Ab and T cell epitopes of influenza A virus, knowledge and opportunities

Huynh-Hoa Bui*, Bjoern Peters*, Erika Assarsson*, Innocent Mbawuike[†], and Alessandro Sette*[‡]

*Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037; and †Department of Molecular Virology, Baylor College of Medicine, Houston, TX 77030

Communicated by Howard M. Grey, La Jolla Institute for Allergy and Immunology, San Diego, CA, November 1, 2006 (received for review October 1, 2006)

The Immune Epitope Database and Analysis Resources (IEDB) (www.immuneepitope.org) was recently developed to capture epitope related data. IEDB also hosts various bioinformatics tools that can be used to identify novel epitopes as well as to analyze and visualize existing epitope data. Herein, a comprehensive analysis was undertaken (i) to compile and inventory existing knowledge regarding influenza A epitopes and (ii) to determine possible cross-reactivities of identified epitopes among avian H5N1 and human influenza strains. At present, IEDB contains >600 different epitopes derived from 58 different strains and 10 influenza A proteins. By using the IEDB analysis resources, conservancy analyses were performed, and several conserved and possibly cross-reactive epitopes were identified. Significant gaps in the current knowledge were also revealed, including paucity of Ab epitopes in comparison with T cell epitopes, limited number of epitopes reported for avian influenza strains/subtypes, and limited number of epitopes reported from proteins other than hemagglutinin and nucleoprotein. This analysis provides a resource for researchers to access existing influenza epitope data. At the same time, the analysis illustrates gaps in our collective knowledge that should inspire directions for further study of immunity against the influenza A virus.

B lymphocytes | T lymphocytes | conservancy | pandemic cross-reactivity

nfluenza A viruses are widely distributed in nature and can infect a variety of birds and mammals. Their genomes consists of eight single-stranded RNA segments that code for 10 different proteins, one nucleoprotein (NP), three polymerase proteins (PA, PB1, and PB2), two matrix proteins (M1 and M2), two nonstructural proteins (NS1 and NS2), and two external glycoproteins [hemagglutinin (HA) and neuraminidase (NA)]. The viruses are classified on the basis of differences in the antigenic structure of HA and NA proteins, with their different combinations representing unique virus subtypes that are further classified into specific strains. Although all known subtypes can be found in birds, currently circulating human influenza A subtypes are H1N1 and H3N2, with intermittent circulation of H1N2 reassortants. Seasonal outbreaks are caused by subtypes already circulating among people, whereas pandemics are caused by either an emerging novel subtype derived by reassortment with avian viruses (1957 A/H2N2 pandemic and 1968 A/H3N2 pandemic), or all-avian (1918 A/H1N1 pandemic). It is possible that some of these pandemics are "recycled" subtypes that had not circulated in human populations for many years. This was, for example, the case for the 1977 "pseudopandemic" of A/H1N1 viruses that resurfaced after 20 years of absence after the 1957 A/H2N2 pandemic.

"Avian" influenza refers to subtypes found chiefly in birds, but infections with these viruses can also occur in humans. Confirmed cases of human disease caused by several subtypes of avian influenza, including H7N7, H9N2, and other emerging avian viruses such as low-pathogenic H5N1 and H5N2, have been reported since 1997 (1–5). However, of the few avian influenza viruses that have crossed the species barrier to infect humans, the emerging high-pathogenic H5N1 virus in Asia has

caused the largest number of detected cases of severe disease and death in humans (6). Because these viruses do not commonly infect humans, little or no immunity may be present in the general human population (with the exception of potential cross-reactive immunity originating from exposure to the other strains commonly infecting humans). Therefore, if the high-pathogenic H5N1 virus were to gain the capacity to spread easily from person to person, an influenza pandemic could ensue (7–10).

Results and Discussion

Why Analyze Influenza A-Derived Epitopes? Because of recent events, there has been resurgent interest in the study of influenza A virus in general and avian influenza H5N1 in particular. Further studies must be completed, ranging from basic studies of immune responses and interactions of influenza virus with its hosts, to the evaluation of new vaccine candidates (11–14). Epitopes can be used to accurately monitor immune responses as well as to tease out which influenza responses are specific for a given virus strain or subtype or are cross-reactive with several or most strains.

Immune responses to influenza A virus have been studied for decades, not only as a model system, but also because of their medical importance. However, the vast amount of resulting epitope information available in the literature has not been globally analyzed and made accessible to the scientific community. Herein, we perform such an analysis (i) to compile and inventory existing knowledge regarding influenza A epitopes and (ii) to determine possible cross-reactivities of identified epitopes among avian H5N1 and human influenza strains. The data source and results of our analysis are available in the Immune Epitope Database and Analysis Resources (IEDB), which was recently developed to capture epitope related data and is publicly available at www.immuneepitope.org (15, 16). Besides the efforts of compiling and making comprehensive epitope information available to the public domain (17), the IEDB also hosts various bioinformatics tools to analyze epitope data (including, for example, population coverage (18) and epitope conservancy) as well as tools to predict epitope cellular processing (19), binding to MHC (20-22), and recognition by T cell receptors and Ab molecules. In the context of this analysis, the conservancy tool provided by the IEDB was used to identify conserved epitopes that might be cross-reactive among avian H5N1 and human influenza strains. Finally, as an outcome of this analysis, important gaps in the global knowledge relating to

Author contributions: A.S. designed research; H.-H.B. and B.P. contributed new reagents/ analytic tools; H.-H.B., B.P., E.A., and I.M. analyzed data; and H.-H.B. and E.A. wrote the paper.

The authors declare no conflict of interest.

Abbreviations: HA, hemagglutinin; IEDB, Immune Epitope Database and Analysis Resource; NA, neuraminidase; NP, nucleoprotein.

[‡]To whom correspondence should be addressed. E-mail: alex@liai.org

This article contains supporting information online at www.pnas.org/cgi/content/full/0609330104/DC1.

^{© 2007} by The National Academy of Sciences of the USA

immunity directed against the influenza A virus were also identified, pointing a way forward in immune epitope research.

Ab and T cell epitopes are defined as the molecular structures interacting with Abs and T cell receptor (TCR) molecules, respectively (23). In our analysis of the existing scientific literature relating to influenza A derived epitopes, we considered only epitopes shown to be recognized by Abs or TCR in the context of the whole influenza virus or proteins. We excluded epitopes that were defined solely by their use as immunogens (to induce the responses) and as antigens (to measure the response), because it is not possible to evaluate the relevance of such data with respect to antiviral immune responses.

Historically, a variety of different assays (ranging from T cell proliferation, cytokine production, and ELISAs, to neutralization and protection from live virus challenge) have been used to evaluate the recognition of influenza epitopes. Challenge with live virus and neutralization assays are used to define protective Ab and T cell epitopes. We make no attempt to enforce a common set of criteria for defining immunogenicity and protective efficacy, because widely divergent methodologies were used by different laboratories to measure immune responses. Rather, we record, for each epitope the specific assay category and conditions used, and conform to the criteria for defining positive and negative measurements as reported by the authors themselves in each published article.

We believe that the definition of the structural and functional determinants of influenza-derived epitopes could be useful in detecting and monitoring infections as well as being crucial to project potential cross-reactive immunity and efficacy against new strains by existing vaccines and diagnostics (24, 25), because once the structure of an epitope is known, databases of influenza genomic information such as Influenza Sequence Database (26), Influenza Virus Resources (27) and BioHealthBase (28) can be searched to project whether the same structure is also conserved in all or most influenza strains, or is specific to a particular influenza strain or subtype. The Influenza Sequence Database (www.flu.lanl. gov) contains all published influenza viral sequences that have been curated by domain experts to ensure high standards of accuracy and completeness (26). The Influenza Virus Resource (www.ncbi. nlm.nih.gov/genomes/FLU/FLU.html) presents data obtained from the NIAID Influenza Genome Sequencing Project as well as from GenBank, combined with tools for flu sequence analysis and annotation (27). Finally, the BioHealthBase system (www.biohealthbase.org) focuses on six priority pathogens, including influenza, to help fill in gaps in genomic and other data critical to scientific researchers (28).

In a diagnostic and disease-monitoring setting, epitopes that are specific to a given strain or subtype can be used to monitor responses to that particular strain or subset, removing the confounding influence of immune responses derived from previous exposures to partially cross-reactive strains or subtypes (11, 29). One of the shortcomings of the currently available influenza vaccines is the induction of a strain-specific immunity, which requires a new vaccine to be produced each year and for each different strain. In this context, if conserved epitopes can be defined, different immunization regimens and vaccine candidates could be evaluated for their capacity to induce immune responses to those specific conserved determinants.

Conversely, samples from individuals vaccinated and/or naturally infected with viral strains commonly infectious for humans, such as H1N1 and H3N2, could be screened for the presence of cross-reactive immunity. Such cross-reactive immune recognition may represent a minor component of the total response, but its precise mapping would nevertheless be of significant interest. Several groups have analyzed the potential for cross-reactive epitopes, both at the Ab level (between different types of N1) and in the highly conserved internal gene segments. This work constitutes the basis for the recent sugges-

tion that one of the potential strategies to develop universal influenza vaccines relies on the identification of protective and cross-reactive antibodies, followed by the mapping of the epitopes recognized by such antibodies (30).

How Many Influenza A Epitopes Have Been Reported in the Literature?

As mentioned above, immune responses against influenza A virus have been intensely characterized over the course of several decades. However, this knowledge is dispersed over a large number of scientific references, and a simple search in PubMed using the keywords "epitope" and "influenza" reveals >2,000 different scientific reports. It is unclear how many of these reports contain data relating to new epitopes or new information relating to old ones. Furthermore there is no simple way to extract from these references answers to simple questions. For example, how many epitopes are known from strain "X"?; In which host have they been characterized?; Which epitopes are

epitope data relating to influenza A virus. The analysis consists of two separate tasks: (i) data-compilation efforts that involve identification and curation of influenza A epitope literature into IEDB and (ii) data-analysis efforts that involve the use of the IEDB-provided conservancy tool to analyze and identify epitopes that are conserved among various avian H5N1 and

unique, and which are conserved in other strains, and so on. To

address these issues, we perform a comprehensive analysis of all

human influenza strains.

As a first task of the analysis, the current state of knowledge of influenza A-derived Ab and T cell epitopes was determined (Fig. 1). To accomplish this task, a query [see supporting information (SI) Fig. 2] was constructed to identify potentially relevant influenza epitope-related articles from the entirety of published literature available in PubMed. As of May 22, 2006, the PubMed contained >16 million references, of which 2,063 were identified as influenza epitope-related. Running a similar query without any specific constraints on the source of the epitope yielded ≈100,000 references. Thus, a significant fraction $(\approx 2\%)$ of the worldwide epitope literature is related to the flu virus, likely reflecting the extended period that this pathogen has been studied, its biomedical importance, and its use as a model for basic studies in virology, immunology, and vaccinology. By comparison, a similar search in the case of HIV (AIDS) yielded 4,442 references (4.4% of the total). In the case of lymphocytic choriomeningitis virus (LCMV), Mycobacterium tuberculosis (tuberculosis) and *Plasmodium* (malaria), the corresponding figures were 472, 856, and 1,397 (0.5%, 0.9%, and 1.4%), respectively. After manual inspection of all abstracts and full-text review of potentially relevant influenza A epitope articles, a total of 429 references were curated in detail (17). Of these references, 103 contained Ab epitope information. In addition, a total of 114, 13, and 291 references, respectively, contained data relating to MHC binding, elution of MHC ligands, and T cell assays.

To determine how many influenza A epitopes have been described in the literature, a query was performed to search data contained in the IEDB. A total of 412 T cell epitopes (175 CD4, 148 CD8, and 89 undefined) and 190 Ab epitopes (75 linear and 115 conformational) were retrieved. These data provide an indication of the wealth of information already available in the scientific literature relating to influenza A epitopes and should constitute a useful resource for researchers worldwide. Given the well-established importance of Ab responses in vaccine efficacy and in prevention of influenza infection, the relatively small number of published Ab epitopes is unexpected. Although the structure and technological means for identifying Ab and T cell epitopes are radically different, given the fact that Ab titers are the only accepted correlate of protection from influenza and of vaccine efficacy, the paucity of Ab epitopes in comparison with T cell epitopes is indeed surprising. The >2:1 ratio of T cell vs. Ab influenza epitopes is likely because of the fact that Ab

Fig. 1. Process for selection and curation of relevant influenza A epitope literature references.

epitopes are inherently more difficult to characterize than T cell

Of 190 identified Ab epitopes, ≈40% are linear sequences. The knowledge of epitope 3D structure can offer important insights into understanding virus neutralization, predicting epitope conservancy across different strains, and rationally designing new vaccine candidates. However, we note that the 3D structures of only 22 epitope/receptor complexes, which represent an average of 4% of all reported epitopes, were determined (an additional 12 epitope/ MHC structures have also been described).

The issue of which strain of influenza A was used to define the various epitopes is of obvious importance, in light of the potential use of the epitopes to monitor immune responses to influenza vaccination and infection. Knowledge relating to a diverse set of strains is also desirable to ensure a general biological and immunological relevancy of the results. A lesson learned from HIV research is that excessive reliance on longterm maintained laboratory strains can lead to difficulties in extrapolating results to fresh patient isolates. Our influenza A analysis identifies epitopes from 13 different subtypes and 58 different strains (SI Table 4). The vast majority are from the human influenza H1N1 and H3N2 subtypes, and a relatively large proportion of these epitopes are derived from prototype strains used for model studies, such as A/Puerto Rico/8/ 34(H1N1) ($\approx 24\%$) and A/X-31(H3N2) ($\approx 32\%$), with fewer epitopes having been characterized from fresh isolates of human pathogenic strains ($\approx 1.2\%$, on average, for a given strain). Only two epitopes from the H5N1 avian influenza A/Viet Nam/1194/ 2004 are included in this database. These results suggest that more studies need to be focused on the identification of epitopes from the strains responsible for human infections and also point to the urgent need to identify epitopes recognized by responses directed against avian influenza strains. It is, of course, not surprising that the number of epitopes that have been described in either humans or animal models for avian influenza infections are going to be comparatively few compared with the circulating human strains. Some of the original work defining the very

Table 1. Total number of published influenza A epitopes by protein

		1 (cell	
Protein	Antibody	CD4	CD8	Total
HA	150	113	35	298
NP	3	44	49	96
PA	0	1	11	12
NA	24	7	8	39
M1	4	9	15	28
PB2	0	0	9	9
M2	9	0	3	12
PB1	0	0	10	10
NS1	0	1	7	8
NS2	0	0	1	1

nature of Ab and T cell epitopes used influenza as a model and, as such, these data have been generated for >30 years. The emergence of the avian strains in 1997 (and their reemergence in 2003) has provided far less time for their study; in addition, the increased pathogenicity of fresh isolates has led to their being classified as select agents, making immunological analysis more difficult because of the special containment facilities required. Our analysis demonstrates and underlines this fundamental weakness and gap in our collective knowledge.

Another issue of obvious relevance is the distribution of epitopes by the source proteins from which they are derived (Table 1). It is generally anticipated that Ab responses to vaccination or infection are directed mostly toward epitopes from viral surface-exposed proteins, whereas epitopes recognized by cellular immunity may be broadly derived from both internal and surface proteins. Because internal proteins are far more conserved among different influenza strains and thereby potentially offer the best choice for vaccines aimed at eliciting the broadest possible strain coverage, knowledge of the source proteins from which the epitopes are derived is particularly relevant. Ab epitopes have been identified from only 5 of the 10 viral proteins, and the majority are derived from the virus surface proteins HA, NA, and M2. Compared with HA, fewer Ab epitopes were derived from NA and M2 proteins. T cell epitopes have been identified from all 10 influenza proteins; the highest number of epitopes being derived from HA and NP. Indeed, most published CD4 T cell epitopes are derived from the HA protein, whereas most CD8 T cell epitopes are derived from the NP protein. It should be emphasized that this analysis cannot determine whether the uneven distribution of epitopes as a function of the protein of origin is reflective of poor immunogenicity of those proteins in certain contexts or, perhaps more likely, reflects a bias in the number of studies addressing the immunogenicity of different proteins.

The host species in which the epitopes are identified is shown in Table 2. The majority of Ab and T cell epitopes were identified in mouse, human, or rabbit hosts. Few epitopes are described in birds, which are relevant hosts to study virus evolution. Studies using ferrets, a commonly used experimental model, and nonhuman primates are also underrepresented. Furthermore, rather astonishingly, only one Ab epitope, compared with 160 T cell epitopes, has been identified by using human samples. Compared with other animal hosts, such as rodents, relatively few human host data available in the literature is probably a reflection of the inherent complexity in characterizing and interpreting immune epitope data from human models, because the repertoire of epitopes recognized in rodents and rabbits is almost invariably measured after a single exposure to influenza. By contrast, in adult humans, the immune response is the final product of a long series of repeated exposures to different viral influenza strains.

Table 2. Total number of published influenza A epitopes by host species

Protein	Ab	T cell	Total
Mouse	71	290	361
Rabbitt	35	0	35
Chicken	3	0	3
Human	1	160	161
Ferret	1	0	1
Goat	1	0	1
Rhesus monkey	1	0	1
Cotton-top tamarin	0	2	2

Responses induced in humans by previous influenza infections or vaccinations might significantly skew the repertoire of epitopes recognized upon infection or vaccination with a different influenza strain, a phenomenon termed "original antigenic sin" (31). This situation highlights the need for more studies defining the Ab epitopes recognized in humans, and the degree to which they overlap with those recognized in animal model systems.

Conservancy of Ab and T Cell Influenza A Epitopes. For the second part of the analysis, we are interested in evaluating conservancy of epitopes among various influenza strains in general and with H5N1 in particular, using the conservancy tool provided by the IEDB. As mentioned above, identification of conserved epitopes is of interest in terms of the prospect for development of broader-spectrum influenza vaccines. Conservancy analysis could also identify epitopes detected from previously vaccinated or infected individuals and associated with cross-reactivity and potential protection from the avian H5N1 strains. Conversely, epitopes that are specific for a given subtype can be used for monitoring responses, removing the confounding influence of immune responses derived from previous exposures to partially cross-reactive strains or subtypes.

To analyze epitope conservancy, we first assembled a collection of representative human and avian H5N1 influenza strains for the analysis, because inclusion of all available sequences would generate a biased conservancy picture reflective of relative abundance of available sequences from a given strain or subtype. For the human influenza strains, our strategy was to select viral strains that had been used for vaccination or were known to cause infection in the human population. A total of 17 influenza strains including 7 H1N1, 8 H3N2, and 2 H5N1 strains were selected for the analysis. Of these, 5 H1N1 and 6 H3N2 strains had been used in annual influenza vaccinations from 1968 to 2004 (SI Table 5). In addition, other pathogenic H1N1 and H3N2 human influenza strains of potential interest, such as A/Brevig Mission/1/18, which circulated in the 1918 pandemic, were also included. The two H5N1 strains that circulated in the 1997 and 2003-2004 H5N1 outbreaks, respectively, were also selected.

Next, using the epitope conservancy analysis tool provided in the analysis resources of the IEDB, we find that, overall, T cell epitopes are more conserved than Ab epitopes (SI Tables 6–8). For T cell epitopes, ${\approx}50\%$ and 30% are conserved at 80% and 90% identity levels, respectively, in both human (H1N1 and H3N2) and avian (H5N1) strains (SI Table 8). At the 100% identity level, 15.0% of T cell epitopes are conserved in the human strains, and 11.4% are also conserved in the avian H5N1 strains. In contrast, only 2.7% of Ab epitopes are conserved at 100% identity level, and <11% were conserved at 80% identity level. A possible reason for this difference is that ${\approx}80\%$ of the linear Ab epitopes, compared with only 40% of the T cell epitopes, are derived from the two most variable influenza

proteins, HA and NA. In general, the results suggest that significant levels of interstrain cross-reactivity are likely for T cell epitopes, but much less so for Ab epitopes. Several highly conserved discontinuous conformational Ab epitopes are also identified (SI Table 9). However, their degree of conservation should be interpreted with caution, because pattern-wise conserved discontinuous sequences may not be cross-reactive because of the influence of unknown neighboring and interdispersed amino acids on protein 3D structures. Finally, it should be emphasized that the fact that an epitope is conserved does not necessarily imply that it is also cross-protective.

In this analysis we have organized the data around the subtypes in which the epitopes are found (e.g., H3N2 and H1N1). This is relevant for Ab epitopes for obvious reasons. But it is also relevant for T cell epitopes because, even if an epitope sequence is conserved in different subtypes, flanking regions and differences in the viral genome might affect whether the epitope is recognized as dominant in the context of a different subtype. Furthermore, our analysis will help to determine whether or not a given epitope could be used as a marker for a given subtype. In this context, whereas responses to conserved epitopes might be most useful with respect to vaccine development, subtype-specific epitopes might be most useful for diagnostic purposes and the study of viral evolution.

It should be noted here that the main purpose of the current study is to provide a resource analyzing and making accessible influenza information with potential implications in terms of future research in areas relevant to vaccine research, understanding the role of T cell immunity in influenza, and to highlight multiple pandemic influenza issues surrounding H1N1 and H5N1 viruses in particular. Our analysis is purely bioinformatics and can address only experiments that have been performed and published in peer-reviewed journals. However, the analysis also suggests possible experiments that could be conducted to further validate the epitopes and improve our understanding of the immune response to influenza or ability to combat influenza. For example, several linear and MAb-defined epitopes (SI Table 6) were shown to be highly conserved within H1 or H3 subtypes. Data like these maybe useful for identification of new vaccine targets, and experiments to demonstrate that one of these MAbs indeed neutralized virus in vitro or provided passive protection in vivo would be neither time-consuming nor technically difficult. Similarly, for the MAb-defined cross-reactive conformational epitopes (SI Table 9), it should be possible to test one or several of these MAbs for cross-reaction with intact viruses. As a result, the effort that has gone into the collection and assembly of influenza-specific information/reagents are justified by its utility and conceivable experimental applications.

Identification of Protective Ab and T Cell Influenza A Epitopes. It is well appreciated that not all Ab and T cell responses are protective. Indeed, responses directed against certain influenzaderived epitopes have been reported in a murine animal model to actually exacerbate disease (32, 33). To address this issue, we focus specifically on epitopes for which protective data are available. Protective epitopes are defined herein as those that tested positive in virus challenge or neutralization assays, even though we are aware that caution needs to be exercised in directly equating in vitro neutralization assays with in vivo protection. Only nine Ab and nine T cell epitopes are identified to meet this criterion (SI Table 10). As a result, these data emphasize the need for more studies that evaluate the protective and neutralizing efficacy of immune responses directed against different epitopes. In particular, focusing the immune response on relatively conserved epitopes is considered as an avenue to develop influenza vaccines, but their prophylactic efficacy as compared with nonconserved ones must be established.

All data presently available are derived from animal models in

Table 3. Proposed research agenda toward a more systematic and comprehensive collection of influenza immune epitopes

Knowledge gap Proposed research agenda

Only a few protective Ab and T cell epitopes were reported in the literature

Paucity of Ab epitopes in comparison with T cell epitopes Limited spectrum of animal hosts (currently predominantly mouse) used for epitope identification

Limited number of epitopes reported for avian influenza strains/subtypes

Limited number of epitopes reported from proteins other than HA and NP

Focus on determining protective Ab and T cell epitopes

Promote and increase Ab epitope identification studies Expand and balance the repertoire of tested host species, especially avian, nonhuman primates, and human Focus on identifying epitopes derived from avian influenza

Identify epitopes derived from all 10 influenza proteins

hosts such as mice, rabbits, and macaques. To the best of our knowledge, no study defining human protective epitopes has been conducted, most likely because of ethical reasons. The degree of conservation of protective epitopes across different avian H5N1 and human influenza viral strains is also calculated. In general, protective T cell epitopes are highly conserved between human and avian influenza strains. Protective Ab epitopes are, as expected, less conserved. However, one protective Ab epitope from the M2 protein shows appreciable conservation among the selected human influenza strains and H5N1. Because M2 is a relatively conserved protein, identification of protective Ab epitopes derived from this protein, as has been pointed out, holds promise for the future development of a universal influenza epitope-based vaccine (34). However, it has been shown that even the limited degree of sequence variation between this epitope and the homologous H5N1 sequences might result in lack of cross-reactivity (35). Nevertheless, whether these epitopes could be used to induce cross-reactive responses and also confer protection in humans needs to be addressed experimentally.

An important issue that influenza epitope research must address is which epitopes are likely to confer greatest protection. Cross-protective cytotoxic T lymphoctes (CTL) have been the focus of many studies over the last decade, but their impact on influenza infection in human in vivo still needs to be conclusively established. Influenza virus appears to be most sensitive to neutralizing Abs, and Abs to HA are more effective than those specific for NA and M2, perhaps the reason why the virus has evolved to evade such responses, just like herpes viruses have evolved strategies to evade CTL responses. In that respect, it could be difficult to find broadly cross-reactive epitopes.

Conclusions

In summary, a comprehensive analysis of influenza A Ab and T cell epitopes indicates that a large set of influenza epitope data exists for researchers to use in their studies. To the best of our knowledge, all characterized epitopes, defined as presented above, were included in the analysis. If however, inadvertently omitted data were brought to our attention, we would be grateful to update IEDB accordingly. Nevertheless, given the present focus of the scientific community on influenza viruses, the amount of data are likely to increase in the near future. Therefore, we are continually updating the IEDB with new epitope information as it becomes available in the literature. These results are publicly accessible to the scientific community, and we are working to integrate our efforts with other bioinformatics resources such as BioHealthBase (28). Several different protective epitopes are found to be conserved, highlighting how the collation of relevant data from disparate sources, and the integration of immunological data with sequence variability information can yield results of great potential impact.

From our perspective, significant knowledge gaps and opportunities for future research in influenza A epitope identification also became apparent, including (i) Determination of protective Ab and T cell epitopes (only a few were reported in the literature), (ii) paucity of Ab epitopes in comparison with T cell epitopes, (iii) limited spectrum of animal hosts used for epitope identification, (iv) a limited number of epitopes reported for avian influenza strains/subtypes, and (v) a limited number of epitopes reported from proteins other than HA and NP. Based on these gaps, a proposed research agenda toward a more systematic and comprehensive collection of influenza immune epitopes is tabulated in Table 3.

This is a comprehensive analysis of the world-wide knowledge in a given research area, with the specific intent of not only making curated information accessible to the scientific community, but also with the specific goal of revealing gaps and consequent potential vulnerabilities in the available aggregated knowledge. Some of the results are unexpected and illustrate the power of the approach. Future similar analyses may encompass different disease targets of immunological relevance. The results could assist in correlating the amount of knowledge available with the actual importance of a particular disease, analyzing the impact of funding initiatives and other related topics, and transcending basic research and impacting global research and scientific policies.

In conclusion, influenza research is currently of high general interest. This analysis provides researchers with information that can be used to evaluate different vaccine concepts and design new basic studies. The study also provides the general scientific audience with an objective evaluation of which information is well represented within our current literature, which gaps exist, and what might be addressed by future investigations. In addition, the availability of databases relating to influenza A, as recently pointed out, is an important component of our strategy to combat seasonal outbreaks and a potential pandemic (36). Therefore, the influenza A epitope data analysis reported herein represents an important step in this direction. Specifically, the revealed gaps in our collective knowledge might inspire and guide directions for future research in the study of immunity against the influenza A virus.

Materials and Methods

Selection of IEDB-Curated Influenza A Epitopes. To maximize the immunological relevance of the study, IEDB-curated records were filtered to exclude data in which only the epitope was used as both immunogen and test antigen, because such information does not provide data on recognition of the epitope in the context of the whole virus or protein. T cell epitopes identified by MHC binding alone were also excluded from further analyses, because peptide MHC binding implies only that there exists a potential for immunogenicity but does not prove that this potential has or will be realized. This ability to select records based on relevant assays is a key example of the IEDB flexibility. It should be noted that because an epitope is defined as a distinct molecular structure that interacts with specific immune receptors, largely overlapping or nearly identical structures were counted as separate entries. Similarly, for Ab conformational epitopes, single residues identified by mutant studies were also considered as separate entries. We have recently developed a computer algorithm to specifically cluster similar and related entries, thus mapping to a single structure or "antigenic site" largely overlapping or homologous (>80%) structures. The results obtained after clustering were qualitatively the same, even though the total number of epitopes was reduced by approximately a third. Development of such a filter was important because the inclusion of the extra sequence changed the "conservation score" between subtypes where the actual epitope is conserved. These duplicate entries could be a hindrance to effective use of the database, especially because these longer sequences for Class I "epitopes" include a sequence that is not actually part of the epitope, that is, actually being trimmed off before presentation. However, the database needs to record the original data as reported to avoid bias and data corruption.

Epitope Conservancy Analysis. To determine the conservation of continuous linear Ab and T cell influenza epitopes, we used the epitope conservancy-analysis tool provided in the analysis resources of IEDB. Using an epitope sequence and a set of protein sequences of a given influenza strain, this tool computes the maximum identity level at which the epitope can be found in the given protein sequence set or the influenza strain. For each epitope, the highest epitope identity level in each influenza strain was calculated. For discontinuous Ab epitopes, the algorithm was implemented to identify a matching epitope discontinuous-sequence pattern in a given protein sequence or set. For example, given the epitope discontinuous sequence "A1,B3,C6", its matching sequence pattern is **AXBXXC**, where X is any amino acid residue, and the number of Xs between two nearest known

- 1. Choi YK, Ozaki H, Webby RJ, Webster RG, Peiris JS, Poon L, Butt C, Leung YH, Guan Y (2004) *J Virol* 78:8609–8614.
- Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, Kuiken T, Rimmelzwaan GF, Schutten M, Van Doornum GJ, et al. (2004) Proc Natl Acad Sci USA 101:1356–1361.
- 3. Guo Y, Li J, Cheng X (1999) Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 13:105–108.
- Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H, Vennema H, Meijer A, van Steenbergen J, Fouchier R, Osterhaus A, Bosman A (2004) Lancet 363:587–593.
- Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF (1999) Lancet 354:916–917.
- World Health Organization (WHO) (2006) www.who.int/csr/disease/avian_influenza/country/cases_table_2006_10_03/en/index.html.
- 7. Enserink M (2006) Science 311:932.
- 8. Fauci AS (2006) Cell 124:665-670.
- 9. Fauci AS (2006) Emerg Infect Dis 12:73-77.
- U.S. Department of Health and Human Services (HHS) (2005) www.hhs.gov/ pandemicflu/plan/.
- Doherty PC, Turner SJ, Webby RG, Thomas PG (2006) Nat Immunol 7:449-455.
- 12. Enserink M (2005) Science 309:996.
- 13. Wadman M (2005) Nature 438:23.
- 14. Sambhara S, Poland GA (2006) Lancet 367:1636-1638.
- Peters B, Sidney J, Bourne P, Bui HH, Buus S, Doh G, Fleri W, Kronenberg M, Kubo R, Lund O, et al. (2005) PLoS Biol 3:e91.
- Peters B, Sidney J, Bourne P, Bui HH, Buus S, Doh G, Fleri W, Kronenberg M, Kubo R, Lund O, et al. (2005) Immunogenetics 57:326–336.
- 17. Vita R, Vaughan K, Zarebski L, Salimi N, Fleri W, Grey H, Sathiamurthy M, Mokili J, Bui HH, Bourne PE, et al. (2006) BMC Bioinformatics 7:341.

amino acid residues is equal to the gap distance between them. If an epitope's pattern is found within a protein sequence/set, the epitope is considered to be conserved within that protein sequence/set. In addition, the identity level was also calculated based on the known epitope residues. For patternwise matching sequences, the identity level is 100%. To obtain meaningful results, only discontinuous sequences consisting of at least three identified residues were used in the analysis. We emphasize that the algorithm developed here does not predict cross-reactivity but merely detects whether the residues involved in a conformational epitope are conserved in different sequences. Whether this conservancy would translate in Ab cross-reactivity should be experimentally determined. It should also be noted that, in this analysis, conservancy was calculated and reported for all epitope entries even though similar entries may be related to a single "epitope" (the difference being whether flanking residues were included). Because conservancy is not calculated based on the shared epitope subsequence, different conservancy values are expected in the context of different flanking regions for a single epitope. The differences are due to the variations in sizes and amino acid compositions of flanking regions considered by the algorithm in its calculation.

We thank the IEDB curation team (John Mokili, Jong de Castro, Julia Ponomarenko, Laura Zarebski, Michael Alexander, Muthuraman Sathiamurthy, Nima Salimi, Randi Vita, Russell Chan, Leora Zalman, Huda Makhluf, Michael Lyman, and Kerrie Vaughan) for their excellent work in curating influenza A epitope information and Alison Deckhut Augustine, Howard Gray, Ward Fleri, Muthuraman Sathiamurthy, and Randi Vita for helpful suggestions and critical review of the manuscript. This work was supported by the National Institutes of Health's (National Institute of Allergy and Infectious Disease) Contract HHSN26620040006C (Immune Epitope Database and Analysis Program), Contract N01 AI30039 (Epitope-Based Multipeptide Vaccines for Expanded Coverage Against Inter-Pandemic Influenza), and Kirin pharmaccutical division. This is LIAI publication number 768. E.A. was supported by the Wenner-Gren Foundations.

- Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A (2006) BMC Bioinformatics 7:153.
- 19. Peters B, Bulik S, Tampe R, Van Endert PM, Holzhutter HG (2003) *J Immunol* 171:1741–1749.
- Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Protein Sci 12:1007–1017.
- Bui HH, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton KA, Mothe BR, Chisari FV, Watkins DI, Sette A (2005) *Immunogenetics* 57:304–314.
- 22. Peters B, Sette A (2005) BMC Bioinformatics 6:132.
- Janeway CA, Travers P, Walport M, Shlomchik MJ (2005) Immunobiology (Garland Science, New York).
- 24. Gupta V, Earl DJ, Deem MW (2006) Vaccine 24:3881-3888.
- 25. Munoz ET, Deem MW (2005) Vaccine 23:1144-1148.
- Macken C, Lu H, Goodman J, Boykin L (2001) in Options for the Control of Influenza, eds Osterhaus ADME, Cox N, Hampson AW (Elsevier Science, Amsterdam), pp 103–106.
- National Center for Biotechnology Information (NCBI) (2004) www.ncbi. nlm.nih.gov/genomes/FLU/FLU.html.
- 28. BioHealthBase (2006) http://www.biohealthbase.org.
- Johnson PR, Feldman S, Thompson JM, Mahoney JD, Wright PF (1986) J Infect Dis 154:121–127.
- 30. Palese P, Tumpey TM, Garcia-Sastre A (2006) Immunity 24:121-124.
- 31. Fazekas de St. Groth S, Webster RG (1966) *J Exp Med* 124:331–345.
- 32. Crowe SR, Miller SC, Woodland DL (2006) Vaccine 24:452-456.
- Crowe SR, Miller SC, Shenyo RM, Woodland DL (2005) J Immunol 174:696– 701
- 34. Kaiser J (2006) Science 312:380-382.
- 35. Fan J, Liang X, Horton MS, Perry HC, Citron MP, Heidecker GJ, Fu TM, Joyce J, Przysiecki CT, Keller PM, et al. (2004) Vaccine 22:2993–3003.
- 36. Editorial (2006) Nature 440:255-256.

Table 4. Distribution of epitope molecular structures by influenza strains Antibody T Cell Subtype **Grand Total** Strains Linear Conformational Total CD4 CD8 Undefined Total Sequence Sequence H1N1 A/PUERTO RICO/8/34(H1N1)) A/PUERTO RICO/8/34/MOUNT SINAI(H1N1)) A/USSR/90/77(H1N1)) A/WSN/33(H1N1)) A/SWINE/NEW JERSEY/11/76(H1N1)) H1N9 A/NWS-G70C(H1N9)) H2N2 A/ANN ARBOR/6/60(H2N2)) A/JAPAN/305/57(H2N2)) A/OKUDA/57(H2N2)) H3N2 A/AICHI/2/68(H3N2)) A/BANGKOK/1/79(H3N2)) A/BEIJING/32/92(H3N2)) A/HONG KONG(H3N2)) A/HONG KONG/1/68(H3N2)) A/HONG KONG/2/68(H3N2)) A/MEMPHIS/1/71(H3N2)) A/MEMPHIS/102/72(H3N2)) A/MEMPHIS/31/98(H3N2)) A/MEMPHIS/6/86(H3N2)) A/NETHERLANDS/785E/90 (H3N2)) A/NETHERLANDS/889/91 (H3N2)) A/NT/60/68/(H3N2)) A/PORT CHALMERS/1/73(H3N2)) A/SHANGHAI/16/89(H3N2)) A/TEXAS/1/77(H3N2)) A/UDORN/307/72(H3N2)) A/VICTORIA/3/75(H3N2)) A/WUHAN/359/95(H3N2)) A/X-31(H3N2)) A/ARGENTINA/3779/94(H3N2)) A/CHRIST CHURCH/2/88(H3N2)) A/CORDOBA/3278/96(H3N2)) A/FRANCE/75/97(H3N2)) A/NANCHANG/58/93(H3N2)) A/NEW_YORK/15/94(H3N2)) A/NEW YORK/17/94(H3N2)) A/OHIO/3/95(H3N2)) A/SHANGDONG/5/94(H3N2)) A/SWINE/HONG KONG/126/82(H3N2)) A/SYDNEY/05/97-LIKE(H3N2)) A/USSR/26/(H3N2)) A/LOS ANGELES/(H3N2)) A/PHILIPPINES/2/82(H3N2)) INFLUENZA A VIRUS H3N2 H3N8 A/DUCK/UKRAINE/1/63(H3N8)) H5N1 A/VIET NAM/1194/2004(H5N1)) H5N2 A/CHICKEN/PENNSYLVANIA/1370/83(H5N2)) A/MALLARD DUCK/PA/10218/84(H5N2)) H5N9 A/TURKEY/ONTARIO/7732/66(H5N9)) H7N1 A/FPV/ROSTOCK/34(H7N1)) H7N7 A/SEAL/MASS/1/80(H7N7)) H9N2 A/SWINE/HONG KONG/9/98(H9N2)) H11N9 A/TERN/AUSTRALIA/G70C/75(H11N9)) H13N9 A/WHALE/MAINE/1/84(H13N9)) A/NWS/33HA-A/TERN/AUSTRALIA/G70C/75NA) A/MEMPHIS/1/71H-A/BELLAMY/42N) STRAIN A/EQUINE/NEW MARKET/76) INFLUENZA A VIRUS

Table 5. Collection of influenza strains for conservancy analysis Subtype Vaccine Coverage Strain H1N1 A/PR/8/34 1968-75

A/USSR/90/77 1976-86 A/Taiwan/1/86 1987-89 A/Texas/36/91 1989-98 A/New Caledonia/20/99 1999-2004

A/Brevig Mission/1/18 A/WS/33 A/England/42/72 A/Hong Kong/1/68

1968-75 1968-75 A/Bangkok/1/79 1976-86 A/Leningrad/360/86 1987-89 A/Beijing/353/89 1989-98 A/Panama/2007/99 1999-2004

