IFES

Inteligência Artificial

Exercício de Programação 2: Problemas de Otimização

Data: 25/06/2023

Professor: Sérgio Nery Simões

Nome:Erikson Eler Ferreira Turma: PPCOMP-2023-1

Relatório Trabalho 2

Problema 1

Parâmetros:

Hill-Climbing Restart:

50 restarts;

Simulated Annealing:

- Temperatura inicial = 1000;
- Cooling rate = 0.90;
- Iterações = 1000;

Genetic Algorithm:

- Tamanho da população = 100
- Número de gerações = 50
- Taxa de mutação = 15%

No geral, cada algoritmo foi executado 1000 vezes com o número de 30 cidades.

Resultado - Custo a cada iteração por algoritmo.

Custo a cada iteração

Figura 1 - Custo a cada iteração.

A figura 1 acima mostra o custo obtido de cada algoritmo a cada iteração. Podemos observar que o algoritmo Hill-Climbing Restart obteve um melhor resultando alcançando o menor custo final. O algoritmo Simulated Annealing obteve pior resultado, apresentando custo inicial mais alto. O resultado é esperado devido a característica estocástica dos algoritmos.

Tabela 1 - Estatísticas dos algoritmos

	Hill Climbing	Hill Climbing Restart	Simulated Annealing	Genetic Algorithm
Chamadas	1000.000000	1000.000000	1000.000000	1000.000000
Média	495.878030	493.865921	530.546567	496.401220
Desvio Padrão	43.489274	43.301357	41.335214	40.463113
Mínimo	383.495444	378.555202	419.226746	380.268442
25%	465.829530	462.503027	502.829307	468.919112
50%	496.261182	493.503517	528.729536	494.701998
75%	523.811235	523.120523	558.398018	523.831588
Máximo	673.494500	650.906269	655.478971	639.332658

Custo por Algoritmo

Figura 2 - Box plot Custo Algoritmos.

A tabela 1 mostra as estatísticas gerais da execução dos algoritmos. Como mencionado anteriormente, o Simulated Annealing tem a maior média e o maior quartil superior. Isso indica que, em média teve um custo maior, no entanto, com variabilidade baixa, é importante ressaltar que não houve redução após a 320 iteração. Os algoritmos Hill Climbing Restart e o

Algoritmo Genético obtiveram resultados semelhantes, com médias bem próximas. No geral, o Hill-Climbing Restart obteve o caminho mais curto em seguida do Algoritmo Genético.

As figuras 3, 4, 5 e 6 mostram a variação do custo a cada execução do algoritmo.

Figura 3 - Variação do custo a cada execução Hill Climbing

Figura 4 - Variação do custo a cada execução Hill Climbing Restart

Figura 5 - Variação do custo a cada execução Simulated Annealing

Figura 6 - Variação do custo a cada execução Algoritmo Genético.

Abaixo na figura 7 temos as melhores rotas encontradas pelos algoritmos e seu respectivo custo.

Figura 7 - Melhores rotas por algoritmo.

É importante ressaltar que os resultados podem variar de acordo com os parâmetros e configurações utilizados nos algoritmos. Assim também a natureza estocástica dos mesmos pode trazer variações.

Problema 2

O problema 2 propõe a redução da função de Rastrigim pelos algoritmos Hill-Climbing Restart, Simulated Annealing e Algoritmo Genético.

Parâmetros:

Hill-Climbing Restart:

- 1000 iterações;
- Restart a cada 50 iterações;

Simulated Annealing:

- Temperatura inicial = 1000;
- Cooling rate = 0.90;
- Iterações = 1000;

Genetic Algorithm:

- Tamanho da população = 20
- Número de gerações = 50
- Taxa de mutação = 30%

Figura 8 - Representação 3D da função de Rastrigin.

Rastrigin Function

Na figura 8 temos a representação da função de Rastrigin.

Tabela 2 - Estatísticas minização da função de Rastrigin.

	Hil Climbing Restart	Simulated Annealing	Genetic Algorithm
Iterações	1000.000000	1000.000000	1000.000000
Média	0.074048	4.100708	1.525957
Desvio Padrão	1.257157	0.955903	1.633904
Mínimo	0.013829	3.983114	0.995335
25%	0.013829	3.983114	0.999523
50%	0.013829	3.983114	1.004945
75%	0.013829	3.983488	1.081777
Máximo	39.537191	17.877174	11.073371

Figura 9 - Redução por Iteração

Redução por iteração

A tabela 2 mostra que o algoritmo Hill Climbing Restart obteve o melhor desempenho, com o valor mínimo de 0.0013829. Para esse algoritmo, após a iteração 49 não houve melhoria no valor do fit. Podemos afirmar que após a iteração 320, nenhum algoritmo obteve melhor fit, O algoritmo genético obteve uma maior variação, que mostra em seu desvio padrão. Essa variação é notada logo nas 100 primeiras iterações. Vale ressaltar que dentre os três algoritmos, o algoritmo genético teve uma solução inicial aleatória mais baixa. Outro ponto interessante é o fato de o Simulated Annealing não encontrar melhor resultado após a iteração 67.

Figura 10 - Boxplot redução de Rastrigin

Devido a quantidade de iterações e pouca variabilidade, o boxplot apresentado na figura 10 mostra que a mediana dos três algoritmos alcançou valores muito aproximados, e mostra que o Hill Climbing Restart obteve um ponto próximo de 40, que foi sua solução aleatória inicial. Mostra também que o algoritmo genético teve maior variabilidade na busca pelo melhor resultado.

Demonstração visual do resultado

Nas figuras 11 e 12 abaixo temos o ponto, destacado em laranja, encontrado pelos algoritmos Hill Climbing Restart e Simulated Annealing.

Figura 11 - Melhor redução Hill Climbing Restart

Figura 12 - Melhor redução Simulated Annealing.

Na figura 13 temos a representação da população com melhor redução do algoritmo genético.

Figura 13 - Indivíduos da população Algoritmo Genético.

