DOCKET NO.: ISIS-4723

Application No.: 09/823,031

Office Action Dated: November 12, 2003

This listing of claims will replace all prior versions, and listings, of claims in the application.

PATENT

Listing of Claims:

1-21. (canceled)

22. (currently amended) A process for preparing an oligonucleotide having the formula:

wherein:

 R_1 is a group having the formula:

$$\begin{array}{c} & | \\ O \\ O \\ P \\ P \\ I \\ O \\ L_1 \end{array}$$

 Q_0 is O or S;

R₄ is O⁻, hydroxyl, or a protected hydroxyl;

R₂ is hydroxyl, a protected hydroxyl or a group having the formula:

DOCKET NO.: ISIS-4723

PATENT

Application No.: 09/823,031

Office Action Dated: November 12, 2003

$$O = P - O$$

$$S$$

$$L_2$$

each R₃ is H, a 2'-substituent group or a protected 2'-substituent group; each X is, independently, O⁻, hydroxyl, protected hydroxyl, or -S-L₃; each Bx is an optionally protected heterocyclic base moiety; n is from 3 to about 50; and

 L_1, L_2 and each of said L_3 are, independently, a cholesterol, phospholipid, biotin, phenazine, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, coumarin, or dye;

wherein said R_1 and at least one of said R_2 or said X comprise a cholesterol, phospholipid, biotin, phenazine, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, or coumarin, or dye;

comprising the steps of:

a) providing a derivatized solid support for oligonucleotide synthesis, said derivatized solid support being derivatized with a group having one of the structures:

wherein

T is a bifunctional linking moiety linked to the solid support; and

Q₁ is an acid labile hydroxyl protecting group;

b) treating said derivatized solid support with an acidic reagent to deblock said acid labile hydroxyl protecting group to give a free hydroxyl group;

DOCKET NO.: ISIS-4723 Application No.: 09/823,031

Office Action Dated: November 12, 2003

c) reacting said free hydroxyl group with a phosphoramidite composition to form an extended compound, said phosphoramidite composition having the formula:

PATENT

$$Q_2$$
—O—O—Bx
 Q_3
 Z_6 —N— Q_3
 Z_7

wherein

Q₂ is a 5'-terminal acid labile hydroxyl protecting group;

Q₃ is a phosphorus protecting group; and

 Z_6 and Z_7 are, independently, C_{1-6} alkyl;

or Z_6 and Z_7 are joined together to form a 4- to 7-membered heterocyclic ring system including the nitrogen atom to which Z_6 and Z_7 are attached, wherein said ring system optionally includes at least one additional heteroatom selected from O, N and S;

- d) oxidizing said extended compound to form an oxidized compound, or treating said extended compound with an acidic reagent to deblock said 5'-terminal acid labile hydroxyl protecting group of said extended compound to give a free hydroxyl group and repeating step c) at least one time followed by oxidizing said extended compound to form an oxidized compound;
- e) treating said oxidized compound with an acidic reagent to deblock said acid labile hydroxyl protecting group to give a free hydroxyl group and repeating steps c) and d) at least three times to form an extended oxidized compound;
- f) treating said extended oxidized compound with a reagent effective to deblock said protected hydroxyl group to give a free hydroxyl group and reacting said free hydroxyl group with a compound of formula:

PATENT

DOCKET NO.: ISIS-4723 **Application No.:** 09/823,031

Office Action Dated: November 12, 2003

$$Q_2$$
—O O O Et OEt Z_6 —N O L_1 Z_7

thereby forming a 5'-functionalized compound; wherein

Q₅ is an acid labile hydroxyl protecting group;

- g) treating said 5'-functionalized compound for a time and under conditions effective to remove at least one phosphorus protecting group giving at least one deblocked phosphorothioate linkage; and
- h) reacting said deblocked phosphorothioate linkage with a cholesterol, phospholipid, biotin, phenazine, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, <u>or</u> coumarin, <u>or dye</u> that is reactive with and forms a covalent bond with said deblocked phosphorothioate linkage to give said oligonucleotide.
- 23. (original) The process of Claim 22 further comprising the step of treating said 5'-functionalized compound with a capping agent to form a capped compound.
- 24. (original) The process of Claim 22 wherein said R₂ is a group having the formula:

$$O = P - O$$

$$S$$

$$L_2$$

25. (original) The process of Claim 24 wherein L_1 is different from L_2 .

