

Avionics Databus Solutions

- Network Overview and Topology
- Virtual Link Concept
- Redundancy / Integrity Checking
- Protocol Layers
- Payload Organisation

AFDX a registered trademark of Airbus Deutschland GmbH

AFDX – Avionics Full Duplex Switched Ethernet

- 100Mbit/sec / 10Mbit/sec, 1GBit/sec implementations available from AIM!
- Built around commercial Ethernet (MAC, IP, UDP, SNMP) with provisions for deterministic behaviour
- Media is Copper, opt. Fibre Optic
- Three Types of Network elements
 - End Systems (E/S)
 - Switches
 - Connections
- Why AFDX?

High Speed Commercial Ethernet with provisions for guaranteed Deterministic Timing and Redundancy required for Avionics applications

AFDX – Avionics Full Duplex Switched Ethernet

related Standards (most important), www.arinc.com (public)

664P7-1 Aircraft Data Network, Part 7 **Avionics Full-Duplex Switched Ethernet Network PUBLISHED: 09-2009**

664P2-2 Aircraft Data Network, Part 2 **Ethernet Physical and Data Link Layer Specification PUBLISHED: 01-2009**

Topology

- AFDX is a network architecture
- There are two types of devices:

Switch:

A device which performs traffic policing and filtering, and forwards packets towards their destination End-Systems.

End-System:

A device whose applications access the network components to send or receive data from the network.

- All connections are full duplex, e.g. 100Mbits/sec (no dedicated backbone bus for Inter-switch communications)
- Redundancy is achieved by <u>duplication</u> of the connections & Switches

AFDX Network Topology

AFDX Network Topology

AFDX® Tutorial

Communication Techniques

- AFDX Communication protocols have been derived from commercial standards
 - IEEE802.3 Ethernet MAC addressing End-System
 - Internet Protocol IP
 - User Datagram Protocol UDP
 - SNMP
 - ICMP
- Provisions have been added to ensure Deterministic Behaviour
- End-Systems perform <u>traffic shaping</u> which is enforced by Switches
- Switches perform <u>traffic policing</u> and <u>static routing</u> of frames

Virtual Link (VL) Definition

- End-Systems exchange Frames through <u>Virtual Links</u> (VLs)
- A <u>Virtual Link</u> defines a unidirectional (logical) connection from one source End-System to one or more destination End-Systems → "Uni- or Multicast" communication

ľ

Virtual Link Definition

- An AFDX network can define up to 64k (2¹⁶) VLs identified by a
 16-Bit identifier in the MAC Destination Field of Ethernet Frame
- An AFDX End-Systems can support multiple VLs
- End-Systems perform Traffic shaping and Integrity Checking on each VL
- A Switch performs Traffic <u>policing</u> on each VL
- Traffic <u>shaping</u> and <u>policing</u> combined, offer the baseline for deterministic behaviour of the network

Virtual Link Parameters Overview

Parameter	E/S	Switch
BAG	Yes (Tx)	Yes
(Bandwidth allocation GAP)		
Frame Size	Yes (Tx)	Yes
max. allowed Jitter	Yes	Yes
No. of Sub-VLs	Yes (Tx)	No
Account Type	No	Yes
Priority	No	Yes
Network Selector	Yes	No
Skew Max.	Yes (Rx)	No

Virtual Link Parameters

- Bandwidth Allocation Gap (BAG):
 - The End-System controls the transmission flow for each VL in accordance with the BAG (<u>traffic shaping</u>)

The Switch verifies the BAG (<u>traffic policing</u>)

Source: ARINC SPECIFICATION 664P7

AFDX® Tutorial

Virtual Link Parameters

- Bandwidth Allocation Gap (continued):
 - Frames do not need to be transmitted exactly in multiples of the configured BAG
 - Frames on a VL can be transmitted slower than the BAG without impact on the Switching (see above)
 - if no data are available to send on a VL, no frames appear
 - Frames on a VL can be transmitted faster than the BAG with impact on the Switching (traffic policing)
 - BAG values are in milliseconds: 1, 2, 4, 8, 16, 32, 64, 128

Virtual Link Parameters

- Frame Size S_{max}:
 - each VL max. Frame Size S_{max} can be individually configured $S_{max} = \{64,...,1518\}$
 - Together with the BAG, the absolute (worst case) bandwidth consumption on an AFDX link can be calculated for a given VL
 - Frames on a VL can have different Frame sizes S: 64 <= S <= S_{max}

Virtual Link Parameters

- Sub-VLs (E/S relevant only):
 - Each VL may consist of up to 4 sub-VLs
 - There is a Round-Robin Scheduling of sub VL's
 - sub-VL assignment is <u>not</u> encoded in the frame → cannot be directly resolved (vs, VL)

IP

AFDX® Tutorial

13

AFDX Integrity Checking

- Integrity checking is done per VL and per Network
- Checking is based on Sequence Number (SN) and the so called "Maximum Consecutive Frames Lost"
 - The Sequence numbering is performed for <u>each VL</u> <u>individually</u>
- All Invalid Frames are discarded (e.g. with physical errors)

AFDX Redundancy Management

- The Ports, Links and Switches are duplicated for redundancy
 - Switch <u>does not need know</u> about redundancy (duplicated)
 - E/S needs to know about redundancy (not duplicated!)

* The Networks are sometimes also called "Red" and "Blue"

AFDX Redundancy Management

- Frames are concurrently transmitted over both networks (if VL is configured accordingly → Network Selector "A and B", "A only" and "B only" may be also configured for VLs)
- on the Receiving End-System, the <u>"First Valid Frame wins"</u> which requires provisions to support this algorithm e.g. the AFDX specific SN!

AFDX – Protocol Layers

Source: ARINC SPECIFICATION 664P7

AFDX® Tutorial

AFDX Protocol Layers

 Avionics applications residing at End-Systems exchange messages via the services of the <u>User Datagram Protocol Layer</u> (*UDP*, Layer 4) with underlying <u>Internet Protocol</u> (*IP*, Layer 3)

AFDX Switching is based on the MAC Destination Address (Layer 2)

AFDX provisions for deterministic are implemented on Layer 2 only

AFDX Frame Structure

Preamble	Start Delimiter	MAC Header	IP Header	UDP Header	AFDX Payload	AFDX Sequence Number	FCS
7	1	12	22	8	171471	1	4

Frame Size: 64...1518 Bytes

Preamble + Start Delimiter + InterFrame Gap: 20 Bytes

Duration of Minimum Frame: 6.72 usec (84 Bytes a 80ns)

Duration of Maximum Frame: 123.04 usec (1538 Bytes a 80ns)

AFDX – MAC Layer 2

- MAC header comprises a Source and Destination Address, and a Type Field
- Each address is 48 bits wide
- The Destination Address identifies the Virtual Link
- The Source Address is (must be) a Unicast Address
- The Destination Address is (must be) a Multicast Address

Preamble	Start Delimiter	User Programmable Frame Payload	FCS
Preamble	Delimiter	User Programmable Frame Payload	FCS

7

1

1...1996

4

AFDX – MAC Layer Layer 2

MAC Source Address encodes the unique "Source" of the frame

Preamb	Start Delimiter	MAC Dest Addr		AC e Addr	Туре	Eth	nernet Pay	load	FC
7	1		-		2		461	1500	4
					er defina	able, here an e	·		
	onstant F 00 0010		netw	ork ID		Equipi	ment ID	Interface	00000
	00 0000	0000	0000	Doma ID	ain	Side ID	Location ID	ID	
	24 bits		4	4		3	5	3	5

AFDX® Tutorial

AFDX – MAC Layer Layer 2

MAC Destination Address identifies the Virtual Link

AFDX – MAC Layer Layer 2

The IP Type Field defines IPv4 support only (today)

	Preamble	Start Delimiter	MAC Dest Addr	MAC Source Addr	Type	Ethernet Payload	I	FCS	
online.com	7	1	6	6	2	461500		4	
www.aim-					IPv 0x08				
m					16	its			

AFDX – MAC Layer Layer 2

MAC Addressing

- The MAC Source address identifies a system wide unique source equipment (End System) → always "Unicast"
- The MAC Destination address is always a "Multicast" address (No Broadcasts allowed!) and a receiving equipment can handle multiple MAC Destination addresses resp. VLs!

AFDX – IP (Internet Protocol) Layer 3

IPv4 Header

Pream	ble	Start Delimiter	MAC Header	IF Hea				IP Pa	ayload		FCS
7		1	14					26	1480		4
Version	IHL	Type of Service	Total length	Fragment identification	Contro Flag	Fragment Offset	Time to	Protocol	Header checksum	IP Source Address	IP Destination Address
4	4	8	16	16	3	13	8	8	16	32	32

AFDX – IP (Internet Protocol) Layer 3

IP Unicast Source and Destination Address

Preamble	S [.] Deli	tart miter	MA(Head		Не	IP eade	r		II	P Payl	oad			FCS
Version	IHL	Type of Service		otal igth	_	ment ication	Contro Flag	Fragment Offset	Time to Live	Protocol	Header checksum	IP Sou Addr		IP Destination Address
						ARINC	664P7:	user defina	able, her	e an exan	nple			
Cons	Constant Field 0000 1010			Network ID		D	Eq	uipm	ent ID	I	Partition II		D	
00			10	00		main D	Side	ID I	_ocati	on 00	00		tition ID	
8	bits				4		4	3	3	5		3		5

AFDX® Tutorial

AFDX – IP (Internet Protocol) Layer 3

IP Multicast Destination Address

Preamble	Si Deli	tart imiter	MAC Header	IP Heade	r		IF	P Payl	oad		FCS
Version	IHL	Type of Service		Fragment identification	Contro Flag	Fragment Offset	Time to	Protocol	Header checksum	IP Source Address	IP Destination Address
	Constant Field 1110 0000 1110 0000							Vir	tual Lin	k Identifi	er

16 bits

16 bits

AFDX® Tutorial

2

AFDX – IP (Internet Protocol) Layer 3

IP Addressing

- IP Source is <u>always</u> a Unicast Address, Class A Private IP (→ single source) Example: 10.x.x.x
- IP Destination <u>either Multicast</u> (→ multiple receivers* in a End System e.g. 224.224.x.x) <u>or Unicast</u> (→ single receiver* in End System e.g. 10.x.x.x)

^{*} a "receiver" e.g. means an application. In other words: data addressed to a unicast IP destination address shall be used by only one application, data addressed to a multicast IP destination address can be used by multiple applications in side the same End System. The Specifications are also using the term "partition" in sense of an "application".

AFDX – IP (Internet Protocol) Layer 3

- IP Fragmentation
 - In the IP Layer message data (up to 8kByte for AFDX) are fragmented for transmission via multiple MAC Frames (if necessary)
 - Fragmentation is a standard functionality if the IP Layer (not AFDX specific), however for AFDX the fragments are expected always "in order"
 - IP Layer needs to respect the max. Frame size of associated VL!
 - on receiving side the IP Reassembly is the counterpart

AFDX – IP (Internet Protocol) Layer 3

IP Fragmentation (simplified)

AFDX® Tutorial

AFDX – UDP (User Datagram Protocol) Layer 4

UDP Header

Preamble	Start Delimiter	MAC Header	IP Header	UDP Header	UDP Paylo	pad FCS
7	1	14	20	8	181	472 4
Sour	ce Por	t De	stination Port	t l	JDP length	UDP Checksum
16	bits		16 bits		16 bits	16 bits

AFDX® Tutorial

AFDX UDP Protocol

Applications send/receive "messages" through AFDX Comm(unication)
 Ports which are basically mapped to UDP Ports

There are two types of AFDX Comm Ports which detailed characteristics are defined by the ARINC653 Standard (AVIONICS APPLICATION SOFTWARE STANDARD INTERFACE)

- Queuing Ports AFDX messages may be sent over several AFDX frames (fragmentation by IP layer dependent on the associated VL Max. frame size), no data is lost or overwritten. The max. amount of data handled per queuing port is 8kByte.
- Sampling Ports AFDX messages are sent in one Frame, data may be lost or overwritten. The max. amount of data handled per sampling is limited by the associated VL max. Frame size.

