Homework 5

- 1. Let $\varphi: X \to Y$ be a map between sets. Let F be a field. Consider the linear transformation of pull back: $\varphi^*: F(Y) \to F(X)$.
 - (a) Prove that φ^* is injective iff φ is surjective.
 - (b) Prove that φ^* is surjective iff φ is injective.
 - (c) Conclude that φ^* is an isomorphism iff φ is bijective. Assuming φ is bijective. Prove that the inverse transformation $(\varphi^*)^{-1} : F(X) \to F(Y)$ is given by $(\varphi^*)^{-1} = (\varphi^{-1})^*$.
 - (d) Assume φ is arbitrary. Describe $Ker(\varphi^*) \subset F(Y)$. Describe $Im(\varphi^*) \subset F(X)$.
- 2. Let V be a vector space over F.
 - (a) Let $T, S: V \to V$ be invertible transformations (isomorphisms). Prove that $T \circ S$ is also invertible. Prove that the inverse function T^{-1} is a liner transformation as well.
 - (b) Consider the set GL(V) of all invertible transformations $T: V \to V$, with the operation \circ of composition. Prove that $(GL(V), \circ)$ is a group. Write the axioms and explain why is holds.
 - (c) Is the group $(GL(V), \circ)$ commutative? if yes prove it, if no give a counter example.
- 3. Prove that the following are invertible transformations and compute their inverse:
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x, y) = (x + y, x).
 - (b) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x, y) = (y, x).
 - (c) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (2x + y, 3x y).
 - (d) $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (x + y + z, x y, y + z).
 - (e) $f: F^n \to F^n$, $f(x_1, ..., x_n) = (x_1, ..., x_{n-1}, x_1 + x_2 + ..., x_n)$.
 - (f) $T: \mathbb{R}[x] \to \mathbb{R}[x]$, given by T(p(x)) = p(x+5). In all these examples, prove first that these are linear transformations.
- 4. Let $\theta \in \mathbb{R}$ and consider the function $T_{\theta}(x, y) = (\cos(\theta) x \sin(\theta) y, \sin(\theta) x + \cos(\theta) y)$.
 - (a) Prove that T_{θ} is a linear transformation. Convince yourself that T_{θ} is rotation anticlockwise by angle theta.
 - (b) Prove that $T_{\theta_1+\theta_2} = T_{\theta_1} \circ T_{\theta_2}$. Prove that $T_0 = Id$.
 - (c) Prove that T_{θ} is invertible.

- (d) Consider the map $T: \mathbb{R} \to GL(\mathbb{R}^2)$ given by $T(\theta) = T_{\theta}$. Prove that T is a homomorphism of groups.
- 5. Consider the finite plane $V = \mathbb{F}_p^2$, where p is a prime number greater than 2.
 - (a) Compute the nuber of lines in V. Prove your answer.
 - (b) Calculate the nuber of lines in \mathbb{F}_p^3 .
 - (c) Calculate the number of subplanes in \mathbb{F}_p^3 . (Hint: related to b.)
- 6. Consider \mathbb{R}^2 . Prove that the set $S = \{(\cos \theta, \sin \theta), (-\sin \theta, \cos \theta)\}$ form a basis.