DOCKET NO.: ISIS-4723 PATENT

Application No.: 09/823,031

Office Action Dated: November 12, 2003

26. (original) The process of Claim 22 wherein at least one of said X is -S-L₃.

27. (original) The process of Claim 26 wherein L_1 is different from L_3 .

28. (canceled)

29. (canceled)

30. (previously presented) The process of Claim 22 wherein each of said Q_3 is independently selected from the group consisting of cyanoethyl, diphenylsilylethyl, cyanobutenyl, cyano p-xylyl (CPX), methyl-N-trifluoroacetyl ethyl (META) and acetoxy phenoxy ethyl (APOE) groups.

- 31. (original) The process of Claim 22 wherein said 5'-functionalized compound is treated in step g) to remove all phosphorus protecting groups.
- 32. (original) The process of Claim 22 wherein n is from about 8 to about 30.
- 33. (original) The process of Claim 32 wherein n is from about 15 to about 25.
- 34. (original) The process of Claim 22 wherein each of said Q_1 and Q_2 is independently selected from the group consisting of trimethoxytrityl, dimethoxytrityl (DMT), monomethoxytrityl, 9-phenylxanthen-9-yl (Pixyl) and 9-(p-methoxyphenyl)xanthen-9-yl (Mox).
- 35. (original) The process of Claim 22 wherein each of said Bx is independently selected from the group consisting of adenine, guanine, thymine, cytosine, uracil, 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine, 2-thiocytosine, 5-halouracil, 5-halocytosine, 5-propynyl uracil, 5-propynyl cytosine, 6-azo uracil, 6-azo cytosine, 6-azo

DOCKET NO.: ISIS-4723 Application No.: 09/823,031

Office Action Dated: November 12, 2003

thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-substituted adenines and guanines, 5-substituted uracils and cytosines, 7-methylguanine, 7-methylguanine, 8-azaguanine, 8-azaguanine, 7-deazaguanine, 7-deazaguanine, 3-deazaguanine and 3-deazaguanine.

PATENT

- 36. (original) The process of Claim 22 wherein at least one of said L_1 , L_2 , and L_3 is attached to the oligonucleotide through a linking group.
- 37. (original) The process of Claim 36 wherein the linking group comprises a dialkylglycerol linker.
- 38. (original) The process of Claim 22 wherein each of said Z_6 and Z_7 is isopropyl.
- 39. (original) The process of Claim 22 wherein each R₃ is, independently, C₁-C₂₀ alkyl, C₂-C₂₀ alkenyl, C₂-C₂₀ alkynyl, C₅-C₂₀ aryl, O-alkyl, O-alkyl, O-alkynyl, O-alkylamino, O-alkylalkoxy, O-alkylaminoalkyl, O-alkyl imidazole, thiol, S-alkyl, S-alkenyl, S-alkynyl, NH-alkyl, NH-alkenyl, NH-alkynyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, N-phthalimido, halogen keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, heterocycle, carbocycle, polyamine, polyamide, polyalkylene glycol, and polyether;

or each substituent group has one of formula I or II:

$$-Z_{0} = \left\{ (CH_{2})_{q1} - O \left(\begin{matrix} R_{5} \\ N \end{matrix} \right)_{q2} \right\}_{q3} (CH_{2})_{q4} - J - E$$

$$Z_{1} \left(\begin{matrix} Z_{1} \\ Z_{2} \end{matrix} \right)_{q5}$$

$$Z_{4} = \begin{bmatrix} Z_{1} \\ Z_{2} \end{bmatrix}_{q5} (CH_{2})_{q5}$$

$$Z_{1} = \begin{bmatrix} Z_{1} \\ Z_{2} \end{bmatrix}_{q5} (CH_{2})_{q5} + CH_{2} \begin{bmatrix} Z_{1} \\ Z_{2} \end{bmatrix}_{q5} ($$

wherein:

DOCKET NO.: ISIS-4723 **Application No.:** 09/823,031

Office Action Dated: November 12, 2003

 Z_0 is O, S or NH;

J is a single bond, O or C(=O);

