Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

```
df=pd.read_csv("2008.csv")
df
```

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3	
0	2008- 06-01 01:00:00	NaN	0.47	NaN	NaN	NaN	83.089996	120.699997	NaN	16.990000	16
1	2008- 06-01 01:00:00	NaN	0.59	NaN	NaN	NaN	94.820000	130.399994	NaN	17.469999	19
2	2008- 06-01 01:00:00	NaN	0.55	NaN	NaN	NaN	75.919998	104.599998	NaN	13.470000	20
3	2008- 06-01 01:00:00	NaN	0.36	NaN	NaN	NaN	61.029999	66.559998	NaN	23.110001	10
4	2008- 06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37
226387	2008- 11-01 00:00:00	0.48	0.30	0.57	1.00	0.31	13.050000	14.160000	0.91	57.400002	5
226388	2008- 11-01 00:00:00	NaN	0.30	NaN	NaN	NaN	41.880001	48.500000	NaN	35.830002	15
226389	2008- 11-01 00:00:00	0.25	NaN	0.56	NaN	0.11	83.610001	102.199997	NaN	14.130000	17
226390	2008- 11-01 00:00:00	0.54	NaN	2.70	NaN	0.18	70.639999	81.860001	NaN	NaN	11
226391	2008- 11-01 00:00:00	0.75	0.36	1.20	2.75	0.16	58.240002	74.239998	1.64	31.910000	12
226392	226392 rows × 17 columns										

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [4]:

```
df.columns
```

```
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 25631 entries, 4 to 226391
Data columns (total 17 columns):
#
    Column
             Non-Null Count Dtype
     ____
              -----
             25631 non-null object
 0
    date
 1
    BFN
             25631 non-null float64
             25631 non-null float64
 2
    CO
 3
    EBE
             25631 non-null float64
 4
    MXY
             25631 non-null float64
             25631 non-null float64
 5
    NMHC
 6
    NO 2
             25631 non-null float64
 7
    NOx
             25631 non-null float64
 8
    OXY
             25631 non-null float64
 9
             25631 non-null float64
    0_3
             25631 non-null float64
 10
    PM10
 11
    PM25
             25631 non-null float64
 12
    PXY
             25631 non-null float64
 13
    SO 2
             25631 non-null float64
 14
    TCH
             25631 non-null float64
 15
    TOL
             25631 non-null float64
    station 25631 non-null int64
 16
dtypes: float64(15), int64(1), object(1)
memory usage: 3.5+ MB
```

In [6]:

```
data=df[['CO' ,'station']]
data
```

Out[6]:

	СО	station
4	0.80	28079006
21	0.37	28079024
25	0.39	28079099
30	0.51	28079006
47	0.39	28079024
226362	0.35	28079024
226366	0.46	28079099
226371	0.53	28079006
226387	0.30	28079024
226391	0.36	28079099

25631 rows × 2 columns

Line chart

In [7]:

```
data.plot.line(subplots=True)
```

Out[7]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

```
In [8]:
```

data.plot.line()

Out[8]:

<AxesSubplot:>

Bar chart

In [9]:

b=data[0:50]

In [10]:

b.plot.bar()

Out[10]:

<AxesSubplot:>

Histogram

In [11]:

data.plot.hist()

Out[11]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [12]:

data.plot.area()

Out[12]:

<AxesSubplot:>

Box chart

```
In [13]:
```

data.plot.box()

Out[13]:

<AxesSubplot:>

Pie chart

In [14]:

```
b.plot.pie(y='station' )
```

Out[14]:

<AxesSubplot:ylabel='station'>

Scatter chart

In [15]:

```
data.plot.scatter(x='C0' ,y='station')
```

Out[15]:

