Homework for Math 351-003

Team Homework: Due Monday, March 18

Definition: Let $(a_n)_{n=m}^{\infty}$ be a sequence indexed by a set $\{n \in \mathbf{Z} \mid n \geq m\}$ of consecutive integers. If $n \geq m$, one defines the **partial sum**

$$s_n = a_m + a_{m+1} + \dots + a_n.$$

The associated **infinite series** is the expression $\sum_{n=m}^{\infty} a_n$. If the sequence $(s_n)_{n=m}^{\infty}$ of partial sums converges to $s \in \mathbb{R}$, one writes

$$\sum_{n=m}^{\infty} a_n = s$$

and says that the infinite series $\sum_{n=m}^{\infty} a_n$ converges to s.

1. Prove that if $\sum_{n=m}^{\infty} a_n = s$ and $\sum_{n=m}^{\infty} b_n = t$, then

$$\sum_{n=m}^{\infty} (a_n + b_n) = s + t.$$

(Your proof should use the definition of partial sums above, and not rely on facts about series that you know from previous courses.)

- 2. a) Prove using the ϵ - δ definition of continuity that the function $g : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ given by $g(x) = \frac{1}{x}$ is continuous at $x_0 = 3$.
 - b) Let $f: \mathbb{R} \to \mathbb{R}$ be defined so that $f(x) = 1 x^2$ if $x \ge 0$ and f(x) = -x if x < 0. Prove using the $\epsilon - \delta$ definition of continuity that f is not continuous at 0.
- 3. Prove using the ϵ - δ definition of continuity that if $f: \mathbf{D} \to \mathbb{R}$ and $g: \mathbf{D} \to \mathbb{R}$ are both continuous at x_0 , then f+g is continuous at x_0 .
- 4. **Definition:** Suppose $f: D \to \mathbb{R}$ is a function, $a \in \mathbb{R}$ and that there exists $\beta > 0$ such that D contains $(a \beta, a) \cup (a, a + \beta)$. We say that

$$\lim_{x \to a} f(x) = L$$

if given any sequence (x_n) with values in $D \setminus \{a\}$ such that $\lim x_n = a$ we have $\lim f(x_n) = L$.

- (a) Describe the domain of $\frac{x^2-4}{x-2}$ and prove that $\lim_{x\to 2} \frac{x^2-4}{x-2} = 4$.
- (b) Prove that if $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ are functions, $a \in D$, $\lim_{x \to a} f(x) = L$, and $\lim_{x \to a} g(x) = M$, then $\lim_{x \to a} (f+g)(x) = L + M$.

1