YELLOWSTONE RIVER COMPACT COMMISSION

WYOMING

MONTANA

NORTH DAKOTA

FORTY-SECOND ANNUAL REPORT 1993

YELLOWSTONE RIVER

COMPACT COMMISSION

FORTY-SECOND ANNUAL REPORT

1993

YELLOWSTONE RIVER COMPACT COMMISSION 821 EAST INTERSTATE AVENUE BISMARCK, NORTH DAKOTA 58501

Honorable Mike Sullivan Governor of the State of Wyoming Cheyenne, Wyoming 82001

Honorable Marc Racicot Governor of the State of Montana Helena, Montana 59620

Honorable Edward T. Schafer Governor of the State of North Dakota Bismarck, North Dakota 58501

Dear Sirs:

Pursuant to Article III of the Yellowstone River Compact (Compact) the Commission submits the following forty-second annual report of activities for the period ending September 30, 1993.

Members of Yellowstone River Compact Commission convened their forty-second annual meeting on December 2, 1993 at 8:30 a.m. via teleconference. In attendance were Mr. William F. Horak, Jr., Chairman and Federal Representative; Mr. Gary Fritz, Administrator, Water Resources Division, Montana Department of Natural Resources and Conservation; and Mr. Gordon W. Fassett, Wyoming State Engineer. Also in attendance were Mr. Milo Vukelich, Wyoming Attorney General's Office; Ms. Sue Lowry, Wyoming State Engineer's Office; Mr. Joe A. Moreland, U.S. Geological Survey; Mr. Rich Moy, Montana Department of Natural Resources and Conservation; Mr. Matthew McKinney, Montana Governor's Office; and Mr. Robert Arrington, Montana Department of Natural Resources and Conservation.

Mr. Horak asked about the status of the McCarthy Ditch project. As originally conceived, the project involved diversion of water from the Tongue River in both Montana and Wyoming to irrigate lands in both States. The permittee had requested water use permits from both Montana and Wyoming. Mr. Fassett reported that the land owner had redesigned the project to eliminate diversion points in Montana. The question of the need for Montana water permits to divert in Montana has therefore been resolved and the Wyoming State Engineer's Office has approved the permits for diversions in Wyoming.

Mr. Horak asked if Montana wanted to discuss the issue of Compact administration. He reminded the Commission that Montana had offered to circulate a draft report on their research into Compact administration issues at the last Commission meeting and asked if the report was available. Mr. Fritz stated that the subject would be discussed later in the meeting.

Mr. Moreland reviewed budget estimates that had been provided to each of the Commission members. He indicated that cost of operating streamflow monitoring stations and preparing the annual report totalled \$42,900 in water year 1993 ending September 30, 1993. He estimated that cost of operations would be \$45,200 for water year 1994, \$47,500 for water year 1995, and \$64,800 for water year 1996. He stated that the estimate for water year 1996 included \$15,000 to relocate the Tongue River gaging station downstream about 3 miles. During periods of low flow, the river migrates across the wide channel at the present gaging station making stage recording difficult. At a site closer to the mouth, the river channel is more constricted and would be a more suitable location to gage low flows. The Commission agreed to seek funding to relocate the gage in water year 1996.

Mr. Moreland reported that streamflow conditions in water year 1993 reflected a wet spring and summer in the eastern part of the basin. Streamflow was 92 percent of average in the Clarks Fork of the Yellowstone River, 86 percent of average in

the Bighorn River, 116 percent of average in the Tongue River, and 130 percent of average in the Powder River. Most reservoirs had more water in storage at the end of the 1993 water year than at the end of the 1992 water year.

Mr. Fassett stated that, although Buffalo Bill Reservoir did not fill in 1993, the reservoir level rose into the new storage pool for the first time since the dam was raised.

Mr. Horak requested an update on Montana's plan for conflict resolution. Mr. McKinney stated that details of the plan are contingent on the U.S. Geological Survey position on voting status of the Federal Representative and asked if the situation had changed. Mr. Horak commented that the current Administration has not announced the selection of a new Director for the U.S. Geological Survey. He noted that the Chief Hydrologist has not altered his position on the U.S. Geological Survey representative's role as an impartial member of the Commission.

Mr. McKinney asked if the Commission wanted to postpone further work on a conflict resolution process until the new Director has been named. Mr. Fassett recalled that he and Mr. Fritz had discussed delaying the planning effort until imminent personnel changes were completed. If the new Administration's position on voting status did not resolve the question, they were prepared to provide a list of alternates to replace the current Chairman.

Mr. Fritz asked when a new Director would be named. Mr. Horak stated that an announcement is expected in the very near future. Mr. Moreland noted that confirmation of a nominee would probably not occur before Congress reconvenes in January. Mr. Fritz suggested that the Commission discuss the issue with the new Director before taking further action. Mr. Fassett wondered if the Commission should present their case to Ms. Rieke, Assistant Secretary for Water and Science, to gain support. Mr. Fritz noted that Ms. Rieke has stated that the U.S. Geological Survey should continue to maintain its role as a scientific agency and avoid advocacy positions. He expressed doubt that Ms. Rieke would support the Commission in its efforts to change the U.S. Geological Survey stance.

Mr. Horak asked if the Commission's desire was to wait until the new Director has been named. Mr. Fritz remarked that the Commission can not postpone the matter indefinitely. It would be desirable to have a process in place before a contentious issue arises. Mr. Fassett agreed that Mr. McKinney should proceed with his planning activities.

Mr. McKinney asked if Mr. Fassett had reviewed the July 29, 1992 draft of the conflict resolution plan. Ms. Lowry stated that the most recent version she had seen was dated June 23, 1992. Mr. Horak suggested that Mr. McKinney provide copies of the July 29, 1992 draft to all the Commission members for review.

Mr. McKinney noted that the last version of the plan was based on the premise that the Federal Representative would not have voting status. Mr. Fassett stated that a conflict resolution process is needed even if the Federal Representative has voting status. Mr. Fritz observed that the current draft outlines a State-funded mechanism to resolve conflicts that could have been resolved by a voting Federal Representative. He suggested that the plan explore options for Federal funding of conflict resolution processes that are a direct result of the U.S. Geological Survey position on voting status of the Federal Representative. Mr. Fassett agreed that Federal funding should be an integral part of the mechanism.

Mr. Horak asked for a status report on the Sheridan Area Water Supply project. Mr. Fassett reported that the project involves development of a water-supply system designed to satisfy U.S. Environmental Protection Agency requirements to replace raw water delivery systems in the Sheridan area and to provide treated water to a large service area surrounding Sheridan. The project includes enlargement of two existing lakes (Twin Lakes) in the Big Goose Creek basin which requires a 404 permit from the Corps of Engineers. The Corps is concerned about 23 acres of wetlands that would be impacted by the project. The city is in a frustrating position because of the Environmental Protection Agency's court order to cease delivery of raw water and their inability to proceed without a 404 permit. The Corps is recommending that the city purchase water rights from agricultural water users.

Mr. Horak asked Montana to report on the Clarks Fork of the Yellowstone River Temporary Preliminary Decree. Mr. Arrington stated that the decree was issued on June 9, 1993 and involved 2,577 claims for water rights. The original decree set a deadline of December 6, 1993 for filing objections. The deadline has since been extended to March 4, 1994. The decree includes four water claims for diversions in Wyoming that have been adjudicated by Wyoming. The Montana Water Court will probably dismiss the Montana water claims in Wyoming. The decree also includes 10 claims for diversions in Montana that are used in Wyoming.

Mr. Fassett asked if the interstate water claims were ones that have been administered under the Compact Commission Interstate Ditch rules. Mr. Arrington stated that some were for water-flood projects in oil fields.

Ms. Lowry commented that she had discussed the decree with Mr. Chuck Dalby, Montana Department of Natural Resources and Conservation. She has requested information on the claims and asked to see copies of claims to the Water Court. Mr. Arrington agreed to send abstracts to the Wyoming State Engineer's Office for review. Mr. Horak asked that copies be sent to him for inclusion in the Compact Commission files.

Mr. Fassett asked if Montana Department of Natural Resources and Conservation made recommendations to the Montana Water Court on processing interstate water claims. Mr. Arrington noted that their role is simply to provide facts to the Court, not make recommendations. Mr. Fassett asked what action the Court would take on interstate claims. Mr. Arrington stated that the Court would probably dismiss the claims.

Mr. Fritz wondered if the Commission should send a letter to the Court describing the Interstate Ditch procedures. Mr. Fassett suggested that Wyoming should send the letter because Wyoming water claims are in question. Mr. Fritz agreed and added that he was concerned about his dual role in the issue. Mr. Fassett agreed to draft a letter to the Court but wondered why the claims had not been withdrawn. Mr. Arrington noted that the claims had been adjudicated in Wyoming under the provisions of the Compact Commission rules on Interstate Ditches and felt certain that the Montana Water Court would dismiss them. Mr. Fassett asked if Montana Department of Natural Resources and Conservation recommended dismissal of the claims. Mr. Fritz reaffirmed that they only present facts to the Court, not recommendations. Mr. Arrington offered to send documentation to Mr. Fassett for review.

Mr. Fassett inquired about funding for field investigations of water rights claims. Mr. Fritz responded that recent budget cuts in the Montana Department of Natural Resources and Conservation had eliminated four field positions which would result in an extension of the water-adjudication process of 3 to 5 years. He commented that the Water Court does not have funding to support field investigations which requires the Court to rely on the Department for field activities. Mr. Fassett commented that the courts in Wyoming also are asking his agency to provide assistance. He added that he has heard that Idaho is also experiencing funding problems with their adjudication process.

Mr. Horak asked Montana for an update on negotiations with the Crow Indian Reservation. Mr. Fritz reported that the negotiations are proceeding at a slow pace. Consensus has been reached that a Memorandum of Understanding will be prepared to outline the procedures and to compile and exchange information on available data and studies. Mr. Fassett asked to be kept informed and to provide him with a copy of the draft MOU.

Mr. Horak asked Wyoming to comment on the status of water rights issues on the Wind River Reservation. Mr. Fassett responded that the water rights quantification issues have been resolved but that the Governor and the tribal council are discussing issues related to water development and administration of tribal water rights. The tribes are requesting funding assistance from Wyoming to rehabilitate dams and irrigation facilities and enlarge existing structures. Both Wyoming and the tribes are seeking Federal dollars to fund water-development activities.

Mr. Fritz inquired about the dam-safety assistance Wyoming has been providing the tribes. He wanted to know if the assistance was in the form of funding or technical guidance. Mr. Fassett responded that the Bureau of Indian Affairs and the Bureau of Reclamation are providing technical assistance and the tribes are seeking both Wyoming Water Development and Federal funds for rehabilitation work.

Mr. Arrington, noting that Montana is dealing with Walton Rights issue on the Milk River, asked if Wyoming had a procedure to determine those rights.

Mr. Fassett responded that the Wyoming Supreme Court recognizes Walton Rights. Wyoming was faced with a wide range of claims for Walton Rights on the Wind River Reservation. Many creative ideas were developed to claim water using the Walton Right theory of law. Any land that had originally been a part of the reservation offered opportunity for Walton Right claims. Out of about 400 claims made, about 15 different theories were applied to justify the claims. A major issue revolved around the question of continuous use after the land had transferred from Indian to non-Indian ownership.

Mr. Arrington requested information from Wyoming on their experiences with Walton Right issues. Mr. Fassett noted that Wyoming and the tribes have resorted to joint field inspection of claims to eliminate questions about factual matters. He felt that this procedure would resolve many of the technical issues surrounding Walton Right claims.

Mr. Horak asked for an update on Congressional plans to protect geothermal resources in Yellowstone National Park. Mr. Fassett stated that a protection bill has passed in the House but no action has been taken in the Senate. Noting that Wyoming and Idaho are impacted by legislation that was designed primarily to address issues in Montana, he asked for information on the current status of the bill.

Mr. Fritz noted that the bill will be more controversial in the Senate. He stated that the bill was drafted in accordance with the Compact between Montana and the National Park Service. That Compact provides for a buffer zone around the Park where development activities will be monitored. The National Park Service has included funding in their budget to support monitoring activities to be conducted by Montana. He noted that Montana will begin to implement provisions of the Compact in the near future.

Mr. Fassett stated that Wyoming and Idaho are not supportive of the Federal protection zone in their States and asked if new water rights questions had arisen as a result of the negotiations between Montana and the National Park Service. Mr. Fritz expressed appreciation for the other State's concerns. Mr. Fassett observed that a bill to protect the natural wonders of Yellowstone National Park would receive considerable support but wondered if it was an overreaction to problems Montana has had with one well drilled by the Church Universal and Triumphant. Mr. Fritz stated that the well was only part of the issue. Mr. Fassett noted that the bill raises questions related to the "taking" of private rights and property by the Federal government.

Mr. Horak asked Wyoming for a status report on the Little Bighorn Pumped Hydro Project. Mr. Fassett stated that the project is proceeding slowly. The Federal Energy Regulatory Commission has judged the licensing application to be complete. However, many environmental questions remain regarding the proposed dam, location of transmission lines, and other physical facilities. Mr. Horak asked when FERC might make a decision. Mr. Fassett stated that a decision is far in the future. When asked if the financial supporters of the project have had experience with the FERC licensing process, Mr. Fassett noted that the company has developed similar projects in other areas including one in New Jersey. He asked if Montana has objected to the project. Mr. Moy stated that no formal objection has been raised by Montana at this point. They are waiting to see if FERC will require an Environmental Impact Statement before deciding whether to intervene. Mr. Fassett reiterated that FERC has deemed the application complete but that the developers are still looking for future customers willing to commit to long-term contracts for the power.

Mr. Horak asked Montana for an update on the Tongue River Reservoir project. Mr. Fritz reported that Montana is overseeing a contract for an Environmental Impact Statement, consulting with the Federal government on issuance of a 404 permit and NEPA compliance, and petitioning the Montana Water Court for a water rights decree. He noted that a Northern Cheyenne tribal member has filed an objection to the Compact, the \$11.5 million loan from the Northern Cheyenne Tribe is contingent on development of an agreement with the tribe for hiring preferences for jobs related to the project, and that a technical error in the legislation has prevented Montana from spending Federal funds until a decree has been entered by the Water Court. A technical correction bill has been approved by the Senate but is still awaiting action by the House.

Ms. Lowry noted that the U.S. Geological Survey has announced that some water-quality monitoring stations in the Tongue River have been discontinued and asked for further information. Mr. Moreland reported that cuts in the Federal Collection of Basic Records program resulted in the elimination of a sediment station on the Powder River at Moorhead. The station had been operated as part of a geomorphology project for the U.S. Geological Survey National Research Program and, to his knowledge, was not of much interest to other parties. A chemical-quality monitoring station on the Tongue River at Birney Day School operated at the request of the Bureau of Indian Affairs has also been discontinued but other water-quality monitoring stations were still in operation at the mouths of both the Tongue and the Powder Rivers. Asked if the U.S. Geological Survey operated a water-quality monitoring site near the state line on the Tongue River, Mr. Moreland responded affirmatively.

Mr. Horak asked if the Commission wished to pursue the issue of Compact administration. No comments were offered by Mr. Fassett or Mr. Fritz. Mr. Horak asked if Mr. Dalby had completed a draft report on administration issues of interest to Montana. Mr. Fritz stated that Montana wanted to have more internal discussion on the matter but had not had time to devote to the issue. Ms. Lowry noted that she had provided Mr. Dalby a number of permanent records on Wyoming water use and asked the whereabouts of the material. Mr. Fritz agreed to locate the material.

Mr. Horak noted that Wyoming would be the host of the next annual Yellowstone River Compact Commission meeting. Mr. Moy suggested that the Commission consider a workshop meeting in the spring of 1994 to address Compact administration and conflict resolution. Mr. Fassett stated that he would be agreeable to such a meeting and asked when Montana would like to schedule a workshop. Mr. Horak asked if the meeting would be a formal meeting of the Commission that would require attendance of the Federal Representative. Mr. Fritz thought the meeting could be an informal working meeting but that the Federal Representative would be welcome to participate. Mr. Fritz stated that the burden was on him to develop a format for the meeting and extend invitations.

Having no other business to discuss, the Commission adjourned the meeting at 11:15 a.m.

Gordon W. Fassett

Commissioner for Wyoming

Gary Fritz

Commissioner for Montana

William F. Horak

Federal Representative

CONTENTS

		Page
Letter to Gov	vernors of signatory States	II
	rt	1
Cost of one	eration and budget	1
Stream-gagi	ing-station operation	1
		2
	reservoirs	2
Posorvoir	rs completed after January 1, 1950	2
	rs existing on January 1, 1950	2
	ischarge for Compact stream-gaging stations	2
Clarks Fork	K Yellowstone River at Edgar, Mont	3
Clarks Fork	t reliowstone River at Edgar, Mont	5
Little Bign	norn River near Hardin, Mont	6
Bignorn Kiv	ver above Tullock Creek, near Bighorn, Mont	9
Tongue Rive	er at Miles City, Mont	
Powder Rive	er near Locate, Mont	11
	ary of contents for Compact reservoirs completed after	
January 1	1, 1950	13
	ervoir, Wyo	13
	ervoir, Wyo	14
	ke near St. Xavier, Mont	15
	ary of contents for Compact reservoirs existing on	
January 1	1, 1950	16
Rules and reg	gulations for administration of the Yellowstone River Compact	17
Rules for adj	judicating water rights on interstate ditches	21
Claim form fo	or interstate ditches	26
	able	30
	ILLUSTRATIONS	
Plate 1. Map	showing locations of Compact stream-gaging and	
	reservoir-content stations	31
-		0.2
Figures 1-4.	Graphs showing comparison of discharge for water year 1993,	
1190100 1 1.	water year 1992, and 10-year and 30-year averages for:	
	water fear 1331, and 10 fear and 30 fear averaged for.	
	1. Clarks Fork Yellowstone River at Edgar, Mont	4
	2. Bighorn River above Tullock Creek, near Bighorn, Mont	8
	3. Tongue River at Miles City, Mont	10
	A Devider River at Miles City, Mont	12
	4. Powder River near Locate, Mont	12

GENERAL REPORT

Cost of operation and budget

The work funded by the Yellowstone River Compact Commission, which to date has been primarily concerned with the collection of required hydrologic data, has been financed through cooperative arrangements whereby Montana and Wyoming each bear one-fourth of the cost and the remaining one-half is borne by the United States. The salaries and necessary expenses of the State and U.S. Geological Survey representatives, and the cost to other agencies of collecting hydrologic data, are not considered as expenses of the Commission.

The expense of the Commission during fiscal year 1993 was \$42,900, in accordance with the budget adopted for the year.

The budgets for fiscal years 1994, 1995, and 1996 were tentatively adopted subject to the availability of appropriations.

The budgets for the four fiscal years are summarized as follows:

October 1, 1992, to September 30, 1993 (fiscal year 1993):

and relocation of Tongue River gage

0

0

Q

Continuation of existing stream-gaging programs	\$42,900
October 1, 1993, to September 30, 1994 (fiscal year 1994):	
Continuation of existing stream-gaging programs	\$45,200
October 1, 1994, to September 30, 1995 (fiscal year 1995):	
Estimate of continuation of existing stream-gaging programs	\$47,500
October 1, 1995, to September 30, 1996 (fiscal year 1996):	
Estimate of continuation of existing stream-gaging programs	\$64,800

Stream-gaging-station operation

Gaging stations at the measuring sites specified in the Yellowstone River Compact were continued in operation and satisfactory discharge records were collected at each station. Locations of gaging and reservoir stations are shown on a map of the Yellowstone River Basin at the end of the report.

During water year 1993, annual streamflow was greater than normal in one of the four tributaries of the Yellowstone River as given in the following table:

Station number	Measurement site	Percent of average
06208500	Clarks Fork Yellowstone River at Edgar, Mont., minus diversions to White Horse Canal	92
06294500	Bighorn River above Tullock Creek, near Bighorn, Mont., minus Little Bighorn River near Hardin, Mont. Adjusted for change in contents in Bighorn Lake	86
06308500 06326500	Tongue River at Miles City, Mont. Powder River near Locate, Mont.	116 130

Tabulation of streamflow data for water year 1993 and graphical comparisons with average flows for the preceding year and for selected base periods are given in the section "Summary of discharge for Compact stream-gaging stations."

Diversions

No diversions were regulated by the Commission during the year. The Commissioners considered the need to develop procedures to administer water in accordance with the provisions of the Compact.

Storage in reservoirs

Reservoirs completed after January 1, 1950

Bighorn Lake, a U.S. Bureau of Reclamation project on the Bighorn River, and the largest storage project in the basin, contained 1,026,000 acre-feet at the beginning of the year and 1,039,000 acre-feet at the end of the year. It fluctuated from 799,800 acre-feet on May 2, 1993, to 1,100,000 acre-feet on July 7, 1993. Boysen Reservoir, located on the Wind River and operated by the U.S. Bureau of Reclamation, began the year with 525,500 acre-feet in storage and ended the year with 677,200 acre-feet. Storage figures are listed as usable acre-feet. Monthend and yearend contents and a description of these reservoirs are given in the section "Monthly summary of contents for Compact reservoirs completed after January 1, 1950." The Commission is cognizant of other reservoirs in the Yellowstone River basin and considers their aggregate effect to be insufficient to warrant the collection of storage data at this time.

Reservoirs existing on January 1, 1950

As a matter of record and general information, monthend storage data are given later in the report for reservoirs in existence upstream from the points of measurement on January 1, 1950. These data are pertinent to allocation under Article V, Section C, Item 3 of the Compact.

¹ The "normal" range is 80 to 120 percent of average.

SUMMARY OF DISCHARGE FOR COMPACT STREAM-GAGING STATIONS

06208500 Clarks Fork Yellowstone River at Edgar, Mont.

LOCATION.--Lat 45°27'58", long 108°50'35", in SE1/4SE1/4SE1/4 sec.23, T.4 S., R.23 E., Carbon County, Hydrologic Unit 10070006, on right bank 400 ft downstream from county bridge, 0.5 ml east of Edgar, 6 ml upstream from Rock Creek, and at river mile 22.1. DRAINAGE AREA.--2,032 mi².

PERIOD OF RECORD. --July 1921 to September 1969, October 1986 to current year.

REVISED RECORDS. --WSP 1509: 1924, 1932(M). WSP 1729: Drainage area.

GAGE. --Water-stage recorder. Elevation of gage is 3,460 ft above sea level, from topographic map. Prior to Aug.

31, 1953, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 23 to Mar. 13. Records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 41,500 acres, of which about 840 acres are downstream from the station. In addition, about 6,300 acres of land upstream from the station are irrigated by diversions from the adjoining Rock Creek basin. Several observations of water temperature and specific conductance were made during the year. Figures of discharge given herein have been adjusted to exclude the flow of White Horse Canal, which diverts water 5.3 mi downstream from station.

DISCURDE CURIC FEET DED SECOND WATER VEAD OCTORED 1992 TO SEPTEMBED 1993

		DISCHAF	RGE, CUBI	C FEET PE		WATER Y	EAR OCTOBER	1992 TO	SEPTEMBE	R 1993		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	510	566	e450	e300	e400	e400	371	462	3850	2080	1660	349
2	492	562	e430	e400	e400	e420	362	469	3800	1790	1570	334
3	482	570	e370	e350	e400	e450	362	487	3500	2010	1330	330
4	479	559	e300	e350	e400	e480	384	550	2940	3090	1130	308
5	515	546	e350	e330	e400	e540	364	823	2320	2580	1000	323
6	514	509	e400	e320	e390	e580	369	894	2110	2240	1050	335
7	549	550	e450	e310	e380	e660	362	1300	2300	2150	1090	278
8 9	576 562	555 562	e480 e500	e320 e290	e370 e360	e660 e600	351 356	1240 1040	2640 2440	1960 1760	1150 1080	218 184
10	572	566	e500	e260	e350	e560	369	929	2220	1610	994	178
11	552	553	e500	e270	e360	e450	390	1010	2350	1680	953	187
12	537	511	e470	e280	e370	e320	388	1660	3000	1710	970	230
13	547	543	e430	e230	e380	e340	399	2370	2890	1620	1010	306
14	557	594	e440	e270	e370	351	370	3130	2450	1530	1060	335
15	616	594	e450	e330	e330	379	361	3890	2390	1410	968	346
16	627	580	e400	e350	e280	366	343	4430	3080	1410	881	351
17	603	582	e380	e350	e250	339	343	4470	3410	1350	783	355
18	599	553	e350	e330	e280	327	356	4120	3060	1310	666	374
19	610	564	e350	e350	e310	350	391	3930	2680	1230	557	402
20	589	555	e400	e370	e300	358	399	4020	2920	1050	487	413
21	580	527	e450	e400	e300	359	377	4800	3520	1030	516	430
22 23	565 544	494 e460	e430 e430	e380 e370	e290 e290	350 347	379 423	5330 4610	3810 3490	1070 1140	554 652	448 456
24	537	e430	e450	e350	e300	352	463	3520	2740	1320	599	463
25	531	e410	e470	e390	e310	360	430	2740	2030	2010	552	467
26	527	e430	e480	e420	e320	381	413	2650	1620	1830	541	478
27	538	e480	e430	e450	e330	425	394	3470	1720	1800	530	496
28	523	e500	e330	e430	e370	442	390	4230	2090	1710	469	476
29	528	e480	e270	e400		448	381	4470	2570	1500	430	431
30	538	e450	e230	e420		417	419	4130	2530	1430	457	424
31	550		e200	e410		386		3770		1550	423	
TOTAL	17049	15835	12570	10780	9590	13197	11459	84944	82470	51960	26112	10705
MEAN	550	528	405	348	342	426	382	2740	2749	1676	842	357
MAX	627	594	500	450	400	660	463	5330	3850	3090	1660	496
MIN AC-FT	479 33820	410 31410	200 24930	230 21380	250 19020	320 26180	343 22730	462 168500	1620 163600	1030 103100	423 51790	178 21230
STATIS	IICS OF M	ONTHLY ME	N DATA F	OR WATER	YEARS 1921	- 1993	, BY WATER	YEAR (WY)			
MEAN	535	502	406	356	354	363	554	2096	4019	2039	632	496
MAX	1010	777	583	779	616	554	1398	5578	6843	4771	1541	1395
(WY)	1942	1928	1951	1970	1970	1943	1943	1928	1927	1943	1951	1941
MIN	298	310	217	200	180	220	123	757	1768	290	49.5	156
(WY)	1956	1936	1937	1922	1922	1924	1961	1968	1987	1988	1988	1988
SUMMAR'	Y STATIST	ICS	FOR	1992 CALE	NDAR YEAR	1	FOR 1993 WA	TER YEAR		WATER Y	EARS 1921	1 - 1993*
ANNUAL	TOTAL			382081			346671					
ANNUAL				1044			950			1028		
	T ANNUAL									1558		1943
	M JAUNNAL			6000			5000			668		1988
	I DAILY M			6290	Jun 16		5330	May 22		10600		2 1936
	DAILY ME SEVEN-DA	Y MINIMUM		200 220	Dec 31 Aug 14		178 226	Sep 10 Sep 7		37 43		11 1961 18 1961
	TANEOUS P			220	1109 11		5660	May 21		10900a		2 1936
		EAK STAGE					6.85			8.6		6 1991
	TANEOUS L						157	Sep 9		36		22 1961
	RUNOFF (757900			687600			745100		
	CENT EXCE			3180			2570			2820		
	CENT EXCE			513			480			470		
40 PER	CENT EXCE	EUS		335			329			275		

^{*--}During period of operation (1921-69, 1987 to current year).

a--Gage height, 8.62 ft.

e--Estimated.

CLARKS FORK YELLOWSTONE RIVER AT EDGAR, MONT. (Minus diversions to White Horse Canal)

Figure 1.--Comparison of discharge of the Clarks Fork Yellowstone River during water year 1993 with discharge during water year 1992 and with 10-year and 30-year average discharges.

LOCATION.--Lat 45°44′09", long 107°33′24", in SE1/4NE1/4NE1/4 sec.19, T.1 S., R.34 E., Big Horn County, Hydrologic Unit 10080016, on left bank 50 ft downstream from bridge on Sarpy Road, 0.2 mi upstream from terminal wasteway of Agency Canal, 2.3 mi east of Hardin, and at river mile 0.6.

CRAINAGE AREA.--1,294 mi².

PERIOD OF RECORD.--June 1953 to current year.

REVISED RECORDS.--WDR MT-86-1: 1978.

REVISED RECORDS.--WDR MT-86-1: 1978.

GAGE.--Water-stage recorder. Datum of gage is 2,882.29 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Oct. 7, 1953, nonrecording gage at site 0.4 mi downstream. Oct. 7, 1953, to May 6, 1963, water-stage recorder at site 0.3 mi downstream. May 6, 1963, to Nov. 6, 1963, nonrecording gage at site 0.4 mi downstream. All at different datums. Nov. 7, 1963, to Aug. 15, 1976, water-stage recorder at site 35 ft downstream at present datum. Aug. 15, 1976, to Sept. 30, 1979, water-stage recorders were located on each bank downstream from Sarpy Road bridge and were used depending on control conditions.

REMARKS.--Estimated daily discharges: Dec. 4 to Mar. 24. Records good except those for estimated daily discharges, which are poor. Flow partly regulated by Willow Creek Reservoir (capacity 23,000 acre-ft). Diversions for irrigation of 20,980 acres upstream from station. Figures of discharge given herein include flow of terminal wasteway of Agency Canal. Several observations of water temperature and specific conductance were made

during the year.

e--Estimated.

		DISCHARG	E, CUBI	C FEET PER			EAR OCTOBER	1992 TO	SEPTEMBI	ER 1993		
DAY	OCT	NOV	DEC	JAN	FEB	MEAN VA	ALUES APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	120 118 117 112 111	125 130 131 149 152	184 162 163 e110 e100	e70 e90 e110 e110 e90	e150 e140 e110 e130 e130	e110 e130 e150 e220 e270	197 185 179 172 164	203 336 289 246 232	419 394 412 443 407	369 313 318 499 613	281 267 247 228 237	190 182 181 182 195
6 7 8 9	110 116 119 124 118	141 147 154 159 174	e110 e130 e150 e170 e200	e100 e90 e90 e90 e80	e150 e160 e140 e120 e110	e370 e370 e350 e320 e250	161 160 160 157 155	241 327 513 440 386	378 389 477 840 1140	593 549 547 513 494	231 226 225 223 204	199 203 207 201 193
11 12 13 14 15	120 115 114 121 146	182 169 151 145 142	e190 e170 e150 e130 e130	e80 e80 e70 e70 e90	e100 e120 e140 e130 e110	e200 e150 e150 e200 e250	160 174 192 215 227	345 313 325 383 488	870 787 736 679 618	477 474 469 444 437	156 155 164 188 196	191 192 200 208 202
16 17 18 19 20	154 158 150 154	151 151 151 148 145	e120 e100 e80 e100 e120	ell0 ell0 el00 el00 el10	e100 e90 e80 e110 e100	e200 e210 e250 e300 e250	205 185 176 176 175	561 625 680 663 627	596 606 665 650 581	431 474 524 377 344	187 187 193 198 206	187 188 181 180 180
21 22 23 24 25	149 141 137 134 134	143 138 135 148 108	e120 e110 e120 e120 e120	e120 e120 e110 e90 e90	e100 e100 e100 e90 e90	e270 e300 e300 e270 255	179 185 195 213 211	628 652 728 694 568	539 504 483 475 458	330 362 400 391 392	204 197 193 196 190	175 168 168 174 175
26 27 28 29 30 31	133 136 131 131 123 123	115 144 173 165 144	e120 e90 e60 e56 e54 e50	e100 e100 e105 e120 e140 e150	e80 e90 e100	243 231 224 221 213 205	214 194 182 178 184	474 440 488 529 507 474	449 433 397 388 375	457 548 512 486 367 315	175 175 187 188 187 190	164 163 164 163 170
TOTAL MEAN MAX MIN AC-FT	4023 130 158 110 7980	4410 147 182 108 8750	3789 122 200 50 7520	3085 99.5 150 70 6120	3170 113 160 80 6290	7432 240 370 110 14740	5510 184 227 155 10930	14405 465 728 203 28570	16588 553 1140 375 32900	13819 446 613 313 27410	6281 203 281 155 12460	5526 184 208 163 10960
STATIST MEAN MAX (WY) MIN (WY)	155 276 1979 67.6 1957	ONTHLY MEAN 156 248 1979 84.6 1986	DATA F 136 223 1979 68.7 1962	OR WATER 1 145 366 1975 71.6 1988	YEARS 1954 216 610 1971 70.3 1989	- 1993, 334 987 1972 92.7 1961	, BY WATER 330 748 1965 54.8 1961	YEAR (WY) 629 2852 1978 71.9 1961	858 1981 1968 117 1961	283 1333 1975 8.50 1961	123 382 1975 2.46 1961	133 267 1978 19.1 1960
SUMMARY	STATIST:	ICS	FOR	1992 CALEN	NDAR YEAR	F	FOR 1993 WA	TER YEAR		WATER YE	ARS 195	4 - 1993
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL 10 PERC 50 PERC	MEAN ANNUAL M ANNUAL M DAILY ME SEVEN-DA ANEOUS PE ANEOUS PE ANEOUS E ANEOUS C ANEOU	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW ACCHT) EDS EDS		71401 195 601 50 79 141600 348 153	Ju1 4 Dec 31 Dec 25		88038 241 1140 50 67 1260 6.03b 174600 496 180	Jun 10 Dec 31 Dec 27 Jun 10 Mar 9		291 676 70.4 15800 .30 .40 22600a 11.78 .20 211100 638 168	Aug Aug May c Mar	1975 1961 20 1978 5 1961 3 1961 19 1978 20 1960 7 1961
aGage bBack cSite	water from and date of dis	11.20 ft.			rom ice.		100			78		

LOCATION.--Lat 46°07'29", long 107°28'06", in SEI/4SEI/4NEI/4 sec.3, T.4 N., R.34 E., Treasure County, Hydrologic Unit 10080015, on right bank, 1.9 mi upstream from Tullock Creek, 3.6 mi southwest of Bighorn, 4.5 mi southeast of Custer, and at river mile 3.0.

DRAINAGE AREA.--22,414 ml². Area at site used Oct. 7, 1955, to Sept. 30, 1981, 22,885 mi².

PERIOD OF RECORD.--October 1981 to current year. Previously published as "06294700 Bighorn River at Bighorn, MT" 1956-81, and as "near Custer" 1945-55. Flows are equivalent at all sites.

GAGE.--Water-stage recorder. Elevation of gage is 2,700 ft above sea level, from topographic map. May 11, 1945 to Doc. 6, 1945, poppercording gage, and Dec. 7, 1945, to Oct. 6, 1955, water-stage recorder 1.7 mi upstream at dif-

Dec. 6, 1945, nonrecording gage, and Dec. 7, 1945, to Oct. 6, 1955, water-stage recorder 1.7 mi upstream at different datum. Oct. 7, 1955, to Sept. 30, 1981, at site 2.3 mi downstream at different datum.

REMARKS.--Estimated daily discharges: Dec. 19, 20, Dec. 30 to Jan. 31, Feb. 16 to Mar. 5. Records good. Flow regulated by Bighorn Lake beginning November 1965 (usable capacity, 1,356,000 acre-ft). Major regulation prior to November 1965 by 14 reservoirs in Wyoming and 1 in Montana with combined usable capacity of about 1,400,000 acre-ft. Diversion for irrigation of about 445,200 acres upstream from station. U.S. Army Corps of Engineers as at allies. satellite telemeter at station.

safellife felemeret							
DISC	HARGE, CUBIC FEET PE	R SECOND, WATER ' DAILY MEAN '	YEAR OCTOBER 1992 T VALUES	O SEPTEMBEI	R 1993		
DAY OCT NOV	DEC JAN	FEB MAR	APR MAY	JUN	JUL	AUG	SEP
1 2230 2120 2 2150 2120 3 2080 2220 4 2060 2710 5 2040 2710	3170 e2800 3200 e2600 3180 e2600	2420 e2000 2300 e2000 2290 e2100 2320 e2200 2310 e2400	2250 2480 2250 2680 2220 2780 2210 2550 2200 2540	3020 3010 3020 3090 3120	7390 7400 7840 9460 10000	4090 3970 3900 3840 3790	2680 2650 2640 2620 2610
6 2030 2730 7 2090 2820 8 2060 3080 9 2320 3110 10 2380 3090	3150 e2500 3180 e2400 3250 e2300	2300 2580 2320 2920 2350 3110 2340 3080 2330 2920	2180 2580 2180 2690 2180 2930 2160 3290 2170 3350	3070 3210 3780 4020 4930	9930 9030 8980 8770 8710	3700 3670 3650 3570 3290	2630 2560 2570 2510 2450
11 2320 3120 12 2290 3120 13 2250 3100 14 2260 3110 15 2240 3100	3340 e2500 3350 e2700 3340 e2900	2310 2810 2000 2620 1990 2420 1980 2360 1960 2430	2170 3320 2320 3220 2430 3180 2530 3140 2410 3190	4690 4540 4400 4300 4370	8630 8550 8350 7970 7580	2900 2870 2930 3010 3030	2430 2440 2440 2410 2380
16 2310 3110 17 2300 3110 18 2220 3120 19 2170 3130 20 2160 3130	3360 e3200 3390 e3200 e3400 e3200	e1900 2390 e1800 2310 e1700 2510 e1900 3130 e1900 3400	2320 3440 2250 3490 2240 3430 2280 3480 2240 3450	4680 4770 4830 5430 5720	7010 6500 6420 5850 5350	2960 2930 2910 2910 2920	2340 2320 2310 2300 2300
21 1970 3120 22 1210 3150 23 2130 3150 24 2150 3120 25 2130 3080	3420 e3200 2860 e3100 2840 e2900	e1800 3560 e1800 3590 e1900 3510 e1800 2930 e1900 2610	2250 3350 2290 3260 2320 3140 2360 3100 2370 2990	5630 5720 6150 6700 6960	4590 4270 4150 4240 4150	2940 2920 2860 2700 2670	2280 2410 2730 3000 3010
26 2120 3060 27 2140 3100 28 2120 3140 29 2110 3150 30 2110 3130 31 2110	2880 e2900 2860 e2700 3010 e2600 e2300 e2600	e1900 2370 e1900 2340 e1900 2340 2340 2300 2270	2370 2970 2350 3040 2410 3080	7140 7610 7680 7620 7550	4340 6100 5790 4980 4400 4230	2650 2590 2650 2660 2720 2690	3120 3110 3200 3280 3290
TOTAL 66260 89060 MEAN 2137 2965 MAX 2380 3150 MIN 1210 2120 AC-FT 131400 176700	3122 2790 3430 3300 2000 2300	57620 81850 2058 2640 2420 3590 1700 2000 114300 162300	2290 3067 2530 3490 2160 2480	150760 5025 7680 3010 299000	210960 6805 10000 4150 418400	96890 3125 4090 2590 192200	79020 2634 3290 2280 156700
STATISTICS OF MONTHLY MEAN 3225 336; MAX 5546 5599; (WY) 1972 1977; MIN 1391 1222; (WY) 1990 1978	. 3192 3043 9 4907 5478 1 1968 1968 3 1280 1382	YEARS 1946 - 199 3201 3734 5314 6580 1971 1972 1843 908 1966 1966	3471 4381 7203 9102 1972 1947 1063 1304	7063 15180 1948 1050 1966	5324 19090 1967 707 1960	2766 6567 1978 868 1961	2803 4952 1973 1009 1966
SUMMARY STATISTICS	FOR 1992 CAL	ENDAR YEAR	FOR 1993 WATER YEA	AR.	WATER YE	EARS 1946	- 1993
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MININ INSTANTANEOUS PEAK FLO INSTANTANEOUS LOW FLOO ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS	DW AGE	Jul 24 Oct 27 Oct 21	1179470 3231 10000 Jul 1210 Oct 2 1830 Feb 10400 Jul 6.94b Jan 2 2339000 4870	72 .6 5	3797 5501 1623 50000 400 528 59200a 14.21 275d 2751000 6200	Apr May May lb Apr	1947 1961 20 1978 4 1967 6 1961 20 1978 2 1965 15 1959
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	2680 2250		2880 2130		3200 1800		

06294500 Bighorn River above Tullock Creek, near Bighorn, Mont, -- Continued

SUMMARY STATISTICS	WATER YEARS 1	946 - 1	961*	WATER YEARS	1967	~]	1993**	
ANNUAL MEAN	3558							
HIGHEST ANNUAL MEAN	5501		1947	3900				
	1623		1961	5415			1975	
	25700	Jun 23		1999			1989	
	462		1961		Mass	20	1978	
ANNUAL SEVEN-DAY MINIMUM				400			1967	
INSTANTANEOUS PEAK FLOW			1947				1977	
INSTANTANEOUS PEAK STAGE				59200				
	275d		1959				1978	
ANNUAL RUNOFF (AC-FT)		NOV 13	1939	2825000	та у	20	1978	
10 PERCENT EXCEEDS								
				6130				
50 PERCENT EXCEEDS				3470				
90 PERCENT EXCEEDS				2030				
*Prior to construction of		١.						
**After completion of Yell	owtail Dam.							
aGage height, 14.15 ft.								
bBackwater from ice.								
cGage height, 8.79 ft.								
dAbout, result of freezeup	•							
eEstimated.								

BIGHORN RIVER ABOVE TULLOCK CREEK, NEAR BIGHORN, MONT. (Adjusted for change in contents in Bighorn Lake minus Little Bighorn River near Hardin, Mont.)

Figure 2.--Comparison of discharge of the Bighorn River during water year 1993 with discharge during water year 1992 and with 10-year and 30-year average discharges.

IOCATION.--Lat 46°20'44", long 105°48'10", in NE1/4NE1/4SE1/4 sec.23, T.7 N., R.47 E., Custer County, Hydrologic Unit 10090102, on right bank 4 mi south of Miles City, and at river mile 8.1. DRAINAGE AREA.--5,379 mi².

PERIOD OF RECORD.—April 1938 to April 1942, April 1946 to current year. Published as "near Miles City" April 1938 to April 1942. Not equivalent to records published as "near Miles City" May 1929 to October 1932. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.—WSP 1729: Drainage area.

REVISED RECORDS.—WSP 1729: Drainage area.

GAGE.—Water-stage recorder. Datum of gage is 2,375.76 ft above sea level (levels by U.S. Army Corps of Engineers). April 1938 to April 1942, nonrecording gage at site 8 mi upstream at different datum. April 1946 to Sept. 30, 1963, at datum 1.00 ft higher.

REMARKS.—Estimated daily discharges: Nov. 23 to Mar. 10, Mar. 15, 16, May 29 to June 2. Records good except those for estimated daily discharges, which are poor. Flow regulation by Tongue River Reservoir (station 06307000), and many small reservoirs in Wyoming (combined capacity about 15,000 acre-1t). Diversions for irrigation of about 100,800 acres upstream from station. U. S. Army Corps of Engineers satellite telemeter at station. station.

		DISCHA	RGE, CUBI	C FEET PE			YEAR OCTOBE	ER 1992 TO	SEPTEMBER	1993		
DAY	ост	NOV	DEC	JAN	DAILY FEB	MEAN MAR	VALUES APR	MAY	JUN	JUL	AUG	SEP
0711			220	01111	1 20				0011	001	noo	JLI
1	377	298	e170	e140	e280	e300		195	e1000	896	610	327
2	371	292	e160	e160	e280	e400		173	e1000	572	570	331
3	361	300	e120	e150	e280	e500		157	996	1440	542	331
4	361	303	e100	e140	e280	e700		148	1020	6140	527	333
5	422	303	e150	e160	e280	e1500	259	145	1090	3870	521	335
6	369	303	e250	e180	e270	e2000	255	162	1210	1320	525	337
7	439	303	e300	e200	e250	e2500		167	1460	884	581	283
8	428	302	e300	e180	e230	e2000		144	4400	710	513	228
9	349	311	e300	e170	e210	e1200		140	2470	636	495	205
10	214	370	e280	e150	e190	e900	248	134	809	593	486	182
11	206	337	e230	e150	e200	739	248	123	533	520	480	174
12	200	310	e210	e150	e200	613		102	507	912	470	170
13	191	303	e210	e170	e190	509	248	74	1260	2080	468	169
14	190	300	e230	e200	e180	453	263	46	1640	764	450	166
15	184	300	e250	e200	e170	e450	254	3.7	1420	541	422	164
16	178	300	e220	e190	e160	e400	246	77	1250	488	398	167
17	174	297	e180	e180	e150	411		343	1250	657	363	175
18	178	296	e150	e180	e160	480		369	1280	543	354	175
19	183	296	e170	e190	e170	646		386	1290	667	344	176
20	199	296	e180	e220	e170	486	478	391	1280	516	326	179
21	197	296	e200	e240	e170	571	318	578	1290	461	329	181
22	206	295	e200	e230	e170	553		1050	1270	1010	350	179
23	216	e250	e180	e230	e160	498		1200	1280	1380	341	176
24	216	e200	e200	e230	e150	422		1250	1290	772	318	182
25	216	e140	e220	e250	e140	398	235	1280	1280	582	290	214
26	216	e100	e200	e290	e150	344	233	1270	1270	520	298	216
27	216	e110	e180	e300	e180	311		1310	1260	1620	314	210
28	216	e110	e150	e270	e250	309		1280	1250	4040	303	207
29	216	e120	e130	e230		298		e1280	1310	1400	309	206
3.0	216	e140	e120	e220		291		e1200	1340	838	320	206
31	233		e130	e290		289		e1000		687	326	
TOTAL	7938	7881	6070	6240	5670	21471	7953	16177.7	40005	38059	12943	6584
MEAN	256	263	196	201	202	693		522	1333	1228	418	219
MAX	439	370	300	300	280	2500		1310	4400	6140	610	337
MIN	174	100	100	140	140	289		3.7	507	461	290	164
AC-FT	15750	15630	12040	12380	11250	42590		32090	79350	75490	25670	13060
CTATICS	TICS OF M	ONTHIV ME	או האדא בי	OD WATER A	/FADC 1030	_ 100	3, BY WATER	VEND (LIV)				
MEAN	245	260	197	197	279	540		719	1312	483	186	204
MAX	694	585	423	502	1794	1783		2983	3825	2207	700	599
(WY)	1972	1942	1950	1975	1971	1971		1978	1978	1975	1975	1968
MIN	10.3	60.9	68.0	78.6	102	79.8		29.2	48.6	12.6	6.08	2.40
(WY)	1961	1989	1990	1961	1961	1961	1961	1961	1960	1960	1949	1938
SUMMARY STATISTICS		FOR 1992 CALENDAR YEAR				FOR 1993 WATER YEAR			WATER YEARS 1938 - 1993*			
ANNUAL	TOTAL			112710.9			176991.7	,				
ANNUAL MEAN			308			485			419			
	·IGHEST ANNUAL MEAN									986		1978
:OWEST ANNUAL MEAN										57.2		1961
HIGHEST DAILY MEAN			1420	Jul 6		6140	Jul 4		9290		15 1962	
LOWEST DAILY MEAN			2.1	May 30		3.7			.00		9 1940	
ANNUAL SEVEN-DAY MINIMUM				1 4	May 25		80	May 10		.00		9 1940
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE						6530	Jul 4		13300a		15 1962	
INSTANTANEOUS LOW FLOW						9.0	7 Jul 4		13.27k		19 1960 9 1940	
ANNUAL RUNOFF (AC-FT)				223600			351100			303800	Jul	2 1240
10 PERCENT EXCEEDS				650			1250			978		
	50 PERCENT EXCEEDS			237			290			230		
	CENT EXCE			103			159			70		
*1938	8, 1942-4	6 not used	d in comp	utations.	incomplet	e wate	r vears.					

^{*--1938, 1942-46} not used in computations, incomplete water years.

a--Gage height, 12.33 ft, from rating curve extended above 8,200 ft³/s on basis of float measurement.

b--Ice jam.

c--Also occurred on several other days in 1940.

e--Estimated.

TONGUE RIVER AT MILES CITY, MONT.

Figure 3.--Comparison of discharge of the Tongue River during water year 1993 with discharge during water year 1992 and with 10-year and 30-year average discharges.

IOCATION.--Lat 46°26′56", long 105°18′44", in NW1/4SW1/4 sec.14, T.8 N., R.51 E., Custer County, Hydrologic Unit 10090209, on left bank 1.5 mi downstream from bridge on old U.S. Highway 12 at present site of Locate, 1.5 mi upstream from Locate Creek, 5 mi west of former site of Locate, 25 mi east of Miles City, and at river mile 27.9.

DRAINAGE AREA.--13,194 mi2. Drainage area of site 1.5 mi upstream, 13,189 mi2.

PERIOD OF RECORD. --March 1938 to current year.
REVISED RECORDS. --WSP 926: 1939. WSP 1309: 1938-39 (M). WSP 1729: Drainage area.

REVISED RECORDS.--WSP 926: 1939. WSP 1309: 1938-39 (M). WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,384.79 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to July 11, 1947, nonrecording gage at bridge 1.5 mi upstream, and July 11, 1947, to Sept. 30, 1965, water-stage recorder at site near upstream bridge at different datum. Oct. 1, 1965, to Oct. 4, 1966, nonrecording gage, and Oct. 5, 1966, to Mar. 21, 1978, water-stage recorder at present site and datum. Mar. 22, 1978, to Apr. 23, 1981, water-stage recorder 1.5 mi upstream at different datum, Apr. 24 to Aug. 20, 1981, water-stage recorder at present site and datum, and Aug. 21, 1981, to Sept. 30, 1981, water-stage recorder 1.5 mi upstream at different datum. upstream at different datum.

RFMARKS.--Estimated daily discharges: Dec. 3 to Mar. 9. Records fair except those for estimated daily discharges, which are poor. Some regulation by three reservoirs in Wyoming with combined usable capacity of 36,800 acre-ft. Diversions for irrigation of about 101,800 acres upstream from station. U.S. Army Corps of Engineers satellite

telemeter at station.

		DISCHARG	E, CUB	IC FEET PE		WATER Y	EAR OCTOBER	1992 TO	SEPTEMBE	R 1993		
DAY	OCT	VON	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	148	206	59	e45	e130	e400	834	406	1990	1510	857	314
2	144	215	89	e45	e120	e600	808	397	2100	1530	741	289
3 4	163 165	239 217	e160 e160	e45	e120 e120	e800 e1000	765 725	399	1860	5300	669	287
5	157	197	e150	e50 e50	e120	e1500	634	427 456	1550 1370	9460 4110	604 561	281 283
	10,		0100		0120	01000	05.		10.0	7110	301	203
6	160	180	e140	e50	e120	e2500	614	534	1450	2070	534	290
7	208	183	e150	e50	e120	e3000	569	590	3350	1360	595	269
8 9	187 165	200 297	e160 e160	e50 e55	e120 e120	e2500 e1500	558 509	587 1590	6730 4680	1090	725	260
10	164	290	e150	e60	e110	1190	568	3330	4470	1030 1040	560 472	246 237
												20.
11	140	256	e140	e55	e90	792	571	2540	4900	1010	405	223
12	127	237	e130	e50	e80	517	570	2420	2910	1310	366	213
13 14	135 149	225 236	e120 e100	e50 e45	e70 e60	412 423	588 694	1730 1250	2170 1830	1920 1090	357 352	214 212
15	213	252	e100	e50	e50	607	729	1060	1730	799	348	212
		202	0100					1000	1.00		• • •	
16	204	254	e100	e50	e45	504	666	1110	1690	852	347	220
17	221	221	e90	e55	e40	393	597	1400	1580	1310	323	223
18 19	183 200	225 215	e80 e90	e60 e65	e50 e55	646 890	570 675	1690 1790	1540 1650	2510 2220	407 424	227 222
20	188	237	e100	e70	e60	813	771	1810	2220	1440	377	221
21	188	229	e100	680	e55	1270	675	1570	2930	1160	386	212
22	173	221	e90	e90	e55	1200	541	1820	2510	1580	369	203
23 24	187 247	213 221	e100 e100	e100 e100	e50 e45	1450 1450	528 538	1580 1760	2010 1760	1210 1670	813 937	204 210
25	237	221	e110	e120	e50	2050	504	2130	1880	1430	887	206
			0110			2000			1000	1.50		200
26	236	220	e110	e150	e60	1860	472	1810	1730	1060	784	198
27	195	102	e100	e150	e90	1440	487	1560	1570	2870	593	197
28 29	218 269	56 44	e90 e60	e130 e100	e200	1230 1090	465 457	1440 1360	1540 1470	3920 2190	501 428	203 215
30	321	26	e50	e100		979	432	1400	1500	1410	384	220
31	217		e40	e130		853		1700		991	342	
TOTAL	5909	6135	3378	2300	2405	35859	18114	43646	70670	62452	16448	7011
ME AN MAX	191 321	204 297	109 160	74.2 150	85.9 200	1157 3000	604 834	1408 3330	2356 6730	2015 9460	531 937	234 314
MIN	127	26	40	45	40	393	432	397	1370	799	323	197
AC-FT	11720	12170	6700	4560	4770	71130	35930	86570	140200	123900	32620	13910
		MONTHLY MEAN								5.0.0	21.4	177
MEAN MAX	235 921	206 427	145 417	137 476	430 3850	1254 4627	751 3062	1144 5970	1675 8045	586 2015	214 1096	173 898
(WY)	1941	1987	1942	1981	1943	1972	1965	1978	1944	1993	1941	1941
MIN	1.77	12.5	12.5	4.53	2.82	80.2	109	142	123	14.4	1.30	.19
(WY)	1961	1961	1961	1950	1950	1950	1961	1961	1966	1988	1988	1960
CHMMAD	Y STATIS	TICE	EOD	1002 CALE	NDAD VEAD		EOD 1003 HB	TED VEND		WATER YE	300 1030	1003
ANNUAL		1105	FUR	1992 CALE 117961	NDAR TEAR		FOR 1993 WA' 274327	IER IEAR		WAIER TE	WK2 1432	, - 1993
ANNUAL				322			752			579		
	T ANNUAL									1622		1944
	ANNUAL I									79.4		1961
	T DAILY I			2430	Jun 19		9460	Jul 4		26000		19 1943
	DAILY MI	AY MINIMUM		11 16	Jun 12 Jun 7		26 46	Nov 30 Dec 30		.00		16 1950 16 1950
		PEAK FLOW		1.0	0 011		13400	Jul 3		31000		19 1943
INSTANT	TANEOUS 1	PEAK STAGE					8.77			12.20	a Mar	16 1978
	TANEOUS						19	Nov 30		.00	b	
	RUNOFF			234000			544100			419300		
	CENT EXC CENT EXC			649 200			1810 342			1350 230		
	CENT EXC			86			60			40		
	kwater f						00					
		s in 1950, 1	960-61	, and 1988								
eEst	imated.											

POWDER RIVER NEAR LOCATE, MONT.

Figure 4.--Comparison of discharge of the Powder River during water year 1993 with discharge during water year 1992 and with 10-year and 30-year average discharges.

06258900 Boysen Reservoir, Wyo.

LOCATION.--Lat 43°25′00", long 108°10′37", in NW1/4 NW1/4 sec. 16, T. 5 N., R. 6 E., Fremont County, Hydrologic Unit 10080005, at dam on Wind River and 13 mi north of Shoshoni, Wyoming.

DRAINAGE AREA. -- 7,700 mi2.

PERIOD OF RECORD. -- October 1951 to current year (monthend contents only).

GAGE.--Water-stage recorder. Datum of gage is feet above sea level (levels by U.S. Bureau of Reclamation).

REMARKS.--Reservoir is formed by rock-fill dam completed in October 1951. Storage began Oct. 11, 1951. Usable capacity, 742,100 acre-ft between elevation 4,657.00 ft, invert of penstock pipe, and 4,725.00 ft, top of spillway gate. Dead storage, 59,880 acre-ft below elevation 4,657.00 ft. Prior to Jan. 1, 1966, usable capacity was 757,800 acre-ft and dead storage was 62,000 acre-ft at same elevations. Crest of dam is at elevation 4,758.00 ft. Figures given herein represent usable contents. Water used for irrigation, flood control, and power development.

COOPERATION .-- Elevations and capacity table furnished by U.S. Bureau of Reclamation .

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 862,500 acre-ft, July 6, 7, 1967, elevation, 4,730.83 ft; minimum daily contents since normal use of water started, 191,900 acre-ft, Mar. 18, 19, 1956, elevation, 4,684.18 ft, capacity table then in use.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 747,700 acre-ft, June 24, elevation, 4,725.28 ft; minimum daily contents, 515,100 acre-ft, Oct. 26, 27, elevation, 4,712.00 ft.

Month	Water-surface elevation, in feet	Usable contents, in <u>acre-feet</u>	Change in usable contents, in acre-feet
September 30, 1992	4,712.67	525,500	
October 31		516,400	-9,100
November 30	4,712.27	519,300	+2,900
December 31	4,712.23	518,700	-600
January 31, 1993	. 4,712.21	518,400	-300
February 28		519,000	+600
March 31		540,700	+21,700
April 30		548,900	+8,200
May 31		620,400	+71,500
June 30		739,400	+119,000
July 31		715,300	-24,100
August 31		707,700	-11,600
September 30, 1993	. 4,721.58	677,200	-26,500
1993 water year			+151,700

06260300 Anchor Reservoir, Wyo.

LOCATION.--Lat 43°39′50", long 108°49′27", in sec. 26, T. 43 N., R. 100 W., Hot Springs County, Hydrologic Unit 10080007, at dam on South Fork Owl Creek, 2 mi downstream from Middle Fork, 3 mi southeast of Anchor, and 32 mi west of Thermopolis.

DRAINAGE AREA. -- 131 mi2.

PERIOD OF RECORD. -- November 1960 to current year (monthend contents only).

GAGE .-- Water-stage recorder. Datum of gage is feet above sea level (U.S. Bureau of Reclamation benchmark).

REMARKS. -- Reservoir is formed by concrete arch dam completed in 1960. Usable capacity, 17,160 acre-ft between elevation 6,343.75 ft, invert of river outlet, and 6,441.00 ft, spillway crest, not including 68 acre-ft below elevation 6,343.75 ft. Prior to Oct. 1, 1971, usable capacity was 17,280 acre-ft not including 149 acre-ft below the invert. Figures given herein represent usable contents. Water is used for irrigation of land in Owl Creek basin.

COOPERATION .-- Records furnished by U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily contents, 9,250 acre-ft, July 4, 1967, elevation, 6,418.52 ft; no usable storage on many days each year.

EXTREMES FOR CURRENT YEAR. -- Maximum daily contents, 6,360 acre-ft, June 30, July 5-8, elevation, 6,409.40 ft; minimum daily contents, 64 acre-ft, Sept. 12-30, elevation, 6,343.50 ft.

	Water-surface elevation,	Usable contents, in	Change in usable contents,
Month	in feet	acre-feet_	in acre-feet
September 30, 1992	6,367.90	784	
October 31		106	-678
November 30		124	+18
December 31		145	+21
January 31, 1993		145	0
February 28		145	0
March 31		295	+150
April 30		314	+19
May 31		3,520	+3,206
June 30		6,360	+2,840
July 31		4,180	-2,180
August 31		604	-3,576
September 30, 1993		6.4	540
	,		
1993 water year			-720

06286400 Bighorn Lake near St. Xavier, Mont.

LOCATION.--Lat 45°18'27", long 107°57'26", in SW1/4 SE1/4 sec. 18, T. 6 S., R. 31 E., Big Horn County, Hydrologic Unit 10080010, in block 13 of Yellowtail Dam on Bighorn River, 1.3 mi upstream from Grapevine Creek, 15.5 mi southeast of St. Xavier, and at river mile 86.6.

DRAINAGE AREA. -- 19,626 mi2.

PERIOD OF RECORD. -- November 1965 to current year (monthend contents only). Prior to October 1969, published as "Yellowtail Reservoir."

GAGE.--Water-stage recorder in powerhouse control room. Datum of gage is feet above sea level (levels by U.S. Bureau of Reclamation).

REMARKS.--Reservoir is formed by thin concrete-arch dam; construction began in 1961; completed in 1967. Storage began Nov. 3, 1965. Usable capacity, 1,356,000 acre-ft between elevation 3,296.50 ft, river outlet invert, and 3,657.00 ft, top of flood control. Elevation of spill-way crest, 3,593.00 ft. Normal maximum operating level, 1,097,000 acre-ft, elevation, 3,640.00 ft. Minimum operating level, 483,400 acre-ft, elevation 3,547.00 ft. Dead storage, 16,010 acre-ft below elevation 3,296.50 ft. Figures given herein represent usable contents. Water is used for power production, flood control, irrigation, and recreation.

COOPERATION. -- Elevations and capacity table furnished by U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.—-Maximum daily contents, 1,346,000 acre-ft, July 6, 1967, elevation, 3,656.43 ft; minimum daily contents since first filling, 641,900 acre-ft, Apr. 14, 1989, elevation, 3,583.30 ft.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 1,100,000 acre-ft, July 7, elevation, 3,643.48 ft; minimum daily contents, 799,800 acre-ft, May 2, elevation, 3,611.95 ft.

Month	Water-surface elevation, in feet	Usable contents, in <u>acre-feet</u>	Change in usable contents,in acre-feet
September 30, 1992		1,026,000	
October 31		1,049,000	+23,000
November 30	. 3,635.75	1,003,000	-46,000
December 31	. 3,627.53	920,400	-82,600
January 31, 1993	. 3,618.84	848,700	-71,700
February 28	. 3,614.19	815,000	-33,700
March 31	. 3,614.17	814,900	-100
April 30		800,200	-14,700
May 31		958,100	+157,900
June 30		1,081,000	+122,900
July 31		1,044,000	-37,000
August 31		1,021,000	-23,000
September 30, 1993		1,039,000	+18,000
1993 water year			+13,000

MONTHLY SUMMARY OF CONTENTS FOR COMPACT RESERVOIRS EXISTING ON JANUARY 1, 1950

The extent, if any, of the use of reservoirs in this section which may be subject to Compact allocations was not determined. As a matter of hydrologic interest the monthend contents in acre-feet of four reservoirs are given. The first three reservoirs are in the Bighorn River basin, Wyoming, and data on contents were furnished by the U.S. Bureau of Reclamation. The Tongue River Reservoir in Montana is operated under the supervision of the Water Resources Division of the Montana Department of Natural Resources and Conservation, which furnished the water level data.

Contents, in acre-feet

Month	06224500 a/Bull Lake	b/Pilot Butte Reservoir	06281500 c/Buffalo Bill Reservoir	06307000 d/Tongue River Reservoir
September 30, 1992	51,510	12,520	270,400	27,840
October 31	53,290	27,980	264,300	20,810
November 30	53,530	27,710	273,600	18,350
December 31	53,990	27,680	279,400	18,350
January 31, 1992	54,710	27,630	284,500	18,350
February 29	54,940	27,560	287,400	18,350
March 31	55,340	27,500	292,900	16,720
April 30	55,510	28,770	271,200	22,120
May 31	91,930	29,010	376,600	44,980
June 30	145,600	29,700	494,900	46,940
July 31	146,500	17,780	525,600	50,270
August 31	137,300	23,250	485,100	28,620
September 30, 1993	94,740	14,750	417,900	24,440
Change in contents				
during water year	+43,230	+2,230	+147,500	-3,400

a/ Usable contents, from revised capacity table effective October 1, 1965. Dead storage is 722 acre-ft.

b/ Usable contents. Dead storage is 5,360 acre-ft.

C/ Usable contents, from revised capacity table based on survey of 1959. Usable contents prior to October 1960 based on survey of 1941. Dead storage is negligible.

d/ Usable contents. Dead storage is 1,400 acre-ft. Contents based upon sedimentation surveys of October 1948.

RULES AND REGULATIONS FOR ADMINISTRATION OF THE YELLOWSTONE RIVER COMPACT

A compact, known as the Yellowstone River Compact, between the States of Wyoming, Montana, and North Dakota, having become effective on October 30, 1951, upon approval of the Congress of the United States, which apportions the waters of certain interstate tributaries of the Yellowstone River which are available after the appropriative rights existing in the States of Wyoming and Montana on January 1, 1950 are supplied, and after appropriative rights to the use of necessary supplemental water are also supplied as specified in the Compact, is administered under the following rules and regulations subject to the provisions for amendment revision or abrogation as provided herein.

Article I. Collection of Water Records

A. It shall be the joint and equal responsibility of the members of the States of Wyoming and Montana to collect, cause to be collected, or otherwise furnish records of tributary streamflow at the points of measurement specified in Article V (B) of the Compact, or as near thereto as is physically or economically feasible or justified.

1. Clarks Fork

The gaging station known as Clarks Fork near Silesia, Montana and located in NW1/4 SE1/4 sec. 1, T. 4 S., R. 23 E., shall be the point of measurement for the Clarks Fork.

2. Bighorn River (exclusive of Little Bighorn River)

The gaging station known as the Bighorn River above Tullock Creek, near Bighorn, Montana, and located in SE1/4 SE1/4 NE1/4 sec. 3, T. 4 N., R. 34 E., shall temporarily be the designated point of measurement on that stream. The flow of the Little Bighorn River as measured at the gaging station near Hardin, Montana, and located in SE1/4 NE1/4 NE1/4 sec. 19, T. 1 S., R. 34 E., shall be considered the point of measurement for that stream, except that if or when satisfactory records are not available, the records for the nearest upstream station with practical corrections for intervening inflow or diversion shall be used.

3. Tongue River

The gaging station known as the Tongue River at Miles City, Montana, and located in NE1/4 NE1/4 SE1/4 sec. 23, T. 7 N., R. 47 E., shall temporarily be the point of measurement for that stream.

4. Powder River

The gaging station known as the Powder River near Locate, Montana, and located in NW1/4 SW1/4 sec. 14, T. 8 N., R. 51 E., shall temporarily be the designated point of measurement for that stream.

- B. Records of total annual diversion in acre-feet above the points of measurement designated in the Compact for irrigation, municipal, and industrial uses developed after January 1, 1950, shall be furnished by the members of the Commission for their respective States, at such time as the Commission deems necessary for interstate administration as provided by the terms of the Compact. Providing that if it be acceptable to the Commission, reasonable estimates thereof may be substituted.
- C. Annual records of the net change in storage in all reservoirs, not excluded under Article V (E) of the Compact, above the point of measurement specified in the Compact and completed after January 1, 1950, and the annual net change in reservoirs existing prior to January 1, 1950, which is used for irrigation, municipal, and industrial purposes developed after January 1, 1950, shall be the primary responsibility of the member of the Commission in whose State such works are located; providing such data are not furnished by Federal agencies under the provisions of Article III (D) of the Compact, or collected by the Commission.

Article II. Office and Officers

- A. The office of the Commission shall be located at the office of the Chairman of the Commission.
- B. The Chairman of the Commission shall be the Federal representative as provided in the Compact.
- C. The Secretary of the Commission shall be as provided for in Article III of these rules.
- D. The credentials of each member of the Commission shall be placed on file in the office of the Commission.

Article III. Secretary

A. The Commission, subject to the approval of the Director of the United States Geological Survey, shall enter into cooperative agreements with the U.S. Geological Survey for such engineering and clerical services as may reasonably be necessary for the administration of the Compact. Said agreements shall provide that the Geological Survey shall:

- 1. Maintain and operate gaging stations at or near the points of measurement specified in Article V (A) of the Compact.
- Assemble factual information on stream flow, diversion, and reservoir storage for the preparation of an annual report to the Governors of the signatory States.
- 3. Make such investigations and reports as may be requested by the Commission in aid of its administration of the Compact.
- B. The Geological Survey shall act as Secretary to the Commission.

Article IV. Budget

- A. At the annual meeting of each even-numbered year or prior thereto, the Commission shall adopt a budget for operation during the ensuing biennium beginning July first. Such budget shall set forth the total cost of construction, maintenance and operation of gaging stations, the cost of engineering and clerical aid, and other necessary expenses excepting the salaries and personal expenses of the Commissioners. On odd-numbered years revisions of the budget shall be considered.
- B. It shall be the obligation of the Commissioners of the States of Montana and Wyoming to endeavor to secure from the Legislature of their respective States sufficient funds with which to meet the obligations of this Compact, except insofar as provided by the Federal government.

Article V. Meetings

An annual meeting of the Commission shall be held each November at some mutually agreeable point in the Yellowstone River Basin for consideration of the annual report for the water year ending the preceding September 30th, and for the transaction of such other business consistent with its authority; provided that by unanimous consent of the Commission the date and place of the annual meeting may be changed. Other meetings as may be deemed necessary shall be held at a time and place set by mutual agreement, for the transaction of any business consistent with its authority.

No action of the Commission shall be effective until approval by the Commissioners for the States of Wyoming and Montana.

Article VI. Amendments, Revisions and Abrogations.

The Rules and Regulations of the Commission may be amended or revised by a unanimous vote at any meeting of the Commission.

Gary Fritz
Commissioner for Montana

George L. Christopulos (Commissioner for Wyoming

ATTESTED:

L. Grady Moore

Federal Representative

Adopted November 17, 1953 Amended December 16, 1986

Article I. Purpose

The purpose of this rule is to determine and adjudicate, in accordance with the laws of Montana and Wyoming, those pre-Compact (January 1, 1950) water rights diverting from the Powder, Tongue, Bighorn and Clarks Fork Rivers and their tributaries where the point of diversion is in one State and the place of use is in the other State which have not yet been adjudicated.

Article II. Authority

In accordance with the Yellowstone River Compact, the State of Montana and the State of Wyoming, being moved by consideration of interstate comity, desire to remove all causes of present and future controversy between the States and between persons in one State and persons in another State with respect to these interstate ditches. Article III (E) of the Compact provides the Yellowstone River Compact Commission with the authority "...to formulate rules and regulations and to perform any act which they may find necessary to carry out the provisions of this Compact..."

Article III. Definitions

The terms defined in the Yellowstone River Compact apply as well as the following definitions:

- 1. "Acre-feet" means the volume of water that would cover lacre of land to a depth of l foot.
- 2. "Cfs" means a flow of water equivalent to a volume of l cubic foot that passes a point in l second of time and is equal to 40 miners inches in Montana.
- 3. "Interstate Ditches" shall include ditches and canals which convey waters of the Bighorn, Tongue, Powder, and Clarks Fork Rivers and their tributaries across the Wyoming-Montana State line where the water is diverted in one State and the place of use is in the other State.
- 4. "Department of Natural Resources and Conservation," hereafter called the "Department," means the administrative agency and Department of the Executive Branch of the Government of Montana created under Title II, Chapter 15, MCA which has the responsibility for water administration in that State.

- 5. "Water Court" means a Montana District Court presided over by a water judge, as provided for in Title III, Chapter 7, MCA.
- 6. "State Engineer" shall be the current holder of the position created by the Wyoming Constitution as Chief Water Administration Official for the State of Wyoming.
- 7. "Board of Control," hereinafter called the "Board," is defined as the constitutionally created water management agency in Wyoming composed of the four Water Division Superintendents and the State Engineer.
- 8. "Superintendent" is the member of the Board who is the water administration official for the Water Division where the interstate ditch is located. (The two Water Divisions in the Yellowstone River drainage are Water Division Numbers Two and Three.)
- 9. "Date of Priority" shall mean the earliest date of actual beneficial use of water, unless evidence and circumstances pertaining to a particular claim establish an earlier date.
- 10. "Point of Diversion" is defined to be the legal land description by legal subdivision, section, township, and range of the location of the diversion structure for an interstate ditch from a natural stream channel.
- 11. "Place of Use" is defined to be the legal land description (legal subdivision, section, township, and range) of the lands irrigated by an interstate ditch.
- 12. "Person" is defined as an individual, a partnership, a corporation, a municipality or any other legal entity, public or private.
- 13. "Claimant" is defined as any person claiming the use of water from an interstate ditch as herein defined.

