Sistemas de ecuaciones lineales – Resolución por métodos iterativos

Sea el SEL: $\underline{\underline{A}} \cdot \underline{x} = \underline{b}$

Jacobi: de la ecuación i, despejo x_i

Gauss-Seidel: ídem Jacobi pero voy usando $x_i^{(k+1)}$ recién calculados

SOR: ídem Gauss-Seidel pero pesando el residuo

Ej 25: Resolver el siguiente sistema utilizando el método de Gauss-Seidel, iterando hasta que la máxima diferencia entre dos valores sucesivos de x, y ó z sea menor que 0.02. Indicar si esto último significa que la solución obtenida está en un intervalo de radio 0.02 alrededor de la solución exacta.

$$10 x + 2 y + 6 z = 28$$

 $x + 10 y + 4 z = 7$
 $2 x - 7 y - 10 z = -17$

Jacobi:

$$x^{(k+1)} = \frac{28 - 2y^{(k)} - 6z^{(k)}}{10}$$
$$y^{(k+1)} = \frac{7 - x^{(k)} - 4z^{(k)}}{10}$$
$$z^{(k+1)} = \frac{17 + 2x^{(k)} - 7y^{(k)}}{10}$$

Semilla arbitraria: $(x^{(0)}, y^{(0)}, z^{(0)}) = (1,2,3)$

Primera iteración (k = 0):

$$x^{(1)} = \frac{28 - 2 \cdot 2 - 6 \cdot 3}{10} = 0.6$$
$$y^{(1)} = \frac{7 - 1 - 4 \cdot 3}{10} = -0.6$$
$$z^{(1)} = \frac{17 + 2 \cdot 1 - 7 \cdot 2}{10} = 0.5$$

Tabla de valores:

k	X	У	Z
0	1.000	2.000	3.000
1	0.600	-0.600	0.500
2	2.620	0.440	2.240
3	1.368	-0.458	1.916
4	1.742	-0.203	2.294
5	1.464	-0.392	2.191
6	1.564	-0.323	2.267
7	1.504	-0.363	2.239
8	1.529	-0.346	2.255

Gauss – Seidel:

$$x^{(k+1)} = \frac{28 - 2y^{(k)} - 6z^{(k)}}{10}$$
$$y^{(k+1)} = \frac{7 - x^{(k+1)} - 4z^{(k)}}{10}$$
$$z^{(k+1)} = \frac{17 + 2x^{(k+1)} - 7y^{(k+1)}}{10}$$

Semilla arbitraria: $(x^{(0)}, y^{(0)}, z^{(0)}) = (1,2,3)$

Primera iteración (k = 0):

$$x^{(1)} = \frac{28 - 2 \cdot 2 - 6 \cdot 3}{10} = 0.6$$

$$y^{(1)} = \frac{7 - 0.6 - 4 \cdot 3}{10} = -0.56 \text{ (está más cerca de la solución que Jacobi)}$$

$$z^{(1)} = \frac{17 + 2 \cdot 0.6 - 7 \cdot (-0.56)}{10} = 2.212 \text{ (está más cerca de la solución que Jacobi)}$$

Tabla de valores:

k	X	У	Z
0	1.000	2.000	3.000
1	0.600	-0.560	2.212
2	1.585	-0.343	2.257
3	1.514	-0.354	2.251

SOR:

$$x^{(k+1)} = \left(\frac{28 - 2y^{(k)} - 6z^{(k)}}{10} - x^{(k)}\right)w + x^{(k)}$$

$$y^{(k+1)} = \left(\frac{7 - x^{(k+1)} - 4z^{(k)}}{10} - y^{(k)}\right)w + y^{(k)}$$

$$z^{(k+1)} = \left(\frac{17 + 2x^{(k+1)} - 7y^{(k+1)}}{10} - z^{(k)}\right)w + z^{(k)}$$

Semilla arbitraria: $(x^{(0)}, y^{(0)}, z^{(0)}) = (1,2,3)$ Factor de peso: w = 1.033 (metodologías para hallar w óptimo en el apéndice)

Primera iteración (k = 0):

$$x^{(1)} = \left(\frac{28 - 2 \cdot 2 - 6 \cdot 3}{10} - 1\right) \cdot 1.033 + 1 = 0.587$$

$$y^{(1)} = \left(\frac{7 - 0.587 - 4 \cdot 3}{10} - 2\right) \cdot 1.033 + 2 = -0.644$$

$$z^{(1)} = \left(\frac{17 + 2 \cdot 0.587 - 7 \cdot (-0.644)}{10} - 3\right) \cdot 1.033 + 3 = 2.244$$

Tabla de valores:

k	Х	У	Z
0	1.000	2.000	3.000
1	0.587	-0.644	2.244
2	1.616	-0.350	2.269
3	1.505	-0.358	2.251

Forma matricial: $\underline{x}^{(k+1)} = \underline{T} \cdot \underline{x}^{(k)} + \underline{c}$

Para Jacobi:

$$x^{(k+1)} = \frac{28 - 2y^{(k)} - 6z^{(k)}}{10}$$
$$y^{(k+1)} = \frac{7 - x^{(k)} - 4z^{(k)}}{10}$$
$$z^{(k+1)} = \frac{17 + 2x^{(k)} - 7y^{(k)}}{10}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}^{(k+1)} = \begin{bmatrix} 0 & -2/10 & -6/10 \\ -1/10 & 0 & -4/10 \\ 2/10 & -7/10 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}^{(k)} + \begin{bmatrix} 28/10 \\ 7/10 \\ 17/10 \end{bmatrix}$$

En general: $\underline{\underline{T}}_J = \underline{\underline{D}}^{-1} \cdot (\underline{\underline{L}} + \underline{\underline{U}})$ $\underline{\underline{C}}_J = \underline{\underline{D}}^{-1} \cdot \underline{\underline{b}}$

Para Gauss – Seidel:

$$\underline{\underline{T}}_{GS} = (\underline{\underline{D}} - \underline{\underline{L}})^{-1} \cdot \underline{\underline{U}}$$

$$\underline{\underline{C}}_{GS} = (\underline{\underline{D}} - \underline{\underline{L}})^{-1} \cdot \underline{\underline{b}}$$

Para SOR:

$$\underline{\underline{T}}_{SOR} = (\underline{\underline{D}} - w\underline{\underline{L}})^{-1} \cdot [(1 - w)\underline{\underline{D}} + w\underline{\underline{U}}]$$

$$\underline{\underline{c}}_{SOR} = w(\underline{\underline{D}} - w\underline{\underline{L}})^{-1} \cdot \underline{\underline{b}}$$

Convergencia

Teo 1) Si $\underline{\underline{A}}$ es estrictamente diagonal domin ($|a_{ii}| > \sum_{j=1}^{n} |a_{ij}|$) => Jacobi y Gauss-Seidel convergen $\underset{i \neq j}{\underline{A}}$

Teo 2) Si además $\underline{\underline{A}}$ es definida positiva (subdet>0) y 0 < w < 2 => SOR converge

Teo 3) Si $\exists |T| < 1 \Rightarrow$ el método converge

Teo 4) Si $\rho(\underline{T}) = \max |\lambda_i| < 1 <=>$ el método converge

Teo 5) Si $\underline{\underline{A}}$ es simétrica, def posit, tridiag en bloques => $w_{\delta ptimo} = \frac{2}{1 + \sqrt{1 - \rho(\underline{T}_{GS})}}$

Teo 6) $\left| \underline{x}^{(k+1)} - \underline{x} \right| \le factor * \left| \underline{x}^{(k+1)} - \underline{x}^{(k)} \right|$ cota del error de truncamiento

Volviendo al problema:

$$\underline{\underline{A}} = \begin{bmatrix} 10 & 2 & 6 \\ 1 & 10 & 4 \\ 2 & -7 & -10 \end{bmatrix}$$
 es diag domin

Normas:

$$\begin{aligned} \left\| \underline{T}_{=J} \right\|_{1} &= 1 & \left\| \underline{T}_{=GS} \right\|_{1} &= 1.058 & \left\| \underline{T}_{=SOR} \right\|_{1} &= 1.06 \\ \left\| \underline{T}_{=J} \right\|_{\infty} &= 0.9 & \left\| \underline{T}_{=SOR} \right\|_{\infty} &= 0.86 & \left\| \underline{T}_{=SOR} \right\|_{\infty} &= 0.86 \end{aligned}$$

Rango espectral (mide la velocidad de convergencia):

$$\rho(\underline{T}_{J}) = 0.48$$
 $\rho(\underline{T}_{GS}) = 0.21$ $\rho(\underline{T}_{SOR}) = 0.17$

Discusión: dos valores de x, y ó z < 0.02 => solución en un radio 0.02 del valor exacto?

Orden de convergencia

Def) si
$$\lim_{k \to \infty} \frac{\varepsilon^{(k+1)}}{\varepsilon^{(k)^p}} = \lim_{k \to \infty} \frac{\left|\underline{x}^{(k+1)} - \underline{x}\right|}{\left|\underline{x}^{(k)} - \underline{x}\right|^p} = \lambda$$
, entonces llamamos λ : constante asintótica del error p : orden de convergenc ia

Interpretación: si p = 1 y $\lambda = 0.1$, el error se reduce un 90% entre cada iteración

Cómo calcular p y λ :

Como no conocemos \underline{x} , en lugar del error $\varepsilon^{(k+1)} = \left|\underline{x}^{(k+1)} - \underline{x}\right|$ usamos la diferencia entre las dos últimas iteraciones $\Delta x^{(k+1)} = \left|\underline{x}^{(k+1)} - \underline{x}^{(k)}\right|$, y decimos lo mismo:

$$\frac{\Delta x^{(k+1)}}{\Delta x^{(k)}} = \frac{\left|\underline{x}^{(k+1)} - \underline{x}^{(k)}\right|}{\left|\underline{x}^{(k)} - \underline{x}^{(k-1)}\right|^p} = \lambda \text{ (en escala log es una recta)}$$

Tenemos 1 ec. con 2 inc, pero como p y λ no cambian durante todo el cálculo, planteamos la misma ecuación para 2 iteraciones sucesivas. Así:

$$\frac{\Delta x^{(k+1)}}{\Delta x^{(k)}} = \lambda \ , \ \frac{\Delta x^{(k)}}{\Delta x^{(k-1)}} = \lambda \ , \text{ entonces: } \Delta x^{(k+1)} \Delta x^{(k-1)} = \Delta x^{(k)} \Delta x^{(k)}$$

Despejando:
$$p = \frac{\ln(\Delta x^{(k+1)} / \Delta x^{(k)})}{\ln(\Delta x^{(k)} / \Delta x^{(k-1)})}$$
 (el método tiene que estar convirgiendo)

Volviendo al ejercicio:

$$p_J = 0.995$$

 $p_{GS} = 1.05$
 $p_{SOR} = 1.14$

Apéndice

Determinación del factor w óptimo

Opción 1: fijar tolerancia poco restrictiva, graficar N° ite = f(w)

Opción 2: fijar N° ite, graficar cota del error = f(w)

Paralelismo SEL directos vs SEL iterativos

SEL directos	SEL iterativos	
Desvent: mal condicionamiento de la matriz	Desvent: errores de truncam, criterio de corte	
Siempre tienen solución	Es necesario probar convergencia	
Los errores de redondeo se propagan	Sólo se propagan en la última iteración	
Una matriz rala puede convertirse en no rala luego de la factorización L-U (skyline)	Convienen para matrices ralas: pueden omitirse operaciones con comp nulas	
Se aprovecha en programación secuencial	Se aprovecha en multi-procesadores	

Ejercicios recomendados: 24, 25, 28