16 of 68 DOCUMENTS

COPYRIGHT: 1988, JPO & Japio

PATENT ABSTRACTS OF JAPAN

63220216

September 13, 1988

OPTICAL FINGERPRINT READER

INVENTOR: EGUCHI SHIN; IGAKI SEIGO; IKEDA HIROYUKI; INAGAKI YUSHI

APPL-NO: 62054910

FILED-DATE: March 10, 1987

ASSIGNEE-AT-ISSUE: FUJITSU LTD

PUB-TYPE: September 13, 1988 - Un-examined patent application (A)

PUB-COUNTRY: Japan (JP)

IPC-MAIN-CL: G 02B027#2

IPC ADDL CL: G 06F015#64

CORE TERMS: quantity, hologram, finger, incident light, illuminating,

diffracted, projected, luminous, flux

ENGLISH-ABST:

PURPOSE: To project more uniform light to a body to be examined even in case of the use of a light source like an LD whose quantity of light is concentrated to the center by dividing the illuminating light so that irradiation centers are slightly shifted from each other.

CONSTITUTION: A hologram 12 is inserted to the optical path of the illuminating light emitted from a semiconductor laser (LD) 11, and a part of the incident light is diffracted to mainly irradiate a part of a finger 15 on a finger placing surface 14, and the other incident light is transmitted through the hologram 12 without being diffracted and is projected to the finger 15. The direction in which the luminous flux is divided by the hologram is allowed to coincide with the direction of the minor axis of the ellipse indicating the light quantity distribution of the LD 11. Since two luminous fluxes which have maximum points of the quantity of light in different positions are projected to the body to be examined, it is illuminated more uniformly.

⑩日本国特許庁(JP)

⑩特許出願公開

⑫ 公 開 特 許 公 報 (A) 昭63-220216

@Int_Cl_4

識別記号

庁内整理番号

❸公開 昭和63年(1988)9月13日

G 02 B 27/02 G 06 F 15/64 Z-8106-2H G-8419-5B

審査請求 未請求 発明の数 1 (全4頁)

の発明の名称 光学的指紋読み取り装置

②特 願 昭62-54910

纽出 願 昭62(1987)3月10日

砂発 明 者 江 口 伸 神奈川県川崎市中原区上小田中1015番地 富士通株式会社 内

⑫発 明 者 井 垣 誠 吾 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

内

砂発 明 者 池 田 弘 之 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

内

⑫発 明 者 稲 垣 雄 史 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

内

印出 願 人 富士通株式会社

神奈川県川崎市中原区上小田中1015番地

沙代 理 人 弁理士 井桁 貞一

ण स्वय

1. 発明の名称

光学的指紋焼み取り装置

2. 特許請求の範囲

(1) 指码の腹部を透光性多面体のの指押圧面のに 押圧して照明光を照射し、前記指码の腹部からの 反射光を、前記透光性多面体の内部の全反射によって検知装置に伝達し、前記指码の指紋パターン を検出する光学的指紋続み取り装置であって、

前記指码を照明する光は、半導体レーザのの射出光がホログラムのによって強度異方性を観和されたものであることを特徴とする光学的指紋読み取り装置。

- (2) 前記強度異方性の緩和に使用するホログラム (2) は、入射光の一部を一方向に回折し、入射光の 残部を透過直進せしめる機能を有するものである ことを特徴とする特許請求の範囲第1項記載の光 学的指数様み取り装置。
- (3) 前記強度異方性の緩和に使用するホログラム

図は、入射光の一部を一方向に回折し、入射光の 他の一部を他の方向に回折し、入射光の残部を透 過直進せしめる機能を有するものであることを特 後とする特許請求の範囲第1項記載の光学的指紋 読み取り装置。

3. 発明の詳細な説明

(機 要)

光学的指紋説み取り装置に於いて、照明光の光源に半導体レーザ(以下、LD)を用い、その射出光の強度分布をホログラムによって分散援和し、より均一な照明光度を得る。使用するホログラムは入射光の一部を回折し、他は透過させる機能を持つものである。

