# Apprentissage par renforcement

Stéphane Airiau

Université Paris Dauphine

Résolution à l'aide de méthodes Monte Carlo pour des PDMs épisodiques

# Apprendre un PDM inconnu

Pour les deux algorithmes vus précédemment ("iteration sur les valeurs" et "iteration sur les politiques"), on devait connaître :

- le modèle de transition  $T^a_{ss'}$
- ullet le modèle de récompense  $R_s^a$

Aujourd'hui, on va voir des méthodes qui **ne** nécessitent **pas** la connaissance des ces modèles.

- seule l'expérience va guider le choix
- véritablement de l'apprentissage

# Environnement épisodique

On va se placer seulement dans des PDMs épisodique :

- chaque épisode doit se terminer
- on va apprendre d'un épisode en entier
- un épisode : une partie de black jack

#### Plan

#### 1. Méthodes Monte Carlo

- Evaluation d'une politique
- Etimation de la valeur des actions
- Contrôle par Monte Carlo ("on policy" et "off policy")

#### Méthode Monte Carlo : Evaluation d'une politique $\pi$

- apprendre  $v_{\pi}$  à partir des épisodes en suivant une politique  $\pi$
- On veut apprendre la valeur à long terme Pour un épisode qui se termine à l'itération k, on a

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{k-1} R_{k+t}$$

•  $v_{\pi}(s)$  est la valeur de passer par l'état s en utilisant la politique  $\pi$ :

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

- on va utiliser l'expérience de l'agent pour estimer  $v_{\pi}(s)$  pour chaque état s.
- Attention, dans un épisode, on peut passer plusieurs fois par le même état!

- (Stéphane Airiau)

### Méthode Monte Carlo: Evaluation d'une politique

# Algorithme "première visite"

```
v \in \mathbb{R}^n
     n \in \mathbb{N}^n
     Acc \in \mathbb{R}^n
     initialise v(s) = 0 pour chaque état s \in S
     initialise n(s) = 0 pour chaque état s \in S
     initialise Acc(s) = 0 pour chaque état s \in S
      Répète éternellement
           Simule un épisode en suivant la politique \pi
           Pour chaque état s qui apparait dans l'épisode
                  Pour la première itération t où s est visité dans l'épisode
                       Acc(s) \leftarrow Acc(s) + G_t
                       n(s) \leftarrow n(s) + 1
14
                       v(s) \leftarrow \frac{Acc(s)}{n(s)}
```

chaque valeur de  $G_t$  est un échantillon tiré de manière indépendante et identiquement distribué, avec une variance finie

→ avec la loi des grands nombres, on a

$$\lim_{n(s)\to\infty} v(s) = v_{\pi}(s)$$

# Méthode Monte Carlo: Evaluation d'une politique

# Algorithme "chaque visite"

```
 v \in \mathbb{R}^n 
 n \in \mathbb{N}^n 
 Acc \in \mathbb{R}^n 
 initialise <math>v(s) = 0 pour chaque état s \in S initialise n(s) = 0 pour chaque état s \in S initialise Acc(s) = 0 pour chaque état s \in S initialise Acc(s) = 0 pour chaque état s \in S
 Répète éternellement 
 Simule un épisode en suivant la politique <math>\pi
 Pour chaque itération <math>t qui visite l'état s
 Acc(s) \leftarrow Acc(s) + G_t
 n(s) \leftarrow n(s) + 1
 v(s) \leftarrow \frac{Acc(s)}{n(s)}
```

Ici, chacun des échantillons n'est pas forcément indépendant des autres. Mais on a quand même convergence vers  $v_{\pi}(s)$ .

(Singh & Barto, 1996)

#### Méthode Monte Carlo: Evaluation d'une politique

Très différent de l'utilisation de la programmation dynamique

- toutes les transitions possibles / seulement les transitions de l'épisode
- une seule transition / toutes les transitions de l'épisode
- l'estimation de chaque état est fait de manière indépendante / l'estimation d'un état dépend de l'estimation des autres états
- → l'estimation est indépendante du nombre d'états |S|.
- on peut partir d'un état et faire des simulations pour apprendre ces états sans se soucier des autres

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} T_{ss'}^a v \pi(s)$$

- Rappel  $q_{\pi}(s,a)$  estime la valeur à long terme de prendre l'action a puis de suivre la politique  $\pi$ .
- même stratégie "première visite" et "chaque visite" possible

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} T_{ss'}^a v \pi(s)$$

- Rappel  $q_{\pi}(s,a)$  estime la valeur à long terme de prendre l'action a puis de suivre la politique  $\pi$ .
- même stratégie "première visite" et "chaque visite" possible
- petit problème : si  $\pi$  est déterministe, on n'a pas la valeur de toutes les paires (état, action)

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} T_{ss'}^a v \pi(s)$$

- Rappel  $q_{\pi}(s,a)$  estime la valeur à long terme de prendre l'action a puis de suivre la politique  $\pi$ .
- même stratégie "première visite" et "chaque visite" possible
  - petit problème : si  $\pi$  est déterministe, on n'a pas la valeur de toutes les paires (état, action)
- une stratégie : "exploring starts" on tire au hasard une paire (état, action) pour l'état initial et on utilise "première visite"

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} T_{ss'}^a v \pi(s)$$

- Rappel  $q_{\pi}(s,a)$  estime la valeur à long terme de prendre l'action a puis de suivre la politique  $\pi$ .
- même stratégie "première visite" et "chaque visite" possible
  - petit problème : si  $\pi$  est déterministe, on n'a pas la valeur de toutes les paires (état, action)
  - une stratégie : "exploring starts"
     on tire au hasard une paire (état, action) pour l'état initial et on utilise "première visite"
  - Evidemment, ceci est problématique pour des interactions avec un environnement réel (on ne peut pas forcément choisir l'état initial!!)

#### Evaluation de la politique **optimale**

 Même idée que pour itération des politiques : une approximation de la fonction de valeurs optimale et une approximation de la politique optimale

$$\pi_0 \overset{\text{\'evalue}}{\rightarrow} q_{\pi_0} \overset{\text{am\'eliore}}{\rightarrow} \pi_1 \overset{\text{\'evalue}}{\rightarrow} q_{\pi_1} \rightarrow \cdots \rightarrow \pi_\star \overset{\text{\'evalue}}{\rightarrow} q_{\pi_\star}$$

- la fonction de valeur approxime de mieux en mieux la politique courante
- mais on améliore la politique courante
- à la limite, le processus va converger vers l'optimal
- utiliser une infinité d'épisode pour estimer  $q_{\pi}(s,a)$  avec "exploring starts"
- améliore de façon gloutonne la politique  $\pi$  comme dans itération des politiques :  $\pi_{k+1}(s) = \operatorname{argmax}_a q_k(s,a)$
- même garantie de convergence que pour itération des politiques

# Evaluation de la politique **optimale**

On reprend l'idée de l'algorithme itération sur les valeurs :

- 1. Utilisation d'une convergence à  $\epsilon$  près pour estimer  $q_{\pi}(s,a)$
- 2. plus extrème : utiliser seulement un <u>épisode</u> avant de faire une amélioration.

# Evaluation de la politique optimale : "Monte Carlo Exploring Starts"

```
q \in \mathbb{R}^{n \times m}
     n \in \mathbb{N}^{n \times m}
     Acc \in \mathbb{R}^{n \times m}
      initialise v(s,a) = 0 pour chaque état s \in S et action a \in A
      initialise n(s,a) = 0 pour chaque état s \in S et action a \in A
      initialise Acc(s,a) = 0 pour chaque état s \in S et action a \in A
      Répète éternellement
            Tire aléatoirement une paire (s_0, a_0) \in S \times A
            Simule un épisode en suivant la politique \pi en partant de (s_0, a_0)
            Pour chaque paire (s,a) qui est visitée dans l'épisode
                        Si la première ocurrence de (s,a) est à l'instant t
                              Acc(s,a) \leftarrow Acc(s,a) + G_t
                              n(s,a) \leftarrow n(s,a) + 1
                              q(s,a) \leftarrow \frac{Acc(s,a)}{n(s,a)}
14
                        Pour chaque état s dans l'épisode
                              \pi(s) \leftarrow arg \max_{s \in A} q(s, a)
```

pas encore de démonstration que la convergence soit garantie!!! mais empiriquement, ça marche!

