Solving Substitution Ciphers with Genetic Algorithms

Ladislav Šulák (laco.sulak@gmail.com) Krisztian Benko (kristianbnk@gmail.com)

Home university: Brno University of Technology, Faculty of Information Technology (Czech Republic, but we both are from Slovak Republic)

Key Lengths, Initialization

- * Key Lengths
- possible lengths are chosen
- based on repeating part of substrings in encrypted text
- * Initialization
- number of members in population is defined at the start
- population is created according to algorithm's properties

Roulette wheel

* After the fitness value is calculated for every key, parent pairs are made by roulette wheel, which decide according to fitness value, which keys will be chosen

* Some parents are used to be chosen more than once

Crossover

* Two mating chromosomes are being cut by one-point crossover

* Strings were converted to binary representation for better results

Mutation

* Prevention of being trapped in local minimum

Fitness function

* Fitness value of each member (key) is given by:

- PyEnchant library check if word belongs to English language (can be extended)
- Markov chain model classifier if PyEnchant is not successful, this model is used, which is based on using trigrams (can be extended to digrams)

https://github.com/exp0se/dga_detector

Results

Time	6 min	22 min	33 min	51 min
Size of Key	3 bytes	60 bytes	7 bytes	10 bytes
Size of Encrypted Text	40 bytes	170 bytes	60 bytes	183 bytes
Size of population	40	40	40	40
Num of generations	160	160	300	300

Improvements

- * Roulette wheel would be maybe better to create less pairs or do not use roulette at all, but tournament selection
- * Crossover could be over more points in string (two or three pointed), so we could get better varations
 - or try to use different types of crossover, e.g.: uniform
- * Fitness measurement

References

A Cryptanalytic Attack on Vigenère Cipher Using Genetic Algorithm

* www.researchgate.net/publication/261451438 A cryptanalytic attack on Vigenere cipher using genetic algorithm

Genetic algorithm implementation is based on:

- * materials from Computational Intelligence course from TEI
- * http://www.obitko.com/tutorials/genetic-algorithms/ga-basic-description.php
- * https://github.com/rodhilton/Geneticrypt

Markov Model classifier (gibberish_detector) is based on:

* https://github.com/exp0se/dga_detector

Other materials:

- * [1996] The Applications of Genetic Algorithms in Cryptanalysis by A. J. Bagnall
- * [2003] Solving Substitution Ciphers with Genetics Algorithm by Joe Gester
- * [2008] Cryptoanalysis using genetic algorithms by P. Bergmann, Karel & Scheidler, Renate & Jacob, Christian
- * [2008] Applying Genetic Algorithms for Searching KeySpace of Polyalphabetic Substitution Ciphers
 - by Ragheb Toemeh and Subbanagounder Arumugam
- * [2011] A cryptanalytic attack on Vigenère cipher using genetic algorithm
 - by Omran, Safaa & Al-Khalid, A.S. & Alsaady, Dalal