- 1. Assuming the elementary properties of the trigonometric functions show on the interval $(0, \pi/2)$ that the function $\tan(x) x$ is strictly increasing and $\frac{\sin(x)}{x}$ is strictly decreasing.
- 2. We first define limits at infinity.

Definition 0.1. Given a metric space Y, a point $L \in Y$ and $f : [0, \infty) \to Y$ has limit $L \in Y$ at infinity, written

$$\lim_{x \to \infty} f(x) = L,$$

if for every $\varepsilon > 0$ there is a C > 0 such that if x > C then $d_Y(f(x), L) < \varepsilon$.

Warning: This is now a definition you will be expected to know

Show that if $f:[0,\infty)\to Y$ is continuous and has a limit at infinity then f is uniformly continuous.

- 3. Let $f:[0,1] \to [0,1]$ be a continuous function. Show that f has a fixed point, i.e. there is a point $x \in [0,1]$ such that f(x) = x.
- 4. Formulate and prove a squeeze theorem for functions.
- 5. We start with the following definition

Definition 0.2. Let X and Y be metric spaces. We call a function $f: X \to Y$ Lipschitz continuous if there exists a K > 0 such that

$$d_Y(f(p), f(q)) \le K d_X(p, q)$$

for all $p, q \in X$.

Let U be an open interval of \mathbb{R} . Prove that if f is differentiable and $f': U \to \mathbb{R}$ is bounded, then f is Lipschitz continuous.