Prueba Intertrimestral

Nombre:

Apellidos:

Tiempo de la prueba: 2 Horas

Asignatura: Desarrollo de Aplicaciones para la Visualización de Datos

Fecha: 18 de octubre de 2023

Instrucciones:

· Escribe código limpio y autoexplicativo.

- Se eliminará 0.5 puntos por usar Seaborn o Matplotlib.
- Se pueden utilizar los materiales de clase.
- Se puede utilizar internet para búsqueda de dudas y documentación.
- No se puede utilizar ningún tipo de LLM.
- No se puede utilizar mensajería instantánea.
- Sube tus resultados a tu repositorio de Github.
- Imprime una versión en PDF en A3 y Portrait del notebook.
- Envialo tus resultados a dmartincorral@icai.comillas.edu adjuntando el PDF y la url del notebook subido al repositorio de Github.

Inicialización de librerías

Carga aquí todas las librerías que vayas a utilizar.

```
In [116]: import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px

import sklearn.datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC
from sklearn.metrics import (classification_report, mean_squared_error, mean_absolute_error, r2_score)
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
```

Ejercicio 1 (2 puntos):

- a) Crea una función que calcule y devuelva el factorial de un número entero. (0.6 puntos)
- b) Crea una función que verifique si un número es primo o no. (0.6 puntos)
- c) Muestra en un dataframe los 50 primeros números positivos, si es primo y su factorial utilizando las funciones anteriores. (0.6 puntos)
- d) ¿Cómo se podría programar en una clase las tres operaciones anteriores? (0.2 puntos)

```
In [117]: # Apartado A
          def factorial(n):
              if n <= 1:
                  return 1
              else:
                  return n*factorial(n-1)
          factorial(5)
Out[117]: 120
In [118]: | # Apartado B
          def is primo(n):
              divisible = False
              for i in range(n):
                  if (i > 1) and (i != n):
                      if n % i == 0:
                          divisible = True
              return not divisible
          print(f"El numero 5 {'no' if not is primo(5) else ''} es primo")
          print(f"El numero 10 {'no' if not is primo(10) else ''} es primo")
          El numero 5 es primo
          El numero 10 no es primo
```

```
In [119]: # Apartado C
    df = pd.DataFrame()
    numbers = []
    primos = []
    factorials = []
    for i in range(50):
        numbers.append(i+1)
        primos.append(is_primo(i+1))
        factorials.append(factorial(i+1))
    df["numbers"] = numbers
    df["is_primo"] = primos
    df["facotrials"] = factorials
    df
```

Out[119]:

	numbers	is_primo	facotrials
0	1	True	1
1	2	True	2
2	3	True	6
3	4	False	24
4	5	True	120
5	6	False	720
6	7	True	5040
7	8	False	40320
8	9	False	362880
9	10	False	3628800
10	11	True	39916800
11	12	False	479001600

12	13	True	6227020800
13	14	False	87178291200
14	15	False	1307674368000
15	16	False	20922789888000
16	17	True	355687428096000
17	18	False	6402373705728000
18	19	True	121645100408832000
19	20	False	2432902008176640000
20	21	False	51090942171709440000
21	22	False	1124000727777607680000
22	23	True	25852016738884976640000
23	24	False	620448401733239439360000
24	25	False	15511210043330985984000000
25	26	False	403291461126605635584000000
26	27	False	10888869450418352160768000000
27	28	False	304888344611713860501504000000
28	29	True	8841761993739701954543616000000
29	30	False	265252859812191058636308480000000
30	31	True	8222838654177922817725562880000000
31	32	False	263130836933693530167218012160000000
32	33	False	8683317618811886495518194401280000000
33	34	False	295232799039604140847618609643520000000

34	35	False	10333147966386144929666651337523200000000
35	36	False	371993326789901217467999448150835200000000
36	37	True	13763753091226345046315979581580902400000000
37	38	False	523022617466601111760007224100074291200000000
38	39	False	20397882081197443358640281739902897356800000000
39	40	False	815915283247897734345611269596115894272000000000
40	41	True	3345252661316380710817006205344075166515200000
41	42	False	1405006117752879898543142606244511569936384000
42	43	True	6041526306337383563735513206851399750726451200
42 43	43 44	True False	6041526306337383563735513206851399750726451200 2658271574788448768043625811014615890319638528
43	44	False	2658271574788448768043625811014615890319638528
43 44	44 45	False False	2658271574788448768043625811014615890319638528 1196222208654801945619631614956577150643837337
43 44 45	44 45 46	False False False	2658271574788448768043625811014615890319638528 1196222208654801945619631614956577150643837337 5502622159812088949850305428800254892961651752
43 44 45 46	44 45 46 47	False False False True	2658271574788448768043625811014615890319638528 1196222208654801945619631614956577150643837337 5502622159812088949850305428800254892961651752 2586232415111681806429643551536119799691976323

```
In [120]: class number():
              def init (self, value):
                  self.value = value
              def factorial(self):
                  if self.value <= 1:</pre>
                       return 1
                  else:
                      return self.value*number(self.value-1).factorial()
              def is primo(self):
                  divisible = False
                  for i in range(self.value):
                      if (i > 1) and (i != self.value):
                          if self.value % i == 0:
                               divisible = True
                  return not divisible
          numero = number(5)
          print(numero.factorial(), numero.is primo())
```

120 True

Ejercicio 2 (4 puntos):

- a) Extrae de sklearn el conjunto de datos California Housing dataset y transfórmalo a dataframe de pandas (0.25 puntos)
- b) Construye una función que muestra la estructura del dataset, el número de NAs, tipos de variables y estadísticas básicas de cada una de las variables. (0.5 puntos)
- c) Construye una Regresión lineal y un Random forest que predigan el Median house value según los datos disponibles. (0.75 puntos)
- d) Visualiza cuales son las variables (coeficientes) más importantes en cada uno de los modelos. (1.25 puntos)
- e) Decide a través de las métricas que consideres oportunas, cuál de los dos modelos es mejor, por qué y explica el proceso que has realizado para responder en los puntos anteriores. (1.25 puntos)

```
In [121]: # Apartado A
    dataset = sklearn.datasets.fetch_california_housing()
    df = pd.DataFrame(data = dataset['data'], columns = dataset['feature_names'])
    df["MedianHouseValue"] = dataset["target"]
    df
```

Out[121]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedianHouseValue
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09	0.781
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21	0.771
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22	0.923
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32	0.847
20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24	0.894

20640 rows × 9 columns

```
In [122]: # Apartado B
    def dataset_struct(df, reg_class):
        print(df.describe()) # Descriptivo del dataset
        print(df.isna().sum()) # Ver si el dataset tiene NAs
        if reg_class == 'class':
            print(df["target"].value_counts(normalize = True)) # Ver si las clases están balanceadas (sólo t
        iene sentido si es un problema de clasificación)
            print(df.dtypes) # Tipos de las columnas
        dataset struct(df, 'reg') # Nuestro dataset sirve para hacer una regresión, por lo que no tiene clases
```

	MedInc	HouseAge	AveRooms	AveBedrms	Population	\
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	
mean	3.870671	28.639486	5.429000	1.096675	1425.476744	
std	1.899822	12.585558	2.474173	0.473911	1132.462122	
min	0.499900	1.000000	0.846154	0.333333	3.000000	
25%	2.563400	18.000000	4.440716	1.006079	787.000000	
50%	3.534800	29.000000	5.229129	1.048780	1166.000000	
75%	4.743250	37.000000	6.052381	1.099526	1725.000000	
max	15.000100	52.000000	141.909091	34.066667	35682.000000	
	Ave0ccup	Latitude	Longitude	MedianHouseVa	lue	
count	20640.000000	20640.000000	20640.000000	20640.000	000	
mean	3.070655	35.631861	-119.569704	2.068	558	
std	10.386050	2.135952	2.003532	1.153	956	
min	0.692308	32.540000	-124.350000	0.149	990	
25%	2.429741	33.930000	-121.800000	1.196	000	
50%	2.818116	34.260000	-118.490000	1.797	000	
75%	3.282261	37.710000	-118.010000	2.647	250	
max	1243.333333	41.950000	-114.310000	5.000	010	
MedInc		0				
HouseA	.ge	0				
AveRoo	-	0				
AveBed		0				
Popula		0				
Ave0cc		0				
110000	~	•				

```
Latitude
Longitude
MedianHouseValue
dtype: int64
MedInc
                   float.64
                   float.64
HouseAge
AveRooms
                   float64
AveBedrms
                   float64
Population
                   float64
AveOccup
                   float64
Latitude
                   float64
Longitude
                  float.64
MedianHouseValue float64
dtype: object
```

```
In [123]: # Apartado C
          # Dividir train-test
          X = dataset["data"]
          y = dataset["target"]
          X train, X test, y train, y test = train test split(X, y ,test size = 0.3, random state = 123)
          # Hacemos el modelo de regresión lineal
          lin reg = LinearRegression()
          lin reg.fit(X train, y train)
          lin reg predictions = lin reg.predict(X test)
          lin reg predictions train = lin reg.predict(X train)
          # Evaluamos el modelo
          # Metricas de evaluación
          lin reg rmse train = np.sqrt(mean squared error(y train,lin reg predictions train))
          lin reg mae train = mean absolute error(y train, lin reg predictions train)
          lin reg r2 train = r2 score(y train, lin reg predictions train)
          lin reg rmse test = np.sqrt(mean squared error(y test, lin reg predictions))
          lin reg mae test = mean absolute error(y test, lin reg predictions)
```

```
lin reg r2 test = r2 score(y test, lin reg predictions)
print("El RMSE de train del modelo de regresión lineal es: {}".format(lin reg rmse train))
print(f"El MAE de train del modelo de regresión lineal es: {lin reg mae train}")
print(f"El R2 de train del modelo de regresión lineal es: {lin reg r2 train}")
print("")
print("El RMSE de test del modelo de regresión lineal es: {}".format(lin reg rmse test))
print(f"El MAE de test del modelo de regresión lineal es: {lin reg mae test}")
print(f"El R2 de test del modelo de regresión lineal es: {lin reg r2 test}")
print("-----")
# Hacemos el modelo de random forest
rd for = RandomForestRegressor()
rd for.fit(X train, y train)
rd for predictions = rd for.predict(X test)
rd for predictions train = rd for.predict(X train)
# Evaluamos el modelo
# Metricas de evaluación
rd for rmse train = np.sqrt(mean squared error(y train,rd for predictions train))
rd for mae train = mean absolute error(y train, rd for predictions train)
rd for r2 train = r2 score(y train, rd for predictions train)
rd for rmse test = np.sqrt(mean squared error(y_test,rd_for_predictions))
rd for mae test = mean absolute error(y test, rd for predictions)
rd for r2 test = r2 score(y test, rd for predictions)
print("El RMSE de train del modelo de random forest es: {}".format(rd for rmse train))
print(f"El MAE de train del modelo de random forest es: {rd for mae train}")
print(f"El R2 de train del modelo de random forest es: {rd for r2 train}")
print("")
```

In [124]: # Apartado C print(lin_reg.coef_) print(rd_for) df.corr() # Podemos ver que las variables que mejor explican el MedianHouseValue son el MedInc, HouseAg e, AveRooms y, finalmente, la Latitude

[4.36326444e-01 9.17705383e-03 -1.04601995e-01 6.10289220e-01 -3.32797843e-06 -3.71107412e-03 -4.21565906e-01 -4.34173462e-01]
RandomForestRegressor()

Out[124]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedianHouseValue
MedInc	1.000000	-0.119034	0.326895	-0.062040	0.004834	0.018766	-0.079809	-0.015176	0.688075
HouseAge	-0.119034	1.000000	-0.153277	-0.077747	-0.296244	0.013191	0.011173	-0.108197	0.105623
AveRooms	0.326895	-0.153277	1.000000	0.847621	-0.072213	-0.004852	0.106389	-0.027540	0.151948
AveBedrms	-0.062040	-0.077747	0.847621	1.000000	-0.066197	-0.006181	0.069721	0.013344	-0.046701
Population	0.004834	-0.296244	-0.072213	-0.066197	1.000000	0.069863	-0.108785	0.099773	-0.024650
AveOccup	0.018766	0.013191	-0.004852	-0.006181	0.069863	1.000000	0.002366	0.002476	-0.023737
Latitude	-0.079809	0.011173	0.106389	0.069721	-0.108785	0.002366	1.000000	-0.924664	-0.144160
Longitude	-0.015176	-0.108197	-0.027540	0.013344	0.099773	0.002476	-0.924664	1.000000	-0.045967
MedianHouseValue	0.688075	0.105623	0.151948	-0.046701	-0.024650	-0.023737	-0.144160	-0.045967	1.000000

In [125]: | # Apartado D -->

La métrica que más importa para decidir la bondad de un modelo de regresión es el R-cuadrado (R2). Esta métrica indica cuánto de la variable objetivo son capaces de explicar las variables con las que cuenta el modelo.

Además, lo que importa no es tanto la R2 del conjunto de train sino la de test. Esto se debe a que la R2 de train siempre (o en muchos casos) se puede mejorar iterando o añadiendo más complejidad al modelo, pero éste puede acabar perdiendo importancia porque se ajuste muy bien a los datos de train pero pierda la generalidad, siendo inaplicable a un conjunto que no haya visto antes (Este fenómeno se conoce como "overfitting). La R2 de test, por el contrario, ofrece información sobre el desempeño del modelo sobre datos que no ha conocido antes para ser entrenado, que son los datos que podríamos asumir que seguirán ocurriendo. Por lo tanto, para medir la bondad de un modelo sobre datos desconocidos es más relevante la R2 de test.

Arriba podemos ver que la R2 del modelo de random forest es significativamente superior (alrededor de un 20%) al de la regresión lineal, por lo que podemos asumir que este modelo es mejor.

En otro orden de cosas, para responder a los puntos anteriores he cargado el dataset y me lo he descrito con la función 'dataset_struct' (para lo que he incluido unos descriptores de las estadísticas básicas de cada variable a través de la función 'describe', si cada variable contiene valores nulos con la función 'isna().sum()', un conteo de los valores de las diferentes clases para los casos en los que estemos haciendo una clasificación, y los tipos de datos de cada variable mediante el elemento 'dtypes').

Una vez vista la estructura del dataset, me lo he dividido en un conjunto de entrenamiento y de test, que sirven para lo que hemos visto previamente de probar el modelo con datos que no ha visto antes como proxy a la vida real.

Después, he creado los modelos, los he entrenado con los datos de train, he hecho las predicciones y, finalmente, me he sacado algunas métricas interesantes para evaluarlos. Este método es aplicable a ambos modelos, tanto al de regresión lineal como al de random forest.

Finalmente, para comprobar qué variables son más relevantes para el modelo he realizado una matriz de correlaciones con la variable target. Aquellas variables que tengan una correlación más alta (sea positiva o negativa, i.e. en valor absoluto) con la variable objetivo serán las que más expliquen la misma y, por lo tanto, las más relevantes.

Ejercicio 3 (4 puntos):

Consideremos el dataset que contiene The Most Streamed Spotify Songs 2023 que se encuentra en el respositorio.

Información de las variables:

- · track_name: Name of the song
- artist(s)_name: Name of the artist(s) of the song
- · vartist_count: Number of artists contributing to the song
- released year: Year when the song was released
- released_month: Month when the song was released
- release day: Day of the month when the song was released
- in_spotify_playlists: Number of Spotify playlists the song is included in
- in_spotify_charts: Presence and rank of the song on Spotify charts
- · streams: Total number of streams on Spotify
- in_apple_playlists: Number of Apple Music playlists the song is included in
- in_apple_charts: Presence and rank of the song on Apple Music charts
- in_deezer_playlists: Number of Deezer playlists the song is included in
- in_deezer_charts: Presence and rank of the song on Deezer charts
- in_shazam_charts: Presence and rank of the song on Shazam charts
- · bpm: Beats per minute, a measure of song tempo
- · key: Key of the song
- mode: Mode of the song (major or minor)
- · danceability_%: Percentage indicating how suitable the song is for dancing
- valence_%: Positivity of the song's musical content
- energy %: Perceived energy level of the song
- acousticness_%: Amount of acoustic sound in the song
- instrumentalness_%: Amount of instrumental content in the song
- liveness_%: Presence of live performance elements
- speechiness_%: Amount of spoken words in the song

Para las respuestas b, c, d, e, f y g es imperativo acompañarlas respuestas con una visualización.

a) Lee el fichero en formato dataframe, aplica la función del ejercicio 2.b, elimina NAs y convierte a integer si fuera necesario. (0.25 puntos)

- b) ¿Cuántos artistas únicos hay? (0.25 puntos)
- c) ¿Cuál es la distribución de reproducciones? (0.5 puntos)
- d) ¿Existe una diferencia signitificativa en las reproducciones entre las canciones de un solo artista y las de más de uno? (0.5 puntos)
- e) ¿Cuáles son las propiedades de una canción que mejor correlan con el número de reproducciones de una canción? (0.5 puntos)
- f) ¿Cuáles son las variables que mejor predicen las canciones que están por encima el percentil 50? (1 puntos)

Nota: Crea una variable binaria (Hit/No Hit) en base a 3.c, crea una regresión logística y visualiza sus coeficientes.

g) Agrupa los 4 gráficos realizados en uno solo y haz una recomendación a un sello discográfico para producir un nuevo hit. (1 puntos)

```
In [126]: # Apartado A
         spotify = pd.read csv('./spotify-2023.csv', encoding='iso-8859-1')
         dataset struct(spotify, 'reg')
         print('-----')
         spotify = spotify.dropna()
         dataset struct(spotify, 'reg')
         spotify["streams"] = pd.to numeric(spotify["streams"], errors='coerce')
         spotify
                artist count released year released month released day \
                  953.000000
                                953.000000
                                               953.000000
                                                            953.000000
         count
                   1.556139
                               2018.238195
                                                 6.033578
                                                             13.930745
         mean
         std
                   0.893044
                                 11.116218
                                                 3.566435
                                                              9.201949
                   1.000000
                               1930.000000
                                                 1.000000
                                                            1.000000
         min
         25%
                   1.000000
                               2020.000000
                                                 3.000000
                                                              6.000000
         50%
                   1.000000
                               2022.000000
                                                 6.000000
                                                             13.000000
         75%
                   2.000000
                               2022.000000
                                                 9.000000
                                                             22.000000
                    8.000000
                                                             31.000000
                               2023.000000
                                                12.000000
         max
```

	in_spotify_	playlists	in_spotify_c	harts in_ap	ple_playlists	\	
count	9	53.000000	953.0	00000	953.000000		
mean	52	00.124869	12.0	09444	67.812172		
std	78	97.608990	19.5	75992	86.441493		
min		31.000000	0.0	00000	0.000000		
25%	8	75.000000	0.0	00000	13.000000		
50%	22	24.000000	3.0	00000	34.000000		
75%	55	42.000000	16.0	00000	88.000000		
max	528	98.000000	147.0	00000	672.000000		
	in_apple_ch		ezer_charts	bpm	danceability		
count	953.00		953.000000	953.000000	953.000		
mean	51.90		2.666317	122.540399	66.969		
std	50.63		6.035599	28.057802	14.630		
min	0.00		0.000000	65.000000	23.000		
25%	7.00		0.000000	100.000000	57.000		
50%	38.00		0.000000	121.000000	69.000		
75%	87.00		2.000000	140.000000	78.000		
max	275.00	0000	58.000000	206.000000	96.000	00	
	valence %	energy_%	acousticne	ss % instru	mentalness %	liveness_%	\
count	953.000000	953.000000	953.00		953.000000	953.000000	
mean	51.431270	64.279119	27.05		1.581322	18.213012	
std	23.480632	16.550526	25.99	6077	8.409800	13.711223	
min	4.000000	9.000000	0.00	0000	0.000000	3.000000	
25%	32.000000	53.000000	6.00	0000	0.000000	10.000000	
50%	51.000000	66.000000	18.00	0000	0.000000	12.000000	
75%	70.000000	77.000000	43.00	0000	0.000000	24.000000	
max	97.000000	97.000000	97.00	0000	91.000000	97.000000	
	, ,	0					
	speechiness						
count	953.0000						
mean	10.1311						
std	9.9128						
min	2.0000	00					

25% 4.000000	
50% 6.000000	
75% 11.000000	
max 64.000000	
track_name	0
artist(s)_name	0
artist_count	0
released_year	0
released_month	0
released_day	0
<pre>in_spotify_playlists</pre>	0
in_spotify_charts	0
streams	0
in_apple_playlists	0
in_apple_charts	0
in_deezer_playlists	0
in_deezer_charts	0
in_shazam_charts	50
bpm	0
key	95
mode	0
danceability_%	0
valence_%	0
energy_%	0
acousticness_%	0
instrumentalness_%	0
liveness_%	0
speechiness_%	0
dtype: int64	
track_name	object
artist(s)_name	object
artist_count	int6
released_year	int6
released_month	int6
released_day	int6

in_spo	tify_playlists	int64			
in_spo	tify_charts	int64			
stream	S	object			
in_app	le_playlists	int64			
in_app	le_charts	int64			
in_dee:	zer_playlists	object			
in_dee:	zer_charts	int64			
in_sha	zam_charts	object			
bpm		int64			
key		object			
mode		object			
danceal	bility_%	int64			
valence	_	int64			
energy		int64			
	icness_%	int64			
	mentalness_%	int64			
livene	—	int64			
-	iness_%	int64			
dtype:	object				
	artist count	 released year	released month	released day \	
count	817.000000	817.000000	817.000000	817.000000	
mean	1.567931	2018.457772	6.018360	13.696450	
std	0.876211	10.829267	3.572554	9.299663	
min	1.000000	1930.000000	1.000000	1.000000	
25%	1.000000	2021.000000	3.000000	5.000000	
50%	1.000000	2022.000000	5.000000	13.000000	
75%	2.000000	2022.000000	9.000000	22.000000	
max	8.000000	2023.000000	12.000000	31.000000	
		2020100000	12100000	31,000000	
	in_spotify_pla	aylists in_spo	tify_charts in	_apple_playlists	١
count	817	.000000	817.000000	817.000000	
mean	4849	.898409	11.722154	60.161567	
std	7741	.126455	18.617668	74.923594	
min	31	.000000	0.00000	0.000000	

25%	829.000000 0.000000		ı	12.000000				
50%	2040.000000 3.		3.0	.000000 32.000000				
75%	48	90.000000	16.000000		78.000000			
max	528	98.000000	147.0	00000	1	532.000000		
	in_apple_ch	arts in_de	ezer_charts		bpm	danceability		
count	817.00	0000	817.000000	817.	000000	817.0000	00	
mean	49.47	3684	2.451652	122.	565483	67.3916	77	
std	49.57	0455	5.397024	28.	174803	14.6884	58	
min	0.00	0000	0.000000	65.	000000	23.0000	00	
25%	6.00	0000	0.000000	99.	000000	57.0000	00	
50%	34.00	0000	0.000000	120.	000000	70.0000	00	
75%	84.00	0000	2.000000	141.	000000	79.0000	00	
max	275.00	0000	45.000000	206.	000000	96.0000	00	
	valence_%	energy_%	acousticne	ss_%	instru	mentalness_%	liveness_%	\
count	817.000000	817.000000	817.00	0000		817.000000	817.000000	
mean	51.201958	64.362301	26.30	9670		1.676867	18.168911	
std	23.620978	16.107587	25.47	0972		8.767328	13.541996	
min	4.000000	14.000000	0.00	0000		0.000000	3.000000	
25%	32.000000	53.000000	5.00	0000		0.000000	10.000000	
50%	51.000000	66.000000	17.00	0000		0.000000	12.000000	
75%	70.000000	76.000000	41.00	0000		0.000000	24.000000	
max	97.000000	97.000000	97.00			91.000000	97.000000	
	speechiness	_8						
count	817.0000	00						
mean	10.5263	16						
std	10.2199	87						
min	2.0000	00						
25%	4.0000	00						
50%	6.0000	00						
75%	12.0000							
max	64.0000							
track_		0						
_								

artist(s)_name	0
artist_count	0
released_year	0
released_month	0
released_day	0
in_spotify_playlists	0
in_spotify_charts	0
streams	0
in_apple_playlists	0
in_apple_charts	0
in_deezer_playlists	0
in_deezer_charts	0
in_shazam_charts	0
bpm	0
key	0
mode	0
danceability_%	0
valence_%	0
energy_%	0
acousticness_%	0
instrumentalness_%	0
liveness_%	0
speechiness_%	0
dtype: int64	
track_name	objec [.]
artist(s)_name	objec [.]
artist_count	int6
released_year	int6
released_month	int6
released_day	int6
in_spotify_playlists	int6
in_spotify_charts	int6
streams	objec [.]
in_apple_playlists	int6
in_apple_charts	int6

<pre>in_deezer_playlists</pre>	object
in_deezer_charts	int64
in_shazam_charts	object
bpm	int64
key	object
mode	object
danceability_%	int64
valence_%	int64
energy_%	int64
acousticness_%	int64
instrumentalness_%	int64
liveness_%	int64
speechiness_%	int64
dtype: object	

Out[126]:

	track_name	artist(s)_name	artist_count	released_year	released_month	released_day	in_spotify_playlists	in_spotify_charts	streams
0	Seven (feat. Latto) (Explicit Ver.)	Latto, Jung Kook	2	2023	7	14	553	147	141381703.0
1	LALA	Myke Towers	1	2023	3	23	1474	48	133716286.0
2	vampire	Olivia Rodrigo	1	2023	6	30	1397	113	140003974.0
3	Cruel Summer	Taylor Swift	1	2019	8	23	7858	100	800840817.0
4	WHERE SHE GOES	Bad Bunny	1	2023	5	18	3133	50	303236322.0
948	My Mind & Me	Selena Gomez	1	2022	11	3	953	0	91473363.0
949	Bigger Than The Whole Sky	Taylor Swift	1	2022	10	21	1180	0	121871870.0
950	A Veces (feat. Feid)	Feid, Paulo Londra	2	2022	11	3	573	0	73513683.0
951	En La De Ella	Feid, Sech, Jhayco	3	2022	10	20	1320	0	133895612.0
952	Alone	Burna Boy	1	2022	11	4	782	2	96007391.0

817 rows × 24 columns

```
In [127]: # Apartado B
    artistas_unicos = set(spotify["artist(s)_name"])
    print(artistas_unicos)
    print(f'Hay {len(artistas_unicos)} artistas únicos')
```

{'Skrillex, Flowdan, Fred again..', 'Arijit Singh, Vishal Dadlani, Sukriti Kakar, Vishal-Shekhar, Shekh ar Ravjiani, Kumaar', 'J Balvin, Maria Becerra', 'PnB Rock', 'Karol G, Ovy On The Drums', 'Vishal-Shekh ar, Shilpa Rao, Caralisa Monteiro, Kumaar, Vishal Dadlani, Shekhar Ravjiani', 'Sebastian Yatra, Manuel Turizo, Beïiţi', 'Matuïiţiiţ, Wiu, ', 'Doja Cat, The Weeknd', 'Chase Atlantic', 'Justin Quiles, Lenny T aviitiez, BL', 'Meghan Trainor', 'Kendrick Lamar, Taylour Paige', 'Lord Huron', 'Gwen Stefani, Blake Shelton', 'L7nnon, DJ Biel do Furduncinho, Bianca', 'Carin Leon, Grupo Frontera', 'Kali Uchis', 'Calvin Harris, Halsey, Pharrell Williams, Justin Timberlake', 'Tiï¿ˈsto, Kar', 'Mahalini', 'Nengo Flow, Anu el Aa, Chris Jedi, Chencho Corleone', 'Rauw Alejandro, Bizarrap', 'TV Girl', 'Kendrick Lamar, Beth Gibb ons', 'Michael Bubli'a', 'Lizzy McAlpine', 'Miquel', 'Mr.Kitty', 'Fran C, Polima WestCoast, Nickoog Clk, Pablito Pesadilla', 'PinkPantheress, Ice Spice', 'Quevedo, Jhayco', 'Jessi', 'ThxSoMch', 'Tyler, The Cr eator, Kali Uchis', 'Coldplay, BTS', 'Chencho Corleone, Bad Bunny', 'Justin Bieber', 'Kendrick Lamar, J ay Rock', 'Childish Gambino', 'Swae Lee, Lil Wayne, Offset, Metro Boomin', 'Prezioso, Gabry Ponte, LUM! X', 'Yng Lvcas', 'Kendrick Lamar, Tanna Leone', 'Mae Stephens', 'Nicky Youre, Dazy', 'Stephanie Beatri z, Diane Guerrero', 'Imagine Dragons, League of Legends, Arcane', 'The Weeknd, Lil Wayne', 'Arijit Sing h, Sachin-Jigar, Amitabha Bhattacharya', 'Daddy Yankee', 'Leah Kate', 'Melody, Ana Castela, Dj Chris No Beat', 'Justin Bieber, Don Toliver', 'Labrinth', 'Shubh', 'J Balvin, Bad Bunny', 'Beach Weather', 'Kord hell', '(G)I-DLE', 'Lizzo', 'Polo G', 'Sabrina Carpenter', 'Dr. Dre, Snoop Dogg', 'YOASOBI', 'Kendrick Lamar, Blxst, Amanda Reifer', 'Danny Ocean', 'Sech, Mora', 'AnnenMayKantereit, Giant Rooks', 'Cigarette s After Sex', 'Muni Long', 'JISOO', 'Tainy, Bad Bunny', 'Suki Waterhouse', 'Jack Harlow', 'Yandel, Fei d', 'Grupo Marca Registrada, Grupo Frontera', 'P!nk', 'Karol G', 'Lil Yachty', 'Central Cee', 'a-ha', ' Alec Benjamin', 'Bellakath', 'Wisin & Yandel, ROSAL�', 'Dua Lipa, DaBaby', 'sped up 8282', 'Jaymes Yo ung', 'Tini', 'Rich The Kid, Matuï¿', 'Camila Cabello, Ed Sheeran', 'Halsey, BTS', 'TAEYANG, Lisa', 'Po st Malone, Doja Cat', 'RM', 'BYOR, Imanbek', 'Hotel Ugly', 'Panic! At The Disco', 'Lu��sa Sonza, MC Frog, Dj Gabriel do Borel, Davi K', 'Chanel', 'Bruno Mars', 'Sam Ryder', 'SZA, Travis Scott', 'Lil Dur k, Morgan Wallen', 'Christian Nodal', 'Marshmello, Manuel Turizo', 'Hozier', 'teto', 'Kendrick Lamar, S ampha', 'Ugly Dray, Tesla Jnr', 'Bad Bunny, Jhay Cortez', 'Calvin Harris, Ellie Goulding', 'Drake, Futu re, Young Thug', 'Tears For Fears', 'Abhijay Sharma, Riar Saab', 'THE ANXIETY, Willow, Tyler Cole', 'De an Martin', 'Alvaro Diaz, Rauw Alejandro', 'The Rare Occasions', 'Mi¿ˈsiː/ˈane', 'Residente, Bizarrap', 'T yga, Doja Cat', 'Morgan Wallen', 'King', 'Twisted, Oliver Tree', 'Nile Rodgers, LE SSERAFIM', 'The Rone ttes', 'Eminem, Dina Rae', 'Anitta', 'Sean Paul, Dua Lipa', 'Lauren Spencer Smith, Lauren Spencer Smit h, Lauren Spencer Smith', 'INTERWORLD', 'Nayeon', 'Rauw Alejandro, ROSALï¿', 'El Chachito, Junior H', 'Chino Pacas', 'Daddy Yankee, Bad Bunny', 'Camila Cabello, Willow', 'Loreen', 'The Weeknd, Future', 'Ka nii, PR1ISVX', 'Bebe Rexha, David Guetta', 'Sidhu Moose Wala', 'Kate Bush', 'Sean Paul, Feid', 'Mc Viti n Da Igrejinha, MC Tairon, DJ Win', 'Junior H, Peso Pluma', 'Charlie Puth, BTS, Jung Kook', 'Natanael C ano, Peso Pluma', 'Drake', 'Dj LK da Escï¿¡i¿¡cia, Tchakabum, mc jhenny, M', 'Plan B', 'Masked Wolf', '

Anuel Aa, Jhay Cortez', 'The Weeknd, Daft Punk', 'Vundabar', 'Mc Pedrinho, Pedro Sampaio', 'NF', 'Becky G, Peso Pluma', 'HA SUNG WOON, Jimin', 'Southstar', 'Tyler, The Creator', 'Kaifi Khalil', 'Tiïذُلِمَة', 'A rcangel, De La Ghetto, Justin Ouiles, Lenny Tavï¿ˈsiː/srez, Sech, Dalex, Dimelo Flow, Rich Music', 'The W eeknd, Lana Del Rey', 'Feid, Young Miko', 'J Balvin, Nio Garcia, Bad Bunny', 'SZA, Doja Cat', 'Shawn Me ndes, Camila Cabello', 'Paloma Faith', 'Tate McRae', 'Jimin', 'SiM', 'Doechii', 'Emmy Meli', 'Jain', 'M c Pedrinho, DJ 900', 'Aitana, zzoilo', 'The Neighbourhood', 'TWICE', 'Luciano', 'Yung Lean', 'Armani Wh ite', 'Karol G, Quevedo', 'Zach Bryan', 'Nicki Minaj', 'Doja Cat', 'Fujii Kaze', 'Billie Eilish', '50 C ent', 'Future, Lil Uzi Vert, Metro Boomin', 'IVE', 'Ray Dalton, Ryan Lewis, Macklemore', 'Taylor Swif t', 'Em Beihold', 'Eminem', 'Adele', 'Fuerza Regida, Grupo Frontera', 'Tony Dize, Bad Bunny', 'Chris Br own, Rvssian, Rauw Alejandro', 'Mc Livinho, DJ Matt D', 'Luis R Conriquez, La Adictiva', 'Maria Becerr a', 'Marshmello, Juice WRLD', 'NIKI', 'Drake, Future, Tems', 'sped up nightcore, ARIZONATEARS, Lil Uzi Vert', 'Tulus', 'Natanael Cano, Gabito Ballesteros, Peso Pluma', 'Joji', 'Burna Boy', 'Halsey, Suga', ' Kendrick Lamar, Sam Dew, Baby Keem', 'Kendrick Lamar, Beyoncii', 'Quevedo, La Pantera, Juseph, Cruz Caf uniiżiiż, Biżżiżjo, Abhir Hathi', 'Peso Pluma, Yng Lvcas', 'Quevedo', 'Surf Curse', 'Migrantes, LiL Ca Ke, Nico Valdi', 'Mabel Matiz, Mert Demir', 'Melanie Martinez', 'Drake, Travis Scott', 'Metro Boomin, C oi Leray', 'Z�� Fe', 'J. Cole', 'Myke Towers', 'SEVENTEEN', 'Libianca', 'Eminem, Nate Dogg', 'Kendr ick Lamar, Kodak Black', 'MC Xenon, Os Gemeos da Putaria', 'Nessa Barrett', 'NewJeans', 'Feid, Mora', ' Mac DeMarco', 'Taylor Swift, Ice Spice', 'Yahritza Y Su Esencia, Grupo Frontera', 'Rauw Alejandro', 'Jn r Choi', 'Ozuna, Tiago pzk', 'Tory Lanez', 'Cherish, ACRAZE', 'Israel & Rodolffo, Mari Fernandez', 'Ang qi Marito', 'Taylor Swift, Lana Del Rey', 'XXXTENTACION', 'Maluma', 'Perry Como, The Fontane Sisters, M itchell Ayres & His Orchestra', 'Jason Derulo', 'BLESSD, Peso Pluma', 'Karol G, Romeo Santos', 'R£￸¡ ma, Selena G', 'Em Beihold, Stephen Sanchez', 'Elley Duhï¿', 'Manuel Turizo', 'Lil Nas X', 'Zion & Lenn ox', 'Harry Styles', 'Dave, Central Cee', 'Ed Sheeran, J Balvin', 'Shawn Mendes', 'Luude, Colin Hay', ' DJ Escobar, MC MENOR SG, MC MENOR HR', 'ZïċŚïċŚ Neto & Crist', 'Musical Youth', 'Dave', 'XamïċŚïċŚ, Gus tah, Neo B', 'Peso Pluma, Grupo Frontera', 'David Guetta, Ella Henderson, Becky Hill', 'Myke Towers, Qu evedo', 'Maroon 5', 'Natanael Cano', 'Kelly Clarkson', 'Feid', 'Nicki Minaj, Ice Spice', 'Kanye West', 'Eminem, Dr. Dre', 'Anitta, Tini, Becky G', 'Selena Gomez', 'Arcangel, Bad Bunny', 'Stephen Sanchez', ' Chris Molitor', 'Ludwig Goransson, Foudeqush', 'Paulo Londra', 'James Hype, Miggy Dela Rosa', 'Peggy Go u', 'Jessica Darrow', 'Drake, DJ Khaled, Lil Baby', 'Rihanna', "Shakin' Stevens", 'Yung Gravy', 'Kendri ck Lamar, Baby Keem', 'Dua Lipa', 'TOMORROW X TOGETHER', 'Pharrell Williams, Nile Rodgers, Daft Punk', 'LF System', 'The Kid Laroi', 'Fifty Fifty', 'MC Caverinha, KayBlack', 'Luciano, Aitch, B�', 'Jung Ko ok', 'Darlene Love', 'Sam Smith', 'Nicky Jam, Feid', 'YEAT', 'James Arthur', 'John Lennon, The Harlem C ommunity Choir, The Plastic Ono Band, Yoko Ono', 'Bizarrap, Peso Pluma', 'BLACKPINK', 'John Legend, Met ro Boomin', 'Kodak Black, NLE Choppa, Muni Long, JVKE, Jimin', 'Sleepy hallow, 347aidan', 'Kenshi Yonez u', 'Blackbear, BoyWithUke', 'The Chainsmokers, Halsey', 'Lost Frequencies, Calum Scott', 'Omar Apoll

