Time Series Forecasting Product

Diogo Resende

The anatomy of a Forecasting product

Why Ensemble

Deep dives

The research on combining forecasts to achieve better accuracy is extensive, persuasive, and consistent.

Essam Mahmoud,

"Accuracy in Forecasting: A Survey," *Journal of Forecasting*, April–June 1984, p. 139;

Spyros Makridakis and Robert L. Winkler,

"Averages of Forecasts: Some Empirical Results," Management Science, September 1983, p. 987

Victor Zarnowitz,

"The Accuracy of Individual and Group Forecasts from Business Outlook Surveys," Journal of Forecasting, January–March 1984, p. 10.

The Project

Why Forecasting matters

Exploratory DataAnalysis

Section Overview

What will be achieved

- 1 Time Series Concepts
- 2 Seasonality Types
- 3 Auto-Correlation
- 4 Summary Statistics
- 5 Correlation
- 6 Cool Visualizations

Our data

Temperature down, demand up

What is Time Series Data?

Visualization

Key ideas

Sequence of data points in time order (oldest to newest)

Most commonly, it is data recorded in equally distanced time periods

Type of Panel Data (multidimensional dataset)

Time Series are usually decomposed into 3 parts

Visualization

Key ideas

A seasonal Time Series can be decomposed into:

- Trend
- Seasonality
- Error

We try to use external regressors to model the remaining error term.

Case Study Briefing – Demand Forecasting

Scenario

Airbnb missed the earning expectations

The market where the company is struggling is the US

Forecasting Product

Demand in New York

- 1 Holidays, Temperature and Marketing Investment
- 2 Daily Demand
- 3 Historical Data to find patterns
- 4 Predict demand for the incoming month

Additive vs. Multiplicative

Additive

Multiplicative

Key ideas

If we talk about seasonality in terms of percentage, then we should consider a multiplicative seasonality.

If it is in adding absolute values, then it is additive.

If trend is exponential, then it is multiplicative

Auto-correlation plots (ACF)

Visualization

Description

There is information in the past

You correlate the time series with its lagged values

The correlation will decrease with higher lags

Facebook Prophet

Section Overview

What will be achieved

- 1 Facebook Prophet key concepts
- 2 Impact of events
- 3 Cross-Validation
- 4 Parameter Tuning
- Measuring errors
- 6 Cool Visualizations

Structural Time Series

Visualization

Trend

Seasonality

Exogenous impacts

Description

Structural Time Series is the decomposition of the data in at least:

Trend

Seasonality

Exogenous impacts

Error Term

Methodological framework

$$y(t) = c(t) + s(t) + x(t) + \epsilon$$

Facebook Prophet quick facts

Which?

Description

- 1 Built by facebook
- Stan background probabilistic programming language for statistical inference
- 3 Dynamic Holidays
- Prophet is customizable in ways that are intuitive to non-experts
- 5 Built-in Cross Validation

Prophet Mechanics

Methodological framework

$$y(t) = c(t) + s(t) + h(t) + x(t) + \epsilon$$

Where:	
c(t)	Trend +
s(t)	Seasonality +
h(t)	Holiday effects +
x(t)	External regressors +
е	error

Facebook Prophet Model

Co	m	po	on	er	nt
		•			

Description

Holidays

Dataframe that we prepared

Seasonality_mode

Multiplicative or additive

Seasonality_prior_scale

Strength of the seasonality

Holiday_prior_scale

Larger values allow the model to fit larger seasonal fluctuations

Changepoint_prior_scale

Does the Trend change easily?

Cross Validation – Rolling Forecast

Key Idea

Repeating the assessment of our model reinforces its evaluation

Cross Validation – Sliding Forecast

Key Idea

A rolling forecast adds training data as it performs Cross-Validation. A sliding forecast always keeps the same size for the training data

Mean Absolut Error (MAE) vs Root Squared Mean Error (RSME)

Visualization

Key ideas

 MAE and RSME are performance indicators for Regression models with continuous dependent variables

$$MAE = \frac{\sum |y - \hat{y}|}{n}$$
 $\times RSME = \sqrt{\frac{\sum (\hat{y} - y)^2}{n}}$

- RSME is quite useful for models with extremes / outliers
- MAE is more interpretable.

Mean Absolut Percent Error (MAPE)

Visualization

Key ideas

MAPE represents a very interpretable way of measuring errors

$$MAPE = \frac{\sum \frac{|y - \hat{y}|}{x y}}{n}$$

- Clear downside is that all error has the same relevance, regardless of the magnitude, if the percent error is the same
- There is no universal good accuracy measure.
 It will depend on your problem and business need!

Parameter Tuning

Context

Advanced models have parameters to tune to optimize accuracy

Description

Parameters to tune

Component

Description

Seasonality_prior_scale

Strength of the seasonality

Holiday_prior_scale

Larger values allow the model to fit larger seasonal fluctuations

Changepoint_prior_scale

flexibility of the automatic changepoint selection

Seasonality.mode

Multiplicative or additive

Pros and Cons

ARIMA, SARIMA & SARIMAX

Section Overview

About ARIMA

- 1 SARIMAX comes from ARIMA
- 2 Auto-Regressive Integrated Moving Average
- 3 Auto-Regressive is around 100 years old
- 4 Part of most modern Forecasting models
- 5 Another model, GARCH is used in Finance

What does it all mean?

Acronym

ARIMA

Description

AutoRegregressive Integrated Moving Average

SARIMA

Seasonal + ARIMA

SARIMAX

SARIMA + Exogenous variables

What is ARIMA?

Component

Description

AutoRegressive

The output is regressed on its own lagged values

Integrated

Number of times we need to do differencing to make our time series stationary

Moving Average

Instead of using the past values, the MA model uses past forecast errors.

AutoRegressive components

Key Idea

Past values, the lags, contain information that help predict future values

Visualization

How to determine how many lags

We will perform parameter tuning

Stationarity

Key idea

Mean, variance and covariance are not time dependent

Stationary Time Series have a clearly defined pattern

Statistical test:

Dickey-Fuller test. If p-value is less than 0.05, time series is considered stationary

Making Data Stationary

Moving Average components

Visualization of the errors

Methodological Framework

$$\overline{y_t = c + \alpha_1^* \varepsilon_{t-1}^+ \dots + \alpha_n^* \varepsilon_{t-n}}$$

What it is?

Past error lags, contain information that help predict future values

How to do it?

We will perform parameter tuning

3 factors to optimize in ARIMA/ARIMAX(p,d,q)

Order	Description	Explanation
р	Order of the Autoregressive	Number of time series lags used
d	Degree of first Differencing involved	Number of differences to make time series stationary
q	Order of the Moving Average part	Number of forecasting errors lags used

Key Idea

P, d, and q are non-negative integers.

6 factors to optimize in SARIMA/SARIMAX

Key Idea

Despite having 3 more factors to optimize, they mirror the classic ARIMA (p, d, q)

Pros and Cons

LinkedIn Silverkite

Section Overview

About LinkedIn Silverkite

- 1 Silverkite Process
- 2 How it differs from Facebook Prophet
- Trend and Fitting Algorithms
- 4 Ridge and Gradient Boosting

Silverkite Overview

Data inputs

Time Series

Regressors

Events

Holidays

Also provided internally

Function inputs

Growth terms

Seasonalities

Changepoints

Lagged Regressors

Auto-regression

Model Magic

Machine Learning

Output

Forecast

Accuracy

Vizualization

Automated or customized

Silverkite vs Prophet

	LinkedIn Silverkite	Facebook Prophet
Speed	Faster	Slower
Forecast accuracy (default)	Good	Good
Forecast accuracy (customized)	High	Limited (medium / high)
Ease of use	Good (ok)	Good
Autoregressive	Yes	No
Fit	Bayesian	Ridge, Gradient Boosting

Model Components

Name	Possibilities	Туре
Growth terms	Linear, quadratic, square root	Tune
Seasonalities	Yearly, Quarterly, Monthly, etc	Auto
Holidays / events	Country holidays/ other events	Input
Changepoints	When should the trend change	Auto
Regressors	Other factors influencing	Input
Lagged Regressors	Lagged effect of the regressors	Auto
Auto-regression	Using the Time Series itself	Auto

Growth terms

Netflix daily seasonality

Netflix weekly seasonality

Netflix monthly seasonality

Netflix quarterly seasonality

Netflix yearly seasonality

Lagged Regressors

Visualization

Marketing Investment

Y

Key Idea

If the regressors impact the days after the event happened, we use lagged regressors. We will set it on auto-pilot. The lags will depend on the forecasting horizon.

Fitting algorithm logic

Fitting Algorithms

Name Note **Linear Regression Poor with collinearity Elastic Net** Ridge Lasso **Unstable Stochastic Gradient Descent Outlier/noise sensitivity** Lars **Lasso Lars Random Forest** Tree Models don't model growth well **Gradient Boosting**

From Linear to Ridge Regression

Visualization

Key ideas

Linear regression works by minimizing the residuals squared aka sum of least squares

Ridge Regression Works by minimizing:

Residuals / least squares +

Lambda (Bias) * Slope ²

From Linear to Ridge Regression

Visualization

Key ideas

Linear: minimizes the residuals squared

Ridge: minimizes the residuals squared +

bias coefficient * slope²

Linear: 0²

Scenario 1:

Ridge: $0^2 + 1 * 3^2 = 9$

From Linear to Ridge Regression

Visualization

Key ideas

Linear: minimizes the residuals squared

Ridge: minimizes the residuals squared + bias coefficient * slope²

Linear: 0² Scenario 1:

Ridge: $0^2 + 1 * 3^2 = 9$

Linear: $1^2 + 1^2 = 2$ **Scenario 2**:

Ridge: $(1^2+1^2) + 1 * 1^2 = 3$

Ridge - Conclusion

Visualization

Key ideas

Linear Regression finds the best fit

Ridge Regression penalizes extreme coefficients

How? Introduces Bias to decrease volatility

Ridge Regression penalizes overfitting

Ridge Regression is useful when you don't have a lot of data points

Bias Coefficient: value between 0 and infinite that you can tune. The default is 0

XGBoost is a state-of-art **Machine** Learning **Algorithm**

Description

- 1 Stands for Extreme Gradient Boosting
- 2 It is an Ensemble Algorithm
- 3 Has Boosting and Feature Sampling features
- 4 Can be used for both Regression and Classification
- 5 XGBoost treats NA's as information
- 6 Poor at dealing with time/growth
- 7 Excellent dealing with non-linear relationships

Boosting is the secret sauce of XGBoost

Visualization Data set Final step Step 1 Step 2

Description

Step 1: Take random sample without replacement to create model 1

Step 2: take random sample without replacement and add some of the wrongly predicted data in step 1

The wrongly predicted data will have a greater weight than the regular data

Final Step: Focus on the observations that are getting wrong and right predictions

The final prediction will be with majority vote

Boosting: XGBoost gives different weights depending on how difficult it is to predict

First Iteration / Learner

Outcom	ne	Predictor	Weight
1	←	X	25%
V 0	←	X	25%
X 0	←	X	25%
X 1	←	X	25%

Second Iteration / Learner

Outcome	e Predictor	Weight
V 0		400/
X 0	← X	40%
V 0	← X	20%
X 0	← X	20%
✓ 1	← X	20%

Third Iteration / Learner

Outco	me	Predictor	Weight
1 1	←	X X	45% 35%
X 1	←	X	20%

Key Idea

XGBoost only looks at a fraction of the observation at the time Observations that are more difficult to predict are given a bigger weight

Feature Sampling: XGBoost also gives different weights to different predictors

First Iteration / Learner

Error	Outcome	X1	X2	Х3
X	1			
X	0	50%	50%	
X	1	%	%	
/	1			

Second Iteration / Learner

Error	Outcome	X1	X2	Х3
X	1			
×	0	50%		50%
~	0	%		%
/	1			

Third Iteration / Learner

Error	Outcome	X1	X2	Х3
X	1			
/	1		40%	60%
X	0		%	%
/	0			

Key Idea

Predictors also have different weights if they yield different model results

Feature Sampling: XGBoost also gives different weights to different predictors

First Iteration / Learner

Error	Outcome	X1	X2	Х3	Weight
Yes	1				25%
Yes	0	50	50%		25%
Yes	1	0%	%		25%
No	1				25%

Second Iteration / Learner

Error	Outcome	X1	X2	Х3	Weight
Yes	1				30%
Yes	0	50%		50%	30%
No	0	%		%	30%
No	0				10%

Third Iteration / Learner

Error	Outcome	X1	X2	Х3	Weight
Yes	1				35%
No	1		40%	60%	35%
No	0		%	%	25%
No	0				5%

Key Idea

Predictors also have different weights if they yield different model results

Pros and Cons - Silverkite

RNN LSTM

Neural Networks quick facts

Which?

Description

- 1 Idea comes from the 1940's
- Name comes from working like the synapses in our brain
- Neurons or nodes have weights that get adjusted as the learning proceeds
- There is an element of randomness. We would always get different results
- Recurrent Neural Networks Advanced form of Neural Networks

Multilinear Regression architecture

Simple Neural Network architecture

Equation:

$$z_j = b_j + \sum_{i=1}^n w_{i,j} * x_i$$

j: Hidden layer

i: Input Layer

z: Output of hidden layer

b: Parameter

w: Weight

x: Input

Backpropagation

Neural Networks can have multiple Hidden Layers and outputs

Simplified Neural Network Visualization

Artificial Neural Network Visualization

Input layer Hidden Layer Output layer Input 1 Input 2 Input 3 Input 4

Simplified Visualization

Recurrent Neural Networks architecture

Key ideas

The output at time N is influenced by the inputs at time N and the outputs of N-1.

RNN logic is similar to the other models we have seen.

RNN can be used to create Music or Books.

The issue with RNN

Recurrent Neural Network Output layer Hidden Layer Input layer

Key ideas

The output at time N is influenced by the inputs at time N and the outputs of N-1

The impact of immediate data is more relevant

The backpropagation also updates more the weights of the last few elements of the series than the initial ones

The initial weights of the series barely get trained

Long Short-Term Memory

LSTM Model

Component	Description
Dropout	Fraction of neurons ignored
N_rnn_layers	Number of hidden layers
Hidden_dim	Size for feature maps for each hidden RNN layer
N_epochs	Number of complete iterations through the training set
Lr	How much the model learn with the error?
Training_length	Duration of past and future during training. Must be > than ICL
Input chunk length	Number of past time steps that are fed to the model

Pros and Cons

Ensemble

Ensemble Introduction

Which?

Description

- 1 Ensemble is an average of forecasts
- Forecasting models have advantages and disadvantages
- 3 Seasonality, trend, regressors, short-term changes...
- 4 Combining models is a solution to overcome flaws
- The Last Mile starts now. Are you ready

Ensemble mechanism

Example

Date	Prophet	SARIMAX	Silverkite	LSTM	Ensemble
t	750	850	825	775	800

Key Idea

Ensemble is an average of models. The goal models have flaws, but if you group all of them, then some models will average out the error

Date	Prophet	SARIMAX	Silverkite	LSTM	Average
Historic RMSE	48.1	60	47.8	83.4	59.8

$$Weight = \frac{0.25}{\frac{error}{avg\ error}}$$

Penalizing Models with higher average error

Example

Date	Prophet	SARIMAX	Silverkite	LSTM	Ensemble
FC t	750	850	825	725	800
Weights FC t	187.5	212.5	206.3	193.2	800
New FC t	223.6	201	253.4	132.1	810.1

Date	Prophet	SARIMAX	Silverkite	LSTM	Average
Historic RMSE	48.1	60	47.8	83.4	59.8
Weights	31.1%	24.9%	31.3%	17.9%	25%

$$Weight = \frac{0.25}{\frac{error}{avg\ error}}$$

$$Weight = \frac{0.25}{\frac{error}{avg\ error}} / excess$$

31.3% + 24.9% + 31.3% + 17.9% = 1.05

Pros and Cons

