R OLS and Instrumental Variable Regression

Fan Wang

2020-04-01

Contents

OLS and IV Regression

Go to the RMD, R, PDF, or HTML version of this file. Go back to fan's REconTools Package, R Code Examples Repository (bookdown site), or Intro Stats with R Repository (bookdown site).

IV regression using AER package. Option to store all results in dataframe row for combining results from other estimations together. Produce Row Statistics.

```
# IV regression function
# The code below uses the AER library's regresison function
# All results are stored in a single row as data_frame
# This functoin could work with dplyr do
# var.y is single outcome, vars.x, vars.c and vars.z are vectors of endogenous variables, controls and
regf.iv <- function(var.y, vars.x,</pre>
                    vars.c, vars.z, df, transpose=TRUE) {
  # A. Set-Up Equation
  str.vars.x <- paste(vars.x, collapse='+')</pre>
  str.vars.c <- paste(vars.c, collapse='+')</pre>
  df <- df %>%
    select(one_of(var.y, vars.x, vars.c, vars.z)) %>%
    drop_na() %>% filter_all(all_vars(!is.infinite(.)))
  if (length(vars.z) >= 1) {
         library(AER)
    str.vars.z <- paste(vars.z, collapse='+')</pre>
    equa.iv <- paste(var.y,
                     paste(paste(str.vars.x, str.vars.c, sep='+'),
                            paste(str.vars.z, str.vars.c, sep='+'),
                            sep='|'),
          print(equa.iv)
    # B. IV Regression
    ivreg.summ <- summary(ivreg(as.formula(equa.iv), data=df),</pre>
                           vcov = sandwich, df = Inf, diagnostics = TRUE)
```

```
# C. Statistics from IV Regression
       ivreg.summ$coef
        ivreq.summ$diagnostics
  # D. Combine Regression Results into a Matrix
  df.results <- suppressWarnings(suppressMessages(</pre>
    as_tibble(ivreg.summ$coef, rownames='rownames') %>%
      full join(as tibble(ivreg.summ$diagnostics, rownames='rownames')) %%
      full join(tibble(rownames=c('vars'),
                       var.y=var.y,
                       vars.x=str.vars.x,
                       vars.z=str.vars.z,
                       vars.c=str.vars.c))))
} else {
  # OLS regression
  equa.ols <- paste(var.y,
                    paste(paste(vars.x, collapse='+'),
                          paste(vars.c, collapse='+'), sep='+'),
                    sep='~')
 lmreg.summ <- summary(lm(as.formula(equa.ols), data=df))</pre>
 lm.diagnostics <- as_tibble(</pre>
    list(df1=lmreg.summ$df[[1]],
         df2=lmreg.summ$df[[2]],
         df3=lmreg.summ$df[[3]],
         sigma=lmreg.summ$sigma,
         r.squared=lmreg.summ$r.squared,
         adj.r.squared=lmreg.summ$adj.r.squared)) %>%
    gather(variable, value) %>%
   rename(rownames = variable) %>%
    rename(v = value)
 df.results <- suppressWarnings(suppressMessages(</pre>
    as_tibble(lmreg.summ$coef, rownames='rownames') %>%
      full_join(lm.diagnostics) %>%
      full_join(tibble(rownames=c('vars'),
                       var.y=var.y,
                       vars.x=str.vars.x,
                       vars.c=str.vars.c))))
}
# E. Flatten Matrix, All IV results as a single tibble
# row to be combined with other IV results
df.row.results <- df.results %>%
 gather(variable, value, -rownames) %>%
 drop_na() %>%
 unite(esti.val, rownames, variable) %>%
 mutate(esti.val = gsub(' ', '', esti.val))
if (transpose) {
 df.row.results <- df.row.results %>% spread(esti.val, value)
```

```
# F. Return
return(data.frame(df.row.results))
}
```

Construct Program

Program Testing Load Data

```
# Library
library(tidyverse)
library(AER)

# Load Sample Data
setwd('C:/Users/fan/R4Econ/_data/')
df <- read_csv('height_weight.csv')</pre>
```

```
# One Instrucments
var.y <- c('hgt')
vars.x <- c('prot')
vars.z <- NULL
vars.c <- c('sex', 'hgt0', 'wgt0')
# Regression
regf.iv(var.y, vars.x, vars.c, vars.z, df, transpose=FALSE) %>%
kable() %>%
kable_styling_fc()
```

Example No Instrument, OLS

```
# One Instrucments
var.y <- c('hgt')
vars.x <- c('prot')
vars.z <- c('momEdu')
vars.c <- c('sex', 'hgt0', 'wgt0')
# Regression
regf.iv(var.y, vars.x, vars.c, vars.z, df, transpose=FALSE) %>%
kable() %>%
kable_styling_fc()
```

Example 1 Insturment

```
# Multiple Instrucments
var.y <- c('hgt')
vars.x <- c('prot')
vars.z <- c('momEdu', 'wealthIdx', 'p.A.prot', 'p.A.nProt')
vars.c <- c('sex', 'hgt0', 'wgt0')
# Regression
regf.iv(var.y, vars.x, vars.c, vars.z, df, transpose=FALSE) %>%
    kable() %>%
    kable_styling_fc()
```

esti.val	value
(Intercept)_Estimate	52.1186286658651
prot_Estimate	0.374472386357917
sexMale_Estimate	0.611043720578292
hgt0_Estimate	0.148513781160842
wgt0_Estimate	0.00150560230505631
(Intercept)_Std.Error	1.57770483608693
prot_Std.Error	0.00418121191133815
sexMale_Std.Error	0.118396259120659
hgt0_Std.Error	0.0393807494783186
wgt0_Std.Error	0.000187123663624397
(Intercept)_tvalue	33.0344608660332
prot_tvalue	89.5607288744356
sexMale_tvalue	5.16100529794248
hgt0_tvalue	3.77122790013449
wgt0_tvalue	8.04602836377991
$\overline{\text{(Intercept)}_Pr(> t)}$	9.92126150975783e-233
$\operatorname{prot}_{\operatorname{Pr}}(> t)$	0
$sexMale_Pr(> t)$	2.48105505495642e-07
$hgt0_Pr(> t)$	0.000162939618371183
$wgt0_Pr(> t)$	9.05257561534111e-16
df1_v	5
df2_v	18958
df3_v	5
sigma_v	8.06197784622979
r.squared_v	0.319078711001325
adj.r.squared_v	0.318935041565942
vars_var.y	hgt
vars_vars.x	prot
vars_vars.c	sex+hgt0+wgt0

Example Multiple Instrucments

```
# Multiple Instrucments
var.y <- c('hgt')
vars.x <- c('prot', 'cal')
vars.z <- c('momEdu', 'wealthIdx', 'p.A.prot', 'p.A.nProt')
vars.c <- c('sex', 'hgt0', 'wgt0')
# Regression
regf.iv(var.y, vars.x, vars.c, vars.z, df, transpose=FALSE) %>%
    kable() %>%
    kable_styling_fc()
```

Example Multiple Endogenous Variables

Examples Line by Line The examples are just to test the code with different types of variables.

```
# Selecting Variables
var.y <- c('hgt')
vars.x <- c('prot', 'cal')
vars.z <- c('momEdu', 'wealthIdx', 'p.A.prot', 'p.A.nProt')
vars.c <- c('sex', 'hgt0', 'wgt0')</pre>
```

