Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 1

Stanislau Stankevich, Rafał Bednarz, Ostrysz Jakub

Spis treści

1.	Spra	wdzenie poprawności podanych wartości	2
2.	Odp	owiedzi skokowe	3
	2.1. 2.2.	Opowiedzi skokowe toru U-Y	3 4
	2.3. 2.4.	Charakterystyka statyczna	4 5
3.	Odp	owiedzi skokowe dla DMC	6
4.	Algo	rytm DMC	8
	4.1. 4.2. 4.3.	Strojenie regulatora	8 9 13
5 .	Regulacja z skokowym zakłóceniem		15
	5.1. 5.2. 5.3.	Bez pomiaru zakłócenia	15 16 17
6.	Regu	ılacja z skokowym zakłóceniem sinusoidalnym	18
	6.1. 6.2. 6.3.	Bez pomiaru zakłócenia	18 19 20
7.	Regulacja z skokowym zakłóceniem sinusoidalnym		
	7.1. 7.2. 7.3.	Szum nałożony na zakłócenie skokowe	21 24 27
8.	Laboratorium		28
	8.1. 8.2. 8.3. 8.4. 8.5.	Określenie wartości pomiaru temperatury w punkcie pracy	28 28 30 32 37
	0.0.	Donot baramenta D	91

1. Sprawdzenie poprawności podanych wartości

Żeby sprawdzić poprawność podanych wartości podajemy na wejscie sterowanie u=0 oraz zakłócenie z=0 i patrzymy na jakiej wartości się ustali y.

Rys. 1.1. Przebieg wyjścia obiektu przy stałym wejściu i zakłóceniu: $\boldsymbol{u}=\boldsymbol{z}=0$

Jak możemy obersować wyjście się ustala na poprawnej wartości, czyli na 0.

2. Odpowiedzi skokowe

Rozważamy 5 różnych wartości skoku: 1,0, 2,0, 3,0, 4,0, 5,0.

2.1. Opowiedzi skokowe toru U-Y

Rys. 2.1. Wykresy odpowiedzi skokowych toru U-Y

Jak widać wartość skoku na wyjściu jest proporcjonalna wartości skoku wejścia.

4

2.2. Opowiedzi skokowe toru Z-Y

Rys. 2.2. Wykresy odpowiedzi skokowych

Jak i w przypadku toru U-Y tutaj widzimy proporcjonalność.

2.3. Charakterystyka statyczna

Otrzymana charakterystyka statyczna z rozdzielczościa 50/1 (dla skoków $0,02,\,0,04,\,0,06\,\ldots)$

Rys. 2.3. Charakterystyka statyczna y(u, y)

2.4. Wzmocnienia statyczne

Jak widać z powyższego wykresu, charakterstyka jest prawie idealnie liniowa. Wyliczone wzmocnienia statyczne:

$$K_{\rm U-Y}^{\rm stat} = 2,4947$$
 (2.1)

$$K_{\rm Z-Y}^{\rm stat} = 1,7970$$
 (2.2)

3. Odpowiedzi skokowe dla DMC

Wartość sygnałów w punkcie pracy wynosi $U_{pp}=Y_{pp}=Z_{pp}=0$. Zatem wykonując skok sygnału sterującego lub zakłócenia z wartości 0 do wartości 1, mamy prawie gotową odpowiedź skokową na potrzeby algorytmu DMC. Wystarczy bowiem przysunąć wykres tak aby skok występował w chwili k=0.

Rys. 3.1. Odpowiedź skokowa toru sterowanie-wyjście

Rys. 3.2. Odpowiedź skokowa toru zakłócenie-wyjście

Prawo regulacji DMC przedstawia się następująco:

$$\Delta U(k) = K(Y^{zad}(k) - Y^{0}(k)) \tag{4.1}$$

Gdzie $\triangle U(k)$ to wektor N_u (horyzont sterowania) przyszłych wartości sterowania, $Y^0(k)$ to przewidywana odpowiedź z modelu procesu, K - macierz policzona raz na początku ze współczynników odpowiedzi skokowej, uwzględniając wybrany współczynnik λ oraz horyzonty predykcji i sterowania.

W przypadku algorytmu DMC z pomiarem zakłóceń $Y^0(k)$ oblicza się z następującego wzoru:

$$Y^{0}(k) = Y(k) + M^{P} \triangle U^{P}(k) + M^{Z^{P}} \triangle Z^{P}(k)$$
(4.2)

W powyższym wzorze dwa pierwsze elementy sumy odnoszą się do toru sterowanie-wyjście a ostatni element do toru zakłócenie-wyjście: M^{Z^P} macierz wyznaczana przy pomocy współczynników odpowiedzi skokowej dla zakłócenia, $\Delta Z^P(k)$ jest wektorem przyrostów mierzalnego zakłócenia.

