```
In [1]: import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    import ipysheet as ips
    import panel as pn
    from scipy import stats
    pn.extension('katex', 'mathjax')
```

Tutorial 5

- Tutorial Problem on Hydraulic Conductivities in Complex Systems
- 1. Unsaturated Zone
- 2. Consolidated Media
- 3. Flow nets
- · homework problems on Hydraulic Conductivities and flow nets

Tutorial Problem on Hydraulic Conductivities in Unsaturated Zone

Tutorial Problem 12

From the laboratory test the degree of saturation(θ) of the unsaturated core (temperature = 9 $^{\circ}$ C) sample was found to be 30% and relative permeability (k_r) is assumed to be 0.1. From the grain analysis the sample was determined to be predominantly medium sand (intrinsic permeability, $k=1.61\times10^{-7}~{\rm cm}^2$). Provided that density (ρ) and dynamic viscosity of water (μ) at 9 $^{\circ}$ C is 999.73 kg/m³ and 0.0013465 N·s/m² respectively, find the conductivity of the sample. What will be the conductivity of the same sample when the moisture content is 1% ($k_r\approx0.001$) and 80% ($k_r\approx0.4$). Explain the effect of moisture content on the sample.

Solution of Tutorial Problem 12

Lecture contents on the topic in L02- slides 02, 22 & 26

Hydraulic conductivity of the unsaturated sample (heta < 100%) can be obtained from the following expression:

$$K(heta) = \left(rac{k
ho g}{\mu}
ight)\!k_r(heta)$$

```
In [2]: # Given
         kr 30 = 0.05 \# (-), relative permeability for moist, cont. 30%
         i p = 1.61 * 10**-7 # cm^2, intrinsic permeability
         rho = 999.73 \# kg/m^3, Sample density
         mu = 0.0013467 \# N-s/m^2, dvnamic visc.
         \alpha c = 9.81 # N/kg, force unit used for gravitational constant
         # Solutions 1
         i pm = i p/10000 \# m^2 unit conversion for int. permeab.
         K = 30 = (i p*rho*q c/mu)*kr 30
         # Solution 2 when moisture content is 1% and 80%
         kr 1 = 0.001 # (-), relative permeability for moist, cont, 1%
         kr 80 = 0.4 # (-), relative permeability for moist, cont. 80%
         \overline{K} = (i p*rho*q c/mu)*kr 1
         K = 80 = (\bar{i} p * rho * q c/mu) * kr = 80
         # output
         print("The conductivity of water when moisture content is 30% is: {0:1.1e}", format(K 30), "m/s \n")
         print("The conductivity of water when moisture content is 1\% is: \{0:1,1e\}" format((K,\overline{1}), "m/s \n")
         print("The conductivity of water when moisture content is 80% is: \{0:1.1e\}", format(\overline{K} 80), "m/s \n")
         print("The conductivity of media increases very rapidly with increase of moisture content")
```

The conductivity of water when moisture content is 30% is: 5.9e-02 m/s

The conductivity of water when moisture content is 1% is: 1.2e-03 m/s

The conductivity of water when moisture content is 80% is: 4.7e-01 m/s

The conductivity of media increases very rapidly with increase of moisture content

```
In [3]: # Tutorial Problem 13
    r2_1 = pn.pane.Markdown("""
    ### Tutorial Problem 13 """, width = 650, style={'font-size': '13pt'})
    r2_2 = pn.pane.LaTeX(r"""

From the analysis of laboratory results the unsaturated hydraulic conductivity fits the following exponential model as a function of pressure head ($\psi$): $K(\psi) = K_s \exp(\alpha\cdot \psi)$, with $K_s$ [LT$^{-1}$] the saturated hydraulic conductivity and $\alpha$ (\lambda\pha\pha\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lamb
```

Out[31:

Tutorial Problem 13

From the analysis of laboratory results the unsaturated hydraulic conductivity fits the following exponential model as a function of pressure head (ψ): $K(\psi) = K_s \exp(\alpha \cdot \psi)$, with K_s [LT $^{-1}$] the saturated hydraulic conductivity and α [L $^{-1}$] a fit parameter. For the pressure head measurements and the data provided in the figure below, find $K(\psi)$. Also, find the Darcy velocity for this case.

Solution Tutorial Problem 13

```
In [4]: # Given
        K s = 2 \# cm/d \# saturated conductivity
        \overline{al} \ a = 0.04 \# 1/cm, fit constant
        Ph a = -100 \# cm, pressure head at A
        Ph b = -90 \# cm, pressure head at B
        Z = 300 \# cm, elevation head at A from datum
        Z b = 200 # cm. elevation head at B from datum
        # Solution 1
        Ph m = (Ph a+Ph b)/2 \# mean pressure head
        K psi = K s*np.exp(al a*Ph m)
        #Solution 2
        H A = Ph a+Z a \# cm, hydraulic head at A
        H B = Ph b + Z b \# cm, hydraulic head at B
        dh dz = (H B - H A)/(Z b - Z a) # (-), hydraulic head gradient
        q z = -K psi*dh dz # cm/d, Darcv velocitv
        print("The unsaturated conductivity of the sample is: {0:1.3f}".format(K psi). "cm/d")
        print("The Darcy velocity is: {0:1.3f}".format(q z), "cm/d")
        print("The negative sign indicates the direction opposite to increase in z.")
        The unsaturated conductiviv of the sample is: 0.045 cm/d
        The Darcy velocity is: -0.040 cm/d
```

Tutorial Problem on Hydraulic Conductivities in Consolidated Media

The negative sign indicates the direction opposite to increase in z.

```
In [5]: # Tutorial Problem 14
        r3.1 = pn.pane.Markdown("""
        ## Tutorial Problem 14 """, style={'font-size': '13pt'})
        spacer2=pn.Spacer(width=50)
        r3 2 = pn.pane.LaTeX(r"""
        Discharge of water at 9$^\circ C$ through the fractured rock with a uniform fracture aperature $e = 0.1$ cm and width 1
         m is to be
        obtained. For simplicity, only a single fracture is considered (see figure below) and a hydraulic gradient = 0.001 is ass
        Additionally, the flow in the fracture is assumed to be laminar or Darcy conditions are valid. Available water properties
        at 9$^\circ C$ are:
        dynamic viscosity \infty = 0.0013465 \text{ N}\cdot \text{cdot} / \text{s/m}^2  and density \pi = 999.73 \text{ kg/m}^3 .
        """, width = 900, style={'font-size': '13pt'})
        r3 3 = pn.pane.PNG("images/T04 a 2.png", width=300)
        spacer3=pn.Spacer(width=150)
        r3 4 = pn.pane.Markdown("""<br>
        ### Solution Tutorial Problem 14
        <br> **Check Lecture LO2 slide 7 for more information**
        """, width = 700, style={'font-size': '13pt'})
        r3.5 = pn.pane.LaTeX(r"""
        The conductivity $(K s)$ in the single fracture can be obtained from:
        K s = \frac{q \rho^2}{12 \mu}
        where, $q =$ gravitational constant, $\rho =$ density of fluid, $e=$ fracture aperature and $\mu =$ dynamic viscocity
        """, width = 900, style={'font-size': '13pt'})
        pn.Column(r3 1,spacer2, r3 2, spacer2, r3 3, spacer3, r3 4, r3 5)
```

Out[5]:

Tutorial Problem 14

Discharge of water at $9^{\circ}C$ through the fractured rock with a uniform fracture aperature e=0.1 cm and width 1 m is to be obtained. For simplicity, only a single fracture is considered (see figure below) and a hydraulic gradient = 0.001 is assumed. Additionally, the flow in the fracture is assumed to be laminar or Darcy conditions are valid. Available water propertiec at $9^{\circ}C$ are: dynamic viscosity μ = 0.0013465 N·s/m² and density ρ = 999.73 kg/m³.

Solution Tutorial Problem 14

Check Lecture L02 slide 7 for more information

The conductivity (K_s) in the single fracture can be obtained from:

$$K_s = rac{g
ho e^2}{12\mu}$$

where, g= gravitational constant, ho= density of fluid, e= fracture aperature and $\mu=$ dynamic viscocity

```
In [11]: # Solution Problem 14

# Given
e_p = 0.01 # cm, Fracture aperature
W = 1 # m, fracture width
mu_3 = 0.0013465 # N-s/m^2, dynamic visocity of water at 9°C
rho_3 = 999.73 # kg/m^3, density of water at 9°C
g_3 = 9.81 # N/kg, gravitational constant
i_3 = 0.001 # (), hydraulic head

#Solution 1
B_m = 0.1/100# m, unit conversion for B
K_3 = e_p**2*rho_3*g_3/(12*mu_3) # m/s, Conductivity of rock media
0_3 = W*e_p*K_3*i_3 # Q = KiA - as Darcy's law is valid

print("The conductivity of the fracture is: {0:1.3f}".format(K_3), "m/s")
print("The discharge from the rock is: {0:1.3f}".format(O_3), "m\u00b3/s")
```

The conductiviy of the fracture is: 60.697 m/s The discharge from the rock is: $0.001 \text{ m}^3/\text{s}$

Tutorial Problem 15

The effective porosity of individual matrix blocks within a fractured aquifer is 1.5 % and the hydraulic conductivity K_{matrix} is 10^{-8} m/s. The average aperture of fractures is 35 μ m with an average distance between fractures of 0.8 m. Water temperature is $9^{\circ}C$.

- a) Calculate the hydraulic conductivity of an individual fracture.
- b) How much is the total hydraulic conductivity?
- c) Calculate the average linear velocity (in m/a) within fractures and matrix blocks respectively under consideration of a hydraulic gradient i = 0.001

Solution of Tutorial Problem 15

For the composite (fracture + matrix), the conductivity (K_t) is obtained from:

$$K_t = rac{e}{F_d} K_s + K_{mat}$$

which is equivalent to

$$K_t = rac{g
ho e^3}{12 F_d \mu} + K_{mat}$$

where, K_{mat} = matrix conductivity, and F_d = average fracture distance

```
In [ ]: # Solution 15.
         #Given are:
         e \ 4 = 35*10**-6 \# m, aperature
         F d = 0.8 # m, average fracture distance
         K mat = 10**-8# m/s. Hvd. Conductivity
         n e = 1.5/100# (), effective porosity in number
         \alpha = 9.81 \# N/kg, gravitational constant (known)
         i 4 = 0.001
         #Water properties at 9°C
         mu 4 = 0.0013465 \# N-s/m^2, dynamic visocity of water
         rho 4 = 999.73 \# kg/m^3, density of water
         #Solution (a), (b) and (c)
         K f = e 4**2*rho 4*q 4/(12*mu 4) # m/s, individual hydraulic conductivity see problem 14
         K \circ = e \cdot 4/F \cdot d \cdot K \cdot f + K \cdot mat \# m/s, total Hydraulic conductivity of mass
         a mat = K mat*i 4 # m/s Darcv velocity in total matrix
         v mat = q mat/n e # m/s, linear velocity in total matrix
         a f = K f*i 4 # Darcv's velocity in single fracture
         v f = q f/F d # Linear velocity in single fracture
         #output
         print("The conductivity of the single fracture is: {0:1.3e}".format(K f), "m/s")
        print("The conductivity of the total rock matrix is: {0:1.3e}".format(K o), "m/s")
         print("Linear velocity in total rock matrix is: {0:1.3e}".format(v mat). "m/s")
         print("Linear velocity in single fracture system is: {0:1.3e}".format(v f), "m/s")
```

Tutorial Problem on Flow-nets

Out[19]:

Tutorial Problem 16: Hydrologic Triangle

63.0

The figure below shows the position of four groundwater observation wells with measured hydraulic heads in m a.s.l.

- **a.** Sketch head isolines for intervals of 1 m by applying the hydrologic triangle method.
- **b.** Indicate the flow direction.

• 66.0 62.0

```
In [13]: #
    r5_3 = pn.pane.Markdown("""
    ### Solution of Tutotrial Problem 16

Step 1. Connects all the points
    """, width=600)

r5_2.object = "images/T03_TP12_b.png"
    r5_3
```

Out[13]:

Solution of Tutotrial Problem 16

Step 1. Connects all the points

```
In [15]: #
    r5_4 = pn.pane.Markdown("""
    ### Solution of Tutotrial Problem 16
    Step 2. Divide the connected lines at equal head-level (here = 1 m)
    """, width=600)
    r5_2.object = "images/T03_TP12_c.png"
    r5_4
```

Out[15]:

Solution of Tutotrial Problem 16

Step 2. Divide the connected lines at equal head-level (here = 1 m)

```
In [16]: #
    r5_5 = pn.pane.Markdown("""
    ### Solution of Tutotrial Problem 16
    Step 3. Join all the equal head lines
    """, width=600)
    r5_2.object = "images/T03_TP12_d.png"
    r5_5
```

Out[16]:

Solution of Tutotrial Problem 16

Step 3. Join all the equal head lines

```
In [18]: #
    r5_6 = pn.pane.Markdown("""
    ### Solution of Tutotrial Problem 16
    Step 4. Mark the flow direction from higher head towards lower head
    """, width=600)
    r5_2.object = "images/T03_TP12_e.png"
    r5_6
```

Out[18]:

Solution of Tutotrial Problem 16

Step 4. Mark the flow direction from higher head towards lower head

```
In [17]: # Tutorial Problem 17
        r6 1 = pn.pane.Markdown("""
        ##Tutorial Problem 17: Flow Nets##
        Sketch head isolines and streamlines for the two configurations a) and b) of a well doublette shown below. In both cases
        flow nets should be sketched without and with the uniform flow component.
        """.width=800, style={'font-size': '13pt'})
        r6 2 = pn.pane.Markdown("""
         """,width=400, style={'font-size': '13pt'})
        r6 3 = pn.pane.PNG("images/T03 TP13 a.png", width=200)
        r6 \ 4 = pn.Column(r6 \ 2,r6 \ 3)
        r6 5 = pn.pane.Markdown("""
         """,width=400, style={'font-size': '13pt'})
        r6 6 = pn.pane.PNG("images/T03 TP13 b.png", width=200)
        r6 7 = pn.Column(r6 5, r6 6)
        r6.8 = pn.Row(r6.4, r6.7)
        pn.Column(r6 1, r6 8)
```

Out[17]:

Tutorial Problem 17: Flow Nets

Sketch head isolines and streamlines for the two configurations a) and b) of a well doublette shown below. In both cases flow nets should be sketched without and with the uniform flow component.

a) withdrawal at both wells:

b) Injection at both wells:

HOMEWORK PROBLEMS

There is no obligation to submit the homework

You are encouraged to submit the homework as ipynb file to my email.

Pls. submit within the next 2 weeks times.

```
In [8]: #Homework Problem 5
        r7 1= pn.pane.Markdown("""
        ###Homework Problem 5:
        """, width = 900, style={'font-size': '13pt'})
        s3=pn.Spacer(width=150)
        r7 2= pn.pane.LaTeX(r"""
        In this problem we consider the roughness of the inner-surface of the facture
        that can affect the conductivity of water (at 9$^\circ C$) in the rock matrix. In this example we consider
        a composite rock matrix with average fracture aperature of 30 %\mu$m and the average
        spacing between fractures to be 0.5 m. Further, we will consider a general relative roughness
        of the inner surface ($\zeta$) of the fracture to be 0.4 and neglect the influence of non-fractured conductivity ($K {ma
        t}$).
        We find the effect of surface roughness on conductivity.
        """, width = 900, style={'font-size': '13pt'})
        r7 3= pn.pane.Markdown("""
        ###Hint for solving homework problem 5:
        """, width = 900, style={'font-size': '13pt'})
        r7 4= pn.pane.LaTeX(r"""
        With surface roughness in consideration, the conductivity of rock matrix can be obtained from:
        K t = \frac{q \rho^3}{12 C F d \mu} + K \{mat\}
        With C = (1 + 8.8) \cdot (1.5) describes the fracture roughness for depending on relative roughness 2 \cdot (1.5)
        """, width = 900, style={'font-size': '13pt'})
        pn.Column(r7 1, s3, r7 2, s3, r7 3, s3, r7 4)
```

Out[8]:

Homework Problem 5:

In this problem we consider the roughness of the inner-surface of the facture that can affect the conductivity of water (at $9^{\circ}C$) in the rock matrix. In this example we consider a composite rock matrix with average fracture aperature of 30 μ m and the average spacing between fractures to be 0.5 m. Further, we will consider a general relative roughness of the inner surface (ζ) of the fracture to be 0.4 and neglect the influence of non-fractured conductivity (K_{mat}). We find the effect of surface roughness on conductivity.

Hint for solving homework problem 5:

With surface roughness in consideration, the conductivity of rock matrix can be obtained from:

$$K_t = rac{g
ho e^3}{12CF_d\mu} + K_{mat}$$

With $C=(1+8.8\zeta^{1.5})$ describes the fracture roughness for depending on relative roughness ζ

Out[9]:

Homework Problem 6: Hydrologic Triangle

The figure below shows the position of five groundwater observation wells with measured hydraulic heads in m a.s.l.

a. Sketch head isolines for intervals of 1 m by applying the hydrologic triangle method.

b. Indicate the flow direction.

26.0

Out[10]:

Homework Problem 7: Flow Nets

Sketch head isolines and streamlines for the well doublette shown below. In this case, injection and withdrawal of groundwater is superimposed to a uniform flow component.

