RF TEST REPORT

Report No. : N155R-050

Applicant : Fit.Life Inc.

FCC ID : 2AEQS-FM1113

Device Category : Data transmission equipement

Test item description : FITMETER BLE

Trade Mark/Brand name : -

Additional model name : -

Manufacturer : Fit.Life Inc.

Test Device Serial No. : Identification

Frequency Range : 2402 MHz ~ 2480 MHz

Max. RF Output Power : 2.23 dBm - Conducted

Test Standards : FCC Part 15.247 Subpart C; ANSI C-63.4-2003

Data of issue : May 14. 2015

Test result : Complied

Tested by

Park Jinho

(+ signature)

RF-EN-001 (ver.1)

/ Project Engineer

Reviewed by

KIM Ilshin,

(+ signature)

/ Senior Engineer

Report No. : N155R-050

>>TABLE OF CONTENTS<<

1. General Information	3
2. Information's about Test Item	4
3. Test Report	5
3.1 Test Summary	5
3.2 TRANSMITTER MEASUREMENTS	
3.2.1 6dB BANDWIDTH	6
3.2.2 PEAK OUTPUT POWER	9
3.2.3 POWER SPECTRAL DENSITY	12
3.2.4 BAND – EDGE & SPURIOUS	15
3.2.5 FIELD STRENGTH OF HARMONICS	20
3.2.6 AC CONDUCTED EMISSIONS	24
APPENDIX	
Attachment TEST EQUIPMENT USED FOR TESTS	27

Report No. : N155R-050 Page 2 of 28 RF-EN-001 (ver.1)

1. General information's

1-1 Test Performed

Laboratory : NTREE Co., Ltd.

Address 30, Pajangcheon-ro 44beon-gil, Jangan-gu, Suwon-si, Gyeonggi-do, 440-852, Korea

Telephone : +82-31-893-1000 : +82-31-893-0111 Facsimile

SITE MAP

Report No. : N155R-050 Page 3 of 28 RF-EN-001 (ver.1)

2. Information's about test item

2-1 Applicant information

Company name Fit.Life Inc.

#405, R&DB Center 105, Gwanggyo-ro, Yeongtong-gu, Suwon, Gyeonggi-

Address do, 443-270, Korea

: +82-31-888-5144 / +82-31-888-5145 Telephone / Facsimile

Contact name Yoosuk Jung

2-2 Equipment Under Test (EUT) description

Test item particulars FITMETER BLE FCC ID 2AEQS-FM1113

Model name FM1113

Additional model name : FM1123,FM1133,FM1143,FM1153,FM1163,FM1173,FM1183,

FM1193

Serial number Identification

PCB antenna Max Gain 1.0 dBi Antenna type

Date (s) of performance of tests: 2015-05-06 to 2015-05-11

Date of receipt of test item 2015-04-27

EUT condition Pre-production, not damaged

Number of channel 40

EUT Power Source DC 3.7V by Battery

Type of Modulation **GFSK**

Firmware version

Note

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	2402	2440	2480

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer	
-	-	•	-	

RF-EN-001 (ver.1) Report No.: N155R-050

Page 4 of 28

3. Test Summary

3.1 Summary of Transmitter Requirements

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	6 dB Bandwidth	> 500kHz		С
15.247(b)	Transmitter Peak Output Power	< 1Watt		С
15.247(d)	Transmitter Power Spectral Density	< 8dBm @ 3kHz	Conducted	С
15.247(d)	Band Edge & Spurious	> 20 dBc		С
15.209	Field Strength of Harmonics	Emission	Radiated	С
15.207	AC Conducted Emissions	Emissions	Conducted	С
15.203	Antenna requirement	RE	R:	С

Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: The data in this test report are traceable to the national or international standards.

→ Antenna Requirement

The Fit.Life Inc. FCC ID: 2AEQS-FM1113 unit complies with the requirement of §15.203.

Antenna used in this product is Integral type

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

RF-EN-001 (ver.1) Report No.: N155R-050 Page 5 of 28

3.2 Transmitter requirements

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHzSpan = 10 MHz

VBW = 100 kHz (VBW ≥ RBW) Sweep = auto

Trace = max hold Detector function = peak

Measurement Data:

Frequency	Test Results	
(MHz)	Measured Bandwidth (MHz)	Result
2402	0.644	Complies
2440	0.651	Complies
2480	0.658	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

6 dB Bandwidth > 500kHz

RF-EN-001 (ver.1) Report No.: N155R-050

Page 6 of 28

RF-EN-001 (ver.1) Report No.: N155R-050

Page 7 of 28

RF-EN-001 (ver.1) Report No.: N155R-050

Page 8 of 28

3.2.2 Peak Output Power Measurement

Procedure:

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 1MHzSpan = auto

VBW = 1MHz (VBW ≥ RBW) Sweep = auto

Detector function = peak

Measurement Data:

Frequency		Test Res	ults
(MHz)	dBm	mW	Result
2405	1.96	1.57	Complies
2440	2.16	1.64	Complies
2480	2.23	1.67	Complies

See next pages for actual measured spectrum plots.

Minimum Standard:

Willing Standard.	
Peak output power	< 1W

RF-EN-001 (ver.1) Report No.: N155R-050

Page 9 of 28

RF-EN-001 (ver.1) Report No.: N155R-050 Page 10 of 28

RF-EN-001 (ver.1) Report No.: N155R-050

Page 11 of 28

3.2.3 Power Spectral Density

Procedure:

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The spectrum analyzer is set to:

RBW = 3 kHzSpan = 300 kHzVBW = 10 kHzSweep = 100 sec Detector function = peak Trace = max hold

Measurement Data:

Frequency	Test Results				
(MHz)	dBm	Result			
2402	-12.48	Complies			
2440	-12.42	Complies			
2480	-12.08	Complies			

See next pages for actual measured spectrum plots.

Minimum Standard

Millimani Otandara.	
5 6 . 15	A ID COULT DIV
Power Spectral Density	< 8dBm @ 3kHz BW

RF-EN-001 (ver.1) Report No.: N155R-050 Page 12 of 28

Power Density Measurement Low Channel

RF-EN-001 (ver.1)

Report No.: N155R-050

Page 13 of 28

RF-EN-001 (ver.1) Report No.: N155R-050 Page 14 of 28

3.2.4 Band - edge & Spurious

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHzVBW = 100 kHz

Span = 50 MHz Detector function = peak

Trace = max hold Sweep = auto

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

The spectrum analyzer is set to:

Center frequency = the highest, the lowest channels

RBW = VBW = 1MHz, PEAK: Sweep=Auto

RBW = 1MHz, VBW=10Hz, Sweep=Auto Average:

Measurement Distance: 3m

Horizontal / Vertical Polarization:

Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc

RF-EN-001 (ver.1) Report No.: N155R-050

Page 15 of 28

Band-edge

RF-EN-001 (ver.1) Report No.: N155R-050

Page 16 of 28

Band-edges in the restricted band 2310-2390 MHz measurement

Frequency	Reading Correction			Lim [dBu	nits V/m]	Result [dBuV/m]		Margin [dB]				
[MHz]	AV / Peak			Antenna	Amp. Gain	Cable	AV /	Peak	AV /	Peak	AV/	Peak
2390	45.59	62.94	V	26.55	52.29	3.12	54.0	74.0	23.0	40.3	31.0	33.7

Band-edges in the restricted band 2483.5-2500 MHz measurement

Frequency	Reading [dBuV/m] Pol			y				Limits [dBuV/m]		Result [dBuV/m]		Margin [dB]	
[MHz]	AV / Peak			Antenna	Amp. Gain	Cable	AV /	/ Peak	AV /	Peak	AV /	Peak	
2483.5	47.20	67.28	V	26.65	52.34	3.17	54.0	74.0	24.7	44.8	29.3	29.2	

Note: This EUT was tested in 3 orthogonal positions and the worst-case data was presented.

RF-EN-001 (ver.1) Report No.: N155R-050

Page 17 of 28

МЗ

1

Low channel

Mid channel

Measuring...

Frequency Range = 30 MHz ~ 10th harmonic.

-47.29 dBm

1.198 GHz

RF-EN-001 (ver.1) Report No.: N155R-050

Page 18 of 28

High channel Frequency Range = 30 MHz ~ 10th harmonic.

RF-EN-001 (ver.1) Report No.: N155R-050 Page 19 of 28

3.2.5 Field Strength of Harmonics

Procedure:

Radiated emissions from the EUT were measured according to the dictates of DA00-705. The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

- (a) In the frequency range of 9kHz to 30 MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 3m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = 9KHz ~ 10th harmonic.

 $RBW = 120 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$ VBW ≥ RBW

= 1 MHz (1 GHz ~ 10th harmonic)

Span = 100 MHz Detector function = peak

Trace = max hold Sweep = auto

below 30MHz

RF-EN-001 (ver.1) Report No.: N155R-050

Page 20 of 28

below 1GHz (30MHz to 1GHz)

above 1GHz

Measurement Data:

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 20dB below limit.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F(kHz) (@ 300m)
0.490 ~ 1.705	24000/F(kHz) (@ 30m)
1.705 ~ 30	30(@ 30m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

RF-EN-001 (ver.1) Report No.: N155R-050 Page 21 of 28

Measurement Data:

	_	Pol	Correction			Limits [dBuV/m]		Result		Margin [dB]	
	_	. 0									
AV /	/ Peak		Antenna	Amp. Gain	Cable	AV / Peak		AV / Peak		AV / Peak	
45.35	65.76	V	31.48	51.99	4.59	54.0	74.0	29.4	49.8	24.6	24.2
Read	ding		Correction			Lin	nits	Res	sult	Margin	
requency [dBuV/m]		Pol.	Factor			[dBuV/m]		[dBuV/m]		[dB]	
_	_					_	-	_	-		
AV /	/ Peak		Antenna	Amp. Gain	Cable	AV	/ Peak	AV	Peak	AV /	Peak
56.14	00.07										
56.14	66.27	V	31.59	51.94	4.63	54.0	74.0	40.4	50.6	13.6	23.5
56.14	66.27	V	31.59	51.94	4.63	54.0	74.0	40.4	50.6	13.6	23.5
50.14	66.27	V	31.59	51.94	4.63	54.0	74.0	40.4	50.6	13.6	23.5
30.14	66.27	V	31.59	51.94	4.63	54.0	74.0	40.4	50.6	13.6	23.5
30.14	66.27	V	31.59	51.94	4.63	54.0	74.0	40.4	50.6	13.6	23.5
Reac		V		51.94 Correction	4.63		74.0		50.6	13.6 Mar	
Read		Pol.			4.63	Lin			sult		gin
Reac [dBu	ding V/m]			Correction Factor		Lin [dBu	nits IV/m]	Res [dBu	sult V/m]	Mar [d	gin B]
Read [dBu	ding V/m] / Peak	Pol.	Antenna	Correction Factor Amp. Gain	Cable	Lin [dBu	nits IV/m] / Peak	Res [dBu	sult V/m] / Peak	Mar [d	gin B] Peak
Reac [dBu	ding V/m]			Correction Factor		Lin [dBu	nits IV/m]	Res [dBu	sult V/m]	Mar [d	gin B]
Read [dBu	ding V/m] / Peak	Pol.	Antenna	Correction Factor Amp. Gain	Cable	Lin [dBu	nits IV/m] / Peak	Res [dBu	sult V/m] / Peak	Mar [d	gin B] Peak
Read [dBu	ding V/m] / Peak	Pol.	Antenna	Correction Factor Amp. Gain	Cable	Lin [dBu	nits IV/m] / Peak	Res [dBu	sult V/m] / Peak	Mar [d	gin B] Peak
	[dBu AV / 45.35 Read [dBu AV /	Reading [dBuV/m] AV / Peak	[dBuV/m] Pol. AV / Peak 45.35 65.76 V Reading [dBuV/m] Pol. AV / Peak	[dBuV/m] Pol. AV / Peak Antenna 45.35 65.76 V 31.48 Reading [dBuV/m] Pol. Antenna	[dBuV/m] Pol. Factor AV / Peak Antenna Amp. Gain 45.35 65.76 V 31.48 51.99 Reading Correction [dBuV/m] Pol. Factor AV / Peak Antenna Amp. Gain	[dBuV/m] Pol. Factor AV / Peak Antenna Amp. Gain Cable 45.35 65.76 V 31.48 51.99 4.59 Reading Correction [dBuV/m] Pol. Factor AV / Peak Antenna Amp. Gain Cable	[dBuV/m] Pol. Factor [dBu AV / Peak Antenna Amp. Gain Cable AV 45.35 65.76 V 31.48 51.99 4.59 54.0 Reading Correction Lin [dBuV/m] Pol. Factor [dBu AV / Peak Antenna Amp. Gain Cable AV	[dBuV/m] Pol. Factor [dBuV/m] AV / Peak Antenna Amp. Gain Cable AV / Peak 45.35 65.76 V 31.48 51.99 4.59 54.0 74.0 Reading Correction Limits [dBuV/m] Pol. Factor [dBuV/m] AV / Peak Antenna Amp. Gain Cable AV / Peak	[dBuV/m] Pol. Factor [dBuV/m] [dBuV/m] [dBuV/m] AV / Peak Antenna Amp. Gain Cable AV / Peak AV / Peak 45.35 65.76 V 31.48 51.99 4.59 54.0 74.0 29.4 Reading Correction Limits Resident [dBuV/m] Pol. Factor [dBuV/m] [dBuV/m] [dBuV/m] AV / Peak Antenna Amp. Gain Cable AV / Peak AV / Peak	[dBuV/m] Pol. Factor [dBuV/m] [dBuV/m] [dBuV/m] AV / Peak AN / Peak Factor [dBuV/m] [dBuV/m] [dBuV/m] [dBuV/m] [dBuV/m] AV / Peak AV / Peak	[dBuV/m] Pol. Factor [dBuV/m] [

⁻ No other emissions were detected at a level greater than 20dB below limit.

Report No. : N155R-050 Page 22 of 28 RF-EN-001 (ver.1)

Radiated Emissions

30, Pahangcheon-ro 44beon-gil, Jangan-gu, Suwon-si, Gyeonggi-do, KOREA Tel:+82-31-893-1000 Fax:+82-31-893-0111

de tre como

Condition : FCC CLASS-B 3m VULB 9168-578_KOLAS_20140410

EUT : FM1113

Test Mode : Charging + BT mode

Temp. / Humi.: 20 / 45 Tested by : Kim Ilshin

	HARLEY S	Read			Limit	Over		APos	TPos	
	Freq	Level	Factor	Level	Line	Limit	Remark			Pol/Phase
8	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	1	cm	deg	-
1	51.30	49.04	-26.70	22.34	40.00	-17.66	QP	100	49	Vertical
2 q	68.87	50.51	-27,90	22,61	40.00	-17.39	QP	100	165	Vertical
3	132.69	50.06	-27.25	22.81	43.50	-20.69	QP	100	70	Vertical
4	158.11	49.15	-26.20	22.95	43.50	-20.55	QP	100	280	Vertical
5	249.43	50.27	-27.51	22.76	46.00	-23.24	QP	100	305	Vertical
6	312.18	49.82	-25.44	24.38	46.00	-21.62	QP	400	263	Horizontal

RF-EN-001 (ver.1) Report No.: N155R-050
Page 23 of 28

3.2.6 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data:

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 20dB below limit.
- It gave the worse case emissions

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	quasi-peak	Average		
0.15 ~ 0.5	66 to 56 *	56 to 46 *		
0.5 ~ 5	56	46		
5 ~ 30	60	50		

^{*} Note: The limits will decrease with the frequency logarithmically within 0.15MHz to 0.5MHz

RF-EN-001 (ver.1) Report No.: N155R-050

Page 24 of 28

AC Conducted Emissions – Line

5/12/2015

Test Report

Common Information

Test Description: Test mode: Test Standard:
Environment Conditions:
Operator Name:
Comment:

FM1113 Charging + BT mode FCC Part 15 120 Vac 60 Hz, Temp. 21 / Humi. 48 KIM Ilshin

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)		(dB)
					(ms)		,	
0.470100	33.03		56.51	23.48	1000.0	9.000	L1	9.6
0.474100	-	20.26	46.44	26.18	1000.0	9.000	L1	9.6
0.562700	-	13.09	46.00	32.91	1000.0	9.000	L1	9.6
10.608000		17.86	50.00	32.14	1000.0	9.000	L1	10.0
10.630500	29.27		60.00	30.73	1000.0	9.000	L1	10.0
10.672000	25.48		60.00	34.52	1000.0	9.000	L1	10.0
10.908000	-	17.12	50.00	32.88	1000.0	9.000	L1	10.0
10.984500	28.08		60.00	31.92	1000.0	9.000	L1	10.0
11.590000		16.68	50.00	33.32	1000.0	9.000	L1	10.0
11.606500		17.39	50.00	32.61	1000.0	9.000	L1	10.0
11.646500	29.10		60.00	30.90	1000.0	9.000	L1	10.0
11.676000	26.74	-	60.00	33.26	1000.0	9.000	L1	10.0

