

UNIVERSIDAD NACIONAL DE CÓRDOBA

FACULTAD DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES

Instalaciones Eléctricas

TAREA Nº 5

Alumno: Mugni, Juan Mauricio

Profesores: Cirbian. Sergio

Índice

Consigna	
Explicación	
Resolución	6
Método utilizando la tabla	6
Método basado en los datos del recibo de electricidad	8
Verificación de ambos métodos	8
Selección de componentes	9
Sistemas automáticos	
Reactores para filtro de armónicas	9
Módulos de tiristores	
Reactores de descarga	
Reguladores electrónico	11
Contactores	
Capacitores	12
Diagrama unifilar	
J	

Consigna

Se debe mejorar el factor de potencia en la instalación eléctrica de una planta industrial, estableciendo un valor mínimo deseado de 0,96 . Se debe calcular la potencia reactiva necesaria y proponer una solución de corrección mediante un tablero automatizado. Esto incluye el diseño del gabinete (unifilar y topográfico) y la especificación de los componentes, incluyendo sus características (marca y modelo).

Explicación

Antes de comenzar se definen las siguientes abreviaturas:

DP: Demanda en punta, de 18:00 hs a 23:00 hs

DV: Demanda en valle, de 23:00 hs a 05:00 hs

DR: Demanda en resto, de 05:00 hs a 18:00 hs

Se aclara que las demandas se miden en potencia consumida por lo tanto se mide en $\lceil kW \rceil$.

ERT: Energía reactiva total, se mide en [kVArh].

EAP: Energía activa en punta, se mide en [kWh]

<u>EAV</u>: Energía activa en valle, se mide en [kWh].

EAR: Energía activa en resto, se mide en [kWh].

Estos valores podemos encontrarlos en la boleta emitida por la empresa que nos brinda el servicio, en este caso, EPEC (*Empresa Provincial de Energía de Córdoba*). Ver la siguiente imagen:

EPEC es una empresa pública de la provincia de Córdoba, Argentina, encargada de la generación, transporte, distribución y comercialización de energía eléctrica en todo el territorio provincial. Además de brindar servicios energéticos, también participa en proyectos de infraestructura y sostenibilidad relacionados con la energía en la región.

Se va a calcular la potencia del equipo de compensación por dos métodos. Uno teniendo en cuenta una tabla, y otros con base analítica. El uso de la tabla no será explicado en esta sección, se demostrará las operaciones y cuentas utilizadas para el método analítico.

Para la corrección del factor de potencia, las ecuaciones utilizadas parten del siguiente razonamiento:

Del diagrama anterior podemos deducir:

$$\cos\phi = \frac{P}{S} = \frac{P}{\sqrt{P^2 + Q^2}} \qquad \phi = tg(\frac{P}{Q}) \qquad Q = Q_1 - Q_2$$

Como sabemos la potencia activa es:

$$P = V I \cos \phi [W]$$

y la reactiva:

$$Q=V I sen \phi [VAR]$$

entonces podemos reescribir la ecuación de la potencia reactiva como:

$$Q=Q_1-Q_2=V I \operatorname{sen} \phi_1-V I \operatorname{sen} \phi_2$$

teniendo en cuenta que la potencia activa se la puede expresar así:

$$VI = \frac{P}{\cos \phi}$$

Nos queda:

$$Q = \frac{P}{\cos \phi_1} \operatorname{sen} \phi_1 - \frac{P}{\cos \phi_2} \operatorname{sen} \phi_2$$

sacando factor común P y por relación trigonométrica, obtenemos:

$$Q=P(tg \phi_1-tg \phi_2)$$

En donde:

P es la potencia activa, se mide en $\lceil kWh \rceil$.

Q es la potencia reactiva que se necesita instalar para obtener el $\cos\phi$ deseado, se mide en $\lceil kVArh \rceil$.

 ϕ_1 es el ángulo actual.

 ϕ_2 es el ángulo deseado.

De esta manera, conociendo la potencia activa total, el ángulo actual y el deseado, se calcula la potencia reactiva que se necesita instalar para corregir el factor de potencia de cada carga.

El procedimiento anterior es para una compensación individual, si pretendemos realizar una compensación por grupo, primero calculamos la potencia aparente de cada carga:

$$S = \frac{P}{\cos \phi}$$

y luego la potencia reactiva:

$$Q = S sen(arc cos \phi)$$

Sumamos las potencias activas y las reactivas para cada tablero, y podemos obtener la potencia aparente para cada uno:

$$S = \sqrt{P^2 + Q^2}$$

Y con estos valores calculamos directamente:

$$\cos \phi = \frac{P}{S}$$

de cada uno de los tableros.

