

TECNOLOGICO NACIONAL DE MEXICO INSTITUTO TECNOLOGICO DE MORELIA "José María Morelos y Pavón"

Inteligencia Artificial

Practica 6 Agentes Inteligentes

Carlos Jahir Castro Cázares 17120151 Ingeniería en Sistemas Computacionales

14 de Abril de 2021

Cuadrado Mágico

Un cuadrado mágico es una tabla de grado primario donde se dispone de una serie de números enteros en un cuadrado o matriz de forma tal que la suma de los números por columnas, filas y diagonales principales sea la misma. Usualmente los números empleados para rellenar las casillas son consecutivos, de 1 a n^2 , siendo n el número de columnas y filas del cuadrado mágico.

1. Formula para encontrar el numero mágico dada cualquier serie.

La formula para calcular la **constante mágica** es con la siguiente ecuación; Calculando la suma, sabiendo que las filas a van de 1 a n:

$$\sum_{a=1}^n (a-1)n + a = (n+1)\sum_{a=1}^n a - \sum_{a=1}^n n = (n+1)\frac{n(1+n)}{2} - n^2 = \frac{n^3 + 2n^2 + n - 2n^2}{2} = \frac{n(n^2+1)}{2}$$

Si disponemos el conjunto de números en seis filas (ver tabla a la derecha), fácilmente se puede apreciar que las sumas en las distintas columnas han de ser necesariamente iguales, ya que los números se encuentran agrupados por pares tal y como estaban en el primer caso (compárese los pares de filas 1^{a} - 6^{a} , 2^{a} - 5^{a} y 3^{a} - 4^{a} con la disposición original). Ahora sin embargo, por ser tres los pares de filas (n/2), la suma será:

$$M_2(n)=\frac{n(n^2+1)}{2}$$

cantidad que se denomina constante mágica, y que en nuestro caso es $n \times (n^2 + 1)/2 = 6 \times (36 + 1)/2 = 111$.cantidad que se denomina constante mágica, y que en nuestro caso es $n \times (n^2 + 1)/2 = 6 \times (36 + 1)/2 = 111$.

2. Características que debe tener la Serie.

El orden de un cuadrado mágico es el número de renglones o el número de columnas que tiene. Así un cuadrado de 3×3 se dice que es de orden 3.

Al sumar los números de cualquier renglón, cualquier columna o cualquiera de las dos diagonales el resultado es el mismo, a este número se le llama constante mágica.

Usualmente los números empleados parar llenar las casillas son consecutivos, de 1 a N cuadrada, siendo N el número de columnas y filas del cuadrado mágico.

3. Definir un proceso de solución para cualquier matriz impar

El ejemplo más sencillo es un cuadrado de orden 3, el más pequeño posible. Usaremos los números del 1 al 9. Empieza dibujando el esqueleto de tu cuadrado. Después añade casillas en todos los laterales, hasta formar un rombo. De esta forma:

Ahora, empieza en el extremo superior con el 1 y coloca todas las cifras siguiendo las diagonales alternas formadas en el rombo. Observa que quedan casillas en blanco.

		1		
	4		2	
7		5		3
	8		6	
		9		

Sólo te falta completar el cuadrado mágico. ¿De qué forma?. Tienes que "colocar" los números que están en las casillas exteriores del cuadrado, al lugar que les corresponde. Dentro!

4	9	2
3	5	7
8	1	6

Programa en: cuadro_magico.py