Basic Electronic Circuits (IEC-103)

Lecture-08

Nonlinear Applications of Operational Amplifiers

Non-Linear Op-Amp Applications

- ☐ Applications using saturation
 - Comparators
 - Comparator with hysteresis (Schmitt trigger)
 - Square wave and triangular wave generators
- ☐ Applications using active feedback components
 - Log, antilog, squaring etc. amplifiers
 - Precision rectifier

☐ A comparator is an op-amp circuit without negative feedback and takes the advantage of very high open-loop gain.

- ☐ A comparator is an op-amp circuit without negative feedback and takes the advantage of very high open-loop gain.
- ☐ It is operated in a non-linear mode.

$$+V_{sat} = +V_{supply} - 2 = 15 - 2 = +13 \text{ V}$$

 $-V_{sat} = -V_{supply} + 2 = -15 + 2 = -13 \text{ V}$

Comparator (Square Wave Generator)

Comparator (Square Wave Generator)

Comparator (Zero Crossing Detector)

Comparator (Zero Crossing Detector)

Comparator (Level Detector)

Comparator (Level Detector)

(ii) Voltage-divider reference

Comparator (Level Detector)

☐ A comparator with hysteresis has a safety margin.

- ☐ A comparator with hysteresis has a safety margin.
- ☐ One of two thresholds is used depending on the current output state.

- ☐ A comparator with hysteresis has a safety margin.
- One of two thresholds is used depending on the current output state.

- ☐ A comparator with hysteresis has a safety margin.
- One of two thresholds is used depending on the current output state.

- ☐ A comparator with hysteresis has a safety margin.
- One of two thresholds is used depending on the current output state.

☐ The output level depends on the direction you are coming from.

- ☐ The output level depends on the direction you are coming from.
- ☐ There is window around the threshold level where nothing happens.

- ☐ The output level depends on the direction you are coming from.
- ☐ There is window around the threshold level where nothing happens.
- ☐ The advantage is immunity against small noise spikes.

- ☐ The output level depends on the direction you are coming from.
- ☐ There is window around the threshold level where nothing happens.
- ☐ The advantage is immunity against small noise spikes.
- ☐ It takes at minimum the hysteresis range to make it switch.

Rejecting Interference

☐ The Schmitt trigger is an op-amp comparator circuit featuring hysteresis.

- ☐ The Schmitt trigger is an op-amp comparator circuit featuring hysteresis.
- ☐ The inverting variety is the most commonly used.

- ☐ The Schmitt trigger is an op-amp comparator circuit featuring hysteresis.
- ☐ The inverting variety is the most commonly used.

Switching occurs when:

Switching occurs when:

$$V_{IN} = V_{-} = V_{+} = V_{OUT} \frac{R_{1}}{R_{1} + R_{2}}$$

Switching occurs when:

$$V_{IN} = V_{-} = V_{+} = V_{OUT} \frac{R_{1}}{R_{1} + R_{2}}$$

But,

$$V_{OUT} = \pm V_{SAT}$$

$$\therefore V_{THRESH} = \pm V_{SAT} \frac{R_1}{R_1 + R_2}$$

Input-Output Relationship

Input-Output Relationship

V_{IN} increasing

Input-Output Relationship

 V_{IN} increasing

V_{IN} decreasing

Input-Output Relationship

V_{IN} increasing

V_{IN} decreasing

(i) & (ii) combined

☐ Square waves are generally used in digital switching circuits.

- Square waves are generally used in digital switching circuits.
- Square wave can be generated using op-amp in positive feedback configuration without the need of an external input.

- ☐ Square waves are generally used in digital switching circuits.
- ☐ Square wave can be generated using op-amp in positive feedback configuration without the need of an external input.
- ☐ The circuits generating a square wave can be called as relaxation oscillator or astable multivibrator.

The circuit's frequency of oscillation will depend on the charging and discharging of capacitor C through feedback resistor R.

Hysteresis Loop

Capacitor Voltage

Output Voltage

$$T_1 = RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$
 where $\beta = \frac{R_1}{R_1 + R_2}$

$$T_2 = RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$
 where $\beta = \frac{R_1}{R_1 + R_2}$

$$T_2 = RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$
 where $\beta = \frac{R_1}{R_1 + R_2}$

$$\therefore T_1 = T_2$$

$$T_2 = RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$
 where $\beta = \frac{R_1}{R_1 + R_2}$

$$T_1 = T_2$$

$$T = T_1 + T_2 = 2RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$

$$T_2 = RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$
 where $\beta = \frac{R_1}{R_1 + R_2}$

$$T_1 = T_2$$

$$T = T_1 + T_2 = 2RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$

If
$$R_1 = R_2 = R$$
 then $\beta = 0.5$

$$T_2 = RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$
 where $\beta = \frac{R_1}{R_1 + R_2}$

$$T_1 = T_2$$

$$T = T_1 + T_2 = 2RC \ln \left(\frac{1+\beta}{1-\beta} \right)$$

If
$$R_1 = R_2 = R$$
 then $\beta = 0.5$

$$\Rightarrow T = 2RC \ln \left(\frac{1+0.5}{1-0.5} \right) = 2RC \ln(3) = 2.197RC$$

Integrator Circuit

Integrator Circuit

$$V_{\text{out}}(t) = -\frac{1}{R_{\text{in}}C} \int_0^t V_{\text{in}}(t) dt$$

Integrator Circuit

$$V_{\text{out}}(t) = -\frac{1}{R_{\text{in}}C} \int_0^t V_{\text{in}}(t) dt$$

$$V_{out}(\omega) = -\frac{1}{j\omega R_{in}C} V_{in}(\omega)$$

Practical Integrator Circuit

Practical Integrator Circuit

DC Voltage Gain
$$(A_{v0}) = -\frac{R_2}{R_1}$$

$$AC Voltage Gain $(A_v) = -\frac{R_2}{R_1} \times \frac{1}{(1 + \omega CR_2)}$

$$Corner Frequency $(\omega_0) = \frac{1}{CR_2}$$$$$

Square Wave Generator

Integrator

$$V_{\text{out}} = \left(\frac{-R_5 / R_4}{R_5 C_2 s + 1}\right) V_{\text{in}}$$

Vout

Log and Antilog Amplifier

Logarithmic Amplifier

Diode Equation

$$i_D = I_0 \left(e^{\frac{qv_D}{nKT}} - 1 \right)$$

Diode Equation

$$i_D = I_0 \left(e^{\frac{qv_D}{nKT}} - 1 \right)$$

 i_D = the net current flowing through the diode;

 I_0 = "dark saturation current", the diode leakage current in the absence of light;

 v_D = applied voltage across the terminals of the diode;

q = absolute value of electron charge (1.6x10⁻¹⁹ C);

 $k = Boltzmann's constant (1.38x10^{-23} J/K);$

T = absolute temperature in Kelvin (K); and

n = empirical constant, 1 for Ge and 2 for Si diode.

Diode Equation

$$i_D = I_0 \left(e^{\frac{qv_D}{nKT}} - 1 \right)$$

 i_D = the net current flowing through the diode;

 I_0 = "dark saturation current", the diode leakage current in the absence of light;

 $\overline{v_D}$ = applied voltage across the terminals of the diode;

q = absolute value of electron charge (1.6x10⁻¹⁹ C);

 $k = Boltzmann's constant (1.38x10^{-23} J/K);$

T = absolute temperature in Kelvin (K); and

n = empirical constant, 1 for Ge and 2 for Si diode.

At 300 K, kT/q = 26 mV, the thermal voltage.

Diode Equation

$$i_D = I_0 \left(e^{\left(\frac{v_D}{0.026}\right)} - 1 \right)$$

where v_D is the voltage applied across diode in volts.

If diode is forward biased

$$i_D \cong I_0 e^{\left(\frac{v_D}{0.026}\right)}$$

Applying KCL at inverting input

Applying KCL at inverting input

$$\frac{0 - V_{in}}{R} + I_d = 0 \Longrightarrow I_d = \frac{V_{in}}{R}$$

Applying KCL at inverting input

$$\frac{0 - V_{in}}{R} + I_d = 0 \Longrightarrow I_d = \frac{V_{in}}{R}$$

But

$$I_d = I_0(e^{(v_d/v_T)} - 1)$$

Applying KCL at inverting input

$$\frac{0 - V_{in}}{R} + I_d = 0 \Longrightarrow I_d = \frac{V_{in}}{R}$$

But

$$I_d = I_0(e^{(v_d/v_T)} - 1)$$

When diode is forward biased

$$I_d \cong I_0(e^{(v_d/v_T)})$$

Here
$$v_d = -v_{out}$$

Here
$$v_d = -v_{out}$$

$$\therefore I_d = I_0 e^{(-v_{\text{out}}/v_T)}$$

Here
$$v_d = -v_{out}$$

$$\therefore I_d = I_0 e^{(-v_{\text{out}}/v_T)}$$

$$I_0 e^{\left(-v_{\text{out}}/v_T\right)} = \frac{V_{\text{in}}}{R}$$

Here
$$v_d = -v_{out}$$

$$\therefore I_d = I_0 e^{(-v_{\text{out}}/v_T)}$$

$$I_0 e^{\left(-v_{\text{out}}/v_T\right)} = \frac{V_{\text{in}}}{R}$$

$$e^{\left(-v_{\text{out}}/v_{T}\right)} = \frac{V_{\text{in}}}{I_{0}R}$$

Here $v_d = -v_{out}$

$$\therefore I_d = I_0 e^{(-v_{\text{out}}/v_T)}$$

$$I_0 e^{\left(-v_{\text{out}}/v_T\right)} = \frac{V_{\text{in}}}{R}$$

$$e^{\left(-\mathbf{v}_{\text{out}}/v_{T}\right)} = \frac{\mathbf{V}_{\text{in}}}{I_{0}\mathbf{R}}$$

$$\mathbf{v}_{\text{out}} = -v_T \ln \left(\frac{\mathbf{V}_{\text{in}}}{I_0 \mathbf{R}} \right) = k_1 \ln \left(\frac{\mathbf{V}_{\text{in}}}{k_2} \right)$$

Here $v_d = -v_{out}$

$$\therefore I_d = I_0 e^{(-v_{\text{out}}/v_T)}$$

$$I_0 e^{\left(-v_{\text{out}}/v_T\right)} = \frac{V_{\text{in}}}{R}$$

$$e^{\left(-v_{\text{out}}/v_{T}\right)} = \frac{V_{\text{in}}}{I_{0}R}$$

$$\mathbf{v}_{\text{out}} = -\mathbf{v}_T \ln \left(\frac{\mathbf{V}_{\text{in}}}{I_0 \mathbf{R}} \right) = k_1 \ln \left(\frac{\mathbf{V}_{\text{in}}}{k_2} \right)$$

where

$$\mathbf{k}_1 = -\mathbf{v}_T$$
 and $\mathbf{k}_2 = \mathbf{I}_0 \mathbf{R}$