02. Estudio de los esfuerzos en un punto

secciones 2.7 a 2.10

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales
Departamento de Ingeniería Civil
Mecánica Tensorial

2023a

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada (Álvarez, 2022).

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

1 2.7. Esfuerzos normales y tangenciales sobre un plano

- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circulo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- Referencias

Esfuerzos normales y tangenciales sobre un plano

Entendamos el vector del esfuerzo normal σ_n como la proyección del vector de esfuerzos q sobre el vector normal al plano \hat{n} :

$$oldsymbol{\sigma}_n = \operatorname{Proy} \, oldsymbol{q}/oldsymbol{\hat{n}} = rac{\langle oldsymbol{q}, oldsymbol{\hat{n}}
angle}{\langle oldsymbol{\hat{n}}, oldsymbol{\hat{n}}
angle} oldsymbol{\hat{n}}$$

Esfuerzos normales y tangenciales sobre un plano

en 3D

• El valor del esfuerzo normal:

$$\sigma_n = \sigma_x \alpha^2 + \sigma_y \beta^2 + \sigma_z \gamma^2 + 2\tau_{xz} \alpha \gamma + 2\tau_{yz} \beta \gamma + 2\tau_{xy} \alpha \beta$$

• El valor del esfuerzo tangencial o cortante:

$$\tau_n^2 = (\sigma_x \alpha + \tau_{xy} \beta + \tau_{xz} \gamma)^2 + (\tau_{xy} \alpha + \sigma_y \beta + \tau_{yz} \gamma)^2 + (\tau_{xz} \alpha + \tau_{yz} \beta + \sigma_z \gamma)^2 - \sigma_n^2$$

Código

• 02_07.ipynb

Michael H.P.

Esfuerzos normales y tangenciales sobre un plano en 2D

$$\sigma'_x \to \sigma_n \qquad \tau_{x'y'} \to \tau_n$$

El valor del esfuerzo normal:

$$\sigma_n(\theta) = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
$$= \sigma_x \cos^2 \theta + \sigma_y \sin^2 \theta + 2\tau_{xy}$$

• El valor del esfuerzo tangencial o cortante:

$$\tau_n(\theta) = \tau_{xy} \cos 2\theta - \frac{\sigma_x - \sigma_y}{2} \sin 2\theta$$

Michael H.P.

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circulo de Molii en dos difficisiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- Referencias

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Tensiones y direcciones principales en dos dimensiones

Esfuerzos principales en 2D

$$(\sigma_1)_{xy} = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
$$(\sigma_2)_{xy} = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Debemos dar solución a los siguientes sistemas de ecuaciones:

$$(\sigma_{x} - (\sigma_{1})_{xy}) \alpha_{1} + \tau_{xy} \beta_{1} = 0 \qquad (\sigma_{x} - (\sigma_{2})_{xy}) \alpha_{2} + \tau_{xy} \beta_{2} = 0$$

$$\tau_{xy} \alpha_{1} + (\sigma_{y} - (\sigma_{1})_{xy}) \beta_{1} = 0 \quad \text{y} \quad \tau_{xy} \alpha_{2} + (\sigma_{y} - (\sigma_{2})_{xy}) \beta_{2} = 0$$

$$\alpha_{1}^{2} + \beta_{1}^{2} = 1 \qquad \alpha_{2}^{2} + \beta_{2}^{2} \qquad = 1$$

¿Cuándo tenemos un discriminante nulo?

R//. Estado de esfuerzos hidrostáticos

¿Cuándo tenemos un discriminante nulo? R//. Estado de esfuerzos hidrostáticos

Código

• 02_08_01_ejemplo_01.ipynb

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

3D

Tensiones y direcciones principales

Expandiendo el determinante $\det\left(\underline{\underline{\boldsymbol{\sigma}}} - \sigma_n \boldsymbol{I}\right) = 0$

$$(\sigma_x - \sigma_n) \left[(\sigma_y - \sigma_n)(\sigma_z - \sigma_n) - \tau_{yz}^2 \right]$$

$$- \tau_{xy} \left[\tau_{xy}(\sigma_z - \sigma_n) - \tau_{yz}\tau_{xz} \right]$$

$$+ \tau_{xz} \left[\tau_{xy}\tau_{yz} - (\sigma_y - \sigma_n)\tau_{xz} \right] = 0;$$

Michael H.P.

