

circuits rarely use the highest-quality capacitors because of space limitations. You can design the impedance converter without dc-blocking capacitors.

**Figure 1** shows the self-balanced impedance converter. The self-polarized electret condenser-microphone capsule,  $X_1$ , connects to the high-impedance gate of JFET  $Q_1$ .  $Q_1$ , an ac-current source, loads source follower  $Q_1$ .  $Q_2$ , thanks to  $C_2$ , has high impedance but allows a fixed dc voltage on the  $Q_1$  source.

The circuit sources phantom power at 48V dc through  $R_{PH1}$  and  $R_{PH2}$  at the mixing-console end of the microphone cable.  $Q_2$ 's emitter drives—and  $R_{PH1}$  loads—emitter follower  $Q_3$ . The signal from  $Q_3$ 's emitter bootstraps the

**TABLE 1 PERFORMANCE PARAMETERS**

| Mixing-console input impedance $R_{IN}$ (kΩ) | Peak input clipping voltage (V) | Input voltage at -80-dB (0.01%) distortion |
|----------------------------------------------|---------------------------------|--------------------------------------------|
| 1.2                                          | 3.1                             | 140 mV rms                                 |
| 2.4                                          | 5.8                             | 750 mV rms                                 |
| 10                                           | 13.6                            | 3.1V rms                                   |

drain of  $Q_1$ , reducing the ac voltage across the gate-to-drain capacitance and resulting in lower input capacitance at the gate of  $Q_1$ .  $R_{PH2}$  supplies current for shunt-regulator-voltage sources  $D_2$  and  $Q_4$ .  $R_4$  and  $C_4$  attenuate zener-diode noise. Integrator  $IC_1$  compares the dc voltages on the XLR connector's pins 2 and 3 and, through  $Q_2$  and  $Q_3$ , maintains a difference

**TABLE 2 PERFORMANCE PARAMETERS FOR JFETs**

| Q <sub>1</sub> part | A-weighted noise voltage (μV rms) |
|---------------------|-----------------------------------|
| 2SK596              | 4                                 |
| 2SK660              | 3.6                               |
| 2SK2219             | 4.1                               |
| TF202C              | 4.6                               |

equal to the op amp's input offset voltage. Thus, if the microphone input at the mixer console is transformer-coupled, both ends of its winding are at the same voltage. No dc will flow through the winding and saturate the core.  $IC_1$  should have a common-mode-input-voltage range equal to that of the positive-supply rail. You can accomplish this task using, for example, an op amp with a P-channel JFET input stage. Tables 1 and 2 and **Figure 2** show typical performance parameters for the impedance converter in **Figure 1**. **EDN**



**Figure 2** The voltage-noise density versus frequency for the circuit of **Figure 1** varies with different types of input JFET  $Q_1$ . The source impedance of  $X_1$  is 10 pF.

## REFERENCE

1 Gaskell, Robert-Eric, "Capacitor 'Sound' in Microphone Preamplifier DC Blocking and HPF Applications: Comparing Measurements to Listening Tests," Audio Engineering Society, Presentation 130, Paper 8350, May 2011, pg 1, <http://bit.ly/zVcgctc>.

## Simple sawtooth generator operates at high frequency

Luca Bruno, IIS Hensemberger Monza, Lissone, Italy

 Pulse-width-modulation signal-generator circuits often use an analog sawtooth-oscillator function, but it also can be useful in other applica-

tions. The inexpensive sawtooth generator in **Figure 1** suits use in low-power applications operating at frequencies as high as 10 MHz and beyond and

those in which ramp linearity and frequency accuracy are not prominent concerns.

The circuit employs a single Schmitt-trigger inverter, which acts as a modified astable multivibrator. The output waveform is the voltage across timing capacitor  $C_T$ , which ramps between the lower and the upper threshold voltages of the



**Figure 1** You can use the  $C_T$  ramp's charge and fast discharge to produce a sawtooth. The upper and lower trip-point voltages of the Schmitt trigger limit the sawtooth. See text for the values of  $V_{CC}$ ,  $C_T$ , and  $R_T$ .

## TO IMPROVE FREQUENCY ACCURACY, USE A FAST LOGIC FAMILY WITH LOW PROPAGATION DELAY AND HIGH OUTPUT CURRENT.

inverter. Charging the  $R_T C_T$  network at constant voltage causes the ramp, so its response is exponential, approximately linear only for the initial part of the exponential rise.

A simple trick to improve ramp linearity is to charge the  $R_T C_T$  network with a higher-voltage source. Capacitor C<sub>1</sub>, which has a value that is at least 10 times greater than that of C<sub>T</sub>, acts as a charge pump. When the gate output is low during the falling edge of the sawtooth, capacitor C<sub>1</sub> quickly charges through diode D<sub>1</sub> to V<sub>CC</sub> minus the for-

ward voltage of D<sub>1</sub>. Meanwhile, capacitor C<sub>T</sub> discharges quickly through diode D<sub>2</sub>.

When the falling C<sub>T</sub> voltage reaches the Schmitt trigger's lower trip point, V<sub>T-</sub>, the gate output returns high. The charge on C<sub>1</sub> drives the cathode of D<sub>1</sub> to the sum of the voltage of capacitor C<sub>1</sub> and the gate's high output voltage. D<sub>1</sub> becomes reverse-biased, and the R<sub>T</sub>C<sub>T</sub> network begins to charge to the voltage on C<sub>1</sub>, along with the gate's high output voltage. When C<sub>T</sub> reaches the Schmitt trigger's upper trip point, V<sub>T+</sub>, the gate's output returns low, and the cycle repeats.

Ramp linearity is proportional to the sum of the V<sub>CC</sub> and V<sub>DD</sub> supply voltages. Because V<sub>DD</sub> is fixed at 5V, you can improve ramp linearity if V<sub>CC</sub> can assume a value higher than that of the inverter. You can estimate the ramp's nonlinearity error using the following equation:

$$E_{NL\%} = \left( \frac{M_I - M_F}{M_I} \right) 100,$$

where E<sub>NL</sub>% is the percentage of nonlinearity error, M<sub>I</sub> is the initial slope of the ramp, and M<sub>F</sub> is the final slope of the ramp, and

$$E_{NL\%} = \left( \frac{V_T^+ - V_T^-}{V_{CC} + V_{DD} - V_F - V_T^-} \right) 100,$$

where V<sub>F</sub> is the forward-voltage drop across D<sub>1</sub>.

The R<sub>T</sub>C<sub>T</sub> time constant sets the frequency, F<sub>O</sub>, of the sawtooth signal. You can estimate the frequency by applying a simple model to the circuit, which neglects the discharge time of C<sub>T</sub> and any discharge of C<sub>1</sub>, yielding

the following equation:

$$F_O = \frac{1}{KR_T C_T},$$

where K is a constant, which the following equation defines:

$$K = \ln \left( \frac{V_{CC} + V_{DD} - V_F - V_T^-}{V_{CC} + V_{DD} - V_F - V_T^+} \right).$$

By simulating the circuit with C<sub>T</sub>=100 pF and R<sub>T</sub>=2.2 kΩ, which agree with the values that the equations theoretically calculated, you can obtain ramp nonlinearity errors of 28% with both V<sub>CC</sub> and V<sub>DD</sub> equal to 5V, 18% with V<sub>CC</sub> of 10V and V<sub>DD</sub> of 5V, and 14% with V<sub>CC</sub> of 15V and V<sub>DD</sub> of 5V.

The breadboarded circuit has V<sub>DD</sub>=V<sub>CC</sub>=5V, C<sub>T</sub>=100 pF, and R<sub>T</sub>=2.2 kΩ. IC<sub>1</sub> is a standard dual-in-line, eight-pin 74HC14, which has a maximum propagation delay of 15 nsec versus 4.4 nsec for the SN74LVC1G14 inverter with a V<sub>DD</sub> of 5V. The frequency is approximately 12.7 MHz.

C<sub>T</sub> should be a low-leakage film capacitor, and its value should be kept low to reduce its charging and discharging of a large amount of energy. Select C<sub>T</sub> with a large enough value compared with the gate's input capacitance and unwanted stray capacitances so that they do not introduce a significant error. Select R<sub>T</sub> with a small enough value that the load impedance, gate input, and stray capacitances do not introduce significant error. You can use any CMOS Schmitt-trigger inverter to test the circuit. To improve frequency accuracy, however, you should use a fast logic family with low propagation delay and high output current, such as the single-gate SN74LVC1G14 from Texas Instruments.

You should measure the threshold trigger voltages, especially V<sub>T-</sub>, directly from the circuit under test before using the preceding equations. Quickly discharging C<sub>T</sub> to ground through a finite-propagation-delay inverter causes the lower limit of the ramp to reset below the lower threshold, V<sub>T-</sub>. You can compensate for the resulting error if you use the measured value of V<sub>T-</sub>, which takes this effect into account. **EDN**