Technical Specification

Page 1 / 16

V0.15

SafeSPI - Serial Peripheral Interface for Automotive Safety

1 INTRODUCTION	3
I.1 Requirement specification types	3
1.2 Scope	3
OVERVIEW ABOUT SPI COMMUNICATION	4
3 PHYSICAL LAYER SPECIFICATION	6
3.1 Voltage levels and capacitances	6
3.2 Timing specifications	7
4 LOGICAL LAYER	10
4.1 General layer description	10
1.2 Bit encoding 4.2.1 Minimum Frame Format (out-of-frame)	10
4.2.2 Minimum Frame Format (in-frame)	11
4.2.3 Description of frame bits (out-of-frame and in-frame)	11
1.3 CRC protection	13
1.4 Example for the use of the target and source address	13
5 CHANGE HISTORY	16

Page 3 / 16

V0.15

1 Introduction

The serial peripheral interface (SPI) is a synchronous serial communication interface used for short distance communication, usually between devices on a printed board assembly. The interface was developed by Motorola and is now a de-facto standard for several automotive applications.

Because there is no formal SPI standard, a wide variety of protocol options exist. This flexibility means every device defines its own protocol, increasing the development effort of new systems, devices and software.

In automotive safety applications, there is often an independent monitoring device (often termed "safing") which listens to sensor data on the SPI bus. This monitoring device is usually implemented in hardware, and imposes constraints on the SPI protocol.

This specification describes a standard for a target SPI interface used in automotive applications. Its main focus is the transmission of sensor data between different devices.

1.1 Requirement specification types

DEF 002 Each requirement within this specification is marked with a unique identification. The identification consists of a classifier and a unique number. The number is unique over all versions of this specification. The classifiers are the following:

> INFO: The following content has informative character.

DEF:

The following content represents a definition. A definition itself cannot be fulfilled alone. However, other requirements refer to this definition and to fulfil these requirements, this definition must be followed

REQ: The following content is a requirement to the slaves and the masters

The following content applies only to SPI masters

The following content applies only to SPI slaves

Headings do not present any kind of requirement.

REQ_003 A device may call itself SafeSPI compatible if it fulfils all requirements (REQ).

1.2 Scope

DEF 004 This SafeSPI standard targets automotive SPI devices. The main focus is sensors, interface integrated circuits (ICs), system application specific ICs (ASICs) and microcontrollers.

INFO 005 Other devices may call themselves "SafeSPI compatible" according to REQ 002 if wished.

Page 4 / 16

V0.15

2 Overview about SPI communication

INFO_006 A standard SPI interface consists of 4 ports as shown in Error! Reference source not found...

Figure 1 SPI-Interface

The Serial Clock (SCK) represents the master clock signal. This clock determines the speed of data transfer and all receiving and sending is done synchronously to this clock. The Chip Select (CS) activates the SPI interface. As long as the CS signal is at high level, the SPI Slave will not accept the SCK signal or the Master-Out-Slave-In input (MOSI), and the Master-In-Slave-Out output (MISO) is in high impedance. When the CS signal is at low level, data can be transferred from the SPI Master to the SPI Slave and vice versa. Commands are transmitted through the MOSI to the SPI Slave and the SPI Slave returns its response through the MISO.

INFO_007 SPI bus systems support several slave devices on one bus by using either multiple chip select lines, one for each slave, or by a logical addressing. For several airbag and safety systems a monitor device is connected as listener to the bus. This device is often an ASIC which needs a dedicated SPI format. An example configuration is depicted in Error! Reference source not found.

Figure 2 Typical SafeSPI system configuration

Page 5 / 16

V0.15

INFO_008 The power supplies for each device on the SafeSPI bus are not specified, and can be independent, as shown in the figure below.

Figure 3 Example of different power domains V1, V2 & V3

REQ_tb9 In case of a slave supply failure (internally or from external) the slave shall not disturb any SPI signals (i.e. MOSI, MISO, CS).

Page 6 / 16

V0.15

3 Physical layer specification

INFO_010 The following chapter describes the physical layer of the SafeSPI specification. Besides voltage and current levels, capacitances of pins, the timings of the different communication lines are described.

3.1 Voltage levels and capacitances

- INFO_011 Each of the masters and slaves of the SafeSPI interfaces can be powered from an independent supply. The power supply range has to be the same for all connected devices also the power is not supplied from the same rail. So all slaves and masters have to have 3.3V compatible inputs / outputs. All devices have to work with different voltage levels within specification.
- *DEF_012* VIO defines the supply voltage of the SPI interface of the device. All voltage levels are defined to the actual supply voltage. Positive current flows into the device.

	Parameter	Symbol	Condition	Min	Max	Unit
REQ_001	Mode 3.3V: Supply voltage of	V _{IO}		3.0	3.6	V
	SPI interface (to be provided					
	and required respectively at					
	the VIO pin)					

Page 7 / 16

V0.15

DEF_013 The following requirements apply to all four communication PINs, namely MISO, MOSI, CS and SCK if not noted otherwise.

ID	Parameter	Symbol	Condition	min	Max	Unit
REQ_014	Input / output	C _{IO}			6	pF
	capacitance					
REQ_015	Total signal load	C _{LOAD}		6	100	pF
	capacitance					
REQ_016	Input low voltage	VIL			0.8	V
REQ_017	Input high voltage	Vıн		2.4	Vio	V
REQ_018	Output low voltage	Vol	ILOA D= 1 mA		0.4	V
REQ_019	Output high voltage	V _{OH}	I _{LOAD} = -1 mA	V _{IO} -0.4	V _{IO}	V
REQ_020	Input voltage	V _{HYST}		0.2		V
	hysteresis					
REQS_021	Output leakage	I _{LEAK}	MISO only	-10	10	μA
	current					
REQS_022	Input pull-up current	I _{IL}	CS only @ V _{CS}	-70	-20	μA
			0,8 2.0V			
REQS_023	Input pull-down	lін	MOSI and SCK	20	70	μA
	current		@ Vsi/sck 0,8			
			2.0V			

3.2 Timing specifications

INFO_024 The timings are specified to allow an operation of up to 10 MHz on the SPI. All timings are valid for the full range of specified voltage levels, input capacitances and current levels. The different parameters are defined in the following graphic.

Page 8 / 16

V0.15

DEF_025

SafeSPI Timing Diagram for out-of-frame format CPHA = 0

DEF_025a

All rights including industrial property rights and all rights of disposal such as copying and passing to third parties reserved.

SafeSPI Timing Diagram for in-frame format CPHA = 1

- <code>DEF_026</code> All timings are specified from V_{IHmin} to V_{ILmax} or vice versa.
- DEF_027 All timings are specified over full voltage range of V_{IO}, unless specified otherwise
- DEF_028 All timings are specified over full range of bus load C_{LOAD}, unless specified otherwise
- DEF_029 All timings are specified over full temperature range, unless specified otherwise

Page 9 / 16

V0.15

INFO_030 The following requirements are to the slave from master-point of view:

ID	Parameter	Symbol	Condition	Min	Max	Unit
REQS_031	MISO data valid time (CS)	А		*	40	ns
REQS_032	MISO data valid time (SCK)	В		*	30	ns
REQS_033	MISO data hold time	С		X	*	ns
REQS_034	MISO rise/fall time	D		5	15	ns
REQS_035	MISO data disable lag time	E		*	50	ns

DEF_036 X: MISO data is guaranteed to be stable until the next SCK shift edge

INFO_037 Parameter A, B do not include the rise/fall time of CS and SCK

INFO_038 The following requirements are given to the master from the slave-point of view

INFO_039 To achieve the Parameter D min/max time for the specified signal load capacitance range, a drive strength configuration of the MISO may be required

ID	Parameter	Symbol	Condition	Min	Max	Unit
REQM_040	SCK disable lead time	1		10		ns
REQM_041	SCK enable lead time	2		40		ns
REQM_042	SCK rise and fall time	3		5	15	ns
REQM_043	SCK high time	4		40		ns
REQM_044	SCK low time	5		40		ns
REQM_045	SCK enable lag time	6		10		ns
REQM_046	SCK disable lag time	7		10		ns
REQM_047	Sequential transfer delay (Out-Of-Frame)	9		450		ns
REQM_048	Sequential transfer delay (IN-Frame)	9		200		ns
REQM_049	MOSI rise and fall time	10		5	15	ns
REQM_050	MOSI data setup time	11		10		ns
REQM_051	MOSI data hold time	12		20		ns

INFO_052 To achieve the parameter 3 and 10 min/max times for the specified signal load capacitance range, a drive strength configuration of the SCK and MOSI may be required

INFO_053 To achieve the parameter 9 it takes more time for an Out-Of-Frame protocol since it has to prepare the correct data in between two frames.

Page 10 / 16

V0.15

4 Logical layer

4.1 General layer description

DEF_054 There are two possible logical frame dependencies within SPI logical layers. One is called inframe since the data of the slave response is within the same time slot as the masters' request. As out-of-frame the communication is called if the logical response of the slave is within the next frame of the master. Figure 3 depicts both options

Figure 4 in-frame and out-of-frame communication

- REQ_055 The number of bits is fixed to 32.
- REQ_056 The MSB is transferred first within a frame.
- INFO_057 The SafeSPI supports an out-of-frame as well as an in-frame protocol. Both have the same CRC polynomial and two separate response frames, one for sensor data (identified by S=1) and one for other data (S=0). Sensor data can have up to 16bits.

4.2 Bit encoding

- INFO_058 This section describes the logical encodings for different protocol options.
- DEF_059 Bits within the master request (MOSI) or the slave response (MISO) which are marked as '*' can be freely defied and are not specified within this specification.
- *DEF_060* A bit which is marked as '\$' within the slave response (MISO) represents a tri-state of the output pin (high impedance).
 - 4.2.1 Minimum Frame Format (out-of-frame)
- REQ_061 The following table show the command frame format for the out of frame protocol

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 ()
MOSI					TA	9:0														*											2:0	
value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1 0	/1

Only bits 9:7 of the TA are mandatory in the request.

REQ_062 The following table show the response frame format for the out-of-frame protocol in case of sensor data is transferred.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MISO	D					SA	9:0					S1							D	AT/	115	:0							S0	C	2:0	1
value	1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Page 11 / 16

V0.15

REQ_063 The following table show the response frame format for the out of frame protocol for all other data.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MISO	D					SA	9:0														*										2:0	
value	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Only bits 9:7 of the SA are mandatory in the response.

- REQ_064 In case a slave receives a frame he could not "understand" / decode, the slave should not respond with any output (high impedance) to avoid collisions in a multiple slave environment.
 - 4.2.2 Minimum Frame Format (in-frame)
- REQ_065 The following table show the command frame format for the in-frame protocol.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MOSI		T	A9:	5												,	k .											С	C2:	0	*	
value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Only bits 9:7 of the TA are mandatory in the request.

REQ_066 The following table show the response with sensor data from a slave in the in-frame protocol.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MISO			\$			*	О		S	A9:	5									DAT	A15	:0							S0	С	R2:	0
value						0/1	1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/	0/1

REQ_067 The following table show the other responses from a slave in the in-frame protocol.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 ()
MISO			\$			*	D		S	A9:	5										*									CI	R2:0)
value						0/1	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/	/1

Only bits 9:7 of the SA are mandatory in the response

4.2.3 Description of frame bits (out-of-frame and in-frame)

ID	Symbol	Name
REQ_068	TA9:0	The target address (TA) is the command which defines the command
		to the sensor.
		TA9:7 are mandatory
		TA9:8 shall correspond to the programmable slave address, if the
		slave supports the use of common CS for up to four slaves
		TA6:0 are optional and can be used also for other purposes

Page 12 / 16

V0.15

REQ_069	SA9:0	The source address (SA) is the address uniquely identifying the content				
		of the response data (data15:0).				
		SA9:8 are mandatory and shall correspond to the device individual				
		programmable slave address to allow unique addresses on one SPI				
		bus with up to four slaves.				
		SA7 is mandatory				
		SA6:0 are optional and can be used also for other purposes				
		Example for the use of SA7:0 for a PSI5 transceiver:				
		SA7:5 PSI5 channel				
		SA4:3 PSI5 time slot				
		SA2:0 PSI5 frame (see PSI5 V2.1 substandard Chassis and				
		Safety)				
		Note: In frame uses only SA9:5.				
REQ_070	D	The sensor data bit identifying if response contains sensor data or not				
		(i.e. identifying frame format for response.				
		S=0: no sensor data				
		S=1: sensor data format				
REQ_071	S1:0	The sensor status bit describes the status of the sensor data within a				
		data frame response.				
		00b: valid sensor data				
		01b: Sensor in any error state or non sensor data available;				
		Data15:0 may contain any kind of data				
		11b: sensor in init state; Data15:0 still contains sensor data				
		10b: free to use, sensor data has to be valid				
		Note: in frame uses only E0 to distinguish between valid and non valid				
		sensor data.				
REQ_071	DATA15:0	Up to 16bit of sensor data given in 2 nd complement. If sensor data is				
		less than 16bit, data should be aligned on MSB. Unused bits are free to				
		use.				
REQ_072	C2:0	CRC for out-of-frame command and response frames calculated over				
		bit 31 to 3. See section 4.3 for details.				
REQ_073	CC2:0	CRC for in-frame command frames calculated over bit 31 to 5. See				
		section 4.3 for details.				
REQ_074	CR2:0	CRC for in-frame response frames calculated over bit 26 to 3. See				
		section 4.3 for details.				
L	1					