Como conocemos la potencia activa de cada tablero y tenemos el $\cos \phi$ actual podemos calcular la potencia reactiva que se necesita instalar en cada tablero para corregir el factor de potencia de cada grupo. Para ello utilizamos la misma fórmula:

$$Q=P(tg \phi_1-tg \phi_2)$$

Y para una compensación centralizada, se suman las potencias activas y reactivas de todos los grupos, obtenemos la potencia aparente total, y calculamos el $\cos\phi$ actual total. Con estos datos, ya podemos calcular la potencia reactiva que se necesita instalar en el tablero general para corregir el factor de potencia de todo el sistema. Tener en cuenta que es la misma lógica y/o procedimientos que para el caso de la compensación por grupo.

Resolución

Los datos para llevar a cabo la actividad son los siguientes:

EAP	EAR	EAV	ERT	Horas de trabajo
37997	43795	39087	109545	575

Método utilizando la tabla

El método de la tabla consiste en obtener el valor de $\cos\phi$ actual y teniendo en cuenta el $\cos\phi$ deseado obtenemos los $kV\!Ar$ que se deben instalar por kW de carga, independientemente de la tensión de la red.

Para calcular el $\cos \phi$ actual, se hace lo siguiente:

Primero sumamos todas las potencias activas en las distintas franjas horarias, obteniendo así la energía activa total.

$$EA = EAP + EAR + EAV = 37997 + 43795 + 39087 = 120,9 \, kWh$$

Como necesitamos la potencia activa total, dividimos el resultado anterior por las horas de trabajo:

$$P = \frac{EA}{Horas\,de\,trabajo} = 210,2\,kW$$

Y la potencia reactiva total, se calcula de la misma forma. Dividimos la energía reactiva total por las horas de trabajo:

$$Q = \frac{ERT}{Horas de trabajo} = 190,5 kVAr$$

Listo, ya podemos calcular el $\cos \phi$ actual:

$$\cos \phi = \frac{P}{\sqrt{P^2 + Q^2}} = 0.741$$

Teniendo en cuenta este valor de $\cos \phi$ actual (valor que se encuentra indicado en las filas) y el deseado de 0,96 (se encuentra indicado en las columnas) ingresamos a la siguiente tabla:

