Examining Predictions for Credit Card Defaults_EmmaSun

December 7, 2023

1 1.read in dataset

```
[1]: import pandas as pd
     import numpy as np
     df = pd.read_csv('/Users/emmasun/Desktop/final/data/American Express credit⊔
      ⇔card default dataset.csv')
     df.head(10)
       customer_id
                                     age gender owns_car owns_house
                                                                       no_of_children \
[1]:
                               name
     0 CST 115179
                                               F
                                                        N
                           ita Bose
                                      46
                                                                                   0.0
     1 CST_121920
                    Alper Jonathan
                                      29
                                               Μ
                                                                    Y
                                                                                   0.0
     2 CST 109330
                        Umesh Desai
                                       37
                                               Μ
                                                        N
                                                                    Y
                                                                                   0.0
     3 CST_128288
                                               F
                                                        N
                                                                    Y
                                Rie
                                      39
                                                                                   0.0
     4 CST_151355
                             McCool
                                      46
                                               M
                                                        Y
                                                                    Y
                                                                                   0.0
     5 CST_123268
                        Sarah Marsh
                                               F
                                                        Y
                                                                    N
                                                                                   0.0
                                      46
                                                                    Y
     6 CST_127502
                              Mason
                                       38
                                               Μ
                                                        N
                                                                                   1.0
     7 CST_151722
                               Saba
                                               F
                                                        Y
                                                                    Y
                                                                                   1.0
                                      46
                                               F
                                                                    Y
     8 CST_133768
                           Ashutosh
                                      40
                                                      NaN
                                                                                   0.0
                                               F
                                                                    Y
     9 CST_111670 David Milliken
                                                        Y
                                                                                   2.0
        net_yearly_income
                            no_of_days_employed
                                                        occupation_type
     0
                107934.04
                                           612.0
                                                                 Unknown
     1
                109862.62
                                          2771.0
                                                                Laborers
     2
                230153.17
                                           204.0
                                                                Laborers
     3
                122325.82
                                         11941.0
                                                              Core staff
     4
                387286.00
                                          1459.0
                                                              Core staff
     5
                252765.91
                                         2898.0
                                                             Accountants
     6
                262389.20
                                         5541.0
                                                  High skill tech staff
     7
                241211.39
                                         1448.0
                                                              Core staff
                210091.43
     8
                                         11551.0
                                                                Laborers
     9
                207109.13
                                          2791.0 High skill tech staff
        total_family_members
                               migrant_worker yearly_debt_payments
                                                                       credit_limit \
     0
                          1.0
                                           1.0
                                                             33070.28
                                                                           18690.93
     1
                          2.0
                                           0.0
                                                             15329.53
                                                                           37745.19
```

```
2.0
                                             0.0
     2
                                                                48416.60
                                                                                41598.36
     3
                           2.0
                                             0.0
                                                                22574.36
                                                                                32627.76
     4
                           1.0
                                             0.0
                                                                38282.95
                                                                                52950.64
     5
                           2.0
                                             1.0
                                                                37046.86
                                                                                40245.64
     6
                           3.0
                                             0.0
                                                                50839.39
                                                                                41311.08
     7
                           3.0
                                             0.0
                                                                30008.46
                                                                                32209.22
     8
                           2.0
                                             0.0
                                                                21521.89
                                                                                65037.74
     9
                           4.0
                                             0.0
                                                                 9509.10
                                                                                28425.52
        credit_limit_used(%)
                                 credit_score prev_defaults
                                                                 default_in_last_6months
     0
                                         544.0
                            73
                                                              0
                                                                                         0
     1
                            52
                                         857.0
     2
                            43
                                         650.0
                                                              0
                                                                                         0
     3
                            20
                                         754.0
                                                              0
                                                                                         0
     4
                            75
                                         927.0
                                                              0
                                                                                          0
     5
                            19
                                         937.0
                                                              0
                                                                                         0
     6
                            42
                                                              0
                                                                                         0
                                         733.0
     7
                            91
                                                              0
                                                                                         0
                                         906.0
     8
                                                              0
                                                                                          0
                            14
                                         783.0
     9
                            14
                                         666.0
                                                              0
                                                                                          0
        credit_card_default
     0
                            1
                            0
     1
     2
                            0
                            0
     3
     4
                            0
     5
                            0
     6
                            0
     7
                            0
     8
                            0
     9
                            0
[2]: df.shape
[2]: (45528, 19)
[3]: df.dtypes
[3]: customer_id
                                    object
     name
                                    object
     age
                                     int64
     gender
                                    object
     owns_car
                                    object
     owns house
                                    object
     no_of_children
                                   float64
     net_yearly_income
                                   float64
```

```
no_of_days_employed
                           float64
occupation_type
                             object
total_family_members
                            float64
migrant_worker
                            float64
yearly_debt_payments
                            float64
credit_limit
                            float64
credit_limit_used(%)
                              int64
credit_score
                           float64
prev defaults
                              int64
default_in_last_6months
                              int64
credit card default
                              int64
dtype: object
```

2 2.EDA_target variable

```
[4]: print(df['credit_card_default'].value_counts())
    0
         41831
    1
          3697
    Name: credit_card_default, dtype: int64
[5]: import matplotlib
     from matplotlib import pylab as plt
     import plotly.graph_objs as go
     import plotly.offline as py
     import plotly.io as pio
     from plotly.subplots import make_subplots
     labels = ['Paying On Time (0)', 'Past Due on Payment (1)']
     values = df['credit_card_default'].value_counts()
     trace = go.Pie(labels=labels, values=values,
                    textfont=dict(size=20), opacity=0.9,
                    marker=dict(colors=['blue', 'orange'], line=dict(width=1)))
     layout = dict(title='Balance of Credit Card Default')
     fig = dict(data=[trace], layout=layout)
     fig = make_subplots(rows=1, cols=1, subplot_titles=('Balance of Credit Card_
      →Default',))
     fig.add_trace(trace)
     #dpi=350
     fig.update_layout(width=800, height=800)
     fig.show()
     fig.write_image('credit_card_default_pie_plot.png')
```


3 2.EDA_features

Unknown

[6]: print(df['occupation_type'].value_counts())

14299

* * .:				
Laborers	8134			
Sales staff	4725			
Core staff	4062			
Managers	3168			
Drivers	2747			
High skill tech staff	1682			
Accountants	1474			
Medicine staff	1275			
Security staff	1025			
Cooking staff	902			
Cleaning staff	665			
Private service staff	387			
Low-skill Laborers	336			
Waiters/barmen staff	203			
Secretaries	199			
Realty agents	101			
HR staff	78			
IT staff	66			
<pre>Name: occupation_type,</pre>	dtype: int64			

```
[7]: print(df['gender'].value_counts())
     F
            29957
            15570
     М
     XNA
     Name: gender, dtype: int64
 [8]: print(df['owns_car'].value_counts())
     N
          29743
     Y
          15238
     Name: owns_car, dtype: int64
 [9]: print(df['owns_house'].value_counts())
     Y
          31642
          13886
     N
     Name: owns_house, dtype: int64
[10]: print(df['migrant_worker'].value_counts())
     0.0
            37302
     1.0
             8139
     Name: migrant_worker, dtype: int64
[11]: print(df['no_of_children'].value_counts())
     0.0
            31241
     1.0
             8985
     2.0
             3862
     3.0
              584
     4.0
               60
     5.0
               13
     6.0
                 6
     7.0
                 1
     8.0
                 1
     9.0
                 1
     Name: no_of_children, dtype: int64
[12]: print(df['total_family_members'].value_counts())
     2.0
             23455
     1.0
              9913
              7812
     3.0
     4.0
              3623
     5.0
               564
     6.0
                 57
     7.0
                 12
     8.0
                 6
     10.0
                 2
```

9.0 1

Name: total_family_members, dtype: int64

[13]: df.describe()

[13]:		age	no_of_c	hildren	net_ye	early_income	no_of_days_employ	ed \	
	count	45528.000000		.000000	-	1.552800e+04	45065.0000		
	mean	38.993411	0.420655		2	2.006556e+05	67609.2892	93	
	std	9.543990	0	.724097	6	6.690740e+05	139323.5244	34	
	min	23.000000	0.000000		2	2.717061e+04	2.0000	00	
	25%	31.000000	0.00000		1	1.263458e+05	936.0000	00	
	50%	39.000000	0.000000		1	1.717149e+05	2224.0000	00	
	75%	47.000000	1	.000000	2	2.406038e+05	5817.0000	00	
	max	55.000000	9	.000000	1	1.407590e+08	365252.0000	00	
		total_family_r	members	migrant	worker	r yearly_dek	ot_payments \		
	count	•		•	.000000	• • •	5433.000000		
	mean		45445.000000 45 2.158081		.179111		1796.965311		
	std		.911572		.383450		7269.727234		
	min		.000000		.000000		2237.470000		
	25%		.000000		.000000		19231.140000		
	50%		.000000		.000000				
	75%				.000000		0561.150000		
	max		.000000		.000000		3112.860000		
		credit_limit	credit_limit_us			credit_score	<u> </u>		
	count	4.552800e+04		45528.		45520.000000			
	mean	4.354842e+04			23502	782.791257			
	std	1.487847e+05			37691	100.619746			
	min	4.003140e+03			00000	500.000000			
	25%	2.397381e+04			00000	704.000000			
	50%	3.568804e+04			00000	786.000000			
	75%	5.343576e+04			00000	867.000000			
	max	3.112997e+07		99.	00000	949.000000	2.000000		
		default_in_la	st_6mont	hs cred	it_card	d_default			
	count				4552	28.000000			
	mean					0.081203			
	std		0.2190	59		0.273149			
	min		0.0000	00		0.000000			
	25%		0.0000	00		0.000000			
	50%		0.0000	00		0.000000			
	75%		0.0000	00		0.000000			
	max		1.0000	00		1.000000			

4 2.EDA correlation categorical vs continuous

```
[14]: import seaborn as sns
     sns.set context("notebook", font scale=0.8)
     fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(16, 4)) # Update nrows and_
      \hookrightarrow ncols
      # Set DPI to 350
     plt.figure(dpi=350)
     df['log_net_yearly_income'] = np.log1p(df['net_yearly_income'])
     df['log_no_of_days_employed'] = np.log1p(df['no_of_days_employed'])
     df['log_yearly_debt_payments'] = np.log1p(df['yearly_debt_payments'])
     df['log_credit_limit'] = np.log1p(df['credit_limit'])
     sns.histplot(data=df, x="log_net_yearly_income", hue="credit_card_default", u
      sns.histplot(data=df, x="log_no_of_days_employed", hue="credit_card_default", u
       ⇒kde=True, ax=axes[1])
     sns.histplot(data=df, x="log_yearly_debt_payments", hue="credit_card_default", u
       ⇒kde=True, ax=axes[2])
     sns.histplot(data=df, x="log_credit_limit", hue="credit_card_default", u
       axes[0].set_xlabel("Log Net Yearly Income", fontsize=8)
     axes[1].set_xlabel("Log No. of Days Employed", fontsize=8)
     axes[2].set_xlabel("Log Yearly Debt Payments", fontsize=8)
     axes[3].set_xlabel("Log Credit Limit", fontsize=8)
     for ax in axes:
          ax.legend(title="Credit Default", labels=["Default (1)", "No Default (0)"], u
       ⇔fontsize=8)
     axes[0].set_title("Log Net Yearly Income Distribution", fontsize=8)
     axes[1].set title("Log Days Employed Distribution", fontsize=8)
     axes[2].set_title("Log Yearly Debt Payments Distribution", fontsize=8)
     axes[3].set_title("Log Credit Limit Distribution", fontsize=8)
     plt.tight_layout()
     plt.savefig('histogram_distribution_with_log.png')
     plt.show()
```


<Figure size 2240x1680 with 0 Axes>

```
[15]: plt.figure(dpi=350)
      fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 6))
      sns.violinplot(x="credit_card_default", y="age", data=df, ax=axes[0])
      sns.violinplot(x="credit_card_default", y="credit_limit_used(%)", data=df,__
       \triangleax=axes[1])
      sns.violinplot(x="credit card default", y="credit score", data=df, ax=axes[2])
      axes[0].set_xlabel("Credit Card Default")
      axes[0].set_ylabel("Age")
      axes[0].set_title("Violin Plot of Age by Credit Card Default")
      axes[0].set_xticklabels(['On Time', 'Past Due'])
      axes[1].set_xlabel("Credit Card Default")
      axes[1].set_ylabel("Credit Limit Used (%)")
      axes[1].set_title("Violin Plot of Credit Limit Used by Credit Card Default")
      axes[1].set_xticklabels(['On Time', 'Past Due'])
      axes[2].set_xlabel("Credit Card Default")
      axes[2].set_ylabel("Credit Score")
      axes[2].set_title("Violin Plot of Credit Score by Credit Card Default")
      axes[2].set_xticklabels(['On Time', 'Past Due'])
      plt.tight_layout()
      plt.savefig('violin_plots.png')
      plt.show()
```

<Figure size 2240x1680 with 0 Axes>

5 2.EDA_correlation_continuous vs continuous

```
[16]: selected_features = [
    'age', 'credit_limit_used(%)', 'credit_score', 'prev_defaults',
    'default_in_last_6months', 'net_yearly_income', 'no_of_days_employed',
    'yearly_debt_payments', 'credit_limit'
]

correlation_matrix = df[selected_features].corr()

# Set DPI to 350
plt.figure(dpi=350)

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")

plt.xlabel("Features")
plt.ylabel("Features")
plt.title("Correlation Heatmap of Selected Features")

plt.savefig('heatmap.png')
plt.show()
```


6 2.EDA_correlation_categorical vs categorical

```
axes[1].set_ylabel("Count")
axes[1].set_title("Count of Defaults by House Ownership")

axes[2].set_xlabel("Credit Card Default")
axes[2].set_ylabel("Count")
axes[2].set_title("Count of Defaults by Migrant Worker Status")

for ax in axes:
    ax.legend(title="Category", loc="upper right")

plt.tight_layout()
plt.savefig('countplots.png')
plt.show()
```

<Figure size 2240x1680 with 0 Axes>

7 3.Methods_Handle Missing Value

```
[18]: print('data dimensions:',df.shape)
      perc_missing_per_ftr = df.isnull().sum(axis=0)/df.shape[0]
      print('fraction of missing values in features:')
      print(perc_missing_per_ftr[perc_missing_per_ftr >0])
      print('data types of the features with missing values:')
      print(df[perc_missing_per_ftr[perc_missing_per_ftr > 0].index].dtypes)
      frac_missing = sum(df.isnull().sum(axis=1)!=0)/df.shape[0]
      print('fraction of points with missing values:',frac missing)
     data dimensions: (45528, 23)
     fraction of missing values in features:
     owns_car
                                 0.012015
     no_of_children
                                 0.017001
     no_of_days_employed
                                 0.010170
```

```
total_family_members
                                  0.001823
     migrant_worker
                                  0.001911
     yearly_debt_payments
                                  0.002087
     credit_score
                                  0.000176
     log_no_of_days_employed
                                  0.010170
     log_yearly_debt_payments
                                  0.002087
     dtype: float64
     data types of the features with missing values:
     owns car
                                   object
     no_of_children
                                  float64
     no_of_days_employed
                                  float64
     total_family_members
                                  float64
     migrant_worker
                                  float64
     yearly_debt_payments
                                  float64
     credit_score
                                  float64
     log_no_of_days_employed
                                  float64
     log_yearly_debt_payments
                                  float64
     dtype: object
     fraction of points with missing values: 0.04434633632050606
[19]: y = df['credit_card_default']
      customer_id = df['customer_id']
      name = df['name']
      # drop ID, name, and 4 features which are produced by log-transformation in EDA
      X = df.
       adrop(columns=['credit_card_default','customer_id','name','log_net_yearly_income','log_no_of
      classes, counts = np.unique(y,return_counts=True)
      print(classes, counts)
      print('balance:',np.max(counts/len(y)))
     [0 1] [41831 3697]
     balance: 0.9187972236865226
[20]: #check whether dropped or not
      X.describe()
[20]:
                           no_of_children net_yearly_income no_of_days_employed
                      age
                             44754.000000
      count 45528.000000
                                                 4.552800e+04
                                                                      45065.000000
      mean
                38.993411
                                 0.420655
                                                 2.006556e+05
                                                                      67609.289293
      std
                 9.543990
                                 0.724097
                                                 6.690740e+05
                                                                      139323.524434
      min
                23.000000
                                 0.000000
                                                 2.717061e+04
                                                                           2.000000
      25%
                                 0.000000
                                                 1.263458e+05
                                                                        936.000000
                31.000000
      50%
                39.000000
                                 0.000000
                                                 1.717149e+05
                                                                        2224.000000
      75%
                47.000000
                                  1.000000
                                                 2.406038e+05
                                                                        5817.000000
     max
                55.000000
                                 9.000000
                                                 1.407590e+08
                                                                     365252.000000
             total_family_members migrant_worker yearly_debt_payments \
                     45445.000000
                                      45441.000000
                                                            45433.000000
      count
```

```
0.911572
                                        0.383450
                                                          17269.727234
     std
     min
                        1.000000
                                        0.000000
                                                           2237.470000
     25%
                        2.000000
                                        0.000000
                                                          19231.140000
     50%
                                        0.00000
                                                          29081.650000
                        2.000000
     75%
                        3.000000
                                        0.000000
                                                          40561.150000
                                                         328112.860000
     max
                       10.000000
                                        1.000000
            credit limit
                          credit_limit_used(%)
                                                credit score prev defaults \
            4.552800e+04
                                   45528.00000
                                                45520.000000
                                                               45528.000000
                                                  782.791257
     mean
            4.354842e+04
                                      52.23502
                                                                   0.060710
     std
            1.487847e+05
                                      29.37691
                                                  100.619746
                                                                   0.264629
     min
            4.003140e+03
                                       0.00000
                                                  500.000000
                                                                   0.000000
     25%
            2.397381e+04
                                      27.00000
                                                  704.000000
                                                                   0.000000
     50%
            3.568804e+04
                                      54.00000
                                                  786.000000
                                                                   0.000000
     75%
            5.343576e+04
                                      78.00000
                                                  867.000000
                                                                   0.000000
            3.112997e+07
                                      99.00000
                                                  949.000000
                                                                   2.000000
     max
            default_in_last_6months
                       45528.000000
     count
     mean
                           0.050540
     std
                           0.219059
                           0.00000
     min
     25%
                           0.000000
     50%
                           0.000000
     75%
                           0.000000
                           1.000000
     max
[21]: from sklearn.impute import SimpleImputer
     continuous_features =
       X_continuous = X[continuous_features]
     imputer = SimpleImputer(strategy='mean')
     X_continuous_imputed = pd.DataFrame(imputer.fit_transform(X_continuous),__
       →columns=continuous_features)
     X[continuous_features] = X_continuous_imputed
[22]: #check whether imputed or not
     print('data dimensions:',X.shape)
     perc_missing_per_ftr = X.isnull().sum(axis=0)/X.shape[0]
     print('fraction of missing values in features:')
     print(perc_missing_per_ftr[perc_missing_per_ftr >0])
     print('data types of the features with missing values:')
```

0.179111

31796.965311

2.158081

mean

```
print(df[perc_missing_per_ftr[perc_missing_per_ftr > 0].index].dtypes)
frac_missing = sum(X.isnull().sum(axis=1)!=0)/df.shape[0]
print('fraction of points with missing values:',frac missing)
data dimensions: (45528, 16)
fraction of missing values in features:
owns car
                        0.012015
no of children
                        0.017001
total_family_members
                        0.001823
migrant_worker
                        0.001911
dtype: float64
data types of the features with missing values:
owns_car
                         object
no_of_children
                        float64
total_family_members
                        float64
migrant_worker
                        float64
dtype: object
fraction of points with missing values: 0.03237568089966614
```

8 3.Methods_Write a Function

```
[23]: import pandas as pd
      import numpy as np
      import random
      from sklearn.model selection import train test split
      from sklearn.model_selection import StratifiedKFold
      from sklearn.compose import ColumnTransformer
      from sklearn.preprocessing import StandardScaler
      from sklearn.preprocessing import OneHotEncoder
      from sklearn.preprocessing import MinMaxScaler
      from sklearn.pipeline import make_pipeline
      from sklearn.model_selection import GridSearchCV
      from sklearn.metrics import make_scorer, fbeta_score
      def MLpipe(X, y, preprocessor, ML_algo, param_grid):
          # lists to be returned
          scores = []
          best_models = []
          test sets = []
          # loop through 10 different random states
          random.seed(42)
          random_state = random.sample(range(1, 101), 10)
          for i, rs in enumerate(random_state):
```

```
# split the data to other and test (80-20)
      X_other, X_test, y_other, y_test = train_test_split(X, y, test_size=0.
→2, random_state=rs, stratify=y)
      # print sets before preprocess
      print(f'\nSearch{i+1}, random state = {rs}')
      print("X_other Shape before preprocessing:", X_other.shape)
      print("X_test Shape before preprocessing:", X_test.shape)
      # use StratifiedKFold with 4 folds
      kf = StratifiedKFold(n_splits=4, shuffle=True, random_state=rs)
      pipe = make_pipeline(preprocessor, ML_algo)
      fbeta_scorer = make_scorer(fbeta_score, beta=0.5)
      grid = GridSearchCV(pipe,
                          param_grid=param_grid,
                           scoring=fbeta_scorer, # use F-beta score
                          cv=kf.
                          return_train_score=True,
                          n jobs=-1,
                          verbose=True)
      # print sets after preprocess
      X_other_preprocessed = preprocessor.fit_transform(X_other)
      X_test_preprocessed = preprocessor.transform(X_test)
      print("X_other Shape after preprocessing:", X_other_preprocessed.shape)
      print("X_test Shape after preprocessing:", X_test_preprocessed.shape)
      # fit a model using GridSearchCV with StratifiedKFold and the
⇔predefined Preprocessor
      grid.fit(X_other, y_other)
      # print the GridSearchCV results
      print("GridSearchCV Results:")
      print('Best Parameters:', grid.best params )
      print('Best Score:', grid.best_score_)
      # return a list of 10 best models
      best_model = grid.best_estimator_
      best_models.append(best_model)
      # calculate and print test scores
      # return a list of 10 test scores
      y_test_prob = best_model.predict_proba(X_test)[:, 1] # the second_
⇔column is the positive class (credit_card_default=1)
      test_fbeta = fbeta_score(y_test, best_model.predict(X_test), beta=0.5)
      print("Test Score (F-beta):", test_fbeta)
      scores.append(test_fbeta)
```

```
test_sets.append([X_test, y_test])
return scores, best_models, test_sets
```

9 3.Methods_Logistic Regression

```
[24]: from sklearn.pipeline import Pipeline
     from sklearn.preprocessing import StandardScaler, OneHotEncoder,
      →OrdinalEncoder, MinMaxScaler
     from sklearn.linear_model import LogisticRegression
     #preprocessor
     #ordinal_ftrs = []
     #ordinal_cats = []
     onehot_ftrs = ['gender', 'owns_car', 'owns_house', 'no_of_children', __
      minmax_ftrs = ['age', 'credit_limit_used(%)', 'credit_score', 'prev_defaults',__
      std_ftrs = ['net_yearly_income', 'no_of_days_employed', 'yearly_debt_payments',_
      preprocessor = ColumnTransformer(
         transformers=[
             ('onehot', OneHotEncoder(sparse_output=False, handle_unknown='ignore'), __
      ⇔onehot_ftrs),
             ('minmax', MinMaxScaler(), minmax_ftrs),
             ('std', StandardScaler(), std_ftrs)
     #algorithms and parameters
     ML_algo = LogisticRegression()
     param grid = {
         'logisticregression_C': [0.01, 0.1, 1, 10],
         'logisticregression max iter': [1000, 2000, 3000], # Add one more
      \hookrightarrowparameter
     }
     #use function
     scores, best_models, test_sets = MLpipe(X, y, preprocessor, ML_algo, param_grid)
     mean_scores = np.mean(scores)
     std_score = np.std(scores)
     print(f'Mean of Test Scores = {mean_scores}, Standard Deviation of Test Scores⊔
      ←= {std_score}')
     # Save result and best model
     scores_table1 = {}
     scores_table1['Model'] = 'Logistic Regression'
```

```
scores_table1['Mean of Test Score'] = mean_scores
scores_table1['Standard Deviation of Test Score'] = std_score
scores_table1['Coefficient of Variation'] = np.array(std_score) / np.
 →array(mean_scores)
scores_table1['Std Above Baseline'] = (np.array(mean_scores) - 0.
 →09754308570704885) / np.array(std score)
#qet best model
best_model_index = np.argmax(scores)
best_model1 = best_models[best_model_index]
#qet X and y's test set
test_set1 = test_sets[best_model_index]
X_test1, y_test1 = test_set1
Search1, random_state = 82
X_other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 60)
X_test Shape after preprocessing: (9106, 60)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'logisticregression__C': 0.1, 'logisticregression__max_iter':
1000}
Best Score: 0.9359791572006294
Test Score (F-beta): 0.9472304162569649
Search2, random_state = 15
X_other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 61)
X_test Shape after preprocessing: (9106, 61)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'logisticregression__C': 0.1, 'logisticregression__max_iter':
1000}
Best Score: 0.9365661326228111
Test Score (F-beta): 0.9423909423909425
Search3, random_state = 4
X other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 60)
X_test Shape after preprocessing: (9106, 60)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
```

```
Best Parameters: {'logisticregression__C': 0.1, 'logisticregression__max_iter':
1000}
Best Score: 0.9373595313028902
Test Score (F-beta): 0.9394957983193276
Search4, random state = 95
X other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 61)
X_test Shape after preprocessing: (9106, 61)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'logisticregression C': 0.1, 'logisticregression max iter':
1000}
Best Score: 0.9376557080406291
Test Score (F-beta): 0.9390777515987883
Search5, random_state = 36
X_other Shape before preprocessing: (36422, 16)
X test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 61)
X_test Shape after preprocessing: (9106, 61)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'logisticregression__C': 0.1, 'logisticregression__max_iter':
1000}
Best Score: 0.9369680601544822
Test Score (F-beta): 0.939485122032765
Search6, random_state = 32
X_other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 61)
X_test Shape after preprocessing: (9106, 61)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'logisticregression__C': 0.1, 'logisticregression__max_iter':
Best Score: 0.9368065126384957
Test Score (F-beta): 0.9440211990725407
Search7, random_state = 29
X_other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 60)
X_test Shape after preprocessing: (9106, 60)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
```

```
Best Parameters: {'logisticregression__C': 0.1, 'logisticregression__max_iter':
1000}
Best Score: 0.93823224153883
Test Score (F-beta): 0.9373942470389172
Search8, random state = 18
X other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 61)
X_test Shape after preprocessing: (9106, 61)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'logisticregression__C': 0.1, 'logisticregression__max_iter':
1000}
Best Score: 0.9387519841498995
Test Score (F-beta): 0.9365456396335256
Search9, random_state = 14
X_other Shape before preprocessing: (36422, 16)
X test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 58)
X_test Shape after preprocessing: (9106, 58)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'logisticregression__C': 0.1, 'logisticregression__max_iter':
1000}
Best Score: 0.938706281241672
Test Score (F-beta): 0.9373942470389172
Search10, random_state = 87
X_other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 60)
X_test Shape after preprocessing: (9106, 60)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'logisticregression__C': 0.1, 'logisticregression__max_iter':
Best Score: 0.9375459563859804
Test Score (F-beta): 0.9403285283271875
Mean of Test Scores = 0.9403363891709876, Standard Deviation of Test Scores =
0.0031626616032118453
```

10 3.Methods_Decision Tree

```
[25]: from sklearn.tree import DecisionTreeClassifier
      #preprocessor
      onehot_ftrs = ['gender', 'owns_car', 'owns_house', 'no_of_children',_
       ⇔'occupation_type', 'total_family_members', 'migrant_worker']
      minmax_ftrs = ['age', 'credit_limit_used(%)', 'credit_score', 'prev_defaults',__

¬'default_in_last_6months']
      std_ftrs = ['net_yearly_income', 'no_of_days_employed', 'yearly_debt_payments',_
       ⇔'credit_limit']
      preprocessor = ColumnTransformer(
          transformers=[
              ('onehot', OneHotEncoder(sparse_output=False, handle_unknown='ignore'), u
       ⇔onehot ftrs),
              ('minmax', MinMaxScaler(), minmax_ftrs),
              ('std', StandardScaler(), std ftrs)
          ]
      )
      # algorithms and parameters
      ML_algo = DecisionTreeClassifier()
      param_grid = {
          'decisiontreeclassifier_max_depth': [5, 10, 15, None],
          'decisiontreeclassifier min samples split': [2, 5, 10], # Add one more
       \hookrightarrow parameter
      }
      # use function
      scores, best_models, test_sets = MLpipe(X, y, preprocessor, ML_algo, param_grid)
      mean_scores = np.mean(scores)
      std score = np.std(scores)
      print(f'Mean of Test Scores = {mean_scores}, Standard Deviation of Test Scores⊔
       ←= {std score}')
      # Save result and best model
      scores_table2 = {}
      scores table2['Model'] = 'Decision Tree'
      scores table2['Mean of Test Score'] = mean scores
      scores_table2['Standard Deviation of Test Score'] = std_score
      scores_table2['Coefficient of Variation'] = np.array(std_score) / np.
       →array(mean scores)
      scores_table2['Std Above Baseline'] = (np.array(mean_scores) - 0.
       →09754308570704885) / np.array(std_score)
      #qet best model
      best_model_index = np.argmax(scores)
```

```
best_model2 = best_models[best_model_index]
#qet X and y's test set
test_set2 = test_sets[best_model_index]
X_test2, y_test2 = test_set2
Search1, random state = 82
X_other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 60)
X_test Shape after preprocessing: (9106, 60)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'decisiontreeclassifier_max_depth': 5,
'decisiontreeclassifier__min_samples_split': 2}
Best Score: 0.9339490586251618
Test Score (F-beta): 0.9451518119490695
Search2, random_state = 15
X_other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 61)
X_test Shape after preprocessing: (9106, 61)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'decisiontreeclassifier_max_depth': 5,
'decisiontreeclassifier_min_samples_split': 2}
Best Score: 0.939327082428482
Test Score (F-beta): 0.9423650215303079
Search3, random_state = 4
X_other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 60)
X_test Shape after preprocessing: (9106, 60)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'decisiontreeclassifier_max_depth': 5,
'decisiontreeclassifier_min_samples_split': 2}
Best Score: 0.9405875894426018
Test Score (F-beta): 0.9394957983193276
Search4, random_state = 95
X_other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 61)
X_test Shape after preprocessing: (9106, 61)
```

Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'decisiontreeclassifier_max_depth': 5, 'decisiontreeclassifier__min_samples_split': 2} Best Score: 0.9399679713983673 Test Score (F-beta): 0.9403285283271875 Search5, random_state = 36 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61) X_test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'decisiontreeclassifier__max_depth': 5, 'decisiontreeclassifier_min_samples_split': 2} Best Score: 0.9384417084419139 Test Score (F-beta): 0.9398998330550918 Search6, random state = 32 X other Shape before preprocessing: (36422, 16) X test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61) X_test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'decisiontreeclassifier_max_depth': 5, 'decisiontreeclassifier_min_samples_split': 2} Best Score: 0.9370419701080719 Test Score (F-beta): 0.9444260668210388 Search7, random_state = 29 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X other Shape after preprocessing: (36422, 60) X_test Shape after preprocessing: (9106, 60) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'decisiontreeclassifier_max_depth': 5, 'decisiontreeclassifier_min_samples_split': 2} Best Score: 0.9397051770144842 Test Score (F-beta): 0.9361344537815127 Search8, random_state = 18 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61)

X_test Shape after preprocessing: (9106, 61)

```
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'decisiontreeclassifier_max_depth': 5,
'decisiontreeclassifier__min_samples_split': 2}
Best Score: 0.9392686385002998
Test Score (F-beta): 0.9365456396335256
Search9, random_state = 14
X other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 58)
X_test Shape after preprocessing: (9106, 58)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'decisiontreeclassifier__max_depth': 5,
'decisiontreeclassifier_min_samples_split': 2}
Best Score: 0.9391148441966748
Test Score (F-beta): 0.9365558912386708
Search10, random state = 87
X other Shape before preprocessing: (36422, 16)
X test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 60)
X_test Shape after preprocessing: (9106, 60)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'decisiontreeclassifier_max_depth': 5,
'decisiontreeclassifier_min_samples_split': 2}
Best Score: 0.9393509322879166
Test Score (F-beta): 0.9398998330550918
Mean of Test Scores = 0.9400802877710823, Standard Deviation of Test Scores =
0.003012959587161753
```

11 3.Methods Random Forest

```
('onehot', OneHotEncoder(sparse_output=False, handle_unknown='ignore'), u
  ⇔onehot_ftrs),
         ('minmax', MinMaxScaler(), minmax_ftrs),
         ('std', StandardScaler(), std ftrs)
    ]
)
# algorithms and parameters
ML_algo = RandomForestClassifier(random_state=42)
param_grid = {
     'randomforestclassifier_n_estimators': [50, 100, 150, 200],
     'randomforestclassifier__max_depth': [None, 10, 30], #add one more_
  \rightarrowparameter
}
# use function
scores = MLpipe(X, y, preprocessor, ML_algo, param_grid)[0]
best_model = MLpipe(X, y, preprocessor, ML_algo, param_grid)[1]
test_sets = MLpipe(X, y, preprocessor, ML_algo, param_grid)[2]
mean_scores = np.mean(scores)
std_score = np.std(scores)
print(f'Mean of Test Scores = {mean_scores}, Standard Deviation of Test Scores⊔
 ←= {std_score}')
# Save result and best model
scores_table3 = {}
scores table3['Model'] = 'Random Forest'
scores_table3['Mean of Test Score'] = mean_scores
scores table3['Standard Deviation of Test Score'] = std score
scores_table3['Coefficient of Variation'] = np.array(std_score) / np.
 →array(mean_scores)
scores_table3['Std Above Baseline'] = (np.array(mean_scores) - 0.
 →09754308570704885) / np.array(std_score)
#qet best model
best_model_index = np.argmax(scores)
best_model3 = best_models[best_model_index]
#qet X and y's test set
test_set3 = test_sets[best_model_index]
X_test3, y_test3 = test_set3
Search1, random_state = 82
```

```
X_other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 60)
```

X_test Shape after preprocessing: (9106, 60) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier n estimators': 50} Best Score: 0.9382335922697143 Test Score (F-beta): 0.9476268412438624 Search2, random state = 15 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61) X_test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9393240652836065 Test Score (F-beta): 0.9436152570480928 Search3, random_state = 4 X other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 60) X_test Shape after preprocessing: (9106, 60) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 30, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9404063264582645 Test Score (F-beta): 0.9378117725307614 Search4, random_state = 95 X_other Shape before preprocessing: (36422, 16) X test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61) X test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9400670776450917 Test Score (F-beta): 0.9403285283271875 Search5, random_state = 36 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61)

X_test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier n estimators': 100} Best Score: 0.9399183042987798 Test Score (F-beta): 0.941156803744567 Search6, random state = 32 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61) X_test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9392317557407501 Test Score (F-beta): 0.9440211990725407 Search7, random_state = 29 X other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 60) X_test Shape after preprocessing: (9106, 60) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': None, 'randomforestclassifier_n_estimators': 100} Best Score: 0.9408247448112503 Test Score (F-beta): 0.9344700768973587 Search8, random_state = 18 X_other Shape before preprocessing: (36422, 16) X test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61) X test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9410297117030277 Test Score (F-beta): 0.9365456396335256 Search9, random_state = 14 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 58)

X_test Shape after preprocessing: (9106, 58) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier n estimators': 50} Best Score: 0.9406848356033403 Test Score (F-beta): 0.9382382720215997 Search10, random state = 87 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 60) X_test Shape after preprocessing: (9106, 60) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9399915328946808 Test Score (F-beta): 0.9407432206226984 Search1, random_state = 82 X other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 60) X_test Shape after preprocessing: (9106, 60) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9382335922697143 Test Score (F-beta): 0.9476268412438624 Search2, random_state = 15 X_other Shape before preprocessing: (36422, 16) X test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61) X test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9393240652836065 Test Score (F-beta): 0.9436152570480928 Search3, random_state = 4 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 60)

```
X_test Shape after preprocessing: (9106, 60)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'randomforestclassifier_max_depth': 30,
'randomforestclassifier n estimators': 50}
Best Score: 0.9404063264582645
Test Score (F-beta): 0.9378117725307614
Search4, random state = 95
X_other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 61)
X_test Shape after preprocessing: (9106, 61)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'randomforestclassifier_max_depth': 10,
'randomforestclassifier_n_estimators': 50}
Best Score: 0.9400670776450917
Test Score (F-beta): 0.9403285283271875
Search5, random_state = 36
X other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 61)
X_test Shape after preprocessing: (9106, 61)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'randomforestclassifier_max_depth': 10,
'randomforestclassifier_n_estimators': 100}
Best Score: 0.9399183042987798
Test Score (F-beta): 0.941156803744567
Search6, random_state = 32
X_other Shape before preprocessing: (36422, 16)
X test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 61)
X test Shape after preprocessing: (9106, 61)
Fitting 4 folds for each of 12 candidates, totalling 48 fits
GridSearchCV Results:
Best Parameters: {'randomforestclassifier_max_depth': 10,
'randomforestclassifier_n_estimators': 50}
Best Score: 0.9392317557407501
Test Score (F-beta): 0.9440211990725407
Search7, random_state = 29
X_other Shape before preprocessing: (36422, 16)
X_test Shape before preprocessing: (9106, 16)
X_other Shape after preprocessing: (36422, 60)
```

X_test Shape after preprocessing: (9106, 60) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': None, 'randomforestclassifier n estimators': 100} Best Score: 0.9408247448112503 Test Score (F-beta): 0.9344700768973587 Search8, random state = 18 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61) X_test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9410297117030277 Test Score (F-beta): 0.9365456396335256 Search9, random_state = 14 X other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 58) X_test Shape after preprocessing: (9106, 58) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9406848356033403 Test Score (F-beta): 0.9382382720215997 Search10, random_state = 87 X_other Shape before preprocessing: (36422, 16) X test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 60) X test Shape after preprocessing: (9106, 60) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9399915328946808 Test Score (F-beta): 0.9407432206226984 Search1, random_state = 82 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 60)

X_test Shape after preprocessing: (9106, 60) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier n estimators': 50} Best Score: 0.9382335922697143 Test Score (F-beta): 0.9476268412438624 Search2, random state = 15 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61) X_test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9393240652836065 Test Score (F-beta): 0.9436152570480928 Search3, random_state = 4 X other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 60) X_test Shape after preprocessing: (9106, 60) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 30, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9404063264582645 Test Score (F-beta): 0.9378117725307614 Search4, random_state = 95 X_other Shape before preprocessing: (36422, 16) X test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61) X test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9400670776450917 Test Score (F-beta): 0.9403285283271875 Search5, random_state = 36 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61)

