Resampling in Sequential Monte Carlo

Suzie Brown

12 November 2019

Outline

- 1. Introduction to sequential Monte Carlo
- 2. How to resample
- 3. Properties of resampling schemes
- 4. Link with genealogies

Sequential Monte Carlo

Motivation

- lackbox Want to approximate a sequence of target measures $(\eta_t)_{t\in\mathbb{N}}$
- ▶ Use a system of *N* particles with dynamics 'mimicking' the target
- ▶ A 'particle' consists of a position and a weight: $(x_t^{(i)}, w_t^{(i)}) = (x_i, w_i)$
- Approximate the measures η_t by (random) empirical measures η_t^N consisting of atoms at the particle positions

Sequential Monte Carlo

Illustration

Resampling

Motivation

- ▶ Resampling is necessary to prevent weight degeneracy
- ▶ But resampling causes *ancestral degeneracy*

Resampling

Motivation

- ▶ Resampling is necessary to prevent *weight degeneracy*
- ▶ But resampling causes *ancestral degeneracy*
- ▶ Strategy: resample in a way that minimises 'unnecessary coalescences'

Resampling

Definition

We will take valid resampling schemes to be those satisfying

- ▶ The total number of particles *N* remains fixed
- ▶ The particles after resampling are equally weighted
- ▶ The scheme is unbiased: the expected number of offspring of particle i is equal to Nw_i for each i

Multinomial Resampling¹

Definition

Parental indices $a_i \in \{1, ..., N\}$:

$$(a_i \mid w_{1:N}) \stackrel{iid}{\sim} \mathsf{Categorical}(1:N,w_{1:N})$$

¹Efron & Tibshirani (1994) 'An introduction to the bootstrap'

Multinomial Resampling¹

Definition

Parental indices $a_i \in \{1, ..., N\}$:

$$(a_i \mid w_{1:N}) \stackrel{iid}{\sim} \mathsf{Categorical}(1:N,w_{1:N})$$

Offspring numbers $v_i \in \{0, ..., N\}$ such that $\sum v_i = N$:

$$(v_{1:N} \mid w_{1:N}) \sim \mathsf{Multinomial}(N, w_{1:N})$$

Suzie Brown Resampling in SMC 12 November 2019

Inversion Sampling

Draw uniform random variables

$$U_i \stackrel{iid}{\sim} \mathsf{Uniform}(0,1); \qquad i = 1, \dots, N$$

and determine the parental indices by inversion

$$a_i = \inf \left\{ k : \sum_{j=1}^k w_j \ge U_i \right\}$$

Inversion Sampling

Inversion Sampling

Inversion Sampling

Residual Resampling^{2,3}

Definition

- 1. Deterministically assign $\lfloor Nw_i \rfloor$ offspring to particle i; $i=1,\ldots, N$
- 2. There are $R := N \sum_{i=1}^{N} \lfloor Nw_i \rfloor$ offspring still to be assigned
- 3. Assign these randomly according to the residual weights $r_i := \frac{1}{R}(Nw_i \lfloor Nw_i \rfloor)$

Suzie Brown Resampling in SMC 12 November 2019

²Liu & Chen (1998) 'Sequential Monte Carlo methods for dynamic systems'

³Whitley (1994) 'A genetic algorithm tutorial'

$$w_1 = 0.28$$

$$w_2 = 0.12$$

$$w_3 = 0.51$$

$$w_4 = 0.09$$

$$w_1 = 0.28$$

$$w_2 = 0.12$$

$$w_3 = 0.51$$

$$w_4 = 0.09$$

$$ightharpoonup r_1 \propto 0.03$$

$$r_2 \propto 0.12$$

$$r_3 \propto 0.01$$

$$r_4 \propto 0.09$$

$$r_1 = 0.12$$

$$r_2 = 0.48$$

$$r_4 = 0.36$$

Definition

If residuals are assigned using multinomial resampling, offspring counts are distributed

$$v_{1:N} \stackrel{d}{=} \lfloor Nw_{1:N} \rfloor + \mathsf{Multinomial}(R, r_{1:N})$$

