Planificación y documentación de una red LAN

- •La mayoría de las redes locales se basan en la tecnología Ethernet. Esta tecnología es rápida y eficaz si se utiliza en una red diseñada y construida correctamente.
- Un plan de red comienza con la recopilación de información acerca del uso que se le dará a la red. Esta información incluye:
- -La cantidad y el tipo de hosts que deben conectarse a la red
- -Las aplicaciones que se utilizarán
- -Los requisitos de conectividad de Internet y de uso compartido
- -Las consideraciones de seguridad y privacidad
- -Las expectativas de confiabilidad y tiempo de actividad
- -Los requisitos de conectividad por cable e inalámbrica

Recopilación de la información

- •Cantidad y tipo de hosts: ¿Dónde están ubicados los usuarios finales? ¿Qué tipo de hardware utilizan? ¿Dónde están ubicados los servidores, las impresoras y otros dispositivos de red?
- •Aplicaciones: ¿Qué tipo de aplicaciones se ejecutan en la red?
- •Datos y dispositivos para compartir: ¿Quién requiere acceso a qué archivos y recursos de red, como impresoras?
- •Requisitos de ancho de banda (velocidad): ¿Cuál es la velocidad aceptable para los usuarios finales? ¿Todos los usuarios requieren el mismo rendimiento? ¿Qué efectos tendrán las aplicaciones sobre el rendimiento?

- Entorno físico en donde se instalará la red:
- -Control de la temperatura: todos los dispositivos tienen rangos específicos de temperatura y requisitos de humedad para funcionar correctamente
- -Disponibilidad y ubicación de los tomacorrientes
- ·Configuración física de la red:
- –Ubicación física de los dispositivos (por ejemplo, routers, switches y hosts)
- -Modo de interconexión de todos los dispositivos
- -Ubicación y longitud de todo el cableado
- -Configuración de hardware de los dispositivos finales, como hosts y servidores

- Configuración lógica de la red:
- Ubicación y tamaño de los dominios de broadcast y de colisiones
- -Esquema de direccionamiento IP
- -Esquema de denominación

-Configuración del uso compartido

-Permisos

- •El mapa debe ser preciso, ordenado, limpio y técnicamente posible, pero saber donde esta ubicada cada computadora donde hay paredes que pueden bloquear o encerrar el cable y cuales son las distancias aproximada que deberán correr los cables.
- •Hacer una representación de donde estarán ubicados los equipos de comunicaciones tales como un *hub* o *switch*. Si la red estará conectada a Internet, identifique donde se va ubicar un módem o *router*.
- Identificar las ubicaciones de las computadoras en el mapa colocándole un nombre a cada una de ellas.
- Identifique donde estará el punto de acceso al cableado para cada uno de los dispositivos por ejemplo: se correrán a través de las paredes ó a lo largo de zócalos. Añada también las líneas telefónicas que usara para Internet.

Estándares IEEE 802

802.1	Establece los estándares de interconexión relacionados con la gestión de redes.
802.2	Define los métodos para controlar las ∜areas de interacción entre la tarjeta de red y el procesador (nivel 2 y 3 del OSI) llamado LLC.
802.3	Define las formas de protocolos Ethernet CSMA/CD en sus diferentes medios físicos (cables).
802.4	Define cuadros Token Bus tipo ARCNET, olvidado.
802.5	Define hardware para Token Ring.

Planificación y documentación de una red LAN

- La mayoría de las redes locales se basan en la tecnología Ethernet. Esta tecnología es rápida y eficaz si se utiliza en una red diseñada y construida correctamente.
 - 8
- Un plan de red comienza con la recopilación de información acerca del uso que se le dará a la red. Esta información incluye:
- -La cantidad y el tipo de hosts que deben conectarse a la red
- -Las aplicaciones que se utilizarán
- -Los requisitos de conectividad de Internet y de uso compartido
- -Las consideraciones de seguridad y privacidad
- -Las expectativas de confiabilidad y tiempo de actividad
- -Los requisitos de conectividad por cable e inalámbrica

➤ Tecnología Ethernet.

- ❖ Es un estándar hecho para redes de computadoras de área local con acceso al medio por contienda CSMA/CD.
- ❖La regulación de la colocación de tramas de datos en los medios es conocida como control de acceso al medio.
- ❖Define las características de cableado y señalización de nivel físico.
- ❖ Define los formatos de tramas de datos del nivel de enlace de datos del modelo OSI.

➤ Tecnología Ethernet.

Ser.

❖ Ethernet no es simplemente una tecnología para redes de área local, es una familia de tecnologías, legacy fast ethernet, Gigabit Ethernet, 10, 100, 1000 y 10000 Mbps.

➤ Tecnología Ethernet.

- El éxito de Ethernet se debe a los siguientes factores:
- Sencillez y facilidad de mantenimiento.
- Capacidad para incorporar nuevas tecnologías.
- Confiabilidad
- Bajo costo de instalación y de actualización
- •El formato básico de trama y manejo de subcapa en la capa 2 del modelo OSI siguen siendo los mismos para todas las formas de Ethernet.

➤ Identificadores IEEE

❖ La IEEE asignó identificadores a los diferentes medios que puede utilizar Ethernet. Este identificador consta de tres partes:

Tecnologías Ethernet							
Estándar	Tecnología	Velocidad de transmisión	Tipo de cable	Distancia máxima	Topología		
802.3	10Base2	10 Mbps	Coaxial	185 m	Bus (Conector T)		
802.3	10BaseT	10 Mbps	Par Trenzado	100 m	Estrella (Hub o Switch)		
802.3	10BaseF	10 Mbps	Fibra óptica	2000 m	Estrella (Hub o Switch)		
802.3u	100BaseT4	100Mbps	Par Trenzado (categoria 3UTP)	100 m	Estrella. Half Duplex(hub) y Full Duplex(switch)		
802.3u	100BaseTX	100Mbps	Par Trenzado (categoria 5UTP)	100 m	Estrella. Half Duplex(hub) y Full Duplex(switch)		
Fast Ethernet	100BaseFX	100Mbps	Fibra óptica	2000 m	No permite el uso de hubs		
Gigabit Ethernet 802.3ab	1000BaseT	1000Mbps	4 pares trenzado (categoría 5UTP)	100 m	Estrella, Full Duplex (switch		
Gigabit Ethernet 802.3z	1000BaseSX	1000Mbps	Fibra óptica (multimodo)	550 m	Estrella. Full Duplex (switch		
Gigabit Ethernet 802.3z	1000BaseLX	1000Mbps	Fibra óptica (monomodo)	5000 m	Estrella. Full Duplex (switch		
10 Gigabit Ethernet 802.3ae	10GBaseSR	10000Mbps	Fibra óptica (multimodo)	26 m a 82 m	Full Duplex		
10 Gigabit Ethernet 802.3ae	10GBaseLX4	10000Mbps	Fibra óptica (multimodo)	240 m a 300 m	Full Duplex		
10 Gigabit Ethernet 802.3ae	10GBaseLX4	10000Mbps	Fibra óptica (monomodo)	10 km	Full Duplex		
10 Gigabit Ethernet 802.3ae	10GBase-LR 10GBase-ER	10000Mbps	Fibra óptica (monomodo)	10 km y 40 km	Full Duplex		
10 Gigabit Ethernet 802.3ae	10GBase-SW 10GBase-LW 10GBase-EW	10000Mbps	Fibra óptica (monomodo)	Para equipos WAN SONET/SDH	Full Duplex		

Recordando las funciones de la capa 2 del modelo OSI.

60

La capa de enlace de datos releva a las capas superiores de la responsabilidad de colocar datos en la red y de recibir datos de la red.

Esta capa proporciona servicios para soportar los procesos de comunicación para cada medio por el cual se transmitirán los datos.

Fuente: currícula Cisco CCNA Discovery 4.0

➤ Capas de operación de Ethernet dentro del Modelo OSI.

>Ethernet y el Modelo OSI.

❖ Los estándares para Ethernet (IEEE 802.3) especifican -mediante subcapas elementos que se encuentran ubicados en las capas 1 y 2 del modelo OSI.

➤ Capa de Enlace en IEEE 802

- •La subcapa de Control de Enlace Lógico (LLC) sigue siendo relativamente independiente del equipo físico que se utiliza en el proceso de comunicación.
- •Entrama el paquete de la capa de red.
- •ldentifica el protocolo de la capa de red.

4

➤ Capa de Enlace en IEEE 802

- La subcapa MAC trata los componentes físicos que se utilizarán para comunicar la información.
- ·Direcciona la trama.
- •Marca el comienzo y el fin de la trama.

➤ Capas de operación de Ethernet dentro del Modelo OSI.

La Capa 1 de Ethernet tiene un papel clave en la comunicación que se produce entre los dispositivos, pero cada una de estas funciones tiene limitaciones.

La Capa 2 se ocupa de estas limitaciones.

- ➤ Capas de operación de Ethernet dentro del Modelo OSI.
- La capa 1 no se puede comunicar con las capas superiores.
- La capa 2 hace esto con el control de enlace lógico (LLC).

Capas de operación de Ethernet dentro del Modelo OSI.

- La capa 1 no puede identificar computadoras.
- La capa 2 usa un proceso de direccionamiento.

➤ Direccionamiento Ethernet MAC.

❖ En la capa MAC, se agregan datos como encabezado e información final a los datos que vienen de las capas superiores.