X_test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier n estimators': 100} Best Score: 0.9399183042987798 Test Score (F-beta): 0.941156803744567 Search6, random state = 32 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61) X_test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9392317557407501 Test Score (F-beta): 0.9440211990725407 Search7, random_state = 29 X other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 60) X_test Shape after preprocessing: (9106, 60) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': None, 'randomforestclassifier_n_estimators': 100} Best Score: 0.9408247448112503 Test Score (F-beta): 0.9344700768973587 Search8, random_state = 18 X_other Shape before preprocessing: (36422, 16) X test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 61) X test Shape after preprocessing: (9106, 61) Fitting 4 folds for each of 12 candidates, totalling 48 fits GridSearchCV Results: Best Parameters: {'randomforestclassifier_max_depth': 10, 'randomforestclassifier_n_estimators': 50} Best Score: 0.9410297117030277 Test Score (F-beta): 0.9365456396335256 Search9, random_state = 14 X_other Shape before preprocessing: (36422, 16) X_test Shape before preprocessing: (9106, 16) X_other Shape after preprocessing: (36422, 58)

```
X_test Shape after preprocessing: (9106, 58)
     Fitting 4 folds for each of 12 candidates, totalling 48 fits
     GridSearchCV Results:
     Best Parameters: {'randomforestclassifier_max_depth': 10,
     'randomforestclassifier n estimators': 50}
     Best Score: 0.9406848356033403
     Test Score (F-beta): 0.9382382720215997
     Search10, random state = 87
     X_other Shape before preprocessing: (36422, 16)
     X_test Shape before preprocessing: (9106, 16)
     X_other Shape after preprocessing: (36422, 60)
     X_test Shape after preprocessing: (9106, 60)
     Fitting 4 folds for each of 12 candidates, totalling 48 fits
     GridSearchCV Results:
     Best Parameters: {'randomforestclassifier_max_depth': 10,
     'randomforestclassifier_n_estimators': 50}
     Best Score: 0.9399915328946808
     Test Score (F-beta): 0.9407432206226984
     Mean of Test Scores = 0.9404557611142194, Standard Deviation of Test Scores =
     0.0037112643880534736
[27]: # 4. Methods_XGBoost
[28]: y = df['credit_card_default']
      customer_id = df['customer_id']
      name = df['name']
      # drop ID, name, and 4 features which are produced by log-transformation in EDA
      X = df.
       odrop(columns=['credit_card_default', 'customer_id', 'name', 'log_net_yearly_income', 'log_no_of
[29]: #check whether retrieve data correctly or not
      print('data dimensions:',X.shape)
      perc_missing_per_ftr = X.isnull().sum(axis=0)/X.shape[0]
      print('fraction of missing values in features:')
      print(perc_missing_per_ftr[perc_missing_per_ftr >0])
      print('data types of the features with missing values:')
      print(df[perc_missing_per_ftr[perc_missing_per_ftr > 0].index].dtypes)
      frac_missing = sum(X.isnull().sum(axis=1)!=0)/df.shape[0]
      print('fraction of points with missing values:',frac_missing)
     data dimensions: (45528, 16)
     fraction of missing values in features:
     owns_car
                             0.012015
     no_of_children
                             0.017001
     no_of_days_employed
                             0.010170
     total_family_members
                             0.001823
     migrant_worker
                             0.001911
```

```
yearly_debt_payments
                           0.002087
                           0.000176
     credit_score
     dtype: float64
     data types of the features with missing values:
     owns car
                            object
     no_of_children
                           float64
     no of days employed
                           float64
     total_family_members
                           float64
     migrant_worker
                           float64
     yearly_debt_payments
                           float64
                           float64
     credit_score
     dtype: object
     fraction of points with missing values: 0.04434633632050606
[30]: pip install xgboost
     Requirement already satisfied: xgboost in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (2.0.2)
     Requirement already satisfied: numpy in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from xgboost) (1.24.3)
     Requirement already satisfied: scipy in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from xgboost) (1.10.1)
     Note: you may need to restart the kernel to use updated packages.
[31]: import xgboost as xgb
     # Define the features and preprocessor
     onehot_ftrs = ['gender', 'owns_car', 'owns_house', 'no_of_children',_
      ⇔'occupation_type', 'total_family_members', 'migrant_worker']
     ⇔'default_in_last_6months']
     std_ftrs = ['net_yearly_income', 'no_of_days_employed', 'yearly_debt_payments',
      preprocessor = ColumnTransformer(
         transformers=[
             ('onehot', OneHotEncoder(sparse output=False, handle unknown='ignore'),
      ⇔onehot_ftrs),
             ('minmax', MinMaxScaler(), minmax_ftrs),
             ('std', StandardScaler(), std_ftrs)
         ]
     )
     # Initialize lists for storing test scores and best models
     test scores = []
     best_models = []
     test_sets = []
```

```
# Define the stratified k-fold splitting strategy with 4 folds
kf = StratifiedKFold(n_splits=4, shuffle=True, random_state=42)
# Iterate through 10 different random states
random_state = random.sample(range(1, 101), 10)
for i, rs in enumerate(random_state):
    # Split the data into other and test sets (80-20)
   X_other, X_test, y_other, y_test = train_test_split(X, y, test_size=0.2,_
 →random_state=rs, stratify=y)
    # Define the XGBoost model with its specific parameters
   xgb_model = xgb.XGBClassifier()
   # Set the parameters for GridSearchCV
   param_grid = {'xgbclassifier_learning_rate': [0.01, 0.1, 0.3, 0.5], u

¬'xgbclassifier__max_depth': [3, 5, 7]}
   # Create the pipeline with preprocessor and XGBoost model
   pipe = make_pipeline(preprocessor, xgb_model)
    # Use GridSearchCV for hyperparameter tuning
   grid = GridSearchCV(pipe, param_grid=param_grid,__
 ⇒scoring=make_scorer(fbeta_score, beta=0.5), cv=kf, return_train_score=True, __
 →n_jobs=-1, verbose=True)
    # Fit the model
   grid.fit(X_other, y_other)
   # Get the best model
   best_model = grid.best_estimator_
   best_models.append(best_model)
    # Calculate F-beta score with a beta of 0.5 for test set
   y_test_prob = best_model.predict_proba(X_test)[:, 1]
   test_fbeta = fbeta_score(y_test, (y_test_prob > 0.5).astype(int), beta=0.5)
   test_scores.append(test_fbeta)
   test_sets.append([X_test, y_test])
    # Print the results for each iteration
   print(f'\nSearch{i+1}, random state = {rs}')
   print("GridSearchCV Results:")
   print('Best Parameters:', grid.best_params_)
   print('Best Score:', grid.best_score_)
   print("Test F1 Score (beta=0.5):", test_fbeta)
# Print the final scores
mean_scores = np.mean(test_scores)
```

```
std_score = np.std(test_scores)
print(f'Mean of Test F1 Scores (beta=0.5) = {mean_scores}, Standard Deviation⊔
 →of Test Scores = {std_score}')
# Save result and best model
scores table4 = {}
scores table4['Model'] = 'XGBoost'
scores table4['Mean of Test Score'] = mean scores
scores_table4['Standard Deviation of Test Score'] = std_score
scores_table4['Coefficient of Variation'] = np.array(std_score) / np.
 →array(mean_scores)
scores table4['Std Above Baseline'] = (np.array(mean scores) - 0.
 →09754308570704885) / np.array(std_score)
#qet best model
best_model_index = np.argmax(test_scores)
best_model4 = best_models[best_model_index]
#get X and y's test set
test_set4 = test_sets[best_model_index]
X_test4, y_test4 = test_set4
Fitting 4 folds for each of 12 candidates, totalling 48 fits
Search1, random_state = 95
GridSearchCV Results:
Best Parameters: {'xgbclassifier__learning_rate': 0.01,
'xgbclassifier__max_depth': 3}
Best Score: 0.9400264939111435
Test F1 Score (beta=0.5): 0.9403285283271875
Fitting 4 folds for each of 12 candidates, totalling 48 fits
Search2, random state = 70
GridSearchCV Results:
Best Parameters: {'xgbclassifier__learning_rate': 0.01,
'xgbclassifier__max_depth': 3}
Best Score: 0.940210795734641
Test F1 Score (beta=0.5): 0.9394957983193276
Fitting 4 folds for each of 12 candidates, totalling 48 fits
Search3, random_state = 12
GridSearchCV Results:
Best Parameters: {'xgbclassifier_learning_rate': 0.01,
'xgbclassifier_max_depth': 3}
Best Score: 0.9409700313548903
Test F1 Score (beta=0.5): 0.9365456396335256
Fitting 4 folds for each of 12 candidates, totalling 48 fits
```

```
Search4, random_state = 76
GridSearchCV Results:
Best Parameters: {'xgbclassifier_learning_rate': 0.01,
'xgbclassifier max depth': 7}
Best Score: 0.9412498082753685
Test F1 Score (beta=0.5): 0.9356924123851651
Fitting 4 folds for each of 12 candidates, totalling 48 fits
Search5, random_state = 55
GridSearchCV Results:
Best Parameters: {'xgbclassifier_learning_rate': 0.01,
'xgbclassifier__max_depth': 3}
Best Score: 0.9413990317743762
Test F1 Score (beta=0.5): 0.934834527465029
Fitting 4 folds for each of 12 candidates, totalling 48 fits
Search6, random_state = 5
GridSearchCV Results:
Best Parameters: {'xgbclassifier_learning_rate': 0.01,
'xgbclassifier max depth': 3}
Best Score: 0.9407588893337234
Test F1 Score (beta=0.5): 0.9373942470389172
Fitting 4 folds for each of 12 candidates, totalling 48 fits
Search7, random_state = 4
GridSearchCV Results:
Best Parameters: {'xgbclassifier__learning_rate': 0.01,
'xgbclassifier__max_depth': 3}
Best Score: 0.9402236942240538
Test F1 Score (beta=0.5): 0.9394957983193276
Fitting 4 folds for each of 12 candidates, totalling 48 fits
Search8, random_state = 28
GridSearchCV Results:
Best Parameters: {'xgbclassifier_learning_rate': 0.01,
'xgbclassifier max depth': 3}
Best Score: 0.9400183950826914
Test F1 Score (beta=0.5): 0.9399127223900638
Fitting 4 folds for each of 12 candidates, totalling 48 fits
Search9, random_state = 30
GridSearchCV Results:
Best Parameters: {'xgbclassifier_learning_rate': 0.01,
'xgbclassifier__max_depth': 3}
Best Score: 0.9387608865183495
Test F1 Score (beta=0.5): 0.9452325965028043
Fitting 4 folds for each of 12 candidates, totalling 48 fits
```

```
Search10, random_state = 65
GridSearchCV Results:
Best Parameters: {'xgbclassifier__learning_rate': 0.01,
   'xgbclassifier__max_depth': 3}
Best Score: 0.9399520368934995
Test F1 Score (beta=0.5): 0.9407432206226984
Mean of Test F1 Scores (beta=0.5) = 0.9389675491004047, Standard Deviation of Test Scores = 0.002861063665346118
```

12 4.Results Baseline Test Score Best Model

```
[32]: # In the baseline model, it predicts all points as class 1
TP = 3697
FP = 41831
FN = 3697

P = TP / (TP + FP)

R = TP / (TP + FN)

F0_5 = (1.25 * P * R) / (0.25 * P + R)

print("F0.5 Score:", F0_5)
```

F0.5 Score: 0.09754308570704885

```
[33]: scores_table = pd.DataFrame([scores_table1, scores_table2, scores_table3, uscores_table4])

print(scores_table)

desktop_path = "/Users/emmasun/Desktop/final/results"
scores_table.to_csv(f"{desktop_path}/test scores and best model.csv", usindex=False)
```

	Model	Mean of Test Score	Standard Deviation of	Test Score \
0	Logistic Regression	0.940336		0.003163
1	Decision Tree	0.940080		0.003013
2	Random Forest	0.940456		0.003711
3	XGBoost	0.938968		0.002861

```
Coefficient of Variation Std Above Baseline
0 0.003363 266.482289
1 0.003205 279.637737
2 0.003946 227.122777
3 0.003047 294.094981
```

```
import os
dpi = 350

plt.grid(True)

model_names = scores_table['Model'].values
model_mean = scores_table['Mean of Test Score'].values
model_std = scores_table['Standard Deviation of Test Score'].values

plt.errorbar(model_names, model_mean, yerr=model_std, fmt='o', capsize=9)

plt.title('Mean and Standard Deviation of Test Scores for Different Models')
plt.xlabel('Models')
plt.ylabel('Mean Test Score')

plt.yticks([0.93, 0.94, 0.95])

plt.show()

desktop_path = "/Users/emmasun/Desktop/final/figures"
plt.savefig(os.path.join(desktop_path, "test_scores_plot.png"), dpi=dpi)
```


13 4.Results Predict Y

```
[35]: y = df['credit card default']
    customer_id = df['customer_id']
    name = df['name']
    # Drop ID, name, and 4 features which are produced by log-transformation in EDA
    X = df.drop(columns=['credit_card_default', 'customer_id', 'name', |
     continuous_features =_
     X_continuous = X[continuous_features]
    imputer = SimpleImputer(strategy='mean')
    X_continuous_imputed = pd.DataFrame(imputer.fit_transform(X_continuous),_
     ⇔columns=continuous_features)
    X[continuous_features] = X_continuous_imputed
    prediction_y = best_model2.predict(X)
    results_df = pd.DataFrame({
        'True_y': y,
        'Prediction_y': prediction_y
    })
    results_df.to_csv('dataset_with_predictions.csv', index=False)
```

14 4.Results_Confusion Matrix

```
[36]: from sklearn.metrics import confusion_matrix, classification_report

conf_matrix = confusion_matrix(y, prediction_y)

colors = ['orange', 'blue']

sns.set_palette(sns.color_palette(colors))

plt.figure(figsize=(6, 4), dpi=dpi)

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['On_\cup \leftattriangle Time(0)', 'Past Due(1)'])

orange of the product of the product
```

```
plt.ylabel('True')
plt.title('Confusion Matrix with best Decision Tree model')
plt.show()
file_path = '/Users/emmasun/Desktop/final/figures/'
# Set DPI
dpi = 350
plt.savefig(file_path + 'confusion_matrix.png')
tn, fp, fn, tp = conf_matrix.ravel()
print(f'True Negatives (TN): {tn}')
print(f'True Positives (TP): {tp}')
print(f'False Negatives (FN): {fn}')
print(f'False Positives (FP): {fp}')
precision = tp / (tp + fp)
recall = tp / (tp + fn)
beta = 1.25
f_beta = (1.25 * precision * recall) / (0.25 * precision + recall)
f_beta
```


True Negatives (TN): 41828 True Positives (TP): 2814 False Negatives (FN): 883 False Positives (FP): 3

[36]: 0.9401937854994987

<Figure size 640x480 with 0 Axes>

15 4.Results Global Permutation Importance

```
[37]: print(X_test2.shape)
      print(y_test2.shape)
      print(X_test2.head())
     (9106, 16)
     (9106,)
                                              no_of_children net_yearly_income
             age gender owns_car owns_house
     37626
              54
                      F
                                Y
                                           Y
                                                          0.0
                                                                        178103.36
     32631
              33
                      F
                                N
                                           N
                                                          0.0
                                                                        124731.83
     7323
              40
                      F
                                Y
                                           N
                                                          0.0
                                                                        110770.06
     28010
              54
                      F
                                N
                                           Y
                                                          NaN
                                                                        167024.03
                      F
                                           Y
                                                          0.0
     16021
              48
                                N
                                                                        244831.06
             no_of_days_employed occupation_type total_family_members
                        365241.0
                                          Unknown
     37626
     32631
                        365250.0
                                          Unknown
                                                                      1.0
     7323
                          3464.0
                                          Unknown
                                                                      2.0
     28010
                                          Unknown
                          1594.0
                                                                      1.0
     16021
                           593.0
                                       Core staff
                                                                      2.0
             migrant_worker yearly_debt_payments
                                                    credit_limit
     37626
                        0.0
                                          29076.45
                                                         23841.88
                        0.0
     32631
                                          11735.69
                                                         22793.84
     7323
                        0.0
                                          17068.97
                                                         24939.58
     28010
                        0.0
                                          46454.97
                                                         59116.13
     16021
                        0.0
                                          61090.35
                                                         56431.18
                                    credit_score prev_defaults
             credit_limit_used(%)
     37626
                                95
                                           776.0
                                74
     32631
                                           768.0
                                                                0
                                                                0
     7323
                                29
                                           699.0
     28010
                                55
                                           795.0
                                                                0
     16021
                                           670.0
                                                                0
                                47
             default_in_last_6months
     37626
                                    0
     32631
                                    0
```

```
7323
                                 0
     28010
                                 0
     16021
                                 0
[38]: continuous_features =
       X_continuous = X_test2[continuous_features]
     imputer = SimpleImputer(strategy='mean')
     X_continuous_imputed = pd.DataFrame(imputer.fit_transform(X_continuous),__
       →columns=continuous_features)
     X_test2[continuous_features] = X_continuous_imputed
[39]: X_test2_proprocessed = best_model2.steps[0][1].transform(X_test2)
[40]: X_test2_proprocessed = pd.DataFrame(data=X_test2_proprocessed, columns =__
       ⇔best_model2[0].get_feature_names_out())
[41]: X_test2_proprocessed
[41]:
           onehot__gender_F
                             onehot__gender_M onehot__owns_car_N \
     0
                        1.0
                                          0.0
                                                             0.0
     1
                        1.0
                                          0.0
                                                             1.0
     2
                        1.0
                                          0.0
                                                             0.0
     3
                        1.0
                                          0.0
                                                             1.0
     4
                        1.0
                                          0.0
                                                             1.0
                        0.0
                                          1.0
                                                             0.0
     9101
                                          0.0
                                                             0.0
     9102
                        1.0
                        1.0
                                          0.0
                                                             1.0
     9103
     9104
                        1.0
                                          0.0
                                                             1.0
     9105
                        0.0
                                          1.0
                                                             0.0
           onehot_owns_car_Y onehot_owns_car_nan onehot_owns_house_N \
     0
                          1.0
                                               0.0
                                                                     0.0
     1
                                               0.0
                                                                     1.0
                          0.0
     2
                          1.0
                                               0.0
                                                                     1.0
     3
                          0.0
                                               0.0
                                                                     0.0
     4
                          0.0
                                               0.0
                                                                     0.0
     9101
                          1.0
                                               0.0
                                                                     0.0
                                               0.0
     9102
                          1.0
                                                                     1.0
     9103
                          0.0
                                               0.0
                                                                     0.0
     9104
                          0.0
                                               0.0
                                                                     1.0
                                               0.0
     9105
                          1.0
                                                                     0.0
```

```
onehot__owns_house_Y onehot__no_of_children_0.0 \
0
                         1.0
                                                       1.0
                         0.0
                                                       1.0
1
2
                         0.0
                                                       1.0
3
                         1.0
                                                       0.0
4
                         1.0
                                                       1.0
9101
                                                       0.0
                         1.0
9102
                         0.0
                                                       0.0
9103
                         1.0
                                                       1.0
9104
                         0.0
                                                       1.0
9105
                         1.0
                                                       1.0
      onehot__no_of_children_1.0
                                    onehot__no_of_children_2.0
0
                               0.0
                                                             0.0
1
                               0.0
                                                             0.0
2
                               0.0
                                                             0.0
3
                               0.0
                                                             0.0
4
                               0.0
                                                             0.0
                                                             0.0
9101
                               1.0
9102
                               0.0
                                                             1.0
9103
                               0.0
                                                             0.0
9104
                               0.0
                                                             0.0
                               0.0
9105
                                                             0.0
      onehot__migrant_worker_nan
                                    minmax__age minmax__credit_limit_used(%)
0
                               0.0
                                         0.96875
                                                                        0.959596
1
                               0.0
                                                                        0.747475
                                         0.31250
2
                               0.0
                                         0.53125
                                                                        0.292929
3
                               0.0
                                         0.96875
                                                                        0.55556
4
                               0.0
                                         0.78125
                                                                        0.474747
9101
                               0.0
                                                                        0.565657
                                         0.81250
9102
                               0.0
                                         0.03125
                                                                        0.929293
9103
                               0.0
                                                                        0.494949
                                         0.93750
9104
                               0.0
                                         0.00000
                                                                        0.303030
9105
                               0.0
                                         0.12500
                                                                        0.515152
                              minmax__prev_defaults
      minmax__credit_score
0
                                                 0.0
                         NaN
1
                         NaN
                                                 0.0
2
                   0.363029
                                                 0.0
                                                 0.0
3
                         NaN
4
                                                  0.0
                         NaN
```

```
9101
                                                       0.0
                         0.734967
      9102
                                                       1.0
                              NaN
      9103
                                                       0.0
                              NaN
      9104
                                                       0.0
                              NaN
      9105
                              NaN
                                                       0.0
            minmax__default_in_last_6months std__net_yearly_income \
      0
                                          0.0
                                                             -0.167800
      1
                                          0.0
                                                             -0.630338
      2
                                          0.0
                                                             -0.751336
      3
                                          0.0
                                                             -0.263817
      4
                                          0.0
                                                              0.410488
      9101
                                          0.0
                                                              1.137321
      9102
                                          0.0
                                                              4.165196
      9103
                                          0.0
                                                             -1.168504
      9104
                                          0.0
                                                             -0.471771
      9105
                                          0.0
                                                              0.200736
            std__no_of_days_employed
                                        std__yearly_debt_payments
                                                                    std__credit_limit
      0
                                                                             -0.634749
                                   NaN
                                                               NaN
      1
                                   NaN
                                                               NaN
                                                                             -0.669630
      2
                            -0.466517
                                                          0.242753
                                                                             -0.598215
      3
                                  NaN
                                                               NaN
                                                                              0.539267
      4
                                  NaN
                                                               NaN
                                                                              0.449905
                                                         -0.383530
      9101
                            -0.472358
                                                                              0.723598
      9102
                                  NaN
                                                               NaN
                                                                              3.027203
      9103
                                   NaN
                                                               NaN
                                                                             -1.019781
      9104
                                  NaN
                                                               NaN
                                                                             -0.578909
      9105
                                  NaN
                                                               NaN
                                                                              0.156292
      [9106 rows x 60 columns]
[42]: from sklearn.inspection import permutation_importance
      feature_names = X_test2.columns
      np.random.seed(100)
      nr_runs = 10
```

```
y_test_prob = best_model.predict_proba(X_test2)[:, 1]
        fbeta_original = fbeta_score(y_test2, (y_test_prob > 0.5).astype(int),_u
 →beta=0.5)
        shuffled prob = best model.predict proba(X test shuffled)[:, 1]
        fbeta_shuffled = fbeta_score(y_test2, (shuffled_prob > 0.5).
 ⇔astype(int), beta=0.5)
        fbeta_scores.append(fbeta_original-fbeta_shuffled)
   mean_mse = np.mean(fbeta_scores)
   std_mse = np.std(fbeta_scores)
   scores[i] = fbeta_scores
top_indices = np.argsort(np.mean(scores, axis=1))[::-1][:10]
top_scores = scores[top_indices]
top_feature_names = feature_names[top_indices]
plt.rcParams.update({'font.size': 11})
plt.figure(figsize=(8, 6))
plt.boxplot(top_scores.T, labels=top_feature_names, vert=False)
plt.title("Top 10 Permutation Importances on test set")
plt.xlabel('Mean and Std for differences in F-beta Scores between original and ⊔
 ⇔shuffled sets')
plt.tight_layout()
plt.show()
file_path = '/Users/emmasun/Desktop/final/figures/'
# Set DPI
dpi = 350
plt.savefig(file_path + 'Top 10 Permutation Importances on test set.png')
```


<Figure size 640x480 with 0 Axes>

16 4.Results_Global_Gini Importance

```
[43]: from sklearn.tree import plot_tree

y_pred = best_model2.predict(X_test2)

beta = 0.5
fbeta = fbeta_score(y_test2, y_pred, beta=beta)

feature_importances = best_model2.steps[1][1].feature_importances_

gini_importance = best_model2.steps[1][1].tree_.

compute_feature_importances(normalize=False)

feature_names = X_test2_proprocessed.columns.tolist()

data = {'Feature': feature_names, 'Importance': feature_importances, 'Gini_
columnsity': gini_importance}
```

```
df = pd.DataFrame(data)
df = df.sort_values(by='Gini Impurity', ascending=False)
df_{top10} = df.head(10)
fig, ax1 = plt.subplots(figsize=(10, 6))
ax1.barh(df_top10['Feature'], df_top10['Importance'], alpha=0.7, color='b', __
⇔log=True, label='Feature Importance')
ax2 = ax1.twiny()
ax2.plot(df_top10['Gini Impurity'], df_top10['Feature'], color='r', marker='o', __
 ⇔label='Gini Impurity')
ax1.set_ylabel('Features')
ax1.set_xlabel('Feature Importance (log scale)', color='b')
ax1.set_xscale('log')
ax1.xaxis.set_major_locator(plt.MaxNLocator(nbins=5)) # Adjust the number of
⇔ticks as needed
ax2.set_xlabel('Gini Impurity', color='r')
plt.title(f'Top 10 Decision Tree Feature Importance and Gini Impurity
⇔(F-beta={beta:.1f} Score: {fbeta:.4f})')
file_path = '/Users/emmasun/Desktop/final/figures/'
# Set DPI
dpi = 350
plt.savefig(file_path + 'op 10 Decision Tree Feature Importance and Gini_
plt.show()
```


17 4.Results_Global_SHAP Value

```
[49]: import shap
      import matplotlib.pyplot as plt
      import numpy as np
      import pandas as pd
[50]: pip install shap
     Requirement already satisfied: shap in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (0.43.0)
     Requirement already satisfied: numpy in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from shap) (1.24.3)
     Requirement already satisfied: scipy in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from shap) (1.10.1)
     Requirement already satisfied: scikit-learn in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from shap) (1.3.0)
     Requirement already satisfied: pandas in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from shap) (1.5.3)
     Requirement already satisfied: tqdm>=4.27.0 in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from shap) (4.65.0)
     Requirement already satisfied: packaging>20.9 in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from shap) (23.0)
     Requirement already satisfied: slicer==0.0.7 in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from shap) (0.0.7)
     Requirement already satisfied: numba in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from shap) (0.57.0)
```

```
Requirement already satisfied: cloudpickle in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from shap) (2.2.1)
     Requirement already satisfied: llvmlite<0.41,>=0.40.0dev0 in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from numba->shap)
     (0.40.0)
     Requirement already satisfied: python-dateutil>=2.8.1 in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from pandas->shap)
     (2.8.2)
     Requirement already satisfied: pytz>=2020.1 in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from pandas->shap)
     (2022.7)
     Requirement already satisfied: joblib>=1.1.1 in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from scikit-learn->shap)
     (1.2.0)
     Requirement already satisfied: threadpoolctl>=2.0.0 in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from scikit-learn->shap)
     (2.2.0)
     Requirement already satisfied: six>=1.5 in
     /Users/emmasun/anaconda3/lib/python3.11/site-packages (from python-
     dateutil>=2.8.1->pandas->shap) (1.16.0)
     Note: you may need to restart the kernel to use updated packages.
[59]: shap.initjs()
      explainer = shap.TreeExplainer(best_model2.steps[1][1])
      shap_values = explainer.shap_values(X_test2_proprocessed)
      shap_summary = np.sum(np.abs(shap_values), axis=0)
      shap.summary_plot(shap_values, X_test2_proprocessed, show=True)
      shap_summary_combined = np.sum(np.abs(shap_values[0]), axis=0) + np.sum(np.
       →abs(shap_values[1]), axis=0)
      feature_names = X_test2_proprocessed.columns
      indcs = np.argsort(shap_summary_combined)
```

bars = plt.barh(feature_names[indcs[-10:]], shap_summary_combined[indcs[-10:]],__

slog=True, color='orange') # Set logarithmic scale for better visualization

plt.figure(figsize=(10, 6))

plt.yticks(rotation=0)

plt.xticks(fontsize=10)
plt.yticks(fontsize=10)

```
plt.ylabel('Features', fontsize=12)

for bar in bars:
    bar.set_color('yellow')

plt.xlabel('Sum of |SHAP values| (log scale)', fontsize=12)
plt.title('Top 10 Features - SHAP Global Feature Importance', fontsize=14)
plt.tight_layout()
plt.show()
```

<IPython.core.display.HTML object>

18 4.Results_Local_SHAP Value

```
[57]: import os
      index_points = [1000, 5000, 9000]
      file_path = '/Users/emmasun/Desktop/final/figures/'
      os.makedirs(file_path, exist_ok=True)
      for index in index_points:
          print(f'index: {index}')
          force_plot = shap.force_plot(
          base_value=explainer.expected_value[0],
          shap_values=shap_values[0][index, :],
          features=X_test2_proprocessed.iloc[index, :],
          feature_names=X_test2_proprocessed.columns,
          matplotlib=True,
          text_rotation=60,
          show=False
      )
          plt.gca().xaxis.set_major_locator(plt.LogLocator(numticks=100))
```

```
plt.title(f"Local SHAP Value Force Plot - Data Point {index}")
plt.savefig(file_path + f'Local_SHAP_Value_Force_Plot_{index}.png', dpi=350)
plt.show()
```

index: 1000

index: 5000

index: 9000

