

最速下降法

1874年法国科学家Cauchy提出了**最速下降法**(steepest descent method), 其主要思想是以<mark>负梯度方向</mark>作为下降方向的极小化算法,又称梯度法, 最速下降法是无约束最优化中最简单的方法。

设目标函数f(x)在当前迭代点 x_k 附近连续可微,且 $g_k \stackrel{\Delta}{=} \nabla f(x_k) \neq 0$,将f(x)在 x_k 处做泰勒展开:

$$f(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k) = f(\boldsymbol{x}_k) + \alpha \boldsymbol{g}_k^T \boldsymbol{d}_k + o(\parallel \alpha \boldsymbol{d}_k \parallel).$$
 (4.1.1)

 $i \exists \boldsymbol{x} - \boldsymbol{x}_k = \alpha \boldsymbol{d}_k \circ$

若搜索方向 \mathbf{d}_k 满足: $\mathbf{g}_k^T \mathbf{d}_k < 0$, 则 \mathbf{d}_k 是下降方向,即选取合适的步长 α , 有: $f(\mathbf{x}_k + \alpha \mathbf{d}_k) < f(\mathbf{x}_k)$ 成立。

最速下降法

当 α 取定后, $d_k^T g_k$ 的值越小,即 $-d_k^T g_k$ 的值越大,函数f(x)在 x_k 处下降量越大。

由Cauchy-Schwartz不等式:

$$|\boldsymbol{g}_k^T \boldsymbol{d}_k| \le \|\boldsymbol{g}_k\| \cdot \|\boldsymbol{d}_k\| \tag{4.1.2}$$

当且仅当:

取
$$\mathbf{d}_k = -\mathbf{g}_k$$
时, $\mathbf{g}_k^T \mathbf{d}_k$ 最小, $-\mathbf{g}_k^T \mathbf{d}_k$ 最大,

从而 $-g_k$ 是最速下降方向。

一般地,称以负梯度方向为迭代方向的方法为负梯度方法。

最速下降法步骤

特别地,采用**精确线性搜索**的步长,以**负梯度方向**为下迭代方向的方法叫最速下降法(steepest descent, SD),迭代格式为:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \boldsymbol{g}_k$$

算法4.1.1 - 最速下降法

步1 给出 $x_0 \in \mathbb{R}^n$, $0 \le \varepsilon \ll 1$, k := 0;

步2 若停机条件满足(比如 $\|g_k\| \le \varepsilon$), 则迭代停止;

步3 计算 $d_k = -g_k$;

步4 一维精确线性搜索求 α_k ;

步5 $x_{k+1} = x_k + \alpha_k d_k$, k := k+1, 转步2.

考虑正定二次函数:

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$$
 (4.1.3)

其中 $G \in \mathbb{R}^{n \times n}$ 为正定矩阵, 极小点 x^* 满足: Gx + b = 0。

计算迭代方向 $\mathbf{d}_k = -\mathbf{g}_k = -G\mathbf{x}_k - \mathbf{b}$ 。求解一维问题: $\min_{\alpha>0} f(\mathbf{x}_k - \alpha \mathbf{g}_k)$ 得到最优步长因子为:

$$\alpha_k = \frac{\boldsymbol{g}_k^T \boldsymbol{g}_k}{\boldsymbol{g}_k G \boldsymbol{g}_k}$$

下一个迭代点为:

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k - rac{oldsymbol{g}_k^T oldsymbol{g}_k}{oldsymbol{g}_k G oldsymbol{g}_k} oldsymbol{g}_k.$$

例4.1.1 正定二次函数(4.1.3)中, $b = (2,3)^T$, c = 10, 二阶海森矩阵G分别取:

$$G_1 = \left[\begin{array}{cc} 21 & 4 \\ 4 & 15 \end{array} \right] \quad G_2 = \left[\begin{array}{cc} 21 & 4 \\ 4 & 1 \end{array} \right]$$

用最速下降法分别求解(4.1.3)的极小点。初始点取 $x_0 = (-30, 100)^T$, 终止准则为: $||g_k|| < 10^{-5}$ 。

解:利用最速下降法求解问题 $1(G_1)$ 和问题 $2(G_2)$,并给出迭代点的信息与相应梯度变化信息,对比针对两个问题最速下降法收敛速度的快慢。

k	$oldsymbol{x}_k^T$	$\ oldsymbol{g}_k\ $	•
0	(-30.0000, 100.0000)	1401.6679	
1	(-13.5763, 0.3277)	285.4239	
2	(-0.8387, 2.4212)	36.4480	
:	į	:	最速下降法在
11	(-0.0602, -0.1840)	$0.3393 \mathrm{e}{-005}$	题1上的收敛
12	(-0.0602, -0.1840)	$0.4333 \mathrm{e}{-006}$	
			度明显快于在
k	$oldsymbol{x}_k^T$	$\ oldsymbol{g}_k\ $	题2的收敛速度
0	(-30.0000, 100.0000)	228.6329	_
1	(-19.3868, 1000.7913)	26.3171	
2	(-15.6406, 50.0660)	125.7811	
_	. ,		
:	· · · · · · · · · · · · · · · · · · ·	:	
: 58	: (2.0000, -11.0000)	: 0.6807e-005	

问题2: G₂

问题1: G_1

数值试验表明:

- 当目标函数的等值线接近于一个圆(球)时,下降较快
- 当目标函数的等值线是一个扁长的椭球时, 开始几步下降较快, 后来就出现锯齿现象, 下降十分缓慢。

最速下降法-锯齿现象

由于精确线性搜索满足 $\mathbf{g}_{k+1}^T\mathbf{d}_k = 0$,则

$$\mathbf{g}_{k+1}^{T}\mathbf{g}_{k} = \mathbf{d}_{k+1}^{T}\mathbf{d}_{k} = 0,$$
 (4.1.4)

这表明最速下降法:

- 相邻两次的搜索方向是相互直交的,这就产生了锯齿形状。
- 越接近极小点,步长越小,前进越慢。

课堂练习 试用最速下降法求 $f(x) = (x_1 - 1)^2 + (x_2 - 1)^2$ 的极小点。已 知初始点 $x_0 = (0,0)$, 梯度误差精度 $\varepsilon = 0.1$ 。

最速下降法收敛速度

定义4.1.1 设G是 $\mathbb{R}^{n \times n}$ 对称正定, $u, v \in \mathbb{R}^n$,则u与v在G度量意义下的内积(u^Tv) $_G$ 定义为:

$$(\boldsymbol{u}^T \boldsymbol{v})_G = \boldsymbol{u}^T G \boldsymbol{v}$$

u在G度量意义下的范数定义为:

$$\|\boldsymbol{u}\|_G = \boldsymbol{u}^T G \boldsymbol{u}$$

对正定二次函数情形 $f(x) = \frac{1}{2}x^TGx + b^Tx$, 推导可得:

$$\frac{1}{2}\|\boldsymbol{x}_k - \boldsymbol{x}^*\|_G^2 = f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*)$$
 (4.1.5)

在G度量意义下, x_k 的误差等价于它们目标函数值 $f(x_k)$ 的误差。

最速下降法收敛速度

定理4.1.1 最速下降法收敛速度.

对正定二次函数,最速下降法的收敛速度为:

$$\frac{\|\boldsymbol{x}_{k+1} - \boldsymbol{x}^*\|_G^2}{\|\boldsymbol{x}_k - \boldsymbol{x}^*\|_G^2} \le \left(\frac{\lambda_{\mathsf{max}} - \lambda_{\mathsf{min}}}{\lambda_{\mathsf{max}} + \lambda_{\mathsf{min}}}\right)^2 \tag{4.1.6}$$

其中: λ_{max} , λ_{min} 分别为G的最大与最小特征值。

证明: 针对正定二次函数的最速下降法满足:

$$f(\boldsymbol{x}_{k+1}) = f(\boldsymbol{x}_k) - \frac{1}{2} \frac{(\boldsymbol{g}_k^T \boldsymbol{g}_k)^2}{\boldsymbol{g}_k^T G \boldsymbol{g}_k}$$

由于 $Gx^* = -b$ 得:

$$f(\boldsymbol{x}^*) = -\frac{1}{2}\boldsymbol{b}^T G^{-1}\boldsymbol{b}$$

定理4.1.1证明续

证明续: 从而:

$$\frac{f(\boldsymbol{x}_{k+1}) - f(\boldsymbol{x}^*)}{f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*)} = \frac{f(\boldsymbol{x}_k) - \frac{1}{2} \frac{(\boldsymbol{g}_k^T \boldsymbol{g}_k)^2}{\boldsymbol{g}_k^T G \boldsymbol{g}_k} - f(\boldsymbol{x}^*)}{f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*)} = 1 - \frac{(\boldsymbol{g}_k^T \boldsymbol{g}_k)^2}{(\boldsymbol{g}_k^T G \boldsymbol{g})k)(\boldsymbol{g}_k^T G^{-1} \boldsymbol{g}_k)}$$

由(4.1.5)式得:

$$\frac{\|\boldsymbol{x}_{k+1} - \boldsymbol{x}^*\|_G^2}{\|\boldsymbol{x}_k - \boldsymbol{x}^*\|_G^2} = 1 - \frac{(\boldsymbol{g}_k^T \boldsymbol{g}_k)^2}{(\boldsymbol{g}_k^T G \boldsymbol{g}) k) (\boldsymbol{g}_k^T G^{-1} \boldsymbol{g}_k)}$$

根据Kantorovich不等式:对任意的 $x \in \mathbb{R}^n \setminus \{0\}$,均有以下不等式成立:

$$\frac{(\boldsymbol{x}^T\boldsymbol{x})^2}{(\boldsymbol{x}^TG\boldsymbol{x})(\boldsymbol{x}^TG^{-1})\boldsymbol{x}} \geq \frac{4\lambda \mathsf{max}\lambda_{\mathsf{min}}}{(\lambda \mathsf{max} + \lambda_{\mathsf{min}})^2}$$

根据以上两式得(4.1.6)结论。

最速下降法收敛速度

从**定理**4.1.1可以看出,最速下降法的收敛速度是线性的,这个速度依赖于G的最大、最小特征值。在二范数意义下,矩阵条件数为:

$$\operatorname{cond}(G) = \|G\|_2 \|G^{-1}\|_2 = \frac{\lambda_{\max}}{\lambda_{\min}}$$

所以有:

$$\frac{\lambda_{\mathsf{max}} - \lambda_{\mathsf{min}}}{\lambda_{\mathsf{max}} + \lambda_{\mathsf{min}}} = \frac{\mathsf{cond}(G) - 1}{\mathsf{cond}(G) + 1} \stackrel{\Delta}{=} \mu$$

这说明最速下降法收敛速度依赖于G的条件数:

- 当G条件数接近于1时, μ 接近于零, 最速下降法的收敛速度接近超线性收敛速度。
- 当G条件数越大, μ 越接近于1, 该方法的收敛速度越慢。

最速下降法-优缺点

最速下降法优缺点:

- **优点**: 具有程序设计简单,计算工作量小,存储量小,对初始点没有特别要求,从不太好的初始点出发也可能接近极小点。
- 缺点: 最速下降方向仅是函数的局部性质,对整体求解过程而 言,这个方法下降非常缓慢。

14 / 22

最速下降法收敛性

定理4.1.2 总体收敛性.

设 $\nabla f(\boldsymbol{x})$ 在水平集 $L = \{ \boldsymbol{x} \in \mathbb{R}^n | f(\boldsymbol{x}) \leq f(\boldsymbol{x}_0) \}$ 上存在且一致连续,则最速下降法产生的序列满足: 或对某个k 有 $\boldsymbol{g}_k = 0$,或 $f(\boldsymbol{x}_k) \to -\infty$, $\boldsymbol{g}_k \to 0$.