4.1. Strojenie regulatora

Strojenie regulatora odwywało się przy skokowej zmianie sygnału wartości zadanej z 0 do 1 (w chwili k=30) oraz zerowym zakłóceniu.

Choryzont dynamiki określono z odpowiedzi skowej toru sterowanie-wyjście (k dla którego wyjście się ustabilizowało): D=155. Kolejne parametry były modyfikowane do momentu uzyskania zadowalających efektów. Na początku przyjęto $N=N_u=D=155$ oraz $\lambda=1$, następnie zmniejszano kolejno wartość N i N_U . Na końcu modyfikowano wartości λ .

4.2. Wyniki strojenia

Rys. 4.1. Zakłócenie i sygnał sterujący przy parametrach regulatora: $N=155~N_u=155~\lambda=1$

Rys. 4.2. Wyjście obiektu przy parametrach regulatora: $N=155~N_u=155~\lambda=1,$ błąd E=8,809637

Rys. 4.3. Zakłócenie i sygnał sterujący przy parametrach regulatora: $N=20~N_u=20~\lambda=1$

Rys. 4.4. Wyjście obiektu przy parametrach regulatora: $N=20~N_u=20~\lambda=1,$ błąd E=8,810337

Rys. 4.5. Zakłócenie i sygnał sterujący przy parametrach regulatora: $N=50~N_u=5~\lambda=1$

Rys. 4.6. Wyjście obiektu przy parametrach regulatora: $N=50~N_u=5~\lambda=1,$ błądE=8,502866

Rys. 4.7. Zakłócenie i sygnał sterujący przy parametrach regulatora: $N=50~N_u=2~\lambda=1$

Rys. 4.8. Wyjście obiektu przy parametrach regulatora: $N=50~N_u=2~\lambda=1,$ błądE=9,478717

Rys. 4.9. Zakłócenie i sygnał sterujący przy parametrach regulatora: $N=50~N_u=2~\lambda=0,4$

Rys. 4.10. Wyjście obiektu przy parametrach regulatora: N=50 $N_u=2$ $\lambda=0,4$, błąd E=8,312159

4.3. Wnioski

Jak można było powyżej zauważyć, regulator DMC od samego początku działał w sposób dobry (błąd wynosił E=8,809637). Zmiany parametru N nie dawały przez dłuższy czas zauważalnych zmian w przebiegach jak i w błędzie (dopiero przy N=20 błąd delikatnie wzrósł). Przy modyfikacji parametru N_U można było zaobserwować większą poprawę regulacji. Dla $N_U=5$ wskaźnik jakości regulacji oraz uchyb zmalały. Jednak aby całkiem wyeliminiować uchyb zmniej-

szono N_U do wartości 2, co spowodowało spowolnienie regulacji i tym samym wzrost błędu. Zmniejszenie warości współczynika lambda do wartości 0,4 przyśpieszyło regulację.

Najbardziej satysfakcjonujące wyniki uzyskano dla: $N_U=50~N=2~\lambda=0,4.$ Dla tak dobranych parametrów wskaźnik jakości regulacji wynosił E=8,312159.

5. Regulacja z skokowym zakłóceniem

Parametr D^Z został dobrany analogicznie do parametru D: przyjęto go jako wartość k, dla której odpowiedź skokowa toru zakłócenie-wyjście stabilizuje się: $D^Z=68$

W doświadczeniach skok wartości zakłócenia następowował w chwili k=60 i wynosił 1. Użyto regulatora o najlepszych parametrach z poprzedniego podpunktu $(N_U=50\ N=2\ \lambda=0,4)$

5.1. Bez pomiaru zakłócenia

Rys. 5.1. Zakłócenie i sygnał sterujący

Rys. 5.2. Wyjście obiektu bez pomiaru zakłócenia błąd $E=20,06103\,$

5.2. Z pomiaru zakłócenia

Rys. 5.3. Zakłócenie i sygnał sterujący

Rys. 5.4. Wyjście obiektu z pomiarem zakłócenia błąd E=10,98983

5.3. Wnioski

Pomiar zakłócen znacznie polepszył regulację. Bez niego błąd wynosił E=20,06103, natomiast z pomiarem błąd zmalał prawie dwukrotnie (E=10,98983).

6. Regulacja z skokowym zakłóceniem sinusoidalnym

W tym podpunkcie zakłócenie pojawia się w chwili k=60 i posiada ono charakter sinusoidalny.

6.1. Bez pomiaru zakłócenia

Rys. 6.1. Zakłócenie i sygnał sterujący

Rys. 6.2. Wyjście obiektu bez pomiaru zakłócenia błąd $E=24,84831\,$

6.2. Z pomiaru zakłócenia

Rys. 6.3. Zakłócenie i sygnał sterujący

Rys. 6.4. Wyjście obiektu z pomiarem zakłócenia błąd E=22,30000

6.3. Wnioski

Z powyższych przebiegów można stwierdzić, że w przypadku pomiaru zakłócenia sinuso-idalnego regulator działa lepiej niż bez (współczynnik jakości regulacji z pomiarem zakłócenia wynosi E=22,30000, natomiast bez E=24,84831).

7. Regulacja z skokowym zakłóceniem sinusoidalnym

Szum pomiarowy generowano poleceniem wgn() i dodawano go do ustawionej wartości zakłócenia

7.1. Szum nałożony na zakłócenie skokowe

Rys. 7.1. Zakłócenie i sygnał sterujący- szum mały

Rys. 7.2. Wyjście dla pomiaru z szumem małym błąd $\left(E=10,8966\right)$

Rys. 7.3. Zakłócenie i sygnał sterujący- szum średni

Rys. 7.4. Wyjście dla pomiaru z szumem średnim $\left(E=11,5103\right)$

Rys. 7.5. Zakłócenie i sygnał sterujący- szum duży

Rys. 7.6. Wyjście dla pomiaru z szumem dużym (błąd $E=12,1956)\,$

7.2. Szum nałożony na zakłócenie sinusoidalne

Rys. 7.7. Zakłócenie i sygnał sterujący- szum mały

Rys. 7.8. Wyjście dla pomiaru z szumem małym (błąd E=22,3174)

Rys. 7.9. Zakłócenie i sygnał sterujący- szum średni

Rys. 7.10. Wyjście dla pomiaru z szumem średnim (błąd $E=22,5508)\,$

Rys. 7.11. Zakłócenie i sygnał sterujący- szum duży

Rys. 7.12. Wyjście dla pomiaru z szumem dużym (błąd E=21,8056)

7.3. Wnioski

Występowanie szumu pomiarowego pogarsza jakość regulacji. Szum jest generowany w sposób losowy, dlatego też zwiększanie wartości błędów szumu pomiarowego, nie zawsze będzie skutkowało pogorszeniem regulacji. Widać to na przykładnie zakłócenia sinusoidalnego: nałożenie dużego szumu skutkowało mniejszym błędem niż w przypadku małego i średniego szumu.

8.1. Określenie wartości pomiaru temperatury w punkcie pracy

W celu określenia wartości pomiaru temperatury w punkcie pracy ustawiono moc wentylatora W1=50%, a moc grzałki G1=25%. Po czasie około 5 minut temperatura odczytywana przez czujnik temperatury zaczeła się stabilizować na poziomie $T1=28,2^{\circ}C$. Niestety z powodu ciągłego ruchu powietrza związanego z przemieszczaniem się osób w sali i dużej ilości tych osób wpływających na temperaturę sali oraz czułość stanowiska pomiarowego temperatura odczytywana przez czujnik zaczeła odbiegać i lekko oscylować wokół tej temperatury.

Rys. 8.1. Pomiar temperatury w punkcie pracy

8.2. Wyznaczenie odpowiedzi skokowych

Rozpoczynając z punktu pracy wyznaczono odpowiedzi skokowe dla trzech różnych skoków sygnału zakłócenia Z=10% Z=20% i Z=30%.

Rys. 8.2. Odpowiedzi skokowe dla trzech różnych wartości sygnału sterującego

Analizując otrzymane wykresy można wywnioskować, że właściwości statyczne procesu są w przybliżeniu liniowe, zmiany wartości odpowiedzi skokowej dla tych samych chwil są w przybliżeniu proporcjonalne jak również sam kształt wykresów jest w przybliżeniu podobny. W celu sprawdzenia założeń narysowano charakterystykę statyczną procesu.

