Listing of Claims/Amendments to the Claims:

The listing of claims that follows will replace all prior versions in the application.

- 1. (Currently Amended) In a vehicle having at least one drive axle and at least one non-driven axle, said at least one drive axle and said at least one non-driven axle including wheels, said vehicle further having an anti-lock brake system, an anti-slip regulation system including at least one or more valves valve for controlling the delivery of brake pressure from a source of said pressure to at least one or more brake eylinder scylinder of said at least one drive axle, at least one further system constructed and arranged to automatically brake said vehicle by braking said at least one drive axle via said at least one or more valves valve of said anti-slip regulation system, and an electronic control unit for controlling said anti-lock brake system, said anti-slip regulation system and said at least one further system, a method for braking said vehicle comprising the steps of determining wheel speeds associated with said at least one non-driven axle and wheel speeds associated with said at least one drive axle, comparing said wheel speeds associated with said at least one non-driven axle with said wheel speeds associated with said at least one drive axle, and providing brake pressure in response to driver braking demand to said at least one brake eylinderscylinder of said at least one drive axle irrespective of any automatic braking by said at least one further system if when at least one of said wheel speeds associated with said at least one non-driven axle is less than said wheel speeds associated with said at least one drive axle by at least a predefined value.
- 2. (Original) The method according to claim 1, wherein said at least one further system is an adaptive cruise control system.

- 3. (Original) The method according to claim 1, wherein said at least one further system is a rollover stability control system.
- 4. (Currently Amended) The method according to claim 1, wherein said step of comparing said wheel speeds associated with said at least one non-driven axle with said wheel speeds associated with said at least one drive axle further includes comparing said wheel speeds associated with said at least one non-driven axle with a vehicle reference speed formed calculated by said anti-lock brake system.
- 5. (Currently Amended) The method according to claim 1, further comprising the steps of ascertaining whether an anti-lock brake system control action is initiated at said wheels of said at least one non-driven axle as a result of driver braking demand, and, if when said anti-lock brake system control action is detected, providing said brake pressure to said at least one brake eylinderscylinder of said at least one drive axle in response to said driver braking demand.
- 6. (Currently Amended) The method according to claim 1, wherein, if when said vehicle is traveling a straight course, said step of comparing said wheel speeds associated with said at least one non-driven axle with said wheel speeds associated with said at least one drive axle includes comparing wheel speeds of said wheels of said at least one non-driven axle with at least one of (i) said wheel speeds associated with said at least one drive axle and (ii) a vehicle reference speed formed calculated by said anti-lock brake system.

- 7. (Currently Amended) The method according to claim 1, wherein, if when said vehicle is traveling on a curve, said step of comparing said wheel speeds associated with said at least one non-driven axle with said wheel speeds associated with said at least one drive axle includes comparing wheel speeds of ones of said wheels that are disposed on the inside of the curve with a vehicle reference speed, said vehicle reference speed being based on the characteristics of the inside of the curve.
- 8. (Currently Amended) The method according to claim 1, wherein said step of providing brake pressure in response to driver braking demand to said brake cylinders of said at least one drive axle irrespective of any automatic braking by said at least one further system includes the step of closing said at least one or more valvesvalve of said anti-slip regulation system, and further comprising the step of checking whether vehicle deceleration associated with said driver braking demand is greater than thea previous deceleration of said vehicle.
- 9. (Currently Amended) In a vehicle having at least one drive axle and at least one non-driven axle, said at least one drive axle and said at least one non-driven axle including wheels, said vehicle further having an anti-lock brake system, an anti-slip regulation system including at least one or more valvesvalve for controlling the delivery of brake pressure from a source of said pressure to at least one or more brake eylinderscylinder of said at least one drive axle, at least one further system constructed and arranged to automatically brake said vehicle by braking said at least one drive axle via said at least one or more valvesvalve of said anti-slip regulation system, and an electronic control unit for controlling said anti-lock brake system, said anti-slip regulation system and said at least one further system, a method for braking said vehicle comprising the steps of determining wheel speeds

associated with said at least one non-driven axle, comparing said wheel speeds associated with said at least one non-driven axle with a vehicle reference speed formedcalculated by said anti-lock brake system, and providing brake pressure in response to driver braking demand to said at least one brake eylinderscylinder of said at least one drive axle irrespective of any automatic braking by said at least one further system if when at least one of said wheel speeds associated with said at least one non-driven axle is less than said vehicle reference speed by at least a pre-defined value.

- 10. (Original) The method according to claim 9, wherein said at least one further system is an adaptive cruise control system.
- 11. (Original) The method according to claim 9, wherein said at least one further system is a rollover stability control system.
- step of comparing said wheel speeds associated with said at least one non-driven axle with said vehicle reference speed formed calculated by said anti-lock brake system further includes determining wheel speeds associated with said at least one drive axle and comparing said wheel speeds associated with said at least one non-driven axle with said wheel speeds associated with said at least one non-driven axle with said wheel speeds associated with said at least one drive axle.
- 13. (Currently Amended) The method according to claim 9, further comprising the steps of ascertaining whether an anti-lock brake system control action is initiated at said wheels of said at least one non-driven axle as a result of driver braking demand, and, ifwhen said anti-lock brake system control action is detected, providing said brake pressure to said at least one brake eylinderscylinder of said at least one drive axle in response to said driver braking demand.

- 14. (Currently Amended) The method according to claim 9, wherein, if when said vehicle is traveling a straight course, said step of comparing said wheel speeds associated with said at least one non-driven axle with said vehicle reference speed formed calculated by said anti-lock brake system includes comparing wheel speeds of said wheels of said at least one non-driven axle with at least one of (i) said vehicle reference speed formed calculated by said anti-lock brake system and (ii) wheel speeds associated with said at least one drive axle.
- 15. (Currently Amended) The method according to claim 9, wherein, if when said vehicle is traveling on a curve, said step of comparing said wheel speeds associated with said at least one non-driven axle with said vehicle reference speed includes comparing wheel speeds of ones of said wheels that are disposed on the inside of the curve with said vehicle reference speed, said vehicle reference speed being adjusted based on the characteristics of the inside of the curve.
- step of providing brake pressure in response to driver braking demand to said at least one brake eylinderscylinder of said at least one drive axle irrespective of any automatic braking by said at least one further system includes the step of closing said at least one or more valvesvalve of said anti-slip regulation system, and further comprising the step of checking whether vehicle deceleration associated with said driver braking demand is greater than thea previous deceleration of said vehicle.

- 17. (Currently Amended) A vehicle braking system for a vehicle having at least one drive axle and at least one non-driven axle, said at least one drive axle and said at least one non-driven axle including wheels, said vehicle further having an anti-lock brake system, an anti-slip regulation system including at least one or more valves valve for controlling the delivery of brake pressure from a source of said pressure to at least one-or more brake eylinderscylinder of said at least one drive axle, at least one further system constructed and arranged to automatically brake said vehicle by braking said at least one drive axle via said at least one or more valves valve of said anti-slip regulation system, and an electronic control unit for controlling said anti-lock brake system, said anti-slip regulation system and said at least one further system, the vehicle braking system comprising means for determining wheel speeds associated with said at least one non-driven axle and wheel speeds associated with said at least one drive axle, means for comparing said wheel speeds associated with said at least one non-driven axle with said wheel speeds associated with said at least one drive axle, and means for providing brake pressure in response to driver braking demand to said at least one brake eylinders cylinder of said at least one drive axle irrespective of any automatic braking by said at least one further system if when at least one of said wheel speeds associated with said at least one non-driven axle is less than said wheel speeds associated with said at least one drive axle by at least a pre-defined value.
- 18. (Original) The system according to claim 17, wherein said at least one further system is an adaptive cruise control system.
- 19. (Original) The system according to claim 17, wherein said at least one further system is a rollover stability control system.

- 20. (Currently Amended) The system according to claim 17, further comprising means for comparing said wheel speeds associated with said at least one non-driven axle with a vehicle reference speed formedcalculated by said anti-lock brake system.
- 21. (Currently Amended) The system according to claim 17, further comprising means for ascertaining whether an anti-lock brake system control action is initiated at said wheels of said at least one non-driven axle as a result of driver braking demand, and means for providing said brake pressure to said at least one brake eylinderscylinder of said at least one drive axle in response to said driver braking demand ifwhen said anti-lock brake system control action is detected.
- 22. (Currently Amended) The system according to claim 17, wherein said means for providing brake pressure in response to driver braking demand to said at least one brake eylinderscylinder of said at least one drive axle irrespective of any automatic braking by said at least one further system includes means for closing said at least one or more valvesvalve of said anti-slip regulation system, and further comprising means for checking whether vehicle deceleration associated with said driver braking demand is greater than thea previous deceleration of said vehicle.
- 23. (Currently Amended) A vehicle braking system for a vehicle having at least one drive axle and at least one non-driven axle, said at least one drive axle and said at least one non-driven axle including wheels, said vehicle further having an anti-lock brake system, an anti-slip regulation system including at least one or more valvesvalve for controlling the delivery of brake pressure from a source of said pressure to at least one or more brake eylinderscylinder of said at least one drive axle, at least one further system constructed and arranged to automatically brake said vehicle by braking said at least one drive

axle via said at least one or more valvesvalve of said anti-slip regulation system, and an electronic control unit for controlling said anti-lock brake system, said anti-slip regulation system and said at least one further system, said vehicle braking system comprising means for determining wheel speeds associated with said at least one non-driven axle, means for comparing said wheel speeds associated with said at least one non-driven axle with a vehicle reference speed formedcalculated by said anti-lock brake system, and means for providing brake pressure in response to driver braking demand to said at least one brake eylinderscylinder of said at least one drive axle irrespective of any automatic braking by said at least one further system ifwhen at least one of said wheel speeds associated with said at least one non-driven axle is less than said vehicle reference speed by at least a pre-defined value.

- 24. (Original) The system according to claim 23, wherein said at least one further system is an adaptive cruise control system.
- 25. (Original) The system according to claim 23, wherein said at least one further system is a rollover stability control system.
- 26. (Original) The system according to claim 23, further comprising means for determining wheel speeds associated with said at least one drive axle, and means for comparing said wheel speeds associated with said at least one non-driven axle with said wheel speeds associated with said at least one drive axle.

- 27. (Currently Amended) The system according to claim 23, further comprising means for ascertaining whether an anti-lock brake system control action is initiated at said wheels of said at least one non-driven axle as a result of driver braking demand, and means for providing said brake pressure to said at least one brake eylinderscylinder of said at least one drive axle in response to said driver braking demand ifwhen said anti-lock brake system control action is detected.
- 28. (Currently Amended) The system according to claim 23, wherein said means for providing brake pressure in response to driver braking demand to said at least one brake eylinderscylinder of said at least one drive axle irrespective of any automatic braking by said at least one further system includes means for closing said at least one or more valvesvalve of said anti-slip regulation system, and further comprising means for checking whether vehicle deceleration associated with said driver braking demand is greater than thea previous deceleration of said vehicle.