Definition 1. Let $S = \{G_{\alpha} : \alpha \in A\}$ be a nonempty set of groups G_{α} (We shall assume that these groups are disjoint). The **free product** of S is a pair $(G, \{i_{\alpha}\})$ where G is a group and $i_{\alpha} :: G_{\alpha} \to G$ are homomorphism which has the following universal property: For any group H and homomorphisms $\varphi_{\alpha} :: G_{\alpha} \to H$, there exists a unique group homomorphism $\varphi :: G \to H$ such that $\varphi \circ i_{\alpha} = \varphi_{\alpha}$ for all $\alpha \in A$ (e.g., the diagram below commutes). We write $G = *_{\alpha} G_{\alpha}$ (some also write $G = \prod^* G_{\alpha}$ or $G = \coprod G_{\alpha}$).

Figure 1: The diagram of the free product

Remark. The free product could also be defined as the **coproduct** of $\{G_{\alpha}\}$ if we consider the morphisms as group homomorphisms in the category of groups.

Definition 2. A word (with respect to a free product) is a finite sequence $g_1g_2\cdots g_n$ such that every g_i is in one of G_{α} . Each g_i in it is called a **factor**. We shall denote the empty word by 1. The **length** of a word is the number of factors in it. Define $W(\{G_{\alpha}\})$ or simply W to be the set of all of the words. For each g, let $\mathfrak{G}(g)$ be the group which g belongs, and g^{-1} be the inverse of g in that group.

Write xy as the **concatenate** of two words x, y.

We define two **reducing operations** on words

- 1. Drop a factor g_i which is the identity element.
- 2. Collapse two factors g_ig_{i+1} to a single one g^* if $\mathfrak{G}(g_i) = \mathfrak{G}(g_{i+1})$ and their product in that group is g^* .

Together with the inverse of these two reducing operations, we have four **operations** that could alter a word.

Two words x and y are said to be **equivalent** if there is a finite sequence of operations that change x to y.

A word x is a **reduced word** if no reducing operation could be preformed on it. That is, x contains no factor g_i which is the identity of a group G_{α} , and contains no consecutive factors g_i, g_{i+1} that belong to the same group.

Proposition 1. The statement above defines a valid equivalent relation \sim .

Proof. We check that

- $x \sim x$ clearly from definition.
- $x \sim y \implies y \sim x$ since we have inverse operations.
- $x \sim y \land y \sim z \implies x \sim z$ since we could combine the sequence of operations that changes x to y and that changes y to z to obtain a sequence of operations that changes x to z.

Proposition 2. Free product exists and is unique up to isomorphism.

Proof of existence. Denote the equivalence classes by [x] using the equivalence relation mentioned above. Let $G = W/\sim = \{[x] : x \in W\}$ and define the multiplication as [x][y] = [xy]. We shall check that the multiplication is well defined.

Suppose that x and x' differ by only one operations. Then for all y, it is easy to see that $xy \sim x'y$ and $yx \sim yx'$ since we could still preform that operation on the x, x' part and turn the former word to the later. Iterating this kind of equivalence shows that $v \sim v'$ and $w \sim w'$ implies $vw \sim v'w'$. Hence the multiplication is well defined.

Then we check that with this multiplication, G is indeed a group.

associative: Simply by the associative of word concatenation.

indentity: The equivalent class of empty word [1] is the indentity obviously.

inverse: For any word $x = g_1 g_2 \cdots g_n$. Let $y = g_n^{-1} g_{n-1}^{-1} \cdots g_1^{-1}$. It is easy to see that [xy] = [yx] = [1], hence [x][y] = [y][x] = [1].

Let $i_{\alpha}(g) = [g]$, then each i_{α} is a homomorphism since $i_{\alpha}(g_1g_2) = [g_1g_2] = [g_1][g_2] = i_{\alpha}(g_1)i_{\alpha}(g_2)$. Now, given H and homomorphisms φ_{α} , we shall construct φ . First define $\Phi :: W \to H$ by

$$\Phi(w) = \begin{cases} 1_H & \text{if } w \text{ is the empty word.} \\ \varphi_\alpha(g) & \text{if } w = g \text{ has length 1 and } g \in G_\alpha. \\ \Phi(g)\Phi(w') & \text{otherwise, and let } w = gw'. \end{cases}$$

It is easy to see that $\Phi(w_1w_2) = \Phi(w_1)\Phi(w_2)$. Let $\varphi([w]) = \Phi(w)$ for each $[w] \in G$ and we shall check that it is well defined. It is equivalent to ensure that $w \sim w' \implies \Phi(w) = \Phi(w')$. So we prove that

- $\Phi(w_1w_2) = \Phi(w_11_{G_{\alpha}}w_2)$: Since $\Phi(w_11_{G_{\alpha}}w_2) = \Phi(w_1)\Phi(1_{G_{\alpha}})\Phi(w_2) = \Phi(w_1)\varphi_{\alpha}(1_{G_{\alpha}})\Phi(w_2) = \Phi(w_1)\Phi(w_2) = \Phi(w_1)\Phi(w_2) = \Phi(w_1w_2)$ by the fact that every homomorphism φ_{α} maps identity to identity.
- $\Phi(w_1g^*w_2) = \Phi(w_1g_1g_2w_2)$, if $g^* = g_1g_2$: WLOG assume $g^* \in G_\alpha$, then $\Phi(w_1g^*w_2) = \Phi(w_1)\phi_\alpha(g^*)\Phi(w_2) = \Phi(w_1)\phi_\alpha(g_1g_2)\Phi(w_2) = \Phi(w_1)\phi_\alpha(g_1)\phi_\alpha(g_2)\Phi(w_2) = \Phi(w_1g_1g_2w_2)$.

Hence if $w \sim w'$, using the two equalities above and iterating through a sequences of operations that changes w to w', we found that $\Phi(w) = \Phi(w')$, thus φ is well defined. Also $\varphi([w_1][w_2]) = \varphi([w_1w_2]) = \Phi(w_1w_2) = \Phi(w_1)\Phi(w_2) = \varphi([w_1])\varphi([w_2])$, so φ is indeed a homomorphism.

Finally, we show that φ is unique. It is easy to see that each element $[w] \in G$ could be generate by $\{[g] : g \in \bigcup_{\alpha} G_{\alpha}\}$, the equivalent classes of words with length 1, and for each g_{α} in each G_{α} , $\varphi([g_{\alpha}]) = \varphi(i_{\alpha}(g_{\alpha})) = \varphi_{\alpha}(g_{\alpha})$ is determined, hence φ is unique.

Proof of uniqueness. The G constructed above is a coproduct of $\{G_{\alpha}\}$. By the uniqueness of coproduct, the proof is complete.

Or we could proof it in the old-fashioned way. If $(G', \{i'_{\alpha}\})$ is another pair that satisfies the universal property. By the universal property of G, exists φ , $\varphi \circ i_s = i'_s$. Swapping the roles of G and G', we know that exists φ' , $\varphi' \circ i'_s = i_s$. So $\varphi' \circ \varphi \circ i_s = i_s$, but notice that the identity mapping 1_G also satisfies $1_G \circ i_s = i_s$. By the uniqueness of mapping in the definition of universal property, we have $1_G = \varphi' \circ \varphi$, similary $1_{G'} = \varphi \circ \varphi'$ so φ 1-1 onto and hence $G \cong G'$.

Since we construct the free product by equivalence classes, some may wish to find a canonical representative for each equivalence class. So we prove the following proposition.

Proposition 3. Each word is equivalent to exactly one reduced word, and hence each equivalence class has a unique reduced word.

Proof. Let $w = g_1 g_2 \cdots g_n$ is a word in W. We associate to w a sequence of reduced words x_0, x_1, \cdots, x_n in W define by the following recursive algorithm:

Let x_0 be the empty word 1. If $x_{i-1} = h_1 h_2 \cdots h_k$ (when x_{i-1} is an empty word, k = 0), define x_i

by

$$x_i = \begin{cases} h_1 \cdots h_k & \text{if } g_i = 1_{\mathfrak{G}(g_i)} \\ g_i & \text{otherwise, if } k = 0 \\ h_1 \cdots h_k g_i & \text{otherwise, if } \mathfrak{G}(h_k) \neq \mathfrak{G}(g_i) \\ h_1 \cdots h_{k-1} & \text{otherwise, if } h_k g_i = 1_{\mathfrak{G}(g_i)} \\ h_1 \cdots h_{k-1} g^* & \text{otherwise, and let } h_k g_i = g^* \neq 1_{\mathfrak{G}(g_i)} \end{cases}$$

and let $r(w) = x_n$.

Then we could check inductively such that for each i, the following holds:

- $x_i \sim g_1 g_2 \cdots g_i$: By induction, $x_{i-1} \sim g_1 g_2 \cdots g_{i-1}$. Since in each case x_i could be transformed from $x_{i-1} g_i$ by some reducing operations. And we've already prove that $x \sim x', y \sim y' \implies xy \sim x'y'$, hence $x_i \sim x_{i-1} g_i \sim g_1 g_2 \cdots g_i$.
- Each x_i is a reduced word: Since by induction we know that $x_{i-1} = h_1 \cdots h_k$ is reduced. So if x_i is obtain by case $\#1, 2, 4, x_i$ is a reduced word. In case #3, because $g_i \neq 1_{\mathfrak{G}(g_i)}$ and $\mathfrak{G}(g_i) \neq \mathfrak{G}(h_k)$, and in case $\#5, g^* \neq 1_{\mathfrak{G}(g^*)}$ and $\mathfrak{G}(g^*) = h_k \neq h_{k-1}$, so x_i is a reduced word in both case.

So each word w is equivalent to a reduce word r(w).

If $w = g_1 \cdots g_n$ is reduced, than x_1 is obtained by the second case, and $x_i, i > 1$ is obtained by the third case, hence $r(w) = g_1 \cdots g_n = w$.

Now consider the equivalent words

$$w = g_1 \cdots g_i g_{i+1} \cdots g_n$$
 and $w' = g_1 \cdots g_i 1_{G_n} g_{i+1} \cdots g_n$

which induce x_0, \dots, x_n and x'_0, \dots, x'_{n+1} by the algorithm above. We have $x_j = x'_j$, and x'_{j+1} would be produce by case #1 and hence $x'_{j+1} = x'_j = x_j$. So after appending the same factors $g_{j+1} \dots g_n$, the output should be the same, hence $x_n = x'_{n+1} \implies r(w) = r(w')$.

Next consider the equivalent words

$$w = g_1 \cdots g_{j-1} g_j g_{j+1} g_{j+2} \cdots g_n$$
 and $w' = g_1 \cdots g_{j-1} g^* g_{j+2} \cdots g_n$

Similarly, they would induce x_0, \dots, x_n and x'_0, \dots, x'_{n-1} , and we have $x_{j-1} = x'_{j-1}$. Let $x_{j-1} = h_1 h_2 \cdots h_k$. Now there are a lot of painful cases to check.

