

Claims

1. An electroluminescent device comprising an anode, a cathode and one or a plurality of organic compound layers sandwiched therebetween, in which said organic compound layers comprise an organic compound containing one or more pyrimidine moieties.
- 5
2. An electroluminescent device according to claim 1, wherein the organic compound is a pyrimidine compound of formula

10

V is C₆-C₃₀aryl or C₂-C₃₀heteroaryl, which can be substituted or unsubstituted, in

particular , H, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl, C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy; C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶;

15

W is C₆-C₃₀aryl or C₂-C₃₀heteroaryl, which can be substituted or unsubstituted, in

particular , H, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl, C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy; C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶;

20

Y is C₆-C₃₀aryl or C₂-C₃₀heteroaryl, which can be substituted or unsubstituted, in

particular , H, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl, C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy; C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶;

X is C₆-C₃₀aryl or C₂-C₃₀heteroaryl, which can be substituted or unsubstituted, in

particular , H, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl, C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy; C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; wherein the groups

V¹ to V⁵, W¹ to W⁵, X¹ to X⁵ and Y¹ to Y⁵ are independently of each other H; halogen, C₆-C₂₄aryl; C₆-C₂₄aryl which is substituted by G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -

substituted by E and/or interrupted by D; , wherein Ar¹ is C₆-C₃₀aryl or C₂-C₃₀heteroaryl, especially phenyl, Ar² is C₆-C₃₀aryl or C₂-C₃₀heteroaryl, especially phenyl, or H, C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; C₂-C₂₄heteroaryl; C₂-C₂₄heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; -CONR⁵R⁶; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D; or W⁵ or Y⁵ together with V form a group -CR⁹₂-, -CR⁹₂-CR⁹₂-, -C(=O)CR⁹₂-, -C(=O)-, or -CR⁹=CR⁹-, or

W^5 and Y^5 together with V form a group

wherein R^9 is H; $C_1\text{-}C_{18}$ alkyl, $C_1\text{-}C_{18}$ alkyl which is interrupted by O -, $C_6\text{-}C_{18}$ aryl, $C_6\text{-}C_{18}$ aryl which is substituted by $C_1\text{-}C_{18}$ alkyl, or $C_1\text{-}C_{18}$ alkoxy, or

- 5 one of the substituents V , W , X , or Y is a group of the formula $-Z$, $-\text{Ar-Z}$, wherein Ar is $C_6\text{-}C_{24}$ aryl or $C_2\text{-}C_{24}$ heteroaryl, which can be substituted, in particular

one of the substituents

- 10 V^1 to V^5 , W^1 to W^5 , X^1 to X^5 , or Y^1 to Y^5 is a group of the formula $-Z'$, $-\text{Ar-Z}'$, wherein Ar is $C_6\text{-}C_{24}$ aryl or $C_2\text{-}C_{24}$ heteroaryl, which can be substituted, in particular

wherein

- 15 A^1 , B^1 and B^2 are independently of each other H; $C_6\text{-}C_{18}$ aryl; $C_6\text{-}C_{18}$ aryl which is substituted by G; $C_1\text{-}C_{18}$ alkyl; $C_1\text{-}C_{18}$ alkyl which is substituted by E and/or interrupted by D; $C_7\text{-}C_{18}$ alkylaryl; $C_7\text{-}C_{18}$ alkylaryl which is substituted by E and/or interrupted by D; $C_2\text{-}C_{18}$ alkenyl; $C_2\text{-}C_{18}$ alkenyl which is substituted by E and/or interrupted by D; $C_2\text{-}C_{18}$ alkynyl; $C_2\text{-}C_{18}$ alkynyl which is substituted by E and/or interrupted by D; $C_1\text{-}C_{18}$ alkoxy, $C_1\text{-}C_{18}$ alkoxy which is substituted by E and/or interrupted by D; $-\text{SR}^5$; $-\text{NR}^5\text{R}^6$; $C_2\text{-}C_{18}$ heteroaryl; $C_2\text{-}C_{18}$ heteroaryl which is substituted by L; $-\text{SOR}^4$; $-\text{SO}_2\text{R}^4$;
- 20

