Università degli Studi di Napoli Federico II Scuola Politecnica e delle Scienze di Base

Dipartimento di Ingegneria Elettrica e Tecnologie dell'Informazione

Corso di Laurea in Informatica

Implementazione di una procedura di decisione per Binding-Fragments in Vampire

Relatore Prof. Massimo Benerecetti

Correlatore

Prof. Fabio Mogavero

Candidato Matteo Richard Gaudino

> Matricola N86003226

Indice

Introduzione				
1	Log	ica e automazione dei problemi di Decisione	6	
	1.1		6	
		1.1.1 Formule	6	
		1.1.2 Assegnamenti	7	
		1.1.3 Forme Normali	9	
		1.1.4 Naming	10	
	1.2	Logica del primo ordine	10	
		1.2.1 Termini e Formule	10	
		1.2.2 Unificazione	12	
		1.2.3 Semantica	14	
		1.2.4 Skolemizzazione e Forme Normali	14	
	1.3	Soddisfacibilità e Validità	16	
	1.4	Resolution	16	
	1.5	Il formato TPTP	16	
2	\mathbf{Alg}	oritmo di decisione di Frammenti Binding	17	
	2.1	Classificazione	17	
	2.2	Algoritmo Astratto	17	
3	Il T	heorem prover Vampire	18	
	3.1	I Termini	18	
	3.2	Formule e Clausole	18	
	3.3	Unificazione e Substitution Trees	18	
	3.4	Preprocessing	18	
	3.5	Saturazione e Refutazione	18	
	3.6	Il SAT-Solver	18	
	3.7	Misurazione dei Tempi		
	3.8	Opzioni		

4	Imp	plementazione di procedure di decisione per frammenti Bin-	
	ding	g in Vampire 1	9
	4.1	Algoritmo di Classificazione	19
	4.2	Preprocessing	19
		4.2.1 Boolean Top Formula	19
		4.2.2 Forall-And	19
		4.2.3 SAT-Clausification	19
	4.3	Procedura di Decisione	19
		4.3.1 Implicants Sorting	19
		4.3.2 Maximal Unifiable Subsets	19
		4.3.3 Algoritmo Finale	[9
5	Ana	alisi Sperimentale 2	20
	5.1	La libreria TPTP	20
	5.2	Analisi dei risultati	20
	5.3	Ottimizzazioni	20
	5.4	Conclusioni e Possibili Sviluppi futuri	20

Introduzione

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Logica e automazione dei problemi di Decisione

In questo capitolo verranno descritte le nozioni di base necessarie per comprendere il lavoro svolto. In particolare, verranno introdotti i concetti di logica proposizionale e del primo ordine, definita come estensione della prima. Nell'ultimo paragrafo del capitolo verrà descritto in che modo le formule di logica del primo ordine possono essere rappresentate in un formato di file, per poi essere processate come input da un theorem prover. Lo scopo di questo capitolo è quello di accennare la teoria logica utilizzata nell'implementazione di vampire e della procedura di decisione per i Binding-Fragments. Perciò, verranno date per scontate nozioni di teoria degli insiemi, algebra e teoria dei linguaggi.

1.1 Logica Proposizionale

1.1.1 Formule

Sia $\Sigma_c = \{c_1, c_2, ...\}$ un insieme di simboli di costante, $\Sigma = \{\land, \lor, \neg, (,), \top, \bot\} \cup \Sigma_c$ è detto alfabeto della logica proposizionale. Con queste premesse possiamo definire come formule della logica proposizionale il linguaggio F generato dalla grammatica Context Free seguente:

$$\varphi := \top \mid \bot \mid C \mid \neg \varphi \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi)$$

Dove $C \in \Sigma_c$ è un simbolo di costante. Con la funzione $const(\gamma) \to \Sigma_c$ si indica la funzione che associa a ogni formula γ l'insieme dei suoi simboli di costante. Viene chiamato Letterale, ogni simbolo di costante c o la sua negazione $\neg c$. Vengono inoltre introdotti i seguenti simboli come abbreviazioni:

