Reduced GLT sequences and Applications

Giovanni Barbarino 1

Numerical Linear Algebra Days - Due giorni di Albra Lineare Numerica GSSI - 10 May 2023

¹Department of Mathematics and Systems Analysis, Aalto University

Spectral Symbol

Spectral Symbol

$$\kappa:D\subset\mathbb{R}^M\to\mathbb{C}$$
 is a spectral symbol for $\left\{A_n\right\}_n\sim_\lambda\kappa$ if

$$\lim_{n\to\infty}\frac{1}{d_n}\sum_{k=1}^{d_n}F\left(\lambda_k\left(A_n\right)\right)=\frac{1}{\mu(D)}\int_DF\left(\kappa(x)\right)dx,\quad\forall F\in C_c(\mathbb{C})$$

where $\infty > \mu(D) > 0$ and $A_n \in \mathbb{C}^{d_n \times d_n}$, $d_n \to \infty$.

Spectral Symbol

Spectral Symbol

$$\kappa: D \subset \mathbb{R}^M \to \mathbb{C}$$
 is a spectral symbol for $\{A_n\}_n \sim_{\lambda} \kappa$ if

$$\lim_{n\to\infty}\frac{1}{d_n}\sum_{k=1}^{d_n}F\left(\lambda_k\left(A_n\right)\right)=\frac{1}{\mu(D)}\int_DF\left(\kappa(x)\right)dx,\quad\forall F\in C_c(\mathbb{C})$$

where $\infty > \mu(D) > 0$ and $A_n \in \mathbb{C}^{d_n \times d_n}$, $d_n \to \infty$.

$$\{A_6,A_{20},A_{62},\dots\}\equiv\{A_n\}_n\sim_\lambda\kappa$$

Spectral Symbol

Spectral Symbol

 $\kappa: D \subset \mathbb{R}^M \to \mathbb{C}$ is a spectral symbol for $\{A_n\}_n \sim_{\lambda} \kappa$ if

$$\lim_{n\to\infty}\frac{1}{d_n}\sum_{k=1}^{d_n}F\left(\lambda_k\left(A_n\right)\right)=\frac{1}{\mu(D)}\int_DF\left(\kappa(x)\right)dx,\quad\forall F\in C_c(\mathbb{C})$$

where $\infty > \mu(D) > 0$ and $A_n \in \mathbb{C}^{d_n \times d_n}$, $d_n \to \infty$.

$$\{A_6,A_{20},A_{62},\dots\}\equiv\{A_n\}_n\sim_\lambda\kappa$$

 $\{A_n\}_n$ \sim_{λ} κ when the plot of $\lambda_i(A_n)$ converges to the plot of κ over a same domain D

Multilevel Toeplitz

Given a real function f in $L^1([-\pi,\pi]^q)$, its associated Toeplitz sequence is

$$T_n(f) = [f_{i-j}]_{i,j=1}^n$$
 $f_k = \frac{1}{(2\pi)^q} \int_{-\pi}^{\pi} f(\theta) e^{-ik \cdot \theta} d\theta$ $\{T_n(f)\}_n \sim_{\lambda} f$

Multilevel Toeplitz

Given a real function f in $L^1([-\pi,\pi]^q)$, its associated Toeplitz sequence is

$$T_n(f) = [f_{i-j}]_{i,j=1}^n$$
 $f_k = \frac{1}{(2\pi)^q} \int_{-\pi}^{\pi} f(\theta) e^{-ik\cdot\theta} d\theta$ $\{T_n(f)\}_n \sim_{\lambda} f$

1	f _{0,0}	$f_{0,-1}$		$f_{0,-n+1}$	f_1,0	$f_{-1,-1}$		$f_{-1,-n+1}$					$f_{-n+1,0}$	$f_{-n+1,-1}$		$f_{-n+1,-n+1}$
l	f _{0,1}	$f_{0,0}$	٠.	:	$f_{-1,1}$	$f_{-1,0}$	٠.	:					$f_{-n+1,1}$	$f_{-n+1,0}$	· 14.	:
l	:	٠	٠.	$f_{0,-1}$:	٠.	٠.	$f_{-1,-1}$:	· · .	1.	$f_{-n+1,-1}$
١	$f_{0,n-1}$		$f_{0,1}$	$f_{0,0}$	$f_{-1,n-1}$		$f_{-1,1}$	$f_{-1,0}$					$f_{-n+1,n-1}$		$f_{-n+1,1}$	$f_{-n+1,0}$
l	f _{1,0}	$f_{1,-1}$		$f_{1,-n+1}$	f _{0,0}	$f_{0,-1}$		$f_{0,-n+1}$								
l	f _{1,1}	$f_{1,0}$	٠.	:	f _{0,1}	$f_{0,0}$	٠.	:		٠.					:	
ı	:	٠	14.	$f_{1,-1}$:	· · .	٠.	$f_{0,-1}$			٠.				:	
١	$f_{1,n-1}$		$f_{1,1}$	$f_{1,0}$	$f_{0,n-1}$		$f_{0,1}$	$f_{0,0}$								
l													$f_{-1,0}$	$f_{-1,-1}$		$f_{-1,-n+1}$
l		÷				٠.				٠.,			$f_{-1,1}$	$f_{-1,0}$	٠	:
١		:					٠.				٠.,		:	1.	1.	$f_{-1,-1}$
l													$f_{-1,n-1}$		$f_{-1,1}$	f_1,0
l	$f_{n-1,0}$	$f_{n-1,-1}$		$f_{n-1,-n+1}$					f _{1,0}	$f_{1,-1}$		$f_{1,-n+1}$	f _{0,0}	$f_{0,-1}$		$f_{0,-n+1}$
	$f_{n-1,1}$	$f_{n-1,0}$	٠.,	:					$f_{1,1}$	$f_{1,0}$	٠.	:	f _{0,1}	$f_{0,0}$	٠.	:
	:	٠	÷.	$f_{n-1,-1}$:	1.	٠.	$f_{1,-1}$:	٠	1.	$f_{0,-1}$
/	$f_{n-1,n-1}$		$f_{n-1,1}$	$f_{n-1,0}$									$f_{0,n-1}$		_	f _{0,0}

Take the 2-Dimensional Laplace problem with Dirichlet boundary conditions

$$\Delta u(x,y) = u_{xx}(x,y) + u_{yy}(x,y) = f(x,y) \qquad (x,y) \in [0,1]^2$$

Take the 2-Dimensional Laplace problem with Dirichlet boundary conditions

$$\Delta u(x,y) = u_{xx}(x,y) + u_{yy}(x,y) = f(x,y) \qquad (x,y) \in [0,1]^2$$

We discretize it over the grid

$$\left\{ (x_i, y_j) : x_i = ih, y_j = jh, i, j = 1, \dots, n, h = \frac{1}{n+1} \right\}$$

using a classical second order Finite Difference Method, so that

$$(\Delta u)_{i,j} := \Delta u(x_i, y_j) \sim \frac{u_{i,j+1} + u_{i,j-1} + u_{i+1,j} + u_{i-1,j} - 4u_{i,j}}{h^2}$$

$$(\Delta u)_{i,j} := \Delta u(x_i, y_j) \sim \frac{u_{i,j+1} + u_{i,j-1} + u_{i+1,j} + u_{i-1,j} - 4u_{i,j}}{h^2}$$

$$(\Delta u)_{i,j} := \Delta u(x_i, y_j) \sim \frac{u_{i,j+1} + u_{i,j-1} + u_{i+1,j} + u_{i-1,j} - 4u_{i,j}}{h^2}$$

	(1,1)	(1, 2)	(1, 3)	(1, 4)	(2,1)	(2, 2)	(2,3)	(2, 4)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(4, 1)	(4, 2)	(4, 3)	(4, 4)
(1,1)	4	-1			-1											
(1, 2)	-1	4	-1			-1										
(1, 3)		-1	4	-1			-1									
(1, 4)			-1	4				-1								
(2,1)	-1				4	-1			-1							
(2,2)		-1			-1	4	-1			-1						
(2,3)			-1			-1	4	-1			-1					
(2,4)				-1			-1	4				-1				
(3,1)					-1				4	-1			-1			
(3, 2)						-1			-1	4	-1			-1		
(3,3)							-1			-1	4	-1			-1	
(3,4)								-1			-1	4				-1
(4,1)									-1				4	-1		
(4, 2)										-1			-1	4	-1	
(4,3)											-1			-1	4	-1
(4, 4)												-1			-1	4

$$(\Delta u)_{i,j} := \Delta u(x_i, y_j) \sim \frac{u_{i,j+1} + u_{i,j-1} + u_{i+1,j} + u_{i-1,j} - 4u_{i,j}}{h^2}$$

	(1, 1)	(1, 2)	(1,3)	(1,4)	(2, 1)	(2, 2)	(2,3)	(2,4)	(3, 1)	(3, 2)	(3, 3)	(3,4)	(4, 1)	(4, 2)	(4,3)	(4,4)
(1,1)	4	-1			-1											
(1, 2)	-1	4	-1			-1										
(1, 3)		-1	4	-1			-1									
(1, 4)			-1	4				-1								
(2,1)	-1				4	-1			-1							
(2,2)		-1			-1	4	-1			-1						
(2,3)			-1			-1	4	-1			-1					
(2,4)				-1			-1	4				-1				
(3,1)					-1				4	-1			-1			
(3, 2)						-1			-1	4	-1			-1		
(3, 3)							-1			-1	4	-1			-1	
(3,4)								-1			-1	4				-1
(4,1)									-1				4	-1		
(4, 2)										-1			-1	4	-1	
(4, 3)											-1			-1	4	-1
(4, 4)												-1			-1	4

$$\{ \mathit{T_n} \}_{\mathit{n}} \sim_{\lambda} 4 - e^{\mathrm{i}\theta_1} - e^{-\mathrm{i}\theta_1} - e^{\mathrm{i}\theta_2} - e^{-\mathrm{i}\theta_2} = 4 \sin^2(\theta_1/2) + 4 \sin^2(\theta_2/2)$$

$$\Delta u(x,y) = u_{xx}(x,y) + u_{yy}(x,y) = f(x,y)$$
 $(x,y) \in [0,1]^2$

$$\Delta u(x,y) = u_{xx}(x,y) + u_{yy}(x,y) = f(x,y)$$
 $(x,y) \in [0,1]^2$

$$\Delta u(x,y) = u_{xx}(x,y) + u_{yy}(x,y) = f(x,y) \qquad (x,y) \in L$$

$$(\Delta u)_{i,j} := \Delta u(x_i, y_j) \sim \frac{u_{i,j+1} + u_{i,j-1} + u_{i+1,j} + u_{i-1,j} - 4u_{i,j}}{h^2}$$

	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(4, 1)	(4, 2)	(4, 3)	(4,4)
(1,1)	4	-1			-1											
(1, 2)	-1	4	-1			-1										
(1, 3)		-1	4	-1			-1									
(1, 4)			-1	4				-1								
(2,1)	-1				4	-1			-1							
(2, 2)		-1			-1	4	-1			-1						
(2,3)			-1			-1	4	-1			-1					
(2,4)				-1			-1	4				-1				
(3, 1)					-1				4	-1			-1			
(3, 2)						-1			-1	4	-1			-1		
(3,3)							-1			-1	4	-1			-1	
(3,4)								-1			-1	4				-1
(4, 1)									-1				4	-1		
(4, 2)										-1			-1	4	-1	
(4,3)											-1			-1	4	-1
(4,4)												-1			-1	4

$$(\Delta u)_{i,j} := \Delta u(x_i, y_j) \sim \frac{u_{i,j+1} + u_{i,j-1} + u_{i+1,j} + u_{i-1,j} - 4u_{i,j}}{h^2}$$

	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(4, 1)	(4, 2)	(4,3)	(4, 4)
(1, 1)	4	-1			-1											
(1, 2)	-1	4	-1			-1										
(1,3)		-1	4	-1			-1									
(1, 4)			-1	4				-1								
(2,1)	-1				4	-1			-1							
(2, 2)		-1			-1	4	-1			-1						
(2,3)			-1			-1	4	-1			-1					
(2,4)				-1			-1	4				-1				
(3, 1)					-1				4	-1			-1			
(3, 2)						-1			-1	4	-1			-1		
(3,3)							-1			-1	4	-1			-1	
(3,4)								-1			-1	4				-1
(4, 1)									-1				4	-1		
(4, 2)										-1			-1	4	-1	
(4,3)											-1			-1	4	-1
(4,4)												-1			-1	4

$$(\Delta u)_{i,j} := \Delta u(x_i, y_j) \sim \frac{u_{i,j+1} + u_{i,j-1} + u_{i+1,j} + u_{i-1,j} - 4u_{i,j}}{h^2}$$

	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(2,1)	(2, 2)	(2, 3)	(2, 4)	(3, 1)	(3, 2)	(4, 1)	(4, 2)
(1,1)	4	-1			-1							
(1, 2)	-1	4	-1			-1						
(1, 3)		-1	4	-1			-1					
(1, 4)			-1	4				-1				
(2,1)	-1				4	-1			-1			
(2, 2)		-1			-1	4	-1			-1		
(2,3)			-1			-1	4	-1				
(2,4)				-1			-1	4				
(3, 1)					-1				4	-1	-1	
(3, 2)						-1			-1	4		-1
(4, 1)									-1		4	-1
(4, 2)										-1	-1	4

$$(\Delta u)_{i,j} := \Delta u(x_i, y_j) \sim \frac{u_{i,j+1} + u_{i,j-1} + u_{i+1,j} + u_{i-1,j} - 4u_{i,j}}{h^2}$$

	(1,1)	(1, 2)	(1, 3)	(1, 4)	(2,1)	(2, 2)	(2,3)	(2, 4)	(3,1)	(3, 2)	(4,1)	(4, 2)
(1, 1)	4	-1			-1							
(1, 2)	-1	4	-1			-1						
(1, 3)		-1	4	-1			-1					
(1, 4)			-1	4				-1				
(2,1)	-1				4	-1			-1			
(2, 2)		-1			-1	4	-1			-1		
(2,3)			-1			-1	4	-1				
(2, 4)				-1			-1	4				
(3,1)					-1				4	-1	-1	
(3, 2)						-1			-1	4		-1
(4,1)									-1		4	-1
(4, 2)										-1	-1	4

The reduced matrix T_n^L is not a multilevel Toeplitz but has the same symbol

$$\{T_n^L\}_n \sim_{\lambda} 4\sin^2(\theta_1/2) + 4\sin^2(\theta_2/2)$$

The same holds for any $\Omega\subseteq [0,1]^2$ with $\mu(\Omega)>0$, $\mu(\delta\Omega)=0$ ($\iff \chi_{\Omega}$ R.I.)

		(1, 1)	(1, 2)	(1,3)	(1,4)	(2, 1)	(2, 2)	(2,3)	(2,4)	(3, 1)	(3, 2)	(3, 3)	(3,4)	(4, 1)	(4, 2)	(4, 3)	(4,4)
	(1,1)	4	-1			-1											
	(1, 2)	-1	4	-1			-1										
	(1, 3)		-1	4	-1			-1									
	(1, 4)			-1	4				-1								
	(2, 1)	-1				4	-1			-1							
	(2, 2)		-1			-1	4	-1			-1						
T _	(2,3)			-1			-1	4	-1			-1					
$T_n =$	(2, 4)				-1			-1	4				-1				
	(3, 1)					-1				4	-1			-1			
	(3, 2)						-1			-1	4	-1			-1		
	(3,3)							-1			-1	4	-1			-1	
	(3,4)								-1			-1	4				-1
	(4, 1)									-1				4	-1		
	(4, 2)										-1			-1	4	-1	
	(4, 3)											-1			-1	4	-1
	(4, 4)												-1			-1	4

		(1, 1)	(1, 2)	(1, 3)	(1,4)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(4, 1)	(4, 2)	(4,3)	(4,4)
	(1,1)	4	-1			-1											
	(1, 2)	-1	4	-1			-1										
	(1, 3)		-1	4	-1			-1									
	(1, 4)			-1	4				-1								
	(2,1)	-1				4	-1			-1							
	(2, 2)		-1			-1	4	-1			-1						
$\widetilde{T}_n =$	(2,3)			-1			-1	4	-1			0					
1 n —	(2,4)				-1			-1	4				0				
	(3, 1)					-1				4	-1			-1			
	(3, 2)						-1			-1	4	0			0		
	(3,3)							0			0	0	0			0	
	(3, 4)								0			0	0				0
	(4, 1)									-1				4	-1		
	(4, 2)										-1			-1	4	0	
	(4, 3)											0			0	0	0
	(4,4)												0			0	0

