Finite Difference Method

Anh Ha LE

University of Sciences

April 18, 2025

Outline

Introduction

Elliptic Equation on 1D

Laplace equation

Numerical Scheme

Experiment tests

Norms

Local Truncation Error

Global Error

Stability

Consistency

Convergence

Stability in L_h^2 norm

Other way to prove the convergence

Math Modeling and Simulation of Physical Processes

- Describe the physical phenomenon
- Model the physical phenomenon to become mathematical equations(PDE)
- Simulate the mathematic equations (discrete solution)
- Compare the discrete solution and experiment result

Some kind of Partial Differential Equation (PDE)

- ► Elliptic equation
 - Diffusion equation
 - ► Poisson's equation
- Parabolic equation
 - Heat equations

Laplace equation

We consider the partial differential equation on (0,1)[

$$\begin{cases}
-u_{xx}(x) &= f(x) & \text{for all } x \in (0,1) \\
u(0) &= 0 \\
u(1) &= 0
\end{cases}$$
(1)

To find the dicrete solution of this equation, there are many methods, we will choose a method which is the simplest method, it is the finite difference scheme.

Mesh

Let us consider a uniform partion with N+1 points x_i for all $i=0,1,2,\cdots,N$ (see figure). We have space step is $\Delta x=\frac{1}{N}$, then

$$x_i = i\Delta x$$

Our purpose is the value of the function at points x_i

$$u_i \simeq u(x_i)$$
 for all $i = 0, 1, 2, \cdots, N$

Approximation of derivatives

$$\frac{\partial u}{\partial x}(x_i) = \frac{u(x_{i+1}) - u(x_i)}{\Delta x} \text{ forward difference}$$

$$\frac{\partial u}{\partial x}(x_i) = \frac{u(x_i) - u(x_{i-1})}{\Delta x} \text{ backward difference}$$

$$\frac{\partial u}{\partial x}(x_i) = \frac{u(x_{i+1}) - u(x_{i-1})}{2\Delta x} \text{ central difference}$$

Approximation of derivatives (Cont.)

Use the Taylor series expansion at x_i

$$u(x_{i+1}) = u(x_i) + \frac{\partial u}{\partial x}(x_i)(x_{i+1} - x_i) + \frac{\frac{\partial^2 u}{\partial x^2}(x_i)}{2!}(x_{i+1} - x_i)^2 + \frac{\frac{\partial^3 u}{\partial x^3}(x_i)}{3!}(x_{i+1} - x_i)^3 + 0((x_{i+1} - x_i)^4)$$

Or

$$u(x_{i+1}) = u(x_i) + \frac{\partial u}{\partial x}(x_i)\Delta x + \frac{\frac{\partial^2 u}{\partial x^2}(x_i)}{2!}\Delta^2 x + \frac{\frac{\partial^3 u}{\partial x^3}(x_i)}{3!}\Delta^3 x + O(\Delta^4 x)$$
(2)

We can approximate the derivative $\frac{\partial u}{\partial x}(x_i)$ that

$$\frac{\partial u}{\partial x}(x_i) = \frac{u(x_{i+1}) - u(x_i)}{\Delta x} + 0(\Delta x)$$

Approximation of derivatives

It is similar, we obtain

$$u(x_{i-1}) = u(x_i) - \frac{\partial u}{\partial x}(x_i)\Delta x + \frac{\frac{\partial^2 u}{\partial x^2}(x_i)}{2!}\Delta^2 x - \frac{\frac{\partial^3 u}{\partial x^3}(x_i)}{3!}\Delta^3 x + 0(\Delta^4 x)$$
(3)

We can approximate the derivative $\frac{\partial u}{\partial x}(x_i)$ that

$$\frac{\partial u}{\partial x}(x_i) = \frac{u(x_i) - u(x_{i-1})}{\Delta x} + O(\Delta x)$$

Let (2)-(3), we have

$$u(x_{i-1}) - u(x_{i-1}) = 2\frac{\partial u}{\partial x}(x_i)\Delta x + 2\frac{\frac{\partial^2 u}{\partial x^3}(x_i)}{3!}\Delta^3 x + 0(\Delta^4 x)$$

We can also approximate the derivative $\frac{\partial u}{\partial x}(x_i)$ that

$$\frac{\partial u}{\partial x}(x_i) = \frac{u(x_{i+1}) - u(x_{i-1})}{2\Delta x} + 0(\Delta^2 x)$$

Approximation of derivative at boundary

We use the Taylor series expansion at x_0

$$u(x_1) = u(x_0) + \frac{\partial u}{\partial x}(x_0)(x_1 - x_0) + \frac{\frac{\partial^2 u}{\partial x^2}}{2!}(x_1 - x_0)^2 + 0((x_1 - x_0)^3)$$

Or

$$u(x_1) = u(x_0) + \frac{\partial u}{\partial x}(x_0)\Delta x + \frac{\frac{\partial^2 u}{\partial x^2}}{2!}\Delta^2 x + O(\Delta^3 x)$$
 (4)

And

$$u(x_2) = u(x_0) + 2\frac{\partial u}{\partial x}(x_0)\Delta x + 2\frac{\partial^2 u}{\partial x^2}\Delta^2 x + 0(\Delta^3 x)$$
 (5)

Approximation of the derivatives at boundary (Cont.)

From (4), we have

$$\frac{\partial u}{\partial x}(x_0) = \frac{u(x_1) - u(x_0)}{\Delta x} + O(\Delta x) \tag{6}$$

Combining (4) and (5), there holds

$$u(x_2) - 4u(x_1) = -3u(x_0) - 2\frac{\partial u}{\partial x}(x_0) + 0(\Delta^3 x)$$

or

$$\frac{\partial u}{\partial x}(x_0) = \frac{-3u(x_0) + 4u(x_1) - u(x_2)}{2\Delta x} + 0(\Delta^2 x) \tag{7}$$

Approximation of the second order derivatives

Using again the Taylor series expansion, there holds

$$u(x_{i+1}) = u(x_i) + \frac{\partial u}{\partial x}(x_i)\Delta x + \frac{\frac{\partial^2 u}{\partial x^2}(x_i)}{2!}\Delta^2 x + \frac{\frac{\partial^3 u}{\partial x^3}(x_i)}{3!}\Delta^3 x + O(\Delta^4 x)$$

and

$$u(x_{i-1}) = u(x_i) - \frac{\partial u}{\partial x}(x_i)\Delta x + \frac{\frac{\partial^2 u}{\partial x^2}(x_i)}{2!}\Delta^2 x - \frac{\frac{\partial^3 u}{\partial x^3}(x_i)}{3!}\Delta^3 x + O(\Delta^4 x)$$

Adding two previous approximate equations side by side, we have

$$u(x_{i+1}) + u(x_{i-1}) = 2u(x_i) + \frac{\partial^2 u}{\partial x^2}(x_i)\Delta^2 x + 0(\Delta^4 x)$$
 (8)

or

$$\frac{\partial^2 u}{\partial x^2}(x_i) = \frac{u(x_{i+1}) - 2u(x_i) + u(x_{i-1})}{\Delta^2 x} + 0(\Delta^2 x)$$
(9)

Discretizing Laplace equation

From the first equation of (1), we have

$$-\frac{\partial^2 u}{\partial x^2}(x_i) = f(x_i) \quad \text{for all } i = \overline{1, N-1}$$

Using the approximation in (9), there holds for all $i = \overline{1, N-1}$

$$-\frac{u(x_{i+1}) - 2u(x_i) + u(x_{i-1})}{\Delta^2 x} + 0(\Delta^2 x) = f_i$$

where $f_i = f(x_i)$ for i = 1, ..., N - 1. Or we can write

$$-\frac{u(x_{i+1})-2u(x_i)+u(x_{i-1})}{\Delta^2x}\approx f_i$$

Then we give the following scheme

$$-\frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta^2 x} = f_i, \tag{10}$$

