Bresenham's Circle Drawing Algorithm

- Mohammad Imrul Jubair

The Scenario

The Scenario

We have to develop an algorithm that generates this circumference

Assumptions

Assumptions

The first pixel of the circumference is plotted on (0, R)

Assumptions

The first pixel of the circumference is plotted on (0, R) Then the plotting of next pixels starts clock-wise....

The first pixel of the circumference is plotted on (0, R) Then the plotting of next pixels starts clock-wise....

That means the plotting starts from (0, R) and moving into the 2nd Octant

while moving through the 2^{nd} octant, the X value is increasing and Y value is decreasing

So, if we can obtain (X,Y) in 2nd octant, we can calculate the points-

• 7th Octant: (X,-Y)

• 6th Octant: (-X, -Y)

• 3rd Octant: (-X, Y)

So, if we can obtain (X,Y) in 2nd octant, we can simply swap X and Y to get the points-

• 1st Octant: (Y, X)

• 8th Octant: (Y, -X)

• 5th Octant: (-Y, -X)

• 4th Octant : (-Y, X)

Using symmetric property of circle

So, if we can obtain (X,Y) in 2nd octant, we can calculate the points in other 7 octants

So, our target is to get the pixels of only 2nd octant of the circumference

As we know that,

In 2^{nd} Octant: X < Y

in 1^{st} Octant: X > Y

We will stop selecting E or SE when X > Y, that means when 2^{nd} octant is completed

$$x^{2} + y^{2} = R^{2}$$

$$F(x,y) = x^{2} + y^{2} - R^{2} = 0$$

$$x^{2} + y^{2} = R^{2}$$

$$F(x,y) = x^{2} + y^{2} - R^{2} = 0$$
(x,y)

If F(X,Y) = 0, the point (X,Y) on the circle

If F(X,Y) = 0, the point (X,Y) on the circle

If F(X,Y) > 0, the point (X,Y) is outside the circle

If F(X,Y) = 0, the point (X,Y) on the circle

If F(X,Y) > 0, the point (X,Y) is outside the circle

If **F (X, Y) < 0**, the point (X,Y) is inside the circle

Selecting E or SE

Selecting E or SE

 $C(X_P,Y_P)$ $E(X_P+1,Y_P)$ $SE(X_P+1,Y_P-1)$

Selecting E or SE depends on closeness to the circumference.

If E is closer to circumference, then E is selected

If SE is closer, then SE is selected

Selecting E or SE using Mid Point Criteria

If midpoint M is outside the circle, SE is closer to the circumference, So, **SE** is selected

If midpoint M is inside the circle, E is closer to the circumference,
So, **E** is selected

Selecting E or SE using Mid Point Criteria

We know,
$$F(x,y) = x^2 + y^2 - R^2$$

Lets put the mid point **M**'s coordinate in function $F(X,Y)$
 $F(M) = F(X_P+1, Y_P - 0.5) = (X_P+1)^2 + (Y_P - 0.5)^2 - R^2$

Lets store **F(M)** in a variable **d**

So,
$$\mathbf{d} = \mathbf{F}(\mathbf{M})$$

d is called 'decision variable'

Selecting E or SE using Mid Point Criteria

If **d >= 0**, then midpoint M is outside the circle, SE is closer to the circumference, So, **SE** is selected

If **d < 0**, then midpoint M is inside the circle, E is closer to the circumference, So, **E** is selected

$$d_1 = F(M_1)$$

$$= F(X_P+1, Y_P-0.5)$$

$$= (X_P+1)^2 + (Y_P-0.5)^2 - R^2$$

$$d_1 = F(M_1)$$
= $F(X_p+1, Y_p-0.5)$
= $(X_p+1)^2 + (Y_p-0.5)^2 - R^2$

If
$$d_1 < 0$$
, E $(X_P = X_P + 1, Y_P)$

$$d_{1} = F(M_{1})$$

$$= F(X_{p}+1, Y_{p}-0.5)$$

$$= (X_{p}+1)^{2} + (Y_{p}-0.5)^{2} - R^{2}$$
If $d_{1} < 0$, $E(X_{p}=X_{p}+1, Y_{p})$

$$d_{2} = F(M_{2})$$

$$= F(X_{p}+2, Y_{p}-0.5)$$

$$= (X_{p}+2)^{2} + (Y_{p}-0.5)^{2} - R^{2}$$

$$= X_{p}^{2} + 4X_{p} + 4 + (Y_{p}-0.5)^{2} - R^{2}$$

$$= X_{p}^{2} + 2X_{p} + 1 + (Y_{p}-0.5)^{2} - R^{2} + 2X_{p} + 3$$

 $= d_1 + (2X_p + 3)$

$$d_1 = F(M_1)$$

$$= F(X_p+1, Y_p-0.5)$$

$$= (X_p+1)^2 + (Y_p-0.5)^2 - R^2$$

If
$$d_1 < 0$$
, E $(X_P = X_P + 1, Y_P)$

$$\mathbf{d_2} = \mathbf{F(M_2)}$$
= $\mathbf{F(X_p+2, Y_p-0.5)}$
= $(\mathbf{X_p+2})^2 + (\mathbf{Y_p-0.5})^2 - \mathbf{R^2}$
= $\mathbf{X_p^2 + 4X_p + 4 + (Y_p-0.5)^2 - R^2}$
= $\mathbf{X_p^2 + 2X_p + 1 + (Y_p-0.5)^2 - R^2 + 2X_p + 3}$
= $\mathbf{d_1 + (2X_p + 3)}$

Similarly, If
$$d_2 < 0$$
, E $(X_P = X_P + 1, Y_P)$
Then $d_3 = d_2 + (2X_P + 3)$

Every iteration after **selecting E**, we can successively update our decision variable with-

$$\mathbf{d}_{\text{NEW}} = \mathbf{d}_{\text{OLD}} + (2X_{\text{P}} + 3)$$

$$d_1 = F(M_1)$$

$$= F(X_P+1, Y_P-0.5)$$

$$= (X_P+1)^2 + (Y_P-0.5)^2 - R^2$$

$$d_1 = F(M_1)$$

$$= F(X_P+1, Y_P-0.5)$$

$$= (X_P+1)^2 + (Y_P-0.5)^2 - R^2$$

If
$$d_1 >= 0$$
, SE $(X_p = X_p + 1, Y_p - 1)$

$$d_1 = F(M_1)$$

$$= F(X_P+1, Y_P-0.5)$$

$$= (X_P+1)^2 + (Y_P-0.5)^2 - R^2$$

If
$$\mathbf{d_1} >= \mathbf{0}$$
, SE $(\mathbf{X_p} = \mathbf{X_p} + \mathbf{1}, \mathbf{Y_p} - \mathbf{1})$
 $\mathbf{d_2} = \mathbf{F(M_2)}$
 $= F(X_p + 2, Y_p - 1.5)$
 $= (X_p + 2)^2 + (Y_p - 1.5)^2 - R^2$
 $= X_p^2 + 4X_p + 4 + Y_p^2 - 3Y_p + 2.25 - R^2$
 $= X_p^2 + 2X_p + 1 + Y_p^2 - 1Y_p + 0.25 - R^2 + 2X_p - 2Y_p + 5$
 $= (X_p^2 + 2X_p + 1) + (Y_p^2 - 1Y_p + 0.5^2) - R^2 + 2X_p - 2Y_p + 5$
 $= \mathbf{d_1} + (2X_p - 2Y_p + 5)$

$$d_1 = F(M_1)$$
= $F(X_P+1, Y_P-0.5)$
= $(X_P+1)^2 + (Y_P-0.5)^2 - R^2$

If
$$\mathbf{d_1} >= \mathbf{0}$$
, SE $(X_P = X_P + \mathbf{1}, Y_P - \mathbf{1})$
 $\mathbf{d_2} = \mathbf{F}(\mathbf{M_2})$
 $= \mathbf{F}(X_P + 2, Y_P - 1.5)$
 $= (X_P + 2)^2 + (Y_P - 1.5)^2 - R^2$
 $= X_P^2 + 4X_P + 4 + Y_P^2 - 3Y_P + 2.25 - R^2$
 $= X_P^2 + 2X_P + 1 + Y_P^2 - 1Y_P + 0.25 - R^2 + 1$

 $= (X_p^2 + 2X_p + 1) + (Y_p^2 - 1Y_p + 0.5^2) - R^2$

Similarly, If
$$d_2 >= 0$$
, SE $(X_P = X_P + 1, Y_P - 1)$
Then $d_3 = d_2 + (2X_P - 2Y_P + 5)$

 $= d_1 + (2X_p - 2Y_p + 5)$

 $2X_{p} - 2Y_{p} + 5$

 $+2X_{p}-2Y_{p}+5$

Every iteration after **selecting SE**, we can successively update our decision variable with-

$$d_{NEW} = d_{OLD} + (2X_P - 2Y_P + 5)$$

Bresenham's Mid Point Criteria: Successive Updating (summary)

If d < 0, then midpoint M is inside the circle, E is closer to the circumference, So, E is selected and do $d = d + \Delta E$ Where, $\Delta E = 2X_P + 3$

If $d \ge 0$, then midpoint M is outside the circle, SE is closer to the circumference, So, SE is selected and do $d = d + \Delta SE$ Where, $\Delta SE = 2X_P - 2Y_P + 5$

Initialization

$$d_{INIT} = F (M_1)$$
= F (1, R-0.5)
= (1)² + (R - 0.5)² - R²
= 1 + R² - R + 0.25 - R²
= 1.25 - R

Initialization

We get,
$$d = 1.25 - R$$

Lets say,
$$h = d - 0.25$$

= 1.25 - R - 0.25
 $h = 1 - R$

'h' is our new decision variable. so -

Initialization

We get,
$$d = 1.25 - R$$

Lets say,
$$h = d - 0.25$$

= 1.25 - R - 0.25
 $h = 1 - R$

'h' is our new decision variable. so -

For, new decision variable 'h', it will be checked whether it is greater than or less than 0.25, rather than 0

$$\mathbf{h}_{\text{INIT}} = \mathbf{1} - \mathbf{R}$$

If h < -0.25, then E is selected, $h = h + \Delta E$

If $h \ge -0.25$, then **SE** is selected, $h = h + \Delta SE$

Since **h** starts out with an **integer** value and is **incremented** by integer value $(\Delta E \text{ or } \Delta SE)$, we can change the comparison to just **h < 0**

- 0.25 is the threshold.

Let,
$$h = -2$$
,
 $\Delta = 3$
 $h = -2 + \Delta$
 $= -2 + 3$
 $= 1 > -0.25$
Select SE

- 0.25 is the threshold.

Let,
$$h = -2$$
,
 $\Delta = 3$
 $h = -2 + \Delta$
 $= -2 + 3$
 $= 1 > -0.25$
Select SE

Let,
$$h = -2$$
,
 $\Delta = 1$
 $h = -2 + \Delta$
 $= -2 + 1$
 $= -1 < -0.25$
Select E

- 0.25 is the threshold.

Let,
$$h = -2$$
,
 $\Delta = 3$
 $h = -2 + \Delta$
 $= -2 + 3$
 $= 1 > -0.25$
Select SE

Let,
$$h = -2$$
,
 $\Delta = 1$
 $h = -2 + \Delta$
 $= -2 + 1$
 $= -1 < -0.25$
Select E

In every case, the decision will remain same if we determine 0 as threshold, rather than – 0.25

Let,
$$h = -2$$
,
 $\Delta = 3$
 $h = -2 + \Delta$
 $= -2 + 3$
 $= 1 > 0$
Select SE

Let,
$$h = -2$$
,
 $\Delta = 1$
 $h = -2 + \Delta$
 $= -2 + 1$
 $= -1 < 0$
Select E

In every case, the decision will remain same if we determine 0 as threshold, rather than – 0.25

So, finally.....

$$h_{INIT} = 1 - R$$

If h < 0, then **E** is selected, $h = h + \Delta E$

If $h \ge 0$, then **SE** is selected, $h = h + \Delta SE$

Where,
$$\Delta E = 2X_p + 3$$

 $\Delta SE = 2X_p - 2Y_p + 5$

Algorithm

```
void MidpointCircle(int radius, int value)
    int x = 0;
    int y = radius;
    int h = 1 - radius;
    CirclePoints(x, y, value);
    while (y > x) {
    if (h < 0) { /* Select E */
    h = h + 2 * x + 3;
    else { /* Select SE */
    h = h + 2 * (x - y) + 5;
   y = y - 1; 
    x = x + 1;
    CirclePoints(x, y);
```

Algorithm

```
void MidpointCircle(int radius, int value)
    int x = 0;
    int y = radius;
    int h = 1 - radius;
    CirclePoints(x, y, value);
    while (y > x) {
    if (h < 0) { /* Select E */
    h = h + 2 * x + 3;
    else { /* Select SE */
    h = h + 2 * (x - y) + 5;
   y = y - 1; 
    x = x + 1:
    CirclePoints(x, y);
```

```
CirclePoints (x,y)

Plotpoint(x,y);

Plotpoint (x,-y);

Plotpoint(-x,y);

Plotpoint(-x,-y);

Plotpoint(y,x);

Plotpoint(y,-x);

Plotpoint(-y,x);

Plotpoint(-y,x);

end
```

	0	1	2	3	4	5	6	7
10		!						
9								
8								
7								
6								
5								
4								

Given:

	0	1	2	3	4	5	6	7
10								
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

 $h = 1 - R = -9$

	0	1	2	3	4	5	6	7
10								
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

$$h = 1 - R = -9$$

K	1			
2x	0			
2 y	20			
h				
(x, y)				

1 <u>0</u>	0	1	2	3	4	5	6	7
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

 $h = 1 - R = -9$

K	1			
2x	0			
2 y	20			
h				
(x, y)	E(1,10)			

1 <u>0</u>	0	1	2	3	4 	⁵	6	7
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

h = 1 - R = -9

$$h = h+\Delta E = h+2x+3$$

=-9+0+3
=-6

K	1			
2x	0			
2y	20			
h	-6			
(x, y)	E(1,10)			

<u>10</u>	0	1		2	3	4	5	6	7
9									
8									
7									
6									
5									
4									

Given:

$$(x,y)=(0,10)$$

$$h = 1 - R = -9$$

K	1	2			
2x	0	2			
2y	20	20			
h	-6				
(x, y)	E(1,10)				

10	0	1	2	3	4	5	6	7
9								
8								
7								
6								_
5								
4								

Given:

$$(x,y)=(0,10)$$

 $h = 1 - R = -9$

K	1	2			
2x	0	2			
2y	20	20			
h	4 -6				
(x, y)	E(1,10)	E(2,10)			

$$h \le 0$$
, E

10	0	1	2	3	4	5	6	7
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

h = 1 - R = -9

$$h = h+\Delta E = h+2x+3$$

=-6+2+3
=-1

K	1	2			
2x	0	2			
2y	20	20			
h	-6	-1			
(x, y)	E(1,10)	E(2,10)			

1 <u>0</u>	0	1		2	3	4	5	6	7
9									
8									
7									
6									
5									
4									

Given:

$$(x,y)=(0,10)$$

 $h = 1 - R = -9$

K	1	2	3		
2x	0	2	4		
2y	20	20	20		
h	-6	-1			
(x, y)	E(1,10)	E(2,10)			

<u>10</u>	0	1	2	3	4	5	6	7
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

 $h = 1 - R = -9$

K	1	2	3		
2x	0	2	4		
2 y	20	20	20		
h	-6	4 -1			
(x, y)	E(1,10)	E(2,10)	E(3,10)		

<u>10</u>	 0	1	2	3	4	5	6	7
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

h = 1 - R = -9

$$h = h+\Delta E = h+2x+3$$

=-1+4+3
=6

K	1	2	3		
2x	0	2	4		
2y	20	20	20		
h	-6	-1	6		
(x, y)	E(1,10)	E(2,10)	E(3,10)		

Given:

Radius, R = 10

$$(x,y)=(0,10)$$

 $h = 1 - R = -9$

K	1	2	3	4		
2x	0	2	4	6		
2y	20	20	20	20		
h	-6	-1	4 6			
(x, y)	E(1,10)	E(2,10)	E(3,10)	S(4,9)		

h > 0, SE

Given:

$$(x,y)=(0,10)$$

 $h = 1 - R = -9$

$$h = h+\Delta SE = h+2x-2y+5$$

=6+6-20+5
=-3

K	1	2	3	4		
2x	0	2	4	6		
2 y	20	20	20	20		
h	-6	-1	6	-3		
(x, y)	E(1,10)	E(2,10)	E(3,10)	S(4,9)		

Given:

$$(x,y)=(0,10)$$

h = 1 - R = -9

K	1	2	3	4	5	6	7
2x	0	2	4	6	8	10	12
2 y	20	20	20	20	18	18	16
h	-6	-1	6	-3	8	5	6
(x, y)	E(1,10)	E(2,10)	E(3,10)	S(4,9)	E(5,9)	S(6,8)	S(7,7)

Given:

Radius, R = 10

$$(x,y)=(0,10)$$

 $h = 1 - R = -9$

Untill y > x

K	1	2	3	4	5	6	7
2x	0	2	4	6	8	10	12
2y	20	20	20	20	18	18	16
h	-6	-1	6	-3	8	5	6
(x, y)	E(1,10)	E(2,10)	E(3,10)	S(4,9)	E(5,9)	S(6,8)	S(7,7)