RNA modification identification using nanopore direct RNA sequencing

De novo Identification of DNA Modifications Enabled by Genome-Guided Nanopore Signal Processing

Authors: Marcus Stoiber1, Joshua Quick2, Rob Egan3, Ji Eun Lee3, Susan Celniker1, Robert K. Neely4, Nicholas Loman2, Len A Pennacchio1,3, James Brown1,5,6,7

- Tombo/nanoraw: https://nanoporetech.github.io/tombo/
- resquiggle the genome to associate raw nanopore signal with genomic positions and unsupervised statistical testing
- nomalized raw signal
- ✓ no need for prior external or additional training data
- effective visualization of raw nanopore signal in genomic contexts
- X modification type depends on the non-modified control data
- X aligner not splice-aware

Accurate detection of m⁶A RNA modifications in native RNA sequences

Huanle Liu^{1,2,11}, Oguzhan Begik ^{1,2,3,11}, Morghan C. Lucas ^{1,4}, Jose Miguel Ramirez¹, Christopher E. Mason ^{5,6,7}, David Wiener⁸, Schraga Schwartz⁸, John S. Mattick^{2,3,10}, Martin A. Smith ^{3,9} & Eva Maria Novoa ^{1,2,3,4}

- **EpiNano:** https://github.com/enovoa/EpiNano
- SVM model trained on IVT comprised all possible 5mers using canonical A or m6A
- base-called "errors" information: base quality, deletion frequency and mismatch frequency
- ✓ reasonable accuracy at more than 25% of methylation ratio
- ✓ linear regression to estimate the stoichiometry
- ✓ DRS of polyA(+) from *S. cerevisiae wt* and $ime4\Delta$
- X limited to m6A modification
- X not used to DRACH k-mer with more than one A

biorxiv, 2019 Nov

RNA modifications detection by comparative Nanopore direct RNA sequencing

Adrien Leger^{1*}, Paulo P. Amaral^{2,3*}, Luca Pandolfini², Charlotte Capitanchik⁴, Federica Capraro^{4,5}, Isaia Barbieri^{2,8}, Valentina Migliori², Nicholas M. Luscombe^{4,6,7}, Anton J Enright⁹, Konstantinos Tzelepis², Jernej Ule^{4,5}, Tomas Fitzgerald¹, Ewan Birney^{1**}, Tommaso Leonardi^{2,10**} and Tony Kouzarides^{2**}

- Nanocompore: https://github.com/tleonardi/nanocompore
- various statistical test: Kolmogorov-Smirnov (KS), Mann-Whitney (MW) and Welch's t-test.
- median signal intensity and the log10(dwell time)
- single-molecule modification probabilities from GMM clustering
- √ does not require a training set
- ✓ allows replicates to model biological variability
- ✓ single molecule resolution, modification stoichiometry and combinatorics.
- ✓ applied as-is to any RNA modification
- ✓ DRS and miCLIP of polyA(+) from METTL3 KD and WT MOLM13 cells
- X non-modified control data required: knock-downs, knock-outs, cDNA or IVT samples
- X modification type depends on the control data
- X unsuitable for the identification of very low frequency modifications

RNA, 2020 Jan

Direct RNA sequencing enables m⁶A detection in endogenous transcript isoforms at base-specific resolution

DANIEL A. LORENZ, 1,2,3,4 SHASHANK SATHE, 1,2,3,4 JACLYN M. EINSTEIN, 1,2 and GENE W. YEO 1,2,3

- MINES: https://github.com/YeoLab/MINES
- random forest classifier trained on known miCLIP sites
- fraction modification values calculated by tombo
- a separate model for each 5mer within the DRACH motif
- ✓ single site, isoform-level resolution
- ✓ DRS of polyA(+) from HEK-WT, HEK-shMETTL3, HMEC-WT, HMEC-ALKBH5
- X limited to m6A sites within 4 specific DRACH sequences with AUC values >0.67
- X affected by the same biases and/or limitations as miCLIP

frontiers in Genetics, 2020 Mar

MasterOfPores: A Workflow for the Analysis of Oxford Nanopore Direct RNA Sequencing Datasets

Luca Cozzuto¹, Huanle Liu¹, Leszek P. Pryszcz^{1,2}, Toni Hermoso Pulido¹, Anna Delgado-Tejedor^{1,3}, Julia Ponomarenko^{1,3*} and Eva Maria Novoa^{1,3,4,5*}

- MasterOfPores: https://github.com/biocorecrg/master_of_pores >
- NextFlow framework to construct a standadized workflow to analyze DRS data
- pre-processing and data analysis modules
- one MinION run takes ~2h on a CPU cluster using 100 nodes ~ and ~1h on a single GPU
- ✓ workflow management systems together with Linux containers
- ✓ highly reproducible, scalable and parallelizable
- ✓ support of differen batch schedulers, cloud platforms, GPU computing
- X requires two samples to detect RNA modifications

NAR, 2020 July

obtained with the native RNA

Decoding the epitranscriptional landscape from native RNA sequences

Piroon Jenjaroenpun ¹, Thidathip Wongsurawat ¹, Taylor D. Wadley¹, Trudy M. Wassenaar ², Jun Liu³, Qing Dai³, Visanu Wanchai ¹, Nisreen S. Akel⁴, Azemat Jamshidi-Parsian⁵, Aime T. Franco⁴, Gunnar Boysen ⁶, Michael L. Jennings⁴, David W. Ussery ¹, Chuan He³ and Intawat Nookaew ¹,4,*

ELIGOS: https://gitlab.com/piroonj/eligos2

- Fisher's exact test between the native RNA and a reference (IVT RNA, unmodified in vitro transcription RNA or a background error model (rBEM))
- percent Error of Specific Bases (%ESB) differences
- IVT of human mRNA to construct rBEMs of all pentamers
- ✓ sequence context, background errors, homopolymeric sequence
- ✓ m6A, m1A, m5C, hm5C, f5C, psU, m7G, Ino
- ✓ DRS and cDNA of IVT comprised all possible 5-mers using modified base or non-modified base such as B5(NNNNN containing at least one A)B5
- DRS of Mettl3 KO, Mettl14 KO and control mESCs, various rRNA

Modification type not specified, not used to m5C

biorxiv, 2021 Jan

Quantitative profiling of native RNA modifications and their dynamics using nanopore sequencing

Oguzhan Begik^{1,2,3,#}, Morghan C Lucas^{1,4,#}, Leszek P Pryszcz^{1,5}, Jose Miguel Ramirez¹, Rebeca Medina¹, Ivan Milenkovic^{1,4}, Sonia Cruciani^{1,4}, Huanle Liu¹, Helaine Graziele Santos Vieira¹, Aldema Sas-Chen⁶, John S Mattick³, Schraga Schwartz⁶ and Eva Maria Novoa^{1,2,3,4,7*}

- nanoRMS: https://github.com/novoalab/nanoRMS
- ➤ base-calling error features to identify the modified sites, KNN and k-means to bin read into two clusters accroding to per-read current intensity/trace features
- ✓ pseudouridine and 2'-O-methylation
- ✓ quantitative identification, even at very low modification stoichiometriess
- ✓ support RNA modification stoichiometry estimation using both nanopolish and tombo resquiggling
- ✓ systematically analyze the features for different modifications and mapping tools
- X base-calling errors features are not suitable for all modifications and sequence context
- X detection low stoichiometry was only possible when using comparison of pairwise conditions.

Genome Biology, 2021 Jan

Quantitative profiling of N⁶methyladenosine at single-base resolution
in stem-differentiating xylem of *Populus trichocarpa* using Nanopore direct RNA
sequencing

Yubang Gao^{1†}, Xuqing Liu^{2†}, Bizhi Wu², Huihui Wang², Feihu Xi¹, Markus V. Kohnen¹, Anireddy S. N. Reddy³ and Lianfeng Gu^{2*}

- Nanom6A: https://github.com/gaoyubang/nanom6A
- > XGBoost model trained on Epinano IVT dataset
- > mean, standard deviation, median, and dwell time of each read
- Compare with published tools on several datasets
- ✓ quantitative profiling of m6A in stemdifferentiating xylem of Populus trichocarpa, 80% m6A sites validated by MeRIP-Seq and m6A-REF-

X sleignited to m6A RRACH k-mers

Nature Methods, 2019 Dec

Nanopore native RNA sequencing of a human poly(A) transcriptome

Rachael E. Workman^{1,9}, Alison D. Tang[©]^{2,3,9}, Paul S. Tang[©]^{4,9}, Miten Jain[©]^{2,3,9}, John R. Tyson^{5,9}, Roham Razaghi^{1,9}, Philip C. Zuzarte⁴, Timothy Gilpatrick¹, Alexander Payne[©]⁶, Joshua Quick⁷, Norah Sadowski¹, Nadine Holmes⁶, Jaqueline Goes de Jesus⁷, Karen L. Jones⁵, Cameron M. Soulette^{2,3}, Terrance P. Snutch⁵, Nicholas Loman⁷, Benedict Paten^{2,3}, Matthew Loose[©]⁶, Jared T. Simpson^{4,8}, Hugh E. Olsen^{2,3,10}, Angela N. Brooks[©]^{2,3,10}, Mark Akeson[©]^{2,3,10}* and Winston Timp[©]^{1,10}*

- ➤ DRS and cDNA seq of polyA(+) from GM12878, 30 flow cells in 6 laboratories, 9.9 million aligned reads
- Isoform detection and analysis, allele-specific expression, poly(A) tail length, m6A and RNA editing

eLife, 2020 Jan

Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m⁶A modification

Matthew T Parker^{1†}, Katarzyna Knop^{1†}, Anna V Sherwood^{1†‡}, Nicholas J Schurch^{1†§}, Katarzyna Mackinnon¹, Peter D Gould², Anthony JW Hall³, Geoffrey J Barton^{1*}, Gordon G Simpson^{1,4*}

¹School of Life Sciences, University of Dundee, Dundee, United Kingdom; ²Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; ³Earlham Institute, Norwich Research Park, Norwich, United Kingdom; ⁴James Hutton Institute, Invergowrie, United Kingdom

- DRS and Illumina seq of polyA(+) and 5'-capped mRNAs from Arabidopsis wt, vir-1 mutant and VIR-GFP complemented seedlings, ERCC RNA spike-in
- transcriptoin start site, novel splice sites and isoforms, m6A modifications, alternative polyadenylation site, poly(A) tail length

Genome Research, 2020 Feb

Direct full-length RNA sequencing reveals unexpected transcriptome complexity during *Caenorhabditis elegans* development

Runsheng Li,^{1,3} Xiaoliang Ren,^{1,3} Qiutao Ding,¹ Yu Bi,¹ Dongying Xie,¹ and Zhongying Zhao^{1,2}

- ➤ DRS of polyA(+) of C. elegans embryo (EMB), L1 larva (L1), and young adult (YA)
- full-length reads
- > TrackCluster: novel isoform identification and quantification
 - ✓ alternative use of promoter or polyadenylation sites
 - ✓ UTR extensions or truncations at the 5' or 3' end
 - ✓ new combinations of exons within the gene body
 - ✓ intron retention
 - ✓ isoform fusion
- RNA modifications