Analyse - TD2

Lucie Le Briquer

28 septembre 2017

Exercice 2 : Une caractérisation des compacts dans un espace de Banach

- 1. \Rightarrow : A compact donc précompact. A est fermé borné. Soit $\varepsilon > 0$, $\exists \{x_1, ..., x_n\}$ tel que $A \subset \bigcup_{i=1}^n \mathcal{B}(x_i, \varepsilon)$. Donc en considérant $F = \text{Vect}(x_1, ..., x_n)$, pour tout $x \in A$, $\exists i \in [1, n]$ tel que $x \in \mathcal{B}(x_i, \varepsilon) \Rightarrow d(x, F) < \varepsilon$.
- 2. A fermé et E complet donc A complet. Il suffit donc de montrer que A est précompact. Soit $\varepsilon > 0$, A fermé donc $\exists r, \ A \subset \overline{\mathcal{B}(0,r)} \subset \overline{\mathcal{B}(0,r+\varepsilon)}$.

 $\overline{\mathcal{B}(0,r+\varepsilon)}\cap F_{\varepsilon}$ est fermé borné dans F et de dim finie. Donc précompact et :

$$\overline{\mathcal{B}(0,r+\varepsilon)}\cap F_{\varepsilon}\subseteq \bigcup_{i=1}^{n}\mathcal{B}(x_{i},\varepsilon)$$

Soit $y \in A$. $d(y, F_{\varepsilon}) < \varepsilon$, donc $\exists x \in F_{\varepsilon}$ tel que $d(y, x) < \varepsilon$.

$$d(0,x) \le d(x,y) + d(y,0)$$

$$< \varepsilon + r$$

Donc $x \in \overline{\mathcal{B}(0, r + \varepsilon)}$. Alors $x \in \overline{\mathcal{B}(0, r + \varepsilon)} \cap F_{\varepsilon}$. Donc $\exists i \in [1, n]$ tel que $d(x, x_i) < \varepsilon$. Ainsi $d(y, x_i) < 2\varepsilon$. Donc $A \subseteq \bigcup_{i=1}^n \mathcal{B}(x_i, 2\varepsilon)$.

Exercice 4: Inversion locale et exponentielle

Soit A une algèbre de Banach unitaire : espace de Banach + loi multiplicative + neutre multiplicatif + $||uv|| \le ||u|| ||v||$.

1. On a:

$$\sum_{n=0}^{+\infty} \frac{\|u^n\|}{n!} \leq \sum_{n=0}^{+\infty} \frac{\|u\|^n}{n!} = e^{\|u\|}$$

Donc exp est bien définie par CVN dans un Banach. CVU sur tout borné ⇒ continue.

- 2. $-\exp(0) = 1$
 - exp est différentiable en 0:

$$\exp(h) = \sum_{n=0}^{+\infty} \frac{(h)^n}{n!} = 1 + h + \|h\|\varepsilon(h) \quad \text{avec } \varepsilon(h) \xrightarrow[\|h\| \to +\infty]{} 0$$

 $d\exp(0)=\mathrm{id}$ est inversible. Par théorème d'inversion locale, exp
 est un difféomorphisme local entre 0 et
 1.

Exercice 6 : Autour du théorème de Brouwer et du lemme de non-rétractation

- 1. (a) (lemme de rétractation) Soit $f: B \to S$ tq $f|_S = \text{id}$. On pose g = -f. Si $x \in S$, g(x) = -x et si $x \in B \setminus S$, $g(x) \in S$. Donc $g: B \to S$ est continue et n'admet pas de point fixe. Absurde par Brouwer.
 - (b) On cherche $f: \mathbb{U} \longrightarrow \mathbb{C}^*$ continue telle qu'il n'existe pas de prolongement $g: \mathbb{C} \longrightarrow \mathbb{C}^*$ continue. Soit $f = \mathrm{id}|_{\mathbb{U}}$. Par l'absurde, si f se prolonge en $g: \mathbb{C} \longrightarrow \mathbb{C}^*$, considérons :

$$\varphi \colon \left\{ \begin{array}{ccc} B & \longrightarrow & S \\ z & \longmapsto & \frac{g(z)}{|g(z)|} \end{array} \right.$$

et $\varphi|_S = \mathrm{id}|_S$.

$$\forall z \in S, \ \varphi(z) = \frac{g(z)}{|g(z)|} = \frac{f(z)}{|f(z)|} = \frac{z}{|z|} = z$$

donc $\varphi|_Z = \mathrm{id}, \varphi \colon B \longrightarrow S$ continue. Absurde par le lemme de non rétractation (Q1).

