ISE 5103 Intelligent Data Analytics

Homework 4 - Data Wrangling in R

Daniel Carpenter & Sonaxy Mohanty

September 2022

Contents

	Packages	2
1	- Data Quality Report	2
	1 (a) - Read data	2
	1 (b) - Numeric Housing Tibble	2
	1 (c) - Factor Housing Tibble	3
	1 (d) - Use Glimpse	4
	1 (e) - Get Q1 and Q3	4
	1 (f) - Vectorized Summary Stats	4
	1 (g) - Apply Summary Stats	4
	1 (h) - Add Stats Names	4
	1 (i) - Pretty up data	5
	1 (j) - Factor Data Report	5
2	- Transformation	9
	2 (a) - Fixing Skewed Data	9
	2 (b) - Impute Missing Values	16
	2 (c) - Dummy Variable Manipulation	24
	2 (d) - More fun with Factors	25
	References	28

Packages

```
# Data Wrangling
library(tidyverse)

# Modeling
library(car)  # symbox
library(EnvStats) # boxcox function
library(mice) # Predictive mean matching for missing values

# Aesthetics
library(knitr)
library(cowplot) # multiple ggplots on one plot with plot_grid()
library(scales)
library(kableExtra)
```

1 - Data Quality Report

1 (a) - Read data

• Created a tibble housingData after adding three new variables: age, ageSinceRemodel and ageofGarage to the housing data

1 (b) - Numeric Housing Tibble

• Created a tibble named housingNumeric which contained all of the numeric variables from the original data using the dplyr::select command along with the is.numeric function

```
housingNumeric <- housingData %>%
    #selecting all the numeric data
    dplyr::select_if(is.numeric) %>%
    #converting the dataframe to tibble
    as_tibble()

housingNumeric
```

```
## # A tibble: 1,000 x 39
```

```
##
         Id MSSub~1 LotFr~2 LotArea Overa~3 Overa~4 YearB~5 YearR~6 MasVn~7 BsmtF~8
##
                                <int>
      <int>
               <int>
                        <int>
                                         <int>
                                                  <int>
                                                           <int>
                                                                    <int>
                                                                            <int>
                                                                                     <int>
                                                            1966
##
    1
          1
                  20
                           NA
                                11000
                                             5
                                                      6
                                                                     1966
                                                                              200
                                                                                       740
##
    2
          2
                  20
                                36500
                                             5
                                                      5
                                                            1964
                                                                     1964
                                                                              621
                                                                                       812
                           NΑ
##
    3
          3
                  20
                           57
                                 9764
                                             5
                                                      7
                                                            1967
                                                                     2003
                                                                                0
                                                                                       702
    4
                                             6
                                                      7
##
          4
                  70
                           NA
                                 7500
                                                            1942
                                                                    1950
                                                                                0
                                                                                       547
    5
##
          5
                  20
                           80
                                 9200
                                             6
                                                      6
                                                            1965
                                                                    1965
                                                                                0
                                                                                       892
                                             7
##
    6
          6
                  60
                           72
                                11317
                                                      5
                                                            2003
                                                                     2003
                                                                              101
                                                                                         0
##
    7
          7
                  20
                           80
                                 8480
                                             5
                                                      6
                                                            1963
                                                                     1963
                                                                                0
                                                                                       630
                                             7
                                                      7
##
    8
          8
                  70
                           65
                                11700
                                                            1880
                                                                     2003
                                                                                0
                                                                                         0
##
    9
          9
                  60
                           80
                                  9760
                                             6
                                                      6
                                                            1964
                                                                     1964
                                                                              360
                                                                                       674
                  60
                           93
                                10261
                                             6
                                                      5
                                                            2000
                                                                     2000
                                                                                         0
## 10
         10
                                                                              318
##
     ... with 990 more rows, 29 more variables: BsmtFinSF2 <int>, BsmtUnfSF <int>,
## #
       TotalBsmtSF <int>, X1stFlrSF <int>, X2ndFlrSF <int>, LowQualFinSF <int>,
       GrLivArea <int>, BsmtFullBath <int>, BsmtHalfBath <int>, FullBath <int>,
## #
## #
       HalfBath <int>, BedroomAbvGr <int>, KitchenAbvGr <int>, TotRmsAbvGrd <int>,
## #
       Fireplaces <int>, GarageYrBlt <int>, GarageCars <int>, GarageArea <int>,
## #
       WoodDeckSF <int>, OpenPorchSF <int>, EncPorchSF <int>, PoolArea <int>,
## #
       MiscVal <int>, MoSold <int>, YrSold <int>, SalePrice <int>, age <int>, ...
```

1 (c) - Factor Housing Tibble

• Created a tibble named housingFactor which contains all of the character variables from the original data

```
housingFactor <- housingData %>%

#converting the character data into factors
    transmute_if(is.character, as.factor) %>%
    #converting the dataframe to tibble
    as_tibble()

housingFactor
```

```
## # A tibble: 1,000 x 38
##
      MSZon~1 Alley LotSh~2 LandC~3 LotCo~4 LandS~5 Neigh~6 Condi~7 BldgT~8 House~9
      <fct>
              <fct> <fct>
                             <fct>
                                     <fct>
                                              <fct>
                                                      <fct>
                                                              <fct>
                                                                       <fct>
                                                                               <fct>
##
    1 RL
              <NA>
                    IR1
                             Lvl
                                     CulDSac Gtl
                                                      NAmes
                                                              Norm
                                                                       1Fam
                                                                               1Story
##
    2 RL
              <NA>
                    IR1
                             Low
                                     Inside Mod
                                                      ClearCr Norm
                                                                       1Fam
                                                                               1Story
##
   3 RL
              <NA>
                    IR1
                             Lvl
                                     other
                                              Gtl
                                                      Sawyer Feedr
                                                                       1Fam
                                                                               1Story
##
   4 RL
              <NA>
                                     Inside Gtl
                                                      Crawfor Norm
                                                                               2Story
                    IR1
                             Bnk
                                                                       1Fam
    5 RL
##
              <NA>
                    Reg
                             Lvl
                                     Inside
                                             Gtl
                                                      NAmes
                                                              Norm
                                                                       1Fam
                                                                               1Story
##
    6 RL
                                     Inside Gtl
              <NA>
                    Reg
                             Lvl
                                                      CollgCr Norm
                                                                       1Fam
                                                                               2Story
##
    7 RL
              <NA>
                    Reg
                             Lvl
                                     Corner
                                             Gtl
                                                      Sawyer
                                                                       1Fam
                                                                               1Story
                                                              Norm
##
    8 RM
              Pave
                    IR1
                             Lvl
                                     Corner
                                             Gtl
                                                      OldTown Norm
                                                                       1Fam
                                                                               2Story
##
    9 RL
              <NA>
                             Lvl
                                     Inside
                                             Mod
                                                      NAmes
                                                                       1Fam
                                                                               2Story
                    Reg
                                                              Norm
## 10 RL
              <NA>
                                     Inside Gtl
                    IR1
                             Lvl
                                                      Gilbert Norm
                                                                       1Fam
                                                                               2Story
## # ... with 990 more rows, 28 more variables: RoofStyle <fct>,
## #
       Exterior1st <fct>, Exterior2nd <fct>, MasVnrType <fct>, ExterQual <fct>,
       ExterCond <fct>, Foundation <fct>, BsmtQual <fct>, BsmtCond <fct>,
## #
## #
       BsmtExposure <fct>, BsmtFinType1 <fct>, BsmtFinType2 <fct>, Heating <fct>,
       HeatingQC <fct>, CentralAir <fct>, Electrical <fct>, KitchenQual <fct>,
       Functional <fct>, FireplaceQu <fct>, GarageType <fct>, GarageFinish <fct>,
## #
```

```
## # GarageQual <fct>, GarageCond <fct>, PavedDrive <fct>, PoolQC <fct>, ...
```

1 (d) - Use Glimpse

• Using glimpse function, we verified the output of housingNumeric and housingFactor tibbles

```
glimpse(housingNumeric)
glimpse(housingFactor)
```

1 (e) - Get Q1 and Q3

- Create our own user-defined functions for extracting only first and 3rd quantile
- Explanation: Gets the quantiles of a vector using quantile function, but we use the [] brackets to retrieve the 2nd or 4th objects in the vector, which are Q1 and Q3

```
Q1 <- function(x,na.rm=TRUE) {
   quantile(x,na.rm=na.rm)[2]
}
Q3 <- function(x,na.rm=TRUE) {
   quantile(x,na.rm=na.rm)[4]
}</pre>
```

1 (f) - Vectorized Summary Stats

- User-defined function that will help apply several summary statistics to our data all at once
- Contained vector of functions with default to not evaluate if na

```
# Vector of functions for summary of numeric variables
myNumericSummary <- function(x){
   c(length(x), n_distinct(x), sum(is.na(x)), mean(x, na.rm=TRUE),
   min(x,na.rm=TRUE), Q1(x,na.rm=TRUE), median(x,na.rm=TRUE), Q3(x,na.rm=TRUE),
   max(x,na.rm=TRUE), sd(x,na.rm=TRUE))
}</pre>
```

1 (g) - Apply Summary Stats

• Applied the user-defined summary stats function to every variable in the housingNumeric data set and saving the new tibble as numericSummary

```
numericSummary <- housingNumeric %>%
    #applying the function myNumericSummary to every column across the housingNumeric dataset
    summarise(across(.cols=everything(), ~myNumericSummary(.x)))
```

1 (h) - Add Stats Names

• Combined original data set and the names of each summary statistic

```
numericSummary <- cbind(
   stat=c("n","unique","missing","mean","min","Q1","median","Q3","max","sd"),
   numericSummary
)
#glimpse(numericSummary)</pre>
```

1 (i) - Pretty up data

• Transformed data to make it ready for output format

• Output

1 (j) - Factor Data Report

• Created user-defined function to identify first, second or least common modes

```
getmodes <- function(v,type=1) {
tbl <- table(v)
m1<-which.max(tbl)
if (type==1) {
    #1st mode
return (names(m1))
}
else if (type==2) {
    #2nd mode
return (names(which.max(tbl[-m1])))
}
else if (type==-1) {
    #least common mode
return (names(which.min(tbl)))
}</pre>
```

variable	n	missing	$missing_pct$	unique	$unique_pct$	mean	min	Q1	median	Q3	max	so
Id	1000	0	0.0	1000	100.0	500.500	1	251	500	750.2	1000	288.819
MSSubClass	1000	0	0.0	13	1.3	57.185	20	20	50	70.0	190	41.87
LotFrontage	1000	207	20.7	102	10.2	68.745	21	58	68	80.0	313	23.198
LotArea	1000	0	0.0	760	76.0	10424.881	1477	7500	9422	11423.5	215245	9940.619
OverallQual	1000	0	0.0	10	1.0	5.979	1	5	6	7.0	10	1.310
OverallCond	1000	0	0.0	8	0.8	5.638	2	5	5	6.0	9	1.114
YearBuilt	1000	0	0.0	108	10.8	1969.836	1875	1954	1971	1998.0	2009	29.119
YearRemodAdd	1000	0	0.0	61	6.1	1984.108	1950	1967	1992	2002.0	2010	20.110
MasVnrArea	1000	4	0.4	249	24.9	95.418	0	0	0	146.2	1600	177.318
BsmtFinSF1	1000	0	0.0	490	49.0	438.686	0	0	400	700.0	1880	405.837
BsmtFinSF2	1000	0	0.0	107	10.7	44.296	0	0	0	0.0	1127	150.493
BsmtUnfSF	1000	0	0.0	598	59.8	535.078	0	208	441	779.2	2153	417.94
TotalBsmtSF	1000	0	0.0	549	54.9	1018.060	0	793	962	1223.5	3206	403.64
X1stFlrSF	1000	0	0.0	581	58.1	1131.251	334	868	1060	1327.2	3228	350.86
X2ndFlrSF	1000	0	0.0	306	30.6	346.279	0	0	0	735.0	1872	426.39
LowQualFinSF	1000	0	0.0	15	1.5	4.991	0	0	0	0.0	528	45.29
GrLivArea	1000	0	0.0	664	66.4	1482.521	334	1111	1442	1735.0	4316	490.56
BsmtFullBath	1000	0	0.0	3	0.3	0.427	0	0	0	1.0	2	0.50
BsmtHalfBath	1000	0	0.0	2	0.2	0.059	0	0	0	0.0	1	0.23
FullBath	1000	0	0.0	4	0.4	1.529	0	1	2	2.0	3	0.53
HalfBath	1000	0	0.0	3	0.3	0.384	0	0	0	1.0	2	0.50
BedroomAbvGr	1000	0	0.0	7	0.7	2.865	0	2	3	3.0	6	0.79
KitchenAbvGr	1000	0	0.0	3	0.3	1.041	1	1	1	1.0	3	0.20
TotRmsAbvGrd	1000	0	0.0	11	1.1	6.410	2	5	6	7.0	12	1.56
Fireplaces	1000	0	0.0	4	0.4	0.618	0	0	1	1.0	3	0.64
GarageYrBlt	1000	53	5.3	94	9.4	1976.938	1906	1960	1977	1999.0	2009	23.59
GarageCars	1000	0	0.0	5	0.5	1.720	0	1	2	2.0	4	0.71
GarageArea	1000	0	0.0	353	35.3	458.329	0	319	470	572.0	1356	197.78
WoodDeckSF	1000	0	0.0	226	22.6	94.555	0	0	0	168.0	857	127.14
OpenPorchSF	1000	0	0.0	169	16.9	43.610	0	0	22	64.0	547	61.91
EncPorchSF	1000	0	0.0	122	12.2	40.641	0	0	0	0.0	508	82.13
PoolArea	1000	0	0.0	3	0.3	1.224	0	0	0	0.0	648	27.40
MiscVal	1000	0	0.0	14	1.4	27.210	0	0	0	0.0	3500	190.70
MoSold	1000	0	0.0	12	1.2	6.207	1	4	6	8.0	12	2.62
YrSold	1000	0	0.0	5	0.5	2007.919	2006	2007	2008	2009.0	2010	1.31
SalePrice	1000	0	0.0	477	47.7	174560.607	39300	130000	160000	205000.0	755000	69329.31
age	1000	0	0.0	115	11.5	38.083	1	10	37	55.0	135	29.10
ageSinceRemodel	1000	0	0.0	61	6.1	23.811	0	6	16	41.2	60	20.03
ageofGarage	1000	53	5.3	97	9.7	30.973	0	9	30	48.0	102	23.56

```
else {
stop("Invalid type selected")
}
```

• Created another user-defined function to identify the frequencies of the first, second, or least common modes

```
getmodesCnt <- function(v,type=1) {
tbl <- table(v)
m1<-which.max(tbl)
if (type==1) {
  return (max(tbl)) #1st mode freq
}
else if (type==2) {
  return (max(tbl[-m1])) #2nd mode freq
}
else if (type==-1) {
  return (min(tbl)) #least common freq
}
else {
  stop("Invalid type selected")
}
}</pre>
```

• User-defined function that will help apply several summary statistics to our data all at once

```
# Vector of functions for summary of categorical variables
myFactorSummary <- function(x){
   c(length(x), n_distinct(x), sum(is.na(x)), getmodes(x, type=1),
      getmodesCnt(x, type=1), getmodes(x, type=2), getmodesCnt(x, type=2),
      getmodes(x, type=-1), getmodesCnt(x, type=-1))
}</pre>
```

• Applied the user-defined summary stats function to every variable in the housingFactor data set and saving the new tibble as factorSummary

```
factorSummary <- housingFactor %>%
    #applying the function myNumericSummary to every column across the housingNumeric dataset
    summarise(across(.cols=everything(), ~myFactorSummary(.x)))
```

• Combined original data set and the names of each summary statistic

• Transformed data to make it ready for output format

variable	n	missing	$_{\rm missing_pct}$	unique	unique_pct	freqRatio	1st mode	1st mode freq	2nd mode	2nd mode freq	least common	least common freq
MSZoning	1000	0	0.0	4	0.4	5.32	RL	803	RM	151	RH	10
Alley	1000	938	93.8	3	0.3	1.82	Grvl	40	Pave	22	Pave	22
LotShape	1000	0	0.0	4	0.4	1.92	Reg	633	IR1	330	IR3	7
LandContour	1000	0	0.0	4	0.4	22.62	Lvl	905	Bnk	40	Low	26
LotConfig	1000	0	0.0	4	0.4	3.97	Inside	711	Corner	179	other	38
LandSlope	1000	0	0.0	3	0.3	19.71	Gtl	946	Mod	48	Sev	6
Neighborhood	1000	0	0.0	18	1.8	1.48	NAmes	167	CollgCr	113	Timber	20
Condition1	1000	0	0.0	6	0.6	17.08	Norm	871	Feedr	51	PosA	7
BldgType	1000	0	0.0	5	0.5	10.33	1Fam	837	TwnhsE	81	2fmCon	20
HouseStyle	1000	0	0.0	8	0.8	1.57	1Story	488	2Story	310	2.5Fin	5
RoofStyle	1000	0	0.0	3	0.3	4.32	Gable	795	$_{ m Hip}$	184	other	21
Exterior1st	1000	0	0.0	8	0.8	1.87	VinylSd	328	HdBoard	175	CemntBd	36
Exterior2nd	1000	0	0.0	9	0.9	2.01	VinylSd	320	HdBoard	159	BrkFace	24
MasVnrType	1000	4	0.4	5	0.5	1.97	None	617	BrkFace	313	BrkCmn	8
ExterQual	1000	0	0.0	3	0.3	1.96	Avg	657	AboveAvg	336	BelowAvg	7
ExterCond	1000	0	0.0	3	0.3	8.54	Avg	880	AboveAvg	103	BelowAvg	17
Foundation	1000	0	0.0	4	0.4	1.12	CBlock	463	PConc	414	other	27
BsmtQual	1000	31	3.1	4	0.4	1.06	AboveAvg	488	Avg	459	BelowAvg	22
BsmtCond	1000	31	3.1	4	0.4	24.41	Avg	903	AboveAvg	37	BelowAvg	29
BsmtExposure	1000	32	3.2	5	0.5	4.77	No	668	Av	140	$_{ m Mn}$	76
BsmtFinType1	1000	31	3.1	7	0.7	1.03	$_{ m GLQ}$	273	Unf	265	LwQ	52
BsmtFinType2	1000	32	3.2	7	0.7	23.69	Unf	853	Rec	36	ALQ	11
Heating	1000	0	0.0	2	0.2	37.46	GasA	974	other	26	other	26
HeatingQC	1000	0	0.0	3	0.3	2.21	AboveAvg	664	Avg	300	BelowAvg	36
CentralAir	1000	0	0.0	2	0.2	14.62	Y	936	N	64	N	64
Electrical	1000	1	0.1	5	0.5	12.61	SBrkr	908	FuseA	72	FuseP	2
KitchenQual	1000	0	0.0	3	0.3	1.22	Avg	534	AboveAvg	439	BelowAvg	27
Functional	1000	0	0.0	6	0.6	35.54	$_{\mathrm{Typ}}$	924	Min2	26	Maj2	4
FireplaceQu	1000	466	46.6	4	0.4	1.04	AboveAvg	250	Avg	240	BelowAvg	44
GarageType	1000	53	5.3	7	0.7	2.15	Attchd	601	Detchd	280	2Types	3
GarageFinish	1000	53	5.3	4	0.4	1.49	$_{\mathrm{Unf}}$	434	RFn	291	Fin	222
GarageQual	1000	53	5.3	4	0.4	27.48	Avg	907	BelowAvg	33	AboveAvg	7
GarageCond	1000	53	5.3	4	0.4	29.36	Avg	910	BelowAvg	31	AboveAvg	6
PavedDrive	1000	0	0.0	3	0.3	14.71	Y	912	N	62	P	26
PoolQC	1000	998	99.8	3	0.3	1.00	Fa	1	Gd	1	Fa	1
Fence	1000	805	80.5	5	0.5	2.70	MnPrv	108	GdPrv	40	MnWw	8
MiscFeature	1000	966	96.6	3	0.3	16.00	Shed	32	Othr	2	Othr	2
SaleType	1000	0	0.0	2	0.2	33.48	WD	971	other	29	other	29

• Output

2 - Transformation

2 (a) - Fixing Skewed Data

Function to Convert Skewed Data to Normally Distributed Vector

```
normalizeDist <- function(aVector) {

# Get the optimal lambda. Used later for converting to normal distribution
normLambda = boxcox(aVector, optimize = TRUE)$lambda

# Now convert vector to normal distribution, using the optimal lambda
normalizedVector <- (aVector ** normLambda - 1) / normLambda

return(normalizedVector)
}

# Colors
goodCol = 'darkseagreen3'
badCol = 'tomato3'</pre>
```

i. Fix LotArea in Housing Data Set

Lot area is highly skewed


```
# Normalize the data and store in data
housingData <- housingData %>%
  mutate(normLotArea = normalizeDist(housingData$LotArea) )
```

See the normalized Lot Area variable

- You can see that the data is definitely more normal
- However, much of the data is near the median, which may or may not be fine, depending on the analysis

Raw Lot Size (Sq. Ft.)

Normalized Lot Size (Sq. Ft.)

i. Fix GrLivArea in Housing Data Set

Above Ground Living Area is highly skewed

Above Ground Living Area (Sq. Ft.)


```
# Normalize the data and store in data
housingData <- housingData %>%
  mutate(normYearBuilt = normalizeDist(housingData$GrLivArea) )
```

See the normalized Lot Area variable

 $\bullet\,$ You can see that the data is definitely more normal

Raw Above Ground Living Area (Sq. Ft.)

Raw Above Ground Living Area (Sq. Ft.)

Normalized Above Ground Living Area (Sq. Ft.)

Normalized Above Ground Living Area (Sq. Ft.)

2 (b) - Impute Missing Values

Function to plot comparison of imputation methods

Highlights of function include:

- Histogram of actual data, with mean line on x-axis
- Histogram of imputed data, with mean line on x-axis
- Regression of actual and imputed data, spread across trival x-axis. Goal is to show variation in data

```
seeImputation <- function(df, df.meanInputed,</pre>
                        imputationMethod) {
 # Min/Max ranges so actual and imputed histograms align
 yMin = min(df.meanInputed$y)
 yMax = max(df.meanInputed$y)
 # Non Altered data -----
 meanVal = mean(df$y, na.rm=T) # mean of the non altered data
 # Create the plot
 p1 <- df %>%
   ggplot(aes(x = y)) +
   # Histogram
   geom_histogram(color = 'grey65', fill = 'grey95') +
   # The mean value line
   geom_vline(xintercept = meanVal, color = 'tomato3') +
   # Text associated with mean value
   annotate("text",
            label = "Mean Value",
            x = meanVal, y = 100,
            size = 5, colour = "tomato3" ) +
   # Labels
   labs(title = 'Data with Missing Values',
        y = 'Frequency',
x = '') +
   xlim(yMin, yMax) + # min and max range of x axis (for equal comparison)
   theme minimal() # Theme
 # Imputed data ------
 meanValImpute = mean(df.meanInputed$y, na.rm=T)
 # Create the plot
 p2 <- df.meanInputed %>%
```

```
ggplot(aes(x = y)) +
 # Histogram
 geom_histogram(color = 'grey65', fill = 'grey95') +
 # The mean value line
 geom_vline(xintercept = meanVal, color = 'tomato3') +
 # Text associated with mean value
 annotate("text",
          label = "Mean Value",
          x = meanValImpute, y = 100,
          size = 5, colour = "tomato3" ) +
 # Labels
 labs(title = 'Data without Missing Values',
          subtitle = paste('Using', imputationMethod, 'Imputation Method'),
          y = 'Frequency',
          x = 'Linear feet of street connected to property') +
 xlim(yMin, yMax) + # min and max range of x axis (for equal comparison)
 theme_minimal() # Theme
# Variation scatter -------
p3 <- df.meanInputed %>% ggplot(aes(x=x, y=y, color=missing)) +
 # Add points
 geom_point(alpha = 0.5) +
 # Colors, limits, labels, and themes
  scale_color_manual(values = c('grey80', badCol),
                   labels = c('Actuals', 'Imputed') ) +
 ylim(0, quantile(df.meanInputed$y, 0.99)) + # lower 99% of dist
 labs(title = 'Variation of Actuals vs. Imputed Data',
              = 'x',
      X
            = 'Lot Frontage',
      caption =paste0('\nUsing housing.csv data',
                      '\nOnly showing lower 99% of distribution for viewing')
      ) +
 theme_minimal() + theme(legend.position = 'bottom',
                        legend.title = element_blank())
# Combine the plots for the final returned output
combinedPlots <- plot_grid(p1, p2, p3,</pre>
                          ncol = 1, label_size = 12,
                          rel_heights = c(1, 1.1, 1.75))
return(combinedPlots)
```

Create Reusable data set df

```
# How much is missing?
missing <- is.na(housingData$LotFrontage)
paste('There are', sum(missing), 'missing values')
## [1] "There are 207 missing values"</pre>
```

i Mean Value Imputation

```
# Create copy of the data with NAs
df.meanInputed <- df

# Conduct Mean imputation
df.meanInputed[missing,"y"] <- mean(df.meanInputed$y, na.rm=T)

# Compare missing vs. non missing for given imputation method
seeImputation(df, df.meanInputed, imputationMethod = 'Mean')</pre>
```

Data with Missing Values

Data without Missing Values Using Mean Imputation Method

Variation of Actuals vs. Imputed Data

Using housing.csv data Only showing lower 99% of distribution for viewing

ii Regression with Error Imputation

- Output seems to capture appropriate variance of the actual data.
- It is clear that the mean does not change

Data without Missing Values Using Regression with Error Imputation Method

Variation of Actuals vs. Imputed Data

Using housing.csv data Only showing lower 99% of distribution for viewing

iii Predictive Mean Matching Imputation

- Output seems to capture appropriate variance of the actual data.
- It is clear that the mean does not change much, if at all.

Data without Missing Values

Variation of Actuals vs. Imputed Data

Using housing.csv data Only showing lower 99% of distribution for viewing

2 (c) - Dummy Variable Manipulation

Collapse the factor levels in the Exterior1st down to only five levels – the first four levels should be the most frequent levels and all other levels should be collapsed into a single "Other" level.

Interpretation

- Now there are only 5 levels for the Exterior1st variable
- 4 most frequent left untouched, and the others grouped in Other

```
housingData <- housingData %>%

# lumps all levels except for the n most frequent
mutate(Exterior1st = fct_lump_n(Exterior1st, n=4))

# See that there are only 5 levels now
unique(housingData$Exterior1st)
```

```
## [1] Other Wd Sdng VinylSd HdBoard MetalSd
## Levels: HdBoard MetalSd VinylSd Wd Sdng Other
```

```
length(unique(housingData$Exterior1st))
```

[1] 5

2 (d) - More fun with Factors

$\ensuremath{\text{\textbf{i}}}$ - Get average SalePrice for each Neighborhood using tidyverse

• Note sorted descending

```
housingData %>%
  group_by(Neighborhood) %>%
  summarise(AvgSalePrice = mean(SalePrice)) %>%
  arrange(desc(AvgSalePrice)) %>% # sort descending on sale price
  kable() # output as a kable table
```

Neighborhood	AvgSalePrice
NoRidge	328794
NridgHt	283057
Timber	241940
ClearCr	218265
Somerst	211678
Crawfor	209766
CollgCr	194942
NWAmes	191823
Gilbert	189466
SawyerW	183971
other	170248
Mitchel	154788
NAmes	146669
Sawyer	134708
Edwards	128772
OldTown	126023
BrkSide	124844
IDOTRR	114319
	•

ii - Boxplots of Avg. Sale Price by Neighborhood

Distribution of Sale Prices by Neighborhood

600,000

•

BrkSide ClearCr CollgCr Crawfor Edwards Gilbert IDOTRR Mitchel NAmes NoRidge NridgHt NWAmes OldTown other Sawyer SawyerW Somerst Timber Neighborhood

iii-iv - Boxplots Reordered by Descending Sale Price

Distribution of Sale Prices by Neighborhood Ordered Descending by Sale Price of Home

NoRidge NridgHt ClearCr Timber Somerst CollgCr Crawfor NWAmesSawyerW Gilbert other Mitchel NAmes Sawyer BrkSide Edwards IDOTRR OldTown Neighborhood

References

- $1.\ https://dplyr.tidyverse.org/reference/across.html$
- $2. \ \, https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/options$
- $3. \ https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_pdf.pdf$