Example: A 2<sup>6</sup> experiment was conducted to improve the quality of a frozen food product. The factors that were thought to influence product quality were mix temperature, mixing speed, freezing temperature, air velocity, end product temperature, and package type. The beginning levels for each factor are given on the next slide.





# Table 8.6 Definition of the Treatment Structure in a 2<sup>6</sup> Factorial Experiment to Improve the Quality of a Frozen Food Product.

|                             |               | Level |               |
|-----------------------------|---------------|-------|---------------|
| Variable                    | Low           |       | High          |
| MT: mixing time             | 3 min         |       | 6 min         |
| MS: mixing speed            | 75 rpm        |       | 150 rpm       |
| FT: freezing temperature    | -40 degrees F |       | -20 degrees F |
| AV: air velocity            | 100 fpm       |       | 300 fmp       |
| ET: end product temperature | 0 degrees F   |       | 10 degrees F  |
| PT: package type            | Rectangular   |       | Round         |





Since the raw materials used in making the frozen food product change on a daily basis, it was decided that we should block on days. Also, only 8 runs could be completed on a given day. So we need to create 8 blocks of size 8.





We will used the defining effects A\*B\*C\*D, A\*B\*E\*F, and A\*C\*E, and then randomly assign the treatment factors to the letters A, B, C, D, E, & F. Then we will also randomly assign the eight blocks to the 8 days. Also the run order will be randomized on each day.





**Table 8.7 Random Assignment of Factors to Symbols and Days to Blocks** 

| Factor | Symbol | Day | Block |
|--------|--------|-----|-------|
| MT     | В      | 1   | 3     |
| MS     | D      | 2   | 8     |
| FT     | С      | 3   | 6     |
| AV     | F      | 4   | 1     |
| ET     | A      | 5   | 7     |
| PT     | E      | 6   | 2     |
|        |        | 7   | 5     |
|        |        | 8   | 4     |



| Obs | DAY | RUN | ЕТ | MT | FT | MS | PT | AV | QUALITY |
|-----|-----|-----|----|----|----|----|----|----|---------|
| 1   | 1   | 1   | 1  | 0  | 1  | 0  | 0  | 0  | 4.5     |
| 2   | 1   | 4   | 0  | 1  | 0  | 1  | 0  | 0  | 9.2     |
| 3   | 1   | 7   | 1  | 1  | 0  | 0  | 1  | 0  | 6.9     |
| 4   | 1   | 3   | 0  | 0  | 1  | 1  | 1  | 0  | 5.6     |
| 5   | 1   | 8   | 0  | 0  | 0  | 0  | 0  | 1  | 6.2     |
| 6   | 1   | 2   | 1  | 1  | 1  | 1  | 0  | 1  | 5.8     |
| 7   | 1   | 6   | 0  | 1  | 1  | 0  | 1  | 1  | 6.3     |
| 8   | 1   | 5   | 1  | 0  | 0  | 1  | 1  | 1  | 7.2     |
| 9   | 2   | 6   | 1  | 0  | 0  | 0  | 0  | 0  | 6.3     |
| 10  | 2   | 3   | 0  | 1  | 1  | 1  | 0  | 0  | 6.0     |
| 11  | 2   | 2   | 1  | 1  | 1  | 0  | 1  | 0  | 5.6     |
| 12  | 2   | 1   | 0  | 0  | 0  | 1  | 1  | 0  | 7.9     |





#### PROC ANOVA;

TITLE 'AN ANOVA FOR THE DATA IN TABLE 8.8';
CLASS DAY MT MS FT AV ET PT;

MODEL QUALITY = DAY MT MS FT AV ET PT

MT\*MS MT\*FT MT\*AV MT\*ET MT\*PT MS\*FT MS\*AV MS\*ET

MS\*PT FT\*AV FT\*ET FT\*PT AV\*ET AV\*PT ET\*PT

MT\*MS\*FT MT\*MS\*AV MT\*MS\*ET MT\*FT\*ET MT\*FT\*PT

MT\*AV\*ET MT\*AV\*PT MT\*ET\*PT MS\*FT\*AV MS\*FT\*ET

MS\*FT\*PT MS\*AV\*PT MS\*ET\*PT FT\*AV\*ET FT\*AV\*PT

AV\*ET\*PT;





| Source                 | DF | Sum of Squares | Mean Square | F Value | Pr > F |
|------------------------|----|----------------|-------------|---------|--------|
| Model                  | 44 | 148.1993750    | 3.3681676   | 8.41    | <.0001 |
| Error                  | 19 | 7.6104688      | 0.4005510   |         |        |
| <b>Corrected Total</b> | 63 | 155.8098438    |             |         |        |





|               |    | _ |             |             |            |        |
|---------------|----|---|-------------|-------------|------------|--------|
| Source        | DI | F | Anova SS    | Mean Square | F<br>Value | Pr > F |
| DAY           |    |   | 41.44859375 | 5.92122768  |            | <.0001 |
| MT            |    | 1 | 19.03140625 | 19.03140625 | 47.51      | <.0001 |
| MS            |    | 1 | 8.77640625  | 8.77640625  | 21.91      | 0.0002 |
| FT            |    | 1 | 52.74390625 | 52.74390625 | 131.68     | <.0001 |
| AV            |    | 1 | 3.01890625  | 3.01890625  | 7.54       | 0.0129 |
| ET            |    | 1 | 1.65765625  | 1.65765625  | 4.14       | 0.0561 |
| PT            |    | 1 | 0.83265625  | 0.83265625  | 2.08       | 0.1656 |
| MT*MS         |    | 1 | 1.78890625  | 1.78890625  | 4.47       | 0.0480 |
| MT*FT         |    | 1 | 0.17015625  | 0.17015625  | 0.42       | 0.5224 |
| MT*AV         |    | 1 | 0.04515625  | 0.04515625  | 0.11       | 0.7407 |
| MT*ET         |    | 1 | 0.11390625  | 0.11390625  | 0.28       | 0.6000 |
| MT*PT         |    | 1 | 0.28890625  | 0.28890625  | 0.72       | 0.4063 |
| MS*FT         |    | 1 | 0.00015625  | 0.00015625  | 0.00       | 0.9844 |
| MS*AV         |    | 1 | 0.09765625  | 0.09765625  | 0.24       | 0.6271 |
| MS*ET         |    | 1 | 0.13140625  | 0.13140625  | 0.33       | 0.5735 |
| MS*PT         |    | 1 | 0.43890625  | 0.43890625  | 1.10       | 0.3083 |
| FT*AV         |    | 1 | 5.34765625  | 5.34765625  | 13.35      | 0.0017 |
| FT*ET         |    | 1 | 2.36390625  | 2.36390625  | 5.90       | 0.0252 |
| FT*PT         |    | 1 | 0.00140625  | 0.00140625  | 0.00       | 0.9534 |
| AV*ET         |    | 1 | 0.28890625  | 0.28890625  | 0.72       | 0.4063 |
| AV*PT         |    | 1 | 0.28890625  | 0.28890625  | 0.72       | 0.4063 |
| ET*PT         |    | 1 | 1.35140625  | 1.35140625  | 3.37       | 0.0819 |
| MT*MS*        | FT | 1 | 0.03515625  | 0.03515625  | 0.09       | 0.7702 |
| MT*MS*        | AV | 1 | 0.50765625  | 0.50765625  | 1.27       | 0.2743 |
| MT*MS*        | ET | 1 | 1.59390625  | 1.59390625  | 3.98       | 0.0606 |
| MT*FT*        | ET | 1 | 0.50765625  | 0.50765625  | 1.27       | 0.2743 |
| MT*FT*        | PT | 1 | 2.52015625  | 2.52015625  | 6.29       | 0.0214 |
| MT*AV*        | ET | 1 | 0.78765625  | 0.78765625  | 1.97       | 0.1770 |
| MT*AV*        | PT | 1 | 0.00015625  | 0.00015625  | 0.00       | 0.9844 |
| MT*ET*        | PT | 1 | 0.17015625  | 0.17015625  | 0.42       | 0.5224 |
| MT*ET* MS*FT* | V  | 1 | 0.00140625  | 0.00140625  | 0.00       | 0.9534 |
| MS*FT*        | T  | 1 | 0.62015625  | 0.62015625  | 1.55       | 0.2285 |

|     |   | I           | I           | ı      | 1 1    |   |
|-----|---|-------------|-------------|--------|--------|---|
| DAY | 7 | 41.44859375 | 5.92122768  | 14.78  | <.0001 |   |
| MT  | 1 | 19.03140625 | 19.03140625 | 47.51  | <.0001 |   |
| MS  | 1 | 8.77640625  | 8.77640625  | 21.91  | 0.0002 |   |
| FT  | 1 | 52.74390625 | 52.74390625 | 131.68 | <.0001 |   |
| AV  | 1 | 3.01890625  | 3.01890625  | 7.54   | 0.0129 |   |
| ET  | 1 | 1.65765625  | 1.65765625  | 4.14   | 0.0561 |   |
| PT  | 1 | 0.83265625  | 0.83265625  | 2.08   | 0.1656 | 0 |

| MT*MS | 1 | 1.78890625 | 1.78890625 | 4.47  | 0.0480 |
|-------|---|------------|------------|-------|--------|
| MT*FT | 1 | 0.17015625 | 0.17015625 | 0.42  | 0.5224 |
| MT*AV | 1 | 0.04515625 | 0.04515625 | 0.11  | 0.7407 |
| MT*ET | 1 | 0.11390625 | 0.11390625 | 0.28  | 0.6000 |
| MT*PT | 1 | 0.28890625 | 0.28890625 | 0.72  | 0.4063 |
| MS*FT | 1 | 0.00015625 | 0.00015625 | 0.00  | 0.9844 |
| MS*AV | 1 | 0.09765625 | 0.09765625 | 0.24  | 0.6271 |
| MS*ET | 1 | 0.13140625 | 0.13140625 | 0.33  | 0.5735 |
| MS*PT | 1 | 0.43890625 | 0.43890625 | 1.10  | 0.3083 |
| FT*AV | 1 | 5.34765625 | 5.34765625 | 13.35 | 0.0017 |
| FT*ET | 1 | 2.36390625 | 2.36390625 | 5.90  | 0.0252 |
| FT*PT | 1 | 0.00140625 | 0.00140625 | 0.00  | 0.9534 |
| AV*ET | 1 | 0.28890625 | 0.28890625 | 0.72  | 0.4063 |
| AV*PT | 1 | 0.28890625 | 0.28890625 | 0.72  | 0.4063 |
| ЕТ*РТ | 1 | 1.35140625 | 1.35140625 | 3.37  | 0.0819 |









| Level of | Level of | Level of |   | QUA        | LITY       |
|----------|----------|----------|---|------------|------------|
| MT       | FT       | PT       | N | Mean       | Std Dev    |
| 0        | 0        | 0        | 8 | 5.43750000 | 1.33195613 |
| 0        | 0        | 1        | 8 | 6.18750000 | 1.08290284 |
| 0        | 1        | 0        | 8 | 4.11250000 | 0.94783588 |
| 0        | 1        | 1        | 8 | 4.08750000 | 1.54127730 |
| 1        | 0        | 0        | 8 | 7.16250000 | 1.22467197 |
| 1        | 0        | 1        | 8 | 6.85000000 | 0.81940745 |
| 1        | 1        | 0        | 8 | 4.83750000 | 1.27832200 |
| 1        | 1        | 1        | 8 | 5.33750000 | 1.19754213 |



$$LSD_{0.05} = 2\sqrt{\frac{2\hat{\sigma}^2}{8}} = 2 \cdot \frac{\hat{\sigma}}{2} = \hat{\sigma} = 0.633$$



Conclusion: We want MT high, FT low, and PT does not matter





| Level of | Level of |    | QUAL          | ITY        |
|----------|----------|----|---------------|------------|
| MT       | MS       | N  | Mean          | Std Dev    |
| 0        | 0        | 16 | 4.41875000 c  | 1.28073872 |
| 0        | 1        | 16 | 5.49375000 b  | 1.53643256 |
| 1        | 0        | 16 | 5.84375000 ab | 1.51171812 |
| 1        | 1        | 16 | 6.25000000 a  | 1.45876660 |

$$LSD_{0.05} = 2\sqrt{\frac{2\hat{\sigma}^2}{16}} = 2 \cdot \frac{\hat{\sigma}}{\sqrt{8}} = \frac{(2)(0.633)}{2.8284} = 0.448$$





