Apel	llidos	Nor	nbre	Grupo
,	Arquitectura e Ingeniería de Computadores. Examen 17/09/		rdinario (Teoría – parte _l	primer cuatrimestre).
ouest arse	ucciones Cada pregunta consta de cinco respuestas, y cada una as que considere ciertas y deje en blanco las que considere falsas. S cierta o falsa en función de la interpretación, ponga una llamada y exladora.	i considera	ı que alguna respuesta es ambi	gua y, por tanto, podría conside
con m	uación Pregunta con todas las respuestas acertadas: 1 punto. Pre nás de dos fallos 0 puntos. La teoría del primer cuatrimestre supone la oblemas se normalizarán para que el primer cuatrimestre tenga un pe	a mitad de	la nota del primer cuatrimestre.	Tanto la nota de teoría como la
1. Supongamos la arquitectura básica del DLX (sin planifica- ción dinámica), pero segmentado en siete etapas, donde el acceso a la memoria de instrucciones consume dos ciclos de reloj y el acceso a la memoria de datos consume dos ciclos de reloj. La máquina posee anticipación de operandos (for-		ritmo buffe	upongamos una Unidad de I de Tomasulo con especul r de reordenamiento (ROB ntes afirmaciones son correc	ación basada en el uso de). Marque cuáles de las si
ward DE, o etapa	ling). Las instrucciones de salto se resuelven en la etapa con predicción estática de "salto no tomado". Además la a EX incluye un multiplicador, un sumador y un divisor unto flotante, todos ellos segmentados, con tiempos de		a) En la fase WRITE, los re las UFs se escriben en las en los registros.	
cálcu	ulo 7, 4 y 20 ciclos de reloj, respectivamente. Marque es de las siguientes afirmaciones son correctas. a) La ejecución de una instrucción LOAD puede	X	b) Cuando una instrucción debe registrar en el ROB y da cuando la instrucción fir	la excepción será atendi-
	provocar un máximo de dos ciclos de reloj de pena- lización debido a las dependencias LDE.	X	c) Cuando una instrucció puede recibir sus operand desde el ROB.	
⊠□	b) Si la mitad de los saltos se toman, entonces la penalización media por cada salto es 1.c) La presencia en un programa de dos instrucciones		d) Cuando una instrucción predicha alcanza la cabec	era del ROB es suficiente
	consecutivas de la forma: DIVD F2, F4, F6 DIVD F6, F8, F10 provocará penalización.	×	e) Los datos que se trans Datos Común (CDB) van a ro de entrada del ROB a la	miten a través del Bus de acompañados por el núme-
	d) En esta arquitectura es preciso detectar y resolver los riesgos EDL.	3 . Pa	ıra ejecutar un cierto prograr etapas se han ejecutado 10	ma en un DLX segmentado
X	e) El intervalo de iniciación del multiplicador es 1.	La fro	etapas se han ejecutado 10 ecuencia de reloj es de 1 GH entes afirmaciones son corre	dz. Marque cuáles de las
			a) La penalización media	por instrucción es 3,6 ci-

clos

b) La duración media de una instrucción es 1 ns.

d) Si modificamos la frecuencia de reloj, los ciclos de penalización media por instrucción no se alteran.

e) Supongamos que introducimos un coprocesador matemático que ejecuta las operaciones en PF 6 veces más rápido que el DLX. Con el coprocesador instalado el tiempo de ejecución del programa se ha reducido a la mitad. Con estos datos se puede afirmar que en el DLX sin coprocesador los cálculos en PF consumen un 60% del tiempo total de ejecución.

c) El rendimiento es 1000 MIPS

EXAMEN DE ARQUITECTURA E INGENIERÍA DE COMPUTADORES SEPTIEMBRE DE 2008. EXAMEN FINAL PARTE CORRESPONDIENTE AL PRIMER PARCIAL

Sea un procesador segmentado con planificación dinámica mediante el algoritmo de Tomasulo

- Los datos que se escriben en la etapa de escritura no se pueden usar para la ejecución de una instrucción hasta el ciclo siguiente
- Las instrucciones SGTI, BNEZ y NOP tienen tratamiento de instrucciones enteras.
- Hay un solo bus de datos común (CDB)
- La estructura del procesador tiene las siguientes características:

UF	CANTIDAD	LATENCIA	SEGMENTADA
FP ADD	1	2	SI
FP DIV	1	5	SI
FP MUL	1	3	SI
INT ALU	1	1	SI
LOAD/STORE	1	2	SI

ESTACIONES RESERVA	CANTIDAD
FP ADD	2
FP DIV	2
FP MUL	2
INT ALU	2
LOAD	1
STORE	1

Dado el siguiente fragmento de programa:

ADDI R1,R0,#DIR

ADDI R3,R0,#100

LOOP LD F0, 400(R1)

