VERMES MIKLÓS Fizikaverseny

II. forduló 2015. április 17. IX. osztály

JAVÍTÓKULCS

I. feladat

A.) Ha a domború felület irányából nézzük, két domború tükör alkot képet. A közelebbi kisebb görbületi sugarú, a távolabbi nagyobb görbületi sugarú. Mindkettőben kicsinyített, egyenes állású látszólagos kép keletkezik, a kisebb görbületi sugarú kisebb, a nagyobb nagyobb képet alkot.
 1 p

Ha megfordítjuk, akkor két homorú tükör alkot képet. Ugyanarról a tárgyról a közelebbi felület alkot nagyobb, a távolabbi pedig kisebb képet.

Mindkét kép fordított állású, kicsinyített.

B.)

a.) A tárgy $x_1' = -3f$ távolságra van a lencsétől. A tükör látszólagos képe, mely $x_1' = -5f$ távolságra található, valódi tárgy a lencse számára 0,5 p

$$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f} \qquad \Rightarrow \qquad \beta = \frac{f}{f + x_1} \qquad \Rightarrow \qquad \frac{\beta'}{\beta''} = \frac{f + x_1''}{f + x_1'} = 2 \qquad \qquad 0,5 \text{ p}$$

b.) A tükör az A_1B_1 tárgyról, síkjára szimmetrikusan, A_1B_1 látszólagos képet alkot, amely valódi tárgy a lencse számára 0,5 p

Az ugyanazon síkban található tárgyakról a lencse $x_2 = \frac{f \cdot x_1}{f + x_1} = 1,5f$ távolságra

alkot képet 0,5 p

 $\beta = \frac{f}{f + x_1} = -\frac{1}{2}$ \Rightarrow Az ernyőn egyenlő nagyságú, a tárgynál kétszer kisebb,

fordított állású, az optikai tengelyre szimmetrikusan elhelyezkedő két képet látunk. 0,5 p

c.) A tárgy t idő alatt $s_1 = vt$ szakasszal távolodik el az optikai tengelytől, míg képe

$$s_2 = -\frac{s_1}{2}$$
 távolsággal. Így távolodási sebessége $v/2$. 0,5 p

Az ernyőn a két kép \boldsymbol{v} sebességgel távolodik egymástól, függőleges irányban.

0,5 p

C.) B = 2;
$$x_1$$
 = -25 cm ;

$$1/x_2 + 1/x_1 = 1/f$$

$$F = -50 cm$$

$$|R| = 100 \text{cm}$$

Ha vizet öntünk a tükörbe, a rendszer konvergenciája

$$C = 2C_{lencse} + C_{t\ddot{u}k\ddot{o}r}$$
 0,5 p

$$C_{lencse} = (n_v - 1)/R = 1/3 \text{ dioptria}$$
 0,5 p

$C_{\text{tük\"or}} = 2 \text{ dioptria}$	0,5 p
C = 8/3 dioptria A rendszer egy $f' = -37.5$ cm fókusztávolságú homorú tükörként viselkedik	0,5 p
$x'_2 = 75 \text{ cm}$	1 p
$\beta' = 3$	0,5 p
II. feladat	
A.) A labda elénk fog leesni.	
Kezdetben a vonat és a labda vízszintes irányú sebessége megegyezett. Fékezéskor a vonat csökkenti a sebességét, tehát lemarad a labdához képest.	2 p
B.) Az elejtett tárgy gyorsulása 0, a sebessége a repülőhöz képest szintén 0, azaz a repülőben ott marad, ahol elejtettük.	1 p
C.) $a_1 = -\mu_1 g = -2 \ m/s^2$ $d_2 = 8/9 d_1$	1 p
$a_2 = -2.25 \ m/s^2$	2 p
$F_{s1} = \mu_1(2mg - xmg)$ a kerekek és az úttest közötti súrlódási erő	1 p
$F_{s2} = \mu_2 x mg$ a cipőtalp és az úttest közötti súrlódási erő $F_{s1} + F_{s2}$	1 p
$a_2 = \frac{Fs \cdot 1 + Fs \cdot 2}{2m}$	1 p
x = 0.5 Tehát a motoros súlyának felével nyomja a talajt.	1 p
III. feladat	
A.) A macska gyorsulása: $a_1 = \frac{F - mg}{m}$	1 p
A rúd gyorsulása: $a_2 = \frac{F + Mg}{M}$	1 p
A macska $a_1 + a_2$ gyorsulással teszi meg az L utat t idő alatt:	1
$L = \frac{1}{2} (a_1 + a_2)t^2 \qquad t = \sqrt{\frac{2mML}{(m+M)F}}$	1 p
Ezalatt a rúd s utat tesz meg lefele: $s = \frac{F + Mg}{F} \frac{m}{M + m}$ L	1 p
A macska sebessége a rúd felső végénél: $v = a_1 t = \frac{F - mg}{m} \sqrt{\frac{2 mML}{(m+M) F}}$	1 p
Ezután a macska -g gyorsulással mozogva s utat tesz meg a kampóig $s = v^2/2g$	1 p
A minimális F erő, amivel hatnia kell a rúdra:	1
$F = mg(\frac{m}{M} + 2)$	l p
B.) A mozgás ideje $t = 1000 s$	0,5 p
Az egyenletes mozgás ideje $t_2 = 820 \text{ s}$	0,5 p
$D_1 = v_{1k}t_1 = v_{max}t_1/2$ gyorsuló szakasz $D_2 = v_{max}t_2$ egyenletes szakasz	
$D_3 = v_{3k}t_3 = v_{max}t_3/2$ lassuló szakasz	
$D = D_1 + D_2 + D_3$ $v = 21.97 \text{ m/s} \text{ lp}$	1 p
$v_{\text{max}} = 21,97 \text{ m/s} 1\text{p}$	1 p