ORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7: C12N 15/29, 15/05, C07K 14/415, C12N 15/82, 5/10

(11) Internationale Veröffentlichungsnummer:

WO 00/50598

A1

(43) Internationales Veröffentlichungsdatum:

31. August 2000 (31.08.00)

(21) Internationales Aktenzeichen:

PCT/DE00/00506

(22) Internationales Anmeldedatum: 18. Februar 2000 (18.02.00)

(30) Prioritätsdaten:

199 07 598.0

22. Februar 1999 (22.02.99)

DE

(71)(72) Anmelder und Erfinder: SCHULZ, Burkhard [DE/DE]; Eupener Strasse 16 a, D-50933 Köln (DE).

(74) Anwalt: DEHMEL & BETTENHAUSEN; Müllerstrasse 1, D-80469 München (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen

(54) Title: DNA SEQUENCE OF A PROTEIN THAT IS SIMILAR TO FKBP

(54) Bezeichnung: DNA-SEQUENZ EINES FKBP ÄHNLICHEN PROTEINS

(57) Abstract

The present invention relates to a nucleic acid sequence according to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 or SEQ ID NO:7 or the fragment or derivative thereof or a nucleic acid sequence which is hybridised with the nucleic acid sequence according to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 or SEQ ID NO:7 and which is provided with the biological activity of the nucleic acid sequence according to SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 or SEQ ID NO:7. The invention also relates to transgenic plants and the seeds thereof, whereby said plants comprise a recombinant inventive nucleic acid sequence.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft eine Nukleinsäuresequenz gemäss SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 oder deren Fragment oder Derivat oder eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz gemäss SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 hybridisiert und die biologische Aktivität der Nukleinsäuresequenz gemäss SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 besitzt. Die Erfindung betrifft ferner transgene Pflanzen und deren Samen umfassend eine rekombinante erfindungsgemässe Nukleinsäuresequenz.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	ТJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	ΙE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JР	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugosławien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

20

25

30

35

DNA-Sequenz eines FKBP ähnlichen Proteins

Die vorliegende Erfindung betrifft eine Nukleinsäuresequenz gemäß SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 oder deren Fragment oder Derivat oder eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz gemäß SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 hybridisiert und die biologische Aktivität der Nukleinsäuresequenz gemäß SEQ ID NO:1, SEQ ID NO:5 oder SEQ ID NO:7 besitzt. Die Erfindung betrifft ferner transgene Pflanzen und deren Samen umfassend eine rekombinante erfindungsgemäße Nukleinsäuresequenz.

Die sessile Lebensweise von Pflanzen fordert eine hohe Anpassungsfähigkeit an die Umweltbedingungen des Standortes. Die endogenen Wachstums- und Entwicklungsprogramme müssen auf exogene Faktoren abgestimmt werden. Dies setzt die Perzeption von exogenen Faktoren voraus, die für die Pflanze lebenswichtig sind. Da der Perzeptionsort meist vom Ort der Reizantwort verschieden ist, muß eine inter- und intrazelluläre Signaltransduktion stattfinden. Obwohl in Pflanzen und Tieren Reize über unterschiedliche Rezeptoren wahrgenommen werden und zu andersartigen Reizantworten führen, bedienen sie sich oft gleicher Prinzipien zur Vermittlung von Signalen. G-Proteine, Calzium bzw. Calmodulin, Proteinkinasen und Proteinphosphatasen sind Elemente von Signaltransduktionsketten, die in Pflanzen und Tieren vorkommen. Der generelle Mechanismus der Signalvermittlung ist in vielen-Fällen-konserviert.

Eine große Familie konservierter Proteine, über deren Funktionen bei der Signalvermittlung noch wenig bekannt ist, sind die Immunophiline (Schreiber, 1991, Science 251: 283-287). Die Immunophiline stellen eine Superfamilie dar, deren Mitglieder in Bakterien, Hefen, Pflanzen und Tieren zu finden sind. Sie sind in verschiedenen Zellkompartimenten lokalisiert und an den verschiedenartigsten Prozessen zur Signalvermittlung beteiligt. Sie wurden als intrazelluläre Rezeptoren für immunsuppressive Substanzen in Säugetierzellen identifiziert (Handschumacher et al., 1984, Science 266: 544-547). Die Immunophiline lassen sich strukturell und durch ihre Affinität zu Immunsuppressiva in drei Klassen unterteilen: Cyclophiline, die CyclosporinA

binden, FK506 bindende Proteine, die FK506 oder Rapamycin binden und Parvuline, die keine Affinität gegenüber immunsupprimierenden Substanzen besitzen. CyclosporinA, FK506 und Rapamycin sind Substanzen, die von bodenbewohnenden Pilzen synthetisiert werden. Ihre Wirkung in Säugetieren ist die Unterdrückung der Immunantwort, was in der Transplantationsmedizin genutzt wird, um die Abstoßungsreaktion gegen ein körperfremdes Organ zu mindern.

Die FK506-bindenden Proteine (FKBPs) werden ihrer Größe entsprechend eingeteilt. Das kleinste FKBP in Eukaryonten, FKBP12, ist ein relativ gut untersuchtes Immunophilin. Es vermittelt in Abhängigkeit von der gebundenen immunsupprimierenden Substanz unterschiedliche Antworten (Bram et al., 1993, Mol. Cell. Biol. 13: 4760-4769; Brown et al., 1994, Nature 369: 756-758; Liu et al., 1991, Cell 66: 807-815). Die Bindung von FK506 an FKBP12 führt zur Komplexbildung mit der Calzium/Calmodulin abhängigen Proteinphosphatase Calzineurin.

15

20

25

30

10

5

Calzineurin ist an zahlreichen Signaltransduktionen beteiligt und seine Inhibierung durch den FKBP12-FK506-Komplex vermittelt u.a. die Unterdrückung der T-Zellaktivierung. Die Unterdrückung der Immunantwort durch FK506 wird anders als von Rapamycin über die Inaktivierung von Calzineurin vermittelt (Schreiber and Crabtree, 1992, Immunology Today 13:136-142). Im Komplex mit Rapamycin interagiert FKBP12 mit dem Protein mTOR (mammalian target of rapamycin). Eine Domäne des Proteins mTOR besitzt Sequenzhomologie zur katalytischen Domäne von Phosphatidylinositol-Kinasen (Sabatini et al., 1994, Cell 78: 35-43). Die Antwort, die FKBP12 mit Rapamycin vermittelt, führt in Interleukin-2 stimulierten T-Abwesenheit von Zellen zur Arretierung in der G1-Phase des Zellzyklus. In immunsupprimierenden Substanzen interagiert FKBP12 mit Elementen anderer Signaltransduktionen, z.B. mit dem Rezeptor für den Transforming Growth Factor-b (TGF-b Rezeptor) und moduliert seine Funktion bei der Zellzykluskontrolle (Wang et al., 1994, Science 265: 674-676). FKBP12 ist desweiteren an der Regulation zweier intrazellulärer Calziumkanäle beteiligt, nämlich des Inositol-1,4,5-triphosphatrezeptors und des Ryanodinrezeptors (Brillantes et al., 1994; Cameron et al., 1995, Cell 83: 463-472). FK506 oder Rapamycin führte zur Dissoziation von FKBP12 und Calzineurin von den Calziumkanalkomplexen und darüber zu einem erhöhten Calzium-Efflux durch diese Kanäle. Die Regulation der Calziumkanäle durch FKBP12 konnte anhand von Untersuchungen einer transgenen Mausmutante, die kein

10

15

20

25

30

funktionelles FKBP12 exprimiert, bestätigt werden (Shou et al., 1998, Nature 391: 489-492). FKBP12-defiziente Mäuse starben vor oder kurz nach der Geburt an einer Herzmuskelschwäche, die auch bei Patienten beobachtet wurde, die mit FK506 behandelt wurden. Die Calzium-Leitfähigkeit der Ryanodinrezeptoren in Skelettmuskeln dieser Mäuse glich der eines gereinigten Rezeptors ohne gebundenes FKBP12.

FKBP59 aus Säugetieren wurde als essentielle Komponente von nicht an Liganden gebundene Steroidrezeptorkomplexe identifiziert (Sanchez et al., 1990, Biochemistry 29: 5145-5152). In diesem Multiproteinkomplex sind ebenfalls zwei Hitzeschock-Proteine, Hsp70 und Hsp90, identifiziert worden. Die Bindung von FKBP59 an den Steroidrezeptor erfolgt indirekt über Hsp90 (Peattie et al., 1992). Die Interaktion von FKBP59 und Hsp90 wird von einem Protein-Protein-Interaktionsmotiv, konservierten den sogenannten Tetratricopeptid-Wiederholungen (TPR) vermittelt Das TPR-Motiv ist eine 34-Aminosäuresequenz, die ursprünglich in Proteinen gefunden wurde, die bei der Zellzyklusregulation, Transkriptionsregulation, dem Proteintransport und an der Hitzeschockantwort beteiligt sind (Goebl and Yanagida, 1991, TIBS 16: 173-177). Die TPR-Domäne des Typs III besteht aus der dreimaligen Wiederholung des TPR-Motivs, wobei zwei der Wiederholungen direkt aufeinanderfolgen. Der Abstand zum ersten TPR-Motiv ist konserviert und beträgt 10-16 Aminosäuren. Die Sequenzmotive bilden amphipatische α-Helices, die als "knob-hole"-Struktur bezeichnet wurden und eine spezifische Protein-Protein-Interaktion vermitteln können.

Die Bindung eines Steroidhormons an den Rezeptorkomplex führt zur Dissoziation von FKBP59 und Hsp90. Der ligandengebundene Steroidrezeptor kann nun in den Kern gelangen und ist an DNA gebunden am Aufbau eines Transkriptionkomplexes beteiligt. Es wird diskutiert, daß FKBP59 und die Hsp-Proteine zur Erhaltung der Konformation des nicht Liganden-gebundenen Steroidrezeptors benötigt werden (Pratt and Welsh, 1994, Sem. Cell Biol. 5: 83-93).

Vor wenigen Jahren wurden Immunophiline aus Pflanzenextrakten von Vicia faba über ihre Affinität zu FK506 und CyclosporinA isoliert (Luan et al., 1994, Proc. Natl. Acad. Sci. USA 91: 984-988). Dabei wurde auch ein FKBP12 isoliert, das hohe Sequenzhomologie zu FKBP12 aus Hefen und Tieren zeigt (zwischen 47%-51% Aminosäuresequenzidentität). In vitro zeigte dieses FKBP12 aus Vicia faba jedoch nur geringe Affinität zu Calzineurin, und in Hefen exprimiert vermittelte es nicht die Wirkung von FK506 und Rapamycin (Xu et al., 1998, Plant J. 15: 511-

519). In Vicia faba konnte injiziertes FK506 eine Calzium-abhängige Regulation von Kaliumkanälen in Schließzellen nur dann inhibieren, wenn humanes FKBP12 ebenfalls exogen verabreicht wurde (Luan et al., 1993, Proc. Natl. Acad. Sci. USA 90: 2202-2206), was ein Hinweis auf das Vorhandensein einer FKBP12-FK506 Signaltransduktionskette in Pflanzenzellen ist, ohne daß ein endogener Rezeptor für FK506 vorliegt.

5

10

15

20

25

30

In der Pflanzenzüchtung wird seit langer Zeit versucht, gewünschte Eigenschaften von Nutz- und Zierpflanzen zu verbessern. Bisher sind diese Verbesserungen durch sehr langfristige und kostenintensive Methoden der konventionellen Züchtung erzielt worden. Allerdings dauert die Entwicklung von neuen Pflanzensorten und Produkten oft 10 bis 15 Jahre. Eine alternative Strategie besteht darin, durch Nutzung genetischer Information wie "Marker gestützte Züchtung" und gentechnische Veränderungen, gezielt Pflanzen mit einer Verbesserung gewünschter Eigenschaften für Nutz- und Zierpflanzen bereitzustellen. Ein gewünschter Aspekt ist dabei die Erhöhung des Ertrags durch die Vergrößerung der Zahl oder des Volumens von erntebaren Samen (1000 Korn-Gewicht), die bei vielen Nutzpflanzen die ertragsbestimmenden Organe darstellen. Hierbei ist jedoch nicht nur die Vergrößerung der Parameter Zahl und Volumen gewünschtes Ziel, sondern auch die Vermeidung von Samenverlusten durch Samenfall vor der Ernte und die Reduzierung von Druschverlusten während der Ernte. Während der Samenreife, nach der Füllung der Samen mit Speicherstoffen, wird die Phase der Samenruhe eingeleitet. Diese Entwicklungsphase ist durch Trocknung der Samen-tragenden Organe z.B. Schoten oder andere Öffnungsfrüchte gekennzeichnet. Die Schoten platzen im Laufe dieser Phase entlang der Nähte des Organs auf, um die Verbreitung der Samen zu gewährleisten. In produktionstechnischer Hinsicht ist dieser für die Verbreitung der generativen Organe einer Pflanze wichtige Vorgang nicht erwünscht. Samen, die vor Beginn der Ernte durch Wettereinflüße wie Niederschlag oder Wind aus den Früchten gelöst werden, als auch Samen, die durch die mechanischen Manipulationen während des Erntevorgangs zu Boden fallen, müssen als Ernteverlust gewertet werden.

Die Veränderung der Gesamtarchitektur einer Pflanze mit dem Ziel der Reduktion des Sproßwachstums ist für Nutzpflanzen, deren Ertrag durch erntebare Fortpflanzungsorgane bestimmt wird, seit langer Zeit erklärtes Ziel der Züchtung. Zum einen besteht hierbei die Möglichkeit der Verschiebung der Verhältnisse der Biomasse von nicht ertragsrelevanten vegetativen Bereichen der Pflanze in ertragsbestimmende Ernteorganen. Zum anderen wird durch

10

15

20

25

die Verkürzung von Sproßbereichen die Festigkeit der Pflanze gegenüber Witterungseinflüßen erhöht. Diese Aspekte sind besonders bei der Züchtung von Getreidepflanzen von großer Wichtigkeit, da ein relevanter Teil des Ertragsverlustes durch Halmbruch (lodging) vor der Ernte ausgemacht wird. Der Ertrag von Getreiden ist in den letzten 50 Jahren erheblich gesteigert worden, wobei Zwergwuchs vermittelnde Mutationen, wie beispielsweise Rhtl, Rht2, Rht3 in Weizen oder D8 und D9 in Mais, die in kommerziell genutzte Sorten eingekreuzt wurden, einen erheblichen Anteil an dieser Ertragssteigerung haben. Das Ergebnis dieser züchterischen Arbeit waren Linien, die bei Zugabe von Kunstdünger nicht mit Verlängerung des Halms, sondern mit der Erhöhung des Samenertrags reagierten (Silverstone und Sun, Trends in Plant Science 5: 1-2 (2000).

