IJCAI-ECAI-18

Online Deep Learning Learning Deep Neural Networks on the Fly

Doyen Sahoo

School of Information Systems
Singapore Management University

Joint work with

Quang Pham, Jing Lu, Steven C. H. Hoi

Overview

Introduction & Motivation

Online Learning and Deep Learning Challenges in using Deep Networks for Online Learning

Online Deep Learning (ODL)

Shallow to Deep Principle Architecture for ODL Hedge Backpropagation

Experiments

Online Performance
Other Insights

Larc.smu.edu.sg

Online Learning and Deep Learning

Online Learning

Online Learning and Deep Learning

Online Learning

Online Learning and Deep Learning

Deep Learning

State of the art in many applications

- Easily beats kernel methods
- Krizhevsky et al. 2012
- Simonyan & Zisserman 2014
- He et al. 2016
- Huang et. al 2017

Online Learning and Deep Learning

Deep Learning

State of the art in many applications

- Easily beats kernel methods
- Krizhevsky et al. 2012
- Simonyan & Zisserman 2014
- He et al. 2016
- Huang et. al 2017

Online Learning and Deep Learning

Deep Learning

State of the art in many applications

- Easily beats kernel methods
- Krizhevsky et al. 2012
- Simonyan & Zisserman 2014
- He et al. 2016
- Huang et. al 2017

Existing Online Deep Learning

Very limited work that addresses Deep Learning in Online Setting

Few Attempts (Zhou et al. 2012, Lee et. al. 2016): Consider Mini-batch Optimization

Larc.smu.edu.sg

Challenges in using Deep Networks for Online Learning (1/2)

Choose a (very) deep network -

Choosing a sufficiently complex network ensures that the pattern in data **CAN** be learnt

... however ... particularly for online settings ...

Challenges in using Deep Networks for Online Learning (1/2)

Choose a (very) deep network -

Choosing a sufficiently complex network ensures that the pattern in data **CAN** be learnt ... however ... particularly for online settings ...

Vanishing Gradient

Bengio et al. 1994 Hochreiter 1998, etc.

Challenges in using Deep Networks for Online Learning (1/2)

Choose a (very) deep network -

Choosing a sufficiently complex network ensures that the pattern in data **CAN** be learnt ... however ... particularly for online settings ...

Vanishing Gradient

Saddle Points (& Local Minima)

Bengio et al. 1994 Hochreiter 1998, etc.

Dauphin et al. 2014

Challenges in using Deep Networks for Online Learning (1/2)

Choose a (very) deep network -

Choosing a sufficiently complex network ensures that the pattern in data **CAN** be learnt ... however ... particularly for online settings ...

Vanishing Gradient Saddle Points (& Local Minima) Reuse Bengio et al. 1994 Hochreiter 1998, etc. Diminishing Feature Reuse Srivastava et al. 2015

Larc.smu.edu.sg

Challenges in using Deep Networks for Online Learning (1/2)

Unique Problem – prefer different depths at different stages of training

Challenges in using Deep Networks for Online Learning (1/2)

Unique Problem – prefer different depths at different stages of training

 x_1

 x_t

 x_T

Challenges in using Deep Networks for Online Learning (1/2)

Unique Problem – prefer different depths at different stages of training

 x_1

• • •

 x_t

• • •

 x_T

Challenges in using Deep Networks for Online Learning (1/2)

Unique Problem – prefer different depths at different stages of training

Challenges in using Deep Networks for Online Learning (1/2)

Unique Problem – prefer different depths at different stages of training x_1 x_t χ_T Error Rate Error Rate Error Rate 0.38 0.285 0.265 0.28 0.36 0.275 0.26 0.34 0.27 0.32 0.255 0.265 Depth **Depth** Depth

Challenges in using Deep Networks for Online Learning (1/2)

Unique Problem – prefer different depths at different stages of training $\boldsymbol{x_1}$ $\boldsymbol{x_t}$ χ_T Error Rate Error Rate Error Rate 0.38 0.285 0.265 0.36 0.275 0.26 0.34 0.27 0.32 0.255 0.265 **Depth Depth** Depth

Final Error – anyone could be best depending on how much of the data has been processed.

Problem is magnified for concept-drift scenarios

Best of both worlds?

Challenges in using Deep Networks for Online Learning (1/2)

Unique Problem – prefer different depths at different stages of training x_1 $\boldsymbol{x_t}$ χ_T Error Rate Error Rate Error Rate 0.38 0.285 0.265 0.36 0.275 0.26 0.34 0.27 0.32 0.255 0.265

Final Error – anyone could be best depending on how much of the data has been processed.

Depth

Problem is magnified for concept-drift scenarios

Best of both worlds?

Depth

Depth

Shallow to Deep Principle

Explicitly Shallow to Deep (Function Preservation Principle)

Net2Net Chen et al. 2016

NetMorph Wei et al. 2016

Implicitly Shallow to Deep

ResNet He et al. 2016

Highway Net Srivastava et al. 2015

DenseNet Huang et al. 2017

also Fractal Net Larsson et al. 2017

Larc.smu.edu.sg

Architecture for ODL

Shallow to Deep principle is suited for Online Deep Learning

Start Shallow → Faster Convergence

Become Deeper → Deep Representation

Proposed Architecture

Attach intermediate classifier to every hidden layer

Architecture for ODL

Shallow to Deep principle is suited for Online Deep Learning

Start Shallow → Faster Convergence

Become Deeper → Deep Representation

Proposed Architecture

Attach intermediate classifier to every hidden layer

Architecture for ODL

Shallow to Deep principle is suited for Online Deep Learning

Start Shallow → Faster Convergence

Become Deeper → Deep Representation

Proposed Architecture

Attach intermediate classifier to every hidden layer

Architecture for ODL

Shallow to Deep principle is suited for Online Deep Learning

Start Shallow → Faster Convergence

Become Deeper → Deep Representation

Proposed Architecture

Attach intermediate classifier to every hidden layer

Dynamically vary the Effective Depth based on the data

Larc.smu.edu.sg

Hedge Backpropagation (1/3)

Hedge Backpropagation (1/3)

Hedge Backpropagation (1/3)

Hedge Backpropagation (1/3)

Hedge Backpropagation (1/3)

Hedge Backpropagation (2/3)

Hedge Backpropagation (2/3)

A **Dynamic** Objective Function

$$\mathcal{L}(\mathbf{F}(\mathbf{x}), y) = \sum_{l=0}^{L} \alpha^{(l)} \mathcal{L}(\mathbf{f}^{(l)}(\mathbf{x}), y)$$

Hedge Backpropagation (2/3)

A **Dynamic** Objective Function

$$\mathcal{L}(\mathbf{F}(\mathbf{x}), y) = \sum_{l=0}^{L} \alpha^{(l)} \mathcal{L}(\mathbf{f}^{(l)}(\mathbf{x}), y)$$

3 Main Updates

Loss / Classifier Weight update (Hedge)

Classifier Update

DNN Update

Hedge Backpropagation (2/3)

A **Dynamic** Objective Function

$$\mathcal{L}(\mathbf{F}(\mathbf{x}), y) = \sum_{l=0}^{L} \alpha^{(l)} \mathcal{L}(\mathbf{f}^{(l)}(\mathbf{x}), y)$$

3 Main Updates

Loss / Classifier Weight update (Hedge)

$$\alpha_{t+1}^{(l)} \leftarrow \alpha_t^{(l)} \beta^{\mathcal{L}(\mathbf{f}^{(l)}(\mathbf{x}), y)}$$

Classifier Update

DNN Update

Hedge Backpropagation (2/3)

A **Dynamic** Objective Function

$$\mathcal{L}(\mathbf{F}(\mathbf{x}), y) = \sum_{l=0}^{L} \alpha^{(l)} \mathcal{L}(\mathbf{f}^{(l)}(\mathbf{x}), y)$$

3 Main Updates

Loss / Classifier Weight update (Hedge)

$$\alpha_{t+1}^{(l)} \leftarrow \alpha_t^{(l)} \beta^{\mathcal{L}(\mathbf{f}^{(l)}(\mathbf{x}), y)}$$

Classifier Update

$$\Theta_{t+1}^{(l)} \leftarrow \Theta_{t}^{(l)} - \eta \nabla_{\Theta_{t}^{(l)}} \mathcal{L}(\mathbf{F}(\mathbf{x}_{t}, y_{t}))$$

$$= \Theta_{t}^{(l)} - \eta \alpha^{(l)} \nabla_{\Theta_{t}^{(l)}} \mathcal{L}(\mathbf{f}^{(l)}, y_{t})$$

DNN Update

Hedge Backpropagation (2/3)

A **Dynamic** Objective Function

$$\mathcal{L}(\mathbf{F}(\mathbf{x}), y) = \sum_{l=0}^{L} \alpha^{(l)} \mathcal{L}(\mathbf{f}^{(l)}(\mathbf{x}), y)$$

3 Main Updates

Loss / Classifier Weight update (Hedge)

Classifier Update

DNN Update

$$\alpha_{t+1}^{(l)} \leftarrow \alpha_t^{(l)} \beta^{\mathcal{L}(\mathbf{f}^{(l)}(\mathbf{x}), y)}$$

$$\Theta_{t+1}^{(l)} \leftarrow \Theta_{t}^{(l)} - \eta \nabla_{\Theta_{t}^{(l)}} \mathcal{L}(\mathbf{F}(\mathbf{x}_{t}, y_{t}))$$

$$= \Theta_{t}^{(l)} - \eta \alpha^{(l)} \nabla_{\Theta_{t}^{(l)}} \mathcal{L}(\mathbf{f}^{(l)}, y_{t})$$

$$W_{t+1}^{(l)} \leftarrow W_t^{(l)} - \eta \sum_{j=l}^{L} \alpha^{(j)} \nabla_{W^{(l)}} \mathcal{L}(\mathbf{f}^{(j)}, y_t)$$

Hedge Backpropagation (2/3)

A **Dynamic** Objective Function

$$\mathcal{L}(\mathbf{F}(\mathbf{x}), y) = \sum_{l=0}^{L} \alpha^{(l)} \mathcal{L}(\mathbf{f}^{(l)}(\mathbf{x}), y)$$

3 Main Updates

Loss / Classifier Weight update (Hedge)

Classifier Update

DNN Update

$$\alpha_{t+1}^{(l)} \leftarrow \alpha_t^{(l)} \beta^{\mathcal{L}(\mathbf{f}^{(l)}(\mathbf{x}), y)}$$

$$\Theta_{t+1}^{(l)} \leftarrow \Theta_{t}^{(l)} - \eta \nabla_{\Theta_{t}^{(l)}} \mathcal{L}(\mathbf{F}(\mathbf{x}_{t}, y_{t}))
= \Theta_{t}^{(l)} - \eta \alpha^{(l)} \nabla_{\Theta_{t}^{(l)}} \mathcal{L}(\mathbf{f}^{(l)}, y_{t})$$

$$W_{t+1}^{(l)} \leftarrow W_t^{(l)} - \eta \sum_{j=l}^{L} \alpha^{(j)} \nabla_{W^{(l)}} \mathcal{L}(\mathbf{f}^{(j)}, y_t)$$

Smoothing Parameter

$$\alpha^{(l)} \leftarrow \max\left(\alpha^{(l)}, \frac{s}{L}\right)$$

Hedge Backpropagation (3/3)

Hedge Backpropagation (3/3)

Vanishing Gradient

Intermediate classifiers reduce initial susceptibility to Vanishing Gradient

Hedge Backpropagation (3/3)

Vanishing Gradient

amput layer

Intermediate classifiers reduce initial susceptibility to Vanishing Gradient

Saddle Points (& Local Minima)

Multiple Loss functions allow easier exits from saddle points

Hedge Backpropagation (3/3)

Vanishing Gradient

Intermediate classifiers reduce initial susceptibility to Vanishing Gradient

Saddle Points (& Local Minima)

Multiple Loss functions allow easier exits from saddle points

Diminishing Feature Reuse

Intermediate features are directly used for classification

Hedge Backpropagation (3/3)

Parallel Interpretations

Student-Teacher Learning | Lifelong Learning | Concept-Drift Adaptation, etc.

Larc.smu.edu.sg

Convergence behavior on stationary and concept drift datasets

Baselines: Linear and Kernel OL | DNNs with varying depth | DNN-20 – with momentum, Highway **Proposed:** Online Deep Learning by Hedge Backpropagation (DNN-20)

Other Insights

Other Insights

Other Insights

(a) Error in 10-15% of data

(b) Error in 60-80% of data

Larc.smu.edu.sg 1

Other Insights

Error Variation with Depth

Depth	12	16	20	30
Online BP	0.2692	0.2731	0.2868	0.4770
HBP	0.2609	0.2613	0.2615	0.2620

Larc.smu.edu.sg 12

Acknowledgements

This research is supported by the National Research Foundation, Prime Minister's Office, Singapore under its International Research Centres in Singapore Funding Initiative.

Thank you

Personalized Participatory Nation

School of Information Systems Singapore Management University 80 Stamford Road Singapore 178902 Tel: 65 6808 5227

twitter.com/larc_cmu_smu