CS 5003: Parameterized Algorithms

Lecture 40

Krithika Ramaswamy

IIT Palakkad

Problems Parameterized by Treewidth

Theorem 7.9. Let G be an n-vertex graph given together with its tree decomposition of width at most k. Then in G one can solve

- Vertex Cover and Independent Set in time $2^k \cdot k^{\mathcal{O}(1)} \cdot n$,
- Dominating Set in time $4^k \cdot k^{\mathcal{O}(1)} \cdot n$,
- ODD CYCLE TRANSVERSAL in time $3^k \cdot k^{\mathcal{O}(1)} \cdot n$,
- MAXCUT in time $2^k \cdot k^{\mathcal{O}(1)} \cdot n$,
- q-Coloring in time $q^k \cdot k^{\mathcal{O}(1)} \cdot n$.

Theorem 7.10. Let G be an n-vertex graph given together with its tree decomposition of width at most k. Then one can solve each of the following problems in G in time $k^{\mathcal{O}(k)} \cdot n$:

- STEINER TREE,
- FEEDBACK VERTEX SET,
- Hamiltonian Path and Longest Path,
- Hamiltonian Cycle and Longest Cycle,
- Chromatic Number,
- Cycle Packing,
- Connected Vertex Cover,
- Connected Dominating Set,
- Connected Feedback Vertex Set.

Monadic Second Order Logic on Graphs

MS₀₂

- * A formal language for expressing properties of graphs and objects inside these graphs like vertices, edges, and subsets of vertices/edges
- * A formula of MSO_2 is a string following certain rules. It consists of the following:
 - * Variables for: single vertices, single edges, subsets of vertices, subsets of edges
 - * Logical connectives: \vee , \wedge , =, \rightarrow , \neg
 - * Quantifiers \exists , \forall over vertex/edge variables
 - * Quantifiers \exists , \forall over vertex/edge set variables
 - $* \in , \subseteq \text{for vertex/edge sets}$
 - * May use \neq and \notin with conventional semantics

Monadic Second Order Logic on Graphs

MSO₂ Atomic Formulas

- * $v \in X$ where v is a vertex (or edge) variable and X is a vertex (or edge) set variable
 - * Semantics: the formula $v \in X$ is true iff the vertex corresponding to v is in the set corresponding to X in G
- * x = y where x and y are variables of the same type
 - * Semantics: the formula x=y is true iff the vertex/edge/set corresponding to x is same as the vertex/edge/set corresponding to y in G
- * $X \subseteq Y$ where X and Y are vertex (or edge) set variables
 - * Semantics: the formula $X \subseteq Y$ is true iff the set corresponding to X is contained in the set corresponding to Y

Monadic Second Order Logic on Graphs

MSO₂ Atomic Formulas (contd.)

- inc(v, e) where v is a vertex variable and e is an edge variable
 - * Semantics: the formula inc(v, e) is true iff the vertex corresponding to v is an endpoint of the edge corresponding to e in G
- adj(v, u) where u and v are vertex variables
 - * Semantics: the formula adj(u, v) is true iff the vertex corresponding to v is adjacent to the vertex corresponding to u

MSO₂ Formulas

- Constructed inductively from atomic formulas
 - * If ϕ is a formula then $\neg \phi$, $\forall \phi$ and $\exists \phi$ are formulas
 - * If ϕ_1,ϕ_2 are formulas then $\phi_1\wedge\phi_2$, $\phi_1\vee\phi_2$ and $\phi_1\implies\phi_2$ are formulas

Examples of MSO₂ Formulas

* The formula

 $\exists C \subseteq V, \exists v_0 \in C, \forall v \in C, \exists u_1, u_2 \in C \ (u_1 \neq u_2 \land adj(u_1, v) \land adj(u_2, v))$ is true iff G has a cycle.

* The formula

 $\exists C_1, C_2, C_3 \subseteq V \ (\forall v \in V \ (v \in C_1 \lor v \in C_2 \lor v \in C_3) \land (\forall u, v \in V \ adj(u, v) \implies (\neg (u \in C_1 \land v \in C_1) \land \neg (u \in C_2 \land v \in C_2) \land \neg (u \in C_3 \land v \in C_3))$ is true iff G is 3-colorable.

* The formula

 $\exists X \subseteq V \ (\exists x \in X \land \exists y \notin X \land \forall x, y \in V \ (adj(x, y) \implies (x \in X \Leftrightarrow y \in X)))$ is true iff G is not connected.

Courcelle's Theorem

Theorem: If a graph property can be expressed as an MSO₂ formula ϕ , then there is an algorithm that given a graph G and a tree decomposition T of G, determines if G satisfies this property or not in f($|\phi|$, w(T)) time for

some computable function f.

For simple problems |phi| is a const and thus FPT wrt w(T) o/w use optimised

- f can be very large (double, triple exponential) and a direct DP algorithm can be more efficient
- * If we can express a property in MSO₂, then we immediately infer that testing this property is FPT parameterized by the treewidth w of the input graph.
 - * Existence of a vertex cover of size at most k
 - * Uses an optimization version of Courcelle's theorem
 - * Existence of a Hamiltonian cycle