The logic route to strong Al

Alibaba HKAI Lab 2020 presentation

Heelal team

July 24, 2020

Table of contents

```
CNN
Symmetry and inductive bias
Richard Sutton
Structure of logic
Symmetric neural networks
Application: knowledge graphs
Application: logicalization of BERT
Application: content-addressable long-term memory
```


(1)

Convolution

$$(T_x \circ f) * g = T_x \circ (f * g)$$
 (2)

Yann LeCun CNN

Symmetry and inductive bias

(inductive bias)

(3)

Richard Sutton

Richard Sutton

strong Al

intelligence based on "alternative" logics

(4)

AGI

(logical form) models model

(5)

model

Structure of logic

- strong AI
- inductive bias the solution to strong AI
- symmetry (commutativity, or permutation invariance):

$$\begin{array}{ccc}
A \wedge B & \equiv & B \wedge A \\
\wedge & \equiv & \wedge
\end{array} \tag{6}$$

- •
- (mental state) (propositions)

Symmetric neural networks

- Permutation invariance can be handled by symmetric neural networks
- I wasted 2 years trying to solve this problem, and then find out that it has been solved 3 years ago: [PointNet 2017] and [DeepSets 2017] and their mastery of mathematics is significantly above me!
- Any symmetric function can be represented by the following form (a special case of the Kolmogorov-Arnold representation of functions):

$$f(x,y,...) = g(h(x) + h(y) + ...)$$
g-network

"Adder" layer

h-networks

(8)

- Sym NN gives a powerful boost in efficiency $\propto n!$ where n=#inputs
- The code for Sym NN is just a few lines of Tensorflow:

```
h = Dense(3, activation='tanh')
ys = []
for i in range(9):
    ys.append( h(xs[i]) )
y = Keras.stack(ys, axis=1)
Adder = Lambda(lambda x: Keras.sum(x, axis=1))
y = Adder(y)
g = Dense(3)
output = g(y)
```

(9)

- Very easy to adopt this to existing models such as BERT and reinforcement learning
- I have successfully tested it on the game of TicTacToe

Application: knowledge graphs

 One cannot feed a knowledge graph directly into an NN, as its input must be embedded in vector space. A solution is to break the graph into edges, where each edge is equivalent to a relation or proposition. One could say that graphs are isomorphic to logic

 Since edges are invariant under permutations, it appears that symmetric NNs are required to process them

Application: logicalization of BERT

ENCODER

 Similarly, we can convert BERT's hidden state into a set of propositions, by replacing the original decoder with a sym NN:

- The original encoder can be retained. As the decoder imposes symmetry on the hidden state, error propagation is expected to cause its representation to change
- Of course, this remains to be proven by experiment

Application: content-addressable long-term memory

 The original BERT hidden state lacked a logical structure and it was not clear what exactly it contains. After logicalization, propositions inside BERT can be stored into long-term memory:

I • am • student

- These kind of systems are very close to strong AI, and it depends crucially on logicalization
- The content-addressable memory idea came from Alex Graves *et al*'s Neural Turing Machine [2014]

```
ΑI
    (geometry) (topology)
   Venn diagrams
```

```
(13)
```

(predicates) base set (fibration),
$$\mathbb{E}_{\mathbb{B}}$$

Curry-Howard isomorphism

(14)

word embedding concatenation

(15)

(16)

commutativity predicates

topos HoTT (homotopy type theory)

 $\forall x. \, \mathsf{Human}(x) \to \mathsf{Mortal}(x)$

 $\cdot \cdot \cdot \xrightarrow{BERT} \cdot \cdot \cdot$

BERT

Curry-Howard

44 11

References

[2]

[1] Alex Graves, Greg Wayne, and Ivo Danihelka. "Neural Turing Machines". In: CoRR abs/1410.5401 (2014). arXiv: 1410.5401. URL: http://arxiv.org/abs/1410.5401.

Qi et al. "Pointnet: Deep Learning on Point Sets for 3D Classification

- and Segmentation". In: CVPR (2017).
 https://arxiv.org/abs/1612.00593.

 Zaheer et al. "Deep sets" In: Advances in Neural Information Processin
- [3] Zaheer et al. "Deep sets". In: Advances in Neural Information Processing Systems 30 (2017), pp. 3391–3401.

Illustration credits:

- Translation invariance, from Udacity Course 730, Deep Learning (L3 Convolutional Neural Networks > Convolutional Networks)
- Étale space, from Topoi The Categorical Analysis of Logic [Goldblatt 2006]