Homework #7

Sam Fleischer

March 18, 2016

Problem 1	 	 •	•		 	•	•	 •	•	•	•		•	•	•	•	 •	•	•	•		•	 •	٠	•	•	•	 •	•		2
Problem 2	 																														2

Problem 1

(a) Use separation of variables to find the eigenvalues λ and eigenfunctions u(x, y) of the Dirichlet Laplacian on the unit square that satisfy

$$-(u_{xx} + u_{yy}) = \lambda u \qquad 0 < x < 1, \ 0 < y < 1$$

$$u(x, 0) = 0, \qquad u(x, 1) = 0 \qquad 0 \le x \le 1$$

$$u(0, y) = 0, \qquad u(1, y) = 0 \qquad 0 \le y \le 1.$$

(b) What is the smallest eigenvalue that is not a simple eigenvale?

Problem 2

(a) Let $\vec{x} = (x, y)$, $\vec{\xi} = (\xi, \eta)$, and $\vec{\xi^*} = (\xi, -\eta)$ where $\eta > 0$. Show that

$$G(\vec{x}, \vec{\xi}) = -\frac{1}{2\pi} \log \left(\frac{\left| \vec{x} - \vec{\xi} \right|}{\left| \vec{x} - \vec{\xi}^* \right|} \right)$$

is the solution of

$$-(G_{xx} + G_{yy}) = \delta(\vec{x} - \vec{\xi}) \quad \text{in } -\infty < x < \infty, \qquad y > 0$$
$$G(\vec{x}, \vec{\xi}) = 0 \quad \text{on } y = 0.$$

(b) Write down the Green's function representation for the solution u(x, y) of the Dirichlet problem for the Laplacian in the upper half plane

$$u_{xx} + u_{yy} = 0$$
 in $-\infty < x < \infty$, $y > 0$
 $u(x,0) = f(x)$.

You can assume that $u(x, y) \to 0$ sufficiently rapidly as $|(x, y)| \to \infty$.

(c) Use the Green's function representation to show that

$$u(x,y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(t)}{(x-t)^2 + y^2} dt.$$