NSR Search Results Page 1 of 6

Visit the <u>Isotope Explorer</u> home page!

31 reference(s) found:

Keynumber: 1997VE03

Reference: Appl.Radiat.Isot. 48, 493 (1997) **Authors:** L.Venturini, B.R.S.Pecequilo

Title: Thermal Neutron Capture Cross-Section of ⁴⁸Ti, ⁵¹V, ⁵⁰, ⁵², ⁵³Cr and ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti, ⁵¹V, ⁵⁰, ⁵², ⁵³Cr, ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni(n, γ),E=thermal;

measured E γ ,I γ ; deduced capture σ .

Keynumber: 1997KAZZ

Reference: Proc.9th Intern.Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996, G.L.Molnar, T.Belgya, Zs.Revay, Eds., Vol.1, p.440 (1997)

Authors: T.Kahn, F.J.Hartmann, J.Ott, T.von Egidy, M.Jentschel

Title: Gamma-Ray Induced Doppler Shift After (n, γ) Reactions in Si and Ti

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ⁴⁸Ti(n,γ),E=thermal; measured E γ ,I γ , γ -induced

Doppler shift. ⁴⁹Ti level deduced $T_{1/2}$.

Keynumber: 1997KA71

Reference: Nucl.Instrum.Methods Phys.Res. A385, 100 (1997) **Authors:** T.Kahn, T.von Egidy, F.J.Hartmann, J.Ott, M.Jentschel

Title: Gamma-Ray Induced Doppler Shift Attenuation after (n,γ) Reactions in Si and Ti **Keyword abstract:** NUCLEAR REACTIONS ²⁸Si, ⁴⁸Ti (n,γ) ,E=reactor; measured E γ ,I γ , $\gamma\gamma$ -coin,Doppler-shifted spectra. ²⁹Si, ⁴⁹Ti deduced levels T_{1/2}. Gamma-ray induced Doppler shift

attenuation method.

Kevnumber: 1996ST40

Reference: Nucl.Instrum.Methods Phys.Res. A381, 443 (1996)

Authors: N.Stritt, J.Jolie, H.Maser, H.H.Pitz

Title: A MeV Tunable Gamma-Ray Source by Compton Scattering

Keyword abstract: NUCLEAR REACTIONS 48 Ti(n, γ),E=thermal; measured Compton scattered E γ ,I γ

 (θ) ; deduced tunable γ -ray source application.

Keynumber: 1995MO40

Reference: Aust.J.Phys. 48, 125 (1995) **Authors:** A.J.Morton, D.G.Sargood

Title: Thermonuclear Reactions Rates for Reactions Leading to N = 28 Nuclei

Keyword abstract: NUCLEAR REACTIONS ⁴⁴, ⁴⁶K, ⁴⁶, ⁴⁷, ⁴⁸Ca, ⁴⁵, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹V, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹, ⁵²Cr, ⁵¹, ⁵², ⁵³Mn, ⁵², ⁵³, ⁵⁴Fe, ⁵⁵Co(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p),E not given; ⁵⁶Ni(n,γ), (n,p), (n,α), (α,γ), (α,n), (α,p),E not given; ⁴⁶Ar, ⁴⁵, ⁴⁷K (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p),E not given; calculated stellar reaction rates vs temperature.

Statistical model calculations, optical-model potential.

Keynumber: 1992KU17

Reference: Nucl.Phys. A549, 59 (1992)

Authors: A.Kuronen, J.Keinonen, H.G.Borner, J.Jolie, S.Ulbig

Title: Molecular Dynamics Simulations Applied to the Determination of Nuclear Lifetimes from

NSR Search Results Page 2 of 6

Dopler-Broadened γ-Ray Line Shapes Produced in Thermal Neutron Capture Reactions

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl, ⁴⁸Ti, ⁵³Cr, ⁵⁶Fe, ⁶⁰, ⁵⁸Ni(n,γ),E=thermal; analyzed

Doppler broadened γ-ray line shapes. ³⁶Cl levels deduced T_{1/2},M1,E2 transition matrix

elements, branching ratio. ⁴⁹Ti, ⁵⁴Cr, ⁵⁷Fe, ⁶¹, ⁵⁹Ni levels deduced T_{1/2}. Molecular dynamics simulations.

Keynumber: 1990KR15

Reference: Nucl.Instrum.Methods Phys.Res. A295, 155 (1990)

Authors: B.Krusche, K.Schreckenbach

Title: Intense Positron Sources by Pair Creation with Neutron Capture γ -Rays

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti(n, γ),E=thermal; measured positron spectra following γ-absorption in Pt foil. ¹¹³Cd(n, γ),E=thermal; measured positron spectra following γ-absorption in W foil. ¹¹³Cd(n, ϵ),E=thermal; measured I(ce); deduced intense positron sources.

Keynumber: 1988BO34

Reference: Phys.Lett. 215B, 45 (1988)

Authors: H.G.Borner, J.Jolie, F.Hoyler, S.Robinson, M.S.Dewey, G.Greene, E.Kessler, R.D.Deslattes

Title: Determination of Short Lifetimes with Ultra High Resolution (n, γ) Spectroscopy

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti(n, γ),E=thermal; measured Doppler broadening of γ -

line shape. 49 Ti levels deduced $T_{1/2}$.

Keynumber: 1987LI05

Reference: Chin.J.Nucl.Phys. 9, 21 (1987)

Authors: Liu Zianfeng, Ho Yukun

Title: Non-Statistical Effects in the Radiative Neutron Capture at the 3s Giant Resonance Region **Keyword abstract:** NUCLEAR REACTIONS ⁴⁰Ca, ⁴⁸Ti, ⁵²Cr, ⁵⁶Fe, ⁶⁴Ni, ⁷⁴Ge(n,γ),E=0.1-3 MeV;

calculated $\sigma(E)$. ⁴¹Ca, ⁴⁹Ti, ⁵³Cr, ⁵⁷Fe, ⁶⁵Ni, ⁷⁵Ge deduced neutron giant resonance strength.

Statistical, nonstatistical effects.

Keynumber: 1986LO12

Reference: Radiat.Eff. 95, 199 (1986)

Authors: G.Longo, F.Fabbri

Title: Production of High-Energy Photons in Fast Neutron Radiative Capture

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti, ⁵⁸Ni,Ni(n, γ),E=4-20 MeV; calculated σ (En), σ

(Εγ,θγ). Direct-semidirect model.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

NSR Search Results Page 3 of 6

Keynumber: 1983RU08

Reference: Nucl.Phys. A407, 60 (1983)

Authors: J.F.A.G.Ruyl, P.M.Endt

Title: Investigation of the ${}^{48}\text{Ti}(n,\gamma){}^{49}\text{Ti}$ Reaction

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti(n, γ), (polarized n, γ), E=thermal; measured E γ , I γ , γ

CP; deduced O-value. ⁴⁹Ti deduced levels, γ-branching, J.δ. Natural target.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS 22 , 23 Na,Mg, 24 , 25 , 26 Mg, 27 Al,Si, 28 , 29 , 30 Si, 31 P,S, 32 , 33 , 34 S,Cl, 35 , 36 , 37 Cl,Ar, 36 , 38 , 40 Ar,K, 39 , 40 , 41 K,Ca, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 , 46 Sc,Ti, 46 , 47 , 48 , 49 , 50 Ti,V, 50 , 51 V,Cr, 50 , 52 , 53 , 54 Cr,Fe, 54 , 56 , 57 , 58 Fe, 59 Co,Ni, 58 , 59 , 60 , 61 , 62 , 64 Ni,Cu, 63 , 65 Cu,Zn, 64 , 66 , 67 , 68 , 70 Zn,Ga, 69 , 71 Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰, ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Εγ,Ιγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q,neutron binding energy.

Keynumber: 1978SH07

Reference: J.Phys.(London) G4, 973 (1978)

Authors: P.Sharman, J.-F.Cavaignac, J.-L.Charvet, W.D.Hamilton, P.Hungerford, B.Vignon **Title:** A Test for T Violation by a Directional Correlation of Cascade Gamma Rays Emitted by

Polarised ⁴⁹Ti

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti(n, γ),E=4 Angstrom; measured $\gamma\gamma(\theta)$. ⁴⁹Ti deduced limit on T violation. Natural target.

Keynumber: 1977ALYR

Reference: AAEC/E-402 (1977)

Authors: B.J.Allen, J.W.Boldeman, A.R.de L.Musgrove, R.L.Macklin

Title: Resonance Neutron Capture in the Isotopes of Titanium

Keyword abstract: NUCLEAR REACTIONS ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti(n,γ),E=2.75-300 keV; measured

capture γ-yield. ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹Ti deduced resonance parameters.

Keynumber: 1975ALZW

Coden: JOUR BAPSA 20 150 EB16

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ²⁸Si, ⁴⁰Ca, ⁴⁸Ti, ⁵²Cr, ⁹⁰Zr, ¹³⁸Ba(n,γ),E >2.5

keV; measured $\sigma(E\gamma)$.

Keynumber: 1974RAZI

Reference: Contrib.Int.Symp.Neutron Capture Gamma Ray Spectroscopy and Related Topics, 2nd,

Petten, p.225 (1974)

NSR Search Results Page 4 of 6

Authors: W.Ratynski, J.Kopecky

Title: The 46 Ti(n, γ) Circular Polarization Measurement

Keyword abstract: NUCLEAR REACTIONS ⁴⁸, ⁴⁶Ti(polarized n,γ),E=thermal; measured CP. ⁴⁹, ⁴⁷Ti

levels deduced J,π .

Keynumber: 1974KEZR

Coden: REPT INDC(SWT)-5/L

Keyword abstract: RADIOACTIVITY ²², ²⁴Na, ⁴⁶Sc, ⁵¹Cr, ⁵⁴Mn, ⁵⁶, ⁵⁷, ⁶⁰Co, ⁸⁸Y, ⁹⁴Nb, ¹⁴⁰La, ²⁰³Hg, ²⁰⁷Bi, ²⁰⁸Tl, ²⁴¹Am, ¹⁸²Ta, ¹⁹²Ir, ^{110m}Ag, ^{180m}Hf; measured nothing, compiled Ey. ⁵⁶Co, ^{180m}Hf, ¹³⁷Cs, ¹⁹⁸Au, ⁵⁷Co, ^{108m}Ag, ²²Na, ²⁴Na, ⁴⁶Sc, ⁶⁰Co, ²²⁸Th; measured nothing, compiled Iy.

Keyword abstract: NUCLEAR REACTIONS 53 Cr(n, γ), 48 Ti(n, γ), 52 Cr(n, γ); measured

nothing, compiled Eγ, Iγ.

Keynumber: 1972GA07

Reference: Yad.Fiz. 15, 3 (1972); Sov.J.Nucl.Phys. 15, 1 (1972)

Authors: A.F.Gamalii, B.V.Zemtsev, V.B.Ivanov, B.V.Nesterov, L.P.Khamyanov

Title: Gamma Radiation in Intermediate Neutron Radioactive Capture

Keyword abstract: NUCLEAR REACTIONS 95 , 97 Mo, 62 Ni, 48 Ti(n, γ),E=thermal,2-25 keV; measured

Eγ,Ιγ. ⁴⁹Ti, ⁹⁶Mo deduced levels,J,π. ⁹⁸Mo, ⁶³Ni deduced transitions. Ge(Li) detector.

Kevnumber: 1971NEZZ

Coden: CONF Moscow(NuclSpectros,Structure) Abstr P38

Keyword abstract: NUCLEAR REACTIONS ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti(n,γ),E not given; measured Εγ,Ιγ. ⁴⁷,

⁴⁸, ⁴⁹, ⁵⁰, ⁵¹Ti deduced transitions.

Keynumber: 1969KO05

Reference: Nucl.Phys. A127, 385 (1969)

Authors: J.Kopecky, E.Warming

Title: Circular Polarization Measurements with a Ge(Li) Detector

Keyword abstract: NUCLEAR REACTIONS ³²S, ³⁵Cl, ⁴⁸Ti, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶³Cu(polarized n,γ), E = thermal; measured γ circular polarization. ³³S, ³⁶Cl, ⁴⁹Ti, ⁵⁶Mn, ⁵⁷Fe, ⁶⁰Co, ⁶⁴Cu levels deduced J, γ-

mixing. Natural targets.

Keynumber: 1969KE15

Reference: Yadern.Fiz. 10, 907 (1969); Soviet J.Nucl.Phys. 10, 524 (1970)

Authors: J.Kecskemeti, D.Kiss

Title: Measurement of Average Multiplicity in (n, γ) Reactions Induced by Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³¹P, ³²S, ³⁵Cl, ⁴⁸Ti, ⁵¹V, ⁵³Cr, ⁵²Cr, ⁵⁵Mn,

⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni,Ni,Cu, ⁶³Cu, Ge, ⁷³Ge, ⁷⁵As,Se,Br, Sr, Zr, ⁹³Nb,Mo, ¹⁰³Rh,Ag(n,γ) E=thermal;

measured average γ multiplicity.

Keynumber: 1969FE08

Reference: Nucl. Phys. A139, 113 (1969)

Authors: P.Fettweis, M.Saidane

Title: The Level Scheme of ⁴⁸Ti and ⁴⁹Ti as Studied by the Neutron Capture γ-Ray Spectra

Keyword abstract: NUCLEAR REACTIONS ⁴⁷, ⁴⁸Ti(n, γ), E= thermal; measured E γ , I γ . ⁴⁸, ⁴⁹Ti

deduced levels. Enriched ⁴⁷Ti target.

