GNN Advanced -- GNN in NLP

Zhaoxuan Tan
Xi'an Jiaotong University
March 5, 2022

Table of Contents

- Graph Construction
 - Static Graph Construction
 - Dynamic Graph Construction
- Heterogeneous Graph Representation Learning
 - R-GCN
 - HAN
 - HGT
- GNN for Knowledge Graph Embedding
 - R-GCN / SACN / KBGAT / CompGCN
- Application
 - Syntactic GCN for SRL
 - RE-SIDE
 - QA-GNN

Why Graph?

 Graphs are a general language for describing and modeling complex system

Graph Construction: Static Method

- Problem Setting:
 - Input: raw text (sentence, paragraph, document etc.)
 - Output: graph

 Conducting during preprocessing by augmenting text with domain knowledge

Static Method: Dependency Graph

Text: are there ada jobs outside Austin?

- Add sequential edge
 - reserve sequential information in raw text
 - Connection multiple dependency graphs in a paragraph

Static Method: Knowledge Graph

- Question: who acted in the movie directed by the director of [Some Mother's Son]
- Answer: Don Cheadle, Joaquin Phoenix

Static Method: Levi Graph

- An edge for every (node, edge)
- Edge label have hidden embedding

Graph Construction: Dynamic Method

Combining intrinsic and implicit graph structures

Dynamic Method: Attention-based node similarity

$$S_{i,j} = \text{ReLU}(\mathbf{W}\mathbf{v}_i)^T \text{ReLU}(\mathbf{W}\mathbf{v}_j)$$

Learnable weight matrix

Dynamic Method: Cosine-based node similarity

$$S_{i,j}^p = \cos(\mathbf{w}_p) \odot \mathbf{v}_i, \mathbf{w}_p \odot \mathbf{v}_j)$$
Learnable weight vector

$$S_{i,j} = \frac{1}{m} \sum_{p=1}^{m} S_{ij}^{p}$$
 Multi-head similarity scores

Dynamic Method: Graph Sparsification

KNN-style Sparsification

$$\mathbf{A}_{i,:} = \operatorname{topk}(\mathbf{S}_{i,:})$$

Epsilon-neighborhood Sparsification

$$A_{i,j} = \begin{cases} S_{i,j} & S_{i,j} > \varepsilon \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{n^2}||A||_F^2$$

Static vs. Dynamic Graph Construction

Static graph construction	Dynamic graph construction	
Pros	Pros	
prior knowledge	no domain expertise	
	joint graph structure & representation learning	
Cons	Cons	
extensive domain expertise	scalability	
 error-prone (e.g., noisy, incomplete) sub-optimal 	explainability	
 disjoint graph structure & representation learning error accumulation 		

After constructing graph? -> Representation!

What is Heterogeneous GNN?

Citation Graph

Knowledge Graph

Recommender System

R-GCN

Message Passing Scheme

$$h_i^{(l+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_i^r} \frac{1}{c_{i,r}} W_r^{(l)} h_j^{(l)} + W_0^{(l)} h_i^{(l)} \right)$$

- Regularization: avoid over-parameterization
 - Basis decomposition

$$W_r^{(l)} = \sum_{b=1}^{B} a_{rb}^{(l)} V_b^{(l)}$$

• Block decomposition

$$W_r^{(l)} = \bigoplus_{b=1}^B Q_{br}^{(l)}.$$

Meta path

HAN

(a) Node-Level Attention

(b) Semantic-Level Attention (c) Prediction

Meta paths among author nodes

Node Level Attention

$$\alpha_{ij}^{\Phi} = softmax_{j}(e_{ij}^{\Phi}) = \frac{\exp\left(\sigma(\mathbf{a}_{\Phi}^{\mathrm{T}} \cdot [\mathbf{h}_{i}' \| \mathbf{h}_{j}'])\right)}{\sum_{k \in \mathcal{N}_{i}^{\Phi}} \exp\left(\sigma(\mathbf{a}_{\Phi}^{\mathrm{T}} \cdot [\mathbf{h}_{i}' \| \mathbf{h}_{k}'])\right)}$$

$$\mathbf{z}_{i}^{\Phi} = \prod_{k=1}^{K} \sigma \left(\sum_{j \in \mathcal{N}_{i}^{\Phi}} \alpha_{ij}^{\Phi} \cdot \mathbf{h}_{j}' \right).$$

HAN

Semantic Level Attention

$$w_{\Phi_p} = \frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} \mathbf{q}^{\mathrm{T}} \cdot \tanh(\mathbf{W} \cdot \mathbf{z}_i^{\Phi_p} + \mathbf{b})$$

$$\beta_{\Phi_p} = \frac{\exp(w_{\Phi_p})}{\sum_{p=1}^{P} \exp(w_{\Phi_p})}$$

$$\mathbf{Z} = \sum_{p=1}^{P} \beta_{\Phi_p} \cdot \mathbf{Z}_{\Phi_p}$$

HGT

$$H^{l}[t] \leftarrow \underset{\forall s \in N(t), \forall e \in E(s,t)}{\mathsf{Aggregate}} \Big(\mathsf{Attention}(s,t) \cdot \mathsf{Message}(s) \Big)$$

$$\begin{aligned} \mathbf{Message}_{HGT}(s,e,t) &= \prod_{i \in [1,h]} MSG\text{-}head^i(s,e,t) \\ MSG\text{-}head^i(s,e,t) &= \text{M-Linear}_{\tau(s)}^i \Big(H^{(l-1)}[s] \Big) \; W_{\phi(e)}^{MSG} \end{aligned}$$

Attention_{HGT}(s, e, t) =
$$\underset{\forall s \in N(t)}{\operatorname{Softmax}} \left(\underset{i \in [1, h]}{\parallel} ATT\text{-}head^{i}(s, e, t) \right)$$
 (3)

$$ATT\text{-}head^{i}(s, e, t) = \left(K^{i}(s) W_{\phi(e)}^{ATT} Q^{i}(t)^{T} \right) \cdot \frac{\mu_{\langle \tau(s), \phi(e), \tau(t) \rangle}}{\sqrt{d}}$$

$$K^{i}(s) = \text{K-Linear}_{\tau(s)}^{i} \left(H^{(l-1)}[s] \right)$$

$$Q^{i}(t) = \text{Q-Linear}_{\tau(t)}^{i} \left(H^{(l-1)}[t] \right)$$

GNN for KG Embedding

:country

U.S.A.

Method

	784 (1990)
R-GCN	$W_r h_o$
SACN	$lpha_{r}Wh_{o}$
KBGAT	$lpha_{sro}Wh_{sro}$
CompGCN	$W_{\lambda(r)}\phi(s,r)$

GNN for KG Embedding: Encoder-Decoder for LP

Application: Syntactic GCN for SRL

- Task: discover who did what to whom.
- Syntax mirrors semantics
- Exploit syntax using convolution

Application: Syntactic GCN for SRL

Trained with cross-entropy loss

F1 on CoNLL-2009

BiLSTM	82.7
BiLSTM + GCN	83.3

- GCN integrates syntax, context
- GCN, LSTM complement each other

Application: GNNs for Relation Extraction

Identify relation between entities

Google was founded in California in 1998.

- Founding-year (Google, 1998)
- Founding-location (Google, California)

Google was founded in the state of California...

GNNs for Relation Extraction: RE-SIDE

Syntactic Sentence Encoding

Instance Set Aggregation

- Side information Acquisition
 - Relation Alias side information
 Open IE, PPDB -> GloVe Embeddings -> find the closest relation for each phase (h^{rel})
 - Entity Type side information
 E.g. Paris: government, location -> average type
 embeddings (h^{type})

Side info improves performance!

Application: QA-GNN

- Identify relevant knowledge from KG -> relevance scoring
- Performa joint reasoning over the QA context and KG

QA-GNN: relevance scoring

$$\rho_v = f_{\text{head}}(f_{\text{enc}}([\text{text}(z); \text{text}(v)])),$$

QA-GNN: GNN architecture

Message passing scheme

$$\boldsymbol{h}_{t}^{(\ell+1)} = f_{n} \left(\sum_{s \in \mathcal{N}_{t} \cup \{t\}} \alpha_{st} \boldsymbol{m}_{st} \right) + \boldsymbol{h}_{t}^{(\ell)}$$

Message

$$\boldsymbol{m}_{st} = f_m(\boldsymbol{h}_s^{(\ell)}, \boldsymbol{u}_s, \boldsymbol{r}_{st})$$

$$\boldsymbol{u}_t = f_u(\mathbf{u}_t), \quad \boldsymbol{r}_{st} = f_r(\mathbf{e}_{st}, \mathbf{u}_s, \mathbf{u}_t)$$

Attention weight

$$egin{aligned} oldsymbol{
ho}_t &= f_{
ho}(
ho_t) \ & oldsymbol{q}_s = f_q(oldsymbol{h}_s^{(\ell)}, oldsymbol{u}_s, oldsymbol{
ho}_s), \ & oldsymbol{k}_t = f_k(oldsymbol{h}_t^{(\ell)}, oldsymbol{u}_t, oldsymbol{
ho}_t, oldsymbol{r}_{st}) \end{aligned}$$

$$\alpha_{st} = \frac{\exp(\gamma_{st})}{\sum_{t' \in \mathcal{N}_s \cup \{s\}} \exp(\gamma_{st'})}, \quad \gamma_{st} = \frac{\boldsymbol{q}_s^{\top} \boldsymbol{k}_t}{\sqrt{D}}$$

Thx for Attention

Zhaoxuan Tan
Xi'an Jiaotong University
March 5, 2022