Instruction Graph Proofs

Andrew Benson

1 cfgvalid

cfg cfgvalid means that the configuration cfg is a valid configuration.

$$\frac{\mathbf{P}(v, vs) \text{ valid } \mathbf{V}(n, c) \in v :: vs}{(n, v :: vs, I, O) \text{ cfgvalid}}$$

2 Progress

If cfg cfgvalid, then either

- 1. cfg terminated
- 2. cfg waiting
- 3. $\exists cfg' \text{ s.t.} cfg \longmapsto cfg'$

2.1 Proof of Progress

We proceed by case analysis on the judgment cfg cfgvalid. There is only one rule that concludes cfg cfgvalid:

$$\frac{\mathbf{P}(v,\ vs)\ \mathtt{valid}\qquad \mathbf{V}(n,\ c)\in v::vs}{(n,\ v::vs,\ I,\ O)\ \mathtt{cfgvalid}}$$

So we know cfg is of the form (n, v :: vs, I, O) and $\mathbf{V}(n, c) \in v :: vs$. We continue by structural induction on c, which is of the sort Content.

Case c is **do** a **then** n':

Then by the rule

$$\frac{\mathbf{V}(n, \mathbf{do} \ a \mathbf{then} \ n') \in vs}{(n, vs, I, O) \longmapsto (n', vs, I, a :: O)}$$

we can conclude $(n, v :: vs, I, O) \longmapsto (n', v :: vs, I, a :: O)$.

Case c is **do** a **until** cnd **then** n':

We use structural induction on I.

Inner case I is []:

Then by the rule

$$\frac{\mathbf{V}(n, \ \mathbf{do} \ a \ \mathbf{until} \ \mathit{cnd} \ \mathbf{then} \ n') \in \mathit{vs}}{(n, \ \mathit{vs}, \ [\], \ \mathit{O}) \ \mathtt{waiting}}$$

we can conclude (n, v :: vs, I, O) waiting.

Inner case I is true :: I':

Then by the rule

$$\frac{\mathbf{V}(n, \ \mathbf{do} \ a \ \mathbf{until} \ cnd \ \mathbf{then} \ n') \in vs}{(n, \ vs, \ true :: I, \ O) \longmapsto (n', \ vs, \ I, \ a :: O)}$$

we can conclude $(n, v :: vs, I, O) \longmapsto (n', v :: vs, I', a :: O)$.

Inner case I is false :: I':

Then by the rule

$$\frac{\mathbf{V}(n, \mathbf{do} \ a \ \mathbf{until} \ cnd \ \mathbf{then} \ n') \in vs}{(n, \ vs, \ false :: I, \ O) \longmapsto (n, \ vs, \ I, \ a :: O)}$$

we can conclude $(n, v :: vs, I, O) \longmapsto (n, v :: vs, I', a :: O)$.

Case c is **if** cnd **then** n' **else** n'':

We use structural induction on I.

Inner case I is []:

Then by the rule

$$\frac{\mathbf{V}(n, \text{ if } cnd \text{ then } n' \text{ else } n'') \in vs}{(n, vs, [], O) \text{ waiting}}$$

we can conclude (n, v :: vs, I, O) waiting.

Inner case I is true :: I':

Then by the rule

$$\frac{\mathbf{V}(n, \text{ if } cnd \text{ then } n' \text{ else } n'') \in vs}{(n, vs, true :: I, O) \longmapsto (n', vs, I, O)}$$

we can conclude $(n, v :: vs, I, O) \longmapsto (n', v :: vs, I', O)$.

Inner case I is false :: I':

Then by the rule

$$\frac{\mathbf{V}(n, \ \mathbf{if} \ cnd \ \mathbf{then} \ n' \ \mathbf{else} \ n'') \in vs}{(n, \ vs, \ false :: I, \ O) \longmapsto (n'', \ vs, \ I, \ O)}$$

we can conclude $(n, v :: vs, I, O) \mapsto (n'', v :: vs, I', O)$.

Case c is **goto** n':

Then by the rule

$$\frac{\mathbf{V}(n, \ \mathbf{goto} \ n') \in vs}{(n, \ vs, \ I, \ O) \longmapsto (n', \ vs, \ I, \ O)}$$

we can conclude $(n, v :: vs, I, O) \longmapsto (n', v :: vs, I, O)$.

Case c is **end**:

Then by the rule

$$\frac{\mathbf{V}(n, \ \mathbf{end}) \in vs}{(n, \ vs, \ I, \ O) \ \mathsf{terminated}}$$

we can conclude (n, v :: vs, I, O) terminated.

3 Preservation

If cfg cfgvalid and $cfg \mapsto cfg'$ then cfg' cfgvalid.

3.1 Lemma 1

If $(vs,\ U_v,\ n,\ U)$ connected then $\forall n'\in U$. $\exists\ U_v',\ U'$ such that U' is nonempty and $(vs,\ U_v',\ n',\ U')$ connected.

Proof: We proceed by rule induction on (vs, U_v, n, U) connected.

Case
$$\frac{(vs, \ U) \text{ defined} \quad U_v \subseteq U \quad n \in U_v}{(vs, \ U_v, \ n, \ \emptyset) \text{ connected}}$$

Then U is the empty set so the lemma is vacuously true.

Case
$$\frac{(vs, U) \text{ defined} \quad U_v \subseteq U \quad \mathbf{V}(n, \mathbf{end}) \in vs \quad n \notin U_v}{(vs, U_v, n, \{n\}) \text{ connected}}$$

Then U contains exactly n. But we already have $(vs, U_v, n, \{n\})$ connected so the lemma is satisfied.

$$\text{Case } \frac{\mathbf{V(}n, \ \mathbf{do} \ a \ \mathbf{then} \ n') \in vs}{(vs, \ U_v \cup \{n\}, \ n', \ U) \ \texttt{connected}} \quad n \notin U_v}{(vs, \ U_v, \ n, \ U \cup \{n\}) \ \texttt{connected}}$$

Then by the inductive hypothesis, since $(vs, U_v \cup \{n\}, n', U)$ connected we know the lemma is satisfied for all $n' \in U$. All that's left is to show it is satisfied for n, but we have $(vs, U_v, n, U \cup \{n\})$ connected.

$$\text{Case } \frac{\mathbf{V(}n, \ \mathbf{do} \ a \ \mathbf{until} \ \mathit{cnd} \ \mathbf{then} \ \mathit{n'}\mathbf{)} \in \mathit{vs}}{(\mathit{vs}, \ \mathit{U_v} \cup \{\mathit{n}\}, \ \mathit{n'}, \ \mathit{U}) \ \mathsf{connected}} \quad \mathit{n} \notin \mathit{U_v}}{(\mathit{vs}, \ \mathit{U_v}, \ \mathit{n}, \ \mathit{U} \cup \{\mathit{n}\}) \ \mathsf{connected}}}$$

Identical to the case above.

Case
$$\frac{\mathbf{V}(n, \ \mathbf{goto} \ n') \in vs \quad (vs, \ U_v \cup \{n\}, \ n', \ U) \ \mathsf{connected}}{(vs, \ U_v, \ n, \ U \cup \{n\}) \ \mathsf{connected}}$$

Identical to the case above.

$$\text{Case} \frac{\mathbf{V}(n, \text{ if } cnd \text{ then } n' \text{ else } n'') \in vs \quad (vs, \ U_v \cup \{n\}, \ n', \ U) \text{ connected}}{(vs, \ U_v \cup U \cup \{n\}, \ n'', \ U') \text{ connected}} \frac{(vs, \ U_v \cup U \cup \{n\}, \ n'', \ U') \text{ connected}}{(vs, \ U_v, \ n, \ U \cup U' \cup \{n\}) \text{ connected}}$$

Then by the inductive hypothesis, since $(vs, U_v \cup \{n\}, n', U)$ connected and $(vs, U_v \cup U \cup \{n\}, n'', U')$ connected we know the lemma is satisfied for all $n' \in U \cup U'$. All that's left is to show it is satisfied for n, but we have $(vs, U_v, n, U \cup U' \cup \{n\})$ connected.

3.2 Lemma 2

If $V(n, c) \in vs$ and (vs, U) defined then $n \in U$.

Proof: We proceed by rule induction on (vs, U) defined.

Case
$$\frac{}{(nil, \{\}) \text{ defined}}$$

But vs is nil, so the lemma is vacuously true.

Case
$$\frac{(vs, U) \text{ defined} \quad n' \notin U}{(\mathbf{V}(n', c) :: vs, U \cup \{n'\}) \text{ defined}}$$
 (n is replaced by n' in this statement of the rule to avoid ambiguity.)

The vertex in question, V(n, c), is either V(n', c) or $\in vs$. If it is the former, we are done since $n' \in U \cup \{n'\}$. If it is the latter, then by the inductive hypothesis, since (vs, U) defined we know $n \in U$ so $n \in U \cup \{n'\}$.

3.3 Lemma 3

If (vs, U) defined and $n \in U$ then $\mathbf{V}(n, c) \in vs$ for some c.

Proof: We proceed by rule induction on (vs, U) defined.

Case
$$\frac{}{(nil, \{\}) \text{ defined}}$$

But U is empty so the lemma is vacuously true.

$$\text{Case } \frac{(\textit{vs}, \; \textit{U}) \; \text{defined} \quad \textit{n'} \notin \textit{U}}{(\mathbf{V}(\textit{n'}, \; \textit{c}) :: \textit{vs}, \; \textit{U} \cup \{\textit{n'}\}) \; \text{defined}}$$

(n is replaced by n' in this statement of the rule to avoid ambiguity.)

n is either $\in U$ or is n'. We know it's not both since $n' \notin U$. If it's the former, then by the inductive hypothesis, since (vs, U) defined, we know there is a $\mathbf{V}(n, c) \in vs$, which is also in $\mathbf{V}(n', c) :: vs$. If it's the latter, then clearly $\mathbf{V}(n', c) \in \mathbf{V}(n', c) :: vs$.

3.4 Lemma 4

If (vs, U) defined and $V(n, c) \in vs$ and $V(n, c') \in vs$ then c = c'.

Proof: We proceed by induction on (vs, U) defined.

Case
$$\frac{}{(nil, \{\}) \text{ defined}}$$

But vs is nil so the lemma is vacuously true.

Case
$$\frac{(vs, U) \text{ defined}}{(\mathbf{V}(n', c) :: vs, U \cup \{n'\}) \text{ defined}}$$

(n is replaced by n' in this statement of the rule to avoid ambiguity.)

Suppose that V(n, c) and V(n, c') are both V(n', c). Then clearly c = c'.

Suppose instead that one of the two is $\mathbf{V}(n', c)$ (so n = n') and the other is $\in vs$. Then by Lemma 2, $n \in U$. But $n' \notin U$, contradiction.

Suppose lastly that both are $\in vs$. Then by the inductive hypothesis, c=c'.

3.5 Lemma 5

If (vs, U_v, n, U) connected, then $\forall n' \in U_v : \exists c' \text{ such that } \mathbf{V}(n', c') \in vs.$

Proof: We proceed by rule induction on (vs, U_v, n, U) connected.

Case
$$\frac{(vs, U) \text{ defined} \quad U_v \subseteq U \quad n \in U_v}{(vs, U_v, n, \emptyset) \text{ connected}}$$

Since $U_v \subseteq U$, it suffices to check this is true for every element in U. Since we have (vs, U) defined, we have this property by Lemma 3.

Case
$$\frac{(vs, U) \text{ defined} \quad U_v \subseteq U \quad \mathbf{V}(n, \mathbf{end}) \in vs \quad n \notin U_v}{(vs, U_v, n, \{n\}) \text{ connected}}$$

Identical to the case above.

$$\operatorname{Case} \frac{\mathbf{V}(n, \ \mathbf{do} \ a \ \mathbf{then} \ n') \in vs}{(vs, \ U_v \cup \{n\}, \ n', \ U) \ \mathsf{connected}} \quad n \notin U_v}{(vs, \ U_v, \ n, \ U \cup \{n\}) \ \mathsf{connected}}$$

Then by the inductive hypothesis, since $(vs, U_v \cup \{n\}, n', U)$ connected we know the lemma is satisfied for all $n' \in U_v \cup \{n\}$. Since $U_v \subseteq U_v \cup \{n\}$, this is also true for all $n' \in U_v$.

Case
$$\frac{\mathbf{V}(n, \mathbf{do} \ a \ \mathbf{until} \ cnd \ \mathbf{then} \ n') \in vs}{(vs, \ U_v \cup \{n\}, \ n', \ U) \ \mathsf{connected}} \quad n \notin U_v}{(vs, \ U_v, \ n, \ U \cup \{n\}) \ \mathsf{connected}}$$

Identical to the case above.

Case
$$\frac{\mathbf{V}(n, \ \mathbf{goto} \ n') \in vs \quad (vs, \ U_v \cup \{n\}, \ n', \ U) \ \mathsf{connected}}{(vs, \ U_v, \ n, \ U \cup \{n\}) \ \mathsf{connected}}$$

Identical to the case above.

$$\operatorname{Case} \frac{\mathbf{V}(n, \text{ if } cnd \text{ then } n' \text{ else } n'') \in vs \qquad (vs, \ U_v \cup \{n\}, \ n', \ U) \text{ connected}}{(vs, \ U_v \cup U \cup \{n\}, \ n'', \ U') \text{ connected}} \\ \frac{(vs, \ U_v \cup U \cup \{n\}, \ n'', \ U') \text{ connected}}{(vs, \ U_v, \ n, \ U \cup U' \cup \{n\}) \text{ connected}}$$

Identical to the case above.

3.6 Proof of Preservation

Recall that we stated preservation as "If cfg cfgvalid and $cfg \longmapsto cfg'$ then cfg' cfgvalid."

We begin by case analyzing on cfg cfgvalid in order to conclude some important facts.

The only case is

$$\frac{\mathbf{P}(v, vs) \text{ valid} \qquad \mathbf{V}(n, c) \in v :: vs}{(n, v :: vs, I, O) \text{ cfgvalid}}$$

so we can conclude:

$$cfg = (n, v :: vs, I, O) \tag{1}$$

$$P(v, vs)$$
 valid (2)

$$\mathbf{V}(n, c) \in v :: vs \tag{3}$$

We case analyze on P(v, vs) valid. The only case is

$$\frac{(\mathbf{V}(s,\ c_s) :: vs,\ U)\ \mathtt{defined} \qquad (\mathbf{V}(s,\ c_s) :: vs,\ \emptyset,\ s,\ U)\ \mathtt{connected}}{\mathbf{P}(\mathbf{V}(s,\ c_s),\ vs)\ \mathtt{valid}}$$

so we can conclude:

$$v = \mathbf{V}(s, c_s) \tag{4}$$

$$(\mathbf{V}(s, c_s) :: vs, U) \text{ defined}$$
 (5)

$$(\mathbf{V}(s, c_s) :: vs, \emptyset, s, U)$$
 connected (6)

From (3), (4), and (5), using Lemma 2 we can conclude

$$n \in U \tag{7}$$

From (6) and (7), using Lemma 1 we can conclude $\exists U'_v$, U' where U' is not empty such that

$$(v :: vs, U'_n, n, U')$$
 connected (8)

We continue by case analyzing on $cfg \longmapsto cfg'$.

Case
$$\frac{\mathbf{V}(n, \mathbf{do} \ a \ \mathbf{then} \ n') \in vs'}{(n, vs', I, O) \longmapsto (n', vs', I, a :: O)}$$

So taking into account (1), cfg is of the form (n, v :: vs, I, O) and cfg' is of the form (n', v :: vs, I, a :: O). We do another case analysis on (8).

$$\text{Inner case } \frac{(v :: vs, \ U) \ \text{defined} \qquad U'_v \subseteq U \qquad n \in U'_v}{(v :: vs, \ U'_v, \ n, \ \emptyset) \ \text{connected}}$$

But U' is not empty, contradiction.

All but one of all of the other cases have a premise of the form $\mathbf{V}(n, c') \in v :: vs$ where c' is not **do** a **then** n'. This is a contradiction by Lemma 4 since we have $\mathbf{V}(n, \mathbf{do} \ a \ \mathbf{then} \ n') \in v :: vs$.

Thus the only case left is

$$\frac{\mathbf{V}(n, \mathbf{do} \ a \ \mathbf{then} \ n') \in vs}{(v :: vs, \ U'_v \cup \{n\}, \ n', \ U'') \ \mathsf{connected}} \frac{(v :: vs, \ U'_v \cup \{n\}, \ n', \ U'' \cup \{n\}) \ \mathsf{connected}}{(v :: vs, \ U'_v, \ n, \ U'' \cup \{n\}) \ \mathsf{connected}}$$

If we let U''_v be $U'_v \cup \{n\}$, then we can case analyze on $(v :: vs, \ U''_v, \ n', \ U'')$ connected:

Inner case
$$\frac{(v :: vs, U) \text{ defined}}{(v :: vs, U'', n', \emptyset) \text{ connected}}$$

Then since we have $n' \in U_v''$, by Lemma 5, $\exists c'$ such that $\mathbf{V}(n', c') \in v :: vs$.

In any of the other cases, one of the premises gives us $\mathbf{V}(n', c') \in v :: vs$ for some c'.

In any of the cases, if we combine $V(n', c') \in v :: vs$ with (2), we can conclude (n', v :: vs, I, a :: O) cfgvalid as desired.

Case
$$\frac{\mathbf{V}(n, \mathbf{do} \ a \ \mathbf{until} \ cnd \ \mathbf{then} \ n') \in vs}{(n, \ vs, \ true :: I, \ O) \longmapsto (n', \ vs, \ I, \ a :: O)}$$

So taking into account (1), cfg is of the form (n, v :: vs, true :: I', O) and cfg' is of the form (n', v :: vs, I', a :: O). The rest of the proof for this case is identical to above except c is **do** a **until** cnd **then** n' and the end conclusion is that (n', v :: vs, I', a :: O) cfgvalid.

Case
$$\frac{\mathbf{V}(n, \mathbf{do} \ a \ \mathbf{until} \ cnd \ \mathbf{then} \ n') \in vs}{(n, vs, false :: I, O) \longmapsto (n, vs, I, a :: O)}$$

So taking into account (1), cfg is of the form (n, v :: vs, false :: I', O) and cfg' is of the form (n, v :: vs, I', a :: O). The rest of the proof for this case is identical to above except c is **do** a **until** cnd **then** n' and the end conclusion is that (n, v :: vs, I', a :: O) cfgvalid.

Case
$$\frac{\mathbf{V}(n, \mathbf{goto} \ n') \in vs}{(n, vs, I, O) \longmapsto (n', vs, I, O)}$$

So taking into account (1), cfg is of the form (n, v :: vs, I, O) and cfg' is of the form (n', v :: vs, I, O). The rest of the proof for this case is identical to above except c is **goto** n' and the end conclusion is that (n', v :: vs, I, O) cfgvalid.

Case
$$\frac{\mathbf{V}(n, \text{ if } cnd \text{ then } n' \text{ else } n'') \in vs}{(n, vs, true :: I, O) \longmapsto (n', vs, I, O)}$$

So taking into account (1), cfg is of the form (n, v :: vs, true :: I', O) and cfg' is of the form (n', v :: vs, I', O). The rest of the proof for this case is identical to above except c is **if** cnd **then** n' **else** n'' and the end conclusion is that (n', v :: vs, I', a :: O) cfgvalid.

Case
$$\frac{\mathbf{V}(n, \text{ if } cnd \text{ then } n' \text{ else } n'') \in vs}{(n, vs, false :: I, O) \longmapsto (n'', vs, I, O)}$$

So taking into account (1), cfg is of the form (n, v :: vs, false :: I', O) and cfg' is of the form (n'', v :: vs, I', O). We do another case analysis on (8).

$$\text{Inner case } \frac{(v :: vs, \ U) \ \text{defined} \qquad U'_v \subseteq U \qquad n \in U'_v}{(v :: vs, \ U'_v, \ n, \ \emptyset) \ \text{connected}}$$

But U' is not empty, contradiction.

All but one of all of the other cases have a premise of the form $\mathbf{V}(n, c') \in v :: vs$ where c' is not if cnd then n' else n''. This is a contradiction by Lemma 4 since we have $\mathbf{V}(n, if \ cnd \ then \ n' \ else \ n'') \in v :: vs$.

Thus the only case left is

$$\begin{array}{c} \mathbf{V}\big(n, \text{ if } cnd \text{ then } n' \text{ else } n''\big) \in v :: vs \\ (v :: vs, \ U_v' \cup \{n\}, \ n', \ U) \text{ connected} \\ \underline{(v :: vs, \ U_v' \cup U \cup \{n\}, \ n'', \ U'') \text{ connected}} \\ (v :: vs, \ U_v', \ n, \ U \cup U'' \cup \{n\}) \text{ connected} \end{array}$$

If we let U''_v be $U'_v \cup U \cup \{n\}$, then we can case analyze on $(v :: vs, U''_v, n'', U'')$ connected:

$$\text{Inner case } \frac{(v :: vs, \ U) \ \text{defined} \qquad U''_v \subseteq U \qquad n'' \in U''_v}{(v :: vs, \ U''_v, \ n'', \ \emptyset) \ \text{connected}}$$

Then since we have $n'' \in U_v''$, by Lemma 5, $\exists c'$ such that $\mathbf{V}(n'', c') \in v :: vs$.

In any of the other cases, one of the premises gives us $V(n'', c') \in v :: vs$ for some c'.

In any of the cases, if we combine $V(n'', c') \in v :: vs$ with (2), we can conclude (n'', v :: vs, I', O) cfgvalid as desired.