Ein verringerter Wuchs ist auch bei Zierpflanzen oft erwünscht. Hier ist besonders auf die Erzeugung von Bonsaigewächsen als auch verkleinerter Versionen vieler Zierpflanzen und Schnittblumen z.B. Sonnenblumen hingewiesen. In diesem Zusammenhang kann auch der verdrehte Wuchs wieder von Interesse sein, da Strauch- und Baumgewächse mit verdrehtem Wuchs z.B. Korkenzieherweiden oder Ficus im Zierpflanzenangebot zu finden sind. Bei der Produktion von Nutzholz kann ein verdrehtes Wachstum des Sproßes und der Verzweigungen erwünschte Eigenschaften hervorrufen. Bei Bäumen lässt sich einerseits durch Bildung von sogenanntem "Kompressionsholz" Holz mit veränderten Festigkeitseigenschaften und veränderten Erträgen gewinnen. Hierbei werden von Pflanzen mit stark lignifizierten Sproßorganen bei Veränderungen der vorgegebenen Wachstumsrichtung zur Entlastung von mechanischen Streß erhöhte Mengen an Kompressionsholz gebildet. Diese Eigenschaft kann bei der Produktion von Holz für die Papierherstellung genutzt werden. Holz, das als Bauholz oder zur Herstellung von Möbeln verwendet wird, kann durch verdrehtes Wachstum der erntebaren Sproßbereiche mit veränderter Festigkeit produziert werden, da hierbei Druck- und Zugfestigkeitseigenschaften der Sproßbereiche verändert sind. Fasern produzierende Pflanzen können durch das verdrehte Wachstum Pflanzenfasern mit neuen, erwünschten Eigenschaften der Verarbeitung und physikalischen Eigenschaften (Festigkeit etc.) hervorbringen.

30 Die hier genannten Aufgaben werden durch den Gegenstand der Patentansprüche gelöst.

Die Erfindung wird durch die nachfolgenden Figuren näher erläutert:

20

25

Figur 1 zeigt die genomische Sequenz des twisted dwarf Gens aus Arabidopsis thaliana, Ökotyp Wassilewskija, einschließlich des Promoterbereichs. Das Start- und Stop-Codon sind unterstrichen dargestellt. Exonsequenzen sind durch Fettdruck gekennzeichnet, Intronsequenzen sind kursiv gedruckt. Am Zeilenbeginn der Nukleotidsequenz sind die durchnummerierten Positionen angegeben. In den Zeilen unter der Nukleotidsequenz ist jeweils die Aminosäuresequenz des offenen Leserasters angegeben. Aminosäurepositionen sind am Zeilenende nummeriert.

Figur 2 zeigt eine Darstellung des Aminosäurevergleichs des twd-Gens aus Arabidopsis thaliana (TWD) und Lycopersicon esculentum (TTP). Identische Aminosäuren sind durch einen senkrechten Strich, ähnliche Aminosäuren durch zwei Punkte verbunden.

Figur 3 zeigt eine Darstellung des Aminosäurevergleichs des twd-Gens aus *Arabidopsis thaliana* (TWD) und *Zea mays* (ZmTWD). Identische Aminosäuren sind durch einen senkrechten Strich, ähnliche Aminosäuren durch zwei Punkte verbunden.

Der hier verwendete Ausdruck "Vektor" bezeichnet natürlich vorkommende oder künstlich hergestellte Konstrukte zur Aufnahme, Vermehrung, Expression oder Übertragung von Nukleinsäuren, z.B. Plasmide, Phagemide, Cosmide, künstliche Chromosomen, Bakteriophagen, Viren, Retroviren.

Der hier verwendete Ausdruck "Derivate" bezeichnet Nukleinsäuresequenzen oder Aminosäuresequenzen, die eine oder mehrere Modifikationen wie Deletionen, Substitutionen, Additionen, Insertionen und/oder Inversionen aufweisen.

Der hier verwendete Ausdruck "Fragmente" bezeichnet Nukleinsäuresequenzen oder Aminosäuresequenzen, die einen Teilbereich der erfindungsgemäßen Nukleinsäuresequenzen oder Aminosäuresequenzen umfassen.

Der hier verwendete Ausdruck "transformierte Pflanzenzelle" bezeichnet Pflanzenzellen und aus ihnen hervorgegangene Pflanzen oder Pflanzenorgane, die durch Übertragung von Nukleinsäuren z.B. Plasmide, Phagemide, Cosmide, künstliche Chromosomen, Bakteriophagen, Viren, Retroviren oder Nukleinsäuresequenzen, die nicht in Vektorkonstrukte gefaßt wurden, genetisch

verändert wurden.

5

10

15

20

25

30

Der hier verwendete Ausdruck "Steuerelemente" bezeichnet Nukleinsäuresequenzen, die für die Regulation der Expression eines Gens dienen. Diese Nukleinsäuresequenzen beeinhalten sowohl Promotorbereiche eines Gens, als auch regulatorische Bereiche innerhalb der translatierten wie nicht-translatierten Regionen eines Gens.

Der hier verwendete Ausdruck "Hybridisierung oder "hybridisieren" bedeutet stringente und weniger stringente Bedingungen; vgl. Sambrook et al., Molecular Cloning, Cold Spring Harbour Laboratory (1989), ISBN 0-87969-309-6. Ein Beispiel für stringente Hybridisierungsbedingungen ist: Hybridisierung in 4 x SSC bei 65° C (alternativ in 50% Formamid und 4 X SSC bei 42° C), gefolgt von mehreren Waschschritten in 0,1 x SSC bei 65° C für insgesamt eine Stunde. Ein Beispiel für wenig stringente Hybridisierungsbedingungen ist Hybridisierung in 4 x SSC bei 37° C, gefolgt von mehreren Waschritten in 1 x SSC bei Raumtemperatur.

Der hier verwendete Ausdruck "homologe Sequenz" oder "homolog" bezeichnet eine Nukleinsäure- oder Proteinsequenze, die die Aktivität der Nukleinsäure- oder Proteinsequenzen gemäß SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 aufweisen. Als homologe Sequenzen gelten ferner Nukleinsäuresequenzen, die mit der Sequenz gemäß SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 oder Teilen dieser Sequenzen unter stringenten oder wenig stringenten Bedingungen hybridisieren. Als homologe Sequenzen sollen des weiteren Nukleinsäure- oder Proteinsequenzen oder Teile davon gelten, die unter Zuhilfenahme des Similaritätsalgorithmus BLAST (Basic Local Alignment Search Tool, Altschul et al., Journal of Molecular Biology 215, 403-410 (1990) (Matrix: Blosum 62, Gap existence cost: 11, Per residue gap cost:1) eine signifikante Ähnlichkeit mit den Nukleinsäure- und Aminosäuresequenzen der vorliegenden Erfindung aufweisen. Als signifikant ähnlich werden, wie hier verwendet, Sequenzen bezeichnet, die z.B. unter Verwendung von Standardparametern im Blast-Service des NCBI ein Signifikanzniveau (Probability) von P < 1e⁻³⁰ aufweisen, wenn Sie mit den Sequenzen gemäß SEQ ID NO:1 oder SEQ ID NO:2 oder Teilen davon verglichen werden.

Der hier verwendete Ausdruck "Marker gestützte Züchtung" bezeichnet die Selektion von

10

15

20

25

30

Pflanzen unter Verwendung genetischer Informationen und davon abgeleiteten molekularen Markern wie AFLP, RFLP, SNP etc. in Züchtungsprogrammen. Die erwähnten molekularen Marker repräsentieren alle Arten von Nukleinsäuresequenzveränderungen, die über diagnostische DNA-Analysen wie PCR, Restriktionsanalyse oder Hybridisierung nachgewiesen und zur Durchmusterung von Pflanzenpopulationen benutzt werden können.

Aus einer Population von Arabidopsis thaliana-Pflanzen, die durch T-DNA Insertion mutagenisiert wurden, konnte eine Mutante isoliert werden, die sich durch drastische Veränderung ihres Phänotyps auszeichnet. Die twisted dwarf-Mutante (im Nachfolgenden twd genannt) besitzt einen pleiotropen Phänotyp, dessen Ausprägung sich in der Pflanzenarchitektur und der Physiologie manifestiert. Die twd-Mutante ist in ihrer Gesamtgröße stark reduziert, zum Zeitpunkt der Seneszenz erreicht sie nur ein Drittel der Wildtyp-Gesamtgröße (ca. 25 cm). Die Mutante ist wie auch andere Arabidopsis-Zwergmutanten dunkler grün und wirkt aufgrund der verkürzten Infloreszenzen kompakt. Das Wachstum der Rosettenblätter zeichnet sich durch extrem epinastische Krümmung und eine unregelmäßige Oberfläche aus. An ausgebreiteten Rosettenblätter ist zu erkennen, daß das Verhältnis von Blattlänge zur Blattspreite kleiner ist als bei Wildtyp-Rosettenblättern. Die stark verkürzte Sproßachse der Infloreszenz besitzt einen größeren Durchmesser als Wildtyp-Pflanzen. Das desorientierte Wachstum der Sproßachse gibt der Mutante ein für Arabidopsis thaliana ungewöhnliches Aussehen, das an eine Rankenpflanze erinnert. Das desorientierte Wachstum der Pflanzenorgane ist auch in den Staubblättern und im Fruchtknoten zu beobachten.

Die DNA-Sequenzen des mutierten Gens wurden über die Methode des Plasmid-Rescue in E.coli aus der Mutante isoliert. Hierbei wird die Tatsache ausgenutzt, daß die zur Mutagenese verwendete T-DNA zwei Sequenzbereiche enthält, die Replikation und Selektion in E.coli-Zellen ermöglichen. Durch Spaltung von genomischer DNA der twd-Mutante mit geeigneten Restriktionsendonukleasen (hier EcoRI) wurden DNA-Fragmente erzeugt, die nach Selbstligation in transformationskompetente E.coli-Zellen eingebracht wurden. Die Selektion Plasmid-tragender Klone erfolgte über Resistenz gegen das Antibiotikum Ampicillin auf festen Nährmedien. Von diesen Klonen wurden DNA der transformierten Plasmide isoliert und über Spaltung mit Restriktionsendonukleasen Hybridisierung und nachfolgender mit Hybridisierungsproben der verwendeten T-DNA-Klone identifiziert, die neben T-DNA-Sequenzen auch DNA-Sequenzen des mutierten twd-Locus enthielten. Diese DNA-Sequenzen wurden isoliert und in den Vektor pBluescript(SK-)® (Stratagene, USA) subkloniert. Die inserierten DNS-Sequenzen wurden mit der Kettenabbruchmethode nach Sanger sequenziert. Zur nachfolgenden Isolierung von genomischen und cDNA-Klonen des twd-Gens aus Genbibliotheken wurden die klonierten DNA-Sequenzen als Hybridisierungssonden verwendet.

5

10

15

20

25

30

Die vorliegende Erfindung betrifft eine Nukleinsäuresequenz gemäß SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 oder deren Fragment oder Derivat oder eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz gemäß SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 hybridisiert und die biologische Aktivität der Nukleinsäuresequenz gemäß SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 besitzt. Ferner betrifft die Erfindung eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz gemäß SEQ ID NO:1, SEQ ID NO:5 oder SEQ ID NO:7 unter stringenten Bedingungen hybridisiert. Die Nukleinsäuresequenz gemäß SEQ ID NO:1 stellt die genomische DNA-Sequenz, die Nukleinsäuresequenz gemäß SEQ ID NO:2 die cDNA-Sequenz des twisted dwarf-Gens aus Arabidopsis thaliana, SEQ ID NO:5 ein Fragment der cDNA-Sequenz des homologen twisted dwarf-Gens aus Lycopersicon esculentum, SEQ ID NO:7 ein Fragment der cDNA-Sequenz des homologen twisted dwarf-Gens aus Zea mays dar.

Ferner betrifft die Erfindung ein Polypeptid, umfassend eine Aminosäuresequenz gemäß SEQ ID NO:3, SEQ ID NO:4 oder SEQ ID NO:8. Die Aminosäuresequenz kann modifiziert sein, so daß die Aminosäuresequenz an einer oder mehreren Positionen Aminosäure-Additionen, -Deletionen oder -Insertionen aufweist. Die Aminosäuresequenz gemäß SEQ ID NO:3 stellt die Aminosäuresequenz des twisted dwarf-Proteins aus Arabidopsis thaliana, SEQ ID NO:6 die Aminosäuresequenz des Homologen twisted dwarf-Proteins aus Lycopersicon esculentum, SEQ ID NO:8 die Aminosäuresequenz des Homologen twisted dwarf-Proteins aus Zea mays dar.

Die vorliegende Erfindung betrifft Nukleinsäuresequenzen aus einem pflanzlichen Genom, insbesondere bevorzugt aus Arabidopsis thaliana, Zea mays oder Lycopersicon esculentum, die die Kodierregion eines FKBP-ähnlichen (FK506 bindendes Protein) Gens (twisted dwarf) enthalten, deren Aktivität die Ausprägung der Gesamtarchitektur der Pflanze insbes. Zellwachstum, Wachstumsorientierung, Verzweigungsgrad, etc. kontrolliert. Der Ausfall dieser Aktivität z.B. durch Mutation oder Deletion in einem pflanzlichen Genom führt zur Veränderung der Gesamtarchitektur der Pflanze durch Verringerung des Zellwachstums, Desorientierung des

WO 00/50598

Wachstums aller überirdischen wie unterirdischen Organe, Verringerung des Verzweigungsgrads des Sproßes, Veränderungen in der Reaktion auf Brassinosteroide und deren Vorstufen und Derivate, und die Veränderung der Reaktion der Wurzel auf gravitrope Reize durch die Veränderung von Ethylenproduktion und Ethylen-induzierte Signalweiterleitung. Die erfindungsgemäße Nukleinsäuresequenz kann in einen Vektor eingefügt werden, der zusätzlich ein oder mehrere Steuerelemente umfasst, die die Transkription und/oder Translation der erfindungsgemäßen Nukleinsäuresequenz steuern. Ferner betrifft die Erfindung Vektoren, z.B. Plasmide, und Wirtszellen, z.B. Hefen und Bakterien, umfassend die erfindungsgemäße Nukleinsäuresequenz.

