Exponentials and Logarithms

$$Kyle Broder - ANU - MSI - 2017$$

INTRODUCTION TO THE EXPONENTIAL FUNCTION

We introduce the exponential function $f(x) = e^x$ to be a continuous function that grows faster than any polynomial function. Recall that a polynomial is a function $p : \mathbb{R} \to \mathbb{R}$ defined by $p(x) = a_n x^n + \cdots + a_1 x + a_0$, where the $a_k \in \mathbb{R}$, for $0 \le k \le n$.

Some basic properties of the exponential function are:

- 1. $e^x \cdot e^y = e^{x+y}$ (products are taken to sums),
- 2. $e^x/e^y = e^{x-y}$ (equivalent to 1),
- 3. $(e^x)^y = e^{xy}$ (powers are taken to products),
- 4. $e^0 = 1$.

In order to solve exponential equations, we need to introduce the logarithm function.

The logarithm $f(x) = \log_e(x)$ is the inverse function of e^x . That is, if we compose $\log_e(x)$ with e^x , we get the identity function f(x) = x.

Some basic properties of the logarithm function are

- 1. $\log_e(x) + \log_e(y) = \log_e(xy)$ (sums are taken to products),
- 2. $\log_e(x) \log_e(y) = \log_e(x/y)$ (equivalent to 1),
- 3. $\log_e(x^y) = y \log_e(x)$ (powers are taken to products)
- 4. $\log_e(1) = 0$.

Example 1. Prove that $\log_e(e) = 1$.

Proof. Let $\log_e(e) = k$, for some $k \in \mathbb{R}$. Then $e^k = e$. It is then clear that k = 1 and therefore $\log_e(e) = 1$.

Example 2. Solve the equation $e^{2x+1} = 5$ for $x \in \mathbb{R}$.

Proof.

$$\begin{split} e^{2x+1} &= 5 &\implies \log_e(e^{2x+1}) = \log_e(5) \\ &\implies (2x+1)\log_e(e) = \log_e(5) \\ &\implies 2x+1 = \log_e(5) \\ &\implies 2x = \log_e(5) - 1 \\ &\implies x = \frac{1}{2} \left(\log_e(5) - 1\right). \end{split}$$

Question 1. Solve the following exponential equations.

a.
$$e^{3x-5} = 10$$
.

b.
$$e^{2x-7} = 1$$
.

c.
$$2e^x = \frac{1}{2}$$
.

c.
$$2e^x = \frac{1}{3}$$
.
d. $e^x \cdot e^{2x+4} = 2$.

e.
$$e^{x-6} = \frac{3}{e^{x+2}}$$
.

Example 3. Solve the logarithmic equation $\log_e(x) + \log_e(3x+1) = 2$.

Proof. We observe that

$$\log_e(x) + \log_e(3x+1) = 2 \implies \log_e(x \cdot (3x+1)) = 2$$

$$\implies x(3x+1) = e^2$$

$$\implies 3x^2 + x - e^2 = 0$$

$$\implies x = \frac{-1 \pm \sqrt{1^2 - 4(3)(-e^2)}}{3(2)}$$

$$\implies x = \frac{-1 \pm \sqrt{1 + 12e^2}}{6},$$

$$\implies x = \frac{-1 + \sqrt{1 + 12e^2}}{6},$$

where the last implication is realised since we may only take positive values for x in the domain of the logarithm.

Question 2. Solve the following logarithmic equations for $x \in \mathbb{R}$.

a.
$$\log_e(x) + \log_e(3) - \log_e(4) = \log_e(x+1)$$
.

- b. $\log_e(2x) + \log_e(4) = 2\log_e(2)$.
- c. $\log_e(7-x) + 4\log_e(1) = 2\log_e(x)$.

Question 3. Suppose that $\mathscr S$ represents the amount (in milligrams per cubic meter) of saring as in a particular bag. The amount of sarin gas that leaks out of the bag into a train station after t hours is given by an equation of the form

$$\mathcal{S} = -2 + 2e^{kt}$$
.

