Formelsammlung

zur Vorlesung Statistik I+II

Humboldt-Universität zu Berlin

Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Statistik

8. April 2022

Inhaltsverzeichnis

1	Uni	rariate Statistik	
	1.1	Verteilung von Variablen	
		1.1.1 Verteilung klassierter Variablen	
		1.1.2 Verteilung unklassierter Variablen	
	1.2	Parameter von Variablen	
		1.2.1 Lageparameter	
		1.2.2 Streuungsparameter	
2	Biva	riate Statistik	
	2.1	Verteilung von Variablen	
	2.2	Maßzahlen für den Zusammenhang zweier Variablen	
		2.2.1 Empirische Kovarianz	
		2.2.2 Bravais-Pearson-Korrelationskoeffizient	
		2.2.3 Spearman'scher Rangkorrelationskoeffizient	
		2.2.4 Kendall'scher Rangkorrelationskoeffizient	
		2.2.5 Quadratische Kontingenz	
		2.2.6 Kontingenzkoeffiziert und korrigierter Kontingenzkoeffizier	
3	$\mathbf{Lin} \boldsymbol{\epsilon}$	are Regression	
	3.1	Regressiongerade	
	3.2	Regressionskoeffizienten	
		3.2.1 Steigung	
		3.2.2 Achsenabschnitt	
	3.3	Bestimmtheitsmaß und Korrelation	
4	Zeit	reihenanalyse	
	4.1	Geometrisches Mittel	
	4.2	Trendbestimmung	
		4.2.1 Gleitender Durchschnitt	
		4.2.2 Lineare Trendfunktion	
		4.2.3 Exponentialtrend	
	4.3	Periodische Schwankungen	
	4.4	Gütemaße	
		4.4.1 Mittlere quadratische Streuung (Standardabweichung)	
		4.4.2 Variationskoeffizient	
		4.4.3 Bestimmtheitsmaß	
		1.1.0 December of the second s	• •
5		xzahlen	
	5.1	Mosegablon	

	5.2 Indices	16	9.1.5 Poisson-Verteilung	2
	5.2.1 Nach Laspeyres	16	9.2 Stetige Verteilungen	27
	5.2.2 Nach Paasche	17	9.2.1 Stetige Gleichverteilung	27
	5.2.3 Nach Fisher	17		28
	5.2.4 Kanonischer Wertindex	17		28
	5.2.5 Indexeigenschaften	17	9.2.4 Standardnormalverteilung	28
			9.2.5 Zentraler Grenzwertsatz	29
6	Kombinatorik	18	9.2.6 χ^2 -Verteilung	29
				29
7	Wahrscheinlichkeitsrechnung	19		29
	7.1 Ereignisse	19		30
	7.2 Additionssätze	19	7.0 Tipproximation von vertenangen	,
	7.3 Bedingte Wahrscheinlichkeit	19	10 Stichprobenverteilung 3	31
	7.4 Unabhängige Ereignisse	20	-	31
	7.5 Multiplikationssätze	20		$\frac{32}{32}$
	7.6 Totale Wahrscheinlichkeit	20		$\frac{32}{32}$
	7.7 Theorem von Bayes	20	1000 Strongrosson verteriang der Strongrosson varianis.	-
	•		11 Schätzverfahren	33
8	Zufallsvariablen	21	11.1 Grundbegriffe	33
	8.1 Verteilung von Zufallsvariablen	21		33
	8.1.1 Verteilung diskreter Zufallsvariablen	21	11.2.1 Maximum - Likelihood Methode	3:
	8.1.2 Verteilung stetiger Zufallsvariablen	21		33
	8.1.3 Berechnung von Wahrscheinlichkeiten	21	·	33
	8.2 Parameter von Zufallsvariablen	22		34
	8.2.1 Lageparameter	22	11.3.2 Konfidenzintervall für den Anteilswert π bei Normalapproxi-	
	8.2.2 Streuungsparameter	22	••	35
	8.3 Verteilung von Zufallsvariablen	23	Hawton	,
	8.3.1 Zwei diskrete Zufallsvariablen	23	12 Testverfahren 3	36
	8.3.2 Zwei stetige Zufallsvariablen	23	12.1 Grundbegriffe	36
	8.4 Unabhängigkeit und Kovarianz für Zufallsvariablen	24	· · · · · · · · · · · · · · · · · · ·	36
	8.4.1 Unabhängigkeit	24		36
	8.4.2 Kovarianz zweier Zufallsvariablen	24		36
	8.4.3 Theoretischer Korrelationskoeffizient	24		36
	8.4.4 Linearkombinationen von Zufallsvariablen	$\frac{25}{25}$		37
				37
9	Verteilungsmodelle	26	,	38
	9.1 Diskrete Verteilungen	26		38
	9.1.1 Diskrete Gleichverteilung	26		,
	9.1.2 Bernoulliverteilung	26	13 Regressionsanalyse	39
	9.1.3 Binomialverteilung	26	13.1 Allgemeines Regressionsmodell	39
	9.1.4 Hypergeometrische Verteilung	27		39

	13.2.1 Kleinste-Quadrate Schätzwerte für $\beta_0, \beta_1, \sigma_u^2$
	13.2.2 Eigenschaften der KQ-Schätzer
	13.2.3 Stichprobenverteilung der KQ-Schätzer falls $U_i \sim N(0, \sigma_u^2)$.
	13.2.4 Test für β_1
	13.2.5 Konfidenzintervalle
l4 Vert	eilungstabellen
14.1	Verteilungsfunktion $F(x)$ der Binomialverteilung
14.2	Verteilungsfunktion $F(x)$ der Poissonverteilung
14.3	Quantile x_p der χ^2 -Verteilung mit f Freiheitsgraden
14.4	Quantile x_p der t-Verteilung mit f Freiheitsgraden
14.5	95% Quantil $x_{0,95}$ der F -Verteilung mit f_1 und f_2 Freiheitsgraden .
14.6	Verteilungsfunktion Φ der Standardnormalverteilung
	vertenangsrammen i der stamaaramermanvertenang

1 Univariate Statistik

1.1 Verteilung von Variablen

1.1.1 Verteilung klassierter Variablen

Anzahl der Beobachtungen	n	
Anzahl der Klassen	k	$j = 1, \dots, k$
Untere/obere Klassengrenze	x_i^u	x_i^o
mit	$x_{i}^{o} = x_{i+1}^{u}$	$x_i^u < x \leq x_i^o$
Klassenbreite, Klassenmitte	$\triangle x_j = x_j^o - x_j^u$	$x_j^m = \frac{1}{2}(x_j^u + x_j^o)$

Empirische Häufigkeitsverteilung klassierter Variablen

Absolute Klassenhäufigkeit:

$$h(x_j) = h(x_j^u < X \le x_j^o) = h_j = \sum_{i=1}^n I(x_j^u < x_i \le x_j^o)$$

relative Klassenhäufigkeit:

$$f(x_j) = f(x_j^u < X \le x_j^o) = \frac{h(x_j)}{n}$$

Häufigkeitsdichte:

$$f_K(x_j) = \frac{f(x_j)}{x_j^o - x_j^u} \text{ für } x_j^u < X \le x_j^o$$

Empirische Verteilungsfunktion klassierter Variablen

$$F(x) = \begin{cases} 0 & \text{für } x \le x_1^u \\ \sum_{i=1}^{j-1} f(x_i) + \frac{x - x_j^u}{x_j^o - x_j^u} \cdot f(x_j) & \text{für } x_j^u < x \le x_j^o \\ 1 & \text{für } x_k^o < x \end{cases}$$

Interpolation von F(x)

$$F(x) = F(x_{j}^{u}) + \frac{x - x_{j}^{u}}{x_{j}^{o} - x_{j}^{u}} \cdot f(x_{j})$$

1.1.2 Verteilung unklassierter Variablen

Empirische Häufigkeitsverteilung

Anzahl der Beobachtungen

 $h(x_j) = h(X = x_j) = h_j = \sum_{i=1}^n I(x_i = x_j)$ absolute Häufigkeit

relative Häufigkeit

Empirische Verteilungsfunktion

$$F(x) = \begin{cases} 0 & \text{für } x < x_1 \\ \sum_{i=1}^{j} f(x_i) & \text{für } x_j \le x < x_{j+1} \\ 1 & \text{für } x_k \le x \end{cases}$$

Anzahl der Merkmalsausprägungen k

absolute Summenhäufigkeit

$$H(x_j) = \sum_{i=1}^{j} h(x_i)$$
 für $j = 1, \dots, k$

Parameter von Variablen

1.2.1 Lageparameter

Arithmetisches Mittel

unklassierte Variablen $\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}$

diskrete Variablen $\overline{x} = \frac{1}{n} \cdot \sum_{j=1}^{k} x_j \cdot h(x_j) = \sum_{j=1}^{k} x_j \cdot f(x_j)$

klassierte Variablen $\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{k} x_j^m \cdot h(x_j) = \sum_{j=1}^{k} x_j^m \cdot f(x_j)$

 $\overline{x} = \sum_{i=1}^{n} x_i \cdot g_i / \sum_{i=1}^{n} g_i$ gewogenes

 $\overline{x} = \sum \frac{n_{\ell}}{n} \, \overline{x}_{\ell}$ gepooltes

 n_{ℓ} Beobachtungen und \overline{x}_{ℓ} Mittelwert in Gruppe ℓ

Modus

Nichtklassierte Variablen:

$$x_D = \left\{ x_j \mid h_j = \max_{x_k} h_k \text{ bzw. } f_j = \max_{x_k} f(x_k) \right\}$$

Klassierte Variablen:

$$x_D = x_j^u + \frac{f_K(x_j) - f_K(x_{j-1})}{2 \cdot f_K(x_j) - f_K(x_{j-1}) - f_K(x_{j+1})} \cdot (x_j^o - x_j^u)$$

Median

nichtklassierte Variablen $x_{0,5} = x_{\left(\frac{n+1}{2}\right)}$ falls n ungerade $x_{0,5} = \frac{1}{2} \cdot \left\{ x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)} \right\}$ falls n gerade

 $x_{0,5} = x_j^u + \frac{0.5 - F(x_j^u)}{f(x_j)} \cdot (x_j^o - x_j^u)$ klassierte Variablen

p - Quantile

Nichtklassierte Variablen:

$$x_p = x_{(k)}$$
 falls $n \cdot p \notin \mathbb{Z}$ und $k \in \mathbb{Z}$ die auf $n \cdot p$ folgende ganze Zahl $x_p = \frac{1}{2} \cdot \left\{ x_{(k)} + x_{(k+1)} \right\}$ falls $n \cdot p \in \mathbb{Z}$, dann $k = n \cdot p$

Klassierte Variablen:

$$x_p = x_j^u + \frac{p - F(x_j^u)}{f(x_j)} \cdot (x_j^o - x_j^u)$$
 für 0

Harmonisches Mittel

$$\overline{x}_H = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}}$$

gewogenes
$$\overline{x}_H = \frac{\sum\limits_{j=1}^k g_j}{\sum\limits_{j=1}^k \frac{g_j}{x_j}} \quad \text{mit } x_j = \frac{g_j}{h_j}, \quad j = 1, \dots, k$$

1.2.2 Streuungsparameter

Spannweite

$$R = x_{max} - x_{min} = x_{(n)} - x_{(1)}$$

Quartilsabstand, Interquartilsabstand

$$QA = x_{0.75} - x_{0.25}$$

Lineares Streuungsmaß (Mittlere absolute Abweichung)

$$d = \frac{1}{n} \cdot \sum_{j=1}^{n} |x_i - c|, \text{ mit } c = x_{0,5} \text{ oder } c = \overline{x}$$

Varianz einer empirischen Häufigkeitsverteilung

$$s^{2} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{2} - \overline{x}^{2}$$
$$= \frac{1}{n} \cdot \sum_{j=1}^{k} (x_{j} - \overline{x})^{2} \cdot h(x_{j}) = \sum_{j=1}^{k} (x_{j} - \overline{x})^{2} \cdot f(x_{j})$$

Standardabweichung einer empirischen Häufigkeitsverteilung

$$s = \sqrt{s^2}$$

Gepoolte Varianz

$$s^2 = \sum_{\ell=1}^r \frac{n_\ell}{n} \cdot s_\ell^2 + \sum_{\ell=1}^r \frac{n_\ell}{n} \cdot (\overline{x}_\ell - \overline{x})^2$$

mit n_{ℓ} Beobachtungen, \overline{x}_{ℓ} Mittelwert und s_{ℓ}^2 die Varianz in Gruppe ℓ

Variations- und Quartilsdispersionskoeffizient

$$v = \frac{s}{\overline{x}} \text{ für } \overline{x} > 0 \qquad \qquad q = \frac{QA}{x_{0,5}} \text{ für } x_{0,5} > 0$$

2.1 Verteilung von Variablen

Gemeinsame Verteilung

Absolute Häufigkeit
$$h(x_i, y_j) = h_{ij} = \sum_{k=1}^m \sum_{l=1}^r I\left((x_k, y_l) = (x_i, y_j)\right)$$

Relative Häufigkeit $f(x_i, y_j) = f_{ij} = \frac{h_{ij}}{n}$
Verteilungsfunktion $F(x, y) = \sum_{x_i \in \mathcal{X}} \sum_{y_i \in \mathcal{Y}} f(x_i, y_j)$

Randverteilungen

Absolute Häufigkeit für
$$X$$
 $h_{i\bullet} = \sum_{j=1}^r h_{ij}$ $i=1,\ldots,m$ Relative Häufigkeit für X $f_{i\bullet} = \sum_{j=1}^r f_{ij}$ $i=1,\ldots,m$ Absolute Häufigkeit für Y $h_{\bullet j} = \sum_{i=1}^m h_{ij}$ $j=1,\ldots,r$ Relative Häufigkeit für Y $f_{\bullet j} = \sum_{i=1}^r f_{ij}$ $j=1,\ldots,r$

Bedingte Verteilungen

Relative Häufigkeit bedingt auf
$$Y$$
 $f(x_i|y_j) = \frac{f_{ij}}{f_{\bullet j}} = \frac{h_{ij}}{h_{\bullet j}}$
Relative Häufigkeit bedingt auf X $f(y_j|x_i) = \frac{f_{ij}}{f_{i\bullet}} = \frac{h_{ij}}{h_{i\bullet}}$

2.2 Maßzahlen für den Zusammenhang zweier Variablen

${\bf 2.2.1}\quad {\bf Empirische~Kovarianz}$

$$s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_j - \overline{y})$$

2.2.2 Bravais-Pearson-Korrelationskoeffizient

$$r_{xy} = r_{yx} = \frac{s_{xy}}{s_x \cdot s_y} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot \sum_{i=1}^{n} (y_i - \overline{y})^2}} \quad \text{mit } -1 \le r_{xy} \le +1$$

$$= \frac{n \cdot \sum_{i=1}^{n} x_i \cdot y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i}{\sqrt{\left(n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2\right) \left(n \cdot \sum_{i=1}^{n} y_i^2 - \left(\sum_{i=1}^{n} y_i\right)^2\right)}}$$

2.2.3 Spearman'scher Rangkorrelationskoeffizient

$$r_s = 1 - \frac{6 \cdot \sum_{i=1}^n d_i^2}{n \cdot (n^2 - 1)} \text{ mit } d_i = \operatorname{Rang}(x_i) - \operatorname{Rang}(y_i) \text{ und } -1 \le r_s \le +1$$

2.2.4 Kendall'scher Rangkorrelationskoeffizient

$$\tau = \frac{P - Q}{P + Q} \quad \text{mit } -1 \le \tau \le +1$$

P die Anzahl der Beobachtungspaare mit $x_i < x_j$ und $y_i < y_j$ sowie Q die Anzahl der Beobachtungspaare mit $x_i < x_j$ und $y_i > y_j$

2.2.5 Quadratische Kontingenz

$$K^{2} = \sum_{i=1}^{m} \sum_{j=1}^{r} \frac{(h_{ij} - \hat{e}_{ij})^{2}}{\hat{e}_{ij}} = n \cdot \left(-1 + \sum_{i=1}^{m} \sum_{j=1}^{r} \frac{h_{ij}^{2}}{h_{i\bullet} \cdot h_{\bullet j}}\right)$$
$$= n \cdot \sum_{i=1}^{m} \sum_{j=1}^{r} \frac{(f_{ij} - f_{i\bullet} \cdot f_{\bullet j})^{2}}{f_{i\bullet} \cdot f_{\bullet j}}$$

mit $\hat{e}_{ij} = \frac{1}{n} \cdot h_{i \bullet} \cdot h_{\bullet j}$ (erwartete Häufigkeit unter Unabhängigkeit).

${\bf 2.2.6}\quad {\bf Kontingenzkoeffizient\ und\ korrigierter\ Kontingenzkoeffizient}$

$$C = \sqrt{\frac{K^2}{n+K^2}}; \qquad C_{korr} = C \cdot \sqrt{\frac{C^*}{C^*-1}} \text{ mit } C^* = \min(\text{Anzahl Zeilen}, \text{Anzahl Spalten})$$

3 Lineare Regression

3.1 Regressiongerade

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 \cdot x_i)^2 \to \text{ minimal}$$

 $\hat{y}_i = b_0 + b_1 \cdot x_i + \epsilon_i$

3.2 Regressionskoeffizienten

3.2.1 Steigung

$$b_1 = \frac{\sum_{i=1}^n (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$= \frac{n \cdot \sum_{i=1}^n x_i \cdot y_i - \left(\sum_{i=1}^n x_i\right) \cdot \left(\sum_{i=1}^n y_i\right)}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$

$$= \frac{s_{xy}}{s_x^2} = r_{xy} \cdot \frac{s_y}{s_x}$$

3.2.2 Achsenabschnitt

$$b_0 = \frac{\sum_{i=1}^{n} y_i \cdot \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} x_i \cdot y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$
$$= \overline{y} - b_1 \cdot \overline{x}$$

3.3 Bestimmtheitsmaß und Korrelation

$$R_{yx}^{2} = R_{xy}^{2} = \frac{s_{yx}^{2}}{s_{y}^{2} \cdot s_{x}^{2}} = r_{yx}^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

$$= \frac{\left[\sum_{i=1}^{n} (y_{i} - \overline{y}) \cdot (x_{i} - \overline{x})\right]^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$= \frac{\left(n \cdot \sum_{i=1}^{n} x_{i} \cdot y_{i} - \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} y_{i}\right)^{2}}{\left[n \cdot \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \left[n \cdot \sum_{i=1}^{n} y_{i}^{2} - \left(\sum_{i=1}^{n} y_{i}\right)^{2}\right]}$$

4 Zeitreihenanalyse

4.1 Geometrisches Mittel

Geometrisches Mittel
$$\overline{x}_G = \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n}$$

Mittleres Wachstum $i_G = \sqrt[n]{\frac{x_1}{x_0} \cdot \frac{x_2}{x_1} \cdot \dots \cdot \frac{x_n}{x_{n-1}}} = \sqrt[n]{\frac{x_n}{x_0}}$

4.2 Trendbestimmung

4.2.1 Gleitender Durchschnitt

Ordnung	$x_t^* $ mit $t = k+1, \ldots, T-k$
ungerade	$\frac{1}{2k+1} \cdot \sum_{i=t-k}^{t+k} x_i$
gerade	$\frac{1}{2k} \cdot \left[\frac{1}{2} \cdot x_{t-k} + \frac{1}{2} \cdot x_{t+k} + \sum_{i=t-(k-1)}^{t+(k-1)} x_i \right]$

4.2.2 Lineare Trendfunktion

Trendfunktion
$$\hat{x}_t = a + b \cdot t$$

$$Schätzwerte \qquad a = \frac{\sum_{t=1}^{T} x_t \cdot \sum_{t=1}^{T} t^2 - \sum_{t=1}^{T} t \cdot \sum_{t=1}^{T} x_t \cdot t}{T \cdot \sum_{t=1}^{T} t^2 - \left(\sum_{t=1}^{T} t\right)^2}$$

$$b = \frac{T \cdot \sum_{t=1}^{T} x_t \cdot t - \sum_{t=1}^{T} x_t \sum_{t=1}^{T} t}{T \cdot \sum_{t=1}^{T} t^2 - \left(\sum_{t=1}^{T} t\right)^2}$$

4.2.3 Exponentialtrend

Trendfunktion $\hat{x}_t = a \cdot b^t \iff \log \hat{x}_t = \log a + t \cdot \log b$ Schätzwerte $\log a = \frac{\sum_{t=1}^T \log x_t \cdot \sum_{t=1}^T t^2 - \sum_{t=1}^T t \cdot \sum_{t=1}^T t \cdot \log x_t}{T \cdot \sum_{t=1}^T t^2 - \left(\sum_{t=1}^T t\right)^2}$ $\log b = \frac{T \cdot \sum_{t=1}^T t \cdot \log x_t - \sum_{t=1}^T \log x_t \cdot \sum_{t=1}^T t}{T \cdot \sum_{t=1}^T t^2 - \left(\sum_{t=1}^T t\right)^2}$

4.3 Periodische Schwankungen

Zeitreihenmodell	Additiv	Multiplikativ
$s_{i,j} =$	$x_{i,j} - \hat{x}_{i,j}$	$rac{x_{i,j}}{\hat{x}_{i,j}}$
$\overline{s}_j =$	$\frac{1}{P} \cdot \sum_{i=1}^{P} s_{i,j}$	$\frac{1}{P} \cdot \sum_{i=1}^{P} s_{i,j}$
$\hat{x}_{i,j}^{ZRM} =$	$\hat{x}_{i,j} + \overline{s}_j$	$\hat{x}_{i,j} \cdot \overline{s}_{j}$

4.4 Gütemaße

4.4.1 Mittlere quadratische Streuung (Standardabweichung)

$$s_{ZRM} = \sqrt{\frac{1}{T} \sum_{i=1}^{P} \sum_{j=1}^{k} (x_{i,j} - \hat{x}_{i,j}^{ZRM})^2}$$

4.4.2 Variationskoeffizient

$$v = \frac{s_{ZRM}}{\overline{x}}$$

4.4.3 Bestimmtheitsmaß

$$R^2 = 1 - \frac{s_{ZRM}^2}{s_x^2} \text{ mit } s_x^2 = \frac{1}{T} \sum_{i=1}^P \sum_{j=1}^k (x_{i,j} - \overline{x})^2, \quad 0 \le \frac{s_{ZRM}^2}{s_x^2} \le 1$$

5 Indexzahlen

Anzahl der Güter im Warenkorb: n							
Basiszeitraum $t = 0$ Berichtszeitraum t							
Preis des Gutes i	$p_0(i)$	$p_t(i)$					
Menge des Gutes i	$q_0(i)$	$q_t(i)$					
Wert des Gutes i	$v_0(i) = p_0(i) \cdot q_0(i)$	$v_t(i) = p_t(i) \cdot q_t(i)$					

5.1 Messzahlen

Preismesszahl für das Gut i: $\frac{p_t(i)}{p_0(i)}$ Mengenmesszahl für das Gut i: $\frac{q_t(i)}{q_0(i)}$ Wertmesszahl für das Gut i: $\frac{v_t(i)}{v_0(i)} = \frac{p_t(i)}{p_0(i)} \frac{q_t(i)}{q_0(i)}$

5.2 Indices

5.2.1 Nach Laspeyres

Preisindex:
$$I_{La;0,t}^{p} = \sum_{i=1}^{n} \frac{p_{t}(i)}{p_{0}(i)} \cdot \frac{p_{0}(i)q_{0}(i)}{\sum_{j=1}^{n} p_{0}(j)q_{0}(j)} = \frac{\sum_{i=1}^{n} p_{t}(i)q_{0}(i)}{\sum_{j=1}^{n} p_{0}(j)q_{0}(j)}$$
Mengenindex:
$$I_{La;0,t}^{q} = \sum_{i=1}^{n} \frac{q_{t}(i)}{q_{0}(i)} \cdot \frac{p_{0}(i)q_{0}(i)}{\sum_{j=1}^{n} p_{0}(j)q_{0}(j)} = \frac{\sum_{i=1}^{n} q_{t}(i)p_{0}(i)}{\sum_{i=1}^{n} q_{0}(i)p_{0}(i)}$$
Wertindex:
$$I_{La;0,t}^{v} = \sum_{i=1}^{n} \frac{v_{t}(i)}{v_{0}(i)} \cdot \frac{v_{0}(i)}{\sum_{j=1}^{n} v_{0}(j)} = \frac{\sum_{i=1}^{n} p_{t}(i)q_{t}(i)}{\sum_{i=1}^{n} p_{0}(i)q_{0}(i)}$$

Nach Paasche

$$\text{Preisindex:} \qquad I_{Pa;0,t}^{p} = \frac{1}{\sum_{i=1}^{n} \frac{1}{\frac{p_{t}(i)}{p_{0}(i)}} \cdot \frac{p_{t}(i)q_{t}(i)}{\sum_{j=1}^{n} p_{t}(j)q_{t}(j)}} = \frac{\sum_{i=1}^{n} p_{t}(i)q_{t}(i)}{\sum_{i=1}^{n} p_{0}(i)q_{t}(i)}$$

$$\text{Mengenindex:} \qquad I_{Pa;0,t}^{q} = \frac{1}{\sum_{i=1}^{n} \frac{1}{\frac{q_{t}(i)}{q_{0}(i)}} \cdot \frac{p_{t}(i)q_{t}(i)}{\sum_{j=1}^{n} p_{t}(j)q_{t}(j)}} = \frac{\sum_{i=1}^{n} q_{t}(i)p_{t}(i)}{\sum_{i=1}^{n} q_{0}(i)p_{t}(i)}$$

$$\text{Wertindex:} \qquad I_{Pa;0,t}^{v} = \frac{1}{\sum_{i=1}^{n} \frac{1}{\frac{v_{t}(i)}{v_{t}(i)}} \cdot \frac{v_{t}(i)}{\sum_{j=1}^{n} v_{0}(j)}} = \frac{\sum_{i=1}^{n} p_{t}(i)q_{t}(i)}{\sum_{i=1}^{n} p_{t}(i)q_{t}(i)}$$

5.2.3Nach Fisher

 $I_{Fi;0,t}^p = \sqrt{I_{La;0,t}^p I_{Pa;0,t}^p}$ Preisindex: Mengenindex: $I_{Fi:0,t}^q = \sqrt{I_{La:0,t}^q I_{Pa:0,t}^q}$ Wertindex: $I_{Fi:0,t}^{v} = \sqrt{I_{La:0,t}^{v} I_{Pa:0,t}^{v}}$

5.2.4 Kanonischer Wertindex

$$I_{0,t}^{v} = \frac{\sum_{i=1}^{n} v_{t}(i)}{\sum_{i=1}^{n} v_{0}(i)} = \frac{\sum_{i=1}^{n} p_{t}(i)q_{t}(i)}{\sum_{i=1}^{n} p_{0}(i)q_{0}(i)} = I_{La;0,t}^{v} = I_{Pa;0,t}^{v} = I_{Fi;0,t}^{v}$$

Indexeigenschaften 5.2.5

Probe nach Fisher	Laspeyres	Paasche	Fisher
Identität $(I_{t,t}=1)$	+	+	+
Zeitumkehr $(I_{t,0} = \frac{1}{I_{0,t}})$	-	-	+
Rund $(I_{t_1,t_T} = I_{t_1,t_2} I_{t_2,t_3} \dots I_{t_{T-1},t_T})$	-	-	-
Faktorumkehr $(I_{0,t}^v = I_{0,t}^p I_{0,t}^q)$	-	-	+
Proportionalität ¹	+	+	+
Dimensionswechsel (Unabh. von Preiseinheit)	+	+	+
Bestimmtheit (Def. Preise oder Mengen gleich 0)	+	+	+

¹ Wenn alle $p_t(i) = (1 + \alpha)p_0(i) \Rightarrow I_{0,t}^p = 1 + \alpha$

Kombinatorik

ohne Wiederholung mit Wiederholung

Permutation P(n) = n! $P(n; g_1, \dots, g_r) = \frac{n!}{g_1! \cdot g_2! \cdot \dots \cdot g_r!}$ Variation $V(n, k) = \frac{n!}{(n-k)!}$ $V^W(n, k) = n^k$ Kombination $K(n, k) = \frac{n!}{k! \cdot (n-k)!} = \binom{n}{k}$ $K^W(n, k) = \binom{n+k-1}{k}$

Permutation beliebige Anordnung von n Elementen

Variation Auswahl von k aus n unter Berücksichtigung der Anordnung Kombination Auswahl von k aus n ohne Berücksichtigung der Anordnung

Binomialkoeffizienten

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \binom{n}{n-k}$$
$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$
$$\binom{n}{0} = \binom{n}{n} = 1, \qquad \binom{n}{1} = \binom{n}{n-1} = n$$

$\mathbf{k} \backslash \mathbf{n}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2		1	3	6	10	15	21	28	36	45	55	66	78	91
3			1	4	10	20	35	56	84	120	165	220	286	364
4				1	5	15	35	70	126	210	330	495	715	1001
5					1	6	21	56	126	252	462	792	1287	2002
6						1	7	28	84	210	462	924	1716	3003
7							1	8	36	120	330	792	1716	3432
8								1	9	45	165	495	1287	3003
9									1	10	55	220	715	2002
10										1	11	66	286	1001
11											1	12	78	364
12												1	13	91
13													1	14
14														1

7 Wahrscheinlichkeitsrechnung

7.1 Ereignisse

Beschreibung des zugrunde- liegenden Sachverhaltes	Bezeichnung (Sprechweise)	Darstellung
A tritt sicher ein	A ist sicheres Ereignis	A = S
A tritt sicher nicht ein Wenn A eintritt, tritt B ein	A ist unmögliches Ereignis A ist Teilmenge von B	$A = \emptyset$ $A \subset B$
Genau dann, wenn A eintritt, tritt B ein	\boldsymbol{A} und \boldsymbol{B} sind äquivalente Ereignisse	$A \equiv B$
Wenn A eintritt, tritt B nicht ein	\boldsymbol{A} und \boldsymbol{B} sind disjunkte Ereignisse	$A\cap B=\emptyset$
Genau dann, wenn A eintritt, tritt B nicht ein	\boldsymbol{A} und \boldsymbol{B} sind komplementäre Ereignisse	$B = \overline{A}$
Genau dann, wenn mindestens ein A_i eintritt (genau dann, wenn A_1 oder A_2 oder eintritt), tritt A ein	A ist Vereinigung der A_i	$A = \bigcup_i A_i$
Genau dann, wenn alle A_i eintreten (genau dann, wenn A_1 und A_2 und eintreten), tritt A ein	A ist Durchschnitt der A_i	$A = \bigcap_i A_i$

7.2 Additionssätze

Allgemeine Additionssätze

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C)$$

$$+ P(A \cap B \cap C)$$

Additionssatz für disjunkte Ereignisse $(A_i \cap A_j = 0 \text{ für alle } i \neq j)$

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = P(A_1) + P(A_2) + \ldots + P(A_n) = \sum_{i=1}^n P(A_i)$$

7.3 Bedingte Wahrscheinlichkeit

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \ , \quad P(B) > 0 \ \text{und} \ P(B|A) = \frac{P(A \cap B)}{P(A)} \ , \quad P(A) > 0$$

7.4 Unabhängige Ereignisse

$$P(A|B) = P(A|\overline{B}) = P(A) \text{ und } P(B|A) = P(B|\overline{A}) = P(B)$$

7.5 Multiplikationssätze

Allgemeiner Multiplikationssatz

$$P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$$

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1 \cap A_2)$$

Multipikationssatz für unabhängige Ereignisse

$$P(A \cap B) = P(A) \cdot P(B)$$

7.6 Totale Wahrscheinlichkeit

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_n \cap B) = \sum_{i=1}^{n} P(A_i \cap B)$$

$$= P(B|A_1) \cdot P(A_1) + P(B|A_2) \cdot P(A_2) + \dots + P(B|A_n) \cdot P(A_n)$$

$$= \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)$$

7.7 Theorem von Bayes

$$P(A_j|B) = \frac{P(B|A_j) \cdot P(A_j)}{\sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)} \quad \forall j = 1, \dots, n$$

8 Zufallsvariablen

8.1 Verteilung von Zufallsvariablen

8.1.1 Verteilung diskreter Zufallsvariablen

Wahrscheinlichkeitsfunktion einer diskreten Zufallsvariablen

$$f(x_i) = P(X = x_i), (i = 1, 2, ...)$$

Verteilungsfunktion einer diskreten Zufallsvariablen

$$F(x) = \sum_{x_i \le x} f(x_i) = P(X \le x), \quad (i = 1, 2, ...)$$

8.1.2 Verteilung stetiger Zufallsvariablen

Wahrscheinlichkeitsdichte stetiger Zufallsvariablen

$$\int_{a}^{b} f(x) dx = P(a < X \le b), \quad \text{für alle } a, b \text{ mit } a \le b$$

Verteilungsfunktion stetiger Zufallsvariablen

$$F(x) = \int_{-\infty}^{x} f(t) dt = P(-\infty < X \le x)$$

8.1.3 Berechnung von Wahrscheinlichkeiten

$$\begin{array}{rcl} P(X \leq a) & = & F(a) \\ P(X < a) & = & F(a) - P(X = a) \\ P(X > a) & = & 1 - F(a) \\ P(X \geq a) & = & 1 - F(a) + P(X = a) \\ P(a < X \leq b) & = & F(b) - F(a) \\ P(a \leq X \leq b) & = & F(b) - F(a) + P(X = a) \\ P(a < X < b) & = & F(b) - F(a) - P(X = b) \\ P(a \leq X < b) & = & F(b) - F(a) + P(X = a) - P(X = b) \end{array}$$

8.2 Parameter von Zufallsvariablen

8.2.1 Lageparameter

Erwartungswert

diskrete Zufallsvariablen
$$E[X] = \mu_X = \sum_{\substack{i=1 \ +\infty}}^k x_i \cdot f(x_i)$$

stetige Zufallsvariablen $E[X] = \mu_X = \int_{-\infty}^k x \cdot f(x) dx$

Rechenregeln für Erwartungswerte

$$E[a+b\cdot X] = a+b\cdot E[X]$$
 (a, b konstant)
 $E[X\pm Y] = E[X]\pm E[Y]$

8.2.2 Streuungsparameter

Varianz

Diskrete Zufallsvariablen:

$$Var(X) = \sigma_X^2 = \sum_{i=1}^k (x_i - \mu_X)^2 \cdot f(x_i) = \sum_{i=1}^k x_i^2 \cdot f(x_i) - \mu_X^2$$

Stetige Zufallsvariablen:

$$Var(X) = \sigma_X^2 = \int_{-\infty}^{+\infty} (x - \mu_X)^2 \cdot f(x) \, dx = \int_{-\infty}^{+\infty} x^2 \cdot f(x) \, dx - \mu_X^2$$

Allgemein:

$$Var(X) = \sigma_X^2 = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

Rechenregeln für Varianzen

$$Var(a+b\cdot X) = b^2 \cdot Var(X) \ (a, b \text{ konstant})$$

 $Var(X \pm Y) = Var(X) + Var(Y) \pm 2 \cdot Cov(X, Y)$

8.3 Verteilung von Zufallsvariablen

8.3.1 Zwei diskrete Zufallsvariablen

Gemeinsame Verteilung

Wahrscheinlichkeitsfunktion:

$$P(X = x_i, Y = y_j) = f(x_i, y_j);$$
 mit $i = 1, ..., m; j = 1, ..., r$

Verteilungsfunktion:

$$F(x,y) = P(X \le x, Y \le y) = \sum_{x_i \le x} \sum_{y_j \le y} f(x_i, y_j)$$

Randverteilungen

Wk.funktion für
$$X$$

$$f(x_i) = P(X = x_i) = \sum_{\substack{j=1 \ m}}^r f(x_i, y_j)$$
 Wk.funktion für Y
$$f(y_j) = P(Y = y_j) = \sum_{\substack{i=1 \ r}}^r f(x_i, y_j)$$
 Verteilungsfunktion für X
$$P(X \le x) = F(x) = \sum_{\substack{j=1 \ x_i \le x \ m}}^r f(x_i, y_j)$$
 Verteilungsfunktion für Y
$$P(Y \le y) = F(y) = \sum_{\substack{j=1 \ m}}^r f(x_i, y_j)$$

Bedingte Verteilungen

Wk.funktion bedingt auf Y:

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{f(x_i, y_j)}{f(y_j)} = f(x_i | y_j)$$

Wk.funktion bedingt auf X:

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{f(x_i, y_j)}{f(x_i)} = f(y_j | x_i)$$

8.3.2 Zwei stetige Zufallsvariablen

Gemeinsame Verteilung

Dichtefunktion
$$P(x < X \le x + \Delta x; y < Y \le y + \Delta y) = f(x, y)$$

Verteilungsfunktion $F(x, y) = P(X \le x, Y \le y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) du dv$

Randverteilungen

Dichtefunktion für
$$X$$

$$f(x) = \int_{-\infty}^{+\infty} f(x,y) \, dy$$
Dichtefunktion für Y
$$f(y) = \int_{-\infty}^{+\infty} f(x,y) \, dx$$
Verteilungsfunktion für X
$$P(X \le x) = F(x) = \int_{-\infty}^{+\infty} \int_{-\infty}^{x} f(u,v) \, du dv$$
Verteilungsfunktion für Y
$$P(Y \le y) = F(y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{x} f(u,v) \, du dv$$

Bedingte Verteilungen

Wk.funktion bedingt auf
$$Y$$
 $f(x|y) = \frac{f(x,y)}{f(y)}$
Wk.funktion bedingt auf X $f(y|x) = \frac{f(x,y)}{f(x)}$

8.4 Unabhängigkeit und Kovarianz für Zufallsvariablen

8.4.1 Unabhängigkeit

Zwei Zufallsvariablen X und Y sind unabhängig, wenn gilt: diskreter Fall $f(x_i, y_j) = f(x_i) \cdot f(y_j)$ für alle x_i, y_j stetiger Fall $f(x, y) = f(x) \cdot f(y)$ für alle x, y

8.4.2 Kovarianz zweier Zufallsvariablen

$$Cov(X,Y) = E[(X - E[X]) \cdot (Y - E[Y])] = E[XY] - E[X]E[Y]$$

8.4.3 Theoretischer Korrelationskoeffizient

$$\rho(X,Y) = E\left[\frac{(X - E[X])}{\sigma_X} \cdot \frac{(Y - E[Y])}{\sigma_Y}\right] = \frac{Cov(X,Y)}{\sigma_X \cdot \sigma_Y} \quad \text{mit } -1 \le \rho(X,Y) \le +1$$

8.4.4 Linearkombinationen von Zufallsvariablen

Linearkombinationen:

$$Z_1 = a \cdot X + b \cdot Y$$

$$Z_2 = a \cdot X - b \cdot Y$$

Erwartungswerte:

$$E[Z_1] = a \cdot E[X] + b \cdot E[Y]$$

$$E[Z_1] = a \cdot E[X] + b \cdot E[Y] \qquad \qquad E[Z_2] = a \cdot E[X] - b \cdot E[Y]$$

Varianzen:

$$Var(Z_1) = a^2 \cdot Var(X) + b^2 \cdot Var(Y) + 2 \cdot a \cdot b \cdot Cov(X, Y)$$

$$Var(Z_2) = a^2 \cdot Var(X) + b^2 \cdot Var(Y) - 2 \cdot a \cdot b \cdot Cov(X, Y)$$

Verteilungsmodelle

Diskrete Verteilungen

9.1.1 Diskrete Gleichverteilung

$$X \sim U(n) \qquad E[X] = \frac{1}{n} \sum_{i=1}^{n} x_{i} \qquad Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - E[X])^{2}$$

$$f_{U}(x_{i}; n) = \begin{cases} \frac{1}{n} & \text{für } i = 1, \dots, n \\ 0 & \text{sonst} \end{cases}$$

$$F_{U}(x; n) = \begin{cases} 0 & \text{für } x \leq x_{1} \\ \frac{i}{n} & \text{für } x_{i} < x \leq x_{i+1} \\ 1 & \text{für } x > x_{n} \end{cases}$$

9.1.2 Bernoulliverteilung

$$X \sim B(p)$$
 $E[X] = p$ $Var(X) = p \cdot (1-p)$

$$f_B(x;p) = \begin{cases} 1-p & \text{für } x = 0 \\ p & \text{für } x = 1 \\ 0 & \text{sonst} \end{cases}$$

$$F_B(x;p) = \begin{cases} 0 & \text{für } x < 0 \\ 1-p & \text{für } 0 \le x < 1 \\ 1 & \text{für } x \ge 1 \end{cases}$$

9.1.3 Binomialverteilung

$$X \sim B(n; p)$$
 $E[X] = n \cdot p$ $Var(X) = n \cdot p \cdot (1 - p)$

$$f_B(x; n, p) = \begin{cases} \binom{n}{x} \cdot p^x \cdot (1-p)^{n-x} & \text{für } x = 0, 1, \dots, n \\ 0 & \text{sonst} \end{cases}$$

$$F_B(x; n, p) = \begin{cases} \sum_{k=0}^{x} \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k} & \text{für } x \ge 0 \\ 0 & \text{für } x < 0 \end{cases}$$

Tabellen für die Verteilungsfunktion $F_B(x;n,p)$ finden sich auf Seite 41ff und es gilt p > 0.5:

$$f_B(x; n; p) = f_B(n - x; n; 1 - p)$$
 und $F_B(x; n; p) = 1 - F_B(n - x - 1; n; 1 - p)$

9.1.4 Hypergeometrische Verteilung

$$X \sim H(N; M; n)$$

$$E[X] = n \cdot \frac{M}{N}$$

$$E[X] = n \cdot \frac{M}{N}$$
 $Var(X) = n \cdot \frac{M}{N} \cdot \left(1 - \frac{M}{N}\right) \cdot \left(\frac{N-n}{N-1}\right)$

$$f_H(x; N, M, n) = \begin{cases} \frac{\binom{M}{x} \cdot \binom{N-M}{n-x}}{\binom{N}{n}} & \text{für } x \in \{0, 1, \dots, \min(n, M)\} \\ 0 & \text{sonst} \end{cases}$$

9.1.5 Poisson-Verteilung

$$X \sim PO(\lambda)$$

$$E[X] = \lambda$$

$$Var(X) = \lambda$$

$$f_{PO}(x;\lambda) = \frac{\lambda^x}{x!} \cdot e^{-\lambda} \qquad \text{für } x = 0, 1, 2, \dots; \lambda > 0$$

$$F_{PO}(x;\lambda) = \begin{cases} \sum_{k=0}^x \frac{\lambda^k}{k!} \cdot e^{-\lambda} & \text{für } k \ge 0; \lambda > 0\\ 0 & \text{für } k < 0 \end{cases}$$

Tabellen für die Verteilungsfunktion $F_{PO}(x;\lambda)$ finden sich auf Seite 61ff

Stetige Verteilungen

Stetige Gleichverteilung

$$X \sim U(a;b)$$

$$E[X] = \frac{b+a}{2}$$

$$Var(X) = \frac{(b-a)^2}{12}$$

$$f_U(x;a;b) = \begin{cases} \frac{1}{b-a} & \text{für } a \leq x \leq b \\ 0 & \text{sonst} \end{cases}$$

$$F_U(x; a; b) = \begin{cases} 0 & \text{für } x \le a \\ \frac{x - a}{b - a} & \text{für } a < x \le b \\ 1 & \text{für } b < x \end{cases}$$

9.2.2 Exponential verteilung

$$X \sim EX(\lambda)$$

$$E[X] = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

$$f_{EX}(x;\lambda) = \begin{cases} \lambda \cdot e^{-\lambda x} & \text{für } x \ge 0, \lambda > 0 \\ 0 & \text{für } x < 0 \end{cases}$$

$$F_{EX}(x;\lambda) = \begin{cases} 1 - e^{-\lambda x} & \text{für } x \ge 0 \\ 0 & \text{für } x < 0 \end{cases}$$

9.2.3 Normalverteilung

$$X \sim N(\mu; \sigma)$$

$$E[X] = \mu$$

$$Var(X) = \sigma^2$$

$$f_N(x;\mu;\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\cdot\sigma^2}\right) \quad \text{für } -\infty < x < +\infty, \sigma > 0$$

$$F_N(x;\mu;\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x \exp\left(-\frac{(t-\mu)^2}{2\cdot\sigma^2}\right) dt$$

9.2.4 Standardnormalverteilung

$$Z \sim N(0;1)$$

$$E[Z] = 0$$

$$Var(Z) = 1$$

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{z^2}{2}\right)$$

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{z} \exp\left(-\frac{v^{2}}{2}\right) dv$$

Tabelle für die Verteilungsfunktion $\Phi(z)$ ist am Ende der Formelsammlung

Beziehung zwischen Normalverteilung und der Standardnormalverteilung

$$X = \mu + Z \cdot \sigma$$
 bzw. $Z = \frac{X - \mu}{\sigma}$

$$P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = P\left(Z \le \frac{x - \mu}{\sigma}\right)$$
$$= \Phi\left(\frac{x - \mu}{\sigma}\right) = \Phi(z) = P(Z \le z)$$

9.2.5 Zentraler Grenzwertsatz

 X_1, X_2, \ldots, X_n seien unabhängige, identisch verteilte Zufallsvariablen mit $E[X_i] = \mu \neq \pm \infty$ und $Var(X_i) = \sigma^2 < \infty$ (für $i = 1, \ldots, n$). Dann hat die Zufallsvariable $S_n = \Sigma_i X_i$ den Erwartungswert $E[S_n] = n\mu$ und die Varianz $Var(S_n) = n\sigma^2$. Die Verteilung der standardisierten Zufallsvariablen

$$Z_{n} = \frac{S_{n} - E[S_{n}]}{\sqrt{Var(S_{n})}} = \frac{\sum_{i=1}^{n} X_{i} - n \cdot \mu}{\sqrt{n \cdot \sigma^{2}}} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{X_{i} - \mu}{\sigma}$$

konvergiert mit steigendem n gegen die standardisierte Normalverteilung:

$$\lim_{n \to \infty} P(Z_n \le z) = \Phi(z).$$

9.2.6 χ^2 -Verteilung

 $X \sim \chi_f^2$ $E\left[X\right] = f$ Tabellen für die Quantile finden sich auf Seite 67

9.2.7 *t*-Verteilung

 $X\sim t_n$ $E\left[X\right]=0 \text{ für } n>1 \qquad Var(X)=\frac{n}{n-2} \text{ für } n>2$ Tabellen für die Quantile finden sich auf Seite 69

9.2.8 F-Verteilung

 $X \sim F_{f_1;f_2}$ $E[X] = \frac{f_2}{f_2-2}$ für $f_2 > 2$ $Var(X) = \frac{f_2^2(f_1+f_2-2)}{f_1(f_2-2)^2(f_2-4)}$ für $f_2 > 4$ Tabellen für die Quantile finden sich auf Seite 70

9.3 Approximation von Verteilungen

Exakte Verteilung	Approximations- bedingung(en)	Approximative Verteilung
$X \sim Hyp(N; M; n)$,	$X \approx B\left(n; p := \frac{M}{N}\right)$
	$\frac{n}{N} < 0.05, \frac{M}{N} < 0.05, n > 10$	$X \approx Po\left(\lambda := n\frac{M}{N}\right)$
	$n\frac{M}{N}(1-\frac{M}{N}) \ge 9$	$X \approx N\left(\mu := n\frac{M}{N}; \sigma^2\right)$
		$\sigma^2 := n \frac{M}{N} \left(1 - \frac{M}{N} \right) \frac{N - n}{N - 1}$
$X \sim B(n; p)$	p < 0,05, n > 10	$X\approx Po\left(\lambda:=np\right)$
	$np(1-p) \ge 9$	$X\approx N\left(\mu:=np;\sigma^2\right)$
		$\sigma^2 := np(1-p)$
$X \sim Po(\lambda)$	$\lambda \ge 9$	$X \approx N\left(\mu := \lambda; \sigma^2 := \lambda\right)$
$X \sim \chi_f^2$	$f \ge 30$	$X \approx N\left(\mu := f; \sigma^2 := 2f\right)$
$X \sim t_n$	$n \ge 30$	$X \approx N(0;1)$

Die Stetigkeitskorrektur wird bei der Approximation einer diskreten Verteilung durch eine Normalverteilung benutzt, wenn die Varianz σ^2 der Normalverteilung kleiner als 9 ist.

Stetigkeitskorrektur:

X, mit einer diskrete Verteilung, ist approximierbar durch $Y \sim N(\mu, \sigma^2)$ mit $\mu = E(X)$ und $\sigma^2 = Var(X) < 9$. Dann gilt:

$$P(a \le X \le b) \approx P(a - 0, 5 \le Y \le b + 0, 5)$$

$$P(a < X \le b) \approx P(a + 0, 5 \le Y \le b + 0, 5)$$

$$P(a \le X < b) \approx P(a - 0, 5 \le Y \le b - 0, 5)$$

$$P(a < X < b) \approx P(a + 0, 5 \le Y \le b - 0, 5)$$

$$P(X = a) \approx P(a - 0, 5 \le Y \le a + 0, 5)$$

Stichprobenverteilung

Stichprobenverteilung des Stichprobenmittelwertes 10.1

Stichprobenvariablen $E[X_i] = \mu, Var(X_i) = \sigma^2 \quad (i = 1, ..., n)$

Stichprobenfunktion $\overline{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i, E[\overline{X}] = \mu$

 $\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$ Stichprobenwert

Varianz von \overline{X}		Varianz der G	rundgesamtheit σ^2
Stichprobe	$\frac{n}{N}$	bekannt	unbekannt
mit Zurücklegen		$\frac{\sigma^2}{n}$	$\frac{S^2}{n}$
ohne Zurücklegen	< 0,05	$\frac{\sigma^2}{n}$	$\frac{S^2}{n}$
	$\geq 0,05$	$\frac{\sigma^2}{n} \cdot \frac{(N-n)}{(N-1)}$	$\frac{S^2}{n} \cdot \frac{(N-n)}{(N-1)}$

Verteilung von \overline{X} bei einfacher Zufallsstichprobe				
Grundgesamtheit	σ^2	Zufallsvariabl	e Verteilung	Bedingung
$X_i \sim N(\mu; \sigma)$	bekannt	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$		
	unbekannt	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$	$t(n-1) \approx N(0,1)$	$\begin{array}{c} \text{für } n \leq 30 \\ \text{für } n > 30 \end{array}$
Verteilung unbekannt	bekannt	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$\approx N(0,1)$	$ f\ddot{u}r \ n > 30 $
	unbekannt	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$	$\approx N(0,1)$	für $n > 30$

Stichprobenverteilung des Stichprobenanteilswertes

Stichprobenfunktion: $\hat{\Pi} = \frac{X}{n}$

Stichprobenwert: $p = \frac{x}{n}$

Verteilung bei einfacher Zufallsstichprobe

$$X \sim B(n;\pi)$$

$$E[X] = n \cdot \pi$$

$$Var(X) = n \cdot \pi \cdot (1 - \pi)$$

Approximation durch die Normalverteilung, wenn die Bedingungen erfüllt sind:

$$\hat{\Pi} pprox N\left(\pi; \sigma_{\hat{\Pi}} = \sqrt{rac{\pi(1-\pi)}{n}}
ight)$$

Verteilung bei uneingeschränkter Zufallsstichprobe

 $X \sim H(N; M; n)$ mit $\pi = M/N$ $E[X] = n \cdot \pi$ $Var(X) = n \cdot \pi \cdot (1 - \pi) \frac{N - n}{N - 1}$

Approximation durch die Normalverteilung, wenn die Bedingungen erfüllt sind:

$$\hat{\Pi} pprox N \left(\pi; \sigma_{\hat{\Pi}} = \sqrt{\frac{\pi(1-\pi)}{n} \frac{N-n}{N-1}} \right)$$

Stichprobenverteilung der Stichprobenvarianz

Voraussetzung: $X_i \sim N(\mu; \sigma)$ für $i = 1, \dots, n$

	t - (p**) *) - **- * - ; * * *)	• •	
μ	Stichprobenfunktion	Erwartungswert	Verteilung
bekannt	$S^{*2} = \frac{1}{n} \cdot \sum_{i=1}^{n} (X_i - \mu)^2$	$E[S^{*2}] = \sigma^2$	$\frac{n \cdot S^{*2}}{\sigma^2} \sim \chi_n^2$
unbekannt	$S^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_i - \overline{X})^2$	$E[S^2] = \sigma^2$	$\frac{(n-1)\cdot S^2}{\sigma^2} \sim \chi_{n-1}^2$

11 Schätzverfahren

11.1 Grundbegriffe

Wahrer Parameter der Grundgesamtheit ϑ Schätzfunktion oder Schätzer $\widehat{\theta} = g(X_1, \dots, X_n)$ Schätzwert $\widehat{\vartheta} = g(x_1, \dots, x_n)$

Mittlere quadratische Abweichung (MSE=Mean Square Error)

$$MSE = E[(\widehat{\theta} - \vartheta)^{2}] = \underbrace{E[(\widehat{\theta} - E[\widehat{\theta}])^{2}]}_{=Var(\widehat{\theta})} + \underbrace{(E[\widehat{\theta}] - \vartheta)^{2}}_{=Verzerrung^{2}}$$

Schwankungsintervall $(\widehat{\theta}$ symmetrisch verteilt um $\vartheta)$

$$P(\vartheta - c \cdot \sigma(\widehat{\theta}) \le \widehat{\theta} \le \vartheta + c \cdot \sigma(\widehat{\theta})) = 1 - \alpha$$

11.2 Schätzmethoden

11.2.1 Maximum - Likelihood Methode

Likelihood-Funktion $L(\vartheta) = L(\vartheta|x_1, \dots, x_n) = \prod_{i=1}^n f(x_i|\vartheta) \rightarrow \text{maximieren}$ LogLikelihood-Funktion $\log(L(\vartheta)) = \sum_{i=1}^n \log(f(x_i|\vartheta)) \rightarrow \text{maximieren}$

11.2.2 Methode der kleinsten Quadrate

Quadratische Form $Q(\vartheta) = \sum_{i=1}^{n} (x_i - E[X_i])^2 = \sum_{i=1}^{n} (x_i - g_i(\vartheta))^2 \to \text{minimieren}$

11.3 Intervallschätzung

Konfidenzintervall zum Konfidenzniveau $1-\alpha$

$$P(V_u \le \vartheta \le V_o) = P\left(\widehat{\theta} - c \cdot \sigma(\widehat{\theta}) \le \vartheta \le \widehat{\theta} + c \cdot \sigma(\widehat{\theta})\right) = 1 - \alpha$$
$$[V_u, V_o] = [\widehat{\theta} - c \cdot \sigma(\widehat{\theta}), \widehat{\theta} + c \cdot \sigma(\widehat{\theta})]$$

11.3.1 Konfidenzintervall für den Erwartungswert μ

Voraussetzung X_i in der Grundgesamtheit normalverteilt oder Verteilung in Grundgesamtheit unbekannt, aber $n \geq 30$

	$Var(X_i) = \sigma^2$ bekannt
Konfidenzintervall	$P\left(\overline{X} - z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$
	$\left[\overline{X} - z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}; \overline{X} + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right]$
Schätzintervall	$\left[\overline{x} - z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right]$
Länge	$\ell = 2 \cdot e = 2 \cdot z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$ mit $\ell = \text{Länge und } e = \text{Schätz-}$
	fehler
Stichprobenumfang	$n \ge \frac{\sigma^2 \cdot z_{1-\frac{\alpha}{2}}^2}{e^2}$

	$Var(X_i) = \sigma^2$ unbekannt
Konfidenzintervall	$P\left(\overline{X} - t_{1-\frac{\alpha}{2};f} \cdot \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + t_{1-\frac{\alpha}{2};f} \cdot \frac{S}{\sqrt{n}}\right) = 1 - \alpha$ $\left[\overline{X} - t_{1-\frac{\alpha}{2};f} \cdot \frac{S}{\sqrt{n}}; \overline{X} + t_{1-\frac{\alpha}{2};f} \cdot \frac{S}{\sqrt{n}}\right]$
Schätzintervall	$\left[\overline{x} - t_{1-\frac{\alpha}{2};f} \cdot \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\frac{\alpha}{2};f} \cdot \frac{s}{\sqrt{n}}\right]$
Länge	$\ell = 2 \cdot e = 2 \cdot t_{1 - \frac{\alpha}{2}; f} \cdot \frac{S}{\sqrt{n}}$
Approximatives Konfidenzintervall für $n > 30$	$P\left(\overline{X} - z_{1-\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + z_{1-\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}}\right) \approx 1 - \alpha$
	$\left[\overline{X} - z_{1-\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}; \overline{X} + z_{1-\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}\right]$

11.3.2 Konfidenzintervall für den Anteilswert π bei Normalapproximation

Voraussetzung	$X \sim B(n;\pi)$ und $\hat{\Pi} = X/n$ ist approximativ normal verteilt
Approximatives Konfidenzintervall	$P\left(\frac{X}{n} - z_{1-\frac{\alpha}{2}} \cdot \sigma_{\hat{\Pi}} \le \pi \le \frac{X}{n} + z_{1-\frac{\alpha}{2}} \cdot \sigma_{\hat{\Pi}}\right) = 1 - \alpha$
	$\left[\frac{X}{n} - z_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\frac{X}{n} \cdot \left(1-\frac{X}{n}\right)}{n}}; \frac{X}{n} + z_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\frac{X}{n} \cdot \left(1-\frac{X}{n}\right)}{n}}\right]$
Schätzintervall	$\left[\frac{x}{n} - z_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\frac{x}{n} \cdot \left(1-\frac{x}{n}\right)}{n}}; \frac{x}{n} + z_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\frac{x}{n} \cdot \left(1-\frac{x}{n}\right)}{n}}\right]$
Stichprobenumfang	$n \ge \frac{z_{1-\alpha/2}^2}{4 \cdot e^2}$

12 Testverfahren

12.1 Grundbegriffe

12.1.1 Hypothesen

Test		Nullhypothese H_0	Alternativhypothese H_1
Allgemein		$\vartheta \in \Theta_0$	$\vartheta \in \Theta_1$
Zweiseitig		$\vartheta = \vartheta_0$	$\vartheta \neq \vartheta_0$
Einseitig	rechtsseitig	$\vartheta \le \vartheta_0$	$\vartheta > \vartheta_0$
	linksseitig	$\vartheta \ge \vartheta_0$	$\vartheta < \vartheta_0$

12.1.2 Gütefunktion

$$G(\vartheta) = P(\text{``}H_1\text{''}|\vartheta) \text{ mit } \left\{ \begin{array}{ll} G(\vartheta) \leq \alpha & \text{ für alle } \vartheta \in \Theta_0 \\ G(\vartheta) = 1 - \beta(\vartheta) & \text{ für alle } \vartheta \in \Theta_1 \end{array} \right.$$

12.2 Einstichprobentest für μ

Varianz σ^2 der C	Grundgesamtheit	bekannt	unbekannt
Teststatistik V		$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$\frac{\overline{X} - \mu_0}{S/\sqrt{n}}$
Bedingungen		Verteilung von V unter H_0	
$X_i \sim N(\mu; \sigma)$	$n \le 30$	N(0, 1)	t_{n-1}
	n > 30	N(0,1)
beliebig verteilt	n > 30	$\approx N$	(0,1)

12.2.1 Gütefunktion beim Test auf μ

$G(\mu)$ für zweiseitig	gen Test
$1 - \left[P\left(V \le z_{1 - \frac{\alpha}{2}} - \frac{\mu - \mu_0}{\sigma/\sqrt{n}} \right) - P \right]$	$\left(V < -z_{1-\frac{\alpha}{2}} - \frac{\mu - \mu_0}{\sigma/\sqrt{n}}\right)\right]$
$G(\mu)$ für linksseitigen Test	$G(\mu)$ für rechtsseitigen Test
$P\left(V < -z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma/\sqrt{n}}\right)$	$1 - P\left(V \le z_{1-\alpha} - \frac{\mu - \mu_0}{\sigma/\sqrt{n}}\right)$

12.3 Einstichprobentest für π bei Normalapproximation

$$V = \frac{\widehat{\pi} - \pi_0}{\sqrt{\frac{\pi_0 \cdot (1 - \pi_0)}{n}}}$$
 ist unter $H_0 N(0, 1)$ verteilt

12.4 Test für die Differenz zweier Erwartungswerte

Voraussetzung: $X_{1i} \sim N(\mu_1, \sigma_1), X_{2i} \sim N(\mu_2, \sigma_2)$ und $\omega_0 := \mu_1 - \mu_2$

veraasseezang.	$(\mu_1, \sigma_1), \sigma_2$	$\mu_1, (\mu_2, \sigma_2)$ and ω_0 . μ_1, μ_2
σ_1,σ_2		Test statistik ${\cal V}$
bekannt		$\frac{D - \omega_0}{\sigma_D} = \frac{(\bar{X}_1 - \bar{X}_2) - \omega_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
		Verteilung unter H_0 : $V \sim N(0,1)$
unbekannt	$\sigma_1^2 = \sigma_2^2$	$\frac{D - \omega_0}{S_D} = \frac{(\bar{X}_1 - \bar{X}_2) - \omega_0}{\sqrt{\frac{n_1 + n_2}{n_1 \cdot n_2} \cdot \frac{(n_1 - 1) \cdot S_1^2 + (n_2 - 1) \cdot S_2^2}{n_1 + n_2 - 2}}}$
		Verteilung unter H_0 : $V \sim t_{n_1+n_2-2}$
•	$\sigma_1^2 eq \sigma_2^2$	$\frac{D - \omega_0}{S_D} = \frac{(\bar{X}_1 - \bar{X}_2) - \omega_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$
		Verteilung unter H_0 :
		$V \approx t_f f = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \cdot \left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \cdot \left(\frac{s_2^2}{n_2}\right)^2}$

Hinweis: Für $n_1 > 30$ und $n_2 > 30$ gilt: $V \approx N(0;1)$

12.5 χ^2 - Anpassungstest

Voraussetzungen	$n \cdot p_i \geq 1$ für alle i und $n \cdot p_i \geq 5$ für mindestens 80% der $n \cdot p_i$
Teststatistik	$V = \sum_{i=1}^{I} \frac{(h_i - n \cdot p_i)^2}{n \cdot p_i} \approx \chi_{I-1-k}^2$ mit $k = \text{Zahl}$ der Parameter, die geschätzt werden müssen

12.6 $\quad \chi^2$ - Unabhängigkeitstest

Voraussetzungen	$\hat{h}_{ij} \geq 5$ für alle i und j
Teststatistik	$V = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(h_{ij} - \hat{h}_{ij})^2}{\hat{h}_{ij}} \approx \chi_f^2 \text{mit } f = (I - 1)(J - 1),$ wobej $I = \text{Anzahl Zeilen } J = \text{Anzahl Spalten } \hat{h}_{ij} = h_{ij}h_{ij}/n$
Teststatistik	$V = \sum_{i=1}^{J} \sum_{j=1}^{J} \frac{\hat{h}_{ij}}{\hat{h}_{ij}} \approx \chi_f \text{init } J = (I-1)(J-1),$ wobei $I = \text{Anzahl Zeilen}, J = \text{Anzahl Spalten}, \hat{h}_{ij} = h_{i \bullet} h_{\bullet j}$

13 Regressionsanalyse

13.1 Allgemeines Regressionsmodell

$$Y_i = f(x_{1i}, x_{2i}, ..., x_{mi}) + U_i = E[Y_i] + U_i$$
 mit $E[U_i] = 0$

13.2 Einfache lineare Regressionfunktion

Wahre Regressionsgerade $E[Y_i] = \beta_0 + \beta_1 \cdot x_i$

Regressionsmodell $Y_i = E[Y_i] + U_i = \beta_0 + \beta_1 \cdot x_i + U_i$

Störterm $U_i = Y_i - E[Y_i]$

mit $E[U_i] = 0$, $Var(U_i) = \sigma_u^2$,

 $Cov(U_iU_j) = 0$ für $i \neq j$ und $U_i \sim N(0; \sigma_u^2)$

Geschätzte Regressionsgerade $\hat{y}_i = b_0 + b_1 \cdot x_i$

Stichprobenregressionsmodell $y_i = \hat{y}_i + \hat{u}_i = b_0 + b_1 \cdot x_i + \hat{u}_i$

Residuen $\hat{u}_i = y_i - \hat{y}_i$

13.2.1 Kleinste-Quadrate Schätzwerte für $\beta_0, \beta_1, \sigma_u^2$

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) \cdot (y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{n \cdot \sum_{i=1}^{n} x_{i} \cdot y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \cdot \left(\sum_{i=1}^{n} y_{i}\right)}{n \cdot \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$= \frac{s_{xy}}{s_{x}^{2}} = r_{xy} \cdot \frac{s_{y}}{s_{x}}$$

$$b_{0} = \frac{\sum_{i=1}^{n} y_{i} \cdot \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} x_{i} \cdot y_{i}}{n \cdot \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \overline{y} - b_{1} \cdot \overline{x}$$

$$s_{\hat{u}}^2 = \sum_{i=1}^n \hat{u}_i^2$$

13.2.2 Eigenschaften der KQ-Schätzer

Erwartungswerte:

$$E[b_1] = \beta_1 \qquad E[b_0] = \beta_0$$

Varianzen:

$$Var(b_1) = \sigma_{b_1}^2 = \frac{\sigma_u^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \qquad Var(b_0) = \sigma_{b_0}^2 = \frac{\sigma_u^2 \cdot \sum_{i=1}^n x_i^2}{n \cdot \sum_{i=1}^n (x_i - \overline{x})^2}$$

Geschätzte Varianzen:

$$\hat{\sigma}_{b_1}^2 = \frac{s_u^2}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} \qquad \hat{\sigma}_{b_0}^2 = \frac{s_u^2 \cdot \sum\limits_{i=1}^n x_i^2}{n \cdot \sum\limits_{i=1}^n (x_i - \overline{x})^2}$$

13.2.3 Stichprobenverteilung der KQ-Schätzer falls $U_i \sim N(0, \sigma_u^2)$

$$b_0 \sim N(\beta_0, \sigma_{b_0}^2)$$
 $\frac{b_0 - \beta_0}{\hat{\sigma}_{b_0}} \sim t_{n-2}$
 $b_1 \sim N(\beta_1, \sigma_{b_1}^2)$ $\frac{b_1 - \beta_1}{\hat{\sigma}_{b_1}} \sim t_{n-2}$

13.2.4 Test für β_1

Hypothesen $H_0: \beta_1 = 0$ vs. $H_1: \beta_1 \neq 0$

Teststatistik $V = \frac{b_1}{\hat{\sigma}_{b_1}}$ und verwerfe H_0 falls $|v| > t_{1-\frac{\alpha}{2};n-2}$

13.2.5 Konfidenzintervalle

Für β_0	$[b_0 - t_{1-\frac{\alpha}{2};n-2} \cdot \hat{\sigma}_{b_0}; b_0 + t_{1-\frac{\alpha}{2};n-2} \cdot \hat{\sigma}_{b_0}]$
Für β_1	$[b_1 - t_{1 - \frac{\alpha}{2}; n - 2} \cdot \hat{\sigma}_{b_1}; b_1 + t_{1 - \frac{\alpha}{2}; n - 2} \cdot \hat{\sigma}_{b_1}]$

Für
$$E[Y]$$
 an der Stelle x_0
$$\left[b_0 + b_1 x_0 \pm t_{1-\frac{\alpha}{2};n-2} \cdot \hat{\sigma}_u \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}}\right]$$

14 Verteilungstabellen

14.1 Verteilungsfunktion F(x) der Binomialverteilung für p=0,05

$x \setminus n$	1	2	3	4	5	6	7	8
0	0.9500	0.9025	0.8574	0.8145	0.7738	0.7351	0.6983	0.6634
1	1.0000	0.9975	0.9928	0.9860	0.9774	0.9672	0.9556	0.9428
2	1.0000	1.0000	0.9999	0.9995	0.9988	0.9978	0.9962	0.9942
3	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996
4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$x \setminus n$	17	18	19	20	21	22	23	24
0	0.4181	0.3972	0.3774	0.3585	0.3406	0.3235	0.3074	0.2920
1	0.7922	0.7735	0.7547	0.7358	0.7170	0.6982	0.6794	0.6608
2	0.9497	0.9419	0.9335	0.9245	0.9151	0.9052	0.8948	0.8841
3	0.9912	0.9891	0.9868	0.9841	0.9811	0.9778	0.9742	0.9702
4	0.9988	0.9985	0.9980	0.9974	0.9968	0.9960	0.9951	0.9940
5	0.9999	0.9998	0.9998	0.9997	0.9996	0.9994	0.9992	0.9990
6	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$x \setminus n$	33	34	35	36	37	38	39	40
0	0.1840	0.1748	0.1661	0.1578	0.1499	0.1424	0.1353	0.1285
1	0.5036	0.4877	0.4720	0.4567	0.4418	0.4272	0.4129	0.3991
2	0.7728	0.7593	0.7458	0.7321	0.7183	0.7045	0.6906	0.6767
3	0.9192	0.9119	0.9042	0.8963	0.8881	0.8796	0.8709	0.8619
4	0.9770	0.9741	0.9710	0.9676	0.9641	0.9603	0.9562	0.9520
5	0.9946	0.9937	0.9927	0.9917	0.9905	0.9891	0.9877	0.9861
6	0.9989	0.9987	0.9985	0.9982	0.9979	0.9975	0.9971	0.9966
7	0.9998	0.9998	0.9997	0.9997	0.9996	0.9995	0.9994	0.9993
8	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9999
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

41

Verteilungsfunktion F(x) der Binomialverteilung für p=0,05

an \ an	9							
$x \backslash n$		10	11	12	13	14	15	16
0	0.6302	0.5987	0.5688	0.5404	0.5133	0.4877	0.4633	0.4401
1	0.9288	0.9139	0.8981	0.8816	0.8646	0.8470	0.8290	0.8108
2	0.9916	0.9885	0.9848	0.9804	0.9755	0.9699	0.9638	0.9571
3	0.9994	0.9990	0.9984	0.9978	0.9969	0.9958	0.9945	0.9930
4	1.0000	0.9999	0.9999	0.9998	0.9997	0.9996	0.9994	0.9991
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$x \backslash n$	25	26	27	28	29	30	31	32
0	0.2774	0.2635	0.2503	0.2378	0.2259	0.2146	0.2039	0.1937
1	0.6424	0.6241	0.6061	0.5883	0.5708	0.5535	0.5366	0.5200
2	0.8729	0.8614	0.8495	0.8373	0.8249	0.8122	0.7992	0.7861
3	0.9659	0.9613	0.9563	0.9509	0.9452	0.9392	0.9329	0.9262
4	0.9928	0.9915	0.9900	0.9883	0.9864	0.9844	0.9821	0.9796
5	0.9988	0.9985	0.9981	0.9977	0.9973	0.9967	0.9961	0.9954
6	0.9998	0.9998	0.9997	0.9996	0.9995	0.9994	0.9993	0.9991
7	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$x \backslash n$	41	42	43	44	45	46	47	48
0	0.1221	0.1160	0.1102	0.1047	0.0994	0.0945	0.0897	0.0853
1	0.3855	0.3724	0.3595	0.3471	0.3350	0.3232	0.3117	0.3006
2	0.6629	0.6490	0.6352	0.6214	0.6077	0.5940	0.5805	0.5670
3	0.8526	0.8431	0.8334	0.8235	0.8134	0.8031	0.7926	0.7820
4	0.9475	0.9427	0.9377	0.9325	0.9271	0.9214	0.9155	0.9093
5	0.9844	0.9826	0.9806	0.9784	0.9761	0.9737	0.9711	0.9683
6	0.9961	0.9955	0.9949	0.9941	0.9934	0.9925	0.9916	0.9905
7	0.9992	0.9990	0.9988	0.9986	0.9984	0.9982	0.9979	0.9976
8	0.9998	0.9998	0.9998	0.9997	0.9997	0.9996	0.9995	0.9994
9	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9999
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

42

$x \setminus n$	1	2	3	4	5	6	7	8
0	0.9000	0.8100	0.7290	0.6561	0.5905	0.5314	0.4783	0.4305
1	1.0000	0.9900	0.9720	0.9477	0.9185	0.8857	0.8503	0.8131
2	1.0000	1.0000	0.9990	0.9963	0.9914	0.9842	0.9743	0.9619
3	1.0000	1.0000	1.0000	0.9999	0.9995	0.9987	0.9973	0.9950
4	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \setminus n$	17	18	19	20	21	22	23	24
0	0.1668	0.1501	0.1351	0.1216	0.1094	0.0985	0.0886	0.0798
1	0.4818	0.4503	0.4203	0.3917	0.3647	0.3392	0.3151	0.2925
2	0.7618	0.7338	0.7054	0.6769	0.6484	0.6200	0.5920	0.5643
3	0.9174	0.9018	0.8850	0.8670	0.8480	0.8281	0.8073	0.7857
4	0.9779	0.9718	0.9648	0.9568	0.9478	0.9379	0.9269	0.9149
5	0.9953	0.9936	0.9914	0.9887	0.9856	0.9818	0.9774	0.9723
6	0.9992	0.9988	0.9983	0.9976	0.9967	0.9956	0.9942	0.9925
7	0.9999	0.9998	0.9997	0.9996	0.9994	0.9991	0.9988	0.9983
8	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9998	0.9997
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Verteilungsfunktion F(x) der Binomialverteilung für p=0,10

$x \setminus n$	9	10	11	12	13	14	15	16
0	0.3874	0.3487	0.3138	0.2824	0.2542	0.2288	0.2059	0.1853
1	0.7748	0.7361	0.6974	0.6590	0.6213	0.5846	0.5490	0.5147
2	0.9470	0.9298	0.9104	0.8891	0.8661	0.8416	0.8159	0.7892
3	0.9917	0.9872	0.9815	0.9744	0.9658	0.9559	0.9444	0.9316
4	0.9991	0.9984	0.9972	0.9957	0.9935	0.9908	0.9873	0.9830
5	0.9999	0.9999	0.9997	0.9995	0.9991	0.9985	0.9978	0.9967
6	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9997	0.9995
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \setminus n$	25	26	27	28	29	30	31	32
0	0.0718	0.0646	0.0581	0.0523	0.0471	0.0424	0.0382	0.0343
1	0.2712	0.2513	0.2326	0.2152	0.1989	0.1837	0.1696	0.1564
2	0.5371	0.5105	0.4846	0.4594	0.4350	0.4114	0.3886	0.3667
3	0.7636	0.7409	0.7179	0.6946	0.6710	0.6474	0.6238	0.6003
4	0.9020	0.8882	0.8734	0.8579	0.8416	0.8245	0.8068	0.7885
5	0.9666	0.9601	0.9529	0.9450	0.9363	0.9268	0.9166	0.9056
6	0.9905	0.9881	0.9853	0.9821	0.9784	0.9742	0.9694	0.9642
7	0.9977	0.9970	0.9961	0.9950	0.9938	0.9922	0.9904	0.9883
8	0.9995	0.9994	0.9991	0.9988	0.9984	0.9980	0.9974	0.9967
9	0.9999	0.9999	0.9998	0.9998	0.9997	0.9995	0.9994	0.9992
10	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9998
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Beispiel: Die Zufallsvariable $X \sim B(13; 0, 1)$ und gesucht ist

$$P(X = 3) = F(3) - F(2) = 0,9658 - 0,8661 = 0,0997$$

 $P(1 \le X \le 3) = F(3) - F(0) = 0,9658 - 0,2545 = 0,7113$
 $P(X > 2) = 1 - F(2) = 1 - 0,8661 = 0,1339$

$x \setminus n$	1	2	3	4	5	6	7	8
0	0.8500	0.7225	0.6141	0.5220	0.4437	0.3771	0.3206	0.2725
1	1.0000	0.9775	0.9392	0.8905	0.8352	0.7765	0.7166	0.6572
2	1.0000	1.0000	0.9966	0.9880	0.9734	0.9527	0.9262	0.8948
3	1.0000	1.0000	1.0000	0.9995	0.9978	0.9941	0.9879	0.9786
4	1.0000	1.0000	1.0000	1.0000	0.9999	0.9996	0.9988	0.9971
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \backslash n$	17	18	19	20	21	22	23	24
0	0.0631	0.0536	0.0456	0.0388	0.0329	0.0280	0.0238	0.0202
1	0.2525	0.2241	0.1985	0.1756	0.1550	0.1367	0.1204	0.1059
2	0.5198	0.4797	0.4413	0.4049	0.3705	0.3382	0.3080	0.2798
3	0.7556	0.7202	0.6841	0.6477	0.6113	0.5752	0.5396	0.5049
4	0.9013	0.8794	0.8556	0.8298	0.8025	0.7738	0.7440	0.7134
5	0.9681	0.9581	0.9463	0.9327	0.9173	0.9001	0.8811	0.8606
6	0.9917	0.9882	0.9837	0.9781	0.9713	0.9632	0.9537	0.9428
7	0.9983	0.9973	0.9959	0.9941	0.9917	0.9886	0.9848	0.9801
8	0.9997	0.9995	0.9992	0.9987	0.9980	0.9970	0.9958	0.9941
9	1.0000	0.9999	0.9999	0.9998	0.9996	0.9993	0.9990	0.9985
10	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9997
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \setminus n$	9	10	11	12	13	14	15	16
0	0.2316	0.1969	0.1673	0.1422	0.1209	0.1028	0.0874	0.0743
1	0.5995	0.5443	0.4922	0.4435	0.3983	0.3567	0.3186	0.2839
2	0.8591	0.8202	0.7788	0.7358	0.6920	0.6479	0.6042	0.5614
3	0.9661	0.9500	0.9306	0.9078	0.8820	0.8535	0.8227	0.7899
4	0.9944	0.9901	0.9841	0.9761	0.9658	0.9533	0.9383	0.9209
5	0.9994	0.9986	0.9973	0.9954	0.9925	0.9885	0.9832	0.9765
6	1.0000	0.9999	0.9997	0.9993	0.9987	0.9978	0.9964	0.9944
7	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9994	0.9989
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \backslash n$	25	26	27	28	29	30	31	32
0	0.0172	0.0146	0.0124	0.0106	0.0090	0.0076	0.0065	0.0055
1	0.0931	0.0817	0.0716	0.0627	0.0549	0.0480	0.0420	0.0366
2	0.2537	0.2296	0.2074	0.1871	0.1684	0.1514	0.1359	0.1218
3	0.4711	0.4385	0.4072	0.3772	0.3487	0.3217	0.2961	0.2721
4	0.6821	0.6505	0.6187	0.5869	0.5555	0.5245	0.4940	0.4644
5	0.8385	0.8150	0.7903	0.7646	0.7379	0.7106	0.6827	0.6544
6	0.9305	0.9167	0.9014	0.8848	0.8667	0.8474	0.8269	0.8053
7	0.9745	0.9679	0.9602	0.9514	0.9414	0.9302	0.9178	0.9042
8	0.9920	0.9894	0.9862	0.9823	0.9777	0.9722	0.9659	0.9587
9	0.9979	0.9970	0.9958	0.9944	0.9926	0.9903	0.9876	0.9844
10	0.9995	0.9993	0.9989	0.9985	0.9978	0.9971	0.9961	0.9948
11	0.9999	0.9998	0.9998	0.9996	0.9995	0.9992	0.9989	0.9985
12	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9997	0.9996
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \setminus n$	1	2	3	4	5	6	7	8
0	0.8000	0.6400	0.5120	0.4096	0.3277	0.2621	0.2097	0.1678
1	1.0000	0.9600	0.8960	0.8192	0.7373	0.6554	0.5767	0.5033
2	1.0000	1.0000	0.9920	0.9728	0.9421	0.9011	0.8520	0.7969
3	1.0000	1.0000	1.0000	0.9984	0.9933	0.9830	0.9667	0.9437
4	1.0000	1.0000	1.0000	1.0000	0.9997	0.9984	0.9953	0.9896
5	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9996	0.9988
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \backslash n$	17	18	19	20	21	22	23	24
0	0.0225	0.0180	0.0144	0.0115	0.0092	0.0074	0.0059	0.0047
1	0.1182	0.0991	0.0829	0.0692	0.0576	0.0480	0.0398	0.0331
2	0.3096	0.2713	0.2369	0.2061	0.1787	0.1545	0.1332	0.1145
3	0.5489	0.5010	0.4551	0.4114	0.3704	0.3320	0.2965	0.2639
4	0.7582	0.7164	0.6733	0.6296	0.5860	0.5429	0.5007	0.4599
5	0.8943	0.8671	0.8369	0.8042	0.7693	0.7326	0.6947	0.6559
6	0.9623	0.9487	0.9324	0.9133	0.8915	0.8670	0.8402	0.8111
7	0.9891	0.9837	0.9767	0.9679	0.9569	0.9439	0.9285	0.9108
8	0.9974	0.9957	0.9933	0.9900	0.9856	0.9799	0.9727	0.9638
9	0.9995	0.9991	0.9984	0.9974	0.9959	0.9939	0.9911	0.9874
10	0.9999	0.9998	0.9997	0.9994	0.9990	0.9984	0.9975	0.9962
11	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9994	0.9990
12	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \setminus n$	9	10	11	12	13	14	15	16
0	0.1342	0.1074	0.0859	0.0687	0.0550	0.0440	0.0352	0.0281
1	0.4362	0.3758	0.3221	0.2749	0.2336	0.1979	0.1671	0.1407
2	0.7382	0.6778	0.6174	0.5583	0.5017	0.4481	0.3980	0.3518
3	0.9144	0.8791	0.8389	0.7946	0.7473	0.6982	0.6482	0.5981
4	0.9804	0.9672	0.9496	0.9274	0.9009	0.8702	0.8358	0.7982
5	0.9969	0.9936	0.9883	0.9806	0.9700	0.9561	0.9389	0.9183
6	0.9997	0.9991	0.9980	0.9961	0.9930	0.9884	0.9819	0.9733
7	1.0000	0.9999	0.9998	0.9994	0.9988	0.9976	0.9958	0.9930
8	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9992	0.9985
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \setminus n$ 25 26 27 28 29 30 31 32 0 0.0038 0.0030 0.0024 0.0019 0.0015 0.0012 0.0010 0.0008 1 0.0274 0.0227 0.0187 0.0155 0.0128 0.0105 0.0087 0.0071 2 0.0982 0.0841 0.0718 0.0612 0.0520 0.0442 0.0374 0.0317 3 0.2340 0.2068 0.1823 0.1602 0.1404 0.1227 0.1070 0.0931 4 0.4207 0.3833 0.3480 0.3149 0.2839 0.2552 0.2287 0.2044 5 0.6167 0.5775 0.5387 0.5005 0.4634 0.4275 0.3931 0.3602 6 0.7800 0.7474 0.7134 0.6784 0.6429 0.6070 0.5711 0.5355 7 0.8909 0.8687 0.8444 0.8182 0.7903 0.7608 0.7300 0.6982 8 0.9532 0.9408 0.9263 0.9100 0.8916 0.8713 0.8492 0.8254 9 0.9827 0.9768 0.9696 0.9950 0.9931 0.9974 0.9973 0.9833 12 0.9996 0.9994 0.9990 0.9985 0.9978 0.9996 0.9996 0.9998 0.9996 0.9999 13 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999									
1 0.0274 0.0227 0.0187 0.0155 0.0128 0.0105 0.0087 0.0071 2 0.0982 0.0841 0.0718 0.0612 0.0520 0.0442 0.0374 0.0317 3 0.2340 0.2068 0.1823 0.1602 0.1404 0.1227 0.1070 0.0931 4 0.4207 0.3833 0.3480 0.3149 0.2839 0.2552 0.2287 0.2044 5 0.6167 0.5775 0.5387 0.5005 0.4634 0.4275 0.3931 0.3602 6 0.7800 0.7474 0.7134 0.6784 0.6429 0.6070 0.5711 0.5355 7 0.8909 0.8687 0.8444 0.8182 0.7903 0.7608 0.7300 0.6982 8 0.9532 0.9408 0.9263 0.9100 0.8916 0.8713 0.8492 0.8254 9 0.9827 0.9768 0.9696 0.9609 0.9507 0.9389 0.9254	$x \backslash n$	25	26	27	28	29	30	31	32
2 0.0982 0.0841 0.0718 0.0612 0.0520 0.0442 0.0374 0.0317 3 0.2340 0.2068 0.1823 0.1602 0.1404 0.1227 0.1070 0.0931 4 0.4207 0.3833 0.3480 0.3149 0.2839 0.2552 0.2287 0.2044 5 0.6167 0.5775 0.5387 0.5005 0.4634 0.4275 0.3931 0.3602 6 0.7800 0.7474 0.7134 0.6784 0.6429 0.6070 0.5711 0.5355 7 0.8909 0.8687 0.8444 0.8182 0.7903 0.7608 0.7300 0.6982 8 0.9532 0.9408 0.9263 0.9100 0.8916 0.8713 0.8492 0.8254 9 0.9827 0.9768 0.9696 0.9609 0.9507 0.9389 0.9254 0.9102 10 0.9944 0.9921 0.9890 0.9851 0.9803 0.9744 0.9673	0	0.0038	0.0030	0.0024	0.0019	0.0015	0.0012	0.0010	0.0008
3 0.2340 0.2068 0.1823 0.1602 0.1404 0.1227 0.1070 0.0931 4 0.4207 0.3833 0.3480 0.3149 0.2839 0.2552 0.2287 0.2044 5 0.6167 0.5775 0.5387 0.5005 0.4634 0.4275 0.3931 0.3602 6 0.7800 0.7474 0.7134 0.6784 0.6429 0.6070 0.5711 0.5355 7 0.8909 0.8687 0.8444 0.8182 0.7903 0.7608 0.7300 0.6982 8 0.9532 0.9408 0.9263 0.9100 0.8916 0.8713 0.8492 0.8254 9 0.9827 0.9768 0.9696 0.9609 0.9507 0.9389 0.9254 0.9102 10 0.9944 0.9921 0.9890 0.9851 0.9803 0.9744 0.9673 0.9833 12 0.9996 0.9994 0.9995 0.99978 0.9969 0.9996 0.9996	1	0.0274	0.0227	0.0187	0.0155	0.0128	0.0105	0.0087	0.0071
4 0.4207 0.3833 0.3480 0.3149 0.2839 0.2552 0.2287 0.2044 5 0.6167 0.5775 0.5387 0.5005 0.4634 0.4275 0.3931 0.3602 6 0.7800 0.7474 0.7134 0.6784 0.6429 0.6070 0.5711 0.5355 7 0.8909 0.8687 0.8444 0.8182 0.7903 0.7608 0.7300 0.6982 8 0.9532 0.9408 0.9263 0.9100 0.8916 0.8713 0.8492 0.8254 9 0.9827 0.9768 0.9696 0.9609 0.9507 0.9389 0.9254 0.9102 10 0.9944 0.9921 0.9890 0.9851 0.9803 0.9744 0.9673 0.9589 11 0.9985 0.9977 0.9965 0.9950 0.9931 0.9905 0.9933 0.9464 0.9933 0.9956 0.9939 0.9986 0.9994 0.9994 0.9999 0.9987 0.9986 </th <th>2</th> <th>0.0982</th> <th>0.0841</th> <th>0.0718</th> <th>0.0612</th> <th>0.0520</th> <th>0.0442</th> <th>0.0374</th> <th>0.0317</th>	2	0.0982	0.0841	0.0718	0.0612	0.0520	0.0442	0.0374	0.0317
5 0.6167 0.5775 0.5387 0.5005 0.4634 0.4275 0.3931 0.3602 6 0.7800 0.7474 0.7134 0.6784 0.6429 0.6070 0.5711 0.5355 7 0.8909 0.8687 0.8444 0.8182 0.7903 0.7608 0.7300 0.6982 8 0.9532 0.9408 0.9263 0.9100 0.8916 0.8713 0.8492 0.8254 9 0.9827 0.9768 0.9696 0.9609 0.9507 0.9389 0.9254 0.9102 10 0.9944 0.9921 0.9890 0.9851 0.9803 0.9744 0.9673 0.9589 11 0.9985 0.9977 0.9965 0.9950 0.9931 0.9905 0.9873 0.9833 12 0.9996 0.9994 0.9999 0.9998 0.9996 0.9994 0.9991 0.9987 0.9980 13 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999	3	0.2340	0.2068	0.1823	0.1602	0.1404	0.1227	0.1070	0.0931
6 0.7800 0.7474 0.7134 0.6784 0.6429 0.6070 0.5711 0.5355 7 0.8909 0.8687 0.8444 0.8182 0.7903 0.7608 0.7300 0.6982 8 0.9532 0.9408 0.9263 0.9100 0.8916 0.8713 0.8492 0.8254 9 0.9827 0.9768 0.9696 0.9609 0.9507 0.9389 0.9254 0.9102 10 0.9944 0.9921 0.9890 0.9851 0.9803 0.9744 0.9673 0.9589 11 0.9985 0.9977 0.9965 0.9950 0.9931 0.9905 0.9873 0.9833 12 0.9996 0.9994 0.9999 0.9998 0.9998 0.9994 0.9991 0.9987 0.9980 13 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999	4	0.4207	0.3833	0.3480	0.3149	0.2839	0.2552	0.2287	0.2044
7 0.8909 0.8687 0.8444 0.8182 0.7903 0.7608 0.7300 0.6982 8 0.9532 0.9408 0.9263 0.9100 0.8916 0.8713 0.8492 0.8254 9 0.9827 0.9768 0.9696 0.9609 0.9507 0.9389 0.9254 0.9102 10 0.9944 0.9921 0.9890 0.9851 0.9803 0.9744 0.9673 0.9589 11 0.9985 0.9977 0.9965 0.9950 0.9931 0.9905 0.9873 0.9833 12 0.9996 0.9994 0.9990 0.9985 0.9978 0.9969 0.9956 0.9939 13 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9996 0.9999 0.9998 0.9996 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999	5	0.6167	0.5775	0.5387	0.5005	0.4634	0.4275	0.3931	0.3602
8 0.9532 0.9408 0.9263 0.9100 0.8916 0.8713 0.8492 0.8254 9 0.9827 0.9768 0.9696 0.9609 0.9507 0.9389 0.9254 0.9102 10 0.9944 0.9921 0.9890 0.9851 0.9803 0.9744 0.9673 0.9589 11 0.9985 0.9977 0.9965 0.9950 0.9931 0.9905 0.9873 0.9833 12 0.9996 0.9994 0.9990 0.9985 0.9978 0.9969 0.9956 0.9939 13 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9996 0.9999 0.9998 0.9996 0.9999 <th>6</th> <th>0.7800</th> <th>0.7474</th> <th>0.7134</th> <th>0.6784</th> <th>0.6429</th> <th>0.6070</th> <th>0.5711</th> <th>0.5355</th>	6	0.7800	0.7474	0.7134	0.6784	0.6429	0.6070	0.5711	0.5355
9 0.9827 0.9768 0.9696 0.9609 0.9507 0.9389 0.9254 0.9102 10 0.9944 0.9921 0.9890 0.9851 0.9803 0.9744 0.9673 0.9589 11 0.9985 0.9977 0.9965 0.9950 0.9931 0.9905 0.9873 0.9833 12 0.9996 0.9994 0.9990 0.9985 0.9978 0.9969 0.9956 0.9939 13 0.9999 0.9999 0.9998 0.9996 0.9994 0.9991 0.9987 0.9980 14 1.0000 1.0000 1.0000 1.0000 0.9999 <th>7</th> <th>0.8909</th> <th>0.8687</th> <th>0.8444</th> <th>0.8182</th> <th>0.7903</th> <th>0.7608</th> <th>0.7300</th> <th>0.6982</th>	7	0.8909	0.8687	0.8444	0.8182	0.7903	0.7608	0.7300	0.6982
10 0.9944 0.9921 0.9890 0.9851 0.9803 0.9744 0.9673 0.9589 11 0.9985 0.9977 0.9965 0.9950 0.9931 0.9905 0.9873 0.9833 12 0.9996 0.9994 0.9990 0.9985 0.9978 0.9969 0.9956 0.9939 13 0.9999 0.9999 0.9996 0.9994 0.9991 0.9987 0.9980 14 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999	8	0.9532	0.9408	0.9263	0.9100	0.8916	0.8713	0.8492	0.8254
11 0.9985 0.9977 0.9965 0.9950 0.9931 0.9905 0.9873 0.9833 12 0.9996 0.9994 0.9990 0.9985 0.9978 0.9969 0.9956 0.9939 13 0.9999 0.9999 0.9998 0.9996 0.9994 0.9991 0.9987 0.9980 14 1.0000 1.0000 1.0000 0.9999 0.9999 0.9998 0.9996 0.9999 15 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999	9	0.9827	0.9768	0.9696	0.9609	0.9507	0.9389	0.9254	0.9102
12 0.9996 0.9994 0.9990 0.9985 0.9978 0.9969 0.9956 0.9939 13 0.9999 0.9999 0.9998 0.9996 0.9994 0.9991 0.9987 0.9980 14 1.0000 1.0000 1.0000 0.9999 0.9999 0.9998 0.9998 0.9999 15 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999	10	0.9944	0.9921	0.9890	0.9851	0.9803	0.9744	0.9673	0.9589
13 0.9999 0.9999 0.9998 0.9996 0.9994 0.9991 0.9987 0.9980 14 1.0000 1.0000 1.0000 0.9999 0.9999 0.9998 0.9996 0.9994 15 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999	11	0.9985	0.9977	0.9965	0.9950	0.9931	0.9905	0.9873	0.9833
14 1.0000 1.0000 1.0000 0.9999 0.9999 0.9998 0.9996 0.9994 15 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999	12	0.9996	0.9994	0.9990	0.9985	0.9978	0.9969	0.9956	0.9939
15 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999	13	0.9999	0.9999	0.9998	0.9996	0.9994	0.9991	0.9987	0.9980
	14	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9996	0.9994
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	15	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999
	16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \backslash n$	1	2	3	4	5	6	7	8
0	0.7500	0.5625	0.4219	0.3164	0.2373	0.1780	0.1335	0.1001
1	1.0000	0.9375	0.8438	0.7383	0.6328	0.5339	0.4449	0.3671
2	1.0000	1.0000	0.9844	0.9492	0.8965	0.8306	0.7564	0.6785
3	1.0000	1.0000	1.0000	0.9961	0.9844	0.9624	0.9294	0.8862
4	1.0000	1.0000	1.0000	1.0000	0.9990	0.9954	0.9871	0.9727
5	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9987	0.9958
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9996
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \backslash n$	17	18	19	20	21	22	23	24
0	0.0075	0.0056	0.0042	0.0032	0.0024	0.0018	0.0013	0.0010
1	0.0501	0.0395	0.0310	0.0243	0.0190	0.0149	0.0116	0.0090
2	0.1637	0.1353	0.1113	0.0913	0.0745	0.0606	0.0492	0.0398
3	0.3530	0.3057	0.2631	0.2252	0.1917	0.1624	0.1370	0.1150
4	0.5739	0.5187	0.4654	0.4148	0.3674	0.3235	0.2832	0.2466
5	0.7653	0.7175	0.6678	0.6172	0.5666	0.5168	0.4685	0.4222
6	0.8929	0.8610	0.8251	0.7858	0.7436	0.6994	0.6537	0.6074
7	0.9598	0.9431	0.9225	0.8982	0.8701	0.8385	0.8037	0.7662
8	0.9876	0.9807	0.9713	0.9591	0.9439	0.9254	0.9037	0.8787
9	0.9969	0.9946	0.9911	0.9861	0.9794	0.9705	0.9592	0.9453
10	0.9994	0.9988	0.9977	0.9961	0.9936	0.9900	0.9851	0.9787
11	0.9999	0.9998	0.9995	0.9991	0.9983	0.9971	0.9954	0.9928
12	1.0000	1.0000	0.9999	0.9998	0.9996	0.9993	0.9988	0.9979
13	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9997	0.9995
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
17	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
18	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \setminus r$	n 9	10	11	12	13	14	15	16
0	0.0751	0.0563	0.0422	0.0317	0.0238	0.0178	0.0134	0.0100
1	0.3003	0.2440	0.1971	0.1584	0.1267	0.1010	0.0802	0.0635
2	0.6007	0.5256	0.4552	0.3907	0.3326	0.2811	0.2361	0.1971
3	0.8343	0.7759	0.7133	0.6488	0.5843	0.5213	0.4613	0.4050
4	0.9511	0.9219	0.8854	0.8424	0.7940	0.7415	0.6865	0.6302
5	0.9900	0.9803	0.9657	0.9456	0.9198	0.8883	0.8516	0.8103
6	0.9987	0.9965	0.9924	0.9857	0.9757	0.9617	0.9434	0.9204
7	0.9999	0.9996	0.9988	0.9972	0.9944	0.9897	0.9827	0.9729
8	1.0000	1.0000	0.9999	0.9996	0.9990	0.9978	0.9958	0.9925
9	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9992	0.9984
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \backslash n$	25	26	27	28	29	30	31	32
0	0.0008	0.0006	0.0004	0.0003	0.0002	0.0002	0.0001	0.0001
1	0.0070	0.0055	0.0042	0.0033	0.0025	0.0020	0.0015	0.0012
2	0.0321	0.0258	0.0207	0.0166	0.0133	0.0106	0.0084	0.0067
3	0.0962	0.0802	0.0666	0.0551	0.0455	0.0374	0.0307	0.0252
4	0.2137	0.1844	0.1583	0.1354	0.1153	0.0979	0.0828	0.0698
5	0.3783	0.3371	0.2989	0.2638	0.2317	0.2026	0.1764	0.1530
6	0.5611	0.5154	0.4708	0.4279	0.3868	0.3481	0.3117	0.2779
7	0.7265	0.6852	0.6427	0.5997	0.5568	0.5143	0.4727	0.4325
8	0.8506	0.8195	0.7859	0.7501	0.7125	0.6736	0.6338	0.5935
9	0.9287	0.9091	0.8867	0.8615	0.8337	0.8034	0.7710	0.7367
10	0.9703	0.9599	0.9472	0.9321	0.9145	0.8943	0.8716	0.8464
11	0.9893	0.9845	0.9784	0.9706	0.9610	0.9493	0.9356	0.9196
12	0.9966	0.9948	0.9922	0.9888	0.9842	0.9784	0.9711	0.9622
13	0.9991	0.9985	0.9976	0.9962	0.9944	0.9918	0.9885	0.9841
14	0.9998	0.9996	0.9993	0.9989	0.9982	0.9973	0.9959	0.9940
15	1.0000	0.9999	0.9998	0.9997	0.9995	0.9992	0.9987	0.9980
16	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9996	0.9994
17	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998
18	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \backslash n$	1	2	3	4	5	6	7	8
0	0.7000	0.4900	0.3430	0.2401	0.1681	0.1176	0.0824	0.0576
1	1.0000	0.9100	0.7840	0.6517	0.5282	0.4202	0.3294	0.2553
2	1.0000	1.0000	0.9730	0.9163	0.8369	0.7443	0.6471	0.5518
3	1.0000	1.0000	1.0000	0.9919	0.9692	0.9295	0.8740	0.8059
4	1.0000	1.0000	1.0000	1.0000	0.9976	0.9891	0.9712	0.9420
5	1.0000	1.0000	1.0000	1.0000	1.0000	0.9993	0.9962	0.9887
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9987
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \backslash n$	17	18	19	20	21	22	23	24
0	0.0023	0.0016	0.0011	0.0008	0.0006	0.0004	0.0003	0.0002
1	0.0193	0.0142	0.0104	0.0076	0.0056	0.0041	0.0030	0.0022
2	0.0774	0.0600	0.0462	0.0355	0.0271	0.0207	0.0157	0.0119
3	0.2019	0.1646	0.1332	0.1071	0.0856	0.0681	0.0538	0.0424
4	0.3887	0.3327	0.2822	0.2375	0.1984	0.1645	0.1356	0.1111
5	0.5968	0.5344	0.4739	0.4164	0.3627	0.3134	0.2688	0.2288
6	0.7752	0.7217	0.6655	0.6080	0.5505	0.4942	0.4399	0.3886
7	0.8954	0.8593	0.8180	0.7723	0.7230	0.6713	0.6181	0.5647
8	0.9597	0.9404	0.9161	0.8867	0.8523	0.8135	0.7709	0.7250
9	0.9873	0.9790	0.9674	0.9520	0.9324	0.9084	0.8799	0.8472
10	0.9968	0.9939	0.9895	0.9829	0.9736	0.9613	0.9454	0.9258
11	0.9993	0.9986	0.9972	0.9949	0.9913	0.9860	0.9786	0.9686
12	0.9999	0.9997	0.9994	0.9987	0.9976	0.9957	0.9928	0.9885
13	1.0000	1.0000	0.9999	0.9997	0.9994	0.9989	0.9979	0.9964
14	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9995	0.9990
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
17	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
18	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
19	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \setminus n$	9	10	11	12	13	14	15	16
0	0.0404	0.0282	0.0198	0.0138	0.0097	0.0068	0.0047	0.0033
1	0.1960	0.1493	0.1130	0.0850	0.0637	0.0475	0.0353	0.0261
2	0.4628	0.3828	0.3127	0.2528	0.2025	0.1608	0.1268	0.0994
3	0.7297	0.6496	0.5696	0.4925	0.4206	0.3552	0.2969	0.2459
4	0.9012	0.8497	0.7897	0.7237	0.6543	0.5842	0.5155	0.4499
5	0.9747	0.9527	0.9218	0.8822	0.8346	0.7805	0.7216	0.6598
6	0.9957	0.9894	0.9784	0.9614	0.9376	0.9067	0.8689	0.8247
7	0.9996	0.9984	0.9957	0.9905	0.9818	0.9685	0.9500	0.9256
8	1.0000	0.9999	0.9994	0.9983	0.9960	0.9917	0.9848	0.9743
9	1.0000	1.0000	1.0000	0.9998	0.9993	0.9983	0.9963	0.9929
10	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9993	0.9984
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \backslash n$	25	26	27	28	29	30	31	32
0	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.0016	0.0011	0.0008	0.0006	0.0004	0.0003	0.0002	0.0002
2	0.0090	0.0067	0.0051	0.0038	0.0028	0.0021	0.0016	0.0012
3	0.0332	0.0260	0.0202	0.0157	0.0121	0.0093	0.0072	0.0055
4	0.0905	0.0733	0.0591	0.0474	0.0379	0.0302	0.0239	0.0189
5	0.1935	0.1626	0.1358	0.1128	0.0932	0.0766	0.0627	0.0510
6	0.3407	0.2965	0.2563	0.2202	0.1880	0.1595	0.1346	0.1131
7	0.5118	0.4605	0.4113	0.3648	0.3214	0.2814	0.2448	0.2118
8	0.6769	0.6274	0.5773	0.5275	0.4787	0.4315	0.3865	0.3440
9	0.8106	0.7705	0.7276	0.6825	0.6360	0.5888	0.5416	0.4951
10	0.9022	0.8747	0.8434	0.8087	0.7708	0.7304	0.6879	0.6440
11	0.9558	0.9397	0.9202	0.8972	0.8706	0.8407	0.8076	0.7717
12	0.9825	0.9745	0.9641	0.9509	0.9348	0.9155	0.8931	0.8674
13	0.9940	0.9906	0.9857	0.9792	0.9707	0.9599	0.9466	0.9306
14	0.9982	0.9970	0.9950	0.9923	0.9883	0.9831	0.9761	0.9673
15	0.9995	0.9991	0.9985	0.9975	0.9959	0.9936	0.9905	0.9862
16	0.9999	0.9998	0.9996	0.9993	0.9987	0.9979	0.9966	0.9948
17	1.0000	1.0000	0.9999	0.9998	0.9997	0.9994	0.9989	0.9982
18	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9995
19	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \setminus n$	1	2	3	4	5	6	7	8
0	0.6500	0.4225	0.2746	0.1785	0.1160	0.0754	0.0490	0.0319
1	1.0000	0.8775	0.7183	0.5630	0.4284	0.3191	0.2338	0.1691
2	1.0000	1.0000	0.9571	0.8735	0.7648	0.6471	0.5323	0.4278
3	1.0000	1.0000	1.0000	0.9850	0.9460	0.8826	0.8002	0.7064
4	1.0000	1.0000	1.0000	1.0000	0.9947	0.9777	0.9444	0.8939
5	1.0000	1.0000	1.0000	1.0000	1.0000	0.9982	0.9910	0.9747
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9994	0.9964
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$x \setminus n$	17	18	19	20	21	22	23	24
$\frac{x \setminus n}{0}$	17 0.0007	18 0.0004	19 0.0003	20 0.0002	21 0.0001	22 0.0001	23 0.0000	24 0.0000
0								
0 1 2	0.0007	0.0004	0.0003	0.0002	0.0001	0.0001	0.0000	0.0000
0	0.0007 0.0067	0.0004 0.0046	$0.0003 \\ 0.0031$	$0.0002 \\ 0.0021$	$0.0001 \\ 0.0014$	$0.0001 \\ 0.0010$	0.0000 0.0007	0.0000 0.0005
0 1 2	0.0007 0.0067 0.0327	0.0004 0.0046 0.0236	0.0003 0.0031 0.0170	0.0002 0.0021 0.0121	0.0001 0.0014 0.0086	0.0001 0.0010 0.0061	0.0000 0.0007 0.0043	0.0000 0.0005 0.0030
0 1 2 3	0.0007 0.0067 0.0327 0.1028	0.0004 0.0046 0.0236 0.0783	0.0003 0.0031 0.0170 0.0591	0.0002 0.0021 0.0121 0.0444	0.0001 0.0014 0.0086 0.0331	0.0001 0.0010 0.0061 0.0245	0.0000 0.0007 0.0043 0.0181	0.0000 0.0005 0.0030 0.0133
0 1 2 3 4	0.0007 0.0067 0.0327 0.1028 0.2348	0.0004 0.0046 0.0236 0.0783 0.1886	0.0003 0.0031 0.0170 0.0591 0.1500	0.0002 0.0021 0.0121 0.0444 0.1182	0.0001 0.0014 0.0086 0.0331 0.0924	0.0001 0.0010 0.0061 0.0245 0.0716	0.0000 0.0007 0.0043 0.0181 0.0551	0.0000 0.0005 0.0030 0.0133 0.0422
0 1 2 3 4 5 6 7	0.0007 0.0067 0.0327 0.1028 0.2348 0.4197	0.0004 0.0046 0.0236 0.0783 0.1886 0.3550	0.0003 0.0031 0.0170 0.0591 0.1500 0.2968	0.0002 0.0021 0.0121 0.0444 0.1182 0.2454	0.0001 0.0014 0.0086 0.0331 0.0924 0.2009	0.0001 0.0010 0.0061 0.0245 0.0716 0.1629	0.0000 0.0007 0.0043 0.0181 0.0551	0.0000 0.0005 0.0030 0.0133 0.0422 0.1044
0 1 2 3 4 5 6 7 8	0.0007 0.0067 0.0327 0.1028 0.2348 0.4197 0.6188	0.0004 0.0046 0.0236 0.0783 0.1886 0.3550 0.5491	0.0003 0.0031 0.0170 0.0591 0.1500 0.2968 0.4812	0.0002 0.0021 0.0121 0.0444 0.1182 0.2454 0.4166	0.0001 0.0014 0.0086 0.0331 0.0924 0.2009 0.3567	0.0001 0.0010 0.0061 0.0245 0.0716 0.1629 0.3022	0.0000 0.0007 0.0043 0.0181 0.0551 0.1309 0.2534	0.0000 0.0005 0.0030 0.0133 0.0422 0.1044 0.2106
0 1 2 3 4 5 6 7	0.0007 0.0067 0.0327 0.1028 0.2348 0.4197 0.6188 0.7872	0.0004 0.0046 0.0236 0.0783 0.1886 0.3550 0.5491 0.7283	0.0003 0.0031 0.0170 0.0591 0.1500 0.2968 0.4812 0.6656	0.0002 0.0021 0.0121 0.0444 0.1182 0.2454 0.4166 0.6010	0.0001 0.0014 0.0086 0.0331 0.0924 0.2009 0.3567 0.5365	0.0001 0.0010 0.0061 0.0245 0.0716 0.1629 0.3022 0.4736	0.0000 0.0007 0.0043 0.0181 0.0551 0.1309 0.2534 0.4136	0.0000 0.0005 0.0030 0.0133 0.0422 0.1044 0.2106 0.3575
0 1 2 3 4 5 6 7 8	0.0007 0.0067 0.0327 0.1028 0.2348 0.4197 0.6188 0.7872 0.9006	0.0004 0.0046 0.0236 0.0783 0.1886 0.3550 0.5491 0.7283 0.8609	0.0003 0.0031 0.0170 0.0591 0.1500 0.2968 0.4812 0.6656 0.8145	0.0002 0.0021 0.0121 0.0444 0.1182 0.2454 0.4166 0.6010 0.7624	0.0001 0.0014 0.0086 0.0331 0.0924 0.2009 0.3567 0.5365 0.7059	0.0001 0.0010 0.0061 0.0245 0.0716 0.1629 0.3022 0.4736 0.6466	0.0000 0.0007 0.0043 0.0181 0.0551 0.1309 0.2534 0.4136 0.5860	0.0000 0.0005 0.0030 0.0133 0.0422 0.1044 0.2106 0.3575 0.5257
0 1 2 3 4 5 6 7 8	0.0007 0.0067 0.0327 0.1028 0.2348 0.4197 0.6188 0.7872 0.9006 0.9617	0.0004 0.0046 0.0236 0.0783 0.1886 0.3550 0.5491 0.7283 0.8609 0.9403	0.0003 0.0031 0.0170 0.0591 0.1500 0.2968 0.4812 0.6656 0.8145 0.9125	0.0002 0.0021 0.0121 0.0444 0.1182 0.2454 0.4166 0.6010 0.7624 0.8782	0.0001 0.0014 0.0086 0.0331 0.0924 0.2009 0.3567 0.5365 0.7059 0.8377	0.0001 0.0010 0.0061 0.0245 0.0716 0.1629 0.3022 0.4736 0.6466 0.7916	0.0000 0.0007 0.0043 0.0181 0.0551 0.1309 0.2534 0.4136 0.5860 0.7408	0.0000 0.0005 0.0030 0.0133 0.0422 0.1044 0.2106 0.3575 0.5257 0.6866
0 1 2 3 4 5 6 7 8 9	0.0007 0.0067 0.0327 0.1028 0.2348 0.4197 0.6188 0.7872 0.9006 0.9617	0.0004 0.0046 0.0236 0.0783 0.1886 0.3550 0.5491 0.7283 0.8609 0.9403	0.0003 0.0031 0.0170 0.0591 0.1500 0.2968 0.4812 0.6656 0.8145 0.9125	0.0002 0.0021 0.0121 0.0444 0.1182 0.2454 0.4166 0.6010 0.7624 0.8782	0.0001 0.0014 0.0086 0.0331 0.0924 0.2009 0.3567 0.5365 0.7059 0.8377	0.0001 0.0010 0.0061 0.0245 0.0716 0.1629 0.3022 0.4736 0.6466 0.7916	0.0000 0.0007 0.0043 0.0181 0.0551 0.1309 0.2534 0.4136 0.5860 0.7408	0.0000 0.0005 0.0030 0.0133 0.0422 0.1044 0.2106 0.3575 0.5257 0.6866 0.8167
0 1 2 3 4 5 6 7 8 9	0.0007 0.0067 0.0327 0.1028 0.2348 0.4197 0.6188 0.7872 0.9006 0.9617 0.9880 0.9970	0.0004 0.0046 0.0236 0.0783 0.1886 0.3550 0.5491 0.7283 0.8609 0.9403 0.9788 0.9938	0.0003 0.0031 0.0170 0.0591 0.1500 0.2968 0.4812 0.6656 0.8145 0.9125 0.9653 0.9886	0.0002 0.0021 0.0121 0.0444 0.1182 0.2454 0.4166 0.6010 0.7624 0.8782 0.9468 0.9804	0.0001 0.0014 0.0086 0.0331 0.0924 0.2009 0.3567 0.5365 0.7059 0.8377 0.9228 0.9687	0.0001 0.0010 0.0061 0.0245 0.0716 0.1629 0.3022 0.4736 0.6466 0.7916 0.8930 0.9526	0.0000 0.0007 0.0043 0.0181 0.0551 0.1309 0.2534 0.4136 0.5860 0.7408 0.8575 0.9318	0.0000 0.0005 0.0030 0.0133 0.0422 0.1044 0.2106 0.3575 0.5257 0.6866 0.8167 0.9058

0.9999

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

0.9997

0.9999

1.0000

1.0000

1.0000

1.0000

1.0000

0.9992

0.9998

1.0000

1.0000

1.0000

1.0000

1.0000

0.9984

0.9996

0.9999

1.0000

1.0000

1.0000

1.0000

0,35

eilu	ngsfun	ktion	F(x)	ler Bir	nomial	vertei	lung fi	$\mathbf{ir} p =$
$x \setminus n$	9	10	11	12	13	14	15	16
0	0.0207	0.0135	0.0088	0.0057	0.0037	0.0024	0.0016	0.0010
1	0.1211	0.0860	0.0606	0.0424	0.0296	0.0205	0.0142	0.0098
2	0.3373	0.2616	0.2001	0.1513	0.1132	0.0839	0.0617	0.0451
3	0.6089	0.5138	0.4256	0.3467	0.2783	0.2205	0.1727	0.1339
4	0.8283	0.7515	0.6683	0.5833	0.5005	0.4227	0.3519	0.2892
5	0.9464	0.9051	0.8513	0.7873	0.7159	0.6405	0.5643	0.4900
6	0.9888	0.9740	0.9499	0.9154	0.8705	0.8164	0.7548	0.6881
7	0.9986	0.9952	0.9878	0.9745	0.9538	0.9247	0.8868	0.8406
8	0.9999	0.9995	0.9980	0.9944	0.9874	0.9757	0.9578	0.9329
9	1.0000	1.0000	0.9998	0.9992	0.9975	0.9940	0.9876	0.9771
10	1.0000	1.0000	1.0000	0.9999	0.9997	0.9989	0.9972	0.9938
11	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9987
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$x \setminus n$	25	26	27	28	29	30	31	32
$\frac{x \setminus n}{0}$	0.0000	0.0000		0.0000				
1	0.0003	0.0000	$0.0000 \\ 0.0001$	0.0000	$0.0000 \\ 0.0001$	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
2	0.0003 0.0021	0.0002 0.0015	0.0001	0.0001 0.0007	0.0001 0.0005	0.0003	0.0000	0.0000
3	0.0021 0.0097	0.0010	0.0010 0.0051	0.0037	0.0006	0.0003	0.0002 0.0014	0.0002
4	0.0320	0.0242	0.0182	0.0136	0.0101	0.0075	0.0014	0.0010
5	0.0826	0.0649	0.0507	0.0393	0.0303	0.0233	0.0177	0.0135
6	0.0320 0.1734	0.0043 0.1416	0.0307	0.0923	0.0303 0.0738	0.0233	0.0177	0.0133
7	0.3061	0.2596	0.2183	0.0323 0.1821	0.0790	0.0338	0.1009	0.0818
8	0.4668	0.4106	0.3577	0.3089	0.2645	0.2247	0.1894	0.1584
9	0.6303	0.5731	0.5162	0.4607	0.4076	0.3575	0.3110	0.2685
10	0.7712	0.7219	0.6698	0.6160	0.5617	0.5078	0.4552	0.4047
11	0.8746	0.8384	0.7976	0.7529	0.7050	0.6548	0.6034	0.5515
12	0.9396	0.9168	0.8894	0.8572	0.8207	0.7802	0.7363	0.6898

0.9264

0.8737

0.8410

0.8043

0.9022

13

0.9745

0.9623

0.9464

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

15

16

17

18

19

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

$x \backslash n$	1	2	3	4	5	6	7	8
0	0.6000	0.3600	0.2160	0.1296	0.0778	0.0467	0.0280	0.0168
1	1.0000	0.8400	0.6480	0.4752	0.3370	0.2333	0.1586	0.1064
2	1.0000	1.0000	0.9360	0.8208	0.6826	0.5443	0.4199	0.3154
3	1.0000	1.0000	1.0000	0.9744	0.9130	0.8208	0.7102	0.5941
4	1.0000	1.0000	1.0000	1.0000	0.9898	0.9590	0.9037	0.8263
5	1.0000	1.0000	1.0000	1.0000	1.0000	0.9959	0.9812	0.9502
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9984	0.9915
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9993
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$x \backslash n$	17	18	19	20	21	22	23	24
0	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.0021	0.0013	0.0008	0.0005	0.0003	0.0002	0.0001	0.0001
2	0.0123	0.0082	0.0055	0.0036	0.0024	0.0016	0.0010	0.0007
3	0.0464	0.0328	0.0230	0.0160	0.0110	0.0076	0.0052	0.0035
4	0.1260	0.0942	0.0696	0.0510	0.0370	0.0266	0.0190	0.0134
5	0.2639	0.2088	0.1629	0.1256	0.0957	0.0722	0.0540	0.0400
6	0.4478	0.3743	0.3081	0.2500	0.2002	0.1584	0.1240	0.0960
7	0.6405	0.5634	0.4878	0.4159	0.3495	0.2898	0.2373	0.1919
8	0.8011	0.7368	0.6675	0.5956	0.5237	0.4540	0.3884	0.3279
9	0.9081	0.8653	0.8139	0.7553	0.6914	0.6244	0.5562	0.4891
10	0.9652	0.9424	0.9115	0.8725	0.8256	0.7720	0.7129	0.6502
11	0.9894	0.9797	0.9648	0.9435	0.9151	0.8793	0.8364	0.7870
12	0.9975	0.9942	0.9884	0.9790	0.9648	0.9449	0.9187	0.8857
13	0.9995	0.9987	0.9969	0.9935	0.9877	0.9785	0.9651	0.9465
14	0.9999	0.9998	0.9994	0.9984	0.9964	0.9930	0.9872	0.9783
15	1.0000	1.0000	0.9999	0.9997	0.9992	0.9981	0.9960	0.9925
16	1.0000	1.0000	1.0000	1.0000	0.9998	0.9996	0.9990	0.9978
17	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9995
18	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
19	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
21	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

Verteilungsfunktion F(x) der Binomialverteilung für p=0,40

JIIU	iigsiuii	IKUIOII	I(x)	ici Dii	ioiiiai	VCIUCI	iung n	11 <i>p</i> -
$x \setminus n$	9	10	11	12	13	14	15	16
0	0.0101	0.0060	0.0036	0.0022	0.0013	0.0008	0.0005	0.0003
1	0.0705	0.0464	0.0302	0.0196	0.0126	0.0081	0.0052	0.003
2	0.2318	0.1673	0.1189	0.0834	0.0579	0.0398	0.0271	0.018
3	0.4826	0.3823	0.2963	0.2253	0.1686	0.1243	0.0905	0.065
4	0.7334	0.6331	0.5328	0.4382	0.3530	0.2793	0.2173	0.1666
5	0.9006	0.8338	0.7535	0.6652	0.5744	0.4859	0.4032	0.328
6	0.9750	0.9452	0.9006	0.8418	0.7712	0.6925	0.6098	0.5272
7	0.9962	0.9877	0.9707	0.9427	0.9023	0.8499	0.7869	0.716
8	0.9997	0.9983	0.9941	0.9847	0.9679	0.9417	0.9050	0.857'
9	1.0000	0.9999	0.9993	0.9972	0.9922	0.9825	0.9662	0.941'
10	1.0000	1.0000	1.0000	0.9997	0.9987	0.9961	0.9907	0.980
11	1.0000	1.0000	1.0000	1.0000	0.9999	0.9994	0.9981	0.995
12	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.999
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
$x \setminus n$	25	26	27	28	29	30	31	32
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
1	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.0004	0.0003	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000
3	0.0024	0.0016	0.0011	0.0007	0.0005	0.0003	0.0002	0.000
4	0.0095	0.0066	0.0046	0.0032	0.0022	0.0015	0.0010	0.000'
5	0.0294	0.0214	0.0155	0.0111	0.0080	0.0057	0.0040	0.002
6	0.0736	0.0559	0.0421	0.0315	0.0233	0.0172	0.0126	0.009
7	0.1536	0.1216	0.0953	0.0740	0.0570	0.0435	0.0330	0.0248
8	0.2735	0.2255	0.1839	0.1485	0.1187	0.0940	0.0738	0.057
9	0.4246	0.3642	0.3087	0.2588	0.2147	0.1763	0.1434	0.1150
10	0.5858	0.5213	0.4585	0.3986	0.3427	0.2915	0.2454	0.204
11	0.7323	0.6737	0.6127	0.5510	0.4900	0.4311	0.3752	0.323
12	0.8462	0.8007	0.7499	0.6950	0.6374	0.5785	0.5195	0.4618
13	0.9222	0.8918	0.8553	0.8132	0.7659	0.7145	0.6601	0.6039
14	0.9656	0.9482	0.9257	0.8975	0.8638	0.8246	0.7806	0.732
15	0.9868	0.9783	0.9663	0.9501	0.9290	0.9029	0.8716	0.835
16	0.9957	0.9921	0.9866	0.9785	0.9671	0.9519	0.9323	0.908
17	0.9988	0.9975	0.9954	0.9919	0.9865	0.9788	0.9680	0.953'
18	0.9997	0.9993	0.9986	0.9973	0.9951	0.9917	0.9865	0.979
19	0.9999	0.9999	0.9997	0.9992	0.9985	0.9971	0.9950	0.991
20	1.0000	1.0000	0.9999	0.9998	0.9996	0.9991	0.9983	0.997
21	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9995	0.999

1.0000

1.0000

1.0000

1.0000

1.0000

56

1.0000

1.0000

1.0000

1.0000

1.0000

24

1.0000

1.0000

1.0000

0.9999

1.0000

0.9997

0.9999

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

$x \backslash n$	1	2	3	4	5	6	7	8
0	0.5500	0.3025	0.1664	0.0915	0.0503	0.0277	0.0152	0.0084
1	1.0000	0.7975	0.5748	0.3910	0.2562	0.1636	0.1024	0.0632
2	1.0000	1.0000	0.9089	0.7585	0.5931	0.4415	0.3164	0.2201
3	1.0000	1.0000	1.0000	0.9590	0.8688	0.7447	0.6083	0.4770
4	1.0000	1.0000	1.0000	1.0000	0.9815	0.9308	0.8471	0.7396
5	1.0000	1.0000	1.0000	1.0000	1.0000	0.9917	0.9643	0.9115
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9963	0.9819
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9983
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \setminus n$	17	18	19	20	21	22	23	24
$\frac{x \cdot n}{0}$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.0000	0.0003 0.0025	0.0002 0.0015	0.0001	0.0001 0.0006	0.0000	0.0000	0.0000
3	0.0184	0.0120	0.0077	0.0049	0.0031	0.0020	0.0012	0.0008
4	0.0596	0.0411	0.0280	0.0189	0.0126	0.0083	0.0055	0.0036
5	0.1471	0.1077	0.0777	0.0553	0.0389	0.0271	0.0186	0.0127
6	0.2902	0.2258	0.1727	0.1299	0.0964	0.0705	0.0510	0.0364
7	0.4743	0.3915	0.3169	0.2520	0.1971	0.1518	0.1152	0.0863
8	0.6626	0.5778	0.4940	0.4143	0.3413	0.2764	0.2203	0.1730
9	0.8166	0.7473	0.6710	0.5914	0.5117	0.4350	0.3636	0.2991
10	0.9174	0.8720	0.8159	0.7507	0.6790	0.6037	0.5278	0.4539
11	0.9699	0.9463	0.9129	0.8692	0.8159	0.7543	0.6865	0.6151
12	0.9914	0.9817	0.9658	0.9420	0.9092	0.8672	0.8164	0.7580
13	0.9981	0.9951	0.9891	0.9786	0.9621	0.9383	0.9063	0.8659
14	0.9997	0.9990	0.9972	0.9936	0.9868	0.9757	0.9589	0.9352
15	1.0000	0.9999	0.9995	0.9985	0.9963	0.9920	0.9847	0.9731
16	1.0000	1.0000	0.9999	0.9997	0.9992	0.9979	0.9952	0.9905
17	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9988	0.9972
18	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9993
19	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
21	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
22	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
23	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
24	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \setminus n$	9	10	11	12	13	14	15	16
0	0.0046	0.0025	0.0014	0.0008	0.0004	0.0002	0.0001	0.0001
1	0.0385	0.0233	0.0139	0.0083	0.0049	0.0029	0.0017	0.0010
2	0.1495	0.0996	0.0652	0.0421	0.0269	0.0170	0.0107	0.0066
3	0.3614	0.2660	0.1911	0.1345	0.0929	0.0632	0.0424	0.0281
4	0.6214	0.5044	0.3971	0.3044	0.2279	0.1672	0.1204	0.0853
5	0.8342	0.7384	0.6331	0.5269	0.4268	0.3373	0.2608	0.1976
6	0.9502	0.8980	0.8262	0.7393	0.6437	0.5461	0.4522	0.3660
7	0.9909	0.9726	0.9390	0.8883	0.8212	0.7414	0.6535	0.5629
8	0.9992	0.9955	0.9852	0.9644	0.9302	0.8811	0.8182	0.7441
9	1.0000	0.9997	0.9978	0.9921	0.9797	0.9574	0.9231	0.8759
10	1.0000	1.0000	0.9998	0.9989	0.9959	0.9886	0.9745	0.9514
11	1.0000	1.0000	1.0000	0.9999	0.9995	0.9978	0.9937	0.9851
12	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9989	0.9965
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9994
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

$x \backslash n$	25	26	27	28	29	30	31	32
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	0.0005	0.0003	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000
4	0.0023	0.0015	0.0009	0.0006	0.0004	0.0002	0.0002	0.000
5	0.0086	0.0058	0.0038	0.0025	0.0017	0.0011	0.0007	0.000
6	0.0258	0.0180	0.0125	0.0086	0.0059	0.0040	0.0027	0.0018
7	0.0639	0.0467	0.0338	0.0242	0.0172	0.0121	0.0085	0.0059
8	0.1340	0.1024	0.0774	0.0578	0.0427	0.0312	0.0226	0.0162
9	0.2424	0.1936	0.1526	0.1187	0.0913	0.0694	0.0522	0.0389
10	0.3843	0.3204	0.2633	0.2135	0.1708	0.1350	0.1055	0.0815
11	0.5426	0.4713	0.4034	0.3404	0.2833	0.2327	0.1887	0.1513
12	0.6937	0.6257	0.5562	0.4875	0.4213	0.3592	0.3023	0.2512
13	0.8173	0.7617	0.7005	0.6356	0.5689	0.5025	0.4380	0.3769
14	0.9040	0.8650	0.8185	0.7654	0.7070	0.6448	0.5808	0.5165
15	0.9560	0.9326	0.9022	0.8645	0.8199	0.7691	0.7132	0.653
16	0.9826	0.9707	0.9536	0.9304	0.9008	0.8644	0.8215	0.7728
17	0.9942	0.9890	0.9807	0.9685	0.9514	0.9286	0.8997	0.8648
18	0.9984	0.9965	0.9931	0.9875	0.9790	0.9666	0.9495	0.927
19	0.9996	0.9991	0.9979	0.9957	0.9920	0.9862	0.9773	0.9648
20	0.9999	0.9998	0.9995	0.9988	0.9974	0.9950	0.9910	0.9849
21	1.0000	1.0000	0.9999	0.9997	0.9993	0.9984	0.9969	0.9942
22	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9991	0.998
23	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9994
24	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

0.0625

5

0.0312

0.0156

0.0078

0.0039

2

0.2500

0.1250

0.5000

21

22

23

24

26

27

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1	1.0000	0.7500	0.5000	0.3125	0.1875	0.1094	0.0625	0.0352
2	1.0000	1.0000	0.8750	0.6875	0.5000	0.3437	0.2266	0.1445
3	1.0000	1.0000	1.0000	0.9375	0.8125	0.6562	0.5000	0.3633
4	1.0000	1.0000	1.0000	1.0000	0.9688	0.8906	0.7734	0.6367
5	1.0000	1.0000	1.0000	1.0000	1.0000	0.9844	0.9375	0.8555
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9922	0.9648
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9961
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$x \backslash n$	17	18	19	20	21	22	23	24
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.0012	0.0007	0.0004	0.0002	0.0001	0.0001	0.0000	0.0000
3	0.0064	0.0038	0.0022	0.0013	0.0007	0.0004	0.0002	0.0001
4	0.0245	0.0154	0.0096	0.0059	0.0036	0.0022	0.0013	0.0008
5	0.0717	0.0481	0.0318	0.0207	0.0133	0.0085	0.0053	0.0033
6	0.1662	0.1189	0.0835	0.0577	0.0392	0.0262	0.0173	0.0113
7	0.3145	0.2403	0.1796	0.1316	0.0946	0.0669	0.0466	0.0320
8	0.5000	0.4073	0.3238	0.2517	0.1917	0.1431	0.1050	0.0758
9	0.6855	0.5927	0.5000	0.4119	0.3318	0.2617	0.2024	0.1537
10	0.8338	0.7597	0.6762	0.5881	0.5000	0.4159	0.3388	0.2706
11	0.9283	0.8811	0.8204	0.7483	0.6682	0.5841	0.5000	0.4194
12	0.9755	0.9519	0.9165	0.8684	0.8083	0.7383	0.6612	0.5806
13	0.9936	0.9846	0.9682	0.9423	0.9054	0.8569	0.7976	0.7294
14	0.9988	0.9962	0.9904	0.9793	0.9608	0.9331	0.8950	0.8463
15	0.9999	0.9993	0.9978	0.9941	0.9867	0.9738	0.9534	0.9242
16	1.0000	0.9999	0.9996	0.9987	0.9964	0.9915	0.9827	0.9680
17	1.0000	1.0000	1.0000	0.9998	0.9993	0.9978	0.9947	0.9887
18	1.0000	1.0000	1.0000	1.0000	0.9999	0.9996	0.9987	0.9967
19	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9992
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999

