week1

Secure sockets layer / TLS

- Handshake protocol: Establish shared secret key using public-key cryptography
- Record Layer: Transmit data using shared secret key
 - Ensure confidentiality and integrity

Protect files on disk

- no eavesdropping
- no tampering
- analogous to secure communication
 - alice today sends message to alice tomorrow

sym. encryption

- two parties share secret key k
- use cipher E, D
 - E encryption algorithm
 - D decryption algorithm
- Encryption algorithm is publicly known
 - never use a proprietary cipher

Use Cases

- single use key
 - key is only used to encrypt one message
- multi use key
 - key used to encrypt multiple message
 - encrypted files: same key used to encrypt many files
 - need more machinery than for one-time key

What is Cryptography

- Crypto core
 - secret key establishment
 - secure communication
- But crypto can do much more
 - Digital signatures
 - Anonymous communication
 - Anonymous digital cash
 - can I spend "digital coin" without anyone knowing who I am?
 - How to prevent double spending?
- Protocols
 - Elections
 - votes sent to center encrypted outputs winner
 - Private auctions
 - auction center obtains encrypted bids computes the highest bidder and the 2nd highest bid
 - Secure multi-party computation
 - compute f(inputs)
 - trusted authority
 - collects individual inputs
 - publishes the value of the function
 - Theorem. anything the can done with trusted auth. can also be done without
 - instead the parties talk to each other using some protocol
 - nothing other than the value of the function is revealed

- Crypto magic
 - privately outsourcing computation
 - send encrypted message to google
 - google responds with the encrypted message indicating the results of the search
 - google doesn't know what the search was for
 - zero knowledge
 - alice N = p * q (product of two large primes)
 - bob just has the number N
- A rigorous science
 - precisely specify threat model
 - propose a construction
 - prove that breaking construction under threat mode will solve an underlying hard problem

Discrete Probability

- U: universe finite set (e.g. U = {0,1}^n)
- Def: Probability distribution P over U is a function P:U -> [0,1] such that summation P(x) = 1
- Uniform distribution:
 - for all x element U: P(x) = 1 / IUI
- Point distribution
 - x_0 : $P(x_0) = 1$, for all $x = x_0$: P(x) = 0
- Events
 - For a set A subset U:
 - Pr[A] = summation x element A P(x) element [0,1]
 - The set A is called an event
 - Example: $U = \{0,1\}^8$
 - $A = \{ al x in U such that lsb 2(x) = 11 \} subset U$
 - for the uniform distribution on $\{0,1\}^8$: Pr[A] = 1/4
 - IUI = 256
 - 64 strings in 11 256 total 64 / 256
- The union bound
 - For events A_1 and A_2 subset U
 - Pr[A 1 subset A 2] <= Pr[A 1] + Pr[A 2]
 - If A_1 intersect A_2 = empty set \Rightarrow Pr(A_1 union A_2) = Pr[A_1] + Pr[A_2]
 - $Pr[lsb_2(x) = 11 \text{ or } msb_2(x) = 11] = Pr[A_1 \text{ union } A_2] <= 1/4 + 1/4 = 1/2$
- Random Variables
 - Def: a random variable X is a function X: U -> V (set V where the random variable takes its values)
 - Example: $X:\{0,1\}^n \rightarrow \{0,1\}$; X(y) = lsb(y) element of $\{0,1\}$
 - For the inform distribution on U:
 - Pr[X=0] = 1/2, Pr[X=1] = 1/2
- The uniform random variable
 - Let U be some set, e.g. $U = \{0,1\}^n$
 - We write r <- r U to denote a uniform random variable over U for all a element of U:
 - Pr[r = a] = 1/IUI
 - formally, r is the identity function: r(x) = x for all x in U
 - Let r be a uniform random variable on {0,1}^2
 - Define the random variable X = r + 1 + r + 2
 - Then Pr[X=2] = 1/4
- Randomized algorithms
 - Deterministic algorithm: y <- A(m)

- Randomized algorithm
 - -v < -A(m;r) where $r < -r \{0,1\}^n$
 - output is a random variable
 - y < r A(m)
- Example: A(m;k) = E(k,m), y <- r A(m)

Discrete Probability

- Recap
 - U: finite set (e.g. $U = \{0,1\}^n$)
 - Prob. distr. P over U is a function P: U -> [0,1] s.t. summation x element U P(x) = 1
 - A subset U is called an event and Pr[A] = summation x element A P(x) element of [0,1]
 - Pr[U] = 1
 - A random variable is a function X:U -> V
 - X takes values in V and defines a distribution on V
- Independence
 - Def: events A and B are independent if Pr[A and B] = Pr[A] * Pr[B]
 - random variables X,Y taking values in V are independent if for all a and b elements V: Pr[X = a and Y = b] = Pr[X=a] * Pr[Y=b]
 - Example: $U = \{0,1\}^2 = \{00,01,10,11\}$ and r < r U
 - Define r.v. X and Y as: X = Isb(r), Y = msb(r)
 - Pr[X = 0 and Y = 0] = Pr[r = 00] = 1/4 = Pr[X = 0] * Pr[Y = 0]
- Review: XOR
 - XOR of two strings in {0,1}^n is their bit-wise addition mod 2
- An important property of XOR
 - Theorem: Y a rand. var. over {0,1}^n, X an independent. uniform variable on {0,1}^n
 - Then Z:= Y XOR X is uniform var. on {0,1}^n
 - Proof: (for n = 1)
 - Pr[Z=0] = 1/2
- The birthday paradox
 - Let r1, rn element of U be independent identically distributed random variables
 - Theorem: when $n = 1.2 * IUI^1/2$ then Pr[there is an i!= j: r_i = r_j] >= 1/2
 - Example: Let $U = \{0,1\}^{128} |U| = 2^{128}$
 - after sampling about 2^64 random messages from U, some two sampled messages will likely be the same

Information Theoretic Security and The One Time Pad

- Symmetric Ciphers; definition
 - Def: a cipher defined over (k,m,c) (the set of all possible keys, messages and ciphers)
 - is a pair of "efficient" algorithms (E,D) ("efficient" means runs in polynomial time to the size of their inputs)
 - E: K * M -> C
 - D: K * C -> M
 - s.t. for all messages element M, key element K:L
 - D(k, E(k,m)) = m (consistency equation)
 - E is often randomized. D is always deterministic
- The One Time Pad
 - First example of a "secure" cipher
 - $M = C = \{0,1\}^n$
 - $K = \{0,1\} ^n$
 - key = (random bit string as long as msg)
 - C := E(k,m) = k xor m

- D(k,c) = k xor c
- Indeed: D(k,E(k,m)) = D(k,k xor m) = k xor (k xor m) = (k xor k) xor m = 0 xor m = m
- fast encryption and decryption but hard to use because keys are long
- Information Theoretic Security
 - Basic idea: CT should reveal no "info" about PT
 - Def: A cipher (E,D) over (K,M,C) has perfect secrecy if for every m0, m1 element of M len(m0) = len(m1) and forall c element of C Pr[E(K,m0) = c] = Pr[E(K,m1) = c] where k is uniform in K. (k <- r K (k is a random variable that uniformly sampled in the key space K))
 - Given CT can't tell if m is mo or m1
 - true for all m0, or m1
 - no CT only attack on a cipher that has perfect secrecy
- Lemma: OTP has perfect secrecy
 - for every m, c $Pr[E(k,m) = c] = (\#keys \ k \ element \ k \ s.t. \ E(c,m) = C) / IKI$
 - So for all m,c: #{k element K: E(k,m) = c} = constant
 - Proof:
 - For OTP if E(k,m) = c
 - $k xor m = c \Rightarrow k = m xor c$
 - $\#\{k \text{ element } K: E(k,m) = c \} = 1 \text{ for all } m,c$
 - OTP has perf. sec.
- The bad news..
 - Theorem: perfect secrecy => IKI >= IMI
 - perf-sec => key-ken >= len-msg

Stream Ciphers and Pseudo Random Generators

- Review
 - Cipher over (k,m,c): a pair of "efficient" algorithms (E,D) s.t. for all m element M, k element K: D(k,E(k,m)) = m
 - weak ciphers
 - a good ciphers: OTP $M = C = K = \{0,1\}^n$
 - E(k,m) = k xor m, D(k,c) = k xor c
 - Lemma: OTP has perfect secrecy (i.e. no CT only attacks)
 - Bad news: perfect-secrecy -> key-len >= msg-len
- Stream Ciphers: making OTP practical
 - idea: replace "random" key by "pseudorandom" key
 - PRG: is a function G: $\{0,1\}$ ^s -> $\{0,1\}$ ^n, n >> s (n is much larger than s)
 - ("eff" computable by deterministic algorithm)
 - c = E(k,m) := m xor G(k)
 - D(k,c) := c xor G(k)
 - stream ciphers cannot have perfect secrecy
 - need a different definition of security
 - security will depend on specific PRG
- PRG must be unpredictable
 - suppose PRG is predictable
 - then there is some i: $G(k) | 1, ... i \rightarrow algorithm G(k) | i+1, ... n$
 - if can predict first G(k)li,...,i -> G(k)li+1

- PRG must be unpredictable
 - we say that G: k -> {0,1}^n is predictable if:
 - there is "eff" algorithm A and there is 1 <= i <= n 1 s.t. Pr[A(G(k))|1,...,i = G(k)|i+1] >= 1/2 + E
 - for some "non- negligible E (E \geq = 1/2^30)
 - the ability to predict the next i bit of the G(k) for some non negligible value
 - Def: PRG is unpredictable if it is not predictable
 - there is for all i: no "efficient" advisory or algorithm that can predict bit (i+1) for "non=negligible" E
- Weak PRGS (do not use for crypto)
 - linear congruential generator parameters a,b,p a and integers and p a prime
 - r[0] = seed of generator
 - compute r[i] <- a*r[i-1] + b mod p
 - output few bits of r[i]
 - i++
 - easy to predicate
 - glibc random():
 - $-r[i] < (r[i-3] + r[i-31]) \% 2^32$
 - output r[i] >> 1
- never use random() for crypto
- Negligible and non-negligible
 - In practice: E is a scalar and
 - - E non-neg: E >= 1/2 ^ 30 (likely to happen over 1GB of data)
 - - E negligible: E <= 1/2 ^ 80 (won't happen over life of key)
 - In theory: E is a function E Z $^{\wedge}$ >= 0 -> R $^{\wedge}$ >= 0 and
 - E non-neg: there is a d: E(lambda) >= 1/(lambda^d) inf.often (E >= 1 / poly, for many lambda)
 - E negligible: for all d, lambda >= lambda_d: E(lambda) <= 1/lambda^d (E <= 1 / poly, for large lambda)
- Few Examples
 - E(lambda) = 1/2^lambda :negligible
 - E(lambda) = 1/lambda^1000: non-negligible
 - negligible to mean less than an exponential
 - non negligible to mean more than 1 / polynomial

Attacks on Stream Ciphers and The One Time Pad

- Review
 - OTP: E(k,m) = m xor k, D(k,c) = c xor k
 - Making OTP practical using PRG: G: K -> {0,1}^n
 - Stream cipher: E(k,m) = m xor G(k), D(k,c) = c xor G(k)
 - Security: PRG must be unpredictable
- Attack 1: two time pad is insecure
 - never use stream cipher key more than once
 - c1 <- m1 xor PRG(k)
 - c2 <- m2 xor PRG(k)
 - Eavesdropper does
 - c1 xor c2 -> m1 xor m2
 - Enough redundancy in English and ASCII encoding that:
 - m1 xor m2 -> m1, m2

- Real world examples
 - Project Venona
 - MS-PPTP (windows NT): (point to point transfer protocol)
 - from client to server concatenating messages then encrypting using one long key
 - all messages from the server are then encrypted using the same key
 - Need different keys for client -> server and server -> client
 - K = (K_sc, K_cs)
 - both sides know these keys
 - 802.11b WEP
 - avoid related keys
 - client and access point both have the key k
 - client m appends CRC(m) xor with PRG(IV II k) sent using stream cipher
 - length of IV: 24 bits
 - repeated IV after 2^24 approximately equal 16m frames
 - changes after every packet is sent
 - on some 802.11 cards: iV resets to 0 after power cycle
 - For PRG in WEP
 - after about 10^6 frames can recover k
- A better construction
 - k -> (PRG) to frames
 - each frame has a pseudorandom key
- Yet another example: disk encryption
 - file encrypt to blocks on disk
- Two time pad: summary
 - never use stream cipher key more than once
 - network traffic: negotiate new key for every session (e.g. TLS)
 - disk encryption: typically do not use a stream cipher
 - as changes are made to the file will be leaking information about the contents of the file
- Attack 2: no integrity (OTP is malleable)
 - m encrypt(xor k) -> m xor k
 - (m xor k) xor p decrypt(xor k) m xor p
 - modifications to cipher text are undetected and have predictable impact on plaintext

Real-World Stream Ciphers

- Old example (software): RC4
 - expands from 128 bits to 2048 bits
 - simple generate 1 byte at a time
 - Used in HTTPS and WEP
 - Weaknesses
 - Bias in initial output: Pr[2nd byte = 0] = 2/256
 - Prob. of (0,0) is 1/256^2 + 1/256 ^ 3
 - Related key attacks
- Old example (hardware) CSS (badly broken)
 - linear feedback shift register (LFSR):
 - consists of cells where each cell contains one bit
 - tabs feed into xor
 - shifts the last bit falls off
 - seed = init state of LFSR
 - DVD encryption (CSS): 2 LFSRs
 - GSM encryption (A5/1,2): 3 LFSRs

- Bluetooth (E0): 4 LFSRs
- CSS: seed = 5 bytes = 40 bits
- Modern Stream ciphers: eStream
 - PRG: {0,1}^s * R -> {0,1}^n
 - Nonce: a non-repeating value for a given key
 - R = nonce
 - Nonce a value that is never going to repeat as long as the key is the same
 - E(k,m;r) = m xor PRG(k;r)
 - The pair (k,r) is never used more than once
 - reuse the key because (k,r) are unique
- eStream: Salsa 20 (SW+HW)
 - Salsa20: $\{0,1\}$ ^ (128 or 256) * $\{0,1\}$ ^ $64 \rightarrow \{0,1\}$ ^n (max n = 2 ^ 73 bits)
 - first part is the seed 128 or 256 bits
 - second part nonce 64 bits
 - Salsa20(k;r) := H(k,(r,0)) | I H(k,(r,1))
 - 64 bytes long

PRG Security Definitions

- Let G:k > {0,1}^n be a PRG
- Goal: define what it means that
 - [k <-_r K, output G(K)]
 - is "indistinguishable" from a [r <-_r{0,1}^n, output r]
- Statistical Tests
 - statistical test on {0,1}^n
 - an algorithm A s.t. A(x) outputs "0" or "1"
 - "0" outputs not random
 - "1" outputs random
 - Examples
 - A(x) = 1 iff I#0(x) #1(x)I <= 10 * sqrt(n)
 - A(x) = 1 iff $I#00(x) n/4I \le 10 * sqrt(n)$
 - A(x) = 1 iff max-run-of-o(x) <= 10 * log_2(n)
- Advantage
 - Let G:K -> {0,1}^n be a PRG and A a stat, test on {0,1}^n
 - Define: advantage[A,G] := I Pr[A(G(K)) = 1] (k is chosen uniformly randomly from the seed space) Pr[A(r) = 1] (r is a truly random string $\{0,1\}^n$) I element of [0,1]
 - if advantage is close to 1 -> A can distinguish the output of the generator from random
 - if advantage is close to 0 -> A cannot distinguish the generator from random
 - Example
 - A(x) = 0 -> Advantage[A,G] = 0
 - Example
 - Suppose G:K -> $\{0,1\}$ ^n satisfies msb(G(k)) = 1 for 2/3 of keys in K
 - Define statistical test A(x) as:
 - if[msb(x) = 1] output "1" else output "0"
 - Then
 - Advantage[A,G] = IPr[A(G(k))=1] Pr[A(r) = 1]l = 1/6
 - 1/6 is non-negligible
 - A breaks the generator g with advantage 1/6
- Secure PRGs: crypto definition
 - Def: We say that G:k -> {0,1}^n is a secure PRG if for all "efficient " statistical tests A: Advantage[A,G] is negligible (very close to 0)

- are there provably secure PRGs? unknown!!
- but we have heuristic candidates
- Easy fact: a secure PRG is unpredictable
 - We show: PRG predictable -> PRG is insecure
 - Suppose A is an efficient algorithm s.t. Pr[A(G(K)I1...n) = G(k)Ii+1] = 1/2 + epsilon
- Easy fact: a secure PRG is unpredictable
 - Define statistical test B as:
 - $B(x) = [if A(x|1,...i) = x_i + 1 \text{ output } 1 \text{ else output } 0$
 - r truly random string
 - Pr[B(r) = 1] = 1/2
 - k pseudorandom sequence
 - Pr[B(G(k)) = 1] > 1/2 + epsilon
 - Advantage[B,G] > epsilon
- Unpredictable PRG is secure
 - Theorem: if for all i element {0,...n-1} PRG G is unpredictable at pos. i then G is a secure PRG
 - If next-bit predictors cannot distinguish G from random then statistical test can
- More Generally
 - Let P 1 and P 2 be two distributions over {0,1}^n
 - Def: We say that P_1 and P_2 are computationally indistinguishable
 - if for all "efficient " statistical tests A IPr[A(X) = 1] (from x <- P_1) Pr[A(x) = 1] (from x <- P_2) I < negligible
 - Example:
 - a PRG is secure if {k <-_r K: G(k) } computationally indistinguishable uniform({0,1}^n)

Semantic security

- What is a secure cipher?
 - attacker's abilities: obtains one cipher text
 - possible security requirements:
 - attempt #1 attack cannot recover secret key
 - E(k,m) = m
 - attempt #2 attacker cannot recover all of the plaintext
 - $E(k,m_0|lm_1) = m_0|lE(k,m_1)$
 - Recall shannon's idea:
 - CT should reveal no "info" about PT
- Recall Shannon's perfect secrecy
 - Let (E,D) be a cipher over (K,M,C)
 - (E,D) has perfect secrecy if for all m 0, m 1 element of M (IM 0I = IM 1I)
 - $\{E(k,m_0)\} = \{E(k,m_1)\}\$ where k < -K
 - (E,D) has perfect secrecy if for all m_0, m_1 element of M (IM_0I = IM_1I)
 - {E(k,m 0)} computationally indistinguishable {E(k,m 1)} where k <- K
 - but also need adversary to exhibit m_0 and m_1 element of M explicitly

- Semantic Security (one time key)
 - For b =0,1 define experiments EXP(0) and EXP(1) as:
 - b element of {0,1} two challengers
 - picks random key
 - adversary A outputs two messages element of M
 - adversary is trying to break the key
 - The challenger outputs the encryption of m 0 or m 1
 - encryption <- E(k,m_b)</pre>
 - for $b = 0,1 : W_b := [event that EXP(b) = 1] b' element of {0,1}$
 - Advantage[A,E] = IPr[w_0] Pr[w_1]I element of [0,1]
 - the output of the adversary
- Semantic Security (one time key)
 - Def: E is semantically secure if for all "efficient" A
 - Advantage[A,E] is negligible
 - no efficient advisory can distinguish the encryption of m 0 from m 1
 - for all explicit m_0 and m_1 element of M: E(k,m_0) computationally indistinguishable E(k,m_1)
- Examples
 - Suppose efficient A can always deduce LSB of PT from CT
 - E = (E,D) is not semantically secure
 - challenger choses random key
 - one message ends in 0 and one ends 1
 - forward cipher text advisory A
 - Advisory A outputs the LSB(m_b) = b
 - Advantage[B,E] = I Pr(EXP(0) = 1] = Pr[EXP(1) = 1] I = 1
- OTP is semantically secure
 - challenger adversary
 - advisory sends the messages to the challenger m 0 and m 1
 - challenger sends the encryption of the messages to the adversary
 - OTP is the xor of the key and the message
 - For all A: Advantage[A,E] = $| Pr[A(k \times r m 0) = 1] Pr[A(k \times r m 1) = 1] | = 0$
 - the distribution of k with anything we get uniform distribution
 - for both cases algorithm A is given the same distribution of inputs

Stream ciphers are semantically secure

- Stream ciphers are semantically secure
 - Theorem: G:K -> {0,1}^n is a secure PRG -> stream cipher E derived from G is semantically secure
 - for all semantically secure adversary A, there is an a PRG adversary B s.t.
 - Advantage[A,E] <= 2 * Advantage[B,G]
- Proof: Let A be a semantic security adversary
 - challenger outputs the encryption of message
 - choses a random stream r
 - m xor G(k)
 - adversary cannot tell that we switched from pseudorandom to truly random encryption
 - encrypt using r instead G(k)
 - m xor r <= OTP
 - adversary outputs message to the challenger
 - For b=0,1: W_b := [event that b' = 1].
 - Advantage_ss[A,E] = IPr[W_0] Pr[W_1] I

```
Proof: Let A be a semantic secure adversary
Claim 1: IPr[R_0] - Pr[R1] I = Advantage_ss(A,OTP) = 0
Claim 2: there is a B: IPr[W_b] - Pr[R_B]I = Advantage_prg[B,G] for b = 0,1
Advantage_ss[A,E] = IPr[W_0] - Pr[W_1]I <= 2 * Advantage_prg[B,G]</li>
Proof of claim 2: There is a B: IPr[W_0] - Pr[R_0]\ = Advantage_prg[B,G]
algorithm B:
adversary A outputs two messages
```

- sdfsdf