MPSI 2

Programme des colles de mathématiques.

Semaine 11: du lundi 3 janvier au vendredi 7.

Liste des questions de cours

- $\mathbf{1}^{\circ}$) Si (G..) est un groupe et A un ensemble quelconque, montrer qu'on peut définir une structure de groupe sur G^A .
- 2°) Si E est un ensemble quelconque, montrer qu'on peut définir une structure de groupe sur l'ensemble des bijections de E dans E.
- 3°) Que peut-on dire d'une intersection de sous-groupes? Démontrez-le.
- 4°) Lorsque A est une partie d'un groupe (G,.), quels sont les éléments de Gr(A)? Démontrez-le.
- 5°) Dans un groupe (G,.), montrer que les propriétés suivantes sont équivalentes :
 - i) Gr(a) est cyclique de cardinal n.
 - ii) $\{k \in \mathbb{N}^*/a^k = 1\}$ est non vide et son minimum est égal à n.
 - iii) Pour tout $k \in \mathbb{Z}$, $[a^k = 1 \iff k \in n\mathbb{Z}]$.
 - iv) Les éléments de Gr(a) sont exactement $1, a, \ldots, a^{n-1}$ et ils sont deux à deux distincts.
- ${f 6}^{\circ}$) Montrer que l'image directe (resp : réciproque) d'un sous-groupe par un morphisme est un sous-groupe.
- $\mathbf{7}^{\circ}$) Montrer qu'un groupe est monogène non cyclique si et seulement si il est isomorphe à $(\mathbb{Z},+)$.
- 8°) Enoncer et démontrer le théorème de Lagrange.
- $\mathbf{9}^{\circ}$) Avec $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 1 & 4 & 2 & 5 \end{pmatrix}$, ou sur un autre exemple, décomposer σ en produit de cycles à supports disjoints. Déterminer l'ordre de σ .
- $\mathbf{10}^{\circ}$) Montrer par récurrence sur n que toute permutation de \mathcal{S}_n se décompose en un produit de transpositions.
- 11°) Lorsque $n \geq 2$, montrer que le cardinal de \mathcal{A}_n est égal à $\frac{n!}{2}$, où \mathcal{A}_n désigne l'ensemble des permutations paires de \mathcal{S}_n .

Le thème de la semaine : les groupes.

Le cours portant sur $\mathbb{Z}/n\mathbb{Z}$ est connu des étudiants mais nous n'avons fait pour le moment aucun exercice à ce sujet. Cette notion fera partie du prochain programme de colles.

Les notions de sous-groupes distingués et de groupes quotients ont été évoquées, mais aucune connaissance à ce sujet n'est attendue des étudiants.

1 Définition d'un groupe

Notations multiplicative et additive.

Les éléments d'un groupe sont réguliers (ou simplifiables) à gauche et à droite.

Ordre d'un groupe fini.

2 Construction de groupes

Groupe produit $G_1 \times \cdots \times G_n$.

Groupe G^A des fonctions à valeurs dans un groupe G.

Groupe symétrique d'un ensemble.

3 Sous-groupes

Caractérisation d'un sous-groupe.

Une intersection de sous-groupes est un sous-groupe.

Groupe engendré par une partie A, noté Gr(A).

Propriété. Si $A \subset B$, alors $Gr(A) \subset Gr(B)$.

Propriété. Soit
$$(G, .)$$
 un groupe et $A \subset G$. $Gr(A) = \left\{ \prod_{i=1}^n a_i / n \in \mathbb{N}, \ \forall i \in \{1, ..., n\}, \ a_i \in A \cup A^{-1} \right\}$.

Partie génératrice d'un groupe.

4 Puissances d'un élément d'un groupe

Définition de a^n où a est un élément d'un groupe (G, .) et où $n \in \mathbb{Z}$.

Propriété. Si (G, +) est un groupe abélien et A une partie de G,

$$Gr(A) = \left\{ \sum_{a \in A} n_a \cdot a / (n_a)_{a \in A} \in \mathbb{Z}^{(A)} \right\}$$
 où $\mathbb{Z}^{(A)}$ désigne l'ensemble des familles presque nulles d'entiers.

5 Groupe monogène

En notation multiplicative, $Gr(a) = \{a^n/n \in \mathbb{Z}\}.$

En notation additive, $Gr(a) = \mathbb{Z}.a.$

Les sous-groupes de $(\mathbb{Z}, +)$ sont les $n\mathbb{Z}$, où $n \in \mathbb{N}$.

Groupe monogène, groupe cyclique, ordre d'un élément.

Caractérisation des groupes cycliques : Soit (G, .) un groupe, $a \in G$ et $n \in \mathbb{N}^*$.

Les propriétés suivantes sont équivalentes :

- i) Gr(a) est cyclique de cardinal n.
- ii) $\{k \in \mathbb{N}^*/a^k = 1\}$ est non vide et son minimum est égal à n.
- iii) Pour tout $k \in \mathbb{Z}$, $[a^k = 1 \iff k \in n\mathbb{Z}]$.
- iv) Les éléments de Gr(a) sont exactement $1, a, \ldots, a^{n-1}$ et ils sont deux à deux distincts.

6 Morphismes de groupes

homomorphisme, endomorphisme, isomorphisme, automorphisme.

Le morphisme $n \longmapsto a^n$ de \mathbb{Z} dans (G,.).

Si f est un morphisme,

So
$$f$$
 est un morphisme,
$$f(1) = 1, f(x)^{-1} = f(x^{-1}), f\left(\prod_{i=1}^{n} x_i\right) = \prod_{i=1}^{n} f(x_i), f(a^n) = f(a)^n \text{ pour tout } n \in \mathbb{Z}.$$
 Traduction en notation additive.

Composée de morphismes, isomorphisme réciproque.

Le groupe Aut(G) des automorphismes de G.

Propriété. Soient G et H deux groupes, G' un sous-groupe de G et H' un sous-groupe de H. Soit f un morphisme de G dans H.

Alors f(G') est un sous-groupe de H et $f^{-1}(H')$ est un sous-groupe de G.

Novau et image d'un morphisme. CNS d'injectivité.

Propriété. Un groupe est monogène non cyclique si et seulement si il est isomorphe à $(\mathbb{Z}, +)$.

7 Le théorème de Lagrange

Si H est un sous-groupe de (G, .), les classes à gauche de H partitionnent G.

Théorème de Lagrange.

Dans un groupe G fini, $\forall a \in G, \ a^{|G|} = 1_G$.

8 Le Groupe symétrique

Groupe symétrique de degré n, noté S_n .

Cycles: définition, longueur et support d'un cycle.

Deux cycles dont les supports sont disjoints commutent toujours entre eux.

Les transpositions.

Toute permutation de S_n se décompose de manière unique en un produit (commutatif) de cycles dont les supports sont deux à deux disjoints.

Toute permutation σ de S_n se décompose en un produit de transpositions.

Dans une telle décomposition, la parité du nombre de transpositions ne dépend que de σ . On la note $\varepsilon(\sigma)$, c'est la signature de σ .

La signature est l'unique morphisme de S_n dans $(\{-1,1\},\times)$ qui envoie toute transposition sur -1.

Le groupe alterné de degré n est l'ensemble \mathcal{A}_n des permutations paires. C'est $Ker(\varepsilon)$.

Son cardinal vaut $\frac{n!}{2}$ lorsque $n \geq 2$.

Prévisions pour la semaine prochaine :

Anneaux, idéaux, $\mathbb{Z}/n\mathbb{Z}$, caractéristique d'un anneau.