# Eviter l'astuce "exploring starts"

Avec les méthodes Monte Carlo, on a fait deux hypothèses jusqu'ici :

- 1. on travaille dans un PDM épisodique
- 2. on peut choisir l'état initial au hasard pour garantir de visiter toutes les paires  $(s,a) \in S \times A$

On veut trouver une technique pour éviter l'hypothèse "exploring starts"

- Comme pour le problème des bandits, il va falloir explorer
- soit on va essayer d'améliorer la politique qu'on est en train d'apprendre "on policy"
- soit on va utiliser une politique pour explorer et apprendre une politique optimale (qu'on ne suit pas encore) "off policy"

# "on-policy" Monte Carlo

- estime et améliorer la politique tout en l'utilisant
- utiliser une politique stochastique avec des probabilités strictement positives
  - $\pi(s,a) > 0$  "politique soft"
- graduellement mettre à jour cette politique vers une politique deterministique (et optimale!)
  - ajouter de l'exploration aléatoire

$$\text{ex}: \epsilon\text{-greedy} \left\{ \begin{array}{l} \text{utiliser } \arg\max_{a\in A} q(s,a) \text{ avec une probabilité } 1-\epsilon \\ \\ \text{tirer une action avec une proabilité uniforme avec une probabilité } \epsilon \end{array} \right.$$

– (Stéphane Airiau)

### Evaluation de la politique optimale : "on policy Monte Carlo"

```
q: S \times A \rightarrow \mathbb{R}
n: S \times A \to \mathbb{N}
 3 Acc: S \times A \rightarrow \mathbb{R}
      \pi: S \to \Delta(A)
       initialise n(s,a) = 0 pour chaque état s \in S et action a \in A
       initialise q(s,a) = 0 pour chaque état s \in S et action a \in A
       initialise Acc(s,a) = 0 pour chaque état s \in S et action a \in A
       initialise \pi(s,a) > 0 pour chaque état s \in S et action a \in A
       Répète éternellement
             Simule un épisode en suivant la politique \pi
11
              Pour chaque paire (s,a) qui est visitée dans l'épisode
                            Si la première ocurrence de (s,a) est à l'instant t
                                  Acc(s,a) \leftarrow Acc(s,a) + G_t
                                   n(s,a) \leftarrow n(s,a) + 1
13
                                  q(s,a) \leftarrow \frac{Acc(s,a)}{n(s,a)}
14
                            Pour chaque état s dans l'épisode
                                  a^* \leftarrow arg \max_{a \in A} q(s, a)
                                   Pour chaque action a
                                        \pi(s,a) \leftarrow \left\{ \begin{array}{l} 1 - \epsilon + \frac{\epsilon}{|A|} \text{ if } a = a^* \\ \frac{\epsilon}{|A|} \text{ if } a \neq a^* \end{array} \right.
```

#### Vérification de l'amélioration

On nomme  $\pi'$  la politique  $\epsilon$ -greedy.

Pour n'importe quelle politique  $\pi$ , on a  $\sum_{a \in A} \left( \pi(s,a) - \frac{\epsilon}{|A|} \right) = 1 - \epsilon$ 

$$\begin{split} q(s,\pi'(s)) &= \sum_{a\in A} \pi'(s,a)q(s,a) \\ &= \frac{\epsilon}{|A|} \sum_{a\in A} q(s,a) + (1-\epsilon) \max_{a\in A} q(s,a) \\ &= \frac{\epsilon}{|A|} \sum_{a\in A} q(s,a) + (1-\epsilon) \sum_{a\in A} \frac{\pi(s,a) - \frac{\epsilon}{|A|}}{1-\epsilon} \max_{a\in A} q(s,a) \\ &\geqslant \frac{\epsilon}{|A|} \sum_{a\in A} q(s,a) + (1-\epsilon) \sum_{a\in A} \frac{\pi(s,a) - \frac{\epsilon}{|A|}}{1-\epsilon} q(s,a) \\ &\geqslant \frac{\epsilon}{|A|} \sum_{a\in A} q(s,a) + \sum_{a\in A} \pi(s,a)q(s,a) - \frac{\epsilon}{|A|} \sum_{a\in A} q(s,a) \\ &\geqslant \sum_{a\in A} \pi(s,a)q(s,a) = q_{\pi}(s,a) \text{ On a bien une amélioration!} \end{split}$$

# Vérification de la convergence

Il reste à démontrer la convergence vers une soft politique optimale...

on fera ça un jour...

- Supposons qu'on suive une politique  $\pi'$ .
- Peut-on calculer  $v_{\pi}$  pour une autre politique  $\pi$ ?

- Supposons qu'on suive une politique  $\pi'$ .
- Peut-on calculer  $v_{\pi}$  pour une autre politique  $\pi$ ?
- oui si  $\pi(s,a) > 0 \Rightarrow \pi'(s,a) > 0$

- Supposons qu'on suive une politique  $\pi'$ .
- Peut-on calculer  $v_{\pi}$  pour une autre politique  $\pi$ ?
- oui si  $\pi(s,a) > 0 \Rightarrow \pi'(s,a) > 0$
- Soit *t* le moment où on visite pour la première fois l'état *s*
- Soit R<sub>t</sub> la récompense à long terme observée
- Soit  $p_t(s)$  et  $p_t'(s)$  les probabilités que cette séquence soit effectivement la séquence d'états visités à partir de s en suivant  $\pi$  et  $\pi'$ .
- Soit  $n_s$  le nombre d'observation pour l'état s (i.e. le nombre d'épisode où s a été visité)

$$v_{\pi}(s) = \frac{\sum_{i=1}^{n_s} \frac{p_i(s)}{p_i'(s)} R_i(s)}{\sum_{i=1}^{n_s} \frac{p_i(s)}{p_i'(s)}}$$

A priori, il faut connaître  $p_i(s)$  et  $p'_i(s)$ . En fait, il suffit de connaître les deux politiques  $\pi$  et  $\pi'$ .

#### En effet:

Soit  $T_i(s)$  l'itération de fin du  $i^{i n m e}$  épisode où s est visité.

$$\frac{p_i(s)}{p_i'(s)} = \frac{\prod\limits_{t=1}^{T_i(s)-1} \pi(a_k|s_k) T_{s_k s_{k+1}}^{a_k}}{\prod\limits_{t=1}^{T_i(s)-1} \pi'(a_k|s_k) T_{s_k s_{k+1}}^{a_k}} = \prod\limits_{t=1}^{T_i(s)-1} \frac{\pi(a_k|s_k)}{\pi'(a_k|s_k)}$$

#### Evaluation "Off-Policy" par Monte Carlo

```
Input : an arbitrary target policy \pi
Initialize Q(s,a) = \in \mathbb{R}
Initialize C(s,a) = 0
Répète éternellement
        b \leftarrow any policy with coverage of \pi.
        Simule un épisode en suivant la politique b
       G \leftarrow 0
        W \leftarrow 1
        Pour chaque état s dans l'épisode et tant que W \neq 0
              G \leftarrow \gamma G + R_{t+1}
              C(S_t, A_t) \leftarrow C(S_t, A_t) + W
Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
              W \leftarrow W \frac{\pi(A_t|S_t)}{b(A_t|S_t)}
```

### Evaluation de la politique optimale : "off policy Monte Carlo"

#### On sépare ici

- la politique du comportement courant
- la politique que l'on cherche à optimiser : la politique estimée
- On utilise la technique précédente pour améliorer la politique estimée
- le choix de la politique courante va rendre la convergence plus ou moins rapide

### **Temporal-difference Learning**

Combine des idées de la programmation dynamique (DP) avec les méthodes de Monte Carlo (MC)

### Méthodes "Temporal-difference"

- elles apprennent directement avec l'expérience (comme MC)
- elles sont sans modèle : pas besoin de connaître les modèles de transition ou de récompenses (comme MC)
- elles peuvent apprendre d'épisodes incomplets (comme PD)
- elles utilisent des estimations pour mettre à jour son estimation (comme DP)

#### Méthodes "Temporal-difference" pour la fonction de valeurs

On veut estimer la valeur des états pour une politique fixe  $\pi$ .

- Méthode Monte Carlo "chaque visite"
  - mise à jour à l'aide du véritable gain G<sub>t</sub>

$$v(s_t) \leftarrow v(s_t) + \alpha(G_t - v(s_t))$$

- $G_t$  est accessible à la fin de l'épisode  $\Rightarrow$  peut on éviter cette atttente?
- Méthode la plus simple : TD(0)

$$v(s_t) \leftarrow v(s_t) + \alpha \left[ r_{t+1} + \gamma v(s_{t+1}) - v(s_t) \right]$$

mise à jour à l'aide de  $r_{t+1} + \gamma v(s_{t+1})$ 

Rappel: 
$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid s_t = s]$$
  

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \mid s_t = s]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma v_{\pi}(s_{t+1}) \mid s_t = s]$$

# exemple du temps de trajet

| Etat                           | temps<br>écoulé | temps<br>estimé | temps total<br>prédit |
|--------------------------------|-----------------|-----------------|-----------------------|
| départ du bureau               | 0               | 30              | 30                    |
| arrivée à la voiture, il pleut | 5               | 35              | 40                    |
| sortie de l'autoroute          | 20              | 15              | 35                    |
| camion lent                    | 30              | 10              | 40                    |
| arrivée dans le quartier       | 40              | 3               | 43                    |
| arrivée à la maison            | 43              | 0               | 43                    |

# exemple du temps de trajet

#### update avec méthode de Monte Carlo



# update avec TD(0)



### Avantages des méthodes TD

- pas besoin de connaissances des modèles
- méthode adaptée pour une utilisation online, et pas besoin d'attendre la fin de l'épisode les méthodes TD font une mise à jour après chaque itération
- il y a des garanties théoriques de convergence

#### Avantages des méthodes TD

- Pas de résultats théoriques comparant les performances des méthodes TD aux méthodes Monte Carlo.
- en pratique, les méthodes TD sont plus rapides sur des problèmes stochastiques.



équiprobabilité d'aller à gauche ou à droite.



# Exemple intuitif

On a un PDM a deux états A et B. Supposons qu'on observe les huit épisodes suivants :

Quel est votre évaluation pour v(A) et v(B)?

### Evaluation de la politique optimale : TD "on policy"

- On apprend la fonction de valeur des actions.
- Comme pour TD(0) pour la fonction de valeurs, on a :

$$q(s_t, a_t) \leftarrow q(s_t, a_t) + \alpha [r_{t+1} + \gamma q(s_{t+1}, a_{t+1}) - q(s_t, a_t)]$$

```
State-action-reward-state-action (SARSA)
Initialise q(s) \in \Delta(A) arbitrairement
Répète (éternellement) pour chaque épisode
        aller à l'état initial s
        choisir action a \in A pour s à l'aide d'une politique dérivée de q (ex : \epsilon-greedy)
        Répète pour chaque étape de l'épisode
                Exécute action a, observe r \in \mathbb{R} et état suivant s' \in S
                choisir action a' \in A pour s' à l'aide d'une politique dérivée de q
                q(s,a) \leftarrow q(s,a) + \alpha [r + \gamma q(s',a') - q(s,a)]
                s \leftarrow s'
                a \leftarrow a'
        jusqu'à ce que s soit terminal
```

## Evaluation de la politique optimale : TD "on policy"

#### Théorème

L'algorithme converge vers la fonction optimale de valeur des actions sous les conditions suivantes :

- Glouton à la Limite avec Exploration Infinie
  - toutes les paires (état,action) sont explorées infiniement souvent  $\lim_{k\to\infty}n_k(s,a)=\infty$
  - la politique converge vers une politique gloutonne  $\lim_{k\to\infty}\pi_k(a|s)=1 \text{ pour } a=\arg\max_{a'\in A}q(s,a')$
- $\bullet \ \sum_{t=1}^{\infty} \alpha_t = \infty$
- $\sum_{t=1}^{\infty} \alpha_t^2 < \infty$

 $\epsilon$ -greedy est GLEI si  $\epsilon$  est une fonction décroissante (ex  $e_k = \frac{1}{k}$ )

