Convolutional NN

Introduction

Uros Stegic *uros.stegic@everseen.com*

Description

- ► Process & analyze visual signal
- Extract information from visual signal
- ► Perform on raw signal (pixel intensities values)

Enhance Intuition

Computer Graphics

$$(x_0, y_0) = (9, 8)$$

 $r = 7$

Computer Vision

$$(x_0, y_0) = (9, 8)$$

 $r = 7$

Tasks in Computer Vision

- ► Object Recognition
- ► Image Retrieval
- ▶ Object Detection
- OCR
- Pose Estimation
- ...

- ▶ Tracking
- Scene Reconstruction
- Optical Flow
- Semantic Segmentation
- ► Image Reconstuction
- ...

Tasks in Computer Vision

- ► Object Recognition
- ► Image Retrieval
- ▶ Object Detection
- ► OCR
- ► Pose Estimation
- **.**..

- ► Tracking
- ► Scene Reconstruction
- ► Optical Flow
- Semantic Segmentation
- ► Image Reconstuction
- **.**..

Convolution Operator - Definition

Let $A, B \in \mathcal{D} \subseteq \mathbb{R}^{n \times n}$. Convolution operator, denoted as * maps the space $\mathcal{D} \times \mathcal{D}$ to a field of real numbers and is defined as follows:

$$A*B = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}B_{ij}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 2 * 1 + 4 * 1 + 6 * 1 + 8 * 1 = 20$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 2 * 1 + 4 * 1 + 6 * 1 + 8 * 1 = 20$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 2 * 1 + 4 * 1 + 6 * 1 + 8 * 1 = 20$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 2 * 1 + 4 * 1 + 6 * 1 + 8 * 1 = 20$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 2 * 1 + 4 * 1 + 6 * 1 + 8 * 1 = 20$$

Filters

[211 138 151 129 140 221	39 44 73 101 122 115	200 184 190 123 153 77	102 110 114 181 231 244	174 193 189 201 209 198	25 30 41 169 157 149	90 92 105 117 124 156	144 136 128 191 113 247	*	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	1 0 1	0 1 0	
[221	115	77	244	198	149	156	247]					

Filters - Examples

- ► Vertical Edge Extractor
- ► Horizontal Edge Extractor
- ► Sobel filter
- Sharpen
- ► Gaussian Blur

Filters - Edge Extractor

$$*\begin{bmatrix}1 & 0 & -1\\1 & 0 & -1\\1 & 0 & -1\end{bmatrix} =$$

Filters - Edge Extractor

$$*\begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} =$$

Filters - Sobel

$$*\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} =$$

Filters - Gaussian Blur

$$*\frac{1}{256}\begin{bmatrix}1&4&6&4&1\\4&16&24&16&4\\6&24&36&24&6\\4&16&24&16&4\\1&4&6&4&1\end{bmatrix}=$$

Multiple Input Channels

Figure: Convolution of multichannel image

Multiple Filters

Basic Concepts

Figure: Convolutional layers stacked

Basic Concepts - Takeaway

- ► Image Classification
- ► Parameters (filters) Learning [LBD+89]
- ▶ Weight Sharing
- ► Feature Extraction
- ► Translation invariant

Basic Concepts - Feature Abstractions

Figure: Feature Visualization [ZF13]

Basic Concepts - Pooling Layers

- Sampling important Features
- ► Reduce Computation Time
- Make Features Robust

Basic Concepts - Pooling Layers (Example)

Pooling Layer - Max Pooling

$$\begin{bmatrix} 9 & 2 & 4 & 1 \\ 3 & 1 & 8 & 2 \\ 4 & 5 & 9 & 2 \\ 5 & 6 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 9 & 8 \\ 6 & 9 \end{bmatrix}$$

Basic Concepts - Architecture

Figure: Convolutional Neural Network - Example

CNN Architecture - Lenet-5

Figure: Lenet-5 Architecture [LBBH98]

CNN Architecture - AlexNet

Figure: AlexNet Architecture [KSH12]

CNN Architecture - VGG

Figure: VGG Architecture

CNN - Problems

- ► Vanishing Gradient
- Exploding Gradient
- Computational Complexity

Residual Block

Figure: Residual Block (Skip Connection) [HZRS15]

Residual Network

Figure: CNN Architecture - ResNet-34 [HZRS15]

1x1 Convolution

Figure: 1x1 Convolution [LCY13]

Inception Module - Idea Filter concatenation 1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling Previous layer

Figure: Inception Module Naive Version [SLJ+14]

Inception Module - Redone

Figure: Inception Module With Dimension Reduction [SLJ⁺14]

Inception Network

Figure: Inception Network (GoogLeNet) [SLJ⁺14]

CONVERGENCE

References I

- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, <u>Imagenet classification</u> with deep convolutional neural networks, Advances in Neural Information Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.), Curran Associates, Inc., 2012, pp. 1097–1105.
- Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, IEEE (1998), 2278–2324.
- Yann Lecun, Bernhard Boser, John Denker, Don Henderson, R E. Howard, W.E. Hubbard, and Larry Jackel, <u>Backpropagation applied to handwritten zip code recognition</u>, Neural Computation **1** (1989), 541–551.
- Min Lin, Qiang Chen, and Shuicheng Yan, Network in network, CoRR abs/1312.4400 (2013).

References II

- Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, Going deeper with convolutions, CoRR abs/1409.4842 (2014).
- Matthew D. Zeiler and Rob Fergus, <u>Visualizing and understanding convolutional networks</u>, CoRR **abs/1311.2901** (2013).