilde{S}_{t}) e^{rt} + H_{t} S_{t}$$

$$= e^{rt} M_{t}$$

$$= \widetilde{\mathbb{E}} \left[e^{-r(T-t)} h | \mathcal{F}_{t} \right]$$

Et on a bien $V_t(\varphi) = h$ donc φ réplique bien h. Il nous reste à prouver qu'elle est autofinancée et admissible. En appliquant une IPP sur $V_t = e^{rt} M_t$ on a par le théorème de représentation

$$dV_t(\varphi) = re^{rt}M_t dt + e^{rt} dM_t = re^{rt}M_t dt + e^{rt}K_t dW_t$$

Par suite

$$dV_t(\varphi) = rV_t dt + \frac{K_t}{\sigma \widetilde{S}_t} e^{rt} \sigma \widetilde{S}_t dW_t$$
$$= rV_t(\varphi) dt + H_t(dS_t - rS_t dt)$$

qui est l'équation d'autofinancement.

Enfin comme

$$V_t(\varphi) = \widetilde{\mathbb{E}}\left[e^{-r(T-t)}h|\mathcal{F}_t\right] \ge 0, \ \forall t \in [0,T]$$

et de plus on a

$$\widetilde{\mathbb{E}}\left[\left(\sup_{0\leq t\leq T}\widetilde{V}_{t}(\varphi)\right)^{2}\right]=\widetilde{\mathbb{E}}\left[h^{2}\right]<+\infty$$

donc φ est admissible.

Remarque: Le résultat de ce théorème est à la fois rassurant (il existe une stratégie permettant de répliquer à coup sur l'option) mais frustrant car il ne donne pas de méthode pour obtenir cette stratégie en pratique.

9.5 Prix et couverture d'une option d'achat Européenne

9.5.1 Prix du call Européen

On définit une option d'achat (call) européenne sur le titre S comme le contrat passé entre un vendeur et un acheteur (détenteur). Le détenteur de l'option gagne le droit (mais pas l'obligation) d'acheter (au vendeur) au temps T>0 (appelé maturité) une unité du titre S (appelé sous jacent) au prix K (appelé strike) convenu au temps t=0.

Pour l'acheteur il s'agit pour lui d'une assurance permettant d'acheter dans le futur le titre a un prix raisonnable. Si le prix du titre dépasse la valeur K à l'instant T cela revient à ce que le vendeur verse le flux $S_T - K$ à l'acheteur à cette date. Au cas ou le prix du titre S_T est en dessous de K l'acheteur n'exercera pas son droit et le vendeur n'aura rien à lui reverser.

La première étape est de convenir du prix de cette option : i.e. combien l'acheteur est prêt à payer pour cette assurance? Et de façon symétrique combien exigera le vendeur pour offrir ce service?

L'analyse ci dessus montre que cette option à pour prix à maturité (payoff) $h = (S_T - K)_+$ où $(x)_+ = \max(x, 0)$.

Pour tous $t \in [0,T]$ notons par C(t,T,K,x) le prix du call au temps t de maturité T, de strike K lorsque $S_t = x$. Le théorème de pricing nous dit que

$$C(t, T, K, S_t) = \widetilde{\mathbb{E}} \left[e^{-r(T-t)} (S_T - K)_+ | \mathcal{F}_t \right] = \widetilde{\mathbb{E}} \left[e^{-r(T-t)} (S_t \ \overline{S}_{T-t} - K)_+ | \mathcal{F}_t \right]$$

où \overline{S} est un Mouvement Brownien Géométrique indépendant de \mathcal{F}_t de même tendance et volatilité que S et tel que $\overline{S}_0 = 1$. On voit donc qu'on a

$$C(t, T, K, S_t) = C(0, T - t, K, S_t)$$
(9.8)

il suffit donc de savoir calculer le prix en t=0 pour le déduire à tout temps t. Ainsi pour tout $x\in\mathbb{R}^{+,*}$ on a

$$C(0, \theta, K, x) = \widetilde{\mathbb{E}} \left[e^{-r\theta} (S_{\theta} - K)_{+} | S_{0} = x \right]$$

$$= e^{-r\theta} \widetilde{\mathbb{E}} \left[\left(x \exp \left[\left(r - \frac{\sigma^{2}}{2} \right) \theta + \sigma W_{\theta} \right] - K \right)_{+} \right]$$

$$= x \widetilde{\mathbb{E}} \left[\exp \left[-\frac{\sigma^{2}}{2} \theta + \sigma W_{\theta} \right] \mathbf{1}_{\left\{ x \exp \left[\left(r - \frac{\sigma^{2}}{2} \right) \theta + \sigma W_{\theta} \right] \ge K \right\}} \right]$$

$$-K e^{-r\theta} \widetilde{\mathbb{P}}_{T} \left(x \exp \left[\left(r - \frac{\sigma^{2}}{2} \right) \theta + \sigma W_{\theta} \right] \ge K \right)$$

On calcule ces termes séparément :

$$\widetilde{\mathbb{P}}_{T}\left(x \exp\left[\left(r - \frac{\sigma^{2}}{2}\right)\theta + \sigma W_{\theta}\right] \geq K\right) = \widetilde{\mathbb{P}}_{T}\left(\sigma W_{\theta} \geq \ln\left(\frac{K}{x}\right) - \left(r - \frac{\sigma^{2}}{2}\right)\theta\right)$$

$$= \widetilde{\mathbb{P}}_{T}\left(W_{1} \geq \frac{1}{\sigma\sqrt{\theta}}\left[\ln\left(\frac{K}{x}\right) - \left(r - \frac{\sigma^{2}}{2}\right)\theta\right]\right)$$

$$= \mathcal{N}\left(\frac{1}{\sigma\sqrt{\theta}}\left[\ln\left(\frac{x}{K}\right) + \left(r - \frac{\sigma^{2}}{2}\right)\theta\right]\right)$$

$$= d_{1}(\theta, K, x)$$

où $\mathcal N$ est la FDR d'une v.a. de loi normale centrée réduite. Observons que le facteur

$$L_{\theta} := \exp\left[-\frac{\sigma^2}{2}\theta + \sigma W_{\theta}\right]$$

correspond à un changement de probabilité : ainsi sous la probabilité \mathbb{P}_{θ} définie par

$$\frac{d\mathbb{P}_{\theta}}{d\widetilde{\mathbb{P}}_{T}} = L_{\theta}$$

donc par Cameron-Martin le processus $W^{\theta} = (W_t^{\theta})_{t \in [0,T]}$ définit par

$$W_t^{\theta} = W_t - \sigma t$$

est un $(\mathcal{F}_t)_{t\in[0,T]}$ -M.B.S. et

$$\widetilde{\mathbb{E}}\left[L_{\theta}\mathbf{1}_{\left\{x\exp\left[\left(r-\frac{\sigma^{2}}{2}\right)\theta+\sigma W_{\theta}\right]\geq K\right\}}\right] = \mathbb{P}_{\theta}\left(x\exp\left[\left(r+\frac{\sigma^{2}}{2}\right)\theta+\sigma W_{\theta}^{\theta}\right]\geq K\right)$$

qui par un calcul similaire au calcul précédent donne

$$= \mathcal{N}\left(\frac{1}{\sigma\sqrt{\theta}}\left[\ln\left(\frac{x}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)\theta\right]\right) := d_2(\theta, K, x)$$

D'où

$$C(0, \theta, K, x) = xd_2(\theta, K, x) - Ke^{-r\theta}d_1(\theta, K, x)$$

Ainsi le prix d'un call Européen au temps t de strike K, de maturité T et dont le sous jacent vaut x au temps t est donc

$$C(t, T, K, x) = xd_2(T - t, K, x) - Ke^{-r(T-t)}d_1(T - t, K, x)$$

Le prix de ce call vu comme fonction de t et de S_t est donc

$$c(t, S_t) = C(t, T, K, S_t)$$

9.5.2 Couverture en delta

Dans la section précédente nous avons trouver le prix de notre produit dérivé à tout temps $t \in [0, T]$. Nous allons ici abordé le problème de la couverture : comme le vendeur à partir de la prime reçu à l'achat de l'option peut-il se couvrir contre le risque de devoir payer le flux promis à maturité?

L'idée est d'essayer de construire le porte feuille admissible de réplication : i.e. déterminer la stratégie de couverture.

Notons $V_t(\varphi)$ ce portefeuille. Par ce qui précède, son prix actualisé à tout temps $t \in [0,T]$ doit être

$$\widetilde{V}_t = e^{-rt}c(t, S_t).$$

Appliquons la formule d'Itô à la fonction $e^{-rt}c(t,x)$ (d'après l'expression obtenue c'est bien une fonction de classe $\mathcal{C}^{1,2}$) et au processus d'Itô S on a (en notation différentielle) :

$$d\widetilde{V}_{t}(\varphi) = (-re^{-rt}c(t, S_{t}) + e^{-rt}c'_{t}(t, S_{t})) dt + e^{-rt}c'_{x}(t, S_{t}) dS_{t} + \frac{1}{2}e^{-rt}c''_{xx}(t, S_{t}) d\langle S \rangle_{t}$$

On rappelle que sous la probabilité risque neutre $\widetilde{\mathbb{P}}_T$

$$dS_t = rS_t dt + \sigma S_t dW_t$$
 et donc $d\langle S \rangle_t = \sigma^2 S_t^2 dt$

d'où la décomposition d'Itô

$$d\widetilde{V}_{t}(\varphi) = e^{-rt} \left(-rc(t, S_{t}) + c'_{t}(t, S_{t}) + rS_{t}c'_{x}(t, S_{t}) + \frac{1}{2}\sigma^{2}S_{t}^{2}c''_{xx}(t, S_{t}) \right) dt + e^{-rt}c'_{x}(t, S_{t})\sigma S_{t} dW_{t}$$

Or nous savons par la proposition 9.6 que $\widetilde{V}(\varphi)$ est une martingale sous $\widetilde{\mathbb{P}}_T$. Ceci implique que le terme en dt dans la décomposition ci-dessus doit être nul.