Dicrete equations

Using the Dirichlet boundary condition, we obtain

$$u_0 = u(x_0) = 0$$
 and $u(x_N) = u_N = 0$

Linear system for the scheme

$$\begin{cases} i = 1, \frac{2u_1 - u_2}{\Delta^2 x} & = f_1 \\ i = 2, \frac{-u_1 + 2u_2 - u_3}{\Delta^2 x} & = f_2 \\ i = 3, \frac{-u_2 + 2u_3 - u_4}{\Delta^2 x} & = f_3 \\ & \dots \\ i = N - 2 & \frac{-u_{N-2} + 2u_{N-2} - u_{N-1}}{\Delta^2 x} & = f_{N-2} \\ i = N - 1, & \frac{-u_{N-2} + 2u_{N-1}}{\Delta^2 x} & = f_{N-1} \end{cases}$$

Matrix form AU = F, $A \in \mathbb{R}^N \times \mathbb{R}^N$, $U, F \in \mathbb{R}^N$.

$$A = \frac{1}{\Delta^2 x} \left[\begin{array}{ccccccc} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{array} \right]$$

$$U = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{N-2} \\ u_{N-1} \end{bmatrix} \qquad F = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_{N-2} \\ f_{N-1} \end{bmatrix}$$

The matrix A remains tridiagonal and symmetric positive definite

Other types of boundary condition

- Dirichlet Neumann Boundary Condition: $u(0) = \frac{\partial u}{\partial x}(1) = 0$.
 - ▶ Using the backward diffence at 1, it means that

$$\frac{\partial u}{\partial x}(1) = \frac{u_N - u_{N-1}}{\Delta x} = 0 \quad \Rightarrow u_{N-1} = u_N$$

Only changing the last equation in the linear system:

$$\frac{-u_{N-2} + u_{N-1}}{\Delta^2 x} = f_{N-1}$$

Other types of boundary condition

Then the linear system for the scheme

$$\begin{cases} i = 1, \frac{2u_1 - u_2}{\Delta^2 x} & = f_1 \\ i = 2, \frac{-u_1 + 2u_2 - u_3}{\Delta^2 x} & = f_2 \\ i = 3, \frac{-u_2 + 2u_3 - u_4}{\Delta^2 x} & = f_3 \\ & \dots \\ i = N - 2 & \frac{-u_{N-3} + 2u_{N-2} - u_{N-1}}{\Delta^2 x} & = f_{N-2} \\ i = N - 1, & \frac{-u_{N-2} + u_{N-1}}{\Delta^2 x} & = f_{N-1} \end{cases}$$

Using the second order approximation of the derivative at 1, it means that

$$\frac{\partial u}{\partial x}(1) = \frac{-3u_N + 4u_{N-1} - u_{N-2}}{2\Delta x} = 0$$

Implying

$$u_N = \frac{4u_{N-1} - u_{N-2}}{3}$$

Changing only the last equation in the linear system, the last equation becomes

$$\frac{-u_{N-2} + u_{N-1}}{\Delta^2 x} = \frac{3}{2} f_{N-1}$$

Then the linear system for the scheme

$$\begin{cases} i = 1, \frac{2u_1 - u_2}{\Delta^2 x} & = f_1 \\ i = 2, \frac{-u_1 + 2u_2 - u_3}{\Delta^2 x} & = f_2 \\ i = 3, \frac{-u_2 + 2u_3 - u_4}{\Delta^2 x} & = f_3 \\ & \dots \\ i = N - 2 & \frac{-u_{N-3} + 2u_{N-2} - u_{N-1}}{\Delta^2 x} & = f_{N-2} \\ i = N - 1, & \frac{-u_{N-2} + u_{N-1}}{\Delta^2 x} & = \frac{3}{2} f_{N-1} \end{cases}$$

Using the central diffrence at 1, it means that

$$\frac{\partial u}{\partial x}(1) = \frac{u_{N+1} - u_{N-1}}{2\Delta x}$$

Implying

$$u_{N+1}=u_{N-1}$$

We discretize additionally at point $x_N = 1$, there holds

$$\frac{-u_{N-1}+2u_N-u_{N+1}}{\Delta^2x}=f_N$$

where $f_N = f(x_N)$. Combining with discrete boundary condition, we have

$$\frac{-u_{N-1}+u_N}{\Lambda^2x}=\frac{f_N}{2}$$

Then the linear system for the scheme

$$\begin{cases} i = 1, \frac{2u_1 - u_2}{\Delta^2 x} & = f_1 \\ i = 2, \frac{-u_1 + 2u_2 - u_3}{\Delta^2 x} & = f_2 \\ i = 3, \frac{-u_2 + 2u_3 - u_4}{\Delta^2 x} & = f_3 \\ & \cdots \\ i = N - 1 & \frac{-u_{N-2} + 2u_{N-1} - u_N}{\Delta^2 x} & = f_{N-1} \\ i = N, & \frac{-u_{N-1} + u_N}{\Delta^2 x} & = \frac{1}{2} f_N \end{cases}$$

■ Non-homogeneous Dirichlet Boundary Condition:

$$u(0) = \alpha, \quad u(1) = \beta.$$

The first and last equations will be changed in the linear system, it means that

$$u_0 = \alpha \Rightarrow \frac{2u_1 - u_2}{\Delta^2 x} = f_1 + \frac{\alpha}{\Delta^2 x},$$

$$u_N = \beta \Rightarrow \frac{-u_{N-2} + 2u_{N-1}}{\Delta^2 x} = f_{N-1} + \frac{\beta}{\Delta^2 x}$$

Then the linear system for the scheme

$$\begin{cases} i = 1, \frac{2u_1 - u_2}{\Delta^2 x} & = f_1 + \frac{\alpha}{\Delta^2 x} \\ i = 2, \frac{-u_1 + 2u_2 - u_3}{\Delta^2 x} & = f_2 \\ i = 3, \frac{-u_2 + 2u_3 - u_4}{\Delta^2 x} & = f_3 \\ & \dots \\ i = N - 2 & \frac{-u_{N-3} + 2u_{N-2} - u_{N-1}}{\Delta^2 x} & = f_{N-2} \\ i = N - 1, & \frac{-u_{N-2} + 2u_{N-1}}{\Delta^2 x} & = f_{N-1} + \frac{\beta}{\Delta^2 x} \end{cases}$$

Experiment test

We set up with the following exact solution u(x) and function f(x)

$$f(x) = 12x^2 - 6x$$
$$u(x) = x^3(1 - x)$$

Elliptic Equation on 1D
Experiment tests

Experiment test

Experiment test

Norms

└ Norms

We definite

$$U = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N \end{bmatrix} \text{ and } \widehat{U} = \begin{bmatrix} u(x_0) \\ u(x_1) \\ u(x_1) \\ \vdots \\ u(x_{N-1}) \\ u(x_N) \end{bmatrix}$$

and Error $E=U-\widehat{U}$ containt the errors at each grid point. To estimate the amplitude of error vector, we define some norms on it.

Norms

Given
$$V \in \mathbb{R}^{N+1}$$
, $V = (V_0, V_1, \cdots, V_N)^T$
$$\|V\|_{\infty,h} = \max_{0 \le i \le N} |V_i| \quad \text{(discrete L_h^∞)}$$

$$\|V\|_{1,h} = \sum_{i=0}^{N-1} |V_i|h \quad \text{(discrete L_h^1)}$$

$$\|V\|_{2,h}^2 = \sum_{i=0}^{N-1} |V_i|^2 h \quad \text{(discrete L_h^2)}$$

Local Truncation Error

We can replace discrete solution u_i by exact solution $u(x_i)$ in (10). In general, the exact solution won't satisfy this equation, which define τ_i

$$\tau_i = -\frac{1}{h^2}(u(x_{i-1}) - 2u(x_i) + u(x_{i+1})) - f(x_i) \text{ for all } i = 1, \dots, N-1$$
(11)

Using Taylor series, we get

$$\tau_i = -\left[u''(x_i) + \frac{1}{12}h^2u''''(x_i) + O(h^4)\right] - f(x_i)$$
 (12)

Using our original differential equation (1) this becomes

$$\tau_i = -\frac{1}{12}h^2u''''(x_i) - O(h^4) = O(h^2)$$

Global Error

We define τ to be the vector with component τ_i then

$$\tau = A\widehat{U} - F \tag{13}$$

also

$$A\widehat{U} = \tau + F \tag{14}$$

To obtain a relation between the local error τ and the global error $E=U-\widehat{U}$, we get

$$AE = -\tau \tag{15}$$

This is simply the matrix form of the system of equations

$$\frac{1}{h^2}(E_{i-1} - 2E_i + E_{i+1}) = -\tau_i \text{ for all } i \in [1, N-1]$$
 (16)

with the boundary conditions

$$E_0 = E_N = 0 \tag{17}$$

Let A^{-1} be the inverse of the matrix A. Then solving the system (15) gives

$$E = -A^{-1}\tau$$

and taking norms gives

$$||E|| = ||A^{-1}\tau|| \le ||A^{-1}|| ||\tau||$$
 (18)

We know that $\|\tau\| = O(h^2)$ and we are hoping the same will be true of $\|E\| = O(h^2)$. It is clear what we need for this to be true: we need $\|A^{-1}\|$ to be bounded by some constant independent of h as $h \to 0$:

$$||A^{-1}|| \le C$$
 for h sufficiently small

Stability

Then we will have

$$||E|| \le C||\tau|| \tag{19}$$

so ||E|| goes to zero at least as fast as $||\tau||$.

Definition

Suppose a finite difference method for Laplace equation gives a sequence of matrix equations of the form AU = F. We say that the method is stable if A^{-1} exists for all h sufficiently small (for $h < h_0$, say) and if there is a constant C, independent of h, such that

$$||A^{-1}|| \le C \text{ for all } h < h_0$$
 (20)

Consistency

We say that a method is consistent with the differential equation and boundary conditions if

$$\|\tau\| \to 0 \text{ as } h \to 0 \tag{21}$$

Convergence

A method is said to be convergent if $\|E\| \to 0$ as $h \to 0$. Combining the ideas introduced above we arrive at the conclusion that

$$consistency + stability \implies convergence$$
 (22)

This is easily proved by using (20) and (21) to obtain the bound

$$||E|| \le ||A^{-1}|| ||\tau|| \le C||\tau|| \to 0 \text{ as } h \to 0$$
 (23)

Stability in L^2 norm

Since the matrix A is symmetric, the L_h^2 -norm of A is equal to its spectral radius

$$||A||_{2,h} = \rho(A) = \max_{1 \le p \le N-1} \lambda_p$$
 (24)

where λ_p refers to the p^{th} eigenvalue of the matrix A. The matrix A^{-1} is also symmetric, and the eigenvalues of A^{-1} are simply the inverses of the eigenvalues of A, so

$$||A^{-1}||_{2,h} = \max_{1 \le p \le N-1} \lambda_p^{-1} = (\min_{1 \le p \le N-1} \lambda_p)^{-1}$$
 (25)

So all we need to do is compute the eigenvalues of A and show that they are bounded away from zero as $h \to 0$

Stability in L^2 norm

We will now focus on one particular value of $h = \frac{1}{N}$. Then the N-1 eigenvalues of A are given by

$$\lambda_p = \frac{2}{h^2} (1 - \cos(\pi ph)) \text{ for all } p = 1, \dots, N - 1$$
 (26)

The eigenvector u^p corresponding to p has components u^p for $j=1,\cdots, N-1$ given by

$$u_j^p = \sin(\pi p j h) \tag{27}$$

This can be verified by checking that $Au^p = \lambda_p u^p$. The j th component of the vector Au^p is

Stability in L^2 norm

$$(Au^{p})_{j} = -\frac{1}{h^{2}}(u_{j-1}^{p} - 2u_{j}^{p} + u_{j+1}^{p})$$

$$= -\frac{1}{h^{2}}(\sin(\pi p(j-1)h) - 2\sin(\pi pjh) + \sin(\pi p(j+1)h))$$

$$= -\frac{1}{h^{2}}(2\sin(\pi pjh)\cos(\pi ph) - 2\sin(\pi pjh))$$

$$= \lambda_{p}u_{j}^{p}$$

From (26), we see that the smallest eigenvalue of A is

$$\lambda_1 = \frac{2}{h^2} (1 - \cos(\pi h))$$

$$= \frac{2}{h^2} (\frac{1}{2} \pi^2 h^2 - \frac{1}{24} \pi^4 h^4 + O(h^6))$$

$$= \pi^2 + O(h^2)$$

Stability in L^2 norm

This is clearly bounded away from zero as $h \to 0$, so we see that the method is stable in the L_h^2 -norm. Moreover we get an error bound from this:

$$||E||_{2,h} \le ||A^{-1}||_{2,h}||\tau||_{2,h} \approx \frac{1}{\pi^2} ||\tau||_{2,h}$$
 (28)

Since
$$\tau_j \approx \frac{h^2}{12} u''''(x_j)$$
, we expect $\|\tau\|_{2,h} \approx \frac{h^2}{12} \|u''''\|_{2,h} = \frac{h^2}{12} \|f''\|_{2,h}$

we define discrete L_h^2 -norm

$$||u||_{2,h}^2 = \sum_{i=0}^{N-1} u_i^2 h$$

Multiplying (10) by u_i then sum over $i = \cdots, N-1$, we get

$$\sum_{i=1}^{N-1} \frac{(u_i - u_{i-1})u_i}{h^2} + \frac{(u_i - u_{i+1})u_i}{h^2} = \sum_{i=1}^{N-1} f_i u_i$$

$$\sum_{i=1}^{N-1} \frac{(u_i - u_{i-1})u_i}{h^2} + \sum_{i=1}^{N-1} \frac{(u_i - u_{i+1})u_i}{h^2} = \sum_{i=1}^{N-1} f_i u_i$$

We can change the index in the sum, we have

$$\sum_{i=0}^{N-2} \frac{(u_{i+1} - u_i)u_{i+1}}{h^2} + \sum_{i=1}^{N-1} \frac{(u_i - u_{i+1})u_i}{h^2} = \sum_{i=1}^{N-1} f_i u_i$$

$$\sum_{i=0}^{N-1} \frac{(u_{i+1} - u_i)u_{i+1}}{h^2} - \frac{(u_N - u_{N-1})u_N}{h^2} + \sum_{i=0}^{N-1} \frac{(u_i - u_{i+1})u_i}{h^2} - \frac{(u_0 - u_1)u_0}{h^2} = \sum_{i=1}^{N-1} f_i u_i$$

Sine $u_0 = u_N = 0$, then

$$\sum_{i=0}^{N-1} \frac{(u_{i+1} - u_i)u_{i+1}}{h^2} + \sum_{i=0}^{N-1} \frac{(u_i - u_{i+1})u_i}{h^2} = \sum_{i=1}^{N-1} f_i u_i$$

$$\sum_{i=0}^{N-1} \frac{(u_{i+1} - u_i)^2}{h^2} = \sum_{i=0}^{N-1} f_i u_i$$

We can write again

$$\sum_{i=0}^{N-1} (\delta_x^+ u)_i^2 h = \sum_{i=1}^{N-1} f_i u_i h,$$
 (29)

where

$$(\delta_x^+ u)_i = \frac{u_{i+1} - u_i}{h}$$

Let's define the discrete H_h^1 -norm

$$\|\delta_x^+\|_{2,h}^2 = \sum_{i=0}^{N-1} (\delta_x^+ u)_i^2 h$$

Applying Holder inequality, there holds

$$\sum_{i=1}^{N-1} f_i u_i h \le \left(\sum_{i=0}^{N-1} h f_i^2\right)^{1/2} \left(\sum_{i=0}^{N-1} h u_i^2\right)^{1/2} = \|f\|_{2,h} \|u\|_{2,h}$$

From (29), we get

$$\|\delta_x^+\|_{2,h}^2 \le \|f\|_{2,h} \|u\|_{2,h} \tag{30}$$

Lemma

There exists a constant positive C_{Ω} such that

$$||u||_{2,h} \leq C_{\Omega} ||\delta_x^+ u||_{2,h}$$

Proof: Since $u_0 = 0$ then

$$u_i = u_i - u_0 = (u_i - u_{i-1}) + \dots + (u_1 - u_0) = \sum_{j=0}^{i-1} (u_{j+1} - u_j)$$

= $\sum_{i=0}^{i-1} \frac{u_{j+1} - u_j}{h} h = \sum_{i=0}^{i-1} (\delta_x^+ u)_i . h$

Applying Holder inequality, there holds

$$u_i^2 \leq \sum_{j=0}^{i-1} h \sum_{j=0}^{i-1} (\delta_x^+ u)_j^2 h \leq N h \sum_{j=0}^{N-1} (\delta_x^+ u)_j^2 h = \|\delta_x^+ u\|_{2,h}^2$$

So

$$||u||_{2,h}^2 = \sum_{i=0}^{N-1} h u_i^2 \le \sum_{i=1}^{N-1} h ||\delta_x^+ u||_{2,h}^2 = h(N-1) ||\delta_x^+ u||_{2,h}^2 \le ||\delta_x^+ u||_{2,h}^2$$

We have completed the proof of the lemma. Using the lemma and (30), we get

$$\|\delta_{x}^{+}u\|_{2,h} \leq \|f\|_{2,h}$$

Consistency

Let L be the differential operator, \widehat{u} be a exact solution of the following equation:

$$L\widehat{u}(x) = f(x)$$
, for all $x \in \Omega$

Let L_h be the discrete differential operator of L, and $\{u_i\}_{i=0}^N$ be the discrete solution, we have

$$L_h u_i = f_i$$
 for all $i \in [1, N-1]$

Definition

A finite differential scheme is said to be consistent with the partial differential equation it present, if for any smooth solution u, the truncation error of the scheme:

$$\tau_i = L_h \widehat{u}(x_i) - f(x_i)$$
 for all $i \in [1, N-1]$

tends uniformly forward to zero when h tends to zero, that mean that

$$\lim_{h\to 0} \|\tau\|_{\infty,h} = 0$$

Lemma

Suppose $\hat{u} \in C^4(\Omega)$. Then, the numerical scheme in (10) is cosistent and second-order accuracy for the norm $\|\cdot\|_{\infty}$

Proof: We write again the definition L, L_h operators of our case:

$$L(\widehat{u})(x_i) = -\frac{\partial^2 \widehat{u}}{\partial x^2}(x_i)$$

$$L_h(\widehat{u})(x_i) = -\frac{\widehat{u}(x_{i-1}) - 2\widehat{u}(x_i) + \widehat{u}(x_{i+1})}{h^2}$$

By using the fact that

$$L(\widehat{u})(x_i) = -\frac{\partial^2 \widehat{u}}{\partial x^2}(x_i) = f(x_i)$$

We have

$$\tau_i = L_h(\widehat{u})(x_i) - f(x_i) = L_h(\widehat{u})(x_i) - L(\widehat{u})(x_i)$$

Using the defintion of L and L_h , there holds

$$\tau_i = -\frac{\widehat{u}(x_{i-1}) - 2\widehat{u}(x_i) + \widehat{u}(x_{i+1})}{h^2} + \frac{\partial^2 \widehat{u}}{\partial x^2}(x_i)$$

Using the Taylor series expansion respect x, there exists $\eta_i \in [x_{i-1}, x_{i+1}]$ such that

$$-\frac{\widehat{u}(x_{i-1})-2\widehat{u}(x_i)+\widehat{u}(x_{i+1})}{h^2}+\frac{\partial^2 \widehat{u}}{\partial x^2}(x_i)=\frac{-h^2}{12}\frac{\partial^4 \widehat{u}}{\partial x^4}(\eta_i)$$

we get

$$\tau_i = -\frac{h^2}{12} \frac{\partial^4 \widehat{u}}{\partial x^4} (\eta_i) = -\frac{h^2}{12} \frac{\partial^2 f}{\partial x^2} (\eta_i)$$

Thus,

$$\|\tau\|_{\infty,h} \leq \frac{h^2}{12} \|\frac{\partial^2 f}{\partial x^2}\|_{\infty}$$

and

$$\|\tau\|_{2,h} \le \frac{h^2}{12} \|\frac{\partial^2 f}{\partial x^2}\|_{2,h}$$

Convergence

Lemma

Let u be the exact solution and u_h be the discrete solution, there holds

$$\lim_{h\to 0}\|\delta_x^+(\widehat{u}-u)\|_{2,h}=0.$$

Proof: We have

$$\tau_i = L_h(\widehat{u})(x_i) - f(x_i) = L_h(\widehat{u})(x_i) - L_h(u)(x_i) = L_h(\widehat{u} - u)(x_i)$$

Using the proof of stability, we have

$$\|\delta_x^+(\widehat{u}-u)\|_{2,h} \le \|\tau\|_{2,h} \le \frac{h^2}{12} \|\frac{\partial f^2}{\partial x^2}\|_{2,h}$$