Linear Regression

December 15, 2017

Linear Regression

- ➤ Simple approach to supervised learning when the target variable is **continuous**.
- Assumes a linear relationship between the input variables x_1, \ldots, x_n and the target variable y.
- ▶ When the target variable is discrete, the problem is a **classification** problem.

Linear Regression Models and Least Squares

- ▶ input vector $x^{\mathsf{T}} = (x_1, \dots, x_n)$, output/response y
- ▶ linear model: $y = \theta_0 + \sum_{j=1}^n x_j \theta_j = \sum_{j=0}^n x_j \theta_j$, where $x_0 = 1$
- \triangleright θ s are unknown parameters
- \triangleright variables x_i can come from different sources:
 - quantitative inputs
 - ightharpoonup transformations of quantitative inputs: \log , $\sqrt{\ }$ etc
 - ightharpoonup basis functions: $x_2 = x_1^2$, $x_3 = x_1^3$
 - numeric encoding of the levels of qualitative inputs
 - \blacktriangleright interactions between variables $x_3 = x_1 \cdot x_2$

The model is **linear in the parameters** θ .

Linear Regression Models and Least Squares . . .

Typical situation: we have training data

$$(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$$

from which to estimate the parameters θ .

▶ Least squares: pick parameters $\theta = (\theta_0, \dots, \theta_n)^\mathsf{T}$ to minimize

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(y^{(i)} - \sum_{j=0}^{n} x_j^{(i)} \theta_j \right)^2$$

Linear Regression Models and Least Squares . . .

Typical situation: we have training data

$$(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$$

from which to estimate the parameters θ .

Least squares: pick parameters $\theta = (\theta_0, \dots, \theta_n)^\mathsf{T}$ to minimize

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(y^{(i)} - \sum_{j=0}^{n} x_j^{(i)} \theta_j \right)^2$$

- Gradient descent
- Analytical solution
- Probabilistic interpretation

ightharpoonup Start with an "initial guess" for heta

- ightharpoonup Start with an "initial guess" for heta
- ▶ Repeatedly perform the update for all $0 \le j \le n$:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta),$$

- \blacktriangleright Start with an "initial guess" for θ
- ▶ Repeatedly perform the update for all $0 \le j \le n$:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta),$$

For each
$$0 \le j \le n$$
: $\partial J(\theta)/\partial \theta_j = -\sum_{i=1}^m \left(y^{(i)} - \sum_{j=0}^n x_j^{(i)} \theta_j\right) \cdot x_j^{(i)}$.

- \blacktriangleright Start with an "initial guess" for θ
- ▶ Repeatedly perform the update for all $0 \le j \le n$:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta),$$

- For each $0 \le j \le n$: $\partial J(\theta)/\partial \theta_j = -\sum_{i=1}^m \left(y^{(i)} \sum_{j=0}^n x_j^{(i)} \theta_j\right) \cdot x_j^{(i)}$.
- Magnitude of update: a linear function of the input vectors, where the coefficients are the error terms $y-\sum_j x_j\theta_j$

- ightharpoonup Start with an "initial guess" for heta
- ▶ Repeatedly perform the update for all $0 \le j \le n$:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta),$$

- For each $0 \le j \le n$: $\partial J(\theta)/\partial \theta_j = -\sum_{i=1}^m \left(y^{(i)} \sum_{j=0}^n x_j^{(i)} \theta_j\right) \cdot x_j^{(i)}$.
- Magnitude of update: a linear function of the input vectors, where the coefficients are the error terms $y-\sum_j x_j\theta_j$
- ▶ Looks at every input in the training set before making an update:

- ightharpoonup Start with an "initial guess" for heta
- ▶ Repeatedly perform the update for all $0 \le j \le n$:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta),$$

