Chapitre 5 - Séries entières

Définition

Soit
$$(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^\mathbb{N}$$

<u>Définition</u>: On appelle <u>série entière</u> (S.E) définie par la suite complexe $(a_n)_{n\in\mathbb{N}}$ la série de fonctions $\sum u_n$ où $\forall n\in\mathbb{N}, u_n:\mathbb{C}\to\mathbb{C}, z\mapsto a_nz^n$

Par abus de notation, on note cette série de fonction $\sum\limits_{n\in\mathbb{N}}a_nz^n$

L'ensemble $\mathcal D$ des $z\in\mathbb C$ par lesquels la série numérique $\sum\limits_{n\in\mathbb N}a_nz^n$ CV est appelé le domaine de convergence de la S.E. $\sum\limits_{n\in\mathbb N}a_nz^n$ et la fonction $S:\mathcal D\to\mathbb C, z\mapsto\sum_{n=0}^{+\infty}a_nz^n$ est appelé somme de la série entière $\sum\limits_{n\in\mathbb N}a_nz^n$

Exemple:

1) La SE $\sum\limits_{n\in\mathbb{N}}z^n$ a pour domaine $\mathcal{D}=\{z\in\mathbb{C},|z|<1\}:=\mathcal{D}(0;1)$ = disque ouvert de centre 0 et de rayon 1

Rayon de convergence

<u>Lemme d'Abel</u>: Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes. Soit $z_0\in\mathbb{C}$ tel que la suite $(a_nz_0^n)_{n\in\mathbb{N}}$ est bornée. Alors pour tout $z\in\mathbb{C}$ tel que $|z|<|z_0|$, la série numérique $\sum\limits_{n\in\mathbb{N}}a_nz^n$ converge absolument.

Démonstration : 🕏

- Si $z_0 = 0$, $\exists z \in \mathbb{C}$ tel que $|z| < |z_0|$, donc la propriété est vérifiée.
- Si $z_0 \neq 0$, soit $z \in \mathbb{C}$ tel que $|z| < |z_0|$. Comme la suite $(a_n z_0^n)_{n \in \mathbb{N}}$ est bornée, $\exists M \in \mathbb{R}_+, \forall n \in \mathbb{N}, |a_n z_0^n| < M$

Alors
$$\forall n \in \mathbb{N}, 0 \le |a_n z^n| = |a_n||z|^n = |a_n z_0^n| \times \left(\frac{|z|}{|z_0|}\right)^n \le M \times \left(\frac{|z|}{\frac{|z_0|}{|z_0|}}\right)^n$$

Or la série géométrique $\sum \left(\frac{|z|}{|z_0|}\right)^n$ CV, donc par comparaison de SATP, $\sum |a_nz^n|$ CV, donc la série numérique $\sum a_nz^n$ CVA

<u>Définition</u>: on appelle rayon de convergence (R_{CV}) de la série entière $\sum_{n\in\mathbb{N}}a_nz^n$ l'élément :

$$R = \sup\{r \in \mathbb{R}_+ | \text{ La suite } (a_n r^n) \text{ est bornée}\} \in \mathbb{R}_+ \cup \{+\infty\}$$

Remarque : cet ensemble est non vide car pour r=0 la suite correspondante vaut la suite nulle.

Exemple : $\sum n! z^n$

Soit
$$r \in \mathbb{R}_+$$
, si $r \neq 0$, $n! r^n = \left(\frac{\left(\frac{1}{r}\right)^n}{n!}\right)^{-1} \xrightarrow[n \to +\infty]{} + \infty$

Donc $(n! r^n)_n$ n'est pas bornée, donc $R = \sup\{0\} = 0$

<u>Propriété</u>: De manière équivalent, on a aussi $R = \sup \left\{ r \in \mathbb{R}_+ | a_n r^n \xrightarrow[n \to +\infty]{} 0 \right\}$

<u>Propriété</u>: Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Soit $z \in \mathbb{C}$

- (i) Si |z| < R, la série numérique $\sum a_n z^n$ CVA
- (ii) Si |z| > R, la série numérique $\sum a_n z^n$ DVG

