Making change proof two ways

Proof of \star by mathematical induction (b = 8)

Basis step: WTS property is true about 8

Recursive step: Consider an arbitrary $n \geq 8$. Assume (as the IH) that there are nonnegative integers x, y such that n = 5x + 3y. WTS that there are nonnegative integers x', y' such that n + 1 = 5x' + 3y'. We consider two cases, depending on whether any 5 cent coins are used for n.

Case 1: Assume $x \ge 1$. Define x' = x - 1 and y' = y + 2 (both in $\mathbb N$ by case assumption). Calculating:

$$5x' + 3y' \stackrel{\text{by def}}{=} 5(x - 1) + 3(y + 2) = 5x - 5 + 3y + 6$$

$$\stackrel{\text{rearranging}}{=} (5x + 3y) - 5 + 6$$

$$\stackrel{\text{IH}}{=} n - 5 + 6 = n + 1$$

Case 2: Assume x = 0. Therefore n = 3y, so since $n \ge 8$, $y \ge 3$. Define x' = 2 and y' = y - 3 (both in $\mathbb N$ by case assumption). Calculating:

$$5x' + 3y' \stackrel{\text{by def}}{=} 5(2) + 3(y - 3) = 10 + 3y - 9$$

$$\stackrel{\text{rearranging}}{=} 3y + 10 - 9$$

$$\stackrel{\text{IH and case}}{=} n + 10 - 9 = n + 1$$

Proof of \star by strong induction (b = 8 and j = 2)

Basis step: WTS property is true about 8, 9, 10

Recursive step: Consider an arbitrary $n \ge 10$. Assume (as the IH) that the property is true about each of $8, 9, 10, \ldots, n$. WTS that there are nonnegative integers x', y' such that n + 1 = 5x' + 3y'.

Binary expansions exist proof

Representing positive integers

Theorem: Every positive integer is a sum of (one or more) distinct powers of 2. binary expansions exist!

Proof by strong induction, with b = 1 and j = 0.

Basis step: WTS property is true about 1.

Recursive step: Consider an arbitrary integer $n \ge 1$. Assume (as the IH) that the property is true about each of $1, \ldots, n$. WTS that the property is true about n + 1.

Fundamental theorem proof

Theorem: Every positive integer greater than 1 is a product of (one or more) primes.

Proof by strong induction, with b = 2 and j = 0.

Basis step: WTS property is true about 2.

Recursive step: Consider an arbitrary integer $n \ge 2$. Assume (as the IH) that the property is true about each of $2, \ldots, n$. WTS that the property is true about n + 1.

Case 1:

Case 2: