

THE KOREAN SOCIETY OF CLIMATE CHANGE RESEARCH

2023. 11. 24. (Fri.)

Identifying circular economy enablers in South Korea's manufacturing industry: Utilizing a multi criteria decision making analysis

Hyeonyu Son, Department of Global Climate Environmental Studies (M.A.) Contact: hyeonyuson@hanyang.ac.kr

Tongkyu Kim, Department of Global Climate Environmental Studies (M.A.) Contact: donkee96@hanyang.ac.kr

00. Paper structure

Table of contents

01. Introduction	p. 1
02. Literature review	p. 3
03. Methodology and measurement	p. 8
04. Analytical results	p. 10
05. Conclusion and implication	p. 12
06. Questions and answers	p. 14

01. Introduction

Background of circular economy (CE)

Circular economy Linear economy Design Extraction Production Distribution Consumption DisposalProduction Recycle Make Waste Take less Waste less Take Collection Consumption South Korea's manufacturing industry heavily relies on strategic resources Circular transition in South Korea is essential for its geography and economy By transitioning to CE, South Korea can create new market opportunities

Batteries

- Solve issues related to poor resource accessibility
- Allow more sustainable and environmental development
- Meet global requirements related to sourcing and recyclability

RQ1. What are the main enablers that drive South Korea's CE transition? RQ2. What enablers take priority over others?

Outline of research

Identifying CE enablers (1)

Regulatory enablers	Financial enablers (Cohen and Gil 2021)				
(Manomaivibool and Hong 2014)					
Extended producer responsibility (EPR) policies proven to encourage design for recyclability Studies link regulatory incentives to increased green tech adoption Regulations on material recycling shown to bolster secondary material markets	 Financial incentives align corporate investments with circular economy goals Research shows tax breaks and subsidies significantly boost circular initiatives Studies find that funding for sustainable R&D spurs industry innovation. 				
Socio-cultural enablers (Xu, Qian et al. 2023)	Environmental enablers (Mondal, Singh et al. 2023)				
 Consumer awareness and values are key to driving market demand for circular products Cultural shifts towards sustainability can accelerate corporate adoption of circular practices Social norms and behaviors play a critical role in embedding circularity in economic systems. 	 Environmental gains, such as reduced waste, drive circular strategies Biodiversity preservation through circular practices gains academic emphasis Lifecycle assessment studies affirm circular economy's role in minimizing ecological footprints 				

Identifying CE enablers (2)

Technological enablers	Organizational enablers
(Alonso-Almeida, Rodriguez-Anton et al. 2021)	(Cohen and Gil 2021)
Advances in recycling and remanufacturing technologies are key for resource recovery Digital tools for tracking and optimizing resource use bolster circular operations Innovation in material science is crucial for developing sustainable alternatives	 Leadership commitment to circular principles is critical for organizational transformation Internal knowledge-sharing practices enhance the implementation of circular strategies Cross-departmental collaboration is essential for developing and sustaining circular economy practices within organizations
nfrastructural Enablers	Geopolitical Enablers
Xu, Qian et al. 2023)	(Zeng, Ogunseitan et al. 2022)
 Structured recycling and waste management infrastructure is important for effective material recovery Efficient logistics and supply chain networks are key to supporting circular economy models Investment in green infrastructure facilitates the transition to circular operational processes 	 Global trade relations and geopolitical dynamics influence the flow of materials and technologies necessary for a circular economy Literature suggests that geopolitical considerations can impact the effectiveness of circular economy strategies, especially in export-oriented economies like South Korea However, there is a lack of studies that tackle geopolitical enablers in the manufacturing industry, especially in the context of South Korea.

02. Literature review

Literature review overview and research gap

Attributes								
MCDM references	CE enablers							
	RGE	FNE	SCE	ENE	TNE	OGE	IFE	GPE
Alonso-Almeida et al. (2021)	•	•	•	•		•		0
Cohen and Gil (2021)		•	•	•	Ο	•	•	
Patel et. al. (2021)	•	•		•	•	•	0	
Manomaivibool and Hong (2014)	•		•	0		0		0
Meili and Stucki (2023)	•	0		•	•	•		0
Mondal and Singh et. al. (2023)	•	•		0	•	•	0	
Rizos and Bryhn (2022)	•	0	0	•	•		0	•
/oukkali et. al. (2023)	•	•	•		0	0	•	
(u et. al. (2023)	•	•	•	•		•	•	
Zeng et al. (2022)	•	0	•		•	•		0

Notes: ●=high relevance, ○=moderate relevance, (1) MCDM=multi criterion decision making, RGE=regulatory enablers, FNE=financial enablers, SCE=socio-cultural enablers, ENE=environmental enablers, TNE=technological enablers, OGE=organizational enablers, IFE=infrastructural enablers, GPE=geopolitical enablers

Geopolitical enablers are becoming more relevant

Policy and resource management

Resource allocation laws: National policies, like the CRMA, aim to secure a stable supply of critical materials for CE, ensuring resource independence.

Sustainable resource trade: Trade agreements influenced by policies such as the IRA can promote or restrict the import and export of recyclable materials and sustainable resources.

International relations and collaboration

Diplomatic CE agreements: Diplomatic efforts can result in joint initiatives for CE, leveraging international cooperation for shared environmental progress.

Impact of sanctions and embargoes: Geopolitical tensions that lead to sanctions can obstruct the flow of CE technologies and critical materials between countries.

Legislation and industrial action

Incentivizing domestic CE Practices: The IRA encourages local industries to adopt CE practices by offering financial incentives for sustainability.

Securing material supply chains: The CRMA focuses on strengthening domestic production and reducing dependency on imported raw materials, crucial for a resilient CE framework.

02. Literature review

Preliminary enablers list

Potential circul	ar economy en	nablers (simplified)			Based on 17 relevant literature from reputable journal entries*
Category	Code	Item	Category	Code	Item
Regulatory	RGE_1	Polluter's pay principle	Technological	TNE_1	Internet of things (IoT)
	RGE_2	Extended producer responsibility		TNE_2	Artificial intelligence (AI) and machine learning (ML)
	RGE_3	Eco-design and standardization		TNE_3	Blockchain technology
	RGE_4	Carbon caps and emission trading		TNE_4	3D printing and additive manufacturing
	RGE_5	Monitoring and reporting requirements		TNE_5	Robotics and automation
Financial	FNE_1	Cost reduction of green manufacturing and services	Organizational	OGE_1	Top management commitment
	FNE_2	Increased profitability of green manufacturing and services		OGE_2	Employee training and education
	FNE_3	Green financing for loans, credit, or other financial instruments		OGE_3	Organizational structure
	FNE_4	Greater return on investment on green investments		OGE_4	Organizational culture
	FNE_5	Financial incentives for green practices		OGE_5	Strategic partnership
Socio-cultural	SCE_1	Heightened awareness and education	Infrastructural	IFE_1	Waste management facilities
	SCE_2	Corporate social responsibility		IFE_2	Industrial symbiosis
	SCE_3	Social norms and values		IFE_3	Logistics and transportation networks
	SCE_4	Community engagement and participation		IFE_4	Technological infrastructure
	SCE_5	Open training and education opportunities		IFE_5	Renewable energy infrastructure
Environmental	ENE_1	Concern over CO ₂ emission	Geopolitical	GPE_1	Strategic regulations (such as IRA or CRMA)
	ENE_2	Concern over resource consumption		GPE_2	Global trend to minimize environmental impacts
	ENE_3	Concern over climate change		GPE_3	International agreements
	ENE_4	Concern over waste management		GPE_4	Geopolitical stability
	ENE_5	Concern over ecosystem		GPE_5	Supply chain risks

Notes: (1) *Reputable journals include English-speaking journals within Q2, (2) selected 5 items for each category based of frequency.

03. Methodology and measurement

Fuzzy Delphi and pilot testing

Fuzzy Delphi process				Linguistic variables	Fuzzy number
Step 1 (completed)	Step 2 (in progress)	Step 3 (pilot tested)	Step 4 (pilot tested)	Extremely low	(0.0, 0.0, 0.1)
Identifying key items	Delphi interview			Low	(0.0, 0.1, 0.3)
based on extensive LR	and discussion	► Validity testing →	Defuzzification	Medium low	(0.1, 0.3, 0.5)
Categorizing potential				Medium	(0.3, 0.5, 0.7)
enablers (slide n)			•	Medium high	(0.5, 0.7, 0.9)
Preparing Delphi questionnaire	Selection of expert panel		Finalize enabler list	High	(0.7, 0.9, 1.0)
questionnaire	опрентринен	· ·		Extremely high	(0.9, 1.0, 1.0)
Expert panel (intended vs. pilot	test)		Delphi interview -	Validity testing	Defuzzification
Academia	Industry	Government			
(1) 000 (00 years experience) (2) 000 (00 years experience) (3) 000 (00 years experience) (4) 000 (00 years experience)	(5) 000 (00 years experience) (6) 000 (00 years experience) (7) 000 (00 years experience) (8) 000 (00 years experience)	(9) 000 (00 years experience) (10) 000 (00 years experience) (11) 000 (00 years experience) (12) 000 (00 years experience)	 Email exchange Face-to-face interaction Narrative survey 	 Consistency of response Kendall's W Sensitivity analysis 	 Center of gravity method Calculate fuzzy weights Cut at 50% threshold
Energy engineering	Environmental engineering	Global climate environment			
(1) 000 (1 years experience) (2) 000 (1 years experience) (3) 000 (1 years experience) (4) 000 (0 years experience)	(5) 000 (2 years experience) (6) 000 (3 years experience) (7) 000 (2 years experience) (8) 000 (1 years experience)	(9) 000 (0 years experience) (10) 000 (5 years experience) (11) 000 (2 years experience) (12) 000 (1 years experience) (13) 000 (2 years experience)	Pilot test on HYU students	Sample bias detected	Proceeded regardless, to evaluate following procedures

