Department of Mathematics & Statistics

MTH403a

Quiz-I

Name:	 Roll No:	
rame.	 10011 110.	

Marks: 10 Time: 25 minutes

1. Let $n \geq 2$ and $A: \mathbb{R}^n \to \mathbb{R}^n$ be linear. Show that the function $f \colon \mathbb{R}6n \to \mathbb{R}$ defined by $f(x) := \langle Ax, x \rangle$ is differentiable and find the jacobian of f at every point $x = (x_1, x_2, \dots, x_n)$ with respect to the standard bases. [5 marks]

> Let $x \in \mathbb{R}^n$. For $h \in \mathbb{R}^n$, we have $f(x+h) - f(x) = \langle Ax, h \rangle +$ $\langle Ah, x \rangle + \langle Ah, h \rangle$. Observe that the map $T(h) := \langle Ax, h \rangle +$ $\langle Ah, x \rangle + \langle Ah, h \rangle$ is linear in $h \in \mathbb{R}^n$.

> Further by Cauchy-Schwartz inequality, |f(x+h) - f(x)| $|T(h)| = |\langle Ah, h \rangle| \le ||Ah|| ||h||.$

> Since A is linear there exists a constant C > 0 such that $||Ah|| \le C||h||$ for $h \in \mathbb{R}^n$. Therefore $\frac{|f(x+h)-f(x)-T(h)|}{||h||} \le C||h||$ $C||h|| \to 0 \text{ as } ||h|| \to 0.$

> Hence f is differentiable on \mathbb{R}^n and for $x \in \mathbb{R}^n$, the derivative $df_x(h) = \langle Ax, h \rangle + \langle Ah, x \rangle.$

> Observe that the Jacobian matrix of the given differentiable function f at x is $J(f)(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$ and for $1 \leq i \leq n$, $\frac{\partial f}{\partial x_i} = df_x(e_i) = \langle Ax, e_i \rangle + \langle Ae_i, x \rangle$, where e_i 's are the standard basis vectors of \mathbb{R}^n . [1 mark]

Let $x = \sum_{k=1}^{n} x_k e_k$ and $Ae_i = \sum_{k=1}^{n} a_{ik} e_k$.

Then $\langle Ax, e_i \rangle = \sum_k x_k \langle Ae_k, e_i \rangle = \sum_k a_{ki} x_k$ and $\langle Ae_i, x \rangle = \sum_k a_{ik} \langle e_k, x \rangle = \sum_k a_{ik} x_k$. [1 mark]

Therefore $\langle Ax, e_i \rangle + \langle Ae_i, x \rangle = \sum_k (a_{ik} + a_{ki}) x_k$ and the Jacobian $J(f)(x) = (\sum_{k} (a_{1k} + a_{k1})x_k, \dots, \sum_{k} (a_{nk} + a_{kn})x_k).$ [1 mark]

2. Find and classify the critical points of the smooth function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = (x^2 + y^2)e^{x^2 - y^2}$ for $(x,y) \in \mathbb{R}^2$. [5 marks]

For the function $f(x,y) = (x^2 + y^2)e^{x^2 - y^2}$, we have $\frac{\partial f}{\partial x} = 2x(1 + x^2 + y^2)e^{x^2 - y^2}$ and $\frac{\partial f}{\partial y} = 2y(1 - x^2 - y^2)e^{x^2 - y^2}$. Therefore $\nabla f(x,y) = (0,0)$ iff $2x(1 + x^2 + y^2) = 0$ and

 $2y(1-x^2-y^2)=0$. Solving these two equations we find that (x,y)=(0,0) and $\pm(0,1)$ are the three critical points of the function f. [1 mark]

Observe that

$$\frac{\partial^2 f}{\partial x^2} = \left[2(1+x^2+y^2) + 4x^2 + 4x^2(1+x^2+y^2) \right] e^{x^2-y^2}$$

$$= \begin{cases} 2 & \text{if } x = 0 = y \\ 4/e & \text{if } x = 0, y = \pm 1 \end{cases}$$

$$\frac{\partial^2 f}{\partial y^2} = \left[2(1 - x^2 - y^2) - 4y^2 - 4y^2(1 - x^2 - y^2) \right] e^{x^2 - y^2}$$
$$= \begin{cases} 2 & \text{if } x = 0 = y \\ -4/e & \text{if } x = 0, y = \pm 1 \end{cases}$$

$$\begin{split} \frac{\partial^2 f}{\partial y \partial x} &= -\left[4xy(x^2+y^2)\right] e^{x^2-y^2} \\ &= \begin{cases} 0 & \text{if } x=0=y \\ 0 & \text{if } x=0, y=\pm 1 \end{cases} \end{split}$$
 [2 marks]

(2 marks if all three calculations are correct. Otherwise 1 mark) $\,$

Therefore at the point (0,0), the hessian matrix $\begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y \partial x} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} =$

 $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. Hence for all non-zero vectors $v \in \mathbb{R}^2$, $\langle Av, v \rangle = 2||v||^2 > 0$. This proves that (0,0) is a local minima for the function.

At the points $(0, \pm 1)$, the Hessian matrix is $\begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y \partial x} \\ \frac{\partial^2 f}{\partial x \partial u} & \frac{\partial^2 f}{\partial u^2} \end{pmatrix} =$

$$\begin{pmatrix} 4/e & 0 \\ 0 & -4/e \end{pmatrix}.$$

This proves that the points $(0, \pm 1)$ are saddle points for the function f. [1 mark]