- For each $0 \le j \le n$: $\partial J(\theta)/\partial \theta_j = -\sum_{i=1}^m \left(y^{(i)} \sum_{j=0}^n x_j^{(i)} \theta_j\right) \cdot x_j^{(i)}$.
- Magnitude of update: a linear function of the input vectors, where the coefficients are the error terms $y \sum_j x_j \theta_j$
- ▶ Looks at every input in the training set before making an update: batch gradient descent

- \blacktriangleright Start with an "initial guess" for θ
- ▶ Repeatedly perform the update for all $0 \le j \le n$:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta),$$

- For each $0 \le j \le n$: $\partial J(\theta)/\partial \theta_j = -\sum_{i=1}^m \left(y^{(i)} \sum_{j=0}^n x_j^{(i)} \theta_j\right) \cdot x_j^{(i)}$.
- Magnitude of update: a linear function of the input vectors, where the coefficients are the error terms $y-\sum_j x_j\theta_j$
- ▶ Looks at every input in the training set before making an update: batch gradient descent
- ▶ Gradient descent is susceptible to **local minima** in general; in this case, *J* is a **convex** function and has a **unique global minimum**.

Stochastic Gradient Descent

In batch gradient descent, the update step for the jth component is:

$$\theta_j := \theta_j + \alpha \cdot \sum_{i=1}^m \left(y^{(i)} - \sum_{j=0}^n x_j^{(i)} \theta_j \right) \cdot x_j^{(i)}.$$

- Has to scan through the entire training set for a single update
- ightharpoonup Costly operation if m is large

Stochastic Gradient Descent

In batch gradient descent, the update step for the jth component is:

$$\theta_j := \theta_j + \alpha \cdot \sum_{i=1}^m \left(y^{(i)} - \sum_{j=0}^n x_j^{(i)} \theta_j \right) \cdot x_j^{(i)}.$$

- Has to scan through the entire training set for a single update
- ightharpoonup Costly operation if m is large
- **Stochastic Gradient Descent**: for every training instance (x, y), $x = (x_0, x_1, \dots, x_n)^\mathsf{T}$, update the parameters:

$$\theta_j := \theta_j + \alpha \cdot \left(y - \sum_{j=0}^n x_j \theta_j \right) \cdot x_j.$$

Stochastic Gradient Descent: Features and Issues

- ▶ Doesn't have to look at the entire training set to make progress.
- ▶ Often gets close to the optimum much faster than batch gradient descent.
- May never converge to the optimum (can keep on oscillating between values near the optimum). This problem is alleviated by choosing α to be very small.

Analytic Solution

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(y^{(i)} - \sum_{j=0}^{n} x_j^{(i)} \theta_j \right)^2$$

Want to find in closed-form a value of θ that minimizes $J(\theta)$

ightharpoonup Write $J(\theta)$ is matrix-vector form.

Analytic Solution

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(y^{(i)} - \sum_{j=0}^{n} x_j^{(i)} \theta_j \right)^2$$

Want to find in closed-form a value of θ that minimizes $J(\theta)$

- ightharpoonup Write $J(\theta)$ is matrix-vector form.
- **Design matrix.** An $m \times (n+1)$ matrix X defined by:

$$X = \begin{bmatrix} - & (x^{(1)})^{\mathsf{T}} & - \\ - & (x^{(2)})^{\mathsf{T}} & - \\ \vdots & \vdots & \vdots \\ - & (x^{(m)})^{\mathsf{T}} & - \end{bmatrix}$$

Analytic Solution

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(y^{(i)} - \sum_{j=0}^{n} x_j^{(i)} \theta_j \right)^2$$

Want to find in closed-form a value of θ that minimizes $J(\theta)$

- ▶ Write $J(\theta)$ is matrix-vector form.
- **Design matrix.** An $m \times (n+1)$ matrix X defined by:

$$X = \begin{bmatrix} - & (x^{(1)})^{\mathsf{T}} & - \\ - & (x^{(2)})^{\mathsf{T}} & - \\ \vdots & \vdots & \vdots \\ - & (x^{(m)})^{\mathsf{T}} & - \end{bmatrix}$$

$$y = (y^{(1)}, \dots, y^{(m)})^{\mathsf{T}}$$

Analytic Solution . . .

