CASE FILE

Loan why

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2241

A NUMERICAL METHOD FOR THE STRESS ANALYSIS OF STIFFENED-SHELL STRUCTURES UNDER NONUNIFORM TEMPERATURE DISTRIBUTIONS

By Richard R. Heldenfels

Langley Aeronautical Laboratory Langley Air Force Base, Va.

Washington November 1950

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2241

A NUMERICAL METHOD FOR THE STRESS ANALYSIS OF STIFFENED-SHELL STRUCTURES UNDER NONUNIFORM

TEMPERATURE DISTRIBUTIONS

By Richard R. Heldenfels

SUMMARY

A numerical method is presented for the stress analysis of stiffened-shell structures of arbitrary cross section under nonuniform temperature distributions. The method is based on a previously published procedure that is extended to include temperature effects and multicell construction. The application of the method to practical problems is discussed, and an illustrative analysis is presented of a two-cell box beam under the combined action of vertical loads and a nonuniform temperature distribution.

INTRODUCTION

The effects of nonuniform temperature distributions, such as those produced by aerodynamic heating, are becoming of greater concern in the design of modern high-speed aircraft. The structural effects of temperature changes and the results of some analyses of a simplified structure under nonuniform distributions of temperature have been discussed in reference 1. The analytical methods considered in reference 1 were found, however, to yield inaccurate values for the secondary stresses in complicated structures, and in such cases some type of numerical approach is desirable. Numerical methods, however, usually require extensive and tedious calculations and they should be used only when satisfactory results cannot be obtained from a simplified analysis.

Several numerical methods of stress analysis have been presented in the literature, but none contains provisions for temperature changes. In the present paper, one such method, the numerical procedure of reference 2, has been extended to include the effects of a nonuniform distribution of temperature. In addition, the equations developed permit the analysis of a stiffened-shell structure of arbitrary cross section with any number of internal cells. The application of the method is discussed and illustrated by analysis of a two-cell box beam under the combined action of vertical loads and a nonuniform temperature distribution.

DESCRIPTION OF THE NUMERICAL METHOD

Basic Theory

The structure analyzed is an idealized representation of a multicell stiffened-shell structure (see fig. 1) and has the following characteristics:

- (1) The basic unit is a rectangular panel bounded on two parallel sides by extensionally flexible stringers and on the other two sides by rigid bulkheads.
- (2) The panels consist of sheet material and are assumed to carry shear stress only. The shear stress is constant within a given panel.
- (3) The stringers run parallel to the direction of the primary stresses and carry axial load only.
- (4) The bulkheads lie perpendicular to the stringers and are rigid in their own plane but offer no resistance to warping out of their plane.
 - (5) The structure is loaded only at the bulkheads.
- (6) Material properties, cross-sectional dimensions, and temperature distribution do not vary along the length of a given bay.

With these assumptions about the basic elements of the structure, any type of stiffened shell can be analyzed, provided taper is excluded. The state of stress in such a structure can then be defined by suitable stress-strain relations and two types of displacements:

- (1) Stringer displacements, which are displacements, at the end of a bay, of each flexible stringer in a direction parallel to the stringer.
- (2) Bay displacements, which are translations and rotations of the plane of each cross section defined by the rigid bulkheads.

Once the stress-strain relations are established for the components of the idealized structure, equations of equilibrium can be used to obtain relationships between the displacements. The equilibrium equation for the forces on an individual stringer yields an expression for the stringer displacement of any panel point in terms of the surrounding stringer displacements and the displacements of the two adjacent bays. From this general expression, equations equal in number to the unknown stringer displacements are obtained. The additional equations required for the determination of the bay displacements are obtained from the equations of equilibrium of the shear forces on the cross sections.

These equations then completely define the displacements of the structure. In most cases the number of equations is so large that a direct solution would be impractical and it has been found expedient to solve them by the recommended iteration procedure described in the next section. The required equations are derived in detail in the appendix.

Solution of Equations by Iteration

Matrix iteration often provides the easiest and quickest solution to the equations, and the procedure recommended is as follows:

The equations to be solved can be written in matrix notation as

$$\begin{bmatrix} B \end{bmatrix} \cdot \{ d \} = \{ c \} \tag{1}$$

For purposes of iteration, these equations are rearranged to give

$${d} = {C} {d} + {c}$$
 (2)

where

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} U \end{bmatrix} - \begin{bmatrix} B \end{bmatrix}$$

- B square matrix of coefficients of general equations with diagonal terms reduced to unity
- U unit matrix
- d column matrix of stringer and bay displacements
- c column matrix of constant terms in general equation; these terms arise from applied load and thermal expansion

Initial approximate values of stringer and bay displacements $\left\{d_{o}\right\}$ are then selected. These values may be determined in any convenient manner; however, subsequent operations can be simplified, as explained in the appendix, if these values are chosen to correspond to elementary theory. Next, the initial displacement values are substituted into the right-hand side of equation (2) to obtain a second approximation $\left\{d_{1}\right\}$

to the displacements

$$\left\{ d_{1}\right\} = \left[C\right] \left\{ d_{0}\right\} + \left\{ c\right\} \tag{3}$$

and the differences between the second and initial approximate displacement values are computed from the equation

$$\left\{ \triangle \mathbf{d}_{1} \right\} = \left\{ \mathbf{d}_{1} \right\} - \left\{ \mathbf{d}_{0} \right\} \tag{4}$$

The iteration process is then begun by using these displacement differences. The nth difference is defined as

$$\left\{ \triangle d_{n} \right\} = \left\{ d_{n} \right\} - \left\{ d_{o} \right\} \tag{5}$$

and it can be easily verified that the use of these differences leads to the following matrix equation:

$$\left\{ \triangle \mathbf{d}_{n} \right\} = \left[\mathbf{C} \right] \left\{ \triangle \mathbf{d}_{n-1} \right\} + \left\{ \triangle \mathbf{d}_{1} \right\} \tag{6}$$

The iteration process consists of a series of solutions of equation (6), each successive solution yielding a better approximation to the displacement differences than the previous one. The process is continued until successive solutions of equation (6) yield the same result, that is, until

$$\left\{\triangle d_{n}\right\} = \left\{\triangle d_{n-1}\right\} \tag{7}$$

The final displacements are then determined from the final differences by using equation (5) and the initial values.

When equation (6) is being iterated, improved values should be used as soon as they are obtained; that is, each individual difference $\triangle d_n$

should be substituted into the $\left\{\triangle d_{n-1}\right\}$ matrix immediately after calcu-

lation rather than at the end of the cycle. In this manner, each new value determined receives the benefit of all previous work and convergence is speeded.

The iteration of differences reduces the work required to obtain a solution because smaller numbers are involved. However, it is essential that no errors be made in the determination of the first differ-

ences $\{\Delta d_1\}$ since a single significant error will render the whole solution useless.

Convergence of the Iteration Process

In order to obtain more rapid convergence of the iteration process, bay displacements and loads are referred to the principal shear axes of each bay. The use of these axes greatly simplifies the equations for bay displacements by making each bay displacement independent of all other bay displacements and thus a function of the stringer displacements only. In addition, a special correction cycle is periodically introduced to bring the stringer forces on each cross section into equilibrium with the applied loads. Mathematically, the correction cycle is a special cycle that uses a certain combination of the basic equations. Its success in the particular case of the numerical method of stress analysis is a result of its physical significance, and in that respect it is similar to Southwell's "group relaxations" (reference 3).

The optimum frequency of application of the correction cycle depends largely on the characteristics of each individual problem and must be determined on a basis of experience with the method. If this frequency cannot be determined from previous experience, it can be approximated satisfactorily by one that permits the disturbances to spread their significant effect over the structure between correction cycles.

The application of the correction cycle begins at a station where the displacements are known and then proceeds outboard. The corrections required to bring the first bay into equilibrium are determined and the stringer displacements at its outboard end are changed accordingly before the corrections required by the second bay are calculated.

Effect of Introducing Nonuniform

Temperature Distributions

The preceding method is applicable to any type of stress problem. Nonuniform temperature distributions do not affect the general procedure but merely change the details. These effects are of two types: A change in the effective structure due to changes in elastic properties of the material with temperature and thermal stresses resulting from restrained thermal expansion. The changes in elastic properties are

NACA TN 2241

easily handled if the moduli are treated as variables during the derivation of the equations. Their effect is analogous to that of variations in stringer area and panel thickness. The presence of thermal expansion requires modification of the stress-strain relationships for the stringers but does not affect those for the panels. The equations for stringer displacements contain thermal-expansion terms that are analogous to the applied-load terms. Bay-displacement equations are unaffected by thermal expansion, but thermal-expansion terms appear in the equations used for the correction cycle. If a difference solution is iterated, the elementary solution should include the distributions of thermal strain associated with the primary thermal stresses, which may be obtained from the equations derived in the appendix.

DISCUSSION OF THE NUMERICAL METHOD

The application of a method, such as that just described, always poses a number of questions; for example, what are some of the limitations of the method, would it be advantageous to use some other method of analysis, and how should the structure be idealized. Some of the factors requiring consideration, other than those mentioned in the previous section, are therefore now discussed.

Validity of Basic Assumptions

The assumptions upon which the method is based are commonly accepted in the analysis of stiffened shells. Comparison of theoretical and experimental results has established the fact that these assumptions will yield good results in most cases. Two important assumptions, that the bulkheads are rigid in their own plane and that the shear stress is constant in a given panel, may, however, introduce significant errors into the analysis in some cases. These assumptions are therefore examined in detail.

The assumption of rigid bulkheads is satisfactory as long as the primary stresses run perpendicular to the bulkheads, but, as demonstrated in reference 1, this assumption may not be good when dealing with problems involving thermal stress. Large temperature gradients along the length of the structure or across the depth of a bulkhead distort the real bulkhead and make the assumption of rigidity inapplicable. In many cases, however, these effects are small and the assumption yields satisfactory results.

The numerical method could be extended to include the effects of bulkhead flexibility. Such an analysis, however, is very cumbersome and tedious and if the equations are solved by iteration the process is

often very slowly convergent. Therefore, these extensions are not considered herein.

The assumption of constant shear stress in a given panel simplifies the development of the equations, and it yields satisfactory results if the bulkheads are reasonably close together. Cases arise, however, in which the assumption will lead to unreasonable results because the assumed constant shear stress is a poor approximation to a shear stress which should be changing rapidly in the spanwise direction. This situation is usually accompanied by slow convergence of the iteration process. This difficulty, however, can be minimized by reducing the bulkhead spacing of the idealized structure since it occurs only when the total shear stiffness of the panels joined to a stringer exceeds the extensional stiffness of that stringer.

Idealization of an Actual Structure

The idealization process described in reference 2 is straightforward. However, it provides an opportunity for the stress analyst to exercise his engineering judgment and thus simplify the analysis. By restricting the analysis to only a part of the structure or by using a comparatively simple idealized structure, the time required for the analysis can be substantially reduced. Such simplifications, however, can reduce the value of the results, and a compromise between speed and exactness is required.

The number and location of the idealized stringers completely define the stress-distribution shapes obtainable from the analysis. (For example, in an idealized shell of n stringers, there are n possible types of independent normal-stress distributions, three of which can be determined from elementary theory, the remaining n - 3 being statically indeterminate.) Stringer location is thus an important part of the idealization process and in conventional problems the locations should be selected after consideration of the characteristics of the actual structure, the nature of the expected results, and the time available for the analysis. When nonuniform temperature distributions are involved, the shape of the temperature distribution should also be considered because the thermal-stress and temperature distributions will have similar shapes and the analysis will yield good results only if the idealized structure permits a stress distribution of that shape.

The bulkhead spacing usually is the same in the idealized and actual structures, but the idealized spacing should never be so large that trouble is caused by the assumption of constant shear stress. A proper bulkhead spacing is one for which the extensional stiffness of each stringer element is greater than the sum of the shear stiffnesses of the adjacent panels so that no negative terms appear on the right-hand side of the equations for the stringer displacements.

NACA TN 2241

Calculating Procedures

All the calculations required by the numerical procedure (determining the coefficients of the equations, solving by iteration, and computing the stresses) are routine and involve only simple arithmetic. The calculations can be easily arranged in tabular form so that the bulk of the work can be done by modern automatic computing machinery or by a computer who does not need to have a knowledge of the structural theories involved.

In any problem that involves extensive numerical work, errors are very apt to occur. One of the advantages of the numerical method described herein is that a number of checking procedures can be devised to check the various steps in the calculations. No attempt is made to describe the many possible checks; a few, however, have been indicated in the illustrative example.

Solution of the equations by simple iteration also possesses another advantage with regard to errors. Values obtained from successive cycles of iteration show trends that can be observed by an experienced computer, and errors can be detected by their effects on these trends. Errors that do appear during the iteration process eventually work themselves out but may adversely affect the rate of convergence.

APPLICATION OF THE NUMERICAL METHOD

Description of the Problem

The application of the numerical method is illustrated by an analysis of the idealized two-cell box beam shown in figure 2. The cross section is symmetrical about the horizontal center line and the beam is untapered; however, the stringer areas and sheet thicknesses vary from bay to bay.

