Конечные автоматы

Абстрактные автоматы.

Структурные автоматы.

Синтез конечных автоматов.

Синтез МПА.

Теория автоматов
 Абстрактный автомат

• **Абстрактный автомат** — позволяет абстрагироваться от конкретной схемы, можно рассматривать как **«черный ящик»**

- Для построения УАЖЛ, используется теория абстрактных конечных автоматов (КА). Для построения используется две базовые модели КА, функционально аналогичные: автомат Мура и автомат Мили.
- Любой ЦА описывается следующем кортежем: $M = \{X, Y, A \setminus S, \delta, \lambda, S \}$, где X, Y, S -соответственно множества входных, выходных значений ЦА и внутренних состояний.

Теория автоматов
 Абстрактный автомат

• Абстрактный автомат – обобщенная схема.

Автомат Мили.

В автомате Мили функция выходов λ определяет значение выходного символа по классической схеме абстрактного автомата. Математическая модель автомата Мили и схема рекуррентных соотношений не отличаются от математической модели и схемы рекуррентных соотношений абстрактного автомата.

Законы функционирования:
$$[a(t+1) = \delta[a(t), x(t)]$$
 $[a(t), x(t)]$

Отображения δ и λ получили названия, соответственно, функции перехода и функции выхода автомата.

Особенностью автомата Мили является то, что функция выходов является двухаргументной и символ в выходном канале y(t) обнаруживается только при наличии символа во входном канале x(t). Функциональная схема не отличается от схемы абстрактного автомата.

$$\begin{cases} a(t+1) = \delta[a(t), x(t)] \\ y(t) = \lambda [a(t), x(t)] \end{cases}$$

Автомат Мили

Граф автомата, заданного приведенными таблицами, переходов и выходов будет иметь вид:

BX	ao	a ₁	a ₂	a ₃
$\mathbf{x_1}$	a ₁	a ₂	a ₃	a ₃

λ

BX	ao	a ₁	a ₂	a ₃
X ₁	У2	y 2	y ₁	y ₂
X ₂	y2	y2	У2	y 3

<u>Автомат Мура.</u>

Зависимость выходного сигнала *только от состояния* автомата представлена в автоматах Мура. В автомате Мура функция выходов определяет значение выходного символа только по одному аргументу — состоянию автомата. Эту функцию называют также функцией меток, так как она каждому состоянию автомата ставит метку на выходе.

Законы функционирования:
$$\begin{cases} a(t+1) = \delta[a(t), x(t)] \\ y(t) = \lambda \ [a(t)] \end{cases}$$

Пример автомата Мура:

Очевидно, что автомат Мура можно рассматривать как частный случай автомата Мили.

Автомат Мура.

$$\begin{cases} a(t+1) = \delta[a(t), x(t)] \\ y(t) = \lambda [a(t)] \end{cases}$$

Автомат Мура

	y 2	y 2	y 2	y 2	y 2	y 3
	ao	aı	a ₂	аз	а4	as
XI	aı	a ₂	а3	a4	a4	aı
<i>X</i> 2	ao	a ₀	a ₀	as	a5	ao

Абстрактный синтез автоматов

Задача структурного синтеза состоит в построении схемы автомата минимальной сложности. На первом этапе необходимо получить минимальную структуру абстрактного автомата.

Будем рассматривать в качестве примера следующий автомат: Входные сигналы: 0, 1.

Таблица переходов:

Выходные сигналы: 0, 1, 2. S_0 – начальное состояние.:

Cocm.	0	1
ao	0/ a ₃	0/ a ₁
aı	0/ a ₄	$0/a_{2}$
a_2	$1/a_0$	$2/a_2$
аз	0/ a ₅	0/ a ₄
a 4	0/ aგ	$1/a_0$
as	0/ a ₇	0/ aგ
a_6	$1/a_Q$	$2/a_0$
a7	0/ a ₈	$1/a_0$
a_8	$I/ a_0 $	$2/a_0$

Абстрактный синтез автоматов

0	1
0/a ₃	0/ a ₁
0/a ₄	$0/a_{2}$
<i>1/ a</i> ₀	$2/a_2$
0/a ₅	0/a ₄
0/a ₆	1/ a ₀
0/ a ₇	0/ a ₆
1/a _Q	$2/a_0$
0/ a ₀	1/ a ₀
1/ a ₀	$2/a_0$
	0/ a ₃ 0/ a ₄ 1/ a ₀ 0/ a ₅ 0/ a ₆ 0/ a ₇ 1/a _Q 0/ a ₀

Абстрактный синтез автоматов

Для упрощения автомата в первую очередь необходимо выделить эквивалентные состояния.

Условия эквивалентности Колдуэлла:

- 1. **Необходимое условие**: внутренние состояния a_i и a_j называются **эквивалентными**, если при подаче произвольной входной последовательности с начальными состояниями a_i и a_j образуются одинаковые выходные последовательности.
- 2. **Достаточное условие**: если две одинаковые строки выходят в следующее состояние, то эти состояния **эквивалентны**.

Условия эквивалентности Колдуэлла состоит из 2 условий:

- Условие совпадения выходов (необходимое)
- Условие совпадения следующих состояний (достаточное)

Для нашего примера:

$$G_1 = \{(a_0, a_1, a_3, a_5), (a_2, a_6, a_8), (a_4, a_7)\}$$

Абстрактный синтез автоматов

Далее необходимо рассмотреть все возможные пары состояний для каждого из классов и отбросить те из них, которые переводятся по какому-либо символу входного алфавита за пределы этого класса. Эту процедуру нужно повторять до тех пор, пока следующее множество классов эквивалентности не совпадёт с предыдущем. В нашем примере окончательным будет уже второе разбиение:

$$G_2 = \{(a_0), (a_1, a_5)(a_3), (a_2, a_6, a_8), (a_4, a_7)\}$$

Новая таблица переходов:

	0	1
	0	1
ao	0/a3	0/a15
a ₁₅	0/a47	0/a268
аз	0/a15	0/a47
a ₂₆₈	1/a0	2/a0
a47	0/a268	1/a0

Абстрактный синтез автоматов

Граф минимизированного автомата:

Автомат Мура → **Автомат Мили**

Автомат Мура и соответствующий ему автомат Мили:

Переход от автомата Мили к автомату Мура:

От каждого автомата **Мили** можно перейти к эквивалентному ему автомату **Мура**. Если к одной вершине подходят дуги, отмеченные разными выходными сигналами, то производится разбиение на несколько вершин, каждая из которых отмечается своим выходным сигналом, и от каждой из этих вершин выводятся все дуги, существующие в графе автомата Мили.

Автомат Мили → **Автомат Мура**

Переход от автомата Мили к эквивалентному автомату Мура:

Алгоритм синтеза конечных автоматов

- 1 шаг. Построение диаграммы переходов (графа конечного автомата).
- 2 шаг. Для заданной ДС составляем таблицы переходов и выходов.
- 3 шаг. Определяем количество ЭП, количество входов и выходов.
- 4 шаг. Кодируем состояния, входы и выходы конечного автомата.
- 5 шаг. Составляем по таблице выходов минимальные функции выходов.
- 6 шаг. Составляем таблицу возбуждения памяти и функции ВП (миним.)
- 7 шаг. Все логические функции приводим к единому базису И-НЕ.
- 8 шаг. Составляем логическую функцию КА в базисе И-НЕ
- 9 шаг. Составляем схему электрическую принципиальную (Э3)
- 10 шаг. Минимизируем количество корпусов ИС полученной схемы КА

Синтез конечных автоматов (v.1)

1 шаг. Построение диаграммы переходов.

Синтез конечных автоматов (v.1)

2 шаг. Таблицы переходов и выходов.

 $a(t+1)=\delta[a(t);X(t)]$

Сост. вх.	a_1	a_2	a_3	a_4
X_1	_	a_3	_	-
X_2	a_3	a_1	a_4	—
X_3			a_3	V
X4	a_4	a_4	-	a_2

 $Y(t)=\lambda[a(t);X(t)]$

Cocm. ex.	a_1	a_2	a_3	a_4
X_1		Y_1	_	×—-
X_2	Y_3	Y_2	Y_2	
X_3	<u></u> -		Y_4	
X_4	Y_4	Y_3	_	Y_{I}

Синтез конечных автоматов (v.1)

3 шаг. Определение входных данных

Для этого используем

K=4 $[a_k]$

P=4 [X_i]

A=4 $[Y_j]$

Определяем число элементов памяти:

$$r \ge log_2K = 2$$

Число разрядов входной шины:

$$n \ge log_2P = 2$$

Число разрядов выходной шины:

$$m \ge log_2S = 2$$

Синтез конечных автоматов (v.1)

4 шаг. Кодируем состояния, входы и выходы.

Внутре		Входные	е шины	Выходны	е шины
$a_1 =$	00	X_{l} =	00	$Y_I =$	00
$a_2 =$	01	$X_2 =$	01	$Y_2 =$	01
$a_3=$	10	$X_3 =$	10	$Y_3 =$	10
a_4 =	11	X ₄ =	11	Y ₄ =	11
	Q_1Q_2		x_1x_2		y_1y_2

Синтез конечных автоматов (v.1)

4 шаг. Кодируем переходы и выходы.

Таблица переходов δ

Q1Q2 x1x2	00	01	10	11
00	_	10		1020
01	10	00	11	·
10	_	22	10	9 <u>—4</u> 9
11	11	11		01

Таблица выходов 🔥

Q1Q2 x1x2	00	01	10	11
00		00		
01	10	01	01	; ;:====;:
10		22.2	11	; ;=====;
11	11	10		00

Синтез конечных автоматов (v.1)

5 шаг. Минимизация функций выходов.

$$y_1 = \overline{x_1} x_2 \overline{Q_1} \overline{Q_2} \vee x_1 x_2 \overline{Q_1} \overline{Q_2} \vee x_1 x_2 \overline{Q_1} Q_2 \vee x_1 \overline{x_2} \overline{Q_1} \overline{Q_2}; \quad (1)$$

$$y_2 = x_1 x_2 \overline{Q_1} \overline{Q_2} \vee \overline{x_1} x_2 \overline{Q_1} \overline{Q_2} \vee \overline{x_1} x_2 \overline{Q_1} \overline{Q_2} \vee \overline{x_1} \overline{x_2} \overline{Q_1} \overline{Q_2} .$$
 (2)

x1x2 ^{Q1Q2}	00	01	11	10
00 _	_X		X	X
01	1			X
11	1/	D		X
10 -			X	(1)

x1x2 ^{Q1Q2}	00	01	11	10
00	X		X	X
01	70			1
11 ($\bigcirc 1$	X		X
10			X	(1)

$$y_1 = Q_1 \overline{Q_2} \vee x_2 \overline{Q_2} \vee \overline{Q_1} x_1 x_2$$
;

$$y_2 = Q_1 \overline{Q_2} \vee \overline{Q_1} x_1 x_2 \vee x_2 \overline{Q_1} Q_2$$
.

Синтез конечных автоматов (v.1)

6 шаг. Функции возбуждения памяти (ВП) строятся на основе таблицы переходов и таблицы истинности триггеров различных типов, которые являются основой элементов памяти (ЭП) конечного автомата.

Q(t)	Q(t+1)	S	R	D	J	K
0	0	0	X	0	0	X
0	1	1	0	1	1	X
1	0	0	1	0	Х	1
1	1	X	0	1	Х	0

Синтез конечных автоматов (v.1)

6 шаг. Таблица функций ВП.

ех. сигн	Q_1	0	Q_2	0	Q_1	0	Q_2	1	Q_1	1	Q_2	0	Q_1	1	Q_2	1
x_{I} , x_{2}	$\mathbf{R_{1}}$	S_1	R ₂	S ₂	R_1	Sı	R ₂	S ₂	$\mathbf{R_{i}}$	S_1	R ₂	S ₂	R_1	S_1	R ₂	S2
00	\bigcup			\cap	0	1	1	0				\cap				Λ
01	0	1	_	0		0	1	0	0	_	0	1	V			1
10	\vee			\supset	<			\setminus	0	-	-	0				Λ
11	0	1	0	1	0	1	0	s=22				\bigcap	1	0	0	8.50

$$\begin{cases} R_1 = x_1 x_2 Q_1 Q_2 \\ S_1 = \overline{x_1} x_2 \overline{Q_1} \overline{Q_2} \vee x_1 x_2 \overline{Q_1} \overline{Q_2} \vee \overline{x_1} \overline{x_2} \overline{Q_1} Q_2 \vee \overline{x_1} \overline{x_2} \overline{Q_1} Q_2 \end{cases} \qquad \begin{cases} R_2 = \overline{x_1} \overline{x_2} \overline{Q_1} \overline{Q_2} \vee \overline{x_1} \overline{x_2} \overline{Q_1} \overline{Q_2} \\ S_2 = x_1 \overline{x_2} \overline{Q_1} \overline{Q_2} \vee \overline{x_1} \overline{x_2} \overline{Q_1} \overline{Q_2} \end{cases}$$

Синтез конечных автоматов (v.1)

6 шаг. Минимизация функций ВП.

x1x2 Q1Q2	00	01	11	10
00				4
01		X		
11			(1)	
10				

$$R_{1\min} = x_1 x_2 Q_1 Q_2$$

Q1Q2 x1x2	00	01	11	10
00		$\widehat{1}$		at .
01	X	(1)		
11				
10				X

$$R_{2min} = \overline{x_1} \overline{Q_1} Q_2$$

x1x2 ^{Q1Q2}	00	01	11	10
00	\wedge			
01	1			X
11	11	D		
10	0			X

$$S_{lmin} = x_2 \overline{Q_1} \overline{Q_2} \vee x_1 x_2 \overline{Q_1} \vee \overline{x_1} \overline{x_2} \overline{Q_1} Q_2$$

Q1Q2 x1x2	00	01	11	10
00				
01				(1)
11 (1	X)	X	
10				

$$S_{2\min} = x_1 x_2 \overline{Q}_1 \vee \overline{x}_1 x_2 Q_1 \overline{Q}_2$$

Синтез конечных автоматов (v.1)

7 шаг. Система уравнений (И-НЕ) – структура КА

$$R_{1} = x_{1}x_{2}Q_{1}Q_{2}$$

$$S_{1} = \left(\overline{x_{2}}\overline{Q_{1}}\overline{Q_{2}}\right)\left(\overline{x_{1}}x_{2}\overline{Q_{1}}\right)\left(\overline{x_{1}}\overline{x_{2}}\overline{Q_{1}}Q_{2}\right)$$

$$R_{2} = \overline{x_{1}}\overline{Q_{1}}Q_{2}$$

$$S_{2} = \left(\overline{x_{1}}\overline{x_{2}}\overline{Q_{1}}\right)\left(\overline{x_{1}}\overline{x_{2}}\overline{Q_{1}}\overline{Q_{2}}\right)$$

$$y_{1} = \left(\overline{Q_{1}}\overline{Q_{2}}\right)\left(\overline{x_{2}}\overline{Q_{2}}\right)\left(\overline{x_{1}}\overline{x_{2}}\overline{Q_{1}}\right)$$

$$y_{2} = \left(\overline{Q_{1}}\overline{Q_{2}}\right)\left(\overline{x_{1}}\overline{x_{2}}\overline{Q_{1}}\right)\left(\overline{x_{2}}\overline{Q_{2}}\right)$$

Синтез конечных автоматов (v.1)

7 шаг. Логическая структура КА

Синтез конечных автоматов (v.1)

7 шаг. Система уравнений (И-НЕ) — структура КА на ИС средней и малой степени интеграции.

Логические элементы.

HE (6)

8И-НЕ (1)

RS\D-mpurrep: 133**TM**2 (2)

Синтез конечных автоматов (v.1)

7 шаг. Система уравнений (И-НЕ) -> структура КА

Синтез конечных автоматов (V.2)

1 шаг. Построение диаграммы переходов.

Синтез конечных автоматов (V.2)

2 шаг.

Таблица переходов: Таблица выходов:

	a_{θ}	a_I	a_2	a 3
X_{0}^{θ}	aı	aı	аз	aı
XĮ.	æ	a ₂	a ₂	аз
X2.	ag	aı	æ	аз
<i>X3</i>	ao	æ	a ₂	аз

	a_{θ}	a_1	a_2	a 3
$X_{\widetilde{\theta}}$	У0	У0	У2	У2
Χĵ	Уı	У2	Уı	У0
X2.	У0	Уı	Уı	У0
X3	У0	У0	У2	У0

Синтез конечных автоматов (V.2)

3 **was**.

Определение разрядности автомата.

$$k = 4[a_k], p = 4[x_p], s = 3[y_s]$$

Число элементов памяти Г:

$$\log_2 k \le r < \log_2 k + 1, \quad r = 2$$

Число разрядов входной шины n:

$$\log_2 p \le n < \log_2 p + 1, \quad n = 2$$

Число разрядов выходной шины т:

$$\log_2 s \le m < \log_2 s + 1, \quad m = 2$$

Структурный синтез конечных автоматов

4 *was*.

Кодирование автомата.

со сто яния	Q1	Qθ
a_{θ}	0	0
a_I	0	1
a_2	1	0
a 3	1	1

Входная шина	XI	Xθ
x_{θ}	0	0
x_1	0	1
x_2	1	0
x 3	1	1

Выходная шина	Y1	Y0
<i>y</i> 0	0	0
y 1	0	1
<i>y</i> ₂	1	0

Структурный синтез конечных автоматов

5 *was*.

Таблицы переходов и выходов (все состояния, входы, выходы в закодированном виде).

Таблица переходов:

$egin{array}{c} Q1Q heta \ X1X heta \ \end{array}$	00	01	10	11
0.0	01	01	11	0.1
0.1	00	10	10	1 1
10	1 1	01	11	1 1
1 1	00	00	10	11

Таблица выходов:

Q1Qθ X1Xθ	00	01	10	11
0.0	0.0	0.0	11	1.0
0.1	01	10	01	0.0
10	0 0	0 1	01	0.0
11	00	00	10	0.0

Структурный синтез конечных автоматов

6 шаг. Минимизация функций выходов Ү0 и Ү1

Таблица выходов по Yo

\ Q,	0	0	1	1
\times , \times ^Q	0	1	1	0
0 0	0	0	<u> </u>	<u> </u>
0 1	0	<u>[[]X[]</u>	0	0
1 1	0	0	0	<u>([]X[])</u>
1 0	0	0	0	0

Таблица выходов по Y1

\ Q.	0	0	1	1
x, x, Q,	0	1	1	0
0 0	0	0	0	0
0 1		0	0	8///
1 1	0	0	0	0
1 0	0		0	

Структурный синтез конечных автоматов

6 шаг. Получаем функции выходов:

$$Y_0 = \overline{x}_0 \overline{x}_1 Q_1 + x_0 \overline{x}_1 Q_0 \overline{Q}_1 + x_0 x_1 \overline{Q}_0 Q_1$$

$$Y_1 = x_0 \overline{x}_1 \overline{Q}_0 + \overline{x}_0 x_1 Q_0 \overline{Q}_1 + \overline{x}_0 x_1 \overline{Q}_0 Q_1$$

7 шаг. Построение таблицы возбуждения памяти

В качестве элементной базы используем элементы памяти RSтриггеры, JK-триггеры, D-**триггеры** (получаются наиболее простые логические выражения)

Структурный синтез конечных автоматов

7 шаг. Построение таблицы возбуждения памяти

Q(t)	Q(t+1)	S	R	D	J	K
0	0	0	X	0	0	X
0	1	1	0	1	1	X
1	0	0	1	0	Х	1
1	1	X	0	1	Х	0

Таблица истинности RS-, JK- **и** D-**триггеров**

Функция возбуждения памяти, построенной на *D-триггерах*

Q1Q0	00	01	10	11	
XIX0	$D\theta D1$	$D\theta D1$	D0D1	$D\theta D1$	
0.0	0 1	0 1	1 1	0 1	
0.1	0.0	10	10	1 1	
10	1 1	0 1	1 1	1 1	
1 1	0.0	0.0	10	1 1	

Алгоритм синтеза конечных автоматов

7 шаг. Составляем и минимизируем функции ВП Функции возбуждения памяти автомата, построенной на *D-триггерах* выглядят таким образом.

По таблица возбуждения памяти автомата, построенной на D-триггерах, запишем ФВП D_0 и D_1

D°.		Q,	0	0	1	1	D.	\ Q,	0	0	1	1
- 0.	X, 3	$^{\sim}$	0	1	1	0	⊃ 1.	x, x, Q	0	1	1	0
	0	0	0	0	0			0 0		[[X]]		[[]
	0	1	0	V/X//	//8//			0 1	0	0	/3//	0
	1	1	0	0	71//	1917		1 1	0	0		0
	1	0		0	[N]			1 0	(X)	[[X]]		1111

Структурный синтез конечных автоматов

7 шаг. Получаем

Функции возбуждения памяти D_0 и D_1 автомата, построенной на D-триггерах – T0 и T1:

$$D_0 = x_1 Q_1 + \overline{Q}_0 Q_1 + x_0 \overline{x}_1 Q_0 + \overline{x}_0 x_1 \overline{Q}_0$$

$$D_1 = \overline{x}_0 + Q_0 Q_1$$

В базисе И-НЕ

$$D_0 = \overline{x_1 Q_1 \overline{Q}_0 Q_1} \overline{x_0 \overline{x}_1 Q_0 \overline{x}_0 x_1 \overline{Q}_0}$$

$$D_1 = \overline{x_0 \overline{Q}_0 Q_1}$$

Структурный синтез конечных автоматов

8 **шаг**. **Составляем схему Э**2(3)* для аппаратного КА в базисе 2И, НЕ, 2И-НЕ.

Структурный синтез конечных автоматов

9 **шаг**. **Минимизируем количество корпусов ТТЛШ ИС** для аппаратного КА в базисе 2И, НЕ, 2И-НЕ.

Синтез конечных автоматов на ПЛИС

Основные задачи и цели

PLD – Programmable logic devices или

ПЛИС – программируемые интегральные схемы

позволяют путем конфигурирования исходной структуры получать различные комбинационные или последовательностные схемы. Любая ФАЛ или КА, которые можно синтезировать на жесткой логике, могут быть синтезированы на ПЛИС.

Общее требование – наличие средств изменения взаимных связей м\д элементами для формирования требуемых логических конфигураций. Типы ПЛИС

- 1. ПЛМ (Программируемые логические матрицы) (programmable logic arrays PLA)
- 2. ПМЛ (Программируемая матричная логика) (programmable array logic -PAL)
- 3. **Регистровые ПЛИС** (PAL xxRx)
- 4. CPLD, FPGA...

Синтез конечных автоматов на ПЛИС

Функциональная схема ПЛМ

Синтез конечных автоматов на ПЛИС Упрощенная функциональная схема ПЛМ

Синтез конечных автоматов на ПЛИС

Основные константы и переменные ПЛМ

(а) Незапрограммированное состояние

(б) Выбор переменной в прямой форме

(в) Выбор переменной в инверсной форме

(г) Переменная не выбрана

Синтез конечных автоматов на ПЛИС Основные типы ПЛИС

Синтез конечных автоматов на ПЛИС

плм AMD PAL 16L8

Синтез конечных автоматов на ПЛИС Процесс программирования ПЛМ

Синтез конечных автоматов на ПЛИС

Запрограммированная ПЛМ

Синтез конечных автоматов на ПЛИС

Автомат Мили на ПЛМ или комбинационной ПМЛ

Синтез конечных автоматов на ПЛИС Автомат Мили на ПМЛ

Синтез конечных автоматов на ПЛИС пмл AMD PAL 16R6

Синтез конечных автоматов на ПЛИС ПЛМ AMD PAL 16xx

ПРОДОЛЖЕНИЕ СЛЕДУЕТ

?????

?????