

<u>Lecture 14: Wald's Test, Likelihood</u> <u>Ratio Test, and Implicit Hypothesis</u>

Course > Unit 4 Hypothesis testing > Test

> 13. Testing Implicit Hypotheses II

Audit Access Expires Dec 24, 2019

You lose all access to this course, including your progress, on Dec 24, 2019.

Upgrade by Nov 4, 2019 to get unlimited access to the course as long as it exists on the site. **Upgrade now**

13. Testing Implicit Hypotheses II

Testing Implicit Hypotheses III: Slutsky's Theorem

2/2 points (graded)

As above, we have that

$$\sqrt{n}\left(\hat{ heta}_{n}- heta^{*}
ight) \xrightarrow[n o \infty]{(d)} \mathcal{N}\left(\mathbf{0},\Sigma\left(heta^{*}
ight)
ight), \quad \Sigma\left(heta^{*}
ight) \in \mathbb{R}^{d imes d}.$$

and

$$\sqrt{n}\left(g\left(\hat{ heta}_{n}
ight)-g\left(heta^{*}
ight)
ight) \xrightarrow[n o \infty]{(d)} \mathcal{N}\left(\mathbf{0},\Gamma\left(heta^{*}
ight)
ight), \quad \Gamma\left(heta^{*}
ight) \in \mathbb{R}^{k imes k}.$$

In particular, $\hat{\theta}_n$ is a consistent estimator for θ^* .

Assume that $\Gamma(\theta)^x$ is a continuous function of $\theta \in \mathbb{R}^d$ for all $x \in \mathbb{R}$.

Which of the following is a consistent estimator for $\Gamma(heta^*)^{-1/2}$?

$$ullet$$
 $\Gamma(\hat{ heta}_{\,n})^{-1/2}$

Applying Slutsky's theorem and the result of the previous problem, to what distribution does the random vector

$$\sqrt{n}\Gamma(\hat{ heta}_{n})^{-1/2}\left(g\left(\hat{ heta}_{n}
ight)-g\left(heta^{st}
ight)
ight)$$

converge to as $n o \infty$?

leftleft $\mathcal{N}\left(\mathbf{0},I_{k}
ight)$

 $\bigcirc \, \mathcal{N} \left(\mathbf{0}, I_d
ight)$

 $\bigcirc \, \chi^2_d$

 $igcup \chi^2_k$

Solution:

Since $\hat{\theta}_n$ is a consistent estimator for θ^* , by continuity of $\theta \mapsto \Gamma(\theta)^{-1/2}$, this implies that $\Gamma(\hat{\theta}_n)^{-1/2}$ is a consistent estimator for $\Gamma(\theta)^{-1/2}$.

By the result of the previous problem,

$$\sqrt{n}\Gamma(heta^*)^{-1/2}\left(g\left(\hat{ heta}_{\,n}
ight)-g\left(heta^*
ight)
ight) \xrightarrow[n o\infty]{(d)} \mathcal{N}\left(\mathbf{0},I_k
ight).$$

So by Slutsky's theorem,

$$\sqrt{n}\Gamma(\hat{ heta}_{n})^{-1/2}\left(g\left(\hat{ heta}_{n}
ight)-g\left(heta^{st}
ight)
ight) \xrightarrow[n o \infty]{(d)} \mathcal{N}\left(\mathbf{0},I_{k}
ight).$$

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Testing Implicit Hypotheses IV: Performing the Test

2/2 points (graded)

We would like to hypothesis test between the following null and alternative:

$$H_0:g(heta^*)_-=0$$

$$H_{1}:g\left(heta ^{st }
ight)
eq 0.$$

where $heta^* \in \mathbb{R}^d$.

To do so, we consider the test statistic

$$T_n := \left| \sqrt{n} \Gamma(\hat{ heta}_n)^{-1/2} \left(g\left(\hat{ heta}_n
ight)
ight)
ight|_2^2 = n g(\hat{ heta}_n)^T \Gamma(\hat{ heta}_n)^{-1} g\left(\hat{ heta}_n
ight)$$

and design the test

$$\psi = \mathbf{1}\left(T_n > C
ight)$$

where C is a threshold to be determined.

Under the null hypothesis, to what distribution does the test-statistic T_n converge?

 $\bigcirc \, \mathcal{N} \left(\mathbf{0}, I_k \right)$

 $\bigcirc \, \mathcal{N} \left(\mathbf{0}, I_d \right)$

 $\bigcirc \, \chi^2_d$

 $igotimes \chi^2_k$

Supposing that d=6 and k=3, what value of C should be chosen so that ψ is a test of asymptotic level 5%?

(You should consult a table, e.g. https://people.richland.edu/james/lecture/m170/tbl-chi.html) or use software, e.g. R.)

7.815 **Answer:** 7.815

Solution:

Under the null-hypothesis, we have that $g\left(\theta^{*}\right)=0$, so by the previous problem,

$$\sqrt{n}\Gamma(\hat{ heta}_{n})^{-1/2}g\left(\hat{ heta}_{n}
ight) \stackrel{(d)}{\longrightarrow} \mathcal{N}\left(\mathbf{0},I_{k}
ight).$$

By definition, $\left|\mathcal{N}\left(\mathbf{0},I_{k}
ight)\right|_{2}^{2}\sim\chi_{k}^{2}$, so we have by continuity that

$$\left|\sqrt{n}\Gamma(\hat{ heta}_n)^{-1/2}g\left(\hat{ heta}_n
ight)
ight|_2^2 = ng(\hat{ heta}_n)^T\Gamma(\hat{ heta}_n)^{-1}g\left(\hat{ heta}_n
ight) \stackrel{(d)}{\longrightarrow} \chi_k^2.$$

Indeed, the test statistic T_n converges to χ^2_k in distribution.

When k=3, then $T_n \xrightarrow[n \to \infty]{(d)} \chi_3^2$. The test $\psi=\mathbf{1}\,(T_n>C)$ will have asymptotic level 5% precisely when C is the 5%-quantile $q_{0.05}$ of χ_3^2 . Consulting a table, we have that $q_{0.05}=7.815$.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 4 Hypothesis testing:Lecture 14: Wald's Test, Likelihood Ratio Test, and Implicit Hypothesis Test / 13. Testing Implicit Hypotheses II

Add a Post

Show all posts

by recent activity ▼

There are no posts in this topic yet.

×

Learn About Verified Certificates	
Ecanimode vermed ceremedes	© All Rights Reserved