BARNIVILLE

QA161 B3

IN MEMORIAM FLORIAN CAJORI

Notes on Algebraic Potentials

By J. J. BARNIVILLE, B.A. (Dublin)

CAJORI

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

Notes on Algebraic Potentials.

- 1. Let $X_1 = \pi(x-\alpha)$ and $X_n = \pi(x^n \alpha^n)$. I propose to call X_n the "nth potential" of X_1 , and X_1 the "radical factor" of X_n . Since X_{mn} is divisible by X_m and X_n , the problem of deducing the coefficients of X_n from those of X_1 is connected with the theory of divisibility of polynomials.
- 2. If p is a prime number, $(\Sigma^{\alpha})^p \Sigma^{\alpha^p}$ is divisible by p. Hence, if the coefficients of X_1 are integers, they differ from those of X_p by multiples of p.
- 3. If the indices of x in X_1 are all divisible by n, then $X_n = X_1^n$.

Ex. 1. If
$$X_1 = x^2 + 1$$
, then $X_2 = (x^2 + 1)^2$, $X_3 = x^6 + 1$, $X_4 = (x^4 - 1)^2$, $X_6 = (x^6 + 1)^2$...

Ex. 2. If
$$X_1 = x^3 - 1$$
, then $X_{3m} = (x^{3m} - 1)^3$.

4. If *n* is a prime number, and $Y_1 = X_n/X_1$, then $Y_n = X_n^{n-1}$. If *m* is prime to *n*, then $Y_m = X_{mn}/X_m$.

Ex. 3. Let
$$X_1 = x - 1$$
, and $Y_1 = X_3 / X_1 = x^2 + x + 1$, then $Y_3 = (x^3 - 1)^2$.

Ex. 4. Let
$$X_1 = x - 1$$
, and $Y_1 = X_5/X_1 = x^4 + x^3 + x^2 + x + 1$, then $Y_5 = (x^5 - 1)^4$.

Ex. 5.—Let
$$X_1 = x^2 + x + 1$$
, $Y_1 = x^4 + x^3 + x^2 + x + 1$, $Z_1 = X_5/X_1 = Y_3/Y_1 = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1$, then, if n is prime to 3 and 5, $Z_n = x^{8n} - x^{7n} + x^{5n} - x^{4n} + x^{3n} - x^{n} + 1$. If n is divisible by 3, but not by 5, then

$$Z_n = (x^{4n} + x^{3n} + x^{2n} + x^n + 1)^2$$
.

If n is divisible by 5, but not by 3, then $Z_n = (x^{2n} + x^n + 1)^4$. If n is divisible by 15, then $Z_n = (x^n - 1)^8$. 5. If A and B are sums of alternate terms of X_1 , then $X_2=A^2-B^2$.

If u, v, w, are the sums of every third term of X_1 , then $X_3 = u^3 + v^3 + w^3 - 3uvw$.

By these formulae X_n can be determined when $n=2^{\mu}3^{\nu}$.

6. Let X_1 be of degree m, and let $P_1 = \Pi \alpha$ (the "absolute term"), then $P_n = P_1^n$, and $X_n = x^{mn} - \Sigma \alpha^n \cdot x^{(m-1)n} + \Sigma (\alpha \beta)^n x^{(m-2n)} + \dots$ = $\pm P_n (\mathbf{I} - \Sigma \alpha^{-n} \cdot x^n + \Sigma (\alpha \beta)^{-n} x^{2n} + \dots)$.

 $\Sigma_{\mathbf{a}^n}$ and $\Sigma_{\mathbf{a}^{-n}}$ may be obtained by the process of dividing X_1 into its first differentials with respect to x and x^{-1} ; hence X_n is completely determined when X_1 is of 2nd or 3rd degree in x.

Ex. 6. If $X_1 = x^3 + x + 1$, the successive values of Σa^n are derived from the expansion of (3+0+1)/(1+0+1+1), and those of $\Sigma (\beta y)^n$ from that of (3+2)/(1+1+0+1).

Hence $x^{38} + 67x^{11} + 1$ is divisible by $x^3 + x + 1$.

- **Ex. 7.** If $X_1 = x^3 2x^2 2$, then $X_8 = x^{24} 960x^{16} 2^8$, which is divisible by X_1 , X_2/X_1 and X_4/X_2 .
- **Ex. 8.** If $X_1 = x^3 + x^2 + 3$, then $X_9 = x^{27} + 271x^{18} + 3^9$, which is divisible by X_1 and X_8/X_1 .

Ex. 9. If
$$X_1 = x^3 - 5x + 5$$
, then $X_5 = x^{15} + 5^3 x^{10} + 5^5$.

7. When X_1 is of the 4th degree, the middle term of X_n may be obtained in the following manner.

Let
$$X_1 = x^4 + px^3 + qx^2 + rx + s$$
; then $\alpha\beta + \gamma\delta$ is a root of $y^3 - qy^2 + (pr - 4s)y - (p^2s - 4qs + r^2) = 0$.

Let $(x^2+s)^3-qx(x^2+s)^2+...=x^6+a_1x^5+a_2x^4+...$, then the successive values of $\Sigma(\alpha\beta)^n$ are the terms of the quotient of $6+5a_1+4a_2+3a_3+2a_4+a_5$ by $1+a_1+a_2+a_3+a_4+a_5+a_6$.

Ex. 10. Let
$$q=0$$
; then $\alpha\beta$ is a root of $x^6+(pr-s)x^4-(p^2+r^2)$ $x^3+(pr-s)sx^2+s^3=0$. Hence $\Sigma(\alpha\beta)^2=2(s-pr)$, $\Sigma(\alpha\beta)^3=3(p^2+r^2)$, and $\Sigma(\alpha\beta)^5=5(s-pr)(p^2+r^2)$.

Ex. 11. Let
$$X_1 = x^4 + x^3 - 1$$
, then $\alpha \beta$ is a root of $x^6 + x^4 + x^3 - x^2 - 1 = 0$,

and
$$(6+0+4+3-2)/(1+0+1+1-1+0-1)$$

$$=6, 0-2-3, 6, 5, 1-14-2, 15, 23-22-39, 0, \dots$$

Hence $\Sigma(\alpha\beta)^{13} = 0$, and $X_{13} = x^{52} + 66x^{39} + 13x^{13} - 1$.

Ex. 12. If $X_1 = x^4 + x + 1$, then $X_5 = x^{20} + 5x^{10} - 4x^5 + 1$, and $X_{19} = x^{76} + 608x^{38} - 37x^{19} + 1$.

Also, $X_5/X_1 = u + v + w$, where $u = x^{16} - x^{13} + x^{10} - x^7 - x$, $v = -x^{12} + 2x^9 + 2x^6 - x^3 + 1$, $w = x^8 - 3x^5 + x^2$.

Hence $\Sigma(u^2-vw)=X_1X_{15}/X_8X_5$.

8. By means of the formulae

$$2 \Sigma(\alpha\beta)^n = (\Sigma\alpha^n)^2 - \Sigma\alpha^{2n},$$

$$2 \Sigma(\alpha\beta)^{-n} = (\Sigma\alpha^{-n})^2 - \Sigma\alpha^{-2n},$$

$$6 \Sigma (\alpha \beta \gamma)^n = (\Sigma \alpha^n)^3 - 3 \Sigma \alpha^n \Sigma \alpha^{2n} + 2 \Sigma \alpha^{3n}, \text{ etc.}$$

the third term of X_n may be deduced from the 2nd term of X_{2n} , the fourth term of X_n from the 2nd term of X_{3n} , and so on.

The process is, however, a tedious one; in many cases a more direct method may be employed, as I shall proceed to show.

9. Let $X_1 = x^{\mu} - px^{\nu} - q$; then, if μ is divisible by n, $X_n = (x^{\mu} - q)^n - (px^{\nu})^n$.

If $\mu - \nu$ is divisible by n, then $X_n = (x^{\mu} - \rho x^{\nu})^n - q^n$.

10. If $Y_1 = ay^2 + by + c & n$ is odd, then $Y_n = (ay^2)^n + u_n y^n + c^n$, where

 $u_n = b^n - nacb^{n-2} + \frac{1}{2}n(n-3)(ac)^2b^{n-4} - \frac{1}{6}n(n-4)(n-5)(ac)^3b^{n-6} + \dots$ Making y = 1, we find that a + b + c is a factor of

$$\Sigma a^3 - 3abc$$
,

$$\Sigma a^5 - 5abc(b^2 - ac),$$

$$\Sigma a^7 - 7abc(b^2 - ac)^2$$
,

$$\Sigma a^{11} - \text{II}abc(b^2 - ac)\{(b^2 - ac)^3 + (abc)^2\},$$

$$\Sigma a^{13} - 13abc(b^2 - ac)^2 \{(b^2 - ac)^3 + 2(abc)^2\}, \text{ etc.}$$

Let $X_1 = a + b + c$ (a trinomial in x); then X_3, X_5, X_7 ... are equivalent to the above expressions, provided that the indices of x in the result are all divisible by n.

