

GBI Tutorium Nr.

Foliensatz 0333

Vincent Hahn – vincent.hahn@student.kit.edu | 6. November 2012

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 。 < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

Outline/Gliederung

Division mit Rest

2 Algorithmen

Vincent Hahn - vincent.hahn@student.kit.edu - GBI Tutorium

Algorithmen

Division mit Rest

Definition

$$\forall x \in \mathbb{N}_0, \forall y \in \mathbb{N}_+ :$$

 $x = y \cdot (x \div y) + (x \mod y)$

Hierbei ist ÷ die Ganzzahldivision ohne Rest.

Beispiel

Den Rest a der Ganzzahldivision erhält man also mit $a = x \mod y$:

$$1 = 4 \mod 3$$

Division mit Rest

Definition

$$\forall x \in \mathbb{N}_0, \forall y \in \mathbb{N}_+ :$$

 $x = y \cdot (x \div y) + (x \mod y)$

Hierbei ist ÷ die Ganzzahldivision ohne Rest.

Beispiel

Den Rest a der Ganzzahldivision erhält man also mit $a = x \mod y$:

$$1 = 4 \mod 3$$

Vincent Hahn - vincent.hahn@student.kit.edu - GBI Tutorium

Algorithmen

Division mit Rest

Folgerung

Aus der Definition kann direkt geschlossen werden:

$$x \div y \in \mathbb{N}_0$$

$$x \mod y \in \{0, \dots, y-1\}$$

	- 11		
mün	all		n
HILL	uı	ı	ш

X	у	$x \div y$	X	mod y
4	3			
2	1			
10	3			
8	3			
9	2			
4	3			

mü	na		h
IIIU	HU	шС	ш

X	у	$x \div y$	Х	mod y
4	3	1		1
2	1			
10	3			
8	3			
9	2			
4	3			

mündlich

Х	у	$x \div y$	Х	mod y
4	3	1		1
2	1	2		0
10	3			
8	3			
9	2			
4	3			

mü	na		h
IIIU	HU	шС	ш

Х	У	$x \div y$	Х	mod y
4	3	1		1
2	1	2		0
10	3	3		1
8	3			
9	2			
4	3			

mü	ทฝ		n
IIIU	IIU	шС	ш

У	$x \div y$	Х	mod y
3	1		1
1	2		0
3	3		1
3	2		2
2			
3			
	3 1 3 3 2	3 1 1 2 3 3 3 2 2	3 1 1 2 3 3 3 2 2

	100	
mün	aп	ıch
HIIUH	uı	

X	у	$x \div y$	X	mod y
4	3	1		1
2	1	2		0
10	3	3		1
8	3	2		2
9	2	4		1
4	3			

mündlich

Х	У	$x \div y$	Х	mod y
4	3	1		1
2	1	2		0
10	3	3		1
8	3	2		2
9	2	4		1
4	3	1		1

Größter gemeinsamer Teiler

Definition

Der größte gemeinsame Teiler zweier Zahlen ist die größtmögliche Zahl $m \in \mathbb{N}_0$, für die gilt:

$$a \div m = 0 \wedge bivm = 0$$

Bestimmung

Der größte gemeinsame Teiler kann mit Primfaktorzerlegung bestimmt werden:

$$a = 3528, b = 3780$$

 $\Rightarrow a = 2^3 \cdot 3^2 \cdot 5^0 \cdot 7^2$
 $\Rightarrow b = 2^2 \cdot 3^3 \cdot 5^1 \cdot 7^1$

10

Größter gemeinsamer Teiler

Definition

Der größte gemeinsame Teiler zweier Zahlen ist die größtmögliche Zahl $m \in \mathbb{N}_0$, für die gilt:

$$a \div m = 0 \wedge bivm = 0$$

Bestimmung

Der größte gemeinsame Teiler kann mit Primfaktorzerlegung bestimmt werden:

$$a = 3528, b = 3780$$

 $\Rightarrow a = 2^3 \cdot 3^2 \cdot 5^0 \cdot 7^2$
 $\Rightarrow b = 2^2 \cdot 3^3 \cdot 5^1 \cdot 7^1$

Größter gemeinsamer Teiler

Programmierung

Die ggt-Funktion lässt sich so programmieren:

$$ggt(a,b) = \begin{cases} a & \text{falls } b = 0 \\ ggt(b, a \mod b) \end{cases}$$

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch.
- gibt endliche Ausgabe auf endliche Eingabe aus
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Eigenschaften

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Schleifen

Arten

while Wiederholen, wenn eine Bedingung erfüllt ist.

for *n*-Mal wiederholen

do-while Wiederholen, danach nochmal, wenn eine Bedingung erfüllt

Schleifen

Arten

while Wiederholen, wenn eine Bedingung erfüllt ist.

for *n*-Mal wiederholen.

do-while Wiederholen, danach nochmal, wenn eine Bedingung erfüllt

Schleifen

Arten

while Wiederholen, wenn eine Bedingung erfüllt ist.

for *n*-Mal wiederholen.

do-while Wiederholen, danach nochmal, wenn eine Bedingung erfüllt ist.