Macroeconomía Internacional Cuantitativa

Francisco Roldán*

September 2024 a entregar no después del 23 de octubre

1. Modelos de búsqueda

En clase vimos el modelo de búsqueda de McCall construido alrededor del siguiente problema

$$v(w) = \max \left\{ \frac{u(w)}{1-\beta}, u(b) + \beta \int v(z) dF(z) \right\}$$

para dados β , b, u, y una distribución F para los salarios.

1.1 Estáticas comparadas

Para investigar el efecto de cada parámetro, vamos a graficar una serie de estáticas comparadas en las que vamos a cambiar el valor de β y b. El objetivo es producir dos gráficos que muestren el salario de reserva w^* como función de β y b.

Método recomendado

- 1. Elegir una cota inferior \underline{b} y una cota superior \overline{b} (por ejemplo, 0.5 y 1.5), y una cantidad de elementos N_b (por ejemplo, 25).
- 2. Crear un vector \mathcal{B} con los valores para b usando la función range. Inicializar otro vector \mathcal{V} para guardar los valores de w^* (con el mismo largo que \mathcal{B} !). Por ejemplo podés usar similar para eso.
- 3. Loopear sobre el vector \mathcal{B} y, para cada valor $x \in \mathcal{B}$, inicializar un objeto McCall con b = x. Usar la función vfi! para resolver ese modelo. Finalmente, guardar el salario de reserva w^* en el elemento correspondiente de \mathcal{V} .

^{*}email: froldan6@gmail.com

- 4. Usar la función scatter para crear un gráfico con \mathcal{B} en el eje horizontal y \mathcal{V} en el eje vertical. Finalmente, usar plot y savefig para dibujar y guardar el gráfico.¹
 - Podés usar Layout y title para darle un título al gráfico y xaxis_title para indicar que b
 se mueve en el eje horizontal.
- 5. Repetir el mismo proceso para la estática comparada de β .

Dos preguntas cortas Cuál es el efecto de aumentar el consumo en desempleo? Cuál es el efecto de hacer al agente más impaciente? Comente.

Recomendación Podés experimentar con la resolución del modelo de McCall (me refiero al argumento N_w del constructor, que controla cuántos puntos tiene la grilla de w) hasta encontrar un valor que te sirva. Si N_w es muy chico, w^* en función de b (o β) te va a quedar una escalera (por qué?) y, lógicamente, si N_w es muy grande el modelo puede tardar más en resolverse.

1.2 Simulaciones

En los códigos también hay una función simul que toma como argumento una instancia mc de tipo McCall, simula el modelo sacando ofertas de salario w con distribución F y devuelve la cantidad de ofertas hasta que una fue aceptada. Esta función tiene dos argumentos opcionales nombrados, maxiter y verbose. La opción verbose: :Bool permite controlar si el simulador escupe detalles a la terminal (esto es práctico si querés simular una vez pero no tanto si vas a hacer 10000 simulaciones).

El objetivo de esta sección es entender mejor la distribución del tiempo de parada T (cuántas ofertas voy a sacar antes de aceptar una). Para esto vamos a simular el mismo modelo una cantidad grande de veces y dibujar la distribución "empírica" de T en un histograma.

Método recomendado

- 1. Inicializar y resolver una instancia de McCall.
- 2. Elegir una cantidad *K* de repeticiones (por ejemplo, 10000)
- 3. Preasignar un vector \mathcal{T} para guardar los K valores de T que vamos a obtener de la simulación
- 4. Loopear sobre \mathcal{T} y, en cada iteración, usar la función simul con verbose=false. Guardar el T resultante como el elemento correspondiente de \mathcal{T} .

^{&#}x27;Esto necesita un poco de experimentación pero si hacés p1 = plot(args) después podés guardarlo haciendo savefig(p1, "grafico.pdf"). Un buen recurso para mirar la sintaxis de cómo hacer gráficos es http://juliaplots.org/PlotlyJS.jl/stable/ que tiene una sección con un montón de ejemplos.

- 5. Usar la función histogram para crear un histograma con las frecuencias de los Ts. Como antes, plot y savefig para guardar.
 - Las funciones mean y quantile permiten calcular la media y los cuantiles de un vector. Ojo
 que quantile toma dos argumentos, el vector y el cuantil deseado. Podés usar ?quantile
 para ver cómo elegirlo.

Nota Es muy buena idea meter los puntos 2-4 en una función que tome como argumentos K y el modelo y devuelva el vector \mathcal{T} para poder reusarla en los siguientes puntos.

1.3 $\,\,\,\,\,$ Cómo cambia $\mathbb{E}[T]$ con la paciencia?

Como antes, vamos a empezar por crear un vector \mathcal{B} de valores para el factor de descuento β (entre, digamos, 0.9 y 0.99) y otro vector (vacío) \mathcal{T} para guardar los valores de $\mathbb{E}[T]$ como función de β . Para cada $x \in \mathcal{B}$, crear un objeto McCall con $\beta = x$, resolverlo usando vfi!, usar la función del punto anterior (la que devuelve el vector de todos los T en cada simulación) para calcular la media de T en 10000 simulaciones, y guardar el resultado en el lugar correspondiente del vector \mathcal{T} . Finalmente, usar scatter para mostrar $\mathbb{E}[T]$ como función de β .

Nota Este ejercicio sólo se puede resolver si de verdad hacés que cada paso lógico sea una función, cosa de que puedas reutilizar las funciones que vas definiendo en este loop (\mathcal{B}) de loops (simulaciones) de loops (tiempo en cada simulación)

1.4 Robustness – opcional

Quiero modificar el modelo original dándole al agente que busca trabajo incertidumbre respecto de la distribución F de salarios y preferencias por robustez indexadas por el parámetro θ . En ese caso la ecuación de Bellman de un agente con oferta w en mano es

$$v(w) = \left\{ \frac{u(w)}{1 - \beta}, u(b) + \beta \frac{-1}{\theta} \log \left(\int \exp(-\theta v(z)) dF(z) \right) \right\}$$

Fijate que si definimos un operador distorsionado $\mathbb{T}(X) = -\frac{1}{\theta}\log\left(\mathbb{E}\left[\exp(-\theta X)\right]\right)$ para variables aleatorias X, \mathbb{T} actúa como una esperanza pero dándole más peso a los eventos en los que X es baja. Por la desigualdad de Jensen, $\mathbb{T}(X) \leq \mathbb{E}[X]$ (con igualdad únicamente si X es determinística), y lo distintas que son esas dos cosas es creciente en θ . En este sentido un θ más grande permite un mayor pesimismo.

Usando gráficos similares a los de los puntos anteriores, cómo cambian $\mathbb{E}[T]$ y w^* a medida que crece θ ? Por qué?

Nota Fijate que esto parece complicado pero si escribiste los puntos anteriores con funciones no hay que escribir mucho código para hacer esto.

Método recomendado Mi recomendación acá es agregar un argumento nombrado *robust* a la función $E_v(::McCall)$ y que cuando robust=true implemente el operador \mathbb{T} (y \mathbb{E} cuando sea falso), y a la vez agregar θ al diccionario de parámetros de McCall.