First Order PDE and Method of Characteristics

MSO-203B

Indian Institute of Technology, Kanpur kaushik@iitk.ac.in

September 30, 2016

Overview

Topics to be covered

- Method of Characteristics.
- Solving First order linear PDE with boundary data.
- Non-Characteristics.
- Solving Quasilinear Equations.

Introduction

Question

We need to find a $u \in C^1(\Omega)$ where Ω is a open subset in \mathbb{R}^2 such that

$$a(x, y, u)u_x + b(x, y, u)u_y = c(x, y, u)$$
 in Ω

with a, b and c being some continuous function in $\Omega \times \mathbb{R}$.

MSO-203B (IITK)

Introduction

Question

We need to find a $u \in C^1(\Omega)$ where Ω is a open subset in \mathbb{R}^2 such that

$$a(x, y, u)u_x + b(x, y, u)u_y = c(x, y, u)$$
 in Ω

with a, b and c being some continuous function in $\Omega \times \mathbb{R}$.

Expectations

 One can only expect solution in a small neighbourhood of the inital data.

MSO-203B (IITK) PDE Septem

Introduction

Question

We need to find a $u \in C^1(\Omega)$ where Ω is a open subset in \mathbb{R}^2 such that

$$a(x, y, u)u_x + b(x, y, u)u_y = c(x, y, u)$$
 in Ω

with a, b and c being some continuous function in $\Omega \times \mathbb{R}$.

Expectations

- One can only expect solution in a small neighbourhood of the inital data.
- It may happen that no solution $u \in C^1(\Omega)$ may exists in classical sense. Is there any way out of that.

Linear First Order Equation

Consider the problem:

$$a(x,y)u_x(x,y) + b(x,y)u_y(x,y) = c(x,y) \text{ in } \Omega$$
 (1)

with a, b and c being some continuous function in Ω .

MSO-203B (IITK)

Observation 1

• Note that equation (1) can be written as

$$(a(x,y),b(x,y),c(x,y)).(u_x,u_y,-1)=0$$

• Define $G = \{(x, y, u(x, y)) : (x, y) \in \Omega\}$ be the graph of u.

Observation 1

Note that equation (1) can be written as

$$(a(x,y),b(x,y),c(x,y)).(u_x,u_y,-1)=0$$

- Define $G = \{(x, y, u(x, y)) : (x, y) \in \Omega\}$ be the graph of u.
- The normal at any point (x, y) to G is given by $(u_x, u_y, -1)$.

MSO-203B (IITK)

5 / 18

Observation 1

• Note that equation (1) can be written as

$$(a(x, y), b(x, y), c(x, y)).(u_x, u_y, -1) = 0$$

- Define $G = \{(x, y, u(x, y)) : (x, y) \in \Omega\}$ be the graph of u.
- The normal at any point (x, y) to G is given by $(u_x, u_y, -1)$.
- Hence the vector (a(x, y), b(x, y), c(x, y)) must lie in the tangent plane of G at (x, y).

Observation 1

• Note that equation (1) can be written as

$$(a(x, y), b(x, y), c(x, y)).(u_x, u_y, -1) = 0$$

- Define $G = \{(x, y, u(x, y)) : (x, y) \in \Omega\}$ be the graph of u.
- The normal at any point (x, y) to G is given by $(u_x, u_y, -1)$.
- Hence the vector (a(x, y), b(x, y), c(x, y)) must lie in the tangent plane of G at (x, y).
- Finding solution is equivalent to finding a surface such that at all points (a(x, y), b(x, y), c(x, y)) lies in the tangent plane.

5 / 18

MSO-203B (IITK) PDE September 30, 2016

Observation 2

• To construct a required surface G we start by trying to find a curve C(s) on G such that the derivative at each point (x(s), y(s), z(s)) is equal to the vector (a(x, y), b(x, y), c(x, y)).

Observation 2

- To construct a required surface G we start by trying to find a curve C(s) on G such that the derivative at each point (x(s), y(s), z(s)) is equal to the vector (a(x, y), b(x, y), c(x, y)).
- One obtains the following

$$x'(s) = a((x(s), y(s)))$$

 $y'(s) = b((x(s), y(s)))$
 $z'(s) = c((x(s), y(s)))$

Observation 2

- To construct a required surface G we start by trying to find a curve C(s) on G such that the derivative at each point (x(s), y(s), z(s)) is equal to the vector (a(x, y), b(x, y), c(x, y)).
- One obtains the following

$$x'(s) = a((x(s), y(s)))$$

 $y'(s) = b((x(s), y(s)))$
 $z'(s) = c((x(s), y(s)))$

• Picard's theorem provides the existence of such a curve called an *Integral Curve* or *Characteristics Curve*.

