Practical ML for Engineers

Model Evaluation

Rappel

ML = Model space + Loss function (+ regularization) + optimization

Rappel: Model Space

- The model space defines the set in which we look for the best model for the data we have.
- Small model space => less complex models (=> underfitting)
- Large model space => more complex models (=> overfitting)
- In general, work with **parametrized family** of models:

$$\mathcal{M} = \{ f_{\theta}(\mathbf{x}) \mid \theta \in \mathbf{\Theta} \}$$

Example: m-dimensional Linear Regression Model

- Input is an *m*-dimensional feature vector: $\mathbf{x} = (x_1, \dots, x_m)$.
- Model space is the set of all linear functions of the variables x_1, \ldots, x_m :

$$\mathcal{M} = \{ f(x) = a_1 \cdot \mathbf{x}_1 + a_2 \cdot \mathbf{x}_2 + \ldots + a_m \cdot \mathbf{x}_m + b \mid a_1, \ldots, a_m, b \in \mathbb{R}^{m+1} \}.$$

• Model is fully parametrized by the (m + 1)-dimensional vector:

$$(b, a_1, \ldots, a_m) =: \theta \in \Theta := \mathbb{R}^{m+1}.$$

3

Rappel: Loss Function

L2 Loss

$$L(y, \hat{y}) = (y - \hat{y})^2$$

- Penalizes large errors more than small ones
- Influenced by outliers

L1 Loss

$$L(y, \hat{y}) = |y - \hat{y}|$$

- More robust to outliers
- Less statistically well-behaved

Empirical Risk Minimization

Sum of the losses over the training dataset quantifies quality of each model, as a function of the model parameters θ :

$$\mathcal{J}(\boldsymbol{\theta}) = \sum_{i=1}^{n} L(y^{(i)}, f_{\boldsymbol{\theta}}(\boldsymbol{x})^{(i)})$$

Best model is the one that minimizes the loss:

$$\theta^* = \arg\min_{\theta \in \Theta} J(\theta)$$

Rappel: Optimization

- Best parameter $heta^*$ found by minimizing the empirical risk $\mathcal{J}(heta)$
- In general, empirical risk minimized via iterative methods (gradient descent, ...)
- For some class of problems with well-behaved loss functions and tractable model spaces, analytical solution exist for the optimal θ^* (linear models, ...).

So this is it?

How can we get better?

Evaluate -> Understand -> Improve

In ML, development is iterative and experiment-driven.

- => we have to try again
- => what we try has to be **guided by experiments**
- => a lot of ML is about carefuly designing experiments so that they provide us new knowledge

Part 1: Evaluation

Bias-Variance Tradeoff and the problem with Generalization

Fundamental Challenge: Limited Training Data

The Generalization Problem: What Happens Beyond Training Data?

- avoid extrapolation!!!
- do not train on all data

Train-Test (-Val) Split

Idea: keep some data on the side (holdout) and do not train on it.

- Usual practice is to split the data in:
 - Training data (60%): used for model training
 - Validation data (20%): used for model selection
 - **Test** data (20%): used for final, honest performance evaluation.
- Test data is never touched during model training and selection!

Performance metrics (RMSE, MAE, R2, ...) on test set used to estimate model performance on unseen data.

Model Selection

Why do we need a validation set?

Because the training process can be "too efficient"

- Model training is tailored to fit the data as closely as possible
- Can lead models to rely too much on details of the training data (noise) and not enough on the big picture

Overfitting

Overfitting and Underfitting

Overfitting

- Model too complex
- Low training error
- High validation error
- Solution: Regularization, more data, simpler model

Underfitting

- Model too simple
- High training error
- High test error
- **Solution**: More complex model, more features

Preventing Overfitting: Model Selection

Model Selection

- 1. Design different models
- 2. Train all models on the train set
- 3. Select best model by comparing performances on validation set

Train-Test Split: Takeaways

Train-val-test procedure

- 1. Training set: Learn patterns (60%)
- 2. Validation set: Select best model (20%)
- 3. **Test set**: Final reality check (20%)

Train → Validate (for model selection) → Test (final evaluation only)

- Random splitting Ensures representative samples
- Chase **leakage** -> split **before** fiting anything on the data
- After model selection is done, final model can be trained on the combined train-val dataset
- Test data is sacred, never touch it until the end

Interlude: Bias-Variance Tradeoff

Bias

- unability of the model to fit the data
- due to lack of flexibility of the model
- linked to a too small model space (too low model complexity)

Variance

- high sensitivity of the model to (details of) the data
- due to an excess of flexibility of the model
- linked to a too large model space (too high model complexity)

The Bias-Variance Tradeoff

- Bias: Error from wrong assumptions (underfitting)
- Variance: Error from sensitivity to training data (overfitting)
- Sweet spot: Minimize total error

The No Free Lunch Theorem

"There is no such thing as a free lunch." (D. Wolpert and W. MacReady)

All models are wrong but some are useful. (G. Box)

Part 2: Understanding

Once models have been trained and evaluated, it is time to try to understand how they fail

- residuals analysis
- detailed analysis of worst predictions

Residuals

Residuals are the part do the data that is not captured by the model (= error):

$$r_i := y_i - \hat{y}_i$$

In an indeal world, residuals should be i.i.d Gaussian distributed.

Residuals: What to check

- Plot residuals vs target variable -> is there structure
- Is the variance of the residuals constant (homoscedasticity)
- Are the residuals normally distributed (qq-plot)

(Pro tip) Worst Predictions Analysis

Part 3: Improving

- feature engineering (not covered here)
- regularizazion

Regularization

Regularization

Idea: add a penalty term to the loss function to constrain model complexity:

$$J_{regularized}(\theta) = J_{original}(\theta) + \lambda \cdot R(\theta)$$

- $J_{original}(\theta)$: Original loss (e.g., MSE)
- λ : Regularization strength (hyperparameter)
- $R(\theta)$: Penalty term on parameters

Key Insights

- Simpler models generalize better
- Can force model to be simple by making it pay for complexity during training

L2 Regularization (Ridge Regression)

$$J_{Ridge}(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} \theta_j^2$$

- Penalizes **squared** magnitude of coefficients
- Shrinks coefficients toward zero (but not exactly zero)

L1 Regularization (Lasso)

$$J_{Lasso}(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} |\theta_j|$$

- Penalizes **absolute** magnitude of coefficients
- Can shrink coefficients to exactly zero
- Performs a kind of automatic **feature selection**

Regularization: Procedure

Regularization procedure

- ullet Validation set is used to choose regularization strength parameter λ
- In practice, **cross-validation** is generally used (next lecture)

! Important

When using regularization, all features should be **standardized** / **normalized** (next lecture).

Sources

• https://dhavalpatel2101992.wordpress.com/2021/05/21/kaggle-titanic-dataset-cleaning-split-data-into-train-validation-and-test-set/