Convex Optimization

Lagrange Duality

1. Lagrange Dual Function

Standard form problem (not necessarily convex):

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

variable $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^* .

Lagrangian:

 $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with dom $L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu)$$
$$= \inf_{x \in D} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some λ, ν .

Lower bound property:

If $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^*$.

2. The Dual Problem

Lagrange dual problem:

maxmize
$$g(\lambda, \nu)$$
 subject to $\lambda \geq 0$

A convex optimization problem, optimal value denoted d^* .

Weak duality:

$$d^* \le p^*$$

Strong duality:

$$d^* = p^*$$

Slater's constraint qualification:

Strong duality holds for a convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

if it is strictly feasible,

$$\exists x \in \text{int } \mathcal{D}: \quad f_i(x) \leq 0, \quad i = 1, \dots, m, \quad Ax = b$$

3. Karush-Kuhn-Tucker (KKT) Conditions

Complementary slackness:

Assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

hence, the two inequalities hold with equality:

- χ^* minimizes $L(\chi, \lambda^*, \nu^*)$
- $\lambda_i^* f_i(x^*) = 0$ for i = 1, ..., m (known as complementary slackness):

$$\lambda_i^* > 0 \Rightarrow f_i(x^*) = 0, \quad f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0$$

KKT conditions:

- 1. primal constraints: $f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p$
- 2. dual constraints: $\lambda \geq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0, i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions.

KKT conditions for convex problem:

If $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence,
$$f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$$
.