E is C_1 - C_{10} alkyl, $N(R_5)(R_6)$, $N(R_5)(R_7)$, $N=C(R_5)(R_6)$, $N=C(R_5)(R_7)$ or has one of formula III or IV;

$$-N-CH \begin{pmatrix} R_{9} \\ N-R_{10} \\ R_{8} \end{pmatrix} \begin{pmatrix} N-R_{9} \\ N-R_{11} \\ R_{12} \end{pmatrix} \begin{pmatrix} N-R_{9} \\ N-R_{11} \\ R_{12} \end{pmatrix}$$
III

each R_8 , R_9 , R_{10} , R_{11} and R_{12} is, independently, hydrogen, $C(O)R_{13}$, substituted or unsubstituted C_1 - C_{10} alkyl, substituted or unsubstituted C_2 - C_{10} alkynyl, alkylsulfonyl, arylsulfonyl, a chemical functional group or a conjugate group, wherein the substituent groups are selected from hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl;

or optionally, R_9 and R_{10} , together form a phthalimido moiety with the nitrogen atom to which they are attached;

or optionally, R_{11} and R_{12} , together form a phthalimido moiety with the nitrogen atom to which they are attached;

each R_{13} is, independently, substituted or unsubstituted C_1 - C_{10} alkyl, trifluoromethyl, cyanoethyloxy, methoxy, ethoxy, t-butoxy, allyloxy, 9-fluorenylmethoxy, 2-(trimethylsilyl)-ethoxy, 2,2,2-trichloroethoxy, benzyloxy, butyryl, iso-butyryl, phenyl or aryl;

R₅ is T-L,

T is a bond or a linking moiety;

L is a chemical functional group, a conjugate group or a solid support material; each R_5 and R_6 is, independently, H, a nitrogen protecting group, substituted or unsubstituted C_1 - C_{10} alkyl, substituted or unsubstituted C_2 - C_{10} alkenyl, substituted or

DOCKET NO.: ISIS-4723 PATENT

Application No.: 09/823,031

Office Action Dated: November 12, 2003

unsubstituted C_2 - C_{10} alkynyl, wherein said substitution is OR_3 , SR_3 , NH_3^+ , $N(R_{14})(R_{15})$, guanidino or acyl where said acyl is an acid amide or an ester;

or R₅ and R₆, together, are a nitrogen protecting group or are joined in a ring structure that optionally includes an additional heteroatom selected from N and O;

or R₂₁, T and L, together, are a chemical functional group;

each R_{14} and R_{15} is, independently, H, C_1 - C_{10} alkyl, a nitrogen protecting group, or R_{14} and R_{15} , together, are a nitrogen protecting group;

or R_{14} and R_{15} are joined in a ring structure that optionally includes an additional heteroatom selected from N and O;

 Z_4 is OX, SX, or $N(X)_2$;

each X is, independently, H, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, $C(=NH)N(H)R_{16}$, $C(=O)N(H)R_{16}$ or $OC(=O)N(H)R_{16}$;

 R_{16} is H or C_1 - C_8 alkyl;

 Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms or having from about 3 to about 6 carbon atoms and 1 or 2 heteroatoms wherein said heteroatoms are selected from oxygen, nitrogen and sulfur and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic;

 Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(R_5)(R_6)$ OR_5 , halo, SR_5 or CN;

each q₁ is, independently, an integer from 1 to 10; each q₂ is, independently, 0 or 1; q₃ is 0 or an integer from 1 to 10; q₄ is an integer from 1 to 10; q₅ is from 0, 1 or 2; and provided that when q₃ is 0, q₄ is greater than 1.

40-49. (canceled)

50. (currently amended) A process for preparing an oligonucleotide having the formula:

DOCKET NO.: ISIS-4723 **Application No.:** 09/823,031

Office Action Dated: November 12, 2003

wherein:

 R_1 is a group having the formula:

$$Q_0 = P - R_4$$
 $Q_1 = P - R_4$
 $Q_2 = P - R_4$
 $Q_3 = P - R_4$

 Q_0 is O or S;

R₄ is O⁻, hydroxyl, or a protected hydroxyl;

R₂ is hydroxyl, a protected hydroxyl or a group having the formula:

$$O = P - O$$
 S
 L_2

each R₃ is H, a 2'-substituent group or a protected 2'-substituent group; each X is, independently, O', hydroxyl, a protected hydroxyl, or -S-L₃; each Bx is an optionally protected heterocyclic base moiety; n is from 3 to about 50; and

