Instructor: Karim Ali



## Question 1: (15 points)

Consider two different implementations,  $I_1$  and  $I_2$ , of the same instruction set. There are three classes of instructions (A, B, and C) in the instruction set.  $I_1$  has a clock rate of 6 GHz, and  $I_2$  has a clock rate of 4 GHz. The average number of cycles for each instruction class on  $I_1$  and  $I_2$  is given in the following table. The table also contains a summary of average proportion of instruction classes generated by two different compilers ( $C_1$  and  $C_2$ ). Assume each compiler uses the same number of instructions for a given program, but that the instruction mix is as described in the table.

| Class        | CPI on I <sub>1</sub> | CPI on $I_2$ | $\mathbf{C}_1$ Usage | $\mathbf{C}_2$ Usage |
|--------------|-----------------------|--------------|----------------------|----------------------|
| A            | 2                     | 1            | 40%                  | 50%                  |
| В            | 3                     | 2            | 20%                  | 25%                  |
| $\mathbf{C}$ | 5                     | 2            | 40%                  | 25%                  |

- **a.** (5 points) Given the instruction mix of  $C_1$  and  $C_2$ , which compiler would you use if you purchased  $I_1$ , and why?
- **b.** (5 points) What if you purchased  $I_2$ , and why?
- **c.** (5 points) What is the best combination of (computer + compiler) you could possibly purchase, if all combinations cost the same, and why?