证明: 对于最速下降法,有 $\theta_k = 0$,利用精确线性搜索收敛性定理-**定 理**3.1.2立即可知最速下降法是总体收敛的。 ■

定理4.1.3.

设函数f(x)二阶连续可微,且 $\|\nabla^2 f(x)\| \le M$,其中M是某正常数。对任何给定的初始点 x_0 ,最速下降算法4.1.1或有限终止,或 $\lim_{k\to\infty} f(x_k) = -\infty$,或 $\lim_{k\to\infty} g_k = 0$.

定理4.1.3证明

证明: 考虑无限迭代下去的情形,由精确线性搜索函数值下降估计定理3.1.1,有

$$f(x_k) - f(x_{k+1}) \ge \frac{1}{2M} ||g_k||^2.$$

对k = 0, 1, ..., 进行累加得:

$$f(\boldsymbol{x}_0) - f(\boldsymbol{x}_k) = \sum_{i=0}^{k-1} [f(\boldsymbol{x}_i) - f(\boldsymbol{x}_{i+1})] \ge \frac{1}{2M} \sum_{i=0}^{k-1} \|\boldsymbol{g}_i\|^2.$$

两边取极限得:

$$\lim_{k\to\infty} f(\boldsymbol{x}_k) = -\infty$$
或者 $\lim_{k\to\infty} \boldsymbol{g}_k = 0$

从而定理成立。

BB梯度法

最速下降法利用前一个迭代点梯度信息确定当前搜索步长。类似于拟牛顿确定搜索方向,Barzilai&Borwein提出了利用两点梯度信息确定步长的梯度法。在拟牛顿法中,迭代公式为:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - H_k \boldsymbol{g}_k$$

这里 H_k 为海森矩阵的近似,需满足拟牛顿条件:

$$\boldsymbol{s}_{k-1} = H_k \boldsymbol{y}_{k-1}$$

其中, H_k 为海森矩阵 G_k 的近似, $s_{k-1} = x_k - x_{k-1}, y_{k-1} = g_k - g_{k-1}$ 。 将最速下降法迭代格式: $x_{k+1} = x_k - \alpha_k g_k$,写成:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - D_k \boldsymbol{g}_k$$

其中: $D_k = \alpha_k I_k$.

BB梯度法

为使 D_k 具有类似拟牛顿性质,需要通过优化以下问题确定步长 α_k :

$$\min \| \boldsymbol{s}_{k-1} - D_k \boldsymbol{y}_{k-1} \| \tag{4.1.7}$$

求解以上优化问题可得:

$$\alpha_k^{\mathsf{BB1}} = \frac{s_{k-1}^T y_{k-1}}{y_{k-1}^T y_{k-1}} \tag{4.1.8}$$

利用对称性,也可以考虑以下优化问题:

$$\min \|D_k^{-1} s_{k-1} - y_{k-1}\| \tag{4.1.9}$$

于是得到步长 α_k 为:

$$\alpha_k^{\mathsf{BB2}} = \frac{s_{k-1}^T s_{k-1}}{s_{k-1}^T y_{k-1}} \tag{4.1.10}$$

BB梯度法

算法4.1.2 BB梯度下降法

- 步1 给定初始点 x_0 $0 < \varepsilon \ll 1$, 令k = 0;
- 步2 若 $\|g_k\| \le \varepsilon$, 停止; 否则, 令 $d_k = -g_k$;
- 步3 若k=0, 利用线性搜索确定 α_0 ; 否则,利用(4.1.8)或者(4.1.10)计 第 α_k ;
- 步4 进行迭代:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k,$$

令k := k + 1, 并转步1.

BB法与最速下降、极小梯度

考虑极小化正定二次函数:

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T G \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{x}$$

由 $g_k = Gx_k + b$ 可得:

$$s_{k-1} = -\alpha_{k-1} g_{k-1}, y_{k-1} = -\alpha_{k-1} G g_{k-1}$$

BB法的两个步长公式分别化为:

$$\alpha_k^{\text{BB1}} = \frac{g_{k-1}^T g_{k-1}}{g_{k-1}^T G g_{k-1}}$$
 (4.1.11)

$$\alpha_k^{\text{BB2}} = \frac{g_{k-1}^T G g_{k-1}}{g_{k-1}^T G^2 g_{k-1}}$$
(4.1.12)

BB法与最速下降、极小梯度

最速下降(SD)与极小梯度(MD)步长分别为:

$$\alpha_k^{\text{SD}} = \operatorname{argmin}_{\alpha > 0} f(\boldsymbol{x}_k - \alpha \boldsymbol{g}_k) = \frac{\boldsymbol{g}_k^T \boldsymbol{g}_k}{\boldsymbol{g}_k^T G \boldsymbol{g}_k} \tag{4.1.13}$$

$$\alpha_k^{\mathsf{MD}} = \mathsf{argmin}_{\alpha > 0} \| \boldsymbol{g}(\boldsymbol{x}_k - \alpha \boldsymbol{g}_k) \|_2^2 = \frac{\boldsymbol{g}_k^T G \boldsymbol{g}_k}{\boldsymbol{g}_k^T G^2 \boldsymbol{g}_k} \tag{4.1.14}$$

可以看出BB方法与最速下降、极小梯度方法的步长关系如下:

$$\alpha_k^{\mathrm{BB1}} = \alpha_{k-1}^{\mathrm{SD}}, \quad \alpha_k^{\mathrm{BB2}} = \alpha_{k-1}^{\mathrm{MD}}$$

BB方法的步长相较于SD方法与MD方法延后一步使用,从实际计算效果看,BB方法优于其他两种方法。

SD法、MD法、两种BB法数值比较

例4.1.2 分别利用SD方法、MD方法、两种BB法求解正定二次函数极小点,其中 $G={\rm diag}(1,5,10,20), {\pmb b}={\bf 0}$ 。初始点取为 $(1,1,1,1)^T$. BB方法的初始步长取为 $\alpha_0^{\rm BB1}=\alpha_0^{\rm BB2}=\alpha_0^{\rm SD}, \|{\pmb g}_k\|_2 \leq 10^{-8}$ 时停止迭代。

求解该问题时,SD法与MD法分别用了179次和174次迭代,而BB1与BB2分别迭代了36次和44次。

k	SD 方法		MG 方法		BB1 方法		BB2 方法	
	α_k^{SD}	$f(x_k)$	$lpha_k^{ ext{MG}}$	$f(x_k)$	$lpha_k^{ ext{BB1}}$	$f(x_k)$	$lpha_k^{ ext{BB2}}$	$f(x_k)$
0	0.058	$1.8e{+1}$	0.054	1.8e + 1	0.058	$1.8e{+1}$	0.058	1.8e + 1
;	;	1		1			:	:
10	0.079	$7.9e{-2}$	0.077	$7.6e{-2}$	0.162	$5.8e{-2}$	0.973	$4.0e{-4}$
11	0.120	$6.4\mathrm{e}{-2}$	0.126	$6.4e{-2}$	0.050	$2.9\mathrm{e}{-1}$	0.052	$2.8\mathrm{e}{-2}$
12	0.079	5.2e-2	0.077	$4.9e{-2}$	0.050	$5.1e{-5}$	0.050	$5.1\mathrm{e}{-4}$
13	0.120	$4.2\mathrm{e}{-2}$	0.126	$4.2\mathrm{e}{-2}$	0.095	$1.3e{-5}$	0.072	2.4e-4
14	0.079	$3.4e{-2}$	0.077	$3.2e{-2}$	0.100	$1.1e{-7}$	0.166	$9.4e{-5}$

观察以上表格发现,SD法与MD法的步长出现周期现象,BB方法目标函数值并非一直单调减小的。