MA 544: Homework 3

Carlos Salinas

January 31, 2016

PROBLEM 3.1 (WHEEDEN & ZYGMUND §3, Ex. 5)

Construct a subset of [0,1] in the same manner as the Cantor set, except that at the kth stage each interval removed has length $\delta 3^{-k}$, $0 < \delta < 1$. Show that the resulting set is perfect, has measure $1 - \delta$, and contains no interval.

Proof. Let $1 > \delta > 0$ be given. Subdivide the interval [0,1] into thirds, $\left[1,\frac{1}{3}\right]$, $\left[\frac{1}{3},\frac{2}{3}\right]$, and $\left[\frac{2}{3},1\right]$ and remove the open subset $\left(\frac{1}{2}-\delta,\frac{1}{2}+\delta\right)$ from the middle third $\left[\frac{1}{3},\frac{2}{3}\right]$. Repeat this process ad infinitum.

PROBLEM 3.2 (WHEEDEN & ZYGMUND §3, Ex. 7)

Prove (3.15).

Proof.

Lemma (Wheeden & Zygmund (3.15)). If $\{I_k\}_k^N$ is a finite collection of nonoverlapping intervals, then $\bigcup I_k$ is measurable and $|\bigcup I_k| = \sum |I_k|$.

PROBLEM 3.3 (WHEEDEN & ZYGMUND §3, Ex. 9)

If $\{E_k\}_{k=1}^{\infty}$ is a sequence of sets with $\sum |E_k|_e < +\infty$, show that $\limsup E_k$ (and also $\liminf E_k$) has measure zero.

PROBLEM 3.4 (WHEEDEN & ZYGMUND §3, Ex. 12)

If E_1 and E_2 are measurable subsets of \mathbf{R}^1 , show that $E_1 \times E_2$ is measurable subset of \mathbf{R}^2 and $|E_1 \times E_2|_e = |E_1||E_2|_e$. (Interpret $0 \cdot \infty$ as 0) [HINT: Use a characterization of measurability.]

PROBLEM 3.5 (WHEEDEN & ZYGMUND §3, Ex. 13)

Motivated by (3.7), define the inner measure of E to by $|E|_i := \sup |F|$, where the supremum is taken over all closed subsets F of E. Show that

- (i) $|E|_i \leq |E|_e$, and
- (ii) if $|E|_e<+\infty,$ then E is measurable if and only if $|E|_e=|E|_i.$ [Use (3.22).]

Problem 3.6 (Wheeden & Zygmund $\S 3$, Ex. 14)

Show that the conclusion of part (ii) of Exercise 13 (Problem) is false if $|E|_e = +\infty$.

Proof.

MA~544:~Homework~3

PROBLEM 3.7 (WHEEDEN & ZYGMUND §3, Ex. 8)

Show that the Borel σ -algebra \mathcal{B} in \mathbf{R}^n is the smallest σ -algebra containing the closed sets in \mathbf{R}^n .

Proof.

MA 544: Homework 3

PROBLEM 3.8 (WHEEDEN & ZYGMUND §3, Ex. 10)

If E_1 and E_2 are measurable, show that $|E_1 \cup E_2| + |E_1 \cap E_2| = |E_1| + |E_2|$.

PROBLEM 3.9 (WHEEDEN & ZYGMUND §3, Ex. 15)

If E is measurable and A is any subset of E, show that $|E|=|A|_i+|E\smallsetminus A|_e$. [See Exercise 13 for the definition of $|A|_i$.]

PROBLEM 3.10 (WHEEDEN & ZYGMUND §3, Ex. 16)

Prove (3.34).

Proof.

Lemma. |P| = v(P).

PROBLEM 3.11 (WHEEDEN & ZYGMUND §3, Ex. 18)

Prove that outer measure is *translation invariant*; that is, if $E_{\mathbf{h}} \coloneqq \{\mathbf{x} + \mathbf{h} \mid \mathbf{x} \in E\}$ is the translate of E by \mathbf{h} , $\mathbf{h} \in \mathbf{R}^n$, show that $|E_{\mathbf{h}}|_e = |E|_e$. If E is measurable, show that $E_{\mathbf{h}}$ is also measurable. [This fact was used in proving (3.37).]