# 2 Primitivação (Integrais indefinidos)

Cálculo I – agrupamento I 16/17

baseado no texto de Virgínia Santos, Cálculo com funções de uma variável, 2009/10, pp. 165 — 241

Isabel Brás

IJΑ

12/10/2016

### Resumo dos Conteúdos

- Noções Básicas; Integração Imediata ou Quase Imediata
- Primitivação por Partes
- 3 Primitivação de Funções Racionais
- Primitivação por Substituição (ou por mudança de variável)

### Primitiva de uma função

#### Definição:

Seja  $f:I\longrightarrow \mathbb{R}$  uma função, onde I é um intervalo não degenerado de  $\mathbb{R}$ . Chama-se primitiva ou antiderivada de f a toda a função F diferenciável em I tal que, para todo o  $x\in I$ ,

$$F'(x) = f(x).$$

Se f admite uma primitiva em I dizemos que f é primitivável em I.

### Observações:

- Caso I = [a, b], dizer que F é diferenciável em I significa que, para todo o  $x \in ]a, b[$ , F é diferenciável em x e que existem e são finitas  $F'_{+}(a)$  e  $F'_{-}(b)$ . Convenções análogas para: I = [a, b[ ou I = ]a, b].
- Toda a primitiva de uma função é uma função contínua.

### Exemplos de primitivas

- $F(x) = x^2$  é uma primitiva de f(x) = 2x, em  $\mathbb{R}$
- $F(x) = e^x + 3$  é uma primitiva de  $f(x) = e^x$ , em  $\mathbb R$
- $F(x) = \cos x$  é uma primitiva de  $f(x) = -\sin x$ , em  $\mathbb R$
- $F(x) = \sin x$  é uma primitiva de  $f(x) = \cos x$ , em  $\mathbb{R}$

#### Exercício:

Indique uma primitiva da função  $f(x) = \frac{1}{x}$ , em  $\mathbb{R}^+$ .

### Proposição:

Seja  $f:I\to\mathbb{R}$  uma função e  $F:I\to\mathbb{R}$  uma primitiva de f em I. Então, para cada  $C\in\mathbb{R}$ , G(x)=F(x)+C é também uma primitiva de f em I.

### Proposição:

Se  $F: I \to \mathbb{R}$  e  $G: I \to \mathbb{R}$  são duas primitivas de  $f: I \to \mathbb{R}$ , então existe  $C \in \mathbb{R}$  tal que F(x) - G(x) = C, para todo o  $x \in I$ .

## Integral Indefinido

### Definição:

À família de todas as primitivas de uma função f chamamos integral indefinido de f. Denota-se esse conjunto de funções por

$$\int f(x) \ dx$$

A f chamamos função integranda e a x variável de integração

Assim, atendendo à segunda proposição do slide anterior, se F for uma primitiva de f, então

$$\int f(x) dx = F(x) + C, \ C \in \mathbb{R}$$

# Alguns Integrais Indefinidos Imediatos

# Alguns Integrais Indefinidos Imediatos (cont.)

#### Proposição:

Sejam f e g funções definidas em I e  $\alpha, \beta \in \mathbb{R}$  não simultaneamente nulos.

Se f e g são primitiváveis em I, então  $\alpha f + \beta g$  é primitivável em I e

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx.$$

### Exemplo de aplicação:

$$\int (5\cos x - 3\sin x) dx = 5 \int \cos x dx - 3 \int \sin x dx$$
$$= 5 \sin x + 3 \cos x + C, \quad C \in \mathbb{R}$$

## Fórmula para a Primitivação Imediata

### Proposição:

Sejam I e J dois intervalos de números reais,  $f:I\to\mathbb{R}$  uma função primitivável e  $g:J\to\mathbb{R}$  uma função tal que a composta  $f\circ g$  está definida.

Se g é diferenciável em J, então  $(f \circ g)g'$  é primitivável e tem-se

$$\int f(g(x))g'(x)\,dx=F(g(x))+C\;,\quad C\in\mathbb{R}\;,$$

onde F é uma primitiva de f.

### Exemplo de aplicação:

$$\int 2x\cos(x^2)\,dx = \,\mathrm{sen}\,(x^2) + C\,,\quad C\in\mathbb{R}$$

### Lista de Integrais Indefinidos Imediatos

( Esta lista generaliza o conteúdo dos slides 7 e 8, e é uma consequência da Proposição do slide anterior)

# Exemplos de Integrais Indefinidos "quase imediatos"

#### Exercícios:

Mostre que

# Primitivação por Partes

### Proposição:

Sejam f e g funções diferenciáveis em I. Então

$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx.$$

### Exemplo de aplicação:

$$\int \underbrace{\frac{x}{f'}} \underbrace{\ln x}_{g} dx = \frac{x^{2}}{2} \ln x - \int \frac{x^{2}}{2} \frac{1}{x} dx$$

$$= \frac{x^{2}}{2} \ln x - \int \frac{x}{2} dx$$

$$= \frac{x^{2}}{2} \ln x - \frac{x^{2}}{4} + C, \quad C \in \mathbb{R}.$$

# Observações sobre a Primitivação por Partes

- Esta fórmula é útil sempre que a função integranda se pode escrever como o produto de duas funções e além disso é conhecida uma primitiva de pelo menos uma delas.
- Sabendo primitivar apenas uma das funções, escolhe-se essa para primitivar e deriva-se a outra função.
- Quando conhecemos uma primitiva de cada uma das funções, devemos escolher para derivar a função que mais se simplifica por derivação (se alguma delas se simplificar!).
   Por vezes essa escolha é indiferente.
- Por vezes é necessário efetuar várias aplicações sucessivas da fórmula de integração por partes.
- Por vezes obtém-se novamente o integral que se pretende determinar.
   Nesses casos, interpreta-se a igualdade obtida como uma equação em que a incógnita é integral que se pretende determinar.

# Primitivação de Funções Racionais

### Definições

Uma função cuja expressão analítica admite a forma

$$\frac{N(x)}{D(x)}$$

onde N e D são polinómios em x com coeficientes reais e D é não nulo, diz-se uma função racional.

Caso grau(N) < grau(D) dizemos que  $\frac{N(x)}{D(x)}$  é uma fração própria.

### Exemplos:

$$f(x) = \frac{x^4 + 3x^3 + x - 1}{x^3 + x + 2}$$
 e  $g(x) = \frac{x - 4}{x^3 + 2x}$  são funções racionais.  $g$  é própria,  $f$  não é própria.

A primitiva de uma função racional

$$f(x) = \frac{N(x)}{D(x)}$$

pode sempre escrever-se como somas, produtos, quocientes e composições de funções racionais, logaritmos e arco-tangentes.

O seu processo de primitivação deve organizar-se do seguinte modo:

• Caso f(x) seja não própria, executar a divisão de polinómios N(x) por D(x), por forma a obter

$$\frac{N(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)};$$

Caso f(x) seja própria avançar para o passo seguinte;

- 2 Decompor em frações simples  $\frac{R(x)}{D(x)}$ ;
- 3 Primitivar as frações simples e o polinómio Q(x) (caso exista).

## A divisão polinomial

### Proposição:

Se grau $(N) \ge \text{grau}(D)$ , então existem polinómios Q e R tal que grau(R) < grau(D) tais que

$$N(x) = D(x)Q(x) + R(x).$$

A Q e R chamamos quociente e resto da divisão de N por D, respetivamente.

Assim, caso grau(N) > grau(D),

$$\frac{N(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$$

$$\checkmark \qquad \downarrow$$

polinómio fração própria

# A redução à primitivação de frações simples

Como

$$\int \frac{N(x)}{D(x)} dx = \int Q(x) dx + \int \frac{R(x)}{D(x)} dx,$$

e a primitivação de funções polinomiais é imediata, a primitivação de funções racionais reduz-se à primitivação de frações próprias, que por sua vez se pode reduzir à primitivação de frações simples.

### Definição

Chamamos fração simples a toda a fração do tipo

$$\frac{A}{(x-\alpha)^p}$$
 ou  $\frac{Bx+C}{(x^2+\beta x+\gamma)^q}$ ,

onde  $p, q \in \mathbb{N}$ ,  $A \in \mathbb{R} \setminus \{0\}$ ,  $B, C \in \mathbb{R}$  não simultaneamente nulos e  $\alpha, \beta, \gamma \in \mathbb{R}$  são tais que  $\beta^2 - 4\gamma < 0$ .

#### Exemplos de frações simples:

$$\frac{2}{x-1}$$
,  $\frac{1}{x^2}$ ,  $\frac{x-2}{x^2+x+1}$ ,  $\frac{1}{(x^2+x+2)^3}$ 

### Proposição:

Toda a fração própria pode ser decomposta numa soma de frações simples.

