ALTAVOZ EN CAJA CERRADA

- 1) Un altavoz en pantalla infinita tiene una frecuencia de resonancia de 40 Hz y un factor de pérdidas total de 0,25. Cuando se monta este altavoz en una caja cerrada la frecuencia de resonancia alcanza los 90 Hz y el nuevo factor de pérdidas total es 0,45. Calcular las frecuencias de corte en ambos casos y graficar la función de respuesta |G(jω□)| para ambos casos.
- 2) Determine las características del altavoz necesarias para obtener un sistema caja cerrada (rellena completamente con material absorbente) con una frecuencia de corte de 45 Hz, para una respuesta tal que el Q_{TC} = 1,12, con un volumen neto de la caja de 3 pies³ y un nivel de presión sonora máximo sin distorsión de 114 dB.
- 3) Realice un diseño de caja cerrada determinando:
 - Dimensiones de la caja (sin relleno),
 - Frecuencia de resonancia f_C,
 - Frecuencia de corte f₃,
 - Eficiencia de referencia,
 - Sensibilidad (NPS 1Watt/1m),
 - Potencia acústica rms y program,
 - Nivel de presión sonora máximo rms y program.

Escoja para su diseño un Q_{TC} entre 0,5 y 1,0 y alguno de los altavoces DAS citados en el Anexo.

- 4) Calcule todos los parámetros en caja cerrada (f_C, Qec, Qmc, volumen efectivo de la caja V_B, frecuencia de corte a 3 dB, eficiencia de referencia y potencias limitadas por desplazamiento) para 3 tipos de alineamientos:
 - Butterworth (B2)
 - Bessel (D2)
 - Chebyshev (C2) con Q_{TC} = 0,9

Considere que la caja estará rellena completamente con lana de vidrio. Utilice en cada alineamiento alguno de los altavoces DAS citados en el Anexo.

ANEXO: PARÁMETROS THIELE-SMALL ALTAVOCES DAS

Preliminary

Cone Speakers

MODEL	18S	15S	18G	15G	12G	18H	15H	12H	15HM	12HM
Application	sub-woofer	sub-woofer	LF	LF	LF	LF	LF	LF	LF-MID	LF-MID
Nominal Diameter	18	15	18	15	12	18	15	12	15	12
Average (RMS) Power	800W	800W	700W	700W	700W	600W	600W	600W	500W	500W
Program Power	1600W	1600W	1400W	1400W	1400W	1200W	1200W	1200W	1000W	1000W
Frequency Range	25-2k Hz	30-2k Hz	30-2k Hz	35-2k Hz	40-2k Hz	30-2k Hz	35-2k Hz	45-24k Hz	45-4k Hz	50-4k Hz
Sensitivity 1W/1m, SPL	97 dB	97 dB	99 dB	98 dB	97 dB	97 dB	96 dB	95 dB	99 dB	99 dB
Nominal Impedance (Ohm)	8	8	8	8	8	8	8	8	8	8
Displacement limit (p-p)	31 mm	31 mm	24 mm	24 mm	24 mm	24 mm	24 mm	24 mm	20 mm	20 mm
Flux Density (T)	10,2	10,2	1,13	1,13	1,13	10,4	10,4	10,4	10,4	10,4

Thiele-Small's

Small-signal (Preconditioning : 1 hour, AES power tes at, -3dB rated power)

Fs (Hz)	36	38	34	37	47	36	38	48	46	48
Qts	0,369	0,287	0,309	0,266	0,260	0,350	0,311	0,296	0,318	0,279
Qes	0,395	0,304	0,327	0,278	0,270	0,366	0,335	0,310	0,339	0,294
Qms	5,460	5,289	5,776	5,721	6,690	7,688	4,317	6,593	5,049	5,444
No (%)	3,07	2,76	3,18	3,25	2,18	3,29	2,54	1,89	4,34	2,38
Vas (I)	272	157	279	186	59	270	167	53	146	64
Sd (m2)	0,1164	0,086	0,1164	0,086	0,054	0,054	0,086	0,054	0,086	0,054
Re (ohm)	6,3	6,1	6.2	6,2	6,4	6,1	6,1	6,2	5,8	5,7
Cms (mm/N)	141	149	145	177	142	140	159	129	153	154
Mms (gr)	139	117	153	105	81	140	113	84	81	70
BL (T.m)	22,4	23,7	24,8	23,3	23,8	23,0	22,1	22,6	20,1	20,4
Large-signal										
Xmax (0-pk)	8 mm	8 mm	6	6	6	6	6	6	4	4
Pk. displ. Volme. (0-pk,dm3)	0,9312	0,688	0,6984	0,516	0,324	0,324	0,516	0,324	0,344	0,216

Mounting

Baffle Cutout Diameter	415 mm	359 mm	415 mm	359 mm	289 mm	417 mm	359 mm	289 mm	359 mm	289 mm
Number of Mounting Holes	8	8	8	8	4	8	8	4	8	4
Mounting Hole diameter	6 mm									