Introduction to Design Verification COMS31700

Kerstin Eder

Design Automation and Verification

Welcome to COMS31700

- Lecturer
 - Kerstin EDER
 - Department of Computer Science
 - Room 3.25 MVB
 - Kerstin.Eder@bristol.ac.uk
 - Office hours:
 - Mo morning and Tu between our lectures but not 13:00-14:00
- Lecture notes, exercises and assignments are/will be online at:

http://www.cs.bris.ac.uk/Teaching/Resources/COMS31700/

Comments and feedback are always welcome

2

COMS31700 Unit Details

- Lectures (weeks 1 10)
 - Tuesday 11:00 in QB 1.69
 - Tuesday 16:00 in QB 1.69
 - Thursday 16:00 in QB 1.69
- Laboratory (weeks 1 10)
 - Need to sign Modelsim Agreement!
 - 2h of lab per week
 - DV Help Desk on demand
 - Teaching Assistant: Dr Jimson Mathew
- Assessment Deadlines will soon be on COMS31700 web page!
 - 2 assignments (25% due in week 4/5, 25% due in week 9/10)
 - 1 exam (50% in January)

3

Literature and Study Resources

Janick Bergeron [WTB]

Writing Testbenches: Functional Verification of HDL Models. First Edition, Kluwer, 2000, ISBN: 0-7923-7766-4 Second Edition, Kluwer, 2003, ISBN: 1-4020-7401-8

- In addition:
 - Lecture slides and on-line tutorials on COMS31700 web page
 - On-line documentation of ModelSim Simulator and SpecMan Elite
 - Watch the unit web page for further supplementary literature.

[Credits: Parts of the lecture notes contain material from the book "Comprehensive Functional Verification" by Bruce Wileletal, the book "Writing Testbenches: Functional Verification of HDL Models" by Janick Bergeron, the book "The Verifical Hardware Description Language" by Donald Thomas and from lecture sities developed at IBM by Avi Ziv and Jaron Wolfstal), the University of Pittsburgh, Penn State University, North Carolina State University and Ohio State University. The HDL for the assignments has been developed at IBM, or

4

What is this unit about?

Aim:

To familiarise you with the routine tasks in carrying out **functional** verification and verification management, and to give you the **technical background** plus some of the **practical skills** expected from a professional Design Verification Engineer.

Pre-/Co-requisites: programming experience

On successful completion of this unit, you will be able to:

- understand the complexities and limits of verification;
- carry out functional verification and determine its effectiveness;
- set appropriate verification goals, select suitable verification methods and assess the associated risks;
- compile a verification plan that fits into the flow of a design project;
- organise a verification team.

5

Unit Outline

Lecture Topics

- Introduction: What is Verification? What is a Testbench?
- Verification Flow and Tools including basic Verilog HDL coding
- Verification cycle, methodology and plan including coverage
- Simulation-based Verification: Stimulus Generation and Checking
- Assertion-based Verification (ABV)
- Advanced Testbench Design Methodology with SpecMan Elite
- (Functional Formal Verification and Property Checking)

Labs

Need to sign ModelSim agreement!

- Exercise 1: Evita Verilog interactive tutorial (do @ home asap)
- Exercise 2: Introduction to the ModelSim Simulator
- A1, weeks 2-5: Verification of calculator design with ModelSim
 Exercise 3: How to collect Code Coverage with ModelSim
- Exercise 3: Now to collect code coverage
 Exercise 4: Introduction to SpecMan Elite
- A2, weeks 6-10: Advanced testbench design with SpecMan Elite

What is Design Verification?

What is Design Verification?

"Design Verification is the process used to gain confidence in the correctness of a design w.r.t. the requirements and specification."

Types of verification:

- Functional verification
- Timing verification
- .
- What about performance?

0

Verification vs Validation

- Verification:
 - Confirms that a system has a given input / output behaviour, sometimes called the transfer function of a system.
- Validation:
 - Confirms that the system's transfer functions results in the intended system behaviour when the system is employed in its target environment, e.g. as a component of an embedded system.
- Validation is sometimes used when verification is meant.

Why is Verification important?

 Verification is the single biggest lever to effect the triple constraints:

Quality

- A high quality track record preserves revenue and reputation.
- Ideally a team can establish a "right-first-time" track record.

Cos

- Fewer revs through the development/fabrication process means lower costs.
- Respinning a chip costs hundreds of thousands of £/\$/€
 + the associated lost opportunity costs.

Timing/Schedule

- Fewer revs through the development/fabrication process means faster time-to-market.
- Respinning a chip costs 6-8 weeks at least + the associated "lost opportunity" costs.

. .

All about Bugs

Types of bugs How are bugs introduced? How can bugs be found?

Why do Designs have Bugs?

Increasing Verification Productivity

Need to minimise verification time e.g. by using:

- Parallelism: Add more resources
- Abstraction:
 - Higher level of abstraction (i.e. C vs Assembly)
- This often means a reduction of control!
- Automation:
 - Tools to automate standard processes
 - Requires standard processes/methodology.
 - Usually a variety of functions, interfaces, protocols, and transformations must be verified.
 - Not all (verification) processes can be automated.

Productivity improvements drive early problem discovery!

22

Verification in the IC Design Process

Role of Verification in IC Design

IC design process is complex:

- Engineers need to balance conflict of interest:
 - Tight time-to-market constraints vs. increasing design complexity
- Aim: "Right-first-time" design, "correct-by-construction"
- More and more time-consuming to obtain acceptable level of confidence in correctness of design!
- design time << verification time
 - Remember: Verification does not create value!
 - But it preserves revenue and reputation!
 - Roughly 70% of design effort goes into verification.
 80% of all written code is in the verification environment
 - Properly staffed design teams have dedicated verification
 - In some cases verification engineers outnumber designers 2:1.

What are you going to verify?

Conceptual representation of the verification process Most important question: What are you verifying? Transformation Purpose of verification is to ensure that the result of some transformation is as intended or as expected.

Verification vs. Test Often confused! Purpose of test is to show design was manufactured properly. Verification is done to ensure that design meets its functional intent prior to manufacture! HW Design Fabrication Specification Silicon Verification One test method is scanning: "Design for Test" methodology Link all internal registers together into a chain. Chain accessible from chip pins. Allows control/observation of internal state. Impacts area of design, but keeps testing cost down. Why not "Design for Verification"? [Hot topic of research!] Consider: What is design supposed to do? How will it be verified?

Equivalence Checking

Conceptually, is there an input vector such that the output of the XOR gate can be "1"?

35

Cost of Verification

Necessary Evil

- Always takes too long and costs too much.
- As number of bugs found decreases, cost and time of finding remaining ones increases.

So when is verification done?

(Will investigate this later!)

- Remember: Verification does not generate revenue!

Yet indispensable

- To create revenue, design must be functionally correct and provide benefits to customer.
- Proper functional verification demonstrates trustworthiness of the design.
- Right-first-time designs demonstrate professionalism and "increase" reputation of design team.

36

Verification is similar to statistical hypothesis testing

Hypothesis "under test" is: Is the design functionally correct?

Bad Design (buggy design)

Good Design (no bugs in design)

Bugs found

Type I:
False Positive

False Negative

Type I mistakes: Easy to identify - found error where none exists.

Type II mistakes: Most serious - verification failed to identify an error!

- Can result in a bad design being shipped unknowingly!

Knowing where you are in the verification process is much easier to estimate than how long it will take to complete the job.

37

Summary

- What is Design Verification?
 - Why do we care?
 - Verification vs validation
- Bugs
 - Sources of bugs
 - Cost of bugs
 - Importance of Design Verification
- Impact of increasing design complexity
 - ITRS
 - Shrinking time to market windows
 - Increasing Productivity
- The chip design process
 - Where does Verification "fit"?
- Reconvergence Models
- Help us identify what is verified