《数字逻辑》总复习练习题

一、填空题(每空2分)

1.
$$(88.125)_{10} = ()_{2} = ()_{8} = ()_{16}$$

 $(1000001.1)_{2} = ()_{10}$ $(377)_{8} = ()_{16}$

- 3. 已知[x]_补=10000000 ,则真值 x=____。
- 4. 已知真值x = -10010,求8位字长时, [-x]_原 =____、[-x]_反=____、[-x]_补=____。
- 5. 已知[X]_原 = 10111100,则[X]_补 = ;
 已知真值Y= 0101010,则8位字长时,[Y]_反=____。

6. 完成下列代码转换

$$(0010\ 1011\ 1110)_{2421} \longrightarrow \begin{cases} (&)_{10} \\ (&)_{8421} \\ (&)_{\hat{\pi}3\vec{\Theta}} \end{cases}$$

7. 完成下列代码转换

)余3码

$$\rightarrow$$
 ()₁₀

8. 若
$$A_1 \oplus A_2 \oplus \cdots \oplus A_n = A_1 \odot A_2 \odot \cdots \cdots \odot A_n$$
,则变量个数必为______个。

9. 若
$$A_1 \oplus A_2 \oplus \cdots \oplus A_n = A_1 \odot A_2 \odot \cdots \odot A_n$$
,则变量个数必为______个。

10. 已知
$$F(A,B) = AB + AB$$
 ,则它的或与式为 $(\overline{A} + \overline{B})(A+B)$ 。

11. 当采用奇校验时,若校验位是1,则信息码中应有______个1。

- 12. 当发送信息码(1010110)2且校验位为1时,说明符合_____校验约定。
- 13. 已知 $F(A,B,C) = (A \oplus B) \bullet C$,则 $F = \prod M^3 (0, 1, 2, 4, 6, 7)$ 。
- 14. 已知 $F = A + \overline{BC + D} \oplus B\overline{D}$

 \overline{F} =

- 15. 已知 $F'(A,B,C) = A\overline{B} + \overline{A+C}$ 则 $\overline{F}(A,B,C) = \underline{}$
- 16. 已知 F = B + A C + (A D) ,按规则求得 F '=_____。
- 17. 已知 F=∑m³(0,1,4,5),则

$$\frac{F}{F} = \prod M^{3} ($$

$$\frac{F}{F} = \sum m^{3} ($$

$$F = \prod M^{3} ($$

18. "电路的和	急态输出仅与当	前的输入有关'	'是 <u>组合</u>	E	电路的特征。	
	一时钟,电路的 [;] 时序			\有关,i	丕与上一个状态	Ŝ
20. 描述时序	^等 电路时, Ve rilo	og HDL的alwa	ays应使用_	边沿	敏感列表	₹.
21. 描述组合	电路时,Verilo	og HDL 的alw a	ys应使用	电平	敏感列	表。
22. 在Verilo	g HDL中,assi	ign赋值语句只	.能对 <u>连</u>	线	_类型变量赋值	
23. Verilog	HDL的reg类型	变量只能在	always过	程块	赋值。	
24 . 在8'c	l32、5'b2中, 彳	符合Verilog H	DL数值定义	规则的是	½ 8'd32。	
25 . 在and	和_add中,能在	生Verilog HDL	.中用作标识	符的是 _	add。	
	erilog HDL基本 辑功能定义			端口说明	月、数据类型说	明

- 27. 组合电路的特征是电路的稳态输出仅于该时刻的输入,与原来的状态无关。
- 28. 时序电路的特征是电路的输出不仅于该时刻的输入有关,还与原来状态有关。
- 29. 在Verilog HDL中,已知 A=4'b1100,B=4'b1011,则 A&B= _____;
 A&B=_____; A^B=_____; ^B=_____。
- 30. 在Verilog HDL的always过程块中的被赋值变量一定要定义成<u>寄存器</u>类型。
- 31. 在Verilog HDL中,always过程的敏感事件列表分为<u>电平</u>型和<u>边沿</u>型。
- 32. 下列Verilog HDL模块中有语法错误,请写出完整的正确描述。

```
module 0721_ch ( a, b, c, d, f );
input a, b, c ,d;
output f;
reg w1, w2, f;
always @ ( a, b, c,d)
  begin w1=a &b;
  w2=c | d;
  f = w1 | w2; end
endmodule
```

二. 简答题 (每题5分)

1. 已知F(a,b,c) = □ M (1,2,4,5), G(a,b,c)= ∑m(0,3,6,7)

则
$$F \cdot G = \sum m^3$$
 () F + G = $\prod M^3$ () F \oplus G =

2. 根据组合电路输入a、b和组合电路输出 f 的波形,列真值表并写出 f (a,b)的逻辑表达式。

3. 画出"0110"(不可重)序列检测器的Mealy型原始状态图。

5. 根据给定的Moore型状态表画出状态图。

S(t) X	0	1	Z
Α	С	В	0
В	O	D	0
С	D	В	0
D	В	А	1

6. 将下列Mealy型序列检测器的原始状态图补充完整。

输入/输出

7. 填写下列逻辑函数的卡诺图并求最简与或式和最简或与式。

$$F(A,B,C,D) = \sum m(0,2,5,7,10,15) + \sum d(4,6,8,13)$$

8. 利用卡诺图判断下列逻辑函数对应的电路是否存在逻辑险象。

$$F(A,B,C,D) = \overline{B}\overline{D} + ABC + \overline{B}\overline{C}$$

是否存在逻辑险象: 。

若存在逻辑险象,应添加的冗余

项为_____

9. 画出下列同步时序电路 Q_1Q_0 初态为00时的波形图并说明电路功能。

电路实现的逻辑功能为_____。

10. 填写下列同步时序电路的状态转换表。

$Q_3 \sim Q_0(t)$	Q ₃ ~Q ₀ (t+1)
0000	

11. 用隐含表法化简给定的同步时序电路原始状态表,生成最小状态表。

\ v	原始状态表						
$S(t)^{X}$	0	1					
A	A/0	B/0					
В	A/0	C/0					
C	D/1	C/0					
D	D/1	E/1					
E	D/1	E/1					
•	S(t+1) / z(t)						

12. 已知某组合电路的输出表达式为 $F(a,b,c) = \overline{a \bullet b} + b \oplus c$,用Verilog HDL的数据流描述方式建模。

13. 已知逻辑函数F、G的卡诺图,填写Y=F⊕G的卡诺图,并求Y的最简与非式。

14. 用卡诺图法判断下列电路是否存在逻辑险象。

15. 根据给定的波形,画出高有效使能D锁存器和上升沿D触发器初态均为0时的输出波形。

16. 画出具有循环进位的余3码加1计数器的Moore型状态图。

17. 由74LS138译码器及逻辑门构成的组合逻辑电路如下,其中输入信号A7~A0为地址变量。试填写表格。

	16进制
/Y ₀ 有效时	
/Y₁有效时	
/Y₄有效时	
/Y ₆ 有效时	
/Y ₇ 有效时	

18. 某函数 F(A,B,C,D) 的卡诺图如下,按要求求出最简表达式。

AB					F=#> =
CD	00	01	11	10	F _{最简与或式} =
00	d	0	1	d	F _{最简与非式} =
01	0	0	1	0	
11	0	1	d	1	F _{最简与或式} =
10	d	1	1	1	F _{最简或与式} =
•		F			-

19. 画出电路初态 $Q_3Q_2Q_1$ =010时,在clk作用下,F的输出波形。

20. 理解功能表述,填写各功能表。

输入变量		逻辑功能及对应的电路输出变量							
АВС	三变量一致 F1	双 "1" 检测 F2	奇检验 F3	格雷码 G2 G1 G0					
0 0 0									
0 0 1									
0 1 0									
0 1 1									
1 0 0									
1 0 1									
1 1 0									
1 1 1									

21. 某同步时序的状态方程如下,分别画出用上升沿D触发器、下降沿JK触发器实现的逻辑图。

$$\mathbf{Q}_{3(\mathfrak{t}+1)} = \mathbf{Q}_2 \mathbf{Q}_1 \oplus \mathbf{Q}_3$$

$$\mathbf{Q}_{2(\mathfrak{t}+1)} = \mathbf{Q}_2 \oplus \mathbf{Q}_1$$

$$\mathbf{Q}_{1(t+1)} = \overline{\mathbf{Q}}_1$$

三、综合分析题(每题6分)

- 1. 分析74LS138译码器和逻辑门构成的逻辑电路的功能。
 - (1) 写出 F (X,Y,Z) 和 G (X,Y,Z) 的逻辑表达式;
 - (2) 给出真值表;
 - (3)分析电路功能。

- 2. 分析数据选择器74LS151构成的逻辑电路功能。
 - (1) 写出逻辑表达式;
 - (2) 说明电路功能;
 - (3) 用Verilog HDL描述电路功能。

3. 分析图示电路实现的逻辑功能,并建立实现该功能的Verilog HDL模型。

- 4. 分析给定组合电路。
 - (1) 写出输出表达式;
 - (2) 列真值表并说明电路的综合功能;
 - (3) 建Verilog HDL模型。

5. 某同步时序的状态方程如下,分析电路功能,画初态 $Q_3Q_2Q_1=100$ 时的波形图。

$$\begin{aligned} \mathbf{Q}_{3(t+1)} &= \mathbf{Q}_2 \mathbf{Q}_1 \oplus \mathbf{Q}_3 \\ \mathbf{Q}_{2(t+1)} &= \mathbf{Q}_2 \oplus \mathbf{Q}_1 \\ \mathbf{Q}_{1(t+1)} &= \overline{\mathbf{Q}}_1 \end{aligned}$$

6. 确定如下电路的输入变量,使输出功能为 $F(A,B,C,D)=\Sigma m(6,7,12,13)$ 。

7. 分析电路,填写表格,建Verilog HDL模型。

s1	s0	F
·		

8. 状态图如(a)所示,请将次态/输出填在(b)表中。若状态分配方案为:A、B、C、D分别对应 Q_1Q_0 的取值00、01、10、11,请将分配后的编码填在(c)表中。当X=0时,它的功能是,当X=1时,它的功能是。

- 9. 分析图示同步时序电路。(10分)
 - (1) 写出激励方程和输出方程;
 - (2)作激励/状态转换表;
 - (3) 画初态 Q_1Q_0 =00时,输入x为00001111时, Q_1 、 Q_0 、Z的波形图。
 - (4) 说明电路功能。

10. 画出图示同步时序电路初态 $Q_3Q_2Q_1$ =001时的状态转换图,分析自启动特性。建立可自启动的 $Verilog\ HDL$ 模型。

11. 分析74LS163构成的电路功能。

- (1) 画出上电清0后,电路的状态转换序列;
- (2) 说明电路功能。

12. 分析启动清零后 $B_3B_2B_1B_0$ 的状态转换序列,列表分析电路功能。

74LS163

$B_3B_2B_1B_0$	$G_3G_2G_1G_0$

13. 分析图示电路的逻辑功能,并画出F的波形图。

14. 分析图示电路,写出启动清零后电路的状态转换序列、说明功能、建立Verilog HDL模型。

15. 根据状态图建立状态转换表,说明电路功能并建立Verilog HDL模型。

$Q_3 \sim Q_0(t)$	Q ₃ ~Q ₀ (t+1)	Z

16.写出电路的状态方程,画出电路初态为0时,输出Q的波形图。

四、设计题

1. 根据给定电路,建立其Verilog HDL门及描述模型。(10分)

- 2. 用Verilog HDL描述满足下列要求的3—8译码器: (10分)
 - (1) 一个低有效使能端;
 - (2) 译码输出高有效。

3. 用Verilog HDL描述一个高有效使能的8位四选一。要求先画出模块框图,再进行描述。(8分)

- 4. 用Verilog HDL描述一个代码转换电路,要求如下: (8分)
 - (1) 电路输入为8421码, 电路输出为2421码;
 - (2) 电路具有一个高有效使能端;
 - (3) 电路有一个输出标志, 当使能无效或输入伪码时, 该标志为1; 否则为0。

5. 用Verilog HDL描述一个8位数据并行传输时,符合奇校验约定的校验位发生器。(5分)

6. 用Verilog HDL描述一个具有低有效异步置位、异步清零的上升沿JK触发器。	(6分)
7. 用Verilog HDL描述一个具有高有效同步置位、同步清零的下升沿D触发器。	(5分)

- 8. 用Verilog HDL描述一个满足下列要求的计数器。(10分)
 - (1) 下降沿(0~99) 10 加1计数;
 - (2) 电路具有一个低有效的异步清零端;
 - (3) 电路具有一个高有效的计数使能端;
 - (4) 电路具有一个高有效的循环进位(RCO)输出端。

9. 用Verilog HDL描述一个余3码可逆计数器。当x=0时,加1计数;当x=1时,减1计数。(8分)

10. 用Verilog HDL描述一个左移循环一个"0"的4位环形计数器。要求先画出能自启动的状态图,再进行描述。(10分)

11. 用Verilog HDL描述一个4位右移扭环形计数器。要求先画出能自启动的状态图,再进行描述。(10分)

12. 画出 "011"序列检测器的原始状态图,再用Verilog HDL建模。(10分)

13. 建立8421码转换成余3码的真值表,写出4个表达式,建立Verilog HDL数据流模型。(10分)

- 14. 用Verilog HDL描述一个4—2优先权编码器。(8分)
 - (1) 电路具有一个低有效使能端;
 - (2) 电路具有一个编码输出有效标志。

15. 采用Verilog HDL为下列电路建立模型。

16. 图为基于移位计数器的节拍发生器的总体设计,请用Verilog HDL建模。

17. 图为全加器和触发器构成的时序电路,用Verilog HDL建模。

18. 用Verilog HDL描述一个逻辑运算器,其功能为: 当使能信号有效时,在控制信号的作用下,能实现8位数据A和8位数据B的按位与、按位或、按位异或、逻辑与、逻辑或、8位数据A的按位非、8位数据A的归约异或、8位数据B的归约与等八种逻辑运算;当使能信号无效时,输出为高阻状态。

19. 某数字系统需要根据高有效的使能信号(en)和地址输入信号(A[7:0]) 产生三个高有效的设备选通信号(CS1、CS2、CS3),功能表如下,请用 Verilog HDL描述这个设备选通信号发生器。

EN	A[7:0]							CS1	CS2	CS3	
0	Х	X	X	X	X	X	X	X	0	0	0
1	1	0	0	0	0	1	0	0	1	0	0
1	1	0	0	0	0	1	0	1	0	1	0
1	1	0	0	0	0	1	1	0	0	0	1
1				其	它				0	0	0

20. 用 $Verilog\ HDL$ 描述如功能表所示的多功能计数器。其中: $x \times y$ 为计数方式选择控制信号, Q_1Q_0 为计数器的输出。

Q_1Q_0	00	01	10	11
00	01	11	11	00
01	10	00	10	01
10	11	01	01	10
11	00	10	00	11

 $Q_1Q_0(t+1)$