教育大數據專題

主題:利用不同變因預測學生成績

4110053140 應數 4 李政峰

(一)研究方法

- 1. 學生的學習成績資料集:這是由 kaggle 上所找到的資料庫
- 2. 詳細變數討論,與資料分布

gender : sex of students -> (Male/female)

race/ethnicity: ethnicity of students -> (Group A, B,C, D,E)

parental level of education : parents' final education ->(bachelor's degree,somecollege,master's degree,associate's degree,- high school)

lunch: having lunch before test (standard or free/reduced)

test preparation course : complete or not complete before test

math score

reading score

writing score

有:性別,種族,雙親教育程度,是否在考前吃午餐,有無準備考試,數學分數,閱讀分數,寫作分數

應變數:數學成績 輸入變數:其他

資料分配並不均勻

是否有 missing data-無

利用不同的機器學習方法用以預測學生學習成績(使用 rf,svm,dt,knn)

(1).資料預處理:

把不同地區/性別/有無吃午餐/數學有無及格等利用 one-hot-encoding 重新編碼,在把有高低排序的學歷由高到低排成 5,4,3,2,1,然後利用 python 內建函式將資料標準化

(2).開始機器學習

在資料預處理後,我們就能開始機器學習。利用 python 內建函式我們可以得到下圖,然而,就算我們做出了還算不錯的準確率,我們仍要注意過擬合的問題,因此我們還要繪製學習曲線

最佳随機森林準 最佳随機森林分				
	precision	recall	f1-score	support
0	0.89	0.74	0.81	65
1	0.88	0.96	0.92	135
accuracy			0.89	200
macro avg	0.89	0.85	0.86	200
weighted avg	0.89	0.89	0.88	200

多項式核SVM準確率: 0.9 多項式核SVM分類報告:							
		precision	recall	f1-score	support		
	0	0.88	0.80	0.84	65		
	1	0.91	0.95	0.93	135		
accur	acy			0.90	200		
macro	avg	0.89	0.87	0.88	200		
weighted	avg	0.90	0.90	0.90	200		

KNN率: 0.86 KNN分告:				
	precision	recall	f1-score	support
0	0.86	0.68	0.76	65
1	0.86	0.95	0.90	135
accuracy			0.86	200
macro avg	0.86	0.81	0.83	200
weighted avg	0.86	0.86	0.86	200

最佳决策樹準確				
	precision	recall	f1-score	support
0	0.77	0.78	0.78	65
1	0.90	0.89	0.89	135
accuracy			0.85	200
macro avg	0.83	0.84	0.84	200
weighted avg	0.86	0.85	0.86	200

其實我們可以預想到,受限於資料量(1000 筆,11 維),我們機器學習很容易發生 過擬合,不過我們可以利用調整內部參數,並用 grid_search_cv 保證在擬合不錯 的前提下,模型仍有一定的精確度。

然而,在實際應用上,資料可能更多更複雜,如果還是用以上方法的話,很有可能導致運算資源不夠使用,導致不可預期的錯誤,因此我們需要使用 pca 降維讓我們的資料複雜度減少,從而減少計算資源。

若我們加入 pca 降到三維,在調整 grid_search_cv 參數,我們可以獲得

L 37 (11 373 L)	1123	III 7 3 III 0		<i>> ></i>		
最佳隨機森林準	確率: 0.85					
最佳隨機森林分	類報告:					
	precision	recall	f1-score	support		
0	0.82	0.69	0.75	65		
1	0.86	0.93	0.89	135		
			0.05	200		
accuracy			0.85	200		
macro avg	0.84	0.81	0.82	200		
weighted avg	0.85	0.85	0.85	200		
多項式核SVM準確率: 0.85 多項式核SVM分類報告:						
	precision	recall	f1-score	support		
0	0.81	0.71	0.75	65		
1	0.87	0.92	0.89	135		
accuracy			0.85	200		
macro avg	0.84	0.81	0.82	200		
weighted avg	0.85	0.85	0.85	200		

KNN準確率: 0. KNN分類報告:	83			
,,,,,,,, <u>,</u>	precision	recall	f1-score	support
Ø	0.82	0.62	0.70	65
1	0.83	0.93	0.88	135
accuracy			0.83	200
macro avg	0.83	0.77	0.79	200
weighted avg	0.83	0.83	0.82	200
Cross-validat 0.81875]	ion scores:	[0.86875	0.84375 0.8	5625 0.8
Average cross 最佳决策樹準確		score: 0.8	83749999999	99998
最佳决策樹分類	镇報告:			
	precision	recall	f1-score	support
Ø	0.79	0.65	0.71	65
1	0.84	0.92	0.88	135
accuracy			0.83	200
macro avg	0.82	0.78	0.80	200
weighted avg	0.83	0.83	0.82	200

由上圖我們可以看出 svm,dt 擬合得更好了,在降到三維損失了一點精度的前提下。然而資料並不是總是有好的線性關係,這時我們就要用 kener pca(降至 2 維)做非線性主成分分析,再利用 grid_search cv 利用 accuracy score 找出最佳參數組合

Ed 11. We till to 11. Sh							
最佳隨機森林準確率: 0.813333333333334							
最佳隨機森林分	最佳隨機森林分類報告:						
	support						
0	0.77	0.61	0.68	97			
1	0.83	0.91	0.87	203			
accuracy			0.81	300			
macro avg	0.80	0.76	0.77	300			
weighted avg	0.81	0.81	0.81	300			
多項式核SVM準	確率: 0.79						
多項式核SVM分	願報告:						
	precision	recall	f1-score	support			
0	0.72	0.57	0.64	97			
1	0.81	0.90	0.85	203			
accuracy			0.79	300			
macro avg	0.77	0.73	0.74	300			
weighted avg	0.78	0.79	0.78	300			
VANNAMETRICAN OF SE							
KNN準確率: 0.85							
KNN分類報告:							

KNN準確率: 0.	85			
KNN分類報告:				
77771	precision	recall	f1-score	support
0	0.79	0.73	0.76	97
1	0.88	0.91	0.89	203
accuracy			0.85	300
macro avg	0.83	0.82	0.83	300
weighted avg	0.85	0.85	0.85	300
Cross-validat	ion scores:	[0.842857]	14 0.807142	86 0.82857143
0.81428571 0.	83571429]			
Average cross				.42856
最佳决策樹準確	率: 0.806666	666666666	6	
最佳决策樹分類	報告:			
	precision	recall	f1-score	support
0	0.74	0.62	0.67	97
1	0.83	0.90	0.86	203
accuracy			0.81	300
macro avg	0.79	0.76	0.77	300
weighted avg	0.80	0.81	0.80	300

由上,我們得到了一個不錯的 knn 模型,以及勉強能看的 rf,至於如果調參數也沒有效的話,我們也可以利用正則化,早停等方法來避免過擬合

(二)結論:

利用上述方法,我們得到了一些不錯的機器學習模型,雖然只有大概 8 成多的精確度,但在降到低維並且避開過擬合後這樣的表現已經非常不錯,何況他的頻率分布並不均勻,如果有辦法剔除雜訊的

話精度可以再進一步上升,像是移除偏科的極端值,或者利用深度 學習調整顯著影響的權重,這些都是可行的方法

並且由相關矩陣可以得知也是有一部份的人偏科