Conclusion: We want MT high. Although the two high combinations are not significantly different at the 5% level, we might also want to take MS high.





| Level of Level of |    |    | QUALITY      |            |  |  |  |  |  |
|-------------------|----|----|--------------|------------|--|--|--|--|--|
| FT                | AV | N  | Mean         | Std Dev    |  |  |  |  |  |
| 0                 | 0  | 16 | 6.48125000 a | 1.45749500 |  |  |  |  |  |
| 0                 | 1  | 16 | 6.33750000 a | 1.09048919 |  |  |  |  |  |
| 1                 | 0  | 16 | 4.08750000 c | 1.14302231 |  |  |  |  |  |
| 1                 | 1  | 16 | 5.10000000 b | 1.30128142 |  |  |  |  |  |

$$LSD_{0.05} = 2\sqrt{\frac{2\hat{\sigma}^2}{16}} = 2 \cdot \frac{\hat{\sigma}}{\sqrt{8}} = \frac{(2)(0.633)}{2.8284} = 0.448$$





| Level of Level of |    |    | QUALITY      |            |  |  |  |  |  |
|-------------------|----|----|--------------|------------|--|--|--|--|--|
| FT                | AV | N  | Mean         | Std Dev    |  |  |  |  |  |
| 0                 | 0  | 16 | 6.48125000 a | 1.45749500 |  |  |  |  |  |
| 0                 | 1  | 16 | 6.33750000 a | 1.09048919 |  |  |  |  |  |
| 1                 | 0  | 16 | 4.08750000 c | 1.14302231 |  |  |  |  |  |
| 1                 | 1  | 16 | 5.10000000 b | 1.30128142 |  |  |  |  |  |

$$LSD_{0.05} = 2\sqrt{\frac{2\hat{\sigma}^2}{16}} = 2 \cdot \frac{\hat{\sigma}}{\sqrt{8}} = \frac{(2)(0.633)}{2.8284} = 0.448$$

**Conclusion:** We want FT low, AV does not matter.



| Level of | Level of Level of |    | QUALITY      |           |  |  |
|----------|-------------------|----|--------------|-----------|--|--|
| FT       | ET                | N  | Mean         | Std Dev   |  |  |
| 0        | 0                 | 16 | 6.76250000 a | 1.2701049 |  |  |
| 0        | 1                 | 16 | 6.05625000 b | 1.2022028 |  |  |
| 1        | 0                 | 16 | 4.56250000 c | 1.2622070 |  |  |
| 1        | 1                 | 16 | 4.62500000 c | 1.3969013 |  |  |

$$LSD_{0.05} = 2\sqrt{\frac{2\hat{\sigma}^2}{16}} = 2 \cdot \frac{\hat{\sigma}}{\sqrt{8}} = \frac{(2)(0.633)}{2.8284} = 0.448$$





| Level of | Level of |    | QUALITY      |           |  |  |
|----------|----------|----|--------------|-----------|--|--|
| FT       | ET       | N  | Mean         | Std Dev   |  |  |
| 0        | 0        | 16 | 6.76250000 a | 1.2701049 |  |  |
| 0        | 1        | 16 | 6.05625000 b | 1.2022028 |  |  |
| 1        | 0        | 16 | 4.56250000 c | 1.2622070 |  |  |
| 1        | 1        | 16 | 4.62500000 c | 1.3969013 |  |  |

$$LSD_{0.05} = 2\sqrt{\frac{2\hat{\sigma}^2}{16}} = 2 \cdot \frac{\hat{\sigma}}{\sqrt{8}} = \frac{(2)(0.633)}{2.8284} = 0.448$$

Conclusion: We want FT low and ET low.

Conclusion: We want MT high, FT

low, and PT does not matter

Conclusion: We want MT high and MS

high.

Conclusion: We want FT low, AV

does not matter.

Conclusion: We want FT low and ET low.

Overall Conclusion: We want FT low, MT high, MS high, and ET low. AV and PT do not matter.





Remark: The text also analyzes this data using a half-normal plot. See the text for more information.

You can now work Assignments 4 and 5.





## Partially Confounded Designs

Consider performing a 2<sup>3</sup> experiment in blocks of size 4. Since this is a relatively small experiment, we can consider performing more than 8 runs. Let us suppose we are going to do three replicates of the 8 treatment combinations in a total of 24 runs. If we used blocks of size 4, then we would have six blocks of size 4.





## Partially Confounded Designs

Three pairs of blocks could be obtained by confounding the three-factor interaction, A\*B\*C, in each pair of blocks. However, such a set of blocks would provide no information about the three factor interaction since the three factor interaction would be confounded with each pair of blocks.





## Partially Confounded Designs

As an alternative, suppose we confound the A\*B interaction in the first pair of blocks, the A\*C interaction in a second pair of blocks, and the B\*C interaction in the third pair of blocks.





#### **First Block Pair 1** (*A\*B* Confounded)

| Block 1 | Block 2   |
|---------|-----------|
| ABC     | ABC       |
| 100     | $0\ 0\ 0$ |
| 010     | 110       |
| 101     | 001       |
| 011     | 111       |

# Second Block Pair (A\*C

**Confounded**)

| Block 3 | Block 4 |
|---------|---------|
| ABC     | ABC     |
| 000     | 100     |
| 101     | 001     |
| 010     | 110     |
| 111     | 011     |

## Third Block Pair (B\*C Confounded)

| Block 5 | Block 6   |
|---------|-----------|
| ABC     | ABC       |
| 000     | $0\ 1\ 0$ |
| 011     | $0\ 0\ 1$ |
| 100     | 110       |
| 111     | 101       |

# Partially Confounded Designs

| Pair 1 (A*B Confounded) |         | Pair 2 (A*C Co | onfounded) | Pair 3 (B*C Confounded) |         |  |
|-------------------------|---------|----------------|------------|-------------------------|---------|--|
| Block 1                 | Block 2 | Block 3        | Block 4    | Block 5                 | Block 6 |  |
| ABC                     | ABC     | ABC            | ABC        | ABC                     | ABC     |  |
| 100                     | 000     | 000            | 100        | 000                     | 010     |  |
| 010                     | 110     | 101            | 001        | 011                     | 0 0 1   |  |
| 101                     | 0 0 1   | 010            | 110        | 100                     | 110     |  |
| 011                     | 111     | 111            | 011        | 111                     | 101     |  |





# Partially Confounded Designs

| Source | DF |
|--------|----|
| BLKS   | 5  |
| Α      | 1  |
| В      | 1  |
| A*B    | 1' |
| С      | 1  |
| A*C    | 1' |
| B*C    | 1' |
| A*B*C  | 1  |
| ERROR  | 11 |





|   | DI OOK | _ | _ | _ | VIELD |   |
|---|--------|---|---|---|-------|---|
|   | BLOCK  | Α | В | С | YIELD |   |
|   | 1      | 1 | 0 | 0 | 37    |   |
|   | 1      | 0 | 1 | 0 | 35    |   |
|   | 1      | 1 | 0 | 1 | 36    |   |
|   | 1      | 0 | 1 | 1 | 49    |   |
|   | 2      | 0 | 0 | 0 | 30    |   |
|   | 2      | 1 | 1 | 0 | 29    |   |
|   | 2      | 0 | 0 | 1 | 32    |   |
|   | 2      | 1 | 1 | 1 | 36    |   |
|   | 3      | 0 | 0 | 0 | 27    |   |
|   | 3      | 1 | 0 | 1 | 35    |   |
|   | 3      | 0 | 1 | 0 | 32    |   |
|   | 3      | 1 | 1 | 1 | 43    |   |
|   | 4      | 1 | 0 | 0 | 27    |   |
|   | 4      | 0 | 0 | 1 | 33    |   |
|   | 4      | 1 | 1 | 0 | 27    |   |
|   | 4      | 0 | 1 | 1 | 45    |   |
|   | 5      | 0 | 0 | 0 | 29    |   |
|   | 5      | 0 | 1 | 1 | 47    |   |
|   | 5      | 1 | 0 | 0 | 28    |   |
|   | 5      | 1 | 1 | 1 | 48    |   |
|   | 6      | 0 | 1 | 0 | 36    |   |
|   | 6      | 0 | 0 | 1 | 30    |   |
|   | 6      | 1 | 1 | 0 | 37    |   |
| C | 6      | 1 | 0 | 1 | 42    | 5 |
|   |        |   |   |   |       |   |

| BLOCK | Α | В | С | YIELD | Α  | В  | A*B | С  | A*C | B*C | A*B*C |
|-------|---|---|---|-------|----|----|-----|----|-----|-----|-------|
| 1     | 1 | 0 | 0 | 37    | 1  | -1 |     | -1 | -1  | 1   | 1     |
| 1     | 0 | 1 | 0 | 35    | -1 | 1  |     | -1 | 1   | -1  | 1     |
| 1     | 1 | 0 | 1 | 36    | 1  | -1 |     | 1  | 1   | -1  | -1    |
| 1     | 0 | 1 | 1 | 49    | -1 | 1  |     | 1  | -1  | 1   | -1    |
| 2     | 0 | 0 | 0 | 30    | -1 | -1 |     | -1 | 1   | 1   | -1    |
| 2     | 1 | 1 | 0 | 29    | 1  | 1  |     | -1 | -1  | -1  | -1    |
| 2     | 0 | 0 | 1 | 32    | -1 | -1 |     | 1  | -1  | -1  | 1     |
| 2     | 1 | 1 | 1 | 36    | 1  | 1  |     | 1  | 1   | 1   | 1     |
| 3     | 0 | 0 | 0 | 27    | -1 | -1 | 1   | -1 |     | 1   | -1    |
| 3     | 1 | 0 | 1 | 35    | 1  | -1 | -1  | 1  |     | -1  | -1    |
| 3     | 0 | 1 | 0 | 32    | -1 | 1  | -1  | -1 |     | -1  | 1     |
| 3     | 1 | 1 | 1 | 43    | 1  | 1  | 1   | 1  |     | 1   | 1     |
| 4     | 1 | 0 | 0 | 27    | 1  | -1 | -1  | -1 |     | 1   | 1     |
| 4     | 0 | 0 | 1 | 33    | -1 | -1 | 1   | 1  |     | -1  | 1     |
| 4     | 1 | 1 | 0 | 27    | 1  | 1  | 1   | -1 |     | -1  | -1    |
| 4     | 0 | 1 | 1 | 45    | -1 | 1  | -1  | 1  |     | 1   | -1    |
| 5     | 0 | 0 | 0 | 29    | -1 | -1 | 1   | -1 | 1   |     | -1    |
| 5     | 0 | 1 | 1 | 47    | -1 | 1  | -1  | 1  | -1  |     | -1    |
| 5     | 1 | 0 | 0 | 28    | 1  | -1 | -1  | -1 | -1  |     | 1     |
| 5     | 1 | 1 | 1 | 48    | 1  | 1  | 1   | 1  | 1   |     | 1     |
| 6     | 0 | 1 | 0 | 36    | -1 | 1  | -1  | -1 | 1   |     | 1     |
| 6     | 0 | 0 | 1 | 30    | -1 | -1 | 1   | 1  | -1  |     | 1     |
| 6     | 1 | 1 | 0 | 37    | 1  | 1  | 1   | -1 | -1  |     | -1    |
| 6     | 1 | 0 | 1 | 42    | 1  | -1 | -1  | 1  | 1   |     | -1    |

|       |   |   |   |       | BLK    | BLK    | BLK    | BLK        | BLK | TOTAL |
|-------|---|---|---|-------|--------|--------|--------|------------|-----|-------|
| BLOCK | Α | В | С | YIELD | 1 VS 2 | 3 VS 4 | 5 VS 6 | 1+2 VS 5+6 |     |       |
| 1     | 1 | 0 | 0 | 37    | 1      |        |        | 1          | 1   | 1     |
| 1     | 0 | 1 | 0 | 35    | 1      |        |        | 1          | 1   | 1     |
| 1     | 1 | 0 | 1 | 36    | 1      |        |        | 1          | 1   | 1     |
| 1     | 0 | 1 | 1 | 49    | 1      |        |        | 1          | 1   | 1     |
| 2     | 0 | 0 | 0 | 30    | -1     |        |        | 1          | 1   | 1     |
| 2     | 1 | 1 | 0 | 29    | -1     |        |        | 1          | 1   | 1     |
| 2     | 0 | 0 | 1 | 32    | -1     |        |        | 1          | 1   | 1     |
| 2     | 1 | 1 | 1 | 36    | -1     |        |        | 1          | 1   | 1     |
| 3     | 0 | 0 | 0 | 27    |        | 1      |        |            | -2  | 1     |
| 3     | 1 | 0 | 1 | 35    |        | 1      |        |            | -2  | 1     |
| 3     | 0 | 1 | 0 | 32    |        | 1      |        |            | -2  | 1     |
| 3     | 1 | 1 | 1 | 43    |        | 1      |        |            | -2  | 1     |
| 4     | 1 | 0 | 0 | 27    |        | -1     |        |            | -2  | 1     |
| 4     | 0 | 0 | 1 | 33    |        | -1     |        |            | -2  | 1     |
| 4     | 1 | 1 | 0 | 27    |        | -1     |        |            | -2  | 1     |
| 4     | 0 | 1 | 1 | 45    |        | -1     |        |            | -2  | 1     |
| 5     | 0 | 0 | 0 | 29    |        |        | 1      | -1         | 1   | 1     |
| 5     | 0 | 1 | 1 | 47    |        |        | 1      | -1         | 1   | 1     |
| 5     | 1 | 0 | 0 | 28    |        |        | 1      | -1         | 1   | 1     |
| 5     | 1 | 1 | 1 | 48    |        |        | 1      | -1         | 1   | 1     |
| 6     | 0 | 1 | 0 | 36    |        |        | -1     | -1         | 1   | 1     |
| 6     | 0 | 0 | 1 | 30    |        |        | -1     | -1         | 1   | 1     |
| 6     | 1 | 1 | 0 | 37    |        |        | -1     | -1         | 1   | 1     |
| 6     | 1 | 0 | 1 | 42    |        |        | -1     | -1         | 1   | 1     |









| Source | DF | SS      | MS      | F      |       |
|--------|----|---------|---------|--------|-------|
| TOTAL  | 24 | 31218   |         |        |       |
| MEAN   | 1  | 30104.2 |         |        |       |
| BLKS   | 5  | 170.833 | 34.167  | 2.540  | 0.092 |
| Α      | 1  | 0       | 0.000   | 0.000  | 1.000 |
| В      | 1  | 253.5   | 253.500 | 18.847 | 0.001 |
| A*B    | 1  | 20.25   | 20.250  | 1.505  | 0.245 |
| С      | 1  | 433.5   | 433.500 | 32.229 | 0.000 |
| A*C    | 1  | 0.5625  | 0.563   | 0.042  | 0.842 |
| B*C    | 1  | 76.5625 | 76.563  | 5.692  | 0.036 |
| A*B*C  | 1  | 10.6667 | 10.667  | 0.793  | 0.392 |
| ERROR  | 11 | 148     | 13.451  |        |       |

See Excel Example – Excel13.xls on website for more details.





```
PROC GLM;

TITLE 'A CORRECT ANALYSIS USING SAS-GLM';

CLASSES BLOCK A B C;

MODEL YIELD = BLOCK A|B|C;

RUN;
```



| Source                 | DF | Sum of Squares | Mean Square | F Value | Pr > F |
|------------------------|----|----------------|-------------|---------|--------|
| Model                  | 12 | 965.875000     | 80.489583   | 5.98    | 0.0029 |
| Error                  | 11 | 147.958333     | 13.450758   |         |        |
| <b>Corrected Total</b> | 23 | 1113.833333    |             |         |        |





