Phys 111: Lecture 22

Ross Miller

University of Idaho

November 07, 2019

"The 22^{nd} Day: (7)(3) + 1"

Homework Wk #11 Due Today

Today's Topics

- 1. Pendulum
- 2. Realistic Simple Harmonic Motion
- 3. Pressure

Motivation

Why are/were pendulums used in clocks?

Robert Mathena/Fundamental Photographs

Figure: 22.1 Clock utilizing a pendulum to tell time

A Different SHM

Where have we seen this type of graph before?

Figure: 22.2 Simple harmonic motion of a pendulum

Quantifying SHM of a Pendulum

How would we determine the frequency of a pendulum in general?

Figure: 22.3 Force [and torque] on a pendulum

Derivation of the Frequency of a Pendulum

Gravity produces a torque on the pendulum and similar to a spring force $F_{sp}=-kx$, the torque has the form:

$$\tau_q \approx -mgL\theta$$

when the angle displacement is small. [small $\theta \longrightarrow sin(\theta) \approx \theta$]

Utilizing $\sum \tau = I\alpha$ and $I = mL^2$ results in

$$(-mgL\theta) = (mL^2)\alpha$$

Which simplifies to

$$\alpha = -\left(\frac{g}{L}\right)\theta$$

Derivation Continued

Whenever an equation of the form

$$\alpha = -A\theta$$

occurs one can determine ω because the solution for such a $2^{\rm nd}$ order rate equation includes the relation

$$\omega^2 = A$$
.

In our case we have

$$\omega^2 = \frac{g}{L}.$$

Which results in

$$\omega = \sqrt{\frac{g}{L}}.$$

Reading Graphs for Simple Harmonic Motion

Figure: 22.3 Example graph for simple harmonic motion

Simple Harmonic Motion Universal Equations

The following equations can be used for modeling any simple harmonic motion that begins with max amplitude:

$$\theta = \omega t$$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

$$x = A\cos(\omega t), \qquad x_{max} = A$$

$$v_x = -A\omega\sin(\omega t), \quad v_{max} = A\omega$$

$$a_x = -A\omega^2\cos(\omega t), \quad a_{max} = A\omega^2$$

Exercise #1

C&J 10.43 A simple pendulum is made from a $0.65\ m$ long string and a small ball attached to its free end. The ball is pulled to one side through a small angle and then released from rest. After the ball is released, how much time elapses before it attains its greatest speed?

Exercise #1 Translation

C&J 10.43 Utilize the relationships $v=-A\omega sin(\omega t)$ and $\omega=\sqrt{g/L}$ as well as the information L=0.65~m to determine at what time a mass at the end of a pendulum will reach max speed?

Exercise #1 Answer

C&J 10.4 How much time elapses before a pendulum mass attains its greatest speed if the length of the pendulum is 0.65 m?

Max speed occurs when

$$sin(\omega t) = 1$$

Which occurs at

$$\omega t = \frac{\pi}{2}.$$

Therefore

$$t=\frac{\pi}{2\omega}$$

and don't forget that

$$\omega = \sqrt{\frac{g}{L}}.$$

Exercise #1 Finished

C&J 10.4 How much time elapses before a pendulum mass attains its greatest speed if the length of the pendulum is 0.65 m?

Our useful version of this relationship is

$$t = \left(\frac{\pi}{2}\right)\sqrt{\frac{L}{g}}$$

and with our numbers we get

$$t = (1.571)\sqrt{0.065\ s^2}$$

$$t=1.571\times0.255\;s$$

$$t = 0.40 \ s$$

Exercise #2

C&J 10.45 The length of a simple pendulum is $0.79\ m$ and the mass of the particle (the bob) at the end of the cable is $0.24\ kg$. The pendulum is pulled away from its equilibrium position by an angle of 8.50° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion.

- a. What is the angular frequency of the motion?
- b. Using the position of the bob at its lowest point as the reference level, determine the total mechanical energy of the pendulum as it swings back and forth.
- c. What is the bob's speed as it passes through the lowest point of the swing?

Exercise #2 Physical Relationships

C&J 10.45 Simple pendulum with L=0.79~m,~m=0.24~kg, and an initial angular displacement of $\theta_o=8.5^{\circ}$.

$$E_o = E_f$$

$$PE_o = PE_f + KE_f$$

$$\omega = \sqrt{\frac{g}{L}}$$

$$PE_o = mgL \left[1 - \cos\theta_o \right]$$

$$PE_{low} = 0$$

Exercise #2

C&J 10.45 Simple pendulum with L=0.79~m,~m=0.24~m, and an initial angular displacement of $\theta_o=8.5^{\circ}.$

a. What is the angular frequency of the motion?

$$\omega = 3.56 \; rad/s$$

b. Using the position of the bob at its lowest point as the reference level, determine the total mechanical energy of the pendulum as it swings back and forth.

$$E_{tot} = PE_o = 21 \ mJ$$

c. What is the bob's speed as it passes through the lowest point of the swing?

$$v = 0.42m/s$$

Damped Harmonic Motion

How do we quantify the process of harmonic motion diminishing?

Figure: 22.4 Example graph of underdamped oscillations

Damped Oscillations

The three types of damped harmonic motion are

Figure: 22.5 (a) Under, (b) Critically, and (c) Over damped oscillations

Driven Harmonic Motion

What is special about forcing the ball at the frequency f_o ?

Figure: 22.6 Driven oscillations: Under, Resonant, and Over driven systems

Driven & Damped Harmonic Motion

In reality, a system can be driven and damped.

Figure: 22.7 Driven and damped oscillations

Exercise #3

C&J 10.15 When responding to sound, the human eardrum vibrates about its equilibrium position. Suppose an eardrum is vibrating with an amplitude of $6.3\times10^{-7}~m$ and a maximum speed of $2.9\times10^{-3}~m/s$.

- a. What is the frequency (in Hz) of the eardrum's vibration?
- b. What is the maximum acceleration of the eardrum?

Exercise #3 Answer

C&J 10.15 Consider SHM with an amplitude of $6.3 \times 10^{-7}~m$ and a maximum speed of $2.9 \times 10^{-3}~m/s$. The following answers were calculated using the relationships

$$v_{max} = A\omega,$$
 $a_{max} = A\omega^2, \ and$ $\omega = 2\pi f$

a. What is the frequency (in Hz) of the eardrum's vibration?

$$f = 733 Hz$$

b. What is the maximum acceleration of the eardrum?

$$a_{max} = 13.3 \ m/s^2$$

Mini Break

Any questions before we continue with Pressure?

Before we move on, let's also demonstrate the discussed phenomena.

Regime of Simple Harmonic Motion

Stress, σ , is a specific type of pressure and Strain, ϵ , is a percent change in length.

Figure: 22.8 Ideal stress-strain² curve for material tests

²https://www.simsolid.com/faq-items/material-properties/

Pressure

The **pressure P** exerted on a surface is defined as the magnitude of the force acting perpendicular to a surface (F_{\perp}) divided by the area A over which the force F acts:

$$P = \frac{F_{\perp}}{A}$$

Figure: 22.9 Pressure exerted on all sides of a swimmer

Hydraulics Application/Motivation

Why can brake pedals in a car be so small?

Figure: 22.10 Why does the car lift if a smaller area is used for the original force?