Determinants to IMF Loan Completion

Carla Intal July 2018

What is an IMF Loan?

- When countries are in economic distress, the IMF acts as a lender of last resort.
- The IMF will only give the money to a country if the government / central bank sets macroeconomic targets and promises to uphold them.
- Example: In order to borrow \$12M from the IMF, country X promises to: (1) improve tax efficiency;
 (2) privatize national assets; (3) reduce inflation to 5% in the short-term.

Expectation

Figure 3-1

IMF World Real GDP Growth Forecast, 2010–2020

Percent Change, Year-over-Year

5.5

Actual Sup-2011

Forecast Oct-2012

Forecast Oct-2013

Forecast Oct-2014

Forecast Oct-2015

Forecast Oct-2015

vs. Reality

Source: International Monetary Fund (IMF).

Research Question:

What determines loan completion to the IMF?

Loan categorization:

- On-track, completed in full
- On-track, largely completed
- Off-track, delinquent
- Off-track, quickly

Data Science Process

Data Prep and Cleaning

Visualization
Feature engineering
Standardization

Define Analytical Model and Parameter Tuning

 $y = B_0 + B_i X_i + e$ Randomized Search Cross Validation Score

Model selection

KNN

Random Forest Classifier

Robustness Check using a Binary model

KNN

Random Forest

Logistic Regression

Analysis of Results / Conclusion

Step 1. Data Prep and Cleaning

df.shape (79573,490)

- Collapse data by program and year
- Merge y = completion score
- Drop null values
- Normalize: Standard Scaler
- Feature engineering (and normalize)
 - % of GDP debt, fiscal balance, FDI
 - % change growth rate, inflation
 - Natural log GDP, GDP per capita

Step 2. Analytical Model and Parameter Tuning

 $Status = B_0 + B_i BOPneed_i + B_i prog_strength_i + B_i capacity_repay_i + B_i prog_type_i + B_i systemic_i + B_i track_record_i + B_i other_factors_i + B_i region_dummy_i + e$

```
bop_need = ['amt_gdp', 'capital_crisis', 'ngdp_rpch4', 'pcpi_pch4', 'bca_gdp4', 'bfra_gdp4', 'd_gdp4']

strength_prg = ['bca_gdp_adj', 'ggb_gdp_adj', 'd_gdp_adj']

capacity_repay = ['fund_credit_gdp4', 'quota_gdp4', 'stab4', 'effect4', 'law4'] #eliminate acct and
qual

program_type = ['succesor_arrangement_', 'precautionary']

systemic = ['exceptional_access', 'financial_openness4']

track_record = ['pre_com', 'pre_inc']

other_factors = ['lngdpdpc4', 'floatfx4', 'gfc', 'access_gdp']

region = ['region_d1', 'region_d3', 'region_d4', 'region_d5']

y = ['Status']
```


Step 2. Analytical Model and Parameter Tuning

KNN

Method	Best score	Best parameter
Randomized Search	0.5833	{'weights': 'uniform', 'n_neighbors': 22, metric = 'manhattan'}
Cross Val score	0.5837	{'weights': 'distance', 'n_neighbors': 22, metric = 'manhattan'}

Random Forest Classifier

Method	Best score	Best parameter
Randomized Search	0.5555	{'n_estimators': 19, 'min_samples_leaf': 3, 'max_features': 10}

Step 3. Model Selection

Model	Accuracy Score		
KNN	0.666		
Random Forest	0.822 (training), 0.666 (testing)		

importance

fund_credit_gdp4	0.112202
bfra_gdp4	0.065629
ngdp_rpch4	0.065268
access_gdp	0.063356
d_gdp4	0.062603
amt_gdp	0.062393
bca_gdp_adj	0.062034
stab4	0.059985
quota_gdp4	0.053011
d_gdp_adj	0.049008
Ingdpdpc4	0.048586

Step 4. Robustness using a Binary Model

Loan categorization: On-track or Off-track

KNN

Best parameters using CV:

k=19, weight = uniform,
metric = manhattan

Accuracy score on model (y hat minus y):

0.6666666666666666

Random Forest

Best parameters using RS:

```
{'n_estimators': 13,
'min_samples_leaf': 4,
'max_features': 28}
```

Accuracy score:

```
0.925 (training)
0.6 (testing)
```

Logistic Regression

RMSE:

0.7453559924999299

Accuracy score:

0.4444444444444444

Step 4. Robustness using a Binary Model

importance
0.145962
0.106970
0.096848
0.081845
0.071730
0.068462
0.055074
0.054544
0.046760
0.042094
0.039603
0.039582

Step 5. Analysis and Conclusion

Top 5 determinants of loan completion

Thank you

Code: github.com/carlaint