|        |    |             |             | F     |        |
|--------|----|-------------|-------------|-------|--------|
| Source | DF | Type I SS   | Mean Square | Value | Pr > F |
| BLOCK  | 5  | 170.8333333 | 34.1666667  | 2.54  | 0.0918 |
| A      | 1  | 0.0000000   | 0.0000000   | 0.00  | 1.0000 |
| В      | 1  | 253.5000000 | 253.5000000 | 18.85 | 0.0012 |
| A*B    | 1  | 20.2500000  | 20.2500000  | 1.51  | 0.2454 |
| C      | 1  | 433.5000000 | 433.5000000 | 32.23 | 0.0001 |
| A*C    | 1  | 0.5625000   | 0.5625000   | 0.04  | 0.8417 |
| B*C    | 1  | 76.5625000  | 76.5625000  | 5.69  | 0.0361 |
| A*B*C  | 1  | 10.6666667  | 10.6666667  | 0.79  | 0.3923 |





#### PROC ANOVA;

TITLE 'AN INCORRECT ANALYSIS USING SAS-ANOVA';

CLASSES BLOCK A B C;

MODEL YIELD = BLOCK A|B|C;

RUN;





#### **An Incorrect Analysis**

| Source                 | DF | Sum of<br>Squares | Mean Square | F<br>Value | Pr > F |
|------------------------|----|-------------------|-------------|------------|--------|
| Model                  | 12 | 1040.666667       | 86.722222   | 13.04      | <.0001 |
| Error                  | 11 | 73.166667         | 6.651515    |            |        |
| <b>Corrected Total</b> | 23 | 1113.833333       |             |            |        |

The portions shown in red are wrong!





#### **An Incorrect Analysis**

|        |    |             |             | F     |        |
|--------|----|-------------|-------------|-------|--------|
| Source | DF | Anova SS    | Mean Square | Value | Pr > F |
| BLOCK  | 5  | 170.8333333 | 34.1666667  | 5.14  | 0.0113 |
| A      | 1  | 0.0000000   | 0.0000000   | 0.00  | 1.0000 |
| В      | 1  | 253.5000000 | 253.5000000 | 38.11 | <.0001 |
| A*B    | 1  | 96.0000000  | 96.0000000  | 14.43 | 0.0029 |
| C      | 1  | 433.5000000 | 433.5000000 | 65.17 | <.0001 |
| A*C    | 1  | 2.6666667   | 2.6666667   | 0.40  | 0.5396 |
| В*С    | 1  | 73.5000000  | 73.5000000  | 11.05 | 0.0068 |
| A*B*C  | 1  | 10.6666667  | 10.6666667  | 1.60  | 0.2315 |



The portions shown in red are wrong!



|        |    |             |             | F     |        |
|--------|----|-------------|-------------|-------|--------|
| Source | DF | Type I SS   | Mean Square | Value | Pr > F |
| BLOCK  | 5  | 170.8333333 | 34.1666667  | 2.54  | 0.0918 |
| A      | 1  | 0.0000000   | 0.0000000   | 0.00  | 1.0000 |
| В      | 1  | 253.5000000 | 253.5000000 | 18.85 | 0.0012 |
| A*B    | 1  | 20.2500000  | 20.2500000  | 1.51  | 0.2454 |
| C      | 1  | 433.5000000 | 433.5000000 | 32.23 | 0.0001 |
| A*C    | 1  | 0.5625000   | 0.5625000   | 0.04  | 0.8417 |
| В*С    | 1  | 76.5625000  | 76.5625000  | 5.69  | 0.0361 |
| A*B*C  | 1  | 10.6666667  | 10.6666667  | 0.79  | 0.3923 |





### **B\*C** Means

| Level of Level of |   |   | YIELD    |            |  |
|-------------------|---|---|----------|------------|--|
| В                 | C | N | Mean     | Std Dev    |  |
| 0                 | 0 | 6 | 29.66667 | 3.77712413 |  |
| 0                 | 1 | 6 | 34.66667 | 4.17931414 |  |
| 1                 | 0 | 6 | 32.66667 | 4.03319559 |  |
| 1                 | 1 | 6 | 44.66667 | 4.76095229 |  |

$$LSD = t_{0.025,11} \cdot \hat{\sigma} \sqrt{\frac{1}{6} + \frac{1}{6}} = (2.201) \sqrt{\frac{13.45}{3}} = 4.66$$

