

Modelos de Regresión y Series de Tiempo (MRST) 2025 - 02

Clase 6 – MRLS Inferencia sobre el modelo de regresión Intervalos de confianza

Docente: Natalia Jaramillo Quiceno

Escuela de Ingenierías

natalia.jaramilloq@upb.edu.co

Regresión lineal simple Recordemos las propiedades de β_1

Propiedades de $\widehat{\beta}_1$

 $\hat{\beta}_1$ es una función lineal de variables aleatorias independientes Y_1, Y_2, \dots, Y_n , cada una de las cuales está normalmente distribuida

Así, se tiene que:

• $E(\widehat{\beta}_1) = \beta_1$: estimador insesgado. La distribución de $\widehat{\beta}_1$ siempre está centralizada en el valor β_1 .

•
$$V(\widehat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$
 y $se(\widehat{\beta}_1) = \frac{\sigma}{\sqrt{S_{xx}}}$ (se: error estándar estimado)

• El estimador \hat{eta}_1 tiene una distribución normal.

Regresión lineal simple Recordemos las propiedades de β_0

Propiedades de $\widehat{\beta}_0$

Para el intercepto, se puede demostrar de la misma manera que:

• $E(\widehat{\beta}_0) = \beta_0$: estimador insesgado. La distribución de $\widehat{\beta}_0$ siempre está centralizada en el valor β_0 .

•
$$V(\widehat{\boldsymbol{\beta}}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right]$$
 y

•
$$\mathbf{se}(\widehat{\boldsymbol{\beta}}_{\mathbf{0}}) = \sqrt{\sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right]}$$
 (se: error estándar estimado)

• El estimador \hat{eta}_0 tiene una distribución normal.

Regresión lineal simple Intervalos de confianza para β_0 y β_1

Un intervalo de confianza de $100(1-\alpha)\%$ para la pendiente β_1 se determina con:

$$\hat{\beta}_1 - t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}} \le \beta_1 \le \hat{\beta}_1 + t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$$

$$se(\hat{\beta}_1)$$

De manera similar, para β_0

$$\hat{\beta}_0 - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}} \right]} \le \beta_0 \le \hat{\beta}_0 + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}} \right]}$$

$$se(\hat{\beta}_0)$$

- El ancho de los intervalos de confianza para β_0 y β_1 es una medida de la calidad general de la recta de regresión.
- Cuando el I.C. de β_1 no contiene el cero, se dice que:

La variable respuesta "Y" está relacionada linealmente con la variable predictora o independiente "X" Sin Limites

Regresión lineal simple Intervalos de confianza para β_1

• Un IC al $100(1-\alpha)\%$ de confianza para la pendiente β_1 es:

$$\hat{\beta}_1 - t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}} \le \beta_1 \le \hat{\beta}_1 + t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$$

$$se(\hat{\beta}_1)$$

• Construya in IC al 95% para la pendiente β_1 del ejemplo básico (inversiones en I+D y ganancias de la empresa).

Primero, busquemos los datos que necesitamos en el resumen (summary) del modelo:

¿Y el valor de t?

Tablas, Excel o R ☺

Definir valor de α Calcular g.l del error(n-2)

qt(0.025,4,lower.tail = FALSE)

$$t_{\alpha/2,n-2} = t_{0.025,4} = 2.776$$

Coefficients:

Estimate Std. Error t value
$$Pr(>|t|)$$
 (Intercept) 20.0000 2.6458 7.559 0.00164 ** inv 2.0000 0.4583 4.364 0.01202 * $\widehat{\beta}_1$ $se(\widehat{\beta}_1)$

Regresión lineal simple

Intervalos de confianza para β_1

Un IC al $100(1-\alpha)\%$ de confianza para la pendiente β_1 es:

$$\hat{\beta}_1 - t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}} \le \beta_1 \le \hat{\beta}_1 + t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$$

$$se(\hat{\beta}_1)$$

Construya in IC al 95% para la pendiente β_1 del ejemplo básico (inversiones en I+D y ganancias de la empresa).

$$\hat{\beta}_1 = 2$$

$$se(\hat{\beta}_1) = 0.4582$$

$$t_{\alpha/2,n-2} = t_{0.025,4} = 2.776$$

¿Cómo lo interpretamos?

