CURS 0x03

Porți logice

Legile lui de Morgan

$$1. \ \overline{A + B} = \overline{A} \, \overline{B}$$

$$2. \ \overline{AB} = \overline{A} + \overline{B}$$

OBS : $\mathbf{A} \oplus \mathbf{B} = \overline{A}B + A\overline{B}$ unde $\oplus = \mathbf{XOR}$

Circuite combinaționale

De ce se numesc circuite combinaţionale?

- pentru că ieșire este o combinație (o funcție logică care combină) toate (sau o parte) a intrărilor
- deci, pentru fiecare intrare, trebuie sa știm care e ieșirea

Dispozitiv combinațional

- fiecare element este un circuit combinațional
- fiecare intrare este conectată la exact o ieșire sau la o constantă
- nu există niciun ciclu în graful direcțional al dispozitivului

De ce folosim semnale digitale în loc de analogice?

- din cauza zgomotului
- într-un sistem analogic zgomotul se acumulează
- într-un sistem digital, avem corecțiile de zgomot (avem margini)

De ce folosim sistemul binar?

Ar fi mai avantajos să folosim hex?

- da, ar fi mai avantajos să folosim hex (e de 4 ori mai avantajos)
- problema este că în loc de două stări ar trebui acum să avem 16
- asta înseamnă că trebuie să distingem 16 nivele de voltaj în prezența zgomotului (adică cu tot cu margini de zgomot)
- dacă am avea 4 nivele (adică baza B = 4) am fi de două ori mai eficienți

A <u>intrări</u> circuit digital ieșiri X combinațional digitale Y				
Α	В	С	Х	Υ
0	0	0	0	1
0	0	1	_ 1	0
0	1	0	1	0
0	1	1/	0	1
1	0	0	_/ 1	0
1	0 /	/1	0	1
1	1	0 /	0	1
1	/ 1/	/1	1	0

o expresie booleană care conține regulile din tabel?

•
$$X = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$