AI4R: 2nd Half Notes

By Brandon Kalashian

For a table of content, click View -> Show Document Outline

Lesson 12 - Search

A*

- Uses heuristic function
- Deterministic path
- Admissible if $h(x) \le goal$ (numbers too large compared to surrounding ones)

Dynamic Programming

- Best path from anywhere
- Stochastic (adaptive to world) policy

- Stochastic Motion example
 - Provide clearance
 - Movement succeeds based on probability

50% chance of succeeding, 25% chance of hitting left wall

Lesson 15 - PID Control

Smoothing Algorithm

Original points:

SMOOTHING ALCORITHM

$$\bigcirc$$
 $y_i = x_i$

3 OPTIHIZE

$$(x_i - y_i)^2 \rightarrow min$$

 $(y_i - y_{in})^2 \rightarrow min$

Smoothing by gradient descent

55007	Gradient Descent
[[0,0],	$(x_i - y_i)^2 \rightarrow Min$
[0,2]	(y-Yin)2 -> Min
[l,2], [2,2],	$y_i = y_i + \alpha(x_i - y_i)$
[3,2],	Y = Y + B (Y + Y - 2 Y)
[4,2]	α = 0.5 β = 0.1

P-Control

- "Proportional" Controller (P-Controller)
- Cross track error = willingness to turn towards target trajectory (larger = more willing)

Appling [alpha = -J * CTE] results in marginal stable:

PD Control

- A way to remove the oscillations of P-Control
- [alpha = -J * CTE J(d/dt)CTE

Systematic Bias

(IE wheels manufactured not perfectly straight)

solution = adjust to bias

TWIDDLE (Coordinate Ascent)

TWIDDLE

$$P = [0,0,0]$$
 if err = bestern

 $dp = [1,1,1]$ bester = err

 $dp = [1,1,1]$

bester = tun(p)

for i in range (3)

 $p[i] + = dp[i]$
 $p[i] + = dp[i]$

TUIDOUS

Lesson 19 - SLAM

Putting it all together:

(universal means solution can be applied to arbitrary states)

Quiz	Cowhiwous	Ophinel	Universel	local
Breadth First	0	*	٥	0
A*	٥	%	0	0
Dynamic Programming	0	K	×	•
Smoothing.		v	0	×

Omega and Xi

$$M = \Omega^{-1} \cdot \mathcal{E}$$

$$M = \Omega^{-1} \cdot \mathcal{E}$$

LINGAR CRAPHSLAM

INITIAL POSITION } add D. &

MOTION

Strength &

