

Online Contests

User previus Log Out

Online Judge Web Board Home Page F.A.Qs **Statistical Charts**

Problem Set Problems Submit Problem Online Status Prob.ID: Go

Authors Register Update your info **Authors ranklist** Search

Current Contest Past Contests Scheduled Contests **Award Contest**

Mail:32(**23**) Login Log Archive

Discrete Logging

Time Limit: 5000MS Memory Limit: 65536K **Total Submissions:** 12744 Accepted: 4818

Language: Default >

Description

Given a prime P, $2 \le P \le 2^{31}$, an integer B, $2 \le B \le P$, and an integer N, $1 \le N \le P$, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

$$B^L == N \pmod{P}$$

Read several lines of input, each containing P,B,N separated by a space.

Output

Input

For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

Sample Input

Sample Output

Hint

The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states

$$B^{(P-1)} == 1 \pmod{P}$$

for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m

$$B^{(-m)} == B^{(P-1-m)} \pmod{P}$$
.

Source

Waterloo Local 2002.01.26

[Submit] [Go Back] [Status] [Discuss]

