

Singular Value Decomposition (SVD)

Prof. Seungchul Lee Industrial AI Lab.

Geometry of Linear Maps

• Matrix *A* (or linear transformation) = rotate + stretch/compress

Geometry of Linear Maps

• An extremely important fact:

every matrix $A \in \mathbb{R}^{m imes n}$ maps the unit ball in \mathbb{R}^n to an ellipsoid in \mathbb{R}^m

$$S = \{x \in \mathbb{R}^n \mid \; \|x\| \leq 1\} \ AS = \{Ax \mid x \in \mathbf{S}\}$$

Singular Values and Singular Vectors

- the numbers $\sigma_1, \cdots, \sigma_n$ are called the singular values of A by convention, $\sigma_i > 0$
- the vectors u_1, \dots, u_n these are unit vectors along the principal semi-axes of AS
- the vectors v_1, \dots, v_n these are the preimages of the principal semi-axes, defined so that

$$Av_i = \sigma_i u_i$$

Graphical Explanation

$$\therefore \ AV = U\Sigma \quad (r \leq m,n)$$

Thin Singular Value Decomposition

$$A \in \mathbb{R}^{m imes n}$$
 , skinny and full rank (*i.e.*, $r = n$)

$$Av_i = \sigma_i u_i \quad ext{for } 1 \leq i \leq n$$

$$\hat{U} = \left[egin{array}{cccc} u_1 & u_2 & \cdots & u_n \end{array}
ight]$$

$$V = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$$

$$A = \hat{U}\hat{\Sigma}V^T$$

$$\hat{I}$$
 \hat{I} $\hat{\Sigma}$ \hat{V}^T

Full Singular Value Decomposition

- We can add extra orthonormal columns to U
- We also add extra rows of zeros to Σ

$$A = U \Sigma V^T$$

Interpretation of SVD

- The SVD decomposes the linear map into
 - rotate by V^T
 - diagonal scaling by σ_i
 - rotate by U

• Note that, unlike the eigen-decomposition, input and output directions are different

SVD: Matrix factorization

• for any matrix *A*

$$A = U\Sigma V^T$$

• for symmetric and positive definite matrix A

$$A = S\Lambda S^{-1} = S\Lambda S^T \quad (S : ext{eigenvectors})$$

PCA and SVD

Any real symmetric and positive definite matrix B has a eigen decomposition

$$B = S\Lambda S^T$$

• A real matrix $(m \times n)$ A, where m > n, has the decomposition

$$A = U\Sigma V^T$$

• From A (skinny and full rank) we can construct two positive-definite symmetric matrices, AA^T and A^TA

$$AA^T = U\Sigma V^T V\Sigma^T U^T = U\Sigma \Sigma^T U^T$$
 $(m \times m, n \text{ eigenvalues and } m - n \text{ zeros}, U \text{ eigenvectors})$
 $A^T A = V\Sigma^T U^T U\Sigma V^T = V\Sigma^T \Sigma V^T$ $(n \times n, n \text{ eigenvalues}, V \text{ eigenvectors})$

PCA and SVD

PCA by SVD

$$B = A^T A = V \Sigma^T \Sigma V^T = V \Lambda V^T$$

- -V is eigenvectors of $B = A^T A$
- $-\sigma_i^2 = \lambda_i$
- Note that in PCA,

$$VSV^T \quad \left(ext{where } S = rac{1}{m} X^T X = \left(rac{X}{\sqrt{m}}
ight)^T rac{X}{\sqrt{m}} = A^T A
ight)$$

Low Rank Approximation: Dimension Reduction

$$A = U_r \Sigma_r V_r^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$

$$ilde{A} = U_k \Sigma_k V_k^T = \sum_{i=1}^k \sigma_i u_i v_i^T \qquad (k \leq r)$$

$$egin{aligned} x &= c_1 v_1 + c_2 v_2 \ &= \langle x, v_1
angle v_1 + \langle x, v_2
angle v_2 \ &= (v_1^T x) v_1 + (v_2^T x) v_2 \end{aligned}$$

$$egin{aligned} Ax &= c_1 A v_1 + c_2 A v_2 \ &= c_1 \sigma_1 u_1 + c_2 \sigma_2 u_2 \ &= u_1 \sigma_1 v_1^T x + u_2 \sigma_2 v_2^T x \end{aligned}$$

$$egin{aligned} &= \left[egin{array}{ccc} u_1 & u_2
ight] \left[egin{array}{ccc} \sigma_1 & 0 \ 0 & \sigma_2 \end{array}
ight] \left[egin{array}{ccc} v_1^T \ v_2^T \end{array}
ight] x \end{aligned}$$

$$=U\Sigma V^Tx$$

$$pprox u_1 \sigma_1 v_1^T x \quad (ext{if } \sigma_1 \gg \sigma_2)$$

Example: Image Approximation

• Approximation of *A*

$$ilde{A} = U_k \Sigma_k V_k^T = \sum_{i=1}^k \sigma_i u_i v_i^T \qquad (k \leq r)$$

Approximated image w/ rank = 20

Proper Orthogonal Modes (POM)

- Principal Components and Proper Orthogonal Modes (POM)
 - the principal component analysis seems to suggest that we are simply expanding our solution in another orthonormal basis, one which can always diagonalize the underlying system.

$$f(x,t)pprox \sum_{i=1}^k c_i(t)\phi_i(x)$$

Here are some of the more common expansion bases used in practice

$$egin{aligned} \phi_i(x) &= (x-x_0)^i & ext{Taylor expansion} \ \phi_i(x) &= e^{ix} & ext{Fourier transform} \ \phi_i(x) &= \psi_{a,b}(x) & ext{Wavelet transform} \ \phi_i(x) &= \phi_{\lambda_i}(x) & ext{Eigenfunction expansion} \end{aligned}$$

Eigenface

Seeing through a Disguise with SVD

Dimension Reduction = Model Reduction

- Practical use of first principles models for physical phenomena described by partial differential equations, advanced control and signal processing algorithms
- Facilitate system identification, data compression, and knowledge extraction

