4.20 定性判断图题 4.20 中哪些电路不具备正常的放大能力,说明不能放大的原因。

图题 4.20

解:

- (a) 不能放大, 栅、源间缺少必要的正向静态电压
- (b) 能放大
- (c) 不能放大, V_{DD} 极性不正确
- **4.22** 已知图题 4.22 所示放大电路的静态工作点正常,场效应管跨导 $g_m=1$ mS, r_{ds} 可视 为无穷大, 电容的容抗可忽略不计。
 - (1) 画出微变等效电路图;
 - (2) 计算电压放大倍数 A_v 、输入电阻 R_i 、输出电阻 R_o 。

解:

(1) 微变等效电路图如下图所示

(2)
$$A_v = -g_m R_d = -4.7$$

 $R_i = R_g = 1 M\Omega$
 $R_o = R_d = 6.8k\Omega$

- **4.23** 已知图题 4.23 所示放大电路的静态工作点正常,场效应管跨导 g_m =2mS, r_{ds} 可视 为无穷大, 电容的容抗可忽略不计。
 - (1) 画出微变等效电路图;

(2) 计算电压放大倍数 A_{ν} 、输入电阻 R_{i} 、输出电阻 R_{o} 。

图题 4.23

解:

(1) 微变等效电路图如下图所示

(2)
$$A_v = -g_m R_d || R_L = -8.1$$

$$R_i=R_g+R_{g1}//R_{g2}\approx 10\text{M}\Omega$$

 $R_o=R_d=6.8k\Omega$

- **4.27** 已知图题 4.27 所示电路中场效应管的跨导 $g_{\rm m} = 3 {
 m mS}$, $r_{\rm ds}$ 可视为无穷大,电容对交流信号可视为短路。
 - (1) 求电压放大倍数 $A_{v1} = v_{o1}/v_i$ 、 $A_{v2} = v_{o2}/v_i$;
 - (2) 求输入电阻 R_i 和输出电阻 R_{o1} 、 R_{o2} 。

解:

(1)
$$A_{v1} = \frac{-g_m R_d}{1 + g_m R_s} \approx -0.91$$

 $A_{v2} = \frac{g_m R_s}{1 + g_m R_s} \approx 0.91$

(2)
$$R_i=R_g=1M\Omega$$

 $R_{o1}=R_d=3.3k\Omega$
 $R_{o2}=\frac{1}{g_{m}}//R_s=303\Omega$

- **4.29** 多级放大电路如图题 4.29 所示,设 T₁、T₂ 特性相同,且 $β_1 = β_2 = 50$, $r_{be1} = r_{be2} = 1 k \Omega$, $V_{BE1} = V_{BE2} = 0.7 V$, 电阻 $R_{b11} = 20 k \Omega$, $R_{b12} = 40 k \Omega$, $R_{c1} = 2 k \Omega$, $R_{e1} = 500 \Omega$, $R'_{e1} = 1.5 k \Omega$, $R_{e2} = R_L = 8 k \Omega$, 电源 $V_{CC} = 12 V$, 电容 C_1 、 C_e 对交流信号均可视为短路。
 - (1) 静态时 T_2 发射极电压 V_{E2} =?
 - (2) $A_v = v_o/v_i = ? R_i = ? R_o = ?$
 - (3) RL开路时, 定性说明对电路工作将产生什么影响?

解:

$$\begin{split} &(1) \quad V_{B1} \approx V_{CC} \, \frac{R_{b11}}{R_{b11} + R_{b12}} = 4V \\ &I_{CQ1} \approx I_{EQ1} = \frac{V_{B1} - V_{BEQ1}}{R_{e1} + R'_{e1}} = \frac{4 - 0.7}{0.5 + 1.5} = 1.65 mA \\ &V_{CQ1} \approx V_{CC} - I_{CQ1} R_{c1} = 8.7V \end{split}$$

$$V_{E2Q} = V_{CQ1} - V_{BE2} = 8V$$

$$(2) \quad R_{i2} = r_{be2} + (1 + \beta_2) R_{e2} // R_L = 205 k\Omega$$

$$A_{\nu} = \frac{-\beta_1 R_{c1} // R_{i2}}{r_{be1} + (1 + \beta_1) R_{e1}} \frac{(1 + \beta_2) R_{e2} // R_L}{r_{be2} + (1 + \beta_2) R_{e2} // R_L} \approx -3.72$$

$$R_i = R_{b11} / (R_{b12} / ([r_{be1} + (1 + \beta_1)R_{e1}]) = 8.88 \text{k}\Omega$$

$$R_{\rm o} = R_{\rm e2} / \frac{R_{c1} + r_{be2}}{1 + \beta_2} = 60\Omega$$

(3) R_L 开路,对电路静态工作情况五影响;对 R_i 和 R_o 无影响;由于 R_o 很小,故 R_L 开路对 A_o 影响不大。

5.4 已知某放大电路的电压放大倍数的频率特性为

$$\dot{A}_{v} = \frac{-10^{5}}{(1 - j\frac{20}{f})(1 + j\frac{f}{10^{5}})}$$

试画出该电路的幅频响应波特图,并求出中频增益、上限频率 f_H 和下限频率 f_L 。

