Attention mechanisms & Transformers

CS 5624: Natural Language Processing

Spring 2025

https://tuvllms.github.io/nlp-spring-2025

Tu Vu

Logistics

- Homework 1 & Quiz 1 are on their way
- Final project proposal due on February 28

Recurrent neural networks (RNNs)

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c^t)$$

1.0

books

laptops

*Z*00

Encoder-decoder architecture

encoder

decoder

Different model architectures

- Encoder-only
 - o BERT
- Encoder-decoder
 - o T5
- Decoder-only
 - o GPT

Attention mechanism

Self-attention

Q K V opened the students their all computations are parallelized

all computations are parallelized

all computations are parallelized

all computations are parallelized

Self-attention in the decoder

S ₁₁	_∞	_∞	_∞
s ₂₁	s ₂₂	_∞	_∞
s ₃₁	s ₃₂	s ₃₃	_∞
S ₄₁	s ₄₂	s ₄₃	S ₄₄

masking out (setting to -∞) all values in the input of the softmax which correspond to illegal connections

Self-attention in the decoder (cont'd)

masking out all values in the input of the softmax which correspond to illegal connections

Self-attention in the decoder (cont'd)

masking out all values in the input of the softmax which correspond to illegal connections

Cross-attention in the decoder

Multi-head attention

Multi-head attention (cont'd)

These output values are concatenated and once again projected

Multi-head attention (cont'd)

These output values are concatenated and once again projected

Attention visualizations

Attention visualizations (cont'd)

Position-wise Feed-Forward Networks

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

ReLU (Rectified Linear Unit)

Residual connection and layer normalization

$$LayerNorm(x + Sublayer(x))$$

Residual connection

Positional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Positional Encoding (cont'd)

Transformer block (putting it together)

Training and Test

Thank you!