主要学习内容

数字PID控制算法

- ◆PID控制算法及其作用
- ◆模拟PID控制器离散化
- ◆PID算法的改进
- ◆数字PID控制器的实现
- ◆数字PID控制参数的整定

PID算法的改进(复习)

- ◆微分算法的改进
 - 1、实际微分PID算法
- 2、带一阶滤波器的PID控制
- 3、微分先行PID控制算法 4、四点中心差分算法改进微分作用
- ◆积分算法的改进
 - 1、积分分离

2、变速积分

- 3、超限削弱积分法
- 4、防止积分整量化误差
- ◆带死区的PID控制
- ◆可变增益PID控制
- ◆时间最优PID控制

主要学习内容

数字PID控制算法

- ◆PID控制算法及其作用
- ◆模拟PID控制器离散化
- ◆PID算法的改进
- ◆数字PID控制器的实现
- ◆数字PID控制参数的整定

数字PID控制器的实现

■数字PID控制器的工程化设计,这项工作通常由具有工程 设计资质的单位来完成。

制造商的设计部门、电力设计院

- ■PID控制工程化设计步骤:
 - (1) 控制系统方案设计-通常用SAMA图来表示
 - 考虑控制原理
 - 考虑工程实现的具体问题:信号处理、控制量限幅、报警处理、运行方式设定、勿扰切换、各种控制逻辑、与其它系统的联系等
 - (2) 控制系统组态设计
 - 依据方案借助软硬件组态工具设计控制系统

- ■SAMA图是美国科学仪器制造协会(Scientific Apparatus Maker's Association) 所采用的绘制图例
- ■采用标准的图形符号来表示控制系统中的限幅、报 警、控制、切换、逻辑等各个功能环节
- ■易于理解,能清楚地表示系统功能
- ■广为自动控制系统所应用
- 除氧器水位控制系统SAMA图

 K
 J
 PLi调节

 K
 J 点
 PLo调节

 △
 比较器

∑/n 均值器

∑/s 积算器※ 乘法器

一 减法器

→√ 开方器

f(t) 时间函数转换器

f(x) 函数转换器

TR 眼腺组件

> 高值选择器

〈 低值选择器

》 高值限幅器

【 低值限幅器

▶ ◇ 高低値限幅器

H / 高限监视器

/ L 低限监视器

H / L 高低限监视器

♥ 》 速率限制器

T 切換组件

SO 同步器

♥ 速度控制器

AS 伺服放大器

A / M 手自动切換銀件

◆T 手自动切換开关

◆ 手操信号发生器

(R) 追乘器

(Î) 指示器

(A) 模拟信号发生器

c> 常数

FT) 就重

沈噩变送器

(L T)

液位变送器

(PT)

压力变送器

 $\left(\begin{array}{c} T & T \end{array}\right)$

温度变送器

S T

速度变送器

 $\begin{pmatrix} R & T \end{pmatrix}$

位置变送器

\AI/

模拟输入

模拟输出

数字输入

数字输出

逻辑条件

与门

或门

NOT

非门

模拟信号连接

数字信号连接

模拟信号联络

(01)

数字信号联络

SAMA原理图 图符说明

ß

Function	Symbol
Measuring or Readout	\bigcirc
Manual Signal Processing	\Diamond
Automatic Signal Processing	
Final Controlling	
Final Controlling with Positioner	
Time Delay or Pulse Duration	t Optional Reset

Function	Symbol
Logical AND	
Logical OR	 OR-►
Qualified Logical OR	
Logical NOT	→ NOT →
Maintained Memory	S

Function	Symbol
Summing	Σ or +
Averaging	Σ / n
Difference	Δ or -
Proportional	K or P
Integral	∫ or
Derivative	d/dt or D
Multiplying	X
Dividing	÷
Root Extraction	~
Exponential	Xn
Non-Linear Function	f(x)
Tri-State Signal (Raise, Hold, Lower)	‡
Integrate or Totalize	Q
High Selecting	>
Low Selecting	<
High Limiting	>
Low Limiting	<
Reverse Proportional	-K or -P
Velocity Limiting	V >
Bias	+/-
Time Function	f(t)
Variable Sig. Gen.	А
Transfer	T
Signal Monitor	H/, H/L, /L

Fun	Symbol		
Logical Sig	. Gen.	В	
Logical AN	D	AND	
Logical OR		OR	
Qualified	> n	GTn	
Logical OR	< n	LTn	
n= integer	= n	EQn	
Logical NO	Т	NOT	
Set Memor	у	S, SO	
Reset Mem	nory	R, RO	
Pulse Dura		PD	
Pulse Dur.	Lesser Time	LT	
Time Delay on Initiation	DI or GT		
	Time Delay on Termination		
Input/	Analog	Α	
Output	Digital	D	
· '	Voltage	E	
Signal	Frequency	F	
Converter	Hydraulic	Н	
Examples:	Current		
D/A I/P	Electromag or Sonic	0	
	Pneumatic	Р	
	Resistance	R	

除氧器原理示意图

• 调节凝结水调节阀来保证除氧器水位在给定范围内。

□ 除氧器水位控制系统框图

省煤器流量

三冲量控制框图(串级控制系统)

- 口 控制组态软件提供了从控制方案向计算机控制系统 转换的功能。
- □ DCS控制组态工具一般具有以下特征:
 - 一个良好的用户界面,向用户提供灵活方便的图形化交互操作方式。
 - 支持标准化的控制组态语言,一般符合IEC61131-3标准的功能块图 (FBD)、梯形图 (LD)、结构化文本 (ST)、指令列表 (IL) 和顺序功能图 (SFC)。
 - 顺序控制组态一般采用LD和SFC,模拟量控制组态一般采用FBD。
 - 提供对控制参数、过程参数的数据组织处理组态功能,通过表格填写等方式进行。

□ 数字PID控制功能块:

1、给定值处理:

• 给定值选择设置: 内给定 (操作人员屏幕操作画面上设置)

外给定(上位机设置给定值)

给定值变化率限制:减少给定值突变产生大的扰动,防止比例、微分发生饱和

2、被控量处理:

- 报警限检查:设置上下限报警值,检查并设置报警状态
- 报警死区设置:防止报警状态频繁改变
- 被控量变化率限制: 为实现平稳控制

□ 数字PID控制功能块:

3、偏差处理:

- 偏差计算: 选择正/反作用方式, 计算偏差
- 偏差报警: 偏差绝对值越限报警
- 非线性特性设置: 为实现带死区的PID或非线PID,允许设置非线性区及区内非线性增益
- 偏差补偿(输入补偿): 为了实现前馈控制或纯延迟补偿,可设置不补偿、加补偿、减补偿、外补偿输入

4、PID计算:

- 设置的 K_P 、 T_i 、 T_d 、T
- 选择合适的积分分离限

- 选择微分方式: 偏差微分/被控量微分
- 控制量上、下限幅处理
- 保存各控制参数、相关的历史数据

□ 数字PID控制功能块:

5、控制量处理:

- 输出补偿:为了组成前馈 反馈、前馈 串级及纯迟延补偿等控制系统的需要,有不补偿、加补偿、减补偿、置换补偿四种类型
- 变化率限制:限制变化率,平稳操作
- 输出保持:维持上周期输出值,用于安全报警
- 安全输出: 现时刻控制量等于预置的安全输出量, (通常在故障时输出)

6、手动/自动无扰动切换:

- 自动状态: 控制系统正常运行时
- 手动状态: 调试阶段或出现故障时

6、手动/自动无扰动切换:

- 软自动(SA):与计算机运算的控制量相连,正常的自动运行状态。
- 软手动(SM): 与手动设定的控制量相连, 调试时使用的状态。
- (硬)自动(HA): 计算机控制;
- (硬)手动(HM):运行人员通过手操器输出信号;
- 无扰动切换: 当系统由手动切换到自动,或由自动切换到手动时, 输出信号平稳过渡,保证执行机构不会产生位置扰动。
- 要从软件和硬件两方面,来保证实现无扰动切换。

波音737MAX

2019.03.10 埃航

□ 数字PID控制功能块:

