KF School of Computing and Information Sciences Florida International University

CNT 4403 Computing and Network Security

Network Security – TCP/IP Networks

Dr. Kemal Akkaya

E-mail: kakkaya@fiu.edu

Examples of Networks

■What are some examples of how you use networks every day?

- File sharing
- Video chat (Skype, FaceTime)
- Web surfing
- Instant messaging
- Social Media (Facebook, Twitter, Vine)
- ➤ Voice over IP (VoIP)

Network Components

□ Icons representing actual equipment:

- > Router
- > Switch
- > Hub
- > Client
- > Server

Network Components

☐ Connect the components together with some *media* and you have a network!

Internet: a network of networks

- ☐ Communication infrastructure enables distributed applications
 - Network edge: applications and hosts
 - Network core:
 - √ routers
 - ✓ network of networks
 - Physical media: communication links
 - Applications: Web, email, games, ecommerce, file sharing
- □ Communication services provided to apps:
 - Connectionless unreliable
 - Connection-oriented reliable
- □ Various *protocols* are used for communication services

Networks Defined by Geography

- ☐ "Geography", in this sense, means how close the components are to each other
 - > PAN: Personal-area network
 - ➤ LAN: Local-area network
 - > CAN: Campus-area network
 - ➤ MAN: Metropolitan-area network
 - > WAN: Wide-area network

PAN: Personal-area Network

- ☐ Scale Human
- ☐ Distance a few meters
- ☐ Wired USB
- ☐ Wireless Bluetooth
- □ Components PCs, headphones, keyboards, smartphones, etc.

LAN: Local-area Network

□ Scale – Room or Building

☐ Distance — Usually 100 meters or less

■ Wired – Cat6 (Gig Ethernet) or Fiber

■ Wireless – 802.11

Kemal Akkaya

□ Components – PCs, routers, switches, servers, printers, wireless access points, etc.

CAN: Campus-area Network

- ☐ Scale Cluster of Buildings
- ☐ Distance Usually a mile or less
- Wired Fiber, coax
- ☐ Wireless 802.11, microwave
- □ Components Routers, switches, wireless bridges, etc.

MAN: Metropolitan-area Network

- ☐ Scale City
- □ Distance Usually a few miles or less
- Wired Fiber, coax
- Wireless Microwave
- ☐ Components Routers, switches, wireless bridges, etc.

Kemal Akkaya

WAN: Wide-area Network

- □ Scale State, country, global
- □ Distance A few miles to thousands of miles
- Wired Fiber
- Wireless Microwave
- ☐ Components Routers, switches, satellites, etc.

What's a protocol?

Human protocols:

- "What's the time?"
- "I have a question"
- Introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

Network protocols:

- Machines rather than humans
- All communication activity in Internet governed by protocols

Protocols define format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

What's a protocol?

☐ A human protocol and a computer network protocol:

- ☐ Key Elements of a Protocol:
 - Syntax
 - ➤ Data formats
 - ➤ Signal levels

- Timing
 - ➤ Speed matching
 - ➤ Sequencing

- Semantics
 - **≻**Control information
 - >Error handling

Protocol "Layers"

- Networks are complex!
- Many "pieces":
 - > hosts
 - > routers
 - > links of various media
 - > applications
 - > protocols
 - > hardware, software
- ☐ Hard to deal with
 - Difficult to understand the underlying mechanisms
 - Changes are difficult as they grow
- Question: Is there any hope of organizing structure of network?
- ☐ This lead researchers to come up with standard protocol stacks/architectures

Layering of airline functionality

				•
ticket (purchase)			ticket (complain)	ticket
baggage (check)			baggage (claim	baggage
gates (load)			gates (unload)	gate
runway (takeoff)			runway (land)	takeoff/landing
airplane routing	airplane routing	airplane routing	airplane routing	airplane routing

departure intermediate air-traffic arrival control centers airport

Layers: Each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below
- Why Layering?
 - Dealing with complex systems
 - > Explicit structure allows identification, relationship of complex system's pieces
 - ✓ Layered reference model for discussion
 - Modularization eases maintenance, updating of system
 - ✓ Change of implementation of layer's service transparent to rest of system.
 - ✓ e.g., change in gate procedure does not affect rest of system