Stratified Resampling⁴

Definition

Draw uniformly from each stratified interval

$$U_i \sim \text{Uniform}\left(\frac{i-1}{N}, \frac{i}{N}\right); \qquad i = 1, \dots, N$$

and determine the parental indices by inversion

$$a_i = \inf \left\{ k : \sum_{j=1}^k w_j \ge U_i \right\}$$

Suzie Brown Resampling in SMC 12 November 2019 15 / 31

⁴Kitagawa (1996) 'Monte Carlo filter and smoother for non-Gaussian nonlinear state space models'

Stratified Resampling

Inversion Sampling

Stratified Resampling

Inversion Sampling

Systematic Resampling^{5,6}

Definition

Draw uniformly from $[0, \frac{1}{N}]$, and add multiples of $\frac{1}{N}$

$$U_1 \sim \mathsf{Uniform}\left(0, \frac{1}{N}\right)$$

$$U_i=U_1+\frac{i-1}{N}; \qquad i=2,\ldots,N$$

and determine the parental indices by inversion

$$a_i = \inf \left\{ k : \sum_{j=1}^k w_j \ge U_i \right\}$$

Suzie Brown Resampling in SMC

⁵Carpenter, Clifford & Fearnhead (1999) 'Improved particle filter for nonlinear problems'

⁶Whitley (1994) 'A genetic algorithm tutorial'

Systematic Resampling

Inversion Sampling

Systematic Resampling

Inversion Sampling

Support of Offspring Counts

```
Suppose w_i \in \left[\frac{k}{N}, \frac{k+1}{N}\right].
```

What are the possible values for v_i ?

Multinomial: $v_i \in \{0, ..., N\}$

Residual: $v_i \in \{k, \ldots, k+R\}$

Stratified: $v_i \in \{k-1, k, k+1, k+2\}$

Systematic: $v_i \in \{k, k+1\}$

One-Step Variance

Consider variance of our estimator, conditional on the previous step:

$$\operatorname{\mathsf{Var}}\left[rac{1}{\mathsf{N}}\sum_{i=1}^{\mathsf{N}} arphi(X_t^{(i)}) \mid \mathcal{G}_{t-1}
ight]$$

Suzie Brown Resampling in SMC 12 November 2019

⁷Douc, Cappé & Moulines (2005) 'Comparison of resampling schemes for particle filtering'

One-Step Variance

Consider variance of our estimator, conditional on the previous step:

$$\operatorname{\mathsf{Var}}\left[rac{1}{\mathsf{N}}\sum_{i=1}^{\mathsf{N}} arphi(X_t^{(i)}) \mid \mathcal{G}_{t-1}
ight]$$

In this sense we have⁷

 $Var[stratified] \leq Var[multinomial]$

20 / 31

 $\mathsf{Var}[\mathsf{residual}\text{-}\mathsf{stratified}] \leq \mathsf{Var}[\mathsf{residual}\text{-}\mathsf{multinomial}] \leq \mathsf{Var}[\mathsf{multinomial}]$

Suzie Brown Resampling in SMC 12 November 2019

⁷Douc, Cappé & Moulines (2005) 'Comparison of resampling schemes for particle filtering'

Permutation Invariance

Stratified and systematic resampling are sensitive to the ordering of the particles.

Permutation Invariance

Stratified and systematic resampling are sensitive to the ordering of the particles.

Example

$$N = 6$$

$$w_{1:N} = \frac{1}{12}(3,3,2,2,1,1)$$

Is it possible to sample offspring counts $v_i = (1, 1, 1, 1, 1, 1)$?

Permutation Invariance

Stratified and systematic resampling are sensitive to the ordering of the particles.

Example

$$N = 6$$

$$w_{1:N} = \frac{1}{12}(3,3,2,2,1,1)$$

Is it possible to sample offspring counts $v_i = (1, 1, 1, 1, 1, 1)$?

Answer: it depends on the ordering!

Permutation Invariance

Permutation Invariance

Permutation Invariance

Permutation Invariance

- ▶ Kitagawa⁸ suggested ordering the particles by their positions before resampling
- ▶ He ran an experiment suggesting that sorting reduces Monte Carlo variance
- ► This was later proved to be true⁹
- ▶ Sorting by position could be a sort of proxy for sorting by weight

Suzie Brown Resampling in SMC 12 November 2019 23 / 31

⁸Kitagawa (1996) 'Monte Carlo filter and smoother for non-Gaussian nonlinear state space models'

⁹Gerber, Chopin & Whiteley (2018) 'Negative association, ordering and convergence of resampling methods'

Degeneracy under Equal Weights

▶ Suppose all of the weights are multiples of $\frac{1}{N}$.

