รายงานโครงการการตั้งราคาสินค้า

วุฒิภัทร คำนวนสินธุ์ 20 เมษายน 2563

1. หลักการ และ เหตุผล

บริษัทแห่งหนึ่งมีการจัดจำหน่ายสินค้าในคลังประมาณ 500 รายการ (SKUs) โดยมีพนักงานขายรับหน้าที่เป็นผู้กำหนด ราคาขายประจำสัปดาห์ให้กับสินค้าดังกล่าว ซึ่งพิจารณาจากราคาต้นทุนของสินค้าที่มีการเปลี่ยนแปลงเป็นประจำทุกวัน และส่วน ต่างกำไรที่ไม่ได้กำหนดให้คงที่ในแต่ละครั้ง ทำให้การเปลี่ยนแปลงราคาต้นทุนสินค้านี้ส่งผลโดยตรงต่อผลกำไรโดยรวมของบริษัท ดังนั้นพนักงานฝ่ายขายจึงได้รับมอบหมายให้เป็นผู้กำหนดราคาสินค้าใหม่เป็นประจำทุกสัปดาห์

การกำหนดราคาสินค้าในแต่ละครั้งจำเป็นต้องพึ่งพาอำนาจการตัดสินใจของพนักงานคนดังกล่าวแต่เพียงผู้เดียว ฉะนั้น หากเกิดเหตุสุดวิสัย เช่น พนักงานคนดังกล่าวลาออกจากบริษัท ย่อมส่งผลกระทบโดยตรงต่อการกำหนดราคาสินค้า เนื่องด้วย บริษัทไม่สามารถเลียนแบบพฤติกรรมการตั้งราคาของพนักงานคนดังกล่าวได้ กล่าวคือ แนวคิด หลักการ วิธีคำนวณ และการ ตัดสินใจ เป็นสิ่งที่พนักงานคนดังกล่าวรับรู้แต่เพียงผู้เดียว ฉะนั้นเพื่อเป็นการรักษาเสถียรภาพของกลไกการตั้งราคาสินค้าของ บริษัท จึงมีความจำเป็นต้องสร้างตัวแบบทำนายขึ้นเพื่อเลียนแบบพฤติกรรมการกำหนดราคาสินค้าของพนักงานดังกล่าว และเพื่อ นำไปดำเนินการกำหนดราคาให้กับสินค้าในคลังของบริษัทต่อไป

โดยมีขั้นตอนการดำเนินโครงการ ดังนี้

- 1. วิเคราะห์ข้อมูล
- 2. ทำความสะอาดข้อมูลเพื่อนำมาเป็นชุดข้อมูลฝึกสอน
- 3. ทำการทดลองสร้างตัวแบบทำนาย
- 4. ทดสอบ และ วิเคราะห์ประสิทธิภาพของตัวแบบทำนาย
- 5. สรุปผล และ เลือกตัวแบบทำนายที่มีประสิทธิภาพมากที่สุด
- 6. วิเคราะห์ข้อมูลชุดทดสอบ และ ทำความสะอาดข้อมูล
- 7. ทำนายข้อมูลที่ต้องการจากข้อมูลชุดทดสอบ โดยใช้ตัวแบบทำนายที่เลือกไว้
- 8. สรุปผลการดำเนินงาน และจัดทำรายงาน

2. การทำความสะอาดข้อมูล

บริษัทให้ข้อมูลการตั้งราคาสินค้ามาทั้งหมด 50 สัปดาห์ ในแต่ละสัปดาห์มีข้อมูล ดังนี้

- 1. รหัสสินค้า (SKU) = ชนิดสินค้า ชนิดย่อยสินค้า เลขลำดับที่
- 2. วันที่ตั้งราคา (Date)
- 3. ราคาต้นทุนซื้อเฉลี่ยของสัปดาห์ก่อนหน้า (PrevAVGCost)
- 4. ราคาต้นทุนหลังหักส่วนสูญเสียของสัปดาห์ก่อนหน้า (PrevAssignedCost)
- 5. ราคาต้นทุนซื้อเฉลี่ยของทั้งสัปดาห์ (AVGCost)
- 6. ราคาต้นทุนซื้อวันล่าสุด (LatestDateCost)
- 7. ชนิดของสินค้า (Type)
- 8. ราคาตั้งของสัปดาห์นี้ (GenPrice)

เมื่อพิจารณาข้อมูลเบื้องต้น พบว่ามีข้อมูลการตั้งราคา 25116 รายการจาก 50 สัปดาห์ มีสินค้าทั้งหมด 529 รายการ (SKUs) อย่างไรก็ตาม พบว่ามีข้อมูลบางส่วนที่ไม่ได้มีการบันทึกไว้ หรือบันทึกไว้เป็น 0 เนื่องจากสัปดาห์นั้นอาจจะไม่มีการชื้อ วัตถุดิบ จึงไม่มีราคาต้นทุน รวมถึงสินค้าบางชิ้นไม่มีการบันทึกข้อมูลของการตั้งราคาสินค้าอีกด้วย ซึ่งคาดเดาได้ว่าในสัปดาห์นั้นไม่ มีการผลิตสินค้าชนิดดังกล่าว

	sku	date	PrevAVGCost	PrevAssignedCost	AVGCost	LatestDateCost	Туре	GenPrice
11	A-C-00006	2019-01-04	NaN	NaN	NaN	NaN	Α	NaN
77	A-A-00013	2019-01-04	NaN	NaN	NaN	NaN	Α	NaN
303	E-A-00195	2019-01-04	NaN	NaN	NaN	NaN	G	NaN
317	E-A-00399	2019-01-04	NaN	NaN	NaN	NaN	G	NaN
455	E-A-00023	2019-01-04	NaN	NaN	NaN	NaN	G	NaN
25111	A-E-00170	2020-01-13	NaN	NaN	NaN	NaN	NaN	NaN
25112	A-E-00171	2020-01-13	NaN	NaN	NaN	NaN	NaN	NaN
25113	A-D-00149	2020-01-13	NaN	NaN	NaN	NaN	NaN	NaN
25114	A-B-00040	2020-01-13	NaN	NaN	NaN	NaN	NaN	NaN
25115	A-I-00090	2020-01-13	NaN	NaN	NaN	NaN	NaN	NaN

รูปที่ 1 : ตารางแสดงตัวอย่างข้อมูลที่ขาดหายไป

เมื่อนำข้อมูลไปทำการวิเคราะห์ พบว่าลักษณะการขาดหายของข้อมูล สามารถจำแนกได้ 2 รูปแบบ ได้แก่ รูปแบบที่ 1 คือ การบันทึกข้อมูลเป็น 0 และ รูปแบบที่ 2 คือ ไม่มีการบันทึกข้อมูล (NaN) ดังรูปที่ 1 และเมื่อนำข้อมูลมาแจกแจง และทำการ นับจำนวนของข้อมูลที่ขาดหายไป จากนั้นคำนวณเป็นร้อยละ แสดงผลในรูปแบบของแผนภูมิแท่ง จะได้ผลลัพธ์ดังรูปที่ 2

รูปที่ 2 : ร้อยละข้อมูลที่ขาดหายไป

ข้อมูลประมาณร้อยละ 28 ไม่มีต้นทุนซื้อเฉลี่ยของสัปดาห์ปัจจุบัน (AVGCost) หรือสัปดาห์ก่อนหน้า (PrevAVGCost) และข้อมูลร้อยละ 30 ไม่มีราคาต้นทุนซื้อของวันล่าสุด (LatestDateCost) ต้นทุนหลักหักส่วนสูญเสียของสัปดาห์ก่อนหน้านั้น (PrevAssignedCost) ขาดไปร้อยละ 2 ซึ่งอาจเกิดจากผู้ตั้งราคาสำเนาค่ามาใส่ โดยไม่ได้คำนวณมา และอาจจะทำไม่ครบ

ร้อยละ 1.25 ของรายการไม่มีราคาตั้ง (GenPrice) ซึ่งเป็นไปได้ว่าไม่มีการขายสินค้านั้นในสัปดาห์นั้น เนื่องจากราคาตั้งนี้ เป็นราคาเป้าหมายที่ต้องการทำนาย เมื่อไม่มีราคาตั้ง เราจึงไม่สามารถทำนายได้ จึงจะตัดรายการเหล่านี้ออกทั้งหมด เหลือ 24639 รายการหลังจากนั้น พิจารณาสถิติเบื้องต้นของข้อมูลที่เหลืออยู่ พบว่า

- 1. มี 1 รายการที่ราคาทุนหลังหักส่วนสูญเสียของสัปดาห์ก่อนหน้าสูงถึงสิบล้านบาท และอีก 1 รายการที่ราคาตั้งสูงถึงสิบ ล้านบาท ซึ่งผิดปกติ และอาจจะเกิดจากข้อผิดพลาดขณะกรอกข้อมูล จึงตัดรายการทั้งสองนี้ทิ้งไป
- 2. พิจารณาร้อยละของราคาที่บวกเพิ่มขึ้นจากราคาทุน แต่เนื่องจากราคาทุนเฉลี่ยนั้นขาดหายไปเป็นจำนวนมาก จึงคิด เบื้องต้นจากราคาทุนหลังหักส่วนสูญเสียของสัปดาห์ก่อนหน้าแทน ดังสมการ

$$margin = \frac{GenPrice - PrevAssignedCost}{PrevAssignedCost} \times 100$$

ส่วนกรณีที่ไม่มีราคาทุนหลังหักส่วนสูญเสีย หากยังมีราคาทุนเฉลี่ย ให้ใช้ราคาเฉลี่ยไปก่อน ส่วนกรณีอื่นๆ ซึ่งไม่มีราคาทั้ง สองให้ตัดทิ้งทั้งหมด หลังตัดข้อมูลที่ไม่สามารถหาส่วนต่างการบวกราคาได้แล้ว พบว่าส่วนต่างนี้กระจายอยู่ในช่วงร้อยละ -60 ถึง 610 แต่มีอยู่หนึ่งรายการที่มีส่วนต่างสูงถึงร้อยละ 1900 ซึ่งเมื่อดูในรายละเอียดแล้ว พบว่าราคาทุนหลังหักส่วนสูญเสียต่ำเกินความ เป็นจริง แต่ราคาเฉลี่ยของสัปดาห์ปัจจุบันของรายการนี้ไม่ผิดปกติ จึงกำหนดให้ข้อมูลราคาทุนหลังหักส่วนสูญเสียของรายการนี้ เป็นข้อมูลที่ขาดหายไปแทน

24626.000000
50.258287
29.148326
-59.405941
35.483871
45.714286
60.000000
1900.000000

Name: Margin, dtype: float64

รูปที่ 3 : สถิติที่ได้จากการคำนวณค่า Margin

เมื่อทำการพิจารณารหัสสินค้า (SKU) พบว่าบริษัทกำหนดว่ารหัสสินค้าแต่ละชนิดนั้นมีโครงสร้างดังนี้

ชื่อกลุ่มสินค้าหลัก — ชื่อกลุ่มสินค้าย่อย — ลำดับของสินค้าในกลุ่มย่อย

เช่น A-A-00001 หมายถึง สินค้ากลุ่ม A กลุ่มย่อย A ลำดับที่ 1 ซึ่งสินค้ากลุ่มย่อยแต่ละกลุ่มนั้นมักจะใช้วัตถุดิบเดียวกัน หรือคล้ายๆ กัน จึงจะสกัดชื่อกลุ่มสินค้าย่อยนี่ออกมาด้วย พบว่า สินค้ากลุ่มหลักมีทั้งหมด 2 กลุ่ม ได้แก่ A และ E โดยกลุ่ม A มี 11 กลุ่มย่อย และกลุ่ม E มี 2 กลุ่มย่อย

จากข้อมูลที่ได้รับมาสามารถแปลงรหัสสินค้า (SKU) ให้เป็นคอลัมน์ กลุ่มหลัก (Category) และ กลุ่มย่อย (Sub Category) โดยมีจำนวนสมาชิกที่เป็นไปได้ทั้งหมด 2 และ 11 ค่า ตามลำดับ ได้แก่ A, E สำหรับกลุ่มหลัก และ A, B, C, D, E, F, G, H, I, J, K สำหรับกลุ่มย่อย ซึ่งเก็บข้อมูลอยู่ในรูปแบบ String ทั้งหมด

เมื่อทำการพิจารณาชนิดของสินค้า (Type) พบว่ามีจำนวนสมาชิกที่เป็นไปได้ทั้งหมด 7 ค่า ได้แก่ A, B, C, D, E, F, G ซึ่ง เก็บข้อมูลอยู่ในรูปแบบ String ทั้งหมด

จึงจำเป็นต้องทำการแปลงข้อมูลในคอลัมน์ทั้ง 3 ได้แก่ กลุ่มหลัก กลุ่มย่อย และ ชนิดของสินค้า ซึ่งเก็บในรูปแบบ String ให้อยู่ในรูปแบบ ที่สามารถนำมาใช้ฝึกสอนตัวแบบทำนายได้ เช่น ตัวเลข 0 และ 1 ที่เรียกว่า การสร้างตัวแปรหุ่น (Dummy Variables) โดยผลลัพธ์ของการสร้างตัวแปรหุ่น จะทำให้มีคอลัมน์เพิ่มขึ้นมาเท่ากับค่าที่เป็นเป็นได้ทั้งหมดของคอลัมน์นั้น เช่น การสร้างตัวแปรหุ่นสำหรับชนิดของสินค้า (Type) จะทำให้เกิดคอลัมน์เพิ่มมา 7 คอลัมน์ ได้แก่ A, B, C, D, E, F, G โดยการบ่งชื้ ว่าสินค้ารายการหนึ่งๆ เป็นสินค้าชนิดใด จะเปลี่ยนไป เช่น สินค้าชนิด A จะถูกบ่งชี้ด้วย Dummy Variables คือ 1 0 0 0 0 0 0 ในแต่ละคอลัมน์ A, B, C, D, E, F, G ตามลำดับ ทำเช่นนี้กับข้อมูลในคอลัมน์ทั้ง 3 ที่ได้กล่าวไป

จากข้อมูลการตั้งราคาสินค้า และ วันที่ตั้งราคา (Date) อาจมีความสัมพันธ์กันบางอย่าง ทำให้ไม่อาจตัดสินใจตัดคอลัมน์ วันที่ตั้งราคาทิ้งไปได้ จึงได้มีการแปลงข้อมูลวันที่ตั้งราคา ซึ่งอยู่ในรูปแบบ YYYY-MM-DD เช่น 2019-01-04 ให้อยู่ในรูปแบบของปี และทำการเก็บในคอลัมน์ปี (Year) และทำการสร้างตัวแปรหุ่น เพื่อทำการวิเคราะห์ต่อไป โดยสันนิษฐานว่าการเพิ่มคอลัมน์ ดังกล่าว อาจเพิ่มประสิทธิภาพให้การทำนายของโมเดลได้ ทำการทดลองในหัวข้อที่ 4

หลังจากพิจารณาเพิ่มคอลัมน์ที่จำเป็น และทำการตัดแถวข้อมูลในทุกกรณีแล้ว พบว่าเราเหลือข้อมูลที่สามารถนำไป ทำนายการตั้งราคา ได้ทั้งหมด 24626 รายการ จากนั้นจึงทำการบันทึกข้อมูล และนำออก (Export) ให้อยู่ในรูปแบบไฟล์ .csv เพื่อนำไปเป็นชุดข้อมูลฝึกสอนโมเดลต่อไป

	PrevAVGCost	PrevAssignedCost	AVGCost	LatestDateCost	GenPrice	A	В	С	Е	F	G C	at A	Cat E	SubCat A	SubCat B	SubCat			SubCat F	SubCat G	SubCat H	SubCat I	SubCat J	SubCat K		Year20
0	27.919192	33.0	28.545455	20.535354	41.0	1	0	0 0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0
1	57.333333	63.0	56.121212	61.838384	92.0	1	0	0 0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0
2	50.777778	54.0	45.131313	50.000000	76.0	1	0	0 0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0
3	45.747475	56.0	40.525253	38.080808	75.0	0	1	0 0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0
4	45.747475	56.0	40.525253	38.080808	75.0	0	1	0 0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0
25103	0.000000	60.0	0.000000	0.000000	87.0	0	0	0 0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1
25104	80.808081	96.0	0.000000	0.000000	126.0	0	0	0 0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1
25105	0.000000	23.0	25.131313	25.131313	40.0	0	0	0 0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1
25106	151.515152	201.0	181.818182	181.818182	271.0	0	0	0 0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1
25107	0.000000	70.0	0.000000	0.000000	107.0	0	0	0 0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1
24626 ro	ws × 27 columns																									

รูปที่ 4 : ตัวอย่างชุดข้อมูลฝึกสอนที่ได้หลังจากการทำความสะอาดข้อมูล

ชุดข้อมูลฝึกสอนที่ได้หลังการทำความสะอาดของข้อมูล มีลักษณะดังต่อไปนี้

<clas< th=""><th></th></clas<>			
	4Index: 24626 entr		
	columns (total 27		
#	Column	Non-Null Count	Dtype
0	PrevAVGCost		float64
1	PrevAssignedCost	24626 non-null	float64
2	AVGCost	24626 non-null	
3	LatestDateCost	24626 non-null	float64
4	GenPrice	24626 non-null	float64
5	A	24626 non-null	uint8
6	В	24626 non-null	uint8
7	C	24626 non-null	
8	D	24626 non-null	
9	E	24626 non-null	uint8
10	F	24626 non-null	uint8
11	G	24626 non-null	uint8
	Cat A	24626 non-null	uint8
	Cat E	24626 non-null	
	SubCat A	24626 non-null	uint8
15	SubCat B	24626 non-null	uint8
16	SubCat C	24626 non-null	uint8
	SubCat D	24626 non-null	uint8
	SubCat E	24626 non-null	uint8
19	SubCat F	24626 non-null	uint8
20	SubCat G	24626 non-null	uint8
	SubCat H	24626 non-null	uint8
	SubCat I	24626 non-null	uint8
23	SubCat J	24626 non-null	uint8
	SubCat K	24626 non-null	uint8
25	Year19	24626 non-null	category
	Year20	24626 non-null	, ,
	es: category(2), f	loat64(5), uint8	(20)
memo	ry usage: 1.6 MB		

รูปที่ 5 : ลักษณะของชุดข้อมูลฝึกสอน

3. การทดลอง

การทำนายการกำหนดราคาสินค้า อาจพิจารณาเป็น**งานประเภทถดถอย (Regression task)** ซึ่งการวิเคราะห์แบบ ถดถอยเป็นเทคนิคที่ใช้ข้อมูลทางสถิติในการประเมินความสัมพันธ์ระหว่างตัวแปรเป้าหมาย ในโครงการนี้ ได้แก่ ราคาสินค้าที่ตั้ง (GenPrice) และ ตัวแปรอิสระ ซึ่งมีความสัมพันธ์กับตัวแปรเป้าหมาย ในโครงการนี้ ได้แก่ ตัวแปรอื่นๆ ทั้งหมดนอกเหนือจากตัว แปรเป้าหมาย

โครงการนี้จะใช**้วิธีการวิเคราะห์เชิงทำนาย (Predictive analysis)** โดยอาศัยการวิเคราะห์ข้อมูลจากในอดีต และ ปัจจุบัน รวมถึงอาศัยความสามารถในการเรียนรู้ของเครื่อง (Machine Learning) เพื่อคาดเดาความน่าจะเป็นของเหตุการณ์ที่จะ เกิดขึ้นในอนาคต โดยข้อมูลที่เป็นข้อมูลรับเข้า (Input) ได้แก่ ราคาต้นทุนสินค้าในสัปดาห์ก่อนหน้า สัปดาห์ปัจจุบัน และประวัติ การตั้งราคาสินค้าในอดีตมาประกอบกัน เพื่อทำนายราคาสินค้าที่ควรจะเป็นในสัปดาห์ถัดไป

โครงการนี้จะทดลองการสร้างตัวแบบทำนายโดยใช้ตัวแบบต่อไปนี้

- 1. ตัวแบบทำนายเชิงเส้น (Linear regression)
- 2. ซัพพอร์ตเวกเตอร์แมชชีนแบบถดถอย (Support vector regression)
- 3. ข่ายงานประสาทเทียมแบบป้อนหน้า (Feed-forward neural network)

3.1. ตัวแบบทำนายเชิงเส้น (Linear regression)

ตัวแบบทำนายเชิงเส้น เป็นการศึกษาความสัมพันธ์ระหว่างตัวแปรตั้งแต่ 2 ตัวขึ้นไป เมื่อพิจารณาจากฐานข้อมูลการ กำหนดราคาสินค้าของบริษัท พบว่ามีจำนวนของข้อมูลที่มากพอ เหมาะสมที่จะนำมาใช้เป็นตัวอย่าง (Sample) ในการทำ Linear regression และเมื่อมีค่าประมาณการ (Predictor) มากกว่า 1 ตัว จะเรียกว่า Multiple linear regression มีรูปแบบสมการ ดังนี้

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_i x_i + \varepsilon$$

โดยกำหนดให้ตัวแปร y เป็นข้อมูลจากคอลัมน์ราคาตั้งของสัปดาห์นี้ (GenPrice) และตัวแปร X เป็นข้อมูลจากคอลัมน์ ทั้งหมดที่เหลือ จากนั้นทำการแบ่งข้อมูลชุดทดสอบออกเป็นข้อมูลฝึกสอน (Training set) และข้อมูลทดสอบ (Test set) โดย กำหนดให้อัตราส่วนของข้อมูลทั้งสอง เป็น 80:20 และ random state = 0

ในการสร้างตัวแบบทำนายเชิงเส้นนี้ ได้ใช[้]คลาส linear_model ของ scikit-learn ด้วยคำสั่ง LinearRegression() และ มีการทำ Grid Search เพื่อหาค[่]าที่ดีที่สุดของพารามิเตอร์ ในที่นี้เราสนใจ พารามิเตอร์ fit_intercept และ normalize ซึ่ง พารามิเตอร์ทั้ง 2 ตัว มีค[่]าเป็น Boolean นอกจากนี้ยังมีการทำ Backward Elimination เพื่อกำจัดตัวแปรที่ไม่มีผลต่อสมการเส้นตรง และความแม่นยำของการ ทำนาย และทำการฝึกสอนตัวแบบทำนายใหม่อีกครั้ง แต่จากผลการทดลองพบว่า ตัวแปรทุกตัวล้วนมีผลต่อสมการเส้นตรง กล่าวคือ ไม่มีตัวแปรใดที่มีค่า P > | t | ที่มากกว่า 0.50 จึงไม่สามารถตัดตัวแปรใดๆ ออกไปเพื่อเพิ่มประสิทธิภาพให้กับตัวแบบ ทำนายเชิงเส้นนี้ได้

		OLS Regress	ion Results			
=======================================						===
Dep. Variable:		GenPrice	R-squared:		0.	973
Model:		OLS	Adj. R-squar	red:	0.	973
Method:	Leas	t Squares	F-statistic:	:	8.893e	+04
Date:	Sun, 19	Apr 2020	Prob (F-stat	tistic):	0	.00
Time:		10:48:25	Log-Likeliho	ood:	-1.0556e	+05
No. Observations:		24626	AIC:		2.112e	+05
Df Residuals:		24615	BIC:		2.112e	+05
Df Model:		10				
Covariance Type:	1	nonrobust				
=======================================						
	coef	std err	t	P> t	[0.025	0.975]
PrevAVGCost	-0.1911	0.004	-52.465	0.000	-0.198	-0.184
PrevAssignedCost	1.2725	0.002	800.950	0.000	1.269	1.276
AVGCost	0.1428	0.005	27.885	0.000	0.133	0.153
LatestDateCost	0.0304	0.005	6.009	0.000	0.020	0.040
A	7.4652	0.183	40.772	0.000	7.106	7.824
В	7.5636	0.493	15.347	0.000	6.598	8.530
С	15.1689	0.329	46.102	0.000	14.524	15.814
D	2.6529	1.113	2.383	0.017	0.471	4.835
E	0.8021	0.916	0.875	0.381	-0.994	2.598
F	10.3076	1.456	7.080	0.000	7.454	13.161
G	8.5874	0.241	35.679	0.000	8.116	9.059
						===
Omnibus:		19463.234	Durbin-Watso	on:	1.	776
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	26410327.	656
Skew:		-2.428	Prob(JB):		0	.00
Kurtosis:		163.360	Cond. No.		1.81e	+03
						===

รูปที่ 6 : สถิติของตัวแปรที่ใช้ในการทำนายตัวแบบทำนายเชิงเส้น

3.2. ชัพพอร์ตเวกเตอร์แมชชีนแบบถดถอย (Support vector regression)

ชัพพอร์ตเวกเตอร์แมชชีน เทคนิคหนึ่งที่ได้รับความ นิยมอย่างแพร่หลายในงานที่เกี่ยวข้องกับการจดจำรูปแบบตลอดจน การแก้ปัญหาการจัดกลุ่ม (Classification problem) โดยอาศัยหลักการของการหาสัมประสิทธิ์ของสมการเพื่อสร้างเส้นแบ่งแยก กลุ่มข้อมูลที่ถูกป้อนเข้าสู่กระบวนการสอนให้ระบบเรียนรู้ โดยเน้นไปยังเส้นแบ่งแยกกลุ่มข้อมูลได้ดีที่สุด (Optimal separating hyperplane) เมื่อเราพิจารณาข้อมูล ที่ประกอบด้วยข้อมูล 2 กลุ่ม ซึ่งเป็นการกำหนดกลุ่มเป้าหมายให้ SVM โดยที่ SVM นั้นมุ่ง เป้าเพื่อหาฟังก์ชันการตัดสินใจที่ สามารถแบ่งแยกค่าที่ไม่ทราบได้

วิธีการที่ใช้ในการหาเส้นแบ่งที่ดีที่สุดคือการเพิ่มเส้นขอบ (Margin) ให้กับเส้นแบ่งทั้งสองข้าง และสร้างเส้นขอบที่สัมผัส กับค่าข้อมูลใน feature space ที่ใกล้ที่สุดดังนั้นเส้นแบ่งที่มีเส้นขอบกว้างที่สุดจึงเป็นเส้นแบ่งที่ดีที่สุดและเรียกตำแหน่งการสัมผัส ข้อมูลที่ใกล้ที่สุดจากการเพิ่มขอบนี้ว่า ซัพพอร์ตเวกเตอร์ (Support vector) เนื่องจากในบางกรณีการแบ่งแยกกลุ่มไม่สามารถทำ ได้ถูกต้องโดยสมบูรณ์ ดังนั้นจึงต้องมีการกำหนดตัวแปรสำหรับยอมรับค่าความผิดพลาด โดยกำหนดให้ตัวแปร y เป็นข้อมูลจากคอลัมน์ราคาตั้งของสัปดาห์นี้ (GenPrice) และตัวแปร X เป็นข้อมูลจากคอลัมน์ ทั้งหมดที่เหลือ จาดนั้นทำการแบ่งข้อมูลชุดทดสอบออกเป็นข้อมูลฝึกสอน (Training set) และข้อมูลทดสอบ (Test set) โดย กำหนดให้อัตราส่วนของข้อมูลทั้งสอง เป็น 80:20 และ random state = 0

