Mind
$$f(t) = \cos t$$

 $f(s) = \frac{s}{a^2 + s^2}$; Nomenin $f(s) : s > 0$

Buttlen!

$$\left(L\left\{\cos at^{3}\right\} \right) \left(1 + \frac{s^{2}}{a^{2}}\right) = \begin{bmatrix} 1 & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \cos at \end{bmatrix} \right)$$

$$\left(L\left\{\cos at^{3}\right\} \right) \left(1 + \frac{s^{2}}{a^{2}}\right) = \begin{bmatrix} 1 & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \cos at \end{bmatrix} - \begin{bmatrix} 1 & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \cos at \end{bmatrix} - \begin{bmatrix} 1 & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \cos at \end{bmatrix} - \begin{bmatrix} 1 & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \cos at \end{bmatrix} - \begin{bmatrix} 1 & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \cos at \end{bmatrix} - \begin{bmatrix} 1 & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \cos at \end{bmatrix} - \begin{bmatrix} 1 & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \cos at \end{bmatrix} - \begin{bmatrix} 1 & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \cos at \end{bmatrix} - \begin{bmatrix} 1 & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} & \lim_{\rho \to \infty} e^{-jt} & \sin at - \frac{s}{at} & \lim_{\rho \to \infty} e^{-jt} &$$

MJB/forturen XII/cotatan Mitasser, 29 April 2027

(i)
$$f(t) = 4$$
 Maloa $f(s) = \frac{4}{3}$

(2)
$$f(x) = t^2$$
 Makes $f(s) = \frac{2!}{s^{2+1}} = \frac{20}{s^3}$

(3)
$$f(4) = e^{24}$$
 Make $f(3) = \frac{1}{5-2}$

(9)
$$e^{-t}$$
 $f(t) = e^{-t}$ Make $f(s) = \frac{1}{s+1}$

(5)
$$f(t) = \sin 2t$$
 Make $f(s) = \frac{2}{2^2 + 5^2} = \frac{2}{4+5^2}$

(6)
$$f(t) = cosyt$$
 Make $F(s) = \frac{s}{4^2 + s^2} = \frac{s}{16 + s^2}$