Programowalna matryca logiczna (PLD) C-4 Logika sekwencyjna

Celem ćwiczenia jest zaprojektowanie układów sekwencyjnych oraz sprawdzenie ich działania w praktyce za pomocą matrycy logicznej. Matryca zasilana jest napięciem pojedynczym +5V względem masy.

Realizując funkcje logiczne należy pamiętać iż matryca umożliwia bezpośrednią implementacje funkcji logicznych w postaci sumy iloczynów np. Y=ABD + CA, gdzie symbol ABD oznacza iloczyn logiczny sygnałów A, nie B (negacja B) oraz D, czyli trójwejściową bramkę AND. Symbol nadkreślenia (kreski nad symbolem) oznacza jego negację, natomiast znak + to suma logiczna (bramka OR). Takimi zasadami zapisu funkcji logicznych należy się kierować również w sprawozdaniu. Do realizacji zadań w tym ćwiczeniu będzie wymagana znajomość: algebry Boole'a, praw De Morgana oraz optymalizacji funkcji logicznych z wykorzystaniem tablic Karnaugh'a. Do realizacji logiki sekwencyjnej wymagana jest również wiedza na temat przerzutnika typu D.

W sprawozdaniu dla każdego z punktów ćwiczenia należy przedstawić:

- funkcje logiczne będące wynikiem danego zadania,
- tabelę stanów układu kombinacyjnego lub tabelę stanów następnych (logika sekwencyjna)
- tabele Karnaugh'a **wraz z zaznaczonymi grupami** jeśli w danym punkcie ćwiczenia używano tej metody optymalizacji (punkty 2 4 ćwiczenia)
- zdjęcie matrycy pokazujące zaimplementowane funkcje logiczne,

1. Licznik modulo N (4-bitowy)

Zaprojektować 4-bitowy licznik synchroniczny modulo N. Układ taki ma N stanów i liczy od 0, 1, ... (N-1), 0, 1, ... (N-1), itd. lub w odwrotnej kolejności od (N-1) ...1, 0, (N-1) ... 1, 0, ... Licznik powinien liczyć w kodzie Gray'a, a do jego budowy wykorzystujemy wyjścia $O_4 - O_1$ matrycy pracujące w trybie sekwencyjnym (z przerzutnikiem typu D na wyjściu). O_1 jest najmłodszym bitem licznika. Zakładamy iż wszystkie stany poza zakresem pracy licznika (od N do 15) możemy traktować jako nadmiarowe - nigdy one nie wystąpią, a zatem stany następne do których one prowadzą są bez znaczenia. Szczegóły projektu licznika przedstawione zostały w tabeli poniżej w zależności od numeru wersji ćwiczenia podanej przez prowadzącego:

Wersja ćwiczenia	Wersja licznika
1	modulo 13 liczący w górę (+1)
2	modulo 11 liczący w dół (-1)
3	modulo 14 liczący w górę (+1)
4	modulo 12 liczący w dół (-1)
5	modulo 15 liczący w górę (+1)

Warto zwrócić uwagę iż projektowany licznik nie zależy od żadnego z sygnałów wejściowych, a jedynie od swojego stanu poprzedniego. Zadanie należy rozpocząć od zaprojektowania tabeli stanów (obowiązkowo do zamieszczenia w sprawozdaniu), gdzie tym razem dla każdego ze stanów licznika O_4 – O_1 przypiszemy stan następny O_4 ' – O_1 '.

W dalszej części dokonujemy minimalizacji funkcji logicznych stanów następnych wykorzystując metodę tablic Karnaugh'a. Każda z funkcji logicznych realizujących logikę stanu następnego: O_1 ', O_2 ', O_3 ' oraz O_4 ' zależy w ogólności od wszystkich bitów stanu aktualnego O_4 – O_1 . Kolejność sygnałów w tabelach proszę przyjąć według następującej zasady. Indeksowanie

wierszy według najstarszych bitów w tabeli stanów (tutaj O₄, potem O₃), natomiast kolumny według dwóch młodszych (tutaj O₂, potem O₁), analogicznie jak miało to miejsce w punkcie 2.

Aby wygodnie obserwować 4-bitową wartość na wyjściu licznika należy skorzystać z odpowiedniego trybu wyświetlacza.

2. Licznik binarny 3-bitowy ze sterowaniem zewnętrznym

Zaprojektować 3-bitowy licznik synchroniczny z wejściem sterującym A, liczący w kodzie binarnym. Zmiana stanu wejścia sterującego A (1 bit) pozwala na pracę licznika w dwóch trybach. Do budowy układu wykorzystujemy wyjścia $O_3 - O_1$ matrycy pracujące w trybie sekwencyjnym, gdzie O_1 jest najmłodszym bitem. Szczegóły projektu licznika przedstawione zostały w tabeli poniżej w zależności od numeru wersji ćwiczenia podanej przez prowadzącego:

Wersja ćwiczenia	Wersja licznika sterowanego		
	dla A = 0 (tryb 1)	dla A = 1 (tryb 2)	
1	liczy od 2 do 5 w górę (+1) cyklicznie,	liczy od 7 do 3 w dół (-1) cyklicznie, ze	
	ze stanu $5 \rightarrow 2$, stany nadmiarowe	stanu 3 → 7, stany nadmiarowe prowadzą	
	prowadzą do 2	do 7	
2	liczy od 1 do 6 w górę (+1) cyklicznie,	operacja rotacji bitów w prawo:	
	ze stanu $6 \rightarrow 1$, stany nadmiarowe	$O_3O_2O_1 \rightarrow O_1O_3O_2 \rightarrow O_2O_1O_3 \rightarrow O_3O_2O_1$	
	prowadzą do 1	itd. sekwencja się powtarza	
3	liczy po parzystych (0, 2, 4, 6) w górę	liczy po nieparzystych (1, 3, 5, 7) w górę	
	(+2) cyklicznie, ze stanu $6 \rightarrow 0$, stany	(+2) cyklicznie, ze stanu $7 \rightarrow 1$, stany	
	nadmiarowe przechodzą do 0	nadmiarowe przechodzą do 1	
4	liczy w sekwencji 0, 3, 5, 6, 7 cyklicznie,	zatrzymuje liczenie na wartości, która	
	ze stanu $7 \rightarrow 0$, stany nadmiarowe	była w momencie przełączenia sygnału A	
	prowadzą do 0	(ze stanu 0 prowadzi do 0, $1 \rightarrow 1$ itd.)	
5	liczy od 3 do 7 w górę (+1) cyklicznie,	liczy jednorazowo do 3 w dół (-1) i	
	ze stanu $7 \rightarrow 3$, stany nadmiarowe	zatrzymuje się na 3, stany nadmiarowe	
	prowadzą do 3	prowadzą do 3	

Warto zwrócić uwagę iż projektowany licznik zależy nie tylko od swojego stanu poprzedniego ale też od wejścia sterującego A. Zadanie należy rozpocząć od zaprojektowania tabeli stanów (obowiązkowo do zamieszczenia w sprawozdaniu), gdzie tym razem dla wejścia A oraz każdego ze stanów licznika $O_3 - O_1$ przypiszemy stan następny $O_3' - O_1'$. Wejście A traktujemy jak najstarszy bit w tabeli, w efekcie dając w ogólności 8 stanów licznika w trybie 1 (dla A=0) i kolejnych 8 w trybie 2 (dla A=1).

W dalszej części dokonujemy minimalizacji funkcji logicznych stanów następnych wykorzystując metodę tablic Karnaugh'a. Każda z funkcji logicznych realizujących logikę stanu następnego: O_1 ', O_2 ' oraz O_3 ' zależy w ogólności od wszystkich bitów stanu aktualnego $O_3 - O_1$ oraz od wejścia sterującego A. Kolejność sygnałów w tabelach proszę przyjąć według następującej zasady. Indeksowanie wierszy według najstarszych bitów w tabeli stanów (tutaj A, potem O_3), natomiast kolumny według dwóch młodszych (tutaj O_2 , potem O_1), analogicznie jak miało to miejsce w punkcie 2.

Aby wygodnie obserwować 3-bitową wartość na wyjściu licznika należy skorzystać z odpowiedniego trybu wyświetlacza.