CSL 101 DISCRRETE MATHEMATICS

LECTURE 2

Dr. Barun Gorain
Department of CSE, IIT Bhilai
Email: barun@iitbhilai.ac.in

Theorem 1: Let A and B be two countably infinite sets. Then A U B is countable.

- Given A is countable. This implies there exists a bijection from $f: \mathbb{N} \to A$.
- Given B is countable. This implies there exists a bijection from g: $\mathbb{N} \to B$.
- To prove there exists a bijection from h: $\mathbb{N} \to A \cup B$

Theorem 2: Let A be a countably infinite set, and B an infinite subset of A. Then B is countable.

Exercise

Theorem: $\mathbb{N} \times \mathbb{N}$ is countable

- Define a function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ as follows:
 - $f(m,n)=2^m3^n$

Now use the previous theorem to prove this

Theorem: The set of rational number \mathbb{Q} is countable

Can we use now the previous theorem to prove this?

UNCOUNTABLE SET

Theorem: The set of real numbers R is uncountable.