The box beam is loaded by four concentrated vertical loads applied at the bulkhead stations along the inner web; in addition, it is subjected to the arbitrarily selected distribution of temperature increase shown in figure 3. The temperature is highest at the tip and along the front web and decreases in both spanwise and chordwise directions, but it is constant across the depth of the beam. The beam is assumed to be constructed of 75S-T6 aluminum alloy which has the variation of elastic properties with temperature increase shown in figure 4. These data are the same as those used in reference 1.

It is assumed that no thermal stresses were present at 60° F. Since the method of analysis involves the assumption that no changes in

temperature distribution occur over each element, the temperature used in the calculations was the temperature at the center of the element concerned.

Details of the Analysis

Since the structure and the temperature distribution are symmetrical about the horizontal center line, the analysis can be restricted to one cover. Two solutions are required, however, to determine the total stress since the thermal-stress system is symmetrical about the horizontal center line but the load-stress system is antisymmetrical. In this way, the analysis requires the solution of two sets of equations (one of 20, the other of 24) which can be solved more easily than the set of 44 needed for a single analysis of the complete box.

The computations required are given in tabular form with most tables containing two parts, one related to the load stresses and the other related to the thermal stresses. The final solution is obtained by the superposition of these two solutions. The rectangular cross section and its symmetry permit several simplifications of the general equations. In each case the equations used are listed. The notation is described in the appendix. Methods used to check the calculations are also given in the tables. The checking methods used were determined from mathematical relationships existing between the coefficients of the equations and from equilibrium of forces.

Tables I and II present the physical characteristics and stiffness parameters of the individual stringers and panels. Table III gives the location of the principal shear axes of each bay and the coefficients of the bay-displacement equations. The location of the principal inertia axes of each bay, the coefficients used in the correction cycle, and the initial stringer displacements are given in table IV. The coefficients of the stringer displacement equations are tabulated in table V. C matrices used for the iteration. The rows Table VI contains the and columns have been interchanged in order that the matrix multiplications required will consist of the cumulative multiplication of the adjacent numbers in two columns. Table VII is a similar arrangement of data required for the correction cycle and also lists each correction determined. The displacements obtained from each cycle of iteration are given in table VIII and the correction cycles are indicated. Table IX contains the calculation of each type of stress and the superposition required to obtain the total stresses.

The numerical calculations in this example were done by a computer who had previous experience with the method. The following times were required:

Setting up the equations (table I to table VII)				•	•	3 days
Solving the equations (table VIII)	•				.•	4 days
Computing stresses (table IX)						l day

In this example, the displacements were computed to six decimal places (five or six significant figures) in order that the stress would be accurate to 1 psi and thus would provide accurate equilibrium checks. Most practical problems will not require such numerical accuracy and a smaller number of decimal places should be used in order to speed the solution. It is estimated that the time required to solve this example could have been reduced by one-half if the number of decimal places had been reduced from six to four. This reduction would have given stresses accurate to 100 psi or about 1 percent of the maximum stress.

Results of the Calculation

The results of the calculation are shown graphically in figure 5 by spanwise and chordwise plots of the stringer stresses in the top and bottom covers and a spanwise plot of shear stresses in the webs. The spanwise plots have a jagged appearance because stringer areas and sheet thicknesses are assumed constant in each bay with an abrupt change at the bulkheads. The dashed lines in the plots of stringer stresses are the values obtained from an elementary analysis.

CONCLUSIONS

A numerical method for the stress analysis of stiffened-shell structures under nonuniform temperature distributions has been presented. The method is not applicable to the solution of all structural problems involving temperature effects because it requires extensive and tedious calculations and because the basic assumptions of bulkheads rigid in their own plane and constant shear stress in a given panel occasionally lead to unsatisfactory results. It is, however, a powerful tool for the solution of many structural problems because:

- (1) It is a means for accurately determining all types of secondary stresses in complicated structures that cannot be satisfactorily analyzed by simplified methods.
- (2) It is sufficiently flexible to cope with a wide variety of structural problems involving nonuniform temperature distributions.

(3) It involves only simple arithmetic that can be handled by automatic computing machinery.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., September 12, 1950

APPENDIX

DERIVATION OF GENERAL EQUATIONS

The general equations required for the numerical analysis of a stiffened shell of arbitrary cross section with any number of internal cells and under a nonuniform temperature distribution are developed. The basic assumptions and a general description of the method have been given previously and are not repeated.

Symbols

A	cross-sectional area of stringer, square inches
`b	width of panel on \underline{k} grid line, inches
E	modulus of elasticity, psi
F	applied force, pounds
G	modulus of rigidity, psi
h	width of panel on $\underline{\mathbf{j}}$ grid line, inches
I	moment of inertia, inches4
J ,	shear stiffness parameters
l,m	coordinates of a special set of axes
L	length of bay, inches
M .	applied moment, inch-pounds
P	axial load in stringer, positive for tensile load, pounds
Q	area moment, inches ³
r	normal distance to panel on \underline{k} grid line, positive in positive z-direction, inches
T	temperature increment, measured from temperature of zero thermal stress which is 60° F in the example presented, degrees Fahrenheit

panel thickness, inches

- u, v, w displacements in x-, y-, and z-directions, respectively, inches
- x,y,z rectangular coordinate axes
- coefficient of thermal expansion, inches per inch per degree Fahrenheit
- β angular rotation used in correction cycle, radians
- γ shear strain, radians
- δ, Δ increment
- ε normal strain, inches per inch
- θ angular rotation about x-axis, radians
- λ rotation of special set of axes, degrees or radians
- normal distance to panel on <u>j</u> grid line, positive in positive y-direction, inches
- σ normal stress, positive for tensile stress, psi
- shear stress, positive in direction of associated coordinate axis when tensile stress on cross section is in positive x-direction, psi
- ϕ angle between normal line r and z-axis, degrees or radians
- ψ angle between normal line ρ and y-axis, degrees or radians

Subscripts:

- i,j,k grid system
- x,y,z coordinate axes
- $v.w.\theta$ bay displacements
- o initial value
- n cycle of iteration

A prime refers to the principal shear axes and 2 primes refer to the principal inertia axes. A bar over a symbol indicates an average value at the center of a bay.

Notation

The notation employed is illustrated in figure 6. The system adopted for designating parts of the structure is as follows:

Bulkheads divide the length of the structure into a number of bays. The subscript i is used to designate a given bulkhead or the bay between the i - l and ith bulkheads.

The stringers and panels in a given cross section form the basis of a grid work which can be used to designate these elements. These grid lines are not necessarily straight, parallel, or perpendicular but follow the panels. Those grid lines that are approximately parallel to the z-axis are designated by the subscript j; those approximately parallel to the y-axis by the subscript k.

With this system, points and stringers can be uniquely located as follows:

The point on the ith bulkhead at the intersection of the jth and kth grid lines is designated by the subscripts i,j,k.

The stringer in the ith bay at the intersection of the jth and kth grid lines is designated by the subscripts i,j,k.

In order to locate a panel, the grid line on which it lies must be known. This notation consists of underlining the appropriate subscript; for example:

The panel in the ith bay on the jth grid line and between the k-1 and kth grid lines is designated by the subscripts i, j, k.

The panel in the ith bay on the kth grid line and between the j-1 and jth grid lines is designated by the subscripts i,j,k.

The grid lines and bulkheads are numbered such that the numbers increase in the directions of the positive coordinate axes.

Stress-Strain Relationships

The shear strain in a given panel is constant and is defined by the following relationships which depend upon the location of the panel: NACA TN 2241 15

$$\gamma_{i,j,\underline{k}} = \left(\frac{\tau}{G}\right)_{i,j,\underline{k}}$$

$$= \frac{1}{2b_{j,k}} \left(u_{i,j,k} + u_{i-1,j,k} - u_{i,j-1,k} - u_{i-1,j-1,k}\right) + \frac{\Delta v_{i}}{L_{i}} \cos \phi_{j,k} + \frac{\Delta w_{i}}{L_{i}} \sin \phi_{j,k} - \frac{\Delta \theta_{i}}{L_{i}} r_{j,k}$$
(Ala)

$$\gamma_{\mathbf{1},\mathbf{j},\mathbf{k}} = \left(\frac{\tau}{G}\right)_{\mathbf{i},\mathbf{j},\mathbf{k}} = \frac{1}{2h_{\mathbf{j},\mathbf{k}}} \left(u_{\mathbf{1},\mathbf{j},\mathbf{k}} + u_{\mathbf{1}-\mathbf{1},\mathbf{j},\mathbf{k}} - u_{\mathbf{1},\mathbf{j},\mathbf{k}-\mathbf{1}} - u_{\mathbf{1}-\mathbf{1},\mathbf{j},\mathbf{k}-\mathbf{1}}\right) - \frac{\Delta v_{\mathbf{1}}}{L_{\mathbf{1}}} \sin \psi_{\mathbf{j},\mathbf{k}} + \frac{\Delta w_{\mathbf{1}}}{L_{\mathbf{1}}} \cos \psi_{\mathbf{j},\mathbf{k}} + \frac{\Delta \theta_{\mathbf{1}}}{L_{\mathbf{1}}} \rho_{\mathbf{j},\mathbf{k}}$$
(Alb)

When the shear strains are being computed, the normal distances r and ρ must be given their proper signs.

The constant shear stress produces a linearly varying strain in the stringer and its average value at the center of the bay is

$$\overline{\epsilon}_{i,j,k} = \frac{u_{i,j,k} - u_{i-1,j,k}}{L_i} = \left(\frac{\overline{P}}{AE} + \alpha T\right)_{i,j,k}$$
(A2)

Note that the thermal expansion is included in the relationship between stringer stress and strain.

Equilibrium of Individual Stringers

If a half-bay length of stringer on each side of point (i,j,k) is isolated, the force system of figure 7 is obtained, and the following equilibrium equation can be written:

$$-\left(\frac{\tau tL}{2}\right)_{i,j,\underline{k}} + \left(\frac{\tau tL}{2}\right)_{i,j+1,\underline{k}} - \left(\frac{\tau tL}{2}\right)_{i,\underline{j},k} + \left(\frac{\tau tL}{2}\right)_{i,\underline{j},k+1} - \left(\frac{\tau tL}{2}\right)_{i+1,\underline{j},\underline{k}} + \left(\frac{\tau tL}{2}\right)_{i+1,\underline{j},k+1} + \left(\frac{\tau$$

Substituting equations (A1) and (A2) into equation (A3) yields the following equation for the stringer displacement of point (i,j,k) in terms of the displacements of the adjacent bays and stringers:

$$\begin{aligned} & u_{1,j,k} = \frac{1}{\sum_{S_{1,j,k}}} \left\{ u_{1-1,j-1,k} \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1,j,k} + u_{1-1,j,k-1} \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1,j,k} + u_{1-1,j,k} \left[\left(\frac{\operatorname{AE}}{\operatorname{kb}} \right)_{1,j,k} - \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1,j,k} \right] \\ & \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1,j+1,k} - \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1,j,k} + \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1,j,k+1} \right] + u_{1-1,j,k+1} \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1,j,k+1} + u_{1-1,j+1,k} \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1,j,k+1,k} + \\ & u_{1,j-1,k} \left[\left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1,j,k+1} + \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1+1,j,k} \right] + u_{1,j+1,k} \left[\left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1,j+1,k} + \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1+1,j,k+1,k} \right] + \\ & u_{1,j-1,k} \left[\left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1,j,k+1} + \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1+1,j,k+1} \right] + u_{1,j+1,k} \left[\left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1,j+1,k} + \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1+1,j,k+1,k} \right] + \\ & u_{1+1,j-1,k} \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1+1,j,k+1,k} + \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1+1,j,k+1,k} + \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1+1,j,k+1,k} \right] + u_{1+1,j,k+1} \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1+1,j,k+1,k} - \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1+1,j,k+1,k} \right] + u_{1+1,j,k+1} \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1+1,j,k+1,k} + \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1+1,j,k+1,k} + \left(\frac{\operatorname{GLL}}{\operatorname{kb}} \right)_{1+1,j,k+1,k} + \operatorname{Avr}_{1} \left[\left(\frac{\operatorname{GL}}{\operatorname{Cos}} \frac{\operatorname{g}}{\operatorname{g}} \right)_{1,j+1,k} - \left(\frac{\operatorname{GL}}{\operatorname{Cos}} \frac{\operatorname{g}}{\operatorname{g}} \right)_{1,j+1,k} - \left(\frac{\operatorname{GL}}{\operatorname{Cos}} \frac{\operatorname{g}}{\operatorname{g}} \right)_{1,j,k+1} + \left(\frac{\operatorname{GL}}{\operatorname{Cos}} \frac{\operatorname{g}}{\operatorname{g}} \right)_{1,j,k+1} + \left(\frac{\operatorname{GL}}{\operatorname{Cos}} \frac{\operatorname{g}}{\operatorname{g}} \right)_{1,j,k+1,k} + \operatorname{Avr}_{1} \left[\left(\frac{\operatorname{GL}}{\operatorname{Cos}} \frac{\operatorname{g}}{\operatorname{g}} \right)_{1,j+1,k} - \left(\frac{\operatorname{GL}}{\operatorname{Cos}} \frac{\operatorname{g}}{\operatorname{g}} \right)_{1,j,k+1} + \left(\frac{\operatorname{GL}}{\operatorname{Cos}} \frac{\operatorname{g}}{\operatorname{g}} \right)_{1,j,k+1} + \left(\frac{\operatorname{GL}}{\operatorname{g}} \right)_{1,j,k+1} + \left$$

where

$$\begin{split} \sum_{\mathbf{S}_{\mathbf{i}},\mathbf{j},\mathbf{k}} &= \left(\frac{\mathbf{AE}}{\mathbf{L}}\right)_{\mathbf{i},\mathbf{j},\mathbf{k}} + \left(\frac{\mathbf{GtL}}{4\mathbf{b}}\right)_{\mathbf{i},\mathbf{j},\mathbf{\underline{k}}} + \left(\frac{\mathbf{GtL}}{4\mathbf{b}}\right)_{\mathbf{i},\mathbf{j}+\mathbf{l},\mathbf{\underline{k}}} + \left(\frac{\mathbf{GtL}}{4\mathbf{h}}\right)_{\mathbf{i},\mathbf{\underline{j}},\mathbf{k}} + \\ & \left(\frac{\mathbf{GtL}}{4\mathbf{h}}\right)_{\mathbf{i},\mathbf{\underline{j}},\mathbf{k}+\mathbf{l}} + \left(\frac{\mathbf{AE}}{\mathbf{L}}\right)_{\mathbf{i}+\mathbf{l},\mathbf{j},\mathbf{k}} + \left(\frac{\mathbf{GtL}}{4\mathbf{b}}\right)_{\mathbf{i}+\mathbf{l},\mathbf{j},\mathbf{\underline{k}}} + \left(\frac{\mathbf{GtL}}{4\mathbf{b}}\right)_{\mathbf{i}+\mathbf{l},\mathbf{j}+\mathbf{l},\mathbf{\underline{k}}} + \\ & \left(\frac{\mathbf{GtL}}{4\mathbf{h}}\right)_{\mathbf{i}+\mathbf{l},\mathbf{\underline{j}},\mathbf{k}} + \left(\frac{\mathbf{GtL}}{4\mathbf{h}}\right)_{\mathbf{i}+\mathbf{l},\mathbf{\underline{j}},\mathbf{k}+\mathbf{l}} \end{split}$$

Equation (A4) involves no assumptions regarding equality of structural dimensions, temperatures, or elastic properties about point (i,j,k). If any element is missing, the associated stiffness goes to zero and the general equation is still applicable. Since AE and Gt always appear as products, the variation of elastic properties with temperature is equivalent to changes in the stringer areas and sheet thicknesses of the effective structure. Furthermore, the thermal-expansion terms appear in the same manner as axial loads applied to the stringers. Thus, if desired, the effects of a nonuniform temperature distribution can be determined by applying a set of equivalent loads to a new effective structure.

Bay Shear and Torque Equilibrium

The equations for the bay displacements (v,w,θ) can be obtained from equilibrium of the shear forces on the bay cross section

$$(F_{\mathbf{y}})_{\mathbf{i}} - \sum_{\mathbf{j}} \sum_{\mathbf{k}} \left[(\tau \text{tb cos } \emptyset)_{\mathbf{i},\mathbf{j},\underline{\mathbf{k}}} - (\tau \text{th sin } \psi)_{\mathbf{i},\underline{\mathbf{j}},\underline{\mathbf{k}}} \right] = 0$$
 (A5a)

$$(F_z)_i - \sum_{\underline{j}} \sum_{\underline{k}} \left[(\tau tb \sin \emptyset)_{\underline{i},\underline{j},\underline{k}} + (\tau th \cos \psi)_{\underline{i},\underline{j},\underline{k}} \right] = 0$$
 (A5b)

$$(M_X)_{\underline{i}} + \sum_{\underline{j}} \sum_{\underline{k}} [(\tau tbr)_{\underline{i},\underline{j},\underline{k}} - (\tau th\rho)_{\underline{i},\underline{j},\underline{k}}] = 0$$
 (A5c)

Substitution of equations (A1) for the shear stresses in equations (A5) results in

$$\left(J_{VV}\right)_{i} \triangle v_{i} + \left(J_{VW}\right)_{i} \triangle w_{i} - \left(J_{\theta V}\right)_{i} \triangle \theta_{i} = \left(F_{Y}\right)_{i} + \\ \sum_{j} \sum_{k} \left(u_{i,j,k} + u_{i-1,j,k}\right) \left[\left(\frac{\operatorname{Gt} \cos \phi}{2}\right)_{i,j+1,k} - \left(\frac{\operatorname{Gt} \cos \phi}{2}\right)_{i,j,k}\right] - \\ \left(\frac{\operatorname{Gt} \sin \psi}{2}\right)_{i,j,k+1} + \left(\frac{\operatorname{Gt} \sin \psi}{2}\right)_{i,j,k} \right]$$

$$\left(J_{VW}\right)_{i} \triangle v_{i} + \left(J_{VW}\right)_{i} \triangle w_{i} - \left(J_{\theta W}\right)_{i} \triangle \theta_{i} = \left(F_{Z}\right)_{i} + \\ \sum_{j} \sum_{k} \left(u_{i,j,k} + u_{i-1,j,k}\right) \left[\left(\frac{\operatorname{Gt} \sin \phi}{2}\right)_{i,j+1,k} - \left(\frac{\operatorname{Gt} \sin \phi}{2}\right)_{i,j,k} + \\ \left(\frac{\operatorname{Gt} \cos \psi}{2}\right)_{i,j,k+1} - \left(\frac{\operatorname{Gt} \cos \psi}{2}\right)_{i,j,k} \right]$$

$$\left(A6b\right)$$

$$- \left(J_{\theta V}\right)_{i} \triangle v_{i} - \left(J_{\theta W}\right)_{i} \triangle w_{i} + \left(J_{\theta \theta}\right)_{i} \triangle \theta_{i} = \left(M_{X}\right)_{i} - \\ \sum_{j} \sum_{k} \left(u_{i,j,k} + u_{i-1,j,k}\right) \left[\left(\frac{\operatorname{Gtr}}{2}\right)_{i,j+1,k} - \left(\frac{\operatorname{Gtr}}{2}\right)_{i,j,k} - \\ \left(\frac{\operatorname{Gtp}}{2}\right)_{i,j,k+1} + \left(\frac{\operatorname{Gtp}}{2}\right)_{i,j,k} \right]$$

$$(A6c)$$

where

$$(J_{vv})_{i} = \sum_{j} \sum_{k} \left[\frac{\text{Gtb } \cos^{2} \emptyset}{L} \right]_{i,j,\underline{k}} + \left(\frac{\text{Gth } \sin^{2} \psi}{L} \right)_{i,\underline{j},k}$$

$$(J_{vw})_{i} = \sum_{j} \sum_{k} \left[\frac{\text{Gtb } \sin \emptyset \cos \emptyset}{L} \right]_{i,j,\underline{k}} - \left(\frac{\text{Gth } \sin \psi \cos \psi}{L} \right)_{i,\underline{j},k}$$

$$(J_{ww})_{i} = \sum_{\mathbf{j}} \sum_{\mathbf{k}} \left[\frac{\text{Gtb } \sin^{2} \emptyset}{L} \right)_{i,j,\underline{k}} + \left(\frac{\text{Gth } \cos^{2} \psi}{L} \right)_{i,\underline{j},\underline{k}}$$

$$(J_{\theta v})_{i} = \sum_{\mathbf{j}} \sum_{\mathbf{k}} \left[\frac{\text{Gtbr } \cos \emptyset}{L} \right)_{i,j,\underline{k}} + \left(\frac{\text{Gthp } \sin \psi}{L} \right)_{i,\underline{j},\underline{k}}$$

$$(J_{\theta w})_{i} = \sum_{\mathbf{j}} \sum_{\mathbf{k}} \left[\frac{\text{Gtbr } \sin \emptyset}{L} \right)_{i,j,\underline{k}} - \left(\frac{\text{Gthp } \cos \psi}{L} \right)_{i,\underline{j},\underline{k}}$$

$$(J_{\theta \theta})_{i} = \sum_{\mathbf{j}} \sum_{\mathbf{k}} \left[\frac{\text{Gtbr}^{2}}{L} \right)_{i,j,\underline{k}} + \left(\frac{\text{Gthp}^{2}}{L} \right)_{i,\underline{j},\underline{k}}$$

Equations (A6) can be simplified by eliminating the coupling terms if the axes used in the computations are the principal shear axes of the cross section. These axes are defined such that

$$J_{\mathbf{v}\mathbf{w}}' = J_{\theta\mathbf{v}}' = J_{\theta\mathbf{w}}' = 0 \tag{A7}$$

The relationship between the location and orientation of points and panels in two systems of coordinates, arbitrary axes (x,y,z) and the principal shear axes (x',y',z'), is shown in figure 8 and given by the following equations:

$$y' = (z - m')\sin \lambda' + (y - l')\cos \lambda'$$
 (A8a)

$$z' = (z - m')\cos \lambda' - (y - l')\sin \lambda'$$
 (A8b)

$$\emptyset' = \emptyset - \lambda' \tag{A9a}$$

$$\Psi' = \Psi - \lambda' \tag{A9b}$$

$$r' = r + l' \sin \phi - m' \cos \phi$$
 (AlOa)

$$\rho' = \rho - l' \cos \Psi - m' \sin \Psi$$
 (AlOb)

Then the location of the principal shear axes is

$$tan 2\lambda' = \frac{2J_{vw}}{J_{vv} - J_{ww}}$$
 (Alla)

$$l' = -\frac{J_{vv}J_{\theta w} - J_{vw}J_{\theta v}}{J_{vv}J_{ww} - J_{vw}^2}$$
 (Allb)

$$m' = \frac{J_{ww}J_{\theta v} - J_{vw}J_{\theta w}}{J_{vv}J_{ww} - J_{vw}^2}$$
 (Allc)

and, with respect to these axes,

$$J_{vv}' = J_{vv} \cos^2 \lambda' + J_{ww} \sin^2 \lambda' + 2J_{vw} \sin \lambda' \cos \lambda'$$
 (Al2a)

$$J_{ww}' = J_{vv} \sin^2 \lambda' + J_{ww} \cos^2 \lambda' - 2J_{vw} \sin \lambda' \cos \lambda'$$
 (Al2b)

$$J_{\theta\theta}' = J_{\theta\theta} + l'J_{\theta w} - m'J_{\theta v}$$
 (Al2c)

$$F_y' = F_z \sin \lambda' + F_y \cos \lambda'$$
 (Al3a)

$$F_z' = F_z \cos \lambda' - F_v \sin \lambda'$$
 (Al3b)

$$M_{x}' = M_{x} + m'F_{y} - l'F_{z}$$
 (Al3c)

When referred to the principal shear axes, the equations for the bay displacements become

$$\triangle \mathbf{v}_{\mathbf{i}'} = \left(\frac{1}{J_{\mathbf{v}\mathbf{v}'}}\right)_{\mathbf{i}} \left\{ \left(\mathbf{F}_{\mathbf{y}'}\right)_{\mathbf{i}} + \sum_{\mathbf{j}} \sum_{\mathbf{k}} \left(\mathbf{u}_{\mathbf{i},\mathbf{j},\mathbf{k}} + \mathbf{u}_{\mathbf{i}-\mathbf{l},\mathbf{j},\mathbf{k}}\right) \left[\left(\frac{G\mathbf{t} \cos \phi'}{2}\right)_{\mathbf{i},\mathbf{j}+\mathbf{l},\underline{\mathbf{k}}} - \left(\frac{G\mathbf{t} \sin \psi'}{2}\right)_{\mathbf{i},\mathbf{j},\mathbf{k}+\mathbf{l}} + \left(\frac{G\mathbf{t} \sin \psi'}{2}\right)_{\mathbf{i},\mathbf{j},\mathbf{k}} \right\} (A14a)$$

$$\triangle \mathbf{w}_{\mathbf{i}'} = \left(\frac{1}{J_{\mathbf{w}\mathbf{w}'}}\right)_{\mathbf{i}} \left\{ \left(\mathbf{F}_{\mathbf{z}'}\right)_{\mathbf{i}} + \sum_{\mathbf{j}} \sum_{\mathbf{k}} \left(\mathbf{u}_{\mathbf{i},\mathbf{j},\mathbf{k}} + \mathbf{u}_{\mathbf{i}-\mathbf{l},\mathbf{j},\mathbf{k}}\right) \left[\left(\frac{G\mathbf{t} \sin \phi'}{2}\right)_{\mathbf{i},\mathbf{j}+\mathbf{l},\underline{\mathbf{k}}} - \left(\frac{G\mathbf{t} \cos \psi'}{2}\right)_{\mathbf{i},\mathbf{j},\mathbf{k}+\mathbf{l}} - \left(\frac{G\mathbf{t} \cos \psi'}{2}\right)_{\mathbf{i},\mathbf{j},\mathbf{k}} \right\} (A14b)$$

$$\Delta\theta_{\mathbf{i}'} = \left(\frac{1}{J_{\theta\theta'}}\right)_{\mathbf{i}} \left\{ \left(\mathbf{M_{\mathbf{x}'}}\right)_{\mathbf{i}} - \sum_{\mathbf{j}} \sum_{\mathbf{k}} \left(\mathbf{u_{\mathbf{i},\mathbf{j},\mathbf{k}}} + \mathbf{u_{\mathbf{i}-1,\mathbf{j},\mathbf{k}}}\right) \left[\left(\frac{\mathbf{Gtr'}}{2}\right)_{\mathbf{i},\mathbf{j}+\mathbf{l},\underline{\mathbf{k}}} - \left(\frac{\mathbf{Gt\rho'}}{2}\right)_{\mathbf{i},\mathbf{j},\mathbf{k}+\mathbf{l}} + \left(\frac{\mathbf{Gt\rho'}}{2}\right)_{\mathbf{i},\mathbf{j},\mathbf{k}} \right] \right\}$$
(Al4c)

. Bay Thrust and Moment Equilibrium

The equations obtained from equations (A4) and (A14) are sufficient in themselves to define completely the displacements of the structure. However, if the equations are solved by iteration, it is helpful to employ a periodic correction cycle based on the gross equilibrium of axial loads on the cross section

$$(\mathbf{F}_{\mathbf{x}})_{\mathbf{i}} - \sum_{\mathbf{j}} \sum_{\mathbf{k}} (\overline{\mathbf{P}})_{\mathbf{i},\mathbf{j},\mathbf{k}} = 0$$
 (Al5a)

$$\left(\overline{M}_{y}\right)_{i} - \sum_{j} \sum_{k} (\overline{P}_{z})_{i,j,k} = 0$$
 (Al5b)

$$\left(\overline{M}_{z}\right)_{i} + \sum_{j} \sum_{k} \left(\overline{P}_{y}\right)_{j,j,k} = 0$$
 (Al5c)

It can be shown that equations (Al5) are satisfied by the solution of equations (A4) and (Al4); however, they are not likely to be satisfied by the displacement values obtained from any given cycle of iteration. In reference 2 it was demonstrated that convergence of the iterative process can be speeded if the displacement values are periodically corrected so that the stringer displacements satisfy equations (Al5).

The corrections applied to the stringer displacements are a planar distribution over the cross section and are determined as follows:

$$(u_{i,j,k})_{n+1} = (u_{i,j,k})_n + \Delta u_{i,j,k}$$
(A16)

where

$$\Delta u_{i,j,k} = \delta u_i + \beta_{z,i} y_{j,k} + \beta_{y,i} z_{j,k}$$

Substituting equation (Al6) into (Al5) yields

$$(AE)_{i}\delta u_{i} + (EQ_{z})_{i}\beta_{z,i} + (EQ_{y})_{i}\beta_{y,i} = (LF_{x})_{i} +$$

$$L_{i} \sum_{j} \sum_{k} \left[(AE\alpha T)_{i,j,k} - (u_{i,j,k} - u_{i-1,j,k}) \left(\frac{AE}{L} \right)_{i,j,k} \right]$$
(Al7a)

$$(EQ_y)_i \delta u_i + (EI_{yz})_i \beta_{z,i} + (EI_{yy})_i \beta_{y,i} = (L\overline{M}_y)_i +$$

$$L_{i} \sum_{j} \sum_{k} \left[\left(AE\alpha Tz \right)_{i,j,k} - \left(u_{i,j,k} - u_{i-1,j,k} \right) \left(\frac{AEz}{L} \right)_{i,j,k} \right] (A17b)$$

$$(EQ_z)\delta u_i + (EI_{zz})_i \beta_{z,i} + (EI_{yz})_i \beta_{y,i} = -(L\overline{M}_z)_i +$$

$$L_{i} \sum_{j} \sum_{k} \left[(AE\alpha Ty)_{i,j,k} - (u_{i,j,k} - u_{i-1,j,k}) \left(\frac{AEy}{L} \right)_{i,j,k} \right]$$
(Al7c)

where

$$(AE)_{i} = \sum_{j} \sum_{k} (AE)_{i,j,k} \qquad (EI_{yy})_{i} = \sum_{j} \sum_{k} (AEz^{2})_{i,j,k}$$

$$(EQ_z)_i = \sum_j \sum_k (AEy)_{i,j,k}$$
 $(EI_{zz})_i = \sum_j \sum_k (AEy^2)_{i,j,k}$

$$(EQ_y)_i = \sum_j \sum_k (AEz)_{i,j,k}$$
 $(EI_{yz})_i = \sum_j \sum_k (AEyz)_{i,j,k}$

These equations can be simplified by elimination of the coupling terms if the computations are referred to the equivalent principal inertia axes of the cross section. These axes are referred to as equivalent because the variation of modulus of elasticity over the cross section is taken into consideration. These axes (x",y",z") are defined such that

$$EQ_{z}" = EQ_{y}" = EI_{yz}" = 0$$
 (A18)

and then the following relationships are applicable:

$$y'' = (z - m'')\sin \lambda'' + (y - l'')\cos \lambda''$$
 (Al9a)

$$z'' = (z - m'')\cos \lambda'' - (y - l'')\sin \lambda''$$
 (Al9b)

$$\tan 2\lambda'' = \frac{2(EI_{yz} - AEl''m'')}{(EI_{yy} - AEm''^2) - (EI_{zz} - AEl''^2)}$$
(A20a)

$$l'' = \frac{EQ_z}{AE}$$
 (A20b)

$$m'' = \frac{EQ_y}{AE}$$
 (A20c)

$$\begin{split} \mathrm{EI}_{\mathbf{y}\mathbf{y}} &= \left(\mathrm{EI}_{\mathbf{y}\mathbf{y}} - \mathrm{AEm}^{2}\right) \mathrm{cos}^{2} \lambda^{2} + \left(\mathrm{EI}_{\mathbf{z}\mathbf{z}} - \mathrm{AEl}^{2}\right) \mathrm{sin}^{2} \lambda^{2} - \\ &\quad 2 \left(\mathrm{EI}_{\mathbf{y}\mathbf{z}} - \mathrm{AEl}^{2} \mathrm{m}^{2}\right) \mathrm{sin}^{2} \lambda^{2} - \\ \end{split} \tag{A21a}$$

$$EI_{zz}" = (EI_{yy} - AEm"^2)sin^2\lambda" + (EI_{zz} - AEl"^2)cos^2\lambda" +$$

$$2(EI_{yz} - AEl"m")sin \lambda" cos \lambda"$$
(A21b)

$$F_{x}'' = F_{x}$$
 (A22a)

$$\overline{M}_{y}$$
" = $\overline{M}_{z} \sin \lambda$ " + $\overline{M}_{y} \cos \lambda$ " (A22b)

$$\overline{M}_{z}$$
" = $\overline{M}_{z} \cos \lambda$ " - $\overline{M}_{y} \sin \lambda$ " (A22c)

A further simplification of the correction cycle can be made by eliminating the load and temperature terms on the right-hand side of equations (Al7). This elimination can be accomplished by iterating the difference between the exact solution and one which satisfies statics (equations (Al5)) but not necessarily continuity. The iteration of differences has an additional advantage in that smaller numbers, and consequently less work, are required to obtain a solution.

NACA TN 2241

An examination of equations (Al7) indicates that they can be satisfied by a planar distribution of strain corresponding to the elementary analysis of reference 1. Then the initial values of stringer displacements u can be defined as follows:

$$u_{i,j,k} = u_{i-1,j,k} + (\epsilon_0 L)_{i,j,k}$$
 (A23)

where

$$(\epsilon_{oL})_{1,j,k} = (\delta u_{1})_{o} + (\beta_{z,1})_{o} y_{j,k} + (\beta_{y,1})_{o} z_{j,k}$$

and, with respect to the equivalent principal inertia axes,

$$(\delta u_i")_o = \left(\frac{L}{AE}\right)_i \left[(F_x")_i + \sum_j \sum_k (AEaT)_{i,j,k}\right]$$
 (A24a)

$$(\beta_{\mathbf{Z},\mathbf{i}}")_{0} = \left(\frac{\mathbf{L}}{\mathbf{E}\mathbf{I}_{\mathbf{Z}\mathbf{Z}}}\right)_{\mathbf{i}} \left[-(\overline{\mathbf{M}}_{\mathbf{Z}}")_{\mathbf{i}} + \sum_{\mathbf{j}}\sum_{\mathbf{k}}(\mathbf{A}\mathbf{E}\alpha\mathbf{T}\mathbf{y}")_{\mathbf{i},\mathbf{j},\mathbf{k}}\right]$$
(A24b)

$$(\beta_{\mathbf{y},\mathbf{i}})_{0} = \left(\frac{L}{E_{\mathbf{I}\mathbf{y}\mathbf{y}}}\right)_{\mathbf{i}} \left(\overline{M}_{\mathbf{y}}\right)_{\mathbf{i}} + \sum_{\mathbf{j}} \sum_{\mathbf{k}} (AE\alpha Tz'')_{\mathbf{i},\mathbf{j},\mathbf{k}}$$
(A24c)

The corresponding values of the bay displacements are obtained from equations (Al4) and (A23).

Then the correction-cycle equations applicable to the iterated differences are as follows:

$$\delta \mathbf{u}_{\mathbf{i}}^{"} = -\left(\frac{1}{AE}\right)_{\mathbf{i}} \sum_{\mathbf{j}} \sum_{\mathbf{k}} (\Delta \mathbf{u}_{\mathbf{i},\mathbf{j},\mathbf{k}} - \Delta \mathbf{u}_{\mathbf{i}-\mathbf{l},\mathbf{j},\mathbf{k}}) (AE)_{\mathbf{i},\mathbf{j},\mathbf{k}}$$
(A25a)

$$\beta_{z,i}$$
" = $-\left(\frac{1}{EI_{zz}}\right)_{i} \sum_{j} \sum_{k} (\Delta u_{i,j,k} - \Delta u_{i-1,j,k}) (AEy'')_{i,j,k}$ (A25b)

$$\beta_{y,i}$$
" = $-\left(\frac{1}{EI_{yy}}\right)_{i} \sum_{j} \sum_{k} (\Delta u_{i,j,k} - \Delta u_{i-1,j,k}) (AEz'')_{i,j,k}$ (A25c)

NACA TN 2241 25

Equations (A25) provide corrections to the stringer displacements u only. These corrections remove any unbalanced moment or thrust on the cross section but add unbalanced shear forces which are removed by correcting the bay displacements (v,w,θ) . The corrected bay displacements are obtained from the corrected stringer displacements by application of equation (A14). These two operations constitute the complete correction cycle that brings the stringer loads into equilibrium with the external loads without changing the shear stress in any panel.

REFERENCES

- 1. Heldenfels, Richard R.: The Effect of Nonuniform Temperature Distributions on the Stresses and Distortions of Stiffened-Shell Structures. NACA TN 2240, 1950.
- 2. Duberg, John E.: A Numerical Procedure for the Stress Analysis of Stiffened Shells. Jour. Aero. Sci., vol. 16, no. 8, Aug. 1949, pp. 451-462.
- 3. Southwell, R. V.: Relaxation Methods in Engineering Science. A Treatise on Approximate Computations. The Clarendon Press (Oxford), 1940.

TABLE I.- STRINGER PROPERTIES

					_	,
(3)	AECT -	@ × @	28,943 23,500 14,851 21,130	26,967 23,357 14,047 19,158	16,999 14,816 8,544 11,948	13,878 13,324 7,099 9,543
6	AE L	@ @	530,380 568,720 366,647 498,212	463,239 514,173 324,930 437,586	275,963 300,610 185,826 264,612	212,574 249,260 145,669 205,102
@	AE	©×©	10.60760 × 10 ⁶ 11.37440 7.33293 9.96424	9.26478 10.28345 6.49859 8.75172	5.51926 6.01219 3.71652 5.29224	4.25147 4.98520 2.91338 4.10203
©	А		1.11 1.15 .74 1.01	0.98 1.05 .66 .89	0.59 .62 .38 .38	0.46 .32 .42
9	αT	*	2,728.5 × 10 ⁻⁶ 2,066.0 2,025.2 2,120.6	2,910.7 2,271.3 2,161.6 2,189.0	3,080.0 2,464.3 2,298.8 2,257.6	3,264.4 2,672.7 2,436.7 2,326.3
(S)	紐	*	9.55640 × 10 ⁶ 9.89078 9.90937 9.86558	9.45386 9.79376 9.84635 9.83339	9.35468 9.69708 9.78031 9.80044	9.24233 9.58691 9.71125 9.76674
€	E→		206 158 155 162	219 173 165 165	231 187 175 175	244 202 185 177
<u>©</u>	£.		L G & 4	H G W ₹	1 G €4	H G K 4
(0)	i i		SS SS	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20	8888
Θ	4-1		Н	S	3	†

* $E = (10.5 - 0.00147T - 0.0000151T^2) \times 10^6$ ** $\alpha T = (12.52T + 0.00352T^2) \times 10^{-6}$

PERTIES	
PROPER	
PANET.	
DA	
,	
F	
TA REE	
₽.	

							. •		
		· ®	티오	2 (8) (8) (9)	1.56250 1.96078 1.96078	1.56250 1.96078 1.96078	3.12500	53,806 3.12500 43,916 4.00000 44,934 4.00000	
		8	GtI.	©×@	111,989 93,143 92,839	110,542	54,580 44,536 45,129	53,806 43,916 44,934	. [
	H	6	$\frac{\mathrm{Gth}}{\Gamma}$	(a) z (a) z (b) z (c) (c) z (c	111,989 93,143 92,839	110,542 91,984 92,454	54,580 44,536 45,129	53,806 43,916 	
	panels _{1,1,1}	69	Gt 2	(3)×(3) 2 × 10 ⁻⁶	111,989 93,143 92,839	110,542	54,580 44,536 45,129	53,806 43,916 44,934	
I	- 1	8	ч		유유무유	2212	22:2	9919	
	Webs	®	44		490.c	0.064	0.032	0.032	•
		8	Ö	*	3.49967 × 106 0.064 10 3.65265 .051 10 3.64075 .051 10	3.45443 3.60722 3.62565	3.41122 3.56287 3.61032	3.36287 3.51326 3.59474	
l		8	EH		206 158 162	219 173 167	231 187 	244 202 202 1771	,
		6	태	2 (0)×(0)		מממ היהיה	5.0	7.00	
	,	8	缩	(C) ×	73,178 73,112 72,994	70,667 72,391 72,574	34,894 35,821 36,072	34,402 35,400 35,821	
	1,1,1	9	윘	(1) × (1) × (1) × (1) (2) × (2	71,578 73,112 72,994	70,667 72,391 72,574	34,894 35,821 36,072	34,402 35,400 35,821	
	: panels, j, l	9	िद	(3 × (6) 2 × 10-6	71,578 73,112 72,994	70,667 72,391 72,574	34,894 35,821 36,072	34,402 35,400 35,821	,
	Cover	<u>(</u>	۵.		1999	1999	1999	1999	
	`.	(9)	4+		040.0	040.0	0.020	0.020 1 0.020 1 0.020 1 0.020 1	١
Control of the Contro		(2)	O	*	3.57892 × 10 ⁶ 3.65560 3.64969	3.53336 3.61955 3.62869	3.48937 3.58211 3.60722	3.58211	
		3	EH		182 157 159	198	209 181 173	223 194 181	
_		(2)	-5		H (1) (1)	H 01 M -4.	น ผ พ 🛧	H 01 m 4	
		(2)	н		8888	8888	8888	8888	
		(3)		•	н	Ņ,	m	#	

EQUATIONS
BAY-DIBPLACEMENT
g
AXB.
SHEAR
PRINCIPAL
ä
四四
TABL

	_		· · · · · · · · · · · · · · · · · · ·	·		т		7
Temperature problem**	8	[6]	9 6	6.328816. .007047 000542 335321	0.327720 .007995 .000849 336564	0.326763 .008681 .002350 337794	0.325706 .009449 .003986 339140	
Tempe	6	Jvv~Jvv'	2 1 2 E	-0.000345 435,368	431,264	213,574	211,246	
	8	\$ ©	@I®		-0.000266	-0.000354 213,574	-0.000182	
•	9	- ₈ []	9 0	0.036202 .007760 .000020 .043982	0.036204 .007842 000032 044014	0.036210 000090 043666	0.036220 .007648 000142 043716	
	⊗	(o)	®	0.026848	0.020340	0.027731	0.014020	
	Θ	[6]	@ @	-0.751678 625182, 623142	-0.749488 623662 626850	-0.756768 617504 625728	-0.754346 615690 629962	
	9		(3)	-1,038,951 -222,675 -590 1,262,217	-1,030,767 -223,276 915 1,253,129	-506,330 -105,522 1,255 610,597	-502,066 -106,025 2,105 605,986	
	9	(Gtx')	© × ⊗	-1,396,841 -230,345 1,627,187	-1,384,102 -231,896 1,615,999	-680,800 -110,157 779,997	-674,076 -111,015 785,091	Jos
	@	$\left(\frac{Gtz'}{2}\right)_{j+1,\frac{1}{2}}, \left(\frac{Gtz'}{2}\right)_{j,\frac{1}{2}}$	§ 6	357,890 7,670 -590 , -364,970	353,335 8,620 915 -362,870	174,470 4,635 1,255 -180,360	172,010 4,990 2,105 -179,105	
problem*	69	(Gtr/2)	©	357,890 365,560 364,970	353,335 361,955 362,870	174,470 179,105 180,360	172,010 177,000 179,105	, <u>f.</u> (12)
Load	69	$\left(\frac{G\epsilon}{2}\right)_{J+1,\frac{1}{2}} - \left(\frac{G\epsilon}{2}\right)_{J,\frac{1}{2}}$		71,578 1,534 -118 -72,994	70,667 1,724 183 -72,574	34,894 \$27 251 -36,072	34,402 998 121 (-35,821	$\begin{bmatrix} \frac{2t}{2} \\ \frac{1}{2} \\ \frac$
	©	, ×,	(S) (S)	-19,784	921,71-	468-6-	-5,056	(3) (1,1,1) ((3) (1,1,1) (1,1,1) (1,1,1,1)
	(¥		000 07- 000	000°0E-	-20,000	-10,000	('-'Fn + 1 - 1'-'Fn + 1
	8	7 = 7 T		8,000	000'9	000,4	2,000	("1,1), ("1,1), 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
	⊕	188	\$\text{\tin}\text{\tetx{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\\ \ti}\\\ \tinth}\\ \tint\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\tetx}\\ \text{\text{\text{\text{\texi}\tint{\text{\texi}\tint{\tex{\texi}\tint{\text{\texi}\tinz}\\ \tintet{\text{\text{	57,396,352	56,942,594	27,966,479	27,723,739	$\begin{bmatrix} x_1 \\ y_2 \\ \vdots \\ y_{1} \end{bmatrix}, \begin{bmatrix} x_1 \\ \vdots \\ x_{1} \end{bmatrix}, \begin{bmatrix} x_1 \\ \vdots \\ x_{1} \end{bmatrix}$
	₿	y,	®- ©	-12.473026 -2.473026 7.526974 47.526974	-12.521052 -2.521052 7.478948 17.478948	(-12.473431) -2.473431 7.526569 17.526569	-12.527899 -2.527899 7.472101 17.472101	$\Delta s_{1} = \left(\frac{1}{\sqrt{360}}\right)_{1} \left[\left(\left[r_{2} \right]_{1}^{3} - 2 \sum_{j=1}^{k} \left(u_{1,j,1} + u_{1-1,j,j,1} \right) \left(\frac{0k}{2} \right)_{1,j,j,1} \right]$ $\Delta s_{1} = \left(\frac{1}{\sqrt{960}} \right)_{1} \left[\left(u_{2} \right)_{1} - 2 \sum_{j=1}^{k} \left(u_{1,j,1} + u_{1-1,j,j,1} \right) \left(\frac{0k}{2} \right)_{1,j+1,j_{1}} \right]$ $\Delta v_{1} = \left(\frac{1}{\sqrt{340}} \right)_{1} \left(\frac{2k}{2} \right)_{1,j+1,j_{1}} - \frac{k}{2} \left(u_{1,j,1} + u_{1-1,j,j,1} \right) \left(\frac{0k}{2} \right)_{1,j+1,j_{2}} - \frac{(k)}{2} \right)_{1,j+1,j_{2}}$
	99	,1	® _(B)	-2.5269Th	-2.478948	-2.526569	-2.472101	l l
	8	, J ₀ v	} ©@	752,965	731,240	544,448	(-15 5) (-5 5) (15 5) (15 5)	roblem: $ \begin{pmatrix} (ctx) \\ L \end{pmatrix}_{j,1} $ $ \begin{pmatrix} (ctx) \\ L \end{pmatrix}_{j,1} + \begin{pmatrix} (ctx) \\ L \end{pmatrix}_{j,1} $ $ \begin{bmatrix} (ctx) \\ L \end{pmatrix}_{j,1} + \begin{pmatrix} (ctx) \\ L \end{pmatrix}_{j,1} $ rature problem: $ \begin{pmatrix} (ctx) \\ L \end{pmatrix}_{j,1} $
	6	y z',		(-15 5) (-5 5) (15 5)	(15 5) (15 5) (15 5)	(-15 5) -5 5 -5 5 45 5	24.02 22.02	EX. (2)
	8	Juratur) = (4)	(1) 2 3 4 4	294,980	इक्टं क्का	142,656	
	8	1 3		E G E E	त्यूल ड ी	स्य ल क्र≆	4	70r 10ad

DISPLACEMENTS
STR INCK
D INTELLAL
CYCLE, AN
CORRECTION
AXES,
THE PLAN
PRINCIPAL
TARE

\perp			'								•								_
		ដ	Load problem								Temperature problem	‡							
	&	89	69	❸	8	8	©	89	0	8	0	8	0	8	8	(9)	0	0	,
	ABz"	(El _{yy} ") ₁	Ву,1	H, - F,	(By,1)o	0(1,1,1)	¹ (gy)	1"	۴.	AEy"	(Elgz")1	Şu ₁	βz,1	ABorr	AEGITY"	°(Ing)	(8 _{E,1}) ₀	o(1,t,1)	r
	⊛	± 50∑⊕ 3-1	6 9€		® @	Ø.1.↓ 5Ø	2 \	0 0	Ø-\$	9∞	2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u></u>	© 2.	**************************************	\$ @ ×@ 3	<u>&</u>	ଷ୍ଟ୍ର ଷ୍ଟୁ		
	53.0380×10 ⁶ 56.87200 36.66465 49.82120	1,963.7770×10 ⁶	054016 057921 037341 050740	-320,000	-057921 -057921 -037341 -050740	(0.016295) 016295) 016295 016295	78.55834x10 ⁶	-0.760142	14.239858 -4.239878 5.760142 15.760142	-151,05072×10 ⁶ -48,22584 42,23872 157,03784	901205,747,01	6289578 186687 253677	1 0.029722 3 .009505 7008325 7030952	424,88	-93,225	0.045023	0.045023 -0.000367487	6.050256 .046582 .042907 .039232	т
	46.32390 51.41725 32.49295 43.75860	1,739.9270	053248 059103 037350 050299	-180,000	-180,000 -0.002069052	-0.026640) 026640 026640 026640	80.59.69	-0.764980	14.235020 -4.235020 5.764980 15.764980	-131.88433 -43.55062 37.46424 137.97069	8,905.79916	60.2662b0 295514 1867b9 251497	0 0.029618 0 009780 008413 7030984	83,529	-99,787	0.048007	-0.0004#B189	6.104643 .096486 .088330 .088314	
	27.59630 30.06095 118.58260 26.46120	1,027.0105	(-0.053741) 058541 036188 051505		-80,000 -0.001557920	0.034430 034430 034430	41.08042	-0.724610	614.275390 4.275390 5.724610 15.724610	-78.78959 -25.70446 21.27563 83.21841	5,330.04088	(-0.268705 292703 180939 257653	-0.268705 0.029564 292703 0.029645 180939007983 2576530312269	52,307	-69,223	0.050931	0.050931 -0.000519493	6.162990 .149633 .136286 .122934	, , ,
	21.25735 24.92600 14.56690 20.51015	812.6040	052320) 061348 035852 050480)		-20,000 -0.000492245	(-0.036891) 036891 036891 036891	32.50416	-0.775328	-14.224672 -4.224672 5.775328 15.775328	-60.47577 -21.06083 16.82573 64.71087	4,134.46480		0.029254 0.010188 0.000139 0.031303	43,844	-62,157		0.053955 -0.000601355	6.225499 .206129 .186768 .167402	T
	*For load problem:								Checks:										1
	$\mathbb{E}\left(\frac{2}{3y^2}\right)^{\frac{1}{2}}\left(\frac{1}{3\pi^2}\right)$	$\beta_{T,1}" = - \left(\frac{2}{8^{T}_{T,TT}} \right)_{I} \sum_{j=1}^{k} (u_{1,j,1} - u_{1-1,j,j,1}) (AB\pi^*)_{I,j,j,1}$,1)(AEz") _{1,} 3	٦	(Ay,1")o	$\lambda_0 = \left(\frac{L}{R^{\frac{1}{1-\alpha}}}\right)_1 (\widetilde{R}_y^*)_1$	1 (ky")1			°- © ∓ <u>[:</u>						•			
	**For temperature problem:	ij							*								Ž	S	_
	$\left(\frac{2}{N_{\rm e}}\right)_1\sum_{j=1}^{2}\left(u_1,$	$bu_1^{-} = -\left(\frac{2}{AE}\right)_1 \sum_{j=1}^{\infty} (u_{1,j,1} - u_{1-j,j,j,1})^{\{AE\}}_{1,j,j,1}$	(AE)1,1,1		(bu ₁ ")o	- 2(L)	4 (ABerr) _{1,1,1}		ᄩᆌ								\$	}	
	F	$\theta_{x,1}^{-} = - \left(\frac{2}{8L_{xx}} \eta_{1} \right) \sum_{j=1}^{k} (u_{1,j,1} - u_{1-1,j,j,1}) (AXV^{*})_{1,j,1}$	1)(AEV") _{1,3,}	r <u>i</u>	(β _{έ,1} ") _ο		$= 2 \left(\frac{L}{ET_{EB}} \right)_{1} \sum_{j=1}^{k} (AEGTy^{n})_{1,j,j,1}$	1,1,1		- IIV				-					

TABLE V.- STRINGER DISPLACEMENT RQUATIONS
(a) Load problem.

							_
8	$\frac{\binom{\operatorname{GLL}}{h}_{1+1,\frac{1}{2}+1}}{\sum_{8}}$, tempo	0.279689 .211348 0.254702	0.185804 - 136865 0 166220	0.277850 .202543 0.249034	0000	
⊗	$\begin{pmatrix} \frac{Q_{LL}}{h} \\ 1, 1, 1 \end{pmatrix}$		0.283350 .214012 0 .255764	0.376310 .282680 0 .340528	0.281847 .205403 0	0.606969 .431719 0	
8	281+1	6	0.657179 0.652002 .127908 .128254 .00060000931 869324863065	0.877243 0.430917 .171540 .081071 001258001725 1.153883562239	0.648157 .122248 004435 839626	0000	
8	2.001	8			0.653662 .121669 002644 846015	260572 609705 -1. 831930	+ 1
\$	Δw ₁₊₁ '	6	-0.069922 052837 0 063676		-0.070462 -0.069463 -0.051351050636 0 -062529062258		+ (\frac{\text{dep}'}{2})_{1,1,1}
3	Δw ₁ '	8	-0.070838 -0.069922 053503052837 0 0 0 063941063676	-0.094078 -0.046451 070670034216 0 0 0 085132041555	-0.070462 051351 062529	-0.1517%2 107930 0 135838	- (dtz')
8	1+f,1+t ^u	<u>@</u>	0.044700 .041583 .073856	0.029697 .027521 .049576	0.044412 .040817 .075475 0	0000	,3+1,1
89	1,1+L ^u	9,41,17,89,41,11 +	0,108473 107500 183143 124043	0.112262 .108193 .156584 .27330	0.091092 .105646 .156862 .10031		1,1,1 - A01, ((0tx)),1,1+1,1
8	1-f,1+1 ^u		0 .040592 .073669 .049984	0 .026809 .049231 .033215	0 .039666 .074588 .049632	0000	1,1((dt.)
8	T+f°In	81,178,11,1 81,111481,1111 8141,11	0.089976 7.083579 1.1481.38	0.089839 .083138 .149318 0	0.089460 ,082119 ,151478	0.097020 .087001 .165158 0	$\frac{1}{1+\lambda_{1}} \int_{1}^{1} \frac{1}{1+\lambda_{1}} \int_{1}^{1} \frac{1}$
❷	ì-f ^c īn	04.1 .1 04.41.1	0 .081708 .148072 .106257	0 .081101 .148722	0 .079899 .150062 .099612	0 .084548 .163216 .108289	-), 1, 1, 1 + (ott) 1+1, 1, 1, 1
0	1+f*1-1n	(A) 1+1	0.045276 .041997 .074282 0	0.060142 .055617 .099742 0	0.045047 .041302 .076004 0	0.097020 .087001 .165157 0	-1,1 (tb.
©	رر1-1 ⁴	9,,, , (8 ,,,, , (8,,,,,r, (8),,,	0.148536 .136564 .224435 .164978	0.145946 .143783 .247336 .165840	0.170292 .162371 .240057 .191597	0.198992 .225184 .343252 .240070	$(\frac{GL}{4b})^{1,1-\xi,\frac{1}{2}} + \frac{u_{1,3-1,1}}{u_{1,3-1,1}} \left[\frac{GL}{4b}\right]$
9	1-1,1-1 ^u	9 6	0 .04410. .050273	0 .054293 .099491 .066826	0 .040233 .075475 .049980	0 .084548 .163216 .108289	11-1-6-1-F
0	الما	#	1,580,926 1,740,895 982,648 1,451,952	1,175,007 1,301,596 727,614 1,086,010	774,605 867,291 474,609 721,733	354,588 406,894 216,890 330,791	,1 = 1 (41-1,
®	F .		्र स्पर्यस्क	ം പൻപ÷	ω ^⊏ਲਾੰਙ∓ਸ	्च संबंधक	**************************************

 $u_{1-1,j,1} \underbrace{\left(\frac{\partial E}{L}\right)_{1,j,1}}_{(\frac{1}{L},j,j,1)} - \left(\frac{\partial EL}{4b}\right)_{1,j,1,\frac{1}{L}} - 2\left(\frac{\partial EL}{4b}\right)_{1,j,1,\frac{1}{L}} + u_{1+1,j,1} \underbrace{\left(\frac{\partial EL}{4b}\right)_{1+1,j,\frac{1}{L}}}_{(\frac{1}{L},j,1,1,\frac{1}{L})} - \left(\frac{\partial EL}{4b}\right)_{1+1,j+1,\frac{1}{L}} - 2\left(\frac{\partial EL}{4b}\right)_{1+1,j+1,\frac{1}{L}} - \frac{\partial EL}{4b} \underbrace{\left(\frac{\partial EL}{4b}\right)_{1+1,j+1,\frac{1}{L}}}_{(\frac{1}{L},j,1,1,\frac{1}{L})} - 2\left(\frac{\partial EL}{4b}\right)_{1,1,1,\frac{1}{L}} - 2\left(\frac{\partial EL}{4b}\right)_{1,1,\frac{1}{L}} - 2\left$ $u_{1-1,3+1,1} \Big(\frac{06L}{16b} \big)_{1,3+1,\frac{1}{2}} + u_{2,3+1,\frac{1}{2}} \Big(\frac{06L}{14b} \big)_{1,3+1,\frac{1}{2}} + \frac{06L}{14b} \big)_{1+1,3+1,\frac{1}{2}} \Big)_{1+1,3+1,\frac{1}{2}} + u_{2+1,3+1,\frac{1}{2}} - \omega_{2+1} \Big(\frac{06L}{16b} \big)_{1+1,3+1,\frac{1}{2}} - \frac{06Lz^1}{2} \big)_{1+1,3+1,\frac{1}{2}} + \frac{06Lz^1}{2} \big)_{1+1,\frac{1}{2}} + \frac{0$ $\sum_{\mathbf{k}} \mathbf{g} = \left(\frac{\mathbf{kE}}{L}\right)_{1,j,1} + \left(\frac{\mathbf{kE}}{L}\right)_{1,j,1} + \left(\frac{\mathbf{kE}}{\mathbf{kb}}\right)_{1,j,\frac{1}{2}} + \left(\frac{\mathbf{kE}}{\mathbf{kb}}\right)_{1,j,\frac{1}{2}} + \left(\frac{\mathbf{kE}}{\mathbf{kb}}\right)_{1+1,j,\frac{1}{2}} + \left(\frac{\mathbf{kE}}{\mathbf{kb}}\right)_{1+1,j,\frac{1}{2}} + \left(\frac{\mathbf{kE}}{\mathbf{kb}}\right)_{1+1,j,\frac{1}{2}} + 2\left(\frac{\mathbf{kE}}{\mathbf{kb}}\right)_{1,1,j,1} + 2\left(\frac{\mathbf{k$

Chock: (0 + (1) + (1) + (2) + (2) + (3) +

TAHLE V. - STRINGER DISPLACEMENT EQUATIONS - Concluded

(b) Temperature problem,

			£1.11	9585	84.68	<i>ಬೆ</i> ಇಪ್ ಕ	8,9,5,9				
	(3)	\$	0,1-0,10 8	0.001740 .000104 .000818 .00081824	0.011800 .008304 .007563 .008892	.005595 .002161 .003045	0.056192 .041760 .032731 .039610				
	9	^v ₁₊₁	(C) 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	0.062214 .001258 .000186 067113	0.041306 .000898 .000345 044487	0.061671 .001446 .00887 066138	000		$\left(\frac{Gt}{2}\right)_{1+1,3,\frac{1}{2}}^{+}$. 1
	٩	Δ v 1'	(G _{1,1})	0.063016 0.062214 0.00129 0.001258 0.000120 0.00186 0.067502 0.067113	0.083653 0.001676 0.000252 089504	0.062553 (0.001338 0.000529 0.006602	0.139293 0 .003128 0 .001941 0 148682 0				
	3	u1+1, 1+1	0,1+1,1+1	0.062214 .052815 .073856	0.041306 .034826 .049576	0.061671 0.051276 0.74770.	0000	$\left(\frac{Gt}{2}\right)_{1,j,j}^{\pm}$	((2))	1+1,0,1	
	8	t,1+1 ^u	9,11,1-10,1-10,1-10,1-11,1-1	0.345615 270760 183143 337547	0.285369 .223312 .156584 .281854	0.319400 .259938 .156862 .312553	0000	+ Δv1' (Gt/2)1,1+1,1	$\left(\frac{\text{G4L}}{\text{4b}}\right)_{1+1,3+1,\frac{1}{2}} + \triangle_{V_{1+1}}^{\text{G4L}}\right)$	1,1 + (AEGI),1,1,1 - (AEGI),1+1,1,1,	
	8	1-t,1+1 ^u	30 _{1+1,11}	0 .051558 .073669 .067113	0 .033925 .049231 .044487	0 .049830 .074588 .066138	0000	(14)	- 1,1,1,1	(GEL) (4b)	5
	\$	1+f, 1 ^u	(01,1+1,0+1,1+1)	0.125231 .106157 .148138	0,124959 .105208 .149318 0	0.124224 .103161 .151478	0.139293 .110950 .165157 0	$\frac{\left(\frac{GL}{4b}\right)}{1,1,1,1} t_{i,1-1} t_{i,1-1} t_{i,1-1} + \underbrace{\left[\frac{GL}{4b}\right]}_{1,1,1,1}$	$\left[\left(\frac{\overline{AB}}{L}\right)_{1+1,j,1}-\left(\frac{GLL}{4b}\right)\right]$	1,1] + 41+1,1+1,1 (GEL	$+ \frac{(\frac{GLL}{4b})}{(\frac{1}{4b})^{\frac{1}{2}+1} \cdot \frac{1}{4+1} \cdot \frac{1}{4+1} \cdot \frac{1}{4}}$
	69	1-f, t ⁿ	(8) + (8) + (1) (8)	0 .103780 .148072 .134615	0 .102630 .148722 .133991	0 .100373 .150062 .132740	0 .107822 .163216 .148682	,1 (GtL) + (dtL) + 1,	1,1,1,1,1	$\frac{1}{2} + \left(\frac{\text{G+L}}{\text{(4b)}}\right)_{1+1, 3+1, 1}$) + (GEL) (+1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
	(4)	u1-1,3+1	(1) 141 (9) (9)	0.063016 .053341 .074283	0.083653 .070381 .099742	0.062553 .051885 .076004	0.139293 .110950 .165158 0	1 ((4tr) 1, 1,1	$-\left(\frac{\text{GtL}}{4b}\right)_{1,3+1,\underline{1}}$	7L)	सुव
•	6	f,1-1 ^u	1-60 _{1,1} -60 _{1,1+1}	0.403923 .309366 .224435 .393223	0.464713 .360812 .247336 .450163	0.432153 .332994 - .240057 .421966	0.721414 .562455 .343252 .702635	1,1-1,1 + 1,1,1 (4t) 1,1-1,1-1,1-1,1-1,1-1,1-1,1-1,1-1,1-1,1	$\binom{\text{GtL}}{\text{tb}}$, t+t, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	$+\frac{(\frac{QLL}{4b})}{1.1.1}$
	6	1-1, 1-1	8 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 .052222 .074403 .067502	0 .068705 .099491 .089504	0 .050543 .075475 .066602	0 .107822 .163217 .148682	1-1,1-1,1	$\int_{\mathbb{T}} \left[\left(\frac{A \tilde{E}}{L} \right)_{1,3,1} \right]_{L_1}$	$u_{1-1,1+1,1}(\frac{G4L}{4b})_{1,1+1,\frac{1}{2}}$	$\mathbf{S} = \left(\frac{A\mathbf{E}}{L}\right)_{1,1,1} + \left(\frac{A\mathbf{E}}{L}\right)_{1,1,1,1} + \frac{A\mathbf{E}}{L}$
	89	8	*	1,135,864 1,370,641 982,648 1,081,366	844,763 0 1,028,556 727,614 810,844	557,833 690,387 474,609 541,607	246,976 319,062 216,890 240,923	s s	1.6,1-1"	1,1-1 ^u	$= \left(\frac{AE}{L}\right)_{L}$
	8	7		പരയച	ন এ এক	<u>न्यल</u> च्च	নে প্ৰত=	** 1,6,1,1			62

AELE VI.- MATRIX OF CORPFICIEN

160	0	0	0	0	0	0	0	0	0.036220	649200.	000142	043716	0.036220	849200.	000142	043716	0	•	•	0					-0.000182
,£87	0	0	0	0	0.036210	945700.	000090	999€₩0	0.036210	.0075 ¹⁴ 6	000090	043666	0	0	0		۰		0	0	۰	0		0	0.014020 -0,000345 -0.000266 -0.000354 -0.000182
. 287	0.036204	.007842	000032	4.10440	0.036204	.007842	000032	410440	0			0	0	۰			۰	0	0						0.000266
. 1 93	0.036202	.007760	,000020	043982	٥		°		0		0	0					٠			•	0				,000345
1140		0			0	0			0.754346	615690		-, 629962	0.754346	615690		629962				<u> </u>		•			0.011020
2v3¹	۰			0	0.756768	617504		625728	-0.756768 -0.754346	617504		625728				•	0						•		.027731 c
, z	-0.749488	623662	۰	626850	-0.749488 -0.756768	623662	0	626850	0	 o.	•			•						•		0	0		0.046050
^u₁.		625182		623142				<u> </u>				,					0	0	0	0	0	•	0		0.026848 0.020340 0.027731
Tq†n					-	0	•		?		.108289	.240070 0	0		.108289 0	0 '	0	0	0	135838 0	٥	•		.831930 0	
164n		•	<u> </u>	. •		_	•	0	0	.163216 0		,165157		.163216		.165158 0	0	0	0	•	0	•	.0	009705 -1,831930	0
Tota	0	0			0.	0	,	0	0.0845480.	.225184	.087001 .343252	. 0	0.0845480.0		0 100780.		0	•		107930		<u>•</u>	<u> </u>	.260572	0
TI‡n		0	0	•	0	0	<u> </u>	o o	0,198992 0.084548	.097020		. 0		097020			0	0	•	151742	0	0.	0		0
Ť†£n	0		0	0_			0 086640.	0 765161.		0	0 219660.			0	049632	. 1100y		•	062529 0	062258			.121669002644846015 0	.122248004435839626 1.415914	
^u 331	0		0	•	٥	0 574750	.240057	.076004	٥	.150062		.151478	0	.074588	.156862	cT≠cTo.	0		0	0	0		002644	004435	0
12E _n	.0	•	0	0	0.170292 0.040233	.162371	.041302	0	0.079899	0	0 611280.	0	0.091092 0.039666	3,105646	.040817		٥		041555070462051351	069463050636	٥	٥			٥
ug,		•	0.	0	0.170293	740540·	0		٥	094680.	<u>.</u>	<u>0</u>	0.091092	टॉफ्कंफ	0		٥	0	5070462	- 069463	٥		99659.	.648157	
u241	٥	ó	.066826	165840 0		0	.100041	0		0	.033215	0 085721.	٥	٥.		0	۰	085132 0	04155		.0	-1.153883 0	562239	٥	
		164660.	.247336	1247990.	٥	.148722	0	149318	٥	.049231	.156584	.049576	٥	0	o	0	۰	٥	۰.		0	.171540001258	001725	0	
^u 221	0.145946 0.054293 0	.060142 .143783	719550.	•	0.081101	0	.083138 0		0.112262 0.026809	7 .108193	.027521	0	٥	•	0	0	٥	3070670	046451034216 0	0	0	046171.	170180.	0	0.
rız _n	0.1459₩	741090·	0 1	o_	۰	0 669639	0	0 8	0.11226	.029697	0	_0_	٥	0	0	0	0 1	063676094078070670	046451	٥_	0	5 .877243	716054.		
T†In	٥	0	.100257	0	o	0	3 .049984 0	5 .124043 0	٥	•	٥	0	0	٥	0	•	-0.063941	06367	0	0	0.127908 0.000600 -0.869324 0	863065	۰	•	
ıη	0 8	.148072	0	.148138	. 0	.107500 .073669	3 .183143	.073856	ô	٥	٥	0		0	0	0	3.0	0 2	0	0	3 0.000600	.128254000931	0	0	
tet _n	0.081708	0	.083579	0_	0.040592		.041583	•	٥	0	0	0	۰	0	0	0	-0.070838 -0.053503	052837	0	0			0		
11110		926680.	0		0.108473	.044700	0	0	0	0	۰ ٥	ο,	0	0	0	۰	-0.070838	069922		0	0.657179	.652002	•	0	0
	LLL"	"121	"131	u141	u211	¹²²¹	"231	^ս ջևյ	"311	132n	^u 331	u341	u _{k11}	TZ†n	u431	uph1	١,٢٧٥	Ow ₂	۵۷3	Δw ₁ ,	- TeS	282	8	1	u

TABLE VI. - MAURIX OF CORFFICIENTS - Concluded

(b) Temperature problem.

111 112	-											•											
	' 4 ∨∆									.325706	644600.	.003986	339140	.325706	644600.	.003986	339140				_		
1.11 1.12	۵۳3'				0	5.326763	.008681	.002350	337794	5.326763	.008681	.002350											
1.14 1.15 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14	∆v2'				336564	0.327720	366200.	648000.	336564										,				
1.11 1.12	Î,Tav	0.328816	740700.	000542	335321	٥	_										•						
1141 1141	[¶fin	0	0	0			•					148682	.702635	۰	0	.148682					148682	0.039610	
0 0.103780 0 0.103780 0 0.105231 0 0.105231 0 0.345645 0.052815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	τε _ħ	0	0	. 0		0	٥		0				.165158	٥	912691.	•			•	0	.001941,	0.032731	
0 0.103780 0 0.103780 0 0.105231 0 0.105231 0 0.345645 0.052815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12¶n	٠,٥	۰ ،	0			٥		0	0.107822		026011.	0	0.107822	•		0	٥	0			0.041760	
0 0.103780 0 0.103780 0 0.105231 0 0.105231 0 0.345645 0.052815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TT¶n		0	0	0	0	0	0		0.721414	.139293		0	0	.139293	0	0	0				0.056192	
0 0.103780 0 0.103780 0 0.105231 0 0.105231 0 0.345645 0.052815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	¹³⁴¹	0	0	0	0	0	٥			0	0.	.132740		0				٥	0	066602	066138	0.004440	
0 0.103780 0 0.103780 0 0.105231 0 0.105231 0 0.345645 0.052815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	^u 331		_0_		0	0			400970.	0	.150062	0	.151478	0	.074588		.075475	0	0		.000887	0.003045	
0 0.103780 0 0.103780 0 0.105231 0 0.105231 0 0.345645 0.052815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	u321	0	. •	0	0	0.050543	.332994	.051885	0	0.100373	0	.103161	0	0.049830		.051276				001338	944100.	0.002161	
0 0.103780 0 0.103780 0 0.105231 0 0.105231 0 0.345645 0.052815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ugu.	0	0	.0	0	0.432153	.062553		0	0	क्टक्टा.	0	0	0.319400	.061671	0	0	0	•	.062553	.061671	0.005595	
0 0.103780 0 0.103780 0 0.105231 0 0.105231 0 0.345645 0.052815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ĬţZn	0					0	.133991	0	0	0			0	0	0	0	0	08950h	044487	0	0.008892	
0 0.103780 0 0.103780 0 0.105231 0 0.105231 0 0.345645 0.052815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	^w 231	۰			247660.	۰	.148722	0	.149318	0			972640.	0	0	0	0	O			0	0.007563	
0 0.103780 0 0.103780 0 0.105231 0 0.105231 0 0.345645 0.052815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	¹ 221	0.068705		.070381	0	0.102630	0	.105208		0.033925		.034826	0	. 0	٥.		0	0			0	φοεβοο.ο	
0 0.103780 0 0.103780 0 0.105231 0 0.105231 0 0.345645 0.052815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	¹ 211	0.464713	.083653	0_	0		.124959	0		0.285369	.041306	٥	0	.0	0	0	0	0	.083653	.041306	0	0.011800	
0 0.103780 0 0.103780 0 0.105231 0 0.105231 0 0.345645 0.052815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T†Tn	0	0	.134615	0	0			.337547	0	0	0	0	0	0	0	0	-0.067502	067113	0	0	0.001824	
0 0.103780 0 0.103780 0 0.105231 0 0.105231 0 0.345645 0.052815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ⁿ 131	0	.148072	0	.148138	0		.183143	.073856	0		. 0	0	0			0	0.000120	981000.		0	0.000816	
111" 11" 111	u121	0.103780		.106157	c		.270760	.052815	0			_						- 611100.0	.001258	-			
11111 11111 11111 11111 11111 11111 1111	1117		.125231	6	-	0.345615	,0622i4					<u> </u>						0.063016 c	412290.			0.001740	
		יונויי	121	"131 (1710	, TZ _m	, 221	, 1231	, 142n	, TTE _m) TZE _n	,331 (³⁴¹ () TT¶n		n ₄₃₁ (7 T##n	λ ₁ ' [c		ΔΨ3' (∆v4 C		·

TABLE VII. - CORRECTION CYCLE

(a) Load problem.

·	β _{y,1} "	β y ,2"	β _{y,3} "	β _{y,4} "
u111 u121 u131 u141	-0.054016 057921 037341 050740	0.053248 .059103 .037350 .050299		
^u 211 ^u 221 ^u 231 ^u 241		-0.053248 059103 037350 050299	0.053741 .058541 .036188 .051505	
^u 311 ^u 321 ^u 331 ^u 341			-0.053741 058541 036188 051505	0.052320 .061348 .035852 .050482
u ₄₁₁ u ₄₂₁ u ₄₃₁ u ₄₄₁				-0.052320 061348 035852 050480
z _{i,1} "	5	5	5	5
5th cycle 10th cycle 14th cycle	-35.25 7006 .09770	-62.43 -1.198 .1949	-85.11 1.799 .1669	-97.77 -2.156 .2673

NACA

TABLE VII. - CORRECTION CYCLE - Concluded

(b) Temperature problem.

			•	. 1	, ,	
"4 e z 8			-0.029254 010188 .008139 .031303	0.029254 .010188 008139 -:031303	-14.224672 -4.224672 5.775328 15.775328	5.604 .06513
gut"			0.261595 .306742 .179262 .252400	-0.261595 306742 179262 252400		-98 -2
β z ,3"		-0.029564 009645 .007983 .031226	0.029564 .009645 007983 031226		-14.275390 -4.275390 5.724610 15.724610	5.286 .07768
8u3"		0.268705 .292703 .180939 .257653	-0.268705 292703 180939 257653			7- 76-
B z ,2"	-0.029618 009780 .008413	0.029618 .009780 008413 030984			-14.235020 -4.235020 5.764980 15.764980	3.713 .05887
°5u2	0.266240 .295514 .186749 .251497	-0.266240, 295514 186749 251497				0 1 9-
Bz,1"	0.029722 .009505 008325 030952				-14.239858 -4.239858 5.760142 15.760142	1,951 0199
"Lng	-0.270057 289578 186687 253677					-33 0
	171n 151n 111n	1,521 1,521 1,531	u311 u321 u331	141n 1621n 1731 1731	Y1,1" Y1,2" Y1,3" Y1,4	5th cycle 9th cycle

TABLE VIII. - SUCCESSIVE VALUES OF DISPLACEMENT

		·	· · ·			
Check cycle	-0.018645 016885 012845 015654	-0.029703 027269 022475 025732	-0.037433 -035115 -03515 -030515	-0.039506 037432 033738 035843	0.061174 .110056 .154025 .160310	-0.000463 000540 000671 000490
Total	-0.018646 016885 012846 015655	-0.029703 027269 022475 025732	-0.037432 035115 030516 033345	-0.039505 037432 033738	0.061175 .110058 .154025 .160310	-0.000462 -042000- -070001- -004000-
14th cycle (correction)	-2351 -590 3449 640	-3063 -629 4165 908	-3002 -685 3914 1085	-2614 -541 3153 1047		
13th cycle	-2351 -590 3449 640	-3064 -630 4164 907	-3003 -686 3913 1084	-2615 -545 3152 1046		
12th	-2350 -590 3449 639	-3062 -629 4163 905	3972 3912 1088	-2613 -541 3151 1044	1737 3849 4157 3651	-118 -274 -317
lith cycle	-2348 -590 3447 637	-306 -629 1161 904	-2999 -2999 -685 -685 -1080	1,3,4,5,1,0,1 1,4,7,5,0,1 1,5,4,0 1,5,4,	1737 3847 4155 3650	-118 -306 -306
loth cycle (correction)	-2345 -589 3443 633	-3054 -627 4157 898	-2292 -683 3905 : 1074	-2605 -540 3145 1038	1736 3845 4150 3645	-117 -273 -316 -305
9th cycle	-2341 -585 3447 637	-3048 -621 -621 904	-2983 -674 3914 1083	-2594 -529 3156 1049		
8th cycle	-2334 -583 3441 631	-3036 -618 4154 895	-2971 -670 3905 1074	-258 -525 3149 1041	1726 3817 4109 3594	77.44.86
7th cycle	-2318 -579 3428 618	-3012 -612 4135 875	-2945 -664 3884 1051	-2560 -519 3133 1021	1719 3802 4091 3576	-116 -268 -310 -300 -300
6th cycle	-2283 -570 3398 588	-2960 -599 4094 831	-2890 -649 3837 999	-2508 -508 3094 977	1706 3769 4053 3540	11-885-885-885-885-885-885-885-885-885-8
5th cycle (correction)	-2210 -551 3334 529	-2855 -569 4000 739	-2771 1 -623 3734 898	-2429 -450 2986 864	1676 3700 3969 3473	-107 -248 -285 -275
4th cycle	-2034 -375 3510 705	-2543 -257 4312 1051	-2345 -197 4160 1324	39 3475 1353		
3d cycle	-1845 -309 3407 621	-2280 -183 4152 907	-2101 -25 3998 1144	-1718 67 3362 1194	1193 2441 2160 1382	76 76 76 76 76 76 76 76 76 76 76 76 76 7
2d cycle	-1471 -183 3092 419	-1719 -19 3750 620	-1574 -36 3489 733	-1232 149 2985 . 832	959 1866 1679 1061	-73 -163 -179 -170
Difference	-1289 × 10-6 -321 2659 -9	-1339 -173 2631 -108	-1177 -207 2296 2	-910 -53 1655 -45		
lst cycle	-0.017584 016616 013636 016304	-0.027979 026813 024009 026748	-0.035607 034637 032134 034428	-0.037801 035944 035236		
Initial values	-0.016295 016295 016295 016295	-0.026640 026640 026640 026640	-0.034430 034430 034430	-0.036891 036891 036891 036891	0.059438 .106210 .149871	-0.000345 000266 000354 000182
	1222	Tan Tan Tan Tan	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1771 1771 1771 1771	Δν.2 Δν.3 Δν.4	2692 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

(a) Load problem.

TABLE VIII. - SUCCESSIVE VALUES OF DISPLACEMENT - Concluded

(b) Temperature problem.

Check cycle	0.051011 .045664 .042472 .039795	0.106129 .094727 .087435 .081292	0.164577 .147760 .135323 .124130	0.228353 .202875 .184977 .169548	0.003728 .011977 .021695 .032972
Total value	0.051012 .045665 .042472 .039794	0.106129 .094727 .087435 .081293	0.164576 .147759 .135323 .124129	0.228353 .202875 .184977 .169548	0.003725 .011973 .021695 .032972
9th cycle (correction)	756 -917 -435 562	1486 -1759 -895 1119	1586 -1874 -963 1195	2854 -3254 -1791 2146	
8th cycle	756 -917 -435 562	1487 -1759 -895 1118	1589 -1872 -961 1196	2857 -3252 -1789 2147	
7th cycle	757 -917 -435 562	1487 -1759 -895 1118	1589 -1872 -961 1196	2857 -3252 -1789 2147	54 147 188 188 . 255
6th cycle	756 -914 -435 564	1487 -1757 -895 1118	1589 -1872 -962 1195	2856 -3252 -1789 2146	47 147 188 255
5th cycle (correction)	742 -897 -434 554	1477 -1744 -895 1115	1582 -1868 -963 1193	2852 -3253 -1790 2144	52 143 184 253
4th cycle	803 -856 -412 556	1594 -1664 -852 1120	1751 -1751 -899 1204	3030 -3131 -1724 2154	
3d cycle	734 -810 -384 522	1544 -1594 -840 1089	1746 -1682 -885 1197	3054 -3088 -1704 2160	61 184 270 370
2d cycle	680 -723 -345 492	1286 -1386 -723 943	1564 -1441 -831 1098	2986 -2916 -1701 2148	54 144 1330
Difference	454 × 10-6 -503 -172 317	1036 -1110 -474 751	550 -581 -238 388	2389 ′ -2374 -1175 1753	
lst cycle	0.050710 .046079 .042735 .039548	0.105679 .095376 .087856 .080925	0.163540 .149052 .136048 .123322	0.227888 .203755 .185593	
Initial values	0.050256 .046582 .042907 .039232	0.104643 .096486 .088330 .080174	0.162990 .149633 .136286 .122934	0.225499 .206129 .186768 .167402	0.003675 .011832 .021508 .032718
	1111 1210 1231 1414	172n 182n 182n 172n	4321 4321 4331 4341	4,11 4,12 4,13 4,14 1,14	νας , νας , νας , νας , νας ,

STRESSES
ä
TARE

	, -							,					
	(3)	1,4,1	(5214 5214 3959	3322 4165 3235	4797 5508 4352	2112 2892 2404				. (
	(3)	71,1,9	(i) - (ii)	-1020 -1065 283	-2060 -1818 1183	-2555 -1935 1270	-2780 -1435 1580				<u>{</u>	NACA	
Total	(3)	71,3,1	(m) (m)	1261 103	37.23.33	2635 300 300 300 300 300 300 300 300 300 3	2363	Δv ₁ ,				z {	
ĝ.	<u>(8)</u>	ق ₁ , 1, ه	(i)	7,208	3,764 6,866 5,594 3,833	2,140 5,621 4,868 2,597	2,288 2,010,988 683.010	2) 2)					•
	(3)	ō₁,1,1	⊕-தெஞ∙தை-குஞ்∙கு	-10,610 -6,202 -5,391 -9,013	6,6% 43,3% 6,071	4,1,589 4,1,989 863,589 863,589	1,657 -326 -1,146 -2,1,165	1,k) + (x,t			0		٠
	(3)	1,1,1,1	000	-290 98 193	-84.3 270 573	111-05E	1605	£,1-1"		(a)	°-('')@)		
* #	(E)	(10 (2)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	133	-337 108 229	-228 70 751	 122. 93	$\left(u_{1,j,k} + u_{1-1,j,k} - u_{1,j-1,k} - u_{1-1,j-1,k}\right) + \left(\frac{0t}{2}\right)_{1,j,\frac{K}{2}}$	$\left[\overline{\mathbf{F}}_{1,j,j,\mathbf{K}} = \left(\frac{\partial \mathbf{E}}{\mathbf{L}} \right)_{1,j,j,\mathbf{K}} \left(\mathbf{u}_{1,j,\mathbf{K}} - \mathbf{u}_{1,1,j,\mathbf{K}} \right) - \left(\mathbf{A} \mathbf{E} \mathbf{c} \mathbf{T} \right)_{1,j,\mathbf{K}} \right)$	hecks: (L), 1 - (L), 1, 1 = (L), 1, 1, 1 - (L), 1, 1 + (L), 1, 1 - (L), 1,			
re probl	(3)	(1,1,1)	(E)(E)	-1701 2148 974 974 -1291	-1463 1781 853 -1122	-1475 1816 934 -1133	8,52±3,	In + 4(, 1-1, 3, E	(j) - ±	\(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\fraca		•
Temperature problem**	9	P _{1,1,1}	96,1,1 6,1,1,0	-1888 2470 721 -1304	11434 1870 263 -999	935 235 246- 246- 246-	-321 414 134 -227		u- 4,6,1"	,1 = @_+1,,			
	(3)	Δ v 1.		0.003728	0.011977	0.021695	0.032972	110) 및 전($\cdot \left(rac{AE}{L} ight)_{1,1,1}$	(T)	\\ \frac{1}{11} \\ \frac{1} \\ \frac{1}{11} \\ \frac{1}{11} \\ \frac{1}{11} \\ \frac{1}{11} \\ \frac{1}{11} \\		
	9	1,1,1		0.051011) 0.054640. 0.042472 0.039795	0.106129 .094727 .087435 .081292	\$164577 147760 135323 124130	0.228353 .202875 .184977 .169548	$\left(\frac{\tau_{LL}}{2}\right)_{1,j,\underline{k}} = \left(\frac{0tL}{tb}\right)_{1,j,\underline{k}}$	¥, £, 1, ¥	Becks:	- _ <u>;</u>		
	⑤	1,4,1	@@	5214 5214 	3322 4165 1165	1,797 5,508 	2042	· - -				_	
	(3)	$\left(\frac{rtL}{2}\right)_{1,\frac{1}{2},1}$	2869,1+ (1) 806,2,3+ (1) 60 60 60	3321 2659 2019	2224 2126 1650	1535	676 723 601						
	(3)	71,1,1	a	730 1163 -90	1218 2088 -610	1415 2285 1485	11.75 1900 1445	(Gtz')	, ₁ 97		(E)		
oblem*	(3)	$\left(\frac{\tau tL}{2}\right)_{1, 3, \underline{1}}$	8 6,1- 6,1-1 6,1- 6,1-1,1-1 6	292 1653 -36	187 187 835 1945	283 457 -97	23.3 380 380 189	$\frac{(117)}{2} - \left(4(1-1)(1-1)^{2} - 3(1-1)(1)^{2} - 3(1-1)(1)^{2} - 3(1-1)(1-1)^{2} - 3(1-1)^{2}\right) = \frac{1}{2}(1-1)^{2}$	$\left(\frac{\tau t L}{2}\right)_{1,\frac{1}{2},k} = 2\left(\frac{0.01}{(40)}\right)_{1,\frac{1}{2},k} \left(u_{1,\frac{1}{2},k} + u_{1-\frac{1}{2},j,k}\right) + \left(\frac{0c}{2}\right)_{1,\frac{1}{2},k} \alpha_{N_1} + \left(\frac{0cV^*}{2}\right)_{1,\frac{1}{2},k} ,$		hecks: ©1,,j - (©1,-1, 1 = (<u>Ш,+1,,j+1 - (Ш,+1,</u> j + (<u>Ш,,,j+1 - (Ш,,,j - (Ш,+1,,j - (Ш),</u> ,j - (<u>Ш),,</u> j - (<u>Ш),,</u> j		
Load problem*	(3)	<u> </u>	(3)(0)	-8909 -8350 -6365 -7722	-5227 -5085 -4741 -4955	-3615 -3805 -3934 -3730	-959 -1112 -1563 -1221	1, X - 1	, *(£(,!		1+6,1		
	(3)	P1,1,1	961,1- 61-1,1]	(-9889 -9603 -4710 -7779	(-5122 -5339 -3129 -4410	-2133 -2359 -1494 -2014	-513 -513 -513	J,k - 41,5	3,k) + (₫		(II)	⊜ - 3	
	3	, T ₆₀₇		-0.000463	-0.000540	-0.000671	-0.000k90	, k + u ₁₋₁ ,	,ι-1 ^{υ + Δ} ι	1-1, 3,k)	<u> </u>	\(\sum_{j=1}^{4} \) (1.3, \(\sum_{j=1} \)	.,,
	(3)	Δw ₁ .		0.061174	0.110056 -0.000540	0.154025	0.160310	(1,1) ±,6,	,,,),k(1,,)	1,3,k - u	(<u>†</u>		
	(3)	1,6,1		-0.018645] 016885] 012845 015654	-0.029703 027269 022475 025739	-0.037433 035115 033515 033344	-0.039506 037432 033738 035843	(Ger)	, = 2(GtL),	$\overline{P}_{1,1,k} = \left(\frac{AE}{L}\right)_{i,1,k} \left(u_{1,1,k} - u_{1-1,1,k}\right)$	- (%)	10 \(\sum_{j=1}^{\text{L}} \) (1091, \(j \) = (39)	10 $\sum_{j=1}^{\frac{k}{2}} (1)_{1,j} - \sum_{j=1}^{\frac{k}{2}} (1) (0_{1,j}6)$
	(B)	73		<u>-</u> a m →	<u>⊣ и м</u> ≠,	<u>4 04 w</u> →	ন ল'অ⇒	(1)	£) 1,1,1	3,k = (Checks:	→	* \(\) \(\
	۳	1		-	CU	m] <u>*</u> II	Pla	IN IN	e G	Ħ	н

Figure 1.- Typical multicell, stiffened-shell wing structure.

Figure 2.- Idealized structure used in illustrative example. (Stringer areas and skin thicknesses are listed in tables I and II.)

Figure 3.- Distribution of temperature increase.

Figure 4.- Variation of elastic properties of 75S-T6 aluminum alloy with temperature increase (reference 1).

(a) Spanwise distribution of upper-surface stringer stress.

(b) Spanwise distribution of lower-surface stringer stress.

Figure 5.- Calculated stress distribution in the idealized structure.

(c) Chordwise distribution of upper-surface normal stress.

(d) Chordwise distribution of lower-surface normal stress.

Figure 5.- Continued.

(e) Spanwise distribution of web shear stress.

Figure 5.- Concluded.

Figure 6.- Notation and coordinate system.

Figure 7.- Forces on stringer.

Figure 8.- Notation used to locate principal shear axes.