Lectures Notes 20

林虹灏

Contents

1	随机	随机游走与电路		
	1.1	电网的平稳分布	2	
	1.2	sojourn time	4	
	1.3	\mathbb{Z}^d 中的逃逸概率	4	
	1.4	随机游走 recurrent 与 transient 的条件	7	

1 随机游走与电路

1.1 电网的平稳分布

将一个简单图 $G,E(G)\subseteq \binom{V(G)}{2}$ 与一个电路对应. 假设其每条边 edge(x,y) 的电阻 $r_{xy}>0$,设其电导率 $C_{xy}\in R_+^{E(G)}=\frac{1}{r_{xy}}$. 令

$$P_{xy} = \begin{cases} \frac{C_{xy}}{C_x} & xy \in E \\ 0 & else \end{cases}$$

其中 $C_x = \sum_y C_{xy}$

1 定理 (电网的平稳分布) 设 N=(G,C) 为一个联通的电路 (Commected Electrical Network). $s,t\in V(G), s\neq t$. 对 $\forall x,\ \diamondsuit\ V_x=P(\mbox{\mathbb{M}}\ x$ 开始随机游走不经过 t 到 $s),\ V_s=1,V_t=0,\ \mbox{\mathbb{M}}\ j$

 $(1)V_x$ 为电势分布当 $V_s=1, V_t=0$ 时. (2)s,t 间的有效电导率 $C_{eff(x,y)}=C_sP_{escape(s\to t)}$. 其中 $P_{escape(s\to t)}$ 为从 s 出发不经过 s 到 t 的概率

证明 (1) 对 $x \neq s, x \neq t$, 我们令 V 表示其电势分布, 则可以得到

$$\sum_{y \in N(x)} (V_x - V_y) C_{xy} = 0$$

$$\Rightarrow C_x V_x = \sum_{y \in N(x)} C_{xy} V_y$$

$$\Rightarrow V_x = \sum_{y \in N(x)} P_{xy} V_y$$

这与 P 满足同一方程, 由其解的唯一性即知 (1) 成立. (2)

$$\begin{split} C_{eff(x,y)} &= (V_s - V_t) C_{eff(x,y)} \\ &= \sum_{y \in N(s)} (V_s - V_y) C_{sy} \\ &= \sum_{y \in N(s)} (1 - V_y) C_{sy} \frac{C_s}{C_s} \\ &= C_s - C_s \sum_{y \in N(s)} P_{sy} V_y \\ &= C_s P_{escape(s \to t)} \end{split}$$

评注 由此我们即得 $\frac{P_{escape(s \to t)}}{P_{escape(t \to s)}} = \frac{C_t}{C_s}$

2 定义 (调和函数 (补充)) (1) 中的唯一性除了使用线性代数或图论中的理论外, 还可以使用下面引入的调和函数来说明.

给定一个无向图 G(V,E), 指定 V 的一个非空子集为边界点并将剩下的点作为内部点,一个 V 上的调和函数在其边界点的取值满足一些指定的边界条件, 在其内部点上的权值为与其相连的点的权值的一个加权平均. 因此, 如果对每个内部点 x 以及权重 p_{xy} ,均满足

$$\sum_{y} p_{xy} = 1, g_x = \sum_{y} g_y p_{xy}$$

则 g 是一个调和函数.

调和函数在一个连通图上满足其最大值与最小值在边界点上出现. 假设其最大值不在边界点上取到,设 S 为取到最大值的点的集合,由于其中不含边界点,故其补集 \bar{S} 非空. 连通性保证了至少存在一条边 edge(x,y) 满足 $x \in S, y \in \bar{S}$. 注意到 x 上的取值为其相邻点的加权平均,这些点的取值均小于等于 x 点的取值,但 y 的取值严格小于 x 点的取值,这是一个矛盾. 对于最小值的情况,可同样处理.

下面我们证明, 在给定的边界条件以及给定的权重下, 调和函数是唯一的 (由此即得 (1) 中的唯一性). 假设 f,g 均为满足相同条件的和谐函数, 则 h = f - g 也为满足相同条件的调和函数, 注意到 h 在其边界点上的取值均为零, 由此即得 h 在所有点上的权值均为零, 即 f = g.

Graph with boundary vertices dark and boundary conditions specified.

Values of harmonic function satisfying boundary conditions where the edge weights at each vertex are equal

Figure 1: 一个调和函数的例子

1.2 sojourn time

3 定义 (停留时间 (sojourn time)) 设 $\tau_s = min\{t \geq 0, X_t \in S\}, \tau_s^+ = min\{t \geq 1, X_t \in S\}.$ 则可得对任一点 x,

$$V_x = P_x(X_{\tau_{\{s,t\}}} = s), P_{esc}(s \to t) = P_s(X_{\tau_{\{s,t\}}}^+ = t)$$

对一个点 x, 定义其从 s 到 t 的停留时间为

$$S_x(s \to t) = \mathbb{E}_S(|\{i < \tau_t : X_i = x\}|)$$

(直观解释即为其从 s 出发到 t 之前经过 x 的次数的期望).

设 N = (G, C) 为一个连通电路, $s \neq t$, 则对 $\forall x \in V(G)$, 令

$$V_x = \frac{S_x(s \to t)}{C_x}, E_{xy} = S_x P_{xy} - S_y P_{yx}$$

则用与前相同的方法可验证, V_x 为 x 点处的电压, E_{xy} 为 edge(x,y) 上的电流. 则总电流

$$w_s = \sum_{y \in N(s)} w_{sy} = \sum_{y \in N(s)} E_{sy} = 1$$

(这里用到了 double counting 的思想)

则

$$r_{eff} = \frac{V_s - V_t}{w_s} = V_s = \frac{S_s(s \to s)}{C_s}$$

由此及前面的结论可得

$$C_{eff} = C_s P_{esc}(s \to t) = C_s \frac{1}{S_s(s \to t)}$$

即

$$P_{esc}(s \to t)S_s(s \to t) = 1$$

1.3 \mathbb{Z}^d 中的逃逸概率

4 定理 (transient) \mathbb{Z}^d 是 transient 的当且仅当 $d \geq 3$.

证明 除了课上所讲的方法外, 这里介绍另外一种证明二维网格的逃逸概率为 0 的方法.

我们在与随机游走等价的电路中考虑这一问题. 如下图 (a) 所示, 我们将以起点为中心的正方形电路短路. 由物理学知识可知此时电路的有效电阻将变小.

Figure 2: 2 维网格的情况

此时电路将等价于图 (b) 中的情况, 其中 0 号点表示起点, 第 i 号点和第 i+1 号点间有 4(i+1) 条电阻并联. 因此, 对于原图

$$r_{eff} \ge \frac{1}{4} + \frac{1}{12} + \frac{1}{20} + \dots = \frac{1}{4} (1 + \frac{1}{3} + \frac{1}{5} + \dots) = \Theta(\ln n)$$

$$P_{esc} = \frac{C_{eff}}{C_s}$$

即得

由

 $P_{esc} = 0$

再考虑三维情况以前, 我们先来尝试估计二维情况 r_{eff} 的上界. 如下图所示, 我们考虑将部分电路断路 (此时电阻将变大).

具体规则为: 先画出所有的直线 $x + y = 2^n - 1$, 设其集合为 S, 考虑从出发点发出的两条向右以及向上的两条直线, 一旦其与 S 中的直线相交, 就从相交处分出两条向右以及向上的直线, 分出的直线若是和 S 中直线相交, 也做同样的处理. 不难看出这样做以后的电路图等效为如下图所示.

此时有效电阻

$$r_{eff} = \frac{1}{2} + \frac{1}{4}2 + \frac{1}{8}4 + \dots = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots = \infty$$

我们考虑把这种估计方法应用到三维网格中,只需将上述做法中的直线换为 $x+y+z=2^n-1$.则可得此时

$$r_{eff} = \frac{1}{3} + \frac{1}{9}2 + \frac{1}{27}4 + \dots = \frac{1}{3}(1 + \frac{2}{3} + \frac{4}{9} + \dots) = \frac{1}{3}\frac{1}{1 - \frac{2}{3}} = 1$$

Figure 3: 尝试将一些电路移去

Figure 4: 等效电路图

故

$$P_{esc} = \frac{C_{eff}}{C_s} \ge \frac{1}{6}$$

运用短路的估计方法, 我们同样也可以得到

$$P_{esc} = \frac{C_{eff}}{C_s} \le \frac{5}{6}$$

1.4 随机游走 recurrent 与 transient 的条件

5 定理 (transient) A Random Walk on N(G,C) is transient iff there is a flow(u_{xy}) of finite energy

$$\sum_{x,y\in E(G)} u_{xy}^2 r_{xy} < \infty$$

in which no current leaves at any vertex but some positive current enters at some vertex.

6 定理 (recurrent) A Random Walk on N(G, C) is recurrent iff for every $\epsilon > 0$ there is a function (V_x) on V(G) s.t. $V_s \ge 1$ for some s and $V_x = 0$ for all but finitely many vertices and

$$\sum_{x,y \in E(G)} (V_x - V_y)^2 C_{xy} < \epsilon$$