Equivariant dendroidal Segal spaces and G- ∞ -operads

Peter Bonventre, Luís A. Pereira

January 27, 2018

Abstract

Things and stuff

Contents

1	Coloured Operads	1
	1.1 Non-Equivariant Coloured Operads	1
	1.2 Equivariant Coloured Operads	
	1.2.1 Categorical Description	3
	1.3 Single-Coloured Operads	4
	1.4 General Case	
2	Coloured Genuine Equivariant Operads	6
	2.1 Coloured <i>G</i> -Trees	6
	2.2 Planar Strings and Stuff	8
	2.3 Genuine C-coloured operads	11
	2.4 Comparison with \mathfrak{C} -coloured operads	11
3	$\operatorname{\mathbf{S}}$ In dSet_G	12
4	Scratchwork	13
	4.1 Colored simplicial tensors and cotensors	13

1 Coloured Operads

1.1 Non-Equivariant Coloured Operads

Fix a closed symmetric monoidal category \mathcal{V} .

Definition 1.1. Fix a set \mathfrak{C} of *colours*. A tuple $\xi = (c_1, \dots, c_n; c_0) \in \mathfrak{C}^{\times n} \times \mathfrak{C}$ is called a *signature* of \mathfrak{C} , and let $|\xi|$ denote the length n (so $\xi \in \mathfrak{C}^{\times |\xi|+1}$).

A \mathfrak{C} -coloured operad in $\mathcal V$ consists of the following data:

- 1. An object $\mathcal{O}(\xi) \in \mathcal{V}$ for each signature ξ .
- 2. For each $c \in \mathfrak{C}$, a unit $1_c \in \mathcal{O}(c;c)$.

3. For any signature $\xi \in \mathfrak{C}^{\times n+1}$ and $\sigma \in \Sigma_n$, a map $\mathcal{O}(\xi) \to \mathcal{O}(\sigma \cdot \xi)$, where Σ_n acts on the left of $\mathfrak{C}^{\times n+1}$ by acting on the first n coordinates. Explicitly, this is a map

$$\mathcal{O}(c_1,\ldots,c_n;c_0) \xrightarrow{\sigma} \mathcal{O}(c_{\sigma^{-1}1},\ldots,c_{\sigma^{-1}n};c_0).$$

4. For any compatible signatures $\xi = (c_1, \ldots, c_n; c_0), \ \xi_i = (c_{i,1}, \ldots, c_{i,m_i}; c_i), \ a \ composition$ map

$$\mathcal{O}(\xi) \times \mathcal{O}(\xi_1) \times \ldots \times \mathcal{O}(\xi_n) \to \mathcal{O}(c_{1,1},\ldots,c_{n,m_n};c_0)$$

subject to all the compatibilities you'd expect.

A map of \mathfrak{C} -coloured operads is a compatible collection of maps $\{\mathcal{O}(\xi) \to \mathcal{O}'(\xi)\}_{\xi}$.

Let $\mathsf{Op}^{\mathfrak{C}}(\mathcal{V})$ denote the category of \mathfrak{C} -coloured operads in \mathcal{V} .

Definition 1.2. Given a map $f: \mathfrak{C}' \to \mathfrak{C}$ and a \mathfrak{C} -coloured operad \mathcal{O} , there is a natural \mathfrak{C}' -coloured operad $f^*(\mathcal{O})$, where

$$f^*(\mathcal{O})(c'_1,\ldots,c'_n;c'_0) = \mathcal{O}(f(c'_1),\ldots,f(c'_n);f(c'_0)).$$

A map of coloured operads $\mathcal{O}' \to \mathcal{O}$ is given by the data of a map of colours $f: \mathfrak{C}' \to \mathfrak{C}$, and a map of \mathfrak{C}' -coloured operads $\mathcal{O}' \to f^*(\mathcal{O})$.

Let $Op(\mathcal{V})$ denote the category of coloured operads in \mathcal{V} .

Remark 1.3. The category $\mathsf{Op}(\mathcal{V})$ is isomorphic to the Grothendieck construction on the functor

$$\mathsf{F} \longrightarrow \mathsf{Cat}$$

$$\mathfrak{C} \longmapsto \mathsf{Op}^{\mathfrak{C}}(\mathcal{V}).$$

Notation 1.4. In previous work , $Op(\mathcal{V})$ has been used to denote *single-coloured* operads specifically; that is, $\{*\}$ -coloured operads. For this article, we will write these as $Op^{\{*\}}(\mathcal{V})$.

1.2 Equivariant Coloured Operads

Definition 1.5. The category $\operatorname{Op}^G(\mathcal{V})$ of *G-coloured operads* in \mathcal{V} is the category of *G*-objects in $\operatorname{Op}(\mathcal{V})$.

Remark 1.6. Unpacking this definition, we see $\mathcal{O} \in \mathsf{Op}^G(\mathcal{V})$ consists of the following data:

- 1. A G-set \mathfrak{C} of colours.
- 2. For each signature ξ of \mathfrak{C} , an object $\mathcal{O}(\xi) \in \mathcal{V}$.
- 3. For each signature $\xi \in \mathfrak{C}^{\times n+1}$ and $(g,\sigma) \in G \times \Sigma_n$, a map $\mathcal{O}(\xi) \to \mathcal{O}((g,\sigma) \cdot \xi)$, where G acts on $\mathfrak{C}^{\times n+1}$ diagonally (across all n+1 coordinates), and Σ_n acts on the first n.
- 4. For each $c \in \mathfrak{C}$, a unit $1_c \in \mathcal{O}(c;c)^{G_c}$, where G_c is the stabilizer of c.
- 5. For compatible signatures $\xi, \xi_1, \ldots, \xi_n$, composition maps

$$\mathcal{O}(\xi) \otimes \mathcal{O}(\xi_1) \otimes \ldots \otimes \mathcal{O}(\xi_n) \to \mathcal{O}(\xi \circ (\xi_1, \ldots, \xi_n)),$$

such that composition is compatible with the G-action on each component as well as the appropriate actions of Σ , and is unital and associative.

