Assignment 2

Determine the eigenvalues λ_1 , λ_2 and the corresponding eigenvectors \mathbf{a}_1 , \mathbf{a}_2 of the 2×2 matrix \mathbf{A} . Consider the possible (λ, \mathbf{a}) pairs giving solutions to linear equation system $(\mathbf{A} - \lambda \mathbf{I})\mathbf{a} = \mathbf{0}$ with

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}, \quad \mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ and } \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}.$$

Solution template

As the matrix needs to be singular for a non-zero solution to $\bf a$, the possible values of λ follow from the characteristic equation $\det({\bf A}-\lambda{\bf I})=0$

$$\det\begin{bmatrix} 1-\lambda & 0 \\ -3 & 2-\lambda \end{bmatrix} = \underline{\hspace{1cm}} = 0 \implies \lambda_1 = \underline{\hspace{1cm}} \text{ or } \lambda_2 = \underline{\hspace{1cm}}.$$

Eigenvector **a** (non-zero) corresponding to a possible value of λ follows from $(\mathbf{A} - \lambda \mathbf{I})\mathbf{a} = 0$ when the value of λ is substituted there:

$$\lambda_1 = \underline{\qquad} : \begin{bmatrix} \underline{\qquad} \\ a_2 \end{bmatrix} = 0 \quad \Rightarrow \quad \mathbf{a}_1 = \begin{Bmatrix} a_1 \\ a_2 \end{Bmatrix} = \begin{Bmatrix} \underline{\qquad} \\ \underline{\qquad} \end{Bmatrix}$$

$$\lambda_2 = \underline{} : \begin{bmatrix} \underline{} \\ \underline{} \end{bmatrix} = 0 \quad \Rightarrow \quad \mathbf{a}_2 = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \underline{} \\ \underline{} \end{bmatrix}$$

Hence, the eigenvalue-eigenvector pairs of A are given by

$$(\lambda, \mathbf{a})_1 = (\underline{\hspace{1cm}}, \{\underline{\hspace{1cm}}\})$$
 and $(\lambda, \mathbf{a})_2 = (\underline{\hspace{1cm}}\})$.