전자회로 실험

2022년 1학기

담당교수 고윤호

전화 821-6860 / 이메일 koyh@cnu.ac.kr

1. 수업목표

- 회로의 신호를 분석하기 위한 기본 장비의 사용법을 익힙니다.
- RLC 소자(저항, 인덕터, 커패시터)와 반도체 소자(다이오드, 트랜지스터, 연산증폭기)의 실 제적인 특성을 분석하고, 소자들이 이루는 전기 및 전자회로에 대한 기본적인 지식을 실험을 통해 증명합니다.
- 프로젝트를 통해 응용 회로를 설계함으로써 이론에서 배운 내용을 심화합니다.

2. 주요교재

- 주교재 : Pspice를 이용한 전자회로 분석과 응용 실험 (정슬)

3. 학습평가방법

프로젝트 30% (결과발표 15%, 분석보고서 15%), 보고서 60%(예비 30%, 결과 30%), 출석 10%

4. 실험 조교 및 문의처

영상시스템연구실. 514호. (☎. 내선 : 7787, 외선 : 042-821-8976) 함수린 : (E-mail : tnfls815@naver.com, ☎ : 010-4705-8273)

5. 주별 실험 실습 계획

주차	No	실험내용
1주차		전기기기 및 전기소자에 대한 소개
2주차	1	전압·전류 측정 / 함수 발생기와 Oscilloscope
3주차	2	키르히호프의 전압·전류 법칙 / 전압분배·전류분배기
4주차	3	테브난 정리 / 노튼 정리 / 중첩의 원리
5주차	4	커패시터의 충전 및 방전
6주차	5	R-L, R-C 직·병렬 회로
7주차	6	PN 접합 다이오드의 특성
8주차		설계 프로젝트 중간발표
9주차	7	변압기 및 정류회로
10주차	8	다이오드 응용회로, 제너다이오드 실험
11주차	9	Bipolar Transistor의 특성
12주차	10	BJT 트랜지스터의 증폭회로
13주차	11	OP Amp 특성 및 응용 회로
14주차		프로젝트 제작
15주차		프로젝트 발표 (추후 일정 공지)

6. Course Policy

- 실험은 2개의 분반으로 운영되며 조 단위로 실험 수행합니다. (2인 1조를 원칙)
- 각 주차 실험은 [이론적 내용 학습] -> [시뮬레이터를 이용한 예비실험] -> [예비보고서 작성] -> [본 실험] -> [실험 결과 정리] -> [결과보고서 작성]의 흐름으로 진행됩니다.

[예비 조 운영]

- 예비 조는 해당 주에 주어진 실험을 선행하고, 조교의 지도하에 실험 준비, 실험 보조 및 뒷정리를 도와야 합니다.
- 예비 조의 실험과 실험 준비는 해당 주차 전 주 금요일까지 각 분반 조교 및 준비실과 일 정을 합의하고 진행합니다.
- 예비 조는 예비 실험을 수행하기 전에 해당 실험내용을 숙지하고 임해야 합니다.
- 예비 조는 본 실험 시간에 실험 시작에 앞서 실험 목적과 실험 방법을 발표해야 합니다.

[실험 보고서]

- 모든 보고서는 실험 날에 제출합니다.
- 예비보고서는 실험 시간(2시간)에 실험 수행 후 각 분반 담당 조교에게 검인을 받은 후 제출해야 합니다. (실험 시간 초과 시 검인 없이 제출)
- 결과보고서는 차주 실험 시작 시 제출합니다.
- 예비보고서의 검인이 없을 시 실험을 완수하지 않은 것으로 간주, 해당 주차 예비보고서와 결과보고서 점수가 미완성 실험 당 -2점 처리됩니다. 단, 해당 주차 결과보고서 제출 전까지 실험을 완료해 검인을 받으면 페널티는 실험 당 -1점이 됩니다.
- 예를 들어, n주차의 5개의 실험 중 3개만 수행하고 2개를 수행하지 못해 검인을 받지 못한 경우. n주차 예비보고서는 6점(10-2×2) 만점이며, 결과보고서는 6점 만점(10×3/5)으로 채점됩니다. 하지만, 결과보고서 제출 전까지 조교 및 준비실과 시간을 정해 나머지 2개의 실험을 완수한 경우 해당 페널티는 완화되어, 예비 결과 모두 8점 만점으로 채점합니다.
- 예비보고서는 각자 작성하며, 결과보고서는 조별로 하나씩 작성합니다.
- 다른 사람의 보고서를 도용하는 경우 0점 처리하며, 향후 작성해야 할 모든 보고서를 수기로 작성해야 합니다.
- 도용 문제의 경우 증명할 수단이 있다면 해당 의견을 수용하여 결과가 변경될 수 있지만, 정에 의한 호소는 인정하지 않습니다.

[도용]

- 기본적인 양식이 일치하지 않는 경우.
- 복수의 보고서에 같은 문장 또는 같은 사진이 사용된 경우.
- 복수의 보고서에 같은 틀린 내용이 서술된 경우.
- 공지된 실험과 다른 실험내용이 포함된 경우.
- 공지된 실험과 다른 수치가 기록된 경우.
- 기타 조교의 판단 하에 도용한 것으로 간주한 경우.

[출석]

■ 1시간 미 출석 시 마다 전체 점수에서 1점, 1회 지각 시 전체 점수에서 1점 감점합니다.

[실험장비 대여(예정)]

- 수요조사 이후 결정.
- 실험과 프로젝트 제작에 필요한 장비를 대여합니다. 장비의 분실과 관리 미흡에 대비해 10,000원의 보증금을 받고 대여합니다. 프로젝트 발표일에 장비 반납 확인 후, 보증금을 전액 돌려줍니다.
- 실험장비의 분실이나 관리 미흡에 의한 고장은 보증금에서 일정 금액을 차감합니다. (단, 소모품의 단순 고장의 경우는 실험 시간 안에 조교에게 장비 고장을 보고하면 제외합니다.)
- 신청기한은 3월까지이며, 그 이후에는 신청을 받지 않습니다.
- 실험장비를 대여하지 않는 경우, 정해진 실험 시간 전에 조교에게 실험장비를 받아 실험을 진행하고 실험 시간 종료 시 반납합니다. 프로젝트 기간에는 장비를 빌린 당일 6시 이전 반납을 원칙으로 합니다. 정해진 시간 내에 반납이 이루어지지 않을 시에는 페널티가 부여됩니다. 마찬가지로, 분실이나 관리 미흡에 의한 장비 고장은 보상이 필요합니다.
- 실험장비 구성품: 멀티미터 1개, 멀티미터 프로브 1세트, 오실로스코프 프로브 2개, 함수 발생기 프로브 1개, 파워 서플라이 프로브 1세트, 인두기 1개, 인두기 거치대 1개, 스트리퍼 1개

[실습실 지침]

- 장비는 반드시 조에 할당된 것만을 이용하며, 타조 장비를 이용할 경우 조교에게 허락을 구하여야 합니다.
- 장비를 함부로 다루지 않아야 하며, 고장 발견 즉시 조교에게 신고하여야 합니다. 부주의 로 장비를 훼손하는 일이 절대 없어야 합니다.
- 정해진 실험 시간에는 실험에만 전념하여야 하며, 특별한 사유 없이 정해진 실험 시간을 초과하지 않아야 합니다.
- 실험실에서 타인과 실험에 필요하지 않은 잡담을 일절 금합니다.

● 기타 유의 사항

4. 각 주차 실험내용은 홈페이지에 공지하기 때문에 수시로 확인 바랍니다.

https://isl-homepage.github.io/

Lecture // 전자회로실험

- ♣. 기본적으로 Syllabus의 내용과 채점 기준을 따르지만, 실험실 홈페이지의 공지사항의 내용을 우선시합니다.
- ex) 예비보고서가 3장을 넘기면 감점이지만, 예비보고서에 들어갈 내용이 많아 8장까지 인정하는 공지가 있을 때 이를 기준으로 채점합니다.

