PROBLEM SET 3

Anthony Tam, CSC236

10/07/2016

Question 1: $n \log(0.5n^2 + 10) - 2n + 7\log(n) \in \Theta(n \log n)$

ANSWER:

$$n \log(0.5n^2 + 10) - 2n + 7\log(n)$$
 $n \log(0.5n^2 + 10) - 2n + 7\log(n)$ $< n \log(0.5n^2 + 10) + 7\log(n)$ $> n \log(0.5n^2 + 10) - 2n$ $< n \log(0.5n^2 + 10n^2) + 7\log(n)$ $> n \log(0.5n^2) - 2n$ $= 2n \log(10.5n) + 7\log(n)$ $= 2n \log(0.5n) - 2n$ $= 2n \log(n) + 2n \log(10.5) + 7\log(n)$ $> 2n \log(n) - 2n$ $< 2n \log(n)$ $n_0 = 11$ $> 2n \log(n)$ $> 2n \log(n)$

Since $\mathcal{O}(n \log(n)) = \Omega(n \log(n))$ we can conclude $n \log(0.5n^2 + 10) - 2n + 7\log(n) \in \Theta(n \log n)$. Q.E.D.

Question 2: Given $f(n) \in \mathcal{O}(n^2)$ and $g(n) \in \mathcal{O}(n^2)$, use the definition of \mathcal{O} to prove that: $42 \cdot f(n) + 236 \cdot g(n) \in \mathcal{O}(n^2)$

ANSWER: Using the definition of \mathcal{O} :

$$f(n) \in \mathcal{O}(n^2)$$
 $g(n) \in \mathcal{O}(n^2)$ $\Rightarrow f(n) \le cn^2$ $c \in \mathbb{R}$ $\Rightarrow 42f(n) \le cn^2$ $\Rightarrow 236g(n) \le cn^2$

This can then be used in the problem question:

$$42 \cdot f(n) + 236 \cdot g(n) \le 42cn^2 + 236cn^2$$
$$42 \cdot f(n) + 236 \cdot g(n) \le n^2(42c + 236c)$$

The definition of \mathcal{O} states that \mathcal{O} is a constant value multiplied by a function of n which is greater then a given function. This line states just that

$$\therefore 42 \cdot f(n) + 236 \cdot g(n) \in \mathcal{O}(n^2)$$
 Q.E.D.

Assignment № 3 Page 1