Invariance and definability, with or without equality

SCANDINAVIAN LOGIC SYMPOSIUM 2012, ROSKILDE

Fredrik Engström, Göteborg Joint work with Denis Bonnay, Paris

August 21, 2012

Introduction

Invariance

- ► Klein's Erlangen Program: Invariance as the defining property for geometries.
- ► Tarski's thesis: Extend to logics; use invariance as defining property for logics and logical operators. (Tarski, 1986)
- ▶ Idea: Extend the correspondence of invariance and operators to a full Galois connection: Inv maps invariance criteria to sets of operators, and Aut maps sets of operators to invariance critera such that

$$\mathcal{Q} \subseteq \operatorname{Inv}(H)$$
 iff $H \subseteq \operatorname{Aut}(\mathcal{Q})$, and

 $Inv(Aut(\mathcal{Q}))$ corresponds to definability in a logic L.

QUANTIFIERS

Introduction

00000

Definition (Mostowski/Lindström)

A generalized quantifier Q of type $\langle n_1, \ldots, n_k \rangle$ is a (class) of structures in the language $\{R_1, \ldots, R_k\}$ where R_i is of arity n_i .

Examples:

- $ightharpoonup \exists = \{ (M, A) \mid A \subseteq M, A \neq \emptyset \}$
- $\blacktriangleright \forall = \{ (M, M) \mid M \}$
- ▶ $Q_0 = \{ (M, A) \mid A \subset M, |A| > \aleph_0 \}$

DEFINITION

$$M \vDash Q\bar{x}\,\varphi(\bar{x}) \text{ iff } (M,R) \in Q, \text{ where } R = \{ \bar{a} \in \Omega^k \mid M \vDash \varphi(\bar{a}) \}.$$

- ▶ Local quantifier: $Q_{\Omega} = \{ \langle R_1, \dots, R_k \rangle \mid (\Omega, R_1, \dots, R_k) \in Q \}$
- ▶ A local quantifier, of type $\langle n \rangle$, is definable on Ω in the logic \mathcal{L} if there is φ of \mathscr{L} , such that $(\Omega, R) \vDash \varphi$ iff $R \in Q$.

Galois theory:

$$\{ H \subseteq \operatorname{Aut}(K : k) \} \quad \rightleftharpoons \quad \{ A \mid k \subseteq A \subseteq K \}$$
 least group least field

Krasner's Galois theory:

$$\left\{ \begin{array}{ll} H \subseteq \operatorname{Sym}(\Omega) \, \right\} & \rightleftarrows & \left\{ \, M \, \text{infinitary rel. structure on } \Omega \, \right\} \\ \text{least group} & \text{definability in } \mathscr{L}_{\infty\infty} \\ \end{array}$$

Our results:

$$\left\{ \begin{array}{ll} H \subseteq \operatorname{Sym}(\Omega) \, \right\} & \rightleftharpoons & \left\{ \, \, \mathcal{Q} \text{ set of quantifiers on } \Omega \, \right\} \\ \text{least group} & \text{definability in } \mathcal{L}_{\infty\infty} \\ \end{array}$$

 $\left\{ \begin{array}{ll} \Pi \text{ set of similarities on } \Omega \, \right\} & \rightleftarrows & \left\{ \, \mathscr{Q} \text{ set of quantifiers on } \Omega \, \right\} \\ & \text{least full monoid} & \text{definability* in } \mathscr{L}_{\infty\infty}^- \\ \end{array}$

MOTIVATION I

TARSKI'S THESIS ON LOGICALITY (TARSKI, 1986)

A (local) quantifier on a domain Ω is a logical constant iff it is invariant under all **permutations** of Ω .

McGee's Theorem (McGee, 1996)

A local quantifier Q on Ω is permutation invariant iff it is $\mathscr{L}_{\infty\infty}$ -definable.

► Galois connection results give stronger connections between logics and invariance criteria: The connections are stable under adding operations.

MOTIVATION II

00000

Monadic quantifier: Quantifiers of type $\langle 1, \ldots, 1 \rangle$.

Feferman's thesis on logicality (Feferman, 1999)

A quantifier is a logical constant iff it can de defined (in typed λ calculus) from equality and monadic quantifiers invariant under talking preimages of surjections.

Feferman's Theorem (Feferman, 1999)

Monadic quantifiers are invariant under preimages of surjections iff they are definable in $\mathcal{L}_{\text{true}}^-$.

- ► Feferman leaves the general question for arbitrary quantifiers open.
- \blacktriangleright Our result on the equality-free version of $\mathscr{L}_{\infty\infty}$ is a variant on Feferman's theorem, generalized to a full Galois connection.

WITH EQUALITY

A Galois connection

- Fix a domain Ω . Quantifier means local quantifier on Ω .
- \blacktriangleright 2 is a set of quantifiers.
- G subgroup of the full symmetric group $Sym(\Omega)$.

DEFINITION

Let $Aut(\mathcal{Q})$ be the group of all permutations of Ω fixing all quantifiers in \mathcal{Q} :

$$\operatorname{Aut}(\mathcal{Q}) = \left\{ \ g \in \operatorname{Sym}(\Omega) \mid g(Q) = Q \text{ for all } Q \in \mathcal{Q} \ \right\}.$$

► Let Inv(G) be the set of quantifiers fixed by G: $Inv(G) = \{ Q \mid g(Q) = Q \text{ for all } g \in G \}.$

THEOREM (KRASNER, 1938, 1950), (B/E)

- ▶ Aut(Inv(G)) = G
- $\,\blacktriangleright\, {\rm Inv}({\rm Aut}(\mathscr{Q}))$ is the set of quantifiers definable in $\mathscr{L}_{\infty\infty}(\mathscr{Q})$

There is a permutation group which is not $\operatorname{Aut}(\mathcal{Q})$ for any set of monodic quantifiers \mathcal{Q} .

Proof

Aut(Inv(G)) = G: Let \leq well-order Ω , and $Q = \{ g(\leq) \mid g \in G \}$ of type $\langle 2 \rangle$. If $h \in$ Aut(Inv(G)) then $h(\leq) \in Q$ and so there is $g \in G$ such that $h(\leq) = g(\leq)$, implying h = g.

Inv(Aut(\mathcal{Q})) is the set of Qs definable in $\mathcal{L}_{\infty\infty}(\mathcal{Q})$: We assume all quantifiers of type $\langle 1 \rangle$ and $\Omega = \omega$. $Q' \in \text{Inv}(\text{Aut}(\mathcal{Q}))$ is defined by

$$\forall x_0, x_1, \dots \left[\bigwedge_{i \neq j} x_i \neq x_j \land \forall y \bigvee_i y = x_i \land \\ \bigwedge_{Q \in \mathscr{Q}} \left(\left(\bigwedge_{A \in Q} Qy \bigvee_{i \in A} y = x_i \right) \land \left(\bigwedge_{A \notin Q} \neg Qy \bigvee_{i \in A} y = x_i \right) \right) \rightarrow \\ \bigvee_{A \in \mathcal{O}'} \left(\bigwedge_{i \in A} Px_i \land \bigwedge_{i \notin A} \neg Px_i \right) \right]$$

WITHOUT EQUALITY

PLAN

- ▶ We want a Galois connection involving the equality free logic $\mathscr{L}_{-\infty}^-$.
- ▶ Idea: Work in Ω/\sim , where \sim is the finest definable equivalance relation and apply the previous result.
- ► Problem: Can we define ~ without knowing the language?
- ► Solution: Yes... sometimes.

DEFINITIONS

- \blacktriangleright π is a similarity relation on Ω if dom $(\pi) = \operatorname{rng}(\pi) = \Omega$.
- $ightharpoonup R \pi S \text{ if } \forall \bar{a}, \bar{b} \in \Omega \text{ such that } \bar{a} \pi \bar{b}: \bar{a} \in R \text{ iff } \bar{b} \in S.$
- \triangleright R is invariant under π if $R \pi R$.

Invariance for quantifiers is parametrized by an equivalence relation: Definition

A quantifier Q on Ω is \sim -invariant under π if for all relations $R_1, \ldots,$ R_k, S_1, \ldots, S_k on Ω invariant under \sim such that $R_i \pi S_i$ we have $\langle R_1, \ldots R_k \rangle \in O \text{ iff } \langle S_1, \ldots, S_k \rangle \in O.$

Motivation: The language $\mathscr{L}^{-}_{\infty\infty}(\mathscr{Q})$ can be very restricted: we can only talk about the **definable** sets/relations.

THE MAPPINGS

- ▶ A set of operations \mathcal{Q} generates an equivalence relation $\sim_{\mathcal{Q}}$, the finest $\mathcal{L}_{\infty\infty}^-(\mathcal{Q})$ -definable equivalence relation.
- Dually, a set of similarities Π gives us an equivalence relation by the following condition:

 $a \approx_{\Pi} b$ if for all $\bar{c} \in \Omega^k$ there is $\pi \in \Pi$ such that $a, \bar{c} \pi b, \bar{c}$.

The mappings for the Galois connection can now be defined:

- ▶ $\operatorname{Sim}(\mathcal{Q})$ is the set of similarities π such that all relations and quantifiers in \mathcal{Q} are $\sim_{\mathcal{Q}}$ -invariant under π .
- ▶ Inv(Π) is the set of all relations R and quantifiers Q on Ω which are \approx_{Π} -invariant under all similarities in Π .

FIRST HALF OF THE CORREPSONDENCE

Let the **blow-up** \hat{Q} of Q relative to \sim be $\{\hat{R} \mid R \in Q\}$, where

$$\hat{R} = \{ \langle a_1, \ldots, a_k \rangle \mid \exists \langle b_1, \ldots, b_k \rangle \in R, a_1 \sim b_1, \ldots a_k \sim b_k \}.$$

THEOREM

Let \mathcal{Q} be a set of operators then

- 1. $Q \in \text{Inv}(\text{Sim}(\mathcal{Q}))$ iff \hat{Q} is definable in $\mathcal{L}_{\infty\infty}^{-}(\mathcal{Q})$.
- 2. $R \in \text{Inv}(\text{Sim}(\mathcal{Q}))$ iff R is definable in $\mathcal{L}_{\infty\infty}^{-}(\mathcal{Q})$.

More definitions

- ▶ A similarity π is identity-like (with respect to Π) if $\pi \subseteq \approx_{\Pi}$.
- ▶ A set Π of similarties is saturated if it includes all identity-like similarities.
- ► II is a monoid with involution if it is closed under composition and taking converses.
- ▶ Π is full if it is a saturated monoid with involution closed under taking subsimilarities, i.e., such that if $\pi \in \Pi$ and $\pi' \subseteq \pi$ is a similarity then $\pi' \in \Pi$.

THEOREM

Let Π be a set of similarity relations, then $Sim(Inv(\Pi))$ is the smallest full monoid including Π .

THANK YOU FOR YOUR ATTENTION.

BIBLIOGRAPHY

- Solomon Feferman. Logic, logics, and logicism. Notre Dame Journal of Formal Logic, 40(1):31–54, 1999.
- Marc Krasner. Une généralisation de la notion de corps. Journal de mathématiques pures et appliquées, 17(3-4):367–385, 1938.
- Marc Krasner. Généralisation abstraite de la théorie de galois. In Colloque d'algèbre et de théorie des nombres, pages 163–168. Éditions du Centre National de la Recherche Scientifique, 1950.
- Vann McGee. Logical operations. Journal of Philosophical Logic, 25:567–580, 1996.
- Alfred Tarski. What are logical notions? History and Philosophy of Logic, 7: 143–154, 1986.