Consider the quantum state: $\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$

100 qubits are prepared in this quantum state and measured.

In those 100 measurements:

- 1. How many times would you expect to measure a |0)?
- 2. How many times would you expect to measure a $|1\rangle$?

Consider the quantum state: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

3. Select values for α and β such that it is more likely that a $|0\rangle$ will be measured than $|1\rangle$.

$$\alpha = \frac{1}{\sqrt{5}}$$

$$\alpha = \frac{2}{\sqrt{5}}$$

$$\alpha = \frac{2}{\sqrt{5}}$$

$$\alpha = \frac{1}{\sqrt{5}}$$

$$\alpha = \frac{1}{\sqrt{5}}$$

$$\alpha = \frac{3}{\sqrt{5}}$$

$$\alpha = \frac{3}{\sqrt{5}}$$

$$\beta = \frac{4}{\sqrt{5}}$$

$$\beta = \frac{2}{\sqrt{5}}$$

$$\beta = \frac{2}{\sqrt{5}}$$

Consider the quantum state : $\frac{1}{\sqrt{2}} \mid \! 0 \rangle + \frac{1}{\sqrt{2}} \mid \! 1 \rangle$

- 4. What is the probability of measuring a |1)?

 - a. $\frac{1}{2}$ b. $\frac{1}{4}$ c. $\frac{1}{5}$

- 5. The notation used to describe the quantum state above is called
 - vector notation
- *b* bra-ket notation

c. standard basis notation

- 6. Which of the following describes the same quantum state?

- $c. \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

none of the above

Consider the quantum state : $\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$

7. What is the probability of measuring a |0)?

a.
$$\frac{1}{2}$$
 b. $\frac{1}{4}$ c. $\frac{3}{4}$

b.
$$\frac{1}{4}$$

$$c. \frac{3}{4}$$

$$d. \frac{\sqrt{3}}{4}$$

8. What is the probability of measuring a $|1\rangle$?

a.
$$\frac{1}{2}$$
 b. $\frac{1}{4}$ c. $\frac{3}{4}$

b.
$$\frac{1}{4}$$

$$c. \frac{3}{4}$$

$$d. \frac{\sqrt{3}}{4}$$

9. Which of the following describes the same quantum state?

$$a. \frac{1}{2} \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$$

$$b. \begin{bmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$$

$$a. \ \frac{1}{2} \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$$
 $b. \ \begin{vmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{vmatrix}$ $c. \ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$d. \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}$$

Consider the quantum state : $\begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}$

$$\begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}$$

10. What is the probability of measuring a |0)?

$$a. \frac{1}{\sqrt{5}}$$
 $b. \frac{4}{5}$ $c. 0.2$

d. 0.4

11. What is the probability of measuring a $|1\rangle$?

$$a. \frac{1}{\sqrt{5}}$$
 $b. \frac{4}{5}$ $c. 0.2$

d. 0.4

12. Which of the following describes the same quantum state?

a.
$$\frac{1}{\sqrt{5}} |0\rangle + \frac{2}{\sqrt{5}} |1\rangle$$
 b. $0.8|0\rangle + 0.2|1\rangle$

$$c.\frac{1}{\sqrt{5}}\begin{bmatrix}2\\1\end{bmatrix}$$

 $c.\frac{1}{\sqrt{5}}\begin{vmatrix} 2\\1 \end{vmatrix}$ $d.\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$

Notation, Single Qubit Math HW

© All Rights Reserved

Consider the quantum state : $\begin{bmatrix} \frac{\sqrt{2}}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$

$$\begin{bmatrix} \frac{\sqrt{2}}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$$