Article IV. Procedures

The procedures for determining and adjudicating water rights associated with interstate ditches shall be categorized as follows: (A) Where the point of diversion is in Wyoming and place of use in Montana, and (B) Where the point of diversion is in Montana and place of use in Wyoming.

A. Wyoming Procedure

- 1. The Yellowstone River Compact Commission will provide a claim form to be completed by the claimant that will describe the location and point of diversion and land being irrigated, the priority date claimed, method of irrigation and such other information required to describe the claim. (A sample form for this purpose is attached.)
- 2. The Yellowstone River Compact Commission will send the claim form to water users on the interstate ditches.
- 3. Water users will complete the claim form and file it with the Yellowstone Compact Commission, which, when found to be correct and complete, will be forwarded to the Board for verification.
- 4. Upon receipt of the form, the Board shall forward it to the appropriate Superintendent, who, in cooperation with the Department, will validate the information including the use that has been made of the water, the number of acres and location of lands being irrigated, the priority date, and all other relevant information. The Superintendent and the Department will utilize aerial photography and other information to have prepared a reproducible map showing the location of the ditch system, lands irrigated, point of diversion, etc., of the claim.
- After the validation procedure, the Superintendent will hold a hearing, after appropriate notice and advertisement, at which time the claimant shall describe, in detail, the use that has been made of the water and the lands that are being irrigated, establish a priority date, etc. Costs incurred in advertising shall be paid by the claimant. If a single hearing is held to consider several claims, the costs of advertising shall be shared equally among the claimants. Anyone who opposes the claim shall appear and state the reasons, if any, for opposition to the claim. If there is no opposition to the claim, cost incurred in holding the hearing shall be paid by the claimant. If protestants do appear and oppose the claim, hearing costs will be paid 50 percent by the claimant and 50 percent by the protestant, or if there is more than one protestant, the remaining 50 percent shall be shared equally among the protestants.
- 6. At the conclusion of the hearing, the Superintendent shall forward the record to the Yellowstone River Compact Commission with his findings and recommendations. The Yellowstone River Compact Commission will make the

determination of the amount of the right, the location, and the priority date, and then send the record to the Board.

- 7. The Board shall review the record and integrate it into its water rights system. Upon entry of the record by the Board, the information shall be forwarded to the Department and the Chairman of the Yellowstone River Compact Commission.
- 8. Upon the entry of the right into the Board's records, it will have the following attributes:
 - a. The right will be a Wyoming water right with a priority date as established by this procedure.
 - b. The amount of the right will be determined as provided by Wyoming law.

B. Montana Procedure

- 1. The Yellowstone River Compact Commission will provide a claim form to be completed by the claimant that will describe the location and point of diversion and land being irrigated, the priority date claimed, method of irrigation and such other information required to describe the claim.
- 2. The Commission will send the claim form to water users on the interstate ditches.
- 3. Water users will complete the claim form and file it with the Yellowstone River Compact Commission, which, when found to be correct and complete, will be forwarded to the Department for verification.
- 4. Upon receipt of the form, the Department, in cooperation with the Wyoming State Engineer's Office, will validate the information, including the use that has been made of the water, the number of acres and location of lands being irrigated, the priority date, and all other relevant information. The appropriate Superintendent and the Department will utilize aerial photographs and other information to have prepared a reproducible map showing the location of the ditch system, land irrigated, point of diversion, etc., of the claim.

- 5. The Department will then forward the record to the Yellowstone River Compact Commission with its findings and recommendations. Upon approval by the Commission, the record shall be submitted to the Montana Water Court for adjudication. A duplicate record will be forwarded to the Wyoming State Engineer's Office, the Board, and the Chairman of the Yellowstone River Compact Commission upon adjudication.
- 6. Upon adjudication of the right by the Montana Water Court, it will have the following attributes:
 - a) The right will be a Montana water right with a priority date as established by this procedure.
 - b) The amount of the right will be determined as provided by Montana law.

Article V. Exclusions

- A. These rules recognize the limitation in Article VI of the Yellowstone River Compact regarding Indian water rights.
- B. These rules shall not be construed to determine or interpret the rights of the States of Wyoming and Montana to the waters of the Little Bighorn River.

Article VI. Claim Form Submission Period

All claims must be submitted to the Yellowstone River Compact Commission, c/o District Chief, United States Geological Survey, 821 E. Interstate, Bismarck, ND 58501, within 90 calendar days after the claimant has received the claim form from the Commission. The blank claim form will be sent certified mail to the water user and the submission period of 90 calendar days will begin with the next day following receipt of the form, as evidenced by the certified mail receipt card. For good cause shown in writing, an extension of time beyond the 90 days for submittal may be obtained from the Commission.

YELLOWSTONE RIVER COMPACT COMMISSION

WYOMING

UNITED STATES

MONTANA

CHAIRMAN ADMINISTRATOR WATER RESOURCES DIVISION
U.S. GEOLOGICAL SURVEY DEPT OF NATURAL RESOURCES & CONSERVATION

4TH FLOOR EAST BLIERSTATE AVENUE 1520 EAST SIXTH AVENUE

(307) 7777354 (701) 250-4601

YELLOWSTONE RIVER COMPACT COMMISSION CLAIM FORM FOR INTERSTATE DITCHES

1.	Name of ditch or canal:
2.	Source of water supply:
	Tributary of
3.	Name of claimant:
	Address
	City State Zip Code
	Home Phone No Business Phone No
4.	Person completing form:
	Address
	City State Zip Code
	Home Phone No Business Phone No
5.	Method of irrigation:
6.	Point of diversion: County State
	Headgate located in the $\frac{1}{4}$ $\frac{1}{4}$, Section $\frac{1}{4}$, T. $\frac{1}{4}$.
	(a) Description of headgate: (Briefly describe the materials
	and general features, date constructed or last known
	work, general condition.)

	(b) Describe water measuring device:
	(c) If the point of diversion is in Montana:
	1. What flow rate has been claimed?
	cubic feet per second
	gallons per minute
	miner's inches
	2. What volume of water has been claimed?
	acre-feet
7.	Dimensions of ditch at headgate: Width at top (at waterline)
	feet; width at bottom feet; side slopes
	(vertical:horizontal); depth of water
	feet; grade feet per mile.
8.	Place of use and acres irrigated: County State
	Give legal subdivisions of land owned by you on which water
	is being used (acres claimed): An example field is shown in
	the first line.
T. R. SEC.	NE NE NW SW SE TOTAL E NW SW SE NE NW SE NE NW SE NE NW SE NE NW SE
58N 95W 18	\(\alpha \sigma \) \(\alpha \sigma \) \(\alpha \sigma \) \(\alpha \sigma \sigma \) \(\alpha \sigma \sigma \) \(\alpha \sigma \simu \sigma

T. R.

9.	Describe any additional uses of water claimed from the ditch:
10.	
	described above for Ditch is (mo/day/yr)
	and shall be the same for all lands claimed on this form.
11.	Has irrigation water been diverted onto all lands shown in
	the above tabulation each year since completion of works?
	If not, state exceptions and reasons therefore:
12.	Attach documentary evidence or affidavits showing your
	ownership or control of the above lands, as well as the
	historic use of water on these lands.
13.	What permit or claim numbers have been assigned to known
	records filed with either the Wyoming State Engineer's Office
	or the Montana Department (DNRC) for irrigating the above
	lands?
14.	Have personnel in the Wyoming State Engineer's Office or the
	Montana Department (DNRC) been contacted to obtain the
	information given in No. 13? () Yes () No
15.	Describe any flumes or pipelines in the ditch conveyance
	system:

(mo/day) (mo/day)				
17. Attach copies of aerial photographs, U. S. Geological Survey				
maps or other such documents showing the ditch and lands				
irrigated that give evidence to this claim and may be useful				
to the Commission.				
* * * * * * *				
State of)				
State of) State of)				
I,, having been duly sworn, depose and				
say that I, being of legal age and being the claimant of this claim				
for a water right, and the person whose name is signed to it as the				
claimant, know the contents of this claim and the matters and				
things stated there are correct.				
Subscribed and sworn before me, thisday of, 19				
Notary Public				
Residing at:				
My commission expires:				

CONVERSION TABLE

Multiply inch-pound units	s <u>By</u>	To obtain SI units		
	Length			
<pre>feet (ft) miles (mi)</pre>	0.3048 1.609	meters (m) kilometers (km)		
	Area			
acres	4,047 0.4047 0.4047 0.004047	square meters (m ²) *hectares (ha) square hectometer (hm ²) square kilometers (km ²)		
square miles (mi ²)	2.590	square kilometers (km²)		
	Volume			
cfs-day or second- foot day (ft ³ /s-day)	2,447	cubic meters (m^3) cubic hectometers (hm^3)		
cubic feet	0.02832	cubic meters		
acre-feet (acre-ft)	1,233 0.001233 0.000001233	cubic meters (m³) cubic hectometers (hm³) cubic kilometers (km³)		
	Flow			
cubic feet per second (ft ³ /s)	28.32	liters per second (L/s)		
(10,75)	28.32	cubic decimeters per		
	0.02832	second (dm³/s) cubic meters per second (m³/s)		
acre-feet per year	1,233	cubic meters per year (m³/yr)		
(acre-ft/yr)	0.001233	cubic hectometers per year (hm³/yr)		
	0.000001233	<pre>year (hm³/yr) cubic kilometers per year (km³/yr)</pre>		

^{*}The unit hectare is approved for use with the International System (SI) for a limited time. See National Bureau of Standards Special Bulletin 330, p. 12, 1977 edition.

YELLOWSTONE RIVER COMPACT COMMISSION

YELLOWSTONE RIVER BASIN

EXPLANATION

COMPACT STREAM-GAGING STATION RESERVOIR-CONTENT STATION STATION NUMBER

MAP SHOWING LONS

