CO2201 Data Structures and Algorithms

Lab 02

Name : Herath H.M.M.I.S.B

RegNo : EN82658 Index No :16/ENG/029 Data : 16/05/2018

Exercise 2: Sorting Algorithms

	Amount	Range	
Set 1	10	1-10	
Set 2	100	1-100	
Set 3	1,000	1-1,000	
Set 4	10,000 1-1,00		
Set 5	t 5 100,000 1-1,		
Set 6	1,000,000	1-10,000	

	Time (ms)				
	Selection Sort	Insertion Sort	Bubble Sort	Merge Sort	Quick Sort
Set 1	0.002	0.003	0.002	0.033	0.002
Set 2	0.048	0.054	0.083	0.241	0.015
Set 3	4.262	7.029	10.101	3.222	0.199
Set 4	415.333	465.25	880.819	23.842	1.922
Set 5	35963.6	49722.6	88089.5	280.118	23.838
Set 6	15min >	15min >	15min >	2701.56	255.178

Time Complexity of Sorting Algorithms for random sets 1.0

For small set all Algorithms are take relative same time to sort(ex: Set 1) but as number sets is become larger Selection Sort, Insertion sort and Bubble sort take too much time comparing to Merge sort and Quick sort. For the Set 6 sorting time of Selection sort, Insertion sort and Bubble sort are higher than 15 min.

When we considering Merge sort and Quick Sort Quick sort is the Fastest sorting algorithm .

Exercise3: Compare Sorting Algorithms

	Amount	Values	Remarks	
Set A	10,000	Any value in the range of 1-10,000	Totally random.	
Set B	10,000	Any value in the range of 1-10,000	Sorted in ascending order.	
Set C	10,000	Any value in the range of 1-10,000	Sorted in descending order.	
Set D	10,000	Any value in the range of 1-10,000	Nearly sorted in ascending order. Every value should be within k distance from its original place. (Take $k = 10$ in this example)	
Set E	10,000	Multiples of 100 in the range of 1-1,000 (100,200,300,,1,000)	With few unique values	

	Time (ms)				
	Selection Sort	Insertion Sort	Bubble Sort	Merge Sort	Quick Sort
Set A	386.805	523.407	903.23	29.228	2.159
Set B	407.459	0.125	431.156	40.123	1.149
Set C	561.011	1020.42	933.738	23	0.838
Set D	414.037	0.608	360.211	29.565	1.29
Set E	529.683	530.363	891.224	23.993	1.699

Time Complexity of Sorting Algorithms for arranged sets 1.1

As discussed above "Quick sort "is the fastest algorithm to sort unsorted value sets but test result of Time Complexity of Sorting Algorithms for arranged sets 1.1 chart shows that "Insertion Sort "is much faster than all other algorithms in sorting already ascending sorted and ascending nearly sorted sets.

