1 5 NOV. 2004

REC'D **0 7 FEB 2005**WIPO PCT

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 29 OCT. 20

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS CONFORMÉMENT À LA RÈGLE 17.1.a) OU b)

Martine PLANCHE

BEST AVAILABLE COPY

INSTITUT
NATIONAL DE
LA PROPRIETE

SIEGE 26 bis, rue de Saint-Petersbourg 75800 PARIS codex 08 Téléphone : 33 (0)1 53 04 53 04 Télécople : 33 (0)1 53 04 45 23 www.lnpl.fr

THE IN SHIPS

TADI IDEBURAN DI IDI IN ARTINAL CODE DAD LA LOL Nº 41_AAA DII 10 AVDII

BREVET D'INVENTION CERTIFICAT D'UTILITE

26bis, rue de Saint-Pétersbourg 75800 Paris Cédex 08

Téléphone: 01 53.04.53.04 Télécopie: 01.42.94.86.54

Code de la propriété intellectuelle-livreVI

REQUÊTE EN DÉLIVRANCE

DÉPARTEMENT DE DÉPÔT: DATE DE DÉPÔT:	Gérard POULIN BREVALEX 3 rue du Docteur Lancereaux 75008 PARIS France
Vac références pour ce dessier: SP23848 II -CR023 37-C	

1 NATURE DE LA DEMANDE					
Demande de brevet					
2 TITRE DE L'INVENTION					
	SOURCES D'ELECTRONEBULISATION PLANAIRES SUR LE MODELE D'UNE PLUME DE CALLIGRAPHIE ET LEUR FABRICATION.				
3 DECLARATION DE PRIORITE OU REQUETE DU BENEFICE DE LA DATE DE DEPOT D'UNE DEMANDE ANTERIEURE FRANCAISE	Pays ou organisation Date N° .				
4-1 DEMANDEUR					
Nom	UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE				
Rue	Cité Scientifique				
Code postal et ville	59655 VILLENEUVE D'ASCQ				
Pays	France				
Nationalité	France				
Forme juridique					
4-2 DEMANDEUR					
Nom	CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE				
Rue	3 rue Michel Ange				
Code postal et ville	75794 PARIS CEDEX 16				
Pays	France				
Nationalité	France				
Forme juridique					

5A MANDATAIRE					
Nom .	POULIN .	<u></u>		· · · · · · · · · · · · · · · · · · ·	
Prénom	Gérard				
Qualité	CPI: 99 0200, Pas	CPI: 99 0200, Pas de pouvoir			
Cabinet ou Société	BREVALEX	BREVALEX			
Rue	3 rue du Docteur	3 rue du Docteur Lancereaux			
Code postal et ville	75008 PARIS	75008 PARIS			
N° de téléphone	01 53 83 94 00				
N° de télécopie	01 45 63 83 33				
Courrier électronique	brevets.patents@	brevets.patents@brevalex.com			
6 DOCUMENTS ET FICHIERS JOINTS	Fichier électronique	ue Pages		Détails	
Texte du brevet	textebrevet.pdf	65		D 59, R 5, AB 1	
Dessins	dessins.pdf	10		page 10, figures 25, Abrégé: page 1, Fig.1	
Désignation d'inventeurs					
7 MODE DE PAIEMENT					
Mode de palement	Prélèvement du c	Prélèvement du compte courant			
Numéro du compte client	714	714			
8 RAPPORT DE RECHERCHE					
Etablissement immédiat					
9 REDEVANCES JOINTES	Devise	Taux	Quantité	Montant à payer	
062 Dépôt	EURO	0.00	1.00	0.00	
063 Rapport de recherche (R.R.)	EURO	320.00	1.00	320.00	
068 Revendication à partir de la 11ème	EURO	15.00	8.00	120.00	
Total à acquitter	EURO			440.00	

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par Signataire: FR, Brevalex, G. Poulin Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction

Mandataire agréé (Mandataire 1)

BREVET D'INVENTION CERTIFICAT D'UTILITE

Réception électronique d'une soumission

Il est certifié par la présente qu'une demande de brevet (ou de certificat d'utilité) a été reçue par le biais du dépôt électronique sécurisé de l'INPI. Après réception, un numéro d'enregistrement et une date de réception ont été attribués automatiquement.

> Demande de brevet : X Demande de CU:

DATE DE RECEPTION	12 novembre 2003			
TYPE DE DEPOT	INPI (PARIS) - Dépôt électronique Dépôt en ligne: X Dépôt sur support CD:			
Nº D'ENREGISTREMENT NATIONAL ATTRIBUE PAR L'INPI	0350820	·		
Vos références pour ce dossier	SP23848JL-CR023 37-C			
DEMANDEUR				
Nom ou dénomination sociale	UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE L'ILLE			
Nombre de demandeur(s)	2			
Pays	FR	FR .		
TITRE DE L'INVENTION SOURCES D'ELECTRONEBULISATION P LEUR FABRICATION.	LANAIRES SUR LE MODELE D'UNE	PLUME DE CALLIGRAPHIE ET		
DOCUMENTS ENVOYES		In a line tion backs and		
package-data.xml	Requetefr.PDF	application-body.xml fee-sheet.xml		
Design.PDF	ValidLog.PDF	textebrevet.pdf		
FR-office-specific-info.xml dessins.pdf	Comment.PDF indication-bio-deposit.xml	request.xml		
EFFECTUE PAR				
Effectué par.	G. Poulin	G. Poulin		
Date et heure de réception électronique:	12 novembre 2003 14:53:14			
Empreinte officielle du dépôt	D9:39:B3:57:02:5F:C4:DC:5D:B8:A6:7D:E5:BB:F1:A0:17:B9:5A:F1			
L		/ INPI PARIS, Section Dépôt /		

SIEGE SOCIAL

INSTITUT 25 bis, run de Saint Potembourg NATIONAL DE 75800 PARIS codes 03 LA PROPRIETE Tolophono: 01 53 04 63 04 INDUSTRIBLE Télécopie: 01 42 93 59 30

1

SOURCES D'ELECTRONEBULISATION PLANAIRES SUR LE MODELE D'UNE PLUME DE CALLIGRAPHIE ET LEUR FABRICATION

DESCRIPTION

5 DOMAINE TECHNIQUE

15

20

25

La présente invention concerne des sources d'électronébulisation originales, leur procédé de fabrication et leurs applications.

10 ETAT DE LA TECHNIQUE ANTERIEURE

L'électronébulisation est le phénomène qui transforme un liquide en un nébulisat sous l'action d'une haute tension (M. CLOUPEAU "Electrohydrodynamic spraying functioning modes: a critical review. Journal of Aerosol Science (1994), 25(6), 1021-1036"). Pour ce faire, le liquide est amené dans un capillaire et est soumis à une haute tension continue ou alternative ou à une superposition des deux (Z. HUNEITI et al., study of AC coupled DC fields on conducting liquid jets", Journal of Electrostatics (1997), 40 & 41 97-102). En sortie de capillaire, le liquide est nébulisé sous l'action de la tension. La surface du ménisque formé par le liquide est allongée pour former un ou des cônes de Taylor d'où sont éjectées des gouttelettes de liquide chargées qui évoluent pour donner un gaz contenant des particules chargées. La formation du nébulisat est observée lorsque les forces électriques dues à l'application de la tension compensent et dépassent les forces de tension de surface du liquide

sur la section du capillaire en l'extrémité dudit capillaire.

plus du capillaire, et taille La précisément son orifice de sortie, est en relation directe avec le débit de liquide sortant du capillaire et la tension à appliquer pour observer le phénomène de régimes distincts existe deux nébulisation. I1 d'électronébulisation qui se distinguent de par leurs caractéristiques d'établissement :

• le régime dit classique qui correspond à des tailles de sortie de capillaire de 100 γm , des débits de fluide dans la gamme de 1-20 $\gamma L/min$ et des hautes tensions de 3-4 kV;

le régime dit de nanoélectronébulisation
 15 où les débits de liquide sont inférieurs à 1 γL/min, la haute tension d'environ 1 kV et les diamètre internes des capillaires de 1-10 γm (M. WILM et al, "Analytical Properties of the Nanoelectrospray Ion Source", Analytical Chemistry (1996), 68(1), 1-8.).

L'application d'une tension comportant une stabilisation alternative permet la composante processus d'électronébulisation par synchronisation sur et al., CHARBONNIER (F. fréquence propre sa Counter and between Capillary "Differentiating Electrode Processes during Electrospray Ionization by Opening the Short Circuit at the Collector. Analytical 1585-1591). La composition Chemistry (1999), 71(8), le phénomène gouttes produites par chimique des d'électronébulisation peut être améliorée en vue de ses applications par l'application de tensions multiples et indépendantes qui permettent la modification chimique

20

25

des espèces présentes dans le liquide par électrochimie (voir la demande de brevet US 2003/0015656; G. J. VAN BERKEL, "Enhanced Study and Control of Analyte Oxidation in Electrospray Using a Thin-Channel, Planar 5 Electrode Emitter", Analytical Chemistry 74(19), 5047-5056; G.J. VAN BERKEL al., "Derivatization for electrospray ionization mass 3. Electrochemically spectrometry. derivatives", Analytical Chemistry (1998), 70(8), 1544-. 10 1554; F. ZHOU et al. "Electrochemistry Combined Online with Electrospray Mass Spectrometry", Analytical Chemistry (1995), 67(20), 3643-3649).

Les domaines d'applications de l'électronébulisation sont les suivants :

- 15 En premier lieu, l'ionisation de molécules (M. DOLE et al., "Molecular beams of macroions", Journal of Chemical Physics (1968), 49(5), 2240-2249; L. L. MACK et al., "Molecular beams of macroions. II", Journal of Chemical Physics (1970), . 20 52(10), 4977-4986; 4 209 le brevet US 696; YAMASHITA et al., "Electrospray ion source. Another variation on the free-jet theme", Journal of Physical Chemistry (1984), 88(20), 4451-4459; M. YAMASHITA et al., "Negative ion production with the electrospray ion .25 source", Journal of Physical Chemistry (1984), 88(20), 4671-4675) avant leur analyse par spectrométrie de masse en fonction du rapport m/z où m est la masse de l'analyte et z sa charge. Dans ce cas, le débit de liquide est continu.
- Une deuxième application des dispositifs d'électronébulisation est la production de gouttes de

De telles gouttes peuvent taille calibrée. déposées sur un support (C. J. McNEAL et al., "Thin electrospray method deposition by the californium-252 plasma desorption studies of involatile molecules", Analytical Chemistry (1979), 51(12), 2036-2039; R. C. MURPHY et al., "Electrospray loading of field desorption emitters and desorption chemical ionization probes", Analytical Chemistry (1982), 54(2), exemple une plaque pour, par production de puces d'analyse comme les puces à ADN ou 10 à peptides, dédiées à une analyse à haut débit (V. N. MOROZOV et al., "Electrospray Deposition as a Method for Mass Fabrication of Mono- and Multicomponent Biological and Biologically Active Microarrays of Substances", Analytical Chemistry (1999), 71(15), 3110-15 3117; R. MOERMAN et al., "Miniaturized electrospraying as a technique for the production of microarrays of micrometer-sized protein reproducible Analytical Chemistry (2001 May 15), 73(10), 2183-2189; N. V. AVSEENKO et al., "Immunoassay with Multicomponent 20 Fabricated by Electrospray Protein Microarrays ٠. Deposition", Analytical Chemistry (2002), 74(5), 927-933), soit le dépôt de solutions sur une plaque MALDI (pour "Matrix Assisted Laser Desorption Ionization") avant une analyse par spectrométrie de masse 25 al., "Improved reproducibility and AXELSSON et increased signal intensity in matrix-assisted laser. desorption/ionization as a result of electrospray sample preparation", Rapid Communications in Mass Spectrometry (1997), 11(2), 209-213). Ces gouttes 30 peuvent aussi être manipulées, soit pour l'injection de

į.

- 1

balance hydrodynamique pour liquide dans une manipulation de gouttes uniques (M. J. BOGAN et al., in an "MALDI-TOF-MS analysis of droplets prepared "wall-less" balance: electrodynamic preparation", Analytical Chemistry (2002), 74(3), 489-496), soit pour leur collecte pour conduire à des molécules encapsulées ou présentant un état cristallin métastable (I. G. LOSCERTALES et al., "Micro/nano encapsulation via electrified coaxial liquid jets", (Washington, DC, United States) (2002),10 Science 1695-1698). Ici, l'éjection 295 (5560), а lieu manière discrète les dimensions des sources dépendent grandement de la taille des dépôts à réaliser.

- Une troisième application est le dépôt de particules de taille contrôlée contenues au sein du liquide (I. W. LENGGORO et al., "Sizing of Colloidal Nanoparticles by Electrospray and Differential Mobility Analyzer Methods", Langmuir (2002), 18(12), 4584-4591). Les particules peuvent également être remplacées pas des cellules pour la préparation de puces à cellules.
- application Une quatrième l'injection des gouttes formées par électronébulisation dans un liquide conduisant à des émulsions de taille bien définies (R. J. PFEIFER et al., "Charge-to-mass 25 relation for electrohydrodynamically sprayed (1958-1988)droplets", Physics of Fluids 10(10), 2149-54; C. TSOURIS et al., "Experimental Investigation of Electrostatic Dispersion Conductive · Fluids", Nonconductive Fluids into Industrial & Engineering Chemistry Research (1995), - 30 34(4), 1394-1403; R. HENGELMOLEN et al., "Emulsions

from aerosol sprays", Journal of Colloid and Interface Science (1997), 196(1), 12-22).

 Une cinquième application est l'écriture moléculaire sur une plaque à l'aide de molécules ou de solutions chimiques (S. N. JAYASINGHE et al., "A novel process for simulataneous printing of multiple tracks from concentrated suspensions", Materials 62-64.), en vue de Innovations (2003), 7(2), fonctionnalisation du matériau ou d'un traitement localisé, échelle pouvant à une chimique inférieure au micromètre.

Ces diverses applications peuvent être également combinées entre elles.

Usuellement, les sources utilisées pour la nanoélectronébulisation se présentent sous forme de 15 capillaires en verre ou en silice fondue. Elles sont fabriquées par étirement à chaud ou par attaque acide du matériau afin de donner un orifice de sortie de 1 à 10 ym (M. WILM et al., "Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last?", 20 International Journal of Mass Spectrometry and Ion (1994), 136(2-3), 167-180). La Processes d'électronébulisation peut être appliquée via approprié revêtement extérieur conducteur revêtement métallique comme l'or ou un alliage Au/Pd 25 (G. A. VALASKOVIC et al., "Long-lived metalized tips for nanoliter electrospray mass spectrometry", Journal of the American Society for Mass Spectrometry (1996), 7(12), 1270-1272), l'argent (Y.-R. CHEN. et al., "A simple method for fabrication of silver-coated 30 sheathless electrospray emitters", Rapid Communications

7

Spectrometry (2003), 17(5), 437-441), matériau à base de carbone (X. ZHU et al., "A Colloidal Graphite-Coated Emitter for Sheathless Capillary Electrophoresis/Nanoelectrospray Ionization 5 Spectrometry", Analytical Chemistry (2002), 74(20), 5405-5409) ou un polymère conducteur polyaniline (P. A. BIGWARFE et al., "Polyaniline-coated nanoelectrospray emitters: performance characteristics in the negative ion mode", Rapid Communications in Mass 10 Spectrometry (2002), 16(24), 2266-2272). La tension d'électronébulisation peut aussi être appliquée via le liquide avec l'introduction d'un fil métallique dans la source (K. W. Y. FONG et al., "A novel nonmetallized tip for electrospray mass spectrometry at nanoliter flow rate", Journal of the American Society for Mass 15 Spectrometry (1999), 10(1), 72-75).

Néanmoins, les dispositifs de l'art antérieur dédiés à la nanoélectronébulisation souffrent de plusieurs faiblesses (B. FENG et al., "A Simple Nanoelectrospray Arrangement With Controllable Flowrate for Mass Analysis of Submicroliter Protein Samples", Journal of the American Society for Mass Spectrometry (2000), 11, 94-99):

- Tout d'abord, ces capillaires sont peu 25 robustes. Leur procédé de fabrication est mal contrôlé et fournit des sources de dimensions peu reproductibles;
 - Le revêtement conducteur externe se détériore rapidement ;
- Leur mode d'utilisation est peu commode du fait de leur géométrie de type aiguille : le

liquide à nébuliser doit être introduit manuellement dans l'aiguille à l'aide d'une micropipette et d'un embout adapté de forme effilée;

- Le chargement de la solution conduit à l'introduction de bulles d'air dans l'aiguille qui peuvent perturber ultérieurement la stabilité du nébulisat, elles doivent donc être chassées;
- Enfin, le plus souvent, l'orifice de sortie est trop petit pour permettre le passage du 10 liquide; de ce fait, les capillaires doivent d'abord être cassés doucement le long d'une paroi, ce qui accroît encore le caractère aléatoire de leurs dimensions.

les sources standard commerciales Ainsi, premièrement une sont-elles peu adaptées, . 15 nébulisation contrôlée, reproductible et de qualité, deuxièmement à l'utilisation de robots du fait du manuel de leur mode entièrement caractère d'utilisation, et, troisièmement, à une intégration sur un microsystème fluidique, comme discuté dans la suite.

Ces défauts entravent certains domaines d'applications de l'éléctronébulisation qui nécessitent à l'heure actuelle une robotisation et une automatisation des processus. Ceci est le cas des domaines d'applications recensés ci-dessus : l'analyse par spectrométrie de masse, le dépôt de gouttes de taille calibrée et l'écriture à une échelle inférieure au micromètre à l'aide d'une pointe.

Ces deux dernières décennies ont vu 30 l'avènement de la microfluidique dans les domaines de la chimie et de la biologie. Ce secteur résulte en partie de la miniaturisation des outils de laboratoire et donc du mariage entre microtechnologie et biologie ou microtechnologie et analyse chimique. Ainsi, les techniques de microtechnologie sont-elles mises à profit pour la fabrication de microsystèmes intégrés de taille caractéristique de l'ordre du micromètre et qui rassemblent une série de processus réactionnels et/ou analytiques, chimiques et/ou biochimiques/biologiques.

L'essor de la microfluidique dans les domaines de la chimie et de la biologie, où la rapidité et l'automatisation des processus sont aujourd'hui requises, s'explique par :

- le gain en vitesse des processus, fait que la vitesse dépend principalement de la taille 15 dispositifs; ce gain en vitesse est particulièrement important pour des champs d'applications de type diagnostic médical ou analyse instantanée environnementale, οù une réponse est souvent attendue,
- la possibilité de parallélisation des processus ; la microtechnologie permet la fabrication simultanée d'un grand nombre de dispositifs identiques,
- la compatibilité des objets microfabriqués avec une interface robotique en vue de 25 l'automatisation des processus,
 - l'adéquation des volumes manipulés avec ceux dont l'expérimentateur dispose dans le cas, entre autres, des analyses biologiques ou environnementales,

.

 la limitation allant jusqu'à la
 suppression de l'intervention humaine, qui est souvent source d'erreur et de contamination,

- un gain en sensibilité, pour certaines techniques d'analyse, dont la spectrométrie de masse avec une ionisation par électronébulisation,
- globalement, de nouvelles performances 5 qui ne correspondent pas seulement à une diminution d'échelle des outils et des techniques bien établis.

Les dispositifs microfluidiques sont fabriqués à l'aide des techniques de microtechnologie. Une large gamme de matériaux est aujourd'hui disponible pour ces microfabrications, gamme qui va du silicium et du quartz (matériaux usuels en microtechnologie) aux verres, céramiques et matériaux de type polymère, comme les élastomères ou les plastiques. Ainsi, la microfluidique bénéficie-t-elle à la fois :

• de l'héritage des matériaux et des techniques de fabrication développés et utilisés pour des applications microélectronique et, ...

in the second

17

• de nouveaux procédés de fabrication, développés en parallèle et adaptés à d'autres matériaux émergents et de grand intérêt pour des applications microfluidiques, comme les matériaux de type plastique, dont l'attrait principal réside dans leur faible coût.

précisément, les matériaux Plus technologiques envisageables pour fabrications des applicables à la chimie et à la biologie sont (T. materials "Fabrication techniques and McCREEDY, commonly used for the production of microreactors and systems", TrAC, micro total analytical Analytical Chemistry (2000), 19(6), 396-401):

omme le silicium, matériaux traditionnels en

10

. .20

microtechnologie qui bénéficient de techniques fabrication robustes et éprouvées ; parmi techniques de fabrication, on compte la lithographie, les gravures physiques et chimiques entre autres (P. J. FRENCH et al., "Surface versus bulk micromachining: the 5 contest for suitable applications", Journal Micromechanics and Microengineering (1998), 8(2), .53). De ce fait, le silicium notamment est le matériau le plus intéressant en termes de fabrication de petites 10 structures à des échelles de la dizaine de nanomètres. De plus, sa chimie de surface est maîtrisée, traitements mettant en jeu les fonctions silanols présentes à sa surface. Mais ses propriétés semiconductrices ne sont pas toujours adaptées en fonction 15 des applications visées. Il n'est pas transparent ce qui empêche toute technique de détection optique (absorbance UV, fluorescence, luminescence). Le coût du matériau lui-même le rend impropre pour certaines fabrications de (objets masse à usage unique 20 notamment). . . .

- le quartz, utilisé pour le développement des premiers microsystèmes (J. S. DANEL et al., "Quartz: a material for microdevices", Journal of Micromechanics and Microengineering (1991), 1(4), 187-98), qui est devenu peu attrayant du fait de son coût fortement élevé; il est donc progressivement abandonné en dépit de ses propriétés physico-chimiques.
- le verre, matériau moins cher que le quartz et le silicium, qui est beaucoup utilisé du fait de ses propriétés de surface adaptées à l'établissement d'un flux électroosmotique (K. SATO et al.,

144 Ş S. فتغثر

"Integration of chemical and biochemical systems into a glass microchip", Analytical Sciences (2003), 19(1), 15-22). De même que pour le silicium, des groupements silanols tapissent la surface du verre. modification chimique laissent envisager une Ils ultérieure des surfaces de verre. De plus, propriétés de transparence en font un matériau de choix dans le cas d'une détection optique. Cependant, techniques de fabrication ne sont pas aussi bien maîtrisées que pour le silicium; les profils de gravure sont moins propres et le rapport de forme est fort et al., DIETRICH "Fabrication (T. R. médiocre technologies for microsystems utilizing photoetchable glass", Microelectronic Engineering (1996), 30(1-4), 497-504). D'autre part, c'est un matériau fragile et cassant.

de type polymère, les matériaux qui regroupent les plastiques les élastomères. Leur est avantage principal est leur faible coût compatible avec des productions de masse à bas prix de revient. La multiplicité de ces matériaux conduit à une large gamme de propriétés physico-chimiques. inconvénient majeur est leur faible résistance aux hautes températures et leur sensibilité aux conditions de solvant utilisées classiquement en chimie et en biologie, milieu organique, acide, basique, qui peuvent entraîner une dégradation du matériau voire même sa dissolution. Par ailleurs, la chimie de surface de ces matériaux est mal connue, ce qui rend difficile tout traitement ultérieur des surfaces engendrées afin d'en 30 modifier les propriétés. Les techniques de fabrication

5

10

15

20

sont tout autres et sont basées sur des techniques de moulage/injection, d'ablation laser, de LIGA (acronyme allemand pour "Lithographie, Galvanoformung, Abformung") (J. HRUBY, " Overview of LIGA microfabrication", AIP Conference Proceedings (2002), 625 (High Energy Density and High Power RF), 55-61), de photolithographie, de gravure plasma.

les matériaux de types céramiques BAUER, "Ceramic materials in the microsystem technology", Keramische Zeitschrift (2003), 55(4), 266-270), qui sont des substrats inorganiques de faible coût de fabrication à l'image des matériaux plastiques. avantage majeur est que leur fabrication nécessite pas d'équipements dédiés d'entretien onéreux comme des salles blanches mais repose sur des processus simples et rapides (ablation laser, laminage, moulage, procédé sol-gel), réduisant encore le prix de revient des structures microfabriquées. Leur état de surface est comparable à celui du verre ou du silicium et enfin, le capotage est plus facile que pour d'autres matériaux, comme le verre.

En particulier, les techniques de microfabrication ont été appliquées à la réalisation de sources d'électronébulisation ou de pointe type aiguille en vue :

- d'améliorer la qualité globale des capillaires en termes de contrôle des procédés de fabrication, de reproductibilité des sources et de leurs dimensions,
- ode produire un grand nombre de dispositifs identiques ou différant entre eux par une

10

15

20

ou plusieurs dimensions, sur une même plaque de matériau, à l'image des microcomposants en microélectronique, afin de promouvoir l'automatisation et la robotisation de l'électronébulisation.

Les fabrications à l'aide des techniques de microtechnologie de pointes d'électronébulisation obéissent à deux tendances :

- la fabrication d'une pointe d'électronébulisation qui reproduit la géométrie classique, c'est-à-dire un capillaire microfabriqué et, le plus souvent, de section circulaire. Dans cette classe peuvent être inclues également les aiguilles microfabriquées destinées à une autre application, comme celle d'injection de substances chimiques ou de mesure de potentiel biologique.
 - la conception d'une source d'électronébulisation comme une sortie de microcanal ou capillaire fabriqué à l'aide de techniques de microtechnologie et ayant un profil effilé.
 - Ces dispositifs d'électronébulisation microfabriqués reposent, à l'image des microsystèmes fluidiques, sur l'utilisation de différents types de matériaux et différents types de procédés.

Selon la première tendance, qui vise à produire par voie technologique une géométrie de type capillaire, on recense les descriptions suivantes :

 Selon cette approche, des sources d'électronébulisation en nitrure de silicium ont été fabriquées à l'aide de techniques classiques de photolithographie et de gravure (A. DESAI et al., "MEMS
 Electrospray Nozzle for Mass Spectrometry", Int. Conf.

5

10

. 15

20

on Solid-State Sensors and Actuators, Transducers '97, (1997)). Les dimensions desdits dispositifs sont une longueur de 40 ym et un diamètre interne de l'orifice de sortie de 1 à 3 ym. Lesdites sources ont été testées spectrométrie de masse à des tensions de nébulisation voisines de 4 kV et un débit de liquide de 50 · nL/min avec des peptides standard concentration de quelques micromolaires. La tension de nébulisation est appliquée en amont dudit dispositif, au niveau de la jonction avec un capillaire d'alimentation en liquide, et ce, sur une connexion métallique en platine.

- Des sources d'électronébulisation fabriquées en matériau de type polymère, le parylène, 15 matériau photolithographiable ont également décrites (demande interntionale WO-A-00/30167; L. LICKLIDER et al., "A Micromachined Chip-Based Electrospray Source for Mass Spectrometry", Analytical Chemistry (2000), 72(2), 367-375). Ces sources ont un 20 orifice de sortie de 5 × 10 ym et ont été présentées comme partie intégrante d'un microsystème fluidique en silicium. Elles sont connectées à des microcanaux de 100 ym de largeur et de 5 ym de hauteur. La tension requise pour la nébulisation est ici plus faible, de :25 l'ordre de 1,2 à 1,8 kV dans des conditions de concentration et de débit de fluide équivalentes ; la tension est appliquée sur un fil métallique mis en contact avec la solution à nébuliser.
- Le silicium a aussi été utilisé pour la 30 microfabrication de structures de type aiguille. La demande internationale WO-A-00/15321 décrit un

5

dispositif d'électronébulisation ressemblant cheminée, de diamètre interne de 10 ym pour un diamètre externe de 20 ym et une hauteur de 50 ym. On peut se référer également à l'article de G. A. SCHULTZ et al., intitulé "A Fully Integrated Monolithic Microchip Electrospray Device for Mass Spectrometry", Analytical 4058-4063. 72 (17), Ces Chemistry (2000), résultent d'une gravure physique dite profonde Leur fonctionnement en électronébulisation matériau. est décrit avec des hautes tensions de 1,25 kV, qui 10 sont appliquées sur le capillaire d'alimentation en fluide situé à l'arrière de la source et qui est en matériau conducteur. Le prototype a été présenté intégré sur une plaque comprenant 100 sources de ce type, identiques et fonctionnant indépendamment les 15 autres. Le silicium et un procédé des . fabrication similaire ont également été utilisés pour former des structures de type aiguille qui employées soit comme sources d'électronébulisation (P. GRISS et al., "Development of micromachined hollow tips 20 for protein analysis based on nanoelectrospray Journal of ionization mass spectrometry", Micromechanics and Microengineering (2002), 12(5), 682et al., "Characterization SJODAHL 687; tips for two-dimensional 25 micromachined hollow spectrometry", , Rapid nanoelectrospray mass Communications in Mass Spectrometry (2003), 17(4), 337-341), soit comme aiguilles de mesure de potentiels biologiques (demande internationale WO-A-03/15860; P. al., "Micromachnied electrodes for 30 GRISS et biopotential measurements", IEEE/ASME of Journal

. .

, ik

1

Microelectromechanical systems, 2001, 10, 10-16). Leur forme varie quelques peu en fonction de leur application; les dispositifs d'électronébulisation ressemblent aux dispositifs en silicium décrits cidessus, avec néanmoins, un profil qui se rétrécit en leur pointe conduisant à un plus petit orifice de sortie, alors que les aiguilles destinées à des mesures de potentiels biologiques ont une pointe très effilée. fabrication desdits dispositifs procédé de 10 silicium à l'aide de techniques de gravure profonde est fort complexe et nécessite un appareillage coûteux, encombrant et les performances, en termes de tension de nébulisation entre autres, des structures obtenues sont médiocres comparées à celles de sources standard 15 commerciales. Par ailleurs, leur géométrie se prête mal à une intégration sur un microsystème fluidique.

- L'article de L. LIN et al., intitulé "Silicon processed microneedles", IEEE Journal Mictroelectromechanical Systems (1999), 8, 78-84) décrit des micro-aiguilles qui sont connectées à un microfluidique. Ces aiguilles ont développées pour l'injection de substances chimiques in situ et non pour de la nébulisation, mais la géométrie de type aiguille de ces dispositifs est proche de celle 25 des sources de nanonébulisation. Ces aiguilles sont fabriquées en nitrure de silicium et présentent un orifice de sortie rectangulaire de 9 x 30-50 ym et une hauteur de 1 à 6 mm.
- Des structures de type aiguille ont
 30 enfin été fabriquées en un autre matériau polymère, le polycarbonate, à l'aide d'un procédé d'ablation laser

(K. TANG et al., "Generation of multiple electrosprays using microfabricated emitter arrays for improved mass spectrometric sensitivity", Analytical Chemistry (2001), 73(8), 1658-1663). Leurs dimensions sont les suivantes : 30 ym de diamètre interne en leur orifice de sortie et 250 ym de hauteur. Pour cet exemple encore, les dimensions desdits dispositifs sont trop régime en nanoélectronébulisation grandes pour un puisque la tension requise pour l'observation d'un nébulisat est de 7 kV et le débit de fluide est estimé à 30 YL/min. Le procédé de fabrication est par ailleurs complexe. Ces sources se présentent sous forme d'une série de neuf sources arrangées selon un carré 3 x 3. Elles opèrent simultanément et nébulisent la même solution. .

La deuxième tendance est d'usiner une pointe à la sortie d'un microcanal ou de créer une structure en pointe qui tient lieu de source d'électronébulisation. L'angle de la structure en pointe ne semble pas avoir d'influence sur le phénomène de nébulisation. Selon cette deuxième tendance:

#*~

1

. 4

......

1

• Les tentatives de nébulisation la d'un sortie d'un microcanal, tranche sur la microsystème se sont révélées peu concluantes. tension à appliquer est très élevée et, dans ces conditions, le liquide a tendance à s'étaler sur la surface de sortie, sur la tranche du microsystème (R. RAMSEY et al., "Generating Electrospray from Microchip Devices Using Electroosmotic Pumping", Analytical Chemistry (1997), 69(6), 1174-1178; Q. XUE et al., Electrospray "Multichannel Microchip.

10

15

. 25

Spectrometry", Analytical Chemistry (1997), 69(3), 426-430; B. ZHANG et al., "Microfabricated Devices for Capillary Electrophoresis-Electrospray Mass Spectrometry", Analytical Chemistry (1999), 71(15), 3258-3264). Ces essais ont été améliorés par un traitement chimique approprié de la surface de sortie ou en assistant de façon pneumatique la formation du nébulisat. Ceci démontre l'importance de travailler avec une structure en pointe qui conduit à une concentration du champ électrique et qui permet ainsi la nébulisation.

- L'effet de pointe peut être réalisé par insertion d'une structure plane triangulaire entre les deux plaques de matériaux définissant un microcanal (le support dans lequel le microcanal est usiné et le 15 couvercle). Cette structure plane triangulaire constituée d'une feuille de parylène d'épaisseur (J. KAMEOKA et al., "An electrospray ionization source for integration with microfluidics", 20 Analytical Chemistry (2002), 74(22), 5897-5901). Le intègre quatre dispositifs système . d'électronébulisation identiques placés en parallèle. . . La tension de nébulisation requise est de 2,5-3 kV pour un débit de fluide de 300 nL/min. Aucune interférence 25 inter-sources n'a été observée.
 - Un dispositif en forme d'étoile à huit branches a été fabriqué en polyméthylméthacrylate (PMMA) (C.-H. YUAN et al., "Sequential Electrospray Analysis Using Sharp-Tip Channels Fabricated on a Plastic Chip", Analytical Chemistry (2001), 73(6), 1080-1083). Chacune des branches de l'étoile constitue

A

.5

10

un système microfluidique indépendant et la pointe de chaque branche est une source de nébulisation. Chaque branche intègre ainsi un microcanal de section 300 × 376 γm, la structure en pointe forme un angle de 90° et les huit réservoirs de liquide sont regroupés au centre de l'étoile. La tension appliquée pour l'établissement d'un cône de Taylor est élevée et égale à 3,8 kV, ce qui s'explique par les dimensions fort larges de la section du microcanal en son extrémité. Par ailleurs, le procédé de fabrication décrit repose sur l'usinage de canaux à l'aide d'un couteau, technique qui ne permet pas de réaliser des canaux et des dispositifs de nébulisation de petites dimensions.

1100

. E

5

· 🚡

Un autre matériau de type polymère, le polydiméthylsiloxane (PDMS), a servi à la réalisation . 15 destinées pointe de structures en de suivant trois voies l'électronébulisation fabrication microtechnologiques différentes, méthode basée sur l'ablation de matériau, un procédé couche de double utilisant une 20 photolithographiable et un procédé de moulage de la résine (demande internationale WO-A-02/55990; J. S. KIM polydimethylsiloxane of "Microfabrication al., emitter", Journal electrospray ionization Chromatography, A (2001), 924(1-2), 137-145; J.-S. KIM 25 et al., "Microfabricated PDMS multichannel emitter for electrospray ionization mass spectrometry", Journal of the American Society for Mass Spectrometry (2001), 463-469; J.-S. KIM al., "Miniaturized et 12(4), multichannel electrospray ionization emitters on 30 devices", poly(dimethylsiloxane) microfluidic

Electrophoresis (2001), 22(18), 3993-3999). L'orifice de nébulisation est rectangulaire et de dimensions variables allant de 30 × 100 γm à 30 × 50 γm selon le procédé de microtechnologie utilisé pour leur fabrication. Dans les différents cas, la tension de nébulisation allait de 2,5 kV à 3,7 kV pour des solutions à 1 à 10 γM et des débits élevés de quelques 100 nL/min à plusieurs γL/min.

Enfin, le polyimide, autre matériau de 10 type polymère relativement hydrophobe a été utilisé pour la fabrication de sources de nébulisation (GB-A-2 379 554; V. GOBRY et al., "Microfabricated polymer injector for direct mass spectrometry coupling", Proteomics (2002), 2(4), 405-412; J. S. ROSSIER et al., 15 "Thin-chip microspray system for high-performance Fourier-transform ion-cyclotron resonance biopolymers", Angewandte Chemie, spectrometry of International Edition (2003), 42(1), 54-58) intégrées sur un microsystème, ou tout du moins, connectées à un microcanal de section 120 × 45 ym. Le système, le 20 microcanal et la structure en pointe sont fabriqués par gravure plasma du polyimide. Le couvercle du système en polyéthylène/polyéthylène téréphtalate. fonctionnement desdites sources en électronébulisation a été validé pour des échantillons de peptides standard à 5 yM, s'écoulant à 140 nL/min et pour des tensions de nébulisation de 1,6 à 1,8 kV. Un autre dispositif fabriqué dans le même matériau a été présenté, différant du précédent de par sa topologie ouverte et 30 la finesse de l'épaisseur (50 ym) de matériau utilisée pour sa fabrication. Cette structure dite mince a été

testée pour des tensions d'ionisation de 1 à 2,3 kV appliquées ici sur une électrode de carbone intégrée sur le dispositif.

Globalement, les dispositifs de nébulisation recensés ci-dessus présentent des conditions de fonctionnement non conformes pour une nébulisation à petite échelle (dimensions trop grandes, tensions de nébulisation trop élevées) et résultent le plus souvent de procédés de fabrication fort complexes.

10 De plus, le type de structure choisi pour ces différents dispositifs est pratiquement indissociable du matériau utilisé pour leur réalisation.

Pour les différents dispositifs présentés ci-dessus, la tension de nébulisation est le plus souvent appliquée au niveau du réservoir du dispositif, si le système inclut un réservoir, ou, dans le cas contraire, au niveau de l'alimentation en liquide qui est effectuée à l'aide d'un capillaire connecté au . dispositif. Dans ce cas, soit le capillaire est conducteur (en acier inoxydable par exemple), soit la 20 connexion repose sur un raccord métallique. Cependant, il a été proposé d'intégrer, sur le dispositif de nébulisation, une électrode ou zone conductrice sur laquelle est appliquée la tension de nébulisation (T. C. ROHNER et al., "Polymer microspray with an 25 integrated thick-film microelectrode", Analytical Chemistry (2001), 73(22), 5353-5357). Cette conductrice est réalisée à base d'encre de carbone dans l'exemple cité.

Enfin, l'application de ces dispositifs est ciblée pour de l'électronébulisation précédant une

....

analyse par spectrométrie de masse et ne se prête pas à un autre type d'application.

Par ailleurs, les dispositifs de dépôt de gouttes calibrées issus de la microtechnologie ne reposent pas sur la nébulisation de la solution mais sur un effet mécanique avec la mise en contact de la pointe microfabriquée sur la surface de dépôt. Ainsi :

- Une structure mimant celle d'un stylo plume a été décrite pour l'élaboration de plaques de 10 type des puces à ADN avec la déposition régulière de gouttes calibrées sur une surface lisse (voir demande internationale WO-A-03/53583). Le dispositif comprend une tranchée gravée dans le matériau terminant sur une pointe par laquelle le liquide sort. 15 Cette structure est dite flexible et le liquide à déposer sort par mise en contact de la pointe flexible avec le substrat de dépôt, l'angle de contact étant de 20-30° par rapport à la verticale. L'application majeure ciblée par cette invention est la préparation 20 de puces à ADNs ou autres composés à analyser.
 - Р. BELAUBRE et al. dans l'article "Fabrication of biological microarrays using microcantilevers", Applied Physics Letters 82(18), 3122-3124, proposent une structure de type poutre ouverte pour le dépôt de gouttes de taille reproductible. L'application du dispositif préparation de puces à ADN ou à protéines de façon automatisée. La structure de type poutre est tout d'abord plongée dans la solution à déposer, puis est mise en contact avec la surface de dépôt. L'éjection du liquide est provoquée par la mise en contact entre la

5

25

pointe et ladite surface. Une particularité de dispositif est l'intégration dans la structure de type aluminium qui permettent en d'électrodes d'accroître le chargement en liquide de la pointe lorsque cette dernière est trempée dans la solution à déposer, par effet électrostatique. Ces structures de type poutre, qui ont une largeur de 210 ym en leur pointe, sont fabriquées en parallèle sur système. Elles permettent l'éjection de gouttes ayant du femtolitre volume dans la gamme picolitre, le volume déposé dépendant linéairement du temps de contact entre la pointe et la surface, avec un débit pouvant atteindre 100 dépôts par minute.

G.

, if

-3

./-넩.

. .

à moléculaire des Enfin, l'écriture échelles de l'ordre du nanomètre est principalement 15 décrite avec une pointe de microscopie AFM (Microscopie ٠, à Force Atomique) qui est trempée dans une solution chimique, à l'image d'une plume de stylo (G. AGARWAL et al., "Dip-Pen Nanolithography in Tapping Mode", Journal of the American Chemical Society (2003), 125(2), 580-20 583; les demandes internationales WO-A-03/48314 et WO-A-03/52514; H. ZHANG et al., "Direct-write dip-pen nanolithography of proteins on modified silicon oxide International Edition surfaces", Angewandte Chemie, 42(20), 2309-2312; FU et al., L. (2003),"Nanopatterning of "Hard" Magnetic Nanostructures via Dip-Pen Nanolithography and a Sol-Based Ink", 757-760; H. ZHANG 3(6), Letters (2003), ."Fabrication of sub-50-nm solid-state nanostructures on the basis of dip-pen nanolithography", Nano Letters 30 (2003), 3(1), 43-45). L'écriture a ensuite lieu par

mise en contact ou après rapprochement, suivant le mode d'utilisation de l'AFM sélectionné, de la pointe et d'une surface lisse. La solution chimique peut aussi être une solution qui attaque le matériau sur lequel elle est déposée et servir ainsi à la gravure de canaux ou d'autres structures. La technique de microscopie AFM présente l'avantage d'une forte résolution et d'une grande précision d'écriture. Trois fonctionnement sont possibles, et suivant choisi, l'état de surface peut être contrôlé avant et après passage de la solution chimique d'écriture moléculaire. Néanmoins, cette technique impose l'utilisation d'un appareillage lourd, encombrant, onéreux et complexe.

15 Deux dispositifs d'écriture moléculaire décrits dans la littérature peuvent également cités. Ils dérivent de la technique utilisant pointe de microscopie AFM mais reposent l'utilisation d'une pointe microfabriquée. Le premier 20 (A. LEWIS al., "Fountain dispositif et nanochemistry: Atomic force control of chrome etching", Applied Physics Letters (1999), 75(17), 2689-2691; H. TAHA et al., "Protein printing with an atomic force sensing nanofountainpen", Applied Physics 25 (2003), 83(5), 1041-1043), se présente sous forme d'une micropipette fabriquée à l'aide de techniques de microtechnologie et dont la pointe peut avoir dimensions aussi petites que 3 et 10 nm pour diamètres internes et externes respectivement. Cette 30. micropipette est néanmoins intégrée dans appareillage AFM pour son utilisation. L'éjection de la

• : .

5

solution est ici provoquée non pas par une mise en contact mais en exerçant une pression sur la colonne de liquide. Ce dispositif a été testé pour son aptitude à délivrer des solutions de gravure d'une couche de chrome déposée sur une plaque de verre. Le deuxième dispositif (I. W. RANGELOW et al., ""NANOJET": Tool for the nanofabrication", Journal of Vacuum Microelectronics and Nanometer Technology, B: Structures (2001), 19(6), 2723-2726; J. VOIGT et al., "Nanofabrication with scanning nanonozzle 'Nanojet'", 10 Microelectronic Engineering (2001), 57-58 1035-1042) consiste en des pointes réalisées en silicium couvert de Cr/Au, ayant une forme pyramidale et un orifice de sortie de taille inférieure à 100 nm. Ce dispositif délivre non pas une solution chimique comme dans 15 l'exemple précédent, mais des radicaux libres en phase gazeuse produits par une décharge plasma qui viennent attaquer le matériau mis en regard de la pointe. Ainsi, le dispositif ne consiste-t-il pas uniquement en une pointe microfabriquée mais inclut-il également .20 machinerie de production d'espèces très réactives, comme une décharge plasma radiofréquence ou microonde, qui peuvent attaquer le substrat.

. .

1

京 注

اند. انتخاب

Ces deux exemples présentent certes une microfabriquée qui remplace la 25 pointe ils microscopie AFM, mais[.] conventionnelle de s'affranchir de la machinerie de permettent pas' périphérique lourde et onéreuse nécessaire fonctionnement. D'autre part, cette technique repose .30 sur une mise en contact ou quasi-mise en contact de la · pointe et du substrat. De ce fait, les paramètres de fonctionnement doivent être très minutieusement contrôlés pour éviter toute détérioration de l'état de surface due à une trop grande force exercée au niveau de la pointe.

5

10

15

20

25

30

EXPOSÉ DE L'INVENTION

La présente invention concerne un dispositif d'électronébulisation bidimensionnel ayant une géométrie de type plume de calligraphie, dont la pointe tient lieu de siège pour la nébulisation.

L'invention a donc pour objet une source comportant d'électronébulisation une structure comprenant au moins une pointe plate et mince en porteà-faux par rapport au reste de la structure, ladite pointe étant pourvue d'une fente capillaire pratiquée dans toute l'épaisseur de la pointe et qui aboutit à l'extrémité de la pointe pour former d'éjection de la source d'électronébulisation, source comprenant des moyens d'approvisionnement de la fente capillaire en liquide à nébuliser et des moyens d'application d'une tension d'électronébulisation sur ledit liquide.

Selon un mode avantageux, les moyens d'approvisionnement comprennent au moins un réservoir en communication fluidique avec la fente capillaire.

De préférence, la structure comprend un support et une plaque solidaire du support et dont une partie constitue ladite pointe. Les moyens d'approvisionnement peuvent comprendre un réservoir constitué par un évidement formé dans ladite plaque et en communication fluidique avec la fente capillaire.

Les moyens d'application d'une tension d'électronébulisation peuvent comprendre au moins une électrode disposée de façon à être en contact avec ledit liquide à nébuliser.

Dans le cas où la structure comprend un 5 support et une plaque solidaire du support, les moyens tension d'électronébulisation d'une d'application peuvent comprendre le support, au moins partiellement électriquement conducteur, et/ou la plaque au moins électriquement conductrice. 10 partiellement Avantageusement, la plaque présente une surface hydrophobe au liquide à nébuliser.

Les moyens d'application d'une tension d'électronébulisation peuvent comprendre un fil électriquement conducteur disposé pour pouvoir être en contact avec ledit liquide à nébuliser.

Les moyens d'approvisionnement peuvent comprendre un tube capillaire. Ils peuvent comprendre un canal réalisé dans un microsystème supportant ladite structure et en communication fluidique avec la fente capillaire.

Selon un mode avantageux, les moyens d'application de la tension (électrode, support, plaque, fil) permettent également l'application des tensions nécessaires pour tout dispositif placé en amont en continuité fluidique avec l'objet de la présente invention.

L'invention a aussi pour objet un procédé de fabrication d'une structure étant une source d'électronébulisation, comprenant :

15

20

. 25

- la réalisation d'un support à partir d'un substrat,
- la réalisation d'une plaque comportant une partie constituant une pointe plate et mince, ladite pointe étant pourvue d'une fente capillaire, pour véhiculer un liquide à nébuliser, pratiquée dans toute l'épaisseur de la pointe et qui aboutit à l'extrémité de la pointe,
- la solidarisation de ladite plaque sur le support, la pointe étant en porte-à-faux par rapport au support.
 - Ce procédé peut comprendre les étapes suivantes :
- la fourniture d'un substrat pour réaliser 15 le support,
 - la délimitation du support au moyen de tranchées gravées dans le substrat,
- le dépôt, sur une zone du substrat correspondant à la future pointe de la structure, de
 20 matériau sacrificiel selon une épaisseur déterminée,
 - le dépôt de la plaque sur le support délimité dans le substrat, la pointe de la plaque étant située sur le matériau sacrificiel,
 - l'élimination du matériau sacrificiel,
 - le détachement du support par rapport au substrat par clivage au niveau desdites tranchées.

L'étape de dépôt de la plaque peut être un dépôt d'une plaque comprenant en évidement en communication fluidique avec la fente capillaire afin de constituer un réservoir. Le procédé peut comprendre en outre une étape de dépôt d'au moins une électrode

destinée à assurer un contact électrique avec le liquide à nébuliser.

d'électronébulisation selon La source être utilisée pour obtenir une l'invention peut ionisation d'un liquide par électronébulisation avant son analyse en spectrométrie de masse. Elle peut aussi être utilisée pour obtenir une production de gouttes de liquide de taille calibrée ou l'éjection de particules de taille fixée. Elle peut encore s'appliquer à la 10 réalisation d'une écriture moléculaire à l'aide de composés chimiques. Elle peut encore s'appliquer à la définition du potentiel électrique de jonction d'un dispositif en continuité fluidique.

15 BRÈVE DESCRIPTION DES DESSINS

L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :

- les figures 1A et 1B sont des vues respectivement de dessus et de côté d'une source d'életronébulisation selon la présente invention,
- la figure 2 est une vue en perspective de
 25 l'extrémité de la pointe d'une source d'électronébulisation selon la présente invention,
 - les figures 3A à 3H sont des vues de dessus illustrant un procédé de fabrication de la source d'électronébulisation représentée aux figures 1A

30 et 1B,

- les figures 4A et 4B illustrent une technique de clivage utilisable pour la mise en œuvre du procédé de fabrication illustré par les figures 3A à 3H,
- la figure 5 représente un montage utilisé lors d'un test au cours duquel une source d'électronébulisation selon l'invention est associée à un spectromètre de masse,
- la figure 6 est un graphe représentant le 10 courant ionique total obtenu au cours du test utilisant une source d'électronébulisation selon l'invention, dans le montage de la figure 5,
- la figure 7 est un spectre de masse obtenu au cours du test utilisant une source 15 d'électronébulisation selon l'invention dans le montage de la figure 5,
 - la figure 8 représente un autre montage utilisé lors d'un test au cours duquel une source d'életronébulisation selon l'invention est associée à un spectromètre de masse,
 - la figure 9 est un graphe représentant le courant ionique total obtenu au cours du test utilisant une source d'électronébulisation selon l'invention, dans le montage de la figure 8,
- la figure 10 est un spectre de masse obtenu cours du test utilisant une source d'électronébulisation selon l'invention dans le montage de la figure 8,
- la figure 11 représente un spectre de 30 masse de fragmentation du glu-fibrinopeptide obtenu

avec une source d'électronébulisation selon la présente invention,

- la figure 12 représente un spectre de masse obtenu pour un digestat de Cytochrome C par l'intermédiaire d'une source d'électronébulisation selon la présente invention,
- la figure 13 est un graphe représentant le courant ionique total obtenu au cours d'un test utilisant une source d'électronébulisation selon l'invention,
- la figure 14 représente un spectre de masse obtenu au cours d'un test utilisant une source d'électronébulisation selon la présente invention,
- la figure 15 est un graphe représentant

 15 le courant ionique total enregistré sur un spectromètre
 de masse de type trappe ionique lors d'un test en
 couplage utilisant une source d'électronébulisation
 selon la présente invention,

...

- la figure 16 représente le spectre de 20 masse correspondant au graphe de la figure 15.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS

La présente invention s'inspire de la structure et du mode de fonctionnement d'une plume de calligraphie. Les sources planaires qui font l'objet de la présente invention sont constituées des mêmes éléments qu'une plume de calligraphie : un réservoir à liquide et une fente capillaire bidimensionnelle formée dans une pointe. La présente invention peut comporter, si cela est nécessaire, une zone de contact électrique sur laquelle est appliquée la tension nécessaire à

10

5.50

. 25

l'établissement d'un nébulisat. Cette zone de contact peut être structurée avec des contacts multiples et indépendants et en particulier trois contacts correspondant à une électrode de travail, permettant également d'appliquer la tension d'électronébulisation, une électrode de référence et une électrode de mesure pour permettre la modification chimique favoriser électrochimie vue de en le processus d'électronébulisation ou de l'étudier. Ces électrodes 10· permettent également le contrôle du processus d'électronébulisation par synchronisation sur sa fréquence propre. De même que dans la plume de calligraphie, le liquide est amené par capillarité dans la fente vers l'extrémité de la pointe de la structure 15 de type plume où il est éjecté. L'éjection a lieu non action mécanique, mais forme nébulisation par application d'une haute tension sur le liquide.

Une source d'électronébulisation selon la 20 présente invention est représentée aux figures 1A et 1B, la figure 1A étant une vue de dessus et la figure 1B une vue de côté.

Cette source d'électronébulisation comprend un support 1 et une plaque 2 solidaire du support 1. 25 Une partie de la plaque 2 forme une pointe 3 en porteà-faux par rapport au support 1. La plaque 2 comporte en son centre un évidement 4 révélant la surface du support 1 et constituant un réservoir. Une fente capillaire 5, révélant également le support 1, relie le 30 réservoir 4 à l'extrémité 6 de la pointe 3 qui forme un orifice d'éjection pour la source d'électronébulisation.

Le fonctionnement du dispositif repose sur les principes énoncés suivants. Le réservoir de liquide 4 contient le liquide ou sert de transit pour l'alimentation en liquide. Le liquide est ensuite guidé par la fente capillaire 5 en amont de laquelle est situé le réservoir 4 de liquide. La pointe de la structure permet l'établissement d'un électronébulisat.

Il en découle le mode de fonctionnement suivant. Le liquide d'intérêt est déposé ou acheminé dans le réservoir de liquide 4 par une méthode adéquate. Il est guidé vers l'extrémité 6 de la structure par capillarité. La source est amenée sur son site d'utilisation (par exemple devant un spectromètre de masse). Un potentiel est appliqué au liquide de façon à observer le nébulisat à l'extrémité 6 de la pointe.

La physique de la source ayant une 20 géométrie de type plume repose sur les propriétés des matériaux qui la constituent et sur les dimensions de ses différents éléments. La figure 2 représente une vue tridimensionnelle de la fente capillaire au niveau de l'extrémité 6 de la pointe 3.

. .

Le rôle du réservoir 4 est de contenir le liquide à nébuliser et d'alimenter progressivement la fente capillaire 5. La topologie de la structure est bidimensionnelle. La plaque 2 est en un matériau à caractère hydrophobe, et même plus hydrophobe que celui constituant le support 1 supportant la plaque 2, matériau qui tapisse le fond du réservoir. Ceci permet

de limiter les pertes de liquide hors du réservoir. Il est intéressant de noter à ce point que les liquides envisagés pour la nébulisation seront a priori à caractère plutôt hydrophile, tels que des solutions purement aqueuses ou mi-aqueuses mi-alcooliques, par exemple des mélanges méthanol/eau 50/50.

La fente capillaire 5 et l'extrémité 6 de la pointe 3 sont constituées dans le matériau formant la plaque 2 et leurs dimensions sont déterminées lors fabrication. Sur figure 2 10 du procédé de la sont considérer dimensions à pour indiquées des fonctionnement de la source d'électronébulisation : la largeur w de la fente, sa hauteur h et sa longueur 1. On suppose que du liquide est présent dans la fente capillaire 5. Lorsque la source d'électronébulisation 15 est présenté en régard de la zone où la nébulisation est souhaitée, l'effet de gravité sur ce liquide est négligeable. Les facteurs qui vont intervenir pour le remplissage de la fente capillaire par le liquide sont : l'angle de contact (γ) du liquide sur 20 matériau constituant la plaque 2, la tension de surface (γ) du liquide et les dimensions (l et h) de la fente capillaire 5. D'après l'équation 1, régissant l'effet de capillarité d'un liquide dans un tube capillaire, le cosinus de l'angle de contact y doit être positif pour observer l'effet capillarité, de et ceci, indépendamment de l'effet de gravité.

$$h_r = \frac{2\gamma \cos \alpha}{\rho gr}$$
 (Equation 1)

. 2

où (r) est le rayon interne du capillaire, (h_r) la hauteur dont monte le liquide dans le tube capillaire, (γ) la densité du liquide, (γ) est l'angle de contact du liquide sur les parois internes du tube capillaire et (g) est l'accélération de la pesanteur.

$$\gamma \cos \alpha = \gamma_{SV} - \gamma_{SL}$$
 (Equation 2)

où γ_{sv} est la tension de surface à l'interface solide-vapeur et γ_{SL} est la tension de surface à l'interface solide-liquide.

Tout d'abord, dans le cas où γ < 90° (cos γ > 0), l'équation de Young (équation 2) implique que $\gamma_{SV} > \gamma_{SL}$ et donc que l'interaction solide-liquide soit favorisée comparée à celle solide-vapeur. Le terme r apparaît dans l'équation 1. De sa valeur dépend l'observation ou non de l'effet de capillarité. Le terme r correspond au rayon du tube capillaire et, dans le cas du dispositif faisant l'objet de la présente invention, à la dimension de la fente capillaire 5. Si le liquide pénètre dans la fente capillaire, il se forme un pont-liquide entre les deux parois de la fente capillaire. On peut ainsi définir un rapport de forme R pour la fente capillaire 5, correspondant au rapport h/w. Il résulte de ce qui précède que R doit être supérieur à une valeur critique pour observer un effet de capillarité dans la fente capillaire 5 et pour que la formation du pont-liquide dans la fente capillaire 5 soit favorisée du point de vue énergétique.

5

10

15

20

Le dispositif de nébulisation peut ou non inclure des zones conductrices (voir la figure 3H). Ces zones conductrices si elles sont situées au niveau de réservoir de liquide 4 servent d'électrodes pour amener 5 la tension de nébulisation. Par contre, si elles se situent au niveau de la fente capillaire 5, électrodes serviront à modifier les espèces présentes dans le liquide. Dans le cas d'une application de type électronébulisation avant analyse par spectrométrie de 10 masse, des processus électrochimiques interviennent de l'ionisation des molécules. Les conductrices implantées de part et d'autre de la fente capillaire 5 au niveau de l'extrémité 6 de la pointe 3 permettraient de les étudier. Par ailleurs. 15 phénomènes conduisent à une augmentation du rendement d'ionisation et, de ce fait, à une amélioration des conditions d'analyse. Dans le cas d'une application de type écriture moléculaire, la présence d'une quantité importante d'espèces radicalaires accroît plus 20 vitesse de gravure du substrat.

Néanmoins, suivant la nature du matériau choisi pour réaliser le support 1 de la source d'électronébulisation. ces zones conductrices, particulier si leur rôle est d'amener la tension de nébulisation, peuvent ne pas être nécessaires. effet, si un matériau conducteur (métal, Si..) utilisé pour réaliser le support 1 ou la plaque 2, la tension sera directement appliquée sur ce matériau conducteur. Enfin, un dispositif ne comprenant pas de zones conductrices et pour lequel les matériaux ne sont pas conducteurs peut être utilisé

25

électronébulisation pourvu que le contact électrique réalisé via le liquide. Un fil métallique plongeant dans la solution à nébuliser, au niveau du réservoir 4 ou tout autre contact conducteur assurera rôle d'application de la tension de ainsi le nébulisation.

Le dispositif peut être également connecté à une source d'alimentation en liquide en amont du réservoir 4, comme un capillaire amenant une solution provenant d'un autre appareil, d'une autre structure. 10 Par exemple, pour une application de type spectrométrie de masse, le capillaire peut correspondre à une sortie de colonne de séparation. Pour une application de type gouttes de taille calibrée ou écriture dépôt de moléculaire, ce capillaire amène le liquide vers le 15 dispositif de nébulisation depuis sa localisation initiale. Ledit capillaire peut être un capillaire fondue. Il classique commercial en silice également être un capillaire microfabriqué, c'est-à-20 dire un microcanal intégré sur le système supportant la source. Le capillaire peut être une piste hydrophile matérialisée sur le support 1. Dans ces deux derniers la plaque 2 est intégrée sur un microsystème fluidique et joue le rôle d'interface entre ledit microsystème et le monde extérieur où la solution 25 du microsystème est utilisée. sortant propriétés conductrices du dispositif ou d'un de ses peuvent être utilisées pour alimenter éléments électriquement tout système en relation fluidique avec 30 le dispositif.

:-

De surcroît, lesdites plaques de type plume peuvent être utilisées de façon isolée ou intégrées en grand nombre sur un même support, et ce, en vue de la parallélisation de la nébulisation. Dans cas, lesdites plaques de type plumes sont les unes des autres et indépendantes ou non les solutions nébulisées sont, soit les mêmes afin d'accroître la nébulisation de ladite solution, soit différentes et, dans ce cas, les plumes fonctionnent de façon séquentielle en nébulisation. L'intégration desdites plaques de type plume peut être réalisée de façon linéaire avec un alignement desdites plaques sur un côté du support ou de façon circulaire sur un passage d'une support rond. Le source à l'autre s'effectue alors respectivement par translation ou par rotation du support.

Une large gamme de matériaux est · aujourd'hui envisageable pour des fabrications microtechnologiques et en particulier de microsystèmes fluidiques : verre, matériaux à base de silicium (Si, SiO₂, nitrure de silicium...), quartz, céramiques ainsi qu'un grande nombre de matériaux macromoléculaires, plastiques ou élastomères.

La géométrie retenue pour la présente 25 invention est compatible avec des fabrications utilisant tout type de matériaux, et ce, pour les différentes ' parties composant la source d'électronébulisation : le support 1, la plaque de type plume 2 et les zones conductrices. Le procédé de 30 fabrication technologique fait de plus intervenir un ou plusieurs autre(s) matériau(x) dont le choix est adapté

. :

. 2

10

15

en fonction des matériaux retenus pour les éléments 1, 2 et 3.

de fabrication procédé générique de Un est d'électronébulisation selon l'invention sources à ЗН. Ce procédé de ЗА représenté aux figures fabrication peut être découpé en sept étapes majeures détaillées ci-dessous, de facon sont applicable à n'importe quel type de matériau.

procédé de première étape de substrat destiné à fabrication est le choix du 10 de la le support constituer d'électronébulisation. Ce substrat 10 (voir la figure 3A) peut être en matériau macromoléculaire, en verre ou bien en silicium ou encore en métal. Dans le cas de cet exemple de réalisation, c'est un substrat de silicium 15 de 250 ym d'épaisseur.

Le début du procédé conditionne la fin de la fabrication des dispositifs d'électronébulisation. Il s'agit de la matérialisation sur le support du lignes qui aideront au clivage dispositif de substrat afin de libérer la pointe de la source et permettre la nébulisation.

4.

. . .

Selon la deuxième étape, une couche 11 de matériau dit de protection est déposée sur une partie du substrat 10. Le matériau de la couche 11 est choisi en fonction de la nature du matériau du substrat 10 de façon qu'une attaque de la couche 11 n'affecte pas le substrat 10. Dans cet exemple de réalisation, la couche de matériau de protection est une couche d'oxyde de silicium de 20 nm d'épaisseur. Lа couche 11 d'épaisseur variable suivant la nature des matériaux du

5

20

.25

substrat 10 et de la couche 11. La couche 11 est soumise à une étape de lithographie destinée à révéler les zones du substrat à attaquer pour définir des lignes de clivage délimitant le support la structure. Les zones correspondantes de la couche 11 sont attaquées afin de fournir des fenêtres 12 révélant le substrat 10 (voir la figure 3B). Une fois ces zones du substrat révélées, elles sont soumises à une attaque appropriée de façon à matérialiser les lignes clivage 13. Enfin, la couche 11 restante est éliminée. La figure 3C montre le résultat obtenu : les lignes 13, constituées de tranchées à section en V, délimitant le support de la structure à obtenir.

Au cours d'une troisième étape, une couche 15 de matériau sacrificiel est déposée sur le substrat 10. Cette couche de matériau sacrificiel 14 permettra en fin de fabrication à la pointe de la structure de surplomber son support avant l'opération de clivage. Le substrat 10 est recouvert d'une fine couche de matériau 20 sacrificiel d'épaisseur suffisante pour que, après sa suppression, la pointe soit suffisamment séparée du substrat 10, mais néanmoins suffisamment fine pour pouvoir s'affranchir de tout problème de contrainte et de courbure de la pointe en surplomb du support. Dans cet exemple de réalisation, la couche de matériau 25 sacrificiel est une couche de nickel de 150 d'épaisseur.

La couche de matériau sacrificiel est alors soumise à une étape de lithographie et d'attaque appropriée afin de ne garder de ce matériau qu'une zone

5

10

14 correspondant à la pointe de la structure (voir la figure 3D).

La quatrième étape peut être mise en œuvre. Le substrat 10 est alors recouvert d'une couche d'un la plaque la matériau destinée à constituer 5 structure. En fonction du matériau du substrat, matériau de cette couche peut être du silicium ou à base de silicium, un métal ou même un matériau de type polymère ou céramique. Dans cet exemple de réalisation, la couche de matériau destinée à constituer la plaque 10 est une couche de 35 γm d'épaisseur en polymère SU-8 2035 acheté sous forme pré-polymérisée chez Microchem polymérisé par un procédé photolithographique. L'épaisseur de cette couche est choisie de appropriée. De cette épaisseur dépendent en effet les 15 du dispositif en ionisation performances. nébulisation, comme il a été expliqué précédemment. L'épaisseur de cette couche influence directement la hauteur h de la fente capillaire et, d'après ce qui précède, plus h est grand, plus w doit être grand afin 20 de ne pas modifier le rapport R. Or, en fonction de l'application finale de la source de nébulisation, l'enjeu est de diminuer au maximum w afin d'accroître les performances. En revanche, si l'épaisseur de la couche destinée à constituer la plaque est trop fine, 25 la pointe en surplomb peut se courber une fois décollée du support du fait des contraintes exercées sur le matériau. L'homme de l'art est en mesure d'adapter le présent cahier des charges en fonction de la nature du définir couche et ainsi de 30 matériau de cette l'épaisseur optimale de matériau à déposer.

couche subit alors une Cette étape lithographie et une attaque afin de former la plaque de type plume 2, c'est-à-dire en plus de son encombrement, le réservoir 4, la fente capillaire 5 et la pointe 3 (voir la figure 3E). Cette attaque est adaptée en fonction du matériau de la plaque. Il peut s'agir d'une technique de gravure chimique, d'une attaque physique dans le cas d'un matériau à base de silicium ou d'un métal. d'une attaque physique ou d'une photolithographie suivie d'une révélation dans le cas d'un polymère photolithographiable.

La cinquième étape peut alors entreprise. Une fois la plaque 2 formée, la zone 14 de matériau sacrificiel sous la pointe 3 peut être ôtée. 15 matériau sacrificiel est ôté par une chimique appropriée. La solution pour cette attaque chimique doit être choisie judicieusement de façon à ce que tout le matériau sacrificiel soit supprimé sans que le support ni plaque ne soient affectés. 20 matériaux de ces éléments ne doivent donc pas être sensibles à cette solution chimique. On obtient la structure montrée à la figure 3F.

La sixième étape concerne l'implantation de zones conductrices sur la structure. Comme mentionné précédemment, cette étape n'est incluse dans le procédé de fabrication que s'il est prévu de telles zones conductrices.

Que ces zones se situent au niveau du réservoir 4 (application de la tension de nébulisation)

30 ou au niveau de la pointe (électrodes d'études physicochimiques), le procédé le fabrication est le même. La

5

. 10

réalisation des zones conductrices au niveau 3 réservoir seule sera détaillée ici.

Ces zones conductrices peuvent métal ou en carbone. La structure est d'abord soumise à seules les une étape de masquage afin que correspondant à la formation des zones conductrices soient dégagées. Le matériau conducteur choisi alors déposé par une technique de PECVD (déposition en phase vapeur par techniques de plasma chimique) sur la structure. Dans cet exemple de réalisation, les zones conductrices sont en palladium et ont une épaisseur de 400 nm. La figure 3G montre la structure obtenue. Deux zones conductrices 7 et 8 encadrent le réservoir 4 et permettent d'y appliquer un potentiel électrique.

de ce procédé de septième étape 15 . La fabrication de la source de nébulisation est détachement du support 1 par rapport au substrat 10 et notamment, la mise en surplomb de la pointe 3 par rapport au support 1 en utilisant les lignes de clivage 13 matérialisées à la deuxième étape de ce procédé de fabrication. La structure obtenue est représentée à la figure 3H.

\$.

-

e de la compa

Une technique de clivage avantageuse est illustrée par les figures 4A et 4B dans le cas de la mise en surplomb de la pointe. Un fil métallique fixe 20 est placé sous le support 1 au niveau des tranchées de clivage 13 réalisées de part et d'autre de la pointe. Conjointement, deux forces sont exercées sur le substrat aux endroits indiqués sur la figure 4A par des flèches. La séparation préalablement effectuée de la pointe 3 par rapport au support 1 assure ainsi de ne

5

10

...i

. .20

.30

pas endommager la pointe lors de l'étape de clivage. La figure 4B montre le clivage en cours de réalisation.

Ce procédé de fabrication générique est ensuite adapté en fonction des matériaux choisis pour chaque élément de la source d'électronébulisation.

Le premier champ d'applications ciblé par la présente invention est l'électronébulisation de solutions biologiques ou chimiques à analyser spectrométrie de masse. La spectrométrie de masse est à 10 l'heure actuelle la technique de choix pour l'analyse, la caractérisation et l'identification des protéines. Or, depuis la fin du décryptage du génome, biologistes notamment s'intéressent de plus en plus à science qui vise à étudier et à la protéomique, 15 caractériser l'ensemble des protéines d'un individu. Ces protéines, chez tout être humain, sont présentes à raison de plus de 106 molécules différentes en incluant les modifications post-traductionnelles. Ce justifie le besoin à l'heure actuelle, de techniques et d'outils d'analyse compatibles avec une automatisation 20 en vue d'une analyse à haut débit, et ce, notamment pour la spectrométrie de masse du fait de sa pertinence le cadre de l'étude des protéines: échantillons (ou solutions à analyser) dont dispose le biologiste 25 sont souvent de taille restreinte ·(inférieure ou égale au 1 γL) et contiennent peu de · matériel biologique, ce qui impose de travailler avec une technique d'analyse très sensible et consommant peu d'échantillon. Ceci fait de la spectrométrie de masse . 30 avec une ionisation par nanoélectronébulisation une des techniques d'analyse les plus utilisées

caractérisation protéines. Dans contexte, des l'enjeu majeur est la diminution au maximum dimensions de l'extrémité de la pointe de la source. En effet, comme mentionné dans l'introduction, il existe d'électronébulisation deux régimes pour type d'application, le plus intéressant en termes d'automatisation et de gain en sensibilité étant le régime de nanoélectronébulisation. Cependant, à l'heure actuelle, la vitesse d'analyse est limitée, le débit d'échantillons restreint du fait que la nanoESI-MS Ionization "nano ElectroSpray repose entièrement sur des processus Spectrometry") manuels. Les outils actuels ne se prêtent pas à une analyse robotisée et automatisée. Ce contexte explique les motivations pour le développement de la présente invention pour ce type d'applications.

2 /J

x . 🕭

. .

. . .

Le deuxième type d'applications ciblé par la présente invention est le dépôt de gouttes calibrées sur une surface lisse ou rugueuse. Ceci est de prime intérêt pour la préparation de puces à ADN, à peptides, à PNA ou tout autre type de molécules. Ce requiert un dispositif d'applications capable délivrer du fluide sous forme discrète, des gouttes de liquide de taille calibrée, la taille dépendant le plus souvent de la résolution espérée dans la préparation des plaques d'analyse. Plus les gouttes sont petites, plus leur dépôt peut être rapproché sur la plaque et plus la densité en dépôts et donc en substances à analyser est grande. Le dispositif faisant l'objet de la présente invention peut être utilisé à cette fin. La largeur de la fente capillaire 5, ainsi que la valeur

10

de la tension appliquée pour l'éjection des gouttes conditionne la taille des gouttes éjectées par ledit dispositif de nébulisation. Ainsi la résolution des plaques d'analyse peut-elle être ajustée en fonction de la largeur de la fente du dispositif. Enfin, la tension de nébulisation peut être alternative et ainsi donner une vitesse de dépôt en gouttes/minute directement de la fréquence de la tension alternative. Le dépôt de gouttes calibrées comme présenté ci-dessus peut être utilisé pour la préparation de plaques 10 d'analyse comme les puces à ADN. Il peut aussi être la préparation de cibles MALDI appliqué à Desorption/Ionization") "Matrix-Assisted Laser sur à analyser les échantillons par lesquelles 15 spectrométrie de masse avec une ionisation MALDI ici, leur façon discrète avant déposés de introduction dans le leur cristallisation et spectromètre de masse. Ainsi, le présent dispositif de nébulisation ayant une géométrie de type plume peut-il être par exemple connecté en sortie de colonne de 20 séparation et permettre un couplage entre une technique séparative et une analyse en ligne par spectrométrie de masse de type MALDI. Les gouttes de liquide enfin peuvent être remplacées par des cellules. Dans ce cas, les cellules sont de même éjectées de façon discrète et 25 exemple sur une plaque de déposées par l'élaboration de puces à cellules.

La troisième application ciblée par la présente invention est l'écriture moléculaire à des échelles de l'ordre de la centaine de nanomètres. A l'heure actuelle, ce type d'opérations est réalisé à

l'aide de pointes de microscopie AFM, fonctionnant à d'un appareillage lourd et encombrant. L'éjection du liquide repose sur une mise en contact ou quasi-contact de la pointe et du substrat de dépôt dans le cas de l'AFM ou sur l'application d'une pression sur liquide. Une adaptation de cette technique est d'éjecter le liquide sous l'action d'une tension et non à l'aide d'une pression ou d'une mise en contact. En effet, dans les deux cas, l'éjection est provoquée lorsque les forces de tension du liquide au niveau de la pointe de la pipette sont « dépassées » par une autre force appliquée à la colonne de liquide. Ceci est envisageable avec un dispositif d'électronébulisation où la force électrique vient surpasser celle de tension engendrer la formation de ainsi liquide et la formation d'espèces gouttelettes. D'autre part, réactives intrinsèque est au . processus d'électronébulisation. Cette technique d'éjection du appareillage complexe . fluide supprime tout production d'espèces réactives comme des radicaux libres, tel qu'une décharge plasma ou micro-onde, en amont de la structure qui délivre le liquide.

La présente invention peut donc être utilisée à de telles fins d'écriture moléculaire sur un substrat lisse ou rugueux, la libération de la solution d'écriture (pseudo-encre) étant ici régie par application d'une tension. De même que pour le premier champ d'applications, un enjeu majeur est de minimiser la taille de l'extrémité de la pointe, cette dimension conditionnant la taille des éjections par nébulisation et par conséquent la résolution espérée en écriture sur

النيخ .

5

10

.15

:20

25

largeur de la pointe est substrat final. La inférieure ou égale au micromètre. Un autre facteur influençant la taille des éjections et le débit de fluide est la tension de nébulisation appliquée au liquide. Enfin, la production d'espèces réactives, si le dispositif est utilisé pour dispenser une solution être accrue d'attaque du substrat, peut l'implantation d'électrodes au sein de la structure de type plume qui délivre le fluide. Ces électrodes sont alors le siège de réactions électrochimiques conduisant à la formation d'espèces réactives.

On va maintenant s'intéresser aux exemple suivants.

15 Exemple 1 : Design de sources de nanoélectronébulisation microfabriquées selon la présente invention.

Un premier exemple concerne les dimensions et les formes choisies pour réaliser un dispositif de nébulisation comme décrit dans la présente invention.

Ce premier dispositif présente de petites pointe fait du domaine dimensions en :sa du visé, c'est-à-dire une d'applications nanoélectronébulisation pour l'ionisation de solutions avant leur analyse par spectrométrie de masse. Le dispositif est réalisé conformément aux figures 1A et 1B. Le réservoir 4 du dispositif a pour dimensions 2,5 mm \times 2,5 mm \times e (γ m) où e est l'épaisseur de la couche de matériau utilisée pour réaliser la plaque 2. La valeur de e est proche de celle de h, considérée ciaprès, l'épaisseur de matériau sacrificiel étant de

20

25

20

30

substrat final. la pointe La largeur de le inférieure ou égale au micromètre. Un autre facteur influençant la taille des éjections et le débit de fluide est la tension de nébulisation appliquée au liquide. Enfin, la production d'espèces réactives, si le dispositif est utilisé pour dispenser une solution substrat, peut être accrue d'attaque du l'implantation d'électrodes au sein de la structure de type plume qui délivre le fluide. Ces électrodes sont alors le siège de réactions électrochimiques conduisant à la formation d'espèces réactives.

On va maintenant s'intéresser aux exemple suivants.

Exemple 1 : Dimensionnement de sources 15 . de nanoélectronébulisation microfabriquées selon la présente invention.

Un premier exemple concerne les dimensions et les formes choisies pour réaliser un dispositif de nébulisation comme décrit dans la présente invention.

- No. 10 (1)

. N. E.

Ce premier dispositif présente de petites dimensions en sa pointe du fait du domaine d'applications visé, c'est-à-dire une nanoélectronébulisation pour l'ionisation de solutions 25 avant leur analyse par spectrométrie de masse. dispositif est réalisé conformément aux figures 1A et Le réservoir 4 du dispositif a pour dimensions 2,5 mm \times 2,5 mm \times e (μ m) où e est l'épaisseur de la couche de matériau utilisée pour réaliser la plaque 2. La valeur de e est proche de celle de h, considérée ciaprès, l'épaisseur de matériau sacrificiel étant de

l'ordre de la centaine de nanomètres. La largeur de la fente capillaire 5 est de 8 ym à l'extrémité 6 de la pointe 3. De la valeur de cette largeur de fente découle l'épaisseur de la plaque 2 de façon à observer l'effet de capillarité et la pénétration effective du liquide dans la fente capillaire 5. Ceci est régi par la valeur du paramètre R défini comme le rapport entre la hauteur h et la largeur w de la fente, R = h/w. Il apparaît que ce rapport doit être supérieur à 1 pour 10 l'effet de capillarité soit observé. l'épaisseur de la plaque doit-elle être supérieure à de micromètres. Par ailleurs, dizaine s'affranchir des problèmes de contraintes mécaniques qui se traduisent par un recourbement de la structure en extrémité 6, cette épaisseur a été fixée à 35 ym. 15

Exemple 2: Fabrication des sources de design décrit dans l'exemple 1 à l'aide des matériaux silicium et SU-8.

Le deuxième exemple concerne la fabrication 20 par microtechnologie des sources de nébulisation, comme décrit dans l'exemple 1. Les matériaux utilisés sont le la silicium le support 1 et résine pour photolithographiable négative SU-8 pour la plaque de type plume 2. Le procédé de fabrication découle du 25 procédé décrit ci-dessus. Il est adapté aux matériaux choisis.

Un substrat de silicium orienté (100) et dopé n, de 3 pouces, est recouvert d'une couche de 200 nm d'oxyde de silicium (SiO₂), puis masqué par lithographie. La couche de SiO₂ est attaquée par une

15

30

l'ordre de la centaine de nanomètres. La largeur de la fente capillaire 5 est de 8 µm à l'extrémité 6 de la pointe 3. De la valeur de cette largeur de fente découle l'épaisseur de la plaque 2 de façon à observer l'effet de capillarité et la pénétration effective du liquide dans la fente capillaire 5. Ceci est régi par la valeur du paramètre R défini comme le rapport entre la hauteur h et la largeur w de la fente, R = h/w. Il apparaît que ce rapport doit être supérieur à 1 pour que l'effet de capillarité soit observé. Ainsi, l'épaisseur de la plaque doit-elle être supérieure à une dizaine de s'affranchir ailleurs, pour micromètres. Par problèmes de contraintes mécaniques qui se traduisent par un recourbement de la structure en extrémité 6, cette épaisseur a été fixée à 35 µm.

Exemple 2: Fabrication des sources de dimensionnement décrit dans l'exemple 1 à l'aide des matériaux silicium et SU-8.

Le deuxième exemple concerne la fabrication 20 .. par microtechnologie des sources de nébulisation, comme décrit dans l'exemple 1. Les matériaux utilisés sont le support 1 et la silicium pour le photolithographiable négative SU-8 pour la plaque de type plume 2. Le procédé de fabrication découle du 25 procédé décrit ci-dessus. Il est adapté aux matériaux choisis.

Un substrat de silicium orienté (100) et dopé n, de 3 pouces, est recouvert d'une couche de 200 nm d'oxyde de silicium (SiO₂), puis masqué par lithographie. La couche de SiO₂ est attaquée par une

solution acide de HF:H2O sur les zones non masquées. Le silicium exposé est ensuite attaqué par une solution de de façon à matérialiser les lignes de (KOH) clivage. Une couche de 150 nm de nickel est ensuite déposée sur la surface de silicium par technique de 5 pulvérisation sous argon (Plassys MP 450S). La couche attaquée de facon locale est nickel photolithographie UV (résine positive photosensible AZ1518 [1,2 γ m], solution de gravure HNO₃/H₂O (1:3)) de façon à ce qu'il ne reste du nickel que sous la pointe 10 de la plume. Après suppression de toute trace de résine plaque de silicium photolithographiable, la déshydratée à 170°C pendant 30 min, de optimiser l'adhésion de la résine SU-8 sur la surface de silicium. Une couche de 35 ym de résine SU-8 est 15 étalée sur le substrat de silicium à l'aide d'une tournette homogénéiser l'épaisseur pour en l'étape suivante de photolithographie. La plaque de type plume 2 est réalisée dans cette couche de résine classiques 20 l'aide de techniques photolithographie UV. Après développement de la résine SU-8 avec le réactif approprié (acétate de 1-méthoxy-2propanol, PGMEA), la couche de nickel est attaquée avec la solution acide (HNO₃/H₂O) décrite ci-dessus. Cette étape d'attaque chimique du nickel n'affecte pas la 25 résine SU-8 même si ce procédé peut prendre plusieurs heures. Enfin, après séchage du dispositif, le substrat 1 de silicium est scié selon la technique illustrée aux figures 4A et 4B. La technique utilisée ici préserve la .30 structure de la plume, comme cette dernière a été auparavant décollée de son support. Une photographie de microscopie électronique à balayage (Hitachi S4700) de la source de nébulisation de type plume fabriquée selon ce procédé confirme le décollement correct de la pointe par rapport à son support.

Le procédé de fabrication décrit ci-dessus n'inclut pas la réalisation d'électrodes.

Exemple 3 : Design de dispositif d'éjection de particules d'une centaine de micromètres.

concerne les exemple troisième 10 Un dimensions et les formes choisies pour réaliser un dispositif d'éjection de particules ayant une taille d'une centaine de micromètres, comme décrit dans la présente invention.

Ce dispositif présente des dimensions plus larges que celui décrit dans l'exemple 1. Ici, les dimensions de la fente de capillaire 5 et du réservoir la manipulation doivent être compatibles avec d'objets d'une centaine de micromètres. Du fait de cette gamme de dimensions, le dispositif décrit dans l'exemple 3 s'applique également à la manipulation de cellules de taille avoisinant 100 ym de diamètre, pour la préparation de puces à cellules par exemple.

上では

39.

Le réservoir 4 dudit dispositif a pour 25 dimensions 1 cm × 1 cm × e (γm) où e est l'épaisseur de la plaque 2. De même que dans l'exemple 1, la valeur de e est définie en fonction de la largeur de la fente capillaire 5 de façon à avoir un facteur de forme R en l'extrémité 6 de la plaque qui soit supérieur à 1. Les particules manipulées par ce dispositif ont une taille de la centaine de micromètres, donc la fente capillaire

5

.15

20

électronique à balayage (Hitachi S4700) de la source de nébulisation de type plume fabriquée selon ce procédé confirme le décollement correct de la pointe par rapport à son support.

5 Le procédé de fabrication décrit ci-dessus n'inclut pas la réalisation d'électrodes.

Exemple 3 : Dimensionnement de dispositif d'éjection de particules d'une centaine de micromètres.

Un troisième exemple concerne les dimensions et les formes choisies pour réaliser un dispositif d'éjection de particules ayant une taille d'une centaine de micromètres, comme décrit dans la présente invention.

Ce dispositif présente des dimensions plus 15 larges que celui décrit dans l'exemple 1. Ici, les. dimensions de la fente de capillaire 5 et du réservoir 4 doivent être compatibles avec la manipulation d'objets d'une centaine de micromètres. Du fait de cette gamme de dimensions, le dispositif décrit dans l'exemple 3 20 s'applique également à la manipulation de cellules de avoisinant 100 diamètre, μm de préparation de puces à cellules par exemple.

Le réservoir 4 dudit dispositif a pour dimensions 1 cm × 1 cm × e (µm) où e est l'épaisseur de la plaque 2. De même que dans l'exemple 1, la valeur de e est définie en fonction de la largeur de la fente capillaire 5 de façon à avoir un facteur de forme R en l'extrémité 6 de la plaque qui soit supérieur à 1. Les particules manipulées par ce dispositif ont une taille de la centaine de micromètres, donc la fente capillaire 5 doit avoir une largeur supérieure à 100 µm. Cependant,

5 doit avoir une largeur supérieure à 100 ym. Cependant, les particules pouvant avoir tendance à s'agréger, cette largeur ne doit pas être choisie trop grande. Elle est de préférence voisine du double de la taille des particules manipulées. De ce fait, la largeur de la fente est fixée à 150 ym, et l'épaisseur de la plaque à 200 ym.

Le matériau retenu pour la fabrication de la plaque de type plume 2 est ici encore la résine photolithographiable négative SU-8 et le matériau choisi pour le support 1 est le verre. La résine SU-8 est intéressante ici pour la manipulation de particules comme les cellules, car ces cellules n'adhèrent pas sur ce matériau. De ce fait, le support 1 en verre est lui aussi couvert d'une fine couche de résine SU-8 afin de prévenir toute adhésion non désirée des cellules sur le dispositif.

:

2

Exemple 4: Test des sources de 20 nébulisation fabriquées selon l'exemple 2 en spectrométrie de masse. I : Application de la tension à l'aide d'un fil de platine.

L'exemple 4 est le test des sources de nébulisation fabriquées comme décrit dans l'exemple 2 pour une analyse en spectrométrie de masse. Dans ce premier exemple, la tension de nébulisation est appliquée à du liquide à nébuliser à l'aide d'un fil de platine plongé dans le liquide au niveau du réservoir comme illustré sur la figure 5.

Le dispositif de nébulisation est placé sur une pièce mobile 30 pouvant être déplacée en xyz. Cette

5

. 10

15

25

ЗÒ

pièce mobile 30 comporte une partie métallique 31 sur laquelle est appliquée la tension d'ionisation dans le spectromètre de masse 25. Le support 1 de silicium est précautionneusement isolé de cette partie métallique 31 lors de la fixation du dispositif sur ladite pièce mobile 30 du fait des propriétés semi-conductrices de ce matériau. Le contact électrique entre la partie métallique 31 et le réservoir du dispositif est assuré à l'aide d'un fil de platine 32 introduit dans le réservoir et qui plonge dans la solution à analyser 33. 10 La solution utilisée pour les tests de nébulisation, une solution de peptide standard (Gramicidine S), est déposée dans le réservoir du dispositif et la pièce mobile 30 est introduite dans l'entrée du spectromètre effectués 25. Les tests sont 15 masse spectromètre de masse de type trappe ionique de chez Thermo Finnigan (LCQ DECA XP+). La tension est alors appliquée au liquide. Une caméra installée sur la trappe ionique permet de visualiser la formation du cône de Taylor, une fois la tension appliquée. La fente capillaire à une largeur de 8 ym.

La figure 6 est un graphe représentant le courant ionique total enregistré par le spectromètre de masse pour une expérience menée pendant 2 minutes avec une solution de Gramicidine S à 5 yM et une tension d'ionisation à 0,8 kV. L'axe des ordonnées représente l'intensité relative I_R. L'axe des abscisses représente le temps. La figure 7 correspond au spectre de masse obtenu avec une solution de Gramicidine S à 5 yM et une tension de 1,2 kV. Le spectre de masse a été moyenné sur 2 minutes d'acquisition du signal soit 80 scans.

. 25

Exemple 5 : Test des sources de nébulisation fabriquées selon l'exemple 2 en spectrométrie de masse. II : Application de la tension sur le support en silicium

L'exemple 5 est proche de l'exemple 4, mais ici la tension n'est pas appliquée à l'aide d'un fil de platine mais en exploitant les propriétés semi-conductrices du silicium.

test en donc . le est L'exemple 10 nébulisation sources de de masse de spectrométrie fabriquées selon l'exemple 2 avec une application de la tension d'ionisation sur le matériau constituant le support. 1 du dispositif de nébulisation.

. .

. :

De même que précédemment, le dispositif de . 15 nébulisation est fixé sur une pièce mobile 40 pouvant comportant une partie xyz et déplacée en . • métallique 41. Ici, le support 1 de silicium est mis en contact électrique avec la partie métallique 41 de la pièce mobile 40 sur laquelle est appliquée la tension 20 d'ionisation dans le spectromètre de masse 25. dispositif est fixé sur la partie mobile 40 à l'aide d'un ruban de téflon qui entoure le dispositif en amont du réservoir. Le test est conduit comme précédemment . 25 après introduction de la pièce mobile 40 dans la trappe ionique 25 et application de la tension. La fente capillaire possède une largeur de 8 ym.

Les tests ont été menés avec un autre peptide standard le Glu-Fibrinopeptide B. Les tensions d'ionisation, ici, sont dans la même gamme que précédemment, de 1 à 1,4 kV pour des concentrations en

Exemple 5 : Test des sources de nébulisation fabriquées selon l'exemple 2 en spectrométrie de masse. II : Application de la tension sur le support en silicium

L'exemple 5 est proche de l'exemple 4, mais ici la tension n'est pas appliquée à l'aide d'un fil de platine mais en exploitant les propriétés semi-conductrices du silicium.

L'exemple 5 est donc le test en spectrométrie de masse de sources de nébulisation fabriquées selon l'exemple 2 avec une application de la tension d'ionisation sur le matériau constituant le support 1 du dispositif de nébulisation.

De même que précédemment, le dispositif de 15 nébulisation est fixé sur une pièce mobile 40 pouvant être déplacée en xyz et comportant une partie métallique 41. Ici, le support 1 de silicium est mis en contact électrique avec la partie métallique 41 de la pièce mobile 40 sur laquelle est appliquée la 20 d'ionisation dans le spectromètre de masse 25. Le dispositif est fixé sur la partie mobile 40 à l'aide d'un ruban de téflon (marque déposée) qui entoure le dispositif en amont du réservoir. Le test est conduit comme précédemment après introduction de la pièce mobile 40 dans la trappe ionique 25 et application de la 25 tension. La fente capillaire possède une largeur de 8 um.

Les tests ont été menés avec un autre peptide standard le Glu-Fibrinopeptide B. Les tensions d'ionisation, ici, sont dans la même gamme que précédemment, de 1 à 1,4 kV pour des concentrations en

peptide inférieures à 1 yM. La figure 9 représente le mesuré pendant ionique total d'acquisition du signal avec une solution à 0,1 yM et une tension de 1,1 kV. I_R est l'intensité relative et t le temps. La figure 10 est le spectre de masse obtenu pour cette acquisition et moyenné sur la période de 3 minutes soit 120 scans. IR est l'intensité relative.

sources de Test des Exemple 6: 2 1'exemple en nébulisation fabriquées selon 10 Expérience de III : spectrométrie de masse: fragmentation (MS/MS).

L'exemple 6 est identique à l'exemple 5 sur la façon de conduire le test. Le montage de test est 15 identique à celui de l'exemple précédent, le dispositif décrit à celui nébulisation correspond l'exemple 1 et réalisé selon le procédé de fabrication décrit dans l'exemple 2. La tension est appliquée directement sur le matériau du support 1, le silicium, via la zone métallique 41 incluse sur la pièce mobile 20 40 introduite dans le spectromètre de masse 25 (voir la figure 8). La fente capillaire a une largeur de 8 ym.

京丁二八 塩丁水

La solution est la même que précédemment, une solution de peptide standard, le Glu-Fibrinopeptide B à des concentrations inférieures ou égales à 1 γM. peptide est soumis à une expérience le fragmentation. Le peptide sous forme dichargée (M+2H)²⁺ est spécifiquement isolé dans la trappe ionique et est fragmenté (paramètre d'énergie de collision normalisée de 30%, facteur d'activation de radiofréquence fixé à 30 0,25).

5

La figure 11 représente le spectre de fragmentation obtenu lors de cette expérience avec une solution à 0,1 γ M et une tension de 1,1 kV. I_R est l'intensité relative. Le spectre a été moyenné sur 2-3 minutes d'acquisition du signal de nébulisation. Les différents fragments de MS/MS sont annotés avec leur séquence.

Exemple 7: Test des sources de 10 nébulisation fabriquées selon l'exemple 2 en spectrométrie de masse. IV: Application à l'analyse d'un mélange biologique.

L'exemple 7 est identique à l'exemple 5 (même dispositif fabriqué selon le même procédé et testé dans les même conditions avec application de la sauf que tension sur le support 1 en silicium) plus l'échantillon analysé ici n'est un peptide standard mais un mélange complexe de peptides obtenu par digestion d'une protéine, le Cytochrome C. Ce digestat se compose de 13 peptides de longueurs et de propriétés physico-chimiques différentes. Ce digestat est testé à une concentration de 1 yM et avec une tension d'ionisation de 1,1-1,2 kV. La largeur de la fente capillaire est de 8 ym.

La figure 12 représente le spectre de masse obtenu pour le digestat de Cytochrome C à 1 γM avec une tension de 1,2 kV. I R est l'intensité relative. Les pics sont annotés avec la séquence du fragment ainsi que son état de charge. Sur les 15 peptides, 11 sont 30. clairement identifiés lors de cette expérience.

. 15

sources de Test des Exemple 8 : l'exemple selon en nébulisation fabriquées Alimentation dudit v:spectrométrie de masse. dispositif en continu à l'aide d'un pousse-seringue ou d'une chaîne de nanoLC placé en amont.

L'exemple 8 est identique à l'exemple 5 (même dispositif fabriqué selon le même procédé et testé dans les même conditions avec application de la silicium) sauf le support 1 en que sur tension amené sur ledit analysé ici est l'échantillon dispositif en continu par un capillaire connecté à un pousse-seringue ou une chaîne de nanoLC en amont.

Pour le couplage à un pousse-seringue, le débit de liquide a été fixé à 500 nL/min. La solution 15 pour ce test est identique à celle de l'exemple 5, sauf que la concentration du peptide Glu-Fibrinopeptide B est ici de 1 yM et la tension de nébulisation a été fixée à 1,2 kV. La largeur de la fente capillaire est de 8 ym.

Æ,

- ""

1

٠ . 15

La figure 13 présente le courant ionique 20 total enregistré lors d'un test de nébulisation mené sur une période de 6 minutes dans lesdites conditions. IR est l'intensité relative et t le temps. La figure 14 représente le spectre de masse correspondant et moyenné sur cette période d'acquisition de 6 minutes soit 240 . 25 scans. IR est l'intensité relative.

chaîne de nanoLC couplage à une . . (chromatographie liquide à un débit de 1 à 1000 nL/min) été effectué avec des conditions classiques de couplage entre une séparation sur nanoLC et une analyse en ligne par spectrométrie de masse sur une trappe

10

ionique. Le débit de fluide est de 100 nL/min, 1,5 kV. L'expérience de tension d'ionisation de séparation est effectuée sur un digestat de Cytochrome C à 800 fmol/YL et 800 fmol de ce digestat sont · 5 injectés sur la colonne de séparation. La largeur de la fente capillaire est de 10 ym. La figure 15 représente le courant ionique total détecté sur le spectromètre de masse lors de l'expérience de séparation. I_R est l'intensité relative et t le temps. La figure 16 est le spectre de masse obtenu pour le pic indiqué sur la 10 figure 15 au temps de rétention de 23,8 min. correspond à l'élution et à l'analyse du fragment 92-99 du Cytochrome C. IR est l'intensité relative.

REVENDICATIONS

1. Source d'électronébulisation comportant une structure comprenant au moins une pointe plate et 5 mince (3) en porte-à-faux par rapport au reste de la structure, ladite pointe (3) étant pourvue d'une fente capillaire (5) pratiquée dans toute l'épaisseur de la pointe et qui aboutit à l'extrémité (6) de la pointe (3) pour former l'orifice d'éjection de la source d'électronébulisation, la source comprenant des moyens d'approvisionnement (4) de la fente capillaire (5) en liquide à nébuliser et des moyens d'application d'une tension d'électronébulisation sur ledit liquide.

2. Source d'électronébulisation selon la revendication 1, caractérisée en ce que les moyens d'approvisionnement comprennent au moins un réservoir (4) en communication fluidique avec la fente capillaire (5).

20

3. Source d'électronébulisation selon la revendication 1, caractérisée en ce que la structure comprend un support (1) et une plaque (2) solidaire du support et dont une partie constitue ladite pointe (3).

25

30

4. Source d'électronébulisation selon la revendication 3, caractérisée en ce que les moyens d'approvisionnement comprennent un réservoir (4) constitué par un évidement formé dans ladite plaque (2) et en communication fluidique avec la fente capillaire (5).

- 5. Source d'électronébulisation selon l'une quelconque des revendications 1 à 4, caractérisée en ce que les moyens d'application d'une tension d'électronébulisation comprennent au moins une électrode (7, 8) disposée de façon à être en contact avec ledit liquide à nébuliser.
- 6. Source d'électronébulisation selon l'une quelconque des revendications 3 ou 4, caractérisée en 10 d'application d'une les moyens ċе que d'électronébulisation comprennent le support, au moins partiellement électriquement conducteur, et/ou moins partiellement électriquement plaque au · 15 conductrice.
 - 7. Source d'électronébulisation selon l'une quelconque des revendications 1 à 4, caractérisée en ce que les moyens d'application d'une tension d'électronébulisation comprennent un fil électriquement conducteur (32) disposé pour pouvoir être en contact avec ledit liquide à nébuliser.
 - 8. Source d'électronébulisation selon l'une 25 quelconque des revendications 1 à 7, caractérisée en ce que les moyens d'approvisionnement comprennent un tube capillaire.
- 9. Source d'électronébulisation selon l'une 30 quelconque des revendications 1 à 7, caractérisée en ce que les moyens d'approvisionnement comprennent un canal

réalisé dans un microsystème supportant ladite structure et en communication fluidique avec la fente capillaire.

- 10. Source d'électronébulisation selon l'une des revendications 3 ou 4, caractérisée en ce que la plaque (2) présente une surface hydrophobe au liquide à nébuliser.
- 10 11. Procédé de fabrication d'une structure étant une source d'électronébulisation, comprenant :
 - la réalisation d'un support (1) à partir d'un substrat (10),
- la réalisation d'une plaque (2)

 15 comportant une partie constituant une pointe plate et mince (3), ladite pointe étant pourvue d'une fente capillaire (5), pour véhiculer un liquide à nébuliser, pratiquée dans toute l'épaisseur de la pointe et qui aboutit à l'extrémité de la pointe,
- la solidarisation de ladite plaque (2) sur le support (1), la pointe (3) étant en porte-à-faux par rapport au support.
- 12. Procédé selon la revendication 11,
 25 caractérisé en ce qu'il comprend les étapes suivantes :
 la fourniture d'un substrat (10) pour réaliser le support (1),
 - la délimitation du support (1) au moyen de tranchées (13) gravées dans le substrat (10),
- orrespondant à la future pointe de la structure, de

matériau sacrificiel (14) selon une épaisseur déterminée,

- le dépôt de la plaque (2) sur le support (1) délimité dans le substrat (10), la pointe (3) de la plaque (2) étant située sur le matériau sacrificiel (14),
 - l'élimination du matériau sacrificiel (14),
- le détachement du support (1) par rapport 10 au substrat (10) par clivage au niveau desdites tranchées (13).
- 13. Procédé selon la revendication 12, caractérisé en ce que l'étape de dépôt de la plaque (2)
 15 est un dépôt d'une plaque comprenant en évidement en communication fluidique avec la fente capillaire (5) afin de constituer un réservoir (4).
- 14. Procédé selon l'une des revendications 20 12 ou 13, caractérisé en ce qu'il comprend en outre une étape de dépôt d'au moins une électrode (7, 8) destinée à assurer un contact électrique avec le liquide à nébuliser.
- 25 15. Application de la source d'électronébulisation selon l'une quelconque des revendications 1 à 10 pour obtenir une ionisation d'un liquide par électronébulisation avant son analyse en spectrométrie de masse.

30

- 16. Application de la source d'électronébulisation selon l'une quelconque des revendications 1 à 10 pour obtenir une production de gouttes de liquide de taille calibrée ou l'éjection de particules de taille fixée.
- 17. Application de la source d'électronébulisation selon l'une quelconque des revendications 1 à 10 à la réalisation d'une écriture 10 moléculaire à l'aide de composés chimiques.
- 18. Application de la source d'électronébulisation selon l'une quelconque des revendications 1 à 10 à la définition du potentiel électrique de jonction d'un dispositif en continuité fluidique.

1/10

FIG. 1A

FIG. 1B

FIG. 2

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

3/10

FIG. 3E

FIG. 3F

FIG. 3G

FIG. 3H

FIG.5

5/10

FIG.7

7/10

30-1_R% 40-20-0 1 2 3 4 5 6 m/z

FIG. 13

FIG. 16

BREVET D'INVENTION **CERTIFICAT D'UTILITE**

Désignation de l'inventeur

Vos références pour ce dossier	SP23848JL-CR023 37-C
N°D'ENREGISTREMENT NATIONAL	
TITRE DE L'INVENTION	
	SOURCES D'ELECTRONEBULISATION PLANAIRES SUR LE MODELE D'UNE PLUME DE CALLIGRAPHIE ET LEUR FABRICATION.
LE(S) DEMANDEUR(S) OU LE(S) MANDATAIRE(S):	
DESIGNE(NT) EN TANT QU'INVENTEUR(S):	
Inventeur 1	
Nom	ARSCOTT
Prénoms	Steve
Rue	4 rue des Stations
Code postal et ville	59000 LILLE
Société d'appartenance	
Inventeur 2	
Nom	LE GAC
Prénoms	Séverine
Rue	13 rue Jean Charcot
Code postal et ville	94460 ORMESSON SUR MARNE
Société d'appartenance	
Inventeur 3	
Nom	DRUON
Prénoms	Christian
Rue	19 Allée des Thuyas
Code postal et ville	59650 VILLENEUVE D'ASCQ
Société d'appartenance	
Inventeur 4	
Nom	ROLANDO
Prénoms	Christian
Rue	9 rue de la Prairie
Code postal et ville	92160 ANTONY
Société d'appartenance	

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par

Signataire: FR, Brevalex, G. Poulin
Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction

Mandataire agréé (Mandataire 1)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☑ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.