ECEN325 Ref Sheet © Josh Wright February 27, 2017

Metric Prefixes

0		O		
1 000	000	000	000	000
1	000	000	000	000
	1	000	000	000

peta	Р	10^{15}	1 000 000 000 000 000
tera	Τ	10^{12}	1 000 000 000 000
giga	G	10^{9}	1 000 000 000
mega	Μ	10^{6}	1 000 000
kilo	k	10^{3}	1 000
hecto	h	10^{2}	100
deca	da	10^{1}	10
one		10^{0}	1
deci	d	10^{-1}	0.1
centi	c	10^{-2}	0.01
milli	m	10^{-3}	0.001
micro	μ	10^{-6}	0.000 001
	,		
nano	n	10^{-9}	0.000 000 001
nano pico		$\frac{10^{-9}}{10^{-12}}$	0.000 000 001 0.000 000 000 001

RC Filter

- Transmission Function: $T(s) = \frac{V_o(s)}{V_i(s)}$
- Corner frequency: frequency s at which $T(s) = \frac{1}{\sqrt{2}}$
- for simple circuit: ground \rightarrow source $\rightarrow R \rightarrow C \rightarrow$ ground

$$*T(s) = \frac{1}{1+RCs} |T(j\omega)| = \frac{1}{\sqrt{1+R^2C^2s^2}} |\angle T(j\omega)| = \frac{1}{\sqrt{1+R^2C^2s^2}}$$

• low pass

*corner frequency: $s = \frac{1}{RC}$ (also pole)

high pass

*zero: s = 0, pole: $s = \frac{1}{RC}$

Bode Plots

• magnitude is plotted in dB:

 $|T(j\omega)|_{dB} = 20 \log_{10} |T(j\omega)|$ • starts on y-axis at DC offset with slope 0

- just add together the bode plots of each individual pole, zero, and the DC offset
- poles always slope down, zeros slope up (applies for both magnitude and phase)
- dec=decade, e.g. from 10^0 to 10^1
- magnitude:
- *Pole/Zero at origin: constant slope $\pm 20db/dec$ for all ω ; 0dB at $\omega = 10^0 = 1$
- *Pole/Zero at ω_0 :

0 for $\omega < \omega_0$ slope $\pm 20 \frac{db}{dec}$ after

- *Constant C: constant line at $20 \log_{10}(|C|)$
- *Pole at origin: constant $-\frac{\pi}{2}$ or -90°
- *Zero at origin: constant $+\frac{\pi}{2}$ or $+90^{\circ}$
- *Pole/Zero at ω_0 :
- 0 for $\omega < \frac{\omega_0}{10}$
- slope linearly ($\pm 45^{\circ}/dec$) until $10\omega_0$
- 0 slope for $\omega > 10\omega_0$
- *Constant C: no effect (0 for all ω)
- Prof wants us to actually show the -3dB drop curve, not just a straight intersection

Solving systems with Op Amps

- step 0: if the op amp is ideal, write out ideal properties:
- $V_{+} = V_{-}$ $V_{+} = V_{-}$ $V_{-} = 0, I_{+} = 0$
- $*A \approx \infty$
- avoid doing KCL/KVL directly on the output node of the op amp
- ignore resistors from a point at 0V to ground

Non-Ideal Op Amps

- still assume that current at input terminals is 0
- $\bullet V_o = A(V_+ V_-)$
- *A: open-loop gain. Typically very large, 100,000 or
- open-loop gain dependent on frequency: $A(s) = \frac{A_0}{1-\frac{s}{s}}$
- *open-loop response drops off after ω_b (usually $2\pi \le \omega_b \le 2\pi 100$)
- $*A_0$: DC gain
- $*\omega_t$: unity gain frequency: $dB(T(\omega_t)) = 1$ $\omega_t \approx A_o \omega_b$

AKA gain bandwidth product

- *in this case, we still assume $I_{-} = I_{+} = 0$ and $V_{-} = V_{+}$?
- slew rate
- *max rate at which the output can change
- * for a sinusoidal signal: $(V_{pk}$: peak voltage) $SR > 2\pi f V_{pk}$ or $SR > \omega V_{pk}$ $\frac{dV_o}{dt}|_{MAX} < SR$

Op Amp Equations

- general form: $T(s) = \frac{K_0}{1 + \frac{s}{\omega_0}}$
 - $*T(0) = K_0$: DC offset. For these simple ones, it's equal to ideal response $*\omega_0 = \frac{\omega_t}{1+R_2/R_1}$

- * $\omega_0 \frac{1 + R_2 / R_1}{1 + R_2 / R_1}$ inverting op amp:

 * ideal: $T(s) = \frac{V_o}{V_i} = -\frac{R_2}{R_1}$ * non-ideal: $T(s) = \frac{V_o}{V_i} = \frac{-R_2 / R_1}{1 + \frac{1 + R_2 / R_1}{A(s)}} = \frac{-R_2 / R_1}{1 + \frac{s}{(\frac{\omega_t}{1 + R_2 / R_1})}}$

- non-inverting op-amp:
- *ideal: $T(s) = \frac{V_o}{V_i} = 1 + \frac{R_2}{R_1}$ *non-ideal: $T(s) = \frac{V_o}{V_i} = \frac{1 + R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{1 + R_2/R_1}{1 + \frac{s}{(\frac{\omega_t}{1 + R_2/R_1})}}$

 $\bullet \, integrating$

*ideal:
$$V_o = -\int_0^t \frac{V_i}{RC} dt + C$$
% $C = V_o(t)$ at $t = 0$

• differentiating
$$*ideal: \ V_o = -RC\frac{dV_i}{dt}$$

 \bullet summing

*ideal:
$$V_o = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} \right)$$

• differential (subtracting)
* ideal:
$$V_o = \frac{(R_f + R_1)R_g}{(R_g + R_2)R_1}V_2 - \frac{R_f}{R_1}V_1$$

