Multi Visual Task Fusion with Deep CNN and Conditional Random Field

Peng Wang, UCLA

Why it is important to fuse multi-tasks in vision

Human are performing multi-tasks simultaneously and register them well.

Only by understanding fully and densely to the given scene, we can have confidence to do visual question and answering.

Example results from Kokinnos Arxiv 1609.02132

Why it is important to fuse multi-tasks in vision

Single task could be biased due to a single loss from the system is almost always limited, which can be regularized by other tasks.

Bertasius et.al CVPR 2016

Another example of optical flow

Sevilla-Lara et.al CVPR 2016

Deep learning for pixel-wise dense prediction

Extension afterwards

Image

FCN Network

MANGERECTON

Chen et.al ICLR 2015 Eigen&Fergus ICCV 15

Detection, low level processing, style transfer ...

Extension afterwards

Image

FCN Network

Hypercolumn FCN

Encoder-Decoder

VGG, Inception, Resnet, Inception Resnet etc...

Eigen&Fergus ICCV 15
Pose estimation

Insafutdinov et.al ECCV 201

Detection, low level processing, style transfer ...

Conditional Random Field (CRF)

Useful for structure learning and reference, which could be modeled to look at neighbor context and smooth the predictions

$$Pr(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp(-E(\mathbf{y}, \mathbf{x})),$$

$$E(\mathbf{y}, \mathbf{x}) = \sum_{p \in \mathcal{N}} U(y_p, \mathbf{x}) + \sum_{(p,q) \in \mathcal{S}} V(y_p, y_q, \mathbf{x}).$$

Fully connected CRF

$$E(\mathbf{x}) = \sum_{i} \psi_{u}(x_{i}) + \sum_{i < j} \psi_{p}(x_{i}, x_{j}),$$

Connect every pair

Difference

Krahenbuhl & Koltun NIPS 2012

Access long range context in bilateral space

Recent applications

Discrete labels

Image Network output

Refine output

Continuous labels (Bilateral smoothing)

Image

Stereo output

Refine output

- [1] Krähenbühl et al ICML 2013
- [2] Chen et.al ICLR 2014
- [3] Zheng et al ICCV 2015

- [1] Barron et.al CVPR 2015
- [2] Barron et.al arXiv 2016

CRF has long been commonly used in single or multi tasks

Pre-CNN period

SIFT (HOG) + SVM (Structured SVM) for unary energy over pixel or super-pixel, e.g.

C

s afterwards

CNN period (Just replace the unary? What else we have from CNN?)

More efficient, unified and robust features from deep learning, which allows us to model multi-

Two applications from the intuition

[1] **Peng Wang**, Xiaohui Shen, Zhe Lin, Scott Cohen, Brian Price, Alan Yuille, Joint Object and Part Segmentation using Deep Learned Potentials, **ICCV** 2015

[2] **Peng Wang**, Xiaohui Shen, Bryan Russel, Scott Cohen, Brian Price, Alan Yuille, SURGE: Surface Regularized Geometric Estimation from a Single Image, **NIPS** 2016

Joint Object and Part Segmentation

Part sharing

Handle the growth of joint label space

Joint FCRF formulation

FCRF

$$\min_{\mathcal{L}} \sum_{i \in \mathcal{V}} \psi_i(l_{op}^i) + \lambda_e \sum_{i,j \in \mathcal{V}, i \neq j} \psi_{i,j}(l_{op}^i, l_{op}^j)$$

$$\psi_i(l_{op}^i) = \eta(l_o^i, l_p^i)(\psi_i^o(l_o^i)) + \lambda_p \psi_i^p(l_p^i)$$

$$\psi_{i,j}(l_{op}^i, l_{op}^j) = \eta(l_o^i, l_p^i) \eta(l_o^j, l_p^j) \psi_{i,j}^{op}(l_o^i, l_o^j, l_p^i, l_p^j)$$

Unary

Pairwise

Results

Less confusion and more details due to larger context and joint task performed.

Additional results

Less confusion and more details due to larger context and joint task performed.

3D geometry reconstruction (Depth & Normal)

Formulation of the DCRF

$$\min_{\mathbf{N},\mathbf{D}} \{ \sum_{i} \overline{\psi_{\mathbf{n}}(\mathbf{n}_{i})} + \sum_{i} \psi_{d}(d_{i}) + \lambda \sum_{i,j} [\mu_{\mathbf{n}}(\mathbf{n}_{i},\mathbf{n}_{j}) + \mu_{d}(d_{i},d_{j}|\mathbf{N})] \mathbf{A}_{G}(i,j|\mathbf{P},\mathbf{E}) \}$$

$$\min_{\mathbf{N},\mathbf{D}} \{ \sum_{i} \psi_{\mathbf{n}}(\mathbf{n}_{i}) + \sum_{i} \psi_{d}(d_{i}) + \lambda \sum_{i,j} [\mu_{\mathbf{n}}(\mathbf{n}_{i},\mathbf{n}_{j}) + \underbrace{\mu_{d}(d_{i},d_{j}|\mathbf{N})}_{I}] \mathbf{A}_{G}(i,j|\mathbf{P},\mathbf{E}) \}$$

orthogonal compatibility

$$\min_{\mathbf{N},\mathbf{D}}\{\sum_{i}\psi_{\mathbf{n}}(\mathbf{n}_{i})+\sum_{i}\psi_{d}(d_{i}) +\lambda \sum_{i,j}[\mu_{\mathbf{n}}(\mathbf{n}_{i},\mathbf{n}_{j})+\mu_{d}(d_{i},d_{j}|\mathbf{N})]\mathbf{A}_{G}(i,j|\mathbf{P},\mathbf{E})\}$$
 Planar Affinity

Finally, we make the DCRF layer trainable for both normal and depth.

Results

Better 3D planar

Results

Take home message

1. Performing multi-tasks and register them well could help visual tasks.

1. CNN and CRF could be served as an easy starting approach to model relationships.

1. Discover the complementary property could be either learned if you have large data or discovered from observations.

1. Still long way to go, and a lot of opportunities to combine and register tasks.

本次直播由极视角组织。

极市平台

(极视角旗下产品)

最专业的视觉算法开发与分发平台 做好算法的同时,赚取一个亿

每周定期分享请关注