	Antes de la Potencia del condensador en kVAr a instalar por kW de carga para aumentar el compensación factor de potencia (cos φ) o la tg φ a un valor dado.													
	tg φ	0,75	0,59	0,48	0,46	0,43	0,40	0,36	0,33	0,29	0,25	0,20	0,14	0,0
	cos φ	0,80	0,86	0,90	0,91	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99	1,00
tg 🛭	cos 🛭													
2,29	0,40	1,557	1,691	1,805	1,832	1,861	1,895	1,924	1,959	1,998	2,037	2,085	2,146	2,288
2,22	0,41	1,474	1,625	1,742	1,769	1,798	1,831	1,840	1,896	1,935	1,973	2,021	2,082	2,225
2,16	0,42	1,413	1,561	1,681	1,709	1,738	1,771	1,800	1,836	1,874	1,913	1,961	2,022	2,164
2,10	0,43	1,356	1,499	1,624	1,651	1,680	1,713	1,742	1,778	1,816	1,855	1,903	1,964	2,107
2,04	0,44	1,290	1,441	1,558	1,585	1,614	1,647	1,677	1,712	1,751	1,790	1,837	1,899	2,041
1,98	0,45	1,230	1,384	1,501	1,532	1561	1,592	1,628	1,659	1,695	1,737	1,784	1,846	1,988
1,93	0,46	1,179	1,330	1,446	1,473	1,502	1,533	1,567	1,600	1,636	1,677	1,725	1,786	1,929
1,88	0,47	1,130	1,278	1,397	1,425	1,454	1,485	1,519	1,532	1,588	1,629	1,677	1,758	1,881
1,83	0,48	1,076	1,228	1,343	1,370	1,400	1,430	1,464	1,497	1,534	1,575	1,623	1,684	1,826
1,78	0,49	1,030	1,179	1,297	1,326	1,355	1,386	1,420	1,453	1,489	1,530	1,578	1,639	1,782
1,73	0,50	0,982	1,232	1,248	1,276	1,303	1,337	1,369	1,403	1,441	1,481	1,529	1,590	1,732
1,69	0,51	0,936	1,087	1,202	1,230	1,257	1,291	1,323	1,357	1,395	1,435	1,483	1,544	1,686
1,64	0,52	0,894	1,043	1,160	1,188	1,215	1,249	1,281	1,315	1,353	1,393	1,441	1,502	1,644
1,60	0,53	0,850	1,000	1116	1,144	1,171	1,205	1,237	1,271	1,309	1,349	1,397	1,458	1,600
1,56	0,54	0,809	0,959	1,075	1,103	1,130	1,164	1,196	1,230	1,268	1,308	1,356	1,417	1,559
1,52	0,55	0,769	0,918	1,035	1,063	1,090	1,124	1,156	1490	1,228	1,268	1,316	1,377	1,519
1,48	0,56	0,730	0,879	0,996	1,024	1,051	1,085	1,117	1,151	1,189	1,229	1,277	1,338	1,480
1,44	0,57	0,692	0,841	0,958	0,986	1,013	1,047	1,079	1,113	1,151	1,191	1,239	1,300	1,442
1,40	0,58	0,665	0,805	0,921	0,949	0,976	1,010	1,042	1,078	1,114	1,154	1,202	1,263	1,405
1,37	0,59	0,618	0,768	0,884	0,912	0,939	0,973	1,005	1,039	1,077	1,117	1,165	1,226	1,368
1,33	0,60	0,584	0,733	0,849	0,878	0,905	0,939	0,971	1,005	1,043	1,083	1,131	1,192	1,334
1,30	0,61	0,549	0,699	0,815	0,843	0,870	0,904	0,936	0,970	1,008	1,048	1,096	1,157	1,299
1,27	0,62	0,515	0,665	0,781	0,809	0,836	0,870	0,902	0,936	0,974	1,014	1,062	1,123	1,265
1,23	0,63	0,483	0,633	0,749	0,777	0,804	0,838	0,870	0,904	0,942	0,982	1,030	1,091	1,233
1,20	0,64	0,450	0,601	0,716	0,744	0,771	0,805	0,837	0,871	0,909	0,949	0,997	1,058	1,200
1,17	0,65	0,419	0,569	0,685	0,713	0,740	0,774	0,806	0,840	0,878	0,918	0,966	1,007	1,169
1,14	0,66	0,388	0,538	0,654	0,682	0,709	0,743	0,775	0,809	0,847	0,887	0,935	0,996	1,138
1,11	0,67	0,358	0,508	0,624	0,652	0,679	0,713	0,745	0,779	0,817	0,857	0,905	0,966	1,108
1,08	0,68	0,329	0,478	0,595	0,623	0,650	0,684	0,716	0,750	0,788	0,828	0,876	0,937	1,079
1,05	0,69	0,299	0,449	0,565	0,593	0,620	0,654	0,686	0,720	0,758	0,798	0,840	0,907	1,049
1 02	0,70	0,270	0,420	0536	0,564	0591	0,625	0,657	0,691	0,729	0,769	0,811	0,878	1,020
0,99	0,71	0,242	0,392	0,508	0,536	0,563	0,597	0,629	0,663	0,701	0,741	0,783	0,850	0,992
0,96	0,72	0,213	0,364	0,479	0,507	0,534	0,568	0,600	0,634	0,672	0,712	0,754	0,821	0,963
0,94	0,73	0,186	0,336	0,452	0,480	0,507	0,541	0,573	0,607	0,645	0,685	0,727	0,794	0,936
0,91	0,74	0,159	0,309	0,425	0,453	0,480	0,514	0,546	0,580	0,618	0,658	0,700	0,767	0,909
0,88	0,75	0,132	0,282	0,398	0,426	0,453	0,487,	0,519	0,553	0,591	0,631	0,673	0,740	0,882
0,86	0,76	0,105	0,255	0,371	0,399	0,426	0,460	0,492	0,526	0,564	0,604	0,652	0,713	0,855
0,83	0,77	0,079	0,229	0,345	0,373	0,400	0,434	0,466	0,500	0,538	0,578	0,620	0,687	0,829
0,80	0,78	0,053	0,202	0,319	0,347	0,374	0,408	0,440	0,474	0,512	0,552	0,594	0,661	0,803
0,78 0,75 0,72	0,79 0,80 0,81	0,026 - -	0,150	0,266	0,294	0,321	0,355	0,413 0,387 0,361	0,421	0,485 0,459 0,433	0,499	0,541	0,634 0,608 0,582	0,750
0,70 0,67 0,65	0,82 0,83 0,84	- - -	0,098 0,072 0,046	0,188	0,216			0,335 0,309 0,283		0,407 0,381 0,355	0,447 0,421 0,395	0,463	0,556 0,530 0,504	
0,62 0,59 0,57	0,85 0,86 0,87	- - -	0,020 - -	0,109	0,140	0,167	0,198	0,257 1,230 0,204	0,264	0,329 0,301 0,275	0,369 0,343 0,317	0,390	0,478 0,450 0,424	0,593
0,54 0,51 0,48	0,88 0,89 0,90	- - -	- - -	0,054 0,028 -		0,086	0,117	0,175 0,149 0,121	0,183	0,246 0,230 0,192			0,395 0,369 0,341	0,512

La intersección entre la fila y la columna seleccionada nos indica que debemos instalar $0.618\,kV\!Ar$ por kW. Entonces, la potencia reactiva a instalar es:

$$Q_1 = 0.618 \frac{kVAr}{kW} 210.2 kW = 129.9 kVAr$$

Método basado en los datos del recibo de electricidad

Para este caso, nuevamente calculamos el valor del $\cos \phi$ actual. Y aplicamos la siguiente fórmula:

$$Q=P(tg \phi_1-tg \phi_2)$$

Donde:

 $\phi_1 = a\cos(\cos\phi)$

 $\phi_2 = acos(0,96)$, en este caso el valor deseado de $\cos\phi$ es 0,96 .

Simplemente reemplazamos (van a ser los valores calculados en el método anterior), nos queda:

$$Q_2 = P(tg \phi_1 - tg \phi_2) = 210.2 kW(tg(0.741) - tg(0.96)) = 129.2 kVAr$$

Verificación de ambos métodos

Como es de apreciar, ambas formas de calcular potencia reactiva que debemos instalar nos da valores aproximados.

Selección de componentes

Sistemas automáticos

Sistemas automáticos para la corrección centralizada del factor de potencia, se entregan listos para su instalación.

Línea 2SE

- Regulador electrónico EPCOS BR450 (orígen : Italia)
 Opcional : Regulador EPCOS BR6000
- Capacitores ELECOND PhiCap
- Contactores SIEMENS / EPCOS
- Protección general por Secc-Fusible NH SIEMENS
- Gabinete metálico
 Dimensiones :
 1000 x 400 x 250 mm (90/105kVAr)
 1200 x 600 x 250 mm (120/135kVAr)
 1200 x 750 x 250 mm (150/165kVAr)
- Ventilación forzada

Modelo	Potencia	Configuración
2SE-0900	90 kvar	2 x 15 + 2 x 30
2SE-1050 105 kvar		15 + 3 x 30
2SE-1200	120 kvar	2 x 15 + 3 x 30
2SE-1350	135 kvar	15 + 4 x 30
2SE-1500	150 kvar	5 x 30
2SE-1650	165 kvar	15 + 5 x 30

Reactores para filtro de armónicas

Especialmente diseñados para equipos con filtros desintonizados de armónicas. Los capacitores para CFP forman un circuito resonante al ser conectados en paralelo con el transformador MT/BT.

La experiencia muestra que la frecuencia de resonancia de este circuito se ubica generalmente entre $250\,Hz$ y $500\,Hz$ (frecuencias correspondientes a 5° y 7° armónica respectivamente).

Este fenómeno puede ser evitado conectando reactores de filtro en serie con los capacitores.

Potencia	Frecuencia de resonancia	Desintonía
6,2 kvar	134Hz Para sistemas con 3°	p = 14%
12,5 kvar	armónica predominante	ó
25 kvar	189Hz	p = 7%
50 kvar	Para sistemas con 5º armónica predominante	, , , , ,

Módulos de tiristores

Se los utiliza para la maniobra automática de capacitores en tiempo real menor a 20 ms

En algunas aplicaciones las variaciones de carga son tan bruscas que un sistema de compensación convencional con contactores electromagnéticos, no resulta apto .

Por medio de estos módulos de tiristores, los capacitores son conectados en forma instantánea sin diferencia de tensión con la red : esto hace que no sea necesario esperar el tiempo de descarga.

Esta característica evita también las perturbaciones provocadas en la red por la maniobra de los capacitores y aumenta en forma notable su vida útil.

