In the last part of the lecture of 3/22, continued during the lecture of 3/24, the design of a Mealy machine sequence detector was reviewed.

For this problem you are to design another sequence detector. Design constraints:

- 1. It must be a Moore machine.
- 2. The sequence it must detect in a serial string of 1s and 0s at input Y is "100".
- 3. You may assume that the values arriving at input Y are properly synchronized with the clock.
- 4. The output must be Z = 1 when the prescribed sequence is detected, and 0 otherwise.
- 5. The circuit does not have to automatically reset when a 1 output occurs. (Return to initial state only when appropriate for sequence detection.)
- 6. It is possible to implement the design with only four states and two flip-flops. Since we generally do not want to implement designs that require more resources than are necessary, you MUST not use more than two flip-flops in your design.
- 7. Name the flip-flops A and B, and use the following state-name definitions: S_0 (AB = 00), S_1 (AB = 01), S_2 (AB = 10), S_3 (AB = 11)
- 8. Use S_0 for the initial state. It is up to you to decide what each of the other state-names mean with respect to the input sequence. Since you have some freedom of choice you must clearly articulate what each state-name means. See slide 6 of the 3/29 lecture, for example.
- 9. Logic must be implemented with no more than two levels and use only AND gates and OR gates (and a single inverter if you need to generate Y' from the Y input).

Please submit:

- a) Your design for the State Graph, with documentation of what each State means (see item 8 above).
- b) Corresponding State Table
- c) Corresponding Transition Table
- d) Corresponding flip-flop Next-State Maps and expressions derived therefrom.
- e) Circuit diagram
- ps. The Mealy machine sequence detector described in lecture only required three states. But as mentioned in an earlier lecture, it is typical for a Moore machine to require more states to accomplish the same task.

		/
Į	ر ا	,

) 2	1 next	ate	Prosent Output		
Present	X=0	X=	X = 0	X=1	
So	So	Si	0	O	
\$1	Sz	50	Ø	0	
Sz	53	So	1	O	
53	15	13,	0	O	

C	igg angle
	•

)		A*B*		Z		
	AB	X=0	X=	X = 0	X=1	
•	00	00	01	Q	Q	•
	01	10	00	D	0	
	10	11	00	1	0	
	11	00	01	O	O	

d)

