Write your name here			
Surname		Other names	
Pearson Edexcel International Advanced Level	Centre Number		Candidate Number
Physics Advanced Unit 5: Physics from	Creation t	o Colla	ıpse
Thursday 19 June 2014 – M Time: 1 hour 35 minutes	lorning		Paper Reference WPH05/01
You do not need any other ma	aterials.		Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 2 9 2 9 A 0 1 2 4

Turn over ▶

SECTION A

Answer ALL questions.

For questions 1–10, in Section A, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

1	A sample of gas is made of a mixture of nitrogen and oxygen. At a given temperature the average molecular kinetic energy is
	☑ A the same for molecules of both gases.
	B greater for nitrogen molecules.
	C greater for oxygen molecules.
	D dependent upon the amount of each gas.
	(Total for Question 1 = 1 mark)
2	A person stands on the surface of the Earth.
	The gravitational force between the person and the Earth does not depend on
	■ A the mass of the person.
	B the mass of the Earth.
	C the rate of rotation of the Earth.
	D the position of the person.
	(Total for Question 2 = 1 mark)
3	Trigonometric parallax can only be used to determine distances to
	■ A nearby stars.
	■ B distant stars.
	C nearby galaxies.
	D distant galaxies.
	(Total for Question 3 = 1 mark)

1	A system is made to oscillate by a driver force. Which of the following conditions must be met for resonance of the system to occur?
	Which of the following conditions must be met for resonance of the system to occur?
	· · · · · · · · · · · · · · · · · · ·
	☑ A The driver force must be large.
	■ B The frequency of the driver must equal the natural frequency of the system.
	C The initial amplitude of the system must be small.
	■ D The system must have no damping.
	(Total for Question 4 = 1 mark)
5 1	Internal energy of a system is the
	■ A sum of the molecular kinetic and potential energies.
	■ B molecular kinetic energy alone.
	C molecular potential energy alone.
	■ D difference between the molecular kinetic and potential energies.
	(Total for Question 5 = 1 mark)

6 The graph shows how the acceleration varies with time for an object undergoing simple harmonic motion.

Which of the following graphs, A, B, C or D, shows how the displacement of the object varies with time?

- \times A
- \blacksquare B
- \mathbf{K} C
- \square D

(Total for Question 6 = 1 mark)

7	Dark energy appears to be increasing the rate at which the universe expands.				
	As a result it is	more likely that the	universe is		
	A closed.				
	B open.				
	C infinite i	n size.			
	D younger	than we thought.			
3		undergo simple har	rmonic motion which	(Total for Question 7 = 1 mark) of these energies must remain	
	For a system to constant?			of these energies must remain	
	constant?	total energy		,	
}		total energy		of these energies must remain	
3	constant?	total energy		of these energies must remain	
3	constant? ■ A all of the ■ B kinetic e	total energy		of these energies must remain	
}	Constant?✓ A all of the✓ B kinetic e✓ C potential	total energy ese energies energy only		of these energies must remain	

Questions 9 and 10 refer to the Hertzsprung-Russell diagram below.

- 9 Which letter, A, B, C or D, indicates the region where a red giant star would be shown?
 - \mathbf{X} A
 - \boxtimes B
 - \boxtimes C
 - \square D

(Total for Question 9 = 1 mark)

- 10 Which letter, A, B, C or D, indicates the region where a main sequence star would be shown?
 - \boxtimes A
 - \boxtimes B
 - \square C
 - \square D

(Total for Question 10 = 1 mark)

TOTAL FOR SECTION A = 10 MARKS

SECTION B

Answer ALL questions in the spaces provided.

11 The graph shows how the emissive power varies with wavelength for a star of surface temperature 5500 K.

On the same axes sketch graphs to show how the emissive power varies with wavelength for stars with surface temperatures of 5000 K and 6000 K. Label each graph clearly.

(3)

(Total for Question 11 = 3 marks)

		,			
12	In October 2012, Felix Baumgartner completed his world record free-fall attemption jumping from just above the atmosphere from a height of 36.6 km.	ot,			
	(a) At the surface of the Earth the gravitational field strength has a magnitude o 9.81 N kg ⁻¹ . Calculate the magnitude of the gravitational field strength at th position from which Baumgartner jumped.				
	Earth radius = 6400 km	(2)			
		(3)			
	Gravitational field strength =				
	(b) The Earth is represented by the shaded circle in the diagram below. Add to the				
	diagram to indicate the gravitational field around the Earth.	(2)			

the distance of the jur	•			(2)
				()
		(Total	for Question 12 =	= 7 marks)
		(10tai	101 Question 12	/ marks)

_	an outdoor swimming pool is heated using an electric heater.	
(a	a) The swimming pool contains 1.6×10^4 kg of water at a temperature of	f 12 °C.
	Calculate how much energy an electric heater must supply to raise the the water to 20 °C. State any assumption that you have made.	
	specific heat capacity of water = $4200 \text{ J kg}^{-1} \text{ K}^{-1}$	
		(3)
	Energy =	·
ssur	mption	
	IIIDUOII	
	IIIption	
(b	b) The electric heater runs from a 230 V supply and takes 30 hours to su thermal energy.	pply 0.55 GJ of
(b	b) The electric heater runs from a 230 V supply and takes 30 hours to su	
(b	The electric heater runs from a 230 V supply and takes 30 hours to su thermal energy.	pply 0.55 GJ of
(b	The electric heater runs from a 230 V supply and takes 30 hours to su thermal energy.	
(b	The electric heater runs from a 230 V supply and takes 30 hours to su thermal energy.	
(b	The electric heater runs from a 230 V supply and takes 30 hours to su thermal energy.	
(b	The electric heater runs from a 230 V supply and takes 30 hours to su thermal energy.	
(b	The electric heater runs from a 230 V supply and takes 30 hours to su thermal energy. Calculate the current in the heater.	

a) Ca	culate the wavelength 1 at which need nower emission from Provine ('antauri
	culate the wavelength λ_{\max} at which peak power emission from Proxima Curs.	entauri
		(2)
) =	
(b) Tb	$\lambda_{\rm max} =$	
	e radius of Proxima Centauri is estimated to be 3.2×10^6 m.	
(1)	Show that its luminosity is about 6×10^{20} W.	(2)
(ii)	When measured on the surface of the Earth the radiation flux from the St $1.38 \times 10^3 \ W \ m^{-2}$.	ın is
		· 1
	At a point in space the radiation flux from Proxima Centauri also has this	magnitude.
	Calculate the distance of this point from Proxima Centauri.	(2)
	Distance	
	(Total for Question 14	= 6 marks)

15 The rings of Saturn consist of countless small pieces of ice and rock orbiting the planet. The particles range in size from a few centimetres to a few metres.

(a) When the rings are observed from the Earth, sunlight reflected from X is found to have slightly longer wavelengths than sunlight reflected from Y.

Suggest a		C	41	1	, •
Siloopet a	reacon	tor	thece	Ohgert	/ations
Duggest a.	I Cason	IUI	uicsc	OUSCI V	anons.

(2)

(i) Calculate the time in hours	s the rock takes to complete one orbit.	
(1) Carearate the time in nour	o the rock takes to complete one oron.	(3)
	Time for one orbit =	1
(ii) By considering the gravita	ational force acting on this orbiting rock calcu	ılate a
value for the mass of Satur		
		(3)
	Mass of Saturn =	
	(Total for Question 1	5 = 8 marks)
	(Total for Question)	.c o marks)

16 In one type of fission reactor the coolant is a liquid metal alloy of sodium and potassium. The sodium absorbs neutrons from the reactor core and becomes the isotope sodium-24. Sodium-24 emits both beta and gamma radiation.

*(a) State what is meant by nuclear fission and explain why energy is released during fission of a nucleus such as uranium.	the
nssion of a nucleus such as uranium.	(3)

(b) A sample of coolant from the reactor contains 1.2×10^{13} nuclei of sodium-24. Calculate the activity of this sample when it is first removed from the reactor. decay constant of sodium-24 = 1.3×10^{-5} s ⁻¹	(2)
(c) Shielding is placed around the core of the reactor.	
State one physical property this shielding must have and name the material that is	
usually used.	(2)
Property	
Material	
(d) Many governments are funding research into replacing fission reactors with fusion reactors. Suggest why.	(2)
(Total for Question 16 = 9 ms	arks)

Tennis balls used in tournaments are filled with nitrogen gas and have a mass of 57.0 g. These balls are tested by dropping them from rest through a vertical distance of 2.54 m to check the bounce height.				
(a) Calculate the kinetic energy of one of these balls just before impact with the ground.				
		Kinetic energy =		
b) During the impact with the ball increase.	he ground, the pressure a	nd temperature of the g	as inside the	
The table gives values of ball before the test and a ground.	-	· ·		
	Pressure of gas / kPa	Volume of gas / cm ³	Temperature / °C	
Before ball is dropped	182	107	20	
Ball stationary during impact with the ground	197	101		
*(i) Using ideas about mo	olecules and momentum,	explain why the pressu	re of the gas	
increases.			(4)	

()	Calculate the temperature of the gas inside the tennis ball at the instant the tennis ball is stationary during impact with the ground.
	Temperature =
(iii)	Show that the number of nitrogen molecules inside the tennis ball is about 5×10^{21} and hence find the change in total kinetic energy of the nitrogen molecules during the impact (4)
	Change in total kinetic energy =
(iv)	Explain how the change in total kinetic energy will affect the bounce height of the tennis ball.
	(2)
	(Total for Question 17 = 14 marks)

18	The element polonium was discovered by Marie and Pierre Curie in 1898 whilst they were investigating the radioactive substance pitchblende. Polonium is an unstable element and decays by alpha emission.	
	(a) The decay of polonium is said to be random and spontaneous.	
	Explain what is meant by a decay that is	
	(i) random	
		(1)
	(ii) spontaneous.	(1)
	(b) A particular isotope of polonium decays to lead.	
	(i) Complete the nuclear equation representing this decay.	
		(2)
	$_{84}\text{Po} \rightarrow ^{206}\text{Pb} + ^{4}\alpha$	
	(ii) In this decay the α -particle is emitted with a kinetic energy of 8.50×10^{-13} J.	
	Show that the initial speed of the α -particle is about 2×10^7 m s ⁻¹ .	
	alpha particle mass = $6.64 \times 10^{-27} \text{ kg}$	
		(2)

(iii) The diagram shows the products of this decay. $2 \times 10^7 \, \text{m s}^{-1}$ Pb (1) Explain why the lead nucleus recoils during the decay. **(2)** (2) Calculate the speed at which the lead nucleus begins to recoil. **(2)** Speed =

(iv) Explain why most of the energy released in this decay is transferred to the alpha	particle. (2)
(c) Polonium has been used as an energy source for thermoelectric cells.	
This isotope of polonium has a decay constant of $5.0 \times 10^{-3} \text{ day}^{-1}$. A sample of polonium, with mass 0.50 g , releases energy at a rate of about 70 W.	
(i) The activity of the sample is 8.1×10^7 MBq and the α -particle is emitted with a kinetic energy of 8.50×10^{-13} J.	
Show that this sample releases energy at a rate of about 70 W.	(2)
(ii) This sample of polonium would not be suitable to provide energy for a period of several years.	······································
Explain why, using a calculation in your answer.	(3)
(Total for Question 18 = 17 marks)	
TOTAL FOR SECTION B = 70 MARKS	

TOTAL FOR PAPER = 80 MARKS

List of data, formulae and relationships

 $g = 9.81 \text{ m s}^{-2}$ Acceleration of free fall (close to Earth's surface)

 $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$ Boltzmann constant

Coulomb's law constant $k = 1/4\pi\varepsilon_0$

 $= 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$

 $e = -1.60 \times 10^{-19} \,\mathrm{C}$ Electron charge

 $m_{a} = 9.11 \times 10^{-31} \text{kg}$ Electron mass

 $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$ Electronvolt

 $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ Gravitational constant

Gravitational field strength $g = 9.81 \text{ N kg}^{-1}$ (close to Earth's surface)

 $\epsilon_{n} = 8.85 \times 10^{-12} \; F \; m^{-1}$ Permittivity of free space

Planck constant $h = 6.63 \times 10^{-34} \,\mathrm{J s}$

Proton mass $m_p = 1.67 \times 10^{-27} \text{ kg}$

 $c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$ Speed of light in a vacuum

 $\sigma = 5.67 \times 10^{-8} \ W \ m^{-2} \ K^{-4}$ Stefan-Boltzmann constant

Unified atomic mass unit $u = 1.66 \times 10^{-27} \text{ kg}$

Unit 1

Mechanics

Kinematic equations of motion v = u + at

 $s = ut + \frac{1}{2}at^2$

 $v^2 = u^2 + 2as$

Forces $\Sigma F = ma$

g = F/m

W = mg

 $\Delta W = F \Delta s$ Work and energy

 $E_{\nu} = \frac{1}{2}mv^2$

 $\Delta E_{\text{grav}} = mg\Delta h$

Materials

Stokes' law $F = 6\pi \eta r v$

 $F = k\Delta x$ Hooke's law

 $\rho = m/V$ Density

Pressure p = F/A

Elastic strain energy

Young modulus $E = \sigma/\varepsilon$ where

> Stress $\sigma = F/A$ Strain $\varepsilon = \Delta x/x$

 $E_{\rm al} = \frac{1}{2}F\Delta x$

Unit 2

Waves

Wave speed
$$v = f\lambda$$

Refractive index
$$_{1}\mu_{2} = \sin i / \sin r = v_{1}/v_{2}$$

Electricity

Potential difference
$$V = W/Q$$

Resistance
$$R = V/I$$

Electrical power, energy and
$$P = VI$$
 efficiency $P = I^2R$

$$P = V^2/R$$

$$W = VIt$$

% efficiency =
$$\frac{\text{useful energy output}}{\text{total energy input}} \times 100$$

% efficiency =
$$\frac{\text{useful power output}}{\text{total power input}} \times 100$$

Resistivity
$$R = \rho l/A$$

Current
$$I = \Delta Q/\Delta t$$

$$I = nqvA$$

Resistors in series
$$R = R_1 + R_2 + R_3$$

Resistors in parallel
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Quantum physics

Photon model
$$E = hf$$

Einstein's photoelectric
$$hf = \phi + \frac{1}{2}mv_{\text{max}}^2$$

Unit 4

Mechanics

Momentum p = mv

Kinetic energy of a

non-relativistic particle $E_k = p^2/2m$

Motion in a circle $v = \omega r$

 $T=2\pi/\omega$

 $F = ma = mv^2/r$

 $a = v^2/r$

 $a = r\omega^2$

Fields

Coulomb's law $F = kQ_1Q_2/r^2$ where $k = 1/4\pi\epsilon_0$

Electric field E = F/Q

 $E = kQ/r^2$

E = V/d

Capacitance C = Q/V

Energy stored in capacitor $W = \frac{1}{2}QV$

Capacitor discharge $Q = Q_0 e^{-t/RC}$

In a magnetic field $F = BIl \sin \theta$

 $F = Bqv \sin \theta$

r = p/BQ

Faraday's and Lenz's Laws $\varepsilon = -d(N\phi)/dt$

Particle physics

Mass-energy $\Delta E = c^2 \Delta m$

de Broglie wavelength $\lambda = h/p$

Unit 5

Energy and matter

Heating $\Delta E = mc\Delta\theta$

Molecular kinetic theory $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$

Ideal gas equation pV = NkT

Nuclear Physics

Radioactive decay $dN/dt = -\lambda N$

 $\lambda = \ln 2/t_{1/2}$ $N = N_0 e^{-\lambda t}$

Mechanics

Simple harmonic motion $a = -\omega^2 x$

 $a = -A\omega^2 \cos \omega t$ $v = -A\omega \sin \omega t$ $x = A\cos \omega t$ $T = 1/f = 2\pi/\omega$

Gravitational force $F = Gm_1m_2/r^2$

Observing the universe

Radiant energy flux $F = L/4\pi d^2$

Stefan-Boltzmann law $L = \sigma T^4 A$

 $L = 4\pi r^2 \sigma T^4$

Wien's Law $\lambda_{\max} T = 2.898 \times 10^{-3} \text{ m K}$

Redshift of electromagnetic

radiation $z = \Delta \lambda / \lambda \approx \Delta f / f \approx v / c$

Cosmological expansion $v = H_0 d$