

Mid-High-Level CV: Object Detection

ENEE 4584/5584 CV Apps in DL

Dr. Alsamman

Slide Credits:

Adaboost: S. Chen, S. Lezebnik

HoG: N. Dalal & B. Triggs, G. Lacey, N. Snavely, K. Grauman, E. Seeman

Object Detection

- A subset of object classification
 - ➤ One object of interest
- Added goal of localization
- Practical CV : Image from the "wild"
 - ➤ No region of interest
 - Challenging localization
 - > Small subset of pixels belong to the object
 - More rejection than detection
 - ➤ Multiple instances of the same object
 - ≥ 3D variation in pose
 - Variations in scale
 - Variety of occlusions
 - > Real-time performance

Traditional Object Detection: Adaboost

Overview:

- Proposed for face detection
- > Build strong classifier from many weak classifiers
- ➤ Box function classifier on integral images
- > Train classifier to detect & reject
- > Support vector machine (SVM) classification at the output
- Cascade classifiers for real-time response

Adaboost

- Adaptive boosting: a machine learning algorithm
- Builds a "strong" classifier iteratively from "weak" classifiers
- ❖ Weak classifiers: $h_t(x) \in \{1,-1\}$
 - ▶ h_t: Classifier used as iteration t
 - Usually linear binary: Classifies feature x as in/out class.
 - > slightly better than random! but fast.
- Strong classifier:

$$H_{T}(x) = sign\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right)$$

- > Hard classifier: Signum function
- > Use T most beneficial features
- \triangleright Each classifier is weighted by α
- Linear combination: Close to sequential decision making

Algorithm

- Singer & Schapire (1997)
- *Given: $(x_1,y_1), (x_2,y_2),..., (x_m,y_m)$
 - $> x_i \in X; y_i \in \{-1, 1\}$
- Initialize the probab. distribution of X:

$$D_1(i) = 1/m; i = 1,...,m$$

- **❖** For t = 1:
 - Find a classifier that minimizes the error

$$\varepsilon_t = \sum_{i=1}^m D_t(i) \{ y_i \neq h_t \}$$

- i.e. error is the sum of prob. of each wrongly classified feature.
- \triangleright Stop when ε_t < 0.5 (better than chance!)

 \triangleright Calculate the weight of h_t that minimizes exponential loss:

$$\alpha_t = \frac{1}{2} Ln \frac{1 - \varepsilon_t}{\varepsilon_t}$$

➤ New prob. distribution:

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

 Z_t is a normalization factor, so that D_{t+1} is a distribution: i.e. all probab must add up to 1.

- *Repeat for t+1, stop at T: when ε_T =0 (or ε_T <T)
- Sum all classifiers, then use a hard classifier

$$H_T(x) = sign\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$$

Example

Final classifier is a combination of weak classifiers

Face Detector

- *Basic Idea: Slide a window, evaluate a face model at every location.
- ❖ Faces are rare: 0–10 per image
- *For computational efficiency, we should try to spend as little time as possible on the non-face windows
- ❖ A megapixel image has ~10⁶ candidate face locations
- ❖ To avoid having a false positive in every image, our false positive rate has to be less than 10⁶

Viola-Jones Face Detector

- S.I.o.w. training, but fast detection
- Feature: box function (haar-like) functions
- Weak classifier: Integral image
- Attentional cascade:
 - ➤ fast rejection of non-face windows
 - > Slower detection of face windows

Box-functions

- Rectangle features: sensitive to edges, lines
- Feature value = \sum pixels in white area \sum pixels in black area
 - ➤ Gray-level images only

- ❖ Feature value is calculate for various sizes of the Haar functions in 24x24 area.
 - ➤ Calculate over a sliding window
 - > Vary the height and width of the function
- ❖ Possible Haar variations in a 24x24 region:
 - > Total ~160,000
- ❖ Training will reveal that a small subset (~10 features) are sufficient.

Integral Image

- *Integral image at $(x,y) = \sum$ pixels values above, to the left
 - $ii(x, y) = \sum_{x' \le x, y' \le y} i(x', y')$
 - ➤ Can be computed in 1 pass
 - Cumulative sum fuction
- ❖Sum within an area:

$$\triangleright$$
 Sum = $ii_A - ii_B - ii_C + ii_D$

Evaluation of all rectangular sizes in constant time

Weak Binary Classifiers

$$h_t(x) = \begin{cases} 1 & if & p_t h_t(x) > p_t \theta_t \\ 0 & otherwise \end{cases}$$

- ♦ h_t(): classification function at iteration t
- x: feature = window size = wxh
- ❖ f_t(): value of Haar feature
- θ_t : threshold (learning objective)
 - > There will be a separate threshold for each haar function used
- p_t: polarity {1,-1} for face vs non-face

Adaboost Training

- Create a very large database of face and non-faces
 - > 10k-100k in size for greater accuracy
 - > Faces should be cropped so only face is showing
 - > Faces should include variations in lighting, occlusions, poses, scale

For each iteration t:

- 1. Initialize weights
- 2. Evaluate each Haar function on each training sample
- 3. Select the threshold θ that reduces the error
- 4. Calculate weights, repeat until error = 0.
- Computational complexity ~O(T×N×K)
 - Titerations, N training samples, K Haar features
 - The key to reducing complexity is K

- With only 2 basic box features, 100% detection of faces is possible
- ❖ Big problem: 50% false positive
 - ➤ For a megapixel image, error = ?
- With 200 features: 95% detection, 0.007% false positive
 - ➤ Better but not good enough

Attentional Cascade

- Start with simple classifiers that reject many of the non-faces (negative) windows, while detecting the almost all of the face (positive) windows
- Positive response triggers classification use a more complex classifier
- ❖ Negative response causes rejection of that window and sliding the window.

- \bullet Detection rate = \prod false positive rate of each stage
 - > Detection rate must be high to maintain successful detection
 - \triangleright E.g. if each stage has 90% detect, for 10 stages: 0.9¹⁰ = 0.35!
- False positive rate = \prod false positive rate of each stage
 - > False positive rate should be low

Training Cascade

- Set target detection and false positive rates for each stage
- *Keep adding Haar features to the current stage until its target rates have been met
 - Need to lower AdaBoost threshold to maximize detection (as opposed to minimizing total classification error)
 - > Test on a validation set
- ❖ If the overall false positive rate is not low enough, then add another stage
- Use false positives from current stage as the negative training examples for the next stage

Viola & Jones: Database

Training Data

- **>** 5000 faces
 - All frontal, rescaled to 24x24 pixels
- ≥ 300 million non-faces
- > Faces are normalized
 - Scale, translation

Many variations

- > Across individuals
- > Illumination
- Pose
- ➤ Not scale!

Structure of the Detector Cascade

- Combining successively more complex classifiers in cascade
 - ≥ 38 stages
 - included a total of 6060 features

Speed of the Final Detector

- Shifting the window some number of pixels D
 - choice of D affects both speed and accuracy
 - > D > 1 decreases the detection rate slightly
 - ➤ D > 1 decreases false positives
- Processes large image in milliseconds.
- Average of 8 features evaluated per window on test set

Integration of Multiple Detections

- Combine overlapping detections into a single detection
 - > The corners of the final bounding region are the average of the corners of all detections in the set.
 - Decreases the number of false positives.
- A simple Voting Scheme further improves results
 - > Retaining regions that produces the same error rate in the final stage.
 - > This improves the final detection rate as well as eliminating more false positives.
 - ➤ Since detector errors are not uncorrelated, the combination results in a measurable, but modest, improvement over the best single detector.

Merging Multiple Detections

Scale

- Don't scale images, scale features.
- Face detector scans the input at many scales
 - > starting at the base scale: detect face at a size of 24 × 24 pixels,
 - Then at 12 scales, 1.25 larger than the last
 - > 384 × 288 pixel image is scanned at the top scale

Failure Cases

- Large rotations
 - > Systems is trained on frontal, upright faces
 - > ±15 degrees in plane and about ±45 degrees out of plane is acceptable. More causes failure
- Harsh backlighting: dark faces, light background.
 - > Additional but (real-time) prohibitive techniques can be employed.
- Significantly occluded faces
 - > Occlusion of the eyes: usually fail.
 - ➤ The face with covered mouth will usually still be detected.

Other Applications

Detection of facial features: eyes, nose, mouth

Detecting facial profiles in images

Pedestrian detection

Adaboost Overview

- ❖ Real-time detector
- Scale and location invariant detector
 - > Instead of scaling the image itself (e.g. pyramid-filters), we scale the features.
- Can be trained for other object detection
- Very suitable for rejection
- Requires long training
- Can only detect images similar to training set
 - > If no profile images exist in training, it can't detect them
- Sensitive to lighting conditions
 - ➤ Affects integral calculation
- Multiple detections of the same object due to overlapping windows.

Alsamman ENEE 4584/5584

Motivation

- Object detection for Understanding scenes
- Challenges
 - ➤ Wide variety of articulated poses
 - ➤ Variable appearance and clothing
 - ➤ Complex backgrounds
 - > Unconstrained illumination
 - ➤ Occlusions
 - > Scales
 - > Real-time detection

Chronology

- Template based: Edge detection
 - > Supports irregular shapes & partial occlusions
 - Window free framework
 - > Sensitive to edge detection & edge threshold
 - ➤ Not resistant to local illumination changes
- Feature (keypoint) based:
 - > E.g. local maxima (SIFT), corners (MOPS)
 - > SIFT uses gradient orientation histograms for feature orientation
 - > Keypoints difficult to detect on certain objects

Large positive and negative-heavy databases

- E.g. Haar and SVM, adaboost
- > Fast detection
- > Robust and invariant
- ➤ Uses large positive and negative-heavy database
- ➤ Very slow learning

Why H.O.G

Gradients:

- > Edges persist under various lighting changes and transforms
- ➤ Gradients are normal (perpendicular) to edges

Orientation

- > Angle/direction of gradient
- ➤ Magnitude is susceptible to invariance illumination changes

Histogram

- > A histogram of orientations can be used to describe a shape
- Histograms are invariant to transformations (rot, scale, etc.)
- > Coarse binning (sampling) orientation leads to greater invariance
 - e.g. in hand gesture recognition
- > Finer binning is needed in some applications
 - E,g. pedestrian recognition

HOG

- Idea: describe shape using localized HOG
 - > Widowed approach: HOG applied to local regions
 - > Localization provides immunity to occlusions, background changes
- ❖ Idea: Use a database to build HOG descriptor for shape and anti-shape
 - > Shape descriptor is a HOG vector that describes object of interest
 - > Anti-shape descriptor is a vector that described other objects
 - > Based on images taken from real environments

Training Algorithm

- Need a LARGE database of images
 - More non-object images than object
 - Need to determine dimension of object
- 1. Compute a HOG descriptor for each training image
 - Color Processing: Selection of Grayscale, RGB, etc.
 - Gradient Calculation on each pixel
 - iii. Orientation Binning of pixel groups (cells)
 - iv. Normalization of local regions (blocks of cells)
 - v. Generate HOG descriptor for image
- 2. Use a (linear) SVM classifier
 - 1-level classification: object or non-object
 - Learn classifier boundary equation
 - Reliable and fast, but not optimal

Testing

- For each new (test) image:
 - Use a sliding window,
 - Window size same as object size
 - ➤ In each window: compute HOG vector for that window
 - Classify window based on boundary equation

Color Processing

- *RGB channels can be processed separately
- No advantage of RGB over LAB
 - > CIE LAB:
 - L: lightness (black to white)
 - A: Red to Green
 - B: Yellow to Blue.
- Grayscale has -1.5% effect on results
- Gamma correction has no major effect on image
 - ➤ Gamma correction: adjusting gain due to power-law devices

Gradient Calc

- Several gradient detectors tried
 - > [1,-1], [1,0,-1], [1,-8,0,8,-1], Sobel
 - > Test unfiltered and pre-filtered with Gaussian smoothing
- ❖ Simplest [1,0,-1] proved best
- Gaussian smoothing affected results negatively
- For color images
 - Compute each channel separately
 - > Choose the largest value as the gradient for that pixel

Orientation Binning

- Sampling of gradient orientation:
 - > Highest possible: 360 bins => 1°/bin
 - > n bins => 360°/n degrees/bin
 - > 0-180° can be used to ignore negative directions and simplify computation
- Compute histogram for gradient orientations for each cell
 - Bin orientations
 - > Less bins => better invariance
- ❖ Optimum: 9 bins 0-180° or 18 bins 0-360°