<u>Démonstration</u>: ★

- (i) Si R=0, $\nexists z\in\mathbb{C}$ tel que |z|< R. On suppose donc R>0 Comme |z|< R, z n'est pas un majorant de $\{r\in\mathbb{R}_+|\ (a_nr^n) \text{ est born\'ee}\}$ Donc il $\exists r_0\in\{r\in\mathbb{R}_+|\ (a_nr^n) \text{ est born\'ee}\}$ vérifiant $|z|< r_0$ On peut alors appliquer le Lemme d'Abel (car $(a_nr_0^n)_n$ est born\'ee, et donc la série $\sum a_nz^n$ CVA.
- (ii) Si $|z|>R=\sup\{r\in\mathbb{R}_+|\ (a_nr^n) \text{ est born\'ee}\}\ \mathrm{donc}\ |z|\notin\{r\in\mathbb{R}_+|\ (a_nr^n) \text{ est born\'ee}\}\ \mathrm{C'est-\`a-dire}\ \mathrm{que}\ (a_n|z|^n)_n\ \mathrm{est}\ \mathrm{non}\ \mathrm{born\'ee},\ \mathrm{or}\ \forall n\in\mathbb{N}, |a_nz^n|=|a_n||z^n|=|a_n|z|^n|\ \mathrm{Donc}\ (a_nz^n)_n\ \mathrm{est}\ \mathrm{non}\ \mathrm{born\'ee}.$ Alors la série $\sum a_nz^n\ \mathrm{DVG}$

Remarque: on utilise très souvent la contraposée du théorème précédent.

Remarque : si la série diverge mais pas grossièrement, alors $|z_0| = R$

Remarque : si la série est semi-convergente, alors $|z_0| = R$

<u>Corollaire</u>: Soit $\sum a_n z^n$ une SE de rayon de convergence R.

- Si R = 0, $\mathcal{D} = \{0\}$
- Si $R = +\infty$, $\mathcal{D} = \mathbb{C}$
- SI $R \in]0$; $+\infty[$, $\mathcal{D}(0,R) \subset \mathcal{D} \subset \overline{\mathcal{D}(0,R)}$, où $\begin{cases} \mathcal{D}(0,R) = \{z \in \mathbb{C} \mid |z| < R\} \\ \overline{\mathcal{D}(0,R)} = \{z \in \mathbb{C} \mid |z| \le R\} \end{cases}$

<u>Définition</u>: Soit $\sum a_n z^n$ une S.E. de rayon de convergence R. Le disque $\mathcal{D}(0,R)$ est appelé <u>disque</u> <u>ouvert de convergence</u> de $\sum a_n z^n$

Détermination pratique du rayon de convergence

Règle de d'Alembert

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes tels que $\exists n_0\in\mathbb{N}, \forall n\geq n_0, a_n\neq 0$.

 $\operatorname{Si} \frac{|a_{n+1}|}{|a_n|} \underset{n \to +\infty}{\longrightarrow} l \in \mathbb{R}_+ \cup \{+\infty\}, \text{ alors le rayon de convergence } R \text{ de la S.E. } \sum a_n z^n \text{ vérifie } R = \frac{1}{l}, \text{ avec les conventions } \frac{1}{0} = +\infty \text{ et } \frac{1}{+\infty} = 0$

Démonstration : 🖈

Soit
$$z\in\mathbb{C}$$
, posons $\forall n\in\mathbb{N}, u_n=a_nz^n$, alors $|u_n|=\underbrace{|a_n|}_{\neq 0}|z|^n>0 \ \forall n\geq n_0$

$$\operatorname{Et} \frac{|u_{n+1}|}{|u_n|} = \frac{|a_{n+1}|}{|a_n|} \times |z| \xrightarrow[n \to +\infty]{} l|z|. \text{ De plus, } l|z| < 1 \Longleftrightarrow |z| < \frac{1}{l}$$

Ainsi par la règle d'Alembert appliquée à la série numérique $\sum |u_n|$:

- Si $|z| < \frac{1}{l}$, l|z| < 1, donc la série numérique $\sum |u_n|$ CV, donc $\sum a_n z^n$ CV(A)

- Donc $|z| \le R$, ceci $\forall z \in \mathbb{C}^*$, $|z| < \frac{1}{l}$, donc $\frac{1}{l} \le R$
- Si $|z| > \frac{1}{l}$, alors l|z| > 1 donc la série numérique $\sum |u_n|$ DVG donc la série numérique $\sum a_n z^n$ DVG aussi.
- Donc $\forall z \in \mathbb{C}^*$ tel que $|z| > \frac{1}{l}$, $|z| \ge R$ d'où en faisant tendre |z| vers $\frac{1}{l} : \frac{1}{l} \ge R$

D'où R =
$$\frac{1}{l}$$

Règle de Cauchy:

Soit $(a_n)_{n\in\mathbb{N}}$ une suite complexe. Si $|a_n|^{\frac{1}{n}} \longrightarrow l \in \mathbb{R}_+ \cup \{+\infty\}$, alors le rayon de convergence R de la S.E. $\sum a_n z^n$ vérifie $R = \frac{1}{l}$, avec les conventions $\frac{1}{l} = +\infty$ et $\frac{1}{l+\infty} = 0$.

Démonstration : 🕏

Soit $z \in \mathbb{C}$, on étudie la nature de la série numérique $\sum a_n z^n$.

$$\forall n \in \mathbb{N}^*, \left(|a_n|^{\frac{1}{n}}|z|\right)^n = |a_n z^n| \text{ et } |a_n|^{\frac{1}{n}}|z| \xrightarrow[n \to +\infty]{} l|z|$$

- Si $|z| > \frac{1}{l}$, alors l|z| > 1, donc comme $|a_n|^{\frac{1}{n}}|z| \xrightarrow[n \to +\infty]{} l|z| > 1$, par définition de la limite,

$$\exists n_0 \in \mathbb{N}, \forall n \ge n_0, |a_n|^{\frac{1}{n}}|z| \ge 1$$

 $\exists n_0 \in \mathbb{N}, \forall n \geq n_0, |a_n|^{\frac{1}{n}}|z| \geq 1$ Et donc $|a_nz^n| \geq 1^n = 1$, donc $|a_nz^n|$ ne tend pas vers 0.

Donc la série numérique $\sum a_n z^n$ DVG, donc $R \leq \frac{1}{L}$

- Si $|z| < \frac{1}{l}$, alors l|z| < 1 et $|a_n|^{\frac{1}{n}}|z| \xrightarrow[n \to +\infty]{} l|z| > 1$ Donc par définition de la limite,

$$\exists q \text{ tel que } 0 < q < 1 \text{ et } \exists n_0 \in \mathbb{N}, \forall n \ge n_0, |a_n|^{\frac{1}{n}}|z| \le q$$

D'où par croissance de $t \mapsto t^n$, $|a_n z^n| \le q^n$

Donc par comparaison de SATP, la série numérique $\sum |a_n z^n|$ CV,

D'où
$$\sum a_n z^n$$
 CVA, ceci $\forall z \in \mathbb{C}$ tel que $|z| < \frac{1}{l}$

Donc
$$\frac{1}{l} \le R$$
, donc par double inégalité, $R = \frac{1}{l}$

Cas des séries lacunaires

Il se peut que l'on rencontre des séries de la forme $\sum a_n z^{2n}$ ou $\sum a_n z^{3n}$

Ces deux séries peuvent s'interpréter comme les séries entières suivantes :

$$\sum c_p z^p$$
, où $c_p = \left\{egin{array}{l} a_n & ext{si } p & ext{est pair} \\ 0 & ext{sinon} \end{array}
ight.$ et resp. $\sum d_q z^q$, où $d_q = \left\{egin{array}{l} a_n & ext{si } q \equiv 0 \ 0 \ ext{sinon} \end{array}
ight.$

Remarque: Très souvent, les règles de Cauchy et d'Alembert ne vont pas marcher. Dans ce cas, soit on revient à la définition du rayon de convergence, soit on étudie la nature de la série numérique $\sum a_n z^n$ pour obtenir des inégalités sur R.

Opérations sur les séries entières

Somme de 2 séries entières

<u>Définition</u>: Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières. On appelle série entière somme des séries entières $\sum a_n z^n$ et $\sum b_n z^n$ la série entière $\sum (a_n + b_n) z^n$.

<u>Propriété</u>: Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence respectifs R_a et R_b . Notons R le rayon de convergence de leur série entière somme,

- $R \ge \min(R_a, R_b)$
- $\forall z \in \mathbb{C}, |z| < \min(R_a, R_b)$, on a :

$$\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n$$

Si de plus $R_a \neq R_b$, alors $R = \min(R_a, R_b)$.

Produit de deux séries entières

<u>Définition</u>: On appelle série entière produit de 2 séries entières $\sum a_n z^n$ et $\sum b_n z^n$ la série entière $\sum c_n z^n$, où :

$$\forall n \in \mathbb{N}, c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{p+q=n} a_p b_q$$

<u>Propriété</u>: Soient $\sum a_n z^n$ et $\sum b_n z^n$ 2 séries entières de rayons de convergence respectifs R_a et R_b . Notons R le rayon de convergence de leur série entière produit $\sum c_n z^n$. Alors $R \ge \min(R_a, R_b)$.

De plus, $\forall z \in \mathbb{C}$, $|z| < \min(R_a, R_b)$, on a

$$\sum_{n=0}^{+\infty} c_n z^n = \left(\sum_{n=0}^{+\infty} a_n z^n\right) \left(\sum_{n=0}^{+\infty} b_n z^n\right)$$

Série entière dérivée

<u>Définition</u>: On appelle série entière dérivée de la série entière $\sum a_n z^n$ la série entière :

$$\sum (n+1)a_{n+1}z^n$$

<u>Propriété</u> : une série entière $\sum a_n z^n$ et sa série entière dérivée $\sum (n+1)a_{n+1}z^n$ ont le même rayon de convergence.

Convergence normale

<u>Théorème</u>: Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. La série entière $\sum a_n z^n$ converge normalement sur tout disque fermé $\overline{D(0;r)}$ de centre O et de rayon r, $0 \le r < R$.

Démonstration : 🖈

Soit r tel que $0 \le r < R$

Notons $\forall n \in \mathbb{N}, u_n : z \mapsto a_n z^n$. Soit $n \in \mathbb{N}$,

$$\forall z \in \overline{D(0;r)}, |u_n(z)| = |a_n||z|^n \le |a_n|r^n$$

Ainsi la fonction u_n est bornée sur $D(0; \overline{r})$ et puisque la borne supérieure d'un ensemble est le + petit majorant de cet ensemble,

$$0 \le ||u_n||_{\infty,\overline{D(0;r)}} = \sup_{z \in \overline{D(0;r)}} |u_n(z)| \le |a_n|r^n$$

Mais r < R, donc la série numérique $\sum a_n r^n$ CVA. Ainsi par comparaison de SATP, la série $\sum ||u_n||_{\infty}$ CV, d'où $\sum u_n$ CVN sur $\overline{D(0;r)}$.

Séries entières d'une variable réelle

Notons R le rayon de convergence de la série entière $\sum a_n x^n$ (avec $x \in \mathbb{R}$, $(a_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$)

Soit $x \in \mathbb{R}$,

- Si $x \in]-R, R[$, la série numérique $\sum a_n x^n$ CVA
- Si $x \in]-\infty, -R[\cup]R, +\infty[$, la série numérique $\sum a_n x^n$ DVG
- Si x = -R ou x = R, alors on ne peut rien dire.

L'ensemble $I = \{x \in \mathbb{R} \mid \text{La série numérique } \sum a_n x^n \text{ CV} \}$ vérifie :

$$]-R;R[\subset I\subset [-R;R]$$

Donc I est un intervalle, qu'on appelle intervalle de convergence de $\sum a_n x^n$.

Continuité de la somme d'une série entière

<u>Théorème</u>: Une série entière $\sum a_n x^n$ de rayon de convergence R > 0 CVN donc CVU sur tout segment inclus dans]-R;R[.

<u>Théorème</u>: La somme d'une série entière $\sum a_n x^n$ d'une variable réelle et de rayon de convergence R > 0, est continue sur]-R; R[

Intégration

<u>Théorème</u>: Soient $\sum a_n x^n$ une série entière de rayon de convergence R>0 et [a,b] un segment inclus dans]-R,R[. Alors :

$$\int_{a}^{b} \left(\sum_{n=0}^{+\infty} a_n x^n \right) = \sum_{n=0}^{+\infty} \left(\int_{a}^{b} a_n x^n \right)$$

<u>Définition</u>: On appelle série entière primitive de la série entière $\sum a_n x^n$ la série entière $\sum \frac{a_n}{n+1} x^{n+1}$.

<u>Corollaire</u>: Soit $\sum a_n x^n$ une suite entière de rayon de convergence R>0. Sa série entière primitive $\sum \frac{a_n}{n+1} x^{n+1}$ a aussi pour rayon de convergence R. De plus la somme $T: x\mapsto \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$ de cette série entière primitive est l'unique primitive sur]-R; R[qui s'annule en 0 de la fonction somme de la série entière $\sum a_n x^n$, ie :

$$\forall x \in]-R; R[, T(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1} = \int_0^x \left(\sum_{n=0}^{+\infty} a_n t^n\right) dt$$

Démo : Soit x ∈] − R; R[,

La série entière dérivée de la série entière $\sum\limits_{n\in\mathbb{N}}\frac{a_n}{n+1}x^{n+1}$ est la série entière $\sum\limits_{n=0}^{+\infty}a_nx^n$ et le 2 ont le même rayon de convergence (thm précédent).

 \rightarrow Si x > 0, alors le segment [0; x] est inclus dans] - R; R[donc on peut utiliser le théorème précédent pour intégrer terme à terme :

$$\int_0^x \left(\sum_{n=0}^{+\infty} a_n t^n \right) dt = \sum_{n=0}^{+\infty} \left(\int_0^x a_n t^n dt \right) = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1} = T(x)$$

 \rightarrow Si x < 0, idem sur le segment [x; 0]

→ Si x = 0, $\int_0^x (\sum_{n=0}^{+\infty} a_n t^n) dt = 0$ et T(0) = 0

П

Dérivation

<u>Théorème</u>: Soit $\sum a_n x^n$ une série entière à variable réelle, de rayon de convergence R > 0.

Sa somme $S: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est de classe C^1 sur]-R; R[et $\forall x \in \mathbb{R}$,

$$S'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n$$

<u>Démonstration</u>: $\forall n \in \mathbb{N}$, notons $u_n : x \mapsto a_n x^n$

- $\forall n \in \mathbb{N}, u_n \text{ est de classe } C^1 \text{ sur }] - R; R[\text{ et } u'_n(x) = \begin{cases} na_n x^{n-1} \sin n \ge 1 \\ 0 \sin n = 0 \end{cases}$

- $\sum u_n$ CVS sur] -R; R[

- $\sum_{n \in \mathbb{N}} u'_n$ CVN sur tout segment inclus, donc sa somme est C^1 sur]-R; R[et l'égalité proposée est vérifiée

<u>Corollaire</u>: Soit $\sum a_n x^n$ une série entière d'une variable réelle de rayon de convergence R>0. Alors sa fonction somme $S:]-R; R[\to \mathbb{C}$ est de classe C^{∞} sur]-R; R[et ses dérivées

$$x\mapsto \textstyle\sum_{n=0}^{+\infty}a_nx^n$$

successives s'obtiennent par dérivations terme à terme successives :

$$\forall p \in \mathbb{N}, \forall x \in]-R; R[, S^{(p)}(x) = \sum_{n=p}^{+\infty} n(n-1) \dots (n-p+1) a_n x^{n-p}$$
$$= \sum_{n=p}^{+\infty} (n+p)(n+p-1) \dots (n+1) a_{n+p} x^n$$

Calcul des coefficients d'une série entière

<u>Théorème</u>: Soit $\sum a_n x^n$ une série entière d'une variable réelle de rayon de convergence R > 0 et de fonction somme S. Alors $\forall n \in \mathbb{N}$,

$$a_n = \frac{S^{(n)}(0)}{n!}$$

<u>Démonstration</u>: On a vu que S est de classe C^{∞} sur]-R; R[et $\forall p \in \mathbb{N}, \forall x \in]-R$; R[,

$$S^{(p)}(0) = p! a_p$$

(on prend pour convention $0^0 = 1$)

Corollaire: (Identification de 2 séries entières)

Soient $\sum a_n x^n$ et $\sum b_n x^n$ deux séries entières à variable réelle, de rayons de convergence respectifs $R_a>0$ et $R_b>0$. On suppose qu'il existe r>0 tel que $\forall x\in]-r; r[,\sum_{n=0}^{+\infty}a_nx^n=\sum_{n=0}^{+\infty}b_nx^n]$

Alors $\forall n \in \mathbb{N}, a_n = b_n$.

<u>Démonstration</u>: On note S_a et S_b la fonction somme des séries entières concernées

Par hyp, $\exists r > 0, \forall x \in]-r$; $r[,S_a(x) = S_b(x), \text{ alors } r \leq \min(R_a,R_b), \text{ donc } S_a \text{ et } S_b \text{ sont de classe } C^{\infty} \text{ sur }]-r$; r[et en dérivant l'égalité proposée, on a $S_a^{(n)}(0) = S_b^{(n)}(0)$

Donc
$$a_n = \frac{S_a^{(n)}(0)}{n!} = \frac{S_b^{(n)}(0)}{n!} = b_n$$

Fonction exponentielle complexe :

<u>Définition</u>: (exponentielle complexe)

On appelle exponentielle complexe, notée $\exp: z \mapsto e^z$, la fonction somme de la série entière $\sum_{n \in \mathbb{N}} \frac{z^n}{n!}$, de rayon de convergence $+\infty$.

Remarque: tout pareil (c'est Eymeric qui a dit)

$$\forall z \in \mathbb{C}, e^z \neq 0, \frac{1}{e^z} = e^{-z}; \overline{e^z} = e^{\overline{z}}; |e^z| = e^{Re(z)}$$

<u>Définition</u>: On définit les fonctions cos, sin, cosh, sinh complexes de la manière suivante :

 $\forall z \in \mathbb{C}$,

$$\begin{cases}
\cos(z) = \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n}}{(2n)!} \\
\sin(z) = \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \\
\cosh(z) = \sum_{n=0}^{+\infty} \frac{z^{2n}}{(2n)!} \\
\sinh(z) = \sum_{n=0}^{+\infty} \frac{z^{2n+1}}{(2n+1)!}
\end{cases}$$
Avec des rayons de convergence = $+\infty$

Fonctions d'une variable réelle développable en série entière

Définitions et exemples

Soit I un intervalle de \mathbb{R} , $f:I\to\mathbb{C}$.

<u>Déf</u>: Une fonction $f:I\subset\mathbb{R}\to\mathbb{C}$ est dite développable en série entière (DSE) en 0 si $\exists r>0$ et une série entière $\sum\limits_{n\in\mathbb{N}}a_nx^n$ de rayon de conv. $R\geq r$, tel que :

$$]-r;r[\subset I\ et\ \forall x\in]-r;r[,f(x)=\sum_{n=0}^{+\infty}a_nx^n$$

Remarque : Si $\exists r > 0$ tq] -r; r[$\subset I$, alors f n'est pas DSE en 0.

<u>Définition</u>: Soient $f: I \subset \mathbb{R} \to \mathbb{C}$ et $x_0 \in I$. On dit que f est DSE en x_0 si la fonction $g: t \mapsto f(t+x_0)$ est DSE en 0.

Dans ce cas, $\exists r > 0$ et une série $\sum a_n x^n$ de rayon de convergence $R \ge r$ tq $\forall t \in]-r;r[$,

$$g(t) = \sum_{n=0}^{+\infty} a_n t^n$$

Ainsi, $\forall x \in]x_0 - r; \ x_0 + r[, f(x) = g(x - x_0) = \sum_{n=0}^{+\infty} a_n (x - x_0)^n$

<u>Définition</u>: Soit $f:I\to\mathbb{C}$ une fonction de classe C^∞ et $x_0\in I$. On appelle série de Taylor de f en x_0 la série entière :

$$\sum_{n \in \mathbb{N}} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Théorème : (Condition nécessaire de DSE)

Soit $f: I \to \mathbb{C}$ et $x_0 \in I$. Si la fonction f est DSE en x_0 , alors f est C^{∞} sur un voisinage de x_0 . De plus, son développement en série entière est donné par sa série de Taylor.

Démonstration:

- Cas $x_0 = 0$: Sq f est DSE en 0, $\exists r > 0$, une série entière $\sum a_n x^n$ de rayon de conv $R \ge r$ tq $] - r; r[\subset I$ et $\forall x \in] - r; r[, f(x) = \sum_{n=0}^{+\infty} a_n x^n = S(x)$. S est C^{∞} sur] - R; R[.
 - Or f et S coïncident sur]-r;r[, donc f est C^{∞} sur cet intervalle et $a_n=\frac{f^{(n)}(0)}{n!}$
- Cas $x_0 \neq 0$:
 On pose $g: t \mapsto f(t+x_0)$. g est C^{∞} en 0, alors par composition, $f^{(n)}(x) = g^{(n)}(x-x_0)$

Opérations sur les fonctions développables en séries entières

Propriété :

- 1) Soient $f,g:I\subset\mathbb{R}\to\mathbb{C}$ et $x_0\in I$. On suppose que f et g sont DSE en x_0 , alors $\forall\lambda\in\mathbb{C}$, $\lambda f,f+g,f\times g$ sont DSE en x_0 .
 - De plus, la somme des DSE de f et g est le DSE de la somme et pareil pour le produit
- 2) Soit $f: I \to \mathbb{C}$, $x_0 \in I$. Si f est DSE en x_0 , alors ses dérivées successives et ses primitives le sont aussi, et s'obtiennent en dérivant/intégrant terme à terme les DSE de f en x_0

Développement en séries entières usuels

(à savoir refaire)

 $\forall x \in \mathbb{R}$,

$$\begin{cases}
-\ln(1-x) = \sum_{n=1}^{+\infty} \frac{x^n}{n} \\
\ln(1+x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n} \\
\arctan(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} x^{2n+1} \\
\arctan(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}
\end{cases} \text{ avec } R = 1, \text{ sauf } (1+x)^{\alpha}, R = \begin{cases} 1 \text{ si } \alpha \in \mathbb{R} \setminus \mathbb{N} \\ +\infty \text{ si } \alpha \in \mathbb{N} \end{cases}$$

$$\forall \alpha \in \mathbb{R}, (1+x)^{\alpha} = \sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} x^n$$

$$\arcsin(x) = \sum_{n=0}^{+\infty} \frac{(2n)!}{(2^n n!)^2} \frac{x^{2n+1}}{2n+1}$$

D.S.E de $\arcsin x$: à savoir retrouver

Arcsin est dérivable sur] -1; 1[, et en posant $u=-x^2$, $\arcsin' x=(1+u)^{-\frac{1}{2}}$ Or $|u|<1 \Leftrightarrow |-x^2|<1 \Leftrightarrow |x|<1$

Alors
$$\forall x \in]-1; 1[$$
, $\arcsin' x = \sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)...\left(-\frac{1}{2}-n+1\right)}{n!}(-x^2)^n$

$$= \sum_{n=0}^{+\infty} \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)...\left(-\frac{2n-1}{2}\right)}{n!}(-1)^n x^{2n}$$

$$= \sum_{n=0}^{+\infty} \frac{(-1)^n}{2^n} \times \frac{1 \times 3 \times 5 \times ... \times (2n-1)}{n!}(-1)^n x^{2n}$$

$$= \sum_{n=0}^{+\infty} \frac{(2n)!}{2^n n!} \times \frac{1}{2^n n!} x^{2n}$$

$$= \sum_{n=0}^{+\infty} \frac{(2n)!}{(2^n n!)^2} x^{2n}$$

Ainsi arcsin' est D.S.E. en 0 et le rayon de convergence de la série entière associée vérifie bien $R \ge 1$ Donc sa primitive arcsin l'est également, et son D.S.E. s'obtient en intégrant le DES existant terme à terme.

$$\forall x \in]-1; 1[, \arcsin(x) = \underbrace{\arcsin 0}_{=0} + \sum_{n=0}^{+\infty} \frac{(2n)!}{(2^n n!)^2} \frac{x^{2n+1}}{2n+1}$$