21-235 Math Studies Analysis I

Rohan Jain

Contents

Chapter I		1 age 2
1.1	Ordered Fields (Review)	2
1.2	Types of Ordered Fields	3
1.3	Dedekind Completion Ordering \mathbb{F}^* — 5 • Addition — 6 • Multiplication — 7	4
1.4	Robert Reci	7
1.5	Completeness	9
Chapter 2	R, C, Ā	Page 11
2.1	Extended Reals: $\bar{\mathbb{R}}$ Sequences in $\bar{\mathbb{R}}$ — 12	11
Chapter 3	Metric Spaces	Page 15
Chapter 4	Basic Metric Space Topology	Page 18
4.1	Limits and Continuity	24
4.2	Homeomorphisms	33
4.3	More Metric Space Topology	37

Chapter 1

1.1 Ordered Fields (Review)

Definition 1.1.1: Order

Let E be a set. An order on E is a relation < on E such that for all $x, y, z \in E$:

- 1. (Trichotomy) Exactly one of the following holds: x < y, x = y, or x > y.
- 2. (Transitivity) If x < y and y < z, then x < z.

Example 1.1.1 (Examples of Ordered Sets)

- 1. This definition develops orders on basic number systems: e.g. \mathbb{Z} , \mathbb{Q} , and \mathbb{R} .
- 2. Define \lesssim on $\mathbb Z$ as follows: We say that $m \lesssim n$ for $m,n \in \mathbb Z$ if:
 - (a) m is even and n is odd
 - (b) m, n are even and m < n
 - (c) m, n are odd and m < n.

Key Concepts:

- upper/lower bounds of sets
- bounded sets
- max/min
- supremum/infimum
- supremum/infimum property: An ordered set E satisfies such a property if every nonempty set $A \subseteq E$ that's bounded above/below has a supremum/infimum in E.
- Fact: sup prop \implies inf prop

Definition 1.1.2: Ordered Field

Let \mathbb{F} be a field with order \prec . We say that \mathbb{F} is an ordered field provided that:

- 1. For all $x, y, z \in \mathbb{F}$, if x < y, then x + z < y + z.
- 2. For all $x, y \in \mathbb{F}$, if 0 < x and 0 < y, then $0 < x \cdot y$.

Example 1.1.2

O is a field.

Facts of any ordered field:

- 1. 0 < 1
- 2. $\nexists x \in \mathbb{F}$ such that $x^2 = -1$.

Definition 1.1.3: Ordered Subfield, Homomorphism, Isomorphism

Let **F** be an ordered field.

- 1. A set $\mathbb{K} \subseteq \mathbb{F}$ is called an *ordered subfield* if mathbbK is an algeraic subfield and \mathbb{K} is an ordered field equipped with < from \mathbb{F} .
- 2. Let \mathbb{G} be an ordered field and let $f : \mathbb{F} \to \mathbb{G}$. We say that f is an ordered field homomorphism if it's a field homomorphism and f(x) < f(y) whenever x < y.
- 3. f is an ordered field isomorphism if f is an ordered field homomorphism and f is bijective.

Note:

- 1. If $f: \mathbb{F} \to \mathbb{G}$ is an ordered field homomorphism, $f(\mathbb{F})$ is an ordered subfield of \mathbb{G} .
- 2. OF property $\implies f$ is injective.
- 3. : every ordered field homomorphism $f: \mathbb{F} \to \mathbb{G}$ is such that f induces a bijection $f: \mathbb{F} \to f(\mathbb{F}) \subseteq \mathbb{G}$.

Theorem 1.1.1 $\mathbb Q$ is the smallest ordered field. More precisely, if $\mathbb F$ is an ordered field, then there exists a canonical ordered field homomorphism $f:\mathbb Q\to\mathbb F$.

Upshot/notation abuse: We identify $f(\mathbb{Q}) = \mathbb{Q}$ to view $\mathbb{Q} \subseteq \mathbb{F}$. In turn, $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subseteq \mathbb{F}$.

1.2 Types of Ordered Fields

Definition 1.2.1: Archimedean, Dedekind complete

Let **F** be an ordered field.

- 1. We say that \mathbb{F} is Archimedean if $\forall 0 < x \in \mathbb{F}$, $\exists n \in \mathbb{N}$ such that n > x.
- 2. We say that \mathbb{F} is Dedekind complete if it satisfies the supremum property.

Facts:

- 1. \mathbb{Q} is Archimedean.
- 2. If \mathbb{F} is Dedekind complete, then $\forall 0 < x \in \mathbb{F}$ and $\forall 0 < n \in \mathbb{N}, \exists ! \ 0 < y \in \mathbb{F}$ such that $y^n = x$.
- 3. \mathbb{Q} is not Dedekind complete. ($\sqrt{2}$ is a counterexample.)

Theorem 1.2.1

Suppose \mathbb{F} is a Dedekind complete ordered field. Then \mathbb{F} is Archimedean.

Proof. If not, then $\mathbb{N} \subset \mathbb{F}$ is bounded above, and so the supremum property provides $x \in \mathbb{F}$ such that $x = \sup \mathbb{N}$. But then x - 1 is an upper bound for \mathbb{N} , so there exists $n \in \mathbb{N}$ such that x - 1 < n. Hence x < n + 1, which contradicts the definition of x as an upper bound. Therefore, \mathbb{F} is Archimedean.

1.3 Dedekind Completion

Throughout this section, let **F** be an Archimedean ordered field.

Definition 1.3.1: Dedekind cut

We say a set $C \subseteq \mathbb{F}$ is Dedekind cut if:

- 1. $C \neq \emptyset$ and $C \neq \mathbb{F}$.
- 2. If $p \in C$ and $q \in \mathbb{F}$ such that q < p, then $q \in C$.
- 3. If $p \in C$, then $\exists r \in C$ such that p < r.

We will write \mathbb{F}^* for the set of all Dedekind cuts in \mathbb{F} . It is called the *Dedekind completion* of \mathbb{F} .

Note:

Let $C \subseteq \mathbb{F}$ be a cut. Then:

- 1. If $p \in C$, then $q \notin C$, then p < q.
- 2. If $r \notin C$, and $r < s \in \mathbb{F}$, then $s \notin C$.

Example 1.3.1 (Cut examples)

1. Let $q \in \mathbb{F}$ and define $C_q = \{ p \in \mathbb{F} \mid p < q \}$. Then C_q is a cut.

Proof. (a) $q-1 < q \implies q-1 \in C_q$. $q \nleq q \implies q \notin C_q \implies C_q \neq \mathbb{F}$.

- (b) Let $p \in C_q$. Suppose $s \in \mathbb{F}$ such that s < p. Then $s < q \implies s \in C_q$.
- (c) Let $p \in C_q$. Then $p < \frac{p+q}{2} < q \implies \frac{p+q}{2} \in C_q$.

2. Suppose \mathbb{F} is such that $\nexists x \in \mathbb{F}$ such that $x^2 = 2$. Let $C = \{ p \in \mathbb{F} \mid p \leq 0 \text{ or } 0 < p^2 < 2 \}$. Then C is a cut.

Proof. (a) $1 \in C$ and $1^2 = 1 < 2$. $2 \notin C$ and $2^2 = 4 > 2$.

- (b) Let $p \in C$ and $q \in \mathbb{F}$ such that q < p. If $q \le 0$, then $q \in C$ trivially. Suppose 0 < q < p. Then $0 < q^2 < p^2 < 2$, so $q \in C$.
- (c) Let $p \in C$. If $p \le 0$, then $1 \in C$ and p < 1, so we're done. Suppose $0 < p^2 < 2$. Note, $0 < 2 p^2$, so $\frac{2p+1}{2-p^2} > 0$. Then we can define $r = 1 + \frac{2p+1}{2-p^2} \ge \max(1, \frac{2p+1}{2-p^2})$. Then $(p+1/r)^2 = p^2 + \frac{2p}{r} + \frac{1}{r^2}$. We have:

$$p^{2} + \frac{2p}{r} + \frac{1}{r^{2}} < p^{2} + \frac{2p}{r} + \frac{1}{r}$$

$$= p^{2} + \frac{2p+1}{r}$$

$$\leq p^{2} + 2 - p^{2}$$

$$= 2.$$

So, $p and <math>p + 1/r \in C$.

⊜

(2)

1.3.1 Ordering \mathbb{F}^*

Lenma 1.3.1

The following hold:

- 1. If $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$, then exactly one holds:
 - $\mathcal{A} \subset \mathcal{B}$
 - $\mathcal{A} = \mathcal{B}$
 - $\mathcal{B} \subset \mathcal{A}$
- 2. If $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathbb{F}^*$ and $\mathcal{A} \subset \mathcal{B}$ and $\mathcal{B} \subset \mathcal{C}$, then $\mathcal{A} \subset \mathcal{C}$.

Proof. Proof of 2 is trivial, as well as the equality part for 1.

- If $\mathcal{A} = \mathcal{B}$, we're done.
- Suppose $\exists b \in \mathcal{B} \setminus \mathcal{A}$. If $a \in \mathcal{A}$, then a < b, but \mathcal{B} is a cut so $a \in \mathcal{B}$, so $\mathcal{A} \subset \mathcal{B}$.
- Suppose $\exists a \in \mathcal{A} \setminus \mathcal{B}$. Then a < b for all $b \in \mathcal{B}$, so $a \in \mathcal{B}$, so $\mathcal{B} \subset \mathcal{A}$.

Definition 1.3.2: Order on cuts

Given $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$, we say that $\mathcal{A} < \mathcal{B}$ if $\mathcal{A} \subset \mathcal{B}$. The lemma above shows that this is infact an order.

(2)

Lenma 1.3.2

Let $E \subseteq \mathbb{F}^*$ be nonempty and bounded above. Then $\mathcal{B} = \bigcup_{\mathcal{A} \in E} \mathcal{A}$ is a cut.

Proof. 1. Since $E \neq \emptyset$, there exists $\mathcal{A} \in E$. So $\mathcal{A} \neq \emptyset$, hence $\mathcal{B} \neq \emptyset$.

Since E is bounded above, there exists $C \in \mathbb{F}^*$ such that $\mathcal{A} \subset C$ for all $\mathcal{A} \in E$. Since C is a cut, there is $q \in \mathbb{F}$ such that $q \notin C$. Then $q \notin \mathcal{A}$ for all $\mathcal{A} \in E$, so $q \notin \mathcal{B}$.

- 2. Let $p \in \mathcal{B}$ and $q \in \mathbb{F}$ such that q < p. Since \mathcal{B} is a union of cuts, it follows that $p \in \mathcal{A}$ for some $\mathcal{A} \in E$. Since \mathcal{A} is a cut, $q \in \mathcal{A} \subseteq \mathcal{B}$.
- 3. Let $p \in \mathcal{B}$. Then $p \in \mathcal{A}$ for some $\mathcal{A} \in E$. Since \mathcal{A} is a cut, there exists $r \in \mathcal{A}$ such that p < r. Since $\mathcal{A} \subset \mathcal{B}$, we have $r \in \mathcal{B}$.

Theorem 1.3.1

 \mathbb{F}^* equipped with the order < satisfies the supremum property.

Proof. Let $E \subseteq \mathbb{F}$ be a nonempty set that is bounded above. From last time, we know that $\mathcal{B} = \bigcup_{\mathcal{A} \in E} \mathcal{A}$ is a cut. We claim that $\mathcal{B} = \sup E$.

If $\mathcal{A} \in E$, then $\mathcal{A} \subseteq \mathcal{B}$. And so $\mathcal{A} \leqslant \mathcal{B}$, so \mathcal{B} is an upper bound for E.

Next, suppose that $C \in \mathbb{F}^*$ is an upper bound of E. This means that $\mathcal{A} \leq C$ for every $\mathcal{A} \in E$, meaning $\mathcal{A} \subseteq C \forall \mathcal{A} \in E$. So $\mathcal{B} \subseteq C$. As such, $\mathcal{B} \leq C$, so $\mathcal{B} = \sup E$.

Remark: In none of the results leading up to this theorem did we use that \mathbb{F} is anything other than an ordered set. This shows that the cut construction of Dedekind works in general for ordered sets and yields \mathbb{F}^* that satisfies the supremum property. Also, $\{C_p \mid p \in \mathbb{F}\} \subseteq \mathbb{F}^*$.

1.3.2 Addition

Idea: $\mathbb{F} \cong \{C_p \mid p \in \mathbb{F}\}.$

Lenma 1.3.3

Let $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$. Then $C = \{a + b \mid a \in \mathcal{A}, b \in \mathcal{B}\}$ is a cut.

Proof. Claim: $\mathcal{A}, \mathcal{B} \neq \emptyset \implies C \neq \emptyset$.

 \mathcal{A}, \mathcal{B} are cuts, so $\exists M_1, M_2 \in \mathbb{F}$ such that $a < M_1$ for all $a \in \mathcal{A}$ and $b < M_2$ for all $b \in \mathcal{B}$. Then $a + b < M_1 + M_2$ for all $a \in \mathcal{A}, b \in \mathcal{B}$, so $a + b < M_1 + M_2$, meaning $M_1 + M_2 \notin C$.

Also, let $c = a + b \in C$ for $a \in \mathcal{A}, b \in \mathcal{B}$. Let $q < c \implies q - a < b \implies q - a \in \mathcal{B}$. Hence, $q = a + (q - a) \in C$. Thirdly, let $c = a + b \in C$ for $a \in \mathcal{A}, b \in \mathcal{B}$. Since $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$, $\exists r_a, r_b$ such that $a < r_a \in \mathcal{A}, b < r_b \in \mathcal{B}$. Then $c = a + b < r_a + r_b$, so $r_a + r_b \in C$.

As such, C is a cut.

Before we define addition, we need to define the negative of a cut.

Heuristic: What we want is that $-C_1 = C_{-1}$. The way we do this is by defining $C_{-p} = \{q \in \mathbb{F} \mid \exists p > q : p \in -C_p^C\}$. This is the same as $\{q \in \mathbb{F} \mid \exists p > q : -p \notin C_p\}$.

Now we study $\{q \in \mathbb{F} \mid \exists p > q : -p \notin C\}$.

Lenma 1.3.4

Let $C \in \mathbb{F}^*$. Then $\{q \in \mathbb{F} \mid \exists p > q : -p \notin C\}$ is a cut.

Definition 1.3.3: Addition

For $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$, we define $\mathcal{A} + \mathcal{B} = \{a + b \mid a \in \mathcal{A}, b \in \mathcal{B}\}$ and $-\mathcal{A} = \{q \in \mathbb{F} \mid \exists p > q : -p \notin \mathcal{A}\}.$

Theorem 1.3.2

Define $0 = C_0 \in \mathbb{F}^*$. The following hold:

- 1. $\mathcal{A}, \mathcal{B} \in \mathbb{F}^* \implies \mathcal{A} + \mathcal{B} \in \mathbb{F}^*$.
- $2. \ \mathcal{A}, \mathcal{B} \in \mathbb{F}^* \implies \mathcal{A} + \mathcal{B} = \mathcal{B} + \mathcal{A}.$
- 3. $\mathcal{A}, \mathcal{B}, C \in \mathbb{F}^* \implies (\mathcal{A} + \mathcal{B}) + C = \mathcal{A} + (\mathcal{B} + C).$
- $4. \ \mathcal{A} \in \mathbb{F}^* \implies \mathcal{A} + 0 = \mathcal{A}.$
- 5. $\mathcal{A} \in \mathbb{F}^* \implies \mathcal{A} + (-\mathcal{A}) = 0$.

Proof. Easy proof, too lazy to write out.

Also: $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathbb{F}^*$ and $\mathcal{A} < \mathcal{B} \implies \mathcal{A} + \mathcal{C} < \mathcal{B} + \mathcal{C}$.

Important Remark: The Archimedean property is actually needed for the above theorem in orer to prove the 5th condition.

⊜

1.3.3 Multiplication

Lenma 1.3.5

Let $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$ such that $\mathcal{A}, \mathcal{B} > 0$. Then $C = \{ p \in \mathbb{F} \mid p \leq 0 \} \cup \{ ab \mid a \in \mathcal{A}, b \in \mathcal{B}, a, b > 0 \}$ is a cut.

Lenma 1.3.6

Let $\mathcal{A} \in \mathbb{F}^*$ be such that $\mathcal{A} > 0$. Then $C = \{ p \in \mathbb{F}^* \mid p \leq 0 \} \cup \{ 0 < q \in \mathbb{F} \mid \exists p > q : p^{-1} \notin \mathcal{A} \}$ is a cut.

Definition 1.3.4: Multiplication

Let $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$. We define multiplication as:

- 1. If $\mathcal{A}, \mathcal{B} > 0$, then $\mathcal{A} \cdot \mathcal{B} = \{ab \mid 0 < a \in \mathcal{A}, 0 < b \in \mathcal{B}\}$.
- 2. If $\mathcal{A} = 0$ or $\mathcal{B} = 0$, then $\mathcal{A} \cdot \mathcal{B} = 0$.
- 3. If $\mathcal{A} > 0$ and $\mathcal{B} < 0$, then $\mathcal{A} \cdot \mathcal{B} = -(\mathcal{A} \cdot (-\mathcal{B}))$.
- 4. If $\mathcal{A} < 0$ and $\mathcal{B} > 0$, then $\mathcal{A} \cdot \mathcal{B} = -((-\mathcal{A}) \cdot \mathcal{B})$.
- 5. If $\mathcal{A}, \mathcal{B} < 0$, then $\mathcal{A} \cdot \mathcal{B} = (-\mathcal{A}) \cdot (-\mathcal{B})$.

We define multiplication inversion via:

- 1. If $\mathcal{A} > 0$, then $\mathcal{A}^{-1} = \{ q \in \mathbb{F} \mid \exists p > q : p^{-1} \notin \mathcal{A} \}$.
- 2. If $\mathcal{A} < 0$, then $\mathcal{A}^{-1} = -(-\mathcal{A})^{-1}$.

Theorem 1.3.3

Set $1 = C_1$. The following hold:

- 1. If $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$, then $\mathcal{A} \cdot \mathcal{B} \in \mathbb{F}^*$.
- 2. If $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$, then $\mathcal{A} \cdot \mathcal{B} = \mathcal{B} \cdot \mathcal{A}$.
- 3. If $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathbb{F}^*$, then $(\mathcal{A} \cdot \mathcal{B}) \cdot \mathcal{C} = \mathcal{A} \cdot (\mathcal{B} \cdot \mathcal{C})$.
- 4. If $\mathcal{A} \in \mathbb{F}^*$, then $\mathcal{A} \cdot 1 = \mathcal{A}$.
- 5. If $\mathcal{A} \in \mathbb{F}^*$, then $\mathcal{A} \cdot \mathcal{A}^{-1} = 1$.

Also if $\mathcal{A}, \mathcal{B} \in \mathbb{F}^*$ and $\mathcal{A}, \mathcal{B} > 0$, then $\mathcal{A} \cdot \mathcal{B} > 0$.

Theorem 1.3.4

If $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathbb{F}^*$, then $\mathcal{A} \cdot (\mathcal{B} + \mathcal{C}) = \mathcal{A} \cdot \mathcal{B} + \mathcal{A} \cdot \mathcal{C}$.

We now know that \mathbb{F}^* is an ordered field.

1.4 Robert Reci

Theorem 1.4.1

 \mathbb{Q} is the smallest ordered field.

Proof. Let \mathbb{F} be any ordered field. Let $1 \in \mathbb{F}$. Let $\iota : \mathbb{N} \to \mathbb{F}$, $n \mapsto 1 + \dots + 1$ n times. Then $\iota(-n) = -\iota(n)$ for $n \in \mathbb{N}_0$ and $-n \in \mathbb{Z}^-$.

Then we say $\iota(p/q) = \iota(p)\iota(q)^{-1}$ for $p/q \in \mathbb{Q}$.

☺

Corollary 1.4.1 Every ordered field is infinite

 $\iota[\mathbb{Q}] \subseteq \mathbb{F}$ is infinite.

Roots

Let \mathbb{F} be a Dedekind complete ordered field, $0 < x \in \mathbb{F}$, $n \in \mathbb{N}$. Then $\exists ! y \in \mathbb{F}$ such that y > 0 and $y^n = x$.

Proof. n=1 is silly. Assume $n \ge 2$. Let $E=\{z \in \mathbb{F} \mid z>0 \text{ and } z^n < x\}$. Then E is nonempty and bounded above by x. Let $y=\sup E$. We claim that $y^n=x$.

We want to show that $y^n \geq x$ and $y^n \leq x$.

Lenma 1.4.1

In any commutative ring R, $b^n - a^n = (b - a)(b^{n-1} + b^{n-2}a + \dots + ba^{n-2} + a^{n-1}).$

And hence for 0 < a < b in \mathbb{F} , we have $0 < b^n - a^n = (b - a)nb^{n-1}$.

Suppose $y^n < x$, so $x - y^n > 0$. We define $h = \frac{1}{2} \min \left(1, \frac{x - y^n}{n(y + 1)^{n - 1}} \right)$. 0 < h < 1, also $0 < h < \frac{x - y^n}{n(y + 1)^{n - 1}}$.

Then, by the inequality below the lemma, we have

$$0 < (y+h)^{n} - y^{n}$$

$$< hn(y+h)^{n-1}$$

$$< hn(y+1)^{n-1}$$

$$< x - y^{n},$$

so $(y+h)^n < x$, which contradicts the definition of y as the supremum.

Definition 1.4.1: Ring*

A ring is a field where actually we don't care about inverses anymore.

Definition 1.4.2: Domain

R is a domain when $xy = 0 \implies x = 0 \land y = 0$.

Let R be a ring. For $(r,s) \in R \times R \setminus \{0\}$, we say $(r,s) \sim (r',s')$ if rs' = r's.

The field of fractions, $\operatorname{Frac}(R)$ is the set of equivalence classes of $R \times R \setminus \{0\}$ under \sim equipped with the operations [(r,s)] + [(r',s')] = [(rs' + r's,ss')] and $[(r,s)] \cdot [(r',s')] = (rr',ss')$.

We check that $[(r,s)] \cdot [(s,r)] = [(rs,sr)] = [(1,1)].$

Let \mathbb{F} a field, \mathbb{F}^x its polynomial ring. Let $\mathbb{F}(x)$ be the field of fractions of \mathbb{F}^x . Then $\mathbb{F}(x) := \operatorname{Frac}(\mathbb{F}^x)$ is the field of rational functions in x with coefficients in \mathbb{F} .

Given $p, q \in \mathbb{F}^x$, say p/q > 0 if p and q have the same sign. Say $f, g \in \mathbb{F}(x)$, that f > g when f - g > 0.

Theorem 1.4.2

 $\mathbb{F}(x)$ is never Archimedean.

Proof. x is an upper bound for all $n \in \mathbb{N}$.

⊜

(2)

♦ Note:

If \mathbb{F} is Archimedean, $|\mathbb{F}| \leq 2^{\aleph_0}$.

Theorem 1.4.3

Let λ be an infinite cardinal. Then there is an ordered field of cardinality λ .

Corollary 1.4.2

The Archimedean property is not a first-order property.

1.5 Completeness

Lenma 1.5.1

Suppose \mathbb{F} is an ordered field that is not Dedekind complete. Then \exists and infinite $E \subseteq \mathbb{F}$ such that:

- 1. E bounded above, $\emptyset \neq U(E)$ is open, $\emptyset \neq U(E)^C$ is open.
- $2. \ a \in U(E)^C, \, b \in U(E) \implies a < b.$
- 3. $f: \mathbb{F} \to \mathbb{F}$ with $f(x) = \begin{cases} 1 & x \in U(E) \\ 0 & x \in U(E)^C \end{cases}$ is differentiable with f' = 0.

Theorem 1.5.1 Characteristics of Dedekind Completeness

Let \mathbb{F} be an ordered field. The following are equivalent:

- 1. F is Dedekind complete.
- 2. F has the intermediate value property: If $f:[a,b] \to \mathbb{F}$ is continuous and $\min(f(a),f(b)) < c < \max(f(a),f(b))$, then $\exists x \in [a,b]$ such that f(x)=c.
- 3. \mathbb{F} satisfies the mean value property: If $f:[a,b]\to\mathbb{F}$ is continuous and differentiable on (a,b), then $\exists x\in(a,b)$ such that $f'(x)=\frac{f(b)-f(a)}{b-a}$.
- 4. \mathbb{F} satisfies Cauchy mean value property: If $f,g:[a,b]\to\mathbb{F}$ are both continuous and differentiable on (a,b), then $\exists x\in(a,b)$ such that $\frac{f'(x)}{g'(x)}=\frac{f(b)-f(a)}{g(b)-g(a)}$.
- 5. \mathbb{F} satisfies the extreme value property: If $f:[a,b]\to\mathbb{F}$ is continuous, then f attains a maximum and minimum on [a,b].

Proof. 1 ⇒ 2: Let $f:[a,b] \to \mathbb{F}$ and continuous. WLOG, assume f(a) < c < f(b). Define $E = \{x \in [a,b] \mid f(x) < c\}$. E is nonempty and bounded above by b. Let $x = \sup E$. We claim that f(x) = c. Since f is continuous, $\exists \kappa > 0$ such that $f(t) < c \ \forall t \in [a,a+\kappa]$ and $f(t) > c \ \forall t \in [b-\kappa,b]$. So, $a + \frac{\kappa}{2} < x < b - \frac{\kappa}{2}$.

Suppose BWOC f(x) < c. Again by continuity, $\exists \delta > 0$ such that f(t) < c for all $t \in B(x, \delta) \subseteq [a, b]$. Then $x + \frac{\delta}{2} \in E$, contradiction.

Then suppose BWOC f(x) > c. Again, $\exists \delta > 0$ such that f(t) > c for all $t \in B(x, \delta) \subseteq [a, b]$. Then $\exists z \in E$ such that $x - \frac{\delta}{2} < z \le x$ and f(z) < c. But then c < f(z) < c, contradiction.

So f(x) = c by trichotomy.

- 2 ⇒ 1: We'll show ¬1 ⇒ ¬2. Suppose \mathbb{F} is not Dedekind complete. Then we can let $f: \mathbb{F} \to \mathbb{F}$ be the strange function from the lemma, and we can pick a < b with $a \in U(E)^C$ and $b \in U(E)$. Then f is continuous on [a,b], f(a)-<1=f(b), but there is not $x \in [a,b]$ with $f(x)=\frac{1}{2}$, by construction.
- $1 \implies 5$: First we claim that if $\mathbb F$ is Dedekind and $f:[a,\tilde b] \to \mathbb F$ is continuous, then $f([a,b]) \subseteq \mathbb F$ is a bounded set. We prove the claim.

Consider $E = \{x \in [a,b] \mid f([a,x]) \text{ is bounded}\}$. $a \in E$ and E is bounded, so we can let $s = \sup E$. Next note that by continuity, if $[c,d] \subseteq [a,b]$ such that f([c,d]) is bounded, then $\exists \delta > 0$ such that $f([a,b] \cap [c-\delta,d+\delta])$ is bounded. Using this, deduce in turn that a < s, $s = \max E$, and s = b.

So now suppose $\mathbb F$ is Dedekind complete and let $f:[a,b]\to\mathbb F$ be continuous. The claim establishes that $f([a,b])\subseteq\mathbb F$ is a bounded set, so we can let $\begin{cases} \mu=\inf f([a,b])\\ \lambda=\sup f([a,b]) \end{cases}$. Suppose BWOC that $f(x)<\lambda$ for all $x\in[a,b]$.

Then teh function $g:[a,b]\to \mathbb{F}$ defined by $g(x)=\frac{1}{\lambda-f(x)}$ is continuous and positive. So by the claim, there is k>0 such that $g(x)\leq k$ for all $x\in [a,b]$. But then

$$\frac{1}{\lambda - f(x)} \leq k \implies \frac{1}{k} \leq \lambda - f(x) \implies f(x) \leq \lambda - \frac{1}{k},$$

for all $x \in [a, b]$. But this contradicts the definition of λ , as we just found a better upper bound.

Therefore, there does exists $M \in [a, b]$ such that $f(M) = \lambda$, which is max f([a, b]).

The min follows from a similar argument.

 $5 \implies 4$: Let $f,g:[a,b] \to \mathbb{F}$ be continuous and differentiable on (a,b). Let $h:[a,b] \to \mathbb{F}$ via h(x) = f(x)(g(b) - g(a)) - g(x)(f(b) - f(a)). It suffices to show $\exists x \in (a,b)$ such that h'(x) = 0.

By construction, h(a) = h(b). If h(x) = h(a) for all $x \in [a,b]$, then h' = 0 and we're done. Suppose then that h is not constant. Then EVT shows that f attains its maximal/minimum values, and at least one must occur at the point $x \in (a,b)$, therefore h'(x) = 0.

 $4 \implies 3$: Let g(x) = x. Done.

 $3 \implies 1$. We'll show $\neg 1 \implies \neg 3$. Suppose \mathbb{F} is not Dedekind complete. Then we can let $f: \mathbb{F} \to \mathbb{F}$ be the function from the lemma, and we can pick a < b with $a \in U(E)^C$ and $b \in U(E)$. Then consider the restriction $f: [a,b] \to \mathbb{F}$. Then 1 = 1 - 0 = f(b) - f(a). Then, $f'(x)(b-a) = 0 \cdot (b-a) = 0$ for all $x \in \mathbb{F}$. $0 \ne 1$ so $\neg 3$ as desired.

Chapter 2

$\mathbb{R}, \mathbb{C}, \bar{\mathbb{R}}$

Theorem 2.0.1

 \mathbb{R} is uncountable.

Proof. $\mathbb{Q} \subseteq \mathbb{R}$, so \mathbb{R} is definitely infinite. Suppose BWOC that there was a bijection $f: \mathbb{N} \to \mathbb{R}$. Set $I_0 = [f(0) + 1, f(0) + 2]$ and not that $f(0) \notin I_0$. Suppose we are given closed, nested, non-singleton intervals $I_n \subseteq I_{n-1} \subseteq \cdots \subseteq I_0$ such that $f(k) \notin I_k$ for $0 \le k \le n$. If $f(n+1) \notin I_n$, then set $I_{n+1} = I_n$. Otherwise, set I_{n+1} to some non-singleton closed interval contained in I_n such that $f(n+1) \notin I_{n+1}$.

Since \mathbb{R} is Dedekind complete, we have that $\bigcap_{n=0}^{\infty} I_n \neq \emptyset$. So, there is an x such that $x \in I_n$ for all $n \in \mathbb{N}$. But then $x \neq f(n)$ for all $n \in \mathbb{N}$, contradiction since f is a bijection.

Note:

Upshot: Most of \mathbb{R} is transcendental over \mathbb{Q} .

2.1 Extended Reals: $\bar{\mathbb{R}}$

Definition 2.1.1: Extended Reals

 $\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$. We endow $\bar{\mathbb{R}}$ with the following order: We write x < y for $x, y \in \bar{\mathbb{R}}$ if:

- 1. $x, y \in \mathbb{R}$ and x < y.
- 2. $x = -\infty$ and $y \in \mathbb{R} \setminus \{-\infty\}$.
- 3. $x \in \mathbb{R} \setminus \{\infty\}$ and $y = \infty$.

Facts:

- $(\bar{\mathbb{R}}, <)$ is an ordered set that satisfies the supremum property.
- All sets in $\bar{\mathbb{R}}$ are bounded above.
- All sets in $\bar{\mathbb{R}}$ admit a sup/inf, i.e.
 - $-\sup:\mathcal{P}(\bar{\mathbb{R}})\to\bar{\mathbb{R}}.$
 - $-\inf:\mathcal{P}(\bar{\mathbb{R}})\to\bar{\mathbb{R}}.$

Note: $\sup \emptyset = -\infty$ and $\inf \emptyset = \infty$. Also, $A \subseteq B \subseteq \overline{\mathbb{R}}$ implies $\sup A \leq \sup B$ and $\inf A \geq \inf B$. And if $E \neq \emptyset$, then $\inf E \leq \sup E$.

Note:

 $\bar{\mathbb{R}}$ isn't an OF because if it were, then it would be Dedekind complete and then there would exists an ordered field isomorphism $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = \infty$ for some $x \in \mathbb{R}$. but then $f(x+1) = f(x) + f(1) = \infty + 1 = \infty$, which is not a true statement.

Definition 2.1.2

We endow $\bar{\mathbb{R}}$ with the following "algebra."

- 1. If $x \in \mathbb{R}$, we set $x + \infty = \infty + x = \infty$.
- 2. If $x \in \mathbb{R}$, we set $x + (-\infty) = (-\infty) + x = -\infty$.
- $3. \infty + \infty = \infty.$
- $4. -\infty + (-\infty) = -\infty.$
- 5. If $0 < x \in \overline{\mathbb{R}}$, we set $x \cdot \infty = \infty \cdot x = \infty$.
- 6. If $0 < x \in \overline{\mathbb{R}}$, we set $x \cdot (-\infty) = (-\infty) \cdot x = -\infty$.
- 7. If $0 > x \in \bar{\mathbb{R}}$, we set $x \cdot \infty = \infty \cdot x = -\infty$.
- 8. If $0 > x \in \bar{\mathbb{R}}$, we set $x \cdot (-\infty) = (-\infty) \cdot x = \infty$.
- 9. If $x \in \mathbb{R}$, we set $\frac{x}{\infty} = \frac{x}{-\infty} = 0$.
- 10. $\infty^{-1} = 0 = (-\infty)^{-1}$.
- 11. If $0 < x \in \bar{\mathbb{R}}$, we set $\frac{x}{0} = \infty$.
- 12. If $0 > x \in \bar{\mathbb{R}}$, we set $\frac{x}{0} = -\infty$.

Forbidden/undefined: $\infty + (-\infty)$, $\infty \cdot 0$, $\frac{0}{0}$, $\frac{\pm \infty}{\pm \infty}$, $\frac{\pm \infty}{\mp \infty}$.

2.1.1 Sequences in $\bar{\mathbb{R}}$

Definition 2.1.3: Sequence

A sequence in $\bar{\mathbb{R}}$ is $\{x_n\}_{n=\ell}^{\infty} \subseteq \bar{\mathbb{R}}$ for $\ell \in \mathbb{Z}$.

In turn, we define new sequences $\{a_N\}_{N=\ell}^{\infty}, \{b_N\}_{N=\ell}^{\infty} \subseteq \bar{\mathbb{R}}$:

- $\bullet \ a_N = \inf\{x_n \mid n \geqslant N\}.$
- $b_N = \sup\{x_n \mid n \ge N\}.$

We then set $\liminf_{n\to\infty} x_n = \sup_{N\geqslant \ell} \inf_{n\geqslant N} x_n = \sup_{N\geqslant \ell} a_N$ and $\limsup_{n\to\infty} x_n = \inf_{N\geqslant \ell} \sup_{n\geqslant N} x_n = \inf_{N\geqslant \ell} b_N$.

Example 2.1.1

Let $x_n = \begin{cases} (-1)^n & n \equiv 0 \mod 2 \\ n & n \equiv 1 \mod 2 \end{cases}$. Then, $\limsup_{n \to \infty} x_n = \infty$ and $\liminf_{n \to \infty} x_n = 1$.

Proposition 2.1.1

Let $\{x_n\}_{n=\ell}^{\infty} \subseteq \bar{\mathbb{R}}$. Then $\liminf_{n\to\infty} x_n \leq \limsup_{n\to\infty} x_n$.

 $Proof. \text{ Let } M,N \geq \ell \text{ and } K = \max(M,N). \text{ Then, } \inf_{n>N} x_n \leq \inf_{n>K} x_n \leq \sup_{n \geq K} x_n \leq \sup_{n \geq M} x_n.$

Thus, $\liminf_{n\to\infty} x_n = \sup_{N\geqslant \ell} \inf_{n\geqslant N} x_n \leqslant \sup_{n\geqslant M} x_n$ for all $M\geqslant \ell$. So, $\liminf_{n\to\infty} x_n \leqslant \limsup_{n\to\infty} x_n$.

Proposition 2.1.2

Let $a_n, b_n \in \mathbb{R}$ and suppose $\exists K \ge \ell$ such that $a_n \le b_n$ for all $n \ge K$. Then, $\liminf_{n \to \infty} a_n \le \liminf_{n \to \infty} b_n$ and $\limsup_{n \to \infty} a_n \le \limsup_{n \to \infty} b_n$.

Proof. We can claim that if $k \ge K$, then

$$\inf\{a_n \mid n \ge k\} \le \inf\{b_n \mid n \ge k\}$$

$$\sup\{b_n \mid n \ge k\} \le \sup\{a_n \mid n \ge k\}.$$

Indeed, if $\exists k \geq K$ such that $\inf\{a_n \mid n \geq k\} > \inf\{b_n \mid n \geq k\}$, then $\exists m \geq k$ such that $b_m < \inf\{a_n \mid n \geq k\} \leq a_m \leq b_m$, contradiction. Ditto for sup.

Now define for $N \ge \ell$, $C_N = \inf_{n \ge N} a_n$, $D_N = \inf_{n \ge N} b_N$, $E_N = \sup_{n \ge N} a_n$, and $F_N = \sup_{n \ge N} b_n$. The above claims show that $N \ge K$ then $C_N \le D_N$ and $E_N \le F_N$. Then we iterate to learn:

$$\liminf_{n \to \infty} a_n = \sup_{N \ge \ell} C_N \le \sup_{N \ge \ell} D_N = \liminf_{n \to \infty} b_n$$

$$\limsup_{n \to \infty} a_n = \inf_{N \ge \ell} E_N \le \inf_{N \ge \ell} F_N = \limsup_{n \to \infty} b_n.$$

(2)

Theorem 2.1.1

Suppose $a_n, b_n \in \bar{\mathbb{R}}$. The following hold:

- 1. If $\limsup_{n\to\infty} a_n < x \in \bar{\mathbb{R}}$, then $\exists N \ge \ell$ such that $a_n < x$ for all $n \ge N$.
- 2. If $\lim \inf_{n\to\infty} a_n > x \in \overline{\mathbb{R}}$, then $\exists N \ge \ell$ such that $a_n > x$ for all $n \ge N$.
- 3. $\liminf_{n\to\infty} a_n = -\limsup_{n\to\infty} -a_n$.
- 4. $\limsup_{n\to\infty} a_n = -\liminf_{n\to\infty} -a_n$.
- 5. $\limsup_{n\to\infty} a_n + b_n \leq \limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n$, provided that all arithmetic operations are well-defined.
- 6. $\liminf_{n\to\infty} a_n + \liminf_{n\to\infty} b_n \leq \liminf_{n\to\infty} a_n + b_n$, provided that all arithmetic operations are well-defined.

Proof. 1. Suppose $\limsup_{n\to\infty}a_n=\inf_{N\geqslant\ell}\sup_{n\geqslant N}a_n< x$. This implies that $\exists N\geqslant\ell$ such that $\sup_{n\geqslant N}a_n< x$, meaning $a_n< x$ for all $n\geqslant N$.

- 2. Similar as above.
- 3. For any $\emptyset \neq X \subseteq \mathbb{F}$, we have that $-\sup(-X) = \inf X$ and $-\inf(-X) = \sup X$. So the result follows.
- 4. Same as above.
- 5. We break into cases:
 - (a) $\limsup a_n = \infty$ or $\limsup b_n = \infty$. Then $\limsup a_n + b_n = \infty \geqslant \limsup a_n + \limsup b_n$.
 - (b) Suppose either $\limsup a_n = -\infty$ or $\limsup b_n = -\infty$. WLOG consider the first option. Since $\limsup b_n < \infty$, then there eixsts $N_1 \ge \ell$ and $K \ge \mathbb{R}$ such that $b_n < K$ for $n \ge N_1$. Now let $m \in \mathbb{N}$ and note that $-\infty < -m K$. We can use the first result of the theorem to pick $N_2 \ge \ell$ such that $n \ge N_2 \implies a_n < -m K$. Then, if $n \ge \max(N_1, N_2)$, we have $a_n + b_n < -m$, so $\limsup a_n + b_n = -\infty \le \limsup a_n + \limsup b_n$.

- (c) $\limsup a_n, \limsup b_n \in \mathbb{R}$. Let $\epsilon > 0$, then $\exists N_1, N_2 \ge \ell$ such that $n \ge N_1 \implies a_n < \limsup a_n + \frac{\epsilon}{2}$ and $n \geq N_2 \implies b_n < \limsup b_n + \frac{\epsilon}{2}. \text{ Then, } n \geq \max(N_1, N_2) \implies a_n + b_n < \limsup a_n + \limsup b_n + \epsilon,$ so $\limsup a_n + b_n \le \limsup a_n + \limsup b_n + \epsilon$ for all ϵ .
- 6. Same as above.

Lenma 2.1.1

Let $x_n \subseteq \mathbb{R}$. The following are equivalent for $x \in \mathbb{R}$: 1. $x_n \to x$ as $n \to \infty$. 2. $\liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n = x$.

 $Proof. \text{ Let } \epsilon > 0. \text{ Then } \exists N \geq \ell \text{ such that } n \geq N \implies x - \epsilon < x_n < x + \epsilon. \text{ Thus, } x - \epsilon \leq \liminf_{n \to \infty} x_n \leq \ell = 0.$ $\limsup_{n\to\infty} x_n \leq x + \epsilon \text{ for all } \epsilon > 0. \text{ This implies that } \liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n = x.$

 $p_{n\to\infty} x_n \le x + \epsilon$ for all $\epsilon > 0$. This implies that $\lim_{n\to\infty} x_n = 1$.

Now let $\epsilon > 0$. Then by the previous theorem, there exists $N_1, N_2 \ge \ell$ such that $\begin{cases} x - \epsilon < x_n & n \ge N_1 \\ x_n < x + \epsilon & n \ge N_2 \end{cases}$. Thus, $n \ge \max(N_1, N_2) \implies x - \epsilon < x_n < x + \epsilon$, so $x_n \to x$ as $n \to \infty$.

Definition 2.1.4

Let $x_n \in \overline{\mathbb{R}}$ and $x \in \overline{\mathbb{R}}$. We say that $x_n \to x$ as $n \to \infty$ if $\liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x$.

Remarks:

- 1. The lemma shows this extends the notion of convergence in \mathbb{R} .
- 2. Limits are unique, when they exist.

Example 2.1.2

- 1. $\lim_{n\to\infty} n = \infty \ (n\to\infty \text{ as } n\to\infty)$.
- 2. Version of squeeze lemma
- 3. TFAE:
 - $x_n \to \infty$ as $n \to \infty$.
 - $\liminf_{n\to\infty} x_n = \infty$.
 - $\forall M \in \mathbb{N}$, there exists $N \ge \ell$ such that $n \ge N \implies M \le x_N$.

Chapter 3

Metric Spaces

Definition 3.0.1: Metric

Let X be a nonempty set. A metric on X is a function $d: X \times X \to \mathbb{R}$ such that:

- 1. $d(x,y) \ge 0$ for all $x,y \in X$, and $d(x,y) = 0 \iff x = y$.
- 2. d(x,y) = d(y,x) for all $x,y \in X$.
- 3. $d(x,y) \le d(x,z) + d(z,y)$ for all $x,y,z \in X$.

Definition 3.0.2

A metric space is (X, d) for $X \neq \emptyset$ and d a metric on X.

Example 3.0.1

- 1. \mathbb{R} with d(x, y) = |x y|.
- 2. \mathbb{C} with d(x, y) = |x y|.
- 3. (Discrete Metric) Let $X \neq \emptyset$ be any set. Then $d: X \times X \to \{0,1\}$ defined by $d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$ is a metric on X.
- 4. Let V be a normed metric space with norm $\|\cdot\|$. Then $d(x,y) = \|x-y\|$ is a metric on V.
- 5. Suppose (Y, d) is a metric space and suppose $f: X \to Y$ is an injection where $X \neq \emptyset$ is a set. Then $\sigma: X \times X \to \mathbb{R}$ defined by $\sigma(x, y) = d(f(x), f(y))$ is a metric on X.

Proof. We need to show that σ satisfies the three properties of a metric.

- (a) $\sigma(x,y) \ge 0$ because $d \ge 0$ and $\sigma(x,y) = 0 \iff d(f(x),f(y)) = 0 \iff f(x) = f(y) \iff x = y$.
- (b) The other two are very trivial.

⊜

6. Let Y be a metric space and $\emptyset \neq X \subseteq Y$. Then $d: X \times X \to \mathbb{R}$ defined by $d(x,y) = d_Y(x,y)$ is a metric on X.

- 7. Consider $f:(0,\infty)\to\mathbb{R}$ and $g:(0,\infty)\to\mathbb{R}$ with $f(x)=\log x$ and $g(x)=\frac{1}{x}$. Then $d_f(x,y)=\left|\log\frac{x}{y}\right|$ and $d_g(x,y)=\left|\frac{1}{x}-\frac{1}{y}\right|=\frac{|x-y|}{|x||y|}$ are metrics on $(0,\infty)$.
- 8. Let V, W be finite dimensional vector spaces over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Let $L(V, W) = \{T : V \to W : T \text{ linear}\}$. Then define $\operatorname{rk}(T) = \dim \operatorname{ran} T$ for $T \in L(V, W)$. Note that $\operatorname{ran}(T+S) = \{Tx+Sx \mid x \in \mathbb{F}\} \subseteq \{Tx+Sy \mid x, y \in \mathbb{F}\} = \operatorname{ran} T + \operatorname{ran} S$. Then, $\operatorname{rk}(T+S) \leqslant \operatorname{rk}(T) + \operatorname{rk}(S)$. Define $d(T, S) = \operatorname{rk}(T-S) \in \mathbb{N} \subseteq [0, \infty]$.
 - $d(T, S) = 0 \iff \operatorname{rk}(T S) = 0 \iff T S = 0.$
 - Has symmetry.
 - Triangle inequality: $d(T-S) = \text{rk}(T-R+R-S) \le \text{rk}(T-R) + \text{rk}(R-S) = d(T,R) + d(R,S)$.
- 9. Let $f: \bar{R}R \to [-1,1]$ via $f(x) = \begin{cases} 1 & x = \infty \\ -1 & x = -\infty \end{cases}$. Then d(x,y) = |f(x) f(y)| is a metric on $\bar{\mathbb{R}}$. $\frac{x}{\sqrt{1+x^2}} \quad x \in \mathbb{R}$

Definition 3.0.3

Let X be a metric space.

- 1. For $x \in X$ and $r \ge 0$, we define $B(x,r) = \{y \in X \mid d(x,y) < r\}$. And $B[x,r] = \{y \in X \mid d(x,y) \le r\}$.
- 2. A set $E \subseteq XX$ is bounded if $\exists (R \ge 0)$ such that $E \subseteq B(x,R)$ for some $x \in X$.
- 3. Let Y be any set and $f: Y \to X$. We say f is a bounded function if $f(Y) \subseteq X$ is bounded. We write $\mathcal{B}(Y;X) = \{g: Y \to X \mid g \text{ is bounded}\}.$

Example 3.0.2

- 1. $f: \mathbb{R} \to \mathbb{C}$ via $f(t) = e^{it} \implies f(t) = 1 \implies f(\mathbb{R}) \subseteq B[0,1]$ is bounded. So, $f \in \mathcal{B}(\mathbb{R}; \mathbb{C})$.
- 2. $f:(0,\infty)\to\mathbb{R}$ via $f(t)=\frac{\log t}{\sqrt{1+(\log t)^2}}$. So, $f\in\mathcal{B}((0,\infty);\mathbb{R})$.
- 3. Let X be a metric space and Y a nonempty set. Consider $\mathcal{B}(X;Y)$. If $f \in \mathcal{B}(X;Y)$, then $\exists y \in Y$ and $R \geq 0$ such that $d(f(x),y) \leq R$ for all x. Thus, $\sup_{x \in X} d(f(x),y) := \sup\{d(f(x),y) \mid x \in X\} \in [0,R]$. Similarly, if $f,g \in \mathcal{B}(X;Y)$, then exists $R \geq 0$ and $y_1,y_2 \in Y$ such that $d(f(x),y_1) \leq R$ and $d(g(x),y_2) \leq R$ for all $x \in X$. Then, $d(f(x),g(x)) \leq d(f(x),y_1) + d(y_1,y_2) + d(y_2,g(x)) \leq 2R + d(y_1,y_2) < \infty$ for all $x \in X$. So, $\sup_{x \in X} d(f(x),g(x)) < \infty$. We now define

$$d: \mathcal{B}(X;Y) \times \mathcal{B}(X;Y) \to [0,\infty)$$
$$(f,g) \mapsto \sup_{x \in X} d(f(x),g(x)).$$

Proof. Consider the properties of a metric:

- $d(f,g) = 0 \iff \sup_{x \in X} d(f(x),g(x)) = 0 \iff d(f(x),g(x)) = 0 \iff f(x) = g(x) \text{ for all } x \in X \iff f = g.$
- Symmetry is trivial.
- Let $f,g,h \in \mathcal{B}(X;Y)$. Then, $d(f,h) = \sup_{x \in X} d(f(x),h(x)) \le \sup_{x \in X} d(f(x),g(x)) + d(g(x),h(x)) \le d(f,g) + d(g,h)$.

Definition 3.0.4

Let X and Y be metric spaces:

- 1. A map $f: X \to Y$ is an isometric embedding if $d_Y(f(x), f(y)) = d_X(x, y)$ for all $x, y \in X$. Note, such an f is injective.
- 2. f is an isometry if it's an isometric embedding and surjective.
- 3. X and Y are isometric if there exists an isometry $f: X \to Y$.

Example 3.0.3

- 1. Consider \mathbb{R}^n with $|\cdot| = ||\cdot||_2$, that is, 2-norm.
- 2. Recall $O(n) = \{ \mathcal{M} \in \mathbb{R}^{n \times n} \mid \mathcal{M}^T \mathcal{M} = I \}$ and $R \in O(n) \implies |Rx| = |x|$. Let $a \in \mathbb{R}^n$, $R \in O(n)$, and set $f : \mathbb{R}^n \to \mathbb{R}^n$ via f(x) = a + Rx. Then,

$$|f(x) - f(y)| = |a + Rx - (a + Ry)| = |Rx - Ry| = |R(x - y)|.$$

Also, $y = f(x) = a + Rx \iff y - a = Rx$. So, f is an isometry.

3. Consider $x \mapsto ix \in \mathbb{C}$ for $x \in \mathbb{R}$. This is an isometric embedding but obviously not an isometry for it is not surjective.

The next example is so important that we call it a theorem. Recall $\mathcal{B}(X) = \mathcal{B}(X; \mathbb{R})$ for $X \neq \emptyset$ is a set. Note that if V is a normed vector space, then $\mathcal{B}(X; V)$ is too: $||f||_{\mathcal{B}} = \sup_{x \in X} ||f(x)||_{V}$ is a norm (exercise) and $d_{\mathcal{B}}(f, g) = ||f - g||_{\mathcal{B}}$.

Theorem 3.0.1

Let X be a metric space and fix an arbitrary element $a \in X$. For $x \in X$, we'll define $\varphi_x : X \to \mathbb{R}$ via $\varphi_x(y) = d(x,y) - d(y,a)$. The following hold:

- 1. $\varphi_x \in \mathcal{B}(X)$ for all $x \in X$.
- 2. Define $\Phi: X \to \mathcal{B}(X)$ via $\Phi(x) = \varphi_x$. Then, Φ is an isometric embedding.

Proof. First note, $|\varphi_x(y)| = |d(x,y) - d(y,a)| \le d(x,a)$ by the triangle inequality. So, $||\varphi_X||_{\mathcal{B}} = \sup_{y \in X} |\varphi_x(y)| \le d(x,a) < \infty$. This shows the first result.

Next, fix $x, z \in X$ and consider $\varphi_x(y) - \varphi_z(y) = d(x, y) - d(y, a) - d(z, y) + d(y, a)$. So,

$$|\varphi_x(y) - \varphi_z(y)| = |d(x, y) - d(y, z)| \le d(x, z).$$

Thus, $d_{\mathcal{B}}(\varphi_x, \varphi_y) = \|\varphi_x - \varphi_y\|_{\mathcal{B}} = \sup_{y \in X} |\varphi_x(y) - \varphi_z(y)| \le d(x, z)$.

On the other hand, $|\varphi_x(z) - \varphi_z(z)| = |d(x,z) - d(z,z)|^0 = d(x,z)$. So, $d_{\mathcal{B}}(\varphi_x,\varphi_z) = d(x,z)$.

Chapter 4

Basic Metric Space Topology

FILL IN LATER

Proposition 4.0.1

Let Y_1, \ldots, Y_n be metric spaces and consider $Y = \prod_{i=1}^n Y_i$, endowed with a *p*-metric from Homework 3. That is,

$$d_p(x,y) = \begin{cases} \left(\sum_{i=1}^n d_{Y_i}^p(x_i,y_i)\right)^{1/p} & 1 \leq p < \infty \\ \max_{1 \leq i \leq n} d_{Y_i}^p(x_i,y_i) & p = \infty \end{cases}.$$

Suppose $\{y_k\}_{k=\ell}^{\infty}\subseteq Y$ is given by $y_k=(y_{k,1},\ldots,y_{k,n}).$ The following hold:

- 1. Let $y = (y_1, \dots, y_n) \in Y$. Then $y_k \to y$ in Y as $n \to \infty \iff y_{k,i} \to y_i$ in Y_i as $k \to \infty$ for all $1 \le i \le n$.
- 2. $\{y_k\}_{k=\ell}^{\infty}$ is Cauchy in Y if and only if $\{y_{k,i}\}_{k=\ell}^{\infty}$ is Cauchy in Y_i for all $1 \leq i \leq n$.

Proof. We'll only prove 1. as 2. is very similar. Suppose $y_k \to y$ as $k \to \infty$. Note that for $1 \le i \le n$, $d_i(y_{k,i},y_i) \le d_Y(y_k,y)$. Thus, for $\epsilon > 0$, we pick $K \ge \ell$ such that if $k \ge K$, then $d_Y(y_k,y) \le \epsilon$. But then $k \ge K \implies d_i(y_{k,i}) \le d_Y(y_k,y) \le \epsilon$ for all $1 \le i \le n$, meaning $y_{k,i} \to y_i$ as $k \to \infty$ for $1 \le i \le n$.

Now suppose $y_{k,i} \to y_i$ as $k \to \infty$ for all $1 \le i \le n$. Let $\epsilon > 0$ and pick $K_i \ge \ell$ such that $k \ge K_i \Longrightarrow d_i(y_{k,i},y_i) < \frac{\epsilon}{n^{1/p}}$. Let $K = \max K_i \ge \ell$, and note $k \ge K \Longrightarrow d_i(y_{k,i},y_i) < \frac{\epsilon}{n^{1/p}}$ for all $1 \le i \le n$. This means

$$\begin{cases} \left(\sum_{i=1}^n d_i^p(y_{k,i},y_i)\right)^{1/p} \leq \left(\sum_{i=1}^n \frac{\epsilon^p}{n}\right)^{1/p} = \epsilon & 1 \leq p < \infty \\ \max_i d_i(y_{k,i},y_i) < \epsilon & p = \infty \end{cases}$$

So, $y_k \to y$ as $k \to \infty$.

Definition 4.0.1

Let $X \neq \emptyset$ be a set and d_1, d_2 be metrics on X. We say d_1 and d_2 are equivalent if $\exists c_1, c_2 > 0$ such that $c_1d_1(x,y) \leq d_2(x,y) \leq c_2d_1(x,y)$ for all $x,y \in X$.

The point is that equivalent metrics give the same notions of convergence, Cauchyness, and boundedness.

⊜

Example 4.0.1 (Equivalent Norms)

- 1. All norms on \mathbb{F}^n are equivalent.
- 2. From recitation, $\|\cdot\|_p$ are all equivalent on \mathbb{F}^n for $1 \leq p \leq \infty$.
- 3. Let Y_1, \ldots, Y_n be metric spaces and form $Y = \prod_{i=1}^n Y_i$. Then

$$d_p(x,y) = \|(d_1(x,y),\ldots,d_n(x,y))\|_p \times \|(d_1(x,y),\ldots,d_n(x,y))\|_q = d_q(x,y)$$

Therefore, $d_p \approx d_q$ in Y.

Note: This does not mean all metrics on Y are equivalent.

Example 4.0.2

Let V_1, \ldots, V_n, W be normed vector sapces over \mathbb{F} . We define $\mathcal{L}(V_1, \ldots, V_n; W)$ is the set of $\{T \in L(V_1, \ldots, V_n; W) \mid ||T||_{\mathcal{L}} < \infty\}$ where $||T||_{\mathcal{L}} := \sup\{||T(v_1, \ldots, v_n)||_W \mid v_i \in V_i : ||v_i||_{V_i} < 1\} \in [0, \infty]$. Facts:

- 1. This is indeed a norm.
- 2. $T \in \mathcal{L} \iff \|T(v_1, \dots, v_n)\|_W \le c \prod_{i=1}^n \|v_i\|_{V_i}$ for all $v_i \in V_i$ for some $0 \le c < \infty$. $c = \|T\|_{\mathcal{L}}$ is the best constant.

Theorem 4.0.1 Algebra of Sequences

Let V_1, \ldots, V_n, W be normed vector spaces over a common field \mathbb{F} . The following hold:

- 1. Let $\{v_{k,i}\}_{k=\ell}^{\infty} \subseteq V_i$ for $1 \leq i \leq n$ be such that $v_{k,i} \to v_i$ in V_i as $k \to \infty$. Let $\{T_k\}_{k=\ell}^{\infty} \subseteq \mathcal{L}(V_1,\ldots,V_n;W)$ be such that $T_k \to T$ as $k \to \infty$. Then $T_k(v_{k,1},\ldots,v_{k,n}) \to T(v_1,\ldots,v_n)$ in W as $k \to \infty$.
- 2. If $\{u_k\}, \{v_k\} \subseteq V_1$ are such that $u_k \to u$, $v_k \to v$ then $u_k + v_k \to u + v$ as $k \to \infty$.

Proof. We'll only do 1 because 2 is easy. We start with n=2 for simplicity. Suppose $\{x_k\} \subseteq V_1$, $\{y_k\} \subseteq V_w$ such taht $x_k \to x$ and $y_k \to y$ as $k \to \infty$. Then let $\sup_{k \ge \ell} \max\{\|x_k\|_{V_1}, \|y_k\|_{V_2}, \|T_k\|_{\mathcal{L}}\} = M < \infty$. Then,

$$T_k(x_k, y_k) - T(x, y) = T_k(x_k, y_k - y) + T_k(x_k, y) - T(x, y)$$
$$T_k(x_k, y_k + y) + T(x_k - x, y) + T_k(x, y) - T(x, y).$$

This shows that

 $\|T_k(x_k,y_k) - T(x,y)\|_W \leq \|T_k\|_{\mathcal{L}} \|x_k\|_{V_1} \|y - y_k\|_{V_2} + \|T_k\|_{\mathcal{L}} \|x - x_k\|_{V_1} \|y_k\|_{V_2} + \|T - T_k\|_{\mathcal{L}} \|x_k\|_{V_1} \|y - y_k\|_{V_2} + M^2 \|x - x_k\|_{V_1} + M^2 \|T - T_k\|_{\mathcal{L}} \to 0$

as $k \to \infty$.

Definition 4.0.2

- 1. We say a metric space X is complete if every Cauchy sequence in X is convergent in X.
- 2. We say a normed vector space is Banach if it's complete.
- 3. We say an inner product space is a Hilbert space if it's Banach.

Example 4.0.3

- 1. $(\mathbb{R}, |\cdot|)$ is complete.
- 2. $X = \prod_{i=1}^{n} X_i$ with *p*-metric is complete if and only if each X_i is complete. In particular, $(\mathbb{R}^n, \|\cdot\|)$ is complete.
- 3. \mathbb{F}^n is complete with any more.
- 4. $\mathbb{R} \setminus \{0\}$ is not complete with $|\cdot|$ as the metric.
- 5. \mathbb{Q}^n with $|\cdot|$ is not complete.

Example 4.0.4

- 1. V is a finite dimensional normed vector spaces. $\varphi : \mathbb{F}^n \to V$ isomorphism. Then $\mathbb{F}^n \ni x \mapsto \|\varphi(x)\|_V \in [0,\infty)$ defines a norm on \mathbb{F}^N , which we call $\||x|\|$. Then $(\mathbb{F}^n,\||\cdot|\|)$ is isometric to $(V,\|\cdot\|_V)$, and hence V is complete.
- 2. Let $\emptyset \neq X$ be a set endowed with the discrete metric. Suppose $\{x_n\}_{n=\ell}^{\infty} \subseteq X$ is Cauchy and pick $N \geqslant \ell$ such that $n, m \geqslant N \implies d(x_n, x_m) < 1$. Then $x_n = x_m = x_N$. So $x_n \to x_N$ as $n \to \infty$. Therefore X is complete.

Note that $Y = \prod Y_i$ is complete iff each individual Y_i is complete.

Theorem 4.0.2

Let V_1, \ldots, V_k, W be normed vector spaces over \mathbb{F} . If W is Banach, then so is $\mathcal{L}(V_1, \ldots, V_k)$.

Proof. Suppose $\{T_n\}_{n=\ell}^{\infty} \subseteq \mathcal{L}(V_1,\ldots,V_k;W)$ is Cauchy. For fixed $v_1,\ldots,v_k \in \prod_{i=1}^k V_i$, we bound

$$||T_n(v_1,\ldots,v_k)-T_m(v_1,\ldots,v_k)||_W \leq ||T_n-T_m||_{\mathcal{L}} \prod_{i=1}^k ||v_i||_{V_i}.$$

Therefore, $\{T_n(v_1,\ldots,v_k)\}_{n=\ell}^{\infty}\subseteq W$ is Cauchy and hence convergent. We may thus define $T:V_1\times\cdots\times V_k\to W$ via $T(v_1,\ldots,v_k)=\lim_{n\to\infty}T_n(v_1,\ldots,v_k)$.

1. $T \in L(V_1, \ldots, V_k; W)$:

$$T_n(\alpha x + \beta y, v_2, \dots, v_k) = \alpha T_n(x, v_2, \dots, v_k) + \beta T_n(y, v_2, \dots, v_k)$$

As $n \to \infty$, we get:

$$T(\alpha x + \beta y, v_2, \dots, v_k) = \alpha T(x, v_2, \dots, v_k) + \beta T(y, v_2, \dots, v_k).$$

Repeat in other slots if $k \ge 2$. As such, it is multilinear.

2. $T \in \mathcal{L}(V_1, \ldots, V_k; W)$: Fix $v_i \in V_i$ with $||v_i||_{V_i} \leq 1$. Then

$$\begin{split} \|T(v_1,\ldots,v_k)\|_W &= \lim_{n\to\infty} \|T_n(v_1,\ldots,v_k)\|_W \\ &\leq \left(\limsup_{n\to\infty} \|T_n\|_{\mathcal{L}}\right) \prod_{n=1}^{\infty} \|v_i\|_{V_i} \leq \limsup_{n\to\infty} \|T_n\|_{\mathcal{L}} < \infty. \end{split}$$

3. $T_n \to T$ in \mathcal{L} as $n \to \infty$: Let $\epsilon > 0$ and pick $N \ge \ell$ such that $n, m \ge N \implies \|T_n - T_m\|_{\mathcal{L}} < \frac{\epsilon}{2}$. Then let $v_i \in V_i$ with $\|v_i\|_{V_i} \le 1$. Then,

$$||T(v_1,\ldots,v_k)-T_n(v_1,\ldots,v_k)||_W = \lim_{m\to\infty} ||T_m(v_1,\ldots,v_k)-T_n(v_1,\ldots,v_k)||_W \le \lim_{m\to\infty} ||T_m-T_n||_{\mathcal{L}} < \frac{\epsilon}{2}.$$

But this implies

$$||T(v_1,\ldots,v_k)-T_n(v_1,\ldots,v_k)||_W \leqslant \frac{\epsilon}{2}.$$

By taking the supremum, we get that $||T - T_n||_{\mathcal{L}} \leq \frac{\epsilon}{2} < \epsilon$.

⊜

Corollary 4.0.1

 $V^* = \mathcal{L}(V; \mathbb{F})$ is always Banach.

Definition 4.0.3

Let X be a metric space, $E \subseteq X$.

- 1. $x \in E$ is an interior point if $\exists \epsilon > 0$ such that $B(x, \epsilon) \subseteq E$. $E^{\circ} = \{x \in E \mid x \text{ is an interior point}\}$. E is open iff $E = E^{\circ}$. E is closed iff E^{c} is open.
- 2. $x \in X$ is a boundary point of E if $\forall \epsilon > 0$, $B(x, \epsilon) \cap E \neq \emptyset$ and $B(x, \epsilon) \cap E^c = \emptyset$. We write $\partial E = \{x \in X \mid x \text{ is a boundary point of } E\}$. $\bar{E} = E^{\circ} \cup \partial E$.
- 3. We say $x \in X$ is a limit point (accumulation point) of E if $\forall \epsilon > 0$ $(B(x, \epsilon) \cap E) \setminus \{x\} \neq \emptyset$. We write $E' = \{x \in X \mid x \text{ is a limit point of } E\}$. If $x \in E \setminus E'$, then x is an isolated point.

Example 4.0.5

Let (X, disc) be given. Claim: all subsets of X are both open and closed.

Proof. $B(x,1) = \{x\} \implies E \subseteq X$ can be written as

$$E = \cup_{x \in E} B(x, 1),$$

which is open. Therefore $E = (E^c)^c$ is also closed.

⊜

Any metric space in which all sets are open and closed is called a discrete space.

Theorem 4.0.3

Let X be a metric space and $C \subseteq X$. The following are equivalent:

- 1. C is closed.
- 2. C is sequentially closed; If $\{x_n\}_{n=\ell}^{\infty} \subseteq C$ is such that $x_n \to x$ in X as $n \to \infty$, then $x \in C$.

Proof. $1 \to 2$. Let $\{x_n\} \subseteq C$ be such that $x_n \to x \in X$. Suppose BWOC that $x \in C^c$, which is open. Then $\exists N \ge \ell$ such that $n \ge N \implies x_n \in C^c \cup C$, which is a contradiction.

 $2 \to 1$. BWOC, suppose that C is not closed, which emans C^c is not open. Then $\exists x \in C^c$ such that we can pick $\{x_n\}_{n=0}^{\infty} \subseteq C$ such that $x_n \in B(x, 2^{-n}) \cap C$. This means that $\{x_n\}_{n=0}^{\infty} \subseteq C$ and $x_n \to x$ as $n \to \infty$. But $x \notin C$, so we have a contradiction.

Corollary 4.0.2

Let X be a complete metric space, and $\emptyset \neq C \subseteq X$. Then C is closed in X iff C is a complete metric space with the metric from X.

Proof. \Longrightarrow : Let $\{x_n\}_{n=\ell}^{\infty}\subseteq C$ be Cauchy. Then $x_n\to x\in X$ as $n\to\infty$ because X is complete. By since C is closed, $x\in C$.

 \Leftarrow : Let $\{x_n\}\subseteq C$ be such that $x_n\to x$ in X as $n\to\infty$. Then $\{x_n\}$ is cauchy in C, meaning it's convergent in C, so $x\in C$, so C is sequentially closed.

Definition 4.0.4

Let X be a metric space and $A \subseteq B \subseteq X$. We say A is dense in B if $\forall b \in B, \exists \{a_n\} \subseteq A \text{ such that } a_n \to b \text{ as } n \to \infty$.

Example 4.0.6

- 1. \mathbb{Q} is dense in \mathbb{R} . \mathbb{Q}^n is dense in \mathbb{R}^n . $(\mathbb{Q}^n + i\mathbb{Q}^n) \subseteq \mathbb{C}^n$ is dense.
- 2. $B(x,r) \subseteq \mathbb{R}^n$ is dense in B[x,r].
- 3. Let X be given the discrete metric. $B(x,1) = \{x\}$, but B[x,1] = X, so as long as $X \neq \{x\}$, we do not have $B(x,1) \subseteq B[x,1]$ is dense.

Proposition 4.0.2

Let X be a metrid space, $A \subseteq B \subseteq X$. The following are equivalent:

- 1. A is dense in B.
- 2. $B \subseteq \bar{A}$.
- 3. $\forall x \in B \text{ and } \epsilon > 0, \exists a \in A \text{ such that } d(x, a) < \epsilon.$
- 4. $\forall x \in B \text{ and } \epsilon > 0, B(x, \epsilon) \cap A \neq \emptyset.$

Proof. Recall $\bar{A} = A \cup A'$.

 $1 \implies 2$. Let $b \in B$. If $b \in A$, we're done. Otherwise $b \notin A$, but by density $\exists \{a_n\}_{n=\ell}^{\infty} \subseteq A \setminus \{b\}$ such that $a_n \to b$ as $n \to \infty$. Thus, $b \in A'$.

 $2 \implies 1. \text{ Suppose } B \subseteq A \cup A' = \bar{A}. \text{ Let } b \in B. \text{ If } b \in A, \text{ let } \{a\}_{n=\ell}^{\infty} = b \text{ then we're done.}$

So suppose $b \in A' \setminus A$. By definition of limit point, we can pick a sequence $\{a_n\}$ such that $a_n \to b$ as $n \to \infty$. So A is dense in B.

(

(3)

- $3 \iff 4 \text{ is trivial.}$
- $2 \iff 3$. Again, use $\bar{A} = A \cup A'$.

Corollary 4.0.3

Let X be a metric space and $A \subseteq B \subseteq X$. If A is dense in B, then A is also dense in B.

Proof. $A \subseteq B$ is dense $\Longrightarrow A \subseteq B \subseteq \bar{A}$. So $\bar{B} \subseteq \bar{A}$, meaning A is dense is \bar{B} as desired.

Definition 4.0.5

Let X be a metric space. We say X is separable if X has a countable dense subset.

Example 4.0.7 (Separable Vector Spaces)

- 1. \mathbb{R}^n is separable, ditto for \mathbb{C}^n .
- 2. Let V be a finite dimensional normed vector space. Let $\varphi : \mathbb{F}^n \to V$ be an isomorphism. Endow \mathbb{F}^n with norm $|||x||| = ||\varphi(x)||_V$, which is equiavalent to $|\cdot|$ on \mathbb{F}^n . Then V is separable with $\varphi(\mathbb{Q}^n)$ as a countable dense subset.
- 3. $\ell^{\infty}(\mathbb{N}; \mathbb{F})$ is not separable, but $\ell^{p}(\mathbb{N}; \mathbb{F})$ is for $1 \leq p < \infty$.

Definition 4.0.6

Let X, X^* be metric spaces. We say that X^* completes X if:

- 1. X^* is complete.
- 2. $\exists f: X \to X^*$ an isometric embedding.
- 3. $f(x) \subseteq X^*$ is dense.

Theorem 4.0.4 Uniqueness of completions

Let X, Y, Z be metric spaces. Suppose Y and Z both complete X. Then Y and Z are isometric.

Proof. Let $g: X \to Y$ and $h: X \to Z$ be isometric embeddings. We will construct an isometric $f: Y \to Z$. Let $y \in Y$. Since $g(X) \subseteq Y$ is dense, $\exists \{y_n\}_{n=\ell}^{\infty} \subseteq g(X)$ such that $y_n \to y$ as $n \to \infty$.

Then $\exists ! \{x_n\}_{n=\ell}^{\infty} \subseteq X$ such that $g(x_n) = y_n$ for all $n \ge \ell$. Then upon setting $z_n = h(x_n) = h \circ g^{-1}(y_n)$, we have

$$d_Z(z_n, z_m) = d_X(x_n, x_m) = d_Y(y_n, y_m).$$

This means $\{z_n\}$ is Cauchy, and therefore convergent as Z is complete.

Suppose $\{y'_n\}_{n=\ell}^{\infty}$ is another sequence such that $y'_n \to y$ as $n \to \infty$. Note

$$d_Y(y_n, y_n') = d_X(g^{-1}(y_n), g^{-1}(y_n')) = d_Z(h(g^{-1}(y_n)), h(g^{-1}(y_n'))) = d_Z(z_n, z_n').$$

Therefore, $\lim_{n\to\infty} z_n = \lim_{n\to\infty} z_n'$. So, we can define $f: Y \to Z$ as $f(y) = \lim_{n\to\infty} h(g^{-1}(y_n))$ for any sequence $\{y_n\} \subseteq g(X)$ such that $y_n \to y$ as $n \to \infty$.

We claim that f is an isometric embedding. Let $y, y' \in Y$ and pick $\{y_n\}_{n=\ell}^{\infty}$ and $\{y'_n\}_{n=\ell}^{\infty}$ such that $y_n \to y$ and $y'_n \to y'$ as $n \to \infty$. Then,

$$d_Y(y_n, y_n') = d_X(g^{-1}(y_n), g^{-1}(y_n')) = d_Z(h(g^{-1}(y_n)), h(g^{-1}(y_n'))) \to d_Z(f(y), f(y')) = d_Y(y, y'),$$

so f is an isometric embedding.

We claim that f is surjective. Let $z \in Z$ and pick $\{x_n\}_{n=\ell}^{\infty}$ such that $h(x_n) = z_n \to z$ as $n \to \infty$. Then let $y_n = g(x_n)$. Then $\{y_n\}_{n=\ell}^{\infty} \subseteq Y$ are Cauchy and hence convergent to $y \in Y$. Then $f(y) = \lim_{n \to \infty} h \circ g^{-1}(y_n) = \lim_{n \to \infty} z_n = z$. So $f: Y \to Z$ is an isometry!

Note:

This is analogous to the uniqueness of Dedekind complete ordered fields. In principal, there can be different techniques for finding /constructing completions of a given metric space, but in the end they're isometric.

Theorem 4.0.5

Let $X \neq \emptyset$ be a set and Y be a metric space. Then $\mathcal{B}(X;Y)$ is complete if and only if Y is complete.

Proof. HW5

Corollary 4.0.4

Let $X \neq \emptyset$ be a set. Then $\mathcal{B}(X) = \mathcal{B}(X; \mathbb{R})$ is a Banach space.

Proof. \mathbb{R} is complete.

⊜

Theorem 4.0.6

Let X be a metric space. Then X has a completion.

Proof. Let $\Phi: X \to \mathcal{B}(X)$ be the isometric embedding we previously constructed. Let $X^* = \overline{\Phi(X)}$, which is closed in (B) and hence a complete metric space. By construction, $\Phi(X)$ is dense in X^* . So, X^* is complete.

Remarks:

- 1. Why not just set $\mathbb{R} = \overline{\mathbb{Q}}$? It's cyclic!
- 2. \exists another construction of X^* which is more "direct" and proceeds through Cauchy(X) from HW4. This idea has room to play. It can be hacked to yield an alternate construction of $\bar{\mathbb{R}}$ from \mathbb{Q} or any other Archimedean ordered field.

4.1 Limits and Continuity

Definition 4.1.1

Let X, Y be metric spaces, $E \subseteq X$, $z \in E'$, $f : E \to Y$. We say that f has limit $y \in Y$ as $x \to z$, written as $f(x) \to y$ as $x \to z$ or $\lim_{x \to z} f(x) = y$ if for all $\epsilon > 0$, there exists $\delta > 0$, such that $x \in E$ and $0 < d_X(x, z) < \delta \implies d_Y(f(x), y) < \epsilon$.

Remarks:

- 1. limits are unique when they exist
- 2. the definition only requires $z \in E'$, not $z \in E$. that is, f(z) doesn't need to be defined and even if it is, the definition doesn't care what it is.

Theorem 4.1.1 Sequential characterization of limits

Let X, Y be metric spaces, $E \subseteq X$, $f: E \to Y$, $z \in E'$, $y \in Y$. The following are equivalent:

- 1. $f(x) \to y$ as $x \to z$.
- 2. $\forall \epsilon > 0, \, \exists \delta > 0 \text{ such that } f(B(z,\delta) \setminus \{z\}) \subseteq B_Y(y,\epsilon).$
- 3. If $\{x_n\}_{n=\ell}^{\infty} \subseteq E \setminus \{x\}$ is such that $x_n \to z$ as $n \to \infty$, then $f(x_n) \to y$ as $n \to \infty$.

Proof. 1 \iff 2 is a triviality. Now we show 1 \implies 3. Let $\{x_n\}_{n=\ell}^{\infty} \subseteq E \setminus \{z\}$ be such that $x_n \to z$ as $n \to \infty$. Let $\epsilon > 0$ and pick $\delta > 0$ such that $x \in E$ and $0 < d_X(x,z) < \delta \implies d_Y(f(x),y) < \epsilon$. Pick $N \ge \ell$ such that $n \ge N$ implies $0 < d_X(x_n,z) < \delta$. So, $d_Y(f(x_n),y) < \epsilon$. Therefore, $f(x_n) \to y$ as $n \to \infty$.

Now for $3 \implies 1$. Suppose BWOC $\neg 1$. Then $\exists \epsilon > 0$ such that $\forall \delta > 0$, $\exists x \in E$ such that $0 < d(x, z) < \delta$, $d(f(x), y) \ge \epsilon$.

For $\delta = 2^{-n}$, $n \in \mathbb{N}$, we then get $\{x_n\}_{n=0}^{\infty} \subseteq E \setminus \{z\}$ such that $d(x_n, z) < 2^{-n}$, but $d(f(x_n), y) \ge \epsilon$. Now we use 3: $x_n \to z$ as $n \to \infty$, so $f(x_n) \to y$ as $n \to \infty$. In particular, $\exists N \ge 0$ such that $n \ge N \implies d(f(x_n), y) < \epsilon$. This is a contradiction.

Theorem 4.1.2 Limits and components

Let X, Y_1, \ldots, Y_n be metric spaces, and let $Y = \prod Y_i$ endowed with usual p-metric. Let $E \subseteq X$, $z \in E'$, $f : E \to Y$. Write $f = (f_1, \ldots, f_n)$ where $f_i : E \to Y_i$. The following are equivalent for $y = (y_1, \ldots, y_n) \in Y$:

- 1. $f(x) \to y$ as $x \to z$.
- 2. $f_i(x) \to y_i$ as $x \to z$ for $1 \le i \le n$.

Proof. This follows from the sequential characterization of limits combined with the characterization of limits of sequences in the product space Y.

Theorem 4.1.3 Algebra of limits

Let X be a metric space, $E \subseteq ZX$, $z \in E'$. The following hold:

- 1. Let V be a normed vector space and suppose $f, g: E \to V$, $\alpha: E \to \mathbb{F}$ are such that $f(x) \to v_1$, $g(x) \to v_2$, and $\alpha(x) \to \beta$ as $x \to z$. Then:
 - (a) $f(x) + g(x) \rightarrow v_1 + v_2$ as $x \rightarrow z$.
 - (b) $\alpha(x) f(x) \to \beta v_1$ as $x \to z$.
- 2. Let V_1, \ldots, V_k, W be normed vector spaces over \mathbb{F} . Suppose $f_i : E \to V_i$ and $T : E \to \mathcal{L}(V_1, \ldots, V_k; W)$ are such that $f_i(x) \to v_i$ as $x \to z$ and $T(x) \to M$ as $x \to z$. Then,

$$E \ni x \mapsto T(x)(f_1(x), \dots, f_k(x)) \in W$$

⊜

satisfies $T(x)(f_1(x), \ldots, f_k(x)) \to M(v_1, \ldots, v_k)$ as $x \to z$.

Proof. Use characterization of limits via sequences together with algebra of sequential limits.

Definition 4.1.2

Let X, Y be metric spaces, $E \subseteq X$, $z \in E$, and $f : E \to Y$. We say f is continuous at z if for every $\epsilon > 0$ there exists $\delta > 0$ such that $x \in E$ and $d(x,z) < \delta \implies d(f(x),f(z)) < \epsilon$. We say f is continuous on E if f is continuous at every point of E.

Remarks:

- 1. If z is isolated, i.e. $z \in E \setminus E'$, then the definition of continuity is true vacuously and so f is continuous as z.
- 2. Unlike when computing limits, we need f(z) defined, and x = z is allowed.
- 3. We can think of $f: E \to Y$ with E a metric space on its own with $d_E = d_X$.

Theorem 4.1.4 Characterizations of continuity

Let X, Y be metric spaces and $z \in E \subseteq X$ and $f: E \to Y$. The following are equivalent:

- 1. f is continuous at z.
- 2. $\forall \epsilon > 0, \exists \delta > 0 \text{ such } f(E \cap B(z, \delta)) \subseteq B(f(z), \epsilon).$
- 3. If $z \in E'$, then $f(x) \to f(z)$ as $x \to z$.
- 4. If $\{x_n\}_{n=\ell}^{\infty}\subseteq E\setminus\{z\}$ is such that $x_n\to z$ as $n\to\infty$, then $f(x_n)\to f(z)$ as $n\to\infty$.
- 5. If $\{x_n\}_{n=\ell}^{\infty} \subseteq E$ is such that $x_n \to z$ as $n \to \infty$, then $f(x_n) \to f(z)$ as $n \to \infty$.
- 6. If $\{x_n\}_{n=\ell}^{\infty} \subseteq E$ is such that $x_n \to z$ as $n \to \infty$, then $\{f(x_n)\}_{n=\ell}^{\infty} \subseteq Y$ is convergent.

Proof. $1 \iff 2$ is obvious as well as $3 \iff 4$ since we proved it in the sequential chracterization of limits.

We'll prove $1 \implies 5 \implies 6 \implies 4$ and $3 \implies 1$.

 $3 \implies 1$: If $z \in E \setminus E'$, we're done because of earlier remark. So let $z \in E \setminus E'$. Then 3 is in play: $f(x) \to f(z)$ as $x \to z$. Let $\epsilon > 0$ and pick $\delta > 0$ such that $x \in E$ and $0 < d(x, z) < \delta \implies d(f(x), f(z)) < \epsilon$.

Note, $x = z \iff d(x, z) = 0$, in which case $d(f(x), f(z)) = 0 < \epsilon$. So f is continuous at z.

 $1 \implies 5$: Suppose f is continuous at z and let $\{x_n\} \subseteq E$ be such that $x_n \to z$ as $n \to \infty$. Let $\epsilon > 0$ and pick $\delta > 0$ such that $x \in E$ and $d(x,z) < \delta \implies d(f(x_n),f(z)) < \epsilon$. Pick $N \ge \ell$ such that $n \ge N$ implies $d(x_n,z) < \delta \implies d(f(x_n),f(z)) < \epsilon$. So $f(x_n) \to f(z)$ as $n \to \infty$.

 $5 \implies 6$. Trivial

 $6 \implies 4$. Let $\{x_n\} \subseteq E \setminus \{z\}$ be such that $x_n \to z$ as $n \to \infty$. Define $\{y_n\} \subseteq E$ via

$$y_n = \begin{cases} x_n & n = \ell + 2k \\ z & n = \ell + 2k + 1 \end{cases}.$$

Then $y_n \to z$ as $n \to \infty$. 6 implies that $f(y_n)$ converges. So we can pick a subsequence to show that is converges to f(z).

Corollary 4.1.1 Corallary 1

Let X, Y be metric spaces, $f: X \to Y$. f is continuous if and only if if $\{x_n\} \subseteq X$ is convergent, then $\{f(x_n)\} \subseteq Y$ is convergent.

Corollary 4.1.2 Corallary 2

Let X, Y be metric spaces with X separable. Let $f: X \to Y$ be continuous. Then $f(X) \subseteq Y$ is separable.

Theorem 4.1.5 Continuity and products

Let $X, Y_1, ..., Y_k$ be metric spaces and let $f: X \to Y := \prod Y_i$. Let $z \in X$. Write $f = (f_1, ..., f_k)$ where $f_i: X \to Y_i$. The following are equivalent:

- 1. f is continuous at z.
- 2. Each f_i is continuous at z.

Proof. Proof direct from limit chracterization.

⊜

Theorem 4.1.6 Algebra of continuity

Sum, product, and multilinear functions of continuous functions are continuous.

Theorem 4.1.7 Composition

Let X,Y,Z be metric spaces and $f:X\to Y$ and $g:Y\to Z$. Suppose f is continuous at $z\in X$ and g is continuous at f(z). Then $g\circ f:X\to Z$ is continuous at z.

Theorem 4.1.8

Let X, Y be metric spaces and $f: X \to Y$. The following are equivalent:

- 1. f is continuous.
- 2. $f^{-1}(U)$ is open $\forall U \subseteq Y$ open.
- 3. $f^{-1}(U)$ is closed $\forall U \subseteq Y$ closed.

Theorem 4.1.9 Multilinearity and continuity

Let V_1, \ldots, V_k and W be normed vector spaces over \mathbb{F} , and let $T \in L(V_1, \ldots, V_k; W)$. The following are equivalent:

- 1. $T \in \mathcal{L}(V_1, \ldots, V_k; W)$ i.e. T is a bounded multilinear map.
- 2. T is continuous.
- 3. T is continuous at $0 \in \prod V_i$.

Proof. 1 \Longrightarrow 2: Let $u = (u_1, \dots, u_k), v = (v_1, \dots, v_k)$ be two vectors in $V_1 \times \dots \times V_k$. We write

$$T(v_1, \ldots, v_k) - T(u_1, \ldots, u_k) = T(v_1 - u_1, v_2, \ldots, v_k) + T(u_1, v_2 - u_2, \ldots, v_k) + \ldots + T(u_1, \ldots, u_{k-1}, v_k - u_k).$$

This implies that $||T(u)-T(v)|| \le ||T||_{\mathcal{L}} \Big[||v_1-u_1||_{V_1} \prod_{i=2}^k ||v_i||_{V_i} + ||u_1||_{V_1} ||u_2-v_2||_{V_2} \prod_{i=3}^k ||u_i||_{V_i} + \cdots + \prod_{i=1}^{k-1} ||u_1||_{V_i} ||u_k-v_k||_{V_i} \Big]$ From this est, it's easy to conclude that T is continuous at u.

- $2 \implies 3$: trivial
- 3 \Longrightarrow 1: Suppose T is continuous at 0. Let $\epsilon = 1$ and let $\delta > 0$ such that $\|u\|_p = \begin{cases} \left(\sum \|u_i\|_{V_i}^p\right)^{1/p} & p < \infty \\ \max & p = \infty \end{cases}$
- δ . This implies that $||T(u)||_W = ||T(u) T(0)||_W < \epsilon = 1$.

Let $u_i \in V_i$ be such that $||u_i||_{V_i} = 1$. Then

$$\left\| \left(\frac{\delta}{2k^{1/p}} u_1, \dots, \frac{\delta u_k}{2k^{1/p}} \right) = \frac{\delta}{2} < \delta.$$

So, T applied to that value is less than 1. But this means

$$\left(\frac{\delta}{2k^{1/p}}\right) \|T(u)\|_W < 1$$

$$\|T(u)\|_W \le \left(\frac{2k^{1/p}}{\delta}\right)^k.$$

as well. By taking the supremum, we get that T is bounded and in \mathcal{L} .

Definition 4.1.3

Let V, W be normed vector spaces over \mathbb{F} .

1. Recall $L^k(V;W)=L(V_1,\ldots,V_k;W)$ and similarly for \mathcal{L} . Given $T\in L^k(V;W)$ and $v\in V$, we write $Tv^{\otimes k}=T(v^{\otimes k})=T(v,\ldots,v)$.

☺

2. A polynomial is a map $p:V\to W$ given by $p(v)=\sum_{k=0}^d T_kv^{\otimes k}$ for $T_k\in L^k(V;W)$. We write d= degree of p given that $T_d\neq 0$. Note: by the continuity of $T_k\in \mathcal{L}^k(V;W)$ and algebra of continuity, all polynomials are continuous.

Definition 4.1.4

Let X, Y be metric spaces and $f: X \to Y$.

- 1. We say f is uniformly continuous if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $x,y \in X$ and $d_X(x,y) < \epsilon$ then $d_Y(f(x),f(y)) < \epsilon$.
- 2. f is Lipschitz if $\exists c \ge 0$ such that $d(f(x), f(y)) \le cd(x, y)$ for all $x, y \in X$.

Facts:

- 1. Lipschitz \implies uniformly continuous \implies continuous.
- 2. Compositions of uniformly continuous functions are uniformly continuous.
- 3. Compositions of Lipschitz functions are Lipschitz.
- 4. Suppose $f, g: X \to V$ for V a normed vector space. If f, g are uniformly continuous or Lipschitz, then $\alpha f + \beta g$ are too $\forall \alpha, \beta \in \mathbb{F}$.

Lenma 4.1.1

Suppose X,Y are metric spaces, $f:X\to Y$ is uniformly continuous if $\{x_n\}_{n=\ell}^\infty\subseteq X$ is Cauchy, then $\{f(x_n)\}_{n=\ell}^\infty\subseteq Y$ is Cauchy.

Proof. Let $\epsilon > 0$, then there exists $\delta > 0$ such that

$$x, y \in X \land d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \epsilon.$$

Pick $N \ge \ell$ such that $m, n \ge N \implies d(x_n, x_m) < \delta$. This means that $d(f(x_n), f(x_m)) < \epsilon$. Therefore $\{f(x_n)\}_{n=\ell}^{\infty} \subseteq Y \text{ is Cauchy.}$

Example 4.1.1

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ via $f(x) = x^2$.
- 2. Let V, W be normed vector spaces, $a \in W, T \in \mathcal{L}(V, W)$. Then $f: V \to W$ via f(x) = a + Tx is Lipschitz:

$$||f(x) - f(y)||_{W} = ||Tx - Ty||_{W}$$
(4.1)

$$\leq ||T||_{\mathcal{L}}||x - y||_{V}. \tag{4.2}$$

So, f is Lipschitz.

But moving back to the first example, f is not uniformly continuous. However, f maps Cauchy sequences to Cauchy sequences. Indeed, suppose $\{x_n\}_n$ is Cauchy and bounded by M. Then,

$$|f(x_n) - f(x_m)| = |x_n^2 - x_m^2| = |x_n + x_m||x_n - x_m| \le 2M|x_n - x_m|.$$

So f is not uniformly continuous. Suppose not, then $\exists \delta > 0$ such that $|x-y| < \delta \implies |f(x)-f(y)| < 1$.

Let $x = n \in \mathbb{N}$ and $y = n + \frac{\delta}{2}$. Then

$$|x-y|=\frac{\delta}{2}<\delta,$$

so $1 > |f(y) - f(x)| = (n + \delta/2)^2 - n^2 = \delta n + \frac{\delta^2}{4}$. This is a contradiction.

- 3. Let X be a metric space. Let $a \in X$ and define $f: X \to \mathbb{R}$ via f(x) = d(x, a). f is Lipschitz as $|f(x) f(y)| = |d(x, a) d(y, a)| \le d(x, y)$. This can be generalized.
- 4. Consider $\sin : \mathbb{R} \to \mathbb{R}$.

$$|\sin(x) - \sin(y)| = |\cos(w)(x - y)| \le |x - y|$$

for some w below x and y. Therefore \sin is Lipschitz. Ditto for \cos .

5. Let X be a metric space, V_1, \ldots, V_k, W be normed vector spaces. And suppose $f_i: X \to V_i$ is uniformly continuous xor Lipschitz. Further suppose $T: X \to \mathcal{L}(V_1, \ldots, V_k; W)$ is uniformly continuous xor Lipschitz. If T, f_1, \ldots, f_k are all also bounded, then $X \ni x \mapsto T(x)(f_1(x), \ldots, f_k(x)) \in W$ is uniformly continuous xor Lipschitz.

Proof. Recall

$$T(u_1, \dots, u_k) - T(v_1, \dots, v_k) = T(u_1 - v_1, u_2, \dots, u_k) + \dots + T(v_1, \dots, v_{k-1}, u_k - v_k).$$

Now use this with $u_i = f_i(x)$ and $v_i = f_i(y)$.

(3)

Definition 4.1.5

Let $f: X \to Y$ for X, Y metric spaces. We define $K(f) \in [0, \infty]$ to be

$$K(f) = \begin{cases} 0 & |X| = 1\\ \sup_{x,y \in X, x \neq y} \frac{d_Y(f(x), f(y))}{d_X(x,y)} & \text{otherwise} \end{cases}.$$

K(f) is called the Lipschitz constant for f.

Facts:

- 1. $K(f) = 0 \iff f$ is constant. K(f) is finite $\iff f$ is Lipschitz. Also, $d(f(x), f(y)) \le K(f)d(x, y)$.
- 2. Suppose $g: Y \to Z$, Z is a metric space. Then $K(g \circ f) \leq K(g)K(f)$.

Proof. $d_Z(g \circ f(x), g \circ f(y)) \leq K(g)d_Y(f(x), f(y)) \leq K(g)K(f)d(x, y)$. This yields the result.

3. If Y = X, i.e. $f: X \to X$, then $K(f^{(n)}) \leq K(f)^n$.

$$f^{(0)} = I_X$$

 $f^{(n)} = f \circ f^{(n-1)}$.

Definition 4.1.6

Let X, Y be metric spaces and $f: X \to Y$.

- 1. We say f is expansive if $\infty > K(f) > 1$.
- 2. We say f is non-expansion if $K(f) \leq 1$.
- 3. We say f is contractive if K(f) < 1.
- 4. Suppose Y = X. We say f is eventually contractive if $\exists 1 \leq n \in \mathbb{N}$ such that $f^{(n)}$ is contractive.

Example 4.1.2

Let $\alpha \in [0,1], \beta \in (0,1), \gamma \in [0,\infty)$ and $x \in (-\infty,0]$. Set $f: \mathbb{R} \to \mathbb{R}$ via

$$f(x) = \begin{cases} \beta & x \in (-\infty, 0] \\ \beta + (1 - \beta) \left(\frac{x}{\beta}\right)^{\alpha} & x \in [0, \beta] \\ 1 & x \in [\beta, 1] \\ 1 + \gamma(x - 1) & x \in (1, \infty) \end{cases}.$$

Exercise:

$$K(f) = \begin{cases} \infty, & \alpha \in (0,1) \\ \max\left(\gamma, \frac{1}{\beta} - 1\right) & \alpha = 1 \end{cases}.$$

Also,

$$f^{(2)}(x) = \begin{cases} 1 & x \le 1 \\ 1 + \gamma^2(x-1) & x > 1 \end{cases}.$$

So $K(f^{(2)}) = \gamma^2 \implies f^{(2)}$ is Lipschitz. If $\gamma < 1$ then f is eventually contractive.

Theorem 4.1.10 Banach Fixed Point Theorem

Let X be a complete metric space and $f: X \to X$ be eventually contractive. Then there exists a unique fixed point $x_0 \in X$ such that $f(x_0) = x_0$.

Proof. Suppose intitially that f is contractive, i.e. $K(f) = \gamma \in [0,1)$. Let $x_0 \in X$ arbitrarily. Inductively define $\{x_n\}_{n=0}^{\infty} \subseteq X$ via $x_{n+1} = f(x_n)$, i.e. $x_n = f^{(n)}(x_0)$. For $n > m \ge 0$, we bound

$$d(x_n,x_m) \leq d(x_n,x_{n-1}) + d(x_{n-1},x_m) \leq \cdots \leq \sum_{i=m}^{n-1} d(x_i,x_{i+1}) = \sum_{i=m}^{n-1} d(f^{(i)}(x_0),f^{(i)}(x_1)) \leq \sum_{i=1}^{n-1} \gamma^i d(x_0,x_1) = d(x_0,x_1) \sum_{i=m}^{n-1} \gamma^i.$$

Since $\gamma < 1$, the infinite sum of γ^i converges. That is, $\left\{\sum_{i=0}^k \gamma^i\right\}_{k=0}^{\infty}$ is Cauchy. This and the bound implies that $\{x_n\}_{n=0}^{\infty}$ is Cauchy.

Now note that $x_{n+1} = f(x_n)$, and this converges to x = f(x) because f is continuous. Therefore x is a fixed point.

Suppose $y \in X$ is such that f(y) = y. Then, $d(x, y) = d(f(x), f(y)) \le \gamma d(x, y) \implies (1 - \gamma)d(x, y) \le 0 \implies x = y$.

Now consider the general case. $\exists z \leq n$ such that $f^{(n)}$ is contractive. By the previous analysis, there exists a unique $x \in x$ such that $f^{(n)} = x$. Thus, $f(x) = f^{(n+1)}(x) = f^{(n)}(f(x)) \implies f(x)$ is a fixed point of $f^{(n)}$. So this means f(x) = x. Suppose now y = f(y), this means $y = f^{(n)}(y) \implies y = x$.

Note:

Say f is contractive for simplicity. What we knew was that if $n > m \ge 0$, then

$$d(x_n, x_m) \leq d(x_0, x_1) \sum_{i=m}^{n-1} \gamma^i \leq d(x_0, x_1) \sum_{i=m}^{\infty} \gamma^i = d(x_0, x_1) \frac{\gamma^m}{1 - \gamma}.$$

So,

$$d(x,x_m) = \lim_{n \to \infty} d(x_n,x_m) \leqslant \frac{d(x_0,x_1)\gamma^m}{1-\gamma}.$$

Example 4.1.3 (putnam(?))

Let $X \neq \emptyset$ be a set, $g: X \to \mathbb{R}$ be bounded and $h: X \to \mathbb{R}$ be arbitrary. Let $0 < \gamma < 1$.

Claim: $\exists ! f \in \mathcal{B}(X; \mathbb{R})$ such that $f(x) = g(x) + \gamma \cos(h(x) + f(x))$.

Proof. Define $\Phi: \mathcal{B}(X) \to \mathcal{B}(X)$ as $\Phi(f) = g + \gamma \cos(h + f) \in \mathcal{B}(X)$.

Fact 1: $\mathcal{B}(X)$ is complete.

Fact 2: $\Phi(f_1) - \Phi(f_2) = \gamma [\cos(h + f_1) - \cos(h + f_2)]$. That is,

$$|\Phi(f_1)(x) - \Phi(f_2)(x)| \le \gamma |f_1(x) - f_2(x)|$$

$$\|\Phi(f_1) - \Phi(f_2)\|_{\mathcal{B}(X)} \le \gamma \|f_1 - f_2\|_{\mathcal{B}(X)}.$$

Therefore, Φ is a contaction, meaning there is a unique $f \in \mathcal{B}(X)$ such that $f = \Phi(f) = g + \gamma \cos(h + f)$.

Example 2: Solving the quadratic equation. Claim: suppose V,W are Banach spaces over \mathbb{F} , $A \in \mathcal{L}^2(V;W)$, $B \in \mathcal{L}(V;W)$, $c \in W$. Suppose $A \neq 0$ and B is invertible with $B^{-1} \in \mathcal{L}(W;V)$. We claim that there exists $x \in V$ such that A(x,x) + Bx + c = 0 provided that $4\|B^{-1}\|_{\mathcal{L}(W;V)}^2 \|A\|_{\mathcal{L}^2(V;W)} \|c\|_W < 1$.

Proof. If c=0, then x=0 does the job, so suppose $c\neq 0$. It suffices to prove that when W=V and $B=I_V$. Indeed, suppose we proved this. Then,

$$A(x,x) + Bx + c = 0$$
 in $W \iff B^{-1}A(x,x) + x + B^{-1}c = 0$ in V .

But $B^{-1} \circ A \in \mathcal{L}^2(V; V)$, $||B^{-1} \circ A||_{\mathcal{L}^2} \le ||B^{-1}||_{\mathcal{L}} ||A||_{\mathcal{L}^2}$.

 $B^{-1}c \in V, \|B^{-1}c\|_{V} \leq \|B^{-1}\|_{\mathcal{L}}\|c\|_{W}.$

Then, this means that $4\|B^{-1}A\|_{\mathcal{L}^2}\|B^{-1}c\|_V < 1 \implies \exists x \in V \text{ such that we are done.}$

Proof. We prove the special case. We want to throw that A(x,x) + x + c = 0 for $A \in \mathcal{L}^2(V;V), c \in V \setminus \{0\}$. Note,

 $A(x,x) + x + c = 0 \iff x = -c - A(x,x) \iff x \text{ is a fixed point of } f: V \to V, f(x) = -c - A(x,x).$

The idea is that if A = 0, then x = -c is a solution. The strategy is to try to find $R \ge 0$ such that

- 1. $f: B[-c, R] \rightarrow B[-c, R]$,
- 2. f is eventually contractive on B[-c, R].

IF we can prove this, then $\exists ! x \in B[-c, R]$ such that $x = f(x) = -c - A(x, x) \implies A(x, x) + x + c = 0$.

⊜

Example 4.1.4

 $\exists x \in V \text{ such that } A(x,x) + Bx + c = 0.$ Reduce to case V + W, B = I. Claim: $\exists x \in V \text{ such that } A(x,x) + x + c = 0 \text{ where } A \in \mathcal{L}^2(V,V), c \in V \setminus \{0\}.$

Let $f: V \to V$ such that f(x) = -c - A(x, x). Let $R \ge 0$ (TBD) and consider $x \in B[-c, R]$.

$$f(x) = c = -A(x, x) = -[A(x + c - c, x + c - c)] = -[A(x + c, x + c) - A(x + c, c) - A(c, x + c) + A(c, c)]$$

$$\implies ||f(x) + c|| \le ||A|| [||x + c||^2 + 2||c||||x + c|| + ||c||^2]$$

$$\le ||A|| [R^2 + 2||c||R + ||c||^2] \le R.$$

 $\|A\|R^2 + (2\|c\|\|R\| - 1)R + \|A\|\|c\|^2 \le 0 \iff (2\|A\|\|c\| - 1)^2 - 4\|A\|^2\|c\|^2 \ge 0. \text{ This just gives}$

$$1 - 4||A||||c|| \ge 0 \implies 1 \ge 4||A||||c||.$$

That is, if this holds, then $R \in [R_-, R_+]$. So,

$$R_{\pm} = \frac{1 - 2||A|| ||C|| \pm \sqrt{1 - 4||A|| ||c||}}{2||A||}$$

and $R_- > 0$. We now know that $4\|A\|\|c\| \le 1 \implies$ for $R \in [R_-, R_+]$, $f : B[-c, R] \rightarrow B[-c, R]$. Next, for $x, y \in B[-c, R]$,

$$\begin{split} \|f(x)-f(y)\| &= \|A(y,y)-A(x,x)\| = \|A(y-x,x)+A(y,y-x)\| \\ &= \|A(y-x,y+c)-A(y-x,c)+A(x+c,y-x)-A(c,y-x)\| \\ &\leq \|A\|[\|x-y\|R+\|x-y\|\|c\|+\|x-y\|R-\|x-y\|\|c\|] \\ &= 2\|A\|[R+\|c\|]\|x-y\|. \end{split}$$

We win if this quantity is strictly less than 1. Note:

$$2\|A\|R_{\pm} + 2\|A\|\|c\| = 1 \pm \sqrt{1 - 4\|A\|\|c\|}.$$

This is why we choose R_{-} . So

$$4||A||||c||-1 \implies f: B[-c,R_-] \rightarrow B[-c,R_-]$$
 is a contraction.

By Banach Fixed Point Theorem, $\exists ! x \in B[-c, R_{-}]$ such that f(x) = x.

Note:
$$f: B[-c, R_-]$$

4.2 Homeomorphisms

Definition 4.2.1

Let X, Y be metric spaces and $f: X \to Y$ be a bijection.

- 1. f is a homeomorphism if f, f^{-1} are continuous. We write $X \simeq_{hom} Y$ in this case.
- 2. f is a uniform homeomorphism if f, f^{-1} are uniformly continuous. We write $X \simeq_{uni} Y$ in this case.
- 3. f is a bi-Lipschitz homeomorphism if f, f^{-1} are Lipschitz continuous. We write $X \simeq_{bi-L} Y$ in this case.

Facts:

- \simeq_* are equivalence relations (also $X \simeq_{iso} Y \iff \exists$ an iso.). $[X]_{iso} \subseteq [X]_{bi-L} \subseteq [X]_{uni} \subseteq [X]_{hom}$.
- $f: X \to Y$ is a homeomorphism iff

$$\begin{cases} f \text{ is bijective} \\ f^{-1}(U) \text{ is open} & \forall U \subseteq Y \text{ open.} \\ f(V) \text{ is open} & \forall V \subseteq X \text{ open.} \end{cases}$$

 $f: X \to Y$ is bi-Lipschitz iff f is surjective and $\exists c_0, c_1 > 0$ such that $c_0 d(x, y) \le d(f(x), f(y)) \le c_1 d(x, y)$ for all $x, y \in X$.

Example 4.2.1

1. Suppose X is a finite metric space, $f: X \to Y$ a bijection. We claim that f continuous implies f Lipschitz. If the cardinality of X is 1, then this is pointless (not really??). Suppose $|X| \ge 2$.

Define
$$K(f) = \max \left\{ \frac{d(f(x), f(y))}{d(x, y)} \mid x \neq y \right\} < \infty.$$

- 2. Consider $f:(0,1)\to (1,\infty)$ via $f(x)=\frac{1}{x}$. This is a bijection and a homeomorphism. It's not a uniform homeomorphism. This shows that $[(0,1)]_{uni}\subset [(0,1)]_{hom}$.
- 3. Let V, W be normed vector spaces. We can add "linear" to any of our homeomorphism notions. In this case, linear bi-Lipschitz \iff linear homeomorphism.

Indeed, suppose that $T:V\to W$ is a linear map. This means that $T\in\mathcal{L}(V;W)$. We can use the same logic for T^{-1} . Thus,

$$||Tx - Ty||_W \le ||T||_{\mathcal{L}} ||x - y||_V.$$

Also,

$$\begin{split} \|x-y\|_V &= \|T^{-1}Tx - T^{-1}Ty\|_V \\ &\leq \|T^{-1}\|_{\mathcal{L}} \|Tx - Tv\|_V \\ &\Longrightarrow \frac{1}{\|T\|_{\mathcal{L}}} \|x-y\|_V \leq \|Tx - Ty\|_W \leq \|T\|_{\mathcal{L}} \|x-y\|_V. \end{split}$$

Therefore, T is bi-Lipschitz.

Question: In general, is it the case that $[V]_{hom} = [V]_{bi-L}$ for $V \neq \{0\}$ a normed vector space? Answer: No. In fact, $[V]_{bi-L} \subset [V]_{uni}$. Remember, we only care about metrics, not necessarily norms.

Proof. Fix $(V, \|\cdot\|)$ a normed vector space. Claim, $d: V \times V \to \mathbb{R}$ given by $d(x, y) = \sqrt{\|x - y\|}$ is a metric on V. This is obviously symmetric and positive, so we just check the triangle inequality:

$$d(x,y) = \sqrt{\|x-y\|} \leqslant \sqrt{\|x-z\| + \|z-y\|} \leqslant \sqrt{\|x-z\|} + \sqrt{\|y-z\|} = d(x,z) + d(z,y).$$

The last inequality is true by squaring. We'll now show that $(V, \|\cdot\|) \simeq_{uni} (V, d)$ with the identity map. That is $I: (V, \|\cdot\|) \leftrightarrow (V, d)$ is uniformly continuous in both directions.

Let $\epsilon > 0$. Then $d(x,y) < \delta \iff ||x-y|| < \delta^2$. So taking $\delta = \sqrt{\epsilon}$ shows that I is uniformly continuous from (V,d) to $(V,||\cdot||)$.

Similarly, $||x - y|| < \delta \iff d(x, y) < \sqrt{\delta}$. So take $\delta = \epsilon^2$ and we see that I is uniformly continuous from $(V, ||\cdot||)$ to (V, d).

Next, we claim that (V, d) and $(V, \|\cdot\|)$ are not bi-Lipschitz homeomorphic. So suppose BWOC there exists an $f: (V, \|\cdot\|) \to (V, d)$ that is bi-Lipschitz homeomorphic. In particular, then there exists $c_0, c_1 > 0$ such that

$$|c_0||x - y|| \le d(f(x), f(y)) = \sqrt{||f(x) - f(y)||} \le c_1 ||x - y||$$

for all $x, y \in V$. In particular, if $c := c_1^2$, then $||f(x) - f(y)|| \le c||x - y||^2$ for $x, y \in V$. Let $x \ne y$ in V and $1 \le n \in \mathbb{N}$. Let $x_i = x + \frac{i}{n}(y - x)$ for $0 \le i \le n$. This yields

$$||x_{i+1}x_n|| = \frac{1}{n}||x - y||.$$

Thus,

$$||f(y) - f(x)|| \le \sum_{i=0}^{n-1} ||f(x_{i+1}) - f(x_i)|| \le \sum_{i=0}^{n-1} c||x_{i+1} - x_i||^2 = c \sum_{i=0}^{n-1} \frac{||x - y||^2}{n^2} = \frac{c||x - y||^2}{n}.$$

Send $n \to \infty$ to get that f(x) = f(y), contradiction! Therefore, $[V]_{bi-L} \subset [V]_{uni}$.

Question: Are there any non-linear bi-Lipschitz homeomorphisms on $V \neq \{0\}$ a normed vector space.

Answer: Yes, there are lots, at least if V is complete. Suppose V is a banach space and suppose $g:V\to V$ is a contraction. We claim that f=I+g is a bi-Lipschitz homeomorphism.

Proof. We follow the following steps:

- 1. f is a bijection. We'll show $\forall y \in V$, $\exists x \in V$ such that x + g(x) = y. Fix y, and define $h : V \to V$ via h(x) = y g(x). Then we're done if we can show that $\exists ! x \in X$ such that h(x) = x. But, K(h) = K(g), so h is a contraction and therefore the Banach fixed point theorem applies.
- 2. f is bi-Lipschitz. We have

$$\begin{split} \|f(x)-f(y)\| &= \|x-y+g(x)-g(y)\| \leq \|x-y\| + \|g(x)-g(y)\| \\ &\leq \|x-y\| + K(g)\|x-y\| = (1+K(g))\|x-y\|. \end{split}$$

This means that $K(f) \leq 1 + K(g)$. On the other hand,

$$||x - y|| \le ||x + g(x) - y - g(y)|| + ||g(x) - g(y)||$$

$$\le ||f(x) - f(y)|| + K(g)||x - y||.$$

This implies $(1 - K(g))||x - y|| \le ||f(x) - f(y)|| \le (1 + K(g))||x - y||$. Therefore, f is bi-Lipschitz.

(2)

Next: Let $f: V \to V$ be a bi-Lipschitz homeomorphism. Let $g: V \to V$ be a bi-Lipschitz homeomorphism with $K(g)K(f^{-1}) < 1$. We claim h = f + g is a bi-Lipschitz homeomorphism.

Proof. Indeed, $h = f + g = f + g \circ f^{-1} \circ f = (I + g \circ f^{-1}) \circ f$. We just need to show that $g \circ f^{-1}$ is bi-Lipschitz because then h will be.

But, $K(g \circ f^{-1}) \leq K(g)K(f^{-1}) < 1$ by assumption. Therefore, $g \circ f^{-1}$ is a bi-Lipschitz homeomorphism, and so is h.

Definition 4.2.2

Let X be a metric space

- 1. We say a property of X is a topological property if it is common to $[X]_{hom}$. That is, it's true in X if and only if it's true in Y for all $Y \simeq_{hom} X$.
- 2. We say a property of X is a uniform property if it is common to $[X]_{uni}$.
- 3. We say a property of X is a strong property if it is common to $[X]_{bi-L}$.

Example 4.2.2

1. $(0,1) \simeq_{hom} \mathbb{R}$. Let $f:(0,1) \to \mathbb{R}$ be defined as

$$f(x) = \log\left(\frac{1}{x} - 1\right)$$
$$f^{-1}(y) = \frac{1}{1 + e^{y}}.$$

(0,1) is not complete and bounded, but \mathbb{R} is copmlete and unbounded. This is a strong example of how homeomorphisms do not maintain all properties.

Proposition 4.2.1

Let $X \simeq_{bi-L} Y$. Then X is bounded iff Y is bounded.

Proof. $\exists c_0, c_1 > 0$ and a bijection $f: X \to Y$ such that $c_0 d(x, y) \leq d(f(x), f(y)) \leq c_1 d(x, y)$ for all $x, y \in X$. We'll show that Y bounded implies X bounded. The other direction is free.

So if Y is bounded, then $Y \subseteq B(z,r)$ for some $z \in Y$. But, z = f(x) for some $x \in X$. Therefore, $d(x,y) \le \frac{1}{c_0} d(f(x),f(y))$ for all $y \in X$. But that distance is less than r, so we also have that $d(x,y) < \frac{r}{c_0}$. This means that $X \subseteq B(x,r/c_0)$. So X is bounded.

Corollary 4.2.1

Boundedness is a strong property.

Example 4.2.3

Let (X,d) be a metric space that is not bounded. We've seen that $\sigma = \frac{d}{1+d}$ is also a metric on X. (X,σ) is bounded because $X = B_{\sigma}[x,1]$ for all $x \in X$. These are not bi-Lipschitz homeomorphic by the previous proposition, but they can be uniformly homeomorphic. We prove that the identity map does the job. To see this, let $\epsilon > 0$ and note

$$d < \epsilon \implies \frac{d}{1+d} \le d < \epsilon.$$

This means $I:(X,d)\to (X,\sigma)$ is uniformly continuous. On the other hand, assume $\delta<1$ and observe that

$$\frac{d}{d+1} < \delta \implies d(1-\delta) < \delta \iff d < \frac{\delta}{1-\delta}.$$

We set $\epsilon:=\frac{\delta}{1-\delta}$. So then we has $\delta=\frac{\epsilon}{1+\epsilon}$, so $I:(X,\sigma)\to (X,d)$ is uniformly continuous.

Corollary 4.2.2

Boundedness is a strong property (preserved by bi-Lipschitz, not by uniform).

Proposition 4.2.2

Let X, Y be metric spaces, $f: X \to Y$ be a uniform homeomorphism. The following hold:

- 1. $\{x_n\}_{n=\ell}^{\infty} \subseteq X$ is Cauchy if and only if $\{f(x_n)\}_{n=\ell}^{\infty} \subseteq Y$ is Cauchy.
- 2. X complete if and only if Y complete.

Proof. We prove this in parts.

- 1. We know $g: X \to Y$ uniformly continuous implies that $\{g(x_n)\}_{n=\ell}^{\infty} \subseteq Y$ is Cauchy when $\{x_n\}_{n=\ell}^{\infty} \subseteq X$ is Cauchy. Now apply this to g = f and $g = f^{-1}$ to get the result.
- 2. Suppose Y is complete. Let $\{x_n\}_{n=\ell}^{\infty} \subseteq X$ be Cauchy. Then we know $\{f(x_n)\}_{n=\ell}^{\infty} \subseteq Y$ is Cauchy and hence convergent to some $y \in Y$. Thus $x_n = f^{-1}(f(x_n)) \to f^{-1}(y)$ in X as $n \to \infty$. Therefore X is complete. The converse holds by symmetry.

(

⊜

Corollary 4.2.3

Completeness is a uniform property.

Proof. The above proposition and $(0,1) \simeq_{hom} \mathbb{R}$.

4.3 More Metric Space Topology

Definition 4.3.1

Let X be a metric space, $E \subseteq X$. We say E is totally bounded if $\forall \epsilon > 0$, there exist $x_1, \ldots x_n \in X$ such that $E \subseteq \bigcup_{i=1}^n B(x_i, \epsilon)$.

Facts:

- 1. $E \subseteq X$ totally bounded $\implies E$ is bounded.
- 2. If $A \subseteq E \subseteq X$ and E is totally bounded, then A is totally bounded.
- 3. We don't have to use balls. $E \subseteq X$ is totall bounded if and only if $\forall \epsilon > 0, \exists A_1, \ldots, A_n \subseteq X$ such that $\operatorname{diam}(A_i) < \epsilon \text{ for } i = 1, \dots, n \text{ and } E \subseteq \bigcup_{i=1}^n A_i.$

Proof. We prove the third item.

First realize that diam $(B(x,\epsilon)) = 2\epsilon$. So if we know E is totally bounded, we can pick $E \subseteq \bigcup_{i=1}^n B(x_i, \frac{\epsilon}{2})$.

Then the diameter of each ball is $\frac{2\epsilon}{3} < \epsilon$, so let $A_i := B\left(x_i, \frac{\epsilon}{3}\right)$ for $i = 1, \ldots, n$. Now suppose that $E \subseteq \bigcup_{i=1}^n A_i$ with diam $< \frac{\epsilon}{3}$. Then let $x_i \in A_i$ be arbitrary and note $A_i \subseteq B(x_i, \epsilon)$. This means $E \subseteq \bigcup_{i=1}^n B(x_i, \epsilon)$.

Example 4.3.1

- 1. Suppose $E \subseteq X$ is finite. Then E is totally bounded (just take the individual points).
- 2. $a, b \in \mathbb{R}$, a < b. Then (a, b) and [a, b] are totally bounded, but \mathbb{R} itself is not totally bounded.
- 3. Let X be an infinite set with the discrete metric. Then B(x,1) is a singleton set, so X itself is not totally bounded.
- 4. Let $E \subseteq \{\chi_A \in \ell^{\infty}(\mathbb{N}; \mathbb{R}) \mid A \subseteq \mathbb{N}\}$ where

$$\chi_a(n) = \begin{cases} 1 & n \in A \\ 0 & n \notin A \end{cases}.$$

E is bounded because $\|\chi_A\|_{\infty} \leq 1$. Also, if $A \neq B$, then $\|\chi_A - \chi_B\|_{\infty} = 1$.

Then $B(\chi_A, 1) \cap E = {\chi_A}$. Therefore E is bounded but not totally bounded.

5. Let V be a finite dimensional normed vector space. B(x,r) and B[x,r] are totally bounded.

Proposition 4.3.1

Let X be a metric space with $E \subseteq X$ totally bounded. Then \overline{E} is totally bounded.

Proof. Recall $\overline{E} = E \cup E'$. Let $\epsilon > 0$ and pick $X_1, \ldots, X_n \in X$ such that $E \subseteq \bigcup_{i=1}^n B(x_i, \epsilon/2)$.

Let $x \in E'$, which means that $\emptyset \neq (B(x, \epsilon/2) \cap E) \setminus \{x\}$, so pick any y in this set. In particular, $d(x, y) < \epsilon/2$. Since $y \in E$, there is an x_i such that $d(x_i, y) < \epsilon/2$. By the triangle inequality,

$$d(x, x_i) \le d(x, y) + d(y, x_i) < \frac{2\epsilon}{2} = \epsilon.$$

⊜

That is, $E' \subseteq \bigcup_{i=1}^n B(x_i, \epsilon)$. Therefore, E itself will be contained in the same union of balls as well.

Theorem 4.3.1

Let X, Y be metric spaces.

- 1. If $f: X \to Y$ is uniformly continuous and $E \subseteq X$ is totally bounded, then $f(E) \subseteq Y$ is totally bounded.
- 2. If $X \simeq_{uni} Y$, then X is totally bounded if and only if Y is totally bounded. In particular, TB is a uniform property.

Proof. If suffices to just prove the first item.

Let $\epsilon > 0$ and pick $\delta > 0$ such that $f(B(x,\delta)) \subset B(f(x),\epsilon)$ for all $x \in X$. Since E is totally bounded, there exist x_1, \ldots, x_n in X such that $E \subseteq \bigcup_{i=1}^n B(x_i, \delta)$. Thus, $f(E) \subseteq \bigcup_{i=1}^n f(B(x_i, \delta)) \subseteq \bigcup_{i=1}^n B(f(x_i), \epsilon)$.

Proposition 4.3.2

Let X be a totally bounded metric space. Then X is separable.

Proof. Since X is totally bounded, for every $n \in \mathbb{N}$ there is a finite set $\emptyset \neq E_n \subseteq X$ such that $X = \bigcup_{x \in E_n} B(x, 2^{-n})$. No we can define the countable set $E = \bigcup_{n \in \mathbb{N}} E_n \subseteq X$.

Now given any $x \in X$, we know there exists $x_n \in E_n$ such that $d(x, x_n) < 2^{-n}$.

⊜

Example 4.3.2

 $\mathcal{B}(X;Y)$ is not separable when X is an infinite set and $|Y| \ge 2$.

Theorem 4.3.2

Let X be a metric space and $E \subseteq X$. The following are equivalent:

- 1. E is totally bounded.
- 2. If $\{x_n\}_{n=\ell}^{\infty} \subseteq E$. Then there exists a Cauchy subsequence $\{x_{n_k}\}_{k=\ell}^{\infty}$.

Proof. Suppose $E \subseteq X$ is totally bounded. We will use this notation for JUST this proof:

Given two sequences $x = \{x_n\}_{n=\ell}^{\infty}, y = \{y_n\}_{n=\ell}^{\infty} \subseteq E$. We will write $x \sigma y$ to mean x is a subsequence of y. Note, if $x \sigma y$ and $y \sigma z$, then $x \sigma z$.

Set $x^{\ell} = x$, some given sequence $\{x_n\}_{n=\ell}^{\infty} \subseteq E$. E is totally bounded, so $E \subseteq \bigcup_{y \in F_{\ell}} B(y, 2^{-\ell-1})$ for F_{ℓ} finite. By the pigeonhole principle, $\exists y \in F_{\ell}$ such that $x_n^{\ell} \in B(y, 2^{-\ell-1})$ for infinitely many n. We may thus select $x^{\ell+1}\sigma x^{\ell}$ such that $x_n^{\ell+1} \in B(y, 2^{-\ell-1})$ for all n.

In particular, $d(x_n^{\ell+1}, x_m^{\ell+1}) < 2^{-\ell}$ for all $n, m \ge \ell$. Iterate this argument. This produces a sequence of subsequences. That is,

$$\cdots \sigma x^{m+1} \sigma x^m \sigma \cdots \sigma = x$$

such that $d(x_k^m,x_n^m)<2^{-m+1}$ for all $m\geq \ell,\, n,k\geq \ell.$

Now let $\{y_n\}_{n=\ell}^{\infty} \subseteq E$ be given by $y_n = x_n^n$. Thus, for $m, n \ge N$, we know by construction that $d(y_n, y_m) = d(x_n^n, x_m^m) < 2^{-N+1}$. This easily shows that $\{y_n\}_{n=\ell}^{\infty} \subseteq E$ is Cauchy.

For the backward direction, we'll show that $\neg 1 \Longrightarrow \neg 2$. Suppose E is not totally bounded. Then there exists an $\epsilon > 0$ such that E cannot be covered by finitely many ϵ -balls. Let $x_0 \in E$ be arbitrary. $E \nsubseteq B(x_0, \epsilon)$. So there exists $x \in E$ such that $d(x_0, x) \ge \epsilon$.

Now suppose we have $x_0, \ldots, x_n \in E$ such that $d(x_i, x_j) \ge \epsilon$ for $i \ne j \le n$. Note that $E \nsubseteq \bigcup_{i=0}^n B(x, \epsilon)$, so we can pick an $x_{n+1} \in E$ that has a minimal distance of ϵ to all the previous points.

Proceeding via induction, we find that there exists $\{x_n\}_{n=0}^{\infty}$ such that $d(x_n, x_m) \ge \epsilon$ for all $m \ne n$ which cannot have a Cauchy subsequence.

Corollary 4.3.1

If X is totally bounded and complete, then it is sequentially compact, meaning all sequences in X have convergent subsequences.

Definition 4.3.2

Let X be a metric space.

- 1. We say $\{U_{\alpha}\}_{{\alpha}\in A}$ (A is any index set) is an open cover of E if $E\subseteq \bigcup_{{\alpha}\in A}U_{\alpha}$ and each U_{α} is open.
- 2. An open subcover of the open cover $\{U_{\alpha}\}_{{\alpha}\in A}$ is a collection $\{U_{\beta}\}_{{\beta}\in B}$ for any $B\subseteq A$ such that it remains an open cover of E. We say an open subcover $\{U_{\beta}\}_{{\beta}\in B}$ is finite if B is finite.
- 3. We say E is compact if each open cover of E admits a finite open subcover.

Example 4.3.3

- 1. Let $E \subseteq X$ be finite. Then E is compact.
- 2. $(0,1) \subset \mathbb{R}$ is not compact. Take $\left\{\left(0,\frac{n}{n+1}\right)\right\}_{n=1}^{\infty}$. Suppose $B \subseteq \mathbb{N} \setminus \{0\}$ is a finite set such that $\left\{\left(0,\frac{n}{n+1}\right)\right\}_{n=\in B}$ is an open subcover. Then let $N=\max B$. This implies that

$$(0,1) \subseteq \left(0, \frac{N}{N+1}\right)$$

which is a contradiction.

3. Let $E = \{0\} \cup \{2^{-n} \mid n \in \mathbb{N}\} \subseteq \mathbb{R}$. Then let $\{U_{\alpha}\}_{\alpha \in A}$ be an open cover. Pick $\alpha_0 \in A$ such that $0 \in U_{\alpha_0}$. Since $2^{-n} \to 0$ as $n \to \infty$, in fact U_{α_0} contains all but finitely many of the 2^{-n} terms. That is, there exists N such that $2^{-n \in U_{\alpha_0}}$ for all $n \ge N$. Now pick a finite subcover of $\{2^{-n} \mid 0 \le n \le N\}$ and we're done. E ic ompact, though E is infinite.

Proposition 4.3.3

Let X be a metric space and $K \subseteq X$ be compact. Then K is closed and totally bounded, which in particular means that K is bounded and that K is a separable metric space, provided $K \neq \emptyset$.

Proof. Let $\epsilon > 0$ and note that $\{B(x,\epsilon)\}_{x\in X}$ is a cover of K. So by compactness, there exists $x_1,\ldots,x_n\in X$ such that $K\subseteq\bigcup_{i=1}^n B(x_i,\epsilon)$. Therefore, K is totally bounded which means it is bounded and separable.

We now prove that K is closed. If $K = \emptyset$ or $K^c = \emptyset$, then we are done. So, suppose otherwise. Let $x \in K^c$. For each $y \in K$, note that $B(y, d(x, y)/2) \cap B(x, d(x, y)/2) = \emptyset$. Also, $\{B(y, d(x, y)/2)\}_{y \in K}$ is an open cover of K.

K being compact implies that $K \subseteq \bigcup_{i=1}^n B(y_i, d(x, y_i)/2)$ for some $y_1, \ldots, y_n \in K$.

Let $\delta = \min\{d(x,y_i)/2 \mid 1 \le i \le n\}$. Then, $K \cap B(x,\delta) \subseteq \bigcup_{i=1}^n B(y_i,d(x,y_i)/2) \cap B(x,\delta) = \emptyset$. This means that $B(x,\delta) \subseteq K^c$. As such, K^c is open and K is closed.

Proposition 4.3.4

Let X be a metric space and $\emptyset \neq Y \subseteq X$ and $K \subseteq Y \subseteq X$. Then K is compact in Y if and only if K is compact in X.

Proof. Suppose K is compact in Y. Then let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an open cover of K in X. Then, $\{Y\cap U_{\alpha}\}_{{\alpha}\in A}$ is an open cover of K in Y. By compactness, $K\subseteq \bigcup_{i=1}^n (Y\cap U_{\alpha_i})\subseteq \bigcup_{i=1}^n U_{\alpha_i}$. So, K is compact in X.

Now suppose K is compact in X. Let $\{V_{\alpha}\}_{{\alpha}\in A}$ be an open cover of K in Y. Then, there exists an open (in X) U_{α} such that $V_{\alpha}=Y\cap U_{\alpha}$ for all $\alpha\in A$. Thus, $\{U_{\alpha}\}_{{\alpha}\in A}$ is an open cover of K in X. So,

$$K \subseteq \bigcup_{i=1}^{n} U_{\alpha_i} \implies K = K \cap Y \subseteq \bigcup_{i=1}^{n} Y_n \cap U_{\alpha_i} = \bigcup_{i=1}^{n} V_{\alpha_i}.$$

So, K is compact in Y.

⊜

Note:

In light of this, we will mostly study compact metric spaces rather than compact subsets.

Theorem 4.3.3

Let X and Y be metric spaces with X compact and $f: X \to Y$ be continuous. Then $f(X) \subseteq Y$ is compact.

Proof. Let $\{U_{\alpha}\}_{\alpha\in A}$ be an open cover of f(X). Note that f being continuous implies that $f^{-1}(U_{\alpha})\subseteq X$ is open for all $\alpha\in A$. Thus, $\{f^{-1}(U_{\alpha})\}_{\alpha inA}$ is an open cover of X. So since X is compact, we have that $X=\bigcup_{i=1}^n f^{-1}(U_{\alpha_i})$. Therefore, $f(X)\subseteq \bigcup_{i=1}^n U_{\alpha_i}$. So, f(X) is compact.

Corollary 4.3.2

Compactness is a topological property.

Proposition 4.3.5

Let X be a compact metric space. Then $C \subseteq X$ si compact if and only if C is closed.

Proof. Forward direction has already been proved. So now assume C is closed and let $\{U_{\alpha}\}_{\alpha \in A}$ be an open cover of C. Then, $C^c \cup \{U_{\alpha}\}_{\alpha inA}$ is an open cover of X. So, $X = C^c \cup \bigcup_{i=1}^n U_{\alpha_i} \implies C \subseteq \bigcup_{i=1}^n U_{\alpha_i}$, so C is compact. a

Theorem 4.3.4

Let X, Y be metric spaces with X compact and suppose $f: X \to Y$ is a continuous bijection. Then $f^{-1}: Y \to X$ is continuous and f is a homeomorphism.

Proof. First note that if $C \subseteq X$ is closed, then C is compact by the above proposition. So, f(C) is compact and hence closed in Y. Define $g = f^{-1}: Y \to X$ and note that for $C \subseteq X$ closed, $g^{-1}(C) = f(C)$ which is closed for all such C. As such, g is continuous by the closet set characterization of continuity.

Example 4.3.4

The theorem fails if X is not compact:

- 1. $[0,2\pi) \ni t \mapsto (\cos(t),\sin(t)) \in \mathbb{S}^1$. This is continuous, but its inverse is not.
- 2. $(0,2\pi) \ni t \mapsto (\sin(2t),\sin(t)) \in \mathbb{R}^2$. This sort of creates a figure 8 as the image.

Theorem 4.3.5

Let X be a metric space, $f: X \to Y$ continuous. The following hold:

- 1. Suppose $\emptyset \neq K \subseteq X$ is compact. Then $\forall \epsilon > 0, \exists \delta > 0$ such that $x \in K$ and $y \in X$ and $d_X(x,y) < \delta$ implies that $d_Y(f(x),f(y)) < \epsilon$.
- 2. If X is compact, then f is uniformly continuous.

Proof. Clearly $1 \Longrightarrow 2$, so we only need to prove 1. Let $\emptyset \neq K \subseteq X$ be compact and $\epsilon > 0$. Since f is continuous, at each $x \in K$, $\exists \delta_x > 0$ such that

$$y \in X \land d_X(x,y) < \delta_x \implies d_Y(f(x),f(y)) < \frac{\epsilon}{2}.$$

So then, $\{B(x,\delta_x/2)\}_{x\in K}$ is an open cover in K. But since K is compact, we have that

$$K\subseteq \bigcup_{i=1}^n B(x_i,\delta_i/2).$$

Now let $\delta = \min\{\delta_1/2, \ldots, \delta_n/2\} > 0$. Now let $x \in K$ and $y \in X$ be such that $d_X(x, y) < \delta$. Since $x \in K$, there eixsts $1 \le m \le n$ such that $d_X(x, x_n) < \delta_m/2$. Thus,

$$\begin{split} d_X(x_m,y) & \leq d_X(x_m,x) + d_X(x,y) \\ & \leq \frac{\delta_m}{2} + \delta \\ & \leq \frac{2\delta_m}{2} = \delta_m. \end{split}$$

As such,

$$d_Y(f(x), f(y)) \le d_Y(f(x), f(x_m)) + d_Y(f(x_m), f(y))$$

$$\le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

⊜

as desired.

Corollary 4.3.3

Suppose X is a compact metric space. Then

$$[X]_{hom} = [X]_{uni}.$$

Theorem 4.3.6 Borel-Lebesgue

Let X be a metric space. The following are equivalent:

- 1. X satisfies the Bolzano-Weierstrass limit point property: If $E\subseteq X$ is infinite, then it has a limit point.
- 2. X is sequentially compact: all sequences in X have convergent subsequences.
- 3. X is complete and totally bounded.
- 4. X is compact.