o', 'GODZZ -, Zakaria', 'Andy Williams', 'Pharrell Williams, Tyler, The Creator, 21 Savage', 'Simone M endes', 'David Kushner', 'Robin Schulz, Oliver Tree', 'Karol G, Shakira', 'Seafret', 'Ed Sheeran', 'Bom ba Estï¿ˈsiːˈsreo, Bad B', 'Bad Bunny', 'Mainstreet, Chefin', 'The Killers', 'Bizarrap, Ouevedo', 'Intens e, AP Dhillon, Gurinder Gill', 'Kanye West, XXXTENTACION', 'Bizarrap, Tiago pzk', 'Kendrick Lamar, Ghos tface Killah, Summer Walker', 'Post Malone, Swae Lee', 'J. Cole, Lil Durk', 'Keane', 'Marï¿ǯi¿ţlia Mend oniiziiza, George Henrique &', 'Ayparia, unxbected', 'Lit Killah, Maria Becerra, Tiago pzk, NICKI NICOL E', 'Fuerza Regida, Chino Pacas', 'Jasiel Nu��ez, Peso P', 'The Weeknd, 21 Savage, Metro Boomin', ' Feid, Mora, Saiko, Quevedo', 'Luke Combs', 'Feid, Myke Towers, Sky Rompiendo', 'Nat King Cole', 'Rihann a, Calvin Harris', 'Lil Uzi Vert', 'A\$AP Rocky, Metro Boomin, Roisee', 'Bad Bunny, Eladio Carrion', 'Es labon Armado, Peso Pluma', 'Conan Gray', 'Drake, WizKid, Kyla', 'Dua Lipa, Megan Thee Stallion', 'Kendr ick Lamar', 'Rex Orange County', 'Lauren Spencer Smith', 'Sam Smith, Kim Petras', "Jordan Fisher, Josh Levi, Finneas O'Connell, 4*TOWN (From Disney and Pixarï¿ǯï¿ǯs Turning Red), Topher Ngo, Grayson Vil 1", 'Young Thug, Future, Gunna', 'Shakira, Rauw Alejandro', 'Travis Scott, Young Thug, Metro Boomin', ' Sachin-Jigar, Shadab Faridi, Altamash Faridi, Amitabh Bhattacharya, Varun Jain', 'Ruth B.', 'Duki, NICK I NICOLE, Cris Mj, Standly, Stars Music Chile', 'Dr. Dre, 2Pac, Roger', 'Trueno, Tiago pzk', 'PinkPanth eress', 'Latto, Jung Kook', 'Brray, Rauw Alejandro, Lyanno', 'V', 'Ryan Castro', 'SZA, Phoebe Bridger s', 'SZA, Don Toliver', 'Marshmello, Jonas Brothers', 'Dove Cameron', 'Chuck Berry', 'Gabito Ballestero s, Junior H, Peso Pluma', 'Julieta Venegas, Bad Bunny, Tainy', 'Morgan Wallen, Eric Church', 'Stromae', 'Travis Scott, 21 Savage, Metro Boomin', 'Dean Lewis', 'Mahmood, Blanco', 'MNEK, Jax Jones', 'Nirvana', 'Don Toliver, Future, Justin Bieber', 'Beyoncï¿', 'RM, Colde', 'Eden Mu�ï', 'j-hope', 'LE SSERAFIM', 'Paul McCartney', 'Arctic Monkeys', 'j-hope, J. Cole', 'd4vd', 'Yahritza Y Su Esencia', 'Taiu, Milo j', 'Treyce', 'Steve Lacy', 'James Blake, Metro Boomin', 'Kanye West, Lil Durk, Cardi B', 'Frank Sinatra', 'Ti��sto, Tate M', 'Sebastian Yatra', 'Drake, Travis Scott, 21 Savage', 'Israel & Rodolffo, Ana Cas tela', 'Cartel De Santa, La Kelly', 'ENHYPEN', 'Mambo Kingz, DJ Luian, Anuel Aa', 'Nengo Flow, Bad Bunn y', 'Avicii', 'Ana Castela, AgroPlay', 'Tini, Maria Becerra', 'Future, Chris Brown, Metro Boomin', 'NLE Choppa', 'Marï¿¡i¿¡lia Mendo', 'Josï¿¡i¿ Felic', 'Bruno Mars, Anderson .Paak, Silk Sonic', 'Troye Siva n', 'Future', 'Gunna', 'Shakira', 'Yuridia, Angela Aguilar', 'Benson Boone', 'Kanye West, Alicia Keys, Fivio Foreign', 'Semicenk, Do��u', 'Drake, Project Pat, 21 Savage', 'Ariana Grande, The Weeknd', ' Lady Gaga, Bradley Cooper', 'The Police', 'Grupo Marca Registrada, Junior H', 'Charli XCX, Jax Jones, J oel Corry, Saweetie', 'Sch��rze, DJ R', 'Ed Sheeran, Fireboy DML', 'C. Tangana', 'Bad Bunny, Tain y', 'The Weeknd, Post Malone', 'The Weeknd', 'Raim Laode', 'De La Ghetto, Duki, Quevedo', 'Buscabulla, Bad Bunny', 'Baby Tate', 'Arcangel, Bizarrap', 'The Weeknd, Gesaffelstein', 'Victor Cibrian', 'Halsey', 'SZA', 'Ozuna, Feid', 'Polima WestCoast, Pailita', 'Travis Scott, Metro Boomin', 'Chris Rea', 'Drake, 2 1 Savage', 'MC Ryan SP, Love Funk, Mc Paiva ZS', 'Carin Leon', 'Ti��sto, Ava', 'Bing Crosby, John S cott Trotter & His Orchestra, Ken Darby Singers', 'SALES', 'Tini, L-Gante', 'NMIXX', 'Fuerza Regida, Na

tanael Cano', 'Lana Del Rey', 'Fuerza Regida', 'Bad Bunny, Grupo Frontera', 'Lady Gaga', 'Coi Leray', ' Shae Gill, Ali Sethi', 'PSY, Suga', 'Bizarrap, Villano Antillano', 'Bad Bunny, The Marï¿ÿï', 'Justin Bi eber, The Kid Laroi', 'Post Malone', 'Sech, Bad Bunny, Mora', 'Duki', 'Rels B', 'Lil Tjay', 'The Chains mokers, Coldplay', 'Riton, Nightcrawlers, Mufasa & Hypeman, Dopamine', 'BIGBANG', 'The Walters', 'Aeros mith', 'Chencho Corleone, Rauw Alejandro', 'Big One, FMK, Ke personajes', 'Jack Black', 'Kenia OS', 'Co ldplay', 'Fuerza Regida, Peso Pluma', 'ROSAL�', 'Playboi Carti', 'Mar��lia Mendon��a, Maiara &', 'OneRepublic', 'Vance Joy', 'Gunna, Lil Baby', 'Arijit Singh, Sachin-Jigar', 'IU, Agust D', 'Olivia Rodrigo', 'Bad Bunny, Rauw Alejandro', 'The Weeknd, Madonna, Playboi Carti', 'Cris Mj', 'Leo Santana', 'Imagine Dragons, League of Legends, JID, Arcane', 'New West', 'BTS', 'Calvin Harris, Dua Lipa, Young T hug', 'Feid, Sech, Jhayco', 'Linkin Park', 'Steve Aoki, Tini, La Joaqui', 'JVKE', 'Dua Lipa, Elton Joh n, Pnau', 'Kodak Black', 'Jin', 'Labrinth, Zendaya', 'Kaliii, Kaliii', 'WizKid, Toian, Metro Boomin, Do n Toliver, Beam', 'Lana Del Rey, Taylor Swift', 'Billie Eilish, Khalid', 'David Guetta, Shakira, Black Eyed Peas', 'Stray Kids', 'Ghost', 'Niall Horan', 'Sleepy hallow', 'Frank Ocean', 'De La Ghetto, Feid, Polima WestCoast, Paloma Mami, Pailita', 'KALUSH', 'dennis, MC Kevin o Chris', 'Eminem, Dido', 'Junior H, Eden Mu�ï', 'Lasso', 'The Weeknd, Tyler, The Creator', 'Willow', 'Veigh, Byga Beatz, Supernova En t, Prod Malax', 'Freddie Dredd', 'John Legend', 'Kevin Kaarl', 'Karol G, Becky G', 'Maldy, Karol G', 'N icki Minaj, Lil Baby', 'Styrx, utku INC, Thezth', 'Offset, JID', 'Feid, Paulo Londra', '21 Savage, Gunn a', 'Olga Merediz, Stephanie Beatriz, Encanto - Cast', 'Ovy On The Drums, Quevedo', 'Imagine Dragons', "Guns N' Roses", 'Aventura, Bad Bunny', 'The Goo Goo Dolls', 'Charlie Puth', 'Shakira, Bizarrap', 'Mile y Cyrus', 'Radiohead', 'Demi Lovato', 'Metallica', 'Edison Lighthouse', 'Juice WRLD', 'Feid, Alejo, Rob i', 'Sofia Carson', 'David Guetta, Anne-Marie, Coi Leray', 'Oxlade', 'Anuel Aa, Myke Towers, Jhay Corte z', 'Frank Sinatra, B. Swanson Quartet', 'girl in red', 'Lil Baby', 'Future, Metro Boomin, Don Tolive r', 'Kali Uchis, Amaarae, Moliy', 'Lewis Capaldi', 'RAYE, 070 Shake', 'Agust D'} Hay 571 artistas únicos

```
In [128]: # Apartado C
fig = px.histogram(spotify, x="streams")
fig.show()
```

Out[130]:

	artist_count	released_year	released_month	released_day	in_spotify_playlists	in_spotify_charts	streams	in_apple_playl
artist_count	1.000000	0.073564	0.033857	-0.014762	-0.085226	-0.008570	-0.109760	-0.017
released_year	0.073564	1.000000	0.076439	0.166377	-0.390729	0.068679	-0.242726	-0.201
released_month	0.033857	0.076439	1.000000	0.057784	-0.122407	-0.050186	-0.046041	-0.034
released_day	-0.014762	0.166377	0.057784	1.000000	-0.107616	0.016068	-0.025116	-0.011
in_spotify_playlists	-0.085226	-0.390729	-0.122407	-0.107616	1.000000	0.141343	0.780404	0.688
in_spotify_charts	-0.008570	0.068679	-0.050186	0.016068	0.141343	1.000000	0.214034	0.208
streams	-0.109760	-0.242726	-0.046041	-0.025116	0.780404	0.214034	1.000000	0.735
in_apple_playlists	-0.017024	-0.201474	-0.034029	-0.011916	0.688316	0.208202	0.735321	1.000
in_apple_charts	-0.075271	0.003479	-0.017813	0.007727	0.215676	0.556804	0.269137	0.364
in_deezer_charts	0.020585	0.095741	0.006942	0.055426	0.101283	0.566161	0.184329	0.326
bpm	-0.058844	-0.011570	-0.049400	-0.033394	-0.034483	0.028830	-0.025694	0.005
danceability_%	0.214078	0.215032	-0.054808	0.084244	-0.096981	0.051338	-0.093268	-0.012
valence_%	0.123650	-0.047643	-0.110355	0.062751	-0.029823	0.050040	-0.051014	0.041
energy_%	0.137530	0.078886	-0.086897	0.047318	0.035875	0.104963	-0.036499	0.039
acousticness_%	-0.094704	-0.133224	0.055046	0.000785	-0.064633	-0.072853	-0.005751	-0.070
instrumentalness_%	-0.061269	-0.023958	0.035481	0.023040	-0.024570	-0.005814	-0.033039	-0.054
liveness_%	0.034354	0.008489	0.001329	-0.011094	-0.051973	-0.026582	-0.056664	-0.064
speechiness_%	0.131486	0.129887	0.042127	-0.014602	-0.077610	-0.094102	-0.099968	-0.097

In []: