Chapitre 6.a: Proportions

Mathématiques - Cours

I. Proportion et pourcentage

1) Proportion d'une sous-population

Exemple:

Sur les 480 élèves inscrits en classe de 1ère, 108 d'entre eux ont choisi la filière STMG.

Figure 1: Premières

La population totale des élèves de 1ère, notée N, est égale à 480. C'est la population de référence. La sous-population des élèves de STMG, notée n, est égale à 108. La proportion d'élèves de STMG parmi tous les élèves de première, notée p, est :

$$p = \frac{n}{N} = \frac{108}{480} = \frac{9}{40} = 0,225$$

Cette proportion peut s'exprimer en pourcentage : p = 22,5%.

2) Pourcentage d'un nombre

Exemple:

Parmi les 480 élèves de 1ère, 15 % ont choisi la filière L. 15 % de 480 ont choisi la filière L, soit :

$$15\% \times 480 = \frac{15}{100} \times 480 = 72$$
 élèves

Méthode: Associer proportion et pourcentage

Une société de 75 employés compte 12 % de cadres et le reste d'ouvriers. 35 employés de cette société sont des femmes et 5 d'entre elles sont cadres.

- a) Calculer l'effectif des cadres.
- b) Calculer la proportion de femmes dans cette société.

- c) Calculer la proportion, en %, de cadres parmi les femmes. Les femmes cadres sont-elles sous ou surreprésentées dans cette société ?
- d) 12 % de 75 = $\frac{12}{100} \times 75 = 9$. Cette société compte 9 cadres.
- e) n=35 femmes et N=75 employés. La proportion de femmes est donc égale à $p=\frac{35}{75}=\frac{7}{15}\approx 0,47.$
- f) n=5 femmes cadres et N=35 femmes. La population de référence n'est plus la même. La proportion de cadres parmi les femmes est égale à $p=\frac{5}{35}=\frac{1}{7}\approx 0, 14=14\%$. 14 % > 12 % donc les femmes cadres sont surreprésentées dans cette société.

II. Union et intersection de sous-populations

Exemple:

Dans une classe de 35 élèves, 14 élèves étudient l'anglais, 12 élèves étudient l'espagnol et 5 élèves étudient les deux.

Figure 2: Union et intersection

L'ensemble $A \cup E$ contient les élèves qui étudient l'anglais, ceux qui étudient l'espagnol et ceux qui étudient les deux.

Ainsi, en effectuant 14 + 12, on compte deux fois ceux qui étudient les deux langues. Et donc, $n_{A \cup E} = 14 + 12 \degree 5 = 21$. 21 élèves étudient l'anglais ou l'espagnol.

En terme de proportion, on a :

- Proportion des élèves qui étudient l'anglais : $p_A = \frac{n_A}{N} = \frac{14}{35} = 0, 4 = 40\%$
- Proportion des élèves qui étudient l'espagnol : $p_B = \frac{n_B}{N} = \frac{12}{35} \approx 0,343 = 34,3\%$

- Proportion des élèves qui étudient les deux : $p_{A \cap E} = \frac{n_{A \cap E}}{N} = \frac{5}{35} = \frac{1}{7} \approx 0,143 = 14,3\%$
- Proportion des élèves qui étudient l'anglais ou l'espagnol : $p_{A \cup E} = p_A + p_E p_{A \cap E} \approx 40\% + 34,3\% 14,3\% = 60\%$

Propriété:

Soit A et B deux sous-populations d'une même population. La proportion de $A \cup B$ est donnée par : $p_{A \cup B} = p_A + p_B - p_{A \cap B}$

Remarque:

Si A et B n'ont pas d'élément en commun, alors l'ensemble $A \cap B$ est vide et dans ce cas : $p_{A \cup B} = p_A + p_B$

Méthode: Calculer la proportion d'une union ou d'une intersection

Un glacier vend 24 % de ses glaces au parfum chocolat, 14 % au parfum vanille et 10 % des ventes sont aux deux parfums à la fois.

- a) Calculer la proportion de ventes de glaces au chocolat ou à la vanille.
- b) En déduire la proportion de glaces vendues à aucun des deux parfums, chocolat ou vanille.
- c) $p_C = 24\%$, $p_V = 14\%$ et $p_{C \cap V} = 10\%$. On déduit que $p_{C \cup V} = 24\% + 14\% 10\% = 28\%$. La proportion de glaces au chocolat ou à la vanille est égale à 28 %.
- d) La proportion de glaces ni au chocolat, ni à la vanille est égale à : 100 % 28 % = 72 %

III. Proportions échelonnées

1) Inclusion

Exemple:

Dans un car, il y a 40 % de scolaires. Et parmi les scolaires, 60 % sont des filles.

L'ensemble F est inclus dans l'ensemble S et on a : $p_F = 60\%$ de S. L'ensemble S est inclus dans l'ensemble CAR et on a : $p_S = 40\%$ de CAR.

La proportion de fille dans le CAR est donc égale à : $60\% \times 40\% = 60\% \times 40\% = 0, 6 \times 0, 4 = 0, 24 = 24\%$.

Propriété:

 $A \subset B$ et $B \subset C$. p_1 est la proportion de A dans B. p_2 est la proportion de B dans C. Alors $p = p_1 \times p_2$ est la proportion de A dans C.

Méthode: Calculer une proportion échelonnée

Sur 67 millions d'habitants en France, 66 % de la population est en âge de travailler (15-64 ans). La population active représente 70 % de la population en âge de travailler.

- a) Calculer la proportion de population active par rapport à la population totale.
- b) Combien de français compte la population active?

c) F est la population française. T est la population en âge de travailler. A est la population active. La proportion de A dans T est 70 %. La proportion de T dans F est 66 %. La proportion de A dans F est donc égale à :

$$70\% \times 66\% = 0, 7 \times 0, 66 = 0, 462 = 46, 2\%$$

46,2 % des français sont actifs.

d) 46.2% de $67 = 0.462 \times 67 = 30.954$. La France compte environ 31 millions d'actifs.

2) Tableaux

Méthode: Représenter une situation par un tableau

Dans une entreprise qui compte 360 employés, on compte 60 % d'hommes et parmi ceux-là, 12,5 % sont des cadres. Par ailleurs, 87,5 % des femmes de cette entreprise sont ouvrières ou techniciennes.

a) Compléter le tableau.

Cadres	Ouvriers, techniciens	Total
Hommes		$60 \% \times 360 = 216$
Femmes		360 - 216 = 144
Total		360

- b) À l'aide de ce tableau, déterminer :
 - la proportion de cadres,
 - la proportion d'hommes cadres,
 - la proportion d'employés hommes ou
 - la proportion d'hommes dans les cadres.

Réponses

a)

Cadres	Ouvriers, techniciens	Total
Femmes	$12.5 \% \times 216 = 27$ 144 - 126 = 18 27 + 18 = 45	216 - 27 = 189 $87.5 \% \times 144 = 126$ 189 + 126 = 315 360

b)

• Proportion de cadres : $p_C = \frac{45}{360} = 0,125 = 12,5\%$

• Proportion d'hommes cadres : $p_{H \cap C} = \frac{27}{360} = 0,075 = 7,5\%$

• Proportion d'employés hommes ou cadres : $p_H + p_C - p_{H \cap C} = 60\% + 12,5\% - 7,5\% = 65\%$ • Proportion d'hommes dans les cadres : $\frac{27}{45} = 0,6 = 60\%$

3) Arbres

Méthode: Représenter une situation par un arbre

Deux fabricants de calculatrices se partagent le marché. 65 % des calculatrices proviennent du fabricant A. Pour le fabricant A, 42 % des calculatrices vendues sont des modèles pour le collège. Pour le fabricant B, 55 % des calculatrices vendues sont des modèles pour le lycée.

- a) Représenter la situation à l'aide d'un arbre pondéré.
- b) Cette année, le marché représentait 1,4 million de calculatrices. Déterminer le nombre de modèles vendus pour le lycée.

R'eponses

b) Pour le fabriquant A :

Proportion de modèles vendus pour le lycée : $p_A=0,65\times0,58=0,377=37,7\%$

Pour le fabriquant B :

Proportion de modèles vendus pour le lycée : $p_B=0,35\times0,55=0,1925=19,25\%$

Nombre de modèles vendus pour le lycée :

- Pour le fabricant A : 37,7 % x 1 400 000 = 527 800
- Pour le fabricant B : 19,25 % x 1 400 000 = 269 500

Nombre total de modèles vendus pour le lycée : $527\ 800 + 269\ 500 = 797\ 300$.