MoskaliovYV 01112024-161307

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.331	-165.9	9.800	85.0	0.049	66.9	0.285	-65.0

Требуется выбрать согласованный аттенюатор с минимальным затуханием, подключения которого будет достаточно, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 1.4 дБ, подключённый к плечу 2;
- 2) аттенюатор с затуханием 0 дБ, подключённый к плечу 2;
- 3) аттенюатор с затуханием 1 дБ, подключённый к плечу 1;
- 4) аттенюатор с затуханием 2 дБ, подключённый к плечу 1.

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 2 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Рисунок 2 – Различные реализаци и Г-образной цепи согласования

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -16.3 \text{ дБ}.$

Ко входу этой цепи подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью -1.2 дБм.

Какая мощность рассеивается внутри цепи коррекции?

- 1) 1.1 мВт
- 2) 0 мВт
- $3)~0.7~\mathrm{mBt}$
- 4) 0 мBт

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\scriptscriptstyle \rm H}=4$ ГГц и $f_{\scriptscriptstyle \rm B}=4.7$ ГГц, используя рисунок 3.

Рисунок 3 – Частотная характеристика усиления

- 1) 0.2 дБ
- 2) 1.8 дБ
- 3) 1.4 дБ
- 4) 0.7 дБ

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11} = -0.72\text{-}0.34\mathrm{i}.$

Найти модуль (в дБ) коэффициента передачи s_{21} .

- 1) -0.4 дБ
- 2) -8.7 дБ
- 3) -1.4 дБ
- 4) -4.4 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.319	-150.8	13.645	94.1	0.038	67.5	0.366	-57.1
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
3.0	0.360	164.1	4.404	63.3	0.096	60.8	0.171	-96.0
5.5	0.389	138.8	2.403	38.7	0.168	45.7	0.123	-128.0
8.0	0.472	114.8	1.652	15.2	0.231	28.4	0.089	138.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 4), который может обеспечить согласование со стороны плеча 1 на частоте 5.5 $\Gamma\Gamma$ ц.

Рисунок 4 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D