Q1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

1. Data type of columns in a table

• CUSTOMERS TABLE

Field name	Туре
customer_id	STRING
customer_unique_id	STRING
customer_zip_code_prefix	INTEGER
customer_city	STRING
customer_state	STRING

• GEOLOCATION TABLE

Field name	Туре
geolocation_zip_code_prefix	INTEGER
geolocation_lat	FLOAT
geolocation_lng	FLOAT
geolocation_city	STRING
geolocation_state	STRING

• ORDER_ITEMS TABLE

Field name	Туре
order_id	STRING
order_item_id	INTEGER
product_id	STRING
seller_id	STRING
shipping_limit_date	TIMESTAMP
price	FLOAT
freight_value	FLOAT

• ORDER_REVIEWS TABLE

Field name	Туре
review_id	STRING
order_id	STRING
review_score	INTEGER
review_comment_title	STRING
review_creation_date	TIMESTAMP
review_answer_timestamp	TIMESTAMP

ORDERS TABLE

Field name	Туре
order_id	STRING
customer_id	STRING
order_status	STRING
order_purchase_timestamp	TIMESTAMP
order_approved_at	TIMESTAMP
order_delivered_carrier_date	TIMESTAMP
order_delivered_customer_date	TIMESTAMP
order_estimated_delivery_date	TIMESTAMP

PAYMENTS TABLE

Field name	Туре
order_id	STRING
payment_sequential	INTEGER
payment_type	STRING
payment_installments	INTEGER
payment_value	FLOAT

• PRODUCTS TABLE

Field name	Туре
product_id	STRING
product_category	STRING
product_name_length	INTEGER
product_description_length	INTEGER
product_photos_qty	INTEGER
product_photos_qty product_weight_g	INTEGER INTEGER
product_weight_g	INTEGER

• SELLERS TABLE

Field name	Туре
seller_id	STRING
seller_zip_code_prefix	INTEGER
seller_city	STRING
seller_state	STRING

2. Time period for which the data is given

• The time period of data in the dataset is from 2016 to 2018.

3. Cities and States covered in the dataset

The count of cities and states of seller in the dataset.

 There are sellers from 611 different cities and 23 different states.

The count of cities and states of customers in the dataset.

 There are customers from 4119 different cities and 27 different states.

Q2.In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

• There is a growing trend in e-commerce in Brazil as there is increase in total number of orders per year.

```
SHARE V SCHEDULE V MORE V

1 select extract(year from order_purchase_timestamp) as year,
2 extract(month from order_purchase_timestamp) as month, count(order_id) as order_count
3 from target.orders
4 group by year, month
5 order by year, month
```

Query results JOB INFORMATION RESULTS JSON Row month order_count year

 We can see that the number of purchases since 2017 has been increasing.

• We can see that months may, July, august has highest number of orders than any other months.

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

• Brazilian customers trend to place orders more at night and afternoon.

Q3. Evolution of E-commerce orders in the Brazil region:

1. Get month on month orders by region

Quer	y results				
JOB IN	FORMATION	RESULTS	JSON	EXECUTIO	N DET
Row	month //	customer_city		order_cou	nt /
1	1	rio de janeiro			545
2	1	sao paulo		1	195
3	1	brasilia			151
4	1	porto alegre			89
5	1	juazeiro do norte			3
6	1	camaragibe			5
7	1	dois vizinhos			4
8	1	maracanau			1
9	1	candeias			4
10	1	salvador			93
11	1	limoeiro do norte			1
12	1	mage			9

2. Get month on month orders by states

```
PUN  

SAVE ▼  

SHARE ▼  

SCHEDULE ▼  

MORE

1  select extract(month from o.order_purchase_timestamp) as month,
2  c.customer_state, count(o.order_id) as order_count
3  from target.orders as o
4  left join target.customers as c
5  on o.customer_id = c.customer_id
6  group by month, c.customer_state
7  order by month
8
```

Query results					
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	
Row	month	customer_state	6	order_count	
1	1	RJ		990	
2	1	SP		3351	
3	1	DF		151	
4	1	RS		427	
5	1	CE		99	
6	1	PE		113	
7	1	PR		443	
Q	1	RΔ		26/	

2. How are customers distributed in Brazil

• There are customers from 4119 different cities and 27 different states.

Q4. Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.

1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

- The total cost of orders on 2017 from Jan to Aug was found out to be 8643531.14 and the total cost of orders on 2018 from Jan to Aug was found out to be 3610270.14.
- The % of increase in cost from 2017 to 2018 (include months between Jan to Aug only) is 23.94%.

2018

2017

1

2

8643531.14...

3610270.14...

