Đại học Bách khoa Hà Nội Viện Công nghệ Thông tin và Truyền thông

Sử dụng mạng Bayesian ước lượng tài nguyên khả dụng cho bài toán lập lịch trong môi trường Cloud Computing

Quang Khanh khanh.tq170083@gmail.com

Ngày 29 tháng 6 năm 2021

Nội dung

Giới thiệu chung

Các vấn đề của thuật toán lập lịch thời gian thực

Giải pháp

Đánh giá hiệu năng

Kết luận

Nội dung

Giới thiệu chung

Các vấn đề của thuật toán lập lịch thời gian thực

Giải pháp

Đánh giá hiệu năng

Kết luận

Sự xuất hiện của Cloud Computing

Hình: Người dùng gửi tasks đến hệ thống

Luồng hoạt động

 Người dùng gửi các tasks đến hệ thống

Hình: Người dùng gửi tasks đến hệ thống

- Người dùng gửi các tasks đến hệ thống
- 2. Các tasks được đưa đến hàng đợi cho đến khi được lập lịch

Hình: Người dùng gửi tasks đến hệ thống

- Người dùng gửi các tasks đến hệ thống
- Các tasks được đưa đến hàng đợi cho đến khi được lập lịch
- Bộ lập lịch tìm các máy tính phù hợp cho các tasks

Hình: Người dùng gửi tasks đến hệ thống

- Người dùng gửi các tasks đến hệ thống
- Các tasks được đưa đến hàng đợi cho đến khi được lập lịch
- Bộ lập lịch tìm các máy tính phù hợp cho các tasks
- 4. Chuyển các tasks đến các máy tính và thực thi

Hình: Người dùng gửi tasks đến hệ thống

Nội dung

Giới thiệu chung

Các vấn đề của thuật toán lập lịch thời gian thực

Giải pháp

Đánh giá hiệu năng

Kết luận

Hình: Trạng thái máy tính

Trạng thái tài nguyên

- ► Tại thời điểm t₁
 - ▶ available_cpu = c₁
 - available_memory = m₁

Hình: Trạng thái máy tính

Trạng thái tài nguyên

- Tại thời điểm t_1
 - ▶ available_cpu = c₁
 - ▶ available_memory = m₁
- ► Tại thời điểm t₂
 - ▶ available_cpu = c₂
 - available_memory = m₂

Hình: Trạng thái máy tính

Trạng thái tài nguyên

- ► Tại thời điểm t₁
 - ▶ available_cpu = c₁
 - ▶ available_memory = m₁
- ► Tại thời điểm t₂
 - ▶ available_cpu = c₂
 - ▶ available_memory = m₂

Hình: Trạng thái máy tính

Vấn đề

 $c_1 \neq c_2$ hoặc $m_1 \neq m_2$

Mất cân bằng khối lượng công việc khi hoạt động

Hình: Mất cân bằng giữa các task do sự kết thúc của batch-job tasks

Nội dung

Giới thiệu chung

Các vấn đề của thuật toán lập lịch thời gian thực

Giải pháp

Đánh giá hiệu năng

Kết luận

Ước lượng trạng thái các tasks

Hình: Trạng thái tài nguyên tại thời điểm lập lịch và thực thi

Ước lượng trạng thái các tasks

Hình: Trạng thái tài nguyên tại thời điểm lập lịch và thực thi

Ước lượng trạng thái các tasks

Hình: Trạng thái tài nguyên tại thời điểm lập lịch và thực thi

Ước lượng tài nguyên khả dụng

Ước lượng tài nguyên khả dụng

Tập các tasks đang chạy trên máy tính ảo tại thời điểm lập lịch

$$\mathcal{T} = \{\textit{task}_1, \textit{task}_2, ..., \textit{task}_K\}$$

Ước lượng tài nguyên khả dụng

Tập các tasks đang chạy trên máy tính ảo tại thời điểm lập lịch

$$\mathcal{T} = \{\textit{task}_1, \textit{task}_2, ..., \textit{task}_K\}$$

Ước lượng kì vọng tài nguyên khả dụng tại thời điểm thực thi

$$available_resources = resources_capacity - \sum_{i=1}^{n} resources_usage_i \times p_i$$

p_i là xác suất task_i còn hoạt động tại thời điểm thực thi

Mạng Bayesian ước lượng xác suất task còn hoạt động

Mạng Bayesian ước lượng xác suất task còn hoạt động

Ví dụ minh họa mạng Bayesian

Hình: Ví dụ về mạng Bayesian cho 3 tasks

Ví dụ minh họa mạng Bayesian

Hình: Ví dụ về mạng Bayesian cho 3 tasks

Ví dụ minh họa mạng Bayesian

Hình: Ví dụ về mạng Bayesian cho 3 tasks

Cân bằng khối lượng công việc giữa các máy ảo

Cân bằng khối lượng công việc giữa các máy ảo

Khối lượng công việc của M máy ảo

$$\mathcal{L} = \{I_1, I_2, ..., I_M\}$$

Cân bằng khối lượng công việc giữa các máy ảo

Khối lượng công việc của M máy ảo

$$\mathcal{L} = \{I_1, I_2, ..., I_M\}$$

Độ mất cân bằng

$$\sigma(\mathcal{L}) = \frac{1}{M} \times \sum_{i=1}^{M} (I_i - \bar{I})^2$$

với

$$\bar{l} = \frac{1}{M} \sum_{i=1}^{M} l_i$$

Nội dung

Giới thiệu chung

Các vấn đề của thuật toán lập lịch thời gian thực

Giải pháp

Đánh giá hiệu năng

Kết luận

Kịch bản lập lịch

- ► M = 10 máy tính ảo
- ► N = 15000 tasks
- ► K = 3
- $ightharpoonup T \sim \mathcal{P}(\lambda = 15)$
- $delay_time \sim \mathcal{N}(\mu = 5, \sigma = 0.5)$

Số liệu so sánh về thời gian

Bảng: Kết quả về thời gian chạy của các tasks

Running statistics over 1000s			
stats	FCFS	Worstfit	Resources balancing
			balancing
count	13214	13925	14235
mean	10.62	6.34	5.42
std	54.24	33.37	27.31
min	0.31	0.12	0.21
50%	5.78	3.52	3.41
max	829.92	616.35	640.39

So sánh độ chính xác của mạng Bayesian

(a) Tài nguyên khả dụng tại thời điểm thực thi

(b) Sai số với số lượng tasks đang chạy

Hình: Thông số tại thời điểm kết thúc lập lịch

So sánh mức độ mất cân bằng giữa các máy tính

Hình: Mức độ mất cân bằng trong quá trình hoạt động

Nội dung

Giới thiệu chung

Các vấn đề của thuật toán lập lịch thời gian thực

Giải pháp

Đánh giá hiệu năng

Kết luận

Kết luận

Thuật toán đã cải thiện được sai số giữa thời điểm lập lịch và thực thi

Kết luận

- Thuật toán đã cải thiện được sai số giữa thời điểm lập lịch và thực thi
- Có thể cân bằng được khối lượng công việc trong quá trình chạy

Kết luân

- Thuật toán đã cải thiện được sai số giữa thời điểm lập lịch và thực thi
- Có thể cân bằng được khối lượng công việc trong quá trình chạy

Định hướng phát triển

Kết luận

- Thuật toán đã cải thiện được sai số giữa thời điểm lập lịch và thực thi
- Có thể cân bằng được khối lượng công việc trong quá trình chạy

Định hướng phát triển

Phát triển mô hình đồ thị Bayesian phù hợp với học liên tục

Kết luận

- Thuật toán đã cải thiện được sai số giữa thời điểm lập lịch và thực thi
- Có thể cân bằng được khối lượng công việc trong quá trình chạy

Định hướng phát triển

- Phát triển mô hình đồ thị Bayesian phù hợp với học liên tục
- Mở rộng bài sang bài toán resource scaling

