

PATENT

Docket No. 12219/45

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANTS: Takayoshi TOGINO

SERIAL NO. : (To be assigned)

FILED : (Herewith)

FOR : PROJECTION OPTICAL APPARATUS

COMMISSIONER FOR PATENTS

P. O. Box 1450

Alexandria, Virginia 22313

CLAIM TO CONVENTION PRIORITY UNDER 35 U.S.C. § 119

SIR:

The Convention Priority Date of Japanese Patent Application No. 2003-091340 filed in Japan on 28 March 2003, was claimed in the Declaration/Power of Attorney filed on even date hereof. To complete the claim to the Convention Priority Date of said Japanese Patent Application, a certified copy thereof is submitted herewith.

Respectfully submitted,

John C. Altmiller
(Reg. No. 25,951)

Dated: 26 March 2004

KENYON & KENYON
1500 K Street, N.W., Suite 700
Washington, DC 20005-1257

Tel: (202) 220-4200
Fax: (202) 220-4201

04/18/2024

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2003年 3月28日
Date of Application:

出願番号 特願2003-091340
Application Number:

[ST. 10/C] : [JP2003-091340]

出願人 オリンパス株式会社
Applicant(s):

2004年 2月18日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願

【整理番号】 03P00223

【提出日】 平成15年 3月28日

【あて先】 特許庁長官殿

【国際特許分類】 G02B 27/02

【発明者】

【住所又は居所】 東京都渋谷区幡ヶ谷2丁目43番2号

オリンパス光学工業株式会社内

【氏名】 研野 孝吉

【特許出願人】

【識別番号】 000000376

【氏名又は名称】 オリンパス光学工業株式会社

【代理人】

【識別番号】 100097777

【弁理士】

【氏名又は名称】 菅澤 弘

【選任した代理人】

【識別番号】 100088041

【弁理士】

【氏名又は名称】 阿部龍吉

【選任した代理人】

【識別番号】 100092495

【弁理士】

【氏名又は名称】 蛭川昌信

【選任した代理人】

【識別番号】 100092509

【弁理士】

【氏名又は名称】 白井博樹

【選任した代理人】**【識別番号】** 100095120**【弁理士】****【氏名又は名称】** 内田亘彦**【選任した代理人】****【識別番号】** 100095980**【弁理士】****【氏名又は名称】** 菅井英雄**【選任した代理人】****【識別番号】** 100094787**【弁理士】****【氏名又は名称】** 青木健二**【選任した代理人】****【識別番号】** 100091971**【弁理士】****【氏名又は名称】** 米澤 明**【手数料の表示】****【予納台帳番号】** 014960**【納付金額】** 21,000円**【提出物件の目録】****【物件名】** 明細書 1**【物件名】** 図面 1**【物件名】** 要約書 1**【包括委任状番号】** 9102411**【プルーフの要否】** 要

【書類名】 明細書

【発明の名称】 投影光学装置

【特許請求の範囲】

【請求項 1】 各々表示素子を含みその表示素子に表示された映像を拡大投影する投影光学系を少なくとも 3つ備え、前記少なくとも 3つの投影光学系の射出瞳を観察者側に投影する凹面鏡と、前記少なくとも 3つの投影光学系で投影された像近傍に配置され、前記凹面鏡で投影される前記少なくとも 3つの投影光学系の射出瞳の像を拡大する透過型ホログラムからなる拡散板とを備えており、前記凹面鏡で投影され、前記透過型ホログラムからなる拡散板で拡大された各投影光学系の射出瞳の像が相互に少なくとも一部重なって投影されることを特徴とする投影光学装置。

【請求項 2】 前記少なくとも 3つの投影光学系から前記拡大された各投影光学系の射出瞳の像に至る光線が前記透過型ホログラムからなる拡散板を 2 回透過する配置において、1回目に前記透過型ホログラムからなる拡散板を透過する角度と、2回目に前記透過型ホログラムからなる拡散板を透過する角度とが異なるように配置されていることを特徴とする請求項 1 記載の投影光学装置。

【請求項 3】 前記凹面鏡がフレネル凹面反射鏡からなることを特徴とする請求項 1 又は 2 記載の投影光学装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、投影光学装置に関し、特に、ホログラムからなる拡散板を用いた投影光学装置に関するものである。

【0002】

【従来の技術】

従来から拡散ホログラムをスクリーンとして用いた投影光学装置が種々提案されている。しかしながら、従来の拡散ホログラムを用いたスクリーンは、スクリーン面に投影された映像からの光をある程度広げるように拡散するために用いられる。これは、通常の白色顔料あるいは透明粒子を混入してなる拡散スクリーン

と同様である。ただし、拡散ホログラムはそれから出る拡散光の拡散角を制限可能なので、比較的明るい映像を投影することができる。

【0003】

【発明が解決しようとする課題】

しかしながら、従来の投影光学装置においては、観察位置を制限するという考え方とはとられていないので、拡散ホログラムを用いても十分に明るい映像を投影することができなかつた。そのため、照明光学系を小型で低出力のものを用いて明るい映像を投影できる投影光学装置を構成することはできなかつた。

【0004】

本発明は、従来技術のこのような問題点に鑑みてなされたものであり、その目的は、投影光学系の射出瞳を観察位置に投影し、かつ、その投影された射出瞳の像を制限された領域まで拡大する拡散ホログラムを用いて、簡単な構成で小型でありながら、照明効率が良く明るい投影光学装置を提供することである。

【0005】

【課題を解決するための手段】

上記目的を達成する本発明の投影光学装置は、各々表示素子を含みその表示素子に表示された映像を拡大投影する投影光学系を少なくとも3つ備え、前記少なくとも3つの投影光学系の射出瞳を観察者側に投影する凹面鏡と、前記少なくとも3つの投影光学系で投影された像近傍に配置され、前記凹面鏡で投影される前記少なくとも3つの投影光学系の射出瞳の像を拡大する透過型ホログラムからなる拡散板とを備えており、前記凹面鏡で投影され、前記透過型ホログラムからなる拡散板で拡大された各投影光学系の射出瞳の像が相互に少なくとも一部重なつて投影されることを特徴とするものである。

【0006】

この場合に、前記少なくとも3つの投影光学系から前記拡大された各投影光学系の射出瞳の像に至る光線が前記透過型ホログラムからなる拡散板を2回透過する配置において、1回目に前記透過型ホログラムからなる拡散板を透過する角度と、2回目に前記透過型ホログラムからなる拡散板を透過する角度とが異なるように配置されていることが望ましい。

【0007】

また、前記凹面鏡はフレネル凹面反射鏡からなることが望ましい。

【0008】

【発明の実施の形態】

以下に、本発明において上記構成をとる理由とその作用について説明する。

【0009】

図1（a）に、本発明に基づき構成される投影光学装置の1つの投影光学系1による模式的光路図を、また、図1（b）に、本発明に基づき構成される投影光学装置の配置例を示す。なお、図1（b）において、凹面鏡2はフレネル凹面反射鏡2'で構成されている。なお、投影光学系1、1R、1G、1Bについては、表示素子、照明光源の図示は省かれている。図1（a）に示すように、表示素子に表示された映像（光源からの光束が走査手段で偏向走査されて形成された映像を含む）は、投影光学系1で拡大投影される。そして、その投影像近傍には拡散板3と、接眼光学系の凹面鏡2とが配置されている。ここで、拡散板3は透過型ホログラムからなる。凹面鏡2は投影光学系1の射出瞳を所定の位置に射出瞳像4として投影する。この所定の位置は、図1（b）に示すように、観察者Mの眼Eと略一致している。投影光学系1の接眼光学系2により形成された射出瞳像4は、拡散板3によって観察しやすい大きさの射出瞳像4'に拡大される。これにより、観察者Mの眼Eの位置が射出瞳像4の位置から多少ずれても、投影像を観察像として観察することが可能になる。この結果、明るくて観察しやすい投影光学装置が得られる。

【0010】

ただし、拡散板3はホログラムで構成されているので波長分散がある。よって、波長が異なると、拡散角（回折角）が変化する。そのため、拡大された射出瞳像4'の位置は、波長に応じて図1（a）の場合は上下方向にずれる。したがつて、カラー映像を表示する場合には、投影光学系としては、例えば図1（b）に示すような構成になる。図1（b）では、R（赤色）、G（緑色）、B（青色）の各色に分解された像を表示する3つの投影光学系1R、1G、1Bを用いている。ここで、投影光学系1R、1G、1Bは、凹面鏡2への投影光の入射角が異

なり、かつ、拡散板3上での各投影像が重なるように、図1（b）の上下方向の位置に並べて配置されている。このような構成により、拡散板3による波長分散を補償すると共に、各投影光学系1R、1G、1Bにより拡大された射出瞳像4'の位置が相互に重なるようにしている（この点は、後記の説明でより具体的に説明する。）。

【0011】

ここで、本発明における特徴は、図1（a）に示すように、拡散板3を接眼光学系の凹面鏡2の入射側に配置している点である。このような構成に加えて拡散板3が透過型ホログラムであるので、投影光学系1から装置の射出瞳4'の位置に至る光線は、拡散板3を往復で計2回透過する。このような特徴を有するため、光は拡散板3で2度回折されることになる。このことを踏まえて、本発明では1回目（凹面鏡2に入射する前）の拡散板3を透過する角度と、2回目（凹面鏡2に入射した後）の拡散板3を透過する角度とを積極的に異ならせて、拡散板3（ここではホログラム）の角度選択性により何れか一方での回折を避けるようにしている。そのための配置については、後記する。

【0012】

そして、拡散板3は、その拡散角が半值全幅で 20° 以下であることが好ましい。拡散板3の拡散角が半値全幅で 20° を越えると、拡散角が大きくなりすぎる。この場合、観察視域は広がるが、観察像の明るさが暗くなり、観察物体を照明する照明装置が大掛かりになってしまふ。さらに好ましくは、拡散板3の拡散角は、半値全幅で 10° 以上あるのが好ましい。このようにすると、より見やすい投影光学装置になる。

【0013】

また、その拡散板3は、10分の1全幅の拡散角が 40° 以下となる拡散特性を有することが好ましい。さらに、10分の1全幅で拡散角が 30° 以下となる拡散特性を有することが好ましい。

【0014】

また、立体像を観察する構成の場合は、拡散板3の拡散角は半値全幅で 8° 以下であることが好ましい。また、10分の1全幅の拡散角が 12° 以下であるこ

とが好ましい。

【0015】

次に、拡散板3の屈曲作用と波長分散の関係、及び接眼光学系の凹面鏡2と拡散板3の配置関係について説明する。拡散板3はホログラムであるので、参照光と拡散光源（2次光源）からの物体光との干渉記録によって作製される。このとき、参照光と物体光が同軸（インライン）配置での記録であると、図2（a）に示したように、投影光学系1からの軸上主光線6は、拡散板3に1回目の入射をして拡散板3で屈曲されずに直通する。そして、拡散板3を直通した主光線は、凹面鏡2で反射されて方向を変え、拡散板3を裏面側から入射して拡散板3を直通する。この際、1回目の入射の際に入射光の入射角度が、ホログラムの再生光入射角度（回折効率がピーク近傍になる角度）を満足していれば、1回目の透過の際に直通する主光線の周りに回折による拡散光が分布し、2回目の透過の際にその拡散光はほとんど直通する。一方、2回目の入射の際に入射光の入射角度が、再生光入射角度を満足していれば、1回目の透過の際に軸上主光線6は回折されずにほとんど直通し、2回目の透過の際に直通する主光線の周りに回折による拡散光が分布する。何れの場合も、0次光7₀と主光線7₁は同じ方向に進む。図2（a）はこの様子を示したものであり、拡散光は図示していない。この図では、拡散板3で回折されない0次光7₀と回折された拡散光中の主光線（中心光線）7₁のみを図示している。この図では、0次光7₀と主光線7₁は同じ方向に進み、装置の射出瞳4'の中心に達する。したがって、図2（a）に示すように、拡散板3が拡散作用のみで、光路の屈曲作用を持たない場合は、拡散光だけでなく回折により拡散されない0次光7₀までもが射出瞳4'に達する。その結果、観察される映像中に、0次光7₀のスポットが見えることになり望ましくない。

【0016】

そこで、拡散板3として、参照光と物体光が相互に同軸でないオフライン配置の関係で記録したホログラムを用いる。このようなオフライン配置で記録した拡散板3は、再生光入射角度を満足して回折する場合に光線の屈曲と共に波長分散が生じる。その屈曲方向によって図2（b）、（c）のような光路と、図3（a）

)、(b) のような光路とをとる。ここで、図2 (b)、(c) は、拡散板3の再生光入射角度条件を、1回目の入射の際に満足している場合である。また、図3 (a)、(b) は、2回目の入射の際に満足している場合である。図2 (b)、図3 (a) は、光線の屈曲方向が、拡散板3の法線に対する入射角に対して回折角が小さくなる方向の場合であり、図2 (c)、図3 (b) は、入射角に対して回折角が大きくなる方向の場合である。各図中、拡散光の図示は省き、拡散板3で回折して屈曲されたR、G、Bの波長の主光線（中心光線）をそれぞれ 7_R 、 7_G 、 7_B で示してある。各図から明らかのように、光線を屈曲させる作用を持つ透過型ホログラムを拡散板3として用いると、ホログラムで回折されない0次光 7_0 を回折光 7_R 、 7_G 、 7_B から分離できる。その結果、0次光が装置の射出瞳 $4'$ に入射しないように構成することが可能になる。具体的には、装置の射出瞳 $4'$ の位置において、射出瞳 $4'$ の中心からその瞳径の2分の1以上離れた位置に、0次光 7_0 が入射するように構成することが望ましい。

【0017】

なお、透過型ホログラムでの屈曲角（偏角）を上記入射角と回折角の差の絶対値 γ で定義し、かつ、その屈曲角をd線（波長587.6 nm）で測るとした場合、屈曲角 γ が小さすぎると、上記のように観察像中に0次光が入射してしまう。逆に、大きすぎると、波長分散を補償するために配置する投影光学系 1_R 、 1_G 、 1_B 間の間隔が大きくなりすぎる。その結果、拡散板3上のR、G、Bの投影像間の歪み（アオリ歪み）差が大きくなりすぎてしまい、正常なカラー像が観察し難くなる。

【0018】

したがって、拡散板3のd線での屈曲角（偏角） γ （d線）は、

$$\gamma > 1^\circ \quad \dots (1)$$

の関係を満たすのが良い。

【0019】

さらに好ましくは、

$$\gamma > 2^\circ \quad \dots (1-1)$$

なる条件を満足することが好ましい。

【0020】

さらに好ましくは、

$$\gamma > 10^\circ \quad \dots (1-2)$$

なる条件を満足することが望ましい。

【0021】

また、

$$\gamma < 45^\circ \quad \dots (2)$$

の関係を満たすのが良い。

【0022】

さらに好ましくは、

$$\gamma < 20^\circ \quad \dots (2-1)$$

なる条件を満足することが好ましい。

【0023】

上記の条件（1-2）と（2-1）を組み合わせると、次の条件（3）となる

。

【0024】

$$10^\circ < \gamma < 20^\circ \quad \dots (3)$$

この条件（3）についてさらに説明する。この条件の下限の 10° を下回ると、0次光と表示像を観察可能にする正規観察光との分離が少なくなる。そのため、観察者がちょっと頭を動かすと、0次光が眼に入ってまぶしくなることが多くなる。また、この条件の上限の 20° を越えると、拡散板3上のR、G、Bの投影像間の歪み差が大きくなりすぎてしまい、正常なカラー像が観察し難くなる

。

【0025】

ところで、図2、図3においては、投影光学系1からの軸上主光線6あるいは0次光7₀は、凹面鏡2に斜め（凹面鏡2の入射位置での法線に対して角度 β をなす。）に入射することを考えていた。ここで、軸上主光線6あるいは0次光7₀が凹面鏡2に略直角（ $\beta \approx 0^\circ$ ）に入射すると、拡散板3を2度通過した後にホログラムから射出する主光線7_R、7_G、7_Bは軸上主光線6と略反対方向に

向かう。そのため、装置の射出瞳 $4'$ の位置と投影光学系1が干渉することになる。そこで、凹面鏡2に入射する投影光学系1からの軸上主光線6、又はその0次光 7_0 の凹面鏡2への入射角 β （d線）は、

$$0^\circ < \beta < 45^\circ \quad \dots (4)$$

の関係を満たすことが望ましい。

【0026】

さらに好ましくは、

$$5^\circ < \beta < 20^\circ \quad \dots (4-1)$$

なる条件を満足することが好ましい。

【0027】

この条件（4-1）についてさらに説明する。この条件の下限の 5° を下回ると、凹面鏡2の偏心量が小さくなる。そのため、拡散板3で共役再生が起こり、表示像観察に利用可能な光量が低下する。また、この条件の上限の 20° を越えると、凹面鏡2の偏心量が大きくなりすぎる。そのため、投影される瞳収差が大きくなり、均一な明るさの像を観察することが困難になってしまう。

【0028】

また、図2、図3においては、投影光学系1からの軸上主光線6が拡散板3及びその裏面側の凹面鏡2に入射する位置は、それぞれの略中心で、また、拡散板3と凹面鏡2の間には偏心はないものとした。その場合、図2、図3から明らかのように、拡散板3を2度通過した投影光（回折光） 7_R 、 7_G 、 7_B は、拡散板3の面の法線に対して角度をなすことになる。よって、装置の射出瞳 $4'$ は、拡散板3の正面には位置しなくなる。この状態だと、観察者が射出瞳 $4'$ の位置に眼球位置を合わせると、観察者は斜め方向から投影された映像を見ることになり、観察される像はアオリ像となって像歪みが発生する。そこで、図4（a）～（c）に示すように、拡散板3に対して、凹面鏡2を偏心させている（何れの図も上方へ偏心させている。）。このようにして、拡散板3を2度目に通過した際に、凹面鏡2で反射された主光線 7_R 、 7_G 、 7_B が拡散板3に対して略直角をなすようにしている。なお、図4（a）～（c）は、それぞれ図2（a）～（c）に対応している。

【0029】

ところで、図2～図4から明らかなように、単一の投影光学系1を用いる場合は、拡散板3と凹面鏡2を経たR、G、Bの波長の主光線 7_R 、 7_G 、 7_B は、拡散板3の透過型ホログラムによる波長分散のため、異なる角度で拡散板3と凹面鏡2から射出する。そのため、それぞれの波長による拡大された射出瞳像 $4'$ の位置に、ずれが発生する。その結果、し正常の色再現性が得られないか、正常な色再現性でカラー像が観察できる射出瞳範囲が狭くなってしまう。そこで、前記したように、R、G、Bの各色ごとに分解された像を表示する、3つの投影光学系 1_R 、 1_G 、 1_B を用いる。そして、凹面鏡2への投影光の入射角が異なり、かつ、これら投影光学系 1_R 、 1_G 、 1_B を上下方向に並列に配置する。その際、拡散板3上での各投影像が、重なるように配置する。このような構成にすることで、拡散板3によるこのような波長分散を補償し、これら投影光学系 1_R 、 1_G 、 1_B により拡大された射出瞳像 $4'$ の位置が相互に重なるようにすることができる。

【0030】

具体的に、図2（b）、図3（a）、図4（b）の場合は、上から下へ順に、Rの色分解像を投影する投影光学系 1_R 、Gの色分解像を投影する投影光学系 1_G 、Bの色分解像を投影する投影光学系 1_B を、上下に並列して配置する。これにより、Gの波長の主光線 7_G の位置に、他のR、Bの波長の主光線 7_R 、 7_B を一致させることができる。その結果、全ての波長で一致した、広い拡大された射出瞳像 $4'$ を得ることができる。また、図2（c）、図3（b）、図4（c）の場合は、上記とは逆に、上から下へ順に、Bの色分解像を投影する投影光学系 1_B 、Gの色分解像を投影する投影光学系 1_G 、Rの色分解像を投影する投影光学系 1_R を上下に並列して配置する。これにより、Gの波長の主光線 7_G の位置に、他のR、Bの波長の主光線 7_R 、 7_B を一致させることができる。その結果、全ての波長で一致した、広い拡大された射出瞳像 $4'$ を得ることができる。

【0031】

なお、投影光学系1、 1_R 、 1_G 、 1_B から拡散板3上に斜め方向から投影像を入射させるので、拡散板3上での投影像もアオリ像となって像歪みが発生する

。そのため、投影光学系 1、1R、1G、1B はこのようなアオリ像の像歪みを補正する機能を持ったものを使用するのが望ましい。

【0032】

また、装置の射出瞳 4' を拡散板 3 の正面に位置するようにし、かつ、投影光学系 1、1R、1G、1B からの軸上主光線 6 あるいは 0 次光 7₀ は凹面鏡 2 に斜めに入射するようにしてもよい。これにより、表面正反射光を装置の射出瞳 4' に入射させないようにする効果も得られる。この正面正反射光は、投影光学系 1、1R、1G、1B から拡散板 3 に入射する投影光がその表面で反射した光であって、ノイズ光になる。

【0033】

なお、上記の屈曲角（偏角） γ と凹面鏡 2 への入射角 β の比 γ/β は、
 $0.5 < \gamma/\beta < 2$. . . (5)

の関係を満たすことが望ましい。

【0034】

この条件(5)について説明する。この条件の下限の 0.5 を下回ると、拡散板 3 の屈曲角が小さくなる。そのため、拡散板 3 で回折しない 0 次光が装置の射出瞳 4' に入射してしまい、観察像にスポットフレアーがのることになる。また、上限の 2 を越えると、凹面鏡 2 の偏心量が比較的小さくなる。この場合、拡散板 3 に入射した後、凹面鏡 2 で反射してから、拡散板 3 の裏面で極僅かではあるがフレネル反射により反射され、再度凹面鏡 2 で反射する光線が存在する。そして、その光線が射出瞳 4' に入射してしまう。この光線もスポットフレアーとして観察されてしまうので、好ましくない。

【0035】

さらに好ましくは、

$$1 < \gamma/\beta < 1.5 \quad . . . (5-1)$$

なる条件を満足することが、スポットフレアーの点でより好ましい。

【0036】

ところで、拡散板 3 を用いる場合は、表示素子を照明する光源、あるいは、走査手段に入射させる光束を発生する光源は、単色性の高い LED や LD を用いる

ことが望ましい。

【0037】

以下に、本発明の投影光学装置の実施例 1～4 について説明する。何れの実施例においても、凹面鏡 2 は投影光学系 1R、1G、1B の射出瞳を拡大投影する作用を生じ、拡散板 3 の組み合わせて光学系を構成する。また、凹面鏡 2 はフレネル凹面反射鏡 2' から構成されている。また、各実施例において、後記の構成パラメータにおける光線追跡は、中心に配置する投影光学系 1G の射出瞳 8G を物体面とし、装置の射出瞳（射出瞳 4 の拡大された射出瞳像）4' を像面とし、その投影光学系 1G の射出瞳 8G の中心から装置の射出瞳 4' までの順光線追跡（波長 587.6 nm）で行っている。

【0038】

実施例 1 の Y-Z 断面内の光路図を図 5、図 6 に示す。ここで、図 5 及び図 6 は、投影光学系 1R、1G、1B の各射出瞳 8R、8G、8B から像面に到るまで間の光線の様子であって、図 5 は各波長の 0 次光 11R、11G、11B の様子であり、図 6 は表面正反射光 12R、12G、12B の様子である。また、図 7 に、この実施例の拡散板 3 に用いる透過型ホログラムの撮影配置を示す。図 7 中の数字は mm 単位である。

【0039】

実施例 1 は、図 2 (c) に対応するもので、再生光入射角度条件が 1 回目の入射の際に満足し、2 回目には回折せず、かつ、光線の屈曲方向が拡散板 3 の面の法線に対する入射角に対して回折角が大きくなる方向の場合の例である。また、フレネル凹面反射鏡 2' はフレネル裏面鏡で構成されており、そのフレネル裏面鏡の偏心量を MY、軸上主光線 10G の拡散板 3 による偏角量を γ 、フレネル凹面反射鏡 2' への入射角を β とすると、

$$MY = 157.23 \text{ mm}$$

$$\gamma = 15.00^\circ \quad (\text{屈折率 } 1.4924 \text{ の硝材中})$$

$$\beta = 12.57^\circ \quad (\text{屈折率 } 1.4924 \text{ の硝材中})$$

$$\gamma / \beta = 1.19$$

である。また、各投影光学系 1R、1G、1B の射出瞳 8R、8G、8B から第

1面（拡散板3の入射側の平面）への軸上主光線10R、10G、10Bの入射角（偏心角）を θ とし、投影光学系1R、1G、1Bからの波長をそれぞれ656.3 nm、587.6 nm、486.13 nmとするとき、

波長	θ
656.3 nm	23.40°
587.6 nm	25.00°
486.13 nm	27.54°

である。

【0040】

また、拡散板3として用いる透過型ホログラムの露光条件は、図7(a)中に示す通りである。露光の際の座標系は、透過型ホログラムの面の軸上主光線10Gの入射点を原点にして、ホログラム面をX-Y面とし、投影光学系1Gの射出瞳8Gから離れる方向をZ軸とする。このとき、ホログラムの寸法を、図7(b)に示すように、縦×横を190 mm×250 mmとする。また、露光のための第1光源位置(X1, Y1, Z1)は以下の通りであり、点光源とする。

【0041】

$$(X_1, Y_1, Z_1) = (0, 297.11, -578.12)$$

また、第2光源中心位置(X2, Y2, Z2)は以下の通りである。そして、図7(c)に示すように、縦×横が86.67 mm×86.67 mmの面積を持つ拡散面光源とする。

【0042】

$$(X_2, Y_2, Z_2) = (0, 435.32, -482.72)$$

以上の露光条件で作製した透過型ホログラムを、拡散板3として使用する。これにより、拡散板3により拡散された各波長の光束は、フレネル凹面反射鏡2'で反射される。また、観察者瞳面で色再現性良く観察できる射出瞳範囲が、縦×横が60 mm×60 mmの正方形の拡大瞳4'となり、その中にφ60の円形瞳が可能になる。

【0043】

実施例2のY-Z断面内の光路図を図8、図9に示す。ここで、図8及び図9

は、投影光学系 1 R、1 G、1 B の各射出瞳 8 R、8 G、8 B から像面に到るまで間の光線の様子であって、図 8 は各波長の 0 次光 11 R、11 G、11 B の様子であり、図 9 は表面正反射光 12 R、12 G、12 B の様子である。また、図 10 にこの実施例の拡散板 3 に用いる透過型ホログラムの撮影配置を示す。図 10 中の数字は mm 単位である。

【0044】

実施例 2 は、図 2 (b) に対応するもので、再生光入射角度条件が 1 回目の入射の際に満足し、2 回目には回折せず、かつ、光線の屈曲方向が拡散板 3 の面の法線に対する入射角に対して回折角が小さくなる方向の場合の例である。また、フレネル凹面反射鏡 2' はフレネル裏面鏡で構成されており、そのフレネル裏面鏡の偏心量を MY、軸上主光線 10 G の透過型ホログラム 3 による偏角量を γ 、フレネル凹面反射鏡 2' への入射角を β とする、

$$MY = 43.23 \text{ mm}$$

$$\gamma = 15.00^\circ \quad (\text{屈折率 } 1.4924 \text{ の硝材中})$$

$$\beta = 3.36^\circ \quad (\text{屈折率 } 1.4924 \text{ の硝材中})$$

$$\gamma / \beta = 4.46$$

である。また、各投影光学系 1 R、1 G、1 B の射出瞳 8 R、8 G、8 B から第 1 面（拡散板 3 の入射側の平面）への軸上主光線 10 R、10 G、10 B の入射角（偏心角）を θ とし、投影光学系 1 R、1 G、1 B からの波長をそれぞれ 656.3 nm、587.6 nm、486.13 nm とするとき、

波長	θ
656.3 nm	26.82°
587.6 nm	25.00°
486.13 nm	22.37°

である。

【0045】

また、拡散板 3 として用いる透過型ホログラムの露光条件は、図 10 (a) 中に示す通りである。露光の際の座標系は、透過型ホログラムの面の軸上主光線 10 G の入射点を原点にして、ホログラム面を X-Y 面とし、投影光学系 1 G の射

出瞳8 Gから離れる方向をZ軸とする。このとき、ホログラムの寸法を、図10(b)に示すように、縦×横を190mm×250mmとする。また、露光のための第1光源位置(X1, Y1, Z1)は以下の通りであり、点光源とする。

【0046】

$$(X_1, Y_1, Z_1) = (0, 297.11, -578.12)$$

また、第2光源中心位置(X2, Y2, Z2)は以下の通りであり、図10(c)に示すように、縦×横が86.67mm×86.67mmの面積を持つ拡散面光源とする。

【0047】

$$(X_2, Y_2, Z_2) = (0, 136.36, -635.53)$$

以上の露光条件で作製した透過型ホログラムを拡散板3として使用することにより、拡散板3により拡散された各波長の光束は、フレネル凹面反射鏡2'で反射された後、観察者瞳面で色再現性良く観察できる射出瞳範囲が縦×横が60mm×60mmの正方形の拡大瞳4'となり、その中にφ60の円形瞳が可能になる。

【0048】

実施例3のY-Z断面内の光路図を図11、図12に示す。ここで、図11及び図12は、投影光学系1R、1G、1Bの各射出瞳8R、8G、8Bから像面に到るまで間の光線の様子であって、図11は各波長の0次光11R、11G、11Bの様子であり、図12は表面正反射光12R、12G、12Bの様子である。また、図13にこの実施例の拡散板3に用いる透過型ホログラムの撮影配置を示す。図13中の数字はmm単位である。

【0049】

実施例3は、図3(a)に対応するもので、再生光入射角度条件が2回目の入射の際に満足し、1回目には回折せず、かつ、光線の屈曲方向が拡散板3の面の法線に対する入射角に対して回折角が小さくなる方向の場合の例である。また、フレネル凹面反射鏡2'はフレネル裏面鏡で構成されており、そのフレネル裏面鏡の偏心量をMY、軸上主光線10Gの透過型ホログラム3による偏角量をγ、フレネル凹面反射鏡2'への入射角をβとすると、

$MY = 49.77 \text{ mm}$

$\gamma = 12.30^\circ$ (屈折率 1.4924 の硝材中で)

$\beta = 12.60^\circ$ (屈折率 1.4924 の硝材中で)

$\gamma / \beta = 0.97$

である。また、各投影光学系 1R、1G、1B の射出瞳 8R、8G、8B から第 1 面（拡散板 3 の入射側の平面）への軸上主光線 10R、10G、10B の入射角（偏心角）を θ とし、投影光学系 1R、1G、1B からの波長をそれぞれ 656.3 nm、587.6 nm、486.13 nm とするとき、

波長	θ
656.3 nm	26.66°
587.6 nm	25.00°
486.13 nm	22.69°

である。

【0050】

また、拡散板 3 として用いる透過型ホログラムの露光条件は、図 13 (a) 中に示す通りである。露光の際の座標系は、透過型ホログラムの面の軸上主光線 10G の入射点を原点にして、ホログラム面を X-Y 面とし、投影光学系 1G の射出瞳 8G から離れる方向を Z 軸とする。このとき、ホログラムの寸法を、図 13 (b) に示すように、縦×横を 190 mm × 250 mm とする。また、露光のための第 1 光源位置 (X1, Y1, Z1) は以下の通りであり、点光源とする。

【0051】

$$(X_1, Y_1, Z_1) = (0, -96.13, -439.65)$$

また、第 2 光源中心位置 (X2, Y2, Z2) は以下の通りであり、図 13 (c) に示すように、縦×横が 60 mm × 60 mm の面積を持つ拡散面光源とする。

【0052】

$$(X_2, Y_2, Z_2) = (0, 0, -450.00)$$

以上の露光条件で作製した透過型ホログラムを拡散板 3 として使用することにより、フレネル凹面反射鏡 2' で反射された後、拡散板 3 により拡散された光束

は、観察者瞳面で色再現性良く観察できる射出瞳範囲が縦×横が60mm×60mmの正方形の拡大瞳60となり、その中にφ60の円形瞳が可能になる。

【0053】

実施例4のY-Z断面内の光路図を図14、図15に示す。ここで、図14及び図15は、投影光学系1R、1G、1Bの各射出瞳8R、8G、8Bから像面に到るまで間の光線の様子であって、図14は各波長の0次光11R、11G、11Bの様子であり、図15は表面正反射光12R、12G、12Bの様子である。また、図16にこの実施例の拡散板3に用いる透過型ホログラムの撮影配置を示す。図16中の数字はmm単位である。

【0054】

実施例4は、図3（b）に対応するものであって、再生光入射角度条件が2回目の入射の際に満足し、1回目には回折せず、かつ、光線の屈曲方向が拡散板3の面の法線に対する入射角に対して大きくなる方向の場合の例である。また、フレネル凹面反射鏡2'はフレネル裏面鏡で構成されており、そのフレネル裏面鏡の偏心量をMY、軸上主光線10の透過型ホログラム3による偏角量をγ、フレネル凹面反射鏡2'への入射角をβとすると、

$$MY = 171.54 \text{ mm}$$

$$\gamma = 15.00^\circ \quad (\text{屈折率 } 1.4924 \text{ の硝材中})$$

$$\beta = 2.88^\circ \quad (\text{屈折率 } 1.4924 \text{ の硝材中})$$

$$\gamma / \beta = 5.21$$

である。また、各投影光学系1R、1G、1Bの射出瞳8R、8G、8Bから第1面（拡散板3の入射側の平面）への軸上主光線10R、10G、10Bの入射角（偏心角）をθとし、投影光学系1R、1G、1Bからの波長をそれぞれ656.3nm、587.6nm、486.13nmとするとき、

波長	θ
656.3nm	23.04°
587.6nm	25.00°
486.13nm	28.24°

である。

【0055】

また、拡散板3として用いる透過型ホログラムの露光条件は、図16(a)中に示す通りである。露光の際の座標系は、透過型ホログラムの面の軸上主光線10Gの入射点を原点にして、ホログラム面をX-Y面とし、投影光学系1Gの射出瞳8Gから離れる方向をZ軸とする。このとき、ホログラムの寸法を、図16(b)に示すように、縦×横を190mm×250mmとする。また、露光のための第1光源位置(X1, Y1, Z1)は以下の通りであり、点光源とする。

【0056】

$$(X_1, Y_1, Z_1) = (0, 116.62, -434.63)$$

また、第2光源中心位置(X2, Y2, Z2)は以下の通りであり、図16(c)に示すように、縦×横が60mm×60mmの面積を持つ拡散面光源とする。

【0057】

$$(X_2, Y_2, Z_2) = (0, 0, -450.00)$$

以上の露光条件で作製した透過型ホログラムを拡散板3として使用する。これにより、フレネル凹面反射鏡2'で反射された後、拡散板3により拡散された光束により、観察者瞳面で色再現性良く観察できる射出瞳範囲が縦×横が60mm×60mmの正方形の拡大瞳60となり、その中にφ60の円形瞳が可能になる。

【0058】

以下に、上記実施例1～4の構成パラメータを示す。上記のように、これら実施例においては、軸上主光線10Gを、投影光学系1Gの射出瞳8Gの中心を出て拡散板3の中心通り、装置の射出瞳4'中心に至る光線で定義する。そして、順光線追跡において、投影光学系1Gの射出瞳8Gの中心を原点とし、瞳面をX-Y面とし、瞳に垂直な軸上主光線10Gの進行方向をZ軸正方向としている。

【0059】

そして、偏心面については、光学系の原点からその面の面頂位置の偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX, Y, Z)と、その面の中心軸(非球

面については、下記（a）式のZ軸)のX軸、Y軸、Z軸それぞれを中心とする傾き角（それぞれ α 、 β 、 γ （°））とが与えられている。その場合、 α と β の正はそれぞれの軸の正方向に対して反時計回りを、 γ の正はZ軸の正方向に対して時計回りを意味する。なお、面の中心軸の α 、 β 、 γ の回転のさせ方は、面の中心軸とそのXYZ直交座標系を、まずX軸の回りで反時計回りに α 回転させ、次に、その回転した面の中心軸を新たな座標系のY軸の回りで反時計回りに β 回転させると共に1度回転した座標系もY軸の回りで反時計回りに β 回転させ、次いで、その2度回転した面の中心軸を新たな座標系の新たな座標系のZ軸の回りで時計回りに γ 回転させるものである。

【0060】

また、本発明で用いられる非球面は、以下の定義式で与えられる回転対称非球面である。

【0061】

$$\begin{aligned} Z = & (Y^2 / R) / [1 + \{1 - (1 + K) Y^2 / R^2\}^{1/2}] \\ & + A Y^4 + B Y^6 + C Y^8 + D Y^{10} + \dots \\ & \dots \quad (a) \end{aligned}$$

ただし、Zを光の進行方向を正とした光軸（軸上主光線）とし、Yを光軸と垂直な方向にとる。ここで、Rは近軸曲率半径、Kは円錐定数、A、B、C、D、…はそれぞれ4次、6次、8次、10次の非球面係数である。この定義式のZ軸が回転対称非球面の軸となる。

【0062】

なお、データの記載されていない非球面に関する項は0である。屈折率については、d線（波長587.56nm）に対するものを表記してある。長さの単位はmmである。

【0063】

以下に、上記実施例1～4の構成パラメータを示す。なお、以下の表中の“A S S”は非球面、“F L”はフレネル面、“R E”は反射面、“H O E”は透過型ホログラム、“P I M”は画像投影面をそれぞれ示す。

【0064】

実施例 1

面番号	曲率半径	面間隔	偏心	屈折率	アッペ数
物体面	∞				
1	H O E		偏心(1)	1.4924	57.6
2	∞ (P I M)		偏心(1)	1.4924	57.6
3	A S S (1) (R E, F L)		偏心(2)	1.4924	57.6
4	∞		偏心(1)		
像面	∞		偏心(3)		
	A S S (1)				
R	-407.45				
K	-5.8103×10				
A	-7.5130×10^{-7}				
B	7.5802×10^{-12}				
C	-3.1478×10^{-17}				
	偏心(1)				
X	0.00	Y 0.00	Z 650.00		
α	25.00	β 0.00	γ 0.00		
	偏心(2)				
X	0.00	Y M Y	Z 577.79		
α	25.00	β 0.00	γ 0.00		
	偏心(3)				
X	0.00	Y -190.18	Z 242.16		
α	25.00	β 0.00	γ 0.00		。

【0065】

実施例 2

面番号	曲率半径	面間隔	偏心	屈折率	アッペ数
物体面	∞				

1	H O E		偏心(1)	1.4924	57.6
2	∞ (P I M)		偏心(1)	1.4924	57.6
3	A S S (1) (R E, F L)		偏心(2)	1.4924	57.6
4	∞		偏心(1)		
像面	∞		偏心(3)		
		A S S (1)			
R	-794.83				
K	-5.3753×10				
A	1.0973×10^{-6}				
B	2.4736×10^{-11}				
C	-2.7488×10^{-16}				
	偏心(1)				
X	0.00	Y	0.00	Z	650.00
α	25.00	β	0.00	γ	0.00
	偏心(2)				
X	0.00	Y	M Y	Z	630.94
α	25.00	β	0.00	γ	0.00
	偏心(3)				
X	0.00	Y	-190.18	Z	242.16
α	25.00	β	0.00	γ	0.00
	【0066】				。

実施例 3

面番号	曲率半径	面間隔	偏心	屈折率	アッベ数
物体面	∞				
1	∞ (P I M)		偏心(1)	1.4924	57.6
2	A S S (1) (R E, F L)		偏心(2)	1.4924	57.6
3	∞		偏心(1)		
4	H O E		偏心(1)	1.4924	57.6

像面 ∞ 偏心(3)

A S S (1)

R -792.61

K 0.0000

A 3.7000×10^{-9}

B -2.3710×10^{-13}

C 5.4398×10^{-18}

偏心(1)

X 0.00 Y 0.00 Z 650.00

α 25.00 β 0.00 γ 0.00

偏心(2)

X 0.00 Y M Y Z 627.89

α 25.00 β 0.00 γ 0.00

偏心(3)

X 0.00 Y -190.18 Z 242.16

α 25.00 β 0.00 γ 0.00

【0067】

実施例4

面番号	曲率半径	面間隔	偏心	屈折率	アッベ数
-----	------	-----	----	-----	------

物体面 ∞

1 ∞ (P I M) 偏心(1) 1.4924 57.6

2 A S S (1) (R E, F L) 偏心(2) 1.4924 57.6

3 ∞ 偏心(1)

4 H O E 偏心(1) 1.4924 57.6

像面 ∞ 偏心(3)

A S S (1)

R -763.19

K -2.3408

A -1.8903×10^{-8}

B 1.4268×10^{-13}

C -4.9692×10^{-19}

偏心(1)

X 0.00 Y 0.00 Z 650.00

α 25.00 β 0.00 γ 0.00

偏心(2)

X 0.00 Y MY Z 571.11

α 25.00 β 0.00 γ 0.00

偏心(3)

X 0.00 Y -190.18 Z 242.16

α 25.00 β 0.00 γ 0.00

。

【0068】

次に、本発明の投影光学装置を立体観察装置として構成する実施例について説明する。

【0069】

図17は、上述の各実施例で示した構成を備えた本発明が適用可能な立体観察システムの1例を示す概略構成図である。本例では、R、G、Bの投影光学系1R、1G、1Bの組を1組の投影装置として、1対のそのような投影装置101L、101Rを用意し、左右の投影装置101L、101Rに両眼視差のある映像を表示させる。この左右の投影装置101L、101Rは投影装置制御装置102に接続されている。投影装置制御装置102は、立体(3D)内視鏡や、立体(3D)顕微鏡等の立体(3D)画像入力装置に設けられている左右のカメラで撮像された画像を選択入力して、左右の投影装置101L、101Rにその選択した画像を送って表示させるように構成されている。また、本例では、投影装置制御装置102は、その他の選択入力可能な画像として、パソコンを介して作成された視差を有する立体(3D)画像も本例の表示パネル100への入力画像として入力して投影装置101L、101Rに表示させることができるように構成されている。そして、表示パネル100としては、以上で説明したような接眼

光学系の凹面鏡2あるいはフレネルフレネル反射鏡2'、とその前面に配置された透過型ホログラムからなる拡散板3とからなるものを用いる。

【0070】

以下に、このように構成された立体観察システムの応用例について説明する。

【0071】

図18は、本発明による上記のような立体観察システムを応用した製品の1実施例を示す説明図である。本実施例の製品は、表示パネル100と左右の投影装置101L、101Rとを保持部材103に一体的に取り付けた反射型立体投影観察装置と、保持部材103を支持する支持アーム104と、支持アーム104を支持するキャスター付き支持部本体105とで構成されている。反射型立体投影観察装置は、左右の投影装置101L、101Rから互いに視差のある映像を表示パネル100に投影し、表示パネル100で反射して観察者の左右の眼EL、ERにそれぞれ観察用の瞳を拡大させて映像を結像するように構成されている。

【0072】

保持部材103は支持アーム104との連結部104aを介して矢印方向に回動可能に連結されており、支持アーム104は支持部本体105に連結部104bを介して矢印方向に回動可能に連結されており、保持部材103、支持アーム104を所望方向に回動させることで、観察者の観察姿勢を変えることができるようになっている。また、保持部材103には操作部103aが設けられており、所望方向への回動がしやすくなっている。