Office Action Dated: November 12, 2003

PATENT

 L_1 , L_2 and each of said L_3 are, independently, a cholesterol, phospholipid, biotin, phenazine, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, <u>or</u> coumarin, or dye;

comprising the steps of:

a) providing a derivatized solid support for oligonucleotide synthesis, said derivatized solid support being derivatized with a group having one of the structures:

$$Q_1$$
—O Q_1

wherein

T is a bifunctional linking moiety linked to the solid support; and

Q₁ is an acid labile hydroxyl protecting group;

- b) treating said derivatized solid support with an acidic reagent to deblock said acid labile hydroxyl protecting group to give a free hydroxyl group;
- c) reacting said free hydroxyl group with a phosphoramidite composition to form an extended compound, said phosphoramidite composition having the formula:

$$Q_2$$
—O Q_3
 Q_4
 Q_4
 Q_5
 Q_5
 Q_5
 Q_5
 Q_5
 Q_5
 Q_7
 Q_7
 Q_7

wherein

Q₂ is a 5'-terminal acid labile hydroxyl protecting group;

Q₃ is a phosphorus protecting group; and

Page 11 of 16

DOCKET NO.: ISIS-4723

Application No.: 09/823,031

Office Action Dated: November 12, 2003

 Z_6 and Z_7 are, independently, C_{1-6} alkyl;

or Z_6 and Z_7 are joined together to form a 4- to 7-membered heterocyclic ring system including the nitrogen atom to which Z_6 and Z_7 are attached, wherein said ring system optionally includes at least one additional heteroatom selected from O, N and S;

PATENT

- d) oxidizing said extended compound to form an oxidized compound, or treating said extended compound with an acidic reagent to deblock said 5'-terminal acid labile hydroxyl protecting group of said extended compound to give a free hydroxyl group and repeating step c) at least one time followed by oxidizing said extended compound to form an oxidized compound;
- e) treating said oxidized compound with an acidic reagent to deblock said acid labile hydroxyl protecting group to give a free hydroxyl group and repeating steps c) and d) at least three times to form an extended oxidized compound;
- f) treating said extended oxidized compound with an acidic reagent effective to deblock said 5'-terminal acid labile hydroxyl protecting group to give a free hydroxyl group and reacting said free hydroxyl group with a compound of the formula:

thereby forming a 5'-functionalized compound;

wherein

Q₅ is an acid labile hydroxyl protecting group;

51. (original) The process of Claim 50 further comprising the step of treating said 5'-functionalized compound with a capping agent to form a capped compound.

DOCKET NO.: ISIS-4723 PATENT

Application No.: 09/823,031

Office Action Dated: November 12, 2003

52. (original) The process of Claim 50 wherein at least one of said L_1 , L_2 , and L_3 is attached to the oligonucleotide through a linking group.

- 53. (original) The process of Claim 52 wherein the linking group comprises a dialkylglycerol linker.
- 54. (original) The process of Claim 50 wherein each of said Z_6 and Z_7 is isopropyl.
- 55. (canceled)
- 56. (canceled)
- 57. (original) The process of Claim 50 wherein L_1 is different from L_2 and L_3 .
- 58. (original) The process of Claim 50 wherein each of said Q_3 is independently selected from the group consisting of cyanoethyl, diphenylsilylethyl, cyanobutenyl, cyano p-xylyl (CPX), methyl-N-trifluoroacetyl ethyl (META) and acetoxy phenoxy ethyl (APOE) groups.
- 59. (original) The process of Claim 50 wherein each of said Q₁ and Q₂ is independently selected from the group consisting of trimethoxytrityl, dimethoxytrityl (DMT), monomethoxytrityl, 9-phenylxanthen-9-yl (Pixyl) and 9-(p-methoxyphenyl)xanthen-9-yl (Mox).
- 60. (original) The process of Claim 50 wherein each of said Bx is independently selected from the group consisting of adenine, guanine, thymine, cytosine, uracil, 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine, 2-thiocytosine, 5-halouracil, 5-halocytosine, 5-propynyl uracil, 5-propynyl cytosine, 6-azo uracil, 6-azo cytosine, 6-azo thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-substituted adenines and guanines, 5-

DOCKET NO.: ISIS-4723

Office Action Dated: November 12, 2003

PATENT Application No.: 09/823,031

substituted uracils and cytosines, 7-methylguanine, 7-methyladenine, 8-azaguanine, 8azaadenine, 7-deazaguanine, 7-deazaadenine, 3-deazaguanine and 3-deazaadenine.