Michael Elliot King

™ mk@michaelking.io michaelelliotking.com linkedin.com/in/michaelelliotking 1 (617) 633-0828 488 Thames St. Newport, RI 02840

2015-2016 Emergency Pressure Vessel [EPV]

A pressure tolerant electronics enclosure storing batteries, GPS, pressure switches, and emergency circuits to monitor vehicle status and control emergency buoyancy

- Designed novel sheet metal rack to encase array of 8 batteries that minimized parts, machining costs, and facilitated battery replacement with single screw disassembly
- Designed cantilever rack and sliding rails for easy install and removal, which I validated with FEA

2015-2016 AIR BAG PRESSURE VESSEL [ABPV]

A pressure tolerant pneumatic and electronics enclosure housing solenoid valves and relays to pneumatically inflate air bags for emergency buoyancy

• Redesigned for usability by nesting valves into the end cap, removing supports that impeded installation, changing to more reliable fittings, and freeing up space for improved access

2016 Fin Adapter and Breakaway Fasteners

A mechanical adapter and breakaway fasteners to hold an underwater vehicle control surface fin and isolate the actuators from large stresses

- Designed novel-shaped adapter to increase strength while staying light by analyzing stresses (using FEA), removing unnecessary material, and splining the joint
- Designed modified fasteners to yield at precise load to limit the forces seen by the controlling actuators

2015 Pressure-Balanced Oil-Filled Electronics Box [PBOF Box]

A full-ocean depth pressure compensated modular electronics enclosure for testing electronics in a full ocean pressure environment

- Designed for modularity and usability during electronics tests to reduce the efforts of changing and troubleshooting of pressure tolerant sensors and circuits
- Created open-topped box with viewing window, novel hinge mechanism, minimized opening procedure, and no-mess oil fill and air bleed system

2015 Power System Arming Plug

A manual switch embedded in an underwater vehicle for arming and disarming the power system using a waterproof proximity switch

Designed for usability and fail-safety, with natural mapping and a two-step locking procedure

2013-2014 Variable-Friction Shoe-Surface Mechanism

A mechanism to fit in the sole of a shoe and dynamically simulate the friction of a full range of surfaces

 Designed a compact motor, gear, and lead screw system that controlled the height of a compressive and high-friction surface compared to the height of a rigid and low-friction surface

2013-2014 Autonomous Underwater Vehicle

A small unmanned underwater vehicle for an international student design team competition

• Designed the frame, pressure vessels, and propulsion system with limited-budget including machined, 3D-printed, and hand-manufactured parts

2012-2013 Autonomous Lunar Mining Robot

A small unmanned lunar vehicle for mining lunar regolith at an international student design team competition

• Designed the collection and storage system including a linkage lifting mechanism, composite storage bucket, and tilting dump-truck door

Last updated June 27, 2016 \bullet For the most recent version, see <code>michaelelliotking.com/portfolio</code>