Universitatea Babeş-Bolyai Facultatea de Matematică și Informatică

Exam on Dynamical Systems June 2014 - I

1. (1p) Find the linear homogeneous differential equation with constant coefficients, of minimal order, which has as solution the function

 $\cosh 3t$.

(Hint: $\cosh x = \frac{e^x + e^{-x}}{2}$ for any $x \in \mathbb{R}$.)

2. (2p) We consider the scalar differential equation

$$\dot{x} = \lambda x (2 - x),$$

whose unknown is the function x of variable t, and where $\lambda \in \mathbb{R}^*$ is a fixed parameter. Find its equilibria, its orbits, depict its phase portrait, and study the stability of its equilibria. Discuss with respect to the parameter λ .

3. (2.5p) Let $f:(0,\infty)\to \mathbb{R}$,

$$f(x) = \frac{1}{2} \left(x + \frac{3}{x} \right).$$

Fix an arbitrary $x_0 \in (0, \infty)$ and consider the sequence $(x_k)_{k \geq 0}$ satisfying the recurrence

$$x_{k+1} = f(x_k)$$
, for any $k \ge 0$.

- a) Prove that $f(x) \in [\sqrt{3}, \infty)$ for any $x \in (0, \infty)$ and that $x_k \ge \sqrt{3}$ for any $k \ge 1$.
 - b) Prove that $x_{k+1} x_k \le 0$ for any $k \ge 1$.
 - b) Find the fixed points of f and study their stability.
 - c) Prove that the sequence $(x_k)_{k\geq 0}$ is convergent and $\lim_{k\to\infty} x_k = \sqrt{3}$.