MA 503: Lebesgue Measure and Integration

Dane Johnson

November 5, 2020

Chapter 5: Differentiation and Integration

1 Differentiation of Monotone Functions

Definition Let \mathcal{J} be a collection of intervals. We say that \mathcal{J} covers E in the sense of Vitali if for each ϵ and any $x \in E$, there is an interval $I \in \mathcal{J}$ such that $x \in I$ and $l(I) < \epsilon$. The intervals may be open, half-open, or closed, but we do not allow degenerate intervals consisting of only one point.

Lemma 1 (Vitali) Let E be a set of finite outer measure and \mathcal{J} a collection of intervals that covers E in the sense of Vitali. Then given $\epsilon > 0$ there is a finite disjoint collection $\{I_1, ..., I_N\} \subset \mathcal{J}$ such that

$$m^* \left[E \setminus \bigcup_{n=1}^N I_n \right] < \epsilon$$
.

Proof: The proof will assume that each interval in \mathcal{J} is closed.

Let O be a set of finite measure containing E. Since \mathcal{J} is a Vitali covering of E, assume without loss of generality that for each $I \in \mathcal{J}$, $I \subset O$. If $I \not\subset O$, then since $E \subset O$ it must be that for any point $x \in I$ such that $x \not\in O$, $x \not\in E$. So we can redefine I so that $I \subset O$ without losing coverage of any point in E. Let I_1 be any interval in \mathcal{J} and assume $I_1, ..., I_n$ have been chosen. Let k_n be the supremum of the lengths of the intervals of \mathcal{J} that do not intersect with any of $I_1, ..., I_n$. Since each interval is contained in O, $k_n \leq m(O) < \infty$

Definition The **derivates** of f at x are:

$$D^{+}f(x) = \lim_{h \to 0^{+}} \sup \frac{f(x+h) - f(x)}{h}$$

$$D^{-}f(x) = \lim_{h \to 0^{+}} \sup \frac{f(x) - f(x-h)}{h}$$

$$D_{+}f(x) = \lim_{h \to 0^{+}} \inf \frac{f(x+h) - f(x)}{h}$$

$$D_{-}f(x) = \lim_{h \to 0^{+}} \inf \frac{f(x) - f(x-h)}{h}$$

Since $\inf \frac{f(x+h)-f(x)}{h} \leq \sup \frac{f(x+h)-f(x)}{h}$ for each h > 0, $D_+f(x) \leq D^+f(x)$. Similarly, $D_-f(x) \leq D^-f(x)$. If $D^+f(x) = D_+f(x) = D^-f(x) = D_-f(x) \neq \pm \infty$, we say that f is **differentiable** at x and define f'(x) to be the common value of the derivates at x. If $D^+f(x) = D_+f(x)$, f has a **right-hand derivative** at x and define f'(x+) as the common value. Similarly, f has a **left-hand derivative** at f if f if

Proposition 2 If f is continuous on [a,b] and one of its derivates (say D^+) is everywhere nonnegative on (a,b), then $f(x) \leq f(y)$ for $x \leq y, x, y \in [a,b]$.

Proof: Suppose $x, y \in [a, b]$ with $x \leq y$.