

ANS - Analoge Schaltungen Versuch 10: Low Dropout Regulator (LDO)

Projektteam SoSe 2020 – 30.06.2020

<u>Thomas Preier</u>, Thomas Wittmer, Marc-André von Speulda

Inhalt 1 Einleitung

- 1 Was ist ein LDO?
- 2 Was bedeutet Dropout?

2 Funktionsweise eines LDOs

- 1 Aufbau eines LDOs
- 2 Referenzspannung
- 3 Operationsverstärker
- 4 Spannungsteiler
- 5 P-MOS/Dropout
- 6 Regelstrecke

3 Realisierung der Aufgaben

- 1 Simulierung der 1.Schaltung mit Tina/ltSpice
- 2 Simulierung der 2.Schaltung mit Tina/ltSpice
- 3 Fehlerbericht und Lösungsansetze

4 Charakteristika des LDO

- 1 Load Regulation
- 2 Line Regulation
- 3 Maximale Eingangsspannung
- 4 Ausgangswiderstand
- 5 Welligkeit der Schaltung 1
- Welligkeit der Schaltung 2
- 7 Optimierungsmöglichkeiten
- 5 Quellen

1. Einleitung

Was ist ein LDO?

- Low Dropout Regulator Linearer Spannungsregler
- Regeln einer Spannung auf einen geringen kleineren Wert
- Schützt die versorgten Bauelemente

Was bedeutet Dropout?

- Differenz zwischen Eingangs- und Ausgangsspannung
 - $V_{in} \geq V_{out} + V_{DO}$
- Mindestspannung um V_{out} zu gewährleisten

•
$$V_{out} = V_{in} - V_{DO}$$

2. Funktionsweise eines LDOs

Aufbau eines LDOs

Schaltungstechnisch:

- Referenzspannungsquelle
- Differenzverstärker
- Spannungsteiler / Rückführgröße
- P-MOS Transistor

Referenzspannung

Die Referenzspannung und die Spannungsabweichung der Ausgangsspannung erzeugen die Spannungsdifferenz.

- Beeinflusst durch Zenerdiode und dem Vorwiderstand R
- $V_z = V_{ref}$
- Spannungsdifferenz zwischen V_{in} und V_z fällt über den Vorwiderstand R ab
- $V_{ref} < V_0 \rightarrow V_{ref} < 3V$

$$R = \frac{V_{in} - V_{z}}{I_{BV} + I_{L}} = \frac{4.5 \text{ V} - 2.4 \text{ V}}{5 \text{ mA} + 0 \text{ A}} = 420 \Omega$$

Operationsverstärker

- Die Spannungsdifferenz steuert den PMOS
- Dient als Vergleicher
- Arbeitet als Invertierer, falls die Referenzspannung größer ist als die Spannung UR1
- Eingangswiderstand ist idealerweise unendlich

Für unsere Schaltungen wurde der TL082 verwendet

Spannungsteiler

- Größere Widerstandswerte wählen
- U_{R1} entspricht V_{ref}
- $V_0 = V_{ref} * \left(1 + \frac{R_2}{R_1}\right)$

P-MOS / Dropout

- Operationsverstärker regelt V_{GS}
- Durch V_{GS} wird R_{DS} gesteuert und somit auch V_{DS}
- $V_{DO} = V_{DS} = R_{DS} * I_{DS}$
- V_{DS} beeinflusst V_{out}
- $V_{out} = V_{in} V_{DS}$

Regelstrecke

- V_z entspricht der Spannung an der Zenerdiode
- V_{ref} ist die Referenzspannung V_z
- V_{st} ist die Steuerspannung für den PMOS
- V_{GS} ist die Gate-Source Spannung des PMOS
- V_{DS} ist die Drain-Source Spannung des PMOS
- V_0 ist die Ausgangsspannung die konstant sein soll
- V_{R2} ist die Spannung an Widerstand R_2
- V_{R1} ist die Spannung an Widerstand R_1
- V_{UN} stellt die Eingangsspannung dar

3. Realisierung der Aufgaben

Simulierung der 1. Schaltung mit Tina / LTSpice

- Ziel: Ausgabe von $V_{out} = 3V$
- Vorgabe: $V_{in} = 4 5V (4.5V DC \& 0.5V AC)$
- $V_{out} > V_{ref}$ das bedeutet V_Z ist kleiner als 3V
- lacktriangledown Spannungsteiler wird nach der Differenz zwischen V_{ref} und V_{out} bestimmt
- $V_{out} = V_{ref}(1 + \frac{R_2}{R_1})$

Simulierung der 2. Schaltung mit Tina / LTSpice

- Spannungsregler
- Gleiches Ziel: $V_{out} = 3V$
- $V_{in} = 4 5V (4.5V DC \& 0.5V AC)$
- Zenerdiode mit $V_z = 2.4V$
- Restliche Komponenten wurden vorgegeben

Fehlerbericht und Lösungsansätze in der praktischen Realisierung

- Messungen waren nicht erfolgreich
- Messergebnisse waren nicht nachvollziehbar
- Werte entsprachen nicht im geringsten den theoretisch ermittelten Werten

1. Ansatz

- Mehrfacher Neuaufbau der Schaltung
- Überprüfen ob die Schaltung richtig aufgebaut ist
- Messgeräte ausgetauscht
- Recherche/Datenblätter überprüft

2. Ansatz

- Sämtliche Bauteile ausgetauscht
- Schaltung auf einem externen Steckboard aufgebaut
- Teilmessungen durchgeführt und sämtliche Pfade überprüft

3. Ansatz

 Referenzspannung durch eine externe Spannungsquellen ersetzt

4. Charakteristika

Load Regulation Vergleich

- Verhalten der Ausgangsspannung bei Änderung der Last
 - Gemessen bei $V_{in} = 4.5V$
 - Load Regulation = $100\% * \frac{V_{NL} V_{FL}}{V_{FL}}$
- Schaltung 1:
 - Ab einem Lastwiderstand von etwa 500 Ohm
 - Stabile Ausgabe von 3V DC
 - Load Regulation = 0%
- Schaltung 2:
 - Ab einem Lastwiderstand von etwa 120 Ohm
 - Stabile Ausgabe von 3V DC
 - Load Regulation = 0%

Line Regulation Vergleich

- Auswirkung auf Vout bei Änderung von Vin = 4V 5V (gemessen bei RL = 10k0hm)
- Schaltung 1:

• Line Regulation =
$$\frac{\Delta V_{out}}{\Delta V_{in}} * 100\% = \frac{0,115V}{1V} * 100\% = 11,5\%$$

- Zwischen 4,075V und 5V ist die Ausgangsspannung linear
- Zwischen 4V und 4,075V instabiler Bereich
- Schaltung 2:
- Line Regulation = $\frac{\Delta V_{out}}{\Delta V_{in}} * 100\% = \frac{0.93V}{1V} * 100\% = 93\%$
- Ausgangsspannung steigt linear von 2,5V bis 3,45V

Vergleich der maximalen Eingangsspannungen

Schaltung 1:

- Ab Vin = 4,075V $\rightarrow V_{out} = 3V V_{DO} \ge 1V$
- Sättigungsbereich
- Ab Vin = 49V Vout steigt stark an
- $BV_{DS} = 45V$
- Schaltung 2:
 - Vout = 3V im linearen Bereich
 - Optimaler Bereich für Vout = 5,5V bei Vin = 7V 19V
- Schaltung 2 optimiert: (R3 = 335kOhm)
- Bei einem Vin von 4,6V 10V konstant 3V Vout

Bestimmung des Ausgangswiderstands / der Impedanz

- Schaltung 1:
- Bestimmung durch $R_i = \frac{U_o}{I_k} = \frac{3V}{10,13mA} = 296,15 \ Ohm$
- Schaltung 2:
- Bestimmung durch $R_i = \frac{U_o}{I_k} = \frac{2,99V}{42,76kA} = 69,93\mu Ohm$

Welligkeit Schaltung 1

- Wechselspannungsanteil der Eingangsspannung
 - 1*V*_{ss}
- Wechselspannungsanteil der Ausgangsspannung
 - 110*mV_{ss}*
- Restwelligkeit = $\frac{\Delta U_{AC}}{U_{DC}} = \frac{0,11V}{3V} = 0,03\overline{6}$

Welligkeit Schaltung 2

- Wechselspannungsanteil der Eingangsspannung
 - 1*V*_{ss}
- Wechselspannungsanteil der Ausgangsspannung
 - 930*mV_{ss}*
- Restwelligkeit = $\frac{\Delta U_{AC}}{U_{DC}} = \frac{0.93V}{3V} = 0.31$

Mögliche Optimierungen

- Verwendung von Glättungskondensators vor und nach dem LDO
 - Wechselspannungsanteile herausfiltern
- Platine anfertigen für die Realisierung der Schaltung
 - Kurze Pfade zwischen den Bauteilen

5. Quellen

- LDO Baustein 26.06.2020
 - https://www.digchip.com/datasheets/1099055-tps799195drvt.html
- 1. Schaltung eines LDOs ASLK Pro Manual –20.06.2020
 - https://download.mikroe.com/documents/specials/educational/aslk-pro/aslk-pro-manual-v103.pdf
- LDO Verwendungsbeispiel Texas Instruments LDO Basics 20.06.2020
 - https://www.ti.com/lit/wp/slyy151a/slyy151a.pdf?ts=1593448538134&ref_url=https%253A%252F%252Fwww.ti.com%252Fpower-management%252Flinear-regulators-ldo%252Ftechnical-documents.html
- TL082 Operationsverstärker Texas Instruments 26.06.2020
 - https://download.mikroe.com/documents/specials/educational/aslk-pro/aslk-pro-manual-v103.pdf
- BS250 P-MOS Texas Instruments 26.06.2020
 - https://download.mikroe.com/documents/specials/educational/aslk-pro/aslk-pro-manual-v103.pdf
- 2. Schaltung Referenz zum LDO ASLK Pro Manual –20.06.2020
 - https://download.mikroe.com/documents/specials/educational/aslk-pro/aslk-pro-manual-v103.pdf
- Simulationen und Messungen realisiert mit Tina9-TI

Vielen Dank!

Ihre Gruppe 10 SoSe 2020