2. Mean & Sum of price and freight value by customer state

Query results ♣ SAVE RESULTS ▼					
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS
Row	avg_price	avg_freight	total_price	total_freight	seller_state
1	108.951684	18.4522126	8753396.21	1482487.66	SP
2	114.598928	24.0846335	1011564.74	212595.060	MG
3	145.529605	22.7209687	1261887.20	197013.520	PR
4	155.196581	26.1465177	632426.070	106547.060	SC
5	172.150768	26.0314188	378559.540	57243.0899	RS
6	108.731345	20.5718131	97749.4799	18494.0600	DF
7	128.197876	32.7180913	47689.6100	12171.1300	ES
8	175.173146	19.4748650	843984.220	93829.8999	RJ
9	127.690788	24.1644230	66399.2100	12565.4999	GO
10	154.75	19.3887499	1238.0	155.109999	PA
11	178.439285	23.2876785	9992.59999	1304.11000	RN
12	215.325957	46.3811702	20240.6400	4359.83	CE
13	444.108180	30.6386936	285561.559	19700.6800	BA
14	210.166666	36.9433333	2522.0	443.32	PI

Q5. Analysis on sales, freight and delivery time

- 1. Calculate days between purchasing, delivering and estimated delivery
- 2. Create columns:
 - time_to_delivery = order_purchase_timestamporder_delivered_customer_date
 - diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

Quer	y results		
JOB IN	IFORMATION RESULTS	JSON	EXECUTION DE
Row	order_id	diff_estimat	time_to_deli
1	00010242fe8c5a6d1ba2dd792	16	6
2	00018f77f2f0320c557190d7a1	19	8
3	000229ec398224ef6ca0657da	22	2
4	00024acbcdf0a6daa1e931b03	12	2
5	00042b26cf59d7ce69dfabb4e	41	12
6	00048cc3ae777c65dbb7d2a06	22	2
7	00054e8431b9d7675808bcb8	25	2
8	000576fe39319847cbb9d288c	21	1
9	0005a1a1728c9d785b8e2b08	10	9
10	0005f50442cb953dcd1d21e1f	21	1
11	00061f2a7bc09da83e415a52d	16	3
12	00063b381e2406b52ad42947	11	3
13	0006ec9db01a64e59a68b2c34	29	1
14	0008288aa423d2a3f00fcb17c	21	7

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery.

The data of mean fright value grouped state wise.

Row	seller_state	freight
1	AC	32.84
2	AM	27.2666666
3	BA	30.6386936
4	CE	46.3811702
5	DF	20.5718131
6	ES	32.7180913
7	GO	24.1644230

The data of mean time to delivery and diff estimated delivery

		_	
Row	customer_state	diff_estimat	time_to_deli
1	AC	41.7654320	3.45679012
2	AL	33.2251815	3.41133004
3	AM	45.7567567	2.91836734
4	AP	46.7058823	3.46268656
5	BA	30.0366863	3.28734595
6	CE	31.9371257	3.33611532
7	DF	25.0621495	3.18720379
8	ES	26.2734874	3.36792452

- 4. Sort the data to get the following:
 - 1. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

Top 5 states with highest mean freight value.

Top 5 states with lowest mean freight value.

```
SAVE SHARE SHARE MO

1 select s.seller_state, avg(oi.freight_value) as mean_freight
2 from target.sellers as s
3 left join target.order_items as oi
4 on s.seller_id= oi.seller_id
5 group by s.seller_state
6 order by mean_freight asc
7 limit 5
```


2. Top 5 states with highest/lowest average time to delivery

Top 5 states with highest average delivery time.

Top 5 states with lowest average delivery time.

3. Top 5 states where delivery is really fast/ not so fast compared to estimated date

Top 5 states where delivery is faster compared to estimated date.

```
⇔ MORE ▼
  ▶ RUN
            SAVE ▼
                          +SHARE ▼

    SCHEDULE ▼

                                                                                       This query will process 9.09 MB when re
    select c.customer_state,avg(date_diff(extract(date from o.order_estimated_delivery_date),
 2 extract(date from o.order_purchase_timestamp),day))as avg_estimated_delivery_time,
 3 avg(date_diff(extract(date from o.order_delivered_carrier_date), extract(date from o.order_purchase_timestamp),day))
 4 as time_to_delivery,
 5 (avg(date_diff(extract(date from o.order_estimated_delivery_date),
 6 extract(date from o.order_purchase_timestamp),day))
    avg(date\_diff(extract(date\ from\ o.order\_delivered\_carrier\_date),\ extract(date\ from\ o.order\_purchase\_timestamp), day))
 8 ) as avg_days_delivered_before_after_estimated_time
 9 from target.orders as o
10 left join target.customers as c
11    on o.customer_id=c.customer_id
12 group by c.customer_state
13 order by avg_days_delivered_before_after_estimated_time desc
14 limit 5
15
```

Query results					
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS
Row	customer_state	//	avg_estimat	time_to_deli	delivery_co
1	AP		46.7058823	3.46268656	43.2431957
2	AM		45.7567567	2.91836734	42.8383894
3	RR		47.1739130	4.53333333	42.6405797
4	AC		41.7654320	3.45679012	38.3086419
5	RO		39.4071146	2.82304526	36.5840693

Top 5 states where delivery is not so faster compared to estimated date.

Q6. Payment type analysis:

1. Month over Month count of orders for different payment types

Query results							
JOB INFORMATION		RESULTS	JSON	EXECUTION DET			
Row	month //	payment_type	1.	count			
1	1	credit_card		6103			
2	1	UPI		1715			
3	1	voucher		477			
4	1	debit_card		118			
5	2	UPI		1723			
6	2	credit_card		6609			
7	2	voucher		424			
8	2	debit_card		82			

2. Distribution of payment installments and count of orders

The UPI is the most used type of payment followed by credit_card.