

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan 886-2-8698-3698

■ 886-2-8698-3699

	<u> </u>	ww.locosystech.com/
Product name	Description	Version
S4-1612	Datasheet of S4-1612 standalone GPS module	1.4

1 Introduction

LOCOSYS S4-1612 GPS module features high sensitivity, low power and ultra small form factor. This GPS module is powered by SiRF Star IV, it can provide you with superior sensitivity and performance even in urban canyon and dense foliage environment. Optional Built-in EEPROM realizes SiRF CGEE (Client Generated Extended Ephemeris) function that predicts satellite positions for up to 3 days and delivers CGEE-start time of less than 15 seconds under most conditions, without any network assistance. Besides, MicroPowerMode allows GPS module to stay in a hot-start condition nearly continuously while consuming very little power.

2 Features

- SiRF Star IV high sensitivity solution
- Support 48-channel GPS
- Fast TTFF at low signal level
- Built-in active jammer remover to track up to 8 CW jammers
- Support Trickle Power Mode, Push To Fix Mode and Micro Power Mode
- Capable of SBAS (WAAS,EGNOS, MSAS)
- Support Japan QZSS
- Free CGEE technology to get faster location fix (optional)
- Built-in LNA (on chip) and SAW filter
- Small form factor 16 x 12.2 x 2.2 mm
- SMD type with stamp hole; RoHS compliant

3 Application

- Personal positioning and navigation
- Automotive navigation
- Marine navigation

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan

886-2-8698-3698
886-2-8698-3699
www.locosystech.com/

Fig 3-1 System block diagram.

Fig 3-2 Typical application circuit that uses a passive antenna.

Fig 3-3 Typical application circuit that uses an active antenna

www.locosystech.com/

Fig 3-4 Typical application circuit that has supervisor of the external active antenna.

SG Micro

SGM8541XN5/TR

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan

886-2-8698-3698
886-2-8698-3699
www.locosystech.com/

4 GPS receiver

Chip	SiRF Star IV, GSD4e CSRG39333 (B03) ROM			
Frequency	L1 1575.42MHz, C/A code			
Channels	nnels 48			
Update rate 1Hz				
	Tracking	-160dBm, up to -163dBm (with external LNA)		
Sensitivity	Navigation	-157dBm, up to -160dBm (with external LNA)		
	Cold start	-145dBm, up to -148dBm (with external LNA)		
	Hot start (Open Sky)	< 1s (typical)		
A aquigition Time	Hot start (Indoor)	< 15s		
Acquisition Time	Cold Start (Open Sky)	32s (typical)		
		< 15s (typical), CGEE-start		
Position Accuracy	Autonomous	< 2.5m CEP		
Position Accuracy	SBAS	2.5m (depends on accuracy of correction data)		
Max. Altitude	< 18,000 m			
Max. Velocity	< 515 m/s			
	NMEA 0183 ver 3.0	4800/9600 bps ⁽¹⁾ , 8 data bits, no parity, 1 stop bits (default)		
Protocol Support		1Hz: GGA, GSA, RMC		
r rotocor support		0.2Hz: GSV		
	OSP Binary 115200 bps, 8 data bits, no parity, 1 stop bits			

Note 1: Both baud rate and output message rate are configurable.

5 Software interface

5.1 NMEA output message

Table 5.1-1 NMEA output message

NMEA record	Description		
GGA	Global positioning system fixed data		
GLL	Geographic position - latitude/longitude		
GSA	GNSS DOP and active satellites		
GSV	GNSS satellites in view		
RMC	Recommended minimum specific GNSS data		
VTG	Course over ground and ground speed		

• GGA--- Global Positioning System Fixed Data

Table 5.1-2 contains the values for the following example:

\$GPGGA,053740.000,2503.6319,N,12136.0099,E,1,08,1.1,63.8,M,15.2,M,,0000*64

www.locosystech.com/

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan 886-2-8698-3698 886-2-8698-3699

Table 5.1 - 2 GGA Data Format

Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Time	053740.000		hhmmss.sss
Latitude	2503.6319		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm
E/W Indicator	Е		E=east or W=west
Position Fix Indicator	1		See Table 5.1-3
Satellites Used	08		Range 0 to 12
HDOP	1.1		Horizontal Dilution of Precision
MSL Altitude	63.8	mters	
Units	M	mters	
Geoid Separation	15.2	mters	
Units	M	mters	
Age of Diff. Corr.		second	Null fields when DGPS is not used
Diff. Ref. Station ID	0000		
Checksum	*64		
<cr> <lf></lf></cr>			End of message termination

Table 5.1-3 Position Fix Indicators

Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid
2	Differential GPS, SPS Mode, fix valid
3-5	Not supported
6	Dead Reckoning Mode, fix valid

• GLL--- Geographic Position – Latitude/Longitude

Table 5.1-4 contains the values for the following example:

\$GPGLL,2503.6319,N,12136.0099,E,053740.000,A,A*52

Table 5.1-4 GLL Data Format

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	2503.6319		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan 886-2-8698-3698

■ 886-2-8698-3699

www.locosystech.com/

E/W indicator	Е	E=east or W=west
UTC Time	053740.000	hhmmss.sss
Status	A	A=data valid or V=data not valid
Mode	A	A=autonomous, D=DGPS, E=DR, N=Data not valid, R=Coarse Position ⁽¹⁾ , S=Simulator
Checksum	*52	
<cr> <lf></lf></cr>		End of message termination

⁽¹⁾ Position was calculated based on one or more of the SVs having their derived from almanac parameters, as opposed to ehpemerides

• GSA---GNSS DOP and Active Satellites

Table 5.1-5 contains the values for the following example:

\$GPGSA,A,3,24,07,17,11,28,08,20,04,,,,2.0,1.1,1.7*35

Table 5.1-5 GSA Data Format

Name	Example	Units	Description
Message ID	\$GPGSA		GSA protocol header
Mode 1	A		See Table 5.1-6
Mode 2	3		See Table 5.1-7
ID of satellite used	24		Sv on Channel 1
ID of satellite used	07		Sv on Channel 2
ID of satellite used			Sv on Channel 12
PDOP	2.0		Position Dilution of Precision
HDOP	1.1		Horizontal Dilution of Precision
VDOP	1.7		Vertical Dilution of Precision
Checksum	*35		
<cr> <lf></lf></cr>			End of message termination

Table 5.1-6 Mode 1

Value	Description	
M	Manual- forced to operate in 2D or 3D mode	
A	Automatic-allowed to automatically switch 2D/3D	

Table 5.1-7 Mode 2

Value	Description
1	Fix not available
2	2D
3	3D

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan

886-2-8698-3698
886-2-8698-3699
www.locosystech.com/

• GSV---GNSS Satellites in View

Table 5.1-8 contains the values for the following example:

\$GPGSV,3,1,12,28,81,285,42,24,67,302,46,31,54,354,,20,51,077,46*73

\$GPGSV,3,2,12,17,41,328,45,07,32,315,45,04,31,250,40,11,25,046,41*75

\$GPGSV,3,3,12,08,22,214,38,27,08,190,16,19,05,092,33,23,04,127,*7B

Table 5.1-8 GSV Data Format

Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Total number of messages ¹	3		Range 1 to 3
Message number ¹	1		Range 1 to 3
Satellites in view	12		
Satellite ID	28		Channel 1 (Range 01 to 196)
Elevation	81	degrees	Channel 1 (Range 00 to 90)
Azimuth	285	degrees	Channel 1 (Range 000 to 359)
SNR (C/No)	42	dB-Hz	Channel 1 (Range 00 to 99, null when not tracking)
Satellite ID	20		Channel 4 (Range 01 to 32)
Elevation	51	degrees	Channel 4 (Range 00 to 90)
Azimuth	077	degrees	Channel 4 (Range 000 to 359)
SNR (C/No)	46	dB-Hz	Channel 4 (Range 00 to 99, null when not tracking)
Checksum	*73		
<cr> <lf></lf></cr>			End of message termination

^{1.} Depending on the number of satellites tracked multiple messages of GSV data may be required.

