ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

03 июня 2016

ΦИO	№		1	2	2	1	7	_	OHAHRA	задания	
ΨΝΟ	группы ВАРИАНТ А	1		J	4	4 3		оценка	I	II	
		DAI HAIII A									

- **1A**. Линейно поляризованная радиоволна, распространяющаяся в ионосфере вдоль магнитного поля Земли, может быть представлена в виде суперпозиции двух волн, поляризованных по кругу с правой и левой поляризацией. Эти волны имеют разные фазовые скорости, что приводит к повороту плоскости поляризации исходной волны. На частоте f = 50 МГц коэффициенты преломления поляризованных по кругу радиоволн отличаются на малую величину Δn : $n_{1,2} = n \pm \Delta n/2$. Определить Δn , если поворот плоскости поляризации линейно поляризованной волны на угол π рад происходит при прохождении ею в ионосфере расстояния $\Delta h = 6$ км.
- **2A**. Сферическая волна падает на непрозрачный экран с круглым отверстием, открывающим для точки наблюдения две первых зоны Френеля. В центр отверстия устанавливается диск из стекла с показателем преломления n=1,5, целиком перекрывающий первую зону Френеля. Диск имеет четыре одинаковых сектора (см. рис.) разной толщины $d_m = d_0(m-1)$, m=1,2,3,4. Определите интенсивность света в точке наблюдения, если в отсутствие экрана и диска интенсивность в точке наблюдения равна I_0 , а $d_0 = \lambda/3$, λ длина волны излучения.

- **3А.** Расходящийся пучок непрерывного монохроматического оптического излучения анализируется с помощью интерферометра Фабри-Перо с расстоянием между зеркалами L=5 см и коэффициентом отражения зеркал по интенсивности $\rho=0.9$. Во сколько раз изменится угловая ширина дифракционных колец, если непрерывное излучение преобразовать в периодическую последовательность импульсов длительностью $\tau=10^{-9}$ с и периодом следования $T>10^{-8}$ с.
- **4А**. С помощью интерферометра Майкельсона, одно из зеркал которого смещается в процессе измерения со скоростью v=0.1 см/с, изучается закон изменения интенсивности I(t) в интерференционной картине, регистрируемой фотоприемником Φ , расположенным в фокальной плоскости линзы J. Необходимо выяснить, излучает ли источник S дублет две близкие узкие спектральные линии $\lambda \Delta \lambda/2$ и $\lambda + \Delta \lambda/2$ с центральной длиной волны λ и интервалом между линиями $\Delta \lambda$, либо излучение представляет собой однородную широкую линию с

центральной длиною волны λ и спектральной шириной $\Delta\lambda$. 1) Оцените время измерения, необходимое для того, чтобы отличить излучение дублета от одиночной широкой спектральной линии, а также время необходимое для определения спектральной ширины $\delta\lambda$ каждой из линий дублета. 2) Нарисуйте качественные графики функций видности интерференционной картины V(t) с указанием положения максимумов и их «временной ширины» для этих двух случаев. 3) Какова несущая частота изменения фототока Ω ? 4) Как изменится интерференционная картина при изменении размеров источника b? $\lambda = 5 \cdot 10^{-5}$ см, $\Delta\lambda = 5 \cdot 10^{-8}$ см, $\delta\lambda = 5 \cdot 10^{-10}$ см.

5А. В оптической системе, показанной на рисунке, сфокусированное изображение предмета, расположенного в плоскости Π , наблюдается на экране Э. Если сдвинуть экран Э на расстояние z, как показано на рисунке, то изображение окажется «размытым», расфокусированным. 1) Найдите минимальный период решётки d, которую следует расположить в фурье-плоскости Φ , чтобы мультиплицированное изображение на экране оказалось «резким», сфокусированным. 2) При каких ещё смещениях экрана в этом случае можно наблюдать сфокусированные изображения предмета?

3) При каком размере предмета b не будут перекрываться соседние элементы мультиплицированного изображения? z=1 м, $\lambda=500$ нм, f=20 см. Указание: полагайте углы дифракции малыми.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

03 июня 2016

ФИО	№ групп ы

ВАРИАНТ Б

								задания		
5	1	2	3	4	5	\sum	оценка	I	II	

1Б. Линейно поляризованная радиоволна, распространяющаяся в ионосфере вдоль магнитного поля Земли, может быть представлена в виде суперпозиции двух волн, поляризованных по кругу с правой и левой поляризацией. Эти волны имеют разные коэффициенты преломления $n_{1,2}$, что приводит к повороту плоскости поляризации исходной волны. На рисунке показана часть графика изменения напряжения U(h) на входе приёмника, подключенного к антенне с линейной поляризацией, как функция расстояния от источника

линейно поляризованного излучения h до антенны. Источник удаляется от антенны в ионосфере. Частота излучения f = 50 МГц. Определите разность коэффициентов преломления $\Delta n = n_1 - n_2$.

2Б. Плоская волна падает на непрозрачный экран с круглым отверстием, открывающим для точки наблюдения две первых зоны Френеля. В центр отверстия устанавливается диск из стекла с показателем преломления n=1,5, целиком перекрывающим первую зону Френеля. Диск имеет три одинаковых сектора (см. рис. 1) разной толщины $d_m = a + b(m-1)$, m=1, 2, 3, где a и b — некоторые положительные константы. Определите минимальные значения a и b, при которых интенсивность в точке наблюдения максимальна. Определите значение этой интенсивности, если в отсутствие экрана и диска интенсивность в точке наблюдения равна I_0 . Длина волны излучения — λ .

3Б. Монохроматическое расходящееся оптическое излучение анализируется с помощью интерферометра Фабри-Перо с коэффициентом отражения зеркал по интенсивности $\rho=0,9$. После того, как непрерывное излучение было преобразовано в периодическую последовательность импульсов длительностью $\tau=2\cdot 10^{-9}\,\mathrm{c}$, угловая ширина дифракционных колец увеличилась в $\alpha=10\,\mathrm{pas}$. Найти расстояние L между зеркалами интерферометра.

4Б. При изучении звёздного объекта с помощью интерферометра Майкельсона (см. рис. 1) была получена зависимость видности V интерференционной картины, наблюдаемой в фокальной плоскости Φ объектива Π , от базы интерферометра D (см. рис. 2). Видность периодически

Рис.1

принимает максимальные значения при $D=D_1,2D_1,3D_1$, при этом максимумы видности постепенно уменьшаются и, наконец, при $D\geq 4D_1$ интерференционная картина практически исчезает. Определите угловое расстояние между

звёздами и угловой размер каждой звезды, если $\lambda=500$ нм, $D_1=1$ м.

5Б. В оптической системе, показанной на рисунке, сфокусированное изображение предмета, расположенного в плоскости Π , наблюдается на экране \mathcal{I} . Если сместить предмет на расстояние z, как показано на рисунке, то изображение окажется «размытым», расфокусированным. 1) Решётку какого периода нужно расположить в фурье-плоскости оптической системы Φ , чтобы изображение оказалось сфокусированным? 2) Останется ли изображение сфокусированным, если период решётки увеличить вдвое? 3) Каким должен быть размер

предмета, чтобы на экране не происходило перекрытие соседних элементов мультиплицированного изображения? z = 1 м, $\lambda = 500$ нм, f = 25 см. Указание: полагайте углы дифракции малыми.