When n=5, it is always possible to equate the terms of X_1 to a, b, c, so that $X_5 = \sum a^5 - 5abc(b^2 - ac)$.

Also, $X_5/X_1 = AB - C^2$, where $A = a^2 + b^2 + c^2 - ac$, $B = a^2 + b^2 + c^2 - b(a+c)$, and C = b(a+c) - ac.

Ex. 13.—Let
$$X_1 = x^7 + x + 1$$
, then $X_5 = x^{85} + x^5 + 1 + 5x^{10}(x^5 - 1)$ and

$$X_5/X_1 = (x^{14} - x^7 + x^2 + 1)(x^{14} - x^8 + x^2 - x + 1) - (x^8 - x^7 + x)^2.$$

Let
$$X_1 = x^7 + x^2 + 1$$
, then $X_5 = (x^7 + x^2)^5 + 1$.

Let
$$X_1 = x^7 + x^8 + 1$$
, then $X_5 = x^{85} + x^{15} + 1 + 5x^{10}(x^{10} - 1)$.

Let
$$X_1 = x^7 + x^4 + 1$$
, then $X_5 = x^{35} + x^{20} + 1 + 5x^{15}(x^{10} - 1)$.

Let
$$X_1 = x^7 + x^5 + 1$$
, then $X_5 = x^{35} + (x^5 + 1)^5$.

Let
$$X_1 = x^7 + x^6 + 1$$
, then $X_5 = x^{85} + x^{80} + 1 - 5x^{20}(x^5 - 1)$.

Ex. 14. Let $X_1 = x^8 + x^3 + 1$, then

$$X_5 = (x^8 + x^3)^5 + 1.$$

$$X_{11} = x^{88} + x^{88} + 1 - 11x^{11}(x^{11} - 1)(x^{88} - 4x^{22} + 3x^{11} - 1).$$

$$X_{13} = x^{104} + x^{39} + 1 - 13x^{26}(x^{18} - 1)^2(x^{39} - 3x^{26} + 5x^{13} - 1).$$

 X_7 cannot be found by this method; its value is probably $x^{56}+x^{21}+1+7(x^{85}+x^{28}+x^{14})$.

Ex. 15. Let $X_1=x^9+x+1$, then X_7 , X_{11} , X_{18} are intractable, but

$$X_{17} = x^{158} + x^{17} + 1 - 17x^{17}(x^{17} - 1)$$

$$(x^{102} - 11x^{85} + 31x^{68} - 35x^{51} + 20x^{34} - 6x^{17} + 1).$$

11. This method can be applied when X_1 has more than three terms, provided that all the indices except two, and the sum of those two, are divisible by n.

Ex. 16. Let $X_1 = x^5 + px^3 + qx^2 + r$,

then

$$X_{5} = (x^{5} + r)^{5} + (px^{3})^{5} + (qx^{2})^{5} - 5pqx^{5}(x^{5} + r)\{(x^{5} + r)^{2} - pqx^{5}\}.$$

12. If
$$X_1 = Y_1 Z_1$$
, then $X_n = Y_n Z_n$.

Ex. 17. Let
$$X_1 = x^6 + x - 2$$
, $Y_1 = x - 1$, $Z_1 = x^5 + x^4 + x^3 + x^2 + x + 2$, then $Z_5 = x^3 + 6x^{20} + 16x^{15} + 26x^{10} + 31x^5 + 32$, and $Z_7 = x^3 + x^2 + x^2 + x^2 + 15x^{14} - 97x^7 + 128$.

Ex. 18. Let $X_1 = x^7 - 2x^3 + 1$, $Y_1 = x - 1$, $Z_1 = x^6 + x^5 + x^4 + x^3 - x^2 - x - 1$, then $Z_5 = x^3 - x^2 + 2x^3 + 29x^2 + 64x^2 - 29x^1 + 8x^7 - 1$.

Ex. 19. Let $X_1 = x^{11} + x + 1$, $Y_1 = x^2 + x + 1$, $Z_1 = x^9 - x^8 + x^6 - x^8 + x^3 - x^2 + 1$, then $Z_5 = x^4 - 5x^8 - x^4 - 5x^8 - 4x^8 - 9x^2 - 5x^2 - 6x^{15} - x^{10} + 1$ and $Z_{11} = x^9 - 10x^8 - 44x^7 + 111x^8 - 175x^5 - 176x^4 + 111x^8 + 43x^2 + 11x^{11} + 1$.

Ex. 20. Let $X_1 = x^{11} + x^7 + 1$, $Y_1 = x^2 + x + 1$, $Z_1 = x^9 - x^8 + x^6 - x^4 + x^8 - x + 1$, then $Z_7 = x^6 - x^5 + x^4 - x^4 - 5x^2 + 15x^2 + 14x^{14} + 6x^7 + 1$.

Ex. 21. Let $X_1 = x^7 - 7x + 10$, $Y_1 = x^2 - x + 2$, $Z_1 = x^5 + x^4 - x^3 - 3x^3 - x + 5$, then $Z_5 = x^2 + 11x^2 - 89x^{15} + 627x^{10} + 549x^5 + 5^5$ and $Z_7 = x^3 + 57x^2 + 1231x^2 + 11701x^{14} + 40319x^7 + 5^7$.

Ex. 22. Let $X_1 = x^7 + 7x^3 + 4$, $Y_1 = x^2 + x + 2$, $Z_1 = x^5 - x^4 - x^3 + 3x^2 - x + 2$, then $Z_5 = x^2 + 24x^2 - 194x^{15} + 528x^{10} - 11x^5 + 32$.

Ex. 23. Let $X_1 = x^9 + 17x - 6$, $Y_1 = x^2 - x + 2$, $Z_1 = x^7 + x^6 - x^5 - 3x^4 - x^8 + 5x^2 + 7x - 3$, then $Z_5 = x^3 + 11x^3 + 89x^2 + 627x^{20} + 4049x^{15} + 15805x^{10} + 44287x^5 - 3^5$.

Ex. 24. Let $X_1 = x^7 + 13x^2 - 9$, $Y_1 = x^2 + x + 3$, $Z_1 = x^8 - x^4 - 2x^8 + 5x^3 + x - 3$, then $Z_5 = x^2 + 34x^2 - 33x^3 + 1525x^{10} + 31x^5 - 3^5$.

Ex. 25. Let $X_1 = x^7 + 13x^2 - 9$, $Y_1 = x^2 + x + 3$, $Z_1 = x^5 - 2x^4 + 2x^8 + 5x^2 + x - 3$, then $Z_5 = x^2 + 34x^2 - 33x^3 + 1525x^{10} + 31x^5 - 3^5$.

Ex. 26. Let $X_1 = x^7 + 4x^2 + 8$, $Y_1 = x^2 + 2x + 2$, $Z_1 = x^5 - 2x^4 + 2x^8 - 4x + 4$, then $Z_6 = x^2 - 12x^2 - 4x^2 + 8$, $X_1 = x^2 + 2x + 2$, $X_1 = x^5 - 2x^4 + 2x^8 - 4x + 4$, then $Z_6 = x^2 - 12x^2 - 32x^4 + 2x^8 - 4x + 4$,

Ex. 26. Let
$$X_1 = x^8 + 7x - 4$$
, $Y_1 = x^8 - x^2 + 2x - 1$, $Z_1 = x^5 + x^4 - x^3 - 2x^2 + x + 4$, then $Z_5 = x^{2.5} + 6x^{2.0} + 19x^{1.5} + 153x^{1.0} + 601x^5 + 4^5$, and $Z_7 = x^{3.5} + 36x^{2.8} + 510x^{2.1} + 3540x^{1.4} + 12041x^7 + 4^7$.

Ex. 27. Let $X_1 = x^1 + 3x^4 - 1$, $Y_1 = x^3 + x^2 - 1$. $Z_1 = x^{1.0} - x^9 + x^8 - x^6 + 2x^5 - 2x^4 + x^3 + x^2 + 1$, then $Z_5 = x^{5.0} + 4x^{4.5} + 11x^{4.0} + 25x^{3.5} + 49x^{3.0} + 82x^{2.5} + 108x^{2.0} + 86x^{1.5} + 21x^{1.0} + 5x + 1$,

and
$$Z_{13} = x^{130} - x^{117} + 27x^{104} + 78x^{91} + 597x^{78} + 2862x^{65} + 12855x^{52} + 41523x^{39} + 1080x^{26} + 26x^{18} + 1.$$

Ex. 28. Let
$$X_1 = x^{11} - 23x + 22$$
, $Y_1 = x^8 + x - 2$, $Z_1 = x^8 - x^6 + 2x^5 + x^4 - 4x^8 + 3x^2 + 6x - 11$, then $X_5 = (x^{11} - 23x)^5 + 22^5$, $Y_5 = (x^5 - 1)(x^{10} + 11x^5 + 32)$ and $Z_5 = x^{40} - 10x^{85} - 36x^{30} + 602x^{25} - 294x^{20} - 10854x^{15} + 12308x^{10} + 95446x^5 - 11^5$.

Ex. 29. Let
$$X_1 = x^8 + 3x^8 - 1$$
, $Y_1 = x^8 + x - 1$, $Z_1 = x^5 - x^8 + x^2 + x + 1$, then $Z_{11} = x^{55} - 67x^{35} + 2674x^{22} + 34x^{11} + 1$.

13. A function which is expressible in the forms $A+mB^2$ and C^2+nD^2 can also be expressed in the form E^2-mnF^2 , and, when m=n, it has two rational factors. (The exceptional case, where n=3, will be dealt with later.)

Ex. 30.
$$x^4 + 4x^2 + 1 = (x^2 + 1)^2 + 2x^2$$

= $(x^2 - 1)^2 + 6x^2 = (x^2 + 2)^2 - 3$.
Ex. 31. $x^4 - 6x^2 + 1 = (x^2 - 3)^2 - 8 = (x^2 + 1)^2 - 8x^2$
= $(x^2 - 1)^2 - 4x^2$.

Ex. 32. Let
$$\alpha$$
 and β be roots of $x^2 + x + 1 = 0$,
then $x^2 + 3 = (x + 2\alpha + 1)(x + 2\beta + 1)$, and $(x^6 + 27)/(x^2 + 3)$
= $\{x + \alpha(2\beta + 1)\} \{x + \beta(2\alpha + 1)\} \{x + \beta(2\beta + 1)\} \{x + \alpha(2\alpha + 1)\}$
= $(x^2 + 3x + 3)(x^2 - 3x + 3)$.

14. If n is a prime number of form 4m+1, and $X_1 = A^2 - nB^2$, or if n is a prime of form 4m-1, and $X = A^2 + nB^2$, then X_n/X_1 has two factors Y_1 , Z_1 , such that $Y_n = Z_n = X_n^{\frac{1}{2}(n-1)}$.

Ex. 33. Let
$$X_1 = x^2 + x + 1$$
, $Y_1 = x^2 - 2x + 1$, then $X_3 = Y_3 = X_1^2 Y_1 = (x^3 - 1)^2$.

Ex. 34. Let
$$X_1 = x^2 + x + 7$$
, $Y_1 = x^2 + 4x + 7$, $Z_1 = x^2 - 5x + 7$, then $X_3 = Y_3 = Z_3 = X_1 Y_1 Z_1$.

Ex. 35. Let
$$X_1 = x^4 + x^3 - 2x + 1$$
, $Y_1 = x^4 - 2x^3 + x + 1$, $Z_1 = x^4 + x^3 + 3x^2 + x + 1$, then $X_3 = Y_3 = Z_3 = X_1 Y_1 Z_1$.

Ex. 36. Let $X_1 = x^2 - 5$, $Y_1, Z_1 = x^4 \pm 5x^3 + 15x^2 \pm 25x + 25$, then $X_1Y_1Z_1 = x^{10} - 5^5$ and $Y_5 = Z_5 = (x^{10} - 5^5)^2$.

Ex. 37. Let $X_1 = x^2 + x - 1$, $Y_1 = \{(x-1)^5 - 1\} / (x-2)$, $Z_1 = \{x^5 + (x+1)^5\} / (2x+1)$, then $X_{5m} = X_m Y_m Z_m$ (unless m is divisible by 5).

Ex. 38. Let
$$X_1 = x^4 + 5x^2 + 5$$
, Y_1 , $Z_1 = x^4 \pm 5x + 5$, V_1 , $W_1 = x^4 \pm 5^{\frac{1}{2}}x^3 + 5$, then $X_5 = Y_5 = Z_5 = V_5 = W_5 = x^{20} + 5^4 x^{10} + 5^5$.

Ex. 39. Let
$$X_1 = x^2 + x + 2$$
, $X_7 = x^{14} - 13x^7 + 2^7$
 $Y_1 = x^6 + 3x^5 + 2x^4 - x^3 + 4x^2 + 12x + 8$
 $Z_1 = x^6 - 4x^5 + 9x^4 - 15x^3 + 18x^2 - 16x + 8$,
then $X_7 = X_1 Y_1 Z_1$ and $Y_7 = Z_7 = X_7^3$.

Ex. 40. Let $X_1 = x^2 + 11$, $x^2 + x + 3$, or $x^2 + 7^2x + 5^4$, then X_{11}/X_1 has two factors of 10th degree.

Ex. 41. Let $X_1 = x^2 + x - 3$, $x^2 + 3x - 1$, or $x^4 - x^3 - x^2 - x + 1$, then X_{13}/X_1 has two factors.

Ex. 42. Let $X_1 = x^2 + \frac{1}{2}x + 1$, then X_1X_{15}/X_8X_5 has two factors of 8th degree.

Ex. 43. Let $X_1 = x^2 + \frac{1}{3}x + 1$, then X_1X_{35}/X_5X_7 has two factors of 24th degree.

15. When n is an odd number, $(x^n-1)/(x-1) = \Pi(x^2-\lambda x+1)$, λ being a root of an equation of degree $\frac{1}{2}(n-1)$.

Let $X_1 = \Pi(x-\lambda)$ and $Y_1 = \Pi(x^2 - \lambda^2 x + \lambda^2)$; then Y_1 is a rational factor of X_n , and $Y_n = X_n^2$.

Ex. 44. Let n=7;

then $X_1 = x^3 + x^2 - 2x - 1$, $X_7 = x^{21} + 57x^{14} - 289x^7 - 1$, and $Y_1 = \{(x-1)^7 - 1\} / (x-2) = x^6 - 5x^5 + 11x^4 - 13x^8 + 9x^2 - 3x + 1$.

Let n=11, then $X_1=x^5+x^4-4x^3-3x^2+3x+1$ and X_{11} is divisible by $\{(x-1)^{11}-1\}/(x-2)$.

Ex. 45. Let $X_1 = x^3 - 3x + 1$; then X_9/X_3 is divisible by $(x-1)^6 + (x-1)^3 + 1$.

16. Let u, v, w be the sum of every third term of X_1 ; then $4X_8/X_1 = (u+v-2w)^2 + 3(u-v)^2$. Hence X_8/X_1 can be expressed in the form $A^2 + 3B^2$ in three ways, X_3Y_3/X_1Y_1 in six ways, $X_3Y_3Z_8/X_1Y_1Z_1$ in twelve ways, and so on.

Ex. 46.
$$4(x^9-1)/(x-1) = (x^4+2x^3+2x+1)^2+3(x^4-1)^2$$

 $= (2x^4+x^3+x+2)^2+3(x^3-x)^2$
 $= (2x^4+x^3+x-1)^2+3(x^3+x+1)^2$
 $= (x^4-x^3-x-2)^2+3(x^4+x^3+x)^2$
 $= (x^4+2x^3-x+1)^2+3(x^4+x+1)^2$
 $= (x^4-x^3+2x+1)^2+3(x^4+x^3+1)^2$.

17. In trinomial equations, various properties of the roots can be investigated by means of the potential coefficients.

Ex. 47. Let α , β , γ ... be roots of $x^6+x+1=0$, then the successive values of $\Sigma(\alpha\beta)^n$ are

15, 0, 0, 3, 0, 10, 15, 0, 8, 30, 10, 44.... and those of $\Sigma(\alpha\beta)^{-n}$ or of $\Sigma(\gamma\delta_{\epsilon}\xi)^n$ are

 $15, 0, 0, 3, 4, 5, 15, 14, 12, -42, 25, 55, \dots$

If $xdy/ydx = 15 + 3x^{-3} + 10x^{-5} + 15x^{-6} + \dots$, then $\alpha\beta$ is a root of y=0, or of

$$x^{15} - x^{12} - x^{11} - x^{10} - 2x^9 - x^8 + 2x^6 + 2x^5 + x^3 - 1 = 0.$$

If $xdz/zdx=15+3x^{-5}+4x^{-4}+5x^{-5}+\ldots$, then z=0 is the same equation reversed.

Similarly it may be shown that $\alpha\beta\gamma + \delta\epsilon\zeta$ is a root of $x^{10} - 9x^8 + 27x^6 + 2x^5 - 27x^4 - 9x^3 + 6x + 1 = 0$.

GAYLAMOUNT PAMPHLET BINDER Manufactured by

GAYLORD BROS. Inc.
Syracuse, N. Y.
Stockton, Calif.