Ve 0,50

$x \backslash n$	9	10	11	12	13	14	15	16
0	0.0020	0.0010	0.0005	0.0002	0.0001	0.0001	0.0000	0.000
1	0.0195	0.0107	0.0059	0.0032	0.0017	0.0009	0.0005	0.0003
2	0.0898	0.0547	0.0327	0.0193	0.0112	0.0065	0.0037	0.002
3	0.2539	0.1719	0.1133	0.0730	0.0461	0.0287	0.0176	0.010
4	0.5000	0.3770	0.2744	0.1938	0.1334	0.0898	0.0592	0.038
5	0.7461	0.6230	0.5000	0.3872	0.2905	0.2120	0.1509	0.105
6	0.9102	0.8281	0.7256	0.6128	0.5000	0.3953	0.3036	0.227
7	0.9805	0.9453	0.8867	0.8062	0.7095	0.6047	0.5000	0.401
8	0.9980	0.9893	0.9673	0.9270	0.8666	0.7880	0.6964	0.598
9	1.0000	0.9990	0.9941	0.9807	0.9539	0.9102	0.8491	0.772
10	1.0000	1.0000	0.9995	0.9968	0.9888	0.9713	0.9408	0.894
11	1.0000	1.0000	1.0000	0.9998	0.9983	0.9935	0.9824	0.961
12	1.0000	1.0000	1.0000	1.0000	0.9999	0.9991	0.9963	0.989
13	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.997
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.999
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
$x \setminus n$	25	26	27	28	29	30	31	32
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
3		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	() ()()() (0.0000		0.0000		
	0.0001			0.0001	0.0001	0.0000	0.0000	0.000
4	0.0005	0.0003	0.0002	0.0001	0.0001	0.0000	0.0000	
4 5	0.0005 0.0020	0.0003 0.0012	0.0002 0.0008	0.0005	0.0003	0.0002	0.0001	0.000
4 5 6	0.0005 0.0020 0.0073	0.0003 0.0012 0.0047	0.0002 0.0008 0.0030	$0.0005 \\ 0.0019$	$0.0003 \\ 0.0012$	$0.0002 \\ 0.0007$	$0.0001 \\ 0.0004$	0.000
4 5 6 7	0.0005 0.0020 0.0073 0.0216	0.0003 0.0012 0.0047 0.0145	0.0002 0.0008 0.0030 0.0096	0.0005 0.0019 0.0063	0.0003 0.0012 0.0041	0.0002 0.0007 0.0026	0.0001 0.0004 0.0017	0.000 0.000 0.001
4 5 6 7 8	0.0005 0.0020 0.0073 0.0216 0.0539	0.0003 0.0012 0.0047 0.0145 0.0378	0.0002 0.0008 0.0030 0.0096 0.0261	0.0005 0.0019 0.0063 0.0178	0.0003 0.0012 0.0041 0.0121	0.0002 0.0007 0.0026 0.0081	0.0001 0.0004 0.0017 0.0053	0.000 0.000 0.001 0.003
4 5 6 7 8 9	0.0005 0.0020 0.0073 0.0216 0.0539 0.1148	0.0003 0.0012 0.0047 0.0145 0.0378 0.0843	0.0002 0.0008 0.0030 0.0096 0.0261 0.0610	0.0005 0.0019 0.0063 0.0178 0.0436	0.0003 0.0012 0.0041 0.0121 0.0307	0.0002 0.0007 0.0026 0.0081 0.0214	0.0001 0.0004 0.0017 0.0053 0.0147	0.000 0.000 0.001 0.003 0.010
5 6 7 8 9	0.0005 0.0020 0.0073 0.0216 0.0539 0.1148 0.2122	0.0003 0.0012 0.0047 0.0145 0.0378 0.0843 0.1635	0.0002 0.0008 0.0030 0.0096 0.0261 0.0610 0.1239	0.0005 0.0019 0.0063 0.0178 0.0436	0.0003 0.0012 0.0041 0.0121 0.0307 0.0680	0.0002 0.0007 0.0026 0.0081 0.0214 0.0494	0.0001 0.0004 0.0017 0.0053 0.0147	0.000 0.000 0.001 0.003 0.010
4 5 6 7 8 9 10	0.0005 0.0020 0.0073 0.0216 0.0539 0.1148 0.2122 0.3450	0.0003 0.0012 0.0047 0.0145 0.0378 0.0843 0.1635 0.2786	0.0002 0.0008 0.0030 0.0096 0.0261 0.0610 0.1239 0.2210	0.0005 0.0019 0.0063 0.0178 0.0436 0.0925 0.1725	0.0003 0.0012 0.0041 0.0121 0.0307 0.0680 0.1325	0.0002 0.0007 0.0026 0.0081 0.0214 0.0494 0.1002	0.0001 0.0004 0.0017 0.0053 0.0147 0.0354 0.0748	0.000 0.000 0.000 0.001 0.003 0.010 0.025 0.055
4 5 6 7 8 9 10 11 12	0.0005 0.0020 0.0073 0.0216 0.0539 0.1148 0.2122 0.3450 0.5000	0.0003 0.0012 0.0047 0.0145 0.0378 0.0843 0.1635 0.2786 0.4225	0.0002 0.0008 0.0030 0.0096 0.0261 0.0610 0.1239 0.2210 0.3506	0.0005 0.0019 0.0063 0.0178 0.0436 0.0925 0.1725 0.2858	0.0003 0.0012 0.0041 0.0121 0.0307 0.0680 0.1325 0.2291	0.0002 0.0007 0.0026 0.0081 0.0214 0.0494 0.1002 0.1808	0.0001 0.0004 0.0017 0.0053 0.0147 0.0354 0.0748 0.1405	0.000 0.000 0.001 0.003 0.010 0.025 0.055 0.107
4 5 6 7 8 9 10 11 12 13	0.0005 0.0020 0.0073 0.0216 0.0539 0.1148 0.2122 0.3450 0.5000 0.6550	0.0003 0.0012 0.0047 0.0145 0.0378 0.0843 0.1635 0.2786 0.4225 0.5775	0.0002 0.0008 0.0030 0.0096 0.0261 0.0610 0.1239 0.2210 0.3506 0.5000	0.0005 0.0019 0.0063 0.0178 0.0436 0.0925 0.1725 0.2858 0.4253	0.0003 0.0012 0.0041 0.0121 0.0307 0.0680 0.1325 0.2291 0.3555	0.0002 0.0007 0.0026 0.0081 0.0214 0.0494 0.1002 0.1808 0.2923	0.0001 0.0004 0.0017 0.0053 0.0147 0.0354 0.0748 0.1405 0.2366	0.000 0.000 0.001 0.003 0.010 0.025 0.055 0.107 0.188
4 5 6 7 8 9 10 11 12 13 14	0.0005 0.0020 0.0073 0.0216 0.0539 0.1148 0.2122 0.3450 0.5000 0.6550 0.7878	0.0003 0.0012 0.0047 0.0145 0.0378 0.0843 0.1635 0.2786 0.4225 0.5775 0.7214	0.0002 0.0008 0.0030 0.0096 0.0261 0.0610 0.1239 0.2210 0.3506 0.5000 0.6494	0.0005 0.0019 0.0063 0.0178 0.0436 0.0925 0.1725 0.2858 0.4253 0.5747	0.0003 0.0012 0.0041 0.0121 0.0307 0.0680 0.1325 0.2291 0.3555 0.5000	0.0002 0.0007 0.0026 0.0081 0.0214 0.0494 0.1002 0.1808 0.2923 0.4278	0.0001 0.0004 0.0017 0.0053 0.0147 0.0354 0.0748 0.1405 0.2366 0.3601	0.000 0.000 0.001 0.003 0.010 0.025 0.055 0.107 0.188 0.298
4 5 6 7 8 9 10 11 12	0.0005 0.0020 0.0073 0.0216 0.0539 0.1148 0.2122 0.3450 0.5000 0.6550	0.0003 0.0012 0.0047 0.0145 0.0378 0.0843 0.1635 0.2786 0.4225 0.5775	0.0002 0.0008 0.0030 0.0096 0.0261 0.0610 0.1239 0.2210 0.3506 0.5000	0.0005 0.0019 0.0063 0.0178 0.0436 0.0925 0.1725 0.2858 0.4253	0.0003 0.0012 0.0041 0.0121 0.0307 0.0680 0.1325 0.2291 0.3555	0.0002 0.0007 0.0026 0.0081 0.0214 0.0494 0.1002 0.1808 0.2923	0.0001 0.0004 0.0017 0.0053 0.0147 0.0354 0.0748 0.1405 0.2366	0.000 0.000 0.001 0.003 0.010 0.025 0.055 0.107 0.188

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

14.2 Verteilungsfunktion F(x) der Poissonverteilung $(\lambda = 0, 1 \dots 3, 0)$

$x \setminus \lambda$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
0	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066	0.3679
1	0.9953	0.9825	0.9631	0.9384	0.9098	0.8781	0.8442	0.8088	0.7725	0.7358
2	0.9998	0.9989	0.9964	0.9921	0.9856	0.9769	0.9659	0.9526	0.9371	0.9197
3	1.0000	0.9999	0.9997	0.9992	0.9982	0.9966	0.9942	0.9909	0.9865	0.9810
4	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9992	0.9986	0.9977	0.9963
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9994
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\overline{x \setminus \lambda}$	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
0	0.3329	0.3012	0.2725	0.2466	0.2231	0.2019	0.1827	0.1653	0.1496	0.1353
1	0.6990	0.6626	0.6268	0.5918	0.5578	0.5249	0.4932	0.4628	0.4337	0.4060
2	0.9004	0.8795	0.8571	0.8335	0.8088	0.7834	0.7572	0.7306	0.7037	0.6767
3	0.9743	0.9662	0.9569	0.9463	0.9344	0.9212	0.9068	0.8913	0.8747	0.8571
4	0.9946	0.9923	0.9893	0.9857	0.9814	0.9763	0.9704	0.9636	0.9559	0.9473
5	0.9990	0.9985	0.9978	0.9968	0.9955	0.9940	0.9920	0.9896	0.9868	0.9834
6	0.9999	0.9997	0.9996	0.9994	0.9991	0.9987	0.9981	0.9974	0.9966	0.9955
7	1.0000	1.0000	0.9999	0.9999	0.9998	0.9997	0.9996	0.9994	0.9992	0.9989
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9998
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$x \setminus \lambda$	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3
0	0.1225	0.1108	0.1003	0.0907	0.0821	0.0743	0.0672	0.0608	0.0550	0.0498
1	0.3796	0.3546	0.3309	0.3084	0.2873	0.2674	0.2487	0.2311	0.2146	0.1991
2	0.6496	0.6227	0.5960	0.5697	0.5438	0.5184	0.4936	0.4695	0.4460	0.4232
3	0.8386	0.8194	0.7993	0.7787	0.7576	0.7360	0.7141	0.6919	0.6696	0.6472
4	0.9379	0.9275	0.9162	0.9041	0.8912	0.8774	0.8629	0.8477	0.8318	0.8153
5	0.9796	0.9751	0.9700	0.9643	0.9580	0.9510	0.9433	0.9349	0.9258	0.9161
6	0.9941	0.9925	0.9906	0.9884	0.9858	0.9828	0.9794	0.9756	0.9713	0.9665
7	0.9985	0.9980	0.9974	0.9967	0.9958	0.9947	0.9934	0.9919	0.9901	0.9881
8	0.9997	0.9995	0.9994	0.9991	0.9989	0.9985	0.9981	0.9976	0.9969	0.9962
9	0.9999	0.9999	0.9999	0.9998	0.9997	0.9996	0.9995	0.9993	0.9991	0.9989
10	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9998	0.9998	0.9997
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Verteilungsfunktion F(x) der Poissonverteilung ($\lambda=3,1\dots 5,0$)

$x \setminus \lambda$	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4
0	0.0450	0.0408	0.0369	0.0334	0.0302	0.0273	0.0247	0.0224	0.0202	0.0183
1	0.1847	0.1712	0.1586	0.1468	0.1359	0.1257	0.1162	0.1074	0.0992	0.0916
2	0.4012	0.3799	0.3594	0.3397	0.3208	0.3027	0.2854	0.2689	0.2531	0.2381
3	0.6248	0.6025	0.5803	0.5584	0.5366	0.5152	0.4942	0.4735	0.4532	0.4335
4	0.7982	0.7806	0.7626	0.7442	0.7254	0.7064	0.6872	0.6678	0.6484	0.6288
5	0.9057	0.8946	0.8829	0.8705	0.8576	0.8441	0.8301	0.8156	0.8006	0.7851
6	0.9612	0.9554	0.9490	0.9421	0.9347	0.9267	0.9182	0.9091	0.8995	0.8893
7	0.9858	0.9832	0.9802	0.9769	0.9733	0.9692	0.9648	0.9599	0.9546	0.9489
8	0.9953	0.9943	0.9931	0.9917	0.9901	0.9883	0.9863	0.9840	0.9815	0.9786
9	0.9986	0.9982	0.9978	0.9973	0.9967	0.9960	0.9952	0.9942	0.9931	0.9919
10	0.9996	0.9995	0.9994	0.9992	0.9990	0.9987	0.9984	0.9981	0.9977	0.9972
11	0.9999	0.9999	0.9998	0.9998	0.9997	0.9996	0.9995	0.9994	0.9993	0.9991
12	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998	0.9997
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$x \setminus \lambda$	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5
0	0.0166	0.0150	0.0136	0.0123	0.0111	0.0101	0.0091	0.0082	0.0074	0.0067
1	0.0845	0.0780	0.0719	0.0663	0.0611	0.0563	0.0518	0.0477	0.0439	0.0404
2	0.2238	0.2102	0.1974	0.1851	0.1736	0.1626	0.1523	0.1425	0.1333	0.1247
3	0.4142	0.3954	0.3772	0.3594	0.3423	0.3257	0.3097	0.2942	0.2793	0.2650
4	0.6093	0.5898	0.5704	0.5512	0.5321	0.5132	0.4946	0.4763	0.4582	0.4405
5	0.7693	0.7531	0.7367	0.7199	0.7029	0.6858	0.6684	0.6510	0.6335	0.6160
6	0.8786	0.8675	0.8558	0.8436	0.8311	0.8180	0.8046	0.7908	0.7767	0.7622
7	0.9427	0.9361	0.9290	0.9214	0.9134	0.9049	0.8960	0.8867	0.8769	0.8666
8	0.9755	0.9721	0.9683	0.9642	0.9597	0.9549	0.9497	0.9442	0.9382	0.9319
9	0.9905	0.9889	0.9871	0.9851	0.9829	0.9805	0.9778	0.9749	0.9717	0.9682
10	0.9966	0.9959	0.9952	0.9943	0.9933	0.9922	0.9910	0.9896	0.9880	0.9863
11	0.9989	0.9986	0.9983	0.9980	0.9976	0.9971	0.9966	0.9960	0.9953	0.9945
12	0.9997	0.9996	0.9995	0.9993	0.9992	0.9990	0.9988	0.9986	0.9983	0.9980
13	0.9999	0.9999	0.9998	0.9998	0.9997	0.9997	0.9996	0.9995	0.9994	0.9993
14	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

61

Verteilungsfunktion F(x) der Poissonverteilung ($\lambda = 4, 1 \dots 7, 0$)

$x \setminus \lambda$	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6
0	0.0061	0.0055	0.0050	0.0045	0.0041	0.0037	0.0033	0.0030	0.0027	0.0025
1	0.0372	0.0342	0.0314	0.0289	0.0266	0.0244	0.0224	0.0206	0.0189	0.0174
2	0.1165	0.1088	0.1016	0.0948	0.0884	0.0824	0.0768	0.0715	0.0666	0.0620
3	0.2513	0.2381	0.2254	0.2133	0.2017	0.1906	0.1800	0.1700	0.1604	0.1512
4	0.4231	0.4061	0.3895	0.3733	0.3575	0.3422	0.3272	0.3127	0.2987	0.2851
5	0.5984	0.5809	0.5635	0.5461	0.5289	0.5119	0.4950	0.4783	0.4619	0.4457
6	0.7474	0.7324	0.7171	0.7017	0.6860	0.6703	0.6544	0.6384	0.6224	0.6063
7	0.8560	0.8449	0.8335	0.8217	0.8095	0.7970	0.7841	0.7710	0.7576	0.7440
8	0.9252	0.9181	0.9106	0.9027	0.8944	0.8857	0.8766	0.8672	0.8574	0.8472
9	0.9644	0.9603	0.9559	0.9512	0.9462	0.9409	0.9352	0.9292	0.9228	0.9161
10	0.9844	0.9823	0.9800	0.9775	0.9747	0.9718	0.9686	0.9651	0.9614	0.9574
11	0.9937	0.9927	0.9916	0.9904	0.9890	0.9875	0.9859	0.9841	0.9821	0.9799
12	0.9976	0.9972	0.9967	0.9962	0.9955	0.9949	0.9941	0.9932	0.9922	0.9912
13	0.9992	0.9990	0.9988	0.9986	0.9983	0.9980	0.9977	0.9973	0.9969	0.9964
14	0.9997	0.9997	0.9996	0.9995	0.9994	0.9993	0.9991	0.9990	0.9988	0.9986
15	0.9999	0.9999	0.9999	0.9998	0.9998	0.9998	0.9997	0.9996	0.9996	0.9995
16	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9998
17	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
18	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$x \setminus \lambda$	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	7
0	6.1 0.0022	6.2 0.0020	6.3 0.0018	6.4 0.0017	6.5 0.0015	6.6 0.0014	0.0012	6.8 0.0011	6.9 0.0010	0.0009
0 1	0.0022 0.0159	$0.0020 \\ 0.0146$	0.0018 0.0134	0.0017 0.0123	0.0015 0.0113	0.0014 0.0103	$0.0012 \\ 0.0095$	0.0011 0.0087	0.0010 0.0080	0.0009 0.0073
0 1 2	0.0022 0.0159 0.0577	0.0020 0.0146 0.0536	0.0018 0.0134 0.0498	0.0017 0.0123 0.0463	0.0015 0.0113 0.0430	0.0014 0.0103 0.0400	0.0012 0.0095 0.0371	0.0011 0.0087 0.0344	0.0010 0.0080 0.0320	0.0009 0.0073 0.0296
0 1 2 3	0.0022 0.0159 0.0577 0.1425	0.0020 0.0146 0.0536 0.1342	0.0018 0.0134 0.0498 0.1264	0.0017 0.0123 0.0463 0.1189	0.0015 0.0113 0.0430 0.1118	0.0014 0.0103 0.0400 0.1052	0.0012 0.0095 0.0371 0.0988	0.0011 0.0087 0.0344 0.0928	0.0010 0.0080 0.0320 0.0871	0.0009 0.0073 0.0296 0.0818
0 1 2 3 4	0.0022 0.0159 0.0577 0.1425 0.2719	0.0020 0.0146 0.0536 0.1342 0.2592	0.0018 0.0134 0.0498 0.1264 0.2469	0.0017 0.0123 0.0463 0.1189 0.2351	0.0015 0.0113 0.0430 0.1118 0.2237	0.0014 0.0103 0.0400 0.1052 0.2127	0.0012 0.0095 0.0371 0.0988 0.2022	0.0011 0.0087 0.0344 0.0928 0.1920	0.0010 0.0080 0.0320 0.0871 0.1823	0.0009 0.0073 0.0296 0.0818 0.1730
0 1 2 3 4 5	0.0022 0.0159 0.0577 0.1425 0.2719	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988	0.0017 0.0123 0.0463 0.1189 0.2351 0.3837	0.0015 0.0113 0.0430 0.1118 0.2237	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007
0 1 2 3 4 5 6	0.0022 0.0159 0.0577 0.1425 0.2719 0.4298 0.5902	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141 0.5742	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988 0.5582	0.0017 0.0123 0.0463 0.1189 0.2351 0.3837 0.5423	0.0015 0.0113 0.0430 0.1118 0.2237 0.3690 0.5265	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547 0.5108	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406 0.4953	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270 0.4799	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137 0.4647	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497
0 1 2 3 4 5 6 7	0.0022 0.0159 0.0577 0.1425 0.2719 0.4298 0.5902 0.7301	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141 0.5742 0.7160	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988 0.5582 0.7017	0.0017 0.0123 0.0463 0.1189 0.2351 0.3837 0.5423 0.6873	0.0015 0.0113 0.0430 0.1118 0.2237 0.3690 0.5265 0.6728	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547 0.5108 0.6581	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406 0.4953 0.6433	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270 0.4799 0.6285	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137 0.4647 0.6136	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497 0.5987
0 1 2 3 4 5 6 7 8	0.0022 0.0159 0.0577 0.1425 0.2719 0.4298 0.5902 0.7301 0.8367	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141 0.5742 0.7160 0.8259	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988 0.5582 0.7017 0.8148	0.0017 0.0123 0.0463 0.1189 0.2351 0.3837 0.5423 0.6873 0.8033	0.0015 0.0113 0.0430 0.1118 0.2237 0.3690 0.5265 0.6728 0.7916	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547 0.5108 0.6581 0.7796	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406 0.4953 0.6433 0.7673	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270 0.4799 0.6285 0.7548	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137 0.4647 0.6136 0.7420	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497 0.5987 0.7291
0 1 2 3 4 5 6 7 8 9	0.0022 0.0159 0.0577 0.1425 0.2719 0.4298 0.5902 0.7301 0.8367 0.9090	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141 0.5742 0.7160 0.8259 0.9016	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988 0.5582 0.7017 0.8148 0.8939	0.0017 0.0123 0.0463 0.1189 0.2351 0.3837 0.5423 0.6873 0.8033 0.8858	0.0015 0.0113 0.0430 0.1118 0.2237 0.3690 0.5265 0.6728 0.7916 0.8774	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547 0.5108 0.6581 0.7796 0.8686	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406 0.4953 0.6433 0.7673 0.8596	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270 0.4799 0.6285 0.7548 0.8502	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137 0.4647 0.6136 0.7420 0.8405	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497 0.5987 0.7291 0.8305
0 1 2 3 4 5 6 7 8 9	0.0022 0.0159 0.0577 0.1425 0.2719 0.4298 0.5902 0.7301 0.8367 0.9090	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141 0.5742 0.7160 0.8259 0.9016	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988 0.5582 0.7017 0.8148 0.8939	0.0017 0.0123 0.0463 0.1189 0.2351 0.3837 0.5423 0.6873 0.8033 0.8858	0.0015 0.0113 0.0430 0.1118 0.2237 0.3690 0.5265 0.6728 0.7916 0.8774	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547 0.5108 0.6581 0.7796 0.8686	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406 0.4953 0.6433 0.7673 0.8596	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270 0.4799 0.6285 0.7548 0.8502	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137 0.4647 0.6136 0.7420 0.8405	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497 0.5987 0.7291 0.8305
0 1 2 3 4 5 6 7 8 9	0.0022 0.0159 0.0577 0.1425 0.2719 0.4298 0.5902 0.7301 0.8367 0.9090 0.9531 0.9776	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141 0.5742 0.7160 0.8259 0.9016 0.9486 0.9750	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988 0.5582 0.7017 0.8148 0.8939 0.9437 0.9723	0.0017 0.0123 0.0463 0.1189 0.2351 0.3837 0.5423 0.6873 0.8033 0.8858 0.9386 0.9693	0.0015 0.0113 0.0430 0.1118 0.2237 0.3690 0.5265 0.6728 0.7916 0.8774 0.9332 0.9661	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547 0.5108 0.6581 0.7796 0.8686 0.9274 0.9627	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406 0.4953 0.6433 0.7673 0.8596 0.9214 0.9591	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270 0.4799 0.6285 0.7548 0.8502 0.9151 0.9552	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137 0.4647 0.6136 0.7420 0.8405 0.9084 0.9510	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497 0.5987 0.7291 0.8305 0.9015 0.9467
0 1 2 3 4 5 6 7 8 9 10 11 12	0.0022 0.0159 0.0577 0.1425 0.2719 0.4298 0.5902 0.7301 0.8367 0.9090 0.9531 0.9776 0.9900	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141 0.5742 0.7160 0.8259 0.9016 0.9486 0.9750 0.9887	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988 0.5582 0.7017 0.8148 0.8939 0.9437 0.9723 0.9873	0.0017 0.0123 0.0463 0.1189 0.2351 0.3837 0.5423 0.6873 0.8033 0.8858 0.9386 0.9693 0.9857	0.0015 0.0113 0.0430 0.1118 0.2237 0.3690 0.5265 0.6728 0.7916 0.8774 0.9332 0.9661 0.9840	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547 0.5108 0.6581 0.7796 0.8686 0.9274 0.9627 0.9821	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406 0.4953 0.6433 0.7673 0.8596 0.9214 0.9591 0.9801	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270 0.4799 0.6285 0.7548 0.8502 0.9151 0.9552 0.9779	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137 0.4647 0.6136 0.7420 0.8405 0.9084 0.9510 0.9755	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497 0.5987 0.7291 0.8305 0.9015 0.9467 0.9730
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0.0022 0.0159 0.0577 0.1425 0.2719 0.4298 0.5902 0.7301 0.8367 0.9090 0.9531 0.9776 0.9900 0.9958	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141 0.5742 0.7160 0.8259 0.9016 0.9486 0.9750 0.9887 0.9952	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988 0.5582 0.7017 0.8148 0.8939 0.9437 0.9723 0.9873	0.0017 0.0123 0.0463 0.1189 0.2351 0.3837 0.5423 0.6873 0.8033 0.8858 0.9386 0.9693 0.9857 0.9937	0.0015 0.0113 0.0430 0.1118 0.2237 0.3690 0.5265 0.6728 0.7916 0.8774 0.9332 0.9661 0.9840 0.9929	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547 0.5108 0.6581 0.7796 0.8686 0.9274 0.9627 0.9821 0.9920	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406 0.4953 0.6433 0.7673 0.8596 0.9214 0.9591 0.9801 0.9909	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270 0.4799 0.6285 0.7548 0.8502 0.9151 0.9552 0.9779 0.9898	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137 0.4647 0.6136 0.7420 0.8405 0.9084 0.9510 0.9755 0.9885	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497 0.5987 0.7291 0.8305 0.9015 0.9467 0.9730 0.9872
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.0022 0.0159 0.0577 0.1425 0.2719 0.4298 0.5902 0.7301 0.8367 0.9090 0.9531 0.9776 0.9900 0.9958 0.9984	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141 0.5742 0.7160 0.8259 0.9016 0.9486 0.9750 0.9887 0.9952	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988 0.5582 0.7017 0.8148 0.8939 0.9437 0.9723 0.9873 0.9945 0.9978	0.0017 0.0123 0.0463 0.1189 0.2351 0.5423 0.6873 0.8033 0.8858 0.9386 0.9693 0.9857 0.9937	0.0015 0.0113 0.0430 0.1118 0.2237 0.3690 0.5265 0.6728 0.7916 0.8774 0.9332 0.9661 0.9840 0.9929 0.9970	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547 0.5108 0.6581 0.7796 0.8686 0.9274 0.9627 0.9821	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406 0.4953 0.6433 0.7673 0.8596 0.9214 0.9591 0.9801 0.9909 0.9961	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270 0.4799 0.6285 0.7548 0.8502 0.9151 0.9552 0.9779 0.9898 0.9956	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137 0.4647 0.6136 0.7420 0.8405 0.9084 0.9510 0.9755 0.9885 0.9950	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497 0.5987 0.7291 0.8305 0.9015 0.9467 0.9730 0.9872
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.0022 0.0159 0.0577 0.1425 0.2719 0.4298 0.5902 0.7301 0.8367 0.9090 0.9531 0.9776 0.9900 0.9958 0.9984	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141 0.5742 0.7160 0.8259 0.9016 0.9486 0.9750 0.9887 0.9952 0.9981	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988 0.5582 0.7017 0.8148 0.8939 0.9437 0.9723 0.9873 0.9945 0.9978	0.0017 0.0123 0.0463 0.1189 0.2351 0.3837 0.5423 0.6873 0.8033 0.8858 0.9386 0.9693 0.9857 0.9937	0.0015 0.0113 0.0430 0.1118 0.2237 0.3690 0.5265 0.6728 0.7916 0.8774 0.9332 0.9661 0.9840 0.9929 0.9970	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547 0.5108 0.6581 0.7796 0.8686 0.9274 0.9627 0.9821 0.9920	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406 0.4953 0.6433 0.7673 0.8596 0.9214 0.9591 0.9801 0.9909 0.9961	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270 0.4799 0.6285 0.7548 0.8502 0.9151 0.9552 0.9779 0.9898 0.9956	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137 0.4647 0.6136 0.7420 0.8405 0.9084 0.9510 0.9755 0.9885 0.9950	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497 0.5987 0.7291 0.8305 0.9015 0.9467 0.9730 0.9872 0.9943
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.0022 0.0159 0.0577 0.1425 0.2719 0.4298 0.5902 0.7301 0.8367 0.9090 0.9531 0.9776 0.9900 0.9958 0.9984	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141 0.5742 0.7160 0.8259 0.9016 0.9486 0.9750 0.9887 0.9952 0.9981	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988 0.5582 0.7017 0.8148 0.8939 0.9437 0.9723 0.9873 0.9945 0.9978	0.0017 0.0123 0.0463 0.1189 0.2351 0.5423 0.6873 0.8033 0.8858 0.9386 0.9693 0.9857 0.9974	0.0015 0.0113 0.0430 0.1118 0.2237 0.3690 0.5265 0.6728 0.7916 0.8774 0.9332 0.9661 0.9840 0.9929 0.9970	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547 0.5108 0.6581 0.7796 0.8686 0.9274 0.9627 0.9821 0.9920 0.9966	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406 0.4953 0.6433 0.7673 0.8596 0.9214 0.9591 0.9801 0.9909 0.9961	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270 0.4799 0.6285 0.7548 0.8502 0.9151 0.9552 0.9779 0.9898 0.9956	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137 0.4647 0.6136 0.7420 0.8405 0.9084 0.9510 0.9755 0.9885 0.9950	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497 0.5987 0.7291 0.8305 0.9015 0.9467 0.9730 0.9872 0.9943
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.0022 0.0159 0.0577 0.1425 0.2719 0.4298 0.5902 0.7301 0.8367 0.9090 0.9531 0.9776 0.9900 0.9958 0.9984 0.9994 0.9998	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141 0.5742 0.7160 0.8259 0.9016 0.9486 0.9750 0.9887 0.9952 0.9981 0.9993 0.9997	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988 0.5582 0.7017 0.8148 0.8939 0.9437 0.9723 0.9873 0.9945 0.9978	0.0017 0.0123 0.0463 0.1189 0.2351 0.5423 0.6873 0.8033 0.8858 0.9386 0.9693 0.9857 0.9974 0.9990 0.9996 0.9999	0.0015 0.0113 0.0430 0.1118 0.2237 0.3690 0.5265 0.6728 0.7916 0.8774 0.9332 0.9661 0.9840 0.9929 0.9970 0.9988 0.9996 0.9998	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547 0.5108 0.6581 0.7796 0.8686 0.9274 0.9627 0.9920 0.9966 0.9986 0.9995 0.9998	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406 0.4953 0.6433 0.7673 0.8596 0.9214 0.9591 0.9801 0.9909 0.9961 0.9984 0.9998	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270 0.4799 0.6285 0.7548 0.8502 0.9151 0.9552 0.9779 0.9898 0.9956	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137 0.4647 0.6136 0.7420 0.8405 0.9084 0.9510 0.9755 0.9885 0.9950 0.9979 0.9992	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497 0.5987 0.7291 0.8305 0.9015 0.9467 0.9730 0.9872 0.9943 0.9976 0.9990
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.0022 0.0159 0.0577 0.1425 0.2719 0.4298 0.5902 0.7301 0.8367 0.9090 0.9531 0.9776 0.9900 0.9958 0.9984	0.0020 0.0146 0.0536 0.1342 0.2592 0.4141 0.5742 0.7160 0.8259 0.9016 0.9486 0.9750 0.9887 0.9952 0.9981	0.0018 0.0134 0.0498 0.1264 0.2469 0.3988 0.5582 0.7017 0.8148 0.8939 0.9437 0.9723 0.9873 0.9945 0.9978	0.0017 0.0123 0.0463 0.1189 0.2351 0.5423 0.6873 0.8033 0.8858 0.9386 0.9693 0.9857 0.9974	0.0015 0.0113 0.0430 0.1118 0.2237 0.3690 0.5265 0.6728 0.7916 0.8774 0.9332 0.9661 0.9840 0.9929 0.9970	0.0014 0.0103 0.0400 0.1052 0.2127 0.3547 0.5108 0.6581 0.7796 0.8686 0.9274 0.9627 0.9821 0.9920 0.9966	0.0012 0.0095 0.0371 0.0988 0.2022 0.3406 0.4953 0.6433 0.7673 0.8596 0.9214 0.9591 0.9801 0.9909 0.9961	0.0011 0.0087 0.0344 0.0928 0.1920 0.3270 0.4799 0.6285 0.7548 0.8502 0.9151 0.9552 0.9779 0.9898 0.9956	0.0010 0.0080 0.0320 0.0871 0.1823 0.3137 0.4647 0.6136 0.7420 0.8405 0.9084 0.9510 0.9755 0.9885 0.9950	0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497 0.5987 0.7291 0.8305 0.9015 0.9467 0.9730 0.9872 0.9943

Verteilungsfunktion F(x) der Poissonverteilung ($\lambda = 7, 1 \dots 8, 0$)

$x \setminus \lambda$	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8
0	0.0008	0.0007	0.0007	0.0006	0.0006	0.0005	0.0005	0.0004	0.0004	0.0003
1	0.0067	0.0061	0.0056	0.0051	0.0047	0.0043	0.0039	0.0036	0.0033	0.0030
2	0.0275	0.0255	0.0236	0.0219	0.0203	0.0188	0.0174	0.0161	0.0149	0.0138
3	0.0767	0.0719	0.0674	0.0632	0.0591	0.0554	0.0518	0.0485	0.0453	0.0424
4	0.1641	0.1555	0.1473	0.1395	0.1321	0.1249	0.1181	0.1117	0.1055	0.0996
5	0.2881	0.2759	0.2640	0.2526	0.2414	0.2307	0.2203	0.2103	0.2006	0.1912
6	0.4349	0.4204	0.4060	0.3920	0.3782	0.3646	0.3514	0.3384	0.3257	0.3134
7	0.5838	0.5689	0.5541	0.5393	0.5246	0.5100	0.4956	0.4812	0.4670	0.4530
8	0.7160	0.7027	0.6892	0.6757	0.6620	0.6482	0.6343	0.6204	0.6065	0.5925
9	0.8202	0.8096	0.7988	0.7877	0.7764	0.7649	0.7531	0.7411	0.7290	0.7166
10	0.8942	0.8867	0.8788	0.8707	0.8622	0.8535	0.8445	0.8352	0.8257	0.8159
11	0.9420	0.9371	0.9319	0.9265	0.9208	0.9148	0.9085	0.9020	0.8952	0.8881
12	0.9703	0.9673	0.9642	0.9609	0.9573	0.9536	0.9496	0.9454	0.9409	0.9362
13	0.9857	0.9841	0.9824	0.9805	0.9784	0.9762	0.9739	0.9714	0.9687	0.9658
14	0.9935	0.9927	0.9918	0.9908	0.9897	0.9886	0.9873	0.9859	0.9844	0.9827
15	0.9972	0.9969	0.9964	0.9959	0.9954	0.9948	0.9941	0.9934	0.9926	0.9918
16	0.9989	0.9987	0.9985	0.9983	0.9980	0.9978	0.9974	0.9971	0.9967	0.9963
17	0.9996	0.9995	0.9994	0.9993	0.9992	0.9991	0.9989	0.9988	0.9986	0.9984
18	0.9998	0.9998	0.9998	0.9997	0.9997	0.9996	0.9996	0.9995	0.9994	0.9993
19	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998	0.9998	0.9997
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999
21	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Beispiel: Die Zufallsvariable $X \sim Po(7,5)$ und gesucht ist

$$P(X = 4) = F(4) - F(3) = 0,1321 - 0,0591 = 0,0730$$

 $P(2 \le X \le 6) = F(6) - F(1) = 0,3782 - 0,0047 = 0,3735$
 $P(X > 6) = 1 - F(6) = 1 - 0,3782 = 0,6218$

Verteilungsfunktion F(x) der Poissonverteilung ($\lambda=8,1\dots 9,0$)

$x \setminus \lambda$	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	9
0	0.0003	0.0003	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0001	0.0001
1	0.0028	0.0025	0.0023	0.0021	0.0019	0.0018	0.0016	0.0015	0.0014	0.0012
2	0.0127	0.0118	0.0109	0.0100	0.0093	0.0086	0.0079	0.0073	0.0068	0.0062
3	0.0396	0.0370	0.0346	0.0323	0.0301	0.0281	0.0262	0.0244	0.0228	0.0212
4	0.0940	0.0887	0.0837	0.0789	0.0744	0.0701	0.0660	0.0621	0.0584	0.0550
5	0.1822	0.1736	0.1653	0.1573	0.1496	0.1422	0.1352	0.1284	0.1219	0.1157
6	0.3013	0.2896	0.2781	0.2670	0.2562	0.2457	0.2355	0.2256	0.2160	0.2068
7	0.4391	0.4254	0.4119	0.3987	0.3856	0.3728	0.3602	0.3478	0.3357	0.3239
8	0.5786	0.5647	0.5507	0.5369	0.5231	0.5094	0.4958	0.4823	0.4689	0.4557
9	0.7041	0.6915	0.6788	0.6659	0.6530	0.6400	0.6269	0.6137	0.6006	0.5874
10	0.8058	0.7955	0.7850	0.7743	0.7634	0.7522	0.7409	0.7294	0.7178	0.7060
11	0.8807	0.8731	0.8652	0.8571	0.8487	0.8400	0.8311	0.8220	0.8126	0.8030
12	0.9313	0.9261	0.9207	0.9150	0.9091	0.9029	0.8965	0.8898	0.8829	0.8758
13	0.9628	0.9595	0.9561	0.9524	0.9486	0.9445	0.9403	0.9358	0.9311	0.9261
14	0.9810	0.9791	0.9771	0.9749	0.9726	0.9701	0.9675	0.9647	0.9617	0.9585
15	0.9908	0.9898	0.9887	0.9875	0.9862	0.9848	0.9832	0.9816	0.9798	0.9780
16	0.9958	0.9953	0.9947	0.9941	0.9934	0.9926	0.9918	0.9909	0.9899	0.9889
17	0.9982	0.9979	0.9977	0.9973	0.9970	0.9966	0.9962	0.9957	0.9952	0.9947
18	0.9992	0.9991	0.9990	0.9989	0.9987	0.9985	0.9983	0.9981	0.9978	0.9976
19	0.9997	0.9997	0.9996	0.9995	0.9995	0.9994	0.9993	0.9992	0.9991	0.9989
20	0.9999	0.9999	0.9998	0.9998	0.9998	0.9998	0.9997	0.9997	0.9996	0.9996
21	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998
22	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
23	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Verteilungsfunktion F(x) der Poissonverteilung ($\lambda = 9, 1 \dots 10$)

$x \setminus \lambda$	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9	10
0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000
1	0.0011	0.0010	0.0009	0.0009	0.0008	0.0007	0.0007	0.0006	0.0005	0.0005
2	0.0058	0.0053	0.0049	0.0045	0.0042	0.0038	0.0035	0.0033	0.0030	0.0028
3	0.0198	0.0184	0.0172	0.0160	0.0149	0.0138	0.0129	0.0120	0.0111	0.0103
4	0.0517	0.0486	0.0456	0.0429	0.0403	0.0378	0.0355	0.0333	0.0312	0.0293
5	0.1098	0.1041	0.0986	0.0935	0.0885	0.0838	0.0793	0.0750	0.0710	0.0671
6	0.1978	0.1892	0.1808	0.1727	0.1649	0.1574	0.1502	0.1433	0.1366	0.1301
7	0.3123	0.3010	0.2900	0.2792	0.2687	0.2584	0.2485	0.2388	0.2294	0.2202
8	0.4426	0.4296	0.4168	0.4042	0.3918	0.3796	0.3676	0.3558	0.3442	0.3328
9	0.5742	0.5611	0.5479	0.5349	0.5218	0.5089	0.4960	0.4832	0.4705	0.4579
10	0.6941	0.6820	0.6699	0.6576	0.6453	0.6329	0.6205	0.6080	0.5955	0.5830
11	0.7932	0.7832	0.7730	0.7626	0.7520	0.7412	0.7303	0.7193	0.7081	0.6968
12	0.8684	0.8607	0.8529	0.8448	0.8364	0.8279	0.8191	0.8101	0.8009	0.7916
13	0.9210	0.9156	0.9100	0.9042	0.8981	0.8919	0.8853	0.8786	0.8716	0.8645
14	0.9552	0.9517	0.9480	0.9441	0.9400	0.9357	0.9312	0.9265	0.9216	0.9165
15	0.9760	0.9738	0.9715	0.9691	0.9665	0.9638	0.9609	0.9579	0.9546	0.9513
16	0.9878	0.9865	0.9852	0.9838	0.9823	0.9806	0.9789	0.9770	0.9751	0.9730
17	0.9941	0.9934	0.9927	0.9919	0.9911	0.9902	0.9892	0.9881	0.9870	0.9857
18	0.9973	0.9969	0.9966	0.9962	0.9957	0.9952	0.9947	0.9941	0.9935	0.9928
19	0.9988	0.9986	0.9985	0.9983	0.9980	0.9978	0.9975	0.9972	0.9969	0.9965
20	0.9995	0.9994	0.9993	0.9992	0.9991	0.9990	0.9989	0.9987	0.9986	0.9984
21	0.9998	0.9998	0.9997	0.9997	0.9996	0.9996	0.9995	0.9995	0.9994	0.9993
22	0.9999	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998	0.9998	0.9997	0.9997
23	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
24	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

65

14.3 Quantile x_p der χ^2 -Verteilung mit f Freiheitsgraden

$p \backslash f$	1	2	3	4	5	6	7	8	9	10
0.005	0.00	0.01	0.07	0.21	0.41	0.68	0.99	1.34	1.73	2.16
0.01	0.00	0.02	0.11	0.30	0.55	0.87	1.24	1.65	2.09	2.56
0.025	0.00	0.05	0.22	0.48	0.83	1.24	1.69	2.18	2.70	3.25
0.05	0.00	0.10	0.35	0.71	1.15	1.64	2.17	2.73	3.33	3.94
0.1	0.02	0.21	0.58	1.06	1.61	2.20	2.83	3.49	4.17	4.87
0.2	0.06	0.45	1.01	1.65	2.34	3.07	3.82	4.59	5.38	6.18
0.25	0.10	0.58	1.21	1.92	2.67	3.45	4.25	5.07	5.90	6.74
0.3	0.15	0.71	1.42	2.19	3.00	3.83	4.67	5.53	6.39	7.27
0.4	0.27	1.02	1.87	2.75	3.66	4.57	5.49	6.42	7.36	8.30
0.5	0.45	1.39	2.37	3.36	4.35	5.35	6.35	7.34	8.34	9.34
0.6	0.71	1.83	2.95	4.04	5.13	6.21	7.28	8.35	9.41	10.47
0.7	1.07	2.41	3.66	4.88	6.06	7.23	8.38	9.52	10.66	11.78
0.75	1.32	2.77	4.11	5.39	6.63	7.84	9.04	10.22	11.39	12.55
0.8	1.64	3.22	4.64	5.99	7.29	8.56	9.80	11.03	12.24	13.44
0.9	2.71	4.61	6.25	7.78	9.24	10.64	12.02	13.36	14.68	15.99
0.95	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51	16.92	18.31
0.975	5.02	7.38	9.35	11.14	12.83	14.45	16.01	17.53	19.02	20.48
0.99	6.63	9.21	11.34	13.28	15.09	16.81	18.48	20.09	21.67	23.21
0.995	7.88	10.60	12.84	14.86	16.75	18.55	20.28	21.95	23.59	25.19
$p \backslash f$	11	12	13	14	15	16	17	18	19	20
0.005	2.60	3.07	3.57	4.07	4.60	5.14	5.70	6.26	6.84	7.43
0.01	3.05	3.57	4.11	4.66	5.23	5.81	6.41	7.01	7.63	8.26
0.025	3.82	4.40	5.01	5.63	6.26	6.91	7.56	8.23	8.91	9.59
0.05	4.57	5.23	5.89	6.57	7.26	7.96	8.67	9.39	10.12	10.85
0.1	5.58	6.30	7.04	7.79	8.55	9.31	10.09	10.86	11.65	12.44
0.2	6.99	7.81	8.63	9.47	10.31	11.15	12.00	12.86	13.72	14.58
0.25	7.58	8.44	9.30	10.17	11.04	11.91	12.79	13.68	14.56	15.45
0.3	8.15	9.03	9.93	10.82	11.72	12.62	13.53	14.44	15.35	16.27
0.4	9.24	10.18	11.13	12.08	13.03	13.98	14.94	15.89	16.85	17.81
0.5	10.34	11.34	12.34	13.34	14.34	15.34	16.34	17.34	18.34	19.34
0.6	11.53	12.58	13.64	14.69	15.73	16.78	17.82	18.87	19.91	20.95
0.7	12.90	14.01	15.12	16.22	17.32	18.42	19.51	20.60	21.69	22.77
0.75	13.70	14.85	15.98	17.12	18.25	19.37	20.49	21.60	22.72	23.83
0.8	14.63	15.81	16.98	18.15	19.31	20.47	21.61	22.76	23.90	25.04
0.9	17.28	18.55	19.81	21.06	22.31	23.54	24.77	25.99	27.20	28.41
0.95	19.68	21.03	22.36	23.68	25.00	26.30	27.59	28.87	30.14	31.41
0.975	21.92	23.34	24.74	26.12	27.49	28.85	30.19	31.53	32.85	34.17
0.99	24.72	26.22	27.69	29.14	30.58	32.00	33.41	34.81	36.19	37.57
0.995	26.76	28.30	29.82	31.32	32.80	34.27	35.72	37.16	38.58	40.00

Quantile x_p der χ^2 -Verteilung mit f Freiheitsgraden

$p \backslash f$	21	22	23	24	25	26	27	28	29	30
0.005	8.03	8.64	9.26	9.89	10.52	11.16	11.81	12.46	13.12	13.79
0.01	8.90	9.54	10.20	10.86	11.52	12.20	12.88	13.56	14.26	14.95
0.025	10.28	10.98	11.69	12.40	13.12	13.84	14.57	15.31	16.05	16.79
0.05	11.59	12.34	13.09	13.85	14.61	15.38	16.15	16.93	17.71	18.49
0.1	13.24	14.04	14.85	15.66	16.47	17.29	18.11	18.94	19.77	20.60
0.2	15.44	16.31	17.19	18.06	18.94	19.82	20.70	21.59	22.48	23.36
0.25	16.34	17.24	18.14	19.04	19.94	20.84	21.75	22.66	23.57	24.48
0.3	17.18	18.10	19.02	19.94	20.87	21.79	22.72	23.65	24.58	25.51
0.4	18.77	19.73	20.69	21.65	22.62	23.58	24.54	25.51	26.48	27.44
0.5	20.34	21.34	22.34	23.34	24.34	25.34	26.34	27.34	28.34	29.34
0.6	21.99	23.03	24.07	25.11	26.14	27.18	28.21	29.25	30.28	31.32
0.7	23.86	24.94	26.02	27.10	28.17	29.25	30.32	31.39	32.46	33.53
0.75	24.93	26.04	27.14	28.24	29.34	30.43	31.53	32.62	33.71	34.80
0.8	26.17	27.30	28.43	29.55	30.68	31.79	32.91	34.03	35.14	36.25
0.9	29.62	30.81	32.01	33.20	34.38	35.56	36.74	37.92	39.09	40.26
0.95	32.67	33.92	35.17	36.42	37.65	38.89	40.11	41.34	42.56	43.77
0.975	35.48	36.78	38.08	39.36	40.65	41.92	43.19	44.46	45.72	46.98
0.99	38.93	40.29	41.64	42.98	44.31	45.64	46.96	48.28	49.59	50.89
0.995	41.40	42.80	44.18	45.56	46.93	48.29	49.64	50.99	52.34	53.67
$p \backslash f$	31	32	33	34	35	36	37	38	39	40
$p \backslash f$ 0.005	31 14.46	32 15.13	33 15.82	16.50	35 17.19	36 17.89	37 18.59	38 19.29	39 20.00	20.71
0.005	14.46	15.13	15.82	16.50	17.19	17.89	18.59	19.29	20.00	20.71
0.005 0.01	14.46 15.66	15.13 16.36	15.82 17.07	16.50 17.79	17.19 18.51	17.89 19.23	18.59 19.96	19.29 20.69	20.00 21.43	20.71 22.16
0.005 0.01 0.025	14.46 15.66 17.54	15.13 16.36 18.29	15.82 17.07 19.05	16.50 17.79 19.81	17.19 18.51 20.57	17.89 19.23 21.34	18.59 19.96 22.11	19.29 20.69 22.88	20.00 21.43 23.65	20.71 22.16 24.43
0.005 0.01 0.025 0.05	14.46 15.66 17.54 19.28	15.13 16.36 18.29 20.07	15.82 17.07 19.05 20.87	16.50 17.79 19.81 21.66	17.19 18.51 20.57 22.47	17.89 19.23 21.34 23.27	18.59 19.96 22.11 24.07	19.29 20.69 22.88 24.88	20.00 21.43 23.65 25.70	20.71 22.16 24.43 26.51
0.005 0.01 0.025 0.05 0.1	14.46 15.66 17.54 19.28 21.43	15.13 16.36 18.29 20.07 22.27	15.82 17.07 19.05 20.87 23.11	16.50 17.79 19.81 21.66 23.95	17.19 18.51 20.57 22.47 24.80	17.89 19.23 21.34 23.27 25.64	18.59 19.96 22.11 24.07 26.49	19.29 20.69 22.88 24.88 27.34	20.00 21.43 23.65 25.70 28.20	20.71 22.16 24.43 26.51 29.05
0.005 0.01 0.025 0.05 0.1	14.46 15.66 17.54 19.28 21.43 24.26	15.13 16.36 18.29 20.07 22.27 25.15	15.82 17.07 19.05 20.87 23.11 26.04	16.50 17.79 19.81 21.66 23.95 26.94	17.19 18.51 20.57 22.47 24.80 27.84	17.89 19.23 21.34 23.27 25.64 28.73	18.59 19.96 22.11 24.07 26.49 29.64	19.29 20.69 22.88 24.88 27.34 30.54	20.00 21.43 23.65 25.70 28.20 31.44	20.71 22.16 24.43 26.51 29.05 32.34
0.005 0.01 0.025 0.05 0.1 0.2 0.25	14.46 15.66 17.54 19.28 21.43 24.26 25.39	15.13 16.36 18.29 20.07 22.27 25.15 26.30	15.82 17.07 19.05 20.87 23.11 26.04 27.22	16.50 17.79 19.81 21.66 23.95 26.94 28.14	17.19 18.51 20.57 22.47 24.80 27.84 29.05	17.89 19.23 21.34 23.27 25.64 28.73 29.97	18.59 19.96 22.11 24.07 26.49 29.64 30.89	19.29 20.69 22.88 24.88 27.34 30.54 31.81	20.00 21.43 23.65 25.70 28.20 31.44 32.74	20.71 22.16 24.43 26.51 29.05 32.34 33.66
0.005 0.01 0.025 0.05 0.1 0.2 0.25 0.3	14.46 15.66 17.54 19.28 21.43 24.26 25.39 26.44	15.13 16.36 18.29 20.07 22.27 25.15 26.30 27.37	15.82 17.07 19.05 20.87 23.11 26.04 27.22 28.31	16.50 17.79 19.81 21.66 23.95 26.94 28.14 29.24	17.19 18.51 20.57 22.47 24.80 27.84 29.05 30.18	17.89 19.23 21.34 23.27 25.64 28.73 29.97 31.12	18.59 19.96 22.11 24.07 26.49 29.64 30.89 32.05	19.29 20.69 22.88 24.88 27.34 30.54 31.81 32.99	20.00 21.43 23.65 25.70 28.20 31.44 32.74 33.93	20.71 22.16 24.43 26.51 29.05 32.34 33.66 34.87
0.005 0.01 0.025 0.05 0.1 0.2 0.25 0.3 0.4	14.46 15.66 17.54 19.28 21.43 24.26 25.39 26.44 28.41 30.34	15.13 16.36 18.29 20.07 22.27 25.15 26.30 27.37 29.38	15.82 17.07 19.05 20.87 23.11 26.04 27.22 28.31 30.34	16.50 17.79 19.81 21.66 23.95 26.94 28.14 29.24 31.31 33.34	17.19 18.51 20.57 22.47 24.80 27.84 29.05 30.18 32.28	17.89 19.23 21.34 23.27 25.64 28.73 29.97 31.12 33.25	18.59 19.96 22.11 24.07 26.49 29.64 30.89 32.05 34.22	19.29 20.69 22.88 24.88 27.34 30.54 31.81 32.99 35.19	20.00 21.43 23.65 25.70 28.20 31.44 32.74 33.93 36.16	20.71 22.16 24.43 26.51 29.05 32.34 33.66 34.87 37.13
0.005 0.01 0.025 0.05 0.1 0.2 0.25 0.3 0.4 0.5	14.46 15.66 17.54 19.28 21.43 24.26 25.39 26.44 28.41	15.13 16.36 18.29 20.07 22.27 25.15 26.30 27.37 29.38 31.34	15.82 17.07 19.05 20.87 23.11 26.04 27.22 28.31 30.34 32.34	16.50 17.79 19.81 21.66 23.95 26.94 28.14 29.24 31.31	17.19 18.51 20.57 22.47 24.80 27.84 29.05 30.18 32.28 34.34	17.89 19.23 21.34 23.27 25.64 28.73 29.97 31.12 33.25 35.34	18.59 19.96 22.11 24.07 26.49 29.64 30.89 32.05 34.22 36.34	19.29 20.69 22.88 24.88 27.34 30.54 31.81 32.99 35.19 37.34	20.00 21.43 23.65 25.70 28.20 31.44 32.74 33.93 36.16 38.34	20.71 22.16 24.43 26.51 29.05 32.34 33.66 34.87 37.13 39.34
0.005 0.01 0.025 0.05 0.1 0.2 0.25 0.3 0.4 0.5	14.46 15.66 17.54 19.28 21.43 24.26 25.39 26.44 28.41 30.34 32.35	15.13 16.36 18.29 20.07 22.27 25.15 26.30 27.37 29.38 31.34	15.82 17.07 19.05 20.87 23.11 26.04 27.22 28.31 30.34 32.34	16.50 17.79 19.81 21.66 23.95 26.94 28.14 29.24 31.31 33.34	17.19 18.51 20.57 22.47 24.80 27.84 29.05 30.18 32.28 34.34 36.47	17.89 19.23 21.34 23.27 25.64 28.73 29.97 31.12 33.25 35.34 37.50	18.59 19.96 22.11 24.07 26.49 29.64 30.89 32.05 34.22 36.34 38.53	19.29 20.69 22.88 24.88 27.34 30.54 31.81 32.99 35.19 37.34 39.56	20.00 21.43 23.65 25.70 28.20 31.44 32.74 33.93 36.16 38.34 40.59	20.71 22.16 24.43 26.51 29.05 32.34 33.66 34.87 37.13 39.34 41.62
0.005 0.01 0.025 0.05 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7	14.46 15.66 17.54 19.28 21.43 24.26 25.39 26.44 28.41 30.34 32.35 34.60	15.13 16.36 18.29 20.07 22.27 25.15 26.30 27.37 29.38 31.34 33.38 35.66	15.82 17.07 19.05 20.87 23.11 26.04 27.22 28.31 30.34 32.34 34.41 36.73	16.50 17.79 19.81 21.66 23.95 26.94 28.14 29.24 31.31 33.34 35.44 37.80	17.19 18.51 20.57 22.47 24.80 27.84 29.05 30.18 32.28 34.34 36.47 38.86	17.89 19.23 21.34 23.27 25.64 28.73 29.97 31.12 33.25 35.34 37.50 39.92	18.59 19.96 22.11 24.07 26.49 29.64 30.89 32.05 34.22 36.34 38.53 40.98	19.29 20.69 22.88 24.88 27.34 30.54 31.81 32.99 35.19 37.34 39.56 42.05	20.00 21.43 23.65 25.70 28.20 31.44 32.74 33.93 36.16 38.34 40.59 43.11	20.71 22.16 24.43 26.51 29.05 32.34 33.66 34.87 37.13 39.34 41.62 44.16
0.005 0.01 0.025 0.05 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75	14.46 15.66 17.54 19.28 21.43 24.26 25.39 26.44 28.41 30.34 32.35 34.60 35.89	15.13 16.36 18.29 20.07 22.27 25.15 26.30 27.37 29.38 31.34 33.38 35.66 36.97	15.82 17.07 19.05 20.87 23.11 26.04 27.22 28.31 30.34 32.34 34.41 36.73 38.06	16.50 17.79 19.81 21.66 23.95 26.94 28.14 29.24 31.31 33.34 35.44 37.80 39.14	17.19 18.51 20.57 22.47 24.80 27.84 29.05 30.18 32.28 34.34 36.47 38.86 40.22	17.89 19.23 21.34 23.27 25.64 28.73 29.97 31.12 33.25 35.34 37.50 39.92 41.30	18.59 19.96 22.11 24.07 26.49 29.64 30.89 32.05 34.22 36.34 38.53 40.98 42.38	19.29 20.69 22.88 24.88 27.34 30.54 31.81 32.99 35.19 37.34 39.56 42.05 43.46	20.00 21.43 23.65 25.70 28.20 31.44 32.74 33.93 36.16 38.34 40.59 43.11 44.54	20.71 22.16 24.43 26.51 29.05 32.34 33.66 34.87 37.13 39.34 41.62 44.16 45.62
0.005 0.01 0.025 0.05 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8	14.46 15.66 17.54 19.28 21.43 24.26 25.39 26.44 28.41 30.34 32.35 34.60 35.89 37.36	15.13 16.36 18.29 20.07 22.27 25.15 26.30 27.37 29.38 31.34 33.38 35.66 36.97 38.47	15.82 17.07 19.05 20.87 23.11 26.04 27.22 28.31 30.34 32.34 34.41 36.73 38.06 39.57	16.50 17.79 19.81 21.66 23.95 26.94 28.14 29.24 31.31 33.34 35.44 37.80 39.14 40.68	17.19 18.51 20.57 22.47 24.80 27.84 29.05 30.18 32.28 34.34 36.47 38.86 40.22 41.78	17.89 19.23 21.34 23.27 25.64 28.73 29.97 31.12 33.25 35.34 37.50 39.92 41.30 42.88	18.59 19.96 22.11 24.07 26.49 29.64 30.89 32.05 34.22 36.34 38.53 40.98 42.38 43.98	19.29 20.69 22.88 24.88 27.34 30.54 31.81 32.99 35.19 37.34 39.56 42.05 43.46 45.08	20.00 21.43 23.65 25.70 28.20 31.44 32.74 33.93 36.16 38.34 40.59 43.11 44.54 46.17	20.71 22.16 24.43 26.51 29.05 32.34 33.66 34.87 37.13 39.34 41.62 44.16 45.62 47.27
0.005 0.01 0.025 0.05 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9	14.46 15.66 17.54 19.28 21.43 24.26 25.39 26.44 28.41 30.34 32.35 34.60 35.89 37.36 41.42	15.13 16.36 18.29 20.07 22.27 25.15 26.30 27.37 29.38 31.34 33.38 35.66 36.97 38.47 42.58	15.82 17.07 19.05 20.87 23.11 26.04 27.22 28.31 30.34 32.34 34.41 36.73 38.06 39.57 43.75	16.50 17.79 19.81 21.66 23.95 26.94 28.14 29.24 31.31 33.34 35.44 37.80 39.14 40.68 44.90	17.19 18.51 20.57 22.47 24.80 27.84 29.05 30.18 32.28 34.34 36.47 38.86 40.22 41.78 46.06	17.89 19.23 21.34 23.27 25.64 28.73 29.97 31.12 33.25 35.34 37.50 39.92 41.30 42.88 47.21	18.59 19.96 22.11 24.07 26.49 29.64 30.89 32.05 34.22 36.34 38.53 40.98 42.38 43.98 48.36	19.29 20.69 22.88 24.88 27.34 30.54 31.81 32.99 35.19 37.34 39.56 42.05 43.46 45.08 49.51	20.00 21.43 23.65 25.70 28.20 31.44 32.74 33.93 36.16 38.34 40.59 43.11 44.54 46.17 50.66	20.71 22.16 24.43 26.51 29.05 32.34 33.66 34.87 37.13 39.34 41.62 44.16 45.62 47.27 51.81
0.005 0.01 0.025 0.05 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9	14.46 15.66 17.54 19.28 21.43 24.26 25.39 26.44 28.41 30.34 32.35 34.60 35.89 37.36 41.42	15.13 16.36 18.29 20.07 22.27 25.15 26.30 27.37 29.38 31.34 33.38 35.66 36.97 38.47 42.58	15.82 17.07 19.05 20.87 23.11 26.04 27.22 28.31 30.34 32.34 34.41 36.73 38.06 39.57 43.75	16.50 17.79 19.81 21.66 23.95 26.94 28.14 29.24 31.31 33.34 35.44 37.80 39.14 40.68 44.90	17.19 18.51 20.57 22.47 24.80 27.84 29.05 30.18 32.28 34.34 36.47 38.86 40.22 41.78 46.06	17.89 19.23 21.34 23.27 25.64 28.73 29.97 31.12 33.25 35.34 37.50 39.92 41.30 42.88 47.21 51.00	18.59 19.96 22.11 24.07 26.49 29.64 30.89 32.05 34.22 36.34 38.53 40.98 42.38 43.98 48.36 52.19	19.29 20.69 22.88 24.88 27.34 30.54 31.81 32.99 35.19 37.34 39.56 42.05 43.46 45.08 49.51 53.38	20.00 21.43 23.65 25.70 28.20 31.44 32.74 33.93 36.16 38.34 40.59 43.11 44.54 46.17 50.66 54.57	20.71 22.16 24.43 26.51 29.05 32.34 33.66 34.87 37.13 39.34 41.62 44.16 45.62 47.27 51.81
0.005 0.01 0.025 0.05 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 0.95 0.975	14.46 15.66 17.54 19.28 21.43 24.26 25.39 26.44 28.41 30.34 32.35 34.60 35.89 37.36 41.42 44.99 48.23	15.13 16.36 18.29 20.07 22.27 25.15 26.30 27.37 29.38 31.34 33.38 35.66 36.97 38.47 42.58 46.19 49.48	15.82 17.07 19.05 20.87 23.11 26.04 27.22 28.31 30.34 32.34 34.41 36.73 38.06 39.57 43.75 47.40 50.73	16.50 17.79 19.81 21.66 23.95 26.94 28.14 29.24 31.31 33.34 35.44 37.80 39.14 40.68 44.90 48.60 51.97	17.19 18.51 20.57 22.47 24.80 27.84 29.05 30.18 32.28 34.34 36.47 38.86 40.22 41.78 46.06 49.80 53.20	17.89 19.23 21.34 23.27 25.64 28.73 29.97 31.12 33.25 35.34 37.50 39.92 41.30 42.88 47.21 51.00 54.44	18.59 19.96 22.11 24.07 26.49 29.64 30.89 32.05 34.22 36.34 38.53 40.98 42.38 43.98 48.36 52.19 55.67	19.29 20.69 22.88 24.88 27.34 30.54 31.81 32.99 35.19 37.34 39.56 42.05 43.46 45.08 49.51 53.38 56.90	20.00 21.43 23.65 25.70 28.20 31.44 32.74 33.93 36.16 38.34 40.59 43.11 44.54 46.17 50.66 54.57 58.12	20.71 22.16 24.43 26.51 29.05 32.34 33.66 34.87 37.13 39.34 41.62 44.16 45.62 47.27 51.81 55.76 59.34

Beispiel: Die Zufallsvariable $X \sim \chi^2_{27}$ und gesucht ist das 95%-Quantil (p=0,95)

$$F(x_{0,95}) = 0,95 \Longrightarrow x_{0,95} = 40,11$$

14.4 Quantile x_p der t-Verteilung mit f Freiheitsgraden

$p \backslash f$	1	2	3	4	5	6	7	8	9	10
0.6	0.325	0.289	0.277	0.271	0.267	0.265	0.263	0.262	0.261	0.260
0.75	1.000	0.816	0.765	0.741	0.727	0.718	0.711	0.706	0.703	0.700
0.8	1.376	1.061	0.978	0.941	0.920	0.906	0.896	0.889	0.883	0.879
0.9	3.078	1.886	1.638	1.533	1.476	1.440	1.415	1.397	1.383	1.372
0.95	6.314	2.920	2.353	2.132	2.015	1.943	1.895	1.860	1.833	1.812
0.975	12.706	4.303	3.182	2.776	2.571	2.447	2.365	2.306	2.262	2.228
0.99	31.821	6.965	4.541	3.747	3.365	3.143	2.998	2.896	2.821	2.764
0.995	63.657	9.925	5.841	4.604	4.032	3.707	3.499	3.355	3.250	3.169

$p \backslash f$	11	12	13	14	15	16	17	18	19	20
0.6	0.260	0.259	0.259	0.258	0.258	0.258	0.257	0.257	0.257	0.257
0.75	0.697	0.695	0.694	0.692	0.691	0.690	0.689	0.688	0.688	0.687
0.8	0.876	0.873	0.870	0.868	0.866	0.865	0.863	0.862	0.861	0.860
0.9	1.363	1.356	1.350	1.345	1.341	1.337	1.333	1.330	1.328	1.325
0.95	1.796	1.782	1.771	1.761	1.753	1.746	1.740	1.734	1.729	1.725
0.975	2.201	2.179	2.160	2.145	2.131	2.120	2.110	2.101	2.093	2.086
0.99	2.718	2.681	2.650	2.624	2.602	2.583	2.567	2.552	2.539	2.528
0.995	3.106	3.055	3.012	2.977	2.947	2.921	2.898	2.878	2.861	2.845

$p \backslash f$	21	22	23	24	25	26	27	28	29	30
0.6	0.257	0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.256
0.75	0.686	0.686	0.685	0.685	0.684	0.684	0.684	0.683	0.683	0.683
0.8	0.859	0.858	0.858	0.857	0.856	0.856	0.855	0.855	0.854	0.854
0.9	1.323	1.321	1.319	1.318	1.316	1.315	1.314	1.313	1.311	1.310
0.95	1.721	1.717	1.714	1.711	1.708	1.706	1.703	1.701	1.699	1.697
0.975	2.080	2.074	2.069	2.064	2.060	2.056	2.052	2.048	2.045	2.042
0.99	2.518	2.508	2.500	2.492	2.485	2.479	2.473	2.467	2.462	2.457
0.995	2.831	2.819	2.807	2.797	2.787	2.779	2.771	2.763	2.756	2.750

Beispiel: Die Zufallsvariable $X \sim t_{27}$ und gesucht ist das 95% Quantil (p=0,95)

$$F(x_{0.95}) = 0.95 \Longrightarrow x_{0.95} = 1,703$$

14.5 95% Quantil $x_{0,95}$ der F-Verteilung mit f_1 und f_2 Freiheitsgraden

$f_1 \backslash f_2$	1	2	3	4	5	6	7	8	9
1	161.45	18.51	10.13	7.71	6.61	5.99	5.59	5.32	5.12
2	199.50	19.00	9.55	6.94	5.79	5.14	4.74	4.46	4.26
3	215.71	19.16	9.28	6.59	5.41	4.76	4.35	4.07	3.86
4	224.58	19.25	9.12	6.39	5.19	4.53	4.12	3.84	3.63
5	230.16	19.30	9.01	6.26	5.05	4.39	3.97	3.69	3.48
6	233.99	19.33	8.94	6.16	4.95	4.28	3.87	3.58	3.37
7	236.77	19.35	8.89	6.09	4.88	4.21	3.79	3.50	3.29
8	238.88	19.37	8.85	6.04	4.82	4.15	3.73	3.44	3.23
9	240.54	19.38	8.81	6.00	4.77	4.10	3.68	3.39	3.18
10	241.88	19.40	8.79	5.96	4.74	4.06	3.64	3.35	3.14
15	245.95	19.43	8.70	5.86	4.62	3.94	3.51	3.22	3.01
20	248.01	19.45	8.66	5.80	4.56	3.87	3.44	3.15	2.94
25	249.26	19.46	8.63	5.77	4.52	3.83	3.40	3.11	2.89
30	250.10	19.46	8.62	5.75	4.50	3.81	3.38	3.08	2.86
40	251.14	19.47	8.59	5.72	4.46	3.77	3.34	3.04	2.83
50	251.77	19.48	8.58	5.70	4.44	3.75	3.32	3.02	2.80
75	252.62	19.48	8.56	5.68	4.42	3.73	3.29	2.99	2.77
100	253.04	19.49	8.55	5.66	4.41	3.71	3.27	2.97	2.76

$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	75	50	40	30	25	20	15	10	$f_1 \backslash f_2$
3 3.71 3.29 3.10 2.99 2.92 2.84 2.79 2.73 4 3.48 3.06 2.87 2.76 2.69 2.61 2.56 2.49 5 3.33 2.90 2.71 2.60 2.53 2.45 2.40 2.34 6 3.22 2.79 2.60 2.49 2.42 2.34 2.29 2.22 7 3.14 2.71 2.51 2.40 2.33 2.25 2.20 2.13 8 3.07 2.64 2.45 2.34 2.27 2.18 2.13 2.06 9 3.02 2.59 2.39 2.28 2.21 2.12 2.07 2.01 10 2.98 2.54 2.35 2.24 2.16 2.08 2.03 1.96 15 2.85 2.40 2.20 2.09 2.01 1.92 1.87 1.80 20 2.77 2.33 2.12 2.01 1.93 1.84 1.78 1.71 25 2.73 2.28 2.07 1.96 1.88 1.78 1.73 1.65	3.94	3.97	4.03	4.08	4.17	4.24	4.35	4.54	4.96	1
4 3.48 3.06 2.87 2.76 2.69 2.61 2.56 2.49 5 3.33 2.90 2.71 2.60 2.53 2.45 2.40 2.34 6 3.22 2.79 2.60 2.49 2.42 2.34 2.29 2.22 7 3.14 2.71 2.51 2.40 2.33 2.25 2.20 2.13 8 3.07 2.64 2.45 2.34 2.27 2.18 2.13 2.06 9 3.02 2.59 2.39 2.28 2.21 2.12 2.07 2.01 10 2.98 2.54 2.35 2.24 2.16 2.08 2.03 1.96 15 2.85 2.40 2.20 2.09 2.01 1.92 1.87 1.80 20 2.77 2.33 2.12 2.01 1.93 1.84 1.78 1.71 25 2.73 2.28 2.07 1.96 1.88 1.78 1.73 1.65	3.09	3.12	3.18	3.23	3.32	3.39	3.49	3.68	4.10	2
5 3.33 2.90 2.71 2.60 2.53 2.45 2.40 2.34 6 3.22 2.79 2.60 2.49 2.42 2.34 2.29 2.22 7 3.14 2.71 2.51 2.40 2.33 2.25 2.20 2.13 8 3.07 2.64 2.45 2.34 2.27 2.18 2.13 2.06 9 3.02 2.59 2.39 2.28 2.21 2.12 2.07 2.01 10 2.98 2.54 2.35 2.24 2.16 2.08 2.03 1.96 15 2.85 2.40 2.20 2.09 2.01 1.92 1.87 1.80 20 2.77 2.33 2.12 2.01 1.93 1.84 1.78 1.71 25 2.73 2.28 2.07 1.96 1.88 1.78 1.73 1.65	2.70	2.73	2.79	2.84	2.92	2.99	3.10	3.29	3.71	3
6 3.22 2.79 2.60 2.49 2.42 2.34 2.29 2.22 7 3.14 2.71 2.51 2.40 2.33 2.25 2.20 2.13 8 3.07 2.64 2.45 2.34 2.27 2.18 2.13 2.06 9 3.02 2.59 2.39 2.28 2.21 2.12 2.07 2.01 10 2.98 2.54 2.35 2.24 2.16 2.08 2.03 1.96 15 2.85 2.40 2.20 2.09 2.01 1.92 1.87 1.80 20 2.77 2.33 2.12 2.01 1.93 1.84 1.78 1.71 25 2.73 2.28 2.07 1.96 1.88 1.78 1.73 1.65	2.46	2.49	2.56	2.61	2.69	2.76	2.87	3.06	3.48	4
7 3.14 2.71 2.51 2.40 2.33 2.25 2.20 2.13 8 3.07 2.64 2.45 2.34 2.27 2.18 2.13 2.06 9 3.02 2.59 2.39 2.28 2.21 2.12 2.07 2.01 10 2.98 2.54 2.35 2.24 2.16 2.08 2.03 1.96 15 2.85 2.40 2.20 2.09 2.01 1.92 1.87 1.80 20 2.77 2.33 2.12 2.01 1.93 1.84 1.78 1.71 25 2.73 2.28 2.07 1.96 1.88 1.78 1.73 1.65	2.31	2.34	2.40	2.45	2.53	2.60	2.71	2.90	3.33	5
8 3.07 2.64 2.45 2.34 2.27 2.18 2.13 2.06 9 3.02 2.59 2.39 2.28 2.21 2.12 2.07 2.01 10 2.98 2.54 2.35 2.24 2.16 2.08 2.03 1.96 15 2.85 2.40 2.20 2.09 2.01 1.92 1.87 1.80 20 2.77 2.33 2.12 2.01 1.93 1.84 1.78 1.71 25 2.73 2.28 2.07 1.96 1.88 1.78 1.73 1.65	2.19	2.22	2.29	2.34	2.42	2.49	2.60	2.79	3.22	6
9 3.02 2.59 2.39 2.28 2.21 2.12 2.07 2.01 10 2.98 2.54 2.35 2.24 2.16 2.08 2.03 1.96 15 2.85 2.40 2.20 2.09 2.01 1.92 1.87 1.80 20 2.77 2.33 2.12 2.01 1.93 1.84 1.78 1.71 25 2.73 2.28 2.07 1.96 1.88 1.78 1.73 1.65	2.10	2.13	2.20	2.25	2.33	2.40	2.51	2.71	3.14	7
10 2.98 2.54 2.35 2.24 2.16 2.08 2.03 1.96 15 2.85 2.40 2.20 2.09 2.01 1.92 1.87 1.80 20 2.77 2.33 2.12 2.01 1.93 1.84 1.78 1.71 25 2.73 2.28 2.07 1.96 1.88 1.78 1.73 1.65	2.03	2.06	2.13	2.18	2.27	2.34	2.45	2.64	3.07	8
15 2.85 2.40 2.20 2.09 2.01 1.92 1.87 1.80 20 2.77 2.33 2.12 2.01 1.93 1.84 1.78 1.71 25 2.73 2.28 2.07 1.96 1.88 1.78 1.73 1.65	1.97	2.01	2.07	2.12	2.21	2.28	2.39	2.59	3.02	9
20 2.77 2.33 2.12 2.01 1.93 1.84 1.78 1.71 25 2.73 2.28 2.07 1.96 1.88 1.78 1.73 1.65	1.93	1.96	2.03	2.08	2.16	2.24	2.35	2.54	2.98	10
25 2.73 2.28 2.07 1.96 1.88 1.78 1.73 1.65	1.77	1.80	1.87	1.92	2.01	2.09	2.20	2.40	2.85	15
	1.68	1.71	1.78	1.84	1.93	2.01	2.12	2.33	2.77	20
	1.62	1.65	1.73	1.78	1.88	1.96	2.07	2.28	2.73	25
30 2.70 2.25 2.04 1.92 1.84 1.74 1.69 1.61	1.57	1.61	1.69	1.74	1.84	1.92	2.04	2.25	2.70	30
40 2.66 2.20 1.99 1.87 1.79 1.69 1.63 1.55	1.52	1.55	1.63	1.69	1.79	1.87	1.99	2.20	2.66	40
50 2.64 2.18 1.97 1.84 1.76 1.66 1.60 1.52	1.48	1.52	1.60	1.66	1.76	1.84	1.97	2.18	2.64	50
75 2.60 2.14 1.93 1.80 1.72 1.61 1.55 1.47	1.42	1.47	1.55	1.61	1.72	1.80	1.93	2.14	2.60	75
100 2.59 2.12 1.91 1.78 1.70 1.59 1.52 1.44	1.39	1.44	1.52	1.59	1.70	1.78	1.91	2.12	2.59	100

Beispiel: Die Zufallsvariable $X \sim F_{40;5}$ und gesucht ist $F(x_{0,95}) = 0,95 \Longrightarrow x_{0,95} = 4,46$

14.6 Verteilungsfunktion Φ der Standardnormalverteilung

	0	0.01	0.02	0.03	0.04	0.05	0.06
0	0.500000	0.503989	0.507978	0.511966	0.515953	0.519939	0.523922
0.1	0.539828	0.543795	0.547758	0.551717	0.555670	0.559618	0.563559
0.2	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706	0.602568
0.3	0.617911	0.621720	0.625516	0.629300	0.633072	0.636831	0.640576
0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242
0.5	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840	0.712260
0.6	0.725747	0.729069	0.732371	0.735653	0.738914	0.742154	0.745373
0.7	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373
0.8	0.788145	0.791030	0.793892	0.796731	0.799546	0.802337	0.805105
0.9	0.815940	0.818589	0.821214	0.823814	0.826391	0.828944	0.831472
1	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141	0.855428
1.1	0.864334	0.866500	0.868643	0.870762	0.872857	0.874928	0.876976
1.2	0.884930	0.886861	0.888768	0.890651	0.892512	0.894350	0.896165
1.3	0.903200	0.904902	0.906582	0.908241	0.909877	0.911492	0.913085
1.4	0.919243	0.920730	0.922196	0.923641	0.925066	0.926471	0.927855
1.5	0.933193	0.934478	0.935745	0.936992	0.938220	0.939429	0.940620
1.6	0.945201	0.946301	0.947384	0.948449	0.949497	0.950529	0.951543
1.7	0.955435	0.956367	0.957284	0.958185	0.959070	0.959941	0.960796
1.8	0.964070	0.964852	0.965620	0.966375	0.967116	0.967843	0.968557
1.9	0.971283	0.971933	0.972571	0.973197	0.973810	0.974412	0.975002
2	0.977250	0.977784	0.978308	0.978822	0.979325	0.979818	0.980301
$\frac{2}{2.1}$	0.982136	0.982571	0.982997	0.983414	0.983823	0.984222	0.984614
2.2	0.986097	0.986447	0.986791	0.987126	0.987455	0.987776	0.988089
2.3	0.989276	0.989556	0.989830	0.990097	0.990358	0.990613	0.990863
2.4	0.991802	0.992024	0.992240	0.992451	0.992656	0.992857	0.993053
2.5	0.993790	0.993963	0.994132	0.994297	0.994457	0.994614	0.994766
2.6	0.995339	0.995473	0.995604	0.995731	0.995855	0.995975	0.996093
2.7	0.996533	0.996636	0.996736	0.996833	0.996928	0.997020	0.997110
2.8	0.997445	0.997523	0.997599	0.997673	0.997744	0.997814	0.997882
2.9	0.998134	0.998193	0.998250	0.998305	0.998359	0.998411	0.998462
3	0.998650	0.998694	0.998736	0.998777	0.998817	0.998856	0.998893
3.1	0.999032	0.999065	0.999096	0.999126	0.999155	0.999184	0.999211
3.2	0.999313	0.999336	0.999359	0.999381	0.999402	0.999423	0.999443
3.3	0.999517	0.999534	0.999550	0.999566	0.999581	0.999596	0.999610
3.4	0.999663	0.999675	0.999687	0.999698	0.999709	0.999720	0.999730
3.5	0.999767	0.999776	0.999784	0.999792	0.999800	0.999807	0.999815
3.6	0.999841	0.999847	0.999853	0.999858	0.999864	0.999869	0.999874
3.7	0.999892	0.999896	0.999900	0.999904	0.999908	0.999912	0.999915
3.8	0.999928	0.999931	0.999933	0.999936	0.999938	0.999941	0.999943
3.9	0.999952	0.999954	0.999956	0.999958	0.999959	0.999961	0.999963
4	0.999968	0.999970	0.999971	0.999972	0.999973	0.999974	0.999975
4.1	0.999979	0.999980	0.999981	0.999982	0.999983	0.999983	0.999984
4.2	0.999987	0.999987	0.999988	0.999988	0.999989	0.999989	0.999990
4.3	0.999991	0.999992	0.999992	0.999993	0.999993	0.999993	0.999993
4.4	0.999995	0.999995	0.999995	0.999995	0.999996	0.999996	0.999996
4.5	0.999997	0.999997	0.999997	0.999997	0.999997	0.999997	0.999997
	3.000001	3.000001	3.000001	3.000001	3.000001	0.000001	0.000001

	0.07	0.08	0.09
0	0.527903	0.531881	0.535856
0.1	0.567495	0.551601 0.571424	0.575345
0.2	0.606420	0.610261	0.614092
0.3	0.644309	0.648027	0.651732
0.4	0.680822	0.684386	0.687933
0.5	0.715661	0.719043	0.722405
0.6	0.748571	0.751748	0.754903
0.7	0.779350	0.782305	0.785236
0.8	0.807850	0.810570	0.813267
0.9	0.833977	0.836457	0.838913
1	0.857690	0.859929	0.862143
1.1	0.879000	0.881000	0.882977
1.2	0.897958	0.899727	0.901475
1.3	0.914657	0.916207	0.917736
1.4	0.929219	0.930563	0.931888
1.5	0.941792	0.942947	0.944083
1.6	0.952540	0.953521	0.954486
1.7	0.961636	0.962462	0.963273
1.8	0.969258	0.969946	0.970621
1.9	0.975581	0.976148	0.976705
2	0.980774	0.981237	0.981691
2.1	0.984997	0.985371	0.985738
2.2	0.988396	0.988696	0.988989
2.3	0.991106	0.991344	0.991576
2.4	0.993244	0.993431	0.993613
2.5	0.994915	0.995060	0.995201
2.6	0.996207	0.996319	0.996427
2.7	0.997197	0.997282	0.997365
2.8	0.997948	0.998012	0.998074
2.9	0.998511	0.998559	0.998605
3	0.998930	0.998965	0.998999
3.1	0.999238	0.999264	0.999289
3.2	0.999462	0.999481	0.999499
3.3	0.999624	0.999638	0.999651
3.4	0.999740	0.999749	0.999758
3.5	0.999822	0.999828	0.999835
3.6	0.999879	0.999883	0.999888
3.7	0.999918	0.999922	0.999925
3.8	0.999946	0.999948	0.999950
3.9	0.999964	0.999966	0.999967
4	0.999976	0.999977	0.999978
4.1	0.999985	0.999985	0.999986
4.2	0.999990	0.999991	0.999991
4.3	0.999994	0.999994	0.999994
4.4	0.999996	0.999996	0.999996
4.5	0.999998		

Beispiele:

 $\begin{array}{rcl} \Phi(0,27) & = & 0.606420 \\ 0,27 & = & 0,20+0,07 \\ \text{Wert aus Zeile mit 0,2 und Spalte mit 0,07} \end{array}$

$$P(Z \le z) = \Phi(z)$$

$$P(Z \le 2, 33) = \Phi(2, 33)$$

$$= 0,990097$$

$$\Phi(-z) = 1 - \Phi(z)$$

$$P(Z \le -0, 6) = \Phi(-0, 6)$$

$$= 1 - \Phi(0, 6)$$

$$= 1 - 0,725747$$

$$= 0,274253$$

$$P(a \le Z \le b) = \Phi(b) - \Phi(a)$$

$$P(0, 33 \le Z \le 2, 33) = \Phi(2, 33) - \Phi(0, 33)$$

$$= 0,360297$$

$$P(Z \ge z) = 1 - \Phi(z)$$

$$P(Z \ge 1, 65) = 1 - \Phi(1, 65)$$

$$= 1 - 0,950529$$

$$= 0,049471$$

p -Quantil z_p von $N(0;1)$								
$p = \Phi(z_p)$	\Rightarrow	z_p						
0,001		-3,09						
0,005		-2,58						
0,010		-2,33						
0,025		-1,96						
0,050		-1,64						
0, 100		-1,28						
0,900		+1,28						
0,950		+1,64						
0,975		+1,96						
0,990		+2,33						
0, 995		+2,58						
0, 999		+3,09						
Beispiel:								
•								

$$\Phi(z_{0,99}) = 0,99
\Longrightarrow z_{0,99} \approx +2,33$$