Section 5.2-5.3

Outline

- ▶ The Definite Integral
 - Definition
 - Properties
- ▶ The Fundamental Theorem of Calculus

- The limit $A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x$ appears in solving the area problem.
- It turns out that this same type of limit occurs in a wide variety of situations even when f is not necessarily a positive function. Hence, we give this type of limit a special name and notation.

2 Definition of a Definite Integral If f is a function defined for $a \le x \le b$, we divide the interval [a, b] into n subintervals of equal width $\Delta x = (b - a)/n$. We let $x_0 (= a), x_1, x_2, \ldots, x_n (= b)$ be the endpoints of these subintervals and we let $x_1^*, x_2^*, \ldots, x_n^*$ be any **sample points** in these subintervals, so x_i^* lies in the ith subinterval $[x_{i-1}, x_i]$. Then the **definite integral of** f **from** a **to** b is

$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$

provided that this limit exists and gives the same value for all possible choices of sample points. If it does exist, we say that f is **integrable** on [a, b].

$$\lim_{n\to\infty} \frac{n \ln(n^2+\kappa^2) - 2\ln n}{n+\kappa} \text{ as a definite integral } \int_a^b f(x) dx.$$

The geometrical meaning of Safix dx.

If f(x) takes on both positive and negative values, then $\int_{a}^{b} f(x) dx = A_{1} - A_{2} \quad \text{where} \quad A_{1} \text{ is the area of the region}$ above the x-axis and below the graph of f(x), and A_{2} is the area of the region below the x-axis and above the graph of f(x).

Ex: Show that $\int_a^b c dx = c(b-a)$.

▶ The precise meaning of the limit that defines the integral is as follows:

For every $\epsilon>0$ there is an integer N such that $|\int_a^b f(x)dx - \sum_{i=1}^n f(x_i^*)\Delta x| < \epsilon$

for every integer n > N and for every choice

$$x_i^*$$
 in $[x_{i-1}, x_i]$.

- Note 1: In the definite integral notation, f(x) is called the integrand. a is the lower limit and b is the upper limit. The dx simply indicates that the independent variable is x.
- Note 2: The definite integral is a number; it does not depend on x. In fact, we could use any letter in place of x without changing the value of the integral:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \int_{a}^{b} f(r)dr$$

- Note 3: The sum $\sum_{i=1}^{n} f(x_i^*) \Delta x$ that occurs in Definition 2 is called a **Riemann sum**.
- Note 4: We don't need to divide the interval [a,b] into equal width subintervals. If the subinterval widths are $\Delta x_1, \Delta x_2, \ldots, \Delta x_n$, we only have to ensure that all these widths approach 0 in the limiting process. In this case the definition of a definite integral becomes

$$\int_{a}^{b} f(x)dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^{h} f(x_i^*) \Delta x_i$$

- Note 5: We have defined the definite integral for an integrable function, but not all functions are integrable.
- **Theorem** If f is continuous on [a, b], or if f has only a finite number of jump discontinuities, then f is integrable on [a, b]; that is, the definite integral $\int_a^b f(x) dx$ exists.
 - In the previous theorem, we can replace the assumption "f has only a finite number of jump discontinuities" by "f is bounded and has only a finite number of discontinuities."

Ex: Let $f(x) = \begin{cases} 0 \\ i \end{cases}$, if $x \in Q^c$. Show that f(x) is not integrable on [0, 1].

- Property:
- If f(x) is not bounded on [a,b], then f(x) is not integrable on [a,b].
- Exercise: Show that if $\lim_{x\to a^+} f(x) = \infty$, then the Riemann Sum of f(x) on [a,b] does not tend to a limit.

Ex: If $\lim_{x\to a^+} f(x) = \infty$, show that f(x) is not integrable on [a,b] for any b > a.

Ex: choose integrable functions on the inteval
$$[0,1]$$

$$f(x) = (\frac{1}{x}) f(x) + \frac{y}{y} f(x)$$

1.
$$f(x) = \begin{cases} \frac{1}{2\chi - 1}, & \text{for } x \neq \frac{1}{2} \\ 0, & \text{for } x = \frac{1}{2}. \end{cases}$$
2.
$$f(x) = \begin{cases} 2\chi - 1, & \chi \in [0, \frac{1}{2}] \\ \cos(\chi), & \chi \in (\frac{1}{2}, 1]. \end{cases}$$

$$2. f(x) = \begin{cases} 2\chi - 1, \chi \in [0, \frac{1}{2}] \\ \cos \chi, \chi \in (\frac{1}{2}, 1] \end{cases}$$

$$3. f(x) = \begin{cases} \sin(\frac{1}{x}), & \text{for } \chi \in (0, 1] \\ 0, & \text{for } \chi = 0 \end{cases}$$

Compute / estimate a definite integral

4 Theorem If f is integrable on [a, b], then

$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x$$

where

$$\Delta x = \frac{b-a}{n}$$
 and $x_i = a + i \Delta x$

Properties of the Definite Integral

$$\int_b^a f(x)dx = -\int_a^b f(x)dx$$

Properties of the Integral

1. $\int_a^b c \, dx = c(b-a)$, where c is any constant

2.
$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

- 3. $\int_a^b cf(x) dx = c \int_a^b f(x) dx$, where c is any constant
- **4.** $\int_a^b [f(x) g(x)] dx = \int_a^b f(x) dx \int_a^b g(x) dx$

Properties of the Definite Integral

$$\int_a^c f(x)dx + \int_c^b f(x)dx = \int_a^b f(x)dx$$

Comparison Properties of the Integral

6. If
$$f(x) \ge 0$$
 for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$.

7. If
$$f(x) \ge g(x)$$
 for $a \le x \le b$, then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

8. If $m \le f(x) \le M$ for $a \le x \le b$, then

$$m(b-a) \le \int_a^b f(x) \, dx \le M(b-a)$$

Ex: Show that
$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

Pf:

Suppose that $f(x) \ge 0$.

Case 1: $a < c < b$

Case 2: $c < a < b$

Case 3: $a < b < c$
 $y = f(x)$
 $y = f(x)$

Ex. Suppose that
$$\int_{1}^{7} f(x) dx = 10$$
, $\int_{5}^{10} f(x) dx = 6$, and $\int_{1}^{10} 2 f(x) dx = 30$. Find $\int_{1}^{5} f(x) dx$ and $\int_{7}^{10} f(x) dx$.

Ex: Compute $\lim_{\chi \to \infty} \int_{\chi}^{2\chi} \frac{1}{1+y^2} dy$