June 24, 2021 Meeting Agenda

June 23, 2021

1 Joint estimation of μ_p and μ_t , Ad-hoc algorithm

1.1 Key Points

- The ad-hoc algorithm appears to be insensitive to initial parameters. I varied the initial values of both μ_p and μ_t , regardless of the initial values, it converged to $\mu_p = 13.2$ and $\mu_t = 0.065$.
- Including all judges in our estimation of μ_t reduced our estimate of μ_t from 0.08 to 0.065. Table 1 shows how the values of μ_p and μ_t evolve during the algorithm.
- I redid the Negative log likelihood vs μ_p plot, plotting both the optimal value of μ_p we get using brute force, and the value we get from the optimizer. The plots are in Figure 1.

Figure 1: Negative log likelihood vs μ_p , the brute force optimizer is the red line

Table 1: Evolution of μ_p and μ_t

MuP	MuT	Iteration
10.700	0.140	0
12.988	0.066	1
13.197	0.065	2
13.201	0.065	3

2 Gaussian EM Algorithm

2.1 Key Points

• I plotted the mean value of $X_1^i, X_2^i, D_1^i, D_2^i$ in each iteration of the EM algorithm, the figure is below.

Figure 2: Mean values of $X_1^i, X_2^i, D_1^i, D_2^i$ in each iteration