<AxesSubplot:xlabel='CO', ylabel='station'>

In [16]:

```
df.info()
 0
              25631 non-null
                               object
     date
 1
                               float64
     BEN
              25631 non-null
 2
     CO
              25631 non-null
                               float64
 3
     EBE
              25631 non-null
                               float64
 4
                               float64
     MXY
              25631 non-null
 5
     NMHC
              25631 non-null
                               float64
 6
              25631 non-null
     NO_2
                               float64
 7
     NOx
              25631 non-null
                               float64
 8
                               float64
     0XY
              25631 non-null
     0_3
 9
              25631 non-null
                               float64
 10
     PM10
              25631 non-null
                               float64
     PM25
              25631 non-null
                               float64
 11
 12
     PXY
              25631 non-null
                               float64
                               float64
 13
     S0_2
              25631 non-null
 14
     TCH
              25631 non-null
                               float64
 15
              25631 non-null
                               float64
     TOL
     station 25631 non-null
                               int64
 16
dtypes: float64(15), int64(1), object(1)
memory usage: 3.5+ MB
```

```
In [17]:
```

```
df.describe()
```

Out[17]:

	BEN	СО	EBE	MXY	NMHC	NO_2
count	25631.000000	25631.000000	25631.000000	25631.000000	25631.000000	25631.000000
mean	1.090541	0.440632	1.352355	2.446045	0.213323	54.225261
std	1.146461	0.317853	1.118191	2.390023	0.123409	38.164647
min	0.100000	0.060000	0.170000	0.240000	0.000000	0.240000
25%	0.430000	0.260000	0.740000	1.000000	0.130000	25.719999
50%	0.750000	0.350000	1.000000	1.620000	0.190000	48.000000
75%	1.320000	0.510000	1.580000	3.105000	0.270000	74.924999
max	27.230000	7.030000	26.740000	55.889999	1.760000	554.900024
4						>

In [18]:

EDA AND VISUALIZATION

In [19]:

sns.pairplot(df1[0:50])

Out[19]:

<seaborn.axisgrid.PairGrid at 0x20da6286b20>

In [20]:

In [21]:

sns.heatmap(df1.corr())

Out[21]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [22]:
```

```
In [23]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [24]:
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
Out[24]:
LinearRegression()
In [25]:
lr.intercept_
Out[25]:
28079035.12432534
In [26]:
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[26]:

	Co-efficient
BEN	-25.677784
СО	0.039079
EBE	-0.975018
MXY	7.553562
NMHC	-27.887432
NO_2	-0.040768
NOx	0.125295
OXY	4.057897
O_3	-0.143160
PM10	0.140121
PXY	2.327563
SO_2	-0.637859
тсн	17.621654
TOL	-1.908789

```
In [27]:
```

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[27]:

<matplotlib.collections.PathCollection at 0x20db4c95700>

ACCURACY

```
In [28]:
```

lr.score(x_test,y_test)

Out[28]:

0.1425413978965746

In [29]:

lr.score(x_train,y_train)

Out[29]:

0.14416558651112388

Ridge and Lasso

```
In [30]:
```

from sklearn.linear_model import Ridge,Lasso

In [31]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[31]:

Ridge(alpha=10)

Accuracy(Ridge)

```
In [32]:
rr.score(x_test,y_test)
Out[32]:
0.14254972762293971
In [33]:
rr.score(x_train,y_train)
Out[33]:
0.14414036663149943
In [34]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[34]:
Lasso(alpha=10)
In [35]:
la.score(x_train,y_train)
Out[35]:
0.04327523622896379
Accuracy(Lasso)
In [36]:
```

```
In [36]:
la.score(x_test,y_test)
Out[36]:
0.04025531021711837
```

Elastic Net

```
In [37]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[37]:
ElasticNet()
```

```
In [38]:
en.coef
Out[38]:
                                           , 3.19190927, -0.
                              , 0.
array([-4.64079915, -0.
        0.06050465, 0.02579208, 1.57297725, -0.15712899, 0.13493911,
                                           , -2.49989346])
        1.54451818, -0.95966869, 0.
In [39]:
en.intercept_
Out[39]:
28079057.330976218
In [40]:
prediction=en.predict(x_test)
In [41]:
en.score(x_test,y_test)
Out[41]:
0.09278636545773644
```

