CUDA

Prepared by Mallegowda M

GPU vs CPU

- A GPU is tailored for highly parallel operation while a CPU executes programs serially
- For this reason, GPUs have many parallel execution units and higher transistor counts, while CPUs have few execution units and higher clockspeeds
- A GPU is for the most part deterministic in its operation (though this is quickly changing)
- GPUs have much deeper pipelines (several thousand stages vs 10-20 for CPUs)
- GPUs have significantly faster and more advanced memory interfaces as they need to shift around a lot more data than CPUs

GPU and **CPU**

- Typically GPU and CPU coexist in a heterogeneous setting
- "Less" computationally intensive part runs on CPU (coarse-grained parallelism), and more intensive parts run on GPU (fine-grained parallelism)
- NVIDIA's GPU architecture is called CUDA (Compute Unified Device Architecture) architecture, accompanied by CUDA programming model, and CUDA C language

Small Changes, Big Speed-up

CUDA

- "Compute Unified Device Architecture"
- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU = dedicated super-threaded, massively data parallel co-processor
- Targeted software stack
 - Compute oriented drivers, language, and tools
- Driver for loading computation programs into GPU
 - Standalone Driver Optimized for computation
 - Interface designed for compute graphics-free API
 - Data sharing with OpenGL buffer objects
 - Guaranteed maximum download & readback speeds
 - Explicit GPU memory management

Parallel Computing on a GPU

- 8-series GPUs deliver 25 to 200+ GFLOPS on compiled parallel C applications
 - Available in laptops, desktops, and clusters

Programming model scales transparently

Programmable in C with CUDA tools

Multithreaded SPMD model uses application data parallelism and thread parallelism

Implementation = abstraction (from lecture 2)

NVIDIA GeForce 8800

Source: NVIDIA

OpenGL Pipeline

Streaming Processors, Texture Units, and On-chip Caches

Streaming Processors

- SP = Streaming Processors
- TF = Texture Filtering
 Unit
- TA = Texture
 Address Unit
- L1/L2 = Caches

Review: Executing Thread Blocks

to t1 t2 ... tm

Blocks

Threads are assigned to Streaming Multiprocessors in block granularity

- Up to 8 blocks to each SM as resource allows
- Fermi SM can take up to 1536 threads
 - Could be 256 (threads/block) * 6 blocks
 - Or 512 (threads/block) * 3 blocks, etc.
- Threads run concurrently
 - SM maintains thread/block id #s
 - SM manages/schedules thread execution

Thread Hierarchy

Thread – Distributed by the CUDA runtime (identified by threadIdx)

Warp – A scheduling unit of up to 32 threads

Block – A user defined group of 1 to 512 threads. (identified by blockIdx)

- Thread

- Block

Grid – A group of one or more blocks. A grid is created for each CUDA kernel function

Programming Model

Historically, GPUs designed for creating image data for displays.

That application involves manipulating image pixels (picture elements) and often the same operation each pixel

SIMD (single instruction multiple data) model - An efficient mode of operation in which the same operation is done on each data element at the same time

A Multi-Dimensional Grid Example

Illinois Urhana-Champaign

Thread Batching: Grids and Blocks

- Kernel executed as a grid of thread blocks
 - All threads share data memory space
- Thread block is a batch of threads, can cooperate with each other by:
 - Synchronizing their execution:
 For hazard-free shared memory accesses
 - Efficiently sharing data through a low latency shared memory
- Two threads from two different blocks cannot cooperate
 - (Unless thru slow global memory)
- Threads and blocks have IDs

Courtesy: NDVIA

(Device) Grid Block (0, 0) Block (1, 0) There are 6 Memory Types **Shared Memory Shared Memory** Registers Registers Registers Registers Thread (0, 0) Thread (0, 0) Thread (1, 0) Thread (1, 0) Local Local Local Local **Memory Memory Memory Memory** Host Global **Memory Constant Memory Texture Memory**

There are 6 Memory Types:

Registers

- on chip
- fast access
- per thread
- o limited amount
- o 32 bit

- Registers
- Local Memory
 - o in DRAM
 - o slow
 - non-cached
 - per thread
 - relative large

- Registers
- Local Memory
- Shared Memory
 - on chip
 - fast access
 - per block
 - 16 KByte
 - synchronize between threads

- Registers
- Local Memory
- Shared Memory
- Global Memory
 - o in DRAM
 - o slow
 - non-cached
 - per grid
 - communicate between grids

- Registers
- Local Memory
- Shared Memory
- Global Memory
- Constant Memory
 - o in DRAM
 - cached
 - per grid
 - read-only

- Registers
- Local Memory
- Shared Memory
- Global Memory
- Constant Memory
- Texture Memory
 - o in DRAM
 - cached
 - per grid
 - read-only

Different Types of CUDA Applications

Directives: Easy & Powerful

Real-Time Object Detection

Global Manufacturer of Navigation Systems

Valuation of Stock Portfolios using Monte Carlo

Global Technology Consulting Company

Interaction of Solvents and Biomolecules

University of Texas at San Antonio

5x in 40 Hours 2x in 4 Hours 5x in 8 Hours

Optimizing code with directives is quite easy, especially compared to CPU threads or writing CUDA kernels. The most important thing is avoiding restructuring of existing code for production applications.

-- Developer at the Global Manufacturer of

Navigation Systems

Fastest Performance on Scientific Applications

Tesla K20X Speed-Up over Sandy Bridge CPUs

CPU results: Dual socket E5-2687w, 3.10 GHz, GPU results: Dual socket E5-2687w + 2 Tesla K20X GPUs

^{*}MATLAB results comparing one i7-2600K CPU vs with Tesla K20 GPU © NVIDIA 2013 Disclaimer: Non-NVIDIA implementations may not have been fully optimized

Some GPU-accelerated Libraries

NVIDIA cuRAND

NVIDIA NPP

Vector Signal Image Processing

GPU Accelerated Linear Algebra

Multicore

NVIDIA cuFFT

Sparse Linear Algebra

Features for **CUDA**

CUDA Programming

Basic CUDA program structure

int main (int argc, char **argv) {

- 1. Allocate memory space in device (GPU) for data
- 2. Allocate memory space in host (CPU) for data
- 3. Copy data to GPU
- 4. Call "kernel" routine to execute on GPU (with CUDA syntax that defines no of threads and their physical structure)
- 5. Transfer results from GPU to CPU
- 6. Free memory space in device (GPU)
- 7. Free memory space in host (CPU)

```
return;
```

1. Allocating memory space in "device" (GPU) for data

Use CUDA malloc routines:

```
int size = N *sizeof( int);  // space for N integers
int *devA, *devB, *devC;  // devA, devB, devC ptrs
cudaMalloc( (void**)&devA, size) );
cudaMalloc( (void**)&devB, size );
cudaMalloc( (void**)&devC, size );
```

2. Allocating memory space in "host" (CPU) for data

Use regular C malloc routines:

```
int *a, *b, *c;
a = (int*)malloc(size);
b = (int*)malloc(size);
c = (int*)malloc(size);
or statically declare variables:
#define N 256
int a[N], b[N], c[N];
```

3. Transferring data from host (CPU) to device (GPU)

Use CUDA routine cudaMemcpy

Destination Source

cudaMemcpy(devA, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(devB, b, size, cudaMemcpyHostToDevice);

where:

devA and devB are pointers to destination in devicea and b are pointers to host data

4. Declaring "kernel" routine to execute on device (GPU)

CUDA introduces a syntax addition to C:

Triple angle brackets mark call from host code to device code.

Contains organization and number of threads in two parameters:

n and m will define organization of thread blocks and threads in a block.

For now, we will set n = 1, which say one block and m = N, which says N threads in this block.

arg1, ..., -- arguments to routine myKernel typically pointers to device memory obtained previously from cudaMalloc.

Declaring a Kernel Routine

A kernel defined using CUDA specifier __global__

Two
underscores
each side

Example – Adding to vectors A and B

```
#define N 256
  global__ void vecAdd(int *a, int *b, int *c) { // Kernel definition
                                      CUDA structure that provides thread ID in block
 int i = threadldx.x;
 c[i] = a[i] + b[i];
                                              Each of the N threads performs one pair-
                                              wise addition:
int main() {
                                              Thread 0: devC[0] = devA[0] + devB[0];
 // allocate device memory &
                                              Thread 1: devC[1] = devA[1] + devB[1];
// copy data to device
// device mem. ptrs devA,devB,devC
                                              Thread N-1: devC[N-1] = devA[N-1] + devB[N-1];
 vecAdd<<<1, N>>>(devA,devB,devC); // Grid of one block, N threads in block
```

5. Transferring data from device (GPU) to host (CPU)

Use CUDA routine cudaMemcpy

Destination Source

cudaMemcpy(c, devC, size, cudaMemcpyDeviceToHost);

where:

devC is a pointer in device and **c** is a pointer in host.

6. Free memory space in "device" (GPU)

Use CUDA cudaFree routine:

```
cudaFree( devA);
cudaFree( devB);
cudaFree( devC);
```

7. Free memory space in (CPU) host

(if CPU memory allocated with malloc)

Use regular C free routine to deallocate memory if previously allocated with malloc:

```
free( a );
free( b );
free( c );
```

Complete CUDA program

```
#define N 256

__global__ void vecAdd(int *A, int *B, int *C) {
  int i = threadIdx.x;
  C[i] = A[i] + B[i];
}
```

Adding two vectors, A and B

```
int size = N *sizeof( int);
int a[N], b[N], c[N], *devA, *devB, *devC;
```

N elements in A and B, and

cudaMalloc((void**)&devA, size));
cudaMalloc((void**)&devB, size);
cudaMalloc((void**)&devC, size);

vecAdd<<<1, N>>>(devA, devB, devC);

int main (int argc, char **argv) {

N threads

cudaMemcpy(devA, a, size, cudaMemcpyHostToDevice); cudaMemcpy(devB, b size, cudaMemcpyHostToDevice);

(without code to load arrays with data)

```
cudaMemcpy( c, devC size, cudaMemcpyDeviceToHost);
```

cudaFree(devA); cudaFree(devB);

Other examples

Addition on the Device: add()

Returning to our add() kernel

```
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

• Let's take a look at main()...

Addition on the Device: main()

```
int main(void) {
                     // host copies of a, b, c
      int a, b, c;
      int *d_a, *d_b, *d_c; // device copies of a, b, c
      int size = sizeof(int);
      // Allocate space for device copies of a, b, c
      cudaMalloc((void **)&d a, size);
      cudaMalloc((void **)&d b, size);
      cudaMalloc((void **)&d c, size);
      // Setup input values
      a = 2;
      b = 7;
```

Addition on the Device: main()

```
// Copy inputs to device
cudaMemcpy(d a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, &b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU
add<<<1,1>>>(d a, d b, d c);
// Copy result back to host
cudaMemcpy(&c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0;
```