Agrupando y reduciendo términos:

Ecuación característica de $\underline{\sigma}$ tridimensional

$$-\sigma_n^3 + I_1 \sigma_n^2 - I_2 \sigma_n + I_3 = 0$$

donde,

$$\Theta := I_1 := \operatorname{tr}(\underline{\underline{\sigma}})$$

$$I_2 := \frac{1}{2} \left(\left(\operatorname{tr}(\underline{\underline{\sigma}}) \right)^2 - \operatorname{tr}(\underline{\underline{\sigma}})^2 \right)$$

$$I_3 := \det(\underline{\underline{\sigma}}).$$

Código

• 02_08_02.ipynb

Código

• 02_08_02_ejemplos.ipynb

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Método de Newton-Raphson

para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica

Estudio autónomo

Sería interesante:

- ¿Cómo lo programo en Python o Matlab?
- ¿Ya está implementado en Python o Matlab? ¿Cómo funciona?

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Metodo de Newton-Raphson para encontrar las raices del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Ortogonalidad de las direcciones principales

Estudio autónomo

• Verifique la ortogonalidad de los vectores propios del ejercicio anterior

Código

• 02_08_04_ejemplo.ipynb

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- Referencias

Círculo de Mohr

La circunferencia de Mohr fue propuesta por el ingenierio civil aleman Otto Mohr (1835 - 1918) en 1882 con el objeto de representar gráficamente el estado de esfuerzos en un punto.

Círculo de Mohr

Aplicaciones

Criterio de falla de Mohr-Coulomb envolvente de falla τ_n de Mohr-Coulomb $g(\sigma_n)$ $|\tau_n| = g(\sigma_n)$ $\tau_n = c - \sigma_n \tan \phi$ $|\tau_n| < g(\sigma_n)$

Este criterio es altamente utilizado en el análisis de cimentaciones.

Michael H.P. Mecánica tensorial, Unidad 2 2023a

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Estudio autónomo

Estudiar los siguientes videos:

- 02.09 Círculo de Mohr en 2D (Parte 1/3) Deducción del círculo de Mohr para tensión plana
- 02.09 Círculo de Mohr en 2D (Parte 2/3) Esfuerzos normales y cortantes máximos y mínimos
- 02.09 Círculo de Mohr en 2D (Parte 3/3) Deducción del círculo de Mohr para tensión plana

Interpretación física

Representa el lugar geométrico de las posibles combinaciones de esfuerzos normales σ_n y cortantes τ_n que actúan sobre la superficie inclinada \overline{AB} a medida que el ángulo θ varía entre 0° y 180° .

Michael H.P. Mecánica tensorial, Unidad 2 2023a

Interpretación matemática

Curva paramétrica $(\sigma_n(\theta), \tau_n(\theta))$ que aparecen al variar el parámetro θ en el intervalo $[0^\circ, 180^\circ)$. Dicha curva empieza a graficarse en el punto de coordenadas (σ_x, σ_y) y se traza en sentido horario. La circunferencia resultante

tiene centro en
$$(\frac{\sigma_x + \sigma_y}{2}, 0)$$
 y radio $\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$

Nos planteamos dos preguntas:

- ¿Cuál es la inclinación θ para la cual se producen los esfuerzos normales σ_n máximos y mínimos sobre el punto en cosideración?
- ¿Qué magnitud tienen?

$$\sin 2\theta_1 = \frac{\tau_{xy}}{R}$$

$$\cos 2\theta_1 = \frac{\sigma_x - \sigma_y}{2R}$$

$$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\sin 2\theta_2 = -\frac{\tau_{xy}}{R}$$

$$\cos 2\theta_2 = -\frac{\sigma_x - \sigma_y}{2R}$$

Resumen de equaciones

Construcción de la curva paramétrica

$$\sigma_n(\theta) = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
$$\tau_n(\theta) = \tau_{xy} \cos 2\theta - \frac{\sigma_x - \sigma_y}{2} \sin 2\theta$$

Direcciones principales

$$\tan 2\theta_1 = \frac{+\tau_{xy}}{+\frac{\sigma_x - \sigma_y}{2}} \qquad \tan 2\theta_2 = \frac{-\tau_{xy}}{-\frac{\sigma_x - \sigma_y}{2}}$$

Esfuerzos principales

$$(\sigma_1)_{xy} = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
$$(\sigma_2)_{xy} = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Resumen de equaciones

