العلامة		عناصر الإجابة (الموضوع الأول)		
مجموع	مجزأة			
		التمرين الأول: (04 نقاط)		
	0.25	f'(0) = 1		
01	0.25	$f'(0) = 1$ $\lim_{x \to -\infty} f(x) = -1$	(1	
01	0.5	(T): y = x	i ·	
	0.353	المعادلة لا تقبل حلا $m < 0$		
0.75	0.25×3	المعادلة تقبل حلين متمايزين $m>0$	(2	
		المعادلة تقبل حلا معدوما $m=0$		
		a=1 $b=-1$ تبيان أنّ		
01	0.5+0.5	$f'(x) = (x^2 + 2x + a)e^x$	(3	
-		$\begin{cases} a=1\\b=-1 \end{cases} \begin{cases} f'(0)=1\\ \lim_{x\to -\infty} f(x)=b \end{cases}$		
		$b = -1 \qquad \lim_{x \to -\infty} f(x) = b$		
	0.50	الدالة 8 زوجية		
		$g(x) = f(x) \qquad x \in [0; +\infty[$		
	0.25	ينطبق على (C_f) في المجال $[0;+\infty[$ ينطبق على (C_f) في المجال $[0;+\infty[$		
		محور الفواصل (C_{ε})	l	
4.25		3		
1.25		2-	(4	
		11		
	0.5			
		2 -1 0 1 2		
	<u> </u>	التمرين الثاني: (04 نقاط)	l .	
	0.50	$\lim_{x \to +\infty} (f(x) - (x-1)) = 0$	(1	
01	0.50	$x \rightarrow +\infty$		
01	0.50	x=1خاطئة لأن (E) : عناه $x=1$ أي $x>1/2$	(2	
OI	0.50			
01	0.50	$F'(x) = f(x) : \mathbb{R}$ من أجل كل x من أجل كل	(3	
	0.50		1	
01	0.50	خاطئة لأن 2022 - «2023	(4	
91	0.50	$\ln u_1 + \ln u_2 + \dots + \ln u_{2022} = \ln \frac{2 \times 3 \times \dots \times 2023}{1 \times 2 \times \dots \times 2022} = \ln 2023$		

		الإجابة النمودجية. مادة: الرياضيات. الشعبة: علوم جريبية. بكالور	
		التمرين الثالث: (05 نقاط)	
01	0.25×4	עני און אול איני איני איני איני איני איני איני אינ	(1
	0.25	ریبة (u_n) ایست رتبیه ایست	(2
01	0.50	$u_1>u_2$ و $u_0< u_1$ التبرير:	
	0.25	ب- التخمين $(u_n):$ متقاربة	
	01	$v_{n+1} = \frac{1}{4}v_n \qquad -\mathfrak{f}$	(3
	0.50	$v_0 = \frac{196}{9}$	
2.75	0.50	$v_n = \frac{196}{9} \left(\frac{1}{4}\right)^n \qquad -4$	
	0.50	$\lim_{n \to +\infty} v_n = 0$	
	0.25	$\lim_{n\to+\infty}u_n=\frac{2}{3}$	
	0.25	تبيان أنّ: $v_0 \times v_1 \times \dots \times v_{n-1} = \left(\frac{196}{9}\right)^n \left(\frac{1}{4}\right)^{0+1+2+\dots+n-1} = \left(\frac{14}{3}\right)^{2n} \left(\frac{1}{2}\right)^{n^2-n}$ تمنح العلامة 0.25 لكل محاولة	(4
0.25			

		التمرين الرابع: (07 نقاط)			
			(I		
1.25	0.50	$g'(x) = \frac{x^2 + 2x + 2}{x^3}$			
	0.50	g'(x) > 0			
	0.25	$[0;+\infty]$ ومنه g متزایدة تماما علی ومنه			
	0.75	$lpha$ أحسب مبرهنة القيم المتوسطة $g\left(x ight)$ قبل حلا وحيدا أ	(2		
		$1,2 < \alpha < 1,3$ حيث			
1.25	0.50	$:g\left(x ight)$ ب $-$ اشارة			
		$\begin{array}{c ccc} x & 0 & a & +\infty \\ \hline g(x) & - & 0 & + \end{array}$			
			(Π		
	0.25	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[\frac{1}{xe^x} - \frac{2}{e^x} - \frac{\ln x}{x} \times \frac{x}{e^x} \right] = 0$ أ- تبيان أن	(1		
	0.25	$x \to +\infty$			
01		$\lim_{x \to 0} f(x) = +\infty$			
		ب-التفسير البياني			
	0.25×2	$(C_f$) معادلتي المستقيمين المقاربين للمنحني $x=0\;;\;y=0$			
	0.75	$f'(x) = \frac{g(x)}{e^x} - 1$	(2		
	0.25×2	ب-اتجاه تغيّر الدّالة f			
	0.23^2	$]0;lpha$ متزایدة تماما علی $[lpha;+\infty[$ ومتناقصة تماما علی f			
1.75		جدول تغيّراتها.			
		$x \mid 0 \alpha +\infty$			
	0.5	f'(x) $ 0$ $+$ 0			
		$f(x)$ $f(\alpha)$			
		$\left(C_f ight)$ إنشاء المنحنى	(3		
0.50		$\binom{C_f}{C_f}$			
	0.5	1.			
		1 0 1 2 3 4			
			15		
1.25	0.5	$F'(x) = f(x)$ ، $x \in]0;+\infty[$ كل أحالتحقق :من أجل كل	(4		

	يا 2022	الإجابة النموذجية. مادة: الرياضيات. الشعبة: علوم تجريبية. بكالور	
	0.5	$S(\lambda) = \left[F(x)\right]_{\lambda}^{0.5} = \frac{2 - \ln 2}{\sqrt{e}} - \frac{2 + \ln \lambda}{e^{\lambda}} .$	
	0.25	$\begin{pmatrix} C_f \end{pmatrix}$ التفسير: $S(\lambda)$ مساحة الحيز من المستوي المحدد ب $x = \frac{1}{2}$ ، $x = \lambda$ وحامل محور الفواصل والمستقيين ذي المعادلتين	
		عناصر الإجابة (الموضوع الثاني)	
		التمرين الأول: (04 نقاط)	
01.25	0.50 0.75	f'(0) = -1 $(T): y = -x$	(1
0.50	0.50	$a=1$ و منه $\begin{cases} f'(x)=a-rac{2}{x+1}: a=1 \\ f'(0)=-1 \end{cases}$	(2
0.75	0.25×3	المناقشة البيانية: $m < 0$ المعادلة لا تقبل حلا $m < 0$ للمعادلة حلا معدوما $m = 0$ للمعادلة حلين مختلفين في الإشارة $m > 0$	(3
	0.50 0.25	اً- تبيان أنّ: $g(-2-x)=g(x) (-2-x)\in D_g \ , \ x\in D_g$ من أجل كل $x=-1$ معادلة محور تناظر لـ (C_g)	
	0.25	g(x)=f(x) على $g(x)=f(x)$ عبيان أنّ	
1.50	0.50	(C_g) simil	(4
التمرين الثاني: (04 نقاط)			
01	0.50 0.50	$I = \int_{1}^{2} (x-1)e^{x^2-2x} dx = \left[\frac{1}{2}e^{x^2-2x}\right]_{1}^{2}$ الاقتراح الصحيح هو ب	(1
01	0.50 0.50	$v_{n+1} = u_{n+1} + \alpha = \frac{1}{3}v_n + \frac{2}{3}\alpha + 3$ الاقتراح الصحيح هو أ) لأن	(2

	ريا 2022	الإجابة النموذجية. مادة: الرياضيات. الشعبة: علوم تجريبية. بكالور	
01	0.50 0.50	$\lim_{x \to 0} \frac{\ln(x+1)}{x} = \lim_{x \to 0} \frac{(e^x - 1)}{x} = 1$ الاقتراح الصحيح هو أ) لأن: $H'(x) = 2x + \frac{1}{x} + c$ و	(3
01	0.50 0.50	$H'(x) = 2x + \frac{1}{x} + c$ و الاقتراح الصحيح هو أ $H(x) = x^2 + \ln x + cx + d$ الاقتراح الصحيح هو أ $H(x) = x^2 + \ln x + cx + d$ ومنه $H(x) = x^2 - x + 4 + \ln x$ ومنه $H(x) = 4$	(4
		التمرين الثالث: (05 نقاط)	
01.50	0.50 0.50	$u_1 = e$ _\int $q = \frac{1}{e}$	(1
	0.50	$u_n=e^{2-n}$ ، n عدد طبیعي عدد التحقّق أنّه من أجل كلّ عدد طبیعي	
01	0.50	$S_n = u_0 \frac{q^{n+1} - 1}{q - 1}$	(2
	0.50	$S_n = \frac{e^3}{e - 1} \left(1 - \frac{1}{e^{n+1}} \right)$	
1.50	0.75+0.25	$v_n = rac{e^{3-n}-e^4}{1-e}$: أ- البرهان بالتّراجع $\lim_{x o +\infty} rac{e^{3-n}-e^4}{1-e} = rac{e^4}{-1+e}$ ب-	(3
	0.50	$\lim_{x \to +\infty} \frac{e^{3-n} - e^4}{1 - e} = \frac{e^4}{-1 + e} - \Box$	
01	0.50	$\frac{1}{e}v_n = \frac{1}{1-e}(u_n - e^3)$ ا- تبیان أن	(4
	0.50	$S_n' = \frac{1}{1-e} \left[S_n - (n+1)e^3 \right]$ ب- التحقق أن	
		التّمرين الرّابع: (07 نقاط)	
	0.25	$\lim_{x \to +\infty} f(x) = -\infty$	(1
0.75	0.50	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{2} e^{-2x} (1 - 9e^x - 4xe^{2x} + 8e^{2x}) = +\infty$	
	0.75	$f'(x) = -\frac{1}{2}e^{-2x}(e^x - 2)(4e^x - 1)$: أ- إثبات أن	(2
1 75	0.50	ب-اتجاه التغییر	
1.75	0.50	جدول التغیرات	

الصفحة 5 من 6

بكالوريا 2022	الشعبة: علوم تجريبية.	مادة: الرياضيات.	الإجابة النموذجية.
---------------	-----------------------	------------------	--------------------

	ري 2022	ام جابه الممودجية. الماداد الرياطيات. السعبة. حلوم جريبية. المحافو	
	0.25	$f(x) - (-2x + 4) = \frac{1}{2}e^{-2x} - \frac{9}{2}e^{-x} - 5$	(3
	0.50	$\lim_{x \to +\infty} (f(x) - (-2x + 4)) = 0$	
		(Δ) بالنسبة إلى المراسة وضعية بالنسبة المراسة وضعية بالنسبة المراسة وضعية المراس	
1.50	0.25	$f(x) - (-2x + 4) = \frac{1}{2}e^{-x}(e^{-x} - 9)$	
		$]-\ln 9;+\infty[$ المجال على المجال المجال $\left(C_f ight)$	
	0.70	$]{-}\infty;-\ln 9[$ اسفل Δ على المجال C_f	
	0.50	$(C_f) \cap (\Delta) = \left\{ A(-\ln 9; 4 + 2\ln 9) \right\}$	
0.75	0.75	$(T): y = \frac{3}{2}x$	(4
		$[-1,9;+\inftyigl[$ المنحنى C_f على المجال T و Δ	(5
1.50	0.50	$\begin{array}{c c} & 2 & \\ & 1 & \\ \hline & 1 & \\ \hline & (C_f) & 1 & 2 \\ \end{array}$	
	0.50	(T) -2 -3	
	0.25	a=-1 –	(6
	0.25	b = 2	
0.75	0.25	$h(x) = -f(x) + 2 \qquad \neg$	
		ننشئ (C_{-f}) صورة (C_{f}) بالتناظر بالنسبة لحامل محور الفواصل ثم	
		$2ec{j}$ صورة (C_{-f}) بالانسحاب ذو الشعاع $\left(C_{h} ight)$	