

Chapter 10: Spatial cross-validation for GeoAl

Kai Sun, Yingjie Hu, Gaurish Lakhanpal, and Ryan Zhenqi Zhou

GeoAl Lab, Department of Geography
University at Buffalo, State University of New York

Cross-validation and spatial cross-validation

- Cross-validation (CV) has been widely used in GeoAl research
- While effective, CV could lead to an overestimate of model performance on geographic data
- Spatial CV is a spatially explicit CV approach that splits data spatially rather than randomly
- Different spatial CV methods exist across multiple disciplines

An example of 10-fold cross-validation

- Training data
- Validation data

Training and validation data can be spatially close

Cross-validation and spatial cross-validation

- Spatial CV does not always provide more suitable assessment of model performance than random CV
- Two common situations in GeoAl research: within-area prediction and between-area prediction (Roberts et al. 2017; Goodchild and Li 2021)

Within-area prediction (interpolation)

Between-area prediction (extrapolation)

Spatial CV methods

- Four main methods: Clustering-based spatial CV, grid-based spatial CV, geo-attribute-based spatial CV, and spatial leave-one-out CV
- Software packages for spatial CV developed by researchers

In R:

- *sperrorest*: https://cran.r-project.org/web/packages/sperrorest/index.html (Brenning 2012)
- *spatialsample*: https://cran.r-project.org/web/packages/spatialsample/index.html (Mahoney 2023)
- blockCV: https://cran.r-project.org/web/packages/blockCV/index.html (Valavi et al. 2019)
- ENMeval: https://cran.r-project.org/web/packages/ENMeval/index.html (Muscarella et al. 2014)
- *Mlr3spatiotempcv*: https://cran.r-project.org/web/packages/mlr3spatiotempcv/index.html (Schratz et al. 2021)
- *CAST*: https://cran.r-project.org/web/packages/CAST/index.html (Meyer et al. 2018)

In Python:

- spacv: https://github.com/SamComber/spacv (Comber 2020)
- *MuseoToolbox*: https://museotoolbox.readthedocs.io/en/latest/ (Karasiak 2020)

Spatial CV methods

- Clustering-based spatial CV
- Using a clustering method (e.g., K-means) to spatially split data

Implemented in the following packages: *spatialsample* (R), *sperrorest* (R), *Mlr3spatiotempcv* (R), *blockCV* (R), and *spacv* (Python)

Spatial CV methods

- Grid-based spatial CV
- Using a spatial grid to divide the study area into $n \times m$ grid cells

Implemented in the following packages: *ENMeval* (R), *spatialsample* (R), *sperrorest* (R), *Mlr3spatiotempcv* (R), *blockCV* (R), and *spacv* (Python).

Spatial CV methods

- Geo-attribute-based spatial CV
- Using a geo-attribute, such as county name or city district name, to spatially split data

Implemented in the following packages: Mlr3spatiotempcv (R) and spacv (Python).

Spatial CV methods

- Spatial leave-one-out CV
- Using a buffer zone to spatially separate training and validation data

Implemented in the following packages: *CAST* (R), *Mlr3spatiotempcv* (R), *blockCV* (R), *sperrorest* (R), *spatialsample* (R), *spacv* (Python), and *museotoolbox* (Python).

Case study I

- Predicting neighborhood-level domestic violence rate in Chicago based on socioeconomic attributes using random forest
- Model is assessed under five CV:
 - Random CV
 - Clustering-based CV
 - Grid-based CV
 - Geo-attribute-based CV
 - Spatial leave-one-out CV
- The dataset is from a previous study (Chang et al. 2022)

Case study I

 Predicting neighborhood-level domestic violence rate in Chicago based on socioeconomic attributes using random forest

CV method	R^2	<i>RMSE</i>
Random CV	0.5952	8.9398
Clustering-based spatial CV	0.5443	9.4853
Grid-based spatial CV	0.5643	9.2752
Geo-attribute-based spatial CV	0.5667	9.2501
Spatial leave-one-out CV	0.5470	9.4575

Case study II

- Predicting neighborhood-level obesity prevalence in New York City based on socioeconomic attributes using a fully-connected deep neural network
- Model is assessed under five CV:
 - Random CV
 - Clustering-based CV
 - Grid-based CV
 - Geo-attribute-based CV
 - Spatial leave-one-out CV
- The dataset is from a previous study (Zhou et al, 2022)

Case study II

 Predicting neighborhood-level obesity prevalence in New York City based on socioeconomic attributes using a fully-connected deep neural network

CV method	R^2	RMSE
Random CV	0.8692	2.1287
Clustering-based spatial CV	0.7244	3.0899
Grid-based spatial CV	0.7466	2.9624
Geo-attribute-based spatial CV	0.6613	3.4250
Spatial leave-one-out CV	0.8083	2.5766

Conclusions

- Spatial CV presents a spatially explicit approach to assessing model performance by splitting data spatially rather than randomly
- Four main methods for spatial CV: Clustering-based spatial CV, grid-based spatial CV, geo-attribute-based spatial CV, and spatial leave-one-out CV
- Two case studies based on real-world data in two different U.S. cities and two different machine learning models
- Spatial CV is not always more suitable than random CV for GeoAl research;
 it depends on how the trained model will be used for making predictions

Acknowledgement

Student co-authors of this book chapter

Kai Sun

Ryan Zhou

Gaurish Lakhanpal

Thank you!

Yingjie Hu

University at Buffalo, SUNY Email: yhu42@buffalo.edu

GeoAI@UB: https://geoai.geog.buffalo.edu

Code: https://github.com/geoai-lab/spatialCV