Characteristic polynomial and Diagonalizable

Seanie Lee, Jonghwan Jang 08 April 2019

Definition 1. x is eigenvector such that $A = \lambda$ and $\neq 0$. λ is called eigenvalue

Then how to find eigenvector and eigenvalue? get null space of $(\lambda I_n - A)$

$$A\mathbf{x} = \lambda \mathbf{x}$$
$$(\lambda I_n - A)\mathbf{x} = 0$$
$$\exists \mathbf{x} \text{ such that } \mathbf{x} \neq \mathbf{0} \quad A\mathbf{x} = \lambda \mathbf{x} \iff \det(\lambda I_n - A) = 0$$

Theorem 2. $A, B \in \mathfrak{M}_{n \times n}(\mathbb{R})$. $A \sim B \Longrightarrow \det A \cdot \det B$

Proof. Suppose that $B = U^{-1}AU$

$$\det B = \det(U^{-1}AU)$$

$$= \det U^{-1} \cdot \det A \cdot \det U$$

$$= \det A$$

$$\therefore A \sim B \Longrightarrow \det A = \det B$$

Theorem 3. $L \in \mathfrak{L}(V, V)$ and \mathfrak{B} is a basis for V. Define $\det L := \det([L]_{\mathfrak{B}}^{\mathfrak{B}})$. Then $\det L$ is well-defined.

Proof. Suppose another basis \mathfrak{C} for V be given. Then $[L]_{\mathfrak{B}}^{\mathfrak{B}} \sim [L]_{\mathfrak{C}}^{\mathfrak{C}}$. By the Theorem 2. $\det([L]_{\mathfrak{D}}^{\mathfrak{G}}) = \det([L]_{\mathfrak{C}}^{\mathfrak{C}})$. $\therefore \det L$ is well-defined

Definition 4. $\phi_A(t) := \det(tI_n - A) \in P_n(\mathbb{R})$ is called characteristic polynomial of $A \in \mathfrak{M}_{n \times n}(\mathbb{R})$.

Rmk. Eigenvalues of A are solutions of $\phi_A(t)$

Definition 5. $(\lambda I_n - A)\mathbf{x} = 0$ where $A \in \mathfrak{M}_{n \times n}(\mathbb{R})$ Null space of $(\lambda I_n - A)$ is called eigen space of A with respect to λ ; $E_{\lambda} := N(\lambda I_n - A)$

Observation 6. Characteristic polynomial is invariant to similarity relation. Therefore $\phi_A(t)$ is well-defined.

Proof. Suppose that $B = U^{-1}AU$.

$$\phi_B(t) = \det(tI_n - U^{-1}AU)$$

$$= \det(tU^{-1}U - U^{-1}AU)$$

$$= \det(U^{-1}(tU - AU))$$

$$= \det(U^{-1}(tI_n - A)U)$$

$$= \det U^{-1} \cdot \det U \cdot \det(tI_n - A)$$

$$= \det(tI_n - A)$$

$$\therefore \phi_A(t)$$
 is well defined

statement. $A \in \mathfrak{M}_{n \times n}(\mathbb{R})$ and $\lambda \in \mathbb{R}$. λ is an eigenvalue of $A \iff \phi_A(t) = 0$

Proof. [
$$\lambda$$
 is eigenvalue of A] \iff [$\exists \mathbf{x}$ such that $(\lambda I_n - A)\mathbf{x} = 0$ and $\neq 0$] \iff [$\ker(\lambda I_n - A) \neq \mathbf{O}$] \iff [$\det(\lambda I_n - A) = 0$] \Box

Definition 7. A is diagonalizable if $D \sim A$ for some diagonal matrix D

Theorem 8. $A \in \mathfrak{M}_{n \times n}(\mathbb{R})$ is diagonalizable if and only if $[\mathbb{R}^n$ has n-linearly independent eigen vectors. ($\iff \mathbb{R}^n$ has a basis consisting of eigen vectors of A)]

Proof.

A is diagonalizable
$$\iff D = Q^{-1}AQ$$
 where $Q \coloneqq [\mathbf{x}_1, \dots, \mathbf{x}_n]$ and $D \coloneqq \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ $\iff QD = AQ$ $\iff \lambda_x \mathbf{x}_j = A\mathbf{x}_j \quad \text{for } j = 1, \dots, n \quad \text{where } \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \text{ is linearly independent}$ ($\because Q$ is invertible)

 $\therefore D \sim A \iff \mathbb{R}^n$ has n-linearly independent eigenvectors.