MATH2089 Numerical Methods Lecture 7

Numerical Differentiation

Numerical Differentiation

- The function to be differentiated can be in one of the following forms
 - A simple continuous function being linear, quadratic, higher order polynomial, exponential, etc. They can be evaluated analytically using calculus.
 - For example

$$f(x) = y = a_0 x + a_1$$

$$f(x) = y = a_0x^2 + a_1x + a_2$$

$$f(x) = y = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + a_3 x^{n-3} + \dots$$

- Differentiation with respect to x
 - \Rightarrow f'(x) = dydx = a_0
 - \Rightarrow f'(x) = dydx = $2a_0x + a_1$
 - $f'(x) = dydx = na_0x^{n-1} + (n-1)a_1x^{n-2} + \dots$

Numerical Differentiation (continue)

 A complicated continuous function that is difficult or impossible to differentiate or integrate directly. Analytical solutions are often impractical, and sometimes impossible.

Approximate method must be employed.

A tabulated function where values of x and f (x) are given at a number of discrete points, as if often the case with experimental or field data.

Approximate method must be employed.

Numerical Differentiation (continue)

- Based on a set of discrete data, how we can best approximate
 - □ Slope (first order derivative) $f'(x) = \frac{dy}{dx}$
 - □ Curvature (second order derivative) $f''(x) = d^2y/dx^2$

Engineering Applications - Example

A plane is being tracked by radar, and data is taken every second in polar coordinates θ and r.

t (s)	100	101	102	103	104	105
θ (rad)	0.75	0.72	0.70	0.68	0.67	0.66
r (ft)	5120	5370	5560	5800	6030	6240

At t=103 seconds find the vector expression for velocity and acceleration. The velocity and acceleration given in polar coordinates are:

$$\vec{v} = \dot{r}\,\vec{e}_r + r\dot{\theta}\,\vec{e}_\theta$$

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\vec{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{e}_\theta$$

Engineering Applications - Example

Figure 7.1 Recoil mechanism of a cannon.

$$x(t) = (c_1 + c_2 t)e^{-\omega_n t}$$

$$c_1 = x_0, c_2 = \dot{x}_0 + \omega_n x_0, \ \omega_n = \sqrt{k/m}$$

Find the maximum recoil velocity of the cannon using numerical differentiation with $x_0=0$ and $\dot{x}_0=5$ m/s.

© 2002 Prentice Hall, Inc. Singiresu S. Rao Applied Numerical Metho

Applied Numerical Methods for Engineers and Scientists, 1E.

Engineering Applications

The one-dimensional forms of some constitutive laws commonly used in engineering and science

Law	Equation	Physical Area	Gradient	Flux	Proportionality
Fourter's law	$q=-k\frac{dT}{dx}$	Heat conduction	Temperature	Heat flux	Thermal Conductivity
Bekis low	$J = -D \frac{dc}{dx}$	Mass diffusion	Concentration	Masa flux	Diffusivity
Daroy's law	$q = -k \frac{dk}{dx}$	Flow through porous media	Head	Flow flux	Hydraulic Conductivity
	$J = -\sigma \frac{dV}{dx}$		Voltage	Current flux	Electrical Conductivity
Newton's viscosity law	$\tau = \mu \frac{du}{dx}$	Flutds	Velocity	Sherar Stress	Dynamic Viscosity
Hooke's low	$\sigma = E \frac{\Delta L}{L}$	Elasticity	Deformation	Stress	Young's Modulus

Basic Finite-Difference Approximations (Graphic Interpretation)

(a) forward:

$$\left. \frac{df}{dx} \right|_{i} \approx \frac{\Delta f}{\Delta x} = \frac{f_{i+1} - f_{i}}{x_{i+1} - x_{i}}$$

(b) backward:

$$\left. \frac{df}{dx} \right|_{i} \approx \frac{\Delta f}{\Delta x} = \frac{f_{i} - f_{i-1}}{x_{i} - x_{i-1}}$$

(c) central:

$$\left. \frac{df}{dx} \right|_{i} \approx \frac{\Delta f}{\Delta x} = \frac{f_{i+1} - f_{i-1}}{x_{i+1} - x_{i-1}}$$

Taylor Series Expansion

 Derivatives are replaced by discrete approximations – finite difference forms

First order derivative

Second order derivative

$$f(x_{i-1}) \qquad f(x_i) \qquad f(x_{i+1})$$

$$X_{i-1} \qquad X_i \qquad X_{i+1}$$

$$f_{i+1} = f_i + \Delta x f_i' + \frac{\left(\Delta x\right)^2}{2!} f_i'' + \frac{\left(\Delta x\right)^3}{3!} f_i''' + \frac{\left(\Delta x\right)^4}{4!} f_i^{(4)} + \dots$$

Rearranging the above equation,

$$f_{i}' = \frac{f_{i+1} - f_{i}}{\Delta x} - \frac{\Delta x}{2!} f_{i}'' - \frac{(\Delta x)^{2}}{3!} f_{i}''' - \dots$$

By applying the mean value theorem,

$$f'_{i} = \frac{f_{i+1} - f_{i}}{\Delta x} - \frac{\Delta x}{2!} f''(\xi); \quad x_{i} < \xi < x_{i+1}$$

- > Truncation error term is $O(\Delta x) = -\frac{\Delta x}{2!} f''(\xi)$

> 1st forward difference
$$f_i' = \frac{f_{i+1} - f_i}{\Delta x} + O(\Delta x)$$

 \rightarrow Let $-\Delta x = x_{i-1} - x_i$ $f_{i-1} = f_i - \Delta x f_i' + \frac{(\Delta x)^2}{2!} f_i'' - \frac{(\Delta x)^3}{2!} f_i''' + \frac{(\Delta x)^4}{4!} f_i^{(4)} - \dots$

Rearranging the above equation,

$$f_{i}' = \frac{f_{i} - f_{i-1}}{\Delta x} + \frac{\Delta x}{2!} f_{i}'' - \frac{(\Delta x)^{2}}{3!} f_{i}''' + \dots$$

$$\frac{\Delta x}{2!} f_{i}''(\xi) = O(\Delta x)$$

> 1st backward difference
$$f_i' = \frac{f_i - f_{i-1}}{\Delta x} + O(\Delta x)$$

$$\begin{array}{cccc}
f(x_{i-1}) & f(x_i) & f(x_{i+1}) \\
& & & & \\
X_{i-1} & X_i & X_{i+1}
\end{array}$$

Recapping that

$$f_{i+1} = f_i + \Delta x f_i' + \frac{(\Delta x)^2}{2!} f_i'' + \frac{(\Delta x)^3}{3!} f_i''' + \frac{(\Delta x)^4}{4!} f_i^{(4)} + \dots$$

$$f_{i-1} = f_i - \Delta x f_i' + \frac{(\Delta x)^2}{2!} f_i'' - \frac{(\Delta x)^3}{3!} f_i''' + \frac{(\Delta x)^4}{4!} f_i^{(4)} - \dots$$

Removing f'(x_i) yields

$$f_{i+1} - f_{i-1} = 2\Delta x f_i' + \frac{(\Delta x)^3}{3} f_i''' + \frac{(\Delta x)^5}{60} f_i^{(5)} + \dots$$

$$f(x_{i-1}) \qquad f(x_i) \qquad f(x_{i+1})$$

$$X_{i-1} \qquad X_i \qquad X_{i+1}$$

Rearranging the equation

$$f_{i}' = \frac{f_{i+1} - f_{i-1}}{2\Delta x} \underbrace{-\frac{\left(\Delta x\right)^{2}}{6} f_{i}''' - \frac{\left(\Delta x\right)^{5}}{120} f_{i}^{(5)} - \dots}_{-\frac{\left(\Delta x\right)^{2}}{6} f_{i}'''(\xi) = O((\Delta x)^{2})}$$

2nd central difference

$$f_i' = \frac{f_{i+1} - f_{i-1}}{2\Delta x} + O((\Delta x)^2)$$

2nd Order Finite Difference

Recalling Taylor Series Expansion

$$f_{i+1} = f_i + \Delta x f_i' + \underbrace{\left(\Delta x\right)^2}_{2!} f_i'' + \underbrace{\left(\Delta x\right)^3}_{3!} f_i''' + \underbrace{\left(\Delta x\right)^4}_{4!} f_i^{(4)} + \dots$$

