日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願 年 月 日
Date of Application:

2003年 9月29日

出 願 番 号 Application Number:

特願2003-337850

[ST. 10/C]:

[JP2003-337850]

出 願 人
Applicant(s):

セイコーエプソン株式会社

特許庁長官 Commissioner, Japan Patent Office 2003年10月10日

【書類名】

特許願

【整理番号】

J0103578

【あて先】

特許庁長官 殿

【国際特許分類】

G09G 3/30

【発明者】

【住所又は居所】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社内

【氏名】

河西 利幸

【特許出願人】

【識別番号】

000002369

【氏名又は名称】

セイコーエプソン株式会社

【代理人】

【識別番号】

100095728

【弁理士】

【氏名又は名称】

上柳 雅營

【連絡先】

 $0\ 2\ 6\ 6\ -\ 5\ 2\ -\ 3\ 5\ 2\ 8$

【選任した代理人】

【識別番号】

100107076

【弁理士】

【氏名又は名称】

藤綱 英吉

【選任した代理人】

【識別番号】

100107261

【弁理士】

【氏名又は名称】

須澤 修

【先の出願に基づく優先権主張】

【出願番号】

特願2002-343964

【出願日】

平成14年11月27日

【手数料の表示】

【予納台帳番号】

013044

【納付金額】

21,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

0109826

【書類名】特許請求の範囲

【請求項1】

電気光学装置において、

複数の走査線と、

複数のデータ線と、

前記走査線と前記データ線との交差に対応して設けられた複数の画素であって、かつ、 前記複数の画素のそれぞれが、データを保持する保持手段と、前記保持手段に保持された データに応じて、駆動電流を設定する駆動素子と、当該設定された駆動電流に応じた輝度 で発光する電気光学素子とを有する複数の画素と、

前記走査線に走査信号を出力することにより、データの書込対象となる画素に対応する 前記走査線を選択する走査線駆動回路と、

前記走査線駆動回路と協働し、前記書込対象となる画素に対応する前記データ線にデータを出力するデータ線駆動回路と、

前記複数の画素のそれぞれの駆動モードを選択する駆動モード選択回路とを有し、前記駆動モード選択回路は、

前記駆動モードとして第1の駆動モードを選択した場合、前記書込対象となる画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間よりも短い第1の発光期間で、前記電気光学素子を駆動させ、

前記駆動モードとして前記第1の駆動モードとは異なる第2の駆動モードを選択した場合、前記書込対象となる画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間において、前記第1の発光期間よりも長い第2の発光期間で、前記電気光学素子を駆動させることを特徴とする電気光学装置。

【請求項2】

電気光学装置において、

複数の走査線と、

複数のデータ線と、

前記走査線と前記データ線との交差に対応して設けらた複数の画素であって、かつ、前記複数の画素のそれぞれが、データの書き込みが行われるキャパシタと、前記キャパシタに書き込まれたデータに応じて、駆動電流を設定する駆動トランジスタと、当該設定された駆動電流に応じた輝度で発光する電気光学素子とを有する複数の画素と、

前記走査線に走査信号を出力することにより、データの書込対象となる画素に対応する 前記走査線を選択する走査線駆動回路と、

前記走査線駆動回路と協働し、前記書込対象となる画素に対応する前記データ線にデータを出力するデータ線駆動回路と、

前記複数の画素のそれぞれの駆動モードを選択する駆動モード選択回路とを有し、

前記駆動モード選択回路は、

前記駆動モードとして第1の駆動モードを選択した場合、前記書込対象となる画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間よりも短い第1の発光期間で、前記電気光学素子を駆動させ、

前記駆動モードとして前記第1の駆動モードとは異なる第2の駆動モードを選択した場合、前記書込対象となる画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間において、前記第1の発光期間よりも長い第2の発光期間で、前記電気光学素子を駆動させることを特徴とする電気光学装置。

【請求項3】

前記駆動モード選択回路は、前記第1の駆動モード選択時には、前記電気光学素子をインパルス駆動させ、前記第2の駆動モードの選択時には、前記電気光学素子をホールド駆動させることを特徴とする請求項2に記載された電気光学装置。

【請求項4】

前記画素のそれぞれは、前記電気光学素子に供給される前記駆動電流の電流経路中に設けられた制御トランジスタをさらに有し、

前記駆動モード選択回路は、前記書込対象となる画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間において、前記制御トランジスタの導通制御を行うことにより、前記第1の駆動モードにおける前記電気光学素子の駆動と、前記第2の駆動モードにおける前記電気光学素子の駆動とを行うことを特徴とする請求項2または3に記載された電気光学装置。

【請求項5】

前記駆動モード選択回路は、前記第1の駆動モードの選択時には、前記書込対象となる 画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間にお いて、前記制御トランジスタによって、前記駆動電流の電流経路を繰り返し遮断すること により、前記電気光学素子をインパルス駆動させることを特徴とする請求項4に記載され た電気光学装置。

【請求項6】

前記駆動モード選択回路は、前記第2の駆動モードの選択時には、前記書込対象となる 画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間において、前記制御トランジスタによって、前記駆動電流の電流経路を維持することにより、 前記電気光学素子をホールド駆動させることを特徴とする請求項5に記載された電気光学 装置。

【請求項7】

前記駆動モード選択回路は、前記第1の駆動モードの選択時には、前記書込対象となる 画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間にお いて、前記キャパシタに書き込まれたデータによって、前記電気光学素子に対して前記駆 動電流を供給した後に、前記キャパシタに書き込まれたデータの消去を行うことにより、 前記電気光学素子をインパルス駆動させることを特徴とする請求項2または3に記載され た電気光学装置。

【請求項8】

前記駆動モード選択回路は、前記第2の駆動モードの選択時には、前記書込対象となる 画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間にお いて、前記キャパシタに書き込まれたデータによって、前記電気光学素子に対して前記駆 動電流を供給し続けることにより、前記電気光学素子をホールド駆動させることを特徴と する請求項7に記載された電気光学装置。

【請求項9】

前記データ線駆動回路は、前記データ線に対して、データ電流としてデータを出力し、 前記画素のそれぞれは、プログラミングトランジスタをさらに有し、

前記プログラミングトランジスタは、自己のチャネルに前記データ電流が流れることにより発生するゲート電圧に基づいて、前記キャパシタに対するデータの書き込みを行うことを特徴とする請求項2から8のいずれかに記載された電気光学装置。

【請求項10】

前記駆動トランジスタは、前記プログラミングトランジスタとしての機能も兼ねている ことを特徴とする請求項9に記載された電気光学装置。

【請求項11】

前記データ線駆動回路は、前記データ線に対して、データ電圧としてデータを出力し、 前記キャパシタに対するデータの書き込みは、前記データ電圧に基づいて行われること を特徴とする請求項2から8のいずれかに記載された電気光学装置。

【請求項12】

前記駆動モード選択回路は、前記駆動モードを指定する駆動モード信号に基づいて、前 記電気光学素子の駆動制御を行うパルス信号を出力し、

前記駆動モード選択回路は、前記第1の駆動モードの選択時には、前記パルス信号として、高レベルと低レベルとが交互に繰り返されるパルス形状を有する信号を出力し、前記第2の駆動モードの選択時には、前記パルス信号として、前記第1の駆動モードの選択時における波形形状とは異なる波形形状を有する信号を出力することを特徴とする請求項2

または3に記載された電気光学装置。

【請求項13】

前記駆動モード選択回路は、

前記走査信号の変化タイミングにおいて、前記駆動モード信号のレベルを保持するフリップフロップと、

前記フリップフロップに保持されたレベルに応じて、高レベルと低レベルとが交互に繰り返されるパルス形状を有する第1の駆動信号、または、前記第1の駆動信号とは異なる波形形状を有する第2の駆動信号のいずれかを選択して出力する選択部と、

前記選択部より出力された信号と、前記走査信号と同期し、かつ、前記走査信号とは反対の論理レベルをとる制御信号とに基づいて、前記パルス信号を出力する論理回路と を有することを特徴とする請求項12に記載された電気光学装置。

【請求項14】

請求項1から13のいずれかに記載された電気光学装置を実装した電子機器。

【請求項15】

走査線とデータ線との交差に対応して設けられた複数の画素を有し、前記複数の画素のそれぞれが、データを保持する保持手段と、前記保持手段に保持されたデータに応じて、駆動電流を設定する駆動素子と、当該設定された駆動電流に応じた輝度で発光する電気光学素子とを有し、かつ、前記複数の画素のそれぞれの駆動モードを選択する電気光学装置の駆動方法において、

前記駆動モードとして第1の駆動モードが選択された場合、前記書込対象となる画素に対応する走査線が選択されてから当該走査線が次に選択されるまでの期間よりも短い第1の発光期間で、前記電気光学素子を駆動させる第1のステップと、

前記駆動モードとして前記第1の駆動モードとは異なる第2の駆動モードが選択された場合、前記書込対象となる画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間において、前記第1の発光期間よりも長い第2の発光期間で、前記電気光学素子を駆動させる第2のステップと

を有することを特徴とする電気光学装置の駆動方法。

【請求項16】

走査線とデータ線との交差に対応して設けられた複数の画素を有し、前記複数の画素のそれぞれが、データの書き込みが行われるキャパシタと、前記キャパシタに書き込まれたデータに応じて、駆動電流を設定する駆動トランジスタと、当該設定された駆動電流に応じた輝度で発光する電気光学素子とを有し、かつ、前記複数の画素のそれぞれの駆動モードを選択する電気光学装置の駆動方法において、

前記駆動モードとして第1の駆動モードが選択された場合、前記書込対象となる画素に 対応する走査線が選択されてから当該走査線が次に選択されるまでの期間よりも短い第1 の発光期間で、前記電気光学素子を駆動させる第1のステップと、

前記駆動モードとして前記第1の駆動モードとは異なる第2の駆動モードが選択された場合、前記書込対象となる画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間において、前記第1の発光期間よりも長い第2の発光期間で、前記電気光学素子を駆動させる第2のステップと

を有することを特徴とする電気光学装置の駆動方法。

【請求項17】

前記第1のステップでは、前記電気光学素子のインパルス駆動が行われ、

前記第2のステップでは、前記電気光学素子のホールド駆動が行われることを特徴とする請求項16に記載された電気光学装置の駆動方法。

【請求項18】

前記画素のそれぞれは、前記電気光学素子に供給される前記駆動電流の電流経路中に設けられた制御トランジスタをさらに有し、

前記第1のステップは、前記書込対象となる画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間において、前記制御トランジスタによって、前

記駆動電流の電流経路を繰り返し遮断することにより、前記電気光学素子をインパルス駆動させるステップであることを特徴とする請求項16または17に記載された電気光学装置の駆動方法。

【請求項19】

前記第2のステップは、前記書込対象となる画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間において、前記制御トランジスタによって、前記駆動電流の電流経路を維持することにより、前記電気光学素子をホールド駆動させるステップであることを特徴とする請求項18に記載された電気光学装置の駆動方法。

【請求項20】

前記第1のステップは、前記書込対象となる画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間において、前記キャパシタに書き込まれたデータに応じて、前記電気光学素子に対して前記駆動電流を供給した後に、前記キャパシタに書き込まれたデータの消去を行うことにより、前記電気光学素子をインパルス駆動させるステップであることを特徴とする請求項16または17に記載された電気光学装置の駆動方法。

【請求項21】

前記第2のステップは、前記書込対象となる画素に対応する前記走査線が選択されてから当該走査線が次に選択されるまでの期間において、前記キャパシタに書き込まれたデータに応じて、前記電気光学素子に対して前記駆動電流を供給し続けることにより、前記電気光学素子をホールド駆動させるステップであることを特徴とする請求項20に記載された電気光学装置の駆動方法。

【請求項22】

前記画素のそれぞれが、プログラミングトランジスタをさらに有するとともに、前記画素のそれぞれに対して、データ電流としてデータが供給される電気光学 装置の駆動方法において、

前記プログラミングトランジスタのチャネルに前記データ電流が流れることにより発生するゲート電圧に基づいて、前記キャパシタに対するデータの書き込みが行われることを特徴とする請求項16から21のいずれかに記載された電気光学装置の駆動方法。

【請求項23】

前記画素のそれぞれに対して、データ電圧としてデータが供給される電気光学装置の駆動方法において、

前記データ電圧に基づいて、前記キャパシタに対するデータの書き込みが行われること を特徴とする請求項16から21のいずれかに記載された電気光学装置の駆動方法。

【書類名】明細書

【発明の名称】電気光学装置、電気光学装置の駆動方法および電子機器

【技術分野】

[0001]

本発明は、電流によって発光輝度が制御される電気光学素子を用いた電気光学装置、電気光学装置の駆動方法および電子機器に係り、特に、画素の駆動モードを選択する技術に関する。

【背景技術】

[0002]

近年、有機EL (Electronic Luminescence)素子を用いたフラットパネルディスプレイ (FPD) が注目されている。有機EL素子は、自己を流れる電流によって駆動する典型的な電流駆動型素子であり、その電流レベルに応じた輝度で自己発光する。有機EL素子を用いたアクティブマトリクス型ディスプレイの駆動方式は、電圧プログラム方式と電流プログラム方式とに大別される。

[0003]

例えば、電圧プログラム方式に関する特許文献1には、有機EL素子に駆動電流を供給する電流経路中に、この経路を遮断するトランジスタ(同文献の図5に示すTFT3)を設けた画素回路が開示されている。このトランジスタは、1フレーム期間の前半においてオン状態に制御されるとともに、その後半においてオフ状態に制御される。したがって、トランジスタがオンして駆動電流が流れる前半期間では、その電流レベルに応じた輝度で有機EL素子が発光する。また、トランジスタがオフして駆動電流が遮断される後半期間では、有機EL素子が強制的に消灯するため、黒が表示される。このような手法はブリンキング(Blinking)と呼ばれており、この手法によって、人間の目が感じる残像を断ち切り、動画表示品質の改善を図ることができる。

[0004]

また、例えば、特許文献2および特許文献3には、電流プログラム方式を用いた画素回路の構成が開示されている。特許文献2は、一対のトランジスタによって構成されたカレントミラー回路を用いた画素回路に関する。また、特許文献3は、有機EL素子に供給する駆動電流の設定源となる駆動トランジスタにおいて、その電流不均一性と閾値電圧変化との低減を図る画素回路に関する。

[0005]

【特許文献1】特開2001-60076号公報

【特許文献2】特開2001-147659号公報

【特許文献3】特表2002-514320号公報。

【発明の開示】

【発明が解決しようとする課題】

[0006]

一般に、ディスプレイを駆動する場合、全ての表示領域を同一の駆動モードによって駆動させることが多い。しかしながら、表示品質の向上という観点でいえば、表示対象に応じて駆動モードを選択的に適用することが好ましい。例えば、テキスト表示を行う領域に対してはホールド駆動が適しており、動画表示を行う領域に対してはインパルス駆動が適している。したがって、表示部全体において、テキスト表示を行う領域と動画表示を行う領域とが混在する場合、前者の表示領域ではホールド駆動を行い、後者の表示領域ではインパルス駆動を行うことが好ましい。また、ある解像度の動画をそれよりも大きな解像度を有する表示部にて等倍表示する場合、表示部中央の動画領域に対してはインパルス駆動が適しているが、この動画領域の枠外の領域に対してはホールド駆動が適している。したがって、この場合も、表示領域毎に異なる駆動モードを採用することが好ましい。

[0007]

本発明は、かかる事情に鑑みてなされたものであり、その目的は、駆動電流に応じた輝度で発光する電気光学素子を用いた電気光学装置において、表示対象に応じた駆動モード

を採用することにより、全体的な表示品質の改善を図ることである。 【課題を解決するための手段】

[0008]

かかる課題を解決するために、第1の発明は、複数の走査線と、複数のデータ線と、走査線とデータ線との交差に対応して設けられた複数の画素と、走査線に走査信号を出力することにより、データの書込対象となる画素に対応する走査線を選択する走査線駆動回路と、表示部を構成する画素に対応するデータ線にデータを出力するデータ線駆動回路と、表示部を構成する画素のそれぞれの駆動モードを選択する駆動・一ド選択回路とを有する電気光学装置を提供する。ここで、画素のそれぞれは、データの書き込みが行われるキャパシタと、お定された駆動電流に応じた輝度で発光する電気光学表子とを有する。駆動モード選択回路は、駆動モードを選択されてからこの走査線が次に選択されるまでの期間よりも短い第1の発光期間で、電気光学素子を駆動させる。また、駆動モードとは異なる第2の駆動モードを選択した場合、書込対象となる画素に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間において、第1の発光期間よりも長い第2の発光期間で、電気光学素子を駆動させる。

[0009]

ここで、第1の発明において、駆動モード選択回路は、第1の駆動モード選択時には、 電気光学素子をインパルス駆動させ、第2の駆動モードの選択時には、電気光学素子をホ ールド駆動させてもよい。

$[0\ 0\ 1\ 0]$

第1の発明において、画素のそれぞれは、電気光学素子に供給される駆動電流の電流経路中に設けられた制御トランジスタをさらに有していてもよい。この場合、駆動モード選択回路は、書込対象となる画素に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間において、制御トランジスタの導通制御を行うことにより、第1の駆動モードにおける電気光学素子の駆動と、第2の駆動モードにおける電気光学素子の駆動とを行うことが好ましい。また、駆動モード選択回路は、第1の駆動モードの選択時には、書込対象となる画素に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間において、制御トランジスタによって、駆動電流の電流経路を繰り返し遮断することにより、電気光学素子をインパルス駆動させてもよい。一方、駆動モードの選択時には、書込対象となる画素に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間において、制御トランジスタによって、駆動電流の電流経路を維持することにより、電気光学素子をホールド駆動させてもよい。

$[0\ 0\ 1\ 1]$

第1の発明において、駆動モード選択回路は、第1の駆動モードの選択時には、書込対象となる画素に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間において、キャパシタに書き込まれたデータによって、電気光学素子に対して駆動電流を供給した後に、キャパシタに書き込まれたデータの消去を行うことにより、電気光学素子をインパルス駆動させてもよい。また、駆動モード選択回路は、第2の駆動モードの選択時には、書込対象となる画素に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間において、キャパシタに書き込まれたデータによって、電気光学素子に対して駆動電流を供給し続けることにより、電気光学素子をホールド駆動させてもよい。

[0012]

第1の発明において、データ線駆動回路は、データ線に対して、データ電流としてデータを出力し、画素のそれぞれは、プログラミングトランジスタをさらに有していてもよい。この場合、プログラミングトランジスタは、自己のチャネルにデータ電流が流れることにより発生するゲート電圧に基づいて、キャパシタに対するデータの書き込みを行うことが好ましい。また、上記駆動トランジスタは、このプログラミングトランジスタとしての

機能も兼ねていてもよい。

[0013]

第1の発明において、データ線駆動回路は、データ線に対して、データ電圧としてデータを出力し、キャパシタに対するデータの書き込みは、データ電圧に基づいて行われてもよい。

[0014]

第1の発明において、駆動モード選択回路は、領域あるいは複数の走査線毎に駆動モードを選択してもよいが、駆動モードを走査線単位で指定する駆動モード信号に基づいて、電気光学素子の駆動制御を行うパルス信号を走査線単位で出力してもよい。この場合、駆動モード選択回路は、第1の駆動モードの選択時には、パルス信号として、高レベルと低レベルとが交互に繰り返されるパルス形状を有する信号を出力する。また、駆動モード選択回路は、第2の駆動モードの選択時には、パルス信号として、第1の駆動モードの選択時における波形形状とは異なる波形形状を有する信号を出力する。

$[0\ 0\ 1\ 5]$

第1の発明において、駆動モード選択回路は、走査信号の変化タイミングにおいて、駆動モード信号のレベルを保持するフリップフロップと、フリップフロップに保持されたレベルに応じて、高レベルと低レベルとが交互に繰り返されるパルス形状を有する第1の駆動信号、または、第1の駆動信号とは異なる波形形状を有する第2の駆動信号のいずれかを選択して出力する選択部と、選択部より出力された信号と、走査信号と同期し、かつ、走査信号とは反対の論理レベルをとる制御信号とに基づいて、パルス信号を出力する論理回路とを有していてもよい。

[0016]

第2の発明は、上述した第1の発明に係る構成を具備した電気光学装置を実装した電子 機器を提供する。

$[0\ 0\ 1\ 7]$

第3の発明は、走査線とデータ線との交差に対応して設けられた複数の画素を有し、複数の画素のそれぞれが、データの書き込みが行われるキャパシタと、キャパシタに書き込まれたデータに応じて、駆動電流を設定する駆動トランジスタと、設定された駆動電流に応じた輝度で発光する電気光学素子とを有し、かつ、表示部を構成する画素のそれぞれの駆動モードを選択する電気光学装置の駆動方法を提供する。この駆動方法は、駆動モードとして第1の駆動モードが選択された場合、書込対象となる画素に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間よりも短い第1の発光期間で、電気光学素子を駆動させる第1のステップと、駆動モードとして第1の駆動モードとは異なる第2の駆動モードが選択された場合、書込対象となる画素に対応する走査線が選択されてから当該走査線が次に選択されるまでの期間において、第1の発光期間よりも長い第2の発光期間で、電気光学素子を駆動させる第2のステップとを有する。

$[0\ 0\ 1\ 8]$

ここで、第3の発明において、第1のステップでは、電気光学素子のインパルス駆動が 行われ、第2のステップでは、電気光学素子のホールド駆動が行われてもよい。

[0019]

また、第3の発明において、画素のそれぞれは、電気光学素子に供給される駆動電流の電流経路中に設けられた制御トランジスタをさらに有していてもよい。この場合、上記第1のステップは、書込対象となる画素に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間において、制御トランジスタによって、駆動電流の電流経路を繰り返し遮断することにより、電気光学素子をインパルス駆動させるステップであることが好ましい。また、上記第2のステップは、書込対象となる画素に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間において、制御トランジスタによって、駆動電流の電流経路を維持することにより、電気光学素子をホールド駆動させるステップであることが好ましい。

[0020]

第3の発明において、上記第1のステップは、書込対象となる画素に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間において、キャパシタに書き込まれたデータに応じて、電気光学素子に対して駆動電流を供給した後に、キャパシタに書き込まれたデータの消去を行うことにより、電気光学素子をインパルス駆動させるステップであってもよい。この場合、上記第2のステップは、書込対象となる画素に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間において、キャパシタに書き込まれたデータに応じて、電気光学素子に対して駆動電流を供給し続けることにより、電気光学素子をホールド駆動させるステップであってもよい。

[0021]

また、第3の発明は、画素のそれぞれが、プログラミングトランジスタをさらに有するとともに、画素のそれぞれに対して、データ電流としてデータが供給される電気光学装置の駆動方法であって、プログラミングトランジスタのチャネルにデータ電流が流れることにより発生するゲート電圧に基づいて、キャパシタに対するデータの書き込みを行ってもよい。

[0022]

さらに、第3の発明は、画素のそれぞれに対して、データ電圧としてデータが供給される電気光学装置の駆動方法であって、データ電圧に基づいて、キャパシタに対するデータの書き込みを行ってもよい。

[0023]

第4の発明は、複数の走査線と、複数のデータ線と、走査線とデータ線との交差に対応して設けられた複数の画素と、走査線に走査信号を出力することにより、データの書込対象となる画素に対応する走査線を選択する走査線駆動回路と、走査線駆動回路と協働し、書込対象となる画素に対応するデータ線にデータを出力するデータ線駆動回路と、複数の画素のそれぞれの駆動モードを選択する駆動モード選択回路とを有する電気光学装置を提供する。ここで、複数の画素のそれぞれは、データを保持する保持手段と、保持手段に保持されたデータに応じて、駆動電流を設定する駆動素子と、設定された駆動電流に応じた輝度で発光する電気光学素子とを有する複数の画素とを有する。駆動モード選択回路は、駆動モードとして第1の駆動モードを選択した場合、書込対象となる画素に対応する走線が選択されてからこの走査線が次に選択されるまでの期間よりも短い第1の発光期間で、電気光学素子を駆動させる。

$[0\ 0\ 2\ 4\]$

第5の発明は、走査線とデータ線との交差に対応して設けられた複数の画素を有し、複数の画素のそれぞれが、データを保持する保持手段と、保持手段に保持されたデータに応じて、駆動電流を設定する駆動素子と、設定された駆動電流に応じた輝度で発光する電気光学素子とを有し、かつ、複数の画素のそれぞれの駆動モードを選択する電気光学装置の駆動方法を提供する。この駆動方法は、駆動モードとして第1の駆動モードが選択された場合、書込対象となる画素に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間よりも短い第1の発光期間で、電気光学素子を駆動させる第1のステップと、駆動モードとして第1の駆動モードとは異なる第2の駆動モードが選択された場合、書込対象となる画素に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間において、第1の発光期間よりも長い第2の発光期間で、電気光学素子を駆動させる第2のステップとを有する。

【発明の効果】

[0025]

本発明によれば、駆動電流に応じた輝度で発光する電気光学素子を用いた電気光学装置において、表示すべき対象に応じて、異なる駆動モードを走査線単位で選択できる。これにより、それぞれの表示対象の特性に適した駆動モードを適用できるので、全体的な表示

品質の向上を図ることができる。

【発明を実施するための最良の形態】

[0026]

(第1の実施形態)

本実施形態は、電流プログラム方式を用いた電気光学装置に係り、特に、それぞれの画素がカレントミラー回路を含んでいるアクティブマトリクス型ディスプレイの表示制御に関する。ここで、「電流プログラム方式」とは、データ線に対するデータの供給を電流ベースで行う方式をいう。

[0027]

図1は、電気光学装置のブロック構成図である。表示部1には、mドット×nライン分の画素2がマトリクス状(二次元平面的)に並んでいるとともに、水平方向に延在している水平ライン群Y1~Ynと、垂直方向に延在しているデータ線群X1~Xmとが配置されている。1つの水平ラインY(YはY1~Ynの任意の1つを指す)は、1本の走査線と1本の信号線で構成されており、それぞれに対して、走査信号SEL、パルス信号PLSが出力される。それぞれの画素2は、水平ライン群Y1~Ynとデータ線群X1~Xmとの各交差に対応して配置されている。パルス信号PLSは、ある画素2が選択されてからこの画素2が次に選択されるまでの期間(本実施形態では1垂直走査期間)において、その画素2を構成する電気光学素子の駆動制御を行う信号である。なお、本実施形態では、1つの画素2を画像の最小表示単位としているが、1つの画素2を複数のサブ画素で構成してもよい。また、図1では、各画素2に所定の固定電位Vdd、Vssを供給する電源線等が省略されている。

[0028]

制御回路5は、図示しない上位装置より入力される垂直同期信号Vs、水平同期信号Hs、ドットクロック信号DCLKおよび階調データD等に基づいて、走査線駆動回路3とデータ線駆動回路4とを同期制御する。この同期制御の下、走査線駆動回路3およびデータ線駆動回路4は、互いに協働して、表示部1の表示制御を行う。

[0029]

走査線駆動回路 3 は、シフトレジスタ、出力回路等を主体に構成されており、走査線に 走査信号 S E L を出力することによって、走査線を順番に選択していく。このような線順 次走査により、1垂直走査期間において、所定の走査方向に(一般的には最上から最下に 向かって)、一水平ライン分の画素群に相当する画素行が順番に選択されている。なお、 走査線駆動回路 3 は、走査信号 S E L の他に、水平ライン毎に制御信号 L M も出力する。 制御信号 L M は、走査信号 S E L と同期した信号であり、走査信号 S E L とは制御信号 L Mとは反対の論理レベルをとる。ただし、走査信号 S E L の変化タイミングに対して、制 御信号 L M の変化タイミングを若干ずらすこともある。

[0030]

一方、データ線駆動回路4は、シフトレジスタ、ラインラッチ回路、出力回路等を主体に構成されている。本実施形態において、データ線駆動回路4は、電流プログラム方式を用いる関係上、画素2の表示階調に相当するデータ(データ電圧 V data)をデータ電流 I dataへと変換する可変電流源を含む。データ線駆動回路4は、1水平走査期間において、今回データを書き込む画素行に対するデータ電流 I dataの一斉出力と、次の水平走査期間において、今回データを書き込む画素行に対するデータの点順次的なラッチとを同時に行う。ある水平走査期間において、データ線 X の本数に相当する m 個のデータが順次ラッチされる。そして、次の水平走査期間において、ラッチされた m 個のデータは、データ電流 I dataに変換された上で、それぞれのデータ線 X1~ X m に対して一斉に出力される。なお、データ線駆動回路4 に対してフレームメモリ等(図示せず)から直接データを線順次的に入力する構成でも本発明を適用できるが、その場合においても本発明の主眼とする部分の動作は同様であるので説明を省略する。この場合、データ線駆動回路4 にシフトレジスタを含む必要がなくなる。

[0031]

また、制御回路 5 は、駆動モード選択回路 6 に対して、2 種類の駆動信号 I N P 1, I N P 2と、駆動モード信号 D R T M とを出力する。ここで、第 1 の駆動信号 I N P 1は、高レベル(以下「H レベル」という)と低レベル(以下「L レベル」という)とが交互に繰り返されるパルス状の信号である。また、第 2 の駆動信号 I N P 2は、第 1 の駆動信号 I N P 1とは波形形状が異なる信号であり、H レベルのデューティ比(単位時間に占める H レベル時間の割合)が第 1 の駆動信号 I N P 1のそれよりも大きい。本実施形態では、第 2 の駆動信号 I N P 2として、このデューティ比が100%であるホールド信号(常時 H レベルの信号)を用いている。ただし、これは一例であって、後述するようにデューティ比は必ずしも100%である必要はない。

[0032]

駆動モード選択回路6は、表示部1を構成する各画素2の駆動モードを走査線単位、換 言すれば、画素行(1水平ライン分の画素群)単位で指定する。具体的には、駆動モード 選択回路6は、駆動モードを走査線単位で指定する駆動モード信号DRTMに基づいて、 電気光学素子の駆動制御を行うパルス信号PLSを走査線単位で出力する。図2は、駆動 モード信号DRTMの説明図である。この駆動モード信号DRTMは、走査線駆動回路3 の線順次走査と同期しており、Lレベルがホールド駆動を指定し、Hレベルがインパルス 駆動を指定する。一例として、表示領域Bで動画表示を行い、その上下の表示領域A,C でテキスト表示を行うケースについて考える。表示領域Aを構成する走査線群が順次選択 される期間 t $0 \sim t$ 1 では、駆動モード信号 D R T M が L レベルである。したがって、表示領域Aでは、テキスト表示に適したホールド駆動が行われる。つぎに、表示領域Bを構成 する走査線群が順次選択される期間 t 1~ t 2では、駆動モード信号 D R T M が H レベルと なる。したがって、表示領域Bでは、動画表示に適したインパルス駆動が行われる。そし て、表示領域Cを構成する走査線群が順次選択される期間 t 2~ t 3では、駆動モード信号 DRTMが再びLレベルとなる。したがって、表示領域Cでは、テキスト表示に適したホ ールド駆動が行われる。また、別の例として、ある解像度(例えば1280×1024)を有する 表示部1に、その解像度よりも小さな解像度(例えば1024×768)の動画を等倍表示する ケースについて考える。このケースも、上述したケースと同様、表示領域Bではインパル ス駆動を行い、表示領域A,Cではホールド駆動を行うことが好ましい。したがって、駆 動モード信号DRTMは、表示領域Bを構成する走査線群が順次選択される期間 t 1~ t 2 ではHレベルになり、その他の期間 t 0~ t 1, t 2~ t 3ではLレベルとなる。

[0033]

なお、駆動モード信号DRTMは、制御回路5の上位装置からの信号に基づいて生成される。例えば、動画と静止画との区別や表示解像度の指定等については外部CPU等からの指示を受ける。制御回路5は、この指示に基づいて、駆動モード信号DRTMを生成する。

[0034]

図3は、本実施形態に係る画素2の回路図である。1つの画素2は、有機EL素子OLED、4つのトランジスタT1, T2, T4, T5、および、データを保持するキャパシタCによって構成されている。なお、本実施形態に係る画素回路では、n チャネル型のトランジスタT1, T2, T5とp チャネル型のトランジスタT4とが用いられているが、これは一例であって、本発明はこれに限定されるものではない。

[0035]

第1のスイッチングトランジスタT1のゲートは、走査信号SELが供給される走査線に接続され、そのソースは、データ電流 I dataが供給されるデータ線 X (XはX1~ Xmの任意の1本を指す)に接続されている。第1のスイッチングトランジスタT1のドレインは、第2のスイッチングトランジスタT2のソースと、駆動素子の一形態である駆動トランジスタT4のドレインと、制御素子の一形態である制御トランジスタT5のドレインとに共通接続されている。第2のスイッチングトランジスタT2のゲートは、第1のスイッチングトランジスタT1と同様に、走査信号SELが供給される走査線に接続されている。第2のスイッチングトランジスタT2のドレインは、キャパシタCの一方の電極と、駆動

トランジスタT4のゲートとに共通接続されている。キャパシタCの他方の電極と駆動トランジスタT4のソースとには、電源電位Vddが印加されている。パルス信号PLSがゲートに供給された制御トランジスタT5は、駆動トランジスタT4のドレインと有機EL素子OLEDのアノード(陽極)との間に設けられている。この有機EL素子OLEDのカソード(陰極)には、電位Vssが印加されている。

[0036]

図4は、本実施形態に係る画素2の駆動タイミングチャートである。走査線駆動回路3の線順次走査によって、ある画素2の選択が開始されるタイミングをt0とし、その画素2の選択が次に開始されるタイミングをt2とする。この1垂直走査期間t0~t2は、前半のプログラミング期間t0~t1と、後半の駆動期間t1~t2とに分けられる。

[0037]

まず、プログラミング期間 $t0\sim t$ 1では、線順次走査による画素2の選択によって、キャパシタCに対するデータの書き込みが行われる。タイミングt0において、走査信号SELがHレベルに立ち上がり、スイッチングトランジスタT1, T2が共にオンする。これにより、データ線Xと駆動トランジスタT4のドレインとが電気的に接続されるとともに、駆動トランジスタT4は、自己のゲートと自己のドレインとが電気的に接続されたダイオード接続となる。これにより、駆動トランジスタT4は、データ線Xより供給されたデータ電流 I dataを自己のチャネルに流し、このデータ電流 I dataに応じたゲート電圧Vgを自己のゲートに発生させる。駆動トランジスタT4のゲートに接続されたキャパシタCには、発生したゲート電圧Vgに応じた電荷が蓄積され、データが書き込まれる。このように、プログラミング期間t0~t1において、駆動トランジスタT4は、キャパシタCにデータを書き込むプログラミングトランジスタとして機能する。

[0038]

[0039]

[0 0 4 0]

タイミング t 1における走査信号 S E L の立ち下がりと同期して、それ以前はL レベルだったパルス信号 P L S の波形は、画素 2 の駆動モードに応じて、パルス状またはホールド状のいずれかに変化する。上述した駆動モード信号 D R T M によってインパルス駆動が指示されている場合(D R T M = H)、パルス信号 P L S は、H レベルと L レベルとが交互に繰り返されるパルス状の波形となる。このパルス波形は、画素 2 の次の選択が開始されるタイミング t 2に至るまで継続される。これにより、パルス信号 P L S によって導通制御される制御トランジスタ T 5 は、オンとオフとを交互に繰り返すことになる。制御トランジスタ T 5 がオンの場合、電源電位 V ddから電位 V ssに向かって、駆動トランジスタ T 4 と制御トランジスタ T 5 と 有機 E L 素子 0 L E D とを介した駆動電流 I o l e d の電流経路が形成される。有機 E L 素子 0 L E D を介した 収 を で発光する。一方、制御トランジスタ T 5 がオフの場合、駆動電流 I o l e d に応じた輝度で発光する。一方、制御トランジスタ T 5 がオフの場合、駆動電流 I o l e d の電流経路が制御トランジスタ

8/

T5によって強制的に遮断される。したがって、制御トランジスタT5のオフ期間では、有機EL素子OLEDの発光が一時的に停止し、黒表示となる。このように、インパルス駆動時における駆動期間 $t1\sim t2$ では、制御トランジスタT5の導通制御によって、駆動電流Ioledの電流経路が繰り返し遮断されるため、有機EL素子OLEDの発光と非発光とが繰り返される(インパルス駆動)。なお、インパルス駆動による有機EL素子OLEDの発光期間は、パルス信号PLSのデューティ比、換言すれば、第1の駆動信号INP1のデューティ比によって決定される。

[0041]

[0042]

駆動モード選択回路6は、それぞれの水平ラインに対応して(すなわち走査線単位で)設けられている。それぞれの選択回路6は、制御回路5からの信号DRTM,INP1,INP2と、走査線駆動回路3からの信号SEL,LMとに基づいて、パルス信号PLSを走査線単位で発生・出力する。図5は、駆動モード選択回路6の回路図である。駆動モード選択回路6は、Dフリップフロップ6a(D-FF)と、一対のトランスミッションゲート6b,6c、2つのインバータ6d,6eおよびNANDゲート6fで構成されている。

[0043]

Dフリップフロップ 6 aのD入力は、駆動モード信号DRTMが供給される信号線に接続されており、そのC入力は、走査信号SEL(n)が供給される走査線に接続されている。ここで、走査信号SEL(n)は、n番目の走査線に対して出力される走査信号SELである((n)の意味は後述する各信号についても同様)。Dフリップフロップ 6 a は、C入力の走査信号SEL(n)の立ち上がりタイミングにおいて、D入力の駆動モード信号DRTMのレベル状態を記憶し、記憶したレベル状態を信号DRMD(n)としてQ出力より出力する。

[0044]

また、Dフリップフロップ 6 aのQ出力(信号DRMD(n))は、一対のトランスミッションゲート 6 b, 6 cを主体に構成された選択部 6 gに出力される。具体的には、このQ出力は、トランスミッションゲート 6 bの一部を構成する n チャネル型トランジスタのゲートと、トランスミッションゲート 6 cの一部を構成する p チャネル型トランジスタのゲートとに供給される。また、Q出力は、インバータ 6 dによってレベル反転された後、トランスミッションゲート 6 bのp チャネル型トランジスタのゲートと、トランスミッションゲート 6 bのp チャネル型トランジスタのゲートと、トランスミッションゲート 6 cの入力端には、インパルス状の第 1 の駆動信号 I N P 1 が供給され、他方のトランスミッションゲート 6 cの入力端には、ホールド状の第 2 の駆動信号 I N P 2 が供給される。一対のトランスミッションゲート 6 b,6 c は、p チャネル型トランジスタにL レベルのゲート信号が与えられ、かつ、n チャネルトランジスタにH レベルのゲート信号が与えられた場合に、オン状態となる。したがって、フリップフロップ 6 a の Q 出力レベルに応じて、どちらか一方のトランスミッションゲート 6 b,6 c が択一

的にオンになり、駆動信号 INP1, INP2のいずれかがトランスミッションゲート 6 b, 6 c より出力される。

[0045]

NANDゲート 6 f は、選択部 6 g からの出力信号と、走査線駆動回路 3 からの制御信号 L M とを入力として、両者の排他的論理和を演算する。そして、その演算結果はインバータ 6 e によってレベル反転された後、パルス信号 P L S (n) として、対応する画素行に出力される。

[0046]

つぎに、図6に示すタイミングチャートを参照しながら、線順次走査による表示部1の表示制御について説明する。このタイミングチャートは、図2に示したように、表示領域A, Cでホールド駆動を行い、表示領域Bでインパルス駆動を行うケースに関するものである。走査線駆動回路3は、1垂直走査期間t0~t3において、最上の走査線から最下の走査線に向かって、走査信号SELのレベルを順番にHレベルにすることにより、走査線を1本ずつ選択していく。

[0047]

まず、ホールド駆動が行われる表示領域Aに位置的に対応する任意の走査線 a について 説明する。表示領域A内に含まれる走査線aを線順次走査する期間において、駆動モード 信号DRTMは、ホールド駆動を指示するLレベルに設定されている。走査線駆動回路3 は、走査線aの選択開始タイミングにおいて、この走査線aに供給する走査信号SEL(a)をLレベルからHレベルに立ち上げ、このHレベルを1水平走査期間分だけ維持する。 それとともに、走査線駆動回路3は、走査信号SEL(a)の立ち上がりタイミングと同期 して、制御信号LM(a)をHレベルからLレベルに立ち下げ、このLレベルを1水平走査 期間分だけ維持する。図5に示したDフリップフロップ6 a は、走査信号SEL(a)の変 化タイミング(本実施形態では、立ち上がりタイミング)において、駆動モード信号DR TMのレベル、すなわち、Lレベルを保持する。これにより、Dフリップフロップ6aは 、出力信号DRMD(a)としてLレベルを出力する。この出力信号DRMD(a)がLレベル の場合、後段の選択部6gは、ホールド状の第2の駆動信号INP2を選択し、第2の駆 動信号INP2を後段のNANDゲート6fに出力する。NANDゲート6fは、走査信 号SEL(a)と反対の論理レベルを取る制御信号LM(a)がLレベルの間、選択部6gから の出力に依存することなく、Hレベルを出力する。したがって、この期間において、イン バータ6eからの出力であるパルス信号PLS(a)はLレベルとなる。パルス信号PLS がLレベルになる期間は、上述したプログラミング期間 t0~ t1に相当する (図4参照) 。その後、制御信号しM(a)がHレベルになると、NANDゲート6fは、選択部6gか ら出力された第2の駆動信号INP2とは反対の論理レベル(Lレベル)を出力する。し たがって、制御信号LM(a)がHレベルの期間において、パルス信号PLS(a)として、第 2の駆動信号 IN P2と同様の波形、すなわち、常時 Hレベルのホールド信号が出力され る。パルス信号PLS(a)がHレベルになる期間は、上述した駆動期間 t 1~ t 2に相当す る(図4参照)。この駆動期間 t1~ t2では、制御トランジスタ T5が常時オンするため 、有機EL素子OLEDのホールド駆動が行われる。

$[0\ 0\ 4\ 8]$

つぎに、インパルス駆動が行われる表示領域Bに位置的に対応する任意の走査線bについて説明する。表示領域B内に含まれる走査線bを線順次走査する期間において、駆動モード信号DRTMは、インパルス駆動を指示するHレベルに設定されている。走査線駆動回路3は、走査線bの選択開始タイミングにおいて、この走査線bに供給する走査信号SEL(b)をLレベルからHレベルに立ち上げるとともに、これと同期して、制御信号LM(b)をHレベルからLレベルに立ち下げる。走査線bに対応する駆動モード選択回路6において、Dフリップフロップ6aは、走査信号SEL(b)の立ち上がり時における駆動モード信号DRTMのレベル、すなわち、Hレベルを保持する。これにより、Dフリップフロップ6aは、出力信号DRMD(b)としてHレベルを出力する。この出力信号DRMD(a)がHレベルの場合、後段の選択部6gは、インパルス状の第1の駆動信号INP1を選択

し、第1の駆動信号 I N P1を後段の N A N D ゲート 6 f に出力する。 N A N D ゲート 6 f は、制御信号 L M (b) が L レベルの間、選択部 6 g からの出力に依存することなく、 H レベルを出力する。したがって、プログラミング期間 t $0 \sim t$ 1において、インバータ 6 e からの出力であるパルス信号 P L S (b) は L レベルとなる。その後、制御信号 L M (b) が H レベルになると、 N A N D ゲート 6 f は、選択部 6 g から出力された第 1 の駆動信号 I N P 1 とは反対の論理レベルのパルス状の信号を出力する。したがって、制御信号 L M (b) が H レベルの期間において、パルス信号 P L S (a) として、第 1 の駆動信号 I N P 1 と同様の 波形、すなわち、パルス状のインパルス信号が出力される。パルス信号 P L S (b) がパルス状になる期間 t $1 \sim t$ 2では、制御トランジスタ T 5 のオンとオフとが繰り返されるため、有機 E L 素子 OLED のインパルス駆動が行われる。

[0049]

そして、ホールド駆動が行われる表示領域Cに位置的に対応する任意の走査線cの動作は、上述した表示領域Aと同様であり、結果的に、有機E L 素子OLEDのホールド駆動が行われる。

[0050]

このように、本実施形態によれば、表示部1に表示すべき対象に応じた駆動モードを、 走査線単位で選択できるため、表示部1の全体的な表示品質の一層の向上を図ることがで きる。すなわち、インパルス駆動すべき画素2に関しては、書込対象となる画素2に対応 する走査線が選択されてからこの走査線が次に選択されるまでの期間よりも短い第1の発 光期間で、有機EL素子OLEDを駆動させる。また、ホールド駆動すべき画素2に関しては 、書込対象となる画素2に対応する走査線が選択されてからこの走査線が次に選択される までの期間において、第1の発光期間よりも長い第2の発光期間で、有機EL素子OLEDを 駆動させる。これにより、例えば、ある表示領域A、Cにホールド駆動に適した表示対象 を表示させる場合、その表示領域A.Cに含まれる水平ライン群に関しては、有機EL素 子OLEDの発光が継続される。これは、駆動電流 I oledの電流経路中に設けられた制御トラ ンジスタT5を、画素2が選択されてから次に選択されるまでの期間(本実施形態では、 その内の駆動期間 t 1~ t 2) 、常時オンさせておくことにより達成される。また、別の表 示領域Bにインパルス駆動に適した表示対象を表示させる場合、その表示領域Bに含まれ る水平ライン群に関しては、有機EL素子OLEDの発光が断続的に繰り返される。これは、 駆動電流 I oledの電流経路中に設けられた制御トランジスタT5を、駆動期間 t 1~ t 2に おいて、オンとオフとを交互に繰り返すことにより達成される。したがって、表示領域B では、画素2の光学応答をインパルス型に近づけることができ、かつ、有機EL素子OLED が非発光となる期間(黒表示の期間)が分散されるため、表示画像のちらつきの低減を図 ることができる。それとともに、画素2の光学応答を改善することにより、動画表示等に おける疑似輪郭の発生も有効に抑制可能となる。

[0051]

また、本実施形態によれば、走査線駆動回路3および駆動モード選択回路6の双方を含む走査線駆動系のみで、上述した駆動モードの選択を実現できる。したがって、この選択機能の付加に伴う回路規模の増大を抑制することができる。

$[0\ 0\ 5\ 2]$

なお、上述した実施形態では、第1の駆動信号INP1をインパルス信号とし、第2の駆動信号INP2をホールド信号とする例について説明した。しかしながら、後述する各実施形態も含めて、第2の駆動信号INP2は、ホールド信号である必要性は必ずしもなく、例えば、図7に示すように、第1の駆動信号INP1とは波形形状(デューティ比)が異なるパルス信号であってもよい。これにより、有機EL素子OLEDの駆動制御を行うパルス信号PLSの波形を変えられる。その結果、制御トランジスタT5の導通制御によって、時間平均の表示輝度を可変に設定できるため、表示部1の全体的な表示品質の改善を図ることが可能となる。なお、インパルス駆動を示すINP1の波形形状について、1フレーム中にH,Lの切り換わりが複数回繰り返される波形の例を示したが、後述する各実施形態を含め、1フレーム内のH,Lの切り換わりが1回だけの波形であってもよい。そ

の場合、信号駆動に伴う電気的ノイズを低減できるので、回路の信頼性向上という効果が 得られる。

[0053]

また、上述した実施形態では、表示部1に3つの表示領域A~Cを設定する例について説明した。しかしながら、本発明は、これに限定されるものではなく、駆動モード信号DRTMによって、表示領域の分割数、分割位置、または駆動モードの指定を任意に設定することが可能である。

[0054]

(第2の実施形態)

本実施形態は、電流プログラム方式を用いた電気光学装置に係り、特に、カレントミラー回路を用いた画素回路に関する。なお、後述する各実施形態を含めて、電気光学装置の全体構成は、基本的には、1つの水平ラインYの構成を除いて、図1と同様である。本実施形態において、1つの水平ラインYは、走査信号SEL1, SEL2がそれぞれ供給される2本の走査線と、パルス信号PLSが供給される1本の信号線とによって構成されている。なお、走査信号SEL1, SEL2は、基本的に、互いに反対の論理レベルをとるが、一方の変化タイミングを若干ずらすこともある。

[0055]

図8は、本実施形態に係る画素 2の回路図である。1つの画素 2は、有機 E L 素子OLED 、能動素子である5つのトランジスタ $T1\sim T5$ およびキャパシタCによって構成されている。ダイオードとして表記された有機 E L 素子OLEDは、自己に供給された駆動電流 I oled によって発光輝度が制御される電流駆動型の素子である。なお、この画素回路では、n チャネル型のトランジスタ $T2\sim T4$ とが用いられているが、これは一例であって、本発明はこれに限定されるものではない。

[0056]

第1のスイッチングトランジスタT1のゲートは、第1の走査信号 S E L 1が供給される 走査線に接続され、そのソースは、データ電流Idataが供給されるデータ線Xに接続され ている。また、第1のスイッチングトランジスタT1のドレインは、第2のスイッチング トランジスタT2のドレインと、プログラミングトランジスタT3のドレインとに共通接続 されている。第2の走査信号SEL2がゲートに供給された第2のスイッチングトランジ スタT2のソースは、カレントミラー回路を構成する一対のトランジスタT3.T4のゲー トと、キャパシタCの一方の電極とに共通接続されている。プログラミングトランジスタ T3のソース、駆動トランジスタT4のソースおよびキャパシタCの他方の電極には、電源 電位Vddが印加されている。パルス信号PLSがゲートに供給された制御トランジスタT 5は、駆動電流 I oledの電流経路中、具体的には、駆動トランジスタT4のドレインと有機 E L 素子OLEDのアノードとの間に設けられている。この有機 E L 素子OLEDのカソードには 、電源電位Vddより低い電位Vssが印加されている。プログラミングトランジスタT3お よび駆動トランジスタT4は、両者のゲートが互いに接続されたカレントミラー回路を構 成している。したがって、プログラミングトランジスタT3のチャネルを流れるデータ電 流 I dataの電流レベルと、駆動トランジスタT4のチャネルを流れる駆動電流 I oledの電 流レベルとは、比例関係になる。

[0057]

図 9 は、本実施形態に係る画素 2 の駆動タイミングチャートである。上述した実施形態 と同様、1 垂直走査期間 t 0~ t 2は、プログラミング期間 t 0~ t 1と駆動期間 t 1~ t 2と に分けられる。

[0058]

まず、プログラミング期間t0~t1では、画素2の選択によって、キャパシタCに対するデータの書き込みが行われる。タイミングt0において、第1の走査信号SEL1がHレベルに立ち上がり、第1のスイッチングトランジスタT1がオンする。これにより、データ線XとプログラミングトランジスタT3のドレインとが電気的に接続される。この第1の走査信号SEL1の立ち上がりと同期して、第2の走査信号SEL2が低レベルに立ち下

がって、第2のスイッチングトランジスタT2もオンする。これにより、プログラミングトランジスタT3は、自己のゲートが自己のドレインに接続されたダイオード接続となり、非線形な抵抗素子として機能する。したがって、プログラミングトランジスタT3は、データ線Xより供給されたデータ電流 I dataを自己のチャネルに流し、データ電流 I data に応じたゲート電圧Vgを自己のゲートに発生させる。プログラミングトランジスタT3のゲートに接続されたキャパシタCには、発生したゲート電圧Vgに応じた電荷が蓄積され、データが書き込まれる。

[0059]

プログラミング期間 t $0 \sim t$ 1 では、パルス信号 PLS がLレベルに維持されているため、制御トランジスタ T5 はオフのままである。したがって、カレントミラー回路を構成する一対のトランジスタ T3, T4の閾値の関係に拘わらず、有機 EL素子OLED に対する電流経路が遮断され続ける。そのため、この期間 t $0 \sim t$ 1 において、有機 EL素子OLED は発光しない。

[0060]

$[0\ 0\ 6\ 1]$

タイミング t 1における第 1 の走査信号 S E L 1の立ち下がりと同期して、それ以前は L レベルだったパルス信号 P L S の波形は、画素 2 の駆動モードに応じて、パルス状またはホールド状のいずれかに変化する。上述した駆動モード信号 D R T Mによってインパルス駆動が指示されている場合(D R T M = H)、パルス信号 P L S はパルス波形となる。これにより、インパルス駆動時における駆動期間 t $1 \sim t$ 2では、駆動電流 I oledの電流経路中に設けられた制御トランジスタ T 5のオンとオフとが繰り返されるため、駆動電流 I oledの電流経路が繰り返し遮断される。その結果、有機 E L 素子OLEDのインパルス駆動が行われる。一方、駆動モード信号 D R T M によってホールド駆動が指示されている場合(D R T M = L)、パルス信号 P L S は、常時 H レベルのホールド状となる。これにより、ホールド駆動時における駆動期間 t $1 \sim t$ 2では、制御トランジスタ T 5が常時オンするため、駆動電流 I oledの電流経路が維持される。その結果、有機 E L 素子OLEDのホールド駆動が行われる。

$[0\ 0\ 6\ 2]$

このように、本実施形態によれば、表示部1に表示すべき対象に応じた駆動モードを走査線単位で選択できる。したがって、第1の実施形態と同様に、表示部1の全体的な表示品質の一層の向上を図ることができるとともに、この選択機能の付加に伴う回路規模の増大を抑制することができる。

[0063]

また、本実施形態によれば、駆動電流 I oledの電流経路中に制御トランジスタT5を設けることにより、カレントミラー回路を構成する一対のトランジスタT3, T4の閾値の制約を解消できる。上述した特許文献 1 に開示されたカレントミラー回路を有する画素回路では、駆動電流 I oledの電流経路中に、制御トランジスタT5が設けられていない。そのため、駆動トランジスタT4の閾値は、プログラミングトランジスタT3の閾値よりも低くならないように設定する必要がある。なぜなら、この関係を具備しない場合、キャパシタCに対するデータの書き込みが十分に完了しないうちに、駆動トランジスタT4がオンしてしまい、これに起因したリーク電流によって、有機EL素子OLEDが発光してしまうからである。さらに、駆動トランジスタT4を完全にオフすることができずに有機EL素子OLED

[0064]

(第3の実施形態)

本実施形態は、駆動トランジスタがプログラミングトランジスタとしての機能も担う、電流プログラム方式における画素回路の構成に関する。本実施形態において、1つの水平ラインYは、走査信号SELが供給される1本の走査線と、パルス信号PLSが供給される1本の信号線とによって構成されている。

[0065]

図10は、本実施形態に係る画素2の回路図である。1つの画素2は、有機EL素子OLED、4つのトランジスタT1, T2, T4, T5およびキャパシタCによって構成されている。なお、本実施形態に係る画素回路において、トランジスタT1, T2, T4, T5のタイプはすべてpチャネル型であるが、これは一例であって、本発明はこれに限定されるものではない。

[0066]

第1のスイッチングトランジスタT1のゲートは、走査信号SELが供給される走査線に接続され、そのソースは、データ電流Idataが供給されるデータ線Xに接続されている。第1のスイッチングトランジスタT1のドレインは、制御トランジスタT5のドレインと、駆動トランジスタT4のソースと、キャパシタCの一方の電極とに共通接続されている。キャパシタCの他方の電極は、駆動トランジスタT4のゲートと、第2のスイッチングトランジスタT2のソースとに共通接続されている。第2のスイッチングトランジスタT2のゲートは、第1のスイッチングトランジスタT1と同様に、走査信号SELが供給される走査線に接続されている。第2のスイッチングトランジスタT2のドレインは、駆動トランジスタT4のドレインと、有機EL素子OLEDのアノードとに共通接続されている。この有機EL素子OLEDのカソードには、電位Vssが印加されている。制御トランジスタT5のゲートは、パルス信号PLSが供給される信号線に接続され、そのソースには、電源電位Vddが印加されている。

$[0\ 0\ 6\ 7]$

図11は、本実施形態に係る画素2の駆動タイミングチャートである。図10の画素回路では、1垂直走査期間 t0~ t2のほぼ全体に亘って、有機EL素子OLEDに電流が流れるため、有機EL素子OLEDが発光する。上述した実施形態と同様に、1垂直走査期間 t0~ t2は、プログラミング期間 t0~ t1と駆動期間 t1~ t2とに分けられる。

[0068]

まず、プログラミング期間 $t0\sim t$ 1では、画素2の選択によって、キャパシタCに対するデータの書き込みが行われる。タイミングt0において、走査信号SELがLレベルに立ち下がり、スイッチングトランジスタT1, T2が共にオンする。これにより、データ線Xと駆動トランジスタT4のソースとが電気的に接続されるとともに、駆動トランジスタT4は、自己のゲートと自己のドレインとが電気的に接続されたダイオード接続となる。これにより、駆動トランジスタT4は、データ線Xより供給されたデータ電流 I dataを自己のチャネルに流し、このデータ電流 I dataに応じたゲート電圧Vgを自己のゲートに発生させる。駆動トランジスタT4のゲートとソースとの間に接続されたキャパシタCには、発生したゲート電圧Vgに応じた電荷が蓄積され、データが書き込まれる。このように

、プログラミング期間 t0~ t1において、駆動トランジスタT4は、キャパシタCにデータを書き込むプログラミングトランジスタとして機能する。

[0069]

プログラミング期間 t 0~ t 1では、パルス信号 P L S が H レベルに維持されているため、制御トランジスタ T 5 はオフのままである。したがって、電源電位 V ddから電位 V ss に向かう駆動電流 I oledの電流経路自体は遮断され続ける。しかしながら、データ線 X と電位 V ss との間に、第1のスイッチングトランジスタ T 1 と駆動トランジスタ T 4 と 有機 E L 素子OLEDとを介した、データ電流 I dataの電流経路が形成される。したがって、プログラミング期間 t 0~ t 1 においても、データ電流 I dataに応じた輝度で有機 E L 素子OLEDが発光する。

[0070]

[0071]

タイミング t 1における走査信号 S E L O 立 t D

$[0\ 0\ 7\ 2]$

このように、本実施形態によれば、表示部1に表示すべき対象に応じた駆動モードを走 査線単位で選択できる。したがって、上述した各実施形態と同様に、表示部1の全体的な 表示品質の一層の向上を図ることができるとともに、この選択機能の付加に伴う回路規模 の増大を抑制することができる。

[0073]

なお、本実施形態では、有機EL素子OLEDの断続的な発光を、駆動電流Ioledの電流経路中に存在する制御トランジスタT5の導通制御により行っている。しかしながら、例えば、図12または図13に示すように、駆動電流Ioledの電流経路中に、制御トランジスタT5とは別に第2の制御トランジスタT6を追加した場合でも、同様のことを実現できる。図12の画素回路では、第2の制御トランジスタT6を、第1の制御トランジスタT5のドレインと駆動トランジスタT4のソースとの間に設けている。また、図13の画素回路では、第2の制御トランジスタT6を、駆動トランジスタT4のドレインと有機EL素子OLEDのアノードとの間に設けている。第2の制御トランジスタT6は、一例として、nチャネル型のトランジスタであり、そのゲートには、パルス信号PLSが供給される。一方、第1の制御トランジスタT5のゲートには、制御信号GPが供給される。

[0074]

図14は、図12または図13の画素2の駆動のタイミングチャートである。制御信号 GPは、プログラミング期間 t $0\sim$ t1において、Hレベルに維持される。したがって、駆動電流 Ioledの電流経路は、制御信号 GPで導通制御される制御トランジスタT5によって遮断される。また、このプログラミング期間 t $0\sim$ t1では、パルス信号 PLSがHレベ

ルになるため、第2の制御トランジスタT6がオンする。したがって、データ電流 I data の電流経路が形成されて、キャパシタCにデータが書き込まれるとともに、有機EL素子OLEDが発光する。続く駆動期間 t $1 \sim t$ 2 では、インパルス駆動が指示されている場合(DRTM=H)、パルス信号PLSはパルス波形となる。これにより、インパルス駆動時における駆動期間 t $1 \sim t$ 2 では、駆動電流 I oledの電流経路中に設けられた制御トランジスタT5のオンとオフとが繰り返されるため、有機EL素子OLEDのインパルス駆動が行われる。一方、駆動モード信号DRTMによってホールド駆動が指示されている場合(DRTM=L)、パルス信号PLSは、常時Hレベルのホールド状となる。これにより、ホールド駆動時における駆動期間 t $1 \sim t$ 2 では、制御トランジスタT5が常時オンするため、有機EL素子OLEDのホールド駆動が行われる。

[0075]

(第4の実施形態)

本実施形態は、電圧プログラム方式における画素回路の構成に係り、特に、CC(Cond uctance Control)法と呼ばれるものに関する。ここで、「電圧プログラム方式」とは、データ線Xに対するデータの供給を電圧ベースで行う方式をいう。本実施形態において、1つの水平ラインYは、走査信号SELが供給される1本の走査線と、パルス信号PLSが供給される1本の信号線とによって構成されている。電圧プログラム方式では、データ電圧Vdataをデータ線Xにそのまま出力する関係上、データ線駆動回路4に可変電流源を設ける必要はない。

[0076]

図15は、本実施形態に係る画素2の回路図である。1つの画素2は、有機EL素子0LED、3つのトランジスタT1、T4、T5およびキャパシタCによって構成されている。なお、本実施形態に係る画素回路では、トランジスタT1、T4、T5のタイプはすべてnチャネル型であるが、これは一例であって、本発明はこれに限定されるものではない。

[0077]

スイッチングトランジスタT1のゲートは、走査信号SELが供給される走査線に接続され、そのドレインは、データ電圧Vdataが供給されるデータ線Xに接続されている。スイッチングトランジスタT1のソースは、キャパシタCの一方の電極と、駆動トランジスタT4のゲートとに共通接続されている。キャパシタCの他方の電極には電位Vssが印加されており、駆動トランジスタT4のドレインには電源電位Vddが印加されている。制御トランジスタT5は、パルス信号PLSによって導通制御され、そのソースは、有機EL素子OLEDのアノードに接続されている。この有機EL素子OLEDのカソードには、電位Vssが印加されている。

[0078]

[0079]

タイミング t 1からタイミング t 2までの間は、キャパシタ C に蓄積された電荷に応じた駆動電流 I oledが有機 E L 素子OLEDを流れ、有機 E L 素子OLEDが発光する。タイミング t 1では、走査信号 S E L が L レベルに立ち下がり、スイッチングトランジスタ T 1がオフする。これにより、キャパシタ C の一方の電極に対するデータ電圧 V dataの印加が停止するが、キャパシタ C の蓄積電荷によって、駆動トランジスタ T 4のゲートにはゲート電圧 V g 相当が印加される。

[0080]

タイミング t 1における走査信号 S E L の立ち下がりと同期して、それ以前は L レベルだったパルス信号 P L S は、画素 2 の駆動モードに応じて、パルス状またはホールド状(Hレベル)のいずれかに変化する。駆動モード信号 D R T M によってインパルス駆動が指示されている場合(D R T M = H)、パルス信号 P L S はパルス波形となる。これにより、インパルス駆動時における駆動期間 t $1 \sim t$ 2では、駆動電流 I oledの電流経路中に設けられた制御トランジスタ T 5のオンとオフとが繰り返されるため、駆動電流 I oledの電流経路が繰り返し遮断される。その結果、有機 E L 素子 OLED のインパルス駆動が行われる。一方、駆動モード信号 D R T M によってホールド駆動が指示されている場合(D R T M = L)、パルス信号 P L S は、常時 H レベルのホールド状となる。これにより、ホールド駆動時における駆動期間 t $1 \sim t$ 2では、制御トランジスタ T 5が常時オンするため、駆動電流 I oledの電流経路が維持される。その結果、有機 E L 素子 OLED のホールド駆動が行われる。

[0081]

このように、本実施形態によれば、上述した実施形態と同様に、表示部1に表示すべき対象に応じた駆動モードを走査線単位で選択できる。したがって、上述した各実施形態と同様に、表示部1の全体的な表示品質の一層の向上を図ることができるとともに、この選択機能の付加に伴う回路規模の増大を抑制することができる。なお、本実施形態において、パルス信号PLSの波形をパルス状にする開始タイミングは、走査信号SELの立ち下がりタイミング t1と同じでもよいが、特に低階調データの書き込みの安定性を考慮するならば、これよりも所定の時間だけ早く設定してもよい。

[0082]

(第5の実施形態)

本実施形態は、電圧プログラム方式の画素回路を駆動する画素回路の構成に関する。本 実施形態において、1つの水平ラインYは、第1の走査信号および第2の走査信号がそれ ぞれ供給される2本の走査線と、パルス信号PLSが供給される1本の信号線とによって 構成されている。

[0083]

図17は、本実施形態に係る画素 2の回路図である。1つの画素 2 は、有機 E L 素子0L ED、4つのトランジスタT1, T2, T4, T5および 2つのキャパシタC1, C2によって構成されている。なお、本実施形態に係る画素回路では、トランジスタT1, T2, T4, T5 のタイプがすべてD7 チャネル型であるが、これは一例であって、本発明はこれに限定されるものではない。

[0084]

第1のスイッチングトランジスタT1のゲートは、走査信号SELが供給される走査線が接続され、そのソースは、データ電圧Vdataが供給されるデータ線Xに接続されている。第1のスイッチングトランジスタT1のドレインは、第1のキャパシタC1の一方の電極に接続されている。また、第1のキャパシタC1の他方の電極は、第2のキャパシタC2の一方の電極と、第2のスイッチングトランジスタT2のソースと、駆動トランジスタT4のゲートとに共通接続されている。第2のキャパシタC2の他方の電極と駆動トランジスタT4のソースとには、電源電位Vddが印加されている。第2のスイッチングトランジスタT2のゲートには第2の走査信号SEL2が供給され、そのドレインは、駆動トランジスタT4のドレインと制御トランジスタT5のソースとに共通接続されている。パルス信号PLSがゲートに供給された制御トランジスタT5は、駆動トランジスタT4のドレインと有機EL素子OLEDのアノードとの間に設けられている。この有機EL素子OLEDのカソードには、電位Vssが印加されている。

[0085]

図 18 は、本実施形態に係る画素 2 の駆動タイミングチャートである。 1 垂直走査期間 t 0 \sim t 4 は、期間 t 0 \sim t 1 と、オートゼロ期間 t 1 \sim t 2 と、ロードデータ期間 t 2 \sim t 3 と、駆動期間 t 3 \sim t 4 とに分けられる。

[0086]

まず、期間 $t0 \sim t1$ において、駆動トランジスタT4のドレインの電位が電位Vssに設定される。具体的には、タイミングt0において、第1および第2の走査信号SEL1, SEL2が共にレベルに立ち下がって、第1および第2のスイッチングトランジスタT1, T2が共にオンする。この期間 t0 $\sim t$ 1では、データ線Xに対して電源電位Vddが固定的に印加されているため、第1のキャパシタC1の一方の電極には電源電位Vddが印加される。また、この期間 t0 $\sim t$ 1では、パルス信号PLSがLVベルに維持されているため、制御トランジスタT5がオンする。これにより、制御トランジスタT5と有機EL素70LEDとを介した電流経路が形成され、駆動トランジスタT4のドレイン電位が電位Vssとなる。したがって、駆動トランジスタT4のソースを基準としたゲート電圧Vgsがマイナスになって、駆動トランジスタT4がオンする。

[0087]

つぎに、オートゼロ期間 $t1\sim t2$ において、駆動トランジスタT4のゲート電圧Vgsが閾値電圧Vthになる。この期間 $t1\sim t2$ では、走査信号SEL1, SEL2は共にLレベルなので、スイッチングトランジスタT1, T2のオン状態が維持される。タイミング t1において、パルス信号PLSがHレベルに立ち上がり、制御トランジスタT5がオフになるが、第1のキャパシタC1の一方の電極には、データ線からの電源電位Vddの印加が継続される。駆動トランジスタT4のゲートには、自己のチャネルと第2のスイッチングトランジスタT2とを介して、自己のソースに印加された電源電位Vddが印加される。これにより、駆動トランジスタT4のゲート間電圧Vgsは、自己の閾値電圧Vthまで押し上げられ、ゲート電圧Vgsが閾値電圧Vthになった時点で、駆動トランジスタT4がオフになる。その結果、駆動トランジスタT4のゲートに接続された2つのキャパシタC1, C2の電極には、それぞれ閾値電圧Vthが印加されることになる。一方、キャパシタC1, C2の電極には、データ線Xからの電源電位Vddが印加されているので、それぞれのキャパシタC1, C2の電位差は、電源電位Vddと閾値電圧Vthとの差(Vdd-Vth)に設定される(オートゼロ)。

[0088]

続くロードデータ期間t2~t3において、オートゼロに設定されたキャパシタC1, C2に対するデータの書き込みが行われる。この期間 t 2~ t 3において、第1の走査信号SEL1は、それ以前と同様にLレベルに維持され、パルス信号PLSも、それ以前と同様にHレベルに維持されている。したがって、第1のスイッチングトランジスタT1はオンしたままであり、制御トランジスタT5はオフしたままである。しかしながら、タイミング t 2において、第2の走査信号SEL2がHレベルに立ち上がるため、第2のスイッチングトランジスタT2がオンからオフに変化する。また、データ電圧 V dataとして、従前の電源電位 V ddから Δ V dataだけ低下させた電圧レベルがデータ線 X に印加される。変化量 Δ V dataは、画素 2 に書き込むデータに応じた可変値であり、これにより、第1のキャパシタC1の電位差が低下する。このように第1のキャパシタC1の電位差を変化させると、キャパシタC1、C2の容量分割の関係に従い、第2のキャパシタC2の電位差も変化する。変化後の各キャパシタC1、C2の電位差は、オートゼロ期間 t 1~ t 2での電位差(V dd Δ V th)から変化量 Δ V data相当を差し引いた値によって決まる。変化量 Δ V dataに起因したキャパシタC1、C2の電位差の変化によって、それぞれのキャパシタC1、C2に対してデータが書き込まれる。

[0089]

