Summer 2022: Data Analysis Homework I Due: TBA Submit through Canvas

Instructions: Provided solutions to these questions using this template. Include graphics with your solutions. Put all code an appendix to this homework. Use the *verbatim* command to leave code unchanged.

- 1. This question considers the airquality data set in R.
- a) Provide a summary of the data. That is, what are the variables. Provide summary statistics for each variable.

Solution:

Below are the summary stats for the variables of airquality:

Ozone	Solar.R	Wind	
Min. : 1.00	Min. : 7.0	Min. : 1.700	
1st Qu.: 18.00	1st Qu.:115.8	1st Qu.: 7.400	
Median : 31.50	Median :205.0	Median : 9.700	
Mean : 42.13	Mean :185.9	Mean : 9.958	
3rd Qu.: 63.25	3rd Qu.:258.8	3rd Qu.:11.500	
Max. :168.00	Max. :334.0	Max. :20.700	
NA's :37	NA's :7		
Temp	Month	Day	
Min. :56.00	Min. :5.000	Min. : 1.0	
1st Qu.:72.00 1st Qu.:6.000		1st Qu.: 8.0	
Median :79.00	Median :7.000	Median :16.0	
Mean :77.88	Mean :6.993	Mean :15.8	
3rd Qu.:85.00	3rd Qu.:8.000	3rd Qu.:23.0	
Max. :97.00	Max. :9.000	Max. :31.0	

b) Make a time series plot for two variables in the *airquality* data set. Make sure to label each plot carefully. Extra credit for labeling the months of the data on the x-axis.

Solution:

Figure 1: This Figure represents air temperature in New York City

Figure 2: This Figure represents wind speed in New York City

c) Make side by side boxplots for the ozone data for each month. Do you believe the distribution of the ozone is the same for each month.

Solution:

The ozone layer distribution seems to be effected by the changing of months. This can be due to either the months changing themselves or other correlation months have, such as; Temperature, Wind Speed, etc.

Ozone Levels for Each Month

Figure 3: This Figure represents ozone levels each month in New York City

d) Compute the correlation and covariance matrix for the variables in the *airquality* data set.

Solution:

Below are the summary stats for the variables of

	ozone	solar.R	Wind	l Temp	Month	Day
ozone	NA	NA	N.A	NA NA	NA	NA
Solar.R	NA	NA	NA	NA NA	NA	NA
Wind	NA	NA	12.4115385	-15.272136	-0.8897532	0.8488519
Temp	NA	NA	-15.2721362	89.591331	5.6439628	-10.9574303
Month	NA	NA	-0.8897532	5.643963	2.0065359	-0.0999742
Day	NA	NA	0.8488519	-10.957430	-0.0999742	78.5797214
	Ozone	Solar.R	Wind	Temp	Month	Day
Ozone	Ozone 1	Solar.R NA	Wind NA	Temp NA	Month NA	
Ozone Solar.R						NA
	1		NA NA	NA NA	NA	NA NA
solar.R	1 NA	NA 1 NA	NA NA	NA NA -0.4579879	NA NA -0.178292579	NA NA
Solar.R Wind	1 NA NA	NA 1 NA NA	NA NA 1.0000000	NA NA -0.4579879 1.0000000	NA NA -0.178292579 0.420947252	NA NA 0.027180903

Figure 4: This is the Correlation and Covariance matrix of the airquality data set

Use this equation to solve questions below:

$$f(x) = \frac{70}{69x^2} \tag{1}$$

2. Get the CDF

Solution:

$$CDF = F(t) = \int_{1}^{t} f(x) dx \tag{2}$$

$$F(t) = \int_{1}^{t} \frac{70}{69x^2} dx \tag{3}$$

$$F(t) = \left[-\frac{70}{69t} + \frac{70}{69} \right] \tag{4}$$

3. Find the chances package weighs 20+ lbs

Solution:

I use 1 minus the CDF since we are looking for packages above 20.

$$F(t) = 1 - \left[-\frac{70}{69t} + \frac{70}{69} \right] \tag{5}$$

$$F(20) = 1 - \left[-\frac{70}{69(20)} + \frac{70}{69} \right] \tag{6}$$

$$F(20) = .036 = 3.6\% \tag{7}$$

4. Get μ and σ^2

Solution:

$$\mu = \int_{a}^{b} x f(x) \, dx \tag{8}$$

$$\mu = \int_{1}^{70} \frac{70}{69x^2} \, dx \tag{9}$$

$$\mu = \int_{1}^{70} \frac{70}{69x} \, dx \tag{10}$$

$$\mu = \left[\frac{70}{69}ln(70) - \frac{70}{69}ln(1)\right] \tag{11}$$

$$\mu = 4.31\tag{12}$$

$$\sigma^{2} = \int_{a}^{b} (x^{2} - x) f(x) dx \tag{13}$$

$$\sigma^2 = \int_1^{70} x^2 \frac{70}{69x^2} \, dx - \mu \tag{14}$$

$$\sigma^2 = \left[\frac{70}{69}x\right]_1^{70} - \mu \tag{15}$$

$$\sigma^2 = 65.61 \tag{16}$$

5. If Shipping cost \$5 per lbs

Solution:

Hint: Get E[Shipping Cost]

If E[x] is just μ then my assumption for this problem is to multiply \$5 by μ . This would be \$21.55 per box shipped on average.