Uncertainty

Murat Osmanoglu

Extension by Crisp Relation

• $B' \subseteq B$ induced by the crisp relation R and the fuzzy set A:

B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} $\mu_{A}(x)$ }

Extension by Crisp Relation

• $B' \subseteq B$ induced by the crisp relation R and the fuzzy set A:

B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} $\mu_{A}(x)$ }

Extension by Crisp Relation

• $B' \subseteq B$ induced by the crisp relation R and the fuzzy set A:

B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} $\mu_{A}(x)$ }

a
$$x$$
b y
C z
d

Extension by Crisp Relation

• $B' \subseteq B$ induced by the crisp relation R and the fuzzy set A:

B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} $\mu_{A}(x)$ }

a
$$x$$
b y
C z
d

Extension by Crisp Relation

• $B' \subseteq B$ induced by the crisp relation R and the fuzzy set A:

B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} $\mu_{A}(x)$ }

a
$$x$$
b y
C z
d

Extension by Crisp Relation

• $B' \subseteq B$ induced by the crisp relation R and the fuzzy set A:

B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} $\mu_{A}(x)$ }

a
$$x$$
b y
C z
d

Extension by Fuzzy Relation

• $B' \subseteq B$ induced by the fuzzy relation R and the fuzzy set A:

B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = $\max_{x \text{ s.t. }(x,y) \text{ in } R}$ [min ($\mu_{A}(x)$, $\mu_{R}(x,y)$]}

- B' \subseteq B induced by the fuzzy relation R and the fuzzy set A: B' = {(y, $\mu_{B'}(y)$) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} [min ($\mu_{A}(x)$, $\mu_{R}(x,y)$]}
- Let A = {(a, 0.6), (b, 0.9), (c, 0.5), (d, 0.3)} be a fuzzy set,
 B = {x, y, z} be a crisp set, and R be a crisp relation given as follows:

- B' \subseteq B induced by the fuzzy relation R and the fuzzy set A: B' = {(y, $\mu_{B'}(y)$) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} [min ($\mu_{A}(x)$, $\mu_{R}(x,y)$]}
- Let A = {(a, 0.6), (b, 0.9), (c, 0.5), (d, 0.3)} be a fuzzy set,
 B = {x, y, z} be a crisp set, and R be a crisp relation given as follows:

a 0.5
b 0.7 0.8
c 0.2 z
$$B' = \{(x,), (y,), (z,)\}$$

- B' \subseteq B induced by the fuzzy relation R and the fuzzy set A: B' = {(y, $\mu_{B'}(y)$) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} [min ($\mu_{A}(x)$, $\mu_{R}(x,y)$]}
- Let A = {(a, 0.6), (b, 0.9), (c, 0.5), (d, 0.3)} be a fuzzy set,
 B = {x, y, z} be a crisp set, and R be a crisp relation given as follows:

a 0.5
b 0.7 0.8
c 0.2
$$z$$

d 0.5
 x
 y $B' = \{(x, 0.5), (y, 0.6), (z,)\}$

- B' \subseteq B induced by the fuzzy relation R and the fuzzy set A: B' = {(y, $\mu_{B'}(y)$) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} [min ($\mu_{A}(x)$, $\mu_{R}(x,y)$]}
- Let A = {(a, 0.6), (b, 0.9), (c, 0.5), (d, 0.3)} be a fuzzy set,
 B = {x, y, z} be a crisp set, and R be a crisp relation given as follows:

a 0.5
b 0.7 0.8
c 0.2
$$z$$

d 0.5
 x
 y $B' = \{(x, 0.5), (y, 0.6), (z, 0.7)\}$

• calculate the fuzzy distance between the fuzzy sets $A = \{(1, 0.5), (2, 1.0), (3, 0.7)\}$ and $B = \{(3, 0.6), (4, 1.0), (5, 0.3)\}$ d(1,3) = 2 with min $\{\mu_A(1), \mu_B(3)\} = 0.5$

$$d(1,3) = 2$$
 with min { $\mu_A(1)$, $\mu_B(3)$ } = 0.5 $d(1,4) = 3$ with min { $\mu_A(1)$, $\mu_B(4)$ } = 0.5

```
d(1,3) = 2 with min { \mu_A(1), \mu_B(3)} = 0.5 d(1,4) = 3 with min { \mu_A(1), \mu_B(4)} = 0.5 d(1,5) = 4 with min { \mu_A(1), \mu_B(5)} = 0.3
```

```
d(1,3) = 2 with min { \mu_A(1), \mu_B(3)} = 0.5 d(1,4) = 3 with min { \mu_A(1), \mu_B(4)} = 0.5 d(1,5) = 4 with min { \mu_A(1), \mu_B(5)} = 0.3 d(2,3) = 1 with min { \mu_A(2), \mu_B(3)} = 0.6 d(2,4) = 2 with min { \mu_A(2), \mu_B(4)} = 1.0 d(2,5) = 3 with min { \mu_A(2), \mu_B(5)} = 0.3 d(3,3) = 0 with min { \mu_A(3), \mu_B(5)} = 0.6 d(3,4) = 1 with min { \mu_A(3), \mu_B(4)} = 0.7 d(3,5) = 2 with min { \mu_A(3), \mu_B(5)} = 0.3
```

```
d(1,3) = 2 with min { \mu_A(1), \mu_B(3)} = 0.5
d(1,4) = 3 with min { \mu_A(1), \mu_B(4)} = 0.5
d(1,5) = 4 with min { \mu_A(1), \mu_R(5)} = 0.3
d(2,3) = 1 with min { \mu_A(2), \mu_B(3)} = 0.6
d(2,4) = 2 with min { \mu_A(2), \mu_B(4)} = 1.0
d(2,5) = 3 with min { \mu_A(2), \mu_B(5)} = 0.3
d(3,3) = 0 with min { \mu_A(3), \mu_B(3)} = 0.6
d(3,4) = 1 with min { \mu_A(3), \mu_B(4)} = 0.7
d(3,5) = 2 with min { \mu_A(3), \mu_B(5)} = 0.3
        d(A,B) = \{(0, ), (1, ), (2, ), (3, ), (4, )\}
```

```
d(1,3) = 2 with min { \mu_A(1), \mu_B(3)} = 0.5
d(1,4) = 3 with min { \mu_A(1), \mu_B(4)} = 0.5
d(1,5) = 4 with min { \mu_A(1), \mu_R(5)} = 0.3
d(2,3) = 1 with min { \mu_A(2), \mu_B(3)} = 0.6
d(2,4) = 2 with min { \mu_A(2), \mu_B(4)} = 1.0
d(2,5) = 3 with min { \mu_A(2), \mu_B(5)} = 0.3
d(3,3) = 0 with min { \mu_A(3), \mu_B(3)} = 0.6
d(3,4) = 1 with min { \mu_A(3), \mu_B(4)} = 0.7
d(3,5) = 2 with min { \mu_A(3), \mu_B(5)} = 0.3
       d(A,B) = \{(0,0.6), (1,), (2,), (3,), (4,)\}
```

```
d(1,3) = 2 with min { \mu_A(1), \mu_B(3)} = 0.5
d(1,4) = 3 with min { \mu_A(1), \mu_B(4)} = 0.5
d(1,5) = 4 with min { \mu_A(1), \mu_R(5)} = 0.3
d(2,3) = 1 with min { \mu_A(2), \mu_B(3)} = 0.6
d(2,4) = 2 with min { \mu_A(2), \mu_B(4)} = 1.0
d(2,5) = 3 with min { \mu_A(2), \mu_B(5)} = 0.3
d(3,3) = 0 with min { \mu_A(3), \mu_B(3)} = 0.6
d(3,4) = 1 with min { \mu_A(3), \mu_B(4)} = 0.7
d(3,5) = 2 with min { \mu_A(3), \mu_B(5)} = 0.3
       d(A,B) = \{(0,0.6), (1,0.7), (2,), (3,), (4,)\}
```

• calculate the fuzzy distance between the fuzzy sets $A = \{(1, 0.5), (2, 1.0), (3, 0.7)\}$ and $B = \{(3, 0.6), (4, 1.0), (5, 0.3)\}$

```
d(1,3) = 2 with min { \mu_A(1), \mu_B(3)} = 0.5
d(1,4) = 3 with min { \mu_A(1), \mu_B(4)} = 0.5
d(1,5) = 4 with min { \mu_A(1), \mu_R(5)} = 0.3
d(2,3) = 1 with min { \mu_A(2), \mu_B(3)} = 0.6
d(2,4) = 2 with min { \mu_A(2), \mu_B(4)} = 1.0
d(2,5) = 3 with min { \mu_A(2), \mu_B(5)} = 0.3
d(3,3) = 0 with min { \mu_A(3), \mu_B(3)} = 0.6
d(3,4) = 1 with min { \mu_A(3), \mu_B(4)} = 0.7
d(3,5) = 2 with min { \mu_A(3), \mu_B(5)} = 0.3
```

 $d(A,B) = \{(0,0.6), (1,0.7), (2,1.0), (3,0.5), (4,0.3)\}$

Probability Distribution

Possibility Distribution

Probability Distribution

Possibility Distribution

- $0 \le p(x) \le 1$
- $\Sigma_i p(x_i) = 1$

Probability Distribution

- $0 \le p(x) \le 1$
- $\Sigma_i p(x_i) = 1$

Possibility Distribution

- $0 \le \mu(x) \le 1$
- no restriction

Probability Distribution

• $0 \le p(x) \le 1$

• $\Sigma_i p(x_i) = 1$

Possibility Distribution

• $0 \le \mu(x) \le 1$

no restriction

 A, B, C, D organize a chess tournament. The following table shows the probabilities and the possibilities of the players on the tournament

			C		$p(x) \le \mu(x)$
P(x)	0.5	0.3	0.2 0.4	0	
μ(×)	1.0	0.7	0.4	0.1	

Crisp Probability of Fuzzy Event

• consider the sample space $S = \{a, b, c, d\}$ with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

Crisp Probability of Fuzzy Event

consider the sample space S = {a, b, c, d} with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

the probability of the crisp event A = {a, b, c} will be

Crisp Probability of Fuzzy Event

consider the sample space S = {a, b, c, d} with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

the probability of the crisp event A = {a, b, c} will be

$$p(A) = 0.4 + 0.2 + 0.1 = 0.7$$

Crisp Probability of Fuzzy Event

consider the sample space S = {a, b, c, d} with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

the probability of the crisp event A = {a, b, c} will be

$$p(A) = 0.4 + 0.2 + 0.1 = 0.7$$

• the probability of the fuzzy event $A=\{(a, 0.5), (b, 1.0), (c, 0.3)\}$

Crisp Probability of Fuzzy Event

• consider the sample space $S = \{a, b, c, d\}$ with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

the probability of the crisp event A = {a, b, c} will be

$$p(A) = 0.4 + 0.2 + 0.1 = 0.7$$

• the probability of the fuzzy event $A=\{(a, 0.5), (b, 1.0), (c, 0.3)\}$

$$p(A) = 0.4 \times 0.5 + 0.2 \times 1.0 + 0.1 \times 0.3 = 0.43$$

Fuzzy Probability of Fuzzy Event

• consider the sample space $S = \{a, b, c, d\}$ with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

Fuzzy Probability of Fuzzy Event

• consider the sample space $S = \{a, b, c, d\}$ with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

• fuzzy probability of fuzzy event $A=\{(a, 0.5), (b, 1.0), (c, 0.3)\}$

Fuzzy Probability of Fuzzy Event

consider the sample space S = {a, b, c, d} with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

• fuzzy probability of fuzzy event $A=\{(a, 0.5), (b, 1.0), (c, 0.3)\}$

$$A_{0.3} = \{a, b, c\}, A_{0.5} = \{a, b\}, A_{1.0} = \{b\}$$

Fuzzy Probability of Fuzzy Event

consider the sample space S = {a, b, c, d} with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

fuzzy probability of fuzzy event A={(a, 0.5), (b, 1.0), (c, 0.3)}

$$A_{0.3} = \{a, b, c\}, A_{0.5} = \{a, b\}, A_{1.0} = \{b\}$$

$$p(A_{0.3}) = 0.7$$
, $p(A_{0.5}) = 0.6$, $p(A_{1.0}) = 0.2$

Fuzzy Probability of Fuzzy Event

consider the sample space S = {a, b, c, d} with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

fuzzy probability of fuzzy event A={(a, 0.5), (b, 1.0), (c, 0.3)}

$$A_{0.3} = \{a, b, c\}, A_{0.5} = \{a, b\}, A_{1.0} = \{b\}$$

$$p(A_{0.3}) = 0.7, p(A_{0.5}) = 0.6, p(A_{1.0}) = 0.2$$

$$p(A) = \{(0.7, 0.3), (0.6, 0.5), (0.2, 1.0)\}$$

 A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

	Α	В	C	D
μ(x)	1.0	0.7	0.4	0.1

• A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

 A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

 A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

• Given fuzzy set $A = \{(a, 1.0), (b, 0.7), (c, 0.4), (d, 0.1)\},$

• A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

Given fuzzy set A = {(a, 1.0), (b, 0.7), (c, 0.4), (d, 0.1)},
 How do we measure the fuzziness of the fuzzy set A?

• A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

Given fuzzy set A = {(a, 1.0), (b, 0.7), (c, 0.4), (d, 0.1)},
 How do we measure the fuzziness of the fuzzy set A?
 How do we compare the fuzziness of two fuzzy sets?

• A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

Given fuzzy set A = {(a, 1.0), (b, 0.7), (c, 0.4), (d, 0.1)},
 How do we measure the fuzziness of the fuzzy set A?
 How do we compare the fuzziness of two fuzzy sets?
 How do we decide which one is more uncertain?

$$f: P(X) \rightarrow R$$

all subsets of the universal set

real numbers

$$f: P(X) \rightarrow R$$

all subsets of the universal set

real numbers

• f(A) = 0 if A is a crisp set

$$f: P(X) \rightarrow R$$

all subsets of the universal set

real numbers

- f(A) = 0 if A is a crisp set
- if the uncertainty of A is less than that of B, $f(A) \le f(B)$

$$f: P(X) \rightarrow R$$
real numbers

all subsets of the universal set

- f(A) = 0 if A is a crisp set
- if the uncertainty of A is less than that of B, $f(A) \le f(B)$
- if the uncertainty is the maximum for a fuzzy set B, then f(B) should have the maximum value

$$f: P(X) \rightarrow R$$
real numbers

all subsets of the universal set

- f(A) = 0 if A is a crisp set
- if the uncertainty of A is less than that of B, $f(A) \le f(B)$
- if the uncertainty is the maximum for a fuzzy set B, then f(B) should have the maximum value
- Given fuzzy sets

$$A = \{(a, 1.0), (b, 0.7), (c, 0.4)\}, B = \{(a, 0.5), (b, 0.5), (c, 0.5)\}$$

$$f: P(X) \rightarrow R$$
real numbers

all subsets of the universal set

- f(A) = 0 if A is a crisp set
- if the uncertainty of A is less than that of B, $f(A) \le f(B)$
- if the uncertainty is the maximum for a fuzzy set B, then f(B) should have the maximum value
- Given fuzzy sets

$$A = \{(a, 1.0), (b, 0.7), (c, 0.4)\}, B = \{(a, 0.5), (b, 0.5), (c, 0.5)\}$$

$$f(A) < f(B)$$
 and $f(B)$ should be maximum

Measure with Entropy

Shannon's entropy is used to measure the amount of uncertainty

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x)) = \sum_{x \text{ in } X} p(x).log p(x)$

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x)) = \sum_{x \text{ in } X} p(x).log p(x)$

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x)) = \sum_{x \text{ in } X} p(x).log p(x)$

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x)) = \sum_{x \text{ in } X} p(x).log p(x)$

•
$$X = \{00, 01, 10, 11\}$$

 $p(00) = 3/4, p(01) = 1/8, p(10) = 1/16, p(11) = 1/16$
 $H(p(x)) = -(3/4) \log (3/4) - (1/8) \log (1/8)$
 $-(1/16) \log (1/16) - (1/16) \log (1/16)$
 $H(p(x)) = (3/2 + 3/8 + 1/4 + 1/4) - \log 3$
 $H(p(x)) \approx 0.791$

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x)) = \sum_{x \text{ in } X} p(x).log p(x)$

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x)) = \sum_{x \text{ in } X} p(x).log p(x)$

•
$$X = \{00, 01, 10, 11\}$$

 $p(00) = 1/4, p(01) = 1/4, p(10) = 1/4, p(11) = 1/4$
 $H(p(x)) = -(1/4) \log (1/4) - (1/4) \log (1/4)$
 $-(1/4) \log (1/4) - (1/4) \log (1/4)$

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x)) = \sum_{x \text{ in } X} p(x).log p(x)$

Measure with Entropy

• $f(A) = -\sum_{x \text{ in } X} [\mu_A(x).\log \mu_A(x) + (1 - \mu_A(x)).\log (1 - \mu_A(x))]$

- $f(A) = -\sum_{x \text{ in } X} [\mu_A(x).\log \mu_A(x) + (1 \mu_A(x)).\log (1 \mu_A(x))]$
- the normalized measure f'(A) = f(A) / |X|

- $f(A) = -\sum_{x \text{ in } X} [\mu_A(x).\log \mu_A(x) + (1 \mu_A(x)).\log (1 \mu_A(x))]$
- the normalized measure f'(A) = f(A) / |X|
- $A = \{(a, 0.6), (b, 0.5), (c, 0.2)\}$

- $f(A) = -\sum_{x \text{ in } X} [\mu_A(x).\log \mu_A(x) + (1 \mu_A(x)).\log (1 \mu_A(x))]$
- the normalized measure f'(A) = f(A) / |X|
- A = {(a, 0.6), (b, 0.5), (c, 0.2)}
 f(A) = (0.6 log 0.6 + 0.5 log 0.5 + 0.2 log 0.2
 0.4 log 0.4 + 0.5 log 0.5 + 0.8 log 0.8)

- $f(A) = -\sum_{x \text{ in } X} [\mu_A(x).\log \mu_A(x) + (1 \mu_A(x)).\log (1 \mu_A(x))]$
- the normalized measure f'(A) = f(A) / |X|
- A = {(a, 0.6), (b, 0.5), (c, 0.2)}
 f(A) = (0.6 log 0.6 + 0.5 log 0.5 + 0.2 log 0.2
 0.4 log 0.4 + 0.5 log 0.5 + 0.8 log 0.8)
 f(A) = 2.686

- $f(A) = -\sum_{x \text{ in } X} [\mu_A(x).\log \mu_A(x) + (1 \mu_A(x)).\log (1 \mu_A(x))]$
- the normalized measure f'(A) = f(A) / |X|
- A = {(a, 0.6), (b, 0.5), (c, 0.2)}
 f(A) = (0.6 log 0.6 + 0.5 log 0.5 + 0.2 log 0.2
 0.4 log 0.4 + 0.5 log 0.5 + 0.8 log 0.8)
 f(A) = 2.686, f'(A) = 2.686/3 = 0.89

