

				Printed Page: 1 of 3						
				Subject Code: BBC102					,	
Roll No:										

BCA (SEM I) THEORY EXAMINATION 2024-25 MATHEMATICAL FOUNDATION

TIME: 3 HRS M.MARKS: 70

Note: Attempt all Sections. In case of any missing data; choose suitably.

SECTION A

1. Attempt all questions in brief.

 $02 \times 7 = 14$

Q no.	Question	СО	Level
a.	Define Euler graph.	5	K ₁
b.	Find the inverse of given matrix $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$.	1	K ₂
c.	If $f(x, y) = x^3 y - xy^3$, find $\left[\frac{1}{\frac{\partial f}{\partial x}} + \frac{1}{\frac{\partial f}{\partial y}}\right]_{x=1, y=2}$.	3	K ₃
d.	Prove that $\sqrt{-1/2} = -2\sqrt{\pi}$.	4	K ₃
e.	Differentiate with respect to x of the function $y = \sqrt{\frac{1-\cos x}{1+\cos x}}$.	3	K ₃
f.	 File in the blanks: (i) If λ is the eigen value of an orthogonal matrix then other eigen value of same orthogonal matrix is	1	K ₂
g.	Find the order and degree of differential equation: $\left(\frac{d^4y}{dx^4}\right)^3 + \frac{d^2y}{dx^2} - 2xy = 0$	4	K ₃

SECTION B

2. Attempt any three of the following:

 $07 \times 3 = 21$

Q no.	Question	CO	Level
a.	Find n^{th} derivative of $e^x \sin(bx+c)$.	3	K4
b.	Evaluate $\int \tan^{-1} x dx$.	4	K3
c.	Using Cayley-Hamilton theorem find A^{-1} , given that $A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 0 & 2 \\ 4 & -2 & 1 \end{bmatrix}$.	2	K2
d.	Find the rank and nullity of the matrix $A = \begin{bmatrix} -1 & 2 & 3 & -2 \\ 2 & -5 & 1 & 2 \\ 3 & -8 & 5 & 2 \\ 5 & -12 & -1 & 6 \end{bmatrix}$.	1	K ₂
e.	Find Laplace transform of $t^2 \cos at$.	5	K ₂

Printed Page: 2 of 3
Subject Code: BBC102
Roll No:

BCA (SEM I) THEORY EXAMINATION 2024-25 MATHEMATICAL FOUNDATION

TIME: 3 HRS M.MARKS: 70

SECTION C

3. Attempt any *one* part of the following:

07	v	1	=	07

Question	CO	Level
Investigate the value of λ and μ so that the equations $2x + 3y + 5z = 9$	2	K ₂
7x + 3y - 2z = 8		
have (i) no solution, (ii) a unique solution, (iii) an infinite number solutions.		
	3	K4
	Investigate the value of λ and μ so that the equations $2x+3y+5z=9$ $7x+3y-2z=8$ $2x+3y+\lambda z=\mu$ have (i) no solution, (ii) a unique solution, (iii) an infinite number solutions.	Investigate the value of λ and μ so that the equations $2x+3y+5z=9$ $7x+3y-2z=8$ $2x+3y+\lambda z=\mu$ have (i) no solution, (ii) a unique solution, (iii) an infinite number solutions. Find the Jacobian of u , v with respect to x , y for the functions 3

4. Attempt any *one* part of the following:

$$07 \times 1 = 07$$

			T 1			
Q no.	Question	CO	Level			
a.	Using elementary transformation to reduce the following matrix A into	1	K ₃			
			1.1			
	1 -1 -2 -4					
	triangular form and hence find the rank of matrix $\begin{bmatrix} 1 & 1 & 2 & 1 \\ 3 & 1 & 3 & -2 \end{bmatrix}$.	1				
	[6 3 0 -7]					
b.	Solve linear differential equation with constant coefficient, find C.F and					
	P.I.: $\frac{d^2 y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{4x}$.					

5. Attempt any *one* part of the following:

$07 \times 1 = 07$

		0.3		
Q no.		Question	CO	Level
a.	Define adjacency	matrix. Draw the graph represented by the given	5	K ₂
	adjacency matrix	1 2 0 1 2 0 3 0 0 3 1 1 1 0 1 0		
b.	Show that $n = 1 - n = 1$	$-\frac{\pi}{\sin n\pi}$	4	K ₄

6. Attempt any *one* part of the following:

(17	X	1	= (07

Q no.	Question	СО	Level
a.	If $u = \log\left(\frac{x^4 + y^4}{x + y}\right)$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$.	3	K4

Printed Page: 3 of 3
Subject Code: BBC102
Roll No:

BCA (SEM I) THEORY EXAMINATION 2024-25 MATHEMATICAL FOUNDATION

TIME: 3 HRS M.MARKS: 70

b.		1	2	-1	3		1	K ₃
	Change the matrix $A =$		1	2	1	into Estaton Como and Cod in		
			$= \begin{vmatrix} 1 & 1 & 2 & 1 \\ 3 & -1 & 1 & 2 \end{vmatrix}$ into Echelon form and find its					
			2	0	1			
	rank and nullity.							

7. Attempt any *one* part of the following:

07	X	1	= 07	,
U/	А	1	$-\mathbf{v}_{I}$	

Q no.	Question	CO	Level
a.	Evaluate $L\left\{\frac{\cos at - \cos bt}{t}\right\}$.	5	K ₂
b.	Test the consistency and find the solution if it is consistent. $x + y + z = 8$	2	K ₂
	$x - y + 2z = 6 \qquad .$		1,5
	3x + 5y - 7z = 14		, 7, · `
	O.P. 25 D.P. 2. 1 A.M. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	15	50.2
	03.Mai.20215		