# Módulo 4: Redes Neurais Recorrentes Aula 3: Exploding e Vanishing Gradients

Prof. Fabricio Murai

murai at dcc.ufmg.br

#### Visão Geral

- Aula anterior: aprendemos como calcular o update do gradiente descendente para uma RNN usando backprop through time.
- Os updates estão matematicamente corretos, mas se não tomarmos cuidado, a otimização pode falhar porque os gradientes podem explodir ou desaparecer.
- Problema fundamental: é difícil aprender dependências sobre janelas de tempo longas.
- Aula de hoje: aprenderemos as causas exploding/vanishing gradients e como lidar com elas. Ou, equivalentemente, como aprender dependências de longo prazo.

#### Aula de Hoje

- Matemática dos Vanishing e Exploding Gradientes
- Problema da perspectiva de Funções Iteradas (opcional)
- Mantendo o gradiente estável
- Arquiteturas alternativas
  - Usando ideias de Deep Residual Networks (opcional)
  - o GRU e LSTM
- LSTM: visualizações e fluxo do gradiente (opcional)

# Matemática dos Vanishing/Exploding Gradients

## Vanishing gradients com RNNs

Ex1: The cat, which already ate, ..., \_\_\_\_\_ full.

Ex2: The cats, which already ate, ..., \_\_\_\_\_ full.



#### RNN tradicional não resolve

$$a^{< t>} = g(W_{aa}a^{< t-1>} + W_{ax}x^{< t>} + b_a)$$

$$\hat{y}^{< t>} = g(W_{ya}a^{< t>} + b_y)$$



## **Exploding e Vanishing Gradients**

Entender o efeito do tempo sobre o gradiente. (<u>Derivação</u>) Vamos usar a notação do Roger Grosse.





#### Backpropagation through time



- Se o gradiente = 1: OK
- Se o gradiente > 1: Exploding gradients
- Se o gradiente < 1: Vanishing gradients

#### Backpropagation through time



Ainda tem onde piorar

Se tivermos **múltiplas saídas**, Teremos **múltiplos gradientes** 

#### Por que gradientes explodem ou desaparecem

Caso univariado com ativações lineares

o Exploding:  $\partial h^{(T)}/\partial h^{(1)} = w^{T-1}$ 

$$w = 1.1, T = 50 \Rightarrow \frac{\partial h^{(T)}}{\partial h^{(1)}} = 117.4$$

o Vanishing:

$$w = 0.9, T = 50 \Rightarrow \frac{\partial h^{(T)}}{\partial h^{(1)}} = 0.00515$$

No caso geral multivariado, os Jacobianos se multiplicam:

$$\frac{\partial \mathbf{h}^{(T)}}{\partial \mathbf{h}^{(1)}} = \frac{\partial \mathbf{h}^{(T)}}{\partial \mathbf{h}^{(T-1)}} \cdots \frac{\partial \mathbf{h}^{(2)}}{\partial \mathbf{h}^{(1)}}$$

#### Por que gradientes explodem ou desaparecem

No caso geral, os Jacobianos se multiplicam:

$$\frac{\partial \mathbf{h}^{(T)}}{\partial \mathbf{h}^{(1)}} = \frac{\partial \mathbf{h}^{(T)}}{\partial \mathbf{h}^{(T-1)}} \cdots \frac{\partial \mathbf{h}^{(2)}}{\partial \mathbf{h}^{(1)}}$$

- Por que as ativações não explodem/desaparecem durante o forward?
  - No forward pass, as ativações não-lineares comprimem as ativações, prevenindo que explodam.
  - O backward pass é linear nos Jacobianos, tornando a estabilidade mais difícil. Existe uma linha tênue entre explodir e desaparecer!

# Problema da perspectiva de Funções Iteradas (opcional)

- Analisamos o exploding/vanishing gradient em termos da mecânica do backprop. Agora pensemos sobre ele conceitualmente.
- O que significa o Jacobiano  $\partial \mathbf{h}_T/\partial \mathbf{h}_1$ ?
  - O Significa o quanto você muda  $\partial \mathbf{h}_T$  quando muda  $\partial \mathbf{h}_1$ .
- Cada camada oculta calcula uma função do estado oculto anterior e da entrada atual:

$$\mathbf{h}_t = f\left(\mathbf{h}_{t-1}, \mathbf{x}_t\right)$$

Esta função é iterada:

$$\mathbf{h}_4 = f(f(f(\mathbf{h}_1, \mathbf{x}_2), \mathbf{x}_3), \mathbf{x}_4)$$

 Vamos estudar funções iteradas como meio de entender o que as RNNs estão computando.

## Funções iteradas (opcional)

• Funções iteradas são complicadas. Considere f(x) = 3.5x \* (1-x)









6 times

Imagine um sistema dinâmico com múltiplos atratores



- Próximo de um atrator, os gradientes desaparecem porque mesmo que você se mova um pouco, você volta para mesmo atrator.
- Se você está na borda, o gradiente explode porque se mover um pouco faz com que você vá de um atrator para o outro.

 Considere uma RNN com função de ativação tanh:



Função calculada pela rede:





- Penhascos (cliffs) dificultam estimar o verdadeiro gradiente do custo:
  - Problemas numéricos
  - Regiões onde gradiente é quase nulo

Exemplo de perda com relação ao viés b das unidades ocultas para

amostras individuais



# Mantendo o gradiente estável

#### Mantendo as coisas estáveis

- Uma solução simples: Gradient clipping
- Limite o gradiente g de modo que a norma seja no máximo η:
   Se ||g||> η, então

$$\mathbf{g} \leftarrow rac{\eta \mathbf{g}}{\|\mathbf{g}\|}$$

 Gradientes ficam viesados, mas não explodem

#### Without clipping



With clipping



#### Mantendo as coisas estáveis

- Na realidade é melhor redesenhar a arquitetura, pois o exploding/ vanishing gradient revela problema conceitual com as vanilla RNNs
- Unidades ocultas tem papel de memória. Portanto, comportamento padrão deve ser lembrar do valor anterior.
  - I.e., a função a cada passo deveria ser praticamente a função identidade
  - o É difícil implementar a função identidade com ativações não-lineares!
- Se a função for quase a identidade, cálculo dos gradientes é estável.
  - O Os Jacobianos  $\partial \mathbf{h}_{t+1}/\partial \mathbf{h}_t$  ficam próximos da matriz identidade, então podemos multiplicá-los sem que as contas explodam.

#### Mantendo as coisas estáveis

- Identity RNNs
  - O Usam ReLU como função de ativação
  - O Inicializam as matrizes de peso como matrizes identidade
- Ativações negativas são clipped para zero, mas p/ ativações positivas, unidades simplesmente retém seus valores na ausência de inputs.
- Ajuda a aprender dependências de +longo prazo que vanilla RNNs.
- Consegue aprender a classificar dígitos do MNIST, pixel-a-pixel!

Le et al., 2015. A simple way to initialize recurrent networks of rectified linear units.

# Arquiteturas alternativas

#### Usando ideias de Deep Residual Networks (opcional)

• Vimos que o Jacobiano  $\partial \mathbf{h}_{\tau}/\partial \mathbf{h}_{1}$  é o produto dos Jacobianos individuais.

$$\frac{\partial \mathbf{h}^{(T)}}{\partial \mathbf{h}^{(1)}} = \frac{\partial \mathbf{h}^{(T)}}{\partial \mathbf{h}^{(T-1)}} \cdots \frac{\partial \mathbf{h}^{(2)}}{\partial \mathbf{h}^{(1)}}$$

- Mas isto se aplica a multilayer perceptrons e conv nets também!
   (Basta considerar t como os índices dos layers no lugar de tempo).
- Com poucas camadas, não precisávamos nos preocupar com os gradientes, mas com redes profundas, usamos o truque das skipconnections

#### Usando ideias de Deep Residual Networks (opcional)

 Bloco residual: cada camada adiciona um "resíduo" ao valor anterior, em vez de produzir um valor inteiramente novo