【0073】

また、支持部本体105はキャスター105aが付いており、支持部本体105を移動させることで観察位置を変えることができようになっている。

【0074】

図19は、本発明による立体観察システムを応用した製品の他の実施例を示す説明図である。この実施例の製品は図18と同様の保持部材103に取り付けられた反射型立体投影観察装置を支持する支持アーム104を支持する支持部本体105を天井106に取り付けて構成されている。本実施例のように構成すれば、立体投影観察装置を置くスペースを省略することができる。

【0075】

図20は、本発明による立体観察システムを応用した製品の他の実施例を示す説明図である。本実施例の製品は、支持アーム104を手術用の椅子107に取り付けて構成されている。表示パネル100は保持部材103bに取り付けられ、投影装置101L、101Rは保持部材103cに取り付けられている。そして、保持部材103bは、保持部材103cに回動可能に取り付けられており、表示パネル100の投影装置101L、101Rに対する向きを所定の方向に変えることができるようになっている。投影装置101L、101Rを取り付けた保持部材103cは、支持アーム104に連結部104cを介して360°回動可能に取り付けられており、表示パネル100及び投影装置101L、101Rの向きを所定方向に変えることができるようになっている。さらに、表示パネル100の左右側方には取っ手108が設けられており、表示パネル100に直接手を触れずに向きの調整操作がしやすくなっている。また、手術用の椅子107にはキャスター107aが設けられており、手術用椅子107を移動させることで観察位置を変えることができようになっている。

【0076】

図21は、本発明による立体観察システムを応用した製品の他の実施例を示す説明図である。本実施例の製品は、キャスター105a付き支持部本体105及び連結部104cを介して回動可能な支持アーム104を備えた手術用顕微鏡の画像入力部109に、投影装置101L、101Rと表示パネル100とが保持部材103に取り付けられた2台の立体投影観察装置を保持部材103を介して取り付けて構成されている。手術用顕微鏡の画像入力部109には2台のカメラが内蔵され、入力画像はそれぞれの立体投影観察装置の投影装置101L、101Rに送られるように構成されており、手術用顕微鏡での立体画像が複数の観察者に同時に観察できるようになっている。

【0077】

そして、図18～図21に示した実施例の製品の立体観察システムは、手術用顕微鏡の表示装置、内視鏡の表示装置、医療関連の立体情報画像の表示装置、コンピュータを用いたゲーム機等の娯楽製品の表示装置、各種立体（3D）のCA

D画像等の業務関連の立体（3D）画像の表示装置等に適用可能である。

【0078】

図22は、本発明の投影光学装置を用いた手術用立体観察システムの1実施例を示す説明図である。本実施例の製品は、キャスター105a付き支持部本体105に自在アーム110を介して3次元方向に移動自在で360°回転自在に支持アーム104が取り付けられ、その支持アーム104に連結部104dを介して同様に移動自在、回転自在に保持部材103が取り付けられ、その保持部材103に投影装置101L、101Rと表示パネル100とが取り付けられている。一方、支持アーム104先端には、手術用顕微鏡の画像入力部109が取り付けられ、その画像入力部109には2台のカメラが内蔵され、入力画像は立体投影観察装置の投影装置101L、101Rに送られるように構成されており、手術用顕微鏡で患者Pの患部の立体画像を観察しながら手術を行うことができるようになっている。

【0079】

また、上記のような本発明による反射型の接眼光学系である凹面鏡2あるいはフレネルフレネル反射鏡2' とその前面に配置された透過型ホログラムからなる拡散板3とからなる反射型の表示パネル100は、立体画像の表示のみならず、単一画像を表示する投影表示装置としても利用可能である。そのような投影表示装置としての携帯電話の例を図23、図24に示す。図23、図24は携帯電話138に操作者自身や通話相手等の撮影像と電話番号等の情報を投影表示する本発明の投影表示装置を備え、そのために投影装置101（図17～図22の場合と同様に、R、G、Bの投影光学系1R、1G、1Bの組を投影装置101とする。）と反射型の表示パネル100を設けてその射出瞳4' の位置でその表示映像を無理なく観察できるようにしている。この携帯電話138には、操作者の声を情報として入力するマイク部139と、通話相手の声を出力するスピーカ部140と、通信電波の送信と受信を行うアンテナ141と、操作者が情報を入力する操作ボタン142と、上記の投影表示装置とが設けられている。図23は、表示パネル100を携帯電話138に対して開閉する機構を持っており、携帯時は折り畳んでポケット等に収納することが可能となる。また、図24は、表示パネ

ル100は携帯電話138の本体内部に固定され、折り畳まずにそのままポケット等に収納するものである。

【0080】

以上の本発明の投影光学装置は例えば次のように構成することができる。

【0081】

〔1〕 各々表示素子を含みその表示素子に表示された映像を拡大投影する投影光学系を少なくとも3つ備え、前記少なくとも3つの投影光学系の射出瞳を観察者側に投影する凹面鏡と、前記少なくとも3つの投影光学系で投影された像近傍に配置され、前記凹面鏡で投影される前記少なくとも3つの投影光学系の射出瞳の像を拡大する透過型ホログラムからなる拡散板とを備えており、前記凹面鏡で投影され、前記透過型ホログラムからなる拡散板で拡大された各投影光学系の射出瞳の像が相互に少なくとも一部重なって投影されることを特徴とする投影光学装置。

【0082】

〔2〕 前記少なくとも3つの投影光学系から前記拡大された各投影光学系の射出瞳の像に至る光線が前記透過型ホログラムからなる拡散板を2回透過する配置において、1回目に前記透過型ホログラムからなる拡散板を透過する角度と、2回目に前記透過型ホログラムからなる拡散板を透過する角度とが異なるように配置されていることを特徴とする上記1記載の投影光学装置。

【0083】

〔3〕 前記凹面鏡がフレネル凹面反射鏡からなることを特徴とする上記1又は2記載の投影光学装置。

【0084】

〔4〕 前記透過型ホログラムからなる拡散板の拡散角は、半值全幅で20°以下であることを特徴とする上記1から3の何れか1項記載の投影光学装置。

【0085】

〔5〕 光強度が1/10になる全幅の拡散角が40°以下であることを特徴とする上記1から4の何れか1項記載の投影光学装置。

【0086】

[6] 前記少なくとも3つの投影光学系からの軸上主光線が前記凹面鏡に斜めに入射するように配置されていることを特徴とする上記1から5の何れか1項記載の投影光学装置。

【0087】

[7] 前記透過型ホログラムからなる拡散板の1回目及び2回目透過時に回折されてない0次光が前記拡大された各投影光学系の射出瞳の像に入射しないように構成していることを特徴とする上記1から6の何れか1項記載の投影光学装置。

【0088】

[8] 前記透過型ホログラムからなる拡散板が、回折による屈曲作用を有することを特徴とする上記1から7の何れか1項記載の投影光学装置。

【0089】

[9] 前記透過型ホログラムからなる拡散板によるd線の軸上主光線の屈曲角を γ とするとき、

$$10^\circ < \gamma < 20^\circ \quad \dots (3)$$

なる条件を満足することを特徴とする上記1から8の何れか1項記載の投影光学装置。

【0090】

[10] 前記凹面鏡へのd線の軸上主光線の入射角を β とすると、

$$5^\circ < \beta < 20^\circ \quad \dots (4-1)$$

の関係を満たすことを特徴とする上記1から9の何れか1項記載の投影光学装置。

【0091】

[11] 前記透過型ホログラムからなる拡散板によるd線の軸上主光線の屈曲角を γ 、前記凹面鏡へのd線の軸上主光線の入射角を β とすると、

$$0.5 < \gamma / \beta < 2 \quad \dots (5)$$

の関係を満たすことを特徴とする上記1から10の何れか1項記載の投影光学装置。

【0092】

〔12〕 前記少なくとも3つの投影光学系により色分解像が前記透過型ホログラムからなる拡散板近傍に重畠して投影されることを特徴とする上記1から11の何れか1項記載の投影光学装置。

【0093】

【発明の効果】

以上の説明から明らかなように、本発明によると、投影光学系の射出瞳を観察位置に投影し、かつ、その投影された射出瞳の像を制限された領域まで拡大する拡散ホログラムを用いて、簡単な構成で小型でありながら、照明効率が良く明るい投影光学装置を提供することができる。

【図面の簡単な説明】

【図1】

本発明に基づき構成される投影光学装置の1つの投影光学系による模式的光路図（a）と本発明に基づき構成される投影光学装置の配置例を示す図（b）である。

【図2】

1回目の通過で屈曲される透過型ホログラムからなる拡散板と接眼光学系の凹面鏡との組み合わせの光路図であり、（a）は拡散板が拡散作用のみで光路の屈曲作用を持たない場合、（b）は拡散板の屈曲方向が法線に対する入射角に対して回折角が小さくなる方向の場合、（c）は入射角に対して回折角が大きくなる方向の場合である。

【図3】

2回目の通過で屈曲される透過型ホログラムからなる拡散板と接眼光学系の凹面鏡との組み合わせの光路図であり、（a）は拡散板の屈曲方向が法線に対する入射角に対して回折角が小さくなる方向の場合、（b）は入射角に対して回折角が大きくなる方向の場合である。

【図4】

接眼光学系の凹面鏡が偏心している場合の1回目の通過で屈曲される透過型ホログラムからなる拡散板と凹面鏡との組み合わせの光路図であり、（a）～（c）はそれぞれ図2（a）～（c）に対応する図である。

【図 5】

本発明の実施例 1 の Y-Z 断面内の光路図であり、各波長の 0 次光の光路を同時に示す図である。

【図 6】

本発明の実施例 1 の Y-Z 断面内の光路図であり、各波長の表面正反射光の光路を同時に示す図である。

【図 7】

本発明の実施例 1 の拡散板に用いる透過型ホログラムの撮影配置を示す図であり、(a) は透過型ホログラムと点光源、拡散面光源の位置関係を示す図、(b) はホログラムの寸法を示す図、(c) は拡散面光源の寸法を示す図である。

【図 8】

本発明の実施例 2 の図 5 と同様の図である。

【図 9】

本発明の実施例 2 の図 6 と同様の図である。

【図 10】

本発明の実施例 2 の図 7 と同様の図である。

【図 11】

本発明の実施例 3 の図 5 と同様の図である。

【図 12】

本発明の実施例 3 の図 6 と同様の図である。

【図 13】

本発明の実施例 3 の図 7 と同様の図である。

【図 14】

本発明の実施例 4 の図 5 と同様の図である。

【図 15】

本発明の実施例 4 の図 6 と同様の図である。

【図 16】

本発明の実施例 4 の図 7 と同様の図である。

【図 17】

本発明による立体観察システムを応用した製品の1実施例を示す説明図である。

【図18】

本発明による立体観察システムを応用した製品の他の実施例を示す説明図である。

【図19】

本発明による立体観察システムを応用した製品の他の実施例を示す説明図である。

【図20】

本発明による立体観察システムを応用した製品の他の実施例を示す説明図である。

【図21】

本発明による立体観察システムを応用した製品の他の実施例を示す説明図である。

【図22】

本発明の投影光学装置を用いた手術用立体観察システムの1実施例を示す説明図である。

【図23】

本発明の投影光学装置を携帯電話に適用した場合の斜視図である。

【図24】

本発明の投影光学装置を携帯電話に適用した別の場合の斜視図である。

【符号の説明】

M…観察者

E、 E L、 E R…観察者眼球

P…患者

1…投影光学系

1 R…Rの色分解像を表示する投影光学系

1 G…Gの色分解像を表示する投影光学系

1 B…Bの色分解像を表示する投影光学系

- 2 …凹面鏡（接眼光学系）
2' …フレネル凹面反射鏡
3 …透過型ホログラムからなる拡散板
4 …射出瞳像
4' …拡大された射出瞳像
6 …投影光学系からの軸上主光線
7₀ …0次光
7₁ …主光線
7_R、7_G、7_B …R、G、Bの波長の主光線（中心光線）（回折光）
8_R …Rの色分解像を表示する投影光学系の射出瞳
8_G …Gの色分解像を表示する投影光学系の射出瞳
8_B …Bの色分解像を表示する投影光学系の射出瞳
1₁_R …Rの0次光
1₁_G …Gの表面正反射光
1₁_B …Bの表面正反射光
1₂_R …Rの表面正反射光
1₂_G …Gの表面正反射光
1₂_B …Bの表面正反射光
1₀₀ …表示パネル
1₀₁_L、1₀₁_R …投影装置
1₀₂ …投影装置制御装置
1₀₃ …保持部材
1₀₃_a …操作部
1₀₃_b …保持部材
1₀₃_c …保持部材
1₀₄ …支持アーム
1₀₄_a …連結部
1₀₄_b …連結部
1₀₄_c …連結部

104 d…連結部

105 …キャスター付き支持部本体

105 a…キャスター

106 …天井

107 …椅子

107 a…キャスター

108 …取っ手

109 …画像入力部

110 …自在アーム

138 …携帯電話

139 …マイク部

140 …スピーカ部

141 …アンテナ

142 …操作ボタン

【書類名】

図面

【図 1】

(a)

(b)

【図 2】

【図3】

【図4】

【図5】

【図6】

【図 7】

【図 8】

【図9】

【図 10】

【図 1 1】

【図12】

【図13】

【図14】

【図15】

【図 16】

【図 17】

【図 18】

【図19】

【図20】

【図21】

【図22】

【図23】

【図24】

【書類名】 要約書

【要約】

【課題】 投影光学系の射出瞳を観察位置に投影し、かつ、その投影された射出瞳の像を制限された領域まで拡大する拡散ホログラムを用いて、簡単な構成で小型でありながら、照明効率が良く明るい投影光学装置。

【解決手段】 表示素子に表示された映像を拡大投影する投影光学系 1、1 R、1 G、1 B を少なくとも 3 つ備え、投影光学系の射出瞳 8 R、8 G、8 B を観察者側に投影する凹面鏡 2、2' と、投影光学系で投影された像近傍に配置され、凹面鏡 2、2' で投影される投影光学系の射出瞳 8 R、8 G、8 B の像を拡大する透過型ホログラムからなる拡散板 3 とを備えており、凹面鏡で投影され、透過型ホログラムからなる拡散板で拡大された各投影光学系の射出瞳の像 4' が相互に少なくとも一部重なって投影される投影光学装置。

【選択図】 図 1

特願 2003-091340

出願人履歴情報

識別番号 [000000376]

1. 変更年月日 1990年 8月20日

[変更理由] 新規登録

住 所 東京都渋谷区幡ヶ谷2丁目43番2号
氏 名 オリンパス光学工業株式会社

2. 変更年月日 2003年10月 1日

[変更理由] 名称変更

住 所 東京都渋谷区幡ヶ谷2丁目43番2号
氏 名 オリンパス株式会社