•
$$(\gamma \Rightarrow \kappa)$$
 per $(\neg \gamma \lor \kappa)$

- $(\gamma \Leftrightarrow \kappa)$ per $((\gamma \Rightarrow \kappa) \land (\kappa \Rightarrow \gamma))$
- $(\gamma \oplus \kappa)$ per $\neg(\gamma \Leftrightarrow \kappa)$

È possibile rappresentare una qualunque formula attraverso il proprio albero di derivazione. Questo albero verrà chiamato in seguito anche *albero sintattico* della formula. Ad esempio, la formula $(c_1 \wedge c_2) \vee \neg c_3$ può essere rappresentata dal seguente albero sintattico:

La radice dell'albero è detta connettivo principale e i sotto alberi della formula vengono dette sottoformule. Per compattezza, grazie alla proprietà associativa di \land e \lor , è possibile omettere le parentesi, es. $(c_1 \land (c_2 \land (c_3 \land c_4))) \lor c_5$ può essere scritto come $(c_1 \land c_2 \land c_3 \land c_4) \lor c_5$. Allo stesso modo, nell'albero sintattico della formula è possibile compattare le catene di \land e \lor come figli di un unico nodo:

Questa è una caratteristica molto importante, in quanto non solo permette di risparmiare inchiostro, ma consente di vedere \land e \lor non più come operatori binari ma come operatori n-ari. A livello implementativo, ciò si traduce in un minor impatto in memoria, visite all'albero più veloci e algoritmi di manipolazione più semplici. Si consideri ad esempio di voler ricercare la foglia più a sinistra nell'albero di derivazione della seguente formula $((...((c_1 \land c_2) \land c_3) \land c_4) \land ...) \land c_n)$. Senza compattazione, l'algoritmo di ricerca impiegherebbe O(n) operazioni, mentre con la compattazione O(1).

1.1.2 Assegnamenti

Un assegnamento è una qualunque funzione α da un insieme $C \subseteq \Sigma_c$ nell'insieme $\{1,0\}$ (o $\{True, False\}$).

$$\alpha:C\to\{1,0\}$$

Un assegnamento α è detto appropriato per una formula $\varphi \in F$ se e solo se $const(\varphi) \subseteq dom(\alpha)$.

Si definisce la relazione binaria di Soddisfacibilità:

$$\models \subseteq \{1,0\}^C \times F$$

In modo tale che dato un assegnamento α appropriato a una formula φ , si dice che $\alpha \models \varphi$ (α soddisfa φ) o anche α è un assegnamento per φ o se e solo se:

- Se φ è una variabile c_x allora $\alpha \models \varphi$ sse $\alpha(c_x) = 1$
- Se φ è della forma $\neg \psi$ (dove ψ è una formula) allora $\alpha \models \varphi$ sse $\alpha \not\models \psi$
- Se φ è della forma $(\psi \wedge \chi)$ (con ψ e χ formule) allora $\alpha \models \varphi$ sse $\alpha \models \psi$ e $\alpha \models \chi$
- Se φ è della forma $(\psi \lor \chi)$ (con ψ e χ formule) allora $\alpha \models \varphi$ sse $\alpha \models \psi$ o $\alpha \models \chi$

Una Tautologia è una formula φ tale che per ogni assegnamento α appropriato a φ , $\alpha \models \varphi$ (in simboli $\models \varphi$). Una formula è detta soddisfacibile se esiste un assegnamento appropriato che la soddisfa altrimenti è detta insoddisfacibile. Date due formule φ e ψ , si dice che ψ è conseguenza logica di φ (in simboli $\varphi \models \psi$) se e solo se per ogni assegnamento α appropriato a entrambe le formule, se $\alpha \models \varphi$ allora $\alpha \models \psi$. Due formule sono dette conseguent equivalenti se conseguent eq

