

Decision Trees

Department of Computer Languages and Systems

Decision trees: introduction

Objectives of a decision tree

- inference, learning, tree generation:
 - to achieve the best possible split, at leaf nodes, of the (training) samples of different classes
 - to build small tress
- use, exploitation:
 - to predict the class (classification)
 - to predict the value of a target variable (regression)

Decision trees: introduction

Strategy to build a decision tree from a training set *X*:

- progressive splitting of the training set into smaller and smaller subsets
- recursive splitting of X based on the value of attributes
- creating a labelled leaf, when all instances of a subset belong to the same class
- pruning: a branch with a mixed subset of distinct classes is labelled with the majority class (the resulting subtree is pruned)

Decision trees: an example

You want to define a system to recognise 3 capital letters (e.g., Arial) based on the presence or absence of 2 features: *holes* and *curved strokes*.

class	holes	curved strokes
A	yes	no
В	yes	yes
C	no	yes

comments:

- 3 classes: A, B, C
- 1 instance per class
- 2 discrete features

Decision trees: introduction

- tree structure with the following types of nodes:
 - root node is the top-most decision node and represents the entire set X that further gets divided according to the value of attributes
 - internal decision node $f_m(x)$ based on an attribute m; it produces as many branches as allowed by the splitting criterion adopted
 - leaf node (or terminal node), with output value (class, prediction); it groups instances, for example, of a single class
- decision: for each new input instance x, $f_m(x)$ guides the analysis of x from the root to a leaf that provides the result (class)

Decision trees: types of nodes

Decision trees: learning (induction) of a decision tree

Data set

2 classes: ○, □

2 dimensions: x_1, x_2

Decision tree

rectangular nodes → decision nodes

circular nodes → *leaf nodes*

1st split: $x_1 > w_1$

 2^{nd} split: $x_2 > w_2$ (orthogonal to 1^{st})

Decision trees: classification

Given a point $p = (w_1 + \delta, w_2 - \delta)$, $\delta > 0$, the induced tree classifies p as belonging to class \bigcirc (see coloured path): it goes through the tree structure from the root node until reaching a leaf

Decision trees: interpretability

- decision tree = set of rules IF-THEN-ELSE
- for example, the previous tree is equivalent to:

```
IF x_1 > w_1 THEN

IF x_2 > w_2 THEN

class = \square

ELSE

class = \bigcirc

ELSE

class = \bigcirc
```

Univariate trees: introduction

the $f_m(x)$ of each internal node is defined in terms of a single dimension (attribute) x_i (see previous example)

if x_i is discrete, for example: x_i is an attribute *colour* ...

if x_i is numeric (ordered), for example: x_i is an attribute weight ...

binary partition of space

 $L = \{ \text{people} \mid weight < 60 \}$ $R = \{ \text{people} \mid weight \ge 60 \}$

Univariate trees: tree learning algorithm

- tree induction = tree learning
- algorithms of local search (greedy):
 - begin: root node with the whole set of instances
 - heuristic (recursive): to divide the set that arrives at a node m using the most discriminating attribute, that is, the one that generates more class homogeneous (i.e., pure) disjoint subsets
 - if the attribute is numeric, binary division; if the attribute is discrete, as many "children" (new nodes) as possible values
 - end: until get (labelled) pure nodes

Univariate trees: impurity of a node

objective: evaluate the degree of homogeneity of the set of instances X that reaches a node m

example: let $C = \{\omega_1 = A, \omega_2 = B\}$ be the set of classes

- case 1: $X^1 = \{(x_1, A), (x_2, B), (x_3, B), (x_4, A), (x_5, A), (x_6, B)\}$
- case 2: $X^2 = \{(x_1, \mathbf{A}), (x_2, \mathbf{B}), (x_3, \mathbf{A}), (x_4, \mathbf{A}), (x_5, \mathbf{A}), (x_6, \mathbf{A})\}$

observations:

- X¹ has 3 instances of each class (heterogeneous)
- X^2 has 5 instances of A and 1 of B (almost homogeneous)
- intuition: X^1 is **more impure** than X^2 or X^2 is **more pure** than X^1

Univariate trees: an impurity measure

impurity measure of a node m; given:

- N_m , the number of instances that reach node m
- $N_{i,m}$, the number of instances in node m that belong to class ω_i
- $P_{i,m} = N_{i,m}/N_m$, the probability of class ω_i in node m
- I_m , entropy, a measure of impurity (c classes):

$$I_m = -\sum_{i=1}^c P_{i,m} \log_2 P_{i,m}$$

(Note: $0 \log 0 = 0$)

Univariate trees: another impurity measure

impurity measure of a node m; given:

- N_m , the number of instances that reach node m
- $N_{i,m}$, the number of instances in node m that belong to class ω_i
- $P_{i,m} = N_{i,m}/N_m$, the probability of class ω_i in node m
- G_m , Gini index, a measure of impurity (c classes):

$$G_m = 1 - \sum_{i=1}^c P_{i,m}^2$$

Univariate trees: how to apply the measure (entropy)

- ... it continues from previous example: suppose we can choose whether node m is reached by X^1 or X^2
- in both cases $N_m = 6$
- in X^1 : $N_{1,m} = 3$, $N_{2,m} = 3 \implies p_{1,m} = 0.50$, $p_{2,m} = 0.50$
- in X^2 : $N_{1,m} = 5$, $N_{2,m} = 1 \implies p_{1,m} = 0.83$, $p_{2,m} = 0.17$

evaluation of entropy (impurity measure):

- in X^1 , $I_m = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1 (+ impure)$
- in X^2 , $I_m = -(0.83 \log_2 0.83 + 0.17 \log_2 0.17) = 0.66 (+ pure)$

it would be better X^2 to reach m because its entropy is lower (i.e. higher purity)

Univariate trees: how to apply the measure (Gini index)

- ... it continues from previous example: suppose we can choose whether node m is reached by X^1 or X^2
- in both cases $N_m = 6$
- in X^1 : $N_{1,m} = 3$, $N_{2,m} = 3 \implies p_{1,m} = 0.50$, $p_{2,m} = 0.50$
- in X^2 : $N_{1,m} = 5$, $N_{2,m} = 1 \implies p_{1,m} = 0.83$, $p_{2,m} = 0.17$

evaluation of Gini index (impurity measure):

- in X^1 , $G_m = 1 (0.5^2 + 0.5^2) = 0.50$ (+ impure)
- in X^2 , $G_m = 1 (0.83^2 + 0.17^2) = 0.28 (+ pure)$

it would be better X^2 to reach m because its Gini index is lower (i.e. higher purity)

Univariate trees: another example

Univariate trees: generalization to 2 classes

context: impurity value at node m for 2 classes

$$\begin{array}{ccc} \bullet & N_m = N_{1,m} + N_{2,m} \implies \\ & p_{1,m} + p_{2,m} = 1 \implies \\ & p_{2,m} = 1 - p_{1,m} \end{array}$$

• I_m , entropy for c = 2 classes (let it be $p \equiv p_{1,m}$):

$$I_m = -p \log_2(p) - (1-p) \log_2(1-p)$$

Univariate tree: pure node (impurity 0)

a node m is pure if all instances reaching m are of the same class, that is, if $N_{1,m} = 0$ or $N_{2,m} = 0$; suppose $N_{1,m} = 0$, then

$$N_{1,m} = 0 \implies p_{1,m} = 0, \ p_{2,m} = 1 \implies I_m = 0, \ G_m = 0$$

a node m is pure $\Leftrightarrow I_m = 0$ or $G_m = 0$ (impurity 0)

a pure node becomes a leaf that is assigned the class label of its instances

Univariate trees: impurity of a split

- *K* classes or categories
- x is the attribute chosen to split an impure node

 $N_{m,j}^i$ instances of the $N_{m,j}$ belong to ω_i such that $\sum_{i=1}^K N_{m,j}^i = N_{m,j}$ $p_{m,j}^i = \frac{N_{m,j}^i}{N_{m,j}}$ is the probability of ω_i in the branch jImpurity of a split: $I_m^* = -\sum_{j=1}^n \frac{N_{m,j}}{N_m} \left(\sum_{i=1}^K p_{m,j}^i \log_2 p_{m,j}^i\right)$

Impurity of a split:
$$I_m^* = -\sum_{j=1}^n \frac{N_{m,j}}{N_m} \left(\sum_{i=1}^K p_{m,j}^i \log_2 p_{m,j}^i \right)$$

Univariate trees: choice of the attribute; local optimization

Local optimization:

in each node (not pure) in which it is intended to continue splitting the training set, the most discriminating attribute will be chosen, that is, the one that produces a split that is:

- the least impure ≡
- the most homogeneous ≡
- with the greatest class separation

Univariate trees: general tree induction algorithm

```
generate_tree (T_{tra}, \alpha): m
   if entropy I_m(T_{tra}) \leq \alpha:
         m \leftarrow class label of the most represented class in T_{tra}
   else
          a = \text{the\_most\_discriminating\_atribute}(T_{tra})
          m \leftarrow a
          for each branch a_i of a:
             tra_i = \{x \in T_{tra} \mid x \text{ satisfies the condition of } a_i\}
             h = generate\_tree(tra_i)
             add_child(m,h)
   return m
```

Univariate trees: function "the most discriminating attribute"

```
the_most_discriminating_attribute(tra): a
    min \ entr \leftarrow MAX
   for each attribute x_i:
          if x_i is discrete:
             divide tra into tra_1, ..., tra_N based on the values of x_i
             e \leftarrow I_m^*(tra_1, tra_2, ..., tra_N)
              if e < min_{entr}: min_{entr} \leftarrow e; a \leftarrow x_{i}
          else // x_i is numeric
             for each possible binary division (tra_1, tra_2):
                 e \leftarrow I_m^*(tra_1, tra_2)
                 if e < min_{entr}: min_{entr} \leftarrow e; a \leftarrow x_{i}
    return a
```

Pruning: introduction

Context

- it is common to find high overlapping or outliers
- to generate a "pure" tree trying to learn from:
 - outliers
 - small sample size (small number of instances)
 - overlapping

reduces the generalization of the model (overfitting)

Alternative

- pre-pruning: do not split nodes with few instances while growing the tree
- post-pruning: after building the tree to its depth, remove unnecessary subtrees

Pruning: pre-pruning

Idea

- let m be a node and N_m the number of samples (instances)
- stop splitting the training set if m is pure ("natural end") or if $N_m < \theta$ (pruning)
- label m with the majority class among the N_m instances

Pruning: post-pruning

Idea: to generate 3 independent (and disjoint) sets for training, pruning, and test

- training: generate the complete tree, with all its pure leaves, using the training set
- pruning (it is part of the learning stage):
 - replace each subtree by a leaf node with the label of the majority instances covered by that subtree
 - prune the subtree if the "surrogate" leaf node does not worsen its performance with the *pruning set*
- evaluation: obtain a performance measure of the final (pruned) tree by classifying the test set

Pruning: summary

Experiments show that:

- post-pruning produces more accurate trees (both classification and regression) than pre-pruning
- pre-pruning is much faster than post-pruning

Decision trees: advantages

- Comprehensive: it is good for interpreting data in a highly visual way
- Simplicity: it is one of the simplest algorithms since it has no complex formulas or data structures

Decision trees: disadvantages

- It is computationally expensive. At each node, the candidate split must be sorted before determining the best
- It is sometimes unstable as small variations in data might lead to the formation of a new tree