CO3463: Design and Analysis of Algorithms

Theory:

- 1. Review of elementary Data Structures: Stacks, Queues, Lists, Trees, Hash, Graph. Internal representation of Data Structures, Code tuning techniques: Loop optimization, Data transfer optimization, Logic optimization.
- 2. Definitions of complexity, Time and Space Complexity; Time space tradeoff, various bounds on complexity, asymptotic notation: O-notation, Ω -notation, Θ -notation, recurrences and recurrences solving techniques: recursion-tree method and master method, Average time analysis methods: Probabilistic methods.
- 3. Design and analysis of algorithms using the brute-force, greedy, dynamic programming, divide-and-conquer and backtracking techniques.
- 4. Algorithm for sorting and searching, Randomized Algorithms, Numbertheoretic algorithms, Matrix Manipulation algorithms, Graph Algorithms: BFS and DFS.
- 5. NP-hard and NP-complete problems, Approximations Algorithms, Data Stream Algorithms, Design and Complexity of Parallel Algorithms and Semi-Numerical Algorithms.

Books Recommended

- 1. Cormen, Leisersam, Rivest Stein, Introduction to Algorithms, Second Edition, Pretice Hall of India.,2001
- 2. Aho A.V., Hopcorft J.E., J. Ullman, Design and Analysis of Computer Algorithms, Addision Vesley.1998
- 3. Horowitz E. and Sahani, Fundamentals of Computer Algorithms, Galgotia Publication, 1984

References Recommended

- 1. Knuth D., Fundamental algorithms: The art of Computer programming, Volume I, Third Edition, Pearson Education. 1998
- 2. Knuth D., Seminumerical Algorithms: The art of Computer programming, Volume II, Third Edition, Pearson Education. 1998
- 3. Knuth D., Sorting and Searching: The art of Computer programming, Volume III, Second Edition Pearson Education. 1998
- 4. John Kleinberg, Trades E., Algorithm Design, Pearson Education. 2002.
- 5. A. Papoulis, S.U. Pillai, Probability, Random variables and stochastic processes, McGraw Hill. Fourth Edition 2006
- 6. Michael T. Goodrich, Roberto Tamassi, Algorithm Design, Willey India edition 2009.

CO3463: Design and Analysis of Algorithms

Lecture Plan

S.NO	Topics	No of Lectures
1.	Introduction	3
2.	Asymptotic notation	2
3.	Divide and conquer	3
4.	Recurrences	3
5.	Greedy Methods	2
6.	Dynamic programming	3
7.	Backtracking	2
8.	Randomized Algorithms	2
9.	NP Problems	3
10.	Code tuning techniques	2
11.	Sorting Algorithms	3
12.	Searching Algorithms	3
13.	Data Structures Algorithms	3
14.	Graph/Tree Algorithm	4
15.	Number-theoretic algorithms	2
16.	Data Stream Algorithms	1
17.	Semi-Numerical Algorithms	1
18.	Parallel algorithm	2
19.	Algorithm Mathematics(Probability Model)	3
20.	Test/Exam paper discussion	3
	Total	50

CO3463: Design and Analysis of Algorithms Detail Lecture Plan

Lec#	Topics	
L 1.	Scope of subject, What is covered? And what is not covered?	
L 2.	What is algorithm and it's characteristics	
L 3.	How to write/express algorithms, and validate an algorithm	
L 4.	Analysis attributes/dimensions of an algorithms	
L 5.	Asymptotic Notation	
L 6.	Recurrence Equation	
L 7.	How to define the recurrence relation for a algorithm	
L 8.	Recursion tree methods for solving the Recurrence relation	
L 9.	Substitution methods for solving the Recurrence relation	
L 10.	Master Theorem for solving recurrence equation	
L 11.	Code tuning techniques - Introduction	
L 12.	Code tuning techniques - Approaches	
L 13.	Divide and conquer - Introduction	
L 14.	Divide and conquer Algorithms	
L 15.	Searching Algorithms Analysis - I (Linear Search)	
L 16.	Searching Algorithms Analysis – II (Binary Search)	
L 17.	Searching Algorithms Analysis – III (Optimum Searching)	
T01	Test – 01 (2-4 Feb 2017)	
L 18.	Sorting Algorithms Analysis – I (Sequential Sorting)	
L 19.	Sorting Algorithms Analysis – II (Non-sequential Sorting)	
L 20.	Sorting Algorithms Analysis – III (Optimum sorting)	
L 21.	Linear Data structures – Stack, Queue and Link List	
L 22.	Non linear Data structure - Introduction	
L 23.	Non linear Data structure – Graph	
L 24.	Graph Algorithms - I (Traversing Algorithms)	
L 25.	Graph Algorithms – II	

	N " D	
L 26.	Non linear Data structure - Tree	
L 27.	Tree Algorithms	
L 28.	Greedy Methods : Introduction	
L 29.	Greedy Methods : Knapsack Problem	
L 30.	Dynamic programming : Introduction	
L 31.	Dynamic programming : Matrix Chain Multiplication	
L 32.	Dynamic programming : LCS	
L 33.	Backtracking - Introduction	
L 34.	Backtracking - Algorithms	
T02	Test - 02 (23-25 March 2017)	
L 35.	Randomized Algorithms	
L 36.	Number-theoretic algorithms	
L 37.	Semi-Numerical Algorithms	
L 38.	Untraceable problems	
L 39.	NP Problems – Introduction	
L 40.	Approximation Algorithms for NP Problem - I	
L 41.	Approximation Algorithms for NP Problem - II	
L 42.	Average case analysis of algorithm - Introduction	
L 43.	Average Case Analysis using probabilistic model – I	
L 44.	Average Case Analysis using probabilistic model - II	
L 45.	Data Stream Algorithms	
L 46.	Parallel algorithms – I	
L 47.	Parallel algorithms - II	
Т03	Test – 03 (13-18 April - 2017)	
L 48.	Old Exam Paper Discussion – I	
L 49.	Old Exam Paper Discussion – II	
L 50.	Old Exam Paper Discussion – III	

COURSE POLICIES (Tentative):

Assignments/Tests:

Test - 01	15 %
Test - 02	15 %
Test - 03	15 %
Theory Assignments	15 %
Surprise Quizzes	40 %
Attendance	00 %

Attendance:

For students, attendance is expected for each class meeting.

Assignments:

Will be mailed soon.

Course e-mail id: ds.2407@gmail.com