

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Accelerate

Save up to 43%*

on your CSIR UGC NET Subscription with free extension of up to 6 months

Valid only till August 12, 11:59 PM!

	Duration	Current Price	Total Value	What you pay	What you Save
5	24 months + 6 months	₹ 23,100	£36,498	₹ 20,790	₹15,708 (43%)
<u>-</u>	12 months + 3 months	₹ 16,748	£ 23,967	₹ 15,073	₹8,894 (37%)
	6 Months + 1 Month	₹ 13,398	£15,804	₹ 12,058	₹3,746 (24%)
U.	24 months + 6 months	₹ 52,975	2.74,515	₹ 47,678	₹26,838 (36%)
koni	12 months + 3 months	₹ 30,780	₹.41,950	₹ 27,702	₹13,848 (33%)
	6 Months + 1 Month	₹ 21,540	₹ 26,130	₹ 19,386	₹5,744 (23%)

Subscribe Now

Accelerate

Save up to 43%*

on your IIT JAM Subscription with free extension of up to 6 months

Valid only till August 12, 11:59 PM!

	Duration	Current Price	Total Value	What you pay	What you Save
5	24 months + 6 months	₹ 23,100	Z-36;498	₹ 20,790	₹15,708 (43%)
2	12 months + 3 months	₹ 16,748	£ 23,967	₹ 15,073	₹8,894 (37%)
	6 Months + 1 Month	₹ 13,398	Z 15,804	₹ 12,058	₹3,746 (24%)
٦	24 months + 6 months	₹ 52,975	2.74,515	₹ 47,678	₹26,838 (36%)
Iconi	12 months + 3 months	₹ 30,780	₹.41,950	₹ 27,702	₹13,848 (33%)
	6 Months + 1 Month	₹ 21,540	7.25,130	₹ 19,386	₹5,744 (23%)

Subscribe Now

Use code

*T&C apply, as available on the platform

DETAILED COURSE 2.0 DIFFERENTIAL EQUATION

4th AUGUST

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

Introducing UA Lite for CSIR-UGC NET

1 month subscription at ** 500

2 month subscription at 12 100

Get access to:

- · Curated Test Series
- Question Bank
- · Exams of Previous Year Question Papers

Subscribe Now

Use code - GPSIR

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo		
Save 25%	Total ₹ 12,252		

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹ 2,723 / mo	
	Total ₹ 2,723	

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo	
Save 45%	₹ 13,475 ₹ 12,128	

6 months	₹ 1,838 / mo	
Save 25%	₹-12,252 ₹ 11,027	

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

LINEAR DIFFERENTIAL EQUATION

A first order differential equation is called linear if it can be

written in the form
$$\left(\frac{dy}{dx}\right) + py = Q$$
,

Where p & Q are constant or function of x alone.

Working rule for solution of LDE

(1) I.F. (Integrating factor)

$$IF = e^{\int Pdx}$$

(2)
$$IF.y = \int IF.Qdx + C$$

Solve this and get required solution.

Note: Consider the first order and first degree linear differential

equation
$$\frac{dy}{dx} + P(x)y = Q(x)$$

(1) If P(x) & Q(x) are continuous and bounded for all α , $\beta \in R$ then \exists unique solution such that $u(\alpha) = \beta$.

Q.1. Let
$$\frac{dy}{dx} + \left(\frac{2x+1}{x}\right)y = e^{-2x}$$
; x > 0, then the

solution y(x) of DE is

(a)
$$y(x) \to 0$$
 as $x \to \infty$ (b) $y(x) \to \infty$ as $x \to \infty$ (c) $y(x) \to -\infty$ as $x \to \infty$ (d) None of these

(c)
$$y(x) \to -\infty$$
 as $x \to \infty$ (d) None of these

Q.2.
$$\frac{dy}{dx} + 2xy = e^{-x^2}$$
, then the general solution of the DE is

- (a) y(x) is bounded on R
- (b) y(x) is bounded on R+
- (c) $y(x) \rightarrow 0$ as $x \rightarrow \infty$
- (d) $y(x) \rightarrow 0$ as $x \rightarrow \infty$

Q.3. Solve
$$\frac{dy}{dx} + y = f(x)$$
 where $f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & x > 1 \end{cases}$ s.t. $y(0) = 0$.

TARGETED AUDIENCE

- O III-JAM
 - M.Sc. Entrance Exam

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q.4.
$$\frac{dy}{dx} - ay = e^{ax}$$
; $y(0) = 0$; $a \in \mathbb{R}$ then

- (a) If a > 0, $y(x) \to \infty$ as $x \to \infty$
- (b) If a < 0; y(x) is bounded on R^+ .
- (c) If a < 0; $y(x) \rightarrow -\infty$ as $x \rightarrow -\infty$
- (d) None of these

Q.5 The equation of the curve passing through the point

$$\left(\frac{\pi}{2},1\right)$$
 and having slope $\frac{\sin(x)}{x^2} - \frac{2y}{x}$ at each point (x, y)

with $x \neq 0$ is

(a)
$$-x^2y + \cos(x) = \frac{-\pi^2}{4}$$

(b)
$$x^2y + \cos(x) = \frac{\pi^2}{4}$$

(c)
$$x^2y - \sin(x) - \frac{\pi^2}{4} - 1$$

(d)
$$x^2y + \sin(x) = \frac{\pi^2}{4} + 1$$

Bernoulli's equation:

An equation of the form $\frac{dy}{dx} + Py = Qy^n$, where P and Q are constant or function of x alone and n is constant except 0 and 1 is called Bernoulli's equation.

Working rule:

$$\frac{1}{v^n}\frac{dy}{dx} + Py^{1-n} = Q \qquad \dots (1)$$

$$(1-n)y^{-n}\frac{dy}{dx} = \frac{dt}{dx}$$

Suppose
$$y^{1-n} = t$$

$$(1-n)y^{-n} \frac{dy}{dx} = \frac{dt}{dx}$$
Put in (1)
$$\frac{1}{(1-n)} \frac{dt}{dx} + P(x)t = Q(x)$$

$$\frac{dt}{dx} + (1-n)Pt = (1-n)Q$$
Which is FOFD linear DE.

$$\frac{dt}{dx} + (1-n)P.t = (1+in)Q$$

Q.6. Consider the ODE ty' $-3y = t^2y^{1/2}$, y(1) = 1. Find the value of y(2)

(a) 14

(b) 16

(c)0

(d) 8

Solution of the differential equation Q.7.

$$xy' + \sin 2y = x^3 \sin^2 y$$
 is

(a)
$$\cot y = -x^3 + cx^2$$
 (b) $2\cot y = x^3 + 2cx^2$

(a)
$$\cot y = -x^3 + cx^2$$
 (b) $2\cot y = x^3 + 2cx^2$
(b) $\tan y = -x^3 + cx^2$ (d) $2\tan y = x^3 + 2cx^2$

The general solution of differential equation Q.8.

$$\frac{dy}{dx} = (1+y^2)(e^{-x^2}-2x\tan^{-1}y)$$
 is

(a)
$$e^{x^2} \tan^{-1} y = x + c$$
 (b) $e^{-x^2} \tan y = x + c$

(b)
$$e^{-x^2} \tan y = x + c$$

(c)
$$e^x \tan y = x^2 + c$$

(d)
$$e^{-x} \tan^{-1} y = x^3 + c$$

DETAILED COURSE 2.0 DIFFERENTIAL EQUATION

4th AUGUST

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

Introducing UA Lite for CSIR-UGC NET

1 month subscription at ** 500

2 month subscription at 12 100

Get access to:

- · Curated Test Series
- Question Bank
- · Exams of Previous Year Question Papers

Subscribe Now

Use code - GPSIR

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 - 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	Total ₹ 21,780
24 months	₹ 908 / mo

12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR