Model Regularization

Overfitting, Bias-variance decomposition, L1 and L2 regularization, probabilistic interpretation

Machine Learning and Data Mining, 2024

Majid Sohrabi

National Research University Higher School of Economics

The problem of overfitting

Overfitting in classification

Test set

Large points = classification error

How to check whether a model is good?

Check the loss on the **test data** – i.e. data that the learning algorithm hasn't seen

The goal is to find the right level of limitations – not too strict, not too loose

Model Complexity

Assume there's the following (unknown) relation between the features and targets

$$y = f(x) + \varepsilon$$

where ε is some random noize:

$$\mathbb{E}[\varepsilon] = 0$$

$$\mathbb{D}[\varepsilon] = \sigma_{\varepsilon}^2$$

Assume there's the following (unknown) relation between the features and targets

$$y = f(x) + \varepsilon$$

where ε is some random noize:

$$\mathbb{E}[\varepsilon] = 0$$

$$\mathbb{D}[\varepsilon] = \sigma_{\varepsilon}^2$$

Let's denote our training set as τ .

We want to study the **expected squared error** for the model \hat{f}_{τ} trained on it:

exp. sq. err(x) =
$$\mathbb{E}_{\tau,y|x} \left[\left(\hat{f}_{\tau}(x) - y \right)^2 \right]$$

$$\exp. \operatorname{sq. err}(x) = \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$\exp. \operatorname{sq.} \operatorname{err}(x) = \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] + \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] - y \right)^{2} \right]$$

Prediction of the "expected model"

$$\exp. \operatorname{sq.err}(x) = \underset{\tau,y|x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau,y|x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] + \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] - f(x) + f(x) - y \right)^{2} \right]$$
Ground truth (without the noise)

$$\exp \operatorname{sq.err}(x) = \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\left(\hat{f}_{\tau}(x) - \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] \right) + \left(\underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] - f(x) \right) + (f(x) - y) \right)^{2} \right]$$

(grouping the terms, then expanding the square)

$$\exp \operatorname{sq.err}(x) = \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\left(\hat{f}_{\tau}(x) - \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] \right) + \left(\underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] - f(x) \right) + (f(x) - y) \right)^{2} \right]$$

(easy to show that all the cross term expectations are 0)

$$= \mathbb{E}\left[\left(\hat{f}_{\tau}(x) - \mathbb{E}\left[\hat{f}_{\tau'}(x)\right]\right)^{2}\right] + \left(\mathbb{E}\left[\hat{f}_{\tau'}(x)\right] - f(x)\right)^{2} + \mathbb{E}\left[\left(f(x) - y\right)^{2}\right]$$
Variance of the
i.e. how "unstable" the model is wrt

the noise in the training data

Majid Sohrabi, NRU HSE

model

$$\exp. \operatorname{sq. err}(x) = \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\left(\hat{f}_{\tau}(x) - \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] \right) + \left(\underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] - f(x) \right) + (f(x) - y) \right)^{2} \right]$$

(easy to show that all the cross term expectations are 0)

$$= \mathbb{E}_{\tau} \left[\left(\hat{f}_{\tau}(x) - \mathbb{E}_{\tau'}[\hat{f}_{\tau'}(x)] \right)^{2} \right] + \left(\mathbb{E}_{\tau'}[\hat{f}_{\tau'}(x)] - f(x) \right)^{2} + \mathbb{E}_{y|x}[(f(x) - y)^{2}]$$

how much the "expected model" differs from the ground truth

Squared bias

$$\exp \operatorname{sq.err}(x) = \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\hat{f}_{\tau}(x) - y \right)^{2} \right]$$

$$= \underset{\tau, y \mid x}{\mathbb{E}} \left[\left(\left(\hat{f}_{\tau}(x) - \underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] \right) + \left(\underset{\tau'}{\mathbb{E}} \left[\hat{f}_{\tau'}(x) \right] - f(x) \right) + (f(x) - y) \right)^{2} \right]$$

(easy to show that all the cross term expectations are 0)

$$= \mathbb{E}\left[\left(\hat{f}_{\tau}(x) - \mathbb{E}\left[\hat{f}_{\tau'}(x)\right]\right)^{2}\right] + \left(\mathbb{E}\left[\hat{f}_{\tau'}(x)\right] - f(x)\right)^{2} + \mathbb{E}\left[\left(f(x) - y\right)^{2}\right]$$

Irreducible error

$$(=\mathbb{E}[\varepsilon^2] = \sigma_{\varepsilon}^2)$$

Bias-variance tradeoff

Typically there's a **tradeoff** between the two sources of error

Bias and variance error components can be calculated analytically for linear models

Simplification:

for each expectation term \mathbb{E} let's consider the features fixed, i.e. $X_{\tau} \equiv X$ (the design matrix is constant), and only the target vector y_{τ} is random)

Bias and variance error components can be calculated analytically for linear models

Simplification:

for each expectation term \mathbb{E} let's consider the features fixed, i.e. $X_{\tau} \equiv X$ (the design matrix is constant), and only the target vector y_{τ} is random)

Recall the solution for the linear regression model with the MSE loss:

$$\widehat{f_{\tau}}(x) = \theta_{\tau}^{\mathrm{T}} x = x^{\mathrm{T}} \theta_{\tau}$$

$$\theta_{\tau} = \left(X^{\mathrm{T}} X \right)^{-1} X^{\mathrm{T}} y_{\tau}$$

$$bias(x) = \mathbb{E}_{\tau}[\widehat{f_{\tau}}(x)] - f(x)$$

Let's look at the **bias term** from the error decomposition:

is linear indeed

Majid Sohrabi, NRU HSE

bias
$$(x) = \mathbb{E}[\widehat{f_{\tau}}(x)] - f(x) = \mathbb{E}[x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}y_{\tau}] - x^{\mathrm{T}}\theta_{\mathrm{true}}$$
$$= x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}\mathbb{E}[y_{\tau}] - x^{\mathrm{T}}\theta_{\mathrm{true}}$$

bias
$$(x) = \mathbb{E}[\widehat{f_{\tau}}(x)] - f(x) = \mathbb{E}\left[x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}y_{\tau}\right] - x^{\mathrm{T}}\theta_{\mathrm{true}}$$

$$= x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}\mathbb{E}[y_{\tau}] - x^{\mathrm{T}}\theta_{\mathrm{true}}$$

$$= x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}X\theta_{\mathrm{true}} - x^{\mathrm{T}}\theta_{\mathrm{true}}$$

bias
$$(x) = \mathbb{E}[\widehat{f_{\tau}}(x)] - f(x) = \mathbb{E}\left[x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}y_{\tau}\right] - x^{\mathrm{T}}\theta_{\mathrm{true}}$$

$$= x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}\mathbb{E}[y_{\tau}] - x^{\mathrm{T}}\theta_{\mathrm{true}}$$

$$= x^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}X\theta_{\mathrm{true}} - x^{\mathrm{T}}\theta_{\mathrm{true}}$$

Let's look at the **bias term** from the error decomposition:

bias
$$(x) = \mathbb{E}[\widehat{f_{\tau}}(x)] - f(x) = \mathbb{E}\left[x^{T}(X^{T}X)^{-1}X^{T}y_{\tau}\right] - x^{T}\theta_{\text{true}}$$

$$= x^{T}(X^{T}X)^{-1}X^{T}\mathbb{E}[y_{\tau}] - x^{T}\theta_{\text{true}}$$

$$= x^{T}(X^{T}X)^{-1}X^{T}X\theta_{\text{true}} - x^{T}\theta_{\text{true}}$$

$$= x^{T}\theta_{\text{true}} - x^{T}\theta_{\text{true}} = 0$$

I.e. linear regression model is **unbiased** as long as the true dependence is linear

Now let's look at the **variance term**:

variance
$$(x) = \mathbb{E}_{\tau} \left[\left(\hat{f}_{\tau}(x) - \mathbb{E}_{\tau'}[\hat{f}_{\tau'}(x)] \right)^2 \right]$$

It can then be shown that:

variance(
$$x$$
) = $\sigma_{\varepsilon}^2 x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} x$

So the variance error component is a **quadratic form**, defined by the $(X^TX)^{-1}$ matrix.

[derivation]

Now let's look at the **variance term**:

variance(x) =
$$\mathbb{E}_{\tau} \left[\left(\hat{f}_{\tau}(x) - \mathbb{E}_{\tau'}[\hat{f}_{\tau'}(x)] \right)^2 \right]$$

Note that $\widehat{f_{\tau}}(x)$ can be thought of as a **linear transformation** to the training targets vector y_{τ} :

$$\widehat{f_{\tau}}(x) = x^{\mathrm{T}} \theta_{\tau} = x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}} y_{\tau} = h^{\mathrm{T}}(x) y_{\tau}$$

$$h^{\mathrm{T}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}}$$

[derivation]

$$\operatorname{variance}(x) = \mathbb{E}\left[\left(h^{\mathrm{T}}(x)y_{\tau} - \mathbb{E}\left[h^{\mathrm{T}}(x)y_{\tau'}\right]\right)^{2}\right] = \mathbb{E}\left[\left(h^{\mathrm{T}}(x)\left(y_{\tau} - \mathbb{E}\left[y_{\tau'}\right]\right)\right)^{2}\right]$$

$$= \underset{\tau}{\mathbb{E}} \left[h^{\mathrm{T}}(x) \left(y_{\tau} - \underset{\tau'}{\mathbb{E}} [y_{\tau'}] \right) \left(y_{\tau} - \underset{\tau'}{\mathbb{E}} [y_{\tau'}] \right)^{\mathrm{T}} h(x) \right]$$

$$= h^{\mathrm{T}}(x) \mathbb{E}_{\tau} \left[\left(y_{\tau} - \mathbb{E}_{\tau'}[y_{\tau'}] \right) \left(y_{\tau} - \mathbb{E}_{\tau'}[y_{\tau'}] \right)^{\mathrm{T}} \right] h(x)$$

$$= h^{\mathrm{T}}(x) \operatorname{cov}_{\tau}[y_{\tau}, y_{\tau}] h(x) = \sigma_{\varepsilon}^{2} h^{\mathrm{T}}(x) h(x)$$

[derivation]

$$variance(x) = \sigma_{\varepsilon}^2 h^{T}(x)h(x)$$

$$= \sigma_{\varepsilon}^2 x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}} X (X^{\mathrm{T}} X)^{-1} x \qquad \qquad h^{\mathrm{T}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} X^{\mathrm{T}}$$

$$= \sigma_{\varepsilon}^2 x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} x$$

So the variance error component is a **quadratic form**, defined by the $(X^TX)^{-1}$ matrix.

We can diagonalize X^TX :

variance
$$(x) = \sigma_{\varepsilon}^2 x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} x = \sigma_{\varepsilon}^2 \tilde{x}^{\mathrm{T}} \Lambda^{-1} \tilde{x}$$

where $\Lambda = \text{diag}\{\lambda_1, ..., \lambda_d\}$ is the matrix of eigenvalues of X^TX .

We can diagonalize X^TX :

variance
$$(x) = \sigma_{\varepsilon}^2 x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} x = \sigma_{\varepsilon}^2 \tilde{x}^{\mathrm{T}} \Lambda^{-1} \tilde{x}$$

where $\Lambda = \text{diag}\{\lambda_1, ..., \lambda_d\}$ is the matrix of eigenvalues of X^TX .

This means that small eigenvalues amplify the model variance.

We can diagonalize X^TX :

variance
$$(x) = \sigma_{\varepsilon}^2 x^{\mathrm{T}} (X^{\mathrm{T}} X)^{-1} x = \sigma_{\varepsilon}^2 \tilde{x}^{\mathrm{T}} \Lambda^{-1} \tilde{x}$$

where $\Lambda = \text{diag}\{\lambda_1, ..., \lambda_d\}$ is the matrix of eigenvalues of X^TX .

This means that small eigenvalues amplify the model variance.

This happens when X^TX is ill-defined e.g. when the features are correlated

MSE loss values as a function of model parameters

High-variance model

Small perturbation in data

U

Large change in prediction

Regularization

How can we reduce the variance?

If only we could **increase the eigenvalues** of $X^{T}X$...

How can we reduce the variance?

If only we could **increase the eigenvalues** of $X^{T}X$...

In fact, we can do this manually:

$$X^{\mathrm{T}}X \to X^{\mathrm{T}}X + \alpha I$$
,
 $\alpha > 0 \in \mathbb{R}$,
 I – unit d by d matrix

How can we reduce the variance?

If only we could **increase the eigenvalues** of $X^{T}X$...

In fact, we can do this manually:

$$X^{\mathrm{T}}X \to X^{\mathrm{T}}X + \alpha I$$
,
 $\alpha > 0 \in \mathbb{R}$,
 I – unit d by d matrix

I.e. we are **changing the solution** to:

$$\widehat{f_{\tau}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

The effect of regularization

Note: the regularized model is **no longer unbiased**!

I.e. we increased bias to reduce variance

We have the solution:

$$\widehat{f}_{\tau}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

We have the solution:

$$\widehat{f_{\tau}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

$$\theta_{\tau} = \left(X^{\mathrm{T}} X + \alpha I \right)^{-1} X^{\mathrm{T}} y_{\tau}$$

We have the solution:

$$\widehat{f_{\tau}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

$$\theta_{\tau} = (X^{T}X + \alpha I)^{-1}X^{T}y_{\tau}$$
$$(X^{T}X + \alpha I)\theta_{\tau} = X^{T}y_{\tau}$$

We have the solution:

$$\widehat{f_{\tau}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

$$\theta_{\tau} = (X^{T}X + \alpha I)^{-1}X^{T}y_{\tau}$$
$$(X^{T}X + \alpha I)\theta_{\tau} = X^{T}y_{\tau}$$
$$X^{T}(X\theta_{\tau} - y_{\tau}) + \alpha\theta_{\tau} = 0$$

We have the solution:

$$\widehat{f_{\tau}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

Let's reverse engineer the loss function it optimizes:

$$\theta_{\tau} = (X^{T}X + \alpha I)^{-1}X^{T}y_{\tau}$$
$$(X^{T}X + \alpha I)\theta_{\tau} = X^{T}y_{\tau}$$
$$X^{T}(X\theta_{\tau} - y_{\tau}) + \alpha\theta_{\tau} = 0$$

In fact this is the $\partial/\partial\theta_{\tau}\mathcal{L}=0$ equation for:

$$\mathcal{L} = \|X\theta_{\tau} - y_{\tau}\|^2 + \alpha \|\theta_{\tau}\|^2$$

$$\mathcal{L} = \|X\theta_{\tau} - y_{\tau}\|^2 + \alpha \|\theta_{\tau}\|^2$$

In other words, this linear model:

$$\widehat{f_{\tau}}(x) = x^{\mathrm{T}} (X^{\mathrm{T}} X + \alpha I)^{-1} X^{\mathrm{T}} y_{\tau}$$

minimizes MSE loss with L2 penalty term on the model parameters.

Such model is also called ridge regression

Example: L2-regularized classification

Various regularization methods

L2 regularization (Ridge):

$$\mathcal{L} = \|X\theta_{\tau} - y_{\tau}\|^2 + \alpha \|\theta_{\tau}\|^2$$

L1 regularization (Lasso):

$$\mathcal{L} = \|X\theta_{\tau} - y_{\tau}\|^2 + \alpha \|\theta_{\tau}\|_1$$

Elastic net:

$$\mathcal{L} = \|X\theta_{\tau} - y_{\tau}\|^{2} + \alpha \|\theta_{\tau}\|^{2} + \beta \|\theta_{\tau}\|_{1}$$

L2 norm:

$$||x||^2 \equiv \sum_{i=1\dots d} x_i^2$$

L1 norm:

$$||x||_1 \equiv \sum_{i=1\dots d} |x_i|$$

Properties of different regularization methods

They all drive the weights towards **smaller values**Yet they **induce different properties** of the solution

Properties of different regularization methods

They all drive the weights towards **smaller values**Yet they **induce different properties** of the solution

Prediction error can be decomposed into components corresponding to **model bias** and variance

J

Prediction error can be decomposed into components corresponding to **model bias** and variance

Linear regression is **unbiased**, while its variance is large when $X^{T}X$ matrix is **ill-defined**

Prediction error can be decomposed into components corresponding to **model bias** and variance

Linear regression is **unbiased**, while its variance is large when $X^{T}X$ matrix is **ill-defined**

Typically regularization reduces the variance with the price of increasing the bias

Prediction error can be decomposed into components corresponding to **model bias** and variance

Linear regression is **unbiased**, while its variance is large when $X^{T}X$ matrix is **ill-defined**

Typically regularization reduces the variance with the price of increasing the bias

Different regularization techniques induce different properties of the solution

Thank you!

Majid Sohrabi

msohrabi@hse.ru

