Geometry of diff.equations and Monge cone

Consider 2n + 1-dimension space $J^1(M)$ of first jets of n-dimensional manifold M. Let

$$\mathcal{E}$$
: $F(u, p_i, q^j) = 0$

be hypersurface in $J^1(M)$, the differential equation.

Suppose that points of \mathcal{E} are regular.

DEFINITION A point $\mathbf{p} \in \mathcal{E}$ is called *non-characteristic* if tangent hyperplane $T_{\mathbf{p}}M$ and the *contact hyperplane* $C_{\mathbf{p}}$ (contact hyperplane consists of vectors which are vanished by the contact 1-form $\omega = p_i dq^i - du$) are transversal to each other, i.e. tangent vectors to \mathcal{E} at the point \mathbf{p} and vectors in contact plane span all the tangent space:

$$T_{\mathbf{p}}\mathcal{E} \oplus \mathcal{C}_{\mathbf{p}} = T_{\mathbf{p}}(J^1(M)) \Leftrightarrow \dim \mathcal{C}_{\mathbf{p}} \cap T_{\mathbf{p}}\mathcal{E} = 2n - 1.$$

and this is equivalent to the condition that contact form ω and the form dF are not collinear at the point \mathbf{p}^* .

DEFINITION The intersection of contact and tangent planes is called *characteristic* plane.

We denote characteristic plane by $\mathcal{C}(\mathcal{E})_{\mathbf{p}}$

The form $dp_1 \wedge dq^1 + \ldots + dp_n \wedge dq^n$ is non-degenerate on contact hyperplane $C_{\mathbf{p}}$, and on 2n-1-dimensional plane $\Pi_{\mathbf{p}} \subset C_{\mathbf{p}}$. It defines the characteristic direction, the direction that is symplectoorthogonal to all the vectors of the plane $\Pi_{\mathbf{p}}$.

One can see that this direction can be defined by the infinitesimal contact symmetry:

$$\mathbf{X}_{F} = \frac{\partial F}{\partial p^{i}} \frac{\partial}{\partial q^{i}} - \frac{\partial F}{\partial q_{i}} \frac{\partial}{\partial p_{i}} - p_{i} \frac{\partial F}{\partial u} \frac{\partial}{\partial p_{i}} + p_{i} \frac{\partial F}{\partial p_{i}} \frac{\partial}{\partial u} - F \frac{\partial}{\partial u}$$

The contact distribution \mathcal{C} , (the distribution of contact planes) defines

Now return to differential equation defined by non-charateristic hypersurface \mathcal{E} .

Solution of this equation is maximal integral manifold of distribution $\mathcal{C}(\mathcal{E})$

Let N be n-dimensional manifold s graph of function $u = \varphi(x)$ such that it is the solution of differential equation defined by the surface \mathcal{E} , i.e. $N \subset \mathcal{E}$,and for every point $\mathbf{p} \in N$, tangent space $T_{\mathbf{p}}N$ belongs to the characteristic plane $\mathcal{C}(\mathcal{E})_{\mathbf{p}}$: all pints of N belongs to \mathcal{E} and all tangent vectors of N belong to the $T\mathcal{E}$ and to contact plane**. Of course one may consider also generalised solutions.....

^{*} One can easy to check this choosing covectors ω and dF as elemnets of basis.

^{**} Belonging to contact distribution is auto matical since every vector tangent to manifold belongs to contact plane

Boundary condition: Take the n-1-dimensional surface, and Γ on \mathcal{E} . Emit from the points of this surface the n-1-parametric family of curves which go in characteristic direction. We come locally in the vicinity of the surface Γ to n-dimensional surface, it will be solution.

Example Consider dfferential equation

$$u_x^2 + u_y^2 = 1$$
, $F(u, p, q, x, y) = p^2 + q^2 - 1$.

in the space (u, p, q, x, y) $(p = u_x, q = u_y)$ consider surface

$$\Gamma: \begin{cases} u(\xi) = \varphi(\xi) \\ p(\xi) = \sqrt{1 - \varphi'^2(\xi)} \\ q(\xi) = \varphi'(\xi) \\ x(\xi) = 0 \\ y(\xi) = \xi \end{cases}$$

This surface is generated by the function $\varphi(y)$. It belongs to the differential equation $p^2 + q^2 = 1$. Consider characteristic vector field

$$\frac{1}{2}X_F = p\partial_p + q\partial_q + \partial_u$$

This vector field emit the 1-parametric family of the curves which are solutions of characteristic equations

$$\begin{cases} \dot{u} = 1 \\ \dot{p} = 0 \\ \dot{q} = 0 \text{ with boundary conditions} \\ \dot{x} = p \\ \dot{y} = q \end{cases} \begin{cases} u(\xi, \tau)\big|_{\tau=0} = \varphi(\xi) \\ p(\xi, \tau)\big|_{\tau=0} = \sqrt{1 - \varphi'^2(\xi)} \\ q(\xi, \tau)\big|_{\tau=0} = \varphi'(\xi) \\ x(\xi, \tau)\big|_{\tau=0} = 0 \\ y(\xi, \tau)\big|_{\tau=0} = \xi \end{cases}$$

$$\begin{cases} u(\xi,\tau) = \varphi(\xi) + \tau \\ p(\xi,\tau) = \sqrt{1 - \varphi'^2(\xi)} \\ q(\xi,\tau) = \varphi'(\xi) \\ x(\xi,\tau) = \tau \sqrt{1 - \varphi'^2(\xi)} \\ y(\xi,\tau) = \xi + \tau \phi'(\xi) \end{cases}$$

The solution is