Reg. No.:	
Name :	

MID TERM EXAMINATIONS - April 2023

Programme	: B.Tech.	Semester		Summer 2022-23
Course Title	· · · · · ·	Slot	:	C11+C12+C13+C14+C15
	2001			
Time	: 1 ½ hours	Max. Marks	:	50

Answer all the Questions

Q.No.	Sub. Sec.	Question Description	Marks
1		Show that the matrix $A = \begin{bmatrix} -1 & 1 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & -3 \end{bmatrix}$ is diagonalizable. If yes then find diagonalizing matrix P and if not then give the reason of your answer.	10
2		Calculate Eigen values and Eigen vectors for the following matrix: $A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$	10
3		Obtain the Fourier series for $f(x) = 0, -2 < x < -1$ = 1 + x, -1 < x < 0 = 1 - x, 0 < x < 1 = 0, 1 < x < 2.	10
4		$= 0, 1 < x < 2.$ Find half range cosine series for the function $f(x) = (x - 1)^2$, in the interval $0 < x < 1$ and deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}$	10
5		Find the Fourier Transform of F(x), is $f(x) = \begin{cases} 1, x < a \\ 0, x > a \end{cases}$ And hence evaluate $\int_{-\infty}^{\infty} \frac{\sin sacos \ sx}{s} \ dx$.	10
	I	$\Leftrightarrow \Leftrightarrow \Leftrightarrow$	