Physics Paper 2 Semester I Session 2015/2016 $2^{1}/_{2}$ hours Fizik Kertas 2 Semester I Sesi 2015/2016 $2^{1}/_{2}$ jam

BAHAGIAN MATRIKULASI MATRICULATION DIVISION

PEPERIKSAAN SEMESTER PROGRAM MATRIKULASI MATRICULATION PROGRAMME EXAMINATION

FIZIK Kertas 2 2 ½ jam

JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO

Answer question 1 and any other 5 questions.

In an experiment, a 400 g wooden block is pulled on a horizontal wooden surface. The limiting friction, f_s between the block and wooden surface is measured repeatedly by adding load, m on the block as given in TABLE 1.

□ A	DI		1
Δ.	кі	. н	

Length, l (cm)	Frequency, f(Hz)	Period, T(s)
14.2	256	
12.8	289	
10.9	325	
9.7	384	
8.6	444	
7.6	486	

2 (a) Describe a free falling body

FIGURE 1

- (b) **FIGURE 1** shows the velocity-time graph of a toy train moving on a straight track in 55 s.
 - (i) Determine the time and acceleration at point P when the velocity is zero.
 - (ii) Is the total distance travelled by the train less than, equal or greater than its total displacement? Justify your answer using calculation.
- (c) A javelin is thrown with a speed of 55 m s⁻¹ at an angle of 42⁰ with the horizontal. Calculate the velocity of the javelin after 5 s.
- 3 (a) (i) How is force related to momentum?
 - (ii) State a physical quantity used to indicate the difference between elastic collision and inelastic collision.

SF016/2 SF016/2

FIGURE 2

- (b) **FIGURE 2** shows a 2.5 kg block connected to a 2 kg load by a light string through a pulley of negligible mass. The coefficient of kinetic friction between the block and table is 0.18. When the system is released, calculate the
 - (i) Acceleration of the block
 - (ii) Tension in the string.
 - (iii) Total kinetic energy of the system after the block has moved 0.6 m using the work energy theorem.
 - (iv) Final velocity, v_f of the block
- (c) Assuming that the mass of the pulley in question 3(b) cannot be neglected, will the new final velocity of the block be lower, the same or higher than the v_f in 3(b)(iv)? Explain your answer
- **4** (a) (i) What is meant by centripetal force?
 - (ii) A cyclist rides on a horizontal circular track. With the aid of an appropriate labeled force diagram, explain why the cyclist has to lean towards the centre of the track.
 - (iii) Refer to the cyclist in question 9a(ii). Let v be the maximum speed of the cyclist, r the radius of the track, μ the coefficient of friction between the tyres and track, and g the gravitational acceleration. Determine μ in terms of v, r and g.
 - (b) (i) State Newton's law of gravitation.
 - (ii) Sketch a graph of gravitational field strength, a_g against distance r from the surface of the Earth. Label the radius of the Earth, R on the graph.
 - (iii) The radius and mass of planet Mars are 3390 km and 6.42 x 10²³ kg respectively. Calculate the acceleration due to gravity at the surface of the planet.
 - (c) (i) Derive the period of a satellite motion.

(ii) Calculate the distance from the centre of the Earth for a satellite to remain above the same location on the Earth equator. The mass of the Earth is 5.97×10^{24} kg.

FIGURE 3

- 5 (a) FIGURE 3 shows a uniform beam PQ of weight 240 N leaning on a smooth wall and resting on a rough floor with a minimum inclination angle θ_{min} . The coefficient of friction between the beam and floor is 0.25.
 - (i) State **two** (2) conditions for equilibrium of the beam.
 - (ii) Sketch all forces acting on the beam.
 - (iii) Determine the forces acting on the beam at P and Q.
 - (iv) Determine $\theta_{min.}$
 - (v) What will happen to the beam if the inclination angle is changed? Consider both cases: $\theta_{new} < \theta_{min}$ and $\theta_{ncw} > \theta_{min}$ with θ_{new} less than 90°.
 - (b) A 15 N m torque acts on a grinding wheel after the power is switched off. Given the angular velocity of the wheel is 1200 *rpm* and its moment of inertia is 0.8 kg m², calculate the time for the wheel to stop.
- **6** (a) (i) Define Simple Harmonic Motion (SHM)
 - (ii) Sketch a graph of potential energy against displacement for SHM.

FIGURE 4

- (b) A 0.2 kg object performs SHM with displacement, x from the equilibrium point as in **FIGURE 4.**
 - (i) Determine the amplitude.
 - (ii) Calculate the angular velocity.
 - (iii) Calculate the total energy of the system.
- (c) The displacement x of a particle varies with time, t is given by

$$x = 4.0 \cos{(2\pi t + \frac{\pi}{2})}$$

where *x* is in cm and *t* in s. Calculate the

- (i) frequency of the motion.
- (ii) velocity of the particle at t = 2 s.
- (iii) acceleration of the particle at t = 2 s.

FIGURE 5

- **7** (a) **FIGURE** 5 shows a progressive wave travelling at a speed of 24 m s⁻¹ to the right.
 - (i) Determine the wave number.
 - (ii) Calculate the frequency of the wave.
 - (iii) Write the wave equation.

(b) A man stands by the roadside when an ambulance passes by him with constant velocity 18 m s⁻¹. The ambulance emits siren with frequency 256 Hz. The speed of sound is 340 m s⁻¹.

- (i) Calculate the apparent frequency of the siren heard by the man before the ambulance passes by him.
- (ii) Sketch a graph of the apparent frequency against distance travelled.
- (iii) Sketch a graph of siren intensity against distance.
- (c) (i) Why is Hooke's law not applicable in the case of plastic deformation?
 - (ii) A 50 cm wire has Young's modulus 175 GPa and diameter 0.25 mm. Calculate the force needed to elongate the wire 1.5 mm.
- **8** (a) (i) Define the coefficient of volume thermal expansion.

FIGURE 6

- (ii) A composite rod is made by joining a copper rod of diameter 4 cm with an iron rod of similar diameter. The rod is insulated and its ends are kept at two different temperatures as shown in **FIGURE 6**. The coefficient of thermal conductivity of copper and iron are 385 W m⁻¹ K⁻¹ and 80 W m⁻¹ K⁻¹ respectively. Determine the temperature at the joint.
- (b) (i) State the principle of equipartition of energy.
 - (ii) Calculate the *rms* speed of helium atoms at temperature $1 \times 10^{-4} \text{ K}$. Molar mass of helium is 4 g mol^{-1} .
- (c) (i) On the same p-V graph, sketch individual curve for isothermal, isobaric and adiabatic process.
 - (ii) Explain why a gas becomes colder when it expands adiabatically.