7주차 1차시 주기억 장치의 개요

【학습목표】

- 1. 기억장치의 성능 평가 요소를 설명할 수 있다.
- 2. 중앙처리장치인 CPU와 주기억장치 간의 관계를 설명할 수 있다.

학습내용1: 기억장치의 성능과 계층구조

1. 기억장치의 구분

〈기억장치는 주기억장치와 보조기억장치로 구분〉

- * 주기억장치(main memory) : 중앙처리장치(CPU, Central Processor Unit)와 접근 통신이 가능한 기억장치
- * 보조기억장치(auxiliary memory) : 현재는 필요하지 않은 프로그램이나 데이터를 저장하고 있다가 데이터나 프로그램을 요구하는 경우 주기억장치로 데이터를 전달하는 저장장치

2. PC Motherboard에서 기억 장치의 위치와 종류

3. 기억장치의 성능 평가 요소

〈기억장치의 성능을 평가하는 대표적인 요소에는 기억용량, 접근 시간, 사이클 시간, 기억장치의 대역폭, 데이터 전송률, 가격이 있음〉

- ① 기억 용량(Capacity)
- 기억 용량의 단위는 비트(bit)를 기본으로 하며, 바이트(byte, 1byte = 8bit), 단어(word)가 있음
- ② 접근 시간(Access Time)
- 기억장치에 저장된 데이터를 읽거나 새로운 데이터를 기록하는 데 걸리는 시간임
- ③ 사이클 시간(Cycle time)
- 연속적으로 기억장치에 접근을 할 때, 두 번을 접근하데 요구되는 최소 시간임
- 반도체 기억장치와 같이 정보를 읽어도 기억장치에 정보가 그대로 남아 있는 비파괴 기억장치에서는 사이클 시간과 접근 시간은 동일함
- 자기 코어(magnetic core) 기억장치와 같은 파괴 기억장치는 정보를 읽어 내면 저장되었던 정보가 삭제되므로 읽기 위한 접근 시간과 정보를 다시 저장하기 위한 복원 시간을 합한 시간이 사이클 시간이 됨
- ④ 기억장치의 대역폭(Bandwidth)
- 기억장치가 한 번에 전송할 수 있는 비트 수 또는 저장할 수 있는 비트 수를 기억장치의 대역폭이라고 함
- ⑤ 데이터 전송률(Data Transportation)
- 기억장치에서 데이터를 읽는 과정을 수행할 때, 초(second)당 몇 비트의 데이터가 전송되어서 읽혀지는가를 나타낸 것이 데이터 전송률임
- ⑥ 가격(Cost)
- 일반적으로 기억장치의 가격은 기억장치의 처리속도와 비례함
- 컴퓨터 내부에서는 CPU의 처리속도와 보조를 맞추기 위해서는 고가의 기억장치를 사용함
 - 그러나 비용의 한계로 인해 대용량의 기억장치를 구비할 수 없음

4. 기억장치의 계층적 구조

〈기억장치의 성능을 평가하는 요소들은 서로 상관 관계를 가짐〉

- ① 데이터의 읽고, 쓰기 속도를 향상시키기 위해서는 고가의 고속 기억장치가 필요함
- ② 많은 양의 데이터를 저장하기 위해서는 기억장치의 용량이 커져야 하지만 적정 비용을 위해서는 저가의 기억장치가 필요함
- ③ 저가의 기억장치를 사용하면 기억장치의 접근속도는 그만큼 느려지게 됨

1) 기억장치 계층구조

5. 기억장치의 분류

- 1) 기억장치의 제조 재료에 따른 유형
- * 반도체 기억장치(semiconductor memory): 반도체 물질인 실리콘(Si) 칩을 사용하여 기억장치를 설계함
- * 자기-표면 기억장치(magnetic-surface memory): 자화 물질로코팅된표면에정보를저장함
- 2) 데이터를 저장하는 성질에 따른 유형
- * 휘발성(volatile) 기억장치 : 일정한 시간이 지나거나 전원 공급이 중단되면 기억장치 내의 기록된 모든 데이터가 지워지는 저장장치
- 예 : RAM
- * 비 휘발성 (nonvolatile) 기억장치 : 전원 공급이 중단되더라도 기억장치 내의 데이터들은 지워지지 않는 저장장치
- 예: ROM, CD-ROM
- 3) 기억장치 접근 방법에 따른 유형
- 순차적 접근(Sequential Access)
 - 기억장치에 데이터가 저장되는 순서에 따라 순차적으로 접근됨
 - 접근 시간은 원하는 데이터가 저장된 위치에 따라 결정됨
 - 자기 테이프가 순차적 접근을 하는 대표적인 장치
- 직접 접근(Direct Access)
 - 기억장소 근처로 이동한 다음 순차적 검색을 통하여 최종적으로 원하는 데이터에 접근함
 - 접근 시간은 원하는 데이터의 위치와 이전 접근위치에 따라 결정됨
 - 디스크가 직접 접근을 하는 대표적인 기억장치
- 임의 접근(Random Access)
 - 저장된 모든 데이터에 접근하는데 소요되는 시간이 이전의 접근 순서와는 무관하게 항상 일정한 방식임
 - 반도체 기억장치(RAM, ROM)가 임의 접근을 하는 대표적인 기억장치

학습내용2 : 주기억 장치의 구조와 동작

- 1. 중앙처리장치(CPU)와 주기억장치 간의 관계
- ① 주기억장치는 실행할 프로그램과 데이터를 저장함
- ② 중앙처리장치는 주기억장치에 저장된 프로그램에서 명령을 하나씩 제어장치로 꺼내서 해독함
- ③ 제어장치는 해독된 결과로 제어신호를 만들어 각 장치로 전달하여 동작되도록 함

2. 주기억장치의 구조

- ① CPU내의 제어장치는 데이터를 읽거나 쓰기 동작을 수행하도록 제어신호 발생함
- ② 쓰기 동작 모드
- 입력장치나 보조기억장치에서 주기억장치로 입력정보가 전달됨
- * 기록회로
- 입력된 프로그램과 데이터를 임시적으로 저장하였다가 기억매체에 전달함
- * 기억 매체
- 프로그램 명령과 프로그램에서 사용될 데이터를 실제로 기억하는 기억 소자들로 구성됨
- * 번지 선택 회로
- 데이터가 저장될 기억소자를 선택함

- ③ 읽기 동작 모드
- 제어장치는 읽기 제어신호를 발생하고 인출될 정보가 저장된 기억소자의 위치를 지정
- 판독 회로는 해당 번지에 저장된 내용을 판독하고 외부로 출력하게 됨

3. 명령어 사이클에서 주기억장치의 동작

1) 명령어 사이클 4단계

2) 주기억장치와 레지스터의 관계

- ① 인출 과정에서는 MAR이 지시하는 주기억장치의 주소 번지에서 데이터를 읽어와서 MBR에 저장함
- ② 저장 과정에서는 MAR에 저장되어 있는 주소 번지에 해당하는 주기억장치 위치에 MBR에 저장되어 있는 데이터를 저장하게 됨

학습내용3 : 주기억 장치의 분할

1. 주기억장치에 저장되는 프로그램

〈주기억장치에 저장되는 프로그램은 응용 프로그램과 시스템 프로그램임〉

- * 응용 프로그램 : 실행될 때만 주기억장치에 저장되었다가 수행이 종료되면 다른 프로그램으로 대체되거나 삭제됨 그리고 전원이 꺼지면 해당 프로그램은 삭제됨
- * 시스템 프로그램 : 컴퓨터가 구동되기 시작해서부터 종료될 때까지 주기억장치에 유지되어야 함

2. 주기억장치의 분할 구조

(운영체제 상주 구역) 비상주 구역	시스템 프로그램 영역	
사용자 응용프로그램 1		
사용자 응용프로그램 2	11071 00 파크그램 여여	
사용자 응용프로그램 3	사용자 응용프로그램 영역	
사용자 응용프로그램 4		

- * 시스템 프로그램 영역 : 운영체제가 저장되는 곳으로 상주 구역과 비상주 구역으로 분류
- * 상주구역(resident area) : 언제라도 바로 실행 될 수 있는 운영체제의 기본적 기능과 자주 사용되는 프로그램들이 기억되는 곳임
- * 비상주 구역(transient area) : 자주 사용되는 프로그램들이 아니고 필요할 때에만 보조기억장치에서 인출된 후, 저장되었다가 처리가 끝나면 다른 프로그램이 다시 그 장소를 사용 가능한 구역임
- * 사용자 응용 프로그램 영역
- 일반 프로그램이 기억되는 곳이며, 시스템 프로그램의 제어에 의해서 동작함
- 여러 부분으로 분할하고 독립된 프로그램들을 기억시켜, 다중 프로그래밍 방식으로 동작하는 것을 가능하게 함
- 운영체제는 사용자 프로그램 각각의 독립된 영역을 보호해주는 기억 보호(storage protection)를 수행함

3. 주기억장치 할당 방법

- 1) 사용자 응용 프로그램 영역을 효율적으로 사용하기 위한 고려사항
- ① 주기억장치에 한 번에 몇 개의 프로그램을 적재할 것인가
- ② 한 개의 프로그램만 가능할 수도 있고 여러 개의 프로그램을 함께 공존시킬 수도 있음
- ③ 여러 개의 프로그램을 함께 적재할 때, 각 프로그램에 할당되는 공간의 크기를 동일하게 할지 아니면 서로 다르게 할지를 고려해야 함
- ④ 일정한 크기의 공간이 할당되는 경우 프로그램의 수행이 끝날 때까지 그 크기를 유지할지 아니면 상황에 따라서할당한 공간의 크기를 변경할지를 고려해야 함
- ⑤ 일정한 크기의 공간을 할당하기로 할 때, 연속한 작은 공간들을 할당할지, 하나의 덩어리로 된 커다란 공간을 할당할지를 고려해야 함

〈주기억장치를 할당하는 방법에는 단일 사용자 할당 기법, 고정 분할 할당 기법, 가변 분할 할당 기법의 세 가지가 있음〉

4. 단일 사용자 할당 기법

1) 운영체제가 차지하는 부분을 제외한 나머지 기억 공간의 부분을 한 사용자가 독점 사용하도록 하는 기법

- 2) 장점
- ① 사용자에게 융통성을 최대한 제공함
- ② 최대의 단순성과 최소의 비용을 만족함
- ③ 특별한 하드웨어가 필요 없으며, 운영체제 소프트웨어도 필요 없음
- 3) 단점
- ① 사용자가 사용하는 부분 이외의 부분은 낭비가 될 수 있음
- ② 입력과 출력을 수행하는 동안 주기억장치내의 프로그램은 중앙처리장치를 계속 쓸 수 없기 때문에 유휴 상태가 되므로 활용도가 매우 낮음
- ③ 프로그램이 주기억장치의 용량보다 큰 경우 이를 수행시키기 어려움

5. 고정 분할 할당 기법

1) 각 프로그램에 고정된 동일 크기의 분할된 구역을 할당하는 방법

① 장점

- 프로그램이 적재되고 남은 공간에 다른 프로그램을 적재하여 수행하므로 프로세서와 기억장치 같은 자원의 활용도를 크게 향상시킴
- 동시에 여러 프로그램을 주기억장치에 적재하여 수행하는 다중 프로그래밍 기법이 가능함

② 단점

- 할당되는 저장 공간이 작고 저장될 프로그램이 클 경우에는 프로그램이 작은 단위로 쪼개지는 단편화(fragmentation)의 문제가 발생함
- 프로그램과 할당된 분할 구역의 크기가 일치하지 않으면 프로그램이 점유하고 남은 공간이 생기게 됨

6. 가변 분할 할당 기법

- 1) 단편화를 해결하기 위하여 각 작업에 대한 필요한 만큼의 공간만을 할당
- 주기억장치 내에 새로운 프로그램이 들어올 때마다 그 프로그램의 크기에 맞추어 가변적으로 기억 공간을 분할하여 프로그램에 맞는 공간만을 할당함

2) 가변 분할 기억장치 구조

7. 가변 분할 할당 기법에서의 기억장소의 집약

- 1) 기억 장소의 집약(memory compaction)
- ① 주기억장치를 검사하여 빈 영역을 하나의 커다란 빈 영역으로 만드는 방법
- ② 운영체제는 사용 중인 블록을 한데 모으고, 비어 있는 기억 장소를 하나의 커다란 공백으로 만듦

* 상점

- 기억 장소에 분산되었던 공간들을 한 곳에 모음으로써 사용 가능한 큰 영역을 만들 수 있음
- 이를 통해 기억 장소의 낭비를 줄일 수 있음

* 단점

- 기억 장소를 집약하는 동안 전체 시스템은 지금까지 수행해 오던 일들을 일단 중지해야 하며, 집약을 위하여 많은 시간이 소모됨
- 수행 중이던 프로그램과 데이터를 주기억장치 내의 다른 장소로 이동시키기 때문에 각각의 위치 및 이에 관계되는 내용을 수정해야 함

8. 가변분할할당기법에서 공백영역탐색 알고리즘

1) 최초 적합 방법

- 여러 유휴 공간들을 차례대로 검색해 나가다가 새로운 프로그램을 저장 할 수 있을 만큼의 크기를 가진 부분을 최초로 찾으면 그 곳에 할당하는 방법임

2) 최적 적합 방법

- 여러 공백 중 새로운 프로그램이 요구하는 크기보다 크면서 가장 크기가 비슷한 공간을 채택하여 할당하는 방법임
- 매우 작은 공백만 생긴다는 장점을 가짐

3) 최악 적합 방법

- 존재하는 여러 공백 중 가장 큰 부분을 찾아 할당
- 프로그램이 할당되고 남은 공간이 크다면, 그 나머지 부분을 다른 프로그램에 할당하여 사용할 수 있음

9. 공백 영역을 찾는 알고리즘 예

〈새로운 17KB의 기억 장소를 필요로 하는 프로그램이 주기억장치로 들어오게 되면〉

- 최초 적합 방법의 경우는 ①에 프로그램이 적재
- 최적 적합 방법의 경우는
 ④에 프로그램이 적재
- 최악 적합 방법의 경우는
 ③에 프로그램이 적재

[학습정리]

- 1. 기억장치의 성능을 평가하는 요소로는 기억용량, 접근시간, 사이클시간, 기억장치의 대역폭, 데이터 전송률 등이 있다.
- 2. 주 기억장치는 전원이 켜진 상태에서만 데이터를 읽거나 기록할 수 있고, 전원이 꺼지면 기억된 내용이 모두 지워지는 휘발성의 특징이 있다.
- 3. 주기억장치는 시스템프로그램 영역과 사용자 응용프로그램 영역으로 분할하여 사용한다.