Вопрос 1.11. Случайные величины и их функции распределения. Математическое ожидание и дисперсия. Локальная предельная теорема.

Ответ:

Алгебра событий (в теории вероятностей) — алгебра подмножеств пространства элементарных событий Ω , элементами которого служат элементарные события. Как и положено алгебре множеств алгебра событий содержит невозможное событие (пустое множество) и замкнута относительно теоретико-множественных операций, производимых в конечном числе. Достаточно потребовать, чтобы алгебра событий была замкнута относительно двух операций, например, пересечения и дополнения, из чего сразу последует её замкнутость относительно любых других теоретико-множественных операций. Алгебра событий, замкнутая относительно счётного числа теоретико-множественных операций, называется сигма-алгеброй событий.

Аксиомы Колмогорова

Пусть Ω — множество элементов ω , которые называются элементарными событиями, а \mathcal{F} — множество подмножеств Ω , называемых случайными событиями (или просто — событиями), а Ω — пространством элементарных событий.

- *Аксиома I* (алгебра событий). \mathcal{F} является алгеброй событий.
- *Аксиома II* (существование вероятности событий). Каждому событию x из \mathcal{F} поставлено в соответствие неотрицательное действительное число $\mathbf{P}(x)$, которое называется вероятностью события x.
- Аксиома III (нормировка вероятности). $\mathbf{P}(\Omega)=1$
- *Аксиома IV* (аддитивность вероятности). Если события x и y не пересекаются, то $\mathbf{P}(x+y)=\mathbf{P}(x)+\mathbf{P}(y)$

Совокупность объектов $(\Omega, \mathcal{F}, \mathbf{P})$, удовлетворяющая аксиомам I—IV, называется вероятностным пространством (у Колмогорова: поле вероятностей).

Случайная величина — это величина, которая принимает в результате опыта одно из множества значений, причём появление того или иного значения этой величины до её измерения нельзя точно предсказать.

Формальное математическое определение следующее: пусть $(\Omega, \mathcal{F}, \mathbb{P})$ — вероятностное пространство, тогда случайной величиной называется функция $X \colon \Omega \to \mathbb{R}$, измеримая относительно \mathcal{F} и борелевской σ -алгебры на \mathbb{R} . Вероятностное поведение отдельной (независимо от других) случайной величины полностью описывается её распределением.

Вероятностное пространство — это тройка $(\Omega, \mathfrak{A}, \mathbb{P})$, где

- Ω это произвольное множество, элементы которого называются элементарными событиями, исходами или точками;
- \mathfrak{A} сигма-алгебра подмножеств Ω , называемых (случайными) событиями;
- \mathbb{P} вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что $\mathbb{P}(\Omega)=1$

Замечания

- Элементарные события (элементы Ω), по определению, это исходы случайного эксперимента, из которых в эксперименте происходит ровно один.
- Каждое случайное событие (элемент \mathfrak{A}) это подмножество Ω . Говорят, что в результате эксперимента произошло случайное событие $A\subseteq \Omega$, если

(элементарный) исход эксперимента является элементом A. Требование, что \mathfrak{A} является сигма-алгеброй подмножеств Ω , позволяет, в частности, говорить о вероятности случайного события, являющегося объединением счетного числа случайных событий, а также о вероятности дополнения любого события.

Функция распределения

Пусть дано вероятностное пространство $(\mathbb{R},\mathcal{F},\mathbb{P})$, и на нём определена случайная величина X с распределением \mathbb{P}^X . Тогда функцией распределения случайной величины X называется функция $F_X\colon \mathbb{R} \to [0,1]$, задаваемая формулой:

$$F_X(x) = \mathbb{P}(X \leqslant x) \equiv \mathbb{P}^X ((-\infty, x])$$

To есть функцией распределения (вероятностей) случайной величины X называют функцию F(x), значение которой в точке x равно вероятности события $\{X \leqslant x\}$, то есть события, состоящего только из тех элементарных исходов, для которых $X(\omega) \leqslant x$

а функция плотности распределения – такая большая нуля функция, что 1. ее интеграл по вещественной оси равен единице, 2. интеграл по любому отрезку [a; b] равен вероятности события [a; b].

МатОжидание —
$$E(X) = \int xp(x)$$
, где $p(x)$ — фпрв. Дисперсия — $E(X-E(X))2$

Локальных предельных теорем много: например, Лапласа

Локальная теорема Муавра-Лапласа

Если в схеме Бернулли п стремится к бесконечности, р
$$(0 постоянно, величина $x_m = \frac{m-np}{\sqrt{npq}}$ ограничена равномерно по m и п $(-\infty < a \le x_m \le b < +\infty)$, то $P_n(m) = \frac{1}{\sqrt{2\pi npq}} \exp\left(-\frac{x_m^2}{2}\right) (1+\alpha_n(m))$ где $|\alpha_n(m)| < \frac{c}{\sqrt{n}}$, с > 0, с — постоянная. Приближённую формулу$$

$$P_n(m) \approx \frac{1}{\sqrt{2\pi npq}} \exp\left(-\frac{x_m^2}{2}\right)$$

рекомендуется применять при n > 100 и npq > 20.