Measure Theory

R.Rusev

1 σ -Algebras

Definition 1.1. A σ -algebra \mathcal{A} on a set X is a family of subsets of X such that:

•
$$X \in \mathcal{A}$$
 (Σ_1)

• If
$$A \in \mathcal{A}$$
, then $A^c \in \mathcal{A}$ (Σ_2)

• If
$$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$$
, then $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$ (Σ_3)

A set $A \in \mathcal{A}$ is said to be measurable or \mathcal{A} -measurable.

Example 1.1.

- 1. $\mathcal{P}(X)$ is a σ -algebra (the maximal σ -algebra on X).
- 2. $\{\emptyset, X\}$ is a σ -algebra (the minimal σ -algebra on X).
- 3. $A := \{A \subseteq X : \#A < \infty \text{ or } \#A^c < \infty\} \text{ is a } \sigma\text{-algebra}.$
- 4. (Trace σ -algebra) Let $E \subseteq X$ be any set and let \mathcal{A} be a σ -algebra on X. Then

$$\mathcal{A}_E := \{ E \cap A : A \in \mathcal{A} \}$$

is a σ -algebra on E.

Proof. We verify the three defining properties of a σ -algebra on E:

- Since $X \in \mathcal{A}$, we have $E = E \cap X \in \mathcal{A}_E$.
- If $E \cap A \in \mathcal{A}_E$, then $E \setminus (E \cap A) = E \cap A^c$, and since $A^c \in \mathcal{A}$, it follows that $E \cap A^c \in \mathcal{A}_E$.
- If $(E \cap A_n)_{n \in \mathbb{N}} \subseteq \mathcal{A}_E$, then $\bigcup_n (E \cap A_n) = E \cap \bigcup_n A_n$, and since $\bigcup_n A_n \in \mathcal{A}$, we conclude that $\bigcup_n (E \cap A_n) \in \mathcal{A}_E$.

Hence, \mathcal{A}_E is a σ -algebra on E.

5. (Pre-image σ -algebra) Let $f: X \to X'$ be a function and let \mathcal{A}' be a σ -algebra on X'. Then

$$\mathcal{A} := \{ f^{-1}(A') : A' \in \mathcal{A}' \}$$

is a σ -algebra on X.

Theorem 1.1. Let X be a set and let $\{A_i : i \in I\}$ be a family of σ -algebras on X. Define

$$\mathcal{A} := \bigcap_{i \in I} \mathcal{A}_i = \{ A \subseteq X : A \in \mathcal{A}_i \text{ for all } i \in I \}.$$

Then, \mathcal{A} is a σ -algebra on X.

Proof. We verify the σ -algebra properties for \mathcal{A} :

- Since $X \in \mathcal{A}_i$ for all $i \in I$, we have $X \in \mathcal{A}$.
- If $A \in \mathcal{A}$, then $A \in \mathcal{A}_i$ for all $i \in I$, so $A^c = X \setminus A \in \mathcal{A}_i$ for all $i \in I$, hence $A^c \in \mathcal{A}$.
- If $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$, then $A_n\in\mathcal{A}_i$ for all n and i, so $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}_i$ for all $i\in I$, and thus $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$.

Therefore, \mathcal{A} is a σ -algebra on X.

Definition 1.2. Let X be a set and let $\mathcal{E} \subseteq \mathcal{P}(X)$ be a collection of subsets of X. The σ -algebra generated by \mathcal{E} , denoted by $\sigma(\mathcal{E})$, is the smallest σ -algebra on X containing all sets in \mathcal{E} . That is,

$$\sigma(\mathcal{E}) := \bigcap \{ \mathcal{A} \subseteq \mathcal{P}(X) : \mathcal{A} \text{ is a } \sigma\text{-algebra on } X, \ \mathcal{E} \subseteq \mathcal{A} \}.$$

Remark 1.1 (Generated σ -algebras).

- If \mathcal{A} is a σ -algebra, then $\sigma(\mathcal{A}) = \mathcal{A}$.
- For $A \subseteq X$, we have $\sigma(\{A\}) = \{\emptyset, A, A^c, X\}$.
- If $\mathcal{F} \subset \mathcal{G} \subset \mathcal{A}$, then $\sigma(\mathcal{F}) \subset \sigma(\mathcal{G}) \subset \sigma(\mathcal{A})$.

Definition 1.3 (Topological Space). A topological space is a pair (X, \mathcal{T}) where X is a set and $\mathcal{T} \subseteq \mathcal{P}(X)$ is a collection of subsets of X, called *open sets*, satisfying the following properties:

- $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- If $\{U_{\alpha} \in \mathcal{T} : \alpha \in I\}$ is an arbitrary collection of open sets, then the union $\bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}$,
- If $\{U_i \in \mathcal{T} : i = 1, ..., n\}$ is a finite collection of open sets, then the intersection $\bigcap_{i=1}^n U_i \in \mathcal{T}$.

The collection \mathcal{T} is called a *topology* on X. The complement of an open set is called a *closed set*.

Remark 1.2 (Standard Topology on \mathbb{R}^n). A subset $U \subseteq \mathbb{R}^n$ is called *open* if for every point $x \in U$, there exists an $\varepsilon > 0$ such that the open ball

$$B_{\varepsilon}(x) := \{ y \in \mathbb{R}^n : ||x - y|| < \varepsilon \},$$

where $\|\cdot\|$ denotes the Euclidean norm, is contained in U; that is, $B_{\varepsilon}(x) \subseteq U$.

The collection of all such open sets is denoted by $\mathcal{O} = \mathcal{O}_{\mathbb{R}^n}$ and forms the *standard topology* on \mathbb{R}^n .

Definition 1.4 (Borel σ -algebra). The σ -algebra $\sigma(\mathcal{O})$ generated by the collection of open sets $\mathcal{O} = \mathcal{O}_{\mathbb{R}^n}$ of \mathbb{R}^n is called the *Borel* σ -algebra on \mathbb{R}^n .

Its elements are called *Borel sets* or *Borel measurable sets*. We denote the Borel σ -algebra by $\mathcal{B}(\mathbb{R}^n)$.

Definition 1.5. Let X be a topological space and let $A \subseteq X$. A collection $\{U_{\alpha}\}_{{\alpha}\in A} \subseteq \mathcal{T}$ of open sets is called an *open cover* of A if

$$A\subseteq \bigcup_{\alpha\in A}U_{\alpha}.$$

A subcover is a subcollection that still covers A. The set A is called *compact* if every open cover of A admits a finite subcover.

Remark 1.3. In \mathbb{R}^n , a set is compact if and only if it is closed and bounded (Heine–Borel Theorem).

Theorem 1.2 (Borel σ -algebra from Different Generators). Let $\mathcal{O}, \mathcal{C}, \mathcal{K} \subseteq \mathcal{P}(\mathbb{R}^n)$ denote the collections of open, closed, and compact subsets of \mathbb{R}^n , respectively. Then,

$$\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{O}) = \sigma(\mathcal{C}) = \sigma(\mathcal{K}).$$

Proof. Since compact sets are closed, we have $\mathcal{K} \subseteq \mathcal{C}$, and by Remark 1.1, $\sigma(\mathcal{K}) \subseteq \sigma(\mathcal{C})$. Conversely, for any $C \in \mathcal{C}$, define $C_k := C \cap B_k(0)$, where $B_k(0)$ is the closed ball of radius k centered at the origin. Each C_k is closed and bounded, hence compact, so $C_k \in \mathcal{K}$. Since $C = \bigcup_{k \in \mathbb{N}} C_k$, it follows that $C \in \sigma(\mathcal{K})$, and thus $\sigma(\mathcal{C}) \subseteq \sigma(\mathcal{K})$.

Next, since $\mathcal{C} = \mathcal{O}^c := \{U^c : U \in \mathcal{O}\}$, and complements of sets in a σ -algebra are again in the σ -algebra, it follows that $\mathcal{C} \subseteq \sigma(\mathcal{O})$, hence $\sigma(\mathcal{C}) \subseteq \sigma(\mathcal{O})$. The reverse inclusion follows similarly from $\mathcal{O} = \mathcal{C}^c$. Therefore, we have:

$$\sigma(\mathcal{K}) = \sigma(\mathcal{C}) = \sigma(\mathcal{O}).$$

Generating Sets of the Borel Algebra. The Borel σ -algebra $\mathcal{B}(\mathbb{R}^n)$ can be generated by various systems of sets. Of particular importance are:

• The family of open rectangles:

$$\mathcal{J}_{o,n} := \{(a_1, b_1) \times \cdots \times (a_n, b_n) : a_i, b_i \in \mathbb{R}\},\,$$

• The family of half-open rectangles:

$$\mathcal{J}_n := \{ [a_1, b_1) \times \cdots \times [a_n, b_n) : a_i, b_i \in \mathbb{R} \}.$$

We denote by $\mathcal{J}_n^{\mathrm{rat}}$, $\mathcal{J}_{o,n}^{\mathrm{rat}}$ the subsets with rational endpoints. These sets represent intervals in \mathbb{R} , rectangles in \mathbb{R}^2 , cuboids in \mathbb{R}^3 , and hypercubes in higher dimensions.

Theorem 1.3. We have the following equality of Borel σ -algebras on \mathbb{R}^n :

$$\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{J}_n^{\mathrm{rat}}) = \sigma(\mathcal{J}_{o,n}^{\mathrm{rat}}) = \sigma(\mathcal{J}_n) = \sigma(\mathcal{J}_{o,n}),$$

Remark 1.4. Let $D \subseteq \mathbb{R}$ be a dense subset, for example $D = \mathbb{Q}$ or $D = \mathbb{R}$. Then the Borel sets on \mathbb{R} can also be generated by any of the following families of intervals:

$$\{(-\infty, a) : a \in D\}, \{(-\infty, a] : a \in D\}, \{(a, \infty) : a \in D\}, \{[a, \infty) : a \in D\}.$$

2 Measure Spaces

Definition 2.1. A (positive) measure μ on X is a map $\mu : \mathcal{A} \to [0, \infty]$, where \mathcal{A} is a σ -algebra on X, satisfying:

$$\mu(\emptyset) = 0, \tag{M1}$$

and for any pairwise disjoint sequence $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$,

$$\mu\left(\bigsqcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu(A_n). \tag{M2}$$

Property (M2) is also called *countable additivity*.

If μ satisfies (M1), (M2), but \mathcal{A} is not a σ -algebra, then μ is called a *pre-measure*.

Remark 2.1. (M2) requires implicitly that $\bigsqcup_n A_n$ is again in \mathcal{A} this is clearly the case for σ -algebras, but needs special attention when dealing with pre-measures.

Definition 2.2 (Monotone sequences of sets). Let $(A_n)_{n\in\mathbb{N}}$ and $(B_n)_{n\in\mathbb{N}}$ be sequences of subsets of X.

We say (A_n) is increasing if

$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$$

and write $A_n \uparrow A$ where

$$A := \bigcup_{n \in \mathbb{N}} A_n$$

Similarly, (B_n) is decreasing if

$$B_1 \supset B_2 \supset B_3 \supset \cdots$$

and write $B_n \downarrow B$ where

$$B:=\bigcap_{n\in\mathbb{N}}B_n$$

Definition 2.3. Let X be a set and \mathcal{A} a σ -algebra on X. The pair (X, \mathcal{A}) is called a measurable space. If μ is a measure on (X, \mathcal{A}) , then (X, \mathcal{A}, μ) is called a measure space.

A measure μ is called:

- finite if $\mu(X) < \infty$,
- a probability measure if $\mu(X) = 1$.

Accordingly, we speak of a finite measure space and a probability space.

Definition 2.4. A measure μ on a measurable space (X, \mathcal{A}) is called σ -finite if there exists a sequence $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$ such that:

$$A_n \uparrow X$$
 and $\mu(A_n) < \infty$ for all $n \in \mathbb{N}$.

In this case, the measure space (X, \mathcal{A}, μ) is called σ -finite.

Lemma 2.1 (Basic properties of measures). Let (X, \mathcal{A}, μ) be a measure space. Then:

- (i) If $A_0, \ldots, A_k \in \mathcal{A}$ are pairwise disjoint, then $\mu(\bigsqcup_{i=1}^k A_i) = \sum_{i=1}^k \mu(A_i)$.
- (ii) If $A, B \in \mathcal{A}$ with $A \subseteq B$, then $\mu(A) \le \mu(B)$.
- (iii) If $A, B \in \mathcal{A}$, $A \subseteq B$, and $\mu(A) < \infty$, then $\mu(B \setminus A) = \mu(B) \mu(A)$.

Proof. (i) Extend (A_n) by $A_n = \emptyset$ for n > k. Then by countable additivity,

$$\mu\Big(\bigsqcup_{i=1}^k A_i\Big) = \mu\Big(\bigsqcup_{i=1}^\infty A_i\Big) = \sum_{i=1}^\infty \mu(A_i) = \sum_{i=1}^k \mu(A_i).$$

(ii) Since $B = A \sqcup (B \setminus A)$ we have

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A).$$

(iii) Rearranging gives

$$\mu(B \setminus A) = \mu(B) - \mu(A),$$

which is well-defined if $\mu(A) < \infty$.

Lemma 2.2 (Main properties of measures). Let (X, \mathcal{A}, μ) be a measure space. Then:

(i) Countable subadditivity: For any countable family $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}$,

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)\leq\sum_{i\in\mathbb{N}}\mu(A_i).$$

(ii) Continuity from below (increasing sequence): If $A_1 \subseteq A_2 \subseteq \cdots$ (i.e., $A_n \uparrow A$), then

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}\mu(A_n).$$

(iii) Continuity from above (decreasing sequence): If $B_1 \supseteq B_2 \supseteq \cdots$ (i.e., $B_n \downarrow B$), then

$$\mu\left(\bigcap_{n\in\mathbb{N}}B_n\right)=\lim_{n\to\infty}\mu(B_n).$$

Proof. (i) For countable subadditivity, set $B_k := A_k \setminus \bigcup_{i=1}^{k-1} A_i$, so that (B_k) are disjoint with $B_k \subseteq A_k$. Then,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \mu(B_i) \le \sum_{i=1}^{\infty} \mu(A_i).$$

(ii) Let $A_n \uparrow A$, i.e., $A_n \subseteq A_{n+1}$ and $A = \bigcup_{n \in \mathbb{N}} A_n$. Define $B_n := A_n \setminus A_{n-1}$ with $A_0 := \emptyset$. Then (B_n) is disjoint and $\coprod_n B_n = A$. By countable additivity,

$$\mu(A) = \sum_{n=1}^{\infty} \mu(B_n) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k) = \lim_{n \to \infty} \mu(A_n)$$

(iii) Assume $B_n \downarrow B$, i.e., $B_n \supseteq B_{n+1}$ and $B = \bigcap_n B_n$, with $\mu(B_1) < \infty$. Set $A_n := B_1 \setminus B_n$, so $A_n \uparrow A := B_1 \setminus B$. Then

$$\mu(B) = \mu(B_1) - \mu(A) = \mu(B_1) - \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \mu(B_n)$$

Remark 2.2. With appropriate modifications, these properties also hold for pre-measures, i.e., when \mathcal{A} is not necessarily a σ -algebra.

Example 2.1 (Dirac measure). Let (X, A) be a measurable space and let $x \in X$. Define $\delta_x : A \to \{0, 1\}$ by

$$\delta_x(A) := \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

Then δ_x is a measure on (X, \mathcal{A}) , called the *Dirac measure* (or unit mass) at the point x.

Example 2.2 (Counting measure). Let (X, \mathcal{A}) be a measurable space. Define $\#A : \mathcal{A} \to [0, \infty]$ by

$$\#A := \begin{cases} \text{number of elements in } A & \text{if } A \text{ is finite,} \\ \infty & \text{if } A \text{ is infinite.} \end{cases}$$

Then # is a measure on (X, A), called the *counting measure*.

Example 2.3 (Discrete probability measure). Let $\Omega = \{\omega_1, \omega_2, \dots\}$ be a countable set, and let $(p_n)_{n \in \mathbb{N}} \subseteq [0, 1]$ be a sequence such that $\sum_{n \in \mathbb{N}} p_n = 1$. Define the set function $P : \mathcal{P}(\Omega) \to [0, 1]$ by

$$P(A) := \sum_{\{n \in \mathbb{N}: \omega_n \in A\}} p_n = \sum_{n \in \mathbb{N}} p_n \, \delta_{\omega_n}(A), \quad A \subseteq \Omega,$$

where δ_{ω_n} denotes the Dirac measure at ω_n . Then P is a probability measure on $(\Omega, \mathcal{P}(\Omega))$, and the triplet $(\Omega, \mathcal{P}(\Omega), P)$ is called a *discrete probability space*.

Example 2.4 (Linear combination of measures). Let (X, \mathcal{A}) be a measurable space, and let $(\mu_n)_{n\in\mathbb{N}}$ be a sequence of measures on (X, \mathcal{A}) . Let $(x_n)_{n\in\mathbb{N}}\subseteq [0, \infty]$. Then the set function

$$\mu := \sum_{n \in \mathbb{N}} x_n \mu_n$$

defined by

$$\mu(A) := \sum_{n \in \mathbb{N}} x_n \mu_n(A), \text{ for all } A \in \mathcal{A},$$

is a measure on (X, \mathcal{A})

Proof. We verify the axioms of a measure:

(M1) (Null empty set): For all $n \in \mathbb{N}$, $\mu_n(\emptyset) = 0$, so

$$\mu(\emptyset) = \sum_{n \in \mathbb{N}} x_n \mu_n(\emptyset) = \sum_{n \in \mathbb{N}} x_n \cdot 0 = 0.$$

(M2) (Countable additivity): Let $(A_k)_{k\in\mathbb{N}}\subseteq\mathcal{A}$ be pairwise disjoint. Since each μ_n is a measure, we have

$$\mu_n\left(\bigsqcup_{k\in\mathbb{N}}A_k\right) = \sum_{k\in\mathbb{N}}\mu_n(A_k), \text{ for all } n\in\mathbb{N}.$$

Then,

$$\mu\left(\bigsqcup_{k\in\mathbb{N}}A_k\right) = \sum_{n\in\mathbb{N}}x_n\mu_n\left(\bigsqcup_{k\in\mathbb{N}}A_k\right) = \sum_{n\in\mathbb{N}}x_n\sum_{k\in\mathbb{N}}\mu_n(A_k).$$

Since all terms are non-negative, we may exchange the order of summation:

$$\sum_{n \in \mathbb{N}} x_n \sum_{k \in \mathbb{N}} \mu_n(A_k) = \sum_{k \in \mathbb{N}} \sum_{n \in \mathbb{N}} x_n \mu_n(A_k) = \sum_{k \in \mathbb{N}} \mu(A_k).$$

Therefore, μ is countably additive.

Example 2.5 (Restriction of a measure). Let (X, \mathcal{A}, μ) be a measure space and let $A \in \mathcal{A}$. Define the set function $\mu_A : \mathcal{A} \to [0, \infty]$ by

$$\mu_A(B) := \mu(A \cap B)$$
, for all $B \in \mathcal{A}$.

Then μ_A is a measure on (X, \mathcal{A}) , called the restriction of μ to A.

Proof. We verify the two defining properties of a measure:

(M1):
$$\mu_A(\emptyset) = \mu(A \cap \emptyset) = \mu(\emptyset) = 0.$$

(M2): Let $(B_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$ be pairwise disjoint. Then $(A\cap B_n)_{n\in\mathbb{N}}$ are also pairwise disjoint, and

$$\mu_A\left(\bigsqcup_{n\in\mathbb{N}}B_n\right) = \mu\left(A\cap\bigsqcup_{n\in\mathbb{N}}B_n\right) = \mu\left(\bigsqcup_{n\in\mathbb{N}}(A\cap B_n)\right) = \sum_{n\in\mathbb{N}}\mu(A\cap B_n) = \sum_{n\in\mathbb{N}}\mu_A(B_n).$$

Hence, μ_A is a measure.

Definition 2.5 (Lebesgue measure on \mathbb{R}^n). Define the set function λ_n on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ by

$$\lambda_n\left(\llbracket a,b \rrbracket\right) := \prod_{i=1}^n (b_i - a_i),$$

for all $[a, b] := [a_1, b_1) \times \cdots \times [a_n, b_n) \in \mathcal{J}_n$. This is called the *n*-dimensional Lebesgue measure.

Remark 2.3. The set function λ_n is defined only on the family \mathcal{J}_n of half-open rectangles and hence is not yet a measure. Extending λ_n to a measure on $\mathcal{B}(\mathbb{R}^n)$ requires the Carathéodory extension theorem, which will be developed later.

Lemma 2.3. Let (X, \mathcal{A}) be a measure space, and let $\mu : \mathcal{A} \to [0, \infty]$ be an additive set function with $\mu(\emptyset) = 0$. Then μ is a measure if and only if it is **continuous from below**, i.e., for every increasing sequence $(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{A}$ with $A_n \uparrow A$, we have

$$\mu(A) = \lim_{n \to \infty} \mu(A_n) = \sup_{n \in \mathbb{N}} \mu(A_n).$$

Proof. Any measure μ is continuous from below.

Conversely, suppose μ is finitely additive, $\mu(\emptyset) = 0$, and μ is continuous from below. Let $(B_n)_{n \in \mathbb{N}} \subseteq \mathcal{A}$ be disjoint, and define $A_n := \bigcup_{i=1}^n B_i$. Then (A_n) is increasing with $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$. By finite additivity,

$$\mu(A_n) = \sum_{i=1}^n \mu(B_i),$$

and by continuity from below,

$$\mu\left(\bigsqcup_{n=1}^{\infty} B_n\right) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu(A_n) = \sum_{n=1}^{\infty} \mu(B_n).$$

Hence μ is countably additive, i.e., a measure.

Lemma 2.4. Let (X, \mathcal{A}) be a measurable space and $\mu : \mathcal{A} \to [0, \infty)$ an additive set function with $\mu(\emptyset) = 0$ and $\mu(A) < \infty$ for all $A \in \mathcal{A}$. Then μ is a measure if and only if it satisfies one of the following continuity properties:

- (i) μ is continuous from below;
- (ii) μ is continuous from above;
- (iii) μ is continuous at \emptyset , i.e., for every decreasing sequence $(B_n)_{n\in\mathbb{N}}$ in \mathcal{A} with $\bigcap_{n=1}^{\infty} B_n = \emptyset$, we have

$$\lim_{n\to\infty}\mu(B_n)=0.$$

Proof. Clearly, every measure satisfies properties (i)–(iii), so we only need to show that (iii) implies countable additivity.

Assume μ is additive, $\mu(\emptyset) = 0$, and satisfies continuity at \emptyset . Let $(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{A}$ be pairwise disjoint and define $A := \bigsqcup_{n \in \mathbb{N}} A_n$. For each n, let

$$B_n := A \setminus \bigcup_{i=1}^n A_i.$$

Then (B_n) is a decreasing sequence in \mathcal{A} with $\bigcap_{n\in\mathbb{N}} B_n = \emptyset$, so by continuity at \emptyset , we have $\mu(B_n) \to 0$.

Using additivity, we compute

$$\mu(A) = \mu\left(B_n \cup \bigcup_{i=1}^n A_i\right) = \mu(B_n) + \sum_{i=1}^n \mu(A_i).$$

Taking the limit as $n \to \infty$, we get

$$\mu(A) = \lim_{n \to \infty} \left(\mu(B_n) + \sum_{i=1}^n \mu(A_i) \right) = \sum_{i=1}^\infty \mu(A_i).$$

Thus, μ is countably additive, hence a measure.

3 Uniqueness of Measures

Definition 3.1. A *Dynkin system* (or λ -system) $\mathcal{D} \subseteq \mathcal{P}(X)$ is a collection of subsets of X such that:

•
$$X \in \mathcal{D}$$
 (D1)

• If
$$D \in \mathcal{D}$$
, then $D^c \in \mathcal{D}$ (D2)

• If
$$(D_n)_{n\in\mathbb{N}}\subseteq\mathcal{D}$$
 are pairwise disjoint, then $\bigsqcup_{n\in\mathbb{N}}D_n\in\mathcal{D}$ (D3)

Remark 3.1. As with σ -algebras one easily checks that $\emptyset \in \mathcal{D}$ and that finite disjoint unions are in \mathcal{D} : if $D, E \in \mathcal{D}$ with $D \cap E = \emptyset$, then $D \sqcup E \in \mathcal{D}$. Every σ -algebra is a Dynkin system, but the converse is not true in general.

Lemma 3.1. Let $\mathcal{E} \subseteq \mathcal{P}(X)$. Then there exists a smallest Dynkin system $\mathcal{D}(\mathcal{E})$ containing \mathcal{E} , called the *Dynkin system generated by* \mathcal{E} . Moreover,

$$\mathcal{E} \subseteq \mathcal{D}(\mathcal{E}) \subseteq \sigma(\mathcal{E}),$$

where $\sigma(\mathcal{E})$ denotes the σ -algebra generated by \mathcal{E} .

Proof. The proof is analogous to that of Theorem 1.1 for σ -algebras. Let \mathcal{F} be the family of all Dynkin systems on X that contain \mathcal{E} . Then \mathcal{F} is nonempty, since $\mathcal{P}(X)$ is a Dynkin system containing \mathcal{E} . Define

$$\mathcal{D}(\mathcal{E}) := \bigcap_{\mathcal{D} \in \mathcal{F}} \mathcal{D}.$$

Then $\mathcal{D}(\mathcal{E})$ is a Dynkin system, being the intersection of Dynkin systems (which are closed under complements, disjoint unions, and contain X). Moreover, it is the smallest such system containing \mathcal{E} by construction. Since every σ -algebra is in particular a Dynkin system, we also have

$$\mathcal{D}(\mathcal{E}) \subseteq \sigma(\mathcal{E}).$$

Lemma 3.2. A Dynkin system \mathcal{D} is a σ -algebra if and only if it is closed under finite intersections; that is,

$$D, E \in \mathcal{D} \quad \Rightarrow \quad D \cap E \in \mathcal{D}.$$

Proof. The "only if" direction follows immediately from Remark 3.1 and the fact that every σ -algebra is closed under finite intersections.

For the converse, assume \mathcal{D} is a Dynkin system closed under finite intersections. Let $(D_n)_{n\in\mathbb{N}}\subseteq\mathcal{D}$, and define

$$E_1 := D_1 \in \mathcal{D}, \quad E_{n+1} := D_{n+1} \setminus \bigcup_{k=1}^n D_k = D_{n+1} \cap \bigcap_{k=1}^n D_k^c.$$

Each $E_n \in \mathcal{D}$ by the Dynkin properties and the assumed stability under finite intersections. The sets (E_n) are disjoint and satisfy

$$\bigcup_{n=1}^{\infty} D_n = \bigsqcup_{n=1}^{\infty} E_n \in \mathcal{D},$$

so \mathcal{D} is closed under countable unions. Hence, \mathcal{D} is a σ -algebra.

While Lemma 3.2 characterizes when a Dynkin system is a σ -algebra, it is not directly applicable when the Dynkin system \mathcal{D} is defined via a generator $\mathcal{E} \subseteq \mathcal{P}(X)$, as is often the case in practice. The following theorem overcomes this limitation and plays a central role in many applications.

Theorem 3.3 (Dynkin's π - λ Theorem). Let $\mathcal{E} \subseteq \mathcal{P}(X)$ be a collection of sets that is closed under finite intersections. Then,

$$\mathcal{D}(\mathcal{E}) = \sigma(\mathcal{E}).$$

Proof. By Lemma 3.1, we have $\mathcal{D}(\mathcal{E}) \subseteq \sigma(\mathcal{E})$. To show equality, it suffices to prove that $\mathcal{D}(\mathcal{E})$ is a σ -algebra. Since it contains \mathcal{E} , it would then contain $\sigma(\mathcal{E})$ by minimality.

By Lemma 3.2, it is enough to show that $\mathcal{D}(\mathcal{E})$ is closed under finite intersections. Fix $D \in \mathcal{D}(\mathcal{E})$, and define

$$\mathcal{D}_D := \{ A \subseteq X : A \cap D \in \mathcal{D}(\mathcal{E}) \}.$$

We claim that \mathcal{D}_D is a Dynkin system:

(D1): Since $D = X \cap D \in \mathcal{D}(\mathcal{E})$, we have $X \in \mathcal{D}_D$.

(D2): If $A \in \mathcal{D}_D$, then

$$A^c \cap D = ((A \cap D) \sqcup D^c)^c \cap D \in \mathcal{D}(\mathcal{E}),$$

using that $A \cap D \in \mathcal{D}(\mathcal{E})$, $D^c \in \mathcal{D}(\mathcal{E})$, and that Dynkin systems are closed under disjoint unions and complements.

(D3): Let $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{D}_D$ be disjoint. Then the sets $A_n\cap D\in\mathcal{D}(\mathcal{E})$ are disjoint, and

$$\left(\bigsqcup_{n=1}^{\infty} A_n\right) \cap D = \bigsqcup_{n=1}^{\infty} (A_n \cap D) \in \mathcal{D}(\mathcal{E}).$$

Thus, \mathcal{D}_D is a Dynkin system. Since $\mathcal{E} \subseteq \mathcal{D}_G$ for all $G \in \mathcal{E}$ by the assumed \cap -stability of \mathcal{E} , and each \mathcal{D}_G is a Dynkin system, it follows that

$$\mathcal{D}(\mathcal{E}) \subseteq \mathcal{D}_G$$
 for all $G \in \mathcal{E}$.

Hence, for all $D \in \mathcal{D}(\mathcal{E})$ and $G \in \mathcal{E}$, we have $D \cap G \in \mathcal{D}(\mathcal{E})$, i.e., $\mathcal{D}(\mathcal{E})$ is closed under finite intersections.

By Lemma 3.2, we conclude that $\mathcal{D}(\mathcal{E})$ is a σ -algebra. Since $\mathcal{D}(\mathcal{E}) \subseteq \sigma(\mathcal{E})$ and both are σ -algebras containing \mathcal{E} , we have

$$\mathcal{D}(\mathcal{E}) = \sigma(\mathcal{E}).$$

Theorem 3.4 (Uniqueness of Measures). Let (X, \mathcal{A}) be a measurable space with $\mathcal{A} = \sigma(\mathcal{E})$, where $\mathcal{E} \subseteq \mathcal{P}(X)$ satisfies:

- \mathcal{E} is closed under finite intersections;
- there exists an increasing sequence $(E_n)_{n\in\mathbb{N}}\subseteq\mathcal{E}$ with $E_n\uparrow X$.

Suppose μ and ν are measures on \mathcal{A} such that $\mu(E) = \nu(E)$ for all $E \in \mathcal{E}$, and $\mu(E_n) = \nu(E_n) < \infty$ for all $n \in \mathbb{N}$. Then $\mu = \nu$ on \mathcal{A} ; that is,

$$\mu(A) = \nu(A)$$
 for all $A \in \mathcal{A}$.

Proof. Fix $n \in \mathbb{N}$, and define

$$\mathcal{D}_n := \{ A \in \mathcal{A} : \mu(E_n \cap A) = \nu(E_n \cap A) \}.$$

We claim that \mathcal{D}_n is a Dynkin system:

(D1): Since $E_n \in \mathcal{E} \subseteq \mathcal{A}$, and $\mu(E_n) = \nu(E_n)$, it follows that $X \in \mathcal{D}_n$.

(D2): If $A \in \mathcal{D}_n$, then

$$\mu(E_n \cap A^c) = \mu(E_n) - \mu(E_n \cap A) = \nu(E_n) - \nu(E_n \cap A) = \nu(E_n \cap A^c),$$

so $A^c \in \mathcal{D}_n$.

(D3): Let $(A_k)_{k\in\mathbb{N}}\subseteq\mathcal{D}_n$ be disjoint. Then:

$$\mu\left(E_n\cap\bigsqcup_{k=1}^\infty A_k\right)=\sum_{k=1}^\infty \mu(E_n\cap A_k)=\sum_{k=1}^\infty \nu(E_n\cap A_k)=\nu\left(E_n\cap\bigsqcup_{k=1}^\infty A_k\right),$$

so $\bigsqcup_{k=1}^{\infty} A_k \in \mathcal{D}_n$.

Thus, \mathcal{D}_n is a Dynkin system. Since $\mathcal{E} \subseteq \mathcal{D}_n$ (as $\mu(E_n \cap E) = \nu(E_n \cap E)$ for all $E \in \mathcal{E}$, by the \cap -stability of \mathcal{E}), and since $\sigma(\mathcal{E}) = \mathcal{A}$, Theorem 3.3 yields

$$\mathcal{A} = \sigma(\mathcal{E}) = \mathcal{D}(\mathcal{E}) \subseteq \mathcal{D}_n.$$

Hence,

$$\mu(E_n \cap A) = \nu(E_n \cap A)$$
 for all $A \in \mathcal{A}, n \in \mathbb{N}$.

Now fix $A \in \mathcal{A}$. Since $E_n \uparrow X$, we have $E_n \cap A \uparrow A$, and by continuity from below,

$$\mu(A) = \lim_{n \to \infty} \mu(E_n \cap A) = \lim_{n \to \infty} \nu(E_n \cap A) = \nu(A).$$

Therefore, $\mu = \nu$ on \mathcal{A} .

Theorem 3.5 (Translation Invariance and Uniqueness of Lebesgue Measure). Let λ^n denote the *n*-dimensional Lebesgue measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Then:

(i) (Translation invariance) For all $x \in \mathbb{R}^n$ and all $B \in \mathcal{B}(\mathbb{R}^n)$, we have

$$\lambda^n(x+B) = \lambda^n(B),$$

where $x + B := \{x + y : y \in B\}$ is the translation of B by x.

(ii) (Uniqueness up to scalar) Let μ be a measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ that is translation invariant and finite on the unit cube:

$$\mu(x+B) = \mu(B)$$
 for all $x \in \mathbb{R}^n$, $B \in \mathcal{B}(\mathbb{R}^n)$, and $\mu([0,1)^n) < \infty$.

Then μ is a scalar multiple of Lebesgue measure:

$$\mu = \mu([0,1)^n) \cdot \lambda^n$$
.

4 Existence of Measures

Definition 4.1 (Semi-ring). Let X be a set. A family $S \subseteq \mathcal{P}(X)$ is called a *semi-ring* if:

•
$$\emptyset \in \mathcal{S}$$
 (S1)

• For all
$$S, T \in \mathcal{S}$$
, we have $S \cap T \in \mathcal{S}$ (S2)

• For all $S, T \in \mathcal{S}$, there exist disjoint sets $S_1, \ldots, S_M \in \mathcal{S}$ such that

$$S \setminus T = \bigsqcup_{i=1}^{M} S_i \tag{S3}$$

Theorem 4.1 (Carathéodory Extension Theorem). Let $S \subseteq \mathcal{P}(X)$ be a semi-ring and let $\mu: S \to [0, \infty]$ be a pre-measure, i.e.,

- $\mu(\emptyset) = 0$,
- For every sequence $(S_n)_{n\in\mathbb{N}}\subseteq\mathcal{S}$ of disjoint sets with $\bigsqcup_{n\in\mathbb{N}}S_n\in\mathcal{S}$, we have

$$\mu\left(\bigsqcup_{n\in\mathbb{N}}S_n\right)=\sum_{n\in\mathbb{N}}\mu(S_n).$$

Then μ has an extension to a measure $\bar{\mu}$ on $\sigma(S)$.

Moreover, if S contains an increasing sequence $(S_n)_{n\in\mathbb{N}}$ with $S_n \uparrow X$ and $\mu(S_n) < \infty$ for all n, then the extension is unique.

Idea of the proof. The fundamental problem is how to extend the pre-measure μ . The following auxiliary set function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ will play a central role. For any $A \subseteq X$, define the family of countable \mathcal{S} -coverings

$$C(A) := \left\{ (S_n)_{n \in \mathbb{N}} \subseteq S : A \subseteq \bigcup_{n \in \mathbb{N}} S_n \right\},$$

and the set function

$$\mu^*(A) := \inf \left\{ \sum_{n \in \mathbb{N}} \mu(S_n) : (S_n)_{n \in \mathbb{N}} \in \mathcal{C}(A) \right\}.$$

If A cannot be covered by sets from S, we define $C(A) = \emptyset$ and hence $\mu^*(A) := \inf \emptyset = \infty$. The proof proceeds in four main steps:

1. (Outer measure) Show that μ^* is an outer measure, i.e., it satisfies:

(OM1)
$$\mu^*(\emptyset) = 0,$$

(OM2) $A \subseteq B \Rightarrow \mu^*(A) \le \mu^*(B),$
(OM3) $\mu^*\left(\bigcup_{n \in \mathbb{N}} A_n\right) \le \sum_{n \in \mathbb{N}} \mu^*(A_n).$

- 2. (Extension) Show that μ^* extends μ , i.e., $\mu^*(S) = \mu(S)$ for all $S \in \mathcal{S}$.
- 3. (μ^* -measurable sets) Define the collection of μ^* -measurable sets by

$$\mathcal{A}_{\mu^*} := \{ A \subseteq X : \mu^*(Q) = \mu^*(Q \cap A) + \mu^*(Q \setminus A) \text{ for all } Q \subseteq X \}.$$

Then \mathcal{A}_{μ^*} is a σ -algebra with $\mathcal{S} \subseteq \mathcal{A}_{\mu^*}$ and $\sigma(\mathcal{S}) \subseteq \mathcal{A}_{\mu^*}$.

4. (Measure on σ -algebra) The restriction of μ^* to \mathcal{A}_{μ^*} is a measure. In particular, $\mu^*|_{\sigma(\mathcal{S})}$ is a measure extending μ .

If S contains an increasing sequence $(S_n)_{n\in\mathbb{N}}$ with $S_n \uparrow X$ and $\mu(S_n) < \infty$ for all n, then the extension is unique.

Existence of Lebesgue Measure on \mathbb{R}

Lemma 4.2. Let $\mathcal{J}_1 := \{[a,b) \subseteq \mathbb{R} : a < b\}$ be the family of half-open intervals. Define the set function

$$\lambda_1([a,b)) := b - a$$
 for all $[a,b) \in \mathcal{J}_1$.

Then $\lambda_1: \mathcal{J}_1 \to [0, \infty)$ is a pre-measure.

Proof. Let $[a,b) \in \mathcal{J}_1$, and suppose it can be written as a disjoint union of intervals:

$$[a,b) = \bigsqcup_{n \in \mathbb{N}} I_n$$
, with $I_n \in \mathcal{J}_1$ for all n .

Our goal is to show that

$$\lambda_1([a,b)) = \sum_{n=1}^{\infty} \lambda_1(I_n).$$

Fix $\varepsilon > 0$. For each $n \in \mathbb{N}$, choose a closed interval $I_n^{(\varepsilon)}$ such that

$$I_n \subseteq I_n^{(\varepsilon)}$$
 and $\lambda_1(I_n^{(\varepsilon)}) \le \lambda_1(I_n) + \frac{\varepsilon}{2^n}$.

These intervals slightly extend each I_n , allowing us to approximate the union $\bigsqcup I_n$ from above.

Since the I_n cover [a, b) disjointly, the union of the extended intervals will eventually cover most of [a, b). More precisely, for sufficiently large N, we have

$$[a, b - \varepsilon) \subseteq \bigcup_{n=1}^{N} I_n^{(\varepsilon)}.$$

Now we estimate the difference:

$$\lambda_{1}([a,b)) - \sum_{n=1}^{N} \lambda_{1}(I_{n}) = (\lambda_{1}([a,b)) - \lambda_{1}([a,b-\varepsilon)))$$

$$+ \left(\lambda_{1}([a,b-\varepsilon)) - \sum_{n=1}^{N} \lambda_{1}(I_{n}^{(\varepsilon)})\right)$$

$$+ \sum_{n=1}^{N} \left(\lambda_{1}(I_{n}^{(\varepsilon)}) - \lambda_{1}(I_{n})\right)$$

$$\leq \varepsilon + 0 + \sum_{n=1}^{N} \frac{\varepsilon}{2^{n}} \leq 2\varepsilon.$$

On the other hand, since $\bigsqcup_{n=1}^{N} I_n \subseteq [a,b)$ and the intervals I_n are disjoint, finite additivity and monotonicity of λ_1 imply:

$$\sum_{n=1}^{N} \lambda_1(I_n) = \lambda_1 \left(\bigsqcup_{n=1}^{N} I_n \right) \le \lambda_1([a,b)).$$

Therefore,

$$0 \le \lambda_1([a,b)) - \sum_{n=1}^{N} \lambda_1(I_n),$$

which justifies the lower bound in the previous inequality.

Combining both sides, we have

$$0 \le \lambda_1([a,b)) - \sum_{n=1}^N \lambda_1(I_n) \le 2\varepsilon.$$

Letting $N \to \infty$ and then $\varepsilon \to 0$, we conclude:

$$\lambda_1([a,b)) = \sum_{n=1}^{\infty} \lambda_1(I_n).$$

Thus, λ_1 is countably additive on \mathcal{J}_1 , and hence a pre-measure.

Lemma 4.3 (Lebesgue measure on \mathbb{R}). The set function λ_1 , defined on \mathcal{J}_1 by $\lambda_1([a,b)) = b - a$ for a < b, extends to a measure on $\mathcal{B}(\mathbb{R})$. This extension is the unique measure μ on $\mathcal{B}(\mathbb{R})$ such that

$$\mu([a,b)) = b - a$$
 for all $a < b$.

Proof. We have already shown that λ_1 is a pre-measure on \mathcal{J}_1 . By Theorem 1.3, $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{J}_1)$, i.e., the Borel σ -algebra is generated by \mathcal{J}_1 .

Consider the sequence of half-open intervals $[-k, k) \subseteq \mathbb{R}$ for $k \in \mathbb{N}$. This forms an increasing sequence for \mathbb{R} , and we have

$$\lambda_1([-k,k)) = 2k < \infty$$
 for all $k \in \mathbb{N}$.

Thus, all the conditions of Theorem 4.1 (Carathéodory's extension theorem) are satisfied. It follows that λ_1 extends uniquely to a measure on $\mathcal{B}(\mathbb{R})$, yielding the one-dimensional Lebesgue measure on \mathbb{R} .

Existence of Lebesgue Measure on \mathbb{R}^n

Lemma 4.4. Let \mathcal{J}_n denote the collection of half-open rectangles in \mathbb{R}^n of the form

$$[a,b] = \prod_{i=1}^{n} [a_i,b_i], \text{ where } a = (a_1,\ldots,a_n), b = (b_1,\ldots,b_n), a_i < b_i.$$

Then \mathcal{J}_n is a semi-ring.

Proof. We prove the statement by induction on n. Assume $\mathcal{J}_n \subset \mathbb{R}^n$ is a semi-ring. Define

$$\mathcal{J}_{n+1} := \mathcal{J}_n \times \mathcal{J}_1,$$

i.e., the collection of rectangles of the form $R = R_n \times R_1$, where $R_n \in \mathcal{J}_n$ and $R_1 \in \mathcal{J}_1$. We verify the properties of a semi-ring:

(S1) Closure under the empty set: Since $\emptyset \in \mathcal{J}_n$ and \mathcal{J}_1 , we have

$$\emptyset = \emptyset \times [a, b) \in \mathcal{J}_{n+1}.$$

(S2) Closure under intersection: Let $R = R_n \times R_1$ and $S = S_n \times S_1$ be in \mathcal{J}_{n+1} . Then

$$R \cap S = (R_n \cap S_n) \times (R_1 \cap S_1),$$

which belongs to \mathcal{J}_{n+1} , since both $R_n \cap S_n \in \mathcal{J}_n$ and $R_1 \cap S_1 \in \mathcal{J}_1$, by the inductive hypothesis.

(S3) Closure under set difference (finite disjoint union): Consider

$$R \setminus S = (R_n \times R_1) \setminus (S_n \times S_1).$$

This set can be decomposed as

$$(R_n \setminus S_n) \times (R_1 \setminus S_1) \sqcup (R_n \cap S_n) \times (R_1 \setminus S_1) \sqcup (R_n \setminus S_n) \times (R_1 \cap S_1).$$

Each of the components $R_n \setminus S_n$, $R_n \cap S_n$, $R_1 \setminus S_1$, and $R_1 \cap S_1$ can be written as finite disjoint unions of sets in \mathcal{J}_n and \mathcal{J}_1 , respectively. Therefore, their Cartesian products yield finite disjoint unions of elements in \mathcal{J}_{n+1} .

Hence, \mathcal{J}_{n+1} is a semi-ring. By induction, it follows that \mathcal{J}_n is a semi-ring for all $n \in \mathbb{N}$.

Lemma 4.5. The function $\lambda_n : \mathcal{J}_n \to [0, \infty)$, defined by

$$\lambda_n([a_1,b_1)\times\cdots\times[a_n,b_n))=\prod_{i=1}^n(b_i-a_i),$$

is a pre-measure on the semi-ring \mathcal{J}_n .

Corollary 4.5.1 (Lebesgue measure on \mathbb{R}^n). The set function λ_n extends to a measure on the Borel σ -algebra $\mathcal{B}(\mathbb{R}^n)$, called the *Lebesgue measure*. It is the unique measure satisfying

$$\lambda_n([a_1, b_1) \times \cdots \times [a_n, b_n)) = \prod_{i=1}^n (b_i - a_i), \text{ for all } a_i < b_i.$$

Remark 4.1 (Relation to Elementary Volume). The uniqueness of Lebesgue measure and its properties imply that Lebesgue measure coincides with the familiar volume function $\operatorname{vol}^{(n)}(\cdot)$ from elementary geometry. More precisely, $\operatorname{vol}^{(n)}$ can be extended to a measure on the Borel σ -algebra $\mathcal{B}(\mathbb{R}^n)$ in only one way namely, as the Lebesgue measure λ^n .

5 Measurable Mappings

Definition 5.1 (Measurable Map). Let (X, A), (X', A') be measurable spaces. A map $T: X \to X'$ is called A/A'-measurable (or simply measurable) if the pre-image of every measurable set is measurable:

$$T^{-1}(A') \in \mathcal{A}$$
 for all $A' \in \mathcal{A}'$.

Remark 5.1.

- Probabilists often refer to a measurable map defined on a probability space as a random variable.
- The symbolic notation $T^{-1}(\mathcal{A}') := \{T^{-1}(A') : A' \in \mathcal{A}'\}$ is often used. We also write $T^{-1}(\mathcal{A}') \subset \mathcal{A}$ as shorthand for measurability.
- It is common to write $T:(X,\mathcal{A})\to (X',\mathcal{A}')$ to indicate that T is measurable.
- A measurable map between $\mathcal{B}(\mathbb{R}^n)$ and $\mathcal{B}(\mathbb{R}^m)$ is often called a *Borel measurable map*.

Example 5.1. Let (X, \mathcal{A}) be a measurable space and let $A \in \mathcal{A}$. We show that the indicator function

$$\mathbf{1}_A: X \to \{0, 1\}, \quad \mathbf{1}_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A, \end{cases}$$

is $\mathcal{A}/\mathcal{P}(\{0,1\})$ -measurable.

We check that the preimage of each subset of $\{0,1\}$ lies in A:

- $\mathbf{1}_A^{-1}(\emptyset) = \emptyset \in \mathcal{A},$
- $\mathbf{1}_{A}^{-1}(\{0\}) = A^{c} \in \mathcal{A},$
- $\mathbf{1}_A^{-1}(\{1\}) = A \in \mathcal{A},$
- $\mathbf{1}_A^{-1}(\{0,1\}) = X \in \mathcal{A}.$

Therefore, $\mathbf{1}_A$ is measurable.

Lemma 5.1. Let (X, \mathcal{A}) , (X', \mathcal{A}') be measurable spaces, and suppose $\mathcal{A}' = \sigma(\mathcal{E}')$. Then a map $T: X \to X'$ is \mathcal{A}/\mathcal{A}' -measurable if and only if $T^{-1}(\mathcal{E}') \subseteq \mathcal{A}$, i.e. if

$$T^{-1}(E') \in \mathcal{A}$$
 for all $E' \in \mathcal{E}'$.

Proof. If T is measurable, then by definition $T^{-1}(A') \in \mathcal{A}$ for all $A' \in \mathcal{A}'$. Since $\mathcal{E}' \subset \mathcal{A}'$, it follows immediately that $T^{-1}(E') \in \mathcal{A}$ for all $E' \in \mathcal{E}'$.

Conversely, suppose $T^{-1}(E') \in \mathcal{A}$ for every $E' \in \mathcal{E}'$. Define

$$\mathcal{D}':=\{A'\subseteq X': T^{-1}(A')\in \mathcal{A}\}.$$

By assumption, $\mathcal{E}' \subseteq \mathcal{D}'$. We now show that \mathcal{D}' is a σ -algebra:

- Since $T^{-1}(X') = X \in \mathcal{A}$, we have $X' \in \mathcal{D}'$.
- If $A' \in \mathcal{D}'$, then $T^{-1}(A'^c) = T^{-1}(A')^c \in \mathcal{A}$, so $A'^c \in \mathcal{D}'$.
- If $A'_1, A'_2, \dots \in \mathcal{D}'$, then

$$T^{-1}\left(\bigcup_{i=1}^{\infty} A_i'\right) = \bigcup_{i=1}^{\infty} T^{-1}(A_i') \in \mathcal{A},$$

hence $\bigcup_{i=1}^{\infty} A_i' \in \mathcal{D}'$.

Thus, \mathcal{D}' is a σ -algebra containing \mathcal{E}' , so it contains $\sigma(\mathcal{E}') = \mathcal{A}'$. Therefore, $T^{-1}(A') \in \mathcal{A}$ for all $A' \in \mathcal{A}'$, i.e., T is measurable.

Example 5.2. Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a continuous function. Then T is $\mathcal{B}(\mathbb{R}^m)/\mathcal{B}(\mathbb{R}^n)$ -measurable.

Indeed, from elementary analysis, we know that T is continuous if and only if

$$T^{-1}(A') \subset \mathbb{R}^m$$
 is open for every open set $A' \subset \mathbb{R}^n$.

Since the Borel σ -algebra $\mathcal{B}(\mathbb{R}^n)$ is generated by the open sets $\mathcal{O}_{\mathbb{R}^n}$, it follows that

$$T^{-1}(\mathcal{O}_{\mathbb{R}^n}) \subset \mathcal{O}_{\mathbb{R}^m} \subset \sigma(\mathcal{O}_{\mathbb{R}^m}) = \mathcal{B}(\mathbb{R}^m).$$

Hence, by Lemma 5.1, T is $\mathcal{B}(\mathbb{R}^m)/\mathcal{B}(\mathbb{R}^n)$ -measurable.

Theorem 5.2. Let (X_i, \mathcal{A}_i) , i = 1, 2, 3, be measurable spaces, and let

$$T: X_1 \to X_2, \quad S: X_2 \to X_3$$

be A_1/A_2 - and A_2/A_3 -measurable maps, respectively. Then the composition

$$S \circ T : X_1 \to X_3$$

is $\mathcal{A}_1/\mathcal{A}_3$ -measurable.

Proof. Let $A_3 \in \mathcal{A}_3$. Then

$$(S \circ T)^{-1}(A_3) = T^{-1}(S^{-1}(A_3)).$$

Since S is $\mathcal{A}_2/\mathcal{A}_3$ -measurable, we have $S^{-1}(A_3) \in \mathcal{A}_2$. Since T is $\mathcal{A}_1/\mathcal{A}_2$ -measurable, it follows that $T^{-1}(S^{-1}(A_3)) \in \mathcal{A}_1$. Therefore, $S \circ T$ is $\mathcal{A}_1/\mathcal{A}_3$ -measurable.

Remark 5.2. Given a map $T: X \to X'$, where X' carries a natural σ -algebra \mathcal{A}' (e.g., $\mathcal{B}(\mathbb{R})$), but no σ -algebra is specified on X, one may ask: is there a smallest σ -algebra on X that makes T measurable?

While $\mathcal{P}(X)$ trivially works, it is too large to be useful. On the other hand, $T^{-1}(\mathcal{A}')$ is a σ -algebra, and removing any set from it may break measurability. This leads to the following definition.

Definition 5.2. Let $(T_i)_{i\in I}$, with $T_i: X \to X_i$, be an arbitrary family of mappings from the same space X into measurable spaces (X_i, \mathcal{A}_i) . The smallest σ -algebra on X that makes all T_i simultaneously measurable is given by

$$\sigma(T_i: i \in I) := \sigma\left(\bigcup_{i \in I} T_i^{-1}(\mathcal{A}_i)\right).$$

We say that $\sigma(T_i : i \in I)$ is the σ -algebra generated by the family $(T_i)_{i \in I}$.

Although each $T_i^{-1}(\mathcal{A}_i)$ is a σ -algebra, the union $\bigcup_{i \in I} T_i^{-1}(\mathcal{A}_i)$ is, in general, not a σ -algebra if #I > 1; this is why we must take the σ -hull in the definition above.

Theorem 5.3. Let (X, \mathcal{A}) , (X', \mathcal{A}') be measurable spaces and let $T: X \to X'$ be an \mathcal{A}/\mathcal{A}' -measurable map. For every measure μ on (X, \mathcal{A}) ,

$$\mu'(A') := \mu(T^{-1}(A')), \quad A' \in \mathcal{A}'$$

defines a measure μ' on (X', \mathcal{A}') .

Proof. If $A' = \emptyset$, then $T^{-1}(\emptyset) = \emptyset$ and $\mu'(\emptyset) = \mu(\emptyset) = 0$. Let $(A'_n)_{n \in \mathbb{N}} \subset \mathcal{A}'$ be a sequence of pairwise disjoint sets. Then

$$\mu'\left(\bigsqcup_{n\in\mathbb{N}}A_n'\right) = \mu\left(T^{-1}\left(\bigsqcup_{n\in\mathbb{N}}A_n'\right)\right) = \mu\left(\bigsqcup_{n\in\mathbb{N}}T^{-1}(A_n')\right) = \sum_{n\in\mathbb{N}}\mu\left(T^{-1}(A_n')\right) = \sum_{n\in\mathbb{N}}\mu'(A_n').$$

Hence, μ' is a measure on (X', \mathcal{A}') .

Definition 5.3. The measure $\mu'(\cdot)$ from Theorem 7.6 is called the *image measure* or pushforward of μ under T. It is commonly denoted by one of the following:

- $T(\mu)(\cdot)$,
- $T_*\mu(\cdot)$,
- $\mu \circ T^{-1}(\cdot)$.

Example 5.3. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and let $\xi : \Omega \to \mathbb{R}$ be a random variable, i.e., an $\mathcal{A}/\mathcal{B}(\mathbb{R})$ -measurable map. Then the pushforward measure

$$\xi(\mathbb{P})(A') = \mathbb{P}(\xi^{-1}(A')) = \mathbb{P}(\{\omega \in \Omega : \xi(\omega) \in A'\}) = \mathbb{P}(\xi \in A')$$

defines a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, which is called the *law* or *distribution* of the random variable ξ .

Example 5.4. Suppose we model the experiment of rolling two fair six-sided dice. The underlying probability space is given by

$$\Omega := \{(i, k) : 1 \le i, k \le 6\}, \quad \mathcal{A} := \mathcal{P}(\Omega), \quad \mathbb{P}(\{(i, k)\}) := \frac{1}{36}.$$

Each outcome (i, k) represents the result of the first and second die, respectively. Define the map

$$\xi: \Omega \to \{2, 3, \dots, 12\}, \quad \xi(i, k) := i + k,$$

which assigns to each outcome the total number of points rolled. This function ξ is measurable and thus a random variable.

The pushforward measure $\xi(\mathbb{P})$, also called the *law* or *distribution* of ξ , gives the probabilities of the possible total number of points. For instance,

$$\xi(\mathbb{P})(7) = \mathbb{P}(\xi^{-1}(\{7\})) = \mathbb{P}(\{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}) = \frac{6}{36} = \frac{1}{6}.$$

Remark 5.3. A matrix $T \in \mathbb{R}^{n \times n}$ is called orthogonal if and only if

$$T^{\mathsf{T}}T = I$$
,

i.e., the transpose of T is equal to its inverse.

Orthogonal matrices preserve lengths and angles. That is, for all $x, y \in \mathbb{R}^n$, we have

$$\langle x, y \rangle = \langle Tx, Ty \rangle,$$

 $\|x\| = \|Tx\|,$

where the standard Euclidean inner product and norm are defined by

$$\langle x, y \rangle := \sum_{i=1}^{n} x_i y_i, \qquad ||x||^2 := \langle x, x \rangle.$$

Theorem 5.4. Let $T \in \mathbb{R}^{n \times n}$ be an orthogonal matrix. Then the Lebesgue measure λ^n is invariant under T, i.e.,

$$T(\lambda^n) = \lambda^n$$
.

Proof. The matrix $T \in \mathbb{R}^{n \times n}$ defines a linear map $x \mapsto Tx$, i.e.,

$$T(ax + by) = aTx + bTy$$
 for all $a, b \in \mathbb{R}, x, y \in \mathbb{R}^n$.

From the orthogonality condition, it follows that T is an isometry:

$$||Tx - Ty|| = ||T(x - y)|| = ||x - y||.$$

Thus, T is continuous and therefore $\mathcal{B}(\mathbb{R}^n)/\mathcal{B}(\mathbb{R}^n)$ -measurable by Example 5.2. Furthermore by Theorem 5.3, the pushforward measure

$$\nu(B) := \lambda^n(T^{-1}(B))$$

is well-defined on $\mathcal{B}(\mathbb{R}^n)$.

We now show that ν is translation invariant. For any $x \in \mathbb{R}^n$ and $B \in \mathcal{B}(\mathbb{R}^n)$, we compute

$$\nu(x+B) = \lambda^n \left(T^{-1}(x+B) \right)$$
$$= \lambda^n \left(T^{-1}x + T^{-1}B \right)$$
$$= \lambda^n \left(T^{-1}B \right) = \nu(B),$$

where we used linearity of T and translation invariance of Lebesgue measure (Theorem 3.5(i)).

Hence ν is a translation-invariant measure on \mathbb{R}^n . By Theorem 3.5(ii), since ν is also finite on bounded sets (e.g., the unit ball), it must be a scalar multiple of Lebesgue measure:

$$\nu = c\lambda^n$$
 for some $c > 0$.

To determine the constant c, consider the unit ball $B_1(0) := \{x \in \mathbb{R}^n : ||x|| < 1\}$. Since T is orthogonal, we have

$$x \in B_1(0) \iff ||x|| < 1 \iff ||Tx|| < 1 \iff x \in T^{-1}(B_1(0)),$$

so $T^{-1}(B_1(0)) = B_1(0)$. Therefore,

$$\lambda^n(B_1(0)) = \lambda^n(T^{-1}(B_1(0))) = \nu(B_1(0)) = c\lambda^n(B_1(0)),$$

which implies c=1, since $0<\lambda^n(B_1(0))<\infty$. Thus, $\nu=\lambda^n$, and the theorem follows. \square

Remark 5.4. Theorem 5.4 is a special case of the following general change-of-variable formula for Lebesgue measure. Recall that a matrix $S \in \mathbb{R}^{n \times n}$ is invertible if and only if $\det S \neq 0$.

Theorem 5.5 (Change of Variables). Let $S \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

$$S(\lambda^n) = |\det S^{-1}| \, \lambda^n = |\det S|^{-1} \, \lambda^n. \tag{7.7}$$

Proof. Since S is invertible, both S and S^{-1} are linear maps on \mathbb{R}^n , and hence continuous and measurable (by Example 5.2). Define a measure ν on \mathbb{R}^n by

$$\nu(B) := \lambda^n(S^{-1}(B)), \quad B \in \mathcal{B}(\mathbb{R}^n).$$

For any $x \in \mathbb{R}^n$, we have

$$\nu(x+B) = \lambda^n(S^{-1}(x+B)) = \lambda^n(S^{-1}x + S^{-1}B) = \lambda^n(S^{-1}B) = \nu(B),$$

so ν is translation invariant.

By Theorem 3.5(ii), any translation-invariant measure finite on the unit cube must be a scalar multiple of Lebesgue measure, so there exists a constant c > 0 such that

$$\nu = c\lambda^n$$
.

To determine c, we evaluate both sides on the unit cube $[0,1)^n$, which satisfies $\lambda^n([0,1)^n)=1$:

$$\nu([0,1)^n) = \lambda^n \Big(S^{-1}([0,1)^n) \Big).$$

The set $S^{-1}([0,1)^n)$ is a parallelepiped spanned by the vectors $S^{-1}e_i$, where $(e_i)_{i=1}^n$ is the standard basis of \mathbb{R}^n . Its volume is given by the absolute value of the determinant:

$$\operatorname{vol}^{(n)}(S^{-1}([0,1)^n)) = |\det S^{-1}| = |\det S|^{-1}.$$

By Remark 4.1, Lebesgue measure coincides with this volume on Borel sets, so

$$\nu([0,1)^n) = \lambda^n (S^{-1}([0,1)^n)) = |\det S|^{-1}.$$

Hence,

$$\nu = |\det S|^{-1} \lambda^n,$$

which completes the proof.

Definition 5.4. A motion in \mathbb{R}^n is a linear transformation of the form

$$Mx = \tau_x \circ T(x),$$

where $\tau_x(y) = y + x$ denotes translation by $x \in \mathbb{R}^n$, and $T \in \mathbb{R}^{n \times n}$ is an orthogonal matrix (i.e., $T^{\top}T = \mathrm{id}_n$). In particular, two sets are said to be *congruent* if one can be obtained from the other by a motion.

Theorem 5.6 (Invariance under Motions). Lebesgue measure is invariant under motions: for any motion M in \mathbb{R}^n , we have

$$\lambda^n = M(\lambda^n).$$

In particular, congruent sets have the same Lebesgue measure.

Proof. By definition, any motion M can be written as $M = \tau_x \circ T$, where T is orthogonal (so $|\det T| = 1$). By Theorem 5.4,

$$T(\lambda^n) = \lambda^n$$
.

Translation invariance of Lebesgue measure (Theorem 3.5(i)) gives

$$\tau_r(\lambda^n) = \lambda^n$$
.

Hence,

$$M(\lambda^n) = \tau_x(T(\lambda^n)) = \tau_x(\lambda^n) = \lambda^n.$$

6 Measurable Functions

Definition 6.1 (Measurable Function). Let (X, \mathcal{A}) be a measurable space. A function $u: X \to \mathbb{R}$ is called *measurable* if it is $\mathcal{A}\text{-}\mathcal{B}(\mathbb{R})$ -measurable; that is,

$$u^{-1}(B) \in \mathcal{A}$$
 for all $B \in \mathcal{B}(\mathbb{R})$.

Remark 6.1. By Lemma 5.1, a function $u: X \to \mathbb{R}$ is $\mathcal{A}/\mathcal{B}(\mathbb{R})$ -measurable if and only if

$$u^{-1}(G) \in \mathcal{A}$$
 for all $G \in \mathcal{E}$,

where \mathcal{E} is a generator of $\mathcal{B}(\mathbb{R})$.

Definition 6.2 (Level Set). Let (X, \mathcal{A}) be a measurable space, and let $u: X \to \mathbb{R}$ be a function. For any $y \in \mathbb{R}$, the *level set* of u at the value y is defined as

$$\{u = y\} := \{x \in X : u(x) = y\}.$$

More generally, we define:

- $\{u > y\} := \{x \in X : u(x) > y\}$ • Strict upper level set:
- $\{u < y\} := \{x \in X : u(x) < y\}$ • Strict lower level set:
- Upper level set: $\{u > y\} := \{x \in X : u(x) > y\}$
- $\{u < y\} := \{x \in X : u(x) < y\}$ • Lower level set:

Remark 6.2. As noted in Remark 1.4, the Borel σ -algebra $\mathcal{B}(\mathbb{R})$ is generated by intervals of the form $[a, \infty)$, (a, ∞) , $(-\infty, a)$, or $(-\infty, a]$, with $a \in \mathbb{R}$ (or \mathbb{Q}). To verify that a function $u: X \to \mathbb{R}$ is measurable, it suffices to check that

$$u^{-1}([a,\infty)) = \{x \in X : u(x) \in [a,\infty)\} = \{x \in X : u(x) \ge a\} \in \mathcal{A}$$

for all such a, and likewise for the other interval types.

We write

$${u > v} := {x \in X : u(x) > v(x)},$$

and similarly $\{u < v\}$, $\{u \le v\}$, $\{u = v\}$, $\{u \ne v\}$, $\{u \in B\}$, etc., for measurable $u, v: X \to \mathbb{R}$ and Borel sets $B \subseteq \mathbb{R}$.

Lemma 6.1. Let (X, \mathcal{A}) be a measurable space. A function $u: X \to \mathbb{R}$ is $\mathcal{A}/\mathcal{B}(\mathbb{R})$ measurable if and only if any one (and hence all) of the following equivalent conditions hold:

- (i) $\{u > a\} \in \mathcal{A} \quad \forall a \in \mathbb{R} \text{ or } a \in \mathbb{Q}$ (iii) $\{u < a\} \in \mathcal{A} \quad \forall a \in \mathbb{R} \text{ or } a \in \mathbb{Q}$
- (ii) $\{u \ge a\} \in \mathcal{A} \quad \forall a \in \mathbb{R} \text{ or } a \in \mathbb{Q}$
- (iv) $\{u < a\} \in \mathcal{A} \quad \forall a \in \mathbb{R} \text{ or } a \in \mathbb{Q}$

Remark 6.3. It is often helpful to use the values $+\infty$ and $-\infty$ in calculations. To do this properly, we consider the extended real line $\mathbb{R} := [-\infty, +\infty]$. If we agree that $-\infty < x$ and $y < +\infty$ for all $x, y \in \mathbb{R}$, then $\overline{\mathbb{R}}$ inherits the usual ordering from \mathbb{R} , as well as the standard rules of addition and multiplication for real numbers. The latter, however, must be augmented as shown below.

Addition in $\overline{\mathbb{R}}$

Multiplication in $\overline{\mathbb{R}}$

Remark 6.4. Caution: The extended real line $\overline{\mathbb{R}} = [-\infty, +\infty]$ is *not* a field. Expressions such as $\infty - \infty$ or $\frac{\infty}{\infty}$ are undefined and must be avoided.

The Borel σ -algebra on $\overline{\mathbb{R}}$, denoted $\mathcal{B}(\overline{\mathbb{R}})$, is defined by

$$B^* \in \mathcal{B}(\overline{\mathbb{R}}) \iff B^* = B \cup S,$$

for some $B \in \mathcal{B}(\mathbb{R})$ and $S \in \{\emptyset, \{-\infty\}, \{+\infty\}, \{-\infty, +\infty\}\}.$

It is straightforward to verify that $\mathcal{B}(\overline{\mathbb{R}})$ is a σ -algebra, and its trace on \mathbb{R} coincides with the usual Borel σ -algebra $\mathcal{B}(\mathbb{R})$.

Lemma 6.2. The Borel σ -algebra on the extended real line $\overline{\mathbb{R}} = [-\infty, +\infty]$ satisfies

$$\mathcal{B}(\mathbb{R}) = \mathbb{R} \cap \mathcal{B}(\overline{\mathbb{R}})$$
 or equivalently, $\mathcal{B}(\mathbb{R}) = \{A \cap \mathbb{R} : A \in \mathcal{B}(\overline{\mathbb{R}})\}.$

Lemma 6.3. The Borel σ -algebra $\mathcal{B}(\overline{\mathbb{R}})$ is generated by any one of the following families of sets:

$$[a, +\infty], (a, +\infty], [-\infty, a), \text{ or } [-\infty, a],$$

with $a \in \mathbb{R}$ or \mathbb{Q} .

Proof. Let $\mathcal{E} := \sigma(\{[a, +\infty] : a \in \mathbb{R}\})$. Since

$$[a, +\infty] = [a, +\infty) \cup \{+\infty\}$$
 with $[a, +\infty) \in \mathcal{B}(\mathbb{R})$,

we see that $[a, +\infty] \in \mathcal{B}(\overline{\mathbb{R}})$, hence $\mathcal{E} \subseteq \mathcal{B}(\overline{\mathbb{R}})$.

Conversely, for $-\infty < a < b < +\infty$,

$$[a,b) = [a,+\infty] \setminus [b,+\infty] \in \mathcal{E},$$

so $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{E}$. Moreover,

$$\{+\infty\} = \bigcap_{j \in \mathbb{N}} [j, +\infty], \qquad \{-\infty\} = \bigcap_{j \in \mathbb{N}} [-\infty, -j) = \bigcap_{j \in \mathbb{N}} [-j, +\infty]^c,$$

so $\{-\infty\}, \{+\infty\} \in \mathcal{E}$. Hence for any $B \in \mathcal{B}(\mathbb{R})$,

$$B, B \cup \{+\infty\}, B \cup \{-\infty\}, B \cup \{-\infty, +\infty\} \in \mathcal{E}.$$

implying $\mathcal{B}(\overline{\mathbb{R}}) \subseteq \mathcal{E}$. Therefore, $\mathcal{B}(\overline{\mathbb{R}}) = \mathcal{E}$.

The same argument applies if the generating system uses $a \in \mathbb{Q}$, or other families like $(a, +\infty]$, $[-\infty, a)$, or $[-\infty, a]$.

Definition 6.3. Let (X, \mathcal{A}) be a measurable space. We define

$$\mathcal{M} := \mathcal{M}(\mathcal{A})$$
 and $\mathcal{M}_{\overline{\mathbb{R}}} := \mathcal{M}_{\overline{\mathbb{R}}}(\mathcal{A})$

as the collections of real-valued and extended real-valued measurable functions, respectively:

$$\mathcal{M} = \{u : X \to \mathbb{R} \mid u \text{ is } \mathcal{A}/\mathcal{B}(\mathbb{R})\text{-measurable}\},\$$

$$\mathcal{M}_{\overline{\mathbb{R}}} = \{ u : X \to \overline{\mathbb{R}} \mid u \text{ is } \mathcal{A}/\mathcal{B}(\overline{\mathbb{R}})\text{-measurable} \}.$$

Example 6.1. Let (X, \mathcal{A}) be a measurable space. The indicator function $f(x) := \mathbf{1}_A(x)$ is measurable if and only if $A \in \mathcal{A}$.

Proof. Recall that a function $f: X \to \mathbb{R}$ is measurable if for all $\alpha \in \mathbb{R}$, the set $\{f > \alpha\} \in \mathcal{A}$. Now observe:

$$\{\mathbf{1}_A > \alpha\} = \begin{cases} \emptyset & \text{if } \alpha \ge 1, \\ A & \text{if } 0 < \alpha < 1, \\ X & \text{if } \alpha \le 0. \end{cases}$$

Thus, $\{\mathbf{1}_A > \alpha\} \in \mathcal{A}$ for all $\alpha \in \mathbb{R}$ if and only if $A \in \mathcal{A}$, proving the claim.

Definition 6.4. Let (X, A) be a measurable space.

A simple function is a function $f: X \to \mathbb{R}$ of the form

$$f(x) = \sum_{m=1}^{M} y_m \mathbf{1}_{A_m}(x),$$

where $M \in \mathbb{N}$, $y_m \in \mathbb{R}$, and $A_1, \ldots, A_M \in \mathcal{A}$ are pairwise disjoint.

A representation of the form

$$f(x) = \sum_{n=1}^{N} z_n \mathbf{1}_{B_n}(x),$$

with $N \in \mathbb{N}$, $z_n \in \mathbb{R}$, $B_n \in \mathcal{A}$, and $\bigsqcup_{n=1}^N B_n = X$, is called a *standard representation* of f. The set of all simple functions on (X, \mathcal{A}) is denoted by \mathcal{E} or $\mathcal{E}(\mathcal{A})$.

Remark 6.5. Simple functions may have multiple representations; in particular, standard representations are not unique.

Example 6.2. A measurable function $h: X \to \mathbb{R}$ that attains only finitely many values is a simple function.

Indeed, let $h(X) = \{y_0, \dots, y_M\}$. The sets $\{h = \beta\}$ with $\beta \in h(X)$ are mutually disjoint and satisfy

$$\{h=\beta\}=\{h\leq\beta\}\setminus\{h<\beta\}\in\mathcal{A},$$

and

$$\bigcup_{\beta \in h(X)} \{h = \beta\} = X.$$

Thus, h admits the standard representation

$$h(x) = \sum_{\beta \in h(X)} \beta \, \mathbf{1}_{\{h=\beta\}}(x).$$

This shows that every measurable function with finitely many values is a simple function. Conversely, since every simple function only takes finitely many values, it always admits at least one standard representation.

In particular, $\mathcal{E}(\mathcal{A}) \subset \mathcal{M}(\mathcal{A})$, where $\mathcal{M}(\mathcal{A})$ is the space of measurable functions.

Example 6.3. If $f, g \in \mathcal{E}(\mathcal{A})$, then

$$f \pm g \in \mathcal{E}(\mathcal{A})$$
 and $f \cdot g \in \mathcal{E}(\mathcal{A})$.

Proof. Let

$$f = \sum_{m=1}^{M} y_m \, \mathbf{1}_{A_m}, \qquad g = \sum_{n=1}^{N} z_n \, \mathbf{1}_{B_n}$$

be standard representations, where $A_m, B_n \in \mathcal{A}$ are disjoint families and $y_m, z_n \in \mathbb{R}$. Consider the intersections $A_m \cap B_n$. Then:

- Each $A_m \cap B_n \in \mathcal{A}$, since \mathcal{A} is closed under intersections.
- The sets $A_m \cap B_n$ are pairwise disjoint for distinct pairs $(m, n) \neq (m', n')$.
- Their union covers X, because

$$X = \bigcup_{m=1}^{M} A_m = \bigcup_{n=1}^{N} B_n \quad \Rightarrow \quad X = \bigcup_{m=1}^{M} \bigcup_{n=1}^{N} (A_m \cap B_n).$$

On each set $A_m \cap B_n$, the functions f and g are constant with values y_m and z_n , respectively. Thus,

$$f(x) \pm g(x) = y_m \pm z_n,$$
 $f(x) \cdot g(x) = y_m z_n$ for $x \in A_m \cap B_n$.

Therefore, we obtain:

$$f \pm g = \sum_{m=1}^{M} \sum_{n=1}^{N} (y_m \pm z_n) \mathbf{1}_{A_m \cap B_n}, \qquad f \cdot g = \sum_{m=1}^{M} \sum_{n=1}^{N} (y_m z_n) \mathbf{1}_{A_m \cap B_n}.$$

These are finite sums over pairwise disjoint measurable sets, so $f \pm g$ and $f \cdot g$ are both simple functions.

Hence,
$$f \pm g$$
, $f \cdot g \in \mathcal{E}(\mathcal{A})$.

Definition 6.5. Let $f \in \mathcal{E}(\mathcal{A})$. Define its positive part, negative part, and absolute value by

$$f^+(x) := \max(f(x), 0), \qquad f^-(x) := \max(-f(x), 0), \qquad |f(x)| := f^+(x) + f^-(x).$$

Then $f^+, f^-, |f| \in \mathcal{E}(\mathcal{A})$, and

$$f = f^+ - f^-, \qquad |f| = f^+ + f^-.$$

Theorem 6.4 (Sombrero Lemma). Let (X, \mathcal{A}) be a measurable space. Every positive $\mathcal{A}/\mathcal{B}(\overline{\mathbb{R}})$ -measurable function $u: X \to [0, \infty]$ is the pointwise limit of an increasing sequence of simple functions $f_n \in \mathcal{E}(\mathcal{A})$, with $f_n \geq 0$, that is,

$$u(x) = \sup_{n \in \mathbb{N}} f_n(x) = \lim_{n \to \infty} f_n(x), \quad \text{with} \quad f_1 \le f_2 \le f_3 \le \dots$$

Corollary 6.4.1. Let (X, \mathcal{A}) be a measurable space. Every $\mathcal{A}/\mathcal{B}(\overline{\mathbb{R}})$ -measurable function $u: X \to \overline{\mathbb{R}}$ is the pointwise limit of simple functions $f_n \in \mathcal{E}(\mathcal{A})$ such that

$$|f_n(x)| \le |u(x)|$$
 for all $x \in X$.

If u is bounded, the convergence is uniform.

Corollary 6.4.2. Let (X, \mathcal{A}) be a measurable space. If $u_n : X \to \overline{\mathbb{R}}$ are measurable functions for all $n \in \mathbb{N}$, then the following functions are measurable:

$$\sup_{n\in\mathbb{N}}u_n,\quad \inf_{n\in\mathbb{N}}u_n,\quad \limsup_{n\to\infty}u_n,\quad \liminf_{n\to\infty}u_n,$$

and, whenever it exists in $\overline{\mathbb{R}}$, also the pointwise limit

$$\lim_{n\to\infty}u_n$$
.

Corollary 6.4.3. Let $u, v : X \to \overline{\mathbb{R}}$ be A- $\mathcal{B}(\overline{\mathbb{R}})$ -measurable functions. Then the following functions are also measurable.

$$u + v$$
, $u \cdot v$, $u \lor v := \max\{u, v\}$, $u \land v := \min\{u, v\}$.

Proof. If $u, v \in \mathcal{E}(\mathcal{A})$ are simple functions, then each of the functions

$$u + v$$
, $u \cdot v$, $u \lor v = \max\{u, v\}$, $u \land v = \min\{u, v\}$

is again a simple function (and hence measurable).

For general $u, v \in \mathcal{M}_{\mathbb{R}}(\mathcal{A})$, let $(f_n)_{n \in \mathbb{N}}, (g_n)_{n \in \mathbb{N}} \subset \mathcal{E}(\mathcal{A})$ be sequences of simple functions such that

$$f_n \to u$$
 and $g_n \to v$ pointwise as $n \to \infty$.

By the algebraic rules for limits and the fact that the pointwise limit of measurable functions is measurable (Corollary 6.4.2), the operations

$$f_n + g_n \to u + v$$
, $f_n \cdot g_n \to u \cdot v$, $f_n \vee g_n \to u \vee v$, $f_n \wedge g_n \to u \wedge v$

preserve measurability.

Hence,
$$u + v$$
, $u \cdot v$, $u \lor v$, $u \land v \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathcal{A})$.

Corollary 6.4.4. A function $u: X \to \mathbb{R}$ is $\mathcal{A}/\mathcal{B}(\mathbb{R})$ -measurable if and only if both its positive and negative parts,

$$u^+(x) := \max\{u(x), 0\}, \qquad u^-(x) := \max\{-u(x), 0\},$$

are $\mathcal{A}/\mathcal{B}(\mathbb{R})$ -measurable.

Corollary 6.4.5. Let $u, v: X \to \mathbb{R}$ be $\mathcal{A}/\mathcal{B}(\mathbb{R})$ -measurable functions. Then the sets

$$\{u < v\}, \{u \le v\}, \{u = v\}, \{u \ne v\}$$

are all elements of A.

7 Integration of Positive Functions

Throughout this chapter, let (X, \mathcal{A}, μ) be a measure space. We recall the following spaces of measurable functions:

• $\mathcal{M}_{+}(\mathcal{A})$: the set of all non-negative measurable functions, that is,

$$\mathcal{M}_{+}(\mathcal{A}) := \{ f : X \to [0, \infty] \mid f \text{ is } \mathcal{A}/\mathcal{B}(\mathbb{R})\text{-measurable} \}.$$

• $\mathcal{E}_{+}(\mathcal{A})$: the set of all **non-negative simple functions**, i.e., functions of the form

$$f(x) = \sum_{i=1}^{M} y_i \mathbf{1}_{A_i}(x), \quad y_i \ge 0, \ A_i \in \mathcal{A}.$$

• $\mathcal{E}(\mathcal{A})$: the set of all (real-valued) simple functions, i.e., functions of the form

$$f(x) = \sum_{i=1}^{M} y_i \mathbf{1}_{A_i}(x), \quad y_i \in \mathbb{R}, \ A_i \in \mathcal{A}.$$

Lemma 7.1. Let

$$f = \sum_{i=1}^{M} y_i \, \mathbf{1}_{A_i} = \sum_{k=1}^{N} z_k \, \mathbf{1}_{B_k}$$

be two standard representations of the same function $f \in \mathcal{E}_{+}(\mathcal{A})$. Then,

$$\sum_{i=1}^{M} y_i \, \mu(A_i) = \sum_{k=1}^{N} z_k \, \mu(B_k).$$

Proof. Since both representations of f are standard, the sets A_1, \ldots, A_M and B_1, \ldots, B_N form partitions of X. That is,

$$X = \bigsqcup_{i=1}^{M} A_i = \bigsqcup_{k=1}^{N} B_k.$$

We can express each A_i as a disjoint union of the intersections $A_i \cap B_k$, and similarly for each B_k , i.e.,

$$A_i = \bigsqcup_{k=1}^{N} (A_i \cap B_k), \qquad B_k = \bigsqcup_{i=1}^{M} (B_k \cap A_i).$$

By finite additivity of the measure μ , we have:

$$\sum_{i=1}^{M} y_i \mu(A_i) = \sum_{i=1}^{M} y_i \sum_{k=1}^{N} \mu(A_i \cap B_k) = \sum_{i=1}^{M} \sum_{k=1}^{N} y_i \mu(A_i \cap B_k).$$

Similarly,

$$\sum_{k=1}^{N} z_k \mu(B_k) = \sum_{k=1}^{N} z_k \sum_{i=1}^{M} \mu(B_k \cap A_i) = \sum_{k=1}^{N} \sum_{i=1}^{M} z_k \mu(A_i \cap B_k).$$

Now, since the function values agree on all of X, we must have $y_i = z_k$ whenever $A_i \cap B_k \neq \emptyset$. For disjoint sets where $A_i \cap B_k = \emptyset$, we have $\mu(A_i \cap B_k) = 0$. Therefore,

$$y_i\mu(A_i\cap B_k)=z_k\mu(A_i\cap B_k)$$
 for all i,k .

Thus, the double sums are equal, and we conclude:

$$\sum_{i=1}^{M} y_i \mu(A_i) = \sum_{k=1}^{N} z_k \mu(B_k).$$

Definition 7.1 (Integral of a Simple Function). Let

$$f = \sum_{i=1}^{M} y_i \, \mathbf{1}_{A_i} \in \mathcal{E}_+(\mathcal{A})$$

be a simple function in standard representation. Then the number

$$\mathcal{I}_{\mu}(f) := \sum_{i=1}^{M} y_i \, \mu(A_i) \in [0, \infty]$$

is called the μ -integral of f. This value is independent of the particular standard representation of f.