

1^{ère} année Master MAS Séries Chronologiques Année : 2018/2019

Corrigé de l'examen final

EXERCICE N° 1:

1. Représenter graphiquement cette série temporelle :

Vente en tonnes

FIGURE 1 – Série chronologique.

- 2. Le nuage de points est limité par deux droites qui ne sont pas parallèles : Les variations saisonnières sont proportionnelles à la tendance. L'enveloppe de la courbe s'évase quand la tendance est croissante.
- 3. Estimer la tendance de cette série par la méthode des moindres carrés ordinaires (MCO). On a

$$\overline{t} = 8.5, \quad \overline{x} = 88.62$$

et

$$\sigma_t^2 = 21.25, \qquad \sigma_X^2 = 1341.61.$$

De plus,

$$Cov(t, X) = 123.69.$$

L'équation de la droite de la régression de X sur t, X = at + b, avec :

$$a:=\frac{Cov(t,X)}{\sigma_t^2}=5.82 \quad \text{et} \quad b:=\overline{x}-a\overline{t}=39.15$$

	t	X	t^2	X^2	$t \times X$
	1	52	1	2704	52
	2	36	4	1296	72
	3	69	9	4761	207
	4	89	16	7921	356
	5	65	25	4225	325
	6	45	36	2025	270
	7	86	49	7396	602
	8	111	64	12321	888
	9	81	81	6561	729
	10	56	100	3136	560
	11	108	121	11664	1188
	12	139	144	19321	1668
	13	102	169	10404	1326
	14	70	196	4900	980
	15	135	225	18225	2025
	16	174	256	30276	2784
Total	136	1418	1496	147136	14032

4. Représenter la droite d'ajustement sur le graphique précédent.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
m_t	44.97	50.79	56.61	62.43	68.25	74.07	79.89	85.71	91.54	97.36	103.18	109.00	114.82	120.64	126.46	132.28

FIGURE 2 – Ajustement Linéaire.

5. Estimer les coefficients saisonniers.Rapport = Série brute / Tendance

Années	trimestre 1	trimestre 2	trimestre 3	trimestre 4
2010	1.16	0.71	1.22	1.43
2011	0.95	0.61	1.08	1.29
2012	0.88	0.58	1.05	1.28
2013	0.89	0.58	1.07	1.32
Coefficients saisonniers	0.97	0.62	1.10	1.33

Etablir la série désaisonnalisée ou corrigée des variations saisonnières.
 La série corrigée des variations saisonnières = Série brute / Coefficient saisonnier multiplicatif

	,															
t.	1	2	3	4	.5	6	1 7	8	9	10	11	12	13	14	1.5	16
1 "	_	_	"	-		"	'		_	1 -0			1		10	1 -0
X_t^{cvs}	53.58	58.26	62.59	67.03	66.98	72.82	78.01	83.60	83.46	90.62	97.97	104.68	105.10	113.28	122.46	131.04

FIGURE 3 – Série corrigée des variations saisonnières.

7. Calculer les moyennes mobiles d'ordre 4 de cette série.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$M_4(t)$			63.12	65.88	69.12	74.00	78.75	82.12	86.25	92.50	98.62	103.00	108.12	115.88		

8. Donner une prévision de la vente au quatrième trimestre 2014.

$$\widehat{X_{20}} = \left(5.82 \times 20 + 39.15\right) \times 1.33 = 206.88$$

EXERCICE N° 2:

1. On considère le processus défini par $\forall t \in \mathbb{Z}$, $X_t = \epsilon_t - \theta \epsilon_{t-1}$ où $(\epsilon_t)_{t \in \mathbb{Z}}$ est un bruit blanc et $\theta \in]-1,+1[$.

Montrer que *X* est stationnaire et calculer sa fonction d'auto-covariance.

On a

$$\mathbb{E}[X_t] = \mathbb{E}[\epsilon_t - \theta \epsilon_{t-1}] = \mathbb{E}[\epsilon_t] - \theta \mathbb{E}[\epsilon_{t-1}] = 0,$$

$$\mathbb{V}[X_t] = \mathbb{V}[\epsilon_t - \theta \epsilon_{t-1}] = \mathbb{V}[\epsilon_t] + \theta^2 \mathbb{V}[\epsilon_{t-1}] - 2\theta \mathbb{C}ov(\epsilon_t, \epsilon_{t-1}) = (1 + \theta^2)\sigma^2$$

et

$$\begin{split} \mathbb{C}ov(X_t, X_{t+h}) &= \mathbb{E}[X_t X_{t+h}] - \mathbb{E}[X_t] \mathbb{E}[X_{t+h}] \\ &= \mathbb{E}[(\epsilon_t - \theta \epsilon_{t-1})(\epsilon_{t+h} - \theta \epsilon_{t+h-1})] \\ &= \mathbb{E}[\epsilon_t \epsilon_{t+h} - \theta \epsilon_{t-1} \epsilon_{t+h} - \theta \epsilon_t \epsilon_{t+h-1} + \theta^2 \epsilon_{t-1} \epsilon_{t+h-1}] \\ &= \mathbb{E}[\epsilon_t \epsilon_{t+h}] - \theta \mathbb{E}[\epsilon_{t-1} \epsilon_{t+h}] - \theta \mathbb{E}[\epsilon_t \epsilon_{t+h-1}] + \theta^2 \mathbb{E}[\epsilon_{t-1} \epsilon_{t+h-1}] \\ &= \begin{cases} (1 + \theta^2) \sigma^2 & \text{si } h = 0, \\ \theta^2 \sigma^2 & \text{si } |h| = 1, \\ 0 & \text{sinon.} \end{cases} \end{split}$$

2. On considère le processus défini par,

$$X_t = Z_1 \cos \omega t + Z_2 \sin \omega t, \qquad -\infty < t < +\infty$$

où
$$\mathbb{P}(Z_i = 1) = \mathbb{P}(Z_i = -1) = \frac{1}{2}, i = 1, 2.$$

Montrer que X_t est stationnaire. On a

$$\mathbb{E}[X_t] = \mathbb{E}[Z_1 \cos \omega t + Z_2 \sin \omega t] = \mathbb{E}[Z_1] \cos \omega t + \mathbb{E}[Z_2] \sin \omega t = 0,$$

car

$$\mathbb{E}[Z_1] = \mathbb{E}[Z_2] = 1 \times \frac{1}{2} - 1 \times \frac{1}{2} = 0$$

$$\mathbb{V}[X_t] = \mathbb{V}[Z_1 \cos \omega t + Z_2 \sin \omega t] = \mathbb{V}[Z_1] \cos^2 \omega t + \mathbb{V}[Z_2] \sin^2 \omega t = 1,$$

car

$$\mathbb{V}[Z_1] = \mathbb{V}[Z_2] = 1 \times \frac{1}{2} + 1 \times \frac{1}{2} = 1$$

$$\mathbb{C}ov(X_t, X_{t+h}) = \mathbb{E}[X_t X_{t+h}] - \mathbb{E}[X_t] \mathbb{E}[X_{t+h}]$$

$$= \mathbb{E}[(Z_1 \cos \omega t + Z_2 \sin \omega t)(Z_1 \cos \omega (t+h) + Z_2 \sin \omega (t+h))]$$

$$= \mathbb{E}[Z_1^2 \cos \omega t \cos \omega (t+h) + Z_1 Z_2 \sin \omega t \cos \omega (t+h)$$

$$+ Z_1 Z_2 \sin \omega t \cos \omega (t+h) + Z_2^2 \sin \omega t \sin \omega (t+h)]$$

$$= \mathbb{E}[Z_1^2] \cos \omega t \cos \omega (t+h) + \mathbb{E}[Z_2^2] \sin \omega t \sin \omega (t+h)$$

$$= \cos \omega t \cos \omega (t+h) + \sin \omega t \sin \omega (t+h)$$

$$= \cos \omega t \cos \omega (t+h) + \sin \omega t \sin \omega (t+h)$$

$$= \cos (\omega (t+h) - \omega t) = \cos \omega h.$$