Observation 2

- To construct a required surface G we start by trying to find a curve C(s) on G such that the derivative at each point (x(s), y(s), z(s)) is equal to the vector (a(x, y), b(x, y), c(x, y)).
- One obtains the following

$$x'(s) = a((x(s), y(s)))$$

 $y'(s) = b((x(s), y(s)))$
 $z'(s) = c((x(s), y(s)))$

- Picard's theorem provides the existence of such a curve called an *Integral Curve* or *Characteristics Curve*.
- Taking the union of all such curves provide us with the required surface *G*.

Example 1

Consider the equation $u_t + au_x = 0$ with a being a constant.

MSO-203B (IITK) PDE

7 / 18

Example 1

Consider the equation $u_t + au_x = 0$ with a being a constant.

Solution

Note that

$$u_t + au_x = (u_t, u_x).(1, a) = 0$$

Hence the Characteristics Curves are given by

$$x'(s) = a \implies x(s) = as + c_1$$
 (2)

$$t'(s) = 1 \implies t(s) = s + c_2$$
 (3)

$$z'(s) = 0 \implies z(s) = c_3.$$
 (4)

where c_i are constants for i = 1, 2, 3.

- **イロト (個) (注) (注) (注) (** 重) **り**9(0

7 / 18

Solution

From (2) and (3) we get x = at + c for some constant c depending only on c_1 and c_2 .

• The Characteristic Curves will be given by x = at + c and $z = c_3$.

Solution

From (2) and (3) we get x = at + c for some constant c depending only on c_1 and c_2 .

- The Characteristic Curves will be given by x = at + c and $z = c_3$.
- Define u(x, t) = z(x, t).
- So, u(x,t) = f(x-at) for some function $f \in C^1(\mathbb{R})$.

Solution

From (2) and (3) we get x = at + c for some constant c depending only on c_1 and c_2 .

- The Characteristic Curves will be given by x = at + c and $z = c_3$.
- Define u(x, t) = z(x, t).
- So, u(x, t) = f(x at) for some function $f \in C^1(\mathbb{R})$.

Verification

If
$$u(x,t) = f(x-at)$$
 then $u_x(x,t) = f'(x-at)$ and $u_t(x,t) = -af'(x-at)$ and hence $u_t + au_x = 0$.

Example 2

Handling the initial conditions

Consider the problem:

$$u_t + au_x = 0$$
; $u(x, 0) = g(x)$

where a is a constant and $g \in C^1(\mathbb{R})$ is given.

Example 2

Handling the initial conditions

Consider the problem:

$$u_t + au_x = 0; \ u(x,0) = g(x)$$

where a is a constant and $g \in C^1(\mathbb{R})$ is given.

Geometric View

We proceed as above to solve the problem with an extra assumption that the curve (x,0,g(x)) is contained in the surface given by the graph of the solution.

- Let $\Gamma = \{(x, 0, g(x))\}$ be a curve in \mathbb{R}^3
- For a fixed $A = (x_0, 0, g(x_0))$ on Γ construct the Integral curves starting from A.

4 □ Þ 4 ₫ Þ 4 ₫ Þ 4 ₫ ► ₽ Ψ) Ϥ(Ψ)

Analytic Solution

Parametrizing the curve Γ by r, we look for solutions of the Characteristic equation given by

$$\frac{\frac{dx}{ds}(r,s) = a}{\frac{dt}{ds}(r,s) = 1}$$
$$\frac{\frac{dz}{ds}(r,s) = 0$$

for a fixed r and with initial conditions

10 / 18

Analytic Solution

Parametrizing the curve Γ by r, we look for solutions of the Characteristic equation given by

$$\frac{dx}{ds}(r,s) = a$$

$$\frac{dt}{ds}(r,s) = 1$$

$$\frac{dz}{ds}(r,s) = 0$$

for a fixed r and with initial conditions

$$x(r,0) = r$$
$$t(r,0) = 0$$
$$z(r,0) = g(r)$$

Characteristic Curves

Solving the Characteristic equation one has

$$(x(r,s),t(r,s),z(r,s)) = (as + r,s,g(r))$$

Hence one has

$$u(x,t) = z(r(x,t),s(x,t)) = g(x-at)$$

11 / 18

Characteristic Curves

Solving the Characteristic equation one has

$$(x(r,s),t(r,s),z(r,s))=(as+r,s,g(r))$$

Hence one has

$$u(x,t) = z(r(x,t),s(x,t)) = g(x-at)$$

Remark

Note that u(x, t) is constant along the line x - at = c for any constant c.

