1: Initialize θ , the parameters of individual Q-network, and θ^- the parameters of target network.

2: Initialize replay buffer \mathcal{D} // $(\mathbf{o}_t, \mathbf{a}_t, r_t, done, \mathbf{o}_{t+1})$

while t < T do Collect observations $\{o_1^t, \ldots, o_n^t\}$ 4:

for each agent i do 5: 6: With probability ϵ , select random action a_i^t

otherwise select $a_i^t = \arg \max_{a_i} Q_i(o_i^t, a_i)$ 7: end for 8:

Execute joint action $\mathbf{a}^t = (a_1^t, \dots, a_n^t)$ Collect r^t , $done^t$, and \mathbf{o}^{t+1}

Store $(\mathbf{o}^t, \mathbf{a}^t, r^t, done^t, \mathbf{o}^{t+1})$ in \mathcal{D}

Algorithm: VDN Training

if t is a training step then Sample batch $\mathcal{B} = \{\mathbf{o}^b, \mathbf{a}^b, r^b, done^b, \mathbf{o'}^b\}$ Set the targets

 $y^{b} = r^{b} + \gamma (1 - done^{b}) \sum_{i} \max_{a'_{i}} Q_{i}(o_{i}^{b}, a'_{i}; \theta^{-})$

Every C steps, update $\theta^- \leftarrow \theta$

Perform a gradient descent using:

 $\mathcal{L}(\theta) = \frac{1}{|\mathcal{B}|} \sum_{i} \left(y^b - \sum_{i} Q_i(o_i^b, a_i^b; \theta) \right)^2$

13: 14:

15:

16:

17:

end if 18: end while

12:

9: 10: 11: