- 1. $P_{00}^n > 0$ for all n. State 1 is not periodic as it can only be the current state during the initial state. $P_{22}^n > 0$ for $n \ge 4$. $P_{33}^n > 0$ for $n \ge 3$. $P_{44}^n > 0$ for $n \ge 2$. $P_{55}^n > 0$ for $n \ge 1$. Hence d(i) = 1 for all states.
- 2. States 1, 2, 3, and 4 are recurrent since once we are in states $\{1,3\}$ or $\{2,4\}$, we cannot leave the group. States 5 and 6 are transient since there is a > 0 chance that we will enter the other 4 states, which would mean we will never return to state 5 or 6.
- 3. For $r=1, P_{ii}=1$, states ≥ 1 are recurrent, positive, and aperiodic. Since $f_{ii}(0)=1, f_{ii}(n)=0$ for $n>0, \ \mu_i=1$. State 0 is transient (assuming $a_0\neq 1$) hence $\mu_0=\infty$. If $a_0=1$, state 0 acts like the other states.

For r < 1 states ≥ 1 are recurrent and aperiodic.

4. At p = 0, P is the identity matrix and all states are recurrent, positive (since $f_{ii}(0) = 1$, $f_{ii}(n) = 0$, n > 0, hence $\mu_i = 1$), and aperiodic (since d(i) = 1), so the states are ergodic.

At p = 0.25 (analysis is the same for 0),

$$P = \left(\begin{array}{ccc} 0.5 & 0.5 & 0\\ 0.25 & 0.5 & 0.25\\ 0 & 0.5 & 0.5 \end{array}\right)$$

and all states are recurrent. $P_{ii}^n > 0$ for all n, so states are aperiodic.

- 5. $f_{00}(1) = 1 a$, $f_{00}(2) = ab$, $f_{00}(3) = (1 a)ab$, $f_{00}(4) = (1 a)^2ab$. Assuming 0 < a, b < 1, both states are clearly recurrent. Hence for $n \ge 2$, $f_{00}(n) = (1 a)^{n-2}ab$. Since $P_{00}^n \ne 0$ as $n \to \infty$, state 0 is positive and hence $\mu_i < \infty$. $\mu_0 = E(T_0|X_0 = 0) = \sum_{n=1}^{\infty} f_{00}(n) = (1 a) + \sum_{n=2}^{\infty} (1 a)^{n-2}ab$.
- 6. If all other states i not s communicate with s, then for some $n \ge 1$, $p_{is}^n > 0$, hence all states have a > 0 probability of jumping to s, and hence being absorbed. When this happens, $P(X_n = i | X_0 = i) = 0$, hence all states other than s are transient.
- 7. If and only if a state i is transient then for some $n \geq 1$, $P(X_n = i | X_0 = i) < 1$, hence there were a finite number of visits to i and so the mean number of visits to i will be finite. Thus state i is recurrent if and only if for some $n \geq 1$, $P(X_n = i | X_0 = i) = 1$, hence there will always be another visit to i, so the mean number of visits is infinite.