Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/US04/015136

International filing date: 13 May 2004 (13.05.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US

> Number: 60/554,751

Number: 60/554,751 Filing date: 19 March 2004 (19.03.2004)

Date of receipt at the International Bureau: 20 August 2004 (20.08.2004)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

TWO ARE TREATMENT THE SECURISE NISS SHALL CONFER

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

August 11, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/554,751
FILING DATE: March 19, 2004
RELATED PCT APPLICATION NUMBER: PCT/US04/15136

Certified by

1210443

Jon W Dudas

Acting Under Secretary of Commerce for Intellectual Property and Acting Director of the U.S. Patent and Trademark Office

PROVISI	IONAL APPLICATION (APPLICATION under 37 CFR § 1.53		T		
EL96919074US EL96919074US DATE OF DEPOSIT: March 19, 2004	Docket Number: MON-0298		Type a plus sign (+) inside this box→	17858 U.S. PTO 60/554751	
INVENTOR(S)/APPLICANT(S)					
GIVEN NAME (FIRST AND MIDDLE [IF ANY])	FAMILY NAME OR SURNAME	OR FOREIGN CO	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)		
Xia Weihua Danielle R. Alexander Alexeyevich Joseph G.	LI LI REED BACHMANOV BRAND	Havertown, Pennsyl Broomall, Pennsylv Glenside, Pennsylv Philadelphia, Penns	Havertown, Pennsylvania Broomall, Pennsylvania Glenside, Pennsylvania Philadelphia, Pennsylvania Wayne, Pennsylvania		
Additional inventors are being named on the separately numbered sheets attached hereto					
דוד	TLE OF THE INVENTION (280 cha	aracters max)			
TASTE RECEPTORS OF THE TIR FAMILY FROM DOMESTIC CAT					
CORRESPONDENCE ADDRESS					
Attorney Name: Felicity E. Groth WOODCOCK WASHBURN LLP One Liberty Place - 46th Floor Philadelphia PA 19103 Telephone (215) 568-3100 Facsimile (215) 568-3439					
ENCLOSED APPLICATION PARTS (check all that apply)					
☐ Drawing(s) Number of Sheets: 25			Claims (optional) Other (specify) 77 pages Sequence Listing, 1) diskette, Statement to Support		
METHOD OF PAYMENT (check one)					
 A check or money order is enclosed to cover the Provisional filing fee: \$80.00 Small Entity \$160.00 Large Entity The Commissioner is hereby authorized to charge filing fee and credit Deposit Account No.: 23-3050 					
 □ The Commissioner is hereby authorized to charge filing fee and credit Deposit Account No.: 23-3050 □ The Commissioner is hereby authorized to charge Deposit Account No. 23-3050 any fee deficiency or credit account for any overpayment. □ The invention was made by an agency of the United States Government or under a contract with an agency of the United States 					

Respectfully submitted,

Government.

No.

SIGNATURE

Edicate & Choth

Yes, the name of the U.S. Government agency and the Government contract number are

TYPED or PRINTED NAME Felicity E. Groth

Date: March 19, 2004 REGISTRATION NO. 47,042 (if appropriate)

TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT

FIELD OF THE INVENTION

[0001] The present invention relates to the field of sensory mechanisms of the domestic cat, *Felis catus*. The invention relates, for example, to the discovery of several genes of *Felis catus* encoding taste receptors of the T1R family, T1R1 (or Tas1R1), T1R2 (or Tas1R2), and T1R3 (or Tas1R3). The invention further relates to the polypeptides encoded by the feline T1R1, T1R2, and T1R3 genes and to methods and uses of the same.

BACKGROUND OF THE INVENTION

[0002] The sense of taste is important for determining food choice, for regulating food intake, and for ensuring efficient use of ingested nutrients. Taste can act as a warning system for the

presence of potentially harmful foods, by, for example, the aversive sensations of sourness or bitterness, and as an attractant to potentially nutrient-rich foods, by, for example, the appealing sensations of sweetness, saltiness, and umami.

[0003] Taste stimuli are received by taste receptor cells assembled into taste buds that are located in the epithelium of taste papillae of the tongue (Kitagawa et al., Bioch. Bioph. Res. Comm., 283:236-242 (2001)). The stimuli are believed to be transduced by taste receptors at the surface of the taste receptor cells (Id.). The taste receptors encoded by the genes of a given species are reflective of that species' food choices. For example, the "sweet receptors" of an herbivorous species are expected to be different from those of a carnivorous species, since the two consume completely different diets whose foods contain different primary stimuli. Since taste receptor specificity likely reflects food choice, it follows that receptor sequence homology among species may be as predictive or more predictive of food preferences of a given species as phylogenetic relatedness among species.

Evolution has provided that each species' genes code for taste receptors unique to that [0004] species' food choices. For example, the "sweet receptors" of an herbivore are expected to be different from those of a carnivore, since the two consume completely different diets whose foods contain different primary stimuli. Since taste receptor specificity must reflect food choice, it may follow that receptor sequence homology among species might be dependent more upon the types of foods consumed by individual species rather than by the phylogenetic relatedness of species. The behavior of carnivores, such as the domestic cat, towards stimuli such as sweet carbohydrates, which it cannot taste (Beauchamp, et al., J. Comp. Physiol. Psychol., 91(5):1118-1127 (1977)), and towards L-amino acids, which it can taste, should be explainable based on the specificity of the taste receptors of carnivores in general. The behavior of the domestic cat (Felis catus), a carnivore, towards stimuli such as sweet carbohydrates, which it generally cannot taste, and towards L-amino acids, which it generally can taste, should be explicable by the specificity of taste receptors of other carnivores. Direct knowledge of taste receptor genes will allow insight into an animal's sensory world and may be useful for identifying modulators of the taste receptors encoded thereby to influence an animal's taste preferences.

[0005] Molecular receptors for the taste element of sweetness have recently been identified from human, mouse, and rat. Thus far, there are three known members of the T1R taste receptor family: T1R1, T1R2, and T1R3 (Montmayeur & Matsunami, Curr. Opin. Neurobiol., 12(4):366-371 (2002)). The T1R3 receptor gene is located within the Sac locus, the primary genetic locus controlling preference for sweet-tasting stimuli in mice (Li et al., Mamm. Genome, 12(1):13-16

(2001); Li et al., Mamm. Genome, 13(1):5-19 (2002)). The human syntenic region for mouse T1R3 gene is on 1p36.33 (1162-1186kb). The gene for T1R1 is located on human 1p36.23 (6324-6349kb), which is ~5Mb from T1R3, and that for T1R2 is located on human 1p36.13 (18483-18729kb), which is ~12Mb from T1R1.

[0006] Most of the T1Rs are G-protein coupled receptors with long N-terminal extracellular domains believed to be involved in ligand binding (Montmayeur & Matsunami, *Curr. Opin. Neurobiol.*, 12(4):366-371 (2002)). Within the cell, the taste receptors heterodimerize, with T1R3 coupling separately with T1R1 and T1R2. In mouse, the T1R1/T1R3 heterodimer functions as a receptor for selected amino acids. The T1R2/T1R3 heterodimer functions as a receptor for stimuli considered sweet by humans. Current data indicate that the T1R3 component of the T1R heterodimer couples the taste receptor to cellular signal transduction processes, thereby ensuring that the stimulus-binding event is transduced to a neural signal. Thus, knowledge of the T1R receptors will lead to better understanding of species-specific reactions to sapid stimuli.

[0007] Currently, mechanisms for identifying novel taste stimuli for the domestic cat are limited, for example, to exhaustive and difficult feeding studies in which a novel ingredient is paired with a control ingredient and intake of the two are compared. Considerable time, effort, and expense can be expended in the discovery of a single stimulus. Furthermore, feline illnesses often are exacerbated by a cat's refusal to eat. Additionally, the molecular features that define acceptable taste stimuli for domestic cat remain largely unknown, making rational computational design approaches for taste stimuli difficult. As a result, knowledge of the feline taste receptor and its ligands may lead to a better understanding of cat taste perception and modulation thereof.

[0008] The present invention provides novel feline taste receptors, T1R1, T1R2, and T1R3, methods of use thereof to identify compounds that can stimulate, inhibit, or modify the ingestive responses or general behavior of a cat. The screening methods of the invention allow the rapid screening of binding partners, agonists, antagonists, and modulators of the T1R receptors of the domestic cat. The results of the feline T1R receptor studies reflect the unique taste profile of the domestic cat.

SUMMARY OF THE INVENTION

[0009] Certain embodiments of the present invention relate to polynucleotides encoding a T1R receptor, including, but not limited to polynucleotides having the nucleotide sequence of SEQ ID

NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:63, fragments of the polynucleotide of SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63 encoding a polypeptide having substantially the same biological activity as a polypeptide encoded by the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63, respectively; variants of the polynucleotide of SEQ ID NO:1 having at least 80% homology to the polynucleotide of SEQ ID NO:1; variants of the polynucleotide of SEQ ID NO:59 or SEQ ID NO:60 having at least 85% homology to the polynucleotide of SEQ ID NO:59 or SEQ ID NO:60; variants of the polynucleotide of SEQ ID NO:62 or SEQ ID NO:63 having at least 75% homology to SEQ ID NO:62 or SEQ ID NO:63; polynucleotide variants of SEO ID NO:1, SEO ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63 encoding a polypeptide having substantially the same biological activity as a polypeptide encoded by the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63, respectively; variants of the polynucleotide of SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEO ID NO:62, or SEO ID NO:63 encoding a polypeptide conferring modified taste perception to one or more taste stimuli relative to a polypeptide encoded by the polynucleotide of SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63, respectively; nucleotide sequences encoding the amino acid sequence of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64; nucleotide sequences substantially complementary to the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63; and nucleotide sequences that hybridize to the complement of the polynucleotide having SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63 under high stringency conditions. The biological activity of the polypeptides encoded by the polynucleotides of the invention may be determined, for example, by an in vitro binding assay, such as but not limited to assessing the level of binding of the polypeptide to its respective T1R heterodimerization partner. The polynucleotides of the invention may be DNA or RNA and may be single- or double-stranded. In some embodiments of the invention, the polynucleotide fragments have at least about 42 nucleotides. The polynucleotide fragments of the invention encode, for example, an extracellular domain of the polypeptide of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64; a transmembrane domain of the polypeptide of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64; or an intracellular domain of the polypeptide of SEQ ID NO:2, SEQ ID NO:61, or SEQ In other embodiments of the invention, the polynucleotide variants of the polynucleotide of SEQ ID NO:1 encoding an amino acid sequence of SEQ ID NO:2 have a nonconserved amino acid substitution, for example, at residue 59 and/or residue 64.

[0010] The invention also encompasses expression vectors containing the polynucleotides of the invention operably linked to a promoter. Another embodiment of the invention provides host cells containing the expression vector. The host cells may be mammalian, including human, murine, porcine, bovine, canine, or feline. The invention further encompasses cell cultures of the host cells. The invention also encompasses methods of producing a feline T1R receptor by culturing the host cells and recovering receptor therefrom.

[0011] Another embodiment of the invention includes T1R receptor polypeptides encoded by the polynucleotides of the invention. The polypeptides of the invention include, for example, those having the amino acid sequence of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64, fragments of at least 30 contiguous amino acids of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64, and variants thereof having substantially the same biological activity as the polypeptide of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64, respectively. The variant polypeptides of the invention may have an amino acid sequence having at least one sequence variation of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64 that confers modified taste perception to one or more taste stimuli relative to a polypeptide of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64, respectively.

[0012] The invention provides methods of identifying a feline T1R receptor variant that confers modified taste perception by expressing a variant of the polynucleotide of SEQ ID NO:1, SEQ ID NO:69, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63 homologous to the polynucleotide of SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63, respectively, and detecting an increase or a decrease in the biological activity of the polypeptide encoded by SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63, respectively.

[0013] The invention further provides kits for the detection of polynucleotides encoding a feline T1R receptor including a polynucleotide that specifically hybridizes to a polynucleotide encoding a polypeptide having an amino acid sequence of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64, and instructions relating to detection thereof.

[0014] Also provided by the invention are antibodies that immunoreact specifically with at least one epitope of a polypeptide of the invention. The invention also includes kits for the detection of polypeptides encoding a feline T1R receptor including antibodies of the invention and instructions relating to detection.

[0015] Further provided by the invention are methods for identifying a compound that interacts with a feline T1R receptor by expressing a polynucleotide of the invention in the presence of a test compound, and detecting direct or indirect interaction between a polypeptide produced by the expression step with the compound. Also provided are methods for identifying compounds that interact with a feline T1R receptor by contacting a feline T1R receptor with a test compound, and detecting interaction between the receptor and the compound. The methods for detecting such interaction may be cell-based or cell-free assays. For example, a polynucleotide of the invention may be expressed in a heterologous expression system or in a cellular extract. The receptor may be bound to a solid support. In one aspect of the invention, the recognition sites of the receptor are coupled with a monitoring system, either electrical or optical. In another embodiment, the solid support is formulated into a feline-specific electronic tongue or biosensor.

The invention also provides methods for identifying agonists and antagonists of a feline [0016]T1R receptor. For example, the methods of the invention include identification of an agonist of a feline T1R receptor by expressing a polynucleotide of the invention in the presence of a test compound, and detecting increased transcription of said polynucleotide or increased biological activity of a polypeptide produced by the expression step in the presence of the compound relative to the rate of transcription or biological activity of the polypeptide in the absence of the compound. The biological activity detected may be an increase or decrease in the interaction between the T1R receptor and its T1R heterodomerization partner. For example, the T1R heterodimerization partner of a T1R1 or a T1R2 receptor may be T1R3 and vice versa. Also included are methods for identifying agonists of a feline T1R receptor by contacting a polypeptide of the invention with a test compound, and detecting an increase in biological activity of the polypeptide in the presence of the compound relative to biological activity of the polypeptide in the absence of the compound. The methods for identifying agonists of the cat T1R receptors may be cell-based or cell-free assays. For example, a polynucleotide of the invention may be expressed in a heterologous expression system or in a cellular extract. The receptor may be bound to a solid support. In one aspect of the invention, the recognition sites of the receptor are coupled with a monitoring system, either electrical or optical. In another embodiment, the solid support is formulated into a feline-specific electronic tongue or biosensor.

[0017] Methods for identifying antagonists of the polypeptides of the invention also are provided. For example, the invention provides methods for identifying antagonists of a feline T1R receptor by expressing a polynucleotide of the invention in the presence of a test compound, and detecting decreased transcription of said polynucleotide or decreased biological activity of a

polypeptide produced by the expression step in the presence of the compound relative to the rate of transcription or biological activity of the polypeptide in the absence of the compound. Another example of methods for identifying an antagonist of a feline T1R receptor involves contacting a polypeptide of the invention with a test compound, and detecting a decrease in biological activity of the polypeptide in the presence of the compound relative to biological activity of the polypeptide in the absence of the compound. The methods for identifying the antagonists may be cell-based or cell-free assays. For example, a polynucleotide of the invention may be expressed in a heterologous expression system or in a cellular extract. The receptor may be bound to a solid support. In one aspect of the invention, the recognition sites of the receptor are coupled with a monitoring system, either electrical or optical. In another embodiment, the solid support is formulated into a feline-specific electronic tongue or biosensor.

[0018] Another embodiment of the invention includes compounds and compositions for modifying the taste perception of a mammal, such as a cat. The compounds and compositions may contain at least one of the polynucleotides of the invention, polypeptides of the invention, or compounds identified by the methods of the invention. Examples of the compositions of the invention include veterinary foods and drinks and pharmaceutical compositions. The compositions of the invention may include a pharmaceutically acceptable excipient. The compositions of the invention may be breed-specific. Methods for modifying the taste perception of a mammal (e.g., a cat) by administering to the mammal a polynucleotide of the invention, a polypeptide of the invention, and/or a compound identified according to the methods of the invention also are provided.

[0019] The invention further provides transgenic animals comprising a polynucleotide of the invention.

[0020] The materials, methods, and examples provided herein are illustrative only and are not intended to be limiting. Other features and advantages of the invention will be apparent from the following detailed description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] Figures 1A-1I show the multiple sequence alignment of the T1R receptors of domestic cat (T1R1, SEQ ID NO:60; T1R2, SEQ ID NO:63; and T1R3, SEQ ID NO:1) with known nucleotide sequences of receptors of the T1R family from human (T1R1, SEQ ID NO:8; T1R2, SEQ ID NO:5; T1R3, SEQ ID NO:11), mouse (T1R1, SEQ ID NO:6; T1R2, SEQ ID NO:3;

T1R3, SEQ ID NO:9), and rat (T1R1, SEQ ID NO:7; T1R2, SEQ ID NO:4; T1R3, SEQ ID NO:10). An asterisk (*) indicates a conserved nucleotide position among the sequences. A heart (\heartsuit) indicates the stop codon of feline T1R2.

Figures 2A-D show the deduced amino acid sequences of the feline T1R taste receptors (T1R1, SEQ ID NO:61; T1R2, SEQ ID NO:64; and T1R3, SEQ ID NO:2) aligned with the amino acid sequences of members of the T1R receptor family from human (T1R1, SEQ ID NO:17; T1R2, SEQ ID NO:20; T1R3, SEQ ID NO:12), rat (T1R1, SEQ ID NO:16; T1R2, SEQ ID NO:19; T1R3, SEQ ID NO:14), and mouse (T1R1, SEQ ID NO:15; T1R2, SEQ ID NO:18; T1R3, SEQ ID NO:13). An asterisk (*) indicates a conserved nucleotide position among the sequences. A colon (:) indicates an observed conserved amino acid substitution. A period (.) The deduced amino acid indicates an observed semi-conserved amino acid substitution. sequence for cat T1R3 (SEQ ID NO:2) contains four additional amino acids at positions 11-14 relative to the homologous T1R3 receptors of mouse (SEQ ID NO:13), human (SEQ ID NO:12), and rat (SEO ID NO:14). The deduced sequence for cat reveals a threonine in position 64, a position equivalent to amino acid 60 in mouse, and a leucine at position 59, a position equivalent to position 55 in mouse. In mouse, amino acid substitutions of a threonine at position 60 and an alanine at position 55, both positions located within the putative extracellular N-terminal domain of the polypeptide, are present in strains of mice demonstrating low preference for the sweet stimulus saccharin (Bachmanov et al., Chem. Senses, 26:925-933 (2001)). Leucine is a conservative substitution for alanine. Accordingly, the amino acid sequence differences of cat and mouse T1R3 receptor may account for functional differences that lead to different taste preferences between the two species.

[0023] Figure 3 illustrates a phylogenetic tree showing the relatedness of the domestic cat T1R receptor family to the T1R family of receptors including human, rat, and mouse T1R1, T1R2, and T1R3. The T1R receptors of the rat and mouse are closely related, while the T1R receptors of human and cat diverge from rat and mouse. Interestingly, the sweet stimuli to which the rat and mouse respond are very similar, whereas those that stimulate the human and those that stimulate the cat differ from one another and from those for rat and mouse. For example, humans are unique in their ability to taste most high-intensity sweeteners, while cats find many amino acids attractive but are unable to taste most carbohydrate and high-intensity sweeteners. The cat T1R2 diverges from that of human, mouse, and rat, which is consistent with the fact that cat does not show preference for the carbohydrate sweeteners.

[0024] Figure 4 illustrates the predicted conformation of cat T1R3 receptor. The cat T1R3 receptor is a seven transmembrane receptor similar in structure to other known members of the T1R family of receptors. The structure of the feline T1R3 receptor was generated through use of a protein modeling program available at <www.ebi.ac.uk/~moeller/transmembrane.html>.

[0025] Figure 5A shows the predicted conformation of cat T1R1, indicating that the receptor is a 7-transmembrane-type receptor with general similarity to other known members of the T1R family. The predicted conformation of cat T1R1 is the same as that for cat T1R3. Figure 5B illustrates the predicted conformation of cat T1R2. Since feline T1R2 is a short protein (391 amino acids), a 7 transmembrane domain protein is not predicted. Without seven transmembrane domains, the cat T1R2 receptor may not interact appropriately with T1R3 and the plasma membrane. This inability to form the T1R2/T1R3 heterodimer results in the cat's inability to taste sweet carbohydrates. The cat T1R2 may have another function.

[0026] Figures 6A-D show the genomic sequence of cat T1R1 obtained from BAC sequencing. The letter "N" denotes gaps between exons or unknown sequences.

[0027] Figures 7A-E show the genomic sequence of cat T1R2 obtained from BAC sequencing. The letter "N" denotes gaps between exons or unknown sequences.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0028] The reference works, patents, patent applications, and scientific literature that are referred to herein reflect in part the knowledge of those with skill in the art and are hereby incorporated by reference in their entirety to the same extent as if each was specifically and individually indicated to be incorporated by reference. Any conflict between any reference cited herein and the specific teachings of this specification shall be resolved in favor of the latter. Likewise, any conflict between an art-understood definition of a word or phrase and a definition of the word or phrase as specifically taught in this specification shall be resolved in favor of the latter.

[0029] Standard reference works setting forth the general principles of recombinant DNA technology are known to those of skill in the art (Ausubel *et al.*, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, 1998; Sambrook *et al.*, MOLECULAR CLONING: A LABORATORY MANUAL, 2D ED., Cold Spring Harbor Laboratory Press, Plainview,

New York, 1989; Kaufman et al., Eds., HANDBOOK OF MOLECULAR AND CELLULAR METHODS IN BIOLOGY AND MEDICINE, CRC Press, Boca Raton, 1995; McPherson, Ed., DIRECTED MUTAGENESIS: A PRACTICAL APPROACH, IRL Press, Oxford, 1991).

[0030] As used herein, "T1R receptor" encompasses the taste receptors of the T1R1, T1R2, and T1R3 types.

[0031] As used herein, "taste perception" refers to a response (e.g., biochemical, behavioral) or sensitivity of a T1R receptor of the invention to a taste stimulus. "Taste stimulus" as used herein refers to any compound that elicits, for example at the biochemical level (e.g., activation or inhibition of a taste receptor) or behavioral level (e.g., preference, indifference, or distaste), a taste response which would be perceived by a mammal as at least one of the five taste elements, including sweet, salty, sour, bitter, and umami. "Taste perception" or "taste stimulus," or variants thereof, does not require, though it does include, transmission of a neural signal resulting in in vivo sensation of taste by a mammal. Modification of taste perception includes an alteration of (enhancement of, reduction to, or change to) a biochemical response, an ingestive response, a taste preference, or general behavior of a mammal in response to a compound.

[0032] As used herein "polynucleotide" refers to a nucleic acid molecule and includes genomic DNA, cDNA, RNA, mRNA, mixed polymers, recombinant nucleic acids, fragments and variants thereof, and the like. Polynucleotide fragments of the invention comprise at least 10, and preferably at least 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 75, or 100 consecutive nucleotides of a reference polynucleotide. The polynucleotides of the invention include sense and antisense strands. The polynucleotides of the invention may be naturally occurring or non-naturally occurring polynucleotides. A "synthesized polynucleotide" as used herein refers to polynucleotides produced by purely chemical, as opposed to enzymatic, methods. "Wholly" synthesized DNA sequences are therefore produced entirely by chemical means, and "partially" synthesized DNAs embrace those wherein only portions of the resulting DNA were produced by chemical means. The polynucleotides of the invention may be single- or double-stranded. The polynucleotides of the invention may be chemically modified and may contain non-natural or derivatized nucleotide bases as will be readily appreciated by those skilled in the art. Such modifications include, for example, labels, methylation, substitution of one or more nucleotides with an analog, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), pendent moieties (e.g., polypeptides, etc.), intercalators (e.g., acridine, psoralen, etc.), chelators, alkylators, and modified linkages (e.g.,

alpha anomeric nucleic acids, etc.). Also included are synthetic molecules that mimic polynucleotides in their ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules are known in the art and include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of the molecule.

[0033] "Recombinant nucleic acid" is a nucleic acid generated by combination of two segments of nucleotide sequence. The combination may be, for example, by chemical means or by genetic engineering.

[0034] As used herein, "polynucleotide amplification" refers to a broad range of techniques for increasing the number of copies of specific polynucleotide sequences. Typically, amplification of either or both strand(s) of the target nucleic acid comprises the use of one or more nucleic acid-modifying enzymes, such as a DNA polymerase, ligase, RNA polymerase, or RNA-dependent reverse transcriptase. Examples of polynucleotide amplification include, but are not limited to, polymerase chain reaction (PCR), nucleic acid sequence based amplification (NASB), self-sustained sequence replication (3SR), strand displacement activation (SDA), ligase chain reaction, Qβ replicase system, and the like. A wide variety of alternative cloning and *in vitro* amplification methodologies are well known to those skilled in the art. Examples of these techniques are found in, for example, Berger *et al.*, *Guide to Molecular Cloning Techniques*, METHODS IN ENZYMOLOGY 152, Academic Press, Inc., San Diego, CA (Berger), which is incorporated herein by reference in its entirety.

[0035] As used herein, the term "oligonucleotide" or "primer" refers to a series of linked nucleotide residues which has a sufficient number of bases to be used in a polymerase chain reaction (PCR). This short sequence is based on (or designed from) a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar, or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise portions of a nucleic acid sequence having at least about 10 nucleotides and as many as about 50 nucleotides, often about 12 or 15 to about 30 nucleotides. They are chemically synthesized and may be used as probes. "Primer pair" refers to a set of primers including a 5' upstream primer that hybridizes with the 5' end of a target sequence to be amplified and a 3' downstream primer that hybridizes with the complement of the 3' end of the target sequence to be amplified.

[0036] As used herein, the term "probe" refers to nucleic acid sequences of variable length, for example between at least about 10 and as many as about 6,000 nucleotides, depending on use. Probes are used in the detection of identical, similar, or complementary target nucleic acid

sequences, which target sequences may be single- or double-stranded. Longer probes are usually obtained from a natural or recombinant source, are highly specific, and are much slower to hybridize than oligomers, or shorter probes. They may be single- or double-stranded and are carefully designed to have specificity in PCR, hybridization membrane-based, or ELISA-like technologies. An "overgo probe" is a DNA probe comprising two short, overlapping DNA sequences (e.g., 10-50 nucleotides each) with a complementary overlapping region (e.g., 5-15 nucleotides) that is used in an overgo hybridization strategy. For example, an overgo probe may be two 22mers with an 8 bp complementary overlap, resulting in a 36mer overgo probe. As another example, an overgo probe may be two 24mers with an 8 bp complementary overlap, resulting in a 40mer overgo probe.

[0037] As used herein, the phrase "stringent hybridization conditions" or "stringent conditions" refers to conditions under which a probe, primer, or oligonucleotide will hybridize to its target sequence, but to a minimal number of other sequences. Stringent conditions are sequencedependent and will be different in different circumstances. Longer sequences will hybridize with specificity to their proper complements at higher temperatures. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present in excess, at T_m, 50% of the probes are hybridized to their complements at equilibrium. Stringent temperature conditions will generally include temperatures in excess of 30°C, typically in excess of 37°C, and may be in excess of 45°C. Stringent salt conditions will ordinarily be less than 1.0 M, typically less than 0.5 M, and may be less than 0.2 M. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes, primers, or oligonucleotides (e.g., 10 to 50 nucleotides) and at least about 60°C for longer probes, primers, or oligonucleotides. Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.

[0038] As used herein "antisense oligonucleotide" refers to a nucleic acid molecule that is complementary to at least a portion of a target nucleotide sequence of interest and specifically hybridizes to the target nucleotide sequence under physiological conditions. The term "double stranded RNA" or "dsRNA" as used herein refers to a double-stranded RNA molecule capable of

RNA interference, including short interfering RNA (siRNA) (see for example, Bass, *Nature*, 411, 428-429 (2001); Elbashir *et al.*, *Nature*, 411, 494-498 (2001)).

[0039] As used herein, the term "complementary" refers to Watson-Crick basepairing between nucleotide units of a nucleic acid molecule.

The term "marker gene" or "reporter gene" refers to a gene encoding a product that, [0040] when expressed, confers a phenotype at the physical, morphologic, or biochemical level on a transformed cell that is easily identifiable, either directly or indirectly, by standard techniques and includes, but is not limited to, genes encoding proteins that confer resistance to toxins or antibiotics such as ampicillin, neomycin, and methotroxate; genes encoding proteins that complement auxotrophic deficiencies; and genes encoding proteins that supply critical components not available from complex media. Examples of marker genes include green fluorescent protein (GFP), red fluorescent protein (DsRed), alkaline phosphatase (AP), βchloramphenicol acetyltransferase (CAT), adenosine deaminase (ADA), aminoglycoside phosphotransferase (neor, G418r) dihydrofolate reductase (DHFR), hygromycin-B-phosphotransferase (HPH), thymidine kinase (TK), lacZ (encoding β-galactosidase), luciferase (luc), and xanthine guanine phosphoribosyltransferase (XGPRT). As with many of the standard procedures associated with the practice of the invention, skilled artisans will be aware of additional sequences that can serve the function of a marker or reporter. Thus, this list is merely meant to show examples of what can be used and is not meant to limit the invention.

[0041] As used herein, the term "promoter" refers to a regulatory element that regulates, controls, or drives expression of a nucleic acid molecule of interest and can be derived from sources such as from adenovirus, SV40, parvoviruses, vaccinia virus, cytomegalovirus, or mammalian genomic DNA. Examples of suitable promoters include, but are not limited to, CMV, MSH2, trp, lac, phage, and TRNA promoters. Suitable promoters that can be used in yeast include, but are not limited to, such constitutive promoters as 3-phosphoglycerate kinase and various other glycolytic enzyme gene promoters such as enolase or glyceraldehydes-3-phosphate dehydrogenase, or such inducible promoters as the alcohol dehydrogenase 2 promoter or metallothionine promoter. Again, as with many of the standard procedures associated with the practice of the invention, skilled artisans will be aware of additional promoters that can serve the function of directing the expression of a marker or reporter. Thus, the list is merely meant to show examples of what can be used and is not meant to limit the invention.

[0042] "Operably linked" refers to juxtaposition wherein the components are in a functional relationship. For example, a promoter is operably linked or connected to a coding sequence if it controls the transcription or expression of the sequence.

The terms "polypeptide," "peptide," and "protein" are used interchangeably herein. [0043] "Polypeptide" refers to a polymer of amino acids without referring to a specific length. Polypeptides of the invention include peptide fragments, derivatives, and fusion proteins. Peptide fragments preferably have at least about 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, or 100 amino acids. Some peptide fragments of the invention are biologically active. Biological activities include immunogenicity, ligand binding, and activity associated with the reference peptide. Immunogenic peptides and fragments of the invention generate an epitope-specific immune response, wherein "epitope" refers to an immunogenic determinant of a peptide and preferably contains at least three, five, eight, nine, ten, fifteen, twenty, thirty, forty, forty-five, or fifty amino acids. Some immunogenic peptides of the invention generate an immune response specific to that peptide. Polypeptides of the invention include naturally occurring and nonnaturally occurring peptides. The term includes modified polypeptides (wherein examples of such modifications include glycosylation, acetylation, phosphorylation, carboxylation, ubiquitination, labeling, etc.), analogs (such as non-naturally occurring amino acids, substituted linkages, etc.), and functional mimetics. A variety of methods for labeling polypeptides are well known in the art and include radioactive isotopes such as ³²P or ³⁵S, ligands that bind to labeled antiligands (e.g., antibodies), fluorophores, chemiluminescent agents, enzymes, and antligands.

[0044] As used herein, the term "amino acid" denotes a molecule containing both an amino group and a carboxyl group. In some embodiments, the amino acids are α -, β -, γ - or δ -amino acids, including their stereoisomers and racemates. As used herein the term "L-amino acid" denotes an α -amino acid having the L configuration around the α -carbon, that is, a carboxylic acid of general formula CH(COOH)(NH2)-(side chain), having the L-configuration. The term "D-amino acid" similarly denotes a carboxylic acid of general formula CH(COOH)(NH2)-(side chain), having the D-configuration around the α -carbon. Side chains of L-amino acids include naturally occurring and non-naturally occurring moieties. Non-naturally occurring (*i.e.*, unnatural) amino acid side chains are moieties that are used in place of naturally occurring amino acid side chains in, for example, amino acid analogs. Amino acid substituents may be attached, for example, through their carbonyl groups through the oxygen or carbonyl carbon thereof, or through their amino groups, or through functionalities residing on their side chain portions.

[0045] The amino acid sequences are presented in the amino (N) to carboxy (C) direction, from left to right. The N-terminal α -amino group and the C-terminal β -carboxy groups are not depicted in the sequence. The nucleotide sequences are presented by single strands only, in the 5' to 3' direction, from left to right. Nucleotides and amino acids are represented in the manner recommended by the IUPAC-IUB Biochemical Nomenclature Commission, or amino acids are represented by their three letters code designations.

[0046] As used herein, the term "antibody" is meant to refer to complete, intact antibodies, and Fab, Fab', F(ab)₂, F_v, and other fragments thereof. Complete, intact antibodies include antibodies such as polyclonal antibodies, monoclonal antibodies, chimeric antibodies, and humanized antibodies, felinized antibodies, and immunologic binding equivalents thereof. The antibodies of the invention may be labeled or unlabeled. Examples of labels of antibodies include, but are not limited to, radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent agents, chemiluminescent agents, magnetic particles, and the like. Recombinant immunoglobulins are included in the invention.

[0047] As used herein, the term "binding" means the physical or chemical interaction between two proteins or compounds or associated proteins or compounds or combinations thereof. Binding includes ionic, non-ionic, Hydrogen bonds, Van der Waals, hydrophobic interactions, etc. The physical interaction, the binding, can be either direct or indirect, indirect being through or due to the effects of another protein or compound. Direct binding refers to interactions that do not take place through or due to the effect of another protein or compound but instead are without other substantial chemical intermediates. Binding may be detected in many different manners. As a non-limiting example, the physical binding interaction between two molecules can be detected using a labeled compound. Other methods of detecting binding are well-known to those of skill in the art.

[0048] As used herein, the term "contacting" means bringing together, either directly or indirectly, a compound into physical proximity to a molecule of interest. Contacting may occur, for example, in any number of buffers, salts, solutions, or in a cell or cell extract.

[0049] As used herein, the terms "modulates" or "modifies" means an increase or decrease in the amount, quality, or effect of a particular activity or protein. "Modulators" refer to any inhibitory or activating molecules identified using *in vitro* and *in vivo* assays for, *e.g.*, agonists, antagonists, and their homologs, including fragments, variants, and mimetics, as defined herein, that exert substantially the same biological activity as the molecule. "Inhibitors" or "antagonists"

are modulating compounds that reduce, decrease, block, prevent, delay activation, inactivate, desensitize, or downregulate the biological activity or expression of a molecule or pathway of interest. "Inducers," "activators," or "agonists" are modulating compounds that increase, induce, stimulate, open, activate, facilitate, enhance activation, sensitize, or upregulate a molecule or pathway of interest. In some preferred embodiments of the invention, the level of inhibition or upregulation of the expression or biological activity of a molecule or pathway of interest refers to a decrease (inhibition or downregulation) or increase (upregulation) of greater than about 50%, 60%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%. The inhibition or upregulation may be direct, *i.e.*, operate on the molecule or pathway of interest itself, or indirect, *i.e.*, operate on a molecule or pathway that affects the molecule or pathway of interest.

[0050] A "purified" or "substantially purified" polynucleotide or polypeptide is substantially separated from other cellular components that naturally accompany a native (or wild-type) nucleic acid or polypeptide and/or from other impurities (e.g., agarose gel). A purified polypeptide or protein will comprise about 60% to more than 99% w/w of a sample, and may be about 90%, about 95%, or about 98% pure. As used herein, the term "isolated" refers to a molecule that has been removed from its native environment. Examples of isolated nucleic acid molecules include, but are not limited to, recombinant DNA molecules contained in a vector, recombinant DNA molecules maintained in a heterologous host cell, partially or substantially purified nucleic acid molecules, and synthetic DNA or RNA molecules.

[0051] "About" as used herein refers to +/- 10% of the reference value.

[0052] As used herein, "variant" nucleotide or amino acid sequences refer to homologs, including, for example, isoforms, species variants, allelic variants, and fragments of the sequence of interest. "Homologous nucleotide sequence" or "homologous amino acid sequence," or variations thereof, refers to sequences characterized by a homology, at the nucleotide level or amino acid level, of at least about 60%, at least about 70%, at least about 75%, at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, preferably at least about 90%, at least about 95%, at least about 98%, or at least about 99%, and more preferably 100%, to a reference sequence, or portion or fragment thereof encoding or having a functional domain. The reference sequence may include, for example, but is not limited to the nucleic acid sequence of SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, and SEQ ID NO:63, or portions thereof which encode a functional domain of the encoded polypeptide, SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64, or the polypeptide

having amino acid sequence SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64, or fragments thereof having functional domains of the full-length polypeptide. Functional domains of the T1R receptors of the invention include extracellular domains, transmembrane domains, and intracellular domains. Examples of functional domains of the T1R2 polypeptide of SEQ ID NO:61 include extracellular domains corresponding to residues 1-563, 624-635, 701-726, and 781-792; transmembrane domains corresponding to residues 564-589, 604-623, 636-660, 681-700, 727-748, 761-780, and 793-817; and intracellular domains corresponding to residues 590-603, 661-680, 749-760, and 818-841. Examples of functional domains of the T1R2 receptor of SEQ ID NO:64 include an extracellular domain corresponding to residues 1-147; a transmembrane domain corresponding to residues 148-167; and an intracellular domain corresponding to residues 168-391. Examples of functional domains of the T1R3 polypeptide of SEQ ID NO:2 include the extracellular domains (residues 1-571, 628-641, 705-730, and 787-794 of SEQ ID NO:2), the transmembrane domains (residues 572-594, 610-627, 642-664, 681-704, 731-754, 767-780, and 795-812 of SEQ ID NO:2), and the intracellular domains (residues 595-609, 665-680, 755-766, and 813-865 of SEQ ID NO:2). Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes. Homologous nucleotide sequences include nucleotide sequences encoding for a species variant of a protein. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. Study of mutations and polymorphisms of the T1R receptor polynucleotide sequences may explain breed-specific and/or individual taste preferences of a mammal such as a cat. Additionally, sequence variants of the T1R receptors may be associated with specific disease states, such that knowledge of the genes allows diagnosis and treatment of T1R-associated disorders (e.g., obesity, diabetes). Homologous amino acid sequences include those amino acid sequences which encode conservative amino acid substitutions in polypeptides having an amino acid sequence of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64, as well as in polypeptides identified according to the methods of the invention. Percent homology may be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using the default settings, which uses the algorithm of Smith and Waterman (Smith and Waterman, Adv. Appl. Math., 2: 482-489, 1981). Nucleic acid fragments of the invention preferably have at least about 5, at least about 10, at least about 15, at least about 20, at least about 25, at least about 50, or at least about 100 nucleotides of the reference nucleotide sequence. The nucleic acid fragments of the invention may encode a polypeptide

having at least one biological property, or function, that is substantially similar to a biological property of the polypeptide encoded by the full-length nucleic acid sequence.

[0053] As is well known in the art, because of the degeneracy of the genetic code, there are numerous DNA and RNA molecules that can code for the same polypeptide as that encoded by a nucleotide sequence of interest. The present invention, therefore, contemplates those other DNA and RNA molecules which, on expression, encode a polypeptide encoded by the nucleic acid molecule of interest. DNA and RNA molecules other than those specifically disclosed herein characterized simply by a change in a codon for a particular amino acid, are within the scope of this invention.

[0054] Amino acid "insertions", "substitutions" or "deletions" are changes to or within an amino acid sequence. The variation allowed in a particular amino acid sequence may be experimentally determined by producing the peptide synthetically or by systematically making insertions, deletions, or substitutions of nucleotides in the nucleic acid sequence using recombinant DNA techniques. Alterations of the naturally occurring amino acid sequence can be accomplished by any of a number of known techniques. For example, mutations can be introduced into the polynucleotide encoding a polypeptide at particular locations by procedures well known to the skilled artisan, such as oligonucleotide-directed mutagenesis, which is described by U.S. Pat. Nos. 4,518,584 and 4,737,462.

100551 A polypeptide variant of the present invention may exhibit substantially the biological activity of a naturally occurring reference polypeptide. "Biological activity" as used herein refers to the level of a particular function (for example, enzymatic activity) of a molecule or pathway of interest in a biological system. "Wild-type biological activity" refers to the normal level of function of a molecule or pathway of interest. "Reduced biological activity" refers to a decreased level of function of a molecule or pathway of interest relative to a reference level of biological activity of that molecule or pathway. For example, reduced biological activity may refer to a decreased level of biological activity relative to the wild-type biological activity of a molecule or pathway of interest. "Increased biological activity" refers to an increased level of function of a molecule or pathway of interest relative to a reference level of biological activity of that molecule or pathway. For example, increased biological activity may refer to an increased level of biological activity relative to the wild-type biological activity of a molecule or pathway of interest. Reference to exhibiting "substantially the biological activity of a naturally occurring polypeptide" indicates that variants within the scope of the invention can comprise conservatively substituted sequences, meaning that one or more amino acid residues of a

polypeptide are replaced by different residues that do not alter the secondary and/or tertiary structure of the polypeptide. Such substitutions may include the replacement of an amino acid by a residue having similar physicochemical properties, such as substituting one aliphatic residue (Ile, Val, Leu or Ala) for another, or substitution between basic residues Lys and Arg, acidic residues Glu and Asp, amide residues Gln and Asn, hydroxyl residues Ser and Tyr, or aromatic residues Phe and Tyr. Further information regarding making phenotypically silent amino acid exchanges are known in the art (Bowie et al., Science, 247: 1306-1310, 1990). Other polypeptide homologs which might retain substantially the biological activities of the reference polypeptide are those where amino acid substitutions have been made in areas outside functional regions of the protein. The biological activity may be assessed by, for example, measuring binding of a T1R receptor of the invention to its heterodimerization partner.

[0056] A nucleotide and/or amino acid sequence of a nucleic acid molecule or polypeptide employed in the invention or of a compound identified by the screening method of the invention may be used to search a nucleotide and amino acid sequence databank for regions of similarity using Gapped BLAST (Altschul et al., Nuc. Acids Res., 25: 3389, 1997). Briefly, the BLAST algorithm, which stands for Basic Local Alignment Search Tool is suitable for determining sequence similarity (Altschul et al., J Mol. Biol., 215: 403-410, 1990). Software or performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pair (HSPs) by identifying short words of length W in the query sequence that either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., J Mol. Biol., 215: 403-410, 1990). These initial neighborhood word hits act as seeds for initiating searches to find HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extension for the word hits in each direction are halted when: 1) the cumulative alignment score falls off by the quantity X from its maximum achieved value; 2) the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or 3) the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLAST program uses as defaults a word length (W) of 11, the BLOSUM62 scoring matrix (Henikoff et al., Proc. Natl. Acad. Sci. USA, 89: 10915-10919, 1992) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands. The BLAST algorithm (Karlin et al., Proc. Natl. Acad. Sci. USA, 90: 5873-5787, 1993) and Gapped BLAST perform a statistical analysis of the similarity between two sequences.

One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a gene or cDNA if the smallest sum probability in comparison of the test nucleic acid to the reference nucleic acid is less than about 1, preferably less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

[0057] The term "mimetic" as used herein refers to a compound that is sterically similar to a reference compound. Mimetics are structural and functional equivalents to the reference compounds.

[0058] The terms "patient" and "subject" are used interchangeably herein and include, but are not limited to, avians, felines, canines, bovines, ovines, porcines, equines, rodents, simians, and humans. "Host cell" includes, for example, a mammalian cell (e.g., human, rodent, feline), yeast cell, or plant cell. "Rodents" include, for example, rats and mice.

[0059] The term "treatment" as used herein refers to any indicia of success of prevention, treatment, or amelioration of a disease or condition. Treatment includes any objective or subjective parameter, such as, but not limited to, abatement, remission, normalization of receptor activity, reduction in the number or severity of symptoms or side effects, or slowing of the rate of degeneration or decline of the patient. Treatment also includes a prevention of the onset of symptoms in a patient that may be at increased risk for or is suspected of having a disease or condition but does not yet experience or exhibit symptoms thereof.

[0060] As used herein, the term "compound" means any identifiable chemical or molecule, including, but not limited to a small molecule, peptide, protein, sugar, nucleotide, or nucleic acid. Such compound can be natural or synthetic.

Polynucleotides

[0061] The invention provides purified and isolated polynucleotides (e.g., cDNA, genomic DNA, synthetic DNA, RNA, or combinations thereof, whether single- or double-stranded) that comprise a nucleotide sequence encoding the amino acid sequence of the polypeptides of the invention. Such polynucleotides are useful for recombinantly expressing the receptor and also for detecting expression of the receptor in cells (e.g., using Northern hybridization and in situ hybridization assays). Such polynucleotides also are useful in the design of antisense and other molecules for the suppression of the expression of a T1R receptor in a cultured cell, a tissue, or

an animal; for therapeutic purposes; or to provide a model for diseases or conditions characterized by aberrant T1R expression. Specifically excluded from the definition of polynucleotides of the invention are entire isolated, non-recombinant native chromosomes of host cells. Polynucleotides of the invention include the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, and SEQ ID NO:63. It will be appreciated that numerous other polynucleotide sequences exist that also encode the T1R receptors of the invention due to the well-known degeneracy of the universal genetic code.

[0062] The invention also provides a purified and isolated polynucleotide comprising a nucleotide sequence that encodes a mammalian (e.g., feline) polypeptide, wherein the polynucleotide hybridizes to a polynucleotide having a sequence of SEQ ID NO:1, or the non-coding strand complementary thereto, under stringent hybridization conditions.

[0063] Genomic DNA of the invention comprises the protein-coding region for a polypeptide of the invention and is also intended to include allelic variants thereof. It is widely understood that, for many genes, genomic DNA is transcribed into RNA transcripts that undergo one or more splicing events wherein intron (i.e., non-coding regions) of the transcripts are removed, or "spliced out." RNA transcripts that can be spliced by alternative mechanisms, and therefore be subject to removal of different RNA sequences but still encode a T1R3 polypeptide, are referred to in the art as splice variants which are embraced by the invention. Splice variants comprehended by the invention therefore are encoded by the same original genomic DNA sequences but arise from distinct mRNA transcripts. Allelic variants are modified forms of a wild-type gene sequence, the modification resulting from recombination during chromosomal segregation or exposure to conditions which give rise to genetic mutation. Allelic variants, like wild type genes, are naturally occurring sequences (as opposed to non-naturally occurring variants that arise from in vitro manipulation).

[0064] The invention also comprehends cDNA that is obtained through reverse transcription of an RNA polynucleotide encoding a T1R receptor (conventionally followed by second strand synthesis of a complementary strand to provide a double-stranded DNA).

[0065] One embodiment of the DNA of the invention comprises a double-stranded molecule along with the complementary molecule (the "non-coding strand" or "complement") having a sequence unambiguously deducible from the coding strand according to Watson-Crick base-pairing rules for DNA.

[0066] The present invention includes fragments of nucleotide sequences encoding a T1R receptor comprising at least 10, and preferably at least 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 75, or 100 consecutive nucleotides of a polynucleotide encoding a T1R receptor. Fragment polynucleotides of the invention may comprise sequences unique to the T1R-encoding polynucleotide sequence, and therefore hybridize under highly stringent or moderately stringent conditions only (i.e., "specifically") to polynucleotides encoding a T1R receptor (or fragments thereof). Polynucleotide fragments of genomic sequences of the invention comprise not only sequences unique to the coding region, but also include fragments of the full-length sequence derived from introns, regulatory regions, and/or other non-translated sequences. Sequences unique to polynucleotides of the invention are recognizable through sequence comparison to other known polynucleotides, and can be identified through use of alignment programs routinely utilized in the art, e.g., those made available in public sequence databases. Such sequences also are recognizable from Southern hybridization analyses to determine the number of fragments of genomic DNA to which a polynucleotide will hybridize. Polynucleotides of the invention can be labeled in a manner that permits their detection, including radioactive, fluorescent, and enzymatic labeling.

[0067] Fragment polynucleotides are particularly useful as probes for detection of full-length or fragments of T1R polynucleotides. One or more polynucleotides can be included in kits that are used to detect the presence of a polynucleotide encoding a T1R receptor, or used to detect variations in a polynucleotide sequence encoding a T1R receptor.

[0068] The invention also embraces DNAs encoding T1R polypeptides that hybridize under high stringency conditions to the non-coding strand, or complement, of the polynucleotides.

[0069] Exemplary highly stringent hybridization conditions are as follows: hybridization at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaCl, 10% Dextran sulfate, and washing twice for 30 minutes at 60°C in a wash solution comprising 0.1 X SSC and 1% SDS. It is understood in the art that conditions of equivalent stringency can be achieved through variation of temperature and buffer, or salt concentration as described, for example, in Ausubel *et al.* (Eds.), Protocols in Molecular Biology, John Wiley & Sons (1994), pp. 6.0.3 to 6.4.10. Modifications in hybridization conditions can be empirically determined or precisely calculated based on the length and the percentage of guanosine/cytosine (GC) base pairing of the probe. The hybridization conditions can be calculated as described, for example, in Sambrook *et*

al., (Eds.), MOLECULAR CLONING: A LABORATORY_MANUAL, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York (1989), pp. 9.47 to 9.51.

[0070] With the knowledge of the nucleotide sequence information disclosed in the present invention, one skilled in the art can identify and obtain nucleotide sequences which encode T1R receptors from different sources (i.e., different tissues or different organisms) through a variety of means well known to the skilled artisan and as disclosed by, for example, Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, Second Edition, Cold Spring Harbor Press, Cold Spring Harbor, NY (1989).

[0071] For example, DNA that encodes a T1R receptor may be obtained by screening mRNA, cDNA, or genomic DNA with oligonucleotide probes generated from the T1R gene sequence information provided herein. Probes may be labeled with a detectable group, such as a fluorescent group, a radioactive atom or a chemiluminescent group in accordance with procedures known to the skilled artisan and used in conventional hybridization assays, as described by, for example, Sambrook *et al*.

[0072] A nucleic acid molecule comprising a T1R nucleotide sequence can alternatively be synthesized by use of the polymerase chain reaction (PCR) procedure, with the PCR oligonucleotide primers produced from the nucleotide sequences provided herein. See U.S. Patent Numbers 4,683,195 to Mullis *et al.* and 4,683,202 to Mullis. The PCR reaction provides a method for selectively increasing the concentration of a particular nucleic acid sequence even when that sequence has not been previously purified and is present only in a single copy in a particular sample. The method can be used to amplify either single- or double-stranded DNA. The essence of the method involves the use of two oligonucleotide probes to serve as primers for the template-dependent, polymerase mediated replication of a desired nucleic acid molecule.

[0073] A wide variety of alternative cloning and *in vitro* amplification methodologies are well known to those skilled in the art. Examples of these techniques are found in, for example, Berger *et al.*, *Guide to Molecular Cloning Techniques*, METHODS IN ENZYMOLOGY 152, Academic Press, Inc., San Diego, CA (Berger), which is incorporated herein by reference in its entirety.

[0074] The polynucleotides of the invention may be used in hybridization techniques known to those skilled in the art, including but not limited to, Northern and Southern blotting and overgo hybridization (see infra). For example, polynucleotide probes of the invention may be used in

tissue distribution studies and diagnostic assays. The T1R receptors of the invention are likely to be present and active in tissues other than those involved in taste perception. It is therefore likely that the feline T1R receptors serve multiple functions *in vivo*, such as, for example, regulation of amino acid metabolism in addition to taste perception.

[0075] Automated sequencing methods can be used to obtain or verify the T1R receptorencoding nucleotide sequence. The nucleotide sequences of the present invention are believed to
be accurate. However, as is known in the art, nucleotide sequences obtained by automated
methods may contain some errors. Nucleotide sequences determined by automation are typically
at least about 90%, more typically at least about 95% to at least about 99.9% identical to the
actual nucleotide sequence of a given nucleic acid molecule. The actual sequence may be more
precisely determined using manual sequencing methods, which are well known in the art. An
error in a sequence which results in an insertion or deletion of one or more nucleotides may
result in a frame shift in translation such that the predicted amino acid sequence will differ from
that which would be predicted from the actual nucleotide sequence of the nucleic acid molecule,
starting at the point of the mutation.

[0076] The nucleic acid molecules of the present invention, and fragments derived therefrom, are useful for screening for restriction fragment length polymorphism (RFLP) associated with certain disorders, as well as for genetic mapping.

[0077] The polynucleotide sequence information provided by the invention makes possible large-scale expression of the encoded polypeptide by techniques well known and routinely practiced in the art.

Vectors

[0078] Another aspect of the present invention is directed to vectors, or recombinant expression vectors, comprising any of the nucleic acid molecules described above. Vectors are used herein either to amplify DNA or RNA encoding a T1R receptor and/or to express DNA which encodes a T1R receptor. Examples of vectors include, but are not limited to, plasmids, phages, cosmids, episomes, viral particles or viruses, and integratable DNA fragments (*i.e.*, fragments integratable into the host genome by homologous recombination). Examples of viral particles include, but are not limited to, adenoviruses, baculoviruses, parvoviruses, herpesviruses, poxviruses, adeno-associated viruses, Semliki Forest viruses, vaccinia viruses, and retroviruses. Examples of expression vectors include, but are not limited to, pcDNA3 (Invitrogen) and pSVL

(Pharmacia Biotech). Other expression vectors include, but are not limited to, pSPORTTM vectors, pGEMTM vectors (Promega), pPROEXvectorsTM (LTI, Bethesda, MD), BluescriptTM vectors (Stratagene), pQETM vectors (Qiagen), pSE420TM (Invitrogen), and pYES2TM(Invitrogen).

[0079] Expression constructs may comprise T1R-encoding polynucleotides operably linked to an endogenous or exogenous expression control DNA sequence and a transcription terminator. Expression control DNA sequences include promoters, enhancers, operators, and regulatory element binding sites generally, and are typically selected based on the expression systems in which the expression construct is to be utilized. Promoter and enhancer sequences are generally selected for the ability to increase gene expression, while operator sequences are generally selected for the ability to regulate gene expression. Expression constructs of the invention may also include sequences encoding one or more selectable markers that permit identification of host cells bearing the construct. Expression constructs may also include sequences that facilitate, or promote, homologous recombination in a host cell. Constructs of the invention also may include sequences necessary for replication in a host cell.

Expression constructs may be utilized for production of an encoded protein, but may [0800] also be utilized simply to amplify a T1R-encoding polynucleotide sequence. embodiments, the vector is an expression vector wherein a polynucleotide of the invention is operably linked to a polynucleotide comprising an expression control sequence. Autonomously replicating recombinant expression constructs such as plasmid and viral DNA vectors incorporating polynucleotides of the invention are also provided. Some expression vectors are replicable DNA constructs in which a DNA sequence encoding a T1R receptor is operably linked or connected to suitable control sequence(s) capable of effecting the expression of the receptor in a suitable host. Amplification vectors do not require expression control domains, but rather need only the ability to replicate in a host, such as conferred by an origin of replication, and a selection gene to facilitate recognition of transformants. The need for control sequences in the expression vector will vary depending upon the host selected and the transformation method chosen. Control sequences include a transcriptional promoter, an optional operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal binding, and sequences which control the termination of transcription and translation.

[0081] Vectors of the invention may contain a promoter that is recognized by the host organism. The promoter sequences of the present invention may be prokaryotic, eukaryotic, or viral. Examples of suitable prokaryotic sequences include the P_R and P_L promoters of

bacteriophage lambda (THE BACTERIOPHAGE LAMBDA, Hershey, A. D., Ed., Cold Spring Harbor Press, Cold Spring Harbor, NY (1973), which is incorporated herein by reference in its entirety; LAMBDA II, Hendrix, R. W., Ed., Cold Spring Harbor Press, Cold Spring Harbor, NY (1980), which is incorporated herein by reference in its entirety), the trp, recA, heat shock, and lacZ promoters of *E. coli*, and the SV40 early promoter (Benoist *et al. Nature*, 1981, 290, 304-310), which is incorporated herein by reference in its entirety. Additional promoters include, but are not limited to, mouse mammary tumor virus, long terminal repeat of human immunodeficiency virus, maloney virus, cytomegalovirus immediate early promoter, Epstein Barr virus, Rous sarcoma virus, human actin, human myosin, human hemoglobin, human muscle creatine, and human metallothionein.

[0082] Additional regulatory sequences can also be included in vectors of the invention. Examples of suitable regulatory sequences are represented by the Shine-Dalgarno of the replicase gene of the phage MS-2 and of the gene cII of bacteriophage lambda. The Shine-Dalgarno sequence may be directly followed by DNA encoding a T1R3 receptor, resulting in the expression of the mature protein.

[0083] Moreover, suitable expression vectors can include an appropriate marker that allows the screening of transformed host cells. The transformation of the selected host is carried out using any one of the various techniques well known to the expert in the art and described in Sambrook et al., supra.

[0084] An origin of replication or autonomously replicating sequence (ARS) can also be provided either by construction of the vector to include an exogenous origin or may be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the latter may be sufficient. Alternatively, rather than using vectors which contain viral origins of replication, one skilled in the art can transform mammalian cells by the method of co-transformation with a selectable marker and T1R DNA. An example of a suitable marker is dihydrofolate reductase (DHFR) or thymidine kinase (see, U.S. Patent No. 4,399,216).

[0085] Additional regulatory sequences that may be included in the polynucleotides of the invention include secretion signals which allow the encoded polypeptide to cross and/or lodge in cell membranes, or be secreted from the cell.

[0086] Nucleotide sequences encoding a T1R receptor may be recombined with vector DNA in accordance with conventional techniques, including blunt-ended or staggered-ended termini for

ligation, restriction enzyme digestion to provide appropriate termini, filling in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and ligation with appropriate ligases. Techniques for such manipulation are disclosed by Sambrook *et al.*, *supra* and are well known in the art. Methods for construction of mammalian expression vectors are disclosed in, for example, Okayama *et al.*, *Mol. Cell. Biol.*, 1983, 3, 280, Cosman *et al.*, *Mol. Immunol.*, 1986, 23, 935, Cosman *et al.*, *Nature*, 1984, 312, 768, EP-A-0367566, and WO 91/18982, each of which is incorporated herein by reference in its entirety.

Host cells

[0087] According to another aspect of the invention, host cells are provided, including prokaryotic and eukaryotic cells, comprising a polynucleotide of the invention (or vector of the invention) in a manner that permits expression of the encoded T1R polypeptide. Polynucleotides of the invention may be introduced into the host cell as part of a circular plasmid, or as linear DNA comprising an isolated protein-coding region or a viral vector. Methods for introducing DNA into the host cell that are well known and routinely practiced in the art include transformation, transfection, electroporation, nuclear injection, or fusion with carriers such as liposomes, micelles, ghost cells, and protoplasts. Expression systems of the invention include bacterial, yeast, fungal, plant, insect, invertebrate, vertebrate, and mammalian cell systems.

[0088] The invention provides host cells that are transformed or transfected (stably or transiently) with polynucleotides of the invention or vectors of the invention. As stated above, such host cells are useful for amplifying the polynucleotides and also for expressing a T1R polypeptide or fragment thereof encoded by the polynucleotide.

[0089] In still another related embodiment, the invention provides a method for producing a T1R polypeptide (or fragment thereof) comprising the steps of growing a host cell of the invention in a nutrient medium and isolating the polypeptide or variant thereof from the cell or the medium. Because the T1R receptor is a membrane-spanning polypeptide, it will be appreciated that, for some applications, such as certain activity assays, the preferable isolation may involve isolation of cell membranes containing the polypeptide embedded therein, whereas for other applications a more complete isolation may be preferable.

[0090] According to some aspects of the present invention, transformed host cells having an expression vector comprising any of the nucleic acid molecules described above are provided. Expression of the nucleotide sequence occurs when the expression vector is introduced into an

appropriate host cell. Suitable host cells for expression of the polypeptides of the invention include, but are not limited to, prokaryotes, yeast, and eukaryotes. If a prokaryotic expression vector is employed, then the appropriate host cell would be any prokaryotic cell capable of expressing the cloned sequences. Suitable prokaryotic cells include, but are not limited to, bacteria of the genera *Escherichia*, *Bacillus*, *Salmonella*, *Pseudomonas*, *Streptomyces*, and *Staphylococcus*.

[0091] If a eukaryotic expression vector is employed, then the appropriate host cell would be any eukaryotic cell capable of expressing the cloned sequence. Eukaryotic cells may be cells of higher eukaryotes. Suitable eukaryotic cells include, but are not limited to, non-human mammalian tissue culture cells and human tissue culture cells. Host cells include, but are not limited to, insect cells, HeLa cells, Chinese hamster ovary cells (CHO cells), African green monkey kidney cells (COS cells), human HEK-293 cells, and murine 3T3 fibroblasts. Propagation of such cells in cell culture has become a routine procedure (see, TISSUE CULTURE, Academic Press, Kruse and Patterson, eds. (1973), which is incorporated herein by reference in its entirety).

[0092] In addition, a yeast host may be employed as a host cell. Yeast cells include, but are not limited to, the genera *Saccharomyces*, *Pichia*, and *Kluveromyces*. Yeast hosts may be *S. cerevisiae* and *P. pastoris*. Yeast vectors may contain an origin of replication sequence from a 2T yeast plasmid, an autonomously replication sequence (ARS), a promoter region, sequences for polyadenylation, sequences for transcription termination, and a selectable marker gene. Shuttle vectors for replication in both yeast and *E. coli* are also included herein.

[0093] Alternatively, insect cells may be used as host cells. In some embodiments, the polypeptides of the invention are expressed using a baculovirus expression system (see, Luckow et al., Bio/Technology, 1988, 6, 47; BACULOVIRUS EXPRESSION VECTORS: A LABORATORY MANUAL, O'Reilly et al. (Eds.), W.H. Freeman and Company, New York, 1992; and U.S. Patent No. 4,879,236, each of which is incorporated herein by reference in its entirety). In addition, the MAXBACTM complete baculovirus expression system (Invitrogen) can, for example, be used for production in insect cells.

[0094] Host cells of the invention are a valuable source of immunogen for development of antibodies specifically immunoreactive with the T1R3 receptor. Host cells of the invention also are useful in methods for the large-scale production of T1R3 polypeptides wherein the cells are grown in a suitable culture medium and the desired polypeptide products are isolated from the

cells, or from the medium in which the cells are grown, by purification methods known in the art, e.g., conventional chromatographic methods including immunoaffinity chromatography, receptor affinity chromatography, hydrophobic interaction chromatography, lectin affinity chromatography, size exclusion filtration, cation or anion exchange chromatography, high pressure liquid chromatography (HPLC), reverse phase HPLC, and the like. Still other methods of purification include those methods wherein the desired protein is expressed and purified as a fusion protein having a specific tag, label, or chelating moiety that is recognized by a specific binding partner or agent. The purified protein can be cleaved to yield the desired protein, or can be left as an intact fusion protein. Cleavage of the fusion component may produce a form of the desired protein having additional amino acid residues as a result of the cleavage process.

[0095] Knowledge of the feline T1R receptor-encoding nucleotide sequence allows for modification of cells to permit, or increase, expression of endogenous receptor. Cells can be modified (e.g., by homologous recombination) to provide increased expression by replacing, in whole or in part, the naturally occurring T1R promoter with all or part of a heterologous promoter so that the cells express the receptor at higher or lower levels. The heterologous promoter is inserted in such a manner that it is operably linked to endogenous T1R coding sequence. (See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955.) It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamoyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the T1R coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the T1R coding sequences in the cells.

Knock-out and transplacement animals

[0096] The DNA sequence information provided by the present invention also makes possible the development (e.g., by homologous recombination strategies; see Capecchi, Science 244:1288-1292 (1989), which is incorporated herein by reference) of transgenic or gene-targeted animals, including, for example, animals that fail to express functional T1R3 ("knock-out") or that express a variant thereof ("transplacement"). Such animals (especially small laboratory animals such as rats, rabbits, mice, and cats) are useful as models for studying the *in vivo* activities of T1R receptors and modulators of T1R receptors.

Antisense and siRNA

[0097] Also encompassed by the invention are antisense and short interfering polynucleotides that recognize and hybridize to polynucleotides encoding T1R receptors. Full-length and fragment antisense polynucleotides are provided. Fragment antisense molecules of the invention include (i) those that specifically recognize and hybridize to T1R RNA (as determined by sequence comparison of DNA encoding T1R receptor to DNA encoding other known molecules). Identification of sequences unique to T1R-encoding polynucleotides can be deduced through use of any publicly available sequence database, and/or through use of commercially available sequence comparison programs. After identification of the desired sequences, isolation through restriction digestion or amplification using any of the various polymerase chain reaction techniques well known in the art can be performed. Antisense polynucleotides are particularly relevant to regulation of expression of T1R receptor by those cells expressing T1R mRNA.

[0098] Antisense nucleic acids (preferably 10 to 30 base-pair oligonucleotides) capable of specifically binding to T1R expression control sequences or T1R RNA are introduced into cells (e.g., by a viral vector or colloidal dispersion system such as a liposome). The antisense nucleic acid binds to the target nucleotide sequence in the cell and prevents transcription and/or translation of the target sequence. Phosphorothioate and methylphosphonate antisense oligonucleotides are specifically contemplated for therapeutic use by the invention. Locked nucleic acids are also specifically contemplated for therapeutic use by the present invention. (See, for example, Wahlestedt et al., Proc. Natl. Acad. Sci. USA, 97(10), 5633-5638 (2000), which is incorporated by reference in its entirety) The antisense oligonucleotides may be further modified by adding poly-L-lysine, transferrin polylysine, or cholesterol moieties at their 5' end. Suppression of T1R expression at either the transcriptional or translational level is useful to generate cellular or animal models for diseases/conditions characterized by aberrant T1R expression.

[0099] Antisense oligonucleotides, or fragments of nucleotide sequence of SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63, or sequences complementary or homologous thereto, derived from the nucleotide sequences of the present invention encoding T1R receptors are useful as diagnostic tools for probing gene expression in various tissues. For example, tissue can be probed *in situ* with oligonucleotide probes carrying detectable groups by conventional autoradiography techniques to investigate native expression of this enzyme or pathological conditions relating thereto. Antisense oligonucleotides may be directed to

regulatory regions of a T1R nucleotide sequence, or mRNA corresponding thereto, including, but not limited to, the initiation codon, TATA box, enhancer sequences, and the like.

[0100] Those of skill in the art recognize that the antisense oligonucleotides that inhibit the expression and/or biological activity of a T1R receptor may be predicted using any gene encoding a T1R receptor. Specifically, antisense nucleic acid molecules comprise a sequence preferably complementary to at least about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 250 or 500 nucleotides or an entire T1R receptor gene sequence. The antisense oligonucleotides may comprise a sequence complementary to about 15 consecutive nucleotides of the coding strand of the T1R receptor-encoding sequence.

[0101] In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding a T1R protein. The coding strand may also include regulatory regions of the T1R sequence. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding a T1R protein. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions (UTR)).

[0102] Antisense oligonucleotides may be directed to regulatory regions of a nucleotide sequence encoding a T1R protein, or mRNA corresponding thereto, including, but not limited to, the initiation codon, TATA box, enhancer sequences, and the like. Given the coding strand sequences provided herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of a T1R mRNA, but also may be an oligonucleotide that is antisense to only a portion of the coding or noncoding region of the mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of an mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length.

[0103] Another means to inhibit the activity of a T1R receptor according to the invention is via RNA interference (RNAi) (see e.g., Elbashir et al., Nature, 411:494-498 (2001); Elbashir et al., Genes Development, 15:188-200 (2001)). RNAi is the process of sequence-specific, post-transcriptional gene silencing, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene (e.g., is homologous in sequence to the sequence encoding a T1R

receptor, for example but not limited to the sequence as set forth in SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63). siRNA-mediated silencing is thought to occur post-transcriptionally and/or transcriptionally. For example, siRNA duplexes may mediate post-transcriptional gene silencing by reconstitution of siRNA-protein complexes (siRNPs), which guide mRNA recognition and targeted cleavage.

[0104] Accordingly, another form of a T1R inhibitory compound of the invention is a short interfering RNA (siRNA) directed against a T1R-encoding sequence. Exemplary siRNAs are siRNA duplexes (for example, 10-25, preferably 20, 21, 22, 23, 24, or 25 residues in length) having a sequence homologous or identical to a fragment of the T1R sequence set forth as SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63 and having a symmetric 2-nucleotide 3'-overhang. The 2-nucleotide 3' overhang may be composed of (2'-deoxy) thymidine because it reduces costs of RNA synthesis and may enhance nuclease resistance of siRNAs in the cell culture medium and within transfected cells. Substitution of uridine by thymidine in the 3' overhang is also well tolerated in mammalian cells, and the sequence of the overhang appears not to contribute to target recognition.

Polypeptides

[0105] The invention also provides purified and isolated mammalian T1R receptor polypeptides encoded by a polynucleotide of the invention. Some embodiments include a feline T1R polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64, or fragments thereof comprising an epitope specific to the polypeptide. A reference to "epitope specific to" or "polypeptide-specific epitope," or variations thereof, indicates that a portion of the T1R receptor or amino acid sequence is recognizable by an antibody that is specific for the T1R or amino acid sequence.

[0106] Included within the scope of the invention are polypeptides encoded by feline allelic variants of T1R. The allelic variants of the T1R receptor of the invention may modify the taste perception of a mammal, such as a cat, to a taste stimulus. Such functional amino acid sequence modifications may account for differences in intraspecies (e.g., breed-specific) taste perception.

[0107] Extracellular epitopes are useful for generating and screening for antibodies and other binding compounds that bind to a T1R receptor. Thus, in another embodiment, the invention provides a purified and isolated polypeptide comprising at least one extracellular domain of the T1R receptor. Also included is a polypeptide comprising a T1R receptor fragment selected from

the group consisting of an extracellular domain of T1R3 (residues 1-571, 628-641, 705-730, and 787-794 of SEQ ID NO:2), a transmembrane domain of T1R3 (residues 572-594, 610-627, 642-664, 681-704, 731-754, 767-780, and 795-812 of SEQ ID NO:2), an intracellular domain of T1R3 (residues 595-609, 665-680, 755-766, and 813-865 of SEQ ID NO:2), an extracellular domain of the T1R1 receptor (residues 1-563, 624-635, 701-726, and 781-792 of SEQ ID NO:61), a transmembrane domain of the T1R1 receptor (residues 564-589, 604-623, 636-660, 681-700, 727-748, 761-780, and 793-817 of SEQ ID NO:61), an intracellular domain of the T1R1 receptor (residues 590-603, 661-680, 749-760, and 818-841 of SEQ ID NO:61), an extracellular domain of T1R2 (residues 1-147 of SEQ ID NO:64), a transmembrane domain of a T1R2 receptor (residues 148-167 of SEQ ID NO:64), and an intracellular domain of a T1R2 receptor (residues 168-391 of SEQ ID NO:64). Polypeptide fragments of the invention may be continuous portions of the native receptor. However, it will also be appreciated that knowledge of the T1R genes and protein sequences as provided herein permits recombination of various domains that are not contiguous in the native protein.

[0108] The invention embraces polypeptides that preferably have at least 99%, at least 95%, at least 90%, at least 85%, at least 75%, at least 74%, at least 73%, at least 72%, at least 71%, at least 70%, at least 65%, at least 60%, at least 55% or at least 50% identity and/or homology to the polypeptides of the invention.

[0109] Polypeptides of the invention may be isolated from natural cell sources or may be chemically synthesized, but are preferably produced by recombinant procedures involving host cells of the invention. Use of mammalian host cells is expected to provide for such post-translational modifications (e.g., glycosylation, truncation, lipidation, and phosphorylation) as may be needed to confer optimal biological activity on recombinant expression products of the invention.

[0110] The invention also embraces variant T1R polypeptides. In one example, insertion variants are provided wherein one or more amino acid residues supplement a T1R amino acid sequence such as SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64. Insertions may be located at either or both termini of the protein, or may be positioned within internal regions of the amino acid sequence. Insertional variants with additional residues at either or both termini can include, for example, fusion proteins and proteins including amino acid tags or labels.

[0111] Insertion variants include T1R polypeptides wherein one or more amino acid residues are added to a biologically active fragment thereof. For example, the insertion variants of the

invention include chimeric T1R receptors wherein at least one functional domain of a feline T1R receptor of the invention is present.

[0112] The invention also embraces T1R variants having additional amino acid residues that result from use of specific expression systems. For example, use of commercially available vectors that express a desired polypeptide as part of a glutathione-S-transferase (GST) fusion product provides the desired polypeptide having an additional glycine residue at position -1 after cleavage of the GST component from the desired polypeptide. Variants that result from expression in other vector systems are also contemplated.

[0113] In another aspect, the invention provides deletion variants wherein one or more amino acid residues in a T1R polypeptide are removed. Deletions can be effected at one or both termini of the T1R polypeptide, or with removal of one or more non-terminal amino acid residues of T1R. Deletion variants, therefore, include all fragments of a T1R polypeptide.

[0114] The invention also embraces polypeptide fragments that maintain biological (e.g., ligand binding, heterodimerization) and/or immunological properties of a T1R polypeptide.

[0115] As used in the present invention, polypeptide fragments preferably comprise at least 10, 15, 20, 25, 30, 35, 40, 45, or 50 consecutive amino acids of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64. Some polypeptide fragments display antigenic properties unique to, or specific for, a feline T1R receptor. Fragments of the invention having the desired biological and immunological properties can be prepared by any of the methods well known and routinely practiced in the art.

[0116] In still another aspect, the invention provides substitution variants of T1R polypeptides. Substitution variants include those polypeptides wherein one or more amino acid residues of a T1R polypeptide are removed and replaced with alternative residues. In one aspect, the substitutions are conservative in nature; however, the invention embraces substitutions that are also non-conservative. Conservative substitutions for this purpose may be defined as set out in Tables 1, 2, or 3 below.

[0117] Variant polypeptides include those wherein conservative substitutions have been introduced by modification of polynucleotides encoding polypeptides of the invention. Amino acids can be classified according to physical properties and contribution to secondary and tertiary protein structure. A conservative substitution is recognized in the art as a substitution of one amino acid for another amino acid that has similar properties. Exemplary conservative

substitutions are set out in Table 1 (from WO 97/09433, page 10, published March 13, 1997 (PCT/GB96/02197, filed 9/6/96), immediately below.

Table 1
Conservative Substitutions I

SIDE CHAIN						
CHARACTERISTIC	AMINO ACID					
Aliphatic						
Non-polar	GAP					
	ILV					
Polar - uncharged	CSTM					
	NQ					
Polar - charged	DE					
-	KR					
Aromatic	HFWY					
Other	NQDE					

Alternatively, conservative amino acids can be grouped as described in Lehninger, [BIOCHEMISTRY, Second Edition; Worth Publishers, Inc. NY, NY (1975), pp.71-77] as set out in Table 2, below.

Table 2 Conservative Substitutions II

SIDE CHAIN CHARACTERISTIC	AMINO ACID
Non-polar (hydrophobic)	
A. Aliphatic:	ALIVP
B. Aromatic:	F W
C. Sulfur-containing:	M
D. Borderline:	G
Uncharged-polar	
A. Hydroxyl:	STY
B. Amides:	N Q
C. Sulfhydryl:	C
D. Borderline:	G
Positively Charged (Basic):	KRH
Negatively Charged (Acidic):	DE

As still another alternative, exemplary conservative substitutions are set out in Table 3, below.

Table 3
Conservative Substitutions III

Exemplary Substitution
Val, Leu, Ile
Lys, Gln, Asn
Gln, His, Lys, Arg

Asp (D)	Glu
Cys (C)	Ser
Gln (Q)	Asn
Glu (E)	Asp
His (H)	Asn, Gln, Lys, Arg
Ile (I)	Leu, Val, Met, Ala, Phe,
Leu (L)	Ile, Val, Met, Ala, Phe
Lys (K)	Arg, Gln, Asn
Met (M)	Leu, Phe, lle
Phe (F)	Leu, Val, Ile, Ala
Pro (P)	Gly
Ser (S)	Thr
Thr (T)	Ser
Trp (W)	Tyr
Tyr (Y)	Trp, Phe, Thr, Ser
Val (V)	Ile, Leu, Met, Phe, Ala

[0118] It should be understood that the definition of polypeptides of the invention is intended to include polypeptides bearing modifications other than insertion, deletion, or substitution of amino acid residues. By way of example, the modifications may be covalent in nature, and include for example, chemical bonding with polymers, lipids, other organic, and inorganic moieties. Such derivatives may be prepared to increase circulating half-life of a polypeptide, or may be designed to improve the targeting capacity of the polypeptide for desired cells, tissues, or organs. Similarly, the invention further embraces T1R polypeptides that have been covalently modified to include one or more water-soluble polymer attachments such as polyethylene glycol, polyoxyethylene glycol, or polypropylene glycol. Variants that display ligand binding properties of native T1R and are expressed at higher levels, as well as variants that provide for constitutively active receptors, are particularly useful in assays of the invention; the variants are also useful in providing cellular, tissue and animal models of diseases/conditions characterized by aberrant T1R activity.

[0119] In a related embodiment, the present invention provides compositions comprising purified polypeptides of the invention. Some compositions comprise, in addition to the polypeptide of the invention, a pharmaceutically acceptable (i.e., sterile and non-toxic) liquid, semisolid, or solid diluent that serves as a pharmaceutical vehicle, excipient, or medium. Any diluent known in the art may be used. Exemplary diluents include, but are not limited to, water, saline solutions, polyoxyethylene sorbitan monolaurate, magnesium stearate, methyl- and

propylhydroxybenzoate, talc, alginates, starches, lactose, sucrose, dextrose, sorbitol, mannitol, glycerol, calcium phosphate, mineral oil, and cocoa butter.

[0120] Variants that display ligand-binding properties of native T1R and are expressed at higher levels, as well as variants that provide for constitutively active receptors, are particularly useful in assays of the invention; the variants are also useful in assays of the invention and in providing cellular, tissue and animal models of diseases/conditions characterized by aberrant T1R activity.

Antibodies

Also included in the present invention are antibodies (e.g., monoclonal and polyclonal [0121]antibodies, single chain antibodies, chimeric antibodies, bifunctional/bispecific antibodies, humanized antibodies, human antibodies, felinized antibodies, feline antibodies, and complementary determining region (CDR)-grafted antibodies, including compounds which include CDR sequences which specifically recognize a polypeptide of the invention) specific for a T1R receptor of the invention or fragments thereof. Antibody fragments, including Fab, Fab', F(ab')2, and F_v, are also provided by the invention. The term "specific for," when used to describe antibodies of the invention, indicates that the variable regions of the antibodies of the invention recognize and bind T1R polypeptides, preferably exclusively (i.e., are able to distinguish T1R polypeptides of the invention from other known polypeptides by virtue of measurable differences in binding affinity, despite the possible existence of localized sequence identity, homology, or similarity between T1R and such polypeptides). It will be understood that specific antibodies may also interact with other proteins (for example, S. aureus protein A or other antibodies in ELISA techniques) through interactions with sequences outside the variable region of the antibodies, and, in particular, in the constant region of the molecule. Screening assays to determine binding specificity of an antibody of the invention are well known and routinely practiced in the art. For a comprehensive discussion of such assays, see Harlow et al. (Eds.), ANTIBODIES A LABORATORY MANUAL; Cold Spring Harbor Laboratory; Cold Spring Harbor, NY (1988), Chapter 6. Antibodies that recognize and bind fragments of the T1R polypeptides of the invention are also contemplated, provided that the antibodies are specific for T1R polypeptides. Antibodies of the invention can be produced using any method well known and routinely practiced in the art.

[0122] The invention provides an antibody that is specific for the feline T1R receptors of the invention. Antibodies that can be generated from polypeptides that have previously been

described in the literature and that are capable of fortuitously cross-reacting with feline T1R receptor (e.g., due to the fortuitous existence of a similar epitope in both polypeptides) are considered "cross-reactive" antibodies. Such cross-reactive antibodies are not antibodies that are "specific" for a feline T1R receptor. The determination of whether an antibody is specific for a feline T1R receptor or is cross-reactive with another known receptor is made using any of several assays, such as Western blotting assays, that are well known in the art. For identifying cells that express a T1R receptor and also for modulating T1R-ligand binding activity, antibodies that specifically bind to an extracellular epitope of the T1R receptor may be used.

[0123] In some variations, the invention provides monoclonal antibodies. Hybridomas that produce such antibodies also are intended as aspects of the invention. In yet another variation, the invention provides a felinized antibody. Felinized antibodies are useful for *in vivo* therapeutic indications.

[0124] In another variation, the invention provides a cell-free composition comprising polyclonal antibodies, wherein at least one of the antibodies is an antibody of the invention specific for T1R receptor. Antisera isolated from an animal is an exemplary composition, as is a composition comprising an antibody fraction of an antisera that has been resuspended in water or in another diluent, excipient, or carrier.

[0125] In still another related embodiment, the invention provides an anti-idiotypic antibody specific for an antibody that is specific for T1R receptor of the invention.

[0126] It is well known that antibodies contain relatively small antigen binding domains that can be isolated chemically or by recombinant techniques. Such domains are useful T1R receptor binding molecules themselves, and also may be reintroduced into other antibodies or fused to toxins or other polypeptides. Thus, in still another embodiment, the invention provides a polypeptide comprising a fragment of a T1R-specific antibody, wherein the fragment and the polypeptide bind to the T1R receptor. By way of non-limiting example, the invention provides polypeptides that are single chain antibodies and CDR-grafted antibodies.

[0127] Non-feline antibodies may be felinized by any of the methods known in the art. In one method, the non-feline CDRs are inserted into a feline antibody or consensus antibody framework sequence. Similarly, non-human antibodies may be humanized by methods known in the art. In one embodiment, non-human CDRs are inserted into a human antibody or consensus

antibody framework sequence. Further changes can then be introduced into the antibody framework to modulate affinity or immunogenicity.

[0128] Antibodies of the invention are useful for, e.g., therapeutic purposes (such as by modulating activity of T1R receptor), diagnostic purposes (such as detecting or quantitating T1R receptor activity), and also for purification of T1R receptor. Kits comprising an antibody of the invention for any of the purposes described herein are also included within the scope of the invention. In general, a kit of the invention preferably includes a control antigen for which the antibody is immunospecific.

Compositions

[0129] Mutations in the T1R gene that result in loss of normal function of the T1R gene product underlie some T1R-related disease states. The invention comprehends gene and peptide therapy, for example, to restore T1R activity to treat those disease states. Delivery of a functional T1R gene to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, No. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Alternatively, it is contemplated that in other disease states, preventing the expression of, or inhibiting the activity of, T1R receptor will be useful in treatment. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of T1R receptor.

[0130] Another aspect of the present invention is directed to compositions, including pharmaceutical compositions, comprising any of the nucleic acid molecules or recombinant expression vectors described above and an acceptable carrier or diluent. The carrier or diluent may be pharmaceutically acceptable. Suitable carriers are described in the most recent edition of *Remington's Pharmaceutical Sciences*, A. Osol, a standard reference text in this field, which is incorporated herein by reference in its entirety. Examples of such carriers or diluents include, but are not limited to, water, saline, Ringer's solution, dextrose solution, and 5% serum albumin. Liposomes and nonaqueous vehicles such as fixed oils may also be used. The formulations may be sterilized by commonly used techniques.

[0131] Also within the scope of the invention are compositions comprising polypeptides, polynucleotides, or antibodies of the invention that have been formulated with, e.g., a pharmaceutically acceptable carrier.

[0132] The invention also provides methods of using antibodies of the invention. For example, the invention provides a method for modulating ligand-binding of a T1R receptor comprising the step of contacting the receptor with an antibody specific for the T1R polypeptide, under conditions wherein the antibody binds the receptor.

Methods of identifying ligands and modulators

[0133] The invention also provides assays to identify compounds that bind and/or modulate T1R receptor. A "T1R binding partner" is a compound that directly or indirectly binds a T1R polypeptide of the invention. One assay of the invention comprises the steps of: (a) contacting T1R receptor with a compound suspected of binding T1R receptor (the test compound); and (b) measuring binding between the compound and the T1R receptor. In one variation, the composition comprises a cell expressing T1R receptor on its surface. In another variation, isolated T1R receptor or cell membranes comprising T1R receptor are employed. The binding may be measured directly, e.g., by using a labeled compound, or may be measured indirectly. Compounds identified as binding T1R receptor may be further tested in other assays including, but not limited to, T1R activity assays and/or in vivo models, in order to confirm or quantitate their activity.

[0134] Specific binding molecules, including natural ligands and synthetic compounds, can be identified or developed using isolated or recombinant T1R products, T1R variants, or preferably, cells expressing such products. Binding partners are useful for purifying T1R products and detection or quantification of T1R products in fluid and tissue samples using known immunological procedures. Binding molecules are also manifestly useful in modulating (*i.e.*, blocking, inhibiting or stimulating) biological activities of T1R, especially those activities involved in signal transduction.

[0135] The DNA and amino acid sequence information provided by the present invention also makes possible identification of binding partner compounds with which a T1R polypeptide or polynucleotide will interact. Methods to identify binding partner compounds include solution assays, *in vitro* assays wherein T1R polypeptides are immobilized, and cell-based assays. Identification of binding partner compounds of T1R polypeptides provides candidates for

therapeutic or prophylactic intervention in pathologies associated with T1R normal and aberrant biological activity.

[0136] The invention includes several assay systems for identifying T1R-binding partners. In solution assays, methods of the invention comprise the steps of (a) contacting a T1R polypeptide with one or more candidate binding partner compounds and (b) identifying the compounds that bind to the T1R polypeptide. Identification of the compounds that bind the T1R polypeptide can be achieved by isolating the T1R polypeptide/binding partner complex, and separating the binding partner compound from the T1R polypeptide. An additional step of characterizing the physical, biological, and/or biochemical properties of the binding partner compound is also comprehended in another embodiment of the invention. In one aspect, the T1R polypeptide/binding partner complex is isolated using an antibody immunospecific for either the T1R polypeptide or the candidate binding partner compound.

[0137] In still other embodiments, either the T1R polypeptide or the candidate binding partner compound comprises a label or tag that facilitates its isolation, and methods of the invention to identify binding partner compounds include a step of isolating the T1R polypeptide/binding partner complex through interaction with the label or tag. An exemplary tag of this type is a poly-histidine sequence, generally around six histidine residues, that permits isolation of a compound so labeled using nickel chelation. Other labels and tags, such as the FLAG® tag (Eastman Kodak, Rochester, NY), well known and routinely used in the art, are embraced by the invention.

[0138] In one variation of an *in vitro* assay, the invention provides a method comprising the steps of (a) contacting an immobilized T1R polypeptide with a candidate binding partner compound and (b) detecting binding of the candidate compound to the T1R polypeptide. In an alternative embodiment, the candidate binding partner compound is immobilized and binding of T1R receptor is detected. Immobilization is accomplished using any of the methods well known in the art, including covalent bonding to a support, a bead, or a chromatographic resin, as well as non-covalent, high affinity interactions such as antibody binding, or use of streptavidin/biotin binding wherein the immobilized compound includes a biotin moiety. The support may, for example, be formulated into a feline-specific electronic tongue. Detection of binding can be accomplished (i) using a radioactive label on the compound that is not immobilized, (ii) using a fluorescent label on the non-immobilized compound, (iii) using an antibody immunospecific for the non-immobilized compound, (iv) using a label on the non-immobilized compound that

excites a fluorescent support to which the immobilized compound is attached, as well as other techniques well known and routinely practiced in the art.

[0139] The invention also provides cell-based assays to identify binding partner compounds of a T1R polypeptide. In one embodiment, the invention provides a method comprising the steps of contacting a T1R polypeptide expressed on the surface of a cell with a candidate binding partner compound and detecting binding of the candidate binding partner compound to the T1R polypeptide. In some embodiments, the detection comprises detecting physiological event in the cell caused by the binding of the molecule.

[0140] Another aspect of the present invention is directed to methods of identifying compounds that bind to either T1R receptor or nucleic acid molecules encoding T1R receptor, comprising contacting T1R receptor, or a nucleic acid molecule encoding the same, with a compound, and determining whether the compound binds T1R receptor or a nucleic acid molecule encoding the same. Binding can be determined by binding assays which are well known to the skilled artisan, including, but not limited to, gel-shift assays, Western blots, radiolabeled competition assay, phage-based expression cloning, co-fractionation by chromatography, co-precipitation, cross-linking, interaction trap/two-hybrid analysis, southwestern analysis, ELISA, and the like, which are described in, for example, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, 1999, John Wiley & Sons, NY, which is incorporated herein by reference in its entirety. The compounds to be screened include (which may include compounds which are suspected to bind T1R receptor, or a nucleic acid molecule encoding the same), but are not limited to, extracellular, intracellular, biological, or chemical origin. The methods of the invention also embrace ligands, especially neuropeptides, that are attached to a label, such as a radiolabel (e.g., ¹²⁵I, ³⁵S, ³²P, ³³P, ³H), a fluorescence label, a chemiluminescent label, an enzymic label, and an immunogenic label. Modulators falling within the scope of the invention include, but are not limited to, non-peptide molecules such as non-peptide mimetics, non-peptide allosteric effectors, and peptides. The T1R polypeptide or polynucleotide employed in such a test may either be free in solution, attached to a solid support, borne on a cell surface or located intracellularly, or associated with a portion of a cell. One skilled in the art can, for example, measure the formation of complexes between T1R receptor and the compound being tested. Alternatively, one skilled in the art can examine the diminution in complex formation between T1R receptor and its substrate caused by the compound being tested. In some embodiments of the invention, the recognition sites of the T1R receptor are coupled with a monitoring system, either electrical or optical. An appropriate chemical stimulus can bind to the receptor's ligand binding domain, changing the receptor conformation to a degree that the coupled electronics or optical changes can be observed on a read-out. Such a device could be developed into a feline-specific electronic tongue, for example.

[0141] In another embodiment of the invention, high throughput screening for compounds having suitable binding affinity to T1R receptor is employed. Briefly, large numbers of different small peptide test compounds are synthesized on a solid substrate. The peptide test compounds are contacted with T1R receptor and washed. Bound T1R receptor is then detected by methods well known in the art. Purified polypeptides of the invention can also be coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies can be used to capture the protein and immobilize it on the solid support.

Generally, an expressed T1R receptor can be used for HTS binding assays in [0142]conjunction with a ligand, such as an amino acid or carbohydrate. The identified peptide is labeled with a suitable radioisotope, including, but not limited to, ¹²⁵I, ³H, ³⁵S or ³²P, by methods that are well known to those skilled in the art. Alternatively, the peptides may be labeled by well-known methods with a suitable fluorescent derivative (Baindur et al., Drug Dev. Res., 1994, 33, 373-398; Rogers, Drug Discovery Today, 1997, 2, 156-160). Radioactive ligand specifically bound to the receptor in membrane preparations made from the cell line expressing the recombinant protein can be detected in HTS assays in one of several standard ways, including filtration of the receptor-ligand complex to separate bound ligand from unbound ligand (Williams, Med. Res. Rev., 1991, 11, 147-184; Sweetnam et al., J. Natural Products, 1993, 56, 441-455). Alternative methods include a scintillation proximity assay (SPA) or a FlashPlate format in which such separation is unnecessary (Nakayama, Cur. Opinion Drug Disc. Dev., 1998, 1, 85-91; Bossé et al., J. Biomolecular Screening, 1998, 3, 285-292.). Binding of fluorescent ligands can be detected in various ways, including fluorescence energy transfer (FRET), direct spectrophotofluorometric analysis of bound ligand, or fluorescence polarization (Rogers, Drug Discovery Today, 1997, 2, 156-160; Hill, Cur. Opinion Drug Disc. Dev., 1998, 1, 92-97).

[0143] Other assays may be used to identify specific ligands of a T1R receptor, including assays that identify ligands of the target protein through measuring direct binding of test ligands to the target protein, as well as assays that identify ligands of target proteins through affinity ultrafiltration with ion spray mass spectroscopy/HPLC methods or other physical and analytical methods. Alternatively, such binding interactions are evaluated indirectly using the yeast two-hybrid system described in Fields et al., Nature, 340:245-246 (1989), and Fields et al., Trends in

Genetics, 10:286-292 (1994), both of which are incorporated herein by reference. The twohybrid system is a genetic assay for detecting interactions between two proteins or polypeptides. It can be used to identify proteins that bind to a known protein of interest, or to delineate domains or residues critical for an interaction. Variations on this methodology have been developed to clone genes that encode DNA binding proteins, to identify peptides that bind to a protein, and to screen for drugs. The two-hybrid system exploits the ability of a pair of interacting proteins to bring a transcription activation domain into close proximity with a DNA binding domain that binds to an upstream activation sequence (UAS) of a reporter gene, and is generally performed in yeast. The assay requires the construction of two hybrid genes encoding (1) a DNA-binding domain that is fused to a first protein and (2) an activation domain fused to a second protein. The DNA-binding domain targets the first hybrid protein to the UAS of the reporter gene; however, because most proteins lack an activation domain, this DNA-binding hybrid protein does not activate transcription of the reporter gene. The second hybrid protein, which contains the activation domain, cannot by itself activate expression of the reporter gene because it does not bind the UAS. However, when both hybrid proteins are present, the noncovalent interaction of the first and second proteins tethers the activation domain to the UAS, activating transcription of the reporter gene. For example, when the first protein is a receptor, or fragment thereof, that is known to interact with another protein or nucleic acid, this assay can be used to detect agents that interfere with the binding interaction. Expression of the reporter gene is monitored as different test agents are added to the system. The presence of an inhibitory agent results in lack of a reporter signal.

[0144] The yeast two-hybrid assay can also be used to identify proteins that bind to the gene product. In an assay to identify proteins that bind to a T1R receptor, or fragment thereof, a fusion polynucleotide encoding both a T1R receptor (or fragment) and a UAS binding domain (i.e., a first protein) may be used. In addition, a large number of hybrid genes each encoding a different second protein fused to an activation domain are produced and screened in the assay. Typically, the second protein is encoded by one or more members of a total cDNA or genomic DNA fusion library, with each second protein-coding region being fused to the activation domain. This system is applicable to a wide variety of proteins, and it is not necessary to know the identity or function of the second binding protein. The system is highly sensitive and can detect interactions not revealed by other methods; even transient interactions may trigger transcription to produce a stable mRNA that can be repeatedly translated to yield the reporter protein.

[0145] Other assays may be used to search for agents that bind to the target protein. One such screening method to identify direct binding of test ligands to a target protein is described in U.S. Patent No. 5,585,277, incorporated herein by reference. This method relies on the principle that proteins generally exist as a mixture of folded and unfolded states, and continually alternate between the two states. When a test ligand binds to the folded form of a target protein (i.e., when the test ligand is a ligand of the target protein), the target protein molecule bound by the ligand remains in its folded state. Thus, the folded target protein is present to a greater extent in the presence of a test ligand which binds the target protein, than in the absence of a ligand. Binding of the ligand to the target protein can be determined by any method that distinguishes between the folded and unfolded states of the target protein. The function of the target protein need not be known in order for this assay to be performed. Virtually any agent can be assessed by this method as a test ligand, including, but not limited to, metals, polypeptides, proteins, lipids, polysaccharides, polynucleotides and small organic molecules.

[0146] Another method for identifying ligands of a target protein is described in Wieboldt et al., Anal. Chem., 69:1683-1691 (1997), incorporated herein by reference. This technique screens combinatorial libraries of 20-30 agents at a time in solution phase for binding to the target protein. Agents that bind to the target protein are separated from other library components by simple membrane washing. The specifically selected molecules that are retained on the filter are subsequently liberated from the target protein and analyzed by HPLC and pneumatically assisted electrospray (ion spray) ionization mass spectroscopy. This procedure selects library components with the greatest affinity for the target protein, and is particularly useful for small molecule libraries.

[0147] Other embodiments of the invention comprise using competitive screening assays in which neutralizing antibodies capable of binding a polypeptide of the invention specifically compete with a test compound for binding to the polypeptide. In this manner, the antibodies can be used to detect the presence of any peptide that shares one or more antigenic determinants with T1R receptor. Radiolabeled competitive binding studies are described in A.H. Lin et al., Antimicrobial Agents and Chemotherapy, 1997, 41(10): 2127-2131, the disclosure of which is incorporated herein by reference in its entirety.

[0148] Another aspect of the present invention is directed to methods of identifying compounds that modulate (i.e., increase or decrease) activity of T1R receptor comprising contacting T1R receptor with a compound, and determining whether the compound modifies activity of T1R receptor. The activity in the presence of the test compound is compared to the

activity in the absence of the test compound. Where the activity of the sample containing the test compound is higher than the activity in the sample lacking the test compound, the compound is an agonist. Similarly, where the activity of the sample containing the test compound is lower than the activity in the sample lacking the test compound, the compound is an antagonist.

[0149] Agents that modulate (i.e., increase, decrease, or block) T1R receptor activity or expression also may be identified, for example, by incubating a putative modulator with a cell containing a T1R polypeptide or polynucleotide and determining the effect of the putative modulator on T1R receptor activity or expression. The selectivity of a compound that modulates the activity of T1R receptor can be evaluated by comparing its effects on T1R receptor to its effect on other T1R receptors. Selective modulators may include, for example, antibodies and other proteins, peptides, or organic molecules that specifically bind to a T1R polypeptide or a T1R receptor-encoding nucleic acid. Modulators of T1R receptor activity will be therapeutically useful in treatment of diseases and physiological conditions in which normal or aberrant T1R receptor activity is involved. Compounds identified as modulating T1R receptor activity may be further tested in other assays including, but not limited to, in vivo models, in order to confirm or quantitate their activity.

[0150] The invention also provides methods for identifying a T1R receptor modulator by: (a) contacting a T1R receptor binding partner and a composition comprising a T1R receptor in the presence and in the absence of a putative modulator compound; (b) detecting binding between the binding partner and the T1R receptor; and (c) identifying a putative modulator compound or a modulator compound in view of decreased or increased binding between the binding partner and the T1R receptor in the presence of the putative modulator, as compared to binding in the absence of the putative modulator. Compounds identified as modulators of binding between T1R receptor and a T1R binding partner may be further tested in other assays including, but not limited to, *in vivo* models, in order to confirm or quantitate their activity.

[0151] The invention also includes within its scope high-throughput screening (HTS) assays to identify compounds that interact with, enhance, or inhibit biological activity (i.e., affect enzymatic activity, binding activity, etc.) of a T1R polypeptide. HTS assays permit screening of large numbers of compounds in an efficient manner. Cell-based HTS systems are contemplated to investigate T1R receptor-ligand interaction. HTS assays are designed to identify "hits" or "lead compounds" having the desired property, from which modifications can be designed to improve the desired property. Chemical modification of the "hit" or "lead compound" is often

based on an identifiable structure/activity relationship between the "hit" and the T1R3 polypeptide.

[0152] For example, modulators of T1R receptor activity may be identified by expressing the T1R receptor in a heterologous cultured mammalian cell line, such as HEK cells, and detecting receptor activity in the presence and absence of a test compound by monitoring changes in intracellular calcium using a calcium-specific intracellular dye. In another embodiment, this process may be automated using a high-throughput screening device.

[0153] Candidate modulators contemplated by the invention include compounds selected from libraries of either potential activators or potential inhibitors. There are a number of different libraries used for the identification of small molecule modulators, including: (1) chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides, or organic molecules. Chemical libraries consist of random chemical structures, some of which are analogs of known compounds or analogs of compounds that have been identified as "hits" or "leads" in other drug discovery screens, some of which are derived from natural products, and some of which arise from non-directed synthetic organic chemistry. Natural product libraries are collections of microorganisms, animals, plants, or marine organisms that are used to create mixtures for screening by: (1) fermentation and extraction of broths from soil, plant, or marine microorganisms or (2) extraction of plants or marine organisms. Natural product libraries include polyketides, non-ribosomal peptides, and variants (non-naturally occurring) thereof. For a review, see Science 282:63-68 (1998). Combinatorial libraries are composed of large numbers of peptides, oligonucleotides, or organic compounds as a mixture. These libraries are relatively easy to prepare by traditional automated synthesis methods, PCR, cloning, or proprietary synthetic methods. Of particular interest are non-peptide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997). Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to modulate activity.

[0154] T1R receptor binding partners that stimulate T1R receptor activity are useful as agonists in disease states or conditions characterized by insufficient T1R receptor signaling (e.g., as a result of insufficient activity of a T1R receptor ligand). T1R receptor binding partners that block ligand-mediated T1R receptor signaling are useful as T1R receptor antagonists to treat disease

states or conditions characterized by excessive T1R receptor signaling. Thus, in another aspect, the invention provides methods for treating a disease or abnormal condition by administering to a patient in need of such treatment a substance that modulates the activity or expression of a polypeptide having a sequence of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64, or exhibiting substantially the same biological activity as a polypeptide having a sequence of SEQ ID NO:6, or SEQ ID NO:61, or SEQ ID NO:64.

[0155] In addition T1R receptor modulators in general, as well as T1R receptor encoding polynucleotides and polypeptides, are useful in diagnostic assays for such diseases or conditions.

Mimetics

[0156] Mimetics or mimics of compounds identified herein (sterically similar compounds formulated to mimic the key portions of the structure) may be designed for pharmaceutical use. Mimetics may be used in the same manner as the compounds identified by the present invention that modulate the T1R receptor and hence are also functional equivalents. The generation of a structural-functional equivalent may be achieved by the techniques of modeling and chemical design known to those of skill in the art. It will be understood that all such sterically similar constructs fall within the scope of the present invention.

[0157] The design of mimetics to a known pharmaceutically active compound is a known approach to the development of pharmaceuticals based on a "lead" compound. This is desirable where, for example, the active compound is difficult or expensive to synthesize, or where it is unsuitable for a particular method of administration, e.g., some peptides may be unsuitable active agents for oral compositions as they tend to be quickly degraded by proteases in the alimentary canal.

[0158] There are several steps commonly taken in the design of a mimetic. First, the particular parts of the compound that are critical and/or important in determining its T1R-modulating properties are determined. In the case of a polypeptide, this can be done by systematically varying the amino acid residues in the peptide, e.g. by substituting each residue in turn. Alanine scans of peptides are commonly used to refine such peptide motifs.

[0159] Once the active region of the compound has been identified, its structure is modeled according to its physical properties, e.g. stereochemistry, bonding, size, and/or charge, using data from a range of sources, such as, but not limited to, spectroscopic techniques, X-ray diffraction data, and NMR. Computational analysis, similarity mapping (which models the charge and/or

volume of the active region, rather than the bonding between atoms), and other techniques known to those of skill in the art can be used in this modeling process.

[0160] In a variant of this approach, the three-dimensional structure of the compound that modulates a T1R receptor and the active region of the T1R receptor are modeled. This can be especially useful where either or both of these compounds change conformation upon binding. Knowledge of the structure of the ligand-binding domain (for example, residues 1-571 of SEQ ID NO:2) of the receptor also allows the design of high potency ligands and/or modulators.

[0161] A template molecule is then selected onto which chemical groups that mimic the T1R modulator can be grafted. The template molecule and the chemical groups grafted onto it can conveniently be selected so that the mimetic is easy to synthesize, is pharmacologically acceptable, and does not degrade *in vivo*, while retaining the biological activity of the lead compound. Alternatively, where the mimetic is peptide-based, further stability can be achieved by cyclizing the peptide, thereby increasing its rigidity. The mimetic or mimetics found by this approach can then be screened by the methods of the present invention to see whether they have the ability to modulate the T1R receptor. Further optimization or modification can then be performed to arrive at one or more final mimetics for *in vivo* or clinical testing.

Compositions of binding and/or modulating compounds

[0162] Following identification of a compound that binds and/or or modulates a T1R receptor, the compound may be manufactured and/or used in preparation of compositions including, but not limited to, foods, drinks, and pharmaceutical compositions. The compositions are provided or administered to patients, including, but not limited to, avians, felines, canines, bovines, porcines, equines, rodents, simians, and humans.

[0163] Thus, the present invention extends, in various aspects, not only to compounds identified in accordance with the methods disclosed herein but also foods, drinks, pharmaceutical compositions, drugs, or other compositions comprising such a compound; methods comprising administration of such a composition to a patient, e.g. for treatment (which includes prophylactic treatment) of a T1R receptor-associated disorder (e.g., obesity, diabetes); uses of such a compound in the manufacture of a composition for administration to a patient; and methods of making a composition comprising admixing such a compound with a pharmaceutically acceptable excipient, vehicle or carrier, and optionally other ingredients.

[0164] The compositions of the invention comprise a taste-modifying amount of at least one or more binding or modulating compounds. A "taste-modifying amount" is a quantity sufficient to increase or decrease the perception of a taste stimulus by a given mammal. The food and drink compositions of the invention are formulated by the addition of a binding or modulating compound to a food or drink of the mammal. Such compositions may be individualized or breed-specific. For example, feline veterinary specialty diets may thus be made more palatable.

[0165] The pharmaceutical compositions of the invention comprise a therapeutically effective amount of a compound identified according to the methods disclosed herein, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or excipient.

[0166] The compounds of the invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, *etc.*, and those formed with free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, *etc.*

[0167] Pharmaceutically acceptable carriers include but are not limited to saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The carrier and composition can be sterile. The formulation should suit the mode of administration.

[0168] The composition, if desired, can also contain minor amounts of wetting or emulsifying agents or pH buffering agents. The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulations can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc.

[0169] The pharmaceutical compositions of the invention may further comprise a secondary compound for the treatment of a disorder unrelated to the T1R receptor, such as an antibiotic or other therapeutic agent, to improve the palatability of the pharmaceutical composition, thereby improving the ease of administration.

[0170] In one embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for oral (e.g., tablets, granules, syrups) or non-oral (e.g., ointments, injections) administration to the subject. Various delivery systems are known and can be used to administer a compound that modulates a T1R receptor, e.g.,

encapsulation in liposomes, microparticles, microcapsules, expression by recombinant cells, receptor-mediated endocytosis, construction of a therapeutic nucleic acid as part of a retroviral or other vector, *etc.* Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, topical, and oral routes.

[0171] The compounds of the invention may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.), and may be administered together with other biologically active agents, for example in HAART therapy. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir.

[0172] In a specific embodiment, it may be desirable to administer the pharmaceutical compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery; topical application, e.g., in conjunction with a wound dressing after surgery; by injection; by means of a catheter; by means of a suppository; or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.

[0173] The composition can be administered in unit dosage form and may be prepared by any of the methods well known in the pharmaceutical art, for example, as described in REMINGTON'S PHARMACEUTICAL SCIENCES (Mack Publishing Co., Easton, PA). The amount of the compound of the invention that modulates a T1R receptor that is effective in the treatment of a particular disorder or condition will depend on factors including but not limited to the chemical characteristics of the compounds employed, the route of administration, the age, body weight, and symptoms of a patient, the nature of the disorder or condition, and can be determined by standard clinical techniques. Typically therapy is initiated at low levels of the compound and is increased until the desired therapeutic effect is achieved. In addition, *in vitro* assays may optionally be employed to help identify optimal dosage ranges. Suitable dosage ranges for intravenous administration are preferably generally about 20-500 micrograms of active compound per kilogram body weight. Suitable dosage ranges for intranasal administration are preferably generally about 0.01 pg/kg body weight to 1 mg/kg body weight. Suppositories preferably generally contain active ingredient in the range of 0.5% to 10% by weight; oral

formulations preferably may contain 10% to 95% active ingredient. Effective doses may be extrapolated from dose-response curves derived from *in vitro* or animal model test systems.

[0174] Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lidocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry-lyophilized powder or water-free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline.

[0175] Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

Treatment Methods

[0176] The invention provides methods of treatment of T1R receptor-associated disorders by administering to a subject or patient an effective amount of a compound that modulates the T1R receptor. In some aspects of the invention, the compounds or pharmaceutical compositions of the invention are administered to a patient having an increased risk of or having a disorder associated with the T1R receptor. The patient may be, for example, avian, feline, canine, bovine, ovine, porcine, equine, rodent, simian, or human.

Kits

[0177] A kit of the invention comprises a carrier means being compartmentalized to receive in close confinement one or more container means such as vials, tubes, and the like, each of the container means comprising an element to be used in the methods of the invention. For example, one of the container means may comprise the a polynucleotide encoding a T1R receptor of the invention, a T1R receptor of the invention, or an antibody thereto. The kit may also have one or more conventional kit components, including, but not limited to, instructions, test tubes, EppendorfTM tubes, labels, reagents helpful for quantification of marker gene expression, *etc*.

EXAMPLES

[0178] The following examples are meant to be illustrative of the present invention and are not intended to limit the scope thereof.

Cloning and Characterization of the Feline T1R3 receptor

[0179] The discovery of feline taste receptor, T1R3, was achieved by using a molecular strategy termed "overgo" (Thomas, et al., Genome Res., 12:1277-1285 (2002); Vollrath, D., DNA markers for physical mapping In GENOME ANALYSIS: A LABORATORY MANUAL, Vol. 4, ed. B. Birren, et al., pp. 187–215, 1999). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.). This strategy involves the use of the shortest DNA probes among the many kinds of probes used in bacterial artificial chromosome (BAC) library screening. These probes are comprised of two DNA sequences (e.g., 22mers or 24mers) with a complementary 8 base overlap. They can be designed by computer program (genome.wustl.edu/tools/?overgo=1) and are readily synthesized.

[0180] Overgo probes were designed from conserved regions of the chromosome 1 marker, "disheveled 1" (DVL1) and the G protein-coupled receptor, T1R3, by aligning DVL1 and T1R3 genomic sequences from many different species. The overlapping sequences of the seven DVL1 overgo probes used in the present invention were as follows:

```
catoV1a ACTTTGAGAACATGAGTAATGACG (SEQ ID NO:21) catoV1b AGTACCCGGACTGCGTCGTCATTA (SEQ ID NO:22) catoV2a CACTAGGGTCATCCTTGCTTTCAG (SEQ ID NO:23) catoV2b AGTCAGGGTGATGGGCCTGAAAGC (SEQ ID NO:24) Ov8-OVa ATGTGGTGGACTGGCTGTACCATC (SEQ ID NO:25) ov8-OVb TTGAAGCCCTCCACGTGATGGTAC (SEQ ID NO:26) Ov9a CACACGGTGAACAAGATCACCTTC (SEQ ID NO:27) ov9b AGTAGCACTGCTCGGAGAAGGTGA (SEQ ID NO:28) Ov10a ATCTACCACATGGACGAGGAGGAG (SEQ ID NO:29) ov10b TGACCAGGTACGGCGTCTCCTCCT (SEQ ID NO:30) Ov11a AGCGCGTCACGCTGGCCGACTTCA (SEQ ID NO:31) ov11b TTGCTGAGCACGTTCTTGAAGTCG (SEQ ID NO:32) Ov12a CACGCCTACAAATTCTTCTTTAAG (SEQ ID NO:33) ov12b AGTCCTGGTCCATGGACTTAAAGA (SEQ ID NO:34).
```

The overlapping sequences of the twelve T1R3 overgo probes used in the present invention were as follows:

```
tlr3-OV1a CTTCCACTCCTGCTGCTACGACTG (SEO ID NO:35)
t1r3-OV1b TGCCTCGCAGTCCACGCAGTCGTA (SEQ ID NO:36)
t1r3-OV2a AGGTGCGCCGCGTCAAGGGCTTCC (SEQ ID NO:37)
t1r3-OV2b TCGTAGCAGCAGGAGTGGAAGCCC (SEQ ID NO:38)
t1r3-oV3a GTTCCTGGCATGGGGGGGGGCCGGC (SEQ ID NO:39)
t1r3-OV3b GAGCAGCACAAGCACAGCCGGCTC (SEQ ID NO:40)
t1r3-OV4a ACAGCCCACTAGTTCAGGCCGCAG (SEQ ID NO:41)
t1r3-OV4b CAGGCCCGGGGTCCCCCTGCGGCC (SEQ ID NO:42)
t1r3-OV5a CCCACTGGTTCAGGCCTCGGGGGG (SEQ ID NO:43)
t1r3-ov5b AAAGCAGGCCAGGGGCCCCCCGA (SEQ ID NO:44)
t1r3-OV6a AGGCGCTGGTGCACTGCCGCACAC (SEQ ID NO:45)
t1r3-ov6b AAGCTGACCCAGGAGCGTGTGCGG (SEQ ID NO:46)
t1r3-OV7a ACAGAGGCACTGGTGCACTGCCGC (SEQ ID NO:47)
t1r3-OV7b TGATCCAGGAGTGCACGCGGCAGT (SEQ ID NO:48)
t1r3-OV8a ACCAATGCCACGCTGGCCTTTCTC (SEQ ID NO:49)
t1r3-OV8b AAGTGCCCAGGAAGCAGAGAAAGG (SEQ ID NO:50)
t1r3-OV9a TGGTACATGCTGCCAATGCCACGC (SEQ ID NO:51)
t1r3-ov9b AAGCAGAGGAAAGCCAGCGTGGCA (SEQ ID NO:52)
t1r3-OV10a TACAACCGTGCCCGTGGCCTCACC (SEQ ID NO:53)
t1r3-OV10b AGGCCAGCATGGCGAAGGTGAGGC (SEQ ID NO:54)
t1r3-OV11a TCATCACCTGGGTCTCCTTTGTGC (SEQ ID NO:55)
tlr3-0V11b ACATTGGCCAGGAGGGGCACAAAG (SEQ ID NO:56)
t1r3-OV12a TGCAGATGGGTGCCCTCCTGCTCT (SEQ ID NO:57)
t1r3-OV12b AGGATGCCCAGCACAGAGCAGG (SEQ ID NO:58).
```

The single-stranded overhangs were filled in with ³²P labeled dATP and dCTP, and the overgo probes hybridized with BAC libraries.

[0181] The overgo strategy is considered to be more versatile than a PCR-based strategy by those skilled in the art of comparative physical mapping for the following reasons: (1) overgo probes are short (e.g., 36mers or 40mers), making the probability of good alignment from among many species more favorable; (2) overgo probes are more specific to the target genes compared with traditional cDNA and genomic DNA probes used by PCR; and (3) although overgo probes

are short, they are not as restricted as traditional PCR probes, which cannot tolerate even a few mismatches, because they can be used in hybridization approaches with BACs or other libraries.

[0182] Screening a feline genomic BAC library. Seven DVL1 overgo probes (SEQ ID NOS:21-34) were used in screening a feline genomic BAC library. Probes were radioactively labeled by the random hexa-nucleotide method (Feinberg & Vogelstein, *Analytical Biochemistry*, 132:6-13 (1983)). Hybridization and washing of membranes followed standard protocols (Church & Gilbert, *PNAS U.S.A.*, 81:1991-1995 (1984)). Thirty-nine positive BAC clones were identified. Several BAC ends were sequenced. One clone containing homologous sequence to human chromosome 1p36, BAC 552J19, was identified using bioinformatics tools.

[0183] Production of a shotgun library for BAC 552J19 and identification of a single clone containing feline T1R3. BAC DNA from 552J19 was prepared by using Qiagen Large Construct Kit. DNA was then digested by the restriction enzyme Sau3A1 and subcloned into pGEM+3Z (Promega) vector. After transformants were arrayed to a nylon membrane, two separate hybridizations were performed using seven DVL1 and twelve T1R3 overgo probes (SEQ ID NOS:35-58). Two clones positive for DVL1 and four clones positive for T1R3 were found. These clones were confirmed by sequencing. Because DVL1 is the neighboring gene of T1R3 in human and mouse, it is likely this also is the case in cat; therefore, the DVL1 positive clones verified that the BAC 552J19 is the correct BAC, that is, it is the one containing feline T1R3.

Results

[0184] More than 3 kb of genomic sequences containing the open reading frame for domestic cat taste receptor, T1R3, were obtained. Figure 1 shows the multiple sequence alignments of the known nucleotide sequences for the T1R receptors human (T1R1, SEQ ID NO:8; T1R2, SEQ ID NO:5; T1R3, SEQ ID NO:11), mouse (T1R1, SEQ ID NO:6; T1R2, SEQ ID NO:3; T1R3, SEQ ID NO:9), and rat (T1R1, SEQ ID NO:7; T1R2, SEQ ID NO:4; T1R3, SEQ ID NO:10), along with the newly discovered and novel nucleotide sequence for the T1R3 taste receptor from domestic cat (SEQ ID NO:1).

[0185] Figure 2 shows the deduced amino acid sequence of the domestic cat taste receptor, T1R3 (SEQ ID NO:2), aligned with the amino acid sequences of the T1R receptor family human (T1R1, SEQ ID NO:17; T1R2, SEQ ID NO:20; T1R3, SEQ ID NO:12), rat (T1R1, SEQ ID NO:16; T1R2, SEQ ID NO:19; T1R3, SEQ ID NO:14), and mouse (T1R1, SEQ ID NO:15;

T1R2, SEQ ID NO:18; T1R3, SEQ ID NO:13). The deduced cat sequence predicts four additional amino acids at positions 11 – 14 relative to the homologous T1R3 receptors of mouse, human, and rat. The deduced sequence for cat reveals a threonine in position 64, a position equivalent to amino acid 60 in mouse, and a leucine at position 59, a position equivalent to position 55 in mouse. In mouse, amino acid substitutions of a threonine at position 60 and an alanine at position 55, both positions located within the putative extracellular N-terminal domain of the polypeptide, are present in strains of mice demonstrating low preference for the sweet stimulus saccharin (Bachmanov *et al.*, *Chem. Senses*, 26:925-933 (2001)). Leucine is a conservative substitution for alanine. Accordingly, the amino acid sequence differences of cat and mouse T1R3 receptor may account for functional differences that lead to different taste preferences between the two species. For example, the amino acid substitutions may explain the cat's inability to taste many compounds that have a sweet taste to mice and humans.

[0186] The rat and mouse have closely related T1R receptors, while the T1R3 of human and cat diverge from these two, as illustrated in the phylogenetic tree of Figure 3. Interestingly, the types of sweet compounds to which the rat and mouse respond are very similar, whereas those that stimulate the human and those that stimulate the cat are much different from those for rat and mouse, and whereas the compounds that stimulate the cat and human receptors also are very different.

[0187] The feline T1R3 receptor is a seven transmembrane receptor similar in structure to other known members of the T1R family of receptors (Figure 4). The structure of the feline T1R3 receptor was generated through use of a protein modeling program available at www.ebi.ac.uk/~moeller/transmembrane.html.

Cloning and characterization of the feline T1R1 and T1R2 receptors

Eludication of the cat T1R1 and cat T1R2 receptors also was accomplished using an overgo strategy. Overgo probes from conserved coding regions were designed by aligning T1R1 and T1R2 sequences from many different species, including human, mouse, rat, cow, and pig. The single-stranded overhangs (14 bases) were filled in with ³²P-labeled dATP and dCTP, and the overgo probes hybridized with BAC libraries. The overlapping sequences of the six cat T1R1 overgo probes were as follows:

```
t1r1_1-OVa TAAACAACTCCACGGCCCTGCTGC (SEQ ID NO:65)
t1r1_1-OVb CCCAGGGTGATGTTGGGCAGCAGG (SEQ ID NO:66)
t1r1_2-OVa GCTGTGTATGCGGTGGCCCATGGC (SEQ ID NO:67)
t1r1_2-OVb CCAGGAGCTGGTGGAGGCCATGGG (SEQ ID NO:68)
```

```
t1r1_3-OVa TGCTGACCAACCTGACTGGCAAGG (SEQ ID NO:69)
t1r1_3-OVb TCTGAGGCGACCCACACCTTGCCA (SEQ ID NO:70)

t1r1_4-OVa CCAGTTCAGCTAAACATAAATGAG (SEQ ID NO:71)
t1r1_4-OVb GCCACTGGATTTTGGTCTCATTTA (SEQ ID NO:72)

t1r1_5-OVa AGCTAACACGCTGCTGCTGCTGCT (SEQ ID NO:73)
t1r1_5-OVb AGCAGTCCCAAGCAGCAGCAG (SEQ ID NO:74)

t1r1_6-OVa TGTGTCACCTTCAGCCTGCTCTTC (SEQ ID NO:75)
t1r1_6-OVb TCCAGGACACGAAGTTGAAGAGCA (SEQ ID NO:76).
```

The overlapping sequences of the seven cat T1R2 overgo probes were as follows:

```
tlr2_1-OVa TACTTCGGCCCCAAGTGCTACATG (SEQ ID NO:77)
tlr2_1-OVb CCGGGTAGAAGAGGATCATGTAGC (SEQ ID NO:78)

tlr2_1-OVb CCGGGTAGAAGAGGATCATGTAGC (SEQ ID NO:78)

tlr2_2-OVa TGGTCACCATCGTGGACCTCTTGG (SEQ ID NO:80)

tlr2_3-OVb AGGTTGAGCACAGTGACCAAGAGG (SEQ ID NO:80)

tlr2_3-OVb TCATGCTGAGGGCCAAGTTC (SEQ ID NO:81)
tlr2_3-OVb TCATGCTGAGGGTGATGAACTTGG (SEQ ID NO:82)

tlr2_4-OVa TCCGAGTCCTGGGCCATCGACCCG (SEQ ID NO:83)
tlr2_4-OVb TGAGGTTGTGCAGGACCGGGTCGA (SEQ ID NO:84)

tlr2_5-OVa TACAACCTCATGCAGGCCATGCGC (SEQ ID NO:85)
tlr2_5-OVb TCTCCTCCACCGCGAAGCGCATGG (SEQ ID NO:86)

tlr2_6-OVa ATCACCATCCAGAGCGTGCCCATC (SEQ ID NO:87)
tlr2_6-OVb ACTCACTGAAGCCCGGGATGGGC (SEQ ID NO:88)

tlr2_7-OVa ACCACCACGTCGAGGCCATGGTGC (SEQ ID NO:89)
tlr2_7-OVb AAGTGCAGCATCAGCTGCACCATG (SEQ ID NO:90).
```

[0188] Screening a feline genomic BAC library. The T1R1 and T1R2 overgo probes were used to screen a feline genomic BAC library. Probes were radioactively labeled by the random hexa-nucleotide method (Feinberg & Vogelstein, *Analytical Biochemistry*, 132(1):6-13 (1983)). Hybridization and washing of membranes followed standard protocols (Church & Gilbert, *PNAS*, 81:1991-1995 (1984)). Six positive BAC clones for cat T1R1 and eight positive BAC clones for cat T1R2 were identified.

[0189] Production of shotgun libraries for BACs containing cat T1R1 and T1R2, and identification of some small insert clones containing feline T1R1 and T1R2. Two BACs (150M6 and 233G22) containing cat T1R1 and three BACs (93C1, 240H9 and 400B1) containing cat T1R2 were used to prepare BAC DNAs using Qiagen Large Construct Kit. The

BAC DNAs were digested using the enzyme Sau3AI and the digested BAC DNA fragments subcloned into pGEM+3Z (Promega) vector. After transformants were arrayed to a nylon membrane, two separate hybridizations were performed using pooled six T1R1 and seven T1R2 overgo probes. By sequencing positive clones from shotgun libraries and by using a chromosome walking strategy, the full coding region of the cat T1R1 and exon3 to exon 6 of cat T1R2 were obtained.

