MELİSA SUBAŞI ID:22829169256

```
TASK 1:
   add $s0, $0, 12 # $s0 = a
   add $s1, $0, 23 # $s1 = b
    blt $s0, $s1, else # Branch to else if a is less than b
   add $s2, $s0, $s0  # Multiply a by 2 and store the result in $s2
   sw $s2, 0x10000000($0)  # Store the result in 'c'
   j done
else:
   # If a <= b, execute the following:</pre>
   add $s3, $s0, $s1 # Add a and b and store the result in $s3
   sw $s3, 0x10000004($0)  # Store the result in 'd'
done:
TASK 2:
a)
add $s0, $0, 128
add $s1, $0, 0
add $s2, $0, 2
add $s4, $0, 1
while_loop:
 beq $s0, $s4, end_while
 div $s0, $s2
 mflo $s0
 add $s1, $s1, 1
 j while_loop
end_while:
lui $s0, 0x23B8 # $s0 = 0x23B80000
ori $s0, $s0, 0xF000 # $s0 = 0x23B8F000
```

b)

Line	Explanation	Modified Register	Values of Modified Register
1	Adds the immediate value 128 to the value in register \$0 and stores the result in register \$50.	\$50	128
2	Adds the immediate value 0 to the value in register \$0 and stores the result in register \$s1.	\$s1	0
3	Adds the immediate value 2 to the value in register \$0 and	\$s2	2

	1		,
	stores the result in register		
	\$s2.		
4	Adds the immediate value 1 to	\$s4	1
	the value in register \$0 and	·	
	stores the result in register		
	\$s4.		
5	Marks the beginning of a loop.	_	_
6	Branches to the label	_	_
	"end_while" if the values in		
	registers \$s0 and \$s4 are equal.		
7	Divides the value in register	\$s0, \$s2	Quotient in \$s0, Remainder
	\$s0 by the value in register	4501 452	in \$52
	\$s2. The quotient is stored in		111 432
	register \$s0, and the remainder		
	is stored in register \$s2.		
8	Moves the contents of the	\$50	Quotient from the division
	special register LO (where the	450	quotient irom the division
	quotient is stored after		
	division) to register \$50.		
9	Adds 1 to the value in register	\$s1	\$s1 + 1
	\$s1.	431	431 . 1
10	Jumps (unconditionally) to the	_	_
10	label "while_loop", restarting		
	the loop.		
11	Marks the end of the loop.	_	_
12	Loads the immediate value	\$s0	0x23B80000
12	0x23B80000 into the upper 16	Ψ30	UXZSBOOOO
	bits of register \$50.		
13	Bitwise ORs the value in	\$s0	0X23B8F000
1.5	register \$50 with the immediate	ψ30	0.23501 000
	value 0xF000, updating the lower		
	16 bits of \$s0.		
	זט טבנט טו שָטע.		

TASK 3:

addi \$s1, \$0, 0

addi \$t2, \$0, 1000

loop:

sle \$t0, \$s1, 1000

beq \$t0, \$0, done

sll \$t0, \$s1, 2

add \$t0, \$t0, \$s0

lw \$t1, 0x1000000(\$0)

sll \$t1, \$t1, 1

sw \$t1, 0x10000004(\$0)

addi \$s1, \$s1, 2

j loop

done:

Explanations for each line:

- 1-Adds the immediate value 0 to the value in register \$0 and stores the result in register \$s1.
- 2- Adds the immediate value 1000 to the value in register \$0 and stores the result in register \$12.
- 3-Marks the beginning of a loop.
- 4- Sets register \$t0 to 1 if the value in register \$s1 is less than or equal to 1000, otherwise sets it to 0.
- 5- Branches to the label "done" if the value in register \$t0 is equal to 0.
- 6- Shifts the value in register \$s1 left by 2 bits and stores the result in register \$t0.
- 7- Adds the values in registers \$t0 and \$s0 and stores the result in register \$t0.
- 8- Loads a 32-bit word from the memory address 0x10000000 + the value in register \$0 and stores it in register \$11.
- 9- Shifts the value in register \$11 left by 1 bit.
- 10- Stores the value in register \$t1 into the memory address 0x10000004 + the value in register \$0.
- 11- Adds the immediate value 2 to the value in register \$\$1.
- 12- Unconditionally jumps to the label "loop", restarting the
- 13-Marks the end of the loop.