五、实验步骤与数据处理

- 1. 开启激光电源,调整好激光器偏振方向的方位。
- 2. 调整仪器起偏管和检偏管的方位、仰俯, 使激光束由光源出发通过起偏管中心附近, 由检偏管中心射出。
- 3. 调小平台与分光计主轴基本垂直。

4. 观测布儒斯特角

光束正入射棱镜表面时平台方位角 $\alpha_{i=0} = 20.3^{\circ}$;

入射角为布儒斯特角时平台方位角 $\alpha_R = 75.2^\circ$;

布儒斯特角的测量值 $\theta_B = \alpha_B - \alpha_{i=0} = 54.9^\circ$;

由此计算折射率 $n = tan\theta_B = 1.42$,相对偏差 $\frac{n-1.54}{1.54} = 7.8\%$ 。

5. 测定偏振器透射轴方向

序号	1	2	3	4	5	6	标准差	平均值	a0
р0	266. 0	267. 0	266.0	265. 5	265. 5	266.0	0. 55	266. 0	3.5

6. 测消光比 e (p=p0 时交替测量 Imax 和 Imin)

R2=100 Ω	Imax(mV)	I1=7. 612	I3=7. 653	I5=7. 615	17=7. 628
R1=300 Ω	Imin(mV)	12=0.002	14=0.000	16=-0.003	10=-0.005

由此计算消光比:

$$e = \frac{R_2}{R_1} \cdot \frac{(I_4 + I_6 - 2I_0)}{4 \cdot I_5} = 6.89 \times 10^{-4}$$

此数据量级与实验器材预计消光比较为一致。

7. 测量透射光强 Im 与两偏振器夹角 θ 间的关系

夹角	0.0	15. 0	30.0	45.0	60.0
A 盘方位角	93. 5	108. 5	123. 5	138. 5	153. 5
Im(mV)测量值	7. 987	7. 523	6. 073	4. 011	1. 952
Ic≈Imax(cos θ)^2+Imin	7. 988	7. 453	5. 990	3. 993	1. 995
Ic-Im /Im(%)	0. 013	0. 934	1. 363	0. 461	2. 190
夹角	80.0	84.0	87. 0	90.0	0
A 盘方位角	173. 5	177.5	180. 5	183. 5	93. 5
Im(mV)测量值	0. 215	0.074	0.013	-0.003	7. 991
Ic≈Imax(cos θ)^2+Imin	0. 238	0.084	0.019	-0.003	7. 988
Ic-Im /Im(%)	10. 678	13. 052	32. 710	0.000	0.038

由数据可见,振动方向与透射轴方向的夹角在 60°以下时,根据马吕斯定律的计算值与实际测量值之间误差较小;而超过 80°之后误差较大,当然,其中也不排除实验操作不够规范、实验器材精确度有限等原因导致的测量不够准确,总体来说,还是验证了马吕斯定律。

8. 定波片 CO 快轴方向

p0 角度与 a0 角度不变,安装 C0 并微调,C0 快轴在竖直方向时度盘示值为 2.9° 。

9. 线偏振光通过 1/4 波片

β	0.0	22. 5	45. 0	67. 5	43. 0
p 盘方位角	266. 0	288. 5	311.0	333. 5	309. 0
ai	272. 0	272.8	287. 2	178. 5	278. 0
长轴方位角 🖞	181.5	180. 7	166. 3	275. 0	175. 5
Imax	4. 222	4. 553	2. 493	2. 593	2. 708
Imin	-0.004	0.710	2. 285	0. 484	2. 151
b^2/a^2	0.000	0. 157	0. 917	0. 188	0. 795
sin 8 r	*	0. 968	0. 999	1. 033	0. 996
δr	*	75. 544	87. 510	*	84. 785
ψ(计算值)	*	0. 122	0. 785	*	0. 458

10. 定波片 Cx 的轴的方向

波片 Cx 的一个轴在竖直方向时度盘示值 Cx=342。

11、12. 线偏振光通过 1/2 波片或全波片

Cx 某轴在竖直方向, Cx=342;

Co 快轴在竖直方向, Co=2.9;

p-p0	0.0	15. 0	30.0	45. 0
р	266. 0	281.0	296. 0	311.0
ai	3. 5	350. 5	334. 5	321.0
a0-ai	0.0	13.0	29. 0	42.5

由数据可以看出,p-p0 的变化与 a0-ai 的变化基本一致,可以判断 Cx 与 Co 此时组成**全波片**,Cx 慢轴与 Co 快轴相抵,所以此时竖直方向的是 Cx 的慢轴。

Cx 某轴在竖直方向, Cx=342;

Co 快轴在水平方向, Co=92.9;

p-p0	0.0	15. 0	30.0	45. 0
р	266. 0	281.0	296. 0	311.0
ai	3. 5	19. 0	33. 5	49.0
a0-ai	0.0	-15.5	-30.0	-45.5

由数据可以看出,p-p0 的变化与 a0-ai 的变化基本相反,可以判断 Cx 与 Co 此时组成**半波片**,Cx 快轴与 Co 快轴平行,所以此时竖直方向的是 Cx 的快轴。