CHAPTER

RECURRENCE RELATION

DEFINITION OF RECURRENCE RELATIONS & SOLUTION

A **recurrence relation** for the sequence $\{a_n\}$ is an equation that expresses a_n is terms of one or more of the previous terms of the sequence, namely, a_0 , a_1 , ..., a_{n-1} , a_n for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer. **For example**

The **Fibonacci sequence**, is defined by the initial conditions $f_0 = 0$, $f_1 = 1$, and the recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$
 for $n = 2, 3, 4, ...$

A sequence is called a **solution** of a recurrence relation if it terms satisfy the recurrence relation.

Example:

Consider the recurrence relation $a_n = 2a_{n-1} - a_{n-2}$ for n = 2, 3, 4, ...

Is the sequence $\{a_n\}$ with $a_n=3n$ a solution of this recurrence relation?

For $n \ge 2$ we see that

$$2a_{n-1} - a_{n-2} = 2(3(n-1)) - 3(n-2) = 3n = a_n$$

Therefore, $\{a_n\}$ with $a_n=3n$ is a solution of the recurrence relation.

DEFINITION OF RECURRENCE RELATIONS & SOLUTION

Example: Consider the recurrence relation $a_n = 2a_{n-1} - a_{n-2}$ for n = 2, 3, 4, ... Is the sequence $\{a_n\}$ with $a_n = 5$ a solution of the same recurrence relation? For $n \ge 2$ we see that

$$2a_{n-1} - a_{n-2} = 2.5 - 5 = 5 = a_n$$
.

Therefore, $\{a_n\}$ with $a_n=5$ is also a solution of the recurrence relation.

Practice Example:

Determine whether the sequence $\{an\}$, where $a_n = 3n$ for every non negative integer n, is a solution of the recurrence relation $a_n = 2a_{n-1} - a_{n-2}$ for $n = 2, 3, 4, \ldots$ Answer the same question where $a_n = 2n$ and where $a_n = 5$.

RECURRENCE RELATIONS & SOLUTION

In other words, a recurrence relation is like a recursively defined sequence, but without specifying any initial values (initial conditions).

Therefore, the same recurrence relation can have (and usually has) multiple solutions.

If **both** the initial conditions and the recurrence relation are specified, then the sequence is **uniquely** determined.

TYPE OF RECURRENCE RELATION

TYPES OF RECURRENCE RELATIONS

1.Linear Homogenous Recurrence Relation

Definition A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + c_3 a_{n-3} + \dots + c_k a_{n-k}$$

where c_1 , c_2 , ..., c_k are real numbers, and $c_k \neq 0$.

- it is *linear* because the right-hand side is a sum of the previous terms of the sequence each multiplied by **constant**.
- it is **homogeneous** because no terms occur that are not multiples of the a_is. Each coefficient is a constant i.e. we can say that each term must at contain one term of sequence
- the **degree** is k because a_n is expressed in terms of the previous k terms of the sequence.

EXAMPLE OF LINEAR HOMOGENOUS RECURRENCE REALATION

$$P_n = (1.11)P_{n-1}$$
 linear homogeneous recurrence relation of degree one

$$f_n = f_{n-1} + f_{n-2}$$
 linear homogeneous recurrence relation of degree two

$$H_n = 2H_{n-1} + 1$$
 not homogeneous

$$B_n = nB_{n-1}$$
 coefficients are not constants

Example: Which of the following are linear homogenous recurrence relation?

- 1. Which relations are of order 1 and 2?
- 2. Which relation are linear?
- 3. Which are Homogenous?
- 4. Which are Linear Homogenous Equation of Order 2?

$$a_{n} = \sqrt{a_{n-2}}$$

$$a_{n} = na_{n-1} + 5a_{n-2}$$

$$a_{n} = 3a_{n-1}$$

$$a_{n} = a_{n-1} + 2 - 3a_{n-2}$$

$$a_{n} = 4n + a_{n-1}$$

$$a_{n} = 5a_{n-1} - 6a_{n-2}$$

TYPE OF LINEAR HOMOGENOUS RECURRENCE RELATION (LHRR)

- 1. Linear Homogenous 1st order Recurrence Relation
- 2. Linear Homogenous 2nd order Recurrence Relation

Further can be divided on basis of solution

- a. Having real and distinct root.
- b. Having real and repeated root
- c. Complex root
- 3. Multi Order Recurrence Relation

LINEAR NON HOMOGENOUS RECURRENCE REALATIONS WITH CONSTANT COEFFICIENTS

The General form of Linear nonhomogeneous recurrence relation with constant coefficients is

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + f(n)$$

f(n) is independent of a_i.

Remarks: Each Non Homogenous Recurrence Relation has Associated Homogenous Recurrence Relation.

Example of Linear nonhomogeneous recurrence relation with constant coefficients

$$a_n = 3a_{n-1} + 2n$$

$$a_n = 3a_{n-1} + 3^n$$

SOLUTION METHODS OF RECURRENCE RELATION

1. Characteristic Equation and Root Method

2. Generating Functions

3. Iteration

METHOD 1: CHARCTERSTIC EQUATION AND ROOTS

Basically, when solving recurrence relations, we try to find solutions of the form $\mathbf{a_n} = \mathbf{r^n}$, where r is a constant.

 $a_n = r^n$ is a solution of the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ if and only if $r^n = c_1 r^{n-1} + c_2 r^{n-2} + ... + c_k r^{n-k}$.

Divide this equation by r^{n-k} and subtract the right-hand side from the left:

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - ... - c_{k-1}r - c_{k} = 0$$

This is called the **characteristic equation** of the recurrence relation.

The solution of **characteristic equation** of the recurrence relation are called **characteristic root** of the recurrence relation.

Theorem: Let c_1 and c_2 be real numbers. Suppose that $r^2 - c_1 r - c_2 = 0$ has two distinct roots r_1 and r_2 .

Then the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ if and only if $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for n = 0, 1, 2, ..., where α_1 and α_2 are constants.

SOLUTION TECHNIQUE :SOLVING 1ST AND 2ND ORDER LINEAR HOMOGENOUS RECURRENCE REALTION

REQUIRED INPUT: A linear 1st and 2nd order linear Homogenous recurrence relation with **initial condition**

Step1: Find the characteristic equation for the recurrence relation.

Step2: Use algebra to find the characteristic roots say r_1 and r_2 .

Step 3: Set up the following frame work (use the relation only when characteristic equation has distinct root) n = n

$$a_n = c_1 r_1^n + c_2 r_2^n$$

Use the initial condition to find the specific value of C_1 and C_2 .

Example: Find the solution of the recurrence relation

$$a_n = 5a_{n-1} - 6a_{n-2}$$

with initial condition $a_0=1$, $a_1=0$.

$$a_n = 3a_{n-1} - 2a_{n-2}$$

with initial condition $a_0=1$, $a_1=0$.

$$b_n = 10b_{n-1} - 25b_{n-2}$$

with initial condition $b_0=3$, $b_1=5$.

But what happens if the characteristic equation has only one root?

How can we then match our equation with the initial conditions a_0 and a_1 ?

Theorem: Let c_1 and c_2 be real numbers with $c_2 \ne 0$. Suppose that $r^2 - c_1 r - c_2 = 0$ has only one root r_0 which is repeated two times.

A sequence $\{a_n\}$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

if and only if

$$a_n = c_1 r_0^n + c_2 n r_0^n$$

for n = 0, 1, 2, ..., where α_1 and α_2 are constants.

Example:

Suppose that the roots of the characteristic equation of a linear homogeneous recurrence relation are 2, 2, 2, 5, 5, and 9. What is the form of the general solution?

$$a_{n} = \left(\alpha_{1}(2)^{n} + \alpha_{2}n(2)^{n} + \alpha_{3}n^{2}(2)^{n}\right) + \left(\alpha_{3}(5)^{n} + \alpha_{4}n(5)^{n}\right) + \alpha_{5}(9)^{n}$$

Example: What is the solution of the recurrence relation $a_n = 6a_{n-1} - 9a_{n-2}$ with $a_0 = 1$ and $a_1 = 6$?

