Unique games with entangled provers are easy

Presented By:-

Aman Sharma

Niraj Kumar

Introduction

- We consider 2 prover-1 round games
- The game starts when the verifier sends two questions, one to each prover, chosen according to some joint distribution.
- Each prover then replies with an answer chosen from the alphabet $\{1, \ldots, k\}$ for some $k \ge 1$.
- Finally, the verifier decides whether to accept or reject, based on the answers he received.
- The value of such a game is defined as the maximum success probability that the provers can achieve.

Unique Games Conjecture [Kho02]

• For any e, $\delta > 0$ there exists a k = k(e, δ) such that it is NP-hard to determine whether, given a unique game with answers from a domain of size k, its value is at least 1 – e or at most δ .

Games with entangled provers

- In this paper we consider the model of two-prover one-round games in which the provers are allowed to share entanglement
- We define the entangled value of a game as the maximum success probability achievable by provers that share entanglement

Main Result

- There exists an efficient algorithm that, given a unique game whose entangled value is 1ε , outputs a value $\varepsilon/6 \le \varepsilon' \le \varepsilon$ and a description of an entangled strategy for the provers whose success probability is at least $1 6\varepsilon'$.
- This theorem shows that the analogue of the Unique Games Conjecture for entangled provers is false since , as long as, $6e+\delta<1$, the algorithm can efficiently tell whether the entangled value of a game is at least 1-e or at most δ

Game Description

- A one-round two-prover cooperative games $G = G(\pi, V)$ is specified by a set Q and a number $k \ge 1$, a probability distribution $\pi : Q \times Q \rightarrow [0, 1]$, and a predicate $V : [k] \times [k] \times Q \times Q \rightarrow \{0, 1\}$.
- The referee samples $(s,t) \in Q \times Q$ according to π and sends question s to Alice and question t to Bob. Alice replies with an answer $a \in [k]$, and Bob with an answer $b \in [k]$.
- The provers win if and only if V(a, b | s, t) = 1.
- A strategy for entangled provers is described by a shared quantum state, and a general measurement on Alice's part of the state for each of her questions, and a general measurement on Bob's part of the state for each of his question.

Game Description

- Alice and Bob share an entangled state $|\psi\rangle \in \mathcal{C}^{d*d}$ for some $d \ge 1$, and they use projective measurements, i.e., for each s Alice's measurement is described by $\{A_a^s\}$ where the A_a^s are orthogonal projectors and $\sum A_a^s = 1$. similarly Bob uses measurements $\{B_b^t\}$.
- By definition, the probability that on questions s, t Alice answers a and Bob answers b is given by $\langle \psi | A_a^s \otimes B_b^t | \psi \rangle$
- $\omega^*(G) = \lim_{d \to \infty} \max_{|\psi\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d} \max_{A_a^s, B_b^t} \sum_{abst} \pi(s, t) V(a, b \mid s, t) \langle \psi | A_a^s \otimes B_b^t | \psi \rangle$

Game Description

- A game is unique if we can associate a permutation σ_{st} on [k] with each pair of questions (s, t) such that V(a, b | s, t) = 1 if and only if b = σ_{st} (a).
- A game is uniform if there exists an optimal strategy for entangled provers in which for each prover and each question, the marginal distribution of his answers is uniform over [k].

SDP Relaxation

• The SDP maximizes over the real vectors $\{u_a^s\}$, $\{v_b^t\}$ and z.

SDP 1 Maximize: $\sum_{abst} \pi(s,t)V(a,b \mid s,t) \langle u_a^s, v_b^t \rangle$ Subject to: ||z|| = 1 $\forall s,t, \ \sum_a u_a^s = \sum_b v_b^t = z$ $\forall s,t, \ \forall a \neq b, \ \langle u_a^s, u_b^s \rangle = 0 \text{ and } \langle v_a^t, v_b^t \rangle = 0$ $\forall s,t,a,b, \ \langle u_a^s, v_b^t \rangle \geq 0$

• In an equivalent formulation in SDP language, we can replace the first two constraints by $\sum_{\{a,b\}} \langle u_a^s, v_b^t \rangle = 1$, $\sum_{\{a\}} \langle u_a^s, u_a^s \rangle = 1$ and $\sum_{\{b\}} \langle v_b^t, v_b^t \rangle = 1$.

SDP Relaxation

• Lemma : Let G = G(π , V) be a (not necessarily unique) one-round two-prover game. Then $\omega^*(G) \le \omega^{sdp1}(G)$.

For Uniform unique games:

Additional constraint for SDP 2: $\forall s, t, a, b, \|u_a^s\| = \|v_b^t\| = 1/\sqrt{k}$.

Quantum Rounding

- The basic idea in quantum rounding is to use the solution of the SDP to define a measurement for Alice & Bob on the maximally entangled state $|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i,i\rangle$.
- For Uniform Unique games:
 - Consider a solution of SDP2 and use this solution to define part of a basis.
 - Complete this basis to a basis of \mathbb{R}^n in an arbitrary way
 - When Alice(Bob) is asked question s(t), she measures her half of $|\psi\rangle$ and outputs a(b) if her measurement corresponds to the basis element $u_a^s(v_b^t)$ and outputs nothing if she obtains one of the extra basis elements
 - They keep repeating this procedure on fresh copies of $|\psi\rangle$ until they obtain an output.

Quantum Rounding

- For General Unique Games:
 - The rounding algorithm is similar to the one used for unique uniform games
 - However, in our rounding algorithm, we have to account for the fact that the vectors u_a^s , v_b^t might not be of the same length
 - To this end, we use a rejection sampling technique as follows:
 - Alice and Bob use a shared random variable λ sampled uniformly from [0,1].
 - Alice outputs her outcome a iff $\lambda \leq \left||u_a^s|\right|^2$ and Bob outputs his outcome b iff $\lambda \leq \left||v_b^t|\right|^2$

Quantum Rounding Algorithm

Setup: Alice and Bob share many copies of an *n*-dimensional maximally entangled

state $|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |i,i\rangle$, for some fixed basis $\{|i\rangle\}$ of \mathbb{C}^n , as well as a sequence

 $\Lambda = (\lambda_1, \lambda_2, \dots)$ of real numbers, where the λ_i are independent and each is

sampled uniformly from [0, 1].

Alice: On input s, performs the measurement MEASURE($u_1^s, u_2^s, \dots, u_k^s$) on her share

of the maximally entangled states and the sequence Λ .

Bob: On input t, performs the measurement MEASURE($v_1^t, v_2^t, \dots, v_k^t$) on his share of

the maximally entangled states and the sequence Λ .

Measurement Procedure

Measurement 1 The measurement MEASURE($x_1, x_2, ..., x_k$) used in Algorithm 1.

Input: A state on a Hilbert space $\mathcal{H} = \bigotimes_{r=1}^{\infty} \mathcal{H}_r$, where each $\mathcal{H}_r \cong \mathbb{C}^n$, and

a sequence of real numbers $\Lambda = (\lambda_1, \lambda_2, ...)$, where each $\lambda_r \in [0, 1]$.

Parameters: k orthogonal vectors $x_1, x_2, \ldots, x_k \in \mathbb{R}^n$.

Output: An integer $m \in \{1, 2, ..., k\}$.

Measurement: Define a POVM on \mathbb{C}^n with elements

$$P_i = \left|\frac{x_i}{\|x_i\|}\right\rangle \left\langle \frac{x_i}{\|x_i\|}\right|$$
 for $i = 1, 2, \dots, k$ and $P_0 = I - \sum_{i=1}^k P_i$,

where for a vector $w \in \mathbb{R}^n$ we write $|w\rangle = \sum_i (w)_i |i\rangle$ for its embedding into \mathbb{C}^n .

For r = 1, 2, ... do:

Measure \mathcal{H}_r using POVM (P_0, \ldots, P_k) , obtaining outcome m.

If $(m \neq 0 \text{ and } \lambda_r \leq ||x_m||^2)$ then output m and exit.

Analysis of Measurement Procedure

• Lemma : Let x_1, \ldots, x_k and y_1, \ldots, y_k be two sequences of orthogonal vectors in \mathbf{R}^n such that $\sum_{i=1}^k \left| |x_i| \right|^2 = \sum_{i=1}^k \left| |y_i| \right|^2 = 1$. Assume Alice and Bob apply Measurement 1, Alice using (x_i) and Bob using (y_i) . For any i, j $\in \{1, \ldots, k\}$ define:

$$q_{i,j} := \left\langle \frac{x_i}{\|x_i\|}, \frac{y_j}{\|y_j\|} \right\rangle^2 \min(\|x_i\|^2, \|y_j\|^2)$$

• Let $q_{total} = \sum_{i=1}^{k} q_{i,j}$. Then for any i, j $\in \{1, ..., k\}$, the probability that Alice outputs i and Bob outputs j is at least

$$\frac{q_{i,j}}{2-q_{\text{total}}}.$$

Corollary:

• Let V be a subset of $\{1, ..., k\}^2$. Then, in the setting of previous Lemma, the probability that Alice's output i and Bob's output j are such that $(i, j) \in V$ is at least:

$$\frac{p_V}{2 - p_V} \ge 1 - 2(1 - p_V),$$

$$p_V := \sum_{i,j \in V} \left\langle \frac{x_i}{\|x_i\|}, \frac{y_j}{\|y_j\|} \right\rangle^2 \min(\|x_i\|^2, \|y_j\|^2).$$

Analysis of Quantum Rounding

• Theorem 1: (Uniform unique games). Let G be a uniform unique game. Suppose that $\omega_{sdp2}(G) = 1 - \varepsilon$. Then $\omega^*(G) \ge 1 - 4\varepsilon$.

• Theorem 2: (General unique games). Let G be a unique game. Suppose that $\omega_{sdp1}(G) = 1 - \varepsilon$. Then $\omega^*(G) \ge 1 - 6\varepsilon$.

Final Results:

• For a Uniform Unique Game:

$$1 - 4\varepsilon \le \omega^* (G) \le 1 - \varepsilon$$

For a general Unique Game:

$$1 - 6\varepsilon \le \omega^* (G) \le 1 - \varepsilon$$

Parallel Repetition Results

Theorem 1[Rao08]:

• Let G be a unique game with value $\omega(G) = 1 - \epsilon$. Then $\forall m \geq 1 \ (1 - \epsilon)^m \leq \omega(G^m) \leq (1 - c\epsilon^2)^m$ where c > 0 is a universal constant

• Theorem 2:

• Let G be a unique game with entangled value $\omega^*(G) = 1 - \epsilon$. Then, $(1 - \epsilon)^m \le \omega^*(G^m) \le \left(1 - \frac{\epsilon^2}{16}\right)^m$

• Theorem 3:

• Let G be a uniform unique game with value $\omega(G)=1-\epsilon$ such that G^m is also uniform. Then $(1-\epsilon)^m \leq \omega^*(G^m) \leq \left(1-\frac{\epsilon}{4}\right)^m$

Bipartite SDPs

- These SDPs have two sets of variables, $u_1, u_2 \dots u_{n_1}$ and $v_1, v_2 \dots v_{n_2}$.
- Optimization Function only involves inner products between u variables and v variables; and the constraints are all equality constraints and involve either only u variables or only v variables.
- The SDP specified by the $n_1 \times n_2$ matrix J, $n_1 \times n_1$ symmetric matrix $A^1 \cdots A^L$, $n_2 \times n_2$ symmetric matrix $B^1 \cdots B^L$ and the real numbers $a_1 \cdots a_L$ and $b_1 \cdots b_L$:

Maximize:
$$\sum_{i=1,j=1}^{n_1,n_2} J_{ij} \langle u_i, v_j \rangle$$
Subject to:
$$\sum_{i,j=1}^{n_1} A_{ij}^l \langle u_i, u_j \rangle = a_l \text{ for } l = 1, \dots, L_1$$

$$\sum_{i,j=1}^{n_2} B_{ij}^l \langle v_i, v_j \rangle = b_l \text{ for } l = 1, \dots, L_2.$$

Bipartite Product SDPs

- Assume S has n_1+n_2 variables and L_1+L_2 constraints, and is specified by J,A^l,B^l,a^l and b^l , and similarly for S'
- Then $S \otimes_b S'$ is the bipartite SDP over $n_1 n_1' + n_2 n_2'$ variables and $L_1 L_1' + L_2 L_2'$ given by $J \otimes J'$, the matrices $A^l \otimes A'^{l'}$ and $B^l \otimes B'^{l'}$ and the numbers $a_l a_{l'}'$ and $b_l b_{l'}'$.

Maximize:
$$\sum_{i=1,j=1,i'=1,j'=1}^{n_1,n_2,n'_1,n'_2} J_{ij}J'_{i'j'} \langle u_{ii'}, v_{jj'} \rangle$$

Subject to: $\sum_{i,j=1,i',j'=1}^{n_1,n'_1} A^l_{ij}A'^{l'}_{i'j'} \langle u_{ii'}, u_{jj'} \rangle = a_l a'_{l'} \text{ for } l = 1, \dots, L_1, \ l' = 1, \dots, L'_1$
 $\sum_{i,j=1,i',j'=1}^{n_2,n'_2} B^l_{ij}B'^{l'}_{i'j'} \langle v_{ii'}, v_{jj'} \rangle = b_l b'_{l'} \text{ for } l = 1, \dots, L_2, \ l' = 1, \dots, L'_2.$

SDP₃ and SDP₄ Construction

For General Unique Games:

SDP 3	
Maximize:	$\sum_{abst} \pi(s,t) V(a,b \mid s,t) \langle u_a^s, v_b^t \rangle$
Subject to:	$\forall s, \ \forall a \neq b, \ \left\langle u_a^s, u_b^s \right\rangle = 0 \text{ and } \forall t, \ \forall a \neq b, \ \left\langle v_a^t, v_b^t \right\rangle = 0$
	$\forall s, \; \sum_{a} \langle u_a^s, u_a^s \rangle = 1 \text{ and } \forall t, \; \sum_{b} \langle v_b^t, v_b^t \rangle = 1$

- SDP₃ is a relaxation of SDP 1, and hence for any game G its value satisfies $\omega_{\text{sdp3}}(G) \ge \omega_{\text{sdp1}}(G) \ge \omega^*(G)$.
- For Uniform Unique Games:

SDP 4	
Maximize:	$\sum_{abst} \pi(s,t) V(a,b \mid s,t) \langle u_a^s, v_b^t \rangle$
Subject to:	$\forall s, a, b, \ \left\langle u_a^s, u_b^s \right\rangle = \frac{1}{k} \delta_{a,b} \text{ and } \forall t, a, b, \ \left\langle v_a^t, v_b^t \right\rangle = \frac{1}{k} \delta_{a,b}$

THANK YOU!!