

ŽILINSKÁ UNIVERZITA V ŽILINE FAKULTA RIADENIA A INFORMATIKY

Analýza diferenčnej rovnice

Autori: Matejko Peter Mudrák Ľuboš Rehák Tomáš Zárecký Martin Boďa Michal Kapusta Peter

Obsah

1	Zad	anie																																																				2	2
2	Defi	inície																																																				2	2
	2.1	Pojem	d	d	Ċ	((((C	Ċ	d	li	if	fе	er	e	n	c	ia	ı																																	2)
	2.2	Pojem	d	d	Ċ	((((C	Ċ	d	li	if	fе	er	e	n	č	n	á	1	·c	7(V.	n	i	c	а	ι																								2)
		2.2.1	7	Ί	r	r	r	r	r	r	r]	Γ	'n	y]	p;	y	(li	fe	er	e	n	ιč	ćı	n	ý	(ŀ	1	r	c)1	V	r	ıí	ία	;																2)
		2.2.2																																																					
3	Vyp	oracova	an	n	n	r	ιr	ır	ır	r	n	a	i	ie	е																																							4	Ł
	3.1	Triviál	$\ln \epsilon$	16	n	n	n	n	n	n	n	16	е	,	r	i	eè	śε	er	ιie	е																																	4	Ł
	3.2	Všeobe	ec	c	ec	96	ЭС	96	96	ec	c	С	1	1	é]	ri	e	š	er	ni	e																																4	Į
	3.3	Závislo	os	S1	S	S	S	S	S	S	S	31	ť	?	O)(l	ł	10	od	lr	ıĉ	òt	,	а	ι,	,	b)																									4	Į
4	Záv	er																																																				8	3

1 Zadanie

V závislosti od hodnôt a a b analyzujte riešenia danej diferenčnej rovnice $x_{n+1} = \left(a + \frac{b}{n}\right) x_n$ kde a a b sú reálne čísla, také, že a + b > 0. Výsledky ilustrujte na jednoduchých príkladoch.

Budeme skúmať dopady zmeny jednotlivých premenných a a b na riešenia danej diferenčnej rovnice.

2 Definície

2.1 Pojem diferencia

Definícia 2.1. Je daný bod x_0 a číslo h > 0. Nech funkcia y = f(x) je definovaná v bodoch x_0 a $x_0 + h$. Diferencia funkcie f(x) v bode x_0 je číslo $f(x_0 + h) - f(x_0)$. Značíme

$$\Delta f(x_0) = f(x_0 + h) - f(x_0)$$

2.2 Pojem diferenčná rovnica

2.2.1 Typy diferenčných rovníc

Definícia 2.2. (Diferenčné rovnice 1. typu) Nech pre všetky $x \in M$ je definovaná funkcia $f(x, y, \Delta y, \Delta^2 y, \dots, \Delta^k y)$. Rovnica tvaru

$$f(x, y, \Delta y, \Delta^2 y, \dots, \Delta^k y) = 0$$
,

v ktorej neznámou funkciou $y=\varphi(x),$ nazývame diferenčnú rovnicu k-tého rádu a 1. typu definovanú v M.

Partikulárnym riešením tejto rovnice v M nazveme každú funkciu $y = \varphi(x)$, ktorá pre všetky $x \in M$ spĺňa danú rovnicu.

Všeobecným riešením nazývame množinu všetkých partikulárnych riešení.

Definícia 2.3. (Diferenčné rovnice 2. typu) Nech je pre všetky $x \in M$ definovaná funkcia

$$g(x, y_x, y_{x+1}, \dots, y_{x+k})$$
, kde $y_{x+j} = \varphi(x+j)j = 0, 1, 2, \dots, k$.

Rovnicu tvaru

$$g(x, y_x, y_{x+1}, \dots, y_{x+k}) = 0,$$

v ktorej neznáma funkcia $y_x=\varphi(x)$, nazývaná diferenčná rovnica 2.typu definovaná v M. Ak je závislosť g na y_x a y_{x+k} nekonštantná hovoríme, že rovnica je k-tého rádu. Riešenie rovnice v M nazývame každú funkciu $y_x=\varphi(x)$, ktorá pre všetky $x\in M$ spĺňa danú rovnicu. K tomu je nutné, aby definičný obor funkcie $\varphi(x)$ obsahoval všetky $x\in M$ a taktiež body $x+1,x+2,\ldots,x+k$.

2.2.2 Rekurentná formula

Rekurentnú formulu vieme získať z diferenčnej rovnice vyjadrením (n+k)-tého člena pomocou k predchádzajúcich členov rovnice.

Majme danú diferenčnú rovnicu:

$$g(x, y_x, y_{x+1}, \dots, y_{x+k}) = 0.$$

1. Nech definičný obor tejto rovnice sú prirodzené čísla $n=1,2,3,\ldots$ a ďalej zaveďme všeobecnejšie označenie pre členy postupnosti: $y_n=a_n$, takže rovnicu vieme prepísať ako

$$g(n, a_n, a_{n+1}, \dots, a_{n+k}) = 0.$$

Predpokladajme, že túto rovnicu vieme jednoznačne rozriešiť vzhľadom k a_{n+k} :

$$a_{n+k} = G(n, a_n, a_{n+1}, \dots, a_{n+k-1}),$$

kde G je funkcia, ktorú sme dostali riešením pôvodnej rovnice. Dostali sme vlastne všeobecný rekurentný vzorec pre postupnosť a_n , v ktorom je (n+k)-ty člen vyjadrený pomocou k predchádzajúcich členov $a_n, a_{n+1}, \ldots, a_{n+k-1}$ a premennej n.

2. Pozrime sa na riešenie, keď máme vopred dané (ľubovoľné) čísla a_1, a_2, \ldots, a_k . Vieme, že po dosadení členov do funkcie G vypočítame jednoznačne člen

$$a_{k+1} = G(1, a_1, a_2, \dots, a_k;),$$

ďalším dosadením vypočítame

$$a_{k+2} = G(2, a_2, a_3, \dots, a_{k+1};)$$
 atd'.

Všeobecný n-tý člen a_n dostaneme vypočítaním elementárnej funkcie n a daných k prvých čísiel a_1, a_2, \ldots, a_k . Táto funkcia je práve partikulárnym riešením diferenčnej rovnice s počiatočnými podmienkami a_1, a_2, \ldots, a_k .

Touto druhou úvahou sa súčasne znovu potvrdzuje, že všeobecné riešenie rovnice k-teho rádu $a_{n+k} = G(n, a_n, a_{n+1}, \ldots, a_{n+k-1})$ má obsahovať k všeobecných konštánt, ktoré je možno si ľubovoľne zvoliť.

3 Vypracovanie

Popis našej rovnice

 $x_{n+1} = (a + \frac{b}{n}) x_n$, kde $a, b \in R$, a + b > 0. Ide o rekurentný vzorec pre postupnosť.

Vypísanie prvých členov postupnosti

$$\begin{array}{ll} n=1: & x_2=(a+b)x_1 \\ n=2: & x_3=(a+\frac{b}{2})x_2=(a+\frac{b}{2})(a+b)x_1 \\ n=3: & x_2=(a+\frac{b}{3})x_3=(a+\frac{b}{3})(a+\frac{b}{2})(a+b)x_1 \\ n=4: & x_2=(a+\frac{b}{4})x_4=(a+\frac{b}{4})(a+\frac{b}{3})(a+\frac{b}{2})(a+b)x_1 \\ n=k-1: & x_k=(a+\frac{b}{k-1})x_{k-1}=(a+\frac{b}{k-1})(a+\frac{b}{k-2})\dots(a+\frac{b}{2})(a+b)x_1 \end{array}$$

3.1 Triviálne riešenie

Nech $x_1 = 0$.

Potom dostávame triviálne riešenie $x_{n+1} = 0$ a teda každý člen postupnosti bude mať hodnotu 0. Ďalej, v našom vypracovaní, budeme predpokladať, že $x_1 > 0$ a teda sa budeme zaoberať závislosťou od hodnôt a, b.

3.2 Všeobecné riešenie

$$x_{n+1}=\left(a+\frac{b}{n}\right)x_n,\, n\geq 1$$
a nech $a+\frac{b}{n}=f(n),$ potom $x_{n+1}=f(n)x_n,$ kde $n=1+k,\, k=0,1,2,\dots$

$$x_n = f(n-1)x_{n-1}$$

$$x_{n-1} = f(n-2)x_{n-2}$$

$$x_{n-2} = f(n-3)x_{n-3}$$

$$\vdots$$

$$x_{n-(k-1)} = f(n-k)x_{n-k}$$

3.3 Závislosť od hodnôt a, b

Nech $b = 0, x_1 > 0.$

a teda $x_2 = f_1 x_1$.

Potom rovnica $x_{n+1} = \left(a + \frac{b}{n}\right) x_n$ nadobudne tvar $x_{n+1} = ax_n$, teda každý ďalší člen postupnosti x_{n+1} je a-násobkom predchádzajúceho člena x_n . Dosadením b = 0 teda vzniká z našej rovnice Geometrická postupnosť.

Predpokladajme, že b=0 a a>0, teda rovnica (*) má tvar $x_{n+1}=a\times$ x_n , čiže sa jedná o geometrickú postupnosť $x_n = ax_{n-1}$, kde a je koeficientom geometrickej postupnosti.

V prípade, že a = 1 dostávame $x_n = x_{n-1}$.

Ďalej skúmajme prípad, kedy je a=0. Prvých pár členov vyzerá následovne:

$$x_{2} = bx_{1}$$

$$x_{3} = \frac{b}{2}x_{2} = \frac{b}{2}bx_{1} = \frac{b^{2}}{2}x_{1}$$

$$x_{4} = \frac{b}{3}x_{3} = \frac{b^{3}}{3!}x_{1}$$

$$\vdots$$

$$x_{n} = \frac{b^{n-1}}{(n-1)!}x_{1}$$

$$x_{n+1} = \frac{b^{n}}{(n)!}x_{1}$$

Položme
$$\sum_{n=0}^{\infty} x_{n+1} = 1$$
, potom $1 = \sum_{n=0}^{\infty} x_{n+1} = x_1 \sum_{n=0}^{\infty} \frac{b^n}{n!} = x_1 e^b \Rightarrow x_1 = e^{-b}$

Čo sa podobá na Poissonove rozdelenie pravdepodobnosti. Položme $\sum_{n=0}^{\infty} x_{n+1} = 1$, potom $1 = \sum_{n=0}^{\infty} x_{n+1} = x_1 \sum_{n=0}^{\infty} \frac{b^n}{n!} = x_1 e^b \Rightarrow x_1 = e^{-b}$ Môžeme teda prehlásiť, že ak $x_1 = e^{-b}$, potom riešením rovnice $x_{n+1} = (a + \frac{b}{n}) x_n$ kde a = 0, b > 0 je Poissonovo rozdelenie $Po(\lambda)$ s parametrom $\lambda = b$.

Metódou matematickej indukcie sme teda dokázali, že $x_n \sim Po(\lambda)$, keď že každý d'alší člen $x_{n+1} \sim Po(\lambda)$.

Ďalej skúmajme prípad, kedy $a \in (0,1)$. Z pôvodnej rovnice teda :

$$x_{2} = (a+b)x_{1}$$

$$x_{3} = (a+\frac{b}{2})(a+b)x_{1})$$

$$x_{4} = (a+\frac{b}{3})x_{3} = (a+\frac{b}{3})(a+\frac{b}{2})(a+b)x_{1}$$

$$\vdots$$

$$x_{n} = (a+\frac{b}{n-1})(a+\frac{b}{n-2})\dots(a+\frac{b}{2})(a+b)x_{1}$$

$$x_{n+1} = (a+\frac{b}{n})(a+\frac{b}{n-1})\dots(a+\frac{b}{2})(a+b)x_{1}$$

$$x_{n+1} = \frac{a^{n}}{n!}(n+\frac{b}{a})(n-1+\frac{b}{a})\dots(2+\frac{b}{a})(1+\frac{b}{a})x_{1},$$

kde x_1 je prvým členom postupnosti. Vychádzajúc z a+b>0nech $1+\frac{b}{a}=$ $x_{n+1} = \frac{a^n}{n!}(n+\alpha-1)(n+\alpha-2)\dots(1+\alpha)\alpha x_1$