Características:

- Instalación simple : se utiliza como un contactor.
- Tiempo de respuesta: 5ms
- Autocontrol permanente de tensión, secuencia de fase y potencia del capacitor

Тіро	Potencia
TSM-LC 25	25 kvar
TSM-LC 50	50 kvar

Reactores de descarga

Se los utiliza para la descarga rápida de capacitores.

Los resistores usados normalmente requieren un tiempo relativamente extenso para lograr la descarga de los capacitores (más de un minuto). Estos reactores permiten reducir este tiempo en forma significativa.

Características:

- Descarga rápida : permite acortar los tiempos de reconexión en equipos automáticos.
- Pérdidas reducidas (< 1,8 W)
- Diseño apto para montaje sobre riel DIN 35mm

Tiempo de descarga (en sistemas de 400V)			
Hasta 25 kvar	< 10s		
Hasta 50 kvar	< 20s		
Hasta 100 kvar	< 40s		

Reguladores electrónico

La función consiste en medir el $\cos(\varphi)$ de la instalación y enviar las órdenes a los contactores para ajustar el valor lo más cerca posible del coseno φ deseado, conectando los diferentes niveles de potencia reactiva.

Usando el catálogo de Elencod® elegimos el siguiente regulador electrónico: EPCOS BR450.

- Disponibles en versiones de 4 ó 6 salidas
- Funciones inteligentes de alarma para proteger los capacitores ante sobrebrecargas por tensión, corriente (armónicas) y temperatura.
- Sensor interno de temperatura , permite el control automático de sistemas de ventilación forzada

Característica	Especificación
Dimensiones	96 x 96 x 53 mm
Cantidad de salidas	BR450/4 : 4 salidas / BR450/6 : 6 salidas
Tensión de alimentación	220 Vca / 110 Vca (seleccionable)
Modo de funcionamiento	Manual / Automático
Sensor interno de temp.	Si
Tiempo de conexión	Regulable entre 2 / 250 seg.
Tiempo de desconexión	Regulable entre 2 / 250 seg.
Tiempo de reconexión	Regulable entre 2 / 250 seg.
Coseno Phi	Regulable entre 0,50 ind / 0,50 cap.
Lecturas en display	 Factor de Potencia (Cos Phi – RMS) Tensión del sistema (V – RMS) ΔkVAr (Potencia necesaria para lograr el Coseno Phi programado) THC% (sobrecarga de corriente sobre los capacitores debido a armónicas Temperatura interior del equipo (°C
Alarmas	Sobretensión Sobrecorriente (armónicas) Sobretemperatura Bajo factor de potencia En todos los casos, se pueden programar límites admisibles : si estos límites son superados, el regulador desconecta los capacitores y sólo los conecta nuevamente cuando las condiciones de alarma desaparecen.
Programación de alarmas	- Sobretensión: 0 / 995 V - Sobrecorriente: 0 / 200% (sobre In) - Sobretemperatura: 0 / 60°C - Bajo Coseno Phi: 0 / 1,00 Tambien se puede programar en cada caso el tiempo que el regulador debe esperar antes de actuar frente a una alarma.

Contactores

Los contactores son los dispositivos responsables de conectar los diferentes condensadores que forma la batería. Siguiendo el catalogo de Elencod[®] vamos a utilizar los siguientes contactores KML.

	Potencia i	reactiva máxin	na (kvar)		Pérdidas totales at le/400V/ AC6b	In (A)
230~240V (50/60 Hz)	400~440V (50/60 Hz)	460~480V (50/60 Hz)	500~550V (50/60 Hz)	600~690V (50/60 Hz)		
6,7	12,5	14	15	18	8,98	18
14	25	29	30	35	13,43	36
20	30	33	35	40	15,56	44
29	50	58	60	70	30,66	72
32	60	65	70	80	27,9	87
45	80	90	100	115	54,26	116

Capacitores

Los capacitores serán los encargados de corregir el factor de potencia, haciendo disminuir la energía reactiva del sistema.

Trifásicos 400V

Potencia	Dimensiones (d x h)
7,5 kvar x 3 x 400V	121 x 164 mm (1)
12,5 kvar x 3 x 400V	121 x 164 mm (1)
15,0 kvar x 3 x 400V	121 x 164 mm (1)
25,0 kvar x 3 x 400V	121 x 200 mm (1)

(1) Considerar 40mm adicionales por la altura de la bornera de conexión

Cada capacitor elegido corrige 25kVAr por lo tanto se instalarán cinco de estos, y la potencia reactiva instalada (125kVAr) será menor a la calculada (129,2kVAr).

Diagrama unifilar