• RMC---Recommended Minimum Specific GNSS Data

Table 5.1-9 contains the values for the following example:

\$GPRMC,053740.000,A,2503.6319,N,12136.0099,E,2.69,79.65,100106,,,A*53

Table 5.1-9 RMC Data Format

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTC Time	053740.000		hhmmss.sss
Status	A		A=data valid or V=data not valid
Latitude	2503.6319		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12136.0099		dddmm.mmmm
E/W Indicator	Е		E=east or W=west
Speed over ground	2.69	knots	True
Course over ground	79.65	degrees	

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan 886-2-8698-3698

■ 886-2-8698-3699
<u>www.locosystech.com/</u>

Date	100106		ddmmyy
Magnetic variation		degrees	
Variation sense			E=east or W=west (Not shown)
Mode	A		A=autonomous, D=DGPS, E=DR, N=Data not valid, R=Coarse position ⁽¹⁾ , S=Simulator
Checksum	*53		
<cr> <lf></lf></cr>			End of message termination

⁽¹⁾ Position was calculated based on one or more of the SVs having their derived from almanac parameters, as opposed to ehpemerides

VTG---Course Over Ground and Ground Speed

Table 5.1-10 contains the values for the following example:

\$GPVTG,79.65,T,,M,2.69,N,5.0,K,A*38

Table 5.1-10 VTG Data Format

Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course over ground	79.65	degrees	Measured heading
Reference	Т		True
Course over ground		degrees	Measured heading
Reference	M		Magnetic
Speed over ground	2.69	knots	Measured speed
Units	N		Knots
Speed over ground	5.0	km/hr	Measured speed
Units	K		Kilometer per hour
Mode	A		A=autonomous, D=DGPS, E=DR, N=Data not valid, R=Coarse position ⁽¹⁾ , S=Simulator
Checksum	*38		
<cr> <lf></lf></cr>			End of message termination

⁽¹⁾ Position was calculated based on one or more of the SVs having their derived from almanac parameters, as opposed to ehpemerides

5.2 Proprietary NMEA input message

Table 5.2-1 Message Parameters

Start Sequence	Payload	Checksum	End Sequence
\$PSRF <mid>1</mid>	Data ²	*CKSUM ³	<cr><lf>4</lf></cr>

- 1. Message Identifier consisting of three numeric characters. Input messages begin at MID 100.
- 2. Message specific data. Refer to a specific message section for <data>...<data> definition.

LOCOSYS

LOCOSYS Technology Inc.

www.locosystech.com/

- CKSUM is a two-hex character checksum as defined in the NMEA specification, NMEA-0183Standard For Interfacing Marine Electronic Devices. Use of checksums is required on all input messages.
- 4. Each message is terminated using Carriage Return (CR) Line Feed (LF) which is \r\n which is hex 0D0A. Because \r\n are not printable ASCII characters, they are omitted from the example strings, but must be sent to terminate the message and cause the receiver to process that input message.

Note: All fields in all proprietary NMEA messages are required, none are optional. All NMEA messages are comma delimited.

Table 5.2-2 Proprietary NMEA input messages

Message	MID^1	Description
SetSerialPort	100	Set PORT A parameters and protocol
NavigationInitialization	101	Parameters required for start using X/Y/Z ²
SetDGPSPort	102	Set PORT B parameters for DGPS input
Query/Rate Control	103	Query standard NMEA message and/or set output rate
LLANavigationInitialization	104	Parameters required for start using Lat/Lon/Alt ³
Development Data On/Off	105	Development Data messages On/Off
Select Datum	106	Selection of datum to be used for coordinate transformations
Poll SW Version String	125	Query SW and customer-specific version

- 1. Message Identification (MID).
- 2. Input coordinates must be WGS84.
- 3. Input coordinates must be WGS84

• 100---SetSerialPort

This command message is used to set the protocol (SiRF binary or NMEA) and/or the communication parameters (Baud, data bits, stop bits, and parity). Generally, this command is used to switch the module back to SiRF binary protocol mode where a more extensive command message set is available. When a valid message is received, the parameters are stored in battery-backed SRAM and the Evaluation Receiver restarts using the saved parameters.