[0190] Elucidation of exon 1 and exon 2 of the cat T1R2 by PCR strategy. Since exon 1 and exon 2 of the cat T1R2 were not present in the three BACs selected above, PCR was performed using degenerate primers designed from T1R2 alignments from different species (human, rodents and dog) and cat genomic DNA as template.

Degenerate primers for cat T1R2 exon1 and exon2:

PCR product size

```
Dex1f1:5' TCRGACTTCTACCTGCCTGGRGA 3'
                                      (SEQ ID NO:91)
                                                             85bp
Dex1r1:5' CTTCACGTTGGCATGGAGGG 3'
                                      (SEQ ID NO:92)
Dex1f2:5' TACCTCCTGGGTGGCCTCTTC 3'
                                     (SEO ID NO:93)
                                                             66bp
Dex1r2:5' TCTTGCACwkGGGCACCTGC 3'
                                      (SEQ ID NO:94)
Dex2f1:5' AGGTGtTGGGCTACAACCTsAT 3'
                                      (SEO ID NO:95)
                                                             206bp
Dex2r1:5' GGGCAkGTAGTGGCTGTAGTC 3'
                                      (SEQ ID NO:96)
Dex2f2:5' GGCTACAACCTsATGCAGGCCA 3'
                                      (SEQ ID NO:97)
                                                             220bp
Dex2r2:5' GAGTTGTCAGGGCCAATGACCG 3'
                                      (SEQ ID NO:98).
```

The PCR products were confirmed by sequencing. The feline BAC library was then re-screened using PCR products and four new BACs were retrieved (4O545, 2J533, 4F220 and 24D448). Using a chromosome walking strategy, the complete sequence of exon 1 and exon 2 from these four BAC clones were obtained.

Results

[0191] Approximately 10 kb of genomic sequence containing the open reading frame for cat T1R1 and approximately 38kb of genomic sequence containing the open reading frame for cat T1R2 was obtained. Figure 1 shows the multiple sequence alignments of the known nucleotide sequences for the T1R receptors from human, mouse and rat, along with the nucleotide sequences for the cat T1R1, T1R2, and T1R3 taste receptors. The sequences of cat T1Rs are highlighted.

[0192] Figure 2 shows the deduced amino acid sequence of the domestic cat taste receptors, T1R1, T1R2, and T1R3 aligned with the amino acid sequences of the T1R receptor family from human, rat, and mouse. The cat T1R1 is very similar to human and rodents in terms of gene

structure; however, cat T1R2 predicts a shorter protein of 391 amino acids compared with the human T1R2, which has 839 amino acids. This prediction of a short T1R2 is the result of a stop codon TAA in exon 3.

[0193] Table 4 shows the percent homology among the members of the T1R family in relation to the cat T1R taste receptors. The portion of Table 1 to the left of the diagonal (in bold type) shows the percent homology based on the open reading frame of the nucleotide sequences obtained from Figure 1 for the T1R family among human, cat, rat and mouse. The upper portion to the right of the diagonal (in italic type) shows the percent homology of the T1R members based on the amino acid sequences of Figure 2. Cat T1R1 shows 84% nucleotide sequence homology with human T1R1, 78% with rat T1R1 and 79% with mouse T1R1. At the amino acid level, cat T1R1 shows 81% homology with human T1R1, 74% with rat, and 74% with mouse. Cat T1R1 shows generally low homology with the other known members of the T1R family, T1R2 and T1R3, from human, rat and mouse. The same range of relatively low homology is present among the human, rat and mouse T1R1, T1R2 and T1R3 receptors from the same species. Cat T1R2 shows 72% nucleotide sequence homology with human T1R2, 61% with rat T1R2 and 64% with mouse T1R2. At the amino acid level, cat T1R2 shows 58% homology with human T1R2, 52% with rat, and 53% with mouse. Since cat T1R2 has a shorter protein (391aa) due to a stop codon in exon 3, cat T1R2 shows much lower homology with T1R2 in other species than the homology for T1R1 and T1R3 among different species, which indicates that cat T1R2 is very different from that of the other species. This is also consistent with the behavioral responses showing that cats do not show preference for carbohydrate sweeteners. This indicates that cat T1R2 may not be functional, freeing it from selective pressure. Therefore mutations in cat T1R2 most likely have accumulated. Cat T1R2 shows generally low homology with the other members of the T1R family, T1R1 and T1R3, from human, rat and mouse. The same range of relatively low homology is present among the human, rat, and mouse T1R2 and the T1R1 and T1R3 receptors from the same species.

Table 4. Percent Homology Among Diverse Species for T1Rs

Species	Mouse	Mouse	Mouse	Rat	Rat	Rat	Human	Human	Human	Cat	Cat	Cat
•	T1R1	T1R2	T1R3	T1R1	T1R2	T1R3	T1R1	T1R2	T1R3	T1R1	T1R2	T1R3
Mouse T1R1		36	30	90	36	30	73	37	30	74	30	30
Mouse T1R2	55		28	36	91	28	34	69	28	36	53	28
Mouse T1R3	33	15		31	28	92	30	27	72	30	25	72
Rat T1R1	91	55	33		37	31	73	37	31	74	26	31
Rat T1R2	55	91	15	57		28	34	71	29	36	52	28
Rat T1R3	33	21	93	32	15		31	27	73	30	26	72
Human T1R1	79	56	35	79	56	35		35	31	81	29	31
Human T1R2	57	78	17	56	78	17	57		28	36	58	28
Human T1R3	41	39	73	39	36	75	40	38		29	23	73
Cat T1R1	79	54	35	78	56	35	84	56	53		28	30
Cat T1R2	42	64	22	41	61	22	44	72	48	44		29
Cat T1R3	33	34	74	36	36	75	53	39	79	53	39	

Note: Upper right cells (italics) contain deduced amino acid homology; lower left cells (bold) contain nucleotide homology.

What is Claimed:

- 1. An isolated and purified polynucleotide encoding a T1R receptor comprising:
- a) the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63,
- b) a fragment of at least about 42 contiguous nucleotides of SEQ ID NO:1 encoding a polypeptide having substantially the same biological activity as a polypeptide encoded by the nucleotide sequence of SEQ ID NO:1,
- c) a fragment of at least about 42 contiguous nucleotides of SEQ ID NO:59 or SEQ ID NO:60 encoding a polypeptide having substantially the same biological activity as a polypeptide encoded by the nucleotide sequence of SEQ ID NO:59 or SEQ ID NO:60, respectively,
- d) a fragment of at least about 42 contiguous nucleotides of SEQ ID NO:62 or SEQ ID NO:63 encoding a polypeptide having substantially the same biological activity as a polypeptide encoded by the nucleotide sequence of SEQ ID NO:62 or SEQ ID NO:63, respectively,
- e) a variant of the polynucleotide of SEQ ID NO:1 having at least 80% homology to the polynucleotide of SEQ ID NO:1 and encoding a polypeptide having substantially the same biological activity as a polypeptide encoded by the nucleotide sequence of SEQ ID NO:1,
- f) a variant of the polynucleotide of SEQ ID NO:59 or SEQ ID NO:60 having at least 85% homology to the polynucleotide of SEQ ID NO:59 or SEQ ID NO:60 and encoding a polypeptide having substantially the same biological activity as a polypeptide encoded by the nucleotide sequence of SEQ ID NO:59 or SEQ ID NO:60, respectively,
- g) a variant of the polynucleotide of SEQ ID NO:62 or SEQ ID NO:63 having at least 75% homology to the polynucleotide of SEQ ID NO:62 or SEQ ID NO:63 and encoding a polypeptide having substantially the same biological activity as a polypeptide encoded by the nucleotide sequence of SEQ ID NO:62 or SEQ ID NO:63, respectively,
- h) a variant of the polynucleotide of SEQ ID NO:1 having at least 80% homology to the polynucleotide of SEQ ID NO:1 and encoding a polypeptide conferring modified taste

perception to one or more taste stimuli relative to a polypeptide encoded by the polynucleotide of SEQ ID NO:1,

- i) a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64,
- j) a nucleotide sequence substantially complementary to the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63, or
- k) a nucleotide sequence that hybridizes to the complement of the polynucleotide having SEQ ID NO:1, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, or SEQ ID NO:63 under high stringency conditions.
- 2. The polynucleotide of claim 1, wherein said polynucleotide is DNA.
- 3. The polynucleotide of claim 1, wherein said polynucleotide is RNA.
- 4. The polynucleotide of claim 1 comprising a variant of the polynucleotide of SEQ ID NO:1 encoding an amino acid sequence of SEQ ID NO:2 having a nonconserved amino acid substitution at residue 59 or residue 64.
- 5. The polynucleotide of claim 1 comprising a fragment of the polynucleotide of SEQ ID NO:1, wherein said fragment comprises a nucleotide sequence encoding an extracellular domain of the polypeptide of SEQ ID NO:2, a transmembrane domain of the polypeptide of SEQ ID NO:2, or an intracellular domain of the polypeptide of SEQ ID NO:2.
- 6. The polynucleotide of claim 1 comprising a fragment of the polynucleotide of SEQ ID NO:59 or SEQ ID NO:60, wherein said fragment comprises a nucleotide sequence encoding an extracellular domain of the polypeptide of SEQ ID NO:61, a transmembrane domain of the polypeptide of SEQ ID NO:61, or an intracellular domain of the polypeptide of SEQ ID NO:61.
- 7. The polynucleotide of claim 1 comprising a fragment of the polynucleotide of SEQ ID NO:62 or SEQ ID NO:63, wherein said fragment comprises a nucleotide sequence encoding an extracellular domain of the polypeptide of SEQ ID NO:64, a transmembrane domain of the polypeptide of SEQ ID NO:64, or an intracellular domain of the polypeptide of SEQ ID NO:64.
- 8. An expression vector comprising the polynucleotide of claim 1 operably linked to a promoter.

- 9. A host cell comprising the expression vector of claim 8.
- 10. The host cell of claim 9 wherein said cell is mammalian.
- 11. The host cell of claim 10 wherein said cell is a human, murine, or feline cell.
- 12. A cell culture comprising at least one cell of claim 8.
- 13. An isolated and purified T1R receptor polypeptide encoded by a polynucleotide of claim 1.
- 14. The polypeptide of claim 13 wherein said polypeptide comprises the amino acid sequence of SEQ ID NO:2, a fragment of at least 30 contiguous amino acids of SEQ ID NO:2, or a variant thereof having substantially the same biological activity as the polypeptide of SEQ ID NO:2.
- 15. The polypeptide of claim 13 wherein said polypeptide comprises an amino acid sequence having at least one sequence variation of SEQ ID NO:2 wherein said variation confers modified taste perception to one or more taste stimuli relative to a polypeptide of SEQ ID NO:2.
- 16. The polypeptide of claim 13 wherein said polypeptide comprises the amino acid sequence of SEQ ID NO:61, a fragment of at least 40 contiguous amino acids of SEQ ID NO:61, or a variant thereof having substantially the same biological activity as the polypeptide of SEQ ID NO:61.
- 17. The polypeptide of claim 13 wherein said polypeptide comprises the amino acid sequence of SEQ ID NO:64, a fragment of at least 20 contiguous amino acids of SEQ ID NO:64, or a variant thereof having substantially the same biological activity as the polypeptide of SEQ ID NO:64.
- 18. An isolated and purified T1R3 receptor polypeptide comprising the amino acid sequence of SEQ ID NO:2.
- 19. An isolated and purified T1R2 receptor polypeptide comprising the amino acid sequence of SEQ ID NO:64.
- 20. An isolated and purified T1R1 receptor polypeptide comprising the amino acid sequence of SEQ ID NO:61.
- 21. The polypeptide of claim 14, wherein said polypeptide comprises a feline T1R3 receptor.

- 22. The polypeptide of claim 16, wherein said polypeptide comprises a feline T1R1 receptor.
- 23. The polypeptide of claim 17, wherein said polypeptide comprises a feline T1R2 receptor.
- 24. A kit for the detection of a polynucleotide encoding a feline T1R receptor comprising a polynucleotide that specifically hybridizes to a polynucleotide encoding a polypeptide having an amino acid sequence of SEQ ID NO:2, SEQ ID NO:61, or SEQ ID NO:64 and instructions relating to detection of said polynucleotide.
- 25. A method of producing a feline T1R receptor comprising culturing the host cell of claim 9 and recovering said receptor from said host cell.
- 26. The feline T1R receptor produced according to the method of claim 25.
- 27. A method for identifying compounds that interact with a feline T1R receptor comprising:

contacting a feline T1R receptor of claim 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, or 23 with a test compound, and

detecting interaction between said receptor and said compound.

- 28. The method of claim 27, wherein said receptor is bound to a solid support.
- 29. The method of claim 28, wherein said solid support is formulated into a feline-specific electronic tongue.
- 30. The method of claim 27 wherein said step of contacting said T1R receptor with said test compound occurs in the presence of a heterodimerization partner of said T1R receptor.
- 31. A method for identifying an agonist of a feline T1R receptor comprising: expressing a polynucleotide of claim 1 in the presence of a test compound, and

detecting an increase in biological activity of a polypeptide produced by said expression step in the presence of said compound relative to biological activity of said polypeptide in the absence of said compound.

- 32. The method of claim 31 wherein said polynucleotide is expressed in the presence of the heterodimerization partner of said T1R receptor.
- 33. A method for identifying an agonist of a feline T1R receptor comprising:

contacting a polypeptide of claim 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, or 23 with a test compound, and

detecting an increase in biological activity of said polypeptide in the presence of said compound relative to biological activity of said polypeptide in the absence of said compound.

- 34. The method of claim 33 wherein said contacting step occurs in the presence of a heterodimerization partner of said polypeptide.
- 35. A method for identifying an antagonist of a feline T1R receptor comprising: expressing a polynucleotide of claim 1 in the presence of a test compound, and

detecting a decrease in biological activity of a polypeptide produced by said expression step in the presence of said compound relative to biological activity of said polypeptide in the absence of said compound.

- 36. The method of claim 35 wherein said expressing step occurs in the presence of a heterodimerization partner of said T1R receptor.
- 37. A method for identifying an antagonist of a feline T1R receptor comprising:

contacting the polypeptide of claim 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, or 23 with a test compound, and

detecting a decrease in biological activity of said polypeptide in the presence of said compound relative to biological activity of said polypeptide in the absence of said compound.

- 38. The method of claim 37 wherein said contacting step occurs in the presence of a heterodimerization partner of said T1R receptor.
- 39. The method of claim 33 wherein said polypeptide is bound to a solid support.
- 40. The method of claim 39 wherein said solid support is formulated into a feline-specific electronic tongue.
- 41. The method of claim 37 wherein said polypeptide is bound to a solid support.
- 42. The method of claim 41 wherein said solid support is formulated into a feline-specific electronic tongue.

- 43. A method of identifying a feline T1R3 receptor variant that confers modified taste perception comprising expressing a variant of the polynucleotide of SEQ ID NO:1 having at least 80% homology to the polynucleotide of SEQ ID NO:1 and detecting an increase or a decrease in the biological activity of the polypeptide encoded by the variant relative to the biological activity of the polypeptide encoded by SEQ ID NO:1.
- 44. A method of identifying a feline T1R2 receptor variant that confers modified taste perception comprising expressing a variant of the polynucleotide of SEQ ID NO:62 or SEQ ID NO:63 having at least 75% homology to the polynucleotide of SEQ ID NO:62 or SEQ ID NO:63 and detecting an increase or a decrease in the biological activity of the polypeptide encoded by the variant relative to the biological activity of the polypeptide encoded by SEQ ID NO:62 or SEQ ID NO:63.
- 45. A method of identifying a feline T1R1 receptor variant that confers modified taste perception comprising expressing a variant of the polynucleotide of SEQ ID NO:59 or SEQ ID NO:60 having at least 85% homology to the polynucleotide of SEQ ID NO:59 or SEQ ID NO:60 and detecting an increase or a decrease in the biological activity of the polypeptide encoded by the variant relative to the biological activity of the polypeptide encoded by SEQ ID NO:59 or SEQ ID NO:60.
- 46. The host cell of claim 9 wherein said cell is a bacterial cell.
- 47. A T1R receptor comprising at least one extracellular domain of a feline T1R receptor.
- 48. The receptor of claim 47 wherein said extracellular domain comprises:
- a) amino acids 1-563, amino acids 624-635, amino acids 701-726, or amino acids 781-792 of SEQ ID NO:61,
 - b) amino acids 1-147 of SEQ ID NO:64, or
- c) amino acids 1-571, amino acids 628-641, amino acids 705-731, or amino acids 787-794 of SEQ ID NO:2.
- 49. A T1R receptor comprising at least one transmembrane domain of a feline T1R receptor.
- 50. The receptor of claim 49 wherein said transmembrane domain comprises:

- a) amino acids 564-589, amino acids 604-623, amino acids 636-660, amino acids 681-700, amino acids 727-748, amino acids 761-780, or amino acids 793-817 of SEQ ID NO:61,
 - b) amino acids 148-167 of SEQ ID NO:64, or
- c) amino acids 1-572, amino acids 610-627, amino acids 642-664, amino acids 681-704, amino acids 731-754, amino acids 767-786, or amino acids 795-812 of SEO ID NO:2.
- 51. A T1R receptor comprising an intracellular domain of a feline T1R receptor.
- 52. The T1R receptor of claim 51 wherein said intracellular domain comprises:
- a) amino acids 590-603, amino acids 661-680, amino acids 749-760, or amino acids 818-841 of SEQ ID NO:61,
 - b) amino acids 168-391 of SEQ ID NO:64, or
- c) amino acids 595-609, amino acids 665-680, amino acids 755-766, or amino acids 813-865 of SEQ ID NO:2.
- 53. The T1R receptor of any one of claims 47-52, wherein said receptor is a chimeric receptor.
- 54. A polynucleotide encoding the T1R receptor of any one of claims 47-52.

ABSTRACT

The present invention relates to the discovery of several genes of the domestic cat (*Felis catus*) associated with taste perception. The invention provides, *inter alia*, the nucleotide sequence of the feline T1R1, T1R2, and T1R3 receptor genes, the amino acid sequences of the polypeptides encoded thereby, and antibodies to the polypeptides. The present invention also relates to methods for screening for compounds that modify the genes' function or activity, the compounds identified by such screens, and mimetics of the identified compounds. The invention further provides methods for modifying the taste preferences, ingestive responses, or general behavior of a mammal by administering compounds that affect the function or activity of the gene or the polypeptide encoded thereby.

humanTAS1R3

Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith
Title: TASTE RECEPTORS OF THE TIR FAMILY FROM DOMESTIC CAT

Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Sheet 1 of 25

Attorney: Felicity E. Groth

Phone: (215) 568-3100

1/25

CLUSTAL W (1.82) multiple nucleotide sequence alignment of T1Rs Figure 1A mouseTas1r2 ATGGGACCCCAGGCGAG-----GACACTCCATTTGCTGTTTCTCCTGCTGCATGCTCTG 54 ratTas1r2

ATGGGTCCCCAGGCAAG-----GACACTCTGCTTGCTGTCTCTCCTGCTGCATGTTCTG 54 ATGGGGCCCAGGGCAAA-----GACCATCTGCTCCCTGTTCTTCCTCCTATGGGTCCTG 54 humanTAS1R2 ATGGGACCCCGGGCCAG-----GGAAGTCTGCTGCTTCATCATCCTGCCGCGGCTCCTG 54 catTas1r2 mouseTas1r1 ATGCTTTTCTGGGCAGCTCACCTGCTGCTCAGCCTGCAGCTGGCCGTTGCTTACTGCTGG 60 ATGCTCTTCTGGGCTGCTCACCTGCTCAGCCTGCAGTTGGTC-----TACTGCTGG 54 ratTaslr1 ATGCTGCTCTGCACGGCTCGCCTGGT---CGGCCTGCAGCTTCTCATTTCCTGCTGG 57 humanTAS1R1 ATGTCACTCCCGGCGGCTCACCTGGT---CGGCCTGCAGCTCTCCCTCTCCTGCTGCTGG 57 catTas1r1 mouseTas1r3 ATGCCAGCTTTGGCTAT---CATGGGTCTCA------GCCTGGCTGCTTTCCTG 45 ratTas1r3 ATGCCGGGTTTGGCTAT---CTTGGGCCTCA------GTCTGGCTGCTTTCCTG 45 ATGCCCGGCCTCGCTCT---CCTGGGCCTCACGGCTCTCCTGGGCCTCACGGCTCTCTTG 57 catTas1r3 ATGCTGGGCCCTGCTGT---CCTGGGCCTCA------GCCTCTGGGCTCTCCTG 45 humanTAS1R3 mouseTas1r2 C--CTAAGCCAGTCATGCTGGTAGGGAAC-TC---CGACTTTCACCTGGCTGGGGACTAC 108 ratTas1r2 C--CTAAGCCAGGCAAGCTGGTAGAGAAC-TC---TGACTTCCACCTGGCCGGGGACTAC 108 G--CTGAGCC-----GGCTGAGAAC-TC---GGACTTCTACCTGCCTGGGGATTAC 99 humanTAS1R2 G--CTGAGCC-----GGCTGAGAAC-TC---AGACTTCTACTTGGCTGGGGATTAC 99 catTas1r2 mouseTas1r1 G--CTTTCAGCTGCCAAAGGACAGAATCC-TCTCCAGGTTTCAGCCTCCCTGGGGACTTC 117 G--CTTTCAGCTGCCAAAGGACAGAGTCC-TCTCCAGGCTTCAGCCTTCCTGGGGACTTC 111 ratTaslr1 G--CCTTTGCCTGCCATAGCACGGAGTCT-TCTCCTGACTTCACCCTCCCCGGAGATTAC 114 humanTAS1R1 catTaslrl G--CTCTCAGCTGCCACAGCACAGAGACG-TCTGCCGACTTCAGCCTCCCTGGGGATTAC 114 mouseTas1r3 GAGCTTGGGATGGGGCCTCTTTGTGTCTCACAGCAATTCAAGGCACAAGGGGACTAC 105 ratTas1r3 GAGCTTGGGATGGGGTCCTCTTTGTGTCTGTCACAGCAATTCAAGGCACAAGGGGACTAT 105 catTas1r3 GACCACGGGGAGGGCGCAACGTCCTGCTTGTCACAGCAGCTCAGGATGCAGGGGGACTAT 117 humanTAS1R3 CACCCTGGGACGGGGCCCCATTGTGCCTGTCACAGCAACTTAGGATGAAGGGGGACTAC 105 mouseTas1r2 CTCCTGGGTGGCCTCTTTACCCTCCATGCCAACGTGAAGAGCGTCTCTCACCTCAGCTAC 168 ratTas1r2 CTCCTGGGTGGCCTCTTTACCCTCCATGCCAACGTGAAGAGCATCTCCCACCTCAGCTAC 168 humanTAS1R2 CTCCTGGGTGGCCTCTTCTCCCTCCATGCCAACATGAAGGGCATTGTTCACCTTAACTTC 159 catTas1r2 TTCCTCGGCGGCCTCTTCACCCTCCATGCCAACGTGAAGGGCATCGTCCACCTCAACCTC 159 CTCCTGGCAGGCCTGTTCTCCCTCCATGCTGACTGTCTGCAGGTGAGACACA--GACCTC 175 mouseTas1r1 ratTas1r1 CTCCTTGCAGGTCTGTTCTCCCTCCATGGTGACTGTCTGCAGGTGAGACACA--GACCTC 169 humanTAS1R1 CTCCTGGCAGGCCTGTTCCCTCTCCATTCTGGCTGTCTGCAGGTGAGGCACA--GACCCG 172 CTCCTCGCAGGTCTGTTCCCTCTGCACTCTGACTGTCCGGGCGTGAGGCACC--GGCCCA 172 catTas1r1 ATACTGGGCGGGCTATTTCCCCTGGGCTCAACCGAGGAGGCCACTCTCAACCAGAGAACA 165 mouseTas1r3 ratTas1r3 ATATTGGGTGGACTATTTCCCCTGGGCACAACTGAGGAGGCCACTCTCAACCAGAGAACA 165 catTas1r3 GTGCTGGGTGGGCTCTTCCCTCTGGGCTCTGCCGAGGGTACAGGTCTTGGCGACGGGCTG 177 GTGCTGGGGGGGCTGTTCCCCCTGGGCGAGGCCGAGGGGGCTGGCCTCCGCAGCCGGACA 165 humanTAS1R3 mouseTas1r2 CTGCAGGTGCCCAAGTGCAATGAGTACAACA---TGAAGGTCTTGGGCTACAACCTCATG 225 CTGCAGGTGCCCAAGTGCAATGAGTTCACCA---TGAAGGTGTTGGGCTACAACCTCATG 225 ratTas1r2 CTGCAGGTGCCCATGTGCAAGGAGTATGAAG---TGAAGGTGATAGGCTACAACCTCATG 216 humanTAS1R2 CTGCAGGTGCCCCAGTGCAAGGAGTATGAAA---TAAAGGTGTTGGGCTACGATCTCATG 216 catTas1r2 mouseTas1r1 T----GGTGACAAGTTGTGACAGGTCTGACAGCTTCAACGGCCATGGCTATCACCTCTTC 231 ratTas1r1 T----GGTGACAAGTTGTGACAGGCCCGACAGCTTCAACGGCCATGGCTACCACCTCTTC 225 humanTAS1R1 A----GGTGACCCTGTGTGACAGGTCTTGTAGCTTCAATGAGCATGGCTACCACCTCTTC 228 C---GGTGACCCTCTGTGACAGGCCCGACAGCTTCAACGGTCACGGCTACCACCTCTTC 228 catTas1r1 C----AACCCAACAGCATCCCGTGCAACAGGTTCTCACCCCTTGGTTTGTTCCTGGCC 219 mouseTas1r3 C----AGCCCAACGCATCCTATGTACCAGGTTCTCGCCCCTTGGTTTGTTCCTGGCC 219 ratTas1r3 catTas1r3 C----AGCCCAATGCCACCGTGTGCACCAGGTTCTCGTCTCTGGGCCTGCTCTGGGCG 231 humanTAS1R3 C----GGCCCAGCAGCCCTGTGTGCACCAGGTTCTCCTCAAACGGCCTGCTCTGGGCA 219 mouseTas1r2 CAGGCCATGCGATTCGCCGTGGAGGAAATCAACAACTGTAGCTCTCTGCTGCCCGGCGTG 285 ratTas1r2 CAGGCCATGCGTTTCGCTGTGGAGGAGATCAACAACTGTAGCTCCCTGCTACCCGGCGTG 285 CAGGCCATGCGCTTCGCGGTGGAGGAGATCAACAATGACAGCAGCCTGCTGCCTGGTGTG 276 humanTAS1R2 catTas1r2 mouseTas1r1 ${\tt CAAGCCATGCGGTTCACCGTTGAGGAGATAAACAACTCCACAGCTCTGCTTCCCAACATC}$ ratTas1r1 CAAGCCATGCGGTTCACTGTTGAGGAGATAAACAACTCCTCGGCCCTGCTTCCCAACATC 285 humanTAS1R1 CAGGCTATGCGGCTTGGGGTTGAGGAGATAAACAACTCCACGGCCCTGCTGCCCAACATC 288 catTas1r1 CAGGCCATGCGGTTTGGCATCGAGGAGATAAACAACTCCACGGCCCTCCTGCCGAACGTC 288 ATGGCTATGAAGATGGCTGTGGAGGAGATCAACAATGGATCTGCCTTGCTCCCTGGGCTG 279 mouseTas1r3 ATGGCTATGAAGATGGCTGTAGAGGAGATCAACAATGGATCTGCCTTGCTCCCTGGGCTG 279 ratTas1r3 CTGGCCGTGAAGATGGCGGTGGAGGAGATCAACAACGGGTCGGCCCTGCTGCCCGGGCTG 291 catTas1r3

CTGGCCATGAAAATGGCCGTGGAGGAGATCAACAACAAGTCGGATCTGCCGCGGGCTG 279

Docket No.: MON-0298

App No.: Not Yet Assigned

Filed: Herewith

Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT
Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand

Attorney: Felicity E. Groth

Sheet 2 of 25

2/25

Figure 1B

mouseTas1r2		CTGCTCGGCTACGAGATGGTGGATGTCTGCTACCTCTCCAACAATATCCAGCCTGGG	342
ratTas1r2		CTGCTCGGCTACGAGATGGTGGATGTCTGTTACCTCTCCAACAATATCCACCCTGGG	342
humanTAS1R2		CTGCTGGGCTATGAGATCGTGGATGTGCTACATCTCCAACAATGTCCAGCCGGTG	333
catTaslr2		CTGCTGGGCTACAAAATGGTGGATGTCAGCTACATCTCCAACAATGTCCAGCCCGTG	333
mouseTaslrl		ACCCTGGGGTATGAACTGTATGACGTGTGCTCAGAGTCTTCCAATGTCTATGCCACC	348
ratTaslrl		ACCCTGGGGTATGAGCTGTACGACGTGTGCTCAGAATCTGCCAATGTGTATGCCACC	342
humanTAS1R1		ACCCTGGGGTACCAGCTGTATGATGTGTGTCTGACTCTGCCAATGTGTATGCCACG	345
catTaslr1		ACCCTGGGATACCAGCTGTACGACGTGTGCTCGGAGTCTGCCAACGTGTATGCCACA	
mouseTaslr3 ratTaslr3		CGGCTGGGCTATGACCTATTTGACACATGCTCCGAGCCAGTGGTCACCATGAAATCCAGT	339
catTas1r3		CGACTGGGCTATGACCTGTTTGACACATGCTCAGAGCCAGTGGTCACCATGAAGCCCAGC CACCTGGGCTATGACCTCTTTGACACGTGTTCAGAGCCCATGGTGGCCATGAAGCCCAGC	339 351
humanTAS1R3		CGCCTGGGCTACGACCTCTTTGATACGTGCTCGGAGCCTGTGGTGGCCATGAAGCCCAGC	339
		** ** * * * * * * * * * * * * * * * *	
mouseTas1r2		CTCTACTTCCTGTCACAGATAGATGACTTCCTGCCCATCCTCAAAGACTACAGCCAG	399
ratTas1r2		CTCTACTTCCTGGCACAGGACGACGTCCTGCCCATCCTCAAAGACTACAGCCAG	
humanTAS1R2		CTCTACTTCCTGGCACACGAGGACAACCTCCTTCCCATCCAAGAGGACTACAGTAAC	390
catTas1r2		CTCCACTTCCCGGCAAAGGAGGACTGTTCCTTGCCCATCCAGGAGGACTACAGCCAC	390
mouseTas1r1		CTGAGGGTGCTCGCCCAGCAAGGGACAGGCCACCTAGAGATGCAGAGAGATCTTCGCAAC	408
ratTaslrl		CTGAGGGTGCTTGCCCTGCAAGGGCCCCGCCACATAGAGATACAGAAAGACCTTCGCAAC	402
humanTAS1R1		CTGAGAGTGCTCTCCCTGCCAGGGCAACACCACATAGAGCTCCAAGGAGACCTTCTCCAC	405
catTas1r1		CTAAACGTGCTCCCTGCTGGGGACACATCACGTAGAGATCCGAGCAGACCCTTCCCAC	405
mouseTas1r3		CTCATGTTCCTGGCCAAGGTGGGCAGTCAAAGCATTGCTGCCTACTGCAACTACACAC	399
ratTas1r3		CTCATGTTCATGGCCAAGGTGGGAAGTCAAAGCATTGCTGCCTACTGCAACTACACAG	399
catTas1r3		CTCGTGTTCATGGCCAAAGCAGGCAGCTGCAGCATTGCCGCCTACTGCAATTACACACAG	411
humanTAS1R3		CTCATGTTCCTGGCCAAGGCAGGCAGCCGCGACATCGCCGCCTACTGCAACTACACGCAG	399
		** * * * * * *	
mouseTas1r2		TACAGGCCCCAAGTGGTGGCCGTCATTGGCCCAGACAACTCTGAGTCCGCCATCACCGTG	459
ratTas1r2		TACATGCCCCACGTGGTGGCTGTCATTGGCCCCGACAACTCTGAGTCCGCCATTACCGTG	459
humanTAS1R2		TACATTTCCCGTGTGGTGGCTGTCATTGGCCCTGACAACTCCGAGTCTGTCATGACTGTG	450
catTas1r2		TGTGTGCCCCGTGTGGTGGCTGTCATTGGTCCTGGCAACTCTGAGTCCACTGTGACTGTG	450
mouseTas1r1		CACTCCTCCAAGGTGGTGGCACTCATTGGGCCTGATAACACTGACCACGCTGTCACCACT	468
ratTas1r1		CACTCCTCCAAGGTGGCCTTCATCGGGCCTGACAACACTGACCACGCTGTCACTACC	462
humanTAS1R1		TATTCCCCTACGGTGCTGGCAGTGATTGGGCCTGACAGCACCAACCGTGCTGCCACCACA	465
catTaslrl		TATTCGCCTGCCGCCCTGGCTGTCATTGGGCCTGACACCACCACCACCACCACCACCACCACCACCACCACCA	465
mouseTaslr3		TACCAACCCCGTGTGCTGTCATCGGCCCCCACTCATCAGAGCTTGCCCTCATTACA	459
ratTas1r3 catTas1r3		TACCAACCCCGTGTGCTGGCTGTCATTGGTCCCCACTCATCAGAGCTTGCCCTCATTACA	459
humanTAS1R3		TACCAGCCCGGGTGCTGGCCGTCATCGGGCCCCACTCGTCTGAGCTCGCCCTCGTCACC TACCAGCCCCGTGTGCTGGCTGTCATCGGGCCCCACTCGTCAGAGCTCGCCATGGTCACC	471 459
namaninging		* * **** * ** * * * * * * * * * * * *	433
mouseTas1r2		TCCAACATTCTCCTACTTCCTCGTGCCACAGGTCACATATAGCGCCATCACCGACAAG	519
ratTaslr2	ı	TCCAACATTCTCTCATTTCCTCATCCCACAGATCACATACAGCGCCATCTCCGACAAG	519
humanTAS1R2		GCCAACTTCCTCTCCTATTTCTCCTTCCACAGATCACCTACAGCGCCATCAGCGATGAG	510
catTas1r2		GCCCGCTTCCTCTCTCTCCTCCTCCACAGATCACCTACAGCGCCATCAGTGACGAG	510
mouseTas1r1		GCTGCCCTGCTGAGCCCTTTTCTGATGCCCCTGGTCAGCTATGAGGCGAGCAGCGTGATC	528
ratTas1r1		GCTGCCTTGCTGGGTCCTTTCCTGATGCCCCTGGTCAGCTATGAGGCAAGCAGCGTGGTA	522
humanTAS1R1	•	GCCGCCCTGCTGAGCCCTTTCCTGGTGCCCATGATTAGCTATGCGGCCAGCAGCGAGACG	525
catTaslrl		GCAGCCCTGCTGAGCCCCTTCCTGGTGCCCCTGATCAGCTACGAGGCCAGCAGCATGACG GGCAAGTTCTTCAGCTTCTTCCTCATGCCACAGGTCAGCTATAGTGCCAGCATGGATCGG	525
mouseTas1r3 ratTas1r3	1 0.00	GGCAAGTTCTTCAGCTTCTTCCTCATGCCACAGGTCAGCTATAGTGCCAGCATGGATCGG	519
catTas1r3	-3-	GGCAAGTTCTTCAGCTTCTTCCTCATGCCACAGGTCAGCTATAGTGCCAGCATGGATCGG	
humanTAS1R3	~	GGCAAGTTCTTCAGCTTCTTCCTCATGCCCCAGGTCAGCTACGGTGCTAGCATGGAGCTG	
		* * ** ** * * * * * * * * * * *	
mouseTas1r2		CTGCGAGACAAGCGGCGCTTCCCTGCCATGCTGCGCACTGTGCCCAGCGCCACCCAC	579
ratTas1r2		CTGCGGGACAAGCGGCACTTCCCTAGCATGCTACGCACAGTGCCCAGCGCCCACCACCAC	
humanTAS1R2		CTGCGAGACAAGGTGCGCTTCCCGGCTTTGCTGCGTACCACCCCAGCGCCGACCACCAC	
catTaslr2		CTACGGGACAAGCGCTTCCCGGCCCTTCTGCCCACAGCGCCGGGCGCGATCACCAG	
mouseTas1r1		CTCAGTGGGAAGCGCAAGTTCCCGTCCTTCTTGCGCACCATCCCCAGCGATAAGTACCAG	
ratTas1r1		CTCAGTGCCAAGCGCAAGTTCCCGTCTTTCCTTCGTACCGTCCCCAGTGACCGGCACCAG	
humanTAS1R1		$\tt CTCAGCGTGAAGCGGCAGTATCCCTCTTTCCTGCGCACCATCCCCAATGACAAGTACCAG$	585
catTas1r1		CTCGGAGTGAAGCGGCATTACCCCTCGTTTCTGCGCACCATCCCCAGCGACAAGCACCAG	
mouseTas1r3		CTAAGTGACCGGGAAACGTTTCCATCCTTCTTCCGCACAGTGCCCAGTGACCGGGTGCAG	
ratTas1r3		CTAAGTGACCGGGAAACATTTCCATCCTTCTTCCGCACAGTGCCCAGTGACCGGGTGCAG	
catTas1r3		CTGAGCAACCGGGAGATCTTCCCGTCCTTCTTCCGCACGGTGCCCAGCGACCAGGTGCAG	
humanTAS1R3		CTGAGCGCCCGGGAGACCTTCCCCTCCTTCTTCCGCACCGTGCCCAGCGACCGTGTGCAG	579
		** *	

Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith
Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT
Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.
Brand
Attomey: Felicity E. Groth
Sheet 3 of 25

3/25

Figure 1C

mouseTas1r2	ATCGAGGCCATGGTGCAACTGATGGTTCACTTCCAGTGGAACTGGATCGTGGTGCTGGTG 63	9
ratTas1r2	ATCGAGGCCATGGTGCAGCTGATGGTTCACTTCCAATGGAACTGGATTGTGGTGCTGGTG 63	-
	GTCGAGGCCATGGTGCAGCTGATGCTGCACTTCCGCTGGAACTGGATCATTGTGCTGGTG 63	-
humanTAS1R2		
catTas1r2	ATCGAGGCCATGGTGCAGCTGATGTTGTACTTCCGCCGGAACTGGATCATCGCGCTGGTG 63	-
mouseTaslr1	GTGGAAGTCATAGTGCGGCTGCAGAGCTTCGGCTGGGTCTGGATCTCGCTCG	-
ratTas1r1	GTGGAGGTCATGGTGCAGCTGCTGCAGAGTTTTTGGGTGGG	
humanTAS1R1	GTGGAGACCATGGTGCTGCTGCAGAAGTTCGGGTGGACCTGGATCTCTGGTTGGC 64	5
catTaslrl	GTGGAGGCCATGGTGCTGCTGCAGAGCTTCGGGTGGGTCTGGATCTCGGTGGTCGGC 64	5
mouseTas1r3	CTGCAGGCAGTTGTGACTCTGTTGCAGAACTTCAGCTGGAACTGGGTGGCCGCCTTAGGG 63	9
ratTas1r3	CTGCAGGCCGTTGTGACACTGTTGCAGAATTTCAGCTGGAACTGGGTGGCTGCCTTAGGT 63	9
catTas1r3	GTGGCGCCATGGTGGAGCTGCTGGAGGAGCTCGGCTGGAACTGGGTGGCGGCGGTGGGT 65	
humanTAS1R3	CTGACGGCCGCGGGAGCTGCTGCAGGAGTTCGGCTGGAACTGGGTGGCCGCCCTGGGC 63	
	* ** ** ** * * * * * * * * * * * * * * *	_
	ACCOMON COMMUNICACION CARACTER COM	^
mouseTas1r2	AGCGATGACGATTATGGCCGAGAGAACAGCCACCTGCTGAGCCAGCGTCTGACCAACACT 69	
ratTas1r2	AGCGACGACTTACGGCCGCGAGAACAGCCACCTGTTGAGCCAGCGTCTGACCAAAACG 69	
humanTAS1R2	AGCAGCGACACCTATGGCCGCGACAATGGCCAGCTGCTTGGCGAGCGCGTGGCCCGG 68	
catTas1r2	AGCAGCGGCGACTGCGGCCGCGACGACAGCCAGCTGCTCAGCGATCGCCCGGCCGG	7
mouseTas1r1	AGCTATGGTGACTACGGGCAGCTGGGCGTACAGGCGCTGGAGGAGCTGGCCACTCCA 70	5
ratTaslrl	AGCTACGGTGATTACGGGCAGCTGGGTGTGCAGGCGCTGGAGGAGCTGGCCGTGCCC 69	9
humanTAS1R1	AGCAGTGACGACTATGGGCAGCTAGGGGTGCAGGCACTGGAGAACCAGGCCACTGGT 70	
catTaslr1	AGCGACGGCGACTACGGGCAGCTGGGGGTGCAGGCGCTGGAGGAGCAGGCCACCCAG 70	
mouseTas1r3	AGTGATGATGACTATGGCCGGGAAGGTCTGAGCATCTTTTCTAGTCTGGCCAATGCA 69	
ratTas1r3	AGTGATGACTATGGCCGGGAAGGTCTGAGCATCTTTTCTGGTCTGGCCAACTCA 69	
catTas1r3	AGTGACGACGAGTATGGCCGGCAGGGCCTGAGCCTCTTCTCCGGCCTGGCCAGCGCC 70	
humanTAS1R3	AGCGACGACGAGTACGGCCGGCAGGGCCTGAGCATCTTCTCGGCCCTGGCCGCGCA 69	О
	** * * ***	
mouseTas1r2	GGCGATATCTGCATTGCCTTCCAGGAGGTTCTGCCTGTACCAGAACCCAACCAGGCCGTG 75	9
ratTas1r2	AGCGACATCTGCATTGCCTTCCAGGAGGTTCTGCCCATACCTGAGTCCAGCCAG	9
humanTAS1R2	CGCGACATCTGCATCGCCTTCCAGGAGACGCTGCCCACACTGCAGCCCAACCAGAACATG 74	7.
catTas1r2	GGCGACACCTGCATCGCCTTCCGGGAGACGCTGCCCCATGCCCCAGCCCAACCAGGCGGTG 74	7
mouseTas1r1	CGGGGCATCTGCGTCGCCTTCAAGGACGTGGTGCCTCTCTCCGCCCAGGCGGGTGACC 76	3
ratTas1r1	CGGGGCATCTGCGTCGCCTTCAAGGACATCGTGCCTTTCTCTGCCCGGGTGGGTGACC 75	7
humanTAS1R1	CAGGGGATCTGCATTGCTTTCAAGGACATCATGCCCTTCTCTGCCCAGGTGGGCGATG 76	
catTas1r1	CAGGGCATCTGCGTTGCCTTCAAGGACATCATCCCCTTCTCTGCCCGGCCGGCGACG 76	
mouseTas1r3	CGAGGTATCTGCATCGCACATGAGGGCCTGGTGCCACAA-CATGACACTAGTGGCCAACA 75	
ratTaslr3	CGAGGTATCTGCATTGCACACGAGGGCCTGGTGCCACAA-CATGACACTAGTGGCCAACA 75	
catTaslr3	AGGGGCATCTGCATCGCGCATGAGGGCCTGGTGCCACTG-C-CGCCAGGCAGCCTGCG 76	
humanTAS1R3	CGCGGCATCTGCATCGCGCACGAGGGCCTGGTGCCGCTG-CCCCGTGCCGATGACTCGCG 75	5
	* * *** * * * * * * *	
mouseTas1r2	AGGCCTGAGGAGCAGGACCAACTGGACAACATCCTGGACAAGCTGCGGCGGACCTCG 81	6
ratTas1r2	AGGTCCGAGGAGCAGACAACTGGACAACATCCTGGACAAGCTGCGGCGGACCTCG 81	6
humanTAS1R2	ACGTCAGAGGAGCGCCAGCGCCTGGTGACCATTGTGGACAAGCTGCAGCAGAGCACA 80	4
catTas1r2	ACGCAGTGGGAGCGCCGCCCTGAAGGCCATCGTGGACGAGCAGCAGCGCGCAGAGCTCT 80	7
mouseTas1r1	CAAGGATGCAGCGCATGATGCTGCGTCTGGCTCGAGCCAGGACCACC 81	
ratTas1r1	CGAGGATGCAGAGCATGATGCAGCATCTGGCTCAGGCCAGGACCACC 80	
humanTAS1R1	AGAGGATGCAGTGCCTCATGCGCCACCTGGCCCAGGCCGGGGCCACC 80	
catTas1r1	AGAGGATGCAGAGCATCATGCACCACCTGGCCCGAGCGAGGACCACC 80	
mouseTas1r3	·	
	GTTGGGCAAGGTGCTGGATGTACTACGCCAAGTGAACCAAAGTAAA 80	
ratTas1r3	ATTGGGCAAGGTGGTGGTGGTGCCCCAAGTGAACCAAAGCAAA 80	
catTas1r3	→ GGAGCAGC 81	
humanTAS1R3	GCTGGGGAAGGTGCAGGACGTCCTGCACCAGGTGAACCAGAGCAGC 80	1
	*	
	•	
mouseTas1r2	GCGCGTGTGGTGGTGATATTCTCGCCAGAGCTGAGCCTGCACAACTTCTTCCGCGAGGTG 87	6
ratTas1r2	GCGCGCGTCGTGGTGTTCTCGCCCGAGCTGAGCCTGTATAGCTTCTTTCACGAGGTG 87	6
humanTAS1R2	GCGCGCGTCGTGGTCTGTTCTCGCCCGACCTGACCCTGTACCACTTCTTCAATGAGGTG 86	
catTas1r2	GCGCGCGTCGTGGTCCTGTCGCCAAAGCTGGTCCTGCACAACTTCTTCCGCGAGGTG 86	
mouseTas1r1	GTGGTCGTGGTCTT-CTCTAACCGGCACCTGGCTGGAGTGTTCTTCAGGTCTGTG 86	
ratTas1r1	GTGGTTGTGGTCTT-CTCTAACCGGCACCTGGCTAGAGTGTTCTTCAGGTCCGTG 85	
humanTAS1R1	GTCGTGGTTGTTTT-TTCCAGCCGGCAGTTGGCCAGGGTGTTTTTCGAGTCCGTG 86	
	GTTGTGGTCGTTTT-CTCCAGCAGCAGCAGCTGGCCAGGGTG-TTTTTCGAGTCCGTG 86	-
catTas1r1		
mouseTaslr3	GTACAAGTGGTGGTGCTGTTTGCCTCTGCCCGTGCTGTCTACTCCCTTTTTAGTTACAGC 86	
ratTas1r3	GTACAGGTGGTGCTGTTTGCATCTGCCCGTGCTGTCTACTCCCTTTTTAGCTACAGC 86	
catTas1r3	GTGCAGGTGGTGCTGTTCTCCTCCGCCCACGCGCCCGCACCCTCTTCAGCTACAGC 87	
humanTAS1R3	GTGCAGGTGGTGCTGCTTCGCCTCCGTGCACGCCCCACGCCCTCTTCAACTACAGC 86	1
	* ** * * * * * * * * * * * * * * * * * *	

Docket No.: MON-0298
App No.: Not Yet Assigned
Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT
Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.
Brand
Attorney: Felicity E. Groth
Sheet 4 of 25

4/25

Figure 1D

mouseTas1r2	CTGCGCTGGAACTTCACAGGCTTTGTGTGGATTGCCTCTGAGTCCTGGGCCATCGACCCT	936
ratTas1r2	CTCCGCTGGAACTTCACGGGTTTTGTGTGGATCGCCTCTGAGTCCTGGGCTATCGACCCA	
humanTAS1R2		924
catTas1r2		927
mouseTaslrl		923
ratTaslrl	GTGCTGGCCAACCTGACTGGCAAAGTGTGGGTCGCCTCAGAAGACTGGGCCATCT-CCAC	917
humanTAS1R1	GTGCTGACCAACCTGACTGGCAAGGTGTGGGTCGCCTCAGAAGCCTGGGCCCTCT-CCAG	920
catTaslrl	GTGCTGGCCAACCTGACTGCCAAGGTGTGGATCGCCTCAGAAGACTGGGCCATCT-CTAG	920
mouseTas1r3	ATCCATCATGGCCTCTCACCCAAGGTATGGGTGGCCAGTGAGTCTTGGCTGACAT-CTGA	
	ATCCTTCATGACCTCTCACCCAAGGTATGGGTGGCCAGTGAGTCCTGGCTGACCT-CTGA	
ratTas1r3		
catTas1r3	ATCCGCTGCAAGCTCTCACCCAAGGTGTGGGTGGCCAGCGAGGCCTGGCTGACCT-CAGA	
humanTAS1R3	ATCAGCAGCAGGCTCTCGCCCAAGGTGTGGGTGGCCAGCGAGGCCTGGCTGACCT-CTGA	920
	* * * ** ** ** ** *	
mouseTas1r2	GTTCTACACAACCTCACAGAGCTGCGCCACACGGGCACTTTCCTGGGCGTCACCA	991
ratTas1r2	GTTCTGCATAACCTCACGGAGCTGCGCCACACGGGTACTTTTCTGGGCGTCACCA	991
humanTAS1R2	GTCCTGCACAACCTCACGGAGCTGGGCCACTTGGGCACCTTCCTGGGCATCACCA	979
catTas1r2		986
		979
mouseTas1r1		
ratTaslrl		973
humanTAS1R1	GCACATCACTGGGGTGCCCGGGATCCAGCGCATTGGGATGGTGCTGGGCGTGGCCA	976
catTaslr1	ACACATCAGCAATGTGCCCGGGATCCAGGGCATTGGCACGGTGCTGGGTGTGGCCA	976
mouseTas1r3	CCTGGTCATGACACTTCCCAATATTGCCCGTGTGGGCACTGTGCTTGGGTTTTTGC	976
ratTas1r3	CCTGGTCATGACACTTCCCAATATTGCCCGTGTGGGCACTGTTCTTGGGTTTCTGC	976
catTas1r3		985
	CCTGGTCATGGGGCTGCCCGGCATGGCCCAGATGGGCACGGTGCTTGGCTTCCTCC	
humanTAS1R3	**	970
mouseTas1r2	TCCAGAGGGTGTCCATCCCTGGCTTCAGCCAGTTCCGAGTGCGCCACGACAAGCCAG	10/0
	TCCAGAGGGTGTCCATCCCTGGCTTCAGTCAGTTCCGAGTGCGCCGTGACAAGCCAG	
ratTas1r2		
humanTAS1R2	TCCAGAGCGTGCCCATCCCGGGCTTCAGTGAGTTCCGCGAGTGGGGCCCACAGGCTG	
catTas1r2	TCCGGGTCGTCTATCCCTGGCAGGTGAGGCCCCACCCACGGAG	1029
mouseTas1r1	TCCAGCAGAGACAAGTCCCTGGCCTGAAGGAGTTTGAAGAGTCCTATGTCCAGGCAG	1036
ratTas1r1	TCCAGCAGAGACAAGTCCCTGGGCTGAAGGAGTTTTGAGGAGTCTTATGTCAGGGCTG	1030
humanTAS1R1	TCCAGAAGAGGGCTGTCCCTGGCCTGAAGGCGTTTGAAGAAGCCTATGCCCGGGCAG	1033
catTas1r1	TCCAGCAGAGGCTTGTCCCTGGCCTGAAGGAGTTTGAAGAGGCCTATGTCCAGGCAG	1033
mouseTas1r3	AGCGGGGTGCCCTACTGCCTGAATTTTCCCATTATGTGGAGACTCACCTTGCCCTGGCCG	
ratTas1r3	AGCGCGGTGCCCTACTGCCTGAATTTTCCCATTATGTGGAGACTCGCCTTGCCCTAGCTG	
catTas1r3	AGCAGGGCGCCCGATGCCGGAGTTCCCATCCTACGTGCGGACCCGCCTGGCCCTGGCCG	
humanTAS1R3	AGAGGGGTGCCCAGCTGCACGAGTTCCCCCAGTACGTGAAGACGCACCTGGCCCTGGCCA	1036
	• • •	
mouseTas1r2	AGTATCCCATGCCTAACGAGACCAGCCTGAGGACTACCTG-TAACCAG	1005
ratTas1r2	GGTATCCCGTGCCTAACACGACCAACCTGCGGACGACCTG-CAACCAG	
humanTAS1R2	GGCCGCCACCCTCAGCAGGACCAGCCAGAGCTATACCTG-CAACCAG	
catTas1r2	AGTCGGGGCCACACAC-GCAGGCGCCGCCACAGCCCTGAGTGGTTGCCAT	
mouseTas1r1	TGATGGGTGCTCCCAGAACTTGCCCAGAGGGGTCCTGGTGCGGCACTAAC	1086
ratTas1r1	TAACAGCTGCTCCCAGCGCTTGCCCGGAGGGGTCCTGGTGCAGCACTAAC	1080
humanTAS1R1	ACAAGAAGGCCCCTAGGCCTTGCCACAAGGGCTCCTGGTGCAGCAGCAAT	
catTas1r1	ATAAGGGGGCCCCTGGGCCTTGCTCCAGGACCTCCGAGTGCAGCAGCAAC	
and the second s	CTGACCCAGCATTCTGTGCCTCACTGAATGCGGAGTTGGATCTGGAGGAACATGTGA	_
mouseTas1r3		
ratTas1r3	CTGACCCAACATTCTGTGCCTCCCTGAAAGCTGAGTTGGATCTGGAGGAGCGCGTGA	
catTas1r3	⇒ CTGACCCTGCCTTCTGCGCCTCGCTGGACGCCTGAACAGCCAGGCCTGGAGGAGCACGTGG	
humanTAS1R3	CCGACCCGGCCTTCTGCTCTGCCCTGGGCGAGAGGAGCAGGGTCTGGAGGAGGACGTGG	1096
	*	
	C2 CDCDC2 CCC	1150
mouseTas1r2	GACTGTGACGCCTGCATGAACATCACCGAGTCCTTTAACAACGTTCTCATGCTTT	
ratTas1r2	GACTGTGACGCCTGCTTGAACACCCACCAAGTCCTTCAACAACATCCTTATACTTT	
humanTAS1R2	GAGTGCGACAACTGCCTGAACGCCACCTTGTCCTTCAACACCATTCTCAGGCTCT	
catTas1r2 .	ggagaccactgccctgctctagcgtcccctctctggccgggtcctgggcaaactgg	1135
mouseTas1r1	CAGCTGTGCAGGGAGTGTCACGCTTTCACGACATGGAACATGCCCGAGCTTGGAGCCT	1144
ratTas1r1	CAGCTGTGCCGGGAGTGCCACACGTTCACGACTCGTAACATGCCCACGCTTGGAGCCT	
humanTAS1R1	CAGCTCTGCAGAGATGCCAAGCTTTCATGGCACACGCTGCCCAAGCTCAAAGCCT	
catTaslr1	CAGCTCTGCAGAGATGCCCAAGCTTTCATGGCACACACGATGCCCAAGCTCAAAGCCT	
_		
mouseTas1r3	TGGGGCAACGCTGTCCACGGTGTGACGACATCATGCTGCAGAACCTATCATCTGGGCTGT	
ratTas1r3	TGGGGCCACGCTGTTCACAATGTGACTACATCATGCTACAGAACCTGTCATCTGGGCTGA	
catTas1r3	TGGGGCCACGCTGCCCCCAATGTGACCACGTCACGCTAGAGAACCTATCTGCGGGGCTG-	
humanTAS1R3	TGGGCCAGCGCTGCCGCAGTGTGACTGCATCACGCTGCAGAACGTGAGCGCAGGGCTAA	1156
	*	

Docket No.: MON-0298

App No.: Not Yet Assigned

Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT
Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.
Brand

Attorney: Felicity E. Groth
Sheet 5 of 25

5/25

Figure 1E

rigure iE		
mouseTas1r2	Stop codon in cat T1R2 v	
ratTas1r2	CGCGGGAGCGTGTGGTCTACAGTGTGTACTCGGCCGTCT CGGGGGAGCGCGTGGTCTACAGCGTGTACTCGGCAGTTT	
humanTAS1R2		1189
catTas1r2	CGGGAGAGGCCAGGGGACGTACCCTGTCCCCAGACACAT	1177 1174
mouseTas1r1	TCTCCATGAGCGCTGCCTACAATGTGTATGAGGCTGTGT	1183
ratTaslrl	TCTCCATGAGTGCCGCCTACAGAGTGTATGAGGCTGTGT	1177
humanTAS1R1	TCTCCATGAGTTCTGCCTACAACGCATACCGGGCTGTGT	1180
catTas1r1	TCTCCATGAGCTCTGCTTATAACGCCTACCGGGCAGTCT	1180
mouseTas1r3	TGCAGAACCTATCAGCTGGGCAATTGCACCACCAAATATTTGCAACCTATGCAGCTGTGT	1213
ratTas1r3	TGCAGAACCTATCAGCTGGGCAGTTGCACCACCAAATATTTGCAACCTATGCAGCTGTGT	1213
catTas1r3		1201
humanTAS1R3		1192
•	φφ * * * *	
mouseTas1r2	ACGCGGTAGCCCACACCCTCCACAGACTCCTCCACTGCAACCAGGTCCGCTGCACCA	1246
ratTas1r2	ACGCGGTGGCCCATGCCCTCCACAGACTCCTCGGCTGTAACCGGGTCCGCTGCACCA	
humanTAS1R2	ATGCTGTGGCCCATGCCCTGCACAGCCTCCTCGGCTGTGACAAAAGCACCTGCACCA	
catTaslr2	<u>AA</u>	1176
mouseTas1r1	ATGCTGTGGCCCACGGCCTCCACCAGCTCCTGGGATGTACCTCTGGGACCTGTGCCA	1240
ratTaslrl	ACGCTGTGGCCCACGGCCTCCACCAGCTCCTGGGATGTACTTCTGAGATCTGTTCCA	
humanTAS1R1	ATGCGGTGGCCCATGGCCTCCACCAGCTCCTGGGCTGTGCCTCTGGAGCTTGTTCCA	1237
	ACGCAGTGGCCCATGGCCTCCACCAGCTCCTGGGCTGTGCCTCTGGAGCCTGTTCCA	1237
mouseTas1r3	ACAGTGTGGCTCAAGCCCTTCACAACACCCTACAGTGCAATGTCTCACATTGCCACGTAT	1273
ratTas1r3		1273
catTaslr3		1261
humanTAS1R3	ATAGCGTGGCCCAGGCCCTGCACAACACTCTTCAGTGCAACGCCTCAGGCTGCCCCGCGC	1252
mouseTas1r2	AGCAAATCGTCTATCCATGGCAGCTACTCAGGGAGATCTGGCATGTCAACTTCACGCTCC	1306
ratTas1r2	AGCAAAAGGTCTACCCGTGGCAGCTACTCAGGGAGATCTGGCACGTCAACTTCACGCTCC	1306
humanTAS1R2	AGAGGGTGGTCTACCCCTGGCAGCTGCTTGAGGAGGTCTGGAAGGTCAACTTCACTCTCC	1294
catTas1r2		
mouseTas1r1	GAGGCCCAGTCTACCCCTGGCAGCTTCTTCAGCAGATCTACAAGGTGAATTTCCTTCTAC	1300
ratTas1r1		1294
humanTAS1R1		1297
catTaslrl		1297
mouseTas1r3		1333
ratTas1r3 catTas1r3		1333
humanTAS1R3	GGGAGCCTGTGCGGCCCTGGCAGCTCCTAGAGAACATGTACAACGTGAGCTTCCGTGCTC AGGACCCCGTGAAGCCCTGGCAGCTCCTGGAGAACATGTACAACCTGACCTTCCACGTGG	1321
	MODINO CONTROLLO	1312
	·	
mouseTas1r2 ratTas1r2	TGGGCAACCAGCTCTTCTTCGACGAACAAGGGGACATGCCGATGCTCCTGGACATCATCC	
humanTAS1R2		1366
catTas1r2	TGGACCACCAAATCTTCTTCGACCCGCAAGGGGACGTGGCTCTGCACTTGGAGATTGTCC	1354
mouseTas1r1	ATAAGAAGACTGTAGCATTCGATGACAAGGGGGACCCTCTAGGTTATTATGACATCATCG	1360
ratTas1r1	ATGAGAATACTGTGGCATTTGATGACAACGGGGACACTCTAGGTTACTACGACATCATCG	
humanTAS1R1		1357
catTaslrl		1357
mouseTas1r3	GAGACTTGACACTACAGTTTGATGCTGAAGGGAATGTAGACATGGAATATGACCTGAAGA	
ratTas1r3	GAGACTTGACACTGCAGTTTGATGCCAAAGGGAGTGTAGACATGGAATATGACCTGAAGA	
catTas1r3	• GCGGCCTGGCACTGCAGTTCGACGCCAGCGGGAACGTGAACGTGGATTACGACCTGAAAC	1381
humanTAS1R3	GCGGGCTGCCGCTTCGACAGCAGCGGAAACGTGGACATGGAGTACGACCTGAAGC	1372
mouseTaslr2.	AGTGGCAATGGGGCCTGAGCCAGAACCCCTTCCAAAGCATCGCCTCCTACTCCCCCACCG	1426
ratTas1r2	AGTGGCAGTGGGACCTGAGCCAGAATCCCTTCCAAAGCATCGCCTCCTATTCTCCCACCA	1426
humanTAS1R2	AGTGGCAATGGGACCGGAGCCAGAATCCCTTCCAGAGCGTCGCCTCCTACTACCCCCTGC	1414
catTas1r2		
mouseTas1r1	CCTGGGACTGGAATGGACCTGAATGGACCTTTGAGGTCATTGGTTCTGCCTCACTGTCTC	1420
ratTas1r1	CCTGGGACTGGAATGGACCTGAATGGACCTTTGAGATCATTGGCTCTGCCTCACTGTCTC	1414
humanTAS1R1	CCTGGGACTGGAATGGACCCAAGTGGACCTTCACGGTCCTCGGTTCCTCCACATGGTCTC	
catTaslr1	CCTGGGACTGGAGTGGCCCCAAGTGGAACTTCAGGGTCATTGGCTCCTCCATGTGGCCTC	
mouseTas1r3	TGTGGGTGTGGCAGAGCCCTACACCTGTATTACATACTGTGGGCACCTTCAACGGCACCC	1453
ratTas1r3	TGTGGGTGTGGCAGGCCCTACACCTGTACTACATACTGTAGGCACCTTCAACGGCACCC	1453
CatTas1r3 humanTAS1R3	TGTGGGTGTGGCAGGACCCGACGCCGAGCTGCGCACCGTAGGCACCTTCAAGGGCCGCC TGTGGGTGTGGCAGGGTCAGGCTCAGGCTCCAAGGTTCAAAGGGCCGCC	1441
CATCHILLIAME	TGTGGGTGTGGCAGGGCTCAGTGCCCAGGCTCCACGACGTGGGCAGGTTCAACGGCAGCC	143Z

Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith

Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT

Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Attorney: Felicity E. Groth Sheet 6 of 25

Phone: (215) 568-3100

6/25

Figure 1F

i iguie ii		
mouseTas1r2	AGACGAGGCTGACCTACATTAGCAATGTGTCCTGGTACACCCCCAACAACACGGTCC	1483
ratTas1r2	GCAAGAGGCTAACCTACATTAACAATGTGTCCTGGTACACCCCCAACAACACGGTCC	1483
humanTAS1R2	AGCGACAGCTGAAGAACATCCAAGACATCTCCTGGCACACCGTCAACAACACGATCC	1471
catTas1r2		
mouseTas1r1	CAGTTCATCTAGACATAAATAAGACAAAAATCCAGTGGCACGGGAAGAACAATCAGGTGC	
ratTas1r1	CAGTTCATCTGGACATAAATAAGACAAAAATCCAGTGGCACGGGAAGAACAATCAGGTGC	
humanTAS1R1	CAGTTCAGCTAAACATAAATGAGACCAAAATCCAGTGGCACGGAAAGGACAACCAGGTGC	
catTaslr1	.CAGTTCAGCTGGACATAAATAAAACCAAAATCCGGTGGCACGGGAAGGACAACCAGGTGC TTCAGCTGCAGCAGTCTAAAATGTACTGGCCAGGCAACCAGGTGC	
mouseTas1r3	TTCAGCTGCAGCACTCGAAAATGTATTGGCCAGGCAACCAGGTGC	
ratTas1r3 catTas1r3	TGGAGCTCTGGCGCTCTCAGATGTGCTGGCACACGCCGGGGAAGCAGCAGC	
humanTAS1R3	TCAGGACAGAGCGCCTGAAGATCCGCTGGCACACGTCTGACAACCAGAAGC	
mouseTas1r2	CCATATCCATGTGTTCTAAGAGTTGCCAGCCTGGGCAAATGAAAAAACCCATAGGCCTCC	1543
ratTas1r2	CTGTCTCCATGTGTTCCAAGAGCTGCCAGCCAGGGCAAATGAAAAAGTCTGTGGGCCTCC	
humanTAS1R2	CTATGTCCATGTGTTCCAAGAGGTGCCAGTCAGGGCAAAAGAAGAAGCCTGTGGGCATCC	
catTas1r2		
mouseTas1r1	CTGTGTCAGTGTGTACCAGGGACTGTCTCGAAGGGCACCACAGGTTGGTCATGGGTTCCC	
ratTaslrl	CTGTGTCAGTGTGTACCACGGACTGTCTGGCAGGGCACCACAGGGTGGTTGTGGGTTCCC	
humanTAS1R1	CTAAGTCTGTGTGTCCAGCGACTGTCTTGAAGGGCACCAGCGAGTGGTTACGGGTTTCC	
catTaslrl	CAAAGTCTGTGTGCTCCAGCGACTGCCTCGAAGGGCACCAGCGAGTGATTTCGGGTTTCT	
mouseTaslr3	CAGTCTCCCAGTGTTCCCGCCAGTGCAAAGATGGCCAGGTTCGCCGAGTAAAGGGCTTTC	1558
ratTaslr3	CAGTCTCCCAGTGCTCCCGGCAGTGCAAAGATGGCCAGGTGCGCAGAGTAAAGGGCTTTC CCGTGTCCCAGTGCTCCCGGCAGTGCAAGGAAGGCCAGGTGCGCCCGCTGAAGGGCTTCC	
catTas1r3 humanTAS1R3	CCGTGTCCCGGTGCTCCCGGCAGTGCCAGGAGGGCCAGGTGCGCCGGGTCAAGGGGTTCC	
 Tumaninsins	000101000001001001001001000000000000000	
		1603
mouseTas1r2	ACCCGTGCTTCGAGTGTGTGGACTGTCCGCCGGGCACCTACCT	
ratTas1r2 humanTAS1R2		1591
catTas1r2	ACGICIGCIGCIICGAGIGCAICGACIGCCIICCCGGGAACAICGACAICGAGIACAICGACAICAICAICAICAICAICAICAICAICAICAICAICAI	1031
mouseTas1r1	ACCACTGCTGCTTCGAGTGCATGCCCTGTGAAGCTGGGACATTTCTCAACACGAGTG	1597
ratTas1r1	ACCACTGCTTGCTTTGAGTGTGCCCTGCGAAGCTGGGACCTTTCTCAACATGAGTG	
humanTAS1R1	ATCACTGCTGCTTTGAGTGTGCCCTGTGGGGCTGGGACCTTCCTCAACAAGAGTG	
catTaslrl	ACCACTGTTGCTTTGAGTGTGTGCCCTGTGAGGCCGGGAGCTTCCTCAACAAGAGCG	
mouseTas1r3	ATTCCTGCTGCTATGACTGCGTGGACTGCAAGGCGGGCAGCTACCGGAAGCATCCAG	
ratTas1r3	ATTCCTGCTGCTATGACTGTGTGGACTGCAAGGCAGGGAGCTACCGGAAGCATCCAG	
catTas1r3	ACTCTTGCTGTTACAACTGCGTGGACTGCAAGGCGGGCAGTTATCAGCGCAACCCAG ACTCCTGCTGCTACGACTGTGTGGACTGCGAGGCGGCAGCTACCGGCAAAACCCAG	
humanTAS1R3	ACTOCIGCIGCIACGACIGIGIGGACIGCGAGGAGGAGCAACIACCGGCAA	1000
		1663
mouseTas1r2	ATGAGTTTAACTGTCTGTCCTGCCCGGGTTCCATGTGGTCTTACAAGAACAACATCGCTT ATGAGTTTAACTGTCTGTCCTGCCCGGGTTCCATGTGGTCCTACAAGAACAACATCACTT	1663
ratTas1r2 humanTAS1R2	ATGAGTTTAACTGTCTGTCCTGCCCGGGTTCCATGTGGTCCTACAAGAACGACATCACTT ATGAGTATAGAATGCCAGGCCTGCCCGAATAACGAGTGGTCCTACCAGAGTGAGACCTCCT	1651
catTas1r2	AIGMAIMIGHAIGCCAGGCCIGGCGAAIIMCGAGIGIOCTIOCTIOCTIO	1001
mouseTas1r1	AGCTTCACACCTGCCAGCCTTGTGGAACAGAAGAATGGGCCCCTGAGGGGAGCTCAGCCT	1657
ratTaslrl	AGCTTCACATCTGCCAGCCTTGTGGAACAGAAGAATGGGCACCCAAGGAGAGCACTACTT	1651
humanTAS1R1	ACCTCTACAGATGCCAGCCTTGTGGGAAAGAAGAGTGGGCACCTGAGGGAAGCCAGACCT	1654
catTaslr1	ACCTCCACAGCTGCCAGCCTTGTGGGAAAGAAAGTGGGCACCCGCGGGAAGTGAAACCT	1654
mouseTas1r3	AI CACI I CINCCI CI I CI CONTROL CONTR	1675
ratTas1r3	ATGACTTCACCTGTACTCCATGTGGCAAGGATCAGTGGTCCCCAGAAAAAAGCACAACCT	1675
catTas1r3	◆ ATGACCTCCTCTGCACCCAGTGTGACCAGGACCAGTGGTCCCCAGACCGGAGCACACGCT	1669
humanTAS1R3	ACGACATCGCCTGCACCTTTTGTGGCCAGGATGAGTGGTCCCCGGAGCGAAGCACACGCT	1000
mouseTas1r2	GCTTCAAGCGGCGGCTGGCCTTCCTGGAGTGGCACGAAGTGCCCACTATCGTGGTGACCA	
ratTas1r2	GCTTCCAGCGGCGCCTACCTTCCTGGAGTGGCACGAAGTGCCCACCATCGTGGTGGCCA	
humanTAS1R2	GCTTCAAGCGGCAGCTGGTCTTCCTGGAATGGCATGAGGCACCCACC	T / T T
catTas1r2	GCTTCTCACGCACCGTGGAGTTCTTGGGGTGGCATGAACCCATCTCTTTGGTGCTATTAG	1717
mouseTaslrl ratTaslrl	GCTTCCCACGCACCGTGGAGTTCTTGGGGGTGGCATGAACCCATCTCTTTGGTGCTAATAG	1711
humanTAS1R1	GCTTCCCGCGCACTGTGGTTTTTTGGCTTTGCGTGAGCACACCTCTTGGGTGCTGCTGG	1714
catTaslrl	GCTTTCCACGCACCGTGGTGTTTTTGACTTGGCACGAGACCATCTCTTGGGTGCTGCTGG	1714
mouseTas1r3	GCTTACCTCGCAGGCCCAAGTTTCTGGCTTGGGGGGAGCCAGTTGTGCTGTCACTCCTCC	1735
ratTas1r3	GCTTACCTCGCAGGCCCAAGTTTCTGGCTTGGGGGGAGCCAGCTGTGCTGTCACTTCTCC	1735
catTaslr3	GCTTCGCCCGCAAGCCCATGTTCCTGGCATGGGGGGAGCCAGCTGTGCTGCTACTGCTCG	1729
humanTAS1R3	GCTTCCGCCGCAGGTCTCGGTTCCTGGCATGGGGCGAGCCGGCTGTGCTGCTGCTCCC	1720

Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith

Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT

Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand

Attorney: Falicing F. Control

Attorney: Felicity E. Groth Sheet 7 of 25

Phone: (215) 568-3100

7/25

Figure 1G

mouseTas1r2	TCCTGGCCGCCCTGGGCTTCATCAGTACGCTGGCCATTCTGCTCATCTTCTGGAGACATT	
ratTas1r2 humanTAS1R2	TACTGGCTGCCCTGGGCTTCTTCAGTACACTGGCCATTCTTTTCATCTTCTGGAGACATT TGCTGGCCGCCCTGGGCTTCCTCAGCACCCTGGCCATCCTGGTGATATTCTGGAGGCACT	1783 1771
catTas1r2		
mouseTaslrl		1777
ratTaslrl	CAGCTAACACGCTATTGCTGCTGCTGCTGGTTGGGACTGCTGGCCTGTTTGCCTGGCATT	1771
humanTAS1R1	CAGCTAACACGCTGCTGCTGCTGCTGCTGCTGGGACTGCTGGCCTGTTTGCCTGGCACC	1774 1774
catTaslr1	CAGCTAATACGTTGCTGCTGCTGGTGACTGGGACTGCTGGCCTGTTTGCCTGGCACT TGCTGCTTTGCCTGGTGCTGGTCTAGCACTGGCTCTCTGGGGCTCTCTGTCCACCACT	1795
mouseTas1r3 ratTas1r3	TGCTGCTTTGCCTGGTGCTGGGCCTGACACTGGCTGCCCTGGGGCTCTTTGTCCACTACT	1795
catTas1r3	CGCTGCTGGCTCTGGCGCTGGCGCTGGCAGCCCTGGGGCTCTTCCTCTGGCACT	1789
humanTAS1R3	TGCTGCTGAGCCTGGCGCTGGGCCTTGTGCTGGCTGCTTTGGGGCTGTTCGTTCACCATC	1780
mouseTas1r2	TCCAGACGCCCATGGTGCGCTCGGCGGGCGGCCCCATGTGCTTCCTGATGCTGGTGCCCC	1843
ratTas1r2		1843
humanTAS1R2	TCCAGACACCCATAGTTCGCTCGGCTGGGGGCCCCATGTGCTTCCTGATGCTGACACTGC	1831
catTas1r2		1000
mouseTas1r1	TTCACACGCCTGTTGTGAGGTCAGCTGGGGGTAGGCTGTGCTTCCTCATGCTGGGTTCCT	
ratTas1r1 humanTAS1R1	TTCACACACCTGTAGTGAGGTCAGCTGGGGGTAGGCTGTGCTTCCTCATGCTGGGTTCCC TAGACACCCCTGTGGTGAGGTCAGCAGGGGGCCGCCTGTGCTTTCTTATGCTGGGCTCCC	
catTaslrl	TAGACACCCCTGTGGTGAAGTCCGCTGGGGGCCGACTGTGCTTCTTCATGCTAGGCTCCC	
mouseTas1r3	GGGACAGCCCTCTTGTCCAGGCCTCAGGTGGCTCACAGTTCTGCTTTGGCCTGATCTGCC	
ratTas1r3	GGGACAGCCCTCTTGTTCAGGCCTCAGGTGGGTCACTGTTCTGCTTTGGCCTGATCTGCC	1855
catTas1r3	0001010000001011010000101001000010000100101	1849
humanTAS1R3	GGGACAGCCCACTGGTTCAGGCCTCGGGGGGGCCCCTGGCCTGTTTGGCCTGGTGTGCC	1840
	•	
mouseTas1r2	TGCTGCTGCGTTCGGGATGGTCCCCGTGTATGTGGGCCCCCCACGGTCTTCTCCTGTT	1903
ratTas1r2	TGCTGCTGGCGTTTGGGATGGTGCCCGTGTATGTGGGGCCCCCCACGGTCTTCTCATGCT TGCTGGTGGCATACATGGTGGTCCCGGTGTACGTGGGGCCGCCCAAGGTCTCCACCTGCC	
humanTAS1R2 catTas1r2	TGCTGGTGGCATACATGGTGGTCCCGGTGTACGTGGGGCCGCCAAGGTCTCCACCTGCC	1031
mouseTas1r1	TGGTAGCTGGGAGTTGCAGCCTCTACAGCTTCTTCGGGAAGCCCACGGTGCCCGCGTGCT	1897
ratTaslr1	TGGTGGCCGGAAGTTGCAGCTTCTATAGCTTCTTCGGGGAGCCCACGGTGCCCGCGTGCT	
humanTAS1R1	TGGCAGCAGGTAGTGGCAGCCTCTATGGCTTCTTTGGGGAACCCACAAGGCCTGCGTGCT	
catTas1r1	TGGCAGGGGCAGCTGTGGGCTCTACGGCTTTTTTGGGGAGCCCACGCTGCCCACATGCT	
mouseTaslr3	186666161161666161616161616161666666666	1915
ratTas1r3	TAGGCCTCTTCTGCCTCAGTGTCCTTCTGTTCCCAGGACCACGCTCTGCCAGCTGCC TGGGCCTGGTCTGCCTCAGTGTCCTCCTGTTCCCTGGCCAGCCA	1915
catTas1r3 humanTAS1R3	TGGGCCTGGTCTGCCTCAGTGTCCTCCTGTTCCCTGGCCAGCCCAGCCCTGCCAGTGCC TGGGCCTGGTCTCCTCTGTTCCCTGGCCAGCCCAGC	
iiumaii i iio iio iio iio iio iio iio iio ii		
mouseTas1r2	TCTGCCGCCAGGCTTTCTTCACCGTTTGCTTCTCCGTCTGCCTCTCCTGCATCACGGTGC	1963
ratTas1r2	TCTGCCGACAGGCTTTCTCACCGTCTGCTTCTCCATCTGCCTATCCTGCATCACCGTGC	
humanTAS1R2		1951
catTas1r2		
mouseTaslr1	TGCTGCGTCAGCCCCTCTTTTCTCTCGGGTTTGCCATTTTCCTCTCTCT	
ratTaslr1	TGCTGCGTCAGCCCCTCTTTTCTCTCGGGTTTGCCATCTTCCTCCTGCCTG	
humanTAS1R1 catTas1r1	TGCTACGCCAGGCCCTCTTTGCCCTTGGTTTCACCATCTTCCTGTCCTGCCTG	
mouseTas1r3	TTGCACAACAACCAATGGCTCACCTCCCTCTCACAGGCTGCCTGAGCACACTCTTCCTGC	
ratTas1r3	TTGCCCAACAACCAATGGCTCACCTCCCTCTCACAGGCTGCCTGAGCACACTCTTCCTGC	
catTaslr3	→ TGGCCCAGCAGCCACTGTTCCACCTCCCACTCACTGGCTGCCTGAGCACGTTTTTCCTGC	1969
humanTAS1R3	TGGCCCAGCAGCCCTTGTCCCACCTCCCGCTCACGGGCTGCCTGAGCACACTCTTCCTGC	1960
mouseTas1r2	GCTCCTTCCAGATTGTGTGCGTCTTCAAGATGGCCAGACGCCTGCCAAGCGCCTACGGTT	2023
ratTas1r2	GCTCCTTCCAGATCGTGTGTCTTCAAGATGGCCAGACGCCTGCCAAGTGCCTACAGTT GTTCTTTCCAGATCGTCTGCGCCTTCAAGATGGCCAGCCGCTTCCCACGCGCCTACAGCT	2023
humanTAS1R2 catTas1r2	GIICIIICCAGATCGICIGCGCCIICAAGATGGCCAGCCGCIICCACGCGCCIACAGCI	2011
mouseTas1r1	GCTCCTTCCAACTGGTCATCATCTTCAAGTTTTCTACCAAGGTACCCACATTCTACCACA	2017
ratTas1r1	GCTCCTTCCAACTGGTCATCTTCTAAGTTTTCTACCAAGGTGCCCACATTCTACCGTA	2011
humanTAS1R1	GCTCATTCCAACTAATCATCTTCAAGTTTTCCACCAAGGTACCTACATTCTACCACG	2014
catTas1r1	GCTCCTTCCAACTGGTCTTCATCTTCAAGTTTTCTGCCAAGGTACCCACCTTCTACCGTG	2014
mouseTas1r3	AAGCAGCTGAGACCTTTGTGGAGTCTGAGCTGCCACTGAGCTGGGCAAACTGGCTATGCA	2035
ratTas1r3	AAGCAGCCGAGATCTTTGTGGAGTCTGAGCTGCCACTGAGTTGGGCAAACTGGCTCTGCA	
catTas1r3	AAGCGGCCGAGATATTTGTGGGGTCGGAGCTGCCACCAAGCTGGGCTGAGAAGATGCGTG AGGCGGCCGAGATCTTCGTGGAGTCAGAACTGCCTCTGAGCTGGGCAGACCGGCTGAGTG	2029
humanTAS1R3	AGGCGGCGAGATCTTCGTGGAGTCAGAACTGCCTCTGAGCTGGGCAGACCGGCTGAGTG	2020

Docket No.: MON-0298

App No.: Not Yet Assigned

Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT
Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand

Attorney: Falicing F. Conth

Attorney: Felicity E. Groth Sheet 8 of 25

Phone: (215) 568-3100

8/25

Figure 1H

•		
mouseTas1r2	TCTGGATGCGTTACCACGGGCCCTACGTCTTTGTGGCCTTCATCACGGCCGTCAAGGTGG	3083
ratTas1r2	TTTGGATGCGTTACCACGGGCCCTATGTCTTCGTGGCCTTCATCACGGCCATCAAGGTGG	
humanTAS1R2	ACTGGGTCCGCTACCAGGGGCCCTACGTCTCTATGGCATTTATCACGGTACTCAAAATGG	2071
catTas1r2		
mouseTas1r1	CTTGGGCCCAAAACCATGGTGCCGGAATATTCGTCATTGTCAGCTCCACGGTCCATTTGT	2077
ratTaslr1	CCTGGGCCCAAAACCATGGTGCAGGTCTATTCGTCATTGTCAGCTCCACGGTCCATTTGC	2071
humanTAS1R1	CCTGGGTCCAAAACCACGGTGCTGGCCTGTTTGTGATGATCAGCTCAGCGGCCCAGCTGC	2074
catTas1r1	CCTGGGTCCAAAACCACGGTCCTGGCCTATTTGTGGTGATCAGCTCAATGGCCCAGCTGC	2074
mouseTas1r3	GCTACCTTCGGGGACTCTGGGCCTGGCTAGTGGTACTGTTGGCCACTTTTGTGGAGGCAG	
	GCTACCTTCGGGGCCCCTGGGCTTGGCTGGTACTGCTGGCCACTCTTGTGGAGGCTG	
ratTaslr3		
catTas1r3	GCCGCCTGCGGGGCCCTGGCCTGCTGGTGGTGCTGCTATGCTATGCTGCAGAAGCCG	
humanTAS1R3	GCTGCCTGCGGGGCCCTGGCCTGGCTGGTGCTGCTGCCATGCTGGTGGAGGTCG	2080 -
mouseTas1r2	CCCTGGTGGCAGGCAACATGCTGGCCACCACCATCAACCCCATTGGCCGGACCGACC	2143
ratTas1r2	CCCTGGTGGTGGCCACATGCTGGCCACCACCATCAACCCCATTGGCCGGACCGACC	
humanTAS1R2	TCATTGTGGTAATTGGCATGCTGGCCACGGGCCTCAGTCCCACCCCGTACTGACCCCG	
		2101
catTaslr2		2124
mouseTaslrl	TCCTCTGTCTCACGTGGCTTGCAATGTGGACCCCACGGCCCACCAGGGAGTACCAGC	
ratTaslrl	TCATCTGTCTCACATGGCTTGTAATGTGGACCCCACGACCCACCAGGGAATACCAGC	
humanTAS1R1	TTATCTGTCTAACTTGGCTGGTGGTGTGGACCCCACTGCCTGC	
catTaslrl	TCATCTGTCTAACTTGGCTGGCGGTGTGGACCCCACTGCCCACCAGGGAGTACCAGC	2131
mouseTas1r3	CACTATGTGCCTGGTATTTGATCGCTTTCCCACCAGAGGTGGTGACAGACTGGTCAGT	2153
ratTas1r3	CACTATGTGCCTGGTACTTGATGGCTTTCCCTCCAGAGGTGGTGACAGATTGGCAGGT	2153
catTas1r3	CATTGTGTGCCTGGTACCTGGTAGCCTTCCCGCCAGAGGTGGTGACGGACTGGCGGGT	2147
	CACTGTGCACCTGGTACCTGGTGGCCTTCCCGCCGGAGGTGGTGACGGACTGGCACAT	2138
humanTAS1R3	CACIGIGEACCIGGIACCIGGIGGCCITCCCGCCGGAGGIGGIGA CGGACIGGCACAI	2130
mouseTas1r2	 ATGACCCCAATATCATAATCCTCTCCTGCCACCCTAACTACCGCAACGGGCTACTCTTCA	
ratTas1r2	ATGACCCCAACATCATGATCCTCTCGTGCCACCCTAACTACCGCAACGGGCTACTGTTCA	2203
humanTAS1R2	ATGACCCCAAGATCACAATTGTCTCCTGTAACCCCAACTACCGCAACAGCCTGCTGTTCA	2191
catTas1r2		
mouseTas1r1	GCTTCCCCCATCTGGTGATTCTTGAGTGCACAGAGGTCAACTCTGTGGGCTTCCTGGTGG	2194
ratTas1r1	GCTTCCCCCATCTGGTGATTCTCGAGTGCACAGAGGTCAACTCTGTAGGCTTCCTGTTGG	
	GCTTCCCCCATCTGGTGATGCTTGAGTGCACAGAGACCAACTCCCTGGGCTTCATACTGG	
humanTAS1R1		
catTas1r1	GCTTCCCTCAGCTGGTGGTGCTTGATTGCACAGAGGCCAACTCACCGGGCTTCATGTTGG	
mouseTas1r3	GCTGCCCACAGA-GGTACTGGAGCACTGCCACGTGCGTTCCTGGGTCAGCCTGGGCTTGG	
ratTaslr3	GCTGCCCACGGA-GGTACTGGAACACTGCCGCATGCGTTCCTGGGTCAGCCTGGGCTTGG	2212
catTas1r3	ACTGCCCACAGA-GGCGCTGGTGCACTGCCACGTGCACTCCTGGATCAGCTTCGGCCTGG	2206
humanTAS1R3	GCTGCCCACGGA-GGCGCTGGTGCACTGCCGCACACGCTCCTGGGTCAGCTTCGGCCTAG	2197
•		
mougomag1m2	 ACACCAGCATGGACTTGCTGCTGTCCGTGCTGGGTTTCAGCTTCGCGTACGTGGGCAAGG	2263
mouseTas1r2	ACACCAGCATGGACTTGCTGTCTGTGCTGGGTTTCAGCTTCGCTTACATGGGCAAGG	
ratTas1r2		
humanTAS1R2	ACACCAGCCTGGACCTGCTCTCAGTGGTGGGTTTCAGCTTCGCCTACATGGGCAAAG	2251
catTas1r2		
mouseTas1r1	CTTTCGCACACATCCTCCTCTCCATCAGCACCTTTGTCTGCAGCTACCTGGGTAAGG	
ratTas1r1	CTTTCACCCACAACATTCTCCTCTCCATCAGTACCTTCGTCTGCAGCTACCTGGGTAAGG	
humanTAS1R1	CCTTCCTCTACAATGGCCTCCTCTCCATCAGTGCCTTTGCCTGCAGCTACCTGGGTAAGG	2251
catTaslrl		2251
mouseTas1r3	TGCACATCACCAATGCAATGTTAGCTTTCCTCTGCTTTCTGGGCACTTTCCTGGTACAGA	
	TGCACATCACCAATGCAATGTTAGCTTTCCTCTGCTTTCTGGGCACTTTCCTGGTACAGA	
ratTaslr3		
catTas1r3	\$ TGCATGCCACTAACGCCATGCTGGCCTTCCTCTGCTTCCTGGGCACTTTCCTGGTGCAGA	
humanTAS1R3	CGCACGCCACCAATGCCACGCTGGCCTTTCTCTGCTTCCTGGGCACTTTCCTGGTGCGGA	2257
mouseTas1r2	AACTGCCCACCAACTACAACGAAGCCAAGTTCATCACCCTCAGCATGACCTTCTCCTTCA	2323
ratTas1r2	AGCTGCCCACCAACTACAACGAAGCCAAGTTCATCACTCTCAGCATGACCTTCTCCTTCA	
humanTAS1R2	AGCTGCCCACCAACTACAACGAGGCCAAGTTCATCACCCTCAGCATGACCTTCTATTTCA	
catTas1r2		
	እስር ማርር ርርርር እር እስር ጥእ ምእስር ርር እስርር ርር እስጥር ማርመር እር ርጥጥር እርር ጥርር ጥርር ጥርር ጥርር ጥርር ጥርር ጥር	2314
mouseTaslrl	 AACTGCCGGAGAACTATAACGAAGCCAAATGTGTCACCTTCAGCCTGCTCCTCCACTTCG	
ratTaslrl	AACTGCCAGAGAACTATAATGAAGCCAAATGTGTCACCTTCAGCCTGCTCCTCAACTTCG	
humanTAS1R1	ACTTGCCAGAGAACTACAACGAGGCCAAATGTGTCACCTTCAGCCTGCTCTTCAACTTCG	
catTas1r1	ACCTGCCAGAGAACTACAACGAGGCCAAATGTGTCACTTTTAGTCTGCTGCTCAACTTCG	
mouseTas1r3	GCCAGCCTGGCCGCTACAACCGTGCCCGTGGTCTCACCTTCGCCATGCTAGCTTATTTCA	2332
ratTas1r3	GCCAGCCTGGTCGCTATAACCGTGCCCGTGGCCTCACCTTCGCCATGCTAGCTTATTTCA	
catTas1r3	GCCGGCCAGGCCGCTACAATGGTGCCCGCGGCCTCACCTTTGCCATGCTGGCCTACTTCA	
humanTAS1R3	GCCAGCCGGGCCGCTACAACCGTGCCCGTGGCCTCACCTTTGCCATGCTGGCCTACTTCA	
	GOUNGOUGGOUGGIACANCEGIGGUCGIGGUCTITGCCAIGGIGGUCTACIICA	

Docket No.: MON-0298

App No.: Not Yet Assigned
Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT
Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.
Brand
Attorney: Felicity E. Groth
Sheet 9 of 25

9/25

Figure 11

i igule li		
mouseTas1r2	CCTCCTCCATCTCCCTCTGCACGTTCATGTCTGTCCACGATGGCGTGCTGGTCACCATCA	2383
ratTas1r2	CCTCCTCCATCTCCCTCTGCACCTTCATGTCTGTGCACGACGGCGTGCTGGTCACCATCA	
humanTAS1R2	CCTCATCCGTCTCCCTCTGCACCTTCATGTCTGCCTACAGCGGGGTGCTGGTCACCATCG	
catTas1r2		
mouseTas1r1	TATCCTGGATCGCTTTCTTCACCATGTCCAGCATTTACCAGGGCAGCTACCTAC	2374
ratTaslr1	TATCCTGGATCGCCTTCTTCACCATGGCCAGCATTTACCAGGGCAGCTACCTGCCTG	
humanTAS1R1	TGTCCTGGATCGCCTTCTTCACCACGGCCAGCGTCTACGACGGCAAGTACCTGCCTG	
catTaslr1	TGTCCTGGATTGCCTTCTTCACCACGGCCAGCGTCTACCAGGGCAAGTACTTGCCCGCGG	
mouseTas1r3	TCACCTGGGTCTCTTTTGTGCCCCTCCTGGCCAATGTGCAGGTGGCCTACCAGCCAG	
ratTas1r3	TCATCTGGGTCTCTTTTGTGCCCCTCCTGGCTAATGTGCAGGTGGCCTACCAGCCAG	
catTas1r3	TCACCTGGATCTCCTTTGTGCCCCTCTTTTGCCAATGTGCACGTGGCCTACCAGCCTGCCG	
humanTAS1R3	TCACCTGGGTCTCCTTTGTGCCCCTCCTGGCCAATGTGCAGGTGGTCCTCAGGCCCGCCG	23/1.
	TGGATCTCCTGGTCACTGTGCTCAACTTTCTGGCCATCGGCTTGGGGTACTTTGGCCCCA	2443
mouseTaslr2	TGGACCTCCTGGTCACTGTGCTCAACTTTCTGGCCATCGGCTTGGGGTACTTTGGCCCCA	
ratTas1r2 humanTAS1R2	TGGACCTCTTGGTCACTGTGCTCAACCTCCTGGCCATCAGCCTGGGCTACTTCGGCCCCA	
catTas1r2		
mouseTas1r1	TCAATGTGCTGGCAGGGCTGGCCACTCTGAGTGGCGGCTTCAGCGGCTATTTCCTCCCTA	2434
ratTas1r1	TCAATGTGCTGGCAGGGCTGACCACACTGAGCGGCGCTTCAGCGGTTACTTCCTCCCCA	
humanTAS1R1	CCAACATGATGGCTGGGCTGAGCAGCCTGAGCAGCGGCTTCGGTGGGTATTTTCTGCCTA	2431
catTas1r1	TCAACGTGCTGGCGGCGCTGAGCAGCCTGAGTGGCGGCTTCAGCGGTTATTTCCTCCCCA	
mouseTas1r3	TGCAGATGGGTGCTATCCTAGTCTGTGCCCTGGGCATCCTGGTCACCTTCCACCTGCCCA	
ratTas1r3	TGCAGATGGGTGCTATCTTATTCTGTGCCCTGGGCATCCTGGCCACCTTCCACCTGCCCA	
catTas1r3	TGCAGATGGGCACCATCCTCTGTGCCCTGGGTATCCTAGCCACCTTCCACCTGCCCA	
humanTAS1R3	TGCAGATGGGCGCCCTCCTGCTCTGTGTCCTGGGCATCCTGGCTGCCTTCCACCTGCCCA	2437
	·	
mouseTas1r2	AGTGTTACATGATCCTTTTCTACCCGGAGCGCAACACTTCAGCTTATTTCAATAGCATGA	
ratTas1r2	AGTGTTACATGATCCTTTTCTACCCGGAGCGCAACACCTCAGCCTATTTCAATAGCATGA	2303
humanTAS1R2	AGTGCTACATGATCCTCTTCTACCCGGAGCGCCAACACGCCCGCC	2471
catTas1r2	AATGCTACGTGATTCTCTGCCGTCCAGAACTCAACAACACAGAACACTTTCAGGCCTCCA	2494
mouseTaslrl ratTaslrl	AGTGCTATGTGATTCTCTGCCGTCCAGAACTCAACAATACAGAACACTTTCAGGCCTCCA	
humanTAS1R1	AGTGCTACGTGATCCTCTGCCGCCCAGACCTCAACAGCACAGAGCACTTCCAGGCCTCCA	
catTas1r1	AGTGCTACGTGATCCTGTGCCGCCCAAAATTTAACAGCACACAGCACTTCCAGGCCTCCA	
mouseTas1r3	AGTGCTATGTGCTTCTTTGGCTGCCAAAGCTCAACACCCAGGAGTTCTTCCTGGGAAGGA	
ratTas1r3	AATGCTATGTACTTCTGTGGCTGCCAGAGCTCAACACCCAGGAGTTCTTCCTGGGAAGGA	
catTas1r3	AGTGCTACCTGCTGCAGCGGCCGGAGCTCAACACCCCTGAGTTCTTCCTGGAAGACA	
humanTAS1R3	GGTGTTACCTGCTCATGCGGCAGCCAGGGCTCAACACCCCCGAGTTCTTCCTGGGAGGGG	2497
mouseTas1r2	TTCAGGGCTACACGATGAGGAAGAGCTAG	2532
ratTas1r2	TCCAGGGCTACACCATGAGGAAGAGC	2529
humanTAS1R2	TCCAGGGCTACACCATGAGGAGGGACTAG	2520
catTas1r2	TCCAGGACTACACGAGGCGCTGCGGCACTACCTGA	2520
mouseTas1r1	TCCAGGACTACACGAGGCGCTGCGGCACTACCTGATCCAGGACTACACGAGGCGCTGCGGCACTACC	2520
ratTas1r1 humanTAS1R1	TTCAGGACTACACGAGGCGCTGCGGCTCCACCTGA	2526
catTaslrl	TCCAGGAGTACACGAGGCGCTGCGGCTCCACCTGA	2526
mouseTas1r3	ATGCCAAGAAAGCAGCAGATGAGAAC-AGTGGCGGTGGTGAGGCAGCTCAGGGACACAAT	2571
ratTas1r3	GCCCCAAGGAAGCATCAGATGGGAAT-AGTGGTAGTGAGGCAACTCGGGGACACAGT	2571
catTas1r3	ATGCCAGAGCACAGGGCAGCAGTTGGGGGCAGGGGGGGGGG	2563
humanTAS1R3	GCCCTGGGGATGCCCAAGGCCAGAATGACGGGAACACAGGAAATCAGGGGAAACAT	2553
•		
mouseTas1r2		
ratTas1r2		
humanTAS1R2	·	
catTas1r2		
mouseTaslrl ratTaslrl		•
humanTAS1R1	· · · · · · · · · · · · · · · · · · ·	
catTas1r1		
mouseTaslr3	GAATGA 2577	
ratTas1r3	GAATGA 2577	
catTas1r3	AAGTGA 2569	
humanTAS1R3	GAGTGA 2559	
•		

Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith

Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT

Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand

Attorney: Felicity E. Groth

Sheet 10 of 25

$10/25 \\ \textbf{CLUSTAL W (1.82) multiple amino acid sequence alignment of T1Rs:}$ Figure 2A

mouseT1R2		MGPQARTLHLLFLLHALPKPVMLVGNSDFHLAGDYLLGGLFTLHANVKSVSHLSYL	57
ratT1R2		MGPOARTLCLLSLLLHVLPKPGKLVENSDFHLAGDYLLGGLFTLHANVKSISHLSYL	57
humanT1R2		MGPRAKTICSLFFLLWVLAEPAENSDFYLPGDYLLGGLFSLHANMKGIVHLNFL	54
catT1R2		MGPRAREVCCFIILPRLLAEPAENSDFYLAGDYFLGGLFTLHANVKGIVHLNLL	
mouseT1R1		MLFWAAHLLLSLQLAVAYCWAFSCQRTESSPGFSLPGDFLLAGLFSLHADCLQVRHRPLV	
ratT1R1		MLFWAAHLLLSLQLVYCWAFSCQRTESSPGFSLPGDFLLAGLFSLHGDCLQVRHRPLV	58
humanT1R1		MLLCTARLVG-LQLLISCCWAFACHSTESSPDFTLPGDYLLAGLFPLHSGCLQVRHRPEV	59
catT1R1		MSLPAAHLVG-LQLSLSCCWALSCHSTETSADFSLPGDYLLAGLFPLHSDCPGVRHRPTV	59
		MPALAIMGLSLAAFLELGMGASLCLSQQFKAQGDYILGGLFPLG-STEEATLNQRT	
mouseT1R3		MPGLAILGLSLAAFLELGMGSSLCLSQQFKAQGDYILGGLFPLG-TTEEATLNQRT	
ratT1R3			
humanT1R3		MLGPAVLGLSLWALLHPGTGAPLCLSQQLRMKGDYVLGGLFPLG-EAEEAGLRSRT	
catT1R3		MPGLALLGLTALLDHGEGATSCLSQQLRMQGDYVLGGLFPLG-SAEGTGLGDGL	35.
		.**	
mouseT1R2		QVPKCNEYNMKVLGYNLMQAMRFAVEEINNCSSLLPGVLLGYEMVDVCYL-SNNIQPGLY	
ratT1R2		QVPKCNEFTMKVLGYNLMQAMRFAVEEINNCSSLLPGVLLGYEMVDVCYL-SNNIHPGLY	116
humanT1R2		QVPMCKEYEVKVIGYNLMQAMRFAVEEINNDSSLLPGVLLGYEIVDVCYI-SNNVQPVLY	113
catT1R2		QVPQCKEYEIKVLGYDLMQAMCFAGEEINSQSSLLPGVLLGYKMVDVSYI-SNNVQPVLH	113
mouseT1R1		TSCDR-SDSFNGHGYHLFQAMRFTVEEINNSTALLPNITLGYELYDVCSE-SSNVYATLR	118
ratT1R1		TSCDR-PDSFNGHGYHLFQAMRFTVEEINNSSALLPNITLGYELYDVCSE-SANVYATLR	116
humanT1R1		TLCDR-SCSFNEHGYHLFQAMRLGVEEINNSTALLPNITLGYQLYDVCSD-SANVYATLR	117
catT1R1		TLCDR-PDSFNGHGYHLFQAMRFGIEEINNSTALLPNVTLGYQLYDVCSE-SANVYATLN	
mouseT1R3		QPNSIPCNRFSPLGLFLAMAMKMAVEEINNGSALLPGLRLGYDLFDTCSEPVVTMKSSLM	115
ratT1R3		QPNGILCTRFSPLGLFLAMAMKMAVEEINNGSALLPGLRLGYDLFDTCSEPVVTMKPSLM	
humanT1R3		RPSSPVCTRFSSNGLLWALAMKMAVEEINNKSDLLPGLRLGYDLFDTCSEPVVAMKPSLM	
catT1R3		QPNATVCTRFSSLGLLWALAVKMAVEEINNGSALLPGLHLGYDLFDTCSEPMVAMKPSLV	119
		* *:: ****.: ***.: * : . *	
mouseT1R2		FLSQID-DFLPILKDYSQYRPQVVAVIGPDNSESAITVSNILSYFLVPQVTYSAITDKLR	175
ratT1R2		FLAQDD-DLLPILKDYSQYMPHVVAVIGPDNSESAITVSNILSHFLIPQITYSAISDKLR	175
humanT1R2		FLAHED-NLLPIQEDYSNYISRVVAVIGPDNSESVMTVANFLSLFLLPQITYSAISDELR	172
catT1R2		FPAKED-CSLPIQEDYSHCVPRVVAVIGPGNSESTVTVARFLSLFLLPQITYSAISDELR	
mouseT1R1		${\tt VLAQQGTGHLEMQRDLRNHSSKVVALIGPDNTDHAVTTAALLSPFLMPLVSYEASSVILS}$	178
ratT1R1		VLALQGPRHIEIQKDLRNHSSKVVAFIGPDNTDHAVTTAALLGPFLMPLVSYEASSVVLS	176
humanT1R1		VLSLPGQHHIELQGDLLHYSPTVLAVIGPDSTNRAATTAALLSPFLVPMISYAASSETLS	177
catT1R1		VLSLLGTHHVEIRADPSHYSPAALAVIGPDTTNHAATTAALLSPFLVPLISYEASSVTLG	177
mouseT1R3		FLAKVGSQSIAAYCNYTQYQPRVLAVIGPHSSELALITGKFFSFFLMPQVSYSASMDRLS	175
ratT1R3		FMAKVGSQSIAAYCNYTQYQPRVLAVIGPHSSELALITGKFFSFFLMPQVSYSASMDRLS	175
humanT1R3		FLAKAGSRDIAAYCNYTQYQPRVLAVIGPHSSELAMVTGKFFSFFLMPQVSYGASMELLS	175
catT1R3		FMAKAGSCSIAAYCNYTQYQPRVLAVIGPHSSELALVTGKFFSFFLVPQVSYGASTDRLS	179
		* : . : : : : : : : : : : : : : : * * : : * * : : * * : : : : * * :	
mouseT1R2		DKRRFPAMLRTVPSATHHIEAMVQLMVHFQWNWIVVLVSDDDYGRENSHLLSQRLTNTGD	235
ratT1R2		DKRHFPSMLRTVPSATHHIEAMVQLMVHFQWNWIVVLVSDDDYGRENSHLLSQRLTKTSD	
humanT1R2	-	DKVRFPALLRTTPSADHHVEAMVQLMLHFRWNWIIVLVSSDTYGRDNGQLLGERVARR-D	
catT1R2		DKQRFPALLPTAPGADHQIEAMVQLMLYFRRNWIIALVSSGDCGRDDSQLLSDRPAGG-D	
mouseT1R1		GKRKFPSFLRTIPSDKYQVEVIVRLLQSFGWVWISLVGSYGDYGQLGVQALEELATPR-G	
ratT1R1		AKRKFPSFLRTVPSDRHQVEVMVQLLQSFGWVWISLIGSYGDYGQLGVQALEELAVPR-G	
humanT1R1		VKRQYPSFLRTIPNDKYQVETMVLLLQKFGWTWISLVGSSDDYGQLGVQALENQATGQ-G	
catT1R1		VKRHYPSFLRTIPSDKHQVEAMVLLLQSFGWVWISVVGSDGDYGQLGVQALEEQATQQ-G	
mouseT1R3		DRETFPSFFRTVPSDRVQLQAVVTLLQNFSWNWVAALGSDDDYGREGLSIFSSLANAR-G	
ratT1R3		DRETFPSFFRTVPSDRVQLQAVVTLLQNFSWNWVAALGSDDDYGREGLSIFSGLANSR-G	
humanT1R3		ARETFPSFFRTVPSDRVQLTAAAELLQEFGWNWVAALGSDDEYGRQGLSIFSALAAAR-G	
catT1R3		NREIFPSFFRTVPSDQVQVAAMVELLEELGWNWVAAVGSDDEYGRQGLSLFSGLASAR-G	

Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith

Title: TASTE RECEPTORS OF THE TIR FAMILY FROM DOMESTIC CAT

Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand

Attorney: Felicity E. Groth Phone: (215) 568-3100

Sheet 11 of 25

11/25

Figure 2B

mouseT1R2 ratT1R2 humanT1R2 catT1R2 mouseT1R1 ratT1R1 humanT1R1 catT1R1 mouseT1R3 ratT1R3 humanT1R3 catT1R3	ICIAFQEVLPVPEPNQAVRPEEQDQLDNILDKLRR-TSARVVVIFSPELSLHNFFREVLR ICIAFQEVLPIPESSQVMRSEEQRQLDNILDKLRR-TSARVVVVFSPELSLYSFFHEVLR ICIAFQETLPTLQPNQNMTSEERQRLVTIVDKLQQ-STARVVVVFSPDLTLYHFFNEVLR TCIAFRETLPMPQPNQAVTQWERRLKAIVDEQQRQSSARVVVLLSPKLVLHNFFREVLR ICVAFKDVVPLSAQAGDPRMQRMMLRLAR-ARTTVVVVFSNRHLAGVFFRSVVL ICVAFKDIVPFSARVGDPRMQSMMQHLAQ-ARTTVVVVFSNRHLARVFFRSVVL ICIAFKDIMPFSARVGDERMQCLMRHLAQ-AGATVVVVFSSRQLARVFFESVVL ICVAFKDIIPFSARPGDERMQSIMHHLAR-ARTTVVVVFSSRQLARVFFESVVL ICVAFKDIIPFS	294 290 291 290 288 289 289 289 289
mouseT1R2 ratT1R2 humanT1R2 catT1R2 mouseT1R1 ratT1R1 humanT1R1 catT1R1 mouseT1R3 ratT1R3 humanT1R3 catT1R3	WNFTGFVWIASESWAIDPVLHNLTELRHTGTFLGVTIQRVSIPGFSQFRVRHDKPEYPMP WNFTGFVWIASESWAIDPVLHNLTELRHTGTFLGVTIQRVSIPGFSQFRVRHDKPEYPMP WNFTGFVWIASESWAIDPVLHNLTELGHLGTFLGITIQSVPIPGFSEFREWGPQAGPPPL QNLTGVVRIASESWAIDPVLHDRPTRCTASWAAPRPAAPGRLSLAGEAPPTESRGHTRRR ANLTGKVWIASEDWAISTYITNVPGIQGIGTVLGVAIQQRQVPGLKEFEESYVQAVMGAP ANLTGKVWVASEDWAISTYITSVTGIQGIGTVLGVAVQQRQVPGLKEFEESYVRAVTAAP TNLTGKVWVASEAWALSRHITGVPGIQRIGMVLGVAIQVRAVPGLKAFEEAYARADKKAP ANLTAKVWIASEDWAISRHISNVPGIQGIGTVLGVAIQVRLVPGLKEFEEAYVQADKGAP HGLSPKVWVASESWLTSDLVMTLPNIARVGTVLGFLQRGALLPEFSHYVETHLALAADPT SRLSPKVWVASEAWLTSDLVMTLPNIARVGTVLGFLQRGALLPEFSHYVETRLALAADPT SRLSPKVWVASEAWLTSDLVMTLPGMAQMGTVLGFLQRGAQLHEFPQYVKTHLALAADPA CKLSPKVWVASEAWLTSDLVMTLPGMPGVGTVLGFLQQGAPMPEFPSYVRTRLALAADPA :: * :*** * :	354 350 351 350 348 349 349 349 349 349
mouseT1R2 ratT1R2 humanT1R2 catT1R2 mouseT1R1 ratT1R1 humanT1R1 catT1R1 mouseT1R3 ratT1R3 humanT1R3 catT1R3	NETSLRTTCNQDCDACMNITESFNNVLMLSGERVVYSVYSAVYAVA NTTNLRTTCNQDCDACLNTTKSFNNILILSGERVVYSVYSAVYAVA SRTSQSYTCNQECDNCLNATLSFNTILRLSGERVVYSVYSAVYAVA RHSPEWLEWRPLPCSSVPLSGRVLGKLAGEARGRTLSPDT RTCPEGSWCGTNQLCRECHTFTTWNMPELGAFSMSAAYNVYEAVYAVA SACPEGSWCSTNQLCRECHTFTTRNMPTLGAFSMSAAYNVYEAVYAVA RPCHKGSWCSSNQLCRECQAFMAHTMPKLKAFSMSSAYNAYRAVYAVA GPCSRTSECSSNQLCRECRAFTAEQMPTLGAFS	400 396 -391 398 396 397 397 408 408 401
mouseT1R2 ratT1R2 humanT1R2 catT1R2 mouseT1R1 ratT1R1 humanT1R1 catT1R1 mouseT1R3 ratT1R3 humanT1R3 catT1R3	HTLHRLLHCNQVRCTK-QIVYPWQLLREIWHVNFTLLGNQLFFDEQGDMPMLLDIIQWQW HALHRLLGCNRVRCTK-QKVYPWQLLREIWHVNFTLLGNRLFFDQQGDMPMLLDIIQWQW HALHSLLGCDKSTCTK-RVVYPWQLLEEIWKVNFTLLDHQIFFDPQGDVALHLEIVQWQW HGLHQLLGCTSGTCAR-GPVYPWQLLQQIYKVNFLLHKKTVAFDDKGDPLGYYDIIAWDW HGLHQLLGCTSEICSR-GPVYPWQLLQQIYKVNFLLHENTVAFDDNGDTLGYYDIIAWDW HGLHQLLGCASGACSR-GRVYPWQLLEQIHKVHFLLHKDTVAFNDNRDPLSSYNIIAWDW HGLHQLLGCASGACSR-DRVYPWQLLEQIHKVHFLLHKDTVAFNDNGDPLSGYDIIAWDW QALHNTLQCNVSHCHVSEHVLPWQLLENMYNMSFHARDLTLQFDAEGNVDMEYDLKMWVW QALHNTLQCNVSHCHTSEEVQPWQLLENMYNMSFRARDLTLQFDAKGSVDMEYDLKMWVW QALHNTLQCNASGCPAQDPVKPWQLLENMYNNTFHVGGLPLRFDSSGNVDMEYDLKMWVW QALHNTLQCNASGCPAREPVRPWQLLENMYNNTFRARGLALQFDASGNVNVDYDLKLWVW	459 455 391 457 455 456 456 468 468 461
mouseT1R2 ratT1R2 humanT1R2 catT1R2 mouseT1R1 ratT1R1 humanT1R1 catT1R1 mouseT1R3 ratT1R3 humanT1R3 catT1R3	GLSQNPFQSIASYSPTETRLTY-ISNVSWYTPNNTVPISMCSKSCQPGQMKKPIGLHPCC DLSQNPFQSIASYSPTSKRLTY-INNVSWYTPNNTVPISMCSKSCQPGQMKKSVGLHPCC DRSQNPFQSVASYYPLQRQLKN-IQDISWHTVNNTIPMSMCSKRCQSGQKKKPVGIHVCC NGPEWTFEVIGSASLSPVHLDINKTKIQWHGKNNQVPVSVCTTDCLEGHHRLVMGSHHCC NGPEWTFTIGSASLSPVHLDINKTKIQWHGKNNQVPVSVCTTDCLAGHHRVVVGSHHCC NGPKWTFTVLGSSTWSPVQLNINETKIQWHGKDNQVPKSVCSSDCLEGHQRVVTGFHHCC SGPKWNFRVIGSSMWPPVQLDINKTKIRWHGKDNQVPKSVCSSDCLEGHQRVVTGFHHCC QSPTPVLHTVGTFNGTLQLQSKMYWPGNQVPVSQCSRQCKDGQVRRVKGFHSCC QSPTPVLHTVGTFNGTLQLQHSKMYWPGNQVPVSQCSRQCKDGQVRRVKGFHSCC QGSVPRLHDVGRFNGSLRTERLKIRWHTSDNQKPVSRCSRQCQEGQVRRVKGFHSCC QDPTPELRTVGTFKGRLELWRSQMCWHTPGKQQPVSQCSRQCKEGQVRRVKGFHSCC	518 514 517 515 516 516 523 523 518

Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith
Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT
Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.
Brand
Attorney: Felicity E. Groth
Sheet 12 of 25

12/25

Figure 2C

_	•	
mouseT1R2	FECVDCPPGTYLNRSVDEFNCLSCPGSMWSYKNNIACFKRRLAFLEWHEVPTIVVTILAA 578	
	FECLDCMPGTYLNRSADEFNCLSCPGSMWSYKNDITCFQRRPTFLEWHEVPTIVVAILAA 578	
ratT1R2		
humanT1R2	FECIDCLPGTFLNHTEDEYECQACPNNEWSYQSETSCFKRQLVFLEWHEAPTIAVALLAA 574	
catT1R2		
mouseT1R1	FECMPCEAGTFLNTS-ELHTCQPCGTEEWAPEGSSACFSRTVEFLGWHEPISLVLLAANT 576	
ratT1R1	FECVPCEAGTFLNMS-ELHICQPCGTEEWAPKESTTCFPRTVEFLAWHEPISLVLIAANT 574	
humanT1R1	FECVPCGAGTFLNKS-DLYRCQPCGKEEWAPEGSQTCFPRTVVFLALREHTSWVLLAANT 575	
catT1R1	FECVPCEAGSFLNKS-DLHSCQPCGKEKWAPAGSETCFPRTVVFLTWHETISWVLLAANT 575	
mouseT1R3	YDCVDCKAGSYRKHP-DDFTCTPCNQDQWSPEKSTACLPRRPKFLAWGEPVVLSLLLLLC 582	
ratT1R3	YDCVDCKAGSYRKHP-DDFTCTPCGKDQWSPEKSTTCLPRRPKFLAWGEPAVLSLLLLLC 582	
humanT1R3	YDCVDCEAGSYRONP-DDIACTFCGQDEWSPERSTRCFRRRSRFLAWGEPAVLLLLLLS 577	
catT1R3	YNCVDCKAGSYQRNP-DDLLCTQCDQDQWSPDRSTRCFARKPMFLAWGEPAVLLLLALLA 580	
	: : *	
	LGFISTLAILLIFWRHFQTPMVRSAGGPMCFLMLVPLLLAFGMVPVYVGPPTVFSCFCRQ 638	
mouseT1R2		
ratT1R2	LGFFSTLAILFIFWRHFQTPMVRSAGGPMCFLMLVPLLLAFGMVPVYVGPPTVFSCFCRQ 638	
humanT1R2	LGFLSTLAILVIFWRHFQTPIVRSAGGPMCFLMLTLLLVAYMVVPVYVGPPKVSTCLCRQ 634	
catT1R2		
mouseT1R1	LLLLLLIGTAGLFAWRLHTPVVRSAGGRLCFLMLGSLVAGSCSLYSFFGKPTVPACLLRQ 636	
ratT1R1	LLLLLLVGTAGLFAWHFHTPVVRSAGGRLCFLMLGSLVAGSCSFYSFFGEPTVPACLLRQ 634	
humanT1R1	LLLLLLLGTAGLFAWHLDTPVVRSAGGRLCFLMLGSLAAGSGSLYGFFGEPTRPACLLRQ 635	
	LLLLLVTGTAGLFAWHLDTPVVKSAGGRLCFFMLGSLAGGSCGLYGFFGEPTLPTCLLRQ 635	
catTlR1		
mouseT1R3	LVLGLALAALGLSVHHWDSPLVQASGGSQFCFGLICLGLFCLSVLLFPGRPSSASCLAQQ 642	
ratT1R3	LVLGLTLAALGLFVHYWDSPLVQASGGSLFCFGLICLGLFCLSVLLFPGRPRSASCLAQQ 642	
humanT1R3	LALGLVLAALGLFVHHRDSPLVQASGGPLACFGLVCLGLVCLSVLLFPGQPSPARCLAQQ 637	
catT1R3	LALGLALAALGLFLWHSDSPLVQASGGPRACFGLACLGLVCLSVLLFPGQPGPASCLAQQ 640	
	AFFTVCFSVCLSCITVRSFQIVCVFKMARRLPSAYGFWMRYHGPYVFVAFITAVKVALVA 698	
mouseT1R2		
ratT1R2	1111140101001141.01 61.0411111111111111111111111111111111111	
humanT1R2	ALFPLCFTICISCIAVRSFQIVCAFKMASRFPRAYSYWVRYQGPYVSMAFITVLKMVIVV 694	
catT1R2		
mouseT1R1	PLFSLGFAIFLSCLTIRSFQLVIIFKFSTKVPTFYHTWAQNHGAG-IFVIVSSTVHLFLC 695	
ratT1R1	PLFSLGFAIFLSCLTIRSFQLVIIFKFSTKVPTFYRTWAQNHGAG-LFVIVSSTVHLLIC 693	
humanT1R1	ALFALGFTIFLSCLTVRSFQLIIIFKFSTKVPTFYHAWVQNHGAG-LFVMISSAAQLLIC 694	
	SLLALGFAIFLSCLTIRSFQLVFIFKFSAKVPTFYRAWVQNHGPG-LFVVISSMAQLLIC 694	
catTIR1	000111011111111011111111111111111111111	
mouseT1R3	THE MILE COORDING DESCRIPTION AND ADDITION A	
ratT1R3	PMAHLPLTGCLSTLFLQAAEIFVESELPLSWANWLCSYLRGPWAW-LVVLLATLVEAALC 701	
humanT1R3	PLSHLPLTGCLSTLFLQAAEIFVESELPLSWADRLSGCLRGPWAW-LVVLLAMLVEVALC 696	
catT1R3	PLFHLPLTGCLSTFFLQAAEIFVGSELPPSWAEKMRGRLRGPWAW-LVVLLAMLAEAALC 699	
	in it is a second of the contract of the contr	
mouseT1R2	GNMLATTINPIGRTDPDDPNIIILSCHPNYRNGLLFNTSMDLLLSVLGFSFAYVGKELPT 758	
	GNMLATTINPIGRTDPDDPNIMILSCHPNYRNGLLFNTSMDLLLSVLGFSFAYMGKELPT 758	
ratT1R2		
humanT1R2	IGMLATGLSPTTRTDPDDPKITIVSCNPNYRNSLLFNTSLDLLLSVVGFSFAYMGKELPT 754	
catT1R2		
mouseT1R1	LTWLAMWTPRPTREYQRFPHLVILECTEVNSVGFLVAFAHNILLSISTFVCSYLGKELPE 755	
ratT1R1	LTWLVMWTPRPTREYQRFPHLVILECTEVNSVGFLLAFTHNILLSISTFVCSYLGKELPE 753	
humanT1R1	LTWLVVWTPLPAREYQRFPHLVMLECTETNSLGFILAFLYNGLLSISAFACSYLGKDLPE 754	
catTlR1	LTWLAVWTPLPTREYQRFPQLVVLDCTEANSPGFMLAFAYNGLLSVSAFACSYLGKDLPE 754	
mouseT1R3	AWYLIAFPPEVVTDWSVLPTEVLEHCHVRSWVSLGLVHITNAMLAFLCFLGTFLVQSQPG 761	
,		
ratT1R3	1 1111111111111111111111111111111111111	
humanT1R3	TWYLVAFPPEVVTDWHMLPTEALVHCRTRSWVSFGLAHATNATLAFLCFLGTFLVRSQPG 756	
catT1R3	AWYLVAFPPEVVTDWRVLPTEALVHCHVHSWISFGLVHATNAMLAFLCFLGTFLVQSRPG 759	
mouseT1R2	NYNEAKFITLSMTFSFTSSISLCTFMSVHDGVLVTIMDLLVTVLNFLAIGLGYFGPKCYM 818	
ratT1R2	NYNEAKFITLSMTFSFTSSISLCTFMSVHDGVLVTIMDLLVTVLNFLAIGLGYFGPKCYM 818	
humanT1R2	NYNEAKFITLSMTFYFTSSVSLCTFMSAYSGVLVTIVDLLVTVLNLLAISLGYFGPKCYM 814	
	FINANCE I HOUSE A LIBOUR AND A CONTROL OF THE CONTR	
catT1R2	NAME OF THE PROPERTY OF THE PR	
mouseT1R1	NYNEAKCVTFSLLLHFVSWIAFFTMSSIYQGSYLPAVNVLAGLATLSGGFSGYFLPKCYV 815	
ratT1R1	NYNEAKCVTFSLLLNFVSWIAFFTMASIYOGSYLPAVNVLAGLTTLSGGFSGYFLPKCYV 813	
humanT1R1		
catT1R1	NYNEAKCVTFSLLLNFVSWIAFFTTASVYQGKYLPAVNVLAALSSLSGGFSGYFLPKCYV 814	
mouseT1R3	RYNRARGLTFAMLAYFITWVSFVPLLANVQVAYQPAVQMGAILVCALGILVTFHLPKCYV 821	
ratT1R3	RYNRARGLTFAMLAYFIIWVSFVPLLANVQVAYQPAVQMGAILFCALGILATFHLPKCYV 821	
humanT1R3	RYNRARGLIFAMLAYFITWVSFVPLLANVQVVLRPAVQMGALLLCVLGILAAFHLPRCYL 816	
catT1R3	RYNGARGLTFAMLAYFITWISFVPLFANVHVAYQPAVQMGTILLCALGILATFHLPKCYL 819	
	·	

Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith
Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT
Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.
Brand
Attomey: Felicity E. Groth Phone: (215) 568-3100
Sheet 13 of 25

13/25

Figure 2D

mouseT1R2	ILFYPERNTSAYFNSMIQGYTMRKS	843
ratT1R2	ILFYPERNTSAYFNSMIQGYTMRKS	843
humanT1R2	ILFYPERNTPAYFNSMIQGYTMRRD	839
catT1R2		
mouseT1R1	ILCRPELNNTEHFQASIQDYTRRCGTT	842
ratT1R1	ILCRPELNNTEHFQASIQDYTRRCGTT	840
humanT1R1	ILCRPDLNSTEHFQASIQDYTRRCGST	841
catT1R1	ILCRPKFNSTQHFQASIQEYTRRCGST	841
mouseT1R3	LLWLPKLNTQEFFLGRNAKKAADENSGGGEAAQGHNE	858
ratT1R3	LLWLPELNTQEFFLGRSPKEASDGNSGSSEATRGHSE	858
humanT1R3	LMRQPGLNTPEFFLGGGPGDAQGQNDGNTGNQGKHE	852
catT1R3	LLQRPELNTPEFFLEDNARAQGSSWGQGRGESGQKQVTPDPVTSPQ	865

Docket No.: MON-0298

App No.: Not Yet Assigned

Title: TASTE RECEPTORS OF THE TIR FAMILY FROM DOMESTIC CAT
Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Attorney: Felicity E. Groth Sheet 14 of 25

Phone: (215) 568-3100

14/25

Figure 3 **Phylogenetic Tree of T1Rs:**

Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith

Title: TASTE RECEPTORS OF THE TIR FAMILY FROM DOMESTIC CAT
Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand

Attorney: Felicity E. Groth
Sheet 15 of 25

15/25

Figure 4.

Predicted conformation of the 7TM T1R3 protein sequence from cat. Arrow points to region of possible functional amino acid substitution.

Cytoplasm

Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith

Title: TASTE RECEPTORS OF THE TIR FAMILY FROM DOMESTIC CAT
Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand

Attorney: Felicity E. Groth
Sheet 16 of 25

16/25

Figure 5A Predicted conformation of the 7TM T1R1 protein sequence from cat. Figure 5B Predicted conformation of the cat T1R2 protein sequence.

Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith

Title: TASTE RECEPTORS OF THE TIR FAMILY FROM DOMESTIC CAT

Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand Attorney: Felicity E. Groth Sheet 17 of 25

Phone: (215) 568-3100

17/25

Figure 6A Genomic sequences of cat T1R1 obtained from BAC sequencing

CTGGAAAAAAGGNGAACCCAGGATGATTCACCCCAAAATTTCAGTNTCAGAAAANTGAGGACTGGNA GGAGGTCAACTTAAAGTCAGTTTCATTTGGTAAACTGAGGCCCAGGTAAAAAGTTCTAAAACCCACAG CTCCCTTCCATATTCTGTCCCCCAGAGAAGCAGTGTCCCTGCCTTCCTCTGACCCCTGCCCCTCAAGA CGCCTGGGCTCCCTTTCTGAGCCGGGTGAAGCCGCAGGCCACAGAGCGAGAACAGAACCACAACCAT CCAGAGGGAGGGCCACCACCTGGCTTGCACCTGTGCCTTCACCCTGCCCAGTTCCTGAGTA GGACCGCAGGCCCGGAAGGCCAAGGCAAACAGCCTGGTTCCTACGACTGGGTTCCAGCCCCACCCCTG GCACAGGCGTGAAGTTGGGAAGCATCTGGGCAGCCGCTGTCTATTCTATTTAAACAGCCGAGCTGGTC AGAGGGTGCTGGCCATGCCAGGCACAGGACGGACTGGCCAGCATGTCACTCCCGGCGGCTCACC TGGTCGGCCTGCAGCTCTCCCTCTCCTGCTGCTGGGCTCTCAGCTGCCACAGCACAGAGACGTCTGCC GACTTCAGCCTCCCTGGGGATTACCTCCTCGCAGGTCTGTTCCCTCTGCACTCTGACTGTCCGGGCGT GCTGAGACTCTAGAAGCTAAACCACGTGTTGCTTTACCTGTCTTCCACCCTGAGGATCACACGTTAAG AAAACAGACACGCATGGAGAACCTACTTTGTGGGGCGCCTGGGTGGCCCAGTCGGTTAAGTGTCTGCC TCTTCGTTTTGGCTCAGGTCATGACCTCGGGGTTCATGAGTTCGAGCCCCGCGTCAGCTCCGTGATGA GCCTGGAGCCCGCTTGGAATTCCCTCCCCACCCCCACCCCCGCTCATGCCAGCTCGAGCTCTCGCTC GGTCACGATCAGCACATTATTTCCTGGACCTTCCATTCTCCTTTCGCTGTACAGAGCTTAACGTAAAC TCCCTGGCAAGACCTCCTTTCTGATTTTAGAAAGGCCAGCTTATTGGTTTGGTTCCTGTAATAGCTTA AAAATAGAATCCAGCTGTATCAGGAAACATTTAAAAAATGTATCAAGGAAGACCTATAACAGTAAAAA TATTTTTAAATCCCAGAGTGTTTTCATAAAGACACAGGATTACATTACTCAATTATTTTTAAAGGGTT TTTGAAAAGCCGTGTTTCACTTGCCATGGCTAATGATTATAGGCATCCGAATGAGCCTGTGGCTATGA CTTCAGTCTGTTCGGTGGAAATGACTCTGATGTCATAAACTGACTCGGCTTCGCTGACAGGAAAGTCG TACAGAAGAAAAGCTGTTCGAGCCCATATGTTGGTTGCGCTCAATGTCAGGAAGGGGCGACGTAATGT GTGCAGAAATGGGCAGCTGTCGAGAGTGAAGAAATTGGGAAGTTGGCACGGAAGAGGGGACCGAGTCC GGGTGGCGTCCTTGGAAACTCTGGTAAGTTTGAGATTGATCCCAGGGGTCGTGGGATGGAGCCTCGCA TGAGACTCTACACTGATCGATGAGAAGCAGAAGCCCCTTGTCTGTGAGGAAGGGGACACGAGCAGTTG CCGGNACCAGTCNTCGNNNNNNNTTCCGNTGGGATTCCAGTCAGCAGTTCCCGAGAGGCACTGAGGA ACACAGGCCCTCACCACGTTCACAAGTGTCCTGATGAGAGGGATACTAGGTAAACGAGGTTCGA: CAG GTGTGGTGGTTAATTTTATACATCAACCTGGCTAGGGTACGGTGCCCAGTTGTTTGGCCAAACACCAG TCTAGATGGGGCTGTGAAGGTTAACATTTAAACCAACAGGGTGAGTAAAGCAGATCGCTTTCCATTGT

Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith

Title: TASTE RECEPTORS OF THE TIR FAMILY FROM DOMESTIC CAT

Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand

Attorney: Felicity E. Groth Sheet 18 of 25 Phone: (215) 568-3100

18/25

Figure 68

GTGGGTGGGCCTCATCCAATCAGTTGAAGACCTTAAAAGAAAAGATTGAGGTCCCCCCAAAAAGGAAG AAATTCTGCCTTCGAACTCAACACTGCAGCTTTGACCACTGAGAGCATTTCCAGCCTGCCAAAC ATCCAACTGGTTCTGTTTCTCTGCAGAACCCTGACTCACGCAGCAGGTTTCCCTGCTACAGGACTTCA TCAGCCTTTCAACCCTAATATGCTCATCCAGGGÄGGAATGGTTTGTGGTTTCTCCAAGTTGTAACCGC CCCTCCCCCCCCCCCCCCCCCCAAAGGCCTGTTAACACAGCTGAGTGTATGGTACAGGGCCCAC AGTGAGGTCATGGTGGTAGGGGACGGGACAGATGCCCTCAGAGTTTCCTTTCTACCCTTCCCCCCACC CCCGACGCCAAGAGGGTCTCGGCAAGGCCTTGCTCCTCTGAGCTCAGCTGGGCTTTCTCTACAGGC CCGACAGCTTCAACGGTCACGGCTACCACCTCTTCCAGGCCATGCGGTTTGGCATCGAGGAGATAAAC AACTCCACGGCCCTCCTGCCGAACGTCACCCTGGGATACCAGCTGTACGACGTGTGCTCGGAGTCTGC CAACGTGTATGCCACACTAAACGTGCTCTCCCTGCTGGGGACACATCACGTAGAGATCCGAGCAGACC GCAGCCCTGCTGAGCCCCTTCCTGGTGCCCCTGGTGAGCTGGAGCCCGGGGGCCTGTCCATCTCCCCT GCCGGCAGGTCCAGTGTGGGCTGAGGGGGTGGGGGGGTGGGCAAGAGCTGCCATGCCCACTCTGAGTC TCCTGGGTGGTCACATTGCAGGGGGCCCTGCCCCCTTCACAGTCCCCCGCCCCAGCATCCCTTCCTCCC CAAGTGCTGCATCCAGACCTCCCTGCCTCAATGTCCTGAGAAAAACCGTCTCCTTTGAAACTGCTGCC CTTTGCTCTGCCCCCTCCATTCCATCTCTCTGTGAAGAACGGAACACCCTTTGTTTCCCACCTCACA TCCTAGGCTTCCTCCTCCGCCTATAAGCTGGCTTTACCCCTCTCTGTCTTCCAGGCACCTGTGGTCTT AGCGCTGCCCTCTCTGAACCTCGTTCCGTGGAAACTTGTGCACTGAGCTCTCTTCTTGTTTGCT TCTCCCTCTCATCACTTGCTTCCCGGGCCCCTGCCCTGACTGCTGCACCACCACTCCTGCTCTTGTGA TCTCCAGGGCTTTCTAGATCTCCAGGTCCAGCAAATGCTTTTCAGCCCTTCTTTGCTTGACATGACGA CTTTGTGACAAATTTGACCAGTCCTTCAGTGACGCTCTTGCCTCGGCATTTATGACCTGCCACCTCCC TCTCACTTGTGGTACCTCCTTCTCAGTCTCCTTTGGAGAATCTCCTCCCCCCCTCTTCTGAAAAAGTG GATGATTCC@CGAGTGCAGGACCACTCCCTTTCCCAGGCAGGTGCTGGGAGCAAACAACTTTCCCTAC TCTTCAAGAATCTTTCTGGCTGGTCTAAAAATAAGTTGATGTGACACAGANAAAAGGAAAAGTCAAAT CACGTATGTACAGGGANCTACNAAACACGAAAGGTCAAGANAGGAAAGNGAGGCTANCTGCTATCTGA ACTATGAACAAGGGNAGGGGTAAATTCAAGGAAAGAAGAATCANAGAAAGAAGAGGGNANGGTATAAA TTCAGGCTGCCAAGCTGTTTTTTGGGATGACTCCAGCAGTCTCCTAGGGAGTTCTTCCTGACTCTGGT CTTGAGCCTTTTCTAACACATTCTTCACTGAAATCAGATACACCCCTGAAACACAAGTCTGGGCAGAT TACCTCTCTGCCTAGACATTTAAGGGGCTCCCCAGGGCCTGCAGATAAAGACCAAGTATCTTAGCTAT CTTGGTGCCAGGAGTAAGGCCTCCTGCCCTGACCAGACACGCCTACTTTTGTGCTCCTTCTTCCGGCT Docket No.: MON-0298 App No.: Not Yet Assigned Filed: Herewith Title: TASTE RECEPTORS OF THE TIR FAMILY FROM DOMESTIC CAT Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G. Phone: (215) 568-3100

Attorney: Felicity E. Groth Sheet 19 of 25

19/25

Figure 6C

TCCAACCTCCTGGGTCAGTTCTCTCACTGGGTGTAGCTTTTGTTCTCTTCCCCTTCTTCTCCCACAAA ${\tt CCTCCCCTGGGTTTCTGCCTCTTCTTTAGATGTAGCTGGTCGGCCTCCTAGTCCACCAGAGCTGTCC}$ TTGAGAGCCAGGGCTGGGACCATGTCTCCCTCCTCCTCGGGTCCCCGCGCCCAGCACAGGGCCAGCAC CGCAGATCAGCTACGAGGCCAGCAGCGTGACGCTCGGAGTGAAGCGGCATTACCCCTCGTTTCTGCGC GATCTCGGTGGTCGGCAGCGACGCGACTACGGGCAGCTGGGGGTGCAGGCGCTGGAGGAGCAGGCCA ATGCAGAGCATCATGCACCACCTGGCCCGAGCGAGGACCACCGTTGTGGTCGTTTTCTCCAGCAGGCA GCTGGCCAGGGTGTTCTTTGAGTCGGTGGTGCTGGCCAACCTGACTGCCAAGGTGTGGATCGCCTCAG AAGACTGGGCCATCTCTAGACACATCAGCAATGTGCCCGGGATCCAGGGCATTGGCACGGTGCTGGGT GTGGCCATCCAGCAGAGGCTTGTCCCTGGCCTGAAGGAGTTTGAAGAGGCCTATGTCCAGGCAGATAA GGGGGCCCTGGGCCTTGCTCCAGGACCTCCGAGTGCAGCAGCAACCAGCTCTGTAGAGAGTGTCGGG CTTTCACGGCAGAGCAGATGCCCACGCTCGGGGCATTCTCCATGAGCTCTGCTTATAACGCCTACCGG GCAGTCTACGCAGTGGCCCATGGCCTCCACCAGCTCCTGGGCTGTGCCTCTGGAGCCTGTTCCAGGGA CCGAGTCTACCCCTGGCAGGTAAGGTAGCCCAGACCCCGGCACCCTGAAACGGGGTGCTTTCCTAAGG CAAACAGAGTGATCCCTCTCTGGCCAACTGAGTGCTGGGGGGTGGGGGACAAAGGCCACCCATCAGAAG GCTAATTCCTTCTCTGGGCTTCACTTCTCTGACCTCGGCCCCTCCCACCACCATGCTCCAGACCCAG CATTTGCTTCCTAAGCCTTCCGGGTCTGGGAGAGTTGAGGAGGAGCAGCCTGCGTCATCTGTGGCTGC TCCATGATCCCCGTTTATCTCAGCTTCTGGAGCAGATCCGCAAGGTGAATTTCCTCCTACACAAGGAC ACCGTGAGGTTTAATGACAACGGGGACCCTCTCAGTGGCTACGACATAATTGCCTGGGACTGGAGTGG TACGGGCAGCCTGGAGCCTGAAGTCACTGTCGACACAGCTCACACGGAGCAGGAGGGGGCCCCGGGTG CCAGGCCAACGTGGCTCTATCCAGCCCTGCCAGGGAAGCCCCACAGACCGCACCCAGATGGCCGGCTG CAGCTGGTATACACAACCAGGGGCTGTGCCCTGGGAGTGAGCTGTGAGGGCAGATGCACGGAGACTCC CATTCGCCATGTGAGCATCCCTTGACTTGGGCCACTCCATGTGGTTCCAGAACACCTGTGGCTTCTTG CAGGTGCCAAAGTCTGTGTGCTCCAGCGACTGCCTCGAAGGGCACCAGCGAGTGATTTCGGGTTTCTA CCACTGTTGCTTTGAGTGTGTGCCCTGTGAGGCCGGGAGCTTCCTCAACAAGAGCGGTGAGTGTCCAA ATGAGTGGGAGAATGACTGGGCACTCCCAGGGTCTGTATGGCAGATGAGGGGATCTCCCTTGGGCCAC GCACGTGCAGAACCAGAGCCTTGCTCCCTCTGTTGCCAGTTGAGGTACAGGTTGTAGAATATTTGCCA CCAGACTGAGTTCTGATGAAGCAGAAACCAACAACCAGTTGAAATCCTCAGGTCCCCTACGTCTTTTA CTAGAGGGCTCCTGATGCAATCCCTGCAGATGCAATCTTATCCTAAATTCAACCTTTTTATGCGAACA

Docket No.: MON-0298 App No.: Not Yet Assigned

Filed: Herewith

Title: TASTE RECEPTORS OF THE TIR FAMILY FROM DOMESTIC CAT Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand Attorney: Felicity E. Groth Sheet 20 of 25

Phone: (215) 568-3100

20/25

Figure 6D

AGACAGCCAGCACCTTGGACAGCTTGGCCTTGATGCAGATACTATTGTATCCGCAGACAAGAAACATA GCATACTCCACCCAGTGATGGTGCAAGGTCAAGATCAGAGAGCAAACTCAGGTAGCTAAGGGCTCAGC CCAGAGCTGGACTCTGTGAGCCACGTTCTTTCCTTTTACTATCTCTGTGGGCGTGAGAACACATCTCT TCTGTTCTCAGAGAGTCAGAGAAACCACAGAATGGCAGCACAGATAGGGGGCTTTGGGTAATGGAAGC GCTGGGGAGATGAAAATGCCCTTCCTTTGGGGCTGGTTGCTCCTGTTGGATCATAGCCTCACTGGCAT GTGGGCAGAGCTACCAGAGTAAGGCCCTCTCTAAGGATCTCTCGGTTTGCAAGCCCCTTCTGGGATCA TAAGCCATACAGAACCTACCCAAGGGTCTCCAGAATCTGCAATTAACACAGGCATCTGGAGGAAACAC TTGGCCGCGGGGCCCCACTCAGGGCTACCCCCTATCTCGCTGTGTGCAGTAGGAGCCCGGCTTCTGGG GTACAGCGCTCCCAGCACCTTGCAGGCCTACATGGCTTCCCTTCCTCATTCCTGCTCATCTAG GCTCTCAGGAGCCCCCTCCACCTTTTTCTTCCAGACCTCCACAGCTGCCAGCCTTGTGGGAAAGAAGA GTGGGCACCCGCGGGAAGTGAAACCTGCTTTCCACGCACCGTGGTGTTTTTGACTTGGCACGAGACCA TCTCTTGGGTGCTGCTGCAGCTAATACGTTGCTGCTGCTGCTGGTGACTGGGACTGCTGGCCTGTTT GCCTGGCACTTAGACACCCCTGTGGTGAAGTCCGCTGGGGGCCGACTGTGCTTCTTCATGCTAGGCTC CCTGGCAGGGGCCACCTGTGGGCTCTACGGCTTTTTTGGGGAGCCCACGCTGCCCACATGCTTGTTGC GTCTTCATCTTCAAGTTTTCTGCCAAGGTACCCACCTTCTACCGTGCCTGGGTCCAAAACCACGGTCC CCCCACTGCCCACCAGGGAGTACCAGCGCTTCCCTCAGCTGGTGGTGCTTGATTGCACAGAGGCCAAC TCACCGGGCTTCATGTTGGCTTTCGCCTACAATGGCCTCCTGTCCGTCAGCGCCTTTGCCTGCAGCTA CCTGGGCAAGGACCTGCCAGAGAACTACAACGAGGCCAAATGTGTCACTTTTAGTCTGCTGCTCAACT TCGTGTCCTGGATTGCCTTCTTCACCACGGCCAGCGTCTACCAGGGCAAGTACTTGCCCGCGGTCAAC GTGCTGGCGGCGCTGAGCAGCCTGAGTGGCGGCTTCAGCGGTTATTTCCTCCCCAAGTGCTACGTGAT GCGGCTCCACCTGACCAGTGGGGCGGGCCAGGGCCTAGCCGGGGAGGTGGGGGGTGGGGGGTGAAGGGG CGCCCTCCGGGAGGCCTTTTGGACTCCTGTCTTGGCTCGGGTAGTGTACGCTCACGGGAGTCCAGTCC AGGCTCCGAGCTGCCAATAAAGCGGTGAAACATGCGTCCTGGCTGCTCTAGCTGTCTGAACCGAGGGT GGGGCG

Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith

Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT

Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Attorney: Felicity E. Groth Sheet 21 of 25

Phone: (215) 568-3100

21/25

Figure 7A Genomic sequences of cat T1R2 obtained from BAC sequencing

TTAGCTGCTGAAACGCTGCTTTTTAGCAAAAGGCCGTGACCTCATGATGTTATACGTCGTGGAGATTGA GAACCAGGTCCTAGCATCTGACTATGTGCTTTGAGTCCCCACTTTTGCTGGTTGTGCAACCCAGGGTGA GCTTCGTAAGCTTCTCTGTGCCTCAGTTTTCTCATCTGTGGAATGGGGCCGGTCATAGTCCCCGTTATT GTGATCATCGAGCAAGATGGTGAATGGCGAGCACACAGCATGATGCCTAGTTCTTACTGGAACACCTGT CCTGGGTCAGGGGCTGTATATAAAGTACTACCTGCCAGGATCAACTTGATCCGGTTCTATTCTGTCTCC TGGGTGAGTATCTGTGCCCTTTACTCCCAGATGTTGGAAATGTCAGGGGCATGAGACCTGTCCTTAACC GAGTGGCAGAAGGTTAAGTTTGTGTCCGAGATAGCAGGACATGCTTTCTCTACCTCCGCAGGGCGTTCT CCCAGACCCCCAGGGCCCACCATGCCCTGCTAGGAAGGGATCATCCTAATTCTAGCCTCTTCTTCCGC CCCAGAGTTCTGAAGCTTCTCCACCTGTCCAGGTGTTTCCCCACCCCTTCAGCCACGGCAAGACCGTCA CTATGTAAATGTCTGTGCAAATCCCCTGGTGTCAAGCTGCCAGCTCTCTGATGAGGCAGGGCCACCTCC GGGGACCCTCACTTCCCAGCCATGGGACCCCGGGCCAGGGAAGTCTGCTGCTTCATCATCCTGCCGCG GCTCCTGGCTGAGCCGGCTGAGAACTCAGACTTCTACTTGGCTGGGGATTACTTCCTCGGCGGCCTCTT CACCCTCCATGCCAACGTGAAGGGCATCGTCCACCTCAACCTCCTGCAGGTGCCCCAGTGCAAGGAGTG TTATCCCCACCGCCTGCAGGGAGACCCCATGCAGTTCATGTTACCAAAATCTTTGGCAATTGTATTCT GAGGGGTTGTAGAGACCACCCCACCTACTTTGTCAAGTGGGGAACTCCTACTGAGTCCGTGTCAAGTC CAAGTCTAGACACCGGGGGTTATGCCTTTGGAAGGCAGAAATGTGGTTTTTCGGTAGCAGGTTCTCAGA CTGGAGGGGAAGGTTTGCATTTCTCTAGGGCTGTGGTTAGGTGGGAAGGGGTGCTTCCAGGACCAGAAG GGATTTCCTCCACTCACCTTGTCCCCTGTGAGCCCTGGGGGTGGCTGCATCACTCAAGGTTGGGTGAGA $\tt CACCTTTGTGCAAGTGCGAAGGCTGGGATGGCGGACCCAGCGTGGGATGATGAGTTGACTTGCTGC$ AGAGAGGGTGAAGGCGTCCTGTGAGAGAGAGAGAAAAAAGTCTGTGACGTCGGGGAAGATCACATGC NNNNNNNNNNNNNNNNNNNNNNNNNNNNNGATGTGGAGGTGATRGTGATGGCGGTGATTGTGACGGTGGTA TCGGTGATGGTGGTCACAGACAACGCAGTTATAGTGATGGCAGTGGTGATAGGAATAGTAGGTGGTGAT GGTCATTCTGGAGATGTGGCAGGTGACAACGATGAGATGAAAATGCCAGAATCTTCTGGAGTGGCTCCT TCTTGAGCCACTCCTCGGCTTTCCTATGGCAGGCAGAGGGGACTCCCCGGCTCTCCTGTCCCTTCCCCC TCTCACTCTGGACCTGCCTCTCACCCCACCCCACATGGCTCCCCCAGGTATGAAATAAAGGTGTTGGGC TACGATCTCATGCAGGCCATGTGCTTTGCAGGGGAGGAGATCAATAGCCAGAGCAGCCTGCTGCCTGGC GTGCTGCTGGGCTACAAAATGGTGGATGTCAGCTACATCTCCAACAATGTCCAGCCCGTGCTCCACTTC CCGGCAAAGGAGGACTGTTCCTTGCCCATCCAGGAGGACTACAGCCACTGTGTGCCCCGTGTGGTGGCT $\tt CAGGGGAGGCCCCTGGGTCCTGGGGTAAGGAGCTGGGGGGCAGAGGAGTGGTTATCCAGGGGGCTCACT$ TCCCCCACCGTCCTGGGGGTAGGAGGAGGCAGGAAGTAGGGTCAGAATGTCAACCCCAATCCTRGGA NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGCCTTCAGAGAGATCATCCTNTCAAGGGGGCCCTTAT TCCTTTNCCCCTGGGAGCCCNTCAGTNCCCACCACTTTCTGCAGCNCCCATTCGGGTCTCCGATTCCTC

Docket No.: MON-0298 App No.: Not Yet Assigned

Not Yet Assigned Filed: Herewith

Title: TASTE RECEPTORS OF THE TIR FAMILY FROM DOMESTIC CAT Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand

Attorney: Felicity E. Groth Sheet 22 of 25 Phone: (215) 568-3100

22/25

Figure 7B

CAATCCACTCACTCGCTGTGTGGCTCTGGATAAGTGACTGTCCCTCTCTGAACCTCAGCGTCCTCATCT GCAAAGTGGAGACATAACAGCACATCAGAAGGTCGCGAGAATAGGGGCGCCTGGGAGGCTCAGTCGGTT AAGCATCCGATTCTGGGTCGCGGCTCAGGTCATGATCTCCCGGTTCGTGAGTTCAAGCCCCGCATCGGG CTGTGTGCTGACAGCACAGANCCTGCTTGGGATTCTGTCTTCTCTCTCTCTCTCCCCTCACCTGCTTTT GACAGAGATGGAGAGGGCTCCACGCGGTACCTGCCATGCTGCGAGCCCTCAGAACCCGTTAGCGACGGA AGTGACCTGTGTGCGTCACCACCACCACCAGCAGGCCTTGAGGCTTCGACCCTGCCTCCCCCGCAAA GCCCTGCCGCACCGTGAGCTAGTCAGCGCCTGCTGGGTTCGTGACTCTCTCCGCCATTGTGCACCCTGG AGCTTGGTTAGAGAGCCTGACTTTGCTGGGAGTCTCCAGAACGTCCCGGGACCTCCCAGCAACCAGCAT $\tt CTTTATTCTCCCTCCTTAGAACTGATGTGCAGTCGCTGTGCCTCTGCAGCTCAGAGCAGGGGTGGTT$ CCTGTGAACTGGGGCCAGGGGTGGTTTCCTGGAGGGGGCAAGGCACCGACTAGCCCTCGAAGAAGGAGC CGGGCTTGGCTGAGGTGGGACAGGGGGAGAGCATGAGGTTTTCGGCCAGCTTTCTGTGCCTGGGAACCC CCTCTCCCCACACCCTGGATCCCAGAGGCCTTAACGGGCCCCAGCTGTAACAGACTCGTCTGTGTCGA GCATTCCACAGTAGGTGTCCCCAGGCTCCCTCGGGGCCACCAAAGGACCACAACGACATTACGCGGACA GGGTCTCAGATTCCGATGGGTCCCCTGTTTGCTGGAACCATCTCCCTTTGGAAATTTACAGCTCTCTTT TCTGGCAGTAACCCCGCCCTTGGTGCTGGGTACGAAGGGGGCACCCAGAGCGGGGCTCACCCAGCAGC TGAAACGCTGCTTTTTAGCAAAGGCCGTGACCTCATGATGTTATACGTCGTGGAGATTGAGAACCAGGT CCTAGCATCTGACTATGTGCTTTGAGTCCCCACTTTTGCTGGTTGTGCAACCCAGGGTGAGCTTCGTAA GCTTCTCTGTGCCTCAGTTTTCTCATCTGTGGAATGTGTGAGGGGGAGACCTCAGTTTCAAGCGGGGTG TGCCTAGAAGAGCGCTCCGGAAGAGGGGGCAGCGAATGCAGAGGCCGGCAGGAGCCTGGTGCGTTGGCT GAACCGGTGAGCAGCCCCGGGACCAGGCGGGACAGTAGGAGAAGATGAAGCCAGAGAGGTGAGGGCCGG GGTCAGTGGTGGAGCCCCTTGGGGGCCACTGAAGGACTCTGGCTGTCCTCGAGTGACATTAGGAGCTGT TGGGGAGTTTTGAGCTGAGGAGTAAGGTGACGGACAAGTGGTCGCAGAGGCCACCCGGCTGCCACGAAC AGCAGCAGAGACAGCCAAGGGGAAGGGTGGGGGGCTGTGGTGACCCCGGGAGGGTGGTGATGGTGGCCC GGTGAGGCCCTAGCTCACGCTGGCGGCCCTCCGCTCTCCGGCAGATCACCTACAGCGCCCATCAGTGACG AGCTACGGGACAAGCAGCGCTTCCCGGCCCTTCTGCCCACAGCGCCGGGCGCCGATCACCAGATCGAGG CCATGGTGCAGCTGATGTTGTACTTCCGCCGGAACTGGATCATCGCGCTGGTGAGCAGCGGCGACTGCG CGCTGCCCATGCCCCAGCCCAACCAGGCGGTGACGCAGTGGGAGCGCCGGCGCCTGAAGGCCATCGTGG ACGAGCAGCAGCAGCAGCTCTGCGCGCGTCGTGGTCCTGCTGTCGCCAAAGCTGGTCCTGCACAACT TCTTCCGCGAGGTGCTCCGCCAGAACCTCACGGGCGTCGTGCGGATCGCCTCCGAGTCCTGGGCCATCG ACCCGGTCCTGCACGACAGGCCCACGCGCTGCACAGCCTCCTGGGCTGCACCCAGACCAGCCACCAGCTCCGG GTCGTCTATCCCTGGCAGGTGAGGCCCCACCCACGGAGAGTCGGGGCCACACACGCAGGCGCCGCCACA Docket No.: MON-0298

App No.: Not Yet Assigned

Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT

Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand

Phone: (215) 568-3100

Attorney: Felicity E. Groth Sheet 23 of 25

23/25

Figure 7C

GCCCTGAGTGGTTGCCATGGAGACCACTGCCCTGCTCTAGCGTCCCCCTCTCTGGCCGGGTCCTGGGCA AACTGGCGGGAGAGGCCAGGGGACGTACCCTGTCCCCAGACACATAAAGCCAGAAGTGCTTCATGGTGA CAAAACTCCTTTTTTTACATTAATGTAATCCTCGCCATCCAAGATAGCCTGTCCCGGCAGGAGATTTGG $\tt GTGAAGTTTCCTGGAAGGAGGCCTGGCAGGCAGTGGGCCCCCTGGGCCCCTTTCTCCAGGGTG$ GCGGCCTTGGGGGAGGACTTCTGTGTTCAGCTCTCTGAGGCTCTGCTTTGGGTTTATGCATCTTCTCTC GTCCCAGGTCTGGACGATTCAGAGGAGTAAGGAGGCAAGGAGTCGCCTGGATTCAGACCTGGAATTTAA TAGGTAGAAGATTTTACTGAGGGGGCGCCTGGGTGGCTCAGTCGGTTAAGCGTCCGACTTCAGCCAGGT CGTAAAGGGAAACAGGAGTGGCCTCTGAACCCAGGTGATAGGTCTCCGCTGGATGGCAGACGTGACTCC CACGGGAGCAGGAATAATGTCGACACATCGGCCGGAAGGGGAGCACTTCCTGGTGTGCAGTCATTGTGC GCTGGTGCCTGAACCCAGGTGTGTCTGACTACAGAGCCGGGGCTCCCAGCCGCTGCCTCCCGGGTGACC ACATCTGCGGTCTCATTGCCCCCTTGTAGGGATGTGGACACCCAGTCTCGTGGGGTAGTCACTCTCCCC TCCGAGCCATCAGCCCAGAGCCTGATGCGGGGCTCGAACTCACGGACCGCGAGATCGTGACCTGGCTGA AGTCGGACACTTACCCGAATGCGCCACCCAGGGGCCCAGATCGAGCCCGACTTCTGACGCCAGCGTCGC $\tt TTCCTTTCCCTGTGGCCTCCCAGCTGCTTCAGGAAATCTGGAAGGTCAACTTCACCCTCCTGGGCCACC$ AGATCTTTTTTGACCAGCGAGGGGACCTACTCATGCGCCTGGAGATCATCCAGGGACGGTGGGACCTGA GCCAGAACCTTTCTGGAGCGTCGCCTCCTACTGCCCGGTGCTACGACGGCTGAGGGCCATCCGTGACGT CTCCTGGCACACGGCCAACACACGGTCAGCTCTCGGAGGGCTGGTGGGGGGCTGGGACCTGGGTCTGG GCACTGGCTCGTGCAGGGGTGGCAAGGGCCCTGTGGACCTGAGATCCATTATCGAGCACTGATGTCATC CCTATTTGTGGGTGTCCCTCCCCATTGACTAAGCACTGTGGAAGTCTAGAGCTTTCTGGATCCTCAG GACCCAGGGGCTCAGGGGGCTGCACAAAGTGAACGTTAGGTGGACACGTGTGTGCTAAGGACTTCAATT CTCATGTCAACCCTAGGAAATAGAGAGTACTGTTCCTCCTGTCTTTGGGGTTGGGAAACTGGAGGCACA GAGGGGGTCGCGTGACCCATAAAAGGCCACACAGCTTTCGCATGTCTCTATACACAGCATTCAGTCTAC ATCCCATCGATTAGTACTCGCGTTTTGGGGACAGTAGCTGTGCCTTCACCTGTGTCTGACATCTGTCAG TCTGAAAGCTCCTTTGTTTTACCCTCTTAGCTTACAAGCTGTCAGAATGGCCGCGATGTGGGGAAGGTA GAGACTCAGCCTCGTGGGGAAGGGGGGGGGGGGGGGCCTAAAAGTTCAAAGACCCAGGGCACCTGGG TGGCTCAGTCAGCTCAGCATCCGACTCTGGATCTCAGCTCAGTCTTGATCTCAGGTCGTGAGTTTAGAC NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGATCCCCGTGTCCATGTGTTCCAAGGACTGCCAGCCT GGGCAAAGGAAGAAGCCCGTGGGTATTCATCCCTGCTGCTTCGAGTGTCTCGACTGCCTTCCGGGCACC TTCCTCAACCAAACTGCAGATGGGACTCACAGACCCACACCCCTGCCCTGCCCTGCCCTGCCCCGCCCT Docket No.: MON-0298

App No.: Not Yet Assigned

Filed: Herewith

Title: TASTE RECEPTORS OF THE T1R FAMILY FROM DOMESTIC CAT

Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand

Attorney: Felicity E. Groth
Sheet 24 of 25

•

Phone: (215) 568-3100

24/25

Figure 7D

GGGGCTCCCAGGGCCCTTCATCTTTGGCAGGGTCTCTGGAGTCTCATCCAGGGGACACAGGTGTCCAAA GGCCAGGGACCATGTTTTGACTCCGCTTGTATCTCCCTAACCGCTGGTGTAAGAAAAATCTTCAATGCT GTGAGGGCGTGGGGGGGAGAAGGAACAGCCCTCAACCAGGCGAGGCTGTAACTGATCCCCTCTGCAC AATGAACGAACGAACAAACACACAAATGAATGAATGTCTCTGTCCGTAGAAGAAATGTTTCTGGCAGAC AGGGCTAGGATCTAATTTCTCTCTGTGGCCTCCCGAGTGCCTCGTGTAGTTCGGAGCATATAATGTTTG CTCAGTGAATGTTTATTGAGTGACATCCTTGATGAGAAGAATTGACATCTCCCCCTATAGATCATAAAC TCCAGGAAAGGGGGGACAATGTCATCCCTCCAGTGTTTACCACAGTTCACCGTTGGGGCCGAATTATTT TTTTTTCATGACTTCACAGATTAGTAACTAAGCGGTTCTGTACATCTACCGATCAGAGTACTTACGACG TCAAAAAGAAACTTGAATAAACGGTCGAATGTCCATCTCACCAGAGGGTACGGTCTTGGAAGGGAGGCA TTACGGTTGCCAGGCTCTGAGTCAAGGGGACCTTGGACCACATCCTGCCTCTGTAACTGGTTTTGTAAC NGCCTGGAGGAGCCTCAGATGCCACATCTGTGAAATGGGGTTGCAGTGAGGATCTGATGGGCCGGTGGA GGGCTCTTGCAGACGAGTTTGGCTGCCGGCCCTGCCCGAGTTGCGGGTGGTCCCGGAGGAACGACGCTT CGTGCTTCAAGCGGCGGCTGGCCTCCCTTGAATGACGCGAGGCACCCGCCGTCGCTGTGGCCGTGCTGT CCATCCTGGGCTCCCTCTGCACCCTGGCCATCCTGGTGATCTTCTGGAGGCACCGCCACGCCCCATGG TTCGCTCGGCCGGGGGCCCCAGGTGCTTCCCGATGCCGATGCCCCTGCTGTATAGGTGACGGTCTCCAT GTACATCGGGCAGCCCGCGTTTTTCATGTGCCTCGGCCACCAGACCCTCTTCACCCTCTGCTTCACCGT GCGTGCCTACGGCTACTGGGTCCGCTACCACGGGCCCTGTGTCTTCGTGGCGTCCTTCACGGTGCTCAA CCCCAAGATCGCGGTTCTCGCCTGCAACTACCACAACGTGCTCCTGTTCGACACCAGCCTGGACCCGCT TCTGTCCGTGGCGGGCTTCGCCTTCGCCTACGTGGGCAAGGAGCTGCCCACCACCACCAACGAGGCCAA CGAGGGGGTCCTGGTCACCATCCTGCACCTCGTGGTGGCAGTGCTCAACCTTCTGGGCGCTTTGGCCCC TGGGCTACTTCGGCCCCAAGTGCTGCGTGGTCCTCTTCTACCCGGATCACAACACGCCCGTCTACTTCA GCAGCATGATTCAGGGCTACACCACCGGGAAGGACTAGCACTGCCCCTGGCTGCCCAGGGGGCCAGAG GGCTCGGTACTGGGAGATGGAGACCAGGGGTGGGGGTTGGTGGTGGTGACTCATTCAGCCCCTGCTG GGAGCAGGGACACCACCCCGCCCTACTCTGATTTGGCCTCCCCTCCAGGTTCTCTGCACCCTGGCC GTTTTTACCCACCGCTGGTGGATGCCTAAAAATACGCTTTCCCTGCAGCCGTTTGGCTTGCCAGGCAC TGCCACCCATGCTAGGGAAAGGAGCCGGGGTGACCTCCCTATGGGTCTCCAAGACAGAGATGGAGCGAA GCAGCCCACAGTCGCCATCTGGTGGTCACAGCGGGTGTCCGCAGGTTCCGGCTCCGGGCAGCCATGCTG GAAGGCTGGGCTGGTGTTGGGGGGACATCTGCCCGGCATCATTCACTCCCTGCCCACGTGTCTG CGCCTCACCTCCCAGACTCCCCCGCCCCCAGCTTGGGACCCAGCTTGGGACCCAGCTTCTGAGTCA Docket No.: MON-0298

App No.: Not Yet Assigned Filed: Herewith

Tide: TASTE RECEPTORS OF THE TIR FAMILY FROM DOMESTIC CAT

Inventors: Xia Li, Weihua Li, Danielle R. Reed, Alexander Alexeyevich Bachmanov, Joseph G.

Brand

Attorney: Felicity E. Groth Sheet 25 of 25

Phone: (215) 568-3100

25/25

Figure 7E

 $\tt TGGCTGCGCATAGGGGCTGCTTCATAAATGCTTATGAATAAACCTCCCTTGGGTGAAACGAAGGCGTTT$ $\verb|CCTCAGCTTCCATTTCCGCGTTGCCACTTCTGANCCGTGTACTTTGGGCCAATTCTATTTACTGTTTCG|\\$ GANCCTACACGGNCCCTTTCCTNAAATAGGAACAATAAACCAGGGGCACCTTTGACNCACTGTGTAGTA NCCAATTTGACGATAANTTTTTTTAAAAGATTAAATTAATCNGATAAATT

031904

Mon0298.ST25.txt SEQUENCE LISTING

Li, Xia Li, Weihua Reed, Danielle R. Bachmanov, Alexander A. Brand, Joseph G.

<120> TASTE RECEPTOR OF THE TIR FAMILY FROM DOMESTIC CAT

<130> MON-0298

<160> 98

<170> PatentIn version 3.2

<210> 1 <211> 2569 <212> DNA

<213> Felis catus

<400> 1

atgcccggcc tcgctctcct gggcctcacg gctctcctgg gcctcacggc tctcttggac 60 cacggggagg gcgcaacgtc ctgcttgtca cagcagctca ggatgcaggg ggactatgtg 120 ctgggtgggc tcttccctct gggctctgcc gagggtacag gtcttggcga cgggctgcag 180 cccaatgcca ccgtgtgcac caggttctcg tctctgggcc tgctctgggc gctggccgtg 240 aagatggcgg tggaggagat caacaacggg tcggccctgc tgcccgggct gcacctgggc 300 tatgacetet ttgacaegtg tteagageee atggtggeea tgaageeeag eetegtgtte 360 atggccaaag caggcagctg cagcattgcc gcctactgca attacacaca gtaccagccc 420 cgcgtgctgg ccgtcatcgg gccccactcg tctgagctcg ccctcgtcac cggcaagttc 480 ttcagcttct tccttgtgcc tcaggtcagc tacggcgcca gcaccgaccg gctgagcaac 540 cgggagatet tecegteett etteegeaeg gtgeecageg accaggtgea ggtggegee 600 atggtggagc tgctggagga gctcggctgg aactgggtgg cggcggtggg tagtgacqac 660 gagtatggcc ggcagggcct gagcctcttc tccggcctgg ccagcgccag gggcatctgc 720 ategegeatg agggeetggt gecaetgeeg ecaggeagee tgeggetggg egecetaeag 780 ggcctgctgc gccaggtgaa ccagagcagc gtgcaggtgg tggtqctgtt ctcctccqcc 840 cacgeggeee geaccetett cagetacage ateegetgea ageteteace caaggtgtgg 900 gtggccagcg aggcctggct gacctcagac ctggtcatga cgctgcccgg catgcctqqq 960 gtgggcaccg tgctgggctt cctgcagcag ggcgccccga tgccggagtt cccatcctac 1020 gtgcggaccc gcctggccct ggccgctgac cctgccttct gcgcctcgct ggacqctgaa 1080 cagocaggoo tggaggagca cgtggtgggg ccacgctgcc cccaatqtga ccacqtcacq 1140 ctagagaacc tatctgcggg gctgctgcac caccagacct tcgctgccta cgcggctgtg 1200 tatggcgtgg cccaagccct tcacaacaca ctgcgctgca atgcctcggg ctqccccaqg 1260 egggageetg tgeggeeetg geageteeta gagaacatgt acaaegtgag etteegtget 1320 cgcggcctgg cactgcagtt cgacgccagc gggaacgtga acgtggatta cgacctgaaa 1380 ctgtgggtgt ggcaggaccc gacgcccgag ctgcqcaccq taggcacctt caaqqqccqc 1440

ctggagctct	ggcgctctca	gatgtgctgg	cacacgccgg	ggaagcagca	gcccgtgtcc	1500
çagtgctccc	ggcagtgcaa	ggaaggccag	gtgcgccgcg	tgaagggctt	ccactcttgc	1560
tgttacaact	gcgtggactg	caaggcgggc	agttatcagc	gcaacccaga	tgacctcctc	1620
tgcacccagt	gtgaccagga	ccagtggtcc	ccagaccgga	gcacacgctg	cttcgcccgc	1680
aagcccatgt	tcctggcatg	gggggagcca	gctgtgctgc	tactgctcgc	gctgctggct	1740
ctggcgctgg	gcctggcgct	ggcagccctg	gggctcttcc	tctggcactc	ggacagcccg	1800
ctggttcagg	cctcaggtgg	gccacgggcc	tgctttggcc	tggcttgcct	gggcctggtc	1860
tgcctcagtg	tcctcctgtt	ccctggccag	ccaggccctg	ccagctgcct	ggcccagcag	1920
ccactgttcc	acctcccact	cactggctgc	ctgagcacgt	ttttcctgca	agcggccgag.	1980
atatttgtgg	ggtcggagct	gccaccaagc	tgggctgaga	agatgcgtgg	ccgcctgcgg	2040
gggccctggg	cctggctggt	ggtgctgctt	gctatgctgg	cagaagccgc	attgtgtgcc	2100
tggtacctgg	tagccttccc	gccagaggtg	gtgacggact	ggcgggtact	gcccacagag	2160
gcgctggtgc	actgccacgt	gcactcctgg	atcagcttcg	gcctggtgca	tgccactaac	2220
gccatgctgg	ccttcctctg	cttcctgggc	actttcctgg	tgcagagccg	gccaggccgc	2280
tacaatggtg	cccgcggcct	cacctttgcc	atgctggcct	acttcatcac	ctggatctcc	2340
tttgtgcccc	tctttgccaa	tgtgcacgtg	gcctaccagc	ctgccgtgca	gatgggcacc	2400
atcctcctct	gtgccctggg	tatcctagcc	accttccacc	tgcccaagtg	ctacctgctg	2460
ctgcagcggc	cggagctcaa	cacccctgag	ttcttcctgg	aagacaatgc	cagagcacag	2520
ggcagcagtt	gggggcaggg	gaggggagaa	tcggggcaaa	aacaagtga		2569

<210> 2 <211> 865 <212> PRT <213> Felis catus

<400> 2

Met Pro Gly Leu Ala Leu Leu Gly Leu Thr Ala Leu Leu Gly Leu Thr 10

Ala Leu Leu Asp His Gly Glu Gly Ala Thr Ser Cys Leu Ser Gln Gln 20 25 30

Leu Arg Met Gln Gly Asp Tyr Val Leu Gly Gly Leu Phe Pro Leu Gly

Ser Ala Glu Gly Thr Gly Leu Gly Asp Gly Leu Gln Pro Asn Ala Thr

Val Cys Thr Arg Phe Ser Ser Leu Gly Leu Leu Trp Ala Leu Ala Val 65 70 80

Lys Met Ala Val Glu Glu Ile Asn Asn Gly Ser Ala Leu Leu Pro Gly 85

4.5

Leu	His	Leu	Gly	Tyr	Asp	Leu	Phe	Asp	Thr	Cys	Ser	Glu	Pro	Met	Val
			100					105					110		

- Ala Met Lys Pro Ser Leu Val Phe Met Ala Lys Ala Gly Ser Cys Ser 115 120 125
- Ile Ala Ala Tyr Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala 130 135 140
- Val Ile Gly Pro His Ser Ser Glu Leu Ala Leu Val Thr Gly Lys Phe 145 150 155 160
- Phe Ser Phe Phe Leu Val Pro Gln Val Ser Tyr Gly Ala Ser Thr Asp
- Arg Leu Ser Asn Arg Glu Ile Phe Pro Ser Phe Phe Arg Thr Val Pro 180 185 190
- Gly Trp Asn Trp Val Ala Ala Val Gly Ser Asp Asp Glu Tyr Gly Arg 210 215 220
- Gln Gly Leu Ser Leu Phe Ser Gly Leu Ala Ser Ala Arg Gly Ile Cys 225 230 235 240
- Ile Ala His Glu Gly Leu Val Pro Leu Pro Pro Gly Ser Leu Arg Leu 245 250 255
- Gly Ala Leu Gln Gly Leu Leu Arg Gln Val Asn Gln Ser Ser Val Gln 260 265 270
- Val Val Leu Phe Ser Ser Ala His Ala Ala Arg Thr Leu Phe Ser 275 280 285
- Tyr Ser Ile Arg Cys Lys Leu Ser Pro Lys Val Trp Val Ala Ser Glu 290 . 295 300
- Ala Trp Leu Thr Ser Asp Leu Val Met Thr Leu Pro Gly Met Pro Gly 305 310 315 320
- Val Gly Thr Val Leu Gly Phe Leu Gln Gln Gly Ala Pro Met Pro Glu 325 330 335
- Phe Pro Ser Tyr Val Arg Thr Arg Leu Ala Leu Ala Ala Asp Pro Ala 340 345 350
- Phe Cys Ala Ser Leu Asp Ala Glu Gln Pro Gly Leu Glu Glu His Val
- Val Gly Pro Arg Cys Pro Gln Cys Asp His Val Thr Leu Glu Asn Leu 370 375 380

Ser 385	Ala	Gly	Leu	Leu	His 390	His	Gln	Thr	Phe	Ala 395	Ala	Tyr	Ala	Ala	Val 400
Tyr	Gly	Val	Ala	Gln 405	Ala	Leu	His	Asn	Thr 410	Leu	Arg	Суз	Asn	Ala 415	Ser
Gly	Cys	Pro	Arg 420	Arg	Glu	Pro	Val	Arg 425	Pro	Trp	Gln	Leu	Leu 430	Glu	Asn
Met	Tyr	Asn 435	Val	Ser	Phe	Arg	Ala 440	Arg	Gly	Leu	Ala	Leu 445	Gln	Phe	Asp
Ala	Ser 450	Gly	Asn	Val	Asn	Val 455	Asp	Tyr	Asp	Leu	Lys 460	Leu	Trp	Val	Trp
Gln 465	Asp	Pro	Thr	Pro	Glu 470	Leu	Arg	Thr	Val	Gly 475	Thr	Phe	Lys	Gly	Arg 480
Leu	Glu	Leu	Trp	Arg 485	Ser	Gln	Met	Cys	Trp 490	His	Thr	Pro	Gly	Lys 495	Gln
Gln	Pro	Val	Ser 500	Gln	Суѕ	Ser	Arg	Gln 505	Cys	Lys	Glu	Gly	Gln 510	Val	Arg
Arg	Val	Lys 515	Gly	Phe	His	Ser	Cys 520	Cys	Tyr	Asn	Cys	Val 525	Asp	Cys	Lys
Ala	Gly 530	Ser	Tyr	Gln	Arg	Asn 535	Pro	Asp	Asp	Leu	Leu 540	Cys	Thr	Gln	Суѕ
Asp 545	Gln	Asp	Gln	Trp	Ser 550	Pro	Asp	Arg	Ser	Thr 555	Arg	Суѕ	Phe	Ala	Arg 560
Lys	Pro	Met	Phe	Leu 565	Ala	Trp	Gly	Glu	Pro 570	Ala	Val	Leu	Leu	Leu 575	Leu
Ala	Leu	Leu	Ala 580	Leu	Ala	Leu	Gly	Leu 585	Ala	Leu	Ala	Ala	Leu 590	Gly	Leu
Phe	Leu	Trp 595	His	Ser	Asp	Ser	Pro 600	Leu	Val	Gln	Ala	Ser 605	Gly	Gly	Pro
Arg	Ala 610	Cys	Phe	Gly	Leu	Ala 615	Суѕ	Leu	Gly	Leu	Val 620	Cys	Leu	Ser	Val
Leu 625	Leu	Phe	Pro	Gly	Gln 630	Pro	Gly	Pro	Ala	Ser 635	Cys	Leu	Ala	Gln	Gln 640
Pro	Leu	Phe	His	Leu 645	Pro	Leu	Thr	Gly	Cys 650	Leu	Ser	Thr	Phe	Phe 655	Leu

The second of the

Gln	Ala	Ala	Glu 660	Ile	Phe	Val	Gly	Ser 665	Glu	Leu	Pro	Pro	Ser 670	Trp	Ala
Glu	Lys	Met 675	Arg	Gly	Arg	Leu	Arg 680	Gly	Pro	Trp	Ala	Trp 685	Leu	Val	Val
Leu	Leu 690	Ala	Met	Leu	Ala	Glu 695	Ala	Ala	Leu	Суз	Ala 700	Trp	Tyr	Leu	Val
Al a 705	Phe	Pro	Pro	Glu	Val 710	Val	Thr	Asp	Trp	Arg 715	Val	Leu	Pro	Thr	Glu 720
Ala	Leu	Val	His	Cys 725	His	Val	His	Ser	Trp 730	Ile	Ser	Phe	Gly	Leu 735	Val
His	Ala	Thr	Asn 740	Ala	Met	Leu	Ala	Phe 7 4 5	Leu	Cys	Phe	Leu	Gly 750	Thr	Phe
Leu	Val	Gln 755	Ser	Arg	Pro	Gly	Arg 760	Tyr	Asn	Gly	Ala	Arg 765	Gly	Leu	Thr
Phe	Ala 770	Met	Leu	Ala	Tyr	Phe 775	Ile	Thr	Trp	Ile	Ser 780	Phe	Val	Pro	Leu
Phe 785	Ala	Asn	Val	His	Val 790	Ala	Tyr	Gln	Pro	Ala 795	Val	Gln	Met	Gly	Thr 800
Ile	Leu	Leu	Cys	Ala 805	Leu	Gly	Ile	Leu	Ala 810	Thr	Phe	His	Leu	Pro 815	Lys
Cys	Tyr	Leu	Leu 820	Leu	Gln	Arg	Pro	Glu 825	Leu	Asn	Thr	Pro	Glu 830	Phe	Phe
Leu	Glu	Asp 835	Asn	Ala	Arg	Ala	Gln 840	Gly	Ser	Ser	Trp	Gly 845	Gln	Gly	Arg
Gly	Glu 850	Ser	Gly	Gln	Lys	Gln 855	Val	Thr	Pro	Asp	Pro 860	Val	Thr	Ser	Pro
Gln 865															
<210 <211 <212 <213	L> 2 2> [3 2532 DNA Mus 1	muscu	ılus											
<400 atg			aggco	gagga	ac a	ctcca	attto	g cto	gttto	ctcc	tgct	gcat	gc t	ctgo	ctaag
cca	gtcat	igc t	ggta	aggga	aa ct	ccga	acttt	cac	cctg	gctg	ggga	actac	ect o	cctg	ggtggc
ctct	tttac	ccc t	ccat	gcca	aa co	gtgaa	agago	gto	ctctc	cacc	tcac	ctac	cct d	cado	taccc

aagtgcaatg agtacaacat gaaggtettg ggetacaace teatgcagge catgegatte

60 120 180

240

Mon0298.ST25.txt gccgtggagg aaatcaacaa ctgtagctct ctgctgcccg gcgtgctgct cggctacgag 300 atggtggatg tctgctacct ctccaacaat atccagcctg ggctctactt cctgtcacag 360 atagatgact tectgeecat ceteaaagac tacagecagt acaggeeca agtggtggee 420 gtcattggcc cagacaactc tgagtccgcc atcaccgtgt ccaacattct ctcctacttc 480 ctcgtgccac aggtcacata tagcgccatc accgacaagc tgcgagacaa gcgqcqcttc 540 cctgccatgc tgcgcactgt gcccagcgcc acccaccaca tcgaggccat ggtgcaactg 600 atggttcact tccagtggaa ctggatcgtg gtgctggtga gcgatgacga ttatggccga 660 gagaacagcc acctgctgag ccagcgtctg accaacactg gcgatatctg cattgccttc 720 caggaggttc tgcctgtacc agaacccaac caggccgtga ggcctgagga gcaggaccaa 780 ctggacaaca tcctggacaa gctgcggcgg acctcggcgc gtgtggtggt gatattctcg 840 ccagagctga gcctgcacaa cttcttccgc gaggtgctgc gctggaactt cacaggcttt 900 gtgtggattg cctctgagtc ctgggccatc gaccctgttc tacacaacct cacagagctg 960 cgccacacgg gcactttcct gggcgtcacc atccagaggg tgtccatccc tggcttcagc 1020 cagttccgag tgcgccacga caagccagag tatcccatgc ctaacgagac cagcctgagg 1080 actacctgta accaggactg tgacgcctgc atgaacatca ccgagtcctt taacaacgtt 1140 ctcatgcttt cgggggagcg tgtggtctac agtgtgtact cggccgtcta cgcggtagcc 1200 cacaccetee acagaeteet ecactgeaac caggteeget geaccaagea aategtetat 1260 ccatggcagc tactcaggga gatctggcat gtcaacttca cgctcctggg caaccaqctc 1320 ttettegacg aacaagggga catgeegatg etectggaca teatecagtg geaatgggge 1380 ctgagccaga accccttcca aagcatcgcc tectactece ccaccgagac gaggetgace 1440 tacattagca atgtgtcctg gtacaccccc aacaacacgg tccccatatc catgtgttct 1500 aagagttgcc agcctgggca aatgaaaaaa cccataggcc tccacccgtg ctgcttcgag 1560 tgtgtggact gtccgccggg cacctacctc aaccgatcag tagatgagtt taactgtctg 1620 tectgeeegg gtteeatgtg gtettacaag aacaacateg ettgetteaa geggeggetg 1680 gccttcctgg agtggcacga agtgcccact atcgtggtga ccatcctggc cgccctgggc 1740 ttcatcagta cgctggccat tctgctcatc ttctggagac atttccagac gcccatggtg 1800 cgctcggcgg gcggccccat gtgcttcctg atgctggtgc ccctgctgct ggcgttcggg 1860 atggtccccg tgtatgtggg ccccccacg gtcttctcct gtttctgccg ccaggctttc 1920 ttcaccgttt gcttctccgt ctgcctctcc tgcatcacgg tgcgctcctt ccagattgtg 1980 tgcgtcttca agatggccag acgcctgcca agcgcctacg gtttctggat gcgttaccac 2040 gggccctacg tctttgtggc cttcatcacg gccgtcaagg tggccctggt ggcaggcaac 2100 atgctggcca ccaccatcaa ccccattggc cggaccgacc ccgatgaccc caatatcata 2160 atceteteet gecaceetaa etacegeaae gggetaetet teaacaceag catggaettg 2220 ctgctgtccg tgctgggttt cagcttcgcg tacgtgggca aggaactgcc caccaactac 2280

2340

aacgaagcca agttcatcac cctcaqcatq accttctcct tcacctcctc catctccctc

tgcacgttca tg	tctgtcca cgat	ggcgtg ctg	ggtcacca	tcatggatct	cctggtcact	2400
gtgctcaact tte	ctggccat cggc	ttgggg tac	ctttggcc (ccaagtgtta	catgatcctt	2460
ttctacccgg ag	cgcaacac ttca	gcttat tto	caatagca 1	tgattcaggg	ctacacgatg	2520
aggaagagct ag						2532
<210> 4 <211> 2529 <212> DNA <213> Rattus	rattus					
<400> 4 atgggtcccc age	gcaaggac actc	tgcttg ctg	gtetetee 1	tgctgcatgt	tctgcctaag	60
ccaggcaagc tg	gtagagaa ctct	gacttc cac	cctggccg (gggactacct	cctgggtggc	120
ctctttaccc tc	catgccaa cgtg	aagagc ato	ctcccacc 1	tcagctacct	gcaggtgccc	180
aagtgcaatg ag	ttcaccat gaag	gtgttg ggd	ctacaacc f	tcatgcaggc	catgcgtttc	240
gctgtggagg ag	atcaacaa ctgt	agctcc ctg	gctacccg (gcgtgctgct	cggctacgag	300
atggtggatg tc	tgttacct ctcc	aacaat ato	ccaccctg q	ggctctactt	cctggcacag	360
gacgacgacc tc	ctgcccat cctc	aaagac tac	cagccagt a	acatgcccca	cgtggtggct	420
gtcattggcc cc	gacaactc tgag	tccgcc att	taccgtgt (ccaacattct	ctctcatttc	480
ctcatcccac aga	atcacata cago	gccatc tcc	cgacaagc 1	tgcgggacaa	gcggcacttc	540
cctagcatgc tac	cgcacagt gccc	agcgcc acc	ccaccaca 1	tcgaggccat	ggtgcagctg	600
atggttcact tc	caatggaa ctgg	attgtg gtg	gctggtga (gcgacgacga	ttacggccgc	660
gagaacagcc acc	ctgttgag ccag	cgtctg acc	caaaacga q	gcgacatctg	cattgccttc	720
caggaggttc tgd	cccatacc tgag	tccagc cag	ggtcatga g	ggtccgagga	gcagagacaa	780
ctggacaaca tc	ctggacaa gctg	cggcgg acc	ctcggcgc (gcgtcgtggt	ggtgttctcg	840
cccgagctga gcc	ctgtatag cttc	tttcac gag	ggtgctcc	gctggaactt	cacgggtttt	900
gtgtggatcg cc	tctgagtc ctgg	gctatc gac	ccagttc 1	tgcataacct	cacggagctg	960
cgccacacgg gta	acttttct gggc	gtcacc atc	ccagaggg t	tgtccatccc	tggcttcagt	1020
cagttccgag tgo	cgccgtga caag	ccaggg tat	cccgtgc d	ctaacacgac	caacctgcgg	1080
acgacctgca acc	caggactg tgac	gcctgc ttg	gaacacca d	ccaagtcctt	caacaacatc	1140
cttatacttt cg	ggggagcg cgtg	gtctac ago	cgtgtact d	cggcagttta	cgcggtggcc	1200
catgeeetee aca	agactcct cggc	tgtaac cgg	ggtccgct	gcaccaagca	aaaggtctac	1260
ccgtggcagc tac	ctcaggga gatc	tggcac gtc	caacttca d	cgctcctggg	taaccggctc	1320
ttctttgacc aad	caagggga catg	ccgatg ctc	cttggaca 1	tcatccagtg	gcagtgggac	1380
ctgagccaga ato	cccttcca aagc	ategee tee	ctattctc o	ccaccagcaa	gaggctaacc	1440
tacattaaca ato	gtgtcctg gtac	accccc aac	caacacgg 1	tccctgtctc	catgtgttcc	1500
aagagctgcc ag	ccagggca aatg	aaaaag tct	tgtgggcc 1	tccacccttg	ttgcttcgag	1560
tgcttggatt gta	atgccagg cacc	tacctc aac	ccgctcag (cagatgagtt	taactgtctg	1620
tcctgcccgg gt	tccatgtg gtcc	tacaag aac	cgacatca (cttgcttcca -	gcggcggcct	1680
			D =	~~ 7		

accttcctgg agtggcacga agtgcccacc atcgtggtgg ccatactggc tgccctgggc 174 ttcttcagta cactggccat tcttttcatc ttctggagac atttccagac acccatggtg 186	
	00
egeteggeeg gtggeeceat gtgetteetg atgetegtge eeetgetget ggegtttggg 186	60
atggtgcccg tgtatgtggg gccccccacg gtcttctcat gcttctgccg acaggctttc 192	20
ttcaccgtct gcttctccat ctgcctatcc tgcatcaccg tgcgctcctt ccagatcgtg 198	80
tgtgtcttca agatggccag acgcctgcca agtgcctaca gtttttggat gcgttaccac 204	40
gggccctatg tettegtggc etteateacg gccateaagg tggccctggt ggtgggcaac 210	00
atgetggeca ceaecateaa ecceattgge eggaeegaee eggatgaeee caacateatg 216	60
atcetetegt gecacectaa etacegeaac gggetaetgt teaacaceag catggaettg 222	20
ctgctgtctg tgctgggttt cagcttcgct tacatgggca aggagctgcc caccaactac 228	80
aacgaagcca agttcatcac tctcagcatg accttctcct tcacctcctc catctccctc 234	40
tgcaccttca tgtctgtgca cgacggcgtg ctggtcacca tcatggacct cctggtcact 240	00
	60
gtgctcaact tcctggccat cggcttggga tactttggcc ccaagtgtta catgatcctt 246	
gtgctcaact tcctggccat cggcttggga tactttggcc ccaagtgtta catgatcctt 246 ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg 252	20
ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg 252 aggaagagc 252 <210> 5 <211> 2520 <212> DNA <213> Homo sapiens	
ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg 252 aggaagagc 252 <210> 5 <211> 2520 <212> DNA <213> Homo sapiens <400> 5	
ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg aggaagagc 252 <210> 5 <211> 2520 <212> DNA <213> Homo sapiens <400> 5 atggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag	29
ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg aggaagagc 252 <210> 5 <211> 2520 <212> DNA <213> Homo sapiens <400> 5 atggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag ccggctgaga actcggactt ctacctgcct ggggattacc tcctgggtgg cctcttctcc 12	29 60
ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg aggaagagc 252 <210> 5 <211> 2520 <212> DNA <213> Homo sapiens <400> 5 atggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag ccggctgaga actcggactt ctacctgcct ggggattacc tcctgggtgg cctcttctcc ctccatgcca acatgaaggg cattgttcac cttaacttcc tgcaggtgcc catgtgcaag 18	29 60 20
ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg 252 aggaagagc 252 <210> 5 <211> 2520 <212> DNA <213> Homo sapiens <400> 5 atggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag ccggctgaga actcggactt ctacctgcct ggggattacc tcctgggtgg cctcttctcc ctccatgcca acatgaaggg cattgttcac cttaacttcc tgcaggtgcc catgtgcaag gagtatgaag tgaaggtgat aggctacaac ctcatgcagg ccatgcgctt cgcggtggag 24 gagtatgaag tgaaggtgat aggctacaac ctcatgcagg ccatgcgctt cgcggtggag 24	29 60 20 80
ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg aggaagagc 252 <210> 5 <211> 2520 <212> DNA <213> Homo sapiens <400> 5 atggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag ccggctgaga actcggactt ctacctgcct ggggattacc tcctgggtgg cctcttctcc ctccatgcca acatgaaggg cattgttcac cttaacttcc tgcaggtgc catgtgcaag gagtatgaag tgaaggtgat aggctacaac ctcatgcagg ccatgcgct cgcggtggag gagatcaaca atgacagcag cctgctgcct ggtgtgctgc tgggctatga gatcgtggat 30 30 30 30 30 30 30 30 30 3	29 60 20 80
ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg 252 aggaagagc 252 <210> 5 <211> 2520 <212> DNA <213> Homo sapiens <400> 5 atggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag ccggctgaga actcggactt ctacctgcct ggggattacc tcctgggtgg cctcttctcc ctccatgcca acatgaaggg cattgttcac cttaacttcc tgcaggtgcc catgtgcaag gagtatgaag tgaaggtgat aggctacaac ctcatgcagg ccatgcgctt cgcggtggag gagatcaaca atgacagcag cctgctgcct ggtgtgctgc tgggctatga gatcgtggat gtgtgctaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	29 60 20 80 40
aggaagagc 252 <pre> 252 aggaagagc 252 <pre> 2210> 5 <pre> 2211> 2520 <pre> 2212> DNA <pre> 2213> Homo sapiens</pre> <pre> <400> 5 atggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag ccggctgaga actcggact ctacctgctc ggggattacc tcctgggtgg cctcttctcc tcccatgcca acatgaaggg cattgttcac cttaacttcc tgcaggtgc catgtgcaag gagtatgaag tgaaggtgat aggctacaac ctcatgcagg ccatgcgct cgcggtggag gagatcaaca atgacagcag cctgctgct ggtgtgctgc tgggctatga gatcgtggat gtgtgctaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac ctccttccca tccaagagga ctacaagtaac tacatttcc gtgtggtggc tgtcattggc 42</pre> <pre> ctccttccca tccaagagga ctacaagtaac tacatttcc gtgtggtggc tgtcattggc aggatatgaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac ctccttccca tccaagagga ctacagtaac tacatttccc gtgtggtggc tgtcattggc 42</pre></pre></pre></pre></pre>	60 20 80 40 00
ttetaccegg agegeaacae etcagectat tteaatagea tgatecaggg etacaccatg 252 aggaagage 252 <210> 5 <211> 2520 <212> DNA <213> Home sapiens <400> 5 atggggeeca gggeaaagae catetgetee etgttettee teetatgggt eetgetgag ecceggetgaga acteggaet etacetgeet ggggattace teetgggtgg ectettetee etceatggea acatggaagg eattgtteae ettaacttee tgeaggtgee eatggeaag gagtatgaag tgaaggtgat aggetacaae etcatgeagg ecatggeet egeggtgag 24 gagateaaca atgacageag eetgetgeet ggtgtgetge tgggetatga gategtggat 36 gtgtgetaca tetecaacaa tgtecageeg gtgetetaet teetggeaca egaggaeaae 36 etcetteeca tecaagagga etacagtaae tacattteee gtgtggtgge tgteattgge 42 ectgaeaact eegagtetgt eatgaetgtg geeaacttee tetecetatt teteetteea 48 ectgaeaact eegagtetgt eatgaetgtg geeaacttee teteeetatt teteetteea	60 20 80 40 00 60.
ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg aggaagagc 252 2210> 5 2211> 2520 2212> DNA 2213> Homo sapiens <400> 5 atggggccca gggcaaagac catctgctce ctgttcttce tcctatgggt cctggctgag ccggctgaga actcggactt ctacctgcct ggggattace tcctgggtgg cctcttctce ctccatgcca acatgaaggg cattgttcac cttaacttce tgcaggtgc catgtgcaag gagtatgaag tgaaggtgat aggctacaac ctcatgcagg ccatgcgctt cgcggtggag gagatcaaca atgacagcag cctgctgct ggtgtgctgc tgggctatga gatcgtggat gtgtgctaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac ctccttccca tccaagagga ctacagtaca tacatttcc gtgtggtggc tgtcattggc cctgacaact ccgagtctgt catgactgtg gccaacttcc tctccctatt tctccttcca cagatcacct acagcgccat cagcgatgag ctgcgagaca aggtgcgctt cccggctttg 54	29 60 20 80 40 00 60. 20
aggaagage 252 <pre> <210> 5 <211> 2520 <212> DNA <213> Homo sapiens </pre> <pre> <400> 5 atggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag ccggctgaga actcggactt ctacctgctc ggggattacc tcctgggtgg cctcttctcc ctccatgcca acatgaaggg cattgttcac cttaacttcc tgcaggtgc catgtgcaag gagtatgaag tgaaggtgat aggctacaac ctcatgcagg ccatgcgctt cgcggtggag gagatcaaca atgacagcag cctgctgct ggtgtgctgc tgggctatga gatcgtggat gtgtgctaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac ctccttccca tccaagagga ctacagtaac tacatttcc gtgtggtgge tgtcattggc cctgacaact ccgagtctgt catgactgtg gccaacttcc tctccctatt tctcctcca cagatcacct acagcgccat cagcgatgag ctgcaacac aggtgcgct cccggctttg cctgcgtacca cacccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac ctcggtacca cacccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac ctgcgtacca cacccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac cfgcgtacca cacccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac cfgcgtacca cacccagcgc cgaccaccac gtcgaggcca tggtgcagct gatgctgcac cfgcgagacaccaccac gtcgaggcca tggtgcagct gatgctgcac cfgcagaccaccac gatgagccaccac gatgagccaccaccac gatgagccaccaccac gatgagccaccaccac gatgagccaccaccac gatgagccaccaccac gatgagccaccaccac gatgagccaccaccaccaccaccaccaccaccaccaccaccac</pre>	29 60 20 80 40 00 60. 20 80 40
aggaagagc 2522 <210> 5 <211> 2520 <212> DNA <213> Homo sapiens <400> 5 atggggccca gggcaacagc catctgctcc ctgttcttcc tcctatggt cctggctgag cctccatgcca acatgacag catctgctcc ctgattctcc tcctatggt cctggctgag cctcctctcc tcccatgcca acatgacaga catctgctcc cttactcc tgcaggtgc catggtgag aggatagaa tgaaggtgat aggctacaac ctcatgcag ccatggctt cgcggtgag catggtgag catggtgctaca tctccaacaa tgtccagccg gggtgctaca tcctggcaca cgaggacaac ctccttccc tcctatgcag tgcagacac cgaggacaac ctccttccc tcctaggag ccatggtgag catggtgag cgggtgagag catggtgag catggtgag catggtgag cggggagaac ctccttccca tccaacaa tgtccagcag gtgctctact tcctggcaca cgaggacaac ctccttccca tccaagagga ctacagtaac tacatttccc gtgtggtgag tgtcattgag catgagacac cagagacaac cagagacaacacaacaacaacaacaacaacaacaacaaca	60 20 80 40 00 60. 20 80 40
aggaagage 2522 <210> 5 <211> 2520 <212> DNA <213> Homo sapiens <a href<="" td=""><td>29 60 20 80 40 00 60 20 80 40 00 60</td>	29 60 20 80 40 00 60 20 80 40 00 60
aggaagage 252	29 60 20 80 40 00 60 20 40 00 60 20
ttctacccgg agcgcaacac ctcagcctat ttcaatagca tgatccaggg ctacaccatg aggaagagc <250 <2210> 5 <2211> 2520 <212> DNA <213> Homo sapiens <400> 5 atggggccca gggcaaagac catctgctcc ctgttcttcc tcctatgggt cctggctgag ccggctgaga actcggactt ctacctgcct ggggattacc tcctgggtgg cctcttctcc ctccatgcca acatgaaggg cattgttcac cttaacttcc tgcaggtgcc catggtgaag gagtatgaag tgaaggtgat aggctacaac ctcatgcagg ccatgcgctt cgcggtggag gagatcaaca atgacagcag cctgctgct ggtgtgctgc tgggctatga gatcgtgat gtgtgctaca tctccaacaa tgtccagccg gtgctctact tcctggcaca cgaggacaac ctccttccca tccaagagga ctacagtaac tacattccc gtgtgtggc tgtcattggc cctgacaact ccgagtctgt catgactgtg gccaacttcc tctccctatt tctccttcca cagatcacct acagcgccat cagcgatgag ctgcagagaca aggtgcgct cccggctttg ctgcgtacca cacccagcgc cgaccaccac gtcgaggcaa aggtgcgct cccggctttg ctgcgtacca cacccagcgc cgaccaccac gtcgaggcaa tggtgcagct gatgctgcac ttccgctgga actggatcat tgtgctggtg agcagcgaca cctatggccg cgacaatggc cagctgcttg gcgagcgcgt ggcccggcgc gacatctgca tcgccttcca ggagaccgt cccacactgc agcccaacca gaacatgac tcagaggagc gccagcgcct ggtgaccatt gtggacaagc tgcagcagag cacagcgcc gtcgtgtcg tgttctccc cgacctgacc	29 60 20 80 40 00 60 20 80 40 00 60 20 80

	3.ST25.txt gcttcagtga
~~~~-	~~~~~

accttcctgg	gcatcaccat	ccagagcgtg	cccatcccgg	gcttcagtga	gttccgcgag	1020
tggggcccac	aggctgggcc	gccacccctc	agcaggacca	gccagagcta	tacctgcaac	1080
caggagtgcg	acaactgcct	gaacgccacc	ttgtccttca	acaccattct	caggctctct	1140
ggggagcgtg	tcgtctacag	cgtgtactct	gcggtctatg	ctgtggccca	tgccctgcac	1200
agcctcctcg	gctgtgacaa	aagcacctgc	accaagaggg	tggtctaccc	ctggcagctg	1260
cttgaggaga	tctggaaggt	caacttcact	ctcctggacc	accaaatctt	cttcgacccg	1320
caaggggacg	tggctctgca	cttggagatt	gtccagtggc	aatgggaccg	gagccagaat	1380
cccttccaga	gcgtcgcctc	ctactacccc	ctgcagcgac	agctgaagaa	catccaagac	1440
atctcctggc	acaccgtcaa	caacacgatc	cctatgtcca	tgtgttccaa	gaggtgccag	1500
tcagggcaaa	agaagaagcc	tgtgggcatc	cacgtctgct	gcttcgagtg	catcgactgc	1560
cttcccggca	ccttcctcaa	ccacactgaa	gatgaatatg	aatgccaggc	ctgcccgaat	1620
aacgagtggt	cctaccagag	tgagacctcc	tgcttcaagc	ggcagctggt	cttcctggaa	1680
tggcatgagg	cacccaccat	cgctgtggcc	ctgctggccg	ccctgggctt	cctcagcacc	1740
ctggccatcc	tggtgatatt	ctggaggcac	ttccagacac	ccatagttcg	ctcggctggg	1800
ggccccatgt	gcttcctgat	gctgacactg	ctgctggtgg	catacatggt	ggtcccggtg	1860
tacgtggggc	cgcccaaggt	ctccacctgc	ctctgccgcc	aggccctctt	tcccctctgc	1920
ttcacaattt	gcatctcctg	tatcgccgtg	cgttctttcc	agatcgtctg	cgccttcaag	1980
atggccagcc	gcttcccacg	cgcctacagc	tactgggtcc	gctaccaggg	gccctacgtc	2040
tctatggcat	ttatcacggt	actcaaaatg	gtcattgtgg	taattggcat	gctggccacg	2100
ggcctcagtc	ccaccacccg	tactgacccc	gatgacccca	agatcacaat	tgtctcctgt	2160
aaccccaact	accgcaacag	cctgctgttc	aacaccagcc	tggacctgct	gctctcagtg	2220
gtgggtttca	gcttcgccta	catgggcaaa	gagctgccca	ccaactacaa	cgaggccaag	2280
ttcatcaccc	tcagcatgac	cttctatttc	acctcatccg	tctccctctg	caccttcatg	2340
tctgcctaca	gcggggtgct	ggtcaccatc	gtggacctct	tggtcactgt	gctcaacctc	2400
ctggccatca	gcctgggcta	cttcggcccc	aagtgctaca	tgatcctctt	ctacccggag	2460
cgcaacacgc	ccgcctactt	caacagcatg	atccagggct	acaccatgag	gagggactag	2520

<210> 6 <211> 0 <211> 2529 <212> DNA <213> Mus musculus

<400> 6 atgcttttct gggcagctca cctgctgctc agcctgcagc tggccgttgc ttactgctgg 60 gctttcagct gccaaaggac agaatcctct ccaggtttca gcctccctgg ggacttcctc 120 ctggcaggcc tgttctccct ccatgctgac tgtctgcagg tgagacacag acctctggtg 180  ${\tt acaagttgtg} \ {\tt acaagtctga} \ {\tt cagcttcaac} \ {\tt ggccatggct} \ {\tt atcacctctt} \ {\tt ccaagccatg}$ 240 cggttcaccg ttgaggagat aaacaactcc acagctctgc ttcccaacat caccctgggg 300 tatgaactgt atgacgtgtg ctcagagtct tccaatgtct atgccaccct gagggtgctc 360

gcccagcaag	ggacaggcca	cctagagatg	cagagagatc	ttcgcaacca	ctcctccaag	420
gtggtggcac	tcattgggcc	tgataacact	gaccacgctg	tcaccactgc	tgccctgctg	480
agcccttttc	tgatgcccct	ggtcagctat	gaggcgagca	gcgtgatcct	cagtgggaag	540
cgcaagttcc	cgtccttctt	gcgcaccatc	cccagcgata	agtaccaggt	ggaagtcata	600
gtgcggctgc	tgcagagctt	cggctgggtc	tggatctcgc	tcgttggcag	ctatggtgac	660
tacgggcagc	tgggcgtaca	ggcgctggag	gagctggcca	ctccacgggg	catctgcgtc	720
gccttcaagg	acgtggtgcc	teteteegee	caggcgggtg	acccaaggat	gcagcgcatg	780
atgctgcgtc	tggctcgagc	caggaccacc	gtggtcgtgg	tcttctctaa	ccggcacctg	840
gctggagtgt	tcttcaggtc	tgtggtgctg	gccaacctga	ctggcaaagt	gtggatcgcc	900
tccgaagact	gggccatctc	cacgtacatc	accaatgtgc	ccgggatcca	gggcattggg	960
acggtgctgg	gggtggccat	ccagcagaga	caagtccctg	gcctgaagga	gtttgaagag	1020
tcctatgtcc	aggcagtgat	gggtgctccc	agaacttgcc	cagaggggtc	ctggtgcggc	1080
actaaccagc	tgtgcaggga	gtgtcacgct	ttcacgacat	ggaacatgcc	cgagcttgga	1140
gccttctcca	tgagcgctgc	ctacaatgtg	tatgaggctg	tgtatgctgt	ggcccacggc	1200
ctccaccagc	tcctgggatg	tacctctggg	acctgtgcca	gaggcccagt	ctacccctgg	1260
cagcttcttc	agcagatcta	caaggtgaat	ttccttctac	ataagaagac	tgtagcattc	1320
gatgacaagg	gggaccctct	aggttattat	gacatcatcg	cctgggactg	gaatggacct	1380
gaatggacct	ttgaggtcat	tggttctgcc	tcactgtctc	cagttcatct	agacataaat	1440
aagacaaaaa	tccagtggca	cgggaagaac	aatcaggtgc	ctgtgtcagt	gtgtaccagg	1500
gactgtctcg	aagggcacca	caggttggtc	atgggttccc	accactgctg	cttcgagtgc	1560
atgccctgtg	aagctgggac	atttctcaac	acgagtgagc	ttcacacctg	ccagccttgt	1620
ggaacagaag	aatgggcccc	tgaggggagc	tcagcctgct	tctcacgcac	cgtggagttc	1680
ttggggtggc	atgaacccat	ctctttggtg	ctattagcag	ctaacacgct	attgctgctg	1740
ctgctgattg	ggactgctgg	cctgtttgcc	tggcgtcttc	acacgcctgt	tgtgaggtca	1800
gctgggggta	ggctgtgctt	cctcatgctg	ggttccttgg	tagctgggag	ttgcagcctc	1860
tacagcttct	tcgggaagcc	cacggtgccc	gcgtgcttgc	tgcgtcagcc	cctcttttct	1920
ctcgggtttg	ccattttcct	ctcctgtctg	acaatccgct	ccttccaact	ggtcatcatc	1980
ttcaagtttt	ctaccaaggt	acccacattc	taccacactt	gggcccaaaa	ccatggtgcc	2040
ggaatattcg	tcattgtcag	ctccacggtc	catttgttcc	tctgtctcac	gtggcttgca	2100
atgtggaccc	cacggcccac	cagggagtac	cagcgcttcc	cccatctggt	gattcttgag	2160
tgcacagagg	tcaactctgt	gggcttcctg	gtggctttcg	cacacaacat	cctcctctcc	2220
atcagcacct	ttgtctgcag	ctacctgggt	aaggaactgc	cggagaacta	taacgaagcc	2280
aaatgtgtca	ccttcagcct	gctcctccac	ttcgtatcct	ggatcgcttt	cttcaccatg	2340
tccagcattt	accagggcag	ctacctaccc	gcggtcaatg	tgctggcagg	gctggccact	2400
ctgagtggcg	gcttcagcgg	ctatttcctc	cctaaatgct	acgtgattct	ctgccgtcca	2460

gaactcaaca acacagaaca	ctttcaggcc	tccatccagg	actacacgag	gcgctgcggc	2520
actacctga					2529
<210> 7 <211> 2520 <212> DNA <213> Rattus rattus					
<400> 7 atgctcttct gggctgctca	cctactactc	agcetgeagt	taateteeta	ctagactttc	60
agetgecaaa ggacagagte					120
ggtctgttct ccctccatgg		-			180
tgtgacagge cegacagett			_		240
			_		300
actgttgagg agataaacaa					360
ctgtacgacg tgtgctcaga					
caagggcccc gccacataga					420
gccttcatcg ggcctgacaa					480
ttcctgatgc ccctggtcag					540
ttcccgtctt tccttcgtac					600
ctgctgcaga gttttgggtg					660
cagctgggtg tgcaggcgct					720
aaggacatcg tgcctttctc	tgcccgggtg	ggtgacccga	ggatgcagag	catgatgcag	780
catctggctc aggccaggac	caccgtggtt	gtggtcttct	ctaaccggca	cctggctaga	840
gtgttcttca ggtccgtggt	gctggccaac	ctgactggca	aagtgtgggt	cgcctcagaa	900
gactgggcca tctccacgta	catcaccagc	gtgactggga	tccaaggcat	tgggacggtg	960
ctcggtgtgg ccgtccagca	gagacaagtc	cctgggctga	aggagtttga	ggagtcttat	1020
gtcagggctg taacagctgc	tcccagcgct	tgcccggagg	ggtcctggtg	cagcactaac	1080
cagctgtgcc gggagtgcca	cacgttcacg	actcgtaaca	tgcccacgct	tggagccttc	1140
tccatgagtg ccgcctacag	agtgtatgag	gctgtgtacg	ctgtggccca	cggcctccac	1200
cageteetgg gatgtactte	tgagatctgt	tccagaggcc	cagtctaccc	ctggcagctt	1260
cttcagcaga tctacaaggt	gaattttctt	ctacatgaga	atactgtggc	atttgatgac	1320
aacggggaca ctctaggtta	ctacgacatc	atcgcctggg	actggaatgg	acctgaatgg	1380
acctttgaga tcattggctc	tgcctcactg	tctccagttc	atctggacat	aaataagaca	1440
aaaatccagt ggcacgggaa	gaacaatcag	gtgcctgtgt	cagtgtgtac	cacggactgt	1500
ctggcagggc accacagggt	ggttgtgggt	tcccaccact	gctgctttga	gtgtgtgccc	1560
tgcgaagctg ggacctttct	caacatgagt	gagcttcaca	tctgccagcc	ttgtggaaca	1620
gaagaatggg cacccaagga	gagcactact	tgcttcccac	gcacggtgga	gttcttggct	1680
tggcatgaac ccatctcttt	ggtgctaata	gcagctaaca	cgctattgct	gctgctgctg	1740

gttgggactg ctggcctgtt	tgcctggcat		ctgtagtgag	gtcagctggg	1800
ggtaggctgt gcttcctcat	gctgggttcc	ctggtggccg	gaagttgcag	cttctatagc	1860
ttcttcgggg agcccacggt	gcccgcgtgc	ttgctgcgtc	agcccctctt	ttctctcggg	1920
tttgccatct tcctctcctg	cctgacaatc	cgctccttcc	aactggtcat	catcttcaag	1980
ttttctacca aggtgcccac	attctaccgt	acctgggccc	aaaaccatgg	tgcaggtcta	2040
ttcgtcattg tcagctccac	ggtccatttg	ctcatctgtc	tcacatggct	tgtaatgtgg	2100
accccacgac ccaccaggga	ataccagcgc	ttcccccatc	tggtgattct	cgagtgcaca	2160
gaggtcaact ctgtaggctt	cctgttggct	ttcacccaca	acattctcct	ctccatcagt	2220
accttcgtct gcagctacct	gggtaaggaa	ctgccagaga	actataatga	agccaaatgt	2280
gtcaccttca gcctgctcct	caacttcgta	tcctggatcg	ccttcttcac	catggccagc	2340
atttaccagg gcagctacct	gcctgcggtc	aatgtgctgg	cagggctgac	cacactgagc	2400
ggcggcttca gcggttactt	cctccccaag	tgctatgtga	ttctctgccg	tccagaactc	2460
aacaatacag aacactttca	ggcctccatc	caggactaca	cgaggcgctg	cggcactacc	2520
<210> 8 <211> 2526 <212> DNA <213> Homo sapiens					
<400> 8 atgctgctct gcacggctcg	cctggtcggc	ctgcagcttc	tcatttcctg	ctgctgggcc	60
tttgcctgcc atagcacgga	gtcttctcct	gacttcaccc	tccccggaga	ttacctcctg	120
gcaggcctgt tccctctcca	ttctggctgt	ctgcaggtga	ggcacagacc	cgaggtgacc	180
ctgtgtgaca ggtcttgtag	cttcaatgag	catggctacc	acctcttcca	ggctatgcgg	240
cttggggttg aggagataaa	caactccacg	gccctgctgc	ccaacatcac	cctggggtac	300
cagctgtatg atgtgtgttc	tgactctgcc	aatgtgtatg	ccacgctgag	agtgctctcc	360
ctgccagggc aacaccacat	agagctccaa	ggagaccttc	tccactattc	ccctacggtg	420
ctggcagtga ttgggcctga	cagcaccaac	cgtgctgcca	ccacagccgc	cctgctgagc	480
cctttcctgg tgcccatgat	tagctatgcg	gccagcagcg	agacgctcag	cgtgaagcgg	540
cagtatecet ettteetgeg	caccatcccc	aatgacaagt	accaggtgga	gaccatggtg	600
ctgctgctgc agaagttcgg	gtggacctgg	atctctctgg	ttggcagcag	tgacgactat	660
gggcagctag gggtgcaggc	actggagaac	caggccactg	gtcaggggat	ctgcattgct	720
ttcaaggaca tcatgccctt	ctctgcccag	gtgggcgatg	agaggatgca	gtgcctcatg	780
cgccacctgg cccaggccgg	ggccaccgtc	gtggttgttt	tttccagccg	gcagttggcc	840
agggtgtttt tcgagtccgt	ggtgctgacc	aacctgactg	gcaaggtgtg	ggtcgcctca	900
gaageetggg ceetetecag	gcacatcact	ggggtgcccg	ggatccagcg	cattgggatg	960
gtgctgggcg tggccatcca	gaagagggct	gtccctggcc	tgaaggcgtt	tgaagaagcc	1020
tatgcccggg cagacaagaa	ggcccctagg	ccttgccaca	agggctcctg	gtgcagcagc	1080
					1110

aatcagetet geagagaatg eeaagettte atggeacaea egatgeeeaa geteaaagee 1140

ttctccatga gttctgccta	caacgcatac	cgggctgtgt	atgcggtggc	ccatggcctc	1200
caccagetee tgggetgtge	ctctggagct	tgttccaggg	gccgagtcta	cccctggcag	1260
cttttggagc agatccacaa	ggtgcatttc	cttctacaca	aggacactgt	ggcgtttaat	1320
gacaacagag atcccctcag	tagctataac	ataattgcct	gggactggaa	tggacccaag	1380
tggaccttca cggtcctcgg	ttcctccaca	tggtctccag	ttcagctaaa	cataaatgag	1440
accaaaatcc agtggcacgg	aaaggacaac	caggtgccta	agtctgtgtg	ttccagcgac	1500
tgtcttgaag ggcaccagcg	agtggttacg	ggtttccatc	actgctgctt	tgagtgtgtg	1560
ccctgtgggg ctgggacctt	cctcaacaag	agtgacctct	acagatgcca	gccttgtggg	1620
aaagaagagt gggcacctga	gggaagccag	acctgcttcc	cgcgcactgt	ggtgtttttg	1680
gctttgcgtg agcacacctc	ttgggtgctg	ctggcagcta	acacgctgct	gctgctgctg	1740
ctgcttggga ctgctggcct	gtttgcctgg	cacctagaca	cccctgtggt	gaggtcagca	1800
gggggccgcc tgtgctttct	tatgctgggc	tccctggcag	caggtagtgg	cagcctctat	1860
ggcttctttg gggaacccac	aaggcctgcg	tgcttgctac	gccaggccct	ctttgccctt	1920
ggtttcacca tcttcctgtc	ctgcctgaca	gttcgctcat	tccaactaat	catcatcttc	1980
aagttttcca ccaaggtacc	tacattctac	cacgcctggg	tccaaaacca	cggtgctggc	2040
ctgtttgtga tgatcagctc	agcggcccag	ctgcttatct	gtctaacttg	gctggtggtg	2100
tggaccccac tgcctgctag	ggaataccag	cgcttccccc	atctggtgat	gcttgagtgc	2160
acagagacca actccctggg	cttcatactg	gccttcctct	acaatggcct	cctctccatc	2220
agtgcctttg cctgcagcta	cctgggtaag	gacttgccag	agaactacaa	cgaggccaaa	2280
tgtgtcacct tcagcctgct	cttcaacttc	gtgtcctgga	tcgccttctt	caccacggcc	2340
agcgtctacg acggcaagta	cctgcctgcg	gccaacatga	tggctgggct	gagcagcctg	2400
agcagegget teggtgggta	ttttctgcct	aagtgctacg	tgatcctctg	ccgcccagac	2460
ctcaacagca cagagcactt	ccaggcctcc	attcaggact	acacgaggcg	ctgcggctcc	2520
acctga					2526
<210> 9 <211> 2577 <212> DNA <213> Mus musculus					
<400> 9 atgccagctt tggctatcat	gggtctcagc	ctggctgctt	tcctggagct	tgggatgggg	60
gcctctttgt gtctgtcaca	gcaattcaag	gcacaagggg	actacatact	gggcgggcta	120
tttcccctgg gctcaaccga	ggaggccact	ctcaaccaga	gaacacaacc	caacagcatc	180
ccgtgcaaca ggttctcacc	ccttggtttg	ttcctggcca	tggctatgaa	gatggctgtg	240
gaggagatca acaatggatc	tgccttgctc	cctgggctgc	ggctgggcta	tgacctattt	300
gacacatgct ccgagccagt	ggtcaccatg	aaatccagtc	tcatgttcct	ggccaaggtg	360
ggcagtcaaa gcattgctgc	ctactgcaac	tacacacagt	accaaccccg	tgtgctggct	420

gtcatcggcc	cccactcatc	agagettgee		8.ST25.txt gcaagttctt	cagcttcttc	480
ctcatgccac	aggtcagcta	tagtgccagc	atggatcggc	taagtgaccg	ggaaacgttt	540
ccatccttct	tccgcacagt	gcccagtgac	cgggtgcagc	tgcaggcagt	tgtgactctg	600
ttgcagaact	tcagctggaa	ctgggtggcc	gccttaggga	gtgatgatga	ctatggccgg	660
gaaggtctga	gcatcttttc	tagtctggcc	aatgcacgag	gtatctgcat	cgcacatgag	720
ggcctggtgc	cacaacatga	cactagtggc	caacagttgg	gcaaggtgct	ggatgtacta	780
cgccaagtga	accaaagtaa	agtacaagtg	gtggtgctgt	ttgcctctgc	ccgtgctgtc	840
tactcccttt	ttagttacag	catccatcat	ggcctctcac	ccaaggtatg	ggtggccagt	900
gagtcttggc	tgacatctga	cctggtcatg	acacttccca	atattgcccg	tgtgggcact	960
gtgcttgggt	ttttgcagcg	gggtgcccta	ctgcctgaat	tttcccatta	tgtggagact	1020
caccttgccc	tggccgctga	cccagcattc	tgtgcctcac	tgaatgcgga	gttggatctg	1080
gaggaacatg	tgatggggca	acgctgtcca	cggtgtgacg	acatcatgct	gcagaaccta	1140
tcatctgggc	tgttgcagaa	cctatcagct	gggcaattgc	accaccaaat	atttgcaacc	1200
tatgcagctg	tgtacagtgt	ggctcaagcc	cttcacaaca	ccctacagtg	caatgtctca	1260
cattgccacg	tatcagaaca	tgttctaccc	tggcagctcc	tggagaacat	gtacaatatg	1320
agtttccatg	ctcgagactt	gacactacag	tttgatgctg	aagggaatgt	agacatggaa	1380
tatgacctga	agatgtgggt	gtggcagagc	cctacacctg	tattacatac	tgtgggcacc	1440
ttcaacggca	cccttcagct	gcagcagtct	aaaatgtact	ggccaggcaa	ccaggtgcca	1500
gtctcccagt	gttcccgcca	gtgcaaagat	ggccaggttc	gccgagtaaa	gggctttcat	1560
tcctgctgct	atgactgcgt	ggactgcaag	gcgggcagct	accggaagca	tccagatgac	1620
ttcacctgta	ctccatgtaa	ccaggaccag	tggtccccag	agaaaagcac	agcctgctta	1680
cctcgcaggc	ccaagtttct	ggcttggggg	gagccagttg	tgctgtcact	cctcctgctg	1740
ctttgcctgg	tgctgggtct	agcactggct	gctctggggc	tctctgtcca	ccactgggac	1800
agccctcttg	tccaggcctc	aggtggctca	cagttctgct	ttggcctgat	ctgcctaggc	1860
ctcttctgcc	tcagtgtcct	tctgttccca	gggcggccaa	gctctgccag	ctgccttgca	1920
caacaaccaa	tggctcacct	ccctctcaca	ggctgcctga	gcacactctt	cctgcaagca	1980
gctgagacct	ttgtggagtc	tgagctgcca	ctgagctggg	caaactggct	atgcagctac	2040
cttcggggac	tctgggcctg	gctagtggta	ctgttggcca	cttttgtgga	ggcagcacta	2100
tgtgcctggt	atttgatcgc	tttcccacca	gaggtggtga	cagactggtc	agtgctgccc	2160
acagaggtac	tggagcactg	ccacgtgcgt	tcctgggtca	gcctgggctt	ggtgcacatc	2220
accaatgcaa	tgttagcttt	cctctgcttt	ctgggcactt	tcctggtaca	gagccagcct	2280
ggccgctaca	accgtgcccg	tggtctcacc	ttcgccatgc	tagcttattt	catcacctgg	2340
gtctcttttg	tgcccctcct	ggccaatgtg	caggtggcct	accagccagc	tgtgcagatg	2400
ggtgctatcc	tagtctgtgc	cctgggcatc	ctggtcacct	tccacctgcc	caagtgctat	2460
gtgcttcttt	ggctgccaaa	gctcaacacc	caggagttct	tcctgggaag	gaatgccaag	2520

	110110230	. DILU. CAC	
aaagcagcag atgagaacag	tggcggtggt gaggcagctc a	agggacacaa t	gaatga 2577

10 <210> <211> 2577 <212> DNA

<213> Rattus rattus <400> 10 atgccgggtt tggctatctt gggcctcagt ctggctgctt tcctggagct tgggatgggg 60 tcctctttgt gtctgtcaca gcaattcaag gcacaagggg actatatatt gggtggacta 120 tttcccctgg gcacaactga ggaggccact ctcaaccaga gaacacagcc caacggcatc 180 ctatgtacca ggttctcgcc ccttggtttg ttcctggcca tggctatgaa gatgqctgta 240 gaggagatca acaatggatc tgccttgctc cctgggctgc gactgggcta tgacctgttt 300 gacacatget cagagecagt ggtcaccatg aageccagee teatgtteat ggccaaggtg 360 ggaagtcaaa gcattgctgc ctactgcaac tacacacagt accaaccccg tgtgctggct 420 gtcattggtc cccactcatc agagettgcc ctcattacag gcaagttctt cagettette 480 ctcatgccac aggtcagcta tagtgccagc atggatcggc taagtgaccg ggaaacattt 540 ccatccttct tccgcacagt gcccagtgac cgggtgcagc tgcaggccgt tgtgacactg 600 ttgcagaatt tcagctggaa ctgggtggct gccttaggta gtgatgatga ctatggccgg 660 gaaggtetga geatetttte tggtetggee aacteacgag gtatetgeat tgeacaegag 720 ggcctggtgc cacaacatga cactagtggc caacaattgg gcaaggtggt ggatgtgcta 780 cgccaagtga accaaagcaa agtacaggtg gtggtgctgt ttgcatctgc ccgtgctgtc 840 tactcccttt ttagctacag catccttcat gacctctcac ccaaggtatg ggtggccagt 900 gagteetgge tgaeetetga eetggteatg acaetteeca atattgeeeg tgtgggeaet 960 gttcttgggt ttctgcagcg cggtgcccta ctgcctgaat tttcccatta tgtggagact 1020 cgccttgccc tagctgctga cccaacattc tgtgcctccc tgaaagctga gttggatctg 1080 gaggagcgcg tgatggggcc acgctgttca caatgtgact acatcatgct acaqaacctq 1140 teatetggge tgatgeagaa cetateaget gggeagttge accaceaaat atttgeaace 1200 tatgcagetg tgtacagtgt ggeteaggee etteacaaca eeetgeagtg caatgtetea 1260 cattgccaca catcagagcc tgttcaaccc tggcagctcc tggagaacat gtacaatatq 1320 agtttccgtg ctcgagactt gacactgcag tttgatgcca aagggagtgt agacatggaa 1380 tatgacctga agatgtgggt gtggcagagc cctacacctg tactacatac tgtaggcacc 1440 ttcaacggca cccttcagct gcagcactcg aaaatgtatt ggccaggcaa ccaggtgcca 1500 gtctcccagt gctcccggca gtgcaaagat ggccaggtgc gcagagtaaa gggctttcat 1560 tectgetget atgactgtgt ggactgeaag geagggaget aceggaagea tecagatgae 1620 ttcacctgta ctccatgtgg caaggatcag tggtccccag aaaaaagcac aacctgctta 1680 cctcgcaggc ccaagtttct ggcttggggg gagccagctg tgctqtcact tctcctqctq 1740 ctttgcctgg tgctgggcct gacactggct gccctggggc tctttgtcca ctactgggac 1800 agccctcttg ttcaggcctc aggtgggtca ctgttctgct ttggcctgat ctgcctaggc 1860

ctettetgce teagtgteet tetgtteeca ggacgaceae getetgeeag etgeettgee	1920
caacaaccaa tggctcacct ccctctcaca ggctgcctga gcacactctt cctgcaagca	1980
gccgagatct ttgtggagtc tgagctgcca ctgagttggg caaactggct ctgcagctac	2040
cttcggggcc cctgggcttg gctggtggta ctgctggcca ctcttgtgga ggctgcacta	2100
tgtgcctggt acttgatggc tttccctcca gaggtggtga cagattggca ggtgctgccc	2160
acggaggtac tggaacactg ccgcatgcgt tcctgggtca gcctgggctt ggtgcacatc	2220
accaatgcag tgttagcttt cctctgcttt ctgggcactt tcctggtaca gagccagcct	2280
ggtcgctata accgtgcccg tggcctcacc ttcgccatgc tagcttattt catcatctgg	2340
gtctcttttg tgcccctcct ggctaatgtg caggtggcct accagccagc tgtgcagatg	2400
ggtgctatet tattetgtge cetgggeate etggeeacet tecacetgee caaatgetat	2460
gtacttctgt ggctgccaga gctcaacacc caggagttct tcctgggaag gagccccaag	2520
gaagcatcag atgggaatag tggtagtagt gaggcaactc ggggacacag tgaatga	2577
<210> 11 <211> 2559 <212> DNA <213> Homo sapiens <400> 11	
atgctgggcc ctgctgtcct gggcctcagc ctctgggctc tcctgcaccc tgggacgggg	60
gccccattgt gcctgtcaca gcaacttagg atgaaggggg actacgtgct gggggggctg	120
ttccccctgg gcgaggccga ggaggctggc ctccgcagcc ggacacggcc cagcagccct	180
gtgtgcacca ggttctcctc aaacggcctg ctctgggcac tggccatgaa aatggccgtg	240
gaggagatca acaacaagtc ggatctgctg cccgggctgc gcctgggcta cgacctcttt	300
gatacgtgct cggagcctgt ggtggccatg aagcccagcc tcatgttcct ggccaaggca	360
ggcagccgcg acatcgccgc ctactgcaac tacacgcagt accagccccg tgtgctggct	420
gtcatcgggc cccactcgtc agagctcgcc atggtcaccg gcaagttctt cagcttcttc	480
ctcatgcccc aggtcagcta cggtgctagc atggagctgc tgagcgcccg ggagaccttc	540
ccctccttct tccgcaccgt gcccagcgac cgtgtgcagc tgacggccgc cgcggagctg	600
ctgcaggagt teggetggaa etgggtggee geeetgggea gegaegaega gtaeggeegg	660
cagggeetga geatettete ggeeetggee geggeaegeg geatetgeat egegeaegag	720
ggcctggtgc cgctgccccg tgccgatgac tcgcggctgg ggaaggtgca ggacgtcctg	780
caccaggtga accagagcag cgtgcaggtg gtgctgctgt tcgcctccgt gcacgccgcc	840
cacgccctct tcaactacag catcagcagc aggctctcgc ccaaggtgtg ggtggccagc	900
gaggeetgge tgaeetetga eetggteatg gggetgeeeg geatggeeea gatgggeaeg	960
gtgcttggct tcctccagag gggtgcccag ctgcacgagt tcccccagta cgtgaagacg	1020
cacctggccc tggccaccga cccggccttc tgctctgccc tgggcgagag ggagcagggt	1080
ctggaggagg acgtggtggg ccagcgctgc ccgcagtgtg actgcatcac gctgcagaac	1140

gtgagcgcag	ggctaaatca	ccaccagacg	ttctctgtct	acgcagctgt	gtatagcgtg	1200
gcccaggccc	tgcacaacac	tcttcagtgc	aacgcctcag	gctgccccgc	gcaggacccc	1260
gtgaagccct	ggcagctcct	ggagaacatg	tacaacctga	ccttccacgt	gggcgggctg	1320
ccgctgcggt	tcgacagcag	cggaaacgtg	gacatggagt	acgacctgaa	gctgtgggtg	1380
tggcagggct	cagtgcccag	gctccacgac	gtgggcaggt	tcaacggcag	cctcaggaca	1440
gagcgcctga	agatccgctg	gcacacgtct	gacaaccaga	agcccgtgtc	ccggtgctcg	1500
cggcagtgcc	aggagggcca	ggtgcgccgg	gtcaaggggt	tccactcctg	ctgctacgac	1560
tgtgtggact	gcgaggcggg	cagctaccgg	caaaacccag	acgacatcgc	ctgcaccttt	1620
tgtggccagg	atgagtggtc	cccggagcga	agcacacgct	gcttccgccg	caggtctcgg	1680
ttcctggcat	ggggcgagcc	ggctgtgctg	ctgctgctcc	tgctgctgag	cctggcgctg	1740
ggccttgtgc	tggctgcttt	ggggctgttc	gttcaccatc	gggacagccc	actggttcag	1800
gcctcggggg	ggcccctggc	ctgctttggc	ctggtgtgcc	tgggcctggt	ctgcctcagc	1860
gtcctcctgt	tccctggcca	gcccagccct	gcccgatgcc	tggcccagca	gcccttgtcc	1920
cacctcccgc	tcacgggctg	cctgagcaca	ctcttcctgc	aggcggccga	gatcttcgtg	1980
gagtcagaac	tgcctctgag	ctgggcagac	cggctgagtg	gctgcctgcg	ggggccctgg	2040
gcctggctgg	tggtgctgct	ggccatgctg	gtggaggtcg	cactgtgcac	ctggtacctg	2100
gtggccttcc	cgccggaggt	ggtgacggac	tggcacatgc	tgcccacgga	ggcgctggtg	2160
cactgccgca	cacgctcctg	ggtcagcttc	ggcctagcgc	acgccaccaa	tgccacgctg	2220
gcctttctct	gcttcctggg	cactttcctg	gtgcggagcc	agccgggccg	ctacaaccgt	2280
gcccgtggcc	tcacctttgc	catgctggcc	tacttcatca	cctgggtctc	ctttgtgccc	2340
ctcctggcca	atgtgcaggt	ggtcctcagg	cccgccgtgc	agatgggcgc	cctcctgctc	2400
tgtgtcctgg	gcatcctggc	tgccttccac	ctgcccaggt	gttacctgct	catgcggcag	2460
ccagggctca	acacccccga	gttcttcctg	ggagggggcc	ctggggatgc	ccaaggccag	2520
aatgacggga	acacaggaaa	tcaggggaaa	catgagtga			2559

<210> 12 <211> 852 <212> PRT <213> Homo sapiens

<400> 12

Met Leu Gly Pro Ala Val Leu Gly Leu Ser Leu Trp Ala Leu Leu His 1  $\,$  10  $\,$  15  $\,$ 

Pro Gly Thr Gly Ala Pro Leu Cys Leu Ser Gln Gln Leu Arg Met Lys

Gly Asp Tyr Val Leu Gly Gly Leu Phe Pro Leu Gly Glu Ala Glu Glu 35

Ala Gly Leu Arg Ser Arg Thr Arg Pro Ser Ser Pro Val Cys Thr Arg 50

Phe 65	Ser	Ser	Asn	Gly	Leu 70	Leu	Trp	Ala	Leu	Ala 75	Met	Lys	Met	Ala	Val 80
Glu	Glu	Ile	Asn	Asn 85	Lys	Ser	Asp	Leu	Leu 90	Pro	Gly	Leu	Arg	Leu 95	Gly
Tyr	Asp	Leu	Phe 100	Asp	Thr	Cys	Ser	Glu 105	Pro	Val	Val	Ala	Met 110	Lys	Pro
Ser	Leu	Met 115	Phe	Leu	Ala	Lys	Ala 120	Gly	Ser	Arg	Asp	Ile 125	Ala	Ala	Tyr
Cys	Asn 130	Tyr	Thr	Gln	Tyr	Gln 135	Pro	Arg	Val	Leu	Ala 140	Val	Ile	Gly	Pro
His 145	Ser	Ser	Glu	Leu	Ala 150	Met	Val	Thr	Gly	Lys 155	Phe	Phe	Ser	Phe	Phe 160
Leu	Met	Pro	Gln	Val 165	Ser	Tyr	Gly	Ala	Ser 170	Met	Glu	Leu	Leu	Ser 175	Ala
Arg	Glu	Thr	Phe 180	Pro	Ser	Phe	Phe	Arg 185	Thr	Val	Pro	Ser	Asp 190	Arg	Val
Gln	Leu	Thr 195	Ala	Ala	Ala	Glu	Leu 200	Leu	Gln	Glu	Phe	Gly 205	Trp	Asn	Trp
Val	Ala 210	Ala	Leu	Gly	Ser	Asp 215	Asp	Glu	Tyr	Gly	Arg 220	Gln	Gly	Leu	Ser
Ile 225	Phe	Ser	Ala	Leu	Ala 230	Ala	Ala	Arg	Gly	Ile 235	Cys	Ile	Ala	His	Glu 240
Gly	Leu	Val	Pro	Leu 245	Pro	Arg	Ala	Asp	Asp 250	Ser	Arg	Leu	Gly	Lys 255	Val
Gln	Asp	Val	Leu 260	His	Gln	Val	Asn	Gln 265	Ser	Ser	Val	Gln	Val 270	Val	Leu
Leu	Phe	Ala 275	Ser	Val	His	Ala	Ala 280	His	Ala	Leu	Phe	Asn 285	Tyr	Ser	Ile
Ser	Ser 290	Arg	Leu	Ser	Pro	Lys 295		Trp	Val	Ala	Ser 300	Glu	Ala	Trp	Leu
Thr 305	Ser	Asp	Leu	Val	Met 310	Gly	Leu	Pro	Gly	Met 315	Ala	Gln	Met	Gly	Thr 320
Val	Leu	Gly	Phe	Leu 325	Gln	Arg	Gly	Ala	Gln 330	Leu	His	Glu	Phe	Pro 335	Gln

Tyr	Val	Lys	Thr 340	His	Leu	Ala	Leu	Ala 345	Thr	Asp	Pro	Ala	Phe 350	Cys	Ser
Ala	Leu	Gly 355	Glu	Arg	Glu	Gln	Gly 360	Leu	Glu	Glu	Asp	Val 365	Val	Gly	Gln

Arg Cys Pro Gln Cys Asp Cys Ile Thr Leu Gln Asn Val Ser Ala Gly 370 380

Leu Asn His His Gln Thr Phe Ser Val Tyr Ala Ala Val Tyr Ser Val 385 390 395 400

Ala Gln Ala Leu His Asn Thr Leu Gln Cys Asn Ala Ser Gly Cys Pro 405 410 415

Ala Gln Asp Pro Val Lys Pro Trp Gln Leu Leu Glu Asn Met Tyr Asn 420 425 430

Leu Thr Phe His Val Gly Gly Leu Pro Leu Arg Phe Asp Ser Ser Gly 435 440 445

Asn Val Asp Met Glu Tyr Asp Leu Lys Leu Trp Val Trp Gln Gly Ser 450 460

Val Pro Arg Leu His Asp Val Gly Arg Phe Asn Gly Ser Leu Arg Thr 465 470 475 480

Glu Arg Leu Lys Ile Arg Trp His Thr Ser Asp Asn Gln Lys Pro Val 485 490 495

Ser Arg Cys Ser Arg Gln Cys Gln Glu Gly Gln Val Arg Arg Val Lys 500 505

Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp Cys Glu Ala Gly Ser

Tyr Arg Gln Asn Pro Asp Asp Ile Ala Cys Thr Phe Cys Gly Gln Asp 530 540

Glu Trp Ser Pro Glu Arg Ser Thr Arg Cys Phe Arg Arg Arg Ser Arg 545 555 560

Phe Leu Ala Trp Gly Glu Pro Ala Val Leu Leu Leu Leu Leu Leu Leu 565 570 575

Ser Leu Ala Leu Gly Leu Val Leu Ala Ala Leu Gly Leu Phe Val His 580 585 590

His Arg Asp Ser Pro Leu Val Gln Ala Ser Gly Gly Pro Leu Ala Cys

Phe Gly Leu Val Cys Leu Gly Leu Val Cys Leu Ser Val Leu Leu Phe 610 620

625	GIY	GIN	PIO	ser	630	Ala	Arg	суѕ	ьeu	635	GIN	GIN	PLO	Leu	640
His	Leu	Pro	Leu	Thr 645	Gly	Cys	Leu	Ser	Thr 650	Leu	Phe	Leu	Gln	Ala 655	Ala
Glu	Ile	Phe	Val 660	Glu	Ser	Glu	Leu	Pro 665	Leu	Ser	Trp	Ala	Asp 670	Arg	Leu
Ser	Gly	Cys 675	Leu	Arg	Gly	Pro	Trp 680	Ala	Trp	Leu	Val	Val 685	Leu	Leu	Ala
Met	Leu 690	Val	Glu	Val	Ala	Leu 695	Cys	Thr	Trp	Tyr	Leu 700	Val	Ala	Phe	Pro
Pro 705	Glu	Val	Val	Thr	Asp 710	Trp	His	Met	Leu	Pro 715	Thr	Glu	Ala	Leu	Val 720
His	Суз	Arg	Thr	Arg 725	Ser	Trp	Val	Ser	Phe 730	Gly	Leu	Ala	His	Ala 735	Thr
Asn	Ala	Thr	Leu 740	Ala	Phe	Leu	Cys	Phe 745	Leu	Gly	Thr	Phe	Leu 750	Val	Arg
Ser	Gln	Pro 755	Gly	Arg	Tyr	Asn	Arg 760	Ala	Arg	Gly	Leu	Thr 765	Phe	Ala	Met
Leu	Ala 770	Tyr	Phe	Ile	Thr	Trp 775	Val	Ser	Phe	Val	Pro 780	Leu	Leu	Ala	Asn
Val 785	Gln	Val	Val	Leu	Arg 790	Pro	Ala	Val	Gln	Met 795	Gly	Ala	Leu	Leu	Leu 800
Суѕ	Val	Leu	Gly	Ile 805	Leu	Ala	Ala	Phe	His 810	Leu	Pro	Arg	Суз	Tyr 815	Leu
Leu	Met	Arg	Gln 820	Pro	Gly	Leu	Asn	Thr 825	Pro	Glu	Phe	Phe	Leu 830	Gly	Gly
Gly	Pro	Gly 835	Asp	Ala	Gln	Gly	Gln 840	Asn	Asp	Gly	Asn	Thr 845	Gly	Asn	Gln
Gly	Lys 850	His	Glu												
<210 <211 <212 <213	.> ?>	13 858 PRT Mus r	nusci	ılus											
<400	)>	13													

Met Pro Ala Leu Ala Ile Met Gly Leu Ser Leu Ala Ala Phe Leu Glu

Page 20

1	5	Mon0298.ST25.txt	15
Leu Gly Met Gly 20		Leu Ser Gln Gln Phe Ly 25	=
Gly Asp Tyr Ile 35	Leu Gly Gly Leu H	Phe Pro Leu Gly Ser Th 45	hr Glu Glu
Ala Thr Leu Asn	Gln Arg Thr Gln F	Pro Asn Ser Ile Pro Cy	ys Asn Arg
50	55	60	
Phe Ser Pro Leu	Gly Leu Phe Leu F	Ala Met Ala Met Lys Me	et Ala Val
65		75	80
Glu Glu Ile Asn	Asn Gly Ser Ala I	Leu Leu Pro Gly Leu Ar	rg Leu Gly
	85	90	95
Tyr Asp Leu Phe		Glu Pro Val Val Thr Me	et Lys Ser
100		105 13	10
Ser Leu Met Phe	Leu Ala Lys Val 0	Gly Ser Gln Ser Ile Al	la Ala Tyr
115	120	125	
Cys Asn Tyr Thr 130	Gln Tyr Gln Pro A	Arg Val Leu Ala Val II 140 _.	le Gly Pro
His Ser Ser Glu	Leu Ala Leu Ile 1	Thr Gly Lys Phe Phe Se	er Phe Phe
145	150	155	160
Leu Met Pro Gln	Val Ser Tyr Ser A	Ala Ser Met Asp Arg Le	eu Ser Asp
	165	170	175
Arg Glu Thr Phe		Arg Thr Val Pro Ser As	sp Arg Val
180		185 19	90
Gln Leu Gln Ala	Val Val Thr Leu I	Leu Gln Asn Phe Ser Tr	rp Asn Trp
195	200	205	
Val Ala Ala Leu	Gly Ser Asp Asp A	Asp Tyr Gly Arg Glu G	ly Leu Ser
210	215	220	
Ile Phe Ser Ser	Leu Ala Asn Ala A	Arg Gly Ile Cys Ile Al	la His Glu
225	230	235	240
Gly Leu Val Pro	Gln His Asp Thr S	Ser Gly Gln Gln Leu Gl	ly Lys Val
	245	250	255
Leu Asp Val Leu	=	Gln Ser Lys Val Gln Va	al Val Val
260		265 27	70
Leu Phe Ala Ser	Ala Arg Ala Val 1	Tyr Ser Leu Phe Ser Ty	yr Ser Ile
275	280	285	

His	His 290	Gly	Leu	Ser	Pro	Lys 295	Val	Trp	Val	Ala	Ser 300	Glu	Ser	Trp	Leu
Thr 305	Ser	Asp	Leu	Val	Met 310	Thr	Leu	Pro	Asn	Ile 315	Ala	Arg	Val	Gly	Thr 320
Val	Leu	Gly	Phe	Leu 325	Gln	Arg	Gly	Ala	Leu 330	Leu	Pro	Glu	Phe	Ser 335	His
Tyr	Val	Glu	Thr 340	His	Leu	Ala	Leu	Ala 345	Ala	Asp	Pro	Ala	Phe 350	Суѕ	Ala
Ser	Leu	Asn 355	Ala	Glu	Leu	Asp	Leu 360	Glu	Glu	His	Val	Met 365	Gly	Gln	Arg
Cys	Pro 370	Arg	Cys	Asp	Asp	Ile 375	Met	Leu	Gln	Asn	Leu 380	Ser	Ser	Gly	Leu
Leu 385	Gln	Asn	Leu	Ser	Ala 390	Gly	Gln	Leu	His	His 395	Gln	Ile	Phe	Ala	Thr 400
Tyr	Ala	Ala	Val	Tyr 405	Ser	Val	Ala	Gln	Ala 410	Leu	His	Asn	Thr	Leu 415	Gln
Cys	Asn	Val	Ser 420	His	Cys	His	Val	Ser 425	Glu	His	Val	Leu	Pro 430	Trp	Gln
Leu	Leu	Glu 435	Asn	Met	Tyr	Asn	Met 440	Ser	Phe	His	Ala	Arg 445	Asp	Leu	Thr
Leu	Gln 450	Phe	Asp	Ala	Glu	Gly 455	Asn	Val	Asp	Met	Glu 460	Tyr	Asp	Leu	Lys
Met 465	Trp	Val	Trp	Gln	Ser 470	Pro	Thr	Pro	Val	Leu 475	His	Thr	Val	Gly	Thr 480
Phe	Asn	Gly	Thr	Leu 485	Gln	Leu	Gln	Gln	Ser 490	Lys	Met	Туг	Trp	Pro 495	Gly
Asn	Gln	Val	Pro 500	Val	Ser	Gln	Cys	Ser 505	Arg	Gln	Cys	Lys	Asp 510	Gly	Gln
Val	Arg	Arg 515	Val	Lys	Gly	Phe	His 520	Ser	Cys	Cys	Tyr	Asp 525	Cys	Val	Asp
Cys	Lys 530	Ala	Gly	Ser	Tyr	Arg 535	Lys	His	Pro	Asp	Asp 540	Phe	Thr	Суз	Thr
Pro 545	Суѕ	Asn	Gln	Asp	Gln 550	Trp	Ser	Pro	Glu	Lys 555	Ser	Thr	Ala	Суз	Leu 560
Pro	Arg	Arg	Pro	Lys	Phe	Leu	Ala	Trp	Gly		Pro ge 2		Val	Leu	Ser

Leu	Leu	Leu	Leu 580	Leu	Cys	Leu	Val	Leu 585	Gly	Leu	Ala	Leu	Ala 590	Ala	Leu
Gly	Leu	Ser 595	Val	His	His	Trp	Asp 600	Ser	Pro	Leu	Val	Gln 605	Ala	Ser	Gly
Gly	Ser 610	Gln	Phe	Суз	Phe	Gly 615	Leu	Ile	Cys	Leu	Gly 620	Leu	Phe	Cys	Leu
Ser 625	Val	Leu	Leu	Phe	Pro 630	Gly	Arg	Pro	Ser	Ser 635	Ala	Ser	Cys	Leu	Ala 640
Gln	Gln	Pro	Met	Ala 645	His	Leu	Pro	Leu	Thr 650	Gly	Суз	Leu	Ser	Thr 655	Leu
Phe	Leu	Gln	Ala 660	Ala	Glu	Thr	Phe	Val 665	Glu	Ser	Glu	Leu	Pro 670	Leu	Ser
Trp	Ala	Asn 675	Trp	Leu	Cys	Ser	Tyr 68,0	Leu	Arg	Gly	Leu	Trp 685	Ala	Trp	Leu
Val	Val 690	Leu	Leu	Ala	Thr	Phe 695	Val	Glu	Ala	Ala	Leu 700	Суѕ	Ala	Trp	Tyr
Leu 705	Ile	Ala	Phe	Pro	Pro 710	Glu	Val	Val	Thr	Asp 715	Trp	Ser	Val	Leu	Pro 720
Thr	Glu	Val	Leu	Glu 725	His	Cys	His	Val	Arg 730	Ser	Trp	Val	Ser	Leu 735	Gly
Leu	Val	His	Ile 740	Thr	Asn	Ala	Met	Leu 745	Ala	Phe	Leu	Cys	Phe 750	Leu	Gly
Thr	Phe	Leu 755	Val	Gln	Ser	Gln	Pro 760	Gly	Arg	Tyr	Asn	Arg 765	Ala	Arg	Gly
Leu	Thr 770		Ala		Leu			Phe	Ile		Trp 780		Ser	Phe	Val
Pro 785	Leu	Leu	Ala	Asn	Val 790	Gln	Val	Ala	туг	Gln 795	Pro	Ala	Val	Gln	Met 800
Gly	Ala	Ile	Leu	Val 805	Cys	Ala	Leu	Gly	Ile 810	Leu	Val	Thr	Phe	His 815	Leu
Pro	Lys	Суѕ	Tyr 820	Val	Leu	Leu	Trp	Leu 825	Pro	Lys	Leu	Asn	Thr 830	Gln	Glu

Phe Phe Leu Gly Arg Asn Ala Lys Lys Ala Ala Asp Glu Asn Ser Gly 835

Gly Gly Glu Ala Ala Gln Gly His Asn Glu

<210> 14 <211> 858 <212> PRT <213> Rattus rattus

<400> 14

Met Pro Gly Leu Ala Ile Leu Gly Leu Ser Leu Ala Ala Phe Leu Glu

Leu Gly Met Gly Ser Ser Leu Cys Leu Ser Gln Gln Phe Lys Ala Gln

Gly Asp Tyr Ile Leu Gly Gly Leu Phe Pro Leu Gly Thr Thr Glu Glu

Ala Thr Leu Asn Gln Arg Thr Gln Pro Asn Gly Ile Leu Cys Thr Arg

Phe Ser Pro Leu Gly Leu Phe Leu Ala Met Ala Met Lys Met Ala Val

Glu Glu Ile Asn Asn Gly Ser Ala Leu Leu Pro Gly Leu Arg Leu Gly

Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Thr Met Lys Pro

Ser Leu Met Phe Met Ala Lys Val Gly Ser Gln Ser Ile Ala Ala Tyr

Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro

His Ser Ser Glu Leu Ala Leu Ile Thr Gly Lys Phe Phe Ser Phe Phe

Leu Met Pro Gln Val Ser Tyr Ser Ala Ser Met Asp Arg Leu Ser Asp

Arg Glu Thr Phe Pro Ser Phe Phe Arg Thr Val Pro Ser Asp Arg Val

Gln Leu Gln Ala Val Val Thr Leu Leu Gln Asn Phe Ser Trp Asn Trp

Val Ala Ala Leu Gly Ser Asp Asp Tyr Gly Arg Glu Gly Leu Ser 210 215 220

Ile Phe Ser Gly Leu Ala Asn Ser Arg Gly Ile Cys Ile Ala His Glu

Gly	Leu	Val	Pro	Gln 245	His	Asp	Thr	Ser	Gly 250	Gln	Gln	Leu	Gly	Lys 255	Val
Val	Asp	Val	Leu 260	Arg	Gln	Val	Asn	Gln 265	Ser	Lys	Val	Gln	Val 270	Val	Val
Leu	Phe	Ala 275	Ser	Ala	Arg	Ala	Val 280	Tyr	Ser	Leu	Phe	Ser 285	Tyr	Ser	Ile
Leu	His 290	Asp	Leu	Ser	Pro	Lys 295	Val	Trp	Val	Ala	Ser 300	Glu	Ser	Trp	Leu
Thr 305	Ser	Asp	Leu	Val	Met 310	Thr	Leu	Pro	Asn	Ile 315	Ala	Arg	Val	Gly	Thr 320
Val	Leu	Gly	Phe	Leu 325	Gln	Arg	Gly	Ala	Leu 330	Leu	Pro	Glu	Phe	Ser 335	His
Tyr	Val	Glu	Thr 340	Arg	Leu	Ala	Leu	Ala 345	Ala	Asp	Pro	Thr	Phe 350	Cys	Ala
Ser	Leu	Lys 355	Ala	Glu	Leu	Asp	Leu 360	Glu	Glu	Arg	Val	Met 365	Gly	Pro	Arg
Cys	Ser 370	Gln	Суѕ	Asp	Tyr	Ile 375	Met	Leu	Gln	Asn	Leu 380	Ser	Ser	Gly	Leu
Met 385	Gln	Asn	Leu	Ser	Ala 390	Gly	Gln	Leu	His	His 395	Gln	Ile	Phe	Ala	Thr 400
Tyr	Ala	Ala	Val	Tyr 405	Ser	Val	Ala	Gln	Ala 410	Leu	His	Asn	Thr	Leu 415	Gln
Cys	Asn	Val	Ser 420	His	Cys	His	Thr	Ser 425	Glu	Pro	Val	Gln	Pro 430	Trp	Gln
Leu	Leu	Glu 435	Asn	Met	Tyr	Asn	Met 440	Ser	Phe	Arg	Ala	Arg 445	Asp	Leu	Thr
Leu	Gln 450	Phe	Asp	Ala	Lys	Gly 455	Ser	Val	Asp	Met	Glu 460	Tyr	Asp	Leu	Lys
Met 465	Trp	Val	Trp	Gln	Ser 470	Pro	Thr	Pro	Val	Leu 475	His	Thr	Val	Gly	Thr 480
Phe	Asn	Gly	Thr	Leu 485	Gln	Leu	Gln	His	Ser 490	Lys	Met	Tyr	Trp	Pro 495	Gly
Asn	Gln	Val	Pro 500	Val	Ser	Gln	Cys	Ser 505	Arg	Gln	Cys	Lys	Asp 510	Gly	Gln

									Moi	n029	8 . ST:	25. t:	x†		
Val	Arg	Arg 515	Val	Lys	Gly	Phe	His 520	Ser						Val	Asp
Cys	Lys 530	Ala	Gly	Ser	Tyr	Arg 535	Lys	His	Pro	Asp	Asp 540	Phe	Thr	Cys	Thr
Pro 545	Суз	Gly	Lys	Asp	Gln 550	Trp	Ser	Pro	Glu	Lys 555	Ser	Thr	Thr	Cys	Leu 560
Pro	Arg	Arg	Pro	Lys 565	Phe	Leu	Ala	Trp	Gly 570	Glu	Pro	Ala	Val	Leu 575	Ser
Leu	Leu	Leu	Leu 580	Leu	Cys	Leu	Val	Leu 585	Gly	Leu	Thr	Leu	Ala 590	Ala	Leu
Gly	Leu	Phe 595	Val	His	Tyr	Trp	Asp 600	Ser	Pro	Leu	Val	Gln 605	Ala	Ser	Gly
Gly	Ser 610	Leu -	Phe	Cys	Phe	Gly 615	Leu	Ile	Cys	Leu	Gly 620	Leu	Phe	Cys	Leu
Ser 625	Val	Leu	Leu	Phe	Pro 630	Gly	Arg	Pro	Arg	Ser 635	Ala	Ser	Cys	Leu	Ala 640
Gln	Gln	Pro	Met	Ala 645	His	Leu	Pro	Leu	Thr 650	Gly	Cys	Leu	Ser	Thr 655	Leu
Phe	Leu	Gln	Ala 660	Ala	Glu	Ile	Phe	Val 665	Glu	Ser	Glu	Leu	Pro 670	Leu	Ser
Trp	Ala	Asn 675	Trp	Leu	Cys	Ser	Tyr 680	Leu	Arg	Gly	Pro	Trp 685	Ala	Trp	Leu
Val	Val 690	Leu	Leu	Ala	Thr	Leu 695	Val	Glu	Ala	Ala	Leu 700	Cys	Ala	Trp	Tyr
Leu 705	Met	Ala	Phe	Pro	Pro 710	Glu	Val	Val	Thr	Asp 715	Trp	Gln	Val	Leu	Pro 720
Thr	Glu	Val	Leu	Glu 725	His	Cys	Arg	Met	Arg 730	Ser	Trp	Val	Ser	Leu 735	Gly
Leu	Val	His	Ile 740	Thr	Asn	Ala	Val	Leu 745	Ala	Phe	Leu	Cys	Phe 750	Leu	Gly
Thr	Phe	Leu 755	Val	Gln	Ser	Gln	Pro 760	Gly	Arg	Tyr	Asn	Arg 765	Ala	Arg	Gly
Leu	Thr 770	Phe	Ala	Met	Leu	Ala 775	Tyr	Phe	Ile	Ile	Trp 780	Val	Ser	Phe	Val

Pro Leu Leu Ala Asn Val Gln Val Ala Tyr Gln Pro Ala Val Gln Met 785

Gly Ala Ile Leu Phe Cys Ala Leu Gly Ile Leu Ala Thr Phe His Leu

Pro Lys Cys Tyr Val Leu Leu Trp Leu Pro Glu Leu Asn Thr Gln Glu 825

Phe Phe Leu Gly Arg Ser Pro Lys Glu Ala Ser Asp Gly Asn Ser Gly

Ser Ser Glu Ala Thr Arg Gly His Ser Glu

<210> 15 <211> 842 <212> PRT <213> Mus musculus

<400> 15

Met Leu Phe Trp Ala Ala His Leu Leu Leu Ser Leu Gln Leu Ala Val

Ala Tyr Cys Trp Ala Phe Ser Cys Gln Arg Thr Glu Ser Ser Pro Gly

Phe Ser Leu Pro Gly Asp Phe Leu Leu Ala Gly Leu Phe Ser Leu His

Ala Asp Cys Leu Gln Val Arg His Arg Pro Leu Val Thr Ser Cys Asp

Arg Ser Asp Ser Phe Asn Gly His Gly Tyr His Leu Phe Gln Ala Met

Arg Phe Thr Val Glu Glu Ile Asn Asn Ser Thr Ala Leu Leu Pro Asn

Ile Thr Leu Gly Tyr Glu Leu Tyr Asp Val Cys Ser Glu Ser Ser Asn

Val Tyr Ala Thr Leu Arg Val Leu Ala Gln Gln Gly Thr Gly His Leu

Glu Met Gln Arg Asp Leu Arg Asn His Ser Ser Lys Val Val Ala Leu

Ile Gly Pro Asp Asn Thr Asp His Ala Val Thr Thr Ala Ala Leu Leu

Ser Pro Phe Leu Met Pro Leu Val Ser Tyr Glu Ala Ser Ser Val Ile

Leu Ser Gly Lys Arg Lys Phe Pro Ser Phe Leu Arg Thr Ile Pro Ser Page 27

			100					103					190		
Asp	Lys	Tyr 195	Gln	Val	Glu	Val	Ile 200	Val	Arg	Leu	Leu	Gln 205	Ser	Phe	Gly
Trp	Val 210	Trp	Ile	Ser	Leu	Val 215	Gly	Ser	Tyr	Gly	Asp 220	Tyr	Gly	Gln	Leu
Gly 225	Val	Gln	Ala	Leu	Glu 230	Glu	Leu	Ala	Thr	Pro 235	Arg	Gly	Ile	Суѕ	Val 240
Ala	Phe	Lys	Asp	Val 245	Val	Pro	Leu	Ser	Ala 250	Gln	Ala	Gly	Asp	Pro 255	Arg
Met	Gln	Arg	Met 260	Met	Leu	Arg	Leu	Ala 265	Arg	Ala	Arg	Thr	Thr 270	Val	Val
Val	Val	Phe 275	Ser	Asn	Arg	His	Leu 280	Ala	Gly	Val	Phe	Phe 285	Arg	Ser	Val
Val	Leu 290	Ala	Asn	Leu	Thr	Gly 295	Lys	Val	Trp	Ile	Ala 300	Ser	Glu	Asp	Trp
Ala 305	Ile	Ser	Thr	Tyr	Ile 310	Thr	Asn	Val	Pro	Gly 315	Ile	Gln	Gly	Ile	Gly 320
Thr	Val	Leu	Gly	Val 325	Ala	Ile	Gln	Gln	Arg 330	Gln	Vaļ	Pro	Gly	Leu 335	Lys
Glu	Phe	Glu	Glu 340	Ser	Tyr	Val	Gln	Ala 345	Val	Met	Gly	Ala	Pro 350	Arg	Thr
Cys	Pro	Glu 355	Gly	Ser	Trp	Cys	Gly 360	Thr	Asn	Gln	Leu	Cys 365	Arg	Glu	Cys
His	Ala 370	Phe	Thr	Thr	Trp	Asn 375	Met	Pro	Glu	Leu	Gly 380	Ala	Phe	Ser	Met
Ser 385	Ala	Ala	Tyr	Asn	Val 390	Tyr	Glu	Ala	Val	Tyr 395	Ala	Val	Ala	His	Gly 400
Leu	His	Gln	Leu	Leu 405	Gly	Суѕ	Thr	Ser	Gly 410	Thr	Cys	Ala	Arg	Gly 415	Pro
Val	Tyr	Pro	Trp 420	Gln	Leu	Leu	Gln	Gln 425	Ile	Tyr	Lys	Val	Asn 430	Phe	Leu
Leu	His	Lys 435	Lys	Thr	Val	Ala	Phe 440	Asp	Asp	Lys	Gly	Asp 445	Pro	Leu	Gly
Tyr	Tyr 450	Asp	Ile	Ile	Ala	Trp 455	Asp	Trp	Asn	Gly	Pro 460	Glu	Trp	Thr	Phe

Glu 465	Val	Ile	Gly	Ser	Ala 470	Ser	Leu	Ser	Pro	Val 475	His	Leu	Asp	Ile	Asn 480
Lys	Thr	Lys	Ile	Gln 485	Trp	His	Gly	Lys	Asn 490	Asn	Gln	Val	Pro	Val 495	Ser
Val	Cys	Thr	Arg 500	Asp	Суѕ	Leu	Glu	Gly 505	His	His	Arg	Leu	Val 510	Met	Gly
Ser	His	His 515	Cys	Cys	Phe	Glu	Cys 520	Met	Pro	Cys	Glu	Ala 525	Gly	Thr	Phe
Leu	Asn 530	Thr	Ser	Glu	Leu	His 535	Thr	Cys	Gln	Pro	Cys 540	Gly	Thr	Glu	Glu
Trp 545	Ala	Pro	Glu	Gly	Ser 550	Ser	Ala	Cys	Phe	Ser 555	Arg	Thr	Val	Glu	Phe 560
Leu	Gly	Trp	His	Glu 565	Pro	Ile	Ser	Leu	Val 570	Leu	Leu	Ala	Ala	Asn 575	Thr
Leu	Leu	Leu	Leu 580	Leu	Leu	Ile	Gly	Thr 585	Ala	Gly	Leu	Phe	Ala 590	Trp	Arg
Leu	His	Thr 595	Pro	Val	Val	Arg	Ser 600	Ala	Gly	Gly	Arg	Leu 605	Cys	Phe	Leu
Met	Leu 610	Gly	Ser	Leu	Val	Ala 615	Gly	Ser	Cys	Ser	Leu 620	Tyr	Ser	Phe	Phe
Gly 625	Lys	Pro	Thr	Val	Pro 630	Ala	Cys	Leu	Leu	Arg 635	Gln	Pro	Leu	Phe	Ser 640
Leu	Gly	Phe	Ala	Ile 645	Phe	Leu	Ser	Cys	Leu 650	Thr	Ile	Arg	Ser	Phe 655	Gln
Leu	Val	Ile	Ile 660	Phe	Lys	Phe	Ser	Thr 665	Lys	Val	Pro	Thr	Phe 670	Tyr	His
Thr	Trp	Ala 675	Gln	Asn	His	Gly	Ala 680	Gly	Ile	Phe	Val	Ile 685	Val	Ser	Ser
Thr	Val 690	His	Leu	Phe	Leu	Cys 695	Leu	Thr	Trp	Leu	Ala 700	Met	Trp	Thr	Pro
Arg 705	Pro	Thr	Arg	Glu	Tyr 710	Gln	Arg	Phe	Pro	His 715	Leu	Val	Ile	Leu	Glu 720
Cys	Thr	Glu	Val	Asn 725	Ser	Val	Gly	Phe	Leu 730	Val	Ala	Phe	Ala	His 735	Asn
Ile	Leu	Leu	Ser	Ile	Ser	Thr	Phe	Val	Cys	_	Tyr .ge 2	_	Gly	Lys	Glu

740 745 7

Leu Pro Glu Asn Tyr Asn Glu Ala Lys Cys Val Thr Phe Ser Leu Leu 755 760 765

Leu His Phe Val Ser Trp Ile Ala Phe Phe Thr Met Ser Ser Ile Tyr 770 780

Gln Gly Ser Tyr Leu Pro Ala Val Asn Val Leu Ala Gly Leu Ala Thr 785 790 795 800

Leu Ser Gly Gly Phe Ser Gly Tyr Phe Leu Pro Lys Cys Tyr Val Ile 805 810 815

Leu Cys Arg Pro Glu Leu Asn Asn Thr Glu His Phe Gln Ala Ser Ile 820 825 830

Gln Asp Tyr Thr Arg Arg Cys Gly Thr Thr 835

<210> 16

<211> 840

<212> PRT

<213> Rattus rattus

<400> 16

Met Leu Phe Trp Ala Ala His Leu Leu Leu Ser Leu Gln Leu Val Tyr
1 5 10 15

Cys Trp Ala Phe Ser Cys Gln Arg Thr Glu Ser Ser Pro Gly Phe Ser 20 25 30

Leu Pro Gly Asp Phe Leu Leu Ala Gly Leu Phe Ser Leu His Gly Asp  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Cys Leu Gln Val Arg His Arg Pro Leu Val Thr Ser Cys Asp Arg Pro 50 55 60

Asp Ser Phe Asn Gly His Gly Tyr His Leu Phe Gln Ala Met Arg Phe 65 70 75 80

Thr Val Glu Glu Ile Asn Asn Ser Ser Ala Leu Leu Pro Asn Ile Thr 85 90 95

Leu Gly Tyr Glu Leu Tyr Asp Val Cys Ser Glu Ser Ala Asn Val Tyr 100 105 110

Ala Thr Leu Arg Val Leu Ala Leu Gln Gly Pro Arg His Ile Glu Ile 115 120 125

Gln Lys Asp Leu Arg Asn His Ser Ser Lys Val Val Ala Phe Ile Gly 130 140

									Мо	n029	8.ST	25.t:	xt		
Pro 145	Asp	Asn	Thr	Asp	His 150	Ala	Val	Thr						Gly	Pro 160
Phe	Leu	Met	Pro	Leu 165	Val	Ser	Tyr	Glu	Ala 170	Ser	Ser	Val	Val	Leu 175	Ser
Ala	Lys	Arg	Lys 180	Phe	Pro	Ser	Phe	Leu 185	Arg	Thr	Val	Pro	Ser 190	Asp	Arg
His	Gln	Val 195	Glu	Val	Met	Val	Gln 200	Leu	Leu	Gln	Ser	Phe 205	Gly	Trp	Val
Trp	Ile 210	Ser	Leu	Ile	Gly	Ser 215	Tyr	Gly	Asp	Tyr	Gly 220	Gln	Leu	Gly	Val
Gln 225	Ala	Leu	Glu	Glu	Leu 230	Ala	Val	Pro	Arg	Gly 235	Ile	Cys	Val	Ala	Phe 240
Lys	Asp	Ile	Val	Pro 245	Phe	Ser	Ala	Arg	Val 250	Gly	Asp	Pro	Arg	Met 255	Gln
Ser	Met	Met	Gln 260	His	Leu	Ala	Gln	Ala 265	Arg	Thr	Thr	Val	Val 270	Val	Val
Phe	Ser	Asn 275	Arg	His	Leu	Ala	Arg 280	Val	Phe	Phe	Arg	Ser 285	Val	Val	Leu
Ala	Asn 290	Leu	Thr	Gly	Lys	Val 295	Trp	Val	Ala	Ser	Glu 300	Asp	Trp	Ala	Ile
Ser 305	Thr	Tyr	Ile	Thr	Ser 310	Val	Thr	Gly	Ile	Gln 315	Gly	Ile	Gly	Thr	Val 320
Leu	Gly	Val	Ala	Val 325	Gln	Gln	Arg	Gln	Val 330	Pro	Gly	Leu	Lys	Glu 335	Phe
Glu	Glu		Tyr 340						Ala		Pro		Ala 350	-	Pro
Glu	Gly	Ser 355	Trp	Суѕ	Ser	Thr	Asn 360	Gln	Leu	Cys	Arg	Glu 365	Суз	His	Thr
Phe	Thr 370	Thr	Arg	Asn	Met	Pro 375	Thr	Leu	Gly	Ala	Phe 380	Ser	Met	Ser	Ala
Ala 385	Tyr	Arg	Val	Tyr	Glu 390	Ala	Val	Tyr	Ala	Val 395	Ala	His	Gly	Leu	His 400
Gln	Leu	Leu	Gly	Cys 405	Thr	Ser	Glu	Ile	Cys 410	Ser	Arg	Gly	Pro	Val 415	Tyr
Pro	Trp	Gln	Leu 420	Leu	Gln	Gln	Ile	Tyr 425	Lys	Val	Asn	Phe	Leu 430	Leu	His

Glu Asn Thr Val Ala Phe Asp Asp Asn Gly Asp Thr Leu Gly Tyr Tyr Asp Ile Ile Ala Trp Asp Trp Asn Gly Pro Glu Trp Thr Phe Glu Ile Ile Gly Ser Ala Ser Leu Ser Pro Val His Leu Asp Ile Asn Lys Thr Lys Ile Gln Trp His Gly Lys Asn Asn Gln Val Pro Val Ser Val Cys Thr Thr Asp Cys Leu Ala Gly His His Arg Val Val Gly Ser His 505 His Cys Cys Phe Glu Cys Val Pro Cys Glu Ala Gly Thr Phe Leu Asn Met Ser Glu Leu His Ile Cys Gln Pro Cys Gly Thr Glu Glu Trp Ala Pro Lys Glu Ser Thr Thr Cys Phe Pro Arg Thr Val Glu Phe Leu Ala Trp His Glu Pro Ile Ser Leu Val Leu Ile Ala Ala Asn Thr Leu Leu Leu Leu Leu Val Gly Thr Ala Gly Leu Phe Ala Trp His Phe His Thr Pro Val Val Arg Ser Ala Gly Gly Arg Leu Cys Phe Leu Met Leu Gly Ser Leu Val Ala Gly Ser Cys Ser Phe Tyr Ser Phe Phe Gly Glu 615 Pro Thr Val Pro Ala Cys Leu Leu Arg Gln Pro Leu Phe Ser Leu Gly Phe Ala Ile Phe Leu Ser Cys Leu Thr Ile Arg Ser Phe Gln Leu Val Ile Ile Phe Lys Phe Ser Thr Lys Val Pro Thr Phe Tyr Arg Thr Trp 665 Ala Gln Asn His Gly Ala Gly Leu Phe Val Ile Val Ser Ser Thr Val His Leu Leu Ile Cys Leu Thr Trp Leu Val Met Trp Thr Pro Arg Pro

Thr Arg Glu Tyr Gln Arg Phe Pro His Leu Val Ile Leu Glu Cys Thr

Glu Val Asn Ser Val Gly Phe Leu Leu Ala Phe Thr His Asn Ile Leu

Leu Ser Ile Ser Thr Phe Val Cys Ser Tyr Leu Gly Lys Glu Leu Pro 740 745

Glu Asn Tyr Asn Glu Ala Lys Cys Val Thr Phe Ser Leu Leu Asn

Phe Val Ser Trp Ile Ala Phe Phe Thr Met Ala Ser Ile Tyr Gln Gly

Ser Tyr Leu Pro Ala Val Asn Val Leu Ala Gly Leu Thr Thr Leu Ser

Gly Gly Phe Ser Gly Tyr Phe Leu Pro Lys Cys Tyr Val Ile Leu Cys

Arg Pro Glu Leu Asn Asn Thr Glu His Phe Gln Ala Ser Ile Gln Asp

Tyr Thr Arg Arg Cys Gly Thr Thr 835

<210> 17

<211> 841 <212> PRT

<213> Homo sapiens

<400> 17

Met Leu Cys Thr Ala Arg Leu Val Gly Leu Gln Leu Leu Ile Ser

Cys Cys Trp Ala Phe Ala Cys His Ser Thr Glu Ser Ser Pro Asp Phe

Thr Leu Pro Gly Asp Tyr Leu Leu Ala Gly Leu Phe Pro Leu His Ser

Gly Cys Leu Gln Val Arg His Arg Pro Glu Val Thr Leu Cys Asp Arg 50 60

Ser Cys Ser Phe Asn Glu His Gly Tyr His Leu Phe Gln Ala Met Arg

Leu Gly Val Glu Glu Ile Asn Asn Ser Thr Ala Leu Leu Pro Asn Ile 90

Thr Leu Gly Tyr Gln Leu Tyr Asp Val Cys Ser Asp Ser Ala Asn Val

Tyr	Ala	Thr 115	Leu	Arg	Val	Leu	Ser 120	Leu	Pro	Gly	Gln	His 125	His	Ile	Glu
Leu	Gln 130	Gly	Asp	Leu	Leu	His 135	Tyr	Ser	Pro	Thr	Val 140	Leu	Ala	Val	Ile
Gly 145	Pro	Asp	Ser	Thr	Asn 150	Arg	Ala	Ala	Thr	Thr 155	Ala	Ala	Leu	Leu	Ser 160
Pro	Phe	Leu	Val	Pro 165	Met	Ile	Ser	Tyr	Ala 170	Ala	Ser	Ser	Glu	Thr 175	Leu
Ser	Val	Lys	Arg 180	Gln	Tyr	Pro	Ser	Phe 185	Leu	Arg	Thr	Ile	Pro 190	Asn	Asp
Lys	Tyr	Gln 195	Val	Glu	Thr	Met	Val 200	Leu	Leu	Leu	Gln	Lys 205	Phe	Gly	Trp
Thr	Trp 210	Ile	Ser	Leu	Val	Gly 215	Ser	Ser	Asp	Asp	Tyr 220	Gly	Gln	Leu	Gly
Val 225	Gln	Ala	Leu	Glu	Asn 230	Gln	Ala	Thr	Gly	Gln 235	Gly	Ile	Cys	Ile	Ala 240
Phe	Lys	Asp	Ile	Met 245	Pro	Phe	Ser	Ala	Gln 250	Val	Gly	Asp	Glu	Arg 255	Met
Gln	Суз	Leu	Met 260	Arg	His	Leu	Ala	Gln 265	Ala	Gly	Ala	Thr	Val 270	Val	Val
Val	Phe	Ser 275	Ser	Arg	Gln	Leu	Ala 280	Arg	Val	Phe	Phe	Glu 285	Ser	Val	Val
Leu	Thr 290	Asn	Leu	Thr	Gly	Lys 295	Val	Trp	Val	Ala	Ser 300	Glu	Ala	Trp	Ala
Leu 305	Ser	Arg	His	Ile	Thr 310	Gly	Val	Pro	Gly	Ile 315	Gln	Arg	Ile	Gly	Met 320
Val	Leu	Gly	Val	Ala 325	Ile	Gln	Lys	Arg	Ala 330	Val	Pro	Gly	Leu	Lys 335	Ala
Phe	Glu	Glu	Ala 340	Tyr	Ala	Arg	Ala	Asp 345	Lys	Lys	Ala	Pro	Arg 350	Pro	Cys
His	Lys	Gly 355	Ser	Trp	Суѕ	Ser	Ser 360	Asn	Gln	Leu	Cys	Arg 365	Glu	Cys	Gln
Ala	Phe 370	Met	Ala	His	Thr	Met 375	Pro	Lys	Leu	Lys	Ala 380	Phe	Ser	Met	Ser
Ser	Ala	Tyr	Asn	Ala	Tyr	Arg	Ala	Val	Tyr		Val ge 3		His	Gly	Leu

His	Gln	Leu	Leu	Gly 405	Суз	Ala	Ser	Gly	Ala 410	Суз	Ser	Arg	Gly	Arg 415	Val
Tyr	Pro	Trp	Gln 420	Leu	Leu	Glu	Gln	Ile 425	His	Lys	Val	His	Phe 430	Leu	Leu
His	Lys	Asp 435	Thr	Val	Ala	Phe	Asn 440	Asp	Asn	Arg	Asp	Pro 445	Leu	Ser	Ser
Tyr	Asn 450	Ile	Ile	Ala	Trp	Asp 455	Trp	Asn	Gly	Pro	Lys 460	Trp	Thr	Phe	Thr
Val 465	Leu	Gly	Ser	Ser	Thr 470	Trp	Ser	Pro	Val	Gln 475	Leu	Asn	Ile	Asn	Glu 480
Thr	Lys	Ile	Gln	Trp 485	His	Gly	Lys	Asp	Asn 490	Gln	Val	Pro	Lys	Ser 495	Val
Cys	Ser	Ser	Asp 500	Суѕ	Leu	Glu	Gly	His 505	Gln	Arg	Val	Val	Thr 510	Gly	Phe
His	His	Cys 515	Cys	Phe	Glu	Cys	Val 520	Pro	Суз	Gly	Ala	Gly 525	Thr	Phe	Leu
Asn	Lys 530	Ser	Asp	Leu	Tyr	Arg 535	Cys	Gln	Pro	Cys	Gly 540	Lys	Glu	Glu	Trp
Ala 545	Pro	Glu	Gly	Ser	Gln 550	Thr	Cys	Phe	Pro	Arg 555	Thr	Val	Val	Phe	Leu 560
Ala	Leu	Arg	Glu	His 565	Thr	Ser	Trp	Val	Leu 570	Leu	Ala	Ala	Asn	Thr 575	Leu
Leu	Leu	Leu	Leu 580	Leu	Leu	Gly	Thr	Ala 585	Gly	Leu	Phe	Ala	Trp 590	His	Leu
Asp	Thr	Pro 595	Val	Val	Arg	Ser	Ala 600	Gly	Gly	Arg	Leu	Cys 605	Phe	Leu	Met
Leu	Gly 610	Ser	Leu	Ala	Ala	Gly 615	Ser	Gly	Ser	Leu	Tyr 620	Gly	Phe	Phe	Gly
Glu 625	Pro	Thr	Arg	Pro	Ala 630	Cys	Leu	Leu	Arg	Gln 635	Ala	Leu	Phe	Ala	Leu 640
Gly	Phe	Thr	Ile	Phe 645	Leu	Ser	Cys	Leu	Thr 650	Val	Arg	Ser	Phe	Gln 655	Leu
Ile	Ile	Ile	Phe 660	Lys	Phe	Ser	Thr	Lys 665	Val	Pro	Thr	Phe	Tyr 670	His	Ala

Trp Val Gln Asn His Gly Ala Gly Leu Phe Val Met Ile Ser Ser Ala 685

Ala Gln Leu Leu Ile Cys Leu Thr Trp Leu Val Val Trp Thr Pro Leu 690

Pro Ala Arg Glu Tyr Gln Arg Phe Pro His Leu Val Met Leu Glu Cys 715 720

Thr Glu Thr Asn Ser Leu Gly Phe Ile Leu Ala Phe Leu Tyr Asn Gly 725 730 735

Leu Leu Ser Ile Ser Ala Phe Ala Cys Ser Tyr Leu Gly Lys Asp Leu 740 745 750

Pro Glu Asn Tyr Asn Glu Ala Lys Cys Val Thr Phe Ser Leu Leu Phe 755 760 765

Asn Phe Val Ser Trp Ile Ala Phe Phe Thr Thr Ala Ser Val Tyr Asp 770 780

Gly Lys Tyr Leu Pro Ala Ala Asn Met Met Ala Gly Leu Ser Ser Leu 785 790 795 800

Ser Ser Gly Phe Gly Gly Tyr Phe Leu Pro Lys Cys Tyr Val Ile Leu 805 810 815

Cys Arg Pro Asp Leu Asn Ser Thr Glu His Phe Gln Ala Ser Ile Gln 820 825 830

Asp Tyr Thr Arg Arg Cys Gly Ser Thr 835 840

<210> 18

<211> 843 <212> PRT

<213> Mus musculus

<400> 18

Ala Leu Pro Lys Pro Val Met Leu Val Gly Asn Ser Asp Phe His Leu 20 25 30

Ala Gly Asp Tyr Leu Leu Gly Gly Leu Phe Thr Leu His Ala Asn Val\$35\$ 40 45

Lys Ser Val Ser His Leu Ser Tyr Leu Gln Val Pro Lys Cys Asn Glu

Tyr Asn Met Lys Val Leu Gly Tyr Asn Leu Met Gln Ala Met Arg Phe 65 70 75 80

Ala	Val	Glu	Glu	Ile 85	Asn	Asn	Cys	Ser	Ser 90	Leu	Leu	Pro	Gly	Val 95	Leu
Leu	Gly	Tyr	Glu 100	Met	Val	Asp	Val	Cys 105	Tyr	Leu	Ser	Asn	Asn 110	Ile	Gln
Pro	Gly	Leu 115	Tyr	Phe	Leu	Ser	Gln 120	Ile	Asp	Asp	Phe	Leu 125	Pro	Ile	Leu
Lys	Asp 130	Tyr	Ser	Gln	Tyr	Arg 135	Pro	Gln	Val	Val	Ala 140	Val	Ile	Gly	Pro
Asp 145	Asn	Ser	Glu	Ser	Ala 150	Ile	Thr	Val	Ser	Asn 155	Ile	Leu	Ser	Tyr	Phe 160
Leu	Val	Pro	Gln	Val 165	Thr	Tyr	Ser	Ala	Ile 170	Thr	Asp	Lys	Leu	Arg 175	Asp
Lys	Arg	Arg	Phe 180	Pro	Ala	Met	Leu	Arg 185	Thr	Val	Pro	Ser	Ala 190	Thr	His
His	Ile	Glu 195	Ala	Met	Val	Gln	Leu 200	Met	Val	His	Phe	Gln 205	Trp	Asn	Trp
Ile	Val 210	Val	Leu	Val	Ser	Asp 215	Asp	Asp	Tyr	Gly	Arg 220	Glu	Asn	Ser	His
Leu 225	Leu	Ser	Gln	Arg	Leu 230	Thr	Asn	Thr	Gly	Asp 235	Ile	Cys	Ile,	Ala	Phe 240
Gln	Glu	Val	Leu	Pro 245	Val	Pro	Glu	Pro	Asn 250	Gln	Ala	Val	_	Pro 255	Glu
Glu	Gln	Asp	Gln 260	Leu	Asp	Asn	Ile	Leu 265	Asp	Lys	Leu	Arg	Arg 270	Thr	Ser
Ala	Arg	Val 275	Val	Val	Ile	Phe	Ser 280		Glu	Leu	Ser	Leu 285		Asn	Phe
Phe	Arg 290	Glu	Val	Leu	Arg	Trp 295	Asn	Phe	Thr	Gly	Phe 300	Val	Trp	Ile	Ala
Ser 305	Glu	Ser	Trp	Ala	Ile 310	Asp	Pro	Val	Leu	His 315	Asn	Leu	Thr	Glu	Leu 320
Arg	His	Thr	Gly	Thr 325	Phe	Leu	Gly	Val	Thr 330	Ile	Gln	Arg	Val	Ser 335	Ile
Pro	Gly	Phe	Ser 340	Gln	Phe	Arg	Val	Arg 345	His	Asp	Lys	Pro	Glu 350	Tyr	Pro

Met	Pro	Asn	Glu	Thr	Ser	Leu	Arg	Thr	Thr	Cys	Asn	Gln	Asp	Cys	Asp
		355					360					365			

Ala Cys Met	Asn Ile	Thr G	u Ser	Phe	Asn	Asn	Val	Leu	Met	Leu	Ser
370		3.	5				380				

Gly Glu Arg Val Val Tyr Ser Val Tyr Ser Ala Val Tyr Ala Val Ala 385 
$$390$$
  $395$   $400$ 

His Thr Leu His Arg Leu Leu His Cys Asn Gln Val Arg Cys Thr Lys 
$$405$$
  $410$   $415$ 

Gln Ile Val Tyr Pro Trp Gln Leu Leu Arg Glu Ile Trp His Val Asn 
$$420$$
  $425$   $430$ 

# Phe Thr Leu Leu Gly Asn Gln Leu Phe Phe Asp Glu Gln Gly Asp Met 435 440 445

# Pro Met Leu Leu Asp Ile Ile Gln Trp Gln Trp Gly Leu Ser Gln Asn 450 460

# Pro Phe Gln Ser Ile Ala Ser Tyr Ser Pro Thr Glu Thr Arg Leu Thr 465 470 475 480

#### Tyr Ile Ser Asn Val Ser Trp Tyr Thr Pro Asn Asn Thr Val Pro Ile 485 490 495

#### Ser Met Cys Ser Lys Ser Cys Gln Pro Gly Gln Met Lys Lys Pro Ile 500 505

Phe	Thr	Val	Cys	Phe 645	Val	Суѕ	Leu	Ser 650	Cys	Ile	Thr	Val	Arg 655	Ser

Phe Gln Ile Val Cys Val Phe Lys Met Ala Arg Arg Leu Pro Ser Ala 665

Tyr Gly Phe Trp Met Arg Tyr His Gly Pro Tyr Val Phe Val Ala Phe

Ile Thr Ala Val Lys Val Ala Leu Val Ala Gly Asn Met Leu Ala Thr

Thr Ile Asn Pro Ile Gly Arg Thr Asp Pro Asp Pro Asn Ile Ile 705

Ile Leu Ser Cys His Pro Asn Tyr Arg Asn Gly Leu Leu Phe Asn Thr

Ser Met Asp Leu Leu Ser Val Leu Gly Phe Ser Phe Ala Tyr Val

Gly Lys Glu Leu Pro Thr Asn Tyr Asn Glu Ala Lys Phe Ile Thr Leu

Ser Met Thr Phe Ser Phe Thr Ser Ser Ile Ser Leu Cys Thr Phe Met

Ser Val His Asp Gly Val Leu Val Thr Ile Met Asp Leu Leu Val Thr

Val Leu Asn Phe Leu Ala Ile Gly Leu Gly Tyr Phe Gly Pro Lys Cys

Tyr Met Ile Leu Phe Tyr Pro Glu Arg Asn Thr Ser Ala Tyr Phe Asn 825

Ser Met Ile Gln Gly Tyr Thr Met Arg Lys Ser

<210> 19 <211> 843 <212> PRT

<213> Rattus rattus

Met Gly Pro Gln Ala Arg Thr Leu Cys Leu Leu Ser Leu Leu His

Val Leu Pro Lys Pro Gly Lys Leu Val Glu Asn Ser Asp Phe His Leu

Ala Gly Asp Tyr Leu Leu Gly Gly Leu Phe Thr Leu His Ala Asn Val Page 39

40

Lys S	Ser 50	Ile	Ser	His	Leu	Ser 55	Tyr	Leu	Gln	Val	Pro 60	Lys	Cys	Asn	Glu
Phe 1	Thr	Met	Lys	Val	Leu 70	Gly	Туr	Asn	Leu	Met 75	Gln	Ala	Met	Arg	Phe 80
Ala V	Val	Glu	Glu	Ile 85	Asn	Asn	Cys	Ser	Ser 90	Leu	Leu	Pro	Gly	Val 95	Leu
Leu (	Gly	Tyr	Glu 100	Met	Val	Asp	Val	Cys 105	Tyr	Leʻu	Ser	Asn	Asn 110	Ile	His
Pro (	Gly	Leu 115	Tyr	Phe	Leu	Ala	Gln 120	Asp	Asp	Asp	Leu	Leu 125	Pro	Iļe	Leu
Lys A	Asp 130	Tyr	Ser	Gln	Tyr	Met 135	Pro	His	Val	Val	Ala 140	Val	Ile	Gly	Pro
Asp <i>I</i> 145	Asn	Ser	Glu	Ser	Ala 150	Ile	Thr	Val	Ser	Asn 155	Ile	Leu	Ser	His	Phe 160
Leu 1	Ile	Pro	Gln	Ile 165	Thr	Tyr	Ser	Ala	Ile 170	Ser	Asp	Lys	Leu	Arg 175	Asp
Lys A	Arg	His	Phe 180	Pro	Ser	Met	Leu	Arg 185	Thr	Val	Pro	Ser	Ala 190	Thr	His
His ]	Ile	Glu 195	Ala	Met	Val	Gln	Leu 200	Met	Val	His	Phe	Gln 205	Trp	Asn	Trp
Ile V	Val 210	Val	Leu	Val	Ser	Asp 215	Asp	Asp	Tyr	Gly	Arg 220	Glu	Asn	Ser	His
Leu I 225	Leu	Ser	Gln	Arg	Leu 230	Thr	Lys	Thr	Ser	Asp 235	Ile	Cys	Ile	Ala	Phe 240
Gln G	Glu	Val	Leu	Pro 245	Ile	Pro	Glu	Ser	Ser 250	Gln	Val	Met	Arg	Ser 255	Glu
Glu 6	3ln	Arg	Gln 260	Leu	Asp	Asn	Ile	Leu 265	Asp	Lys	Leu	Arg	Arg 270	Thr	Ser
Ala A	Arg	Val 275	Val	Val	Val	Phe	Ser 280	Pro	Glu	Leu	Ser	Leu 285	Tyr	Ser	Phe
Phe F	His 290	Glu	Val	Leu	Arg	Trp 295	Asn	Phe	Thr	Gly	Phe 300	Val	Trp	Ile	Ala
Ser 0	Glu	Ser	Trp	Ala	Ile 310	Asp	Pro	Val	Leu	His 315	Asn	Leu	Thr	Glu	Leu 320

Arg	His	Thr	Gly	Thr 325	Phe	Leu	Gly	Val	Thr 330	Ile	Gln	Arg	Val	Ser 335	Ile
Pro	Gly	Phe	Ser 340	Gln	Phe	Arg	Val	Arg 345	Arg	Asp	Lys	Pro	Gly 350	Tyr	Pro
Val	Pro	Asn 355	Thr	Thr	Asn	Leu	Arg 360	Thr	Thr	Cys	Asn	Gln 365	Asp	Cys	Asp
Ala	Cys 370	Leu	Asn	Thr	Thr	Lys 375	Ser	Phe	Asn	Asn	Ile 380	Leu	Ile	Leu	Ser
Gly 385	Glu	Arg	Val	Val	Tyr 390	Ser	Val	Tyr	Ser	Ala 395	Val	Tyr	Ala	Val	Ala 400
His	Ala	Leu	His	Arg 405	Leu	Leu	Gly	Суз	Asn 410	Arg	Val	Arg	Cys	Thr 415	Lys
Gln	Lys	Val	Tyr 420	Pro	Trp	Gln	Leu	Leu 425	Arg	Glu	Ile	Trp	His 430	Val	Asn
Phe	Thr	Leu 435	Leu	Gly	Asn	Arg	Leu 440	Phe	Phe	Asp	Gln	Gln 445	Gly	Asp	Met
Pro	Met 450	Leu	Leu	Asp	Ile	Ile 455	Gln	Trp	Gln	Trp	Asp 460	Leu	Ser	Gln	Asn
Pro 465	Phe	Gln	Ser	Ile	Ala 470	Ser	Tyr	Ser	Pro	Thr 475	Ser	Lys	Arg	Leu	Thr 480
Tyr	Ile	Asn	Asn	Val 485	Ser	Trp	Tyr	Thr	Pro 490	Asn	Asn	Thr	Val	Pro 495	Val
Ser	Met	Cys	Ser 500	Lys	Ser	Cys	Gln	Pro 505	Gly	Gln	Met	Lys	Lys 510	Ser	Val
Gly	Leu	His 515	Pro	Cys	Cys	Phe	Glu 520	Cys	Leu	Asp	Cys	Met 525	Pro	Gly	Thr
Tyr	Leu 530	Asn	Arg	Ser	Ala	Asp 535	Glu	Phe	Asn	Cys	Leu 540	Ser	Суз	Pro	Gly
Ser 545	Met	Trp	Ser	Tyr	Lys 550	Asn	Asp	Ile	Thr	Cys 555	Phe	Gln	Arg	Arg	Pro 560
Thr	Phe	Leu	Glu	Trp 565	His	Glu	Val	Pro	Thr 570	Ile	Val	Val	Ala	Ile 575	Leu
Ala	Ala	Leu	Gly 580	Phe	Phe	Ser	Thr	Leu 585	Ala	Ile	Leu	Phe	Ile 590	Phe	Trp
Arg	His	Phe	Gln	Thr	Pro	Met	Val	Arg	Ser		Gly ge 4		Pro	Met	Cys

595 6

Phe Leu Met Leu Val Pro Leu Leu Ala Phe Gly Met Val Pro Val 610 620

Tyr Val Gly Pro Pro Thr Val Phe Ser Cys Phe Cys Arg Gln Ala Phe 625 630 635 640

Phe Thr Val Cys Phe Ser Ile Cys Leu Ser Cys Ile Thr Val Arg Ser 645 650 655

Phe Gln Ile Val Cys Val Phe Lys Met Ala Arg Arg Leu Pro Ser Ala 660 665 670

Tyr Ser Phe Trp Met Arg Tyr His Gly Pro Tyr Val Phe Val Ala Phe 675 680 685

Ile Thr Ala Ile Lys Val Ala Leu Val Val Gly Asn Met Leu Ala Thr 690 695 700

Thr Ile Asn Pro Ile Gly Arg Thr Asp Pro Asp Asp Pro Asn Ile Met 705 710 715 720

Ile Leu Ser Cys His Pro Asn Tyr Arg Asn Gly Leu Leu Phe Asn Thr 725 730 735

Ser Met Asp Leu Leu Ser Val Leu Gly Phe Ser Phe Ala Tyr Met 740 745

Gly Lys Glu Leu Pro Thr Asn Tyr Asn Glu Ala Lys Phe Ile Thr Leu 755 760 765

Ser Met Thr Phe Ser Phe Thr Ser Ser Ile Ser Leu Cys Thr Phe Met 770 780

Ser Val His Asp Gly Val Leu Val Thr Ile Met Asp Leu Leu Val Thr 785 790 795 800

Val Leu Asn Phe Leu Ala Ile Gly Leu Gly Tyr Phe Gly Pro Lys Cys 805 810 815

Tyr Met Ile Leu Phe Tyr Pro Glu Arg Asn Thr Ser Ala Tyr Phe Asn 820 825 830

Ser Met Ile Gln Gly Tyr Thr Met Arg Lys Ser 835

<210> 20

<211> 839

<212> PRT

<213> Homo sapiens

<400> 20

Met Gly Pro Arg Ala Lys Thr Ile Cys Ser Leu Phe Phe Leu Leu Trp  $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15 \hspace{1.5cm} 15$ 

Val Leu Ala Glu Pro Ala Glu Asn Ser Asp Phe Tyr Leu Pro Gly Asp 20 25 30

Tyr Leu Leu Gly Gly Leu Phe Ser Leu His Ala Asn Met Lys Gly Ile  $35 \hspace{1cm} 40 \hspace{1cm} 45$ 

Val His Leu Asn Phe Leu Gln Val Pro Met Cys Lys Glu Tyr Glu Val 50 60

Lys Val Ile Gly Tyr Asn Leu Met Gln Ala Met Arg Phe Ala Val Glu 65 70 75 80

Glu Ile Asn Asn Asp Ser Ser Leu Leu Pro Gly Val Leu Leu Gly Tyr 85 90 95

Glu Ile Val Asp Val Cys Tyr Ile Ser Asn Asn Val Gln Pro Val Leu  $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$ 

Tyr Phe Leu Ala His Glu Asp Asn Leu Leu Pro Ile Gln Glu Asp Tyr 115 120 125

Ser Asn Tyr Ile Ser Arg Val Val Ala Val Ile Gly Pro Asp Asn Ser 130 140

Glu Ser Val Met Thr Val Ala Asn Phe Leu Ser Leu Phe Leu Leu Pro 145 155 160

Gln Ile Thr Tyr Ser Ala Ile Ser Asp Glu Leu Arg Asp Lys Val Arg 165 170 175

Phe Pro Ala Leu Leu Arg Thr Thr Pro Ser Ala Asp His His Val Glu 180 185 190

Ala Met Val Gln Leu Met Leu His Phe Arg Trp Asn Trp Ile Ile Val 195 200 205

Leu Val Ser Ser Asp Thr Tyr Gly Arg Asp Asn Gly Gln Leu Leu Gly 210 215 220

Glu Arg Val Ala Arg Arg Asp Ile Cys Ile Ala Phe Gln Glu Thr Leu 225 230 235 240

Pro Thr Leu Gln Pro Asn Gln Asn Met Thr Ser Glu Glu Arg Gln Arg 245 250 255

Leu Val Thr Ile Val Asp Lys Leu Gln Gln Ser Thr Ala Arg Val Val 260 265 270

Val Val Phe Ser Pro Asp Leu Thr Leu Tyr His Phe Phe Asn Glu Val 275 280 285

Leu	Arg 290	Gln	Asn	Phe	Thr	Gly 295	Ala	Val	Trp	Ile	Ala 300	Ser	Glu	Ser	Trp
Ala 305	Ile	Asp	Pro	Val	Leu 310	His	Asn	Leu	Thr	Glu 315	Leu	Gly	His	Leu	Gly 320
Thr	Phe	Leu	Gly	Ile 325	Thr	Ile	Gln	Ser	Val 330	Pro	Ile	Pro	Gly	Phe 335	Ser
Glu	Phe	Arg	Glu 340	Trp	Gly	Pro	Gln	Ala 345	Gly	Pro	Pro	Pro	Leu 350	Ser	Arg
Thr	Ser	Gln 355	Ser	Tyr	Thr	Cys	Asn 360	Gln	Glu	Cys	Asp	Asn 365	Cys	Leu	Asn
Ala	Thr 370	Leu	Ser	Phe	Asn	Thr 375	Ile	Leu	Arg	Leu	Ser 380	Gly	Glu	Arg	Val
Val 385	Tyr	Ser	Val	Tyr	Ser 390	Ala	Val	Tyr	Ala	Val 395	Ala	His	Ala	Leu	His 400
Ser	Leu	Leu	Gly	Cys 405	Asp	Lys	Ser	Thr	Cys 410	Thr	Lys	Arg	Val	Val 415	Tyr
Pro	Trp	Gln	Leu 420	Leu	Glu	Glu	Ile	Trp 425	Lys	Val	Asn	Phe	Thr 430	Leu	Leu
Asp	His	Gln 435	Ile	Phe	Phe	Asp	Pro 440	Gln	Gly	Asp	Val	Ala 445	Leu	His	Leu
Glu	Ile 450	Val	Gln	Trp	Gln	Trp 455	Asp	Arg	Ser	Gln	Asn 460	Pro	Phe	Gln	Ser
Val 465	Ala	Ser	Tyr	Tyr	Pro 470	Leu	Gln	Arg	Gln	Leu 475	Lys	Asn	Ile	Gln	Asp 480
Ile	Ser	Trp	His	Thr 485	Val	Asn	Asn	Thr	Ile 490	Pro	Met	Ser	Met	Cys 495	Ser
Lys	Arg	Cys	Gln 500	Ser	Gly	Gln	Lys	Lys 505	Lys	Pro	Val	Gly	Ile 510	His	Val
Суз	Cys	Phe 515	Glu	Суз	Ile	Asp	Cys 520	Leu	Pro	Gly	Thr	Phe 525	Leu	Asn	His
Thr	Glu 530	Asp	Glu	Tyr	Glu	Cys 535	Gln	Ala	Cys	Pro	Asn 540	Asn	Glu	Trp	Ser
Tyr 545	Gln	Ser	Glu	Thr	Ser 550	Cys	Phe	Lys	Arg	Gln 555	Leu	Val	Phe	Leu	Glu 560

Trp His Glu Ala Pro Thr Ile Ala Val Ala Leu Leu Ala Ala Leu Gly 565 570 575

Phe Leu Ser Thr Leu Ala Ile Leu Val Ile Phe Trp Arg His Phe Gln 580 590

Thr Pro Ile Val Arg Ser Ala Gly Gly Pro Met Cys Phe Leu Met Leu 595 600 605

Thr Leu Leu Val Ala Tyr Met Val Val Pro Val Tyr Val Gly Pro 610 620

Pro Lys Val Ser Thr Cys Leu Cys Arg Gln Ala Leu Phe Pro Leu Cys 625 630 635

Phe Thr Ile Cys Ile Ser Cys Ile Ala Val Arg Ser Phe Gln Ile Val 645 650 655

Cys Ala Phe Lys Met Ala Ser Arg Phe Pro Arg Ala Tyr Ser Tyr Trp 660 665 670

Val Arg Tyr Gln Gly Pro Tyr Val Ser Met Ala Phe Ile Thr Val Leu 675 680 685

Lys Met Val Ile Val Val Ile Gly Met Leu Ala Thr Gly Leu Ser Pro 690 695 700

Thr Thr Arg Thr Asp Pro Asp Asp Pro Lys Ile Thr Ile Val Ser Cys 705 710 715 720

Asn Pro Asn Tyr Arg Asn Ser Leu Leu Phe Asn Thr Ser Leu Asp Leu 725 730 735

Leu Leu Ser Val Val Gly Phe Ser Phe Ala Tyr Met Gly Lys Glu Leu 740 745 750

Pro Thr Asn Tyr Asn Glu Ala Lys Phe Ile Thr Leu Ser Met Thr Phe 755 760 765

Tyr Phe Thr Ser Ser Val Ser Leu Cys Thr Phe Met Ser Ala Tyr Ser 770 780

Gly Val Leu Val Thr Ile Val Asp Leu Leu Val Thr Val Leu Asn Leu 785 790 795 800

Leu Ala Ile Ser Leu Gly Tyr Phe Gly Pro Lys Cys Tyr Met Ile Leu 805 810 815

Phe Tyr Pro Glu Arg Asn Thr Pro Ala Tyr Phe Asn Ser Met Ile Gln

Gly Tyr Thr Met Arg Arg Asp 835

<210> <211> <212> <213>	21 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> actttga	21 agaa catgagtaat gacg	24
<210> <211> <212> <213>	22 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> agtacco	22 cgga ctgcgtcgtc atta	24
<210> <211> <212> <213>	23 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> cactage	23 ggtc atccttgctt tcag	24
<210> <211> <212> <213>	24 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> agtcag	24 ggtg atgggcctga aagc	24
<210> <211> <212> <213>	25 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> atgtggf	25 tgga ctggctgtac catc	24
<210> <211> <212> <213>	26 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	

<400> ttgaag	26 ccct ccacgtgatg gtac	24
<210> <211> <212> <213>	27 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> cacacg	27 gtga acaagatcac cttc	24
<210> <211> <212> <213>	28 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> agtagc	28 actg ctcggagaag gtga	24
<210> <211> <212> <213>	29 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> atctac	29 caca tggacgagga ggag	24
<210> <211> <212> <213>	30 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> tgacca	30 ggta cggcgtctcc tect	24
<210> <211> <212> <213>	31 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> agcgcg	31 tcac gctggccgac ttca	24
<210> <211> <212> <213>	32 24 DNA Artificial Sequence	
<220>		

<223>	Overgo probes	
<400> ttgctga	32 agca cgttcttgaa gtcg	24
<210> <211> <212> <213>	33 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> cacgcct	33 taca aattottott taag	24
<210> <211> <212> <213>	34 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> agtcct	34 ggtc catggactta aaga	24
<210> <211> <212> <213>	35 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> cttccac	35 etcc tgctgctacg actg	24
<210> <211> <212> <213>	36 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> tgcctc	36 gcag tccacgcagt cgta	24
<210> <211> <212> <213>	37 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> aggtgc	37 gccg cgtcaagggc ttcc	24
<210> <211> <212> <213>	38 24 DNA Artificial Sequence	

<220> <223>	Overgo probes	
<400> tcgtag	38 . cage aggagtggaa geee	24
<210> <211> <212> <213>	39 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> gttcct	39 ggca tggggggagc cggc	24
<210> <211> <212> <213>	40 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> gagcago	40 caca agcacageeg gete	24
<210> <211> <212> <213>	41 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> acagcco	41 cact agttcaggcc gcag	24
<210> <211> <212> <213>	42 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> caggcco	42 eggg gteecetge ggee	24
<210><211><211><212><213>	43 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> cccacto	43 ggtt caggcetegg gggg	24
<210> <211>	44 24	

		Honozoc.bizo.exc
<212> <213>	DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> aaagca	44 ggec aggggeeece eega	24
<210> <211> <212> <213>	45 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> aggcgc	45 tggt gcactgccgc acac	24
<210> <211> <212> <213>	46 24 DNA Artificial Sequence	·
<220> <223>	Overgo probes	
<400> aagctga	46 accc aggagcgtgt gcgg	24
<210><211><211><212><213>	47 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> acagag	47 gcac tggtgcactg ccgc	24
<210> <211> <212> <213>	48 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> tgatcca	48 agga gtgcacgcgg cagt	24
<210> <211> <212> <213>	49 24 DNA Artificial Sequence	
<220> <223>	Overgo probes	
<400> accaate	49 gcca cgctggcctt tctc	24

<210>	50	
<211> <212>	24	
<213>	DNA Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	50	
	ccag gaagcagaga aagg	24
2010s	51	
<210> <211>	51 24	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	Orranga nyahaa	
(223)	Overgo probes	
<400>	51	
tggtaca	atgc tgccaatgcc acgc	24
<21.0×	E2	
<210> <211>	52 24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Overgo probes	
<400>	52	
	agga aagccagcgt ggca	24
40105	52	
<210> <211>	53 24	
<212>	DNA	
<213>	Artificial Sequence	
<220>	Overno muchos	
<223>	Overgo probes	
<400>	53	
tacaac	cgtg cccgtggcct cacc	24
401.0×	54	
<210> <211>	54 24	
<212>	DNA	
<213>	Artificial Sequence	
<220>	Overage market	
<223>	Overgo probes	
<400>	54	
	gcat ggcgaaggtg aggc	24
Z2105	5.6	
<210> <211>	55 24	
<212>	DNA	
<213>	Artificial Sequence	
<b>2000s</b>		
<220> <223>	Overgo probes	
~~~>/	overgo probes	
<400>	55	
tcatca	cetg ggteteettt gtge	24

```
<210> 56
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Overgo probes
<400> 56
acattggcca ggaggggcac aaag
                                                                            24
<210> 57
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Overgo probes
<400> 57
                                                                            24
tgcagatggg tgccctcctg ctct
<210> 58
<211>
       24
<212> DNA
<213> Artificial Sequence
<220>
<223> Overgo probes
<400> 58
                                                                            24
aggatgccca gcacacagag cagg
<210> 59
<211> 9049
<212> DNA
<213> Felis catus
<220>
<221> misc_feature
<222> (14)..(14)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (47)...(47)
<223> n is a, c, g, or t
<220>
<221> misc_feature 
<222> (56)..(56)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (67)..(67)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222>
      (211\overline{3})..(2113)
<223> n is a, c, g, or t
<220>
```

```
<221> misc feature
<222> (2121)..(2121)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (2125)..(2132)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (2138)..(2138)
<223> n is a, c, g, or t
<220>
<221> misc feature
        (419\overline{8})..(4198)
<222>
<223> n is a, c, g, or t
<220>
<221> misc_feature
         (423\overline{2})..(4232)
<222>
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (4237)..(4237)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (4256)..(4256)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (4264)..(4264)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (427\overline{2})...(4272) <223> n is a, c, g, or t
<220>
<221> misc feature
<222> (4298)..(4298)
<223> n is a, c, g, or t
<220>
<221> misc_feature
\langle 222 \rangle (4328)..(4328)
\langle 223 \rangle n is a, c, g, or t
<220>
<221> misc_feature
<222> (4341)..(4341)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (4343)..(4343)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (435\overline{4})..(4354) <223> n is a, c, g, or t
```

<220>

Page 53

<221> misc_feature

<222> (438	36)(4386) s a, c, g, c	or t				
<222> (438	c_feature 39)(4390) s a, c, g, c	or t				
<222> (439	c_feature 99)(4456) s a, c, g, c	or t				
<400> 59 ctggaaaaaa	aggngaaccc	aggatgattc	accccaaaat	ttcagtntca	gaaaantgag	60
gactggnagg	aggtcaactt	aaagtcagtt	tcatttggta	aactgaggcc	caggtaaaaa	120
gttctaaaac	ccacagetee	cttccatatt	ctgtccccca	gagaagcagt	gtccctgcct	180
tcctctgacc	cctgcccctc	aagacgcctg	ggctcccttt	ctgagccggg	tgaagccgca	240
ggcaccagag	cgagaacaga	acccacaacc	atccagaggg	aggggcagcg	gccaccacct	300
ggcttgcacc	tgtgccttca	ccctgcccag	ttcctgagta	ggaccgcagg	cccggaaggc	360
caaggcaaac	agcctggttc	ctacgactgg	gttccagccc	cacccctggc	acaggcgtga	420
agttgggaag	catctgggca	gccgctgtct	attctattta	aacagccgag	ctggtcagag	480
ggtgctggct	ggccatgcca	ggcacaggac	ggactggcca	gcatgtcact	cccggcggct	540
cacctggtcg	gcctgcagct	ctccctctcc	tgctgctggg	ctctcagctg	ccacagcaca	600
gagacgtctg	ccgacttcag	cctccctggg	gattacctcc	tcgcaggtct	gttccctctg	660
cactctgact	gtccgggcgt	gaggcaccgg	cccacggtga	ccctctgtga	caggtgagtg	720
aggggtcccg	tgcctctagg	acctctgccc	atcctctgtc	ctcctcagtg	aggatccttg	780
ggttgttgat	tgagtggagt	tagggccttt	tagagagctg	agactctaga	agctaaacca	840
cgtgttgctt	tacctgtctt	ccaccctgag	gatcacacgt	taagtgttct	taccagtcaa	900
aattgaatat	gtatcaaaca	aaaataaatg	gccttccatg	ctgaaataac	aaaaaacaga	960
cacgcatgga	gaacctactt	tgtggggcgc	ctgggtggcc	cagtcggtta	agtgtctgcc	1020
tcttcgtttt	ggctcaggtc	atgacctcgg	ggttcatgag	ttcgagcccc	gcgtcagctc	1080
cgtgatgagc	ctggagcccg	cttggaattc	cctccccacc	cccacccccc	gctcatgcca	1140
gctcgagctc	tegeteacte	tctcaaaata	aacttaagag	gggcgcctgg	gtggcgcagt	1200
cagttaagcg	tccgacttca	gccaggtcac	gatcagcaca	ttatttcctg	gaccttccat	1260
tctcctttcg	ctgtacagag	cttaacgtaa	actccctggc	aagacctcct	ttctgatttt	1320
agaaaggcca	gcttattggt	ttggttcctg	taatagctta	aaaatagaat	ccagctgtat	1380
caggaaacat	ttaaaaaatg	tatcaaggaa	gacctataac	agtaaaaata	tttttaaatc	1440
ccagagtgtt	ttcataaaga	cacaggatta	cattactcaa	ttatttttaa	agggtttttg	1500
aaaagccgtg	tttcacttgc	catggctaat	gattataggc	atccgaatga	gcctgtggct	1560
atgacttcag	tctgttcggt	ggaaatgact	ctgatgtcat	aaactgactc	ggcttcgctg	1620
acaggaaagt	cgtacagaag	aaaagctgtt	cgagcccata	tgttggttgc	gctcaatgtc	1680
			Th	E 1		

aggaaggggc	gacgtaatgt	gtgcagaaat	gggcagctgt	cgagagtgaa	gaaattggga	1740
agttggcacg	gaagaggga	ccgagtccga	gaaggctgct	ggataaagca	gagcttttgc	1800
agaagagaag	ggccggctgc	tgtccctatc	ctggtggcgg	aaccacttag	aaacaaggcg	1860
tcagaattag	agacttcggt	tcatgcaggg	agggcggccc	aggggggtgg	cgtccttgga	1920
aactctggta	agtttgagat	tgatcccagg	ggtcgtggga	tggagcctcg	catgagactc	1980
tacactgatc	gatgagaagc	agaagcccct	tgtctgtgag	gaaggggaca	cgagcagttg	2040
gcacactaaa	acgcaaggac	acgtttctac	gagaaaacgg	tacatctgtc	tgcgacacag	2100
aaagatcccc	ggnaccagtc	ntcgnnnnnn	nnttccgntg	ggattccagt	cagcagttcc	2160
cgagaggcac	tgaggaacac	aggccctcac	cacgttcaca	agtgtcctga	tgagagggat	2220
actaggtaaa	cgaggttcga	caggtgtggt	ggttaatttt	atacatcaac	ctggctaggg	2280
tacggtgccc	agttgtttgg	ccaaacacca	gtctagatgg	ggctgtgaag	gttaacattt	2340
aaaccaacag	ggtgagtaaa	gcagatcgct	ttccattgtg	tgggtgggcc	tcatccaatc	2400
agttgaagac	cttaaaagaa	aagattgagg	tccccccaaa	aaggaagaaa	ttctgccttc	2460
gaactcaaca	ctgcagcttt	gaccactgag	agcatttcca	gcctgccctg	caaacgccag	2520
actcaccagc	cccacaatca	tgtgaaccaa	ttccttaaaa	taaacttctc	tttctctctc	2580
tctatccaac	tggttctgtt	tctctgcaga	accctgactc	acgcagcagg	tttccctgct	2640
acaggacttc	atcagccttt	caaccctaat	atgctcatcc	agggaggaat	ggtttgtggt	2700
ttctccaagt	tgtaaccgcc	cctcccccc	cgcccccgcc	ccccaaagg	cctgttaaca	2760
cagctgagtg	tatggtacag	ggcccacagt	gaggtcatgg	tggtagggga	cgggacagat	2820
gccctcagag	tttcctttct	accetteece	ccacccccga	cgccaagagg	gtctcggcaa	2880
ggccttgctc	ctctgagctc	tcagctgggc	tttctctaca	ggcccgacag	cttcaacggt	2940
cacggctacc	acctcttcca	ggccatgcgg	tttggcatcg	aggagataaa	caactccacg	3000
gccctcctgc	cgaacgtcac	cctgggatac	cagctgtacg	acgtgtgctc	ggagtctgcc	3060
aacgtgtatg	ccacactaaa	cgtgctctcc	ctgctgggga	cacatcacgt	agagatccga	3120
gcagaccctt	cccactattc	gcctgccgcc	ctggctgtca	ttgggcctga	caccaccaac	3180
cacgcagcca	ccactgcagc	cctgctgagc	cccttcctgg	tgcccctggt	gagctggagc	3240
ccgggggcct	gtccatctcc	cctgccggca	ggtccagtgt	gggctgaggg	ggtgggggg	3300
tgggcaagag	ctgccatgcc	cactctgagt	ctcctgggtg	gtcacatigc	agggggccct	3360
gcccccttca	cagtccccgc	cccagcatcc	cttcctcccc	aagtgctgca	tccagacctc	3420
cctgcctcaa	tgtcctgaga	aaaaccgtct	cctttgaaac	tgctgccctt	tgctctgccc	3480
cctccattcc	atctcctctg	tgaagaacgg	aacacccttt	gtttcccacc	tcacacactt	3540
gtccacttct	ccccgccctc	ctccttccgg	tcttccttcc	ctccctccca	gctcaggctc	3600
agaggtgtgg	tcccctccc	cctccaatgc	cgtcctcctg	ggcctcaccc	tctcctctgc	3660
tcgtaggcct	gtcctaggct	tcctcctccg	cctataagct	ggctttaccc	ctctctgtct	3720
tccaggcacc	tgtggtctta	gcgctgccct	ctctctgaac	ctcgttccgt	ggaaacttgt	3780

gctgggggtg	ggggacaaag	gccacccatc	agaaggctaa	ttccttctct	tgggcttcac	5940
ttctctgacc	tcggcccctc	ccaccaccat	gctccagacc	cagggctaaa	aatctctggg	6000
aaacgggcct	ttttagaagc	ttcctctcac	tcaggaggcc	agttgggagg	gtcgaggggc	6060
ttccttggaa	gggaggggc	tctgaatttc	cagacagact	gaaaccaccc	aaatagaagc	6120
atttgcttcc	taagccttcc	gggtctggga	gagttgagga	ggagcagcct	gcgtcatctg	6180
tggctgctcc	atgatccccg	tttatctcag	cttctggagc	agatccgcaa	ggtgaatttc	6240
ctcctacaca	aggacaccgt	gaggtttaat	gacaacgggg	acceteteag	tggctacgac	6300
ataattgcct	gggactggag	tggccccaag	tggaacttca	gggtcattgg	ctcctccatg	6360
tggcctccag	ttcagctgga	cataaataaa	accaaaatcc	ggtggcacgg	gaaggacaac	6420
caggtaatgg	agccatggtc	actcaccaag	tcaccgcctt	acgggcagcc	tggagcctga	6480
agtcactgtc	gacacagete	acacggagca	ggaggggcc	ccgggtgcca	ggccaacgtg	6540
gctctatcca	gccctgccag	ggaagcccca	cagaccgcac	ccagatggcc	ggctgcagct	6600
ggtatacaca	accaggggct	gtgccctggg	agtgagctgt	gagggcagat	gcacggagac	6660
tcccattcgc	catgtgagca	tcccttgact	tgggccactc	catgtggttc	cagaacacct	6720
gtggcttctt	gcaggtgcca	aagtctgtgt	gctccagcga	ctgcctcgaa	gggcaccagc	6780
gagtgatttc	gggtttctac	cactgttgct	ttgagtgtgt	gccctgtgag	gccgggagct	6840
tcctcaacaa	gagcggtgag	tgtccaaatg	agtgggagaa	tgactgggca	ctcccagggt	6900
ctgtatggca	gatgagggga	tctcccttgg	gccacgcacg	tgcagaacca	gagccttgct	6960
ccctctgttg	ccagttgagg	tacaggttgt	agaatatttg	ccaccagact	gagttctgat	7020
gaagcagaaa	ccaacaacca	gttgaaatcc	tcaggtcccc	tacgtctttt	actagagggc	7080
tcctgatgca	atccctgcag	atgcaatctt	atcctaaatt	caaccttttt	atgcgaacag	7140
atgtagttat	gttcccttgt	cccctcccat	gctgtctgtg	tgaagtccct	tccgtcgccc	7200
ctgccaaaga	cagccagcac	cttggacagc	ttggccttga	tgcagatact	attgtatccg	7260
cagacaagaa	acatagcata	ctccacccag	tgatggtgca	aggtcaagat	cagagagcaa	7320
actcaggtag	ctaagggctc	agcccagagc	tggactctgt	gagccacgtt	ctttcctttt	7380
actatctctg	tgggcgtgag	aacacatctc	ttctgttctc	agagagtcag	agaaaccaca	7440
gaatggcagc	acagataggg	ggctttgggt	aatggaagcg	ctggggagat	gaaaatgccc	7500
ttcctttggg	gctggttgct	cctgttggat	catagcctca	ctggcatgtg	ggcagagcta	7560
ccagagtaag	gccctctcta	aggatctctc	ggtttgcaag	ccccttctgg	gatcataagc	7620
catacagaac	ctacccaagg	gtctccagaa	tctgcaatta	acacaggcat	ctggaggaaa	7680
cacttggccg	cggggcccca	ctcagggcta	cccctatct	cgctgtgtgc	agtaggagcc	7740
cggcttctgg	ggtacagcgc	tcccagcacc	ttgcaggcct	acatggcttc	ccttcctcat	7800
tcctgctctg	ctcatctagg	ctctcaggag	cccctccac	ctttttcttc	cagacctcca	7860
cagctgccag	ccttgtggga	aagaagagtg	ggcacccgcg	ggaagtgaaa	cctgctttcc	7920
acgcaccgtg	gtgtttttga	cttggcacga	gaccatctct	tgggtgctgc	tggcagctaa	7980

tacgttgctg ctgctgctgg tgactgggac tgctggcctg tttgcctggc acttagacac	8040
ccctgtggtg aagtccgctg ggggccgact gtgcttcttc atgctaggct ccctggcagg	8100
gggcagctgt gggctctacg gcttttttgg ggagcccacg ctgcccacat gcttgttgcg	8160
ccaaagcctc cttgccctgg gttttgccat cttcctgtcc tgcctgacca tccgctcctt	8220
ccaactggtc ttcatcttca agttttctgc caaggtaccc accttctacc gtgcctgggt	8280
ccaaaaccac ggtcctggcc tatttgtggt gatcagctca atggcccagc tgctcatctg	8340
tctaacttgg ctggcggtgt ggaccccact gcccaccagg gagtaccagc gcttccctca	8400
gctggtggtg cttgattgca cagaggccaa ctcaccgggc ttcatgttgg ctttcgccta	8460
caatggcctc ctgtccgtca gcgcctttgc ctgcagctac ctgggcaagg acctgccaga	8520
gaactacaac gaggccaaat gtgtcacttt tagtctgctg ctcaacttcg tgtcctggat	8580
tgccttcttc accacggcca gcgtctacca gggcaagtac ttgcccgcgg tcaacgtgct	8640
ggcggcgctg agcagcctga gtggcggctt cagcggttat ttcctccca agtgctacgt	8700
gatcctgtgc cgcccaaaat ttaacagcac acagcacttc caggcctcca tccaggagta	8760
cacgaggcgc tgcggctcca cctgaccagt ggggcgggca gggcctagcc ggggaggtgg	8820
ggggtggggg gtgaaggggt agaaggtggg gtaggggcgc ctcccctgcc ctgagggtcg	8880
aaggtcgagc gaggcgagcg ggccccgcgc cctccgggag gccttttgga ctcctgtctt	8940
	0000
ggctcgggta gtgtacgctc acgggagtcc agtccaggct ccgagctgcc aataaagcgg	9000
tgaaacatgc gtcctggctg ctctagctgt ctgaaccgag ggtggggcg	9000
tgaaacatgc gtcctggctg ctctagctgt ctgaaccgag ggtggggcg <210> 60 <211> 2526 <212> DNA <213> Felis catus <400> 60	9049
tgaaacatgc gtcctggctg ctctagctgt ctgaaccgag ggtggggcg <210> 60 <211> 2526 <212> DNA <213> Felis catus <400> 60 atgtcactcc cggcggctca cctggtcggc ctgcagctct ccctctcctg ctgctgggct	9049
tgaaacatgc gtcctggctg ctctagctgt ctgaaccgag ggtggggcg <210> 60 <211> 2526 <212> DNA <213> Felis catus <400> 60 atgtcactcc cggcggctca cctggtcggc ctgcagctct ccctctcctg ctgctgggct ctcagctgcc acagcacaga gacgtctgcc gacttcagcc tccctgggga ttacctcctc	9049 60 120
tgaaacatgc gtcctggctg ctctagctgt ctgaaccgag ggtggggcg <210> 60 <211> 2526 <212> DNA <213> Felis catus <400> 60 atgtcactcc cggcggctca cctggtcggc ctgcagctct ccctctcctg ctgctgggct ctcagctgcc acagcacaga gacgtctgc gacttcagcc tccctgggga ttacctcctc gcaggtctgt tccctctgca ctctgactgt ccgggcgtga ggcaccggcc cacggtgacc	9049
tgaaacatgc gtcctggctg ctctagctgt ctgaaccgag ggtggggcg <210> 60 <211> 2526 <212> DNA <213> Felis catus <400> 60 atgtcactcc cggcggctca cctggtcggc ctgcagctct ccctctcctg ctgctgggct ctcagctgcc acagcacaga gacgtctgc gacttcagcc tccctggga ttacctcctc gcaggtctgt tccctctgca ctctgactgt ccgggcgtaa ggcaccggcc cacggtgacc ctctgtgaca ggcccgacag cttcaacggt cacggctacc acctcttcca ggccatgcgg	9049 60 120 180
tgaaacatgc gtcctggctg ctctagctgt ctgaaccgag ggtggggcg <210> 60 <211> 2526 <212> DNA <213> Felis catus <400> 60 atgtcactcc cggcggctca cctggtcggc ctgcagctct ccctctcctg ctgctgggct ctcagctgcc acagcacaga gacgtctgc gacttcagcc tccctgggga ttacctcctc gcaggtctgt tccctctgca ctctgactgt ccgggcgtga ggcaccggcc cacggtgacc	9049 60 120 180 240
tgaaacatgc gtcctggctg ctctagctgt ctgaaccgag ggtggggcg <210> 60 <211> 2526 <212> DNA <213> Felis catus <400> 60 atgtcactcc cggcggctca cctggtcggc ctgcagctct ccctctcctg ctgctgggct ctcagctgcc acagcacaga gacgtctgcc gacttcagcc tccctgggga ttacctcctc gcaggtctgt tccctctgca ctctgactgt ccgggcgtga ggcaccggcc cacggtgacc ctctgtgaca ggcccgacag cttcaacggt cacggctacc acctcttcca ggccatgcgg tttggcatcg aggagataaa caactccacg gccctcctgc cgaacgtcac cctgggatac	9049 60 120 180 240 300
tgaaacatgc gtcctggctg ctctagctgt ctgaaccgag ggtggggcg <210> 60 <211> 2526 <212> DNA <213> Felis catus <400> 60 atgtcactcc cggcggctca cctggtcggc ctgcagctct ccctctcctg ctgctgggct ctcagctgcc acagcacaga gacgtctgcc gacttcagcc tccctgggga ttacctcctc gcaggtctgt tccctctgca ctctgactgt ccgggcgtga ggcaccggcc cacggtgacc ctctgtgaca ggcccgacag cttcaacggt cacggctacc acctcttcca ggccatgcgg tttggcatcg aggagataaa caactccacg gccctcctgc cgaacgtcac cctgggatac cacgctgtacg acggtgacg acgtgtacg a	9049 60 120 180 240 300 360
tgaaacatgc gtcctggctg ctctagctgt ctgaaccgag ggtggggcg <210> 60 <211> 2526 <212> DNA <213> Felis catus <400> 60 atgtcactcc cggcggctca cctggtcggc ctgcagctct ccctctcctg ctgctgggct ctcagctgcc acagcacaga gacgtctgcc gacttcagcc tecctgggga ttacctcctg gcaggtctgt tccctctgca ctctgactgt ccgggcgtga ggcaccggcc cacggtgacc ctctgtgaca ggcccgacag cttcaacggt cacggctacc acctcttcca ggccatgcgg tttggcatcg aggagataaa caactccacg gccctcctgc cgaacgtcac cctgggatac cacgctgtacg acgtgtacc acgtgtacg acgtgtacg acgtgtacg acgtgtacg acgtgtacg acgtgtacg cctctggggatac cacgctggatac cacgctggatac acgtgtacg acgtgtacg acgtgtacg acgtgtacg acgtgtacg acgtgtacg ccacactaaa cgtgctccc ctgctgggga cacatcacgt agagatccga gcagaccctt cccactattc gcctgccgcc	9049 60 120 180 240 300 360 420
tgaaacatgc gtectggetg ctctagetgt ctgaaccgag ggtgggeg <210> 60 <211> 2526 <212> DNA <213> Felis catus <400> 60 atgtcactcc cggcggetca cctggtcggc ctgcagetet ccetetetg ctgctggget ctcagetgcc acagcacaga gacgtetgcc gacttcagec tecetggga ttacetecte gcaggtetgt tecetetgca etetgactgt ecgggegtga ggcaccggec caeggtgace ctctgtgaca ggcccgacag ettcaacggt caeggetace acetetteca ggccatgegg tttggcatcg aggagataaa caactecacg gecetectge egaacgteae ectgggatac cagetgtacg acgtgtgete ggagtetgee aacgtgtatg ecacactaaa egtgetetee etgetgggga cacatcacgt agagatecga geagaceett eccactatte geetgeege etggetgtea ttgggeetga caccaccaac eacgeageca ecactgcage ectgetgage	9049 60 120 180 240 300 360 420 480
tgaaacatge gteetggetg etetagetg etgaacegag ggtggggeg <210> 60 <211> 2526 <212> DNA <213> Felis catus <400> 60 atgteactee eggeggetea eetggtegge etgeagetet eeetgggga ttaceteete geaggtetgt tecetetgea etetgaetgt eeggeggtga ggeaceggee eaeggtgaee etetgtgaea ggeeegaeag etteaaeggt eaeggetaee acetetteea ggeeatgegg tttggeateg aggagataaa eaacteeaeg geeeteetge egaacgteae eetggggatae eagetgtaeg aegtgteet ggagtetgee aaegtgtatg eeaegateae eetggggatae eagetgtaeg aegtgteet ggagtetgee aaegtgtatg eeaeactaaa egtgetetee etgetggga eaeateaegt agagateega geagaeeett eeeactatte geetgeege etggetgtea ttgggeetga eaecaceae eaegeageea eeaetgeage eetgetgage ecetteetgg tgeeeetgat eagetaeega geeagaeegt tgaegetegg agtgaagegg	9049 60 120 180 240 300 360 420 480 540
tgaaacatge gteetggetg etetagetgt etgaacegag ggtggggeg <210> 60 <211> 2526 <212> DNA <213> Felis catus <400> 60 atgteactee eggeggetea eetggtegge etgeagetet eeetgggga ttaeeteete geaggtetgt teeetetgea etetgaetgt eeggegggggggggg	9049 60 120 180 240 300 360 420 480 540 600

780

ttcaaggaca tcatcccctt ctctgcccgg ccgggcgacg agaggatgca gagcatcatg

caccacctgg cccgagcgag	gaccaccgtt		tctccagcag	gcagctggcc	840
agggtgttct ttgagtcggt	ggtgctggcc	aacctgactg	ccaaggtgtg	gatcgcctca	900
gaagactggg ccatctctag	acacatcagc	aatgtgcccg	ggatccaggg	cattggcacg	960
gtgctgggtg tggccatcca	gcagaggctt	gtccctggcc	tgaaggagtt	tgaagaggcc	1020
tatgtccagg cagataaggg	ggcccctggg	ccttgctcca	ggacctccga	gtgcagcagc	1080
aaccagctct gtagagagtg	tcgggctttc	acggcagagc	agatgcccac	gctcggggca	1140
ttctccatga gctctgctta	taacgcctac	cgggcagtct	acgcagtggc	ccatggcctc	1200
caccagetee tgggetgtge	ctctggagcc	tgttccaggg	accgagtcta	cccctggcag	1260
cttctggagc agatccgcaa	ggtgaatttc	ctcctacaca	aggacaccgt	gaggtttaat	1320
gacaacgggg acceteteag	tggctacgac	ataattgcct	gggactggag	tggccccaag	1380
tggaacttca gggtcattgg	ctcctccatg	tggcctccag	ttcagctgga	cataaataaa	1440
accaaaatcc ggtggcacgg	gaaggacaac	caggtgccaa	agtctgtgtg	ctccagcgac	1500
tgcctcgaag ggcaccagcg	agtgatttcg	ggtttctacc	actgttgctt	tgagtgtgtg	1560
ccctgtgagg ccgggagctt	cctcaacaag	agcgacctcc	acagctgcca	gccttgtggg	1620
aaagaaaagt gggcacccgc	gggaagtgaa	acctgctttc	cacgcaccgt	ggtgtttttg	1680
acttggcacg agaccatctc	ttgggtgctg	ctggcagcta	atacgttgct	gctgctgctg	1740
gtgactggga ctgctggcct	gtttgcctgg	cacttagaca	cccctgtggt	gaagtccgct	1800
gggggccgac tgtgcttctt	catgctaggc	tccctggcag	ggggcagctg	tgggctctac	1860
ggcttttttg gggagcccac	gctgcccaca	tgcttgttgc	gccaaagcct	ccttgccctg	1920
ggttttgcca tcttcctgtc	ctgcctgacc	atccgctcct	tccaactggt	cttcatcttc	1980
aagttttctg ccaaggtacc	caccttctac	cgtgcctggg	tccaaaacca	cggtcctggc	2040
ctatttgtgg tgatcagctc	aatggcccag	ctgctcatct	gtctaacttg	gctggcggtg	2100
tggaccccac tgcccaccag	ggagtaccag	cgcttccctc	agctggtggt	gcttgattgc	2160
acagaggcca actcaccggg	cttcatgttg	gctttcgcct	acaatggcct	cctgtccgtc	2220
agcgcctttg cctgcagcta	cctgggcaag	gacctgccag	agaactacaa	cgaggccaaa	2280
tgtgtcactt ttagtctgct	gctcaacttc	gtgtcctgga	ttgccttctt	caccacggcc	2340
agcgtctacc agggcaagta	cttgcccgcg	gtcaacgtgc	tggcggcgct	gagcagcctg	2400
agtggcggct tcagcggtta	tttcctcccc	aagtgctacg	tgatcctgtg	ccgcccaaaa	2460
tttaacagca cacagcactt	ccaggcctcc	atccaggagt	acacgaggcg	ctgcggctcc	2520
acctga					2526

```
<210> 61
<211> 841
<212> PRT
<213> Felis catus
```

<400> 61

Met Ser Leu Pro Ala Ala His Leu Val Gly Leu Gln Leu Ser Leu Ser 1 10 10 15

THE RESERVE OF THE PERSON NAMED IN

Cys	Суѕ	Trp	Ala 20	Leu	Ser	Суз	His	Ser 25	Thr	Glu	Thr	Ser	Ala 30	Asp	Phe
Ser	Leu	Pro 35	Gly	Asp	Tyr	Leu	Leu 40	Ala	Gly	Leu	Phe	Pro 45	Leu	His	Ser
Asp	Cys 50	Pro	Gly	Val	Arg	His 55	Arg	Pro	Thr	Val	Thr 60	Leu	Cys	Asp	Arg
Pro 65	Asp	Ser	Phe	Asn	Gly 70	His	Gly	Tyr	His	Leu 75	Phe	Gln	Ala	Met	Arg 80
Phe	Gly	Ile	Glu	Glu 85	Ile	Asn	Asn	Ser	Thr 90	Ala	Leu	Leu	Pro	Asn 95	Val
Thr	Leu	Gly	Tyr 100	Gln	Leu	Tyr	Asp	Val 105	Cys	Ser	Glu	Ser	Ala 110	Asn	Val
Tyr	Ala	Thr 115	Leu	Asn	Val	Leu	Ser 120	Leu	Leu	Gly	Thr	His 125	His	Val	Glu
Ile	Arg 130	Ala	Asp	Pro	Ser	His 135	Tyr	Ser	Pro	Ala	Ala 140	Leu	Ala	Val	Ile
Gly 145	Pro	Asp	Thr	Thr	Asn 150	His	Ala	Ala	Thr	Thr 155	Ala	Ala	Leu	Leu	Ser 160
Pro	Phe	Leu	Val	Pro 165	Leu	Ile	Ser	Tyr	Glu 170	Ala	Ser	Ser	Val	Thr 175	Leu
Gly	Val	Lys	Arg 180	His	Tyr	Pro	Ser	Phe 185	Leu	Arg	Thr	Ile	Pro 190	Ser	Asp
Lys	His	Gln 195	Val	Glu	Ala	Met	Val 200	Leu	Leu	Leu	Gln	Ser 205	Phe	Gly	Trp
Val	Trp 210	Ile	Ser	Val	Val	Gly 215	Ser	Asp	Gly	Asp	Tyr 220	Gly	Gln	Leu	Gly
Val 225	Gln	Ala	Leu	Glu	Glu 230	Gln	Ala	Thr	Gln	Gln 235	Gly	Ile	Суѕ	Val	Ala 240
Phe	Lys	Asp	Ile	Ile 245	Pro	Phe	Ser	Ala	Arg 250	Pro	Gly	Asp	Glu	Arg 255	Met
Gln	Ser	Ile	Met 260	His	His	Leu	Ala	Arg 265	Ala	Arg	Thr	Thr	Val 270	Val	Val
Val	Phe	Ser 275	Ser	Arg	Gln	Leu	Ala 280	Arg	Val	Phe	Phe	Glu 285	Ser	Val	Val

Leu	Ala	Asn	Leu	Thr	Ala	Lys	Val	Trp	Ile	Ala	Ser	Glu	Asp	Trp	Ala
	290					295					300			-	

- Ile Ser Arg His Ile Ser Asn Val Pro Gly Ile Gln Gly Ile Gly Thr 305 310 315 320
- Val Leu Gly Val Ala Ile Gln Gln Arg Leu Val Pro Gly Leu Lys Glu 325 330 335
- Phe Glu Glu Ala Tyr Val Gln Ala Asp Lys Gly Ala Pro Gly Pro Cys 340 345 350
- Ser Arg Thr Ser Glu Cys Ser Ser Asn Gln Leu Cys Arg Glu Cys Arg 355 360 365
- Ala Phe Thr Ala Glu Gln Met Pro Thr Leu Gly Ala Phe Ser Met Ser 370 380
- Ser Ala Tyr Asn Ala Tyr Arg Ala Val Tyr Ala Val Ala His Gly Leu 385 390 395 400
- His Gln Leu Leu Gly Cys Ala Ser Gly Ala Cys Ser Arg Asp Arg Val405 410 415
- Tyr Pro Trp Gln Leu Leu Glu Gln Ile Arg Lys Val Asn Phe Leu Leu 420 425 430
- His Lys Asp Thr Val Arg Phe Asn Asp Asn Gly Asp Pro Leu Ser Gly 435 440
- Tyr Asp Ile Ile Ala Trp Asp Trp Ser Gly Pro Lys Trp Asn Phe Arg 450 460
- Val Ile Gly Ser Ser Met Trp Pro Pro Val Gln Leu Asp Ile Asn Lys 465 470 475 480
- Thr Lys Ile Arg Trp His Gly Lys Asp Asn Gln Val Pro Lys Ser Val 485 490 495
- Cys Ser Ser Asp Cys Leu Glu Gly His Gln Arg Val Ile Ser Gly Phe $500 \hspace{1cm} 505 \hspace{1cm} 510$
- Tyr His Cys Cys Phe Glu Cys Val Pro Cys Glu Ala Gly Ser Phe Leu 515 520 525
- Asn Lys Ser Asp Leu His Ser Cys Gln Pro Cys Gly Lys Glu Lys Trp 530 540
- Ala Pro Ala Gly Ser Glu Thr Cys Phe Pro Arg Thr Val Val Phe Leu 545 550 560
- Thr Trp His Glu Thr Ile Ser Trp Val Leu Leu Ala Ala Asn Thr Leu
 565 570 575

Leu	Leu	Leu	Leu 580	Val	Thr	Gly	Thr	Ala 585	Gly	Leu	Phe	Ala	Trp 590	His	Leu
Asp	Thr	Pro 595	Val	Val	Lys	Ser	Ala 600	Gly	Gly	Arg	Leu	Cys 605	Phe	Phe	Met
Leu	Gly 610	Ser	Leu	Ala	Gly	Gly 615	Ser	Суѕ	Gly	Leu	Tyr 620	Gly	Phe	Phe	Gly
Glu 625	Pro	Thr	Leu	Pro	Thr 630	Суѕ	Leu	Leu	Arg	Gln 635	Ser	Leu	Leu	Ala	Leu 640
Gly	Phe	Ala	Ile	Phe 645	Leu	Ser	Cys	Leu	Thr 650	Ile	Arg	Ser	Phe	Gln 655	Leu
Val	Phe	Ile	Phe 660	Lys	Phe	Ser	Ala	Lys 665	Val	Pro	Thr	Phe	Tyr 670	Arg	Ala
Trp	Val	Gln 675	Asn	His	Gly	Pro	Gly 680	Leu	Phe	Val	Val	Ile 685	Ser	Ser	Met
Ala	Gln 690	Leu	Leu	Ile	Cys	Leu 695	Thr	Trp	Leu	Ala	Val 700	Trp	Thr	Pro	Leu
Pro 705	Thr	Arg	Glu	Tyr	Gln 710	Arg	Phe	Pro	Gln	Leu 715	Val	Val	Leu	Asp	Cys 720
Thr	Glu	Ala	Asn	Ser 725	Pro	Gly	Phe	Met	Leu 730	Ala	Phe	Ala	Tyr	Asn 735	Gly
Leu	Leu	Ser	Val 740	Ser	Ala	Phe	Ala	Cys 745	Ser	Tyr	Leu	Gly	Lys 750	Asp	Leu
Pro	Glu	Asn 755	Tyr	Asn	Glu	Ala	Lys 760	Cys	Val	Thr	Phe	Ser 765	Leu	Leu	Leu
Asn	Phe 770	Val	Ser	Trp	Ile	Al a 775	Phe	Phe	Thr	Thr	Ala 780	Ser	Val	Tyr	Gln
Gly 785	Lys	Tyr	Leu	Pro	Ala 790	Val	Asn	Val	Leu	Ala 795	Ala	Leu	Ser	Ser	Leu 800
Ser	Gly	Gly	Phe	Ser 805	Gly	Туг	Phe	Leu	Pro 810	Lys	Суѕ	Туг	Val	Ile 815	Leu
Cys	Arg	Pro	Lys 820	Phe	Asn	Ser	Thr	Gln 825	His	Phe	Gln	Ala	Ser 830	Ile	Gln

Glu Tyr Thr Arg Arg Cys Gly Ser Thr 835

```
<210> 62
<211> 10607
<212> DNA
<213> Felis catus
<220>
<221> misc feature
<222> (1604)..(1683)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (247\overline{0})..(2516) <223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (2537)..(2537)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (256\overline{0})..(2560) <223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (2574)..(2574)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (2580)..(2580)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (2599)..(2599)
<223> n is a, c, g, or t
<220>
<221> misc_feature
\langle 222 \rangle (2850)..(2850)
\langle 223 \rangle n is a, c, g, or t
<220>
<221> misc feature
<222> (5784)..(5830)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (751\overline{2})..(7553)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (8626)..(8626)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (104\overline{5}3)..(10453)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (10491)..(10491)
<223> n is a, c, g, or t
```

```
<220>
<221> misc feature
<222> (10501)..(10501)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222>
      (105\overline{1}1)...(10511)
<223> n is a, c, g, or t
<220>
<221> misc feature
      (105\overline{4}5)..(10545)
<222>
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (10558)..(10558)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (10574)..(10574)
<223> n is a, c, g, or t
<220>
<221> misc feature
      (105\overline{9}9)..(10599)
<222>
<223> n is a, c, g, or t
<400> 62
ttagctgctg aaacgctgct ttttagcaaa aggccgtgac ctcatgatgt tatacgtcgt
                                                                       60
ggagattgag aaccaggtcc tagcatctga ctatgtgctt tgagtcccca cttttgctqq
                                                                      120
ttgtgcaacc cagggtgagc ttcgtaagct tctctgtgcc tcagttttct catctgtgga
                                                                      180
atggggccgg tcatagtccc cgttattgtg atcatcgagc aagatggtga atggcgagca
                                                                      240
cacagcatga tgcctagttc ttactggaac acctgtcctg ggtcaggggc tgtatataaa
                                                                      300
gtactacetg ccaggateaa ettgateegg ttetattetg teteetgggt gagtatetgt
                                                                      360
gccctttact cccagatgtt ggaaatgtca ggggcatgag acctqtcctt aaccqaqtqq
                                                                      420
cagaaggtta agtttgtgtc cgagatagca ggacatgctt tctctacctc cgcagggcgt
                                                                      480
tctcccagac cccccagggc ccaccatgcc ctgctaggaa gggatcatcc taattctagc
                                                                      540
ctettettee gecceagagt tetgaagett etceacetgt ecaggtgttt ecceaceet
                                                                      600
teagecacgg caagacegte actatgtaaa tgtetgtgea aateceetgg tgteaagetg
                                                                      660
ccagetetet gatgaggeag ggecacetee ggggacecet caetteccag ccatgggace
                                                                      720
ccgggccagg gaagtctgct gcttcatcat cctgccgcgg ctcctggctg agccggctga
                                                                      780
gaactcagac ttctacttgg ctggggatta cttcctcggc ggcctcttca ccctccatgc
                                                                      840
caacgtgaag ggcatcgtcc acctcaacct cctgcaggtg ccccagtgca aggagtgagt
                                                                      900
                                                                      960
cgccaatgtg gggctggaag tggcgacggg ggcggagtgg gaagcctggg ctggtcctgt
                                                                     1020
gctcctcagg ggaccacgcc aggaccaagg gctcaaaatg ctcttcctca ttcattgcca
                                                                     1080
accteteate eegeattate eccaeeggee tgeagggaga eeccatgeag tteatgttae
caaaatcttt ggcaattgta ttctgaaata tggagagctg gttgtcccgc cgtgtgtctt
                                                                     1140
```

aataaataaa	gagttacagg	gtacttgagc	Mon0298 ctggaggggt	B.ST25.txt tgtagagacc	acccccacct	1200	
actttgtcaa	gtggggaact	cctactgagt	ccgtgtcaag	tccaagtcta	gacaccgggg	1260	
gttatgcctt	tggaaggcag	aaatgtggtt	tttcggtagc	aggttctcag	actggagggg _\	1320	
aaggtttgca	tttctctagg	gctgtggtta	ggtgggaagg	ggtgcttcca	ggaccagaag	1380	
ggatttcctc	cactcacctt	gtcccctgtg	agccctgggg	gtggctgcat	cactcaaggt	1440	
tgggtgagac	acctttgtgc	aagtgcgaag	gctgggatgg	cggacccagc	gtgggatgat	1500	
gagatagtga	cttgctgcag	agagggtgaa	ggcgtcctgt	gagagaggga	gagaaaaaag	15'60	
tctgtgacgt	cggggaagat	cacatgctgg	cttgagaatg	acgnnnnnnn	nnnnnnnnn	1620	
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnn	1680	
nnngatgtgg	aggtgatrgt	gatggcggtg	attgtgacgg	tggtatcggt	gatggtggtc	1740	
acagacaacg	cagttatagt	gatggcagtg	gtgataggaa	tagtaggtgg	tgatggtcat	1800	
tctggagatg	tggcaggtga	caacgatgag	atgaaaatgc	cagaatcttc	tggagtggct	1860	
ccttcttgag	ccactcctcg	gctttcctat	ggcaggcaga	ggggactccc	cggctctcct	1920	
gtcccttccc	cctctcactc	tggacctgcc	tctcacccca	ccccacatgg	ctcccccagg	1980	
tatgaaataa	aggtgttggg	ctacgatctc	atgcaggcca	tgtgctttgc	aggggaggag	2040	
atcaatagcc	agagcagcct	gctgcctggc	gtgctgctgg	gctacaaaat	ggtggatgtc	2100	
agctacatct	ccaacaatgt	ccagcccgtg	ctccacttcc	cggcaaagga	ggactgttcc	2160	
ttgcccatcc	aggaggacta	cagccactgt	gtgccccgtg	tggtggctgt	cattggtcct	2220	
ggcaactctg	agtccactgt	gactgtggcc	cgcttcctct	ctctcttcct	ccttccacag	2280	
gggaggcccc	tgggtcctgg	ggtaaggagc	tggggggcag	aggagtggtt	atccaggggg	2340	
ctcacttccc	cccaccggtc	ctgggggtag	gaggaggcag	gaagtagggt	cagaatgtca	2400	
accccaatcc	trggaaggca	gcccagccac	gtggttaaga	gctcaggctt	ggaggcagac	2460	
agacckgggn	nnnnnnnnn	nnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnngcct	2520	
tcagagagat	catcctntca	agggggccct	tattcctttn	cccctgggag	cccntcagtn	2580	
cccaccactt	tctgcagcnc	ccattcgggt	ctccgattcc	tccaatccac	tcactcgctg .	2640	
tgtggctctg	gataagtgac	tgtccctctc	tgaacctcag	cgtcctcatc	tgcaaagtgg	2700	
agacataaca	gcacatcaga	aggtcgcgag	aataggggcg	cctgggaggc	tcagtcggtt	2760	
aagcatccga	ttctgggtcg	cggctcaggt	catgatctcc	cggttcgtga	gttcaagccc	2820	
cgcatcgggc	tgtgtgctga	cagcacagan	cctgcttggg	attctgtctt	cccttctctc	2880	
tgcccctcac	ctgcttttgc	tctctctc	tcaaaataaa	taaataaact	ttttaaaaaa	2940	
aaggaaggta	gtgagaaaaa	agcgggtgac	agagatggag	agggctccac	gcggtacctg	3000	
gcatgctgcg	agccctcaga	acccgttagc	gacggaagtg	acctgtgtgc	gtcgtcacca	3060	
			tgcctcccc			3120	
ggctccgggc	cacgtccccc	gggcgtcctg	tctgtgtccc	tcgaaccccg	cccagccctg	3180	
ccgcaccgtg	agctagtcag	cgcctgctgg	gttcgtgact	ctctccgcca	ttgtgcaccc	3240	

tggggctggg	gccacaccca	ggggctccgg	ttaatttaga	tgctttcttt	ctctgccatc	3300
tgcttacccc	cgagcttggt	tagagagcct	gactttgctg	ggagtctcca	gaacgtcccg	3360
ggacctccca	gcaaccagca	tctttattct	ccctccttag	aactgatgtg	tgcagtcgct	3420
gtgcctctgc	agctcagagc	aggggtggtt	cctgtgaact	ggggccaggg	gtggtttcct	3480
ggaggggca	aggcaccgac	tagccctcga	agaaggagcc	gggcttggct	gaggtgggac	3540
agggggagag	catgaggttt	tcggccagct	ttctgtgcct	gggaaccccc	tctccccaca	3600
accctggatc	ccagaggcct	taacgggccc	cagctgtaac	agactcgtct	gtgtcgagca	3660
ttccacagta	ggtgtcccca	ggctccctcg	gggccaccaa	aggaccacaa	cgacattacg	3720
cggacagggt	ctcagattcc	gatgggtccc	ctgtttgctg	gaaccatctc	cctttggaaa	3780
tttacagctc	tcttttctgg	cagtaacccc	gccccttggt	gctgggtacg	aagggggcac	3840
ccagagcggg	gctcacccag	cagcgctgac	tgctgcgttg	tcgggctaac	gggtattaac	3900
cgcctccctc	gccgctccca	ttctcttagc	tgctgaaacg	ctgcttttta	gcaaaggccg	3960
tgacctcatg	atgttatacg	tcgtggagat	tgagaaccag	gtcctagcat	ctgactatgt	4020
gctttgagtc	cccacttttg	ctggttgtgc	aacccagggt	gagcttcgta	agcttctctg	4080
tgcctcagtt	ttctcatctg	tggaatgtgt	gagggggaga	cctcagtttc	aagcggggtg	4140
gccaggaggg	cctttctgac	aactggacaa	cgacctgagg	gagaggaagg	agtgagggag	4200
ctatgtgggt	gcctagaaga	gcgctccgga	agagggggca	gcgaatgcag	aggccggcag	4260
gagcctggtg	cgttggctga	accggtgagc	agccccggga	ccaggcggga	cagtaggaga	4320
agatgaagcc	agagaggtga	gggccggggt	cagtggtgga	gccccttggg	ggccactgaa	4380
ggactctggc	tgtcctcgag	tgacattagg	agctgttggg	gagttttgag	ctgaggagta	4440
aggtgacgga	caagtggtcg	cagaggccac	ccggctgcca	cgaacagcag	cagagacagc	4500
caaggggaag	ggtggggggc	tgtggtgacc	ccgggagggt	ggtgatggtg	gcccggtgag	4560
gccctagctc	acgctggcgg	ccctccgctc	tccggcagat	cacctacagc	gccatcagtg	4620
acgagctacg	ggacaagcag	cgcttcccgg	cccttctgcc	cacagegeeg	ggcgccgatc	4680
accagatcga	ggccatggtg	cagctgatgt	tgtacttccg	ccggaactgg	atcatcgcgc	4740
tggtgagcag	cggcgactgc	ggccgcgacg	acagccagct	gctcagcgat	cgcccggccg	4800
gcggcgacac	ctgcatcgcc	ttccgggaga	cgctgcccat	gccccagccc	aaccaggcgg	4860
tgacgcagtg	ggagcgccgg	cgcctgaagg	ccatcgtgga	cgagcagcag	cggcagagct	4920
ctgcgcgcgt	cgtggtcctg	ctgtcgccaa	agctggtcct	gcacaacttc	ttccgcgagg	4980
tgctccgcca	gaacctcacg	ggcgtcgtgc	ggatcgcctc	cgagtcctgg	gccatcgacc	5040
cggtcctgca	cgacaggccc	acgcgctgca	cagcctcctg	ggctgcaccc	agaccagcag	5100
ctccgggtcg	tctatccctg	gcaggtgagg	ccccacccac	ggagagtcgg	ggccacacac	5160
gcaggcgccg	ccacagccct	gagtggttgc	catggagacc	actgccctgc	tctagcgtcc	5220
ccctctctgg	ccgggtcctg	ggcaaactgg	cgggagaggc	caggggacgt	accctgtccc	5280
cagacacata	aagccagaag	tgcttcatgg	tgacaaaact	ccttttttta	cattaatgta	5340

atcctcgcca	tccaagatag	cctgtcccgg	caggagattt	gggtgaagtt	tcctggaagg	5400
aggcctggca	ggcagtgggc	cccctgggcc	ccctgccgtt	tctccagggt	ggcggccttg	5460
ggggaggact	tctgtgttca	gctctctgag	gctctgcttt	gggtttatgc	atcttctctc	5520
gtcccaggtc	tggacgattc	agaggagtaa	ggaggcaagg	agtcgcctgg	attcagacct	5580
ggaatttaaa	tctgtatttt	tctgatctgc	gtgcacaccc	gcgcgtgcac	acacacacac	5640
ctaaccacga	agtttatgta	ggtagaagat	tttactgagg	gggcgcctgg	gtggctcagt	5700
cggttaagcg	tccgacttca	gccaggtcac	gatctcgcgg	tctgtgagtt	cgagccccgc	5760
gtcaggctct	gggctgatgg	ctcnnnnnn	nnnnnnnnn	nnnnnnnn	nnnnnnnnn	5820
nnnnnnnnn	agcaccccga	gggcccgggg	gagggcacct	gagcccgtaa	agggaaacag	5880
gagtggcctc	tgaacccagg	tgataggtct	ccgctggatg	gcagacgtga	ctcccacggg	5940
agcaggaata	atgtcgacac	atcggccgga	aggggagcac	ttcctggtgt	gcagtcattg	6000
tgctaagctc	ccaacattgg	gaaactcatg	cgttgcttca	gagcccggga	gacagggttt	6060
ttgttgtcct	actttacaga	agaggagact	ggagctcacg	ggggttgggc	gacaggcccg	6120
aggctcagag	caggtggcag	agctggtgcc	tgaacccagg	tgtgtctgac	tacagagccg	6180
gggctcccag	ccgctgcctc	ccgggtgacc	acatctgcgg	tctcattgcc	cccttgtagg	6240
gatgtggaca	cccagtctcg	tggggtagtc	actctccccc	ggatcgagcc	cgacttcttt	6300
tttttttt	aattttttt	tcaacgttta	tttatttttg	ggacagagag	agacagagca	6360
tgaatgggcg	aggggcagag	agagagggag	acacagaatc	ggaaacaggc	tccaggctcc	6420
gagccatcag	cccagagcct	gatgcggggc	tcgaactcac	ggaccgcgag	atcgtgacct	6480
ggctgaagtc	ggacacttac	ccgaatgcgc	cacccagggg	cccagatcga	gcccgacttc	6540
tgacgccagc	gtcgcttcct	ttccctgtgg	cctcccagct	gcttcaggaa	atctggaagg	6600
tcaacttcac	cctcctgggc	caccagatct	tttttgacca	gcgaggggac	ctactcatgc	6660
gcctggagat	catccaggga	cggtgggacc	tgagccagaa	cctttctgga	gcgtcgcctc	6720
ctactgcccg	gtgctacgac	ggctgagggc	catccgtgac	gtctcctggc	acacggccaa	6780
caacacggtc	agctctcgga	gggctggtgg	ggggctggga	cctgggtctg	ggcactggct	6840
cgtgcagggg	tggcaagggc	cctgtggacc	tgagatccat	tatcgagcac	tgatgtcatc	6900
cctatttgtg	ggtgtccctc	ctcccattga	ctaagcactg	tggaagtcta	gagctttctg	6960
gatcctcagg	acccaggggc	tcagggggct	gcacaaagtg	aacgttaggt	ggacacgtgt	7020
gtgctaagga	cttcaattct	catgtcaacc	ctaggaaata	gagagtactg	ttcctcctgt	7080
ctttggggtt	gggaaactgg	aggcacagag	ggggtcgcgt	gacccataaa	aggccacaca	7140
gctttcgcat	gtctctatac	acagcattca	gtctacatcc	catcgattag	tactcgcgtt	7200
ttggggacag	tagctgtgcc	ttcacctgtg	tctgacatct	gtcagtctga	aagctccttt	7260
gttttaccct	cttagcttac	aagctgtcag	aatggccgcg	atgtggggaa	ggtagagact	7320
cagcctcgtg	gggaaggggg	gaggtggggg	gacctaaaag	ttcaaagagc	cagggcacct	7380
gggtggctca	gtcagttaag	catccgactc	tggatctcag	ctcagtcttg	atctcaggtc	7440

						•
gtgagtttag	acccctgtgt	agggctccgt		8.ST25.txt cagcctactt	aaaaataata	7500
aaaacaaaag	cnnnnnnnn	nnnnnnnn	nnnnnnnn	nnnnnnnn	nnngatcccc	7560
gtgtccatgt	gttccaagga	ctgccagcct	gggcaaagga	agaagcccgt	gggtattcat	7620
ccctgctgct	tcgagtgtct	cgactgcctt	ccgggcacct	tcctcaacca	aactgcagat	7680
gggactcaca	gacccacacc	cctgccctgc	cctgccctgc	cccgccctgg	ggctcccagg	7740
gcccttcatc	tttggcaggg	tctctggagt	ctcatccagg	ggacacaggt	gtccaaaggc	7800
cagggaccat	gttttgactc	cgcttgtatc	tccctaaccg	ctggtgtaag	aaaaatcttc	7860
aatgctgtga	gggcgtgggg	gtgggagaag	gaacagccct	caaccaggcg	aggctgtaac	7920
tgatcccctc	tgcacacaca	tgtagctgag	ggcccagggg	ggtcaggcca	gagaatgtcc	7980
accggatgaa	cgaacgaatg	aatgaatgaa	cgaacgaaca	aacacacaaa	tgaatgaatg	8040
tctctgtccg	tagaagaaat	gtttctggca	gacagggcta	ggatctaatt	tctctctgtg	8100
gcctcccgag	tgcctcgtgt	agttcggagc	atataatgtt	tgctcagtga	atgtttattg	8160
agtgacatcc	ttgatgagaa	gaattgacat	ctccccctat	agatcataaa	ctccaggaaa	8220
ggggggacaa	tgtcatccct	ccagtgttta	ccacagttca	ccgttggggc	cgaattattt	8280
ttttttcatg	acttcacaga	ttagtaacta	agcggttctg	tacatctacc	gatcagagta	8340
cttacgacgt	gcccagcaga	gcccagggca	cagggtaggt	gctcaacaaa	agtttgtttg	8400
caattgatca	gtagccggaa	gtcagggggc	tcggttttat	ccacgtctgt	gctctccatc	8460
tcagatgcct	atcacagtgg	gtggcgctca	aaaagaaact	tgaataaacg	gtcgaatgtc	8520
catctcacca	gagggtacgg	tcttggaagg	gaggcattac	ggttgccagg	ctctgagtca	8580
aggggacctt	ggaccacatc	ctgcctctgt	aactggtttt	gtaacngcct	ggaggagcct	8640
cagatgccac	atctgtgaaa	tggggttgca	gtgaggatct	gatgggccgg	tggatacgag	8700
ggacgcagtg	agaggtgcta	cgaccgcagg	catcgccctt	ggctcgcccc	ctccctaccc	8760
ctacagccgg	ccgggtgcag	gtgcagagga	tgtgggtgcc	gggaaggtgg	gtgtatctga	8820
tggaactgct	gtgggctctt	gcagacgagt	ttggctgccg	gccctgcccg	agttgcgggt	8880
ggtcccggag	gaacgacgct	tcgtgcttca	agcggcggct	ggcctccctt	gaatgacgcg	8940
aggcacccgc	cgtcgctgtg	gccgtgctgt	ccatcctggg	ctccctctgc	accctggcca	9000
tcctggtgat	cttctggagg	caccgccacg	cgcccatggt	tcgctcggcc	gggggcccca	9060
ggtgcttccc	gatgccgatg	cccctgctgt	ataggtgacg	gtctccatgt	acatcgggca	9120
gcccgcgttt	ttcatgtgcc	tcggccacca	gaccctcttc	accctctgct	tcaccgtctg	9180
tatctcccgt	gtcaccgtgc	gctctttcca	gatcgtccgc	gtcttcaaca	tggccaggcg	9240
cctcccgcgt	gcctacggct	actgggtccg	ctaccacggg	ccctgtgtct	tcgtggcgtc	9300
cttcacggtg	ctcaagatgg	tcatcgtggc	gggcaacgtg	ctggccgcga	ccgccgagcc	9360
cgccgcccgc	cccgaccccg	atgaccccaa	gatcgcggtt	ctcgcctgca	actaccacaa	9420
cgtgctcctg	ttcgacacca	gcctggaccc	gcttctgtcc	gtggcgggct	teggettege	9480
ctacgtgggc	aaggagctgc	ccaccaccca	caacgaggcc	aagttcttca	ccttccgcat	9540

gaccttctac	ttcacctctt	ccatctccct		8.ST25.txt atgtctgtct	acgaggggt	9600
cctggtcacc	atcctgcacc	tcgtggtggc	agtgctcaac	cttctgggcg	ctttggcccc	9660
tgggctactt	cggccccaag	tgctgcgtgg	tcctcttcta	cccggatcac	aacacgcccg	9720
tctacttcag	cagcatgatt	cagggctaca	ccaccgggaa	ggactagcac	tgccccctgg	9780
ctgcccaggg	ggccagaggg	ctcggtactg	ggagatggag	accaggggtg	gggctggggg	9840
tggtggtgac	tcattcagcc	cctgctggga	gcagggacac	caccccgccc	tactctctga	9900
tttggcctcc	ccctccaggt	tctctgcacc	ctggccgttt	ttacccaccc	gctggtggat	9960
gcctaaaaat	acgctttccc	tgcagccgtt	tggcttgcca	ggcactgcca	cccatgctag	10020
ggaaaggagc	cggggtgacc	tccctatggg	tctccaagac	agagatggag	cgaagcagcc	10080
cacagtcgcc	atctggtggt	cacagcgggt	gtccgcaggt	tccggctccg	ggcagccatg	10140
ctggaaggct	gggctggggc	tggtgttggg	ggacatctgc	ccggcatcat	tcactccctg	10200
cccacgtgtc	tgcgcctcac	ctcccagact	cccccgcccc	ccagcttggg	acccagcttg	10260
ggacccagct	tctctgagtc	atggctgcgc	ataggggctg	cttcataaat	gcttatgaat	10320
aaacctccct	tgggtgaaac	gaaggcgttt	ccttcttgtt	tccagaggtt	tccccctcc	10380
ccccccgtc	gccccaagaa	agaagactgg	gatcagagac	ctcagcttcc	atttccgcgt	10440
tgccacttct	ganccgtgta	ctttgggcca	attctattta	ctgtttcgga	ncctacacgg	10500
nccctttcct	naaataggaa	caataaacca	ggggcacctt	tgacncactg	tgtagtancc	10560
aatttgacga	taanttttt	taaaagatta	aattaatcng	ataaatt		10607
	s catus					
<400> 63 atgggacccc	gggccaggga	agtctgctgc	ttcatcatcc	tgccgcggct	cctggctgag	60
ccggctgaga	actcagactt	ctacttggct	ggggattact	tcctcggcgg	cctcttcacc	120
ctccatgcca	acgtgaaggg	catcgtccac	ctcaacctcc	tgcaggtgcc	ccagtgcaag	180
gagtatgaaa	taaaggtgtt	gggctacgat	ctcatgcagg	ccatgtgctt	tgcaggggag	240
gagatcaata	gccagagcag	cctgctgcct	ggcgtgctgc	tgggctacaa	aatggtggat	300
gtcagctaca	tctccaacaa	tgtccagccc	gtgctccact	tcccggcaaa	ggaggactgt	360
tccttgccca	tccaggagga	ctacagccac	tgtgtgcccc	gtgtggtggc	tgtcattggt	420
cctggcaact	ctgagtccac	tgtgactgtg	gcccgcttcc	tctctctctt	cctccttcca	480
cagatcacct	acagcgccat	cagtgacgag	ctacgggaca	agcagcgctt	cccggccctt	540
ctgcccacag	cgccgggcgc	cgatcaccag	atcgaggcca	tggtgcagct	gatgttgtac	600
ttccgccgga	actggatcat	cgcgctggtg	agcagcggcg	actgcggccg	cgacgacagc	660
cagctgctca	gcgatcgccc	ggccggcggc	gacacctgca	tegeetteeg	ggagacgctg	720
cccatgcccc	agcccaacca	ggcggtgacg	cagtgggagc	gccggcgcct	gaaggccatc	780
gtggacgagc	agcagcggca	gagctctgcg	cgcgtcgtgg	tcctgctgtc	gccaaagctg	840

gtcctgcaca	acttcttccg	cgaggtgctc	cgccagaacc	tcacgggcgt	cgtgcggatc	900
gcctccgagt	cctgggccat	cgacccggtc	ctgcacgaca	ggcccacgcg	ctgcacagcc	960
tcctgggctg	cacccagacc	agcagctccg	ggtcgtctat	ccctggcagg	tgaggcccca	1020
cccacggaga	gtcggggcca	cacacgcagg	cgccgccaca	gccctgagtg	gttgccatgg	1080
agaccactgc	cctgctctag	cgtccccctc	tctggccggg	tcctgggcaa	actggcggga	1140
gaggccaggg	gacgtaccct	gtccccagac	acataa			1176

<210> 64

<211> 391 <212> PRT

<213> Felis catus

<400> 64

Met Gly Pro Arg Ala Arg Glu Val Cys Cys Phe Ile Ile Leu Pro Arg

Leu Leu Ala Glu Pro Ala Glu Asn Ser Asp Phe Tyr Leu Ala Gly Asp

Tyr Phe Leu Gly Gly Leu Phe Thr Leu His Ala Asn Val Lys Gly Ile

Val His Leu Asn Leu Leu Gln Val Pro Gln Cys Lys Glu Tyr Glu Ile

Lys Val Leu Gly Tyr Asp Leu Met Gln Ala Met Cys Phe Ala Gly Glu 65 75 80

Glu Ile Asn Ser Gln Ser Ser Leu Leu Pro Gly Val Leu Leu Gly Tyr

Lys Met Val Asp Val Ser Tyr Ile Ser Asn Asn Val Gln Pro Val Leu

His Phe Pro Ala Lys Glu Asp Cys Ser Leu Pro Ile Gln Glu Asp Tyr

Ser His Cys Val Pro Arg Val Val Ala Val Ile Gly Pro Gly Asn Ser

Glu Ser Thr Val Thr Val Ala Arg Phe Leu Ser Leu Phe Leu Leu Pro

Gln Ile Thr Tyr Ser Ala Ile Ser Asp Glu Leu Arg Asp Lys Gln Arg 165

Phe Pro Ala Leu Leu Pro Thr Ala Pro Gly Ala Asp His Gln Ile Glu 185

Ala Met Val Gln Leu Met Leu Tyr Phe Arg Arg Asn Trp Ile Ile Ala Page 70

200 195

Leu Val Ser Ser Gly Asp Cys Gly Arg Asp Asp Ser Gln Leu Leu Ser

Asp Arg Pro Ala Gly Gly Asp Thr Cys Ile Ala Phe Arg Glu Thr Leu

Pro Met Pro Gln Pro Asn Gln Ala Val Thr Gln Trp Glu Arg Arg

Leu Lys Ala Ile Val Asp Glu Gln Gln Arg Gln Ser Ser Ala Arg Val

Val Val Leu Leu Ser Pro Lys Leu Val Leu His Asn Phe Phe Arg Glu

Val Leu Arg Gln Asn Leu Thr Gly Val Val Arg Ile Ala Ser Glu Ser

Trp Ala Ile Asp Pro Val Leu His Asp Arg Pro Thr Arg Cys Thr Ala 310

Ser Trp Ala Ala Pro Arg Pro Ala Ala Pro Gly Arg Leu Ser Leu Ala

Gly Glu Ala Pro Pro Thr Glu Ser Arg Gly His Thr Arg Arg Arg

His Ser Pro Glu Trp Leu Pro Trp Arg Pro Leu Pro Cys Ser Ser Val

Pro Leu Ser Gly Arg Val Leu Gly Lys Leu Ala Gly Glu Ala Arg Gly

Arg Thr Leu Ser Pro Asp Thr 385 390

<210> 65

<211> 24

<212> DNA <213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 65

taaacaactc cacggccctg ctgc

<210> 66

<211> 24 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Construct

24

<400> cccagg	66 gtga tgttgggcag cagg	24
<210> <211> <212> <213>	67 24 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> gctgtg	67 tatg cggtggccca tggc	24
<210> <211> <212> <213>	68 24 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> ccagga	68 gctg gtggaggcca tggg	24
<210><211><212><213>	69 24 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> tgctga	69 ccaa cctgactggc aagg	24
<210> <211> <212> <213>	70 24 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> tctgagg	70 gcga cccacacett gcca	24
<210> <211> <212> <213>	71 24 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> ccagtto	71 cagc taaacataaa tgag	24
<210> <211> <212> <213>	72 24 DNA Artificial Sequence	

<220> <223>	Synthetic Construct	
<400> gccacte	72 ggat tttggtctca ttta	24
<210> <211> <212> <213>	73 24 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> agctaa	73 cacg ctgctgctgc tgct	24
<210><211><211><212><213>	74 24 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> agcagto	74 ccca agcagcagca gcag	24
<210> <211> <212> <213>	75 24 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> tgtgtca	75 acct tcagcctgct cttc	24
<210> <211> <212> <213>	76 24 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> tccagga	76 acac gaagttgaag agca	24
<210> <211> <212> <213>	77 24 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> tacttce	77 ggcc ccaagtgcta catg	24
<210><211><211><212>	78 24 DNA	

<213>	Artificial Sequence		
<220> <223>	Synthetic Construct		
<400> ccgggt	78 agaa gaggatcatg tagc		2
<210> <211> <212>			
<213> <220> <223>	Artificial Sequence Synthetic Construct		
<400>	79 ccat cgtggacctc ttgg		2
<210><211><211><212><212><213>			
<220> <223>	Synthetic Construct		
<400> aggttg	80 agca cagtgaccaa gagg		2
<210><211><211><212><212><213>	24		
<220> <223>	Synthetic Construct		
<400> accaac	81 taca acgaggccaa gttc		2
<210> <211> <212> <213>	82 24 DNA Artificial Sequence		
<220> <223>	Synthetic Construct		
<400> tcatgc	82 tgag ggtgatgaac ttgg		2
<210><211><211><212><212><213>	83 24 DNA Artificial Sequence		
<220> <223>	Synthetic Construct		
<400> tccgag	83 toot gggocatoga coog		2
<210S	84		

20115	0.4		
<211>	24		
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Construct		
	-		
<400>	84		
	tgtg caggaccggg tcga	2	4
cgugge	egeg caggaceggg cega	2	4
2010 >	O.F.		
<210>	85		
<211>	24		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Construct		
<400>	85		
		2	
tacaac	ctca tgcaggccat gcgc	2	4
<210>	86		
<211>	24		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
	Compthatic Construct		
<223>	Synthetic Construct		
<400>	86		
tctcct	ccac cgcgaagcgc atgg	2	4
<210>	87		
<211>	24		
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Construct		
<400>	87		
atcacca	atcc agagcgtgcc catc	2	4
	3 3 3 3		
<210>	88		
<211>	24		
	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Construct		
<400>	88		
	gaa gcccgggatg ggca	2	٨
ucccaci	-yaa geeegggatg ggea	2	-1
<210>	89		
<211>	24		
<212>	DNA		
<213>	Artificial Sequence		
	•		
<220>			
<223>	Synthetic Construct		
\LL 3/	Synthetic Constituct		
~400°	0.0		
<400>	89		
accacca	acgt cgaggccatg gtgc	2	4

<210> <211> <212> <213>	90 24 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> aagtgca	90 agca tcagctgcac catg	24
<210> <211> <212> <213>	91 '23 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> tcrgact	91 ttct acctgcctgg rga	23
<210> <211> <212> <213>	92 20 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> cttcace	92 gttg gcatggaggg	20
<210> <211> <212> <213>	93 21 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> tacctco	93 ctgg gtggcctctt c	21
<210> <211> <212> <213>	94 20 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400> tcttgca	94 acwk gggcacctgc	20
<210> <211> <212> <213>	95 22 DNA Artificial Sequence	
<220> <223>	Synthetic Construct	
<400>	95	

aggtgt	tggg ctacaaccts at	22
<210>	96	
<211>	21	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	96	
gggcake	gtag tggctgtagt c	21
333		-
<210>	97	
	22	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	97	
ggctaca	aacc tsatgcaggc ca	22
<210>	98	
<211>	22	
<212>	DNA	
<213>		
-220/	manufactur boduciico	
<220>		
<223>	Synthetic Construct	
~223/	Synthetic construct	
<400>	98	
		~ ~
gagttg.	tcag ggccaatgac cg	22