First-Order Logic: Soundness and Completeness

Yuting Wang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Dec 11, 2023

First-Order Logic: Soundness and Completeness

Reading

► Enderton, Chapters 2.4, 2.5

What is the equivalent definition of "tautological implication" in first-order logic?

Logical Implication

Definition

Let Σ be a set of wffs and φ a wff. Σ logically implies φ , written as

$$\Sigma \vDash \varphi$$

if for every structure $\mathfrak A$ and every assignment $s:V o |\mathfrak A|$,

if $\mathfrak A$ satisfies Σ with s, then $\mathfrak A$ satisfies φ with s.

Remark

 $\Sigma \vDash \varphi$ is also read as:

- $ightharpoonup \varphi$ is a logical consequence of Σ , or
- $ightharpoonup \Sigma$ semantically implies φ , or
- $\triangleright \varphi$ is a semantic consequence of Σ .

Logical Implication for Sentences

Theorem

For a set of sentences Σ and a sentence σ , $\Sigma \vDash \sigma$ iff for every model $\mathfrak A$ of Σ , $\mathfrak A$ is a model of σ .

Scorates Again

Question

Assume the following premises:

- All men are mortal.
- Socrates is a man.

We can derive the conclusion:

Socrates is mortal.

How do we express this reasoning using logical implication?

Answer

Let \mathbb{L} be the first-order language with 1-ary predicate symbols:

- P for asserting a being is a man;
- Q for asserting a being is mortal;

and a constant symbol \boldsymbol{c} denoting Socrates.

Let
$$\Sigma = \{ \forall x (P(x) \rightarrow Q(x)), P(c) \}$$
. Then

$$\Sigma \vDash Q(c)$$
.

Logical Equivalence

As before, we write $\alpha \vDash \beta$ for $\{\alpha\} \vDash \beta$.

Definition

 α and β are logically equivalent, written as $\alpha \vDash \exists \beta$, if $\alpha \vDash \beta$ and $\beta \vDash \alpha$.

Example

$$\forall x \forall y (P(x) \rightarrow \neg Q(y)) \vDash \exists \ \forall x \forall y (\neg (P(x) \land Q(y)))$$

Relations to Valid Wffs

Theorem

Let φ be a wff in the language \mathbb{L} . φ is valid if $\emptyset \vDash \varphi$.

Remark

We shall write $\emptyset \vDash \varphi$ as $\vDash \varphi$.

Soundness and Completeness

Our goal is to show the following are equivalent for any language \mathbb{L} :

- ► The set of provable wffs of L;
- ightharpoonup The set of valid wffs of \mathbb{L}_{ϵ}

This is accomplished by proving the following two theorems:

Theorem (Soundness)

Every provable wff is valid. That is, given any φ , $\vdash \varphi$ implies $\vDash \varphi$.

Theorem (Completeness)

Every valid wff is provable. That is, given any φ , $\vDash \varphi$ implies $\vdash \varphi$.

Soundness of First-Order Logic

Substitution Lemma

Lemma

Given a first-order language \mathbb{L} , let

- \triangleright \mathfrak{A} be a structure for \mathbb{L} and s be an assignment function for \mathfrak{A} ;
- \triangleright u and t be terms and x be a variable.

Then

$$\overline{s}(u_t^x) = \overline{s(x|\overline{s}(t))}(u)$$

Lemma (Substitution Lemma)

Let s be an assignment function for $\mathfrak A$. If t is substitutable for x in α then

$$\models_{\mathfrak{A}} \alpha_t^{\mathsf{x}}[s] \iff \models_{\mathfrak{A}} \alpha[s(\mathsf{x}|\overline{s}(t))]$$

Soundness Theorem

A general form of soundness:

Theorem

If $\Sigma \vdash \alpha$, then $\Sigma \vDash \alpha$.

Proof.

By induction on the proof trees of $\Sigma \vdash \alpha$. Substitution lemma is needed when the last rule is a quantifier rule (i.e., \forall -I, \forall -E, \exists -I, and \exists -E).

Corollary

If $\vdash \alpha$, then $\models \alpha$.

Remark

Soundness is useful for showing certain wff is not provable. That is, if $\not \models \varphi$, then φ is not provable in natural deduction.

Soundness and Logical Equivalence

Corollary

If $\vdash \varphi \leftrightarrow \psi$ then φ and ψ are logically equivalent.

Proof.

Show $\varphi \vDash \psi$ and $\psi \vDash \varphi$.

