

Assumptions of OLS regression

- 1. Model is *linear in parameters*
- 2. The data are a *random sample* of the population
 - 1. The errors are *statistically independent* from one another
- 3. The expected value of the errors is always zero
- 4. The independent variables are not too strongly *collinear*
- 5. The independent variables are measured *precisely*
- 6. The residuals have *constant variance*
- 7. The errors are normally distributed

- If assumptions 1-5 are satisfied, then
 OLS estimator is unbiased
- If assumption 6 is also satisfied, then

 OLS estimator has

 minimum variance of all
- If assumption 7 is also satisfied, then we can do hypothesis testing using t and F tests
- How can we test these assumptions?
- If assumptions are violated,

unbiased estimators.

- what does this do to our conclusions?
- how do we fix the problem?

1. Model not linear in parameters

- **Problem:** Can't fit the model!
- **Diagnosis:** Look at the model
- Solutions:
 - 1. Re-frame the model
 - 2. Use nonlinear least squares (NLS) regression

2. Errors not independent

- **Problem:** parameter estimates are biased
- **Diagnosis** (1): look for correlation between residuals and another variable (not in the model)
 - I.e., residuals are dominated by another variable, Z, which is not random with respect to the other independent variables
- **Solution (1):** add the variable to the model

- **Diagnosis** (2): look at *autocorrelation function* of residuals to find patterns in
 - time
 - Space
 - I.e., observations that are nearby in time or space have residuals that are more similar than average
- **Solution (2):** fit model using generalized least squares (GLS)

3. Average error not everywhere zero ("nonlinearity")

- **Problem:** indicates that *model is* wrong
- Diagnosis:
 - Look for curvature in plot of observed vs. predicted Y

3. Average error not everywhere zero ("nonlinearity")

• **Problem:** indicates that *model is* wrong

• Diagnosis:

- Look for curvature in plot of observed vs. predicted Y
- Look for curvature in plot of residuals vs. predicted Y

3. Average error not everywhere zero ("nonlinearity")

• **Problem:** indicates that *model is wrong*

Diagnosis:

- Look for curvature in plot of observed vs.
 predicted Y
- Look for curvature in plot of residuals vs. predicted Y
- look for curvature in partial-residual plots (also component+residual plots [CR plots])
 - Most software doesn't provide these, so instead can take a quick look at plots of Y vs. each of the independent variables

A simple look a nonlinearity: bivariate plots

A better way to look at nonlinearity: partial residual plots

- The previous plots are fitting a *different model*:
 - for phosphorus, we are looking at residuals from the model

$$C_i = a_0 + a_1 P_i + e_i$$

We want to look at residuals from

$$C_i = b_0 + b_1 P_i + b_2 N_i P_i + e_i$$

• Construct Partial Residuals:

Phosphorus

$$PR_i = b_1 P_i + e_i$$

$$PR_i = b_2 N_i P_i + e_i$$

A better way to look at nonlinearity: partial residual plots

$$PR_i = b_1 P_i + e_i$$

$$PR_i = b_2 N_i P_i + e_i$$

Average error not everywhere zero ("nonlinearity")

- Solutions:
- If pattern is monotonic*, try transforming *independent* variable
 - Downward curving: use powers less than one
 - E.g. Square root, log, inverse
 - Upward curving: use powers greater than one
 - E.g. square
 - * Monotonic: always increasing or always decreasing

• If not, try adding *additional terms* in the independent variable (e.g., quadratic)

4. Independent variables are collinear

- **Problem:** parameter estimates are imprecise
- Diagnosis:
 - Look for correlations among independent variables
 - In regression output, none of the individual terms are significant, even though the model as a whole is

• Solutions:

- Live with it
- Remove statistically redundant variables

Parameter	Est value	St dev	t student	Prob(> t)
b0	16.37383	41.50584	0.394495	0.696315
b1	1.986335	1.02642	1.935206	0.063504
b2	-1.22964	2.131899	-0.57678	0.568867
Residual St dev	31.6315			y = b0 + b1.x1 + b2.x2
R2	0.534192			
R2(adj)	0.499688			
F	15.48191			
Prob(>F)	3.32E-05			

$$\beta_0 = 0; \beta_1 = 1; \beta_2 = 0.5; \rho_{XZ} = 0.95$$

5. Independent variables not precise ("measurement error")

- **Problem:** parameter estimates are biased
- **Diagnosis:** know how your data were collected!

- **Solution:** very hard
 - State space models
 - Restricted maximum likelihood (REML)
 - Use simulations to estimate bias
 - Consult a professional!

6. Errors have non-constant variance ("heteroskedasticity")

• Problem:

- Parameter estimates are *unbiased*
- P-values are *unreliable*
- **Diagnosis:** plot residuals against fitted values

Errors have non-constant variance ("heteroskedasticity")

- Problem:
 - Parameter estimates are unbiased
 - P-values are *unreliable*
- **Diagnosis:** plot studentized residuals against fitted values

• Solutions:

- Transform the dependent variable
 - If residual variance increases with predicted value, try transforming with power less than one

Try square root transform

Errors have non-constant variance ("heteroskedasticity")

Problem:

- Parameter estimates are *unbiased*
- P-values are unreliable
- **Diagnosis:** plot studentized residuals against fitted values

• Solutions:

- Transform the dependent variable
 - May create nonlinearity in the model
- Fit a generalized linear model (GLM)
 - For some distributions, the variance changes with the mean in predictable ways
- Fit a generalized least squares model (GLS)
 - Specifies how variance depends on one or more variables
- Fit a weighted least squares regression (WLS)
 - Also good when data points have differing amount of precision

7. Errors not normally distributed

• Problem:

- Parameter estimates are *unbiased*
- P-values are *unreliable*
- Regression fits the mean; with skewed residuals the mean is not a good measure of central tendency
- **Diagnosis:** examine QQ plot of *residuals*

Distributions

Studentized Resid Chlorophyll-a

Errors not normally distributed

Problem:

- Parameter estimates are unbiased
- P-values are *unreliable*
- Regression fits the mean; with skewed residuals the mean is not a good measure of central tendency
- **Diagnosis:** examine QQ plot of *Studentized residuals*
 - Corrects for bias in estimates of residual variance

• Solutions:

- Transform the dependent variable
 - May create nonlinearity in the model

Try transforming the response variable

But we've introduced nonlinearity...

Actual by Predicted Plot (Chlorophyll)

150e 100-0 50 100 150 Chlorophyll-a Predicted P<.0001 RSq=0.88 RMSE=18.074

Actual by Predicted Plot (sqrt[Chlorophyll])

Errors not normally distributed

Problem:

- Parameter estimates are unbiased
- P-values are unreliable
- Regression fits the mean; with skewed residuals the mean is not a good measure of central tendency
- **Diagnosis:** examine QQ plot of *Studentized residuals*
 - Corrects for bias in estimates of residual variance

• Solutions:

- Transform the dependent variable
 - May create nonlinearity in the model
- Fit a generalized linear model (GLM)
 - Allows us to assume the residuals follow a different distribution (binomial, gamma, etc.)

Summary of OLS assumptions

Violation	Problem	Solution	
Nonlinear in parameters	Can't fit model	NLS	
Non-normal errors	Bad P-values	Transform Y; GLM	
Heteroskedasticity	Bad P-values	Transform Y; GLM	
Nonlinearity	Wrong model	Transform X; add terms	
Nonindependence	Biased parameter estimates	GLS	
Measurement error	Biased parameter estimates	Hard!!!	
Collinearity	Individual P-values inflated	Remove X terms?	

Fixing assumptions via data transformations is an iterative process

• After each modification, fit the new model and look at all the assumptions again

What can we do about chlorophyll regression?

• Square root transform helps a little with non-normality and a lot with heteroskedasticity

• But it creates nonlinearity

A new model ... it's linear ...

... it's normal (sort of) and homoskedastic ...

... and it fits well!

esponse sqrt(Chle	orophyll-a	a)					
Whole Model							
Summary of Fit							
RSquare		0.8	96972				
RSquare Adj		0.8	87606				
Root Mean Square	e Error	1.1	98382				
Mean of Response	Э	6.1	67458				
Observations (or S	Sum Wgts)		25				
Analysis of Var	iance						
Source DF	Sum of Squ	ares	s Mean So	quare	F Ratio)	
Model 2	275.0	6699	9 137	7.533	95.7674		
Error 22	31.5	9463	3 1	.436	Prob > F	-	
C. Total 24	306.6	6163	3		<.0001		
Parameter Estin	nates						
Term	Estim	ate	Std Error	t Rat	io Prob>	 · t	
Intercept	-0.9014	114	0.61584	-1.4	6 0.157	' 4	
sqrt(Phosphorus)	0.2140)75	0.095471	2.2	4 0.035	53	
sqrt(NP)	0.15133	313	0.037419	4.0	4 0.000)5	
Effect Tests							
Source	Nparm	DF	Sum of So	quares	F Rat	tio Prob > F	=
sqrt(Phosphorus)	1	1	7.2	20755	5.028	30 0.0353	}

23.488665

16.3556

0.0005

sqrt(NP)