- $f(A) = -\sum_{x \text{ in } X} [\mu_A(x).\log \mu_A(x) + (1 \mu_A(x)).\log (1 \mu_A(x))]$
- the normalized measure f'(A) = f(A) / |X|
- A = {(a, 0.6), (b, 0.5), (c, 0.2)}
 f(A) = (0.6 log 0.6 + 0.5 log 0.5 + 0.2 log 0.2
 0.4 log 0.4 + 0.5 log 0.5 + 0.8 log 0.8)
 f(A) = 2.686, f'(A) = 2.686/3 = 0.89
- B = $\{(a, 0.5), (b, 0.5), (c, 0.5)\}$

- $f(A) = -\sum_{x \text{ in } X} [\mu_A(x).\log \mu_A(x) + (1 \mu_A(x)).\log (1 \mu_A(x))]$
- the normalized measure f'(A) = f(A) / IXI
- A = {(a, 0.6), (b, 0.5), (c, 0.2)}
 f(A) = (0.6 log 0.6 + 0.5 log 0.5 + 0.2 log 0.2
 0.4 log 0.4 + 0.5 log 0.5 + 0.8 log 0.8)
 f(A) = 2.686, f'(A) = 2.686/3 = 0.89
- B = {(a, 0.5), (b, 0.5), (c, 0.5)}
 f(B) = (0.5 log 0.5 + 0.5 log 0.5 + 0.5 log 0.5
 0.5 log 0.5 + 0.5 log 0.5 + 0.5 log 0.5)

- $f(A) = -\sum_{x \text{ in } X} [\mu_A(x).\log \mu_A(x) + (1 \mu_A(x)).\log (1 \mu_A(x))]$
- the normalized measure f'(A) = f(A) / IXI
- A = {(a, 0.6), (b, 0.5), (c, 0.2)}
 f(A) = (0.6 log 0.6 + 0.5 log 0.5 + 0.2 log 0.2
 0.4 log 0.4 + 0.5 log 0.5 + 0.8 log 0.8)
 f(A) = 2.686, f'(A) = 2.686/3 = 0.89
- B = {(a, 0.5), (b, 0.5), (c, 0.5)}
 f(B) = (0.5 log 0.5 + 0.5 log 0.5 + 0.5 log 0.5
 0.5 log 0.5 + 0.5 log 0.5 + 0.5 log 0.5)
 f(B) = 3

- $f(A) = -\sum_{x \text{ in } X} [\mu_A(x).\log \mu_A(x) + (1 \mu_A(x)).\log (1 \mu_A(x))]$
- the normalized measure f'(A) = f(A) / |X|
- A = {(a, 0.6), (b, 0.5), (c, 0.2)}
 f(A) = (0.6 log 0.6 + 0.5 log 0.5 + 0.2 log 0.2
 0.4 log 0.4 + 0.5 log 0.5 + 0.8 log 0.8)
 f(A) = 2.686, f'(A) = 2.686/3 = 0.89
- B = {(a, 0.5), (b, 0.5), (c, 0.5)}
 f(B) = (0.5 log 0.5 + 0.5 log 0.5 + 0.5 log 0.5
 0.5 log 0.5 + 0.5 log 0.5 + 0.5 log 0.5)
 f(B) = 3, f'(B) = 1

Measure with Metric Distance

• $f(A) = \sum_{x \text{ in } X} (0.5 - \mu_A(x) - 0.51)$

- $f(A) = \sum_{x \text{ in } X} (0.5 \mu_A(x) 0.51)$
- the normalized measure f'(A) = f(A) / (0.5 |X|)

- $f(A) = \sum_{x \text{ in } X} (0.5 \mu_A(x) 0.51)$
- the normalized measure f'(A) = f(A) / (0.5 |X|)
- $A = \{(a, 0.6), (b, 0.5), (c, 0.2)\}$

- $f(A) = \sum_{x \text{ in } X} (0.5 \mu_A(x) 0.51)$
- the normalized measure f'(A) = f(A) / (0.5 |X|)
- $A = \{(a, 0.6), (b, 0.5), (c, 0.2)\}$ f(A) = (0.5 - 10.6 - 0.51) + (0.5 - 10.5 - 0.51) + (0.5 - 10.2 - 0.51)

- $f(A) = \sum_{x \text{ in } X} (0.5 \mu_A(x) 0.51)$
- the normalized measure f'(A) = f(A) / (0.5 |X|)
- $A = \{(a, 0.6), (b, 0.5), (c, 0.2)\}$ f(A) = (0.5 - 10.6 - 0.51) + (0.5 - 10.5 - 0.51) + (0.5 - 10.2 - 0.51)f(A) = 0.4 + 0.5 + 0.2 = 1.1

- $f(A) = \sum_{x \text{ in } X} (0.5 \mu_A(x) 0.51)$
- the normalized measure f'(A) = f(A) / (0.5 |X|)
- A = {(a, 0.6), (b, 0.5), (c, 0.2)}
 f(A) = (0.5 10.6 0.51) + (0.5 10.5 0.51) + (0.5 10.2 0.51)
 f(A) = 0.4 + 0.5 + 0.2 = 1.1, f'(A) = 1.1/1.5 = 0.73

- $f(A) = \sum_{x \text{ in } X} (0.5 \mu_A(x) 0.51)$
- the normalized measure f'(A) = f(A) / (0.5 |X|)
- $A = \{(a, 0.6), (b, 0.5), (c, 0.2)\}$ f(A) = (0.5 - 10.6 - 0.51) + (0.5 - 10.5 - 0.51) + (0.5 - 10.2 - 0.51)f(A) = 0.4 + 0.5 + 0.2 = 1.1, f'(A) = 1.1/1.5 = 0.73
- B = $\{(a, 0.5), (b, 0.5), (c, 0.5)\}$

- $f(A) = \sum_{x \text{ in } X} (0.5 \mu_A(x) 0.51)$
- the normalized measure f'(A) = f(A) / (0.5 |X|)
- $A = \{(a, 0.6), (b, 0.5), (c, 0.2)\}$ f(A) = (0.5 - 10.6 - 0.51) + (0.5 - 10.5 - 0.51) + (0.5 - 10.2 - 0.51)f(A) = 0.4 + 0.5 + 0.2 = 1.1, f'(A) = 1.1/1.5 = 0.73
- B = $\{(\alpha, 0.5), (b, 0.5), (c, 0.5)\}$ f(B) = (0.5 - 10.5 - 0.51) + (0.5 - 10.5 - 0.51) + (0.5 - 10.5 - 0.51)

- $f(A) = \sum_{x \text{ in } X} (0.5 \mu_A(x) 0.51)$
- the normalized measure f'(A) = f(A) / (0.5 |X|)
- $A = \{(a, 0.6), (b, 0.5), (c, 0.2)\}$ f(A) = (0.5 - 10.6 - 0.51) + (0.5 - 10.5 - 0.51) + (0.5 - 10.2 - 0.51)f(A) = 0.4 + 0.5 + 0.2 = 1.1, f'(A) = 1.1/1.5 = 0.73
- B = {(α, 0.5), (b, 0.5), (c, 0.5)}
 f(B) = (0.5 10.5 0.51) + (0.5 10.5 0.51) + (0.5 10.5 0.51)
 f(B) = 0.5 + 0.5 + 0.5 = 1.5

- $f(A) = \sum_{x \text{ in } X} (0.5 \mu_A(x) 0.51)$
- the normalized measure f'(A) = f(A) / (0.5 |X|)
- $A = \{(a, 0.6), (b, 0.5), (c, 0.2)\}$ f(A) = (0.5 - 10.6 - 0.51) + (0.5 - 10.5 - 0.51) + (0.5 - 10.2 - 0.51)f(A) = 0.4 + 0.5 + 0.2 = 1.1, f'(A) = 1.1/1.5 = 0.73
- B = {(α, 0.5), (b, 0.5), (c, 0.5)}
 f(B) = (0.5 10.5 0.51) + (0.5 10.5 0.51) + (0.5 10.5 0.51)
 f(B) = 0.5 + 0.5 + 0.5 = 1.5, f'(B) = 1.5/1.5 = 1