Due concetti molto simili a quello di equivalenza e conseguenza logica sono l'equisoddisfacibilità e la soundness. In pratica, due formule sono sound se e solo se, se la prima formula è soddisfacibile allora lo è anche la seconda. Due formule sono equisoddisfacibili se e solo se sono sound in entrambe le direzioni. Quindi la conseguenza logica implica la soundness ma non il viceversa. Allo stesso modo l'equivalenza logica implica l'equisoddisfacibilità ma non il viceversa. Si consideri ad esempio le due formule $\varphi = c_1$ e $\psi = \neg c_1$. Ovviamente non può esserci conseguenza logica tra le due formule, ma sono equisoddisfacibili, infatti se α è un assegnamento per φ allora è possibile costruire un assegnamento β per ψ tale che $\beta(c_1) = 1 - \alpha(c_1)$ e viceversa.

Un'inferenza è una qualunque funzione da F in F. Un'inferenza è detta corretta se conserva la soddisfacibilità, ovvero se non può generare una formula insoddisfacibile a partire da una formula soddisfacibile (soundness).

Infine, si definisce Implicante di una formula φ un insieme I di letterali di φ che rendono vera φ . Cioè, costruendo una assegnazione α tale che $\alpha \models c$ per ogni letterale $c \in I$, si ha che $\alpha \models \varphi$. In altre parole la formula costruita dalla congiunzione di tutti i letterali di I implica logicamente φ . Spesso con abuso di terminologia gli elementi di I vengono chiamati anch'essi implicanti, di solito è facile intuire dal contesto se si sta parlando dell'insieme o dei letterali. È possibile anche costruire un Implicante a partire da una assegnazione. È sufficiente

prendere l'insieme dei letterali della formula soddisfatti dall'assegnamento e si ottiene così un implicante.

1.1.3 Forme Normali

Una delle strategie più utilizzate dai dimostratori di teoremi automatici è la normalizzazione delle formule. Una forma normale è essenzialmente un sottoinsieme di F che rispetta determinate proprietà. Una normalizzazione invece è il processo di trasformazione di una formula tramite una successione d'inferenze (corrette) in una forma normale. In questo paragrafo verranno descritte le tre forme normali che sono state utilizzate per il preprocessing dell'algoritmo. In questo caso, tutte e tre le forme presentate preservano la relazione di equivalenza logica, quindi è sempre possibile trasformare una formula in un'altra equivalente in uno di questi tre formati. La prima e l'ultima ossia le forme NNF e CNF sono le più famose e utilizzate, mentre la seconda, la ENNF, non è abbastanza conosciuta da essere definita standard e viene utilizzata per bypassare alcuni problemi di efficienza causati dalla CNF grazie all'utilizzo di tecniche di Naming, che però verranno discusse nella prossima sezione.

La prima tra queste è la NNF ossia $Negated\ Normal\ Form$ (Forma normale negata). Una formula è in formato NNF sse non contiene connettivi semplificati $(\Rightarrow, \Leftrightarrow, \oplus)$ e la negazione è applicata solo a letterali. La classe di formule NNF è generata dalla seguente grammatica:

$$\eta := \top \mid \bot \mid C \mid \neg C \mid (\eta \land \eta) \mid (\eta \lor \eta)$$

Dove $C \in \Sigma_c$ è un simbolo di costante. La normalizzazione di una formula in NNF è un processo semplice che consiste nell'applicare opportunamente le regole di De Morgan e le regole di semplificazione dei connettivi.

La seconda forma normale è la *ENNF* ossia *Extended Negated Normal Form* (Forma normale negata estesa). Il formato ENNF è essenzialmente una classe più permissiva della NNF, in quanto conserva il vincolo sulla negazione ma vieta esclusivamente l'uso di '⇒'. La classe di formule ENNF è generata dalla seguente grammatica:

$$\overline{\eta} := \top \mid \bot \mid C \mid \neg C \mid (\overline{\eta} \wedge \overline{\eta}) \mid (\overline{\eta} \vee \overline{\eta}) \mid (\overline{\eta} \Leftrightarrow \overline{\eta}) \mid (\overline{\eta} \oplus \overline{\eta})$$

La terza e ultima forma normale è la *CNF* ossia *Conjunctive Normal Form* (Forma normale congiuntiva). Una formula è in formato CNF sse è una congiunzione di disgiunzioni di letterali. La classe di formule CNF è generata dalla seguente grammatica:

$$\zeta := \xi \mid (\xi \wedge \zeta)$$

$$\xi := \top \mid \bot \mid C \mid \neg C \mid (\xi \vee \xi)$$

La classe CNF è storicamente la più famosa e utilizzata, in quanto è la più semplice da implementare e da manipolare. È possibile vedere le clausole come insiemi di letterali mentre la formula principale è vista come un insieme di clausole. Ad esempio, la CNF $(c_1 \vee \neg c_2) \wedge (c_3)$ può essere rappresentata in termini insiemistici come $\{\{c_1, \neg c_2\}, \{c_3\}\}$. La clausola vuota $\{\}$ è una clausola speciale che rappresenta la formula \bot , viene spesso raffigurata dal simbolo \Box . La normalizzazione di una formula in CNF è un processo più complesso rispetto alle altre due forme normali. Non esiste un unica tecnica di normalizzazione, ma una strategia comune è questa:

- 1. Si trasforma la formula in NNF.
- 2. Se la formula è del tipo $\varphi_1 \wedge ... \wedge \varphi_n$ allora la struttura principale è già una congiunzione di formule, quindi si procede applicando l'algoritmo sulle sottoformule $\varphi_1, ..., \varphi_n$.
- 3. Se la formula è del tipo $(\varphi_1 \wedge \varphi_2) \vee \psi_1$ si applica la proprietà distributiva di \vee su \wedge in modo da spingere i connettivi \vee il più possibile in profondità. Si ottiene così una formula del tipo $(\varphi_1 \vee \psi_1) \wedge (\varphi_2 \vee \psi_1)$ si procede poi ricorsivamente con il punto 2.

Il processo di generazione delle clausole prende il nome di clausificazione. Questa tecnica di clausificazione nella peggiore delle ipotesi porta a una generazione di un numero di clausole esponenziale rispetto alla dimensione della formula originale. Ad esempio la formula $(c_1 \wedge c_2) \vee (c_3 \wedge c_4) \vee ... \vee (c_{n-1} \wedge c_n)$ genera esattamente 2^n clausole diverse tutte da n letterali.

1.1.4 Naming

1.2 Logica del primo ordine

1.2.1 Termini e Formule

Oltre al solito insieme Σ_c di simboli di costante, vengono introdotti tre nuovi insiemi di simboli:

- $\Sigma_f = \{f_1, f_2, ...\}$ insieme di simboli di funzione
- $\Sigma_p = \{p_1, p_2, ...\}$ insieme di simboli di predicato (o relazione)
- $\Sigma_x = \{x_1, x_2, ...\}$ insieme di simboli di variabile

Definiamo la funzione $arity: \Sigma_f \cup \Sigma_p \to \mathbb{N}$ che associa ad ogni simbolo di funzione o predicato la sua arità. Un termine è una stringa generata dalla seguente grammatica:

$$\tau := X \mid C \mid f(\tau_1, ..., \tau_n)$$

Dove X è un simbolo di variabile, C è un simbolo di costante e f è un simbolo di funzione tale che arity(f) = n. In altre parole:

- Ogni variabile è un termine
- Ogni costante è un termine
- \bullet Se $\tau_1,...,\tau_n$ sono termini e f è un simbolo di funzione di arità n allora $f(\tau_1,...,\tau_n)$ è un termine

