PREENCHIMENTO

Prof. Dr. Bianchi Serique Meiguins

Prof. Dr. Carlos Gustavo Resque dos Santos

Preenchimento de formas triviais

Retângulo

- □ Basta pintar todos os pixels dentro do retângulo
- □ O caso mais simples

Preenchimento de formas triviais

- □ Círculo
- Elipse

 A ideia é preencher linhas usando os pontos encontrados na rasterização

Preenchimento de formas triviais

□ Para os Círculos

х	y	\longleftrightarrow	-x	y	
X	-y	\longleftrightarrow	-x	<u>-у</u>	
у	x	\longleftrightarrow	-y	x	
у	-x	\longleftrightarrow	<u>-у</u>	-x	

Preenchimento de Triângulos

Triângulos

 Triângulos são os principais blocos de construção de formas mais complexas

 □ Por definição: são planares e convexos mesmo em ambientes 3D

 Além disso, existem algoritmos para converter representações de superfície para uma malha de triângulos

Preenchimento de Triângulos

- Para preencher triângulos podemos utilizar a equação da reta de cada aresta do triângulo no mesmo sentido (horário ou anti-horário)
- Para cada equação verifica-se um erro para saber se o ponto avaliada está dentro ou fora do triangulo.
 - Esse erro pode ser avaliado pelo sinal do valor do erro
- Utiliza-se uma forma recursiva para atualizar o valor do erro pixel a pixel

Equação Geral da Reta

 A equação geral da reta deixa a equação igualando a zero, o que será utilizado para verificar o erro.

$$ax + by + c = 0$$

 \Box Se considerarmos que um ponto (x,y) não está na reta, então essa equação resultará em um erro e.

$$ax + by + c = e$$

Equação Geral da Reta

- □ Considerando as seguintes situações:
 - $\blacksquare \ e = 0$ para o ponto **na** reta
 - $\blacksquare e > 0$ para o ponto a **esquerda** da reta
 - $\blacksquare e < 0$ para o ponto a **direita** da reta

O que nos dá uma noção de direção para a reta

Equação Geral da Reta

- Sendo assim, podemos usar essa equação para verificar se o ponto está dentro ou fora do triângulo utilizando a equação geral da reta para cada aresta
- Ao considerar as arestas no sentido anti-horário basta verificar se para um determinado ponto o sinal do erro é positivo para todas as arestas

Equação Geral da Reta (Recursiva)

 Deixaremos a equação geral em forma recursiva para x+1 e y+1 para economizar tempo de processamento durante o loop

$$e(x + 1, y) = a(x + 1) + by + c$$

 $e(x + 1, y) = ax + a + by + c$
 $e(x + 1, y) = e(x, y) + a$

$$e(x,y+1) = ax + b(y+1) + c$$

$$e(x,y+1) = ax + by + b + c$$

$$e(x,y+1) = e(x,y) + b$$

Calculo dos Coeficientes

 Para calcular os coeficientes da equação geral utilizando a seguinte equação

$$-\Delta_y x + \Delta_x y + (\Delta_y x_1 - \Delta_x y_1) = 0$$

□ Ou seja,

$$a = -\Delta_y$$

$$b = \Delta_x$$

$$c = \Delta_y x_1 - \Delta_x y_1$$

Algoritmo de preenchimento do triângulo

- Calcula os coeficientes a, b e c para cada aresta no sentido anti-horário
- □ Encontra o bounding box do triângulo
- Calcula o erro inicial para o menor ponto do bounding box
- Para cada pixel no bounding box verifica o erro para cada aresta e atualiza o erro
 - Caso todos >=0 então pinta o pixel
 - Caso contrário não faz nada

Algoritmo de preenchimento do triângulo

```
//Calcula os coeficientes a, b e c para cada aresta no sentido anti-horário
int a1 = -(y2-y1), a2 = -(y3-y2), a3 = -(y1-y3);
int b1 = x2-x1, b2 = x3-x2, b3 = x1-x3;
int c1 = -a1*x1-b1*y1, c2 = -a2*x2-b2*y2, c3 = -a3*x3-b3*y3;
//Encontra o bouding box do triângulo
int x_min = Math.min(Math.min(x1,x2),x3);
int x_{max} = Math.max(Math.max(x1,x2),x3);
int y_min = Math.min(Math.min(y1,y2),y3);
int y_{max} = Math.max(Math.max(y1,y2),y3);
//Calcula o erro inicial para o início do bouding box
int e1 = a1*x_min + b1*y_min + c1;
int e2 = a2*x_min + b2*y_min + c2;
int e3 = a3*x_min + b3*y_min + c3;
```

