Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline

Kawin Ethayarajh

University of Toronto

3rd Workshop on Representation Learning for NLP, ACL 2018

Background

Arora et al. (2017):

 $\langle c_0, c_s, p(w), c_s, c_s \rangle \longrightarrow The quick brown fox jumps.$

smoothed inverse frequency (SIF) (W):

$$\widetilde{c_s} = \frac{1}{|s|} \sum_{w \in s} \frac{a}{p(w) + a} \cdot v_w$$

common component removal (R):

$$c_s = \widetilde{c_s} - \operatorname{proj}_{c_0} \widetilde{c_s}$$

Why not SIF?

1 log-linear production model \rightarrow confound of word vector length e.g., $h = \langle z, z \rangle$ and $g = \langle x, y \rangle$, but $p(h|c_h) \approx p(g|c_g)$:

② tuning hyperparameter a requires labelled data

Approach

A word production model that is log-linear. based on angular distance.

unsupervised smoothed inverse frequency (uSIF) (U):

$$\widetilde{c_s} = \frac{1}{|s|} \sum_{w \in s} \frac{a}{p(w) + \frac{1}{2}a} \cdot v_w$$

partial common component removal (P):

$$c_s = \widetilde{c_s} - \sum_{i=1}^m \lambda_i \operatorname{proj}_{c_i'}$$

Advantages

Angular distance-based production solves both problems:

- **1** $p(w|c_s)$ not sensitive to $||v_w||$
- ② can estimate a using p(w), vocabulary size, and average sentence length no labelled data required!

Results

Madal	CTC/10	CTC/12	CTC'14	CTC'1F	CICI/14		
Model	STS'12	STS'13	STS'14	STS'15	SICK14		
Wieting et al. (2015) - unsupervised							
PP-XXL	61.5	58.9	73.1	77.0	72.7		
skip-thought	30.8	24.8	31.4	31.0	49.8		
Arora et al. (2017) - weakly supervised							
GloVe+WR	56.2	56.6	68.5	71.7	72.2		
PSL+WR	59.5	61.8	73.5	76.3	72.9		
Conneau et al. (2017) - unsupervised (transfer learning)							
InferSent (AllSNLI)	58.6	51.5	67.8	68.3	-		
InferSent (SNLI)	57.1	50.4	66.2	65.2	-		
Wieting and Gimpel (2017) - unsupervised							
ParaNMT BiLSTM Avg.	67.4	60.3	76.4	79.7	-		
ParaNMT Trigram-Word	67.8	62.7	77.4	80.3	-		
Our Approach - unsupervised							
GloVe+UP	64.9	63.6	74.4	76.1	73.0		
PSL+UP	65.8	65.2	75.9	77.6	72.3		
ParaNMT+UP	68.3	66.1	78.4	79.0	73.5		

Results

Model		SICK-R	SICK-E
ParaNMT BiLSTM AVG (Wieting and Gimpel (2017))		85.9	83.8
ParaNMT+WR (Arora et al. (2017))		83.9	80.9
ParaNMT+UP (ours)		83.8	81.1
BiLSTM-Max (on AllNLI) (Conneau et al. (2017))		88.4	86.3
skip-thought (Kiros et al. (2015))		85.8	82.3
BYTE mLSTM (Radford et al. (2017))		79.2	-

Conclusion

Unsupervised smoothed inverse frequency (uSIF) with partial common component removal is:

- a tough-to-beat baseline
- simple to use
- completely unsupervised

References

- Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A simple but tough-to-beat baseline for sentence embeddings. In International Conference on Learning Representations.
- Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. 2017. Supervised learning of universal sentence representations from natural language inference data. arXiv preprint arXiv:1705.02364.
- Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. 2015. Skip-thought vectors. In Advances in Neural Information Processing Systems, pages 3294–3302.
- Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. 2017. Learning to generate reviews and discovering sentiment. arXiv preprint arXiv:1704.01444.
- John Wieting and Kevin Gimpel. 2017. Pushing the limits of paraphrastic sentence embeddings with millions of machine translations. arXiv preprint arXiv:1711.05732.