AFDX Comm Port

UDP Port

AFDX UDP Protocol

Source: ARINC SPECIFICATION 664P7

AFDX UDP Protocol

- AFDX Comm Ports are typically associated with a "Quintuplet" consisting of
 - * UDP Source Port Number
 - * UDP Destination Port Number
 - * IP Source Address
 - * IP Destination Address
 - * Virtual Link Number

Source: ARINC SPECIFICATION 664P

- AFDX Comm Port types can be either Send or Receive ports
- Structuring of the AFDX Payload Data (=UDP Payload) defined in ARINC664 P7 and Airbus proprietary specifications.
- A special type of UDP Ports are called SAP (Service Access Point)

AFDX Payload Summary

Preamble	Start Delimiter	MAC Header	IP Header	UDP Header	AFDX Payload	AFDX Sequence Number	FCS	
----------	--------------------	---------------	--------------	---------------	--------------	----------------------------	-----	--

- AFDX Payload is carried in one (Sampling and Queuing Ports) or multiple Frames (Queuing Ports) via UDP Protocol
- IP Fragmentation / Reassembly is used for transmission of up to 8 kByte payload data
- UDP Header only in first frame of fragmented a "message"!
 The Fragmentation Information is handled via IP Header

Preamb	Start MAC Header	IP Header	AFDX Payload	AFDX Sequence Number	FCS	
--------	------------------	--------------	--------------	----------------------------	-----	--

www.aim-online.com

AFDX® Tutorial

AFDX Payload Structuring

 AFDX Payload for non-protocol based data is organized in so called Functional Data Sets (FDS)

Source: ARINC SPECIFICATION 664P7

AFDX® Tutorial

36

AFDX Payload Structuring

 A Functional Data Set (FDS) is organized into Functional Status Set (FSS) and Data Sets (DS)

Source: ARINC SPECIFICATION 664P7

AFDX Payload Structuring

 A Data Sets (DS) typically contains a Parameter (Datum)
 e.g. Float, Integer, Enumerated, Boolean,

Source: ARINC SPECIFICATION 664P7

AFDX® Tutorial

AFDX Glossary

AFDX Avionics Full Duplex Switched Ethernet

E/S End System VL Virtual Link

MAC Media Access Control

IΡ Internet Protocol

UDP **User Datagram Protocol** SAP Service Access Point

TFTP Trivial File Transfer Protocol

API **Application Programming Interface Open Systems Interconnection** OSI

BAG **Bandwidth Allocation Gap**

SNMP Simple Network Management Protocol

MIB Management Information Base **TCP** Transmission Control Protocol

SNMP Simple Network Management Protocol **ICMP**

Internet Control Message Protocol

Interface Control Document **Network Control Document**

ISDB ARINC RMIC

Integrated Systems Data Base Aeronautical Radio Incorporated Redundany Management

Integrity Checking

www.aim-online.com

ICD

NCD

Our Mission is your Success!

AIM GmbH

Sasbacher Str. 2 79111 Freiburg Germany

Tel: +49 761 45 22 90 Fax: +49 761 45 22 93 3

email: sales@aim-online.com

- AIM UK

Cressex Enterprise Centre Lincoln Road, High Wycombe, Bucks **United Kingdom**

Tel: +44 1494 446844 Fax +44 1494 449324

email: salesuk@aim-online.com

AIM München Sales Office

Terofalstrasse 23a 80689 München Germany

Tel: +49 89 70 92 92 92 Fax: +49 89 70 92 92 94

email: salesgermany@aim-online.com

- AIM-USA

Seven Neshaminy Interplex - Suite 211 Trevose, PA 19053 USA

Tel: 267-982-2600/ 1-877-520-1553

Fax: 215-645-1580

email: salesusa@aim-online.com

AFDX® Tutorial