2. C compact, donc $\exists r > 0$ tel que $C \subset \mathcal{B}(0,r)$. Posons :

$$g: \left\{ \begin{array}{ccc} \mathcal{B}(0,r) & \to & \mathcal{B}(0,r) \\ x & \longmapsto & f \circ p_C(x) \end{array} \right.$$

où p_C est la projecion orthogonale sur C (car C est convexe). Par Brouwer, $\exists x$ tel que g(x) = x. Donc $f \circ p_C(x) = x$. Comme $f : C \to C$, $x \in C$ donc $p_C(x) = x$. D'où f(x) = x.

Exercice $7 : Brouwer \Rightarrow Schauder$

- 1. Soit $\varepsilon > 0$
 - (a) f continue, C compact donc f(C) compact donc précompact.
 - (b) $F = \text{Vect}((a_i)_{1 \leq i \leq n}), C' = C \cap F.$ C' convexe comme intersection de convexes. C' compact : c'est un fermé inclus dans un compact.
 - (c) On cherche $\varphi_i \colon f(C) \longrightarrow \mathbb{R}_+$, continues telles que $\varphi_i(x) > 0 \Leftrightarrow x \in \mathcal{B}(a_i, \varepsilon)$. Prenons $\varphi_i(x) = \max(\varepsilon \|x a_i\|, 0)$. φ_i est continue. On pose $\varphi(y) = \sum_{i=1}^n \varphi_i(y)$ et $f(C) \subset \bigcup_{i=1}^n \mathcal{B}(a_i, \varepsilon)$, donc il y a toujours un $\varphi_i(y) > 0$. Ainsi $\forall y \in f(C), \varphi(y) > 0$. Il reste donc à normaliser : $\psi_i(y) = \frac{\varphi_i(y)}{\varphi(y)}$.
 - (d) $p_{\varepsilon}(y) = \sum_{i=1}^{n} \psi_i(y) a_i$
 - p_{ε} est à valeurs dans $C': a_i \in C'$ et $\sum_{i=1}^n \psi_i = 1$, donc par convexité, $p_{\varepsilon}(y) \in C'$
 - p_{ε} est continue comme somme d'applications continues.

 $||p_{\varepsilon}(y) - y|| = \left\| \sum_{i=1}^{n} \psi_{i}(y)a_{i} - y \right\|$ $= \left\| \sum_{i=1}^{n} \psi_{i}(y)a_{i} - \sum_{i=1}^{n} \psi_{i}(y)y \right\|$ $= \left\| \sum_{i=1}^{n} \psi_{i}(y)(a_{i} - y) \right\|$ $\leq \sum_{i=1}^{n} \psi_{i}(y)||a_{i} - y||$

Si $\psi_i(y) \neq 0$, $||a_i - y|| \leq \varepsilon$. Donc:

$$||p_{\varepsilon}(y) - y|| \le \left(\sum_{i=1}^{n} \psi_{i}(y)\right) \varepsilon \le \varepsilon$$

- (e) $f_{\varepsilon} = p_{\varepsilon} \circ f \colon C' \to C'$ est continue, et C' convexe compact dans un evn de dimension finie (F). Donc par Brouwer, f_{ε} admet un point fixe x_{ε} .
- 2. Pour $\varepsilon=\frac{1}{n},$ on extrait de $x_{\frac{1}{n}}$ une sous-suite convergente $x_{\varphi(n)}\xrightarrow[n \longrightarrow +\infty]{} x.$

$$\left\| p_{\frac{1}{\varphi(n)}} \left(f(x_{\varphi(n)}) \right) - f(x_{\varphi(n)}) \right\| \le \frac{1}{\varphi(n)}$$