

An Autonomic Knowledge Monitoring Scheme for Trust Management on Mobile Ad Hoc Networks

Zeinab Movahedi Laboratoire d'Informatique de Paris 6 (LIP6) Zeinab.movahedi@lip6.fr

Outline

- Introduction
- Problematic
- Existing trust management frameworks
- Autonomic trust knowledge monitoring scheme (ATMS)
- Evaluation and results
- Conclusion and perspectives

Introduction

- Mobile Ad hoc Networks (MANETs)
 - Lack of central administration
 - Mobility
 - Dynamic context
 - Wireless medium
 - Resource constrained

Introduction

- Lack of any established infrastructure >> collaboration
- Self-organized nature & insufficient resources >> selfish or malicious behavior (untrustworthiness)

CAS

Components

• Objective: proposing a trust management framework which ensures a uniform distribution of trust values among nodes while maintaining a minimum generated overhead trying to minimize the vulnerability to double-face attacks

Trust management frameworks

	Watchdog	OMTF	НТР	Bella
Monitored information	Local	Local & remote	Local & remote	Local & remote
Trust Monitoring	Promiscuous mode	Flooding	Recommendation Exchang Protocol	Situated view
Overhead	+ +		+	-
Real-timeness	+	+	+	×
Knowledge uniformity		++	-	X
Optimal ressource use	-		-	-

Autonomic communication

- Autonomic communication
 - MAPE-K reference model

- Complementary of autonomic computing and trust management
- Optimizing the use of resources according to the dynamic network context

ATMS: Autonomic Trust Monitoring Scheme

ATMS: evaluation

- Ns-2 version 2.32
- ATMS instantiated on Bella
- ATMS compared to Bella

Parameter	V alue	
Transmission rate	11 Mbps	
Propagation model	TwoRayGround	
Transmission range	100m	
Queue length	64 packets	
Mobility model	RWP model	
Network area	500m x 500m	
Node number	20, 30, 50	
Attacker number	10%	
Application type	CBR	
Packet size	512 bytes	
Application rate	4 packets/s	
Number of connections	5, 10	
Maximum speed	2,10,20 m/s	
Pause time	5s	
Simulation time	1000s	
Simulation runs	30	
Confidence interval	95%	

AMTS: evaluation metrics

- Network performance
 - Packet Delivery Ratio (PDR)
 - Average End-To-End Delay (AE2ED)
- Knowledge quality
 - Average trust
 - Trustworthiness standard deviation
 - Correctness

ATMS: knowledge quality results

ATMS: performance results

10 connections

Conclusion

- ATMS is an autonomic knowledge monitoring scheme for trust management in mobile ad hoc networks
- Characteristics
 - Real-time monitoring
 - Excellent knowledge quality
 - Knowledge Uniformity across nodes
 - Reduce the impact of double-face attacks
 - Optimal use of resources
 - Minimum extra overhead
 - With neutral impact of monitoring overhead on Quality of service
 - The excellent knowledge quality implies that a relevant enhancement of QoS is expected when the knowledge is used to establish or not the trustworthiness relationship with other nodes
 - Self-adaptation
 - Protocol and trust framework independence
 - Low computational intensiveness

Perspectives

- Enhancing the network performance, using the monitored knowledge as input of a routing decision process.
- Investigate the use of more elaborated policies and their impact on our scheme

