Assignment Based Subjective Questions:

1. From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable?

Inference from Categorical Variables

From the regression model using one-hot encoded variables:

- **Season:** Spring has a **negative impact** on demand compared to the base season (likely winter or fall depending on encoding).
- **Weather Situation:** Light Snow/Rain significantly **reduces** the demand, as seen from its large negative coefficient.
- Year (yr): Demand was significantly higher in 2019 (encoded as 1), indicating growth over time.

Inference: Categorical variables like season, weather condition, and year strongly influence bike demand. Spring and bad weather reduce usage, while a new year increases it.

2. Why is it important to use drop_first=True during dummy variable creation?

Using drop_first=True avoids the **dummy variable trap**, a scenario of perfect multicollinearity in regression. It removes one category per categorical variable, making the model mathematically stable and interpretable.

3. Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable?

From the correlation matrix:

- atemp (feeling temperature) has the highest positive correlation with demand:
 0.6307
- Slightly more than temp which is 0.6270

Answer: atemp is the most positively correlated numerical variable with bike demand.

4. How did you validate the assumptions of Linear Regression after building the model on the training set?

After training the model:

• Linearity: Assumed through the use of a linear model.

- **Normality of Residuals:** Verified using a histogram with KDE (sns.histplot(residuals, kde=True)), which should show a roughly normal distribution.
- **Homoscedasticity:** Though not plotted, checking a residuals vs. predicted values plot would help assess constant variance.
- **Multicollinearity:** Mitigated by using drop_first=True in dummy creation and removing redundant features.

Answer: The model checks residual distribution and ensures clean data via preprocessing and encoding choices.

5. Based on the final model, which are the top 3 features contributing significantly towards explaining the demand of the shared bikes?

From the regression coefficients:

- 1. **yr** Huge positive impact: ~1953 rentals increase from 2018 to 2019.
- 2. weathersit_Light Snow/Rain Large negative impact: ~1874 rentals decrease.
- 3. **season_spring** Negative impact: ~1219 rentals decrease compared to base season.

These features most strongly influence demand—either increasing or decreasing it significantly.

General Subjective Questions:

1. Explain the linear regression algorithm in detail.

Linear Regression is a supervised learning algorithm used for predicting a continuous dependent variable (y) based on one or more independent variables (X). Key Concepts:

• Equation:

- β0\beta 0β0 is the intercept
- o $\beta1,\beta2,...,\beta$ n\beta_1, \beta_2, ..., \beta_n\beta_1,\beta_n\beta_1,\cdots
- ∈\epsilon∈ is the error term

Goal:

To find the best-fitting line (or hyperplane) by minimizing the sum of squared residuals using a method called Ordinary Least Squares (OLS). Steps Involved:

1. Fit the model on training data.

- 2. Predict the dependent variable for unseen data.
- 3. Evaluate using metrics like R-squared, RMSE, etc.

2. Explain the Anscombe's Quartet in detail.

Anscombe's Quartet is a set of four datasets that have nearly identical statistical properties (mean, variance, correlation, and regression line), yet when plotted, they look very different.

Purpose:

- To show the importance of visualizing data before drawing conclusions.
- It warns against relying solely on summary statistics and linear models without understanding the data distribution.

Each dataset in the quartet has:

- Same mean for x and y
- Same variance for x and y
- Same correlation between x and y
- Same linear regression line

Yet, their scatter plots reveal vastly different patterns—some linear, some nonlinear, and one with a clear outlier.

3. What is Pearson's R?

Pearson's R (correlation coefficient) measures the linear relationship between two continuous variables.

Range:

- R∈[-1,1]R \in [-1, 1]R∈[-1,1]
 - o 1: Perfect positive linear correlation
 - 0: No linear correlation
 - o -1: Perfect negative linear correlation

Formula:

R=Cov(X,Y) σ X σ YR = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}R= σ X σ YCov(X,Y) It is sensitive to outliers and assumes normally distributed data with linear relationships.

4. What is scaling? Why is scaling performed? Normalized vs. Standardized

Scaling is the process of transforming features so they fit within a particular scale or range.

Why Scaling?

- Required for algorithms that rely on distance or gradient (e.g., KNN, SVM, Gradient Descent).
- Prevents features with large values from dominating others.

Normalization (Min-Max Scaling):

Scales values between 0 and 1.

• Formula:

 $Xnorm = X - XminX - XminX _{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}X norm = Xmax - XminX - Xmin$

Standardization (Z-score Scaling):

- Scales data to have mean = 0 and std = 1.
- Formula:

 $Xstd=X-\mu\sigma X {std} = \frac{X - \mu}{sigma}Xstd=\sigma X-\mu$

5. Why does VIF sometimes become infinite?

VIF (Variance Inflation Factor) quantifies multicollinearity—how much one predictor is explained by others.

 $VIF=11-R2VIF = \frac{1}{1 - R^2}VIF=1-R21$

If R2=1R^2 = 1R2=1, VIF becomes infinite, which occurs when a variable is perfectly predicted by other variables (perfect multicollinearity).

Example:

• Including both temp and atemp without checking correlation—they are almost identical, causing high VIF.

6. What is a Q-Q plot and its importance in Linear Regression?

A Q-Q plot (Quantile-Quantile plot) compares the quantiles of residuals from a model with a theoretical normal distribution.

Purpose in Linear Regression:

- To check the normality of residuals, a key assumption.
- If residuals are normally distributed, points in the Q-Q plot will lie along a 45-degree line.

Importance:

- Normal residuals validate model reliability for inference (e.g., p-values, confidence intervals).
- Deviations suggest need for transformation or alternative modelling.