目录

- 1 串行通信接口背景知识
 - 2 STM32F4串口框图
- 3 STM32F4串口常用寄存器和库函数
- 4 串口配置方法(手把手写简单的通信实例)
- 5 串口通信实验讲解

✓ 串口通信原理与配置

- 参考资料:
 - 探索者STM32F4开发板:

《STM32F4开发指南-库函数版本》- 5.3小节 usart文件夹介绍第9章 串口通信实验

□ STM32F4xx官方资料:

《STM32F4xx中文参考手册》-第26章 通用同步异步收发器

✓ 1.通信接口背景知识

◆ 处理器与外部设备通信的两种方式:

● 并行通信

-传输原理:数据各个位同时传输。

-优点:速度快

-缺点:占用引脚资源多

●串行通信

-传输原理:数据按位顺序传输。

-优点: 占用引脚资源少

-缺点: 速度相对较慢

◆串行通信:

按照数据传送方向,分为:

◆単工:

数据传输只支持数据在一个方向上传输

◆半双工:

允许数据在两个方向上传输,但是,在某一时刻,只允许数据在一个方向上传输,它实际上是一种切换方向的单工通信;

◆全双工:

允许数据同时在两个方向上传输,因此,全双工通信是两个单工通信方式的结合,它要求发送设备和接收设备都有独立的接收和发送能力。

◆ 串行通信三种传送方式:

- ◆串行通信的通信方式
 - 同步通信: 带时钟同步信号传输。
 - -SPI,IIC通信接口
 - 异步通信: 不带时钟同步信号。
 - -UART(通用异步收发器),单总线

✓ 1.通信接口背景知识

◆常见的串行通信接口:

通信标准	引脚说明	通信方式	通信方向
UART (通用异步收发器)	TXD:发送端 RXD:接受端 GND:公共地	异步通信	全双工
单总线 (1-wire)	DQ:发送/接受端	异步通信	半双工
SPI	SCK:同步时钟 MISO:主机输入,从机输出 MOSI:主机输出,从机输入	同步通信	全双工
I2C	SCL:同步时钟 SDA:数据输入/输出端	同步通信	半双工

- ◆STM32的串口通信接口
 - UART:通用异步收发器
 - USART:通用同步异步收发器

- STM32F4XX目前最多支持8个UART,STM32F407一般 是6个。具体可以对照选型手册和数据手册来看。
- STM32F103目前最多支持5个UART

- ◆UART异步通信方式引脚连接方法:
 - -RXD:数据输入引脚。数据接受。
 - -TXD:数据发送引脚。数据发送。

■ 对于STM32F407,每个串口和引脚对应关系,可以查看数据手册引脚对应表。

◆UART异步通信方式引脚(STM32F407ZGT6):

串口号	RXD	TXD
1	PA10(PB7)	PA9 (PB6)
2	PA3(PD6)	PA2(PD5)
3	PB11(PC11/PD9)	PB10(PC10/PD8)
4	PC11(PA1)	PC10(PA0)
5	PD2	PC12
6	PC7(PG9)	PC6(PG14)

STM32F4的芯片数据手册中芯片引脚功能中可以查看到。

◆UART异步通信方式特点:

- 全双工异步通信。
- 小数波特率发生器系统,提供精确的波特率。
- 可配置的16倍过采样或8倍过采样,因而为速度容差与时钟容差的灵活 配置提供了可能。
- 可编程的数据字长度(8位或者9位);
- 可配置的停止位(支持1或者2位停止位);
- 可配置的使用DMA多缓冲器通信。
- 单独的发送器和接收器使能位。
- 检测标志: ① 接受缓冲器 ②发送缓冲器空 ③传输结束标志
- 多个带标志的中断源。触发中断。
- 其他:校验控制,四个错误检测标志。

◆STM32串口通信过程

数据接收过程:

数据发送过程:

◆STM32串口异步通信需要定义的参数:

- ① 起始位
- ② 数据位(8位或者9位)
- ③ 奇偶校验位 (第9位)
- ④ 停止位 (1,15,2位)
- ⑤ 波特率设置

■ 范例:

✓ 3.STM32串口框图

M4

M3

目录

1 STM32串口常用寄存器和库函数

2 串口配置一般步骤(手把手写串口实例)

✓ 串口通信基本原理

- ■常用的串口相关寄存器
 - USART_SR状态寄存器
 - USART_DR数据寄存器
 - USART_BRR波特率寄存器

✓ 3.STM32串口常用寄存器和库函数

◆ 串口操作相关库函数(省略入口参数):

void USART_Init(); //串口初始化: 波特率,数据字长,奇偶校验,硬件流控以及收发使能void USART_Cmd();//使能串口void USART_ITConfig();//使能相关中断

void USART_SendData();//发送数据到串口,DR uint16_t USART_ReceiveData();//接受数据,从DR读取接受到的数据

FlagStatus USART_GetFlagStatus();//获取状态标志位 void USART_ClearFlag();//清除状态标志位 ITStatus USART_GetITStatus();//获取中断状态标志位 void USART_ClearITPendingBit();//清除中断状态标志位

ł	状态寄存器(USART_SR)															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		保留														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	保留 CTS LBD TXE TC RXNE IDLE ORE NE FE											FE	PE			
•	rc w0 rc w0 r rc w0 rc w0 r r r r										r	r				
		1	过31:10	保留	位,硬作	牛强制为	0 0									
	位9 CTS: CTS 标志 (CTS flag) 如果设置了CTSE位,当nCTS输入变化状态时,该位被硬件置高。由软件将其清零。如果USART_CR3中的CTSIE为'1',则产生中断。 0: nCTS状态线上没有变化: 1: nCTS状态线上发生变化。 注: UART4和UART5上不存在这一位。												Ę			
	位8 LBD: LIN断开检测标志 (LIN break detection flag) 当探测到LIN断开时,该位由硬件置'1',由软件清'0'(向该位写0)。如果USART_CR3中的 LBDIE = 1,则产生中断。 0: 没有检测到LIN断开:															

FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);

3.STM32串口常用寄存器和库函数

1/百百	存	器(US	SAR	T_DI	R)										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							保	留							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			保留								DR[8:0]				
							rw	rw	rw	rw	rw	rw	rw	rw	rw
	位	31:9	保留	位,硬作	牛强制为	0 0									
	位	(8:0	包用并 当同	DR),该 接口(参 能校验(MSB是)	或接收的 该寄存器 见图248 位(USAF 第7位或	数据。 兼具读 8)。RDI RT_CR 者第8位	ue) 由于它知 和写的现 R寄存器 1中PCE (i)会被后 读到的M	放能。TI 提供了 位被置位 来的校	DR寄存 输入移位 立)进行发验位该单	器提供了 寄存器	了内部总和内部。 年到MS	线和输 总线之间	出移位都 可的并行	寄存器之 接口。	间的

void USART_SendData(USART_TypeDef* USARTx, uint16_t Data); uint16_t USART_ReceiveData(USART_TypeDef* USARTx);

✓ 3.STM32串口常用寄存器和库函数

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
***						U m	Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DIV_Mantissa[11:0]										DIV_Fra	ction[3:0]			
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

位 31:16 保留, 必须保持复位值

位 15:4 DIV_Mantissa[11:0]: USARTDIV 的尾数

这 12 个位用于定义 USART 除数 (USARTDIV) 的尾数

位 3:0 DIV_Fraction[3:0]: USARTDIV 的小数

这 4 个位用于定义 USART 除数 (USARTDIV) 的小数。当 OVER8 = 1 时,不考虑 DIV_Fraction3

位,且必须将该位保持清零。

void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct);

✓ 3.STM32串口常用寄存器和库函数

这里,我们简单介绍一下波特率的计算,STM32F4 的串口波特率计算公式 (OVER8=0) 如下:

$$Tx / Rx$$
 波特率 =
$$\frac{f_{PCLKx}}{(16*USARTDIV)}$$

上式中, f_{PCLKx} 是给串口的时钟(PCLK1 用于 USART2~5,PCLK2 用于 USART1 和 USART6): USARTDIV 是一个无符号定点数。我们只要得到 USARTDIV 的值,就可以得到串 口波特率寄存器 USART1->BRR 的值,反过来,我们得到 USART1->BRR 的值,也可以推导出 USARTDIV 的值。但我们更关心的是如何从 USARTDIV 的值得到 USART BRR 的值,因为一 般我们知道的是波特率,和 PCLKx 的时钟,要求的就是 USART BRR 的值。

下面我们来介绍如何通过 USARTDIV 得到串口 USART BRR 寄存器的值。假设我们的串 口 1 要设置为 115200 的波特率, 而 PCLK2 的时钟(即 APB2 总线时钟频率)为 84M。这样, 我们根据上面的公式有:

USARTDIV=84000000/(115200*16)=45.572

那么得到:

DIV Fraction=16*0.572=9=0X09;

DIV Mantissa=45=0X2D;

✓ 4.串口配置一般步骤

◆准备知识

需要先了解 STM32F4的端口复用映射相关知识,请参考前面端口复用映射视频。

✓ 4.串口配置一般步骤

◆硬件连接 PA9,PA10(串口1)连接到了USB串口电路。

◆串口配置的一般步骤

void USART_ClearITPendingBit();

① 串口时钟使能: RCC APBxPeriphClockCmd(); GPIO时钟使能: RCC AHB1PeriphClockCmd(); ② 引脚复用映射: GPIO PinAFConfig(); ③GPIO端口模式设置:GPIO Init();模式设置为GPIO Mode AF ④串口参数初始化: USART Init(); ⑤开启中断并且初始化NVIC (如果需要开启中断才需要这个步骤) **NVIC** Init(); USART_ITConfig(); ⑥使能串口:USART Cmd(): ⑦编写中断处理函数: USARTx_IRQHandler(); ⑧串口数据收发: void USART_SendData();//发送数据到串口,DR uint16 t USART ReceiveData();//接受数据,从DR读取接受到的数据 ⑨串口传输状态获取: FlagStatus USART GetFlagStatus();