- 采用PID FBD功能块不仅可以组成单 回路控制系统,而且通过增加各种补 偿模块和各种功能运算模块的组合, 还可以组成串级、前馈、纯滞后补偿 等各种复杂控制系统。
- DCS控制组态工具中,功能块的复杂 内部结构通常被封装起来,通过一个 表达简洁的图标表示。
- 使用封装的功能块图进行系统的组态 设计可以简化界面,突出控制系统各 组成模块之间的联系。

符号	记号	名 称	类别
1.5	X	输入	F
SW —	F	前馈信号	F
X X PIF Y	Z	跟踪信号	F
F F	SW	切换开关	D
z — z	Y	输出	F
2 2	G	比例增益	F
	TI	积分时间	F
	HL	上限值	F
	LL	下限值	F
	V3	积分初始值	F

封装的PID FBD

除氧器水位控制系统在某组态工具下的组态图 (CASE)

主要学习内容

数字PID控制算法

- ◆PID控制算法及其作用
- ◆模拟PID控制器离散化
- ◆PID算法的改进
- ◆数字PID控制器的实现
- ◆数字PID控制参数的整定

数字PID控制参数的整定

◆PID控制器的设计一般分为两个步骤:

1、确定PID控制器的结构

- •对于具有自平衡性的被控对象,应含有积分环节,如PI、PID。
- •对于无自平衡性的被控对象,应不包含积分环节,如P、PD。
- 对具有滞后性质的被控对象,往往应加入微分环节。
- 根据被控对象特性和控制性能指标要求,采用改进的PID算法。

数字PID控制参数的整定

◆PID控制器的设计一般分为两个步骤:

2、PID控制器的参数整定

- 调整PID控制器参数,达到要求的控制目标。
- 模拟PID控制器的参数整定: 确定 K_P 、 T_i 、 T_d 。
- •数字PID控制器参数的整定: 确定 K_P 、 T_i 、 T_d 、T。
- PID参数整定方法可以分为理论计算法和工程整定法两种。
- 理论计算法要求必须知道各个环节的传递函数,计算比较复杂, 实际系统很难满足要求,工程上一般不采用此方法。
- 工程整定法基于实验和经验,简单易行,工程实际经常采用。

◆动态指标

(1) 超调量:
$$\sigma_P = \frac{|y_m| - |y_\infty|}{|y_\infty|} \times 100\%$$

- (2) 调节时间 t_s : 当 $t > t_s$, 若 $\left| y(t) y_{\infty} \right| < \Delta \cdot y_{\infty}$, 则 t_s 为调节时间
- (3) 峰值时间 t_p :
- (4) 上升时间 t_r :
- (5) 衰减率: $\varphi = \frac{B_1 B_2}{B_1} = 1 \frac{B_2}{B_1}$ 0.9 y_{∞}
- (6) 振荡次数N: 输出进入稳态前穿越 y_{∞} 的次数的一半

◆稳态指标

稳态误差: $e_{ss} = r_0 - y_{\infty}$

◆积分型指标

(1) 误差平方的积分:
$$ISE = \int_0^\infty e^2(t)dt$$

(2) 误差绝对值的积分:
$$IAE = \int_0^\infty |e(t)| dt$$

(3) 误差绝对值乘时间的积分:
$$ITAE = \int_0^\infty t |e(t)| dt$$

- ◆采样周期的选择——信号复现
 - Shannon采样定理: $\omega_{\rm s} >= 2\omega_{\rm max}$
 - •工程实际上取 $\omega_s >= 10\omega_m$, ω_m 是系统的通频带。
 - •信号的最大频率 ω_{\max} 难以确定
 - 采样频率越高,对计算机的资源要求也越大
 - 当采样频率达到一定程度后,对系统控制性能的影响不显著
 - 每个回路都可以找到一个最佳采样周期,在控制回路性能和 计算机代价两方面作一个综合。

◆采样周期的选择——考虑因素

- T要远小于扰动信号的周期,以提高抗干扰性和快速性。
- 与对象的特性有关。对象的时间常数 T_p , 纯迟延时间是 τ :
 - $\tau < 0.5T_p$ 时, $T = 0.1T_p 0.2T_p$
 - \bullet $\tau > 0.5 T_p$ 时, $T = \tau$
- 采样周期的选择,可以在较大的范围内变动。从控制性能上看,越小 控制性能越好。但实际中由于执行机构来不及响应,达不到控制目的。
- 采样周期的下限是使计算机完成采样、运算和输出三件工作所需要的时间(对单回路而言)。

