A Statistical Framework for Machine Learning

Nirdosh Bhatnagar

A statistical framework for machine learning is presented. The following topics are described.

- (a) Description of the Phenomenon
- (b) Development of the Model

Model 1.

Model 2.

A. Description of the Phenomenon.

Let the input space of a system be specified by X.

Let the output space of a system be specified by Y.

Let
$$X \times Y \triangleq Z$$
.

There is an unknown distribution \mathcal{D} over Z.

The learner collects $m \in \mathbb{P}$ samples which are drawn form the distribution \mathcal{D} , where \mathbb{P} is the set of positive integers. The sample set is:

$$\{(x_i, y_i) \mid 1 \le i \le m\}$$

B. Development of the Model:

Different models for the evaluation of the learning model are developed.

Model 1: Let \mathcal{F} be a collection of models, where for each $f \in \mathcal{F}$, we have $f: X \to Y$ predicts y for a given x.

Using $m \in \mathbb{P}$ observations, the goal is to select a model $f_m \in \mathcal{F}$ which predicts well. One way to define the word 'well' is as follows. Let

$$err(f) = P_{Z \sim \mathcal{D}}(f(x) \neq y) = \text{ error probability of } f$$

The model f is said to have learned the phenomenon if

$$f^* = \arg\min_{f \in \mathcal{F}} err(f)$$

$$|err(f) - err(f^*)| \le \varepsilon$$

for a specified tolerance level $\varepsilon > 0$.

Model 2: A loss function $\ell(f(x), y)$ is used to measure the discrepancy between the predicted output h(x) and the true output y.

1. The *empirical risk* is:

$$R_{emp}(f) = \frac{1}{m} \sum_{i=1}^{m} \ell(f(x_i), y_i)$$

2. The theoretical risk is:

$$R_{theor}(f) = \mathcal{E}(\ell(f(X), Y))$$

where $\mathcal{E}(\cdot)$ is the expectation operator.

Examples of loss function $\ell(\cdot, \cdot)$:

- 1. Classification, 0-1 loss: $\ell(f(x), y) = 1[f(x) \neq y]$.
- 2. Regression, square loss: $\ell(f(x), y) = (y f(x))^2$.