Evaluation Metrics

```
In [42]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
35.88332447042623
1400.635061630437
```

35.88332447042623 1499.635061630427 38.72512184138905

Logistic Regression

```
In [45]:
feature_matrix.shape
Out[45]:
(25631, 14)
In [46]:
target_vector.shape
Out[46]:
(25631,)
In [47]:
from sklearn.preprocessing import StandardScaler
In [48]:
fs=StandardScaler().fit_transform(feature_matrix)
In [49]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[49]:
LogisticRegression(max_iter=10000)
In [50]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [51]:
prediction=logr.predict(observation)
print(prediction)
[28079099]
In [52]:
logr.classes_
Out[52]:
array([28079006, 28079024, 28079099], dtype=int64)
In [53]:
logr.score(fs,target_vector)
Out[53]:
0.794194530061254
```

```
In [54]:
logr.predict_proba(observation)[0][0]
Out[54]:
8.321803242555043e-09
In [55]:
logr.predict proba(observation)
Out[55]:
array([[8.32180324e-09, 1.19114634e-13, 9.99999992e-01]])
Random Forest
In [56]:
from sklearn.ensemble import RandomForestClassifier
In [57]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[57]:
RandomForestClassifier()
In [58]:
parameters={'max_depth':[1,2,3,4,5],
            'min_samples_leaf':[5,10,15,20,25],
            'n_estimators':[10,20,30,40,50]
}
In [59]:
from sklearn.model selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[59]:
GridSearchCV(cv=2, estimator=RandomForestClassifier(),
             param_grid={'max_depth': [1, 2, 3, 4, 5],
                          'min_samples_leaf': [5, 10, 15, 20, 25],
                         'n_estimators': [10, 20, 30, 40, 50]},
             scoring='accuracy')
In [60]:
grid_search.best_score_
Out[60]:
0.8517919874855023
```

In [61]:

rfc_best=grid_search.best_estimator_

In [62]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=['a','b','c','d'],feature_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_names=x.columns,class_nam
```

Out[62]:

```
[Text(2232.0, 1993.2, 'OXY <= 1.015\ngini = 0.666\nsamples = 11259\nvalue
= [5957, 5791, 6193]\nclass = c'),
Text(1116.0, 1630.8000000000002, 'PXY <= 0.985\ngini = 0.605\nsamples = 6
026\nvalue = [2077, 5122, 2372]\nclass = b'),
Text(558.0, 1268.4, 'NOx <= 21.665\ngini = 0.661\nsamples = 4363\nvalue =
[2012, 2692, 2196]\nclass = b'),
Text(279.0, 906.0, 'TOL <= 0.85\ngini = 0.23\nsamples = 701\nvalue = [44,
991, 101]\nclass = b'),
Text(139.5, 543.59999999999, 'TOL <= 0.775\ngini = 0.047\nsamples = 214
\nvalue = [0, 323, 8] \setminus class = b'),
Text(69.75, 181.199999999999, 'gini = 0.028\nsamples = 186\nvalue = [0,
276, 41\nclass = b'),
Text(209.25, 181.199999999999, 'gini = 0.145\nsamples = 28\nvalue = [0, 145]\nsamples
47, 4] \nclass = b'),
Text(418.5, 543.599999999999, 'PXY <= 0.295\ngini = 0.295\nsamples = 487
Text(348.75, 181.1999999999982, 'gini = 0.494\nsamples = 14\nvalue = [1
2, 4, 2] \setminus ass = a'
Text(488.25, 181.199999999999, 'gini = 0.273\nsamples = 473\nvalue = [3
2, 664, 91\nclass = b'),
Text(837.0, 906.0, 'NOx <= 52.785\ngini = 0.664\nsamples = 3662\nvalue =
[1968, 1701, 2095]\nclass = c'),
Text(697.5, 543.599999999999, 'PXY <= 0.495\ngini = 0.64\nsamples = 1712
\nvalue = [547, 1069, 1102]\nclass = c'),
Text(627.75, 181.199999999999, 'gini = 0.603\nsamples = 453\nvalue = [3
04, 339, 95]\nclass = b'),
Text(767.25, 181.199999999999, 'gini = 0.59\nsamples = 1259\nvalue = [2
43, 730, 1007]\nclass = c'),
Text(976.5, 543.599999999999, 'CO <= 0.245\ngini = 0.633\nsamples = 1950
\nvalue = [1421, 632, 993]\nclass = a'),
Text(906.75, 181.199999999999, 'gini = 0.521\nsamples = 253\nvalue = [9
9, 253, 46]\nclass = b'),
Text(1046.25, 181.1999999999999, 'gini = 0.602\nsamples = 1697\nvalue =
[1322, 379, 947]\nclass = a'),
Text(1674.0, 1268.4, 'NO_2 <= 39.67\ngini = 0.167\nsamples = 1663\nvalue
= [65, 2430, 176]\nclass = b'),
Text(1395.0, 906.0, 'MXY <= 1.29\ngini = 0.032\nsamples = 1332\nvalue =
[8, 2134, 27] \setminus class = b'),
Text(1255.5, 543.59999999999, 'TOL <= 1.635\ngini = 0.017\nsamples = 12
87\nvalue = [5, 2074, 13]\nclass = b'),
Text(1185.75, 181.1999999999982, 'gini = 0.008\nsamples = 1229\nvalue =
[4, 1993, 4] \setminus class = b'),
Text(1325.25, 181.199999999999, 'gini = 0.198\nsamples = 58\nvalue =
[1, 81, 9] \setminus class = b'),
Text(1534.5, 543.599999999999, 'CO <= 0.265\ngini = 0.358\nsamples = 45
\nvalue = [3, 60, 14]\nclass = b'),
Text(1464.75, 181.1999999999982, 'gini = 0.574\nsamples = 15\nvalue =
[3, 16, 12] \setminus class = b'),
Text(1604.25, 181.199999999999, 'gini = 0.083\nsamples = 30\nvalue =
[0, 44, 2] \setminus class = b'),
Text(1953.0, 906.0, 'OXY <= 0.595\ngini = 0.551\nsamples = 331\nvalue =
[57, 296, 149]\nclass = b'),
Text(1813.5, 543.599999999999, 'EBE <= 0.705\ngini = 0.098\nsamples = 11
1\nvalue = [0, 165, 9]\nclass = b'),
Text(1743.75, 181.199999999999, 'gini = 0.48\nsamples = 9\nvalue = [0,
12, 8 \mid nclass = b'),
Text(1883.25, 181.199999999999, 'gini = 0.013\nsamples = 102\nvalue =
[0, 153, 1] \setminus class = b'),
Text(2092.5, 543.599999999999, 'CO <= 0.285\ngini = 0.628\nsamples = 220
\nvalue = [57, 131, 140] \setminus class = c'),
Text(2022.75, 181.199999999999, 'gini = 0.427\nsamples = 62\nvalue = [1
```

