How to have an Effective and Sucessful Bank Telemarketing

Arindam Barman¹, Mohamed Elmoudni¹, Shazia Khan¹, Kishore Prasad¹

¹ City University of New York (CUNY)

Author note

Complete departmental affiliations for each author (note the indentation, if you start a new paragraph).

Enter author note here.

PREDICTIVE MODELING WITH LOSGISTIC REGRESSION

2

Abstract

An abstract is a self-contained, short, and powerful statement that describes a larger work.

Components vary according to discipline. An abstract of a social science or scientific work

may contain the scope, purpose, results, and contents of the work. An abstract of a

humanities work may contain the thesis, background, and conclusion of the larger work. An

abstract is not a review, nor does it evaluate the work being abstracted. While it contains

key words found in the larger work, the abstract is an original document rather than an

excerpted passage.

Even though direct marketing is a standard method for banks to utilize in the face of global

competition and financial unstability, it has, however, been shown to exhibit poor

performance. The telemearketing calls are simply not answered or answered and immediately

disconnected. It is however welcomed by the right person who is in need of the the financial

relief. The aim of this exercise is to target clients more effectively and effeciently based on

the data from a portuguese bank telelmarketing effort.

Keywords: logistic regression model, linear discriminant analysis (LDA), predictive

modeling, bank telemarketing, direct marketing, Data Mining

Word count: X

How to have an Effective and Sucessful Bank Telemarketing

Introduction

-describe the background and motivation of your problem-

"Regression analysis is one of the most commonly used statistical techniques in social and behavioral sciences as well as in physical sciences. Its main objective is to explore the relationship between a dependent variable and one or more independent variables (which are also called predictor or explanatory variables)." This is the definition provided by www.unesco.org for Regression Analysis

The most successful direct marketing is to predict the customers that have a higher probability to do business. Data exploration technique, is crucial to understand customer behavior. Many banks are moving to adopt the predictive technique based on the data mining to predict the customer profile before targeting them. The prediction or classification is the most important task in the data exploration and model building that is usually applied to classify the group of data. In classification, the outcome is a categorical variable and several combinations of input variable are used to build a model and the model that gives a better prediction with the best accuracy is chosen to target the prospective customers.

Literature Review

discuss how other researchers have addressed similar problems, what their achievements are, and what the advantage and drawbacks of each reviewed approach are. Explain how your investigation is similar or different to the state-of-the-art. Please do not discuss paper one at a time, instead, identify key characteristics of your topic, and discuss them in a whole. Please cite the relevant papers where appropriate.

Methodology

discuss the key aspects of your problem, data set and regression model(s). Given that you are working on real-world data, explain at a high-level your exploratory data analysis,

how you prepared the data for regression modeling, your process for building regression models, and your model selection. .

The data is available on website for UC Irvine Machine Learning Repository. There are two different data sets available. The "bank" data has 45,211 records with 16 attributes and 1 response variable. The "bank-additional" data has 41,188 records with additional attributes added to "bank" data, it has 20 attributes and 1 response variable. We chose to use the data with additional attributes.

The data consists of four groups of information. - Client's personalInfomation - Client's bank information - Bank's telemarketing campaign information - Social and economic information

The main problem with the dataset is that it consists of many missing values which are labeled "Unknown". The missing data consists of 26% of the data. We decided to retain the missing data to help with our regression modeling. The other problem with the data is that only

Experimentation and Results

describe the specifics of what you did (data exploration, data preparation, model building, selection, evalutation) and what you found out (statistical analysis, inter pretation and discussion of the results)

Data Exploration

1 - age (numeric) 2 - job (categorical) Dummy variables created k-1 3 - marital (categorical) Dummy variables created k-1 4 - education (categorical) Dummy variables in group primary, secondary and tertiary 5 - default (categorical) Dummy variables created k-1 6 - housing (categorical) Dummy variables created k-1 7 - loan (categorical) Dummy variables created k-1 8 - contact (categorical) Dummy variables created k-1 9 - month (categorical) Dummy variables created k-1 10 - day of week (categorical) Dummy variables

PREDICTIVE MODELING WITH LOSGISTIC REGRESSION

5

created k-1 11 - duration (numeric). Important note: this attribute highly affects the output target (e.g., if duration=0 then y="no"). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for benchmark purposes and should be discarded if the intention is to have a realistic predictive model. 12 - campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact) 13 - pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted) 14 - previous: number of contacts performed before this campaign and for this client (numeric) 15 - poutcome: outcome of the previous marketing campaign (categorical: "failure", "nonexistent", "success") # social and economic context attributes 16 - emp.var.rate: employment variation rate - quarterly indicator (numeric) 17 -

18 - cons.conf.idx: consumer confidence index - monthly indicator (numeric)

cons.price.idx: consumer price index - monthly indicator (numeric)

19 - euribor3m: euribor 3 month rate - daily indicator (numeric) 20 - nr.employed: number of employees - quarterly indicator (numeric)

Data Preparation

Model Building

Model Selection

Model Evaluation

Statistical analysis

We used R (3.2.5, R Core Team, 2016) and the R-packages papaja (0.1.0.9054, Aust & Barth, 2015), and papaja (0.1.0.9054, Aust & Barth, 2015) for all our analyses.

Interpretation and Disussion of Results

Discussion and Conclusions

conclude your findings, limitations, and suggest areas for future work

References

be sure to cite all references used in the report (APA format).

Appendix

Supplemental tables and/or figures. R statistical programming code.

Overview

The data set contains approximately 41188 obs. of 21 variables.

This dataset is based on "Bank Marketing" UCI dataset (please check the description at: http://archive.ics.uci.edu/ml/datasets/Bank+Marketing). The data is enriched by the addition of five new social and economic features/attributes (national wide indicators from a ~10M population country), published by the Banco de Portugal and publicly available at: https://www.bportugal.pt/estatisticasweb./

The binary classification goal is to predict if the client will subscribe a bank term deposit (variable y).

This dependent variable tells whether the client will subscribe a bank term deposit or not.

This is a binary variable and as such we will be using a Logistic Regression Model.

1 Data Exploration Analysis

In section we will explore and gain some insights into the dataset by pursuing the below high level steps and inquiries:

- -Variable identification
- -Missing values and Unique Values

1.1 Variable identification. First let's display and examine the data dictionary or the

data columns as shown in table 1

Table 1 $Variable\ Description$

Variable	Data.Type	Type	Description
age	Numeric	Predictor	Client's age
job	Catagorical	Predictor	Client's job
marital	Catagorical	Predictor	Client's marital status
education	Catagorical	Predictor	Client's education level
default	Binary	Predictor	Credit in default?
balance	Numeric	Predictor	Client's average yearly balance, in euros
housing	Binary	Predictor	Client has housing loan?
loan	Binary	Predictor	Client has personal loan?
contact	Catagorical	Predictor	Client's contact communication type
day	Catagorical	Predictor	Client last contact day of the month
month	Catagorical	Predictor	Client last contact month of year
duration	Numeric	Predictor	Client last contact duration, in seconds
campaign	Numeric	Predictor	Client number of contacts performed during this campaign
pdays	Numeric	Predictor	Client number of days that passed by after the client was last co
previous	Numeric	Predictor	Number of contacts performed before this campaign and for this
poutcome	Catagorical	Predictor	Outcome of the previous marketing campaign
emp.var.rate	Numeric	Predictor	Quarterly employment variation rate
cons.price.idx	Numeric	Predictor	Monthly consumer price index
cons.conf.idx	Numeric	Predictor	Monthly consumer confidence index

Variable	Data.Type	Type	Description
euribor3m	Numeric	Predictor	Daily euribor 3 month rate
nr.employed	Numeric	Predictor	Quarterly number of employees
у	Binary	Response	Has the client subscribed a term deposit?

We notice that the variables are numerical, categorical and binary. The response variable y is binary.

Based on the original dataset, our predictor input has 21 variables. And our response variable is 1 variable called y.

Binomial Logistic regression is the appropriate regression analysis to conduct when the dependent variable is dichotomous (binary). Like all regression analyses, the logistic regression is a predictive analysis. Logistic regression is used to describe data and to explain the relationship between one dependent binary variable and one or more metric (interval or ratio scale) independent variables.

1.2 Missing values and Unique Values. We see that there are no missing values in our dataset as shown in table 2 and graph format. The unique values are given in the table

Table 2

Missing Values

	Missing Values
age	0
job	0
marital	0
education	0

	Missing Values
default	0
housing	0
loan	0
contact	0
month	0
day_of_week	0
duration	0
campaign	0
pdays	0
previous	0
poutcome	0
emp.var.rate	0
cons.price.idx	0
cons.conf.idx	0
euribor3m	0
nr.employed	0
у	0

Table 3
Unique Values

	Unique Values
age	78
job	12
marital	4
education	8

	Unique Values
default	3
housing	3
loan	3
contact	2
month	10
day_of_week	5
duration	1544
campaign	42
pdays	27
previous	8
poutcome	3
emp.var.rate	10
cons.price.idx	26
cons.conf.idx	26
euribor3m	316
nr.employed	11
у	2

```
"data.frame": 41188 obs. of 21 variables: $ age : int 56 57 37 40 56 45 59 41 24 25 ... $ job : Factor w/ 12 levels "admin.", "blue-collar",...: 4 8 8 1 8 8 1 2 10 8 ... $ marital : Factor w/ 4 levels "divorced", "married",...: 2 2 2 2 2 2 2 2 3 3 ... $ education : Factor w/ 8 levels "basic.4y", "basic.6y",...: 1 4 4 2 4 3 6 8 6 4 ... $ default : Factor w/ 3 levels "no", "unknown",...: 1 2 1 1 1 2 1 2 1 1 ... $ housing : Factor w/ 3 levels "no", "unknown",...: 1 1 3 1 1 1 1 1 3 3 ... $ loan : Factor w/ 3 levels "no", "unknown",...: 1 1 1 1 1 3 1 1 1 1 1 ... $ contact : Factor w/ 2 levels
```

!!!!!!!!!!!!

##2 Data Preparation

- -Convert Binary to 0 and 1
- -Create dummy variables

- -Data Summary Analysis
- -Correlation of Variables with y
- **2.1 Convert Binary yes and no to 0 and 1.** Now in order to prepare the data for modeling, we need to update Yes = 1 and No = 0.

```
"data.frame": 41188 obs. of 21 variables: $ age: int 56 57 37 40 56 45 59 41 24 25 ... $ job:
                Factor w/ 12 levels "admin.", "blue-collar", ...: 4 8 8 1 8 8 1 2 10 8 ... $ marital:
                Factor w/ 4 levels "divorced", "married",..: 2 2 2 2 2 2 2 3 3 ... $ education :
                Factor w/ 8 levels "basic.4y", "basic.6y",..: 1 4 4 2 4 3 6 8 6 4 ... $ default : Factor
                w/ 3 levels "no", "unknown",..: 1 2 1 1 1 2 1 2 1 1 1 . . . $ housing : Factor w/ 3 levels
                "no", "unknown",..: 1 1 3 1 1 1 1 1 3 3 . . . $ loan : Factor w/ 3 levels
                "no", "unknown",..: 1 1 1 1 3 1 1 1 1 1 . . . $ contact : Factor w/ 2 levels
                "cellular", "telephone": 2 2 2 2 2 2 2 2 2 2 . . . $ month : Factor w/ 10 levels
                "apr", "aug", "dec", ...: 7 7 7 7 7 7 7 7 7 7 7 7 . . . $ day of week : Factor w/ 5 levels
                "fri", "mon", "thu",..: 2 2 2 2 2 2 2 2 2 2 ... $ duration : int 261 149 226 151 307 198
                139 217 380 50 ... $ campaign : int 1 1 1 1 1 1 1 1 1 1 ... $ pdays : int 999 999
                999 999 999 999 999 999 999 ... $ previous : int 0 0 0 0 0 0 0 0 0 ... $ poutcome :
                 Factor w/3 levels "failure", "nonexistent",..: 2 2 2 2 2 2 2 2 2 2 ... $ emp.var.rate :
                \ cons.conf.idx : num -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4
                 euribor3m: num 4.86 4.86 4.86 4.86 4.86 ... $ nr.employed: num 5191 5191 5191
                 5191 5191 ... $ y : num 0 0 0 0 0 0 0 0 0 ...
```

2.2 Create dummy variables. Now we need to create dummy variables to find out the relationship between y variables and dependent variables, for all categorical variables.

Table 4

Data Summary

	vars	n	mean	sd	median	$\operatorname{trimmed}$	m
age	1	41188	40.0240604	10.4212500	38.000	39.3033807	10.37820
duration	2	41188	258.2850102	259.2792488	180.000	210.6102513	139.36440
campaign	3	41188	2.5675925	2.7700135	2.000	1.9914118	1.48260
pdays	4	41188	962.4754540	186.9109073	999.000	999.0000000	0.00000
previous	5	41188	0.1729630	0.4949011	0.000	0.0457332	0.00000
emp.var.rate	6	41188	0.0818855	1.5709597	1.100	0.2661204	0.44478
cons.price.idx	7	41188	93.5756644	0.5788400	93.749	93.5807666	0.56338
cons.conf.idx	8	41188	-40.5026003	4.6281979	-41.800	-40.6015356	6.52344
euribor3m	9	41188	3.6212908	1.7344474	4.857	3.8055852	0.16012
nr.employed	10	41188	5167.0359109	72.2515277	5191.000	5178.4253338	55.00446
У	11	41188	0.1126542	0.3161734	0.000	0.0158412	0.00000
job_housemaid	12	41188	0.0257357	0.1583475	0.000	0.0000000	0.00000
job_services	13	41188	0.0963630	0.2950920	0.000	0.0000000	0.00000
job_admin.	14	41188	0.2530349	0.4347560	0.000	0.1913086	0.00000
job_blue-collar	15	41188	0.2246771	0.4173746	0.000	0.1558631	0.00000
job_technician	16	41188	0.1637127	0.3700192	0.000	0.0796613	0.00000
job_retired	17	41188	0.0417597	0.2000421	0.000	0.0000000	0.00000
job_management	18	41188	0.0709916	0.2568138	0.000	0.0000000	0.00000
job_unemployed	19	41188	0.0246188	0.1549623	0.000	0.0000000	0.00000
job_self-employed	20	41188	0.0345003	0.1825127	0.000	0.0000000	0.00000
job_unknown	21	41188	0.0080120	0.0891518	0.000	0.0000000	0.00000
job_entrepreneur	22	41188	0.0353501	0.1846654	0.000	0.0000000	0.00000
job_student	23	41188	0.0212441	0.1441986	0.000	0.0000000	0.00000

	vars	n	mean	sd	median	$\operatorname{trimmed}$	m
marital_married	24	41188	0.6052248	0.4888083	1.000	0.6315246	0.00000
marital_single	25	41188	0.2808585	0.4494240	0.000	0.2260864	0.00000
marital_divorced	26	41188	0.1119744	0.3153387	0.000	0.0149915	0.00000
marital_unknown	27	41188	0.0019423	0.0440294	0.000	0.0000000	0.00000
education_illiterate	28	41188	0.0004370	0.0209007	0.000	0.0000000	0.00000
education_unknown	29	41188	0.0420268	0.2006528	0.000	0.0000000	0.00000
education_primary	30	41188	0.1570360	0.3638392	0.000	0.0713159	0.00000
education_secondary	31	41188	0.3777799	0.4848381	0.000	0.3472323	0.00000
education_tertiary	32	41188	0.4227202	0.4939977	0.000	0.4034050	0.00000
default_no	33	41188	0.7912013	0.4064552	1.000	0.8639840	0.00000
default_unknown	34	41188	0.2087258	0.4064030	0.000	0.1359250	0.00000
default_yes	35	41188	0.0000728	0.0085342	0.000	0.0000000	0.00000
housing_no	36	41188	0.4521220	0.4977085	0.000	0.4401554	0.00000
housing_yes	37	41188	0.5238419	0.4994373	1.000	0.5298009	0.00000
housing_unknown	38	41188	0.0240361	0.1531632	0.000	0.0000000	0.00000
loan_no	39	41188	0.8242692	0.3805956	1.000	0.9053168	0.00000
loan_yes	40	41188	0.1516947	0.3587290	0.000	0.0646395	0.00000
loan_unknown	41	41188	0.0240361	0.1531632	0.000	0.0000000	0.00000
contact_telephone	42	41188	0.3652520	0.4815066	0.000	0.3315732	0.00000
contact_cellular	43	41188	0.6347480	0.4815066	1.000	0.6684268	0.00000
month_may	44	41188	0.3342964	0.4717496	0.000	0.2928806	0.00000
month_jun	45	41188	0.1291153	0.3353316	0.000	0.0364166	0.00000
month_jul	46	41188	0.1741769	0.3792662	0.000	0.0927410	0.00000
month_aug	47	41188	0.1499951	0.3570710	0.000	0.0625152	0.00000
month_oct	48	41188	0.0174323	0.1308770	0.000	0.0000000	0.00000

	vars	n	mean	sd	median	trimmed	m
month_nov	49	41188	0.0995678	0.2994265	0.000	0.0000000	0.00000
month_dec	50	41188	0.0044188	0.0663276	0.000	0.0000000	0.00000
month_mar	51	41188	0.0132563	0.1143717	0.000	0.0000000	0.00000
month_apr	52	41188	0.0639021	0.2445814	0.000	0.0000000	0.00000
$month_sep$	53	41188	0.0138390	0.1168238	0.000	0.0000000	0.00000
day_of_week_mon	54	41188	0.2067107	0.4049511	0.000	0.1334062	0.00000
day_of_week_tue	55	41188	0.1964164	0.3972919	0.000	0.1205390	0.00000
day_of_week_wed	56	41188	0.1974847	0.3981059	0.000	0.1218742	0.00000
day_of_week_thu	57	41188	0.2093571	0.4068547	0.000	0.1367140	0.00000
day_of_week_fri	58	41188	0.1900311	0.3923302	0.000	0.1125577	0.00000
previous_contact	59	41188	0.0367826	0.1882298	0.000	0.0000000	0.00000
poutcome_nonexistent	60	41188	0.8634311	0.3433958	1.000	0.9542668	0.00000
poutcome_failure	61	41188	0.1032340	0.3042679	0.000	0.0040665	0.00000
poutcome_success	62	41188	0.0333350	0.1795119	0.000	0.0000000	0.00000