Degeneracy under Equal Weights

- ▶ Suppose all of the weights are multiples of $\frac{1}{N}$.
- ► Then residual, stratified and systematic resampling all yield purely deterministic assignments of offspring.

Degeneracy under Equal Weights

- ▶ Suppose all of the weights are multiples of $\frac{1}{N}$.
- ► Then residual, stratified and systematic resampling all yield purely deterministic assignments of offspring.
- ▶ In particular, if $w_{1:N} = \frac{1}{N}(1,...,1)$, these schemes do not resample at all (assigning exactly one offspring to each particle).

Degeneracy under Equal Weights

- ▶ Suppose all of the weights are multiples of $\frac{1}{N}$.
- ► Then residual, stratified and systematic resampling all yield purely deterministic assignments of offspring.
- ▶ In particular, if $w_{1:N} = \frac{1}{N}(1,...,1)$, these schemes do not resample at all (assigning exactly one offspring to each particle).
- ▶ Under reasonable conditions, this situation has zero measure.

Summary

	$\left egin{array}{c} sup \left v_i - \mathcal{N} w_i ight \end{array} ight.$	low variance	invariant under permutations	degenerate if $w_{1:N} \propto (1,\dots,1)$
multinomial	N	×	✓	×
residual	R	\checkmark	\checkmark	\checkmark
stratified	2	\checkmark	×	\checkmark
systematic	1	×	×	\checkmark

Summary

		low variance	invariant under permutations	degenerate if $w_{1:N} \propto (1,\ldots,1)$
multinomial	Ν	×	✓	×
residual	R	\checkmark	\checkmark	\checkmark
stratified	2	\checkmark	×	\checkmark
systematic	1	×	×	\checkmark
residual-strat	1	\checkmark	×	\checkmark

Resampling and Genealogies

- ► Resampling creates a genealogy (family tree) of particles
- ► Properties of the genealogy affect performance of the SMC algorithm
- ▶ Different resampling schemes give different forms of genealogies
- Basic quantity for analysing genealogies is the pair coalescence probability

26 / 31

Coalescence Probability

Definition

The probability that a randomly chosen pair of particles at generation t share a common ancestor at generation (t-1)

$$c_N = \frac{1}{N(N-1)} \sum_{i=1}^N v_i(v_i-1)$$

27 / 31

Coalescence Probability

Example

Consider the case where we have only two particles (N = 2)

$$c_2 = \frac{1}{2} \left[v_1(v_1 - 1) + v_2(v_2 - 1) \right]$$

The expectation of c_2 conditional on knowing the weights (w_1, w_2) is

$$c_2 = \frac{1}{2}\mathbb{E}[v_1(v_1 - 1) \mid w_{1:2}] + \frac{1}{2}\mathbb{E}[v_2(v_2 - 1) \mid w_{1:2}]$$

= $\mathbb{P}[v_1 = 2 \mid w_{1:2}] + \mathbb{P}[v_2 = 2 \mid w_{1:2}]$

28 / 31

Coalescence Probability

Example

Suzie Brown

- ightharpoonup We proved that asymptotically (as $N o \infty$) residual resampling dominates multinomial in terms of expected coalescence probability
- ▶ We also proved it in cases N = 2 and N = 3

- ightharpoonup We proved that asymptotically (as $N o \infty$) residual resampling dominates multinomial in terms of expected coalescence probability
- ▶ We also proved it in cases N = 2 and N = 3
- ▶ We conjecture that it holds for all finite *N* too
- ▶ It just remains to prove it for N = 4, 5, ...

- \blacktriangleright We proved that asymptotically (as $N \to \infty$) residual resampling dominates multinomial in terms of expected coalescence probability
- ▶ We also proved it in cases N = 2 and N = 3
- ▶ We conjecture that it holds for all finite *N* too
- ▶ It just remains to prove it for N = 4, 5, ...
- ▶ We proved that systematic resampling (and some others) dominate multinomial in expected coalescence probability, for all *N*.

THE END