A/New York/5/2004 A/UDORN/307/72

H5N1 A/Viet Nam/1194/2004

H3N2

A/Hong Kong/156/97

Table	6. Conservancy analysis of antibody linear epi	tope sequences							H1N1							НЗ	N2				Н5	N1
No.	Sequence	Influenza Source Subtype	Source Protein	Antibody Type(s)	Host Species	A/Brevig Mission/1/18	A/New Caledonia/20/99	A/PR/8/34	A/Taiwan/1/86	A/Texas/36/91	A/USSR/90/77	A/WS/33	A/Bangkol/1/79	A/Bei jing/353/89	WEngland/42/72	A/Hong Kong/1/68	A/Leningrad/360/86	A/New York/5/2004	A/Panama/2007/99	A/UDORN/307/72	A/Hong Kong/156/97	AViet Nam/1194/2004
2	AIYHTENAYVSVVSSHYNR AMEQMAGSSEQAAEAMEVASQARQMVQA	H1N1	HA M1	MONOCLONAL MONOCLONAL	MOUSE	58 100	89 97	74 100	100 97	95 97	79 97	63 95	32 97	32 95	32 97	32 97	32 97	32 95	32 95	32 97	32 100	32 92
3	MRTIGTHPSSS CKRGPDSGFFSRLNWLY	H3N2	HA	POLYCLONAL	RABBIT	35	35	35	35	35	35	35		71		88	76	65	65		35	35
4	CKRGPDSGFFSRLNWLYKSGSTYPVQNVT	H3N2	HA	POLYCLONAL	RABBIT	36	28	25	28	31	28	33	75	61	89	89	64	56	56	94	31	33
5	MPNNDNS CLGHHAVPNGTLVKTITNDQIEVTNATELVQ	H3N2	HA	DOLVCI ONAL											100			95				
6	SSSTGKIC CNNPHRIL	H3N2	HA	POLYCLONAL	RABBIT	33	33	33	33	33	33 50	33	97 75	97 75	100	97	97 75	63	95 63	100	33	33 50
7	CNNPHRILDGINC	H3N2	HA	POLYCLONAL	RABBIT	38	38	31	38	38	38	38	77	77	85	92	77	69	69	92	38	38
8	CNNPHRILDGINCTLIDALLGDPHCDGFQNE KWDL	H3N2	HA	POLYCLONAL	RABBIT	23	23	23	23	23	20	26	91	86	89	91	91	83	83	94	31	29
9	CPKYVKQNTLKLATGMRNVPEKQT	H3N2	HA	MONOCLONAL; POLYCLONAL	MOUSE;RABBIT	54	50	50	50	50	50	50	100	96	100	100	96	96	96	100	63	63
10	CPKYVKQNTLKLATGMRNVPEKQTR	H3N2	HA	POLYCLONAL	RABBIT	56	52	52	52	52	52	52	100		100	100		96		100	64	64
11	DCTLIDALLGDPH	H3N2	HA M1	POLYCLONAL MONOCLONAL	MOUSE	38	38	38	38	38	38	38	92	92	100		92	85	92 100	100	46 87	46
12	DPNNMDKAVKLYRKLKREITFHGAKEIALSY DVPDYAS	H1N1 H3N2	M1 HA	MONOCLONAL	MOUSE	94 43	97 43	97 43	97 43	97 43	97 43	100 43	100	100	97 86	97 100	100	100	100	97 100	43	90 43
14	DVPDYASL	H3N2	HA	MONOCLONAL	MOUSE	50	50	50	50	50	50	50	100	100	88	100	100	100	100	100	50	50
15 16	EGSYPKLKNSYENK EGSYPKLKNSYVNK	H1N1	HA HA	MONOCLONAL MONOCLONAL	MOUSE MOUSE	57 64	50 57	100	57 64	50 57	57 64	64 71	43 36	43	43 36	43 36	43	43	43	43 36	43	43
17	EKQT	H3N2	HA	POLYCLONAL	MOUSE	75	75	75	75	75	75	75	100	100	100	100	100	100	100	100	75	75
18 19	ETPIRNEWGCR EVETPIRN	H3N2 H1N1	M2 M2	POLYCLONAL MONOCLONAL	RABBIT MOUSE	91 88	82 63	100		82 63	100	100	63	82 63		100	82 63	100	82 63	82 63	73 75	82 88
20	FQNEKWDL GFFSRLNWLTKS	H3N2 H3N2	HA HA	MONOCLONAL POLYCLONAL	MOUSE RABBIT	38 50	50 42	50 42	50 42	50 50	38 42	38 50	100 75	75 75	75 83	88 100	100 75		75 67	88 92	38 42	38 42
22	GKICNNPHRILDGIDCTLID	H3N2	HA	MONOCLONAL	MOUSE	30	30	30	30	30	30	30	75	75	95	100	75 75	70	70	100	30	30
23	GKVTVSTKRSQQTIIPNVGSRPWVRGL	H3N2	HA	POLYCLONAL; MONOCLONAL;	RABBIT GOAT;MOUSE;RA	26	26	30	30	30	30	30	93	89	89	85	85	74	81	93	30	26
24	GLEGALACEIENGWECHIDOWYCERHONE	H1N1	HA	POLYCLONAL	BBIT	100	100	100	100	100	100	100	91	91	82	100	91	91	91	100	100	100
25	GLFGAIAGFIENGWEGMIDGWYGFRHQNS EGTGQA	H3N2	HA	MONOCLONAL	MOUSE	77	74	77	77	77	77	77	94	94	23	100	94	94	94	100	66	71
26	GLIYNRMGAVTTEVAFGLVCATCEQIADSQ HRSHRQ	H1N1	M1	MONOCLONAL	MOUSE	97	92	100	92	92	94	100	100	100	100	100	100	100	100	100	92	97
27	GVTQNGGSSACKRGPDSGFFSR	H3N2	HA	POLYCLONAL	RABBIT	32	32	27	32	32	32	32	77	64	91	91	68	73	68	95	36	36
28 29	HCDGFQNEKWDL HCDGFQNEKWDLFVE	H3N2 H3N2	HA HA	MONOCLONAL POLYCLONAL	MOUSE RABBIT	33	33	42 33	33	33	33	33	100	83 87	83 87	83 87	100 93	83 87	83 87	92 93	33	33
30	HCDGFQNEKWDLFVERSKAFSNCYPYDVP	H3N2	HA	MONOCLONAL;	MOUSE;RABBIT	25	22	25	25	25	25	25	100	92	92	94	97	92	92	97	25	25
31	DYASLRS HHPITDSDQTRLY	H3N2	HA	POLYCLONAL POLYCLONAL	RABBIT	62	54	46	46	46	46	46	69	69	62	62	62	77	69	69	54	54
32	HHPSTDKEQTNLY	H3N2	HA	POLYCLONAL	RABBIT	54	46	62	46	46	46	62	92	85	69	77	85	62	62	85	62	62
33 34	KAYSNCYPYDVPDY KWDLFVERSK	H3N2 H3N2	HA HA	POLYCLONAL MONOCLONAL	RABBIT MOUSE	43 50	36 50	43 50	36 50	36 50	36 50	43 50	93 100	100 90	93	93 90		100	100 90	93 90	43 50	43 50
35	LKLAT	H3N2	HA	MONOCLONAL; POLYCLONAL	MOUSE	60	60	60	60	60	60	60	100	100	100	100	100	100	100	100	80	80
36	LKTRPILSPLTKGILGFVFTLTVPSERGLQRR	H1N1	M1	MONOCLONAL	MOUSE	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
37	RFVQNALNGNGD MRNVPEKQT	H3N2	HA	POLYCLONAL	MOUSE	44	44	44	44	44	44	44	100	100	100				100	100	56	44
38	MSLLTEVETPIRNEWGCRCNDSSD	H1N1 H1N1	M2 M2	MONOCLONAL	MOUSE MOUSE	96	63 58	96 100	63 58	63 58	100	100	63		100	100		96 92	63 58	63 58	83 79	88
39 40	MSLLTEVETPIRNEWGCRCNGSSD NATELVQSSSTGKICNNPHRILDGINC	H3N2	HA	POLYCLONAL POLYCLONAL	RABBIT	92 26	26	26	26	26	96 26	96 26	58 85	58 85	96 93	96 96	58 85	81	81	96	26	83 26
41	NEWGCRCNDSSD NSDKLYIWGVHHPSTDKEQTNLY	H3N2 H3N2	M2 HA	POLYCLONAL POLYCLONAL	RABBIT RABBIT	100 48	100 43	92 48	100 43	100 43	100 43	100 52	100 91	100 83	100 78	100	100 83	92 70	100 70	100 87	83 57	83 52
43	NVPEKQT	H3N2	HA	MONOCLONAL	MOUSE	43	43	43	43	43	43	43	100	100	100	100	100	100	100	100	57	57
44 45	NVPEKQTRGIFGAIAGFIE QDLPGNDNNSTATLC	H3N2	HA HA	POLYCLONAL	MOUSE RABBIT	74 33	74 33	74 33	74 33	74 33	74 33	74 33	100 47	100 47	95 53	95 53	100 47	100 47	100 47	95 47	58 33	58 33
46	QDLPGNDNNSTATLCLGHHAVPNGTLVKTI	H3N2	HA	POLYCLONAL	RABBIT	22	22	22	22	22	22	25	78	78	78	75	78	75	75	78	22	22
47	TNDQIE SKAFSNCYPYDVPDYASL	H3N2	HA	POLYCLONAL	MOUSE;RABBIT	39	33	39	33	33	33	39	100	94		100	100	94	94	100	44	39
48	SLLTEVETPIR		M2	POLYCLONAL MONOCLONAL	RABBIT MOUSE;RHESUS	91	73	100	73	73	100	100	73	73	100	100	73	100	73	73	82	91
49	SLLTEVETPIRNEWGCRCNDSSD	H1N1;H3N2	M2	MONOCLONAL; POLYCLONAL	MONKEY	96	65	96	65	65		100	65	65	100	100	65	96	65	65	83	87
50 51	SLLTEVETPIRNEWGCRCNDSSDP TQNGGSSACKRGPDS	H1N1 H3N2	M2 HA	MONOCLONAL POLYCLONAL	MOUSE RABBIT	96 33	67 33	96 33	67 33	67 33	100 33	100 33	67 73	67 53	100 93	100 87	67 60	96 67	67 60	67 93	83	88 40
52	VERSKAFSNCYPYDVPDYASLRS	H3N2	HA	MONOCLONAL	MOUSE	35	30	35	30	30	30	35	100	96	96	100	96	96	96	100	35	30
53 54	VTGLRNIPSIQSR VTGLRNIPSIQSRGLFGAIAGFIEG	H1N1 H1N1	HA HA	POLYCLONAL	MOUSE MOUSE		100	100		100	100	92 96	54 68	54 68	54 64	54 72	54 68	54 68	54 68	54 72	54 52	54 52
55 56	WTGVAQD WTGVTQN	H3N2 H3N2	HA HA	POLYCLONAL POLYCLONAL	RABBIT MOUSE	43 43	43 43	43 43	43 43	43 43	43 43	43 43	71	86 71	71	71	71	71 100	86 86	71 100	43 43	43 43
57	YDVPDYAS	H3N2	HA	MONOCLONAL	MOUSE	38	50	50	50	50	50	50	86 100	100	88	100		100	100	100	50	50
58 59	YPYDVPDYA YPYDVPDYAS	H3N2 H3N2	HA HA	MONOCLONAL MONOCLONAL	MOUSE	56 50	44 40	56 50	44 40	44 40	44 40	56 50	100 100	100 100	100	100 100	100 100		100 100	100	44 40	56 50
60	CYPYDVPDY	H3N2	HA	POLYCLONAL	RABBIT	67	56	67	56	56	56	67						100			56	67
61	DYASLRSLVASSGTLEFINEGFNWTGVTQN GGSSAC	H3N2	HA	POLYCLONAL	RABBIT	22	25	22	22	22	22	25	94	86	92	92	92	89	89	92	22	22
62	LCLGHHAVPNGTLVKTITNDQIEVTNATELV QSSSTGKI	H3N2	HA	POLYCLONAL	RABBIT	31	31	31	31	31	31	31	97	97	100	97	97	95	95	100	31	31
63	NSDKLYIWGVHHPSTDKEQTNLYV	H3N2	HA	POLYCLONAL	RABBIT	46	42	46	42	42	42	50	92	83	79	83	83	67	67	88	54	50
64	QDLPGNDNNSTATLCLGHHAVPNGTLVKTI TNDQIEVTN	H3N2	HA	POLYCLONAL	RABBIT	26	26	26	26	26	26	28	79	79	79	77	79	77	77	79	26	23
65	SSIMRSDAPIGTCSSECITPNGSIPNDKPFQ	H3N2	HA	POLYCLONAL	RABBIT	46	46	41	43	43	41	43	100	97	97	95	100	92	92	97	41	41
66	NVNKIT TNATELVQSSSTGKICNNPHRILDGIN	H3N2	HA	POLYCLONAL	RABBIT	26	26	30	26	26	26	26	85	85	93	96	85	81	81	96	26	26
67 68	FESTGNLI GFRHQNSEGTGQAADL	H3N2	HA HA	MONOCLONAL MONOCLONAL	MOUSE MOUSE	88 56	75 56	75 56	75 56	75 56	75 56	88 56	63 100	75 100	63 31	63 100	75 100	75 100	75 100	63 100	75 38	75 50
69	KRGPGSG	H3N2	HA	MONOCLONAL	MOUSE	71	71	71	71	71	71	57	57	57	71	100	57	57	57	86	57	57
70 71	LTEVETPIRNEWG RSQQTII	H1N1 H3N2	M2 HA	MONOCLONAL MONOCLONAL	MOUSE MOUSE	92 57	54 57	100 57	54 57	54 57	100 57	100 57	54 100	54 86	100 86	100	54 86	100 86	54 86	54 100	77 57	85 57
72	SVSSFERFEIFPK		HA	MONOCLONAL	MOUSE	92	100	100	100	100	100	92	38	38	38	38	38	38	38	38	38	38
73 74	TNQEQTSLYV TYQRTRALV	H3N2 H1N1	HA NP	MONOCLONAL POLYCLONAL	MOUSE MOUSE	50 100	40 100	40 100	40 100	40 100	40 100	50 100	70 100	70 100	90 100	100	70 100	50 100	40 100	90 100	50 100	50 100
75	WLTEKEGSYP	H1N1	HA	MONOCLONAL	MOUSE	70	70			70		70	60	50	50	50	60	50	40		50	50
	y level color code:																					
	Yellow: 100%																					

Table	7. Conservancy analysis of T cell linear epit	ope sequences							H1N	1						Н3	3N2				H5N	1
No.	Sequence	Influenza Source Subtype	Source Protein	MHC Restriction Allele(s)	Host Species	A/Brevig Mission/1/18	A/New Caledonia/20/99	A/PR/8/34	A/Taiwan/1/86	A/Texas/36/91	A/USSR/90/77	A/WS/33	A/Bangkok/1/79	A/Beijing/353/89	A/England/42/72	A/Hong Kong/1/68	A/Leningrad/360/86	A/New York/5/2004	A/Panama/2007/99	A/UDORN/307/72	A/Hong Kong/156/97	A/Viet Nam/1194/2004
2	AAFEDLRVLSFIRG ADLKSTQAAIDQING	H3N2 H3N2	NP HA	HLA-B37	HUMAN MOUSE	93 67	93	60	93 60	60	93 60	93 60	100	100	93 33	100	93 100	93 93		100	93 53	93 53
3	AELLVALEN AELLVALENQHTIDL	H3N2 H3N2	HA HA	H-2-IAD H-2-B CLASS I	MOUSE MOUSE	56 33	89 67	89 67	89 67	89 67	89 67	89 67	100 100	100	44 33	100	100 93	89 93		100		78 60
5	AGFIENGWEGMVDGWYGFRHQNSEGT	H3N2	HA	TI-Z-B OLAGOT	HUMAN	71	74	71	71		71	71		100	29	97		100		97		68
6	GQAADLKS AHKSCLPACVYGPAV	H3N2	NP		MOUSE	100	100	100	93	93	100	93	100	100	100	100				100		93
7	AIMDKNIIL	H1N1;H3N2	NS1	HLA-A*0201;HLA A*020101;HLA- A2.1	HUMAN;MOUSE	100	100	100	100	100	100	100	78	78	89	89	78	78	78	89	89	89
8	AIMDKNIML AKNMEYDA	H3N2 H1N1	NS1 PB1	HLA-A2.1	HUMAN MOUSE	89 100	89 100	89 100	100	89 100	89 100	89 100	89 88	89 88	100 88	100 88	89 88	89 88	89 88	100 88	78 88	78 88
10	ALENQHTIDLTDSEM	H3N2	HA	H-2-B CLASS I	MOUSE	33	47	47	47	47	47	40	100	100	33	100	93		100			40
11 12	ALNNRFQIKGVEL ALNNRFQIKGVELKS	H3N2 H3N2	HA HA	H-2-IED	MOUSE MOUSE	38	46 47	38 40	46 47	46 47	46 47	46 47	100	100	38	100		100	100	100		46 47
13	ARLGKGYMF	H1N1	PB1	H-2-DK;HLA- B*2705	MOUSE		100	100	100			100	100	100	100	100	100	100	100	100		100
14	ARSALILRGSVAHK	H2N2	NP	H-2-S CLASS II	MOUSE	100	100	100	100			100	100	100	100	100			100		100	100
15 16	ARSALILRGSVAHKSCLPACVYGP ASAGQISVQPAFSVQRNLP	H2N2;H3N2 H3N2	NP NP	H-2-D CLASS II	MOUSE HUMAN;MOUSE	100 95	100 89	100 89	100 89	96 89	100 89	96 84	100 95	100 95	100	100	100 95	100 95		100 100		96 95
17	ASCMGLIY	H3N2	M1	HLA-B*35;HLA-	HUMAN		100	100	100	100	100			100					100			100
18	ASGRVTVSTKRSQQTV	H3N2	HA	B*3501	HUMAN	31	31	31	31	31	31	31	94	100	88	88	100	94	100	94	31	31
19	ASMHECNTKCQT	H1N1	HA	H-2-IAD H-2-D CLASS I;H	MOUSE	75	67	100	75		83	100	42	42	42	42	42	42	42	42		58
20	ASNENMDAMESSTI	H3N2 H3N2	NP NP	2-DB H-2-DB	MOUSE	78 79	89	78 86	89	78 79	89	78 86	89 93	89 93	89 93	100		89 86	89 86	93	78 79	89 79
22	ASNENMDAMESSTL ASNENMDTM	H3N2	NP NP	H-2-DB H-2-DB	MOUSE	89	78	89	100		100		100	89	100	89	89	89		100		78
23	ASNENMETM	H1N1;H2N3;H3N 2	NP	H-2-B CLASS I;H- 2-DB	MOUSE	100	67	100	89	67	89	100	89	78	89	78	78	78	78	89	78	89
24	ASNENMETMESSTLE	H3N2	NP	H-2-DB	MOUSE		73	100		73		100	93	87	93	87	87	80		93	80	80
25 26	ASQGTKRSYEQMETDGERQNATE ATGLRNVPQIESR	H3N2 H2N2	NP HA	H-2-IED	HUMAN MOUSE	100 77	100 69	100 69	96 69	100 69	100 69	91 62	100 62	100 62	100 62	100 62	96 62	96 62	96 62	100 62	96 77	96 77
27	ATGMRNVPEKQTR ATGMRNVPEKQTRGIFGAIAGFIENGWE	H3N2	HA	H-2-IED	MOUSE	62	54	54	54	54	54	54	100	100	100	100	100	100	100	100		54
28	GMVD	H3N2	HA		HUMAN	72	72	69	69		69	69			25	94		100		94		53
29 30	ATYQRTRALVRTGMD AVKGVGTMVMELIRMIKRGINDRN	H3N2 H3N2	NP NP	H-2-D CLASS II	MOUSE HUMAN;MOUSE	100	93 96	100 96	93 96	93 96	- 00	100	93 100	93 96	93 100	93 100	- 00	100 96	93 92	93 100	.00	100 100
31	AYERMONIL	H1N1;H2N3	NP	H-2-D CLASS I;H 2-KD	MOUSE	100	100	100			100	100	100		100	100			100	100	100	100
32	AYERMCNILKGK	H1N1	NP	H-2-IAD	MOUSE	100	100	100	100		100	100	100	100	100	100		100		100	100	100
33 34	AYQKRMGVQMQR CAAMDDFQLIPMISK	H7N1 H3N2	M1 PA	HLA-DQ	HUMAN MOUSE	100	100	100	100			100	92 100	92 100	100	100		92 100		100 100	100	100 100
35 36	CKISPLMVAYMLERE CPIRGWAI	H3N2 H1N1	PB2 NA	H-2-B CLASS I H-2-DD	MOUSE MOUSE	100	100 75	100	100	100		100	100 50	100 50	100 50	100 50	100 50	100 50	100 50	100 50		93 75
37	CPKYVKQNTLKLAT	H3N2	HA	HLA-DR53	HUMAN	57	50	50	50		50	50	100	93	100	100		93		100		79
38	CPKYVKQNTLKLATG	H3N2	НА	H-2-B CLASS II;HLA- DRB1*1101;HLA- DRB1*1301	HUMAN;MOUSE	60	53	53	53	53	53	53	100	93	100	100	93	93	93	100	80	80
39	CPKYVKQNTLKLATGMRNV		HA	HLA-DRB1*0101	HUMAN	58	53	53	53	53	53	53	100	95	100	100	95	95	95	100	74	74
40	CPKYVKQNTLKLATGMRNVPEKQT	H3N2	HA	H-2-D CLASS II	MOUSE	54	50	50 52	50 52		50 52	50 52	100	96	100 100	100 100		96	96	100 100		63
41 42	CPKYVKQNTLKLATGMRNVPEKQTR CPKYVRSAKLRM	H3N2 H1N1	HA HA	H-2-IED	HUMAN MOUSE	56 92	52 100	100	92	92	92	92	50	96 50	50	50	96 50	96 50	96 50	50	58	58 58
43	CSQRSKFLLMDALKL	H3N2	PA	H-2-B CLASS I HLA-A*0101;HLA	MOUSE	100	87	100	93			100	93	93	93	93	93	93	93	93	.00	100
44	CVNCSCETY	H3N2 H1N1	NP NA	A1	HUMAN HUMAN;MOUSE	100	89	100	89 89	89 89	100	100		100 56	100 56	100 56	100 56	100 56	100 56	100 56		100 100
45 46	CVNGSCFTV CYPYDVPDYASLRSLV	H3N2	HA	HLA-A*0201	HUMAN	50	44	50	44	44	44	50	56 100	100		100		100		100		50
47	CYPYDVPDYASLRSLVASS CYPYDVPDYASLRSLVASSGTLEFINEDF	H3N2	HA	HLA-DR	HUMAN	47	42	47	42	42	42	47	100	100	95	100	100	100	100	100	37	42
48	NWT DALLGDPHCDGFQNET	H3N2 H3N2	HA HA	H-2-IAK	HUMAN MOUSE	31	28 38	31	28 38		28 38	34		100 88	91	91	97 94	91	94 88	91		50
50	DALLGDPHCDVFQNET	H3N2	HA	H-2-IAK	MOUSE	38	31	38	31	31	31	38	88	81	88	100	88	75	81	94	50	50
51 52	DCTLIDALLGDPH DDATAGLTHMMIWHS	H3N2 H3N2	HA NP	H-2-IAD	MOUSE MOUSE	38 93	38 93	38 100	38 93		38 100	38 100	92 100	92 100	100	100 100		85 93		100 100		46 87
53	DFQLIPMISKCRTKE	H3N2	PA		MOUSE	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100 100
54 55	DPRMCSLMQGSTLP DQSLPPNFSSLENFR	H3N2 H3N2	NP PA		HUMAN MOUSE	100	87	100 100	93	93	93	100 100	100 93	100 93	100 93	100 93	93	93	93	100 93	100	100
56	DRLRRDQKS DYASLRSLVASSGTLEFINEGFNWTGVT	H1N1;H3N2	NS1	HLA-DR3	HUMAN		100				100		89	89		100		89		100		100
57	QNGGSSAC	H3N2	HA DB1		HUMAN	100	25	22	22		22	25	94	100	92	92	92	89	89	92		22 100
58 59	DYQGRLCNPLNPFVS EALNNRFQIKGVELKS	H3N2 H3N2	PB1 HA		MOUSE MOUSE	38	50	100 44	50	50	100 50	93 50		100	38	100		100	100	100 100	56	50
60 61	EAMEVASQARQMVQA EDLTFLARSAL	H3N2 H1N1	M1 NP		MOUSE HUMAN	100 91	100 100	100	100			87 91	100 82	93 82	100 91	100 91	100 82	93 91	93 91	100 91		87 91
62	EEGAIVGEI	H1N1;H3N2	NS1	H-2-KK	MOUSE	100	100	100	100	100	100	89	100	100	100	100	100	100		100	89	100
63 64	EGIPLYDA EIAERPKVRDQAG	H1N1 H1N1	PA HA	H-2-IAD	MOUSE MOUSE	92	100 85	100	77		92	100 85	100 46	100 46	100 46	100 46	100 46	100 46	100 46	100 46		100 54
65 66	EITGTMRKLADQSLP EKYVEDTKIDLWSYN	H3N2 H3N2	PA HA		MOUSE MOUSE	93 33	93 47	100 47	93 47	93 47		100 47	93 100	87 100	93 33	93	100	87 100	87 100	93 100	93 47	93 47
67	ELRSRYWAI	H1N1;H3N2	NP	HLA-B8	HUMAN	100	100	100	100	100	100	100	100	100	100	100	100	89	89	100	100	100
68 69	ELRSRYWAIRTRSG ENQHTIDLTDSEMNKLFEKTRKQLRENA	H1N1	NP LLA	HLA-B27	LII INAANI	100	100	100				100	100	100	100		100 97	93 94	93			100 53
70	EDMGNGCF ENSFEQITFMQALHL	H3N2 H3N2	HA NS2		HUMAN MOUSE	25 93	50 93	50 100	50 93	50 93	50 93	47 93	97 93	100	25 93	97	97	93	94	97		53 93
71	EQTSLYVQASGRVTV	H3N2	HA	H-2-B CLASS II	MOUSE	47	33	33	33	33	33	47	87	87	93	100	87	73	73	100	40	40
72 73	ERELVRKTR ERRNKYLEEHPSAGKDPKKT	H1N1 H3N2	PB2 NP	H-2-D CLASS I HLA-DR1	MOUSE HUMAN	100	100	100	100	100	100	100	95	100 95	95	100		95	95	100 95	95	95
74 75	EVHIYYLEKANKIKS EVSHCRATEYIMKGV	H3N2 H3N2	PA PA		MOUSE MOUSE	100	100 100	100 100				100	100 100	100 100	100 100	93 100	100 100	100 100		100 100		93 100
76	FEANGNLI	H1N1;H1N2	HA	H-2-KK;MAMU-	MOUSE						100		63	50	63	63	50	50	50	63		75
	-	,		A*11											_							

Table	7. Conservancy analysis of T cell linear epit	tope sequences							H1N	1						H3	N2				H5N	1
No.	Sequence	Influenza Source Subtype	Source Protein	MHC Restriction Allele(s)	Host Species	A/Brevig Mission/1/18	A/New Caledonia/20/99	A/PR/8/34	A/Taiwan/1/86	A/Texas/36/91	A/USSR/90/77	A/WS/33	A/Bangkok/1/79	A/Beijing/353/89	A/England/42/72	A/Hong Kong/1/68	A/Leningrad/360/86	A/New York/5/2004	`			A/Viet Nam/1194/2004
77 78	FEDLRVLS FEDLRVLSF	H3N2 H11N6	NP NP	HLA-B37 H-2-KK;HLA-B44	HUMAN	89	88 89	100		89	88 89	88	89	88	88	100	88	88		88		88
79	FERFEIFPK	H1N1	HA	H-2-IED	MOUSE		100			100			44	44	56	56	44	44				56
80	FERFEIFPKE	H1N1	HA	H-2-D CLASS II	MOUSE	80	100	100			100	90	40	40	50	50	40	40				50
81	FESTGNLI	H2N2	HA	H-2-KK;MAMU- A*11	MOUSE	88	75	75	75	75	75	88	63	75	63	63	75	75	75	63	75	75
82 83	FFPSSSYRRPVGISS FITEGFTWTGVTQNGGSNAC	H3N2 H3N2	PB1 HA	H-2-KB H-2-IAK	MOUSE MOUSE	100 30	100 35	100 30	100 30	100 35	100 30	100 30	100	100 65	100 95	100	100 75	100 70		100 95		100 30
84	FNKACELTDSSWIEL	H3N2	PA		MOUSE MOUSE	100	93	100	93	93	93	100	93	93	93	93	93	93	93	93	100	100
85 86	FSVIFDRL FVERSKAYSNCYPYDV	H1N1;H3N2 H3N2	NS1 HA	H-2-KB HLA-DRB1*0701	HUMAN	31	31	100 31		100 31		100 31	94	100	94	94	100 88	100		100 94		100 31
87	FVFTLTVPSER	H1N1	M1	HLA-DR4	HUMAN	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
88	FWRGENGRKTRIAYE FWRGENGRKTRSAYERMCNILKGK	H3N2 H3N2	NP NP	H-2-D CLASS	MOUSE HUMAN;MOUSE	93	100 96	100 96	96	100 96	100 96	93 92	100	100	93 96	100	100	93 100		93 96		93
90	FYIQMCTEL	H1N1;H2N3	NP	II;HLA-DR1 H-2-D CLASS I;H	MOUSE						100								100	-	100	
91	GACPRYVKQNTLKLAT	H3N2	НА	2-KD HLA- DRB1*0401;HLA- DRB1*0701	HUMAN	50	44	44	44	44	44	44	94	100	94	94		100				69
92	GACPRYVKQNTLKLATGMRNV	H3N2	HA	HLA-DR	HUMAN	52	48	48	48	48	48	48	95	100	95		100	100	100	95	67 80	67
93 94	GAKPEEMSFQGRGVFELSDEKAANP GDDATAGLTHMMIWH	H3N2 H3N2	NP NP		HUMAN MOUSE	76 93	93	80 100	93	93		76 100	100	100	100	100	100	93	93	88 100	93 93	80 87
95	GDPHCDGFQCKEWDLFVERSKAYSNCY PYDVPDYAS		НА		HUMAN	22	22	22	19	19	22	22	89	97	83	86	86	92	97	89	22	22
96	GEISPLPSL	H3N2	NS1	HLA-B44;MAMU- A*11		100	100						89	89		100	89	89				100
97	GENMAPEKVDFDDCK	H3N2	PA	LLO DD.III A D44	MOUSE		100	100			100		87	87	87	87	87	87				93
98	GERQNATEI GGLPFSLL	H1N1 H1N1	NP	H-2-DB;HLA-B44 H-2-KB	MOUSE	63	63	100 63		100 63		63	63	100 63	63	100 63	63	63				63
100	GILGFVFTL	H1N1;H3N2;H5N 1	M1	HLA-A*0201;HLA A*020101;HLA- A*0203;HLA- A*0206;HLA- A2;HLA-A2.1	HUMAN;MOUSE						100								100			
101	GILGFVFTLT	H1N1	M1	HLA-A*0201;HLA A2	HUMAN;MOUSE	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	<mark>100</mark>
102	GILGFVFTLTV	H3N2	M1	HLA-A2;HLA- AW69	HUMAN	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
103	GIPLYDAI	H1N1	PA	H-2-KB	MOURE	100	100				100		100		100	100	100					100
104 105	GKICNNPHRILDGIDCTLID GKLSTRGVQIASNEN	H3N2 H3N2	HA NP	H-2-K CLASS II	MOUSE MOUSE	30 100	30 100	30 100		30 100		30 100	75 100	75 100	95 100	100	75 100	70 100	100	100	93	30 93
106 107	GKNTDLEVLMEWLKTRPILS GLRISSSFSFGGFTF	H1N1 H3N2	M1 PB2	HLA-A2	HUMAN MOUSE	95 100	95 100	100	95 100	95 100		100	95 100	95 100	95 100	95 100	95 100	95 100	95 100	95 100		95 100
108	GNGCFKIYHKCDNACI	H3N2	НА	HLA- DRB1*0101;HLA- DRB1*0701	HUMAN	31	69	75	69	69	69	75	100	100	31	100	100	100	100	100	75	75
109	GPAVASGYDFEKEGYSLVG GPLKAEIAQRLE	H3N2	NP M1	HLA-DR1	HUMAN HUMAN	95	100	95 100	95 100	100		89 100	95 100	95 100	100	100	95 100	95 100		100		89 92
111	GRICDSPHRILDGKNCTLIDALLGDPHCD		HA	HEROTT	HUMAN	24	24	24		24	21	24	94	97	76	76	94	85				26
112	GFQCK GRIQDLEKYVEDTKIDLWS	H3N2	HA	HLA-DR	HUMAN	32	37	37	37	37	37	37	100	100	32	100	100	100	100			42
113	GSNACKRGPGSGFFS GTGQAADLKSTQAAI	H3N2 H3N2	HA HA		MOUSE MOUSE	40 73	40 73	40 73	40 73	40 73	40 73	33 73	67 100	60 100	87 33	100	60 100	53 100				40 67
115	GTMVMELIRMIKRG GWKEPNVVKPHEKGI	H2N2	NP		MOUSE	100	93	93	93	93	93	100	100	100	100	100	100	100		100	100	100
116	GYKEPNVVKPHEKGI GYEEFTMV	H3N2 H1N1	PA PB2	H-2-KB	MOUSE	100	100	100 100	88	87 100	93 100	100 100	100	100	100	87 100	100	100	100	100	100	93 100
118 119	GYKDWILWI HEKGINPNYLLSWKQ	H3N2 H3N2	HA PA	H-2-D CLASS I	MOUSE MOUSE	56 93	56 93	56 100		56 93		56 100	100 93			100	100 93	100 93		100		56 93
120	HHPSTDRDQTSLYVRASGRVTVSTKRS QQTVTPNI	H3N2	HA		HUMAN	43	34	37				37	86		80	80						34
121	HNTNGVTAACSHE	H1N1	HA	H-2-IAD	MOUSE	62	54	69	69	54	62	69	38	38	38	38	38					38
122 123	HRILDGIDCTLIDALLGDPHC HTIDLTDSEMNKLFE	H3N2 H3N2	HA HA	H-2-IAD	MOUSE MOUSE	33 40	29 40	33 40	29 40	29 40	29 40	33 40	90 100	90 100	95 40	100	90 93	81 100	100			38 40
124	IAPRGYFKIRNGKSSIMRSDAPIGTCSSE CIT	H3N2	HA		HUMAN	31	28	25				25	97	97	91	88	97	91				31
125	IASNENMDAMESSTLE	H2N2	NP		MOUSE	81	88	88	88	81	88	88	94	94		100		88				81
126	IASNENMETMESSTLE	H1N1	NP	H-2-DB H-2-KK;MAMU-	MOUSE		75			75			94	88	94	88	88	81		94 70		70
127	IEGGWTGMI IGSIRNGTYDHDVYRDEALNNRFQIKGVE	H1N1	HA	A*11	MOUSE	100					100		67		67	78	67			-		78
128	LKSGYKD	H3N2	HA		HUMAN	22		42				44		100					100			44
129 130	IHHPSTNQEQTSLYVQAS ILAIYSTVASSL	H3N2 H1N1	HA HA	H-2-IAD H-2-KD	MOUSE MOUSE	50 42	33 100	39 100	33 100	33 100		50 100	72 42	67 42	89 42	94 42	67 42	61 42	61 42	89 42		50 92
131 132	ILRGSVAHK ILTGNSSLCPIRGWAIYSKDN	H3N2 H1N1	NP NA	HLA-A3 H-2-IED	HUMAN MOUSE	100	100		100		100	100 95	100 38	100 38	100 38	100 38	100 38		100	100 38		100 81
133	INDRNFWRGENGRKT	H3N2	NP	H-2-B CLASS II	MOUSE	93	100	100	100	100	100	93	100	100	100	100	100	100	100	100		93
134 135	INSNGNLIAPRGYFK INSNGNLIAPRGYFKMRTGKSS	H3N2 H3N2	HA HA	H-2-B CLASS II H-2-IEK	MOUSE MOUSE	47 41	53 45	60 50		53 45	53 45	47 41	100 95		100	100	93 91	93 86				53 41
136	IRGWAIYSKDNSIRI	H1N1	NA	H-2-IED	MOUSE	87	87	100	93	93	100	87	67	67	67	67	67	67	67	67	93	87
137	IRPNENPAHKSQLVW ISPLMVAYM	H3N2 H2N2;H3N2	NP PB2	H-2-B CLASS II H-2-D CLASS I;H 2-DB;H-2-	MOUSE			100			100				100					100		100 89
139	ITYGACPKYVKQNTL	H3N2	HA	KB;MAMU-A*01	MOUSE		53					53	100			100		93	93			67
140 141	ITYSSSMMWEINGPE IWHSNLNDTTYQRT	H3N2 H3N2	PB2 NP		MOUSE HUMAN	93 93	100 100	100 93	100			100 93	100 100	100 100	100	100 100	100 100			100		100 93
142	IYATVAGSL	H2N2	HA	H-2-KD	MOUSE	56	78	78	78	78	78	78	44	44	44	44	44	44	44	44	78	78
143	IYSTVASSL	H1N1	HA	H-2-D CLASS I;H 2-KD	MOUSE	44	100	100	100	100	100	100	56	56	56	56	56	56	56	56	100	100

Table	7. Conservancy analysis of T cell linear epit	ope sequences							H1N	1						НЗ	N2				Н5	N1
No.	Sequence	Influenza Source Subtype	Source Protein	MHC Restriction Allele(s)	Host Species	A/Brevig Mission/1/18	A/New Caledonia/20/99	A/PR/8/34	A/Taiwan/1/86	A/Texas/36/91	A/USSR/90/77	A/WS/33	A/Bangkok/1/79	A/Beijing/353/89	A/England/42/72	A/Hong Kong/1/68	A/Leningrad/360/86	A/New York/5/2004	A/Panama/2007/99	A/UDORN/307/72	A/Hong Kong/156/97	A/Viet Nam/1194/2004
144	IYSTVASSLVL	H1N1	HA	H-2-KD;HLA-B37	MOUSE	36	100	100	100	100	100	100	55	55	55	55	55	55	55	55	91	91
145	IYWTIVKPGDILLINS	H3N2	НА	HLA- DRB1*0101;HLA- DRB1*0701	HUMAN	38	38	44	38	38	38	38	100	100	94	88	100	100	100	94	44	44
146	IYWTIVKPGDILLINSTGNLIAPRGYFKIRN	H3N2	HA	II O DDAMAMII	HUMAN	45	42	48	42	42	42	45	94	97	87	84	97	97	97	87	45	45
147	KEIGNGCFEF	H1N1	HA	H-2-DB;MAMU- A*11		40			100				50	50	40	50	50	50	50	50	90	90
148 149	KEVNARIEPFLKTTP KFLLMDALKLSIEDP	H3N2 H3N2	PA PA		MOUSE MOUSE	100	100 93	100	100	93	100		93 100	93 100	100	93 100	93 100	87 100	93 100	100	100 100	100
150	KGEIRRIWRQANNG	H3N2	NP	HLA-A*02;HLA-	HUMAN	93	93	93	93	93	93	93	93	93	93	93	93	93	93	93	93	93
151	KGILGFVFTLTV KGVELKSGYKDWILWISFAISCFLLCVVL	H1N1;H2N2	M1	A*0201;HLA-A2	HUMAN;MOUSE	100	100		100				100					100		100		100
152	LGFIM	H3N2	HA		HUMAN	24	35	35	35	35	35	35	100	100	26	100	100	97	100	100	24	24
153	KIDLWSYNAELLVALE	H3N2	НА	HLA- DRB1*0101;HLA- DRB1*0701;HLA- DRB1*1302;HLA- DRB1*1501	HUMAN	31	69	69	69	69	69	69	100	100	31	100	100	94	100	100	63	63
154	KIDLWSYNAELLVALENQHTI	H3N2	HA	HLA-DR	HUMAN	24	62	62	62	62				100		100			100		57	57
155 156	KIYHKCDNACIGSIRN KLKNSYVNKKGK	H3N2 H1N1	HA HA	HLA-DRB1*0701 H-2-IED	HUMAN MOUSE	38 75	50 58	63 100	50 58	50 58			100 42	100 50	31 42	94 42	100 50	100 50	100 50	100 42	56 42	63 42
157	KLSTRGVQIASNEN	H1N1	NP	Z-ILU	HUMAN	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	93	93
158 159	KQNTLKLATGMRNVP KQYDSDEPELRSLAS	H3N2 H3N2	HA PA	<u> </u>	MOUSE MOUSE	47 100	40 87	40 100	40 93	40 93	93	100	93	100 93	100 93	100 93	100 93	100 93	100 93	100 93	67 93	67 87
160 161	KRMGVQMQR KRYGPALSI	H7N1 H3N2	M1 PB2	HLA-DP HLA-B*27052/KB	HUMAN MOUSE	100 89	100 89	100 89	100 89	100 89			100 89	100 89	100 89	100 89	100 89	100 89	100 89	100 89	100	100
				HLA-A68;HLA-									-									
162 163	KTGGPIYKR KTGGPIYRRVNGKWM	H3N2 H3N2	NP NP	AW68	HUMAN MOUSE	89	100	100	100	100	100 87	89	89 93	100	100	87	87	100	89 93	100 87	89	89
164	KYVKQNTLKL	H3N2	HA	H-2-IED	MOUSE	50	50	50	50	50			100	90	100	100	90	90	90	100	70	70
165	LEFINEDFNWTGVAQDGGSYACKRGSV NSF	H3N2	HA		HUMAN	23	23	23	23	23			87	90	73	67	87	67	73	67	27	27
166 167	LEFITEGFTWTGVTQNGGSNA LEFITEGFTWTGVTQNGGSNAC	H3N2 H3N2	HA HA	H-2-IAK H-2-IAK	MOUSE MOUSE	29 27	29 32	29 27	29 27	29 32			81 82	67 68	95 95	100	76 77	71 73	67 68	95 95	29 27	29 27
168 169	LELRSRYWA LELRSRYWAI		NP NP	HLA-B44 HLA-B44		100	100	100	100	100	100	100	100	100 100	100 100	100 100	100	89 90	89 90	100 100	100	100
170	LELRSRYWAIRTRSGGNTNQQRAS	H3N2	NP	H-2-D CLASS	HUMAN;MOUSE							100	100		100			96	96	100	_	100
171	LENFRAYVDGFEPNG	H3N2	PA	II;HLA-DR4	MOUSE	100		100			100		100				100			100		100
172 173	LENLQAYQKR LGLDIETATRAGKQIVERI	H7N1 H1N1	M1 NS1	HLA-DQ H-2-KD	HUMAN MOUSE	90 100	100 84	100 100	100 79	100) 100 84		90 79	90 74	100 74	100 84	90 74	90 74	90 74	100 74	90 84	100
174	LIDALLGDP LIEKTNEKFHQIEKEFSEVEGRIQDLEKYV	H3N2	HA	H-2-IAD	MOUSE	44	44	56	44	44			100	100	100	100		100	100	100	44	44
175	EDTKI	H3N2	HA		HUMAN	26	40	40	40	40			97	100	26		100	97	100		37	37
176 177	LKGKFQTAAQRAMMDQVRES LKLATGMRNVPEKQT	H3N2 H3N2	NP HA		HUMAN MOUSE	100 53	95 47	95 47	100 47	47			100	100	100	100	100	95 100	95 100	100	100 53	100 53
178 179	LKTTPRPLRLPNGPP LKYNGIITETI	H3N2 H1N1	PA NA	H-2-IAD;H-2-KD	MOUSE MOUSE	93 91	87 100	100 100	87 100	87 100	87) 100	87 0 100	80 36	87 36	80 36	87 36	80 36	80 45	87 36	80 36	93 91	93 91
180	LLCVVLLGFIMWACQKGNIRCNICI	H3N2	HA	112 010,112 110	HUMAN	24	40	40	40	40	40			100	24	96	100	96	100	100	36	24
181 182	LLQNSQVYSLIRPNE LPACVYGPAVASGYD	H3N2 H3N2	NP NP	H-2-B CLASS II	MOUSE MOUSE	100	93 100	100 100	93	93 93	93 93	93	93	100 93	100	100	100 93	100 93	100 87	100	93	93
183 184	LPFDKPTIM LPFDKSTIM	H3N2 H3N2	NP NP	HLA-B*3501 HLA-B*3501	HUMAN HUMAN	67 67	89 89	78 78	89 89	89 89	89 89	89 78	78 89	67 78	100	100 89	67 78	67 78	67 78	100	67 67	67 67
185	LPFDRTTVM	H1N1	NP NP	HLA-B7		67		100	78 67	78 67	78	78	78	67	67	67 67	67	67	67	67	67	67
186 187	LPFEKSTVM LPRRSGAAGAAVKG	H3N2 H3N2	NP	HLA-B*3501	HUMAN HUMAN	100		100				100								100		100
188 189	LRGSVAHKSCLPACV LRSRYWAI	H3N2 H3N2	NP NP	HLA-B*2702	MOUSE HUMAN				100	100	100	100			100 100				100 88	100	100 100	100
190 191	LRVLSFIRGTKVSPRGKLSTRG LSLRNPILV	H3N2 H1N1	NP PB1	H-2-DB;H-2-KB	HUMAN MOUSE	86 56	86 44	91 44	86 44	86 44	91 44	91 44	95 44	95 44		100 44		95 44	95 44	95 44	82 56	82 56
192 193	LSQMSKEVNARIEPF LSSRISIYWTIVKPGDVLVI	H3N2 H3N2	PA HA	H-2-IEK	MOUSE MOUSE	100 35	100 40	100		100	100	100	93		100	93 100	93	93	93	100 95	100	100 40
194	LSWKQVLAELQDIEN	H3N2	PA		MOUSE	93	87	100	93	93	100	100	100	93	100	100	93	87	93	100	93	93
195 196	LTKGILGFVFTLTVPSERG LVKTITNDQIEVTNATELVQSSSTGRICDS	H2N2 H3N2	M1 HA	HLA-A2.1	HUMAN	23	100 23	100 23	100 23					100	100 91		100		100 97	100 91	100 26	100 26
197	PHRIL LYEKVKSQL	H1N1	НА	H-2-KD	MOUSE	44) 100		56	56	44		56	56	56	56	67	67
198 199	LYIWGIHHPSTNQEQTSLYVQAS LYIWGVHHPSTNQEQTSLYVQAS	H3N2 H3N2	HA HA	H-2-IAD;H-2-IED H-2-IAD	MOUSE MOUSE	52 57	39 43	43 39	39 43	39 43	39	52		74 78	91	96	74 78	70 74	70 74	91	48	52 48
200	LYQNVGTYV	H2N2	HA	H-2-KD	MOUSE	67	56	56	56	56	56	56	56	56	56	56	56	56	56	56	67	67
201	LYQNVGTYVS MELVRMIKRGINDRN	H2N2 H3N2	HA NP	H-2-KD	MOUSE	70 93	50 87	60 100		87	87	93	93	50 93	50 93	50 93	50 93	50 93	50 87	50 93	70 93	70 93
203 204	METMESSTLELRSRY MGLIYNRM	H3N2 H1N1;H2N2	NP M1	H-2-KB	MOUSE MOUSE	93 100	73 100		87 100	73 100	87		93 100	87 100	93 100	87 100	87 100	73 100	73 100	93 100	100	100
205	MIKRGINDRNFWRGE MLIIW	H3N2 H2N2	NP HA	H-2-B CLASS II H-2-M3	MOUSE MOUSE	100	100	100	100 60	100	100	100	100			100	100	100 60	93	100	100	
207	MMIWHSNLNDATYQR	H3N2	NP	H-2-M3 H-2-B CLASS II	MOUSE	100	87	100	87	87	93	100	93	93	93	93	93	100	93	93	100	93
208	MRTFFGWKEPNVVKP MRTGKSSIMRSDAPI	H3N2 H3N2	PA HA	H-2-B CLASS II	MOUSE MOUSE	100 47	93 40	100 40	93	93 40	93 40		93	80 93	87 100	87 100	87 93	73 87	73 87	100	73 40	87 40
210 211	MVLSAFDERRNKYLE NACIESIRNGTYDHD	H3N2 H3N2	NP HA		MOUSE MOUSE	100 33	100 60			100	100	100	93 93	93		100 93		93 93	93 93	93 93	93	93 67
212	NAYVSVVTSNYNRRF	H1N1	HA	H-2-IAD	MOUSE	73	80	100	87	80	93	87	33	33	33	33	33	33	33	33	47	47
213 214	NCTLIDALLGDPH NDKPFQNVNRITYGAC	H3N2 H3N2	HA HA	H-2-IAD HLA-DR	MOUSE HUMAN	38 44	38 50	38 44	38 50	50	44	44	94	100	92 94	92 94		92 100	100 100	92 94	38 38	38
215 216	NETWDLFVERSKAFSNC NFSVIFDR	H3N2 H1N1	HA NS1	H-2-IAD	MOUSE MOUSE	29 100	29 100	29 100	29 100				94 100	82 100		100 100		82 100	82 88	100 100	29 88	29 100
217	NGRKTRIAYERMCNI	H3N2	NP	Покр	MOUSE	93	100	100	100	100	100	93	93	93	93	93	93	93	93	93	93	93
218	NGYIEGKL	H1N1	PA	H-2-KB		100	100	100	100	100	ı 10(100	88	88	ජර්	100	88	88	88	88	88	88

. anie	7. Conservancy analysis of T cell linear epit	tope sequences							H1N1							Н3	N2				H51	N 1
No.	Sequence	Influenza Source Subtype	Protein	MHC Restriction Allele(s)	Host Species	A/Brevig Mission/1/18	A/New Caledonia/20/99	A/PR/8/34	A/Taiwan/1/86	A/Texas/36/91	₹	A/WS/33	A/Bangkok/1/79	A/Beijing/353/89	A/England/42/72	A/Hong Kong/1/68	A/Leningrad/360/86	A/New York/5/2004	A/Panama/2007/99	A/UDORN/307/72	A/Hong Kong/156/97	A/Viet Nam/1194/2004
219	NNPHRILDGIDC NPAHKSQLVWMACHS	H3N2 H3N2	HA NP	H-2-IAK	MOUSE MOUSE	42 100	42 93	42 100	42 93	42 93		42 100	67 100	67 100	92 93	100 93	67 100	58 100	58 100		42 100	42 100
221	NSEGTGQAADLKSTQAAIDQINGKLNRLI EKTNEKFH	H3N2	HA		HUMAN	22	54	54	54	54	54	54	97	100	22	97	100	95	97	97	43	49
222 223	NSNGNLIAPRGYFKMRTGKS NVKNLYEKVK	H3N2 H1N1	HA HA	H-2-IEK HLA-A*11	MOUSE	40 40	45 100	50 100	45 100	45 100		40 100	95 40	90 40	100 40	100 40	90 40	85 40	85 40	100 40	40 80	40
224	NVVKPHEKGINPNYL	H3N2	PA	TILA-A TI	MOUSE	100	87	100	87	87	93	100	80	80	87	87	80	80	80	87	87	93
225 226	NYFTSEVSHCRATEY PIGTCSSECITPNGSIPNDKPFQNVNRITY	H3N2 H3N2	PA HA		MOUSE HUMAN	93 42	93 45	100 39	93 42	93 42		93 42	93 97	100	93 94	93 91	93 97	93 94	93	93 94	93 39	93 39
227	GAC PKKTGGPIYKRVD	H3N2	NP		HUMAN	85	100		100			92	92		100			100			85	85
228	PKYVKQNTLKLA		HA	HLA-DR1	HUMAN	50	42	42	42	42		42	100	92	100	100	92	92	92	100	75	75
229	PKYVKQNTLKLAT	H3N2	на	H-2-IED;HLA- DR1;HLA- DR3;HLA- DR4;HLA- DR7;HLA- DR81*0101;HLA- DR81*0102;HLA- DR81*0302;HLA- DR81*0302;HLA- DR81*0402;HLA- DR81*0402;HLA- DR81*0405;HLA- DR81*077;HLA- DR81*077;HLA- DR81*101;HLA- DR81*101;HLA- DR81*101;HLA- DR81*101;HLA- DR81*101;HLA- DR81*101;HLA- DR81*101;HLA- DR81*1101;HLA- DR81*1101;HLA- DR81*1101;HLA- DR81*1101;HLA- DR81*1101;HLA- DR81*1101;HLA- DR81*1101;HLA- DR81*1101;HLA- DR81*1101;HLA- DR81*111	HUMAN;MOUSE	54	46	46	46	46	46	46	100	92	100	100	92	92	92	100	77	77
230 231	PKYVKQNTLKLATG PKYVRSAKLRMVT	H3N2	HA HA	H-2-IED	MOUSE	57 85	50 100	50 100	50 92	50 92	50 92	50 92	100 46	93 46	100 46	100 46	93 46	93 46	93 46	100 46	79 54	79 54
232	PLKAEIAQRLEDV	H7N7	M1	HLA- DRB1*0101;HLA-	HUMAN	100	92				100								100		100	92
233	PNENPAHKSQLVWMACNS	H3N2	NP	DRB1*010201	HUMAN	94	100	94	100	100	100	94	94	94	100	100	94	94	94	100	89	94
234 235	PNFSSLENFRAYVDG PNGPPCSQRSKFLLM	H3N2 H3N2	PA PA	H-2-DB	MOUSE MOUSE	100 93	87 87	100	93	93	93	100 93	93	93 93	93	93	93	93 93	93 93	93	100 93	100 93
236	PNGYIEGK	H1N1	PA			93			100	100	100	100	88	33	88	100	88	88	88	99	88	88
237	PRMCSLMQGSTLPRR	1111141			MOUSE	100	100						00	88						00		100
238 239		H3N2	NP	H-2-B CLASS I	MOUSE	100	100					100		100		100		100	100		100	100
	PSFDMSNEGSYFFGDNAEEYDN PSTNOFOTSLYVOAS	H3N2 H3N2	NP NP		MOUSE HUMAN	100 100 100 47	100 100	100	100	100	100 1	100	100	100	100	100 95	100	32	95	100	100	32
240	PSTNQEQTSLYVQAS QDLEKYVEDTKIDLWS	H3N2	NP	H-2-B CLASS II	MOUSE	100 100 100 47 31	100				100 °	_	100 73		100 93	100 95 100				100 93		32 40 38
240	PSTNQEQTSLYVQAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ	H3N2 H3N2 H3N2	NP NP HA		MOUSE HUMAN MOUSE	47	100 100 33	100 33	100 33	100 33	33 38	100 47	73 100	100 67	100 93	100 95 100	100 67 100	32 60	95 60 100	100 93	100 40	40
241	PSTNQEQTSLYVQAS QDLEKYVEDTKIDLWS	H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA		MOUSE HUMAN MOUSE HUMAN HUMAN	47 31 25	100 100 33 38 56	33 38 56	33 38 56	33 38 56	33 38 56	100 47 38 53	73 100 100	100 67 100 100	93 31 25	100 95 100 100	100 67 100 97	32 60 100 97	95 60 100 100	100 93 100 100	40 38 53	38 53
241 242	PSTNOEDTSLYVGAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPGNDNSTATLCLGHHAVPNGTLVKT ITNDOIE	H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA		MOUSE HUMAN MOUSE HUMAN HUMAN	47 31	100 100 33 38	33 38	33 38	33 38	33 38 56	100 47 38	73 100	100 67 100 100	93 31	100 95 100 100	100 67 100	32 60 100 97	95 60 100	100 93 100	100 40 38	40 38
241 242 243	PSTNQEQTSLYVQAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPGNDNSTATLCLGHHAVPNGTLVKT	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA M1		MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN MOUSE	47 31 25 23 93	100 100 33 38 56 23	100 33 38 56 23	100 33 38 56 23	100 33 38 56 23	100 33 38 56 23 87	100 47 38 53 23	73 100 100 100 97	100 67 100 100 100 87	93 31 25 97 87	100 95 100 100 100 94 87	100 67 100 97 100 87	32 60 100 97 97 87	95 60 100 100 97 87	100 93 100 100 94 87	100 40 38 53 23	40 38 53 23 87
241 242 243 244	PSTNOEDTSLYVQAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPGNDNSTATLCLGHHAVPNGTLVKT ITNOQIE QMVQAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKQT	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA HA	H-2-B CLASS II	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN	47 31 25 23 93 47	100 100 33 38 56 23 87 47	100 33 38 56 23 93 44	100 33 38 56 23 87 47	100 33 38 56 23 87 47	100 33 38 56 23 87	100 47 38 53 23 93 44	73 100 100 97 87 94	100 67 100 100 100 87 100	93 31 25 97 87 94	100 95 100 100 100 94 87	100 67 100 97 100 87 97	32 60 100 97 97 87 100	95 60 100 100 97 87 100	100 93 100 100 94 87	100 40 38 53 23 93 50	40 38 53 23 87 50
241 242 243 244 245	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPGNDNSTATLCLGHHAVPNGTLVKT ITNOOIE OMVOAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKCT QVYSLIRPNENPAHK	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA NP		MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN MOUSE	47 31 25 23 93	100 100 33 38 56 23 87 47	100 33 38 56 23 93 44	100 33 38 56 23 87 47	100 33 38 56 23 87 47	100 33 38 56 23 87 44	100 47 38 53 23 93 44	73 100 100 97 87 94	100 67 100 100 100 87 100	93 31 25 97 87 94	100 95 100 100 100 94 87 94 100	100 67 100 97 100 87 97	32 60 100 97 97 87 100	95 60 100 100 97 87 100	93 100 100 94 87 94 100	100 40 38 53 23 93 50	40 38 53 23 87
241 242 243 244 245 246 247	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPGNDNSTATLCLGHHAVPNGTLVKT ITNOOIE QMVQAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKQT QVYSLIRPNENPAHK RASVGKMIDGIGRRY RATEYJMKGVYINTA	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA NP NP NP PA	H-2-B CLASS II	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE	47 31 25 23 93 47 100 87	100 100 33 38 56 23 87 47 100 87	100 33 38 56 23 93 44 100 93 100	100 33 38 56 23 87 47 100 93 100	100 33 38 56 23 87 47 100 93 100	100 33 38 56 23 87 44 100 100	100 47 38 53 23 93 44 100 100	97 87 94 100 100	100 67 100 100 100 87 100 100 100	93 31 25 97 87 94 100 100	95 100 100 100 94 87 94 100 93 100	100 67 100 97 100 87 97 100 100	32 60 100 97 97 87 100 100 93	95 60 100 100 97 87 100 100 100	93 100 100 94 87 94 100 100	100 40 38 53 23 93 50 87 80 100	40 38 53 23 87 50 93 80 100
241 242 243 244 245 246	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPGNDNSTATLCLGHHAVPNGTLVKT ITNOGIE QMVQAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKOT QVYSLIRPNENPAHK RASVGKMIDGIGRFY RATEYIMKGVYINTA RELLYDKEEIRRIW	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA NP NP	H-2-B CLASS II	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN MOUSE HUMAN	47 31 25 23 93 47 100 87	100 100 33 38 56 23 87 47 100 87	100 33 38 56 23 93 44 100 93	100 33 38 56 23 87 47 100 93	100 33 38 56 23 87 47 100 93	100 33 38 56 23 87 44 100 100	100 47 38 53 23 93 44 100	73 100 100 97 87 94 100	100 67 100 100 100 87 100 100	93 31 25 97 87 94 100 100	100 95 100 100 100 94 87 94 100 93	100 67 100 97 100 87 97 100 100	32 60 100 97 97 87 100 100	95 60 100 100 97 87 100 100	93 100 100 94 87 94 100	100 40 38 53 23 93 50 87 80	40 38 53 23 87 50 93 80 100
241 242 243 244 245 246 247	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPGNDNSTATLCLGHHAVPNGTLVKT ITNDOIE QMVOAMITIGTHPSS QNVNRITYGACPRYVKONTLKLATGMRN VPEKQT QVYSLIRPNENPAHK RASVGKMIDGIGRPY RATEYIMKGVYINTA RELILYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA NP NP NP PA	H-2-B CLASS II	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE	47 31 25 23 93 47 100 87	100 100 33 38 56 23 87 47 100 87	100 33 38 56 23 93 44 100 93 100	100 33 38 56 23 87 47 100 93 100 93	100 33 38 56 23 87 47 100 93 100	33 38 56 23 87 44 100 100 93	100 47 38 53 23 93 44 100 100 100	97 87 94 100 100 97 87 94 100 100	100 67 100 100 100 87 100 100 100	93 31 25 97 87 94 100 100 100 93	100 95 100 100 100 94 87 94 100 93 100 93	100 67 100 97 100 87 97 100 100	32 60 100 97 97 87 100 93 100 93	95 60 100 100 97 87 100 100 100 100 93	93 100 100 94 87 94 100 100 100 93	100 40 38 53 23 93 50 87 80 100	40 38 53 23 87 50 93 80 100
241 242 243 244 245 246 247 248 249 250	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPGNDNSTATLCLGHHAVPNGTLVKT ITNDQIE QMVQAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKOT QVYSLIRPNENPAHK RASVGKMIDGIGRFY RATEYIMKGVYINTA RELLYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN GTYDH RFYIQMCTEL	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA NP NP HA NP HA NP	H-2-B CLASS II	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN	47 31 25 23 93 47 100 87 100 21	100 100 33 38 56 23 87 47 100 87 100 93 58	100 33 38 56 23 93 44 100 93 100 100 64	100 33 38 56 23 87 47 100 93 100 93 58	100 33 38 56 23 87 47 100 93 100 93 58	33 38 56 23 87 44 100 100 93 58	100 47 38 53 23 23 93 44 44 100 100 100 64	97 87 94 100 100 100 100 100 100 100 100 100 10	100 67 100 100 100 87 100 100 93 100	93 31 25 97 87 94 100 100 93 27	95 100 100 100 100 94 87 94 100 93 100 93 94	100 67 100 97 100 87 97 100 100 93 100	32 60 100 97 97 87 100 93 100 93	95 60 100 100 97 87 100 100 100 93 100	93 100 100 94 87 94 100 100 93 100	100 40 38 53 23 93 50 87 80 100 100 64	40 38 53 23 87 50 93 80 100 100 67
241 242 243 244 245 246 247 248 249 250 251	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLITDS QKLPONDNSTATLCLGHHAVPNGTLVKT ITNODIE QMVQAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKQT QVSLIRPNENPAHK RASVGKMIDGIGREY RATEYIMKQVYINTA RELILYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN GTVDH RRYIQMOTEL RGEETIEERFEITGT	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA NP PA NP PA	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE MOUSE MOUSE	47 31 25 23 93 47 100 87 100 21 100 100	100 100 33 38 56 23 87 47 100 87 100 93 58	100 33 38 56 23 93 44 100 93 100 64 100	100 33 38 56 23 87 47 100 93 100 93 100 100	100 33 38 56 23 87 47 100 93 100 93 58 100	33 38 56 23 87 44 100 100 58 100	100 47 38 53 23 23 93 44 1100 1100 1100 64 1100 1100 1100 1100	73 1100 1100 97 87 94 94 1100 1100 93 1100	100 67 100 100 100 87 100 100 100 93 100 87	93 31 25 97 87 94 100 100 93 27 100	95 100 100 100 94 87 94 100 93 100 93 100 100	100 67 100 97 100 87 97 100 100 100 93 100 100 80	32 60 100 97 97 87 100 93 100 93 100 100 87	95 60 100 100 97 87 100 100 100 93 100 87	93 100 100 94 87 94 100 100 100 93 100 100	100 40 38 53 23 93 50 87 80 100 100 64 100	40 38 53 23 87 50 93 80 100 100 67
241 242 243 244 245 246 247 248 249 250	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPGNDNSTATLCLGHHAVPNGTLVKT ITNDQIE QMVQAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKOT QVYSLIRPNENPAHK RASVGKMIDGIGRFY RATEYIMKGVYINTA RELLYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN GTYDH RFYIQMCTEL	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA NP NP HA NP HA NP	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN	47 31 25 23 93 47 100 87 100 21 100 100 100	100 100 33 38 56 23 87 47 100 87 100 93 58	100 33 38 56 23 93 44 100 93 100 64 100 100	100 33 38 56 23 87 47 100 93 100 93 100 100	100 33 38 56 23 87 47 100 93 100 93 58 100	100 33 38 56 23 87 44 100 50 58 100 50 100 100 100 100 100 100 100 100	100 447	73 1100 1100 97 87 94 94 1100 1100 93 1100	100 67 100 100 100 87 100 100 100 93 100 87	93 31 25 97 87 94 100 100 93 27	95 100 100 100 94 87 94 100 93 100 93 100 100	100 67 100 97 100 87 97 100 100 93 100	32 60 100 97 97 87 100 93 100 93 100 100 87	95 60 100 100 97 87 100 100 100 93 100	93 100 100 94 87 94 100 100 100 93 100 100	100 40 38 53 23 93 50 87 80 100 100 64	40 38 53 23 87 50 93 80 100 100 67
241 242 243 244 245 246 247 248 249 250 251 252 253 254	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPGNDNSTATLCLGHHAVPNGTLVKT ITNOQIE QMVQAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKOT QVYSLIRPNENPAHK RASVGKMIDGIGREY RATEYIMKGVYINTA RELILYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN GTVDH RFYIQMOTTEL RGEETIEERFEITGT RGLQRRFVQNALNGNG RGVQIASNEMMETIME RIAYERMCNILKGKF	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP NP HA HA HA HA HA NP NP PA NP PA M1 NP NP NP NP NP	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-D CLASS I	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN MOUSE MOUSE MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN	47 31 25 23 93 47 100 87 100 21 100 100 100 93 100	100 100 33 38 56 23 87 47 100 87 100 93 58 100 100 73 100	100 33 38 56 23 93 44 100 64 100 100 100 100	100 33 38 56 23 87 47 100 93 100 100 100 87	100 33 38 56 23 87 47 100 93 100 100 100 73 100	100 33 38 56 23 87 44 100 100 58 100 87 100	1000 47 47 47 47 47 47 47	73 1100 73 1100 1100 97 87 94 1100 1100 93 1100 93 1100	100 67 100 100 100 87 100 100 93 100 87 100 87 100 87	93 31 25 97 87 94 100 100 93 27 100 100 100 93 93 93	95 100 100 100 94 87 94 100 93 100 100 100 87 93	100 67 100 97 100 87 97 100 100 100 93 100 100 80 100 87 93	32 60 100 97 97 87 100 93 100 100 87 100 80 93	95 60 100 100 97 87 100 100 100 93 100 87	93 100 94 87 94 100 100 100 100 100 100 100 100 100 10	100 40 38 53 23 93 50 87 80 100 64 100 100 80 100	40 38 53 23 87 50 93 80 100 67 100 67 100 87 100
241 242 243 244 245 246 247 248 249 250 251 252 253	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLITOS QKLPONDNSTATLCLGHHAVPNGTLVKT ITNOOIE QMVQAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKOT QVYSLIRPNENPAHK RASVGKMIDGIGRRY RATEVIJMKGVYINTA RELILYDKEIRRIW RENAEDMGGCFKIYHKCDNACIGSIRN GTVDH REYIQMCTEL RGEETIEERFEITGT RGLQRRRFVQNALIGNG RGVQIASNENMETME	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA NP NP PA NP HA NP	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-D CLASS I H-2-D CLASS I H-2-D CLASS I H-2-D CLASS I	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN MOUSE	47 31 25 23 93 47 100 87 100 21 100 100 100	100 100 33 38 56 23 87 47 100 87 100 93 58 100 100 73 100	100 33 38 56 23 93 44 100 93 100 100 100 100 100	100 33 38 56 23 87 47 100 93 100 93 100 100 100 87	100 33 38 56 23 87 47 100 93 100 100 100 73	100 33 38 56 23 87 44 100 100 58 100 87 100	100 447 438 53 53 53 44 1100	73 73 1100 97 97 94 94 100 100 93 1100 93 1100 93	100 67 100 100 87 100 100 100 93 100 87 100 87	93 31 25 97 87 94 100 100 93 27 100 100 93	95 100 100 100 94 87 94 100 93 100 93 100 100 100 87	100 67 100 97 100 87 97 100 100 100 100 80 100 87 93	32 60 100 97 97 100 100 93 100 100 87 100 80	95 60 100 100 97 87 100 100 100 100 100 87 100 80	93 100 94 87 94 100 100 100 100 100 100 100 100 93	100 40 38 53 23 93 50 87 80 100 64 100 100 80	40 38 53 23 87 50 93 80 100 67 100 67 100 87 100
241 242 243 244 245 246 247 248 249 250 251 252 253 254	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPGNDNSTATLCLGHHAVPNGTLVKT ITNOQIE QMVQAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKOT QVYSLIRPNENPAHK RASVGKMIDGIGREY RATEYIMKGVYINTA RELILYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN GTVDH RFYIQMOTTEL RGEETIEERFEITGT RGLQRRFVQNALNGNG RGVQIASNEMMETIME RIAYERMCNILKGKF	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP NP HA HA HA HA HA NP NP PA NP PA M1 NP NP NP NP NP	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-D CLASS II H-2-D CLASS II	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN MOUSE MOUSE MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN	47 31 25 23 93 47 100 87 100 21 100 100 93 100 100	100 100 33 38 56 23 87 47 100 93 58 100 100 100 73 100 93	100 33 38 56 23 93 44 100 93 100 64 100 100 100 100 100	100 33 38 56 23 87 47 100 93 100 100 100 100 100 93	100 33 38 56 23 87 47 100 93 100 93 100 100 100 100 73 100 93	100 33 38 56 23 87 44 100 100 58 100 87 100	1000 47 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48	73 100 73 100 100 97 94 94 100 100 93 100 93 100 93 100 93 100 93 100 93 100	100 67 100 100 100 87 100 100 100 93 100 87 100 87 100 87 100 100 87	93 31 25 97 87 94 100 100 100 100 100 100 93 93 87 100	100 95 100 100 100 94 87 94 100 93 100 100 87 93 87 100	100 67 100 97 100 87 97 100 100 100 93 100 100 80 100 87 93 80	32 60 100 97 97 87 100 100 93 100 100 87 100 80 93 73	95 60 100 97 87 100 100 100 100 93 100 80 93 80 100	94 87 94 100 100 94 87 94 100 100 100 100 100 93 100 100 93 87	100 40 38 53 23 93 50 87 80 100 64 100 100 100 100	40 38 53 23 87 50 93 80 100 67 100 67 100 87 100
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLITDS QKLPONDNSTATLCLGHHAVPNGTLVKT ITNOOIE OMVOAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKOT QVYSLIRPNENPAHK RASVGKMIDGIGREY RATEYIMKGVYINTA RELILYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN GTVDH RFYIQMOTEL RGEGTIEERFEITGT RGLORREFVONALINGNG RGVOLASNENMETME RIAYERMCNILKGKF RIEPFLKTTPRPLRL	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP NP HA HA HA HA M1 HA NP PA NP NP NP HA NP PA NP PA NP PA NP PA	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-D CLASS I H-2-D CLASS I H-2-DB H-2-B CLASS I G-2-SAOE-G-702;SAOE-G-712 HLA-A1:HLA-A3:HLA-A3:HLA-A3	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE COTTON-TOP	47 31 25 23 93 47 100 87 100 100 100 100 100 100 100 100	100 100 33 38 56 23 87 47 100 87 100 93 100 100 73 100 93	100 33 38 56 23 93 44 100 93 100 100 64 100 100 100 100 100	100 33 38 56 23 87 47 100 93 100 100 100 87 100 93 100	100 33 38 56 23 87 47 100 93 100 100 73 100 93 100 93	100 33 38 56 23 87 44 44 100 50 50 50 50 50 50 50 50 50 50 50 50 5	1000 47 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48	73 100 73 100 100 97 94 94 100 100 93 100 93 100 93 100 93 100 93 100 93 100	100 67 100 100 100 87 100 100 100 93 100 87 100 87 100 87 100 100 87	93 31 25 97 87 94 100 100 100 100 100 100 93 93 87 100	100 95 100 100 100 94 87 94 100 93 100 100 87 93 87 100	100 67 100 97 100 87 100 100 100 100 100 80 100 87 87 87 88	32 60 100 97 97 87 100 100 93 100 100 87 100 80 93 73	95 60 100 97 87 100 100 100 100 93 100 80 93 80 100	94 87 94 100 100 94 87 94 100 100 100 100 100 93 100 100 93 87	100 40 38 53 23 93 50 87 80 100 64 100 100 100 100	40 38 53 23 87 50 93 80 100 100 67 100 87 100 88 89
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLITOS QKLPONDNSTATLCLGHHAVPNGTLVKT ITNODIE QMVQAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKQT QVSLIRPNENPAHK RASVGKMIDGIGREY RATEYIMKGVYINTA RELILYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN GTVDH RFYIQMCTEL RGEETIEERFEITGT RGLQRRRFVQNALINGNG RGVQIASNENMETME RIAYERMCNILKGKF RIEPFLKTTPRPLRL RKLKREITF	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP NP HA HA HA HA M1 HA NP PA NP PA NP PA M1 NP PA M1 NP PA M1 NP	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-D CLASS I H-2-DB H-2-DB G-12 H-2-DB G-12 H-2-DB G-12 H-2-DB H-2-DB G-12 H-2-DB	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE COUSE HUMAN MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE HUMAN MOUSE MOUSE HOUSE MOUSE MOUSE MOUSE	47 31 25 23 93 47 100 87 100 100 100 100 100 100 100 100	100 100 33 38 56 23 87 47 100 87 100 93 100 93 100 93	100 33 38 56 23 93 44 100 93 100 100 100 100 100 100 100 100	100 33 38 56 23 87 47 100 93 100 100 87 100 93 100	100 33 38 56 23 87 47 100 93 100 100 73 100 93 100 93	100 33 38 56 23 87 44 100 100 100 100 87 100 93 100 100 100 100 100 100 100 10	1000 447 388 447 388 533 933 444 1000 10	100 73 1100 1100 97 87 94 1100 1100 1100 93 1100 93 1100 93 1100	100 67 100 100 100 87 100 100 93 100 87 100 87 100 100 87 100 100 100 100 100 100 100 100 100 10	93 31 25 97 87 94 100 100 93 27 100 100 93 93 87 100	100 95 100 100 100 94 87 94 100 93 100 93 100 100 87 93 87 100 100 100 100 100 100 100 10	100 67 100 97 100 87 97 100 100 100 93 100 100 80 100 87 93 80	32 60 100 97 97 87 100 93 100 93 100 87 100 80 93 100 100 80 100 100	95 60 100 100 97 87 100 100 100 93 100 87 100 80 100 100 100	94 94 94 100 100 94 94 100 100 100 100 100 100 100 100 100 10	100 40 38 53 23 93 50 87 80 100 100 64 100 100 80 100 78	40 38 53 23 87 50 93 80 100 100 67 100 87 100 88 89
241 242 243 244 245 247 248 249 250 251 252 253 254 255 255 256 257	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLITDS QKLPONDNSTATLCLGHHAVPNGTLVKT ITNOOIE QMVQAMITIGITHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKOT QVYSLIRPNENPAHK RASVGKMIDGIGREY RATEYIMKGVYINTA RELILYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN GTVDH REYIQMOTEL RGEGTEERFEITGT RGLQRRFYONALNGNG RGVQIASNENMETME RIAYERMCNILKGKF RIEPELKTTPRPLRL RKLKREITF RLEDVFAGK	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA HA NP NP PA NP PA NP NP PA NP NP	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-D CLASS I H-2-D CLASS I H-2-DB H-2-B CLASS I G-2-SAOE-G-702;SAOE-G-712 HLA-A1:HLA-A3:HLA-A3:HLA-A3	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE MOUSE COTTON-TOP TAMARIN	47 31 25 93 47 100 87 100 21 100 100 100 100 100 100 100 100	100 100 33 85 56 23 87 47 100 87 100 100 100 100 93 100 93 100 93 100 93	100 33 38 56 23 93 44 100 93 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 87 47 100 93 100 100 87 100 93 100 100 100	100 33 38 56 23 87 47 100 93 100 93 100 73 100 93 100 100 100	100 33 38 56 23 87 44 40 100 100 58 100 100 100 100 100 100 100 100 100 10	100	100 73 100 100 97 87 94 100 100 93 100 93 100 93 100 100 93 100 100 100 100	100 67 100 100 87 100 100 100 93 100 87 93 80 100 100 100 100	93 31 25 97 87 94 100 100 93 27 100 100 93 93 87 100	100 95 100 100 94 87 94 100 93 100 93 100 100 87 100 87 100 100 100 100 100 100 100 10	100 67 100 97 100 87 97 100 100 100 80 100 80 100 100 100 100 1	32 60 100 97 97 87 100 93 100 93 100 87 100 80 93 100 100 80 100 100	95 60 100 100 97 87 100 100 100 100 87 100 87 100 100 100 100 100 100 100 100	94 94 94 100 100 94 94 100 100 100 100 100 100 100 100 100 10	100 40 38 53 23 93 50 87 80 100 100 64 100 100 80 100 78	40 38 53 23 87 50 93 80 100 67 100 93 100 87 100 88 89
241 242 243 244 245 246 247 248 250 251 252 253 254 255 256 257 258 258 259 260	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLITDS QKLPONDNSTATLCLGHHAVPNGTLVKT ITNODIE QMVQAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKQT QVYSLIRPNENPAHK RASVGKMIDGIGREY RATEYIMKGVYINTA RELILYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN GTYDH REYIQMOTEL RGECTIEERFEITGT RGLQRREFVQNALNGNG RGVQIASNENNETME RIAYERMCNILKGKF RIEPFLKTTRPPLRL RKLKREITF RLEDVFAGK RLIQNSLTIERMVLS RLIQNSLTIERMVLS RLIQNSLTIERMVLS RLIQNSLTIERMVLS RLIQNSLTIERMVLS RLIQNSLTIERMVLS RLIQNSLTIERMVLS	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA HA NP NP NP PA M1 NP NP PA M1 M1 NP NP NP NP NP NP NP N	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-D CLASS I H-2-DB H-2-DB G-12 H-2-DB G-12 H-2-DB G-12 H-2-DB H-2-DB G-12 H-2-DB	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE	47 31 25 93 47 100 87 100 21 100 100 100 100 100 100 100 100	100 100 33 85 56 23 87 47 100 93 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 44 100 93 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 87 47 100 93 100 100 87 100 100 100 100 100	100 33 38 56 23 87 47 47 100 93 100 100 100 100 100 100 100 100 100	100 33 38 56 23 87 44 100 100 100 93 100 100 100 100 100 100 100 100 100 10	1000 447 338 53 23 23 23 44 1000	100 73 100 100 97 94 100 100 93 1100 93 100 100 100 100 100 100 100	100 67 100 100 87 100 100 100 100 87 100 87 100 87 100 100 100 100 100 100 100 100	93 31 25 97 87 94 100 100 93 27 100 100 93 87 100 100 100 100 100 100 100 93	100 95 100 100 94 87 94 100 93 94 100 87 93 87 100 100 100 100 100 100 100 10	100 67 100 97 100 87 97 100 100 100 93 100 100 80 100 80 100 100 100 93 80 100	32 60 100 97 97 87 100 93 100 87 100 80 93 73 100 100 80 93 73 100 100 80 93 93 93 93 93 93 93 93 93 93 93 93 93	95 60 100 97 100 97 100 100 100 100 87 100 80 93 80 100 100 100 100 93 80 100	94 87 94 100 100 94 87 94 100 100 100 100 93 100 100 93 87 100 100 100 93 87	100 40 38 53 23 93 50 87 80 100 64 100 100 100 100 78 100 100 100 100 100 100 100 100 100 10	40 38 53 23 87 50 93 80 100 67 100 87 100 88 89 89 89 89 93 91
241 242 243 244 245 247 248 249 250 251 252 253 254 255 256 257 258 259 259 259 259 259 259 259 259 259 259	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPGNDNSTATLCLGHHAVPNGTLVKT ITNOQIE QMVQAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKCT QVYSLIRPNENPAHK RASVGKMIDGIGREY RATEYIMKGVYINTA RELILYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN GTVDH RFYIQMCTEL RGEETIEERFEITGT RGLQRRFVQNALNGNG RGVQIASNEMMETIME RIAYERMCNILKGKF RIEPFLKTTPRPLRL RKLKREITF RLEDVFAGK RLIQNSLTIIERMVLS RLIQNSLTIIERMVLS RLIQNSLTIIERMVLS RLIQNSLTIIERMVLS RLIQNSLTIIERMVLS RLIQNSLTIIERMVLS RLIQNSLTIIERMVLS RLIQNSLTIERMVLSAFDERRNK RMCNILKGKFATAAQ	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA HA HA HA NP NP HA NP PA MI NP PA MI NP PA MI NP NP NP NP NP NP NP N	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-D CLASS II H-2-D CLASS II H-2-DB H-2-B CLASS II H-2-DB H-2-B CLASS II H-2-DB H-2-B LASS II H-2-DB H-	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE TOTON-TOP TAMARIN HUMAN MOUSE	47 31 25 93 47 100 87 100 21 100 100 100 100 100 100 100 100	100 100 33 38 56 23 87 47 100 93 58 100 100 73 100 93 100 100 100 100 100 100 100	100 33 38 56 23 93 44 100 100 100 100 100 100 100 100 100	100 33 38 56 23 87 47 100 93 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 87 47 100 93 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 87 44 100 100 100 100 87 100 100 100 100 100 100 100 10	1000 447 388 533 233 933 444 11000 1	100 73 100 100 97 94 100 100 100 100 93 100 100 93 100 100 100 100 100 100 100 100	100 67 100 100 100 100 100 100 100 87 100 87 100 87 100 100 100 100 100 100 100	93 31 25 97 87 94 100 100 93 87 100 100 100 100 100 90 90 90 90 90 90 90 90 90 90 90 90 9	100 95 100 100 94 87 94 100 93 100 93 100 100 100 100 100 100 100 10	100 67 100 97 100 87 97 100 100 100 80 100 80 100 100 100 100 1	32 60 100 97 97 100 100 93 100 100 80 80 93 73 100 100 100 93 100 93 93 93 93 100	95 60 100 100 97 87 100 100 100 93 100 87 100 87 100 100 100 93 80 100	94 87 94 100 100 94 87 94 100 100 100 100 93 100 100 93 87 100 100 100 100 93 87	100 40 38 53 23 93 50 87 80 100 100 64 100 100 100 78 100 80 100 80 100 80 100	40 38 53 23 87 50 93 80 100 67 100 100 89 89 89 89 89 93 91 100
241 242 243 244 245 246 247 248 250 251 252 253 254 255 256 257 258 258 259 260	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLITDS QKLPONDNSTATLCLGHHAVPNGTLVKT ITNODIE QMVQAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKQT QVYSLIRPNENPAHK RASVGKMIDGIGREY RATEYIMKGVYINTA RELILYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN GTYDH REYIQMOTEL RGECTIEERFEITGT RGLQRREFVQNALNGNG RGVQIASNENNETME RIAYERMCNILKGKF RIEPFLKTTRPPLRL RKLKREITF RLEDVFAGK RLIQNSLTIERMVLS RLIQNSLTIERMVLS RLIQNSLTIERMVLS RLIQNSLTIERMVLS RLIQNSLTIERMVLS RLIQNSLTIERMVLS RLIQNSLTIERMVLS	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA HA NP NP NP PA M1 NP NP PA M1 M1 NP NP NP NP NP NP NP N	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-D CLASS II H-2-D CLASS II H-2-DB H-2-B CLASS II H-2-DB H-2-B CLASS II H-2-DB H-2-B LASS II H-2-DB H-	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE HUMAN MOUSE MOUSE HUMAN MOUSE	47 31 25 93 47 100 87 100 21 100 100 100 100 100 100 100 100	100 100 33 85 56 23 87 47 100 93 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 93 44 100 100 100 100 100 100 100 100 100	100 33 38 56 23 87 47 100 93 100 93 100 93 100 100 100 100 100 100 100 100 87	100 33 38 56 23 87 47 100 93 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 87 44 100 100 100 100 87 100 100 100 100 100 100 100 10	1000 447 338 53 23 23 23 44 1000	100 73 100 100 97 94 100 100 93 1100 93 100 100 100 100 100 100 100	100 67 100 100 87 100 100 100 100 87 100 87 100 87 100 100 100 100 100 100 100 100	93 31 25 97 87 94 100 100 93 27 100 100 93 87 100 100 100 100 100 100 100 93	100 95 100 100 100 94 87 94 100 93 100 93 100 87 100 100 100 100 100 100 100 100 100 87	100 67 100 97 100 87 97 100 100 100 93 100 100 80 100 80 100 100 100 93 80 100	32 60 100 97 97 87 100 93 100 87 100 80 93 73 100 100 80 93 73 100 100 80 93 93 93 93 93 93 93 93 93 93 93 93 93	95 60 100 97 100 97 100 100 100 100 87 100 80 93 80 100 100 100 100 93 80 100	94 87 94 94 100 100 100 100 100 100 93 87 100 100 100 100 100 100 100 100 100 10	100 40 38 53 23 93 50 87 80 100 100 64 100 100 100 78 100 80 100 80 100 80 100	40 38 53 23 87 50 93 80 100 67 100 87 100 88 89 89 89 89 93 91
241 242 243 244 245 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 269	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPGNDNSTATLCLGHHAVPNGTLVKT ITNOOIE QMVOAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKCT QVYSLIRPNENPAHK RASVGKMIDGIGREY RATEYIMKGVYINTA RELILYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN GTYDH RFYIQMOTTEL RGEETIEERFEITGT RGLQRRFFVQNALNGNG RGVQIASNEMMETTME RIAYERMCNILKGKF RIEPFLKTTPRPLRL RKLKREITF RLEDVFAGK RLIQNSLTIERMVLS RLIQNSLTIERMVLS RLIQNSLTIERMVLS RLIQNSLTIERMVLS RKONINKGKFTAAQ RNOPMTNTVHYPKIY RNLPPGRTTIMAAFN RPLRPNGPPCSQRS	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA HA HA HA H	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-D CLASS I H-2-D CLASS I H-2-DB H-2-B CLASS I G-12 H-2-DB H-2-B CLASS II H-2-DB H-2-B CLASS II H-2-DB H-2-B CLASS II H-2-D CLASS II	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN HUMAN MOUSE	47 31 25 23 47 100 87 100 21 100 100 100 100 100 100 89 93 96 80 80 93	100 100 33 38 56 23 87 47 100 93 58 100 73 100 93 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 93 44 100 93 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 87 47 100 93 100 100 87 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 87 47 100 93 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 87 44 100 100 93 100 67 100 100 100 100 100 100 100 10	100	100 73 100 100 97 87 94 100 100 93 100 100 93 80 100 100 100 93 80 100 100 100 93 80 100 100	100 67 100 100 87 100 100 93 100 87 100 87 100 100 100 100 100 100 100 100 100 10	100 93 31 25 97 87 94 100 100 100 93 27 100 100 100 100 100 100 100 10	100 95 100 100 100 94 87 94 100 93 94 100 100 100 100 100 100 100 100 100 10	100 67 97 100 97 100 97 100 100 100 80 100 80 100 100 100 100 1	32 60 100 97 97 87 100 100 93 100 80 100 100 100 100 93 100 100 100 100 100 100 100 100 100 10	95 60 100 97 87 100 100 100 100 93 100 80 100 100 93 80 100 100 80 67 80	94 87 94 100 100 100 100 100 100 100 100 100 10	100 40 38 53 23 93 50 87 80 100 100 100 100 100 78 100 100 100 100 100 100 100 100 89 93 91 100 80 80 93	40 38 53 23 87 50 93 80 100 67 100 89 89 89 89 91 100 100 100 100 100 100 100
241 242 243 244 245 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 262 262 263 263 264 265 265 265 265 265 265 265 265 265 265	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPONDNSTATLCLGHHAVPNGTLVKT ITNOOIE OMVOAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKOT QVYSLIRPNENPAHK RASVGKMIDGIGREY RATEYIMKGVYINTA RELILYDKEEIRRIW RENAEDMGNGCFKYHKCDNACIGSIRN GTYDH RFYIQMOTEL RGECTIEERFEITGT RGLGRRFFVONALNGNG RGVQIASNENMETME RIAYERMONILKGKF RIEPFLKTTPRPLRL RKLKREITF RLEDVFAGK RLIQNSLTIERMVLS RLIQNSLTIERMVLS RILONSLTIERMVLS RILONSLTIERMVLS RILONSLTIERMVLS RILONSLTIERMVLS RILONSLTIERMVLS RMCNILKGKFQTAAQ RNOPMTNTVHYPKIY RNLPDRTTIMAMAFN	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA HA HA HA H	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-D CLASS II H-2-D CLASS II H-2-DB H-2-B CLASS II H-2-DB H-2-B CLASS II H-2-DB H-2-B LASS II H-2-DB H-	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN HUMAN MOUSE	47 31 25 23 47 100 87 100 100 100 100 100 100 100 10	100 100 33 38 56 23 87 47 100 87 100 73 100 100 100 100 100 100 100 100 73 89 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 93 44 100 64 100 100 100 100 100 100 100 100 100 10	100 33 87 47 47 100 93 58 100 100 100 100 100 100 100 100 100 10	100 33 87 47 100 93 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 87 44 100 100 93 100 67 100 100 100 100 100 100 100 10	100	100 73 100 100 97 94 100 100 93 100 100 93 100 100 100 100 100 100 100 100 100 10	100 67 100 100 100 100 100 93 100 87 100 87 100 100 100 100 100 100 100 100 100 10	100 93 31 25 97 87 94 100 100 100 93 27 100 100 100 100 100 100 100 10	100 95 100 100 100 100 94 87 94 100 93 100 87 93 87 100 100 100 100 100 87 93 87 100 100 100 100 100 100 100 10	100 67 100 97 100 87 97 100 100 100 93 100 100 80 100 100 100 100 100 100 87 67 67 73	32 60 100 97 97 87 100 100 93 100 80 100 100 100 100 93 100 100 100 100 100 100 100 100 100 10	95 60 100 97 87 100 100 100 100 93 100 100 80 93 80 100 100 100 93 80 100 100 100 100 100 100 100 100 100	100 93 100 100 100 94 87 94 100 100 100 100 93 87 100 100 100 100 100 100 100 10	100 40 38 53 23 93 50 87 80 100 100 100 100 100 78 100 89 93 91 100 80 80	40 38 53 23 87 50 93 80 100 67 100 93 100 89 89 89 89 89 89 93 80 100 100 100 100 100 100 100
241 242 243 244 245 246 247 248 249 250 251 252 252 253 254 255 256 257 258 259 260 261 262 263 264 265 265 266 267 268 266 267 268 268 268 268 268 268 268 268	PSTNOEOTSLYVOAS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWS QDLEKYVEDTKIDLWSYNAELLVALENQ HTIDLTDS QKLPONDNSTATLCLGHHAVPNGTLVKT ITNOOIE OMVOAMITIGTHPSS QNVNRITYGACPRYVKQNTLKLATGMRN VPEKOT QVYSLIRPNENPAHK RASVGKMIDGIGREY RATEYIMKGVYINTA RELILYDKEEIRRIW RENAEDMGNGCFKIYHKCDNACIGSIRN GTYDH RFYIQMOTEL RGECTIEERFEITGT RGLORRIFYONALINGNG RGVOLIASNENMETME RIAYERMONILKOKF RIEPFLKTTERPLRL RKLKREITF RLEDVFAGK RLIQNSLTIERMVLSAFDERRIK RMCNILKGKFOTAAQ RNGPMTNTVHYPKIY RNLPEDRTIIMAAFN RPLRPNGPPCSORS RRATAILRK	H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2 H3N2	NP NP HA HA HA HA HA HA HA H	H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-B CLASS II H-2-D CLASS I H-2-DB H-2-B CLASS I H-2-DB H-2-B CLASS I H-2-DB H-2-B CLASS II H-2-DB H-2-B CLASS II H-2-DB H-2-B CLASS II H-2-D CLASS II	MOUSE HUMAN MOUSE HUMAN HUMAN HUMAN HUMAN HUMAN HUMAN MOUSE	47 31 25 23 93 47 100 87 100 100 100 100 100 100 100 10	100 100 100 33 38 56 23 87 47 100 87 100 100 100 100 100 100 100 100 100 10	100 33 38 56 23 93 44 100 64 100 100 100 100 100 100 100 10	100 33 87 47 100 93 58 100 100 100 100 100 100 100 100 100 87 87 80 89	100 33 38 56 23 87 47 100 93 100 100 100 100 100 100 100 100 100 73 87 80 89	100 33 38 56 23 87 44 100 100 100 100 100 100 100 100 100	100	100 73 100 100 97 87 94 100 100 100 93 100 100 100 100 100 100 100 100 100 10	100 67 100 100 87 100 100 100 100 100 87 100 87 100 100 100 87 100 100 100 100 87 100 100 88 100 100 100 100 100 100 100	100 93 31 25 97 87 94 100 100 93 27 100 100 100 100 100 100 100 100 100 10	100 95 100 100 100 94 87 94 100 93 100 93 100 100 100 100 100 100 100 100 100 10	100 67 100 97 100 87 97 100 100 100 93 100 100 80 100 100 100 100 100 100 87 67 67 73	32 60 97 97 87 100 93 100 93 100 87 100 80 93 100 93 100 87 100 80 67 80 80 89	95 60 100 100 97 100 100 100 93 100 100 87 100 100 93 100 100 93 80 100 100 80 80 80 80 80 80 80 80 80 80 80 80 8	100 93 100 100 100 94 87 94 100 100 100 100 93 100 100 100 100 100 100 100 10	100 40 40 38 53 23 93 50 87 100 64 100 100 100 100 100 78 100 80 100 80 80 80 80 80 80 80 80 80 80 80 80 8	40 38 53 23 87 50 93 80 100 67 100 93 100 89 89 89 89 89 89 93 80 100 100 100 100 100 100 100

Table	7. Conservancy analysis of T cell linear epit	tope sequences							H1N	1						H31	V 2				H5N1	_
No.	Sequence	Influenza Source Subtype	Source Protein	MHC Restriction Allele(s)	Host Species	A/Brevig Mission/1/18	A/New Caledonia/20/99	A/PR/8/34	A/Taiwan/1/86	A/Texas/36/91	A/USSR/90/77	A/WS/33	A/Bangkok/1/79	A/Bei jing/353/89	A/England/42/72	A/Hong Kong/1/68	A/Leningrad/360/86	A/New York/5/2004	`			A/Viet Nam/1194/2004
270 271	RSDAPIDTCISECITPNGSI RSLASWIQNEFNKAC	H3N2 H3N2	HA PA	H-2-IAK	MOUSE MOUSE	50 93	50 87	40 100	45 93	45 93	45 93	45 100	90	90 93	95 93	93	90 93	93				35 33
272	RSQQTVTPNIGSRPWVRGQSSRISIYWT IVKPGDIL	H3N2	HA		HUMAN	42	44	44	47	47	47	42	89	94	89	86	92	89	92 9	92	44 4	12
273	RSYLIRAL	H1N1;H2N2	PB1	H-2-KB H-2-KB;MAMU-	MOUSE												100		88 1	_		38
274	RTFSFQLI	H1N1;H3N2	NS2	A*02	MOUSE	100													100 1			38
275 276	RTGMDPRMCSLMQGS RTLYQNVGTYV	H3N2 H2N2	NP HA	H-2-KD	MOUSE MOUSE	100 55	100 45	100 45	100 45	100 45	100 45	100 45	100 45	100 45	100 45	100 45	100 45	100 45	100 1 45 4		100 1 55 5	55
277	RTLYQNVGTYVSVGTSTLNK	H2N2	HA	H-2-D CLASS I;H 2-KD	MOUSE	55	40	50	40	35	40	45	30	30	30	30	30	30	30 3	30	70 7	70
278 279	RVDGKWMRELVL RYWAIRTR	H3N2 H3N2	NP NP	HLA-B*2705	HUMAN HUMAN	83 100	92	83 100	100 100		100	83 100		83 100	100	100	83 100	92 88	100 1 88 1			75 00
280	SAAFEDLR	H3N2 H1N1	NP NP	HLA-DQW5	HUMAN		100	100	100			100	100	100	100	100	100	100	100 1		100 1	
281 282	SAAFEDLRVLSFIKG SAAFEDLRVLSFIRG	H3N2	NP	HLA-B37 HLA-B37	HUMAN HUMAN	93	93	100 93	93	93	93	93	93	93	93	93 100	93	93	93 9	93		93 93
283	SCLENFRAYV	H3N2	PA	H-2-D CLASS I;H 2-DB	MOUSE	90	90	90	100	100	100	90	100	100	100	100	100	100	100 1	00	90 9	90
284 285	SDMRAEIIRMMEG SDRVMVSPLAVTWWN	H3N2 H3N2	NP PB2		MOUSE MOUSE	85 100	85 93	85 100	85 93	85 93	85 100	77 100			100 100				100 1 100 1		85 8 100 1	00
286	SDYEGRLI	H1N1;H2N3	NP	H-2-K CLASS I;H- 2-KK;MAMU- A*11	MOUSE	100	88	100	88	88		100							100 1			00
287	SDYEGRLIQNSLTI	H1N1;H3N2	NP	H-2-DB;H-2- KD;H-2-KK;HLA- B37	MOUSE	93	93	100		93	100					100			100 1			93
288 289	SETQGTEKLTITYSS SFERFEIFPKE	H3N2 H1N1	PB2 HA	H-2-IED	MOUSE MOUSE	100 82	100 100	100 100	100	100	100 100	100 91	93 36	93 36	93 45	100 45	93 36	93 36			93 1 45 4	00 45
290 291	SFYRNVVWLIKK SGPDNGAVAV	H5N9 H1N1	HA NA	H-2-D CLASS I H-2-DB	MOUSE		67 100	67 100	67 90	75 100	67 90	75 90	33 40	33 40	42 40	33 50	33 40	33 40	33 3	33		92
292	SGPLKAEIAORLE	H1N1	M1	HLA-DR1;HLA- DR7 DW11;HLA- DR81*0304;HLA- DR81*0405;HLA- DR81*0701;HLA- DR81*0802;HLA- DR81*1101;HLA- DR81*1401;HLA- DRB1*1402	HUMAN	100	100	100	100	100	100	100	100	100	100	100	100	100	100 1	00 -	100 s) 2
293	SGPLKAEIAQRLEDV	H1N1	M1	HLA-B37;HLA- DR1	HUMAN						100								100 1		100	
294 295	SGSFVQHPELTGL SIRNGTYDHDVYRDE	H1N1 H3N2	NA HA		MOUSE MOUSE	100 33	53	100 60	100 53	100 53	100 53	100 60	38 100	38 100	38	38 93	38 100	100	100 1		92 1 53 6	30
296 297	SKAFSNCYPYDVPDYASL SLVGIDPFKLLQNSQVYSLIRP	H3N2 H3N2	HA NP		MOUSE HUMAN	39 95	33 91	39 95	33 95	33 95	33 95	39 95	100	94 100	94 100	100	100	94 100	94 1 100 1			39 31
298	SMIEAESSVKEKDMT	H3N2	PA		MOUSE		100	100	100	100	100	100		100	100		100	93			93 1	
299	SNEGSYFF	H3N2	NP	SAOE-G*08	COTTON-TOP TAMARIN						100								100 1			38
300	SNLNDATYQRTRALV SQLVWMACHSAAFED	H3N2 H3N2	NP NP		MOUSE MOUSE	100 100	93 93	100 100	93 93	93 93	93 93	100	93 100	93 100	93 93	93 93	93 100	100	93 9 100 9		100 1 100 1	
302	SRYWAI		NP	HLA-B8 HLA-B*08;HLA-		100		100				100	100	100	100		100	83	83 1		100 1	
303	SRYWAIRTR	H1N1;H3N2	NP	B*2703;HLA- B*2705;HLA- B*27052/KB;HLA- B27	HUMAN;MOUSE	100	100	100	100	100	100	100	100	100	100	100	100	89	89 1	00	100 1	00
304 305	SSFSFGGFTFKRTSG SSISFCGV	H3N2 H1N1	PB2 NA	H-2-KB	MOUSE	100	100	100	100	100	100 100	100 88	100 63	100 63	100 63	100 63	100 63	100 63	100 1 63 6	00 33 <i>*</i>	93 1 100 1	00
306	SSLENFRAYV	H1N1;H3N2;H3N 8	PA	H-2-DB	MOUSE	100						100	90	90	90	90	90	90			100 1	
307	SSYRRPVGI	H1N1;H2N2;H3N 2	PB1	H-2-KB H-2-B CLASS	MOUSE	100	100	100	100	100	100	100	100	100	100	100	100	100	100 1	00 -	100 1	00
308	STNQEQTSLYVQASGRVTVS	H3N2	HA	II;H-2-D CLASS II;H-2-IAD	MOUSE	40				30		40	80	75	95	100						30
309 310	SVQRNLPFDKPTIMAAFTGNTEG SVSSFERFEIFPK	H2N2;H3N2 H1N1	NP HA	H-2-IED	MOUSE MOUSE		100	87 100	91 100		91 100	96 92	38	87 38	38	100 38	87 38	87 38	38 3	38	38 3	3 7 38
311	SYNAELLVAL SYNAELLVALENQHTI	H3N2 H3N2	HA HA	H-2-D CLASS I	MOUSE HUMAN	40 31	80 69	80	80 69	80	80 69	80 69			40 31		100 94		100 1 100 1			70 33
313	TALANTIEV	H1N1;H2N2;H3N 2	PB1	H-2-D CLASS I;H 2-DB	MOUSE						100								100 1			39
314	TELKLSDYEGRLIQNS	H3N2	NP		MOUSE			100			100								100 1		94 1	
315 316	TELKLSDYEGRLIQNSLTIER TETIKSWRKKILRTQ	H3N2 H1N1	NP NA	H-2-D CLASS II	MOUSE MOUSE	95 80	95 87	100 100	95 93	95 87	93	100 93	100 60	100 60	100 53	100 53	100 60	95 67		53	80 8	9 <mark>5</mark> 30
317 318	TGKICNNPHRILDGIDCTLI TGKICNNPHRILDGIDCTLID	H3N2 H3N2	HA HA	H-2-IAD H-2-IAK	MOUSE MOUSE	30 29	30 29	30 29	30 29	30 29	30 29	30 29	75 76	75 76	95 95		75 76	70 71	70 1	_		30 29
319 320	TIMAAFNGNTEGRTS TKGILGFVFTLTV	H3N2 H1N1	NP M1	HLA-A2	MOUSE HUMAN	93	93 100	100	100	87	87	93	87	87	93	93	87	87		_		00
321	TLIDALLG	H3N2	HA	HLA-AZ H-2-IAD	MOUSE	50	50	50	50	50	50	50	100	100	100	100	100	100	100 1			50
322	TNEKFHQIEKEFSEVE TNTVHYPKIYKTYFE	H3N2 H3N2	HA PB2		HUMAN MOUSE	87	38 80	38 100	38 93	38 80	38 93	38 93	87	87	80	87	87	100 80	80 8	30	38 3 87 8	38 30
324 325	TRALVRTGMDPRMCS TREILTKTTVDHMAI	H3N2 H3N2	NP PB2	H-2-B CLASS I	MOUSE MOUSE		100 100	100 100	100 100	100	100	100 100			100 100			100 100		00 -	100 1 100 1	00 00
326	TRRSQQTIIPNIGSRPWVRGLS	H3N2	HA	H-2-IAD	MOUSE		32	32	32	32		32	95	91	91			77		_		36
327	TSLYVRASGRVTVSTK	H3N2	НА	HLA-DR;HLA- DRB1*0101;HLA- DRB1*0401	HUMAN	38	38	38	38	38	38	38	94	94	94	88	94	75	75	94	38 3	38