### Evaluation de la politique optimale : TD "off policy"

### Q-learning (Watkins 1989)

$$q(s_t, a_t) \leftarrow q(s_t, a_t) + \alpha \left[ r_{t+1} + \gamma \max_{a \in A} q(s_{t+1}, a) - q(s_t, a_t) \right]$$

Apprend une estimation de  $q^*$  de façon indépendante à la politique suivie.

```
Initialise q(s) \in \Delta(A) arbitrairement
Répète (éternellement) pour chaque épisode
        aller à l'état initial s
        choisir action a \in A pour s à l'aide d'une politique dérivée de q (ex : \epsilon-greedy)
        Répète pour chaque étape de l'épisode
                 Exécute action a, observe r \in \mathbb{R} et état suivant s' \in S
                 choisir action a' \in A pour s' à l'aide d'une politique dérivée de q
                q(s,a) \leftarrow q(s,a) + \alpha [r + \gamma \max_{a'' \in A} q(s',a'') - q(s,a)]
                s \leftarrow s'
                a \leftarrow a'
        jusqu'à ce que s soit terminal
```

### Evaluation de la politique optimale : TD "off policy"

- Pour assurer la convergence, il faut s'assurer de visiter suffisemment souvent les paires (action, état).
- sous les hypothèses GLIE, Q-learning converge





#### Autres méthodes d'exploration

soft max : choisir l'action a avec probabilité

$$\frac{e^{\frac{q_t(s,a)}{\tau}}}{\sum_{a'\in A} e^{\frac{q_t(s,a')}{\tau}}}$$

- $\tau > 0$  est appelée la température
- température haute probabilité uniforme
- température basse →approche le comportement glouton
- initialisation optimiste : initialiser les valeurs de manière optimiste puis être glouton (Even-Dar & Mansour, NIPS 1994)
  - force l'exploration à regarder les états qui semblent prometteur

### Dilemme central : explorer ou exploiter

- contrairement au cas supervisé, les données sur lesquelles on travaille dépendent du comportement de l'agent!
- exploration : le but est d'apprendre le mieux possible
- exploitaiton : le but est d'optimiser au mieux ses récompenses
- défi de l'exploration : quelles actions vont améliorer au plus vite la connaissance de l'agent pour obtenir de meilleures récompenses.
- l'exploration est un trait d'intelligence
  - quelle politique doit suivre l'agent pour ne pas manquer les états qui donnent les bonnes récompenses (et sans passer trop de temps dans les états qui donnent de mauvaises récompenses)
  - exploitation : préfère des actions qui ont mené a de "bons états"
- exploration : prendre une action qui pourrait nous mener à de bons états.

- (Stéphane Airiau)

# Stratégie d'exploration

## ε-greedy

- facile à implémenter et très utilisée
- convergence garantie (avec un taux d'exploration qui décroit de bonne manière)
- il faut un nombre exponentiel d'échantillons pour garantir convergence

#### Boltzmann

même problème pour le nombre d'échantillons

# Explicit-Exploit-or-Explore *E*<sup>3</sup> (Kearns & singh 2002)

- Construit un modèle de PDM
  - optimiste
  - connait la récompense maximales
- compte le nombre de fois où chaque paire (action, état) a été visité pour estimer la qualité du modèle
  - on connait l'état si on l'a visité un certain nombre de fois
  - Garantie statistique pour définir le nombre "suffisant" de viste  $\mathfrak{O}((NTG_{max}^T/\epsilon)^4 \text{Var}_{max} log(\frac{1}{\delta})) \text{ ou Var}_{max} \text{ est la variance maximale des récompenses sur tous les états}$
- $E^3$  gère deux modèles : le modèle avec les états connus, et celui avec les états par encore connu. connu  $\rightleftharpoons$  exploitation pas encore connu  $\rightleftharpoons$  exploration

### *R<sub>max</sub>* (Brafman & Tennenholtz 2002)

- utilise la même idée, mais avec un seul modèle
- initialement, tout est inconnu, on estime avec une valeur maximale  $R_{max}$  toutes les récompenses, le modèle de transition est estimé déterministe
- on compte aussi les transitions observées pour déterminer ensuite lesquelles sont connues
- on calcule une politique optimale pour ce qu'on connait jusqu'ici

  - si l'état n'était pas connu on explore l'état le plus prometteur

### Entre TD(0) et Monte Carlo : TD(n)



baser la mise à jour après quelques récompenses (entre 1 et la fin de l'épisode)

#### Entre TD(0) et Monte Carlo : TD(n)

$$R_t^{(1)} = r_{t+1} + \gamma V_t(S_{t+1})$$

$$R_t^{(2)} = r_{t+1} + \gamma r_{t+1} + \gamma^2 V_t(S_{t+2})$$
...
$$R_t^{(n)} = r_{t+1} + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots + \gamma^{n-1} r_{t+n} + \gamma^n V_t(S_{t+n})$$

- pour un algorithme, à t, on devrait mettre à jour la valeur de l'état visité à t-n
- $\Rightarrow$  lors des n-1 premières étapes, pas de mise à jour
- mise à jour à chaque étape de l'état visité il y a *n* étapes
- lorsqu'on atteint la fin de l'épisode, on met à jour les n étapes précédant la fin

### Entre TD(0) et Monte Carlo : TD(n)

 $\Rightarrow$  Monte Carlo devient un cas spécial où n est suffisemment grand.

Quel *n* permet d'apprendre le plus vite?

Méthodes intéressantes théoriquement (bonnes propriétés de réduction d'erreurs), mais plus difficiles à implémenter.

### Sarsa à *n* étapes

On utilise cette idée pour la fonction q, en utilisant  $\epsilon$ -greedy.

$$q_{t+n}(s_t, a_t) = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{n-1} r_{t+n} + \gamma^n \sum_{a \in A} \pi(s|S_{t+n}) q_{t+n-1}(s_{t+n}, a)$$

# autre idée pour utiliser $\texttt{TD}(0),\,\texttt{TD}(1),\,\ldots,\,\texttt{TD}(n)$

On peut aussi penser à "mixer" les récompenses à plus ou moins long terme.



$$R_t^{moy} = \frac{1}{2}R_t^{(2)} + \frac{1}{2}R_t^{(4)}$$

## autre idée pour utiliser $\mathsf{TD}(0), \mathsf{TD}(1), \ldots, \mathsf{TD}(n)$

- On peut donner des poids différents à chaque gain (ça marche même pour un ensemble infini)
- Tant que la somme des poids est 1.
- On a une propriété de réduction d'erreurs.

## Un mixage particulier : $TD(\lambda)$



### Un mixage particulier : $TD(\lambda)$

- $\lambda \in [0,1]$  similaire au paramètre de dévaluation.
- A chaque étape suivante, le poids décroit avec le facteur λ
- le gain à n étapes possède un poids proportionnel à  $\lambda^{n-1}$

$$\sum_{n=0}^{\infty} \lambda^n = \frac{1}{1-\lambda}$$

 $\Rightarrow$  facteur  $1 - \lambda$  pour que les poids somment à 1

$$\bullet \ R_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_t^{(n)}$$

- $\lambda = 1 \rightleftharpoons Monte Carlo$
- $\lambda = 0 \Rightarrow TD(0)$

# On peut donc bâtir des algorithmes plus compliqués

mais c'est assez pour le moment!

#### Résumé

#### Types d'algorithmes pour

- évaluer une politique donnée
- trouver une politique optimale

#### Ce qu'on apprend

- $v_{\pi}: S \to \mathbb{R}$  la fonction de valeurs qui donne la valeur à long terme de chaque état en suivant une politique
- $\pi: A \times S \to \mathbb{R}$  la fonction qui donne la valeur à long terme de prendre une action puis de suivre une politique  $\pi$  depuis un état.

#### Algorithmes:

- modèle de transition et de récompenses connus ⇒ policy/value iteration
- Algorithmes pour domaines épisodique  $\Rightarrow$  méthodes de Monte Carlo
- Algorithme qui fonctione sans connaître ni bâtir un modèle Attention au dilemme Exploration Vs Exploitation SARSA, Q-learning
- Algorithme qui fonctionne en bâtissant un modèle  $\rightleftharpoons E^3$ ,  $R_{max}$
- <u>on policy</u>: on améliore la politique que l'on suit / <u>off policy</u>: on utilise une stratégie pour apprendre une autre

– (Stéphane Airiau)