Partitioning: Cell

- Image is partitioned into cells: nxn pixels
 - > Smaller n => better gradient resolution
 - ➤ The histogram is computed for each cell
 - > Histograms from adjacent cells are used to create a vector

10x10 cells

20x20 cells

Partitioning: Block

Rectangular HOG (R-HOG)

- mxm cells are grouped together to form blocks
 - > Local HOG
 - ➤ Larger m => better invariance to change
- Optimum for pedestrian images:
 - > 6x6 cell size
 - > 3x3 block size
 - ➤ May vary for other images and image types

Bilinear Smoothing: Within a Cell

- Used to reducing aliasing
 - > Aliasing: interference due to improper sampling
- ❖ Bilinear smoothing: orientation contributes to the bins that it is closes to
- Example:

```
positive only, bins = 9 80/9 = 20^{\circ}/bin. Bins located at 10, 30, 50, 70, 90, 110^{\circ}\angle, ... if magnitude of grad i = |G_i|= 10, and orientation = \angle G_i=85
```

 \Rightarrow h(4) = [1-(85-70)/20]*10=2.5;

 \Rightarrow h(5) = [1-(90-85)/20]*10=7.5;

Trilinear Interpolation: Between Cells

- Example: Given 8x8 cell
 - > Centers are (5,5), (5,13), (13,5), (13,13)
 - Mag Gradient i is located at 7,7
 - > Row, Column Distance to cell center:
 - Top-left: 2/8, 2/8
 - Top-right: 2/8, 5/8
 - Bottom-left: 6/8, 2/8
 - Bottom-right: 6/8, 6/8
 - > Ratios: (1-r)(1-c)
 - Top-left: 6/8*6/8 = 36/64 = 9/16
 - Top-right: 6/8*2/8 = 12/64 = 3/16
 - Bottom-left: 2/8*6/8 = 12/64 = 3/16
 - Bottom-right: 2/8*2/8 = 4/64 = 1/16

Block Normalization

- Gradient magnitude is affected by illumination
 - > Low contrast/illumination regions yield small values
 - ➤ High intensity regions dominant values

Normalization:

- Low contrast regions are stretched
- High intensity regions are reduced
- ➤ L1-norm: divide by sum of values:

$$\frac{v}{\sqrt{|v|_1 + \epsilon}}$$

- > L2-norm: divide by sqrt(sum {values^2}): $\frac{v}{\sqrt{|v|_2^2 + \epsilon}}$
- $\triangleright v$ = vector concatenated histograms of all cells in a block

Effect of Normalization

Cell Overlap

- Blocks can overlap
 - Improves performance, but descriptor size increases
 - ➤ Ensures consistency across the whole image without the loss of local variations
- Overlap: sliding block
 - > 0% overlap: blocks have no shared cells
 - > 50% overlap: blocks share 50% of cells with neighboring blocks

Effect of Scale

Linear Classifier

- Find linear function to separate positive and negative examples
- Support Vector Machines:
 - ➤ Maximize the margin between the positive and negative training examples
- Hard clipping of SVM scores gives the best results than simple probabilistic mapping of scores

 \mathbf{x}_i positive: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 0$

 \mathbf{x}_i negative: $\mathbf{x}_i \cdot \mathbf{w} + b < 0$

Support vectors Margin

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i$$
 negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$

For support, vectors, $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$

People Detection

- Detect & localize upright people in static images
 - ➤ Main assumption: upright fully visible people

Challenges

- Wide variety of articulated poses
- ➤ Variable appearance/clothing
- Complex backgrounds
- > Unconstrained illumination
- ➤ Occlusions, different scales

Applications

- > Pedestrian detection for smart cars
- Film & media analysis
- ➤ Visual surveillance

Database

- http://pascal.inrialpes.fr/data/human/
- Training
 - ➤ 614 positive images
 - ➤ 1218 negative images
- Testing
 - ≥ 288 positive images
 - ➤ 453 negative images
- ❖90% at 10⁻⁴ false positives per window
- Slower than adaboost (Viola & Jones)

Improvements

- Circular HOG (C-HOG)
 - ➤ Circular arrangement of cells
- Multi-scale resolution

Comparisons

