Использование параллельной системы глобальной оптимизации Globalizer для решения задач оптимального управления

И.Г. Лебедев В. В. Соврасов ННГУ им. Н.И. Лобачевского

Задача поиска оптимального управления

Необходимо найти оптимальное управление в виде обратной связи по состоянию для системы:

$$\dot{x}=(A+B_u\Theta)x+B_vv, x(0)=0$$

Выходы системы описываются выражениями:

$$z_k = (C_k + B_u \Theta), k = \overline{1, N}$$

Критерии оптимальности:

$$J_k(\Theta) = \sup_{v \in L_2} \frac{\max_{1 \leqslant i \leqslant n_k} \sup_{t \geqslant 0} |z_k^{(i)}(\Theta, t)|}{||v||_2} \to \min_{\Theta}$$

Ограничение на устойчивость системы:

$$g_0(\Theta) = \min_j \operatorname{Re}(\lambda_j(A + B_u\Theta)) < 0$$

Многокритериальная задача сводится к скалярной методом уступок или с помощью свёртки Гермейера. В [2] доказано, что использование последней позволяет найти всё множество Парето.

Под данную постановку подходят задачи виброизоляции. Объект защиты представлен многомассовой механической системой, состоящей из n материальных точек, связанных одинаковыми линейными упругодиссипативными элементами между собой и основанием.

На данном этапе рассматривается задача виброизоляции системы из 10 точек. Поскольку на практике наблюдать состояние системы целиком затратно, размерность пространства параметров была выбрана равной 3 (не все элементы вектора-состояния участвуют в формировании обратной связи).

Задача глобальной оптимизации

Постановка задачи с ограничениями:

$$\varphi(y^*)=\min\{\varphi(y):y\in D\}$$
, $D=\{x\in \mathbf{R}^n:g_j(x)\leqslant 0,j=\overline{1,m}\}$

Предполагается, что все функции задачи удовлетворяют условию Липшица:

$$|f(y_1) - f(y_2)| \le L||y_1 - y_2||, y_1, y_2 \in D, 0 < L < \infty$$

Целевая функция и ограничения могут быть невыпуклы, многоэкстремальны, недифференцируемы.

Метод глобальной оптимизмции

Для оптимизации используется одномерный метод Стронгина. Редукция размерности осуществляется с помощью кривой Пеано.

Общая схема одной итерации одномерного метода:

- 1. Упорядочить точки предшествующих испытаний в порядке возрастания их координат: $a = x_0 < ... < x_i < ... < x_k = b$.
- 2. Вычислить для каждого интервала $(x_{i-1}; x_i)$, $1 \le i \le k$ характеристику R(i) .
- 3. Определить интервал $(x_{t-1}; x_t)$, которому соответствует максимальная характеристика $R(t) = \max\{R(i), 1 \le i \le k\}$.
- 4. Провести следующее испытание в точке $x^{k+1} = d(t) \in (x_{t-1}; x_t)$, где d(t) — правило размещения точки следующего испытания в интервале с номером t.
- 5. Проверить выполнение критерия остановки $x_t x_{t-1} < \varepsilon$.

Подробное описание метода и индексной схемы учёта ограничений можно найти в [1].

Параллельные версии метода оптимизации

Существует несколько способов распареллеливания алгоритма глобального поиска (АГП):

- Распараллеливание по характеристикам в рамках системы с общей памятью. На шаге 2 вместо одного интервала выбираются р интервалов с наилучшими характеристиками и в них параллельно проводятся испытания.
- Распараллеливание по развёрткам в рамках системы с раздельной памятью. На каждом узле системы работает копия метода, использующая уникальную развёртку. Копии метода обмениваются многомерными точками, однако одномерные прообразы этих точек различны для каждого метода. При использовании L развёрток каждый метод дополнительно получает L-1 точку в свою поисковую информацию на каждой итерации, что ускоряет его сходимость.
- Сочетание указанных выше подходов.
- В [3] перечисленные схемы описаны более подробно.

Результаты

В таблице приведены результаты применения распараллеливания по характеристикам, а также результаты, полученные при использовании комбинированного подхода с двумя развёртками. Поскольку размерность задачи оптимизации невелика, добавление дополнительных развёрток не привело к ускорению.

Достигнутым практическим результатом является построение парето границы на плоскости критериев (рис. 1).

Рис. 1: Парето-граница на плоскости критериев

Дальнейшая работа

В процессе решения задачи выяснилось, что критерии обладают большой константой Липшица вблизи границы устойчивости системы, что затрудняет оптимизацию и приводит к нестабильности результатов параллельных методов. Для решения этой проблемы требуется изменение решающих првил одномерного метода.

Литература

- 1. Strongin R.G., Sergeyev Ya.D. Global optimization with non-convex constraints. Sequential and parallel algorithms. — Dordrecht: Kluwer Academic Publishers, 2000.
- 2. Д.В. Баландин М.М. Коган. Оптимальное по Парето обобщенное H_2 -управление и задачи виброзащиты. — // Автоматика и телемеханика. Принято к печати. — 2017.
- Стронгин Р.Г. Гергель В.П. Гришагин В.А. Баркалов К.А. Параллельные вычисления в задачах глобальной оптимизации. Москва: Издательство Московского университета, 2013.