Project: Rozsa's Customer's Data Analytics

Author - Team 4

Version - v1.1

Platform - macOS 11.13.1 & Linux Ubuntu 17.04 LTS ¶

SDK - Python 3.6 with anaconda distribution (Some open source libraries)

Hello!

In this analytical report We are presenting the scenario of data analytics on historical data of Rozsa perfromance.

The Dataset was provided by ticketing manager based upon historical data availability.

The dataset is restricted to use by Michigan Tech trusted persons. It contains private information so publication usage should strictly be avoided. Don't circulate this report to anyone.

Data Science Project

- Defination: Analyse Historical Ticketing data for Rozsa center.
- Objective : Give recommendation to the Rozsa based on facts & figures by using appropriate and valid data analytics & visualisations.
- Deliverables: Working Predictive model for making accurate predictions.

Library Imports & Declarations

```
In [480]:
          #let's do some important task to ignore warning.
          import pandas as pd #for loading data into dataframe
          import seaborn as sns
          sns.set(color_codes=True)
          import plotly
          plotly.tools.set_credentials_file(username='dnisarg13', api_key='uuOflFYpaluNAifT
          b8rk')
          import pandas as pd
          import plotly.graph_objs as go
          import plotly.plotly as py
          from plotly.graph objs import *
          import numpy as np
          import matplotlib.pyplot as plt
          %matplotlib inline
          import warnings
          warnings.filterwarnings('ignore')
```

1. Data Wrangling - Collecting & organizing the data

Grabbing Data From the Excel Sheet

```
In [481]: rozsa_customer_data = pd.read_csv('Rozsa Customer data.csv')
```

Examinign Data Rows and Columns

```
In [482]: print("The number of Rows and Columns in the Dataset is displayed below")
#showing number of Rows
print("Total Number of rows in Rozsa Customer data of September 2015:", rozsa_cus
tomer_data.shape[0])
#showing number of columns
print ("Total Number of columns in Rozsa Customer data of September 2015: ", rozs
a_customer_data.shape[1])
```

The number of Rows and Columns in the Dataset is displayed below Total Number of rows in Rozsa Customer data of September 2015: 20719 Total Number of columns in Rozsa Customer data of September 2015: 7

Let's look at number of features or columns of dataset

dtype='object')

As we can see here the most important features are,

- Customer number
- City
- Performance description
- number of tickets purchased

So Let's keep those features only

The sensitive information fields are email ID & Street so let's remove them from our data for preserving customers privacy, Let's drop those columns

```
In [484]: rozsa_customer_data.drop(rozsa_customer_data.columns[[1, 3, 5]], axis=1,inplace=T
rue)
```

Data Understanding

1. Looking the top n rows (from head)

```
In [485]: def top_head(n):
    return rozsa_customer_data.head(n)
top_head(5)
```

Out[485]:

	Cust. #	City	Perf. Description	# of Tix Purchased
0	597	Chassell	1863-2013: Lincoln and Gettysburg	2
1	1569	Houghton	1863-2013: Lincoln and Gettysburg	2
2	1576	Hancock	1863-2013: Lincoln and Gettysburg	3
3	1679	Houghton	1863-2013: Lincoln and Gettysburg	2
4	1729	Hancock	1863-2013: Lincoln and Gettysburg	2

1. Looking the bottom n rows (from tail)

```
In [486]: def top_tail(n):
         return rozsa_customer_data.tail(n)
top_tail(5)
Out[486]:
```

	Cust. #	City	Perf. Description	# of Tix Purchased
20714	60105	Traverse City	Winter Carnival Comedians - College Humor LIVE	3
20715	60111	Houghton	Winter Carnival Comedians - College Humor LIVE	1
20716	60118	Houghton	Winter Carnival Comedians - College Humor LIVE	2
20717	60120	Houghton	Winter Carnival Comedians - College Humor LIVE	1
20718	60121	Hancock	Winter Carnival Comedians - College Humor LIVE	2

Extracting insights from Cities

Grouping Data by Cities! It will group the all the rows from same cities

```
In [487]: City_and_ticket = rozsa_customer_data.groupby('City').sum()
    City_and_ticket.drop(City_and_ticket.columns[[0]], axis=1,inplace=True)

In [488]: City_and_ticket_sorted = City_and_ticket.sort_values('# of Tix Purchased',ascending=False)
```

Function for finding "the City from which the most ticket is bought"

- This function find the Top n cities from which most of the tickets bought by customers
- This Output will indicate the City names in which Rozsa has its largest consumerbase

```
In [489]: def top_cities_ticketbuyers(n):
    return City_and_ticket_sorted.head(n)
```

Finding top 25 Cities which has lagest cosumer segment

You can find top 1,2,3...n cities by just changing the N in the function.

In [541]: top_cities_ticketbuyers(50)

	# of Tix Purchased
City	
Houghton	28503
Hancock	9031
Chassell	3830
Calumet	2589
South Range	1638
Dollar Bay	1405
Atlantic Mine	1255
Lake Linden	1212
Marquette	1144
L'Anse	1059
Baraga	934
Laurium	812
Pelkie	548
Zaucha	470
Ewen	349
Hubbell	336
Dodgeville	289
Lanse	245
Negaunee	240
Painesdale	169
Toivola	168
Mohawk	145
Green Bay	138
Ontonagon	134
Copper Harbor	133
Grand Rapids	113
Escanaba	111
Crystal Falls	109
Midland	107
Ishpeming	105
Hougton	97
Eagle Harbor	92

	# of Tix Purchased
City	
Bruce Crossing	85
Allouez	84
Traverse City	84
Kingsford	78
hancock	78
Gwinn	71
Iron Mountain	63
Eagle River	61
Appleton	60
Iron River	59
Ahmeek	54
Ripley	52
Hortonville	51
Plainfield	51
Farmington Hills	46
Atlantic mine	46
Ann Arbor	44
Duluth	43

Finding the cities which has least ticket share

Again you can put 1,2...n number for finding n least important cities

```
In [491]: def least_cities_ticketbuyers(n):
    return City_and_ticket_sorted.tail(n)
```

In [548]: least_cities_ticketbuyers(25)

Out[548]:

	# of Tix Purchased
City	
STandish	1
Charlevoix	1
Chesterton	1
Zionsville	1
Chisholm	1
Nacogdoches	1
Wyoming	1
Clyde	1
Wixom	1
Sanford	1
Miami Beach	1
Menomonie	1
Des Plaines	1
Dover	1
Downingtown	1
Maybee	1
Marysville	1
Eden prairie	1
Elsie	1
Wayland	1
Madison	1
Essixsville	1
Eveleth	1
Fair Haven	1
1700 Townsend Dr.	1

Who's Rozsa's frequent customer?

Now Let's find most frequent customer

Grouping Data by Customers! It will group the all the rows from Frequent Customers

```
In [493]: duplicate = rozsa_customer_data.copy()
    duplicate = duplicate.rename(columns={'Cust. #': 'CustID', '# of Tix Purchased':
    'Frequency of Audience'})
    duplicate = duplicate.drop(['City', 'Perf. Description'],axis=1)
In [494]: Customer_and_ticket1 = duplicate['Frequency of Audience'].groupby(duplicate['Cust ID']).count()
    most_frequent_coustomer = Customer_and_ticket1.sort_values(ascending=False)

In [495]: def top_most_frequent_audience(n):
    return most_frequent_coustomer.head(n)
```

Function to find the most frequent customers, who buys the tickets the most frequently.

You can see your 1..n most frequent customers ID using this function & adjusting result values.

```
In [549]: | top_most_frequent_audience(25)
Out[549]: CustID
           23228
                     138
           27118
                     131
           1830
                     125
           1569
                     113
                      89
           23374
                      88
           31632
           29775
                      81
           597
                      66
           1679
                      64
           26449
                      60
                      60
           28816
           34289
                      57
           14299
                      54
           23253
                      54
           46069
                      52
           1781
                      51
           29772
                      49
           23391
                      48
           9708
                      48
           23383
                      47
           1729
                      46
           28690
                      43
           21204
                      42
           16791
                      41
           8062
                      39
           Name: Frequency of Audience, dtype: int64
```

Wanna Know most popular Performance?

Describing user base on Performance Vs ticket buying behavior

We can analyze that which performance is most important and popular among the user base.

```
In [497]: Performance_and_ticket = rozsa_customer_data.groupby('Perf. Description').sum()
    Performance_and_ticket.drop(Performance_and_ticket.columns[[0]], axis=1,inplace=T
    rue)
    Performance_and_ticket_sorted = Performance_and_ticket.sort_values('# of Tix Purc hased',ascending=False)
In [498]: def top_valuable_performance(n):
    return Performance_and_ticket_sorted.head(n)
```

Listing the most Famous performances at Rozsa! Again just mention the number and you can view the top 10 performances.

