ChatGPTの仕組みを理解したい! 3 Transformer編

坂井吉弘 (@sakarush)

Transformer の全体像

こんな感じのモデル

- ・ 重要な要素
 - Self-Attention
 - Multi-Head
 - 残差接続
 - ・位置埋め込み
- 入出力
 - ・ 入力:単語の集合(文章)
 - 出力:辞書単語の可能性の予測値

Self-Attention

Attention is All You Need

- ・2017年の論文
- Transformer の最重要要素「Self-Attention」はAttentionの発展版 ここでは Self-Attention だけを紹介します
- 今回の目標は以下の数式を理解すること

$$Z = \operatorname{softmax}(QK^T)V$$

Self-Attention がやること

- 入出力
 - ・入力:埋め込みベクトルの集まり(行列)
 - ・ 出力:埋め込みベクトルの集まり(行列)
 - → Self-Attentionはベクトルの加工機

- ・入力から3つの別々のベクトルを生成して、出力ベクトルを再構築する
 - Query
 - Key
 - Value

Self-Attention の流れ

- 1. 入力 X から Q,K,V を生成
 - $Q = W^{(Q)}X$
 - $K = W^{(K)}X$
 - $V = W^{(V)}X$
- 2. QueryとKey の 関連性を調べる
 - $A = QK^T$
- 2. Q-K 間の関連性の値をもとに Value の重み付け和を取る
 - $Z = \operatorname{softmax}(A)V$

Step 1 入力から QKV を生成する

- ・重み行列Wをかけて作る
 - $Q = W^{(Q)}X$
 - $K = W^{(K)}X$
 - $V = W^{(V)}X$

Step 2 Query と Key の関連性を調べる

・QueryとKeyの内積を取る

•
$$A = QK^T$$

Step 2 Query と Key の関連性を調べる

- SoftmaxでならしてVをかける。
 - $Z = \operatorname{softmax}(A)V$
- Softmaxは和を1にする
 - (12, 8, -1, 19) ↓ (0.3,0.2,0.01,0.49)
 - ・確率っぽく出来る

Self-Attention の利点

- ・単語間の関係を考慮出来る
 - ・ 前回のWord2Vecでは考慮できなかった
- ・ただの行列計算なので、文章全てを一度に並列計算可能
 - RNNでは順次計算するので、並列にできなかった

Multi-Head 化

• Self-Attentionでやっていることを分割する

・並列計算がしづらくなるが、表現力が上がる

• これを施したAttention が Multi Head Attention

Output

その他の重要要素

Transformer の全体像

- ・ 重要な要素
 - Self-Attention
 - Multi-Head
 - 残差接続
 - ・位置埋め込み
- 残差接続
 - これ
 - 学習をうまくやるために用意する

Transformer の全体像

・ 重要な要素

- Self-Attention
- Multi-Head
- 残差接続
- ・位置埋め込み

・位置埋め込み

- Word2Vecでは位置情報がなかった
- "I" が 文頭にあるのか、2単語目にあるのか…
- 位置の情報をベクトルに変換して加えること
- ・ 結構面白い技術だが、説明するには余白が

Transformerをながめる

Transformer の流れ

- 1. 入力を埋め込みベクトルに変換
 - ・ 埋め込みベクトルを集めた行列として表現

2. 単語の位置の情報を埋め込む

- 3. N回繰り返す
 - Self-Attentionして正規化
 - Feed Forward して正規化

翻訳の仕方

入力した文(の言語)でKとVを作る (こいつがエンコーダー)

・デコーダーでは予め作ったKとVと 自分がこれまで出力してきた文章を使う

