Лекция 2 Итерация

Лектор: Д.Н. Лавров (c) 2017

Краткое содержание

- Математическая модель итерации
- Построение цикла с помощью инварианта

Определение итерации

Постановка задачи

- Пусть M некоторое множетство
- $P: M \rightarrow \{False, True\}$ предикат на M
- $M \setminus P = \{x \in M: P(x) = False\}$
- Требуется найти такой x, что P(x)=True

Решение методом итерации (повторения)

- Строится некоторое отображение $T: M \setminus P \rightarrow M$
- T последовательно применяется, начиная с какого-то $x_0 \in M$:

$$x_1 = T(x_0),$$

 $x_2 = T(x_1),$
...,
 $x_n = T(x_{n-1})$

• до тех пор, пока мы не получим некоторое x_i , для которого $P(x_i) = True$

Математическая модель итерации

Определение итерации

• Итерация — способ организации обработки данных, при котором определённые действия повторяются многократно, не приводя при этом к рекурсивным вызовам программ.

Обсуждение

- Модель и определение объясняют, что происходит, но не помогают построить алгоритм
- Если найдено или задано *T*, то легко строиться алгоритм

• Найти *T* и есть главная творческая задача программиста

Понятие инварианта

- Основная идея заключается в том, что необходимо сформулировать логическое утверждение (предикат), истинное для всех изменяемых объектов (переменных) на каждом шаге цикла, связывающее отношения между объектами.
- Такой предикат, так как он не меняется в процессе выполнения цикла, называется *инвариантом*.
- Описание с помощью инварианта статическое, поэтому его легко понять и спроектировать.

Проектирования цикла с помощью инварианта

Обозначения:

```
M – некоторое множество;
```

 $P: M → \{Flase, True\} - предикат, задающий искомое свойство объекта;$

 $M \setminus P = \{x \in M : P(x) = True\}$ — множество тех элементов M, для которых P(x) = False;

Т: M \ P → M — некоторое преобразование (из метода итераций).

Пусть существуют предикаты:

I: M → {False, True} — инвариант, условие истинное для всех переменных на каждом шаге цикла (см. свойства ниже);

Q: M → {False, True} – условие окончания итерации.

Введённые предикаты должны обладать следующими свойствами:

- 1) $I(x) \& Q(x) \Rightarrow P(x)$ при окончании цикла выполняется предикат наличия искомого свойства (постусловие);
- 2) $I(x_0) = True$ инвариант выполнен для начального значения (предусловие);
- 3) $I(x) = True \Rightarrow I(T(x)) = True -$ инвариант сохраняется при преобразовании Т.

Тогда в методе итераций в качестве условия окончания **вместо** P(x) **можно взять** Q(x).

К понятию инварианта цикла

Как решать задачи с помощью инварианта

- На практике поступают следующим образом. Вначале придумывают общую стратегию решения задачи: определяют какие объекты и как будут меняться на каждом шаге цикла. Фактически этим мы задам отображение *T(x)*.
- формулируется условие окончания цикла Q(x);
- формулируется инвариант *I(x)* условие которое связывает наши объекты и их изменения с шагом цикла и между собой;
- необходимо, чтобы одновременное выполнение условий окончания цикла Q(x) и инварианта I(X) означало обладание заданным свойством искомого объекта (выполнение условия P(x)).

• Если удалось сформулировать такое утверждение *I(x)*, то цикл описывается следующим кодом:

$$x = x0$$

while not Q(x):

$$x = T(x)$$

- В силу того, что T(x) не меняет инвариант, то в конце I(x) остаётся истинным. Кроме того, после окончания цикла истинно и Q(x), а из P(x)&Q(X) = True следует P(x) = True.
- Таким образом, найден *х* обладающий искомым свойством *P*.

Пример применения теории

- Задача. Напишите программу, перемножающую два целых неотрицательных числа а и b без использования операции умножения.
- Решение 1. Идея: умножение заменить повторным сложением.
- Введём обозначение x = (s, y) вектор переменных, где предполагаем, что в s будет исходный результат, а (b y) хранит число текущее число повторений a.
- Условие окончания цикла также становится очевидным Q(x): b-y=b

или после упрощения Q(x) : y = 0.

Решения 1 Формулировка инварианта

- Теперь необходимо сформулировать высказывание инварианта и проверить выполнение предусловий.
- Предлагается такое высказывание *l(x)*: «На каждом шаге цикла в переменной s лежит текущее произведение *a* на *(b y)*».
- Или на формальном языке I(x) : $s = a \cdot (b y)$.
- В данном контексте =

эквивалентно Python-скому ==

Продолжение решения 1

• Шаг алгоритма будет выглядеть так:

$$X_{k+1} = T(X_k)$$

или

$$(s_k + a, y_k - 1) = T(s_k, y_k)$$

Решение 1. Предусловие

- Перед началом работы цикла положим y = b и s = 0,
- тогда I(x) : $s = a \cdot 0$ верное высказывание.
- Что означает, что предусловия выполнены.

Решение 1. Постусловие

- P(x) : $s = a \cdot b$ верно, если Q(x) : y = 0 и I(x) : s = a(b y) = True верны одновременно.
- Это означает, что постусловие выполнено
- Нам осталось проверить только сохранения инварианта $I(x) = True \rightarrow I(T(x)) = True$

Решение 1 Сохранение инварианта

- Пусть на каком-то шаге I(x) = True, это означает, что (s = a(b y)) = True.
- Тогда I(T(x)) = I((s+a,y−1)). И далее I((s+a,y-1)) : s+a = a(b-(y-1)),а после упрощения I((s+a,y-1)) : s = a(b-y+1)-aИЛИ I((s+a,y-1)) : s = a(b-y) — что является верным высказыванием в силу начального предположения I(x): s = a(b - y) = True

Решение 1 Сохранение инварианта

```
# Первое решение "в лоб"
a=int(input("a="))
b=int(input("b="))
y=b
s=0
while not y==0: # или проще y>0
    S+=3
    y = 1
print(s)
```

Решение 1 Обсуждение

- Все эти рассуждения очень похожи на доказательство методом математической индукции.
- Мы не только построили алгоритм, мы сделали больше мы доказали, что этот алгоритм корректный и даёт правильный результат при корректных входных данных
- От выбора Т зависит эффективность алгоритма. Сколько операций сложения требуется для решения задачи предложенным алгоритмом? Оценка в О-нотации очевидна O(b).
- Можно ли выполнить эту операцию ещё быстрее? Ответ утвердительный – ДА.

Решение 2. Идея

- Алгоритм будет повторять идею быстрого алгоритма возведения в степень путём повторного возведения а квадрат. Но операции умножения будут заменены на сложение и возведение в квадрат будет заменено умножением на 2.
- Трудоемкость O(log₂b)
- Идея алгоритма следующая если число повторений у чётное, то удваиваем слагаемое х, а число повторений уменьшаем вдвое.
- Иначе, к результату добавляем слагаемое, а число повторов уменьшаем на 1.

Решение 2. Преобразование Т()

- Исходя из вышесказанного, T(x,y,s) определяется следующим правилом:
- $T(x_k, y_k, s_k) =$ $= (x_k, y_k-1, s_k+x_k), \text{ если } y_k \text{ нечётное};$ $= (x_k+x_k, y_k/2, s_k), \text{ если } y_k \text{ чётное}.$

Решение 2. Проверка условий

- Условие окончания итерации (цикла) Q(x,y,s): y = 0.
- Инвариант $I(x,y,s) : s + x \quad y = a \cdot b$.
- Предусловие: $I(a,b,0): 0+a\cdot b=a\cdot b$ верное высказывание.
- Постусловие. Из истинности по окончанию итераций *Q(x,y,s)* следует, что
 - y = 0, I(x,0,s): $s + x \cdot 0 = a \cdot b должно быть верным высказыванием и переменная s будет содержать искомый результат, если только <math>T(x,y,s)$ сохраняет инвариант:
- Пусть $I(x_k, y_k, s_k) = True$, что эквивалентно истинности равенства $s_k + x_k \cdot y_k = a \cdot b$.
- Если y_k нечётное, то $I(T(x_k, y_k, s_k)) = I(x_k, y_k 1, s_k + x_k)$. Но тогда $(s_k + x_k) + x_k \cdot (y_k 1) = s_k + x_k \cdot y_k = a \cdot b$.
- Если y_k чётное, то $I(T(x_k, y_k, s_k)) = I(x_k + x_k, y_k/2, s_k)$, то есть $s_k + 2x_k \cdot y_k/2 = s_k + x_k \cdot y_k = a \cdot b$.
- Утверждение о корректности алгоритма доказано.

Решение 2. Вариант 1

```
\# В точности по сформулированным Q(x), T(x) и I(x).
a=int(input("a="))
b=int(input("b="))
x=a; y=b; s=0
while not y==0:
     if y\%2 = = 1:
              S+=X
             y = 1
     else:
             X + = X
             y//=2
print(s)
```

Решение 2. Вариант 2

```
# С заменой сложений на битовые операции
# и упрощением логических выражений
a=int(input("a="))
b=int(input("b="))
x=a; y=b; s=0
while y:
   if y&1: # тоже самое, что и y%2==1
         S += X
         y = 1
    else:
         x < < = 1 # moжe camoe, что и x + = x или x = x * 2
         y>>=1 # moжe camoe, 4mo u y//=2 u/u y=y//2
print(s)
```

• Можно заметить, что блок битовых сдвигов можно выполнять на каждом шаге потому, что если у нечётное, то на следующем шаге цикла у обязано уже быть чётным, а, следовательно, блок битовых сдвигов можно выполнить сразу на этой же итерации.

Решение 2. Вариант 3

```
# Оптимальное итоговое решение
a=int(input("a="))
b=int(input("b="))
x=a; y=b; s=0
while y:
    if y&1:
        S += X
        y = 1
    X < < = 1
    y>>=1
print(s)
```

Вопросы