Notes: (a, b, c), a=minimum weight, b=mean weight, c=maximum weight.

03. Methodology and measurement

Analytical hierarchy process

Accepted enablers bas	sed on pilot test						
Regulatory	Financial	Socio-cultural	Environmental	Technological	Organizational	Infrastructural	Geopolitical
RGE_1	FNE_1	SCE_1	ENE_1	TNE_1	OGE_1	IFE_1	GPE_1
(0.516, 0.725, 0.867)	(0.366, 0.566, 0.766)	(0.450, 0.650, 0.850)	(0.258, 0.458, 0.658)	(0.625, 0.825, 0.950)	(0.400, 0.600, 0.800)	(0.328, 0.512, 0.742)	(0.575, 0.775, 0.975)
RGE_2	FNE_2	SCE_2	ENE_2	TNE_2	OGE_2	IFE_2	GPE_2
(0.467, 0.675, 0.842)	(0.175, 0.325, 0.475)	(0.508, 0.708, 0.908)	(0.267, 0.467, 0.667)	(0.700, 0.900, 1.000)	(0.183, 0.367, 0.550)	(0.407, 0.579, 0.822)	(0.575, 0.775, 0.975)
RGE_3	FNE_3	SCE_3	ENE_3	TNE_3	OGE_3	IFE_3	GPE_3
(0.557, 0.757, 0.883)	(0.267, 0.467, 0.667)	(0.292, 0.492, 0.692)	(0.258, 0.458, 0.658)	(0.767, 0.967, 1.000)	(0.208, 0.375, 0.550)	(0.471, 0.651, 0.881)	(0.533, 0.717, 0.917)
RGE_4	FNE_4	SCE_4	ENE_4	TNE_4	OGE_4	IFE_4	GPE_4
(0.333, 0.533, 0.733)	(0.250, 0.450, 0.650)	(0.175, 0.375, 0.575)	(0.267, 0.467, 0.667)	(0.642, 0.857, 0.971)	(0.400, 0.575, 0.775)	(0.483, 0.679, 0.898)	(0.447, 0.617, 0.783)
RGE_5	FNE_5	SCE_5	ENE_5	TNE_5	OGE_5	IFE_5	GPE_5
(0.308, 0.508, 0.708)	(0.258, 0.458, 0.658)	(0.158, 0.358, 0.558)	(0.183, 0.383, 0.583)	(0.733, 0.921, 1.000)	(0.116, 0.276, 0.464)	(0.400, 0.600, 0.800)	(0.217, 0.366, 0.525
(1) Threshold: (0.217, 0.	.366, 0.525), (2) Accepted 6	enablers: (3) II	nterquartile range: 0.284	Survey design for AHP			
Energy engineering	Resource engii	neering Glob	al climate environment	"How important is the	enabler at a scale from 1	to 9"	
(1) 000 (1 years experi	ence) (5) 000 (2 yea	rs experience) (9) C	OO (0 years experience)	Not important at	· all		Extremely important
(2) 000 (1 years experi	ence) (6) 000 (3 yea	rs experience) (10)	000 (5 years experience)	1 • • • • • 9			
(3) 000 (1 years experi	ence) (7) 000 (2 yea	rs experience) (11)	000 (2 years experience)	"How important is cat	regory A compared to cate	egory B at a scale from 1	to 9"
(4) 000 (0 years experi	ence) (8) 000 (1 yea	rs experience) (12)	000 (1 years experience)	Same importance Far more im			Far more important
		(13)	000 (2 years experience)	1	• • •	• • •	9

04. Analytical results

Pairwise comparison matrix (comparative and relative weights)