$$y - X \cdot \theta = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix} - \begin{bmatrix} (x^{(1)})^{\mathsf{T}} \cdot \theta \\ (x^{(2)})^{\mathsf{T}} \cdot \theta \\ \vdots \\ (x^{(m)})^{\mathsf{T}} \cdot \theta \end{bmatrix}$$

Matrix-form of $J(\theta)$:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(y^{(i)} - \sum_{j=0}^{n} x_j^{(i)} \theta_j \right)^2$$
$$= \frac{1}{2} (y - X\theta)^{\mathsf{T}} (y - X\theta)$$

Analytic Solution . . .

Minimize $J(\theta)$ w.r.t θ :

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (y - X\theta)^{\mathsf{T}} (y - X\theta)$$
= see Andrew Ng's notes
$$= X^{\mathsf{T}} X \theta - X^{\mathsf{T}} y$$

yielding:

$$\theta = (X^\mathsf{T} X)^{-1} \cdot X^\mathsf{T} y.$$

Analytic Solution ...

Minimize $J(\theta)$ w.r.t θ :

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (y - X\theta)^{\mathsf{T}} (y - X\theta)$$
= see Andrew Ng's notes
$$= X^{\mathsf{T}} X \theta - X^{\mathsf{T}} y$$

yielding:

$$\theta = (X^\mathsf{T} X)^{-1} \cdot X^\mathsf{T} y.$$

Assumption: X has full column rank so that X^TX is invertible.

Analytic Solution ...

Minimize $J(\theta)$ w.r.t θ :

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (y - X\theta)^{\mathsf{T}} (y - X\theta)$$
= see Andrew Ng's notes
$$= X^{\mathsf{T}} X \theta - X^{\mathsf{T}} y$$

yielding:

$$\theta = (X^\mathsf{T} X)^{-1} \cdot X^\mathsf{T} y.$$

Assumption: X has full column rank so that $X^{\mathsf{T}}X$ is invertible. *Proof.* Show that $X^{\mathsf{T}}Xz=0$ implies z=0.

Analytic Solution ...

Minimize $J(\theta)$ w.r.t θ :

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (y - X\theta)^{\mathsf{T}} (y - X\theta)$$
= see Andrew Ng's notes
$$= X^{\mathsf{T}} X \theta - X^{\mathsf{T}} y$$

yielding:

$$\theta = (X^\mathsf{T} X)^{-1} \cdot X^\mathsf{T} y.$$

- Assumption: X has full column rank so that $X^{\mathsf{T}}X$ is invertible. Proof. Show that $X^{\mathsf{T}}Xz=0$ implies z=0.
- ▶ If X does not have full column rank, the usual strategy is to remove redundant columns.

Assumptions

$$y^{(i)} = \theta^{\mathsf{T}} \cdot x^{(i)} + \epsilon^{(i)},$$

where the error terms $\epsilon^{(i)}$

- capture unmodeled effects and/or random noise
- lacktriangle are independent and identically distributed as $N(0,\sigma^2)$

Assumptions

$$y^{(i)} = \theta^{\mathsf{T}} \cdot x^{(i)} + \epsilon^{(i)},$$

where the error terms $\epsilon^{(i)}$

- capture unmodeled effects and/or random noise
- lacktriangle are independent and identically distributed as $N(0,\sigma^2)$

Given $x^{(i)}$,

 $E(y^{(i)} \mid x^{(i)}) = \theta^{\mathsf{T}} \cdot x^{(i)}$

Assumptions

$$y^{(i)} = \theta^{\mathsf{T}} \cdot x^{(i)} + \epsilon^{(i)},$$

where the error terms $\epsilon^{(i)}$

- capture unmodeled effects and/or random noise
- \blacktriangleright are independent and identically distributed as $N(0,\sigma^2)$