Consistency

Definition

- $ightharpoonup \Sigma$ is inconsistent if there is some wff α such that $\Sigma \vdash \alpha$ and $\Sigma \vdash \neg \alpha$.
- \triangleright Σ is consistent if it is not inconsistent.

Properties of consistency:

Proposition

- ▶ If Σ is inconsistent then for every β , $\Sigma \vdash \beta$;
- \triangleright $\Sigma \not\vdash \alpha$ iff Σ ; $\neg \alpha$ is consistent;
- $ightharpoonup \Sigma$ is consistent iff every finite subset of Σ is consistent;
- ▶ If Σ is consistent then for every α , either Σ ; α is consistent or Σ ; $\neg \alpha$ is consistent.

Alternative Statement of Soundness

From soundness we can derive the following property:

Corollary

If Σ is satisfiable then Σ is consistent.

In fact, soundness is equivalent to the above statement:

Theorem

The following to statements are equivalent:

- ▶ For any Σ and α , if $\Sigma \vdash \alpha$, then $\Sigma \vDash \alpha$;
- ▶ For any Σ , if Σ is satisfiable then Σ is consistent.

Completeness of First-Order Logic

Completeness

Theorem (Gödel Extended Completeness Theorem)

If $\Sigma \vDash \alpha$, then $\Sigma \vdash \alpha$.

An immediate consequence is

Corollary (Gödel Completeness Theorem)

If $\vDash \alpha$, then $\vdash \alpha$.

There is no easy inductive proof of completeness.

Alternative Statement of Completeness

Similar to Soundness, Completeness has an equivalent expression:

Theorem

The following to statements are equivalent:

- ▶ For any Σ and α , if $\Sigma \vDash \alpha$, then $\Sigma \vdash \alpha$;
- ▶ For any Σ , if Σ is consistent then Σ is satisfiable.

That is, to prove completeness, its suffices to show any consistent set of wffs is satisfiable!

A Hilbert-Style Deduction Calculus

A Hilbert-Style Deduction Calculus

We shall use a deduction calculus equivalent to natural deduction in Hilbert's style.

Let \mathbb{L} be a first-order language. The calculus contains

- ightharpoonup A set Λ of wffs called logical axioms and
- ► A single rule of inference for forming a new wff from a pairs of wffs.

We then systematically generate a set of wffs from the logical axioms by using the rule of inference. They are called provable wffs.

Logical Symbols

We only have two logical connectives: \rightarrow and \neg .

Other connectives are obtained from the following abbreviations:

- \blacktriangleright $(\alpha \lor \beta)$ abbreviates $((\neg \alpha) \to \beta)$;
- $(\alpha \wedge \beta)$ abbreviates $(\neg(\alpha \rightarrow (\neg\beta)))$;
- $(\alpha \leftrightarrow \beta)$ abbreviates $(\alpha \to \beta) \land (\beta \to \alpha)$;
- ▶ $\exists x \alpha$ abbreviates $(\neg \forall x (\neg \alpha))$.

Generalizations

Definition

A generalization of the wff α is any wff obtained by putting zero or more universal quantifiers in front of α .

Example

- $\blacktriangleright \ \forall x \forall x \forall y \ \alpha$ is a generalization of α ;
- Every wff is a generalization of itself.

The Logical Axioms

Definition

Let \mathbb{L} be a first-order language. The set Λ of logical axioms of \mathbb{L} consists of all generalizations of the wffs in the following groups.

- 1. Instances of tautologies;
- 2. Wffs of the form $\forall x \ \alpha \rightarrow \alpha_t^x$ such that the term t is substitutable for x in α ;
- 3. Wffs of the form $\forall x(\alpha \to \beta) \to (\forall x \ \alpha \to \forall x \ \beta)$;
- 4. Wffs of the form $\alpha \to \forall x \ \alpha$ such that x does not occur *free* in α ;
- 5. Wffs of the form x = x;
- Wffs of the form x = y → (α → α') such that α is atomic and α' is obtained from α by replacing zero or more occurrences of x in α by y.

Instances of Wffs of Sentential Logic

Definition

Let

- φ be a wff of sentential logic with just the connective symbols \neg and \rightarrow :
- φ^* the wff of \mathbb{L} obtained by replacing in φ , (for each n) every occurrence of the sentence symbol A_n by α_n .

We say that φ^* is an instance of φ .

Example

Example

Let
$$\alpha_1 = \forall y \neg P(y)$$
 and $\alpha_2 = P(x)$.

 $\blacktriangleright \text{ Let } \varphi = (A_1 \to A_2) \to \neg A_2.$

$$\varphi^* = (\forall y \neg P(y) \rightarrow P(x)) \rightarrow \neg P(x).$$

$$\blacktriangleright \ \text{Let} \ \varphi = (A_1 \to \neg A_2) \to (A_2 \to \neg A_1).$$

$$\varphi^* = (\forall y \neg P(y) \rightarrow \neg P(x)) \rightarrow (P(x) \rightarrow \neg \forall y \neg P(y)).$$

A Rule of Inference

In Hilbert-style system, there is only one rule of inference:

Definition

Given any wffs α and β , the rule of modus ponens provides the operation for deriving β from $\alpha \to \beta$ and α .

We often say that β is inferred from α and $\alpha \to \beta$ by modus ponens.

Remark

The rule of modus ponens is a template for certain derivations.

Deductions

Definition

Let Σ be a set of wffs of \mathbb{L} . A deduction from Σ is a finite sequence

$$\alpha_0,\ldots,\alpha_n$$

of wffs such that every $\alpha_i (0 \le i \le n)$ is either

- ightharpoonup in Σ , or
- ► in Λ, or
- ▶ is inferred by modus ponens from two wffs α_j and $\alpha_k = \alpha_j \rightarrow \alpha_i$ such that j, k < i.

Definition

 $\Sigma \vdash \alpha$ (α is a theorem of Σ) if there is a deduction $\alpha_0, \ldots, \alpha_n$ from Σ such that $\alpha = \alpha_n$. (We write $\vdash \alpha$ for $\emptyset \vdash \alpha$.)

Example

▶ Show $\vdash P(x) \rightarrow \exists y P(y)$:

Example

▶ Show $\vdash \forall x(P(x) \rightarrow \exists yP(y))$.

Equivalence to Natural Deduction

Let \vdash_N denotes provability in natural deduction and \vdash_H denotes provability in the Hilbert-style deduction calculus.

Theorem

Given any Σ and φ , $\Sigma \vdash_N \varphi$ iff $\Sigma \vdash_H \varphi$.

Proof.

Proof by structural induction in both directions.

Proof of Completeness

Proof of Completeness

Theorem

If Σ is consistent then Σ is satisfiable.

The proof is similar to that for compactness:

- Extend Σ to $\Delta \supseteq \Sigma$ such that Δ is consistent and maximal (i.e., for any α , either $\alpha \in \Delta$ or $\neg \alpha \in \Delta$).
- ▶ Define a structure $\mathfrak A$ and an assignment s for $\mathfrak A$ such that $\mathfrak A$ satisfies Δ with s.

The actual proof is more complex because the need to deal with \doteq .

Step One: Expanding Language with Constants

Step 1: Let Σ be a consistent set of wffs in a countable language. Expand the language with a countably infinite set of new constant symbols c_1, \ldots, c_n, \ldots

Remark

 Σ is consistent in the new language.

Step Two: Preparing for Satisfiability of Quantified Wffs

Step 2: In the new language, for any pair of wff φ and variable x, introduce a formula

$$\neg \forall x \varphi \rightarrow \neg \varphi_c^x$$

where c is a new constant symbol. Let Θ be the set of all these formulas.

Remark

- \triangleright c identifies a counter example for φ ;
- $\triangleright \Sigma \cup \Theta$ is consistent.

Step Three: Get Maximally Consistent Set

Step 3: Extend $\Sigma \cup \Theta$ to a set Δ of wffs such that

- \triangleright \triangle is consistent, and
- ▶ for any wff α , $\alpha \in \Delta$ or $\neg \alpha \in \Delta$, but not both.

Remark

 $\Sigma \cup \Theta$ is consistent implies that there is a truth assignment v that satisfies $\Sigma \cup \Theta \cup \Lambda$ in the sense of sentential logic. Pick

$$\Delta = \{ \varphi \mid \bar{\mathbf{v}}(\varphi) = T \}.$$

Step Four: Make a Structure for the New Language

Step 4: Make a structure $\mathfrak A$ from Δ for the new language where \doteq is replaced by a 2-ary symbol E:

- $ightharpoonup |\mathfrak{A}| =$ the set of all terms in the new language;
- $\blacktriangleright (u,t) \in E^{\mathfrak{A}} \Longleftrightarrow u \dot{=} t \in \Delta;$
- For any *n*-ary predicate symbol:

$$(t_1,\ldots,t_n)\in P^{\mathfrak{A}}\Longleftrightarrow P(t_1,\ldots,t_n)\in \Delta;$$

For any *n*-ary function symbol:

$$f^{\mathfrak{A}}(t_1,\ldots,t_n)=f(t_1,\ldots,t_n);$$

For any constant symbol c, $c^{\mathfrak{A}} = c$.

Step Four: Make a Structure for the New Language

Step 4 (Cont'd): Make an assignment function $s: V \to |\mathfrak{A}|$

$$s(x) = x$$
.

Then $\overline{s}(t) = t$. For any wff φ , let φ^* be φ with $\dot{=}$ replaced by E. We have

$$\vDash_{\mathfrak{A}} \varphi^*[s] \Longleftrightarrow \varphi \in \Delta.$$

If there is no \doteq in our language, then we are done. Δ , hence Σ is satisified by $\mathfrak A$ with s. However, there is more to do if $\dot=$ is present.

Question

If there are two constant c and d, and Σ contains c = d. We need to $c^{\mathfrak{A}} = d^{\mathfrak{A}}$ for \mathfrak{A} to satisfy Σ . This may not be true.

Step 5: Construct a quotient structure \mathfrak{A}/E by identifying $E^{\mathfrak{A}}$ as a congruence relation for \mathfrak{A} .

Proposition

 $E^{\mathfrak{A}}$ as a congruence relation for \mathfrak{A} in the following senses:

- $ightharpoonup E^{\mathfrak{A}}$ is an equivalence relation on $|\mathfrak{A}|$;
- For each *n*-ary predicate symbol P, $P^{\mathfrak{A}}$ is compatible with $E^{\mathfrak{A}}$, meaning:

If
$$(t_1, \ldots, t_n) \in P^{\mathfrak{A}}$$
 and $(t_i, t_i') \in E^{\mathfrak{A}}$ for $(1 \le i \le n)$
then $(t_1', \ldots, t_n') \in P^{\mathfrak{A}}$;

For each *n*-ary function symbol f, $f^{\mathfrak{A}}$ is compatible with $E^{\mathfrak{A}}$, meaning:

$$\begin{aligned} &\text{If } (t_i,t_i') \in E^{\mathfrak{A}} \text{ for } (1 \leq i \leq n) \\ &\text{then } (f^{\mathfrak{A}}(t_1,\ldots,t_n),f^{\mathfrak{A}}(t_1',\ldots,t_n')) \in P^{\mathfrak{A}}. \end{aligned}$$

Definition

The quotient structure \mathfrak{A}/E is defined as follows:

- \triangleright $|\mathfrak{A}/E|$ is the set of all equivalent classes of members of $|\mathfrak{A}|$;
- For each *n*-ary predicate symbol *P*,

$$([t_1],\ldots,[t_n])\in P^{\mathfrak{A}/E}\iff (t_1,\ldots,t_n)\in P^{\mathfrak{A}};$$

► For each *n*-ary function symbol *f*,

$$f^{\mathfrak{A}/E}([t_1],\ldots,[t_n])=[f^{\mathfrak{A}}(t_1,\ldots,t_n)];$$

For each constant symbol c,

$$c^{\mathfrak{A}/E}=[c^{\mathfrak{A}}].$$

Note that \mathfrak{A}/E is well-defined because $E^{\mathfrak{A}}$ is a congruence relation.

Proposition

Let $h: |\mathfrak{A}| \to |\mathfrak{A}/E|$ be

$$h(t) = [t].$$

Then \mathfrak{A}/E satisfies Δ with $h \circ s$.

Proof.

By definition, we have the following facts:

- (a) h is a homomorphism of \mathfrak{A} into \mathfrak{A}/E ;
- (b) $E^{\mathfrak{A}/E}$ is the equality relation on $|\mathfrak{A}/E|$.

Therefore, we have

$$\varphi \in \Delta \iff_{\mathfrak{A}} \varphi^*[s]$$

$$\iff_{\mathfrak{A}/E} \varphi^*[h \circ s] \qquad \text{by (a)}$$

$$\iff_{\mathfrak{A}/E} \varphi[h \circ s] \qquad \text{by (b)}$$

Step Six: Wrapping Up

Step 6: Restrict \mathfrak{A}/E to the original language, then it also satisifies Δ (hence Σ) with $h \circ s$.

We have now proved that Σ is satisfiable if it is consistent! Done!

Compactness Theorem

Compactness of First-Order Logic is a corollary of its Completeness. It has the following to equivalent statements:

Theorem (Compactness Theorem)

- ▶ If $\Sigma \vDash \varphi$, then there exists a finite subset Σ' of Σ such that $\Sigma' \vDash \varphi$;
- ▶ If every finite subset Σ' of Σ is satisfiable, then Σ is satisfiable.