- COR⁸; -COOR⁷; -CONR⁵R⁶; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D; or
 5 two substituents A¹, B¹, B² or B¹ and B² form a five to seven membered ring, which can be substituted,
 m is an integer of 1 to 4; and W¹, W², Y¹, Y², X¹, X², V, W, X and Y are as defined above;
 D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; -SiR⁵R⁶-; -POR⁵-; -CR⁵=CR⁶-; or -C≡C-;
 10 E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COOR⁷; -CONR⁵R⁶; -CN; -OCOOR⁷; or halogen;
 G is E; K; heteroaryl; heteroaryl which is substituted by C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by E and/or K;
 K is C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; or C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D;
 15 20 L is E; K; C₆-C₁₈aryl; or C₆-C₁₈aryl which is substituted by G, E and/or K;
 R⁴ is C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkoxy; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-;
 R⁵ and R⁶ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkoxy; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-;
 25 or

R⁵ and R⁶ together form a five or six membered ring, in particular

or

R^7 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by $-O-$;

R^8 is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is interrupted by $-O-$.

5 or two substituents selected from V^1 to V^5 , W^1 to W^5 , X^1 to X^5 , Y^1 to Y^5 which are in neighborhood to each other form a five to seven membered ring, with the proviso that at least one of the groups V , W , X and Y is a C_6 - C_{24} aryl, or C_2 - C_{24} heteroaryl group, which can be substituted.

10 3. An electroluminescent device according to claim 2, comprising a pyrimidine compound of formula

15 Y is R^1 , if X is , or X is R^1 , if Y is , R^1 is H, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkenyl, C_2 - C_{18} alkenyl which is substituted by E and/or interrupted by D; C_2 - C_{18} alkynyl; C_2 - C_{18} alkynyl which is substituted by E and/or interrupted by D; C_1 - C_{18} alkoxy; C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D; $-SR^5$; or $-NR^5R^6$; wherein W^1 to W^5 , X^1 to X^5 , Y^1 to Y^5 , E, D, R^5 and R^6 are as defined in claim 2; and V is H.

20 4. An electroluminescent device according to claim 2, comprising a pyrimidine compound of formula

V, W¹ to W⁵, X¹ to X⁵ and Y¹ to Y⁵ are as defined in claim 2, especially W³, X³ and Y³ are selected from the group consisting of C₆-C₂₄aryl; C₆-C₂₄aryl which is substituted by G; C₂-C₂₄heteroaryl; C₂-C₂₄heteroaryl which is substituted by L, C₁-C₁₈alkoxy, -SR⁵; -NR⁵R⁶, wherein G, L, R⁵ and R⁶ are as defined in claim 2,
5 V is H, and W¹ and W⁵, Y¹ and Y⁵ as well as X¹ and X⁵ are independently of each other H; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, wherein E and D are as defined in claim 2.

10 5. An electroluminescent device according to claim 2, wherein V is a group of the formula

, H, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl, C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy; C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; or -NR⁵R⁶; and

is a group of the formula

particular , H, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl, C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy; C₁-C₁₈alkoxy which is substituted by E and/or

20

interrupted by D; -SR⁵; or -NR⁵R⁶; wherein W¹ to W⁵, D, V¹ to V⁵, E, A¹, B¹, B², R⁵, R⁶, m and Z are as defined in claim 2 and R¹⁰¹ and R¹⁰² are independently of each other H, C₁-C₈alkyl, C₆-C₂₄aryl, or C₅-C₇cycloalkyl, in particular H or C₁₋₄-alkyl.

- 5 6. An electroluminescent device according to claim 2, comprising a pyrimidine compound
of formula

Ar is a group of formula $\text{C}_6\text{H}_5\text{CH}_2$, or $\text{C}_6\text{H}_5\text{CH}_2\text{CH}_2$, especially

10 , or ,
 W¹¹ to W¹⁵, W²¹ to W²⁵, W³¹ to W³⁵, W⁴¹ to W⁴⁵, Y¹¹ to Y¹⁵, Y²¹ to Y²⁵, Y³¹ to Y³⁵ and Y⁴¹
 to Y⁴⁵ are independently of each other H; C₆-C₂₄aryl; C₆-C₂₄aryl which is substituted by
 G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-
 C₁₈alkylaryl; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-
 15 C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-
 C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-

- C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; C₂-C₂₄heteroaryl; C₂-C₂₄heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; -CONR⁵R⁶; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D;
- V is H; C₆-C₂₄aryl; C₆-C₂₄aryl which is substituted by G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; or -NR⁵R⁶; C₂-C₂₄heteroaryl; C₂-C₂₄heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; -CONR⁵R⁶; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D; A¹⁸ and A¹⁹ are independently of each other H, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by E,
- B¹¹ to B¹⁴ and B²¹ to B²⁴ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; C₂-C₁₈heteroaryl; C₂-C₁₈heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; or -CONR⁵R⁶; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D, especially H; wherein D, E, G, L, R⁴, R⁵, R⁶, R⁷ and R⁸ are as defined in claim 2.
- 30 7. An electroluminescent device according to claim 2, wherein the pyrimidine compound has the following formula

wherein V is H, or C₁-C₈-alkyl,

X³ and X⁴ are independently of each other H, C₁-C₈alkyl, C₁-C₈alkoxy, C₁-C₈thioalkyl, or phenyl,

5 X⁵ is H, or C₁-C₈alkoxy,

W⁵ is H, C₁-C₈alkyl, or O(CH₂)_{n1}-X,

Y⁵ is H, C₁-C₈alkyl, or O(CH₂)_{n1}-X,

Y³, Y⁴, W³ and W⁴ are independently of each other C₁-C₈alkyl, C₁-C₈alkoxy, C₁-C₈thioalkyl, halogen, in particular Br, phenyl, or O(CH₂)_{n1}-X, wherein n1 is an integer of 1 to 5 and X is -O-(CH₂)_{m1}CH₃, -OC(O)-(CH₂)_{m1}CH₃, -C(O)-O-C₁-C₈alkyl, -NR¹⁰³R¹⁰⁴, where m1 is an integer of 0 to 5 and R¹⁰³ and R¹⁰⁴ are independently of each other H, or C₁-C₈-alkyl, or R¹⁰³ and R¹⁰⁴ together form a five or six membered heterocyclic ring,

10 in particular ; or the following formula

15 wherein V is H, or C₁-C₈alkyl,

W³ is H, C₁-C₈alkyl, or C₁-C₈alkoxy,

X³ is H, C₁-C₈alkoxy, phenyl or O(CH₂)_{n1}-X,

X⁵ is H, C₁-C₈alkoxy, phenyl or O(CH₂)_{n1}-X,

Y³ is H, C₁-C₈alkyl, or C₁-C₈alkoxy, wherein n1 is an integer of 1 to 4 and X is -

20 O-(CH₂)_{m1}CH₃, -OC(O)-(CH₂)_{m1}CH₃, -C(O)-O-C₁-C₈alkyl, wherein m1 is an integer of 0 to 5; or the following formula

wherein W^3 and W^4 are independently of each other H, $-NR^{103}R^{104}$, $C_1\text{-}C_8\text{thioalkyl}$, or $C_1\text{-}C_8\text{alkoxy}$,

- 5 Y^3 and Y^4 are independently of each other H, $-NR^{103}R^{104}$, $C_1\text{-}C_8\text{thioalkyl}$, or $C_1\text{-}C_8\text{alkoxy}$, wherein R^{103} and R^{104} are independently of each other H, or $C_1\text{-}C_8\text{alkyl}$.
 W^5 is H, $C_1\text{-}C_8\text{alkyl}$, or $O(CH_2)_{n1}\text{-}X$,
 Y^5 is H, $C_1\text{-}C_8\text{alkyl}$, or $O(CH_2)_{n1}\text{-}X$,
 wherein $n1$ is an integer of 1 to 5 and X is $-\text{O}-(CH_2)_{m1}\text{CH}_3$, $-\text{OC(O)}-(CH_2)_{m1}\text{CH}_3$,
 10 $-\text{C(O)-O-C}_1\text{-}C_8\text{alkyl}$, $-NR^{103}R^{104}$, wherein $m1$ is an integer of 0 to 5 and R^{103} and R^{104} are independently of each other H, or $C_1\text{-}C_8\text{-alkyl}$, or R^{103} and R^{104} together form a five

or six membered heterocyclic ring, in particular

; or the following formula

wherein W^3 is H, $-NR^{103}R^{104}$, $C_1\text{-}C_8\text{thioalkyl}$, or $C_1\text{-}C_8\text{alkoxy}$,

Y^3 is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy, wherein R¹⁰³ and R¹⁰⁴ are independently of each other H, or C₁-C₈alkyl,

R¹⁰¹ and R¹⁰² are independently of each other H, C₁-C₈alkyl, phenyl, or C₅-C₇cycloalkyl, in particular cyclohexyl; or the following formula

5

wherein Y³ is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy,

X³ is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy, wherein R¹⁰³ and R¹⁰⁴ are independently of each other H, or C₁-C₈alkyl; or the following formula

10

Y³ is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy,

X³ is H, -NR¹⁰³R¹⁰⁴, C₁-C₈thioalkyl, or C₁-C₈alkoxy, wherein R¹⁰³ and R¹⁰⁴ are independently of each other H, or C₁-C₈alkyl, and R¹⁰¹ and R¹⁰² are independently of each other H, C₁-C₈alkyl, phenyl, or C₅-C₇cycloalkyl, in particular cyclohexyl.

- 15 8. An electroluminescent device according to claim 2, wherein W and Y are groups of the formula

9. An electroluminescent device according to claim 2, comprising a pyrimidine compound of formula

10. An electroluminescent device according to claim 2, comprising a pyrimidine compound

10 of formula I, wherein V is hydrogen,

W and Y are independently of each other a group of formula

X is a group of formula

$\text{R}^{11}, \text{R}^{12}, \text{R}^{13}, \text{R}^{14}, \text{R}^{15}, \text{R}^{16}$ and R^{17} are independently of each other H, $\text{C}_6\text{-C}_{18}\text{aryl}$; $\text{C}_6\text{-C}_{18}\text{aryl}$ which is substituted by E; E, $\text{C}_1\text{-C}_{18}\text{alkyl}$; $\text{C}_1\text{-C}_{18}\text{alkyl}$ which is substituted by E and/or interrupted by D; $\text{C}_6\text{-C}_{18}\text{aryl}$; $\text{C}_6\text{-C}_{18}\text{aryl}$ which is substituted by E; R^{18} and R^{19} are independently of each other H, $\text{C}_1\text{-C}_{18}\text{alkyl}$; $\text{C}_1\text{-C}_{18}\text{alkyl}$ which is substituted by E and/or interrupted by D; $\text{C}_6\text{-C}_{18}\text{aryl}$; $\text{C}_6\text{-C}_{18}\text{aryl}$ which is substituted by E;

D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; -SiR⁵R⁶-; -POR⁵-; -CR⁵=CR⁶-; or -C≡C-;

E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COOR⁷; -CONR⁵R⁶; -CN; -OCOOR⁷; or halogen;

$\text{R}^5, \text{R}^6, \text{R}^7$ and R^8 are as defined in claim 2.

- 15 11. An electroluminescent device according to claim 2, comprising a pyrimidine compound of formula

20 R^{110} is $\text{C}_6\text{-C}_{10}\text{-aryl}$, $\text{C}_6\text{-C}_{10}\text{-aryl}$ which is substituted by $\text{C}_1\text{-C}_6\text{-alkyl}$, $\text{C}_1\text{-C}_4\text{-alkoxy}$

90

5

12. A pyrimidine compound of formula

V , W^1 to W^5 , X^1 to X^5 and Y^1 to Y^5 are as defined in claim 2.

10

13. A pyrimidine compound of formula

91

(VII), wherein

Ar is a group of formula

, or

, especially

, or

,

W¹¹ to W¹⁵, W²¹ to W²⁵, W³¹ to W³⁵, W⁴¹ to W⁴⁵, Y¹¹ to Y¹⁵, Y²¹ to Y²⁵, Y³¹ to Y³⁵ and Y⁴¹5 to Y⁴⁵ are independently of each other H; C₆-C₂₄aryl; C₆-C₂₄aryl which is substituted by G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-10 C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁶; C₂-C₂₄heteroaryl; C₂-C₂₄heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴;-COR⁸; -COOR⁷; -CONR⁵R⁶; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D;15 V is H; C₆-C₂₄aryl; C₆-C₂₄aryl which is substituted by G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; or -NR⁵R⁶; C₂-C₂₄heteroaryl; C₂-20 C₂₄heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; -CONR⁵R⁶;

C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D; A¹⁸ and A¹⁹ are independently of each other H, C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by E,

5 B¹¹ to B¹⁴ and B²¹ to B²⁴ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by G; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈alkylaryl; C₇-C₁₈alkylaryl which is substituted by E and/or interrupted by D; C₂-C₁₈alkenyl; C₂-C₁₈alkenyl which is substituted by E and/or interrupted by D; C₂-C₁₈alkynyl; C₂-C₁₈alkynyl which is substituted by E and/or interrupted by D; C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D; -SR⁵; -NR⁵R⁸; C₂-C₁₈heteroaryl; C₂-C₁₈heteroaryl which is substituted by L; -SOR⁴; -SO₂R⁴; -COR⁸; -COOR⁷; or -CONR⁵R⁶; C₄-C₁₈cycloalkyl; C₄-C₁₈cycloalkyl which is substituted by E and/or interrupted by D; C₄-C₁₈cycloalkenyl; C₄-C₁₈cycloalkenyl which is substituted by E and/or interrupted by D; wherein D, E, G, L, 10 R⁴, R⁵, R⁶, R⁷ and R⁸ are as defined in claim 2.

15

14. A pyrimidine compound of formula I according to claim 12, wherein

at least one of the groups W, X and Y is a group of formula

and the other groups are independently of each other an aryl group or a heteroaryl

group, especially a group of formula

5 , wherein

R¹¹, R^{11'}, R¹², R^{12'}, R¹³, R^{13'}, R¹⁵, R^{15'}, R¹⁶, R^{16'}, R¹⁷, R^{17'}, R⁴¹, R^{41'}, R⁴², R^{42'}, R⁴⁴, R^{44'}, R⁴⁵, R^{45'}, R⁴⁶, R^{46'}, R⁴⁷ and R^{47'} are independently of each other H, E, C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by E; C₁-C₁₈alkyl; C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; C₇-C₁₈aralkyl; or C₇-C₁₈aralkyl which is substituted by E; or R^{11'} and R¹², R^{12'} and R¹³, R^{13'} and R¹⁶, R^{16'} and R¹⁷, R^{44'} and R⁴⁶ and/or R^{45'} and R⁴⁷ are each a divalent group L¹ selected from an oxygen atom, an sulfur atom, >CR¹¹⁸R¹¹⁹

10 , wherein R¹¹⁸ and R¹¹⁹ are independently of each other C₁-C₁₈alkyl; C₁-C₁₈alkoxy, C₆-C₁₈aryl; C₇-C₁₈aralkyl;

15 R¹¹ and R^{11'}, R¹² and R^{12'}, R¹³ and R^{13'}, R^{13'} and R¹⁴, R¹⁴ and R¹⁵, R¹⁵ and R^{15'}, R¹⁶ and R^{16'}, R¹⁷ and R^{17'}, R⁴¹ and R^{41'}, R⁴² and R^{42'}, R^{42'} and R⁴³, R⁴³ and R⁴⁴, R⁴⁴ and R^{44'}, R⁴⁵ and R^{45'}, R⁴⁶ and R^{46'}, R⁴⁷ and R^{47'}, R⁴⁶ and R⁴⁸ and/or R⁴⁷ and R⁴⁸ are each a divalent

20 group , wherein

R³⁰, R³¹, R³², R³³, R⁴⁹ and R⁵⁰ are independently of each other H, C₁-C₁₈alkyl; C₁-C₁₈alkyl, which is substituted by E and/or interrupted by D; E; C₆-C₁₈aryl; C₆-C₁₈aryl, which is substituted by E;

R¹⁴ is H, C₂-C₃₀heteroaryl, C₆-C₃₀aryl, or C₆-C₃₀aryl which is substituted by E, C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is substituted by E and/or interrupted by D; especially

R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} and R^{27} are independently of each other H, E, C_1 - C_{18} alkyl; C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D; E; C_7 - C_{18} aralkyl; C_7 - C_{18} aralkyl which is substituted by E;

5 R^{43} and R^{48} are independently of each other H, E; C_1 - C_{18} alkyl; C_1 - C_{18} alkyl, which is substituted by E and/or interrupted by D; C_2 - C_{30} heteroaryl; C_7 - C_{18} aralkyl; C_7 - C_{18} aralkyl which is substituted by E;

D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO₂-; -O-; -NR⁵-; SiR⁵R⁶-; -POR⁵-; -CR⁹=CR¹⁰-; or -C≡C-;

10 E is -OR⁵; -SR⁵; -NR⁵R⁶; -COR⁸; -COOR⁷; -CONR⁵R⁶; -CN; or halogen, especially F, or Cl; wherein R⁵ and R⁶ are independently of each other C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; or

R^5 and R^6 together form a five or six membered ring, in particular

15 R^7 is C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-;

R^8 is C_7 - C_{12} alkylaryl; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; and

R^9 and R^{10} are independently of each other H, C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-.

20

15. A pyrimidine compound according to claim 14, wherein
V is hydrogen,

W and Y are a group of formula

or , and

X is a group of formula

The diagram shows a central carbon atom bonded to three phenyl groups (benzene rings) and one methyl group (-CH₃). The phenyl groups are attached to the central carbon via single bonds.

.on

16. A pyrimidine compound according to claim 12 of formula

5 W^3 and Y^3 (XVIII), wherein W^3 and Y^3 are a group of formula

wherein

R^{110} is C_6 - C_{10} -aryl, such as phenyl, 1-naphthyl, 2-naphthyl, 3- or 4-biphenyl, 9-phenanthryl, 2- or 9-fluorenyl, which is optionally substituted by C_1 - C_6 -alkyl, or C_1 - C_4 -

The chemical structure shows a benzene ring with two substituents: a methoxy group (-OCH₃) at the para position and a phenoxide group (-O-) at the other end of the ring.

alkoxy especially

The chemical structure shows a central carbon atom bonded to two phenyl groups (represented by hexagons) and two ethyl groups (represented by two single bonds). The two phenyl groups are oriented in a cis-like fashion relative to each other.

10

The chemical structure shows a central carbon atom double-bonded to one phenyl ring and single-bonded to another phenyl ring. This central carbon is also single-bonded to two methyl groups, which are in turn each single-bonded to a phenyl ring.

or C₄-C₁₀

, and

96

X^3 is H, C₁-C₆-alkyl, C₁-C₄-alkoxy, Ph, or