LECTURE NOTES

INVERSE KINEMATICS
$0 \longrightarrow SE(3)$ $0 = S' \times S' \times \cdots S' \longrightarrow SE(3)$
$0 = 0, \dots 0$ $0 \in [0, 2\pi]$ $5'$ $0 \in [0, 2\pi]$ $5' \times 5'$ $0 \in [0, 2\pi]$ $0 \in [0, 2\pi]$ $0 \in [0, 2\pi]$
85 (0) = T -> SE(3)
Find they exist $0.750(3)$
3,0, 3202 3non = 9st [pleto, Lmox]
flow many solutions 0 = 11 A) = Lnager exist?
Total nag 2°, 2°
Solutions $n = 6 \text{ d.a. } 6$. $R = 6 \text{ d.a. } 6$.
2 = 64 X RULING CONFECTURES 82 X MAX. #9 SOLUTIONS \(\left \) TEVE
MAX. #9 Southous = 10

Third GEOMETRIC KINEMATICS INVERSE RELEAUX PARTEN KAHAN SUBPROBLEMS guen à screw 3 unter sero prêter and two pounts P, S, E R Trud, y possible, O E[0, 217) Choose 12 6 ansi 8 9 0 (I-ew) wxv + wwy o

 $\begin{bmatrix}
e^{\hat{N}\theta} \hat{N} = \sqrt{3} \Rightarrow \hat{N} \hat{A} = \hat{N} \hat{V} \\
\hat{N} \hat{e} \hat{N} \hat{e} \hat{N} = \hat{N} \hat{V}
\end{bmatrix}$ u= p- » v= 9,- ». $W^{T}(I+\tilde{\omega}O+\tilde{\omega}O^{2}+...)u=W^{T}V$ $W^{T}U=W^{T}V$ W^{T} ut e e u = vv $u^{T} = \hat{u}^{0} = \hat$ พับธพัง ||u||2= ||v||2 $- u = \omega \overline{U} + (\overline{I} - \omega \overline{U}) u \qquad \omega^{T} \overline{U}$ $||u||^{2} = (\omega^{T})^{2} + ||u||^{2}$ $||u||^{2} = (\omega^{T} - \omega^{T}) u \qquad = (\omega^{T} - \omega^{T}) u$ $V = \omega \overline{U} + (\overline{I} - \omega \overline{U}) \vee ($ \|\v|\rangle = (w\tau)^2 + \|\v|\rangle^2

سل $||u||^2 = (\sqrt[3]{u})^2 + ||u'||^2$ $\|v\|^2 = (\omega^T v)^2 + \|v'\|^2$ $||u||^2 = ||v||^2 = (\omega^* u)^2 + ||u||^2 = (\omega^* v)^2 + ||v||^2$) ||u'|| = ||v'||) Wa = wTV > || w||= || v|| ω(ω^Tω) = ω (ω^Tν) Page/ NOMIS - ux v' = Nai Allv'I Sm O W. - U!TV'= | W| |V'| Gos O WT(u'xv') = ||n'|||v'|| Snd (w'w) u'TV' = ||u'|||V|| 600 D 1412= M) (HC

of no solution exists Clevery! ge axio &, naxio &2

^ ^