• Esfuerzos cortantes máximos y mínimos

$$(\tau_{\text{máx}})_{xy} = +\frac{(\sigma_1)_{xy} - (\sigma_2)_{xy}}{2} = +\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
$$(\tau_{\text{mín}})_{xy} = -\frac{(\sigma_1)_{xy} - (\sigma_2)_{xy}}{2} = -\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Dirección de los esfuerzos cortantes máximos y mínimos

$$\cot 2\theta_{c1} = \frac{+\tau_{xy}}{-\frac{\sigma_x - \sigma_y}{2}} \qquad \cot 2\theta_{c2} = \frac{-\tau_{xy}}{+\frac{\sigma_x - \sigma_y}{2}}$$

Relación entre ángulos

Comentario

Veremos que θ_{c1} y θ_{c2} se producen a 45° de los planos principales, más explícitamente:

$$\theta_{c1} = \theta_1 - 45^\circ = \theta_2 + 45^\circ$$

$$\theta_{c2} = \theta_1 + 45^{\circ} = \theta_2 - 45^{\circ}$$

Michael H.P.

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circulo de Moni en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Gráfica e interpretación del círuclo de Mohr

Michael H.P.

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

La función atan2

Es una función $\mathbf{R} \times \mathbf{R} \to (-\pi,\pi]$ que retorna el ángulo correcto en radiante entre un vector $[x,y]^T$ y el eje x positivo teniendo en cuenta que para ubicar el cuadrante, se utilizan los signos de los argumentos x y y. Está definida por:

$$\operatorname{atan2}(y,x) = \begin{cases} \arctan(\frac{y}{x}) & \text{si } x > 0 \\ \arctan(\frac{y}{x}) + \pi & \text{si } y \ge 0, x < 0 \\ \arctan(\frac{y}{x}) - \pi & \text{si } y < 0, x < 0 \\ \frac{\pi}{2} & \text{si } y > 0, x = 0 \\ -\frac{\pi}{2} & \text{si } y < 0, x = 0 \\ \infend{mindefinido} & \text{si } y = 0, x = 0 \end{cases}$$

Michael H.P.

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circulo de Mont en dos difficilistories
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Ejemplo

Considere un punto sujeto a los esfuerzos $\sigma_x=1Pa$, $\sigma_y=2Pa$ y $\tau_{xy}=-3Pa$; calcule los esfuerzos principales y sus direcciones para el punto en consideración.

Código

- 02_09_04_ejemplo.ipynb
- circulo_mohr_2d.py

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Circuio de iviolii en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Estudio autónomo

Estudiar los siguientes videos:

- 02.09 Círculo de Mohr en 3D (Parte 1/3) Deducción del círculo de Mohr tridimensional
- 02.09 Círculo de Mohr en 3D (Parte 2/3) Ubicando los planos donde actuan los esfuerzos en 3D
- 02.09 Círculo de Mohr en 3D (Parte 3/3) ¿Donde actúan los esfuerzos cortantes máximos en 3D?

Michael H.P. Mecánica tensorial, Unidad 2 2023a

Ejemplo 1

Michael H.P. Mecánica tensorial, Unidad 2 2023a

Michael H.P. Mecánica tensorial, Unidad 2 2023a

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.9.1. Círculo de Mohr en dos dimensiones
 - 2.9.2. Gráfica e interpretación del círculo de Mohr
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- Referencias

La analogía del bombillo y la caja

Estudio autónomo

Prestar atención a:

• La analogía del bombillo y la caja :)

Michael H.P. Mecánica tensorial, Unidad 2 2023a

- 1 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2 2.8. Esfuerzos y direcciones principales
 - 2.8.1. Tensiones y direcciones principales en dos dimensiones
 - 2.8.2. Tensiones y direcciones principales en tres dimensiones
 - 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica
 - 2.8.4. Ortogonalidad de las direcciones principales
- 3 2.9. Círculo de Mohr en problemas bi y tridimensionales
 - 2.0.1. Cuéfica a intermentación del consola de Malar
 - 2.0.2. Les Caratter de l'interprétacion del
 - 2.9.3. La función atan2
 - 2.9.4. Ejemplo
 - 2.9.7. Círculo de Mohr en tres dimensiones
- 4 2.10. La analogía del bombillo y la caja
- 6 Referencias

Referencias

Álvarez, D. A. (2022). *Teoría de la elasticidad*, volume 1. Universidad Nacional de Colombia.

Michael H.P. Mecánica tensorial, Unidad 2 2023a

- Lista de resproducción: 02 Esfuerzos o Tensiones
- Repositorio del curso: github/medio continuo