推荐系统的协同过滤算法实现与浅析

2016年6月19日

目录

1	项目	简介	2	
2	平台	和工具	2	
3	数据摘要			
	3.1	数据集	3	
	3.2	数据格式与交叉验证	3	
	3.3	评价指标	4	
4	模型	上详解与分析	4	
	4.1	统计指标及 baseline	4	
	4.2	相似度矩阵与协同过滤	6	
	4.3	结合 baseline 的协同过滤	6	
	4.4	topK 协同过滤与 K 值的选择	7	
	4.5	归一化的相似度衡量指标	8	
	4.6	模型融合与融合参数	10	
	4.7	其它算法	11	
5	模型	1 结果	12	
6	总结	Î	13	

1 项目简介

1 项目简介

2

个性化推荐系统基于用户的兴趣和商品的特性,向用户推荐合适的信息或商品,其在互联网领域,尤其是电子商务、广告业务等方面,具有非常广泛的应用。推荐系统的进步,会更加迎合用户的需求,会为产品赢得更好的口碑,为企业创造更多的收益,形成良性的循环。因而,对推荐系统算法的研究,在实践中不断发展,不断进步。

本项目选择推荐系统为主题,以协同过滤 (Collaborative Filtering)为主要算法,基于 MovieLens 数据集,采用了交叉验证的方式,以均方根误差 RMSE 为评价指标。

由于这门课是以算法为核心的课程,因而本项目更加注重算法的具体内容和细节。在项目中,所有核心代码均由自己编写,未调用任何外部算法模块。在报告中,也会主要以算法内容和实现细节为主。

算法以 baseline 为起步。在 baseline 的基础上,实现了基本的 user-user 和 item-item 协同过滤算法,以及基于 baseline 的协同过滤算法,验证了 item-item 相比 user-user 能获得更好的效果。

同时,在基本的协同过滤算法上,加上了 bias、TopK 等优化,进一步提升了模型效果。此外,研究了 TopK 算法中, K 的取值对模型效果的影响,以及关于归一化的相似度矩阵对算法效果的影响。最后,尝试融合了不同的算法并调参,获得了更好的融合模型。

在项目过程中,在矩阵计算、相似度处理、评分预测等处,遇到了诸多算法细节问题,并进行了合适的处理。对于矩阵运算的代码,尽量进行了Vectorization,以提高速度。同时,自己重新组织了代码结构,分离了各个功能,使其具有更好的模块性,运行更加流水线化。

所有代码及报告,在隐去个人信息后,开源在 GitHub 平台 (https://github.com/irmowan/Collaborative-Filtering)。代码的使用可参见 Readme 文件。

2 平台和工具

以 OS X 10.11 及 Python 3.5 为主要开发环境,使用 Anaconda 作为 Python 的科学发行版。

使用 Jupyter Notebook 作为生产力工具,可以进行方便的调试。

使用 Numpy 和 Pandas 作为矩阵运算和数据载入的工具。

使用 Matplotlib 及 Echarts.js 作为数据可视化工具。

3 数据摘要 3

使用 Git 作为版本管理的工具。

使用基于 Unicode 的 TeX 发行版 XeLaTeX 撰写报告。

3 数据摘要

3.1 数据集

原先,我采用的是 NetflixPrize 数据集,NetflixPrize 是关于电影评分的数据集。标准的 NetflixPrize 数据集包含了 480189 个 user,和 17770 个 item,以及总计约 1 亿的 ratings。数据集中还包括了打分的时间,以及各部电影 id 对应的名称和年份。

对于协同过滤方法来说,该数据集产生的评分矩阵规模达 480189 × 17770,总元素约有 80 多亿,在该矩阵上的基本统计已经要耗时数十秒,对该矩阵进行更细粒度的计算则会更慢。

因而,我换用了一个数据格式基本相同,但规模更小的数据集 MovieLens (http://grouplens.org/datasets/movielens/)。它提供了不同规模的数据集,包括 100K, 1M, 10M, 20M(均指 Rating 数)等多个规模的版本。

此外,相比于 NetflixPrize, 其提供了更多的信息,除了打分时间以外,包括用户的性别、年龄、职业、地区,以及电影的名称、发行时间、和丰富的标签(科幻、动作、文艺等)。

这些丰富的信息都是可以被推荐系统所利用的。如用户的年龄和职业可以被用来聚类,电影的标签可以用来做基于内容 (content-based) 的推荐,时间戳可以用来进行时序化的推荐 (更新鲜的打分具有更高的权重),这些还可以同协同过滤算法相结合,从而达到提高预测速度和精度的目的。

需要注意的是, MovieLens 数据集是经过过滤处理的, 所有打分少于 20个的用户均被过滤。因而, 出现在数据集中的用户, 每个用户至少对 20部 影片进行了打分。(而对于每部影片则不然, 可能存在没有被打分的影片)

为了获得较快的执行速度,报告中展示的所有算法的运行结果,均基于 100K 版本的 MovieLens 数据集。该数据集包括 943 users, 1682 items, 100000 ratings。

3.2 数据格式与交叉验证

通过 Pandas 的 DataFrame 读入数据。

原先,所有数据采用一组训练集和测试集,训练集和测试集规模比为4:1。即,训练集规模为80000,测试集规模为20000。

数据每行格式为 (user, item, rating, timestamp), 训练集及测试集均为此格式。在测试时, 所有测试函数以 (user, item) 对为输入参数, 返回预测的 rating。

在读入数据后,由打分数据填充 ratings 矩阵,以 user 为行, item 为列, 形成 943×1682 的矩阵。

为提高指标稳定性,采用了 K 次交叉验证 (K-fold Cross Validation) 的方法。将数据切分为 5 个子样本,每次取 4 组训练,剩余一组用于测试,循环 5 次。在交叉意义下的评价指标可见 3.3节。

trick: 数据集内数据 id 以 1 开始,内部变量索引以 0 开始,做适当调整即可。

3.3 评价指标

对于如何评价算法的优劣程度,需要指定相关的评价指标。

一种常见的评价指标是平均绝对误差 Mean Absolute Error (MAE), MAE 值越低,则预测效果越好。其定义为:

$$MAE = \frac{\sum_{i=1}^{N} |r_{xi} - \hat{r}_{xi}|}{N}$$

其中, \hat{r}_{xi} 和 r_{xi} 分别为用户 x 对项目 i 的预测打分及实际打分。MAE 值越低、则预测效果越好。

而在项目中,选择了均方根误差 Root Mean Squared Error (RMSE) 作为评价指标,它与 MAE 一样,越低则效果越好。其定义如下:

$$RMSE = \sqrt{\sum_{i=1}^{N} (r_{xi} - \hat{r}_{xi})^2}$$

由于采用了交叉验证的方法,因而选择每组数据集的 RMSE 均值作为 预测方法的最终 RMSE 值:(k 为交叉验证的组数)

$$\overline{RMSE} = \frac{1}{k} \sum_{i=1}^{k} RMSE_i$$

4 模型详解与分析

4.1 统计指标及 baseline

首先,对于输入数据进行一些统计分析。

针对矩阵的稀疏程度,只需做简单运算即可得到,打分矩阵的密度为5.04%。

除零值外, 共有五种打分, 以某个训练集为例, 作出简单的打分分布 (图 1), 可以大致看出各个分数的打分情况。

图 1: 打分分布图

对矩阵的每一行和每一列求平均值,得到了各个 user 和 item 的打分均值。需要注意的是,此处要过滤零值,只对非零值求平均,否则无意义。

trick: 过滤出非零值不需要每行 (列) 分别过滤, 应采用向量化方法, 对整个矩阵执行按行 (列) 求和和非零值计数运算, 直接相除。

baseline 是基于这些统计量的简单预测。其预测公式为

$$\hat{r}_{xi} = \mu + ub_x + ib_i$$

其中, μ 为总体均值, ub_x 和 ib_i 分别是 user x 和 item i 的均值与总体均值的偏差。化简可得:

$$\hat{r}_{xi} = \overline{r_{user\ x}} + \overline{r_{item\ i}} - \mu$$

此算法即为 baseline 的效果, 其 RMSE 值为 0.9694.

trick: numpy 采用了 float64 类型存储浮点数,最好不要对其做任何近似操作,只需在最后的输出结果中采用近似表示即可。

4.2 相似度矩阵与协同过滤

协同过滤 (Collaborative filtering) 基于这样的思想:如果两个 user 对大多数 item 的打分相近,说明这两个 user 的相似度较高,或者若果两个 item 被大多数 user 打分相近,也说明这两个 item 的相似度较高。

基于相似度的来源,以上分别被称为 user-user 协同过滤和 item-item 协同过滤。

相似度采用 Cosine 距离测量, 其公式为:

$$sim(x,y) = \frac{r_x \cdot r_y}{\|r_x\| \|r_y\|}$$

该公式对行和列均有效。其对应的矩阵运算为:

$$Sim = \frac{R \cdot R^T}{\|R \cdot R^T\|}$$

trick: 为防止 divide by zero 错误,可以在计算时加上一个小偏差 ϵ 。即,采用 $R \cdot R^T + \epsilon$ 的方式进行实际计算。

在得到 user 相似度和 item 相似度后,可以通过其相似度矩阵进行预测。 预测公式采用加权平均的方式,为用户对其它 item 打分和 item 之间相 似度的加权平均(针对 item-item 协同过滤):

$$\hat{r}_{xi} = \frac{\sum_{j \in N(x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(x)} s_{ij}}$$

其中 N(x) 为 user x 打过分的数据。此处不能对所有数据求加权平均,因为其没有打过分的 item, 求平均值没有意义, 反而会增加分母的值, 导致预测严重偏差。

trick: 该预测公式还需要一点补充,即冷启动问题,当该公式分母为 0时,结果为 NaN,此时可以采用 baseline 结果代替 NaN.

该方法基于 item-item 的交叉验证结果是 **1.0149**,竟然比 baseline 还 高,而基于 user-user 的结果是 **1.0174**,同样超过了 1。

4.3 结合 baseline 的协同过滤

所以, baseline 的意义是重要的, 只采用协同过滤而无视了 baseline, 效果并没有那么明显。将 baseline 和协同过滤结合起来, 在 baseline 的基础上预测, 预测公式改为:

$$\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N(x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(x)} s_{ij}}$$

其中, b_{xi} 为用户 x, 项目 i 的 baseline 预测值,N(x) 为用户 x 打过分的项目集合。同样可以采用向量化计算。

经过改进, 基于 baseline 的 item-item 协同过滤算法可以将 RMSE 提高到 **0.9362**, 相比于 baseline 有了很大的进步。

而基于 baseline 的 user-user 协同过滤也达到了 0.9548.

可以得出,在实际应用中,的确 item-item 的算法表现更加好,大致是商品之间的差异,不如人之间的不同口味差异。

trick: 在进行到此处时,发现了一处细节优化,即由于最终打分必然是1-5 的整数值,那么在预测时,若预测结果小于 1,可以返回 1 为结果,若预测结果大于 5,则返回 5 为结果。这个改进是微小但稳健的,其可以将item-item 协同过滤 RMSE 由 0.9362 提高到 0.9360

4.4 topK 协同过滤与 K 值的选择

在协同过滤的预测中,由于需要针对每个预测计算所有的历史数据,时间开销较大,且并不是所有打过分的项目,均属于和 item 较相似的范畴。因而,可以采取 topK 技巧,在所有打过分的 item 中,过滤出与该 item 相似度最高的 K 个 item,只对这 K 个 item 进行加权平均。

$$\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N_k(x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N_k(x)} s_{ij}}$$

trick: 如果用户打过的 item 数不足 K, 则直接使用所有打过的 item。这也是基于某些用户可能只倾向于对其喜欢的商品评分。

在运行时,在采用 item-item 协同过滤的情况下,选择 K=10 时,得到的 RMSE 为 **0.9278**,选择 K=40 时,得到的 RMSE 为 **0.9242**.

可以发现,不同的 K 值,其效果有一定差异。当 K 太小时,不能覆盖所有与其较相似的 item,而当 K 太大时,所选的 item 可能已经与其不再非常相似。

尝试调整 K, 对不同的 K, 得到的 RMSE 如表格 1.

由表格可以大致看出,此处不同的 K 值得到的 RMSE 应该呈现 U 型。可以画出对应的 RMSE 曲线,如图 2。

由图像中发现,随着 K 的增大,训练集上的 RMSE 逐渐增大,而不是一般意义上的逐渐变小。其原因主要是,训练数据融入了均值和相似度,在

K 值	item 训练集	item 测试集	user 训练集	user 测试集
5	0.5747	0.9543	0.6101	0.9874
10	0.6845	0.9278	0.7242	0.9573
15	0.7322	0.9223	0.7699	0.9489
18	0.7500	0.9215	0.7866	0.9468
20	0.7596	0.9213	0.7951	0.9458
25	0.7774	0.9217	0.8113	0.9449
30	0.7902	0.9225	0.8225	0.9445
40	0.8073	0.9242	0.8373	0.9447
50	0.8182	0.9258	0.8465	0.9453
100	0.8422	0.9314	0.8660	0.9491
200	0.8546	0.9345	0.8747	0.9526

表 1: 不同 K 值下的 RMSE

预测时不可避免地利用到了原先的信息,因而训练集上的 RMSE 并不具有很强的代表性。

测试集上呈现出非典型的 U 型, U 型的低谷即为对应的最优 K 值。而在 K 增大时, 其带来的负面作用并没有那么大。这大概是因为, 采用更多的数据, 边缘数据由于其权重的减少, 对最终预测值的影响也减小, 类似于经济学中的边际效应递减规律。

显而易见,不同规模的输入,应该要有不同大小的 K 值相匹配。更大规模的数据,应该需要更大规模的 K 值。

trick: 在这里,我采用的方式是直接设定一个 K 值集合,因而对于不同规模不具有很好的适应性。而在实际应用中,更好的方式可以是通过学习的方式,去获得一个较优的 K 值。

对于该数据集而言, 当采用 item-item 协同过滤时, K=20 为宜, RMSE 为 **0.9213**, 当采用 user-user 协同过滤时, K=30 为宜, RMSE 为 **0.9445**.

4.5 归一化的相似度衡量指标

在相似矩阵中,除了采用 Cosine 距离外,还可以有其它的相似度定义。例如采用 Pearson 相关系数 (Pearson-r correlation $corr_{i,j}$)[3],其在算 Cosine 距离前,首先将同一行 (列) 的元素减去其平均值,以抹去各人打分标准不同所带来的权重差异,在这个意义下定义了新的相似度矩阵。例如 item 的相似度计算为:

$$sim(i,j) = \frac{\sum_{u \in U} (r_{ui} - \overline{r_i})(r_{uj} - \overline{r_j})}{\sqrt{\sum_{u \in U} (r_{ui} - \overline{r_i})^2} \sqrt{\sum_{u \in U} (r_{uj} - \overline{r_j})^2}}$$

图 2: 不同 K 值下的 RMSE 变化图

此即为归一化的相似度矩阵定义。同样,采用向量化方式将加快该矩阵 的计算。

而同时用于预测的函数,可以保持不变,仅将其中采用的相似度矩阵换 成归一化后的相似度矩阵即可。

然而,在 topK item-item 协同过滤的基础上,将原先的相似度矩阵替换为归一化后的相似度矩阵,其 RMSE 反而从 **0.9213** 提高到 **0.9253**(k=20)。

至于为什么会出现 RMSE 反而提高的情况, 经与老师讨论及相关查阅后, 发现这与数据集本身的一些性质有关, 对于某些打分很少的 item, 做归一化之后, 其反而抹去了这些 item 原来就已经很少的信息。例如一部小众的影片, 三四个口味相符的受众同时打出了 5 分的高分, 则归一化之后, 一下子抹去了这部电影的高分信息, 反而产生了信息的损失。

在这种情况下,那么对于 user-user 协同过滤,由于该数据集中,每个用户至少打过 20 个评分,这样的弊端应该会被尽量避免。于是,尝试对 user-user 协同过滤采用归一化后的相似度矩阵。然而效果同样不尽人意,RMSE 从 0.9445 提高到了 0.9550(k=30)。

关于这个问题, 草读了相关的几篇论文, 发现其主要有两个方面的考虑。

首先,对相似度的度量上,有着广泛的讨论。其中,有一种做法是,依然采用 item 之间的相似度计算,但是,此时不对 item 作归一化,而是对user 做归一化 [3]。

$$sim(i,j) = \frac{\sum_{u \in U} (r_{ui} - \overline{r_u})(r_{uj} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{ui} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{uj} - \overline{r_u})^2}}$$

另一种解决方式是,当打分的数量不足时,采用 default voting 的方法 [1]。在这一方法中,使用类似 tf-idf 的分析法,获得默认的权重值。公式较为复杂:

$$w(u,v) = \frac{\sum_{i} f_{i} \sum_{i} f_{i} r_{u,i} r_{v,i} - (\sum_{i} f_{i} r_{u,i})(\sum_{i} f_{i} r_{vi})}{\sqrt{UV}}$$

其次,由于相似度的衡量方法,在实际使用时,很多本质上很相似的对象,它们的 vector distance 在 Euclidean 空间下下可能并不理想 [3],这就导致了预测时的偏差。

论文 [3] 中提出的一种改进是,以线性回归模型的结果,取代简单地使用相似对象的 raw rating 进行预测。

$$\hat{r}_N' = \alpha \hat{r}_i + \beta + \epsilon$$

通过回归的方式,确定公式中的 α 和 β 。

4.6 模型融合与融合参数

此时,协同过滤算法的各种优化价值似乎已经被压榨完。突然灵光一现,想到 NetflixPrize 最后的获奖算法,多层次多尺度地融合了三百多个模型 [2]。所以,是否可以借鉴这样的思路,尝试一下模型融合在这种情况下,会产生怎样的效果?

在以上的模型中,在不考虑归一化相似度矩阵的情况下,具有本质区别的方法有两种,item-item 协同过滤和 user-user 协同过滤,虽然来源于同一数据,但它们是两个不同的维度。于是,尝试将这两者相融合。其中,topK 算法的 K 值分别选取 20 和 30,也即其各自的最优值。

对一个测试输入,同时采用两种方法进行预测,并求其均值,也即:

$$\hat{r}_{xi} = \frac{\hat{r}_{1xi} + \hat{r}_{2xi}}{2}$$

果真得到了更好的效果, item-item 协同过滤的 RMSE 为 0.9213, user-

user 协同过滤的 RMSE 为 **0.9445**, 而融合以后, RMSE 降低到了 **0.9176**. 进一步, 由于 item-item 协同过滤的效果更好, 所以应该在模型融合时对其采用更大的权重, 于是, 对融合预测函数作适当修改:

$$\hat{r}_{xi} = 0.6 * \hat{r}_{1xi} + 0.4 * \hat{r}_{2xi}$$

得到了更好的 RMSE 值,为 **0.9159**. 可以看出,模型融合的意义很大。 类似在 topK 方法中的思路,可以将公式改进为线性融合函数,将融合 程度作为预测函数的一个参数:

$$\hat{r}_{xi} = \alpha * \hat{r}_{1xi} + (1 - \alpha) * \hat{r}_{2xi}$$

其中, $\alpha \in [0,1]$,在两个端点处即分别退化为两个模型,而系数 α 则表示了融合程度,也即在融合模型中 item-item 协同过滤的权重。

通过调参,调整 α 的值,可以获得最佳的融合效果。 在不同的 α 值下测量 RMSE,得到表 2.

α	训练集 RMSE	测试集 RMSE
0.00	0.8225	0.9445
0.10	0.8108	0.9368
0.30	0.7907	0.9248
0.50	0.7754	0.9176
0.60	0.7696	0.9159
0.65	0.7672	0.9155
0.70	0.7651	0.9154
0.75	0.7634	0.9156
0.80	0.7620	0.9161
0.90	0.7601	0.9181
1.00	0.7596	0.9213

表 2: 不同融合参数 α 下的 RMSE

同样, 画出不同 α 下, 融合模型的 RMSE 变化趋势 (图 3)。

最终, 选取 $\alpha = 0.70$, 得到了 **0.9154** 的 RMSE。

此外,还可以考虑一些非线性的模型融合方式。

4.7 其它算法

协同过滤被认为是一种基于内存 (Memory-based) 的推荐算法。它的推荐速度非常快,但由于产生推荐比较耗时,在实时推荐方面还不够有力。

5 模型结果 12

图 3: 不同 α 值下的 RMSE 变化图

在论文 [1] 中,作者将还将协同过滤看做是一种概率分布,在这里意义下,一些概率模型就可以发挥其作用,包括 Bayesian Classifier, Bayesian Network 等。

而在 2015 年最新的 SIGKDD 中,论文 [4] 将 Deep Learning 用在协同过滤中,将协同过滤同如今正热的深度神经网络相结合,给推荐系统带来了一些新鲜的活力。

5 模型结果

在模型详解一节中,详述了各个算法的定义、公式、相关分析,以及各种 trick。

在同一套数据下,利用交叉验证的方式测量不同方法的性能,其最终的 RMSE 结果为表格 3,需要注意的是,这其中很多方法都是建立在前者的方 法上,叠加了前面的方法,一点点尝试改进。

最终,在尝试了各种优化和改进之后,融合了两类协同过滤算法的融合模型取得了 **0.9154** 的 RMSE 值。

Method	RMSE
baseline	0.9694
itemCF	1.0149
userCF	1.0174
itemCF+baseline	0.9362
userCF+baseline	0.9548
itemCF+bias	0.9360
topkCF(item, k=20)	0.9213
topkCF(user, k=30)	0.9445
normCF(item, k=20)	0.9253
normCF(user, k=30)	0.9550
blendCF(α =0.70)	0.9154

表 3: 不同方法的 RMSE 比较

6 总结

在这个项目中,我以课堂内容为基准,参考一些经典的论文,尝试自己 实现协同过滤的算法,获得更好的推荐效果。通过这一过程,我加深了对推 荐系统,尤其是协同过滤方法的理解。

统计量是非常简单却又及其重要的一个指标,如果不基于 baseline,算 法好像失去了一个有力的支点,其效果往往不尽人意。

最基本的协同过滤算法,采用相似度的衡量方式进行预测。其效果和维 度本身的差异性有关,但总是能带来较为显著的效果提升。其需要比较大的 计算量,适合于离线推荐。

topK 算法则更进一步,对协同过滤进行了预测效果和预测速度上的双重改进,大大提升了模型效果。其中,关于 K 值的选择,也非常值得探讨。在现实场景中,这个参数往往要进行相应的调整。

原本以为归一化的相似度矩阵,会对模型带来深刻改进。但实践是检验 真理的唯一标准,在实践中发现,其 RMSE 反而提高了不少。对于这一困 惑的问题,同老师进行了讨论,也查阅了相关的经典论文,发现这是一个普 遍存在的问题,针对这个问题,也有不少解决的思路和方法。

最后,模型的线性融合,是一个非常易于实现,且能够提升预测效果的方法。模型的融合在各种现实应用场景中也非常地普遍,其融合的各种技巧, 值得继续探究。

此外,算法中,关于 divide by zero 等处理细节,以及 Vectorization等 技巧,可以达到避免潜在风险、提升算法效率的作用,同样不能过于忽视。

单纯的协同过滤算法,并没有充分利用数据集。在数据集上还可以做更

多的工作,例如利用电影的标签,进行基于内容的推荐,利用电影的发布时间,人们更倾向于观看更新的影片。聚类、在现实应用场景中,常常将各类推荐算法相互结合,可能在离线推荐、在线推荐上采用不同的方法,可能对新用户和老用户采用不同的推荐方法。

14

总之,通过这个动手项目,第一次采用了 Numpy, Pandas 等科学计算库,锻炼了手写算法的能力,阅读了相关的经典论文,加深了对协同过滤和推荐系统的理解,从中学到了很多。

参考文献

- [1] John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In *Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence*, pages 43–52. Morgan Kaufmann Publishers Inc., 1998.
- [2] Yehuda Koren. The bellkor solution to the netflix grand prize. *Netflix* prize documentation, 81:1–10, 2009.
- [3] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Itembased collaborative filtering recommendation algorithms. In *Proceedings* of the 10th international conference on World Wide Web, pages 285–295. ACM, 2001.
- [4] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender systems. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1235–1244. ACM, 2015.