Table	7. Conservancy analysis of T cell linear epit	ope sequences							H1N'							H3N	2			_	H5N	1
No.	Sequence	Influenza Source Subtype	Source Protein	MHC Restriction Allele(s)	Host Species	A/Brevig Mission/1/18	A/New Caledonia/20/99	A/PR/8/34	A/Taiwan/1/86	A/Texas/36/91	A/USSR/90/77	A/WS/33	A/Bangkok/1/79	A/Beijing/353/89	A/England/42/72		.	A/New York/5/2004	A/Panama/2007/99	A/UDORN/307/72		A/Viet Nam/1194/2004
328	TYQRTRALV	H1N1;H2N3;H3N 2	NP	H-2-D CLASS I;H 2-DB;H-2- KD;PATR- A*0901	MOUSE	100	100	100	100	100	100	100	100	100	100 10	00 1	100 -	100 1	100	100	100 1	00
329	TYQRTRALVRTG	H1N1;H3N2	NP	H-2-D CLASS I;H 2-KD	MOUSE	100	100	100	100	100	100	100	100	100	100 10	00 1	100 1	100 -	100	100	100 1	00
330	TYQRTRALVRTGMD	H3N2	NP	H-2-KD	MOUSE	100	100	100	100	100	100	100	100	100 '	100 10	00 1	100 ′	100 ′	100	100	100 1	00
331	TYQRTRALVRTGMDP	H1N1;H2N2;H3N 2	NP	H-2-KD	HUMAN;MOUSE	100	100	100	100	100	100	100	100	100	100 10	00 1	100 1	100 1	100	100	100 1	00
332	TYVSVGTST	H2N2	HA HA	H-2-KD H-2-KD	MOUSE	67 60	56	67	56 50	56	56	56			44 4					44 40	89	89
333 334	TYVSVGTSTL VAHKSCLPACVYGP	H2N2 H2N2	NP	H-2-S CLASS II	MOUSE MOUSE	100	50 100	60 100	100	50 93	50 100	50 93			40 4 100 10							90 93
335	VETPIRNEW	H1N1	M2	HLA-B27;HLA- B44	HUMAN	89	67	100	67	67	100	100	67	67	100 10	00	67	100	67	67	67	89
336	VFPNEVGARILTSE	H1N1	PB2	H-2-D CLASS I	MOUSE		100	100	100	100	100	100										100
337 338	VGLISLILQI VKILPKDRWTQH	H1N1 H2N2	NA HA	HLA-DRW11	MOUSE HUMAN	90 33	70 33	100 42	33	33	33	90 42			50 5 42 4					50 42		60 42
339	VLAELQDIENEEKIP	H3N2	PA		MOUSE	100	87	100	93	93	100	100			100 10							100
340	VLMEWLKTRPILSPLTKGIL	H1N1	M1	HLA-DPB1*0401	HUMAN	95		100		95		100			95 9							95
341 342	VLRGFLIL VLWGIHHPPNSK	H1N1 H1N1	PB2 HA	H-2-KB H-2-IED	MOUSE	100 67	100 75	100 92	100 67	100 67	100 67	100 67		100 °	100 10 42 4		1 <mark>00</mark> 50			100 ·	100 1 58 (67
343	VPNGTLVKTITNDQIEVTNAT	H3N2	HA	HLA-DR	HUMAN	29	29	29	29	29	29	29	100	100 '	100 9	5 1	100	95	95	100	29 :	29
344	VRESRNPGNAEIEDLIFLARS	H3N2	NP	H-2-D CLASS II	MOUSE	100	95	90	95	95	100	95	95	95	100 10	טנ	95	100 -	100	100	100 1	100
345	VSDGGPNLY	H1N1;H2N2	PB1	HLA-A*0101;HLA A1;MAMU-A*02	HUMAN	100	100	100	100	100	100	100	100	100	100 10	00 1	100 1	100 1	100	100	100 1	00
346	VSPLAVTWWNRNGPM	H3N2	PB2		MOUSE	93		100		87	93	93										93
347	VTGLRNIPS	H1N1	HA	H-2-IED;MAMU-	MOUSE			100			100	100			56 5	6	56	56		56	67	67
348	VTGLRNIPSI	H1N1	HA	A*02							100				50 5							60
349 350	VTGLRNIPSIQS VTGLRNIPSIQSR	H1N1 H1N1	HA HA	H-2-IED H-2-IED	MOUSE MOUSE		100	100	100	100		92 92			50 5 54 5							50 54
351	VTQNGGSNACKRGPG	H3N2	HA		MOUSE	33	33	33	33	33	33	33	73	60	93 10	00	67	67	60	93	33	33
352 353	VTVSTKRSQQTVTPNI VTWWNRNGPMTNTVH	H3N2 H3N2	HA PB2		HUMAN MOUSE	38 80	73	38 100	38 87	38 73	38 87	38 87		94 93	93 9		94 93	88 87	94 87	88		31 80
354	VYQILAIYATVAGSLSLAIMMAG	H2N2	НА	H-2-D CLASS I;H 2-KD	MOUSE	30	61	57	61	61	61	61	26	26	26 2	6	26		26	26		74
355 356	WGIHHPSTNQEQTSL WIQNEFNKACELTDS	H3N2 H3N2	HA PA		MOUSE MOUSE	60 93	47 100	53 100	47 100	47 100	47 100	67 100			87 9 100 10				-	87 100		67 93
357	WVELIRGRPKEK YACKRGSVNSFFSRLNWLHKSEYKYPA	H1N1	NA		MOUSE	83	67	100	83	83	92	75	67	67	67 6				67	67	100	92
358 359	LNVTMPNN YASLRSLVASSGTLEF	H3N2 H3N2	HA HA		HUMAN HUMAN	37	31	34	34	34	31	34			74 7		91					31 44
360	YDVPDYASLRSLVASS	H3N2	НА	HLA- DRB1*0101;HLA- DRB1*0701	HUMAN	38	38	38	38	38	38	38	100					100				38
361 362	YIWGIHHPSTNQEQTSLY YNIRNLHIPEVCLKW	H3N2 H3N2	HA PB1	H-2-IED	MOUSE MOUSE	56 100	100	50 100	100	100	100	61 100			89 9 100 10				_	100		61 100
363	YPALNVTMPNNGKFDKLYIWGVHHPSTD	H3N2	НА		HUMAN	48	42	39	45	45	45	45	85	91	79 8	2	85	88	91	85	39 :	36
364	RDQTS YRRVNGKWM	H1N1	NP	H-2-DB	MOUSE	78	67	100	78	67	78	78	89	78	78 7	8	78	67	89	78	67	67
365 366	YRYGNGVWI YSLVGIDPFRLLQNS	H1N1 H3N2	NA NP	H-2-DB	MOUSE	78 100	89 80	100	100 87	100 87		89 100			44 4 93 9							78 100
367	YTLDEESRARIKTRL	H3N2	PA		MOUSE	100	100	100	100	100	100	100	100	100 '	100 10	00 1	100 1	100 1	100	93	100 1	100
368 369	YVKQNTLKLATGMRNV YVQASGRVTVSTRRS	H3N2 H3N2	HA HA	H-2-IAB	HUMAN MOUSE	50 40	44	44	44	44	44	44			100 10 87 10							69 40
370	YVSVGTSTLNK	H2N2	HA	H-2-KD	MOUSE	64	45	64	55	45	55	55	45	45	45 4	5 .	45	36	36	45	82	82
371 372	STNQEQTSLYVQA STNQEQTSLYVQAS	H3N2 H3N2	HA HA	H-2-IAD H-2-IAD	MOUSE MOUSE	46 43	38 36	38	38 36	38 36	38 36	46 43		62 64	92 10 93 10							38 36
373	TGKICNNPHRILDGIDCTLIDALLGDPHCD VFQNETWDL	H3N2	HA	H-2-K CLASS II	MOUSE	21	23	23	21	21	21	21	82		92 10		82	74			31	28
374	AMDSNTLEL	H5N1	NP	HLA-A2.1/KB	MOUSE		67	67	67	56		67									89 1	
375 376	ATVAGSL EDLTFLARS	H2N2 H1N1	HA NP	H-2-KD	MOUSE HUMAN	71 89	71 100	71 100	71	71 100	71 89	71 89			43 4 89 8							71 <mark>89</mark>
377	FMYSDFHFI	H1N1	PA	HLA-A*0201;HLA A*0202;HLA- A*0206	HUMAN										100 10							
378	GIAPLQLGK	H1N1	НА	HLA-A*0301;HLA A11		100	89	100	89	89	100	100	44	44	44 4	4	44	44	44	44	44	44
379	GIHHPSNSK	H1N1	HA	HLA-A11					67	67	67	67			56 5							56
380 381	GLISLILQI GLKGGPSTE	H1N1 H1N1	NA M2	HLA-A*0201 HLA-A2/KB	MOUSE	89 89	78 89			89 89	89 89	89 89			56 5 89 8							67 67
382	ILGFVFTLTV	H1N1	M1	HLA-A*0201;HLA A*020101;HLA- A*0203	HUMAN;MOUSE	100	100	100	100	100	100	100	100	100	100 10	00 1	100	100	100	100	100 1	100
383	IRGWAIYS	H1N1	NA	H-2-IED	MOUSE		75				100										88	
384 385	IYQILAIYSTVASSL IYQILAIYSTVASSLVL	H1N1 H1N1	HA HA	H-2-KD H-2-KD	MOUSE MOUSE		94	100 100	94	93 94	93 94	93 94										93 88
386	IYQILAIYSTVASSLVLLVS	H1N1 H1N1	HA	H-2-KD	MOUSE	30	95	100		95	95	95	30	30	30 3	0 :	30	30	30	30	70	75
387	IYQILAIYSTVASSLVLLVSLGA KSMREEYRK	H1N1	HA M2	H-2-KD HLA-A11	MOUSE HUMAN	89	78		78	96 78		96 89		89	89 8	9	89	89	89	89	78	65 78
389 390	MLLRSAIGQV NETWDLFVERS	H1N1 H3N2	PA HA	HLA-A*0201 H-2-IAD	MOUSE		100 45	100 45	100 36	100 45	100	90 45	90	90	90 8 100 10	0	90	90		90		<mark>80</mark> 36
391	NMLSTVLGV	H1N1	PB1	HLA-A*0201;HLA A*0206;HLA- A*6802	HUMAN										100 10							
392	RMVLASTTAK	H1N1	M1	HLA-A*0301;HLA A*11;HLA-A11	HUMAN	100	100	100	100	100	100	100	100	100	100 10	00 1	100	100	100	100	100 1	100

Table	7. Conservancy analysis of T cell linear epit	tope sequences																				
									H1N1							H3	N2				H51	11
No.	Sequence	Influenza Source Subtype	Source Protein	MHC Restriction Allele(s)	Host Species	A/Brevig Mission/1/18	A/New Caledonia/20/99	A/PR/8/34	A/Taiwan/1/86	A/Texas/36/91	A/USSR/90/77	A/WS/33	A/Bangkok/1/79	A/Beijing/353/89	A/England/42/72	A/Hong Kong/1/68	A/Leningrad/360/86	A/New York/5/2004	A/Panama/2007/99	A/UDORN/307/72	A/Hong Kong/156/97	A/Viet Nam/1194/2004
393	RTLDFHDSNVK	H1N1	НА	HLA-A*3301;HLA A*6801;HLA-A11		36	100	100	100	100	100	91	45	45	45	45	45	45	45	45	100	100
394	RVLSFIKGTK	H1N1	NP	HLA-A*3101;HLA A*6801;HLA-A11		70	70	100	70	70	80	80	80	80	80	90	80	80	80	80	70	70
395	SIIPSGPLK	H1N1	M1	HLA-A*3101;HLA A11	HUMAN	89	89	100	89	89	89	89	89	89	89	89	89	89	89	89	100	100
396	SLCPIRGWAI	H1N1	NA	HLA-A*0201;HLA A*0206	HUMAN	90	80	100	90	100	100	100	40	40	40	40	40	40	40	40	90	80
397	SLENFRAYV	H1N1	PA	HLA-A*0201;HLA A*0203;HLA- A*6802	HUMAN	100	78	100	89	89	89	100	89	89	89	89	89	89	89	89	100	100
398	VTAACSHAGK	H1N1	НА	HLA-A*0301;HLA A11		80	70	100		70	80	80	40	40	40	40	40	40	40	40	40	50
399	YFKIHTGKSS	H3N2	HA		HUMAN	50	50	50	50	50	50	50	90	90	80	80		80	80	80	40	40
400	YGKQNTLKLA	H3N2	HA		HUMAN	40	50	40	50	50	40	40	90	90	90	90	90	90	90	90	60	60
401	YIKQDTLKLA	H3N2	HA		HUMAN	40	40	40	40	40	40	40	80	80	80	80	80	80	80	80	50	50
402 403	YIKQNTLKLA YIKQNTLKLS	H3N2	HA HA		HUMAN HUMAN	40 40	40 40	40	40	40	40	40 40	90	90 80	90 80	90 80	90 80	90 80	90 80	90	60 50	60 50
403	YVKENTLKLS	H3N2	HA	+	HUMAN	40	40	40	40	40	40	40	90	90	90	90	90	90	90	90	70	70
404	YVKQDTLKLA	H3N2	HA	\leftarrow	HUMAN	40	40	40	40	40	40	40	90	90	90	90	90	90	90	90	60	60
406	YVKQHTLKLA	H3N2	HA	 	HUMAN	40	40	40	40	40	40	40	90	90	90	90	90	90	90	90	60	60
407	YVKQNSLKLA	H3N2	HA	 	HUMAN	40	40	40	40	40	40	40	90	90	90	90	90	90	90	90	70	70
408	YVKQNTLKLA	H3N2	HA	T	HUMAN	40	40	40	40	40	40	40	100	100	100	100	100	100		100	70	70
409	YVKQNTLKVA	H3N2	HA	1	HUMAN	40	40	40	40	40	40	40	90	90	90	90	90	90	90	90	60	60
410	YVKQNTLRLA	H3N2	HA	1	HUMAN	50	40	40	40	40	40	40	90	90	90	90	90	90	90	90	70	70
411	YVKQSTLKLA	H3N2	HA		HUMAN	50	50	50	50	50	50	50	90	90	90	90	90	90	90	90	60	60
412	YVKQTTLKLA	H3N2	HA		HUMAN	50	40	40	40	40	40	40	90	90	90	90	90	90	90	90	60	60
	ty level color code: Yellow: 100% Magenta: ≥90%																					

Magenta: ≥90% Green: ≥80%

Identity (%)

Antibody

Human (%)* Avian (%)** Human (%)

8.0 2.7

* Fraction of epitopes conserved in the human H1N1 and H3N2 strains

Table 8. Distribution of linear epitopes conserved at different identity levels

75

5.3

2.7

T cell

412

8.5 46.6

29.9

15.0

Avian (%) 15.8

45.6

27.2

11.4

		(/	
<80	78.7	82.7	
≥80	10.7	9.3	l

** Fraction of epitopes conserved in the avian H5N1 strains

≥90

100

Number of epitopes

Table	Conservancy analysis of antibody conform	national epitope sec	quences						H1N1							Н3	N2				H51	N1
No.	Sequence	Source Species Subtype	Source Protein	Antibody Type(s)	Host Species	A/Brevig Mission/1/18	A/New Caledonia/20/99	A/PR/8/34	A/Taiwan/1/86	A/Texas/36/91	A/USSR/90/77	A/WS/33	A/Bangkok/1/79	A/Beijing/353/89	A/England/42/72	A/Hong Kong/1/68	A/Leningrad/360/86	A/New York/5/2004	A/Panama/2007/99	A/UDORN/307/72	A/Hong Kong/156/97	A/Viet Nam/1194/2004
1	A198, S199, R201	H3N2	HA	MONOCLONAL; POLYCLONAL	MOUSE	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
2	D147, H150, H197, D198, E199, K221, D251	H3N2	NA	MONOCLONAL		43	43	43	43	43	43	43	57	86	57	57	71	71	100	57	57	43
3	D147, H150, R152, T153, P154, H197, D198, E199, W218, S219, K220, K221, I222, G248, R249, A250, D251	H3N2	NA	MONOCLONAL	MOUSE	29	35	41	35	35			76	88		71	82	82	100		29	29
5	D188,Q189, R201 E152, G155, Q188, N189, Q192, E194	H3N2 H1N1	HA HA	MONOCLONAL MONOCLONAL	MOUSE MOUSE	100 50	100 50	100	100 50	100 50	100 50		100 50	100 50	100 50	100 50	100 50	100 50	100 50	100 50	100 50	100 50
6	E189, D190, E219	H1N1	HA	MONOCLONAL	WOOOL	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
7	G129, Y155, S157, G158, S159	H3N2	HA	MONOCLONAL	MOUSE	60	60	60	60	60	60	60	80	60	60	80	60	60	60	100	60	60
8	G129, Y155, S157, G158, S159, A160, Q189	H3N2	HA	MONOCLONAL	MOUSE	57	57	57	57	57	57	57	57	57	57	71	57	57	57	86	57	57
9	G129, Y155, S159	H3N2	HA	MONOCLONAL	MOUSE	100	100	100	100	100		100	100	100	100	100	100	100	100		100	67
10	G135, K140, G142, S145, G158	H3N2	HA	MONOCLONAL	MOUSE	60	60	60	60	60	60	60	60	60	80	100	60	80	80	100	60	60
11	G47,I48,T49,N50,K51,V52,N53,S54,I55,I5 6,D57,K58,T318,G319,P320,R321,N322	H5N2	НА	MONOCLONAL	MOUSE	29	35	35	35	35	35	35	35	35	35	35	35	29	29	35	35	35
12	G49,K50, L59,D60, I62,D63, P74,H75, V78,F79, R90, K92, F94, P143, D271, P273,I274,D275 I369, A370, S371, L399, N400, T401,	H3N2	HA	MONOCLONAL	MOUSE	28	28	28	28	28	28	33	67	61	83	100	67	56	61	89	28	28
13	D402, W403, P433, K434, E435, D436, K437, Q317, Y318, I319, C320, S321, P343, G344, N345, N346, N347, N348	H11N9	NA	MONOCLONAL		42	29	38	29	29	29	38	25	25	25	25	25	25	25	25	38	38
14	I51, C52, N53, N54, T276, C277, I278, S279	H3N2	HA	MONOCLONAL	MOUSE	38	38	38	38	38	38	50	63	63	100	100	63	50	50	100	38	38
15	K129, G159, E189	H1N1	HA	MONOCLONAL	MOUSE	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
16	K129, V132, K157	H1N1	HA	MONOCLONAL	MOUSE	67	67	67	67	67	67	67	100	100	67	100	100	100	100	100	67	67
17	K142, G143, K172, E219, G225, A227	H1N1	HA	POLYCLONAL	CHICKEN	67	67	67	67	67			67	67	67	67	67	67	67	67	67	67
18	K148, S198, S364, D395, N396 K50, L59,D60, I62,D63, P74,H75, V78,F79,	H3N8	NA	MONOCLONAL	MOUSE	60	60	60	60	60	60	60	80	60	80	60	60	60	60	80	60	60
19	R90, K92, F94, G142, D271	H3N2	HA	MONOCLONAL	MOUSE	29	29	29	29	29	29	29	71	64	86	100	71	50	57	93	29	29
20	L70, L71, V73, R74, S75, E115	H1N1	HA	MONOCLONAL	MOUSE	67	67	100	67	67	67	83	50	50	50	50	50	50	50	50	67	67
21	N329, S367, A369	H11N9	NA	MONOCLONAL		67	67	67	100	67	67	67	67	67	100	100	67	67	67	100	100	67
22	N329, T332, K336, Y341, N344, S367, I368, K432	H13N9	NA	MONOCLONAL	MOUSE	63	50	50	50	50	50	38	50	50	50	50	50	50	50	50	50	50
23	P124, N125, E154, S156, P158, K159, K161, N162, S163	H1N1	HA	MONOCLONAL	MOUSE	56	44	78	44	44	44	78	44	44	44	44	44	44	44	44	56	56
24	P326, R327, N329, P328, N344, N347, I366, S367, I368, A369, S370, S372, L399, N400, T401,D402, W403, P431, K432	H11N9	NA	MONOCLONAL	MOUSE	42	26	37	26	26	26	32	37	26	37	26	26	32	37	37	37	37
25	P326, R327, P328, D329, N344, N347, I366, S367, I368, A369, S370, S372, L399, N400, T401,D402, W403, P431, K432	H11N9	NA	MONOCLONAL	MOUSE	37	26	37	26	26	26	32	32	26	32	32	26	26	32	32	32	32
26	P326, R327, P328, N329, N344, N347, I366, S367, R368, A369, S370, S372, L399, N400, T401,D402, W403, P431, K432	H11N9	NA	MONOCLONAL	MOUSE	47	32	42	32	32	32	37	37	32	37	32	32	32	37	37	42	42
27	P328,N329,D330,P331,T332, Y341, G343,N344, I366, I368,A369,S370, S372, N400,T401, W403	H13N9	NA	MONOCLONAL	MOUSE	31	38	31	38	31	31	38	31	31	31	31	31	31	31	31	31	31
28	P330, N331, N346, N347, S368, I369, A370, S371, S373, N400, T401, W403, K434	H11N9	NA	MONOCLONAL		46	38	38	38	38				31		38	31	31	31	38	46	46
29	Q100, T156, G196	H7N7	HA	MONOCLONAL MONOCLONAL	MOUSE	67	67	67	100	100	67		100 67	100 67	100	100	100 67	100 67	100 67	100	100	67
30 31	Q189, V196, A198 S127, D135, T179, N183, T188, L216	H3N2 H9N2	HA HA	MONOCLONAL	MOUSE MOUSE	67 67	100 67	67 67	100 67	100 67			67 67	67 67	100 67	100 67	67 67	67 67	67 67	100 67	100 67	67 67
32	S127, T129, K147, P152, T179, T188	H9N2	HA	MONOCLONAL	MOUSE	50	50	50	50	50	50		50	50	50	50	50	50	50	50	50	50
33	S136, G139, S141, R220, D221	H1N1	HA	MONOCLONAL	MOUSE	100	100	100		100	80	100	60	60	60	60	60	60	60	60	60	60
34 35	S186, R220, R229, I230 S364, D395, N396	H3N2 H3N8	HA NA	MONOCLONAL MONOCLONAL	MOUSE MOUSE	75 100	75 100	75 100	100 67		100 67		75 100	75 67	100	100 67	75 67	75 67	75 67	100	75 100	75 100
36	S364, D395, N396 S367, S372, N400	H11N9	NA NA	MONOCLONAL	WIOUSE		100	67	100	100	67		100	100	100	100	100	100	100			100
37	S368, S373, N400, T401, K434		NA	MONOCLONAL	MOUSE	60	60	60	60	60			60	60	60	60	60	60	60	60	60	80
38	T131, G134, S136, S145, W153, T155, K156, S17, G158, E190, S193, L194, L226	H3N2	НА	MONOCLONAL	MOUSE	69	54	38	38	38	38	77	54	46	69	92	54	54	31	85	54	54
39	T318, G319, L320, R321, N322, G47, I48, T49, N50, K51, V52, N53, S54, V55, I56, E57, K58		НА	MONOCLONAL	MOUSE	29	41	29	29	29		35	41	41	41	41	41	29	29	41	35	
40	V165, G169, I178, S203, G236, S270	H1N1	HA	MONOCLONAL	MOUSE	67	67	100	67	67	67		67	67	67	67	67	67	67	67	67	67
41	Y155, S157, S159 Y155, S157, G158, N193	H3N2 H3N2	HA HA	MONOCLONAL MONOCLONAL	MOUSE MOUSE	67 75	67 75	67 75	67 75	67 75			100 75	67 75	67 75	67 75	67 75	67 75	67 75	100 75	67 75	67 75
43	Y155, S159, T188, D189, T193, A198,	H3N2					50															
44	S199, R201 K432, W403, T401, N400, S372, S370, A369, I368, S367, I366, P, 342, Y341, N329, T332, P331, D330, N344, G343,	H3N2	HA NA	MONOCLONAL	MOUSE			38		25	25		63 35		35	25	25	30	35	35	35	
Identit	D330, P328, N200 y level color code:					<u> </u>																

Identity level color code:
Yellow: 100%
Magenta: ≥90%
Green: ≥80%

Tubis 10.	Conservancy analysis of protective ar	nibody, r doil ophopos	DITOPES			H1N1						H3N2								H5N1		
Epitope Type	Sequence	Source Species	Source Protein	Protected Host Species	A/Brevig Mission/1/18	A/New Caledonia/20/99	A/PR/8/34	A/Taiwan/1/86	A/Texas/36/91	A/USSR/90/77	A/WS/33	A/Bangkok/1/79	A/Beijing/353/89	A/England/42/72	A/Hong Kong/1/68	A/Leningrad/360/86	A/New York/5/2004	A/Panama/2007/99	A/UDORN/307/72	A/Hong Kong/156/97	A/Viet Nam/1194/2004	
Antibody	MSLLTEVETPIRNEWGCRCNDSSD	A/WSN/33(H1N1)	M2	MOUSE	96	63	96	63	63	100	100	63	63	100	100	63	96	63	63	83	88	
Antibody	SLLTEVETPIRNEWGCRCNDSSD	A/AICHI/2/68(H3N2); A/PUERTO RICO/8/34(H1N1); A/USSR/90/77(H1N1)	M2	MOUSE; RHESUS MONKEY	96	65	96	65	65	100	100	65	65	100	100	65	96	65	65	83	87	
Antibody	NVPEKQTRGIFGAIAGFIE	INFLUENZA A VIRUS	HA	MOUSE	74	74	74	74	74	74	74	100	100	95	95	100	100	100	95	58	58	
Antibody	WTGVTQN	A/AICHI/2/68(H3N2); A/TEXAS/1/77(H3N2)	НА	MOUSE	43	43	43	43	43	43	43	86	71	100	100	86	100	86	100	43	43	
Antibody	SKAFSNCYPYDVPDYASL	A/MEMPHIS/6/86(H3N2); A/TEXAS/1/77(H3N2)	НА	RABBIT	39	33	39	33	33	33	39	100	94	94	100	100	94	94	100	44	39	
Antibody	G47,I48,T49,N50,K51,V52,N53,S54,I55, I56,D57,K58,T318,G319,P320,R321,N3 22	A/MALLARD DUCK/PA/10218/84(H5N2)	НА	MOUSE	29	35	35	35	35	35	35	35	35	35	35	35	29	29	35	35	35	
Antibody	G49,K50, L59,D60, I62,D63, P74,H75, V78,F79, R90, K92, F94, P143, D271, P273,I274,D275	A/AICHI/2/68(H3N2); A/X- 31(H3N2)	НА	MOUSE	28	28	28	28	28	28	33	67	61	83	100	67	56	61	89	28	28	
Antibody	L70, L71, V73, R74, S75, E115	A/PUERTO RICO/8/34(H1N1); A/PUERTO RICO/8/34/MOUNT SINAI(H1N1)	НА	MOUSE	67	67	100	67	67	67	83	50	50	50	50	50	50	50	50	67	67	
Antibody	T318, G319, L320, R321, N322, G47, I48, T49, N50, K51, V52, N53, S54, V55, I56, E57, K58	INFLUENZA A VIRUS	НА	MOUSE	29	41	29	29	29	29	35	41	41	41	41	41	29	29	41	35	35	
T cell	MGLIYNRM	A/ANN ARBOR/6/60(H2N2); A/PUERTO RICO/8/34(H1N1)	M1	MOUSE	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
T cell	TYQRTRALV	INFLUENZA A VIRUS; A/ANAS ACUTA/PRIMORJE/695/76(H2N3); A/MEMPHIS/1/71H- A/BELLAMY/42N); A/NT/60/68/(H3N2); A/PORT CHALMERS/1/73(H3N2); A/PUERTO RICO/8/34(H1N1)	NP	MOUSE	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
T cell	TYQRTRALVRTG	INFLUENZA A VIRUS; A/PUERTO RICO/8/34(H1N1); A/TEXAS/1/77(H3N2); A/X- 31(H3N2)	NP	MOUSE	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
T cell	SSYRRPVGI	INFLUENZA A VIRUS; A/ANN ARBOR/6/60(H2N2); A/NT/60/68/(H3N2); A/PUERTO RICO/8/34(H1N1)	PB1	MOUSE	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
T cell	ASNENMETM	INFLUENZA A VIRUS; A/ANAS ACUTA/PRIMORJE/695/76(H2N3); A/PUERTO RICO/8/34(H1N1); A/X-31(H3N2); INFLUENZA A VIRUS H3N2	NP	MOUSE	100	67	100	89	67	89	100	89	78	89	78	78	78	78	89	78	89	
T cell	RTFSFQLI	A/AICHI/2/68(H3N2); A/MEMPHIS/102/72(H3N2); A/PUERTO RICO/8/34(H1N1)	NS2	MOUSE						100		100	100	100	100	100	100	100	100	100	88	
T cell	PNGYIEGK	A/PUERTO RICO/8/34(H1N1)	PA	MOUSE	_					100		88	88		100		88	88	88		88	
T cell	VTGLRNIPS ALNNRFQIKGVELKS	A/PUERTO RICO/8/34(H1N1) A/MEMPHIS/1/71(H3N2)	HA HA	MOUSE MOUSE	89 33		100 40	100 47	100 47	100 47	100 47	56	56 100	56	56 100			56 100		_	67 47	
Identity le	vel color code: 100% ≥90% ≥80%																				_	

Table 10. Conservancy analysis of protective antibody/T cell epitopes

```
((epitope[TW] OR epitopes[TW] OR mimotope[TW] OR ((MHC[tw] OR "major
histocompatibility complex"[tw] OR HLA[tw]) AND (peptide[tw]
peptides[tw])) OR "TCR recognition"[tw] OR ("Class"[tw] AND "I motif"[tw]) OR
supermotif[tw] OR immunogenic linear OR ("peptide-based"[tw] AND CTL[tw])
OR phage displa*[tw] OR "antibody binding"[tw] OR "protective immune
response"[tw] OR antibody recog*[tw] OR "cytotoxicity assay"[tw] OR "new
monoclonal"[tw] OR "novel antibody"[tw] OR ( (monoclonal antibod*[tw]) AND
"binding site"[tw]) OR ( (KA[tw] OR KD[tw]) AND (monoclonal[tw] OR mAb[tw]))
OR "neutralizing antibody"[tw] OR "peptide vaccine"[tw] OR (peptide conjugate
vaccine*[tw]) OR ((CD8[tw] OR CD4[tw]) AND "T cells"[tw] AND (peptide[tw]
OR peptides[tw])) OR ("antigenic repertoire"[tw]) OR ((peptide[tw] OR
peptides[tw]) AND "antibody reactivity"[tw]) OR ("Class II"[tw] AND (binding [tw]
OR bound[tw] OR peptide[tw] OR peptides[tw])) OR "immunogenic
peptide"[tw])) AND (("Influenza Virus"[Text Word]) OR ("Influenza A virus"[Text
Word]) OR ("Influenza B virus"[Text Word]) OR ("Influenza C Virus"[Text Word])
```

OR ("Influenza D Virus"[Text Word]) OR ("Influenzavirus A"[Text Word]) OR ("Flu"[Text Word]) OR ("Influenzavirus B"[Text Word]) OR ("Influenzavirus C"[Text Word]) OR (influenza[Text Word])) AND (hasabstract[text] AND English[Lang] AND ("1900"[PDat]:"2006/03/27"[PDat])) **NOT** (Review[PT] OR

Editorial[PT] OR meta-Analysis[PT] OR Comment[PT]) Legend:

Epitope keywords – red colored text

Influenza keywords - blue colored text

Filters - green colored text NOT keywords - brown colored text