# Decomposição duma fração própria em frações simples

Fração a decompor: 
$$\frac{R(x)}{D(x)}$$
, com grau $(R) < \text{grau}(D)$ 

#### Procedimento:

**1** Decompor D(x) em factores irredutíveis:

$$D(x) = a(x - \alpha_1)^{p_1} \dots (x - \alpha_n)^{p_n} (x^2 + \beta_1 x + \gamma_1)^{q_1} \dots (x^2 + \beta_m x + \gamma_m)^{q_m}$$

onde 
$$a \in \mathbb{R} \setminus \{0\}$$
,  $p_i, q_j \in \mathbb{N}$ ,  $\alpha_i, \beta_j, \gamma_j \in \mathbb{R}$ , com  $\beta_j - 4\gamma_j < 0$ , para  $i = 1, \ldots, n$  e  $j = 1, \ldots, m$ .

- ② Fazer corresponder a cada factor de D(x) uma determinada fração simples de acordo com o seguinte:
  - (i) Ao fator de D(x) do tipo  $(x \alpha)^r$   $(r \in \mathbb{N})$  corresponde

$$\frac{A_1}{x-\alpha} + \frac{A_2}{(x-\alpha)^2} + \cdots + \frac{A_r}{(x-\alpha)^r}$$

onde  $A_1, \dots, A_r$  são constantes reais a determinar.

(ii) Ao fator de D(x) do tipo

$$(x^2 + \beta x + \gamma)^s$$
, com  $\beta^2 - 4\gamma < 0$  e  $s \in \mathbb{N}$ 

corresponde

$$\frac{B_1x + C_1}{x^2 + \beta x + \gamma} + \frac{B_2x + C_2}{(x^2 + \beta x + \gamma)^2} + \dots + \frac{B_sx + C_s}{(x^2 + \beta x + \gamma)^s}$$

onde  $B_i$ ,  $C_i$  são constantes reais a determinar,  $i = 1, \dots, s$ .

**3** Escrever  $\frac{R(x)}{D(x)}$  como soma dos elementos simples identificados no ponto anterior e determinar as constantes que neles ocorrem, usando o método dos coeficientes indeterminados.

### Exemplo:

Decomposição da fração própria  $\frac{x}{x^2-5x+6}$  em frações simples:

- Fatorizar o denominador: (x-3)(x-2); [Verifique!]
- Determinar A e B, reais, tais que

$$\frac{x}{x^2 - 5x + 6} = \frac{A}{x - 2} + \frac{B}{x - 3}$$

$$x = A(x-3) + B(x-2)$$
  
 $x = (A+B)x + (-3A-2B)$ 

e portanto

$$\begin{cases} A+B = 1 \\ -3A-2B = 0 \end{cases}$$

Resolvendo o sistema obtém-se A = -2 e B = 3. [Verifique!]

# Primitivação de Frações Simples

• Fração do tipo:  $\frac{A}{(x-\alpha)^r}$ 

Se 
$$r = 1$$
,  $\int \frac{A}{x - \alpha} dx = A \ln|x - \alpha| + C$ ,  $C \in \mathbb{R}$ 

Se 
$$r \neq 1$$
,  $\int \frac{A}{(x-\alpha)^r} dx = \frac{A(x-\alpha)^{-r+1}}{-r+1} + C$ ,  $C \in \mathbb{R}$ 

2 Fração do tipo:  $\frac{Bx + C}{(x^2 + \beta y + \gamma)^s}$ 

Reduz-se à primitivação de frações do tipo (i) ou (ii) (podendo eventualmente usar-se • mudança de variável (ver à frente slide 27)

- (i)  $\frac{x}{(1+x^2)^s}$ ; (ii)  $\frac{1}{(1+x^2)^s}$ ;

### Primitivação das frações de tipo (i) e (ii) do slide anterior:

(i) Fração do tipo:  $\frac{x}{(1+x^2)^s}$ 

Se 
$$s = 1$$
,  $\int \frac{x}{1+x^2} dx = \frac{1}{2} \ln|1+x^2| + C$ ,  $C \in \mathbb{R}$ 

Se 
$$s \neq 1$$
,  $\int \frac{x}{(1+x^2)^s} dx = \frac{(1+x^2)^{-s+1}}{2(-s+1)} + C$ ,  $C \in \mathbb{R}$ 

(ii) Fração do tipo:  $\frac{1}{(1+x^2)^s}$ 

Se 
$$s = 1$$
,  $\int \frac{1}{1+x^2} dx = \operatorname{arctg} x + C$ ,  $C \in \mathbb{R}$ 

Se  $s \neq 1$ , aplica-se, por exemplo, um método de primitivação por partes recursivo ou a  $\mbox{\ }$  mudança de variável (slide 27)  $\mbox{\ }$   $x = \mbox{\ }$  tg t.

