

Introducción al Análisis y Diseño de Sistemas

Mag. Juan José Quesada Sánchez ajuanjo@gmail.com

Agenda

- Introducción al análisis y diseño de sistemas
- Conceptos:
 - Sistema y Sistema de Información
 - Ingeniería de software
 - Software
 - Ingeniería de software versus ingeniería de sistemas
 - Proceso del software
 - Método versus metodología
- ¿Que es el Análisis?
- Pasos de la Fase de Análisis
- Ingeniería de Diseño
- Situación actual en proyectos de software
- Atributos de calidad del software
- Bach. Informática Empresarial UCR

- Proceso organizacional complejo a través del cuál los sistemas de información basados en computadoras son desarrollados y mantenidos
 - Son responsables de este proceso profesionales de sistemas y expertos del negocio

- Existe una brecha ("brecha") entre el usuario y los analistas de sistemas
 - El usuario entiende el contexto actual del negocio pero el analista no.
 - El analista entiende el nuevo sistema pero el usuario no.
- Que tan bien estos involucrados trabajen juntos para cerrar estas brechas determinará que tan exitoso será el sistema.

- La visión abstracta del usuario la debemos transformar en especificaciones, modelos, arquitecturas que guíen el desarrollo del sistema
- Se deben realizar tres actividades técnicas principales: análisis de sistemas, diseño de sistemas e implementación.

- Aspectos claves para cerrar la brecha
 - Comunicación efectiva
 - Involucrar al usuario en todas las etapas

Sistema

- Conjunto de elementos o componentes que iteractúan para lograr objetivos
- "Conjunto de cosas que relacionadas entre sí ordenadamente contribuyen a determinado objeto" - Real Academia Española
- Según el origen hay tres tipos de sistemas
 - Los que encontramos en la naturaleza
 - Los que encontramos diseñados por alguien más
 - Los que diseñamos nosotros

Sistema: componentes de un sistema

Sistema de Información

Según Kurbel (2008, p. 4) son sistemas basados en computadoras que procesan información o datos de entrada, almacenan, recuperan y producen nueva información para resolver tareas automáticamente o soportar a los seres humanos en la operación, control y toma de decisiones de una organización.

Sistema de Información: Componentes

Telecomunicaciones

Hardware

Personas

Software

Bases de Datos

Manuales y Documentación

Procedimientos

Tipos de Sistemas de Información

- Sistemas de procesamiento de transacciones(TPS)
 - Automatizan el manejo de los datos acerca de las actividades del negocio (transacciones)
- Sistemas de información gerencial (MIS)
 - Convierten los datos puros derivados de los TPS en formas más significativas
- Sistemas de apoyo a las decisiones (DSS)
 - Desarrollados para ayudar a los tomadores de decisiones
 - Proveen ambientes interactivos para la toma de decisiones

Tipos de Sistemas de Información

¿Qué es la Ingeniería de Software?

- Según la visión de Manassis (2003, pág. I)
 - Refinamiento del conocimiento a través de sucesivos niveles de abstracción y de representación
 - Trazabilidad de cada ítem de información entre los niveles de abstracción

Niveles de abstracción

Espacio Dominio

Dominio Negocio

- Industrias
- Funciones

Espacio Solución

Problema del Negocio

Visión y Características del Sistema

Especificación

Sistema

Requerimientos

Funcionales y No Func.

Casos de Uso

Diseño Sistema e Integración

Modelo de Análisis

Casos de Prueba

Modelo de Seguridad

Desarrollo y Configuación del Sistema

Modelo de Diseño

Código

Scripts de prueba

Configuación .NET, Struts

Trazabilidad

Prueba **Implementación** Configuración Problema del Visión y características del sistema Negocio **Especificación** Casos de Uso Sistema Diseño Sistema e Casos de prueba Modelo de Análisis Modelo de Seguridad Integración Desarrollo y Scripts de Modelo de Diseño Configuración del Pruebas Sistema Resultados de Código Pruebas Es un técnica, Trazabilidad:→ herramienta, método

¿Qué es Ingeniería de Software?