1/1 10:02:35 PM

RF-EN-001 (ver.1) Report No.: N155R-050 Page 25 of 28

AC Conducted Emissions - Neutral

5/12/2015 N

Test Report

FM1113

Common Information

Test Description: Test mode: Test Standard:
Environment Conditions:
Operator Name:
Comment:

Charging + BT mode FCC Part 15 120 Vac 60 Hz, Temp. 21 / Humi. 48 KIM Ilshin

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)		(dB)
					(ms)			
0.458700		4.52	46.72	42.20	1000.0	9.000	N	9.6
16.001500	27.63		60.00	32.37	1000.0	9.000	N	10.1
16.315000	26.70	-	60.00	33.30	1000.0	9.000	N	10.1
16.331500	26.85		60.00	33.15	1000.0	9.000	N	10.1
16.347000		-2.80	50.00	52.80	1000.0	9.000	N	10.1
16.363000	26.94		60.00	33.06	1000.0	9.000	N	10.1
16.363500	26.94		60.00	33.06	1000.0	9.000	N	10.1
16.372000	27.41	_	60.00	32.59	1000.0	9.000	N	10.1
16.378500		8.01	50.00	41.99	1000.0	9.000	N	10.1
16.452000	-	8.49	50.00	41.51	1000.0	9.000	N	10.1
16.454000		5.56	50.00	44.44	1000.0	9.000	N	10.1
16.777000	-	-1.56	50.00	51.56	1000.0	9.000	N	10.1

1/1 10:14:11 PM

RF-EN-001 (ver.1) Report No.: N155R-050 Page 26 of 28

APPENDIX

TEST EQUIPMENT USED FOR TESTS

Report No. : N155R-050 Page 27 of 28 RF-EN-001 (ver.1)

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Signal Analyzer	FSV-40	100994	R&S	1 year	2015.03.30
2	Attenuator	8493C	5572	Hewlett-Packard	1 year	2015.03.25
3	Step atten	8496B	3308A19907	Hewlett-Packard	1 year	2015.03.25
4	Power Divider	11636A	05928	Hewlett-Packard	1 year	2015.03.25
5	Power Divider	1580-1	SB529	WEINSCHEL	1 year	2014.08.13
6	Power Divider	11636B	50293	Hewlett-Packard	1 year	2014.09.16
7	Digital Multi Meter	34401A	US36017450	Hewlett-Packard	1 year	2015.03.26
8	DC Power Supply	6622A	3307A02512	Hewlett-Packard	1 year	2015.03.26
9	Power Meter	E4416A	GB41291281	Agilent technologies	1 year	2015.03.25
10	Power Sensor	8481A	3318A98910	Agilent technologies	1 year	2015.03.25
11	Temp/Humi Chamber	TH-408GL	DY3114C01	Daeyang ETS	1 year	2015.03.26
12	Frequency Counter	53181A	KR91200591	Agilent technologies	1 year	2015.03.25
13	SIGNAL GENERATOR	SMB100A	177568	R&S	1 year	2015.03.25
14	VECTOR SIGNAL GENERATOR	SBMV100A	260354	R&S	1 year	2015.03.25
15	Slidac	DS-5023	N/A	Daegwang S.L.I	N/A	N/A
16	EMI Test Receiver	ESR7	101302	R&S	1 year	2015.03.25
17	Tri-Log Antenna	VULB9168	9168-577	Schwarzbeck	2 year	2014.04.10
18	Tri-Log Antenna	VULB9168	9168-578	Schwarzbeck	2 year	2014.04.04
19	Double Ridged Broadband Horn Antenna	BBHA 9120D	9120D-1244	Schwarzbeck	2 year	2014.04.10
20	Double Ridged Broadband Horn Antenna	BBHA 9120D	9120D-1245	Schwarzbeck	2 year	2014.05.12
21	Broadband Horn Antenna	BBHA 9170	BBHA9170 573	Schwarzbeck	2 year	2014.03.24
22	Broadband Horn Antenna	BBHA 9170	BBHA9170 574	Schwarzbeck	2 year	2014.03.24
23	Loop Antenna	FMZB1519	1519-046	Schwarzbeck	2 year	2014.04.08
24	Loop Antenna	FMZB1519	1519-051	Schwarzbeck	2 year	2014.04.08
25	Amplifier	TK-PA18S	140002	TESTEK	1 year	2015.03.25
26	POWER Module	OSP120	101213	R&S	1 year	2015.03.26

RF-EN-001 (ver.1)

Report No.: N155R-050
Page 28 of 28