Restricted Boltzmann Machine - RBM

Eduardo M. Rubik e Lucas Santana

LAMFO

Laboratório de Aprendizado de Máquina em Finanças e Organizações

June 20, 2020

- Motivação
- 2 Termodinâmica
- Máquina de Boltzmann
- 4 Estrutura
- 5 Formalização Matemática
- 6 Comparação com uma RNA
- Variantes da RBN
- 8 Aplicação
- Referências

Motivação

Netflix Prize

Rules Leaderboard Register Update Submit Download lome

Leaderboard 10.05%

Display top 20 leaders.

Rank	Team Name		Best Score	% Improvement		Last Submit Time
1	BellKor's Pragmatic Chaos	- :	0.8558	10.05	:	2009-06-26 18:42:37
Gran	d Prize - RMSE <= 0.8563					
2	PragmaticTheory	- ;	0.8582	9.80	:	2009-06-25 22:15:51
3	BellKor in BigChaos		0.8590	9.71	1	2009-05-13 08:14:09
4	Grand Prize Team		0.8593	9.68	1	2009-06-12 08:20:24
5	Dace		0.8604	9.56	:	2009-04-22 05:57:03
6	BigChaos		0.8613	9.47	:	2009-06-23 23:06:52

- Motivação
- 2 Termodinâmica
- Máquina de Boltzmann
- 4 Estrutura
- 5 Formalização Matemática
- 6 Comparação com uma RNA
- Variantes da RBN
- 8 Aplicação
- Referências

Termodinâmica

- Ludwig Eduard Boltzmann (1844-1906) foi um físico austríaco que estabeleceu os principais conceitos da física clássica estatística.
- A Distribuição de Boltzmann descreve a probabilidade de se encontrar moléculas de um gás em um determinado estado energético. Essa distribuição a menos de constantes é dada por (1):

$$\frac{N_i}{N} = \frac{g_i e^{\frac{E_i}{KT}}}{Z(T)} \tag{1}$$

Termodinâmica

• A **Máquina de Boltzmann** leva esse nome, pois a distribuição de probabilidade utilizada é a **Distribuição de Boltzmann**.

- Motivação
- 2 Termodinâmica
- Máquina de Boltzmann
- 4 Estrutura
- 5 Formalização Matemática
- 6 Comparação com uma RNA
- Variantes da RBN
- 8 Aplicação
- Referências

Máquina de Boltzmann

 Máquinas de Boltzmann são modelos probabilísticos (ou geradores) não supervisionados, baseados em energia, representados por um sistema totalmente conectado.

- Para cada configuração do sistema, atribui-se um valor de energia e uma probabilidade associada a essa energia.
- Objetivo: ajustar o modelo para que pouca energia represente alta probabilidade e muita energia baixa probabilidade.

Máquina de Boltzmann Restrita

- Smolensky (1986) propôs alterações práticas na máquina de Boltzmann, a partir de restrições na sua topologia.
 - Inexistência de conexões intra-camadas.

• **Hinton (2002)** propôs um modelo de aprendizado eficiente e que vem sendo utilizado amplamente na academia e na indústria.

- Motivação
- 2 Termodinâmica
- Máquina de Boltzmann
- 4 Estrutura
- 5 Formalização Matemática
- 6 Comparação com uma RNA
- Variantes da RBN
- 8 Aplicação
- Referências

Estrutura

Representação da estrutura de uma RBM.

Exemplo Numérico

A figura abaixo apresenta o resultado de uma aplicação em um Sistema de Recomendação de Filmes.

- Motivação
- 2 Termodinâmica
- Máquina de Boltzmann
- 4 Estrutura
- 5 Formalização Matemática
- 6 Comparação com uma RNA
- Variantes da RBN
- Aplicação
- Referências

Energia Global

Definição

De acordo com Borin (2016), as RBM fazem parte de uma classe de modelos probabilísticos que são baseados em energia.

• Energia Total

$$E(v,h) = -\sum_{j=1}^{n_h} b_j h_j - \sum_{i=1}^{n_v} c_i v_i - \sum_{i=1}^{n_v} \sum_{j=1}^{n_h} h_j w_{ji} v_i$$
 (2)

Distribuição de Probabilidade

$$P(v,h) = \frac{e^{-E(v,h)}}{Z} \tag{3}$$

 Ou seja, uma RBM fica totalmente especificada pelos seus vieses e pesos de conexão, pelo conjunto de parâmetros W, b, c

Aprendizado

 Por meio de uma abordagem n\u00e3o supervisionada, o modelo \u00e9 treinado com o M\u00e9todo do Gradiente Descendente Estoc\u00e1stico - SGD, aplicado na seguinte Fun\u00e7\u00e3o Perda.

