Compressive Sensing (Sampling)

Mahdy Nabaee

December 4, 2011

Sparse/Compressible Signal

Consider an *n*-dim (signal) vector, $\underline{x} = [x_1, \dots, x_i, \dots, x_n]^T \in \mathbf{R}^n$:

$$\underline{\mathbf{x}}_{\mathsf{n}\times \mathsf{1}} = \Phi_{\mathsf{n}\times \mathsf{n}} \cdot \underline{\mathbf{s}}_{\mathsf{n}\times \mathsf{1}},$$

where:

- $\bullet \ \Phi = [\underline{\Phi}_1, \cdots, \underline{\Phi}_n],$
- $\{\underline{\Phi}_i\}$ is an orthonormal representation basis for \mathbf{R}^n .

Sparse/Compressible Signal

Sparsity: \underline{x} is K-sparse in some transform domain, if:

$$\|\underline{\boldsymbol{s}}\|_{\ell_0} \leq K,$$

for all realizations.

Compressibility: \underline{x} is compressible, if:

$$\|\underline{x} - \underline{x}_K\|_{\ell_2} = \|\underline{s} - \underline{s}_K\|_{\ell_2},$$

is small, for all realizations.

Transform Coding

Encoding:

• Upon sensing all x_i 's, the sparse/compressible transform domain, \underline{s} , is calculated:

$$\underline{s} = \Phi^T \cdot \underline{x},$$

 Then, K largest coefficients, s_i, are transmitted, along their locations (corresponding i's):

 \underline{s}_K .

Transform Coding

Decoding:

- \underline{s}_K is reconstructed from the location of non-zero coefficients and their values,
- Then, the original signal can be reconstructed without/with loss, according to:

$$\underline{x}_K = \Phi \cdot \underline{s}_K$$
.

Sensing + Compression

- Obviously, using only Shannon sampling is not efficient to store/transmit sparse/compressible signals:
 - since the signal may have large components in high frequencies,
 - while it has few non-zero frequency (transform domain) components.
- Shannon sampling + transform coding:
 - need to sense and store all the original n samples (large n),
 - need to calculate all the coefficients, s_i's, which may be computationally complex,
 - need to store/transmit the location of non-zero/large coefficients, s_i 's, for sparse/compressible signals.

Compressive Sensing Problem

As a combination of sampling and transform coding, compressive sensing problem is defined as in below:

Definition: Compressive Sampling (Sensing) problem

For the measurement equation:

$$\underline{y}_{m\times 1} = \Psi_{m\times n} \cdot \underline{x}_{n\times 1} = \Psi \Phi \cdot \underline{s} = \Theta_{m\times n} \cdot \underline{s},$$

where m < n (usually $m \ll n$), find:

- a stable measurement matrix, Ψ, and,
- a reconstruction algorithm to find $\hat{\underline{s}}$ (or $\hat{\underline{x}}$),

for sparse/compressible signals.

Under-determined Set of Linear Measurements

Generally,

$$\underline{y}_{m \times 1} = \Theta_{m \times n} \cdot \underline{s}_{n \times 1}, \ m < n,$$

is ill-conditioned and there are infinite number of solutions:

$$\underline{\hat{s}} = \underline{s} + \underline{s}_0,$$

where \underline{s}_0 is in the null-space of $\Theta_{m \times n}$.

• However, if \underline{s} is K-sparse, and location of non-zero elements is known, there exists only a single unique solution if:

$$m \ge K$$
.

Under-determined Set of Linear Measurements

 For this simplified version (known locations), the necessary and sufficient condition is:

$$1 - \delta_{\mathcal{K}} \le \frac{\|\Theta \cdot \underline{\nu}\|_{\ell_2}}{\|\underline{\nu}\|_{\ell_2}} \le 1 + \delta_{\mathcal{K}},$$

for any $\underline{v} \in \mathbf{R}^n$ which share the same K non-zero elements and small δ_K .

Under-determined Set of Linear Measurements

 For this simplified version (known locations), the necessary and sufficient condition is:

$$1 - \delta_{\kappa} \le \frac{\|\Theta \cdot \underline{\nu}\|_{\ell_2}}{\|\underline{\nu}\|_{\ell_2}} \le 1 + \delta_{\kappa},$$

for any $\underline{v} \in \mathbf{R}^n$ which share the same K non-zero elements and small δ_K .

Definition: Restricted Isometry Property (RIP)

A matrix, $\Theta_{m\times n}$, is called to satisfy RIP of order K, if there exists a small $0\leq \delta_K < 1$ such that:

$$1 - \delta_{\kappa} \le \frac{\|\Theta \cdot \underline{\nu}\|_{\ell_2}}{\|\underline{\nu}\|_{\ell_2}} \le 1 + \delta_{\kappa},$$

for any K-sparse vector $\underline{v} \in \mathbf{R}^n$.

More on RIP

- For both K-sparse and compressible signals, to have stable Θ (and correspondingly Ψ), it is sufficient that Θ satisfy RIP of order 3K.
- Moreover, Ψ is universal in the sense that RIP of Θ does not depend on the choice of Φ .

Choices of Matrices which satisfy RIP with high probability:

- random matrix with iid zero-mean, $\frac{1}{n}$ variance Gaussian entries, if $m \ge cK \log(\frac{n}{K})$, for small constant c.
- random matrix with iid Bernouli half entries.

Sparse Signal Reconstruction: ℓ_0 Minimization

We need to find $\hat{\underline{s}} \in \mathbf{R}^n$ such that:

- $\bullet \ \Theta \hat{\underline{s}} = \underline{y},$
- $\hat{\underline{s}}$ is the sparsest solution.

Sparse Signal Reconstruction: ℓ_0 Minimization

We need to find $\hat{s} \in \mathbf{R}^n$ such that:

- $\bullet \ \Theta \hat{\underline{s}} = y,$
- $\hat{\underline{s}}$ is the sparsest solution.

$$\underline{\hat{s}} = \arg\min_{\underline{s}'} \|\underline{s}'\|_{\ell_0}, \ \ \textit{s.t.} \ \Theta\underline{s}' = \underline{y}$$

suffers from computational complexity

Sparse Signal Reconstruction: Other Norms

$$\hat{\underline{s}} = \arg\min_{\underline{s}'} \|\underline{s}'\|_{\ell_2}, \;\; \text{s.t.} \; \Theta \cdot \underline{s}' = \underline{y}$$

- Closed Form: $\hat{\underline{s}} = \Theta^T (\Theta \Theta^T)^{-1} \cdot \underline{y}$,
- The resulting $\hat{\underline{s}}$ is almost always not sparse.

Sparse Signal Reconstruction: Other Norms

$$\hat{\underline{s}} = \arg\min_{\underline{s}'} \|\underline{s}'\|_{\ell_2}, \ \ s.t. \ \Theta \cdot \underline{s}' = \underline{y}$$

- Closed Form: $\hat{\underline{s}} = \Theta^T (\Theta \Theta^T)^{-1} \cdot \underline{y}$,
- The resulting \hat{s} is almost always not sparse.

ℓ_1 Minimization

$$\hat{\underline{s}} = \operatorname{arg\,min}_{\underline{s}'} \, \|\underline{s}'\|_{\ell_1}, \;\; s.t. \; \Theta \cdot \underline{s}' = \underline{y}$$

- sparse solution with high probability,
- solved using linear programming.

Noisy Compressive Sensing

Consider the case of noisy measurements:

$$\underline{y}_{m\times 1} = \Theta_{m\times n} \cdot \underline{s}_{n\times 1} + \underline{w}_{m\times 1}, \quad \mathbf{E}[\underline{w} \ \underline{w}^T] = \sigma^2 \mathbf{I}_m$$

Noisy Compressive Sensing

Consider the case of noisy measurements:

$$\underline{y}_{m\times 1} = \Theta_{m\times n} \cdot \underline{s}_{n\times 1} + \underline{w}_{m\times 1}, \quad \mathbf{E}[\underline{w} \ \underline{w}^{\mathrm{T}}] = \sigma^2 \mathbf{I}_m$$

Basic Pursuit

$$\arg\min_{\underline{s}'}\|\underline{s}'\|_{\ell_1}, \ \ \text{s.t.} \ \|\underline{y} - \Theta\underline{s}'\|_{\ell_2} \leq \epsilon$$

where ϵ bounds the measurement noise, \underline{w} .

Noisy Compressive Sensing

Consider the case of noisy measurements:

$$\underline{y}_{m\times 1} = \Theta_{m\times n} \cdot \underline{s}_{n\times 1} + \underline{w}_{m\times 1}, \quad \mathbf{E}[\underline{w} \ \underline{w}^{\mathrm{I}}] = \sigma^2 \mathbf{I}_m$$

Basic Pursuit

$$\arg\min_{\underline{s}'} \|\underline{s}'\|_{\ell_1}, \ \ s.t. \ \|\underline{y} - \Theta\underline{s}'\|_{\ell_2} \leq \epsilon$$

where ϵ bounds the measurement noise, \underline{w} .

Lasso De-Noising

$$\arg\min_{\underline{s}'} \|\underline{y} - \Theta\underline{s}'\|_{\ell_2}, \ \ \textit{s.t.} \ \|\underline{s}'\|_{\ell_1} \leq q$$

where q ranges from zero to infinity.

Compressive Image Sensing

Of the very first and major applications of CS:

