Objective

- 1. H.C.F of p^3q-pq^3 and $p^5q^2-p^2q^5$ is ____
 - (a) $pq(p^2-q^2)$ (b) pq(p-q)
 - (c) $p^2q^2(p-q)$ (d) $pq(p^3-q^3)$ H.C.F. of $5x^2y^2$ and $20 x^3y^3$ is:__
- 2. H.C.F. of $5x^2y^2$ and $20 x^3y^3$ is:____ (a) $5x^2y^2$ (b) $20 x^3y^3$ (c) $100 x^5y^5$ (d) 5xy
- 3. H.C.F of x 2 and $x^2 + x 6$ is ____ (a) $x^2 + x - 6$ (b) x + 2
- (c) x-2 (d) x+2
- 4. H.C.F of $a^3 + b^3$ and $a^2 ab + b^2$ is
 - (a) a+b
 - (b) $a^2 ab + b^2$
 - (c) $(a-b)^2$ (d) $a^2 + b^2$
- 5. H.C.F of x^2-5x+6 and x^2-x-6 is __:
 - (a) x-3 (b) x+2
 - (c) x^2-4 (d) x-2
- 6. H.C.F of $a^2 b^2$ and $a^3 b^3$ is____ (a) a - b (b) a + b(c) $a^2 + ab + b^2$ (d) $a^2 - ab + b^2$
- 7. H.C.F of $x^2 + 3x + 2$, $x^2 + 4x + 3$, $x^2 + 5x + 4$ is:
 - (a) x+1 (b) (x+1)(x+2)
 - (c) (x+3) (d) (x+4) (x+1)
- 8. L.C.M of $15x^2,45xy$ and 30 xyz is___
 - (a) 90 xyz (b) $90x^2yz$
 - (c) 15 xyz (d) $15x^2 \text{yz}$
- - (c) $a^4 b^4$ (d) a b
- 10. The product of two algebraic expression is equal to the ____ of

their H.C.F and L.C.M.

- (a) Sum
- (b) Difference
- (c) Product
- (d) Quotient
- 11. Simplify $\frac{a}{9a^2-b^2} + \frac{1}{3a-b} =$ ____
 - $(a) \qquad \frac{4a}{9a^2 b^2}$
 - (b) $\frac{4a-b}{9a^2-b^2}$
 - (c) $\frac{4a+b}{9a^2-b^2}$
 - (d) $\frac{b}{9a^2-b^2}$
- 12. Simplify $\frac{a^2 + 5a 14}{a^2 3a 18} \times \frac{a + 3}{a 2} =$ ____
 - (a) $\frac{a+7}{a-6}$ (b) $\frac{a+7}{a-2}$
 - (c) $\frac{a+3}{a-6}$ (d) $\frac{a-3}{a+2}$
- 13. Simplify

$$\frac{a^3 - b^3}{a^4 - b^4} \div \left(\frac{a^2 + ab + b^2}{a^2 + b^2}\right) = \underline{\hspace{1cm}}$$

- (a) $\frac{1}{a+b}$ (b) $\frac{1}{a-b}$
- (c) $\frac{a-b}{a^2+b^2}$ (d) $\frac{a+b}{a^2+b^2}$
- 14. Simplify:

$$\left(\frac{2x+y}{x+y}-1\right) \div \left(1-\frac{x}{x+y}\right)$$

=___

(a)
$$\frac{x}{x+y}$$
 (b) $\frac{x}{x-y}$

(c)
$$\frac{y}{x}$$
 (d) $\frac{x}{y}$

The square root of $a^2 - 2a + 1$ is ___ 15.

(a)
$$\pm$$
 (a+1) (b) \pm (a-1)

$$(d)$$
 a+1

What should be added to complete 16. the square of $x^4 + 64$?

(a)
$$8x^2$$

$$8x^2$$
 (b) $-8x^2$ $16x^2$ (d) $4x^2$

$$(c)$$
 16x

The square root of $x^4 + \frac{1}{x^4} + 2$ is 17.

(a)
$$\pm \left(x + \frac{1}{x}\right)$$

(a)
$$\pm \left(x + \frac{1}{x}\right)$$
 (b) $\pm \left(x^2 + \frac{1}{x^2}\right)$

(c)
$$\pm \left(x - \frac{1}{x} \right)$$
 (d) $\pm \left(x^2 - \frac{1}{x^2} \right)$

(d)
$$\pm \left(x^2 - \frac{1}{x^2}\right)$$

The square root of $4x^2-12x+9$ is: 18.

(a)
$$\pm (2x - 3)$$

(b)
$$\pm (2x + 3)$$

(c)
$$(2x + 3)^2$$

(d)
$$(2x-3)^2$$

(a)
$$\frac{p(x)\times q(x)}{\text{H.C.F}}$$
 (b) $\frac{p(x).q(x)}{\text{L.C.M}}$

(c)
$$\frac{p(x)}{q(x) \times H.C.F}$$
 (d) $\frac{q(x)}{p(x) \times H.C.F}$

(a)
$$\frac{p(x)\times q(x)}{L.C.M}$$
 (b) $\frac{p(x)\times q(x)}{H.C.F}$

(c)
$$\frac{p(x)}{q(x) \times L.C.M}$$
 (d) $\frac{L.C.M}{p(x) \times q(x)}$

(a)
$$p(x) \times q(x)$$
 (b) $p(x) \times H.C.F$

(c)
$$q(x) \times L.C.M$$
 (d) None

Any unknown expression may be 22. found if ____ of them are known by using the relation

$$L.C.M \times H.C.F = p(x) \times q(x)$$

- (a) Two
- Three (b)
- Four (c)
- (d) None

1.	a	2.	a	3.	С	4.	b	5.	a
6.	a	7.	a	8.	b	9.	С	10.	С
11.	С	12.	a	13.	a	14.	d	15.	b
16.	С	17.	b	18.	a	19.	a	20.	a
21	2	22	h				<u> </u>		