Po rozšírení pravej strany jednotkou v tvare $\frac{(\alpha-1)!}{(\alpha-1)!}$ dostávame :

$$x_{n+1} = \frac{a^n (n + \alpha - 1)!}{n!(\alpha - 1)!} x_1$$

$$x_{n+1} = a^n \binom{n + \alpha - 1}{n} x_1$$

$$x_{n+1} = \binom{n + \alpha - 1}{n} (1 - a)!^{\alpha} a^n = Pr(x = n),$$

kde $x_1=(1-a)^{\alpha} \Rightarrow x_1=(1-a)^{1+\frac{b}{a}}$ Môžeme teda povedať, že $x_{n+1} \sim NB(2,9)$, číže $x_{n+1} \sim NB(1+\frac{b}{a};a)$,
čo je negatívne binomické rozdelenie, pričom $a \in (0;1), a+b>0 \Rightarrow b \in (0;\infty), x_1=(1-a)^{a+\frac{b}{a}}$. Matematickou dedukciou je teda dokázané, že to platí aj pre x_n .

Následne je potrebné sa zaoberať prípadom, keď a<0. Nesmieme však zabudnúť na podmienku a+b=0. Predpokladajme, že existuje kladné celé číslo z také, že $a+\frac{b}{z+1}=0$. V tomto prípade platí, že pre všetky $n\geq z+1$ $x_{n+1}=0$. Keďže $\frac{b}{n}\to 0$ a b>0, $a+\frac{b}{n}\leq 0$ pre všetky dostatočne veľké n. Ak z neexistuje, potom zvolenie n je minimum tak $a+\frac{b}{n}<0$, dostaneme $x_{n+1}<0$, čo je rozpor. Môžeme teda písať $z=-(1+\frac{b}{a})$, potom :

$$n = 1 x_2 = (a+b)x_1$$

$$n = 2 x_3 = (a+\frac{b}{2})(a+b)x_1)$$

$$\vdots$$

$$n = m x_{m+1} = (a+\frac{b}{m})(a+\frac{b}{m-1})\dots(a+\frac{b}{2})(a+b)x_1$$

$$= \frac{a^m}{m!}(m+\frac{b}{a})(m-1+\frac{b}{a})\dots(2+\frac{b}{a})(1+\frac{b}{a})x_1)$$

$$= \frac{a^m}{m!}(-z+m-1)(-z+m-2)\dots(-z+1)(-z)x_1)$$

$$= (-1)^m \frac{a^m}{m!}(m-1-z)(m-2-z)\dots(1-z)z*x_1$$

$$= \binom{z}{m}(-a)^m x_1$$

Nech je A=-a>0. Ak $\sum_{n=0}^{\infty}x_{n+1}=1$ a $x_{n+1}=0$ pre $n\geq z+1$ potom

$$x_1 \sum_{n=0}^{z} {z \choose n} A^n = 1$$

Podľa binomickej formuly $\sum\limits_{n=0}^{z}\binom{z}{n}A^{n}=(1+A)^{z},$ potom $x_{1}=(1+A)^{-z}.$ Vzhľadom k tomu môžeme každé kladné číslo zapísať ako $A=\frac{p}{1-p},$ kde $p\in(0,1).$ Potom $x_{1}=(1+\frac{p}{1-p})^{-z}=(1-p^{z})\Rightarrow x_{n+1}=\binom{z}{n}p^{n}(1-p^{z-n})$ a to môžeme zapísať ako $X\sim Bin(z,\frac{a}{a-1})$

4 Záver

Literatúra

 $[1]\ {\it Prágerová},\ A.:$ Diferenční rovnice. Polytechnická knižnice, Praha 1971.