Copy B

1. 
$$y' = f(t, y)$$
 with  $f(t, y) = t^2 + \sqrt{y}$ . From the IC,  $t_0 = 1$ ,  $y_0 = 2$ .  
 $y_1 = y_0 + hf(t_0, y_0) = 2 + (0.25)(1^2 + \sqrt{2}) = 2.6036$   
 $t_1 = t_0 + h = 1.25$ .  
 $y_2 = y_1 + hf(t_1, y_1) = 2.6036 + (0.25)(1.25^2 + \sqrt{2.6036}) = 3.3976$   
 $t_2 = t_1 + h = 1.5$   
 $y_3 = y_2 + hf(t_2, y_2) = 3.3976 + (0.25)(1.5^2 + \sqrt{3.3976}) = 4.4209$   
 $t_3 = t_2 + h = 1.75$   
 $y_4 = y_3 + hf(t_3, y_3) = 4.4209 + (0.25)(1.75^2 + \sqrt{4.4209}) = 5.7122$   
 $t_4 = t_3 + h = 2.0$   
 $y(2) \approx 5.7122$ .

- 2. (a)  $\alpha = -6$ ,  $\beta = 3$ ,  $\vec{u} = \langle -1, 5 \rangle$ ,  $\vec{w} = \langle -3, 0 \rangle$ . So the general soln. is  $\vec{\chi}(t) = c e^{-6t} \left( \cos(3t) \begin{bmatrix} -1 \\ 5 \end{bmatrix} \sin(3t) \begin{bmatrix} -3 \\ 6 \end{bmatrix} \right) + c_2 e^{-6t} \left( \sin(3t) \begin{bmatrix} -1 \\ 5 \end{bmatrix} + \cos(3t) \begin{bmatrix} -3 \\ 6 \end{bmatrix} \right)$   $= \begin{bmatrix} e^{-6t} \left[ 3\sin(3t) \cos(3t) \right] & -e^{-6t} \left[ 3\cos(3t) + \sin(3t) \right] \end{bmatrix} \begin{bmatrix} c \\ c_2 \end{bmatrix}$   $= 5e^{-6t} \cos(3t)$   $5e^{-6t} \sin(3t)$ 
  - (b) It's easiest to learn the e-values through the relation  $\overrightarrow{Ar} = \lambda \overrightarrow{r}$ :  $\begin{bmatrix}
    -4 & -3 \\
    -6 & -1
    \end{bmatrix}
    \begin{bmatrix}
    1 \\
    -2
    \end{bmatrix} = \begin{bmatrix}
    2 \\
    -4
    \end{bmatrix} = 2\begin{bmatrix}1 \\
    -2
    \end{bmatrix} \implies \lambda = 2 \text{ for e-vector } \begin{bmatrix}1 \\
    -2
    \end{bmatrix}$   $\begin{bmatrix}
    -4 & -3 \\
    -6 & -1
    \end{bmatrix}
    \begin{bmatrix}
    1 \\
    1
    \end{bmatrix} = \begin{bmatrix}
    -7 \\
    -7
    \end{bmatrix} = -7\begin{bmatrix}1 \\
    1
    \end{bmatrix} \implies \lambda = -7 \text{ for e-vector } \begin{bmatrix}1 \\
    1
    \end{bmatrix}$ So,  $\overrightarrow{x}(t) = c_1 e^{2t} \begin{bmatrix}1 \\
    -2\end{bmatrix} + c_2 e^{-7t} \begin{bmatrix}1 \\
    1\end{bmatrix} = \begin{bmatrix}e^{2t} & e^{-7t} \\
    -2e^{t} & e^{-7t}\end{bmatrix} \begin{bmatrix}c_1 \\ c_2\end{bmatrix}.$
- 3. (a) Since  $\alpha = -5 < 0$ , Solutions are origin seeking (the origin is stable). Since the e-values are nonreal ( $\omega/\alpha \neq 0$ ), the origin is a spiral point. Since  $\alpha_{21} = -5 < 0$ , trajectories spiral clockwise. These lead to Figure A.

(b) Since the eigenvalues are real but of opposite sign, the origin is an (unstable) saddle. The straight - line trajectories are in the directions of the eigenvectors. See Figure B.



Figure A

4. (a) This DE is first-order linear. It's normal form is

$$y' = -\frac{2}{t}y + t - 1 + \frac{1}{t}$$
, making alt) =  $-\frac{2}{t}$ ,  $f(t) = t - 1 + \frac{1}{t}$ .

So, the homogeneous solu. is  $x_n(t) = C \rho(t)$ , where

$$\varphi(t) = e^{\int -2t^{-1}dt} = e^{-2\ln|t|} = e^{\ln t^{-2}} = t^{-2}$$

Using variation of parameters,

$$X_{p}(t) = \varphi(t) \int \frac{f(t)}{\varphi(t)} dt = t^{-2} \int (t^{3} - t^{2} + t) dt = t^{-2} \left( \frac{1}{4} t^{4} - \frac{1}{3} t^{3} + \frac{1}{2} t^{2} \right)$$

The soln .:

$$x(t) = x_h(t) + x_p(t) = Ct^{-2} + \frac{1}{4}t^2 - \frac{1}{3}t + \frac{1}{2}$$

(b) This DE is nonlinear, but separable.

$$\frac{dx}{dt} = \frac{-2t+3}{4x^3} \implies \int 4x^3 dx = \int (-2t+3)dt$$

$$\Rightarrow$$
  $x^4 = -t^2 + 3t + C$ 

Explicit expressions for x might be either  $x(t) = \pm \sqrt{-t^2 + 3t + C}$ . But, for the IC to be satisfied, we require the negative 4th root, and  $C = \frac{1}{4}$ :  $x(t) = -4\sqrt{-t^2 + 3t + \frac{1}{11}}$ 

5. Here x' = g(t, x), with  $g(t, x) = \frac{-2t + 3}{4t^3}$ The partial derivative  $\frac{2g}{3x} = \frac{6t-9}{4x^4}$ 



Both g and 29/2x are continuous except at x=0,

so we can draw a box/rectangle R around the point (to, xo) = (0, -1/12) throughout which both g, 29/2x are continuous. By the Fundamental Theorem on Existence and Uniqueness, the IVP in 4(b) has exactly one solution.

6. Letting 
$$x_1 = y_1, x_2 = y_1', x_3 = y_1''$$
 we have  $x_1' = x_2$  and  $x_2' = x_3$  naturally from our definitions, and  $y''' = 2y_1'' - 3ty_1' + 4y_1 + e^{5t}$  becomes  $x_3' = 2x_3 - 3tx_2 + 4x_1 + e^{5t}$ 

So,  $\frac{dx}{dt} = \begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ 4x_1 - 3tx_2 + 2x_3 + e^{5t} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -3t & 2 \end{bmatrix} \overrightarrow{x} + \begin{bmatrix} 0 \\ 0 \\ e^{5t} \end{bmatrix}$ .

The IC becomes  $\overrightarrow{x}(0) = \begin{bmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \end{bmatrix} = \begin{bmatrix} y_1(0) \\ y_1'(0) \\ y_1''(0) \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ .