Average-Case Quantum Advantage with Shallow Circuits

February 2020

Refs

We present a result by François Le Gall [Le Gall, 2019], an average-case strengthening of the breakthrough result by Bravyi, Gosset, Koenig [Bravyi et al., Science, 2017].

Shallow-depth circuits that we are concerned about

Fan-in = # inputs to a gate

Definition: *NC*⁰ circuits

NC⁰ circuits are constant-depth, bounded (gate) fan-in classical circuits

Definition: *QNC*⁰ circuits

 $\ensuremath{\textit{QNC}}^0$ circuits are constant-depth, bounded (gate) fan-in quantum circuits

Quantum advantage with shallow circuits (Bravyi et el.)

Bravyi et al. introduced the "2D HLF problem":

- No NC^0 circuit can solve the 2D HLF problem on $\geq \frac{7}{8}$ of inputs
- A QNC⁰ circuit can solve the 2D HLF problem on all inputs
- First such unconditional, non-oracular separation in circuit model
 - ► Conditional: "If this conjecture is true, then our statement is true"
 - Oracular: "If we give the circuits access to some oracle computing a function, then we can separate them"

Averge-case quantum advantage with shallow circuits

Le Gall shows the following for the "Graph State Measurement" problem:

- No randomized NC^0 circuit can solve GSM with average probability $\geq \frac{1}{\exp(\gamma\sqrt{n})}$ for some $\gamma>0$
- A QNC⁰ circuit can solve GSM on all inputs with certainty
- Separation for exponentially small classical correctness and simpler QNC⁰ algorithm

Relation problem

Relation problem

Input: $x \in \{0,1\}^m$. Output: Any $z \in R(x) \subseteq \{0,1\}^n$

Preliminaries: Graph states

$$CZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

"Apply Z to the target qubit if the control qubit is set"

Definition: Graph state

For any graph G=(V,E), let each $v\in V$ be a qubit initialized to $|0\rangle$. Apply H to each $v\in V$, then for each $(u,v)\in E$ apply CZ on $|\psi_u\rangle\otimes|\psi_v\rangle$. The resulting $|G\rangle$ is a graph state

Graph state measurement outcomes are highly correlated

The extended graph

Definition: Extended graph

For a graph G, the extended graph, \overline{G} , is obtained by introducing a new vertex on every edge. Let the new vertices be V^*

Definition: *f*-covering

For $f:V\to\{0,1\}$, an f-covering of \overline{G} is a set of $\frac{|f|}{2}$ paths such that each $v\in V$ where f(v)=1 appears only once as an endpoint

E.g.,
$$f(u_2) = f(u_4) = f(u_5) = f(u_{10}) = 1$$

A general measurement process

Consider the following process:

Process P(G, f)

- **①** Construct the graph state corresponding to \overline{G}
- ② For each $v \in V$: If f(v) = 1, then measure v in Y-basis. For all other vertices in $V \cup V^*$, measure in X-basis.

Let $z_v \in \{0,1\}$ be the measurement outcome of vertex v. $z_v = 0$ corresponds to +1 eigenvalue. $z_v = 1$ corresponds to -1 eigenvalue.

Theorems of measurement parity for P(G, f)

Theorem 3

For any cycle C of \overline{G} , with probability 1, $\bigoplus_{v \in C \cap V^*} z_v = 0$

Theorem 4

Let |f| be even and $z_V = \bigoplus_{v \in V} z_v$. Then with probability 1,

$$z_V \oplus igoplus_{i=1}^{|f|/2} igoplus_{v \in p_i \cap V^*} z_v = egin{cases} 0, & ext{if } |f| \mod 4 = 0 \ 1, & ext{if } |f| \mod 4 = 2 \end{cases}$$

We will use these general graph state measurement theorems later.

The graph state that we use (small example)

The Graph

- V_d^1 is the vertices of a $d^3 \times d^3$ grid. Each $d \times d$ region is a "box"
- ullet V_d^2 is the vertices we place inside every 1 imes 1 square within every box
- $\bullet \ V_d = V_d^1 \cup V_d^2.$
- ullet V_d^* is the vertices of the extended graph

For convenience, denote $k := \sqrt{|V_d^2|}$ and $n := |V_d^1| + |V_d^2| + |V_d^*| = \Theta(d^6)$ Example of a 1×1 square in the grid:

The graph state that we use (big example)

The computational problem that we solve (GSM)

Given $A = \{0,1\}^{k \times k}$ as input, define the following process

Process $P_d(A)$

- lacktriangledown Construct the graph state from $\overline{G_d}$ as before
- ② For each $u_{ij} \in V_d^2$: If $A_{ij} = 1$, measure qubit u_{ij} in the Y-basis. Otherwise, measure it in the X-basis.
- $\bullet \ \, \text{For each} \,\, u \in V_d^1 \cup V_d^*, \,\, \text{measure} \,\, u \,\, \text{in the} \,\, X\text{-basis}.$

Let $\Lambda_d(A) \subseteq \{0,1\}^n$ be the set of all possible measurement outcomes for A. The computational problem is to, given A of size $m:=k^2$, output any element of $\Lambda_d(A)$.

GSM can be solved on QNC⁰ circuit

(Recall) Definition: Graph state

For any graph G=(V,E), let each $v\in V$ be a qubit initialized to $|0\rangle$. Apply H to each $v\in V$, then for each $(u,v)\in E$ apply CZ on $|\psi_u\rangle\otimes|\psi_v\rangle$. The resulting $|G\rangle$ is a graph state

Idea: Follow the protocol for graph state construction, by definition:

- One layer of H gates
- O(1) layers of CZ because of constant-degree vertices
- O(1) layers for measurement

Correctness is clear

The plan for showing a NC^0 circuit can't solve GSM

Show that any classical circuit solving GSM must satisfy unsatisfiable equations in its output

Lemma 1

Consider the affine functions

$$q: \{0,1\}^3 \to \{0,1\} \text{ and } q_i: \{0,1\}^2 \to \{0,1\} \text{ for } i \in \{1,2,3\}$$

If $q_1(b_2, b_3) \oplus q_2(b_1, b_3) \oplus q_3(b_1, b_2) = 0$, then one of the following equations does not hold:

$$q(0,0,0) = 0 (1)$$

$$q(0,1,1) \oplus q_1(1,1) = 1$$
 (2)

$$q(1,0,1) \oplus q_2(1,1) = 1 \tag{3}$$

$$q(1,1,0) \oplus q_3(1,1) = 1$$
 (4)

Next: find a cycle in our graph that exhibits these equations in NC^0

Properties of classical circuit for GSM lower bounds

C_d is a randomized classical circuit

- $m = k^2 = \Theta(d^6)$ input wires and $n = \Theta(d^6)$ output wires
- Fan-in ≤ 2 and depth $\leq \frac{1}{8} \log_2 m$
- Assume that n large enough so that $3n^{1/7} \le d-2$

Define the following wires:

- x_{ij} wire receives the input bit A_{ij}
- ullet z_u wire outputs the measurement outcome for $u \in \overline{V_d}$

Lightcones help quantify related input-output relationships

To model cause-and-effect relationships between input-output wires:

- For output wire z_u , define $L(z_u) = \{v \in V_d^2 : \text{ value of } z_u \text{ depends on } x_v\}$
- Similarly, for input wire x_v , define $L(x_v) = \{u \in \overline{V_d} : \text{ value of } z_u \text{ depends on } x_v\}$

Let
$$\Gamma = \{u \in V_d^2 : L(x_u) > n^{1/7}\}$$
 (input wires with "big" lightcones)

• Via a simple counting argument, $|\Gamma| \leq O(n^{55/56})$

Three distinct regions to form a cycle

Split grid into 9 regions. Then label input wires into groups U, V, W:

U: top-left \Γ

• V: top-right Γ

• W: bottom-right Γ

We'll connect U, V, W in a cycle later on

The lightcones from U, V, W can be disjoint

Recall $d \times d$ boxes.

Lemma 2

The number of triples $(u, v, w) \in U \times V \times W$ where lightcones of x_u, x_v, x_w intersect one another's boxes is $O(n^{2+10/21})$

Lemma 3

The number of triples $(u, v, w) \in U \times V \times W$ where the lightcones of x_u, x_v, x_w are not pairwise disjoint is $O(n^{2+2/7})$

- Basic idea: Lightcones $L(x_u), L(x_v), L(x_w)$ have small size, $\leq n^{1/7}$
- $|U|, |V|, |W| = O(n) \implies |U \times V \times W| = O(n^3)$

How to connect (u, v, w) into a cycle correctly

Let Box(x) be the $d \times d$ box that encloses vertex x

Proposition 1

There is a $(u, v, w) \in U \times V \times W$ such that the following hold:

- **1** The lightcones of x_u, x_v, x_w are pairwise disjoint
- 2 The lightcones of x_u, x_v, x_w do not intersect one another's boxes
- **3** There is a cycle C containing u, v, w such that
 - C does not use any edge from the external border of $\overline{G_d}$, $\partial(\overline{G_d})$
 - $C \cap V_d^2 = \{u, v, w\}$
 - $q_{v \to w} \cap L(x_u) = \emptyset$, $q_{w \to u} \cap L(x_v) = \emptyset$, $q_{u \to v} \cap L(x_w) = \emptyset$, where $q_{a \to b}$ is the subpath of C from a to b

Proof sketch: Lemma 3 is (1) Lemma 2 is (2). Create 3(d-2) paths connecting borders of Box(u), Box(v), Box(w). Recall that $3n^{1/7} \le d-2$, so we can choose three paths that connect Box(u), Box(v), Box(w) borders. Connect u, v, w to their borders. This gives us 3.1, 3.2, 3.3.

How to see Proposition 1

Connect marked input vertices into paths

Split input $\{0,1\}^{k \times k}$ to $a = \{0,1\}^{k^2-3}$ and $b = (b_u, b_v, b_w)$. (|a| even)

(Recall) 3.1 and 3.2

- 3.1: C does not use any edge from the external border of $\overline{G_d}$, $\partial(\overline{G_d})$
- 3.2: $C \cap V_d^2 = \{u, v, w\}$
- (3.1) and (3.2) $\implies \exists$ a a-covering $\{p_1,...,p_{|a|/2}\}$ of $V_d^2\setminus\{u,v,w\}$ that does not intersect C

Using a-covering to form affine functions

Fix the values of a and random bits \implies left with (b_u, b_v, b_w) as input

$$\lambda_1 = \bigoplus_{\ell \in V_d} z_\ell$$
 (parity of original vertices)

$$\lambda_2 = \bigoplus_{i=1}^{|a|/2} \bigoplus_{\ell \in p_i \cap V_d^*} z_\ell$$
 (parity of extended vertices in *a*-covering)

The affine functions of (b_u, b_v, b_w)

$$y = \begin{cases} \lambda_1 \oplus \lambda_2, & \text{if } |a| \mod 4 = 0 \\ \lambda_1 \oplus \lambda_2 \oplus 1, & \text{if } |a| \mod 4 = 2 \end{cases}$$

$$y_x = \bigoplus z_{\ell} \quad \forall x \in \{u \to v, v \to w, w \to u\}$$

Why are these affine functions of (b_u, b_v, b_w) ?

 $\ell \in q_{\times} \cap V_{\perp}^*$

Why y and y_x are affine functions of (b_u, b_v, b_w)

(Recall) 1 and 3.3

- 1: The lightcones of x_u, x_v, x_w are pairwise disjoint
- 3.3: $q_{v \to w} \cap L(x_u) = \emptyset$, $q_{w \to u} \cap L(x_v) = \emptyset$, $q_{u \to v} \cap L(x_w) = \emptyset$, where $q_{a \to b}$ is the subpath of C from a to b
- (1) $\implies x_u, x_v, x_w$ do not simultaneously affect any output bit $\implies y, y_x$ are affine in b_u, b_v, b_w
- $(3.3) \implies y_{u \to v}(b_u, b_v), y_{v \to w}(b_v, b_w), y_{w \to u}(b_w, b_u)$

Parity results of NC^0 measurement outcomes

(Recall) Theorem 3

For any cycle C of \overline{G} , with probability 1, $\bigoplus_{v \in C \cap V^*} z_v = 0$

$$\implies y_{u \to v} \oplus y_{v \to w} \oplus y_{w \to u} = 0$$

(Recall) Theorem 4

Let |f| be even and $z_V = \bigoplus_{v \in V} z_v$. Then with probability 1,

$$z_V \oplus \bigoplus_{i=1}^{|f|/2} \bigoplus_{v \in p_i \cap V^*} z_v = \begin{cases} 0, & \text{if } |f| \mod 4 = 0 \\ 1, & \text{if } |f| \mod 4 = 2 \end{cases}$$

$$\Longrightarrow$$

$$\begin{cases} y = 0, & \text{if } (b_u, b_v, b_w) = (0, 0, 0) \\ y \oplus y_{v \to w} = 1, & \text{if } (b_u, b_v, b_w) = (0, 1, 1) \\ y \oplus y_{w \to u} = 1, & \text{if } (b_u, b_v, b_w) = (1, 0, 1) \\ y \oplus y_{u \to v} = 1, & \text{if } (b_u, b_v, b_w) = (1, \frac{1}{2}, 0) \end{cases}$$

Impossibility of NC⁰ measurement parity

This is impossible!

(Recall) Lemma 1

Consider the affine functions

$$q: \{0,1\}^3 \to \{0,1\} \text{ and } q_i: \{0,1\}^2 \to \{0,1\} \text{ for } i \in \{1,2,3\}$$

If $q_1(b_2, b_3) \oplus q_2(b_1, b_3) \oplus q_3(b_1, b_2) = 0$, then one of the following equations does not hold:

$$q(0,0,0) = 0 (5)$$

$$q(0,1,1) \oplus q_1(1,1) = 1 \tag{6}$$

$$q(1,0,1) \oplus q_2(1,1) = 1 \tag{7}$$

$$q(1,1,0) \oplus q_3(1,1) = 1 \tag{8}$$

What have we shown?

Classical circuit fails for $\geq \frac{1}{8}$ choices of (b_u, b_v, b_w) . |a| is even w.p. $\frac{1}{2}$. For any randomized circuit with random string r,

$$\implies \sum_{A \in \{0,1\}^{k \times k}} Pr_r[C_d(A) \notin \Lambda_d(A)] \ge \frac{2^{k^2}}{16}$$

- \implies Average probability $\frac{1}{2^m}\sum_{A\in\{0,1\}^m} Pr_r[C_d(A)\in\Lambda_d(A)]<\frac{15}{16}$
- \implies Average probability of success for NC^0 circuit $<\frac{15}{16}$
 - Global quantum correlations can be realized for all cycles in constant quantum depth
 - Sub-logarithmic depth classical circuits cannot create necessary correlations in all long cycles

Extending the result to average-case hardness

Theorem 5: Repetition Theorem

For *m*-input, *n*-output relation R, if any depth $\leq c \log_2(m)$ classical circuit C satisfies

$$\frac{1}{2^m} \sum_{x \in \{0,1\}^m} \Pr[C(x) \in R(x)] < 1 - \alpha$$

then $\forall t \geq 6nm^c + 2$ s.t. any classical (mt)-input, (nt)-output circuit C' with same bounded depth satisfies

$$\frac{1}{2^{mt}} \sum_{x' \in \{0,1\}^{mt}} \Pr[C'(x') \in R^{\times t}(x')] < (1-\alpha)^{t/(6m^c n+2)}$$

In our case, choose
$$t = (6nm^{1/8} + 2)^3$$
 $\implies \frac{1}{2^{mt}} \sum_{\{0,1\}^{mt}} \Pr[\text{success}] < (1-\alpha)^{\sqrt{mt}} \le \exp(-\alpha\sqrt{mt})$

In conclusion

- No randomized NC^0 circuit can solve GSM with average probability $\geq \frac{1}{\exp(\gamma\sqrt{n})}$ for some $\gamma>0$
- A QNC⁰ circuit can solve GSM on all inputs with certainty
- Separation for exponentially small classical correctness and simpler QNC⁰ algorithm