In [551]: top_valuable_performance(50)

	# of Tix Purchased
Perf. Description	
Class Acts - Rainforest Reptile Show	2721
Pirate School! The Science of Pirates	2174
Class Acts - Very Hungry Catepillar	1853
Class Acts - We're Going on a Bear Hunt	1746
Minnesota Ballet, with the KSO; The Nutcracker	1710
Copper Dog for Kids	1624
Swan Lake	1347
Class Acts: Peter Rabbit	1346
Fiddler on the Roof	1337
Celtic Nights - Journey of Hope	1329
Mystical Arts of Tibet - Sacred Music Sacred Dance	1220
West Side Story	1207
My Father's Dragon	1061
An Evening of Storytelling with Garrison Keillor	1036
Winter Carnival Comedian Bo Burnham	1032
Bob Saget	1026
An Evening with Eric Whitacre	951
Russian National Ballet Theatre's Sleeping Beauty	899
Alice in Wonderland Tout a Trac	866
Romeo & Juliet, Carmen	775
Cirque Mechanics: Pedal Punk	766
Shakespeare's Twelfth Night	757
A Christmas Carol	727
An Irish Christmas	700
Ray Kurzweil	699
Winter Carnival Comedian - Judah Friedlander	660
MOMIX: Botanica	647
Calamity Jeanne	644
Messiah	627
Beautiful	627
China Gold	615

	# of Tix Purchased
Perf. Description	
Survivor - A Conversation with a Holocaust Survivor from the Survivors Speakers Bureau of the United	609
Russian National Ballet Theatre's Cinderella	608
Giselle	601
The Producers	594
Night at the Ballet and Opera	581
Almost, Maine	571
Stealing Fire	568
Savion Glover: Bare Soundz	554
Gaby Moreno	530
BreakSk8	527
Murder on the Nile	520
41 North Film Festival	517
Picasso at the Lapin Agile	478
Winter Carnival Comedian - Justin Willman	464
Martin Ford Lecture	456
All is Calm	453
Aquila Theatre Company; Romeo & Juliet	440
Shostakovich and Stalin: A Soviet Artist's Creative Response	426
Macbeth	409

```
In [500]: def least_valuable_performance(n):
    return Performance_and_ticket_sorted.tail(n)
```

Identify the least popular performances at Rozsa!

Again you can scale this anlysis upto 1...n

In [539]: least_valuable_performance(50)

	# of Tix Purchased
Perf. Description	
Songs of the Earth	117
Helsinki Chamber Choir: State of the Union	113
II:Day into Night:II	110
Orchid Ensemble and conScience	105
Antigone	98
Suites!	96
Sexual Perversity in Chicago	95
Mandy Gonzales	92
4th Keweenaw Honors String Festival	90
John Luther Adams	89
ETHEL's Documerica	83
Jazz Cabaret	79
Superior Wind Symphony: Collecting Small Things	79
Nice People Dancing to Good Country Music	78
Don Keranen	76
Baby with the Bathwater	76
Eric Whitacre Lecture	75
Shakespeare at the Symphony - Calumet Theater	74
Bon Voyage: South Africa!	70
Musical Offerings	68
A Musical Sampler	68
En Fuego!	67
Jazz Club Cabaret	67
Silent Sky	67
Music-o-rama	64
I Am My Own Wife	62
The Skivvies	59
SWS,Campus Concert Band: Pageantry	58
All Music is Folk Music	57
Bernie Krause	56
Southern Nights	55
Don Keranen Jazz - Memorial Jazz Show with special guest Kathy Kosins	55

	# of Tix Purchased
Perf. Description	
Superior Wind Symphony: Be Here Now	53
Almost Golden	50
Flights of Fantasy	48
Michigan Music	43
Bengal Tiger at the Baghdad Zoo	42
2000 Years of Pep	41
In the Throes of Radios	41
A Keweenaw Stentorian Antagonisht: A Huskies Pep Band	39
Alternate Realities	38
Derek Thompson	32
Whither Houghton: Huskies Pep Band Live	32
Creators Among Us	27
Don Keranen Jazz	26
Comedy Central on Campus	8
Local Film MUTT with Q&A	7
Final Five Fan Bus Ticket	7
Mystical Arts of Tibet - Sand Mandala Opening Ceremonies	6
Basketball Senior Day	2

Exploratory Data Analysis

Distribution of Most Frequent Customers

In [502]: plt.figure(figsize=(20, 20))
 sns.distplot(most_frequent_coustomer.values);

Clearly here the data points distribution is positively skewed and Right skewed. Generally here mean is greater than median

This situation probes serious questions to Rozsa's User's behavior,

- Users are more uncertain/ambiguous about behavior
- Some users tend to buy tickets more and more frequently.
- Some of them barely buys tickets at certain intervals.
- Data creates more mean due to high frequency of ticket buying behaviour of some users.

More insights can be drawn from following chart

```
In [531]: plt.figure(figsize=(20, 20))
    sns.set_style("whitegrid")
    sns.violinplot(data=most_frequent_coustomer.values)
    sns.despine(offset=10, trim=True);
```


0

```
In [532]: x = most_frequent_coustomer.values
bandwidth = 1.06 * x.std() * x.size ** (-1 / 5.)
support = np.linspace(-4, 4, 200)

kernels = []
for x_i in x:

kernel = stats.norm(x_i, bandwidth).pdf(support)
kernels.append(kernel)
plt.plot(support, kernel, color="r")

sns.rugplot(x, color=".2", linewidth=3);
```


Let's Understand User behaviour in depth.

We've created Heat Map for understanding it graphically.

- Total tickets are the intensity of colors in Heat Map.
- X axis is City & Y axis is Perf. Description

Out[503]:

<matplotlib.figure.Figure at 0x7fc5a94275c0>

Results shows that,

- Heat Map is more dense in starting
- After going far on X axis points are scattered at certain distance & this distance increases exponentially.
- This is interactive chart & you also can Zoom In for finding more instances clearly.
- You can locate x,y,z values by hovering mouse on perticular point and so each and every record is being mapped into heat map.

Graph for City Vs Total Sales of Ticket

```
In [561]: cities_graph = pd.read_excel('city.xlsx')
   g = sns.FacetGrid(cities_graph, col="City", size=10, aspect=.5)
   g.map(sns.barplot, "City", "# of Tix Purchased");
```

Graph for the Performance VS ticket sales

```
In [562]: performance_graph = pd.read_excel('performance.xlsx')
   g1 = sns.FacetGrid(performance_graph, col="Perf. Description", size=10, aspect=.5
)
   g1.map(sns.barplot, "Perf. Description", "# of Tix Purchased");
```

Predictive Modelling

- In this section I've created one AI Technology. The statistical model which predicts the liking of users.
- We've used City, Cust ID & Perf. Description features for predicting whether the customer will buy the ticket or not!

```
In [506]: from sklearn.grid_search import GridSearchCV
from sklearn.cross_validation import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import Pipeline
from sklearn.cross_validation import cross_val_score
from sklearn.metrics import mean_squared_error
import random
```

Code for optimizing our mathematical model for better accuracy

```
In [507]: #optimizing our model
    def cv_optimize(clf, parameters, X, y, n_jobs=1, n_folds=5, score_func=None, verb
    ose=0):
        if score_func:
            gs = GridSearchCV(clf, param_grid=parameters, cv=n_folds, n_jobs=n_jobs,
        scoring=score_func, verbose=verbose)
        else:
            gs = GridSearchCV(clf, param_grid=parameters, n_jobs=n_jobs, cv=n_folds,
        verbose=verbose)
        gs.fit(X, y)
        print("BEST", gs.best_params_, gs.best_score_, gs.grid_scores_, gs.scorer_)
        print("Best score: ", gs.best_score_)
        best = gs.best_estimator_
        return best
```

Training & testing of our Machine learning model

```
In [508]: data = rozsa_customer_data.copy()
#getting train & test set
    train_set, test_set = train_test_split(range(data.shape[0]), train_size=0.8)
    mask=np.ones(data.shape[0], dtype='int')
    mask[train_set]=1
    mask[test_set]=0
    mask = (mask==1)
    mask[:10]
Out[508]: array([ True, True, True, True, False, True, True, True, True], dt
ype=bool)
```

Predictor features,

We're using Cust #, City, Pef. Description to predict whether customer will buy next show ticket or not?

Splitting off original dataset as in train and test dataset for performing training & testing of our model