Table 5.2-3 contains the input values for the following example:

Switch to SiRF binary protocol at 9600,8,N,1

\$PSRF100,0,9600,8,1,0*0C

Table 5.2-3 Set Serial Port Data Format

Name	Example	Units	Description
Message ID	\$PSRF100		PSRF100 protocol header
Protocol	0		0=SiRF binary, 1=NMEA
Baud	9600		4800,9600,19200,38400,57600,115200
DataBits	8		8,71
StopBits	1		0,1

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan 886-2-8698-3698

■ 886-2-8698-3699
<u>www.locosystech.com/</u>

Parity	0	0=None, 1=Odd, 2=Even
Checksum	*0C	
<cr><lf></lf></cr>		End of message termination

^{1.} SiRF protocol is only valid for 8 data bits, 1 stop bit, and no parity.

• 101---NavigationInitialization

This command is used to initialize the Evaluation Receiver by providing current position (in X, Y, Z coordinates), clock offset, and time. This enables the Evaluation Receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the Evaluation Receiver to acquire signals quickly.

Table 5.2-4 contains the input values for the following example:

Start using known position and time

\$P\$RF101,-2686700,-4304200,3851624,96000,497260,921,12,3*1C

Table 5.2-4 Navigation Initialization Data Format

Name	Example	Units	Description
Message ID	\$PSRF101		PSRF101 protocol header
ECEF X	-2686700	meters	X coordinate position
ECEF Y	-4304200	meters	Y coordinate position
ECEF Z	3851624	meters	Z coordinate position
ClkOffset	96000	Hz	Clock Offset of the Evaluation Receiver ¹
TimeOfWeek	497260	seconds	GPS Time Of Week
WeekNo	921		GPS Week Number
ChannelCount	12		Range 1 to 12
ResetCfg	3		See Table 5.2-5
Checksum	*1C		
<cr><lf></lf></cr>			End of message termination

^{1.} Use 0 for last saved value if available. If this is unavailable, a default value of 96000 is used.

Table 5.2-5 Reset Configuration

Hex	Description
0x01	Hot Start – All data valid
0x02	Warm Start – Ephemeris cleared
0x03	Warm Start (with Init) – Ephemeris cleared, initialization data loaded
0x04	Cold Start – Clears all data in memory
0x08	Clear Memory – Clears all data in memory and resets the receiver back to factory defaults

• 102---SetDGPSPort

This command is used to control the serial port used to receive RTCM differential corrections. Differential receivers may

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan

886-2-8698-3698

886-2-8698-3699

www.locosystech.com/

output corrections using different communication parameters. If a DGPS receiver is used that has different communication parameters, use this command to allow the receiver to correctly decode the data. When a valid message is received, the parameters are stored in battery-backed SRAM and the receiver restarts using the saved parameters. Table 5.2-6 contains the input values for the following example:

Set DGPS Port to be 9600,8,N,1.

\$PSRF102,9600,8,1,0*12

Table 5.2-6 Set GPS Port Data Format

Name	Example	Units	Description
Message ID	\$PSRF102		PSRF102 protocol header
Baud	9600		4800,9600,19200,38400
DataBits	8		8,7
StopBits	1		0,1
Parity	0		0=None, 1=Odd, 2=Even
Checksum	*12		
<cr><lf></lf></cr>			End of message termination

Note: RTCM is not supported.

• 103---Query/Rate Control

This command is used to control the output of standard NMEA messages GGA, GLL, GSA, GSV, RMC, and VTG. Using this command message, standard NMEA messages may be polled once, or setup for periodic output. Checksums may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in battery-backed memory for each entry when the message is accepted.

Table 5.2-7 contains the input values for the following example:

- 1. Query the GGA message with checksum enabled \$P\$RF103,00,01,00,01*25
- 2. Enable VTG message for a 1 Hz constant output with checksum enabled \$PSRF103,05,00,01,01*20
- 3. Disable VTG message \$P\$RF103,05,00,00,01*21

Table 5.2-7 Query/Rate Control Data Format (See example 1)

Name	Example	Units	Description
Message ID	\$PSRF103		PSRF103 protocol header
Msg	00		See Table 5.2-8
Mode	01		0=SetRate, 1=Query
Rate	00	seconds	Output – off=0, max=255
CksumEnable	01		0=Disable Checksum, 1=Enable Checksum

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan 886-2-8698-3698

www.locosystech.com/

886-2-8698-3699

Checksum	*25	
<cr><lf></lf></cr>		End of message termination

Table 5.2-8 Messages

Value	Description
0	GGA
1	GLL
2	GSA
3	GSV
4	RMC
5	VTG
6	MSS (If internal beacon is supported)
7	Not defined
8	ZDA (if 1PPS output is supported)
9	Not defined

• 104---LLANavigationInitialization

This command is used to initialize the Evaluation Receiver by providing current position (in latitude, longitude, and altitude coordinates), clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the receiver to acquire signals quickly.

Table 5.2-9 contains the input values for the following example:

Start using known position and time.

\$PSRF104,37.3875111,-121.97232,0,96000,237759,1946,12,1*07

Table 5.2-9 LLA Navigation Initialization Data Format

Name	Example	Units	Description	
Message ID	\$PSRF104		PSRF104 protocol header	
Lat	37.3875111	degrees	Latitude position (Range 90 to –90)	
Lon	-121.97232	degrees	Longitude position (Range 180 to –180)	
Alt	0	meters	Altitude position	
ClkOffset	96000	Hz	Clock Offset of the Evaluation Receiver ¹	
TimeOfWeek	237759	seconds GPS Time Of Week		
WeekNo	1946		Extended GPS Week Number (1024 added)	
ChannelCount	12		Range 1 to 12	
ResetCfg	1		See Table 5.2-10	
Checksum	*07			
<cr><lf></lf></cr>			End of message termination	

1. Use 0 for last saved value if available. If this is unavailable, a default value of 96000 is used.

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan

886-2-8698-3698
886-2-8698-3699
www.locosystech.com/

Table 5.2-10 Messages

Hex	Description		
0x01	Hot Start – All data valid		
0x02	Warm Start – Ephemeris cleared		
0x03	Warm Start (with Init) – Ephemeris cleared,		
0x03	initialization data loaded		
0x04	Cold Start – Clears all data in memory		
000	Clear Memory – Clears all data in memory		
0x08	and resets receiver back to factory defaults		

• 105---Development Data On/Off

Use this command to enable development data information if you are having trouble getting commands accepted. Invalid commands generate debug information that enables you to determine the source of the command rejection. Common reasons for input command rejection are invalid checksum or parameter out of specified range.

Table 5.2-11 contains the input values for the following example:

- 1. Debug On
 - \$PSRF105,1*3E
- 2. Debug Off

\$PSRF105,0*3F

Table 5.2-11 Development Data On/Off Data Format

Name	Example	Units	Description
Message ID	\$PSRF105		PSRF105 protocol header
Debug	1		0=Off, 1=On
Checksum	*3E		
<cr><lf></lf></cr>			End of message termination

• 106---Select Datum

\$PSGPS receivers perform initial position and velocity calculations using an earth-centered earth-fixed (ECEF) coordinate system. Results may be converted to an earth model (geoid) defined by the selected datum. The default datum is WGS 84 (World Geodetic System 1984) which provides a worldwide common grid system that may be translated into local coordinate systems or map datums. (Local map datums are a best fit to the local shape of the earth and not valid worldwide.)

Table 5.2-12 contains the input values for the following example:

Datum select TOKYO_MEAN

\$PSRF106,178*32

Table 5.2-12 Development Data On/Off Data Format

Name	Example	Units	Description
Name	Example	Omts	Description

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan 886-2-8698-3698

■ 886-2-8698-3699 **©www.locosystech.com/**

Message ID	\$PSRF106	PSRF106 protocol header
Datum	178	21=WGS84
		178=TOKYO_MEAN
		179=TOKYO_JAPAN
		180=TOKYO_KOREA
		181=TOKYO_OKINAWA
Checksum	*32	
<cr><lf></lf></cr>		End of message termination

• 117---System Turn Off

This message requests that the GPS receiver perform an orderly shutdown and switch to hibernate mode.

