```
In [1]: import numpy as np
        import matplotlib.pyplot as plt
        import skimage as skimage
        import scipy
        from scipy.sparse import csr_array
        from scipy.sparse import lil array
        from scipy.sparse.linalg import lsgr
        # note we imported the sparse least squares function
In [2]: # take some images with different exposure times.
        # make sure your camera (phone) does not move between exposures. I used a ph
        # images
        Ims = []
        # exposure times
        dts = []
        Ims.append(plt.imread('imgs/0.005.jpg'))
        dts.append(0.005)
        Ims.append(plt.imread('imgs/0.02.jpg'))
        dts.append(0.02)
        Ims.append(plt.imread('imgs/0.1.jpg'))
        dts.append(0.1)
        Ims.append(plt.imread('imgs/1.jpg'))
        dts.append(1)
        # Ims.append(plt.imread('1.7.jpeg'))
        \# dts.append(1.7)
        # Ims.append(plt.imread('2.0.jpeg'))
        # dts.append(2.0)
In [3]: # resize the images to a reasonable scale
        Imsr = []
        for idx in range(len(Ims)):
            # note this will resize factor of 1/8 for each side and convert to type
            # "cheap" conversion from color to gray scale by taking the mean of rgb
            I = np.mean(Ims[idx].axis=2)
            # resize to 1/8 of each dimension
            Ir=skimage.transform.resize(I, (I.shape[0] // 8, I.shape[1] // 8), anti_
            Imsr.append(Ir)
            print(f"Imsr[{idx}].shape={Imsr[idx].shape} Imsr[{idx}].dtype={Imsr[idx]
            print(f"values from {np.min(Imsr[idx][:])} to {np.max(Imsr[idx][:])}")
            # convert to uint8 (forcing a value from 0..255) just to have discrete p
```

```
Imsr[idx]=Imsr[idx].astype("uint8")
            print(f"Imsr[{idx}].shape={Imsr[idx].shape} Imsr[{idx}].dtype={Imsr[idx]
            print(f"values in {np.min(Imsr[idx][:])} .. {np.max(Imsr[idx][:])}")
            print(f"dts[{idx}]={dts[idx]}")
       Imsr[0].shape=(378, 504) Imsr[0].dtype=float64 values from 0.0 to 125.032616
       98218526
       Imsr[0].shape=(378, 504) Imsr[0].dtype=uint8 values in 0 .. 125
       dts[0]=0.005
       Imsr[1].shape=(378, 504) Imsr[1].dtype=float64 values from 0.004179065255576
       94 to 250.5974586594087
       Imsr[1].shape=(378, 504) Imsr[1].dtype=uint8 values in 0 .. 250
       dts[1]=0.02
       Imsr[2].shape=(378, 504) Imsr[2].dtype=float64 values from 0.028511227486451
       4 to 255.0
       Imsr[2].shape=(378, 504) Imsr[2].dtype=uint8 values in 0 .. 255
       dts[2]=0.1
       Imsr[3].shape=(378, 504) Imsr[3].dtype=float64 values from 0.164486891265720
       25 to 255.0
       Imsr[3].shape=(378, 504) Imsr[3].dtype=uint8 values in 0 .. 255
       dts[3]=1
In [4]: # simple version of optimization
        # solving for entries in v
        # first 256 entries are for g(0) ... g(255) then next h*w entries are for pi
        # Z_ij is the pixel value at location i in image j
        # dt_j is the exposure time for image j
        \# g(z) is the energy x that the sensor receives (exposure) to produce pixel
               (the exposure is the irradiance R times exposure time)
        #
        \# x = R*dt
        # for pixel i in image j
          x_{ij} = R_{ij}*dt_{j}
        #
        # Z_{ij} = f(x_{ij}) # the pixel value Z_{ij} comes from mapping the exposure the
          q() is the inverse of f()
          so if Z_{ij} = f(x_{ij}) we want g(Z_{ij}) = x_{ij} (=R_{ij}*dt_{j})
           taking logs of everything:
        #
        \# g(Z_{ij}) = ln(R_{i}) + ln(dt_{j}) \# pixel i, image j with time dt_{j}
        \# g(Z_{ij}) - ln(R_{i}) = ln(dt_{j})
        # making this into a constraint
        # Each pixel i in imag j gives one row of A and one entry in b
        # position: 0..... Z_ij ...255 0 1 2 ... i*w+j ... h*w
        # coefficient: 0 0 ... 1......0 0 ....... -1 .....0
```

entry in b: ln(dt_j)

```
# We want to solve for v so that Av=b
         # or the v that minimizes |Av-b|^2
         [h,w]=Imsr[0].shape
         # total how many images in Ismr
         l = len(Imsr)
         #num of rows total number of image * total number of pixels
         r = l * h * w
         #num of columns 256 for 0 to 255 pixels and h*w for total number of pixels
         c = 256 + h * w
         # setup rows of A and entries in b
         #sparse matrix
         A = lil_array((r + 1, c))
         b = np.zeros(r + 1)
         row = 0
         check = 0
         for j in range(l):
             for i in range(h):
                 for k in range(w):
                     Z ij = Imsr[j][i, k]
                     # position: 0..... Z_ij ...255 0 1 2 ... i*w+j ... h*w
                     # coefficient: 0 0 ... 1......0 0 ........ -1 .....0
                     A[row, Z_{ij}] = 1
                     A[row, i * w + k + 256] = -1
                     # entry in b: ln(dt_j)
                     b[row] = np.log(dts[j])
                     row += 1
         # add a constraint that "fixes" g(128) to be say 4 or such
         A[row, 128] = 1
         b[row] = np.log(4)
 In [5]: #solve for least squares solution
         Acsr=csr_array(A)# convert a to a csrarray before calling least squares
         soln = lsgr(Acsr,b,atol=1e-07, btol=1e-07)
         v = soln[0]
In [14]: plt.plot(np.exp(v[0:256]))
```

Out[14]: [<matplotlib.lines.Line2D at 0x2b597f820>]


```
In [15]: # Adding some bells and whistles to the optimization setup
         #
         # solving for entries in v
         # first 256 entries are for g(0) ... g(255) then next h*w entries are for pi
         \# g(x) = ln(R_i) + ln(dt_j) \# pixel i, image j with time dt_j
         \# q(x) - ln(R i) = ln(dt i)
         # weighted version where weight depends on the pixel value (can care less at
         \# w(R_i)g(x) - q(R_i)ln(R_i) = w(R_i)ln(dt_j)
         #
         \# also add regularization so that g(x) tends to be smooth
         \# l(g(i+1)-g(i)) - l(g(i)-g(i-1)) = 0
         \# lg(i)-2g(i+1)-g(i+2) = 0
         # where l is some weight on this constraint
         # remember to add a constraint that "fixes" g(128) to be say 4 or such
         # make a new version of A and b with these weights and constraints
         # Assume Imsr is a list of image arrays and dt is a list of exposure times
         [h, w] = Imsr[0].shape
         l = len(Imsr)
         # Total number of variables and equations, plus regularization terms and the
```

```
c = 256 + h * w
          r = l * h * w + 256 - 2 + 1 # Additional -2 for the first and last g(x) req
         A = lil_array((r, c))
         b = np.zeros(r)
         # Function to define weights based on pixel value
         def weight(z):
             if z \le 5 or z \ge 250:
                  return 1 # Lower weight for extreme values
             else:
                  return 10 # Higher weight for mid-range values
         # Populate A and b with weighted equations
          row = 0
          for j in range(l):
              for i in range(h):
                  for k in range(w):
                      Z_{ij} = Imsr[j][i, k]
                      w_{ij} = weight(Z_{ij})
                      A[row, Z_{ij}] = w_{ij} + Apply weight to g(Z_{ij})
                      A[row, 256 + i*w + k] = -w_ij # Apply weight to -ln(R_i)
                      b[row] = w_{ij} * np.log(dts[j]) # Apply weight to <math>ln(dt_{j})
                      row += 1
         # Regularization for smoothness of g(x)
          l = 50 # Weight for regularization terms
         for i in range(1, 255): # Skip the first and last pixel value for this cons
             A[row, i-1] = l
             A[row, i] = -2 * l
             A[row, i+1] = l
              row += 1
         # Constraint for fixing g(128)
         A[row, 128] = 1
         b[row] = np.log(4)
In [16]: Acsr=csr_array(A)
         soln = lsqr(Acsr,b,atol=1e-07, btol=1e-07)
         v=soln[0]
In [17]: plt.plot(v[0:256]) # note plotting g(z) here not exp(g(z))
Out[17]: [<matplotlib.lines.Line2D at 0x2b5b27280>]
```



```
In [18]: f=plt.figure()
    f.set_size_inches(10, 6)
    ax = f.add_subplot(1,5,1)
    ax.imshow(np.fliplr(np.transpose(np.reshape(v[256:],(h,w)))),cmap="gray")
    ax.axis("off")
    for i in range(len(Imsr)):
        ax = f.add_subplot(1,5,i+2)
        ax.imshow(np.fliplr(np.transpose(np.log(Imsr[i]+1))),cmap="gray")
        ax.axis("off")
```

/var/folders/x9/gt3hm8v90sqg1lhhj3y63ndw0000gn/T/ipykernel_16663/3258305814.
py:8: RuntimeWarning: divide by zero encountered in log
 ax.imshow(np.fliplr(np.transpose(np.log(Imsr[i]+1))),cmap="gray")


```
In [19]: da_Im=np.fliplr(np.transpose(np.reshape(v[256:],(h,w))))
   plt.imshow(da_Im[145: 340,:],cmap="gray")
```

Out[19]: <matplotlib.image.AxesImage at 0x2b59412a0>

In [20]: # show one horixontal line (bottom of image above) in each exposure and the
note that the hdr image has detail in both the darker and the lighter area
exposures lack detail in one (e.g. no dark detail in red) or the other (no
plt.plot(da_Im[145,:],'k')
plt.plot(np.flipud(np.log(Imsr[0][:,145])),color='r')
plt.plot(np.flipud(np.log(Imsr[1][:,145])),color='g')
plt.plot(np.flipud(np.log(Imsr[2][:,145])),color='b')
plt.plot(np.flipud(np.log(Imsr[3][:,145])),color='c')
plotted logs to make it easier to see variations

Out[20]: [<matplotlib.lines.Line2D at 0x2b58d6800>]


```
In [21]: test_im=np.fliplr(np.transpose(np.reshape(v[256:],(h,w))))
   plt.imshow(test_im, cmap = 'gray')
```

Out[21]: <matplotlib.image.AxesImage at 0x2b4390040>

In []: