TancarFlow

TensorFlow API r1.4

tf.contrib.distributions.bijectors.CholeskyOuterProduct

Contents
Class CholeskyOuterProduct
Properties
dtype
event_ndims

Class CholeskyOuterProduct

Inherits From: **Bijector**

Defined in tensorflow/contrib/distributions/python/ops/bijectors/cholesky_outer_product_impl.py.

See the guide: Random variable transformations (contrib) > Bijectors

Compute $g(X) = X \otimes X.T$; X is lower-triangular, positive-diagonal matrix.

event_ndims must be 0 or 2, i.e., scalar or matrix.

Note: the upper-triangular part of X is ignored (whether or not its zero).

The surjectivity of g as a map from the set of n x n positive-diagonal lower-triangular matrices to the set of SPD matrices follows immediately from executing the Cholesky factorization algorithm on an SPD matrix A to produce a positive-diagonal lower-triangular matrix L such that A = L @ L.T.

To prove the injectivity of g, suppose that L_1 and L_2 are lower-triangular with positive diagonals and satisfy $A = L_1 @ L_1.T = L_2 @ L_2.T$. Then $inv(L_1) @ A @ inv(L_1).T = [inv(L_1) @ L_2] @ [inv(L_1) @ L_2].T = I$. Setting L_3 := $inv(L_1) @ L_2$, that L_3 is a positive-diagonal lower-triangular matrix follows from $inv(L_1)$ being positive-diagonal lower-triangular (which follows from the diagonal of a triangular matrix being its spectrum), and that the product of two positive-diagonal lower-triangular matrices is another positive-diagonal lower-triangular matrix.

A simple inductive argument (proceding one column of L_3 at a time) shows that, if $I = L_3 @ L_3.T$, with L_3 being lower-triangular with positive- diagonal, then $L_3 = I$. Thus, $L_1 = L_2$, proving injectivity of g.

Examples:

```
bijector.CholeskyOuterProduct(event_ndims=2).forward(x=[[1., 0], [2, 1]])
# Result: [[1., 2], [2, 5]], i.e., x @ x.T

bijector.CholeskyOuterProduct(event_ndims=2).inverse(y=[[1., 2], [2, 5]])
# Result: [[1., 0], [2, 1]], i.e., cholesky(y).
```

Properties

dtype of **Tensor** s transformable by this distribution.

event_ndims

Returns then number of event dimensions this bijector operates on.

graph_parents

Returns this Bijector 's graph_parents as a Python list.

is_constant_jacobian

Returns true iff the Jacobian is not a function of x.

Note: Jacobian is either constant for both forward and inverse or neither.

Returns:

• is_constant_jacobian: Python bool.

name

Returns the string name of this **Bijector**.

validate_args

Returns True if Tensor arguments will be validated.

Methods

__init__

```
__init__(
   event_ndims=2,
   validate_args=False,
   name='cholesky_outer_product'
)
```

Instantiates the CholeskyOuterProduct bijector.

Args:

- event_ndims: constant int32 scalar Tensor indicating the number of dimensions associated with a particular draw from the distribution. Must be 0 or 2.
- validate_args: Python bool indicating whether arguments should be checked for correctness.
- name: Python str name given to ops managed by this object.

Raises:

ValueError: if event_ndims is neither 0 or 2.

forward

```
forward(
    x,
    name='forward'
)
```

Returns the forward **Bijector** evaluation, i.e., X = g(Y).

Args:

- x: Tensor. The input to the "forward" evaluation.
- name: The name to give this op.

Returns:

Tensor.

Raises:

- TypeError: if self.dtype is specified and x.dtype is not self.dtype.
- NotImplementedError: if _forward is not implemented.

forward_event_shape

```
forward_event_shape(input_shape)
```

Shape of a single sample from a single batch as a TensorShape.

Same meaning as forward_event_shape_tensor . May be only partially defined.

Args:

• input_shape: TensorShape indicating event-portion shape passed into forward function.

Returns:

• forward_event_shape_tensor: **TensorShape** indicating event-portion shape after applying **forward**. Possibly unknown.

forward_event_shape_tensor

```
forward_event_shape_tensor(
   input_shape,
   name='forward_event_shape_tensor'
)
```

Shape of a single sample from a single batch as an int32 1D Tensor.

Args:

• input_shape: Tensor, int32 vector indicating event-portion shape passed into forward function.

name: name to give to the op

Returns:

forward_event_shape_tensor: Tensor, int32 vector indicating event-portion shape after applying forward.

forward_log_det_jacobian

```
forward_log_det_jacobian(
    x,
    name='forward_log_det_jacobian'
)
```

Returns both the forward_log_det_jacobian.

Args:

- x: Tensor. The input to the "forward" Jacobian evaluation.
- name: The name to give this op.

Returns:

Tensor, if this bijector is injective. If not injective this is not implemented.

Raises:

- TypeError: if self.dtype is specified and y.dtype is not self.dtype.
- NotImplementedError: if neither _forward_log_det_jacobian nor { _inverse , _inverse_log_det_jacobian } are implemented, or this is a non-injective bijector.

inverse

```
inverse(
    y,
    name='inverse'
)
```

Returns the inverse **Bijector** evaluation, i.e., $X = g^{-1}(Y)$.

Args:

- y: **Tensor** . The input to the "inverse" evaluation.
- name: The name to give this op.

Returns:

Tensor, if this bijector is injective. If not injective, returns the k-tuple containing the unique k points $(x1, \ldots, xk)$ such that g(xi) = y.

Raises:

- TypeError: if self.dtype is specified and y.dtype is not self.dtype.
- NotImplementedError: if _inverse is not implemented.

inverse_event_shape

```
inverse_event_shape(output_shape)
```

Shape of a single sample from a single batch as a TensorShape.

Same meaning as inverse_event_shape_tensor. May be only partially defined.

Args:

output_shape: TensorShape indicating event-portion shape passed into inverse function.

Returns:

• inverse_event_shape_tensor: **TensorShape** indicating event-portion shape after applying **inverse**. Possibly unknown.

inverse_event_shape_tensor

```
inverse_event_shape_tensor(
   output_shape,
   name='inverse_event_shape_tensor'
)
```

Shape of a single sample from a single batch as an int32 1D Tensor.

Args:

- output_shape: Tensor, int32 vector indicating event-portion shape passed into inverse function.
- name: name to give to the op

Returns:

• inverse_event_shape_tensor: Tensor, int32 vector indicating event-portion shape after applying inverse.

inverse_log_det_jacobian

```
inverse_log_det_jacobian(
    y,
    name='inverse_log_det_jacobian'
)
```

Returns the (log o det o Jacobian o inverse)(y).

Mathematically, returns: log(det(dX/dY))(Y). (Recall that: $X=g^{-1}(Y)$.)

Note that $forward_log_det_jacobian$ is the negative of this function, evaluated at $g^{-1}(y)$.

Args:

- y: Tensor. The input to the "inverse" Jacobian evaluation.
- name: The name to give this op.

Returns:

Tensor, if this bijector is injective. If not injective, returns the tuple of local log det Jacobians, $log(det(Dg_i^{-1}_{-1}(y)))$, where g_i is the restriction of g to the g-independent of g

Raises:

- TypeError: if self.dtype is specified and y.dtype is not self.dtype.
- NotImplementedError: if _inverse_log_det_jacobian is not implemented.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0 License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated November 2, 2017.