[분반 운영 계획(예정)]

시간	운영 내용	담당자
월요일 13:00~16:00	A 분반 실험	함수린
목요일 15:00~18:00	B 분반 실험	고윤호

0주차. 예비보고서(10점 만점, 개인 제출)

과목	전자회로실험	학번	202100000	이름	이몽룡
소속	메카트로닉스공학과	분반/조	A반 1조	제출일	2022.00.00

1. 실험 제목 및 목적

- 실험 제목 및 실험의 목적을 서술합니다.

2. 예비학습

- 이번 실험을 위해 필요한 내용을 정리합니다.

3. 예비실험

- 실험 n. [실험 제목](n = {1, 2, 3, …}, n은 각 주차의 수행할 실험들의 번호입니다. 만약 2 주차 실험이 3개면, 순서대로 실험 1. 실험 2. 실험 3. 으로 작성합니다.)
 - 1) 시뮬레이터에 구현한 회로 및 실험 요약
 - 예비실험에 사용하는 회로 사진을 첨부합니다.
 - 실험 진행을 위한 정보를 서술합니다.

2) 실험 결과.

- 실험에서 요구하는 실험 결과를 정리합니다.

0주차. 결과보고서(10점 만점, 조별 제출)

과목	전자회로실험	학번	202100000 202100000	이름	이몽룡 성춘향
소속	메카트로닉스공학과	분반/조	A반 1조	제출일	2022.00.00

1. 실험 제목 및 목적

_

2. 실험 결과

- 실험 n. [실험 제목] -> 예비보고서와 똑같이 작성
 - 1) 실험에 사용한 회로 및 실험 요약
 - 실제 실험에 사용한 회로 사진을 첨부합니다.
 - 실험 진행을 위한 정보를 서술합니다.

2) 실험 결과

- 실험 결과를 정리합니다.
- 실제 실험을 통해 얻은 결과뿐만 아니라 이론적으로 얻은 결과, 예비보고서를 통해 확인 한 시뮬레이션 결과를 비교할 수 있도록 모두 기록합니다.

3) 실험 결과 분석

- 실제 실험을 통해 얻은 결과와 이론상 얻은 결과의 오차를 구하고 분석내용을 서술합니다. ex) 오차의 상태, 오차의 원인, 오차를 줄이려는 방안 등 다양한 생각을 서술 합니다.
- 실험 결과 분석에는 수치적인 분석내용이 포함되도록 합니다.

3. 고찰

- 고찰에는 실험내용의 활용방안, 실험내용을 일상생활에서 확인 할 수 있다면, 어디에 활용되는지 등 다양한 생각을 서술합니다. (감상문 금지)
- 또한, 실험 공지사항에 해당 주차 별 추가적인 사항이 작성항목이 있을 수 있습니다.

<기타 보고서 감점 사항 및 주의 사항>

- 붉은색 글씨는 모두 지우고 보고서를 작성합니다.
- 보고서 내용은 검은색으로 작성합니다.
- 강조하고 싶은 내용은 굵게 또는 밑줄을 활용합니다.
- 실험번호와 제목이 틀리지 않도록 주의합니다.
- 결과보고서에 첨부하는 회로 사진은 학번과 이름이 같이 촬영된 사진을 사용합니다.
- 첨부하는 이미지의 가로, 세로 비율을 변경하지 않도록 합니다.
- 기타 상식 범위를 넘어서는(ex. 인적사항 미변경, 완성되지 않은 문장 등) 내용이 포함되지 않도록 합니다.
- 특별한 이유 없이 정해진 시간에 보고서를 제출하지 못한 경우 : -1
- 기한 내에 제출하지 않았을 때 : -2점 x 지연일 수 (한도 없음)
- ex) 실험 시간 후에 결과보고서 제출 : 지정 시간 미준수 -1 실험 다음 날에 결과보고서 제출 : 지정 시간 미준수 -1, 기한 미준수 -2(총 -3)
- 양식 불일치(기본적인 틀, 쪽 번호 표시, 들여쓰기 등) : 항목 당 -1점
- 분량 초과(예비 : [실험수×0.5+1(반올림)]장, 결과 : [실험수 +1]장) : 페이지 당 -1점
- ex) 실험이 3개인 실험: 예비보고서 3장, 결과보고서 4장. 실험이 4개인 실험: 예비보고서 3장, 결과보고서 5장.
- 내용 미흡 : -1점
- 기타 공지된 추가 사항 누락 : 항목 당 -1점

예시 주차. 예비보고서

과목	전자회로실험	학번	202112345	이름	이몽룡
소속	메카트로닉스공학과	분반/조	A반 1조	제출일	2022.03.01

1. 실험 제목 및 목적

- 옴의 법칙 확인
- 전원과 저항이 있는 폐회로에서 '전압, 전류, 저항의 관계'를 실험을 통해 확인한다.