		(1, 1)	(1, 2)	(1,3)	(1,4)	(2, 1)	(2, 2)	(2,3)	(2,4)	(3, 1)	(3, 2)	(3,3)	(3,4)	(4, 1)	(4, 2)	(4, 3)	(4,4)
	(1, 1)	4	-1			-1											
	(1, 2)	-1	4	-1			-1										
	(1, 3)		-1	4	-1			-1									
	(1, 4)			-1	4				-1								
	(2,1)	-1				4	-1			-1							
	(2, 2)		-1			-1	4	-1			-1						
$\widetilde{T}_n =$	(2, 3)			-1			-1	4	-1			0					
$I_n =$	(2, 4)				-1			-1	4				0				
	(3, 1)					-1				4	-1			-1			
	(3, 2)						-1			-1	4	0			0		
	(3, 3)							0			0	0	0			0	
	(3, 4)								0			0	0				0
	(4,1)									-1				4	-1		
	(4, 2)										-1			-1	4	0	
	(4, 3)											0			0	0	0
	(4, 4)												0			0	0

$$\widetilde{T}_n = D_n(\chi_L) T_n D_n(\chi_L)$$

$$D_n(\chi_L) = \operatorname{diag}\left(\chi_L\left(\frac{i}{n+1}, \frac{j}{n+1}\right)\right)_{i,j=1,\dots,n}$$

$$\{\widetilde{T}_n\}_n \sim_{\lambda} ?$$

Multilevel GLT Theory

For any $a(x):[0,1]^p\to\mathbb{C}$ Riemann Integrable, its Sampling Diagonal matrix is the p-multilevel matrix defined as

$$D_n(a) := \operatorname{diag}\left(a\left(rac{i_1}{n+1},\ldots,rac{i_p}{n+1}
ight)
ight)_{i_i=1,\ldots,n}$$

If $A_n^{(j)}$ are p-level matrices, then

$$\left\{A_{\mathbf{n}}^{(1)}A_{\mathbf{n}}^{(2)}\dots A_{\mathbf{n}}^{(q)}\right\}\sim_{\lambda} \kappa_{1}\kappa_{2}\dots\kappa_{q}$$

$$A_n^{(j)} = T_n(f_j) \implies \kappa_j(\mathbf{x}, \boldsymbol{\theta}) = f_j(\boldsymbol{\theta}) \qquad A_n^{(j)} = D_n(a_j) \implies \kappa_j(\mathbf{x}, \boldsymbol{\theta}) = a_j(\mathbf{x})$$

where all κ_j have domain on $[0,1]^p \times [-\pi,\pi]^p$.

		(1, 1)	(1,2)	(1,3)	(1, 4)	(2,1)	(2, 2)	(2,3)	(2,4)	(3, 1)	(3, 2)	(3,3)	(3,4)	(4, 1)	(4, 2)	(4, 3)	(4,4)	Ī
	(1,1)	4	-1			-1												
	(1, 2)	-1	4	-1			-1											
	(1, 3)		-1	4	-1			-1										
	(1, 4)			-1	4				-1									
	(2,1)	-1				4	-1			-1								
	(2, 2)		-1			-1	4	-1			-1							
$\widetilde{T}_n =$	(2, 3)			-1			-1	4	-1			0						
$I_n =$	(2, 4)				-1			-1	4				0					
	(3,1)					-1				4	-1			-1				
	(3, 2)						-1			-1	4	0			0			
	(3, 3)							0			0	0	0			0		
	(3, 4)								0			0	0				0	
	(4, 1)									-1				4	-1			
	(4, 2)										-1			-1	4	0		
	(4, 3)											0			0	0	0	
	(4, 4)												0			0	0	

$$\widetilde{T}_n = D_n(\chi_L) T_n D_n(\chi_L)$$
 $D_n(\chi_L) = \text{diag}(\chi_L(x_i, y_j))$
 $\{\widetilde{T}_n\}_n \sim_{\lambda} ?$

		(1, 1)	(1, 2)	(1,3)	(1,4)	(2, 1)	(2, 2)	(2,3)	(2,4)	(3, 1)	(3, 2)	(3,3)	(3,4)	(4, 1)	(4, 2)	(4,3)	(4,4)	Ī
	(1, 1)	4	-1			-1												1
	(1, 2)	-1	4	-1			-1											l
	(1, 3)		-1	4	-1			-1										l
	(1, 4)			-1	4				-1									l
	(2,1)	-1				4	-1			-1								1
	(2, 2)		-1			-1	4	-1			-1							l
$\widetilde{T}_n =$	(2,3)			-1			-1	4	-1			0						l
$I_n =$	(2, 4)				-1			-1	4				0					l
	(3, 1)					-1				4	-1			-1				1
	(3, 2)						-1			-1	4	0			0			l
	(3,3)							0			0	0	0			0		l
	(3, 4)								0			0	0				0	
	(4, 1)									-1				4	-1]
	(4, 2)										-1			-1	4	0		
	(4, 3)											0			0	0	0	l
	(4, 4)												0			0	0	

$$\widetilde{T}_n = D_n(\chi_L) T_n D_n(\chi_L) \qquad D_n(\chi_L) = \operatorname{diag} (\chi_L(x_i, y_j))$$
$$\{\widetilde{T}_n\}_n \sim_{\lambda} \chi_L(x) [4 \sin^2(\theta_1/2) + 4 \sin^2(\theta_2/2)] \text{ on } [0, 1]^2 \times [-\pi, \pi]^2$$

