Theoretical Limits in Constraining Tidal Quality Factors of Binary Stars

Jessica Birky and Rory Barnes

ABSTRACT

1. INTRODUCTION

We aim to place theoretical limits on the constraints we can get on Q and τ using tidal equillibrium models, and disentangle different sources of uncertainty:

- Observational: To what degree is the limitation on the uncertainty of Q and τ due to a limitation of observational (e.g. ability to observe a parameter, data precision, sample size), which might be improved by better data? That is, how does the accuracy and precision of our observations affect the derived uncertainty of Q and τ and which observational constraints matter most when it comes to inferring Q and τ ? What types of systems are most promising for constraining Q and τ ? Limitation of sample size or limitation of constraints? How do constraints from synchronization (rotation period + eccentricity + orbital period) compare to constraints from circularization (eccentricity + orbital period)? Smaller sample/more constraints vs. larger sample/less constraints
- Model: To what degree to inherent degeneracies/pathologies in the model formulation contribute to uncertainty? Is this a problem that is *well posed* for (Bayesian) inference—are the observables sensitive enough to your parameters of interest?
- Hypothesis: To what degree does our hypothesis fail to reproduce reality? (comparison between simulated data uncertainties and real data uncertainties; model comparison between CTL, CPL). Can theoretical limits to the uncertainties on Q and τ derived on simulated data give us context to interpret uncertainties on real data? Given enough free parameters, it can become possible for a model to reproduce any range of outcomes. How in this situation, can a model be invalidated?

2. METHODS

- 2.1. Tidal Evolution Model
- 2.2. Stellar Evolution + Magnetic Braking Model
 - 2.3. Global Sensitivity Analysis
 - 2.4. Markov Chain Monte Carlo
 - 2.5. Observational Constraints

Model initial conditions and observational constraints:

BIRKY ET AL.

	Model Input	Prior	Observational Constraint	Good Unc		
M_1	primary mass $[M_{\odot}]$	$\mathcal{N}(m,s)$	kepler solution (lc eclipse + rvs)	0.001		
M_2	secondary mass $[M_{\odot}]$	$\mathcal{N}(m,s)$	kepler solution (lc eclipse + rvs)	0.001		
$P_{\text{rot}1,i}$	pri init rotation period [days]	$log\mathcal{N}(m,s)$	dist in young open clusters			
$P_{\text{rot}2,i}$	sec init rotation period [days]	$log \mathcal{N}(m,s)$	dist in young open clusters			
$P_{\mathrm{orb},i}$	init orbital period [days]	U(4.0, 10.0)	uninformed			
e_i	init eccentricity	$\mathcal{U}(0,0.5)$	uninformed			
age	system age [yr]	$\mathcal{N}(m,s)$	open cluster age	10%		
$arepsilon_{1,i}$	pri init obliquity [deg]	$\mathcal{U}(0,30)$	uninformed			
$arepsilon_{2,i}$	sec init obliquity [deg]	$\mathcal{U}(0,30)$	uninformed			
Q_1	pri tidal phase lag	$\mathcal{U}(4,9)$	uninformed			
\mathcal{Q}_2	sec tidal phase lag	$\mathcal{U}(4,9)$	uninformed			
$ au_1$	pri tidal time lag [log(s)]	$\mathcal{U}(-4,2)$	uninformed			
$ au_2$	sec tidal time lag [log(s)]	$\mathcal{U}(-4,2)$	uninformed			

Model final conditions and observational constraints:

	Model Output	Likelihood	Observational Constraint	Good Unc
$P_{\text{rot}1,f}$	pri final rotation period [days]	$\mathcal{N}(m,s)$	lc autocorrelation function	0.1
$P_{\text{rot}2,f}$	sec final rotation period [days]	$\mathcal{N}(m,s)$	spectroscopic $v \sin i$	0.1
$P_{\mathrm{orb},f}$	final orbital period [days]	$\mathcal{N}(m,s)$	lc lomb scargle	10^{-5}
e_f	final eccentricity	$\mathcal{N}(m,s)$	lc eclipse + rvs	0.001
$R_{1,f}$	pri final radius $[R_{\odot}]$	$\mathcal{N}(m,s)$	stellar models + photometry	0.01
$R_{2,f}$	sec final radius $[R_{\odot}]$	$\mathcal{N}(m,s)$	eclipse shape + pri radius	0.01
$L_{1,f}$	pri final lumniosity $[L_{\odot}]$	$\mathcal{N}(m,s)$	stellar models + photometry	0.1
$L_{2,f}$	sec final lumniosity $[L_{\odot}]$	$\mathcal{N}(m,s)$	stellar models + photometry	0.1
$T_{\text{eff}1,f}$	pri final temperature [K]	$\mathcal{N}(m,s)$	stellar models + spectra	
$T_{\text{eff}2,f}$	sec final temperature [K]	$\mathcal{N}(m,s)$	stellar models + spectra	

3. RESULTS

- sensitivity analysis (full 9 parameters + age) CTL, CPL, CTL + STELLAR, CPL + STELLAR free parameters: M₁, M₂, ε_{1,i}, ε_{2,i}, P_{rot1,i}, P_{rot2,i}, e_i, P_{orb,i}, Q computation time: ~30 min eqtide only, ~1 day for eqtide + stellar
- sensitivity analysis (6 parameters + age) CTL, CPL, CTL + STELLAR, CPL + STELLAR free parameters: M_1 , M_2 , $P_{\text{rot}1,i}$, $P_{\text{rot}2,i}$, e_i , Q (without obliquity, prior for porb based on final porb, ecc) computation time: ~ 30 min eqtide only, ~ 1 day for eqtide + stellar
- MCMC recovery test on synthetic data (4 parameters + age) free parameters: $P_{\text{rot}1,i}$, $P_{\text{rot}2,i}$, e_i , Q (fix masses, without obliquity, prior for porb based on final porb, ecc) computation time (per MCMC run): \sim few hours for eqtide only, \sim few weeks for eqtide + stellar
- 1D likelihood tests free parameters: Q

• MCMC recovery test on real data (4 parameters + age)?

if there's an open cluster system in a tide-sensitive age range

comparison with the synthetic data tests may be able to tell us how much posterior uncertainty is due to which input parameters/observational uncertainties/degeneracies?

- 4. DISCUSSION
- 5. CONCLUSION

4 BIRKY ET AL.

Figure 1. EQTIDE + STELLAR: CPL model

Figure 2. EQTIDE + STELLAR: CTL model

APPENDIX

$P_{rot1,f}$ sensitivity											P _{orb,}	f sensit	tivity		e_f sensitivity							
	${\rm M}_1$		0.01	0.01				0	0						0	0.01						0
	M_2		0.01					0	0						0	0			0.01	0.01		0
ons	$\varepsilon_{1,i}$							0	0						0	0						0
nditi	$\varepsilon_{2,i}$							0	0						0	0						0
initial conditions	$P_{rot1,i}$	- 0.41	0.24	0.19	0.07	0.04	0.02	0.01	0						0	0						0
initi	P _{rot2,i}		0					0	0						0	0				0.01		0
CTL	e_i	0.02	0.04	0.04	0.07	0.07	0.07	0.08	0.01	0.02	0.02	0.03	0.04	0.05	0.04	- 0.55	0.4	0.34	0.22	0.18	0.11	0.09
	$\mathrm{P}_{\mathrm{orb},i}$	0.26	0.33	0.36	0.46	0.5	0.59	0.64 -	- 0.98	0.96	0.94	0.89	0.88	0.9	0.92 -	0.17	0.18	0.18	0.17	0.17	0.17	0.15
	$\log \tau$	0.04	0.05	0.06	0.07	0.08	0.08	0.07	0.01	0	0	0	0	0	0	0.08	0.12	0.15	0.2	0.21	0.23	0.25
																		=		_	=	
	M_1	0.01			0.01	0.01	0.02	0.01	0		0.01			0.01	0	0.01	0.01	0.03	0.01	0.03	0.04	0.02
	M_2		0.01				0.02	0.01	0					0.01	0.02	0				0.01	0.02	0
ons	$\varepsilon_{1,i}$							0	0						0	0						0
nditi	$\varepsilon_{2,i}$							0	0						0	0						0
initial conditions	$P_{rot1,i}$	- 0.63	0.53	0.46	0.34	0.27	0.16	0.13	0						0	0						0
initi	$P_{rot2,i}$	0	0	0	0	0		0	0						0	0			0.01	0.01		0
CPL	e_i	0.02	0.02	0.03	0.02	0.02	0.04	0.04	0			0.01	0.01	0.03	0.04	- 0.78	0.65	0.58	0.44	0.41	0.34	0.3 -
	$\mathrm{P}_{\mathrm{orb},i}$	0.09	0.11	0.13	0.17	0.2	0.23	0.25	- 0.99	0.97	0.95	0.9	0.89	0.86	0.84 -	0.02	0.1	0.1	0.06	0.06	0.09	0.07
	$\log \mathcal{Q}$	0.01	0.04	0.03	0.01		0	0	0	0	0	0.01	0.02	0.03	0.05	0	0.05	0.1	0.19	0.21	0.33	0.36
	!	10	50	100	500	1000	5000	10000	10	50	100 A	500 ge [My	1000 /r]	5000	10000	10	50	100	500	1000	5000	10000

P _{rot1,f} sensitivity										P _{orb} ,	_f sensit	ivity		\boldsymbol{e}_f sensitivity							
M_1	0.01		0.01				0	0.01		0.01	0.03	0.04	0.06	0.07	0.02	0.02	0.02				0
.g M ₂	0.03	0.02	0.02	0.01			0							0	0.01	0.01	0.01	0.03	0.03	0.02	0.01
M_2 Supplies M_2 $P_{rot1,i}$	- 0.67	0.5	0.43	0.26	0.18	0.05	0.03	0.02	0.05	0.06	0.06	0.06	0.04	0.03	0			0.01	0.01		0
₽ _{rot2,i}	0						0	0.02	0.02	0.03	0.05	0.06	0.11	0.11	0				0.01	0.01	0.01
$\stackrel{\square}{\sqsubseteq}$ e_i	0.07	0.1	0.12	0.2	0.25	0.37	0.44 -	0.08	0.13	0.16	0.18	0.1		0	- 0.85	0.64	0.55	0.35	0.3	0.17	0.12
$\log \tau$	0.07	0.1	0.11	0.17	0.2	0.26	0.27	0.15	0.13	0.13	0.13	0.11	0.08	0.07	0.06	0.19	0.24	0.37	0.43	0.49	0.49
M_1	0	0.01	0.01				0.01					0.01	0.02	0.02	0.01	0.04	0.02	0.02	0.01	0.01	0.02
$_{\text{inition}}^{\text{Sign}}$ $_{\text{Prot}1,i}^{\text{M}_2}$	0						0	0.01				0.01	0.02	0.01	0.02				0.01	0.02	0.02
P _{rot1,i}	- 0.8	0.72				0.39	0.35 -							0	0		0.01				0
P _{rot2,i}	0						0		0.01					0	0.01					0.01	0
$\frac{1}{6}$ e_i	0.02	0.06	0.08	0.13	0.15	0.2	0.23	0.01	0.03	0.04	0.12	0.14	0.21	0.23	- 0.99	0.83	0.74	0.58	0.54	0.36	0.33 -
$\log \mathcal{Q}$	0	0.01	0.02	0.03	0.02	0.01	0.01	0.03	0.11	0.14	0.31	0.35	0.31	0.28	0.02	0.06	0.11	0.24	0.32	0.42	0.41
	10	50	100	500	1000	5000	10000	10	50	100 A	500 ge [My	1000 r]	5000	10000	10	50	100	500	1000	5000	10000

REFERENCES