- 1. The position of a particle in the xy-plane is given by $x(t) = 4t^2$ and $y(t) = \sqrt{t}$. At t = 4, the acceleration vector is

- (a) $\left\langle 8, -\frac{1}{64} \right\rangle$ (b) $\left\langle 8, -\frac{1}{32} \right\rangle$ (c) $\left\langle 8, \frac{1}{32} \right\rangle$ (d) $\left\langle 32, -\frac{1}{32} \right\rangle$ (e) $\left\langle 32, \frac{1}{4} \right\rangle$
- 2. The velocity of an object is given by $v(t) = \langle 3\sqrt{t}, 4 \rangle$. If the object is at the origin when t = 1, where was it at t = 0?

- (a) $\left(-3, -4\right)$ (b) $\left(-2, -4\right)$ (c) $\left(2, 4\right)$ (d) $\left(\frac{3}{2}, 0\right)$ (e) $\left(-\frac{3}{2}, 0\right)$
- 3. A curve in the xy-plane is defined by the parametric equations $x(t) = t^3 + 2$ and $y(t) = t^2 - 5t$. What is the slope of the line tangent to the curve at the point where x = 10?
- (a) -12

- (b) $-\frac{3}{5}$ (c) $-\frac{1}{8}$ (d) $-\frac{1}{12}$ (e) None of these.
- **4.** The area inside the circle with polar equation $r(\theta) = 2\sin(\theta)$ and above the lines with equations y = x and y = -x is given by

- 5. Find the points on the parametric curve defined by $x(t) = t^3 3t + 1$ and $y(t) = t^3 3t^2 + 1$ where the line tangent to the curve is horizontal

- (a) (1,1),(3,-3) (b) (-3,3) only (c) (-1,1),(3,-3) (d) (0,0),(3,-3) (e) None of these
- **6.** Find the length of the parametric curve defined by $x(t) = 3t^2$ and $y(t) = 2t^3$ for $0 \le t \le 1$.
- (a) $4\sqrt{2}-2$
- (b) $2\sqrt{2}-2$

- (c) $4\sqrt{2}$ (d) $4\sqrt{2}-1$ (e) None of these
- 7. Find the length of the polar curve $r(\theta) = 7\cos(\theta)$ for $0 \le \theta \le \frac{3\pi}{4}$

- (a) $\frac{21}{4}$ (b) $\frac{21\pi}{4}$ (c) $\frac{\pi}{4}$ (d) $\frac{21\pi}{11}$ (e) None of these

8. Which of the following gives the area of the region enclosed by the graph of the polar curve $r(\theta) = 1 + \cos(\theta)$

(b)
$$\int_{0}^{\pi} \left[1 + \cos(\theta)\right]^{2} d\theta$$

(c)
$$\int_{0}^{2\pi} 1 + \cos(\theta) d\theta$$

(d)
$$\int_{0}^{2\pi} (1 + \cos(\theta))^2 d\theta$$

(d)
$$\int_{0}^{2\pi} (1 + \cos(\theta))^2 d\theta$$
 (e) $\frac{1}{2} \int_{0}^{2\pi} 1 + \cos^2(\theta) d\theta$

9. Find the points [in polar form (r,θ)] of intersection of the curves $r(\theta)=2$ and $r(\theta) = 4\cos(\theta)$

(a)
$$\left(2, \frac{\pi}{3}\right)$$
, $\left(2, -\frac{\pi}{3}\right)$ (b) $\left(2, \frac{\pi}{3}\right)$ only (c) $\left(2, \frac{\pi}{4}\right)$, $\left(2, -\frac{\pi}{4}\right)$

(b)
$$\left(2, \frac{\pi}{3}\right)$$
 only

(c)
$$\left(2, \frac{\pi}{4}\right)$$
, $\left(2, -\frac{\pi}{4}\right)$

(d)
$$\left(2, \frac{\pi}{6}\right), \left(2, -\frac{\pi}{6}\right)$$
 (e) $\left(2, \frac{\pi}{6}\right)$ only

(e)
$$\left(2, \frac{\pi}{6}\right)$$
 only

10. A particle moves in the xy-plane so that at any time t, t > 0, its coordinates are $x(t) = e^{t} \sin(t)$ and $y(t) = e^{t} \cos(t)$. The particle's velocity vector at $t = \pi$ is given by

(a)
$$\langle e^{\pi}, -e^{\pi} \rangle$$

(b)
$$\langle 0.-e^{\pi} \rangle$$

(c)
$$\langle -e^{\pi}, e^{\pi} \rangle$$

(a)
$$\langle e^{\pi}, -e^{\pi} \rangle$$
 (b) $\langle 0. -e^{\pi} \rangle$ (c) $\langle -e^{\pi}, e^{\pi} \rangle$ (d) $\langle -e^{\pi}, -e^{\pi} \rangle$ (e) $\langle e^{\pi}, e^{\pi} \rangle$

(e)
$$\langle e^{\pi}, e^{\pi} \rangle$$

11. $\int_{0}^{\infty} x^{-\frac{5}{4}} dx$ is

(a)
$$\frac{5}{4}$$

(b)
$$\frac{1}{4}$$

$$(d) -4$$

(a) $\frac{5}{4}$ (b) $\frac{1}{4}$ (c) 4 (d) -4 (e) Does not exist

- 12. $\sum_{k=0}^{\infty} \left(-\frac{\pi}{3}\right)^k =$

- (a) $\frac{1}{1-\frac{\pi}{3}}$ (b) $\frac{\frac{\pi}{3}}{1-\frac{\pi}{3}}$ (c) $\frac{3}{3+\pi}$ (d) $\frac{\pi}{3+\pi}$ (e) The series does not converge
- 13. $\lim_{h\to 0} \frac{1}{h} \int_{1}^{h} \frac{\sin^2(t)}{t^2} dt =$
- (a) 0
- (b) $\frac{1}{2}$ (c) 1
- (d) 2
- (e) Does not exist
- **14.** If the substitution $u = 25 x^2$ is made, the integral $\int_0^5 x\sqrt{25 x^2} dx$ is

- (a) $\frac{1}{2} \int_{0}^{3} \sqrt{u} du$ (b) $\frac{1}{2} \int_{0}^{16} \sqrt{u} du$ (c) $-\frac{1}{2} \int_{0}^{3} \sqrt{u} du$ (d) $\frac{1}{2} \int_{0}^{25} \sqrt{u} du$ (e) $2 \int_{0}^{25} \sqrt{u} du$