福田欧辉纯电动客车电机控制器通讯协议(V2.0)_20160330

编制:

审核:

审定:

批准:

北汽福田欧辉客车技术中心新能源所 2016年03月30日

文件状态:	
[] 草稿	
[√] 正式发布	
[]正在修改	
文件起草分工:	

编制: 周恩飞	签名	日期
审核:	签名	日期
批准:	签名	日期

更改历史

版本	更改描述	更改日期	更改人
V1. 0	初始版本	2015. 03. 16	周恩飞
V1. 1	修订 MCU3 驱动系统冷却请求的 说明。	2015. 07. 13	周恩飞
<mark>V2. 0</mark>		2016. 03. 30	周恩飞

1 前言

1.1 说明

本文是福田欧辉纯电动客车整车通讯协议整车 CAN 总线通信协议文本。内 容包括: 网络拓扑结构、节点地址分配、物理层、数据链路层、应用层协议等方 面。

本文的读者包括:福田欧辉纯电动客车项目的具体实施者和参与者、将来负 责对本协议进行维护和升级者。

网络协议参考资料

号	标题
1898	Road vehicles — Controller area network(CA)
1000 11	Physical Layer, 250K bits/s, Twisted Shiel

标号	标题	版本/修改日期
ISO11898	Road vehicles — Controller area network(CAN)	
SAE J1939-11	Physical Layer, 250K bits/s, Twisted Shielded Pair	1999-10
SAE J1939-15	Reduced Physical Layer, 250K bits/s, Un-Shielded Twisted Pair (UTP)	2003-11
SAE J1939-21	Data Link Layer	2001-04
SAE J1939-31	Network Layer	2004-04
SAE J1939-71	Vehicle Application Layer	2003-12
SAE J1939-73	Application Layer-Diagnostics	2004-03
SAE J1939-81	Network Management	2003-05
SAEJ1939	Recommended Practice for a Serial Control and Communications Vehicle Network	2003-08

1.2 协议中术语及缩写

缩写、术语	缩写原文	解释	备注
EVCU	Vehicle Management System	整车控制器	
BMS	Battery Management System	电池管理系统	
MCU	Motor Control Unit	电机控制器	
ICU	Instrumentation Control Unit	仪表控制单元	

1.3 物理层要求

物理层的规定主要参考 CAN2.0B 和 J1939 的相关规定。物理层规范应符合 ISO11898 相关规定。

- 1.3.1 上电初始化时间:对于所有的 CAN 节点低压上电,从上电时刻起到 发送第一帧有效报文的推荐最大时间不要超过 400ms。
- 1.3.2 ECU 电压监测: 在整车系统电压工作范围内, 所有 ECU 要保证 CAN 通信的可靠接收和发送。当电压低于或高于正常供电电压范围时,要求 ECU 在 200ms 内禁止发送报文,且不能干扰总线通信。当供电电压恢复

到正常供电范围,在180ms~400ms时间内,ECU进入网络激活状态,在此过程中ECU不可干扰总线通信。

- 1.3.3 各个部件建议选用多缓存的 CAN 控制器。
- 1.3.4 电缆屏蔽层在车内连续导通,建议每个部件的网络插座均有屏蔽层的接头。
- 1.3.5 整车各 ECU 均不能带 120 Ω 的终端电阻, CAN 屏蔽线采用单点接地的方式接在车身地上,各个 ECU 的 CAN 屏蔽地接口均不接入 CAN 屏蔽地。
- 1.3.6 内部 CAN 的终端电阻由各系统自带 (如有变动需根据双方协商沟通确定)。
- 1.3.7 整车各 ECU 可正常工作,不能干扰整车其他部件正常工作;

1.4 数据链路层

数据帧格式

CAN总线网络报文采用扩展帧格式,扩展帧格式如图1所示。

图1 扩展帧格式

数据链路层中通过 PDU 来组织一条报文的 ID 和数据场中的内容。PDU 将 29 位 ID 划分为六个部分,分别是 P, R 位, DP 位, PF, PS (可作为 DA 或 GE), SA, 如图 2 所示。

P-优先级,R-保留位,DP-数据页位,PF-PDU格式,PS-PDU细节,SA-源地址

图 2

PDU 的组成

1.5 应用层要求

节存储格式

Intel 格式,低字节在前,高字节在后。如图 3 所示。

图3位索引计算方法

保留字节和保留位的要求

CAN 标准中一个数据包最大 8 个数据字节。数据域中的保留位用'0'填充,保留字节用"0 填充。

本文中凡是标灰色字体的部分均按照保留位/字节处理。

1.6 网络节点地址分配

编号	节点名称	缩写	地址分配
1	整车控制器	EVCU	208
2	仪表	ICU	23
3	电池管理系统	BMS	243
4	电机控制器	MCU	239

1.7 网络拓扑结构

根据现有整车结构,整车总线网络结构如图 4 所示。

图 4 CAN 总线网络拓扑结构图(仅供参考)

2 CAN1-整车控制器

- 1、整车控制器能够支持两路 CAN(CAN1&CAN2),CAN1&CAN2 均为 250Kbps;
- 2、整车控制器发出的报文:整车控制器 1~整车控制器 4;
- 3、能够输出 PWM 控制冷却风扇的转速:
- 4、整车控制器转发 BMS1 到 CAN1;

2.1 整车控制器 1 (EVCU1)

报文名称: EVCU1 波特率: 250k

ID: 0x1000EFD0 数据长度: 8字节

周期: 50ms 发送节点: 整车控制器

		• • • • • • • • • • • • • • • • • • • •
字节	位	数据名
Dut-o1		加速踏板行程信号
Byte1		分辨率:0.4%/Bit,偏移量: 0, 范围: 0~100%
Dut-o2		制动踏板行程信号
Byte2		分辨率:0.4%/Bit,偏移量: 0, 范围: 0~100%
	Bit8	<u>电刹状态</u>
		0: 无电刹; 1: 有电刹
	Bit7	制动踏板有效
Byte3	DIL7	0: 无效; 1: 有效
bytes	Bit6	加速踏板有效
	ысо	0: 无效; 1: 有效
	Bit5	DC/AC 使能
	כוום	0: 未使能; 1: 使能

		注
	Bit4	请求空调降功率运行 0:未请求;1:有请求
	Bit3	请求空调停机 0:未请求:1:有请求
		DC/DC 使能
	Bit2	0: 未使能; 1: 使能
	Bit1	充放电状态
	5161	0: 充电; 1: 放电
	Bit8	车辆互锁 0:互锁无效;1:互锁有效
	Bit7	强制停车模式 (三级故障)
	Бісл	0: 非强制停车; 1: 强制停车
	Bit6	强制降功率模式 (二级故障)
Byte4	2.60	0: 未降功率; 1: 降功率
- /	Bit5	强制断开主接触器(四级故障)
		0: 未断开; 1: 断开
	Bit4/3	保留
	Bit2/1	DNR 状态
		00: 空档 (N); 01: 前进档 (D);
		10 : 后退档 (R); 11: 错误
	Bit8	整车系统故障 0 :无效 ; 1 :有效
		预充超时
	Bit7	0: 未超时; 1: 超时
	DitC	电机控制器节点掉线
DutoE	Bit6	0: 未掉线; 1: 掉线
Byte5	Bit5	保留
	Bit4	电池管理系统主控节点掉线
	ыст	0: 未掉线; 1: 掉线
	Bit3	READY 有效
		0: 无效; 1: 有效
	Bit2/1	保留
Byte7/6		保留
Byte8		整车控制器 Life
		分辨率:1/Bit,偏移量:0, 范围:0~255

2.2 整车控制器 2 (EVCU2)

报文名称: EVCU2

波特率: 250k

ID: 0CFA00D0

数据长度: 8字节

周期: 50ms

发送节点:整车控制器

字节	位	数据名
Byte1	Bit8/7	保留

	Bit6	主负接触器状态反馈
		0: 断开; 1: 闭合
	D:+E	Key Start
	Bit5	0: 无效; 1: 有效
	54	清除故障(一直发"0")
	Bit4	0: 无效; 1: 有效
	D:+3	预充接触器状态反馈
	Bit3	0: 断开; 1: 闭合
	D:12	主正接触器状态反馈
	Bit2	0: 断开; 1: 闭合
	B11.4	MCU 使能
	Bit1	0: 无效; 1: 有效
	Bi8~Bit3	保留
		电机控制模式
Byte2	Bit2/1	00: 备用; 01: 转速控制模式
	,	10: 扭矩控制模式; 11: 主动放电模式
Byte3		保留
		请求扭矩
Byte5/4		分辨率:0.5N.M/Bit,偏移量: -10000N.M;
, ,		范围: -10000N.M~10000N.M
Byte6		保留
		请求转速
Byte8/7		分辨率:1rpm/Bit,偏移量: -15000rpn;
		范围:-15000rpm~15000rpm

1,

2.3 整车控制器 3 (EVCU3)

报文名称: EVCU3 波特率: 250k

ID: 0CFB00D0 数据长度: 8字节

周期: 50ms 发送节点:整车控制器

字节	位	数据名
D. d.o.2 /1		转速指令限值上限
Byte2/1		分辨率:1rpm/Bit,偏移量: 0;范围: 0~6000rpm
Byte4/3		转速指令限值下限
		分辨率:1rpm/Bit,偏移量: 0;范围: 0~6000rpm
Byte8~Byte3		保留

● Byte2/1 转速指令限值上限

用于限制前进的最高仪表车速 69Km/h(实际 67Km/h),需要发固定值 2512rpm;

● Byte4/3 转速指令限值下限

用于限制倒车的最高仪表车速 20Km/h, 需要发固定值 380rpm;

2.4 整车控制器 4 (EVCU4)

报文名称: EVCU4 波特率: 250k

ID: 0x0CF101D0 数据长度: 8字节

周期: 500ms 发送节点: 整车控制器

四朔:	3001113	人及下点: 定十江門前
字节	位	数据名
	Bit8	电机及 MCU 系统故障
		0=无效;1=有效;
	Bit7	MCU 节点不在线
	БП	0=无效;1=有效;
	Bit6	BMS 系统故障
	БПО	0=无效;1=有效;
	Di+E	BMS 节点不在线
Duto1	Bit5	0=无效;1=有效;
Byte1	Bit4	DC/DC 三级故障
	БП4	0=无效;1=有效;
	Bit3	DC/DC 节点不在线
	ысэ	0=无效;1=有效;
	Bit2	油泵 DC/AC 三级故障
	BILZ	0=无效;1=有效;
	D:+1	油泵 DC/AC 不在线
	Bit1	0=无效;1=有效;
	Bit8	气泵 DC/AC 三级故障
		0=无效;1=有效;
	Bit7	气泵 DC/AC 不在线
		0=无效;1=有效;
	Bit6	绝缘故障
		0=无效;1=有效;
	Bit5	绝缘监测节点不在线
Byte2	DICO	0=无效;1=有效;
Dytez	Bit4	仪表系统故障
		0=无效;1=有效;
	Bit3	仪表节点不在线
	Dies	0=无效;1=有效;
	Bit2	低气压报警
	DICZ	0=无效;1=有效;
	Bit1	24V 蓄电池欠压报警
	DILI	0=无效;1=有效;
	Bit8	强制限功率模式
Byte3	DILO	0=无效;1=有效;
Dytes	Bit7	强制停车模式
		0=无效;1=有效;

	Bit6	强制高压断电模式 0=无效; 1=有效;
	Bit5~1	保留
Byte4		保留
	Bit8~6	保留
	Bit5	后舱门开互锁
	ВПЭ	0=无效; 1=有效;
	Bit4	充电舱门开互锁
		0=无效; 1=有效;
Byte5	Bit3	充电插头连接互锁
bytes		0=无效; 1=有效;
	Bit2	气压低互锁
		0=无效; 1=有效;
		气压过低报警(前后桥气压<0.55Mpar)
	Bit1	取消回馈充电
		0=无效;1=有效;
Byte6~8		保留

3 CAN1-电机控制器

- 1、电机控制器接收整车控制器发出的扭矩指令进行输出,电机控制器输出的扭 矩应控制在指令范围内;
- 2、电机控制器具备主动放电功能;
- 3、电机控制器预充由整车做;
- 4、电机控制器连续 2 秒收不到整车控制器发送的扭矩指令,电机控制器将输出 扭矩值降为 0:
- 5、电机控制器不能带 120 Ω 终端电阻;

3.1 电机控制器 1 (MCU1)

报文名称: MCU1 波特率: 250k

ID: 0x0CFFEBEF 数据长度: 8字节

周期: 10ms 发送节点: 电机控制器

字节	位	数据名
Byte1		电机控制器 life 值 分辨率: 1/Bit,偏移量: 0, 范围: 0~255
Byte2	Bit8~4	保留

		电机及电机控制器故障等级
	2026	000: 正常
		001: 驱动系统一级故障(报警)
		010: 驱动系统二级故障(降功率)
	Bit3/2/1	011: 驱动系统三级故障(强制停车)
		100:驱动系统四级故障(断开接触器)
		其他:保留
		注: 电机厂家提供各等级故障列表。
	Bit8/7	保留
	-1.0	预充电完成
	Bit6	0: 未完成; 1: 完成
	Bit5	驱动有效
		0: 无效; 1: 有效
	Bit4	制动有效
Byte3		0: 无效; 1: 有效
	Bit3	空档(N)
	DIC5	0: 无效; 1: 有效
	Bit2	前进档(D)
	DILZ	0: 无效; 1: 有效
	Bit1	后退档(R)
	DICI	0: 无效; 1: 有效
	Bit8~Bit3	保留
	Bit2	电机超温 电机超温
Byte4	BILZ	0: 未超温; 1: 超温
	Bit1	电机控制器超温
	DICI	0: 未超温; 1: 超温
Byte6/5		保留
Byte8/7		电机扭矩反馈
byte8//		分辨率:1N.M/Bit,偏移量: -32000; 范围: -32000N.M~32000N.M

- Byte2 Bit3/2/1 电机及电机控制器故障等级 根据电机及电机控制器出现的故障,将相应的故障等级报出来;
- Byte3 Bit1 后退档(R) 接收整车控制器报文, ID: 0x1000EFD0, Byte4 Bit2/1;
- Byte3 Bit2 前进档(D) 接收整车控制器报文, ID: 0x1000EFD0, Byte4 Bit2/1;
- Byte3 Bit3 空档(N) 接收整车控制器报文,ID: 0x1000EFD0,Byte4 Bit2/1;
- Byte3 Bit6 预充电完成 电机控制器母线电压达到动力电池电压 95%及以上;

3.2 电机控制器 2 (MCU2)

报文名称: MCU2 波特率: 250k

ID: 0x18FFECEF 数据长度: 8字节

周期: 10ms 发送节点: 电机控制器

//1/911 101110		次之下M: 日/日至/7 田
字节	位	数据名
Byte2/1		电机控制器母线电压
byte2/1		分辨率:0.1V/Bit,偏移量: 0;范围: 0V~1000V
Byte4/3		保留
Duto 6 /E		电机控制器直流电流
Byte6/5		分辨率:0.1A/Bit,偏移量: -3200A;范围:-3200A~3353.5A
Byte8/7		保留

3.3 电机控制器 3 (MCU3)

报文名称: MCU3 波特率: 250k

ID: 0x0CFFEDEF 数据长度: 8 字节

周期: 10ms 发送节点: 电机控制器

7:47741 =06		2 T = 7 T T T T T T T T T T T T T T T T T
字节	位数据名	
		电机转速
Byte2/1		分辨率:1rpm/Bit,偏移量: -20000rpm;范
		围:-20000rpm~20000rpm
Byte3		保留
Duto 4		驱动系统冷却请求
Byte4		分辨率:0.4%/Bit,偏移量: 0, 范围: 0~100%
DutoE		电机控制器温度(TC1)
Byte5		分辨率:1℃/Bit,偏移量: -40℃;范围: -40℃~210℃
Byte6		保留
Duto7		电机温度(TM1)
Byte7		分辨率:1℃/Bit,偏移量: -40℃;范围: -40℃~210℃
Byte8		保留

驱动系统冷却请求:

综合驱动电机及电机控制器的温度发出冷却系统百分比,风扇在<u>驱动系统冷却请求</u>达到 50%时,冷却风扇达到 50%的转速;<u>驱动系统冷却请求</u>达到 100%时,风扇达到 100%转速,<u>驱动系统冷却请求</u>中间值必须是线性变化,具体的温度规定见下表。

序号	部件名称	冷却请求 0%时	冷却请求 50%时温	冷却请求 100%时
		温度(℃)	度(℃)	温度(℃)
1	驱动电机	<mark>50</mark>	<mark>55</mark>	<mark>60</mark>
<mark>2</mark>	电机控制器	<mark>45</mark>	<mark>50</mark>	<mark>55</mark>

3.4 电机控制器 4 (MCU4)

报文名称: MCU4 波特率: 250k

福田欧辉纯电动客车电机控制器通讯协议(V2.0)

ID: 0x18FFEEEF

数据长度:8字节

周期 50ms

发送节点: 电机控制器

字节	位	数据名
Dyto 2 / 1		控制器直流侧输入功率 Pin
Byte2/1		分辨率: 1Kw/Bit, 偏移量: 0, 范围: 0 to 400Kw
D. + - 4 /2		驱动系统耗电量 Ein
Byte4/3		分辨率: 0.1Kwh/Bit,偏移量: 0,范围: 0 to 1000Kwh
Byte8~Byte5		保留

3.5 电机控制器 5 (MCU5)

报文名称: MCU5

波特率: 250k

ID: 0x18FFEFEF

数据长度: 8字节

周期: 50ms

发送节点: 电机控制器

字节	位	数据名
Byte1	Bit8/7/6/5	驱动电机故障 4 故障代码 0-9
	Bit4/3/2/1	驱动电机故障 3 故障代码 0−9
D 1.2	Bit8/7/6/5	驱动电机故障 2 故障代码 0-9
Byte2	Bit4/3/2/1	驱动电机故障 1 故障代码 0−9
Byte8/7/ 5/4/3		保留

注: 电机及控制器厂家提供故障代码;

3.6 电机控制器程序版本信息

报文名称:程序版本波特率: 250k

ID: 0x18FF24EF

数据长度: 8字节

周期: 500ms

发送节点: MCU

字节	位	数据名	
Byte1		年 BCD 码 (程序生成的时间)	
Byte2		月 BCD 码	
Byte3		日 BCD 码	
Byte4		时 BCD 码	
Byte5		分 BCD 码	
Byte6		保留	
Byte7/8		版本号 分别率: 0.1;偏移量: 0;范围: 0~10 (只发送数字,字母 "V"由仪表显示时增加)	

4 CAN2-电池管理系统

4.1 电池管理系统 1 (BMS1)

报文名称: BMS1 波特率: 250k

ID: 0x1818D0F3 数据长度: 8字节

周期: 100ms 发送节点: 电池管理系统主控

	同期: IUUMS	及这下点: 电池官理系统主控
字节	位	数据名
Dut-02/1		动力电池系统总电压
Byte2/1		分辨率: 0.1V/Bit,偏移量: 0,范围: 0~1000V
		动力电池系统总电流
Byte4/3		分辨率:0.1A/Bit,偏移量:-3200 A,范围:-3200A to
		3353.5A
Byte5		SOC
- Bytes		分辨率: 0.4%/Bit,偏移量: 0, 范围: 0~100%
	Bit8	电池不匹配故障
		0: 无故障 1: 有故障
	Bit7	电池温度过高(对应一级报警阀值)
		0: 温度不高 1: 温度过高 放电过电流(对应一级报警阀值)
	Bit6	
		充电过电流(对应一级报警阀值)
	Bit5	0: 未过流 1: 过流
Byte6	Bit4	SOC 过低(对应一级报警阀值)
		0: SOC 不低 1: SOC 过低
	D11.0	SOC 过高(对应一级报警阀值)
	Bit3	0: SOC 不高 1: SOC 过高
	Bit2	单体电压过低(对应一级报警阀值)
	DILZ	0: 单体电压不低 1: 单体电压过低
	Bit1	单体电压过高(对应一级报警阀值)
		0: 单体电压不高 1: 单体电压过高
	Bit8	保留
		动力电池故障等级
Byte7		000:无故障; 001:一级故障 (达到轻微报警阀值);
		001:一级故障(达到轻俶报警阀值); 010:二级故障(达到降功率阀值);
	Bit7/6/5	010.
	ыс//0/3	100:四级故障(达到份平成障阀值);
		其他: 保留
		效,并报最高故障等级
	l	//// / 1 4M*// M #// T 4 4//

福田欧辉纯电动客车电机控制器通讯协议(V2.0)

	Bit4	温度不均衡(对应一级报警阀值) 0:均衡 1:不均衡
	Bit3	电压不均衡(对应一级报警阀值) 0:均衡 1:不均衡
	Bit2	总电压过低(对应一级报警阀值) 0:总电压不低 1:总电压过低
	Bit1	总电压过高(对应一级报警阀值) 0:总电压不高 1:总电压过高
Byte8		保留