(産業上の利用分野)

本発明は光学的指紋線み取り装置に関わり、特に被検体の脳明を均一化する構成に関わるものである。

近年、個人服合システムを強化する手段として

指紋関合を利用することが考えられ、その実用のための技術が種々関発されている。周知の如く、 指紋は全ての人間で異なっており、一人として同 一の指紋を持つ者はいないため、これによって個 人を識別すれば、 I Dカードのように他者によっ て悪用されるおそれが無く、情報処理システム等 の安全保証をより確実なものとすることが山来る。

指紋配合のための入力方法としては、当初、インクを指に塗布して用紙に押印し、これをビデオカメラ等で撮影して処理する方法が考えられたが、この方法では指が汚れる、押印された図形が不完全なことがある等の欠点があり、現在では所定位置に押圧された指腹部から直接、光学的に読み取る方法が主となっている。

(従来の技術)

光学的なみ取り法では彼良体を照明しなければならないが、その方法として、指を押し当てる透 光性固体内部から、全反射の起こる角度で押圧面 に照明光を照射することが行われている。これは

させ、同じく図中に記入された方向Bに伝播する 信号光によって指紋情報を取り出すことになる。 なお、第4図の透光性多面体10は本発明に於いて も使用され、その詳細は後で説明する。

(発明が解決しようとする問題点)

上記先願発明は光学的指紋読み取り装置として 便れた機能を有するものであるが、照明光滅にし Dを用いる場合には、LDの射出光に強度分布が あるため、被検体の照明光度にむらを生ずるとい う問題が残されている。

LDはGaAs基板に各種成分の層を積層して 形成されるが、その射出光の等強度線は光軸を中心とし、積層方向を長軸とする長円形を描く。したがって、光の強度は中心軸近傍に集中的に分布し、周辺部では急激に低下するが、その傾向は前記長円の長軸方向には比較的緩やかであり、短軸方向には急である。

このように不均一な関明光を使用すると、指紋 像を伝達する信号光に強度むらを生じ、パターン 指紋情報を伝達する反射光とそれ以外の反射光を 分離するのに有利という特長があるが、その他に、 照明光源にレーザ光を使用しても、有害な照明光 が外部に洩れないという効果がある。

この方式に基づき、指紋情報のコントラストをより良好なものとした光学的指紋読み取り装置が本発明の発明者等によって発明され、特開昭61-201380号として特許出願されている。第5回は核先願発明の一実施例を示す模式図であり、指紋情報を伝達する信号光は透明基板40の庭面42と上面44の間で全反射を綴り返して検知装置47に入射する。なお、41は光源、45は指、46は信号光を透明基版外に射出させるためのホログラムである。

按先行技術では照明光源は特に限定されていないが、光源として L D を使用し、その射出光を指押圧面に対し臨界角以上の角度から照射させる方法も採用することは可能であり、その場合、第4図の形状の透光性多面体が使用される。

の識別を不正確なものとするおそれがあるので、 L D 出力光の中心集中を提和すること、少なくも その短軸方向の集中を分散緩和することが望まれ 2

本発明の目的は、LD出力光の中心集中を分散 級和し、より均一な照明光が被検体に照射される 光学的指紋続み取り装置を提供することである。

(問題点を解決するための手段)

本発明の装置では L D 出力光の中心集中を扱和 するため、ホログラムによって L D 出力光の一部 を回折させ、回折することなくホログラムを透過 した光と、前記回折した光の両方を被検体に照射 することが行われる。

(作用)

上記構成により、被検体は異なる位置に光量及 大点を有する2本の光束によって照射されること になるので、より均一な限明が実現する。

(実施例)

本発明の実施例では、いづれも第4図的に斜視 図の示された透光性多面体10が使用される。優して含えば、この多面体は透明平板を丁字型に切り 出した形状であり、丁字の機線に当たる部分の両 端郎は、上面34で全反射する入射光にほど直交す る入射端面33と、その全反射光にほど直交する射 出端面35を有する形状となっている。

第4図的は、この透光性多面体に指を当てた時 に限明光が反射する状況を模式的に示した図で、 T字の経線の方向から見た断面図である。

透光性多面体10の上面34に指15が押し当てられると、協面で全反射するように照射される照明光は、指紋の谷の部分即ち平面上が空間である部分では全反射するが、指紋の山が当接する部分では全反射の条件が成立しなくなり乱反射を起こす。

この乱反射光の一部は、透光性多面体の底面32 と上面34との間で全反射を繰り返しながら下字の 凝線の終端方向に、即ち該図では紙面の垂直方向 に伝播し、検知装置に到達する。この状況は第5

入射光の一部分を回折させて指15の一部分を主に 照射させ、入射光の他の一部分を他の方向に回折 させて指15の他の一部分を主に照射させ、その他 の入射光は回折することなくホログラムを透過し て指押圧面14上にある指15の更に他の一部分を主 にを照射させる構成としている。また、光東分解 方向としDの光量分布長円の短軸方向を一致させ る点は第1の実施例と同じである。

ここで使用されるホログラムは第2図のに示されるように、入射光の一部を回折し、他は透過する機能を持つものである。第3図のに示すように、両回折光、透過光は各々照射中心位置が異なり、失々の照射点を中心とする長円状に照射光度が分布するので、三者を総合したより緩慢な光度分布の照明が得られる。ここで使用されるホログラム12は同図のに示されるように、入射光の一部を一方向に回折し、他の一部を他の方向に回折し、残りは透過する機能を持つものとして形成されてい

上記実施例の図面で、10は前記の透光性多面体、

図に模式的に示されたものと同様である。

本発明の第1の実施例では、第1図に示される 様に、LDIIから射出される照明光の光路にホロ グラム12を挿入し、入射光の一部を回折させて指 押圧面14上にある指15の一部分を主に照射し、そ の他の入射光は回折することなくホログラム12を 透過し、指15を照射する構成を保っている。また ホログラムによって光東が分解される方向は、し Dの光量分布を示す長円の短軸方向に一致させて ある。

ここで使用されるホログラムは第1図のに示されるように、入射光の一部を回折し、他は透過する機能を持つものである。第3図のに示すように、回折光、透過光は各光東中心の照射位置が異なり、 夫々の照射点を中心とする長円状に照射光度が分布するので、両者が総合されて、光東の短軸方向により級優な光度分布の限明が得られることになる。

本発明の第2の実施例では、第2図回に示される様に、照明光の光路にホログラム12を挿入し、

13は照明光の入射端面である。

(発明の効果)

以上説明したように、本発明では照明光を分割して、互いに少しずれた位置を照射中心とするように構成しているので、し D のように光量が中心に集中する光源を使用しても、その分布傾向が緩和され、中心と周辺で照度差の少ない照明が得られる。その結果、被検体である指紋の読み取りがより正確に行われることになる。

4. 図面の簡単な説明

第1回は第1の実施例を模式的に示す図、 第2回は第2の実施例を模式的に示す図、 第3回は本発明の光量分布を模式的に示す図、 第4回は透光性多面体を模式的に示す図、 第5回は先行技術の構成を模式的に示す図 であって、

図に於いて、

10 は透光性多面体、

37....¹⁸63-220216 **(4)**

- II ILD.
- 12 はホログラム、
- 13.33 は入射協団、
- 14 は指押圧頭、
- 15,45 は指、
- 32,42 は底面、
- 34.44 は上面、
- 35 は射出韓面、
- 40 は透明基板、
- 41 は光源、
- 46 はホログラム、
- 47 は検知装置

である。

代理人 寿理士 并指真一 (12) (12) (13)

第1の実施例を模式的に示す図

第 1 图

第2の実施例を模式的に示す図

第 2 図

本発明の光量分布を模式的に示す図 多体 3 図

第 4

図

先行技術の構成を模式的に示す図

第 5 図