- Disciplina de la ingeniería referente a aspectos de la producción de software
 - Ingenieros aplican teorías, métodos y herramientas para encontrar soluciones a los problemas
 - Ingenieros trabajan con restricciones financieras y organizacionales
 - La disciplina incluye procesos técnicos, actividades como la gestión de proyectos y herramientas, métodos y teorías para soportar el proceso
- Ingenieros de Software deben adoptar un proceso organizado y sistemático

¿Qué es el software?

- Programas de computadora y la documentación asociada (requerimientos, diseño, manuales de usuario)
- Productos de software son desarrollados para clientes particulares o mercados generales.
 - Genéricos: para ser vendidos variedad clientes (procesadores de texto, bases de datos, hojas electrónicos, ..)
 - Sistemas de Información y otras aplicaciones desarrolladas para su uso dentro de una compañía.
 - Desarrollados a la medida: para un cliente según sus especificaciones (sistemas de procesos de negocios, control de tráfico aéreo)
 - Software empotrado que se ejecuta en otros dispositivos, máquinas o sistemas complejos (aviones, teléfonos celulares, automóbiles)

Ing. de Software e Ing. de Sistemas

- Ing. de Sistemas relacionado con los aspectos del desarrollo de sistemas basados en computadoras
 - Incluye hardware, software y el proceso de ingeniería.
- Ing. Software es parte de este proceso. Relacionado con el desarrollo de la infraestructura del software, el control, aplicaciones y b.d. de los sistemas.

¿Qué es un proceso de desarrollo del software?

- Un conjunto de actividades cuya meta es el desarrollo o la evolución del software
- Actividades genéricas en un proceso de software son:
 - Especificación: lo que el sistema debe hacer y las restricciones de desarrollo
 - Desarrollo: producción del sistema
 - Validación: chequear que cumple expectativas del cliente.
 - Evolución: cambios del software en función de cambios de los requerimientos o el mercado

¿Que es Análisis?

- En la vida a nivel general ante algún problema empezamos con un analisis, ejemplo
 - Cuando un doctor medica
 - Cuando un abogado toma un caso
- El objetivo de la fase de análisis es estudiar el problema y obtener un muy preciso, de fácil comprensión, nítido y exacto modelo de la solución propuesta al problema

¿Que es Análisis?

- Similar a otras aéreas el analista considera dos aspectos:
 - Requerimientos actuales:
 - Ambiente que lo rodea
- El analista debe enfocarse en que tiene que hacer y no en como, el como esta para una etapa posterior, ejemplo: un requerimiento para realizar un reportes de empleados mensual por área.
- Simplificar el estado del requerimiento en un lenguaje claro (sin tecnisismos)

Pasos de la Fase de Análisis

- ▶ Tener en cuenta las solicitudes del usuario
 - Hay que iniciar considerando las demandas, peticiones o requerimientos de los usuarios del sistemas a desarrollas frecuentementr
 - Siempre es buena idea discutir los requerimiento
- Formular la declaración del problema
 - Hay que lograr que el requerimiento sea: muy claro, nítido, y no ambiguo para todas las partes concernientes.
 - Puede existir aca un modelamiento basico

Pasos de la Fase de Análisis

Preparar para el modelado

- En este punto el enunciado del requerimientos es tomado como una entrada
- El analista no solo debe tener en cuenta el enunciando del problema si no también su experiencia o ayuda de otros expertos para este propósito

Ingeniería del diseño

▶ El critico de la arquitectura romana Vitruvius aporto la noción de que las construcciones bien diseñadas eran aquella que mostraban firmeza, comodidad y placer. Lo mismo debe decirse del buen software.

¿Que es?

- Es el sitio donde manda la creatividad, donde los requisitos del cliente, las necesidades de negocio, y las consideraciones técnicas se unen.
- El diseño crea una representación o modelo del software, que proporciona detalles acerca de las estructuras de datos, las arquitecturas, las interfaces y los componentes necesarios para implementar el sistema

Ingeniería del diseño

¿Por qué es importante?

Permite moderar el sistema, este modelo puede evaluarse en relación a la calidad y mejorar antes de generar código, de pruebas y antes de que los usuarios finales vean el producto

¿Cuáles son los pasos?

▶ Arquitectura → modelan interfaces → componentes de software

¿Cuál es el producto obtenido?

 Modelo que abarca representaciones: arquitectónicas, de interfaz, de componentes y de despliegue

¿Cómo puedo estar seguro de que lo he hecho correctamente

Se evalúa si contiene: errores, inconsistencias u omisiones; si hay mejoras

Ingeniería del diseño

- La meta es producir un modelo que muestre firmeza, comodidad y placer. Para ello se necesita:
 - Diversificación: adquisición de un repertorio de alternativas
 - Convergencia: elección del repertorio que cumplan con los requisitos definidos por la ingeniería de requerimientos y modelo de análisis.
 - Ambas demandan intuición y juicio
- La ingeniería de diseño esta en un cambio constante continuo, en la medida que evolucionan mejores métodos, mejores análisis, y una comprensión mas amplia

Diseño dentro del contexto de ingeniería de software

- El diseño se encuentra en el núcleo técnico de la ingeniería y se aplica de manera independiente al modelo de software
- Después de las especificación y análisis de requisitos, el diseño es la ultima acción dentro de la actividad de modelado
- Plataforma para construcción y pruebas
- Cada uno de los elementos de análisis proporciona la información necesaria para los 4 modelos de diseño

Diseño dentro del contexto de ingeniería de software

Diseño de datos-clase

- Transforma los modelos de análisis y clases en las clases de diseño y estructuras de datos
- El diseño de clase mas detallado se realiza a medida que se diseña cada componente del software

Diseño arquitectónico

- Define la relación entre los elementos estructurales mas importantes del software, los estilos arquitectónicos, y patrones de diseño, y las restricciones que afectan la manera en que se pueden implementar los patrones arquitectónicos
- Puede derivarse de: Especificación del sistema, modelos de análisis y interacción de subsistemas

Diseño dentro del contexto de ingeniería de software

Diseño de la interfaz

- Describe la forma de comunicación con los sistemas y humanos
- Una interfaz implica un flujo de información y un tipo de comportamiento especifico
- Los escenarios de uso y los modelos de comportamiento proporcionan mucha de la información que se requiere

Diseño a nivel de componentes

- ► Elementos estructurales de la arquitectura → descripción procedimental de los componentes
- La base:
 - Modelos de clase
 - Modelos de flujo
 - Modelos de comportamiento

Diseño dentro del contexto de ingeniería de software

- Durante el diseño se toman decisiones que inciden en el éxito de la construcción y así como en la facilidad del mantenimiento
- La importancia del diseño puede describirse en una palabra: calidad
- En el diseño proporciona representaciones susceptibles de evaluar con respecto a la calidad
- Diseño única forma en que un requisito se pueda convertir en parte del sistema
- Sin diseño se corre el riesgo de un sistema inestable:
 - Falla con cambios pequeños, difícil de probar, calidad no se puede evaluar, si no hasta etapas tardías

Costos de la Ing. de Software

La distribución de los costos depende del proceso del software utilizado.

Algunas estadísticas acerca de proyectos software

Según estudio del Standish Group en los años 1994, 1998 y 2002 en USA:

Resultados obtenidos

- Proyectos exitosos [16%, 26%, 34%]
- Proyectos cancelados [31%, 28%, 15%]
- Proyectos excedidos [53%, 46%, 51%]
 - Desfase promedio en costo 189%.
 - Desfase promedio en tiempo 222%.
 - Porcentaje de requerimientos cubiertos 61%.

- "Proceso estructurado para generar un conjunto de modelos que describen varios aspectos del software siendo desarrollado utilizando alguna notación bien definida" [Booch 2007]
- Definen productos que sirven como vehículos de comunicación entre los miembros del equipo
- Define "milestones" que permiten medir el avance y gestionar el riesgo

¿Qué es una metodología?

 "Colección de métodos aplicados a través del ciclo de vida del desarrollo del software y unificado por un proceso, prácticas y algún enfoque filosófico" [Booch 2007]

CASE (Computer-Aided Software Engineering)

- Sistemas de software que proveen soporte automatizado para las actividades del proceso de software.
- Upper-CASE
 - Actividades tempranas del proceso: requerimientos y diseño.
- Lower-CASE
 - Soportan actividades como programación, debugging y testeo.

- Según Gomaa, H. (2011, p. 357) se refieren a requerimientos no funcionales del software los cuáles tienen un profundo efecto en la calidad de un producto de software.
- Mantenibilidad: Medida en que el software puede ser cambiado después de su despliegue.
 - \rightarrow El software debe evolucionar \rightarrow los negocios cambian.
 - El software debe ser diseñado para el cambio y la adaptabilidad.
 - Razones:
 - Arreglar errores no detectados en las pruebas.
 - Abordar problemas de rendimiento visibles sólo cuando el software está en produccción.
 - Cambios en los requerimientos del software

- Testeabilidad: Grado en que el software puede ser ojbeto de pruebas.
 - Se debe desarrollar un plan de pruebas temprano en el ciclo de vida
 - ¿Cuáles pueden ser ejemplos de pruebas?
- Modificabilidad: Grado en que el software puede ser modificado durante y después del desarrollo inicial
 - El autor propone un diseño modular integrado por módulos con interfaces bien definidas → encapsulamiento
 - ¿Separación de la lógica en capas?

- Performance: Asociado con el rendimiento y los tiempos de respuesta esperados del software
- Seguridad: El software enfrenta muchas amenazas que debe subsanar.
 - Amenazas comprometen la confidencialidad, disponibilidad e integridad de la información.
- Escalabilidad: Grado en que el sistema puede crecer luego de su despliegue inicial.
 - ▶ Desde la perspectiva del sistema → hardware
 - Agregar más memoria o espacio de disco en un sistema centralizado
 - Más nodos de procesamiento en un sistema distribuido
 - Desde la perspectiva del software
 - Diseñado para crecer
 - Una arquitectura de software: basada en componentes distribuidos o basada en servicios (SOA)

- Disponibilidad: se relaciona con fallas del sistema y su impacto en los usuarios y otros sistemas
 - ¿Qué sistemas necesitan estar operacionalmente disponibles todo el tiempo?
 - ¿Cómo lograr un sistema tolerante a fallas?

Desafios

Heterogeneidad

Desarrollar técnicas para la construcción de software para que pueda correr en ambientes de ejecución y plataformas heterogéneas.

Entrega

 Desarrollar técnicas que guíe a una entrega más rápida del software

▶ Confianza

Desarrollar técnicas que demuestren que el software es confiable a los usuarios.

Referencias

- Booch, G. et al. (2007) Object-Oriented Analysis and Design with Applications. 3ra. edición. USA:Pearson Education.
- Gomaa, H. (2011). Software modeling and design: UML, Use Cases, Patterns, and Software Architectures. NY: Cambrigde University Press. {Cáp. 20 Atributos de calidad del software}
- Kurbel, K. E. (2008). The Making of Information Systems: Software Engineering and Management in a Globalized World. Germany: Springer-Verlag Berlin Heidelberg.
- Manassis, E. (2003) Practical Software Engineering: Analysis and Design for the .NET Platform. Addison Wesley. {Cáp. 1 - Introducción}
- Sommerville, I. (2005). **Ingeniería de Software**. 7ma. edición. Prentice-Hall.
- Pressman, R. (2005). Ingeniería del Software: Un Enfoque Práctico. Sexta Edición. USA:Mc Graw Hill.
- Atul Kahate, **Object Oriented Analysis & Design**, http://books.google.co.cr/books?id=PkVy_zAaruMC&pg=PT51&lpg=PT51&dq=analysis+d esign+system+booch&source=bl&ots=8Ou8cWBINL&sig=ZxXEROirfZnw8HTRPR3jzZ e6ifl&hl=es&sa=X&ei=FwwWUNz1CuLZ6wH3xoCgDg&redir_esc=y#v=onepage&q=analysis%20design%20system%20booch&f=true

