Part A: Theory and Foundations

Problem 1

Prove that the competitive learning update rule moves the winning center closer to the data point.

Problem 2

Show that competitive learning forgets when the learning rate is contant, i.e., $\epsilon = \epsilon_0$.

Problem 3

This problem concerns the training of a specific center in k-means. Use induction to prove that

$$c^k = \frac{1}{k} \sum_{i=1}^k x^{(\mu_i)}$$

Here we assume that the sequence of points $\{x^{(\mu_1)}, x^{(\mu_2)}, \dots, x^{(\mu_k)}\}$ all have c as the nearest center. We use the supportsciprt m to denote the mth time that c is updated.

Problem 4

In this problem we fill in the details of the proof that MDS provides the best approximate configuration to a non-Euclidean distance matrix. Let $D \in \mathbb{R}^{n \times n}$ be a non-euclidean distance matrix and B = HAH with eigenvalues $\lambda_1 \geq \lambda_k > 0$, $\lambda_{k+1} = 0$ and $0 > \lambda_{k+2} \leq \ldots \leq \lambda_n$. (As usual $A_{ij} = -D_{ij}^2/2$ and H is the usual centering matrix.) Let \hat{B} be the best approximation to B in the sense that

$$\hat{B} = \arg\min_{C} \sum_{ij} (B_{ij} - C_{ij})^2$$

where C is taken from the set of symmetric positive semi-definite matrices.

a) Show that

$$\sum_{ij} (B_{ij} - C_{ij})^2 = trace((B - C)^2)$$

- b) Using the spectral theorem we can write $S^TBS = \Lambda$ and $R^TCR = \hat{\Lambda}$. What can you say about the properties of the matrices R, S and the signs of the entries in the diagonal matrices $\Lambda, \hat{\Lambda}$?
- c) Show that $S^TCS = G\hat{\Lambda}G^T$ where G is orthogonal.
- d) Show that $trace(B-C)^2 = trace((\Lambda G\hat{\Lambda}G^T)^2)$
- e) Show that the quantity $trace((\Lambda G\hat{\Lambda}G^T)^2)$ is a minimum when G = I.

Problem 5

Show that zero is always an eigenvalue of the Laplacian eigenvector problem. What is the associated eigenvector?

Part B: Computing

Problem 1

Use LBG clustering with 10 centers to quantize the color image provided on Canvas. Include the color quantized image in your write-up.

Problem 2

This is an SOM warm-up problem. Consider the data set consisting of the following 6 points:

μ	$x^{(\mu)}$
1	0.34
2	0.12
3	0.73
4	0.97
5	0.07
6	0.56

Run SOM on this data set using the index set $\{1, 2, 3, 4, 5, 6\}$ and the Euclidean and Clock metrics. Pick your initial centers randomly from the uniform distribution on the interval [0, 1]. Describe what SOM is doing in each case.

Problem 3

Visualize the animal data in two dimensions using Self-Organizing Mappings.

Problem 4

Visualize the animal data in two dimensions using Laplacian Eigenmaps.