	Regulator	у	Financial	Socio-cultural	Environmental	Technological	Organizational	Infrastructural	Geopolitical
Pairwise compa	rison matrix								
Regulatory	1		3	6	4	2	7	3	3
Financial	1/3		1	4	1/2	2	1/4	1	2
Socio-cultural	1/6		1/4	1	1/2	1/4	1/2	1/5	1/6
Environmental	1/4		2	2	1	1/3	2	1	1/2
Technological	1/2		1/2	4	3	1	3	2	2
Organizational	1/7		4	2	1/2	1/3	1	1/2	1/3
Infrastructural	1/3		1	5	1	1/2	2	1	1/2
Geopolitical	1/3		1/2	6	2	1/2	3	2	1
Relative weight	s								
Regulatory	1.000		2.623	10.039	3.309	1.903	3.335	3.208	2.365
Financial	0.381		1.000	3.828	1.262	0.725	1.271	1.223	0.902
Socio-cultural	0.100		0.261	1.000	0.330	0.190	0.332	0.320	0.236
Environmental	0.302		0.793	3.034	1.000	0.575	1.008	0.969	0.715
Technological	0.526		1.378	5.276	1.739	1.000	1.753	1.686	1.243
Organizational	0.300		0.786	3.010	0.992	0.571	1.000	0.962	0.709
Infrastructural	0.312		0.818	3.129	1.031	0.593	1.040	1.000	0.737
Geopolitical	0.423		1.109	4.245	1.399	0.805	1.410	1.357	1.000
Aggregated	0.299		0.114	0.030	0.090	0.157	0.090	0.093	0.127
Saaty (2000)	N	1	2	3	4 5	6	7	8 9	10
	RCI	0.00	0.00	0.58	0.90	1.14	1.35	1.41 1.45	1.49

Notes: Maximum Eigenvalue (λ _max)=9.305, consistency index=0.186, consistency ratio=0.132

04. Analytical results

Summary of analytical results

Category rank	Relative weight (category)	Accepted item no.	ltem	Item description	Relative weight (item)	ltem rank
RGE	0.299	2	RGE_2	Extended producer responsibility	0.342	1
			RGE_3	Eco-design and standardization	0.310	3
TNE	0.157	5	TNE_1	Internet of things (IoT)	0.294	4
			TNE_2	Artificial intelligence (AI) and machine learning (ML)	0.326	2
			TNE_3	Blockchain technology	0.245	7
			TNE_4	3D printing and additive manufacturing	0.181	11
			TNE_5	Robotics and automation	0.229	8
GPE	0.127	2	GPE_1	Strategic regulations (such as IRA or CRMA)	0.278	5
			GPE_2	Global trend to minimize environmental impacts	0.149	13
FNE	0.114	2	FNE_1	Cost reduction of green manufacturing and services	0.197	10
			FNE_3	Green financing for loans, credit, or other financial instruments	0.213	9
IFE	0.093	5	IFE_1	Waste management facilities	0.262	6
			IFE_2	Industrial symbiosis	0.165	12
			IFE_3	Logistics and transportation networks	0.133	14
			IFE_4	Technological infrastructure	0.068	18
			IFE_5	Renewable energy infrastructure	0.036	20
ENE	0.091	2	ENE_2	Concern over resource consumption	0.117	15
			ENE_4	Concern over waste management	0.094	17
OGE	0.090	1	OGE_1	Top management commitment	0.101	16
SCE	0.030	2	SCE_1	Heightened awareness and education	0.052	19
			SCE_2	Corporate social responsibility	0.020	21

Implications and limitations of pilot test

Implications

- The most significant driver for CE transition are regulatory and institutional forces that mandate people, organizations, and systematic processes to engage in circular and sustainable practices.
- The second largest influencer is technological aspects, indicating that the transition of CE heavily relies on technological advances along with technological feasibility concerns that enable CE practice to integrate smoothly in daily operations.
- Geopolitical factors were found to be the fourth, implying that for countries like South Korea, the transition to CE is greatly influence by foreign policy mandates with consideration for the exports market.
- Financial enablers at a relative weight of 0.114 signifies that the costs and expenses associated with the transition can be significant barriers.
- Other aspects fall relatively short, weighing under the 0.1 threshold—downplaying environmental, social, infrastructural, and organizational enablers.

Limitations

- Our current experiment is likely to include a sampling bias as we have narrowed the focus to in-school respondents.
- Aspects such as technology may have been overemphasized due to most responses stemming from engineering backgrounds.
- Geopolitical enablers may also have been oversized due to GCE student biases.
- Contrastingly, aspects such as social awareness and organizational ideas may have been overlooked due to similar issues.
- Additionally, our study currently lacks sufficient measurement assessments to evaluate whether the data and samples do not suffer from consistency, validity, and accuracy issues.

Future research direction

Thank you Q&A