In [60]:

```
import numpy as np
import pandas as pd
from matplotlib import pyplot as py
from mpl_toolkits.mplot3d import Axes3D

# read data
dataset = pd.read_csv("diabetes.csv")

# header data
dataset.head()
```

Out[60]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunc
0	6	148	72	35	0	33.6	0.
1	1	85	66	29	0	26.6	0.
2	8	183	64	0	0	23.3	0.
3	1	89	66	23	94	28.1	0.
4	0	137	40	35	168	43.1	2.
4							•

In [61]:

```
# description of dataset features
dataset.describe()
```

Out[61]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diak
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							•

In [62]:

```
X = dataset.iloc[: ,0:8]
print(X)
Y = dataset.iloc[: ,8]

# proportion of variance
X_std = (X - np.mean(X,axis=0))/np.std(X,axis=0)
print(X_std)
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
0	6	148	72	35	0	33.6
1	1	85	66	29	0	26.6
2	8	183	64	0	0	23.3
3	1	89	66	23	94	28.1
4	0	137	40	35	168	43.1
5	5	116	74	0	0	25.6
6	3	78	50	32	88	
						31.0
7	10	115	0	0	0	35.3
8	2	197	70	45	543	30.5
9	8	125	96	0	0	0.0
10	4	110	92	0	0	37.6
11	10	168	74	0	0	38.0
12	10	139	80	0	0	27.1
13	1	189	60	23	846	30.1
14	5	166	72	19	175	25.8
15	7	100	0	0	0	30.0
16	0	118	84	47	230	45.8
17	7	107	74	0	0	29.6
18	1	103	30	38	83	43.3
19	1	115	70	30	96	34.6
20	3	126	88	41	235	39.3
21	8	99	84	0	0	35.4
22	7	196	90	0	0	39.8
23	9	119	80	35	0	29.0
24	11	143	94	33	146	36.6
25	10	125	70	26	115	31.1
26	7	147	76	0	0	39.4
27	1	97	66	15	140	23.2
28	13	145	82	19	110	22.2
29	5	117	92	0	0	34.1
• •	•••	• • •	•••	•••	• • •	• • •
738	2	99	60	17	160	36.6
739	1	102	74	0	0	39.5
740	11	120	80	37	150	42.3
741	3	102	44	20	94	30.8
742	1	109	58	18	116	28.5
743	9	140	94	0	0	32.7
744	13	153	88	37	140	40.6
745	12	100	84	33	105	30.0
746	1	147	94	41	0	49.3
747	1	81	74	41	57	46.3
748	3	187	70	22	200	36.4
749	6	162	62	0	0	24.3
750	4	136	70	0	0	31.2
751	1	121	78	39	74	39.0
752	3	108	62	24	0	
						26.0
753	0	181	88	44	510	43.3
754	8	154	78	32	0	32.4
755	1	128	88	39	110	36.5
756	7	137	90	41	0	32.0
757	0	123	72	0	0	36.3
758	1	106	76	0	0	37.5
759	6	190	92	0	0	35.5
760	2	88	58	26	16	28.4
761	9	170	74	31	0	44.0
762	9	89	62	0	0	22.5
763	10	101	76	48	180	32.9
764	2	122	70	27	0	36.8
765	5	121	72	23	112	26.2
766	1	126	60	0	0	30.1
- -					-	=

\

767 1 93 70 31 0 30.4

_	DiabetesPedigreeFunction	Age
0	0.627	50
1	0.351	31
2	0.672	32
3	0.167	21
4	2.288	33
5	0.201	30
6	0.248	26
7	0.134	29
8	0.158	53
9	0.232	54
10	0.191	30
11	0.537	34
12	1.441	57
13	0.398	59
14 15	0.587	51
15 16	0.484	32
16	0.551	31
17	0.254	31
18	0.183	33
19	0.529	32
20	0.704	27
21	0.388	50
22	0.451	41
23 24	0.263	29
2 4 25	0.254	51 41
	0.205	41
26 27	0.257	
28	0.487 0.245	22 57
29	0.337	
	0.337	38
738	0.453	21
739	0.293	42
740	0.785	48
741	0.400	26
742	0.219	22
743	0.734	45
744	1.174	39
745	0.488	46
746	0.358	27
747	1.096	32
748	0.408	36
749	0.178	50
750	1.182	22
751	0.261	28
752	0.223	25
753	0.222	26
754	0.443	45
755	1.057	37
756	0.391	39
757	0.258	52
758	0.197	26
759	0.278	66
760	0.766	22
761	0.403	43
762	0.142	33
763	0.171	63
764	0.340	27

 765
 0.245
 30

 766
 0.349
 47

 767
 0.315
 23

[768 rows x 8 columns] Pregnancies Glucose BloodPressure SkinThickness Insulin						
MI 0	0.639947	0.848324	0.149641		-0.692891	0.2040
13						
1 22	-0.844885	-1.123396	-0.160546	0.530902	-0.692891	-0.6844
2 55	1.233880	1.943724	-0.263941	-1.288212	-0.692891	-1.1032
3 43	-0.844885	-0.998208	-0.160546	0.154533	0.123302	-0.4940
4	-1.141852	0.504055	-1.504687	0.907270	0.765836	1.4097
46 5	0.342981	-0.153185	0.253036	-1.288212	-0.692891	-0.8113
41 6	-0.250952	-1.342476	-0.987710	0.719086	0.071204	-0.1259
77 7	1.827813	-0.184482	-3.572597	-1.288212	-0.692891	0.4197
75 8	-0.547919	2.381884	0.046245	1.534551	4.021922	-0 1894
37						
9 74	1.233880	0.128489	1.390387		-0.692891	
10 90	0.046014	-0.340968	1.183596	-1.288212	-0.692891	0.7116
11 57	1.827813	1.474267	0.253036	-1.288212	-0.692891	0.7624
12 62	1.827813	0.566649	0.563223	-1.288212	-0.692891	-0.6209
13	-0.844885	2.131507	-0.470732	0.154533	6.652839	-0.2402
05 14	0.342981	1.411672	0.149641	-0.096379	0.826616	-0.7859
57 15	0.936914	-0.653939	-3.572597	-1.288212	-0.692891	-0.2528
97 16	-1.141852	-0.090591	0.770014	1.660007	1.304175	1.7524
28 17			0.253036			
64						
18 29	-0.844885	-0.560048	-2.021665		0.027790	
19 32	-0.844885	-0.184482	0.046245	0.593630	0.140667	0.3309
20 52	-0.250952	0.159787	0.976805	1.283638	1.347590	0.9274
21 67	1.233880	-0.685236	0.770014	-1.288212	-0.692891	0.4324
22	0.936914	2.350587	1.080200	-1.288212	-0.692891	0.9909
12 23	1.530847	-0.059293	0.563223	0.907270	-0.692891	-0.3798
16 24	2.124780	0.691838	1.286991	0.781814	0.574812	0.5847
71 25	1 827813	0 128489	0.046245	0 342717	0 305642	-0 1132
85						
26 44	0.930914	0.01/02/	0.356432	-1.200212	-0.032831	U.340I

0/00/00/0						
8/22/2019				diabetese		
27 47	-0.844885	-0.747831	-0.160546	-0.347291	0.522715	-1.1159
28 67	2.718712	0.754432	0.666618	-0.096379	0.262228	-1.2428
29 72	0.342981	-0.121888	1.183596	-1.288212	-0.692891	0.2674
••	•••	•••	•••	•••	•••	
738 71	-0.547919	-0.685236	-0.470732	-0.221835	0.696373	0.5847
739 36	-0.844885	-0.591345	0.253036	-1.288212	-0.692891	0.9528
740 10	2.124780	-0.027996	0.563223	1.032726	0.609544	1.3082
741 61	-0.250952	-0.591345	-1.297896	-0.033651	0.123302	-0.1513
742 75	-0.844885	-0.372265	-0.574128	-0.159107	0.314325	-0.4432
743 85	1.530847	0.597947	1.286991	-1.288212	-0.692891	0.0897
744 47	2.718712	1.004810	0.976805	1.032726	0.522715	1.0924
745 97	2.421746	-0.653939	0.770014	0.781814	0.218813	-0.2528
746 45	-0.844885	0.817027	1.286991	1.283638	-0.692891	2.1966
747 87	-0.844885	-1.248585	0.253036	1.283638	-0.197966	1.8158
748 87	-0.250952	2.068912	0.046245	0.091805	1.043689	0.5593
749 36	0.639947	1.286484	-0.367337	-1.288212	-0.692891	-0.9763
750 93	0.046014	0.472758	0.046245	-1.288212	-0.692891	-0.1005
751 77	-0.844885	0.003301	0.459827	1.158182	-0.050356	0.8893
752 73	-0.250952	-0.403562	-0.367337	0.217261	-0.692891	-0.7605
753 29	-1.141852	1.881130	0.976805	1.471822	3.735386	1.4351
	1.233880	1.036107	0.459827	0.719086	-0.692891	0.0517
755 79	-0.844885	0.222381	0.976805	1.158182	0.262228	0.5720
756 42	0.936914	0.504055	1.080200	1.283638	-0.692891	0.0009
757 95	-1.141852	0.065895	0.149641	-1.288212	-0.692891	0.5466
758 98	-0.844885	-0.466156	0.356432	-1.288212	-0.692891	0.6989
759 59	0.639947	2.162804	1.183596	-1.288212	-0.692891	0.4451
760 67	-0.547919	-1.029505	-0.574128	0.342717	-0.553964	-0.4559
761 73	1.530847	1.536861	0.253036	0.656358	-0.692891	1.5239
762 91	1.530847	-0.998208	-0.367337	-1.288212	-0.692891	-1.2047
763 69	1.827813	-0.622642	0.356432	1.722735	0.870031	0.1151
764	-0.547919	0.034598	0.046245	0.405445	-0.692891	0.6101

```
54
765
        0.342981
                 0.003301
                                  0.149641
                                                  0.154533 0.279594 -0.7351
90
       -0.844885
                 0.159787
                                 -0.470732
                                                 -1.288212 -0.692891 -0.2402
766
05
767
       -0.844885 -0.873019
                                  0.046245
                                                 0.656358 -0.692891 -0.2021
29
     DiabetesPedigreeFunction
                                     Age
0
                     0.468492 1.425995
                     -0.365061 -0.190672
1
2
                     0.604397 -0.105584
3
                     -0.920763 -1.041549
4
                     5.484909 -0.020496
5
                     -0.818079 -0.275760
6
                     -0.676133 -0.616111
7
                     -1.020427 -0.360847
8
                     -0.947944
                               1.681259
9
                     -0.724455
                               1.766346
10
                     -0.848280 -0.275760
11
                     0.196681 0.064591
12
                     2.926869
                               2.021610
13
                     -0.223115
                               2.191785
14
                     0.347687 1.511083
15
                     0.036615 -0.105584
16
                     0.238963 -0.190672
17
                     -0.658012 -0.190672
18
                     -0.872441 -0.020496
19
                     0.172520 -0.105584
20
                     0.701041 -0.531023
21
                     -0.253316 1.425995
22
                     -0.063049 0.660206
23
                     -0.630831 -0.360847
24
                     -0.658012 1.511083
25
                     -0.805998 0.660206
26
                     -0.648952 0.830381
27
                     0.045675 -0.956462
28
                     -0.685193 2.021610
29
                     -0.407342 0.404942
. .
                           . . .
738
                     -0.057009 -1.041549
739
                     -0.540228 0.745293
740
                     0.945671 1.255820
741
                     -0.217075 -0.616111
742
                     -0.763716 -0.956462
743
                     0.791645 1.000557
744
                      2.120497 0.490030
745
                     0.048695
                               1.085644
746
                     -0.343920 -0.531023
                     1.884928 -0.105584
747
748
                     -0.192914 0.234767
749
                     -0.887541 1.425995
750
                     2.144658 -0.956462
751
                     -0.636871 -0.445935
752
                     -0.751636 -0.701198
753
                     -0.754656 -0.616111
754
                     -0.087210
                               1.000557
755
                               0.319855
                     1.767143
756
                     -0.244256
                               0.490030
                     -0.645932
757
                               1.596171
758
                     -0.830159 -0.616111
```

```
759
                    -0.585529 2.787399
760
                     0.888288 -0.956462
761
                    -0.208015 0.830381
                    -0.996266 -0.020496
762
763
                    -0.908682 2.532136
764
                    -0.398282 -0.531023
765
                    -0.685193 -0.275760
766
                    -0.371101 1.170732
767
                    -0.473785 -0.871374
```

[768 rows x 8 columns]

-0.42212296]

[-0.0421051

. . .

In [79]:

0.00550964 0.06497533 ... 0.17925243 -0.12732675

In [85]:

```
eigenvalues , eigenvectors = np.linalg.eig(covr matrix)
print("np.linalg.eig(covr_matrix) > " + str(len(np.linalg.eig(covr_matrix))))
print("the eigenvalues of the cov(x) matrix are : \n %s" %eigenvalues)
print("\n the eigenvectors of the cov(x) matrix are : \n%s" %eigenvectors)
np.linalg.eig(covr_matrix > 2
the eigenvalues of the cov(x) matrix are :
[2.09711056 1.73346726 0.42036353 0.40498938 0.68351839 0.76333832
0.87667054 1.03097228]
the eigenvectors of the cov(x) matrix are :
[[-0.1284321 -0.59378583 -0.58879003 0.11784098 -0.19359817 0.47560573
 -0.08069115 0.01308692]
[-0.39308257 -0.17402908 -0.06015291 0.45035526 -0.09416176 -0.46632804
  0.40432871 -0.46792282]
[-0.36000261 -0.18389207 -0.19211793 -0.01129554 0.6341159 -0.32795306
  -0.05598649 0.53549442]
[-0.43982428 0.33196534 0.28221253 0.5662838 -0.00958944 0.48786206
 -0.03797608 0.2376738 ]
[-0.43502617 0.25078106 -0.13200992 -0.54862138 0.27065061 0.34693481
  0.34994376 -0.33670893]
-0.05364595 0.36186463]
[-0.27061144 0.122069
                       -0.08609107 -0.00825873 0.08578409 -0.11981049
  -0.8336801 -0.43318905]
[-0.19802707 -0.62058853 0.71208542 -0.21166198 0.03335717 0.10928996
 -0.0712006 -0.07524755]]
```

In [92]:

```
eig_pairs = [(eigenvalues[index] , eigenvectors[: , index]) for index in range(len(eige nvalues))]

print("-----\n")
print(eig_pairs)
print("-----\n")

eig_pairs.sort()
eig_pairs.reverse()
print("\n%s" %eig_pairs)
eig_value_sorted = [eig_pairs[index][0] for index in range(len(eigenvalues))]
eig_vector_sorted = [eig_pairs[index][1] for index in range(len(eigenvalues))]
print("Eigen values in sorted : \n%s" %eig_value_sorted)
print("Respective eigen vectors are : \n%s" %eig_vector_sorted)

print("******\n")
print(eig_pairs.size())
print("******\n")
```

8/22/2019

diabetese [(2.0971105579945255, array([-0.1284321 , -0.39308257, -0.36000261, -0.439 82428, -0.43502617, -0.45194134, -0.27061144, -0.19802707])), (1.7334672594471274, arra y([-0.59378583, -0.17402908, -0.18389207, 0.33196534, 0.25078106,0.1009598 , 0.122069 , -0.62058853])), (0.420363528049568, array ([-0.58879003, -0.06015291, -0.19211793, 0.28221253, -0.13200992,-0.03536644, -0.08609107, 0.71208542])), (0.40498937781489885, arr ay([0.11784098, 0.45035526, -0.01129554, 0.5662838, -0.54862138, -0.34151764, -0.00825873, -0.21166198])), (0.6835183858447286, arra y([-0.19359817, -0.09416176, 0.6341159, -0.00958944, 0.27065061,-0.68537218, 0.08578409, 0.03335717])), (0.763338315649671, array ([0.47560573, -0.46632804, -0.32795306, 0.48786206, 0.34693481,-0.25320376, -0.11981049, 0.10928996])), (0.8766705419094799, arra y([-0.08069115, 0.40432871, -0.05598649, -0.03797608, 0.34994376,-0.05364595, -0.8336801 , -0.0712006])), (1.0309722810083821, arra y([0.01308692, -0.46792282, 0.53549442, 0.2376738 , -0.33670893, 0.36186463, -0.43318905, -0.07524755]))] [(2.0971105579945255, array([-0.1284321 , -0.39308257, -0.36000261, -0.439 82428, -0.43502617, -0.45194134, -0.27061144, -0.19802707])), (1.7334672594471274, arra y([-0.59378583, -0.17402908, -0.18389207, 0.33196534, 0.25078106,0.1009598 , 0.122069 , -0.62058853])), (1.0309722810083821, arra y([0.01308692, -0.46792282, 0.53549442, 0.2376738, -0.33670893,0.36186463, -0.43318905, -0.07524755])), (0.8766705419094799, arra y([-0.08069115, 0.40432871, -0.05598649, -0.03797608, 0.34994376,-0.05364595, -0.8336801 , -0.0712006])), (0.763338315649671, array ([0.47560573, -0.46632804, -0.32795306, 0.48786206, 0.34693481, -0.25320376, -0.11981049, 0.10928996])), (0.6835183858447286, arra y([-0.19359817, -0.09416176, 0.6341159, -0.00958944, 0.27065061,-0.68537218, 0.08578409, 0.03335717])), (0.420363528049568, array ([-0.58879003, -0.06015291, -0.19211793, 0.28221253, -0.13200992,-0.03536644, -0.08609107, 0.71208542])), (0.40498937781489885, arr ay([0.11784098, 0.45035526, -0.01129554, 0.5662838 , -0.54862138, -0.34151764, -0.00825873, -0.21166198]))] Eigen values in sorted : [2.0971105579945255, 1.7334672594471274, 1.0309722810083821, 0.87667054190 94799, 0.763338315649671, 0.6835183858447286, 0.420363528049568, 0.4049893 7781489885] Respective eigen vectors are : [array([-0.1284321 , -0.39308257, -0.36000261, -0.43982428, -0.43502617,-0.45194134, -0.27061144, -0.19802707]), array([-0.59378583, -0.174 02908, -0.18389207, 0.33196534, 0.25078106, 0.1009598 , 0.122069 , -0.62058853]), array([0.01308692, -0.467 92282, 0.53549442, 0.2376738, -0.33670893, 0.36186463, -0.43318905, -0.07524755]), array([-0.08069115, 0.404 32871, -0.05598649, -0.03797608, 0.34994376, -0.05364595, -0.8336801 , -0.0712006]), array([0.47560573, -0.466 32804, -0.32795306, 0.48786206, 0.34693481, -0.25320376, -0.11981049, 0.10928996]), array([-0.19359817, -0.094 16176, 0.6341159, -0.00958944, 0.27065061, -0.68537218, 0.08578409, 0.03335717]), array([-0.58879003, -0.060

localhost:8888/nbconvert/html/python projects/diabetese.ipynb?download=false

15291, -0.19211793, 0.28221253, -0.13200992,

35526, -0.01129554, 0.5662838, -0.54862138,

-0.34151764, -0.00825873, -0.21166198])]

-0.03536644, -0.08609107, 0.71208542]), array([0.11784098, 0.450

In [67]:

```
prop_vari = np.cumsum(eig_value_sorted)/sum(eig_value_sorted)
print("commutative proportion of variance : \n%s" %prop_vari)
num_comp = range(1 , len(eig_value_sorted)+1)
py.title("commutative proportion of variance and principal components")
#py.xlable("principal components")
#py.ylable("commutative proportion of variance")
py.scatter(num_comp , prop_vari)
py.show()
```

```
commutative proportion of variance : [0.26179749 0.47819876 0.60690249 0.71634362 0.81163667 0.89696522 0.94944224 1. ]
```

commutative proportion of variance and principal components

In [68]:

```
PCA_reduced = np.array(eig_vector_sorted[0:2]).transpose()
proj_data = np.dot(X_std , PCA_reduced)
print(proj_data)
```

```
[[-1.06850273 -1.23489499]
[ 1.12168331  0.73385167]
[ 0.39647671 -1.59587594]
...
[ 0.28347525 -0.09706503]
[ 1.06032431 -0.83706234]
[ 0.83989172  1.15175485]]
```

In [69]:

```
negative = py.scatter(proj_data[: , 0][Y==0] , proj_data[: ,1][Y==0])
positive = py.scatter(proj_data[: , 0][Y==1] , proj_data[: ,1][Y==1] , color ='red')
py.title("PCA dimensionality reduction into 2D")
py.legend([negative , positive] , ["No diabetese" , "Have diabetese"])
py.show()
```


In [70]:

```
PCA_reduced = np.array(eig_vector_sorted[0:3]).transpose()
proj_data_3D = np.dot(X_std , PCA_reduced)
print(proj_data_3D)
```

```
[[-1.06850273 -1.23489499 -0.09592984]
[ 1.12168331  0.73385167  0.71293816]
[ 0.39647671 -1.59587594 -1.76067844]
...
[ 0.28347525 -0.09706503  0.07719194]
[ 1.06032431 -0.83706234 -0.42503045]
[ 0.83989172  1.15175485  1.00917817]]
```

In [71]:

```
fig = py.figure()
ax = Axes3D(fig)
negative = py.scatter(proj_data_3D[: , 0][Y==0] ,proj_data_3D[: , 1][Y==0] , proj_data_
3D[: , 2][Y==0])
positive = py.scatter(proj_data_3D[: , 0][Y==1] , proj_data_3D[: , 1][Y==1] , proj_data_3D[: , 2][Y==1] , color ="red")
ax.set_title("PCA reduced data to 3D")
py.legend([negative , positive] , ["No diabetese" , "Have diabetese"])
py.show()
```

