NATURAL LANGUAGE PROCESSING

المعالجة اللغوية الطبيعية

المحتويات

				التطبيقات	العقبات و التحديات	تاریخ NLP	ما هو NLP	المحتويات	1) مقدمة
					البحث في النصوص	ملفات pdf	الملفات النصية	المكتبات	2) أساسيات NLP
T.Visualization	Syntactic Struc.	Matchers	Stopwords	NER	Stem & Lemm	POS	Sent. Segm.	Tokenization	3) أدوات NLP
	Dist. Similarity	Text Similarity	TF-IDF	BOW	Word2Vec	T. Vectors	Word embed	Word Meaning	4)المعالجة البسيطة
T. Generation	NGrams	Lexicons	GloVe	L. Modeling	NMF	LDA	T. Clustering	T. Classification	5)المعاجلة المتقدمة
	Summarization & Snippets		A	Ans. Questions	Auto Correct	Vader	Naïve Bayes	Sent. Analysis	
Search Engine	Relative Extraction		Information Retrieval		Information Extraction		Data Scraping	Tweet Collecting	6)تجميع البيانات
					Rec NN\TNN	GRU	LSTM	Seq to Seq	RNN (7
Chat Bot	Gensim	FastText	Bert	Transformer	Attention Model	T. Forcing	CNN	Word Cloud	8)تكنيكات حديثة

القسم الخامس: المعالجة المتقدمة للنصوص

Non-Negative Matrix Factorization : الجزء الرابع

الـ Non-Negative Matrix Factorization أو تحليل المصفوفة الموجبة وهو اسلوب مشابه في مهمة تصنيف النصوص مثل LDA لكن مختلف نوعا في الفكرة, وهو اسرع و قد يكون ادق

و يعتمد في فكرته علي عمل مصفوفتين من ارقام عشوائية, واحدة هي العلاقة بين الكلمات و الموضوع, والثانية بين الموضوع و الد Clutser والتي تكون الأساس الرياضي لتصنيف النصوص كما حدث في LDA

وهو يستخدم في NLP و ايضا في تطبيقات NLP

و الكود مشابه الى حد كبير الكود السابق هكذا . .


```
import pandas as pd
npr = pd.read_csv('npr.csv')
npr.head()
```

بدلا من عمل خطوة countvectorizer ثم LDA , نقوم باستدعاء Tfidf لاستخدامها

```
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf = TfidfVectorizer(max_df=0.95, min_df=2, stop_words='english')
dtm = tfidf.fit_transform(npr['Article'])
```

ثم نستخدم NMF و هي اختصار NMF و الختصار Nonnegative Matrix Factorization

```
from sklearn.decomposition import NMF

nmf_model = NMF(n_components=7,random_state=42)

nmf_model.fit(dtm)
```

ثم نفس الخطوات السابقة

```
len(tfidf.get_feature_names())
import random
for i in range(10):
  random_word_id = random.randint(0,54776)
  print(tfidf.get_feature_names()[random_word_id])
len(nmf model.components )
nmf model.components
len(nmf model.components [0])
single topic = nmf model.components [0]
```

```
single topic.argsort()
single topic[18302]
single topic[42993]
single topic.argsort()[-10:]
top word indices = single topic.argsort()[-10:]
for index in top_word_indices:
  print(tfidf.get feature names()[index])
for index,topic in enumerate(nmf_model.components_):
  print(f'THE TOP 15 WORDS FOR TOPIC #{index}')
  print([tfidf.get feature names()[i] for i in topic.argsort()[-15:]])
  print('\n')
```

```
dtm.shape
len(npr)
topic_results = nmf_model.transform(dtm)
topic_results.shape
topic_results[0].round(2)
topic_results[0].argmax()
npr.head()
topic_results.argmax(axis=1)
npr['Topic'] = topic_results.argmax(axis=1)
```

```
topicdict = {0:'health',1:'election',2:'legis',3:'policy',4:'candidates',5:'music',6:'educaion'}

npr['Topic Label'] = npr['Topic'].map(topicdict)

npr.head(10)
```

*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*