JMÉNO A PŘÍJMENI: LUKAS RUNT x = 5; B = 4ČÍSLO ÚLOHY: 1.3 ZADANI: Roshodněhe, kda je posloupnost (am) monotorní a sve noslodnuhí kdůrodněhe: $a_m = -m^2 + (x + B)m$

RESENT $A_{m} = -m^{2} + 9m$ • Vypoziham provich pah člemi poslov prosti. $A_{n} = -\Lambda^{2} + 9.1 = 8$ $A_{n} = -2^{2} + 9.2 = 14$ $A_{n} = -3^{2} + 9.3 = 18$ $A_{n} = -3^{2} + 9.3 = 18$

Zoba se se (a_m) je moshoure'

Ověřem': $\forall m \in \mathbb{N}$ $-(m+1)^2 + 9 \cdot (m+1) \ge -m^2 + 9m$ $-m^2 - 2m - 1 + 9m + 9 \ge -m^2 + 9m$ $8 \ge 2m / 2$ $4 \ge m \implies \text{poshoupook an je moshoure'}$ $pro m = \{1, 2, 3, 43, poshou}$ ms moshoure' nem'.

and slesapia nem rushourer

ODPOVED: Poslouprest (an) nem' menotionin!

IMÉNO A PŘÍJMENI: LUKAŠ RUNT &=5; B=4

ČÍSLO ÚLOHY: 1.5

ZADÁNI: Vyročíhejhe limibu

lim 2ma + 13m + 3

m > +00 3mb + 0m + 2

ŘEŠENI: Limibu nyročíham povocí algebry limih

1. 2m5 + 4m+3 11 +00 11 1. m² 2 + 44 + 3m5

$$\lim_{M \to +\infty} \frac{2m^{5} + 4m + 3}{3m^{4} + 5m + 2} = \frac{11 + 00}{+\infty} = \lim_{M \to +\infty} \frac{m^{\frac{1}{8}}}{3m^{\frac{1}{8}} + \frac{2}{m^{\frac{1}{4}}}} = \lim_{M \to +\infty} \frac{n^{\frac{1}{8}}}{3m^{\frac{1}{8}} + \frac{2}{m^{\frac{1}{8}}}} = \lim_{M \to +\infty} \frac{n^{\frac{1}{8}}}{3m^{\frac{1}{8}}} = \lim_{M$$

ODPOVED: limita divergeje & + 00.