esti.val	value
	43.4301969117558
(Intercept)_Estimate	
prot_Estimate	0.130833343849446
sexMale_Estimate	0.868121847262411
hgt0_Estimate	0.412093881817148
wgt0_Estimate	0.000858630042617921
(Intercept)_Std.Error	1.82489550971182
prot_Std.Error	0.0192036220809189
sexMale_Std.Error	0.13373016700542
hgt0_Std.Error	0.0459431912927002
wgt0_Std.Error	0.00022691057702563
(Intercept)_zvalue	23.798730766023
prot_zvalue	6.81295139521853
sexMale_zvalue	6.49159323361366
hgt0_zvalue	8.96963990141069
wgt0_zvalue	3.7840018472164
$\frac{\text{(Intercept)}_P(> z)}{\text{(Intercept)}_P(> z)}$	3.4423766196876e-125
$\operatorname{prot}\operatorname{Pr}(> \mathbf{z})$	9.56164541643828e-12
$sexMale_Pr(> z)$	8.49333228172763e-11
$hgt0_Pr(> z)$	2.97485394526792e-19
$\overline{\text{wgt0}_\text{Pr}(> \mathbf{z})}$	0.000154326676608523
Weakinstruments_df1	1
Wu-Hausman_df1	1
Sargan_df1	0
Weakinstruments_df2	16394
Wu-Hausman_df2	16393
Weakinstruments_statistic	935.817456612075
Wu-Hausman_statistic	123.595856606729
Weakinstruments_p-value	6.39714929178024e-200
Wu-Hausman_p-value	1.30703637796748e-28
vars_var.y	hgt
vars_vars.x	prot
vars_vars.z	momEdu
vars_vars.c	sex+hgt0+wgt0

esti.val	value
(Intercept)_Estimate	42.2437613555242
prot_Estimate	0.26699945194704
sexMale Estimate	0.695548488812932
hgt0_Estimate	0.424954881263031
wgt0_Estimate	0.000486951420329484
(Intercept)_Std.Error	1.85356686789642
prot_Std.Error	0.0154939347964083
sexMale_Std.Error	0.133157977814374
hgt0_Std.Error	0.0463195803786233
wgt0_Std.Error	0.000224867994873235
(Intercept)_zvalue	22.7905246296649
prot_zvalue	17.2325142357597
sexMale_zvalue	5.22348341593581
hgt0_zvalue	9.17441129192849
wgt0_zvalue	2.16549901022595
$\frac{\text{(Intercept)}_\Pr(> \mathbf{z})}{}$	5.69294074735747e-115
$\operatorname{prot}\operatorname{Pr}(> \mathbf{z})$	1.51424021931607e-66
$sexMale_Pr(> z)$	1.75588197502565e-07
$hgt0_Pr(> z)$	4.54048595587756e-20
$wgt0_Pr(> z)$	0.030349491114332
Weakinstruments_df1	4
Wu-Hausman_df1	1
Sargan_df1	3
Weakinstruments_df2	14914
Wu-Hausman_df2	14916
Weakinstruments_statistic	274.147084958343
Wu-Hausman_statistic	17.7562545747101
Sargan_statistic	463.729664547249
Weakinstruments_p-value	8.61731956233366e-228
Wu-Hausman_p-value	2.52567249124181e-05
Sargan_p-value	3.45452874915475e-100
vars_var.y	hgt
vars_vars.x	prot
vars_vars.z	momEdu+wealthIdx+p.A.prot+p.A.nProt
vars_vars.c	sex+hgt0+wgt0

```
sep='|'),
                 sep='~')
print(equa.iv)
## [1] "hgt~prot+cal+sex+hgt0+wgt0|momEdu+wealthIdx+p.A.prot+p.A.nProt+sex+hgt0+wgt0"
# B. regression
res.ivreg <- ivreg(as.formula(equa.iv), data=df)</pre>
coef(res.ivreg)
##
     (Intercept)
                                                    sexMale
                                                                                    wgt0
                          prot
                                          cal
                                                                      hgt0
## 44.0243196254 -1.4025623247 0.0651048958 0.1208327876 0.2865254380 0.0008504814
# C. Regression Summary
ivreg.summ <- summary(res.ivreg, vcov = sandwich, df = Inf, diagnostics = TRUE)</pre>
```

