

Module 1 Unit 1 Principles of Lasers

- Dr. Suren Patwardhan

Image Courtesy: https://www.nasa.gov/multimedia/imagegallery

Ordinary Light v/s LASER Light

- Examples of ordinary Light
- Bulbs (Incandescent, CFL, LED), Tube lights, Decorative lights
- Halogen lamps, Flood Lights
- Photographic Light, Xenon Lamp
- Neon Lamp, Street Lamps (yellow)
- Burner flame
- Petromax Light, Kerosene Lamp
- Candle, Matchstick
- Sunlight

- Laser Light?
- Laser Pointer (semiconductor Laser)

Properties of LASER

Light Amplification by Stimulated Emission of Radiation

Monochromatic

Unique wavelength

Coherent

- All waves are In phase

Directional

- Light emitted along same path

Focused

- Low spreading

Bright

- High intensity
- Polarized (optional)
- E-M vibrations in same plane
- Most of the lasers are in the IR to Visible range
- Radio and microwave frequency lasers are called MASERS
- Difficult to get Ultraviolet lasers
- May not be possible to get X-ray and γ-ray lasers

Laser Beam Parameters

Monochromaticity

Linewidth of radiation

Coherence length

- Distance up to which waves are in phase

Directionality

- Unique direction of emission

Divergence

- Amount of spread

> Intensity

- Optical power emitted per unit area

Parameter	Ordinary sources	Laser sources
Monochromaticity	10 ⁵ nm	10 ⁻⁴ nm
Coherence length	mm to cm	m to km
Directionality	30-360°	< 2°
Divergence	> 10 ⁻² strad	< 10 ⁻⁴ strad
Intensity	mW to W	mW to kW

LASER are Everywhere

- First discovered by Maiman 1960 (kind of MASER M for Microwaves)
- Once teased as discovery in search of applications, today has hundreds of applications

Name of laser source	Emission wavelength	Applications
He-Ne laser	Red, green	Laboratory purpose
Ar laser	Blue-green	Eye surgery
Nd:YAG laser	Invisible (IR)	Machining, surgery
Ruby laser	Extreme Red	High speed photography
GaAs/GaN lasers	Red to Blue	Fibre optic communications
CO ₂ laser	Invisible (IR)	Dermatology
Dye lasers	Visible to IR	Spectroscopy
Nd:Glass	Invisible (IR)	Nuclear reactors

Interaction of Radiation with Matter

- 1. Absorption Energy supplied
- 2. Emission Energy emitted

Spontaneous emission

Stimulated emission

Stimulated Absorption (or just Absorption)

Rate of transition

$$\frac{\mathrm{dN}}{\mathrm{dt}}\bigg|_{\mathrm{ab}} = \mathrm{B}_{12}\mathrm{N}_1\mathrm{Q}$$

Where,

B₁₂: probability of absorption process

N₁: number of atoms in lower energy level E₁

Q: energy density of incident radiation per unit frequency (J-s/m³)

Spontaneous Emission (i.e. Natural Emission)

Rate of transition

$$\frac{dN}{dt}\Big|_{sp} = A_{21}N_2$$

Where,

 A_{21} : probability of spontaneous emission process

N₂: number of atoms in higher energy level

Stimulated Emission (i.e. Triggered Emission)

Einstein showed $B_{12} = B_{21}$

Rate of transition
$$\frac{dN}{dt}\Big|_{st} = B_{21}N_2Q$$

Where,

B₂₁: probability of stimulated emission process

N₂: number of atoms in higher energy level E₂

Q: energy density of incident radiation per unit frequency

Advantages

Emitted radiation has: Same wavelength Same direction Same phase

Laser Emission is Not Possible in Ordinary Conditions

Reason:

Spontaneous emission dominates at normal temperatures

Rate of absorption:

$$\left. \frac{\mathrm{dN}}{\mathrm{dt}} \right|_{\mathrm{ab}} = \mathrm{B}_{12} \mathrm{N}_1 \mathrm{Q}$$

Rate of spontaneous emission:

$$\frac{\mathrm{dN}}{\mathrm{dt}}\Big|_{\mathrm{sp}} = \mathrm{A}_{21}\mathrm{N}_2$$

Rate of stimulated emission:

$$\left. \frac{\mathrm{dN}}{\mathrm{dt}} \right|_{\mathrm{st}} = \mathrm{B}_{21} \mathrm{N}_2 \mathrm{Q}$$

How to Lase?

Answer: Break the laws

Laws:

- 1. "Equilibrium" condition more atoms in lower states than upper states
- At equilibrium, N₁ >> N₂
- 2. Any medium is "Lossy" on passage, optical intensity decreases
- For lossy medium, loss (α) > gain (γ)

How to break them?

- 1. Make $N_2 > N_1$ i.e. populate upper states E_2 as compared to Lower states E_1 (population invasion)
- 2. so make $\gamma > \alpha$ i. e. trap light to achieve optical gain in a region (light amplification)

Agents to Break the Laws

Achieved by two important concepts:

- 1. Metastable states ensures $N_2 > N_1$
- Achieves population inversion along with pumping
- 2. Optical Resonator ensures $\gamma > \alpha$
- Achieves light amplification*

1 and 2 together ensure stimulated emission is promoted for laser emission

^{*}Does it violate laws of thermodynamics?

Metastable State

- Typical lifetime of an excited state in any atom is ≈ 10 ns (10⁻⁸ s)
- But there are certain special excited state in some atoms
- For these states, the lifetime is $\approx 1 \text{ ms } (10^{-3} \text{ s})$; 100000 times longer!
- Such states are called metastable states
- Materials having metastable states is necessary condition for laser

Action of Metastable State

Ordinary State

 E_2

Metastable State

N₂ > N₁ achieved, law is broken!

Optical Resonator/Active Medium

Active medium: Region of the laser source where optical gain takes place

Action of Optical Resonator

Action of Optical Resonator

Pumping Schemes

Quick Poll

Types of Pumping

Pumping: Process of supplying energy to trigger population inversion

Optical pumping

A broad and bright source of light (photons) is used to supply energy Example: Xenon flash lamp in Ruby laser, Nd:YAG laser, Dye lasers

Electrical Pumping

High electric field is set up by a pair of electrodes

Example: He-Ne laser, CO₂ laser, Ar laser

Direct conversion

By passing an electric current

Example: Semiconductor diode lasers

Types of Pumping - Schematics

Direct conversion

Electrical

Important Laser Physics Terms

Population

The number of active atoms occupying a particular energy state

Population Inversion

Creating a non-equilibrium state with more atoms in excited states

Pumping

Process of supplying energy to achieve population inversion

Metastable State

Special energy levels having unusually high lifetime that normal excited states

Active medium

Region of the laser source where optical gain takes place

Condition for Lasing

$$I(x) = I_0 e^{(\gamma - \alpha)x}$$

Thanks!

