1 Proofs of Theorems and Lemmas

THEOREM 4.1. Let $\mathcal C$ be a collection of itemsets and let $\mathcal D$ be a dataset. Let d be the maximum integer for which there are at least d transactions $\tau_1, \dots, \tau_d \in \mathcal{D}$ such that the set $\{\tau_1, \dots, \tau_d\}$ is an antichain, and each τ_i , $1 \le i \le d$ contains at least 2^{d-1} itemsets from C. Then $EVC(\mathcal{R}(C), \mathcal{D}) \leq d$.

Proof. The antichain requirement guarantees that the set of transactions considered in the computation of d could indeed theoretically be shattered. Assume that a subset ${\mathcal F}$ of ${\mathcal D}$ contains two transactions τ' and τ'' such that $\tau' \subset \tau''$. Any itemset from C appearing in τ' would also appear in τ'' , so there would not be any itemset $A \in \mathcal{C}$ such that $\tau'' \in T(A) \cap F$ but $\tau' \notin T(A) \cap \mathcal{F}$, which would imply that \mathcal{F} can not be shattered. Hence sets that are not antichains should not be considered. This has the net effect of potentially resulting in a lower d, i.e., in a stricter upper bound to $\mathsf{EVC}(\mathcal{R}(\mathcal{C}), \mathcal{D})$.

Let now $\ell > d$ and consider a set \mathcal{L} of ℓ transactions from \mathcal{D} that is an antichain. Assume that \mathcal{L} is shattered by $\mathcal{R}(\mathcal{C})$. Let τ be a transaction in \mathcal{L} . The transactions τ belongs to $2^{\ell-1}$ subsets of L. Let $\mathcal{K} \subseteq \mathcal{L}$ be one of these subsets. Since \mathcal{L} is shattered, there exists an itemset $A \in \mathcal{C}$ such that $T(A) \cap \mathcal{L} = \mathcal{K}$. From this and the fact that $t \in \mathcal{K}$, we have that $\tau \in T(A)$ or equivalently that $A \subseteq \tau$. Given that all the subsets $\mathcal{K} \subseteq \mathcal{L}$ containing τ are different, then also all the T(A)'s such that $T(A) \cap \mathcal{L} = \mathcal{K}$ should be different, which in turn implies that all the itemsets A should be different and that they should all appear in τ . There are $2^{\ell-1}$ subsets ${\mathcal K}$ of \mathcal{L} containing τ , therefore τ must contain at least $2^{\ell-1}$ itemsets from C, and this holds for all ℓ transactions in L. This is a contradiction because $\ell > d$ and d is the maximum integer for which there are at least d transactions containing at least 2^{d-1} itemsets from C. Hence L cannot be shattered and the thesis follows.

LEMMA 4.1. Let j be the minimum integer for which $b_i \leq L_i$. Then $\mathsf{EVC}(\mathcal{C}, \mathcal{D}) \leq b_i$.

Proof. If $b_i \leq L_i$, then there are at least b_i transactions which can contain 2^{b_j-1} itemsets from C and this is the maximum b_i for which it happens, because the sequence b_1, b_2, \dots, b_w is sorted in decreasing order, given that the sequence q_1, q_2, \dots, q_w is. Then b_i satisfies the conditions of Thm. 4.1. Hence $\mathsf{EVC}(\mathcal{C},\mathcal{D}) \leq b_i$.

LEMMA 5.1. Let γ be the set of maximal antichains in \mathcal{F} . If \mathcal{D} is an ε_1 -approximation to $(\mathcal{R}(2^I), \pi)$, then

- 1. $\max_{\mathcal{A} \in \mathcal{Y}} \mathsf{EVC}(\mathcal{R}(\mathcal{A}), \mathcal{D}) \ge \mathsf{EVC}(\mathcal{R}(\mathcal{B}), \mathcal{D})$, and
- 2. $\max_{\mathcal{A} \in \mathcal{Y}} VC(\mathcal{R}(\mathcal{A})) \ge VC(\mathcal{R}(\mathcal{B}))$.

Proof. Given that \mathcal{D} is an ε_1 -approximation to $(\mathcal{R}(2^I), \pi)$, then $\mathsf{TFI}(\pi, I, \theta) \subseteq G \cup C_1$. From this and the definition of negative border and of \mathcal{F} , we have that \mathcal{B}) $\subseteq \mathcal{F}$. Since \mathcal{B} is a maximal antichain, then $\mathcal{B} \in \mathcal{Y}$. Hence the thesis.

THEOREM 5.1. With probability at least $1 - \delta$, $\mathsf{FI}(\mathcal{D},I,\hat{\theta})$ contains no false positives:

$$\Pr(\mathsf{FI}(\mathcal{D}, I, \hat{\boldsymbol{\theta}}) \subseteq \mathsf{TFI}(\boldsymbol{\pi}, I, \boldsymbol{\theta})) \geq 1 - \delta$$
.

Proof. Consider the two events E_1 =" \mathcal{D} is an ε_1 approximation for $(\mathcal{R}(2^I), \pi)$ " and $\mathsf{E}_2 = \mathcal{D}$ is an ε_2 approximation for $(\mathcal{R}(\mathcal{B}), \pi)$ ". From the above discussion and the definition of δ_1 and δ_2 it follows that the event $E = E_1 \cap E_1$ occurs with probability at least $1 - \delta$. Suppose from now on that indeed E occurs.

Since E₁ occurs, then Lemma 5.1 holds, and the bounds we compute by solving the modified SUKP problems are indeed bounds to $VC(\mathcal{R}(\mathcal{B}))$ and $EVC(\mathcal{R}(\mathcal{B},\mathcal{D}))$. Since E_2 also occurs, then for any $A \in \mathcal{B}$ we have $|t_{\pi}(A) - f_{\mathcal{D}}(A)| \leq \varepsilon_2$, but given that $t_{\pi}(A) < \theta$ because the elements of \mathcal{B} are not TFIs, then we have $f_{\mathcal{D}}(A) < \theta + \varepsilon_2$. Because of the antimonotonicity property of the frequency and the definition of \mathcal{B} , this holds for any itemset that is not in $\mathsf{TFI}(\pi, I, \theta)$. Hence, the only itemsets that can have a frequency in \mathcal{D} at least $\hat{\theta} = \theta + \varepsilon_2$ are the TFIs, so $\mathsf{FI}(\mathcal{D}, I, \hat{\theta}) \subseteq \mathsf{TFI}(\pi, I, \theta)$, which concludes our proof.