Foundations of Mathematics

Notes and Exercises

Sudip Sinha

September 09, 2019

Contents

Part 1	Study: Set theory notes	1
Part 2	Book Study: Enderton (Logic)	3
Bibliography		4

Part 1

STUDY: SET THEORY NOTES

1.1 Sudip Sinha

PHIL 4010

2019-09-10

Proposition (Exercise 1.8) *For any sets A and B, we have A* \cap *B* \subseteq *A.*

Proof. Let $x \in A \cap B$ be arbitrary. This means $x \in A$ and $x \in B$. Therefore $x \in A$. Since every element in $A \cap B$ is also an element of A, we have $A \cap B \subseteq A$.

Proposition (Exercise 1.10) *For any set A, we have A* $\cap \emptyset = \emptyset$.

- *Proof.* (\subseteq) Let $x \in A \cap \emptyset$ be arbitrary. This means $x \in A$ and $x \in \emptyset$. But there does not exist $x \in \emptyset$. Therefore, the statement is vacuously true.
 - (⊇) Now, let $x \in \emptyset$ be arbitrary. Again, since there does not exist $x \in \emptyset$, the statement vacuously true.

Proposition (Exercise 1.13) *For any sets A and B, if* $A \subseteq B$ *, then* $A \cup B = B$ *.*

- *Proof.* (\subseteq) Let $x \in A \cup B$ be arbitrary. This means $x \in A$ or $x \in B$. If $x \in A$, then by the condition $A \subseteq B$, we obtain $x \in B$. Therefore, in either case, $x \in B$.
 - (⊇) Let $x \in B$ be arbitrary. Therefore, $x \in A$ or $x \in B$. Hence $x \in A \cup B$. \Box

Part 2

BOOK STUDY: ENDERTON (LOGIC)

BIBLIOGRAPHY