Indichiamo con T l'insieme di tutti i termini generati dalla grammatica precedente. Chiameremo Atomo tutte le stringhe del tipo $p(\tau_1, ..., \tau_n)$ dove p è un simbolo di relazione di arità n e $\tau_1, ..., \tau_n$ sono termini. Consideriamo atomi anche tutti i simboli di costante. Vengono chiamati Letterali tutti gli atomi e la loro negazione. Termini e Letterali sono detti ground se non contengono variabili. Come già visto per le formule proposizionali, è possibile rappresentare un termine o un letterale attraverso il proprio albero di derivazione. Ad esempio, il letterale $p_1(f(x_1, c_2), c_1)$ può essere rappresentato dal seguente albero sintattico:

Come intuibile i sottoalberi di un termine sono detti sottotermini. Si assuma di avere due letterali $p_1(c_1, f_1(x_1, c_2))$ e $\neg p_1(f_2(f_1(x_1, c_2), c_2), c_2)$ di volerli rappresentare in un unico grafo. Al posto di creare una foresta con due alberi indipendenti, è possibile creare un unica struttura condividendo i sottotermini comuni:

Una struttura del genere è detta *Prfectly Shared* (Perfettamente condivisa). Nella pratica questa tecnica di condivisione di sottotermini è indispensabile dato che, anche se a un costo per la creazione e la gestione non indifferente, permette un

risparmio di memoria e di tempo considerevole. Per effettuare ad esempio un controllo di uguaglianza tra due sottotermini è sufficiente controllare che le due frecce che partono dai termini padre puntino allo stesso sottotermine, senza dover visitare l'intera sotto struttura, rendendo così tale operazione a tempo costante.

A questo punto definiamo finalmente le formule della logica del primo ordine. Prendendo come punto di partenza le formule proposizionali, chiamiamo alfabeto delle formule del primo ordine $\Sigma' = \Sigma \cup \Sigma_f \cup \Sigma_p \cup \Sigma_x \cup \{\forall, \exists\}$ e definiamo come formule del primo ordine il linguaggio F' generato dalla seguente grammatica:

$$\phi := \top \mid \bot \mid A \mid \neg \phi \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid \forall x(\phi) \mid \exists x(\phi)$$

Dove A è un atomo e x è un simbolo di variabile. I simboli \forall e \exists sono detti quantificatori universali ed esistenziali. Una variabile x è detta vincolata se è contenuta in una formula del tipo $\forall x(\varphi')$ o $\exists x(\varphi')$ altrimenti è detta libera. Una formula è detta enunciato se non contiene variabili libere. Una formula è detta ground se tutti i suoi letterali sono ground.

Per comodità di scrittura è possibile raggruppare catene di quantificatori dello stesso tipo. Ad esempio, la formula $\forall x_1 \forall x_2 \forall x_3 \exists x_4 \exists x_5 \forall x_6 \forall x_7(\phi)$ può essere scritta come $\forall x_1 x_2 x_3 \exists x_4 x_5 \forall x_6 x_7(\phi)$. Così come visto per \forall e \land è possibile vedere \forall e \exists come operatori n-ari che prendono in input n-1 variabili e una formula.

1.2.2 Unificazione

Dato un termine τ (o un letterale), con la scrittura $\tau[x_k/t]$ si indica il termine (o il letterale) ottenuto sostituendo tutte le occorrenze della variabile x_k con il termine t in τ . Ad esempio se $\tau = f(x_1, x_2)$ allora $\tau[x_1/c_1] = f(c_1, x_2)$. Si può estendere questa notazione in modo da poter sostituire più variabili contemporaneamente. Definiamo come sostituzione una qualunque funzione da variabili a termini. Dato un termine τ e una sostituzione $\sigma = \{(x_1, t_1), ..., (x_n, t_n)\}$, con la scrittura $\tau[x_1/t_1, ..., x_n/t_n]$ oppure τ^{σ} si indica il termine ottenuto sostituendo contemporaneamente tutte le occorrenze delle variabili $x_1, ..., x_n$ con i termini $t_1, ..., t_n$ in τ . Con contemporaneamente si intende che ogni singola sostituzione viene effettuata sul termine originale, senza essere influenzata dalle sostituzioni precedenti o successive. Ad esempio, se $\tau = f(x_1, x_2)$ allora $\tau[x_1/x_2, x_2/x_1] = f(x_2, x_1)$ e non $f(x_1, x_1)$ che è invece il risultato dell'applicazione sequenziale delle due regole $\tau[x_1/x_2][x_2/x_1]$.

