

Exame - Parte 1 (sem consulta, 10 valores, 35 minutos)

Nome: Correct

Cotação: resposta correta: 1 valor; resposta errada: -0,15 valores; pontuação mínima possível na Parte 1: 0 valores. Apenas uma alternativa é verdadeira. A resposta a uma pergunta será considerada errada se forem selecionadas múltiplas alternativas.

- 1. O programa ping usado nas aulas laboratoriais gera pacotes de informação do
- a) protocolo UDP, que por usa vez são encapsulados em pacotes IP, que por sua vez são encapsulados em tramas Ethernet.
- b) protocolo ICMP, que por usa vez s\(\tilde{a}\) encapsulados em pacotes IP, que por sua vez s\(\tilde{a}\) encapsulados em tramas Ethernet.
- c) protocolo IP, que por sua vez são encapsulados em tramas Ethernet.
- d) protocolo ARP, que por sua vez são encapsulados em tramas Ethernet.
- Assuma uma transmissão de dados feita com um débito 100 kbaud. Se pretendermos transmitir 300 kbit/s usando uma modulação de fase, deveremos usar um número de fases igual a:
- a) 3.
- b) 8.
- c) 100k.
- d) 300k.
- 3. A eficiência de um canal rádio (bit/s/Hz), caracterizável pela lei de Shannon log2(1+SNR), em que SNR representa a relação sinal ruído
- a) Diminui quando a distância emissor-recetor (d) aumenta e é independente da largura de banda do canal (B).
- b) Diminui quando d aumenta e B aumenta.
- c) É independente de d.
- d) Nenhuma das anteriores é verdadeira.
- 4. Na expressão 1-(1-A)^B usada em RCOM para discussão de erros
- a) A representa a taxa de bits errados e B representa a taxa de tramas erradas.
- b) B representa a taxa de bits errados e A representa a taxa de tramas erradas.
- c) A representa a taxa de bits errados e B representa o comprimento da trama.
- d) B representa a taxa de bits errados e A representa o comprimento da trama.
- 5. Considere o mecanismo ARQ Go-Back-N estudado nas aulas, a funcionar com uma janela W=3. Considere também que o funcionamento do Recetor é descrito numa notação em que ?I(0).!RR(1) representa a receção (?) da mensagem I(0) seguida (.) do envio (!) da mensagem RR(1). Após a ocorrência dos eventos ?I(0).!RR(1).?I(1).!RR(2).?I(3), o recetor
- a) Descarta a trama I(3) e envia REJ(2) para o emissor.
- b) Descarta a trama I(3) e envia RR(2) para o emissor.
- c) Armazena a trama I(3) mas não envia REJ nem RR para o emissor.
- d) Armazena a trama I(3) e envia REJ(2) para o emissor.

(ver verso)

20/jan/2017

(continuação)

- 6. Assuma um cenário composto por 2 computadores A e B implementando o protocolo de acesso ao meio CSMA/CD (Collision Detection), e interligados entre si através de um comutador Ethernet (switch igual ao do laboratório). As portas de rede dos computadores e do comutador funcionam em modo full-duplex. Se o computador A estiver a transmitir uma trama e o computador B também tiver uma trama para transmitir, o computador B
- a) Escuta até ao fim da transmissão de A e só depois transmite a sua trama.
- b) Transmite de imediato a sua trama causando uma colisão.
- c) Transmite de imediato a trama mas só haverá colisão se a trama enviada por A tiver como destino B.
- d) Transmite de imediato e não haverá colisão.
- Considere a fila de espera (de saída) da interface de rede eth0 de um computador que se encontra ligado a um switch por uma ligação de capacidade C bit/s. Nesta situação, o tempo de transmissão do pacotes depende
- a) Da capacidade C da ligação e do comprimento médio dos pacotes.
- b) Apenas do débito a que as camadas superiores enviam pacotes para a fila de espera (pacote/s).
- c) Da capacidade C da ligação, do comprimento médio dos pacotes e do número de pacotes em espera na fila.
- d) Do número de computadores que estão ligados ao Switch.
- 8. Assuma que a tabela NAT de um router tem a seguinte entrada < (140.76.29.6, 80), (10.0.1.4, 8080) >. A rede privada tem o endereço 10.0.0.0/16 e existe um servidor HTTP na porta 8080 da máquina com o endereço 10.0.1.4. Nesta situação, os endereços IP e TCP de origem de um pacote observado na rede privada para este servidor são os seguintes
- a) IP=140.76.29.6, Port= 80.
- b) IP=140.76.29.6, Port= 8080.
- c) Os endereços IP e TCP da máquina da rede pública que está a contactar o servidor.
- d) Nenhuma das anteriores.
- 9. O Spanning Tree Protocol usada nas redes Ethernet
- a) Permite que cada comutador determine a sua árvore de caminhos mais curtos para os outros comutadores da rede.
- b) Permite que uma única árvore seja calculada na rede, com raiz no primeiro nó a iniciar o algoritmo.
- c) Permite que uma única árvore seja calculada na rede, com raiz no nó com menor identificador.
- d) Permite que cada comutador se aperceba do nível congestionamento dos comutadores vizinhos.
- 10. Os protocolos da camada de transporte usam vários mecanismos de controlo, incluindo o mecanismo de Controlo de Fluxo (CF) e o mecanismo de Controlo de Congestionamento (CC). Na Internet, o protocolo User Datagram Protocol (UDP) usa
- a) Apenas CF.
- b) Apenas CC.
- c) CF e CC.
- d) Não usa CF nem CC.

Exame - Parte 2 (com consulta, 10 valores, 90 minutos)

Nome:

Correce

1. Dois equipamentos comunicam usando uma ligação de dados que usa mecanismos ARQ. Assuma que a capacidade do canal (em cada sentido) é de 1 Mbit/s, que o comprimento das tramas de informação é de 100 Bytes, que informação se propaga à velocidade da luz (3*10⁸ m/s) e que queremos usar no máximo 2 bits de para numerar as tramas que informação.

a) (1,5 valor) Para as variantes Stop and Wait, Go Back N e Selective Repeat, calcule a distância mínima e máxima

entre os dois equipamentos por forma a obtermos uma eficiência da ligação superior a 80%.

	Stop and Wait	Go Back N	Selective Repeat	(, , , ,
Distância mínima (km)	0	0	0	1111
Distância máxima (km)	30	336	180	(322

$$C = 1 \text{ Nht/s}, \ L = 100 \times 8 = 800 \text{ ht}, \ v = 3 \times 108 \text{ m/s}, \ k = 2$$

$$f = \frac{L}{L} = \frac{800}{106} = 0, 8 \text{ ms} \quad Tp = \frac{d}{N} = \frac{d}{3.108} = \frac{d}{3} \times 10^{-8}; \ \alpha = \frac{T_b}{T_f} = \frac{d.10^{-8.10^6}}{3.800} = \frac{d}{24}$$

$$I = \frac{1}{1+210} = 0, 8 \text{ GBN}: \ k = 2, \ N = 2^2 + 4, \ N = N = 3 \text{ SR}: \ k = 2; \ N = 2^2 + 4; \ W = \frac{11}{2} = 2$$

$$I = \frac{1}{1+210} = 0, 8 \text{ GBN}: \ k = 2, \ N = 2^2 + 4, \ N = N = 3 \text{ SR}: \ k = 2; \ N = 2^2 + 4; \ W = \frac{11}{2} = 2$$

$$I = \frac{1}{1+210} = \frac{1}$$

b) (1 valor) Suponha que os dois equipamentos distam de 30 km e que emissor tem um bloco de 100 kBytes de dados para transmitir. Desprezando os overheads introduzidos pelo protocolo de ligação lógica, calcule para as duas variantes ARQ indicadas o tempo necessário para o envio do bloco de dados (até ser recebida a última confirmação pelo emissor) e o débito observado pela camada superior. Se necessário recorra a diagramas

temporais

temporais.			
•		Stop and Wait	Selective Repeat
	Tempo de envio do bloco (ms)	1000	800
	Débito observado (kbit/s)	800	1000 2 2
d=30km; Bber=	100 kByte , L= 100 Byte		traves a serou envisdal
	$\frac{d}{3.108} = \frac{3 \times 10^3}{3.108} = 0.1 \text{ m}$	s a= 1	1 = 0.1 = 1 1 = 98 = 8
SW		SR: W>	1+2a? 221+2 V-> Nax=1
The lift	18/2 = 1/11/2 18/20 = 1800 XI hard	Enta	B TBba = 2 Tp+1000 Tf = 0,2 ms +800 ms 2 Tf ~ 800 ms
T2	= [11] = [11] = [11] = [11]	nits I	1000 Delse = 8×100×103 - [1N)1/2

Nome: Carrier

c) (1,5 valor) Admita que, para a mesma distância de 30 km, a ligação se efetua sob condições de transmissão que conduzem a uma situação de erro caracterizada por um **BER=10⁻³**. Considere que é utilizado o mecanismo ARQ **Stop and Wait.** Assumindo que o tamanho de trama (L) pode variar entre 100 e 1000 Bytes, que tamanho escolheria por forma a obter a eficiência máxima (S_{max})? Qual o valor essa eficiência? Qual é o débito máximo

(Deb_{max}) obtido nessa situaçã	0?			0	
SPREMISTON ANSWERSEN	L	Smax (%)	Deb _{max} (kbit/s)	(433)	
	100	36	360	(400)	
SW: Sing = 1-POR &	LY PERY	S7 _	= L= 100 Byt	= 800 Sits (a)	benely family de
BER=10-3 PER=1-(1	-BER) = 1-	- (1-lo-3) = 0, 23		2)
$S' = \frac{1 - 0.55}{1 + 2.1} = \frac{0.45}{1.25} = $		Del.	ex = 0,36 X	06 = 360 kht/s	

2. Um router é constituído por um conjunto de portas *full duplex*, sendo a capacidade de cada porta 100 Mbit/s (em cada sentido). Admita que num dado período o número médio de pacotes comutados para uma determinada porta de saída é 10 000 pacote/s, sendo o tamanho médio dos pacotes 1000 Bytes. Considere que o comportamento dessa porta de saída pode ser modelizado por uma fila de espera M/M/1.

Intensidade de tráfego, o

a) (1 valor) Calcule a intensidade de tráfego na porta de saída (taxa de utilização), a ocupação média da fila de espera (em pacotes) e o tempo médio de atraso dos pacotes (incluindo as componentes de espera e de serviço).

	Ocupação média da fila de espera, N _w 3, 2/
	Tempo médio de atraso dos pacotes, Τ, (μs) 400 (Tw= 320)
1- 10,000 backs	L=8×100 Lt MMI
$\mu = \frac{2}{L} = \frac{100 \times 1}{8 \times 1}$	$\frac{0^6}{10^3} = \frac{100}{8} \times 10^3 = 12500 \text{ peels} P = \frac{\lambda}{\mu} = \frac{10000}{12500} = 0,800$
_	$\frac{1}{12500 - 10000} = \frac{1}{2500} = 400 \mu s $ $ \hat{I}_{5} = \frac{1}{\mu} = 80 \mu s$
$N = \lambda T = 10$	000 x 400 ps = 4
Nw= N-P=	4-0,8=3,24

Intensidade de tráfego, p

L = 2000 Bytes

Nome:

200 /15

b) (1 valor) Considerando o mesmo débito (bit/s) na porta de saída, como variariam os parâmetros calculados em a) se o tamanho médio dos pacotes fosse, respetivamente, 500 e 2000 Bytes? Conclua sobre as vantagens e desvantagens de reduzir o tamanho dos pacotes, tendo em atenção vários fatores (tempo de atraso, número e tamanho de buffers, overheads, etc.).