- a. Determine the initial amount of sarin gas in the train.
- b. Suppose that in one hour the amount of sarin in the train reaches a lethal concentration of 35 mg per cubic meter. Determine the value of k.
- c. Determine the amount of sarin in the train after 2 hours.

Question 4.

- a. Solve $\log_3(6-x) \log_3(4-x) = 2$ for x, where x < 4.
- b. Solve $3e^x = 5 + 8e^{-x}$ for $x \in \mathbb{R}$.

Question 5. Solve the following equation

$$\log_e(x) - \lambda = \log_e(2\sqrt{x}),$$

in terms of λ , where x > 0 and $\lambda \in \mathbb{R}$.

Question 6. Suppose that $f:(-\infty,2)\to\mathbb{R}$ is defined by

$$f(x) = \log_e(2 - x)$$

and suppose that $g:[-2,\infty)\to\mathbb{R}$ is defined by $g(x)=\sqrt{x+2}$. What is the largest domain that we could define the following functions on?

- a. f+g.
- b. f g.
- c. $f \cdot g$.
- d. $f \circ g$.
- e. $g \circ f$.

Example 4. Show that

$$\log_e(x) = \frac{1}{\log_x(e)}.$$

Proof. Let $\log_e(x) = k$. Then we observe that

$$\log_e(x) = k \implies e^k = x$$

$$\implies \log_x(e^k) = \log_x(x)$$

$$\implies k \log_x(e) = \log_x(x)$$

$$\implies k \log_x(e) = 1$$

$$\therefore k = \frac{1}{\log_x(e)}.$$

Question 7. Determine the value(s) of $k \in \mathbb{R}$ such that the following equation has only one solution for $x \in \mathbb{R}$,

$$\log_e(x) - 3k \log_x(e) + 2 = 0.$$

Question 8. Determine the value(s) of $k \in \mathbb{R}$ such that the following equation has no solutions for $x \in \mathbb{R}$,

$$\log_e(x) - \log_x(e) + k = 3.$$

Question 9. Let $\mu > 0$ be a fixed real number. Solve the equation

$$e^{\mu x} = 3 + \frac{1}{e^{\mu x}}.$$

Question 10. Plot the following functions on their maximal domains.

a.
$$f(x) = e^{x-3}$$
.

b.
$$f(x) = 2e^{3x+1} - 4$$
.

c.
$$f(x) = \frac{1}{2}e^{\frac{1}{2}x+5}$$
.

d.
$$f(x) = \frac{2}{e^{x+10}} - 3$$
.

e.
$$f(x) = 2\log_e(x) + 1$$
.

f.
$$f(x) = 3\log_e(5x+2) - \frac{4}{5}$$
.

g.
$$f(x) = 4\log_e(2-x) - 4$$
.

h.
$$f(x) = 2\log_e(x) + 3e^x$$
.

i.
$$f(x) = e^{2|x|}$$
.

j.
$$f(x) = |e^x|$$
.

k.
$$f(x) = \log_e |x+1| - 2$$
.

1.
$$f(x) = -\log_e |x - \frac{1}{2}| + 13$$
.

m.
$$f(x) = \log_e(1/x)$$
.

m.
$$f(x) = \log_e(1/x)$$
.
n. $f(x) = \log_e\left(\frac{1}{|x|}\right)$.

Question 11. Describe the transformations (in order) that are required to map the function f to the function g, where

a.
$$f(x) = e^x$$
, $g(x) = -e^{2x+1}$.

b.
$$f(x) = e^x$$
, $g(x) = 4e^{x+5} - 15$.

c.
$$f(x) = \log_e(x), g(x) = 2\log_e(x-3) + 1.$$

d.
$$f(x) = \log_e(x)$$
, $g(x) = \log_e(6 - 2x) - 5$.