# **D207 Project Using the Cleaned Churn Data Set**

```
In [1]: import pandas as pd
df = pd.read_csv('churn_clean.csv')
```

In [2]: df.head()

Out[2]:

| • | CaseOrder | Customer_id | Interaction                                      | UID                              | City           | State | С   |
|---|-----------|-------------|--------------------------------------------------|----------------------------------|----------------|-------|-----|
| 0 | 1         | K409198     | aa90260b-<br>4141-4a24-<br>8e36-<br>b04ce1f4f77b | e885b299883d4f9fb18e39c75155d990 | Point<br>Baker | AK    | Pri |
| 1 | 2         | S120509     | fb76459f-c047-<br>4a9d-8af9-<br>e0f7d4ac2524     | f2de8bef964785f41a2959829830fb8a | West<br>Branch | МІ    | Οg  |
| 2 | 2 3       | K191035     | 344d114c-<br>3736-4be5-<br>98f7-<br>c72c281e2d35 | f1784cfa9f6d92ae816197eb175d3c71 | Yamhill        | OR    | ١   |
| 3 | 3 4       | D90850      | abfa2b40-<br>2d43-4994-<br>b15a-<br>989b8c79e311 | dc8a365077241bb5cd5ccd305136b05e | Del Mar        | CA    |     |
| 4 | 5         | K662701     | 68a861fd-<br>0d20-4e51-<br>a587-<br>8a90407ee574 | aabb64a116e83fdc4befc1fbab1663f9 | Needville      | TX    |     |

5 rows × 50 columns

# In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 50 columns):

| Data | columns (total 50 colu | •              |         |
|------|------------------------|----------------|---------|
| #    | Column                 | Non-Null Count | Dtype   |
|      |                        |                |         |
| 0    | CaseOrder              | 10000 non-null | int64   |
| 1    | Customer_id            | 10000 non-null | object  |
| 2    | Interaction            | 10000 non-null | object  |
| 3    | UID                    | 10000 non-null | object  |
| 4    | City                   | 10000 non-null | object  |
| 5    | State                  | 10000 non-null | object  |
| 6    | County                 | 10000 non-null | object  |
| 7    | Zip                    | 10000 non-null | int64   |
| 8    | Lat                    | 10000 non-null | float64 |
| 9    | Lng                    | 10000 non-null | float64 |
| 10   | Population             | 10000 non-null | int64   |
| 11   | Area                   | 10000 non-null |         |
| 12   | TimeZone               | 10000 non-null | object  |
| 13   | Job                    | 10000 non-null | object  |
| 14   | Children               |                | int64   |
|      |                        | 10000 non-null |         |
| 15   | Age                    | 10000 non-null | int64   |
| 16   | Income                 | 10000 non-null | float64 |
| 17   | Marital                | 10000 non-null | object  |
| 18   | Gender                 | 10000 non-null | object  |
| 19   | Churn                  | 10000 non-null | object  |
| 20   | Outage_sec_perweek     | 10000 non-null | float64 |
| 21   | Email                  | 10000 non-null | int64   |
| 22   | Contacts               | 10000 non-null |         |
| 23   | Yearly_equip_failure   | 10000 non-null |         |
| 24   | Techie                 | 10000 non-null | object  |
| 25   | Contract               | 10000 non-null | object  |
| 26   | Port_modem             | 10000 non-null | object  |
| 27   | Tablet                 | 10000 non-null | object  |
| 28   | InternetService        | 10000 non-null | object  |
| 29   | Phone                  | 10000 non-null | object  |
| 30   | Multiple               | 10000 non-null | object  |
| 31   | OnlineSecurity         | 10000 non-null | object  |
| 32   | OnlineBackup           | 10000 non-null | object  |
| 33   | DeviceProtection       | 10000 non-null | object  |
| 34   | TechSupport            | 10000 non-null | object  |
| 35   | StreamingTV            | 10000 non-null | object  |
| 36   | StreamingMovies        | 10000 non-null | object  |
| 37   | PaperlessBilling       | 10000 non-null | object  |
| 38   | PaymentMethod          | 10000 non-null | object  |
| 39   | Tenure                 | 10000 non-null | float64 |
| 40   | MonthlyCharge          | 10000 non-null | float64 |
| 41   | Bandwidth_GB_Year      | 10000 non-null | float64 |
| 42   | Item1                  | 10000 non-null | int64   |
| 43   | Item2                  | 10000 non-null | int64   |
| 44   | Item3                  | 10000 non-null | int64   |
| 45   | Item4                  | 10000 non-null | int64   |
| 46   | Item5                  | 10000 non-null | int64   |
| 47   | Item6                  | 10000 non-null | int64   |
| 48   | Item7                  | 10000 non-null | int64   |
| 49   | Item8                  | 10000 non-null | int64   |
| 72   | T CCIIIO               | TOOOO HOH-HULL | 111CO+  |

```
dtypes: float64(7), int64(16), object(27)
memory usage: 3.8+ MB
```

### **Section A**

- 1) Is there a correlation between customers who see themselves as Techie and the churn rate of the customer?
- 2) Stakeholders will value this information because they can see how people who view themselves in a certain way behave as customers.
- 3) In order to ansewr my question from part A1 I am going to use the Churn and Techie column. Both of these columns have an object data type where Churn is either yes or no and Techie which is also either yes or no.

### **Section B**

1) Chi-Square: My hypothesis is that being a techie and churn rate are independent of each other. Even if you view yourself as a techie you still need an internet provider.

```
In [4]: contingency = (df['Churn'], df['Techie'])
         contingency
Out[4]: (0
                    No
          1
                   Yes
          2
                    No
          3
                    No
          4
                   Yes
          9995
                    No
          9996
                    No
          9997
                    No
          9998
                    No
          9999
                    No
          Name: Churn,
                        Length: 10000, dtype: object,
          0
                    No
                   Yes
          1
          2
                   Yes
          3
                   Yes
          4
                    No
          9995
                    No
          9996
                    No
          9997
                    No
          9998
                    No
          9999
                    No
          Name: Techie, Length: 10000, dtype: object)
```

```
In [6]: from scipy.stats import chi2_contingency
In [7]: c, p, dof, expected = chi2_contingency(contingency_pct)
p
```

Out[7]: 0.08325508175692804

Yes 0.790566 0.209434

- 2) The results show that p-value is 8.32% which is not enough to reject our null hypothesis that the Churn and Techie columns are independent of each other.
- 3) I decided to run a chi-square test because I was looking at two categorical data types.

### **Section C**

The columns we will be using for Parts C and D are: Children, Age, Monthly Charge, Outage\_sec\_perweek, Contacts, Churn and Techie.

```
In [8]: import matplotlib.pyplot as plt
import seaborn as sns
```



```
In [10]: df['Children'].describe()
```

| Out[10]: | count | 10000.0000 |
|----------|-------|------------|
|          | mean  | 2.0877     |
|          | std   | 2.1472     |
|          | min   | 0.0000     |
|          | 25%   | 0.0000     |
|          | 50%   | 1.0000     |
|          | 75%   | 3.0000     |
|          | max   | 10.0000    |

Name: Children, dtype: float64

The Children column is right-skewed with most of the data points coming on the left side of the histogram.



```
In [12]: df['Age'].describe()
Out[12]: count
                   10000.000000
                      53.078400
         mean
                      20.698882
         std
         min
                      18.000000
         25%
                      35.000000
         50%
                      53.000000
         75%
                      71.000000
                      89.000000
         max
         Name: Age, dtype: float64
```

The Age column appears to have a normal distribution with data points showing up evenly on both sides of the average.



# In [14]: df['MonthlyCharge'].describe() Out[14]: count 10000.000000 mean 172.624816

mean 172.624816 std 42.943094 min 79.978860 25% 139.979239 50% 167.484700 75% 200.734725 max 290.160419

Name: MonthlyCharge, dtype: float64

The Monthly Charge column is left-skewed with most data points appearing on the right side of the average.



```
In [16]: | df['Outage_sec_perweek'].describe()
Out[16]: count
                   10000.000000
                      10.001848
         mean
                       2.976019
         std
                       0.099747
         min
         25%
                       8.018214
         50%
                      10.018560
         75%
                      11.969485
                      21.207230
         max
         Name: Outage sec perweek, dtype: float64
```

```
In [17]: sns.displot(df, x="Outage_sec_perweek", kind="ecdf")
```

Out[17]: <seaborn.axisgrid.FacetGrid at 0x1efd77aaf70>



This displot certifies the conclusion made about the histogram above. As you can see by the curve most of the data lays between just before 5 up to about 15.

The Outage\_sec\_perweek column has a normal distribution with an even number of data points showing up on either side of the average.

## **Section D**

```
In [18]: import numpy as np
import seaborn as sns

In [19]: df_heatmap = df[['Contacts','Outage_sec_perweek']].copy()
```

```
In [20]: sns.scatterplot(data=df, x='Outage_sec_perweek', y='Contacts')
```

Out[20]: <AxesSubplot:xlabel='Outage\_sec\_perweek', ylabel='Contacts'>



Name: Outage\_sec\_perweek, dtype: float64

```
In [21]: df['Contacts'].describe()
Out[21]: count
                   10000.000000
                       0.994200
          mean
          std
                       0.988466
                       0.000000
         min
          25%
                       0.000000
          50%
                       1.000000
          75%
                       2.000000
                       7.000000
         Name: Contacts, dtype: float64
In [22]: df['Outage_sec_perweek'].describe()
Out[22]: count
                   10000.000000
                      10.001848
         mean
          std
                       2.976019
                       0.099747
         min
          25%
                       8.018214
          50%
                      10.018560
          75%
                      11.969485
         max
                      21.207230
```

```
In [23]: sns.displot(df, x="Churn", hue="Techie", stat="probability")
```

# Out[23]: <seaborn.axisgrid.FacetGrid at 0x1efd75962e0>



```
In [24]: df['Churn'].describe()
Out[24]: count
                    10000
         unique
                        2
         top
                       No
                     7350
         freq
         Name: Churn, dtype: object
In [25]: df['Techie'].describe()
Out[25]: count
                    10000
         unique
                        2
                       No
         top
                     8321
         freq
         Name: Techie, dtype: object
```

```
In [26]: sns.displot(df, x="Churn", y="Techie")
```

Out[26]: <seaborn.axisgrid.FacetGrid at 0x1efd7861be0>



In the above visualization we can see that most customers who said they were not techies stayed with the company. The darker the square the more data is in that square.

### Section E

- 1) The results of my hypothesis test was that we accept the null hypothesis that churn and techie are independent of each other.
- 2) My data analysis could have been limited if I did not have access to the data or an incomplete data set.
- 3) I would recommended not paying attention to if a customer is a techie or not as there was no correlation between churn and if a customer viewed themselves as techie or not.

### References

https://www.statology.org/two-sample-t-test-python/#:~:text=%20How%20to%20Conduct%20a%20Two%20Sample%20T-Test,3%20Step%203%3A%20Interpret%20the%20results.%20More%20

(https://www.statology.org/two-sample-t-test-python/#:~:text=%20How%20to%20Conduct%20a%20Two%20Sample%20T-Test,3%20Step%203%3A%20Interpret%20the%20results.%20More%20)

https://predictivehacks.com/how-to-run-chi-square-test-in-python/ (https://predictivehacks.com/how-to-run-chi-square-test-in-python/)

https://datagy.io/histogram-python/ (https://datagy.io/histogram-python/)

https://seaborn.pydata.org/tutorial/distributions.html (https://seaborn.pydata.org/tutorial/distributions.html)