◆采样周期的选择——经验数据

受控参数	采样周期 <i>T</i> (s)	说明		
流量	1~5	优先选用1~2秒		
压力	3~10	优先选用6~8秒		
液位	6~8			
温度	15~20	或取纯延迟时间。 串级系统: $T_{\text{\tiny Blobs}} = (\frac{1}{4} \sim \frac{1}{5}) T_{\text{\tiny Elobs}}$		
成分	15~20			

◆数字PID参数整定过程

- 1、先按模拟PID参数整定方法来选择;
- 2、考虑T的影响,调整参数。

◆整定方法:

- 1、稳定边界法(临界比例度法)
- 2、衰减曲线法
- 3、PID归一参数整定法
- 4、过渡过程响应法
- 5、基于偏差积分指标最小的整定参数法

1、稳定边界法(临界比例度法)

- (1) 选择采样周期
- (2) 采用纯比例控制,给定值作阶跃扰动,逐步加大 K_P ,使系统发生等幅震荡。
- (3) 获取 $K_u = K_p$, T_u 是震荡周期。
- (4) 查表, 计算 K_p 、 T_i 、 T_d 。

	K_p	T_i	T_d
P	$0.5K_u$		
PI	$0.45K_u$	$T_u/1.2$	
PID	$0.6K_u$	$T_u/2$	$T_u/8$

利用稳定边界法确定PID参数

等幅振荡

2、衰减曲线法

- (1) 选择采样周期T
- (2) 采用纯比例控制, 给定值作阶跃 扰动, 使系统发生4:1衰减过程。
 - (3) 获取 $K_v = K_P$, T_v 是震荡周期。
 - (4) 查表,计算 K_P 、 T_i 、 T_d 。

	K_p	T_i	T_d
P	K_{v}		
PI	$0.83K_{v}$	$0.5T_{v}$	
PID	$1.25K_v$	$0.3T_{v}$	$0.1T_{v}$

衰减曲线法确定PID参数

给定值阶跃扰动

3、PID归一参数整定法

- 这是一种简易的临界比例度整定法
- 只整定一个参数 K_P ,并采用在线整定法来修改。

$$oldsymbol{\cdot}$$
令 $egin{cases} T=0.1T_u \ T_i=0.5T_u \ T_u$:临界震荡周期。 $T_d=0.125T_u \ T_d=0.125T_u \ T_d=0.125T$

$$\Delta u(k) = K_{p}[e(k) - e(k-1)] + K_{I}e(k) + K_{D}[e(k) - 2e(k-1) + e(k-2)]$$

$$K_I = K_p T / T_i$$
 $K_D = K_p T_d / T$

$$\Delta u(k) = K_p[2.45e(k) - 3.5e(k-1) + 1.25e(k-2)]$$

4、过度过程响应法

- (1) 测量系统开环的阶跃响应曲线
- (2) 用作图法或公式法,求等效纯滞后时间 τ 和等效惯性时间常数 T_c 、放大系数 $K = \Delta y/\Delta u$
- (3) 查表计算 K_p 、 T_i 、 T_d 。
- (4) 由于零阶保持器的存在,引起时间和相位滞后,故表中的纯延迟₂最好用_{2。}来替代:

$$\tau_e = \tau + \frac{T}{2}$$

- 作图法求拐点,由于现场噪声影响,曲线不光 滑,误差较大,不够精确,可以采用公式法。
- 公式法求 τ 和 T_c :选择 $0.2 \triangle y 0.7 \triangle y$ 段的数据, 用最小二乘法辨识,拟合曲线方程。

4、过度过程响应法

$\frac{\tau}{T_c} \leq 0.2$ \$		$0.2 \leq \frac{\tau}{T_c} \leq 1.5$			
K_p $^{\circ}$	T_i arphi	T_d	K_p $^{\circ}$	T_i "	T_d
$\frac{KT_c}{\tau}$	t,	ę.	$0.38 K \frac{\frac{\tau}{T_c} + 0.7}{\frac{\tau}{T_c} - 0.08}$	ţ.	ţ
0.9 KT _c	3.3τ.	Đ	$0.38 K \frac{\frac{\tau}{T_c} + 0.6}{\frac{\tau}{T_c} - 0.08}$	0.8 <i>T_c</i> *	ę
$1.2 \frac{KT_c}{\tau}$	2τ.	0.5τ	$0.38 K \frac{\frac{\tau}{T_c} + 0.88}{\frac{\tau}{T_c} - 0.08}$	$0.81T_c + 0.19 au$	0.25T _c
	$\frac{KT_c}{\tau}$ $0.9 \frac{KT_c}{\tau}$ $1.2 \frac{KT_c}{\tau}$	K_{p}° T_{i}° KT_{c} $0.9 \frac{KT_{c}}{\tau}$ $3.3\tau_{\circ}$ $1.2 \frac{KT_{c}}{\tau}$	K_{p}^{ρ} T_{i}^{ρ} T_{d}^{ρ} $\frac{KT_{c}}{\tau}$ $0.9 \frac{KT_{c}}{\tau}$ $3.3\tau_{\rho}$ $0.2 \frac{KT_{c}}{\tau}$ 0.5τ	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

过度过程响应法确定PID参数

5、基于偏差积分指标最小的整定参数法

(1) 求等效纯滞后时间 τ 和等效惯性时间常数 T_c 、放大系数 $K=\Delta y/\Delta u$

 Δu

R(t)

(2) 根据积分型指标求 K_p 、 T_i 、 T_d 。

$$ISE = \int_0^\infty e^2(t)dt$$

$$IAE = \int_0^\infty |e(t)| dt$$

$$ITAE = \int_0^\infty t |e(t)| dt$$

$$\begin{cases} K_p = \frac{A}{K} \cdot (\frac{\tau_e}{Tc})^{-B} \\ T_i = T_c \cdot C \cdot (\frac{\tau_e}{Tc})^D \\ T_d = T_c \cdot E \cdot (\frac{\tau_e}{Tc})^F \end{cases}$$

5、基于偏差积分指标最小的整定参数法

$$K_p = \frac{A}{K} \cdot (\frac{\tau_e}{T_c})^{-B} \qquad T_i = T_c \cdot C \cdot (\frac{\tau_e}{T_c})^D \qquad T_d = T_c \cdot E \cdot (\frac{\tau_e}{T_c})^F$$

积分指标	控制规律	A	В	C	D	E	F
ISE	P	1.411	0.917				
IAE		0.902	0.985				
ITAE		0.490	1.084				
ISE	PI	1.305	0.959	2.033	0.739		
IAE		0.984	0.986	1.644	0.707		
ITAE		0.859	0.977	1.484	0.680		
ISE	PID	1.495	0.945	0.917	0.771	0.560	1.006
IAE		1.435	0.921	1.139	0.749	0.482	1.137
ITAE		1.357	0.947	1.176	0.738	0.381	0.995

积分指标整定PID系数的计算常数

作业

1、 采样周期的选择需要考虑哪些因素?

2、 试叙述临界比例度法、过渡过程响应法整定PID参数的步骤。

作业

1、DDC控制系统如下图所示:

- (1) 写出图中2个环节的实际意义。
- (2) 对环节离散化,推导出U(k)、Y(k)的差分方程,采样周期T=1秒。
- 2、 什么是PID控制? 比例、积分、微分的作用是什么?
- 3、 已知模拟调节的传递函数为:

$$D(s) = \frac{U(s)}{E(s)} = \frac{1 + 0.17S}{1 + 0.085S}$$

试写出相应数字控制器的位置型和增量型控制算式,设采样周期T=0.2s。

- 4、 什么是积分饱和? 它是怎样引起的? 如何消除?
- 5、 推导几种微分改进型的PID控制算法。
- 6、 采样周期的选择需要考虑哪些因素?
- 7、 试叙述临界比例度法、过渡过程响应法整定PID参数的步骤。