Department of Computer Science & Engineering Motilal Nehru National Institute of Technology, Allahabad

Mid Sem. Examination (EVEN-Semester) 2018

Class: B. Tech. (VI) Sem. (Computer Sc. & Engg. AND I.T.) 2017-18

M.M.: 20 Subject: Scientific Computing (Code: CS-1602) M. Hrs: One & Half Note: 1.ALL Questions are compulsory.

2.Attempt ALL questions serially starting from Question No.1.

3. Write ALL parts of a question together NOT here & there.

4. Write to the point. Make & State necessary assumptions, if any.

Q.No.1 How can we find an INITIAL approximation to the ROOT of f(x)=0? (01)

Q.No.2 Locate the intervals which contain positive real roots of the equation $x^3 - 3x + 1 = 0$. Find the FIRST real root correct to three decimal places, using the Method of False-Position. (03)

Q.No.3 (a) Derive Newton-Raphson method for non-linear equation. Why it is also called Chord Method?

(b) When does the Newton- Raphson method fail?

(02+01=03)

Q.No.4 Derive the Newtons Method for finding (1/N), where N>0. Hence, find 1/17, using the initial approximation as (i) 0.05 (ii) 0.15. Do the iterations Converge? Justify. (02+02=04)

Q.No.5: The following values of the function $f(x) = \sin x + \cos x$, are given-

The following value			A
x	10°	200	30 ⁰
. f(x)	1.1585	1.2817	1.3660

Construct the quadratic Lagrange interpolating polynomial that fits the above data. Hence, find $f(\pi/12)$.

Compare with the exact value. (05)

Q.No.6: For the following data, Calculate the differences & obtain the Newtons forward and Backward difference Interpolation Polynomials. Are these Polynomials different? Justify YOUR reply. Interpolate at x=0.25.

_	YOUR TEL	ny. Interpose	1			
	X	0.1	0.2	0.3	0.4	0.5
	f(x)	1.40	1.56	1.76	2.00	2.28

* All the Best *