PCT/DE00/00506

10

15

20

25

30

5

Weiterhin betrifft die Erfindung die Verwendung der erfindungsgemäßen Nukleinsäuresequenz zur Identifizierung und Isolierung homologer oder verwandter FKBP ähnlicher Gene und der daraus abgeleiteten Aminosäuresequenz aus anderen dikotylen und monokotylen Pflanzen durch Datenbankvergleiche, Hybridisierung oder durch PCR-Techniken, die allesamt dem Fachmann bekannt sind.

Zum Auffinden von homologen oder verwandten FKBP ähnlichen Genen aus anderen Pflanzen mittels eines Datenbankvergleichs können die erfindungsgemäßen Nukleinsäuresequenzen oder die davon abgeleiteten erfindungsgemäßen Polypeptidsequenzen in Datenbankvergleichen mit dem Similaritaetsalgorithmus BLAST (Basic Local Alignment Search Tool, Altschul et al., Journal of Molecular Biology 215, 403-410 (1990), blastn für Vergleiche mit Nukleinsäuresequenzen, tblastn für Vergleiche mit Polypeptidsequenzen) unter Verwendung von Standardparametern im Blast-Service des NCBI eingesetzt. Hierbei werden Gensequenzen mit einem Signifikanzniveau von P < 1e⁻³⁰, die auch eine ähnliche Domänenstruktur wie die erfindungsgemäßen Nukleinsäuresequenzen oder die davon abgeleiteten Polypeptidsequenzen aufweisen, als homolog oder verwandt zum twd-Gen bezeichnet.

Die vorliegende Erfindung betrifft ferner ein Verfahren zur Herstellung von Pflanzen, umfassend das stabile Integrieren mindestens einer erfindungsgemäßen Nukleinsäuresequenz in das Genom von Pflanzenzellen oder Pflanzengeweben und Regeneration der erhaltenen Pflanzenzellen oder Pflanzengeweben zu Pflanzen. Bevorzugt betrifft die Erfindung ein Verfahren, wobei die integrierte Nukleinsäuresequenz ferner ein oder mehrere Steuerelemente umfasst, die die Transkription und/oder Translation der Nukleinsäuresequenz gewährleisten. Besonders

bevorzugt betrifft die Erfindung ein Verfahren, wobei die integrierte Nukleinsäuresequenz in Antisense-Orientierung exprimiert wird. Ferner besonders bevorzugt betrifft die Erfindung ein Verfahren, wobei die integrierte Nukleinsäuresequenz die Aktivität eines Ribozyms besitzt, das die biologische Aktivität der endogenen Nukleinsäuresequenz unterdrückt, die ein FKBP ähnliches Protein kodiert. Die erfindungsgemäße Nukleinsäuresequenz und gegebenenfalls ihre Steuerelemente können über homologe Rekombination in die genomische DNA der Zielzellen integriert werden. Die homologe Rekombination kann ferner so durchgeführt werden, daß die erfindungsgemäße Nukleinsäuresequenz in den genomischen Bereich des endogenen Gens, das ein FKBP ähnliches Protein kodiert, integriert wird.

10

15

20

5

Das erfindungsgemäße Verfahren ist dabei nicht auf eine bestimmte Pflanzenart begrenzt, sondern kann in allen Pflanzen angewendet werden. Bevorzugte Pflanzen sind z.B. Nutz- oder Zierpflanzen z.B. Getreide wie Weizen, Mais, Reis, Roggen oder Gerste, Leguminosen wie Erbse, Bohne, Kichererbse, Linsen oder Sojabohne, Brassicaceen wie Raps oder Senf, Faserpflanzen wie Flachs, Hanf oder Baumwolle, Bäume wie Fichte, Pappel, Buche, Eiche oder Nußholz, Ziersträucher, oder Nachtschattengewächse wie Tomate oder Kartoffel.

Die Erfindung betrifft ferner transformierte Pflanzenzellen oder transformiertes Pflanzengewebe, umfassend eine stabil in das Genom der Pflanzenzelle oder des Pflanzengewebes integrierte erfindungsgemäße Nukleinsäuresequenz. Bevorzugt sind transformierte Pflanzenzellen oder transformiertes Pflanzengewebe, die zu einer Samen-produzierenden Pflanze regenerierbar sind. Die Erfindung betrifft ferner transgene Pflanzen und deren Samen umfassend eine rekombinante erfindungsgemäße Nukleinsäuresequenz.

Die Erfindung betrifft ferner Mutanten z.B. in Arabidopsis thaliana, Zea mays oder Lycopersicon esculentum, in denen die endogene twisted dwarf DNA-Sequenz (FKBP-ähnliches (FK506 bindendes Protein) Gen) z.B. durch T-DNA Insertion oder durch Deletion oder Insertion verschieden großer DNA-Bereiche verändert wurde und die erwähnten phänotypischen Veränderungen aufweisen. Ferner betrifft die Erfindung transgene Pflanzen, bei denen mutierte DNA-Sequenzen der angegebenen Gensequenz durch Einführung intakter Genkenien.

DNA-Sequenzen der angegebenen Gensequenz durch Einführung intakter Genkopien phänotypisch zum Wildtyp restauriert wurden.

Die erfindungsgemäße Nukleinsäuresequenz bzw. das erfindungsgemäße Verfahren kann verwendet werden, um transgene Pflanzen mit einem veränderten, d.h. desorientierten, Wachstum herzustellen. Das desorientierte Wachstum manifestiert sich in einer Veränderung der Struktur von Zellwänden und intrazellulären Stütz- und Formelementen (z. B. Cytoskelett). Solche Veränderungen können für die Herstellung von Pflanzen verwendet werden, die zur Produktion von Faserstoffen und anderen Materialien verwendet werden, die neue, veränderte Materialeigenschaften haben. Durch das verdrehte Wachstum von lignifizierten Stützorganen z.B. bei Bäumen lässt sich auf der einen Seite durch Bildung von sogenanntem "Kompressionsholz" Holz mit veränderten Festigkeitseigenschaften und eventuell veränderten Erträgen gewinnen. Fasem produzierende Pflanzen können durch das verdrehte Wachstum Pflanzenfasern mit neuen, erwünschten Eigenschaften der Verarbeitung und physikalischen Eigenschaften (Festigkeit etc.) hervorbringen.

Ein weiterer Aspekt des verdrehten Wachstums betrifft die Verdrehung der Wachstumsrichtung um die Längsachse von Öffnungsfrüchten z.B. Schoten von Nutzpflanzen. Dieses Wachstum hat ein reduziertes spontanes Aufplatzen der Öffnungsfrüchte zum Zeitpunkt der Samenreife zur Folge. Zum Zeitpunkt der Samenreife, nach der Füllung der Samen mit Speicherstoffen, wird die Phase der Samenruhe eingeleitet, die durch Trocknung und Aufplatzen der Öffnungsfrüchte zur Verbreitung der Samen gekennzeichnet ist. Ein verdrehtes Wachstum der Öffnungsfrüchte z.B. Schoten verhindert die vollständige Öffnung der Schote und führt somit zu reduziertem Samenfall. Hiermit werden Druschverluste bei der mechanischen Manipulation während des Erntevorgangs und Ernteverluste durch ungewollten vorzeitigen Samenfall reduziert. Diese Eigenschaften sind besonders bei allen Nutzpflanzen mit erntebaren Öffnungsfrüchten z.B. Soja, Raps, Senf oder Leguminosen aller Art nützlich.

25

30

5

10

15

20

Es konnte ferner gezeigt werden, daß die erfindungsgemäße Nukleinsäuresequenz nicht nur für die Wachstumsrichtung sondern auch für die Größe der Pflanze an sich verantwortlich ist. Somit betrifft die vorliegende Erfindung auch transgene Pflanzen, die einen verkleinerten Habitus gegenüber ihren Wildtyp-Pflanzen besitzen. Zum einen gilt das für alle Getreide wie beispielsweise Weizen, Mais, Reis, Roggen, Gerste etc., die durch Halmverkürzung zum einen höhere Stabilität während des Wachstums und der Ernte und damit verringerten Halmbruch z.B. bei Niederschlägen und Wind, als auch eine höhere Produktion von Biomasse in den erntebaren Organen aufweisen. Ferner ist verringerter Wuchs auch bei Zierpflanzen oft erwünscht. Hier ist besonders auf die Erzeugung von Bonsaigewächsen als auch verkleinerter Versionen vieler

Zierpflanzen und Schnittblumen z.B. Sonnenblumen hingewiesen. In diesem Zusammenhang kann auch der verdrehte Wuchs zusätzlich von Interesse sein, da Strauch- und Baumgewächse mit verdrehtem Wuchs z.B. Korkenzieherweiden oder Ficus im Zierpflanzenangebot zu finden sind.

5

10

15

20

25

30

Die Schote ist, wie die Blüte, in ihrer Gesamtlänge geringer reduziert als die übrigen Organe, der Blütenstil ist jedoch stark verkürzt. Die Samen der twisted dwarf-Mutante zeigen auffälligerweise nicht die starke Größenreduzierung der anderen Pflanzenorgane. Im Vergleich zu Wildtypsamen ist bei Samen von twisted dwarf Mutanten sogar ein größeres Volumen festzustellen. Ferner betrifft die vorliegende Erfindung somit eine Erhöhung des Gesamterntegewichts von samentragenden Pflanzen. So konnte gezeigt werden, daß die durchschnittliche Anzahl der Samen pro Schote bei twd-Mutanten von Arabidopsis thaliana (20) auf ca. ein Drittel der Anzahl einer entsprechenden Wildtyp-Pflanze (57) reduziert ist. Die Zahl der Schoten an einer Pflanze war jedoch bei twd-Mutanten (417) gegenüber dem Wildtyp (136) erheblich erhöht. Daher ergibt sich für die durchschnittliche Gesamtzahl an geernteten Samen pro Pflanze für twd-Mutanten ein um ca. 10% erhöhter Ertrag an Samen. Die Dimensionen der Samen zeigen bei twd-Mutanten und entsprechenden Wildtyp-Pflanzen ebenfalls erhebliche Unterschiede. Abschätzungen der Samenvolumina nach Leon-Klosterziel et al., Plant Cell 6: 385-392 (1994) zeigen für Samen von twd-Pflanzen ein um ca. 50% vergrößertes Volumen. Diese Eigenschaften sind besonders bei allen Nutzpflanzen mit erntebaren Schoten z.B. Soja, Raps, Senf oder Leguminosen aller Art nützlich.

Unabhängig von der unterschiedlich ausgeprägten Größenreduktion einzelner Pflanzenorgane ist das unregelmäßige und desorientierte Wachstum in allen Pflanzenorganen einschließlich der Wurzel von Arabidopsis thaliana beobachtet worden. Die twisted dwarf-Mutation führt neben Veränderungen des Wachstums auch zu einer verlangsamten Entwicklung der Pflanze. Dies zeigt sich in einem verlängertem Lebenszyklus der twisted dwarf-Mutante im Vergleich zum Wildtyp. Nach etwa 6 Wochen unter Langtagbedingungen (Lichtphase mind. 16 Stunden) setzt die Seneszenz beim Wildtyp ein. Der Lebenszyklus der twisted dwarf Mutante ist unter Langtagbedingungen um etwa eine Woche verlängert, unter Kurztagbedingungen (Lichtphase maximal 9 Stunden) sind es ca. drei Wochen. Durch den Defekt im twd-Gen ist eine Verlängerung der vegetativen Lebensphase um 5 Tage (ca. 20% längere vegetative Phase) der Mutanten zu beobachten. Dieser Umstand lässt sich für die Produktion von Pflanzen ausnutzen,

bei denen eine Verzögerung des Eintretens in die generative Phase und ein verzögertes Eintreten der Seneszenz gewünscht ist, z.B. bei Zierpflanzen.

Die verminderte Gesamtgröße der twisted dwarf-Mutante ist durch eine Verkürzung der Zellen verursacht. Epidermiszellen von primären Infloreszenzen des Wildtyps und der twisted dwarf-Mutante, die mit einer Pinzette abgelöst und anschließend mit Safranin-Rot angefärbt wurden, zeigen eine Verkürzung der Zellen aus der twisted dwarf Mutante auf ca. 33%. Sprühversuche von auf Erde wachsenden twisted dwarf-Mutanten mit 10⁻⁷ M des Brassinosteroids Brassinolid zeigten ein verstärktes Streckungswachstum gegenüber Kontrollexperimenten. Wurden jedoch Doppelmutanten von twisted dwarf und der Campesterol-Reduktase-Mutante det2, die eine Zwergmutante von Arabidopsis thaliana darstellt, die durch exogene Applikation von Brassinosteroiden zum Wildtyp komplementiert werden kann, mit 10⁻⁷ M Brassinolid gesprüht, war bei diesen Pflanzen, die extremen Zwergwuchs aufweisen, keinerlei Reaktion auf die Brassinolidgaben festzustellen. Dieses Ergebnis zeigt daher, daß es sich bei der twisted dwarf-Mutante um eine Pflanze handelt, die an der Rezeption oder der Signalweiterleitung der Brassinosteroidantwort in Pflanzen beteiligt ist. Zum einen lassen sich durch Herstellung solcher Mutanten, Pflanzen mit reduzierten Wuchs als Zierpflanzen oder andere Nutzpflanzen gezielt herstellen. Zum anderen können solche Pflanzen als Modelle zur Untersuchung der Steroidhormonwirkung verwendet werden.

20

25

30

5

10

15

Die offensichtliche Beteiligung an der Brassinosteroid-Signalrezeption und -Signalverarbeitung des TWD-Genprodukts ermöglicht es, Pflanzen zu erzeugen, die durch Veränderung des TWD-Genprodukts selbst oder der Menge an TWD-Genprodukt, über die Reaktion gegenüber dem Pflanzenwuchsstoff Brassinosteroid und seinen Derivaten in Habitus, Lebenszyklus, Ertrag etc. beeinflußbar sind. Es ist dadurch auch möglich, Modellsysteme für Untersuchungen der Wirkweise von Brassinosteroid und seinen Derivaten in Nutzpflanzen zu schaffen, die zur Entwicklung von spezifischen Wuchsstoffen und Effektoren führen.

Das desorientierte Wachstum der twisted dwarf-Mutante führte zu der Frage, ob die Mutante in der Lage ist ein gerichtetes, asymmetrisches Wachstum als Reaktion auf einen unidirektionalen Reiz (Tropismus) auszuführen. Die oberirdischen Pflanzenorgane reagierten wie der Wildtyp mit positivem Phototropismus und mit negativem Gravitropismus. Der Wurzelgravitropismus der Mutante twisted dwarf und des Wildtyps wurde anhand der Anzucht von Keimlingen auf vertikal

positionierten Agarplatten verfolgt. Die vertikale Umorientierung der Platten nach 7 Tagen um 90° führte zu einer Änderung der Wachstumsrichtung deren Winkel nach weiteren 5 Tagen gemessen wurde. Ein Krümmungswinkel zwischen 80°-100° wurde als gravitrop definiert (Yamamoto and Yamamoto, 1998, Plant Cell Physiol. 39: 660-664). Von Keimlingen der Mutante twisted dwarf zeigten nur 27% der Wurzeln ein gravitropes Wachstum. Die restlichen 73% zeigten ein agravitropes Wachstums. Die Wurzeln von Wildtyp-Keimlingen führten alle eine Änderung der Wachstumsrichtung um ca. 90° aus, was einem positiv-gravitropen Wachstum entspricht. Ein agravitropes Wurzelwachstum wurde auch in den Mutanten eirl (Luschnig et al., 1998, Genes Dev. 12: 2175-2187) und aux1 (Maher and Martindale, 1980, Biochem. Genet. 18: 1041-1053) beobachtet. Diese Mutanten sind exogenen Applikationen von Ethylen gegenüber insensitiv. Um die Ethylensensitivität der twisted dwarf-Mutante zu untersuchen, wurden Keimlinge unter den gleichen Bedingungen wie für die Kontrolle beschrieben inkubiert, nur wurden der Luft 10 ppm Ethylen zugesetzt. Zunächst wurde die twisted dwarf-Mutante auf ihren Phänotyp hin untersucht. Die erhöhte Ethylenkonzentration verursachte phänotypische Veränderungen zu denen eine Verkürzung der Wurzel, eine Zunahme des Hypokotylumfangs und eine Verkleinerung der Blattspreite gehören. Diese Veränderungen wurden im Wildtyp und in der twisted dwarf-Mutante gleichermaßen beobachtet. Auffällig war, daß die Wurzeln von twisted dwarf-Mutanten, die unter erhöhter Ethylenkonzentration gewachsen waren, alle ein gravitropes Wachstum zeigten, das dem des Wildtyps entsprach. Ethylenkonzentration konnte jedoch keine weiteren Eigenschaften des twisted dwarf-Phänotyps revertieren. Die Messung der Krümmungswinkel zeigte, daß alle Wurzeln der twisted dwarf-Mutanten, die unter 10 ppm Ethylen angezogen worden waren, gravitrop wuchsen, jedoch nur 27% der unter Luft gewachsen twisted dwarf-Wurzeln einen normalen Gravitropismus zeigten. Die Wurzeln von Wildtyp-Keimlingen wuchsen unter beiden Bedingungen gravitrop.

25

30

20

10

15

Um zu überprüfen, ob der Wurzelgravitropismus der twisted dwarf-Mutante durch die Wirkung des Phytohormons Ethylen korrigiert wurde, wurde der Einfluß von Inhibitoren der Ethylenbiosynthese und von Inhibitoren der Ethylenwirkung auf den Wurzelgravitropismus von twisted dwarf- und Wildtyp-Keimlingen untersucht. Es wurde der gleiche Versuch wie oben beschrieben durchgeführt, allerdings mit dem Zusatz von Silbernitrat im Arabidopsis-Medium, einem Inhibitor der Ethylenwirkung. Eine Konzentration von 1 µM Silbernitrat im Wachstumsmedium und 10 ppm Ethylen in der Wachstumskammer führten bei den Wurzeln der twisted dwarf-Mutante verstärkt zu agravitropem Wachstum. Dieser Effekt wurde für Wildtyp-

Aminoethoxyvinylglycin (AVG), Pflanzen nicht festgestellt. das die endogene Ethylenbiosynthese hemmt, führte in einer Konzentration von 1 μM dazu, daß nur 12% der Wurzeln von twisted dwarf-Mutanten gravitrop wuchsen. Bei diesem Versuch waren unter Kontrollbedingungen (Luft) 35% der Wurzeln von twisted dwarf-Mutanten gravitrop gewachsen. Unter Zusatz von 1 µM AVG zeigten jedoch auch 41% der Wurzeln von Wildtyp-Pflanzen ein agravitropes Wachstum. Ethylen ist für den Wurzelgravitropismus von Bedeutung, da die Hemmung der endogenen Ethylensynthese auch bei Wildtypwurzeln zum agravitropen Verhalten führt. Mutanten von twisted dwarf in Arabidopsis thaliana oder Lycopersicon esculentum und anderen Pflanzen können zur Herstellung von Pflanzen und Pflanzenorganen dienen, die eine verringerte Menge an Ethylen produzieren oder akkumulieren. Dieser Effekt lässt sich gezielt bei der Beeinflußung der Frucht-und Samenreifung, sowie der Verlängerung und Kontrolle der Blühphase von Zier- und Nutzpflanzen einsetzen, da diese Prozesse durch die Menge an Ethylen in den entsprechenden Organen bzw. Pflanzen kontrolliert werden.

5

10

25

30

Da der Gravitropismus der Wurzel in twd-Mutanten unter normalen Wachstumsbedingungen stark reduziert ist und nur bei exogener Zugabe des gasförmigen Phytohormons Ethylen rekonstituiert wird, lässt sich über diese Eigenschaft die Ausprägung des Wurzelgravitropismus einfach regulieren. Hierdurch wird die Verankerung der Wurzel im Erdreich beeinflußt, was Auswirkungen auf die Festigkeit von bodenbedeckenden Pflanzen, sowie generell die Verankerung von Nutzpflanzen im Substrat hat. Die Induktion des Wurzelgravitropismus ist durch Ethylen zu beliebigen Zeitpunkten der Entwicklung einleitbar. Diese Tatsache lässt sich auch ausnutzen, andere Entwicklungsprozesse der Pflanze durch Ethylen zu regulieren.

Da es sich bei twd um eine Mutante in einem FK506 bindenden Protein handelt, lassen sich diese Pflanzen als nicht-tierische Modelle für Untersuchungen an entsprechenden Immunsuppressiva (besonders FK506 (Tacrolimus), Rapamycin, Cyclosporin A und weiterer Substanzen mit ähnlicher Wirkung) sowie Prozessen der Signalvermittlung der Wirkung von Immunsuppressiva, in der Pharmaforschung einsetzen. Hierbei können neue, pflanzenspezifische zelluläre Interaktionen und Wirkmechanismen studiert werden, die in der Form in tierischen Systemen nicht vorhanden sind. Unter anderem lassen sich so an FKBPs verarmte Modelle entwickeln, in denen die Wirkung nicht nur von immunsuppressiven Substanzen sondern auch genetisch modifizierter Liganden für diese Substanzen testen lassen.

Der Vergleich der abgeleiteten Aminosäuresequenz des offenen. Leserasters der twisted dwarf cDNA in den aktuellen Sequenzdatenbanken zeigt eine Sequenzidentität von 30-33% und eine Sequenzähnlichkeit von 43-53% zu FKBPs aus Menschen, Tieren und anderen Pflanzen (PILEUP, Genetic Computer Group, Wisconsin Package Version 9.1-Unix, Sept.1997 (Gap creation penalty: 5; gap extension pealty: 1)). Das abgeleitete twisted dwarf Peptid weist bei den für eine FK506 Interaktion 14 identifizierten Aminosäurepositionen in vier Fällen identische und in weiteren vier Fällen konservierte Aminosäurenaustausche auf. Im C-terminalen Bereich des Peptids ist eine dreifache Wiederholung eines TPR-Motivs zu finden. Für diese Motive ist in tierischen Systemen eine Interaktion mit Hsp90 mit FKBPs nachgewiesen worden (Callebaut et al., 1992, Proc. Natl. Acad. Sci. USA 89: 6270-6274). Pflanzliche Mutanten dieser Klasse von Proteingenen lassen sich als nicht tierische Modellsysteme für das Studium der Wirkung und Signalweiterleitung von Immunophilinen entwickeln.

Die folgenden Ausführungsbeispiele dienen der Erläuterung der Erfindung und sind nicht als einschränkend aufzufassen.

I. Allgemeine Methoden

10

20

25

1. Klonierungsverfahren

Zur Klonierung wurden der Phagenvektor Lambda ZipLox und das daraus abgeleitete Plasmid PZL-1 (Newman et al., 1994, Plant Phys. 106: 1241-1255) sowie das Phagemid pBluescript (pBS) (Short et al., 1988, Nucl. Acids Res. 16: 7583-7600) verwendet. Zur Expression in *E.coli* wurde der Expressionsvektor pET3-His (Novagen) verwendet. Für die Transformation von Hefen wurden die Vektoren pAS1 und pACT2 (Clontech, Matchmaker 2-Hybrid System) und pRS314 (Sikorski und Hieter, 1989, Genetics 122: 19-27) verwendet. Für die Pflanzentransformation wurden die Genkonstruktionen in pRT-W NotI (Überlacker and Werr, 1996, Mol. Breeding 2: 293-295) und in den binären Vektor pGPTV-Bar (Becker et al., 1992, Plant Mol Biol. 20: 1195-1197) kloniert.

2. Bakterien- und Hefestämme

Für den pBluescript KS (pBS) Vektor, das Plasmid pZL-1 sowie für pAS1, pACT2 und pGPTV Konstrukte wurde der E.coli-Stamm DH5α (Hanahan et al., 1983, J. Mol. Biol. 166: 557-580) verwendet. Die Expression des twisted dwarf Proteins erfolgte im E.coli-Stamm Bl21 (Studier und Moffat, 1986). Die Transformation der pGPTV-Konstrukte in Arabidopsis-Pflanzen wurde

mit Hilfe des Agrobacterium tumefaciens-Stammes GV3101:pMP90 (Koncz und Schell, 1990, Mol. Gen. Genet. 204: 383-396) durchgeführt. Die Transformation von 2-Hybridkonstrukten erfolgte in den Hefestamm Y190.

5 3. Transformation von Agrobacterium tumefaciens

Der Transfer der DNA in Agrobakterien erfolgte durch direkte Transformation mit nackter DNA nach Höfgen und Willmitzer (1988, Nucl. Acids Res. 16: 9877). Die Plasmid-DNA transformierter Agrobakterien wurde nach der Methode von Birnboim und Doly (1979, Nucl. Acids Res. 7: 1513-1523) isoliert und nach geeigneter Restriktionsspaltung gelelektrophoretisch auf Korrektheit und Orientierung der inserierten DNA überprüft.

4. Pflanzentransformation

10

15

20

25

30

Mit einer positiven Kolonie wurden 150 ml antibiotikahaltiges YEB-Medium angeimpft und 2 Tage bei 28°C geschüttelt. Mit 10-15 ml dieser Vorkultur wurden 500 ml antibiotikahaltiges YEB-Medium angeimpft. Diese Kultur wurde über Nacht bei 28°C auf dem Schüttler inkubiert und am nächsten Tag 15 min bei 4.000 rpm abzentrifugiert. Die sedimentierten Bakterien wurden in Infiltrationsmedium aufgenommen. Die Konzentration der Suspension wurde per Trübungsmessung bestimmt und auf eine OD600 (optische Dichte) zwischen 0,8 und 1,2 eingestellt. In einen Vakuumexikator wurden 400 ml mit Agrobakteriensuspension gefüllte Plastik-Bechergläser gestellt. Töpfe mit Arabidopsis-Pflanzen wurden umgedreht auf die Bechergläser gestellt, so daß die Infloreszenzen der Pflanzen in die Agrobakteriensuspension hineintauchten. Es wurde ein Vakuum von 10-30 mbar für 15 min angelegt und anschließend der Vakuumexikator zügig belüftet. Eine Bakteriensuspension wurde für bis zu vier aufeinanderfolgende Infiltrationen verwendet. Danach wurden die Pflanzen weiter bis zum Abreifen der Schoten unter Langtagbedingungen (16 Stunden Licht/8 Stunden Dunkelheit) gehalten. Die 10 Pflanzen eines Topfes wurden in zwei Tüten (2 Pools) zu je 5 Pflanzen zum Sammeln der Samen eingetütet, wenn die ältesten Schoten der Pflanzen reif waren. Die gut getrockneten Samen konnten für eine Selektion mit BASTA® (Aventis CropScience, S.A., Lyon Frankreich) direkt auf Erde ausgesät werden.

Die Aussaat erfolgte nach Pools getrennt in großen Schalen. Das erste Sprühen der Keimlinge mit BASTA®-Lösung erfolgte, wenn die Keimblätter voll entwickelt waren. Die Keimlinge wurden in den darauffolgenden 6 Tagen noch 1-2 mal mit BASTA® gesprüht. Nicht BASTA®-

resistente Keimlinge blichen noch im Keimblattstadium aus und entwickelten sich nicht weiter. Die resistenten Keimlinge wurden bis zur Samenreife weiter wachsen gelassen und die Samen dieser Pflanzen einzeln abgeerntet.

5 <u>II. Ausführungsbeispiele</u>

Ausführungsbeispiel 1: Isolation des FKBP ähnlichen twisted dwarf Gens aus T-DNA getaggten Insertionslinien von *Arabidopsis thaliana* mittels Plasmid-Rescue und Isolierung von Vollängen cDNA- und genomischen Klonen aus Genbibliotheken.

