

KOD UCZNIA				

KONKURS FIZYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP REJONOWY

19 grudnia 2023 r. godz.:11.00

Uczennico/Uczniu:

- 1. Na rozwiązanie wszystkich 12 zadań masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- **3.** Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i zaznacz/napisz inną odpowiedź.
- **4.** Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	20	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej/-ego RKK		

UWAGA: W zadaniach o numerach od 1 do 8, podkreśl właściwą odpowiedź A, B, C lub D

Zadanie 1. (0 – 1 pkt)	/1
Po powierzchni wody pływa plastikowy klocek o objętości 300 cm³ i ciężarze 2 N.	
Przyjmij, że gęstość wody $d=1\mathrm{g/cm^3}$, przyspieszenie ziemskie $g=10\mathrm{m/s^2}$. Siła wypo	oru
działająca na klocek ze strony wody wynosi:	
A. 1 N,	
B. 2 N,	
C. 3 N,	
D. 4 N.	
Zadanie 2. (0 – 1 pkt)	/1
Z wymienionych jednostek, jednostką podstawową układu SI jest:	
A. kulomb,	
B. wolt,	
C. wat,	
D. amper.	
Zadanie 3. (0 – 1 pkt)	/1
Normalne ciśnienie atmosferyczne na powierzchni Ziemi odpowiada w przybliżeniu	
ciśnieniu hydrostatycznemu wody na dno naczynia zawierającego wodę o głębokości:	
A. 1 cm,	
B. 1 m,	
C. 10 m,	
D. 100 m.	

Zadanie 4. (0 – 1 pkt)

W niektórych wesołych miasteczkach można sprawdzić siłę swojego ciosu na odpowiednim urządzeniu. Po uderzeniu Janka urządzenie wskazało maksymalną siłę, jaką w nie uderzył jako 100 N. Oznacza to, że urządzenie działało na rękę Janka maksymalną siłą o wartości:

- A. 50 N,
- B. większą niż 50 N i mniejszą niż 100 N,
- C. 100 N,
- D. większą niż 100 N.

Zadanie 5. (0 – 1 pkt)

Aby rozciągnąć sprężynę o 10 cm, trzeba ciągnąć ją za każdy z końców siłą o wartości 100 N. Jeśli jeden z końców sprężyny przymocujemy do ściany, to dla rozciągnięcia jej o tyle samo, trzeba na drugi koniec działać siłą o wartości:

- A. 25 N,
- B. 50 N.
- C. więcej niż 50 N, ale mniej niż 100 N,
- D. 100 N.

Zadanie 6. (0 – 1 pkt)/1

Odległość pomiędzy grzbietami fal, które dobijają do brzegu jeziora wynosi 1,50 m. Fale rozchodzą się z prędkością 0,15 m/s. Wynika stąd, że częstotliwość uderzeń fal o brzeg wynosi:

- A. 10,0 Hz,
- B. 1,0 Hz,
- C. 0,5 Hz,
- D. 0,1 Hz.

Zadanie 7. (0 – 1 pkt)/1

Ciała naelektryzowane ujemnie:

- A. zawsze przyciągają ciała naelektryzowane,
- B. czasem przyciągają ciała nienaelektryzowane,
- C. odpychają ciała naelektryzowane dodatnio,
- D. przyciągają ciała naelektryzowane ujemnie.

Zadanie 8. (0 – 1 pkt)

Natężenie wiązki elektronów uderzających w ekran starego typu monitora komputerowego (zwanego kineskopowym) wynosi 0,1 mA. Wiadomo, że ładunek elektronu równy jest 1,6 x 10⁻¹⁹ C. Wynika stąd, że w ciągu 32 s w ekran kineskopu uderza:

- A. 2 x 10¹⁶ elektronów,
- B. 8 x 10¹⁶ elektronów,
- C. 32 x 10¹⁶ elektronów,
- D. 32 x 10¹⁹ elektronów.

Zadanie 9.	(0 - 3)	pkt.)
------------	---------	-------

..../3

Czajnik z wodą stoi na kuchence gazowej. Jego ogrzewanie od temperatury $t_I = 90$ °C
do temperatury $t_2 = 95$ °C trwało $\tau_I = 1,0$ min. Oblicz, jaka część energii cieplnej, którą
otrzymywał czajnik z wodą przy ogrzewaniu w jednostce czasu, rozprasza się w danych
warunkach do otoczenia, jeśli wiadomo, że ten sam czajnik z wodą stygnie od temperatury
t_2 do t_1 w ciągu czasu $\tau_2=9,0$ min. Przyjmij, że przy takiej różnicy temperatur czajnik z wodą
przekazuje do otoczenia w przybliżeniu stałą ilość energii w jednostce czasu.

Zadanie 10. (0 – 3 pkt.)

..../3

Ciężarówka jedzie szeroką szosą ze stałą prędkością $v_I = 10,0$ m/s. Gdy zrównała się ze stojącym na poboczu samochodem osobowym, ten ruszył z miejsca. Zależność prędkości samochodu osobowego od czasu $v_2(t)$ przedstawiono na wykresie poniżej. Korzystając z tego wykresu, znajdź drogę, którą przebył samochód osobowy od chwili rozpoczęcia ruchu do chwili, gdy dogonił ciężarówkę.

Zadanie 11. (0 – 3 pkt.)	/3
Wyładowanie elektryczne w postaci pioruna trwa $\tau = 100~\mu s$, a średnie natężenie prądu	
podczas tego wyładowania wynosi $I = 20$ kA. Napięcie pomiędzy chmurą burzową	
a ziemią wynosi $U=100~\mathrm{MV}$. Oszacuj energię tego wyładowania elektrycznego.	

Zadanie 12. (0 – 3 pkt.)	/3
Na ciało o masie $m = 1,0$ kg działają w płaszczyźnie poziomej dwie wzajemnie prostogsiły. W efekcie porusza się ono z poziomym przyspieszeniem $a = 5,0$ m/s ² . Wartość je z tych sił wynosi $F_I = 4,0$ N.	=
Oblicz wartość drugiej siły działającej na ciało F_2 .	

Brudnopis