Intervalos de confianza

Interpretación de un intervalo de confianza y otros niveles de confianza

Para el caso de un 95% de confianza

Una **interpretación correcta** de 95% de confianza se basa en la interpretación de probabilidad de frecuencia relativa a largo plazo.

- Suponga que calcula varios intervalos, cada uno con una muestra diferente.
- El 95% de los intervalos calculados contendrán a μ .

Regresión lineal simple

Intervalos de confianza para β_1 en RStudio

Comandos

```
##Luego de ajustar el modelo!!!

#Activar paquete stats
library(stats)

#Generar intervalo de confianza para b0 y b1, por defecto este código lo crea al 95%
confint(modelo)
```

Resultado

Regresión lineal simple IC para la respuesta media (μ)

Una aplicación importante de un modelo de regresión es estimar la **respuesta media** (μ) , para determinado valor de la variable independiente x.

Un estimador puntual de la media de Y para un valor x_0 es

$$\hat{\mu}_{Y|x_0} = \hat{\beta}_0 + \hat{\beta}_1 x_0 = \overline{y} + \hat{\beta}_1 (x_0 - \overline{x})$$

La varianza de $\hat{\mu}_{Y|x_0}$ es

$$V(\hat{\mu}_{Y|x_0}) = \sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]$$

El error de la estimación depende de la distancia entre x_0 y \overline{x} !!!

Así, un intervalo de confianza al $100(1-\alpha)\%$ para la respuesta media (μ) , dado un valor de x_0 , está dado por

$$\widehat{\boldsymbol{\mu}}_{Y|x_0} \pm \boldsymbol{t}_{\alpha/2,n-2} * \sqrt{\widehat{\boldsymbol{\sigma}}^2 \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]}$$

Regresión lineal simple IC para la respuesta media

Volviendo al ejemplo de las ganancias...

Con:

$$\widehat{\boldsymbol{\mu}}_{Y|x_0} = 20 + 2x_0$$

Suponga que hay interés en estimar las ganancias cuando la inversión en I+D es:

$$x_0 = 9$$

Construya un IC del 95% para $\mu_{Y|9}$

$$\bar{x} =$$

$$n =$$

$$\leq \mu_{Y|9} \leq$$

$$\hat{\sigma}^2 =$$

$$S_{xx} =$$

$$t_{0.025,4} =$$

Regresión lineal simple IC para la respuesta media

Siguiendo con el ejemplo de las ganancias...

Con:

$$\widehat{\boldsymbol{\mu}}_{|Y|x_0} = 20 + 2x_0$$

Construya intervalos para la respuesta media cuando:

$$x_0 = 2$$

$$x_0 = 11$$

$$\leq \mu_{Y|2} \leq$$

$$\leq \mu_{Y|11} \leq$$

¿el ancho de los intervalos obtenidos es el mismo?

Inversión en I+D [Millones USD]

Regresión lineal simple

IC para la respuesta media en RStudio

Comandos

```
#Activar paquete stats
library(stats)

#Crear vector, con el valor de x con el que se desea estimar Y
new.dat <- data.frame(inv=9)

#Generar intervalo de confianza para la respuesta media, por defecto este código lo crea al 95%
predict(modelo, newdata = new.dat, interval = 'confidence')</pre>
```

Resultado

```
> predict(modelo, newdata = new.dat, interval = 'confidence')
  fit     lwr     upr
1     38     31.72376     44.27624
```


MUCHAS GRACIAS

Natalia Jaramillo Quiceno

e-mail: natalia.jaramilloq@upb.edu.co

