Lógica e Sistemas Digitais

Circuitos sequenciais

Flip-flops assíncronos, D Latch e D Edge-triggered

João Pedro Patriarca (<u>ipatri@cc.isel.ipl.pt</u>)

Slides inspirados nos slides do prof. Mário Véstias

Circuito sequencial

Circuito combinatório:

- Caracteriza-se pelas saídas dependerem exclusivamente do estado atual das entradas
- As mesmas combinações nas entradas produzem sempre os mesmos valores lógicos nas saídas

Circuito sequencial:

- Caracteriza-se pelas saídas dependerem da sequência de estados a que as entradas estiveram sujeitas ao longo do tempo
- As mesmas combinações nas entradas podem produzir valores lógicos diferentes nas saídas
- Este comportamento apenas é possível com a existência de memória

Flip-flop

- Célula unitária de memória memoriza um bit de informação
- Circuito biestável apresenta um de dois estados possíveis (estado corresponde ao valor lógico presente na saída)
- Flip-flop assíncrono: o estado é atualizado no momento em que as entradas mudam
 - Relevante tempo de uma combinação nas entradas (propagação de sinal)
 - Relevante propagação de sinal na transição de estado dado por um vetor de flip-flops (diferentes tempos de propagação para cada bit de estado)
- Flip-flop síncrono: o estado é atualizado função dos valores das entradas no momento de sincronização com uma entrada de *clock*

Exemplo de um flip-flop assíncrono

- A saída Q apresenta o valor lógico de D (*Data*) enquanto E=1 (*Enable*)
- A saída Q mantém de memória o valor presente na entrada D no momento que E transita para 0
- O valor lógico da entrada D é latched (trincado) logo que a entrada E transita de 1 para O devido à realimentação de Q para x e às duas portas NOT
- Flip-flop tipo D-latch (ou Transparent Latch)
- Problema desta solução:
 - Curto-circuito temporário nas alterações de valores da entrada D com E=1

Flip-flop Set-Reset

S	R	$oldsymbol{Q}^*$	Q	$ar{m{Q}}$
0	0	0	0	1
0	0	1	1	0
0	1	-	0	1
1	0	-	1	0
1	1	-	?	?

- Duas entradas Set (S) e Reset (R):
 - A entrada S leva o flip-flop ao estado lógico 1
 - A entrada R leva o flip-flop ao estado lógico 0
 - O flip-flop mantém o estado com as entradas S e R desativas
 - Não está definido o comportamento com S e R ativos em simultâneo
 - Depende da implementação: Reset overrides Set versus Set overrides Reset

Flip-flop Set-Reset (Reset overrides Set)

S	R	$oldsymbol{Q}^*$	Q	$ar{m{Q}}$
0	0	0	0	1
0	0	1	1	0
0	1	-	0	1
1	0	-	1	0
1	1	-	0	0

Flip-flop Set-Reset (Set overrides Reset)

S	R	$oldsymbol{Q}^*$	Q	$\overline{m{Q}}$
0	0	0	0	1
0	0	1	1	0
0	1	-	0	1
1	0	-	1	0
1	1	-	1	1

Flip-flop D Latch baseado em flip-flop SR (transparent latch)

- Coloca o valor da entrada D em Q, enquanto E=1 (noção de transparente)
- Mantém o estado atual, enquanto E=0

Flip-flops síncronos

• O flip-flop dispõe de uma entrada de relógio (clock)

• A entrada de *clock* é representada no circuito por um triângulo (▷)

• O *clock* representa uma fonte de sincronismo para o circuito sequencial

• O estado do flip-flop pode ser alterado apenas na transição de um dos flancos do sinal de *clock* (ou na transição de 0 para 1 ou na transição de 1 para 0, dependendo da implementação do flip-flop)

Flip-flop D Edge-triggered

- Coloca o valor da entrada D na saída Q na transição de 0 para 1 na entrada de *clock*
- Mantém o estado atual nas restantes situações

Flip-flop D Edge-triggered com entradas Set/Reset

CK	S_{sync}	Rst	D	Q *	Q	$oldsymbol{ar{Q}}$
0	-	0	-	-	Q^*	$\overline{Q^*}$
1	-	0	-	-	Q^*	$\overline{Q^*}$
\downarrow	-	0	-	-	Q^*	$\overline{Q^*}$
-	0	1	-	-	0	1
\uparrow	1	-	-	-	1	0
\uparrow	0	0	0	-	0	1
\uparrow	0	0	1	-	1	0

- A entrada SET leva o flip-flop ao estado lógico 1
- A entrada RST leva o flip-flop ao estado lógico 0
- SET e RST sobrepõem-se à lógica funcional do flip-flop e, tipicamente, a entrada SET tem prioridade sobre a entrada RST
- Podem ser síncronas ou assíncronas ou um misto (se síncronas o estado do flip-flop é sincronizado com o sinal de relógio)