LD F2, 0(R1)

LD F8, 500(R1)

DIVD F4,F2,F0

MULD F4,F8,F4

SD 300(R1), F4

SUBI R1, R1, #8

SUBI R3,R3,,#1

SGTI R5,R3,DONE

BNEZ R5,LOOP

NOP

- a) Representar el diagrama instrucción tiempo para la primera iteración, indicando en cada caso el tipo de parada que se produce (2 puntos)
- b) Suponiendo que se le añade especulación, Representar el diagrama instrucción tiempo para la primera iteración, indicando en cada caso el tipo de parada que se produce (2 puntos)
- C) Representar el diagrama instrucción tiempo para la primera iteración suponiendo un procesador sin especulación (como el del apartado a) que dispone de todas las estaciones de reserva que se necesiten (1 punto)

.

SOLUCIONES

a)

R3 contiene el número de elementos del array que se quieren procesar y que son 100 R1 contiene la dirección base

La instrucción sgti set r5:=1 si r3≥done

				ı
	PROGRAMA	ISSUE	EJECUCIÓN	WRITE
1	ADDI R1,R0,#DIR	1	2	3
2	ADDI R3,R0,#100	2	3	4
3	LD F0, 400(R1)	3	4-5	6
4	LD F2, 0(R1)	7 ESTRUCTURAL SIN ER DE LOAD	8-9	10
5	LD F8, 500(R1)	11 ESTRUCTURAL SIN ER DE LOAD	12-13	14
6	DIVD F4,F2,F0	12	13-17	18
7	MULD F4,F8,F4	13	19-20-21 LDE CON 6	22
8	SD 300(R1), F4	14	23-24 LDE CON 7	
9	SUBI R1, R1, #8	15	16	17
10	SUBI R3,R3,,#1	16	17	19 BCD OCUPADO POR 6
11	SGTI R5,R3,DONE	18 ESTRUCTURAL SIN ER ENTEROS	20 LDE CON 10	21
12	BNEZ R5,LOOP	20 ESTRUCTURAL SIN ER ENTEROS	22 LDE CON 11	23 NO USA BCD
13	NOP	22 ESTRUCTURAL SIN ER ENTEROS	23	24

b.- Recordar que con ROB no existen estaciones de reserva de store sino que se incluyen en el ROB. De manera que en el ROB se pueden realizar dos escrituras simultáneas, y en las instrucciones de store con dependencias del tipo LDE el dato se envía directamente al ROB. Esta es la razón por la que las instrucciones de DIVD y store escriben en el ROB en el mismo ciclo de reloj. La información y la etiqueta que se envía es la misma para ambas.

	PROGRAMA	ISSUE	EJECUCIÓN	WRITE	
1	ADDI R1,R0,#DIR	1	2	3	4
2	ADDI R3,R0,#100	2	3	4	5
3	LD F0, 400(R1)	3	4-5	6	7
4	LD F2, 0(R1)	7 ESTRUCTURAL SIN ER DE LOAD	8-9	10	11
5	LD F8, 500(R1)	11 ESTRUCTURAL SIN ER DE LOAD	12-13	14	15
6	DIVD F4,F2,F0	12	13-17	18	19
7	MULD F4,F8,F4	13	19-20-21 LDE CON 6	22	23
8	SD 300(R1), F4	14		22 NO HAY BCD	24
9	SUBI R1, R1, #8	15	16	17	25
10	SUBI R3,R3,,#1	16	17	19 BCD OCUPADO POR 6	26
11	SGTI R5,R3,DONE	18 ESTRUCTURAL SIN ER ENTEROS	20 LDE CON 10	21	27
12	BNEZ R5,LOOP	20 ESTRUCTURAL SIN ER ENTEROS	22 LDE CON 11	23 NO USA BCD	28
13	NOP	22 ESTRUCTURAL SIN ER ENTEROS	23	24	29

	PROGRAMA	ISSUE	EJECUCIÓN	WRITE
1	ADDI R1,R0,#DIR	1	2	3
2	ADDI R3,R0,#100	2	3	4
3	LD F0, 400(R1)	3	4-5	6
4	LD F2, 0(R1)	4	5-6	7
5	LD F8, 500(R1)	5	6-7	8
6	DIVD F4,F2,F0	6	8-12 LDE CON 4	13
7	MULD F4,F8,F4	7	14-15-16 LDE CON 6	17
8	SD 300(R1), F4	8	18-19 LDE CON 7	
9	SUBI R1, R1, #8	9	10	11
10	SUBI R3,R3,,#1	10	11	12
11	SGTI R5,R3,DONE	11	13 LDE CON 10	14
12	BNEZ R5,LOOP	12	15 LDE CON 11	16 NO USA BCD
13	NOP	13	14	15