Exemplo: 
$$\int \frac{x}{x^2 - 5x + 6} dx$$

Obter a decomposição de  $\frac{x}{x^2-5x+6}$  em frações simples (ver slide 25):

$$\frac{x}{x^2 - 5x + 6} = \frac{-2}{x - 2} + \frac{3}{x - 3}$$

Integração:

$$\int \frac{x}{x^2 - 5x + 6} dx = \int \frac{-2}{x - 2} dx + \int \frac{3}{x - 3} dx$$
$$= -2 \ln|x - 2| + 3 \ln|x - 3| + C, C \in \mathbb{R}$$

## Primitivação por Substituição

### Proposição

Sejam I e J intervalos de  $\mathbb{R}$ ,  $f:I\longrightarrow\mathbb{R}$  uma função primitivável e  $\varphi:J\longrightarrow\mathbb{R}$  uma função diferenciável e invertível tal que  $\varphi(J)\subset I$ . Então a função  $(f\circ\varphi)\varphi'$  é primitivável e, sendo H uma primitiva de  $(f\circ\varphi)\varphi'$ , tem-se que  $H\circ\varphi^{-1}$  é uma primitiva de f.

#### Observação

Na prática, quando calculamos uma primitiva recorrendo à Proposição anterior, usando a mudança de variável  $x=\varphi(t)$ , escrevemos, por abuso de linguagem,

$$\int f(x) dx = \int f(\varphi(t))\varphi'(t) dt = H(\varphi^{-1}(x)) + C, \quad C \in \mathbb{R}.$$

#### Exemplo de aplicação da técnica de primitivação por substituição:

$$\int \frac{1}{1+\sqrt{2x}} \, dx$$

Substituição de variável:  $\sqrt{2x} = t$ , donde resulta  $x = \frac{t^2}{2}$ ,  $t \ge 0$ .

Esta substituição está definida pela função  $\varphi(t)=\frac{t^2}{2}$ , tal que  $D_{\varphi}=J$ , sendo J um intervalo adequado de  $\mathbb{R}^+_0$ . A função  $\varphi$  é diferenciável e invertível em J. Assim

$$\int \frac{1}{1+\sqrt{2x}} dx = \int \frac{t}{1+t} dt$$

$$= \int \left(1 - \frac{1}{1+t}\right) dt$$

$$= t - \ln|1+t| + C, \quad C \in \mathbb{R}$$

$$= \sqrt{2x} - \ln(1+\sqrt{2x}) + C, \quad C \in \mathbb{R}.$$

## Primitivação de funções envolvendo radicais

(usando substituições trigonométricas)



Permitem transformar a primitivação de uma função que envolve radicais na primitivação de uma função trigonométrica.

### Tabela de substituições

função com o radical:

substituição:

1. 
$$\sqrt{a^2 + x^2}$$
,  $a > 0$ 

2. 
$$\sqrt{a^2-x^2}$$
,  $a>0$ 

3. 
$$\sqrt{x^2 - a^2}$$
,  $a > 0$ 

4. 
$$\sqrt{a^2+b^2x^2}$$
,  $a,b>0$ 

5. 
$$\sqrt{a^2-b^2x^2}$$
,  $a,b>0$ 

6. 
$$\sqrt{-a^2+b^2x^2}$$
,  $a, b>0$ 

$$\sqrt{ax^2 + bx + c}$$
,  $a \neq 0$  e  $b, c \in \mathbb{R}$ 

$$x = a \operatorname{tg} t$$
, com  $t \in ]-\frac{\pi}{2}, \frac{\pi}{2}[$   
 $x = a \operatorname{sen} t$ , com  $t \in ]-\frac{\pi}{2}, \frac{\pi}{2}[$ 

$$x = a \sec t$$
, com  $t \in ]0, \frac{\pi}{2}[$ 

reduz-se a um dos anteriores.