Improving the Fine-Tuning of Image Classifiers with Latent Cluster Correction

Cédric HT RIKEN

EuroSAT samples passed through VGG11

TL;DR

- Neural networks take input samples and transform them into latent representations
- Semantically similar samples tend to aggregate into latent clusters
- We develop Latent Cluster Correction to improve them

https://github.com/altaris/lcc

Latent spaces

In its simplest form, a neural network is a sequence of elementary function (aka layers) $F(x)=f_n(f_{n-1}(\cdots f_1(x)\cdots))$. A **latent representation** is an embedding of the form

$$z = f_m(\cdots f_1(x)\cdots)$$

for some intermediate value $1 \le m \le n$.

- For small m 's (i.e. shallow latent spaces), $Z=f_m(\cdots f_1(X)\cdots)$ is pretty scrambled.
- For large m's (i.e. deep latent spaces), Z is more structured and tends to form clusters of semantically similar samples.

Goal

- 1. Choose a deep **latent** space. Find the clusters in $Z=f_m(\cdots f_1(X)\cdots)$.
- 2. Find latent representations that are not in the **cluster** they should be in.
- 3. "Correct" them by penalizing the distance to their closest acceptable cluster.

Step 1: Detect latent clusters

We use the kNN-Louvain method, which computes the symmetric and unweighted kNN graph of Z, and applies the Louvain-Leiden community detection algorithm to it.

Blondel et. al., Fast unfolding of communities in large networks

Step 2: Match clusters to true classes

Cat and dogs image samples passed through AlexNet

How do we compare true classes with latent clusters obtained in step 1? We find a **matching** $M: \{\text{Latent clusters}\} \to \{\text{True classes}\}$ that maximizes

$$\sum_{\ell \text{ true class}} |\{z_n \mid y_n = \ell\} \cap \{z_n \mid M(c_n) = \ell\}|$$

$$= \sum_{\ell \text{ true class}} |\{\text{Smpls. in } \ell\} \cap \{\text{Smpls. in clsts. assigned to } \ell\}|$$

where y_n is the true class of z_n and c_n is the cluster of z_n .

There are two types of samples:

- Correctly clustered: $M(c_n)=y_n$, i.e. z_n is in a cluster assigned to its class \to these are OK!
- Missclustered: $M(c_n) \neq y_n$, i.e. z_n is in a cluster assigned to another class \rightarrow we need to correct them by pushing them towads a cluster that belongs to their class.

Step 3: Apply the Louvain loss

The **Louvain loss** is defined as

$$\mathcal{L}_{\text{Louvain}} = \frac{1}{N_{\text{miss}} \sqrt{d}} \sum_{z \text{ miss}} \left\| z - T(z) \right\|^2$$

where $T(z)=(z_1+\cdots+z_k)/k$, and $z_1,...,z_k$ are the kNNs of z in the same class as z and that are correctly clustered. The training loss function is then $\mathcal{L}=\mathcal{L}_{\mathrm{CE}}+w\mathcal{L}_{\mathrm{Louvain}}$

Step 4: Profit

Models pretrained on ImageNet and fined-tuned on CIFAR100 using LCC with w=0.01.

Model	Layer	k	Wmp.	Acc. (top 1)	Gain (top 1)	Acc. (top 5)	Gain (top 5)
AlexNet	Baseline			71.49%	1	92.08%	1
	Head	5	1	71.6%	+0.11%	91.73%	-0.35%
	$2^{ m nd}$ to last	5	1	71.36%	-0.13%	91.72%	-0.36%
	Head	5	10	71.61%	+0.12%	91.56%	-0.52%
	$2^{ m nd}$ to last	5	10	71.35%	-0.14%	91.91%	-0.17%
	Head	50	1	71.82%	+0.33%	91.68%	-0.4%
	$2^{ m nd}$ to last	50	1	71.54%	+0.05%	91.71%	-0.37%
	Head	50	10	71.62%	+0.13%	91.74%	-0.34%
	$2^{ m nd}$ to last	50	10	71.29%	-0.2%	91.7%	-0.38%
Res/Wet18	Baseline			78.51%	1	96.06%	1
	Head	5	1	79.28%	+0.77%	95.62%	-0.44%
	$2^{ m nd}$ to last	5	1	79.02%	+0.51%	95.71%	-0.35%
	Head	5	10	79.23%	+0.72%	95.62%	-0.44%
	$2^{ m nd}$ to last	5	10	79.24%	+0.73%	95.85%	-0.21%
	Head	50	1	79.24%	+0.73%	95.31%	-0.75%
	$2^{ m nd}$ to last	50	1	79.47%	+0.96%	95.84%	-0.22%
	Head	50	10	79.06%	+0.55%	95.5%	-0.56%
	$2^{ m nd}$ to last	50	10	79.12%	+0.61%	95.76%	-0.3%