On obtient donc

$$d\widetilde{V}_t(\varphi) = \sigma c_x'(t, S_t)\widetilde{S}_t \ dW_t$$

Or dans la proposition 9.6 nous avons vu que

$$d\widetilde{V}_t(\varphi) = \sigma H_t \widetilde{S}_t \ dW_t$$

On en déduit par identification que

$$H_t = c_x'(t, S_t) \tag{9.9}$$

qui est donc le nombre de parts de l'actif risqué à détenir au temps t.

Cette dérivée exprimant la sensibilité du prix de l'option dans le prix du titre est appelé le delta de

On peut calculer cette dérivée, soit directement à partir de la formule trouvée pour c(t,x) soit en repartant de l'égalité (9.8) et en posant $\theta = T - t$

$$c(t,x) = C(0,\theta,K,x) = \widetilde{\mathbb{E}}\left[e^{-r\theta}\left(x\exp\left[\left(r - \frac{\sigma^2}{2}\right)\theta + \sigma W_{\theta}\right] - K\right)_{+}\right]$$

La fonction

$$x \mapsto e^{-r\theta} \left(x \exp\left[\left(r - \frac{\sigma^2}{2} \right) \theta + \sigma W_{\theta} \right] - K \right)_{+}$$

est presque partout dérivable de dérivée

$$e^{-r\theta} \left(\exp\left[\left(r - \frac{\sigma^2}{2} \right) \theta + \sigma W_{\theta} \right] \right) \mathbf{1}_{\{\widetilde{S}_{\theta} > K\}} = \left(\exp\left[-\frac{\sigma^2}{2} \theta + \sigma W_{\theta} \right] \right) \mathbf{1}_{\{\widetilde{S}_{\theta} > K\}}$$

Par le théorème de Lebesgue (dérivation) et le résultat des calculs de la section précédente on obtient

$$H_t = c_x'(t, x) = \widetilde{\mathbb{E}}\left[\left(\exp\left[-\frac{\sigma^2}{2}\theta + \sigma W_\theta\right]\right)\mathbf{1}_{\{\widetilde{S}_\theta > K\}}\right] = d_2(\theta, K, x)$$

La valeur du portefeuille $V_t(\varphi) = c(t, S_t)$ étant connue on en déduit que la part d'actif non risqué à détenir au temps t est :

$$H_t^0 = e^{-rt}(V_t - H_t S_t).$$

Ainsi en rebalançant notre portefeuille suivant la stratégie obtenue de façon continue on peut sans risque produire le flux à maturité.

Rassemblons ces résultats dans le théorème :

Théorème 9.9. Formule de Black-Scholes-Merton.

La fonction du prix d'un Call européen de strike K de maturité T dans le modèle de BSM est donné à tout temps $t \in [0,T]$ par

$$c(t,x) = xd_2(T-t,K,x) - Ke^{-r(T-t)}d_1(T-t,K,x)$$

$$\begin{array}{l} o\grave{u} \ d_1 = \mathcal{N}\left(\frac{1}{\sigma\sqrt{\theta}}\left[\ln\left(\frac{x}{K}\right) + \left(r - \frac{\sigma^2}{2}\right)\theta\right]\right) \ et \ d_2 = \mathcal{N}\left(\frac{1}{\sigma\sqrt{\theta}}\left[\ln\left(\frac{x}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)\theta\right]\right). \\ De \ plus \ cette \ option \ est \ couverte \ par \ un \ portefeuille \ autofinaçant \ contenant \end{array}$$

$$\delta(t) = c'_x(t, S_t) = d_2(\theta, K, S_t)$$

parts du titre S à l'instant $t \in [0, T]$.

Remarque: On observera avec soin que, dans notre analyse, lorsque nous avons utilisé que \widetilde{V} était une martingale et que, par conséquent, le terme en dt de sa décomposition était nul nous obtenons en fait que la fonction de c(t,x) vérifie (sur la trajectoire de S_t) l'EDP de valorisation de Black-Scholes-Merton

$$rc(t,x) = c'_t(t,x) + rxc'_x(t,x) + \frac{1}{2}\sigma^2 x^2 c''_{xx}(t,x)$$

de condition terminale $c(T, x) = (x - K)_{+}$.

Une résolution numérique de cette EDP de valorisation conduirait bien entendu à la même solution que celle trouvée par le calcul probabiliste dans la section précédente.