Part B: The Newton's Second Law Formula

While studying kinematics, we study acceleration. Newton's Second Law helps us explain *why* acceleration happens.

$$\Sigma F = ma$$

Symbol	Quantity	SI Unit
ΣF	Net force	Newtons
m	Mass	Kilograms
а	acceleration	m/s ²

B.1. I kick and exert a net force of 200 N on a rock. The rock has a mass of 2 kg. What will be its acceleration?

- 1: -		
Looking For	Formula	
8		
Already Know		•
Alleady Kilow		
A		
Answer in a complete sentence	With unit:	

B.2. Something is accelerating at a rate of 4 m/s^2 . It has a mass of 10 kg. What is the net force on this object?

Torce on this object:		
Looking For	Formula	
Already Know		
Answer in a complete sentence <i>with unit</i> :		

B.3. The cabinet has a mass of 200 kg and I push it with a force of 20 N. That is the only
horizontal force on the cabinet. What is its acceleration? <i>Include the unit!</i>

nortzontal force on the cubiliet. What is its acceleration. Metade the unit.		
Looking For	Formula	
Already Know		
Answer in a complete sentence	with unit:	

B.4. An 80 kg person on a 20 kg bicycle is accelerating at 2 m/s^2 . What is the net force on them?

Lastina Dan	E1-	
Looking For	Formula	
Already Know		•
Tilloudy Itilo W		
Answer in a complete sentence	with unit:	

B.5. When I exert a 100 N net	force on my bookshelf, it accelerates at a rate of 4 m/ss. What
is the mass of the bookshelf?	

Looking For	Formula	
Already Know		
Answer in a complete sentence	with unit:	

B.6. A rocket has a mass of 1800 kg. If the rocket thruster gives it a net force of 36000 N, how fast will it accelerate?

now fast will it accelerate?		
Looking For	Formula	
8		
		Į.
Already Know		
Answer in a complete sentence	with unit	
Tans of an a complete sentence		

B.7. What is the mass of an object with an acceleration of 5 m/s^2 under a net force of 400 N? *Include the unit!*

under a net force of 400 N? Include the unit:		
Looking For	Formula	
Already Know		\
Answer in a complete sentence with unit:		
7 mswer in a complete sente	THE WITH WITH.	

Answers:

B.1

100 m/s²

B.2

40 N

B.3

 0.1 m/s^2

B.4

200 N

B.5

25 kg

B.6

20 m/s²

B.7

80 kg