8.4 Generating Functions

Section Summary

- √Generating Functions
- √Useful Facts About Power Series
- √ Counting Problems and Generating Functions
- √Solving Recurrence Relations Using Generating Functions
- √Proving Identities Using Generating Functions

Why should we study generating functions?

Generating functions are useful for manipulating sequences.

- ✓ to solve many kinds of counting problems

 For example, the problem of combination or permutation with constraints
- ✓ to solve the recurrence relations
- √ to prove combinatorial identities

Generating Functions

[Definition 1] The generating function for the sequence $a_0, a_1, a_2, ..., a_k, ...$ of real numbers is the infinite series.

$$G(x) = a_0 + a_1 x + \dots + a_k x^k + \dots = \sum_{k=0}^{\infty} a_k x^k$$

Example 1

(1) What is the generating function for the sequence 1, 1, 1, 1, ...?

$$G(x) = 1 + x + x^2 + x^3 + \dots = \sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

(2) What is the generating function for the sequence 0, 1, 2, 3, 4, 5, ...?

$$G(x) = \sum_{k=0}^{\infty} kx^k$$

Generating Functions for Finite Sequences

The generating function for finite sequence of real numbers

 $a_0, a_1, a_2, ..., a_n$ is

$$G(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

Example 2

(1) The finite sequence: 1,1,1. The generating function for this sequence is

$$G(x) = 1 + x + x^2 = \frac{1 - x^3}{1 - x}$$

(2) Let $a_k = C(m,k), k = 0,1,2,...,m$. The generating function for this sequence is

$$G(x) = C(m,0) + C(m,1)x + C(m,2)x^{2} + ... + C(m,m)x^{m} = (1+x)^{m}$$

Useful Facts About Power Series

Theorem 1 Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$, $g(x) = \sum_{k=0}^{\infty} b_k x^k$. Then

(1)
$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$$

(2)
$$\alpha \cdot f(x) = \sum_{k=0}^{\infty} \alpha \cdot a_k x^k$$
 $\alpha \in \mathbb{R}$
(3) $x \cdot f'(x) = \sum_{k=0}^{\infty} k \cdot a_k x^k$
(4) $f(\alpha x) = \sum_{k=0}^{\infty} \alpha^k \cdot a_k x^k$

(3)
$$x \cdot f'(x) = \sum_{k=0}^{\infty} k \cdot a_k x^k$$

$$(4) \quad f(\alpha x) = \sum_{k=0}^{\infty} \alpha^k \cdot a_k x^k$$

(5)
$$f(x)g(x) = \sum_{k=0}^{\infty} (\sum_{j=0}^{k} a_j b_{k-j}) x^k$$

Proof:

$$\sum_{k=0}^{\infty} k a_k x^k = \sum_{k=0}^{\infty} a_k \cdot x \cdot k x^{k-1}$$

$$=x\sum_{k=0}^{\infty}a_k(x^k)'$$

$$=x(\sum_{k=0}^{\infty}a_kx^k)'$$

$$= xf'(x)$$

Useful facts about power series

Let
$$f(x) = \sum_{k=0}^{\infty} a_k x^k, g(x) = \sum_{k=0}^{\infty} b_k x^k$$
. **Then**

(1)
$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$$

(1)
$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$$
(2)
$$\alpha \cdot f(x) = \sum_{k=0}^{\infty} \alpha \cdot a_k x^k \qquad \alpha \in \mathbb{R}$$
(3)
$$x \cdot f'(x) = \sum_{k=0}^{\infty} k \cdot a_k x^k$$

$$(3) \quad x \cdot f'(x) = \sum_{k=0}^{\infty} k \cdot a_k x^k$$

$$(4) \quad f(\alpha x) = \sum_{k=0}^{\infty} \alpha^k \cdot a_k x^k$$

(5)
$$f(x)g(x) = \sum_{k=0}^{\infty} (\sum_{j=0}^{k} a_j b_{k-j}) x^k$$

Proof:

$$\sum_{k=0}^{\infty} (\sum_{j=0}^{k} a_{j} b_{k-j}) x^{k}$$

$$= a_{0} b_{0} + (a_{0} b_{1} + a_{1} b_{0}) x + (a_{0} b_{2} + a_{1} b_{1} + a_{2} b_{0}) x^{2}$$

$$+ \dots + (\sum_{j=1}^{k} a_{j} b_{k-1}) x^{k} + \dots$$

$$= (a_{0} + a_{1} x + a_{2} x^{2} + \dots) (b_{0} + b_{1} x + b_{2} x^{2} + \dots)$$

$$= f(x) \cdot g(x)$$

◆ Using the above properties, the generating functions of some sequence can be obtained easily.

Example 3 (1) What is the generating function for the sequence 0,1,2,3,4,5,...?

Solution:

$$b_k = k$$

$$G(x) = \sum_{k=0}^{\infty} kx^k$$

$$= x(\frac{1}{1-x})'$$

$$= \frac{x}{(1-x)^2}$$

Example 3 (2) Suppose that the generating function of the sequence: $a_0, a_1, a_2, ..., a_n, ...$ is G(x). What is the generating function for the sequence $b_k = \sum_{i=0}^k a_i$?

Solution:
$$a_k \leftrightarrow G(x), \quad b_k \leftrightarrow F(x)$$

$$c_k = 1$$

$$b_k = \sum_{i=0}^k a_i$$

$$= \sum_{i=0}^k a_i \times c_{k-i}$$

$$F(x) = G(x) \cdot \frac{1}{1-x}$$

Example 3 (3) What is the generating function for the sequence $a_k = k^2$?

Solution: $a_k = k^2$ $(\frac{x}{(1-x)^2})' = \frac{x(1+x)}{(1-x)^3}$

[Example 3] (4) What is the generating function for the sequence $a_k = \sum_{i=1}^{k} i^2$?

Solution:

$$a_k = k^2$$
 $(\frac{x}{(1-x)^2})' = \frac{x(1+x)}{(1-x)^3}$

$$a_k = \sum_{i=1}^k i^2$$

$$\frac{x(1+x)}{(1-x)^4}$$

Example 4 Let $f(x) = \frac{1}{1 - 4x^2}$. Find the coefficient $a_0, a_1, a_2, ..., a_n, ...$ in the expansion $f(x) = \sum_{k=0}^{\infty} a_k x^k$.

Solution:

$$f(x) = \frac{1}{1 - 4x^2} = \frac{1}{(1 - 2x)(1 + 2x)} = \frac{1}{2} \left(\frac{1}{1 - 2x} + \frac{1}{1 + 2x}\right)$$

$$\frac{1}{2}(2^k + (-2)^k) = \begin{cases} 2^k & k \text{ is even} \\ 0 & k \text{ is odd} \end{cases}$$

The extended binomial coefficient

Recall:
$$\binom{m}{k} = C(m,k) = \frac{m!}{k!(m-k)!}$$

Where m, k are nonnegative integers, $k \le m$

[Definition 2] Let u be a real number and k a nonnegative integer. Then the extended binomial coefficient is defined by

$$\begin{pmatrix} u \\ k \end{pmatrix} = \begin{cases} u(u-1)...(u-k+1)/k! & \text{if } k > 0 \\ 1 & \text{if } k = 0 \end{cases}$$

Example 5
$$\boxed{1} \qquad (1) \binom{1/2}{3} = ? \qquad (2) \binom{-n}{k} = ?$$

Solution:

$$(1)\binom{1/2}{3} = \frac{(1/2)(1/2-1)(1/2-2)}{3!} = 1/16$$

$$(2) {\binom{-n}{k}} = \frac{(-n)(-n-1)...(-n-k+1)}{k!}$$

$$= \frac{(-1)^k n(n+1)...(n+k-1)}{k!}$$

$$= (-1)^k C(n+k-1,k)$$

The extended Binomial Theorem

[Theorem 2] Let x be a real number with |x| < 1 and let u be a real number. Then

$$(1+x)^{u} = \sum_{k=0}^{\infty} {u \choose k} x^{k}$$

Example 6 Find the generating functions for

$$(1+x)^{-n}$$
 and $(1-x)^{-n}$

where n is a positive integer, using the extended Binomial Theorem.

Solution:

By the extended Binomial Theorem, it follows that
$$(1+x)^{-n} \qquad (1-x)^{-n}$$

$$= \sum_{k=0}^{\infty} {n \choose k} x^k \qquad = \sum_{k=0}^{\infty} {n \choose k} (-x)^k$$

$$= \sum_{k=0}^{\infty} (-1)^k C(n+k-1,k) x^k \qquad = \sum_{k=0}^{\infty} (-1)^k C(n+k-1,k) (-1)^k x^k$$

$$= \sum_{k=0}^{\infty} C(n+k-1,k) x^k$$

Some Common Used Generating Functions

Sequence

(1)
$$C(n,k)$$

(2)
$$C(n,k)a^k$$

(5)
$$a^{k}$$

(6)
$$k+1$$

Generating function

$$\sum_{k=0}^{\infty} C(n,k)x^k = (1+x)^n$$

$$(1+ax)^n$$

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$

$$\frac{1}{1-x}$$

$$\frac{1}{1-ax}$$

$$\frac{1}{(1-x)^2}$$

Some Common Used Generating Functions

Sequence

Generating function

(7)
$$C(n+k-1,k)$$

$$(1-x)^{-n}$$

(8)
$$(-1)^k C(n+k-1,k)$$
 $(1+x)^{-n}$

$$(1+x)^{-n}$$

(9)
$$C(n+k-1,k)a^{k}$$

$$(1 - ax)^{-n}$$

$$(10) \frac{1}{k!}$$

$$e^{x}$$

$$(11) \ \frac{(-1)^{k+1}}{k}$$

$$ln(1+x)$$

Some Common Used Generating Functions

TABLE 1 Useful Generating Functions.	
G(x)	a_k
$(1+x)^n = \sum_{k=0}^n C(n,k)x^k$	C(n,k)
$= 1 + C(n, 1)x + C(n, 2)x^{2} + \dots + x^{n}$	
$(1 + ax)^{n} = \sum_{k=0}^{n} C(n, k)a^{k}x^{k}$ = 1 + C(n, 1)ax + C(n, 2)a^{2}x^{2} + \cdots + a^{n}x^{n}	$C(n,k)\alpha^k$
$(1+x^r)^n = \sum_{k=0}^n C(n,k)x^{rk}$ = 1 + C(n, 1)x^r + C(n, 2)x^{2r} + \cdots + x^{rn}	$C(n, k/r)$ if $r \mid k$; 0 otherwise
$\frac{1 - x^{n+1}}{1 - x} = \sum_{k=0}^{n} x^k = 1 + x + x^2 + \dots + x^n$	1 if $k \le n$; 0 otherwise
$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots$	1
$\frac{1}{1 - ax} = \sum_{k=0}^{\infty} a^k x^k = 1 + ax + a^2 x^2 + \dots$	a^k
$\frac{1}{1 - x^r} = \sum_{k=0}^{\infty} x^{rk} = 1 + x^r + x^{2r} + \cdots$	1 if $r \mid k$; 0 otherwise
$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} (k+1)x^k = 1 + 2x + 3x^2 + \dots$	k + 1
$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)x^k$	C(n+k-1,k) = C(n+k-1, n-1)
$= 1 + C(n, 1)x + C(n + 1, 2)x^{2} + \cdots$	
$\frac{1}{(1+x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)(-1)^k x^k$	$(-1)^k C(n+k-1,k) = (-1)^k C(n+k-1,n-1)$
$= 1 - C(n, 1)x + C(n + 1, 2)x^{2} - \cdots$	
$\frac{1}{(1-ax)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)a^k x^k$	$C(n+k-1,k)a^{k} = C(n+k-1,n-1)a^{k}$
$= 1 + C(n, 1)ax + C(n + 1, 2)a^{2}x^{2} + \cdots$	
$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	1/k!
$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$	$(-1)^{k+1}/k$

Counting Problems and Generating Functions

Example 7 Find the number of solutions of $e_1 + e_2 + e_3 = 17$ where e_1, e_2, e_3 are nonnegative integers with $2 \le e_1 \le 5, 3 \le e_2 \le 6, and 4 \le e_3 \le 7$

Solution:

$$e_1 + e_2 + e_3 = 17$$

(1)
$$e_i \ge 0$$
 $H_3^{17} = C(3-1+17,17)$

(2)
$$e_1 \ge 10$$
 $e_1 + e_2 + e_3 = 7(e_i \ge 0)$

$$H_3^7 = C(3 - 1 + 7, 7)$$

(3)
$$2 \le e_1 \le 5, 3 \le e_2 \le 6, and 4 \le e_3 \le 7$$
?

The generating function for this counting problem is

$$G(x) = (x^2 + x^3 + x^4 + x^5)(x^3 + x^4 + x^5 + x^6)(x^4 + x^5 + x^6 + x^7)$$

The number of solutions is the coefficient of x^{17} in the expansion of G(x).

Example 8 Use generating functions to find the number of r-combinations from a set with n elements when repetition of elements is allowed.

Solution:

Since there are *n* elements in the set, each can be selected zero times, one times and so on. It follows that

$$G(x) = (1 + x + x^2 + x^3 + ...)^n = (\frac{1}{1 - x})^n = \frac{1}{(1 - x)^n}$$

the number of r-combinations from a set with n elements when repetition of elements is allowed, is the coefficient a_r of x^r in the expansion of G(x). Since

$$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)x^k$$

Then the coefficient a_r equals C(n+r-1,r)

Example 9 Suppose that there are 2r red balls, 2r blue balls, and 2r white balls. How many ways to select 3r balls from these balls?

Solution:

$$G(x) = (1 + x + x^2 + ... + x^{2r})^{\bigcirc}$$

The coefficient a_{3r} of x^{3r} in the expansion of G(x) is the solution of this problem.

How to find a_{3r} ?

$$G(x) = (1+x+x^2+...+x^{2r})^3 = (\frac{1-x^{2r+1}}{1-x})^3 = \frac{1-3x^{2r+1}}{(1-x)^3} + 3x^{4r+2} - x^{6r+3}$$

$$F(x) = \frac{1}{(1-x)^3} = (1+x+x^2+...)^3$$

The coefficient of term x^i in F(x) is $H_3^i = C_{3+i-1}^i = C_{i+2}^i$

$$2r+1+y=3r \qquad \therefore y=r-1$$

The coefficient of term x^{r-1} in F(x) is C_{r+1}^{r-1}

$$\therefore a_{3r} = C_{3r+2}^{3r} - 3C_{r+1}^{r-1}$$

[Example 10] Determine the number of ways to insert tokens worth \$1,\$2 and \$5 into a vending machine to pay for an item that costs *r* dollars in both the case when the order in which the tokens are inserted does not matter and when the order does matter.

Solution:

(1) The order in which the tokens are inserted does not matter

$$G(x) = (1 + x + x^2 + x^3 + ...)(1 + x^2 + x^4 + x^6 + ...)(1 + x^5 + x^{10} + x^{15} + ...)$$

The coefficient of x^r in the expansion of G(x) is the solution of this problem.

- (2) The order in which the tokens are inserted does matter
 - **The number of ways to insert exactly** *n* **tokens to produce a total of** *r***\$** is the coefficient of x^r in $(x + x^2 + x^5)^n$
 - Since any number of tokens may be inserted, the number of ways to produce r\$ using \$1,\$2 and \$5 tokens, is the coefficient of x^r in

$$1 + (x + x^{2} + x^{5}) + (x + x^{2} + x^{5})^{2} + \dots = \frac{1}{1 - (x + x^{2} + x^{5})}$$

Use Generating Function To Solve Recurrence Relations

The Method:

(1) Use the recurrence relation find the generating function of this sequence.

(2)
$$G(x) \Rightarrow a_n$$

Example 11 Use generating functions to solve the recurrence relation $a_n = 2a_{n-1} + 3a_{n-2} + 4^n + 6$ with initial conditions $a_0 = 20, a_1 = 60$.

$$(1-2x-3x^2)G(x) = \frac{20-80x+2x^2+40x^3}{(1-4x)(1-x)}$$

$$G(x) = \frac{20 - 80x + 2x^2 + 40x^3}{(1 - 4x)(1 - x)(1 + x)(1 - 3x)}$$

$$= \frac{16/5}{1-4x} + \frac{-3/2}{1-x} + \frac{31/20}{1+x} + \frac{67/4}{1-3x}$$

$$\frac{16}{5} \times 4^{n} - \frac{3}{2} \times 1^{n} \frac{31}{20} \times (-1)^{n} \frac{67}{4} \times 3^{n}$$

$$a_n = \frac{16}{5} \times 4^n - \frac{2}{3} + \frac{31}{20} \times (-1)^n + \frac{67}{4} \times 3^n$$

Proving Identities Via Generating Functions

Example 12 Use generating function to prove Pascal's identity C(n,r) = C(n-1,r) + C(n-1,r-1) when n and r are positive integers with r < n.

Proof:
$$G(x) = (1+x)^{n} = \sum_{r=0}^{n} C(n,r)x^{r}$$

$$(1+x)^{n} = (1+x)(1+x)^{n-1} = (1+x)^{n-1} + x(1+x)^{n-1}$$

$$\sum_{r=0}^{n} C(n,r)x^{r} = \sum_{r=0}^{n-1} C(n-1,r)x^{r} + \sum_{r=0}^{n-1} C(n-1,r)x^{r+1}$$

$$= \sum_{r=0}^{n-1} C(n-1,r)x^{r} + \sum_{r=1}^{n} C(n-1,r-1)x^{r}$$

$$1 + \sum_{r=1}^{n-1} C(n,r)x^{r} + x^{n}$$

$$= 1 + \sum_{r=1}^{n-1} C(n-1,r)x^{r} + \sum_{r=1}^{n-1} C(n-1,r-1)x^{r} + x^{n}$$

$$\sum_{r=1}^{n-1} C(n,r)x^{r} = \sum_{r=1}^{n-1} [C(n-1,r) + C(n-1,r-1)]x^{r}$$

Homework:

SE: P. 549 6,16, 24, 30, 34,49

EE: P. 575 6,16, 24, 32, 36, 51