Giant Diffusion in Systems with bistable rate dynamics

Richard Kullmann

16 June 2020

1/25

Giant diffusion of Brownian particles¹

Motion of particles in a tilted cosine potential

- **bistability** of velocity
- effective diffusion coefficient:

$$D_{eff} = \lim_{t \to \infty} \frac{\left\langle x^2(t) \right\rangle - \left\langle x(t) \right\rangle^2}{2t}$$

2/25

¹B. Lindner and I. M. Sokolov, "Giant diffusion of underdamped particles in a biased periodic potential", PRE 93, 2016.

Giant diffusion of Brownian particles

Brownian particle vs Neuron model

mechanical interpretation	neuroscience interpretation
position, phase	spike count
mean velocity	firing rate
diffusion coefficient	Fano factor x rate
Velocity power spectrum	Spike train power spectrum
temperature	inverse number of channels

Quantities of interest in neuron models

effective diffusion coefficient

$$D_{eff} = lim_{t \to \infty} \frac{\langle x^2(t) \rangle - \langle x(t) \rangle^2}{2t} = \frac{\langle N^2(t) \rangle - \langle N(t) \rangle^2}{2t}$$

mean velocity (firing rate):

$$r = lim_{t \to \infty} \frac{\langle x(t) - x(0) \rangle}{t} = \frac{\langle N(t) \rangle}{t}$$

Fano factor:

$$F = \frac{\left\langle \Delta N^2(t) \right\rangle}{\left\langle N(t) \right\rangle}$$

◆ロト ◆昼ト ◆見ト ◆見ト 夏 からぐ

Richard Kullmann

Goals of this thesis

- Primary goal: induce stochastic bursting in simple neuron models and investigate spike count statistics
- find critical points where firing pattern changes drastically
- Secondary goal: simulate neurons under influence of periodic stimulus to explore signal transmission

6/25

Model

 $I_{Na,p} + I_K$ model:

$$C\dot{V} = I - g_L(V - E_L) - g_{Na}m_{\infty}(V)(V - E_{Na}) - g_K n(V - E_K) + \sqrt{2D}\xi(t)$$

 $\dot{n} = (n_{\infty}(V) - n)/\tau(V)$

Steady-State activation function:

$$f_{\infty}(V) = \frac{1}{1 + \exp\{(V_{1/2} - V)/k\}}$$

where k is the slope factor and

$$f_{\infty}(V_{1/2}) = 1/2$$

✓ □ > ✓ □

Phase space

8 / 25

Variation of I

9/25

Simulation: firing rate

10 / 25

Simulation: effective diffusion coefficient

イロト (部) (注) (注) (注) (2)

11 / 25

Simulation: Fano factor

◆ロト→@ト→ミト→ミ りへで

12 / 25

Simulation: other models

4日ト 4回ト 4 重ト 4 重 13 / 25

Two-state theory

- low noise: system mostly determined by transitions between states
- ▶ alternative calculation of D_{eff} using transition rates r_{\pm}^{1}

$$D_{\text{eff}} = \frac{(\Delta \langle v \rangle)^2 r_+ r_-}{(r_+ + r_-)^3}$$

▶ fit with **Arrhenius equation**: effective potential barriers ΔU_{\pm} and prediction

$$r_{+} = r_{0,+} \mathrm{e}^{-\frac{\Delta U_{\pm}}{D}}$$

14 / 25

Comparison with Two-state model: D_{eff}

15/25

Comparison with Two-state model: F

16/25

Prediction with Two-state model

◆ロト ◆@ ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

17 / 25

Consequences for Signal transmission

Measurement of SNR

System with weak+slow cosine Signal:

$$C\dot{V} = f(V, n, t) \rightarrow C\dot{V} = f(V, n, t) + \varepsilon\cos(\omega t + \phi)$$

- lacktriangle Spectrum from **Fourier-Trafo** of the δ -Spike-train
- ▶ Signal-to-noise ratio SNR depends on firing rate $\langle v \rangle$ and D_{eff}^{-1} :

$$SNR = \frac{\Delta S_{peak}}{S_{bg}} = \frac{\varepsilon^2 T |d\langle v \rangle / dI|^2}{8 \cdot D_{eff}}$$

 ε ...signal amplitude T..simulation time I....bias current

¹L. Gammaitoni et al., "Stochastic resonance", Rev. Mod. Phys. 70, 1998.

Frequency Power Spectrum

SNR

21/25

SNR: other models

<ロ > < 個 > < 国 > < 国 > < 国 > の へ で 。

22 / 25

Comparison SNR - Two-state theory

Prediction with Two-state theory

Conclusion and outlook

- ▶ giant diffusion in multiple models → bistability only requirement?
- critical points where D_{eff} noise-independent and steep changes of D_{eff} and SNR observed
- ► Two-state theory gives good description
- ▶ future: experimental investigation of bistable neurons

25 / 25