- ▶ Using $f_{i+2} = f(x_{i+2})$, $2\Delta x = x_{i+2} x_i$ for uniform spacing
- We get

$$f_{i+2} = f_i + 2\Delta x f_i' + \frac{(2\Delta x)^2}{2!} f_i'' + \frac{(2\Delta x)^3}{3!} f_i''' + \frac{(2\Delta x)^4}{4!} f_i^{(4)} + \dots$$

$$f(x_{i-2}) \quad f(x_{i-1}) \quad f(x_i) \quad f(x_{i+1}) \quad f(x_{i+2})$$

$$x_{i-2} \quad x_{i-1} \quad x_i \quad x_{i+1} \quad x_{i+2}$$

Multiply by 2

$$f_{i+1} = f_i + \Delta x f_i' + \frac{(\Delta x)^2}{2!} f_i'' + \frac{(\Delta x)^3}{3!} f_i''' + \frac{(\Delta x)^4}{4!} f_i^{(4)} + \dots$$
 X 2

Subtracted from

$$f_{i+2} = f_i + 2\Delta x f_i' + \frac{\left(2\Delta x\right)^2}{2!} f_i'' + \frac{\left(2\Delta x\right)^3}{3!} f_i''' + \frac{\left(2\Delta x\right)^4}{4!} f_i^{(4)} + \dots$$

We get $f_{i+2} - 2f_{i+1} = -f_i + (\Delta x)^2 f_i'' + (\Delta x)^3 f_i''' + \dots$

$$f(x_{i-2})$$
 $f(x_{i-1})$ $f(x_i)$ $f(x_{i+1})$ $f(x_{i+2})$
 X_{i-2} X_{i-1} X_i X_{i+1} X_{i+2}

Rearranging the equation

$$f_{i}'' = \frac{f_{i+2} - 2f_{i+1} + f_{i}}{(\Delta x)^{2}} \underbrace{-\Delta x f_{i}''' + \dots}_{-\Delta x f'''(\xi) = O(\Delta x)}$$

1st forward difference

$$f_{i}'' = \frac{f_{i+2} - 2f_{i+1} + f_{i}}{(\Delta x)^{2}} + O(\Delta x)$$

Recalling Taylor Series Expansion

$$f_{i-1} = f_i - \Delta x f_i' + \frac{(\Delta x)^2}{2!} f_i'' + \frac{(\Delta x)^3}{3!} f_i''' + \frac{(\Delta x)^4}{4!} f_i^{(4)} - \dots$$

- ▶ Using $f_{i-2} = f(x_{i-2})$, $2\Delta x = x_i x_{i-2}$ for uniform spacing
- We get

$$f_{i-2} = f_i - 2\Delta x f_i' + \frac{\left(2\Delta x\right)^2}{2!} f_i'' - \frac{\left(2\Delta x\right)^3}{3!} f_i''' + \frac{\left(2\Delta x\right)^4}{4!} f_i^{(4)} - \dots$$

Multiply by 2

$$\left[f_{i-1} = f_i - \Delta x f_i' + \frac{(\Delta x)^2}{2!} f_i'' - \frac{(\Delta x)^3}{3!} f_i''' + \frac{(\Delta x)^4}{4!} f_i^{(4)} - \dots \right] \quad X \ 2$$

Subtracted from

$$f_{i-2} = f_i - 2\Delta x f_i' + \frac{\left(2\Delta x\right)^2}{2!} f_i'' - \frac{\left(2\Delta x\right)^3}{3!} f_i''' + \frac{\left(2\Delta x\right)^4}{4!} f_i^{(4)} - \dots$$

We get $f_{i-2} - 2f_{i-1} = -f_i + (\Delta x)^2 f_i'' - (\Delta x)^3 f_i''' + \dots$

$$f(x_{i-2})$$
 $f(x_{i-1})$ $f(x_i)$ $f(x_{i+1})$ $f(x_{i+2})$
 X_{i-2} X_{i-1} X_i X_{i+1} X_{i+2}

Rearranging the equation

$$f_{i}'' = \frac{f_{i} - 2f_{i-1} + f_{i-2}}{(\Delta x)^{2}} \underbrace{-\Delta x f_{i}''' + \dots}_{-\Delta x f'''(\xi) = O(\Delta x)}$$

1st backward difference

$$f_{i}'' = \frac{f_{i} - 2f_{i-1} + f_{i-2}}{(\Delta x)^{2}} + O(\Delta x)$$

Recapping that

$$f_{i+1} = f_i + \Delta x f_i' + \frac{\left(\Delta x\right)^2}{2!} f_i'' + \frac{\left(\Delta x\right)^3}{3!} f_i''' + \frac{\left(\Delta x\right)^4}{4!} f_i^{(4)} + \dots$$

$$f_{i-1} = f_i - \Delta x f_i' + \frac{\left(\Delta x\right)^2}{2!} f_i'' - \frac{\left(\Delta x\right)^3}{3!} f_i''' + \frac{\left(\Delta x\right)^4}{4!} f_i^{(4)} - \dots$$

Adding the above two equations yields

$$f_{i+1} + f_{i-1} = 2f_i + (\Delta x)^2 f_i'' + \frac{(\Delta x)^4}{12} f_i^{(4)} + \dots$$

Rearranging the equation

$$f_i'' = \frac{f_{i+1} - 2f_i + f_{i-1}}{(\Delta x)^2} \underbrace{-\frac{(\Delta x)^2}{12} f_i^{(4)} + \dots}_{-\frac{(\Delta x)^2}{12} f^{(4)}(\xi) = O((\Delta x)^2)}$$

2nd central difference

$$f_i'' = \frac{f_{i+1} - 2f_i + f_{i-1}}{(\Delta x)^2} + O((\Delta x)^2)$$

Common Finite Difference Formulae

Type of approximation	Formula	Truncation error
Forward differences	$f_i' = (f_{i+1} - f_i)/(\Delta x)$ $f_i'' = (f_{i+2} - 2f_{i+1} + f_i)/(\Delta x)^2$ $f_i''' = (f_{i+3} - 3f_{i+2} + 3f_{i+1} - f_i)/(\Delta x)^3$ $f_i'''' = (f_{i+4} - 4f_{i+3} + 6f_{i+2} - 4f_{i+1} + f_i)/(\Delta x)^4$	$O(\Delta x)$
Backward differences	$f_{i}' = (f_{i} - f_{i-1})/(\Delta x)$ $f_{i}'' = (f_{i} - 2f_{i-1} + f_{i-2})/(\Delta x)^{2}$ $f_{i}''' = (f_{i} - 3f_{i-1} + 3f_{i-2} - f_{i-3})/(\Delta x)^{3}$ $f_{i}'''' = (f_{i} - 4f_{i-1} + 6f_{i-2} - 4f_{i-3} + f_{i-4})/(\Delta x)^{4}$	$O(\Delta x)$
Central differences	$f_i' = (f_{i+1} - f_{i-1})/(2 \Delta x)$ $f_i'' = (f_{i+1} - 2f_i + f_{i-1})/(\Delta x)^2$ $f_i''' = (f_{i+2} - 2f_{i+1} + 2f_{i-1} - f_{i-2})/(2(\Delta x)^3)$ $f_i'''' = (f_{i+2} - 4f_{i+1} + 6f_i - 4f_{i-1} + f_{i-2})/(\Delta x)^4$	$O(\Delta x^2)$

Higher Order Finite Difference

Recalling Taylor Series Expansion

$$f_{i}'' = \frac{f_{i+2} - 2f_{i+1} + f_{i}}{(\Delta x)^{2}} - \Delta x f_{i}''' + \dots$$
 (1)

$$f_{i}' = \frac{f_{i+1} - f_{i}}{\Delta x} - \frac{\Delta x}{2!} f_{i}'' - \frac{(\Delta x)^{2}}{3!} f_{i}''' - \dots$$
 (2)

> Replace f_i'' in (2), using (1), we get

$$f_{i}' = \frac{f_{i+1} - f_{i}}{\Delta x} - \frac{\Delta x}{2!} \left[\frac{f_{i+2} - 2f_{i+1} + f_{i}}{\left(\Delta x\right)^{2}} - \Delta x f_{i}''' + \dots \right] - \frac{\left(\Delta x\right)^{2}}{3!} f_{i}''' - \dots$$

$$f(x_{i-2})$$
 $f(x_{i-1})$ $f(x_i)$ $f(x_{i+1})$ $f(x_{i+2})$
 X_{i-2} X_{i-1} X_i X_{i+1} X_{i+2}

Higher Order Finite Difference (continue)

Rearranging the equation yields 2nd forward difference

$$f_{i}' = \frac{-f_{i+2} + 4f_{i+1} - 3f_{i}}{2\Delta x} + O((\Delta x)^{2})$$

Higher Order Finite Difference (continue)

- Sum of all the coefficients of the function value (f) appearing in the numerator can be seen to be zero, implying that the derivative becomes zero if f(x) is a constant
- Accuracy of the computed derivatives can be improved either by using a smaller step size or by using a higher accuracy formula
- Use of finite-difference approximation transforms an ordinary differential equation into algebraic equation, which is relatively simpler to solve

Example

Formulate the boundary-value problem for an infinitely long hollow cylinder whose inner surface (r = 5") is maintained at 200°F, while the outer surface (r = 10") is maintained at 65°F. The radial heat transfer in a thick hollow cylinder is given by

$$\frac{d^2T}{dr^2} + \frac{1}{r}\frac{dT}{dr} = 0$$

Solution

Using h = 1", interval 5" $\leq x \leq 10$ " can be divided into N = 5

Example (continue)

Employ the central difference formulae

$$\frac{d^2T}{dr^2} + \frac{1}{r}\frac{dT}{dr} = 0$$

$$\frac{T_{i+1} - 2T_i + T_{i-1}}{h^2} + \frac{1}{r_i} \frac{T_{i+1} - T_{i-1}}{2h} = 0$$

Higher Order Finite Difference Formulae

Formula	Truncation error
	$O(\Delta x)^2$
· · · · · · · · · · · · · · · · · · ·	
$= (-2f_{i+5} + 11f_{i+4} - 24f_{i+3} + 26f_{i+2} - 14f_{i+1} + 3f_i)/(\Delta x)^4$	
$(3f_i - 4f_{i-1} + f_{i-2})/(2(\Delta x))$	$O(\Delta x^2)$
$= (2f_i - 5f_{i-1} + 4f_{i-2} - f_{i-3})/(\Delta x)^2$	
$= (5f_i - 18f_{i-1} + 24f_{i-2} - 14f_{i-3} + 3f_{i-4})/(2(\Delta x)^3)$	
$= (3f_i - 14f_{i-1} + 26f_{i-2} - 24f_{i-3} + 11f_{i-4} - 2f_{i-5})/(\Delta x)^4$	
$(-f_{i+2} + 8f_{i+1} - 8f_{i-1} + f_{i-2})/(12(\Delta x))$	$O(\Delta x^4)$
$= (-f_{i+2} + 16f_{i+1} - 30f_i + 16f_{i-1} - f_{i-2})/(12(\Delta x)^2)$	
$= (-f_{i+3} + 8f_{i+2} - 13f_{i+1} + 13f_{i-1} - 8f_{i-2} + f_{i-3})/(8(\Delta x)^3)$	
	$= (-f_{i+2} + 4f_{i+1} - 3f_i)/(2(\Delta x))$ $= (-f_{i+3} + 4f_{i+2} - 5f_{i+1} + 2f_i)/(\Delta x)^2$ $= (-3f_{i+4} + 14f_{i+3} - 24f_{i+2} + 18f_{i+1} - 5f_i)/(2(\Delta x)^3)$ $= (-2f_{i+5} + 11f_{i+4} - 24f_{i+3} + 26f_{i+2} - 14f_{i+1} + 3f_i)/(\Delta x)^4$ $= (3f_i - 4f_{i-1} + f_{i-2})/(2(\Delta x))$ $= (2f_i - 5f_{i-1} + 4f_{i-2} - f_{i-3})/(\Delta x)^2$ $= (5f_i - 18f_{i-1} + 24f_{i-2} - 14f_{i-3} + 3f_{i-4})/(2(\Delta x)^3)$ $= (3f_i - 14f_{i-1} + 26f_{i-2} - 24f_{i-3} + 11f_{i-4} - 2f_{i-5})/(\Delta x)^4$ $= (-f_{i+2} + 8f_{i+1} - 8f_{i-1} + f_{i-2})/(12(\Delta x))$ $= (-f_{i+2} + 16f_{i+1} - 30f_i + 16f_{i-1} - f_{i-2})/(12(\Delta x)^2)$ $= (-f_{i+3} + 8f_{i+2} - 13f_{i+1} + 13f_{i-1} - 8f_{i-2} + f_{i-3})/(8(\Delta x)^3)$ $= (-f_{i+3} + 12f_{i+2} - 39f_{i+1} + 56f_i - 39f_{i-1} + 12f_{i-2} - f_{i-3})/(6(\Delta x)^4)$

Example

- Compute forward and backward difference approximations of $O(\Delta x)$ and $O(\Delta x)^2$, and central difference approximations of $O(\Delta x)^2$ and $O(\Delta x)^4$ for the first derivative of $f(x) = \sin x$ at $x = \pi/4$ using a value of $\Delta x = \pi/12$. Estimate the true percent relative error E_t for each approximation.
- **Exact solution:** $f'(\pi/4) = \cos \pi/4 = 0.707$

Example (continue)

- 1st forward difference
- 2nd forward difference
- 1st backward difference
- 2nd backward difference
- 2nd central difference
- 4th central difference

$$f'_{i} = (f_{i+1} - f_{i})/\Delta x$$

$$f'_{i} = (-f_{i+2} + 4f_{i+1} - 3f_{i})/2\Delta x$$

$$f'_{i} = (f_{i} - f_{i-1})/\Delta x$$

$$f'_{i} = (3f_{i} - 4f_{i-1} + f_{i-2})/2\Delta x$$

$$f'_{i} = (f_{i+1} - f_{i-1})/2\Delta x$$

$$f'_{i} = (-f_{i+2} + 8f_{i+1} - 8f_{i-1} + f_{i-2})/12\Delta x$$

notation	X	$f(x) = \sin(x)$
i - 2	$\pi/4 - 2\pi/12 = \pi/12$	0.259
i -1	$\pi/4 - \pi/12 = \pi/6$	0.500
i	π/4	0.707
i + 1	$\pi/4 + \pi/12 = \pi/3$	0.866
i + 2	$\pi/4 + 2\pi/12 = 5\pi/12$	0.966

Example (continue)

1st forward difference

$$f_i' = (f_{i+1} - f_i) / \Delta x = (0.866 - 0.707) / (\pi/12) = 0.607$$
 $E_i = 14.1\%$

2nd forward difference

$$f_i' = (-f_{i+2} + 4f_{i+1} - 3f_i)/2\Delta x = 0.72$$
 $E_i = -1.84\%$

1st backward difference

$$f_i' = (f_i - f_{i-1})/\Delta x = 0.791$$
 $E_i = -11.9\%$

2nd backward difference

$$f_i' = (3f_i - 4f_{i-1} + f_{i-2})/2\Delta x = 0.726$$
 $E_i = -2.69\%$

2nd central difference

$$f_i' = (f_{i+1} - f_{i-1})/2\Delta x = 0.699$$
 $E_i = 1.13\%$

4th central difference

$$f'_{i} = (-f_{i+2} + 8f_{i+1} - 8f_{i-1} + f_{i-2})/12\Delta x = 0.707$$
 $E_{i} = 0\%$

 \rightarrow E_t = (Actual – Approx)/Actual X 100%

$$f'(\pi/4) = \cos \pi/4 = 0.707$$

notation	X	$f(x) = \sin(x)$
i - 2	$\pi/4 - 2\pi/12 = \pi/12$	0.259
i -1	$\pi/4 - \pi/12 = \pi/6$	0.500
İ	π/4	0.707
i + 1	$\pi/4 + \pi/12 = \pi/3$	0.866
i + 2	$\pi/4 + 2\pi/12 = 5\pi/12$	0.966

Differentiation of Interpolating Polynomials

Power Series Type

$$f(x) = a_0 + a_1 x + a_2 x^2$$

$$f(x_i) = f_i = a_0 + a_1 x_i + a_2 x_i^2$$

$$f(x_{i+1} = x_i + h) = f_{i+1} = a_0 + a_1 (x_i + h) + a_2 (x_i + h)^2$$

$$f(x_{i+2} = x_i + 2h) = f_{i+2} = a_0 + a_1 (x_i + 2h) + a_2 (x_i + 2h)^2$$

Simplifying

$$\begin{aligned} x_i &= 0, & f_i &= a_0 \\ x_{i+1} &= h, & \Rightarrow f_{i+1} &= a_0 + a_1 h + a_2 h^2 \\ x_{i+2} &= 2h & f_{i+2} &= a_0 + 2a_1 h + 4a_2 h^2 \end{aligned} \end{aligned} \quad \begin{aligned} a_0 &= f_i \\ a_1 &= \frac{-f_{i+2} + 4f_{i+1} - 3f_i}{2h} \\ a_2 &= \frac{f_{i+2} - 2f_{i+1} + f_i}{2h^2} \end{aligned}$$

$$f_{i}' = f'(x_{i} = 0) = a_{1} + 2a_{2}x_{i} = a_{1} = \frac{-f_{i+2} + 4f_{i+1} - 3f_{i}}{2h} \qquad f_{i}'' = f''(x_{i} = 0) = 2a_{2} = \frac{f_{i+2} - 2f_{i+1} + f_{i}}{h^{2}}$$

Observations

- Finite-difference approximations are the same as those derived by Taylor Series Expansion without error terms
- Derivation of finite-difference approximations from interpolating polynomials is particularly useful when the data points have <u>non-uniform</u> spacing

Example 1

► If
$$x_i = 0$$
, $x_{i+1} = h$, $x_{i+2} = 4h$

$$f(x_i) = f_i = a_0 + a_1 x_i + a_2 x_i^2$$

$$f(x_{i+1} = x_i + h) = f_{i+1} = a_0 + a_1 (x_i + h) + a_2 (x_i + h)^2$$

$$f(x_{i+2} = x_i + 4h) = f_{i+2} = a_0 + a_1 (x_i + 4h) + a_2 (x_i + 4h)^2$$

Then

$$f_i = a_0$$

$$f_{i+1} = a_0 + a_1 h + a_2 h^2$$

$$f_{i+2} = a_0 + 4a_1 h + 16a_2 h^2$$

$$f_i' = a_1 = \frac{-f_{i+2} + 16f_{i+1} - 15f_i}{12h}$$

$$a_0 = f_i$$

$$a_1 = \frac{-f_{i+2} + 16f_{i+1} - 15f_i}{12h}$$

$$a_2 = \frac{f_{i+2} - 4f_{i+1} + 3f_i}{12h^2}$$

$$f_i'' = 2a_2 = \frac{f_{i+2} - 4f_{i+1} + 3f_i}{6h^2}$$

Example 2

Heat flux at the soil-air interface can be computed with Fourier's law

$$q(z=0) = -\alpha \rho C \frac{dT}{dz} \bigg|_{z=0}$$

- α = soil thermal diffusivity ($\cong 3.5 \times 10^{-7} \text{ m}^2/\text{s}$)
- $\rho = \text{soil density} \ (\cong 1800 \text{ kg/m}^3)$
- □ $C = \text{soil specific heat } (\cong 840 \text{ J/(kg} \cdot {}^{\circ}\text{C}))$
- Use numerical differentiation to evaluate the gradient at the soil-air interface and employ this estimate to determine the heat flux into ground

Example 2 (continue)

Problem definition

z (cm)	T (°C)
0	13.5
1.25	12
3.75	10

Non-uniform data spacing. Use Power Series Type Interpolation based on polynomial

$$T(z) = a_0 + a_1 z + a_2 z^2$$

Example 2 (continue)

With
$$h = 1.25$$
 cm, $z_i = 0$, $z_{i+1} = h$, $z_{i+2} = 3h$

$$T_i = a_0$$

$$T_{i+1} = a_0 + a_1 h + a_2 h^2$$

$$T_{i+2} = a_0 + 3a_1 h + 9a_2 h^2$$

z (cm)	T (°C)
0	13.5
1.25	12
3.75	10

 $T(z) = a_0 + a_1 z + a_2 z^2$

Since

$$\frac{dT}{dz}\bigg|_{z=0} = a_1 + 2a_2(0) = a_1$$

$$a_1 = \frac{-T_{i+2} + 9T_{i+1} - 8T_i}{6h} = \frac{-10 + 9(12) - 8(13.5)}{6(1.25)} = -1.333$$
°C/cm = -133.3°C/m

$$q(z=0) = -\alpha \rho C \frac{dT}{dz}\Big|_{z=0}$$
 = (3.5 × 10⁻⁷)(1800)(840)(133.3) = 70.56 W/m²

DERIVATIVES FOR DATA WITH ERRORS

Illustration of how small data errors are amplified by numerical differentiation: (a) data with no error, (b) the resulting numerical differentiation of curve (a), (c) data modified slightly, and (d) the resulting differentiation of curve (c) manifesting increased variability.

Richardson's Extrapolation for Differentiation

- Represents another way of improving the accuracy of the estimates of the derivatives
- ➤ Truncation error $E = O(h^n) \approx ch^n$
- If D_1 and D_2 are the approximated derivatives with a step size h_1 and h_2

$$D = D_{1} + O(h_{1}^{n}) = D_{1} + E_{1} \approx D_{1} + ch_{1}^{n}$$

$$D = D_{2} + O(h_{2}^{n}) = D_{2} + E_{2} \approx D_{2} + ch_{2}^{n}$$

$$D_{1} + ch_{1}^{n} \approx D_{2} + ch_{2}^{n} \implies c = \frac{D_{2} - D_{1}}{h_{1}^{n} - h_{2}^{n}}$$

$$D \approx D_{2} + \frac{D_{2} - D_{1}}{\left\{ \left(\frac{h_{1}}{h_{2}} \right)^{n} - 1 \right\}}$$

- ► Using $h_2 = h_1/2$ $D \approx D_2 + \frac{D_2 D_1}{2^n 1} + O(h^{n+2})$
- ➤ The more accurate is the one computed with smaller *h*

Example

Estimate the 1st derivative $f(x) = x^4 + 1.5x^3 + 5x^2 + 2.5x - 12$ at x = 0.5 using central difference approximation of $O(h^2)$ employing a step size of $h_1 = 0.5$ and $h_2 = 0.25$. Then use Richardson extrapolation to compute an improved estimate. Compare solution with exact solution and estimated solution using central difference approximation of $O(h^4)$ with h = 0.25.

Example (continue)

Exact solution is

$$f'(x) = 4x^{3} + 4.5x^{2} + 10x^{2} + 2.5$$
$$f'(0.5) = 4(0.5)^{3} + 4.5(0.5)^{2} + 10(0.5) + 2.5 = 9.125$$

$$h_1 = 0.5$$
 $f'(0.5) = \frac{-2+12}{2(0.5)} = 10$

<i>/</i> *	'\''
0	-12
0.25	-11.0352
0.5	-9.25
0.75	-6.36328
1	-2
1	

f(x)

$$h_2 = 0.25$$
 $f'(0.5) = \frac{-6.36328 + 11.0352}{2(0.25)} = 9.34375$ compare

- For $h_2 = h_1/2$ and n = 2, $D_1 = 10$ and $D_2 = 9.34375$
- Then $D \approx D_2 + \frac{D_2 D_1}{2^n 1} + O(h^{n+2}) = 9.34375 + \frac{9.34375 10}{2^2 1} + O(h^4) = 9.125$

Example (continue)

▶ Using central difference of $O(h^4)$, h = 0.25

$$f_{i}' = \frac{-f_{i+2} + 8f_{i+1} - 8f_{i-1} + f_{i-2}}{12h}$$
$$f'(0.5) = \frac{2 + 8(-6.36328) - 8(-11.0352) - 11.0352}{12(0.25)} = 9.125$$

Х	f(x)
	-12
0.25	-11.0352
0.5	-9.25
0.75	-6.36328
1	-2

Estimates of $O(h^4)$ is the same as exact solution! Recalling Richardson Extrapolation in previous slide