

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Claims

1. A compound of the formula I:

5

(I)

10 wherein the bond represented by the dotted line may be an optional double bond, and the geometry across the bond may be E or Z;
A=COOR, -CONR'R'', -CN, -COR, wherein R, R', R'' and R, are defined below;
X = H, OH, or C₁-C₁₀ linear or branched alkyl or alkenyl groups, optionally substituted with COOR, carbonyl, or halo;

15 R = H or C₁-C₂₀ linear or branched alkyl or aryl or aralkyl, or a pharmaceutically acceptable counter-ion;
R₁, R₂, R₃, R₄, R₅, R₆ and R₇ are independently H; C₁-C₂₀ linear or branched alkyl or alkenyl groups optionally substituted; COOR where R is as defined previously; NR'R'' or CONR'R'', where R' and R'' may be independently H or C₁-C₂₀ linear or branched alkyl or aryl; OH; C₁-C₂₀ alkoxy; C₁-C₂₀ acylamino; C₁-C₂₀ acyloxy; C₁-C₂₀ alkanoyl; C₁-C₂₀ alkoxycarbonyl; halo; NO₂; SO₂R''; CZ₃, where each Z is independently a halo atom, H, alkyl, chloro or fluoro-substituted alkyl; or SR'', where R'' may be H or linear or branched C₁-C₂₀ alkyl; or R₂ and R₃ together, or R₅ and R₆ together may be joined to form methylenedioxy or ethylenedioxy groups;

20 25 with the proviso that when X, R₃, R₅ and R₆ are H; R₄ is p-hydroxy; R₁ and R₂ together are 3,5-dimethoxy; then the dotted line is not a double bond in the E-configuration.

2. A compound according to claim 1 wherein A=-COOR.

3. A compound of the formula II:

(II)

10 wherein the bond represented by the dotted line may be an optional double bond, the geometry across the bond may be E or Z, and the naphthyl group may be linked at an α or β position;

A=-COOR; -CONR'R", -CN, -COR₇ wherein R, R', R" and R₇ are defined below;

15 X = H, OH, or C₁-C₁₀ linear or branched alkyl or alkenyl groups, optionally substituted with COOR, carbonyl, or halo;

R = H or C₁-C₂₀ linear or branched alkyl or aryl or aralkyl, or a pharmaceutically acceptable counter-ion;

20 R₁, R₂, R₃, R₄, R₅, R₆, and R₇ are independently H; C₁-C₂₀ linear or branched alkyl or alkenyl groups optionally substituted; COOR where R is defined previously; R; NR'R" or CONR'R", where R' and R" may be independently H or C₁-C₂₀ linear or branched alkyl or aryl; OH; C₁-C₂₀ alkoxy; C₁-C₂₀ acylamino; C₁-C₂₀ acyloxy; C₁-C₂₀ alkanoyl; C₁-C₂₀ alkoxycarbonyl; halo; NO₂; SO₂R"'; CZ₃; where each Z is independently a halo atom, H, alkyl, chloro or fluoro-substituted alkyl; or SR'', where R'' may be H or linear or branched C₁-C₂₀ alkyl or R₂ and R₃ together, or R₅ and R₆ together may be joined to 25 form methylenedioxy or ethylenedioxy groups.

4. A compound according to claim 1, wherein A=-COOR, X, R₃, R₅ and R₆ are H; R₄ is p-hydroxy; R₁ R₂ together are 3,5-dimethoxy; and the dotted line is a double bond in the Z-configuration.

5 5. A compound according to claim 4, wherein R is H.

6. A compound according to claim 4, wherein R is Na⁺.

10 7. A compound according to claim 2, wherein R₄ is p-hydroxy; R₁ and R₂ together are 3,5-dimethoxy and the dotted line represents a double bond.

8. A compound according to claim 3, wherein R₁ and R₂ together are 3,5-dimethoxy and the dotted line represents a double bond.

15 9. A pharmaceutical composition for the treatment of diabetes comprising a therapeutically effective amount of a compound of any one of the claims 1 to 8, or mixtures thereof, in a pharmaceutically acceptable carrier.

10. A composition according to claim 9 which is suitable for oral administration.

20

11. A method for treating diabetes comprising the step of administering to a subject suffering from a diabetic condition a therapeutically effective amount of a compound according to any one of claims 1 to 8, or mixtures thereof, in a pharmaceutically acceptable carrier.

25

12. A method according to claim 11 in which said compound is administered orally to said subject.

30 13. A pharmaceutical composition for the treatment of diabetes comprising a therapeutically effective amount of a compound according to any of claims 1 to 8 in a physiologically acceptable carrier, wherein the bond represented by the dotted line may be an optional double bond, and the geometry across the bond may be E or Z;

R = H, linear or branched C₁-C₂₀ alkyl, aryl or aralkyl, or a pharmaceutically acceptable counter-ion.

5 14. A composition according to claim 13, wherein R is H or Na⁺ and said double bond is in the E-configuration.

15. A composition according to claim 13, wherein R is H or Na⁺ and said double bond is in the Z-configuration.

10 16. A composition according to claim 15, wherein R is Na⁺.

17. A composition according to claim 14, wherein R is Na⁺.

15 18. A composition according to claim 13, wherein said composition is suitable for oral administration.

20 19. A method of treating diabetes comprising a step of administering to a subject suffering from a diabetic condition a therapeutically effective amount of a compound according to any of claims 1 to 8 in a physiologically acceptable carrier, wherein the bond represented by the dotted line may be an optional double bond, and the geometry across the bond may be E or Z;

R = H, linear or branched C₁-C₂₀ alkyl or aryl, or a pharmaceutically acceptable counter-ion.

25 20. A method according to claim 19, wherein R is H or Na⁺ and said double bond is in the E-configuration.

21. A method according to claim 19, wherein R is H or Na⁺ and said double bond is in the Z-configuration.

30

22. A method according to claim 20, wherein R is Na+.
23. A method according to claim 21, wherein R is Na+.