Лабораторная работа 6. Управляющие операторы в языке С++. Часть 1

6. ВАРИАНТЫ ЗАДАНИЙ

Bap.	Текст задачи
1	1. Даны три разные точки А(х1,у1), В(х2,у2) и С(х3,у3). Определить, будут ли они
	расположены на одной прямой. Если нет, то вычислить ∠АВС.
	2. Дано целое число. Вывести его строку-описание вида «отрицательное четное число»,
	«нулевое число», «положительное нечетное число» и т. д.
	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
	закрашенной области (рис. 1 после таблицы с вариантами)
2	1. Даны действительные числа x и y , не равные друг другу. Меньшее из этих двух чисел
	заменить половиной их суммы, а большее — их удвоенным произведением.
	2. Даны целочисленные координаты трех вершин прямоугольника, стороны которого
	параллельны координатным осям. Найти координаты его четвертой вершины.
	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
3	закрашенной области (рис. 2 после таблицы с вариантами) 1. Вводится число X. Найти F, которое определяется по формуле
	$F = \begin{cases} X^2 + 5, ecnu \ X \le 10 \\ (X - 5)^2, ecnu \ X > 10 \end{cases}$
	$(X-5)^2$, если $X > 10$
	2. Даны координаты точки, не лежащей на координатных осях ОХ и ОҮ. Определить
	номер координатной четверти, в которой находится данная точка.
	3. Дана точка с действительными координатами x , y . Определить принадлежность точки
	закрашенной области (рис. 3 после таблицы с вариантами)
4	1. Вводится число X. Найти F, которое определяется по формуле
	$F = \begin{cases} X^2 + 5, ecnu \ X > 10 \\ X - 8, ecnu \ X \le 10 \end{cases}$
	1. Заданы координаты левой верхней и правой нижней вершин прямоугольника (х1, у1),
	(x2, y2), а также координаты точки $A(x, y)$. Определить, принадлежит ли точка A
	заданному прямоугольнику.
	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
	закрашенной области (рис. 4 после таблицы с вариантами)
5	1. На свой день рождения Петя купил красивый и вкусный торт, который имел идеально круглую форму. Петя не знал, сколько гостей придет на его день рождения, поэтому
	вынужден был разработать алгоритм, согласно которому он сможет быстро разрезать
	торт на N равных частей. Следует учесть, что разрезы торта можно производить как по
	радиусу, так и по диаметру. Помогите Пете решить эту задачу, определив наименьшее
	число разрезов торта по заданному числу гостей. Вводится натуральное число N – число
	гостей, включая самого виновника торжества (N <= 1000). Выведите минимально
	возможное число разрезов торта.
	2. Вводятся координаты двух точек на плоскости: А(x1,y1) и В(x2,y2). Определить,

	какая из точек находится ближе к началу координат.
	3. Дана точка с действительными координатами <i>x</i> , <i>y</i> . Определить принадлежность точки закрашенной области (рис. 5 после таблицы с вариантами)
6	1. Определить правильность даты, введенной с клавиатуры (число — от 1 до 31, месяц — от 1 до 12). Если введены некорректные данные, то сообщить об этом.
	2. С клавиатуры вводятся числа x, y. Вычислить $z = \begin{cases} (x+y)/2, ecnu(x-y) > 0 \\ (x-y)/2, endowner & z \end{cases}$
	3. Дана точка с действительными координатами <i>x</i> , <i>y</i> . Определить принадлежность точки закрашенной области (рис. 6 после таблицы с вариантами)
7	1. Вводятся координаты двух точек на плоскости: A(x1,y1) и B(x2,y2). Определить, какая
	из точек находится ближе к началу координат.
	2. Определить, равна ли сумма каких-либо двух цифр заданного трехзначного числа
	третьей цифре.
	3. Дана точка с действительными координатами x , y . Определить принадлежность точки
	закрашенной области (рис. 7 после таблицы с вариантами)
0	
8	1. С клавиатуры вводятся числа x, y. Вычислить $z = \begin{cases} x - y, ecnu \ x > y \\ x + y, ecnu \ x <= y \end{cases}$
	2. Дано целое число, лежащее в диапазоне 1–999. Вывести его строку-описание вида
	«четное двузначное число», «нечетное трехзначное число» и т. д.
	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
	закрашенной области (рис. 8 после таблицы с вариантами)
9	1. С клавиатуры вводятся целые числа х, у, не равные друг другу. Заменить большее из
	чисел удвоенной суммой исходных чисел, а меньшее – их произведением.
	2. Сотрудники завода по производству золотого песка из воздуха решили поправить свое
	финансовое положение. Они пробрались на склад завода, где хранился золотой песок
	трех видов. Один килограмм золотого песка первого вида они смогли бы продать за
	A_1 рублей, второго вида — за A_2 рублей, а третьего вида — за A_3 рублей. Так получилось,
	что у сотрудников оказалось с собой только три емкости: первая была рассчитана на
	B_1 килограмм груза, вторая на B_2 килограмм, а третья на B_3 килограмм. Им надо было
	заполнить полностью все емкости таким образом, чтобы получить как можно больше
	денег за весь песок. При заполнении емкостей нельзя смешивать песок разных видов, то
	есть, в одну емкость помещать более одного вида песка, и заполнять емкости песком так,
	чтобы один вид песка находился более чем в одной емкости.
	Требуется написать программу, которая определяет, за какую сумму предприимчивые
	сотрудники смогут продать весь песок в случае наилучшего для себя заполнения
	емкостей песком.
	3. Дана точка с действительными координатами <i>x</i> , <i>y</i> . Определить принадлежность точки
10	закрашенной области (рис. 9 после таблицы с вариантами)
10	1. С клавиатуры вводятся числа x, y. Вычислить a и b . $a = x + y; b = x - y, ecnu x > y > 0$
	$a = \sqrt{x + y}$; $b = 1$ в противном случае
	2. Программа для книжного магазина. Компьютер запрашивает стоимость книг, сумму
	денег, внесенную покупателем. Если сдачи не требуется, печатает на экране «Спасибо»;
	если денег внесено больше, чем необходимо, то печатает «Возьмите сдачу» и указывает
	сумму сдачи; если денег недостаточно, то печатает сообщение об этом и указывает
<u></u>	озмы задачи, сели денет педостаточно, то нечатает сообщение об этом и указывает

	размер недостающей сдачи.
	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
	закрашенной области (рис. 10 после таблицы с вариантами)
11	1. С клавиатуры вводятся числа x, y. Вычислить $F = \begin{cases} x - y, ecnu \ x > y \\ x + y, ecnu \ x <= y \end{cases}$
	2. Услуги телефонной сети оплачиваются по следующему правилу: за разговоры до А
	минут в месяц — В руб., а разговоры сверх установленной нормы оплачиваются из
	расчета С руб. за минуту. Написать программу, вычисляющую плату за пользование
	телефоном для введенного времени разговоров за месяц.
	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
	закрашенной области (рис. 11 после таблицы с вариантами)
12	1. Задаются два угла треугольника в градусах. Определить, существует ли такой
	треугольник.
	2. В отделе работают 3 сотрудника, которые получают заработную плату в рублях.
	Требуется определить: насколько зарплата самого высокооплачиваемого из них
	отличается от самого низкооплачиваемого.
	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
	закрашенной области (рис. 12 после таблицы с вариантами)
13	1. Вводятся два числа. Если оба из них отрицательны, сообщить об этом.
	2. Даны целочисленные координаты трех вершин прямоугольника, стороны которого
	параллельны координатным осям. Найти координаты его четвертой вершины.
	3. Дана точка с действительными координатами x, y. Определить принадлежность точки
	закрашенной области (рис. 13 после таблицы с вариантами)
14	1. Необходимо написать программу, которая проверяет пользователя на знание
	таблицы умножения. Программа предлагает ввести два числа. Пользователь вводит
	два целых однозначных числа. Программа задаёт вопрос: результат
	умножения первого числа на второе. Пользователь должен ввести ответ и увидеть на
	экране правильно он ответил или нет. Если нет – показать еще и правильный результат.
	2. Известно, что из трех чисел a1, a2, a3 одно отлично от двух других, равных между
	собой. Вывести номер этого числа.
	3. Дана точка с действительными координатами x, y. Определить принадлежность точки
	закрашенной области (рис. 14 после таблицы с вариантами)
15	1. Даны радиус круга и сторона квадрата. У какой фигуры площадь больше?
	2. Дано целое число. Вывести его строку-описание вида «отрицательное четное число»,
	«нулевое число», «положительное нечетное число» и т. д.
	3. Дана точка с действительными координатами x, y. Определить принадлежность точки
	закрашенной области (рис. 15 после таблицы с вариантами)
16	1. Даны вещественные числа $a, b, c \ (a \neq 0)$. Выяснить, сколько вещественных корней
	имеет уравнение $ax^2 + bx + c = 0$.
	2. Даны три разные точки A(x1,y1), B(x2,y2) и C(x3,y3). Определить, будут ли они
	расположены на одной прямой. Если нет, то вычислить $\angle ABC$. Точность – не менее 10^{-8} .
	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
	закрашенной области (рис. 16 после таблицы с вариантами)
17	1. Дано двухзначное число. Определить, какая из его цифр больше: первая или вторая.
	2. Даны целочисленные координаты трех вершин прямоугольника, стороны которого
	параллельны координатным осям. Найти координаты его четвертой вершины.
	1 1

	3. Дана точка с действительными координатами x , y . Определить принадлежность точки
	закрашенной области (рис. 17 после таблицы с вариантами)
18	1. Даны радиус круга и сторона квадрата. Уместится ли круг в квадрате?
	2. Даны действительные числа x и y , не равные друг другу. Меньшее из этих двух чисел
	заменить половиной их суммы, а большее — их удвоенным произведением.
	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
	закрашенной области (рис. 18 после таблицы с вариантами)
19	1. Даны координаты точки, не лежащей на координатных осях ОХ и ОҮ. Определить
	номер координатной четверти, в которой находится данная точка.
	2. Дано трехзначное число. Определить, является ли оно палиндромом (то есть, читается
	одинаково слева направо и справа налево).
	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
	закрашенной области (рис. 19 после таблицы с вариантами)
20	1. Даны два угла треугольника в градусах. Определить, существует ли такой
	треугольник, и если да, будет ли он прямоугольным.
	2. Дано трехзначное число. Верно ли, что все его цифры различны?
	3. Дана точка с действительными координатами x, y. Определить принадлежность точки
	закрашенной области (рис. 20 после таблицы с вариантами)
21	1. Даны три вещественных числа. Верно ли, что они все разные?
	2. На свой день рождения Петя купил красивый и вкусный торт, который имел идеально
	круглую форму. Петя не знал, сколько гостей придет на его день рождения, поэтому
	вынужден был разработать алгоритм, согласно которому он сможет быстро разрезать
	торт на N равных частей. Следует учесть, что разрезы торта можно производить как по
	радиусу, так и по диаметру. Помогите Пете решить эту задачу, определив наименьшее
	число разрезов торта по заданному числу гостей. Вводится натуральное число N – число
	гостей, включая самого виновника торжества (N <= 1000). Выведите минимально
	возможное число разрезов торта.
	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
	закрашенной области (рис. 21 после таблицы с вариантами)
22	1. Даны три вещественных числа. Определить, имеется ли среди них хотя бы одна пара
	равных между собой чисел.
	2. Вводятся координаты двух точек на плоскости: A(x1,y1) и B(x2,y2). Определить, какая
	из точек находится ближе к началу координат.
	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
	закрашенной области (рис. 22 после таблицы с вариантами)
23	1. Определить правильность даты, введенной с клавиатуры (число — от 1 до 31, месяц —
	от 1 до 12). Если введены некорректные данные, то сообщить об этом.
	2. Дано трехзначное число. Верно ли, что среди его цифр есть одинаковые?
	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
	закрашенной области (рис. 23 после таблицы с вариантами)
24	1. Даны радиус круга и сторона квадрата. Уместится ли квадрат в круге?
	2. Дано целое число, лежащее в диапазоне 1–999. Вывести его строку-описание вида
	«четное двузначное число», «нечетное трехзначное число» и т. д.
	3. Дана точка с действительными координатами x, y. Определить принадлежность точки
	закрашенной области (рис. 24 после таблицы с вариантами)
25	1. Услуги телефонной сети оплачиваются по следующему правилу: за разговоры до А

	3. Дана точка с действительными координатами х, у. Определить принадлежность точки
	закрашенной области (рис. 29 после таблицы с вариантами)
30	1. Дано трехзначное число. Верно ли, что среди его цифр есть одинаковые?
	2. Определить, войдет ли в конверт с внутренними параметрами a и b см открытка
	размером c на d см. Для размещения открытки в конверте необходим зазор в 1 мм с
	каждой стороны.
	3. Дана точка с действительными координатами x , y . Определить принадлежность точки
	закрашенной области (рис. 30 после таблицы с вариантами)