2. 예비학습

옴의 법칙은 폐회로에서 전압, 저항, 전류의 관계를 나타내는 법칙이다. 이를 수식으로 표현하면 다음과 같다. 수식의 V는 전압, I는 전류, R은 저항을 의미한다.

$$I = \frac{V}{R}$$

3. 예비실험

- 실험 1. [전류의 크기는 전압의 크기에 비례하는가?]
 - 1) 시뮬레이터에 구현한 회로 및 실험 요약

<실험 요약>

	전압 V_1	저항 R_1
실험 A	1 V	1Ω
실험 B	5V	1Ω
실험 C	10V	1Ω

2) 실험 결과.

	실험 A	실험 B	실험 C
전류 I_1	1A	5A	10A

- 실험 2. [전류의 크기는 저항의 크기에 반비례하는가?]

---- 생략 ----

예시 주차. 결과보고서

과목	전자회로실험	학번	202112345 202198765	이름	이몽룡 성춘향
소속	메카트로닉스공학과	분반/조	A반 1조	제출일	2022.03.01

1. 실험 제목 및 목적

- 옴의 법칙 확인
- 전원과 저항이 있는 폐회로에서 '전압, 전류, 저항의 관계'를 실험을 통해 확인한다.

2. 실험 결과

- 실험 1. [전류의 크기는 전압의 크기에 비례하는가?]
 - 1) 실험에 사용한 회로 및 실험 요약

<실험 요약>

전압 V_1	저항 R_1
1V	1Ω
5V	1Ω
10V	1Ω
	$\frac{1}{V}$ $5V$

2) 실험 결과

	실험 A	실험 B	실험 C
전류 I_1 (이론)	1A	5A	10A
전류 I_1 (예비)	1A	5A	10A
전류 I_1 (실험)	0.992A	4.957A	9.913A

3) 실험 결과 분석

	실험 A	실험 B	실험 C
실험 오차	0.008A	0.043A	0.087A

- 3종류의 실험 모두 약 0.8%정도의 오차가 발생하는 것을 확인했다.
- 실험과정에서 발생한 오차는 실험에 사용한 저항의 컬러코드를 이용해 추측할 수 있으며, 실험에 사용한 저항의 경우 오차를 나타내는 컬러코드는 금색으로 $\pm 5\%$ 범위의 오

차를 갖는 저항을 사용했다.

- 이를 확인 하기 위해 실험에 사용한 저항의 크기를 멀티미터로 측정했으며, 측정 결과 컬러코드의 $\pm 5\%$ 의 오차 범위 안에 들어오는 1.01Ω 의 값을 갖는 것을 확인했다.
- 측정된 저항의 크기를 기반으로 본 실험에서 확인하고자 하는 "전류의 크기는 전압의 크기에 비례하는가?"를 확인 할 수 있다.
- 실험 2. [전류의 크기는 저항의 크기에 반비례하는가?]

---- 생략 ----

3. 고찰

- 옴의 법칙은 폐회로에서 전압, 저항, 전류의 관계를 나타내는 법칙으로 회로에 흐르는 전류의 크기는 전압에 비례하고, 저항에 반비례함을 수식으로 표현한 것이다.
- 옴의 법칙은 회로 해석에 있어서 기본이 되는 법칙이기 때문에 이번 실험과 달리 복수의 전압원과 복수의 저항이 존재하는 회로를 해석할 때에도 사용된다.
- 이번 실험의 경우 멀티미터를 처음 사용해서 동작을 익히는 데 많은 시간을 소비했다. 하지만, 이번 경험을 바탕으로 다음 실험은 능숙하게 다룰 수 있다고 생각한다.(<- 일기, 감점)

---- 생략 ----