Audio Generation

Bo Kang, Thomas Demeester, Tijl De Bie

Outline

- Introduction
- An overview of models
- Demo: Finetune a TTS model
- References

Outline

- Introduction
- An overview of models
- Demo: Finetune a TTS model
- References

Introduction

- Generate or manipulate audio with neural network models
- Applications
 - Classification
 - Speech recognition
 - Text to speech generation
 - Voice Cloning
 - Music generation
 - •
- Tools
 - Commercial: ElevenLabs¹, OpenAl TTS²
 - Open source: HF transformers³, Tortoise⁴, Bark⁵, Coqui(XTTS)⁶

Basic Data Concepts

- Waveform
- Fourier transform
- Spectrogram
- Log-mel spectrogram

Basic Data Concepts

- Waveform
- Fourier transform
- Spectrogram
- Log-mel spectrogram

Basic Architectures for Speech Recognition

- CTC (Connectionist Temporal Classification)
 - Encoder only transformer model
 - Two phase generation

Basic Architectures for Speech Recognition

- CTC (Connectionist Temporal Classification)
 - Encoder only transformer model
 - Two phase generation
- Seq2Seq
 - Encoder-decoder transformer model

Outline

- Introduction
- An overview of models
- Demo: Finetune a TTS model
- References

An Overview

Classification and Recognition

wav2vec2, 2020

HuBERT, 2021

SpeechT5, 2021

Whisper 2022

Whisper v3 2023

HiFi-GAN, 2020

UnivNet, 2021

Soundstream, 2021

EnCodec, 2021

Audio LLM 2022

VALLE 2023

Bark, 2023

Tortoise, 2023

XTTS, 2023

OpenAl TTS, 2023

Wav2Vec2

- Idea
 - 1D CNN extract feature
 - Encoder-only transformer represents contexts
 - Self-supervised pretraining from context embedding and quantized embedding pairs
 - Finetune with CTC loss

HuBERT

- Idea
 - Similar to Wave2Vec
 - Except the quantization is according to predefined features

SpeechT5

- Idea
 - Standard encoder-decoder transformer architecture
 - Multitask and Multimodal enabled by pre-net/post-net
 - Within/cross modal pretraining
 - Hubert like self-supervised pretraining
 - Decoder speech reconstruction
 - BART like masked text token prediction
 - Share quantization codebook between modals at decoder level

Whisper

- Idea
 - Off-the-shelf encoder decoder transformer architecture
 - Scale with large training dataset
 - Multitask enabled by decoder input format

- Off-the-shelf encoder decoder transformer architecture
- Scale with large training dataset
- Multitask enabled by decoder input format
 - Speech detection
 - Speech transcript
 - Translation
 - Language identification
- Whisper v3, more fine-grained Melscale discretization, more data, support more languages

An Overview

wav2vec2, 2020

HuBERT, 2021

SpeechT5, 2021

Whisper 2022

Whisper v3 2023

Waveform encode decode

HiFi-GAN, 2020

UnivNet, 2021

Soundstream, 2021

EnCodec, 2021

Audio LLM 2022

VALLE 2023

Bark, 2023

Tortoise, 2023

XTTS, 2023

OpenAl TTS, 2023

Neural Vocoder and Audio Codec Handles Model In/output

 Neural Vocoder takes melspectrograms as input and generates waveforms (HiFi-GAN, UnivNet)

Audio Codec encodes (quantize)
waveform into codes (acoustic
tokens), decodes codes back to
waveform (Soundstream, Encodec)

An Overview

wav2vec2, 2020

HuBERT, 2021

SpeechT5, 2021

Whisper 2022

Whisper v3 2023

HiFi-GAN, 2020

UnivNet, 2021

Soundstream, 2021

EnCodec, 2021

Audio LLM 2022

VALLE 2023

Bark, 2023

Tortoise, 2023

XTTS, 2023

Text to Speech

OpenAl TTS, 2023

AudioLM

- Idea
 - Semantic token encoder
 - Acoustic token encoder
 - Decoder only transformer model for predicting next token
 - Cascading next acoustic token prediction
- Music Continuation Example
 - Prompt:
 - Original:
 - Continuation:

VALLE

- Idea
 - Audio prompt for voice cloning, use Vocoder for acoustic tokenization
 - Cascading of acoustic token prediction
- Official Example
 - Text prompt: "and lay me down in thy cold bed and leave my shining lot."
 - Audio Prompt: (3)
 - Original:
 - TTS:

Bark

Idea

- Cascading of semantic token, coarse acoustic token, fine acoustic token three stage prediction (AudioLM)
- 8 Layers of acoustic token prediction (VALLE)
- Use Vocoder to generate wave form (Encodec)
- Example
 - Text prompt: "I have a silky smooth voice, and today I will tell you about the exercise regimen of the common sloth."
 - TTS(build-in):
 - Speaker:
 - Clone:

Tortoise TTS

Idea

- Autoregressive models convert between unaligned domains
- CLIP like model to rank autoregressive model's output
- Diffusion models captures expressive modalities

Example

- Text prompt: "I have a silky smooth voice, and today I will tell you about the exercise regimen of the common sloth."
- TTS (build-in):
- Speaker:
- Clone:

XTTS

- Idea
 - Adapted from Tortoise TTS
- The inference code does not include CLVP and diffusion decoder Module, only the GPT2 and HiFi GAN Decoder

- Example
 - Text prompt: "I have a silky smooth voice, and today I will tell you about the exercise regimen of the common sloth."
 - TTS(build-in):
 - Speaker:
 - Clone:

OpenAl TTS

- No details about the model yet
- Example:
 - Text prompt: "I have a silky smooth voice, and today I will tell you about the exercise regimen of the common sloth."
 - TTS: (3)

Outline

- Introduction
- An overview of models
- Demo: Finetune a TTS model
- References

Demo: Finetune a TTS Model

- Data preparation
 - Record sentences from Harvard Sentences
 - Example:
 - Text: There are more than two factors here.
 - Record:
- Download and Lunch training tool: mrq/ai-voice-cloning
- Load and transcribe the training data
- Validate configuration
- Train
- Test:

Outline

- Introduction
- An overview of models
- Demo: Finetune a TTS model
- References

References

- 1. https://elevenlabs.io
- 2. https://platform.openai.com/docs/guides/text-to-speech
- 3. https://huggingface.co/docs/transformers/model doc/audio-spectrogram-transformer
- 4. https://github.com/neonbjb/tortoise-tts
- 5. https://github.com/suno-ai/bark
- 6. https://github.com/coqui-ai/TTS
- 7. Kong et al., HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis, 2020
- 8. Jang et al., UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation, 2021
- 9. Zeghidour et al., SoundStream: An End-to-End Neural Audio Codec, 2021
- 10. Défossez et al., High Fidelity Neural Audio Compression (Encodec), 2022
- 11. Baevski et al., wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations, 2020
- 12. Hsu et al., HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units, 2020
- 13. Ao et al., SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing, 2021
- 14. Radford et al., Robust Speech Recognition via Large-Scale Weak Supervision (Whisper), 2022
- 15. Boros et al., AudioLM: a Language Modeling Approach to Audio Generation, 2022
- 16. Wang et al., Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers (VALLE), 2023
- 17. Betker, Better speech synthesis through scaling (Tortoise), 2023

Thanks for your attention