L = 500 Bytes

Ocupação média da fila de espera, N _w	3,2	3,2	2 2
Tempo médio de atraso dos pacotes, Τ, (μs)	200	800	1 1
De Sito Saida = 10 000 pac/1 x 800	0 = 80 Mht/s Le L = 2000B	A X= 500	so pack
Se. C = 200 Bytes	Je 7 = 5000 B	3 /00 -	6250 paels
λ= 20 000 pacls μ= 25 000 pacls	1. 7= -= -	-= 800 M = 1	= 500 = 0,0
P= 0,8/ T= 1-1 = 5000 = 200 p		/	
N= NT = 20 000 × 200 M= 4	N= 12= 200	$0 \times 800 \mu = 4$ $4 - 0, 8 = 3, 2$	
1 1 / 0 8 - 37	NW=N-P=	(mais prestery)

c) (1 valor) Considere que na situação descrita na alínea a) o tráfego de 10 000 pacote/s é proveniente de 2 portas de entrada do router. Considere que os pacotes têm um comprimento constante de 500 Bytes, que o intervalo entre chegada de pacotes através de cada uma das portas do router também é constante e que os pacotes chegam ao router sempre ao mesmo tempo. Nestas condições determine o valor mínimo, médio e máximo do tempo de

espera dos pacotes até estes serem transmitidos. Tempo de espera mínimo (μs) Tempo de espera médio (µs) Tempo atraso máximo (µs) h= 10000 poels Aporta = = = 5000 poels
The rate subre depth de pacter de porte tip = Thork Tempo de trassit de 1 pacte, That = 40 ms 1° parte cleje à fize e é los pristos Tu = d 2° partir " que esper po o 1° leje 2° partir " fransmitido Tu = Ipre= 40 pt

Lope Twom= & Twoex = 4gus &[Tw] = 0+400 -2045

Twee = Twee + Tool = 60 ms

3

Nome: Correct

3. À Empresa A foi atribuído o bloco de endereços IP 66.66.64/26. A empresa tem um rede de comunicações com a arquitetura descrita na figura, composta por 4 routers (R1, R2, R3, R4) e 2 switches Ethernet (S1 e S2). O switch S1 tem 1 VLAN que serve 22 computadores (C). O switch S2 tem 2 VLANs (VLAN2 e VLAN3). A VLAN2 é usada para interligar os routers R1, R3 e R4. A VLAN3 é usada para servir 11 computadores. Os routers R2 e R3 estão interligados por uma ligação ponto-a-ponto que usa o endereço de rede indicado na figura.

a) (1 valor) Calcule os endereços associados às redes indicadas.

	Endereço da subrede (endereço/máscara)	Endereço de <i>broadcast</i> da subrede	N° de endereços de interfaces
VLAN1	66.66.66.64/27	66-66-66-95	30
VLAN2	66 66.66.120/219	66-66-66.127	6
VLAN3	66-66-66-96/28	66.66.66.111	14

Nome: Correct

b) (1 valor) Atribua endereços IP às interfaces de rede indicadas na tabela. Use os endereços mais baixos de cada sub-rede. Numa sub-rede atribua os endereços mais baixos aos routers de índice Ri mais baixo. Por exemplo, o endereço de R2.eth1 deverá ser inferior ao endereço R3.eth0.

Router.interface	Endereço(s) IP
R1.eth0	66-66-66. 121
R3.eth0	6 014
R3.eth1	4 122
R2.eth0	4 65
R2.eth1	4 6 113

c) (1 valor). Escreva a tabela de encaminhamento do **router R3.** Este router deverá ser capaz enviar pacotes para todos os endereços IP unicast. Use o menor número possível de entradas na tabela.

Destino (endereço/máscara)	Gateway	Interface
66.66.66. 112/30		etho
120/29		effil
64127	66-66-66-113	ette
4 - 96/28	66-66.66.123	ethi
0/0	66-66-66-121	e Hhd