Statistics assignmen Name-Roban Ghosh JA-181001001122 . Botch- BCS2B Show that f(x) is PDF and find its $\int_{0}^{\infty} f(x) = \int_{0}^{\infty} de^{-dx} = \int_{0}^{\infty} de^{-dx}$ So, intogration of f(x) is 1, it is proved to be

Scanned with CamScanner

Probability Q 0 < X < 45 F(45) - F(0) = - 900 + 900 900+(45)2 900+(0)2 900 - 900 +202T 1-0.307=0.693. $s) f(a) = \begin{cases} 5 \\ 4 \end{cases} \qquad \frac{A}{10} \leq n \leq \frac{A}{10} \end{cases}$ (o otherwise Find A if P(x1<2) = 2P(1x1>2) > For the probability density function f(2) $F(X) = \int f(x) dx = \int \frac{5}{A} dx = \frac{5\pi}{A}$ Given P(1X1<2) = 2P(1X1>2) $\frac{5(2)}{A} - \frac{5(0)}{A} = \frac{2}{5}(2)$ $\frac{10}{A} = \frac{2 - 20}{A}$ A = 15.

10) × denotes nor of heads - hor of tailing
3 to sses. The Head is tince as likely 15 occur as tail.
-> Duc to bias P(H) - 2P(+)
P(H) = 2(1-P(H)) = 2
$P(T) \cdot \frac{1}{3}$
(i) Poubability distorbution of X:
$P(x=1) = (P(x, H, T) - (2)^{2} \frac{1}{3} = 22$
$P(H,LH) = \frac{3}{3} \cdot \frac{3}{3} \cdot \frac{3}{3} = \frac{2}{2}$
So, P(x=1): 4 4 1 12 27 + 27 + 27 = 27
$P(X=-1) = \left(P(T,T,H) = \frac{1}{3}\right)^{\frac{1}{2}} = \frac{2}{37}$
$P(T,H,T) = \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} = \frac{2}{27}$
$P(H,T,T) = \frac{2}{3} \cdot \left(\frac{1}{3}\right) = \frac{2}{27}$
P(x=-1) = 6 27
$P(x=-3) = P(T,T,T) = (\frac{1}{3})^{3} = \frac{1}{27}$
$P(x=3) = P(h, H, H) = (2)^3 = 8$
Scanned with CamScanner

Scanned with CamScanner

(1) Cumulative distabution of x := F(x) = P(x(x)) $\Rightarrow P(x(-3) = \frac{1}{22}$ $P(X(-1) = \frac{1}{27} + \frac{1}{27} = \frac{7}{27}$ P(X(1): 6+1+12 - 19 P(x < 3) = 8 + 19 = 1 (ii) What is P(-15 X ≤ 3) (1) P(x>0) = P(x=1) + P(x=3) $\frac{12}{27} + \frac{20}{57} = \frac{20}{27}$ P(X=x) = xe e-xx P(x=1) = Xe P(2=2) = 12e-1 P(X=1)= P(X=2) =) le = /2 - A 7 \ >=2..... Alean= varjance=2.

	Date
(14)	Given PMF P(x=x) = (K+x-1) okpk
	D+0 =1, x =0,1)
	Find mgf mean & vasiance.
	MGF is given by
M.($\frac{1}{ \mathcal{L} } = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L} }{ \mathcal{L} } + \frac{ \mathcal{L} }{ \mathcal{L} } \right) = \frac{1}{ \mathcal{L} } \left(\frac{ \mathcal{L}$
	$= \int_{X} \sum_{k=0}^{\infty} \left(\frac{k+x-1}{k-1} \right) \left(\frac{1}{2} \right) \left($
	$= \frac{(x+x-1)}{(x+1)} \times$
	$= (-1)^{1} \left(-\frac{1}{2}\right)$
	$\frac{x}{ x-3 } = \frac{x}{ x-3 } = $
	= Px (-1) (0et) + (1) (vet) +

drawing a defective smooth home? Let probability of event & and \$=1-0 Se probability distribution will be P(x)= P(x=x)= 0 0x-1 50 + + pacscar = [x] = \(\frac{\times}{2} \) \(\frac{\times}{2} \) $-\frac{\sqrt{2}}{\sqrt{2}} \times (1-0)^{2\chi-1}$ The probability mass function of a bironeal rounder variable is P(x=x)= p(x) z was $= \frac{1}{x!(x-x)!} \frac{(x-x)!}{(x-x)!} \frac{(x-x)!}{(x-x)!}$ $= P(x=x) = 1 \cdot \left(1 - \frac{1}{x}\right) - \dots \cdot \left(1 - \frac{x-1}{x}\right) \left(\frac{1-xQ}{x}\right)^{2}$ $= \left(1 - \frac{xQ}{x}\right)^{2} \cdot \left(1 - \frac{xQ}{x}\right)^{2} \cdot \left(1 - \frac{xQ}{x}\right)^{2}$ $= \left(1 - \frac{xQ}{x}\right)^{2} \cdot \left(1 - \frac{xQ}{x}\right)^{2} \cdot \left(1 - \frac{xQ}{x}\right)^{2}$ $= \left(1 - \frac{xQ}{x}\right)^{2} \cdot \left(1 - \frac{xQ}{x}\right)^{2}$ So for limit x->0, 20-0. p(n)= e->/3, n=0,1,2, Scanned with CamScanner

- Cn Pcas	Bisanial distribution cohen;
	sans alansaran is command
	Binomial distribution when!
a)	his large
	Ois small
	no is not too large.
-	101 100 (00)
- (.,,)	$\Theta = 0.1$
_ (11)	G-01)
-	0=1-0-1=0-9
	$\chi = 7$
	let x = # attempt for transmitting a
_	pachet.
•	So, geometois Distorbution will be
	P(-1-4)
	$ (x-t) = (4) = (0.1) (0.8)^3$
-	= 0.0729
	Hence probability of every some 1:0729
	event x is 0.0729