Алгебра Страница 4

2 Семинар 4.04

Задача 8. Пусть H_1 и H_2 — подгруппы в группе G, причём $H_1 \subseteq H_2$. Докажите, что если индекс H_1 в H_2 равен n, а индекс H_2 в G равен m, то индекс H_1 в G равен nm.

Решение 8. Разложим $G = eH_2 \sqcup \cdots \sqcup g_{m-1}H_2, H_2 = eH_1 \sqcup \cdots \sqcup h_{n-1}H_1$. Заметим, что

$$G = \bigsqcup_{0 \le i \le m-1, 0 \le j \le n-1} g_i h_j H_1$$

Понятно, что мы получим все классы без повторов. Пусть $\exists g \in G : g = g_i h_j h = g_i' h_j' h'$, где $h, h' \in H_1$. Но такое невозможно, поскольку у нас было дизъюнктное разбиение. Поэтому $|H_2| = n|H_1|, |G| = m|H_2|$, то есть $nm|H_1| = |G|$, что и требовалось.

Задача 9. Докажите, что в каждой конечной полугруппе найдётся идемпотент, т. е. такой элемент a, что $a^2 = a$.

Решение 9. Будем возводить в квадрат x_i . Пусть мы зашли в цикл $x_1 \to \cdots \to x_k \to x_i$ (i < k). Тогда найдется $x: x^{2^s} = x$. Заметим, что $x^{2^{s-1}}$ идемпотент, так как

$$(x^{2^{s}-1})^2 = x^{2^{s+1}-2} = x^{2^{s}+2^{s}-2} = x^{1+2^{s}-2} = x^{2^{s}-1}$$

Задача 10. Приведите пример группы и двух её элементов порядка 2, произведение которых имеет бесконечный порядок.

Решение 10. Возьмем поворот плоскости на угол α , не кратный π , такой что $\frac{\alpha}{\pi} \in \mathbb{R} \setminus \mathbb{Q}$.

Задача 11. Множество всех изометрий евклидовой плоскости, отображающих данный правильный n-угольник в себя, с операцией композиции называется группой диэдра и обозначается D_n . Докажите, что это действительно группа. Покажите, что D_n состоит из n поворотов и n отражений. Таким образом, в ней 2n элементов.

Решение 11. Пусть r- поворот на $\frac{2\pi}{n}$, s- отражение относительно OX. Тогда заметим, что

$$D_n = \{r^k s^m \mid k \in \{0, \dots, n-1\}, m \in \{0, 1\}\}$$

Проверим, что у нас получилась группа. Понятно, что $(r^k)^{-1} = r^{n-k}$, $s^{-1} = s$. Нейтральный элемент также есть, $e = r^0 s^0$. Ассоциативность также очевидно выполняется.

Задача 12. Докажите, что во всякой группе чётного порядка имеется элемент порядка 2.

Решение 12. Соединим пары чисел (g, g^{-1}) . Тогда e лежит в отдельной паре, следовательно есть еще одно число g', лежащее в отдельной паре (g', g'), так как размер G четный. То есть $g' = g'^{-1} \Leftrightarrow (g')^2 = e$.

Задача 13. Пусть $G = GL_n(\mathbb{R})$ и $H = SL_n(\mathbb{R})$. Найдите левые и правые смежные классы группы G по подгруппе H.

Решение 13. Заметим, что $gH = \{gh \mid \det gh = \det g \det h = \det g\}$. Нетрудно видеть, что gH = Hg, потому что $Hg = \{hg \mid \det hg = \det h \det g = \det g\}$. Тогда у нас есть изоморфизм $GL_n(\mathbb{R})/SL_n(\mathbb{R}) \cong (\mathbb{R} \setminus \{0\}, \times)$.