Домашняя работа №4

по дисциплине "Дифференциальная геометрия и топология"

Винницкая Дина Сергеевна

Группа: Б9122-02.03.01сцт

1 Задание

- 1. Найти примеры и доказать, что множества, открытые в подпространстве, не обязательно открыты в объемлющем пространстве.
- 2. Доказать, что F замкнуто в подпространстве $A\subseteq X$, тогда и только тогда, когда $F=A\cap E$, где E замкнуто в X.

Найти примеры и доказать, что множества, открытые в подпространстве, не обязательно открыты в объемлющем пространстве.

Решение

Рассмотрим следующее определение подпространства:

Пусть (X,T) — топологическое пространство.

 $A \subseteq X$ — произвольное подмножество.

Множество T_A представляет собой коллекцию множеств вида $\{A \cap U \mid U \in T\}$, а пару (A, T_A) называют подпространством топологического пространства (X, T). Топология T_A называется топологией, индуцированной на A топологическим пространством (X, T).

$$X = \{a, b, c, d\}$$
 $T_X = \{\{a, b\}, \{c, d\}, \varnothing, X\}$
 $A = \{b, c\}$
 $T_A = \{\{b\}, \{c\}, \varnothing, A\}$
 $\{b, c\} \notin T_X$

Следовательно, множество $\{b,c\}$, которое открыто в подпространстве, не является открытым в (X,T).

Теперь рассмотрим этот же факт в более формальной записи:

Пусть (X,T) - топологическое пространство.

Пусть $A \subseteq X$, но при этом $A \notin T_A$.

Тогда множество $A \cap U = X$ не будет элементом T_X .

Доказать, что F замкнуто в подпространстве $A\subseteq X$, тогда и только тогда, когда $F=A\cap E$, где E - замкнуто в X.

Решение

Необходимое условие:

Пусть F замкнуто в A, то есть существует $L \in T_A$ такое, что $F = A \setminus L$. Так как $L = A \cap U \in T_X$ (по свойствам подпространства), имеем:

$$F = A \setminus (A \cap U) = A \cap (X \setminus U) = A \cap E, E = X \setminus U.$$

Так как $U \in T_X$, то E замкнуто в T_X .

$$A \setminus (A \cap U) = A \cap (X \setminus U)$$

$$A \cap B = \{x \mid x \in A \text{ if } x \in B\}$$

$$A \setminus B = \{x \mid x \in A \text{ if } x \notin B\}$$

$$A \subseteq X \Longrightarrow E \in X.$$

$$A \cap (A \cap U) = \{x \mid x \in A, x \in (A \cap B)\} = \{x \mid x \in A, x \notin B\}$$
$$A \cap (X \setminus U) = \{x \mid x \in A, x \in (X \setminus B)\} = \{x \mid x \in A, x \notin B\}$$

Достаточное условие:

Пусть $F = A \cap E$, где E замкнуто в T_X и является дополнением к открытому множеству U. Для того чтобы F было замкнутым в A, необходимо, чтобы $F = A \setminus L$, где $L \in T_A$.

$$F = A \cap E = A \cap (X \setminus U) = A \setminus (A \cap U) = A \setminus L$$

$$L = A \cap U \text{ и .}$$

Таким образом, F является дополнением к открытому множеству в подпространстве, следовательно, оно замкнуто.