Dati due termini τ_1 e τ_2 si dice che τ_1 è più generico di τ_2 o che τ_2 è più specifico di τ_1 se e solo se esiste una sostituzione σ tale che $\tau_1^{\sigma} = \tau_2$. Se esiste una sostituzione σ tale che $\tau_1^{\sigma} = \tau_2^{\sigma}$ allora i due termini sono detti unificabili e la sostituzione σ è detta unificatore dei due termini.

Date due sostituzioni σ_1 e σ_2 si dice che σ_1 è più generica di σ_2 o che σ_2 è più specifica di σ_1 se e solo se per ogni termine θ , σ_2 è sussunta da σ_1 , ossia sse esiste una sostituzione θ tale che $\tau^{\sigma_2} = (\tau^{\sigma_1})^{\theta}$. Dati due termini unificabili τ_1 e τ_2 si dice che σ_1 è un MGU (Most General Unifier) di τ_1 e τ_2 se è la sostituzione più generica tra tutti gli unificatori dei due termini.

È possibile generalizzare il concetto di unificazione per insiemi di termini, letterali e insiemi di letterali. Dato un insieme di termini T, si dice che T è unificabile se esiste una sostituzione σ tale che $\tau_1^{\sigma} = \tau_2^{\sigma}$ per ogni coppia di termini $\tau_1, \tau_2 \in T$. In questo caso σ è detto unificatore di T. Due letterali della stessa arità $L_1 = p_1(\tau_1, ..., \tau_n)$ e $L_2 = p_2(\tau'_1, ..., \tau'_n)$ sono unificabili se e solo se esiste una sostituzione che li eguaglia ignorando il simbolo di predicato. In altre parole sia f una funzione di arità n allora L_1 e L_2 sono unificabili se e solo se sono unificabili i termini $f(\tau_1, ..., \tau_n)$ e $f(\tau'_1, ..., \tau'_n)$. Letterali di diversa arità non sono mai unificabili. Un insieme di letterali è unificabile se e solo se esiste una sostituzione che unifica a due a due tutti i letterali dell'insieme.

Un importante risultato è questo:

Proposizione 1. Se due termini non sono unificabili allora vale una delle sequenti affermazioni:

- 1. I due termini hanno arità diverse
- 2. I due termini presentano una function obstruction
- 3. I due termini presentano una variable obstruction

Una function obstruction è una situazione in cui visitando allo stesso modo l'albero sintattico dei termini si incontrano due simboli di funzione diversi. Ad esempio, i termini $f_1(x_1, f_2(x_2))$ e $f_1(x_1, f_3(x_2))$ non sono unificabili in quanto presentano una function obstruction, $f_2 \neq f_3$. Una variable obstruction invece è una situazione in cui visitando allo stesso modo l'albero sintattico dei termini si incontra una variabile x nel primo termine e si incontra un sottotermine $t \neq x$ che contiene x nel secondo termine. Ad esempio i termini $f_1(x_1, f_2(x_2))$ e $f_1(f_2(x_1), x_1)$ non sono unificabili in quanto presentano una variable obstruction, x_1 è contenuta in $f_2(x_1)$.

