Forecasting Assignment - 2

VISHAL PATNAIK DAMODARAPATRUNI - s3811521

18/09/2021

Table of Contents

Introduction	2
Part 1:	2
Part 2:	2
Method	2
Part 1	2
Data	3
Descriptive Analysis	4
Checking for Stationary in the series	7
Suitable distributed lag model	
Exponential Smoothing	51
State Space Model Variations	57
Forecasting	60
Part 2	61
Data	61
Descriptive analysis	62
Correlation Analysis	65
Checking for Stationary in the series	66
Prewhitening	69
Conclusion	70
Part 1	70
Part 2:	70
References	71

Introduction

This analysis has two parts: Part 1: Forecasting Solar Radiation data. Part 2: Correlation Analysis.

Part 1:

Here, we will forecast the horizontal solar radiation data for the next two years using the best fit model. To get this best model we have three approaches. 1. Suitable DL model fitting 2. Smoothing methods 3. State Space models

The best model is the one that has the best MASE score as well as gives the best residual analysis.

Part 2:

The correlation strength is to be accessed among quarterly Residential Property Price Index (PPI) in Melbourne and quarterly population change over the previous quarter in Victoria and then check whether the relationship is spurious or not.

Method

Part 1

The following packages are used by both Part 1 and Part 2.

```
library(dplyr)
library(forecast) # Forecasting Functions for Time Series and Linear Models.
library(dLagM) # Distributed Lag model.
library(lmtest) # Testing Linear Regression Models. [2]- https://cran.r-
project.org/web/packages/lmtest/index.html
library(tidyr)
library(tseries) # Time Series Analysis and Computational Finance. [3] -
https://cran.r-project.org/web/packages/tseries/index.html
library(fUnitRoots) # To analyze trends and unit roots in financial time
series. [4] - https://cran.r-project.org/web/packages/fUnitRoots/index.html
library(expsmooth) # Forecasting with Exponential Smoothing. [5] -
https://cran.r-project.org/web/packages/expsmooth/index.html
library(TSA) # Time Series Analysis.
library(urca) # Unit Root and Cointegration Tests. [6] - https://cran.r-
project.org/web/packages/urca/index.html
library(readr)
```

Data

The data here used is the monthly average horizontal solar radiation and the monthly precipitation series measured at the same points between January 1960 and December 2014.

```
v_Task1_data <- read.csv("data1.csv", header = TRUE)</pre>
head(v_Task1_data)
##
         solar
                 ppt
## 1 5.051729 1.333
## 2 6.415832 0.921
## 3 10.847920 0.947
## 4 16.930264 0.615
## 5 24.030797 0.544
## 6 26.298202 0.703
# Using str() to check the type of each column.
str(v_Task1_data)
## 'data.frame':
                    660 obs. of 2 variables:
## $ solar: num 5.05 6.42 10.85 16.93 24.03 ...
## $ ppt : num 1.333 0.921 0.947 0.615 0.544 ...
Checking for Missing values.
colSums(is.na(v_Task1_data))
           ppt
## solar
## 0
```

There are no missing values in the data.

Checking the class of v_solar_data. (It should be a data frame.)

```
class(v_Task1_data)
## [1] "data.frame"

v_solar_radiation_TS <- ts(v_Task1_data$solar, start = c(1960, 1), frequency = 12)

v_precipitation_TS <- ts(v_Task1_data$ppt, start = c(1960, 1), frequency = 12)</pre>
```

Confirming the class of each time series object.

```
class(v_precipitation_TS)
## [1] "ts"

class(v_solar_radiation_TS)
## [1] "ts"
```

Now let us perform descriptive analysis on each time series object.

Descriptive Analysis

Solar radiation

```
plot(v_solar_radiation_TS, type = "b", xlab = "years", ylab = "Radiation
amount", main = "Time series plot for solar radiation from 1960-1 to 2014-12
(660 months)", pch = 1)
legend("topright", inset = .03, title = "Radiation amount", legend = "Solar
radiation series", horiz = TRUE, cex = 0.7, lty = 1, box.lty = 2, box.lwd =
2, pch = 1)
points(v_solar_radiation_TS, x = time(v_solar_radiation_TS), pch =
as.vector(season(v_solar_radiation_TS)))
```

Time series plot for solar radiation from 1960-1 to 2014-12 (660 months)

Fig 1.1: Solar radiation - Time series plot.

McLeod.Li.test(y = v_solar_radiation_TS, main = "McLeod-Li Test Statistics
for Solar radiation.")

McLeod-Li Test Statistics for Solar radiation.

Fig 1.2: McLeod-Li Test Statistics for Solar radiation.

Descriptive analysis

- 1. From fig1, we can observe that there is no trend in the data.
- 2. There is an intervention around the years, 1965 and 1967.
- 3. From fig1, we can conclude that there is seasonality in the series.
- 4. It has lower values in the months of January and December, where as the higher values in the months of June and July. This shows that there is no consistency across the observed period of time.
- 5. Therefore, there is no change Autoregressive and moving average behaviour.
- 6. Also, we cannot see change in variance.

Precipitation

```
plot(v_precipitation_TS, type = "b", xlab = "years", ylab = "Precipitation",
main = "Time series plot for monthly precipitation from 1960-1 to 2014-12
(660 months)", pch = 1)
legend("topleft", inset = .03, title = "Precipitation", legend =
"Precipitation series", horiz = TRUE, cex = 0.8, lty = 1, box.lty = 2,
box.lwd = 2, pch = 1)
points(v_precipitation_TS, x = time(v_precipitation_TS), pch =
as.vector(season(v_precipitation_TS)))
```


Fig 1.3: Solar radiation - Time series plot.

McLeod.Li.test(y = v_precipitation_TS, main = "McLeod-Li Test Statistics for Precipitation.")

McLeod-Li Test Statistics for Precipitation.

Fig 1.4: McLeod-Li Test Statistics for Precipitation.

Descriptive analysis

- 1. From fig1, we can observe that there is no trend in the data.
- 2. There are no obvious intervention points in the series.
- 3. From fig1, we can conclude that there is seasonality in the series.
- 4. It has lower values in the months of August and September, where as the higher values in the months of January and December. This shows that there is no consistency across the observed period of time.
- 5. Therefore, there is no change Autoregressive and moving average behaviour.
- 6. Also, we cannot see change in variance.

Checking for Stationary in the series

```
# Function to check Stationary on the series.
Stationary_Check <- function(x, m1, m2) {

# Analysing trends by plotting ACF and PACF.
par(mfrow = c(1,2))
acf(x, main = m1)
pacf(x, main = m2)

# Lag for ADF test
d = ar(x)$order

# Conducting Augmented Dickey-Fuller test.
adf.test(x, k = d)
}</pre>
```

Checking for Stationary on Solar Radiation series.

```
Stationary_Check(v_solar_radiation_TS, "Solar Radiation - ACF plot", "Solar
Radiation - PACF plot")
## Warning in adf.test(x, k = d): p-value smaller than printed p-value
```


Fig 1.5: Solar Radiation - ACF

Fig 1.6: Solar Radiation - ACF

```
##
## Augmented Dickey-Fuller Test
##
## data: x
## Dickey-Fuller = -4.557, Lag order = 25, p-value = 0.01
## alternative hypothesis: stationary
```

The seasonal pattern in the significant lags suggests that there is no trend in the series.

Hypotheses:

H₀: The data is not stationary.

HA: The data is stationary.

Interpretations:

- p value: $\sim 0.01 < 0.05$
- p value is less than 0.05 and hence the test is statistically significant. Therefore, we Null hypothesis can be rejected i.e., The data is stationary.
- Therefore, the Solar Radiation series is Stationary.

Checking for Stationary on Precipitation data.

```
Stationary_Check(v_precipitation_TS, "Precipitation - ACF plot", "Precipitation - PACF plot")
```


Fig 1.7: Precipitation - ACF

Fig 1.8: Precipitation - PACF

```
##
## Augmented Dickey-Fuller Test
##
## data: x
## Dickey-Fuller = -3.2594, Lag order = 28, p-value = 0.07769
## alternative hypothesis: stationary
```

Fig 1.7: Precipitation - ACF Fig 1.8: Precipitation - PACF

The seasonal pattern in the significant lags suggests that there is no trend in the series.

Hypotheses:

H₀: The data is not stationary.

HA: The data is stationary.

Interpretations:

- p value : 0.07769 > 0.05
- p value is less than 0.05 and hence the test is statistically significant. Therefore, we Null hypothesis can be rejected i.e., The data is stationary.
- Therefore, the Precipitation series is Stationary.

Therefore, no differentiation is required. As the two series are stationary.

Suitable distributed lag model.

Before this let us find the correlation between the two series.

```
# Calculating the correlation coefficient between solar radiation and
precipitation.
cor(v_solar_radiation_TS, v_precipitation_TS)
## [1] -0.4540277
```

This suggests that there is a negative correlation between the series.

```
v prep fore data <- read.csv("data.x.csv", header = TRUE)</pre>
head(v_prep_fore_data)
##
             Х
## 1 0.1890100
## 2 0.6972625
## 3 0.5952135
## 4 0.4873885
## 5 0.2616770
## 6 0.8086067
v_prep_fore_TS <- ts(v_prep_fore_data , start = c(2015, 1), frequency = 12)</pre>
v_prep_fore_TS
##
                          Feb
                                      Mar
                                                 Apr
               Jan
                                                             May
## 2015 0.18901000 0.69726252 0.59521349 0.48738853 0.26167702 0.80860665
## 2016 0.10986063 0.78146471 0.69685501 0.50241391 0.64938561 0.74596077
               Jul
                                                 0ct
                          Aug
                                      Sep
## 2015 0.94186202 0.90563633 1.05996468 0.34143878 0.52580532 0.60247106
## 2016 0.66304712 0.53377011 0.61542621 0.54606508 0.14267332 0.01365041
```

As we are going to forecast the solar radiation data our dependent variable "x" will be solar radiation series object and independent variable "y" will be precipitation data.

Finite distributed lag model

```
x = v_precipitation_TS # Independent variable
y = v_solar_radiation_TS # Dependent variable

for ( i in 1:10){
    model_1 = dlm(x = as.vector(x) , y = as.vector(y), q = i )
        cat("q = ", i, "AIC = ", AIC(model_1$model), "BIC = ", BIC(model_1$model),
    "MASE =", MASE(model_1)$MASE, "\n")
    }

## q = 1 AIC = 4728.713 BIC = 4746.676 MASE = 1.688457
## q = 2 AIC = 4712.649 BIC = 4735.095 MASE = 1.675967
## q = 3 AIC = 4688.551 BIC = 4715.478 MASE = 1.662703
## q = 4 AIC = 4663.6 BIC = 4695.003 MASE = 1.646357
```

```
## q = 5 AIC = 4644.622 BIC = 4680.499 MASE = 1.613848

## q = 6 AIC = 4637.489 BIC = 4677.837 MASE = 1.607532

## q = 7 AIC = 4632.716 BIC = 4677.532 MASE = 1.607042

## q = 8 AIC = 4625.986 BIC = 4675.267 MASE = 1.604806

## q = 9 AIC = 4615.084 BIC = 4668.827 MASE = 1.593121

## q = 10 AIC = 4602.658 BIC = 4660.858 MASE = 1.577996
```

As we have the least AIC and BIC values at q = 10. Let us fit the finite distributed lag model with q = 10.

```
# Finite Lag Length based on AIC-BIC
finite_dlm_solar_rad = dlm( x = as.vector(x) , y = as.vector(y), q = 10)
summary(finite dlm solar rad)
##
## Call:
## lm(formula = model.formula, data = design)
## Residuals:
##
        Min
                 1Q
                      Median
                                   3Q
                                           Max
## -18.9353 -5.4124 -0.7911
                               4.0184 30.8900
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                           1.0942 17.374 < 2e-16 ***
## (Intercept) 19.0105
## x.t
               -7.3843
                           1.8995 -3.887 0.000112 ***
## x.1
               -0.4763
                           2.5395 -0.188 0.851288
## x.2
               -0.1324
                           2.5734 -0.051 0.958980
## x.3
                1.7902
                           2.5781
                                    0.694 0.487691
## x.4
                1.9686
                           2.5808
                                    0.763 0.445877
## x.5
                3.4928
                           2.5807
                                    1.353 0.176402
## x.6
                0.5243
                           2.5787 0.203 0.838943
                           2.5797
## x.7
                1.6762
                                    0.650 0.516088
               0.9282
                                    0.362 0.717817
## x.8
                           2.5673
                0.3754
                           2.5338
                                    0.148 0.882272
## x.9
                           1.8760 -2.868 0.004272 **
## x.10
               -5.3798
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.256 on 638 degrees of freedom
## Multiple R-squared: 0.3081, Adjusted R-squared: 0.2962
## F-statistic: 25.82 on 11 and 638 DF, p-value: < 2.2e-16
##
## AIC and BIC values for the model:
         AIC
                  BIC
## 1 4602.658 4660.858
```

Hypotheses:

Ho: The data doesn't fit the Finite distributed lag model.

HA: The data fits the Finite distributed lag model.

Interpretations:

- F statistic is 25.82
- R squared is 0.3081
- Adjusted R squared is 0.2962
- Degrees of freedom DF are (11, 638)
- p value (~ 0.01) is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Hence, the model fits the Finite distributed lag model.

This model suggests that there is only 29.62% of data variance. Suggesting that the model explains only 29.62% of the trend. Which implies that the model shows some trend.

Residual analysis

```
# Function for residual analysis.
res_analysis <- function(res_m) {</pre>
    par(mfrow = c(2, 2))
    # Scatter plot for model residuals
    plot(res_m, type = "b", pch = 19, col = "blue", xlab = "years", ylab =
"Standardized Residuals", main = "Plot of Residuals over Time")
    abline(h = 0)
    # Standard distribution
    hist(res m, xlab = 'Standardized Residuals', freq = FALSE)
    curve(dnorm(x, mean = mean(res_m), sd = sd(res_m)), col = "red", lwd = 2,
add = TRUE, yaxt = "n")
    # QQplot for model residuals
    qqnorm(res_m, col = c("blue"))
    qqline(res m)
    # Auto-Correlation Plot
    acf(res_m, main = "ACF of Standardized Residuals",col=c("blue"))
    # Shapiro Wilk test
    shapiro.test(res m)
}
res_analysis(residuals(finite_dlm_solar_rad$model))
```


Residual Analysis for Finite DLM:

- 1. The data points are below the line at the start and below the line at the end of the trend. Randomness is seen to some extent. So, we cannot decide anything at this stage. Further analysis is required.
- 2. From normal distribution curve, the distribution is almost symmetric.
- 3. The data at the tails is deviated more leaving some part on the line suggesting there is some normality in the trend.
- 4. There are significant lags in Autocorrelation plot suggesting that the stochastic component is not white noise. Also, ACF shows seasonality pattern.
- 5. p value (~ 0.01) from Shapiro-Wilk normality test is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Suggesting some normality.

Therefore, Further analysis is needed by adding polynomial to the lag model.

```
Polynomial distributed lag model
```

```
for (i in 1:3){
  model_2 <- polyDlm(x = as.vector(x) , y = as.vector(y), q = i , k = i,</pre>
```

```
show.beta = FALSE)
  cat("q = ", i, "k = ", i, "AIC = ", AIC(model_2$model), "BIC = ",
BIC(model_2$model),"\n")
}
## q = 1 k = 1 AIC = 4728.713 BIC = 4746.676
## q = 2 k = 2 AIC = 4712.649 BIC = 4735.095
## q = 3 k = 3 AIC = 4688.551 BIC = 4715.478
```

Let us fit a polynomial model of order 3. Since least AIC and BIC scores.

```
# Ploynomial DLM
PolyDLM model solar = polyDlm(x = as.vector(x), y = as.vector(y), q = 3, k =
3, show.beta = TRUE)
## Estimates and t-tests for beta coefficients:
         Estimate Std. Error t value P(>|t|)
## beta.0 -11.400 1.77 -6.450 2.13e-10
## beta.1 -0.566
                       2.58 -0.219 8.26e-01
## beta.2 -2.490
                      2.57 -0.967 3.34e-01
## beta.3
           7.820
                       1.76 4.450 1.01e-05
summary(PolyDLM_model_solar)
##
## Call:
## "Y ~ (Intercept) + X.t"
##
## Residuals:
##
      Min
              1Q Median
                             3Q
                                    Max
## -18.626 -5.831 -1.118 4.390 31.812
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.9176 0.7047 29.682 < 2e-16 ***
                        1.7694 -6.453 2.13e-10 ***
## z.t0
            -11.4184
             25.5737 13.1047 1.951
## z.t1
                                         0.0514 .
             -18.8879 12.0350 -1.569
## z.t2
                                          0.1170
              4.1669
                         2.6606 1.566
## z.t3
                                         0.1178
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.533 on 652 degrees of freedom
## Multiple R-squared: 0.2479, Adjusted R-squared: 0.2433
## F-statistic: 53.72 on 4 and 652 DF, p-value: < 2.2e-16
```

Hypotheses:

H₀: The data doesn't fit the Polynomial distributed lag model.

HA: The data fits the Polynomial distributed lag model.

Interpretations:

- F statistic is 53.72
- R squared is 0.2479
- Adjusted R squared is 0.2433
- Degrees of freedom DF are (4, 652)
- p value (~ 0.01) is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Hence, the model fits the Polynomial distributed lag model.

This model suggests that there is only 24.33% of data variance. Suggesting that the model explains only 24.33% of the trend. Which implies that the model shows some trend.

Residual analysis

res_analysis(residuals(PolyDLM_model_solar\$model))

Residual Analysis for Polynomial DLM:

1. The data points are below the line at the start and below the line at the end of the trend. Randomness is seen to some extent. So, we cannot decide anything at this stage. Further analysis is required.

- 2. From normal distribution curve, the distribution is almost symmetric.
- 3. The data at the tails is deviated more leaving some part on the line suggesting there is some normality in the trend.
- 4. There are significant lags in Autocorrelation plot suggesting that the stochastic component is not white noise. Also, ACF shows seasonality pattern.
- 5. p value (~ 0.01) from Shapiro-Wilk normality test is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Suggesting some normality.

This analysis is not enough and we still require a better model than this. Therefore, let us fit Koyck model.

```
Koyck model
```

```
# Koyk DLM
Koyck_DLM_solar = koyckDlm(x = as.vector(x), y = as.vector(y))
summary(Koyck_DLM_solar)
##
## Call:
## "Y ~ (Intercept) + Y.1 + X.t"
##
## Residuals:
##
       Min
                1Q
                     Median
                                 3Q
                                        Max
## -13.0926 -3.5961
                     0.3176
                            3.6103 14.8399
##
## Coefficients:
            Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.23925 0.76549 -2.925 0.00356 **
## Y.1
            0.98546
                        0.02424 40.650 < 2e-16 ***
## X.t
             ## ---
## Signif. codes:
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.814 on 656 degrees of freedom
## Multiple R-Squared: 0.7598, Adjusted R-squared: 0.7591
## Wald test: 1104 on 2 and 656 DF, p-value: < 2.2e-16
## Diagnostic tests:
## NULL
##
                             alpha
                                      beta
                                                phi
## Geometric coefficients: -154.0203 5.346844 0.9854613
```

Hypotheses:

H₀: The data doesn't fit the Koyck distributed lag model.

HA: The data fits the Koyck distributed lag model.

Interpretations:

Wald test statistic is 1104

- R squared is 0.7598
- Adjusted R squared is 0.7591
- Degrees of freedom DF are (2, 656)
- p value (~ 0.01) is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Hence, the model fits the Koyck distributed lag model.

This model suggests that there is only 75.91% of data variance. Suggesting that the model explains only 75.91% of the trend. Which implies that the model performs better on the series data when compared to the former values.

Now let us perform residual analysis.

Residual analysis

res_	analysis(res	siduals(Koyck_	_DLM_solar))			
## 7	2	3	4	5	6	
##	-1.24764058 795959	1.70115896	5.19100459	6.67724783	1.09720481	-
## 13	8	9	10	11	12	
## 7.12	-5.90870316 209433	-10.55198103	-10.27887277	-8.46692341	-8.44511063	
## 19	14	15	16	17	18	
	2.33750859 748472	9.51201375	8.99277568	10.73479855	4.64243658	
## 25	20	21	22	23	24	
5.51	149275		-12.29939787		-6.16910152	-
## 31	26	27	28	29	30	
	0.27104782 539605	3.25616886	0.95669801	8.19132959	0.66048723	
## 37	32	33	34	35	36	
	-2.41247478 508758	-7.28871401				-
## 43	38	39	40	41	42	
	1.61796574 373900	2.59604609	3.42244512	4.76091472	1.96550418	-
## 49	44	45	46	47	48	
## 1.13	-0.63390787 472596	-3.29269650	-6.79695740	-5.24732785	-4.78788118	-

##	50	51	52	53	54	
55						
##	3.19823022	4.41325664	5.63406058	4.15649716	2.73254506	
	894744					
##	56	57	58	59	60	
61						
##	-2.88521084	-6.39546652	-5.21662766	-6.58076877	-3.38995679	-
	779194					
##	62	63	64	65	66	
67						
##	-0.41896660	1.13371766	-1.30494698	1.12957909	1.28806919	-
0.10	785645					
##	68	69	70	71	72	
73						
##	1.27296577	0.85238128	-1.80205874	-2.53221608	7.12786589	-
8.19	598433					
##	74	75	76	77	78	
79						
##	3.09010555	4.42788724	5.20173278	3.77355596	2.37958244	
2.83	679702					
##	80	81	82	83	84	
85		5 -	5 _		.	
	-1.49581120	-5.17684032	-6.04389141	-4.22318665	-3.50392728	
	915110	3.17001032	0.01303111	1.22310003	3.30332720	
##	86	87	88	89	90	
91	00	07	00	05	50	
##	3.25590543	6.90534880	1.88513537	4.96950498	1.40647677	
	574193	0.00004000	1.00515557	4.00000400	1.40047077	
##	92	93	94	95	96	
97	92	93	54	93	90	
	0 01063107	-2.25768465	2 55075014	-4.87504285	-1.61295729	
	882723	-2.23/00403	-3.330/3314	-4.0/304203	-1.01293729	-
##	98	00	100	101	100	
	96	99	100	101	102	
103	2 42010071	4 07270021	2 05022002	2 40107270	2 25676972	
##	2.43810871	4.07370031	3.95932802	3.48107270	2.35676873	
	362183	105	100	107	100	
##	104	105	106	107	108	
109	0 00440050	2 40072704	F 407F46F7	4 50007000	4 05077535	
##		-3.18972784	-5.12/5465/	-4.5223/802	-1.95877535	
	511005					
##	110	111	112	113	114	
115	4 000=0:00	40.050-000		0.065.0.0	4 000000	
##		10.05073393	6.28905815	9.86349490	4.35930343	
	340135					
##	116	117	118	119	120	
121						
		-6.40072982	-9.78775865	-9.11114547	-3.61969072	-
	666595					
##	122	123	124	125	126	

## 4.86245843 5.14182848 2.73156123 2.48472635 4.06271516 3.09887072 ## 128 129 130 131 132 133 ## -0.97002771 -3.56321183 -7.36352845 -5.77005287 -1.47151067 9.29564936 ## 134 135 136 137 138 139 ## 4.84420145 8.22344869 6.82375570 8.40404569 6.49298108 3.59072183 ## 140 141 142 143 144 145 ## -0.90171282 -7.50822520 -8.45810893 -9.40274978 -4.37372626 3.48970748 ## 146 147 148 149 150 151 ## 2.93994886 5.21151355 2.52795143 3.87116465 0.84966204	-
## 128 129 130 131 132 ## -0.97002771 -3.56321183 -7.36352845 -5.77005287 -1.47151067 9.29564936 ## 134 135 136 137 138 139 ## 4.84420145 8.22344869 6.82375570 8.40404569 6.49298108 3.59072183 ## 140 141 142 143 144 145 ## -0.90171282 -7.50822520 -8.45810893 -9.40274978 -4.37372626 3.48970748 ## 146 147 148 149 150 151	-
## -0.97002771 -3.56321183 -7.36352845 -5.77005287 -1.47151067 9.29564936 ## 134 135 136 137 138 139 ## 4.84420145 8.22344869 6.82375570 8.40404569 6.49298108 3.59072183 ## 140 141 142 143 144 145 ## -0.90171282 -7.50822520 -8.45810893 -9.40274978 -4.37372626 3.48970748 ## 146 147 148 149 150	-
## 134 135 136 137 138 139 ## 4.84420145 8.22344869 6.82375570 8.40404569 6.49298108 3.59072183 ## 140 141 142 143 144 145 ## -0.90171282 -7.50822520 -8.45810893 -9.40274978 -4.37372626 3.48970748 ## 146 147 148 149 150 151	-
## 4.84420145 8.22344869 6.82375570 8.40404569 6.49298108 3.59072183 ## 140 141 142 143 144 145 ## -0.90171282 -7.50822520 -8.45810893 -9.40274978 -4.37372626 3.48970748 ## 146 147 148 149 150 151	-
## 140 141 142 143 144 145 ## -0.90171282 -7.50822520 -8.45810893 -9.40274978 -4.37372626 3.48970748 ## 146 147 148 149 150 151	-
## -0.90171282 -7.50822520 -8.45810893 -9.40274978 -4.37372626 3.48970748 ## 146 147 148 149 150 151	-
151	
## 2.93994886 5.21151355 2.52795143 3.87116465 0.84966204	
3.69158588	
## 152 153 154 155 156 157	
## 0.95949602 -2.25092969 -5.67250353 -2.91447012 -1.91875711 1.70621433	
## 158 159 160 161 162 163	
## 4.25102841 5.26479415 0.41880618 3.86779208 2.88823616 1.84253538	
## 164 165 166 167 168 169	
## -2.93070163 -0.29638632 -5.75123988 -2.70832261 -0.94359514 3.00634226	
## 170 171 172 173 174 175	
## 4.40865842 6.34981249 0.86599205 2.69118800 4.40686876 1.15080026	-
## 176 177 178 179 180 181	
## -0.69953468 -4.42552930 -7.04750301 -2.38468468 -1.66291980 0.78657346	-
## 182 183 184 185 186 187	
## 2.99614122 6.01485845 1.02858809 3.60129842 5.70667570 0.87293280	
## 188 189 190 191 192 193	
	_

## 1.61942886 3.28446713	4.10407332	5.17823120	6.01738767	3.38196266	
## 200 205	201	202	203	204	
## -1.37002953 1.38678800	-4.41606676	-5.84264837	-6.95643855	-5.64270783	-
## 206 211	207	208	209	210	
## 0.30525373	3.14389878	3.59184457	5.46988005	3.77372417	
2.52008421 ## 212 217	213	214	215	216	
## -1.28841005 0.84445624	-5.76375016	-6.34455580	-5.99891282	-4.60170890	-
## 218 223	219	220	221	222	
## 4.56263548 2.91518886	5.95590107	5.67567609	4.08223588	4.78374045	
## 224 229	225	226	227	228	
## -1.40608778 2.82157437	-2.97002429	-5.48204108	-4.24329552	-1.33336620	
## 230 235	231	232	233	234	
## 3.34661709 3.55690507	4.99347677	4.67021919	4.62689311	3.61929071	
## 236 241	237	238	239	240	
## -0.44857570 2.94549463	-4.20211676	-5.63720496	-4.10464480	-2.37719926	
## 242 247	243	244	245	246	
## 2.81086498 2.53836893	5.29134837	2.14766626	5.58610747	2.25601585	
	249	250	251	252	
	-2.49720337	-3.57248703	-5.04436005	-1.84934404	-
## 254 259	255	256	257	258	
## 5.76594875 2.78918418	3.78660132	4.77111420	3.95446590	4.10539643	
## 260 265	261	262	263	264	
	-2.70242170	-6.81673233	-5.11312982	-2.39957544	
## 266 271	267	268	269	270	
	8.86125616	8.73872432	10.27676034	6.86469507	

5.96915606 ## 272	273	274	275	276	
277					
## -2.86574926 6.37455266	-8.21223050	-11.25367342	-10.71765391	-5.17608160	-
## 278 283	279	280	281	282	
## 3.10331802	5.60741978	3.39450276	6.04781111	2.86670579	
4.47851947 ## 284	285	286	287	288	
289 ## -1.48633182	-3.70113326	-6.46567658	-4.73048029	-2.21369828	
1.23307783	-3./0113320	-0.4030/030	-4./3040029	-2.21309020	
## 290 295	291	292	293	294	
## 4.82624033	5.74301347	4.80141918	5.11985096	5.54173504	
2.53465400 ## 296	297	298	299	300	
301 ## -0.43232071	-2.39335320	-6.99999398	-4.38568142	-3.04783156	_
0.14395181					
## 302 307	303	304	305	306	
## 2.79835518 4.30828020	4.25773572	3.01468918	4.89020712	3.34523546	
## 308	309	310	311	312	
313 ## 0.08667086	-2.08118512	-4.98161986	-4.91486824	-2.21344459	
9.53629172 ## 314	315	316	317	318	
319	212				
## 1.11171697 1.86836964	-0.18249526	-1.69387522	-1.66832539	3.02743933	
## 320	321	322	323	324	
325 ## 1.55290922	-1.67920958	4.16947143	-0.06960535	-2.22273710	
0.22392724 ## 326	327	328	329	330	
331					
## -2.44399368 2.48723332	3.0/840823	0.0/4/4129	8.3083215/	8.02/83000	
## 332 337	333	334	335	336	
## -2.99098348	-4.37981680	-9.58599315	-13.09257737	-8.25375242	-
10.96701299 ## 338	339	340	341	342	
343 ## -0.81023943	4.45118238	2.13138635	7.35377545	4.44413610	
3.48827449	5110250	2.23230033			

## 349	344	345	346	347	348	
	7623	-3.69274961	-4.62014483	-9.13856525	-6.95055437	-
2.06334845	250	251	252	252	254	
## 355	350	351	352	353	354	
## -0.6539	4000	4.23588429	2.91299368	6.34406900	4.58417054	
3.34640568 ##	356	357	358	359	360	
361						
## -0.8839 1.11222174	2724	-3.27847499	-4.93138283	-7.70722309	-5.86371963	
##	362	363	364	365	366	
367 ## 1.9942	1057	5.32711862	2.40552182	5.14062507	3.76327429	
1.93002067	.1057	3.32711002	2.40332102	3.14002307	3.70327-23	
## 373	368	369	370	371	372	
	.9199	-2.43128075	-4.67259972	-4.88112227	-3.01714985	-
2.50749039	374	375	376	377	378	
## 379	3/4	3/3	370	3//	3/6	
## 0.1347	2488	3.93914568	2.08241204	2.87662449	3.13732698	
3.11699949 ##	380	381	382	383	384	
385	4400	2 50474240	2 72204250	2 40420076	4 55706720	
## 0.3069 1.85559434	1182	-2.504/4240	-3.72201358	-3.48429076	-4.55786739	
##	386	387	388	389	390	
391 ## 4.1896	0245	5.62554460	3.89588094	3.32351454	6.22287620	
2.79376578						
## 397	392	393	394	395	396	
## -0.8346	6872	-2.72452725	-7.66261715	-5.19170545	-5.37168582	
0.58193889 ##	398	399	400	401	402	
403	550	339	400	401	402	
## 3.2875 4.54493267	3318	6.72940729	3.46133375	4.97200296	3.08014272	
4.54493267 ##	404	405	406	407	408	
409	0267	2 02655064	A A0750040	A ECOEACO4	2 44004564	
## -0.31/3 1.67754277	026/	-2.92655864	-4.40/59248	-4.56954621	-2.44994561	
##	410	411	412	413	414	
415 ## 5.3070	3950	5.71881601	5.12683512	5.57002284	5.73100848	
2.59709234						
##	416	417	418	419	420	

2 44672097	7 50226250	4 71049964	2 74524079	
-2.440/308/	-7.59226259	-4./1048864	-2./45249/8	
423	424	425	426	
2 21715525	0 00722001	6 AE200297	2 54167256	
3.31/13333	9.09/32091	0.05299267	3.3410/230	
429	430	431	432	
C 19654996	2 06959147	0 60022224	E 01E340E7	
-0.18034800	-2.9003014/	-9.69032224	-5.8153405/	-
435	436	437	438	
F 44016022	4 02055001	4 40747060	0 22224260	
5.44916922	4.02855901	4.40/4/869	8.33334268	
441	442	443	444	
2 67576404	F 07040644	C 44474422	5 04005063	
-2.6/5/6404	-5.8/948611	-6.114/1132	-5.81895063	-
447	448	449	450	
0 44550540		4 53056004		
2.44562640	2.88855452	4.53076281	4.59164257	
453	454	455	456	
-1.11835068	-5.24681490	-5.96860348	-6.803//630	
459	460	461	462	
11.38848683	8.06234238	10.52636150	5.27015806	
465	466	467	468	
-6.08220476	-5.93308837	-9.82312564	-6.16632322	-
471	472	473	474	
3.14402221	2.54527325	4.85080655	4.93282389	
477	478	479	480	
-0.90693636	-3.69573228	-4.68462084	-3.10539735	-
483	484	485	486	
0.4744575	0 5045455	2 47445555	7 04445456	
0.1/118706	-0.59451507	3.4/118958	7.04449450	
489	490	491	492	
	423 3.31715535 429 -6.18654806 435 5.44916922 441 -2.67576404 447 2.44562640 453 -1.11835068 459 11.38848683 465 -6.08220476 471 3.14402221 477 -0.90693636 483 0.17118706	423 424 3.31715535 9.89732891 429 430 -6.18654806 -2.96858147 435 436 5.44916922 4.02855901 441 442 -2.67576404 -5.87948611 447 448 2.44562640 2.88855452 453 454 -1.11835068 -5.24681490 459 460 11.38848683 8.06234238 465 466 -6.08220476 -5.93308837 471 472 3.14402221 2.54527325 477 478 -0.90693636 -3.69573228 483 484 0.17118706 -0.59451507	423 424 425 3.31715535 9.89732891 6.05299287 429 430 431 -6.18654806 -2.96858147 -9.69032224 435 436 437 5.44916922 4.02855901 4.40747869 441 442 443 -2.67576404 -5.87948611 -6.11471132 447 448 453076281 453 454 453076281 453 454 455 -1.11835068 -5.24681490 -5.96860348 451 459 460 461 11.38848683 8.06234238 10.52636150 465 466 467 -6.08220476 -5.93308837 -9.82312564 471 472 473 3.14402221 2.54527325 4.85080655 472 473 479 -0.90693636 -3.69573228 -4.68462084 6.17118706 -0.59451507 3.47118958	423 424 425 426 3.31715535 9.89732891 6.05299287 3.54167256 429 430 431 432 -6.18654806 -2.96858147 -9.69032224 -5.81534057 435 436 437 438 5.44916922 4.02855901 4.40747869 8.33334268 441 442 443 -5.81895063 447 448 449 5.81895063 447 448 449 459 453 454 453076281 4.59164257 453 454 453076281 4.59164257 454 453 454 459 459 451 453076281 4.59164257 456 451 453 454 455 456 451 460 461 462 453 466 467 468 463 466 467 468 464 471 472 473 474 3.14402221 2.54527325 4.68462084 -3.10539735

## -0.61085168 12.06000861	-1.60481644	-7.77904427	-6.42121805	-5.48454268	-
## 494 499	495	496	497	498	
## -2.92661294 3.49057436	-0.40617572	-1.32498271	6.81686191	3.26804157	
## 500	501	502	503	504	
	-0.03910850	-5.15336775	-10.37320133	-12.86165627	-
6.08164614 ## 506	507	508	509	510	
511 ## -3.08719549	2.88554497	1.92684951	5.48170690	3.91217550	
2.53704518 ## 512	513	514	515	516	
517 ## 0.48410922	-2.39291278	-4.42008908	-9.81021122	-11.56538804	-
0.50143132 ## 518	519	520	521	522	
523 ## -0.16777590	5.62191520	3.49844514	5.40969488	3.29161125	
2.26633922 ## 524	525	526	527	528	
529 ## -0.20838031	-1.55246335	-3.62196126	-6.40112476	-7.32997764	_
9.65892822 ## 530	531	532	533	534	
535 ## -5.32070592	0.08754635				
2.34106884 ## 536	537	538	539	540	
541					
0.99857642	-3.53950717				
## 542 547	543	544		546	
## 1.71358487 7.04911649	4.82649361		6.63474768		
## 548 553	549	550	551	552	
## 0.44951015 3.06501565	-7.05282272	-7.35961776	-1.92313170	-5.56966104	
## 554 559	555	556	557	558	
## 5.59748473 1.93104467	5.42101945	1.24741631	4.54314520	4.64129597	
## 560 565	561	562	563	564	
	-2.58017101	-5.94015939	-3.97662412	-0.58101003	-

1.23202715 ## 566	567	568	569	570	
571 ## 0.90411569 2.36819524	5.45188496	5.01186933	5.37554006	6.45312370	
## 572 577	573	574	575	576	
	-3.78609465	-6.60297890	-9.01107902	-6.26816270	
## 578 583	579	580	581	582	
## 3.89358244 2.03538791	5.27640381	2.88154812	2.56741951	8.55566185	
## 584 589	585	586	587	588	
1.87258152	-3.72918475		-3.76642267	-2.98942553	
## 590 595 ## 5.21344121	591 4.93561882	592 3.63916861	593 3.91761805	594 6.06514197	
3.79010222 ## 596	597	598	599	600	
601	-2.86884370			-2.17012846	_
4.18815164 ## 602	603	604	605	606	
607 ## -0.32729798	3.24809219	1.86426165	3.81709030	6.91328892	
2.72123960 ## 608	609	610	611	612	
613 ## -0.14385341	-2.91037307	-7.63955828	-7.92671528	-7.22441906	-
0.54401190 ## 614	615	616	617	618	
619 ## 2.52265426 7.66571060	3.64100492	0.98388317	3.59380900	3.47601031	
## 620 625	621	622	623	624	
	-3.41440016	-8.03136061	-7.08156062	-3.90008277	
## 626 631	627	628	629	630	
## 3.25277920 2.93553358	6.06889570	5.18480385	3.19907263	5.12075769	
## 632 637	633	634	635	636	
## -0.68525162 4.79465006	-1.97820215	-7.07368395	-5.05801043	-5.57057154	-

## 643	638	639	640	641	642	
##	-1.82987686 5967603	0.43399120	-0.61790719	2.19003214	2.64656533	
## 649	644	645	646	647	648	
## 0.40	0.50780011 0028884	-1.94244395	-4.44776013	-5.56191964	-3.90385266	-
## 655	650	651	652	653	654	
## 3.08	-0.83522144 3185927	1.72386295	0.92659680	3.70632712	3.89024711	
##	656	657	658	659	660	
##	0.64885503	-1.51016223	-2.87174571	-3.91206778	-3.39386776	

Residual Analysis for Koyck DLM:

1. The data points are below the line at the start and below the line at the end of the trend. Randomness is seen to some extent. So, we cannot decide anything at this stage. Further analysis is required.

- 2. From normal distribution curve, the distribution is almost symmetric.
- 3. The data at the tails is deviated more leaving some part on the line suggesting there is some normality in the trend.
- 4. There are significant lags in Autocorrelation plot suggesting that the stochastic component is not white noise. Also, ACF shows seasonality pattern.
- 5. p value (\sim 0.01) from Shapiro-Wilk normality test is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Suggesting some normality.

So far this is the best model but let us fit ardlDlm model to check whether it fits better than Koyck model or not.

Autoregressive distributed lag model

```
for (i in 1:5){
 for(j in 1:5){
    model_4 = ardlDlm(x = as.vector(x), y = as.vector(y), p = i, q = j)
   cat("p = ", i, "q = ", j, "AIC = ", AIC(model_4$model), "BIC = ",
BIC(model_4$model), "MASE =", MASE(model_4)$MASE, "\n")
 }
}
              1 AIC =
                       3712.311 BIC = 3734.765 MASE = 0.8392434
       1 q =
## p =
       1 q =
              2 AIC = 3239.416 BIC = 3266.352 MASE = 0.4971918
## p = 1 q = 3 \text{ AIC} = 3143.522 \text{ BIC} = 3174.936 \text{ MASE} = 0.4740063
## p = 1 q = 4 \text{ AIC} = 3138.399 \text{ BIC} = 3174.288 \text{ MASE} = 0.4697571
## p = 1 q = 5 AIC = 3100.283 BIC = 3140.644 MASE = 0.450425
              1 AIC = 3639.223 BIC = 3666.159 MASE = 0.7834855
## p = 2 q =
## p = 2 q =
              2 AIC = 3229.051 BIC = 3260.476 MASE = 0.4951319
## p = 2 q = 3 AIC = 3137.634 BIC = 3173.535 MASE = 0.4738939
## p = 2 q = 4 AIC = 3132.962 BIC = 3173.337 MASE = 0.4702773
## p = 2 q = 5 AIC = 3097.288 BIC = 3142.134 MASE = 0.4503599
              1 AIC = 3608.793 BIC = 3640.207 MASE = 0.7572489
## p = 3 q =
              2 AIC = 3226.623 BIC = 3262.524 MASE = 0.4955334
## p = 3 q =
## p = 3 q =
              3 AIC = 3139.409 BIC = 3179.798 MASE = 0.4737144
## p = 3 q = 4 AIC = 3134.777 BIC = 3179.638 MASE = 0.4701162
      3 q = 5 AIC = 3098.808 BIC = 3148.139 MASE = 0.4502885
## p =
## p = 4 q =
              1 AIC = 3602.664 BIC = 3638.553 MASE = 0.7580664
## p = 4 q = 2 AIC = 3224.285 BIC = 3264.66 MASE = 0.4959949
## p = 4 \text{ q} = 3 \text{ AIC} = 3131.289 \text{ BIC} = 3176.15 \text{ MASE} = 0.4695096
## p = 4 q = 4 AIC = 3131.424 BIC = 3180.772 MASE = 0.4665123
              5 AIC = 3096.024 BIC = 3149.839 MASE = 0.4479481
## p = 4 q =
## p = 5 q = 1 AIC = 3599.402 BIC = 3639.764 MASE = 0.7572617
## p = 5 q =
              2 AIC = 3221.853 BIC = 3266.699 MASE = 0.4954501
## p = 5 q = 3 AIC = 3127.103 BIC = 3176.434 MASE = 0.4675479
## p = 5 q = 4 AIC = 3127.868 BIC = 3181.684 MASE = 0.4651969
## p = 5 q = 5 AIC = 3097.877 BIC = 3156.177 MASE = 0.4479311
```

p = 3, 4, 5 and q = 5 has the least AIC, BIC and MASE scores.

```
# ARDLM model
AR_DLM_solar_35 = ardlDlm(x = as.vector(x), y = as.vector(y), p = 3, q = 5)
summary(AR_DLM_solar_35)
##
## Time series regression with "ts" data:
## Start = 6, End = 660
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
## Residuals:
##
       Min
                1Q
                     Median
                                 30
                                        Max
## -15.6649 -1.4447 -0.2663
                             1.0644 18.7430
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.20532
                        0.42237 5.221 2.40e-07 ***
             -0.60604
                        0.54924 -1.103 0.270258
## X.t
## X.1
                        0.77682 1.149 0.251001
             0.89253
## X.2
              1.60774
                        0.77838 2.065 0.039276 *
## X.3
             -0.38294
                        0.55738 -0.687 0.492308
## Y.1
             1.27345
                        0.03859 32.999 < 2e-16 ***
             ## Y.2
                        0.06036 -6.685 5.01e-11 ***
## Y.3
             -0.40351
## Y.4
             -0.22632
                        0.06234 -3.630 0.000305 ***
## Y.5
             0.22116 0.03779 5.853 7.69e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.553 on 645 degrees of freedom
## Multiple R-squared: 0.9333, Adjusted R-squared: 0.9324
## F-statistic: 1003 on 9 and 645 DF, p-value: < 2.2e-16
```

Hypotheses:

Ho: The data doesn't fit the Autoregressive distributed lag model.

HA: The data fits the Autoregressive distributed lag model.

Interpretations:

- F statistic is 1003
- R squared is 0.9333
- Adjusted R squared is 0.9324
- Degrees of freedom DF are (9, 645)
- p value (~ 0.01) is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Hence, the model fits the Autoregressive distributed lag model.

This model suggests that there is only 93.24% of data variance. Suggesting that the model explains only 93.24% of the trend. Which implies that the model shows some trend.

Now let us perform residual analysis.

Residual analysis

```
res_analysis(residuals(AR_DLM_solar_35))
## Time Series:
## Start = 6
## End = 660
## Frequency = 1
                              7
                                                                         10
  -1.998657e+00 -1.586839e+00 -2.482872e+00 -3.517808e+00 -7.967281e-01
                                           13
##
   -3.521716e-01 -2.946419e+00
                                 5.400921e+00 -3.758763e+00
                                                              3.896074e+00
                             17
              16
                                           18
                                                          19
    3.921938e+00
##
                  6.826539e+00
                                 7.769822e-01
                                                3.340244e+00 -6.240802e-01
              21
                                           23
                                                                         25
##
                             22
                                                          24
   -2.716544e+00
                  2.154105e-01
                                 2.788442e+00
                                                1.136823e+00 -4.124404e+00
##
##
              26
                             27
                                           28
                                                          29
                  2.334129e+00 -2.327892e+00
   -3.328475e-01
                                               4.029274e+00 -3.058781e+00
##
              31
                             32
                                            33
                                                          34
   -1.036650e+00 -2.319721e+00 -3.513881e+00
                                               7.721070e-01 -5.953526e-01
                             37
                                            38
                                                          39
   -1.102231e+00 -2.092578e+00
                                 2.557575e-01 -1.061511e+00 -1.022085e-01
                                           43
                                                          44
##
              41
                             42
    1.542313e+00 -7.048249e-01 -2.319286e+00 -4.250721e-01 -9.156722e-01
##
                             47
                                           48
                                                          49
   -2.733038e+00 -1.181621e-01 -5.348033e-01 -2.041560e+00
##
                                                              3.760030e-01
              51
                             52
##
                                            53
##
    1.384024e+00
                  1.042157e+00
                                 2.922450e-01 -5.784524e-01
                                                              8.228824e-01
              56
                                            58
   -2.723485e+00 -3.573437e+00
                                 3.638122e-01 -6.076834e-01 -8.145395e-01
##
              61
                             62
                                           63
                                                          64
   -3.676539e+00 -1.389692e+00 -1.464462e+00 -4.869620e+00 -3.292950e+00
##
              66
                             67
                                           68
                                                          69
                                                                         70
   -1.587808e+00 -2.996971e+00 -1.479258e+00 -9.087724e-01 -2.486808e+00
##
              71
                             72
                                           73
                                                          74
   -3.414276e+00
                  7.994560e+00 -1.304748e+01 -7.877550e-01
                                                              4.651397e+00
                             77
##
    3.740989e+00 -1.392297e+00 -4.673754e-01
                                               1.097342e+00 -1.800547e+00
##
              81
                             82
                                           83
                                                          84
   -3.637586e+00 -1.310928e+00
                                 1.117128e+00 -5.144814e-01 -3.644480e-01
##
                             87
                                           88
                                                          89
              86
                  2.830552e+00 -2.353012e+00
##
   -3.151102e-01
                                               1.913440e+00 -1.385509e+00
##
                             92
                                           93
    6.518042e-01 -1.709326e+00 -1.096656e+00 -9.867997e-01 -2.232768e+00
##
              96
                             97
                                           98
                                                          99
##
    6.546425e-01
                  3.693129e-01 -2.663158e-01
                                                3.736791e-01
                                                              1.046609e+00
             101
                            102
                                           103
                                                         104
## -3.234023e-01 -1.315221e+00 -8.362043e-02 -9.756481e-01 -2.087045e+00
```

```
106
                                        108
                                                      109
## -1.965860e+00 -5.563978e-01 1.705312e-01 7.143727e+00 -5.507845e-01
    3.715464e+00 2.065393e+00
                               7.737761e+00
                                             1.044667e+00 5.936912e-01
            116
                          117
                                                      119
##
   1.260549e+00
                 6.500763e-01 -9.403982e-01 8.973695e-02 3.538409e+00
            121
                                        123
##
                          122
                                                      124
                              2.778564e+00 -1.526143e+00 -1.557072e+00
   -4.825225e+00
                 4.555335e+00
##
            126
                          127
                                        128
                                                      129
##
   1.750326e+00 -2.764523e-01 -2.703049e+00 -1.707271e+00 -2.476365e+00
##
            131
                          132
                                        133
   -1.112659e+00
                 1.031885e+00 8.958461e+00 -1.147345e+00 1.229780e+00
##
             136
                          137
                                        138
                 6.670274e+00 3.074664e+00 1.443711e+00 6.912655e-01
    3.088470e+00
##
            141
                                        143
                                                      144
                          142
                 1.061124e+00 2.273225e-01 2.902930e+00 -1.692397e+00
##
  -1.222736e+00
##
                          147
                                        148
            146
                                                      149
##
    2.301956e+00
                 2.963500e+00 -1.297670e+00 -1.199869e-01 -2.359592e+00
                          152
                                        153
                 5.274220e-02 -1.738510e+00 -2.633398e+00 8.785373e-01
##
   1.537761e+00
            156
                         157
                                       158
                                                     159
                 2.702446e-01 1.524655e+00 1.502830e+00 -2.855226e+00
   -8.887074e-01
                                        163
##
            161
                          162
                                                      164
##
    2.791592e+00 6.160989e-01 -1.054707e+00 -4.614100e+00
                                                           1.886379e+00
##
            166
                          167
                                        168
                                                     169
   -1.786819e+00 -7.531398e-01 -9.579059e-01 2.118500e+00 9.736975e-01
##
            171
                          172
                                        173
                                                      174
   2.070379e+00 -2.651324e+00 2.327704e+00 4.614774e+00 -2.931266e+00
            176
                          177
                                        178
                                                      179
   -1.697345e+00 -2.499553e+00 -2.307553e+00 1.425499e+00 1.306652e-01
##
             181
                          182
                                        183
                                                      184
  -9.868574e-01 1.942011e+00 3.237957e+00 -2.365334e+00 1.132856e+00
            186
                          187
                                        188
                                                     189
   3.400035e+00 -2.640768e+00 -1.792544e+00 -2.619755e-01 -1.610482e+00
##
                         192
                                       193
                                                     194
    6.338292e-02 -1.156910e+00 9.695304e-01 6.044228e-01 9.304281e-01
##
            196
                          197
                                                      199
##
    6.867079e-02 6.204584e-01 -9.331043e-01 1.088640e+00 -1.954579e+00
                                                      204
            201
                          202
                                        203
  -2.073733e+00 -5.024078e-01 3.544963e-01 -7.975669e-01 -8.095049e-01
                                                      209
             206
                          207
                                        208
  -1.783090e+00 8.824388e-02 2.061934e-01 1.002381e+00 -5.433142e-01
            211
                          212
                                        213
                                                      214
  -4.839785e-01 -2.328429e+00 -2.667293e+00 -2.998358e-01 7.475175e-02
                          217
                                        218
  -7.892450e-01 -3.399592e+00
                              6.888852e-01 1.933480e+00 7.469409e-01
                                                      224
             221
                          222
                                        223
## -6.077273e-01 9.640503e-01 7.218628e-02 -2.437574e+00 -2.012616e+00
            226
                          227
                                        228
                                                      229
```

```
## -1.656097e+00 -4.146052e-01 9.112214e-01 2.216414e+00 -1.123983e+00
                           232
                                        233
             231
                                                       234
## -2.267135e-01 1.108395e+00 1.404956e+00 -9.294104e-02 7.937161e-01
                           237
                                         238
   -1.336107e+00 -2.656975e+00 -1.565051e+00 7.556755e-01
                                                           2.961024e-01
##
             241
                           242
                                         243
                                                       244
    2.797321e+00 -8.829990e-01
                               5.711884e-01 -1.526392e+00
                                                           3.348195e+00
##
             246
                           247
                                         248
                                                       249
   -3.847104e-01 -4.701838e-01 -4.716018e-01 -8.923507e-01 -5.738644e-01
             251
                           252
                                         253
                                                      254
   -1.576243e+00
                 1.132532e+00 -2.566211e-01 3.197437e+00 -4.021614e-01
##
             256
                          257
                                         258
                                                      259
                  1.018132e+00 1.262971e+00 -2.460597e-01
    1.158620e+00
                                                            1.602700e-01
##
             261
                           262
                                         263
                                                       264
##
   -1.065591e+00 -2.681842e+00
                               3.655582e-01
                                             1.500475e+00
                                                            7.988739e+00
             266
##
                           267
                                         268
                                                       269
                                                                     270
   -3.227343e+00 3.953680e+00
                               5.020582e+00 6.401955e+00
                                                            1.627927e+00
##
             271
                           272
                                         273
                                                       274
                                                                     275
##
    4.842568e+00 -9.143687e-01 -1.741284e+00 6.758741e-02
                                                            2.031170e+00
##
             276
                           277
                                         278
                                                       279
                                             3.687398e+00 -8.960507e-01
    4.859929e+00 -4.614741e+00
                               1.894711e+00
             281
                                         283
                                                       284
##
                           282
    7.911621e-01 -6.342050e-01 2.185914e+00 -2.549020e+00 -1.954858e+00
##
             286
                           287
                                         288
                                                       289
                                                           1.310749e+00
##
   -1.770111e+00 4.737650e-01 8.398221e-01 8.661766e-01
##
             291
                           292
                                         293
                                                       294
    1.170026e+00
                 7.506194e-01 1.270037e+00 1.939994e+00 -1.708597e-01
##
             296
                           297
                                         298
                                                       299
   -9.802491e-01 -1.506967e-03 -2.451113e+00 6.267123e-01
                                                           7.170901e-01
                           302
             301
                                        303
                                                       304
    5.343227e-01 3.016830e-01 1.339973e+00 -5.908430e-01
##
                                                            1.067702e+00
##
             306
                           307
                                         308
                                                       309
   -9.856360e-01
                 1.095619e+00 -1.263814e+00 -1.218097e+00 -1.151715e+00
##
             311
                           312
                                         313
                                                       314
   -5.431133e-01 -5.358770e-03 9.417346e+00 -3.604035e+00 -5.182923e+00
##
             316
                           317
                                         318
                                                       319
   -1.804319e+00 3.690326e-01 1.241520e+00 -7.999722e-01 -1.096538e+00
             321
                           322
                                         323
                                                       324
                  6.297508e+00 -5.725913e-01 -4.958351e+00 4.106825e+00
   -3.271750e+00
##
                           327
                                         328
             326
                                                       329
    2.635588e+00 3.825055e+00 -7.252921e-01 6.543581e+00 3.924167e+00
##
             331
                           332
                                         333
                                                       334
   -5.257229e-01 -1.820124e+00
                               2.903748e+00 2.157005e+00 -8.850454e-01
##
##
             336
                                         338
                                                       339
    2.781693e+00 -4.846003e+00
                               1.004638e+00 4.006118e+00 -2.956136e+00
##
                                         343
             341
                           342
                                                       344
    6.645179e-01 4.064631e-02 7.771685e-01 -1.367425e+00 -1.072872e+00
##
                           347
                                         348
                                                       349
##
             346
    2.076804e-01 -8.631973e-01 1.666882e-01 -3.010769e-01 -2.046185e+00
```

```
353
            351
                          352
   1.440270e+00 -1.029346e+00 1.773920e+00 -1.635601e-02 4.275366e-01
##
                                       358
   -1.837850e+00 -1.018010e+00 2.246978e-01 -5.140241e-01
                                                          1.884274e-01
            361
                          362
                                        363
                                                          1.740679e+00
##
    2.954709e-01 -1.836954e+00 1.896824e+00 -1.038357e+00
                          367
            366
                                       368
    4.021842e-01 -3.887036e-01 -8.103976e-01 -7.299453e-01 -1.246032e+00
##
            371
                          372
                                       373
                                                     374
   -1.124070e+00 5.246545e-01 -5.250604e-01 -8.208021e-01
                                                          1.013872e+00
                          377
                                       378
            376
   -1.504442e+00 -7.917160e-01 -2.755419e-01 3.027853e-01 -1.685774e+00
##
            381
                          382
                                       383
                                                     384
   -2.459933e+00 -9.931267e-01 -2.277492e-01 -8.492708e-01 2.301905e+00
            386
                          387
                                       388
                                                     389
   8.386736e-01 7.345202e-01 -7.670846e-01 3.687404e-01 3.940702e+00
##
            391
                         392
                                       393
                                                     394
##
    5.572396e-01 -1.747386e+00 -3.334736e-01 -1.996618e+00 1.167243e+00
                         397
                                       398
  -2.822680e-01 2.332753e-01 5.671448e-02 2.844604e+00 -1.470068e+00
##
                                       403
            401
                         402
                                                     404
    1.711028e+00 -3.206064e-02 2.056051e+00 -1.699995e+00 -1.783823e+00
            406
                          407
                                       408
                                                     409
  -5.513772e-01 -4.406567e-01 3.191259e-01 2.114156e+00
                                                          2.403668e+00
##
                         412
                                       413
                                                     414
            411
   6.574655e-01 2.587840e-01 2.245756e+00 2.939192e+00 -1.062399e-01
##
            416
                          417
                                       418
                                                     419
  -4.048134e-01 9.899397e-03 -2.633088e+00 9.053820e-01
                                                         1.704048e+00
            421
                         422
                                      423
                                                     424
   1.874298e+01 -1.566487e+01 -9.392964e-01
                                           1.080471e+01 4.564343e+00
                          427
                                        428
##
            426
                                                     429
  -4.016532e+00 5.501257e+00 2.560560e+00 -3.598928e+00 4.436585e+00
            431
                         432
                                       433
                                                     434
                 1.631393e+00 -5.746328e+00 6.070748e+00 4.291440e+00
## -5.225061e-01
            436
                         437
                                      438
                                                    439
  -1.800071e+00 -2.363588e+00 5.471511e+00 -1.379148e-01 -1.718597e+00
                         442
##
   -4.142131e-01 6.463034e-02 1.163865e-01 -4.265394e-01 -3.336058e-01
            446
                          447
                                       448
                                                     449
##
   -6.018256e-02 4.624872e-01 -1.505189e+00 -7.548395e-01 -2.603048e-01
##
            451
                          452
                                       453
                                                     454
##
    5.286605e-02 -1.325935e+00 -1.553692e-01 -1.260359e+00 -4.696977e-01
##
            456
                         457
                                       458
                                                    459
##
    6.212835e-04 6.653705e+00 -2.074317e+00 6.241145e+00 2.196480e+00
                          462
##
            461
    5.430187e+00 7.796422e-01 6.605052e+00 -2.662820e+00 7.508625e-01
##
            466
                          467
                                       468
                                                     469
    4.413649e+00 -3.359051e-02 1.477538e+00 -4.983940e+00
                                                          3.072012e+00
##
            471
                          472
                                        473
                                                     474
```

```
3.022200e+00 -1.517536e+00 -1.498545e+00 -1.795509e-01 -6.383783e-01
             476
                                        478
##
                           477
                                                      479
   -2.353444e+00 1.794499e-01 -2.751188e-01 -1.097666e+00 -1.548998e-01
                           482
                                         483
    1.386805e+00 1.148444e+00 -1.297474e+00 -1.620297e+00 6.853838e-01
##
             486
                           487
                                         488
                                                       489
    2.590622e+00 -1.569399e+00 -2.072716e+00 4.324528e-01 -1.484707e+00
##
                           492
             491
                                         493
                                                       494
    7.212005e-01 -3.548158e-01 -2.425752e+00 -1.015643e+00 -2.711111e+00
##
##
             496
                           497
                                         498
                                                       499
   -5.479198e+00 2.333386e+00 -1.496542e+00 -1.134472e+00 -4.172210e+00
##
                           502
                                         503
                                                       504
    7.855515e-01 -4.259349e-01 -1.584229e+00 -1.207435e+00 -1.779355e+00
##
             506
                           507
                                         508
                                                       509
##
   -4.930312e+00 -7.064784e-01 -2.887426e+00 7.104066e-01 -1.759053e-01
##
             511
                           512
                                         513
                                                       514
   4.354471e-02 -6.978218e-01 -1.403686e+00 6.596620e-01 -1.202799e+00
##
             516
                           517
                                         518
                                                       519
   -2.402570e+00 7.414144e-01 -2.755111e+00 1.192628e+00 -1.998064e+00
             521
                           522
                                         523
    1.146594e+00 -3.152520e-01 8.343284e-01 -7.381751e-01 -4.063524e-01
                           527
                                         528
##
             526
                                                       529
   -1.317155e-01 -1.067565e+00 -1.952451e-01 -2.523810e+00 -1.674411e+00
##
                           532
                                         533
                                                       534
             531
##
    7.461820e-01 -2.590296e+00 -3.066226e+00 -2.291837e+00 -2.151662e-01
                           537
                                         538
                                                       539
   -1.113515e+00 -1.561030e+00 -7.466895e-01 -1.152285e+00 -1.655815e+00
##
             541
                           542
                                         543
                                                       544
   -1.256117e-01 -2.280585e+00 1.292042e+00 7.520874e-01
                                                            2.581620e+00
                                         548
                                                       549
             546
                           547
   -5.551725e+00 5.757414e+00 5.733630e-01 -6.755702e+00 -2.565328e+00
##
             551
                           552
                                         553
                                                       554
##
   6.987547e+00 -1.966302e+00 -1.228032e+00
                                             1.691782e+00
                                                            1.757891e+00
             556
##
                           557
                                         558
                                                       559
   -3.402261e+00 3.475566e+00
                               3.540563e+00 -1.207434e+00 -2.922079e+00
##
             561
                           562
                                         563
                                                       564
   -4.755097e-01 -1.513350e+00 -5.359651e-01 1.049038e+00
                                                            1.882215e+00
             566
                           567
                                         568
                                                       569
    6.455625e-02 1.540887e+00
                               4.201898e-01 5.529202e-01
                                                            2.381241e+00
##
                           572
                                         573
                                                       574
             571
   -2.463932e-01 -1.447664e+00 -5.598640e-01 -5.444190e-01 -2.351989e-01
##
             576
                           577
                                         578
                                                       579
    1.722455e-01 -2.097366e-01 3.746331e-01 1.729714e+00 -1.010363e+00
##
##
             581
                           582
                                         583
                                                       584
   -1.708439e-01 5.772990e+00 -1.683799e+00 -2.331676e+00 -1.545343e+00
                           587
                                         588
             586
                                                       589
   -1.205286e+00
                 1.217740e+00 -1.156070e-01 1.910982e+00 2.335123e+00
                                         593
                           592
                                                       594
             591
   4.991477e-01 -6.720140e-01 1.096180e+00 3.201044e+00 8.954485e-01
```

##		597		599	600
##			-2.429888e+00		1.905656e+00
##	601	602	603	604	605
##	5.138995e-01	1.223231e+00	1.362982e+00	-2.110169e+00	-8.085653e-01
##	606	607	608	609	610
##	2.957285e+00	-1.944285e-01	-1.148098e+00	-7.679775e-01	-1.070536e+00
##	611	612	613	614	615
##	1.474376e-01	4.027930e-01	1.124576e+00	1.126745e-01	3.643353e-01
##	616	617	618	619	620
##	-2.750770e+00	1.382412e+00	3.621281e-01	5.255556e+00	-3.161284e+00
##	621	622	623	624	625
##	-2.771056e+00	-2.310173e+00	1.392632e+00	1.830428e+00	1.404850e+00
##	626	627	628	629	630
##	-1.532762e-01	1.561730e+00	-2.712833e-02	-1.050204e+00	3.505023e+00
##	631	632	633	634	635
##	1.916705e+00	-1.301108e+00	-5.675078e-01	-2.144993e+00	1.388530e+00
##	636	637	638	639	640
##	1.782176e-02	-2.061727e+00	-4.054509e-01	6.844244e-01	-2.198611e+00
##	641	642	643	644	645
##	-1.747207e+00	-2.048940e+00	-7.328869e-01	-1.528461e+00	-1.897718e+00
##	646	647	648	649	650
##	-6.715284e-01	-6.991226e-01	-1.441756e+00	-1.198299e+00	-1.641095e+00
##	651	652	653	654	655
##	1.344179e-01	-1.420299e+00	-5.409352e-01	-1.529818e+00	-1.562386e-01
##	656	657	658	659	660
##	-1.234401e+00	-1.949843e+00	-6.750100e-01	-3.964842e-01	-6.667736e-01


```
##
## Shapiro-Wilk normality test
##
## data: res_m
## W = 0.90299, p-value < 2.2e-16</pre>
```

Residual Analysis for AR_DLM_solar_35:

- 1. The data points are below the line at the start and below the line at the end of the trend. Randomness is seen to some extent. So, we cannot decide anything at this stage. Further analysis is required.
- 2. From normal distribution curve, the distribution is almost symmetric.
- 3. The data at the tails is deviated more leaving some part on the line suggesting there is some normality in the trend.
- 4. There are significant lags in Autocorrelation plot suggesting that the stochastic component is not white noise.
- 5. p value (\sim 0.01) from Shapiro-Wilk normality test is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Suggesting some normality.

Now let us fit AR_DLM_solar_45 model.

```
# ARDLM model
AR_DLM_solar_45 = ardlDlm(x = as.vector(x), y = as.vector(y), p = 4, q = 5)
summary(AR DLM solar 45)
##
## Time series regression with "ts" data:
## Start = 6, End = 660
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
##
## Residuals:
       Min
                 10
                      Median
                                   3Q
                                           Max
## -15.5901 -1.3826 -0.2867
                               1.0526
                                       18.5709
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                                   5.628 2.72e-08 ***
                          0.43729
## (Intercept) 2.46103
## X.t
              -0.61439
                          0.54768 -1.122 0.262364
## X.1
               0.78469
                          0.77617 1.011 0.312409
## X.2
               1.28470
                          0.79026
                                    1.626 0.104509
## X.3
               0.80457
                          0.77946 1.032 0.302355
## X.4
                          0.55570 -2.173 0.030148 *
               -1.20750
## Y.1
                          0.03849 33.049 < 2e-16 ***
               1.27195
## Y.2
               -0.01868
                          0.06249 -0.299 0.765112
## Y.3
                          0.06019 -6.725 3.87e-11 ***
               -0.40480
## Y.4
               -0.23201
                          0.06221 -3.729 0.000209 ***
```

```
## Y.5     0.21746     0.03772    5.766 1.26e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.546 on 644 degrees of freedom
## Multiple R-squared: 0.9338, Adjusted R-squared: 0.9328
## F-statistic: 908.5 on 10 and 644 DF, p-value: < 2.2e-16</pre>
```

Hypotheses:

Ho: The data doesn't fit the Autoregressive distributed lag model. Ha: The data fits the Autoregressive distributed lag model.

Interpretations:

- F statistic is 908.5 R squared is 0.9338
- Adjusted R squared is 0.9328
- Degrees of freedom DF are (10, 644)
- p value (~ 0.01) is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Hence, the model fits the Autoregressive distributed lag model.

This model suggests that there is only 93.28% of data variance. Suggesting that the model explains only 93.28% of the trend. Which implies that the model shows some trend.

Now let us perform residual analysis.

Residual analysis

```
res_analysis(residuals(AR_DLM_solar_45))
## Time Series:
## Start = 6
## End = 660
## Frequency = 1
##
               6
                             7
                                                                        10
##
    -2.066124094
                  -1.262968376 -2.381225729
                                               -3.603476533
                                                              -0.599038712
##
              11
                             12
                                           13
                                                          14
    -0.079953784
                  -2.683995905
                                  5.546575423
                                               -3.302787162
                                                               3.773099942
##
##
              16
                             17
                                                          19
                                                                        20
                                                3.244204011
##
     4.854843122
                   6.988046258
                                  0.620595467
                                                              -0.724695761
##
              21
                             22
                                                          24
##
    -2.776599318
                   0.304591363
                                  2.955370533
                                                1.293367080
                                                              -4.028820843
##
              26
                             27
                                           28
                                                          29
##
     0.003894827
                   2.431428961
                                 -1.951022383
                                                4.167971938
                                                              -3.148131431
##
                             32
                                           33
                                                          34
                                                                        35
    -1.119208366
                  -2.303230614 -3.577865713
                                                0.939323323
                                                              -0.514233278
##
##
              36
                             37
                                           38
                                                          39
                                                                        40
##
    -1.016646121
                  -2.239444849
                                  0.440449828
                                               -0.797511843
                                                              -0.244662697
##
              41
                             42
                                           43
                                                          44
##
     1.814101694
                 -0.582650692
                                 -2.360382470
                                               -0.455073842 -0.954394715
```

	4.0	4-7	40	40	F.0
##	46	47	48	49	50
##	-2.583980175	-0.045602769	-0.427217741	-2.130607492	0.358632003
##	51	52	53	54	55
##	1.277402397	1.497803341	0.316522066	-0.734214572	0.786532322
##	56	57	58	59	60
##	-2.960110262	-3.471979200	0.380839165	-0.466030992	-0.794817953
##	61	62	63	64	65
##	-3.631052104	-1.480478461	-1.232267318	-4.981204054	-3.076476952
##	66	67	68	69	70
##	-1.566923624	-3.029423245	-1.328024692	-1.003535484	-2.539475944
##	71	72	73	74	75
	-3.508281400		-13.293312950	-0.796420308	4.356404035
##					
##	76	77	78	79	80
##	4.210987922	-1.254732503	-0.613393133	1.023273437	-1.996626162
##	81	82	83	84	85
##	-3.604632652	-1.220659128	1.202884415	-0.409212144	-0.454413775
##	86	87	88	89	90
##	-0.290946413	2.670633093	-2.226405460	1.923751825	-1.519735304
##	91	92	93	94	95
##	0.365098273	-1.868208821	-1.057342074	-0.906177354	-2.255912184
##	96	97	98	99	100
##	0.657243874	0.227018247	-0.218633943	0.223277575	0.917352734
##	101	102	103	104	105
##	-0.243302002	-1.465421104	-0.359590474	-1.007715572	-2.078335717
##	106	107	108	109	110
##	-1.861381275	-0.536919688	0.093855000	7.036369865	-0.636078457
##	111	112	113	114	115
##	3.636862356	2.028678775	7.642041393	0.893486118	0.269717250
##	116	117	118	119	120
##	1.077080265	0.738577821	-0.714244320	0.192913413	3.567956525
##	121	122	123	124	125
##	-4.867552860	4.600114176	2.825092101	-1.401309680	-1.625324800
##	126	127	128	129	130
##	1.638913536	-0.528386283	-2.918108113	-1.592180100	-2.237270579
##	131	132	133	134	135
##	-1.117393130	0.996698311	8.784363579	-1.087755979	1.211424574
##	136	137	138	139	140
##	2.923130000	6.575444834	2.926560056	1.158699055	0.534074588
##	141	142	143	144	145
##	-1.133181583	1.263306749	0.303264387	2.917385229	-1.701802507
##	146	147	148	149	150
##	2.341322207	2.928863672	-1.087985038	-0.235053983	-2.560555844
##	151	152	153	154	155
##	1.312512736	-0.087102763	-1.635608987	-2.554962998	0.833092942
##	156	157	158	159	160
##	-0.919184603	-0.065096500	1.536708231	1.559804683	-2.878640218
##	161	162	163	164	165
##	2.606602831	0.535567850	-1.387458425	-4.859909441	2.079162387
##	166	167	168	169	170

##	-1.695339740	-0.667003276	-0.960837513	1.781974699	1.098100526
##	171	172	173	174	175
##	2.065173477	-2.769451882	2.147091878	4.513319458	-3.142561306
##	176	177	178	179	180
##	-1.981394693	-2.474441183	-2.096738686	1.582526110	0.386152651
##	181	182	183	184	185
##	-1.171966874	2.107491183	3.293437050	-2.551732996	0.923467312
##	186	187	188	189	190
##	3.447097289	-2.947824547	-1.897067322	-0.121280508	-1.383734989
##	191	192	193	194	195
##	0.137533688	-1.080138513	0.630027960	0.763016091	1.187061199
##	196	197	198	199	200
##	-0.382442063	0.870966068	-1.089933314	1.121450685	-1.968143874
##	201	202	203	204	205
##	-2.128485031	-0.545355735	0.433984947	-0.815528632	-0.839587136
##	206	207	208	209	210
##	-2.021487511	0.096942161	0.530339405	1.161193641	-0.526852587
##	211	212	213	214	215
##	-0.611497915	-2.231928504	-2.725720923	-0.230124743	0.211069658
##	216	217	218	219	220
##	-0.897081112	-3.455530971	0.662574411	1.757520656	1.352800358
##	221	222	223	224	225
##	-0.633254697	0.770435597	-0.190165785	-2.685350822	-1.995899241
##	226	227	228	229	230
##	-1.663087624	-0.499379351	0.972015798	2.015005873	-1.166289979
##	231	232	233	234	235
##	-0.416395494	0.966046197	1.376269153	-0.216943289	0.495955215
##	236	237	238	239	240
##	-1.448798164	-2.655126057	-1.488892404	0.737613921	0.271352310
##	241	242	243	244	245
##	2.720651486	-0.933459620	0.489843906	-1.658026989	3.336043591
##	246	247	248	249	250
##	-0.475527900	-0.694320150	-0.594084277	-0.979559100	-0.397924708
##	251	252	253	254	255
##	-1.637060139	1.057691611	-0.402010316	3.148880963	-0.547967723
##	256	257	258	259	260
##	1.164970739	1.018511007	1.098514807	-0.488258901	-0.009938073
##	261	262	263	264	265
##	-0.999272689	-2.566140602	0.310068155	1.510708503	7.848053402
##	266	267	268	269	270
##	-3.268063844	4.012538782	4.720146486	6.412764293	1.631818537
##	271	272	273	274	275
##	4.660582860	-0.999658439	-1.687289407	0.074530679	2.167381113
##	276	277	278	279	280
##	5.025195096	-4.585888649	1.937032716	3.483287997	-0.389962662
##	281	282	283	284	285
##	0.780126621	-0.797181149	1.982573682	-2.656158515	-1.960417128
##	286	287	288	289	290
##	-1.759102709	0.501659361	0.872550217	0.708182832	1.356074800

##	291	292	293	294	295
##	1.033716747	0.752969412	1.215201848	1.778614257	-0.492664944
##	296	297	298	299	300
##	-1.071837068	0.037030379	-2.447062986	0.594539390	0.690673044
##	301	302	303	304	305
##	0.403030762	0.258384346	1.251561161	-0.634418737	1.061468651
##	306	307	308	309	310
##	-1.207212198	0.895379048	-1.342513248	-1.109192200	-1.148033958
##	311	312	313	314	315
##	-0.630666027	-0.015446227	9.121318478	-3.636838119	-5.242815956
##	316	317	318	319	320
##	-1.854435098	0.295101355	1.184195815	-0.969650731	-1.108143374
##	321	322	323	324	325
##	-3.013706290	6.217439531	-0.649087320	-5.067814368	3.591347058
##	326	327	328	329	330
##	2.729722615	4.192127925	-1.287029228	6.535734207	4.297674894
##	331	332	333	334	335
##	-0.444750084	-1.532823983	3.365807710	2.223163206	-0.793505403
##	336	337	338	339	340
##	3.028881529	-5.017956987	1.005044185	4.119388745	-2.482739551
##	341	342	343	344	345
##	1.078825678	0.075525087	0.962542334	-1.351141916	-1.072639539
##	346	347	348	349	350
##	0.094181083	-0.871929894	0.107819005	-0.177862994	-2.456440140
##	351	352	353	354	355
##	1.419302203	-0.472198386	1.975262112	0.068531627	0.432452718
##	356	357	358	359	360
##	-1.803824392	-0.987068116	0.179139064	-0.546325840	0.216495992
##	361	362	363	364	365
##	0.235026952	-2.119324278	1.615710278	-0.312720481	1.811780807
##	366	367	368	369	370
##	0.236793881	-0.574259365	-0.863221027	-0.724648712	-1.274653892
##	371	372	373	374	375
##	-1.097275730	0.453776872	-0.637476897	-0.796837118	0.953967426
##	376	377	378	379	380
##	-1.614887725	-0.724862368	-0.194062089	0.199474103	-1.764327147
##	381	382	383	384	385
##	-2.405898908	-0.964137338	-0.267922954	-0.878547141	2.154412181
##	386	387	388	389	390
##	0.916815179	0.319525174	-0.596360819	0.466471194	3.872952709
##	391	392	393	394	395
##	0.438584047	-1.873141566	-0.293924159	-1.963352693	1.129120720
##	396	397	398	399	400
##	-0.256861910	0.107707109	0.006872407	2.641601696	-1.065100311
##	401	402	403	404	405
##	1.629743399	-0.153860955	1.847424234	-1.993058141	-1.759269265
##	406	407	408	409	410
##	-0.526520308	-0.500199398	0.276544202	1.922415912	2.438761566
##	411	412	413	414	415

##	0.497009146	0.180205536	2.186521702	2.795468846	-0.292526687
##	416	417	418	419	420
##	-0.605553033	-0.018832805	-2.594634179	0.826771240	1.750717636
##	421	422	423	424	425
##		-15.590138094	-0.981299915	10.326685879	4.687702861
##	426	427	428	429	430
##	-3.885637349	5.531287979	2.578239386	-3.515815516	4.311517783
##	431	432	433	434	435
##	-0.540425314	1.715526838	-5.863315330	6.010794920	4.268265509
##	436	437	438	439	440
##	-1.448997935	-2.341420446	5.485451000	-0.097697524	-1.744571753
##	441	442	443	444	445
##	-0.448845511	-0.039682873	0.047197285	-0.377427722	-0.494629254
##	446	447	448	449	450
##	-0.081737898	0.587924527	-1.742924063	-0.487652535	-0.048683076
##	451	452	453	454	455
##	0.179544940	-1.226871011	-0.038910544	-1.363173163	-0.557849224
##	456	457	458	459	460
##	0.055665498	6.461404738	-2.089624264	5.701388510	2.782821859
##	461	462	463	464	465
##	5.520887018	0.692080388	6.543280122	-2.688305067	0.816280551
##	466	467	468	469	470
##	4.338972412	-0.016095399	1.584672450	-5.046752793	3.111048919
##	471	472	473	474	475
##	2.866925313	-1.167192572	-1.550337993	-0.179244526	-0.710222074
##	476	477	478	479	480
##	-2.331971254	0.307782656	-0.361968930	-1.202140388	-0.172155217
##	481	482	483	484	485
##	1.155691016	1.078127998	-1.324293329	-1.536619163	0.601724421
##	486	487	488	489	490
##	2.746194021	-1.711705918	-1.641574973	0.780288826	-1.525715594
##	491	492	493	494	495
##	0.689991625	-0.209908042		-0.969661723	-2.081372178
##	496	497	498	499	500
##	-6.585358566	3.489176471	-1.106786897	-0.824594476	-4.052785385
##	501	502	503	504	505
##	0.824348875	-0.542361787	-1.613561078	-1.027250774	-1.910339816
##	506	507	508	509	510
##	-5.103419797	-1.264259440	-1.646195392	1.462381784	0.345754494
##	511	512	513	514	515
##	0.294021457	-0.576419223	-1.428065201	0.528505235	-1.252111354
##	516	517	518	519	520
##	-2.257003376	0.585089954	-3.033796036	0.808586102	-0.810518860
##	521	522	523	524	525
##	1.390517345	-0.124804233	0.862083072	-0.795813767	-0.435746061
##	526	527	528	529	530
##	-0.287504097	-1.103429896	-0.149391049	-2.615640526	-1.648462889
##	531	532	533	534	535
##	0.644682896	-2.570763559	-2.533323763	-1.882100891	0.304946192

##	536	537	538	539	540
##	-1.154554838	-0.814151548	-0.867944442	-0.979563551	-1.867336332
##	541	542	543	544	545
##	-0.137515749	-2.284468805	0.748184010	1.955128388	2.714297175
##	546	547	548	549	550
##	-5.589121567	5.540794271	0.660269438	-6.759748497	-2.544842444
##	551	552	553	554	555
##	6.932240842	-1.807291568	-1.430610489	1.509251812	1.513695116
##	556	557	558	559	560
##	-2.783957568		3.382491124	-1.381074162	-3.229998576
##	561	562	563	564	565
##	-0.480743737	-1.388170777	-0.486616128	1.047443372	1.673893995
##	566	567	568	569	570
##	0.184297286	1.766518776	-0.286696032	0.617795163	2.458660922
##	571	572	573	574	575
##	-0.306558718	-1.505903718	-0.552282361	-0.556540392	-0.236662583
##	576	577	578	579	580
##	0.188575969	-0.132205392	-0.106294030	1.696074269	-0.208005862
##	581	582	583	584	585
##	-0.253752948	5.578978409	-1.851936188	-2.553139773	-1.393998184
##	586	587	588	589	590
##	-1.162320637	1.218251243	-0.134575425	1.678413460	2.388561840
##	591	592	593	594	595
##	0.459237206		1.013537621	3.052568921	0.679615813
##	596	597	598	599	600
##	-1.616737155	-0.919350630	-2.421309931	0.854283503	1.897491330
##	601	602	603	604	605
##	0.373465816	1.274502464	1.612927736	-2.678546464	-0.749029626
##	606	607	608	609	610
##	3.182945213	-0.067735578	-0.976445405	-0.531640920	-1.097861274
##	611	612	613	614	615
##	0.089782851	0.540410348	0.904499737	0.051192220	0.138783219
##	616	617	618	619	620
##	-2.197965975	1.558613431	0.342564386	5.261119104	-3.225157279
##	621	622	623	624	625
##	·	-2.370130986	1.364750229	·	1.251348663
##	626	627	628	629	630
##				-0.905523158	3.407517269
##	631	632	633	634	635
##	1.956748817	-1.381429876	-0.715681786	-2.117352890	1.336272340
##	636	637	638	639	640
##	0.131078310	-2.203117436		0.655658576	-1.987628580
##	641	642	643	644	645
	-1.734012686	-1.912327996	-0.819282082		
## ##	-1./34012686	-1.912327996 647	648	-1.214852328 649	-1.625459399 650
##	-0.612233320			-1.549577748	-1.787790708
##	651	-0.729077117 652	653	654	655
##	0.255078061		-0.680401166		-0.292976263
##	0.230/0001	-0.33/020030	-0.000401100	-1.40023001/	-0.2323/0203

Residual Analysis for AR_DLM_solar_45:

- 1. The data points are below the line at the start and below the line at the end of the trend. Randomness is seen to some extent. So, we cannot decide anything at this stage. Further analysis is required.
- 2. From normal distribution curve, the distribution is almost symmetric.
- 3. The data at the tails is deviated more leaving some part on the line suggesting there is some normality in the trend.
- 4. There are significant lags in Autocorrelation plot suggesting that the stochastic component is not white noise.
- 5. p value (~ 0.01) from Shapiro-Wilk normality test is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Suggesting some normality.

Now let us fit AR_DLM_solar_55 model.

```
# ARDLM model
AR_DLM_solar_55 = ardlDlm(x = as.vector(x)), y = as.vector(y), p = 5, q = 5)
summary(AR_DLM_solar_55)
##
## Time series regression with "ts" data:
## Start = 6, End = 660
##
## Call:
## dynlm(formula = as.formula(model.text), data = data, start = 1)
## Residuals:
##
       Min
                 1Q
                      Median
                                  30
                                          Max
## -15.5959 -1.3825 -0.2646
                               1.0410
                                      18.5812
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.50740
                          0.45434
                                   5.519 4.96e-08 ***
                          0.54804 -1.121 0.262863
## X.t
              -0.61416
## X.1
              0.78299
                          0.77670 1.008 0.313788
## X.2
               1.26543
                          0.79241 1.597 0.110772
## X.3
               0.75184
                          0.79227
                                   0.949 0.342998
## X.4
                          0.77678 -1.290 0.197617
              -1.00181
## X.5
              -0.21024
                          0.55439 -0.379 0.704639
                          0.03867 32.861 < 2e-16 ***
## Y.1
              1.27063
## Y.2
              -0.01727
                          0.06264 -0.276 0.782907
              -0.40297 0.06043 -6.669 5.56e-11 ***
## Y.3
              -0.23273
## Y.4
                          0.06229 -3.737 0.000203 ***
## Y.5
                          0.03802 5.673 2.12e-08 ***
              0.21571
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 2.548 on 643 degrees of freedom
## Multiple R-squared: 0.9338, Adjusted R-squared: 0.9327
## F-statistic: 824.9 on 11 and 643 DF, p-value: < 2.2e-16
```

Hypotheses:

Ho: The data doesn't fit the Autoregressive distributed lag model.

HA: The data fits the Autoregressive distributed lag model.

Interpretations:

- F statistic is 824.9
- R squared is 0.9338
- Adjusted R squared is 0.9327
- Degrees of freedom DF are (11, 643)
- p value (~ 0.01) is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Hence, the model fits the Autoregressive distributed lag model.

This model suggests that there is only 93.27% of data variance. Suggesting that the model explains only 93.27% of the trend. Which implies that the model shows some trend.

Now let us perform residual analysis.

Residual analysis

```
res_analysis(residuals(AR_DLM_solar_55))
## Time Series:
   Start = 6
   End = 660
##
##
   Frequency = 1
##
                6
                                7
                                               8
                                                               9
                                                                             10
##
    -1.957909312
                    -1.277958659
                                   -2.327089193
                                                   -3.588827147
                                                                   -0.617244544
               11
                                              13
##
                               12
                                                              14
    -0.046054584
                    -2.635863265
                                    5.588563855
                                                                    3.846476573
##
                                                   -3.270585941
##
               16
                               17
                                              18
                                                              19
                                                                              20
##
     4.837410086
                     7.153759519
                                    0.658950240
                                                    3.215848586
                                                                   -0.737392989
##
               21
                               22
                                              23
                                                              24
                                                                              25
    -2.795725194
                     0.291002448
                                    2.970687513
##
                                                    1.327174606
                                                                   -4.000595386
##
                               27
               26
                                              28
                                                              29
                                                                              30
##
     0.013196779
                     2.487193893
                                   -1.932094655
                                                    4.230288554
                                                                   -3.120423994
##
               31
                               32
                                              33
                                                              34
                                                                              35
##
    -1.138986183
                    -2.318712740
                                   -3.579125906
                                                    0.925741403
                                                                   -0.484295455
##
               36
                               37
                                              38
                                                              39
                                                                             40
##
    -1.001691368
                    -2.225791093
                                    0.410797689
                                                   -0.764594340
                                                                   -0.200805125
##
               41
                                              43
                                                              44
                                                                             45
                               42
##
     1.789092539
                    -0.533645055
                                   -2.339643366
                                                   -0.465239680
                                                                   -0.960161400
##
               46
                               47
                                              48
                                                              49
                                                                              50
    -2.590843970
                    -0.022885016
                                   -0.414624884
                                                   -2.111926530
                                                                    0.340847000
##
##
               51
                               52
                                              53
                                                              54
                                                                              55
                                    0.396844373
##
     1.273623987
                     1.481027593
                                                   -0.730524601
                                                                    0.758852930
##
               56
                               57
                                              58
                                                                             60
                    -3.516119858
                                    0.394106808
                                                                   -0.769548016
##
    -2.965421981
                                                   -0.462220512
##
               61
                               62
                                              63
                                                              64
                                                                             65
    -3.628550539
                    -1.478461987
                                   -1.249795054
                                                   -4.943261976
                                                                   -3.101736794
##
##
               66
                               67
                                              68
                                                              69
                                                                             70
##
    -1.533784120
                    -3.027068597
                                   -1.335912704
                                                   -0.978818889
                                                                   -2.556230346
##
               71
                               72
                                              73
                                                              74
                                                                             75
##
    -3.519835953
                     7.902591051 -13.294563974
                                                   -0.854623623
                                                                    4.352782896
##
               76
                               77
                                                              79
                                                                             80
##
     4.165669211
                    -1.163232022
                                   -0.594552935
                                                    0.997352878
                                                                   -2.007953923
##
               81
                               82
                                              83
                                                                             85
                                                              84
##
    -3.640601952
                    -1.219405904
                                    1.216952475
                                                   -0.391406767
                                                                   -0.436354096
##
               86
                               87
                                              88
                                                              89
                                                                             90
##
    -0.307555515
                     2.673451033
                                   -2.251103820
                                                    1.941983919
                                                                   -1.515851148
##
               91
                               92
                                              93
                                                              94
                                                                             95
##
     0.339903336
                    -1.916188934
                                   -1.087722385
                                                   -0.899653935
                                                                   -2.243327109
                                              98
                                                              99
##
               96
                               97
                                                                             100
```

##	0.651242748	0.228205788	-0.242706988	0.231158955	0.890283376
##	101	102	103	104	105
##	-0.264603524	-1.452053762	-0.387657528	-1.055516712	-2.084634508
##	106	107	108	109	110
##	-1.862126358	-0.521034935	0.097315992	7.023869773	-0.645416587
##	111	112	113	114	115
##	3.620624359	2.018021829	7.636340429	0.887875005	0.243542473
##	116	117	118	119	120
##	1.021335637	0.706901153	-0.696966691	0.230650255	3.585739066
##	121	122	123	124	125
##	-4.858037808	4.585492087	2.836635682	-1.391118562	-1.606047872
##	126	127	128	129	130
##	1.621773538	-0.544671817	-2.961686759	-1.633441661	-2.219421966
##	131	132	133	134	135
##	-1.078168021	0.995513418	8.779917787	-1.106092177	1.219332445
##	136	137	138	139	140
##	2.919022665	6.548545999	2.920352669	1.135947747	0.485853740
##	141	142	143	144	145
##	-1.160777727	1.277375555	0.339855690	2.931062852	-1.695689515
##	146	147	148	149	150
##	2.336029138	2.936843060	-1.092168324	-0.201090618	-2.582873290
##	151	152	153	154	155
##	1.274393784	-0.123701539	-1.659821150	-2.538568514	0.842519624
##	156	157	158	159	160
##	-0.924832314	-0.070991282	1.478525336	1.562997464	-2.867020708
##	161	162	163	164	165
##	2.597622116	0.506660344	-1.399950209	-4.918721290	2.029420151
##	166	167	168	169	170
##	-1.658552021	-0.652582637	-0.945754404	1.779225935	1.043061844
##	171	172	173	174	175
##	2.087242219	-2.768336180	2.121899726	4.484584364	-3.153769717
##	176	177	178	179	180
##	-2.021051937	-2.527570177	-2.095457208	1.617533769	0.415610338
##	181	182	183	184	185
##	-1.126596497	2.073327758	3.323442253	-2.537988893	0.886872039
##	186	187	188	189	190
##	3.411117972	-2.934982505	-1.953023006	-0.142975619	-1.359320197
##	191	192	193	194	195
##	0.176209574	-1.066900095	0.641983352	0.704799478	1.214997519
##	196	197	198	199	200
##	-0.337444644	0.791668083	-1.046134250	1.092660716	-1.960723295
##	201	202	203	204	205
##	-2.133031646	-0.557127104	0.425929223	-0.800244323	-0.843518654
##	206	207	208	209	210
##	-2.028239879	0.052350960	0.531349517	1.217476618	-0.497689697
##	211	212	213	214	215
##	-0.609722062	-2.254471810	-2.711904123	-0.243273902	0.223554116
##	216	217	218	219	220
##	-0.872190398	-3.474939045	0.648205857	1.752783725	1.324642689

##	221	าาา	าาา	224	225
##		222	223	224	
##	-0.527004271	0.764214667	-0.222353954	-2.730553750	-2.041750670
##	226	227	228	229	230
##	-1.662612551	-0.502049070	0.957848507	2.026879243	-1.198376595
##	231	232	233	234	235
##	-0.426089606	0.931367910	1.352263490	-0.219506469	0.474148536
##	236	237	238	239	240
##	-1.499437813	-2.676286376	-1.491701471	0.749067542	0.270267909
##	241	242	243	244	245
##	2.717197443	-0.943622261	0.479016333	-1.672665902	3.309997251
##	246	247	248	249	250
##	-0.472769011	-0.710651774	-0.633120849	-1.002359078	-0.413212581
##	251	252	253	254	255
##	-1.607217413	1.045418609	-0.413336724	3.123164234	-0.552648109
##	256	257	258	259	260
##	1.137809661	1.020441579	1.098945295	-0.514461690	-0.052822190
##	261	262	263	264	265
##	-1.028613691	-2.555823564	0.326872617	1.501836348	7.852334091
##	266	267	268	269	270
##	-3.282356422	4.000111207	4.733336108	6.365209360	1.643276896
##	271	272	273	274	275
##	4.660780956	-1.025597468	-1.704027856	0.081448367	2.168071733
	276	277	278	279	2.1680/1/33
##					
##	5.052738842	-4.551361953	1.934898593	3.490023327	-0.422629093
##	281	282	283	284	285
##	0.866920844	-0.801022256	1.953275426	-2.688262242	-1.982741488
##	286	287	288	289	290
##	-1.762007021	0.501053710	0.879636750	0.714934706	1.329638657
##	291	292	293	294	295
##	1.042133880	0.729623029	1.215684393	1.770287455	-0.518169296
##	296	297	298	299	300
##	-1.127977359	0.019672612	-2.440259745	0.592688807	0.686145663
##	301	302	303	304	305
##	0.399443705	0.236325239	1.242877955	-0.648989062	1.052357910
##	306	307	308	309	310
##	-1.207404449	0.855559175	-1.375663155	-1.124555854	-1.130054665
##	311	312	313	314	315
##	-0.631720410	-0.030213921	9.119657383	-3.676099631	-5.253902178
##	316	317	318	319	320
##	-1.873954323	0.281986533	1.175137304	-0.977510928	-1.138629555
##	321	322	323	324	325
##	-3.017274881	6.257381782	-0.654366685	-5.081012220	3.565178368
##	326	327	328	329	330
##	2.642937428	4.214467550	-1.218353390	6.435115730	4.305110273
##	331	332	333	334	335
##	-0.375832695	-1.519853508	3.411201867	2.307706064	-0.778693424
##	336	337	338	339	340
##	3.043379620	-4.972791741	0.968176126	4.119090269	-2.459674922
##	341	342	343	344	345

##	1.157642090	0.145325931	0.968326327	-1.317010132	-1.072455320
##	346	347	348	349	350
##	0.093628028	-0.891398056	0.105459982	-0.187494466	-2.435680884
##	351	352	353	354	355
##	1.344607642	-0.475025800	2.070504461	0.105785426	0.446658804
##	356	357	358	359	360
##	-1.801884864	-0.983990525	0.183830657	-0.553783565	0.210808006
##	361	362	363	364	365
##	0.240251747	-2.129364826	1.563044300	-0.360265080	1.936224911
##	366	367	368	369	370
##	0.251463668	-0.602920429	-0.895340551	-0.735401422	-1.274136157
##	371	372	373	374	375
##	-1.103492857	0.457251053	-0.649008858	-0.817116127	0.956623484
##	376	377	378	379	380
##	-1.624835510	-0.746330274	-0.183880132	0.213237542	-1.781042043
##	381	382	383	384	385
##	-2.421698652	-0.957652191	-0.263823620	-0.884862810	2.148427374
##	386	387	388	389	390
##	0.894455053	0.333781407	-0.668373296	0.493908240	3.890473126
##	391	392	393	394	395
##	0.432235740	-1.892492953	-0.318535068	-1.957554053	1.133103738
##	396	397	398	399	400
##	-0.261639547	0.111796689	-0.014352173	2.631145685	-1.097138698
##	401	402	403	404	405
##	1.697135480	-0.166483798	1.826159541	-2.026019813	-1.812950578
##	406	407	408	409	410
##	-0.524161105	-0.496816319	0.266872882	1.915311707	2.407960131
##	411	412	413	414	415
##	0.505738523	0.151820784	2.171902041	2.787539313	-0.313372893
##	416	417	418	419	420
##	-0.638147303	-0.054840652	-2.599545401	0.830459818	1.738357324
##	421	422	423	424	425
##		-15.595860615	-0.990187599	10.314317441	4.616354015
##	426	427	428	429	430
##	-3.851765697		2.589199790	-3.507988480	4.320689255
##	431	432	433	434	435
##	-0.558149676	1.712739518	-5.847017921	5.980887041	4.265570061
##	436	437	438	439	440
## ##	-1.448674906 441	-2.282976904 442	5.482327420 443	-0.087924278 444	-1.736920739 445
	-0.456232745				-0.486956853
## ##	446	-0.047018063 447	0.030361798 448	-0.389253068 449	450
##	-0.110816399	0.583634525	-1.721288657	-0.531708418	-0.003847465
##	451	452	453	454	455
		-1.204258506		-1.342712388	
## ##	0.215871083 456	457	-0.023150671 458	459	-0.577158212 460
##	0.040163599	6.470780339	-2.113438854	5.694807135	2.695486495
##	461	462	463	464	465
##	5.624017252	0.715380697	6.526869253		0.807594006
πĦ	J.UZ401/ZJZ	0.71330037	0.520003255	2.030003170	0.00/554000

##	466	467	468	469	470
##	4.351371408	-0.024347082	1.588983696	-5.028704810	3.092124157
##	471	472	473	474	475
##	2.876417118	-1.191743875	-1.491536944	-0.193237063	-0.710499439
##	476	477	478	479	480
##	-2.344896044	0.308480689	-0.338772045	-1.216971304	-0.191079329
##	481	482	483	484	485
##	1.152060241	1.039813438	-1.335546701	-1.543802854	0.613272736
##	486	487	488	489	490
##	2.732968820	-1.680809758	-1.668439275	0.852114782	-1.464683434
##	491	492	493	494	495
##	0.681863537	-0.214045818	-2.717005346	-1.028547312	-2.074225572
##	496	497	498	499	500
##	-6.480436646	3.289775994	-0.903329952	-0.757679799	-3.999812855
##	501	502	503	504	505
##	0.838740853	-0.533028324	-1.634375841	-1.033633209	-1.881090470
##	506	507	508	509	510
##	-5.126774940	-1.301359430	-1.744442176	1.674812865	0.478018169
##	511	512	513	514	515
##	0.384566251	-0.531802941	-1.408113734	0.523013988	-1.274300041
##	516	517	518	519	520
##	-2.266904285	0.607636047	-3.059532819	0.756030450	-0.876190705
##	521	522	523	524	525
##	1.593488262	-0.080409365	0.894398623	-0.788970472	-0.446830670
##	526	527	528	529	530
##	-0.292650231	-1.130904066	-0.156835741	-2.608407154	-1.667838812
##	531	532	533	534	535
##	0.647066757	-2.587978677	-2.533011941	-1.794395108	0.373547413
##	536	537	538	539	540
##	-1.063775473	-0.821830211	-0.739901018	-1.001261358	-1.838288816
##	541	542	543	544	545
##	-0.176252172	-2.285670175	0.743422371	1.861969250	2.924009411
##	546	547	548	549	550
##		5.526467301	0.630251279	-6.743272864	-2.553283307
##	551	552	553	554	555
##		-1.805243578			1.481774234
##	556	557	558	559	560
##	-2.823279889		3.344721184	-1.402936336	-3.261289592
##	561	562	563	564	565
##	-0.539688929	-1.389359986	-0.465825738	1.056005875	1.674800417
## ##	566 0.150066593	567	568 -0.246801196	569 0.494652821	570
##	571	1.787095029 572	573	574	2.470292353 575
##				-0.556042929	
##	-0.290524788 576	-1.516259578 577	-0.564528112 578	579	-0.238654650 580
##	0.187982458	-0.128605551	-0.093107816	1.611238737	-0.212532528
##	581	582	583	584	585
##	-0.116428921	5.563774100	-1.877862645	-2.584024688	-1.436369520
##	586	587	588	589	590
ππ	500	507	500	209	550

FORECASTING ASSIGNMENT 2

## 591 592 593 594 595 ## 0.470220524 -0.788138357 0.992092742 3.039252742 0.658520450 ## -1.652996288 -0.943905953 -2.404561582 0.853170845 1.889699250 ## 601 602 603 604 605 ## 0.374570928 1.250132347 1.622326659 -2.634409666 -0.851436766 ## 3.191293748 -0.024545345 -0.953915960 -0.503682461 -1.058000242 ## 611 612 613 614 615 ## 0.084275922 0.530821261 0.929097310 0.014608042 0.126665207 ## 616 617 618 619 620 ## -2.237913550 1.650073700 0.374729678 5.258839297 -3.216890104 ## -2.513722752 -2.326592463 1.350426114 1.896348110 1.265430362 ## -0.251226637 1.505464527 0.084552696 -0.885670955 3.430695603 ## 631 632 633 634 635 ## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 641 642 643 644 ## -1.700643245 -1.912841563 -0.486443204 0.644107315 -1.991860946 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 659 660 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660 ## -1.037111793 -1.707158226 -0.832851430 -0.524406784 -0.701154316	##	-1.138799612	1.226029795	-0.132482283	1.675241545	2.350189078	
## 596 597 598 599 600 ## -1.652996288 -0.943905953 -2.404561582 0.853170845 1.889699250 ## 601 602 603 604 605 ## 0.374570928 1.250132347 1.622326659 -2.634409666 -0.851436766 ## 606 607 608 609 610 ## 3.191293748 -0.024545345 -0.953915960 -0.503682461 -1.058000242 ## 611 612 613 614 615 ## 0.084275922 0.530821261 0.929097310 0.014608042 0.126665207 ## 616 617 618 619 620 ## -2.237913550 1.650073700 0.374729678 5.258839297 -3.216890104 ## 621 622 623 624 625 ## -2.513722752 -2.326592463 1.350426114 1.896348110 1.265430362 ## 60.251226637 1.505464527 0.084552696 -0.885670955 3.430695603 ## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 644 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 656 657 658 659 660	##						
## -1.652996288	##	0.470220524	-0.788138357	0.992092742	3.039252742	0.658520450	
## 601 602 603 604 605 ## 0.374570928 1.250132347 1.622326659 -2.634409666 -0.851436766 ## 606 607 608 609 610 ## 3.191293748 -0.024545345 -0.953915960 -0.503682461 -1.058000242 ## 611 612 613 614 615 ## 0.084275922 0.530821261 0.929097310 0.014608042 0.126665207 ## -2.237913550 1.650073700 0.374729678 5.258839297 -3.216890104 ## 621 622 623 624 625 ## -2.513722752 -2.326592463 1.350426114 1.896348110 1.265430362 ## -0.251226637 1.505464527 0.084552696 -0.885670955 3.430695603 ## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	596	597			600	
## 0.374570928 1.250132347 1.622326659 -2.634409666 -0.851436766 ## 606 607 608 609 610 ## 3.191293748 -0.024545345 -0.953915960 -0.503682461 -1.058000242 ## 611 612 613 614 615 ## 0.084275922 0.530821261 0.929097310 0.014608042 0.126665207 ## -2.237913550 1.650073700 0.374729678 5.258839297 -3.216890104 ## 621 622 623 624 625 ## -2.513722752 -2.326592463 1.350426114 1.896348110 1.265430362 ## -0.251226637 1.505464527 0.084552696 -0.885670955 3.430695603 ## 631 632 633 634 635 ## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 666 647 648 649 -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 658 659 660	##	-1.652996288	-0.943905953	-2.404561582	0.853170845	1.889699250	
## 606 607 608 609 610 ## 3.191293748 -0.024545345 -0.953915960 -0.503682461 -1.058000242 ## 611 612 613 614 615 ## 0.084275922 0.530821261 0.929097310 0.014608042 0.126665207 ## 616 617 618 619 620 ## -2.237913550 1.650073700 0.374729678 5.258839297 -3.216890104 ## 621 622 623 624 625 ## -2.513722752 -2.326592463 1.350426114 1.896348110 1.265430362 ## -0.251226637 1.505464527 0.084552696 -0.885670955 3.430695603 ## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 645 645 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	601	602	603	604	605	
## 3.191293748 -0.024545345 -0.953915960 -0.503682461 -1.058000242 ## 611 612 613 614 615 ## 0.084275922 0.530821261 0.929097310 0.014608042 0.126665207 ## 616 617 618 619 620 ## -2.237913550 1.650073700 0.374729678 5.258839297 -3.216890104 ## 621 622 623 624 625 ## -2.513722752 -2.326592463 1.350426114 1.896348110 1.265430362 ## 626 627 628 629 630 ## -0.251226637 1.505464527 0.084552696 -0.885670955 3.430695603 ## 631 632 633 634 635 ## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 644 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	0.374570928	1.250132347	1.622326659	-2.634409666	-0.851436766	
## 611 612 613 614 615 ## 0.084275922 0.530821261 0.929097310 0.014608042 0.126665207 ## 616 617 618 619 620 ## -2.237913550 1.650073700 0.374729678 5.258839297 -3.216890104 ## 621 622 623 624 625 ## -2.513722752 -2.326592463 1.350426114 1.896348110 1.265430362 ## 626 627 628 629 630 ## -0.251226637 1.505464527 0.084552696 -0.885670955 3.430695603 ## 631 632 633 634 635 ## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 644 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	606	607	608	609	610	
## 0.084275922 0.530821261 0.929097310 0.014608042 0.126665207 ## 616 617 618 619 620 ## -2.237913550 1.650073700 0.374729678 5.258839297 -3.216890104 ## 621 622 623 624 625 ## -2.513722752 -2.326592463 1.350426114 1.896348110 1.265430362 ## 626 627 628 629 630 ## -0.251226637 1.505464527 0.084552696 -0.885670955 3.430695603 ## 631 632 633 634 635 ## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 644 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	3.191293748	-0.024545345	-0.953915960	-0.503682461	-1.058000242	
## 616 617 618 619 620 ## -2.237913550 1.650073700 0.374729678 5.258839297 -3.216890104 ## 621 622 623 624 625 ## -2.513722752 -2.326592463 1.350426114 1.896348110 1.265430362 ## 626 627 628 629 630 ## -0.251226637 1.505464527 0.084552696 -0.885670955 3.430695603 ## 631 632 633 634 635 ## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 644 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	611	612	613	614	615	
## -2.237913550	##	0.084275922	0.530821261	0.929097310	0.014608042	0.126665207	
## 621 622 623 624 625 ## -2.513722752 -2.326592463 1.350426114 1.896348110 1.265430362 ## 626 627 628 629 630 ## -0.251226637 1.505464527 0.084552696 -0.885670955 3.430695603 ## 631 632 633 634 635 ## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 644 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	616	617	618	619	620	
## -2.513722752 -2.326592463 1.350426114 1.896348110 1.265430362 ## 626 627 628 629 630 ## -0.251226637 1.505464527 0.084552696 -0.885670955 3.430695603 ## 631 632 633 634 635 ## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 644 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	-2.237913550	1.650073700	0.374729678	5.258839297	-3.216890104	
## 626 627 628 629 630 ## -0.251226637 1.505464527 0.084552696 -0.885670955 3.430695603 ## 631 632 633 634 635 ## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 644 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	621	622	623	624	625	
## -0.251226637	##	-2.513722752	-2.326592463	1.350426114	1.896348110	1.265430362	
## 631 632 633 634 635 ## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 644 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	626	627	628	629	630	
## 1.944135536 -1.371024903 -0.731452913 -2.144736068 1.338580887 ## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 644 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	-0.251226637	1.505464527	0.084552696	-0.885670955	3.430695603	
## 636 637 638 639 640 ## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 644 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	631	632	633	634	635	
## 0.124161302 -2.183478138 -0.486443204 0.644107315 -1.991860946 ## 641 642 643 644 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	1.944135536	-1.371024903	-0.731452913	-2.144736068	1.338580887	
## 641 642 643 644 645 ## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	636	637	638	639	640	
## -1.700643245 -1.912841563 -0.798184996 -1.230208413 -1.572542854 ## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	0.124161302	-2.183478138	-0.486443204	0.644107315	-1.991860946	
## 646 647 648 649 650 ## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	641	642	643	644	645	
## -0.566711680 -0.719485509 -1.409703967 -1.544479379 -1.850576177 ## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	-1.700643245	-1.912841563	-0.798184996	-1.230208413	-1.572542854	
## 651 652 653 654 655 ## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	646	647	648	649	650	
## 0.226998147 -0.975807138 -0.608705047 -1.492716131 -0.284361649 ## 656 657 658 659 660	##	-0.566711680	-0.719485509	-1.409703967	-1.544479379	-1.850576177	
## 656 657 658 659 660	##	651	652	653	654	655	
	##	0.226998147	-0.975807138	-0.608705047	-1.492716131	-0.284361649	
## -1.037111793 -1.707158226 -0.832851430 -0.524406784 -0.701154316	##	656	657	658	659	660	
	##	-1.037111793	-1.707158226	-0.832851430	-0.524406784	-0.701154316	

Residual Analysis for AR_DLM_solar_55:

- 1. The data points are below the line at the start and below the line at the end of the trend. Randomness is seen to some extent. So, we cannot decide anything at this stage. Further analysis is required.
- 2. From normal distribution curve, the distribution is almost symmetric.
- 3. The data at the tails is deviated more leaving some part on the line suggesting there is some normality in the trend.
- 4. There are significant lags in Autocorrelation plot suggesting that the stochastic component is not white noise.
- 5. p value (~ 0.01) from Shapiro-Wilk normality test is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Suggesting some normality.

Among all the models ARDML models shown better performance and among them AR_DLM_solar_45 shows better trend.

Now let us calculate AIC, BIC and MASE scores and store them in a dataframe to check the better model based on MASE score.

```
attr(Koyck_DLM_solar$model, "class") = "lm"
v_model_name <- c("finite_dlm_solar_rad", "PolyDLM_model_solar",</pre>
"Koyck DLM solar", "AR DLM solar 35", "AR DLM solar 45", "AR DLM solar 55")
MASE <- MASE(finite dlm solar rad$model, PolyDLM_model_solar$model,
Koyck_DLM_solar$model, AR_DLM_solar_35, AR_DLM_solar_45,
AR DLM solar 55)$MASE
aic <- AIC(finite dlm solar rad$model, PolyDLM model solar$model,
Koyck_DLM_solar$model, AR_DLM_solar_35$model, AR_DLM_solar_45$model,
AR DLM solar 55$model)$AIC
bic <- BIC(finite dlm solar rad$model, PolyDLM model solar$model,
Koyck_DLM_solar$model, AR_DLM_solar_35$model, AR_DLM_solar_45$model,
AR DLM solar 55$model)$BIC
v score <- data.frame(v model name, MASE, aic, bic)</pre>
colnames(v_score) <- c("MODEL_NAME", "MASE", "AIC", "BIC")</pre>
v_score
##
               MODEL NAME
                               MASE
                                          AIC
                                                   BIC
## 1 finite dlm solar rad 1.5779955 4602.658 4660.858
## 2 PolyDLM model solar 1.6627033 4688.551 4715.478
## 3
          Koyck DLM solar 1.0324829 3946.476 3964.439
          AR_DLM_solar_35 0.4502885 3098.808 3148.139
## 4
## 5
          AR_DLM_solar_45 0.4479481 3096.024 3149.839
## 6
          AR DLM solar 55 0.4479311 3097.877 3156.177
```

Therefore, AR_DLM_solar_45 is the better model.

Exponential Smoothing

As there is a strong seasonal component in the solar radiation series. Let us consider models that have only additive or multiplicative seasonality.

Here we have 6 smoothing methods.

```
exponential = c(T,F)
seasonality <- c("additive", "multiplicative")
damped <- c(T,F)
exp <- expand.grid(exponential, seasonality, damped)
exp <- exp[-c(1,5),]
fit_aic <- array(NA, 6)
fit_bic <- array(NA, 6)
fit_mase <- array(NA, 6)
levels <- array(NA, dim=c(6,3))
for (i in 1:6){
   hw <- hw(v_solar_radiation_TS, exponential = exp[i,1], seasonal =
toString(exp[i,2], damped = exp[i,3]))</pre>
```

```
fit_aic[i] <- hw$model$aic
fit_bic[i] <- hw$model$bic
fit_mase[i] <- accuracy(hw)[6]
levels[i,1] <- exp[i,1]
levels[i,2] <- toString(exp[i,2])
levels[i,3] <- exp[i,3]
res_analysis(residuals(hw))
}</pre>
```


Residual Analysis for each seasonality component method.

Residual Analysis Holt-Winters' Additive Method: (1)

- 1. The data points are below the line at the start and below the line at the end of the trend. Randomness is seen.
- 2. From normal distribution curve, the distribution is almost symmetric.
- 3. The data at the tails is deviated more leaving some part on the line suggesting there is some normality in the trend.
- 4. There are significant lags in Autocorrelation plot suggesting that the stochastic component is not white noise.
- 5. p value (\sim 0.01) from Shapiro-Wilk normality test is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Suggesting some normality.

Residual Analysis Holt-Winters' multiplicative method with exponential trend: (2)

- 1. The data points are below the line at the start and below the line at the end of the trend. Randomness is not seen.
- 2. From normal distribution curve, the distribution is almost symmetric.
- 3. The data at the tails is deviated more leaving some part on the line suggesting there is some normality in the trend.
- 4. There is only one significant lag in Autocorrelation.
- 5. p value (~ 0.01) from Shapiro-Wilk normality test is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Suggesting some normality.

Residual Analysis Holt-Winters' multiplicative method: (3)

- 1. The data points are below the line at the start and below the line at the end of the trend. Randomness is not seen.
- 2. From normal distribution curve, the distribution is almost symmetric.
- 3. The data at the tails is deviated more leaving some part on the line suggesting there is some normality in the trend.
- 4. There is only one significant lag in Autocorrelation.
- 5. p value (\sim 0.01) from Shapiro-Wilk normality test is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Suggesting some normality.

Residual Analysis Holt-Winters' additive method: (4)

- 1. The data points are below the line at the start and below the line at the end of the trend. Randomness is seen.
- 2. From normal distribution curve, the distribution is almost symmetric.
- 3. The data at the tails is deviated more leaving some part on the line suggesting there is some normality in the trend.

- 4. There are significant lags in Autocorrelation plot suggesting that the stochastic component is not white noise.
- 5. p value (~ 0.01) from Shapiro-Wilk normality test is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Suggesting some normality.

Residual Analysis Holt-Winters' multiplicative method with exponential trend: (5)

- 1. The data points are below the line at the start and below the line at the end of the trend. Randomness is not seen.
- 2. From normal distribution curve, the distribution is almost symmetric.
- 3. The data at the tails is deviated more leaving some part on the line suggesting there is some normality in the trend.
- 4. There is only one significant lag in Autocorrelation.
- 5. p value (~ 0.01) from Shapiro-Wilk normality test is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Suggesting some normality.

Residual Analysis Holt-Winters' multiplicative method: (6)

- 1. The data points are below the line at the start and below the line at the end of the trend. Randomness is not seen.
- 2. From normal distribution curve, the distribution is almost symmetric.
- 3. The data at the tails is deviated more leaving some part on the line suggesting there is some normality in the trend.
- 4. There is only one significant lag in Autocorrelation.
- 5. p value (~ 0.01) from Shapiro-Wilk normality test is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Suggesting some normality.

Therefore, this damped results show some changes from the previous analysis but not much. Overall, Holt-Winters' multiplicative methods shows better auto correlation and seasonality.

Let us now append the scores of these smoothing models with our previous scores data frame.

```
values <- data.frame(levels, fit_mase, fit_aic, fit_bic)
colnames(values) <- c("Trend", "Seasonality", "Damped", "MASE", "AIC", "BIC")
values$Trend <- factor(values$Trend, levels = c(T,F), labels =
c("multiplicative", "additive"))
values$Damped <- factor(values$Damped, levels = c(T,F), labels =
c("damped", "N"))
values <- unite(values, col = "MODEL_NAME",
c("Trend", "Seasonality", "Damped"))</pre>
```

```
v_score1 <- rbind(v_score, values)</pre>
v score1
##
                                MODEL NAME
                                                 MASE
                                                           AIC
                                                                     BIC
## 1
                      finite_dlm_solar_rad 1.5779955 4602.658 4660.858
## 2
                       PolyDLM model solar 1.6627033 4688.551 4715.478
## 3
                           Koyck DLM solar 1.0324829 3946.476 3964.439
## 4
                           AR_DLM_solar_35 0.4502885 3098.808 3148.139
## 5
                           AR DLM solar 45 0.4479481 3096.024 3149.839
                           AR_DLM_solar_55 0.4479311 3097.877 3156.177
## 6
## 7
                  additive_additive_damped 0.2471600 5434.708 5511.076
      multiplicative multiplicative damped 0.2320404 6584.208 6660.576
## 8
## 9
            additive multiplicative damped 0.2233077 6648.746 6725.114
## 10
                       additive_additive_N 0.2471600 5434.708 5511.076
           multiplicative multiplicative N 0.2320404 6584.208 6660.576
## 11
## 12
                 additive_multiplicative_N 0.2233077 6648.746 6725.114
```

State Space Model Variations

Here we have 8 State Space Model Variations.

```
var <- c("AAA", "MAA", "MAM", "MMM")</pre>
damps \leftarrow c(T,F)
ets_models <- expand.grid(var, damps)</pre>
ets aic <- array(NA, 8)
ets_mase <- array(NA,8)
ets_bic <- array(NA,8)
mod \leftarrow array(NA, dim=c(8,2))
for (i in 1:8){
  ets <- ets(v_solar_radiation_TS , model = toString(ets_models[i, 1]),
damped = ets models[i,2])
  ets_aic[i] <- ets$aic
  ets_bic[i] <- ets$bic
  ets_mase[i] <- accuracy(ets)[6]
  mod[i,1] <- toString(ets_models[i,1])</pre>
  mod[i,2] <- ets_models[i,2]</pre>
}
```

Let us find the best ets model.

```
v_ets_fit <- ets(v_solar_radiation_TS)
summary(v_ets_fit)

## ETS(A,Ad,A)
##
## Call:
## ets(y = v_solar_radiation_TS)
##
## Smoothing parameters:
## alpha = 0.9999
## beta = 1e-04</pre>
```

```
##
       gamma = 1e-04
##
       phi
             = 0.9388
##
##
     Initial states:
       1 = 11.154
##
       b = 0.7632
##
       s = -10.4919 - 8.137 - 3.348 2.5794 8.08 11.1219
##
##
              9.9586 6.9916 1.9573 -1.8565 -7.1607 -9.6946
##
##
     sigma:
             2.3446
##
        AIC
                AICc
                           BIC
##
## 5428.422 5429.489 5509.282
##
## Training set error measures:
                                                       MPE
##
                                 RMSE
                                            MAE
                                                               MAPE
                                                                          MASE
                          ME
## Training set -0.01091357 2.314163 1.498521 -1.468083 12.44796 0.2461797
##
## Training set 0.1700724
```

ETS(A, AD, A)

- A Additive errors
- Ad Additive damped trend
- A Additive seasonality.

Let us perform residual analysis on this ETS model.

res_analysis(residuals(v_ets_fit))


```
##
## Shapiro-Wilk normality test
##
## data: res_m
## W = 0.88756, p-value < 2.2e-16</pre>
```

Residual Analysis ETS(A, AD, A):

- 1. The data points are below the line at the start and below the line at the end of the trend. Randomness is seen to some extent. So, we cannot decide anything at this stage. Further analysis is required.
- 2. From normal distribution curve, the distribution is almost symmetric.
- 3. The data at the tails is deviated more leaving some part on the line suggesting there is some normality in the trend.
- 4. There are significant lags in Autocorrelation plot suggesting that the stochastic component is not white noise.
- 5. p value (\sim 0.01) from Shapiro-Wilk normality test is < 0.05 and therefore, it is statistically significant. Therefore, Null hypothesis is rejected. Suggesting some normality.

Let us now append the scores of these State Space Model with our previous scores data frame.

```
measures <- data.frame(mod, ets_mase, ets_aic, ets_bic)</pre>
measures$X2 <- factor(measures$X2, levels = c(T,F), labels = c("Damped","N"))</pre>
measures <- unite(measures, "MODEL NAME", c("X1","X2"))</pre>
colnames(measures) <- c("MODEL_NAME", "MASE", "AIC", "BIC")</pre>
v_score2 <- rbind(v_score1, measures)</pre>
v_score2 <- arrange(v_score2, MASE)</pre>
v_score2
##
                                 MODEL NAME
                                                  MASE
                                                            AIC
                                                                      BIC
## 1
            additive multiplicative damped 0.2233077 6648.746 6725.114
## 2
                 additive_multiplicative_N 0.2233077 6648.746 6725.114
## 3
      multiplicative multiplicative damped 0.2320404 6584.208 6660.576
           multiplicative multiplicative N 0.2320404 6584.208 6660.576
## 4
## 5
                                 AAA Damped 0.2461797 5428.422 5509.282
                   additive additive damped 0.2471600 5434.708 5511.076
## 6
## 7
                        additive additive N 0.2471600 5434.708 5511.076
## 8
                                      AAA_N 0.2471600 5434.708 5511.076
## 9
                                 MMM Damped 0.3201193 5995.550 6076.410
## 10
                                 MAM Damped 0.3222574 5953.502 6034.363
                                      MAM_N 0.3721664 6105.959 6182.327
## 11
## 12
                                 MAA_Damped 0.3798095 6469.079 6549.940
                            AR DLM solar 55 0.4479311 3097.877 3156.177
## 13
                            AR DLM solar 45 0.4479481 3096.024 3149.839
## 14
## 15
                            AR DLM solar 35 0.4502885 3098.808 3148.139
```

The additive_multiplicative_damped model is better in terms of MASE score. Therefore let us

Forecasting

Let us forecast for the next 2 years on Solar radiation series. From 2016 to 2017.

```
fit <- hw(v_solar_radiation_TS, seasonal = "multiplicative", h =</pre>
2*frequency(v_solar_radiation_TS))
v solar forecasts <- ts.intersect(ts(fit$lower[, 2], start = c(2015, 1),</pre>
frequency = 12), ts(fit\$mean, start = c(2015, 1), frequency = 12),
ts(fit\supper[, 2], start = c(2015, 1), frequency = 12))
colnames(v_solar_forecasts) <- c("Lower bound", "Point forecast", "Upper</pre>
bound")
v solar forecasts
##
            Lower bound Point forecast Upper bound
## Jan 2015
              1.2440033
                              5.610335
                                          9.976666
## Feb 2015 -0.3306776
                              6.512806
                                          13.356290
## Mar 2015 -2.6068190
                              8.786120
                                          20.179058
## Apr 2015
            -5.4366123
                             10.192785
                                          25.822181
## May 2015 -9.6237347
                             12.512597
                                          34.648928
## Jun 2015 -14.1890164
                             14.061609
                                         42.312235
## Jul 2015 -18.2282011
                             14.502088
                                         47.232377
## Aug 2015 -19.6235881
                             12.945620
                                         45.514829
                             10.352210
## Sep 2015 -18.5159294
                                         39.220350
## Oct 2015 -15.4143760
                              7.418279
                                          30.250935
## Nov 2015 -11.9078451
                              4.989730
                                          21.887305
## Dec 2015 -10.5204066
                              3.871776
                                         18.263960
## Jan 2016 -12.9554236
                              4.199400
                                         21.354224
## Feb 2016 -16.7893479
                              4.838892
                                          26.467131
## Mar 2016 -25.1740619
                              6.477174
                                          38.128410
## Apr 2016 -32.3437711
                              7.452633
                                         47.249037
## May 2016 -43.8456686
                              9.069749
                                          61.985166
## Jun 2016 -54.2836502
                             10.099485
                                         74.482621
## Jul 2016 -61.5580226
                                          82.188420
                             10.315199
## Aug 2016 -60.3285438
                              9.113765
                                         78.556075
## Sep 2016 -52.8981594
                              7.208700
                                          67.315559
## Oct 2016 -41.5237568
                              5.105869
                                          51.735495
## Nov 2016 -30.5729044
                                          37.356795
                              3.391945
## Dec 2016 -25.9541251
                              2.597256
                                          31.148637
```

Now let us plot the forecast.

```
plot(fit, fcol = "white", main = "Forecast of Solar radiation series for the
next 2 years (2016, 2017)", ylab = "Solar Radiation")
lines(fitted(fit), col = "red")
lines(fit$mean, col = "blue", lwd = 2)
legend("bottom", inset = .03, cex = 0.9, box.lty = 2, box.lwd = 2, pch = 1,
lty = 1, col = c("red", "blue"), c("Data", "Forecasts"))
```

Forecast of Solar radiation series for the next 2 years (2016, 2017)

Fig 1.9: Next 2 years forecast on the Solar Radiation Series.

From the two year forecast results we can predict that there will be decrease in the Solar Radiation in the future.

Part 2

Data

The data here used is quarterly Residential Property Price Index (PPI) in Melbourne and quarterly population change over the previous quarter in Victoria between September 2003 and December 2016

```
v_Task2_data <- read.csv("data2.csv")
head(v_Task2_data)

## Quarter price change
## 1 Sep-2003 60.7 14017</pre>
```

```
## 2 Dec-2003 62.1 12350
## 3 Mar-2004 60.8 17894
## 4 Jun-2004 60.9 9079
## 5 Sep-2004 60.9 16210
## 6 Dec-2004 62.4 13788

# Using str() to check the type of each column.
str(v_Task2_data)

## 'data.frame': 54 obs. of 3 variables:
## $ Quarter: chr "Sep-2003" "Dec-2003" "Mar-2004" "Jun-2004" ...
## $ price : num 60.7 62.1 60.8 60.9 60.9 62.4 62.5 63.2 63.1 64 ...
## $ change : int 14017 12350 17894 9079 16210 13788 21195 10904 16995
16962 ...
```

Checking Missing values.

```
colSums(is.na(v_Task2_data))
## Quarter price change
## 0 0 0
```

There are no missing values in the data.

Checking the class of v_Task2_data. (It should be data frame.)

```
class(v_Task2_data)
## [1] "data.frame"

v_PPI_change_TS <- ts(v_Task2_data$price , start = c(2003, 3), frequency = 4)
v_population_change_TS <- ts(v_Task2_data$change, start = c(2003, 3),
frequency = 4)</pre>
```

Confirming the class of each time series object.

```
class(v_PPI_change_TS)
## [1] "ts"

class(v_population_change_TS)
## [1] "ts"
```

Now let us visualize each time series object.

Descriptive analysis

```
Property Price Index
```

```
plot(v_PPI_change_TS, type = "b", xlab = "years", ylab = "Population Price
index", main = "Residential Property Price Index from 2003-3 to 2016-4 (54
Quarters)", pch = 1)
legend("bottomright", inset = .03, title = "Population Price Index", legend =
```

"Population Price Index series", horiz = TRUE, cex = 0.8, lty = 1, box.lty = 2, box.lwd = 2, pch = 1)

Residential Property Price Index from 2003-3 to 2016-4 (54 Quarters) 4 `000000° 120 Population Price index 100 8 Population Price Index Population Price Index series I 9 2008 2004 2006 2010 2012 2014 2016 years

Fig 2.1: Residential Property Price Index - Time series plot.

McLeod.Li.test(y = v_PPI_change_TS, main = "McLeod-Li Test Statistics for Residential Population price index")

Fig 2.2: McLeod-Li Test Statistics for Residential Population price index.

Descriptive analysis

- 1. From fig1, we can observe an upward trend.
- 2. There is no seasonality in the series.
- 3. The series show Autoregressive and moving average behavior.
- 4. From the plot we cannot see a change in variance.
- 5. There is no obvious intervention in the data.

Population Change

```
plot(v_population_change_TS, type = "b", xlab = "years", ylab = "Population
Change", main = "Population Change from 2003-3 to 2016-4 (54 Quarters)", pch
= 1)
legend("bottomright", inset = .03, title = "Population Change", legend =
"Population Change series", horiz = TRUE, cex = 0.8, lty = 1, box.lty = 2,
box.lwd = 2, pch = 1)
```

Population Change from 2003-3 to 2016-4 (54 Quarters)

Fig 2.3: Population change - Time series plot.

McLeod.Li.test(y = v_population_change_TS, main = "McLeod-Li Test Statistics
for Population Change")

Fig 2.4: McLeod-Li Test Statistics for Population Change.

Descriptive analysis

- 1. From fig1, we can observe an upward trend.
- 2. There is seasonality in the series with higher values in the first quarter and lower values in the second quarter.
- 3. The series doesn't clearly show Autoregressive and moving average behavior.
- 4. We cannot see an change in variance.
- 5. There is some intervention in the data across the year.

From the two plots we can observe there is some correlation in the data. Let us analyze the correlation between both the series by plotting the series sample with cross correlation function (CCF).

Correlation Analysis

```
ccf(as.vector(v_PPI_change_TS), as.vector(v_population_change_TS), ylab =
"CCF", main = "PPI vs Population Change")
```

PPI vs Population Change

Fig 2.4: CCF plot

The plot suggests that there is a strong correlation between Residential Property Price Index (PPI) in Melbourne and population change Victoria. Also, We can clearly see that the lags are significantly different from zero based on $1.96/n-\sqrt{}$ bounds.

Checking for Stationary in the series

```
# Function to check Stationary on the series.
Stationary_Check <- function(x, m1, m2) {

# Analysing trends by plotting ACF and PACF.
par(mfrow = c(1,2))
acf(x, main = m1)
pacf(x, main = m2)

# Conducting Augmented Dickey-Fuller test.
adf.test(x)
}</pre>
```

Checking for Stationary on Property Price Index

```
Stationary_Check(v_PPI_change_TS, "Property Price Index - ACF", "Property Price Index - PACF")
```


Fig 2.6: Population Price Index - ACF

Fig 2.7: Population Price Index - PACF

```
##
## Augmented Dickey-Fuller Test
##
## data: x
## Dickey-Fuller = -1.3264, Lag order = 3, p-value = 0.8458
## alternative hypothesis: stationary
```

The decrease in the ACF plot and a high peak in the PACF plot in the beginning, suggests that there is some pattern in the Property Price Index trend.

Hypotheses:

H₀: The data is not stationary.

HA: The data is stationary.

Interpretations:

- p value: 0.8458 > 0.05
- p value is greater than 0.05 and hence the test is not statistically significant. Therefore, we fail to reject Null hypothesis i.e., The data is not stationary.

Therefore, the property price index series is non - stationary.

Checking for Stationary on Population change

```
Stationary_Check(v_population_change_TS, "Population Change - ACF", "Population Change - PACF")
```


Fig 2.8: Population Change - ACF

Fig 2.9: Popolation Change - PACF

```
##
## Augmented Dickey-Fuller Test
##
## data: x
## Dickey-Fuller = -1.603, Lag order = 3, p-value = 0.7344
## alternative hypothesis: stationary
```

The decrease in the ACF plot and a high peak in the PACF plot in the beginning, suggests that there is some pattern in the GOLD price trend.

Hypotheses:

H₀: The data is not stationary.

HA: The data is stationary.

Interpretations:

- p value : 0.7344 > 0.05
- p value is greater than 0.05 and hence the test is not statistically significant. Therefore, we fail to reject Null hypothesis i.e., The data is not stationary.

Therefore, the Population change series is non - stationary.

The two series are not stationary with high auto - correlation between them. This strong auto correlation makes it difficult in assessing the dependency between the series. To separate this strong correlationship between the series we will apply pre-whitening.

Prewhitening

Here, we will first make the data stationary by differencing the series. Our previous analysis suggests that we should do both the regular and seasonal differentiation to make sure that both the data has the same length.

```
v_diff <- ts.intersect(diff(diff(v_PPI_change_TS, 4)),</pre>
diff(diff(v_population_change_TS, 4)))
prewhiten(as.vector(v_diff[, 1]), as.vector(v_diff[, 2]), ylab = 'CCF', main
= "Prewhitened CFF")
```

Prewhitened CFF

Fig 2.10: Pre Whitening

Now the data is stationary and there is no significant correlation between the two series. Therefore, we can conclude that the strong cross correlation is spurious.

Conclusion

Part 1

The data columns are converted into the time series objects of Solar Radiation and Precipitation respectively. Both have seasonality in their series with no obvious trend, behavior or change in variance.

Solar Radiation is stationary and hence it can me directly send to the models as it is a dependent variable. Similarly, Precipitation being the independent variable there is no need to make it stationary.

Also, we got negative correlation among the series.

Now to find the best model we have three approaches.

- 1. Suitable Dlag models: Here we got AR_DLM_solar_45 as the better model in terms of residual analysis as well as MASE scores. But it suffered with randomness, normality and correlation to some extent.
- 2. Smoothing methods: Here the better model method is Holt-Winters' multiplicative method in terms of residual analysis as well as MASE scores.
- 3. State space model variations: Here we got ETS(A, Ad, A) as the best model automatically. But it suffered with randomness, normality and correlation to some extent. But the MASE scores are shown least for Holt-Winters' multiplicative method.

So we considered this as the best model for forecasting the solar radiation data for the nest 2 years. From the two year forecast results we can predict that there will be decrease in the Solar Radiation in the future. But as we forecast with 95% confidence intervals we cannot consider this as accurate.

Part 2:

The data columns are converted into the time series objects of Property Price Index and Population Change respectively.

Population Change has seasonality in their series with no obvious trend, behavior or change in variance.

Both the series are Non - Stationary.

There is a strong correlation between the two series.

Two check whether this relationship is spurious or not we performed pre whitening. This resulted it there are no strong correlation bonds between the two series. Therefore, we acn conclude that the relationship between Residential Property Price Index (PPI) in

Melbourne and quarterly population change over the previous quarter in Victoria between September 2003 and December 2016 is spurious.

References

- [1] [Online]. Available: https://cran.r-project.org/web/packages/forecast/index.html.
- [2] lmtest, [Online]. Available: https://cran.r-project.org/web/packages/lmtest/index.html.
- [3] tseries, [Online]. Available: https://cran.r-project.org/web/packages/tseries/index.html.
- [4] fUnitRoots, [Online]. Available: https://cran.r-project.org/web/packages/fUnitRoots/index.html.
- [5] expsmooth, [Online]. Available: https://cran.r-project.org/web/packages/expsmooth/index.html.
- [6] urca, [Online]. Available: https://cran.r-project.org/web/packages/urca/index.html.
- [7] Week 3, 4, 5 and 6 module tasks.
- [8] My previous works for Time series Analysis in my Second year First Sem.