Целозначные многочлены

Определение. Многочлен P(x) с вещественным коэффициентами называется *целозначным*, если он принимает целые значения при всех целых x.

Рассмотрим многочлены вида

$$\binom{x}{k} = C_x^k = \frac{x(x-1)\cdots(x-k+1)}{k!}.$$

- **1.** Докажите, что многочлен C_x^k целозначный.
- **2.** Дан многочлен P(x) с вещественными коэффициентами степени n. Докажите, что P(x) является линейной комбинацией многочленов $C_x^0, C_x^1, \dots, C_x^n$ с вещественными коэффициентами, при этом коэффициенты определены однозначно.

Определение. Пусть P(x) — многочлен с вещественными коэффициентами. *Разностным многочленом* многочлена P(x) называется многочлен

$$\Delta P(x) = P(x+1) - P(x).$$

- **3.** Найдите многочлен ΔC_x^k .
- **4.** Пусть m целое число. Многочлен P(x) с вещественными коэффициентами степени n принимает целые значения в точках m, m+1, ..., m+n. Докажите, что этот многочлен является линейной комбинацией многочленов $C_x^0, C_x^1, \ldots, C_x^n$ с **целыми** коэффициентами. В частности, этот многочлен принимает целые значения во всех целых точках.
- **5.** Многочлен P(x) с вещественными коэффициентами степени n таков, что числа $P(0^2)$, $P(1^2)$, $P(2^2)$, ..., $P(n^2)$ целые. Докажите, что число $P(k^2)$ является целым для любого целого k.
- **6.** Даны простое число p и целозначный многочлен P(x). Для целого числа n обозначим r_n остаток от деления P(n) на p. Докажите, что последовательность $\{r_n\}$ периодична.
- 7. Целозначные многочлены f(x) и g(x) таковы, что для всех целых n число f(n) делится на g(n). Докажите, что многочлен f(x) делится на g(x).
- 8. Назовём многочлен P(x) бицелозначным, если числа P(k) и P'(k) целые при любом целом k. Пусть P(x) бицелозначный многочлен степени d, и пусть N_d произведение всех составных чисел, не превосходящих d (произведение пустого множества сомножителей считаем равным 1). Докажите, что старший коэффициент многочлена $N_d \cdot P(x)$ целый.
- **9.** Даны натуральное число γ и вещественные числа c, a_0, a_1, \ldots, a_n . Оказалось, что функция

$$f(x) = c\gamma^{x} + a_{0} + a_{1}x + \dots + a_{n}x^{n}$$

принимает целые значения при $x=0,1,\ldots,n+1$. Докажите, что функция f принимает целые значения во всех целых точках.