Un famoso algoritmo per la ricerca di un MGU di due termini è l'algoritmo di *Robinson*. Il collo di bottiglia di questo algoritmo è la occurrence-check, ovvero la ricerca di una variable obstruction. Se si assume che i termini in input non contengono variabili in comune è possibile ignorare questa situazione. Di seguito viene riportato l'algoritmo di Robinson senza occurrence-check:

Algorithm 1: Algoritmo di unificazione di Robinson senza occurrence-check

```
Firma: unify(\tau_1, \tau_2)
Input: \tau_1, \tau_2 due termini
Output: \sigma un MGU di \tau_1 e \tau_2 o \bot se non esiste
S := \text{Empty Stack of pair of terms};
\sigma := \text{Empty Substitution};
S.push(\tau_1, \tau_2);
while S is not Empty do
    (\tau_1, \tau_2) := S.pop();
    while \tau_1 is a variable \wedge \tau_1 \neq \tau_1^{\sigma} do
       \tau_1 := \tau_1^{\sigma}:
    end
    while \tau_2 is a variable \wedge \tau_2 \neq \tau_2^{\sigma} do
       \tau_2 := \tau_2^{\sigma};
    end
    if \tau_1 \neq \tau_2 then
        switch \tau_1\tau_2 do
             case \tau_1 is a variable x and \tau_2 is a variable y \Rightarrow \sigma := \sigma \cup \{x/y\};
            case \tau_1 is a variable x \Rightarrow \sigma := \sigma \cup \{x/\tau_2\};
             case \tau_2 is a variable y \Rightarrow \sigma := \sigma \cup \{y/\tau_1\};
            case \tau_1 = f(s_1, ..., s_n) and \tau_2 = f(t_1, ..., t_n) \Rightarrow
             S.push(s_1, t_1), ..., S.push(s_n, t_n);
            case \tau_1 = f(s_1, ..., s_n) and \tau_2 = g(t_1, ..., t_m) \Rightarrow \mathbf{return} \perp;
        end
    end
end
return \sigma;
```

1.2.3 Semantica

1.2.4 Skolemizzazione e Forme Normali

In questo paragrafo verrà descritta una procedura fondamentale per la dimostrazione automatica di teoremi, la Skolemizzazione. Varrà inoltre introdotta una nuova forma normale chiamata PNF e verranno estese le forme normali descritte nel paragrafo della logica proposizionale per adattarle alla logica del primo ordine.

La definizione per le forme ENNF e NNF per la logica del primo ordine è pressoché identica a quella della logica proposizionale. Come per la logica proposi-

zionale, la trasformazione di una formula in ENNF/NNF preserva la relazione di conseguenza logica ed è sempre possibile trasformare una formula in una equivalente in ENNF/NNF. Il calcolo per la normalizzazione viene effettuato allo stesso modo ma con l'aggiunta di due regole per la negazione dei quantificatori:

$$\neg \forall x(\varphi) \to \exists x(\neg \varphi)$$
$$\neg \exists x(\varphi) \to \forall x(\neg \varphi)$$

Chiameremo prefisso di quantificatori una lista di quantificatori (es. $\forall x_1 \forall x_2 \exists x_3$). Un prefisso viene detto universale se è composto esclusivamente da quantificatori universali e viene detto esistenziali se è composto esclusivamente da quantificatori esistenziali. Una formula è in formato PNF (Prenex Normal Form) se tutti e soli i quantificatori si trovano all'inizio della formula. La classe di formule PNF è generata dalla seguente grammatica:

$$P_0 := \rho(P)$$

$$P := \top \mid \bot \mid A \mid \neg P \mid (P \land P) \mid (P \lor P)$$

Dove ρ è un prefisso di quantificatori e A è un atomo. La parte della formula generata dalla seconda regola viene spesso chiamata matrice. È sempre possibile normalizzare una formula in PNF, è un processo sound, ma non è sempre possibile mantenere la relazione di conseguenza logica.

La skolemizzazione è una procedura che permette di eliminare i quantificatori esistenziali da una formula. Sia ρ un prefisso di quantificatori qualunque, la funzione $sk: F' \to F'$ può essere descritta in questo modo:

- Se la formula è del tipo $\exists x(\rho\phi)$ allora sk rimuove il primo quantificatore esistenziale e sostituisce la variabile x all'interno della formula con una nuova costante c_{n+1} , dove n è il massimo indice di costante presente nella formula.
- Se la formula è del tipo $\forall x_k...x_{k+m-1} \exists x_{k+m} (\rho \phi)$ allora sk rimuove il primo quantificatore esistenziale e sostituisce la variabile x_{k+m} all'interno della formula con una nuova funzione $f_{n+1}(x_k,...,x_{k+m-1})$ m-1-aria, dove n è il massimo indice di funzione presente nella formula.

Applicando la funzione sk tante volte quanto il numero di quantificatori esistenziali presenti nella formula si ottiene una formula senza quantificatori esistenziali. Anche la skolemizzazione è un processo sound, ma non è detto che preservi la conseguenza logica.

Combinando le tecniche apprese finora è possibile definire una procedura di normalizzazione che permette di trasformare una formula del primo ordine in formato CNF. Le formule CNF per il primo ordine sono definite come segue:

$$\zeta_0 := \rho(\zeta_1)$$

$$\zeta_1 := \xi \mid (\xi \land \zeta_1)$$

$$\xi := \top \mid \bot \mid L \mid (\xi \lor \xi)$$

Dove ρ è un prefisso di quantificatori universale e L un letterale. Per ottenere una formula CNF è sufficiente:

- 1. Normalizzare la formula in NNF
- 2. Normalizzare la formula in PNF
- 3. Skolemizzare la formula
- 4. Applicare lo stesso algoritmo di clausificazione descritto per la logica proposizionale sulla matrice della formula

Visto le tecniche applicate il processo di clausificazione per la logica del primo ordine è sound ma non preserva la conseguenza logica. Dato che in una formula CNF tutte le variabili sono universalmente quantificate per brevità è possibile omettere il prefisso di quantificatori. Ad esempio, la formula CNF $\forall x_1x_2x_3x_4(\neg p_1(x_1)\lor p_2(x_2)\lor p_3(x_3))\land (\neg p_4(x_4))$ può essere scritta come $(\neg p_1(x_1)\lor p_2(x_2)\lor p_3(x_3))\land (\neg p_4(x_4))$ e quindi rappresentata in forma insiemistica come $\{\{\neg p_1(x_1), p_2(x_2), p_3(x_3)\}, \{\neg p_4(x_4)\}\}$. Un'osservazione interessante è che visto che tutte le variabili sono universalmente quantificate, è possibile rinominare le variabili di clausole diverse senza cambiare il significato della formula. È quindi possibile normalizzare le clausole in modo tale che ogni coppia di clausole contenga variabili diverse. Un caso d'uso tipico è quello di voler unificare due letterali di due clausole diverse. Con l'assunzione che le variabili siano tutte diverse è possibile applicare l'algoritmo di unificazione senza occurrence-check visto nel capitolo sull'Unificazione.

1.3 Soddisfacibilità e Validità

1.4 Resolution

1.5 Il formato TPTP

Algoritmo di decisione di Frammenti Binding

- 2.1 Classificazione
- 2.2 Algoritmo Astratto

Il Theorem prover Vampire

- 3.1 I Termini
- 3.2 Formule e Clausole
- 3.3 Unificazione e Substitution Trees
- 3.4 Preprocessing
- 3.5 Saturazione e Refutazione
- 3.6 Il SAT-Solver
- 3.7 Misurazione dei Tempi
- 3.8 Opzioni

Implementazione di procedure di decisione per frammenti Binding in Vampire

L'algoritmo di decisione, la classificazione, Il preprocessing

- 4.1 Algoritmo di Classificazione
- 4.2 Preprocessing
- 4.2.1 Boolean Top Formula
- 4.2.2 Forall-And
- 4.2.3 SAT-Clausification
- 4.3 Procedura di Decisione
- 4.3.1 Implicants Sorting
- 4.3.2 Maximal Unifiable Subsets
- 4.3.3 Algoritmo Finale

Analisi Sperimentale

- 5.1 La libreria TPTP
- 5.2 Analisi dei risultati
- 5.3 Ottimizzazioni
- 5.4 Conclusioni e Possibili Sviluppi futuri