Anotaciones Examen Parcial

Jesus Mauricio Huayhua Flores

2024-05-12

Librerias

```
library(DescTools)
library(ggplot2)
library(MASS)
```

Lectura de archivos

```
# Para leer archivos xlsx
data <- read_xlsx(path="directory/file.xlsx")</pre>
head(data)
# Para leer archivos csv
data <- read.csv("directory/file.csv")</pre>
```

Pruebas de bondad de ajuste

Distribución multinominal

- Repetir n veces, de forma independiente
- $k(k \ge 2)$ resultados o categorias
- $C_1, C_2, \dots, C_k \text{ con } p_1, p_2, \dots, p_k$ $\sum_{i=1}^k p_i = 1$
- Notación: $(X_1, X_2, \dots, X_k) \sim Mult(n, p_1, p_2, \dots, p_k)$

Función de probabilidad conjunta

Si
$$(X_1, X_2, ..., X_k) \sim Mult(n, p_1, p_2, ..., p_k)$$

$$P(X_1 = x_1, \dots, X_k = x_k) = \frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k}$$

- $X_1, X_2, ..., X_k$ **NO** son independientes - $X_1 \sim B(n, p_i), \forall i = 1, ..., k$ - $E(X_i) = np_i$ - $V(X_i) = np_i(1 - p_i)$ - $Cov(X_i, X_j) = -np_i p_j, (si) \ i \neq j$

Pruebas Chi-cuadrado

Utilizado para contrastar hipótesis acerca de los parámetros, de 1 o varias distribuciones multinominales.

$$W = \sum_{i=1}^{k} \frac{(X_i - E_i)^2}{E_i}$$

Teorema 1

Si **n** es grande, $\forall i = 1, \dots, k$ se cumple que $E_i = np_i \geqslant 5$

$$W = \sum_{i=1}^{k} \frac{(X_i - E_i)^2}{E_i} = \sum_{i=1}^{k} \frac{(X_i - np_i)^2}{np_i}$$

Tiene distribución Chi-cuadrado con (K - 1) grados de libertad $W \sim X_{(k-1)}^2$

Prueba Chi-cuadrado para bondad de ajuste

Es la prueba para determinar si la variable que observamos se ajusta o no a una distribución teórica.

$$\begin{cases} H_0: & F_Y = F_o \\ H_1: & F_Y \neq F_o \end{cases}$$

Experimento multinominal de k categorías excluyentes.

- C_1, \ldots, C_k con probablidades p_1, \ldots, p_k
- Frecuencias observadas x_1, \ldots, x_2 , donde $\sum_{i=1}^k x_i = n$
- X_i números de veces en que ocurre la categoría C_i
- Contrastar si las frecuencias observadas de cada categoría difieren significativamente, de las frecuencias esperadas $e_i = np_i$

$$\begin{cases} H_0: & \forall i: p_i = p_i^o \\ H_1: & \exists i | p_i \neq p_i^o \end{cases}$$

Si $e_i = np_i^0 \geqslant 5$, la estadística de prueba:

$$W = \sum_{i=1}^{k} \frac{(X_i - np_i^0)^2}{np_i^0} = \sum_{i=1}^{k} \frac{(O_i - e_i^0)^2}{ei}$$

Punto crítico, se distribuye Chi-cuadrado con k-1 grados de libertad: $W \sim X_{k-1}^2$.

Pasos para la prueba de Chi-cuadrado(x^2) de bondad de ajuste

1. Establecer las hipótesis sobre la función de distribución desconocida

$$\begin{cases} H_0 : F_Y = F_0 \\ H_1 : F_Y \neq F_0 \end{cases}, con F_0 conocida$$

- 2. Obtener una tabla aleatoria de tamaño \mathbf{n} de Y, con una tabla de distribución de frecuencias.
- | Intervalos | marca de clase | frecuencia observada | frecuencia esperada |
 - 3. Se calculan las frecuencias esperadas E_i^0
 - 4. Se calcula Estadístico de prueba

$$U_0 = \sum_{i=1}^{k} \frac{(O_i - E_i^0)^2}{E_i^0} \sim X_i(k - m - 1)^2$$

2

5. Se recha si $U_0 > X_{1-\alpha,k-m-1}^2$, donde r es la cantidad de parametros desconocidos.

Comandos utilices en R.

```
Opción1:

normalityTest(horas ~ pastillas, test="shapiro.test", data=Dataset)

Opción2:

# Histograma

auxhist <- hist(X,xlab="Largo (mm)", main= "Histograma del Largo") # Al crear el histograma se guardan las características de la distribución.

# Prueba de bondad de ajuste

cortes_histo <- auxhist$breaks

probAcum_DistNormal <- pnorm(cortes_histo, mean = mean(X), sd = sd(X))

n <- length(probAcum_DistNormal)

intervalos <- data.frame(probAcum_DistNormal[-n],probAcum_DistNormal[-1])

prop.esperada <- intervalos[,2]-intervalos[,1]

freq.esperada <- (prop.esperada/sum(prop.esperada))*length(X)

freq.observada <- auxhist$counts

chisq.test(freq.observada, p=prop.esperada, rescale.p=TRUE, simulate.p.value = T)
```

Pruebas no paramétricas

Los investigadores están más familiarizados con las pruebas paramétricas, estas tienen supuestos usualmente acerca del tipo de variables y la distribución de la variable, los cuales tiene que ser verificados y en caso no cumplas los supuestos, utilizar pruebas no paramétricas.

Prueba Wilcoxon

Utilidad

Evaluación de la medida de posición de una muestra.

No se requiere de ningún supuesto acerca de la forma de la distribución de la población.

• $H_0: Me = Me_0$

Procedimiento

Diferencia entre cada valor observado y el valor hipotético de la mediana.

$$d = (X - med_0)$$

Calculamos al diferencia sin tomar el signo de las mismas.

En caso de empate, se asigna un rango promedio de todas las diferencias empatadas.

La suma de rangos positivos S^+ es el estadístico de prueba, el cual es comparado con un valor de la talba de Wilcoxon

Forma práctica, se enumar de menor a mayor diferencia, y posteriormente se verifica en cuantos se encuentra empate en la diferencia para posteriormente realizar el promedio de las diferencias de dichos valores

Otros estadísticos de prueba

Si la muestra es grande se puede usar el siguiente estadístico de prueba:

$$Z_c = \frac{S^+ - \mu_{S^+}}{\sigma_{S^+}} \sim N(0,1)$$

$$\mu_{S^+} = \frac{n(n+1)}{4}$$

$$\sigma_{S^+} = \sqrt{\frac{n(n+1)(2n+1)}{24}}$$

El par de hipótesis de esta prueba pueden ser estos:

Unilateral izquierda	Bilateral	Unilateral derecha
H_0 : $Me_D \ge Me_{D0}$	H_0 : $Me_D = Me_{D0}$	H_0 : $Me_D \leq Me_{D0}$
H_1 : $Me_D < Me_{D0}$	H_1 : $Me_D \neq Me_{D0}$	$H_1: Me_D > Me_{D0}$

En R

wilcox.test(data, mu = , alternative = "greater",conf.level = 1 - alpha, correct = F)

Prueba de Hipótesis para 2 parámetros

Diferencia de Medias

- Contrastar la diferencia de 2 medias $H_0: \mu_x \mu_y = \delta_o$
- Puede ser tanto muestras independientes o muestras relacionadas.

Para parámetros de muestras independientes

Hipótesis:

$$\begin{cases} H_0 : \sigma_x^2/\sigma_y^2 = 1 \\ H_1 : \sigma_x^2/\sigma_y^2 \neq 1 \end{cases}$$

1. Verificando la distribución, si:

$$X \sim N(\mu_1, \sigma_1^2) \ y \ Y \sim N(\mu_2, \sigma_2^2) \Rightarrow F = \frac{S_x^2}{S_y^2} \sim Fisher(n_1 - 1, n_2 - 1)$$

Donde n1 y n2 son el tamañao de la muestra para X y Y respectivamente.