10

15

20

Aus einer mittels T-DNA transformierten *Arabidopsis thaliana*-Linie (Feldmann, 1991, Plant J. 1:71-82; Forsthoefel et al., 1992, Aust. J. Plant Physiol. 19: 353-366) wurde über Plasmid-Rescue (Schulz et al., 1995, Plant Mol. Biol. Manual, pp 1-17) eine 200 bp lange die T-DNA Insertion flankierende DNA Sequenz des twisted dwarf Gens isoliert. Radioaktiv markierte Proben, die aus den bei der Plasmid-Rescue gewonnenen Plasmiden (Klon pBUB 52) hergestellt wurden, wurden zum Screenen der CD4-7 IPRL-2 cDNA-Bibliothek (Newman et al., 1994, Plant Phys. 106: 1241-1255) und der CD4-11 genomischen Cosmid-Bibliothek (Schulz et al., 1995, Plant Mol. Biol. Manual, pp 1-17) eingesetzt. Ca. 200 000 Klone der cDNA-Bibliothek wurden mit diesen Hybridisierungsproben gescreent. Aus einem positiv reagierenden I-Klon wurde über *in-vivo*-Excision ein Plasmid isoliert und durch Bestimmung der DNA-Sequenz (Didesoxymethode: Sanger et al., 1977, Proc. Natl. Acad. Sci. USA 74: 5463-5467) analysiert. Aus dieser DNA-Sequenz wurde die Primärstruktur des twisted dwarf Proteins abgeleitet (Klon pBUB 65). Die cDNA wurde anschließend benutzt, um einen genomischen Klon aus der Cosmid-Bibliothek zu isolieren.

25

Ausführungsbeispiel 2: Expression von twisted dwarf Peptiden in E.coli, Reinigung der Proteine und Gewinnung von Antiseren gegen das Protein in Kaninchen

Partielle cDNA-Sequenzen, die für die Aminosäurepositionen 1-324 und 1-187 kodieren, wurden über PCR amplifiziert und nach Spaltung mit BamHI und XhoII in das Leseraster der His-Tag-Sequenz des mit BamHI linearisierten Vektors pET3 ligiert. Kompetente Bl21-Zellen wurden mit den Ligationen transformiert und die Expression der Peptide nach Induktion mit IPTG in Rohextrakten auf Laemmli-Gelen nachgewiesen. Die Fusionspeptide mit dem His-Tag wurden

über Ni-NTA-Agarose (Novagen) gereinigt. Die apparenten Molekulargewichte wurden nach Vergleich mit Größenmarkern als 33 kDa für das Peptid, das den Bereich von Position 1-187 umspannt und als 44kDa für das Peptid des Bereichs von Position 1-324 bestimmt. Zur Immunisierung von Kaninchen wurden das aufgereinigte Peptid (Pos. 1-187) über ein präparatives SDS-PAGE-Gel gereinigt. Die Proteinbande wurde durch Färbung des Gels mit Cu2+-Ionen identifiziert, ausgeschnitten und zermörsert. Das zerkleinerte Gel wurde in Puffer aufgenommen und zur Immunisierung von Kaninchen von der Firma BioGenes (Berlin) eingesetzt. Nach der ersten Immunisierung erfolgten zwei weitere Booster-Immunisierungen, bevor Antiseren gegen das twisted dwarf Protein durch Blutungen der Tiere gewonnen wurden. Die Erkennung des twisted dwarf Proteins durch das Antiserum wurde in Immunoblot-Experimenten getestet.

Ausführungsbeispiel 3: Transformation von mutierten Arabidopsis thaliana Pflanzen mit einer Konstruktion zur Überexpression der Kodierregion des twisted dwarf Proteins

15

20

25

10

5

Zur Komplementation von twisted dwarf-Mutanten (twisted dwarf1-1, twisted dwarf1-3, twisted dwarf1-4) wurde das offene Leseraster des twisted dwarf-Gens anhand von PCR aus dem Plasmid BUB65 amplifiziert und nach BamHI/BglII Spaltung in die BamHI-Schnittstelle des Vektors pRT-Ω NotI kloniert. Der pRT-Ω NotI besitzt vor der BamHI-Restriktionssequenz einen CaMV 35S Promotor sowie eine Ω-Sequenz aus dem Tabak-Mosaik-Virus, welche die Translation von verschiedenen Reportergenen in Pflanzen 2-10fach erhöhen kann (Gallie et al., 1989, Plant Cell 1: 301-311). Ein Polyadenylierungssignal aus dem Blumenkohlmosaikvirus befand sich hinter der BamHI-Restriktionssequenz. Die Sequenzierung des Inserts zeigte, daß die klonierte twisted dwarf-cDNA-Sequenz keine Sequenzveränderungen aufwies. Die Kassette wurde mit dem Restriktionsenzym AscI aus dem pRT-Ω NotI herausgespalten und nach Auffüllen der überhängenden Enden durch Klenow-Polymerase in die ebenfalls aufgefüllte HindIII-Restriktionsstelle des binären Pflanzenvektors pGPTV-BAR ligiert. Das uidA-Leseraster war zuvor aus dem pGPTV-BAR durch eine Smal/EcoRI Spaltung deletiert worden.

Die Transformation von twisted dwarf-Mutanten anhand einer Vakuuminfiltration von Blüten erfolgte mit den binären Vektoren unter Verwendung des Agrobakterienstamms GV3101 pMP90. Transgene Arabidopsis thaliana-Pflanzen wurden wie beschrieben auf Herbizidresistenz selektioniert und phänotypisch analysiert. Das Vorhandensein und die Struktur der

30

transformierten Konstrukte in den transgenen Pflanzen wurde über DNA-Gelblot Analyse festgestellt. Alle mit der Gensequenz des intakten twisted dwarf Gens transformierten Mutantenpflanzen zeigten eine Reversion des Phänotyps zum Wildtyp.

21

5 Ausführungsbeispiel 4: Sequenzanalyse verschiedener mutierter twisted dwarf Allele in Arabidopsis thaliana-Mutanten

Weitere Arabidopsis thaliana-Mutanten, die den Phänotyp der twisted dwarf-Mutante aufwiesen, wurden aus verschiedenen mutagenisierten Populationen isoliert. Über eine Kreuzungsanalyse mit der durch T-DNA-Insertion generierten Mutante konnte gezeigt werden, daß die verschiedenen Mutanten Allele des gleichen Gens darstellen. Über ein DNA-Gelblot-Experiment konnte für zwei der Mutanten ein Restriktionsfragment-Längenpolymorphismus (RFLP) gezeigt werden.

Zur genaueren Analyse der twisted dwarf-Mutanten wurden PCR-Produkte der mutierten Allele 15 des Gens sequenziert und mit der Wildtyp-Sequenz verglichen. Die T-DNA Insertion im twisted dwarf-Allel 1-1 liegt im fünften Exon an Position +1484. Eine Deletion von 593 Bp von Position -122 bis +471 führte in der Mutante twisted dwarf1-3 zum Verlust eines Teils des Promotors, des Transkriptionsstarts sowie der ersten 35 Bp des offenen Leserasters. Die Verkürzung eines EcoRI-Fragments von etwa 600 Bp war schon in einem DNA-Gelblot-Experiment beobachtet 20 worden. Eine Nukleotidinsertion im dritten Exon an Position +823 und ein Nukleotidaustausch von Adenin zu Guanin an der Position +829 sind in der Mutante twisted dwarf1-4 identifiziert worden. Der Nukleotideinschub verursacht eine Leserasterverschiebung und führt dadurch zu einem Translationsstop nach 85 Aminosäuren. Bei allen twisted dwarf-Allelen handelt es sich um sogenannte Nullallele, die kein funktionelles Genprodukt mehr hervorbringen können. Alle 25 untersuchten twisted dwarf-Mutanten zeigen die gleiche Ausprägung des oben beschriebenen twisted dwarf-Phänotyps.

Ausführungsbeispiel 5: Identifizierung von Homologen des twd-Gens aus anderen Pflanzenarten.

1. Identifizierung des twd-Homologen aus Lycopersicon esculentum

Zur Amplifikation und nachfolgenden Identifikation von Homologen des twd-Gens aus anderen Pflanzen wurden die Oligonukleotide twd-S und twd-A als PCR-Primer aus der Gensequenz des

twd-Gens abgeleitet. Mittels dieser Oligonukleotide wurde in einer PCR unter folgenden Bedingungen auf DNA einer cDNA-Bank von Tomate (*Lycopersicon esculentum*) Sequenzen des *twd*-Homologs aus Tomate isoliert:

5 1 x 94°C 2 min

dann 35 Zyklen:

94°C 1 min

58°C 1 min

72°C 2 min

20

25

30

10 dann 4°C bis zur Entnahme aus der PCR-Maschine.

Sequenz des Primers twd-S:

5' -CT(C/T) (G/T)TG C(A/T)T GT(G/T) (G/T)GC TGG GAA TTA G-3'

Sequenz des Primers twd-A:

15 5' -CCA TCC ATT TT(C/T) CTT CT(A/G) T(G/C)T GCT GC-3'

Das erhaltene PCR-Produkt (SEQ ID NO:4) wurde in den Vektor pGEM-T easy® (Promega) kloniert und durch Kettenabbruchmethode nach Sanger sequenziert. Mit Hilfe der Sequenzen der EST-Klone AW038756, AI895686, AW441601, AW222544 aus Tomate (Lycopersicon esculentum) (GenBank online, Release <115), die Zuhilfenahme unter des Similaritätsalgorithmus BLAST (Basic Local Alignment Search Tool, Altschul et al., Journal of Molecular Biology 215, 403-410 (1990) (tblastn, cutoff für P value: 6e⁻²⁶, Matrix: Blosum 62, Gap existence cost: 11, Per residue gap cost:1) mit der Aminosäuresequenz des Arabidopsis TWD-Proteins gefunden wurde, konnte ein cDNA Contig über insgesamt 1142 Basenpaare zusammengestellt werden (TomTWDContig; SEQ ${
m I\!D}$ NO:5). Der Bereich Sequenzüberlappungen der EST-Klone mit dem Klon TomTWD umspannt die Nukleotid-Positionen 1 bis 95 von TomTWD mit AW441601 und 121 bis 140 von TomTWD mit AW222544. Die Translation des längsten offenen Leserasters der Nukleotidsequenz von TomTWDContig in Aminosäuren ergibt ein durchlaufendes Peptid (TTP) mit einer Länge von 320 Aminosäuren (SEQ ID NO:6). Die Identität zum TWD Protein aus Arabidopsis beträgt 74,1%, die Ähnlichkeit 85,3% zu den Aminosäurepositionen 1 bis 316 des TWD Proteins aus Arabidopsis.

2. Identifizierung des twd-Homologen aus Zea mays

5

10

Mit Hilfe der Sequenzen der EST-Klone AW216068 und AW171820 aus *Zea mays* (GenBank online, Release <115), die unter Zuhilfenahme des Similaritätsalgorithmus BLAST (Basic Local Alignment Search Tool, Altschul et al., Journal of Molecular Biology 215, 403-410 (1990), tblastn, cutoff für P value < 1e⁻³¹, Matrix: Blosum 62, Gap existence cost: 11, Per residue gap cost:1) mit der Aminosäuresequenz des Arabidopsis TWD-Proteins in der Non-redundant Database of GenBank EST Division/Subdivision *Zea mays* gefunden wurde, konnte ein cDNA Contig über insgesamt 776 Basenpaare zusammengestellt werden (ZmTWDContig, SEQ ID NO:7). Die Translation des längsten offenen Leserasters der Nukleotidsequenz von ZmTWDContig in Aminosäuren ergibt ein durchlaufendes Peptid (ZmTWD, SEQ ID NO:8) mit einer Länge von 168 Aminosäuren. Die Identität zum TWD Protein aus Arabidopsis beträgt 68,5%, die Ähnlichkeit 79,8% zu den Aminosäurepositionen 196 bis 365 des TWD Proteins aus Arabidopsis.

15

25

30

24 Patentansprüche

- 1. Nukleinsäuresequenz gemäß SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 oder deren Fragment oder Derivat oder eine Nukleinsäuresequenz, die mit der Nukleinsäuresequenz gemäß SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 hybridisiert und die biologische Aktivität der Nukleinsäuresequenz gemäß SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 besitzt.
- Nukleinsäuresequenz nach Anspruch 1, wobei die hybridisierende Nukleinsäuresequenz
 unter stringenten Bedingungen mit der Nukleinsäuresequenz gemäß SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:5 oder SEQ ID NO:7 hybridisiert.
 - 3. Polypeptid, umfassend eine Aminosäuresequenz gemäß SEQ ID NO:3, SEQ ID NO:6 oder SEQ ID NO:8.
 - 4. Vektor, umfassend eine Nukleinsäuresequenz gemäß Anspruch 1 oder 2.
- 5. Vektor gemäß Anspruch 4, ferner umfassend ein oder mehrere Steuerelemente, die die Transkription und/oder Translation der Nukleinsäuresequenz gemäß Anspruch 1 oder 2 gewährleisten.
 - 6. Verfahren zur Herstellung von Pflanzen, umfassend das stabile Integrieren mindestens einer Nukleinsäuresequenz gemäß Anspruch 1 oder 2 in das Genom von Pflanzenzellen oder Pflanzengeweben und Regeneration der erhaltenen Pflanzenzellen oder Pflanzengeweben zu Pflanzen.
 - 7. Verfahren nach Anspruch 6, wobei die integrierte Nukleinsäuresequenz ferner ein oder mehrere Steuerelemente umfasst, die die Transkription und/oder Translation der Nukleinsäuresequenz gewährleisten.
 - 8. Verfahren nach Anspruch 6 oder 7, wobei die integrierte Nukleinsäuresequenz in Antisense-Orientierung exprimiert wird.

- Verfahren nach Anspruch 6 oder 7, wobei die integrierte Nukleinsäuresequenz die 9. eines Ribozyms besitzt, das die biologische Aktivität Nukleinsäuresequenz gemäß Anspruch 1 oder 2 unterdrückt.
- 5 Verfahren nach Anspruch 6, wobei die Nukleinsäuresequenz in den genomischen Bereich 10. des homologen endogenen Gens durch homologe Rekombination integriert wird.
 - Transformierte Pflanzenzelle oder transformiertes Pflanzengewebe, umfassend eine stabil 11. in das Genom der Pflanzenzelle oder des Pflanzengewebes integrierte Nukleinsäuresequenz gemäß Anspruch 1 oder 2.
 - Pflanzenzelle oder Pflanzengewebe nach Anspruch 11, regenerierbar zu einer Samen-12. produzierenden Pflanze.
- Transgene Pflanze und deren Samen umfassend eine rekombinante Nukleinsäuresequenz 15 13. gemäß Anspruch 1 oder 2.

1 / 4

Figur 1A

1	G 1C 1AAGAACCTTAAGGAGAAAGAGATTAAGAGGCAGACATTGCTTGAGCTTGTTGATT
61	TGTTGCATCAGTTGGTTTTAAGTTTAACGATGTTTCGATGCAAGAGTTAACGAAGATGGT
121	AGCGGTTAATCTGTTTAGAACTTTTCCTTCTGCGAATCACGAGAGTAAAATTCTTGAAAT
181	ACATGATATGGATGATGAAGAACCTTCTTTGGAGCCAGCTTGGCCTCATGTTCAAGTTGT
241	GTATGAGATTCTTCTCAGATTCGTGGCTTCTCCCATGACTGATGCAAAGCTTGCCAAGAG
301	ATATATTGACCATTCTTTTGTCTTGAAGCTCTTAGACTTGTTTGATTCTGAAGATCAAAG
361	AGAGAGGGAATATCTAAAAACTATTCTGCATCGGGTGTACGGGAAGTTCATGGTGCATCG
421	ACCTTACATCAGAAAGGCGATAAACAATATCTTCTACAGATTCATATCCGAGACTGAAAA
481	GCATAATGGCATTGCGGAGTTGCTAGAGATTCTTGGAAGTATAATTAAT
541	GCCTTTAAAAGAAGAGCACAAGCTCTTCCTTTTGCGAGCCTTGATTCCTCTCCACAAGCC
601	TAAATGTTCATCAGTCTATCACCAACAGCTTTCGTATTGCATTGTTCAGTTTGTAGAAAA
661	GGACTTCAAGCTCGCTGATACCGTTATTAGAGGTCTTTTAAAATATTGGCCTGTGACTAA
721	CAGCTCAAAGGAAGTTATGTTTCTTGGAGAGTTAGAAGAAGTCTTGGAAGCAACTCAAGC
781	CGCTGAGTTTCAACGTTGTATGGTTCCATTATCCCGACAAATTGCTCGATGCCTCAACAG
841	TTCACATTTCCAGGTTCGAGTCTTTGACTATCACCAACTTCATATCTATC
901	TAAAGTCTTGTACCTATATATGAAGTTGTACTTTTTGTTTG
961	TTGTTTCTATGGAACAACGATCACATAAGAAACCTGATCACTCAGAACCATAAAGTGATA
1021	ATGCCTATAGTCTTCCCAGCTCTTGAGAGAAACACGCGTGGACATTGGAACCAAGCAGTT
	CAAAGTCTGACTATAAACGTGAGGAAAGTATTATGCGAGATTGACCAAGTTCTTTTCGAC
	GAGTGTTTAGCCAAATTCCAAGTAGAAGAAGTGAATAAAACAGAGGTTAAAGCGAAACGG
	GAAAGGACATGGCAACGGTTAGAAGATTTAGCTACTTCAAAGACCGTTGTAACCAACGAG
	GCAGTACTGGTTCCAAGATTTGTGTCCTCAGTCAATCTTACTACAAGCAGCTCTGAGTCC
	ACAGGGTCGTAGTAGGCTCTCGTAGGTTACTATGTACTTGTAACAAATATTTGTGGTCAC
1381	TATAGAAATGGTTCTTGAGAGACGACTGTATAATTATTTTTTTAAATTATAATCTTTTGG
1441	GTCAAATTGAGAATATTTGATATTATTTTACTGAATTATAATAAACGCCGTTAAAACTCT
1501	CGTTAGTTAACGGCTGACTCTGAAGTGAAAACTGAAAAGTCGAAGGGTCTCTTTATATTT
	TCAGAATCAAAATCTGAAATTTATCTCTCGGTCGATCCAGTCTTCGTGAGTGA
	GACGACGACGAGTCACACTACTCTTGAGCTTCTCATACTTCGTAAGTTCACTCTCTTT
	CTCTAAATTGACAAACTTTTTCTTCGTTTTCTGCTATTATTGACGACGAGACTTGATTTT

2 / 4

Figur 1B

1/4	1 61	-1-1-	T.G.F	AA	TGF	AAA'	rgg:	ITC.	AAG	TAG	CTC	GAC	TT	CGI	CT	ATG	TTC	TTT	TGG	GTT	TTT	JTC/	A
180	1 TT	'GA	ATC	TT	ACI	TG	CTC	GAT'	TTG	GTC	GA7	rgt	TT	AAI	CA	TT	CAA	CAC'	TTA	AAG.	ATTO	CAA:	r
186	l TT	TT	3GA	TT	GAC	AC:	rtgo	CAC	ATT'	TTT	'AT'	CA	GA	CCC	'AGC	3TT	GAT'	TTG	GGA/	AAT	AATO	3GA1	Г
																					М	D	2
1921	L GA E	AT(S	CTC L	TG	GAG E	CAT H	CA <i>I</i> Q	AAC: T	rca <i>i</i> Q	AAC T	ACA H	TG D		AAG	AT	\AT'	rtt(CATA	AGAT	rtt?	\AT(TCT	r 13
1981	L CT	GAZ	ATA	.CA'	TAT	'ATA	TGA	CTI	rca <i>i</i>	ATA	TGT	TT	GA'	ГТG	GAG	TT	CTT:	rtg:	rtgi	rcc	CATA	\TTC	2
2041	AA	TTC	GA	TG	CTT	TG1	TAA	AGC	SATA	AAA	TGI	CT	AT(CAA	ATI	ATO	STT	GACI	rgco	TT	\TTC	TTT	:
2101	CT.	AAA	ATC.	AT	ATT	GTC	TAA	'CT'I	rggz	AAC.	AAA	.GC	ATO	ЗТА	TAC	AA	:AA	TTT	GTI	'AG	CTI	'AAT	•
2161	. AA	CTC	CT	TT:	rct	GTI	'TGT	TAA	AGA,	TT	GAG	AA.	rg <i>i</i>	CT	ATT	'GGC	GT	rgac	TAA	TGC	ATC	TTT:	
2221	TG	rgg	CT	CCI	AGA	CCA	AGA	GAG	GCG#	AA.	TAG	TTI	ACT	ΓGA	AGG	AAC	TGC	CGI	ጉጋጥ	יכרצ	тас	ידיכי א	
						Q	E	S	E	I	V		Г	Ε	G	s	A	v	v	Н	S	E	29
2281	GC(CAT S	CT	CAZ Q	AGA E	GGG G	TAA N	TGT V	TCC P	TC(P	CTA K			'GA' D	TAG S	TGA E	AGC A	TGA E	.GGT V	CTI L	GGA D	TGA E	49
2341	GA.	\AG	TC	AGT	AA	GCA	GAT	TAT	'AAA	.GG/	AAG	GTC	ם. ים	יככי	יייר	C N N	አ <i>ሮር</i>	י א יייי	ר ת ת		_		
	K	V		3	K	Q	I	I	ĸ	E	G			G	s	K	P	S	K	Y	s	T	69
2401	ATC C	GCT F	TT:	rgi L	'AA(GTA	CCC	TTT	'AGC	TTT	CT	GTI	GA	TT	GGA	TGT	TGA	TTT	TTC	GAT	TGC	ACT	72
2461	TGT	TG	GCC	CTA	TTC	GCT.	ACT	GTT	TAT	TTC	GAA'	ГСТ	TT	CT	ATC'	TGA	CCA	ATT	TCA'	ТАТ	TGG	CCA	
2521																							
		1	H	Y	R	A	W	Т	K	. 1			Q	Н	K		E		Т	W			91
2581	AGC C	AG	CAA Q	ACC P	TAT I	TTG: E	AAT' L	TGG' V	TTC L	TTG			.GG E	TAT	GT	GGC	TGT	CGA	ATA'	TGT.	ACTO	CTA	102
2641	CAC	CT	CCA	TT	TCC	TT	AGA:	rga.	ATC	GTC	'ATI	rgg	TA	AAT	TT	GAT(GAG	TTA	GCT"	rgr	GTA:	TTA	
2701																							
2761	CTT	CAJ	ATG	CT	GAI	TAC	GCC(CAT:	TTT	AAC	GTC	CAC	TA	TAC	'AA'	rTT'	LLL.	TTA:	LAA1	AAA	AGAT	rtg	
2821														GAA	AA	AAG	AAC'	TAG	CCGC	TT.	rago	CA	
2991	TCC	C TO C	·~~	~~																	A		111
2881	G	Ţ	7	A	S	M	K	AGT(CTG(G	GTG E	AAC R	GT(GC(A	GCT L	TG1 V	GC! H	ATG: V	rtg(G	GCTC W	GGZ E	LAAF L	'AG A	131
2941	CTT.	ATC	GG.	AAA	AGA	AGG	AAA	CTT	TTT	CTT	TTC	CCZ	AA:	ГGТ	TCC	ACC	TA:	rggo	CAGA	CTI	GTT	'AT	
	Y	G	3	K	E	G	N	F	S	F	P	ì	Ŋ	V	P	P	M	A	D	L	L	Y	151
3001	ATG:	AGG V	TG(GA <i>I</i> E	AGT V	TAT I	TGG G	GTI F	TG <i>I</i> D	ATG. E	AAA T	CAZ	AA(K	GGA E	GGI	'AAC	TT	\TT7	CCI	ATA	\CCA		163

Figur 1C

5001		. С 1	101	. 1 1	CC.	LIP	icc.	AAG	ACC	JAC	TC	CA	CA.	rcc	AA	GCI	TT.	ATC	CC	AAC	CCT	CC.	TTG	CTI	'AC	
3121	CI	CT	CTG	AC	TT	\GA	TG.	ATG	TA:	TTG	AA	CA	3G(GAA	AAC	GCT	CGG	CAG	TG:	מידמ	ידנ	א כי	тст	א כי א	cc	
																	R									174
3181	AΑ	AG	GAT	'TG	GTO	CA	.GC	AGA	.CA	SAA	GA.	AAZ	AA7	rgg	ATO	GG	מב	rrc	ייתרי	היהים	ىلىش	מ מ	3C N	CCN	CA	
		R	I	G	P	4	A	D	R	R	. 1	K	M	D			N	s	L			K		E E		194
3241	AA	.CTC	3GA	.GG	AAC	SCC	'AT	GCA	AC	AGT	ΆΤα	GA/	ΓA	rgg	ז ידי די	ייני	רמי	רכיד	יריםי	ርጥር	תידיי	TO	rcm	א תיי	ma.	
		L	E	Ε	P	1	M	Q	Q	Y	I	Ε	М						C1,	C1C	.17	10.	101	AIC	10	204
3301	TC	TTI	rcc	AA	CAA	TT	'AC	GT	CAZ	AAG	TT.	ΓAC	GI	TT	TCA	AGG	CAT	ראכי	د بلايات.	∆כיד	ימטי	יתים	ביתים	CTC	G A	
3361		CIC	-11	GI	310	. 1 1	CI.	rrc	انان	II.	ТТ	JA'l	"T'A	\GT	CAI	'GG	TTI	TG	CTO	STT	TC.				GC Y	207
3421	אידי	7) (C) 7	тс		יר יא	a a	2 000															_	-	_	_	207
3421	Y	ACP N	1	GGG	D D	D.	AT".	. T.T.	ATC M	F F	TC. O	AGC I	TG	TA' Y	TGG G	GA ĸ	AGI V	AC	CAC	GGA	TA'	TGC	ECT'	TTA	GC A	227
2407	7.0					•																				221
3481	AG V	I I A	AA.	aac N	P P	AT C	GCC I	CAT(CTI L	'AA N	CAI I	ΩΩ7 Δ	CA	.GC'	TTG C	CC'	TCA I	TC.	AA.	ACT.	AA/	AAC				247
2541	TIC.	~ ~ ~		7 ma		.																	_	•	D	247
3541	E	AAC A	CA	A.I.J	G	H	AC 1	.'GCA	AAC	:AT′ I	rgī	'AA	.GA	CTO	CAT	'CA	AAC	CA'	TTC	CAT	TTC	3AA	(GA	AA!	ГC	255
3601	ΔΤ΄	בבד	Δ (2'	דידיר	ידעי	א כיי	TOO	, come	rm/	ma	~ ~ ~	. 3.00														
3601	•••		110		-A-1	AC.	100	.GI.	110	. I C	5AP	VA'T	C.I.	AA'.	ľCA	AA(CTC	'AA	AAC	CT'	TAT	rca		rGT: L		257
3661	AC	AGA	ΔG	. ממ	:מכ	מ מ	מ מ מ	CCC	ת תר	77.	מסי			ma:										_		
3661	T	E	E	E	i I	K	N	P	JAA K	AAC		L	GT F				AGG G		AAC A		AAC K		AG/ E	AGCT L		277
3721	GG	מטמ	GAT	rcc	יא מי	TC:	.	יז ככ	ma	200									-				_	_		_ , ,
3721	G	Q	M	D) ו	s S	AGC	R	D	AIC	jAT	TT F	CC P	GA.	AAG	GC! a	ACA	AA!	AGT	'ATC	GCI A	CC P				207
2201																						_	D	D		297
3781	K	₃GC A	GAT I	l'TA R	.GA.	AG <i>I</i> R	AGA E	GCI L	'AC R	GAC	3CA 1	CT	TG A			CA.	AGA E									
										Ī						_		K			L	Y	~	K		317
3841	Q	AA. K	AG/ E	AA. M	TG'	rac v	CAA	AGG	AA:	TAT	TC	AA.	AG	GGA	AA	GA]										
																				I		K	S			337
3901	AGC S	CT'	TTI F	TT: W	'GG'	rtc	TAE	AGI V	'GT'	rat																
						_	_					Q	W	_		V	S	L	F	_		R	Ι	F		357
3961	CGA	CG	CCA	CA	GAC	STI	'AA	AGC	AG	TTA	'AA	TG'	TA?	ГGА	AG/	AAC	GG'	TTA	CA	ATI	ΓA					
	R SLF	R	H	R	1	7	K	Α	D	*															-	365
	-ur	JR.	* T. W	π	π.	/ N.A	ய																			

