Aerospace Propulsion

Lecture 22 Rocket Propulsion V

Rocket Propulsion: Part V

- Solid Propellant Rocket Motors
- Propellant Grain
- Hybrid Propellant Rockets
- Electric Propulsion

Solid Propellant Rocket Motors

- SPRMs have several benefits over liquid engines
 - Simpler
 - Often no moving parts
 - Long term storage
 - Ready to ignite
 - Do not leak propellants
- SPRMs unfortunately also have downsides
 - Thrust cannot be varied in flight as needed
 - Cannot "test" solid motor beforehand
 - Generally, less efficient

Solid Propellant Rocket Motors

- Major components of a solid motor
 - Grain
 - Solid body of hardened propellant
 - Fuel AND Oxidizer (mixed)
 - 80-95% of motor mass
 - Igniter
 - Initiates burning of the grain
 - Cavity
 - Internal channel through which gases flow
 - Nozzle
 - Converging-diverging
 - Efficiently accelerates flow

Propellant Burning

- Once propellant is ignited, it won't stop
- Propellant burns along the entire exposed surface at once
 - This surface recedes perpendicular to itself
 - Burning rate r is rate of regression (velocity)
- As propellant burns, the internal cavity geometry and area changes significantly
 - Pressures and velocities also change

Propellant Burning

- Successful rocket motor design hinges on understanding and controlling burn rate
- Adjustments to burn rate can be made by:
 - Propellant adjustments
 - Adding a burning catalyst
 - Adjust particle sizes and propellant ratios
 - Increase heat of combustion
 - Chamber adjustments
 - Higher initial propellant temperature
 - Higher combustion chamber pressure
 - Higher gas flow velocities across surface

- Grain material and geometry is selected to achieve certain mission goals
 - Total impulse
 - Mass of grain
 - Grain energy density
 - Specific impulse
 - Burn rate of grain
 - Thrust as a function of time
 - Regressive thrust decreases with time
 - Neutral thrust constant with time
 - Progressive thrust increases with time
 - How is this controlled without valves?

- Geometry of grain has two major effects on thrust
 - As grain is burned, cavity area (may) expand
 - Gas velocity decreases
 - As grain is burned, grain surface area (may) expand
 - More grain burns simultaneously
 - Gas velocity increases
 - Depending on how these two effects are balanced, thrust can be regressive, neutral, or progressive

End-burner (case bonded), neutral burn

Internal burning tube, progressive

Radial grooves and tube, neutral burn

Multiperforated (progressive-regressive)

- Solid Propellant Casting
 - Mix Fuel + Oxidizer
 - Typically take a liquid form
 - Pour into mold
 - Cured in oven to solidify

- Vaporize individual components
- Combustion occurs mainly in gas phase
- Burns roughly non-premixed

- Hybrid propellant rockets utilize one solid-phase and one liquid/gas-phase propellant
 - Generally solid fuel, liquid/gas oxidizer
 - Solid oxidizers generally hazardous and less energetic
- Advantages
 - Start-stop-throttling capability
 - Higher specific impulse than solid motors
- Disadvantages
 - Difficulty of controlling mixing between two phases of propellants
 - Can't spin a turbopump when fuel is solid

- Major components
 - Liquid Oxidizer
 - Stored in a pressurized tank
 - Controlled by a valve
 - Typically, no turbopump because no fuel to burn before combustion section
 - Solid Fuel
 - Grain much like in solid rocket, but no oxidizer component
 - Igniter
 - Like solid rocket but ignites surface when oxidizer flowing
 - Nozzle
 - Efficiently accelerate flow

- Combustion in HPRs
 - Complex combination of solid fuel and liquid oxidizer leads to different burning rate of solid fuel
 - A <u>non-premixed</u> flame forms in the boundary layer, slightly away from fuel
 - Heat of flame (convection + radiation) heats up solid fuel and liquid oxidizer which both vaporize
 - Gaseous fuel and oxidizer mix and burn

HPRs are less common, but exist

- Virgin Galactic's SpaceShipTwo operates on a hybrid rocket motor
- BYU, Utah State, and UofU teamed up in 1995 and 2003 to launch the Unity IV hybrid propellant rocket
 - 20 feet tall, 4500 feet elevation rise

- Electric Propulsion has two broad meanings
 - Electrical energy used for heating propellant
 - Electrical energy for directly ejecting propellant
- Liquid Rocket <u>Engine</u>, Solid Rocket <u>Motor</u>, Electric Rocket <u>Thruster</u>
- Typically have massive exhaust velocities
 - Use less propellant, very efficient
- Low power output (bad density/generation)
 - Low thrust
 - Only used in space

- Major uses for Electric Propulsion
 - Drag compensation of satellites
 - Earth orbiting satellites experience minor air resistance that constantly needs to be overcome
 - A ΔV on the order of 50 m/s per year is needed
 - Orbit raising
 - Slowly transitioning satellites between different orbits
 - Time is not a major issue due to low drag
 - Interplanetary travel and deep space probes
 - High efficiency means deep space travel is possible
 - Potentially unsuitable for human travel (too slow)

- Three primary forms of electric propulsion
- Electrothermal propulsion
 - Propellant heated electrically and expanded thermodynamically with C-D nozzle
- Electrostatic propulsion
 - Acceleration achieved by interaction of electrostatic fields with charged particles
- Electromagnetic propulsion
 - Acceleration achieved by interaction of electrostatic + magnetic fields with plasmas

- Electrothermal propulsion
 - Resistojet Use resistors to convert electricity to heat which is added to propellant
 - Solid material (resistor) is being heated
 - Temperature limitations lead to cap of $I_s = 300 \text{ s}$
 - Arcjet Electric discharge directly heats propellant gases
 - Less solid material being heated
 - Higher temperatures (and I_s) can be achieved
 - Arc is relatively thin and spurious
 - Good mixing is required after arc

- Electrostatic propulsion
 - $F = \rho_e E$
 - Electric current density ρ_e
 - Electric field E
 - Ion Thruster
 - Create positive charge in neutral propellants
 - Positive molecules accelerate through electric field
 - (Electron acceleration inefficient because they have tiny mass and therefore momentum)
 - Must avoid negatively charging engine by ejecting electrons

- Electromagnetic propulsion
 - $F = \mathbf{j} \times \mathbf{B}$
 - Electric current density j
 - Magnetic field B
 - Force requires perpendicular electric current and magnetic field
 - Note that plasmas are neutrally charged so electric field force is irrelevant

Power Sources

- Batteries
 - General low energy density, especially compared to chemical fuel energy density
 - Rarely the main propulsion power source
- Fuel cells
 - Electrical energy comes from chemical processes controlled by catalysis
 - Generally large and so mostly used on manned missions (with larger rockets)

SOURCE: Wikipedia Membrane electrode assembly

- Power Sources
 - Solar Arrays
 - Photovoltaic solar cells that convert the sun's electromagnetic radiation into electricity
 - Only 20-30% efficient, however, energy is somewhat "free" and "unlimited"
 - Have supplied electric power in most longduration space missions
 - Additional weight to be considered for batteries and orientation equipment

- Power Sources
 - Nuclear reactors
 - Deliver electricity through the long-decay of radioisotopes
 - Very low power output
 - Functions for <u>extremely</u> long
 - Voyager 2 spacecraft launched in 1977 and is <u>still</u> in operation
 - Nuclear reactors are not efficient (<10%)
 - Must deal with significant amount of heat coming from reactor

Voyager 2

