200A Homework 3

James Harbour

October 6, 2025

Problem 1

Suppose $p < q < \ell$ are three primes, G is a group, and $|G| = pq\ell$. Prove that G has a normal Sylow ℓ -subgroup.

Lemma 0.0.1. Suppose p < q are primes and G is a group of order pq. Further assume q > 3. Then G has a normal Sylow q-subgroup.

Proof of Lemma. Sylow's theorems give the restrictions $n_p \in \{1, q\}$ and $n_q \in \{1, p\}$. As $n_q \equiv 1 \pmod{q}$, $q \mid (n_q - 1)$, whence the inequality p < q forces $n_q = 1$. Thus G has a normal Sylow q-subgroup.

Proof of Problem 1. Note first that $\ell > 3$. Sylow's theorems give the following restrictions

$$n_p \in \{1, q, \ell, q\ell\}, \quad n_p \equiv 1 \pmod{p}$$

 $n_q \in \{1, p, \ell, p\ell\}, \quad n_q \equiv 1 \pmod{q}$
 $n_\ell \in \{1, p, q, pq\}, \quad n_\ell \equiv 1 \pmod{\ell}$

The congruence $\ell \mid (n_{\ell} - 1)$ forces $n_{\ell} \neq p, q$. The congruence $q \mid (n_{q} - 1)$ forces $n_{q} \neq p$. This gives the further restrictions

$$n_p \in \{1, q, \ell, q\ell\}$$

$$n_q \in \{1, \ell, p\ell\}$$

$$n_\ell \in \{1, pq\}$$

Let $r \in \{p, q, \ell\}$. Suppose that $R_1, R_2 \in \operatorname{Syl}_r(G)$. If $R_1 \cap R_2 > 1$, then $R_1 \cap R_2$ would itself be a Sylow r-subgroup of G whence $R_2 = R_1 \cap R_2 = R_1$. Thus Sylow r-subgroups are either equal or have trivial intersection. Hence by element counting, choices of n_p, n_q, n_ℓ yield the following lower bound

$$pql = |G| \ge 1 + n_p(p-1) + n_q(q-1) + n_\ell(\ell-1).$$

Suppose, for the sake of contradiction, that $n_p, n_q, n_l \neq 1$. Then $n_p \geq q, n_q \geq \ell$, and $n_\ell = pq$, so the above bound gives

$$pql \ge 1 + q(p-1) + \ell(q-1) + pq(\ell-1) = 1 - q + q\ell - \ell + pq\ell$$

$$\implies 0 \ge q(\ell-1) - 1(\ell-1) = (q-1)(\ell-1)$$

which is absurd. Thus, at least one of n_p , n_q , or n_ℓ is equal to 1. If $n_\ell = 1$, then we are done as this implies that the unique Sylow ℓ -subgroup is normal in G. Thus, suppose $n_\ell \neq 1$, whence $n_\ell = pq$. Then $n_p = 1$ or $n_q = 1$.

Suppose, without loss of generality (the other case is entirely analogous), that $n_p = 1$, and let $P \in \operatorname{Syl}_p(G)$, so $P \triangleleft G$. Set $\overline{G} := G/P$, so $|\overline{G}| = q\ell$. By the previous lemma, \overline{G} has a normal Sylow ℓ -subgroup $\widetilde{N} \triangleleft \overline{G}$. By the isomorphism theorems, there exists a normal subgroup $N \triangleleft G$ with $P \subseteq N$ such that $N/P \cong \widetilde{N}$. Then $|N| = |P| \cdot |\widetilde{N}| = p\ell$, so by applying the above lemma again, we obtain a Sylow ℓ -subgroup K of N with $K \triangleleft N$. Note that then $|\operatorname{Syl}_{\ell}(N)| = 1$

We claim that $K \triangleleft G$. To see this, fix $g \in G$. Note that as $N \triangleleft G$, we have $gKg^{-1} \subseteq gNg^{-1} = N$. However gKg^{-1} is then also a Sylow ℓ -subgroup of N, whence uniquness gives $gKg^{-1} = K$. Thus $K \triangleleft G$ and $|K| = \ell$, so K is a normal Sylow ℓ -subgroup of G.

Problem 2

Suppose G is a finite group, N is a normal subgroup of G, and $P \in \text{Syl}_n(N)$. Prove that $G = N_G(P)N$.

Proof. Fix $g \in G$ and observe that $gPg^{-1} \subseteq gNg^{-1} = N$. Noting that conjugation does not change the size of the group, it follows that $gPg^{-1} \in \operatorname{Syl}_p(N)$. Then, for $g \in G$, as gPg^{-1} and P are both Sylow p-subgroups of N, by the Sylow theorems they are conjugate in N, i.e. there is some $n \in N$ such that

$$gPg^{-1} = n^{-1}Pn \implies g^{-1}n^{-1}Png = P$$

So $g^{-1}n^{-1} \in N_G(P)$, whence $g^{-1} \in N_G(P)n \subseteq N_G(P)N$. As $g \in G$ was arbitrary, it follows that $G = N_G(P)N$.

Problem 3

Suppose G is a finite group and H is a subgroup. Suppose for all $x \in H \setminus \{1\}$, $C_G(x) \subseteq H$. Prove that gcd(|H|, [G:H]) = 1.

Hint. Suppose p is a prime which divides gcd(|H|, [G:H]). Suppose $Q \in Syl_p(H)$. Argue that there exists $P \in Syl_p(G)$ such that $Q \subseteq P$. Argue that there exists $y \in Z(Q) \setminus \{1\}$. Considering $C_G(y)$, show that $Z(P) \subseteq Q$. Suppose $x \in Z(P) \setminus \{1\}$, consider $C_G(x)$ to obtain that $P \subseteq H$. Argue why this is a contradiction.

Proof. Suppose, for the sake of contradiction, that there is some prime p which divides $\gcd(|H|, [G:H])$. Let $Q \in \operatorname{Syl}_p(H)$. As Q is a p-subgroup of G, there is some $P \in \operatorname{Syl}_p(G)$ such that $Q \subseteq P$. Moreover, Q being a p-group implies that Z(P) > 1, so there is some $y \in Z(Q) \setminus \{1\}$. By assumption, $C_G(y) \subseteq H$

Take $x \in Z(P)$. Then xy = yx, so $x \in C_G(y) \subseteq H$, whence $Z(P) \subseteq C_G(y) \subseteq H$. As P is a p-group, we again have Z(P) > 1, so let $x \in Z(P) \setminus \{1\}$. Then for $z \in P$, we have that xz = zx, whence $z \in C_G(x) \subseteq H$ and thus $P \subseteq H$.

Writing $|G| = p^k a$ with $p \mid /a$, by assumption we have that $p \mid [G:H]$. But then $[G:H] \mid [G:P] = a$, whence $p \mid a$, which is a contradiction.

Problem 4

Suppose G is a finite group, N is a normal subgroup, and p is a prime factor of |N|.

(a): Suppose $P \in \text{Syl}_p(G)$ and $Q \in \text{Syl}_p(N)$. Prove that there exists $g \in G$ such that $Q = gPg^{-1} \cap N$.

Proof. As $P \cap N$ is a p-subgroup of N, Sylow's conjugation theorem implies that there is some $g \in N$ such that $gPg^{-1} \cap N = g(P \cap N)g^{-1} \subseteq Q$. Noting now that Q is a p-subgroup of N, there is some $x \in G$ such that $xQx^{-1} \subseteq P$ whence $Q \subseteq x^{-1}Px$. As $Q \subseteq N$, it follows by normality of N that $Q \subseteq x^{-1}Px \cap N = x^{-1}(P \cap N)x$. Now, we observe

$$|P \cap N| = |gPg^{-1} \cap N| \le |Q| \le |x^{-1}Px \cap N| = |x^{-1}(P \cap N)x| = |P \cap N|,$$

whence $|Q| = |P \cap N| = |gPg^{-1} \cap N|$, so $Q = gPg^{-1} \cap N$.

