Exploratory Data Analysis & Cleaning

Agenda

01

Introduction:

02

Data
analysis
concepts

03

Hands on practise

04

Q&A

Meet the Speakers

JordanEducation Director

StanleyEducation Officer

Motivation: Why EDA?

Why do we need EDA?

- Understand the data: Know what you're working with the distributions, types, and quirks of your features.
- Catch issues early: Spot missing values, outliers, or data leakage before they hurt your model.
- Guide your ML workflow: Use insights from EDA to inform preprocessing, feature engineering, and model choice.

Spend the most time cleaning and preprocessing your data

Garbage in = Garbage Out

Getting to Know Your Data

Dataset Statistics

Distribution

- imbalance
- skewness
- outliers

<u>Mean</u>

- tendency
- differences
 across groups

Variance

- feature spread
- normalization?

Visualisations

Dataset Structure

.head(), .info(),.describe

	index	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income
8	8	-122.26	37.84	42.0	2555.0	665.0	1206.0	595.0	2.0804
10	10	-122.26	37.85	52.0	2202.0	434.0	910.0	402.0	3.2031
11	11	-122.26	37.85	52.0	3503.0	752.0	1504.0	734.0	3.2705
12	12	-122.26	37.85	52.0	2491.0	474.0	1098.0	468.0	3.0750
13	13	-122.26	37.84	52.0	696.0	191.0	345.0	174.0	2.6736

Feature Correlations

Pearson

best for linear relationships, values between -1 and 1

Mutual information

can handle non-linear & both numerical and categorical data

Entropy

measure of uncertainty, used in DTs for splitting

Cleaning the Dataset

Handling Missing Values

Drop

Impute (mean, median, mode, model based)

Handling Outliers

if they're irrelevant and their absence won't bias the findings

log or sqrt the data to reduce the sparsity

transform the data so that it follows Normal, mean=0, var=1

Data Type Corrections & Encoding

Often we need to change data values to suitable types for analysis
E.g. "42" to 42
yes/no to True/False

We can use one-hot encoding or label encoding for replacing categorical data with numerical data

One-Hot Encoding

datagy.io

Island	Biscoe	Dream	Torgensen
Biscoe	1	0	0
Torgensen	0	0	1
Dream	0	1	0

Label encoding

Feature Scaling & Transformations

Feature Scaling

bringing data features to the same scale

Transformation

involves modifying features to support the learning algorithm

Hands on Practise (Collab Notebook)

https://shorturl.at/KdPro

Thank You!!