Para hallar la fisher es con el siguiente comando:

```
alpha = 0.05

qf(alpha/2,n1 - 1,n2 - 1)

qf(1-alpha/2,n1 - 1 ,n2 -1)
```

Varianzas conocidas Espacio

Varianzas desconocidas e iguales espacio

Caso 2: Variables con distribución normal y varianzas desconocidas pero iguales

$$H_o$$
: $\mu_x - \mu_y = \delta_o$

Usualmente: $\delta_o=0$

```
Verificando la distribución: \sigma^2 \text{ desconocida} X \sim N(\mu_X, \sigma_1^2) \text{ o } n_1 \geq 30 Y \sim N(\mu_Y, \sigma_2^2) \text{ o } n_2 \geq 30 \Rightarrow \bar{X} \sim N\left(\mu_X, \frac{\sigma^2}{n_1}\right), \; \bar{Y} \sim N\left(\mu_Y, \frac{\sigma^2}{n_2}\right) \Rightarrow \bar{X} - \bar{Y} \sim N\left(\mu_X - \mu_Y, \; \sigma^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right) \Rightarrow T = \frac{\left((\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)\right)}{S_p\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim t_{(n_1 + n_2 - 2)}
```



```
n1 = 5
n2 = 5
s1 = 0.1811
s2 = 0.067
media1 = 0.417
media2 = 0.151
sp = sqrt(((n1 - 1)*(s1^2) + (n2 - 1)*(s2^2)) / (n1 + n2 - 2))
to = (media1 - media2) / (sp * sqrt(1/n1 + 1/n2))
qt(alpha,n1 + n2 - 2)
# to > qt rechazamos HO
```

Varianzas desconocidas y diferentes Espacio

Caso 3: Variables con distribución normal y varianzas desconocidas y diferentes

Hipótesis:

 H_o : $\mu_x - \mu_y = \delta_o$

Usualmente: $\delta_o=0$

Verificando la distribución:

$$\sigma_1^2 \ y \ \sigma_2^2$$
 desconocidas $X \sim N(\mu_x, \sigma_1^2)$ o $n_1 \ge 30$

$$Y \sim N(\mu_{\nu}, \sigma_2^2)$$
 o $n_2 \ge 30$

$$\Rightarrow \ \overline{X} {\sim} N\left(\mu_{x}, \frac{\sigma_{1}^{2}}{n_{1}}\right) \ , \ \overline{Y} {\sim} N\left(\mu_{y}, \frac{\sigma_{2}^{2}}{n_{2}}\right)$$

$$\Rightarrow \ \bar{X} - \bar{Y} \sim N\left(\mu_X - \mu_Y , \left(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)\right)$$

$$\Rightarrow T = \frac{(s_1^2 + s_2^2)}{\sqrt{(\frac{s_1^2 + s_2^2}{n_1 + n_2})}} \sim t_{(gl)}$$

$$gl = \frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{\sqrt{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}}$$

$$gl = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2}$$

Estadístico de prueba:

$$T_0 = \frac{(X - Y) - \delta_0}{\sqrt{\frac{S_x^2}{n_1} + \frac{S_y^2}{n_2}}} \sim t - student(gl)$$

$$\mathbf{gl} = \frac{\left(\frac{S_{1}^{2} + S_{2}^{2}}{n_{1} + n_{2}}\right)^{2}}{\frac{\left(\frac{S_{1}^{2}}{n_{1}}\right)^{2} + \left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{n_{1} - 1} + \frac{\left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{n_{2} - 1}}$$

$$H_1: \mu_x - \mu_y > \delta_o$$

gl =
$$(S1/n1 + S2/n2) / (((s1/n1)^2)/(n1 - 1) + ((s2/n2)^2)/(n2 - 1))$$

qt(1-alpha, n1 + n2 - 2)

Prueba de hipótesis para la diferencia de medias de muestras relacionadas

Prueba de hipótesis de diferencia de medias para muestras pareadas o relacionadas Hipótesis: $H_o: \mu_x - \mu_y = \delta_o$ Usualmente: $\delta_o = 0$ Los objetos de estudio son los mismos o están relacionados. La diferencia de las variables sigue una distribución normal. Verificando la distribución: $\bar{D} = \bar{X} - \bar{Y} = \sum D_j/n$ $T = \frac{(\bar{D} - \mu_D)}{S_{\bar{D}}} \sim t - Student(n - 1)$ Estadístico de prueba: $T = \frac{(\bar{D} - \delta_o)}{S_{\bar{D}}} \sim t - Student(n - 1)$ $S_D = \sqrt{\frac{\sum (D_j - \bar{D})}{n - 1}}$

 $S_{\overline{D}} = \frac{S_D}{\sqrt{n}}$

Prueba de hipótesis para la Diferencia de Medias H_o : $\mu_x - \mu_y = \delta_o$ de muestras independientes a nivel α de significancia