Remark 1.7. Unlike in the single-coloured case, this is *not* the same as coloured operads in \mathcal{V}^G . Indeed, objects in $\mathsf{Op}(\mathcal{V}^G)$ have a G-fixed set of colours, and each level $\mathcal{O}(\xi)$ is a full G-set (though only a partial $\Sigma_{|\xi|}$ -set).

Definition 1.8. Given a G-set \mathfrak{C} , let $\mathsf{Op}^{G,\mathfrak{C}}(\mathcal{V})$ denote the category of \mathfrak{C} -coloured operads and maps which are the identity on colours.

Parallel to the non-equivariant case, $\mathsf{Op}^G(\mathcal{V})$ is isomorphic to the Grothendieck construction on the functor

$$F^G \longrightarrow \mathsf{Cat}$$
 $\mathfrak{C} \longmapsto \mathsf{Op}^{G,\mathfrak{C}}(\mathcal{V}).$

1.2.1 Categorical Description

Definition 1.9. Given a G-set X, let B_XG denote the *translation category* of X, with object set X and morphisms $g: x \to g \cdot x$ for all pairs $(g, x) \in G \times X$.

We will denote $B_{\{*\}}G$ by G.

Remark 1.10. We observe that we have a natural diagonal map

$$F \times G \hookrightarrow F \wr G$$
,

and so for any functor $F: \mathcal{C} \to \mathsf{F}$, we have an induced functor $F: \mathcal{C} \times \mathsf{G} \to \mathsf{F} \wr \mathsf{G}$.

Definition 1.11. Let $\mathfrak{C}\Sigma$ be the category

$$\mathfrak{C}\Sigma = \coprod_{n \geq 0} B_{\mathfrak{C}^{\times n} \times \mathfrak{C}}(G \times \Sigma_n).$$

We note that $\mathrm{Ob}(\mathfrak{C}\Sigma)$ is precisely the set of *signatures* in \mathfrak{C} . Further, we observe that this is equivalent to the pullback

$$\begin{array}{ccc} \mathfrak{C}\Sigma & \stackrel{E}{\longrightarrow} & \mathsf{F} \wr B_{\mathfrak{C}}G \\ \downarrow & & \downarrow \\ \Sigma \times \mathsf{G} & \stackrel{E}{\longrightarrow} & \mathsf{F} \wr \mathsf{G} \end{array}$$

CSIGMA_EQ

where $E: \Omega \to \mathsf{F}$ sends a tree to its set of edges.

$B_{\mathfrak{C}}G = G \ltimes \mathfrak{C}$

More generally, let $\mathfrak{C}\Omega$ be the pullback

$$\mathfrak{C}\Omega \xrightarrow{E} \mathsf{F} \wr B_{\mathfrak{C}}G$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega \times \mathsf{G} \xrightarrow{E} \mathsf{F} \wr \mathsf{G}$$

$$(1.12) \quad \boxed{\mathsf{COMEGA_EQ}}$$

We have a natural inclusion of categories $\mathfrak{C}\Sigma \hookrightarrow \mathfrak{C}\Omega$. Moreover, we will called elements of these categories *coloured trees* (or *coloured corollas*), and denote them by (T,\mathfrak{c}) , where $\mathfrak{c}: E(T) \to \mathfrak{C}$ is a map of sets.

Remark 1.13. Unpacking definitions, we see that a map $(T,\mathfrak{c}) \to (S,\mathfrak{d})$ is given by a map $f: T \to S$ in Ω and an element $g \in G$, such that $g.\mathfrak{c}(e) = \mathfrak{d}(f(e))$ for all $e \in E(T)$.

$$E(T) \xrightarrow{f} E(S)$$

$$\downarrow \downarrow 0$$

$$\mathfrak{C} \xrightarrow{g} \mathfrak{C}$$

In particular, we have maps of the form

$$q = (id, q) : (T, E(T) \to \mathfrak{C}) \to (T, E(T) \to \mathfrak{C} \xrightarrow{g} \mathfrak{C}).$$

Remark 1.14. $\mathfrak{C}\Omega$ is equivalent to the Grothendieck construction on the functor

$$\Omega^{op} \times G \longrightarrow \mathsf{Cat}$$

$$T \longmapsto \mathsf{Fun}(E(T), \mathfrak{C}).$$

compare with genuine case: RHS equals $\operatorname{Fun}(\Phi(E(T)),\mathfrak{C}) = \operatorname{Fun}(\Phi(E(G \cdot T)),\mathfrak{C}))$

and a similar result holds for $\mathfrak{C}\Sigma$.

Remark 1.15. Note that we can replace the G-set $\mathfrak C$ with a coefficient system $\underline{\mathfrak C}$, substituting the rectangle of pullbacks below for (1.12)

$$\underbrace{\mathfrak{C}\Omega \xrightarrow{E} \mathsf{F} \wr B_{\mathfrak{C}(G/e)}G \longrightarrow \mathsf{F} \wr \underline{\mathfrak{C}}}_{G/e)G} \longrightarrow \mathsf{F} \wr \underline{\mathfrak{C}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Omega \times G \xrightarrow{E} \mathsf{F} \wr G \longrightarrow \mathsf{F} \wr O_{G}$$

with $\mathfrak{C}(G/e) \hookrightarrow \underline{\mathfrak{C}}$ and $G \hookrightarrow O_G$ the natural inclusions.

compare
$$B_{\mathfrak{C}(G/e)}G = G \ltimes \mathfrak{C}(G/e)$$
 and $\underline{\mathfrak{C}} = O_G \ltimes \underline{\mathfrak{C}}$.

In this case, $\mathfrak{C}\Omega = \mathfrak{C}(G/e)\Omega$.

Many of the natural functors around Ω and Σ have generalizations to the coloured setting, which can be built through a straightforward use of the universal property of pullbacks.

Definition 1.16. We have a natural *vertex* functor $V: \mathfrak{C}\Omega \to \Sigma \wr \mathfrak{C}\Sigma$, as colourings of a tree restrict to colourings of each vertex corolla.

Similarly, there is a *leaf-root* funct or $\mathsf{Ir}:\mathfrak{C}\Omega\to\mathfrak{C}\Sigma$, where the colouring of $\mathsf{Ir}(T)$ is a restrict of the colouring of T.

Definition 1.17. The category $\mathsf{Sym}^{G,\mathfrak{C}}$ of *symmetric* (G,\mathfrak{C}) -sequences is the category of functors $X:\mathfrak{C}\Sigma^{op}\to\mathcal{V}$.

Definition 1.18. Given $X \in \text{Sym}^{G,\mathfrak{C}}$, let $\mathbb{F}^{\mathfrak{C}}X$ denote the left Kan extension below.

$$\begin{array}{cccc} \mathfrak{C}\Omega^{op} & \xrightarrow{V} & (\Sigma \wr \mathfrak{C}\Sigma)^{op} & \xrightarrow{X} & (\Sigma \wr \mathcal{V}^{op})^{op} & \xrightarrow{\otimes} & \mathcal{V} \\ & & & & & & & \\ \mathbb{C}\Sigma^{op} & & & & & & & \\ \end{array}$$

1.3 Single-Coloured Operads

We first show that this generalizes the free single-coloured operad monad. When $\mathfrak{C} = \{*\}$, we have $\mathfrak{C}\Omega = \Omega \times G$, and similarly $\mathfrak{C}\Sigma = \Sigma \times G$.

Notation 1.19. Given $X \in \mathsf{Cat}(\mathcal{C}, \mathsf{Fun}(\mathcal{D}, \mathcal{V}))$, let \tilde{X} denote the adjoint functor in the isomorphic category $\mathsf{Cat}(\mathcal{C} \times \mathcal{D}, \mathcal{V})$.

SPAN_LAN_LEM

Lemma 1.20. Conisder the two spans below.

$$\begin{array}{ccc} \mathcal{C} & \xrightarrow{X} & \operatorname{Fun}(\mathcal{D}, \mathcal{V}) & & \mathcal{C} \times \mathcal{D} & \xrightarrow{\tilde{X}} & \mathcal{V} \\ \downarrow^{p} & & & \downarrow^{p \times \operatorname{id}} & \\ \mathcal{E} & & \mathcal{E} \times \mathcal{D} & & \end{array}$$

Then $\operatorname{Lan}_p X$ is adjoint to $\operatorname{Lan}_{p \times \operatorname{id}} \tilde{X}$.

Proof. We have

$$\widetilde{\operatorname{Lan}_p X}(e,d) = \left(\operatorname{Lan}_p X(e)\right)(d) = \left(\operatorname{colim}_{\substack{C \downarrow e \\ p(c) \to e}} X(c)\right)(d) = \operatorname{colim}_{\substack{C \downarrow e \\ p(c) \to e}} (X(c)(d)) = \operatorname{colim}_{\substack{C \downarrow e \\ p(c) \to e}} (\tilde{X}(c,d))$$

$$= \operatorname{colim}_{\substack{\mathcal{C} \times \{d\} \downarrow (e,d) \\ p(c) \to e}} (\tilde{X}(c,d)) \cong \operatorname{colim}_{\substack{\mathcal{C} \times \mathcal{D} \downarrow (e,d) \\ (p(c),d') \to (e,d)}} (\tilde{X}(c,d')) = \operatorname{Lan}_{p \times \operatorname{id}} \tilde{X}(c,d),$$

where the isomorphism holds by a straightforward finality argument. On maps, a similar argument holds. \Box

Notation 1.21 ([BP17]). Let \mathbb{F}' denote the free single-coloured operad monad on \mathcal{V} , given by the left Kan extension of the following diagram.

$$\begin{array}{ccc}
\Omega^{op} & \xrightarrow{V} & (\Sigma \wr \Sigma)^{op} & \xrightarrow{X} & (\Sigma \wr \mathcal{V}^{op})^{op} & \xrightarrow{\otimes} & \mathcal{V} \\
\downarrow^{\operatorname{lr}} & & & & \\
\Sigma^{op} & & & & \\
\end{array}$$

Proposition 1.22. $\mathbb{F}^{\{*\}}$ is a monad, and moreover the category of $\mathbb{F}^{\{*\}}$ -algebras in $\mathsf{Fun}(\Sigma \times G, \mathcal{V})$ is equivalent to the category of \mathbb{F}' -algebras in $\mathsf{Fun}(\Sigma, \mathcal{V}^G)$.

Proof. Let $\tau: \tilde{X} \mapsto X$ denote the isomorphism of categories $\operatorname{Fun}(\Sigma \times G, \mathcal{V}) \xrightarrow{\tau} \operatorname{Fun}(\Sigma, \mathcal{V}^G)$. Then $\mathbb{F}^{\{*\}} = \tau^{-1}\mathbb{F}'\tau$ by 1.20, and so $\mathbb{F}^{\{*\}}$ is in fact a monad, and the isomorphism lifts to an isomorphism on the category of algebras.

1.4 General Case

Theorem 1.23. For every G-set \mathfrak{C} , $\mathbb{F}^{\mathfrak{C}}$ is a monad, with category of algebras given by $\mathsf{Op}^{G,\mathfrak{C}}(\mathcal{V})$.

Proof This will be a corollary of Genuine Coloured stuff

П

2 Coloured Genuine Equivariant Operads

Throughout this section, we will abuse notation, and refer to a coefficient system and its associated (Grothendieck) category over O_G by the same name.

Idea: we have a coefficient system $\underline{\mathfrak{C}}$ of colours, and a signature will consist of a tuple $\xi = (x_1, \dots, x_n; x_0)$ with $x_i \in \mathfrak{C}(G/H_i)$ for subgroups $H_i \leq H_0 \leq G$.

2.1 Coloured G-Trees

Definition 2.1. The edge orbit functor $E_G: \Omega_G \to \mathsf{F} \wr O_G$ sends a G-tree T to the tuple $(E_G(T), (G/G_e)_{Ge \in E_G(T)})$ with G_e denoting $\operatorname{Stab}_G(e)$, and where we have canonical representatives for elements in $E_G(T)$ by choosing $e \in Ge$ minimal with respect to the planar structure on T.

Definition 2.2. Let $\underline{\mathfrak{C}}$ be a G-coefficient system of sets. Then the category $\underline{\mathfrak{C}}\Omega_G$ of $\underline{\mathfrak{C}}$ -coloured G-trees is defined to be the pullback below.

$$\underbrace{\mathfrak{C}\Omega_G} \longrightarrow \mathsf{F} \wr \underline{\mathfrak{C}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega_G \xrightarrow{E_G} \mathsf{F} \wr O_G$$

COMEGA_G_EQ

The category $\underline{\mathfrak{C}}\Sigma_G$ of $\underline{\mathfrak{C}}$ -coloured corollas is the subcategory defined similarly, with Ω_G replaced with Σ_G .

Explicitly, objects of $\underline{\mathfrak{C}}\Omega_G$ are pairs (T,\mathfrak{c}) of a G-tree T and a map $\mathfrak{c}: E_G(T) \to \underline{\mathfrak{C}}$ over O_G . That is, each orbit of edges Ge (with e minimal) is assigned a "colour" $\mathfrak{c}(Ge) \in \underline{\mathfrak{C}}(G/G_e)$. Morphisms $(T,\mathfrak{c}) \to (S,\mathfrak{d})$ are given by maps of trees $\varphi: T \to S$ such that, for every edge orbit Ge of T, we have

$$\mathfrak{c}(Ge) = \varphi_e^* g_e^* \mathfrak{d}(Gf),$$

where $\varphi_e: G/G_e \to G/G_{\varphi(e)}$ is the map in O_G induced by φ , and $\varphi(e) = g_e f$ for $f \in Gf \in E_G(S)$ minimal; as g_e is unique modulo G_f , g_e^* is well-defined.

Remark 2.3. Alternatively, consider the Grothendieck construction on the functor

$$\mathsf{F}^{G,op} \longrightarrow \mathsf{Set}$$

$$A \longmapsto \mathsf{Set}^{O^{op}_G}(\Phi(A),\underline{\mathfrak{C}}),$$

where $\Phi: \mathsf{Set}^G \to \mathsf{Set}^{G^{op}}$ sends a G-set X to its fixed-point system $G/H \mapsto X^H$. We will denote this by $\mathsf{F}^G \wr \underline{\mathfrak{C}}$. Then $\underline{\mathfrak{C}}\Omega_G$ is also isomorphic to the pullback

$$\underbrace{\mathfrak{C}\Omega_G \longrightarrow}_{\mathsf{F}^G \wr \mathfrak{C}} \underbrace{\mathfrak{C}}_{\mathsf{G}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega_G \stackrel{E}{\longrightarrow}_{\mathsf{F}^G}.$$

We note that the class of morphisms in F^G in the image of E (restricted to Ω_G^0) are those isomorphic to an adjunction counit $G \cdot_H A|_H \to A$.

In this case, a colouring is a map $\mathfrak{c}: \Phi E(T) \to \mathfrak{C}$ of coefficient systems, and morphisms are maps $\varphi: T \to S$ such that $\mathfrak{c}(G/H,e) = \mathfrak{d}(G/H,e)$ for all $e \in E(T)^H$.

It is easy to show this is equivalent to requiring that $\mathfrak{c}(G/G_e,e) = \varphi_e^*\mathfrak{d}(G/G_{\varphi(e)},\varphi(e)).$

figure out whether first or "alternatively" is more useful as the chosen construction

Similarly, $\mathfrak{C}\Omega_G$ is isomorphic to the Grothendieck construction on the functor

$$\Omega_G^{op} \longrightarrow \mathsf{Cat}$$
 $T \longmapsto \mathsf{Set}^{O_G^{op}}(\Phi(E(T)), \underline{\mathfrak{C}}),$

 $\mathfrak{C}\Sigma_G$ can be defined similarly, with the relevant sources restricted to $\Sigma_G \subseteq \Omega_G$.

Remark 2.4. $\underline{\mathfrak{C}}\Omega_G$ is also a root fibration — that is, a split Grothendieck fibration over the orbit category.

cite reading material

Formally, as $F \wr (-)$ and pullbacks preserve such fibrations, and these are compatible under composition, this follows from the natural maps $\underline{\mathfrak{C}}\Omega_G \to \Omega_G \to O_G$. Explicitly, $\underline{\mathfrak{C}}\Omega_G(G/H)$ has as objects those pairs (T,\mathfrak{c}) such that $T \simeq G \cdot_H T_*$ for $T_* \in \Omega^H$. Maps $\varphi : (T,\mathfrak{c}) \to (S,\mathfrak{d})$ in each fiber are called *root-fixed*: as maps in Ω_G , they are *rooted* $(Gr_T \to Gr_S)$ is a planar isomorphism), and moreover $\mathfrak{c}(Gr_T) = \mathfrak{d}(Gr_S)$.

Given $q:G/H\to G/K$ in the orbit category, the chosen Cartesian maps are the induced root pullback maps $q:q^*T\to T$ on G-trees, with the colouring of q^*T defined as follows: for $b\in E(q^*T)$, minimal in it's G-orbit, we have q(b)=ga for some $g\in G$ and $a\in E(T)$ minimal in its orbit. Moreover, as this g is unique modulo G_a , we have that there is a well-defined map $g_*:G/G_{q(b)}\to G/G_a$, and as q induces a unique map $q_b^*:G/G_b\to G/G_{q(b)}$, we have

$$(q^*\mathfrak{c})([b])q^*g^*\mathfrak{c}([a]).$$

Alternatively, on $\Phi E(q^*T)$, we have $(q^*\mathfrak{c})(G/H,b) = q_b^*(\mathfrak{c}(G/H,q(b)))$.

Remark 2.5. We note that any *planar* map of coloured G-trees is always *colour-fixed*, in that $\mathfrak{c}(Ge) = \mathfrak{d}(G\varphi(e))$ for all $Ge \in E_G(T)$.

Remark 2.6. A *quotient* map in $\underline{\mathfrak{C}}\Omega_G$ is any morphism such that the underlying map in Ω_G is a quotient.

We have natural inclusions on the left

$$\underbrace{\mathfrak{C}\Sigma \longrightarrow \mathfrak{C}\Omega}_{\iota} \qquad \qquad \Sigma \times G \longrightarrow \Omega \times G \\
\downarrow^{\iota} \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\underline{\mathfrak{C}\Sigma_G} \longrightarrow \underline{\mathfrak{C}\Omega_G} \qquad \qquad \Sigma_G \longrightarrow \Omega_G$$

which forget to the uncoloured inclusions on the right. Specifically, $U \mapsto G \cdot U$ and, as $E_G(G \cdot U) = E(U)$, the associated colouring map is simply \mathfrak{c} again. On morphisms, (φ, g) maps to $(\varphi)_G \circ g$.

2.2 Planar Strings and Stuff

Need to strike a balance between what to show explicitly, and what to just state. §3.4 and §4 from [BP17] extend almost formally, though phrasing it as such...

We still have natural span $\underline{\mathfrak{C}}\Sigma_G \leftarrow \underline{\mathfrak{C}}\Omega_G^0 \to \mathsf{F}_s \wr \underline{\mathfrak{C}}\Sigma_G$, such that the left arrow is a map of rooted fibrations. This, plus whats already in §3.4 and §4, may be enough to just formally push through.

Generalizing BP17, Remark 3.78]

otherwise, have to force on the non-equivariant trees the correct isotropy of their colours. If not, we just see $\Phi \mathfrak{C}(G/e)$, and not the whole coefficient system.

Definition 2.7. Given $(T, \mathfrak{c}) \in \underline{\mathfrak{C}}\Omega_G$, a planar (resp. rooted) T-substitution datum is a tuple $((U_{v_{Ge}}, \mathfrak{c}_{v_{Ge}}))_{v_{Ge} \in V_G(T)}$ of $\underline{\mathfrak{C}}$ -coloured G-trees along with planar (resp. rooted colour-fixed) tall maps $T_{v_{Ge}} \to U_{v_{Ge}}$.

A map of planar (resp. rooted) T-substitution data $(U_{v_{Ge}}) \to (V_{v_{Ge}})$ is a compatible tuple of planar (resp. rooted colour-fixed) tall maps $(U_{v_{Ge}} \to V_{v_{Ge}})$. Let $\mathsf{Sub}_p(T)$ and $\mathsf{Sub}(T)$ denote the categories of planar (resp. rooted) T-substitution datum.

Lemma 2.8 (cf. [BP17], Prop. 3.41]). Let $(T, \mathfrak{c}) \in \mathfrak{C}\Omega_G$ be a \mathfrak{C} -coloured G-tree. There are isomorphisms of categories

$$\operatorname{Sub}_{p}(T) \varprojlim (T, \mathfrak{c}) \downarrow \underline{\mathfrak{C}}\Omega_{G}^{pt} \qquad \operatorname{Sub}(T) \varprojlim (T, \mathfrak{c}) \downarrow \underline{\mathfrak{C}}\Omega_{G}^{r}$$

$$(U_{v_{Ge}}) \longmapsto ((T, \mathfrak{c}) \to \operatorname{colim}_{Sc_{G}(T)}U_{(-)}). \qquad (U_{v_{Ge}}) \longmapsto ((T, \mathfrak{c}) \to \operatorname{colim}_{Sc_{G}(T)}U_{(-)}).$$

$$(2.9)$$

SUB_EQUIV_EQ

where $\underline{\mathfrak{C}}\Omega_G^{pt}, \underline{\mathfrak{C}}\Omega_G^r$ are the categories of planar tall (resp. rooted) maps under (T,\mathfrak{c}) .

Proof. This follows as in BP17, Prop. 3.41], going by induction on $n = |V_G(T)|$. Let $(U_T, \mathfrak{c}_{U_T})$ denote the colimit, if it exists. If n is 0 or 1, T is terminal in $Sc_G(T)$, and the colouring \mathfrak{c}_{U_T} is just \mathfrak{c} . Otherwise, we have a decomposition $T = R \coprod_{G} S$ with the planar ordering on G in G, and G the same, G is G in G in

$$(\eta_{Ge}, \mathfrak{c}) \longrightarrow (U_S, \mathfrak{c}_{U_S})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 $(U_R, \mathfrak{c}_{U_R}) \dashrightarrow (U_T, \mathfrak{c}_{U_T})$

By induction, U_S , U_R , \mathfrak{c}_{U_S} , \mathfrak{c}_{U_R} exist (with unique choices such that $(U_{v_{Ge}}, \mathfrak{c}_{U_{v_{Ge}}}) \hookrightarrow (U_R, \mathfrak{c}_{U_R})$ is planar [and colour-fixed]). Forgetting colours, this is an equivariant grafting diagram, and hence the G-tree U_T exists. Moreover, we have $E_G(U_T) = E_G(U_S) \coprod_{Ge} E_G(U_R)$, and so we have a well-defined colouring

$$\mathfrak{c}_{U_T}(Gf) = \begin{cases} \mathfrak{c}_{U_R}(Gf) & Gf \in E_G(R) \\ \mathfrak{c}_{U_S}(Gf) & Gf \in E_G(S) \end{cases}$$

since the overlap Ge is in T, and hence it is dictated that $\mathfrak{c}_{U_T}(Ge) = \mathfrak{c}(Ge)$.

Lemma 2.10 (cf. BP17, Lemma 3.63]). $\underline{\mathfrak{C}}\Omega_G^0 \to \mathsf{F}_s \wr \underline{\mathfrak{C}}\Sigma_G$ sends root pullbacks to pullbacks over $\mathsf{F}_s \wr O_G$.

Proof. Exactly as in *loc cite*, with the additional note that the colouring of ψ^*T is precisely such that each $(\psi^*T)_{v_{Ge}} \to T_{v_{G\varphi(e)}}$ is a pullback in $\underline{\mathfrak{C}}\Sigma_G$.

Definition 2.11. The category $\underline{\mathfrak{C}}\Omega^n_G$ of coloured planar n-strings is the category whoses objects are strings

$$(T_0,\mathfrak{c}_0) \xrightarrow{\varphi_1} (T_1,\mathfrak{c}_1) \xrightarrow{\varphi_2} \dots \xrightarrow{\varphi_n} (T_n,\mathfrak{c}_n)$$

where $(T_i, \mathfrak{c}_i) \in \underline{\mathfrak{C}}\Omega_G$ and the φ_i are all coloured planar tall maps, while arrows are commutative diagrams of quotient maps.

Remark 2.12. We observe

- 1. $\underline{\mathfrak{C}}\Omega_G^{\bullet} \to \underline{\mathfrak{C}}\Sigma_G$ is an augmented simplicial object in categories.
- 2. $\underline{\mathfrak{C}}\Omega_G^n \to O_G$ is a root fibration.
- 3. We have a vertex functor $V_G: \underline{\mathfrak{C}}\Omega_G^{n+1} \to \mathsf{F}_s \wr \underline{\mathfrak{C}}\Omega_G^n$ by

$$((T_0,\mathfrak{c}_0) \to (T_1,\mathfrak{c}_1) \to \cdots \to (T_n,\mathfrak{c}_n)) \mapsto ((T_{1,v_{Ge}},\mathfrak{c}_1) \to \cdots \to (T_{n,v_{Ge}},\mathfrak{c}_n))_{v_{Ge} \in V_G(T_0)}$$

where we write abusively denote by $T_{i,v_{Ge}}$ the G-tree $(T_{i,\bar{\varphi}_{i}(f)})_{f \in Ge}$ and by \mathfrak{c}_{i} the restriction to any of its sub-G-trees.

Alternatively, regarding the source above as a string of n-1 arrows in $(T_{EQ} \mathfrak{c}_0) \downarrow \mathfrak{C}\Omega_G^{pt}$, the image under V_G can be recognized as the inverse image under (2.9).

Proposition 2.13 (cf. [BP17, Prop 3.82]). For any $n \ge 0$, the commutative diagram

$$\begin{array}{ccc} \underline{\mathfrak{C}}\Omega^n_G & \xrightarrow{V_G} & \mathsf{F}_s \wr \underline{\mathfrak{C}}\Omega^{n-1}_G \\ \\ d_{1,...,n} \Big\downarrow & & & \Big\downarrow \mathsf{F} \wr d_{0,...,n-1} \\ & \underline{\mathfrak{C}}\Omega^0_G & \xrightarrow{V_G} & \mathsf{F}_s \wr \underline{\mathfrak{C}}\Sigma_G \end{array}$$

is a pullback diagram in Cat.

Proof.

Proposition 2.14 (cf. [BP17, Lemma 4.28]). $N_{\mathfrak{C}}$ on spans preserves right Kan extensions over $\mathsf{F} : \mathcal{A} \downarrow \mathsf{F} : \mathfrak{C}\Sigma_G$.

Similarly, [BP17], Prop 3.47, 3.90, 4.12, 4.15, 4.26, 4.30] naturally generalized to the coloured-setting, replacing all instances of Ω_G^n or Σ_G with $\underline{\mathfrak{C}}\Omega_G^n$ and $\underline{\mathfrak{C}}\Sigma_G$. In particular, this yields the following definitions and proposition.

Definition 2.15 (cf. [BP17, Defn 4.3]). Let $WSpan^l(\mathcal{C}, \mathcal{D})$ (resp. $WSpan^r(\mathcal{C}, \mathcal{D})$) denote the category of left (resp. right) weak spans, with objects

$$\mathcal{C} \xleftarrow{k} \mathcal{A} \xrightarrow{X} \mathcal{D}$$

and arrows those diagrams as on the left (resp. right) below

denoted by $(i,\varphi):(k_1,X_1)\to(k_2,X_2)$, with composition defined in the natural way.

recall adjunctions with Lan and Ran, canonical op-isos, etc

Definition 2.16 (cf. [BP17, Defn 4.16]). Suppose \mathcal{V} is a symmetric monoidal category with diagonals . We define an endofunctor $N_{\mathfrak{C}}$ on $\mathsf{WSpan}^r(\mathfrak{C}\Sigma_G, \mathcal{V}^{op})$ by letting $N_{\mathfrak{C}}(\mathfrak{C}\Sigma_G \leftarrow \mathcal{A} \rightarrow \mathcal{V}^{op})$ be given by the span

$$\underline{\mathfrak{C}}\Omega_{G}^{0} \wr \mathcal{A} \xrightarrow{V_{G}} \mathsf{F} \wr \mathcal{A} \longrightarrow \mathsf{F} \wr \mathcal{V}^{op} \xrightarrow{\otimes^{op}} \mathcal{V}^{op}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\underline{\mathfrak{C}}\Omega_{G}^{0} \xrightarrow{V_{G}} \mathsf{F} \wr \underline{\mathfrak{C}}\Sigma_{G}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\underline{\mathfrak{C}}\Sigma_{G}$$

where the given square is a pullback, and on arrows in the natural way.

Moreover, we have a multiplication $\mu: N_{\mathfrak{C}} \circ N_{\mathfrak{C}} \Rightarrow N_{\mathfrak{C}}$ given by the natural isomorphism

$$\underbrace{\mathfrak{C}\Sigma_G} \longleftarrow \underbrace{\mathfrak{C}\Omega_G^1 \wr A \xrightarrow{V_G}}_{d_0} \operatorname{F} \wr \underbrace{\mathfrak{C}\Omega_G^0 \wr A \xrightarrow{\operatorname{F} \wr V_G}}_{\pi_0} \operatorname{F}^{\wr 2} \wr A \longrightarrow \operatorname{F}^{\wr 2} \wr \mathcal{V}^{op} \xrightarrow{\otimes^{op}} \operatorname{F} \wr \mathcal{V}^{op} \xrightarrow{\otimes^{op}} \mathcal{V}^{op}$$

$$\underbrace{\mathfrak{C}\Sigma_G} \longleftarrow \underbrace{\mathfrak{C}\Omega_G^0 \wr A \xrightarrow{V_G}}_{V_G} \operatorname{F} \wr A \longrightarrow \operatorname{F} \wr \mathcal{V}^{op} \xrightarrow{\otimes^{op}} \mathcal{V}^{op}$$

MULTDEFSPAN EQ

and a unit $\eta: id \Rightarrow N_{\mathfrak{C}}$ give by the strictly commuting diagram

$$\begin{array}{c|c} \underline{\mathfrak{C}}\Sigma_G \longleftarrow & A = \longrightarrow & A \longrightarrow & \mathcal{V}^{op} = \longrightarrow & \mathcal{V}^{op} \\ & & \downarrow \delta^0 & & \downarrow \delta^0 & & \parallel \\ \underline{\mathfrak{C}}\Sigma_G \longleftarrow & \underline{\mathfrak{C}}\Omega_G^0 \wr A \xrightarrow{V_G} & \mathsf{F} \wr A \longrightarrow & \mathsf{F} \wr \mathcal{V}^{op} \xrightarrow{\otimes^{op}} & \mathcal{V}^{op}. \end{array}$$

UNITSPAN EQ

Proposition 2.17 (cf. [BP17], Prop 4.19]). $(N_{\mathfrak{C}}, \mu, \eta)$ is a monad on $WSpan^r(\mathfrak{CC}\Sigma_G, \mathcal{V}^{op})$.

Definition 2.18. The genuine $\underline{\mathfrak{C}}$ -coloured operad monad is the monad $\mathbb{F}_{G,\underline{\mathfrak{C}}}$ on $\mathsf{Sym}_{G,\underline{\mathfrak{C}}}(\mathcal{V}) = \mathsf{Fun}(\underline{\mathfrak{C}}\Sigma_G^{op},\mathcal{V})$ given by

$$\mathbb{F}_{G,\mathfrak{C}} = \operatorname{Lan} \circ N_{\mathfrak{C}} \circ \iota$$

with multiplication and unit given by

$$\mathsf{Lan} \circ N_{\underline{\mathfrak{C}}} \circ \iota \circ \mathsf{Lan} \circ N_{\underline{\mathfrak{C}}} \circ \iota \stackrel{\widetilde{}}{\leftarrow} \mathsf{Lan} \circ N_{\underline{\mathfrak{C}}} \circ N_{\underline{\mathfrak{C}}} \circ \iota \Rightarrow \mathsf{Lan} \circ N_{\underline{\mathfrak{C}}} \circ \iota$$

$$id \stackrel{\cong}{\Leftarrow} \operatorname{Lan} \circ \iota \Rightarrow \operatorname{Lan} \circ N_{\mathfrak{C}} \circ \iota.$$

We will write $\mathsf{Op}_{G,\underline{\mathfrak{C}}}(\mathcal{V})$ for the category $\mathsf{Alg}_{\mathbb{F}_{G,\mathfrak{C}}}(\mathsf{Sym}_{G,\underline{\mathfrak{C}}}(\mathcal{V}))$ of genuine $\underline{\mathfrak{C}}$ -coloured operads.

2.3 Genuine C-coloured operads

Come back: Something about profiles.

come back: Combine with above

Remark 2.19. Given $X \in \mathsf{dSet}_G$ with $X(\eta_{G/H}) = \mathfrak{C}(G/H)$, we have that $\underline{\mathfrak{C}}\Sigma_G$ is equal to the category of *profiles* $\partial\Omega[C] \to X$, where C ranges over all of Σ_G .

come back

2.4 Comparison with C-coloured operads

Given $(T = (T_i)_I, \mathfrak{c}) \in \mathfrak{C}\Omega_G$, we define $\mathfrak{c}_i : E(T_i) \to \mathfrak{C}(G/e)$ by

$$\mathfrak{c}_i(e) = g^* q_e^*(\mathfrak{c}[f]),$$

where $e \in Gf$ (with f minimal in the planar structure on T), $g \in G$ minimal such that ge = f, $q: G \to r(T)$ the unique quotient map preserving minimal elements, and $q_e: G/G_e \to G/G_{q(e)}$ the induced map.

Then $(T_i, \mathfrak{c}_i) \in \underline{\mathfrak{C}}\Omega$, and moreover $i \mapsto (T_i, \mathfrak{c}_i)$ yields a well-defined functor $B_IG \to \underline{\mathfrak{C}}\Omega$.

Remark 2.20. The colouring c_i is almost the composite

$$E(T_i) \to E_{G_i}(T_i) \xrightarrow{\simeq} E_G(T) \to \mathfrak{C} \to G \ltimes \mathfrak{C}(G/e)$$

where G_i is the stabilizer in G of T_i , and $E_{G_i}(T_i) \to E_G(T)$ is the canonical isomorphism sending $eG_i \to Gf$ with $f \in Ge$ minimal. However, this composite does not record the "twisting" action by the element g_e .

With that, we have the formula

$$\iota_* Y(T, \mathfrak{c}) = (\prod_I Y(T_i, \mathfrak{c}_i))^G$$
.

Remark 2.21 (cf. [BP17, Rem 4.35]). Equivalently, the essential image of ι_* are those sheaves $X \in \mathsf{Sym}_{G,\mathfrak{C}}(\mathcal{V})$ such that the canonical map

$$X(C,\mathfrak{c}) \stackrel{\cong}{\to} X(q^*(C,\mathfrak{c}))^{\Gamma}$$

is an isomorphism, where $q: G \to r(C)$ is the unique map preserving the minimal element, and $\Gamma \leq \operatorname{Aut}(q^*(C,\mathfrak{c}))$ the subgroup preserving the quotient map $q^*C \to C$ under precomposition.

Remark 2.22. Alternatively, \mathfrak{c}_i is the composite

$$E(T_i) \to E(T) \to \mathfrak{C}(G/e)$$
.

Come BACK

DO STUFF.

$\mathbf{3}$ In dSet_G

Definition 3.1. Define the *genuine operadic nerve* $N : \mathsf{Op}_G \to \mathsf{dSet}_G$ by

$$N\mathcal{P}(T) = \operatorname{Hom}_{\mathsf{Op}_G}(T, \mathcal{P})$$

where we think of T as the operad $T \in \mathsf{Op}^G \hookrightarrow \mathsf{Op}_G$.

Remark 3.2. We note that $N\mathcal{P} \in (SCI)^{\square!}$, as $T \in \mathsf{Op}_G$ is a free \mathbb{F}_G -algebra on its vertices.

Remark 3.3. We can rephrase the definition of being an \mathbb{F}_G -algebra in terms of $N\mathcal{P}$. For $\mathcal{P} \in \mathsf{Sym}_G$ a G-symmetric sequence, a genuine G-operad structure on \mathcal{P} is given by:

- Composition Maps: maps $N\mathcal{P}(T) \to \mathcal{P}(\operatorname{lr}(T))$ for all $T \in \Omega_G$.
- Naturality under restriction and conjugation: maps $N\mathcal{P}(T_1) \to N\mathcal{P}(T_0)$ for all quotient maps $T_0 \to T_1$ in $\Omega_{G,0}$, such that the following commutes:

$$N\mathcal{P}(T_1) \longrightarrow \mathcal{P}(\operatorname{Ir}(T_1))$$

$$\downarrow \qquad \qquad \downarrow$$

$$N\mathcal{P}(T_0) \longrightarrow \mathcal{P}(\operatorname{Ir}(T_0)).$$

• Associativity under \mathbb{F}_G : maps $N\mathcal{P}(T_1) \to N\mathcal{P}(T_0)$ for all planar tall maps $T_0 \to T_1$ in Ω_G^t , such that the analogus diagram (with the right vertical map the identity) commutes.¹

The above reflects the following result.

Proposition 3.4. Op_G is equivalent to the subcategory of dSet_G spanned by those X such that

- 1. $X(H/H) = \{*\} \text{ for all } H \leq G.$
- 2. $X(T) \cong \otimes_{T_v \in V(T)} X(T_v)$.

Proof. The fact that $N\mathcal{P} \in (SCI_G)^{\square!}$ is immediate, as remarked above.

For the reverse direction, we will follow the construction of the homotopy operad as in $[MW09, \S6]$, replacing their use of inner horn inclusions with *orbital* inner *G*-horn inclusions, to show that any $X \in (OHI)^{\square!}$ is in the image of N; the result will then follow from [BP18, HYPER PROP].

In fact, interpreting all of their pictures are as *orbital* representations of G-trees yields that, for all $C \in \Sigma_G$

- \sim_{Ge} is an equivalence relation on X(C) for all $Ge \in E_G(C)$.
- The relations \sim_{Ge} and $\sim_{Ge'}$ are equal for all $e, e' \in E(C)$.
- $[h] \circ [f] = [h \circ f]$ yields a well-defined composition map.

come back

need to show naturality, check associativity of composition

As in [BP17], we note that "associativity" under \mathbb{F}_G includes both the usual notion of associativity of our composition maps, but also unitality; this is recorded here by the fact that degeneracies are always planar tall.

4 Scratchwork

4.1 Colored simplicial tensors and cotensors

References

BP17 Peter Bonventre and Luís Alexandre Pereira. Genuine equivariant operads. arXiv preprint: 1707.02226, 2017.

BP18] Peter Bonventre and Luís Alexandre Pereira. Equivariant dendroidal segal spaces and G- ∞ -operads. arXiv preprint: 1801.02110, 2018.

[MW09] I. Moerdijk and I. Weiss. On inner Kan complexes in the category of dendroidal sets. Adv. Math., 221(2):343–389, 2009.