Remark. Unless otherwise stated, all rings are commutative and unital.

1 Definitions

Definition 1.0.1. An element $p \in A$ is prime if (p) is a prime ideal. Equivalently p is prime if whenever $p \mid xy$ either $p \mid x$ or $p \mid y$.

Definition 1.0.2. An element $r \in A$ which is nonzero and not a unit is irreducible if whenever r = xy either $x \in A^{\times}$ or $y \in A^{\times}$.

2 Domains

Definition 2.0.1. A ring A is a domain if A has no zero divisors i.e. if ab = 0 then a = 0 or b = 0.

Proposition 2.0.2. Let A be a domain then any nonzero prime element is irreducible.

Proof. Let $p \in A$ be a prime. Now suppose that p = xy for $x, y \in A$. Thus, $p \mid xy$ so (WLOG) we have $p \mid x$ so x = pz and thus p = pzy. However, p is nonzero and A is a domain so zy = 1 and thus $y \in A^{\times}$ proving that p is irreducible.

3 Principal Ideal Domains

Definition 3.0.1. A principal ideal domain (PID) is a domain A such that every ideal is principal.

Lemma 3.0.2. If A is a PID then A is Noetherian.

Proof. Every ideal is principal and thus finitely generated.

Lemma 3.0.3. Let A be a PID and $r \in A$ irreducible then (r) is maximal and thus r is prime.

Proof. Consider an intermediate ideal $(r) \subset J \subset A$ then since A is a PID we have J = (a) so $r \in (a)$ and thus r = ac so either $a \in A^{\times}$ in which case J = A or $c \in A^{\times}$ in which case J = (r) so (r) is maximal and thus a prime ideal.

Theorem 3.0.4. Let A be a PID and not a field then $\dim A = 1$.

Proof. Any prime ideal $\mathfrak{p} \subset A$ is principal so $\mathfrak{p} = (p)$ and p is prime. Either p = 0 which is prime since A is a domain or p is irreducible and so we have shown (p) is maximal. So every prime ideal is zero or maximal and thus dim $A \leq 1$. If dim A = 0 then (0) is maximal so A is local and any nonzero element is thus invertible so A is a field.

Theorem 3.0.5 (Kaplansky). Let A be Noetherian then A is a principal ideal ring iff every maximal ideal is prime.

Theorem 3.0.6 (Cohen). A ring A is Noetherian iff every prime ideal is finitely generated.

Corollary 3.0.7. A ring A is a principal ideal ring iff every prime ideal is principal.

4 Unique Factorization Domains

Definition 4.0.1. A domain A is a unique factorization domain (UFD) if every nonzero element has a unique factorization into irreducible elements.

Definition 4.0.2. A factorization ring A is a ring such that every nonzero element has a factorization into irreducible elements.

Lemma 4.0.3. If A is a Noetherian domain then it is a factorization domain.

Proof. Take $a_0 \in A$. If a is irreducible, zero, or a unit then we are done. Then we can write, $a = a_1^{(1)} a_2^{(1)}$ for $a_1, b_1 \notin A^{\times}$. Continuing in this manner we get,

$$(a) \subsetneq (a_1^{(1)}, a_2^{(1)}) \subsetneq (a_1^{(2)}, a_2^{(2)}, a_3^{(2)}, a_4^{(3)}) \subsetneq \cdots$$

(CHECK THIS) This sequence is proper since if a = bc and $b \in (a)$ then a = arc so rc = 1 and thus $c \in A^{\times}$ contradicting our construction. However, A is Noetherian then the sequence must terminate so at some point the factorization must become irreducible.

Theorem 4.0.4. Let A be a factorization domain. Then A is a UFD iff every irreducible is prime.

Proof. If A is a UFD and p an irreducible. Let $x, y \in A$ and $p \mid xy$ then p is in the factorization of xy and thus, by uniqueness must be in the factorization of either x or y so $p \mid x$ or $p \mid y$.

Conversely, if A is a factorization domain and every irreducible is prime then given two factorizations of x each irreducible must, by primality, divide an irreducible in the other factorization so they are equal. (DO THIS BETTER)

Corollary 4.0.5. If A is a PID then A is a UFD.

Proof. If A is a PID then it is Noetherian and thus a factorization domain. Furthermore, every irreducible is prime so A is a UFD.

4.1 Height One Prime Ideals

Proposition 4.1.1. Let A be Noetherian. Then any principal prime ideal has height at most one.

Proof. Let $\mathfrak{p} = (p) \subset A$ be a principal prime ideal. Then consider the localization which is $A_{(p)}$ Noetherian and the unique maximal ideal $pA_{(p)}$ is principal. Take $N = \operatorname{nilrad}(A_{(p)})$ then,

$$\dim A_{(p)}/N = \dim A_{(p)} = \mathbf{ht}\,(\mathfrak{p})$$

but $A_{(p)}/N$ is a Noetherian domain and the unique maximal ideal $pA_{(p)}$ is principal so $A_{(p)}/N$ is a PID and thus dim $A_{(p)}/N \leq 1$.

Proposition 4.1.2. If A is a UFD then every prime ideal of height one is principal.

Proof. Let $\mathfrak{p} \subset A$ be a prime ideal with $\mathbf{ht}(\mathfrak{p}) = 1$. Take any nonzero element $x \in \mathfrak{p}$ and consider its factorization into irreducibles. Since \mathfrak{p} is prime some irreducible factor $p \mid x$ must be in \mathfrak{p} so $(p) \subset \mathfrak{p}$. Since A is a UFD all irreducibles are prime so $(p) \subset \mathfrak{p}$ is prime. However $\mathbf{ht}(\mathfrak{p}) = 1$ and $(p) \neq (0)$ so $(p) = \mathfrak{p}$ and thus \mathfrak{p} is principal.

Theorem 4.1.3. Let A be a Noetherian domain. Then A is a UFD iff every height one prime ideal is principal.

Proof. We showed one direction above. Conversely, suppose every height one prime ideal is principal. Since A is a Noetherian domain, it suffices to show that each irreducible is prime. Let r be irreducible and consider a minimal prime $\mathfrak{p} \supset (r)$. Then by Krull's Hauptidealsatz, \mathfrak{p} has height one so by our assumption $\mathfrak{p} = (p)$ is principal. However, $(r) \subset (p)$ so $p \mid r$ but r is irreducible so we must have $(r) = (p) = \mathfrak{p}$ and thus r is prime.

Theorem 4.1.4 (Krull's Hauptidealsatz). Let $I \subset A$ be an ideal in a Noetherian ring A with n generators then any minimal prime ideal $\mathfrak{p} \supset I$ has height at most n.

5 Simple Modules

Definition 5.0.1. A nonzero *R*-module is *simple* if it has no nontrivial submodules.

Proposition 5.0.2. Let R be a ring and M an R-module. Then the following are equivalent,

- (a) M is simple
- (b) $\ell_R(M) = 1$
- (c) $M = R/\mathfrak{m}$ for some maximal ideal $\mathfrak{m} \subset R$.

Proof. The first two are equivalent by definition. Clearly if $\mathfrak{m} \subset R$ is maximal then R/\mathfrak{m} is simple. Now suppose that M is simple and take a nonzero $x \in M$. Then (x) = M by simplicity so consider $I = \ker(R \xrightarrow{x} M) = \operatorname{Ann}_A(x) = \{r \in R \mid rx = 0\}$. Since M = Rx we know that $M \cong R/I$. However, by the lattice isomorphism theorem, submodules of R/I correspond to ideals above I so since M is simple we must have I maximal.

6 Artinian Modules

Definition 6.0.1. An R-module M is noetherian/artinian if it satisfies the ascending/descending chain condition on submodules.

Theorem 6.0.2. An R-module M has finite length iff it is both noetherian and artinian.

Proof. If M has finite length then clearly it is noetherian and artinian since chains of submodules are bounded in length. Alternatively, simple modules are noetherian and artinian so given a composition series we see that M is noetherian and artinian by repeated extension. Now, conversely, assume that M is noetherian and artinian. By the artinian property we can take a minimal nonzero submodule $M_1 \subset M$. Then M_1 is simple. Either M/M_1 is simple or we may repeat to get $M_2 \supset M_1$ and M_2/M_1 is simple. Thus we get an ascending chain $0 = M_0 \subset M_1 \subset M_2 \subset M_3 \subset \cdots$ with M_{i+1}/M_i simple. Since M is Noetherian, this must terminate at $M_n = M$ so we get a finite length composition series showing that M has finite length.

7 Artinian Rings

Definition 7.0.1. A ring A is *artinian* if it satisfies the descending chain condition on ideals: given a chain of ideals,

$$I_0 \supset I_1 \supset I_2 \supset \cdots$$

the chain stabilizes $I_{n+i} = I_n$.

Remark. A is artinian iff it is artinian as a module over itself.

Proposition 7.0.2. An artinian ring has finitely many maximal ideals.

Proof. Let $\mathfrak{m}_1, \mathfrak{m}_2, \mathfrak{m}_3, \ldots$ be a list of maximal ideals. Then consider the chain,

$$\mathfrak{m}_1 \supset \mathfrak{m}_1 \mathfrak{m}_2 \supset \mathfrak{m}_1 \mathfrak{m}_2 \mathfrak{m}_3 \supset \cdots$$

By the artinian condition, we must have $\mathfrak{m}_1 \cdots \mathfrak{m}_n = \mathfrak{m}_1 \cdots \mathfrak{m}_n \mathfrak{m}_{n+1}$ for some n. But then by prime avoidence \mathfrak{m}_{n+1} must be one of $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ since $\mathfrak{m}_{n+1} \supset \mathfrak{m}_1 \cdots \mathfrak{m}_n$ so $\mathfrak{m}_{n+1} \supset \mathfrak{m}_i$ and \mathfrak{m}_i is maximal.

Proposition 7.0.3. Let A be an artinian ring. Then every prime ideal is maximal so dim A = 0.

Proof. Let \mathfrak{p} be prime and $x \notin \mathfrak{p}$. Consider the chain,

$$(x) \supset (x^2) \supset (x^3) \supset \cdots$$

By the artinian condition $(x^n) = (x^{n+1})$ for some n so $x^n = rx^{n+1}$ for some $r \in A$. Thus $x^n(rx-1) = 0$. However, $x^n \notin \mathfrak{p}$ so $rx-1 \in \mathfrak{p}$ and thus $x \in A/\mathfrak{p}$ is invertible so A/\mathfrak{p} is a field and thus \mathfrak{p} is maximal.

Proposition 7.0.4. Let A be artinian. Then nilrad (A) is a nilpotent ideal.

Proof. Let I = nilrad(A). Consider the chain of ideals,

$$I\supset I^2\supset I^3\supset\cdots$$

By the artinian condition, $I^{n+1} = I^n$ for some n.

Consider $J = \{x \in A \mid xI^n = 0\}$. If $J \neq R$ we can choose $J' \supsetneq J$ minimal (using the artinian property). Then take $y \in J'$ so by minimality J' = J + (y). Suppose J + I(y) = J' then, since $J \subset \operatorname{Jac}(A)$ and (y) is finitely generated, by Nakayama, J' = J + I(y) = J which is false so $J \subset J + I(y) \subsetneq J'$ and thus J = J + I(y) by minimality so $I(y) \in J$. Therefore, $y \cdot I^{n+1} = 0$ but $I^{n+1} = I^n$ so $y \cdot I^n = 0$ and thus $y \in J$ contradicting our situation so J = R and thus $I^n = 0$. \square

Proposition 7.0.5. Every artinian ring is a product of local artinian rings: $A_{\mathfrak{m}_i} = A/\mathfrak{m}_i^n$.

Proof. Let $\mathfrak{m}_1, \ldots, \mathfrak{m}_r$ be the maximal ideals. Then we know that $\mathfrak{m}_1^{n_1} \cdots \mathfrak{m}_r^{n_r} = 0$ for some integers $n_1, \ldots, n_r \in \mathbb{Z}$. Therefore, by the Chinese remainder theorem,

$$A = A/(\mathfrak{m}_1^{n_1} \cdots \mathfrak{m}_r^{n_r}) = \prod_{i=1}^r A/\mathfrak{m}_i^{n_i}$$

Furthermore, $A/\mathfrak{m}_i^{n_i}$ is local because \mathfrak{m}_i is the only maximal ideal above $\mathfrak{m}_i^{n_i}$. Furthermore,

$$A_{\mathfrak{m}_i} = (A/\mathfrak{m}_i^{n_i})_{\mathfrak{m}_i} = A/\mathfrak{m}_i^{n_i}$$

since $A \setminus \mathfrak{m}_i$ is not contained in any maximal ideal of $A/\mathfrak{m}_i^{n_i}$ and thus is invertible.

Proposition 7.0.6. A ring A is artinian iff it has finite length as a module over itself.

Proof. If A has finite length as an A-module then it satisfies both the ascending and descending chain conditions on A-submodules i.e. ideals thus A is both noetherian and artinian. Conversely, let A be artinian. Since A is a finite product of local artinian rings we may reduce to the case that A is local artinian with maximal ideal \mathfrak{m} . Since nilrad $(A) = \mathfrak{m}$ then $\mathfrak{m}^n = 0$ for some n so we get a series,

$$0 = \mathfrak{m}^n \subset \mathfrak{m}^{n-1} \subset \dots \subset \mathfrak{m} \subset A$$

Then $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ is a A/\mathfrak{m} -module and,

$$\ell_A(\mathfrak{m}^i/\mathfrak{m}^{i+1}) = \ell_{A/\mathfrak{m}}(\mathfrak{m}^i/\mathfrak{m}^{i+1}) = \dim_{A/\mathfrak{m}} \mathfrak{m}^i/\mathfrak{m}^{i+1}$$

which must be finite since $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ is an artinian module and thus must have finite dimension else there would be a nonterminating descending chains. Thus from the series A has finite length. \square

Theorem 7.0.7. A ring A is artinian iff A is noetherian and dim A = 0.

Proof. If A is artinian then it has finite length over itself and thus is noetherian. Also every prime is maximal so dim A = 0. Conversely, suppose that A is noetherian and dim A = 0. Then Spec (A) is a noetherian topological space which has finitely many irreducible componets so A has finitely many minimal primes which are also maximal since dim A = 0. Thus A has finitely many primes all of which are maximal. Since dim A = 0 we have I = Jac(A) = nilrad(A) so any $f \in I$ is nilpotent so I is nilpotent because A is noetherian so I is finitely generated. Thus by the Chines remainder theorem A is a finite product of local rings so we reduce to the case that A is local with maximal ideal \mathfrak{m} . Then we get a series,

$$0 = \mathfrak{m}^n \subset \mathfrak{m}^{n-1} \subset \cdots \subset \mathfrak{m} \subset A$$

but $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ is a finite A/\mathfrak{m} -module since A is noetherian so,

$$\ell_A(\mathfrak{m}^i/\mathfrak{m}^{i+1}) = \ell_{A/\mathfrak{m}}(\mathfrak{m}^i/\mathfrak{m}^{i+1}) = \dim_{A/\mathfrak{m}} \mathfrak{m}^i/\mathfrak{m}^{i+1}$$

is finite and thus $\ell_A(A)$ is finite from the series showing that A is artinian.

Proposition 7.0.8. Let A be an artinian ring. Then,

$$\ell_A(A) = \sum_{i=1}^r \ell_{A_{\mathfrak{m}_i}}(A_{\mathfrak{m}_i})$$

Proof. We can write, $A = A_{\mathfrak{m}_1} \times \cdots \times A_{\mathfrak{m}_r}$ and thus the formula immediately follows.

Proposition 7.0.9. Any finite dimensional k-algebra is artinian.

Proof. By dimensionality arguments every descending chain stabilizes.

Proposition 7.0.10. Let $A \to B$ be a local map and M an B-module of finite length. Then,

$$\ell_A(M) = \ell_B(M) \cdot [\kappa(\mathfrak{m}_B) : \kappa(\mathfrak{m}_A)]$$

and in particular $\ell_A(M)$ is finite if $\kappa(\mathfrak{m}_B)$ is a finite extension of $\kappa(\mathfrak{m}_A)$.

Proof. Consider a composition series,

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$$

Then M_i/M_{i-1} is a simple A-module so $M_i/M_{i-1} \cong B/\mathfrak{m}_B = \kappa(\mathfrak{m}_B)$ since B is local. Therefore,

$$\ell_A(M) = \sum_{i=1}^n \ell_A(M_i/M_{i-1}) = \sum_{i=1}^n \ell_A(\kappa(\mathfrak{m}_B)) = n \cdot [\kappa(B_{\mathfrak{m}}) : \kappa(A_{\mathfrak{m}})]$$

where $\ell_A(\kappa(\mathfrak{m}_B)) = \ell_{\kappa(\mathfrak{m}_A)}(\kappa(\mathfrak{m}_B))$ because $A \to B$ is local and,

$$\ell_{\kappa(\mathfrak{m}_A)}(\kappa(\mathfrak{m}_B)) = \dim_{\kappa(\mathfrak{m}_A)}(\kappa(\mathfrak{m}_B)) = [\kappa(\mathfrak{m}_B) : \kappa(\mathfrak{m}_A)]$$

Corollary 7.0.11. If A is a local artinian finite type k-algebra. Then,

$$\dim_k A = \ell_A(A) \cdot \dim_k (A/\mathfrak{m})$$

in particular A is a finite k-module.

Proof. Viewing A as a module over itself we know it has finite length since A is artinian. Furthermore, A/\mathfrak{m} is a field finitely generated over k and thus a finite extension of k by the Nullstellensatz. Then applying the previous result we conclude.

Corollary 7.0.12. Let A be an artinian finite type k-algebra. Then,

$$\dim_k A = \sum_{i=1}^r \ell_{A_{\mathfrak{m}_i}}(A_{\mathfrak{m}_i}) \cdot \dim_k (A/\mathfrak{m}_i)$$

Proof. Since A is artinian we can write,

$$A = \prod_{i=1}^r A_{\mathfrak{m}_i}$$

where $A_{\mathfrak{m}_i}$ are the local artinian factors associated to the finitely many prime ideals $\mathfrak{m}_1, \ldots, \mathfrak{m}_r$. The result follows from above by additivity of the dimensions.

8 Cohen-Macaulay Rings

8.1 Dimension

Proposition 8.1.1. Let (A, \mathfrak{m}) be a Noetherian local ring and $f \in \mathfrak{m}$. Then,

$$\dim A/(f) > \dim A - 1$$

with equality iff f is a nonzero divisor.

Proof. https://math.stackexchange.com/questions/2085779/the-dimension-modulo-a-principal-ideal-in-a-noetherian-local-ring \Box

8.2 Depth

8.3 Properties

Proposition 8.3.1. Let (A, \mathfrak{m}) be a Noetherian local ring and $f \in \mathfrak{m}$ a nonzero divisor. Then A is Cohen-Macaulay iff A/(f) is Cohen-Macaulay.

Proof. We have depth
$$(A/(f)) = \operatorname{depth}(A) - 1$$
 and $\dim A/(f) = \dim A - 1$.