Gabarito da Prova P2 de Otimização Combinatória - 2013-2 - Profa. Luciana S. Buriol

- a) Dado um grafo (não-direcionado) G = (V, A) queremos encontrar uma função bijetiva $f: V \to \{1, 2, \dots, |V|\}$ tal que a distância total $\sum_{\{u,v\}\in A} |f(u)-f(v)|$ entre todos vértices incidentes a cada aresta seja minimizado. Formule um programa inteiro que determina a menor distância total.
- b) (Dualidade, 2pt) Considere o problema de cobertura de vértices: dado um grafo não-direcionado pesado G = (V, A, p) com pesos p_v para $v \in V$, queremos encontrar um subconjunto $I \subseteq V$ com a menor soma dos pesos dos vértices deste subconjunto de forma que toda aresta do grafo contenha pelo menos um vértice de I. O problema pode ser formulado como

$$\begin{aligned} & \mathbf{min.} & & \sum_{v \in V} x_v p_v, \\ & \mathbf{s. \ a} & & x_u + x_v \geq 1, \\ & & & x_v \in \{0, 1\}. \end{aligned} \qquad \forall \{u, v\} \in A,$$

Exemplo: Considere a instância

$$a \xrightarrow{a_1} b \xrightarrow{a_2} c \xrightarrow{a_4} d$$

com valores $p_a=1, p_b=3, p_c=3, p_d=5$ e $p_e=2$. A solução ótima $I=\{a,c,e\}$ tem custo 6.

- a) Identifique claramente a matriz A, e vetores b e c do sistema relativo à instância fornecida.
- b) Apresente o sistema dual do sistema apresentado no item a) aplicado à instância fornecida.
- c) (Resolução, 2.5pt)

Considere a formulação

max.
$$-x_1 - 3x_2 - x_3$$

s. a $2x_1 - 5x_2 - x_3 \le -5$
 $2x_1 - x_2 + 2x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$

- a) O sistema é dualmente viável? Justifique a sua resposta.
- b) Execute um pivô do método dual simplex no dicionário correspondente a este sistema. O dicionário resultante é ótimo?
- d) (Analise de sensibilidade, 2.5pt) Considere o sistema

$$\begin{aligned} & \max & x_1 - 2x_2 - 3x_3 \\ & \mathbf{s.a} & 2x_1 + 3x_2 - 2x_3 \leq -1 \\ & & -x_1 - 2x_2 - 2x_3 \leq -2 \\ & 3x_1 + x_2 \leq 0 \\ & x_1, x_2, x_3, x_4 \geq 0 \end{aligned}$$

e seu dicionário ótimo

a) Qual faixa de valores que c_1 (o coeficiente da variável x_1 na função objetivo) pode variar, de forma que os valores das variáveis x_1 , x_2 e x_3 da solução ótima não mudem, ou seja, o dicionário atualizado continue ótimo?

1

- b) Qual seria a solução ótima (valor de função objetivo e de variáveis) caso c_1 mudar para -1?
- c) Qual seria a solução ótima (valor de função objetivo e de variáveis) caso c_1 mudar para -1 e c_2 mudar para 1?
- d) Qual seria a solução ótima (valor de função objetivo e de variáveis) caso b_2 mudar para 1?