NSR Search Results Page 5 of 6

Keynumber: 1969AB03

Reference: Nucl.Phys. A124, 34 (1969) **Authors:** K.Abrahams, W.Ratynski

Title: Circular Polarization of γ-Radiation After Capture of Polarized Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ³⁹K, ⁴⁰Ca, ⁴⁸Ti, ⁵⁹Co, ¹¹³Cd, ²⁰⁷Pb(n,γ), E=thermal; measured Pγ, Eγ. ⁴⁰K, ⁴¹Ca, ⁴⁹Ti, ⁶⁰Co, ¹¹⁴Cd, ²⁰⁸Pb, deduced levels, J, delta. Natural targets, Ge(Li)

detector.

Keynumber: 1968TR08

Reference: Yadern.Fiz. 7, 7 (1968); Soviet J.Nucl.Phys. 7, 4 (1968)

Authors: E.F.Tretyakov, G.V.Danilyan, V.S.Pavlov, G.I.Grishuk, V.F.Konyaev

Title: Multipolarity of the 341-keV Transition Following Thermal Neutron Capture by Ti⁴⁸

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti(n, γ),E=thermal; measured Eγ,Iγ,ICC. ⁴⁹Ti deduced

γ-mixing.

Keynumber: 1968KA12

Reference: Nucl.Phys. A120, 225 (1968) **Authors:** J.Kajfosz, J.Kopecky, J.Honzatko

Title: Search for Time-Reversal Non-Invariance in Strong Interactions

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti(polarized n, γ),E=thermal; measured E γ , $\gamma \gamma(\theta)$. ⁴⁹Ti

deduced validity of time-reversal invariance. Natural target.

Keynumber: 1968HO08

Reference: Czech.J.Phys. 18B, 34 (1968) **Authors:** J.Honzatko, J.Kajfosz, J.Kopecky

Title: Mixing Ratio of the 0.34 MeV (M1+E2) Transition in ⁴⁹Ti

Keyword abstract: NUCLEAR REACTIONS 48 Ti(n, γ),E=thermal measured γ directional polarization

correlation. ⁴⁹Ti transition deduced γ-mixing ratio.

Keynumber: 1968CA01

Reference: Nucl. Phys. A107, 436 (1968)

Authors: P.Carlos, J.Matuszek, A.Audias, B.P.Maier, H.Nifenecker, G.Perrin, R.Samama

Title: Capture Radiative de Neutrons Thermiques dans ⁴⁸Ti

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti(n, γ), E = th; measured $\sigma(E\gamma)$, $\gamma\gamma$ -coin, $\gamma\gamma$ -coin, $\gamma\gamma$

 (θ) . ⁴⁹Ti levels deduced J, π, delta. Natural target.

Keynumber: 1968BRZZ

Reference: Program and Theses, Proc.18th Ann.Conf.Nucl.Spectroscopy and Struct.Of At.Nuclei, Riga,

p.37 (1968)

Authors: D.L.Broder, B.V.Nesterov, M.V.Panarin, L.P.Khamyanov

Title: Investigation of Capture γ-Rays in ⁵⁹Co, ⁴⁸Ti, ⁸⁹Y and ¹⁴⁹Sm with a Ge-Li Spectrometer

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti, ⁵⁹Co, ⁸⁹Y, ¹⁴⁹Sm(n,γ), E=thermal; measured Eγ,

Iγ. ⁴⁹Ti, ⁶⁰Co, ⁹⁰Y, ¹⁵⁰Sm deduced transitions. Ge(Li) detectors.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

NSR Search Results Page 6 of 6

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹²C, ¹⁴N, ¹⁹F, ²³Na, ²⁴Mg, ²⁵Mg, ²⁶Mg, ²⁷Al, ²⁸Si, ³¹P, ³²S, ³⁵Cl, ⁴⁰Ca, ⁴⁵Sc, ⁴⁸Ti, ⁵¹V, ⁵⁵Mn, ⁵⁴Fe, ⁵⁶Fe, ⁵⁹Co, ⁵⁸Ni, ⁶⁰Ni, ⁶³Cu, ⁶⁵Cu, ⁶⁶Zn, ⁶⁷Zn, ⁷³Ge, ⁷⁶Se, ⁸⁵Rb, ⁸⁷Rb, ⁸⁹Y, ⁹³Nb, ¹⁰³Rh, ¹¹³Cd, ¹²³Te, ¹³³Cs, ¹³⁹La, ¹⁴¹Pr, ¹⁴⁹Sm, ¹⁵³Eu, ¹⁵⁷Gd, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁷Er, ¹⁶⁹Tm, ¹⁸¹Ta, ¹⁸²W, ¹⁹⁵Pt, ¹⁹⁷Au, ¹⁹⁹Hg, ²⁰³Tl, ²⁰⁷Pb(n,γ), E = thermal; measured Eγ; deduced Q. Natural targets.
