박데이터 분석을 위한 실시간 로지스틱 회귀모형에 관한 연구 : 베이지안 접근법을 중심으로

김동완

고려대학교 정책대학원 데이터 통계학과

2016년 6월 3일

Overview

- 1 끓말
 - 개요
- ② 온라인 최적화 알고리즘과 해싱을 이용한 가변수 코딩
 - 해싱을 이용한 가변수 코딩
 - 온라인 최적화 방법
- ③ 사례연구
 - 타이타닉 탑승자 데이터
 - 온라인 광고 데이터
 - 맺음말

새로운 형태의 데이터

- 실제 IT 분야에서 해결해야하는 문제
 - TrueSkill과 같이 다량의 플레이어 게임 메칭 데이터를 이용해 플레이어의 승률을 계산하여 최적의 게임 메칭 상대를 찾는 문제
 - 특정 Facebook 사용자의 timeline에 다양한 조건의 광고 중 어떤 광고를 노출 시켜야 광고 클릭 확률이 높을 것인지를 예측하는 문제
 - 매출의 대부분을 차지하는 고부가 가치 유저(High-Valued Player)가 게임에서 이탈할 확률을 계산하는 문제
 - 온라인 광고 퍼블리싱 상황에서 실시간으로 사이트마다 최적의 광고 선택 문제
- 이런 문제들의 특징
 - 유동적인 다 범주 변수
 - 多 샘플, 실시간 분석

새로운 형태의 데이터

- 접근 방법
 - 유동적인 다 범주 변수
 - → 해싱을 이용한 가변수 코딩(Feature Hashing)
 - 多 샘플, 실시간 분석
 - → 온라인 최적화
 - ▶ 확률적 경사 하강법(SGD) vs 추정된 밀도 필터링(ADF)
- 의문점
 - 기존의 배치 방식 대비 예측률
 - 대용량 데이터에 대한 분석 속도

해싱을 이용한 가변수 코딩

- 해시 함수
 - 해시 함수는 임의의 길이의 데이터를 고정된 길이의 데이터로 매핑하는 알고리즘.
 - 암호화에 많이 사용됨
- 종류
 - 암호화 해시
 - : 복호화가 어려워야 함(MD5, SHA)
 - 비암호화 해시
 - : 분포적 특성과 속도가 중요(Murmur, City, Spooky)
 - → 데이터 분석에 사용

해싱을 이용한 가변수 코딩

- 해시 함수
 - 해시 함수는 임의의 길이의 데이터를 고정된 길이의 데이터로 매핑하는 알고리즘.
 - 암호화에 많이 사용됨
- 종류
 - 암호화 해시
 - : 복호화가 어려워야 함(MD5, SHA)
 - 비암호화 해시
 - : 분포적 특성과 속도가 중요(Murmur, City, Spooky)
 - → 데이터 분석에 사용

해성을 이용한 가변수 코딩

- 데이터가 두개의 범주형 변수 $V_1 \in \{c_1, c_2, c_3\}$ 과 $V_2 \in \{c_4, c_5, c_6\}$ 로만 구성되어 있다고 할 때,
 - 일반적인 가변수 코딩
 - : n건의 데이터에서 i번째 데이터 벡터 $[x_{i1}, x_{i2}]$ 는 $[b_{11}, b_{12}, b_{21}, b_{22}], b_{ij} \in \{0, 1\}$ 의 4자리 벡터로 가변수 코딩
 - 해싱을 가변수 코딩
 - : 데이터 값을 각각에 대한 해시 함수(*H*(·))의 결과 값 벡터 $[h_{i1} = H(x_{i1}), h_{i2} = H(x_{i2})], h_{ij} \in \mathbb{R}_{>0}$ 로 코딩
 - : 해시 함수의 최대 비트 수를 b라 할때, h_{ij} 의 최대값은 2^b 이고, 실제로 필요한 예상되는 변수의 수가 L개로 제한된다면
 - $2^b \mod L$ 을 h_{ij} 대신 사용

해싱을 이용한 가변수 코딩

- 해성을 이용한 가변수 코딩은 아래의 경우에도
 빈번한 가변수 코딩을 수행할 필요가 없어 효과적
 - 범주형 변수의 수와 각 범주를 구성하는 범주가 많을 경우
 - 범주의 수가 지속적으로 추가될 수 있는 경우
 - 실시간 분석이 요구되는 경우

- ◆□▶ ◆昼▶ ◆差▶ ● めぐぐ

확률적 경사 하강법(Stochastic Gradient Descent)

- 최적화(optimization) 알고리즘의 하나인 경사하강법(Gradient descent)에서는 전체 샘플데이터를 스캔 할 때마다 회귀 계수 추정치를 갱신
- 비용함수(cost function)를 $J(w)=\frac{1}{2}\sum_i(target^{(i)}-output^{(i)})^2$ 라 할때 길이가 j인 계수 벡터(weight vector) w_i 를 $w_{i+1}=w_i+\Delta w$ 로 갱신하는 매 반복에서 j개의 모수 추정치 (w)를 얼마만큼 줄일지 혹은 늘릴지 Δw 값을 결정

$$\Delta w_j = -\alpha \frac{\delta J}{\delta w_j} \tag{1}$$

$$= -\alpha \sum_{i} (target^{(i)} - output^{(i)})(-x^{(i)j})$$
 (2)

$$= \alpha \sum_{i} (target^{(i)} - output^{(i)})(x^{(i)}_{j})$$
(3)

lacktriangle 전체 샘플 데이터를 사용하는 대신 샘플 하나 혹은 일부분만을 사용하여 w 값을 갱신해

가는 경사하강법을 확률적 경사 하강법이라 함

4□ > 4回 > 4 豆 > 4 豆 > 豆 り Q O

- ADF에서는 사후분포를 가우시안과 같은 특정 분포로 근사하는 방법으로서 예측-갱신-투영(predict-update-project)과정을 반복
 - 예측(predict)
 - : 모수 θ 에 대한 t-1 시점의 사전분포 $q_{t-1}(\theta_{t-1})$ 와 t시점의 관측치를 이용하여 이후 시점 t에서의 θ 에 대한 사후예측분포, $q_{t|t-1}(\theta_t)$ 를 구함
 - 갱신(update)
 - : 앞서 구한 사전분포와 사후예측분포를 이용하여 heta에 대한 사후분포, $\hat{p}(\theta_t)$ 를 구함
 - 투영(project)
 - : 마지막으로 이 사후 분포가 다루기 쉬운 형태가 아닌 경우가 빈번하기 때문에 다루기 쉬운 분포로 투영(project)

■ 근사 사전분포:

$$q_{t-1}(\theta_{t-1}) \approx p(\theta_{t-1}|y_{1:t-1})$$

■ 1단계 사후예측분포:

$$q_{t|t-1}(\theta_t) = \int p(\theta_t|\theta_{t-1})q_{t-1}(\theta_{t-1})d\theta_{t-1}$$

■ 사후분포:

$$\hat{p}(\theta_t) = \frac{1}{Z_t} p(y_t | \theta_t) q_{t|t-1}(\theta_t)$$

■ 정규화 상수(normalizing constant):

$$Z_t = \int p(y_t | \theta_{t-1}) q_{t|t-1}(\theta_t) d\theta_t$$

■ 근사 사후분포:

$$q(\theta_t) = \arg\min_{q \in Q} \text{KL}(\hat{p}(\theta_t || q(\theta_t)))$$

◆ロ → ◆母 → ◆ 圭 → ◆ 圭 ・ り へ ②

- 일반화 선형 모형에서의 가우시안 근사 : 투영하려는 분포 q가 지수족 이므로 moment matching 대응 사용
 - 일반화 선형 모형의 systematic component를 $s_t = \theta_t^T x_t$ 라 하면 s_t 의 사후 예측분포 $q_t(s_t)$ 는

$$q_{t}(s_{t}) \equiv N(s_{t}; m_{t}, v_{t})$$

$$m_{t} = \int s_{t} \frac{1}{z_{t}} f(y_{t}|s_{t}) q_{t|t-1}(s_{t}) ds_{t}$$

$$v_{t} = \int s_{t}^{2} \frac{1}{z_{t}} f(y_{t}|s_{t}) q_{t|t-1}(s_{t}) ds_{t} - m_{t}^{2}$$

$$z_{t} = \int f(y_{t}|s_{t}) q_{t|t-1}(s_{t}) ds_{t}$$

$$f(y_{t}|s_{t}) \equiv Ber(y_{t}; \pi = sigmoid(s_{t}))$$

$$= \pi^{y_{t}} (1 - \pi)^{(1-y_{t})}, \quad y_{t} \in \{0, 1\}$$

- 일반화 선형 모형에서의 가우시안 근사
 - 가우스-에르미트 구적법을 사용하여 s_t 의 사후분포를 근사하면,

$$\begin{array}{rcl} q_t(s_t) & = & N(s_t; \tilde{m}_t, \tilde{v}_t) \\ & \tilde{m}_t & = & \frac{1}{\tilde{z}_t} \sum_i \chi_i f(y_t; \chi_i) \omega_i \\ & \tilde{v}_t & = & \frac{1}{\tilde{z}_t} \sum_i \chi_i^2 f(y_t; \chi_i) \omega_i - \tilde{m}_t^2 \\ & \tilde{z}_t & = & \sum_i f(y_t; \chi_i) \omega_i \end{array}$$

• $q_{t|t-1}(s_{t-1})$ 을 $q_t(s_t)$ 로 갱신한 후 평균과 분산의 변화를 각각 $\sigma_m=m_t-m_{t|t-1}$ 과 $\sigma_v=v_t-v_{t|t-1}$ 라고 하면, t시점의 i번째 θ 의 분포는

$$q(\theta_t, i) \sim N(\theta_{t,i}; \mu_{t,i}, \sigma_{t,i}^2)$$
 (4)

$$\mu_{t,i} = \mu_{t|t-1,i} + a_i \delta_m, \quad \sigma_{t,i}^2 = \sigma_{t|t-1,i}^2 + a_i^2 \delta_v, \quad a_i \triangleq \frac{x_{t,i} \sigma_{t|t-1,i}^2}{\sum_j x_{t,j}^2 \sigma_{t|t-1,i}^2}$$

소규모 데이터를 이용한 분석

- 타이타닉 탑승자들의 여러 특성에 따른 생존 여부를 나타내는 889건의 데이터를 800건의 훈련 데이터와 나머지 89건을 테스트 데이터로 나누고, 아래 3개 방법을 이용한 예측 성능을 비교
 - 최대우도 추정(MLE)
 - 확률적 경사 하강법(SGD)
 - 추정된 밀도 필터링(ADF)

	TP	FP	FN	TN	Accu	Prec	Recall	F1-Score	$logloss^1$
MLE	24	9	5	41	0.843	0.727	0.826	0.774	0.423
SGD	22	11	6	50	0.809	0.667	0.786	0.721	0.411
ADF	21	12	7	49	0.787	0.636	0.750	0.688	0.437

1)
$$logloss = -\frac{1}{N} \sum_{i=1}^{N} (y_i \log(p_i) + (1 - y_i) \log(1 - p_i))$$

◆ロ ト ◆ 個 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

대규모 데이터를 이용한 분석

- 사례 분석을 위해 Criteo에서 데이터 분석 경연을 위해 공개한 4천 5백만건 상당의 온라인 광고 데이터 사용
 - 데이터는 웹사이트 방문자가 해당 광고를 클릭 했으냐 혹은 하지
 않았느냐를 나타내는 이항 반응변수와 광고의 특성을 나타내는 39
 개의 설명변수로 구성
 - 각 설명변수는 범주형으로서 각 변수의 범주는 500개 이상이고 점차 새로운 범주가 등장

Training data size: 10 ³ , Test data size: 10 ³								
	Accu	\mathbf{Prec}	Recall	F1-Score	$logloss^1$	exec time(sec)		
SGD	0.716	0.380	0.526	0.441	0.570	0.308		
ADF	0.702	0.343	0.437	0.384	0.570	0.461		

대규모 데이터를 이용한 분석

Training data size: 10 ⁵ , Test data size: 10 ⁵								
	Accu	\mathbf{Prec}	Recall	F1-Score	$logloss^1$	exec time(sec)		
SGD	0.710	0.460	0.674	0.547	0.564	22.602		
ADF	0.699	0.449	0.690	0.544	0.575	30.981		

Train	ing data	size: 10	$0', { m Test } { m d} { m d}$			
	Accu	ccu Prec Recall		F1-Score	$logloss^1$	exec time(sec)
SGD	0.712	0.460	0.707	0.557	0.560	2148.999
ADF	0.713	0.461	0.709	0.558	0.559	2756.530

- 데이터 크기가 작을 경우(10³) SGD가 다소 나은 예측 성능을 보임.
- 데이터 크기가 커질수록 두 모형의 성능 차이는 줄어들고 ADF가 다소 나은 성능을 보임
- 실행 속도는 3가지 데이터 크기(10^3 , 10^5 , 10^7)에서 모두 SGD가 빠르나, 그 차이는 44%, 37%, 28%로 데이터 크기가 커질수록 줄어듬.

맺음말

- 多 범주의 多 변수 데이터 분석에 있어서 해싱을 이용한 가변수 코딩의 유용성 확인
- 온라인 방식의 적합 방법의 성능이 배치 방식에 비해 크게 떨어지지 않음.
- 대규모 데이터에 대해서 '근사 방법을 이용한 베이지안 방법론'이 충분히 좋은 속도와 성능을 보임
- 확률적 경사하강법에서는 모수별 step size의 초기값, 추정된 밀도 필터링에서는 모수별 초기 분산의 초기값에 예측 성능이 크게 영향을 받으나 데이터 크기가 커 질수록 그 영향은 줄어듬.
- 변수 선택이나 변수간 교호작용 등 추후 고려해볼 것들이 있음.

감사합니다.