Pigeonhole Principle and Extended Pigeonhole Principle

Reynard Gunawan

Tuesday 12th September, 2023

Contents

1	Pigeonhole Principle			
	1.1	Example		
	1.2	Proof		
2	Extended Pigeonhole Principle			
	2.1	Example		
	0.0			
	2.2	Proof		

1 Pigeonhole Principle

The **Pigeonhole Principle** is a fundamental concept in discrete math that states that if n items are put into m containers, with n > m, then at least one container must have more than one item. In mathematical terms, let's consider a mapping $f: X \to Y$, where X represents the set of pigeons and Y represents the set of pigeonholes. If the cardinality of set X is greater than the cardinality of set Y, denoted as |X| > |Y|, then according to the Pigeonhole Principle, there must exist at least one pair of distinct elements x_1 and x_2 in set X such that $x_1 \neq x_2$ and yet their mappings are the same, i.e., $f(x_1) = f(x_2)$.

$$f: X \to Y, |X| > |Y| \Rightarrow \exists x_1, x_2 \in X: x_1 \neq x_2 \land f(x_1) = f(x_2)$$

1.1 Example

If there is a group of 25 people, prove that at least 3 of them must have a birthday in the same month.

1.2 Proof

Assuming we have the worst-case scenario where the birth months are distributed as evenly as possible. This means that every month must have at least 2 people who have their birthdays in that month, with a total of 24 people. No matter where the last person's birth month is, it will always result in 1 month having at least 3 people with the same birth month.

2 Extended Pigeonhole Principle

The **Extended Pigeonhole Principle** extends the classic Pigeonhole Principle that takes into account scenarios where distribution is not uniform in size. Given a set of pigeons X and a set of pigeonholes Y, if the cardinality of X is greater than the k times the cardinality of Y, where $|X| > k \cdot |Y|$, the Extended Pigeonhole Principle guarantees that there must be a pigeonhole that contains at least k+1 pigeons.

$$\left\lceil \frac{|X|}{|Y|} \right\rceil$$
 OR $\left\lceil \frac{|X|-1}{|Y|} \right\rceil + 1$

2.1 Example

If there are 30 dictionaries in a library that contain a total of 61327 pages, prove that one of the dictionaries must have at least 2045 pages.

2.2 Proof

Assuming the worst-case scenario again, if we were to set the 61327 pages to X and the 30 dictionaries to Y, using one of the equation above would result in 2045. This means that a dictionary in the set of pages to have at least 2045 pages.

3 Typography

- Set: $A = \{a_1, a_2, \dots, a_n\}$
- Member of: $x \in A$
- \bullet Cardinality: |A| denotes the number of elements in set A
- Mapping: $f: A \to B$
- Equal: a = b
- Not equal: $a \neq b$
- Floor: $\lfloor x \rfloor$
- Ceiling: $\lceil x \rceil$
- Fraction: $\frac{a}{b}$
- Sequence: (a_1, a_2, \ldots, a_n)