I | Circuit RLC // en RSF

On considère un circuit RLC parallèle en régime sinusoïdal forcé.

- 1. Exprimez l'admittance complexe \underline{Y} de ce circuit.
- 2. Mettez \underline{Y} sous la "forme réduite" en l'exprimant uniquement en fonction de R, Q (facteur de qualité) et u (pulsation réduite) avec :

$$Q = RC\omega_0 = \frac{R}{L\omega_0} = R\sqrt{\frac{C}{L}}$$
 et $u = \frac{\omega}{\omega_0} = \omega\sqrt{LC}$

- 3. En déduire l'impédance complexe \underline{Z} en fonction des mêmes variables réduites. Étudiez les variations du module de \underline{Z} en fonction de la fréquence. On montrera la présence d'un maximum que l'on précisera. Trouvez les deux valeurs u_1 et u_2 pour lesquelles $|\underline{Z}| = \frac{R}{\sqrt{2}}$.
- 4. Montrez que $|u_2 u_1| = \frac{1}{Q}$. À la fréquence de résonance, quelle est l'impédance simple équivalente du circuit ?
- 5. Que se passe-t-il loin de la fréquence de résonance?

I | Circuit RLC en RSF

On dispose de deux circuits A et B ci-dessous, qui sont alimentés par un GBF de f.e.m. $e(t) = E_0 \cos(\omega t)$ (avec E_0 une constante positive) et de résistance interne R_g .

Figure 11.1: Montage A

Figure 11.2: Montage B

On donne les graphiques de l'évolution de l'amplitude I_0 en ampère de l'intensité i(t), ainsi que celle de l'amplitude U_0 en volt de la tension u(t) en fonction de la fréquence f.

1. Pour chaque graphique, déterminer quelle est la courbe correspondant au montage A et celle au montage B. Déterminer les valeurs de E_0 , R, R_g , L et C.

$\mathbb{E} \mid \mathrm{Entr\'ee} \; \mathrm{en} \; \mathrm{r\'esonance} \; \mathrm{d}$ 'une suspension (\star)

On considère le cas d'un véhicule de masse m roulant à la vitesse (horizontale) v_0 sur une route de profil harmonique $y(x) = a\sin(kx)$ avec $x = v_0t$. On posera par la suite $\omega = kv_0$.

Le véhicule est relié aux roues par une suspension, modélisée par un ressort de longueur à vide l_0 , et de raideur k. De plus, on prendre en compte une force de frottement fluide exercée par l'air ambiant sur le véhicule d'expression $\overrightarrow{f} = -\lambda v_y \overrightarrow{e}_y$.

Dans toute la suite, on notera y(t) l'abscisse du véhicule et $y_s(t)$, l'abscisse du sol.

- 1. Effectuer un bilan des force verticales exercées sur le véhicule
- 2. En déduire l'équation du mouvement pour l'inconnue y sous sa forme canonique.

On cherche à obtenir une solution particulière $y_p(t)$ de cette équation sous la forme $y_p(t) = y_h(t) + y_c$ avec $y_h = Y \cos(\omega t + \phi)$, une fonction harmonique, associée à la partie harmonique du second membre et y_c , une fonction constante, associée à la partie constante du second membre.

- 3. De quelle équation y_c est-elle solution? Exprimer alors y_c en fonction des données du problème.
- 4. De quelle équation y_h est-elle solution ? On pose alors $\underline{y}_h(t) = \underline{Y}_c e^{j\omega t}$ tel que $y_h(t) = \text{Re}(\underline{y}_h(t))$. Déduire de ce qui précède l'expression de \underline{Y}_c en fonction de λ, k, m, ω et a.

On pose $\omega_0 = \sqrt{k/m}$ la pulsation propre du système et $Q = \sqrt{mk}/\lambda$, son facteur de qualité

- 5. Vers quelle limite tend l'amplitude Y de $y_h(t)$ en basse fréquence? De même, donner un équivalent de cette amplitude en haute fréquence. Exprimer ensuite cette amplitude pour $\omega = \omega_0 = \sqrt{k/m}$ en fonction de a et de Q. En déduire la courbe de Y en fonction de ω pour différentes valeurs du facteur de qualité (par exemple 0,5; 1; 2)
- 6. La résonance est-elle obtenue pour toute les valeurs possible du facteur de qualité ? S'agit-il du même type de résonance que celle obtenue pour l'intensité d'un circuit RLC ?
- 7. (**) Déterminer précisément, et par le calcul, à partir de quelle valeur notée Q_c la résonance apparaît. Cette dernière se caractérise par l'apparition d'un maximum local dans la courbe $|Y(\omega)|$.

I | Quartz piézo-electrique

On considère, comme schéma électrique simplifié équivalent d'un quartz piézo-électrique destiné à servir d'étalon de fréquence dans une horloge, un dipôle AB composé de deux branches en parallèle.

Dans l'une, une inductance L pure en série avec un condensateur de capacité C; dans l'autre, un condensateur de capacité C_0 . On posera $\frac{C}{C_0} = a$, et on gardera les variables L, C_0 , ω et a.

- 1. Le dipôle AB étant alimenté par une tension sinusoïdale de pulsation ω , calculez l'impédance complexe $\underline{Z_{AB}} = \underline{Z}$. Calculez ensuite son module $|\underline{Z}| = Z$, et son argument φ .
- 2. Étudiez l'impédance \underline{Z} en fonction de la pulsation ; pour cela :
 - \bullet on précisera tout particulièrement les limites de Z quand ω tend vers zéro ou l'infini ;
 - on appellera ω_1 et ω_2 , les valeurs finies non nulles de la pulsation pour lesquelles Z est respectivement nulle et infinie. Quel est le comportement électrique simple de AB pour $\omega = \omega_1$ et $\omega = \omega_2$?

Donnez $Z = f(C_0, \omega, \omega_1, \omega_2)$.

- 3. Représentez graphiquement Z en fonction de ω .
- 4. Précisez par un graphe à main levée, et sans aucun calcul, comment qualitativement est modifié la courbe $Z = f(\omega)$ si l'on tient compte de la résistance du bobinage d'inductance L.

I Détermination d'une inductance $(\star \star \star)$

On réalise le montage représenté ci-contre, et on constate sur l'oscilloscope que pour une fréquence $f_0=180\,\mathrm{Hz}$, les signaux recueillis sur les voies X et Y sont en phase.

 $Donn\acute{e}s: R = 100\,\Omega$ et $C = 10\,\mu F$.

1. En déduire l'expression puis la valeur de l'inductance L de la bobine.