esti.val	value
(Intercept)_Estimate	44.0243196254297
prot Estimate	-1.4025623247106
cal Estimate	0.065104895750151
sexMale Estimate	0.120832787571818
hgt0 Estimate	0.286525437984517
wgt0 Estimate	0.000850481389651033
(Intercept)_Std.Error	2.75354847244082
prot_Std.Error	0.198640060273635
cal Std.Error	0.00758881298880996
sexMale Std.Error	0.209984580636303
hgt0 Std.Error	0.0707828182888255
wgt0 Std.Error	0.00033711210444429
(Intercept)_zvalue	15.9882130516502
prot zvalue	-7.06082309267581
cal zvalue	8.57906181719737
sexMale zvalue	0.575436478267434
hgt0_zvalue	4.04795181812859
wgt0 zvalue	2.52284441418383
$\frac{\text{(Intercept)}_{Pr(> z)}}{\text{(Intercept)}_{Pr(> z)}}$	1.54396598126854e-57
$\frac{(\operatorname{Interespt})_{\perp} \Gamma(> z)}{\operatorname{prot} \operatorname{Pr}(> z)}$	1.65519210848649e-12
$\frac{\operatorname{prod}_{\perp} \operatorname{r}(> z)}{\operatorname{cal}_{-} \operatorname{Pr}(> z)}$	9.56500648203187e-18
$\frac{\text{sexMale } \Pr(> \mathbf{z})}{\text{sexMale } \Pr(> \mathbf{z})}$	0.564996139463599
$\frac{\operatorname{hgt0_Pr}(> z)}{\operatorname{hgt0_Pr}(> z)}$	5.16677787108928e-05
$\frac{\operatorname{wgt0_Pr}(> z)}{\operatorname{wgt0_Pr}(> z)}$	0.0116409892837831
Weakinstruments(prot)_df1	4
Weakinstruments(cal)_df1	4
Wu-Hausman df1	2
Sargan_df1	2
Weakinstruments(prot)_df2	14914
Weakinstruments(cal) df2	14914
Wu-Hausman df2	14914
Weakinstruments(prot)_statistic	274.147084958343
Weakinstruments(cal) statistic	315.036848606231
Wu-Hausman statistic	94.7020085425169
Sargan_statistic	122.081979628898
Weakinstruments(prot) p-value	8.61731956233366e-228
Weakinstruments(cal)_p-value	1.18918641220866e-260
Wu-Hausman_p-value	1.35024050408262e-41
Sargan_p-value	3.09196773720398e-27
vars_var.y	hgt
vars_vars.x	prot+cal
vars_vars.z	momEdu+wealthIdx+p.A.prot+p.A.nProt
vars vars.c	sex+hgt0+wgt0

ivreg.summ\$coef

```
## (Intercept) 44.0243196254 2.7535484724 15.9882131 1.543966e-57 ## prot -1.4025623247 0.1986400603 -7.0608231 1.655192e-12 ## cal 0.0651048958 0.0075888130 8.5790618 9.565006e-18
```

```
## sexMale
               0.1208327876 0.2099845806 0.5754365 5.649961e-01
## hgt0
               0.2865254380 0.0707828183 4.0479518 5.166778e-05
## wgt0
               0.0008504814 0.0003371121 2.5228444 1.164099e-02
## attr(,"df")
## [1] 0
ivreg.summ$diagnostics
##
                          df1 df2 statistic
## Weak instruments (prot)
                            4 14914 274.14708 8.617320e-228
                            4 14914 315.03685 1.189186e-260
## Weak instruments (cal)
## Wu-Hausman
                             2 14914 94.70201 1.350241e-41
## Sargan
                            2
                                 NA 122.08198 3.091968e-27
# D. Combine Regression Results into a Matrix
df.results <- suppressMessages(as_tibble(ivreg.summ$coef, rownames='rownames') %>%
    full_join(as_tibble(ivreg.summ$diagnostics, rownames='rownames')) %>%
   full_join(tibble(rownames=c('vars'),
                     var.y=var.y,
                     vars.x=str.vars.x,
                     vars.z=str.vars.z,
                    vars.c=str.vars.c)))
# E. Flatten Matrix, All IV results as a single tibble row to be combined with other IV results
df.row.results <- df.results %>%
    gather(variable, value, -rownames) %>%
   drop_na() %>%
   unite(esti.val, rownames, variable) %>%
   mutate(esti.val = gsub(' ', '', esti.val))
# F. Results as Single Colum
# df.row.results
# G. Results as Single Row
# df.row.results
# t(df.row.results %>% spread(esti.val, value)) %>%
# kable() %>%
```

kable_styling_fc_wide()