Algoritmo de preenchimento do triângulo

```
//loop no bounding box
for(int y=y_min;y<=y_max;y++){
    int elaux = e1, elaux = e2, elaux = e3;
    for(int x=x_min;x<=x_max;x++){
        if(e1>=0 && e2>=0 && e3>=0) {
            fb.setPixel(x, y, color);
        ŀ
        e1+=a1;
        e2+=a2;
        e3+=a3;
    e1=e1aux+b1;
    <u>e2</u>=e2aux+b2;
    e3=e3aux+b3;
```

Preencha o triângulo com os seguintes vértices

$$p_1 = (0,0), p_2 = (5,0), p_3 = (3,5)$$

Calculando os coeficientes temos:

$$a_1 = -(0 - 0) = \underline{0}$$
 $a_3 = -(0 - 5) = \underline{5}$
 $b_1 = 5 - 0 = \underline{5}$ $b_3 = 0 - 3 = \underline{-3}$
 $c_1 = -0 \times 0 - 5 \times 0 = \underline{0}$ $c_3 = -5 \times 3 + 3 \times 5 = \underline{0}$

$$a_2 = -(5 - 0) = \underline{-5}$$

 $b_2 = 3 - 5 = \underline{-2}$
 $c_2 = 5 \times 5 + 2 \times 0 = \underline{25}$

Calculando o bouding box temos:

$$x_{min} = \min(0,5,3) = \underline{0}$$

 $x_{max} = \max(0,5,3) = \underline{5}$
 $y_{min} = \min(0,0,5) = \underline{0}$
 $x_{max} = \max(0,0,5) = \underline{5}$

Calculando o erro inicial temos:

$$e_1 = 0 \times 0 + 0 \times 0 + 0 = \underline{0}$$

 $e_2 = -5 \times 0 - 2 \times 0 + 25 = \underline{25}$
 $e_3 = 5 \times 0 - 3 \times 0 + 0 = \underline{0}$

$$a_1 = \underline{0}$$

$$b_1 = \underline{5}$$

$$c_1 = \underline{0}$$

$$a_2 = \underline{-5}$$
 $a_3 = \underline{5}$
 $b_2 = \underline{-2}$ $b_3 = \underline{-3}$
 $c_2 = \underline{25}$ $c_3 = \underline{0}$

Armazena os coeficientes para x inicial e começa o loop:

$$y = 0$$

	-			
x	e_1	e_2	e_3	Pinta?
0	0	25	0	Sim
1	0	20	5	Sim
2	0	15	10	Sim
3	0	10	15	Sim
4	0	5	20	Sim
5	0	0	25	Sim

$$e_{1_aux} = \underline{0}$$

$$e_{2_aux} = \underline{25}$$

$$e_{3_aux} = \underline{0}$$

$$a_1 = \underline{0}$$

$$b_1 = \underline{5}$$

$$c_1 = 0$$

$$a_2 = \underline{-5} \qquad a_3 = \underline{5}$$

$$b_2 = \underline{-2} \qquad b_3 = \underline{-3}$$

$$c_2 = \underline{25} \qquad c_3 = \underline{0}$$

Armazena os coeficientes para x inicial e começa o loop:

$$y = 1$$

x	e_1	e_2	e_3	Pinta?
0	5	23	-3	Não
1	5	18	2	Sim
2	5	13	7	Sim
3	5	8	12	Sim
4	5	3	17	Sim
5	5	-2	22	Não

$$e_{1_aux} = 0 + 5 = \underline{5}$$

 $e_{2_aux} = 25 - 2 = \underline{23}$
 $e_{3_aux} = 0 - 3 = \underline{-3}$

$$a_2 = \underline{-5}$$

$$b_2 = \underline{-2}$$

$$c_2 = 25$$

$$a_1 = \underline{0}$$

$$b_1 = \underline{5}$$

$$c_1 = \underline{0}$$

$$a_3 = \underline{5}$$

$$b_3 = \underline{-3}$$

$$c_3 = \underline{0}$$

$$y = 2$$

x	e_1	e_2	e_3	Pinta?
0	10	21	-6	Não
1	10	16	-1	Não
2	10	11	4	Sim
3	10	6	9	Sim
4	10	1	14	Sim
5	10	-4	19	Não

$$e_{1_aux} = 5 + 5 = \underline{10}$$

 $e_{2_aux} = 23 - 2 = \underline{21}$
 $e_{3_aux} = -3 - 3 = \underline{-6}$

$$a_2 = \underline{-5}$$

$$b_2 = \underline{-2}$$

$$c_2 = 25$$

$$a_1 = \underline{0}$$

$$b_1 = \underline{5}$$

$$c_1 = \underline{0}$$

$$a_3 = \underline{5}$$

$$b_3 = \underline{-3}$$

$$c_3 = 0$$

$$y = 3$$

x	e_1	e_2	e_3	Pinta?
0	15	19	-9	Não
1	15	14	-4	Não
2	15	9	1	Sim
3	15	4	6	Sim
4	15	-1	11	Não
5	15	-6	16	Não

$$e_{1_aux} = 10 + 5 = \underline{15}$$
 $e_{2_aux} = 21 - 2 = \underline{19}$
 $e_{3_aux} = -6 - 3 = \underline{-9}$

$$a_2 = \underline{-5}$$

$$b_2 = \underline{-2}$$

$$c_2 = 25$$

$$a_1 = \underline{0}$$

$$b_1 = \underline{5}$$

$$c_1 = \underline{0}$$

$$a_3 = \underline{5}$$

$$b_3 = \underline{-3}$$

$$c_3 = \underline{0}$$

$$y = 4$$

x	e_1	e_2	e_3	Pinta?
0	20	17	-12	Não
1	20	12	-7	Não
2	20	7	-2	Não
3	20	2	3	Sim
4	20	-3	8	Não
5	20	-8	13	Não

$$e_{1_aux} = 15 + 5 = \underline{20}$$

 $e_{2_aux} = 19 - 2 = \underline{17}$
 $e_{3_aux} = -9 - 3 = \underline{-12}$

$$\begin{aligned}
2 &= \underline{17} \\
3 &= \underline{-12}
 \end{aligned}
 \qquad
 \begin{aligned}
 a_1 &= \underline{0} \\
 b_1 &= \underline{5} \\
 c_1 &= \underline{0}
 \end{aligned}$$

$$a_2 = \underline{-5}$$

$$b_2 = \underline{-2}$$

$$c_2 = \underline{25}$$

$$a_3 = \underline{5}$$

$$b_3 = \underline{-3}$$

$$c_3 = \underline{0}$$

$$y = 5$$

•					
x	e_1	e_2	e_3	Pinta?	
0	25	15	-15	Não	
1	25	10	-10	Não	
2	25	5	-5	Não	
3	25	0	0	Sim	
4	25	-5	5	Não	
5	25	-10	10	Não	

$$e_{1_aux} = 20 + 5 = \underline{25}$$
 $e_{2_aux} = 17 - 2 = \underline{15}$
 $e_{3_aux} = -12 - 3 = \underline{-15}$

$$a_1 = \underline{0}$$

$$b_1 = \underline{5}$$

$$c_1 = \underline{0}$$

$$a_2 = \underline{-5}$$

$$b_2 = \underline{-2}$$

$$c_2 = \underline{25}$$

$$a_3 = \underline{5}$$

$$b_3 = \underline{-3}$$

$$c_3 = 0$$

Algoritmo de preenchimento do triângulo (Conclusões)

 Este algoritmo é eficiente pois utiliza apenas soma dentro do loop

 Sua desvantagem consistem em triângulos muito finos e diagonais, pois geram um bounding box grande e poucos pixels são efetivamente pintados

 Existem outros algoritmos eficientes para o preenchimento de triângulos

- O preenchimento de polígonos exigem mais cuidados, pois essa forma pode ser arbitrariamente complexa
 - Diferente dos triângulos os polígonos podem ser côncavos e não planares
- Isso faz com que os algoritmos para desenhar polígonos sejam mais complexos
- Para verificar se um ponto está dentro de um polígono, podemos utilizar o teste da paridade

- □ Teste de Paridade
 - Consistem em verificar o número de vezes que um segmento de reta intersecta com as bordas do polígono, partindo de uma ponto p até o fim do polígono

- □ Teste de Paridade
 - De forma análoga podemos traçar uma linha reta, horizontal da esquerda para a direita, contando as intersecções
 - Assim, quando o número de intersecções for ímpar implica que a partir dessa intersecção está dentro do polígono e quando for par está fora

Varredura ou Análise Geométrica (Algoritmo Simples)

- Baseia-se na descrição geométrica e no teste da paridade
- Utiliza linhas de varredura (y = constante)
- Identifica pontos internos do polígono e as interseções das arestas dos polígonos com as linhas de varredura
- Constrói uma tabela de lados para descrição do polígono em questão

Varredura ou Análise Geométrica (Algoritmo Simples)

Problema nos Vértices

- Seguindo a lógica do algoritmo ocorrem problemas quando a linha de varredura passa por vértices do polígono
- Isso ocorre tanto se contarmos cada vértice como um ponto conjunto para duas arestas (a) ou como dois pontos, um para cada aresta (b)

Problema nos Vértices

 Uma forma de resolver esse problema é considerar um vértice como mínimo ou máximo dependendo do valor de y para cada aresta

 Sendo assim, contar apenas os pontos de mínimo, por convenção, e uma vez para cada aresta.

Problema nos Vértices

 Contando somente os vértices mínimos para o teste da paridade resolve os problemas apresentados

 Essa solução faz com que vértices duplo máximo não sejam preenchidos, mas quando a resolução é alta o problema se torna quase imperceptível

Varredura ou Análise Geométrica (Algoritmo Simples)

 l° passo: montar a Tabela de lados descrição do polígono:

Aresta	Ymin	Ymax	X_{Ymin}	1/ <i>m</i>
1	1	8	3	-0.429
2	1	6	3	0.4
3	1	6	9	-0.8
4	1	10	9	0.111
5	8	10	0	5

Varredura (Scanline Algorithm)

 \square **2° passo**: Para cada linha de varredura $Y_{varredura}$, avaliar quais arestas terão interseção com $Y_{varredura}$ e calcular o x da interseção com a seguinte fórmula

$$x = \frac{1}{m} \cdot (Y_{\text{varredura}} - Y_{\text{min}}) + X_{\text{Ymin}}$$

 \square 3° passo: Pinta uma linha entre cada par de x encontrado no passo 2 de forma ordenada em x

Varredura (Scanline Algorithm)

\square Por exemplo, para $Y_{varredura} = 4$ temos:

Aresta	Ymin	Ymax	X_{Ymin}	1/ <i>m</i>
1	1	8	3	-0.429
2	1	6	3	0.4
3	1	6	9	-0.8
4	1	10	9	0.111
5	8	10	0	5

$$x_1 = -0.429 \times (4 - 1) + 3 = \underline{1.713}$$

 $x_2 = 0.4 \times (4 - 1) + 3 = \underline{4.2}$
 $x_3 = -0.8 \times (4 - 1) + 9 = \underline{6.6}$
 $x_4 = 0.111 \times (4 - 1) + 9 = \underline{9.333}$

$$x = \frac{1}{m} \cdot (Y_{\text{varredura}} - Y_{\text{min}}) + X_{\text{Ymin}}$$

 Os cálculos de intersecção podem ser economizados dentro do loop ao utilizar a forma recursiva da equação da intersecção

$$x_{y_{var}+1} = \frac{1}{m} \left((y_{var} + 1) - y_{min} \right) + x_{y_{min}}$$

$$x_{y_{var}+1} = \frac{y_{var}}{m} + \frac{1}{m} - \frac{y_{min}}{m} + x_{y_{min}}$$

$$x_{y_{var}+1} = \frac{1}{m} (y_{var} - y_{min}) + x_{y_{min}} + \frac{1}{m}$$

$$x_{y_{var}+1} = x_{y_{var}} + \frac{1}{m}$$

 Além disso, a estrutura da tabela pode ser substituída por uma estrutura que guarda os pontos críticos (vértices de y mínimo para cada aresta) e suas características (conjunto total)

 \square E uma segunda estrutura (conjunto ativo) que guarda os pontos críticos ativos para cada y de varredura y_{var}

- □ As características gravadas em cada estrutura são
 - □ index: índice do ponto no array de pontos
 - dir: direção (anti-horária ou horária) do ponto crítico em direção ao ponto máximo da aresta
 - \blacksquare **x_int**: x da intersecção para o y_var corrente
 - inv_slope: o inverso do coeficiente angular da aresta do ponto crítico, ou seja, $\frac{1}{m}$

- □ O algoritmo consistem em:
- Armazenar todos os pontos críticos e suas características no conjunto total
- Para cada y_var em ordem crescente, alterando sempre o conjunto ativo
 - Atualiza os valores de x_int
 - Adiciona os pontos críticos iguais a y_var
 - Remove os pontos críticos com $y_max = y_var$
 - d) Ordenas os pontos se necessário
 - Pinta os pixels entre cada par de x_int dos pontos críticos atualmente armazenados

 Exemplo de estrutura para guardar os pontos críticos

```
int index;
int dir;
float x_intersection;
float inv_slope;
```

```
//encontra o bouding box para y e os pontos críticos (mínimos em y)
int y_min=Integer.MAX_VALUE, y_max=Integer.MIN_VALUE;
ArrayList<CriticalP> criticals = new ArrayList<>();
for (int i = 0; i < points.length; i++) {
    if(points[i].y<y_min){
        y_min=points[i].y;
    }else if(points[i].y>y_max){
        y_max = points[i].y;
    Point p_aux = points[(i+1)%points.length];
    if(points[i].y<p_aux.y){
        criticals.add(new CriticalP(i, dir: 1, points[i].x,
                 inv_slope: (p_aux.x-points[i].x*1.0f)/(p_aux.y-points[i].y*1.0f)));
    p_aux = points[(i-1+points.length)%points.length];
    if(points[i].y<p_aux.y){
        criticals.add(new CriticalP(i, dir. -1, points[i].x,
                 inv_slope: (p_aux.x-points[i].x*1.0f)/(p_aux.y-points[i].y*1.0f)));
```

Início do loop de varredura

```
ArrayList<CriticalP> active_criticalPs = new ArrayList<>();
CriticalPComparator comparator = new CriticalPComparator();
for(int y=y_min;y<=y_max;y++){</pre>
    //Atualiza o valor de cada intersecção nos pontos ativos
    for (CriticalP e : active_criticalPs) {
        e.x_intersection += e.inv_slope;
    //Adiciona as arestas com pontos críticos para o y corrente
    for (CriticalP e : criticals) {
        if(points[e.index].y==y){
            active_criticalPs.add(e);
```

Ainda no mesmoloop

```
//Remove os pontos com y_max=y_var
for (int \underline{i} = active_criticalPs.size()-1; \underline{i} >= 0; \underline{i}--) {
    CriticalP e = active_criticalPs.get(i);
    Point p_max = points[(e.index+e.dir +points.length)%points.length];
    if(p_max.y == y){
         active_criticalPs.remove(i);
//Ordenas os pontos ativos conforme o valor de x para o y corrente
active_criticalPs.sort(comparator);
//Pinta entre cada par de pontos ativos
for (int \underline{i} = 0; \underline{i} < active\_criticalPs.size(); <math>\underline{i}+=2) {
    int x_start = Math.round(active_criticalPs.get(i).x_intersection);
    int x_end = Math.round(active_criticalPs.get(<u>i</u>+1).x_intersection);
    for (int x = x_{start}; x <= x_{end}; x++) {
         fb.setPixel(x,y,color);
```

Preenchimento de Áreas

Preenchimento Recursivo

 Um pixel vizinho de um outro pixel, que já esta dentro do polígono, também está dentro do polígono

- Considera-se vizinho os 4 pixels:
 - Cima, Direita, baixo, esquerda.

Preenchimento Recursivo

```
FloodFill(x,y,color,edgeColor):
      current = IerPixel(x,y)
      se(current != edgeColor && current != color):
             pintarPixel(x,y,color)
             FloodFill(x+1,y, color, edgeColor)
             FloodFill(x,y+1, color, edgeColor)
             FloodFill(x-1,y, color, edgeColor)
             FloodFill(x,y-1, color, edgeColor)
```

Preenchimento Recursivo

- O preenchimento recursivo preenche qualquer área fechada por mais complexa que seja
- Esse algoritmo funciona sem necessidade de conhecer as coordenadas geométricas do objeto a ser preenchido
- É necessário a pré-existência das bordas do objeto no framebuffer ou imagem
- O resultado deste algoritmo depende do ponto inicial escolhido, geralmente pelo próprio usuário
- O algoritmo possui várias versões, inclusive mais otimizadas

Exemplos

□ Preencher os seguintes polígonos