13. What is the probability of measuring a |0)?

$$t. \ \frac{1}{3}$$

a.
$$\frac{1}{3}$$
 b. $\frac{1}{\sqrt{3}}$ c. $\frac{2}{3}$

$$c. \frac{2}{3}$$

$$e.\sqrt{3}$$

14. What is the probability of measuring a $|1\rangle$?

a.
$$\frac{1}{3}$$
 b. $\frac{1}{\sqrt{3}}$ c. $\frac{2}{3}$

$$\frac{1}{\sqrt{3}}$$

$$c. \frac{2}{3}$$

$$e.\sqrt{3}$$

15. Which of the following describes the same quantum state?

a.
$$\frac{\sqrt{2}}{\sqrt{5}}|0\rangle + \frac{1}{2}|$$

$$b. \ \frac{1}{\sqrt{3}} \begin{bmatrix} \sqrt{2} \\ 1 \end{bmatrix}$$

$$a. \frac{\sqrt{2}}{\sqrt{3}}|0\rangle + \frac{1}{3}|1\rangle$$
 $b. \frac{1}{\sqrt{3}}\begin{bmatrix} \sqrt{2} \\ 1 \end{bmatrix}$ $c. \frac{1}{\sqrt{3}}|0\rangle + \frac{\sqrt{2}}{\sqrt{3}}|1\rangle$

$$\begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{\sqrt{2}}{\sqrt{3}} \end{bmatrix}$$

Consider the quantum state :

16. What is this state in bra-ket notation?

$$a. -\frac{1}{2}|0
angle + \frac{1}{2}|1
angle$$

$$b. \frac{1}{2}|0\rangle - \frac{1}{2}|1\rangle$$

$$C. \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

$$d. -\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$a._{-rac{1}{2}|0
angle + rac{1}{2}|1
angle} \quad b._{rac{1}{2}|0
angle - rac{1}{2}|1
angle} \quad c._{rac{1}{\sqrt{2}}|0
angle - rac{1}{\sqrt{2}}|1
angle} \quad d._{-rac{1}{\sqrt{2}}|0
angle + rac{1}{\sqrt{2}}|1
angle} \quad e._{-rac{1}{\sqrt{2}}|0
angle - rac{1}{\sqrt{2}}|1
angle}$$

17. What is this state in vector notation?

$$a.\begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$
 $b.\begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $C.\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$b. \left[\frac{-\frac{1}{2}}{\frac{1}{2}} \right]$$

$$C. \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$d. \begin{bmatrix} -rac{1}{\sqrt{2}} \\ rac{1}{\sqrt{2}} \end{bmatrix}$$

$$e.\begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

- 18. What is the probability of measuring |1)?
 - *a*. 25%

h 50%

0%

100%

Consider a quantum state in which the probability of measuring a |0\) is 10\%.

16. What is the probability of measuring a |1)?

$$a. \frac{1}{\sqrt{10}}$$
 $b. \frac{9}{10}$ $c. \frac{3}{\sqrt{10}}$ $d. \frac{1}{10}$

$$b. \frac{9}{10}$$

$$c. \frac{3}{\sqrt{10}}$$

$$d. \frac{1}{10}$$

Given that $\alpha|0\rangle+\beta|1\rangle$ and the probability above, what is the value of α ?

a.
$$\frac{9}{10}$$

$$0. \frac{1}{\sqrt{10}}$$

a.
$$\frac{9}{10}$$
 b. $\frac{1}{\sqrt{10}}$ c. $\frac{3}{\sqrt{10}}$ d. $\frac{1}{10}$

$$l. \frac{1}{10}$$

Given that $\alpha|0\rangle + \beta|1\rangle$ and the probability above, what is the value of β ?

$$a. \frac{3}{\sqrt{10}}$$
 $b. \frac{\sqrt{3}}{4}$ $c. \frac{9}{10}$ $d. \frac{1}{\sqrt{10}}$

$$b. \frac{\sqrt{3}}{4}$$

$$c.\frac{9}{10}$$

$$J. \frac{1}{\sqrt{10}}$$

- 19. (True / False) 0.5|0
 angle + .5|1
 angle is a valid possible quantum state.
- 20. (True / False) $0.9|0\rangle + .1|1\rangle$ is a valid possible quantum state.
- 21. (True / False) $\frac{1}{2} |0\rangle + \frac{\sqrt{3}}{2} |1\rangle$ is not a valid possible quantum state.
- 22. (True / False) $\frac{1}{2} \left| \frac{1}{\sqrt{3}} \right|$ is a valid possible quantum state.
- 23. (True / False) $\begin{bmatrix} 0.25 \\ 0.75 \end{bmatrix}$ is not a valid possible quantum state.
- 24. (True / False) $\begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{\end{bmatrix}}$ and $\frac{1}{2} \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$ describe the same quantum state.

$$egin{bmatrix} 1 & 3 \ 5 & 7 \end{bmatrix} egin{bmatrix} 1 \ 2 \end{bmatrix} = egin{bmatrix} ? \ ? \end{bmatrix}$$

a.
$$\begin{bmatrix} 7 \\ 19 \end{bmatrix}$$

b. |

24

 $^{\mathrm{c.}}\left|_{14}
ight|$

d. $\begin{bmatrix} \mathbf{3} \\ 70 \end{bmatrix}$

$$egin{bmatrix} 1 & 3 \ 5 & 7 \end{bmatrix} egin{bmatrix} 2 \ 1 \end{bmatrix} = egin{bmatrix} ? \ ? \end{bmatrix}$$

a.
$$\begin{bmatrix} 8 \\ 12 \end{bmatrix}$$

b. | 13

c. $\begin{bmatrix} 0 \\ 35 \end{bmatrix}$

 $d. \begin{bmatrix} 5 \\ 17 \end{bmatrix}$

$$egin{bmatrix} 4 & 5 \ 6 & 7 \end{bmatrix} egin{bmatrix} 2 \ 3 \end{bmatrix} = egin{bmatrix} ? \ ? \end{bmatrix}$$

$$\operatorname{a.} \left| egin{array}{c} 40 \ 126 \end{array}
ight|$$

b. $\begin{bmatrix} 23 \\ 33 \end{bmatrix}$

c. $\begin{vmatrix} 18 \\ 39 \end{vmatrix}$

 $d. \begin{bmatrix} 11 \\ 16 \end{bmatrix}$

$$egin{bmatrix} 1 & 3 \ 4 & 2 \end{bmatrix} egin{bmatrix} 6 \ 5 \end{bmatrix} = egin{bmatrix} ? \ ? \end{bmatrix}$$

a.
$$\begin{bmatrix} 24 \\ 30 \end{bmatrix}$$

b. | 11

c. $\begin{bmatrix} 10 \\ 40 \end{bmatrix}$

 $\mathrm{d.} egin{bmatrix} 21 \ 34 \end{bmatrix}$

The NOT Operator is applied to an initial vector:

What will the result be in vector notation?

$$a. \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$b.$$
 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$c.$$
 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

d. Cannot be determined

What will the result be in bra-ket notation?

$$a. |0\rangle$$

$$b. |1\rangle$$

$$c. \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

d. Cannot be determined

The NOT Operator is applied to an initial vector: $\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$.

$$\frac{1}{\sqrt{2}} \mid 0 \rangle + \frac{1}{\sqrt{2}} \mid 1 \rangle \longrightarrow ?$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$

What will the result be in bra-ket notation?

$$a. \frac{\sqrt{3}}{2}|0\rangle + \frac{1}{2}|1\rangle$$

b.
$$\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$$

$$a. \frac{\sqrt{3}}{2}|0\rangle + \frac{1}{2}|1\rangle$$
 $b. \frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$ $c. \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ $d.$ Cannot be determined

What will the result be in vector notation?

$$a. \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$b.$$
 $\left[\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]$

$$C.$$
 $\begin{bmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$

d. Cannot be determined

The H operation is applied to an initial vector:

What will the result be in vector notation?

$$a. \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$b.\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$$

$$c. \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$d.$$
 $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}$

What will the result be in bra-ket notation?

a.
$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$
 b. $\frac{2}{\sqrt{5}}|0\rangle + \frac{1}{\sqrt{5}}|1\rangle$

$$b. \frac{2}{\sqrt{5}} |0\rangle + \frac{1}{\sqrt{5}} |1\rangle$$

$$C. \frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$$

$$c. \frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$$
 $d. \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$