FIGUR 2

TTP	1 1	AAEVEEEQQLQNSSVDQGSTDEIIAEGASVVRGELPQDDAGPPKVDSEVE 50	
TWD			
TTP	E 1 1	MDESLEHQTQTHDQESEIVTEGSAVVHSEPSQEGNVPPKVDSEAE 45	į
	31 V	THEKVTKQIVKEGHGQKPSKYATCFVHYRAWAESTOHKFEDTWREQOPL 10	0
TWD	46 V	LDEKVSKQIIKEGHGSKPSKYSTCFLHYRAWTKNSQHKFEDTWHEQQPI 95	į
TTP		LVIGKERKEMTGLAIGVNSMKSGERALFHVGWELAYGKEGNESERNUDD	. ^
TWD	96 E	LVLGKEKKELAGIATGVASMYSCEDATA	_
TTP		DVLYEVELIGFDETGEGKARGDMTVEERIGTADRRKMDGNALFKEEKL 200	
TWD			I
		DLLYEVEVIGFDETKEGKARSDMTVEERIGAADRRKMDGNSLFKEEKL 195	
TTP	201 EE	AMOOYEMAIAYMGDDFMFOLFGKFRDMALAVKNPCHLNMAACLLKLOR 250)
TWD	196 ÉÉ	AMQQYEMAIAYMGDDFMFQLYGKYQDMALRVKNPCHLNIAACLIKLKR 245	
TTP	251 YD	EAIAOCSIVLAEEENNVKALFRRGKARSILGOTDAAREDFLKARKLAP 300	
TWD	246 YD	EAIGHCNIVLTEFEKNEKALERBECKARCIAF 300	
TTP		ÉAIGHCNIVLTEEEKNPKALFRRGKAKAELGOMDSARDDFRKAOKYAP 295	
	1	KAITRELNLIAEHEKAVY	
TWD	296 DD	KAIRRELRALAEQEKALYQKQKEMYKGIFKGKDEGGAKSKSLFWLTVL 345	

FIGUR 3

ZmTWD	1	EEAMQQYEMAIAYMGDDFMFQLFGKYRDMALAVKNPCHLNMAACLIKLKR	
TWD	196	EEAMQQYEMAIAYMGDDFMFQLYGKYQDMALRVKNPCHLNIAACLIKLKR	50
ZmTWD			
SIRT MD	21	FDEAIAQCSIVLTEDESNVKALFRRGKAKSELGOTESAREDFLKAKKYSP	100
IWD	246		
7			295
ZmTWD	101	EXKEITRELRLLAEOXKALYOKOKELYKGLFGPSPEAKPKKAKYLVVF	148
TWD	296	DDKAIRRELRALAEQEKALYQKQKEMYKGIFKGKDEGGAKSKSLFWLIVL	
CMTMD	149	WOWLVSFILYLAGMFKRKNE 168	343
rwD	346	: : : WQWFVSLFSRIFRRHRVKAD 365	

SEQUENZPROTOKOLL

```
<110> Schulz Dr., Burkhard
  5
      <120> DNA-Sequenz eines FKBP ähnlichen Proteins
      <130> SCU-001PCT
      <140> xx
 10
      <141> 2000-02-18
      <150> DE 199 07 598.0
      <151> 1999-02-22
 15
      <160> 8
      <170> PatentIn Ver. 2.1
     <210> 1
20
     <211> 4010
     <212> DNA
     <213> Arabidopsis thaliana
     <400> 1
25
     gtctaagaac cttaaggaga aagagattaa gaggcagaca ttgcttgagc ttgttgatta 60
     tgttgcatca gttggtttta agtttaacga tgtttcgatg caagagttaa cgaagatggt 120
     agcggttaat ctgtttagaa cttttccttc tgcgaatcac gagagtaaaa ttcttgaaat 180
     acatgatatg gatgatgaag aaccttettt ggageeaget tggeeteatg tteaagttgt 240
     gtatgagatt cttctcagat tcgtggcttc tcccatgact gatgcaaagc ttgccaagag 300
     atatattgac cattettttg tettgaaget ettagaettg tttgattetg aagateaaag 360
30
     agagagggaa tatctaaaaa ctattctgca tcgggtgtac gggaagttca tggtgcatcg 420
     accttacatc agaaaggcga taaacaatat cttctacaga ttcatatccg agactgaaaa 480
     gcataatggc attgcggagt tgctagagat tcttggaagt ataattaatg gttttgcttt 540
     gcctttaaaa gaagagcaca agctcttcct tttgcgagcc ttgattcctc tccacaagcc 600
     taaatgttca tcagtctatc accaacagct ttcgtattgc attgttcagt ttgtagaaaa 660
35
     ggacttcaag ctcgctgata ccgttattag aggtctttta aaatattggc ctgtgactaa 720
     cagctcaaag gaagttatgt ttcttggaga gttagaagaa gtcttggaag caactcaagc 780
     cgctgagttt caacgttgta tggttccatt atcccgacaa attgctcgat gcctcaacag 840
     ttcacatttc caggttcgag tctttgacta tcatcacaac ttcatatcta tctctcttga 900
    taaagtettg tacetatata tgaagttgta etttttgttt gteaggttge tgaaagagea 960
40
     ttgtttctat ggaacaacga tcacataaga aacctgatca ctcagaacca taaagtgata 1020
    atgcctatag tcttcccagc tcttgagaga aacacgcgtg gacattggaa ccaagcagtt 1080
    caaagtctga ctataaacgt gaggaaagta ttatgcgaga ttgaccaagt tcttttcgac 1140
    gagtgtttag ccaaattcca agtagaagaa gtgaataaaa cagaggttaa agcgaaacgg 1200
    gaaaggacat ggcaacggtt agaagattta gctacttcaa agaccgttgt aaccaacgag 1260
45
```


<210> 2

cgacgccaca gagttaaagc agattaatgt atgaagaagg gttacaatta

4010

```
5
     <211> 1270
     <212> DNA
     <213> Arabidopsis thaliana
     <400> 2
10
     gaaaagtcga agggtctctt tatattttca gaatcaaaat ctgaaattta tctctcggtc 60
     gatccagtct tcgtgagtga cttcgacgac gacgacgagt cacactactc ttgagcttct 120
   _ catacttcac ccaggttgat ttgggaaata atggatgaat ctctggagca tcaaactcaa 180
     acacatgacc aagagagcga aatagttact gaaggaagtg ccgttgtgca tagtggccat 240
     ctcaagaggg taatgttcct cctaaagttg atagtgaagc tgaggtcttg gatgagaaag 300
     tcagtaagca gattataaag gaaggtcacg gttccaaacc atccaagtac tctacatgct 360
15
     tttgtcacta cagggcatgg accaaaaact cgcagcacaa atttgaggat acatggcatg 420
     agcagcaacc tattgaattg gttcttggaa aagagaaaaa agaactagcc ggtttagcca 480
     teggtgttge tageatgaag tetggtgaae gtgegettgt geatgttgge tgggaattag 540
    cttatgggaa agaaggaaac ttttcttttc ccaatgttcc acctatggca gacttgttat 600
20
    atgaggtgga agttattggg tttgatgaaa caaaggaggg aaaagctcgc agtgatatga 660
    ctgtagagga aaggattggt gcagcagaca gaagaaaaat ggatgggaat tctcttttta 720
    aggaggagaa actggaggaa gccatgcaac agtatgaaat ggccatagca tacatggggg 780
    acgattttat gtttcagctg tatgggaagt accaggatat ggctttagca gttaaaaacc 840
    gtcactgcaa cattgtgttg acagaagaag agaaaaaccc aaaagcactg ttcagaagag 960
25
    ggaaagcaaa ggcagagcta ggacagatgg actcagcacg tgatgatttc cgaaaggcac 1020
    aaaagtatgc teetgaegae aaggegatta gaagagaget aegageaett geagageaag 1080
    agaaagcctt gtaccaaaag cagaaagaaa tgtacaaagg aatattcaaa gggaaagatg 1140
    aaggtggtgc taagtcaaag agcctttttt ggttgatagt gttatggcaa tggtttgttt 1200
30
    cccttttctc ccgtatcttt cgacgccaca gagttaaagc agattaatgt atgaagaagg 1260
    gttacaatta
                                                                    1270
    <210> 3
35
    <211> 365
```

<212> PRT

<213> Arabidopsis thaliana

<400> 3

Met Asp Glu Ser Leu Glu His Gln Thr Gln Thr His Asp Gln Glu Ser 40 10 15

Glu Ile Val Thr Glu Gly Ser Ala Val Val His Ser Glu Pro Ser Gln 20

25

WO 00/50598

- Glu Gly Asn Val Pro Pro Lys Val Asp Ser Glu Ala Glu Val Leu Asp 35 40 45
- Glu Lys Val Ser Lys Gln Ile Ile Lys Glu Gly His Gly Ser Lys Pro 5 50 55 60
 - Ser Lys Tyr Ser Thr Cys Phe Leu His Tyr Arg Ala Trp Thr Lys Asn 65 70 75 80
- 10 Ser Gln His Lys Phe Glu Asp Thr Trp His Glu Gln Gln Pro Ile Glu 85 90 95
 - Leu Val Leu Gly Lys Glu Lys Lys Glu Leu Ala Gly Leu Ala Ile Gly
 100 105 110
 - Val Ala Ser Met Lys Ser Gly Glu Arg Ala Leu Val His Val Gly Trp 115 120 125
- Glu Leu Ala Tyr Gly Lys Glu Gly Asn Phe Ser Phe Pro Asn Val Pro 20 130 135 140
- 25 Thr Lys Glu Gly Lys Ala Arg Ser Asp Met Thr Val Glu Glu Arg Ile 165 170 175
 - Gly Ala Ala Asp Arg Arg Lys Met Asp Gly Asn Ser Leu Phe Lys Glu
 180 185 190
 - Glu Lys Leu Glu Glu Ala Met Gln Gln Tyr Glu Met Ala Ile Ala Tyr
 195 200 205
- Met Gly Asp Asp Phe Met Phe Gln Leu Tyr Gly Lys Tyr Gln Asp Met 210 215 220
 - Ala Leu Arg Val Lys Asn Pro Cys His Leu Asn Ile Ala Ala Cys Leu 225 230 230 235 235 240
- 40 Ile Lys Leu Lys Arg Tyr Asp Glu Ala Ile Gly His Cys Asn Ile Val 245 250 255
 - Leu Thr Glu Glu Glu Lys Asn Pro Lys Ala Leu Phe Arg Arg Gly Lys
 260 265 270

15

45

Ala Lys Ala Glu Leu Gly Gln Met Asp Ser Ala Arg Asp Asp Phe Arg 275 Lys Ala Gln Lys Tyr Ala Pro Asp Asp Lys Ala Ile Arg Arg Glu Leu 5 290 295 300 Arg Ala Leu Ala Glu Glu Lys Ala Leu Tyr Gln Lys Glu 305 310 315 10 Met Tyr Lys Gly Ile Phe Lys Gly Lys Asp Glu Gly Gly Ala Lys Ser 325 330 335 Lys Ser Leu Phe Trp Leu Ile Val Leu Trp Gln Trp Phe Val Ser Leu 340 345 350 15 Phe Ser Arg Ile Phe Arg Arg His Arg Val Lys Ala Asp 355 360 365 20 <210> 4 <211> 140 <212> DNA <213> Lycopersicon esculentum 25 <400> 4 cttatggaaa agaaggaaac ttctctttcc ctaatgtccc acctacagct gatgtattgt 60 atgaggttga gttgattggc ttcgatgaga caggagaagg aaaagcacga ggtgacatga 120 cagtagagga gagaattggg 140 30 <210> 5 <211> 1142 <212> DNA <213> Lycopersicon esculentum 35 <400> 5 tttcagataa acccaactca attttcttgg gattttgaca ctacatgcgg tgagaattac 60 ttccaattgt cgagaagatt agtacgtggg tacttgggct gctggtgcta ttctggggtt 120 taagaaaatt gagcaagatt tcgaataatg gctgaagtag aagaggagca gcagctgcag 180 aattcatcag ttgaccaggg tagtactgat gaaatcatcg ctgaaggcgc ttcagttgtt 240 40 cgtggagaac ttccacagga tgatgctggg ccgccaaaag ttgattcaga agtggaagtc 300 ctccatgaaa aagtaaccaa gcaaattgtt aaagaaggcc atggtcagaa gccatcaaaa 360

actggcctag ctattggcgt taacagcatg aaatccggtg agcgtgcttt atttcatgtt 540

tacgcaacat gcttcgtgca ttacagggca tgggctgaaa gcacgcagca caagtttgaa 420 gatacatggc gtgagcaaca acctcttgag ctggttatag gaaaagagag aaaggaaatg 480

ggctgggaac	tagcttatgg	aaaagaagga	aacttctctt	tccctaatgt	cccacctaca	600
gctgatgtat	tgtatgaggt	tgagttgatt	ggcttcgatg	agacaggaga	aggaaaagca	660
cgaggtgaca	tgacagtaga	ggagagaatt	gggacagcag	atagaagaaa	gatggatgga	720
aatgctttat	ttaaggaaga	gaaactggag	gaagctatgc	aacagtatga	aatggccatt	780
gcatatatgg	gagatgactt	catgtttcag	ctgttcggta	agttccggga	catggcttta	840
gctgtaaaga	atccctgcca	tctgaacatg	gcagcctgcc	tgctgaagct	ccagcgatat	900
gatgaagcca	ttgcacaatg	tagcattgtc	ctagcagaag	aagaaaacaa	tgtaaaagcg	960
ttgtttaggc	gtggaaaggc	taggtctata	cttggtcaga	ctgatgcagc	tcgtgaggac	1020
ttccttaaag	cacgtaagct	tgctccacaa	gataaagcca	ttacaaggga	attgaatttg	1080
attgcagaac	acgagaaggc	tgtctattag	aaacaaaagg	aactttacaa	aggactattt	1140
gg						1142

<210> 6

<211> 320

<212> PRT

<213> Lycopersicon esculentum

<400> 6

Met Ala Glu Val Glu Glu Gln Gln Leu Gln Asn Ser Ser Val Asp

Gln Gly Ser Thr Asp Glu Ile Ile Ala Glu Gly Ala Ser Val Val Arg

Gly Glu Leu Pro Gln Asp Asp Ala Gly Pro Pro Lys Val Asp Ser Glu

Val Glu Val Leu His Glu Lys Val Thr Lys Gln Ile Val Lys Glu Gly

His Gly Gln Lys Pro Ser Lys Tyr Ala Thr Cys Phe Val His Tyr Arg

Ala Trp Ala Glu Ser Thr Gln His Lys Phe Glu Asp Thr Trp Arg Glu

Gln Gln Pro Leu Glu Leu Val Ile Gly Lys Glu Arg Lys Glu Met Thr

Gly Leu Ala Ile Gly Val Asn Ser Met Lys Ser Gly Glu Arg Ala Leu

Phe His Val Gly Trp Glu Leu Ala Tyr Gly Lys Glu Gly Asn Phe Ser

	Phe 145	e Pro	o Asr	n Val	l Pro) Pro	Thr	Ala	a Asp	Va]	l Leu 155		Glu	ı Val	Glu	Leu 160	
5	Il€	e Gly	/ Phe	e Asp	Glu 165	Thr	Gly	Glu	ı Gly	170		Arg	Gly	/ Asp	Met 175	Thr	
10	Val	. Glu	ı Glu	180	, Ile	Gly	Thr	Ala	185		Arg	Lys	Met	190		Asn	
	Ala	. Leu	Phe	Lys	Glu	Glu	Lys	Leu 200		Glu	Ala	Met	Gln 205		Tyr	Glu	
15	Met	Ala 210	Ile	Ala	Tyr	Met	Gly 215	Asp	Asp	Phe	Met	Phe 220	Gln	Leu	Phe	Gly	
	Lys 225	Phe	Arg	Asp	Met	Ala 230	Leu	Ala	Val	Lys	Asn 235	Pro	Cys	His	Leu	Asn 240	
20	Met	Ala	Ala	Cys	Leu 245	Leu	Lys	Leu	Gln	Arg 250	Tyr	Asp	Glu	Ala	Ile 255	Ala	
25	Gln	Cys	Ser	Ile 260	Val	Leu	Ala	Glu	Glu 265	Glu	Asn	Asn	Val	Lys 270	Ala	Leu	
	Phe	Arg	Arg 275	Gly	Lys	Ala	Arg	Ser 280	Ile	Leu	Gly	Gln	Thr 285	Asp	Ala	Ala	
30	Arg	Glu 290	Asp	Phe	Leu	Lys	Ala 295	Arg	Lys	Leu		Pro 300	Gln	Asp	Lys	Ala	
	Ile 305	Thr	Arg	Glu	Leu	Asn 310	Leu	Ile	Ala		His 315	Glu	Lys	Ala		Tyr 320	
35																	
40	<210 <211 <212 <213	> 77 > DN	A	ys													
45	<400: tttti ctgca	ttt	tt ti	tttt: aatg	cccc	g tag	gcaac	agt	atta tgaç	atta gctco	cta g	gcata	aatci	ta aa	atat <u>c</u> Latga	jaaag laact	60 120

		atggcataat	agtgaacaac	atcgtataga	gttcataaca	actaattgat	ccggaccggc	180
		cgacagttct	acagaaaatt	caacactcct	tataatacaa	ggttggtcaa	ttaggccacc	240
		agttctacac	aattttctgg	taaattatcc	tactcgttct	tccgtttgaa	catcccagcc	300
	_	agataaagga	taaatgacac	cagccactgc	cagaacacaa	cgaggtactt	tgccttcttc	360
	5	ggtttcgctt	caggacttgg	cccaaagaga	cctttgtaga	gctccttctg	cttctggtat	420
		agggccttgn	cttgttccgc	gagcaaacgg	agctcccgaa	tgatctcctt	gncttctggg	480
		gagtacttct	tcgctttgag	gaaatcttcc	ctcgctgatt	ctgtctggcc	aagttcagat	540
		ttagcttttc	ctcgcctgaa	cagcgctttg	acattacttt	catcttctgt	caaaacaatg	600
	^	ctacactgcg	caatagcttc	atcgaatctc	tttagtttga	tcaggcatgc	ggccatattg	660
1	.0	agatggcatg	gatttttcac	agccaaggcc	atgtctctgt	actttccaaa	taattgaaac	720
		atgaaatcat	ctcccatgta	tgcaatcgcc	atttcatatt	gctgcatggc	ctcctc	776

<210> 8

15 <211> 168

<212> PRT

<213> Zea mays

<400> 8

20 Glu Glu Ala Met Gln Gln Tyr Glu Met Ala Ile Ala Tyr Met Gly Asp 1 5 10 15

Asp Phe Met Phe Gln Leu Phe Gly Lys Tyr Arg Asp Met Ala Leu Ala
20 25 30

25

40

45

Val Lys Asn Pro Cys His Leu Asn Met Ala Ala Cys Leu Ile Lys Leu 35 40 45

Lys Arg Phe Asp Glu Ala Ile Ala Gln Cys Ser Ile Val Leu Thr Glu 30 50 55 60

Asp Glu Ser Asn Val Lys Ala Leu Phe Arg Arg Gly Lys Ala Lys Ser 65 70 75 80

35 Glu Leu Gly Gln Thr Glu Ser Ala Arg Glu Asp Phe Leu Lys Ala Lys 85 90 95

Lys Tyr Ser Pro Glu Xaa Lys Glu Ile Ile Arg Glu Leu Arg Leu Leu 100 105 110

Ala Glu Gln Xaa Lys Ala Leu Tyr Gln Lys Gln Lys Glu Leu Tyr Lys 115 120 125

Gly Leu Phe Gly Pro Ser Pro Glu Ala Lys Pro Lys Lys Ala Lys Tyr
130 135 140

WO 00/50598

10

PCT/DE00/00506

5 Gly Met Phe Lys Arg Lys Asn Glu 165

ÎPC 7	C12N15/29 C12N15/05 C07K1	4/415 C12N15/82	C12N5/10
According	to International Patent Classification (IPC) or to both national class	ssification and IPC	
B. FIELDS	S SEARCHED		
IPC 7	documentation searched (classification system followed by classification s	fication symbols)	
	ation searched other than minimum documentation to the extent to		
), WPI Data, PAJ, BIOSIS	a base and. Where practical, search	terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category •	Citation of document, with indication, where appropriate, of the	e relevant passages	Relevant to claim No.
X	NAKAMURA Y: "Arabidopsis thali DNA, chromosome 3, Pl clone: Ml EMBL SEQUENCE DATABASE, 16 November 1998 (1998-11-16), XP002140828 HEIDELBERG DE Ac AB019232 the whole document	[L23"	1-3
X	ROUNSLEY ET AL.: "F15J23TRB IG Arabidopsis thaliana genomic cl genomic survey sequence" EMBL SEQUENCE DATABASE, 29 May 1998 (1998-05-29), XPOO HEIDELBERG DE AC AQ011048 the whole document	one F15J23,	1,2
		-/	
X Furth	ner documents are listed in the continuation of box C.	Patent family members	are listed in annex.
"A" documer consider of filling de "L" documer which is citation "O" documer other m	nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or	"X" document of particular releva cannot be considered novel involve an inventive step wh "Y" document of particular releva cannot be considered to inv document is combined with ments, such combination be in the art.	ontict with the application but ciple or theory underlying the unce; the claimed invention or cannot be considered to the earther document is taken alone unce; the claimed invention olve an inventive step when the one or more other such docu-
	ctual completion of the international search	*&* document member of the san Date of mailing of the interna	
	3 June 2000	10/07/2000	monai search report
Name and m	ailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Ceder, 0	

INTER IONAL SEARCH REPORT

1		
1	ational Application No	
	PCT/DE 00/00506	

		101/DE 00/00300
Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	VITTORIOSO ET AL.: "Mutation in the Arabidopsis PASTICCINO1 gene" MOLECULAR AND CELLULAR BIOLOGY, vol. 18, no. 5, May 1998 (1998-05), pages 3034-3043, XP002140830 abstract page 3035	1-7, 11-13
Α	VUCICH ET AL.: "Novel structure of high molecular weight FK506 binding protein from Arabidopsis thaliana" MOL GEN GENET, vol. 252, 1996, pages 510-517, XP002140831 abstract; figure 1	3
Α	LUAN ET AL.: "Molecular characterization of a FKBP-type immunophilin from higher plants" PROC NATL ACAD SCI USA, vol. 93, July 1996 (1996-07), pages 6964-6969, XP002140832 abstract page 6965	15
P,X	ALCALA ET AL.: "Lycopersicon esculentum" EMBL SEQUENCE DATABASE, 15 February 2000 (2000-02-15), XP002140833 HEIDELBERG DE Ac AW441601 the whole document	1,2
P,X	WALBOT V: "Zea mays" EMBL SEQUENCE DATABASE, 13 November 1999 (1999-11-13), XP002140834 HEIDELBERG DE Ac AW171820 the whole document	1,2
P,X	WALBOT V: "Zea Mays" EMBL SEQUENCE DATABASE, 14 December 1999 (1999-12-14), XP002140835 HEIDELBERG DE Ac AW216068 the whole document	1-3

INTERNATIONALER

In as Aktenzeichen
PCT/DE 00/00506

A KLAS	SIFIZIERUNG DES ANMELDUNGSGEGENSTANDES					
I IPK /	C12N15/29 C12N15/05 C07K14	/415 C12N15/82	C12N5/10			
Nach der	Internationalen Patentklassifikation (IPK) oder nach der nationalen i	Classifikation und der IPK				
B. RECH	ERCHIERTE GEBIETE					
Recherchi IPK 7	ierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssyn C12N C07K	nbole)				
	erte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen,					
Während o	der internationalen Recherche konsultierte elektronische Datenbank	(Name der Datenbank und evtl. ve	rwendete Suchbegriffe)			
STRANI	D, WPI Data, PAJ, BIOSIS					
C. ALS W	ESENTLICH ANGESEHENE UNTERLAGEN					
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Ange	abe der in Betracht kommenden Tei	le Betr. Anspruch Nr.			
X	NAKAMURA Y: "Arabidopsis thalia DNA, chromosome 3, P1 clone: MIL EMBL SEQUENCE DATABASE,	ana genomic .23"	1-3			
	16. November 1998 (1998-11-16), XP002140828 HEIDELBERG DE					
	Ac AB019232 das ganze Dokument					
X	ROUNSLEY ET AL.: "F15J23TRB IGF Arabidopsis thaliana genomic clo genomic survey sequence" EMBL SEQUENCE DATABASE, 29. Mai 1998 (1998-05-29), XPOO HEIDELBERG DE Ac AQO11048	ne F15J23,	1,2			
	das ganze Dokument					
		-/				
entine	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	Siehe Anhang Patentfam	ilie			
"A" Veröffer aber ni "E" älteree (Anmeld	Kategorien von angegebenen Veröffentlichungen : ntlichung, die den allgemeinen Stand der Technik definiert, cht ale besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist	Anmeldung nicht kollidiert, sor Erfindung zugrundeliegenden Theorie angegeben ist	ach dem internationalen Anmeldedatum öffentlicht worden ist und mit der ndem nur zum Verständnis des der Prinzipe oder der ihr zugrundeliegenden			
andere soil ode ausgefi	"X" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- ern anderen im Recherchenbericht genannten Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden veröfentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden veröfentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden veröfentlichung von besonderer Bedeutung; die beanspruchte Erfindung erfinderischer Tätigkeit beruhend betrachtet werden veröfentlichung von besonderer Bedeutung; die beanspruchte Erfindung erfinderischer Tätigkeit beruhend betrachtet werden veröfentlichung von besonderer Bedeutung; die beanspruchte Erfindung erfinderischer Tätigkeit beruhend betrachtet werden veröfentlichung von besonderer Bedeutung; die beanspruchte Erfindung erfinderischer Tätigkeit beruhend betrachtet werden veröfentlichung von besonderer Bedeutung; die beanspruchte kann allein aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte kann allein aufgrund dieser Veröffentlichung von besonderer B					
'P" Veröffen dem be	ntlichung, die eich auf eine mündliche Offenbarung, snutzung, eine Ausstellung oder andere Maßnahmen bezieht dlichung, die vor dem internationalen Anmeldedatum, aber nach sanspruchten Prioritätsdatum veröffentlicht worden ist beschlusses der internationalen Recherche	Veröffentlichungen dieser Kate diese Verbindung für einen Fa *&* Veröffentlichung, die Mitglied d	egone in Verbindung gebracht wird und chmann naheliegend ist			
	3. Juni 2000	Absendedatum des internation 10/07/2000	alen Recherchenberichts			
	ostanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter				
	Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Ceder, O				

INTERNATIONAL RECHERCHENBERICHT

ationa	les Aktenzeichen
PCT/DE	00/00506

		PCI/DE 00/	00000
C.(Fortset	rung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	···	
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommer	nden Teile	Setr. Anspruch Nr.
A	VITTORIOSO ET AL.: "Mutation in the Arabidopsis PASTICCINO1 gene" MOLECULAR AND CELLULAR BIOLOGY, Bd. 18, Nr. 5, Mai 1998 (1998-05), Seiten 3034-3043, XP002140830 Zusammenfassung Seite 3035		1-7, 11-13
A	VUCICH ET AL.: "Novel structure of high molecular weight FK506 binding protein from Arabidopsis thaliana" MOL GEN GENET, Bd. 252, 1996, Seiten 510-517, XP002140831 Zusammenfassung; Abbildung 1		3
Α	LUAN ET AL.: "Molecular characterization of a FKBP-type immunophilin from higher plants" PROC NATL ACAD SCI USA, Bd. 93, Juli 1996 (1996-07), Seiten 6964-6969, XP002140832 Zusammenfassung Seite 6965		1-5
P,X	ALCALA ET AL.: "Lycopersicon esculentum" EMBL SEQUENCE DATABASE, 15. Februar 2000 (2000-02-15), XP002140833 HEIDELBERG DE Ac AW441601 das ganze Dokument		1,2
P,X	WALBOT V: "Zea mays" EMBL SEQUENCE DATABASE, 13. November 1999 (1999-11-13), XP002140834 HEIDELBERG DE Ac AW171820 das ganze Dokument		1,2
P,X	WALBOT V: "Zea Mays" EMBL SEQUENCE DATABASE, 14. Dezember 1999 (1999-12-14), XP002140835 HEIDELBERG DE AC AW216068 das ganze Dokument		1-3
	HEIDELBERG DE Ac AW216068		