Capítulo 2: Camada de Aplicação

Metas do capítulo:

- aspectos conceituais e de implementação de protocolos de aplicação em redes
 - modelos de serviço da camada de transporte
 - paradigma cliente servidor
 - paradigma peer-topeer

- aprenda sobre protocolos através do estudo de protocolos populares da camada de aplicação:
 - **O** HTTP
 - o FTP
 - SMTP/POP3/IMAP
 - o DNS

Aula 6!

- Camada de aplicação
- □ Princípios
- Arquiteturas
- □ Comunicação entre processos
- Serviços de transporte disponíveis as aplicações
- □ exercício
- □ Protocolos da camada de aplicação

Algumas aplicações de rede

- □ E-mail
- Web
- □ Instant messaging
- Login remoto
- Compartilhamento de arquivos P2P
- Jogos de rede multiusuários
- Vídeo-clipes armazenados

- □ Voz sobre IP
- Vídeo conferência em tempo real

Principios de Aplicações de Rede

O núcleo do desenvolvimento de aplicação de rede é escrever programas que rodem em sistemas finais diferentes e se comuniquem entre si.

Criando uma aplicação de rede

Programas que

- Executam em diferentes sistemas finais
- Comunicam-se através da rede
- p.ex., Web: servidor Web se comunica com o navegador

Programas não relacionados ao núcleo da rede

- Dispositivos do núcleo da rede não executam aplicações de usuários
- Aplicações nos sistemas finais permite rápido desenvolvimento e disseminação

Arquiteturas de aplicação de rede

- □ Diferente da arquitetura de rede!
- □ A arquitetura de rede é fixa e provê um conjunto específico de serviços
 - Exemplo: 5 camadas da Internet aplicação, transporte, Rede, enlace e física
- A arquitetura da aplicação é projetada pelo programador e determina como a aplicação é organizada nos vários sistemas finais.
 - Exemplo: cliente-servidor; P2P

Arquiteturas das aplicações

- □ Cliente-servidor
- □ Peer-to-peer (P2P)

Arquitetura cliente-servidor

Servidor:

- Sempre ligado
- Endereço IP permanente
- Escalabilidade com server farms (conj, hospedeiros)

Cliente:

- Comunica-se com o servidor
- Pode estar conectado intermitentemente
- Pode ter endereços IP dinâmicos
- Não se comunica diretamente com outros clientes
- Exemplos: Web; FTP; Telnet eE-mail.

Arquitetura P2P pura

- □ Não há servidor sempre ligado
- Sistemas finais arbitrários se comunicam diretamente
- Pares estão conectados intermitentemente e mudam endereços IP

Altamente escalável Porém, difícil de gerenciar

Aplicações atuais baseadas na arquitetura P2P

- □ Compartilhamento de arquivos (BitTorrent)
- Aceleração de download assistida por par (Xunlei)
- □ Telefonia por internet (Skype)

- □ IPTV (KanKan e Ppstrean)
- Algumas aplicações possuem arquiteturas híbridas combinando elementos de ambas.

Processos em comunicação

- Processo: programa que executa num hospedeiro
- processos no mesmo hospedeiro se comunicam usando comunicação entre processos definida pelo sistema operacional (SO)
- processos em hospedeiros distintos se comunicam trocando mensagens através da rede

Processo cliente:

processo que inicia a comunicação

Processo servidor:

processo que espera para ser contatado

■ Nota: aplicações com arquiteturas P2P possuem processos clientes e processos servidores

Sockets

- Os processos enviam/ recebem mensagens para/dos seus sockets
- Um socket é análogo a uma porta
 - Processo transmissor envia a mensagem através da porta
 - O processo transmissor assume a existência da infraestrutura de transporte no outro lado da porta que faz com que a mensagem chegue ao socket do processo receptor

API- os únicos controles que o desenvolvedor da aplicação tem do lado da camada de transporte são: (1) escolha do protocolo de transporte; (2) talvez, a habilidade para fixar alguns parâmetros da camada de transporte.
2a: Camada de Aplicação

De que serviço de transporte uma aplicação precisa?

- □ A aplicação do lado remetente envia mensagens através da porta.
- Do outro lado, o protocolo da camada de transporte tem a responsabilidade de levar as mensagens pela rede até a porta do processo destinatário.

De que serviço de transporte uma aplicação precisa?

- O desenvolvedor da aplicação escolhe um dos protocolos da camada de transporte disponíveis.
- □ Como fazer essa escolha?
- Avaliando os serviços providos disponíveis pelo protocolo de transporte, ou seja o que melhor atenda às necessidades!

De que serviço de transporte uma aplicação precisa?

Transferência confiável de dados

- algumas apls (p.ex. áudio) podem tolerar algumas perdas
- outras (p.ex., transf. de arquivos, telnet) requerem transferência 100% confiável

Largura de banda (vazão)

- algumas apls (p.ex., multimídia) requerem quantia mínima de banda para serem "efetivas"
- outras apls ("apls elásticas") conseguem usar qq quantia de banda disponível

Temporização

algumas apls (p.ex., telefonia Internet, jogos interativos) requerem baixo retardo para serem "viáveis", ou seja, um longo atraso entre realizar uma ação e ver a reação faz com que a aplicação pareça menos realista.

Segurança

Requisitos do serviço de transporte de apls comuns

Aplicação	Perdas	Banda	Sensibilidade temporal
transferência de arqs	sem perdas	elástica	não
correio	sem perdas	elástica	não
documentos WWW	sem perdas	elástica	não
áudio/vídeo de	tolerante	áudio: 5Kb-1Mb	sim, décimos de
tempo real		vídeo:10Kb-5Mb	segundo
áudio/vídeo gravado	tolerante	como anterior	sim, alguns segs
jogos interativos	tolerante	> alguns Kbps	sim, décimos de
apls financeiras	sem perdas	elástica	sim e não

Serviços providos por protocolos de transporte Internet (redes TCP/IP) qual protocolo usar TCP ou UDP?

<u>Serviço TCP:</u>

- orientado a conexão: inicialização requerida entre cliente e servidor
- □ transporte confiável entre processos remetente e receptor(dados sem erro e na ordem correta)
- □ controle de fluxo: remetente não vai "afogar" receptor
- controle de congestionamento:
 estrangular remetente quando a rede estiver carregada
- □ *não provê:* garantias temporais ou de banda mínima

Serviço UDP:

- transferência de dados não confiável entre processos remetente e receptor
- não provê: estabelecimento da conexão, confiabilidade, controle de fluxo, controle de congestionamento, garantias temporais ou de banda mínima
- P: Qual é o interesse em ter um UDP?

Serviços não providos pelos protocolos de transporte da Internet

- Garantias de vazão
- Temporização

Aplicações Internet: seus protocolos e seus protocolos de transporte

Aplicação	Protocolo da camada de apl	Protocolo de transporte usado
correio eletrônico	SMTP [RFC 2821]	TCP
acesso terminal remoto	telnet [RFC 854]	TCP
WWW	HTTP [RFC 2616]	TCP
transferência de arquivos	ftp [RFC 959]	TCP
streaming multimídia	proprietário	TCP ou UDP
	(p.ex. RealNetworks)	
telefonia Internet	proprietário	tipicamente UDP
	(p.ex., Dialpad)	•

Exercício

- Qual a diferença entre aplicações de rede e protocolos da camada de aplicação?
- 2. De que modo mensagem instantânea é um híbrido das arquiteturas cliente-servidor e P2P?
- 3. O que é um socket?
- 4. Para uma sessão de comunicação entre um par de processos, qual processo é o cliente e qual é o servidor?
- 5. De que serviços de transporte uma aplicação precisa?
- 6. Explique o modelo de serviço do TCP.
- 7. Explique o modelo de serviço do UDP.
- 8. Cite algumas aplicações de rede e descreva qual o protocolo da camada de aplicação ela utiliza?