$$\mathcal{L}\left(\boldsymbol{\theta}; \mathbf{v}^{(t)}\right) = -\ln P\left(\mathbf{v}^{(t)}\right) \tag{4}$$

Gradiente

$$\frac{\partial \mathcal{L}\left(\theta; \mathbf{v}^{(t)}\right)}{\partial \theta} = \mathbb{E}_{P(\mathbf{h}|\mathbf{v})} \left[\frac{\partial E\left(\mathbf{v}^{(t)}, \mathbf{H}\right)}{\partial \theta} | \mathbf{v}^{(t)} \right] - \mathbb{E}_{\rho(\mathbf{v}, \mathbf{h})} \left[\frac{\partial E(\mathbf{V}, \mathbf{H})}{\partial \theta} \right]$$
(5)

• Algoritmo CD (Constrative Divergence)

$$\frac{\partial \mathcal{L}\left(\theta; \mathbf{v}^{(t)}\right)}{\partial \theta} \approx \frac{\partial \mathcal{F}\left(\mathbf{v}^{(t)}\right)}{\partial \theta} - \frac{\partial \mathcal{F}(\tilde{\mathbf{v}})}{\partial \theta} \tag{6}$$

Aprendizado

 A partir do gradiente calculado, os parâmetros são atualizados a cada rodada de treinos, respeitando a seguinte regra:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \lambda \left(\frac{\partial \mathcal{F} \left(\mathbf{v}^{(t)} \right)}{\partial \boldsymbol{\theta}} - \frac{\partial \mathcal{F} (\tilde{\mathbf{v}})}{\partial \boldsymbol{\theta}} \right) \tag{7}$$

 Ao desenvolver a equação acima para cada um dos parâmetros, temos que:

$$b_{j} \leftarrow b_{j} + \lambda \left[P\left(h_{j} = 1 | \mathbf{v}^{(t)}\right) - P\left(h_{j} = 1 | \tilde{\mathbf{v}}\right) \right]$$

$$c_{i} \leftarrow c_{i} + \lambda \left[v_{i}^{(t)} - \tilde{v}_{i} \right]$$

$$w_{ji} \leftarrow w_{ji} + \lambda \left[P\left(h_{j} = 1 | \mathbf{v}^{(t)}\right) v_{i}^{(t)} - P\left(h_{j} = 1 | \tilde{\mathbf{v}}\right) \tilde{v}_{i} \right]$$
(8)

 Para acompanhar a evolução do treinamento, geralmente se utiliza uma medida de erro de reconstrução:

$$\varepsilon_r = \left\| \tilde{\mathbf{v}} - \mathbf{v}^{(t)} \right\|^2 \tag{9}$$

Exemplo Numérico

Novamente o Sistema de Recomendação de Filmes.

- Motivação
- 2 Termodinâmica
- Máquina de Boltzmann
- 4 Estrutura
- 5 Formalização Matemática
- 6 Comparação com uma RNA
- Variantes da RBN
- 8 Aplicação
- Referências

RBM vs. RNA

No **neurônio clássico**, y_i representa efetivamente a saída do neurônio, um valor real.

RBM vs. RNA

RBM é formada por **neurônios estocásticos**, pois expressa a probabilidade de que o neurônio assuma valor igual a 1.

- Motivação
- 2 Termodinâmica
- Máquina de Boltzmann
- 4 Estrutura
- 5 Formalização Matemática
- 6 Comparação com uma RNA
- Variantes da RBM
- 8 Aplicação
- Referências

Variantes da Estrutura

- Motivação
- 2 Termodinâmica
- Máquina de Boltzmann
- 4 Estrutura
- 5 Formalização Matemática
- 6 Comparação com uma RNA
- Variantes da RBN
- 8 Aplicação
- Referências

Exemplo

- Base de Dados do site movielens.org.
- Ratings que 6000 usuários atribuíram a 3883 filmes.
- Dados do Modelo:
 - 20 Camadas Ocultas e 3883 Camadas Visíveis
 - Epochs = 15
 - batchsize = 100

- Motivação
- 2 Termodinâmica
- Máquina de Boltzmann
- 4 Estrutura
- 5 Formalização Matemática
- 6 Comparação com uma RNA
- Variantes da RBN
- 8 Aplicação
- 9 Referências

Referências

Referência da Apresentação

 Borin, R. G. (2016). Detecção de atividade vocal empregando máquinas de Boltzmann restritas (Doctoral dissertation, Universidade de São Paulo).

Referência RBM Bernoulli-Bernoulli

- Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. Colorado Univ at Boulder Dept of Computer Science.
- Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural computation, 14(8), 1771-1800.