Rys. 8.3. Charakterystyka statyczna procesu

Która potwierdziła przypuszczenia, na jej podstawie można stwierdzić, że właściwości statyczne procesu są w dobrym przybliżeniu liniowe i w konsekwencji postanowiono wyznaczyć wzmocnienie statyczne procesu.

$$K_{stat} = 0,1890$$
 (8.1)

8.3. Przekształcenie i aproksymacja odpowiedzi skokowej

W celu przekształcenia odpowiedzi skokowej w taki sposób aby można ją było wykorzystać w algorytmie DMC skorzystano z poniższego wzoru:

$$S_i = \frac{Y(i) - Y_{pp}}{\triangle U} , \text{dla } i = 1, 2 \dots D$$
(8.2)

Dla odpowiedzi skokowej na torze wejście-wyjście otrzymanej w wyniku zmiany sygnału sterującego z G1=25% na G1=35% a następnie dokonano jej aproksymacji używając członu inercyjnego drugiego rzędu z opóźnieniem.

Rys. 8.4. Aproksymacja odpowiedzi skokowej U-Y

Taki sam proces aproksymacji przeprowadzony został dla toru zakłócenie-wyjście dla skoku zakłócenia od Z=0 do Z=10.

Rys. 8.5. Aproksymacja odpowiedzi skokowe Z-Y

Do wyznaczenia optymalnych parametrów aproksymacji posłużono się algorytmem genetycznym o losowej populacji początkowej tak aby zminimalizować błąd dopasowania.

8.4. DMC

Prawo regulacji DMC przedstawia się następująco:

$$\Delta U(k) = K(Y^{zad}(k) - Y^{0}(k)) \tag{8.3}$$

Gdzie $\triangle U(k)$ to wektor N_u (horyzont sterowania) przyszłych wartości sterowania, $Y^0(k)$ to przewidywana odpowiedź z modelu procesu, K - macierz policzona raz na początku ze współczynników odpowiedzi skokowej, uwzględniając wybrany współczynnik λ oraz horyzonty predykcji i sterowania.

W przypadku algorytmu DMC z pomiarem zakłóce
ń $Y^0(\boldsymbol{k})$ oblicza się z następującego wzoru:

$$Y^{0}(k) = Y(k) + M^{P} \triangle U^{P}(k) + M^{Z^{P}} \triangle Z^{P}(k)$$
(8.4)

W powyższym wzorze dwa pierwsze elementy sumy odnoszą się do toru sterowanie-wyjście a ostatni element do toru zakłócenie-wyjście: M^{Z^P} macierz wyznaczana przy pomocy współczynników odpowiedzi skokowej dla zakłócenia, $\triangle Z^P(k)$ jest wektorem przyrostów mierzalnego zakłócenia.

Poniżej przedstawione są wyniki działania programu dla skoku wartości zadanej z punktu pracy 28,18 do 35 dla różnych parametrów regulatora:

Rys. 8.6. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=90,\,N_u=10,\,\lambda=0.4$

Rys. 8.7. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=90,\,N_u=10,\,\lambda=0,4$

Rys. 8.8. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=60,\,N_u=5,\,\lambda=1$

Rys. 8.9. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=60,\,N_u=5,\,\lambda=1$

Rys. 8.10. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=60,\,N_u=5,\,\lambda=2$

Rys. 8.11. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=60,\,N_u=5,\,\lambda=2$

Rys. 8.12. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=60,\,N_u=5,\,\lambda=0,4$

Rys. 8.13. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=60,\,N_u=5,\,\lambda=0,4$

Rys. 8.14. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=30,\,N_u=1,\,\lambda=0,4$

Rys. 8.15. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=30,\,N_u=1,\,\lambda=0,4$

$$E = 1,2676 * 10^3 \tag{8.9}$$

8.5. Dobór parametru D^z

W wyniku eksperymentów dobraliśmy wartość $D^z = 320$.

Poniżej są przedstawione wyniki regulacji najpierw bez pomiaru zakłócenia, a potem z pomiarem dla skoków sygnału zakłócenia w chwili k=350 z wartości 0 do 30 oraz w k=600 z 30 do 10.

Rys. 8.16. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=30,\,N_u=1,\,\lambda=0,4$ bez pomiaru zakłócenia

Rys. 8.17. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=30,\,N_u=1,\,\lambda=0,4$ bez pomiaru zakłócenia

$$E = 1,4576 * 10^3 (8.10)$$

Włączamy pomiar zakłóceń.

Rys. 8.18. Wyjście procesu z regulatorem DMC dla parametrów $D=340,\,N=30,\,N_u=1,\,\lambda=0,4$ z pomiarem zakłócenia

Rys. 8.19. Sterowanie procesu z regulatorem DMC dla parametrów $D=340,\,N=30,\,N_u=1,\,\lambda=0,4$ z pomiarem zakłócenia

$$E = 1,2734 * 10^3 (8.11)$$

Jak widać, regulacja z pomiarem jest bardziej precyzyjna.