(b): Prove that the following is a well-defined surjective function

$$\Phi: \mathrm{Syl}_p(G) \to \mathrm{Syl}_p(N), \qquad \Phi(P) := P \cap N.$$

Proof. Fix $P \in \operatorname{Syl}_p(G)$. Then $P \cap N$ is a p-subgroup of N so there is some $Q \in \operatorname{Syl}_p(N)$ such that $P \cap N \subseteq Q$. Now by part (a), there is some $g \in G$ such that $gPg^{-1} \cap N = Q$. But $P \cap N \subseteq Q$ and $|Q| = |gPg^{-1} \cap N| = |P \cap N|$, so $P \cap N = Q$. Thus $\Phi(P) = P \cap N \in \operatorname{Syl}_p(N)$, so Φ is well-defined.

Now suppose $Q \in \operatorname{Syl}_p(N)$. Then by the Sylow theorems, as Q is a p-subgroup of G, there is some $P \in \operatorname{Syl}_p(G)$ such that $Q \subseteq P$. Then $Q \subseteq P \cap N = \Phi(P) \in \operatorname{Syl}_p(N)$, whence by size considerations it follows that $Q = P \cap N$. Thus Φ is a surjective function.

(c): For $P \in \text{Syl}_p(G)$, prove that $N_G(P) \subseteq N_G(\Phi(P))$ and

$$|\Phi^{-1}(\Phi(P))| = [N_G(\Phi(P)) : N_G(P)].$$

Proof. Suppose that $gPg^{-1} = P$. Then

$$g\Phi(P)g^{-1} = g(P \cap N)g^{-1} = gPg^{-1} \cap N = P \cap N = \Phi(P),$$

whence $N_G(P) \subseteq N_G(\Phi(P))$.

Fix $P \in \operatorname{Syl}_n(G)$.

Define a map $F: N_G(\Phi(P))/N_G(P) \to \Phi^{-1}(\Phi(P))$ by $F(gN_G(P)) := gPg^{-1}$. We claim that this a well-defined bijection.

If $g \in N_G(\Phi(P))$, then $gPg^{-1} \cap N = g(P \cap N)g^{-1} = P \cap N$, so $gPg^{-1} \in \Phi^{-1}(\Phi(P))$. Moreover, suppose that $g, h \in N_G(\Phi(P))$ and there is some $x \in N_G(P)$ such that g = hx. Then by definition of $N_G(P)$,

$$gPg^{-1} = hxPx^{-1}h^{-1} = hPh^{-1}.$$

Thus F is a well-defined function on $N_G(\Phi(P))/N_G(P)$.

To see that F is injective, suppose that $g, h \in N_G(\Phi(P))$ are such that $F(gN_G(P)) = F(hN_G(P))$. Then

$$gPg^{-1} = hPh^{-1} \implies h^{-1}gPg^{-1}h = P \implies h^{-1}g \in N_G(P)$$

whence $gN_G(P) = hN_G(P)$.

To see that F is surjective, suppose that $\widetilde{P} \in \Phi^{-1}(\Phi(P))$. Then by definition $\widetilde{P} \cap N = P \cap N$. Applying Sylow's conjugation theorem, there is some $g \in G$ such that $\widetilde{P} = gPg^{-1}$. Then we observe that

$$g(P\cap N)g^{-1}=gPg^{-1}\cap N=\widetilde{P}\cap N=P\cap N,$$

so $g \in N_G(\Phi(P))$, whence $F(gN_G(P)) = gPg^{-1} = \widetilde{P}$.

Thus F is a bijection, so $[N_G(\Phi(P)):N_G(P)]=|\Phi^{-1}(\Phi(P))|$.

(d): Prove that $|Syl_p(N)|$ divides $|Syl_p(G)|$.

Proof. For $g \in G$ and $P \in Syl_p(G)$, observe that

$$\Phi(gPg^{-1}) = gPg^{-1} \cap N = g(P \cap N)g^{-1} = g\Phi(P)g^{-1}.$$

Note that if $K \subseteq G$ is a subgroup and $x \in G$, then $N_G(xKx^{-1}) = xN_G(K)x^{-1}$. Fix $P, P_0 \in \text{Syl}_p(G)$ and choose $x \in G$ such that $xPx^{-1} = P_0$. Then we compute,

$$\begin{split} [N_G(\Phi(P_0)):N_G(P_0)] &= [N_G(\Phi(xPx^{-1})):N_G(xPx^{-1})] \\ &= [N_G(x\Phi(P)x^{-1}):xN_G(P)x^{-1}] \\ &= [xN_G(\Phi(P))x^{-1}:xN_G(P)x^{-1}] \\ &= \frac{|xN_G(\Phi(P))x^{-1}|}{|xN_G(P)x^{-1}|} = \frac{|N_G(\Phi(P))|}{|N_G(P)|} = [N_G(\Phi(P)):N_G(P)]. \end{split}$$

We have thus shown that the index in question is independent of the choice of Sylow p-subgroup $P \in \operatorname{Syl}_p(G)$. Fix $P \in \operatorname{Syl}_p(G)$. Write $\operatorname{Syl}_p(N) := \{Q_1, \dots, Q_s\}$ and choose $P_1, \dots, P_s \in \operatorname{Syl}_p(G)$ such that $Q_j = \Phi(P_j)$ for all $1 \le j \le s$. Then

$$\operatorname{Syl}_p(G) = \bigsqcup_{j=1}^s \Phi^{-1}(Q_j) = \bigsqcup_{j=1}^s \Phi^{-1}(\Phi(P_j)).$$

Now we compute,

$$|\operatorname{Syl}_{p}(G)| = \left| \bigsqcup_{j=1}^{s} \Phi^{-1}(\Phi(P_{j})) \right| = \sum_{j=1}^{s} |\Phi^{-1}(\Phi(P_{j}))|$$
$$= \sum_{j=1}^{s} [N_{G}(\Phi(P_{j})) : N_{G}(P_{j})] = s \cdot [N_{G}(\Phi(P)) : N_{G}(P)],$$

which shows that $|\operatorname{Syl}_n(N)| = s$ divides $|\operatorname{Syl}_n(G)|$ as desired.

Problem 5

Suppose p is an odd prime and G is a group of order p(p+1) which does not have a normal subgroup of order p. Prove that p is a Mersenne prime; that is, $p = 2^n - 1$ for some positive integer n.

Proof. As G does not have a normal subgroup of order p, it follows that $n_p(G) = p + 1$. Let $\mathrm{Syl}_p(G) = \{P_1, \ldots, P_{p+1}\}$. Then as each P_i is cyclic of order p, they intersect trivially, whence

$$S := \bigcup_{i=1}^{p+1} P_i \setminus \{1\}$$

has size $(p+1)(p-1)=p^2-1$. Let $H:=G\setminus S$, whence |H|=p+1. In the lecture notes we have shown that $g\in G\setminus H\implies o(g)=p$. We have also shown that H is a subgroup where $H\setminus\{1\}=Cl(h)$ for any $h\in H\setminus\{1\}$.

Let q be a prime dividing p+1. As p is an odd prime, $q \neq p$. By Cauchy's theorem there is some $x \in G$ such that o(x) = q. Hence, $o(x) \neq p$, so $x \notin G \setminus H$. Equivalently, this implies that $x \in H$. As $x \neq 1$, $x \in H \setminus \{1\}$, whence $H \setminus \{1\} = Cl(x)$. Thus every element of $H \setminus \{1\}$ has order o(x) = q, whence H is a q-group.

As H is a finite q-group, there is some $m \ge 1$ such that $|H| = q^m$. But |H| = p + 1, so $p + 1 = q^m$. Suppose first that m = 1. Then q = p + 1 is prime and p is prime, whence p = 2 which contradicts that p is an odd prime. Thus $m \ge 2$, so we may write

$$p = q^m - 1 = (q - 1)(q^{m-1} + q^{m-2} + \dots + q + 1)$$

whence p being prime forces $q-1=1 \implies q=2$. In conclusion, $p=2^m-1$ is a Mersenne prime.

Problem 6

Suppose p and q are prime numbers and G is a group of order p^2q . Prove that G is not simple.

