Solving Poisson's equation using discontinuous elements with Comsol Multiphysics

Michael Neilan

Louisiana State University Department of Mathematics Center for Computation & Technology

Poisson's equation

• Consider Poisson's equation:

$$-\Delta u = f \qquad \text{in } \Omega,$$

$$u = g \qquad \text{on } \partial \Omega.$$

• In this example, we take

$$\Omega = (0, 1)^2$$
, $f = 2\pi^2 \sin(\pi x) \sin(\pi y)$, $g = 0$,

so that the exact solution is $u = \sin(\pi x)\sin(\pi y)$.

Poisson's equation

• The discontinuous Galerkin method is defined as finding $u_h \in W^h$ such that

$$\begin{split} &\sum_{T \in \mathcal{T}_h} (\nabla u_h, \nabla v_h)_T - \sum_{e \in \mathcal{E}_h} \left\{ \left\langle \left[u_h \right], \left\{ \partial_n v_h \right\} \right\rangle_e \right. \\ &\left. + \left\langle \left\{ \partial_n u_h \right\} , \left[v_h \right] \right\rangle - \sigma h_e^{-1} \left\langle \left[u_h \right], \left[v_h \right] \right\rangle_e \right\} = (f, v_h) + \sum_{e \in \mathcal{E}_h^B} \left\langle g, \sigma h_e^{-1} v_h - \partial_n v_h \right\rangle_e. \end{split}$$

- \$\mathcal{E}_h\$ set of edges
- $\mathcal{E}_h^B \subset \mathcal{E}_h$ set of boundary edges

$$\begin{split} \left\{\!\!\left\{\partial_n v\right\}\!\!\right|_e &= \partial_{n_e} v^+ - \partial_{n_e} v^-, \qquad [v] \left|_e = v^+ - v^- \right. & \text{if } e = \partial T^+ \cap \partial T^-, \\ \left\{\!\!\left\{\partial_n v\right\}\!\!\right|_e &= \partial_{n_e} v, & [v] \left|_e = v \right. & \text{if } e \in \mathcal{E}_h^B, \\ \left(v^\pm = v \right|_{T^\pm}). & \end{split}$$

- ullet W^h denotes the space of discontinuous quadratic piecewise polynomials.
- $\sigma > 0$ is a stabilization parameter

Discontinuous Galerkin methods

 To implement in Comsol it is convenient to separate the interior edge terms and the boundary edge terms and move all of the terms to the left-hand side.
That is, we write the method as

$$\begin{split} &\sum_{T \in \mathcal{T}_h} \left\{ (\nabla u_h, \nabla v_h)_T - (f, v_h)_T \right\} \\ &- \sum_{e \in \mathcal{E}_h^I} \left\{ \left\langle \left[u_h \right], \left\{ \left(\partial_n v_h \right) \right\} \right\rangle_e + \left\langle \left\{ \left(\partial_n u_h \right) \right\}, \left[v_h \right] \right\rangle - \sigma h_e^{-1} \left\langle \left[u_h \right], \left[v_h \right] \right\rangle_e \right\} \\ &- \sum_{e \in \mathcal{E}_h^B} \left\{ \left\langle \left(\partial_n u_h, v_h \right) \right\rangle_e + \left\langle \left(u - g, \partial_n v_h - \sigma h_e^{-1} v_h \right) \right\rangle_e \right\} = 0. \end{split}$$

• \mathcal{E}_h^I - interior edges

Step 1: Start the application Comsol Multiphysics. The path to the executable is

/usr/local/packages/comsol35a/bin/comsol

- Step 2: (a) Select 'PDE Modes→Weak Form, Subdomain→ Stationary analysis'
 - (b) Select 'OK'

Step 3: (a) Select 'Draw→Specific Object→Square'

(b) Select 'OK'

Step 4: (optional) Click the icon for "Zoom Extents" - it is the icon with a magnifying glass and a red cross

Step 5: Select 'Options \rightarrow Global Expressions'

(a) Enter the following information in the given box:

Name	Expression	Unit	Description
f	$2*pi^2*sin(pi*x)*sin(pi*y)$		
g	0		
exactsoln	$\sin(pi^*x)^*\sin(pi^*y)$		
error	abs(u-exactsoln)		
l2err	error [∧] 2		
ujump	up(u)-down(u)		
testujump	test(up(u))-test(down(u))		
unavg	0.5*((up(ux)+down(ux))*unx+(up(uy)+down(uy))*uny)		
testunavg	0.5*((test(up(ux))+test(down(ux)))*unx		
	+(test(up(uy))+test(down(uy)))*uny)		
sigma	10		

(b) Select 'Ok'

Step 5:

- Step 6: (a) Select 'Physics→Subdomain Settings'
 - (b) Enter the following information in each field:

```
  weak :
  ux * test(ux) + uy * test(uy) - f * test(u)

  dweak :
  0

  bnd.weak :
  -unavg * testujump - ujump * testunavg + (sigma/h) * ujump * testujump

  constr :
  0

  Constraint type :
  ideal

  constr :
  0
```

- (c) To use discontinuous elements, select the 'Element tab' and enter 'shdisc(2,2,'u')' in the 'shape' field (the first 2 in 'shdisc(2,2,'u')' is the dimension, and the second 2 is the polynomial degree).
- (d) Select 'Ok'

Step 6:

Step 7: (a) Select 'Physics→Boundary Settings

(c) Select 'OK'

(b) Under the "Weak" tab, select all four boundaries (1,2,3,4) and enter the following information:

Step 7:

Step 8: Select the 'Solve' icon (the icon with a plain equal sign)

Step 9: To view the error,

- (a) Select 'Post Processing→Plot Parameters'
- (b) Select the 'Surface tab'
- (c) In the 'Surface Data Subtab', enter 'error' in the Expression field
- (d) Select the 'Height Data Subtab' and check the box for Height Data
- (e) Select 'Apply'

Step 10:

Step 10:

Step 10: To calculate the error in the L^2 norm,

- (a) Select 'Post Processing→ Subdomain Integration'
- (b) Enter 'l2err' in the Expression field
- (c) Select 'Apply'
- (d) The value should appear in the lower left-hand side of the screen (note: this is the quantity $\|u u_h\|_{L^2}^2$ not $\|u u_h\|_{L^2}$).