```
2, 66, 12]\nclass = b'),
 Text(2162.25, 181.199999999999, 'gini = 0.6\nsamples = 158\nvalue = [4
5, 65, 128\n | nclass = c'),
 Text(3348.0, 1630.8000000000002, 'TOL <= 5.415\ngini = 0.57\nsamples = 52
33\nvalue = [3880, 669, 3821]\nclass = a'),
 Text(2790.0, 1268.4, 'SO_2 <= 8.055 \setminus i = 0.445 \setminus samples = 2158 \setminus sample
= [562, 417, 2476]\nclass = c'),
 Text(2511.0, 906.0, 'TOL <= 1.67\ngini = 0.212\nsamples = 978\nvalue = [9
9, 83, 1383]\nclass = c'),
 Text(2371.5, 543.599999999999, 'TOL <= 1.055\ngini = 0.459\nsamples = 41
\nvalue = [1, 48, 24]\nclass = b'),
 Text(2301.75, 181.199999999999, 'gini = 0.0\nsamples = 17\nvalue = [0,
30, 0] \setminus ss = b'),
 Text(2441.25, 181.1999999999999, 'gini = 0.513\nsamples = 24\nvalue =
[1, 18, 24]\nclass = c'),
 Text 2650.5, 343.5999 999999, NMHC <= 0.095 \ng 1 = 0.16 \nsample = 9
37 \cdot \text{nvalue} = [98, 35, 1359] \cdot \text{nclass} = c'),
 Text(2580.75, 181.1999999999999, \'gini = 0.483\nsamples = 39\nvalue = [3
9,\1, 23]\nclass\= a\),
 Text(2720.25, 181.19999999999999, / gini = 0.124\nsamples = 898\nvalue =
[59] 34 1336]\hclass = c')
 Text(3069.0, 906.0, 'BEN <= 0.495\ngini = 0.574\nsamples = 1180\nvalue =
[463, 334, 1093]\nclass = c'),
 Text(2929.5, 543.599999999999, 'MXY <= 1.38\ngini = 0.34\nsamples = 131
\nvalue = [2, 158, 41]\nclass = b'),
GONETUS ON.199999999999, 'gini = 0.029\nsamples = 87\nvalue =
[0, 133, 2] \setminus class = b'),
 Text(2999.25, 181.199999999999, 'gini = 0.506\nsamples = 44\nvalue =
              39]\nclass = c'),
Scores 1.275\ngini = 0.527\nsamples = 10
49\nvalue = [461, 176, 1052]\nclass = c'),
 Text(3138.75, 181.1999999999982, 'gini = 0.103\nsamples = 39\nvalue =
[458, 124, 1052] \setminus class = c'),
IMext43906.0, 1268.4, 'TCH <= 1.605\ngini = 0.467\nsamples = 3075\nvalue =</pre>
[3318, 252, 1345]\nclass = a'),
<sup>1</sup>re%€096ዸፇ፞_ቴes50%_ቴest80_2 <= 8.505\ngini = 0.427\nsamples = 2329\nvalue =
[26944]193, 857]\nclass = a'),
 Text(3487.5, 543.599999999999, 'TOL <= 6.63\ngini = 0.512\nsamples = 314
Qn4425413978965746, 294]\nclass = c'),
 Text(3417.75, 181.199999999999, 'gini = 0.433\nsamples = 178\nvalue =
[83,65,202]\nclass = c'),
 Text(3557.25, 181.1999999999982, 'gini = 0.548\nsamples = 136\nvalue =
[#09co#@(x9thammlastrain)),
Text(3766.5, 543.599999999999, 'TOL <= 8.925\ngini = 0.371\nsamples = 20 15\nvalue = [2502, 176, 563]\nclass = a'),
[1014, 150, 465]\nclass = a'),
 Text(3836.25, 181.1999999999982, 'gini = 0.144\nsamples = 1010\nvalue =
 [1488, 26, 98]\nclass = a'),
Lasso.0, 906.0, '0 3 <= 5.495\ngini = 0.54\nsamples = 746\nvalue = [6
24, 59, 488]\nclass = a'),
 Text(4045.5, 543.599999999999, 'CO <= 0.465\ngini = 0.105\nsamples = 171</pre>
In [66]: (nvalue = [242, 7, 7]\nclass = a'),
6, 0]\nclass = b'),
Out 664115.25, 181.19999999999982, 'gini = 0.062\nsamples = 166\nvalue =
626402553762991857 = a'),
 Text(4324.5, 543.59999999999, '0_3 <= 11.85\ngini = 0.546\nsamples = 57
5\nvalue = [382, 52, 481]\nclass = c'),
```

Elastic Net

```
In [71]:
en.score(x_test,y_test)
Out[71]:
0.09278636545773644
```

Logistic Regression

```
In [70]:
logr.score(fs,target_vector)
Out[70]:
0.794194530061254
```

Random Forest

```
In [72]:
grid_search.best_score_
Out[72]:
0.8517919874855023
```

From the above data, we can conclude that random forest is preferrable to other regression types

In []: