jhTAlib

Joost Hoeks

2019-06-10

Contents

jhTAlib	2
Depends only on	2
Docs	2
Install	3
Update	3
Basic Usage	3
Examples	4
Example 1	4
Example 2	4
Example 3	4
Example 4	4
Example 5	5
Example 6	5
Example 7	5
Example 8	5
Example 9	5
Example 10	6
Example 11	6
Test	6
Reference	6
Behavioral Techniques	6
Candlestick	9
Cycle Indicators	11
Data	12
Event Driven	13
Experimental	13
General	15
Information	16
Math Functions	17
Momentum Indicators	21
Overlap Studies	25
Pattern Recognition	28

Price Transform
jhTAlib
Technical Analysis Library Time-Series
You can use and import it for your:
• Technical Analysis Software
• Charting Software
• Backtest Software
• Trading Robot Software
• Trading Software in general
Work in progress
Depends only on
• The Python Standard Library
Docs
• .html
• .epub
• .json
• .odt
• .pdf
• .xml

. 36

Install

```
From PyPI:
$ [sudo] pip3 install jhtalib
From source:
$ git clone https://github.com/joosthoeks/jhTAlib.git
$ cd jhTAlib
$ [sudo] pip3 install -e .
Update
From PyPI:
$ [sudo] pip3 install --upgrade jhtalib
From source:
$ cd jhTAlib
$ git pull [upstream master]
Basic Usage
import jhtalib as jhta
from pprint import pprint as pp
df = {
    'datetime': ('20151217', '20151218', '20151221', '20151222', '20151223', '20151224', '20
    'Open': (235.8, 232.3, 234.1, 232.2, 232.7, 235.4, 236.9, 234.85, 236.45, 235.0),
    'High': (238.05, 236.9, 237.3, 232.4, 235.2, 236.15, 236.9, 237.6, 238.3, 237.25),
    'Low': (234.55, 230.6, 230.2, 226.8, 231.5, 233.85, 233.05, 234.6, 234.55, 234.4),
    'Close': (234.6, 233.6, 230.2, 230.05, 234.15, 236.15, 233.25, 237.6, 235.75, 234.4),
    'Volume': (448294, 629039, 292528, 214170, 215545, 23548, 97574, 192908, 176839, 69347)
pp (df)
pp (jhta.SMA(df, 10))
pp (jhta.BBANDS(df, 10))
```

Examples
<pre>\$ cd example/</pre>
Example 1
<pre>\$ python3 example-1-plot.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-1-plot.ipynb
Example 2
<pre>\$ python3 example-2-plot.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-2-plot.ipynb
Example 3
<pre>\$ python3 example-3-plot.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-3-plot.ipynb
Example 4
<pre>\$ python3 example-4-plot-quandl.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-4-plot-quandl.ipynb

<pre>\$ python3 example-5-plot-quandl.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-5-plot-quandl.ipynb
Example 6
\$ python3 example-6-plot-quandl.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-6-plot-quandl.ipynb
Example 7
\$ python3 example-7-quand1-2-df.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-7-quandl-2-df.ipynb
Example 8
\$ python3 example-8-alphavantage-2-df.py
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-8-alphavantage-2-df.ipynb
Example 9

Example 5

\$ python3 example-9-cryptocompare-2-df.py

	\cap	r
1	U	1

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/ example/example-9-cryptocompare-2-df.ipynb Example 10 DF NumPy Pandas https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-10-df-numpy-pandas.ipynb Example 11 Basic Usage https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-11-basic-usage.ipynb Test \$ cd test/ \$ python3 test.py Reference import jhtalib as jhta

• dict of lists of floats = jhta.ATH(df, price='High')

Behavioral Techniques

ATH | All Time High | DONE

LMC | Last Major Correction | DONE • dict of lists of floats = jhta.LMC(df, price='Low') PP | Pivot Point | DONE • dict of lists of floats = jhta.PP(df) • https://en.wikipedia.org/wiki/Pivot_point_(technical_analysis) FIBOPR | Fibonacci Price Retracements | DONE • dict of lists of floats = jhta.FIBOPR(df, price='Close') FIBTR | Fibonacci Time Retracements | GANNPR | W. D. Gann Price Retracements | DONE • dict of lists of floats = jhta.GANNPR(df, price='Close') GANNTR | W. D. Gann Time Retracements | JDN | Julian Day Number | DONE • jdn = jhta.JDN(utc_year, utc_month, utc_day) • https://en.wikipedia.org/wiki/Julian_day

JD Julian Date DONE	
 jd = jhta.JD(utc_year, utc_month, utc_day, utc_hour, utc_minute utc_second) 	€,
• https://en.wikipedia.org/wiki/Julian_day	
SUNC Sun Cycle	
•	
	
MERCURYC Mercury Cycle	
•	
VENUSC Venus Cycle	
•	
EARTHC Earth Cycle	
•	
MARSC Mars Cycle	
•	
JUPITERC Jupiter Cycle	
•	
SATURNC Saturn Cycle	
•	

URANUSC Uranus Cycle •
NEPTUNEC Neptune Cycle •
PLUTOC Pluto Cycle •
MOONC Moon Cycle •
Candlestick
CDLBODYS Candle Body Size DONE
• list of floats = jhta.CDLBODYS(df)
• https://www.tradeciety.com/understand-candlesticks-patterns/
CDLWICKS Candle Wick Size DONE
• list of floats = jhta.CDLWICKS(df)
• https://www.tradeciety.com/understand-candlesticks-patterns/
CDLUPPSHAS Candle Upper Shadow Size DONE
• list of floats = jhta.CDLUPPSHAS(df)
$\bullet \ \ https://www.tradeciety.com/understand-candlesticks-patterns/$

CDLLOWSHAS | Candle Lower Shadow Size | DONE

- list of floats = jhta.CDLLOWSHAS(df)
- https://www.tradeciety.com/understand-candlesticks-patterns/

CDLBODYP | Candle Body Percent | DONE

• list of floats = jhta.CDLBODYP(p)

CDLBODYM | Candle Body Momentum | DONE

- list of floats = jhta.CDLBODYM(df, n)
- book: Trading Systems and Methods

QSTICK | Qstick | DONE

- list of floats = jhta.QSTICK(df, n)
- $\bullet \ \, https://www.fmlabs.com/reference/default.htm?url=Qstick.htm$

SHADOWT | Shadow Trends | DONE

- dict of lists of floats = jhta.SHADOWT(df, n)
- book: The New Technical Trader

IMI | Intraday Momentum Index | DONE

- list of floats = jhta.IMI(df)
- https://www.fmlabs.com/reference/default.htm?url=IMI.htm

Cycle Indicators
HT_DCPERIOD Hilbert Transform - Dominant Cycle Period •
HT_DCPHASE Hilbert Transform - Dominant Cycle Phase •
HT_PHASOR Hilbert Transform - Phasor Components •
HT_SINE Hilbert Transform - SineWave •
HT_TRENDLINE Hilbert Transform - Instantaneous Trendline •
HT_TRENDMODE Hilbert Transform - Trend vs Cycle Mode •
TS Trend Score DONE • list of floats = jhta.TS(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=TrendScore.htm

Data

CSV2DF | CSV file 2 DataFeed | DONE • dict of tuples of floats = jhta.CSV2DF(csv_file_path) CSVURL2DF | CSV file url 2 DataFeed | DONE • dict of tuples of floats = jhta.CSVURL2DF(csv_file_url) DF2CSV | DataFeed 2 CSV file | DONE • csv file = jhta.DF2CSV(df, csv_file_path) DF2DFREV | DataFeed 2 DataFeed Reversed | DONE • dict of tuples of floats = jhta.DF2DFREV(df) DF2DFWIN | DataFeed 2 DataFeed Window | DONE • dict of tuples of floats = jhta.DF2DFWIN(df, start=0, end=10) $DF_HEAD \mid DataFeed \; HEAD \mid DONE$ • dict of tuples of floats = jhta.DF_HEAD(df, n=5) DF_TAIL | DataFeed TAIL | DONE • dict of tuples of floats = jhta.DF_TAIL(df, n=5) DF2HEIKIN_ASHI | DataFeed 2 Heikin-Ashi DataFeed | DONE • dict of tuples of floats = jhta.DF2HEIKIN_ASHI(df)

Event Driven

ASI Accumulation Swing Index (J. Welles Wilder) DONE
• list of floats = jhta.ASI(df, L)
• book: New Concepts in Technical Trading Systems
SI Swing Index (J. Welles Wilder) DONE
• list of floats = jhta.SI(df, L)
• book: New Concepts in Technical Trading Systems
Experimental
JH_SAVGP Swing Average Price - previous Average Price DONE
• list of floats = jhta.JH_SAVGP(df)
JH_SAVGPS Swing Average Price - previous Average Price Summation DONE
• list of floats = jhta.JH_SAVGPS(df)
JH_SCO Swing Close - Open DONE
• list of floats = jhta.JH_SCO(df)
JH_SCOS Swing Close - Open Summation DONE
• list of floats = jhta.JH_SCOS(df)

JH_SMEDP Swing Median Price - previous Median Price DONE
• list of floats = jhta.JH_SMEDP(df)
jh_SMEDPS Swing Median Price - previous Median Price Summa-
<pre>tion DONE</pre>
THE CDD Continue Duite DOME
<pre>JH_SPP Swing Price - previous Price DONE • list of floats = jhta.JH_SPP(df, price='Close')</pre>
JH_SPPS Swing Price - previous Price Summation DONE • list of floats = jhta.JH_SPPS(df, price='Close')
JH_STYPP Swing Typical Price - previous Typical Price DONE
• list of floats = jhta.JH_STYPP(df)
JH_STYPPS Swing Typical Price - previous Typical Price Summation DONE • list of floats = jhta.JH_STYPPS(df)
JH_SWCLP Swing Weighted Close Price - previous Weighted Close Price DONE

• list of floats = jhta.JH_SWCLP(df)

JH_SWCLPS | Swing Weighted Close Price - previous Weighted Close Price Summation | DONE

• list of floats = jhta.JH_SWCLPS(df)

General

NORMALIZE | Normalize | DONE

- list of floats = jhta.NORMALIZE(df, price_max='High', price_min='Low', price='Close')
- $\bullet \ \ https://machinelearning mastery.com/normalize-standardize-time-series-data-python/$

STANDARDIZE | Standardize | DONE

- list of floats = jhta.STANDARDIZE(df, price='Close')
- $\bullet \ \ https://machinelearning mastery.com/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-stan$

SPREAD | Spread | DONE

• list of floats = jhta.SPREAD(df1, df2, price1='Close', price2='Close')

CP | Comparative Performance | DONE

- list of floats = jhta.CP(df1, df2, price1='Close', price2='Close')
- https://www.fmlabs.com/reference/default.htm?url=CompPerformance.htm

CRSI | Comparative Relative Strength Index | DONE

- list of floats = jhta.CRSI(df1, df2, n, price1='Close', price2='Close')
- https://www.fmlabs.com/reference/default.htm?url=RSIC.htm

CS | Comparative Strength | DONE

- list of floats = jhta.CS(df1, df2, price1='Close', price2='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=CompStrength.htm$

HR | Hit Rate / Win Rate | DONE

- float = jhta.HR(hit_trades_int, total_trades_int)
- http://traderskillset.com/hit-rate-stock-trading/

PLR | Profit/Loss Ratio | DONE

- float = jhta.PLR(mean_trade_profit_float, mean_trade_loss_float)
- $\bullet \ \ https://www.investopedia.com/terms/p/profit_loss_ratio.asp$

EV | Expected Value | DONE

- float = jhta.EV(hitrade_float, mean_trade_profit_float, mean_trade_loss_float)
- https://en.wikipedia.org/wiki/Expected_value

POR | Probability of Ruin (Table of Lucas and LeBeau) | DONE

- int = jhta.POR(hitrade_float, profit_loss_ratio_float)
- book: Computer Analysis of the Futures Markets

Information

INFO | Print df Information | DONE

• print = jhta.INFO(df, price='Close')

INFO_TRADES | Print Trades Information | DONE • print = jhta.INFO_TRADES(profit_trades_list, loss_trades_list) **Math Functions** EXP | Exponential | DONE • list of floats = jhta.EXP(df, price='Close') LOG | Logarithm | DONE • list of floats = jhta.LOG(df, price='Close') LOG10 | Base-10 Logarithm | DONE • list of floats = jhta.LOG10(df, price='Close') SQRT | Square Root | DONE • list of floats = jhta.SQRT(df, price='Close') ACOS | Arc Cosine | DONE • list of floats = jhta.ACOS(df, price='Close') ASIN | Arc Sine | DONE • list of floats = jhta.ASIN(df, price='Close')

ATAN | Arc Tangent | DONE

• list of floats = jhta.ATAN(df, price='Close')

COS | Cosine | DONE • list of floats = jhta.COS(df, price='Close') SIN | Sine | DONE • list of floats = jhta.SIN(df, price='Close') TAN | Tangent | DONE • list of floats = jhta.TAN(df, price='Close') ACOSH | Inverse Hyperbolic Cosine | DONE • list of floats = jhta.ACOSH(df, price='Close') ASINH | Inverse Hyperbolic Sine | DONE • list of floats = jhta.ASINH(df, price='Close') ATANH | Inverse Hyperbolic Tangent | DONE • list of floats = jhta.ATANH(df, price='Close') COSH | Hyperbolic Cosine | DONE • list of floats = jhta.COSH(df, price='Close') SINH | Hyperbolic Sine | DONE • list of floats = jhta.SINH(df, price='Close')

	st of floats = jhta.TANH(df, price='Close')
	athematical constant PI DONE oat = jhta.PI()
•	thematical constant E DONE oat = jhta.E()
	Mathematical constant TAU DONE oat = jhta.TAU()
	Mathematical constant PHI DONE oat = jhta.PHI()
	Cibonacci series up to n DONE st of ints = jhta.FIB(n)
	Ceiling DONE st of floats = jhta.CEIL(df, price='Close')
	R Floor DONE st of floats = jhta.FLOOR(df, price='Close'

DEGREES | Radians to Degrees | DONE • list of floats = jhta.DEGREES(df, price='Close') RADIANS | Degrees to Radians | DONE • list of floats = jhta.RADIANS(df, price='Close') ADD | Addition High + Low | DONE • list of floats = jhta.ADD(df) DIV | Division High / Low | DONE • list of floats = jhta.DIV(df) MAX | Highest value over a specified period | DONE • list of floats = jhta.MAX(df, n, price='Close') MAXINDEX | Index of highest value over a specified period | DONE • list of ints = jhta.MAXINDEX(df, n, price='Close') MIN | Lowest value over a specified period | DONE • list of floats = jhta.MIN(df, n, price='Close') MININDEX | Index of lowest value over a specified period | DONE • list of ints = jhta.MININDEX(df, n, price='Close')

MINMAX Lowest and Highest values over a specified period DONE
• dict of lists of floats = jhta.MINMAX(df, n, price='Close')
MINMAXINDEX Indexes of lowest and highest values over a specified period DONE
• dict of lists of ints = jhta.MINMAXINDEX(df, n, price='Close')
MULT Multiply High * Low DONE
• list of floats = jhta.MULT(df)
SUB Subtraction High - Low DONE
• list of floats = jhta.SUB(df)
SUM Summation DONE
• list of floats = jhta.SUM(df, n, price='Close')
Momentum Indicators
ADX Average Directional Movement Index
ADXR Average Directional Movement Index Rating
•

APO Absolute Price Oscillator DONE
• list of floats = jhta.APO(df, n_fast, n_slow, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=PriceOscillator.htm
AROON Aroon
•
AROONOSC Aroon Oscillator
•
BOP Balance Of Power
•
CCI Commodity Channel Index
•
CMO Chande Momentum Oscillator
•
DX Directional Movement Index
•
MACD Moving Average Convergence/Divergence
MACD Moving Average Convergence/Divergence
•

MACDEXT MACD with controllable MA type •
$ \begin{aligned} & \mathbf{MACDFIX} \mid \mathbf{Moving\ Average\ Convergence/Divergence\ Fix\ 12/26} \mid \\ & \bullet \end{aligned} $
MFI Money Flow Index
MINUS_DI Minus Directional Indicator •
MINUS_DM Minus Directional Movement •
<pre>MOM Momentum DONE • list of floats = jhta.MOM(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=Momentum.htm</pre>
PLUS_DI Plus Directional Indicator •
PLUS_DM Plus Directional Movement •

PPO | Percentage Price Oscillator | RMI | Relative Momentum Index | DONE • list of floats = jhta.RMI(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=RMI.htm ROC | Rate of Change | DONE • list of floats = jhta.ROC(df, n, price='Close') ROCP | Rate of Change Percentage | DONE • list of floats = jhta.ROCP(df, n, price='Close') ROCR | Rate of Change Ratio | DONE • list of floats = jhta.ROCR(df, n, price='Close') ROCR100 | Rate of Change Ratio 100 scale | DONE • list of floats = jhta.ROCR100(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=RateOfChange.htm RSI | Relative Strength Index | DONE • list of floats = jhta.RSI(df, n, price='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=rsi.htm$

STOCH | Stochastic | DONE • list of floats = jhta.STOCH(df, n, price='Close') $\bullet \ \, https://www.fmlabs.com/reference/default.htm?url=Stochastic.htm$ STOCHF | Stochastic Fast | STOCHRSI | Stochastic Relative Strength Index | TRIX | 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA | ULTOSC | Ultimate Oscillator | WILLR | Williams' %R | DONE • list of floats = jhta.WILLR(df, n) $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=WilliamsR.htm$ **Overlap Studies** BBANDS | Bollinger Bands | DONE

 $\bullet \ \, https://www.fmlabs.com/reference/default.htm?url=Bollinger.htm$

• dict of lists of floats = jhta.BBANDS(df, n, f=2)

BBANDW Bollinger Band Width DONE
• list of floats = jhta.BBANDW(df, n, f=2)
DEMA Double Exponential Moving Average •
EMA Exponential Moving Average DONE
• list of floats = jhta.EMA(df, n, price='Close')
$\bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=ExpMA.htm} \\ \underline{\hspace{1cm}}$
ENVP Envelope Percent DONE
• dict of lists of floats = jhta.ENVP(df, pct=.01, price='Close'
$\bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=EnvelopePct.htm} \\ \underline{\hspace{1cm}}$
KAMA Kaufman Adaptive Moving Average •
MA Moving Average •
MAMA MESA Adaptive Moving Average

MAVP | Moving Average with Variable Period | MIDPOINT | MidPoint over period | DONE • list of floats = jhta.MIDPOINT(df, n, price='Close') • http://www.tadoc.org/indicator/MIDPOINT.htm MIDPRICE | MidPoint Price over period | DONE • list of floats = jhta.MIDPRICE(df, n) • http://www.tadoc.org/indicator/MIDPRICE.htm MMR | Mayer Multiple Ratio | DONE • list of floats = jhta.MMR(df, n=200, price='Close') • https://www.theinvestorspodcast.com/bitcoin-mayer-multiple/ SAR | Parabolic SAR | DONE • list of floats = jhta.SAR(df, af_step=.02, af_max=.2) • book: New Concepts in Technical Trading Systems SAREXT | Parabolic SAR - Extended | SMA | Simple Moving Average | DONE • list of floats = jhta.SMA(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=SimpleMA.htm

T3 Triple Exponential Moving Average (T3) •
TEMA Triple Exponential Moving Average •
TRIMA Triangular Moving Average DONE • list of floats = jhta.TRIMA(df, n, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=TriangularMA.htm
WMA Weighted Moving Average •
Pattern Recognition
CDL2CROWS Two Crows
CDL3BLACKCROWS Three Black Crows
CDL3INSIDE Three Inside Up/Down
CDL3LINESTRIKE Three-Line Strike
CDL3OUTSIDE Three Outside Up/Down
CDL3STARSINSOUTH Three Stars In The South
CDL3WHITESOLDIERS Three Advancing White Soldiers
CDLABANDONEDBABY Abandoned Baby

```
CDLADVANCEBLOCK | Advance Block |
CDLBELTHOLD | Belt-hold |
CDLBREAKAWAY | Breakaway |
CDLCLOSINGMARUBOZU | Closing Marubozu |
CDLCONSEALBABYSWALL | Concealing Baby Swallow |
CDLCOUNTERATTACK | Counterattack |
CDLDARKCLOUDCOVER | Dark Cloud Cover |
CDLDOJI | Doji |
CDLDOJISTAR | Doji Star |
CDLDRAGONFLYDOJI | Dragonfly Doji |
CDLENGULFING | Engulfing Pattern |
CDLEVENINGDOJISTAR | Evening Doji Star |
CDLEVENINGSTAR | Evening Star |
CDLGAPSIDESIDEWHITE | Up/Down-gap side-by-side white lines
CDLGRAVESTONEDOJI | Gravestone Doji |
CDLHAMMER | Hammer |
CDLHANGINGMAN | Hanging Man |
```

```
CDLHARAMI | Harami Pattern |
CDLHARAMICROSS | Harami Cross Pattern |
CDLHIGHWAVE | High-Wave Candle |
CDLHIKKAKE | Hikkake Pattern |
CDLHIKKAKEMOD | Modified Hikkake Pattern |
CDLHOMINGPIGEON | Homing Pigeon |
CDLIDENTICAL3CROWS | Identical Three Crows |
CDLINNECK | In-Neck Pattern |
CDLINVERTEDHAMMER | Inverted Hammer |
CDLKICKING | Kicking |
CDLKICKINGBYLENGTH | Kicking - bull/bear determined by the
longer marubozu |
CDLLADDERBOTTOM | Ladder Bottom |
CDLLONGLEGGEDDOJI | Long Legged Doji |
CDLLONGLINE | Long Line Candle |
CDLMARUBOZU | Marubozu |
CDLMATCHINGLOW | Matching Low |
CDLMATHOLD | Mat Hold |
```

```
CDLMORNINGDOJISTAR | Morning Doji Star |
CDLMORNINGSTAR | Morning Star |
CDLONNECK | On-Neck Pattern |
CDLPIERCING | Piercing Pattern |
CDLRICKSHAWMAN | Rickshaw Man |
CDLRISEFALL3METHODS | Rising/Falling Three Methods |
CDLSEPARATINGLINES | Separating Lines |
CDLSHOOTINGSTAR | Shooting Star |
CDLSHORTLINE | Short Line Candle |
CDLSPINNINGTOP | Spinning Top |
CDLSTALLEDPATTERN | Stalled Pattern |
CDLSTICKSANDWICH | Stick Sandwich |
CDLTAKURI | Takuri (Dragonfly Doji with very long lower shadow)
CDLTASUKIGAP | Tasuki Gap |
CDLTHRUSTING | Thrusting Pattern |
CDLTRISTAR | Tristar Pattern |
CDLUNIQUE3RIVER | Unique 3 River |
```

CDLUPSIDEGAP2CROWS | Upside Gap Two Crows |

CDLXSIDEGAP3METHODS | Upside/Downside Gap Three Methods |

Price Transform

AVGPRICE | Average Price | DONE

- list of floats = jhta.AVGPRICE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AvgPrices.htm$

MEDPRICE | Median Price | DONE

- list of floats = jhta.MEDPRICE(df)
- $\bullet \quad \text{https://www.fmlabs.com/reference/default.htm?url=MedianPrices.htm}$

TYPPRICE | Typical Price | DONE

- list of floats = jhta.TYPPRICE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TypicalPrices.htm$

WCLPRICE | Weighted Close Price | DONE

- list of floats = jhta.WCLPRICE(df)
- https://www.fmlabs.com/reference/default.htm?url=WeightedCloses. htm

Statistic Functions

MEAN | Arithmetic mean (average) of data | DONE

• list of floats = jhta.MEAN(df, n, price='Close')

HARMONIC_MEAN | Harmonic mean of data | DONE • list of floats = jhta.HARMONIC_MEAN(df, n, price='Close') MEDIAN | Median (middle value) of data | DONE • list of floats = jhta.MEDIAN(df, n, price='Close') MEDIAN_LOW | Low median of data | DONE • list of floats = jhta.MEDIAN_LOW(df, n, price='Close') MEDIAN_HIGH | High median of data | DONE • list of floats = jhta.MEDIAN_HIGH(df, n, price='Close') MEDIAN_GROUPED | Median, or 50th percentile, of grouped data | DONE • list of floats = jhta.MEDIAN_GROUPED(df, n, price='Close', interval=1) MODE | Mode (most common value) of discrete data | DONE • list of floats = jhta.MODE(df, n, price='Close') PSTDEV | Population standard deviation of data | DONE • list of floats = jhta.PSTDEV(df, n, price='Close', mu=None) PVARIANCE | Population variance of data | DONE • list of floats = jhta.PVARIANCE(df, n, price='Close', mu=None)

STDEV | Sample standard deviation of data | DONE • list of floats = jhta.STDEV(df, n, price='Close', xbar=None) VARIANCE | Sample variance of data | DONE • list of floats = jhta.VARIANCE(df, n, price='Close', xbar=None) COV | Covariance | DONE • float = jhta.COV(list1, list2) • https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance# Covariance COVARIANCE | Covariance | DONE • list of floats = jhta.COVARIANCE(df1, df2, n, price1='Close', price2='Close') • https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance# Covariance COR | Correlation | DONE • float = jhta.COR(list1, list2) CORRELATION | Correlation | DONE • list of floats = jhta.CORRELATION(df1, df2, n, price1='Close', price2='Close')

PCOR | Population Correlation | DONE
• float = jhta.PCOR(list1, list2)

PCORRELATION | Population Correlation | DONE

• list of floats = jhta.PCORRELATION(df1, df2, n, price1='Close', price2='Close')

BETA | Beta | DONE

- float = jhta.BETA(list1, list2)
- $\bullet \ \ https://en.wikipedia.org/wiki/Beta_(finance)$

BETAS | Betas | DONE

- list of floats = jhta.BETAS(df1, df2, n, price1='Close', price2='Close')
- https://en.wikipedia.org/wiki/Beta_(finance)

LSR | Least Squares Regression | DONE

- list of floats = jhta.LSR(df, price='Close', predictions_int=0)
- https://www.mathsisfun.com/data/least-squares-regression.html

SLR | Simple Linear Regression | DONE

- list of floats = jhta.SLR(df, price='Close', predictions_int=0)
- $\bullet \ \ https://machinelearning mastery.com/implement-simple-linear-regression-scratch-python/$

Uncategorised

Volatility Indicators

ATR | Average True Range | DONE

- list of floats = jhta.ATR(df, n)
- https://www.fmlabs.com/reference/default.htm?url=ATR.htm

NATR | Normalized Average True Range | RVI | Relative Volatility Index | DONE • list of floats = jhta.RVI(df, n) • https://www.fmlabs.com/reference/default.htm?url=RVI.htm INERTIA | Inertia | TRANGE | True Range | DONE • list of floats = jhta.TRANGE(df) • https://www.fmlabs.com/reference/default.htm?url=TR.htm **Volume Indicators** AD | Chaikin A/D Line | DONE • list of floats = jhta.AD(df) • https://www.fmlabs.com/reference/default.htm?url=AccumDist.htm ADOSC | Chaikin A/D Oscillator | OBV | On Balance Volume | DONE • list of floats = jhta.OBV(df) • https://www.fmlabs.com/reference/default.htm?url=OBV.htm