The only root of $r^2 - 6r + 9 = 0$ is $r_0 = 3$. Hence, the solution to the recurrence relation is

$$a_n = \alpha_1 3^n + \alpha_2 n 3^n$$

for some constants α_1 and α_2 .

To match the initial condition, we need

$$a_0 = 1 = \alpha_1$$

 $a_1 = 6 = \alpha_1 \cdot 3 + \alpha_2 \cdot 3$

Solving these equations yields $\alpha_1 = 1$ and $\alpha_2 = 1$.

Consequently, the overall solution is given by

$$a_n = 3^n + n3^n$$
.

Example : Find the solution to the recurrence relation $a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$ with initial conditions $a_0 = 1$, $a_1 = -2$ and $a_2 = -1$.

Solution : $r^3 + 3r^2 + 3r + 1 = 0$ has a single root $r_0 = -1$ of multiplicity three.

$$\therefore a_n = (\alpha_1 + \alpha_2 n + \alpha_3 n^2) r_0^n = (\alpha_1 + \alpha_2 n + \alpha_3 n^2)(-1)^n$$

initial conditions are given $a_0 = 1$, $a_1 = -2$ and $a_2 = -1$.

$$a_0 = \alpha_1 = 1$$

$$a_1 = (\alpha_1 + \alpha_2 + \alpha_3) \cdot (-1) = -2$$

$$a_2 = \alpha_1 + 2\alpha_2 + 4\alpha_3 = -1$$

$$\therefore \alpha_1 = 1, \ \alpha_2 = 3, \ \alpha_3 = -2 \Rightarrow a_n = (1 + 3n - 2n^2) \cdot (-1)^n$$

Linear Nonhomogeneous Recurrence Relations with Constant Coefficients

The General form of Linear nonhomogeneous recurrence relation with constant coefficients is

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + f(n)$$

Every solution of a linear nonhomogeneous recurrence relation is the sum of

- · a particular relation and
- a solution to the associated linear homogeneous recurrence relation

Solving Linear Non Homogeneous Recurrences

Theorem: If $\{a_n^{(p)}\}$ is a particular solution of the nonhomogeneous linear recurrence relation with constant coefficients

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + f(n)$$

then every solution is of the form

$$a_n^{(p)} + a_n^{(h)}$$

where {a_n^(h)} is a solution of the associated homogeneous recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + c_3 a_{n-3} + \dots + c_k a_{n-k}$$

Solution Technique For Linear Non Homogenous Equation

Step 1: Solve the Associated Homogenous Recurrence Relation .

Step 2: Find the Particular Solution of the recurrence relation .

If f(n) = polynomial **For example** f(n) = n, then $a_n^{(p)} = c n + d$ (find value of c and d)

 $f(n) = (constant)^n$ then $a_n^{(p)} = c$. $(constant)^n$ (find value of c)

Step 3: Find the solution of the recurrence relation a_n . Using the general solution

$$a_n^{(p)} + a_n^{(h)}$$

Step 4: Find Explicit solution using initial condition.

Some standard form for particular solution

Some substitution

f(n)	a _n ^(p)
a constant and characteristic root is not 1	В
a constant and characteristic root is 1 with multiplicity m	Bn ^m
An+b	B_1n+B_0
an ²	$B_2^{n2} + B_1 n + B_0$
a ⁿ	B. a ⁿ

Example. Find all solutions of the recurrence relation $a_n = 3a_{n-1} + 2n$. What is the solution with $a_1 = 3$?

Solution: Associated homogeneous recurrence relation is

$$a_n = 3a_{n-1}$$

Characteristic equation:

$$r-3=0 \Rightarrow r=3 \Rightarrow a_n^{(h)}=\alpha \times 3^n$$
.

Particular Solution : F(n) = 2n

 \therefore Let $a_n^{(p)} = c n + d$, where $c, d \in \mathbb{R}$.

If
$$a_n^{(p)} = c \, n + d$$
 is a solution to $a_n = 3a_{n-1} + 2n$, then $c \, n + d = 3(c(n-1) + d) + 2n$
 $cn + d = 3cn - 3c + 3d + 2n \implies 2cn - 3c + 2d + 2n = 0 \implies (2c+2)n + (2d-3c) = 0n + 0$

∴ By comparing coefficients of *n* and constant We get 2c+2=0, and 2d-3c=0

$$\Rightarrow c = -1, d = -3/2$$
 $\Rightarrow a_n^{(p)} = -n - 3/2$

$$a_n = a_n^{(h)} + a_n^{(p)} = \alpha \times 3^n - n - 3/2$$
 Given that $a_1 = 3$ If $a_1 = \alpha \times 3 - 1 - 3/2 = 3$ $\Rightarrow \alpha = 11/6$

$$\Rightarrow a_n = (11/6) \times 3^n - n - 3/2$$

Example. Find all solutions of the recurrence relation $a_n = 5a_{n-1} - 6a_{n-2} + 7^n$.

Solution: Associated homogeneous recurrence relation is $a_n = 5a_{n-1} - 6a_{n-2}$

Characteristic equation:
$$r^2 - 5r + 6 = 0$$
 $\Rightarrow r_1 = 3$, $r_2 = 2$ $\Rightarrow a_n^{(h)} = \alpha_1 \times 3^n + \alpha_2 \times 2^n$.

Particular solution $: F(n) = 7^n : Let a_n^{(p)} = c \cdot 7^n$, where $c \in \mathbb{R}$.

If
$$a_n^{(p)} = c \cdot 7^n$$
 is a solution to $a_n = 5a_{n-1} - 6a_{n-2} + 7^n$, then $c \cdot 7^n = 5c \cdot 7^{n-1} - 6c \cdot 7^{n-2} + 7^n$
 $c \cdot 7^n = 5c \cdot 7^{n-1} - 6c \cdot 7^{n-2} + 7^n$ $\Rightarrow c \cdot 7^2 = 5c \cdot 7^1 - 6c + 7^2$
 $\Rightarrow 49c = 35c - 6c + 49$
 $\Rightarrow c = 49/20$

$$\Rightarrow a_n^{(p)} = (49/20) \cdot 7^n \Rightarrow a_n = a_n^{(h)} + a_n^{(p)}$$

$$a_n = \alpha_1 \times 3^n + \alpha_2 \times 2^n + (49/20) \cdot 7^n$$

Example: What form does a particular solution of the linear nonhomogeneous recurrence relation $a_n = 6a_{n-1} - 9a_{n-2} + F(n)$ have when $F(n) = 3^n$, $F(n) = n3^n$, $F(n) = n^22^n$, and $F(n) = (n^2+1)3^n$?

Solution:

The associated linear homogeneous recurrence relation is $a_n = 6a_{n-1} - 9a_{n-2}$.

characteristic equation: $r^2 - 6r + 9 = 0 \Rightarrow r = 3$ (Multiple root)

$$F(n) = 3^n$$
, and 3 is a root $\Rightarrow a_n^{(p)} = p_0 n^2 3^n$

$$F(n) = n3^n$$
, and 3 is a root $\Rightarrow a_n^{(p)} = n^2(p_1n + p_0) 3^n$

$$F(n) = n^2 2^n$$
, and 2 is not a root $\Rightarrow a_n^{(p)} = (p_2 n^2 + p_1 n + p_0) 2^n$

$$F(n) = (n^2+1)3^n$$
,

and 3 is a root
$$\Rightarrow a_n^{(p)} = n^2 (p_2 n^2 + p_1 n + p_0) 3^n$$

Generating Functions

Definition 1. The generating function for the sequence a_0 , a_1 , a_2 ,... of real numbers is the infinite series

$$G(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots = \sum_{k=0}^{\infty} a_k x^k$$

Example Find the generating functions for the sequences $\{a_k\}$ with

(1)
$$a_k = 3$$

(2)
$$a_k = k+1$$

(3)
$$a_k = 2^k$$

Solution:

$$G(x) = \sum_{k=0}^{\infty} a_k x^k = \sum_{k=0}^{\infty} 3x^k$$

$$G(x) = \sum_{k=0}^{\infty} a_k x^k = \sum_{k=0}^{\infty} (k+1) x^k$$

$$G(x) = \sum_{k=0}^{\infty} a_k x^k = \sum_{k=0}^{\infty} 2^k x^k$$

Example What is the generating function for the sequence 1,1,1,1,1,1?

Solution:
$$G(x) = \sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

$$= 1 + x + x^2 + x^3 + x^4 + x^5 \quad (Expansion)$$

$$= \frac{x^6 - 1}{x - 1} \qquad (Closed Form)$$

Using Characteristic Equation & Root Method

Example Solving the recurrence relation $a_k = 3a_{k-1}$ for k=1,2,3,... and initial condition $a_0 = 2$.

Solution: Characteristic Equation & Root Method

$$r-3=0 \implies r=3 \implies a_n=\alpha \cdot 3^n$$

$$a_0 = 2 = \alpha$$

$$a_n = 2 \cdot 3^n$$

Another Method to solve recurrence relation is using

Generating Function

Solution Using Generating Function

Example Solving the recurrence relation $a_k = 3a_{k-1}$ for k=1,2,3,... and initial condition $a_0 = 2$.

Let
$$G(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{k=0}^{\infty} a_k x^k$$
 be the generating function for $\{a_k\}$.

First note that
$$a_k = 3a_{k-1}$$

$$\sum_{k=1}^{\infty} a_k x^k = 3 \sum_{k=1}^{\infty} a_{k-1} x^k = 3x \sum_{k=1}^{\infty} a_{k-1} x^{k-1} = 3x \sum_{k=0}^{\infty} a_k x^k$$

$$G(x) - a_0 = 3x.G(x)$$

$$G(x) - 2 = 3x \cdot G(x)$$
 (: $a_0 = 2$)

$$G(x) - 3xG(x) = 2$$

$$G(x) = \frac{2}{1-3x} = 2\sum_{k=0}^{\infty} (3x)^k = \sum_{k=0}^{\infty} 2.3^k$$

$$a_k = 2.3^k$$

Example : Solving $a_k = 8a_{k-1} + 10^{k-1}$ for k = 1, 2, 3, ... and initial condition $a_0 = 1$ and $a_1 = 9$?

Let
$$G(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{k=0}^{\infty} a_k x^k$$
 be the generating function for $\{a_k\}$.
 $G(x) - 1 = \sum_{k=1}^{\infty} a_k x^k = \sum_{k=1}^{\infty} \left(8a_{k-1} + 10^{k-1}\right) x^k = \sum_{k=1}^{\infty} 8a_{k-1} x^k + \sum_{k=1}^{\infty} 10^{k-1} x^k$

$$= 8x \sum_{k=0}^{\infty} a_k x^k + \sum_{k=0}^{\infty} 10^k x^k$$

$$= 8x G(x) + x \sum_{k=0}^{\infty} 10^k x^k = 8x G(x) + \frac{x}{1 - 10x}$$

$$(1 - 8x)G(x) = \frac{1 - 9x}{(1 - 10x)}$$

$$G(x) = \frac{1 - 9x}{(1 - 10x)(1 - 8x)} = \frac{1}{2} \left[\frac{1}{1 - 10x} + \frac{1}{1 - 8x} \right] = \frac{1}{2} \left[\sum_{k=0}^{\infty} 10^k x^k + \sum_{k=0}^{\infty} 8^k x^k \right]$$

$$= \sum_{k=0}^{\infty} \frac{\left(10^k + 8^k\right)}{2} x^k$$

Practice Example

Example: Solve the following recurrence relation using Generating Function

1.
$$a_n = 3a_{n-1} - 2$$
; $a_0 = 0$

2.
$$u_n = 2u_{n-1} + n$$
; $u_0 = 1$

Example: Use generating functions to find an explicit formula for the Fibonacci numbers.