Algebraic Topology I PS5

Mathieu Wydra

1. (a) Consider the fibration on the two-sheeted cover $S^0 \to S^1 \xrightarrow{p} S^1$. Note $H_0(S^0; \mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}$, so $H_*(S^1; H_0(S^0; \mathbb{Z})) = \mathbb{Z} \oplus \mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}, 0 \dots$ We pick a cell structure on S^1 with 1 cell e_1 , attached to 0-cell e_0 . Looking at the local coefficient system $H_0(F_{(-)}; \mathbb{Z})$ on S^1 induced by the fibration. The differentials

$$d_1(\sigma,g) = (\sigma \circ d_0, (\sigma_{0,1})_*g) - (\sigma \circ d_1,g)$$

$$d_2(\sigma, g) = (\sigma \circ d_0, (\sigma_{0,1})_* g) - (\sigma \circ d_1, g) + (\sigma \circ d_2, g)$$

Let σ have image e_1 , so $d_1(\sigma,m)=(e_0,(\sigma_{0,1})_*m-m)$. σ lifts to $\tilde{\sigma}$ a 1-simplex with image a half-circle on S^1 . Since $H_0(F_x;\mathbb{Z})\cong H_0(S^0;\mathbb{Z})=\mathbb{Z}\oplus\mathbb{Z}$, this map induces a map $H_0(F_{e_0};\mathbb{Z})\to H_0(F_{e_0'};\mathbb{Z})$, $(m,n)\to(n,m)$ where $e_0'\in S^1$ is antipodal to $e_0\in S^1$. So $d_1(\sigma,(m,n))=(e_0,(n-m,m-n))$. This show

$$H_0(S^1; H_0(F_{(-)}; \mathbb{Z}) = \frac{\mathbb{Z} \oplus \mathbb{Z}}{\mathrm{im} \ d_1} = \frac{\mathbb{Z} \oplus \mathbb{Z}}{\mathrm{im} \ d_1} = \frac{\mathbb{Z} \oplus \mathbb{Z}}{\mathbb{Z} \times (1, -1)} \not\cong \mathbb{Z} \oplus \mathbb{Z} = H_0(S^1; H_0(S^0; \mathbb{Z})).$$

Similarly it can also be show that d_2 is onto and so

$$H_1(S^1; H_0(F_{(-)}; \mathbb{Z}) = \ker d_2 \cong \mathbb{Z} \not\cong H_1(S^1; H_0(S^0; \mathbb{Z}))$$

- (b) Let (X,x) be based connected CW, and universal cover $q: \tilde{X} \to X$. Suppose $\pi = \pi_1(X,x)$ acts on Y CW, with induced action on homology α . Consider fibre bundle $Y \to \tilde{X} \times_{\pi} Y \xrightarrow{q \times x} X$. Take the action $\beta: \pi \times H_*(Y; \mathbb{Z}) \to H_*(Y; \mathbb{Z})$ where $[\gamma]$ acts on $H_*(Y; \mathbb{Z})$ by
- 2. Let $F \xrightarrow{i} E \xrightarrow{p} B$ be a fibration with B path connected. Let $\{c_j\} \in H^*(E; \mathbb{Z})$ with only finitely many in any degree, such that $\{i^*c_j\}$ form a \mathbb{Z} basis for the cohomology of $H^*(F; \mathbb{Z})$. Note first that this condition implies that the induced map is $i^*: H^q(E; \mathbb{Z}) \to H^q(F; \mathbb{Z})$ is a surjection. Since $H^*(F; \mathbb{Z})$ is freely generated, there is a right inverse $j: H^*(F; \mathbb{Z}) \to H^*(E; \mathbb{Z})$.

We have the natural Serre spectral sequence $E_2^{p,q} = H^p(B; H^q(F, \mathbb{Z})) \Longrightarrow H^{p+q}(E; \mathbb{Z})$, and also a Serre sequence arising from the fibration $F \to F \to *, \tilde{E}_2^{p,q} = H^p(*; H^q(F; \mathbb{Z})) \Longrightarrow H^{p+q}(F; \mathbb{Z})$. The following diagram commutes:

Then by naturality argument i induces a map on spectral sequences $E_r^{p,q} \to \tilde{E}_r^{p,q}$ which converges on the E_{∞} page to i^* . \tilde{E}_2 -page only has non-trivial entries $E_2^{0,q}$ so collapses on the E_2 -page. So the composition of edge maps

is just i^* . Similarly, we can show that the composition of maps $H^p(B; \mathbb{Z}) \twoheadrightarrow E_3^{p,0} \twoheadrightarrow \ldots \twoheadrightarrow E_\infty^{p,0} \hookrightarrow H^p(E; \mathbb{Z})$ is equal to $p^*: H^p(B; \mathbb{Z}) \to H^p(E; \mathbb{Z})$ using the fibre sequence $* \to B \to B$.

Now as i^* is surjective, each inclusion map must also be a bijection, so the $d_r: E_r^{0,q} \to E_r^{r,q-r+1}$ vanish for all r. Also on the E_2 -page, $H^q(F;\mathbb{Z})$ is a finitely generated free \mathbb{Z} -module. So by UCT $H^p(B;H^q(F;\mathbb{Z})) = H^p(B;\mathbb{Z}) \otimes H^q(F;\mathbb{Z})$. Since d_r is zero on both the p and q axes for all r, by multiplicative structure d_r is zero everywhere to the sequence collapses on the E_2 page. This is seen by induction, . Then $H^p(B;\mathbb{Z}) \otimes H^q(F;\mathbb{Z}) \to H^{p+q}(E;\mathbb{Z})$, $x \otimes y \mapsto p^*(x) \smile j(y)$ is an isomorphism. It can be seen from this then that $\{c_j\}$ is a basis for the $H^*(B;\mathbb{Z})$ -module $H^*(E;\mathbb{Z})$.