Table 5

Data Summary (Cont)

	min	max	range	skew	kurtosis	se
age	17.000	98.000	81.000	0.7846397	0.7908857	0.0513493
duration	0.000	4918.000	4918.000	3.2629036	20.2442057	1.2775632
campaign	1.000	56.000	55.000	4.7621598	36.9732194	0.0136489
pdays	0.000	999.000	999.000	-4.9218314	22.2253936	0.9209781
previous	0.000	7.000	7.000	3.8317631	20.1051076	0.0024386
emp.var.rate	-3.400	1.400	4.800	-0.7240428	-1.0627423	0.0077407
cons.price.idx	92.201	94.767	2.566	-0.2308708	-0.8299589	0.0028522

	min	max	range	skew	kurtosis	se
cons.conf.idx	-50.800	-26.900	23.900	0.3031578	-0.3587887	0.0228048
euribor3m	0.634	5.045	4.411	-0.7091363	-1.4068549	0.0085463
nr.employed	4963.600	5228.100	264.500	-1.0441863	-0.0040511	0.3560096
У	0.000	1.000	1.000	2.4501517	4.0033404	0.0015579
job_housemaid	0.000	1.000	1.000	5.9900255	33.8812283	0.0007802
job_services	0.000	1.000	1.000	2.7356021	5.4836522	0.0014540
job_admin.	0.000	1.000	1.000	1.1360815	-0.7093361	0.0021422
job_blue-collar	0.000	1.000	1.000	1.3192765	-0.2595158	0.0020566
job_technician	0.000	1.000	1.000	1.8176306	1.3038128	0.0018232
job_retired	0.000	1.000	1.000	4.5813276	18.9890235	0.0009857
job_management	0.000	1.000	1.000	3.3409260	9.1620092	0.0012654
job_unemployed	0.000	1.000	1.000	6.1352936	35.6426931	0.0007636
job_self-employed	0.000	1.000	1.000	5.1008881	24.0196428	0.0008993
job_unknown	0.000	1.000	1.000	11.0368168	119.8142342	0.0004393
job_entrepreneur	0.000	1.000	1.000	5.0322224	23.3238288	0.0009099
job_student	0.000	1.000	1.000	6.6400673	42.0915155	0.0007105
marital_married	0.000	1.000	1.000	-0.4305257	-1.8146917	0.0024085
marital_single	0.000	1.000	1.000	0.9751869	-1.0490361	0.0022145
marital_divorced	0.000	1.000	1.000	2.4609486	4.0563667	0.0015538
marital_unknown	0.000	1.000	1.000	22.6233213	509.8270434	0.0002169
education_illiterate	0.000	1.000	1.000	47.8022616	2283.1116468	0.0001030
education_unknown	0.000	1.000	1.000	4.5647225	18.8371487	0.0009887
education_primary	0.000	1.000	1.000	1.8852047	1.5540345	0.0017928
education_secondary	0.000	1.000	1.000	0.5041563	-1.7458688	0.0023890
education_tertiary	0.000	1.000	1.000	0.3128675	-1.9021601	0.0024341

	min	max	range	skew	kurtosis	se
default_no	0.000	1.000	1.000	-1.4328481	0.0530549	0.0020028
default_unknown	0.000	1.000	1.000	1.4333905	0.0546097	0.0020025
default_yes	0.000	1.000	1.000	117.1551691	13723.6668447	0.0000421
housing_no	0.000	1.000	1.000	0.1923892	-1.9630341	0.0024524
housing_yes	0.000	1.000	1.000	-0.0954727	-1.9909333	0.0024609
housing_unknown	0.000	1.000	1.000	6.2149702	36.6267442	0.0007547
loan_no	0.000	1.000	1.000	-1.7039679	0.9035286	0.0018753
loan_yes	0.000	1.000	1.000	1.9418382	1.7707787	0.0017676
loan_unknown	0.000	1.000	1.000	6.2149702	36.6267442	0.0007547
$contact_telephone$	0.000	1.000	1.000	0.5596796	-1.6867997	0.0023726
$contact_cellular$	0.000	1.000	1.000	-0.5596796	-1.6867997	0.0023726
month_may	0.000	1.000	1.000	0.7024895	-1.5065451	0.0023245
$month_jun$	0.000	1.000	1.000	2.2119941	2.8929884	0.0016523
$month_jul$	0.000	1.000	1.000	1.7181345	0.9520092	0.0018688
month_aug	0.000	1.000	1.000	1.9603741	1.8431112	0.0017594
$month_oct$	0.000	1.000	1.000	7.3741903	52.3799548	0.0006449
$month_nov$	0.000	1.000	1.000	2.6745954	5.1535859	0.0014754
$month_dec$	0.000	1.000	1.000	14.9430876	221.3012387	0.0003268
$month_mar$	0.000	1.000	1.000	8.5114073	70.4457653	0.0005636
month_apr	0.000	1.000	1.000	3.5659885	10.7165344	0.0012051
$month_sep$	0.000	1.000	1.000	8.3227782	67.2702700	0.0005756
day_of_week_mon	0.000	1.000	1.000	1.4484821	0.0981028	0.0019953
day_of_week_tue	0.000	1.000	1.000	1.5282275	0.3354874	0.0019576
day_of_week_wed	0.000	1.000	1.000	1.5197359	0.3096048	0.0019616
day_of_week_thu	0.000	1.000	1.000	1.4286962	0.0411737	0.0020047