Page 13 / 16

V0.15

4.3 CRC protection

- *REQ_075* For the in-frame format a 3bit CRC with the polynomial $0x5 (x^3 + x^1 + x^0)$ is used with a start value of 111b and a target value of 000b.
- REQ_076 For the out-of-frame format a 3bit CRC with the polynomial $0x5 (x^3 + x^1 + x^0)$ is used with a start value of 101b and a target value of 000b.
- INFO_077 Note that the bits over which the CRC is calculated is not equal for all frame formats. The following test cases can be used to verify the implementation.

ID	protocol	32bit frame	CRC result
INFO_078	out-of frame, command/response	0x 00 00 00 03	OK
INFO_079	out-of frame, command/response	0x FF FF FF F8	OK
INFO_080	out-of frame, command/response	0x 0F 0F 0F 0A	OK
INFO_081	out-of frame, command/response	0x 0F F2 C8 FE	OK
INFO_082	in-frame, command	0x 00 00 00 04	OK
INFO_083	in-frame, command	0x FF FF FF F7	OK
INFO_084	in-frame, command	0x 0F 0F 0F 13	OK
INFO_085	in-frame, command	0x 0F F2 C8 E7	OK
INFO_086	in-frame, response	0x 00 00 00 06	OK
INFO_087	in-frame, response	0x FF FF FF FC	OK
INFO_088	in-frame, response	0x 0F 0F 0F 0A	OK
INFO_089	in-frame, response	0x 0F F2 C8 FE	OK
INFO_090	all responses & commands	0x 00 00 00 00	FAIL
INFO_091	all responses & commands	0x FF FF FF FF	FAIL
INFO_092	all responses & commands	0x 0F 0F 0F 0F	FAIL
INFO_093	all responses & commands	0x 0F F2 C8 FA	FAIL

4.4 Example for the use of the target and source address

DEF_094 The following example shows four slaves on a SPI bus, where two support a common CS

Page 14 / 16

V0.15

The following table shows the SPI transfers, which are required to read the sensor data.

Request			Response		
	TA	cs	D + SA 1 01 000x		
Sensor Module 2: Sensor 1	000b	CS1		Slave 2; channel 0	
Sensor Module 1: Sensor 1	00 000b	CS2	1 00 000x xxxxb	Slave 1: channel 0	
Sensor Module 1: Status	00 0000	032	0 00 1011	Slave 1; channel 0	
Register	00 10110b	CS2	0xxxb	Slave 1; Non sensor data	
ASIC 1: Sensor Data PSI5 I/F			1 10 000 00	Slave 3; PSI5 I/F 1; TimeSlot 1; Frame	
1 ASIC 1: Sensor Data PSI5 I/F	000x xxxx xxb	CS3	xxxb 1 10 000 01	n/a Slave 3; PSI5 I/F 1; TimeSlot 2; Frame	
1 ACIC 4: Caracar Data DOIS I/F	000x xxxx xxb	CS3	-	n/a	
ASIC 1: Sensor Data PSI5 I/F	000x xxxx xxb	CS3	1 10 000 10 xxxb	Slave 3; PSI5 I/F 1; TimeSlot 3; Frame n/a	
ASIC 2: Sensor Data PSI5 I/F	11 000x		1 11 000 00		
1 ASIC 2: Sensor Data PSI5 I/F	xxxxb 11 000x	CS2	000b 1 11 000 01	Slave 4; PSI5 I/F 1; TimeSlot 1; Frame 1	
1 ASIC 2: Sensor Data PSI5 I/F	xxxxb 11 000x	CS2		Slave 4; PSI5 I/F 1; TimeSlot 2; Frame 1	
1	xxxxb	CS2		Slave 4; PSI5 I/F 1; TimeSlot 1; Frame 2	

Technical Specification

Page 15 / 16

V0.15

ASIC 2: Sensor Data PSI5 I/F 11 000x 1 xxxxb

Slave 4; PSI5 I/F 1; TimeSlot 2; Frame 2

Technical Specification

Page 16 / 16

V0.15

5 Change History

Rev.N°	Chapter	Description / Changes	Date
0.15	All	Initial version of this specification for industry review	July 30, 2015