

2014—2015 学年第 1 学期 考试统一用答题册(A 卷)

题号	 erone de	三(1)	三(2)	三(3)	三(4)		总分
成绩							
阅卷人签字							angermanghahara ang kar dalam da dalam an mili ang a
校对人签字		and melitiki verig neversite dheren kran basanan fissansia vak			A The same of the	The state of the s	and the second s

考试课程		工科大学物理(11)				
班	级	学号				
姓	名	成 绩				

2015年1月19日

注: 试卷含封面共7页,满分100分

选择题(将正确答案的字母填在空格内,每小题 3 分,共 30 分)

1、一定量的理想气体,从p-V图上初态 a 经历(1) 或(2)过程到达末态 b,已知 a、b 两态处于同一条绝 热线上(图中虚线是绝热线),则气体在

- (B)(1)过程中放热,(2)过程中吸热.
- (C) 两种过程中都吸热.
- (D) 两种过程中都放热.

]

2、气缸中有一定量的氮气(视为刚性分子理想气体),经过绝热压缩,使其压强变为原来的2 倍,问气体分子的平均速率变为原来的几倍?

(A)
$$2^{2/5}$$
.

(B)
$$2^{2/7}$$
.

(C)
$$2^{1/5}$$
.

(D)
$$2^{1/7}$$
.

3、如图所示,质量为 m 的物体由劲度系数为 k1 和 k2 的两个轻弹 箦连接在水平光滑导轨上作微小振动,则该系统的振动频率为

(A)
$$v = \frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{m}}$$
. (B) $v = 2\pi \sqrt{\frac{k_1 + k_2}{m}}$.

(B)
$$v = 2\pi \sqrt{\frac{k_1 + k_2}{m}}$$
.

(C)
$$v = \frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{mk_1 k_2}}$$

(C)
$$v = \frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{mk_1 k_2}}$$
. (D) $v = \frac{1}{2\pi} \sqrt{\frac{k_1 k_2}{m(k_1 + k_2)}}$.

4、在弦线上有一简谐波, 其表达式是

$$y_1 = 2.0 \times 10^{-2} \cos[2\pi(\frac{t}{0.02} - \frac{x}{20}) + \frac{\pi}{3}]$$
 (SI)

为了在此弦线上形成驻波,并且在x=0处为一波节,此弦线上还应有一简谐波,其表达式 为:

(A)
$$y_2 = 2.0 \times 10^{-2} \cos[2\pi(\frac{t}{0.02} + \frac{x}{20}) + \frac{\pi}{3}]$$
 (SI).

(B)
$$y_2 = 2.0 \times 10^{-2} \cos[2\pi(\frac{t}{0.02} + \frac{x}{20}) + \frac{2\pi}{3}]$$
 (SI).

(C)
$$y_2 = 2.0 \times 10^{-2} \cos[2\pi(\frac{t}{0.02} + \frac{x}{20}) + \frac{4\pi}{3}]$$
 (SI).

(D)
$$y_2 = 2.0 \times 10^{-2} \cos[2\pi(\frac{t}{0.02} + \frac{x}{20}) - \frac{\pi}{3}]$$
 (SI).

(A)) 1:3	(B)	1:1 (C)	3:1	(D) 9:1	
Ĺ]					
.E.H. (A) (B)	现更高级 换一个光 换一个光	收长的垂直入次的主极大, 次的主极大, 动常数较小。 栅常数较大 靠近屏幕的	应该 的光栅. 的光栅.	的屏幕上只能	出现零级和一级	B主极大, 欲使屏幕
` ´		远离屏幕的				
Γ]					
		1 L。的自然光 片后的光强 I		振片,且此两	万偏振片的偏振 化	2方向成 45°角,则
(A)	$I_0/4\sqrt{2}$. (B) $I_0 / 4$.			
(C)	$I_0/2$.	(D) $\sqrt{2} I_0 / 2$.			
ſ	1					
8、自 为	月然光以 6	0°的入射角!	照射到某两介质。	交界面时,反	射光为完全线偏	振光,则知折射光
(A) 5	完全线偏振	远光且折射 角	是 30°.			
(B) ਵੇ	部分偏振光	已且只是在该	光由真空入射到	折射率为√3	的介质时,折射	角是 30°.
(C) 🕏	部分偏振光	:,但须知两	种介质的折射率	才能确定折射	角.	
(D) ‡	部分偏振光	注且折射角是	30°			
[]					
	则得康普顿			•	,	6). 若在同一散射 立的强度分别为 I _{Li}
(A)	$\lambda_{Li} > \lambda_{Fe}$,	$I_{Li} < I_{Fe}$	(B) $\lambda_{L_{I}} = \lambda_{Fe}$,	$l_{Li} = l_{Fe}$		
(C)	$\lambda_{Li} = \lambda_{Fe}$,	$I_{Li} > I_{Fe}$	(D) $\lambda_{Li} < \lambda_{Ie}$,	$l_{Li} > l_{Fe}$		
	.]					
			x 轴正向传播,着 子的 x 坐标的不硕		不确定量Δ λ=10¯	⁴ nm,则利用不确
	25 cm. 250 cm.		50 cm.			

5、若频率为 1200 Hz 的声波和 400 Hz 的声波有相同的振幅,则此两声波的强度之比是

- ・
(a) 不
分布曲线。其中曲线 (a) 是气分子的速率 (b) (c)
分布曲线: 曲线 (b) 是气分子的速率分布
曲线; 曲线(c)是 气分子的速率分布曲线。
2. 在 pー V 图上
(1) 系统的某一平衡态用 来表示:
(2) 系统的某一平衡过程用来表示:
(3) 系统的某一平衡循环过程用来表示:
3、由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边真空.如果把隔板撤去,
气体将进行自由膨胀过程,达到平衡后气体的温度(升高、降低或不变),气体的
焰(增加、减小或不变).
4、图中用旋转矢量法表示了一个简谐振动. 旋转矢量的长度为 0.04m ,旋转角速度 $ω = 4\pi \text{rad/s}$. 此简谐振动以余弦函数表示的振动方程为
$(SI). \qquad (I = 0)$
5、如图所示,在双缝干涉实验中 $SS_1 = SS_2$,用波长为 λ 的光照射 双缝 S_1 和 S_2 ,通过空气后在屏幕 E 上形成干涉条纹。已知 P 点处 为第三级明条纹,则 S_1 和 S_2 到 P 点的光程差为. 若将整 个装置放于某种透明液体中, P 点为第四级明条纹,则该液体的折
射率n man and and and and and and and and and a
6、用波长为λ的单色光垂直照射如图所示的、折射率为 n_2 的劈形膜 $(n_1 \ge n_2$, $n_3 \ge n_2$),观察反射光干涉。从劈形膜顶开始,第 2 条明 n_1
7、平行单色光垂直入射于单缝上,观察夫琅禾费衍射. 若屏上 P 点处为第二级暗纹,则单
缝处波面相应地可划分为 个半波带. 若将单缝宽度缩小一半, P 点处将是
级 纹.

8、氢原子由定态 l 跃迁到定态 k 可发射一个光子. 已知定态 l 的电离能为 0.85 eV,又知从基态使氢原子激发到定态 k 所需能量为 10.2 eV,则在上述跃迁中氢原子所发射的光子的能

9、令 $\lambda_c = h/(m_c c)$ (称为电子的康普顿波长,其中 m_e 为电子静止质量,c为真空中光速,h为普朗克常量). 当电子的动能等于它的静止能量时,它的德布罗意波长是

$$\lambda$$
 = λ_{i} .

10、在下列各组量子数的空格上,填上适当的数值,以便使它们可以描述原子中电子的状态:

(1)
$$n=2$$
, $l=$ _____, $m_l=-1$, $m_s=-\frac{1}{2}$.

(2)
$$n=2$$
, $l=0$, $m_l=\frac{1}{2}$.

(3)
$$n=2, l=1, m_l=0, m_s=$$
_____.

三. 计算题 (每题 10 分, 共 40 分)

L、一定量的理想气体,由状态 a 经 b 到达 c. (如图, abc 为一直线)求此过程中

- (1) 气体对外作的功:
- (2) 气体内能的增量;
- (3) 气体吸收的热量. (1 atm=1.013×10⁵ Pa)

2、如图所示,两相干波源在x 轴上的位置为 S_1 和 S_2 ,其间距离为d = 30 m, S_1 位于坐标原点 O. 设波只沿x 轴正负方向传播,单独传播时强度保持不变. x_1 = 9 m 和 x_2 = 12 m 处的两点是相邻的两个因干涉而静止的点. 求两波的波长和两波源间最小相位差.

3、将牛顿环装置浸入某种液体,液体的折射率 n 仍比玻璃的小,但平凸透镜与平板玻璃在中心处已脱离接触,其间有厚为 e_0 的液体,如题图所示。现用波长为 λ 的单色光垂直照射,已知平凸透镜的曲率半径为 R,求反射光中各暗环的半径。

4、设有一电子在宽为 0.20nm 的一维无限深的方势院中. (1)计算电子在最低能级的能量; (2) 当电子处于第一激发态 (n=2) 时,写出其波函数; 并求其在势阱中何处出现的概率最大? 普朗克常量 $h=6.63\times10^{-34}$ J·s,电子静止质量 $m_e=9.11\times10^{-31}$ kg)