Reconocimiento de patrones

Clase 9: Agrupamiento

Para el día de hoy...

- Agrupamiento
- Medidas de similitud
- Agrupamiento de umbral basado en ordenamiento
- Algoritmo Max-min

La tarea

Una de las tareas centrales en clasificadores basados en distancia mínima es

Determinar los prototipos o centros de las clases

Medida de similitud

- Una medida de similitud $\delta(x,y)$ para dos patrones x e y puede ser definida tal que $\lim \delta(x,y) = 0$ $x \to y$
- Por ejemplo, si los patrones están en \mathbb{R}^n y definimos $\delta(x,y) = ||x-y||$
- Si x es un patrones que se espera sea normalmente distribuido entonces $\delta(x,\mu) = ||x \mu||_C$
- Donde μ es la media de la población, C su covarianza y $||x \mu||_C = (x \mu)^T C^{-1} (x \mu)$
- Es la distancia de Mahalanobis

El siguiente paso

- Obtener el procedimiento de agrupamiento que
 - Creará los grupos
 - Asignará cada patrón a su grupo
- El algoritmo puede estar basado en heurísticas
- Normalmente incluye la optimización de alguna medida de desempeño. Para patrones en \mathbb{R}^n

$$I = \sum_{(i=1)}^{m} \sum_{x \in C_i} ||x - \mu_i||^2$$

- Donde C_i , $1 \le i \le m$ denota varios grupos y μ denota los centros de los grupos. Normalmente $\mu_i = \frac{1}{N} \sum_{j=1}^{N_i} x_j^{(i)}$ y $x_j^{(i)}$ son los patrones pertenecientes a C_i
- ¿Algún problema en minimizar I?

Una medida de desempeño alternativa

• Tal vez preferiríamos que para dos patrones *x* e *y* pertenecezcan a la misma clase si su distancia es menor a un umbral

$$I' = \sum_{i=1}^{m} \left(\frac{1}{N_i} \sum_{x,y \in C_i} ||x - y||^2 \right)$$

Algoritmo de agrupamiento de umbral dependiente de ordenamiento

• Consideremos un conjunto de patrones en \mathbb{R}^n

$$S = \{x_1, \dots, x_N\}$$

- La medida de similitud es la normal Euclidiana
- Existe un umbral t que dice si dos patrones perteneces al mismo grupo

El algoritmo

- $y_1 = x_1$
- $C_1 = C_1 \cup \{x_1\}$
- k = 2
- Desde i = 2 hasta N
 - Si $||x_i y_j|| \ge t$, $1 \le j \le k$
 - $y_k = x_i, C_k = C_k \cup \{x_i\}, k = k + 1$
 - Si no
 - $l = \arg\min_{i} ||x_i y_j||$
 - $C_l = C_l \cup \{x_i\}$

Las preguntas

Ejercicio

- Considere los patrones $(1,1)^T$, $(2,3)^T$, $(2,1)^T$, $(4,3)^T$, $(3,2)^T$, $(3,4)^T$
- t = 1.5
- ¿A qué clase pertenece cada patrón de acuerdo al algoritmo de agrupamiento de umbral dependiente de ordenamiento?

Algoritmo max-min

Input:

n – the problem's dimension.

m – the number of samples.

 $X = \{x_i\}, 1 \le i \le m$ - the given samples in R^n .

a threshold value which determines whether a new cluster should be created.

Output:

k – the number of cluster centers found.

 $\{y_i\}$, $1 \le j \le k$ – the cluster centers.

 $\{m_j\}, 1 \le j \le k$ – the cluster sizes.

 $\{l_{ii}\}, 1 \le i \le m_i$ – the indices of the original samples which belong to the j-th cluster, $1 \le j \le k$.

Step 1. Set $y_1 = x_1$, $y_2 = x_{i_0}$, $l_{11} = 1$, $l_{12} = j_0$ where

$$\|\mathbf{x}_{j_0} - \mathbf{y}_1\| = \max_{2 \le i \le m} \|\mathbf{x}_i - \mathbf{y}_1\|$$

Set k = 2, $a = \|y_i - y_j\|$ (arithmetic mean), where $1 \le i, j \le k$, $i \neq j \text{ and } X' = X - \{y_1, y_2\}.$

Step 2.

Find j_0 , $1 \le j_0 \le k$ and $x_{i_0} \in X'$ such that

$$d = ||x_{i_0} - y_{j_0}|| = \max_{x \in x'} \min_{1 \le i \le k} ||x_i - y_j||$$

If d < ta (no more clusters) go to Step 4; otherwise go to Step

Step 3. Set $k \leftarrow k+1$, $y_{k+1} = x_{i_0}$, $l_{k+1} = i_0$, $X' \leftarrow X' - \{y_{k+1}\}$ and go to Step 2.

Step 4.

Set $m_i = 1$, $1 \le j \le k$.

Step 5.

For each $x_i \in X'$ find $j: 1 \le j \le k$ for which

$$\|\mathbf{x}_i - \mathbf{y}_j\| = \min_{1 \le j \le k} \|\mathbf{x}_i - \mathbf{y}_j\|$$

and set $m_i \leftarrow m_i + 1$ and $l_{m_i} = i$.

Step 6. For $1 \le j \le k$ replace y_j by $(x_{l_{1j}} + x_{l_{2j}} + ... + x_{l_{m_{jj}}})/m_j$.

Step 7. For $1 \le j \le k$ output $y_j, m_j, \{l_i\}_{i=1}^{m_j}$ and stop.

A subroutine MMD which incorporates algorithm 3.3.1 is given in the appendix.

Método de distancia Max-Min

- Se supone que al menos existen dos grupos
- Determinar todos los centros de los grupos
- Mantener fijo un umbral t que determina si se debe crear un nuevo grupo
 - Sea $y_1, ..., y_k$ los centros de los grupos existentes; a la media aritmética entre los centros; b el centro del patrón más probable a ser elegido como el centro de un nuevo grupo
 - Si $s = min||b y_i||$, $1 \le i \le k$ es menor que ta
 - Terminar fase
 - Si no
 - $y_{k+1} = b$
- Cada muestra se asigna su grupo más cercano
- Los centros de ajustan para que sean la media aritmética de las observaciones de cada grupo

Las preguntas

Para la otra vez...

• K-means

