Lemma 4.1 Let P be a process of the asynchronous π -calculus. Assume that P can make two transitions $P \xrightarrow{\alpha_s} Q$ and $P \xrightarrow{\alpha_r} Q'$, where α_s is a send action while α_r is a receive action. Then there exists a process R such that $Q \xrightarrow{\alpha_r} R$ and $Q' \xrightarrow{\alpha_s} R$.

Consider, for example:

$$P_0 \mid P_1 \Leftarrow c_0! \langle \rangle.o! \langle c_0 \rangle + c_1?().o! \langle c_1 \rangle \mid c_1! \langle \rangle.o! \langle c_1 \rangle + c_0?().o! \langle c_0 \rangle$$