Analysis_report

December 22, 2017

1 Analysis

```
In [1]: import matplotlib
    import matplotlib.pyplot as plt
    import pandas as pd

In [2]: tweet_json_cleaned=pd.read_csv('twitter_archive_master.csv')
    tweet_json_cleaned['timestamp'] = pd.to_datetime(tweet_json_cleaned['timestamp'],utc=True
```

1.0.1 Analyzing timestamp

First the column timestamp is formatted as UTC, I transfer the timestamp into an reasonable timezone 'America/New_York'.It looks like @dog_rates is living in United States.

```
In [3]: tweet_json_cleaned['local_timestamp']=tweet_json_cleaned['timestamp'].dt.tz_localize('UI Extract hour from timestramp and visualize the hour against number of tweets.
```


The plot shows @dog_rates preferred to sent a tweet at late morning and early evening, and never sent a tweet bewteen 2AM to 7AM at Eastern Time, perhaps he/she was sleeping during this period. It's also possible that @dog_rates is living in Central Time Zone, so the inactive time is 1AM to 6AM.

1.0.2 Correlation between favorite_count and retweet_count.

It seems favorite_count and retweet_count have a linear correlation and the variance increases. The favorite_count is almost always larger than the retweet_count. That makes sense because the action of clicking favorite is easier than retweeting a tweet in Twitter.

1.0.3 Time series on favorite_count and retweet_count

The number of favorite and retweet per tweet is continuously increasing over time elapsed.

1.0.4 Correlation between rating and timestamp

I would consider rating_numerator within range 0-15 is an valid rating, other large integer rating is just a joke. The rating_denominator is either 10 or a joke, so I would like to disregard rating_denominator.

```
In [9]: tweet_json_cleaned1['rating_numerator'].plot(style='.',alpha=0.2)
    # plt.xlim(0, 40000)
    plt.ylim(0, 15)
    plt.title('Trend of rating by timestamp')
    plt.ylabel('Rating')
    plt.show()
```


It looks like @dog_rates tended to rate higher as fans grow. Eventually, the common rating converges to either 10,11,12,13,14 so these numbers become meaningless.

1.0.5 Correlation between dog stage and ratings.

I am interested whether the dog stage is correlated to the ratings.

/opt/conda/lib/python3.6/site-packages/numpy/core/fromnumeric.py:57: FutureWarning: reshape is of
return getattr(obj, method)(*args, **kwds)

Looks like @dog_rates tends to rate higher on floofer and puppo. The pupper dogs are getting lower rates than other dog stage, with a distribution similar to the dogs without any stage.

1.0.6 Top predicted dog breed

Let's see the predicted dog breed distribution.

The dog breed prediction model predicts golden retrievers are the most common dogs that @dog_rates publishes. I think the distribution reflects these top breeds are also top popular or favorite dogs people adopt.

In [14]: $\#tweet_json_cleaned3=tweet_json_cleaned2.groupby('breed_predict').median() \\ \#tweet_json_cleaned3['rating_numerator']$