

CS598PS Machine Learning for Signal Processing

Features Part II – ICA and NMF

11 September 2015

Today's lecture

What comes after PCA

- Independent Component Analysis
 - Achieving complete "decorrelation"

Non-Negative Matrix Factorization

PCA and decorrelation

Goal of PCA

Diagonalize the covariance

$$\mathbf{x}^{\top} \cdot \mathbf{y} = E\{xy\} = 0$$

• i.e. Decorrelate the feature weights

• Why?

- We want to have the features activated in a statistically independent manner
 - So that they capture more structure

Statistical Independence

We defined statistical independence as:

$$P(x,y) = P(x)P(y)$$

Statistical Independence

We defined statistical independence as:

$$P(x,y) = P(x)P(y)$$

• Which implies:

$$E\{f(x)g(y)\} = E\{f(x)\}E\{g(y)\}$$

- ullet For all measurable functions f and g
- Essentially independence means that we can't tell anything about x if we observe y

- Decorrelation does not imply independence!
 - Decorrelation: $E\{xy\} = E\{x\}E\{y\}$
 - Independence: $E\{f(x)g(y)\} = E\{f(x)\}\{g(y)\}$

- But independence implies decorrelation
 - When f and g are identity functions
 - Independence is a superset of decorrelation

- An example with discrete variables
 - Are they uncorrelated?

	x = = -1	x = 0	x = = 1
y = = -1	0	1/4	0
y == 0	1/4	0	1/4
y = 1	0	1/4	0

- An example with discrete variables
 - Are they correlated?

	x = -1	x == 0	x == 1
y = = -1	0	1/4	0
y == 0	1/4	0	1/4
y = 1	0	1/4	0

• x,y are uncorrelated

$$E\{xy\} = E\{x\}E\{y\} = 0$$

8

- An example with discrete variables
 - Are they independent?

	x = = -1	x = 0	x = = 1
y = = -1	0	1/4	0
y == 0	1/4	0	1/4
y = 1	0	1/4	0

- An example with discrete variables
 - Are they independent?

	x = = -1	x == 0	x = = 1
y = = -1	0	1/4	0
y == 0	1/4	0	1/4
y = 1	0	1/4	0

• x,y are not statistically independent

$$E\{x^2y^2\} = 0 \neq E\{x^2\}E\{y^2\} = \frac{1}{4}$$

10

The signals version

• Decorrelated?

$$x = \sin(t)$$
$$y = \sin(2t)$$

The signals version

Decorrelated?

$$x = \sin(t)$$
$$y = \sin(2t)$$

- Yes: $E\{xy\} = 0$
 - But I can predict one from the other
 - Not independent!

So how do we get independence?

- Multiple ways of dealing with the problem
 - Family of algorithms known as ICA
 - Independent Component Analysis
- Formal definition:

Decomposition
$$y = \mathbf{W} \cdot \mathbf{x}$$

$$P(y_i, y_j) = P(y_i)P(y_j), \forall i, j$$

- Non-linear decorrelation (assume zero mean inputs from now on)
 - Achieve: $E\{f(y_i)g(y_j)\}=0$
 - for a fixed f and g
- Cichocki-Unbehauen algorithm
 - Stops updating when independence holds

do
$$\Delta \mathbf{W} \propto \left(\mathbf{D} - f(\mathbf{y}_i) \cdot g(\mathbf{y}_i^{\top}) \right) \cdot \mathbf{W} \qquad \mathbf{D} = \begin{bmatrix} d_1 & 0 \\ & \ddots & \\ 0 & d_n \end{bmatrix}$$
 repeat
$$f(x), g(x) \text{ can be } \tanh(x), x^3, \dots$$

14

- Higher-order "diagonalization"
 - In PCA we diagonalized the covariance matrix
 - which is a $N \times N$ structure (a matrix)

$$Cov(y)_{i,j} = E\{y_i y_j\} = \kappa_2(y_i, y_j)$$

- In ICA we also diagonalize the quadricovariance tensor
 - which is a $N \times N \times N \times N$ structure (a tensor!)

$$Q(y)_{i,j,k,l} = \kappa_4(y_i, y_j, y_k, y_l) = E\{y_i y_j y_k y_l\} - E\{y_i y_j\} E\{y_k y_l\} - E\{y_i y_k\} E\{y_j y_k\} E\{y$$

confused yet?

- Conceptually we perform a tensor singular value decomposition
- Comon's algorithm
 - 1) Do PCA
 - Imposes decorrelation (halfway there)
 - 2) Find unitary transform that minimizes fourth order cross-cumulants

Information theoretic optimization

- Minimize mutual information: $I(y) = \sum H(y_k) H(y)$
- Which implies minimizing: $D(\mathbf{y}) = -\int P(\mathbf{y}) \log \frac{P(\mathbf{y})}{\prod P(y_b)}$
- Iterative rule: $\Delta \mathbf{W} \propto (\mathbf{I} f(\mathbf{y}) \cdot \mathbf{y}^{\mathsf{T}}) \cdot \mathbf{W}$
 - Looks familiar?

Approaches 4, 5, ...

- Maximum likelihood
- FastICA
 - A fast fixed-point algorithm
- Neural nets
 - Directly optimize KL divergence/Mutual information
- Negentropy
 - A measure of non-gaussianity

What approach works best?

- As usual, no good answer ...
- Algebraic algorithms
 - HSVD, cumulant tensors, etc.
 - Computationally demanding
- Iterative algorithms
 - Non-linear decorrelation, infomax, etc
 - Small, fast, but prone to blowups
- FastICA
 - Fixed-point algorithm
 - Quite robust and reliable

So what does ICA do?

Take two uniform RVs and mix them

$$r_1, r_2 \sim U(-1,1)$$
 $x = 2r_1 + r_2$
 $y = r_1 + r_2$

- This creates a dependent x and y
 - Seen as rotation and stretching of data

Performing PCA

- PCA will decorrelate
 - Note that rotation highlights maximal variance directions

 The resulting projection has not produced independence

So what does ICA do?

ICA output is independent!

 We essentially recover the original RVs that composed the input

ICA issues

- Most estimators are approximate
 - The resulting output is not necessarily the correct one

- There might not be independence
 - ICA returns a <u>maximally independent projection</u>, not an independent one
 - Again the output might not be what you expected to get!

ICA limitations

Invariance to output permutations

$$P(y_1, y_2, y_3) = P(y_1)P(y_2)P(y_3) = P(y_2)P(y_3) = P(y_2)P(y_3) = \dots$$

- Output order is not guaranteed and can differ through runs
- No sense of ordering of components
 - PCA orders outputs in terms of variance
 - ICA doesn't have an order
 - As a result we can't reduce dimensionality!

Combining PCA and ICA

- If we need to perform dimensionality reduction we precede ICA with PCA
 - 1) Use PCA to reduce dimensionality
 - 2) Use ICA to impose independence
 - Apply ICA on the output of the PCA
- That's ok, since ICA is a generalization of PCA

So what about the features?

How do ICA and PCA features differ?

- ICA features provide a more compact/sparse "code"
 - PCA "code" can still have statistical dependencies

- PCA features and projection are decorrelated
 - There is no constraint on the ICA features
 - Only the decomposition output is independent

Analysis vs. synthesis features

One more distinction to make

PCA features are "bi-directional"

$$z = W \cdot x$$

$$\hat{\mathbf{x}} = \mathbf{W}^{\mathsf{T}} \cdot \mathbf{z}$$

- That won't hold anymore
 - We have analysis features: $\mathbf{z} = \mathbf{W} \cdot \mathbf{x}$
 - And synthesis features: $\hat{\mathbf{x}} = \mathbf{W}^+ \cdot \mathbf{z}$

Be careful when combining the two!

- If we want both dimensionality reduction and independence
 - Step 1: Do PCA to reduce the dimensions

$$\mathbf{Z}_{P} = \mathbf{W}_{P} \cdot \mathbf{X}, \quad \mathbf{X} \in \mathbb{R}^{M \times N}, \mathbf{W}_{P} \in \mathbb{R}^{K \times M}, \mathbf{Z}_{P} \in \mathbb{R}^{K \times N}$$

Step 2: Do ICA on the PCA weights to produce independence

$$\mathbf{Z}_{I} = \mathbf{W}_{I} \cdot \mathbf{Z}_{p}, \quad \mathbf{W}_{I} \in \mathbb{R}^{K \times K}, \mathbf{Z}_{I} \in \mathbb{R}^{K \times N}$$

- What's what?
 - Analysis features: $\mathbf{Z}_{_I} = \left(\mathbf{W}_{_I} \cdot \mathbf{W}_{_P}\right) \cdot \mathbf{X} \Rightarrow \mathbf{W} = \mathbf{W}_{_I} \cdot \mathbf{W}_{_P}$, $\mathbf{W} \in \mathbb{R}^{K \times M}$
 - Synthesis features: $\hat{\mathbf{X}} = (\mathbf{W}_I \cdot \mathbf{W}_P)^+ \cdot \mathbf{Z}_I$

28

Example features from sounds

- Obtain lots and lots of natural sounds
 - E.g. sounds found in nature, birds, walking on leafs, etc.
- Place short windows in a large matrix
 - and do PCA and ICA

We know that PCA results in sinusoids

Example features from sounds

Same with images

ICA components look a lot like the V1 receptive fields!

What about faces?

ICA-faces Eigenfaces

One lesson learned from ICA

- PCA assumes a Gaussian world
 - For a multivariate Gaussian input it does indeed return independent outputs
 - >2nd order Gaussian cumulants are already zero
- ICA work relaxes the Gaussian assumption and assumes a "heavy-tailed" world
 - This is more like the world we live
 - This was a big revelation in machine learning!

Non-Negative Matrix Factorization

A recent algorithm (Lee & Seung 1999)
 closely related to components analyses

- Has one magical property
 - It always gives you what you want!
- Has one annoying property
 - Nobody knows quite why!!!

Non-negative data

- We often deal with "non-negative data"
 - Pixels, energies, compositions, counts, etc

- Non-negative data need special treatment
 - Negative valued features can contradict reality

Example case

- The Iris data set
 - Each row is a size measurement (i.e. positive)

PCA/ICA analysis on iris data

- Both give features that are partly negative
 - What does that mean?

Same with eigenfaces

"Negative" images as bases – why??

Obtaining non-negative features

Define the factorization problem

$$X \approx W \cdot H$$

$$\mathbf{X} \in \mathbb{R}^{M \times N, \geq 0}$$
, $\mathbf{W} \in \mathbb{R}^{M \times R, \geq 0}$, $\mathbf{H} \in \mathbb{R}^{R \times N, \geq 0}$

- This is similar to the PCA/ICA setup
 - R defines the low-rank dimensionality
- How do we solve this one?
 - One known, two unknowns, ugh ...

Solving for the factorization

- We need to estimate two factors
 - Alternate their estimation

- Example algorithm
 - Start with random W
 - estimate an **H** given **W**
 - estimate a new W given H
 - repeat until convergence

Solving for one factor

- The problem is simpler
 - Only one unknown

$$\min_{\mathbf{W} \text{ or } \mathbf{H}} \sum_{i,j} \left| \mathbf{X} - \mathbf{W} \cdot \mathbf{H} \right|^2$$

$$\mathbf{X} \in \mathbb{R}^{M \times N, \geq 0}, \mathbf{W} \in \mathbb{R}^{M \times R, \geq 0}, \mathbf{H} \in \mathbb{R}^{R \times N, \geq 0}$$

- Imposing non-negativity
 - Non-negative least squares (slow)
 - Constrained optimization (slow)
 - Do least-squares and clip the negative numbers (fast!)

A simple NMF algorithm

Start with random W

• estimate new
$$\mathbf{H}$$
 given \mathbf{W} : $\mathbf{H} = \mathbf{W}^+ \cdot \mathbf{X}$ $\mathbf{H} = \max(\mathbf{H}, 0)$

• estimate new W given H: $W = X \cdot H^+$ $W = \max(W, 0)$

repeat until convergence

Conceptual problem

- We don't want to use pseudoinverses
 - They imply least-squares minimization
 - Least squares imply Gaussian data
 - We don't have Gaussian data ...
- We define a special distance
 - A variant of KL divergence

$$\min_{\mathbf{W},\mathbf{H}} \left[\sum_{i,j} \mathbf{X}_{i,j} \log \frac{\mathbf{X}_{i,j}}{(\mathbf{W} \cdot \mathbf{H})_{i,j}} - \mathbf{X}_{i,j} + (\mathbf{W} \cdot \mathbf{H})_{i,j} \right]$$

Multiplicative updates

Using some optimization magic we get:

$$\mathbf{W}_{i,j} = \mathbf{W}_{i,j} \sum_{k} \frac{\mathbf{X}_{i,k}}{(\mathbf{W} \cdot \mathbf{H})_{i,k}} \mathbf{H}_{j,k}$$
 $\mathbf{H}_{j,k} = \mathbf{H}_{j,k} \sum_{i} \mathbf{W}_{i,j} \frac{\mathbf{X}_{i,k}}{(\mathbf{W} \cdot \mathbf{H})_{i,k}}$

- Significantly faster operations
 - Just matrix and scalar multiplications
 - No inversions

An example

- Start with input X
- NMF will decompose as $X \approx W \cdot H$

- The columns of W will contain "vertical" information about X
- The rows of H will contain
 "horizontal" information about X

Columns of W

Back to the iris data

- NMF on iris provides interpretable results
 - We see the structure
 - The features are meaningful as sizes
- PCA/ICA features
 - Not so useful

Decomposition by parts

- NMF does "additive decompositions"
 - Explains data in terms of things you add

- This correlates with how we think
 - Scenes are made out of objects
 - We never have "negative" object presence

Example on faces

- Both PCA and NMF describe the data to a good degree
 - Eigenfaces are not interpretable though (very abstract notions)
 - NMF-faces find parts that are additive (noses, eyes, etc.)
- NMF is a better way to explain structured data

Component analyses on movies

- Movies are fun data for component analyses
 - Immense dimensionality
 - Too much data to train on, we need a more compact form
 - PCA/NMF can do that!
 - Scenes are composed out of elements
 - We want to discover these elements to better analyze the input
 - ICA/NMF can do that!
 - There are visual data and audio data
 - Both exhibit their own structure, often they interrelate
 - All techniques help there!

A Video Example

- The movie is a series of frames
 - Each frame is a data point
 - 126, 80 × 60 pixel frames
 - Data will be 4800 × 126

- PCA, ICA, NMF
- Compare features and weights

PCA Results

- Nothing special about the visual components
- They are orthogonal pictures
 - Does this mean anything? (not really ...)
 - Some segmentation between constant vs. moving parts
- Some highlighting of the action in the weights

Principal Component 1

ICA Results

- Much more interesting visual components
- They are independent
 - Unrelated elements (l/r hands, background) are now highlighted
 - We have a decomposition by parts
- Component weights are now describing the scene

Independent Component 1

NMF Results

- A different take on the visual components
- We don't know how they relate, but ...
 - They describe the some of the possible states of the video
 - Perhaps a more semantically meaningful representation
- Component weights are as vague as with PCA (because we have more components than we need)

Nonnegative Component 1

Nonnegative Component 2

Nonnegative Component 3

If we use the right dimensions

The results look exactly as we would want them!

Audio Visual Components?

- We can can even take in both audio and video data and try to find structure
- Sometimes there is a very strong correlation between auditory and visual elements
- We should be able to discover that automatically

What does the data look like?

Audio/Visual PCA components

Audio/Visual ICA components

Audio/Visual NMF components

Audio/Visual NMF components

PCA, ICA or NMF?

- Depends on what you want to do
 - PCA does a fantastic job in dimensionality reduction
 - ICA provides a clean output
 - And is perceptually more relevant
 - NMF provides interpretable outputs
 - But only for non-negative data
- As usual there is no right answer
 - When in doubt try them all!

Recap

- Independent Component Analysis
 - Obtains maximal independence
 - Does not reduce dimensionality

- Non-Negative Matrix Factorization
 - Best for analysis of non-negative data
 - pixels, energies, count data, etc ...
 - No particular statistical property though

Next lecture

Last on features for a while

- Non-linear methods
 - What do do when your data looks really strange
- Manifolds and embedding
 - Finding latent structure in high dimensions

Reading

- Textbook sections 6.5-6.6
- Independent Component Analysis (optional)
 - http://www.cis.hut.fi/aapo/papers/IJCNN99 tutorialweb/
- Natural stimuli statistics (optional)
 - http://redwood.berkeley.edu/bruno/papers/nature-paper.pdf
 - ftp://ftp.cnl.salk.edu/pub/tony/vis3.ps.Z
 - http://www.cnbc.cmu.edu/cplab/papers/Lewicki-NatNeurosci-02.pdf
- Non-negative Matrix Factorization (optional)
 - http://hebb.mit.edu/people/seung/papers/ls-lponm-99.pdf