# Noções básicas de vôo espacial (Basics of Space Flight) Capítulos 4 a 6 David Doody solarsystem.nasa.gov/basics/

CAP382 Tópicos em Tecnologias Espaciais E. F. M. 26 de outubro de 2010

#### Conteúdo

Trajetórias (Cap. 4)

Órbitas Planetárias (Cap. 5)

Eletromagnetismo (Cap. 6)

# Capítulo 4: Trajetórias elescope

Meteoroid Detector Sensor Panel

Ultraviolet Photometer

Helium Vector
Magnetometer

#### Transferência de órbita de Hohmann

Asteroid-Meteoroid

Detector Sensor

Terra a Marte pela órbita de menor energia

Trajetória assistida por gravidade

Infrared Radiometer

– Charged Particle Instrument

Propulsor de íons

#### Órbita de transferência de Hohmann

Órbita elíptica usada para transferir

entre duas órbitas circulares

Menor quantidade possível de propelente (energia)

Sincronia com o destino

Aceleração tangencial à órbita atual, na direção desejada

Manobras para entrar nas órbitas



# Órbita de transferência de Hohmann



# Trajetórias tipo I e II



Tipo I: <180°



Tipo II: ≥180°

# Trajetória assistida por gravidade



Momento angular é transferido da órbita do planeta para a espaçonave se aproximando

O planeta perde energia orbital

Adiciona velocidade relativa ao sol

# Momento angular (L)

O momento angular pode ser aproveitado para acelerar uma espaçonave





"Ao encolher os braços o momento de inércia diminui e a velocidade de rotação aumenta. Tal efeito é garantido pela conservação do momento angular."

propg.ufabc.edu.br/mnpef-sites/leis-de-conservacao/momento-angular

# Simulação missão cometa McNaught



#### Cassini (missão a Saturno)



solarsystem.nasa.gov

# Trajetória da Cassini



# Trajetória da Cassini



# Voyager 1 e 2



# Mudanças de velocidade da Voyager



## Propulsor de íons

Propelente + energia solar

Ioniza um gás inerte e o acelera

Ganhos em eficiência, massa, lançamento, custo

Impulso suave, longo período, baixa aceleração

~895 satélites Starlink SpaceX (24/10/20)



Deep Space 1. Wikimedia

# Capítulo 5: Órbitas Planetárias

#### Parâmetros e elementos orbitais

Tipos de órbitas

Órbita de transferência geossíncrona

Órbitas polares

Órbitas de precessão

Órbitas síncronas do Sol

Pontos de Lagrange e órbitas Halo

# Parâmetros e elementos orbitais - movimento prógrado e retrógrado



#### Anomalia verdadeira

### Ângulo que define a posição do corpo na órbita



sat.belastro.net

#### Nó descentende / ascendente



# Elementos Keplerianos

(definem a órbita em torno de outro corpo)

Tempo da passagem pelo periastro

Longitude do nó ascendente ( $\Omega$ )

Argumento do periastro (ω)

Semieixo maior (a)

Inclinação (i)

Excentricidade (e)





# Tipos de órbitas

Geossíncrona (GSO): prógrada, baixa inclinação, período de um dia, todo dia a espaçonave retorna ao mesmo ponto no mesmo horário

Geoestacionária (GTO) GSO, excentricidade 0, a espaçonave parece sem movimento sobre um ponto na Terra



solarsystem.nasa.gov

# Órbita de transferência geossíncrona



# Órbita de transferência geossíncrona



Wikimedia

EchoStar 17: comunicação, geoestacinário

# Órbita de transferência geossíncrona



russianspa ceweb.com /echostar-21.html

# Órbita polar

90° ou próximo

Útil para imagens

Rotação da Terra não ajuda para atingir a órbita



ims.gov.il

# Precessão da órbita (Walking Orbits)

A órbita da espaçonave aproveita influências gravitacionais e induz precessão para causar movimento útil do plano orbital

O plano orbital se move lentamente em relação ao espaço inercial fixo

Precessão: visto nos capítulos anteriores



C.Crawez, adaptado de S.Judson e S.M. Richardson, 1995

# Órbita heliossíncrona (usa precessão da órbita)

O plano orbital precessa com praticamente o mesmo período da órbita solar do planeta

A espaçonave cruza o periastro aproximadamente no mesmo horário local a cada órbita

Útil quando os instrumentos a bordo dependem de um certo ângulo de iluminação solar

Exemplo: Mars Global Surveyor - órbita heliossíncrona, 14:00 hora local de Marte

## Órbita heliossíncrona



Heliossíncrona (em verde)

Não heliossíncrona (em magenta)

# SAOCOM 1A (2018)

Argentina, observação da Terra, imagem de radar, órbita polar, heliossíncrona, ~620 km



# SAOCOM 1A



# SAOCOM 1A



# Pontos de Lagrange

#### Pontos com equilíbrio gravitacional

L4, L5: Estáveis Pontos Trojan Asteróides, luas

L1, L2, L3: Instáveis É possível orbitar usando pouca propulsão para manter a posição



# Órbita Halo



#### Missão Genesis

The Genesis mission left Earth in 2001 to sample the solar wind. It flew millions of miles using relatively little fuel by following a trajectory in which gravitational influences created a "path of least resistance" through space. Astronomy: Roen Kelly





(SPACECRAFT SHOWN WITHOUT THERMAL BLANKETS FOR CLARITY)

# Radiação eletromagnética

Estrelas emitem principalmente energia eletromagnética



Onda eletromagnética senoidal linearmente polarizada, no vácuo, a 299.792 km/s

# Propagação



### Lei do inverso do quadrado da distância

A radiação emitida se afasta da fonte e se espalha sobre uma superfície de área 4πR²



Uma espaçonave distante fornecerá apenas uma pequena quantidade de energia eletromagnética a um detector na Terra

# Espectro de frequências



# Ondas ou partículas

Energia eletromagnética pode ser vista como onda ou partícula (fótons) ao mesmo tempo

Geralmente quando a frequência é baixa chamamos de ondas (ondas de rádio)

Alta frequência (ou energia) e luz, geralmente são fótons (portadores de partículas da força eletromagnética), com unidade elétron-Volt (eV)

# Comunicação Deep Space

Emissores naturais e artificiais

Antenas e receptores detectam tipos diferentes de emissores de radiação eletromagnética, incluindo estrelas, sol, nuvens moleculares, e planetas

Espaçonaves emitem neste meio "ruidoso"

Rádio Astronomia (RA): disciplina que estuda os emissores naturais e sua radiação eletromagnét.

O DSN participa de experimentos de RA

# NASA Deep Space Network (DSN)

- Comunic. com espaçonaves no sistema solar
- Astronomia usando radio e radar
- Observações do sistema solar e do universo
- Algumas missões orbitando a Terra





Goldstone, California Wikimedia

#### SCaN Notional Integrated Communication Architecture Lunar Lunar Neptune Relay Satellite Relay Saturn Payload (potential) Uranus Pluto 4 LADEE Charon Jupiter **Near Earth Optical Relay** Pathfinder **SCaN** Mars VM & ISE MCC MOCs SCaN Services Provide: Integrated service-based architecture Space internetworking (DTN and IP)International interoperability Venus **Deep Space** · Assured safety and security of missions **Optical Relay** Antenna Pathfinder · Significant increases in bandwidth Array Sun Nasa

Microwave Links Optical Links NISN

# Frequências de rádio

10 kHz a 100 GHz

Muitos veículos espaciais usam canais nas bandas de micro-ondas

S (UHF e SHF, 2 a 4 GHz)

Radares meteorológicos e alguns satélites de comunicação. Ex.: CBERS-1 e CBERS-2

X (SHF, 8 a 12 GHz)

Comunicação por satélite privativa para uso militar

| CLASS              | FREQUENCY | WAVELENGTH | ENERGY   |                                          |
|--------------------|-----------|------------|----------|------------------------------------------|
| V                  | 300 EHz   | 1 pm       | 1.24 MeV | y = Gamma rays                           |
| γ<br>∨             | 30 EHz    | 10 pm      | 124 keV  | HX = Hard X-rays                         |
| HX                 | 3 EHz     | 100 pm     | 12.4 keV | SX = Soft X-Rays                         |
| sx —               | 300 PHz   | 1 nm       | 1.24 keV | EUV = Extreme-ultraviolet                |
|                    | 30 PHz    | 10 nm      | 124 eV   | NUV = Near-ultraviolet                   |
| EUV<br>NUV         | 3 PHz     | 100 nm     | 12.4 eV  | NIR = Near-infrared                      |
|                    | 300 THz   | 1 μm       | 1.24 eV  | MIR = Mid-infrared<br>FIR = Far-infrared |
| NIR                | 30 THz    | 10 µm      | 124 meV  | EHF = Extremely high frequency           |
| FIR                | 3 THz     | 100 μm     | 12.4 meV | (microwaves)                             |
| The second control | 300 GHz   | 1 mm       | 1.24 meV | SHF = Super-high frequency               |
| EHF                | 30 GHz    | 1 cm       | 124 µeV  | (microwaves)                             |
| UHF                | 3 GHz     | 1 dm       | 12.4 µeV | UHF = Ultrahigh frequency                |
| VHF                | 300 MHz   | 1 m        | 1.24 µeV | VHF = Very high frequency                |
| HF                 | 30 MHz    | 10 m       | 124 neV  | HF = High frequency                      |
| MF                 | 3 MHz     | 100 m      | 12.4 neV | MF = Medium frequency                    |
| LF                 | 300 kHz   | 1 km       | 1.24 neV | LF = Low frequency                       |
| VLF                | 30 kHz    | 10 km      | 124 peV  | VLF = Very low frequency                 |
| VE/ULF             | 3 kHz     | 100 km     | 12.4 peV | VF = Voice frequency                     |
| SLF                | 300 Hz    | 1 Mm       | 1.24 peV | ULF = Ultra-low frequency                |
| ELF                | 30 Hz     | 10 Mm      | 124 feV  | SLF = Super-low frequency                |
|                    | 3 Hz      | 100 Mm     | 12.4 feV | ELF = Extremely low frequency            |

### Banda K, micro-ondas

Em desenvolvimento para comunic. deep space

Usada para radares e comunicação via satélite

K NATO: 20 a 40 GHz, radares

K IEEE: 18 e 27 GHz

Ku: 12 a 18 GHz, comunicação via satélite

# Transparência atmosférica

A atmosfera da Terra absorve algumas frequências, impedindo observações

Existem janelas, como luz visível e certas frequências de rádio

Porém a atmosfera é uma barreira para grande parte do espectro eletromagnético

Presença de água afeta a banda X

# Interferência em rádio frequência (RFI)

Ruído: natural ou gerado pelos humanos

Naves orbitando a Terra operam em frequências próximas às do *deep space*, aumentando o ruído

SNR: relação entre sinal e ruído. Quando baixo, dificulta a recepção de sinais do *deep space* 

Espectroscopia: estudo da produção, medição e interpretação do espectro eletromagnético (composição química de um objeto, velocidade, temperatura, etc.)

# **Efeito Doppler**



Kannadascience

# **Doppler**

O efeito Doppler é medido na frequência dos sinais recebidos de espaçonaves, para determinar alguns de seus movimentos

Devem ser considerados fatores como movimento da Terra e do Sol, trajetória da espaçonave, e órbita em torno do planeta

A diferença de medições entre duas estações de monitoramento distantes na Terra pode ser usada para medir o movimento em 3D da nave

### Reflexão

Desenho de antenas, astronomia de radar planetário

Análise de amplitude, fase, e frequência

Antenas DSN transmitem da Terra, refletem no corpo, e retornam à Terra



### Reflexão



Propriedade usada no desenho das antenas DSN

Vários telescópios óticos usam esse desenho também

# Refração

Curvatura ou absorção pela atmosfera é usado para estudar a composição e estrutura da atmosfera de planetas



#### **Fase**

Mudanças de fase são usadas em telecomunicações para codificação

Etudos de corpos e seus efeitos usam fases de

sinais

Relações entre fases de ondas de rádio ou luz são úteis em várias aplicações



# Modulação em fase (PM)

(transmissão de dados)



Sinal PM

## Interação de ondas

Dois sinais de rádio de mesma fase que chegam podem ser usados para aumentar o sinal

Fora de fase, podem se cancelar

Estes e outros recursos podem ser usados em

Instrumentos em espaçonaves

Arranjos de antenas de rastreamento para aumentar a potência do sinal recebido

Telescópios para aumentar a resolução



### Comentários?

E Furlan M github.com/efurlanm/382 efurlanm@gmail.com