Estimating feature Vectors

(16575, 3)

```
In [512]: estimator = RandomForestRegressor(n_estimators=20, n_jobs=-1)
In [513]: #defining the parameters
    Xtrain = Xtrain.apply(pd.to_numeric, errors='coerce')
    ytrain = ytrain.apply(pd.to_numeric, errors='coerce')
    Xtrain = Xtrain.as_matrix().astype(np.float64)
    ytrain = ytrain.as_matrix().astype(np.float64)
    Xtrain[np.isnan(Xtrain)]=0
    ytrain[np.isnan(ytrain)]=0
```

```
In [515]: parameters = {"n_estimators": [50],
                        "max_features": ["auto"],
                        "max depth": [50]}
          best = cv optimize(estimator, parameters, Xtrain, ytrain, n folds=5, score func=
          'mean squared error', verbose=3)
          Fitting 5 folds for each of 1 candidates, totalling 5 fits
          [CV] max_depth=50, max_features=auto, n_estimators=50 .......
          [CV] max depth=50, max features=auto, n estimators=50, score=-0.040733 -
                                                                                    0.7s
          [CV] max_depth=50, max_features=auto, n_estimators=50 ...........
          [Parallel(n jobs=1)]: Done
                                      1 out of
                                                1 | elapsed:
                                                                 0.7s remaining:
                                                                                    0.0s
          [CV] max_depth=50, max_features=auto, n_estimators=50, score=-0.056987 -
                                                                                    0.7s
          [CV] max_depth=50, max_features=auto, n_estimators=50 ...........
          [Parallel(n_jobs=1)]: Done
                                      2 out of 2 | elapsed: 1.3s remaining:
                                                                                    0.0s
          [CV] max_depth=50, max_features=auto, n_estimators=50, score=-0.032140 -
                                                                                    0.7s
          [CV] max_depth=50, max_features=auto, n_estimators=50 ...........
          [CV] max_depth=50, max_features=auto, n_estimators=50, score=-0.038743 -
                                                                                    0.7s
          [CV] max depth=50, max features=auto, n estimators=50 .......
          [CV] max_depth=50, max_features=auto, n_estimators=50, score=-0.037784 -
                                                                                    0.7s
          [Parallel(n jobs=1)]: Done
                                      5 out of
                                                5 | elapsed:
                                                                 3.3s finished
          BEST {'max_depth': 50, 'max_features': 'auto', 'n_estimators': 50} -0.0412773544
          7430862 [mean: -0.04128, std: 0.00836, params: {'max_depth': 50, 'max_features':
          'auto', 'n estimators': 50}] make scorer(mean squared error, greater is better=F
          alse)
          Best score: -0.04127735447430862
In [516]: Xtest = Xtest.apply(pd.to numeric, errors='coerce')
          ytest = ytest.apply(pd.to_numeric, errors='coerce')
          Xtest = Xtest.as_matrix().astype(np.float64)
          ytest = ytest.as_matrix().astype(np.float64)
          Xtest[np.isnan(Xtest)]=0
          ytest[np.isnan(ytest)]=0
In [518]: reg=best.fit(Xtrain, ytrain)
          training_accuracy = reg.score(Xtrain, ytrain)
          test accuracy = reg.score(Xtest, ytest)
          print ("######### based on standard predict ##########")
          print ("R^2 on training data: %0.4f" % (training_accuracy))
          print ("R^2 on test data:
                                       %0.4f" % (test_accuracy))
```

Finding Prediction error.

R² on training data: 0.7531

R^2 on test data:

From Observation, The error of our model is less and so it's presentable model

0.2641

```
In [519]: rmse = np.sqrt(mean_squared_error(reg.predict(Xtest),ytest))
    print ("RMSE = %0.3f (this is in log-space!)" % rmse)
    print ("So two thirds of the records would be a factor of less than %0.2f away fr
    om the real value." % np.power(10,rmse))
```

```
RMSE = 0.182 (this is in log-space!)
So two thirds of the records would be a factor of less than 1.52 away from the r eal value.
```

Predicting from the new test set for final validation for our Predictive Model

```
In [522]: test = pd.read_csv('test.csv')
    test = test.apply(pd.to_numeric, errors='coerce')
    test = test.as_matrix().astype(np.float64)
    test[np.isnan(test)]=0
    result = np.power(10,reg.predict(test))
    buys = []
    def whether_buys(result):
        for i in range(len(result)):
            buys.append(result.mean() - 0.2 < result[i] < result.mean() + 0.2)
    return buys
    prediction_array = whether_buys(result)</pre>
```

Placing our Predictions into Presentable way

```
In [524]: prediction_result = pd.read_csv('test.csv')
    prediction_result['Will Buy?'] = pd.DataFrame(prediction_array)
    prediction_result.head()
```

Out[524]:

	Cust. #	City	Perf. Description	Will Buy?
0	597	Chassell	1863-2013: Lincoln and Gettysburg	True
1	1569	Houghton	1863-2013: Lincoln and Gettysburg	True
2	1576	Hancock	1863-2013: Lincoln and Gettysburg	False
3	1679	Houghton	1863-2013: Lincoln and Gettysburg	True
4	1729	Hancock	1863-2013: Lincoln and Gettysburg	True

Conclusion:

This Report contains all data science project lifecycle from Data munging to making predictions.

We've used all of them and made one Predictive Model as a final outcome,

- We've made recommendations for Rozsa by predicting outcomes.
- We've done Exploratory Data analysis for ease of judging data.
- We've used advanced visualisation for understanding user behaviours in a better way.
- We've used comments, markdowns & even long descriptions for making this report more interpretable.
- Any kind of suggestions, recommendations & personal comments are highly appreciated.

Thank you!