Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ИУК «Информатика и управление»</u>

КАФЕДРА <u>ИУК4 «Программное обеспечение ЭВМ, информационные</u> технологии»

ЛАБОРАТОРНАЯ РАБОТА №1

«Разложение сигналов в ряд Фурье»

ДИСЦИПЛИНА: «Цифровая обработка сигналов»

Выполнил: студент гр. ИУК4-721	(Подпись) (Карельский М.	<u>K.</u>)
Проверил:	(<u>Тронов К.А.</u> (Подпись))
Дата сдачи (защиты):		
Результаты сдачи (защиты):		
- Баллі	ьная оценка:	
- Оцен	ка:	

Цель: формирование практических навыков разложения сигналов различного вида в ряд Фурье и моделирование сигналов различной формы с заданными параметрами.

Задачи:

- 1. Выполнить разложение сигналов в ряд Фурье. Разложению подлежат следующие сигналы: последовательность прямоугольных импульсов, меандр, пилообразный сигнал и последовательность треугольных импульсов.
- 2. Построить графики для промежуточных стадий суммирования.

Вариант 7

- Амплитуда сигнала: 4
- Период повторения сигналов: 4
- Длительность сигнала: 3
- Число ненулевых гармоник: 16

Листинг:

```
% Прямоугольные импульсы
N = 16;
t = -3:0.01:3;
A = 4;
T = 4;
q = T/3;
nh = (1:N);
harmonics = sin((pi*nh)'./q) .* cos((2*pi*nh)'*t/T);
Am = 2*A/pi./nh;
s = A/q + harmonics .* repmat(Am', 1, length(t));
s = cumsum(s);
for k=1:N
    subplot(8, 2, k);
    plot(t, s(k,:));
end
% Меандр
N = 16;
t = -3:0.01:3;
A = 4;
T = 4;
nh = (1:N)*2-1;
harmonics = cos((2*pi*nh)'*t/T);
Am = 2*A/pi./nh;
Am(2:2:end) = -Am(2:2:end);
s = A/2 + harmonics .* repmat(Am', 1, length(t));
s = cumsum(s);
for k=1:N
    subplot(8, 2, k);
    plot(t, s(k,:));
end
% Пилообразный сигнал
N = 16;
```

```
t = -3:0.01:3;
A = 4;
T = 4;
nh = (1:N);
harmonics = sin((2*pi*nh)'*t/T);
Am = 2*A/pi./nh;
Am(2:2:end) = -Am(2:2:end);
s = harmonics .* repmat(Am', 1, length(t));
s = cumsum(s);
for k=1:N
    subplot(8, 2, k);
    plot(t, s(k,:));
end
% Треугольные импульсы
N = 16;
t = -3:0.01:3;
A = 4;
T = 4;
nh = (1:N) * 2-1;
harmonics = cos((2*pi*nh)'*t/T);
Am = 8*A / (pi*pi)./ (nh.^2);
s = harmonics .* repmat(Am', 1, length(t));
s = cumsum(s);
for k=1:N
    subplot(8, 2, k);
    plot(t, s(k,:));
end
```

Результат:

Рис. 1. Прямоугольные импульсы

Рис. 2. Меандр

Рис. 3. Пилообразный сигнал

Рис. 4. Треугольные импульсы

Вывод: в ходе выполнения лабораторной работы были получены практические навыки разложения сигналов различного вида в ряд Фурье и моделирование сигналов различной формы с заданными параметрами.