ในการสร้างชัพพอร์ตเวกเตอร์แมชชีนแบบถดถอย ด้วยฟังก์ชันเคอร์เนล Radial basis function (RBF) ซึ่งเป็น ฟังก์ชันเคอร์เนลที่มีจุดศูนย์กลางอยู่จุดนึง ที่จุดนั้นฟังก์ชันนั้นมีค่าสูงสุด และเมื่อไกลออกไปจะมีค่าต่ำลง โดยสมการฟังก์ชัน RBF นั้นมีหลายรูปแบบ แต่ที่เป็นพื้นฐานและนิยมใช้กันอย่างแพร่หลาย คือ สมการ Gaussian

$$k(x,y) = \exp\left(-\gamma ||x - y||^2\right)$$

ชัพพอร์ตเวกเตอร์แมชชีนแบบถดถอยนี้ ได้ใช้ฟังก์ชัน SVR() ของคลาส svm จากไลบรารี scikit-learn โดยมีการทำ Grid Search เพื่อหาค[่]าที่ดีที่สุดของพารามิเตอร์ ในที่นี้เราสนใจ พารามิเตอร์ C ในที่นี้กำหนดให้ทดลองทั้งหมด 4 ค[่]า ได้แก[่] 1, 10, 100, 1000 โดยกำหนดพารามิเตอร์ kernel = 'rbf'

3.3. ข่ายงานประสาทเทียมแบบป้อนหน้า (Feed-forward neural network)

ข่ายงานประสาทเทียมแบบป้อนหน้าเป็นรูปแบบของ Neural Network ที่ง่ายที่สุดกล่าวคือ Perceptron จะถูกแบ่ง ออกเป็นกลุ่มๆ โดยแต่ละกลุ่มจะเรียกเป็น Layer โดยข้อมูลที่เข้ามาจะไหลไปในทิศทางเดียว ไม่ไหลย้อนกลับ จาก Layer หนึ่ง ไปสู่อีก Layer หนึ่ง

รูปที่ 7 : โครงสร้างของ Feed-forward neural network

โดยกำหนดให้ตัวแปร y เป็นข้อมูลจากคอลัมน์ราคาตั้งของสัปดาห์นี้ (GenPrice) และตัวแปร X เป็นข้อมูลจากคอลัมน์ ทั้งหมดที่เหลือ จาดนั้นทำการแบ่งข้อมูลชุดทดสอบออกเป็นข้อมูลฝึกสอน (Training set) และข้อมูลทดสอบ (Test set) โดย กำหนดให้อัตราส่วนของข้อมูลทั้งสอง เป็น 80:20 และ random_state = 0

ในการสร้างข่ายงานประสาทเทียมแบบป้อนหน้า ได้ใช้ฟังก์ชัน MLPRegressor จากไลบรารี scikit-learn โดยกำหนดค่า ค่าพารามิเตอร์ activation = 'relu', solver = 'adam', max_iter = 500 และ learning_rate = 'adaptive' และทำการทดลอง เพื่อหาค่าที่ดีที่สุดของพารามิเตอร์ ในที่นี้เราสนใจพารามิเตอร์ hidden layer sizes กำหนดให้ทดลองทั้งหมด 4 ครั้ง ได้แก่

- 1. hidden layer sizes = (500, 500, 500, 500)
- 2. hidden layer sizes = (250, 250, 250, 250)
- 3. hidden_layer_sizes = (100, 100, 100, 100)
- 4. hidden layer sizes = (10, 10, 10, 10)

4. ผลการพัฒนา และ วัดผลตัวแบบทำนาย

การฝึกสอนตัวแบบจะใช้ฟังก์ชันเป้าหมายเป็น ค่าผิดพลาดกำลังสอง (Mean squared error: MSE) โดยเราต้องการ ค่าผิดพลาดกำลังสองที่น้อยที่สุด และวัดความถูกต้องของตัวแบบโดยใช**้ ร้อยละความผิดพลาดสัมบูรณ์เฉลี่ย (Mean absolute percentage error: MAPE)** ซึ่งเป็นค่าพยากรณ์ความแม่นยำในการทำนายของการวิเคราะห์จากสถิติ และยังใช้ฟังก์ชันการ สูญเสีย (loss function) สำหรับงานประเภทถดถอย (Regression task)

$$MSE = \frac{1}{n}\Sigma(y - \hat{y})^2$$

$$MAPE = \frac{100\%}{N} \sum_{i=1}^{N} \left| \frac{y_i - \widehat{y}_i}{y_i} \right|$$

4.1. ผลการพัฒนาตัวแบบทำนายเชิงเส้น (Linear regression)

จากผลการทดสอบตัวแบบทำนายเชิงเส้นโดยใช้ค่าพารามิเตอร์ที่ดีที่สุดที่ได้จากการทำ Grid Search พบว่าตัวแบบ ทำนายเชิงเส้นมีประสิทธิภาพการทำนายดีที่สุดเมื่อกำหนดพารามิเตอร์ fit_intercept = True และ normalize = False จากนั้น จึงทำการทดลองโดยใช้ชุดข้อมูลทดสอบที่ต่างกันทั้งหมด 3 ชุด เพื่อหาว่าข้อมูลในคอลัมน์ใดที่ไม่มีผลต่อประสิทธิภาพของตัวแบบ ทำนายเชิงเส้น ดังนี้

การทดลองฝึกสอนตัวแบบทำนายเชิงเส้นครั้งที่ 1 โดยใช้ชุดข้อมูลทดสอบชุดที่ 1 ซึ่งประกอบไปด้วยข้อมูลทั้งหมด 27 คอลัมน์ ได้แก่ Index, PrevAvGCost, PrevAssignedCost, AvGCost, LatestDateCost, Type ตั้งแต่ A ถึง G (7 คอลัมน์), Category A และ E (2 คอลัมน์), Sub Category ตั้งแต่ A ถึง K (11 คอลัมน์), Year 2019 และ 2020 (2 คอลัมน์) ซึ่งมี รายละเอียดการทำความสะอาดข้อมูล ดังที่ได้กล่าวไปในหัวข้อที่ 2 ได้ค่าผิดพลาดกำลังสอง ร้อยละความผิดพลาดสัมบูรณ์เฉลี่ย ค่า ความแม่นยำ (Accuracy) ของ Training set และ Test set ของการทดสอบดังนี้

Mean squared error: MSE	340.62457907161854
Mean absolute percentage error: MAPE	10.426928878335127
Training set accuracy	0.9745747838580836
Test set accuracy	0.966365303540365

การทดลองฝึกสอนตัวแบบทำนายเชิงเส้นครั้งที่ 2 โดยใช้ชุดข้อมูลทดสอบชุดที่ 2 ซึ่งประกอบไปด้วยข้อมูลทั้งหมด 25 คอลลัมน์ คือได้มีการตัดคอลัมน์ Year 2019 และ 2020 จำนวน 2 คอลัมน์ ออกไปจากข้อมูลทดสอบชุดที่ 1 ได้ผลการทดสอบดังนี้

Mean squared error: MSE	340.6658543632263
Mean absolute percentage error: MAPE	10.41205751001983
Training set accuracy	0.9745718167010757
Test set accuracy	0.9663612278453335

การทดลองฝึกสอนตัวแบบทำนายเชิงเส้นครั้งที่ 3 โดยใช้ชุดข้อมูลทดสอบชุดที่ 3 ซึ่งประกอบไปด้วยข้อมูลทั้งหมด 8 คอลลัมน์ คือได้มีการตัดคอลัมน์ Category A และ E (2 คอลัมน์), Sub Category ตั้งแต่ A ถึง K (11 คอลัมน์), Year 2019 และ 2020 (2 คอลัมน์) จำนวนทั้งสิ้น 15 คอลัมน์ ออกไปจากข้อมูลทดสอบชุดที่ 1 ได้ผลการทดสอบดังนี้

Mean squared error: MSE	341.5515637134753
Mean absolute percentage error: MAPE	10.297197104084978
Training set accuracy	0.9744550159807572
Test set accuracy	0.9662737691973751

จากผลการทดสอบตัวแบบทำนายด้วยชุดข้อมูลทดสอบที่มีจำนวนคอลัมน์แตกต่างกัน 3 ชุด ทำให้ทราบว่าประสิทธิภาพ ของตัวแบบทำนายที่ได้ แตกต่างกันไม่เกิน 1.0 จึงสรุปได้ว่า ข้อมูลปี (Year) กลุ่มหลัก (Category) และ กลุ่มย่อย (Sub Category) ไม่มีผลต่อประสิทธิภาพของตัวแบบทำนาย การพัฒนาตัวแบบทำนายหลังจากนี้เป็นต้นไป จะใช้ชุดข้อมูลทดสอบชุดที่ 3 ซึ่งประกอบด้วยข้อมูลทั้งหมด 11 คอลัมน์ ได้แก่ PrevAVGCost, PrevAssignedCost, AVGCost, LatestDateCost, Type ตั้งแต่ A ถึง G (7 คอลัมน์)

	PrevAVGCost	PrevAssignedCost	AVGCost	LatestDateCost	A	В	С	D	E	F	G
0	27.919192	33.0	28.545455	20.535354	1	0	0	0	0	0	0
1	57.333333	63.0	56.121212	61.838384	1	0	0	0	0	0	0
2	50.777778	54.0	45.131313	50.000000	1	0	0	0	0	0	0
3	45.747475	56.0	40.525253	38.080808	0	1	0	0	0	0	0
4	45.747475	56.0	40.525253	38.080808	0	1	0	0	0	0	0
24621	0.000000	60.0	0.000000	0.000000	0	0	0	0	0	0	1
24622	80.808081	96.0	0.000000	0.000000	0	0	0	0	0	0	1
24623	0.000000	23.0	25.131313	25.131313	0	0	0	0	0	0	1
24624	151.515152	201.0	181.818182	181.818182	0	0	0	0	0	0	1
24625	0.000000	70.0	0.000000	0.000000	0	0	0	0	0	0	1
24626 rd	ows × 11 columns										

รูปที่ 8 : ตัวอย่างข้อมูลจากชุดข้อมูลทดสอบ

เมื่อพิจารณาผลการทำนายของตัวแบบทำนายเชิงเส้นที่ดีที่สุด พบว่าสามารถทำนายราคาสินค้าได้ใกล้เคียงกับราคาจริง ในชุดข้อมูลฝึกสอน แต่เมื่อวิเคราะห์จากแผนภูมิพบว่า ประสิทธิภาพการทำนายโดยรวมยังไม่ดีนัก โดยเฉพาะอย่างยิ่งข้อมูลในช่วง ราคา 1000 ขึ้นไป หรือกล่าวคือตัวแบบทำนายนี้ยังรับมือกับข้อมูลที่เป็น Outlier ได้ไม่ดีนัก

รูปที่ 9 : ตัวอย่างผลการทำนาย และ แผนภูมิแสดงประสิทธิภาพของตัวแบบทำนายเชิงเส้น

4.2. ผลการพัฒนาซัพพอร์ตเวกเตอร์แมชชีนแบบถดถอย (Support vector regression)

จากผลการทดสอบซัพพอร์ตเวกเตอร์แมชชีนแบบถดถอยโดยใช[้]คาพารามิเตอร์ที่ดีที่สุดที่ได้จากการทำ Grid Search พบ ว่าซัพพอร์ตเวกเตอร์แมชชีนมีประสิทธิภาพการทำนายดีที่สุดเมื่อกำหนดพารามิเตอร์ C = 1000 และ kernel = 'rbf' โดยมีค[่]า ผิดพลาดกำลังสอง ร้อยละความผิดพลาดสัมบูรณ์เฉลี่ย ค่าความแม่นยำ (Accuracy) ของ Training set และ Test set ของการ ทดสอบดังนี้

Mean squared error: MSE	162.3914396460034
Mean absolute percentage error: MAPE	6.457370539718754
Training set accuracy	0.9932171490653403
Test set accuracy	0.9839647896372504

เมื่อพิจารณาผลการทำนายของซัพพอร์ตเวกเตอร์แมชชีนแบบถดถอยที่ดีที่สุด พบว่าสามารถทำนายราคาสินค้าได้ ใกล้เคียงกับราคาจริงในชุดข้อมูลฝึกสอนเป็นอย่างมาก พบปัญหา Overfit เพียงเล็กน้อย และมีประสิทธิภาพการทำนายที่ค่อนข้าง แม่นยำในทุกช[่]วงราคา

รูปที่ 10 : ตัวอย่างผลการทำนาย และ แผนภูมิแสดงประสิทธิภาพของซัพพอร์ตเวกเตอร์แมชชีนแบบถดถอย

4.3. ผลการพัฒนาข่ายงานประสาทเทียมแบบป้อนหน้า (Feed-forward neural network)

จากผลการทดสอบข่ายงานประสาทเทียมแบบป้อนหน้าโดยใช้ค่าพารามิเตอร์ที่ดีที่สุด พบว่าข่ายงานประสาทเทียมแบบ ป้อนหน้า มีประสิทธิภาพการทำนายดีที่สุดเมื่อกำหนดพารามิเตอร์ hidden_layer_sizes = (250, 250, 250, 250) และ activation = 'relu'

Mean squared error: MSE	173.18494783761967
Mean absolute percentage error: MAPE	6.84081953098462
Training set accuracy	0.9885445650077587
Test set accuracy	0.9829187423043221

เมื่อพิจารณาผลการทำนายข่ายงานประสาทเทียมแบบป้อนหน้าที่ดีที่สุด พบว่าสามารถทำนายราคาสินค้าได้ใกล้เคียงกับ ราคาจริงในชุดข้อมูลฝึกสอนในระดับปานกลาง แต่เมื่อวิเคราะห์จากแผนภูมิพบว่า ประสิทธิภาพการทำนายโดยรวมยังไม่ดีนัก และ พบปัญหา Overfit โดยเฉพาะอย่างยิ่งข้อมูลในช่วงราคา 1000 ขึ้นไป

รูปที่ 11 : ตัวอย่างผลการทำนาย และ แผนภูมิแสดงประสิทธิภาพของข่ายงานประสาทเทียมแบบป้อนหน้า

4.4. เปรียบเทียบ และ สรุปผลตัวแบบทำนาย

	ตัวแบบทำนายเชิงเส้น (Linear regression)	ชัพพอร์ตเวกเตอร์ แมชชีนแบบถดถอย (Support vector	ข่ายงานประสาทเทียม แบบป้อนหน้า (Feed- forward neural	
		regression)	network)	
Mean squared error: MSE	341.5515637134753	162.3914396460034	173.18494783761967	
Mean absolute percent. error: MAPE	10.297197104084978	6.457370539718754	6.84081953098462	
Training set accuracy	0.9744550159807572	0.9932171490653403	0.9885445650077587	
Test set accuracy	0.9662737691973751	0.9839647896372504	0.9829187423043221	

พบว่าซัพพอร์ตเวกเตอร์แมชชีนแบบถดถอย (Support vector regression) มีค[่]าผิดพลาดกำลังสอง (MSE) ร้อยละ ความผิดพลาดสัมบูรณ์เฉลี่ย (MAPE) ที่น้อยที่สุด เมื่อเทียบกับตัวแบบทำนายอื่น จึงสรุปได้ว่า <u>เลือกซัพพอร์ตเวกเตอร์แมชชีนแบบ</u> ถดถอย เป็นตัวแบบทำนายที่จะนำมาใช้ทำนายราคาสินค้าสำหรับชุดทดสอบ

5. การทำนายราคาสินค้าในชุดข้อมูลทดสอบ

จากชุดข้อมูลทดสอบที่กำหนดให้ พบว่ามีการเก็บข้อมูล ดังนี้

- 1. รหัสสินค้า (SKU) = ชนิดสินค้า ชนิดย่อยสินค้า เลขลำดับที่
- 2. ราคาต้นทุนซื้อเฉลี่ยของสัปดาห์ก่อนหน้า (PrevAVGCost)
- 3. ราคาต้นทุนหลังหักส่วนสูญเสียของสัปดาห์ก[่]อนหน้า (PrevAssignedCost)
- 4. ราคาต้นทุนซื้อเฉลี่ยของทั้งสัปดาห์ (AVGCost)
- 5. ราคาต้นทุนซื้อวันล่าสุด (LatestDateCost)
- 6. ชนิดของสินค้า (Type)
- 7. วันที่ตั้งราคา (Date)

5.1. การทำความสะอาดข้อมูล

สำหรับชุดข้อมูลทดสอบ มีลักษณะเดียวกันกับชุดข้อมูลฝึกสอน ประกอบด้วยข้อมูล 2 ชุด คือ testData1.csv และ testData2.csv แต่ละชุดประกอบด้วยข้อมูล 500 และ 511 รายการตามลำดับ โดยพบว่ามีข้อมูล 8 และ 11 รายการตามลำดับ ที่ ไม่มีลักษณะสำคัญ กล่าวคือ มีอย่างน้อย 1 ลักษณะที่หายไป จึงได้ทำการตัดรายการดังกล่าวทิ้งไป เหลือข้อมูลทั้งสิ้น 492 และ 500 รายการตามลำดับ

	SKU	PrevAVGCost	PrevAssignedCost	AVGCost	LatestDateCost	Туре	date
276	E-A-00162	NaN	NaN	NaN	NaN	G	2020-03-27
325	A-K-00040	NaN	NaN	NaN	NaN	С	2020-03-27
441	E-A-00023	NaN	NaN	NaN	NaN	G	2020-03-27
446	E-A-00055	NaN	NaN	NaN	NaN	G	2020-03-27
447	E-A-00057	NaN	NaN	NaN	NaN	G	2020-03-27
500	A-E-00167	NaN	NaN	NaN	NaN	NaN	2020-03-27
501	A-E-00168	NaN	NaN	NaN	NaN	NaN	2020-03-27
502	A-E-00169	NaN	NaN	NaN	NaN	NaN	2020-03-27

รูปที่ 12 : ตารางแสดงตัวอย่างข้อมูลจากชุดข้อมูลทดสอบที่ขาดหายไป

หลังจากทำการทำความสะอาดข้อมูลด้วยวิธีการเดียวกันที่ใช้กับชุดข้อมูลฝึกสอน ทำให้ได้ชุดข้อมูลทดสอบที่มีตัวอย่าง และลักษณะดังต่อไปนี้

	PrevAVGCost	${\tt PrevAssignedCost}$	AVGCost	LatestDateCost	Туре	A	В	С	D	E	F	G
0	22.646465	30.0	24.646465	23.767677	Α	1	0	0	0	0	0	0
1	51.101010	56.0	49.565657	49.838384	Α	1	0	0	0	0	0	0
2	40.010101	41.0	17.323232	38.727273	Α	1	0	0	0	0	0	0
3	77.484848	81.0	78.545455	80.050505	В	0	1	0	0	0	0	0
4	77.484848	81.0	78.545455	80.050505	В	0	1	0	0	0	0	0
487	0.000000	60.0	0.000000	0.000000	G	0	0	0	0	0	0	1
488	0.000000	90.0	0.000000	0.000000	G	0	0	0	0	0	0	1
489	25.131313	25.0	0.000000	0.000000	G	0	0	0	0	0	0	1
490	181.818182	201.0	156.565657	181.818182	G	0	0	0	0	0	0	1
491	0.000000	70.0	0.000000	0.000000	G	0	0	0	0	0	0	1
400 =	we v 12 columns											

รูปที่ 13 : ตัวอย่างชุดข้อมูลทดสอบที่ได้หลังจากการทำความสะอาดข้อมูล

Int6	ss 'pandas.core.fr 4Index: 489 entrie columns (total 14	s, 0 to 491		<cla Int6 Data</cla 			
#	Column	Non-Null Count	Dtype	#	Column	Non-Null Count	Dtype
0	SKU	489 non-null	object	0	SKU	495 non-null	object
1	PrevAVGCost	489 non-null	float64	1	PrevAVGCost	495 non-null	float64
2	PrevAssignedCost	489 non-null	float64	2	PrevAssignedCost	495 non-null	float64
3	AVGCost	489 non-null	float64	3	AVGCost	495 non-null	float64
4	LatestDateCost	489 non-null	float64	4	LatestDateCost	495 non-null	float64
5	Type	489 non-null	object	5	Type	495 non-null	object
6	date	489 non-null	object	6	date	495 non-null	object
7	A	489 non-null	uint8	7	A	495 non-null	uint8
8	В	489 non-null	uint8	8	В	495 non-null	uint8
9	С	489 non-null	uint8	9	С	495 non-null	uint8
10	D	489 non-null	uint8	10	D	495 non-null	uint8
11	E	489 non-null	uint8	11	E	495 non-null	uint8
12	F	489 non-null	uint8	12	F	495 non-null	uint8
13	G	489 non-null	uint8	13	G	495 non-null	uint8
	es: float64(4), ob ry usage: 33.9+ KB)	dtyp	es: float64(4), ob erv usage: 34.3+ KB	ject(3), uint8(7	

รูปที่ 14 : ลักษณะของข้อมูลชุดทดสอบที่ 1 และ 2

5.2. การทำนายชุดข้อมูลทดสอบ

ทำนายราคาสินค้าของชุดข้อมูลทดสอบทั้ง 2 ชุด โดยใช้ซัพพอร์ตเวกเตอร์แมชชีนแบบถดถอย เก็บผลลัพธ์ที่ได้จากการ ทำนายในคอลัมน์ราคาตั้งของสัปดาห์นี้ (GenPrice) จากนั้นจึงทำการบันทึกข้อมูล และนำออก (Export) ให้อยู่ในรูปแบบไฟล์ .csv เพื่อใช้เป็นไฟล์คำตอบ

	SKU	PrevAVGCost	PrevAssignedCost	AVGCost	LatestDateCost	Туре	date	GenPrice			SKU PrevAV	'GCost	PrevAssignedCost	AVGCost	LatestDateCost	туре	date	GenPrice
0	A-A-00001	22.646465	30.0	24.646465	23.767677	Α	2020-01-20	41.942576	0	A-A-0	0001 25.7	767677	27.0	14.313131	14.313131	Α	2020-03-27	33.563156
1	A-B-00001	51.101010	56.0	49.565657	49.838384	Α	2020-01-20	77.933715	1	A-B-0	0001 43.4	424242	45.0	43.313131	44.131313	Α	2020-03-27	66.281486
2	A-B-00002	40.010101	41.0	17.323232	38.727273	Α	2020-01-20	55.737651	2	A-B-0	0002 40.6	656566	42.0	39.838384	40.606061	Α	2020-03-27	61.238372
3	A-C-00001	77.484848	81.0	78.545455	80.050505	В	2020-01-20	113.008982	3	A-C-0	0001 84.7	777778	87.0	86.060606	87.656566	В	2020-03-27	120.625811
4	A-C-00019	77.484848	81.0	78.545455	80.050505	В	2020-01-20	113.008982	4	A-C-0	0019 84.7	777778	87.0	86.060606	87.656566	В	2020-03-27	120.625811
484	E-E-00130	0.000000	60.0	0.000000	0.000000	G	2020-01-20	84.148757	49	0 E-A-0	0082 0.0	000000	70.0	0.000000	0.000000	G	2020-03-27	97.353564
485	E-A-00412	0.000000	90.0	0.000000	0.000000	G	2020-01-20	123.455584	49	1 A-E-0	0191 0.0	000000	60.0	0.000000	0.000000	С	2020-03-27	91.215495
486	E-A-00402	25.131313	25.0	0.000000	0.000000	G	2020-01-20	37.754660	49	2 A-D-0	0166 0.0	000000	99.0	0.000000	0.000000	С	2020-03-27	140.197757
487	E-E-00010	181.818182	201.0	156.565657	181.818182	G	2020-01-20	237.105699	49	3 A-A-0	0199 0.0	000000	59.0	0.000000	0.000000	С	2020-03-27	89.913528
488	E-A-00082	0.000000	70.0	0.000000	0.000000	G	2020-01-20	97.353564	49	4 A-A-0	0200 0.0	000000	75.0	0.000000	0.000000	С	2020-03-27	110.522950
489 r	ws v 8 colum	ne							495	rows x 8	columns							

รูปที่ 15 : ตัวอย่างข้อมูลภายในไฟล์คำตอบ

6. บทสรุป

โครงการตั้งราคาสินค้า ผู้จัดทำได้ทดลองสร้างโมเดลการเรียนรู้ของเครื่อง (Machine learning) ทั้งหมด 3 ประเภท เพื่อ ใช้ทำนายการกำหนดราคาสินค้า ได้แก่ ตัวแบบทำนายเชิงเส้น (Linear regression) ซัพพอร์ตเวกเตอร์แมชชีนแบบถดถอย (Support vector regression) และ ข่ายงานประสาทเทียมแบบป้อนหน้า (Feed-forward neural network)

จากผลการพัฒนาและวัดผลตัวแบบทำนายของโมเดลแต่ละประเภท พบว่าผลการทดสอบพบว่าซัพพอร์ตเวกเตอร์แม ชชีนแบบถดถอยให้ค[่]าผิดพลาดกำลังสอง (MSE) และร้อยละความผิดพลาดสัมบูรณ์เฉลี่ย (MAPE) ที่น้อยที่สุด จึงเลือกใช้ตัวแบบ ทำนายนี้ในการทำนายราคาสินค้าในชุดข้อมูลทดสอบ ทั้งนี้ผลการทดลองอาจแตกต่างออกไป หากทดลองด้วยตัวแบบทำนาย ประเภทอื่น ทำความสะอาดข้อมูลด้วยวิธีที่แตกต่างออกไป รวมไปถึงหากผู้จัดทำมีความรู้ด้านการตลาดก็จะสามารถวิเคราะห์ผล การทำนายราคาสินค้าได้ดียิ่งขึ้น ทั้งนี้หากรายงานฉบับนี้มีข้อผิดพลาดประการใด ผู้จัดทำขออภัยมา ณ ที่นี้ด้วย

7. ภาคผนวก

- 1. ML Project Cleaning Data 6033657523.ipynb on Google Colaboratory

 https://colab.research.google.com/drive/15cYqMm6y8VWWPwhNnA2aFZJmPiUxIUZh
- 2. ML Project Linear Regression 6033657523.ipynb on Google Colaboratory https://colab.research.google.com/drive/1eliO05XPm-mbUOllb9UDg8VqKah4xqXV
- 3. ML Project SVR 6033657523.ipynb on Google Colaboratory https://colab.research.google.com/drive/1G4f8RtllYEFZPYS7POcfdsqGOvjpwdSx
- 4. ML Project Feedforward neural network 6033657523.ipynb on Google Colaboratory https://colab.research.google.com/drive/1CZFaD_0LdcZM3fXOt9gGK5uLTd4E0dR5