Non-recursive predictive parsing

Observation:

Our recursive descent parser encodes state information in its run-time stack, or call stack.

Using recursive procedure calls to implement a stack abstraction may not particularly efficient.

This suggests other implementation methods.

- explicit stack, hand coded parser
- stack-based, table-driven parser

Now, a predictive parser looks like:

Rather than writing code, we build tables.

Building tables can be automated!

A parser generator system often looks like:

This is true for both top down and bottom up parsers

- LL(1): left to right scan, leftmost derivation, one lookahead symbol
- LR(1): left to right scan, rightmost derivation, one lookahead symbol

Input: a string w and a parsing table M for G

```
tos \leftarrow 0
Stack[tos++] \leftarrow eof
Stack[tos++] \leftarrow Start Symbol
token \leftarrow next\_token()
X \leftarrow Stack[tos]
repeat
  if X is a terminal or eof then
      if X = token then
         pop X
         token \leftarrow next\_token()
      else error()
   else /* X is a non-terminal */
      if M[X, token] = X \rightarrow Y_1Y_2...Y_k then
         pop X
         push Y_k, Y_{k-1}, ..., Y_1
      else error()
   X \leftarrow Stack[tos]
until X = eof
```

Aho, Sethi, and Ullman, Algorithm 4.34

The grammar and its table

Our long-suffering expression grammar

LL(1) parsing table

	id	num	+	_	*	/	eof
<goal></goal>	$g \rightarrow e$	$g \rightarrow e$	ı	ı	ı	ı	-
<expr></expr>	$e \rightarrow te'$	$e \rightarrow te'$	ı	1	1	-	_
<expr'></expr'>	-	ı	<i>e</i> '→+ <i>e</i>	$e' \rightarrow -e$	-	-	e '→e
<term></term>	$t \rightarrow f t'$	$t \rightarrow f t'$	-	-	-	-	-
<term'></term'>	-	-	<i>t'→ε</i>	<i>t'→ε</i>	<i>t</i> '→* <i>t</i>	<i>t</i> '→/ <i>t</i>	<i>t'→ε</i>
<factor></factor>	$f \rightarrow id$	$f \rightarrow num$					

The FIRST set

For a string of grammar symbols α , define FIRST(α) as

- the set of terminal symbols that begin strings derived from α
- if $\alpha = \rangle^* \varepsilon$, then $\varepsilon \in FIRST(\alpha)$

FIRST(α) contains the set of tokens valid in the first position of α

To build FIRST(X):

- 1. if X is a terminal, FIRST(X) is {X}
- 2. if $X := \varepsilon$, then $\varepsilon \in FIRST(X)$
- 3. if $X := Y_1Y_2...Y_k$ then put $FIRST(Y_1)$ in FIRST(X)
- 4. if X is a non-terminal and X ::= $Y_1Y_2...Y_k$, then $a \in FIRST(X)$ if $a \in FIRST(Y_i)$ and $\varepsilon \in FIRST(Y_j)$ for all $1 \le j < i$

(If $\varepsilon \notin FIRST(Y_1)$, then $FIRST(Y_i)$ is irrelevant, for 1 < i)

The FIRST construction

rule	1	2	3	4	FIRST
goal	-	-	num, id	-	{num,id}
expr	-	-	num, id	-	{num,id}
expr'	-	${\cal E}$	+, -	-	{ ε,+, −}
term	-	-	num, id	-	{num,id}
term'	-	${\cal E}$	*,/	-	{ <i>E</i> ,*, /}
factor	-	-	num, id	-	{num,id}
num	num	-	-	-	{num}
id	id	-	-	-	{id}
+	+	-	-	-	{+}
	-	-	-	-	{-}
*	*	-	-	-	{*}
/	/	-	-	-	{/}

The FOLLOW set

For a non-terminal A, define FOLLOW(A) as the set of terminals that can appear immediately to the right of A in some sentential form

Thus, a non-terminal's FOLLOW set specifies the tokens that legally appear after it

A terminal symbol has no FOLLOW set

To build FOLLOW(X)

- 1. place eof in FOLLOW(<goal>)
- 2. if A ::= $\alpha B\beta$, then put {FIRST(β) ε } in FOLLOW(B)
- 3. if $A := \alpha B$ then put FOLLOW(A) in FOLLOW(B)
- 4. if A::= $\alpha B\beta$ and $\varepsilon \in FIRST(\beta)$, then put FOLLOW(A) in FOLLOW(B)

The FOLLOW construction

rule	1	2	3	4	FOLLOW
goal	eof	-	-	ı	{eof}
expr	-	-	eof	-	{eof}
expr'	-	-	eof	-	{eof}
term	-	+,-	-	eof	{eof, +,-}
term'	-	-	eof, +,-	-	{ <i>e</i> ,*, /}
factor	-	*,/	-	eof, +,-	{ eof, +,-,*,/}

LL(1) parsing table construction

Input: a grammar G

Method

- 1. \forall production A ::= α , perform steps 2-4
- 2. \forall terminal a in FIRST(α), add $A := \alpha$ to M[A, a]
- 3. if $\varepsilon \in FIRST(\alpha)$, for any terminal $b \in FOLLOW(A)$ add $A := \alpha$ to M[A, b]
- 4. if $\varepsilon \in FIRST(\alpha)$, and eof $\in FOLLOW(A)$, add $A := \alpha$ to M[A, eof]
- 5. set each undefined entry of M to error

If this fails, the grammar is not LL(1)

Aho, Sethi, and Ullman, Algorithm 4.31

LL(1) parsing table for example

	id	num	+	_	*	/	eof
<goal></goal>	$g \rightarrow e$	$g \rightarrow e$	ı	ı	ı	ı	-
<expr></expr>	$e \rightarrow te'$	$e \rightarrow te'$	-	-	-	ı	-
<expr'></expr'>	ı	ı	<i>e</i> '→+ <i>e</i>	$e' \rightarrow -e$	ı	ı	e'→e
<term></term>	$t \rightarrow f t$	$t \rightarrow f t$	-	-	-	-	-
<term'></term'>		-	$t' \rightarrow \varepsilon$	<i>t'→ε</i>	$t' \rightarrow *t$	<i>t</i> '→/ <i>t</i>	<i>t'→ε</i>
<factor></factor>	$f \rightarrow id$	$f\rightarrow$ num					

Symbol	FIRST	FOLLOW
<goal></goal>	{id, number}	{eof}
<expr></expr>	{id, number}	{eof}
<expr'></expr'>	$\{\mathcal{E}, +, -\}$	{eof}
<term></term>	{id, number}	$\{eof, +, -\}$
<term'></term'>	$\{\mathcal{E}, *, /\}$	$\{eof, +, -\}$
<factor></factor>	{id, number}	$\{eof, +, -, *, /\}$
+	{+}	-
_	{-}	-
*	{*}	-
/	$\left\{ \left\langle \cdot \right\rangle \right\}$	-
id	{id}	_
number	{number}	-

Insert some code at the appropriate points

```
tos \leftarrow 0
Stack[tos++] \leftarrow eof
Stack[tos++] \leftarrow root node
Stack[tos++] \leftarrow Start Symbol
token \leftarrow next\_token()
X \leftarrow Stack[tos]
repeat
   if X is a terminal or eof then
      if X = token then
         pop X
         token \leftarrow next\_token()
         pop and fill in node
      else error()
   else /* X is a non-terminal */
      if M[X, token] = X \rightarrow Y_1Y_2...Y_k then
         pop X
         pop node for X
         build node for each child and make it a child of node for X
         push n_k, Y_k, n_{k-1}, Y_{k-1}, ..., n_1, Y_1
      else error()
   X \leftarrow Stack[tos]
until X = eof
```

LL(1) grammars

Features

- input parsed from left to right
- leftmost derivation
- one token lookahead

Definition

A grammar G is LL(1) if and only if, for all non-terminals A, each distinct pair of productions A ::= β and A ::= Υ satisfy the condition FIRST(β) \cap FIRST(Υ) = \varnothing

A grammar G is LL(1) if and only if for each set of productions $A:=\alpha_1\mid\alpha_2\mid\ldots\mid\alpha_n$

- 1. $FIRST(\alpha_1)$, $FIRST(\alpha_2)$, ..., $FIRST(\alpha_n)$ are all pairwise disjoint
- $\begin{aligned} 2. & \text{ if } \alpha_i =>^* \mathcal{E} \text{, then } FIRST(\alpha_j) \cap FOLLOW(A) = \varnothing, \text{ for all } \\ & 1 \leq j \leq n, i \neq j. \end{aligned}$

If G is ε -free, condition 1 is sufficient.

LL(1) grammars

Provable facts about LL(1) grammars:

- no left recursive grammar is LL(1)
- no ambiguous grammar is LL(1)
- LL(1) parsers operate in linear time
- an ε -free grammar where each alternative expansion for A begins with a distinct terminal is a simple LL(1) grammar

Not all grammars are LL(1)

- S ::= aS | a is not LL(1) FIRST(aS) = FIRST(a) = {a}
- S ::= aS'
 S'::= aS' | ε
 accepts the same language and is LL(1)

LL grammars

LL(1) grammars

- may need to rewrite grammar (left recursion, left factoring)
- resulting grammar larger, less maintainable

LL(k) grammars

- k-token lookahead
- more powerful than LL(1) gammars
- example:

$$S ::= ac \mid abc \text{ is } LL(2)$$

Not all grammars are LL(k)

■ example:

$$S ::= a^i b^j \qquad \text{where } i \ge j$$

- equivalent to dangling else problem
- problem must choose production after k tokens of lookahead

Bottom-up parsers avoid this problem