Risk Aggregation Principles

Outline

1 Portfolio Effects and Diversification

2 Examples

Motivation

- Why aggregate risks?
- Portfolio effects: diversification and risk reduction.
- Understanding dependence is crucial for risk management.

Portfolio Risk

- Total portfolio loss: $L = L_1 + L_2 + \cdots + L_n$
- Variance of sum: $Var(L) = \sum_{i} Var(L_i) + 2 \sum_{i < j} Cov(L_i, L_j)$

Diversification Benefit on Standard Deviation

- $\rho=1$: perfect positive dependence; $\rho=0$: independence (for normal); $\rho=-1$: perfect negative dependence.
- Let $\sigma = SD(L)$, $\sigma_i = SD(L_i)$ and $\rho_{ij} = Cor(L_i, L_j)$, then

$$\sigma^{2} = \sum_{i} \sigma_{i}^{2} + 2 \sum_{i < j} \rho_{ij} \sigma_{i} \sigma_{j}$$

$$\leq (\sum_{i} \sigma_{i})^{2} \text{ since } |\rho_{ij}| \leq 1.$$

 Diversification reduces risk (SD) if losses are not perfectly correlated.

Diversification Benefit on Variance

- If L_1, L_2 are independent: $Var(L_1 + L_2) = Var(L_1) + Var(L_2)$
- Diversification benefit:

$$Var(L_1 + L_2) < Var(L_1) + Var(L_2)$$
 if they are negatively correlated: $Cov(L_1, L_2) < 0$

Risk Aggregation with Dependence

- Aggregated risk depends on the joint distribution of losses.
- Comonotonicity: worst-case dependence, no diversification.
- Copulas provide a general framework for modeling dependence (see later lectures).

Example: Two-Asset Portfolio

- L_1, L_2 with means μ_1, μ_2 , variances σ_1^2, σ_2^2 , correlation ρ
- $L = w_1L_1 + w_2L_2$, with $w_1 + w_2 = 1$ (fully invested portfolio)
- Minimum variance portfolio: choose w_1, w_2 (with $w_1 + w_2 = 1$) to minimize Var(L)

Solution: Minimum Variance Portfolio Weights

$$Var(L) = w_1^2 \sigma_1^2 + (1 - w_1)^2 \sigma_2^2 + 2w_1(1 - w_1)\rho \sigma_1 \sigma_2$$

= $(\sigma_1^2 + \sigma_2^2 - 2\rho \sigma_1 \sigma_2)w_1^2 + 2(\rho \sigma_1 \sigma_2 - \sigma_2^2)w_1 + \sigma_2^2$
= $aw_1^2 + bw_1 + c$

- (No diversificatio) If a=0, then $\rho=1$ and $\sigma_1=\sigma_2$, and $Var(L)=\sigma_2^2$ for any choice of w_1,w_2 .
- If a > 0,

$$w_1^* = rac{\sigma_2^2 -
ho\sigma_1\sigma_2}{\sigma_1^2 + \sigma_2^2 - 2
ho\sigma_1\sigma_2}, w_2^* = 1 - w_1^*.$$

This gives the lowest possible portfolio variance for given σ_1, σ_2, ρ .