Proof. Sylow's theorems give the following initial restrictions on n_p, n_q .

$$n_p \in \{1, q\}, \quad n_p \equiv 1 \pmod{p}$$

 $n_q \in \{1, p, p^2\}, \quad n_q \equiv 1 \pmod{q}$

If $n_q = 1$, then we are done, so assume $n_q \neq 1$. If p = q, then Sylow's theorems force $n_q = n_p = 1$, so it must hold that $p \neq q$. Suppose first that $n_q = p$. Then as $q \mid (p-1)$, it follows that q < p. Thus the restriction $p \mid (n_p - 1)$ forces $n_p = 1$, whence G has a normal Sylow p-subgroup.

Now suppose that $n_q = p^2$. Note that nonequal Sylow q-subgroups must intersect trivially, so we may count the set

$$S := \bigsqcup_{Q \in \operatorname{Syl}_q(G)} Q \setminus \{1\} \implies |S| = n_q(q-1) = p^2q - p^2.$$

Every element in S has order q. The remaining room inside of G, namely $G \setminus S$, has size p^2 . Let $P \in \operatorname{Syl}_p(G)$. We claim that $P \subseteq G \setminus S$. Suppose $g \in P$. Then by Lagrange, $o(g) \in \{1, p, p^2\}$, whence $o(g) \neq q$ so $g \notin S$. Thus $P \subseteq G \setminus S$, whence $|P| = p^2 = |G \setminus S|$ implies that $P = G \setminus S$. Hence $n_p = 1$, so G has a normal Sylow p-subgroup.

Problem 7

A subgroup K of G is called a *characteristic subgroup* if for all $\theta \in \text{Aut}(G)$, $\theta(K) = K$. Notice that every characteristic subgroup is normal.

(a): Suppose N is a normal subgroup of G and K is a characteristic subgroup of N. Prove that K is a normal subgroup of G.

Proof. Let $g \in G$. Consider the inner automorphism $\sigma_g \in Aut(G)$ given by $\sigma_g(x) = gxg^{-1}$. As $N \triangleleft G$, we have that $\sigma_g(N) = gNg^{-1} = N$, whence $\sigma_g|_N \in Aut(N)$. As K is characteristic in N, it follows that $K = \sigma_g|_N(K) = gKg^{-1}$, so K is a normal subgroup of G.

(b): We say a group H is characteristically simple if the only characteristic subgroups of H are $\{1\}$ and H. Suppose N is a minimal normal subgroup of G; that is, if $M \leq N$ and $M \subseteq G$, then either $M = \{1\}$ or M = N. Then N is characteristically simple.

Proof. Suppose, for the sake of contradiction, that N is not characteristically simple. Then there is some subgroup $K \subseteq N$ with $K \neq 1, N$ such that K is characteristic in N. As N is normal in G, part (a) implies that $K \triangleleft G$, contradicting the minimality of N.

Problem 8

Suppose G is a finite group.

(a): Prove that a normal Sylow p-subgroup is a characteristic subgroup.

Proof. Let N be a normal Sylow p-subgroup of G, so $|\operatorname{Syl}_n(G)| = 1$. Fix $\theta \in \operatorname{Aut}(G)$. Then $|\theta(N)| = |N|$, whence $\theta(N)$ is also a Sylow p-subgroup of G. Now, as $|Syl_n(G)| = 1$, it follows that $\theta(N) = N$.

(b): Suppose H is a normal subgroup of G and gcd(|H|, [G:H]) = 1. Prove that H is a characteristic subgroup.

Proof. Suppose, for the sake of contradiction, that there is some $\theta \in \text{Aut}(G)$ such that $\theta(H) \neq H$. As G is a finite group, it follows that $\theta(H) \cap H < H$.

On one hand, observe that

$$\left|\frac{\theta(H)H}{H}\right|\cdot [G:\theta(H)H] = [G:H],$$

so $\left|\frac{\theta(H)H}{H}\right|$ divides [G:H]. On the other hand, by the diamond isomorphism theorem we have

$$\left| \frac{\theta(H)H}{H} \right| = \frac{|\theta(H)|}{|\theta(H) \cap H|} = \frac{|H|}{|\theta(H) \cap H|},$$

which divides |H|. Thus by assumption we have that $|\theta(H)H/H| = 1$, whence $H = \theta(H)H$. This implies that $\theta(H) \subseteq H$, but θ is an automorphism so it preserves size, whence $\theta(H) = H$ which is a contradiction.