、駆動トランジスタT4のゲートには、第2のキャパシタC2の蓄積電荷に応じた電圧(ソースを基準としたゲート電圧Vgs)が印加される。なお、駆動トランジスタT4を流れる電流 I ds(駆動電流 I oledに相当)の算出式には、駆動トランジスタT4の閾値電圧V th とゲート電圧Vgsとが変数として含まれる。しかしながら、ゲート電圧Vgsとして、第2のキャパシタC2の電位差(Vgsに相当)を代入した場合、駆動電流 I oledの算出式において、閾値電圧V thが相殺される。その結果、駆動電流 I oledは、駆動トランジスタT4の閾値電圧V thの影響を受けることなく、データ電圧の変化量 ΔV dataのみに依存することになる。

[0090]

[0091]

このように、本実施形態によれば、上述した実施形態と同様に、表示部 1 に表示すべき対象に応じた駆動モードを走査線単位で選択できる。したがって、上述した各実施形態と同様に、表示部 1 の全体的な表示品質の一層の向上を図ることができるとともに、この選択機能の付加に伴う回路規模の増大を抑制することができる。なお、本実施形態では、タイミング t 4において、パルス信号 P L S のパルス波形を終了しているが、特に低階調データの書き込みの安定性を考慮するならば、タイミング t 4よりも所定の時間だけ早く終了させてもよい。

[0092]

(第6の実施形態)

本実施形態は、電流プログラム方式の画素回路を駆動する画素回路の構成に係り、上述した図8の画素回路の変形例である。本実施形態において、1つの水平ラインYは、第1の走査信号SEL1および第2の走査信号SEL2がそれぞれ供給される2本の走査線で構成されている。また、第1の駆動信号 I NP1の周期は、上述した各実施形態における第1の駆動信号 I NP1のそれよりも長く、実際には、図2 0 に示す期間 t 1~ t 2 v 1 周期相当に設定されている。

[0093]

図19は、本実施形態に係る画素2の回路図である。1つの画素2は、有機EL素子0LED、4つのトランジスタT1~T4およびキャパシタCによって構成されている。この画素回路では、n チャネル型のトランジスタT1,T2と、p チャネル型のトランジスタT3,T4とが用いられているが、これは一例であって、本発明はこれに限定されるものではない。図19に示した画素回路が図8のそれと異なるのは、第2のスイッチングトランジスタT2をn チャネル型とした点と、駆動電流 I oledの電流経路中の制御トランジスタT5をなくした点である。第2のスイッチングトランジスタT2は、第2の走査信号SEL2による画素2の選択機能の他に、制御トランジスタT5としての機能をも有している。それとともに、第2の走査信号SEL2は、走査信号しての機能の他に、上述した制御信号PLSとしての機能をも有している。

[0094]

図20は、本実施形態に係る画素2の駆動タイミングチャートである。まず、プログラ

ミング期間 $t0\sim t1$ では、第2の実施形態と同様の動作により、キャパシタCに対するデータの書き込みが行われる。続く駆動期間 $t1\sim t2$ では、キャパシタCに蓄積された電荷に応じた駆動電流 I oledが有機 E L 素子OLEDを流れ、駆動モードに応じて、有機 E L 素子OLEDが発光する。まず、駆動開始タイミング t1において、走査信号 S E L 1,S E L 2が共にL レベルに立ち下がることにより、スイッチングトランジスタ T 1,T 2が共にオフする。これにより、データ電流 I dataが供給されたデータ線 X と駆動トランジスタ T 4のドレインとが電気的に分離され、駆動トランジスタ T 4のゲートとドレインとの間も電気的に分離される。駆動トランジスタ T 4のゲートには、キャパシタ C の蓄積電荷に応じて、ゲート電圧 V g 相当が印加される。

[0095]

タイミングt1における第1の走査信号SEL1の立ち下がりと同期して、第2の走査信 号SEL2の波形は、画素2の駆動モードに応じて、期間t1~t2を1周期相当とするパ ルス状またはホールド状(Lレベル)のいずれかに変化する。駆動モード信号DRTMに よってホールド駆動が指示されている場合(DRTM=L)、第2の走査信号SEL2は 駆動期間t1~t2の全域に亘ってLレベルに維持される。これにより、ホールド駆動時に おける駆動期間 t 1~ t 2では、キャパシタ C の蓄積電荷に応じて駆動トランジスタ T 4が 駆動して、駆動電流 I oledが有機EL素子OLEDに供給され続けるため、有機EL素子OLED のホールド駆動が行われる。一方、駆動モード信号DRTMによってインパルス駆動が指 示されている場合(DRTM=H)、第2の走査信号SEL2は、駆動期間t1~t2の前 半においてLレベルに維持され、その後半においてHレベルに立ち上がる。したがって、 第2の走査信号SEL2が立ち上がるまでの前半期間では、キャパシタCの蓄積電荷に応 じて駆動トランジスタT4が駆動して、駆動電流Ioledが有機EL素子OLEDに供給される ため、有機EL素子OLEDが発光する。そして、第2の走査信号SEL2の立ち上がり以降 の後半期間では、第2のスイッチングトランジスタT2がオンすることにより、キャパシ タCの一方の電極と電源電位 V ddとの間に、トランジスタ T 2, T 3を介した電流経路が形 成される。これにより、キャパシタCの蓄積電荷が強制的に消去されて(換言すれば、書 き込まれたデータが消去されて)、駆動トランジスタT4がオフするので、有機EL素子0 LEDの発光が停止する。つまり、駆動期間 t 1~ t 2において、有機 E L 素子OLEDは、駆動 電流Ioledによって発光した後、キャパシタCの蓄積電荷の消去に起因して非発光となる 。その結果、有機EL素子OLEDは、1回の発光と、それに続く1回の非発光とが行われる ことになる(インパルス駆動)。

[0096]

このように、本実施形態によれば、表示部1に表示すべき対象に応じた駆動モードを走査線単位で選択できる。これにより、上述した各実施形態と同様に、表示部1の全体的な表示品質の一層の向上を図ることができるとともに、この選択機能の付加に伴う回路規模の増大を抑制することができる。なお、上述した各実施形態では、駆動電流 I oledの電流経路の遮断によってインパルス駆動を実現していたのに対して、本実施形態では、キャパシタの蓄積電荷を消去することによってそれを実現している点に留意されたい。したがって、本実施形態では、1垂直走査期間において、有機EL素子OLEDの発光と非発光とを繰り返すことはできず、発光後は非発光の状態が継続されることになる。

[0097]

なお、上述した各実施形態では、電気光学素子として有機EL素子OLEDを用いた例について説明した。しかしながら、本発明はこれに限定されるものではなく、それ以外の、駆動電流に応じた輝度で発光する電気光学素子に対して適用可能である。

[0098]

また、上述した各実施形態に係る電気光学装置は、例えば、プロジェクタ、携帯電話機、携帯端末、モバイル型コンピュータ、パーソナルコンピュータ等を含む様々な電子機器に実装可能である。図21は、一例として、上述した実施形態に係る電気光学装置を実装した携帯電話10の斜視図である。この携帯電話10は、複数の操作ボタン11のほか、受話口12、送話口13とともに、上述した表示部1を備えている。これらの電子機器に

上述した電気光学装置を実装すれば、電子機器の商品価値を一層高めることができ、市場 における電子機器の商品訴求力の向上を図ることができる。

【図面の簡単な説明】

- [0099]
 - 【図1】第1の実施形態に係る電気光学装置のブロック構成図
 - 【図2】駆動モード信号DRTMの説明図
 - 【図3】第1の実施形態に係る画素の回路図
 - 【図4】第1の実施形態に係る画素の駆動タイミングチャート
 - 【図5】駆動モード選択回路の回路図
 - 【図6】線順次走査による駆動制御のタイミングチャート
 - 【図7】駆動信号INP1, INP2のパルス波形を示す図
 - 【図8】第2の実施形態に係る画素の回路図
 - 【図9】第2の実施形態に係る画素の駆動タイミングチャート
 - 【図10】第3の実施形態に係る画素の回路図
 - 【図11】第3の実施形態に係る画素の駆動タイミングチャート
 - 【図12】第3の実施形態に係る画素の回路図の変形例
 - 【図13】第3の実施形態に係る画素の回路図の他の変形例
 - 【図14】第3の実施形態に係る画素の駆動タイミングチャート
 - 【図15】第4の実施形態に係る画素の回路図
 - 【図16】第4の実施形態に係る画素の駆動タイミングチャート
 - 【図17】第5の実施形態に係る画素の回路図
 - 【図18】第5の実施形態に係る画素の駆動タイミングチャート
 - 【図19】第6の実施形態に係る画素の回路図
 - 【図20】第6の実施形態に係る画素の駆動タイミングチャート
 - 【図21】本実施形態に係る電気光学装置を実装した携帯電話の斜視図

【符号の説明】

- [0100]
- 1 表示部
- 2 画素
- 3 走査線駆動回路
- 4 データ線駆動回路
- 5 制御回路
- 6 駆動モード選択回路
- 6a Dフリップフロップ
- 6b, 6c トランスミッションゲート
- 6d, 6e インバータ
- 6 f NANDゲート
- 6 g 選択部
- T1 第1のスイッチングトランジスタ
- T2 第2のスイッチングトランジスタ
- T3 プログラミングトランジスタ
- T4 駆動トランジスタ
- T5 制御トランジスタ
- T6 第2の制御トランジスタ
- C キャパシタ
- C1 第1のキャパシタ
- C2 第2のキャパシタ
- OLED 有機EL素子

【書類名】図面【図1】

【図2】

【図3】

【図4】

【図5】

6/

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【課題】駆動電流に応じた輝度で発光する電気光学素子を用いた電気光学装置において、表示対象に応じた駆動モードを採用することにより、全体的な表示品質の改善を図る。 【解決手段】駆動モード選択回路6は、駆動モードとして第1の駆動モードを選択した場合、書込対象となる画素2に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間よりも短い第1の発光期間で、電気光学素子を駆動させる。また、駆動モード選択回路6は、駆動モードとして第1の駆動モードとは異なる第2の駆動モードを選択した場合、書込対象となる画素2に対応する走査線が選択されてからこの走査線が次に選択されるまでの期間において、第1の発光期間よりも長い第2の発光期間で、電気光学素子を駆動させる。

【選択図】図1

特願2003-337850

出願人履歴情報

識別番号

[000002369]

1. 変更年月日

1990年 8月20日

[変更理由]

新規登録

住 所

東京都新宿区西新宿2丁目4番1号

氏 名 セイコーエプソン株式会社