Gabarito exercícios das aulas: Análise Sintática

Aula Análise Sintática

```
1a) Terminais = {a, +}, Não-terminais = {E}
1b) a(+a)<sup>n</sup>, n ≥ 0
2a) declaração => if-decl => if (exp) declaração else-parte => if (0) declaração else-parte => if (0) outra else-parte => if (0) outra
```

- 2b) declaração => if-decl => if (exp) declaração else-parte => if (1) declaração else-parte => if (1) outra else-parte => if (1) outra else declaração => if (1) outra else outra
- 2c) declaração => if-decl => if (exp) declaração else-parte => if (1) declaração else-parte => if (1) outra else-parte => if (1) outra else if-decl => if (1) outra else if (exp) declaração else-parte => if (1) outra else if (0) declaração else-parte => if (1) outra else if (0) outra else-parte => if (1) outra else if (0) outra else-parte => if (1) outra else if (0) outra else declaração => if (1) outra else if (0) outra else outra
- 3) A linguagem gerada é alterada. $L(G') = \{\varepsilon, s;, s;s;, s;s;s;, ...\}$. O ponto-e-vírgula passa a ficar no final das sentenças com s.

Aula ASDR:

```
1) S => begin S L

=> begin if E then S else S L

=> begin if id = num then S else S L

=> begin if id = num then print id else S L

=> begin if id = num then print id else print id L

=> begin if id = num then print id else print id; S L

=> begin if id = num then print id else print id; print id L

=> begin if id = num then print id else print id; print id; S L

=> begin if id = num then print id else print id; print id; print id L

=> begin if id = num then print id else print id; print id; print id end
```

Pertence, pois dá para gerar a partir do símbolo inicial da gramática.

```
2)
void termo() {
          fator();
          while((tok=="*")||(tok=="/")) {
                casa(tok);
                fator();
          }
}
void fator() {
          switch (tok) {
                case "(": casa("("); exp(); casa(")"); break;
                case "num": casa("num"); break;
                default: erro();
          }
}
```

```
int main(){
        avance();
        exp();
        return 0;
}
Aula LL(1) parte 1:
1) expressão → termo expressão' | termo
   expressão' \rightarrow +termo expressão' | -termo expressão' | +termo | -termo
   termo → fator termo' | fator
  termo' → *fator termo' | /fator termo' | *fator | /fator
2) expressão \rightarrow termo X
   X \rightarrow expressão' \mid \epsilon
  expressão' \rightarrow +termo X | -termo X
   termo \rightarrow fator Y
   Y \rightarrow termo' \mid \epsilon
   termo' \rightarrow *fator Y | /fator Y
Aula LL(1) parte 2:
1)
FIRST(decl-sequência) = \{s\}
FIRST(decl-seq') = \{\epsilon, j\}
FIRST(decl) = \{s\}
2)
FOLLOW(decl-sequência) = {$}
FOLLOW(decl-seq') = {$}
FOLLOW(decl) = \{\$,;\}
3)
```

	,	S	\$
decl-sequência		decl-sequência → decl decl-seq'	
decl-seq'	decl-seq' → ; decl-sequência		decl-seq' $\rightarrow \epsilon$
decl		$decl \rightarrow s$	

4)

Pilha	Entrada	Ação
\$ decl-sequência	s;s\$	decl-sequência → decl decl-seq'
\$ decl-seq' decl	s;s\$	$decl \rightarrow s$
\$ decl-seq' s	s;s\$	casa
\$ decl-seq'	;s\$	decl-seq' → ; decl-sequência
\$ decl-sequência;	;s\$	Casa

\$ decl-sequência	s\$	decl-sequência → decl decl-seq'
\$ decl-seq' decl	s\$	$decl \rightarrow s$
\$ decl-seq' s	s\$	Casa
\$ decl-seq'	\$	decl-seq' $\rightarrow \epsilon$
\$	\$	Aceita

Análise ASLR:

```
1)
fecho(S \rightarrow .a) = \{S \rightarrow .a\}
fecho(S \rightarrow a.) = {S \rightarrow a.}
fecho(S \rightarrow .[L]) = \{S \rightarrow .[L]\}
fecho(S \rightarrow [.L]) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}
fecho(S \rightarrow [L.]) = \{S \rightarrow [L.]\}
fecho(S \rightarrow [L]) = \{S \rightarrow [L]\}
fecho(L \rightarrow .L;S) = {S \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]}
fecho(L \rightarrow L.;S) = {L \rightarrow L.;S}
fecho(L \rightarrow L;.S) = {L \rightarrow L;.S, S \rightarrow .a, S \rightarrow .[L]}
fecho(L \rightarrow L;S.) = {L \rightarrow L;S.}
fecho(L \rightarrow .S) = {L \rightarrow .S,S \rightarrow .a, S \rightarrow .[L]}
fecho(L \rightarrow S.) = {L \rightarrow S.}
2)
ir-para(S \rightarrow .a, a) = \{S \rightarrow a.\}
ir-para(S \rightarrow .[L], [) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}
ir-para(S \rightarrow [.L], L) = \{S \rightarrow [L.]\}
ir-para(S \rightarrow [L.],]) = \{S \rightarrow [L].\}
ir-para(L \rightarrow .L;S, L) = \{L \rightarrow L;S\}
ir-para(L \rightarrow L.;S, ;) = \{L \rightarrow L;S, S \rightarrow .a, S \rightarrow .[L]\}
ir-para(L \rightarrow L; S, S) = \{L \rightarrow L; S.\}
ir-para(L \rightarrow .S) = \{L \rightarrow S.\}
3)
I0 = fecho\{S' \rightarrow .S\} = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}
ir-para(I0,S) = fecho\{S' \rightarrow S.\} = I1
ir-para(I0,a) = fecho\{S \rightarrow a.\} = I2
ir-para(I0,[) = fecho\{S \rightarrow [.L]\} = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I3
ir-para(I3,L) = fecho \{S \rightarrow [L.], L \rightarrow L.;S\} = \{S \rightarrow [L.], L \rightarrow L.;S\} = I4
ir-para(I3,S) = fecho \{L \rightarrow S.\} = \{L \rightarrow S.\} = I5
ir-para(I3,a) = fecho\{S \rightarrow a.\} = I2
ir-para(I3,[) = fecho\{S \rightarrow .[L]\} = I3
ir-para(I4,]) = fecho\{S \rightarrow [L].\} = \{S \rightarrow [L].\} = I6
ir-para(I4, :) = fecho\{L \rightarrow L; S\} = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I7
ir-para(I7,S) = fecho \{L \rightarrow L; S.\} = \{L \rightarrow L; S.\} = I8
ir-para(I7,a) = fecho\{S \rightarrow a.\} = I2
ir-para(I7,[) = fecho\{S \rightarrow [.L]\} = I3
```

Autômato no slide 14

4.1)
$$\begin{split} & 10 = fecho\{E' \to .E\} = \{E' \to .E, \, E \to .E + n, \, E \to .n\} \\ & ir\text{-para}(I0,E) = fecho\{E' \to E., \, E \to E. + n\} = \{E' \to E., \, E \to E. + n\} = I1 \\ & ir\text{-para}(I0,n) = fecho\{E \to n.\} = \{E \to n.\} = I2 \\ & ir\text{-para}(I1,+) = fecho\{E \to E + .n\} = \{E \to E + .n\} = I3 \\ & ir\text{-para}(I3,n) = fecho\{E \to E + .n.\} = \{E \to E + n.\} = I4 \end{split}$$

4.2) $FOLLOW(E) = \{\$,+\}$

	Ações			Transições
Estados	+	n	\$	Е
0		e2		1
1	e3		AC	
2	r2		r2	
3		e4		
4	r1		r1	

4.3)

Pilha	Entrada	Ação
\$ 0	n+n+n\$	e2
\$ 0 n 2	+n+n\$	r2
\$ 0 E 1	+n+n\$	e3
\$ 0 E 1 + 3	n+n\$	e4
\$ 0 E 1 + 3 n 4	+n\$	r1
\$ 0 E 1	+n\$	e3
\$ 0 E 1 + 3	n\$	e4
\$ 0 E 1 + 3 n 4	\$	r1
\$ 0 E 1	\$	Aceita