The first term of a progression is $\cos \theta$, where $0 < \theta < \frac{1}{2}\pi$.		
(a)	For	the case where the progression is geometric, the sum to infinity is $\frac{1}{\cos \theta}$.
		Show that the second term is $\cos \theta \sin^2 \theta$. [3]
	(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 significant figures. [2]

(b)	For the case where the progression is arithmetic, the first two terms are again $\cos \theta$ and $\cos \theta \sin^2 \theta$ respectively.		
	Find the 85th term when $\theta = \frac{1}{3}\pi$. [4]		

.....