	min	max	range	skew	kurtosis	se
day_of_week_fri	0.000	1.000	1.000	1.5801046	0.4967426	0.0019332
previous_contact	0.000	1.000	1.000	4.9217092	22.2237610	0.0009275
poutcome_nonexistent	0.000	1.000	1.000	-2.1166376	2.4802150	0.0016920
poutcome_failure	0.000	1.000	1.000	2.6079414	4.8014749	0.0014992
poutcome_success	0.000	1.000	1.000	5.1991402	25.0316666	0.0008845

2.3 Data Summary Analysis.

2.4 Correlation of Variables with y. Now we will produce the correlation table between the independent variables and the dependent variable

Table 6

Variable Correlation

	-
У	1.0000000
duration	0.4052738
previous_contact	0.3248767
poutcome_success	0.3162694
previous	0.2301810
contact_cellular	0.1447731
month_mar	0.1440140
month_oct	0.1373659
month_sep	0.1260674
default_no	0.0993445
job_student	0.0939550
job_retired	0.0922208
month_dec	0.0793034

month_apr	0.0761364
cons.conf.idx	0.0548779
$marital_single$	0.0541335
education_tertiary	0.0471911
poutcome_failure	0.0317987
job_admin.	0.0314260
age	0.0303988
education_unknown	0.0214301
job_unemployed	0.0147519
$day_of_week_thu$	0.0138884
housing_yes	0.0117429
$day_of_week_tue$	0.0080461
$education_illiterate$	0.0072462
$day_of_week_wed$	0.0063020
marital_unknown	0.0052108
loan_no	0.0051231
job_unknown	-0.0001515
job_management	-0.0004189
housing_unknown	-0.0022700
loan_unknown	-0.0022700
$default_yes$	-0.0030410
loan_yes	-0.0044661
$job_self\text{-}employed$	-0.0046625
job_technician	-0.0061486
job_housemaid	-0.0065049
$day_of_week_fri$	-0.0069963
month_aug	-0.0088126

$month_jun$	-0.0091818
${\bf marital_divorced}$	-0.0106080
housing_no	-0.0110852
$month_nov$	-0.0117959
job_entrepreneur	-0.0166439
$day_of_week_mon$	-0.0212649
education_primary	-0.0237753
$month_jul$	-0.0322301
job_services	-0.0323009
education_secondary	-0.0394222
marital_married	-0.0433978
campaign	-0.0663574
job_blue-collar	-0.0744233
${\it default_unknown}$	-0.0992934
month_may	-0.1082712
cons.price.idx	-0.1362112
$contact_telephone$	-0.1447731
poutcome_nonexistent	-0.1935068
emp.var.rate	-0.2983344
euribor3m	-0.3077714
pdays	-0.3249145
nr.employed	-0.3546783

2.5 Outliers.

!!!!!!!!

###2.6 Analysis the link function

In this section, we will investigate how our initial data aligns with a typical logistic model plot.

Recall the Logistic Regression is part of a larger class of algorithms known as Generalized Linear Model (glm). The fundamental equation of generalized linear model is:

$$g(E(y)) = a + Bx_1 + B_2x_2 + B_3x_3 + \dots$$

where, g() is the link function, E(y) is the expectation of target variable and $B_0 + B_1x_1 + B_2x_2 + B_3x_3$ is the linear predictor (B_0, B_1, B_2, B_3 to be predicted). The role of link function is to "link" the expectation of y to linear predictor.

In logistic regression, we are only concerned about the probability of outcome dependent variable (success or failure). As described above, g() is the link function. This

function is established using two things: Probability of Success (p) and Probability of Failure (1-p). p should meet following criteria: It must always be positive (since p ≥ 0) It must always be less than equals to 1 (since p ≤ 1).

Now let's investigate how our initial data model aligns with the above criteria. In other words, we will plot regression model plots for each variable and compare it to a typical logistic model plot:

The main objective in the transformations is to achieve linear relationships with the dependent variable (or, really, with its logit).

##3 Build Models

In this section, we will create 3 models. Aside from using original and transformed data, we will also be using different methods and functions such as Linear Discriminant Analysis, step function, and logit function to enhance our models.

Below is our model definition:

- -Model 1- This model will be created using all the variables in train data set with logit function GLM.
- -Model 2: This model step function will be used to enhance the model 1.
- -Model 3- This model will be created using calsification and regression tree.
- **3.1 Model 1.** Taking the treated data and splitting into 80/20 to train model and validate the data.

Call: $glm(formula = y \sim ., family = binomial(link = "logit"), data = DS_TARGET_FLAG_TRAIN)$

Deviance Residuals: Min 1Q Median 3Q Max

-5.9813 -0.2993 -0.1864 -0.1341 3.3267

Coefficients: (11 not defined because of singularities) Estimate Std. Error z value $\Pr(>|z|)$ (Intercept) -2.206e+02 1.225e+02 -1.800 0.071872 .

age 1.059e-03 2.712e-03 0.390 0.696177

 ${\rm duration}\ 4.655 {\rm e-}03\ 8.280 {\rm e-}05\ 56.220 < 2 {\rm e-}16 \quad {\it campaign}\ \textit{-}4.301 {\rm e-}02\ \textit{1.303} {\rm e-}02\ \textit{-}3.302$

0.000960 pdays -1.973e-02 2.026e-02 -0.973 0.330334

previous -6.319e-02 6.878e-02 -0.919 0.358304

emp.var.rate -1.698e+00 1.588e-01 -10.696 < 2e-16 cons.price.idx 2.157e+00

 $2.828e\text{-}01 \ 7.626 \ 2.43e\text{-}14 \ \text{cons.conf.idx} \ 2.196e\text{-}02 \ 8.701e\text{-}03 \ 2.524 \ 0.011617 \ * \\ \text{euribor3m} \ 2.814e\text{-}01 \ 1.460e\text{-}01 \ 1.928 \ 0.053818 \ .$

nr.employed 5.399e-03 3.498e-03 1.543 0.122727

job housemaid -4.131e-01 2.019e-01 -2.046 0.040753 *

job services -3.466e-01 1.401e-01 -2.475 0.013328 *

job_admin. -2.500e-01 1.232e-01 -2.029 0.042506 *

job_retired -3.081e-02 1.699e-01 -0.181 0.856065

job management -2.566e-01 1.483e-01 -1.730 0.083551.

job unemployed -2.599e-01 1.782e-01 -1.459 0.144675

job_self-employed -3.849e-01 1.712e-01 -2.248 0.024571 *

job_unknown -4.242e-01 2.848e-01 -1.490 0.136340

job entrepreneur -3.961e-01 1.796e-01 -2.205 0.027442 *

job_student NA NA NA NA

marital_married 2.842e-01 4.873e-01 0.583 0.559762

marital_single 3.658e-01 4.883e-01 0.749 0.453869

marital divorced 2.980e-01 4.917e-01 0.606 0.544487

marital unknown NA NA NA NA

education illiterate 2.121e-01 9.912e-01 0.214 0.830518

education unknown 1.068e-03 1.119e-01 0.010 0.992385

education primary -1.487e-01 8.573e-02 -1.734 0.082875.

education_secondary -1.528e-01 5.824e-02 -2.624 0.008689 education_tertiary NA NA NA NA

default no 7.336e+00 1.131e+02 0.065 0.948283

default unknown 6.966e+00 1.131e+02 0.062 0.950892

default_yes NA NA NA NA

housing no -2.184e-02 1.607e-01 -0.136 0.891904

housing yes -1.775e-02 1.595e-01 -0.111 0.911397

housing unknown NA NA NA NA

loan no 6.178e-02 6.417e-02 0.963 0.335699

loan yes NA NA NA NA

loan unknown NA NA NA NA

contact_telephone -6.139e-01 8.529e-02 -7.198 6.11e-13 $\ contact_cellular\ NA\ NA\ NA$

month_may -7.295e-01 1.695e-01 -4.303 1.69e-05 month_jun -8.126e-01 2.638e-01 -3.081 0.002065 ** month_jul -1.307e-01 1.947e-01 -0.671 0.502243

month_aug 5.923e-01 1.572e-01 3.767 0.000165 month_oct -6.020e-02 1.573e-01 -0.383 0.701942

month_nov -6.410e-01 1.683e-01 -3.809 0.000139 month_dec 1.460e-01 2.337e-01 0.624 0.532322

 $\label{eq:month_mar} \begin{tabular}{ll} month_mar 1.745e+00 1.717e-01 10.164 < 2e-16 & month_apr -3.229e-01 2.002e-01 \\ -1.613 \ 0.106732 \end{tabular}$

 $month_sep\ NA\ NA\ NA\ NA$

day_of_week_mon -1.688e-01 7.382e-02 -2.287 0.022223

day of week tue 5.239e-02 7.358e-02 0.712 0.476411

day of week wed 1.706e-01 $7.302e-02\ 2.336\ 0.019496$ *

day of week thu 2.541e-02 7.123e-02 0.357 0.721301

day of week fri NA NA NA NA

previous_contact -1.845e+01 2.003e+01 -0.921 0.357110

poutcome_nonexistent -3.273e-01 2.552e-01 -1.283 0.199611

poutcome_failure -8.008e-01 2.573e-01 -3.113 0.001853 poutcome_success NA NA NA NA

— Signif. codes: 0 "' **0.001** " 0.01 " 0.05 "." 0.1 "" 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 23294 on 32949 degrees of freedom

Residual deviance: 13674 on 32899 degrees of freedom AIC: 13776

Number of Fisher Scoring iterations: 10

Analysis of Deviance Table

Model: binomial, link: logit

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 32949 23294

age 1 26.1 32948 23268 3.159e-07 duration 1 3927.1 32947 19340 < 2.2e-16
campaign 1 182.3 32946 19158 < 2.2e-16 pdays 1 2044.5 32945 17114 <
2.2e-16 previous 1 78.9 32944 17035 < 2.2e-16 emp.var.rate 1 1946.6 32943
15088 < 2.2e-16 cons.price.idx 1 399.3 32942 14689 < 2.2e-16 cons.conf.idx 1
125.3 32941 14564 < 2.2e-16 euribor3m 1 22.2 32940 14541 2.453e-06
nr.employed 1 21.7 32939 14520 3.162e-06 job_housemaid 1 1.9 32938
14518 0.1628500

job_services 1 7.6 32937 14510 0.0057626 ** job_admin. 1 8.7 32936 14501 0.0032324 **
job_blue-collar 1 78.7 32935 14423 < 2.2e-16 job_technician 1 0.1 32934
14423 0.8164324

job unemployed 1 0.0 32931 14410 0.8323131

job_self-employed 1 0.7 32930 14409 0.3879983

job_unknown 1 0.7 32929 14409 0.4061109

job_entrepreneur 1 12.3 32928 14396 0.0004446 **job_student 0 0.0 32928 14396**marital_married 1 6.3 32927 14390 0.0121511

marital_single 1 3.1 32926 14387 0.0765905 .

marital divorced 1 0.1 32925 14387 0.7014113

marital unknown 0 0.0 32925 14387

education_illiterate 1 0.2 32924 14387 0.6947715

education unknown 1 1.6 32923 14385 0.2001283

education primary 1 2.2 32922 14383 0.1385503

education_secondary 1 21.1 32921 14362 4.336e-06 education_tertiary 0 0.0 32921 14362

default_no 1 42.9 32920 14319 5.675e-11 default_unknown 1 0.0 32919 14319 0.8305794

default_yes 1 0.0 32918 14319 1.0000000

housing_no 0 0.0 32918 14319

housing_yes 2 0.1 32916 14318 0.9470350

housing unknown 0 0.0 32916 14318

loan no 1 1.3 32915 14317 0.2472729

loan yes 0 0.0 32915 14317

loan unknown 0 0.0 32915 14317

contact_telephone 1 149.5 32914 14168 < 2.2e-16 contact_cellular 0 0.0 32914 14168

 $month_may\ 1\ 177.0\ 32913\ 13991 < 2.2e-16\ \ month_jun\ 1\ 0.0\ 32912\ 13991\ 0.8444638$ $month_jul\ 1\ 2.9\ 32911\ 13988\ 0.0896473\ .$

month_aug 1 21.1 32910 13967 4.345e-06 month_oct 1 0.0 32909 13967 1.0000000

month_nov 1 36.5 32908 13930 1.495e-09 month_dec 1 0.1 32907 13930 0.7209786

 $month_mar \ 1 \ 198.9 \ 32906 \ 13731 < 2.2e-16 \ month_apr \ 1 \ 3.1 \ 32905 \ 13728$ 0.0769399 .

month sep 0 0.0 32905 13728

day_of_week_mon 1 16.6 32904 13711 4.672e-05 day_of_week_tue 1 0.1 32903 13711 0.7999177

day of week wed 1 6.6 32902 13705 0.0101931 *

day_of_week_thu 0 0.3 32902 13704

day_of_week_fri 0 0.0 32902 13704

previous_contact 2 $5.8\ 32900\ 13699\ 0.0564142$.

poutcome_nonexistent 1 14.7 32899 13684 0.0001267 * poutcome_failure 0 9.7 32899 13674

poutcome_success 0 0.0 32899 13674

— Signif. codes: 0 "' 0.001 "' 0.01 "" 0.05 "." 0.1 "" 1 llh llhNull G2 McFadden r2ML -6.837189e+03 -1.164683e+04 9.619284e+03 4.129571e-01 2.531835e-01 r2CU 4.995246e-01 [1] "Accuracy 0.910779315367808"

3.2 Model 2.

3.3 Model 3.

4 Evaluate Models

5 Select Models

Aust, F., & Barth, M. (2015). Papaja: Create aPA manuscripts with rMarkdown. Retrieved from https://github.com/crsh/papaja

R Core Team. (2016). R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing. Retrieved from

https://www.R-project.org/