MSO-203B (IITK) PDE September 30, 2016

Semilinear Equation

Example 3

Consider the problem

$$xu_x + yu_y = u + 1; \quad u|_{\Gamma} = x^2$$

where Γ is the parabola $y = x^2$.

Semilinear Equation

Example 3

Consider the problem

$$xu_x + yu_y = u + 1; \ u|_{\Gamma} = x^2$$

where Γ is the parabola $y = x^2$.

Solution

Let Γ is parametrized by r as (r, r^2, r^2) . For r fixed the characteristic equations are given as:

$$x'(r,s) = x; x(r,0) = r$$

 $y'(r,s) = y; y(r,0) = r^2$
 $z'(r,s) = z + 1; z(r,0) = r^2$

Semilinear Equation

Solution

Solving the characteristic equations we have,

$$x(r,s) = re^{s}$$
$$y(r,s) = r^{2}e^{s}$$
$$z(r,s) = (r^{2} + 1)e^{s} - 1$$

Hence the solution is given by $u(x, y) = \frac{x^2}{y} + y - 1$.

13 / 18

Question

Will the problem

$$a(x, y, u)u_x + b(x, y, u)u_y = c(x, y, u)$$
 in Ω

admit a solution for any boundary condition?

Question

Will the problem

$$a(x, y, u)u_x + b(x, y, u)u_y = c(x, y, u)$$
 in Ω

admit a solution for any boundary condition?

Answer

No, it may not. Consider the problem

$$u_t + au_x = 0$$
; $u|_{\Gamma} = g(x)$

From the earlier examples we have seen that u(x,t) = f(x-at) is a solution for some $f \in C^1(\mathbb{R})$.

Now if $\Gamma = \{x - at = c\}$ then g is constant along Γ , which may not be the case.

The Way Out - Definition

 Γ is called a Non-Characteristic for the Cauchy problem

$$a(x, y)u_x + b(x, y)u_y = c(x, y); u|_{\Gamma} = g$$

if

$$(a(\gamma_1(r), \gamma_2(r)), b(\gamma_1(r), \gamma_2(r)).(-\gamma_2'(r), \gamma_1'(r)) \neq 0$$
 (5)

The Way Out - Definition

 Γ is called a Non-Characteristic for the Cauchy problem

$$a(x, y)u_x + b(x, y)u_y = c(x, y); u|_{\Gamma} = g$$

if

$$(a(\gamma_1(r), \gamma_2(r)), b(\gamma_1(r), \gamma_2(r)).(-\gamma_2'(r), \gamma_1'(r)) \neq 0$$
 (5)

Example

If $\Gamma = \{x - at = c\}$ then $\Gamma(r) = (\gamma_1(r), \gamma_2(r)) = (c + a^2r, ar)$

- $(a(\gamma_1(r), \gamma_2(r)), b(\gamma_1(r), \gamma_2(r)).(-\gamma_2'(r), \gamma_1'(r)) = (a, 1).(-a, a^2) = 0$
- Hence Γ is a Non-Characteristic for the equation $u_t + au_x = 0$.

→ロト → □ ト → 重 ト → 重 ・ の Q (*)

Example 3

Consider the Burger's Equation:

$$u_t + uu_x = 0; \ u(x,0) = x^2$$

Example 3

Consider the Burger's Equation:

$$u_t + uu_x = 0; \ u(x,0) = x^2$$

Solution

Let $\Gamma = (r, 0)$ be the parametrization of the *x*-axis. Γ is a Non-Characteristic since $(0, 1).(r^2, 1) = 1$.

Hence the Characteristic Equation is given by

$$x'(s) = z; \ x(r,0) = r,$$

 $t'(s) = 1; \ t(r,0) = 0,$
 $z'(s) = 0; \ z(r,0) = r^2$

16 / 18

Solution

Solving the characteristic equations we get

$$x(r,s) = r^{2}s + r$$
$$t(r,s) = s$$
$$z(r,s) = r^{2}$$

Hence we have, $u(x, t) = (x - ut)^2$

Solution

Solving the characteristic equations we get

$$x(r,s) = r^{2}s + r$$
$$t(r,s) = s$$
$$z(r,s) = r^{2}$$

Hence we have, $u(x, t) = (x - ut)^2$

Remark

Note that the solution is not an explicit solution but an implicit one.

MSO-203B (IITK) PDE

The End