Table 5.2-13 contains the values for the following example:

\$PSRF117,16*0B

Table 5.2-13 System Turn Off

Name	Example	Units	Description
Message ID	\$PSRF117		PSRF117 protocol header
Sub ID	16		16: System turn off
Checksum	*0B		
<cr><lf></lf></cr>			End of message termination

• 125--- Poll SW Version String

This message polls the version string when in NMEA mode. The response is PSRF195. If a customer version string is defined, this request will generate two PSRF195, one with the SW Version String, and the second one with the customer-specific version string.

Table 5.2-14 contains the values for the following example:

\$PSRF125*21

Table 5.2-14 Poll SW Version String

Name	Example	Units	Description
Message ID	\$PSRF125		PSRF125 protocol header
Checksum	*21		
<cr><lf></lf></cr>			End of message termination

LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan **886-2-8698-3698 886-2-8698-3699** www.locosystech.com/

Pin assignment and descriptions

13	GND	GND <	12			
14	⟩NC	RF_IN ⟨	11			
15	> NC	GND ⟨	10			
16	>NC	VCC_RF <	9			
17	NC	_ NC {	8			
18	NC	NC (7			
19	NC	NC ?				
			6			
20	⟩TX	NC (5			
21	∤RX	ON_OFF <	4			
22	V_BCKP	TIMEPULSE \langle	3			
23	>vcc	NC <	2			
24	GND	NC {	1			
	Top view					

Table 6-1 Pin descriptions

Pin#	Name	Type	Description	Note
1	NC		Not connected	
2	NC		Not connected	
3	TIMEPULSE	О	Time pulse (1PPS, 200 ms pulse/sec), 1.8V level	
4	ON_OFF	I	Power control pin. If this pin is not used, leave it floating. GPS module can start to work when DC power (VCC) is supplied.	
5	NC		Not connected	
6	NC		Not connected	
7	NC		Not connected	
8	NC		Not connected	
9	VCC_RF	О	Output voltage for active antenna	3
10	GND	P	Ground	
11	RF_IN	I	GPS RF signal input	
12	GND	P	Ground	
13	GND	P	Ground	
14	NC		Not connected	
15	NC		Not connected	
16	NC		Not connected	

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan 886-2-8698-3698 886-2-8698-3699

www.locosystech.com/

17	NC		Not connected	
18	NC		Not connected	
19	NC		Not connected	
20	TX	О	Serial output (Default NMEA)	
21	RX	I	Serial input (Default NMEA)	1
22	V DCVD	Р	Backup battery supply voltage	4
22	V_BCKP	P	This pin must be powered to enable the module.	4
23	VCC	P	DC supply voltage	
24	GND	P	Ground	

<Note>

- 1. Input voltage is 3.6V tolerant.
- 2. Input pulse to switch the module between different power modes.
 - ON_OFF pulse requires a rising edge and high level that persists for three cycles of the RTC clock in order to be detected. Resetting the ON_OFF detector requires that ON_OFF goes to logic low for at least three cycles of the RTC clock.
 - If the module is in hibernate state, an ON_OFF high will move it to full-power mode.
 - If the module is in MicroPower mode, an ON_OFF pulse will move it to full-power mode.
 - If the module is in AdvancedPower mode, an ON_OFF pulse will initiate one AdvancedPower cycle.
 - If the module is in TricklePower mode, an ON_OFF pulse will initiate one TricklePower cycle.
 - If the module is in Push-To-Fix mode, an ON_OFF pulse will initiate one Push-To-Fix cycle.
 - If the module is already in full-power mode, an ON OFF pulse will initiate orderly shutdown.

- 3. VCC_RF does not have short circuit protection.
- 4. In order to get the advantage of CGEE, this pin must be always powered during the period of effective ephemeris prediction.

www.locosystech.com/

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan 886-2-8698-3698 886-2-8698-3699

7 Ordering information

Model	Description
S4-1612-1R	Baud rate: 4800 bps. Without EEPROM
S4-1612-1E	Baud rate: 4800 bps. Built-in EEPROM
S4-1612-2R	Baud rate: 9600 bps. Without EEPROM
S4-1612-2E	Baud rate: 9600 bps. Built-in ERPROM

