

United States Patent [19]
Sekine et al.

[11] **Patent Number:** **5,936,583**
[45] **Date of Patent:** **Aug. 10, 1999**

US05936583A

[54] **PORTABLE RADIO COMMUNICATION DEVICE WITH WIDE BANDWIDTH AND IMPROVED ANTENNA RADIATION EFFICIENCY**

[75] Inventors: **Syuchi Sekine**, Chiba-ken; **Minoru Sakurai**, Tokyo; **Tadahiko Maeda**, **Yasuo Suzuki**, both of Kanagawa-ken; **Syuchi Obayashi**, Chiba-ken, all of Japan

[73] Assignee: **Kabushiki Kaisha Toshiba**, Kawasaki, Japan

[21] Appl. No.: **08/822,737**

[22] Filed: **Mar. 24, 1997**

Related U.S. Application Data

[63] Continuation of application No. 08/630,836, Apr. 10, 1996, abandoned, which is a continuation of application No. 08/128,696, Sep. 30, 1993, abandoned.

Foreign Application Priority Data

Sep. 30, 1992 [JP] Japan 4-260938
Mar. 31, 1993 [JP] Japan 5-09690

[51] Int. Cl.⁶ **H01Q 1/36**; H01Q 1/24

[52] U.S. Cl. 343/702; 343/895

[58] **Field of Search** 343/702, 806,
343/807, 749, 745, 846, 895; H01Q 1/24,
1/36

[56] **References Cited**

U.S. PATENT DOCUMENTS

3,638,226	1/1973	Brooks et al.	343/895
4,121,218	10/1978	Irvine et al.	343/902
4,160,978	7/1979	DuHamel	343/806
4,504,834	3/1985	Ganay et al.	343/802
4,608,572	8/1986	Blakney et al.	343/895
4,730,195	3/1988	Phillips et al.	343/802
4,829,591	5/1989	Hashimoto et al.	343/702
4,866,576	9/1989	Johnson	343/702
4,876,532	10/1989	Zakman	343/702
4,958,382	9/1990	Imanishi	343/702
4,980,694	12/1990	Hines	343/702

5,113,196	5/1992	Ponce de Leon et al.	343/702
5,184,143	2/1993	Marko	343/702
5,220,340	6/1993	Shafai	343/895
5,231,407	7/1993	McGinn et al.	343/702/MS
5,252,922	10/1993	Yamada et al.	343/702
5,262,792	11/1993	Egashira	343/895
5,337,063	8/1994	Takahira	343/895
5,353,036	10/1994	Baldry	343/702
5,365,246	11/1994	Rasinger et al.	343/702
5,394,160	2/1995	Iwasaki et al.	343/702

FOREIGN PATENT DOCUMENTS

361388 10/1922 Germany .
85/02719 6/1981 WIPO .

OTHER PUBLICATIONS

Japanese Patent Abstract, vol. 10, No. 104 (E397) [2161], Apr. 19, 1986, 50-242705.

Fujimoto et al., "Small Antennas", Inverted-L Antennas, pp. 147, (1987), published by Research Studies Press LTD, Letchworth England and John Wiley & Sons Inc., New York.

Simpson, "The Theory of Top-Loaded Antennas: Integral Equations For The Currents", IEEE Transactions on Antennas And Propagation, vol. AP-19: 186-190, (1971).

Chen et al., "FDTD Analysis of Built-in S-Shaped Antenna For Portable Telephone", Proc. of the 1993 IEICE Spring Conference, B-100, (1993), pp. 2-100.

Primary Examiner—Michael C. Wimer
Attorney, Agent, or Firm—Foley & Lardner

[57] **ABSTRACT**

A portable radio communication device capable of eliminating the deterioration of the radiation efficiency due to the occurrence of the dual resonance on the antenna, without reducing the bandwidth. A radio communication device, comprises: a device body made of a conductor body, containing at least one of a radio transmitter and a radio receiver, and an antenna, mounted on the device body, formed by first and second strip-like conductor elements which are connected together at a feeding point connected with said at least one of the radio transmitter and the radio receiver, the first and second strip-like conductor elements having an identical electrical length with each other.

2 Claims, 36 Drawing Sheets

