

40% discount: twitkaba40

Github: github.com/Rkabacoff/twitch

ggplot2

MODERN DATA VISUALIZATION WITH R ROB KABACOFF

Robert Kabacoff, PhD © 2020 All rights reserved.

Who am I?

Not a clue, but here goes...

- Professor, Quantitative Analysis Center, Wesleyan University
- 35 years experience as data scientist (20 in industry)
- Author R in Action (3rd ed), Quick-R website

What is R

- A language and environment for statistical computing and graphics
- Based on the "S" Language developed at Bell Labs (1976)
- R was first created by Ross Ihaka and Robert Gentleman at the Univ. of Auckland in 1993

Why R?

- Free
- Open source
- State-of-the-art graphics and data analysis
- Platform for programming new methods
- Runs on Windows, Linux, Mac OS X
- Enormous user base

Packages

- Collections of R functions, data, and compiled code in welldefined format
- Massively extend the functionality of R

 Thousands of user written packages on CRAN http://cran.r-project.or/web/packages

21,276 as of last night

Gaphics

Static

- base
- grid
- lattice
- D3 (via r2d3)
- ggplot2

Interactive

- leaflet
- plotly
- rbokeh
- rCharts
- highcharter
- base (very limited)
- Shiny (as platform)

Examples

hist(cardata\$city_mpg)

base graphics

univariate_plot(cardata, city_mpg)

ggplot2 graphics

Examples

Interactive

ggplot + plotly

Datasets

data(Salaries, package="carData")

Salaries from the **carData** package (2008-2009 9 month academic salaries n=397)

```
url <- "https://bit.ly/3bsMwsS"
Salaries <- read.csv(url)</pre>
```

- 1. rank (AssocProf, AsstProf, Prof)
- 2. salary in dollars
- 3. discipline (A=theoretical, B=applied)
- 4. sex (Female, Male)
- 5. yrs.since.phd.
- 6. yrs.service

> head(Salaries)

	rank	discipline	yrs.since.phd	yrs.service	sex	salary
1	Prof	В	19	18	Male	139750
2	Prof	В	20	16	Male	173200
3	AsstProf	В	4	3	Male	79750
4	Prof	В	45	39	Male	115000
5	Prof	В	40	41	Male	141500

Grammar of Graphics

- data: an R data frame
- coordinate system: 2-D space data projected onto (e.g. Cartesian coordinates, polar coordinates, map projections)
- geoms: type of geometric objects that represent data (e.g. points, lines, bars)
- aesthetics: visual characteristics that represent data (e.g. position, size, color, shape, transparency, fill)
- scales: for each aesthetic, how visual characteristic is converted to display values
- stats: statistical transformations that summarize data (e.g., counts, means, trend lines)
- facets: how data is split into subsets and displayed as small multiples

Simple bar plot

Stacked bar plot

```
ggplot(data=Salaries,
    aes(x=rank, fill=sex)) +
geom_bar()
```


Grouped bar plot

Spinogram

Histogram

color (border)

fill

Frequency polygons

common geom_freqpoly options:
binwidth
bins
color
size (thickness of line)

Frequency polygons

```
common geom_freqpoly options:
binwidth
bins
color
size (thickness of line)
```


Kernel density plot

```
ggplot(data=Salaries,
    aes(x=salary)) +
geom_density(fill="red")

common geom_density options:
    fill
    color
    alpha
```


Kernel density plot - multiple groups

Box plot

```
ggplot(data=Salaries,
    aes(x=rank, y=salary)) +
geom_boxplot()

common geom_boxplot options:
    fill
    color
    notch (=TRUE or FALSE)
```

outlier. -color shape size

Strip plot

```
ggplot(data=Salaries,
    aes(x=salary, y=rank)) +
geom_point()

common geom_point options:
    color
    alpha
    shape
    size
```


Jittered Strip plot

```
ggplot(data=Salaries,
    aes(x=salary, y=rank)) +
geom_jitter()

common geom_jitter options:
    color
    alpha
    shape
    size
```


Scatter plot

common geom_point options:

color alpha shape size

Changing point shapes

+ geom_point(shape = 15)

for 21-25 you can control both the fill and the border

Scatterplot with fit

```
ggplot(data=Salaries,
    aes(x=yrs.since.phd,
        y=salary)) +
geom_point() +
geom_smooth()
```

common geom_smooth options method ("Im", "loess", "gam") se (TRUE or FALSE) formula

Scatterplot with fit

try formula = $y \sim poly(x, 2)$

Add

- color,
- shape,
- size,
- alpha

```
to

aes()

or the
```

geom_xxx()

be careful of aesthetics fill=sex

vs attributes! fill="blue"

```
ggplot(data=Salaries,
    aes(x=yrs.since.phd,
        y=salary,
        color=rank)) +
geom_point()
```



```
ggplot(data=Salaries,
    aes(x=yrs.since.phd,
        y=salary,
        color=rank,
        shape=sex)) +
geom_point()
```



```
ggplot(data=Salaries,
    aes(x=yrs.since.phd,
        y=salary,
        color=rank,
        shape=rank)) +
geom_point()
```


Facets

Facets

```
ggplot(data=Salaries,
   aes(x=yrs.since.phd,
       y=salary)) +
geom_point() +
facet_grid(. ~ sex)
```


Facets

```
ggplot(data=Salaries,
    aes(x=yrs.since.phd,
        y=salary)) +
geom_point() +
facet_grid(sex ~ rank)
```


Aesthetics in ggplot() vs geom_xxx()

```
ggplot(data=Salaries,
    aes(x=yrs.since.phd,
        y=salary,
        color=sex )) +
    geom_point() +
    geom_smooth(method="lm", se=FALSE)
```


Aesthetics in ggplot() vs geom_xxx()

Geoms

Polygons from a reference map

geom_map

geom_abline	Reference lines: horizontal, vertical, and diagonal	geom_path	Connect observations		
geom_bar	Bars charts	geom_point	Points		
geom_bin2d	Heatmap of 2d bin counts	geom_polygon	Polygons		
geom_blank	Draw nothing	geom_qq	A quantile-quantile plot		
geom_boxplot	A box and whiskers plot (in the style of Tukey)	geom_quantile	Quantile regression		
geom_contour	2d contours of a 3d surface	geom_ribbon	Ribbons and area plots		
geom_count	Count overlapping points	geom_rug	Rug plots in the margins		
geom_density	Smoothed density estimates	geom_segment	Line segments and curves		
geom_density_2d	Contours of a 2d density estimate	geom_smooth	Smoothed conditional means		
geom_dotplot	Dot plot	goom snoke	Line segments parameterised by location, direction and distance		
geom_errorbarh	Horizontal error bars	geom_spoke			
geom_hex	Hexagonal heatmap of 2d bin counts	geom_label	Text		
geom_freqpoly	Histograms and frequency polygons	geom_raster	Rectangles		
geom_jitter	Jittered points	geom_violin	Violin plot		
geom_crossbar	Vertical intervals: lines, crossbars & errorbars				

Line charts

ggplot(economics, aes(date, unemploy)) + geom_line()

Line charts

Changing the linetype

Line charts

```
ggplot(economics, aes(date, unemploy)) +
geom_line(linetype="dotted", color="blue", size=1)
```



```
Scales
scale_x_continuous()
scale_y_continuous()
                                            Axes
scale_x_discrete()
scale_y_discrete()
scale_color_continuous()
                                             Colors
scale_color_manual()
scale_color_brewer()
                                                              Also shape,
                                                              and size
scale_fill_continuous()
                                               Fill
scale_fill_manual()
```

Scales

```
ggplot(mtcars, aes(x=wt, y=mpg)) + geom_point() +
    scale_x_continuous(breaks=seq(1,6,1), limits=c(1, 6)) +
    scale_y_continuous(breaks=seq(5, 35, 5), limits=c(5,35))
```


Scales

```
ggplot(Salaries, aes(x=rank)) + geom_bar() +
    scale_x_discrete(limits = c("Prof", "AsstProf", "AssocProf"))
```


breaks, limits, labels

use limits to reorder levels

Scales

breaks, limits, labels

use limits to reorder levels

Scales – Color and Fill

picking colors by name - "red" or hex #ff0000

try colors() to list all built in colors

ggplot2 picks colors from around the circle for example the 5 points above if there are five levels

Scales – Color/Fill

```
ggplot(Salaries, aes(x=rank, fill=rank)) + geom_bar() +
    scale_fill_manual(values=c("red", "green", "blue"))
```


Scales – Color / Fill

Specify a color palate using
scale_fill_brewer()
scale_color_brewer()
using palette= option

Scales – Color/Fill

```
ggplot(Salaries, aes(x=rank, fill=rank)) +
  geom_bar() +
  scale_fill_brewer()
```


Scales – Color/Fill

```
ggplot(Salaries, aes(x=rank, fill=rank)) +
  geom_bar() +
  scale_fill_brewer(palette = "Set1")
```


Annotations - Labels

```
p <- ggplot(data=mtcars, aes(x=wt, y=mpg, color=factor(am))) +</pre>
      geom_point(size=2) +
      labs(title="Relationship of Auto Weight to Mileage"
                                                                          Relationship of Auto Weight to Mileage
        subtitle="By Auto Transmission Type",
                                                                          By Auto Transmission Type
        caption = "Data from Motor Trend Magazine 1974",
        x = "Weight in Thousand Pounds",
                                                                        30 -
        y="Miles Per Gallon",
        color = "Transmission Type")
                                                                      Miles Per Gallon
- 02 -
p
                                                                                                                 Trasmission Type
                                                                                                                  • 0
                                                                        15 -
                                                                        10 -
                                                                                    Weight in Thousand Pounds
```

Data from Motor Trend Magazine 1974

Annotations – reference lines and labels

```
ggplot(data=mtcars, aes(x=wt, y=mpg)) + geom_point() +
  geom_hline(yintercept=20, color="red") +
  annotate("text", x=5, y=21,
             label="Average Mileage", color="red")
                                                         30 -
                                                         25 -
                                                       mpg
                                                                                                 Average Mileage
                                                         15-
                                                                              3
                                                                                   wt
```

p + theme_bw()

Relationship of Auto Weight to Mileage

library(ggthemes)

theme_base: a theme resembling the default base graphics in R. See also theme_par.

theme calc: a theme based on LibreOffice Calc.

theme_economist: a theme based on the plots in the The Economist magazine.

theme_excel: a theme replicating the classic ugly gray charts in Excel

theme_few: theme from Stephen Few's "Practical Rules for Using Color in Charts".

theme fivethirtyeight: a theme based on the plots at fivethirtyeight.com.

theme_gdocs: a theme based on Google Docs.

theme hc: a theme based on Highcharts JS.

theme par: a theme that uses the current values of the base graphics parameters in par.

theme pander: a theme to use with the pander package.

theme solarized: a theme using the solarized color palette.

theme_stata: themes based on Stata graph schemes.

theme tufte: a minimal ink theme based on Tufte's The Visual Display of Quantitative Information.

theme_wsj: a theme based on the plots in the The Wall Street Journal.

library(ggthemes)
p + theme_fivethirtyeight()


```
library(ggthemes)
p + theme_economist()
```


Getting Fancy

Getting Fancy

Combining graphs

```
theme set(theme minimal())
p1 <- ggplot(Salaries, aes(x=log(salary))) +</pre>
  geom histogram(fill="steelblue", color="white")
p2 <- ggplot(Salaries, aes(x=yrs.service)) +</pre>
  geom histogram(fill="firebrick", color="white")
p3 <- ggplot(Salaries, aes(x=rank, fill=rank)) +
  geom bar() + theme(legend.position="none") +
  labs(x="") + coord flip()
p4 <- ggplot(Salaries, aes(x=yrs.service, y=salary)) +
  geom point(aes(color=rank)) +
  geom smooth(method="lm", formula=y\simpoly(x, 2)) +
  scale y continuous(labels=scales::dollar format()) +
  theme(legend.position="bottom")
library(patchwork)
(p1 + p2 + p3)/p4 +
  plot layout(heights=c(1,3)) +
  plot annotation(title="College Salaries",
              subtitle="A demonstration of patchwork")
```


Saving your work

- ggsave(filename="filename.ext", plot=p)
 - ext can be
 eps, ps, tex, pdf, jpeg, tiff, png, bmp, svg, wmf
 - plot defaults to last one created
 - wmf on windows platforms only
 - svg can be edited using Inkscape or illustrator
 - be careful of transparencies with Microsoft Office (use bitmap not wmf)

Creating interactive graphs

```
library(ggplot2)
data(mtcars)
mtcars$auto <- row.names(mtcars)
p <- ggplot(data=mtcars, aes(x=wt, y=mpg, text=auto)) +
    geom_point()
library(plotly)
ggplotly(p, tooltip=c("x", "y", "text"))</pre>
```

Learning more

- R in Action (3rd ed)
 https://www.manning.com/books/r-in-action-third-edition
- Data Visualization with R -http://rkabacoff.github.io/datavis
- Hadley Wickham http://docs.ggplot2.org/
- Winston Chang- http://wiki.stdout.org/rcookbook/Graphs/