 Obs: A rede para F pode ter múltiplas camadas, ser convolucional, etc

#### Usando ideias de Deep Residual Networks (opcional)

- Podemos concatenar vários blocos residuais
- O que acontece se setarmos os parâmetros tal que  $F(x^{(t)})=0$  em cada camada?
  - Então x <sup>(1)</sup> passa sem ser modificado
  - Isto significa que é fácil para a rede representar a função identidade
- Backprop:

$$\overline{\mathbf{x}^{(\ell)}} = \overline{\mathbf{x}^{(\ell+1)}} + \overline{\mathbf{x}^{(\ell+1)}} \frac{\partial \mathcal{F}}{\partial \mathbf{x}}$$
$$= \overline{\mathbf{x}^{(\ell+1)}} \left( \mathbf{I} + \frac{\partial \mathcal{F}}{\partial \mathbf{x}} \right)$$

Se o Jacobiano ∂F/∂x for pequeno, o gradiente é estável









| ido a partir do la do Tescuro Nacional                                                                                                                                      | SR. CONTRIBUINTE: ESTA GUIA NÃO                 | PODERÁ SER LIQUIDADA COM CHE           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|
| SECRE TESOURO NACIONAL  Guia de Fix  União - GRU                                                                                                                            | Código de Recohimento                           | 10023-4                                |
|                                                                                                                                                                             | Número de Referência                            | 12345678901234567                      |
|                                                                                                                                                                             | Competinos                                      | 22.0 0.000.000.000.000.000.000.000.000 |
|                                                                                                                                                                             | Vencimento                                      |                                        |
| Nome do Contribunte   Recohedor<br>Altamiro Lopes de Menezes Filho                                                                                                          | CNPJ ou CPF do Contribuinte                     | 370.581.855-49                         |
| Nome da Unidade Favorecida<br>SECRETARIA DO TESOURO NACIONALICO                                                                                                             | UG / Geedle                                     | 170502 / 00001                         |
| Instruções As informações inseridas nessa guia são de exclusiva respoi-<br>do contribuirde, que deverá, em caso de dúvidas, consultar<br>a Unidade Favorecida dos recursos. | (*) Valor do Principal                          | 10,00                                  |
|                                                                                                                                                                             | Seconto Abatimento<br>Seducitina                |                                        |
| SR. CAIXA: NÃO RECEBER EM CHEQUE                                                                                                                                            |                                                 |                                        |
| GRU SIMPLES Pagamento exclusivo no Banco do Brasil S.A. [STN50AC983615A9907E60CDEBE67D687D8]                                                                                | (*) Juros<br>(*) Curos Acre.<br>(*) Vasor Total | 10.00                                  |

89890000000-9 10000001010-0 95523021002-8 30320012416-5

## Solução: arquiteturas alternativas

#### **GRU: Gated Recurrent Unit**

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{} = \Gamma_{u} * \tilde{c}^{} + (1 - \Gamma_{u}) * c^{}$$

$$a^{< t>} = c^{< t>}$$

#### LSTM: Long short-term memory

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$\Gamma_o = \sigma(W_o[\ a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{\langle t \rangle} = \Gamma_u * \tilde{c}^{\langle t \rangle} + \Gamma_f * c^{\langle t-1 \rangle}$$

$$a^{\langle t \rangle} = \Gamma_o * \tanh(c^{\langle t \rangle})$$

## Unidades LSTM (long short-term memory)

Link para a imagem.



#### Unidades LSTM (long short-term memory)

#### Permite que cada instante de tempo modifique:

- Input gate (a célula corrente importa)
- Forget gate (se 0, esquece o passado)
- ullet Output gate (quanto a célula é exposta)  $o_t = \sigma \left( W^{(o)} x_t + U^{(o)} h_{t-1} 
  ight)$
- Nova célula de memória
- Célula de memória final
- Estado escondido final

$$\begin{aligned}
o_t &= o\left(W \land x_t + U \land h_{t-1}\right) \\
\tilde{c}_t &= \tanh\left(W^{(c)}x_t + U^{(c)}h_{t-1}\right) \\
c_t &= f_t \circ c_{t-1} + i_t \circ \tilde{c}_t \\
h_t &= o_t \circ \tanh(c_t)
\end{aligned}$$

 $i_t = \sigma \left( W^{(i)} x_t + U^{(i)} h_{t-1} \right)$  $f_t = \sigma \left( W^{(f)} x_t + U^{(f)} h_{t-1} \right)$ 

#### Unidades LSTM (long short-term memory)

- Complicado? Pesquisadores de ML também achavam, por isso LSTMs quase não foram usadas durante uma década após serem propostas
- Em 2013 e 2014, foram usadas para obter resultados surpreendentes em problemas importantes e desafiadores como reconhecimento de fala e tradução por máquina
- Desde então, passaram a ser unidades mais usadas em RNNs
- Muitas tentativas de simplificar a arquitetura, mas nenhuma foi conclusivamente mais simples e melhor
- Você não precisa se preocupar com a complexidade, pois frameworks provêem boas implementações black box.

# LSTM: visualizações e fluxo do gradiente (opcional)

# Visualizações de RNNs (opcional)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

#### Fluxo do gradiente: RNN tradicional (opcional)



A computação do gradiente de h<sub>t</sub> envolve muitos fatores de W (e repetidas execuções de *tanh*)

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994
Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

## Fluxo do gradiente: LSTM (opcional)

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

O backpropagation de **c**<sub>t</sub> para **c**<sub>t-1</sub> envolve apenas multiplicação elemento a elemento por **f**, sem multiplicações por **W** 





Inicie o bias dos *forget gates*  $\mathbf{f}$  com vetores de 1s, e sua matriz  $\mathbf{W_f}$  como identidade, então  $\mathbf{c_1}$  propaga até  $\mathbf{c_T}$ , e deixa de propagar quando algo "interessante" deve ser aprendido

#### Fluxo do gradiente: LSTM (opcional)

# Uninterrupted gradient flow!



# Fluxo do gradiente: LSTM (opcional)

# Uninterrupted gradient flow!







Número de linhas de x igual de h





http://people.idsia.ch/~juergen/lstm/sld017.htm



$$i_{t} = \sigma \left( W^{(i)} x_{t} + U^{(i)} h_{t-1} \right)$$

$$f_{t} = \sigma \left( W^{(f)} x_{t} + U^{(f)} h_{t-1} \right)$$

$$o_{t} = \sigma \left( W^{(o)} x_{t} + U^{(o)} h_{t-1} \right)$$

$$\tilde{c}_{t} = \tanh \left( W^{(c)} x_{t} + U^{(c)} h_{t-1} \right)$$

$$c_{t} = f_{t} \circ c_{t-1} + i_{t} \circ \tilde{c}_{t}$$

$$h_{t} = o_{t} \circ \tanh(c_{t})$$



$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

$$a^{< t} = \Gamma_o * c^{< t>}$$

#### **LSTM**

- Modelo padrão para a maioria das tarefas de rotulagem de sequência
- Muito poderoso, especialmente quando empilhado e ainda mais profundo (cada camada oculta já é computada por uma rede interna profunda)
- Mais útil se você tiver muitos e muitos dados

# LSTM vs GRU

#### LSTM

- Mais parâmetros
  - $\circ$  4(h(x + 1) + h<sup>2</sup>)
- Maior custo
- Treino mais "complicado"
- Maior capacidade de combinar informações de formas diferentes

#### **GRU**

- Menos parâmetros
  - $\circ$  3(h(x + 1) + h<sup>2</sup>)
- Treino mais "fácil"
- Apresenta desempenho semelhante a LSTM em várias tarefas

#### Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

Junyoung Chung

Caglar Gulcehre Université de Montréal KyungHyun Cho

Yoshua Bengio Université de Montréal CIFAR Senior Fellow



(a) Long Short-Term Memory



(b) Gated Recurrent Unit

#### Links

Por que LSTMs resolvem o problema do "vanishing gradients"?

https://medium.com/datadriveninvestor/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577

https://medium.com/@aidangomez/let-s-do-this-f9b699de31d9