ADVANCED MATERIALS

DOI: 10.1002/adma.200602396

Nanosheet-Based Microspheres of Eu³⁺-doped ZnO with Efficient Energy Transfer from ZnO to Eu³⁺ at Room Temperature**

By Xiaoyan Zeng,* Junlin Yuan, Zhenyang Wang, and Lide Zhang*

Rare earth (RE3+)-doped semiconductors, such as GaN:RE^[1] and Si:Er,^[2] are technologically important materials in optoelectric devices and have received considerable interest. In most of these applications, efficient energy transfer from host to the RE3+ is desired. ZnO with a bandgap of 3.37 eV and a bound exciton energy of 60 meV is also an important semiconductor for which UV,[3] blue,[4] and green[5] emissions are widely reported, but intense red emissions are still lacking. Among the RE³⁺ activators, the red ${}^5D_{0-}{}^7F_{2}$ emission of Eu³⁺ is widely used in light-emitting devices. Unfortunately, the work of harvesting intense Eu³⁺ emission from ZnO films, ceramics, and powders remains disappointing^[6] because of the strong quenching effect of the wide-band, self-activated, green or yellow emissions and the higher energy-level position of Eu²⁺ relative to the bottom conduction band (CB).^[7] It has been established that direct $ZnO \rightarrow Eu^{3+}$ energy transfer seems physically impossible, as the radiative and nonradiative decay of excitons in ZnO are $>10^2$ times faster than the energy-transfer rate of RE^{3+,[8]} Fortunately, energy transfer can be facilitated by the presence of intrinsic or extrinsic defects as energy trap centers in various systems, such as SiC:(N, Er), ZnO:(N, Eu), and ZnO:(F, Eu), [9] which suggests that the introduction of an appropriate trap center is crucial for efficient ZnO→Eu³⁺ energy transfer.

The trap center might be introduced in ZnO nanostructures where surface defects may play a key role in electrical and optical processes.^[10] Among the reported ZnO:Eu³⁺ nano-

structures fabricated via wet chemical routes, none have shown efficient $ZnO \rightarrow Eu^{3+}$ energy transfer, partly because it is difficult to insert Eu^{3+} ions into wurtzite ZnO nanocrystals that grow along the c-axis. [11] In other words, the efforts of fabricating $ZnO:Eu^{3+}$ nanostructures with efficient $ZnO \rightarrow Eu^{3+}$ energy transfer have been unsuccessful.

In this work, we fabricated nanosheet-based microspheres of ZnO:Eu via a hydrothermal strategy involving the formation of a layered hydroxide zinc carbonate (LHZC), Zn₅(OH)₆(CO₃)₂, and further heat treatment. For the first time, efficient ZnO \rightarrow Eu³⁺ energy transfer at room temperature was observed, and intense red Eu³⁺ emission that would be very useful in full color displays was obtained from ZnO nanostructures.

The fabrication strategy was initiated by Hosono et al., [12] who first fabricated layered hydroxide zinc salt (LHZS) nanosheets as self-template precursors; porous ZnO nanosheets were obtained after heat treatment. This strategy is advantageous over the conventional growth of wurtzite ZnO nanocrystals into which large RE3+ ions are doped because 3/5 of the Zn^{2+} ions stay in $[ZnO_6]$ octahedra (average d_{Zn-O} = 0.2106 nm) rather than in [ZnO₄] tetrahedra (average $d_{\text{Zn-O}}$ = 0.1978 nm in ZnO).^[13] In the hydrothermal process, Zn²⁺ ions first react with the OH⁻ and CO₃²⁻ released by urea to form an insoluble LHZC (Fig. 1a) at the bottom of the autoclave, which is decomposed into wurtzite ZnO after further annealing at 400 °C (Fig. 1b). It is worth noting that the saturated concentration of Eu3+ in ZnO is relatively low, smaller than 1.0 % (ca. 4.2×10^{26} cm⁻³). As shown in Fig. 1b and c, if the starting concentration of Eu³⁺ is higher than 1.0 %, the excess Eu³⁺ ions will remain outside of ZnO in the form of amorphous hydroxide europium carbonate (low temperature, 400 °C) or crystalline Eu₂O₃ (high temperature, 700 °C) (see Supporting Information, Fig. 1s). In addition, no meaningful shift in the X-ray diffraction (XRD) peaks for ZnO were detected, which indicates a low concentration of Eu³⁺ in ZnO. Nevertheless, the X-ray photoelectron spectroscopy (XPS) 3d spectrum for Eu provides convincing evidence for Eu³⁺ doping in ZnO (see Supporting Information, Fig. 2s). Consequently, in samples for optical measurements, the starting concentration of Eu3+ was lower than 1.0 % to exclude the disturbance from the Eu³⁺ ions outside of ZnO.

Hosono et al.^[12] proposed that LHZC follows a sheetlike growth feature along the hydrophilic b- and c-axes, whereas the (100) surface is hydrophobic. We describe the mechanism for the nucleation and crystal growth of LHZC microspheres as follows: after homogenous nucleation in solution, nuclea-

E-mail: xyzeng@issp.ac.cn, ldzhang@issp.ac.cn

Dr. J. L. Yuan

State Key Laboratory of High Performance Ceramics and Superfine Microstructures

Shanghai Institute of Ceramics

Chinese Academy of Sciences

1295 Dingxi Road, Shanghai 200050 (P. R. China)

^[**] This work was financially supported by the National Major Project of Fundamental Research: Nanomaterials and Nanostructures (Grant no. 2005CB623603) and the Natural Science Foundation of China (Grant No. 10304018). We also thank Dr. C. H. Ye and Dr. H. B. Zeng for helpful discussions and advice. Supporting Information is available online from Wiley InterScience or from the

^[*] Dr. X. Y. Zeng, Prof. L. D. Zhang, Dr. Z. Y. Wang Key Laboratory of Materials Physics, Institute of Solid state Physics Graduate School of the Chinese Academy of Science Chinese Academy of Sciences P. O. Box 1129, Hefei 230031 (P. R. China)

Figure 1. XRD patterns of a) hydrothermal products before heat treatment and ZnO:x Eu (x = 0, 0.1 %, 1.0 %, 4.0 %) samples annealed at b) 400 °C and c) 700 °C in air. The concentrations of Eu³⁺ are atomic starting concentrations.

tion and crystal growth happen at the edges of LHZC nanosheets, which finally leads to the formation of microspheres of closely stacked LHZC nanosheets because of the steric hindrance between nanosheets (Fig. 2a). During the subsequent pyrolysis, the LHZC nanosheet converts to a 10–25 nm thick mesoporous ZnO nanosheet (Fig. 2b and c), in which ZnO nanocrystals (ca. 4 nm)^[12b] grow into larger single crystals along the [0001] direction (Fig. 2d and e). The ZnO:Eu nanosheet, which extends in the plane of the [001] and [110] axes such that most of the surface belongs to the [1100] crystal plane, is of high crystalline quality (Fig. 2e), except for irregular pores with estimated diameters of 10–30 nm (Fig. 2d) that were also formed during the pyrolysis and crystal growth stages.

Because surface defects in nanostructures can dramatically change the optical, electrical, and physical properties, [14] it is expected that such a unique structure of ZnO may bring about more efficient $ZnO \rightarrow Eu^{3+}$ energy transfer compared to analogous bulk materials and conventionally fabricated ZnO nanocrystals. First, the room-temperature photoluminescence (PL) properties of an undoped ZnO sample were examined (Fig. 3a), which featured a broad yellow band centered at 575 nm under UV excitation from a Xe lamp. The yellow band is attributed to oxygen interstitials, O_i , which was confirmed by green emission (ca. 516 nm) from the same sample annealed under a H_2/Ar stream (see Supporting Information, Fig. 3s).

Next, the PL properties of ZnO:Eu samples were measured, and they exhibited a broad yellow band with a maximum at 595 nm and intense red emission of Eu³⁺ under UV excitation ($E > E_{\rm g}$, Fig. 3b). Eu doping shifts the emission color from yellow to orange (i.e., from (0.42, 0.47) to (0.51, 0.44) in the CIE-1931 color map). The yellow band, which is red-shifted 0.073 eV relative to the undoped sample, is attributed to the transition between $O_i^{[15]}$ and a shallow donor level that may

be brought about by Eu doping. The red Eu³⁺ emission, whose intensity is comparable to intrinsic yellow emission, indicates efficient ZnO→Eu³⁺ energy transfer that is never observed in singly Eu3+-doped bulk or nanocrystalline ZnO.[9,11] Moreover, the shape of the UV range of excitation spectra (Fig. 3d) is well-matched to undoped ZnO, which confirms energy transfer from UV-generated delocalized electron and hole pairs in a ZnO nanosheet to Eu³⁺. [16] However, the UV-excited Eu3+ emission exhibits obvious difference from the 464-nm-excited Eu³⁺ emission (Fig. 3c), indicating the difference in Eu³⁺ ions that participate in the two types of emission. The 464 nm photon, which is resonant with the Eu³⁺ ${}^{7}F_{0}$ ${}^{5}D_{2}$ transition, can unselectively excite Eu³⁺ throughout the ZnO nanosheet; as a result, only part of the Eu³⁺ ions are active in UV-excited emission, whereas the 464-nm-excited emission is the summation of emissions over all Eu³⁺ ions. For convenience, Eu3+ ions that are active or inactive in UV-excited emission can be named as "Eua3+" or "Eui3+", respectively.

It was established that Eu³⁺ emission always relates to the charge-transfer state, and the ground-state energy level of Eu²⁺ should be below the bottom of the CB.^[7] In spite of the high crystalline quality of ZnO nanosheets (Fig. 2e), the multiposition of Eu³⁺ is inevitable, such as Eu³⁺ in defect complexes and Eu3+ at surface layer or inner layers. Though special techniques are required to identify Eu³⁺ defect complexes, based on the following analysis it is believed that Eua³⁺ and Eui³⁺ correspond to Eu³⁺ ions at the surface and inner layers, respectively. In the homogeneous inner layer of a ZnO nanosheet, where defects and energy levels resemble bulk and microcrystalline ZnO, the ground-state level of Eu²⁺ is higher or equal to the bottom of the CB, and poor ZnO→Eu3+ energy transfer is expected. Furthermore, in GaN:Eu where Eu³⁺ ions occupy Ga³⁺ sites (C_{3y}) , Eu³⁺ emission spectra resemble the 464-nm-excited Eu_i³⁺ emission (Table 1),^[1] indicating that Eu_i³⁺ ions stay in sites that do not

ADVANCED MATERIALS

Figure 2. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images of the as-prepared samples. a) FESEM image of a Eu³⁺-doped LHZC microsphere; b) FESEM image of a ZnO:Eu microsphere annealed at 400 °C; c) FESEM image of ZnO:Eu nanosheets prepared from microspheres shown in (b); d) typical TEM image of a ZnO:Eu nanosheet; e) selected area electron diffraction (SAED) pattern of ZnO:Eu nanosheets shown in (d); f) HRTEM image of ZnO:Eu nanosheets shown in (d); g) typical energy dispersive X-ray (EDX) spectrum obtained from ZnO:Eu nanosheets, indicating the presence of Eu. In (a)–(g), the Eu³⁺ doping concentration was 0.5 %. h) Schematic illustration of the LHZC to ZnO nanosheet conversion.

deviate far from ideal Zn^{2+} sites (C_{3v}) . In contrast, the crystal field suffered by Eu^{3+} ions in the surface layer might be changed from structural relaxation.^[17] In the surface layer of

the nanosheet, the electron depletion layer, band structure, and positions of Eu^{3+} 4f levels relative to the valence band (VB) and CB are slightly different from bulk ZnO. [5] More significantly, a certain surface defect that closely relates to the [1 $\bar{1}$ 00] surface of the ZnO nanosheet might couple with Eu³⁺ to form a complex, in which the Eu²⁺ ground state level is just below the bottom of the CB. Consequently, the photon-generated free charge carriers can be effectively trapped, and energy is transferred to the coupled Eu_a³⁺ ion via a charge-transfer process. [18]

However, the increase in the Eu³⁺ concentration does not enhance the intensity of UV-excited Eu³⁺ emission (Fig. 3b), and the percentage of UV-excited Eu_a³⁺ emission over the 464-nm-excited emission reduces gradually as the Eu³⁺ concentration increases from 0.1 to 0.7 % (Fig. 3d), suggesting that the number of Eu_a³⁺ ions is not the key factor contributing to the intensity of UV-excited Eu_a³⁺ emission. As discussed above, UV and 464-nm-excited Eu3+ emissions follow different PL mechanisms: UV-excited Eu_a³⁺ emission closely relates to charge-carrier trapping by the coupled surface defect and energy transfer to Eu_a³⁺, but 464-nm-excited Eu³⁺ emission merely depends on the optical absorption of 464 nm photons and radiative 4f-4f transitions within Eu3+ ions. In addition, as the doping concentration of Eu³⁺ increases, a gradual decrease was observed in the integration area ratio of self-activated (SA) yellow emission versus exciton emission (Fig. 4), which may originate from the competition of Eu_a³⁺ with oxygen interstitial defects in capturing photon-generated charge carriers. Following the PL model of GaN:Eu³⁺ [1] and rare-earth activators in II-VI semiconductors, [18] the schematic mechanism of UV-excited Eu³⁺ emission in the surface layer of a ZnO nanosheet is illustrated in Scheme 1.

Though the nature of defects that stabilize the Eu^{2+} state remains unknown, it is likely they would be found on the nonpolar [1 $\bar{1}00$] surface of the ZnO nanosheet, as previous studies on ZnO:Eu nanorods and quantum dots^[11] failed to observe appreciable ZnO \rightarrow Eu³⁺ energy transfer at cryo-

genic or room temperatures. The UV-excited Eu³⁺ emission was stable after both an oxidizing and reducing heat treatment (see Supporting Information, Fig.3s); as a result, the sur-

Table 1. Positions (nm) of Eu³⁺ emission peaks and assignments under different excitations. Table 1.

Excitation	Emission ion	$^{5}D_{1}-^{7}F_{0}$	⁵ D ₀ - ⁷ F ₀	⁵ D ₀ - ⁷ F ₁	⁵ D ₀ - ⁷ F ₂	⁵ D ₀ - ⁷ F ₃	⁵ D ₀ - ⁷ F ₄
UV	Eu _a ³⁺		577	589, 595	612, 619	654	_
464 nm	Eu _a ³⁺ , Eu _i ³⁺	539	578	590, 595	616, 629	659	ca. 700
464 nm	Eui ³⁺	539	578	ca. 591	616, 628	659	ca. 700

Figure 3. a) Excitation and emission spectra of an undoped ZnO sample. Emission spectra of ZnO:Eu samples under excitation at b) 325 nm and c) 464 nm; d) the excitation spectra of ZnO:Eu (the curves were normalized at 464 nm). The curves in (b) and (c) are stacked for clarity.

Scheme 1. Schematic of the process of UV-excited Eu³⁺ emission: 1 corresponds to near-band edge exciton emission, 2 is self-activated yellow emission, 3 is the energy transfer from the coupled surface defect to Eu³⁺ ions in the surface layer, and 4 is the $^5D_0-^7F_J$ red emission of Eu³⁺. Charge transfer may be involved within the complex of the coupled surface defect and Eu³⁺ because of the strong intensity of Eu³⁺ emission.

face defects are unlikely to be oxygen vacancies or oxygen interstitial defects. Moreover, the absence of $^5D_{1}{}^-{}^7F_0$ emission in UV-excited Eu $^{3+}$ emission might be attributed to coordination with CO_3^{2-} or OH $^-$ anions, for which the phonon energy is as high as 1450 and 3100–3400 cm $^{-1}$, respectively. Consequently, residual CO_3^{2-} or OH $^-$ anions at the nonpolar [1 $\bar{1}00$] surface might couple with Eu $^{3+}$ and stabilize the Eu $^{2+}$ level just below the CB of ZnO. The density, charge-carrier trapping rate, and energy-transfer rate of the trap center determine the intensity of UV-excited Eu $^{3+}$ emission, which is in competition with self-activated yellow emission. It is expected that the increase in the density of trap centers and energy-transfer rate will enhance

the intensity of UV-excited Eu³⁺ emission in ZnO.

In conclusion, efficient UV-excited Eu³⁺ emiswas observed in nanosheet-assembled ZnO:Eu microspheres. The ZnO:Eu microspheres, which consist of crystalline ZnO nanosheets, were fabricated by using layered Zn₅(OH)₆(CO₃)₂ as a self-templating precursor and pyrolysis. Eu³⁺ ions were successfully doped into ZnO, and for the first time efficient ZnO→Eu³⁺ energy transfer at room temperature was observed in nanostructures. The UV-excited Eu³⁺ emission is attributed to Eu³⁺ ions in the surface layer of a ZnO nanosheet, where appropriate surface defects may couple with Eu³⁺ to form a complex and facilitate the ZnO→Eu³⁺ energy transfer. More efficient Eu³⁺ emission is expected by the rational control of the density and nature of trap centers in ZnO:Eu nanostructures. This work not only provides an intense red emission component, which had been lacking in designing ZnO-based full-color display devices, but also proves the possibility of realizing efficient RE³⁺ 4f-4f emission in ZnO nanostructures that could be utilized in various optoelectric applications. Moreover, because of the surface-related nature, such ZnO:Eu nanostructure have special potential

in designing environmental sensors and biomolecule labeling devices.

Experimental

Samples were fabricated under mild hydrothermal conditions and heat treatment. Analytical pure $Zn(NO_3)_2$ ·6 H_2O , Eu_2O_3 , and urea were used as starting materials. Eu_2O_3 was dissolved in dilute nitric acid to obtain a 0.02 M europium nitrate aqueous solution. $Zn(NO_3)_2$ ·6 H_2O was dissolved in deionized water, and a europium nitrate solution and urea were added to this solution in a molar ratio of $Zn^{2+}/Eu^{3+}/urea$ of 1:x:10 (x=0, 0.001, 0.003, 0.005, 0.007), and the concentration of metal ions was adjusted to 0.10 M. Next, the mixed solution (pH 6.5) was transferred into a 60 mL Teflon-lined stainless steel autoclave that was filled nearly 80 %. Hydrothermal treatments were carried out at 120 °C for 12 h and the material was then cooled; the final pH was 9.0. After washing with deionized water and ethanol, the precipitate was dried at 60 °C and annealed at 400 °C in air or Ar/

ADVANCED MATERIALS

Figure 4. The integration area ratio of self-activated (SA) yellow emission versus the exciton emission in ZnO:Eu³⁺ samples with different doping concentrations.

 H_2 gas for 2 h. The products were characterized by XRD (Philips X'pert PRO diffractometer, Cu K α radiation), XPS (VG ESCALAB 250, Al K α), scanning electron microscopy (SEM, Sirion 200), high-resolution transmission electron microscopy (HRTEM, JEOL 2010, 200 kV), and energy dispersive X-ray (EDX) analysis attached to a transmission electron microscope. The room-temperature emission and excitation spectra were recorded on a Fluorolog-3 Jobin Yvon spectrophotometer using a 450 W Xe lamp as the excitation source.

Received: October 23, 2006 Revised: August 31, 2007

- [4] B. C. Cheng, Y. H. Xiao, G. S. Wu, L. D. Zhang, Adv. Funct. Mater. 2004, 14, 913.
- [5] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, *Appl. Phys. Lett.* 1996, 68, 403.
- [6] a) Y. Hayashi, H. Narahara, T. Uchida, T. Noguchi, S. Ibuki, *Jpn. J. Appl. Phys.* 1995, 34, 1878; b) Y. K. Park, J. I. Han, M. G. Kwak, H. Yang, S. H. Ju. W. S. Cho, *Appl. Phys. Lett.* 1998, 72, 668; c) C. C. Yang, S. Y. Chen, H. Y. Lee, S. Y. Chen, *Ceram. Int.* 2006, 32, 37.
- [7] a) P. Dorenbos, E. van der Kolk, Appl. Phys. Lett. 2006, 89, 061 122.
 b) P. Dorenbos, E. van der Kolk, Proc. SPIE 2007, 6473, 647 313.
- [8] a) G. P. Morgan, W. M. Yen, Laser Spectroscopy of Solids II, Springer-Verlag, New York 1989, p. 77; b) A. van Dijken, E. A. Meulemkamp, D. Vanmaekelbergh, A. Merjerink, J. Lumin. 2000, 87–89, 454.
- [9] a) D. Prezzi, T. Eberlein, J.-S. Filhol, R. Jones, M. J. Shaw, P. R. Briddon, S. Öberg, *Phys. Rev. B* 2004, 69, 193 202. b) V. X. Quang, N. G. Liem, N. C. Thanh, T. V. Chuong, L. L. Thanh, *Phys. Status Solidi A* 1983, 78, K161; c) W. Y. Jia, K. Monge, F. Fernandez, *Opt. Mater.* 2003, 23, 27.
- [10] a) Y. Harada, S. Hashimoto, *Phys. Rev. B* 2003, 68, 045 421. b) J. Grabowska, A. Meaney, K. K. Nanda, J. P. Mosnier, M. O. Henry, J. R. Duclere, E. McGlynn, *Phys. Rev. B* 2005, 71, 115 439.
- [11] a) R. N. Bhargava, V. Chhabra, T. Som, A. Ekimov, N. Taskar, *Phys Status Solidi B* 2002, 229, 897; b) M. Abdullah, T. Morimoto, K. Okuyama, *Adv. Funct. Mater.* 2003, 13, 800. c) A. Ishizumi, Y. Kanemitsu, *Appl. Phys. Lett.* 2005, 86, 253 106. d) A. Ishizumi, Y. Taguchi, H. Yamamoto, Y. Kanemitsu, *Thin Solid Films* 2005, 486, 50; e) S. Gao, H. Zhang, R. Deng, X. Wang, D. Sun, G. Zheng, *Appl. Phys. Lett.* 2006, 89, 123 125.
- [12] a) E. Hosono, S. Fujihara, I. Honma, H. S. Zhou, Adv. Mater. 2005, 17, 2091; b) K. Kakiuchi, E. Hosono, T. Kimura, H. Imai, S. Fujihara, J. Sol-Gel Sci. Technol. 2006, 39, 63.
- [13] a) S. Ghose, Acta Crystallogr. 1964, 17, 1051; b) H. Sawada, R. Wang,
 A. W. Sleight, J. Solid State Chem. 1996, 122, 148.
- [14] W. P. Halperin, Rev. Mod. Phys. 1986, 58, 532.
- [15] a) L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, Angew. Chem. Int. Ed. 2003, 115, 3139; b) J. W. P. Hsu, D. R. Tallant, R. L. Simpson, N. A. Missert, R. G. Copeland, Appl. Phys. Lett. 2006, 88, 252 103.
- [16] H. Kühne, G. Weiser, E. I. Terukov, A. N. Kusnetsov, V. Kh. Ku-doyarova, J. Appl. Phys. 1999, 86, 896.
- [17] I. Ivanov, J. Pollmann, Phys. Rev. B 1981, 24, 7275.
- [18] R. Boyn, Phys. Status Solidi B 1988, 148, 11.

a) H. J. Lozykowski, *Phys. Rev. B* 1993, 48, 17758; b) J. Sawahata, H. Bang, J. Seo, K. Akimoto, *Sci. Technol. Adv. Mat.* 2005, 6, 644. c) R. Kudrawiec, M. Nyk, A. Podnorodecki, J. Misiewicz, W. Strek, M. Wolcyrz, *Appl. Phys. Lett.* 2006, 88, 061916; d) A. Svane, N. E. Christensen, L. Petit, Z. Szotek. W. M. Tmmerman, *Phys. Rev. B* 2006, 74, 165204.

^[2] M. Klik, T. Gregorkiewicz, I. Bradley, J-P. Wells, *Phys. Rev. Lett.* 2002, 89, 227 401.

^[3] H. Yan, J. Johnson, M. Law, R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, P. Yang, Adv. Mater. 2003, 15, 1907.