Solutions for Assignment #2

(Course: CS 301)

Problem 1: Let L be a regular language over some alphabet Σ . Prove that the following language is also regular:

$$L_{\text{strange}} = \{b_2 \, b_1 \, b_4 \, b_3 \dots b_{2n} \, b_{2n-1} \, \big| \, b_1 \, b_2 \dots b_{2n-1} \, b_{2n} \in L \}$$

For example, if the language L over $\Sigma = \{0, 1, 2\}$ contains 01 21 11 then L_{strange} contains 10 12 11.

Solution: Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA accepting L. We construct a DFA M_{strange} that accepts L_{strange} . M_{strange} will process input symbols in pairs. On seeing the first symbol, say α , in a pair, M_{strange} stores a in its finite control. Then, on seeing the second symbol, say β , in that pair, M_{strange} behaves like M on the input $\beta\alpha$. More formally, Let Q' be the set of $|Q| \times |\Sigma|$ states

$$Q' = \{q_a \mid q \in Q, \ a \in \Sigma\}$$

Then, $M_{\text{strange}} = (Q \cup Q', \Sigma, \delta_{\text{strange}}, q_0, F)$, where

- $\delta_{\text{strange}}(q, \alpha) = q_{\alpha}$ for every $\alpha \in \Sigma$ and every $q \in Q$, and
- $\delta_{\text{strange}}(q_{\alpha}, \beta) = \delta(\delta(q, \beta), \alpha)$ for every $q_{\alpha} \in Q'$ and every $\beta \in \Sigma$.

Problem 2: Let L be the following language over the alphabet $\Sigma = \{a, b\}$:

$$L = \{a^m b^n | m \ge 1, \, n \ge 1, \, m \ge n^2 \}$$

For example, $0^{2^2}1^2 = 0^41^2 = 000011$ and $0^{3^2+2}1^3 = 0^{11}1^3 = 00000000000111$ is in L but $0^31^2 = 00011$ is not in L.

Using pumping lemma prove that L is *not* regular.

Solution: Let $p \ge 1$ be the constant (the pumping length) of the pumping lemma. Consider the string $z = a^{p^2}b^p \in L$. We write z as uvw where $|uv| \le p$ and $|v| \ge 1$. Thus, uv is entirely contained in the leftmost p a's of z, which in turn implies that $u = a^q$ and $v = a^r$ for some two integers q, r satisfying $r \ge 1$ and $q + r \le p$. By pumping lemma, $uv^iw \in L$ for every $i = 0, 1, 2, \ldots$ Consider the string $uv^0w = uw$ by setting i = 0. Then, $uw = a^{p^2-r}b^p$ and, since $r \ge 1$, $a^{p^2-r}b^p \notin L$, providing the desired contradiction.

Problem 3: Write down a context-free grammar (CFG) for the following language L over alphabet $\Sigma = \{0, 1, \#\}$:

$$L = \left\{ 0^{n+3} \, \# \, 1^n \, \middle| \, n \ge 0 \right\}$$

Solution: The CFG is $(\{S, A\}, \{0, 1, \#\}, S, P)$ where the set of productions P is as given below:

$$\begin{array}{ccc} S & \rightarrow & 0S1 \,|\, A \\ A & \rightarrow & 000\# \end{array}$$