Given $x^{(i)}$,

- $E(y^{(i)} \mid x^{(i)}) = \theta^{\mathsf{T}} \cdot x^{(i)}$

Assumptions

$$y^{(i)} = \theta^{\mathsf{T}} \cdot x^{(i)} + \epsilon^{(i)},$$

where the error terms $\epsilon^{(i)}$

- capture unmodeled effects and/or random noise
- ightharpoonup are independent and identically distributed as $N(0,\sigma^2)$

Given $x^{(i)}$,

- $E(y^{(i)} \mid x^{(i)}) = \theta^{\mathsf{T}} \cdot x^{(i)}$

Thus $y^{(i)} \mid x^{(i)} \sim N(\theta^\mathsf{T} x^{(i)}, \sigma^2)$:

$$p(y^{(i)} \mid x^{(i)}; \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{\mathsf{T}} \cdot x^{(i)})^2}{2\sigma^2}\right)$$

▶ Given $x = (x^{(1)}, \dots, x^{(m)})^\mathsf{T}$ and θ , what is the joint distribution of the $y = (y^{(1)}, \dots, y^{(m)})^\mathsf{T}$?

- Given $x = (x^{(1)}, \dots, x^{(m)})^\mathsf{T}$ and θ , what is the joint distribution of the $y = (y^{(1)}, \dots, y^{(m)})^\mathsf{T}$?
- ▶ Since the $\epsilon^{(i)}$ s are independent:

- Given $x = (x^{(1)}, \dots, x^{(m)})^\mathsf{T}$ and θ , what is the joint distribution of the $y = (y^{(1)}, \dots, y^{(m)})^\mathsf{T}$?
- ▶ Since the $\epsilon^{(i)}$ s are independent:

$$p(y \mid x; \theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$

- Given $x = (x^{(1)}, \dots, x^{(m)})^\mathsf{T}$ and θ , what is the joint distribution of the $y = (y^{(1)}, \dots, y^{(m)})^\mathsf{T}$?
- ▶ Since the $\epsilon^{(i)}$ s are independent:

$$p(y \mid x; \theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$

▶ Likelihood function. $L(\theta) = p(y \mid x; \theta)$

- ▶ Given $x = (x^{(1)}, \dots, x^{(m)})^\mathsf{T}$ and θ , what is the joint distribution of the $y = (y^{(1)}, \dots, y^{(m)})^\mathsf{T}$?
- ▶ Since the $\epsilon^{(i)}$ s are independent:

$$p(y \mid x; \theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$

 $\blacktriangleright \ \ \text{Likelihood function.} \ L(\theta) = p(y \mid x; \theta)$

$$L(\theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{\left(y^{(i)} - \theta^{\mathsf{T}} x^{(i)}\right)^{2}}{2\sigma^{2}}\right\}$$

- ▶ Given $x = (x^{(1)}, \dots, x^{(m)})^\mathsf{T}$ and θ , what is the joint distribution of the $y = (y^{(1)}, \dots, y^{(m)})^\mathsf{T}$?
- ▶ Since the $\epsilon^{(i)}$ s are independent:

$$p(y \mid x; \theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$

 $\blacktriangleright \ \, \text{Likelihood function.} \ \, L(\theta) = p(y \mid x; \theta)$

$$L(\theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{\left(y^{(i)} - \theta^{\mathsf{T}} x^{(i)}\right)^{2}}{2\sigma^{2}}\right\}$$

Principle of Maximum Likelihood. Choose the parameters to make the data as likely as possible. Choose θ to maximize $L(\theta)$.

Maximizing $L(\theta)$ is equivalent to maximizing any strictly increasing function of $L(\theta).$

Maximizing $L(\theta)$ is equivalent to maximizing any strictly increasing function of $L(\theta)$.

- ▶ Usual to maximize the log likelihood $l(\theta) = \log L(\theta)$.
- ► $l(\theta) = m \log \frac{1}{\sqrt{2\pi}\sigma} \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^m (y^{(i)} \theta^\mathsf{T} x^{(i)})^2$.
- Maximizing $l(\theta)$ is equivalent to minimizing $\frac{1}{2} \sum_{i=1}^m \left(y^{(i)} \theta^\mathsf{T} x^{(i)} \right)^2$.

Maximizing $L(\theta)$ is equivalent to maximizing any strictly increasing function of $L(\theta)$.

- ▶ Usual to maximize the log likelihood $l(\theta) = \log L(\theta)$.
- $l(\theta) = m \log \frac{1}{\sqrt{2\pi}\sigma} \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^m (y^{(i)} \theta^{\mathsf{T}} x^{(i)})^2.$
- Maximizing $l(\theta)$ is equivalent to minimizing $\frac{1}{2} \sum_{i=1}^{m} (y^{(i)} \theta^{\mathsf{T}} x^{(i)})^2$.

Summary

Under the previous probabilistic assumptions: least-squares regression corresponds to finding the maximum likelihood estimate of θ .

The Goodness of Fit

lacktriangle Residual Standard Error: standard deviation of the error terms $\epsilon^{(i)}$.

RSE =
$$\sqrt{\frac{1}{n-2} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2}$$

The Goodness of Fit

lacktriangle Residual Standard Error: standard deviation of the error terms $\epsilon^{(i)}.$

RSE =
$$\sqrt{\frac{1}{n-2} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2}$$

▶ R² Statistic:

$$R^{2} = 1 - \frac{\sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2}}{\sum_{i=1}^{m} (y^{(i)} - \bar{y})^{2}}$$

The Goodness of Fit

lacktriangle Residual Standard Error: standard deviation of the error terms $\epsilon^{(i)}.$

RSE =
$$\sqrt{\frac{1}{n-2} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2}$$

 $ightharpoonup R^2$ Statistic:

$$R^{2} = 1 - \frac{\sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2}}{\sum_{i=1}^{m} (y^{(i)} - \bar{y})^{2}}$$

- ▶ Total sum of squares $=\sum_{i=1}^m \left(y^{(i)} \bar{y}\right)^2$: variability inherent in the response
- ▶ Residual sum of squares $= (y^{(i)} \hat{y}^{(i)})^2$: variability left unexplained after performing the regression

Predicting House Prices

	longitude	latitude	median_age	median_income	ocean_proximity	rooms	bedrooms_fraction	people_per_house	price_Dollars
18139	-122.01	37.34	31.0	6.3052	<1H OCEAN	5.292096	0.170779	2.565292	344200.0
202	-122.23	37.78	43.0	1.9338	NEAR BAY	3.242009	0.332394	3.438356	112500.0
9150	-118.52	34.44	26.0	5.3209	<1H OCEAN	5.765432	0.158458	3.203704	185000.0
7519	-118.26	33.91	39.0	2.4375	<1H OCEAN	4.844560	0.224599	3.683938	101900.0
13996	-117.02	34.88	18.0	3.0313	INLAND	5.304239	0.208275	2.912718	80000.0
18665	-121.96	36.99	23.0	2.7375	NEAR OCEAN	4.818318	0.233094	2.136637	238000.0
14303	-117.14	32.72	34.0	2.1199	NEAR OCEAN	3.255784	0.340308	2.584833	160400.0
15726	-122.45	37.78	43.0	4.1319	NEAR BAY	3.694656	0.273416	2.282443	322700.0
7460	-118.19	33.92	36.0	2.0785	<1H OCEAN	4.520000	0.231563	4.896667	139800.0
14633	-117.20	32.79	16.0	5.0958	NEAR OCEAN	5.428198	0.189514	1.947781	300000.0
20382	-118.85	34.14	16.0	8.1064	<1H OCEAN	7.337500	0.132149	2.516071	423400.0
20540	-121.72	38.54	16.0	3.1908	INLAND	4.386792	0.223656	2.179245	194300.0