Standardized Protocol Architectures

- Required for devices to communicate
- Vendors have more marketable products
- Customers can insist on standards based equipment
- ☐ Two standards:

Kemal Akkaya

- OSI Reference model
 - ✓ Open Systems Interconnection
 - ✓ Developed by the International Organization for Standardization (ISO)
 - ✓ Seven layers
 - ✓ Never lived up to early promises
- > TCP/IP protocol suite
 - ✓ Most widely used
 - ✓ De facto standard
- ☐ Also: IBM Systems Network Architecture (SNA)

OSI Reference Model

- □ A layer model
- ☐ Each layer performs a subset of the required communication functions
- □ Each layer relies on the next lower layer to perform more primitive functions
- □ Each layer provides services to the next higher layer
- ☐ Changes in one layer should not require changes in other layers
- Why OSI did not take over the world
 - Bad timing
 - Bad technology
 - Bad implementations
 - Bad politics

Application

Provides access to the OSI environment for users and al provides distributed information services.

Presentation

Provides independence to the application processes from differences in data representation (syntax).

Session

Provides the control structure for communication between applications; establishes, manages, and terminates connections (sessions) between cooperating applications.

Transport

Provides reliable, transparent transfer of data between end points; provides end-to-end error recovery and flow control

Network

Provides upper layers with independence from the data transmission and switching technologies used to connect systems; responsible for establishing, maintaining, and terminating connections.

Data Link

Provides for the reliable transfer of information across the physical link; sends blocks (frames) with the necessary synchronization, error control, and flow control.

Physical

Concerned with transmission of unstructured bit stream over physical medium; deals with the mechanical, electrical, functional, and procedural characteristics to access the physical medium.

Protocol Data Units

Application

Presentation

Session

Transport

Network

Data Link

Physical

Segments

Packets

Frames

Bits

The OSI Environment

Layer 1 - Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

- Electrical voltage/light modulation
- Cat6, Cat7, RJ-45 standards
- Physical Topologies Bus, Ring, Star
- Broadband or Baseband signaling
- Multiplexing TDM, FDM

Layer 2 - Data Link

Layer 3 - Network

Layer 4 - Transport

Application Presentation Session **Transport** Network Data Link Physical

- Transport Protocols
 - TCP
 - UDP
- Flow Control
 - Windowing
 - Buffering
 - Flow Control and Packet Sequencing

Layer 5 - Session

- Setting up a session
 - Identifying flows
- Maintaining a session
 - Transferring Data
- Tearing down a session

Layer 6 - Presentation

Application

Presentation

Session

Transport

Network

Data Link

Physical

- Data formatting
 - ASCII
 - JPG, PNG, BMP
- Encryption

Layer 7 - Application

Application

Presentation

Session

Transport

Network

Data Link

Physical

- Application services
 - HTTP
 - FTP
 - SMTP
- Service advertisement

TCP/IP Protocol Architecture

- □ Developed by the US Defense Advanced Research Project Agency (DARPA) for its packet switched network (ARPANET)
- ☐ Used by the global Internet
- No official model but a working one
 - Application layer
 - Host to host or transport layer
 - Internet layer
 - Network Interface Layer
 - ✓ Data link layer
 - √ Physical layer
- ☐ Problems:
 - Not a general model
 - No exact separate mention of physical and data link layers
 - ✓ Sometimes called host-to-network layer
 - ➤ Minor protocols deeply entrenched, hard to replace

Layer Descriptions

□ Physical Layer

- Physical interface between data transmission device (e.g. computer) and transmission medium or network
- Characteristics of transmission medium
- > Signal levels
- Data rates

Data Link Layer

- Exchange of data between neighboring network nodes
- Invoking services like priority

☐ Internet (IP) Layer

- Systems may be attached to different networks
- Routing functions across multiple networks
- Implemented in end systems and routers

□ Transport Layer (TCP)

- Reliable delivery of data
- Ordering of delivery

Application Layer

Support for user applications: HTTP, SMTP

The OSI Model vs. TCP/IP Stack

OSI Model

TCP/IP Stack

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Transport

Internet

Network Interface

