

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS P O Box 1450 Alexandra, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/814,853	03/30/2004	Qinghua Li	884.C50US1	5604
21186 7550 12/11/2008 SCHWEGMAN, LUNDBERG & WOESSNER, P.A. P.O. BOX 2938 MINNEAPOLIS, MN 55402			EXAMINER	
			MERED, HABTE	
			ART UNIT	PAPER NUMBER
			2416	
			MAIL DATE	DELIVERY MODE
			12/11/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/814.853 LI ET AL. Office Action Summary Examiner Art Unit HABTE MERED 2416 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 12 September 2008. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 27-46 is/are pending in the application. 4a) Of the above claim(s) _____ is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 27-46 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No.

Attachment(s)

1) ☑ Notice of References Cited (PTO-892)

4) ☐ Interview Summary
Penner MedSWitted D

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patient Drawing Review (PTO-948) 3) Information Diselocative Statement(e) (PTO-852CE) Paper No(s)/Mail Date	4) Interview Summary (PTO-413) Paper No(s)Mail Date. 5) Define at Informat Patent Application 6) Other:
---	---

Copies of the certified copies of the priority documents have been received in this National Stage

Application/Control Number: 10/814,853 Page 2

Art Unit: 2416

DETAILED ACTION

Response to Amendment

- 1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 9/12/2008 has been entered.
- Claims 1-26 are cancelled and replaced with new claims 27-46. The new independent claims are 27, 35, 40, and 44.

Response to Arguments

 Applicant's arguments with respect to new claims have been considered but are most in view of the new ground(s) of rejection.

Claim Rejections - 35 USC § 101

4. 35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title. Claims 27-33 are rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter. Claims 5-11 are rejected under 35 U.S.C. 101 as not falling within one of the four statutory categories of invention. While the claims recite a series of steps or acts to be performed, a statutory "process" under 35 U.S.C. 101 must (1) be tied to another statutory category (such as a particular apparatus), or (2) transform underlying subject matter (such as an article or material) to a different state or thing (Reference the May 15, 2008 memorandum issued by Deputy Commissioner for Patent Examining Policy, John J. Love, titled "Clarification of 'Processes' under 35 U.S.C. 101").

The instant claims 27-33 neither transform underlying subject matter nor positively tie to another statutory category that accomplishes the claimed method steps, and therefore do not qualify as a statutory process.

Furthermore, the claims (i.e., particularly claim 27) recite purely mental steps (transmitting, receiving and changing data) without tying the steps to one of the four statutory categories of invention recited.

Claim Rejections - 35 USC § 103

5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the

Art Unit: 2416

invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

 Claims 27-31, 33-40, and 42-46 are rejected under 35 U.S.C. 103(a) as being unpatentable over Perahia et al (US 7, 352, 718 B1) in view of Shatil (US Pub No. 2004/0086027 A1) and Priotti (US Pub. No. 20040120410).

Regarding claim 27, Perahia'718 discloses a method, comprising: receiving from multiple stations (Fig. 1 elements 104 are SDMA subscriber units) a plurality of up linked spatial division multiple access (SDMA) data streams (i.e. Fig. 1 SDMA AP 102 receives uplink SDMA data streams from elements 104 as detailed in Column 5, Lines 1-5) that are out of synchronism by a time period greater than an allowed guard band time period (i.e. the allowed guard band time is shown in Figs. 7 &8 and shows in Column 9, Lines 50-55 that the uplink transmission can be out of synch which has to exceed the guard band time).

Perahia'718 fails to disclose converting the plurality of SDMA data streams from a first time domain to a frequency domain; separating the plurality of SDMA data streams into a separated plurality of data streams in the frequency domain; converting the separated plurality of data streams from the frequency domain to a second time domain.

However, the above mentioned claimed limitations are well known in the art as evidenced by Shattil'027.

Art Unit: 2416

In particular, Shattil'027 discloses converting the plurality of SDMA data streams (see paragraph 27 indicating the data streams can be SDMA based) from a first time domain to a frequency domain (In Figures 4J and 10B, the asynchronous signals Rx are directly fed to and FFT or DFT to convert each of the Rx asynchronous composite signals from time domain to frequency domain as further detailed in paragraphs 141 and 186);

separating the plurality of SDMA data streams into a separated plurality of data streams in the frequency domain (In Figure 4J and 10B 1 ...M composite asynchronous Rx signals are separated into N data streams in the frequency domain and for further illustration see paragraphs 141,142, 186, and 187);

converting the separated plurality of data streams from the frequency domain to a second time domain (it should be noted that Shattir027 teaches a second time domain as the output of Figure 4J's 462 is M data streams in the time domain as the combiners and integrators serve as an IFFT as illustrated in paragraphs 142 and 193).

In view of the above, having the method of Perahia'718 and then given the well established teaching of Shattil'027, it would have been obvious to one having ordinary skill in the art at the time of the invention was made to modify the method of Perahia'718 as taught by Shattil'027, since Shattil'027 clearly states in paragraphs 32 and 33 that the modification results in a CI transceiver that uses time domain signal shaping resulting in a peak to average power ratio.

Art Unit: 2416

Perahia'718 also fails to disclose a method of synchronizing the separated plurality of data streams in the second time domain.

However, the above mentioned claimed limitations are well known in the art as evidenced by Priotti'410.

In particular, Priotti'410 discloses a method of synchronizing the separated pluralities of data streams in a second time domain (See Paragraph 43 and Figure 1, element 116. It should be noted here that neither a receiver nor a transmitter is claimed and hence element 116 of Figure 1 can be considered a second time domain synchronization taking into consideration the first time domain conversion at the transmitter. Never the less, Priotti'410 clearly teaches synchronization in the second time domain in the receiver 106 of the wireless system of Figure 1. The first time synchronization occurs in element 116 of Figure 1. The second time synchronization occurs in the second time domain in Figure 1, element 130. See paragraphs 52, 142, and 193).

In view of the above, having the method of Perahia'718 and then given the well established teaching of Priotti'410, it would have been obvious to one having ordinary skill in the art at the time of the invention was made to modify the method of Perahia'718 as taught by Priotti'410, since Priotti'410 clearly states in paragraph 8, Lines 1-5 that such a modification will allow post-FFT correction of fine frequency offset providing a much more accurate and enhanced synchronization at the receiver.

Regarding claim 28, the combination of Perahia'718, Shattil'027, and Priotti'410 disclose a method wherein the receiving comprises: receiving at least some of the

Art Unit: 2416

plurality of SDMA data streams as data streams that include a plurality of non-aligned orthogonal frequency division multiplexed symbols (See Shattil'027 paragraph 213 received OFDM symbols can be non-aligned requiring synchronization at the receiver).

Regarding claim 29, Perahia'718 discloses a method wherein the receiving comprises: receiving the plurality of SDMA data streams in response to a polling communication (See Perahia'718 Column 3, Lines 25-30).

Regarding claim 30, Perahia'718 discloses a method wherein the polling communication comprises multiple polling messages overlapping in time and corresponding in number to the multiple stations (See Column 7, Lines 13-23 and Fig. 6 showing multiple polling messages to multiple stations in overlapping time eventually leading to failure of packet reception).

Regarding claim 31, the combination of Perahia'718, Shattil'027, and Priotti'410 disclose a method, wherein the separating comprises: separating the plurality of SDMA data streams using a channel matrix (See Shattil'027's Figure 5B, 6B, and 11 and paragraphs 145 and 156).

Regarding claim 33, the combination of Perahia'718, Shattil'027, and Priotti'410 disclose a method wherein the separating comprises: separating the plurality of SDMA data streams into a separated plurality of data streams, wherein at least some of the separated plurality of data streams have different frequency offsets (Shattil'027 shows in Fig 3E different frequency offsets and besides if the signals did not have

Art Unit: 2416

frequency offsets then it will be hard to distinguish them in the frequency domain).

Regarding claim 34, the combination of Perahia'718, Shattil'027, and Priotti'410 disclose a method wherein a number of the separated plurality of data streams correspond to a like number of wireless channels (Shattil'027 shows in paragraph 37 that the wireless channel is shared and divided in sub-carrier or sub-channel using OFDM/SDMA techniques).

Regarding claim 35, Perahia'718 discloses an article comprising a memory has instructions stored thereon, wherein the instructions, when executed, cause the processor to perform:

converting a plurality of spatial division multiple access (SDMA) data streams

(i.e. SDMA data streams from SDMA stations 104 received at AP 102 – see

Column 5, Lines 1-5) from a first time domain (note when received at the AP 102 it is in first time domain as it comes out from the Tx's IFFT 306 of Fig. 3) to a frequency domain (i.e. Fig. 2 FFT 204) after the plurality of SDMA data streams have been received as a plurality of uplinked SDMA data streams that are out of synchronism by a time period greater than an allowed guard band time period (i.e. the allowed guard band time is shown in Figs. 7 &8 and shows in Column 9, Lines 50-55 that the uplink transmission can be out of synch which has to exceed the guard band time).

Art Unit: 2416

Perahia'718 fails to disclose separating the plurality of SDMA data streams into a separated plurality of data streams in the frequency domain; converting the separated plurality of data streams from the frequency domain to a second time domain.

However, the above mentioned claimed limitations are well known in the art as evidenced by Shattil'027.

In particular, Shattil'027 discloses separating the plurality of SDMA data streams into a separated plurality of data streams in the frequency domain(i.e. Figure 10B DFT 1071 or Figure 4J FFT 472 separate SDMA data streams into plurality of streams in the frequency domain - see paragraphs 141,142, 186, and 187);

converting the separated plurality of data streams from the frequency domain to a second time domain (it should be noted that Shattir027 teaches a second time domain as the output of Figure 4J's 462 is M data streams in the time domain as the combiners and integrators serve as an IFFT as illustrated in paragraphs 142 and 193).

In view of the above, having the article of Perahia'718 and then given the well established teaching of Shattil'027, it would have been obvious to one having ordinary skill in the art at the time of the invention was made to modify the article of Perahia'718 as taught by Shattil'027, since Shattil'027 clearly states in paragraphs 32 and 33 that the modification results in a CI transceiver that uses time domain signal shaping resulting in a peak to average power ratio.

Perahia'718 also fails to disclose synchronizing the separated plurality of data streams in the second time domain.

Art Unit: 2416

However, the above mentioned claimed limitations are well known in the art as evidenced by Priotti'410.

In particular, Priotti'410 discloses synchronizing the separated pluralities of data streams in a second time domain (See Paragraph 43 and Figure 1, element 116. It should be noted here that neither a receiver nor a transmitter is claimed and hence element 116 of Figure 1 can be considered a second time domain synchronization taking into consideration the first time domain conversion at the transmitter. Never the less, Priotti'410 clearly teaches synchronization in the second time domain in the receiver 106 of the wireless system of Figure 1. The first time synchronization occurs in element 116 of Figure 1. The second time synchronization occurs in the second time domain in Figure 1, element 130. See paragraphs 52, 142, and 193).

In view of the above, having the article of Perahia'718 and then given the well established teaching of Priotti'410, it would have been obvious to one having ordinary skill in the art at the time of the invention was made to modify the article of Perahia'718 as taught by Priotti'410, since Priotti'410 clearly states in paragraph 8, Lines 1-5 that such a modification will allow post-FFT correction of fine frequency offset providing a much more accurate and enhanced synchronization at the receiver.

Regarding claim 36, Perahia'718 discloses an article, wherein the separating comprises: separating the plurality of SDMA data streams at a wireless access point (See Figure 1, AP 102 and the AP 10 as a receiver in Figure 2 separating the SDMA data streams).

Art Unit: 2416

Regarding claim 37, the combination of Perahia'718, Shattil'027, and Priotti'410 discloses an article wherein the instructions, when executed, cause the processor to perform: computing a frequency response for a plurality of channels corresponding in number to a number of the plurality of SDMA data streams (See Shattil'027 paragraph 192 calculation of the channel response for the nth frequency channel).

Regarding claim 38, the combination of Perahia'718, Shattil'027, and Priotti'410 discloses an article, wherein the synchronizing comprises: synchronizing at least one of the separated plurality of data streams after detecting a boundary between preambles. (See Perahia'718 Column 9, Lines 30-35 and see how lack of synchronism in Figure 6 between clients 1 and 2 is compensated by padding after detecting the preamble boundaries in Figures 7 and 8).

Regarding claim 39, the combination of Perahia'718, Shattil'027, and Priotti'410 discloses an article, wherein the instructions, when executed, cause the processor to perform: estimating a coarse frequency offset between receiver and transmitter oscillator clocks (Priotti'410 in paragraph 64 teaches large or coarse frequency offset estimation and in paragraph 65 it teaches smooth frequency offset estimation).

Regarding claim 40, Perahia'718 discloses an apparatus (i.e. Figure 1, element 102 - SDMA AP) wherein the plurality of SDMA data streams (i.e. sourced by Figure 1, elements 104 SDMA stations) have been received as a plurality of uplinked SDMA data streams (i.e. Fig. 1 SDMA AP 102 receives uplink SDMA data streams from

Art Unit: 2416

elements 104 as detailed in Column 5, Lines 1-5) that are out of synchronism by a time period greater than an allowed guard band time period (i.e. the allowed guard band time is shown in Figs. 7 &8 and shows in Column 9, Lines 50-55 that the uplink transmission can be out of synch which has to exceed the guard band time).

Perahia'718 fails to disclose an apparatus including a separation module to separate a plurality of spatial division multiple access (SDMA) data streams into a plurality of separated data streams, in a frequency domain, after the plurality of SDMA data streams have been converted from a first time domain to the frequency domain.

However, the above mentioned claimed limitations are well known in the art as evidenced by Shattil'027.

In particular, Shattil'027 discloses an apparatus including a separation module (i.e. Figure 10B DFT 1071 or Figure 4J FFT 472) to separate a plurality of spatial division multiple access (SDMA) data streams into a plurality of separated data streams, in a frequency domain, after the plurality of SDMA data streams have been converted from a first time domain to the frequency domain. (In Figures 4J and 10B, the asynchronous signals Rx are directly fed to and FFT or DFT to convert each of the Rx asynchronous composite signals from time domain to frequency domain as further detailed in paragraphs 141, 142, 186 and 187)

In view of the above, having the apparatus of Perahia'718 and then given the well established teaching of Shattil'027, it would have been obvious to one having ordinary skill in the art at the time of the invention was made to modify the apparatus of

Art Unit: 2416

Perahia'718 as taught by Shattil'027, since Shattil'027 clearly states in paragraphs 32 and 33 that the modification results in a CI transceiver that uses time domain signal shaping resulting in a peak to average power ratio.

Perahia'718 also fails to disclose a synchronization module to synchronize the separated plurality of data streams in a second time domain after the separated plurality of data streams have been converted from the frequency domain to the second time domain.

However, the above mentioned claimed limitations are well known in the art as evidenced by Priotti'410. In particular, Priotti'410 discloses a synchronization module to synchronize the separated plurality of data streams in a second time domain after the separated plurality of data streams have been converted from the frequency domain to the second time domain. (See Paragraph 43 and Figure 1, element 116. It should be noted here that neither a receiver nor a transmitter is claimed and hence element 116 of Figure 1 can be considered a second time domain synchronization taking into consideration the first time domain conversion at the transmitter. Never the less, Priotti'410 clearly teaches synchronization in the second time domain in the receiver 106 of the wireless system of Figure 1. The first time synchronization occurs in element 116 of Figure 1. The second time synchronization occurs in the second time domain in Figure 1, element 130. See paragraphs 52, 142, and 193).

In view of the above, having the apparatus of Perahia'718 and then given the well established teaching of Priotti'410, it would have been obvious to one having ordinary skill in the art at the time of the invention was made to modify the apparatus of

Art Unit: 2416

Perahia'718 as taught by Priotti'410, since Priotti'410 clearly states in paragraph 8,

Lines 1-5 that such a modification will allow post-FFT correction of fine frequency offset providing a much more accurate and enhanced synchronization at the receiver.

Regarding claim 42, the combination of Perahia'718, Shattil'027, and Priotti'410 discloses an apparatus, wherein the separation module comprises: a module to perform a fast Fourier transform on the plurality of SDMA data streams (See Shattil'027 Figure 4J FFT 472).

Regarding claim 43, the combination of Perahia'718, Shattil'027, and Priotti'410 discloses an apparatus, wherein the separation module comprises: a module to perform an inverse fast Fourier transform on at least one of the separated plurality of data streams (See Shattil'027 Figure 11 element 1106 is an IFFT).

Regarding claim 44, Perahia'718 discloses a system (i.e. Figure 1, element 102 - SDMA AP) wherein the plurality of SDMA data streams (i.e. sourced by Figure 1, elements 104 SDMA stations) have been received as a plurality of uplinked SDMA data streams (i.e. Fig. 1 SDMA AP 102 receives uplink SDMA data streams from elements 104 as detailed in Column 5, Lines 1-5) that are out of synchronism by a time period greater than an allowed guard band time period (i.e. the allowed guard band time is shown in Figs. 7 &8 and shows in Column 9, Lines 50-55 that the uplink transmission can be out of synch which has to exceed the guard band time); and

a wireless access point (See Figure 2, element 102) coupled to a plurality of antennas to receive the plurality of SDMA data streams (See Column 5, Lines 1-5).

Art Unit: 2416

Perahia'718 fails to disclose a system including a separation module to separate a plurality of spatial division multiple access (SDMA) data streams into a plurality of separated data streams, in a frequency domain, after the plurality of SDMA data streams have been converted from a first time domain to the frequency domain.

However, the above mentioned claimed limitations are well known in the art as evidenced by Shattil'027. In particular, Shattil'027 discloses a system including a separation module (i.e. Figure 10B DFT 1071 or Figure 4J FFT 472) to separate a plurality of spatial division multiple access (SDMA) data streams into a plurality of separated data streams, in a frequency domain, after the plurality of SDMA data streams have been converted from a first time domain to the frequency domain. (In Figures 4J and 10B, the asynchronous signals Rx are directly fed to and FFT or DFT to convert each of the Rx asynchronous composite signals from time domain to frequency domain as further detailed in paragraphs 141, 142, 186 and 187)

In view of the above, having the system of Perahia'718 and then given the well established teaching of Shattil'027, it would have been obvious to one having ordinary skill in the art at the time of the invention was made to modify the system of Perahia'718 as taught by Shattil'027, since Shattil'027 clearly states in paragraphs 32 and 33 that the modification results in a CI transceiver that uses time domain signal shaping resulting in a peak to average power ratio.

Perahia'718 also fails to disclose a synchronization module to synchronize the separated plurality of data streams in a second time domain after the separated plurality

Art Unit: 2416

of data streams have been converted from the frequency domain to the second time domain.

However, the above mentioned claimed limitations are well known in the art as evidenced by Priotti'410. In particular, Priotti'410 discloses a synchronization module to synchronize the separated plurality of data streams in a second time domain after the separated plurality of data streams have been converted from the frequency domain to the second time domain. (See Paragraph 43 and Figure 1, element 116. It should be noted here that neither a receiver nor a transmitter is claimed and hence element 116 of Figure 1 can be considered a second time domain synchronization taking into consideration the first time domain conversion at the transmitter. Never the less, Priotti'410 clearly teaches synchronization in the second time domain in the receiver 106 of the wireless system of Figure 1. The first time synchronization occurs in element 116 of Figure 1. The second time synchronization occurs in the second time domain in Figure 1, element 130. See paragraphs 52, 142, and 193).

In view of the above, having the system of Perahia'718 and then given the well established teaching of Priotti'410, it would have been obvious to one having ordinary skill in the art at the time of the invention was made to modify the system of Perahia'718 as taught by Priotti'410, since Priotti'410 clearly states in paragraph 8, Lines 1-5 that such a modification will allow post-FFT correction of fine frequency offset providing a much more accurate and enhanced synchronization at the receiver.

Art Unit: 2416

Regarding **claim 45**, it is noted that the limitations of claim 45 corresponds to that of claim 31 as discussed above, please see the Examiner's comments with respect to claim 31 as set forth in the rejection above.

Regarding claim 46, the combination of Perahia'718, Shattil'027 and Priotti'410 disclose a system wherein the wireless access point is to train at least one channel for at least some of a plurality of stations associated with the plurality of SDMA data streams (See in Shattil'027 the training sequence in paragraph 55)

 Claims 32 and 41 are rejected under 35 U.S.C. 103(a) as being unpatentable over Perahia'718 in view of Shattil'027 and Priotti'410 as applied to claims 27 and 40 above respectively, and further in view of Shattil (US Pub.No. 2002/0150070 A1).

Regarding claim 32, the combination of Perahia'718, Shattil'027 and Priotti'410 fails to disclose a method wherein the separating comprises: separating the plurality of SDMA data streams into the separated plurality of data streams using a frequency spatial demapper.

However, the above mentioned claimed limitations are well known in the art as evidenced by Shattil'897. In particular, Shattil'897 discloses a method wherein the separating comprises: separating the plurality of SDMA data streams into the separated plurality of data streams using a frequency spatial demapper (Figure 2, element 206 is a frequency demapper and see also paragraphs 50 and 53 detailing how Figure 2, element 206 serves as a spatial demux/demapper).

Art Unit: 2416

In view of the above, having the method based on the combination of Perahia'718, Shattil'027 and Priotti'410 and then given the well established teaching of Shattil'070, it would have been obvious to one having ordinary skill in the art at the time of the invention was made to modify the method based on the combination of Perahia'718, Shattil'027 and Priotti'410 as taught by Shattil'070, since Shattil'070 clearly states in paragraph 50, that the use a spatial demultiplexer is to separate a particular signal from the interfering N-1 signals in the frequency domain.

Regarding claim 41, the combination of Perahia'718, Shattil'027 and Priotti'410 fails to disclose an apparatus where the separation module comprises: a spatial demultiplexer to provide the separated plurality of data streams.

However, the above mentioned claimed limitations are well known in the art as evidenced by Shattil'897. In particular, Shattil'897 discloses an apparatus where the separation module comprises: a spatial demultiplexer (Figure 2, element 206) to provide the separated plurality of data streams (Figure 2, element 206 is a frequency demapper and see also paragraphs 50 and 53 detailing how Figure 2, element 206 serves as a spatial demux).

In view of the above, having the apparatus based on the combination of Perahia'718, Shattil'027 and Priotti'410 and then given the well established teaching of Shattil'070, it would have been obvious to one having ordinary skill in the art at the time of the invention was made to modify the apparatus based on the combination of Perahia'718. Shattil'027 and Priotti'410 as taught by Shattil'070, since Shattil'070 clearly

Art Unit: 2416

states in paragraph 50, that the use a spatial demultiplexer is to separate a particular signal from the interfering N-1 signals in the frequency domain.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to HABTE MERED whose telephone number is (571)272-6046. The examiner can normally be reached on Monday to Friday 9:30AM to 5:00PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Aung S. Moe can be reached on 571 272 7314. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Aung S. Moe/ Supervisory Patent Examiner, Art Unit 2416 /Habte Mered/ Examiner, Art Unit 2416 12-08-08