		(1, 1)	(1, 2)	(1,3)	(1, 4)	(2,1)	(2, 2)	(2,3)	(2,4)	(3, 1)	(3, 2)	(3,3)	(3,4)	(4, 1)	(4, 2)	(4, 3)	(4,4)	Ī
$\widetilde{T}_{n}=% \widetilde{T}_{n}$	(1,1)	4	-1			-1												1
	(1, 2)	-1	4	-1			-1											l
	(1, 3)		-1	4	-1			-1										
	(1, 4)			-1	4				-1									
	(2, 1)	-1				4	-1			-1								1
	(2, 2)		-1			-1	4	-1			-1							l
	(2, 3)			-1			-1	4	-1			0						
	(2, 4)				-1			-1	4				0					
	(3, 1)					-1				4	-1			-1				1
	(3, 2)						-1			-1	4	0			0			
	(3, 3)							0			0	0	0			0		l
	(3, 4)								0			0	0				0	
	(4, 1)									-1				4	-1			1
	(4, 2)										-1			-1	4	0		
	(4,3)											0			0	0	0	
	(4,4)												0			0	0	

$$\widetilde{T}_n = D_n(\chi_L) T_n D_n(\chi_L) \qquad D_n(\chi_L) = \operatorname{diag} (\chi_L(x_i, y_j))$$

$$\{\widetilde{T}_n\}_n \sim_{\lambda} \chi_L(x) [4 \sin^2(\theta_1/2) + 4 \sin^2(\theta_2/2)] \text{ on } [0, 1]^2 \times [-\pi, \pi]^2$$

- The eigenvalues of \widetilde{T}_n distribute like those of T_n except for about $n^2(1-\mu(L))$ eigenvalues that are close to zero
- The number of zeroed rows/column in \widetilde{T}_n is also about $n^2(1 \mu(L))$, so we can remove them both from the symbol and the matrices

$$\widetilde{T}_n = D_n(\chi_L) T_n D_n(\chi_L) \qquad D_n(\chi_L) = \operatorname{diag} (\chi_L(x_i, y_j))$$

$$\{\widetilde{T}_n\}_n \sim_{\lambda} \chi_L(\mathbf{x}) [4 \sin^2(\theta_1/2) + 4 \sin^2(\theta_2/2)] \text{ on } [0, 1]^2 \times [-\pi, \pi]^2$$

- The eigenvalues of \widetilde{T}_n distribute like those of T_n except for about $n^2(1-\mu(L))$ eigenvalues that are close to zero
- The number of zeroed rows/column in \widetilde{T}_n is also about $n^2(1 \mu(L))$, so we can remove them both from the symbol and the matrices

$$T_n^L = R_L(T_n) \qquad \chi_L(x) [4 \sin^2(\theta_1/2) + 4 \sin^2(\theta_2/2)] \Big|_{x \in L} = 4 \sin^2(\theta_1/2) + 4 \sin^2(\theta_2/2)$$

$$\implies \{T_n^L\}_n \sim_{\lambda} 4 \sin^2(\theta_1/2) + 4 \sin^2(\theta_2/2) \text{ on } L \times [-\pi, \pi]^2$$

Multilevel GLT Sequences

The *p*-level Generalized Locally Toeplitz family \mathscr{G}_p is the \mathbb{C}^* -algebra of couples sequences-symbol $(\{A_n\}_n, \kappa)$ where $\{A_n\}_n$ are *p*-level matrices,

$$\kappa:[0,1]^p\times[-\pi,\pi]^p\to\mathbb{C}$$
 and $\{A_{\pmb{n}}\}_n\sim\kappa$ generated by

$$\{T_n(f)\}_n \sim f(\theta)$$
 $\{D_n(a)\}_n \sim a(x)$ $\{Z_n\}_n \sim 0$

where $\mathbf{x} \in [0,1]^p$, $\mathbf{\theta} \in [-\pi,\pi]^p$, $f(\mathbf{\theta}) \in L^1([-\pi,\pi]^p)$ and $a(\mathbf{x})$ is R.I.

Multilevel GLT Sequences

The *p*-level Generalized Locally Toeplitz family \mathscr{G}_p is the \mathbb{C}^* -algebra of couples sequences-symbol $(\{A_n\}_n,\kappa)$ where $\{A_n\}_n$ are *p*-level matrices, $\kappa:[0,1]^p\times[-\pi,\pi]^p\to\mathbb{C}$ and $\{A_n\}_n\sim\kappa$ generated by

$$\{T_n(f)\}_n \sim f(\theta)$$
 $\{D_n(a)\}_n \sim a(x)$ $\{Z_n\}_n \sim 0$

where $x \in [0,1]^p$, $\theta \in [-\pi,\pi]^p$, $f(\theta) \in L^1([-\pi,\pi]^p)$ and a(x) is R.I.

$$\Omega \subseteq [0,1]^p$$
 is 'regular' if $\chi_{\Omega}(\mathbf{x})$ is R.I. in $[0,1]^p$ $(\mu(\partial\Omega) = 0)$ and $\mu(\Omega) > 0$
$$\{R_{\Omega}(T_{\mathbf{n}}(f))\}_n \sim f(\theta) \qquad \{R_{\Omega}(D_{\mathbf{n}}(a))\}_n \sim a(\mathbf{x})\Big|_{\mathbf{x} \in \Omega}$$

Multilevel GLT Sequences

The *p*-level Generalized Locally Toeplitz family \mathscr{G}_p is the \mathbb{C}^* -algebra of couples sequences-symbol $(\{A_n\}_n, \kappa)$ where $\{A_n\}_n$ are *p*-level matrices, $\kappa: [0,1]^p \times [-\pi,\pi]^p \to \mathbb{C}$ and $\{A_n\}_n \sim \kappa$ generated by

$$\{T_n(f)\}_n \sim f(\theta)$$
 $\{D_n(a)\}_n \sim a(x)$ $\{Z_n\}_n \sim 0$

where $\mathbf{x} \in [0,1]^p$, $\mathbf{\theta} \in [-\pi,\pi]^p$, $f(\mathbf{\theta}) \in L^1([-\pi,\pi]^p)$ and $a(\mathbf{x})$ is R.I.

$$\Omega \subseteq [0,1]^p$$
 is 'regular' if $\chi_{\Omega}(\mathbf{x})$ is R.I. in $[0,1]^p$ $(\mu(\partial\Omega)=0)$ and $\mu(\Omega)>0$
$$\{R_{\Omega}(T_{\mathbf{n}}(f))\}_n \sim f(\theta) \qquad \{R_{\Omega}(D_{\mathbf{n}}(\mathbf{a}))\}_n \sim \mathbf{a}(\mathbf{x})\Big|_{\mathbf{x}\in\Omega}$$

Reduced GLT Sequences

The *p*-level Reduced Generalized Locally Toeplitz family \mathscr{G}_p^{Ω} relative to the regular domain $\Omega \subseteq [0,1]^p$ is the \mathbb{C}^* -algebra of couples sequences-symbol $(\{A_n^{\Omega}\}_n,\kappa^{\Omega})$ where $\{A_n^{\Omega}\}_n$ are *p*-level matrices, $\kappa^{\Omega}:\Omega\times[-\pi,\pi]^p\to\mathbb{C}$ and $\{A_n^{\Omega}\}_n\sim\kappa^{\Omega}$ generated by

$$\{R_{\Omega}(T_n(f))\}_n \sim f(\theta) \qquad \{R_{\Omega}(D_n(a))\}_n \sim a(x)\Big|_{x \in \Omega} \qquad \{R_{\Omega}(Z_n)\}_n \sim 0$$

where $\mathbf{x} \in [0,1]^p$, $\mathbf{\theta} \in [-\pi,\pi]^p$, $f(\mathbf{\theta}) \in L^1([-\pi,\pi]^p)$ and $a(\mathbf{x})$ is R.I.

Algebraic Relations: Given $\{A_n^{\Omega}\}_n \sim \kappa_A^{\Omega}$, $\{B_n^{\Omega}\}_n \sim \kappa_B^{\Omega}$, $c \in \mathbb{C}$

- $\{A_{\mathbf{n}}^{\Omega}B_{\mathbf{n}}^{\Omega}\}_{n}\sim\kappa_{A}^{\Omega}\kappa_{B}^{\Omega}$
- $\{A_{\mathbf{n}}^{\Omega}+B_{\mathbf{n}}^{\Omega}\}_{\mathbf{n}}\sim\kappa_{A}^{\Omega}+\kappa_{B}^{\Omega}$
- $\{cA_n^{\Omega}\}_n \sim c\kappa_A^{\Omega}$

Algebraic Relations: Given $\{A_{\mathbf{n}}^{\Omega}\}_n \sim \kappa_A^{\Omega}$, $\{B_{\mathbf{n}}^{\Omega}\}_n \sim \kappa_B^{\Omega}$, $c \in \mathbb{C}$

- $\{A_{\mathbf{n}}^{\Omega}B_{\mathbf{n}}^{\Omega}\}_{n}\sim\kappa_{A}^{\Omega}\kappa_{B}^{\Omega}$
- $\{A_{\mathbf{n}}^{\Omega} + B_{\mathbf{n}}^{\Omega}\}_{n} \sim \kappa_{A}^{\Omega} + \kappa_{B}^{\Omega}$
- $\{cA_{n}^{\Omega}\}_{n} \sim c\kappa_{A}^{\Omega}$

Conjugation and Inversion: Given $\{A_{\mathbf{n}}^{\Omega}\}_{n} \sim \kappa_{A}^{\Omega}$

- $\{(A_n^{\Omega})^H\}_n \sim \overline{\kappa_A^{\Omega}}$
- $\{(A_{\it n}^\Omega)^\dagger\}_n \sim (\kappa_A^\Omega)^{-1}$ when $\kappa_A^\Omega \neq 0$ a.e.

... other results about the metric on \mathscr{G}^{Ω} , its closure, $\{f(A_n^{\Omega})\}_n$, ...

Algebraic Relations: Given $\{A_n^{\Omega}\}_n \sim \kappa_A^{\Omega}$, $\{B_n^{\Omega}\}_n \sim \kappa_B^{\Omega}$, $c \in \mathbb{C}$

- $\{A_{\mathbf{n}}^{\Omega}B_{\mathbf{n}}^{\Omega}\}_{n}\sim\kappa_{A}^{\Omega}\kappa_{B}^{\Omega}$
- $\{A_{\mathbf{n}}^{\Omega} + B_{\mathbf{n}}^{\Omega}\}_{\mathbf{n}} \sim \kappa_{A}^{\Omega} + \kappa_{B}^{\Omega}$
- $\{cA_{n}^{\Omega}\}_{n} \sim c\kappa_{A}^{\Omega}$

Conjugation and Inversion: Given $\{A_n^{\Omega}\}_n \sim \kappa_A^{\Omega}$

- $\{(A_n^{\Omega})^H\}_n \sim \overline{\kappa_A^{\Omega}}$
- $\{(A_n^{\Omega})^{\dagger}\}_n \sim (\kappa_A^{\Omega})^{-1}$ when $\kappa_A^{\Omega} \neq 0$ a.e.

... other results about the metric on \mathscr{G}^{Ω} , its closure, $\{f(A_n^{\Omega})\}_n$, ...

What else?

$$-\sum_{i=1}^d \frac{\partial}{\partial x_i} \Big(a_i \frac{\partial u}{\partial x_i} \Big) + \sum_{i=1}^d b_i \frac{\partial u}{\partial x_i} + cu = f \text{ in } \Omega^\circ$$

Shortley and Weller:

$$\left. \frac{\partial}{\partial x_i} \left(a_i \frac{\partial u}{\partial x_i} \right) \right|_{x=x_i} \approx \left. a_i (x_{j+s_i^+ \mathbf{e}_i/2}) \frac{u(x_{j+s_i^+ \mathbf{e}_i}) - u(x_j)}{\frac{1}{2} s_i^+ (s_i^+ + s_i^-) h_i^2} - a_i (x_{j-s_i^- \mathbf{e}_i/2}) \frac{u(x_j) - u(x_{j-s_i^- \mathbf{e}_i})}{\frac{1}{2} s_i^- (s_i^+ + s_i^-) h_i^2} \right.$$

$$-\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} \left(a_{i} \frac{\partial u}{\partial x_{i}} \right) + \sum_{i=1}^{d} b_{i} \frac{\partial u}{\partial x_{i}} + cu = f \text{ in } \Omega^{\circ}$$

Shortley and Weller:

$$\left. \frac{\partial}{\partial x_i} \left(a_i \frac{\partial u}{\partial x_i} \right) \right|_{\mathbf{x} = \mathbf{x}_i} \approx \left. a_i (x_{j + s_i^+ \mathbf{e}_i / 2}) \frac{u(x_{j + s_i^+ \mathbf{e}_i}) - u(x_j)}{\frac{1}{2} s_i^+ (s_i^+ + s_i^-) h_i^2} - a_i (x_{j - s_i^- \mathbf{e}_i / 2}) \frac{u(x_j) - u(x_{j - s_i^- \mathbf{e}_i})}{\frac{1}{2} s_i^- (s_i^+ + s_i^-) h_i^2} \right.$$

- ightarrow The approximation coincides with the classic second order FD method for points whose stencil does not cross $\partial\Omega$
- ightarrow Usually we have classical methods for 'internal' points and modified relations at the border, so we need **perturbation results**

Perturbation results

Theorem

Given a regular $\Omega\subseteq [0,1]^d$, let Ξ_n be the regular grid on $[0,1]^d$ and

$$d_n := |\Omega \cap \Xi_n|$$
 $d_n^h := |\{ p \in \Xi_n \mid d(p, \partial\Omega) \le h \}|$

Then for any sequence $h_n \to 0$, $d_n^{h_n} = o(d_n)$

Notice that in a regular grid the points whose stencil crosses $\partial\Omega$ have distance at most 1/(n+1) from $\partial\Omega$, so their number is negligible when compared with those in Ω°

Perturbation results

Theorem

Given a regular $\Omega\subseteq [0,1]^d$, let Ξ_n be the regular grid on $[0,1]^d$ and

$$d_n := |\Omega \cap \Xi_n|$$
 $d_n^h := |\{ p \in \Xi_n \mid d(p, \partial \Omega) \le h \}|$

Then for any sequence $h_n \to 0$, $d_n^{h_n} = o(d_n)$

Notice that in a regular grid the points whose stencil crosses $\partial\Omega$ have distance at most 1/(n+1) from $\partial\Omega$, so their number is negligible when compared with those in Ω°

Theorem

Let $\Gamma_n\subseteq [0,1]^d$ (not necessarily regular) and let Ω be regular. Suppose that

$$d_n^{\Omega \triangle \Gamma_n} := |\Xi_n \cap (\Omega \triangle \Gamma_n)| = o(d_n)$$

Given a multilevel sequence $\{A_n\}_n$ and a function κ ,

$$\{R_{\Omega}(A_n)\}_n \sim \kappa \iff \{R_{\Gamma_n}(A_n)\}_n \sim \kappa$$

If B_n^{Ω} are the Shortley and Weller matrices, they coincide with the classical FD matrices A_n on the internal grid points Γ_n , with $\{A_n\}_n \sim \kappa$ and

$$\{R_{\Omega}(A_{\boldsymbol{n}})\}_{n} \sim \kappa^{\Omega} \iff \{R_{\Gamma_{\boldsymbol{n}}}(A_{\boldsymbol{n}})\}_{n} = \{R_{\Gamma_{\boldsymbol{n}}}(B_{\boldsymbol{n}}^{\Omega})\}_{n} \sim \kappa^{\Omega} \iff \{B_{\boldsymbol{n}}^{\Omega}\}_{n} \sim \kappa^{\Omega}$$

Numerical Example

$$\begin{split} -\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} \left(a_{i} \frac{\partial u}{\partial x_{i}} \right) + \sum_{i=1}^{d} b_{i} \frac{\partial u}{\partial x_{i}} + cu &= f \text{ in } \Omega^{\circ} \\ \frac{\partial}{\partial x_{i}} \left(a_{i} \frac{\partial u}{\partial x_{i}} \right) \bigg|_{x=x_{j}} &\approx a_{i} \left(x_{j+s_{i}^{+}\mathbf{e}_{i}/2} \right) \frac{u(x_{j+s_{i}^{+}\mathbf{e}_{i}}) - u(x_{j})}{\frac{1}{2} s_{i}^{+} \left(s_{i}^{+} + s_{i}^{-} \right) h_{i}^{2}} - a_{i} \left(x_{j-s_{i}^{-}\mathbf{e}_{i}/2} \right) \frac{u(x_{j}) - u(x_{j-s_{i}^{-}\mathbf{e}_{i}})}{\frac{1}{2} s_{i}^{-} \left(s_{i}^{+} + s_{i}^{-} \right) h_{i}^{2}} \end{split}$$

Modified Grid

$$-\sum_{i=1}^d \frac{\partial}{\partial x_i} \left(a_i \frac{\partial u}{\partial x_i} \right) + \sum_{i=1}^d b_i \frac{\partial u}{\partial x_i} + cu = f \text{ in } \Omega^{\circ}$$

P1 FE Method

We can always modify a small number of points to better approximate the boundary without changing the relative symbol

Concatenation

Theorem

Given regular sets Ω_i and the sequences $\{A_n^{\Omega_i}\}_n \sim \kappa^{\Omega_i}$ in $\mathscr{G}_p^{\Omega_i}$, let

$$\Omega := \coprod_{i=1,...,q} \Omega_i$$
 and $A_{\mathbf{n}}^{\Omega} := \bigoplus_{i=1,...,q} A_{\mathbf{n}}^{\Omega_i}$ i.e.

$$A_{n}^{\Omega} = \begin{pmatrix} A_{n}^{\Omega_{1}} & & & \\ & A_{n}^{\Omega_{2}} & & \\ & & \ddots & \\ & & & A_{n}^{\Omega_{q}} \end{pmatrix}$$

Then $\{A_{\mathbf{n}}^{\Omega}\}_{n} \sim \kappa^{\Omega}$, where $\kappa^{\Omega}: \Omega \times [-\pi, \pi]^{p} \to \mathbb{C}$, $\kappa^{\Omega}(\mathbf{x}, \boldsymbol{\theta})\big|_{\mathbf{x} \in \Omega_{i}} = \kappa^{\Omega_{i}}(\mathbf{x}, \boldsymbol{\theta})$

Moreover if d_n is the size of A_n^{Ω} and $\operatorname{rk}(K_n^{\Omega}) = o(d_n)$, then $\{A_n^{\Omega} + K_n^{\Omega}\}_n \sim \kappa^{\Omega}$

Concatenation

Theorem

Given regular sets Ω_i and the sequences $\{A_n^{\Omega_i}\}_n \sim \kappa^{\Omega_i}$ in $\mathscr{G}_p^{\Omega_i}$, let

$$\Omega := \coprod_{i=1,...,q} \Omega_i$$
 and $A_{\mathbf{n}}^{\Omega} := \bigoplus_{i=1,...,q} A_{\mathbf{n}}^{\Omega_i}$ i.e.

Then $\{A_{\mathbf{n}}^{\Omega}\}_{n} \sim \kappa^{\Omega}$, where $\kappa^{\Omega}: \Omega \times [-\pi, \pi]^{p} \to \mathbb{C}$, $\kappa^{\Omega}(\mathbf{x}, \boldsymbol{\theta})\big|_{\mathbf{x} \in \Omega_{i}} = \kappa^{\Omega_{i}}(\mathbf{x}, \boldsymbol{\theta})$

Moreover if d_n is the size of A_n^{Ω} and $\operatorname{rk}(K_n^{\Omega}) = o(d_n)$, then $\{A_n^{\Omega} + K_n^{\Omega}\}_n \sim \kappa^{\Omega}$

It's an easier way to handle disconnected domains, but there's actually much more to it...

• Reorder the points according to the different regions

- Reorder the points according to the different regions
- The points far from the border of each region follow a classic scheme

$$A_{n}^{\Omega} = \begin{pmatrix} A_{n}^{\Omega_{1}} & * & * & * \\ * & A_{n}^{\Omega_{2}} & * & * \\ * & * & A_{n}^{\Omega_{3}} & * \\ * & * & * & A_{n}^{\Omega_{4}} \end{pmatrix}$$

- Reorder the points according to the different regions
- The points far from the border of each region follow a classic scheme
- The number of points near the borders is negligible when compared to the total number of points

Applications

Applications

- Fictitious Domains
- Interface Problems
- Immersed Boundaries
- Trimmed Geometries
- IgA, Coco-Russo, Shortley and Weller... You tell me

Thank You!

- Barbarino G. A systematic approach to reduced glt. BIT Numerical Mathematics, 62(3):681–743, 2021.
- Barbarino G., Ekström S.-E., Garoni C., Serra-Capizzano S., and Vassalos P. Theoretical results for eigenvalues, singular values, and eigenvectors of (flipped) toeplitz matrices and related computational proposals. *Arxiv*, 2022.
- Morozov S., Serra-Capizzano S., and Tyrtyshnikov E. Computation of asymptotic spectral distributions for sequences of grid operators. *Computational Mathematics and Mathematical Physics*, 60(11):1761–1777, 2020.
 - Serra-Capizzano S. The glt class as a generalized fourier analysis and applications. Linear Algebra and its Applications, 419(1):180–233, 2006.