- $g_j = 1_{\mathfrak{G}(g_j)}$ or $g_{j+1} = 1_{\mathfrak{G}(g_{j+1})}$: If $g_j = 1_{\mathfrak{G}(g_j)}$ then $g^* = g_{j+1}$, so this case turn out to be the case above (w is formed by inserting an identity into w'). Similar argument holds when $g_{j+1} = 1_{\mathfrak{G}(g_j)}$, hence we could assume $g_j, g_{j+1} \neq 1_{\mathfrak{G}(g_j)}$ below.
- otherwise, k = 0, or $k \neq 0$ but $\mathfrak{G}(h_k) \neq \mathfrak{G}(g_j)$. There are two cases:
 - $-g^* = 1_{\mathfrak{G}(g_j)}$: Then $x_j' = x_{j-1}$ (case #1), $x_j = x_{j-1}g_j$ (case #2 or #3) and $x_{j+1} = x_{j-1}$ (case #4).
 - $-g^* \neq 1_{\mathfrak{G}(g_j)}$: Then $x_j' = x_{j-1}g^*$ (case #2, #3), $x_j = x_{j-1}g_j$ (case #2, #3) and $x_{j+1} = x_{j-1}g^*$ (case #3).
- otherwise $\mathfrak{G}(h_k) = \mathfrak{G}(g_j)$, and if $h_k g_j = 1_{\mathfrak{G}(g_j)}$, let $y = h_1 \cdots h_{k-1}$:
 - $g^* = 1_{\mathfrak{G}(g_j)}$: Then $g_j g_{j+1} = g^* = 1 = h_k g_j$, which forces $h_k = g_{j+1} = g_j^{-1} \neq 1_{\mathfrak{G}(g_j)}$. Hence $x'_j = x_{j-1}$ (case #1), $x_j = h_1 \cdots h_{k-1}$ (case #4) and $x_{j+1} = h_1 \cdots h_k = x_{j-1}$ (case #2 or #3, since x_{j-1} reduced, k-1=0 or $\mathfrak{G}(h_{k-1}) \neq \mathfrak{G}(h_k) = \mathfrak{G}(g_{j+1})$).
 - $-g^* \neq 1_{\mathfrak{G}(g_j)}$: Now $h_k g^* = g_{j+1} \neq 1_{\mathfrak{G}(g_j)}$ by assumption. Then $x'_j = y g_{j+1}$ (case #5), $x_j = y$ (case #4) and $x_{j+1} = y g_{j+1}$ (case #2, #3).
- otherwise $h_k g_i = \hat{g} \neq 1_{\mathfrak{G}(g_i)}$, let $y = h_1 \cdots h_{k-1}$:
 - $-g^* = 1_{\mathfrak{G}(g_j)}$: Then $x'_j = x_{j-1} = yh_k$ (case #1), $x_j = y\hat{g}$ (case #5) and $x_{j+1} = yh_k$ (case #5, since $\hat{g}g_{j+1} = h_kg_jg_{j+1} = h_kg^* = h_k \neq 1$).

 $-g^* \neq 1_{\mathfrak{G}(g_j)}$: Let $\tilde{g} = h_k g^* = h_k g_j g_{j+1} = \hat{g} g_{j+1}$, then $x_j' = y \tilde{g}$ (case #5), $x_j = y \hat{g}$ (case #5) and $x_{j+1} = y \tilde{g}$ (case #5, since $\hat{g} g_{j+1} = \tilde{g}$).

No matter which case, the result is that $x'_j = x_{j+1}$. After appending the same factors $g_{j+2} \cdots g_n$, the output should be the same, hence r(w) = r(w'). Extend the result to an sequence of operations of word, we conclude that $w \sim w' \implies r(w) = r(w')$. If w is equivalent to two reduced word w', w'', then $w' \sim w''$ hence r(w') = r(w''). But we proved that r(x) = x if x is a reduced word, hence w' = w''.

Finally, notice that if w is not a reduced word, by definition it means that we could preform a reducing operation on w. After a reducing operation, the length of the word decrease. Repeat this process. Since the length couldn't decrease below 0, eventually we would get a reduced word w' which is equivalent to w.

Combine the result above, we conclude that every word w is equivalent to exactly one reduced word, and hence each equivalent class has exactly one reduced word.

Example 1. Consider $C_2 * C_3$, where $C_2 = \langle a \rangle$, $C_3 = \langle b \rangle$. By the theorem above, each element of $C_2 * C_3$ correspond to a reduced word in $W(\{a,b\})$.

It is easy to see that all the reduced word in $W(\{a,b\})$ has the form

$$x = a^{n_1}b^{n_2}a^{n_3}b^{n_4}\cdots a^{n_{2k-1}}b^{n_{2k}}$$

such that $n_{2i+1} = 1$ and $n_{2i} = 1$ or 2, with the exception that n_1, n_{2k} could be 0.

Any other word in $W(\{a,b\})$ could be reduced to the form. For example,

$$aabbaabaabba = a^2b^2a^2ba^3b^2a$$

$$= 1_{C_2} \cdot b^2 \cdot 1_{C_2} \cdot bab^2a$$

$$= b^2bab^2a = b^3ab^2a$$

$$= 1_{C_3} \cdot ab^2a$$

$$= ab^2a$$

Proposition 4. Let $S = \{G_{\alpha} : \alpha \in A\}$ be a set of groups, and suppose that $\langle S_{\alpha} \mid R_{\alpha} \rangle$ is a presentation for each G_{α} , then $\langle \bigcup_{\alpha} S_{\alpha} \mid \bigcup_{\alpha} R_{\alpha} \rangle$ is a presentation of the free product $\bigstar_{\alpha} G_{\alpha}$.

Recall that $\langle S \mid R \rangle$ is defined to be F(S)/N(R) where F(S) is the free group of S and N(R) is the smallest normal subgroup containing R.

Proof. Let $S = \bigcup_{\alpha} S_{\alpha}$, $R = \bigcup_{\alpha} R_{\alpha}$ and define $G = \langle S \mid R \rangle$. Now consider the function ψ which carry each element $x \in S_{\alpha}$ to F(S) by:

- 1. First carry it from S_{α} into S by the inclusion map.
- 2. Then carry it from S into F(S) by the mapping given by the free group.

Now by the universal property of the free group, there exist a map $\tilde{f}_{\alpha} :: F(S_{\alpha}) \to F(S)$. It is easy to see that \tilde{f}_{α} simply maps a word $w \in F(S_{\alpha})$ to the same word in F(S). Compose with the quotient map q from F(S) to F(S)/N(R) = G, we get a map f_{α} from $F(S_{\alpha})$ to G.

Now, let q_{α} be the quotient map from $F(S_{\alpha})$ to G_{α} . For each word $r \in R_{\alpha} \subseteq F(S_{\alpha})$, \tilde{f}_{α} send r into R, so $f_{\alpha}(r) = 1_G$, hence $\ker q_{\alpha} = N(R_{\alpha}) \subseteq \ker f_{\alpha}$ since $N(R_{\alpha})$ is the smallest normal subgroup containing R_{α} and a kernal is always normal. By factor theorem, f_{α} descends to a homomorphism $i_{\alpha} :: G_{\alpha} \to G$.

If we could prove that (G, i_{α}) has the universal property of a free product, by the uniqueness of free product we would have $G \cong \bigstar_{\alpha} G_{\alpha}$.

Let H be a group, and let $\varphi_{\alpha} :: G_{\alpha} \to H$ be a system of homomorphisms. Consider $\tilde{\varphi}_{\alpha} :: F(S_{\alpha}) \to H$ by $\tilde{\varphi}_{\alpha} = \varphi_{\alpha} \circ q_{\alpha}$. Define $\tilde{g} :: S \to H$ which sending $x \in S$ by

- 1. First carry x to one of the S_{α} by the inverse of inclusion map ι^{-1} , it could be done since $\{S_{\alpha}\}$ is consider to be disjoint.
- 2. Then carry it into $F(S_{\alpha})$ by the mapping given by the free group.
- 3. Finally carry it into H by $\tilde{\varphi}_{\alpha}$.

Since F(S) is the free group of S, by its universal property, exists a homomorphism $g :: F(S) \to H$. Now for each $r \in R \subseteq F(S)$, r lies in a unique R_{α} , so

$$g(r) = \tilde{\varphi}_{\alpha}(r) = \varphi_{\alpha}(q_{\alpha}(r)) = \varphi_{\alpha}(1_{G_{\alpha}}) = 1_{H}.$$

Consequently $\ker q = N(R) \subseteq \ker g$, and by factor theorem, g descends into a homomorphism $\varphi :: G \to H$. This φ satisfies:

$$\varphi \circ i_{\alpha} \circ q_{\alpha} = \varphi \circ f_{\alpha} = \varphi \circ q \circ \tilde{f}_{\alpha} = g \circ \tilde{f}_{\alpha} = \tilde{\varphi}_{\alpha} = \varphi_{\alpha} \circ q_{\alpha}$$

and notice that q_{α} onto G_{α} , hence we conclude that $\varphi \circ i_{\alpha} = \varphi_{\alpha}$. which proof that G has the desire mapping required by the universal property for any H.

Figure 2: The commute diagram in the proof.

Finally, for the uniqueness, if φ makes $\varphi_{\alpha} = i_{\alpha} \circ \varphi$, then consider $h = \varphi \circ q$, since

$$\varphi_{\alpha} \circ q_{\alpha} = \varphi \circ i_{\alpha} \circ q_{\alpha} = \varphi \circ f_{\alpha} = \varphi \circ q \circ \tilde{f}_{\alpha} = h \circ \tilde{f}_{\alpha}.$$

So h is determined for all $x \in \bigcup_{\alpha} \operatorname{Im} \tilde{f}_{\alpha}$. But $\bigcup_{\alpha} \operatorname{Im} \tilde{f}_{\alpha}$ contains all generator of F(S) (i.e., all the words with length 1), hence h is uniquely determined. Since q is onto, we conclude that φ is also uniquely determined.

Hence we prove that G satisfies the universal property, and $\left\langle \bigcup_{\alpha} S_{\alpha} \mid \bigcup_{\alpha} R_{\alpha} \right\rangle \cong \bigstar_{\alpha} G_{\alpha}$.

Example 2. Consider again $C_2 * C_3$. Since $C_2 = \langle a \mid a^2 \rangle$, $C_3 = \langle b \mid b^3 \rangle$, so $C_2 * C_3 = \langle a, b \mid a^2, b^3 \rangle$.

Definition 3. Let \mathcal{C} be a category, X,Y,Z be objects, and $f:Z \to X$, $g:Z \to Y$ are two morphisms. The **pushout** of the morphisms f,g is a tuple (P,i_1,i_2) such that P is an object, $i_1:X \to P$, $i_2:Y \to P$ with $i_1 \circ f = i_2 \circ g$, and (P,i_1,i_2) has the following universal property: For any (Q,j_1,j_2) satisfying $j_1 \circ f = j_2 \circ g$, there is an unique morphism $\varphi:P \to Q$ that makes $\varphi \circ i_1 = j_1, \varphi \circ i_2 = j_2$.

A common notation is $P = X \sqcup_Z Y$.

Definition 4. The amalgamated free product $G_1 *_F G_2$ is the pushout $G_1 \sqcup_F G_2$. That is, given $\psi_1 :: F \to G_1, \psi_2 :: F \to G_2$, the amalgamated free product is a tuple (G, i_1, i_2) such that G is a group, i_1, i_2 are homomorphisms from G_1 to G and G_2 to G, respectively, with $i_1 \circ \psi_1 = i_2 \circ \psi_2$. It should also satisfied the following universal property: given (H, j_1, j_2) such that H is a group, j_1, j_2 are homomorphisms from G_1 to H and G_2 to H, with $j_1 \circ \psi_1 = j_2 \circ \psi_2$, then there exists a unique homomorphism φ such that $j_1 = \varphi \circ i_1, j_2 = \varphi \circ i_2$.

Proposition 5. Amalgamate free product exists and is unique up to isomorphism.

Figure 3: The diagram of the amalgamated free product

Proof. Consider the free product G_1*G_2 , where $\tilde{i_1}, \tilde{i_2}$ are homomorphisms given by the free product from G_1 to G_1*G_2 and G_2 to G_1*G_2 .