8 DC & Temperature characteristics

8.1 Absolute maximum ratings

Parameter	Symbol	Ratings	Units
DC Supply Voltage	VCC	4.3	V
Input Backup Battery Voltage	V_BCKP	7	V
Operating Temperature Range	Topr	-40 ~ 85	$^{\circ}\!\mathbb{C}$
Storage Temperature Range	Tstg	-40 ~ 85	$^{\circ}\!\mathbb{C}$

8.2 DC Electrical characteristics

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units	
Input Voltage	VCC		3.0	3.3	3.6	V	
Input Backup Battery Voltage	V_BCKP		2.0		6	V	
VCC_RF Output Voltage	VCC_RF			VCC		V	
Supply	Iss	VCC = 3.3V,					
		w/o active antenna,					
		Peak			122	mA	
		Acquisition		56		mA	
		Tracking		33		mA	
		Hibernate		430		uA	
		$MPM^{(1)}$		< 700		uA	
Backup Battery Current	Ibat	Remove the power of VCC		660 ⁽²⁾	830 ⁽³⁾	uA	
High Level Input Voltage	VIH		1.3		3.6	V	
Low Level Input Voltage	VIL		-0.4		0.45	V	
High Level Output Voltage	V _{OH}	TX pin	0.7*VCC	VCC	VCC	V	
		1.8V level pin	1.2	1.8	1.85		
Low Level Output Voltage	V_{OL}				0.4	V	
High Level Output Current	Іон	TX pin		0.05		mA	
		1.8V level pin		2		IIIA	
Low Level Output Current	Iol			2		mA	

www.locosystech.com/

<Note>

- 1. MicroPowerMode. MPM average current reduces by approximately 50% when there is valid ephemeris.
- 2. If using software command "\$PSRF117,16*0B" or hardware ON_OFF pin to turn off GPS module and keeping VCC powered, the backup battery current will be 15uA. At the same time, the current through VCC is about 170uA.
- 3. A few modules will perform the abnormal backup current when VCC is removed.

8.3 Temperature characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units
Operating Temperature	Topr	-40	-	85	$^{\circ}$
Storage Temperature	Tstg	-40	25	85	$^{\circ}\!\mathbb{C}$

9 Mechanical specification

9.1 Outline dimensions

9.2 Recommended land pattern dimensions

20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan 886-2-8698-3698

886-2-8698-3699

www.locosystech.com/

10 Reel Packing information

AO 13.50 ±0.1 BO 16.40 ±0.1 DO \$1.5 E1 1.75 ±0.1 KO 2.70 ±0.1 PO 4.0 ±0.1 P1 24.00 ±0.1 P2 2.0 ±0.10 T 0.3 ±0.10 W 24.0 ±0.30

- 1. 10 sprocket hole pitch cumulative tolerance ± 0.2
- 2. Camber not to exceed 1mm in 100mm
- 3. A0 and B0 measured on a plane 0.3mm above the bottom of the pocket
- 4. KO measured from a plane on the inside bottom of the pocket to the top surface of the carrier .
- pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.
- 6. Component load per 13"reel: 1000 pcs
- 7. Packimg length per 22"reel: 75 M

Document change list

Revision 1.0

• First release on Jan. 17, 2012.

Revision 1.1 (February 6, 2012)

- Changed autonomous position accuracy from 3m 2DRMS to < 2.5m CEP in the section 4.
- Changed typical Backup Battery Current from 34uA to 640uA in the section 8.2.
- Removed Note 3 in the section 8.2.

Revision 1.2 (August 3, 2012)

- Upgraded GPS chip to 9333.
- Changed the acquisition current from 54mA to 56mA in the section 8.2
- Changed the tracking current from 36mA to 33mA in the section 8.2
- Changed the hibernate current from 170uA to 430uA in the section 8.2
- Revised the backup current from 34uA to 660uA in the section 8.2
- Changed the maximum backup current from 730uA to 830uA in the section 8.2

Revision 1.3 (August 20, 2012)

- Added support EGNOS on page 1
- Added support Japan QZSS on page 1

Revision 1.4 (July 22, 2016)

- Upgraded GPS chip to 9333B03 on page 5
- Added proprietary NMEA input message 125 for querying SW Version on page 15