January 2005 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks	
1.	(a) 4 (or ± 4)	B1	
	(b) $16^{-\frac{3}{2}} = \frac{1}{16^{\frac{3}{2}}}$ and any attempt to find $16^{\frac{3}{2}}$	M1	
	$\frac{1}{64} \text{ (or exact equivalent, e.g. } 0.015625) \qquad \text{(or } \pm \frac{1}{64} \text{)}$	A1 (3	3)
		3	
2.	(i) (a) $15x^2 + 7$ (i) (b) $30x$	M1 A1 A1 (3 B1ft (1	
	(ii) $x + 2x^{\frac{3}{2}} + x^{-1} + C$ A1: $x + C$, A1: $+2x^{\frac{3}{2}}$, A1: $+x^{-1}$	M1 A1 A1 A1(4	
3.	Attempt to use discriminant $b^2 - 4ac$ Should have no x's (Need not be equated to zero) (Could be within the quadratic formula)	M1	
	$144 - 4 \times k \times k = 0 \text{or} \sqrt{144 - 4 \times k \times k} = 0$	A1	
	Attempt to solve for k (Could be an inequality) $k = 6$	M1 A1 (4 4	1)
4.	$x^{2} + 2(2 - x) = 12$ or $(2 - y)^{2} + 2y = 12$ (Eqn. in x or y only) $x^{2} - 2x - 8 = 0$ or $y^{2} - 2y - 8 = 0$ (Correct 3 term version) (Allow, e.g. $x^{2} - 2x = 8$)	M1 A1	
	(x-4)(x+2) = 0 $x =$ or $(y-4)(y+2) = 0$ $y =$	M1	
	x = 4, x = -2 or $y = 4, y = -2$	A1	
	y = -2, $y = 4$ or $x = -2$, $x = 4$ (M: attempt one, A: both)	M1 A1ft (6	

5. (a) -3, -1, 1

- B1: One correct
- B1 B1

(b)

- (ft only if terms in (a) are in arithmetic progression) B1ft
- (1)

(2)

Sum = $\frac{1}{2}n\{2(-3) + (n-1)(2)\}$ or $\frac{1}{2}n\{(-3) + (2n-5)\}$ (c)

M1 A1ft

 $= \frac{1}{2}n\{2n-8\} = n(n-4)$ (Not just $n^2 - 4n$)

(3, 2)

- A1 (*)
- (3)

6

6. (a)

- Reflection in *x*-axis, cutting *x*-axis twice. **B**1
- 2 and 4 labelled (or (2, 0) and (4, 0) seen) **B**1
- Image of P(3, 2)**B**1 (3)

(b)

- Stretch parallel to *x*-axis
- M1
- 1 and 2 labelled (or (1, 0) and (2, 0) seen) **A**1
- Image of $P(1\frac{1}{2}, -2)$
- **A**1 (3)

(a) $\frac{5-x}{x} = \frac{5}{x} - \frac{x}{x} \left(= \frac{5}{x} - 1 \right) \left(= 5x^{-1} - 1 \right)$ 7.

M1

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 8x, -5x^{-2}$

M1 A1, A1

When x = 1, $\frac{dy}{dx} = 3$

(*) A1 cso (5)

At P, y = 8(b)

B1

- Equation of tangent: y 8 = 3(x 1)
- (y = 3x + 5) (or equiv.)
- M1 A1ft (3)

- Where y = 0, $x = -\frac{5}{3}$ (= k) (c)
- (or exact equiv.)
- M1 A1
- (2) **10**

8. (a) p = 15, q = -3

B1 B1

B1, M1

(2)

- (b) Grad. of line ADC: $m = -\frac{5}{7}$, Grad. of perp. line $=-\frac{1}{m}\left(=\frac{7}{5}\right)$
- M1 A1ft

Equation of *l*: $y - 2 = \frac{7}{5}(x - 8)$

- M1 A1ft
- 7x-5y-46=0 (Allow rearrangements, e.g. 5y=7x-46)
- A1 (5)

9

(c) Substitute y = 7 into equation of l and find x = ...

M1

 $\frac{81}{7}$ or $11\frac{4}{7}$ (or exact equiv.)

- A1 (2)
- 9. (a) Evaluate gradient at x = 1 to get 4, Grad. of normal $= -\frac{1}{m} \left(= -\frac{1}{4} \right)$ B1, M1
 - Equation of normal: $y-4=-\frac{1}{4}(x-1)$
- (4y = -x + 17)
- M1 A1 (4)

(b) $(3x-1)^2 = 9x^2 - 6x + 1$ (May be seen elsewhere)

B1

Integrate: $\frac{9x^3}{3} - \frac{6x^2}{2} + x \ (+C)$

M1 A1ft

- Substitute (1, 4) to find c = ..., c = 3 $(y = 3x^3 3x^2 + x + 3)$
- M1, A1cso (5)

(c) Gradient of given line is -2

- B1
- Gradient of (tangent to) C is ≥ 0 (allow >0), so can never equal -2.
- B1
- 11

(2)

Question
number

 $x^2 - 6x + 18 = (x - 3)^2, +9$ 10. (a) B1, M1 A1 (3) (b) "U"-shaped parabola M1 Vertex in correct quadrant A1ft P: (0, 18) (or 18 on y-axis) **B**1 *Q*: (3, 9) B1ft (4) $x^2 - 6x + 18 = 41$ or $(x-3)^2 + 9 = 41$ (c) M1Attempt to solve 3 term quadratic x = ...M1 $x = \frac{6 \pm \sqrt{36 - (4 \times -23)}}{2}$ (or equiv.) **A**1 $\sqrt{128} = \sqrt{64} \times \sqrt{2}$ (or surd manipulation $\sqrt{2a} = \sqrt{2}\sqrt{a}$) M1 $3 + 4\sqrt{2}$ (5) **A**1

12