學號: R06945003 系級: 生醫電資碩一 姓名:林鈺盛

1.(1%) 請說明你實作的 CNN model, 其模型架構、訓練過程和準確率為何?

(Collaborators: NO)

CNN model 架構:

Layer (type)	Output	Shape		Param #	activation_6 (Activation)	(None,	64, 2	24, 48)	0
conv2d_1 (Conv2D)	(None,	32, 48,	48)	320	max_pooling2d_2 (MaxPooling2	(None,	32, 1	.2, 48)	0
batch_normalization_1 (Batch	(None,	32, 48,	48)	128	conv2d_7 (Conv2D)	(None,	128,	12, 48)	36992
activation_1 (Activation)	(None,	32, 48,	48)	0	batch_normalization_7 (Batch	(None,	128,	12, 48)	512
conv2d_2 (Conv2D)	(None,	32, 48,	48)	9248	activation_7 (Activation)	(None,	128,	12, 48)	0
oatch_normalization_2 (Batch	(None,	32, 48,	48)	128	conv2d_8 (Conv2D)	(None,	128,	12, 48)	147584
activation_2 (Activation)	(None,	32, 48,	48)	0	batch_normalization_8 (Batch	(None,	128,	12, 48)	512
conv2d_3 (Conv2D)	(None,	32, 48,	48)	9248	activation_8 (Activation)	(None,	128,	12, 48)	0
patch_normalization_3 (Batch	(None,	32, 48,	48)	128	conv2d_9 (Conv2D)	(None,	128,	12, 48)	147584
activation_3 (Activation)	(None,	32, 48,	48)	0	batch_normalization_9 (Batch	(None,	128,	12, 48)	512
max_pooling2d_1 (MaxPooling2	(None,	16, 24,	48)	0	activation_9 (Activation)	(None,	128,	12, 48)	0
conv2d_4 (Conv2D)	(None,	64, 24,	48)	9280	max_pooling2d_3 (MaxPooling2	(None,	64, 6	, 48)	0
patch_normalization_4 (Batch	(None,	64, 24,	48)	256	flatten_1 (Flatten)	(None,	18432	!)	0
activation_4 (Activation)	(None,	64, 24,	48)	0	-dense_1 (Dense)	(None,	1024)		18875392
conv2d 5 (Conv2D)	(None,	64, 24,	48)	36928	-batch_normalization_10 (Batc	(None,	1024)		4096
patch normalization 5 (Batch	(None,	64, 24,	48)	256	_activation_10 (Activation)	(None,	1024)		0
activation 5 (Activation)		64, 24,		0	_dropout_1 (Dropout)	(None,	1024)		0
_ , ,			,	-	_dense_2 (Dense)	(None,	7)		7175
conv2d_6 (Conv2D)	(None,	64, 24,	48)	36928	Total params: 19,323,463		=====		
oatch_normalization_6 (Batch	(None,	64, 24,	48)	256	Trainable params: 19,320,071 Non-trainable params: 3,392				

訓練過程:

Epochs:100

Batch size:128 Optimizer: Adam Augmentation:

```
train_datagen = ImageDataGenerator(
    featurewise_center=True,
    featurewise_std_normalization=True,
    rotation_range=10,
    width_shift_range=0.1,
    height_shift_range=0.1,
    horizontal_flip=True,
    data_format='channels_first')
```

我的 CNN model 是用全部的 training data 來訓練,沒有切 validation,因為當時覺得 val_acc 都沒有好的 performance, test data 在 kaggle 上得到的準確率 0.65。

2.(1%) 承上題,請用與上述 CNN 接近的參數量,實做簡單的 DNN model。其模型架構、訓練過程和準確率為何?試與上題結果做比較,並說明你觀察到了什麼? (Collaborators: NO)

DNN model 架構:

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	2048)	4720640
dense_2 (Dense)	(None,	2048)	4196352
dense_3 (Dense)	(None,	2048)	4196352
dense_4 (Dense)	(None,	1024)	2098176
dropout_1 (Dropout)	(None,	1024)	0
batch_normalization_1 (Batch	(None,	1024)	4096
dense_5 (Dense)	(None,	1024)	1049600
dense_6 (Dense)	(None,	1024)	1049600
batch_normalization_2 (Batch	(None,	1024)	4096
dense_7 (Dense)	(None,	512)	524800
dense_8 (Dense)	(None,	512)	262656
batch_normalization_3 (Batch	(None,	512)	2048
dense_9 (Dense)	(None,	256)	131328
dense_10 (Dense)	(None,	128)	32896
dropout_2 (Dropout)	(None,	128)	0
dense_11 (Dense)	(None,	,	903

Total params: 18,273,543
Trainable params: 18,268,423
Non-trainable params: 5,120

訓練過程:

Epochs: 80

Batch size: 128

Validation set: 20% training data

Optimizer: Adam

Accuracy: val_acc: 0.33 kaggle: 032

很明顯可以觀察到用一般的 DNN 對於影像辨識的準確率非常差,相較於 CNN

3.(1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析] (Collaborators: NO)

Happy 以及 Surprise 的準確率最高,其餘容易搞混的有 Angry-Sad、Disgust-Angry、Fear-Sad、Sad-Neutral。(ps.因為我較好的 model 並沒有切 validation,所以用了一個約 55% accuracy 的 model 來 predict validation(20% training data))

4.(1%) 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份?

(Collaborators: NO)

每種 class 皆挑選一張圖片來分析,可以發現 model 主要 focus 在五官的輪廓,尤其是 嘴巴延伸至臉頰的部分

5.(1%) 承(1)(2),利用上課所提到的 gradient ascent 方法,觀察特定層的 filter 最容易被哪種圖片 activate。

(Collaborators : NO)

First layer: conv2D_1(32 filters with kernel size = 3)

選擇的原圖為上一題的 happy