We construct $G_1 *_F G_2 = (G_1 * G_2)/N$, where N is the smallest normal subgroup containing the elements $\{[\psi_1(x)\psi_2(x)^{-1}]: x \in F\}$ in $G_1 * G_2$. Let q be the quotient map $G_1 * G_2 \to G_1 * G_2/N$ and $i_1 = q \circ \tilde{i}_1, i_2 = q \circ \tilde{i}_2$. Then for all $x \in F$,

$$i_1(\psi_1(x)) i_2(\psi_2(x))^{-1} = q(\tilde{i}_1(\psi_1(x))) q(\tilde{i}_2(\psi_2(x)^{-1})) = q([\psi_1(x)][\psi_2(x)^{-1}]) = q([\psi_1(x)\psi_2(x)^{-1}]) = 1$$

Hence $i_1(\psi_1(x)) = i_2(\psi_2(x)), \forall x \implies i_1 \circ \psi_1 = i_2 \circ \psi_2.$

Now, given H, j_1, j_2 . By the universal property of free product, exists $\tilde{\varphi}$ such that $\tilde{\varphi} \circ \tilde{i}_{\alpha} = j_{\alpha}$ for $\alpha \in \{1, 2\}$.

Next, for all
$$x \in F$$
, $[\psi_1(x)\psi_2(x)^{-1}] = [\psi_1(x)][\psi_2(x)^{-1}] = \tilde{i}_1(\psi_1(x))\tilde{i}_2(\psi_2(x)^{-1})$, so

$$\tilde{\varphi}([\psi_1(x)\psi_2(x)^{-1}]) = (\tilde{\varphi} \circ \tilde{i}_1)(\psi_1(x))(\tilde{\varphi} \circ \tilde{i}_2)(\psi_2(x)^{-1}) = (j_1 \circ \psi_1)(x)((j_2 \circ \psi_2)(x))^{-1} = 1$$

since $j_1 \circ \psi_1 = j_2 \circ \psi_2$. By the fact that N is the smallest normal subgroup containing $\{[\psi_1(x)\psi_2(x)^{-1}]: x \in F\}$, we conclude that $N \subseteq \ker \tilde{\varphi}$, and consequently $\tilde{\varphi}$ descends into a homomorphism $\varphi :: G_1 *_F G_2 \to H$. And we have $\varphi \circ i_\alpha = \varphi \circ q \circ \tilde{i}_\alpha = \tilde{i}_\alpha \circ \tilde{\varphi} = j_\alpha$ for $\alpha \in \{1,2\}$, hence φ satisfies the requirements.

Finally, for the uniqueness, suppose φ makes $j_{\alpha} = i_{\alpha} \circ \varphi$ for $\alpha \in \{1, 2\}$. then consider $h = \varphi \circ q$, since $h \circ \tilde{i}_{\alpha} = \varphi \circ q \circ \tilde{i}_{\alpha} = i_{\alpha} \circ \varphi = j_{\alpha}$ So h is determined for all $x \in \operatorname{Im} \tilde{i}_{1} \cup \operatorname{Im} \tilde{i}_{2}$. But $\operatorname{Im} \tilde{i}_{1} \cup \operatorname{Im} \tilde{i}_{2}$ contains all the generators of $G_{1} * G_{2}$ (i.e., all the reduced words with length 1 and the empty word), hence h is uniquely determined. Since q is onto, we conclude that φ is also uniquely determined.

Figure 4: The diagram of groups and maps mentioned in the proof

For readers interested in applications of free product, the textbook mentioned the **Seifert-van Kampen theorem** in algebraic topology, which states that if X is a topological space which is the union of two open and path connected subspaces U_1, U_2 , and there intersection is path connected and nonempty. Then the fundamental group of X is the free product of the fundamental groups U_1, U_2 amalgamated by the fundamental groups of $U_1 \cup U_2$.

6