

CORRELATION

DESCRIPTIVE STATISTICS

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Covariance

Correlation Coefficient

<u>Covariance</u> is a statistical measure that quantifies the <u>relationship</u> between two random variables (*X*, *Y*).

Scatter Plot

Covariance is a statistical measure that quantifies the **relationship** between two random variables (*X*, *Y*).

Population Covariance

$$\sigma_{xy} = \frac{\sum_{i=1}^{N} (x_i - \mu_x) (y_i - \mu_y)}{N}$$

Sample Covariance

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

<u>Covariance</u> is a statistical measure that quantifies the <u>relationship</u> between two random variables (*X*, *Y*).

The **df.cov()** method is used to compute the covariance matrix of a DataFrame.

The given dataset contains five observations of current (A) and corresponding power (W) measurements. Does **current** and **power** consumption have a positive, negative, or no **linear relationship**?

Device

Current	Power
2	100
3 . 5	200
1.8	90
4.2	210
2.7	110

Solution

<u>Correlation coefficient</u> adjusts covariance, so that the relationship between the two variables becomes easy and intuitive to interpret.

It ranges from -1 to +1:

- +1 indicates perfect positive correlation
- **−1** indicates perfect negative correlation
- **0** indicates no linear relationship

Scatter Plot

Correlation coefficient adjusts covariance, so that the relationship between the two variables becomes easy and intuitive to interpret.

It ranges from -1 to +1:

- +1 indicates perfect positive correlation
- **−1** indicates perfect negative correlation
- **0** indicates no linear relationship

Population Correlation Coefficient

$$r = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

Sample Correlation Coefficient

$$r = \frac{s_{\chi y}}{s_{\chi} s_{y}}$$

Correlation coefficient adjusts covariance, so that the relationship between the two variables becomes easy and intuitive to interpret.

It ranges from -1 to +1:

- +1 indicates perfect positive correlation
- **−1** indicates perfect negative correlation
- **0** indicates no linear relationship

The **df.corr()** method is used to compute the correlation matrix of a DataFrame.

Determine if each scenario suggests a positive, negative, or no correlation:

- 1. Ice cream sales and umbrella sales in a city.
- 2. Hours spent studying and exam scores.
- 3. A person's shoe size and their IQ.
- 4. Age of a used car and its resale value.

The given dataset contains five observations of current (A) and corresponding power (W) measurements. Does **current** and **power** consumption have a positive, negative, or no **linear relationship**?

Device

Current	Power
2	100
3.5	200
1.8	90
4.2	210
2.7	110

Solution

The given dataset contains five observations of current (A) and corresponding power (W) measurements. Does **current** and **power** consumption have a positive, negative, or no <u>linear</u> <u>relationship</u>?

_					
\Box	Δ.	۲7	п.	\sim	
ப	$\overline{}$	v	┸	$\overline{}$	C

Current	Power
2	100
3.5	200
1.8	90
4.2	210
2.7	110

$$\bar{x} = 2.84$$

$$\bar{y} = 142$$

$$s_{xy} = 56.15$$

$$s_x = 1.011$$

$$s_y = 58.05$$

Solution

LABORATORY