Caso	Estadística de Prueba	H_o : $\mu_x - \mu_y = \delta_o$	Rechazar Ho si
Caso 1: $\sigma_1^2 \ y \ \sigma_2^2 \ \text{conocidas}$ $X{\sim}N(\mu_X.\sigma_1^2) \qquad ,$ $Y{\sim}N(\mu_y.\sigma_2^2), \mathbf{o}$ $n_1 \geq 30, n_2 \geq 30$	$Z_{0} = \frac{(\overline{X} - \overline{Y}) - \delta_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0,1)$	$\begin{split} H_{1}: \ & \mu_{x} - \mu_{y} > \delta_{0} \\ H_{1}: \ & \mu_{x} - \mu_{y} < \delta_{0} \\ H_{1}: \ & \mu_{x} - \mu_{y} \neq \delta_{0} \end{split}$	$Z_0 > Z_{1-\alpha}$ $Z_0 < -Z_{1-\alpha} = Z_{\alpha}$ $ Z_0 > Z_{1-\alpha/2}$
Caso 2:	$\begin{split} T_0 &= \frac{(\overline{X} - \overline{Y}) - \delta_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t - student(gl) \\ gl &= n_1 + n_2 - 2 \qquad S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \end{split}$	$\begin{split} H_{1}: \ & \mu_{x} - \mu_{y} > \delta_{0} \\ H_{1}: \ & \mu_{x} - \mu_{y} < \delta_{0} \\ H_{1}: \ & \mu_{x} - \mu_{y} \neq \delta_{0} \end{split}$	$T_0 > t_{1-\alpha}$ $T_0 < -t_{1-\alpha} = t_{\alpha}$ $ T_0 > t_{1-\alpha/2}$
Caso 3: $\sigma_1^2 \ y \ \sigma_2^2 \ \text{desconocidas}$ $X{\sim}N(\mu_X.\ \sigma_1^2) \qquad ,$ $Y{\sim}N(\mu_y.\ \sigma_2^2), \ \mathbf{o}$ $n_1 \geq 30, n_2 \geq 30$	$\begin{split} \boldsymbol{T_0} &= \frac{(\overline{\boldsymbol{X}} - \overline{\boldsymbol{Y}}) - \boldsymbol{\delta_0}}{\sqrt{\frac{S_x^2}{n_1} + \frac{S_y^2}{n_2}}} \sim t - student(\boldsymbol{gl}) \\ gl &= \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2} \\ &= \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_2 - 1} \end{split}$	$H_1: \mu_x - \mu_y > \delta_0$ $H_1: \mu_x - \mu_y < \delta_0$ $H_1: \mu_x - \mu_y \neq \delta_0$	$T_0 > t_{1-\alpha}$ $T_0 < -t_{1-\alpha} = t_{\alpha}$ $ T_0 > t_{1-\alpha/2}$
Caso 4: $\sigma_1^2 \ y \ \sigma_2^2 \ \text{desconocidas}$ $n_1 \geq 30, n_2 \geq 30$	$Z_{0} = \frac{(\overline{X} - \overline{Y}) - \delta_{0}}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}} \sim N(0,1)$	$\begin{split} H_1: \ & \mu_x - \mu_y > \delta_0 \\ H_1: \ & \mu_x - \mu_y < \delta_0 \\ H_1: \ & \mu_x - \mu_y \neq \delta_0 \end{split}$	$Z_0 > Z_{1-\alpha}$ $Z_0 < -Z_{1-\alpha} = Z_{\alpha}$ $ Z_0 > Z_{1-\alpha/2}$

Prueba de hipótesis para la Diferencia de Medias H_o : $\mu_x - \mu_y = \delta_o$ de muestras relacionadas a nivel α de significancia

Caso	Esta	dística de Prueba	H_o : $\mu_x - \mu_y = \delta_o$	Rechazar \boldsymbol{H}_0 si
Caso 1: σ_D^2 es conocida y D tiene distribución normal o n es grande	D = X - Y	$Z_0 = \frac{\overline{D} - \delta_0}{\sigma_D / \sqrt{n}} \sim N(0, 1)$	$\begin{split} H_1 : \ & \mu_x - \mu_y > \delta_0 \\ H_1 : \ & \mu_x - \mu_y < \delta_0 \\ H_1 : \ & \mu_x - \mu_y \neq \delta_0 \end{split}$	$Z_0 > z_{1-\alpha}$ $Z_0 < -z_{1-\alpha} = z_{\alpha}$ $ Z_0 > z_{1-\alpha/2}$
Caso 2: σ_D^2 es desconocida y D tiene distribución normal	D = X - Y	$T_0 = \frac{\overline{D} - \delta_0}{S_D / \sqrt{n}} \sim T(n - 1)$	$H_1: \mu_x - \mu_y > \delta_0$ $H_1: \mu_x - \mu_y < \delta_0$ $H_1: \mu_x - \mu_y \neq \delta_0$	$T_0 > t_{1-\alpha}$ $T_0 < -t_{1-\alpha} = t_{\alpha}$ $ T_0 > t_{1-\alpha/2}$
Caso 3: σ_D^2 es desconocida y el tamaño de muestra n es suficientemente grande	D = X - Y	$Z_0 = \frac{\overline{D} - \delta_0}{S_D / \sqrt{n}} \sim N(0, 1)$	$H_{1}: \mu_{x} - \mu_{y} > \delta_{0}$ $H_{1}: \mu_{x} - \mu_{y} < \delta_{0}$ $H_{1}: \mu_{x} - \mu_{y} \neq \delta_{0}$	$Z_0 > z_{1-\alpha}$ $Z_0 < -z_{1-\alpha} = z_{\alpha}$ $ Z_0 > z_{1-\alpha/2}$

Prueba de hipótesis para la Diferencia de proporciones $m{H_0}: m{p_1} - m{p_2} = m{0}\;$ a nivel $m{\alpha}$ de significancia					
Caso	Estadística de Prueba	$H_0: p_1 - p_2 = 0$	Rechazar H_0 si		
Caso 1: poblaciones independientes tamaños de muestra n_1 y n_2 grandes	$Z_{0} = \frac{\overline{p_{1}} - \overline{p_{2}}}{\sqrt{\frac{\overline{p_{1}}(1 - \overline{p_{1}})}{n_{1}} + \frac{\overline{p_{2}}(1 - \overline{p_{2}})}{n_{2}}}} \sim N(0, 1)$	$H_1: p_1 - p_2 > 0$ $H_1: p_1 - p_2 < 0$ $H_1: p_1 - p_2 \neq 0$	$Z_0 > Z_{1-\alpha}$ $Z_0 < -Z_{1-\alpha} = Z_{\alpha}$ $ Z_0 > Z_{1-\alpha/2}$		
Caso 2: Una población tamaño de muestra n grande	$Z_{0} = \frac{\overline{p_{1}} - \overline{p_{2}}}{\sqrt{\frac{\overline{p}_{1}(1 - \overline{p}_{1}) + \overline{p}_{2}(1 - \overline{p_{2}}) + 2 \overline{p_{1}} \overline{p_{2}}}{n}} \sim N(0,1)$	$H_1: p_1 - p_2 > 0$ $H_1: p_1 - p_2 < 0$ $H_1: p_1 - p_2 \neq 0$	$Z_0 > z_{1-\alpha}$ $Z_0 < -z_{1-\alpha} = z_{\alpha}$ $ Z_0 > z_{1-\alpha/2}$		
Prueba de hipótesis para la Razón de Varianzas $H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1$ a nivel α de significancia					
Caso	Estadística de Prueba	$H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1$	Rechazar \boldsymbol{H}_0 si		
$X \sim N(\mu_1, \sigma_1^2)$ $Y \sim N(\mu_2, \sigma_2^2)$	$F_0 = \frac{S_x^2}{S_y^2} \sim Fisher(n_1 - 1, n_2 - 1)$	$H_1: \frac{\sigma_1^2}{\sigma_2^2} > 1$ $H_1: \frac{\sigma_1^2}{\sigma_2^2} < 1$ $H_1: \frac{\sigma_1^2}{\sigma_2^2} = 1$	$F_0 > F_{1-\alpha}$ $F_0 < F_{\alpha}$ $F_0 > F_{1-\alpha/2} \text{ o}$ $F_0 < F_{\alpha/2}$		

Prueba de hipótesis NO paramétricas para 2 o más parámetros

Prueba de U de Mann Whitney

- Es considerada como la alternativa no paramétrica a una prueba de diferencias de medias.
- Se basa en los rangos observados
- Permite comparar las **medianas** de dos muestras independientes son diferentes.